From 7a2c56d4b009d9355d6b60a4ee6b597a96dfb57b Mon Sep 17 00:00:00 2001 From: Sigve Karolius Date: Wed, 9 Dec 2015 17:21:12 +0100 Subject: [PATCH 01/27] Adding files --- .../MoDeNaModels/CFD_tool_0D/.gitignore | 5 + .../MoDeNaModels/CFD_tool_0D/QmomKinetics.py | 46 + .../PUfoam/MoDeNaModels/CFD_tool_0D/README.md | 65 + .../MoDeNaModels/CFD_tool_0D/__init__.py | 40 + .../MoDeNaModels/CFD_tool_0D/cleanupScript.sh | 7 + .../CFD_tool_0D/gnuplot_script.gnu | 103 + .../CFD_tool_0D/src/CMakeLists.txt | 24 + .../CFD_tool_0D/src/QmomKinetics.cpp | 532 + .../CFD_tool_0D/src/coalescence.h | 87 + .../CFD_tool_0D/src/eigen/CMakeLists.txt | 6 + .../CFD_tool_0D/src/eigen/src/dcopy.f | 116 + .../CFD_tool_0D/src/eigen/src/dgemm.f | 316 + .../CFD_tool_0D/src/eigen/src/dger.f | 162 + .../CFD_tool_0D/src/eigen/src/dgesv.f | 179 + .../CFD_tool_0D/src/eigen/src/dgetf2.f | 213 + .../CFD_tool_0D/src/eigen/src/dgetrf.f | 225 + .../CFD_tool_0D/src/eigen/src/dgetrs.f | 225 + .../CFD_tool_0D/src/eigen/src/disnan.f | 80 + .../CFD_tool_0D/src/eigen/src/dlae2.f | 185 + .../CFD_tool_0D/src/eigen/src/dlaebz.f | 649 + .../CFD_tool_0D/src/eigen/src/dlaev2.f | 238 + .../CFD_tool_0D/src/eigen/src/dlaisnan.f | 91 + .../CFD_tool_0D/src/eigen/src/dlamch.f | 193 + .../CFD_tool_0D/src/eigen/src/dlaneg.f | 227 + .../CFD_tool_0D/src/eigen/src/dlanst.f | 183 + .../CFD_tool_0D/src/eigen/src/dlapy2.f | 104 + .../CFD_tool_0D/src/eigen/src/dlar1v.f | 486 + .../CFD_tool_0D/src/eigen/src/dlarnv.f | 178 + .../CFD_tool_0D/src/eigen/src/dlarra.f | 204 + .../CFD_tool_0D/src/eigen/src/dlarrb.f | 401 + .../CFD_tool_0D/src/eigen/src/dlarrc.f | 243 + .../CFD_tool_0D/src/eigen/src/dlarrd.f | 855 + .../CFD_tool_0D/src/eigen/src/dlarre.f | 891 + .../CFD_tool_0D/src/eigen/src/dlarrf.f | 488 + .../CFD_tool_0D/src/eigen/src/dlarrj.f | 373 + .../CFD_tool_0D/src/eigen/src/dlarrk.f | 249 + .../CFD_tool_0D/src/eigen/src/dlarrr.f | 204 + .../CFD_tool_0D/src/eigen/src/dlarrv.f | 1028 + .../CFD_tool_0D/src/eigen/src/dlartg.f | 204 + .../CFD_tool_0D/src/eigen/src/dlaruv.f | 446 + .../CFD_tool_0D/src/eigen/src/dlascl.f | 364 + .../CFD_tool_0D/src/eigen/src/dlaset.f | 184 + .../CFD_tool_0D/src/eigen/src/dlasq2.f | 582 + .../CFD_tool_0D/src/eigen/src/dlasq3.f | 421 + .../CFD_tool_0D/src/eigen/src/dlasq4.f | 425 + .../CFD_tool_0D/src/eigen/src/dlasq5.f | 281 + .../CFD_tool_0D/src/eigen/src/dlasq6.f | 254 + .../CFD_tool_0D/src/eigen/src/dlasr.f | 436 + .../CFD_tool_0D/src/eigen/src/dlasrt.f | 303 + .../CFD_tool_0D/src/eigen/src/dlassq.f | 151 + .../CFD_tool_0D/src/eigen/src/dlaswp.f | 191 + .../CFD_tool_0D/src/eigen/src/dscal.f | 111 + .../CFD_tool_0D/src/eigen/src/dstegr.f | 293 + .../CFD_tool_0D/src/eigen/src/dstemr.f | 764 + .../CFD_tool_0D/src/eigen/src/dsteqr.f | 572 + .../CFD_tool_0D/src/eigen/src/dswap.f | 123 + .../CFD_tool_0D/src/eigen/src/dtrsm.f | 376 + .../CFD_tool_0D/src/eigen/src/idamax.f | 61 + .../CFD_tool_0D/src/eigen/src/ieeeck.f | 203 + .../CFD_tool_0D/src/eigen/src/ilaenv.f | 624 + .../CFD_tool_0D/src/eigen/src/iparmq.f | 322 + .../CFD_tool_0D/src/eigen/src/lsame.f | 125 + .../CFD_tool_0D/src/eigen/src/vandermonde.f | 15 + .../CFD_tool_0D/src/eigen/src/xerbla.f | 99 + .../CFD_tool_0D/src/experimentalInputs.h | 135 + .../MoDeNaModels/CFD_tool_0D/src/growth.h | 78 + .../CFD_tool_0D/src/initializeMoments.h | 30 + .../MoDeNaModels/CFD_tool_0D/src/liquidBA.h | 49 + .../CFD_tool_0D/src/modenaCalls.h | 40 + .../CFD_tool_0D/src/momentsConverter.h | 29 + .../CFD_tool_0D/src/partialPressure.h | 100 + .../PUfoam/MoDeNaModels/CFD_tool_0D/src/pda.h | 131 + .../CFD_tool_0D/src/readParameters.h | 61 + .../CFD_tool_0D/src/write_kinetics.h | 127 + .../MoDeNaModels/FoamConstruction/.gitignore | 16 + .../FoamGeometryConstruction_Periodic.py | 282 + .../MoDeNaModels/FoamConstruction/README.md | 77 + .../FoamConstruction/SpherePackFB.exe | Bin 0 -> 214093 bytes .../example_inputs/.gitignore | 1 + .../example_inputs/input.json | 16 + .../FoamConstruction/periodicBox.py | 172 + .../PUfoam/MoDeNaModels/FoamConstruction/run | 113 + .../MoDeNaModels/FoamConstruction/vtkconv.py | 23 + .../PolymerDensity/Description_Density.pdf | Bin 0 -> 105746 bytes .../PolymerDensity/ExampleOfUsage/Density.py | 54 + .../PolymerDensity/ExampleOfUsage/README.md | 42 + .../PolymerDensity/ExampleOfUsage/initModels | 62 + .../ExampleOfUsage/modDensity.py | 208 + .../ExampleOfUsage/src/.gitignore | 20 + .../ExampleOfUsage/src/CMakeLists.txt | 47 + .../ExampleOfUsage/src/MacroscopicProblem.C | 108 + .../srcDetailedCode/Numeric_subroutines.f90 | 1667 ++ .../src/srcDetailedCode/VLE_main.f90 | 125 + .../src/srcDetailedCode/VLE_subroutines.f90 | 7156 +++++++ .../getting_started_subroutines.f90 | 4097 ++++ .../src/srcDetailedCode/main.f90 | 132 + .../module_solve_nonlinear.f90 | 1645 ++ .../src/srcDetailedCode/modules.f90 | 368 + .../PolymerDensity/ExampleOfUsage/workflow | 57 + .../PolymerDensity/PolymerDensity.py | 176 + .../MoDeNaModels/PolymerDensity/README.md | 0 .../MoDeNaModels/PolymerDensity/__init__.py | 38 + .../MoDeNaModels/PolymerDensity/initModels | 62 + .../PolymerDensity/src/CMakeLists.txt | 40 + .../DetailedModelCode/Numeric_subroutines.f90 | 1672 ++ .../src/DetailedModelCode/VLE_main.f90 | 131 + .../src/DetailedModelCode/VLE_subroutines.f90 | 7163 +++++++ .../getting_started_subroutines.f90 | 4102 ++++ .../src/DetailedModelCode/main.f90 | 121 + .../src/DetailedModelCode/makefile | 31 + .../module_solve_nonlinear.f90 | 1623 ++ .../src/DetailedModelCode/modules.f90 | 366 + .../MoDeNaModels/PolymerDensity/src/README.md | 28 + .../PUfoam/MoDeNaModels/Rheology/README | 29 + .../PUfoam/MoDeNaModels/Rheology/Rheology.py | 181 + .../MoDeNaModels/Rheology/WorkflowTest.py | 23 + .../PUfoam/MoDeNaModels/Rheology/__init__.py | 38 + .../MoDeNaModels/Rheology/initModels_rh | 57 + .../Rheology/src/coefficients.out | Bin 0 -> 2632 bytes .../PUfoam/MoDeNaModels/Rheology/src/mesh.geo | 37 + .../Rheology/src/mesh_options_2D.igo | 5 + .../MoDeNaModels/Rheology/src/outputmesh.out | 0 .../src/particles_in_a_box_2D_rmsh.igo | 110 + .../Rheology/src/particles_in_a_box_2D_rp.igo | 138 + .../src/particles_in_a_box_2D_rp_geo.igo | 127 + .../MoDeNaModels/Rheology/src/rheologyexact | Bin 0 -> 8423952 bytes .../Rheology/src/rheologyexactdummy | Bin 0 -> 9808 bytes .../Rheology/src/rheologyexactdummy.f90 | 71 + .../Rheology/src_dummy/CMakeLists.txt | 20 + .../Rheology/src_dummy/workflowdummy.f90 | 79 + .../PUfoam/MoDeNaModels/Rheology/workflow | 57 + .../PUfoam/MoDeNaModels/Solubility/.gitignore | 1 + .../Solubility/Description_Solubility.pdf | Bin 0 -> 102309 bytes .../Solubility/ExampleOfUsage/README | 34 + .../Solubility/ExampleOfUsage/Solubility.py | 54 + .../Solubility/ExampleOfUsage/initModels | 62 + .../ExampleOfUsage/modSolubility.py | 176 + .../Solubility/ExampleOfUsage/src/.gitignore | 20 + .../ExampleOfUsage/src/CMakeLists.txt | 31 + .../ExampleOfUsage/src/MacroscopicProblem.C | 108 + .../srcDetailedCode/Numeric_subroutines.f90 | 1667 ++ .../src/srcDetailedCode/VLE_main.f90 | 102 + .../src/srcDetailedCode/VLE_subroutines.f90 | 7156 +++++++ .../getting_started_subroutines.f90 | 4078 ++++ .../ExampleOfUsage/src/srcDetailedCode/in.txt | 8 + .../src/srcDetailedCode/main.f90 | 129 + .../src/srcDetailedCode/makefile | 31 + .../module_solve_nonlinear.f90 | 1645 ++ .../src/srcDetailedCode/modules.f90 | 364 + .../src/srcDetailedCode/out.txt | 1 + .../Solubility/ExampleOfUsage/workflow | 57 + .../MoDeNaModels/Solubility/Solubility.py | 194 + .../MoDeNaModels/Solubility/__init__.py | 41 + .../PUfoam/MoDeNaModels/Solubility/initModels | 62 + .../Solubility/src/Numeric_subroutines.f90 | 1672 ++ .../MoDeNaModels/Solubility/src/VLE_main.f90 | 105 + .../Solubility/src/VLE_subroutines.f90 | 7161 +++++++ .../src/getting_started_subroutines.f90 | 4082 ++++ .../PUfoam/MoDeNaModels/Solubility/src/in.txt | 8 + .../MoDeNaModels/Solubility/src/main.f90 | 125 + .../MoDeNaModels/Solubility/src/makefile | 31 + .../Solubility/src/module_solve_nonlinear.f90 | 1622 ++ .../MoDeNaModels/Solubility/src/modules.f90 | 366 + .../MoDeNaModels/Solubility/src/out.txt | 1 + .../Description_SurfaceTension.pdf | Bin 0 -> 80494 bytes .../SurfaceTension/ExampleOfUsage/README | 35 + .../ExampleOfUsage/SurfaceTension.py | 54 + .../SurfaceTension/ExampleOfUsage/initModels | 62 + .../ExampleOfUsage/modSurfaceTension.py | 184 + .../ExampleOfUsage/src/.gitignore | 20 + .../ExampleOfUsage/src/CMakeLists.txt | 31 + .../ExampleOfUsage/src/MacroscopicProblem | Bin 0 -> 13630 bytes .../ExampleOfUsage/src/MacroscopicProblem.C | 108 + .../ 0_initial_profile_global.xlo | 1603 ++ .../ 10_initial_profile_global.xlo | 3072 +++ .../ 11_final_profile_global.xlo | 3072 +++ .../ 1_final_profile_global.xlo | 1603 ++ .../ 40_initial_profile_global.xlo | 2052 ++ .../ 41_final_profile_global.xlo | 2052 ++ .../2_final_profile_local_proc_000.xlo | 1734 ++ .../2_final_profile_local_proc_001.xlo | 1014 + .../2_final_profile_local_proc_002.xlo | 1014 + .../2_final_profile_local_proc_003.xlo | 1012 + .../src/srcDetailedCode/AD_Routines.F90 | 234 + .../src/srcDetailedCode/Function.F90 | 240 + .../src/srcDetailedCode/Helfer_Routinen.F90 | 51 + .../src/srcDetailedCode/InitialGuess.F90 | 249 + .../src/srcDetailedCode/ItsTimeNorm.dat | 101 + .../src/srcDetailedCode/ItsTimeNorm.eps | 732 + .../src/srcDetailedCode/Main.F90 | 234 + .../src/srcDetailedCode/Modules.F90 | 545 + .../srcDetailedCode/Numeric_subroutines.F90 | 1671 ++ .../src/srcDetailedCode/PCSAFT_SurfaceTension | Bin 0 -> 1037955 bytes .../src/srcDetailedCode/SolverSetup.F90 | 299 + .../srcDetailedCode/Spline_Integration_d.F90 | 217 + .../src/srcDetailedCode/VLE_main.F90 | 90 + .../src/srcDetailedCode/VLE_subroutines.F90 | 7607 +++++++ .../srcDetailedCode/crit_point_mixtures.F90 | 471 + .../src/srcDetailedCode/fort.40 | 1 + .../getting_started_subroutines.F90 | 4121 ++++ .../src/srcDetailedCode/gnuplot_script.srp | 55 + .../ExampleOfUsage/src/srcDetailedCode/in.txt | 6 + .../src/srcDetailedCode/makefile | 344 + .../src/srcDetailedCode/mod_ChemPot.F90 | 250 + .../src/srcDetailedCode/mod_DFT_CHAIN.F90 | 347 + .../src/srcDetailedCode/mod_DFT_CHAIN_d.F90 | 427 + .../src/srcDetailedCode/mod_DFT_DISP_WDA.F90 | 688 + .../srcDetailedCode/mod_DFT_DISP_WDA_d.F90 | 505 + .../src/srcDetailedCode/mod_DFT_FMT.F90 | 346 + .../src/srcDetailedCode/mod_DFT_FMT_d.F90 | 457 + .../src/srcDetailedCode/mod_PETSc.F90 | 63 + .../module_solve_nonlinear.F90 | 1645 ++ .../src/srcDetailedCode/out.txt | 1 + .../SurfaceTension/ExampleOfUsage/workflow | 57 + .../SurfaceTension/SurfaceTension.py | 198 + .../MoDeNaModels/SurfaceTension/__init__.py | 39 + .../MoDeNaModels/SurfaceTension/initModels | 62 + .../src/ 0_initial_profile_global.xlo | 1603 ++ .../src/ 10_initial_profile_global.xlo | 3072 +++ .../src/ 11_final_profile_global.xlo | 3072 +++ .../src/ 1_final_profile_global.xlo | 1603 ++ .../src/ 40_initial_profile_global.xlo | 2052 ++ .../src/ 41_final_profile_global.xlo | 2052 ++ .../src/2_final_profile_local_proc_000.xlo | 1734 ++ .../src/2_final_profile_local_proc_001.xlo | 1014 + .../src/2_final_profile_local_proc_002.xlo | 1014 + .../src/2_final_profile_local_proc_003.xlo | 1012 + .../SurfaceTension/src/AD_Routines.F90 | 242 + .../SurfaceTension/src/Function.F90 | 251 + .../SurfaceTension/src/Helfer_Routinen.F90 | 56 + .../SurfaceTension/src/InitialGuess.F90 | 260 + .../SurfaceTension/src/ItsTimeNorm.dat | 101 + .../SurfaceTension/src/ItsTimeNorm.eps | 732 + .../MoDeNaModels/SurfaceTension/src/Main.F90 | 234 + .../SurfaceTension/src/Modules.F90 | 527 + .../src/Numeric_subroutines.F90 | 1676 ++ .../SurfaceTension/src/SolverSetup.F90 | 305 + .../src/Spline_Integration_d.F90 | 230 + .../SurfaceTension/src/VLE_main.F90 | 95 + .../SurfaceTension/src/VLE_subroutines.F90 | 7612 +++++++ .../src/crit_point_mixtures.F90 | 474 + .../MoDeNaModels/SurfaceTension/src/fort.40 | 1 + .../src/getting_started_subroutines.F90 | 4126 ++++ .../SurfaceTension/src/gnuplot_script.srp | 55 + .../MoDeNaModels/SurfaceTension/src/in.txt | 6 + .../MoDeNaModels/SurfaceTension/src/makefile | 344 + .../SurfaceTension/src/mod_ChemPot.F90 | 250 + .../SurfaceTension/src/mod_DFT_CHAIN.F90 | 351 + .../SurfaceTension/src/mod_DFT_CHAIN_d.F90 | 431 + .../SurfaceTension/src/mod_DFT_DISP_WDA.F90 | 697 + .../SurfaceTension/src/mod_DFT_DISP_WDA_d.F90 | 513 + .../SurfaceTension/src/mod_DFT_FMT.F90 | 344 + .../SurfaceTension/src/mod_DFT_FMT_d.F90 | 464 + .../SurfaceTension/src/mod_PETSc.F90 | 69 + .../src/module_solve_nonlinear.F90 | 1621 ++ .../MoDeNaModels/SurfaceTension/src/out.txt | 1 + .../PCSAFT_Henry | Bin 0 -> 502904 bytes .../MoDeNaModels/bubbleGrowth/.gitignore | 1 + .../MoDeNaModels/bubbleGrowth/__init__.py | 40 + .../MoDeNaModels/bubbleGrowth/bubbleGrowth.py | 45 + .../bubbleGrowth/src/CMakeLists.txt | 20 + .../bubbleGrowth/src/src/constants.f90 | 15 + .../bubbleGrowth/src/src/dgtsl.f90 | 132 + .../bubbleGrowth/src/src/in_out.f90 | 185 + .../bubbleGrowth/src/src/ioutils.f90 | 41 + .../bubbleGrowth/src/src/main.f90 | 11 + .../bubbleGrowth/src/src/model.f90 | 491 + .../bubbleGrowth/src/src/modenastuff.f90 | 218 + .../bubbleGrowth/src/src/opkda1.f | 10136 ++++++++++ .../bubbleGrowth/src/src/opkda2.f | 1441 ++ .../bubbleGrowth/src/src/opkdmain.f | 16587 ++++++++++++++++ .../bubbleGrowth/src/src/tests.f90 | 40 + .../MoDeNaModels/diffusivity/__init__.py | 40 + .../MoDeNaModels/diffusivity/diffusivity.py | 133 + .../PUfoam/MoDeNaModels/foamAging/.gitignore | 1 + .../PUfoam/MoDeNaModels/foamAging/__init__.py | 40 + .../MoDeNaModels/foamAging/foamAging.py | 46 + .../MoDeNaModels/foamAging/src/CMakeLists.txt | 18 + .../MoDeNaModels/foamAging/src/src/InOut.f90 | 222 + .../foamAging/src/src/conductivity.f90 | 243 + .../foamAging/src/src/constants.f90 | 26 + .../foamAging/src/src/ioutils.f90 | 41 + .../MoDeNaModels/foamAging/src/src/main.f90 | 252 + .../MoDeNaModels/foamAging/src/src/model.f90 | 278 + .../MoDeNaModels/foamAging/src/src/odepack.f | 16587 ++++++++++++++++ .../foamAging/src/src/odepack_sub1.f | 10136 ++++++++++ .../foamAging/src/src/odepack_sub2.f | 1441 ++ .../foamAging/src/src/physicalProperties.f90 | 501 + .../MoDeNaModels/foamConductivity/.gitignore | 1 + .../MoDeNaModels/foamConductivity/__init__.py | 41 + .../foamConductivity/foamConductivity.py | 244 + .../foamConductivity/src/CMakeLists.txt | 21 + .../foamConductivity/src/src/besselj.f90 | 4423 ++++ .../foamConductivity/src/src/bessely.f90 | 5888 ++++++ .../foamConductivity/src/src/complex.f90 | 183 + .../foamConductivity/src/src/condrad.f90 | 218 + .../foamConductivity/src/src/conduction.f90 | 41 + .../foamConductivity/src/src/constants.f90 | 75 + .../foamConductivity/src/src/cylprop.f90 | 195 + .../foamConductivity/src/src/filmprop.f90 | 263 + .../foamConductivity/src/src/foamgeom.f90 | 163 + .../foamConductivity/src/src/foamprop.f90 | 496 + .../foamConductivity/src/src/gasprop.f90 | 24 + .../foamConductivity/src/src/hbrd.f90 | 1644 ++ .../src/src/interpolation.f90 | 122 + .../foamConductivity/src/src/ioutils.f90 | 41 + .../foamConductivity/src/src/main.f90 | 21 + .../src/src/physicalProperties.f90 | 44 + .../foamConductivity/src/src/quadpack.f90 | 8484 ++++++++ .../foamConductivity/src/src/solidprop.f90 | 132 + .../foamConductivity/src/src/specfun.f90 | 218 + .../foamConductivity/src/src/tests.f90 | 223 + .../foamConductivity/src/src/utilit.f90 | 1675 ++ .../MoDeNaModels/gasConductivity/__init__.py | 44 + .../gasConductivity/gasConductivity.py | 128 + .../gasMixtureConductivity/__init__.py | 40 + .../gasMixtureConductivity.py | 120 + .../polymerConductivity/__init__.py | 40 + .../polymerConductivity.py | 106 + .../MoDeNaModels/polymerViscosity/__init__.py | 43 + .../polymerViscosity/polymerViscosity.py | 130 + examples/MoDeNaModels/flowRate/__init__.py | 40 + examples/MoDeNaModels/flowRate/flowRate.py | 154 + examples/MoDeNaModels/flowRate/src/.gitignore | 17 + .../MoDeNaModels/flowRate/src/CMakeLists.txt | 30 + .../MoDeNaModels/flowRate/src/flowRateExact.C | 125 + .../flowRate_idealGas/__init__.py | 40 + .../flowRate_idealGas/flowRate.py | 166 + .../flowRate_idealGas/src/.gitignore | 17 + .../flowRate_idealGas/src/CMakeLists.txt | 30 + .../flowRate_idealGas/src/flowRateExact.C | 124 + .../fullerEtAlDiffusion/__init__.py | 40 + .../fullerEtAlDiffusion.py | 98 + .../fullerEtAlDiffusion/src/.gitignore | 19 + examples/MoDeNaModels/idealGas/__init__.py | 40 + examples/MoDeNaModels/idealGas/idealGas.py | 103 + examples/MoDeNaModels/twoTank/__init__.py | 40 + examples/MoDeNaModels/twoTank/src/.gitignore | 17 + .../MoDeNaModels/twoTank/src/CMakeLists.txt | 31 + .../twoTank/src/twoTanksMacroscopicProblem.C | 160 + examples/MoDeNaModels/twoTank/twoTank.py | 46 + .../MoDeNaModels/twoTankFortran/__init__.py | 40 + .../twoTankFortran/src/.gitignore | 17 + .../twoTankFortran/src/CMakeLists.txt | 26 + .../src/twoTanksMacroscopicProblemFortran.f90 | 175 + .../twoTankFortran/twoTankFortran.py | 46 + examples/multicomponentDiffusion/README.md | 31 + examples/twoTanks/README.md | 44 + examples/twoTanksAutoInit/README.md | 45 + examples/twoTanksChained/README.md | 47 + examples/twoTanksFortran/README.md | 44 + 351 files changed, 250980 insertions(+) create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/QmomKinetics.py create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/README.md create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/__init__.py create mode 100755 applications/PUfoam/MoDeNaModels/CFD_tool_0D/cleanupScript.sh create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/gnuplot_script.gnu create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/QmomKinetics.cpp create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/coalescence.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dcopy.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgemm.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dger.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgesv.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetf2.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrf.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrs.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/disnan.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlae2.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaebz.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaev2.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaisnan.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlamch.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaneg.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlanst.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlapy2.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlar1v.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarnv.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarra.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrb.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrc.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrd.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarre.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrf.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrj.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrk.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrr.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrv.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlartg.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaruv.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlascl.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaset.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq2.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq3.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq4.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq5.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq6.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasr.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasrt.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlassq.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaswp.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dscal.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstegr.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstemr.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dsteqr.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dswap.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dtrsm.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/idamax.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ieeeck.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ilaenv.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/iparmq.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/lsame.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/vandermonde.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/xerbla.f create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/experimentalInputs.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/growth.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/initializeMoments.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/liquidBA.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/modenaCalls.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/momentsConverter.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/partialPressure.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/pda.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/readParameters.h create mode 100644 applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/write_kinetics.h create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/FoamGeometryConstruction_Periodic.py create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/README.md create mode 100755 applications/PUfoam/MoDeNaModels/FoamConstruction/SpherePackFB.exe create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/input.json create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/periodicBox.py create mode 100755 applications/PUfoam/MoDeNaModels/FoamConstruction/run create mode 100644 applications/PUfoam/MoDeNaModels/FoamConstruction/vtkconv.py create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/Description_Density.pdf create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/Density.py create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/README.md create mode 100755 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/initModels create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/modDensity.py create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/MacroscopicProblem.C create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/modules.f90 create mode 100755 applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/workflow create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/PolymerDensity.py create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/README.md create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/__init__.py create mode 100755 applications/PUfoam/MoDeNaModels/PolymerDensity/initModels create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/Numeric_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/getting_started_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/makefile create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/module_solve_nonlinear.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/modules.f90 create mode 100644 applications/PUfoam/MoDeNaModels/PolymerDensity/src/README.md create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/README create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/Rheology.py create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/WorkflowTest.py create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/__init__.py create mode 100755 applications/PUfoam/MoDeNaModels/Rheology/initModels_rh create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/coefficients.out create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/mesh.geo create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/mesh_options_2D.igo create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/outputmesh.out create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rmsh.igo create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp.igo create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp_geo.igo create mode 100755 applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexact create mode 100755 applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexactdummy create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexactdummy.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src_dummy/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/Rheology/src_dummy/workflowdummy.f90 create mode 100755 applications/PUfoam/MoDeNaModels/Rheology/workflow create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/Description_Solubility.pdf create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/README create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/Solubility.py create mode 100755 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/initModels create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/modSolubility.py create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/MacroscopicProblem.C create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/in.txt create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/makefile create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/modules.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/out.txt create mode 100755 applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/workflow create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/Solubility.py create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/__init__.py create mode 100755 applications/PUfoam/MoDeNaModels/Solubility/initModels create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/Numeric_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/VLE_main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/VLE_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/getting_started_subroutines.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/in.txt create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/makefile create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/module_solve_nonlinear.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/modules.f90 create mode 100644 applications/PUfoam/MoDeNaModels/Solubility/src/out.txt create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/Description_SurfaceTension.pdf create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/README create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/SurfaceTension.py create mode 100755 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/initModels create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/modSurfaceTension.py create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/CMakeLists.txt create mode 100755 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/MacroscopicProblem create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/MacroscopicProblem.C create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 0_initial_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 10_initial_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 11_final_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 1_final_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 40_initial_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 41_final_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_000.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_001.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_002.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_003.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/AD_Routines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Function.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Helfer_Routinen.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/InitialGuess.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.dat create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.eps create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Main.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Modules.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.F90 create mode 100755 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/PCSAFT_SurfaceTension create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/SolverSetup.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Spline_Integration_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_main.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/crit_point_mixtures.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/fort.40 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/gnuplot_script.srp create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/in.txt create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/makefile create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_ChemPot.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_PETSc.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/out.txt create mode 100755 applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/workflow create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/SurfaceTension.py create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/__init__.py create mode 100755 applications/PUfoam/MoDeNaModels/SurfaceTension/initModels create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 0_initial_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 10_initial_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 11_final_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 1_final_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 40_initial_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 41_final_profile_global.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_000.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_001.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_002.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_003.xlo create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/AD_Routines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/Function.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/Helfer_Routinen.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/InitialGuess.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.dat create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.eps create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/Main.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/Modules.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/Numeric_subroutines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/SolverSetup.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/Spline_Integration_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_main.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_subroutines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/crit_point_mixtures.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/fort.40 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/getting_started_subroutines.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/gnuplot_script.srp create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/in.txt create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/makefile create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_ChemPot.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT_d.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_PETSc.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/module_solve_nonlinear.F90 create mode 100644 applications/PUfoam/MoDeNaModels/SurfaceTension/src/out.txt create mode 100755 applications/PUfoam/MoDeNaModels/US_Solubility_Model/PythonModule_and_DetailedModelCode/PCSAFT_Henry create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/bubbleGrowth.py create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/constants.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/dgtsl.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/in_out.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/ioutils.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/model.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/modenastuff.f90 create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda1.f create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda2.f create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkdmain.f create mode 100644 applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/tests.f90 create mode 100644 applications/PUfoam/MoDeNaModels/diffusivity/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/diffusivity/diffusivity.py create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/foamAging.py create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/InOut.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/conductivity.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/constants.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/ioutils.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/model.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack.f create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub1.f create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub2.f create mode 100644 applications/PUfoam/MoDeNaModels/foamAging/src/src/physicalProperties.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/.gitignore create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/foamConductivity.py create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/CMakeLists.txt create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/besselj.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/bessely.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/complex.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/condrad.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/conduction.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/constants.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/cylprop.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/filmprop.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamgeom.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamprop.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/gasprop.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/hbrd.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/interpolation.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/ioutils.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/main.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/physicalProperties.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/quadpack.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/solidprop.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/specfun.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/tests.f90 create mode 100644 applications/PUfoam/MoDeNaModels/foamConductivity/src/src/utilit.f90 create mode 100644 applications/PUfoam/MoDeNaModels/gasConductivity/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/gasConductivity/gasConductivity.py create mode 100644 applications/PUfoam/MoDeNaModels/gasMixtureConductivity/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/gasMixtureConductivity/gasMixtureConductivity.py create mode 100644 applications/PUfoam/MoDeNaModels/polymerConductivity/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/polymerConductivity/polymerConductivity.py create mode 100644 applications/PUfoam/MoDeNaModels/polymerViscosity/__init__.py create mode 100644 applications/PUfoam/MoDeNaModels/polymerViscosity/polymerViscosity.py create mode 100644 examples/MoDeNaModels/flowRate/__init__.py create mode 100644 examples/MoDeNaModels/flowRate/flowRate.py create mode 100644 examples/MoDeNaModels/flowRate/src/.gitignore create mode 100644 examples/MoDeNaModels/flowRate/src/CMakeLists.txt create mode 100644 examples/MoDeNaModels/flowRate/src/flowRateExact.C create mode 100644 examples/MoDeNaModels/flowRate_idealGas/__init__.py create mode 100644 examples/MoDeNaModels/flowRate_idealGas/flowRate.py create mode 100644 examples/MoDeNaModels/flowRate_idealGas/src/.gitignore create mode 100644 examples/MoDeNaModels/flowRate_idealGas/src/CMakeLists.txt create mode 100644 examples/MoDeNaModels/flowRate_idealGas/src/flowRateExact.C create mode 100644 examples/MoDeNaModels/fullerEtAlDiffusion/__init__.py create mode 100755 examples/MoDeNaModels/fullerEtAlDiffusion/fullerEtAlDiffusion.py create mode 100644 examples/MoDeNaModels/fullerEtAlDiffusion/src/.gitignore create mode 100644 examples/MoDeNaModels/idealGas/__init__.py create mode 100644 examples/MoDeNaModels/idealGas/idealGas.py create mode 100644 examples/MoDeNaModels/twoTank/__init__.py create mode 100644 examples/MoDeNaModels/twoTank/src/.gitignore create mode 100644 examples/MoDeNaModels/twoTank/src/CMakeLists.txt create mode 100644 examples/MoDeNaModels/twoTank/src/twoTanksMacroscopicProblem.C create mode 100644 examples/MoDeNaModels/twoTank/twoTank.py create mode 100644 examples/MoDeNaModels/twoTankFortran/__init__.py create mode 100644 examples/MoDeNaModels/twoTankFortran/src/.gitignore create mode 100644 examples/MoDeNaModels/twoTankFortran/src/CMakeLists.txt create mode 100644 examples/MoDeNaModels/twoTankFortran/src/twoTanksMacroscopicProblemFortran.f90 create mode 100644 examples/MoDeNaModels/twoTankFortran/twoTankFortran.py create mode 100644 examples/multicomponentDiffusion/README.md create mode 100644 examples/twoTanks/README.md create mode 100644 examples/twoTanksAutoInit/README.md create mode 100644 examples/twoTanksChained/README.md create mode 100644 examples/twoTanksFortran/README.md diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/.gitignore b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/.gitignore new file mode 100644 index 000000000..0c39074ec --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/.gitignore @@ -0,0 +1,5 @@ +QmomKinetics +Makefile +cmake_install.cmake +CMakeCache.txt +CMakeFiles/ \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/QmomKinetics.py b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/QmomKinetics.py new file mode 100644 index 000000000..bb4b28a24 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/QmomKinetics.py @@ -0,0 +1,46 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Backward mapping Firetask for QmomKinetics model. +Contains path to the detailed model executable. + +@author Mohsen Karimi +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +""" +import os +from modena.Strategy import BackwardMappingScriptTask + +# Source code in src/twoTanksMacroscopicProblem.C +m = BackwardMappingScriptTask( + script=os.path.dirname(os.path.abspath(__file__))+'/src/QmomKinetics' +) diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/README.md b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/README.md new file mode 100644 index 000000000..4cabdd382 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/README.md @@ -0,0 +1,65 @@ +# README +@ingroup app_foaming +@brief This is a 0D example of the CFD code with the calls to the database using the MoDeNa interface. + +## Description +This is a zero dimensional prototype of the application of MoDeNa interface library to connect different +modeling scales. The first prototype shows the successful connections of nano, meso and macro sclaes for the simulation of foaming process. +The macro-scale code builds the RHS of 20 ODEs within the `QmomKinetics( const state_type &y , state_type &dydt , double t )` function including: +- dydt[0] : XW, conversion of the blowing reaction +- dydt[1] : XOH, conversion of the gelling reaction +- dydt[2] : T, temperature of the foam, K +- dydt[3] : L_l, weight fraction of the blowing agent in the liquid +- dydt[4] : L_g, weight fraction of the blowing agent in the gas +- dydt[5] : CO2_l, weight fraction of CO2 in the liquid +- dydt[6] : CO2_g, weight fraction of CO2 in the gas +- dydt[7] : m0, moment of order zero of the BSD +- dydt[8] : m1, moment of order one of the BSD +- dydt[9] : m2, moment of order two of the BSD +- dydt[10]: m3, moment of order three of the BSD +- dydt[11]: EG_NCO, Concentration of NCO end groups +- dydt[12]: EG_OH, Concentration of OH end groups +- dydt[13]: H2O, Water concentration +- dydt[14]: CO2, CO2 Concentration +- dydt[15]: PENTANE, Cylcopentane concentration +- dydt[16]: POLYMER, Dummy concentration of polymer +- dydt[17]: POLYMERBLOW, Second dummy concentration of polymer +- dydt[18]: UREA, Concentration of urea end groups +- dydt[19]: R_1_temp, Temperature + +Throughout the computation of RHSs the inputs of the surrogate models are set and the outputs are retirieved using modena library. +It should be remembred that the surrogate models should be initialized on the local machine before running this code. +The `write_kinetics(y, t)` function appends the results into the different text files that can be later plotted. +This function also computes the density of the foam based on the moments of BSD and converts the moments based +on the unit volume of the foam. +The `main(int argc, char **argv)` function starts with the initialization of the solution. Then, a 'stepper' has been +used to solve the ODEs. Further details on the integration method can be found [here.](http://headmyshoulder.github.io/odeint-v2/doc/boost_numeric_odeint/odeint_in_detail/steppers.html) + + +## How to run independently? + +1. Get Boost C++ Library + * Skip this step if you have boost at /usr/local/ (I have used boost_1_57_0) + * If not, get boost: + \verbatim sudo apt-get install libboost-dev + \endverbatim +2. Compile the project: + * \verbatim cmake . \endverbatim +3. Make the executatble from the main code + * \verbatim make \endverbatim +4. Set the environmental variable for the shared libraries by: + * \verbatim export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./eigen \endverbatim +5. Run the executable by: + * \verbatim ./QmomKinetics \endverbatim +6. Plot the results by software your choice. + +### Note: + In modifications of the solver are required, + first run the cleanupScript.sh (./cleanupScript) to remove the old results + then compile the modified code (make), + run the executable (./QmomKinetics) and plot the results (gnuplot gnuplot_script.gnu). + +------------- + +@authors Mohsen Karimi, Daniele Marchisio, Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/__init__.py b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/__init__.py new file mode 100644 index 000000000..dfc2471ce --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from QmomKinetics import m + diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/cleanupScript.sh b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/cleanupScript.sh new file mode 100755 index 000000000..302aaf1c3 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/cleanupScript.sh @@ -0,0 +1,7 @@ +#!/bin/bash + +# delete everything but the good stuff! +ls > list +egrep -v 'CMakeCache.txt|CMakeFiles|cmake_install.cmake|Makefile|CMakeLists.txt|cleanupScript.sh|coalescence.h|eigen|experimentalInputs.h|getBoost.sh|gnuplot_script.gnu|growth.h|initializeMoments.h|liquidBA.h|partialPressure.h|README|readParameters.h|results|testingKinetics|pda.h|QmomKinetics|QmomKinetics.cpp|write_kinetics.h|momentsConverter.h|plot_cfd.vsz|inputsQmom.in' list > list2 +mv list2 list +rm -rf $(. +@endcond +@file + This is a macro-scale modeling tool for the foaming process. The code utilizes + the MoDeNa interface library to connect different models including nano, and + meso scale models. The code returns the evolution of foam properties such as + density, temperature and bubble/cell size distribution. +@brief macor-scale tool for the foaming process. +@authors Mohsen Karimi, Daniele Marchisio, Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +*/ + +#include +#include +#include +#include +#include +#include +#include "modena.h" + +extern "C"{void dsteqr_(char &, int *, double *, double *, double *, int *, double *, int *); } + +#include "experimentalInputs.h" +#include "readParameters.h" +#include "initializeMoments.h" +#include "pda.h" +#include "growth.h" +#include "coalescence.h" +#include "liquidBA.h" + +using namespace std; +using namespace boost::numeric::odeint; +/** +@typedef +typedef vector to state_type +typedef runge_kutta_cash_karp54< state_type > error_stepper_type +typedef controlled_runge_kutta< error_stepper_type > controlled_stepper_type +*/ +typedef std::vector< double > state_type; +typedef runge_kutta_cash_karp54< state_type > error_stepper_type; +typedef controlled_runge_kutta< error_stepper_type > controlled_stepper_type; +/** +@var controlled_stepper +@sa http://headmyshoulder.github.io/odeint-v2/doc/boost_numeric_odeint/concepts/controlled_stepper.html +*/ +controlled_stepper_type controlled_stepper; + +#include "partialPressure.h" +/** +@var dpdt[2]: global double array +@brief This is used to compute the partial pressures. + +@var pOld[2]: global double array variable +@brief This is to hold the old pressure values during the partial pressure calculations. +*/ +double dpdt[2] = {}; +double pOld[2] = {}; + +#include "modenaCalls.h" +#include "momentsConverter.h" +#include "write_kinetics.h" +/** +@fn QmomKinetics(const state_type &y , state_type &dydt , double t) +@brief This is to calculate the RHD of all the ODEs. +@param [in] const state_type &y - vector to hold the results. +@param [in] state_type &dydt - vector to hold the RHDs of ODEs. +@param [in] double t - time +@return void. +*/ +void QmomKinetics( const state_type &y , state_type &dydt , double t ) +{ + // dydt[0] : XW + // dydt[1] : XOH + // dydt[2] : T + // dydt[3] : L_l + // dydt[4] : L_g + // dydt[5] : CO2_l + // dydt[6] : CO2_g + // dydt[7] : m0 + // dydt[8] : m1 + // dydt[9] : m2 + // dydt[10]: m3 + // ---simpleKinetics--- + // dydt[11]: EG_NCO + // dydt[12]: EG_OH + // dydt[13]: H2O + // dydt[14]: CO2 + // dydt[15]: PENTANE + // dydt[16]: POLYMER + // dydt[17]: POLYMERBLOW + // dydt[18]: UREA + // dydt[19]: R_1_temp + + int nNodes = 2; + int mOrder[6] = {0, 1, 2, 3, 4, 5}; + double mom[2*nNodes], we[nNodes], vi[nNodes], sgBA[2*nNodes], sgCO2[2*nNodes], sc[2*nNodes]; + double L_l, L_g, CO2_l, CO2_g, T, Lm, c1; + double rhoPolySurrgate; + double beta0 = 0.0; + double XW, XOH; + // simpleKinetics variables + double EG_XNCO, EG_NCO, EG_OH, EG_XOH, H2O, XH2O, CO2, PENTANE, POLYMER, POLYMERBLOW, UREA, R_1_temp; + double init_EG_NCO = 5.0; + double init_EG_OH = 5.0; + double init_H2O = 0.2; + + XW = y[0]; + XOH = y[1]; + T = y[2]; + L_l = y[3]; + L_g = y[4]; + CO2_l = y[5]; + CO2_g = y[6]; + mom[0] = y[7]; + mom[1] = y[8]; + mom[2] = y[9]; + mom[3] = y[10]; + // EG_NCO = y[11]; + // EG_OH = y[12]; + // H2O = y[13]; + // CO2 = y[14]; + // PENTANE = y[15]; + // POLYMER = y[16]; + // POLYMERBLOW = y[17]; + // UREA = y[18]; + // R_1_temp = y[19]; + + // EG_XNCO = 1.0 - (y[11]/init_EG_NCO); + // EG_XOH = 1.0 - (y[12]/init_EG_OH); + // XH2O = 1.0 - (y[13]/init_H2O); + + // Calling the simpleKinetics model + // if (kinMod == 3) + // { + // // inputs argPos + // modena_model_t *kinetics = modena_model_new("simpleKinetics"); + // modena_inputs_t *inputs_kinetics = modena_inputs_new (kinetics); + // modena_outputs_t *outputs_kinetics = modena_outputs_new (kinetics); + // size_t EG_NCO_Pos = modena_model_inputs_argPos(kinetics, "'EG_NCO'"); + // size_t EG_OH_Pos = modena_model_inputs_argPos(kinetics, "'EG_OH'"); + // size_t H2O_Pos = modena_model_inputs_argPos(kinetics, "'H2O'"); + // size_t CO2_Pos = modena_model_inputs_argPos(kinetics, "'CO2'"); + // size_t PENTANE_Pos = modena_model_inputs_argPos(kinetics, "'PENTANE'"); + // size_t POLYMER_Pos = modena_model_inputs_argPos(kinetics, "'POLYMER'"); + // size_t POLYMERBLOW_Pos = modena_model_inputs_argPos(kinetics, "'POLMERBLOW'"); + // size_t UREA_Pos = modena_model_inputs_argPos(kinetics, "'UREA'"); + // size_t R_1_temp_Pos = modena_model_inputs_argPos(kinetics, "'R_1_temp'"); + + // // outputs argPos + // size_t source_EG_NCO_Pos = modena_model_outputs_argPos(kinetics, "source_EG_NCO"); + // size_t source_EG_OH_Pos = modena_model_outputs_argPos(kinetics, "source_EG_OH"); + // size_t source_H2O_Pos = modena_model_outputs_argPos(kinetics, "source_H2O"); + // size_t source_CO2_Pos = modena_model_outputs_argPos(kinetics, "source_CO2"); + // size_t source_PENTANE_Pos = modena_model_outputs_argPos(kinetics, "source_PENTANE"); + // size_t source_POLYMER_Pos = modena_model_outputs_argPos(kinetics, "source_POLYMER"); + // size_t source_POLYMERBLOW_Pos = modena_model_outputs_argPos(kinetics, "source_POLMERBLOW"); + // size_t source_UREA_Pos = modena_model_outputs_argPos(kinetics, "source_UREA"); + // size_t source_R_1_temp_Pos = modena_model_outputs_argPos(kinetics, "source_R_1_temp"); + + // modena_model_argPos_check(kinetics); + + // // set input vector + // modena_inputs_set(inputs_kinetics, EG_NCO_Pos, EG_NCO); + // modena_inputs_set(inputs_kinetics, EG_OH_Pos, EG_OH); + // modena_inputs_set(inputs_kinetics, H2O_Pos, H2O); + // modena_inputs_set(inputs_kinetics, CO2_Pos, CO2); + // modena_inputs_set(inputs_kinetics, PENTANE_Pos, PENTANE); + // modena_inputs_set(inputs_kinetics, POLYMER_Pos, POLYMER); + // modena_inputs_set(inputs_kinetics, POLYMERBLOW_Pos, POLYMERBLOW); + // modena_inputs_set(inputs_kinetics, UREA_Pos, UREA); + // modena_inputs_set(inputs_kinetics, R_1_temp_Pos, R_1_temp); + + + // // call the model + // int ret_kinetics = modena_model_call(kinetics, inputs_kinetics, outputs_kinetics); + + // // terminate, if requested + // if(ret_kinetics != 0) + // { + // modena_inputs_destroy (inputs_kinetics); + // modena_outputs_destroy (outputs_kinetics); + // modena_model_destroy (kinetics); + // //return ret_kinetics; + // } + + // // get the source terms for simpleKinetics + // dydt[11] = modena_outputs_get(outputs_kinetics, source_EG_NCO_Pos); + // dydt[12] = modena_outputs_get(outputs_kinetics, source_EG_OH_Pos); + // dydt[13] = modena_outputs_get(outputs_kinetics, source_H2O_Pos); + // dydt[14] = modena_outputs_get(outputs_kinetics, source_CO2_Pos); + // dydt[15] = modena_outputs_get(outputs_kinetics, source_PENTANE_Pos); + // dydt[16] = modena_outputs_get(outputs_kinetics, source_POLYMER_Pos); + // dydt[17] = modena_outputs_get(outputs_kinetics, source_POLYMERBLOW_Pos); + // dydt[18] = modena_outputs_get(outputs_kinetics, source_UREA_Pos); + // dydt[19] = modena_outputs_get(outputs_kinetics, source_R_1_temp_Pos); + // } + + // Check for negative sources + // for (int i = 11; i < 20; i++) + // { + // if(dydt[i] < 0.0) + // { + // dydt[i] = 0.0; + // } + // } + + switch (denMod) + { + case 1: + { + // Calling the model for density reaction mixture + // size_t T_denpos = modena_model_inputs_argPos(density_reaction_mixturemodel, "T"); + // size_t XOH_denpos = modena_model_inputs_argPos(density_reaction_mixturemodel, "XOH"); + // modena_model_argPos_check(density_reaction_mixturemodel); + + // // set input vector + // modena_inputs_set(inputs_den, T_denpos, T); + // modena_inputs_set(inputs_den, XOH_denpos, EG_XOH); + + // // call the model + // int ret_den = modena_model_call (density_reaction_mixturemodel, inputs_den, outputs_den); + + // if(ret_den != 0) + // { + // modena_inputs_destroy (inputs_den); + // modena_outputs_destroy (outputs_den); + // modena_model_destroy (density_reaction_mixturemodel); + // exit(ret_den); + // } + + // rhoPolySurrgate = modena_outputs_get(outputs_den, 0); + // break; + } + case 2: + rhoPolySurrgate = rhoPoly; + break; + } + + // ODEs + dydt[0] = A_W*exp(-E_W/(RR*y[2]))*(1-y[0]); + if(dydt[0] < 0.0) + { + dydt[0] = 0.0; + } + if(W_0 < 0.0) + { + dydt[0] = 0.0; + } + + double Rx; + switch (kinMod) { + case 1: + Rx=1; + case 2: + if (y[1]<0.5) { + Rx=1; + } else if (y[1]<0.87) { + Rx=-2.027*y[1]+2.013; + } else { + Rx=3.461*y[1]-2.761; + } + } + + dydt[1] = Rx*A_OH*exp(-E_OH/(RR*y[2]))*OH_0*(1-y[1])*(NCO_0/OH_0 - 2.0*y[0]*W_0/OH_0 - y[1]); + if(dydt[1] < 0.0) + { + dydt[1] = 0.0; + } + if (dilution) { + dydt[0]=dydt[0]/(1+y[3]*rhoPolySurrgate/rhoBL); + dydt[1]=dydt[1]/(1+y[3]*rhoPolySurrgate/rhoBL); + } + double dT=1e-4; + double dLdT=(min(LMax(T),L0)-min(LMax(T+dT),L0))/dT; + C_TOT = C_Poly + CO2_g*C_CO2 + L_g*C_BG + L_l*C_BL + dLdT*lambda; + // this implementation of evaporation heat assumes that concentration of + // physical blowing agent in liquid is always in equilibrium + dydt[2] = (-DH_OH*OH_0)/(rhoPolySurrgate*C_TOT)*dydt[1]+(-DH_W*W_0)/(rhoPolySurrgate*C_TOT)*dydt[0]; + + Lm = LMax(T); + + // bubble radius for bblgr1 and bblgr2 model + double R = bubbleRadius(mom[0], mom[1]); + + // partial pressure within bubbles due to the evaporation of physical blowing agent + double p_1 = partialPressureBA(y); + + // partial pressure within bubbles due to the generation of CO2 + double p_2 = partialPressureCO2(y); + + double c_1 = L_l*rhoPolySurrgate*1000.0/M_B; + double c_2 = CO2_l*rhoPolySurrgate*1000.0/M_CO2; + double KH1 = (rhoPolySurrgate*Lm)/((M_B/1000.0)*Pr); + double KH2 = (rhoPolySurrgate*CO2_D)/((M_CO2/1000.0)*Pr); + + size_t Tbblgr1pos = modena_model_inputs_argPos(bblgr1, "T"); + size_t Rbblgr1pos = modena_model_inputs_argPos(bblgr1, "R"); + size_t KH1bblgr1pos = modena_model_inputs_argPos(bblgr1, "kH"); + size_t c_1bblgr1pos = modena_model_inputs_argPos(bblgr1, "c"); + size_t p_1bblgr1pos = modena_model_inputs_argPos(bblgr1, "p"); + modena_model_argPos_check(bblgr1); + size_t Tbblgr2pos = modena_model_inputs_argPos(bblgr2, "T"); + size_t Rbblgr2pos = modena_model_inputs_argPos(bblgr2, "R"); + size_t KH2bblgr2pos = modena_model_inputs_argPos(bblgr2, "kH"); + size_t c_2bblgr2pos = modena_model_inputs_argPos(bblgr2, "c"); + size_t p_2bblgr2pos = modena_model_inputs_argPos(bblgr2, "p"); + modena_model_argPos_check(bblgr2); + + // set input vector + modena_inputs_set(inputs_bblgr1, Tbblgr1pos, T); + modena_inputs_set(inputs_bblgr1, Rbblgr1pos, R); + modena_inputs_set(inputs_bblgr1, KH1bblgr1pos, KH1); + modena_inputs_set(inputs_bblgr1, c_1bblgr1pos, c_1); + modena_inputs_set(inputs_bblgr1, p_1bblgr1pos, p_1); + // set input vector + modena_inputs_set(inputs_bblgr2, Tbblgr2pos, T); + modena_inputs_set(inputs_bblgr2, Rbblgr2pos, R); + modena_inputs_set(inputs_bblgr2, KH2bblgr2pos, KH2); + modena_inputs_set(inputs_bblgr2, c_2bblgr2pos, c_2); + modena_inputs_set(inputs_bblgr2, p_2bblgr2pos, p_2); + + // call the bblgr1 model + int ret_bblgr1 = modena_model_call (bblgr1, inputs_bblgr1, outputs_bblgr1); + // terminate, if requested + if(ret_bblgr1 != 0) + { + modena_inputs_destroy (inputs_bblgr1); + modena_outputs_destroy (outputs_bblgr1); + modena_model_destroy (bblgr1); + // return ret_bblgr1; + } + // call the bblgr2 model + int ret_bblgr2 = modena_model_call (bblgr2, inputs_bblgr2, outputs_bblgr2); + // terminate, if requested + if(ret_bblgr2 != 0) + { + modena_inputs_destroy (inputs_bblgr2); + modena_outputs_destroy (outputs_bblgr2); + modena_model_destroy (bblgr2); + // return ret_bblgr2; + } + + double G1, G2, dVdt_1, dVdt_2; + G1 = modena_outputs_get(outputs_bblgr1, 0); + G2 = modena_outputs_get(outputs_bblgr2, 0); + // double mpar=0.0; + // double mpar2=1.0; + // G1=G1*pow(R,mpar)*mpar2; //for testing + // G2=G2*pow(R,mpar)*mpar2; + dVdt_1 = (G1*RR*T)/(p_1); + if (dVdt_1 < 0.0 || G1 < 0.0 || L0<1e-8 || y[1]>0.5) //hardcoded gel point + { + dVdt_1 = 0.0; + } + dVdt_2 = (G2*RR*T)/(p_2); + if (dVdt_2 < 0.0 || G2 < 0.0 || W_0<1e-8 || y[1]>0.5) //hardcoded gel point + { + dVdt_2 = 0.0; + } + + // call the surrogate model for rheology + // double shearRate = 0.3; + + // size_t temp_rheopos = modena_model_inputs_argPos(rheologymodel, "temp"); + // size_t conv_rheopos = modena_model_inputs_argPos(rheologymodel, "conv"); + // size_t shear_rheopos = modena_model_inputs_argPos(rheologymodel, "shear"); + + // modena_model_argPos_check(rheologymodel); + + // // set input vector + // modena_inputs_set(inputs_rheo, temp_rheopos, T); + // modena_inputs_set(inputs_rheo, conv_rheopos, EG_XOH); + // modena_inputs_set(inputs_rheo, shear_rheopos, shearRate); + + // // call the model + // int ret_rheo = modena_model_call (rheologymodel, inputs_rheo, outputs_rheo); + + // // terminate, if requested + // if(ret_rheo != 0) + // { + // modena_inputs_destroy (inputs_rheo); + // modena_outputs_destroy (outputs_rheo); + // modena_model_destroy (rheologymodel); + // } + + // double mu_app = modena_outputs_get(outputs_rheo, 0); + + // Gelling point representation + if(y[1] > 0.5) + { + beta0 = 0.0; + } + else + { + beta0 = beta0; + } + + PDA(we, vi, mom, nNodes); + growthSource(sgBA, sgCO2, we, vi, nNodes, mOrder, CO2_l, L_l, T, dVdt_2, dVdt_1); + coalescenceSource(sc, we, vi, nNodes, mOrder, beta0); + + dydt[3] = -sgBA[1]*(p_1/(RR*y[2]))*(M_B/1000.0)*(1.0/rhoPolySurrgate); + dydt[4] = sgBA[1]*(p_1/(RR*y[2]))*(M_B/1000.0)*(1.0/rhoPolySurrgate); + dydt[6] = sgCO2[1]*(p_2/(RR*y[2]))*(M_CO2/1000.0)*(1.0/rhoPolySurrgate); + dydt[5] = -sgCO2[1]*(p_2/(RR*y[2]))*(M_CO2/1000.0)*(1.0/rhoPolySurrgate) + W_0*dydt[0]*(M_CO2/1000.0)*(1.0/rhoPolySurrgate); + + dydt[7] = sgBA[0] + sgCO2[0] + sc[0]; + dydt[8] = sgBA[1] + sgCO2[1] + sc[1]; + dydt[9] = sgBA[2] + sgCO2[2] + sc[2]; + dydt[10] = sgBA[3] + sgCO2[3] + sc[3]; +} +/** +@fn main(int argc, char **argv) +@brief main function, initializes the state_type variables and performs the integration. + +*/ +int main(int argc, char **argv) +{ + readParams(); + // initial conditions + state_type y(11); + y[0] = 0.0; + y[1] = 0.0; + y[2] = Temp0; + y[3] = L0; + y[4] = 1.0e-14; + y[5] = 0.0; + y[6] = 1.0e-14; + + // moments initialization + int nOfmom = 4; + double momz[nOfmom]; + double pBA, pCO2, bubble_radius; + mom_init(momz, init_size, nOfmom, sig, NN); + + y[7] = momz[0]; + y[8] = momz[1]; + y[9] = momz[2]; + y[10] = momz[3]; + double R = bubbleRadius(y[7], y[8]); + air_g=y[8]/(1+y[8])*M_air*1e-3*(Pr+2*surfaceTension/R)/(RR*Temp0*rhoPoly); + + // initialize simpleKinetics variables + // y[11] = 5.0; + // y[12] = 5.0; + // y[13] = 0.2; + // y[14] = 0.0; + // y[15] = 0.0; + // y[16] = 0.0; + // y[17] = 0.0; + // y[18] = 0.0; + // y[19] = 300.0; + + + runge_kutta4< state_type > stepper; + + for( double t=0.0 ; t stepper; + integrate_const( stepper , harmonic_oscillator , x , 0.0 , 10.0 , 0.01 ); +] + +[ integrate_const_loop + const double dt = 0.01; + for( double t=0.0 ; t<10.0 ; t+= dt ) + stepper.do_step( harmonic_oscillator , x , t , dt ); + ] + + [ define_adapt_stepper + typedef runge_kutta_cash_karp54< state_type > error_stepper_type; + ] + + [integrate_adapt_make_controlled + integrate_adaptive( make_controlled< error_stepper_type >( 1.0e-10 , 1.0e-6 ) , + harmonic_oscillator , x , 0.0 , 10.0 , 0.01 ); + ] +[ integrate_const with abs and rel error +integrate_const( make_dense_output( 1.0e-6 , 1.0e-6 , runge_kutta_dopri5< state_type >() ) , sys , inout , t_start , t_end , dt ); +irst two parameters are the absolute and the relative error tolerances +] +[ using adaptive integrate +double abs_err = 1.0e-12; + double rel_err = 1.0e-10; + integrate_adaptive( make_controlled< error_stepper_type >(abs_err , rel_err), kinetics, y, 0.0, 300.0, 0.01, write_kinetics ); + +] + +*/ diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/coalescence.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/coalescence.h new file mode 100644 index 000000000..146b2c55a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/coalescence.h @@ -0,0 +1,87 @@ +/** @file coalescence.h + @brief Source term due to bubble coalescence + @fn void coalescenceSource(double *sc, double *we, double *vi, int &nNodes, int *mOrder, double &beta0) + @param double *sc - source due to coalescence + @param double *we - weights of quadrature approximation + @param double *vi - nodes of quadrature approximation + @param int &nNodes - number of nodes + @param int *mOrder - order of moments + @param double &beta0 - coalescence constant + @return void. +*/ + +void coalescenceSource(double *, double *, double *, int &, int *, double &); + +void coalescenceSource(double *sc, double *we, double *vi, int &nNodes, int *mOrder, double &beta0) +{ + + + int counter = 0; + double k; // To hold the moment order + int i, j; + +// coalescence kernel beta0*(v(i) + v(j)) + + while(counter<2*nNodes) + { + sc[counter] = 0.0; + k = static_cast(mOrder[counter]); + + if(counter == 0) + { + for(i=0;i \brief \b DCOPY +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* SUBROUTINE DCOPY(N,DX,INCX,DY,INCY) +* +* .. Scalar Arguments .. +* INTEGER INCX,INCY,N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION DX(*),DY(*) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DCOPY copies a vector, x, to a vector, y. +*> uses unrolled loops for increments equal to one. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup double_blas_level1 +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> jack dongarra, linpack, 3/11/78. +*> modified 12/3/93, array(1) declarations changed to array(*) +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DCOPY(N,DX,INCX,DY,INCY) +* +* -- Reference BLAS level1 routine (version 3.4.0) -- +* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INCX,INCY,N +* .. +* .. Array Arguments .. + DOUBLE PRECISION DX(*),DY(*) +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + INTEGER I,IX,IY,M,MP1 +* .. +* .. Intrinsic Functions .. + INTRINSIC MOD +* .. + IF (N.LE.0) RETURN + IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN +* +* code for both increments equal to 1 +* +* +* clean-up loop +* + M = MOD(N,7) + IF (M.NE.0) THEN + DO I = 1,M + DY(I) = DX(I) + END DO + IF (N.LT.7) RETURN + END IF + MP1 = M + 1 + DO I = MP1,N,7 + DY(I) = DX(I) + DY(I+1) = DX(I+1) + DY(I+2) = DX(I+2) + DY(I+3) = DX(I+3) + DY(I+4) = DX(I+4) + DY(I+5) = DX(I+5) + DY(I+6) = DX(I+6) + END DO + ELSE +* +* code for unequal increments or equal increments +* not equal to 1 +* + IX = 1 + IY = 1 + IF (INCX.LT.0) IX = (-N+1)*INCX + 1 + IF (INCY.LT.0) IY = (-N+1)*INCY + 1 + DO I = 1,N + DY(IY) = DX(IX) + IX = IX + INCX + IY = IY + INCY + END DO + END IF + RETURN + END + diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgemm.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgemm.f new file mode 100644 index 000000000..7ac8c46bf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgemm.f @@ -0,0 +1,316 @@ + SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA,BETA + INTEGER K,LDA,LDB,LDC,M,N + CHARACTER TRANSA,TRANSB +* .. +* .. Array Arguments .. + DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) +* .. +* +* Purpose +* ======= +* +* DGEMM performs one of the matrix-matrix operations +* +* C := alpha*op( A )*op( B ) + beta*C, +* +* where op( X ) is one of +* +* op( X ) = X or op( X ) = X**T, +* +* alpha and beta are scalars, and A, B and C are matrices, with op( A ) +* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. +* +* Arguments +* ========== +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n', op( A ) = A. +* +* TRANSA = 'T' or 't', op( A ) = A**T. +* +* TRANSA = 'C' or 'c', op( A ) = A**T. +* +* Unchanged on exit. +* +* TRANSB - CHARACTER*1. +* On entry, TRANSB specifies the form of op( B ) to be used in +* the matrix multiplication as follows: +* +* TRANSB = 'N' or 'n', op( B ) = B. +* +* TRANSB = 'T' or 't', op( B ) = B**T. +* +* TRANSB = 'C' or 'c', op( B ) = B**T. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix +* op( A ) and of the matrix C. M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix +* op( B ) and the number of columns of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry, K specifies the number of columns of the matrix +* op( A ) and the number of rows of the matrix op( B ). K must +* be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is +* k when TRANSA = 'N' or 'n', and is m otherwise. +* Before entry with TRANSA = 'N' or 'n', the leading m by k +* part of the array A must contain the matrix A, otherwise +* the leading k by m part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANSA = 'N' or 'n' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, k ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is +* n when TRANSB = 'N' or 'n', and is k otherwise. +* Before entry with TRANSB = 'N' or 'n', the leading k by n +* part of the array B must contain the matrix B, otherwise +* the leading n by k part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANSB = 'N' or 'n' then +* LDB must be at least max( 1, k ), otherwise LDB must be at +* least max( 1, n ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n matrix +* ( alpha*op( A )*op( B ) + beta*C ). +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* Further Details +* =============== +* +* Level 3 Blas routine. +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* ===================================================================== +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB + LOGICAL NOTA,NOTB +* .. +* .. Parameters .. + DOUBLE PRECISION ONE,ZERO + PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) +* .. +* +* Set NOTA and NOTB as true if A and B respectively are not +* transposed and set NROWA, NCOLA and NROWB as the number of rows +* and columns of A and the number of rows of B respectively. +* + NOTA = LSAME(TRANSA,'N') + NOTB = LSAME(TRANSB,'N') + IF (NOTA) THEN + NROWA = M + NCOLA = K + ELSE + NROWA = K + NCOLA = M + END IF + IF (NOTB) THEN + NROWB = K + ELSE + NROWB = N + END IF +* +* Test the input parameters. +* + INFO = 0 + IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND. + + (.NOT.LSAME(TRANSA,'T'))) THEN + INFO = 1 + ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND. + + (.NOT.LSAME(TRANSB,'T'))) THEN + INFO = 2 + ELSE IF (M.LT.0) THEN + INFO = 3 + ELSE IF (N.LT.0) THEN + INFO = 4 + ELSE IF (K.LT.0) THEN + INFO = 5 + ELSE IF (LDA.LT.MAX(1,NROWA)) THEN + INFO = 8 + ELSE IF (LDB.LT.MAX(1,NROWB)) THEN + INFO = 10 + ELSE IF (LDC.LT.MAX(1,M)) THEN + INFO = 13 + END IF + IF (INFO.NE.0) THEN + CALL XERBLA('DGEMM ',INFO) + RETURN + END IF +* +* Quick return if possible. +* + IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN +* +* And if alpha.eq.zero. +* + IF (ALPHA.EQ.ZERO) THEN + IF (BETA.EQ.ZERO) THEN + DO 20 J = 1,N + DO 10 I = 1,M + C(I,J) = ZERO + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40 J = 1,N + DO 30 I = 1,M + C(I,J) = BETA*C(I,J) + 30 CONTINUE + 40 CONTINUE + END IF + RETURN + END IF +* +* Start the operations. +* + IF (NOTB) THEN + IF (NOTA) THEN +* +* Form C := alpha*A*B + beta*C. +* + DO 90 J = 1,N + IF (BETA.EQ.ZERO) THEN + DO 50 I = 1,M + C(I,J) = ZERO + 50 CONTINUE + ELSE IF (BETA.NE.ONE) THEN + DO 60 I = 1,M + C(I,J) = BETA*C(I,J) + 60 CONTINUE + END IF + DO 80 L = 1,K + IF (B(L,J).NE.ZERO) THEN + TEMP = ALPHA*B(L,J) + DO 70 I = 1,M + C(I,J) = C(I,J) + TEMP*A(I,L) + 70 CONTINUE + END IF + 80 CONTINUE + 90 CONTINUE + ELSE +* +* Form C := alpha*A**T*B + beta*C +* + DO 120 J = 1,N + DO 110 I = 1,M + TEMP = ZERO + DO 100 L = 1,K + TEMP = TEMP + A(L,I)*B(L,J) + 100 CONTINUE + IF (BETA.EQ.ZERO) THEN + C(I,J) = ALPHA*TEMP + ELSE + C(I,J) = ALPHA*TEMP + BETA*C(I,J) + END IF + 110 CONTINUE + 120 CONTINUE + END IF + ELSE + IF (NOTA) THEN +* +* Form C := alpha*A*B**T + beta*C +* + DO 170 J = 1,N + IF (BETA.EQ.ZERO) THEN + DO 130 I = 1,M + C(I,J) = ZERO + 130 CONTINUE + ELSE IF (BETA.NE.ONE) THEN + DO 140 I = 1,M + C(I,J) = BETA*C(I,J) + 140 CONTINUE + END IF + DO 160 L = 1,K + IF (B(J,L).NE.ZERO) THEN + TEMP = ALPHA*B(J,L) + DO 150 I = 1,M + C(I,J) = C(I,J) + TEMP*A(I,L) + 150 CONTINUE + END IF + 160 CONTINUE + 170 CONTINUE + ELSE +* +* Form C := alpha*A**T*B**T + beta*C +* + DO 200 J = 1,N + DO 190 I = 1,M + TEMP = ZERO + DO 180 L = 1,K + TEMP = TEMP + A(L,I)*B(J,L) + 180 CONTINUE + IF (BETA.EQ.ZERO) THEN + C(I,J) = ALPHA*TEMP + ELSE + C(I,J) = ALPHA*TEMP + BETA*C(I,J) + END IF + 190 CONTINUE + 200 CONTINUE + END IF + END IF +* + RETURN +* +* End of DGEMM . +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dger.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dger.f new file mode 100644 index 000000000..1d95257e0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dger.f @@ -0,0 +1,162 @@ + SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER INCX,INCY,LDA,M,N +* .. +* .. Array Arguments .. + DOUBLE PRECISION A(LDA,*),X(*),Y(*) +* .. +* +* Purpose +* ======= +* +* DGER performs the rank 1 operation +* +* A := alpha*x*y**T + A, +* +* where alpha is a scalar, x is an m element vector, y is an n element +* vector and A is an m by n matrix. +* +* Arguments +* ========== +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix A. +* M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* X - DOUBLE PRECISION array of dimension at least +* ( 1 + ( m - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the m +* element vector x. +* Unchanged on exit. +* +* INCX - INTEGER. +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* Y - DOUBLE PRECISION array of dimension at least +* ( 1 + ( n - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. +* Unchanged on exit. +* +* INCY - INTEGER. +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). +* Before entry, the leading m by n part of the array A must +* contain the matrix of coefficients. On exit, A is +* overwritten by the updated matrix. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, m ). +* Unchanged on exit. +* +* Further Details +* =============== +* +* Level 2 Blas routine. +* +* -- Written on 22-October-1986. +* Jack Dongarra, Argonne National Lab. +* Jeremy Du Croz, Nag Central Office. +* Sven Hammarling, Nag Central Office. +* Richard Hanson, Sandia National Labs. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER (ZERO=0.0D+0) +* .. +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I,INFO,IX,J,JY,KX +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* +* Test the input parameters. +* + INFO = 0 + IF (M.LT.0) THEN + INFO = 1 + ELSE IF (N.LT.0) THEN + INFO = 2 + ELSE IF (INCX.EQ.0) THEN + INFO = 5 + ELSE IF (INCY.EQ.0) THEN + INFO = 7 + ELSE IF (LDA.LT.MAX(1,M)) THEN + INFO = 9 + END IF + IF (INFO.NE.0) THEN + CALL XERBLA('DGER ',INFO) + RETURN + END IF +* +* Quick return if possible. +* + IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through A. +* + IF (INCY.GT.0) THEN + JY = 1 + ELSE + JY = 1 - (N-1)*INCY + END IF + IF (INCX.EQ.1) THEN + DO 20 J = 1,N + IF (Y(JY).NE.ZERO) THEN + TEMP = ALPHA*Y(JY) + DO 10 I = 1,M + A(I,J) = A(I,J) + X(I)*TEMP + 10 CONTINUE + END IF + JY = JY + INCY + 20 CONTINUE + ELSE + IF (INCX.GT.0) THEN + KX = 1 + ELSE + KX = 1 - (M-1)*INCX + END IF + DO 40 J = 1,N + IF (Y(JY).NE.ZERO) THEN + TEMP = ALPHA*Y(JY) + IX = KX + DO 30 I = 1,M + A(I,J) = A(I,J) + X(IX)*TEMP + IX = IX + INCX + 30 CONTINUE + END IF + JY = JY + INCY + 40 CONTINUE + END IF +* + RETURN +* +* End of DGER . +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgesv.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgesv.f new file mode 100644 index 000000000..8d47f839d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgesv.f @@ -0,0 +1,179 @@ +*> \brief DGESV computes the solution to system of linear equations A * X = B for GE matrices +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGESV + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, LDB, N, NRHS +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGESV computes the solution to a real system of linear equations +*> A * X = B, +*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. +*> +*> The LU decomposition with partial pivoting and row interchanges is +*> used to factor A as +*> A = P * L * U, +*> where P is a permutation matrix, L is unit lower triangular, and U is +*> upper triangular. The factored form of A is then used to solve the +*> system of equations A * X = B. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of linear equations, i.e., the order of the +*> matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of columns +*> of the matrix B. NRHS >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the N-by-N coefficient matrix A. +*> On exit, the factors L and U from the factorization +*> A = P*L*U; the unit diagonal elements of L are not stored. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[out] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (N) +*> The pivot indices that define the permutation matrix P; +*> row i of the matrix was interchanged with row IPIV(i). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) +*> On entry, the N-by-NRHS matrix of right hand side matrix B. +*> On exit, if INFO = 0, the N-by-NRHS solution matrix X. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization +*> has been completed, but the factor U is exactly +*> singular, so the solution could not be computed. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleGEsolve +* +* ===================================================================== + SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO ) +* +* -- LAPACK driver routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDB, N, NRHS +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* ===================================================================== +* +* .. External Subroutines .. + EXTERNAL DGETRF, DGETRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF( N.LT.0 ) THEN + INFO = -1 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -4 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -7 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGESV ', -INFO ) + RETURN + END IF +* +* Compute the LU factorization of A. +* + CALL DGETRF( N, N, A, LDA, IPIV, INFO ) + IF( INFO.EQ.0 ) THEN +* +* Solve the system A*X = B, overwriting B with X. +* + CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, B, LDB, + $ INFO ) + END IF + RETURN +* +* End of DGESV +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetf2.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetf2.f new file mode 100644 index 000000000..649d0671d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetf2.f @@ -0,0 +1,213 @@ +*> \brief \b DGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm). +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGETF2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION A( LDA, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGETF2 computes an LU factorization of a general m-by-n matrix A +*> using partial pivoting with row interchanges. +*> +*> The factorization has the form +*> A = P * L * U +*> where P is a permutation matrix, L is lower triangular with unit +*> diagonal elements (lower trapezoidal if m > n), and U is upper +*> triangular (upper trapezoidal if m < n). +*> +*> This is the right-looking Level 2 BLAS version of the algorithm. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the m by n matrix to be factored. +*> On exit, the factors L and U from the factorization +*> A = P*L*U; the unit diagonal elements of L are not stored. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (min(M,N)) +*> The pivot indices; for 1 <= i <= min(M,N), row i of the +*> matrix was interchanged with row IPIV(i). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -k, the k-th argument had an illegal value +*> > 0: if INFO = k, U(k,k) is exactly zero. The factorization +*> has been completed, but the factor U is exactly +*> singular, and division by zero will occur if it is used +*> to solve a system of equations. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date September 2012 +* +*> \ingroup doubleGEcomputational +* +* ===================================================================== + SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO ) +* +* -- LAPACK computational routine (version 3.4.2) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* September 2012 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION A( LDA, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION SFMIN + INTEGER I, J, JP +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + INTEGER IDAMAX + EXTERNAL DLAMCH, IDAMAX +* .. +* .. External Subroutines .. + EXTERNAL DGER, DSCAL, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -4 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGETF2', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 ) + $ RETURN +* +* Compute machine safe minimum +* + SFMIN = DLAMCH('S') +* + DO 10 J = 1, MIN( M, N ) +* +* Find pivot and test for singularity. +* + JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 ) + IPIV( J ) = JP + IF( A( JP, J ).NE.ZERO ) THEN +* +* Apply the interchange to columns 1:N. +* + IF( JP.NE.J ) + $ CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA ) +* +* Compute elements J+1:M of J-th column. +* + IF( J.LT.M ) THEN + IF( ABS(A( J, J )) .GE. SFMIN ) THEN + CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 ) + ELSE + DO 20 I = 1, M-J + A( J+I, J ) = A( J+I, J ) / A( J, J ) + 20 CONTINUE + END IF + END IF +* + ELSE IF( INFO.EQ.0 ) THEN +* + INFO = J + END IF +* + IF( J.LT.MIN( M, N ) ) THEN +* +* Update trailing submatrix. +* + CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA, + $ A( J+1, J+1 ), LDA ) + END IF + 10 CONTINUE + RETURN +* +* End of DGETF2 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrf.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrf.f new file mode 100644 index 000000000..45bb97f30 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrf.f @@ -0,0 +1,225 @@ +*> \brief \b DGETRF +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGETRF + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION A( LDA, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGETRF computes an LU factorization of a general M-by-N matrix A +*> using partial pivoting with row interchanges. +*> +*> The factorization has the form +*> A = P * L * U +*> where P is a permutation matrix, L is lower triangular with unit +*> diagonal elements (lower trapezoidal if m > n), and U is upper +*> triangular (upper trapezoidal if m < n). +*> +*> This is the right-looking Level 3 BLAS version of the algorithm. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the M-by-N matrix to be factored. +*> On exit, the factors L and U from the factorization +*> A = P*L*U; the unit diagonal elements of L are not stored. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (min(M,N)) +*> The pivot indices; for 1 <= i <= min(M,N), row i of the +*> matrix was interchanged with row IPIV(i). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization +*> has been completed, but the factor U is exactly +*> singular, and division by zero will occur if it is used +*> to solve a system of equations. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleGEcomputational +* +* ===================================================================== + SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, M, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION A( LDA, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I, IINFO, J, JB, NB +* .. +* .. External Subroutines .. + EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM, XERBLA +* .. +* .. External Functions .. + INTEGER ILAENV + EXTERNAL ILAENV +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -4 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGETRF', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 ) + $ RETURN +* +* Determine the block size for this environment. +* + NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 ) + IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN +* +* Use unblocked code. +* + CALL DGETF2( M, N, A, LDA, IPIV, INFO ) + ELSE +* +* Use blocked code. +* + DO 20 J = 1, MIN( M, N ), NB + JB = MIN( MIN( M, N )-J+1, NB ) +* +* Factor diagonal and subdiagonal blocks and test for exact +* singularity. +* + CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO ) +* +* Adjust INFO and the pivot indices. +* + IF( INFO.EQ.0 .AND. IINFO.GT.0 ) + $ INFO = IINFO + J - 1 + DO 10 I = J, MIN( M, J+JB-1 ) + IPIV( I ) = J - 1 + IPIV( I ) + 10 CONTINUE +* +* Apply interchanges to columns 1:J-1. +* + CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 ) +* + IF( J+JB.LE.N ) THEN +* +* Apply interchanges to columns J+JB:N. +* + CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1, + $ IPIV, 1 ) +* +* Compute block row of U. +* + CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB, + $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ), + $ LDA ) + IF( J+JB.LE.M ) THEN +* +* Update trailing submatrix. +* + CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1, + $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA, + $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), + $ LDA ) + END IF + END IF + 20 CONTINUE + END IF + RETURN +* +* End of DGETRF +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrs.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrs.f new file mode 100644 index 000000000..02e9832af --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dgetrs.f @@ -0,0 +1,225 @@ +*> \brief \b DGETRS +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGETRS + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER TRANS +* INTEGER INFO, LDA, LDB, N, NRHS +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGETRS solves a system of linear equations +*> A * X = B or A**T * X = B +*> with a general N-by-N matrix A using the LU factorization computed +*> by DGETRF. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> Specifies the form of the system of equations: +*> = 'N': A * X = B (No transpose) +*> = 'T': A**T* X = B (Transpose) +*> = 'C': A**T* X = B (Conjugate transpose = Transpose) +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of columns +*> of the matrix B. NRHS >= 0. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> The factors L and U from the factorization A = P*L*U +*> as computed by DGETRF. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (N) +*> The pivot indices from DGETRF; for 1<=i<=N, row i of the +*> matrix was interchanged with row IPIV(i). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) +*> On entry, the right hand side matrix B. +*> On exit, the solution matrix X. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleGEcomputational +* +* ===================================================================== + SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER INFO, LDA, LDB, N, NRHS +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION A( LDA, * ), B( LDB, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL NOTRAN +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL DLASWP, DTRSM, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + NOTRAN = LSAME( TRANS, 'N' ) + IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. + $ LSAME( TRANS, 'C' ) ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -8 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGETRS', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 .OR. NRHS.EQ.0 ) + $ RETURN +* + IF( NOTRAN ) THEN +* +* Solve A * X = B. +* +* Apply row interchanges to the right hand sides. +* + CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, 1 ) +* +* Solve L*X = B, overwriting B with X. +* + CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS, + $ ONE, A, LDA, B, LDB ) +* +* Solve U*X = B, overwriting B with X. +* + CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, + $ NRHS, ONE, A, LDA, B, LDB ) + ELSE +* +* Solve A**T * X = B. +* +* Solve U**T *X = B, overwriting B with X. +* + CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS, + $ ONE, A, LDA, B, LDB ) +* +* Solve L**T *X = B, overwriting B with X. +* + CALL DTRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE, + $ A, LDA, B, LDB ) +* +* Apply row interchanges to the solution vectors. +* + CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, -1 ) + END IF +* + RETURN +* +* End of DGETRS +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/disnan.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/disnan.f new file mode 100644 index 000000000..f6a02bf1f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/disnan.f @@ -0,0 +1,80 @@ +*> \brief \b DISNAN +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DISNAN + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* LOGICAL FUNCTION DISNAN( DIN ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION DIN +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DISNAN returns .TRUE. if its argument is NaN, and .FALSE. +*> otherwise. To be replaced by the Fortran 2003 intrinsic in the +*> future. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] DIN +*> \verbatim +*> DIN is DOUBLE PRECISION +*> Input to test for NaN. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + LOGICAL FUNCTION DISNAN( DIN ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION DIN +* .. +* +* ===================================================================== +* +* .. External Functions .. + LOGICAL DLAISNAN + EXTERNAL DLAISNAN +* .. +* .. Executable Statements .. + DISNAN = DLAISNAN(DIN,DIN) + RETURN + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlae2.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlae2.f new file mode 100644 index 000000000..099334283 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlae2.f @@ -0,0 +1,185 @@ +*> \brief \b DLAE2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAE2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLAE2( A, B, C, RT1, RT2 ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION A, B, C, RT1, RT2 +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix +*> [ A B ] +*> [ B C ]. +*> On return, RT1 is the eigenvalue of larger absolute value, and RT2 +*> is the eigenvalue of smaller absolute value. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION +*> The (1,1) element of the 2-by-2 matrix. +*> \endverbatim +*> +*> \param[in] B +*> \verbatim +*> B is DOUBLE PRECISION +*> The (1,2) and (2,1) elements of the 2-by-2 matrix. +*> \endverbatim +*> +*> \param[in] C +*> \verbatim +*> C is DOUBLE PRECISION +*> The (2,2) element of the 2-by-2 matrix. +*> \endverbatim +*> +*> \param[out] RT1 +*> \verbatim +*> RT1 is DOUBLE PRECISION +*> The eigenvalue of larger absolute value. +*> \endverbatim +*> +*> \param[out] RT2 +*> \verbatim +*> RT2 is DOUBLE PRECISION +*> The eigenvalue of smaller absolute value. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> RT1 is accurate to a few ulps barring over/underflow. +*> +*> RT2 may be inaccurate if there is massive cancellation in the +*> determinant A*C-B*B; higher precision or correctly rounded or +*> correctly truncated arithmetic would be needed to compute RT2 +*> accurately in all cases. +*> +*> Overflow is possible only if RT1 is within a factor of 5 of overflow. +*> Underflow is harmless if the input data is 0 or exceeds +*> underflow_threshold / macheps. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLAE2( A, B, C, RT1, RT2 ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION A, B, C, RT1, RT2 +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D0 ) + DOUBLE PRECISION TWO + PARAMETER ( TWO = 2.0D0 ) + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) + DOUBLE PRECISION HALF + PARAMETER ( HALF = 0.5D0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION AB, ACMN, ACMX, ADF, DF, RT, SM, TB +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, SQRT +* .. +* .. Executable Statements .. +* +* Compute the eigenvalues +* + SM = A + C + DF = A - C + ADF = ABS( DF ) + TB = B + B + AB = ABS( TB ) + IF( ABS( A ).GT.ABS( C ) ) THEN + ACMX = A + ACMN = C + ELSE + ACMX = C + ACMN = A + END IF + IF( ADF.GT.AB ) THEN + RT = ADF*SQRT( ONE+( AB / ADF )**2 ) + ELSE IF( ADF.LT.AB ) THEN + RT = AB*SQRT( ONE+( ADF / AB )**2 ) + ELSE +* +* Includes case AB=ADF=0 +* + RT = AB*SQRT( TWO ) + END IF + IF( SM.LT.ZERO ) THEN + RT1 = HALF*( SM-RT ) +* +* Order of execution important. +* To get fully accurate smaller eigenvalue, +* next line needs to be executed in higher precision. +* + RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B + ELSE IF( SM.GT.ZERO ) THEN + RT1 = HALF*( SM+RT ) +* +* Order of execution important. +* To get fully accurate smaller eigenvalue, +* next line needs to be executed in higher precision. +* + RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B + ELSE +* +* Includes case RT1 = RT2 = 0 +* + RT1 = HALF*RT + RT2 = -HALF*RT + END IF + RETURN +* +* End of DLAE2 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaebz.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaebz.f new file mode 100644 index 000000000..80eb29101 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaebz.f @@ -0,0 +1,649 @@ +*> \brief \b DLAEBZ +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAEBZ + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, +* RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, +* NAB, WORK, IWORK, INFO ) +* +* .. Scalar Arguments .. +* INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX +* DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL +* .. +* .. Array Arguments .. +* INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * ) +* DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ), +* $ WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAEBZ contains the iteration loops which compute and use the +*> function N(w), which is the count of eigenvalues of a symmetric +*> tridiagonal matrix T less than or equal to its argument w. It +*> performs a choice of two types of loops: +*> +*> IJOB=1, followed by +*> IJOB=2: It takes as input a list of intervals and returns a list of +*> sufficiently small intervals whose union contains the same +*> eigenvalues as the union of the original intervals. +*> The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. +*> The output interval (AB(j,1),AB(j,2)] will contain +*> eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. +*> +*> IJOB=3: It performs a binary search in each input interval +*> (AB(j,1),AB(j,2)] for a point w(j) such that +*> N(w(j))=NVAL(j), and uses C(j) as the starting point of +*> the search. If such a w(j) is found, then on output +*> AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output +*> (AB(j,1),AB(j,2)] will be a small interval containing the +*> point where N(w) jumps through NVAL(j), unless that point +*> lies outside the initial interval. +*> +*> Note that the intervals are in all cases half-open intervals, +*> i.e., of the form (a,b] , which includes b but not a . +*> +*> To avoid underflow, the matrix should be scaled so that its largest +*> element is no greater than overflow**(1/2) * underflow**(1/4) +*> in absolute value. To assure the most accurate computation +*> of small eigenvalues, the matrix should be scaled to be +*> not much smaller than that, either. +*> +*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal +*> Matrix", Report CS41, Computer Science Dept., Stanford +*> University, July 21, 1966 +*> +*> Note: the arguments are, in general, *not* checked for unreasonable +*> values. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] IJOB +*> \verbatim +*> IJOB is INTEGER +*> Specifies what is to be done: +*> = 1: Compute NAB for the initial intervals. +*> = 2: Perform bisection iteration to find eigenvalues of T. +*> = 3: Perform bisection iteration to invert N(w), i.e., +*> to find a point which has a specified number of +*> eigenvalues of T to its left. +*> Other values will cause DLAEBZ to return with INFO=-1. +*> \endverbatim +*> +*> \param[in] NITMAX +*> \verbatim +*> NITMAX is INTEGER +*> The maximum number of "levels" of bisection to be +*> performed, i.e., an interval of width W will not be made +*> smaller than 2^(-NITMAX) * W. If not all intervals +*> have converged after NITMAX iterations, then INFO is set +*> to the number of non-converged intervals. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The dimension n of the tridiagonal matrix T. It must be at +*> least 1. +*> \endverbatim +*> +*> \param[in] MMAX +*> \verbatim +*> MMAX is INTEGER +*> The maximum number of intervals. If more than MMAX intervals +*> are generated, then DLAEBZ will quit with INFO=MMAX+1. +*> \endverbatim +*> +*> \param[in] MINP +*> \verbatim +*> MINP is INTEGER +*> The initial number of intervals. It may not be greater than +*> MMAX. +*> \endverbatim +*> +*> \param[in] NBMIN +*> \verbatim +*> NBMIN is INTEGER +*> The smallest number of intervals that should be processed +*> using a vector loop. If zero, then only the scalar loop +*> will be used. +*> \endverbatim +*> +*> \param[in] ABSTOL +*> \verbatim +*> ABSTOL is DOUBLE PRECISION +*> The minimum (absolute) width of an interval. When an +*> interval is narrower than ABSTOL, or than RELTOL times the +*> larger (in magnitude) endpoint, then it is considered to be +*> sufficiently small, i.e., converged. This must be at least +*> zero. +*> \endverbatim +*> +*> \param[in] RELTOL +*> \verbatim +*> RELTOL is DOUBLE PRECISION +*> The minimum relative width of an interval. When an interval +*> is narrower than ABSTOL, or than RELTOL times the larger (in +*> magnitude) endpoint, then it is considered to be +*> sufficiently small, i.e., converged. Note: this should +*> always be at least radix*machine epsilon. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum absolute value of a "pivot" in the Sturm +*> sequence loop. +*> This must be at least max |e(j)**2|*safe_min and at +*> least safe_min, where safe_min is at least +*> the smallest number that can divide one without overflow. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> The offdiagonal elements of the tridiagonal matrix T in +*> positions 1 through N-1. E(N) is arbitrary. +*> \endverbatim +*> +*> \param[in] E2 +*> \verbatim +*> E2 is DOUBLE PRECISION array, dimension (N) +*> The squares of the offdiagonal elements of the tridiagonal +*> matrix T. E2(N) is ignored. +*> \endverbatim +*> +*> \param[in,out] NVAL +*> \verbatim +*> NVAL is INTEGER array, dimension (MINP) +*> If IJOB=1 or 2, not referenced. +*> If IJOB=3, the desired values of N(w). The elements of NVAL +*> will be reordered to correspond with the intervals in AB. +*> Thus, NVAL(j) on output will not, in general be the same as +*> NVAL(j) on input, but it will correspond with the interval +*> (AB(j,1),AB(j,2)] on output. +*> \endverbatim +*> +*> \param[in,out] AB +*> \verbatim +*> AB is DOUBLE PRECISION array, dimension (MMAX,2) +*> The endpoints of the intervals. AB(j,1) is a(j), the left +*> endpoint of the j-th interval, and AB(j,2) is b(j), the +*> right endpoint of the j-th interval. The input intervals +*> will, in general, be modified, split, and reordered by the +*> calculation. +*> \endverbatim +*> +*> \param[in,out] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension (MMAX) +*> If IJOB=1, ignored. +*> If IJOB=2, workspace. +*> If IJOB=3, then on input C(j) should be initialized to the +*> first search point in the binary search. +*> \endverbatim +*> +*> \param[out] MOUT +*> \verbatim +*> MOUT is INTEGER +*> If IJOB=1, the number of eigenvalues in the intervals. +*> If IJOB=2 or 3, the number of intervals output. +*> If IJOB=3, MOUT will equal MINP. +*> \endverbatim +*> +*> \param[in,out] NAB +*> \verbatim +*> NAB is INTEGER array, dimension (MMAX,2) +*> If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). +*> If IJOB=2, then on input, NAB(i,j) should be set. It must +*> satisfy the condition: +*> N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), +*> which means that in interval i only eigenvalues +*> NAB(i,1)+1,...,NAB(i,2) will be considered. Usually, +*> NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with +*> IJOB=1. +*> On output, NAB(i,j) will contain +*> max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of +*> the input interval that the output interval +*> (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the +*> the input values of NAB(k,1) and NAB(k,2). +*> If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), +*> unless N(w) > NVAL(i) for all search points w , in which +*> case NAB(i,1) will not be modified, i.e., the output +*> value will be the same as the input value (modulo +*> reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) +*> for all search points w , in which case NAB(i,2) will +*> not be modified. Normally, NAB should be set to some +*> distinctive value(s) before DLAEBZ is called. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MMAX) +*> Workspace. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (MMAX) +*> Workspace. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: All intervals converged. +*> = 1--MMAX: The last INFO intervals did not converge. +*> = MMAX+1: More than MMAX intervals were generated. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> This routine is intended to be called only by other LAPACK +*> routines, thus the interface is less user-friendly. It is intended +*> for two purposes: +*> +*> (a) finding eigenvalues. In this case, DLAEBZ should have one or +*> more initial intervals set up in AB, and DLAEBZ should be called +*> with IJOB=1. This sets up NAB, and also counts the eigenvalues. +*> Intervals with no eigenvalues would usually be thrown out at +*> this point. Also, if not all the eigenvalues in an interval i +*> are desired, NAB(i,1) can be increased or NAB(i,2) decreased. +*> For example, set NAB(i,1)=NAB(i,2)-1 to get the largest +*> eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX +*> no smaller than the value of MOUT returned by the call with +*> IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1 +*> through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the +*> tolerance specified by ABSTOL and RELTOL. +*> +*> (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). +*> In this case, start with a Gershgorin interval (a,b). Set up +*> AB to contain 2 search intervals, both initially (a,b). One +*> NVAL element should contain f-1 and the other should contain l +*> , while C should contain a and b, resp. NAB(i,1) should be -1 +*> and NAB(i,2) should be N+1, to flag an error if the desired +*> interval does not lie in (a,b). DLAEBZ is then called with +*> IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals -- +*> j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while +*> if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r +*> >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and +*> N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and +*> w(l-r)=...=w(l+k) are handled similarly. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, + $ RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, + $ NAB, WORK, IWORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX + DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL +* .. +* .. Array Arguments .. + INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * ) + DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ), + $ WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, TWO, HALF + PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0, + $ HALF = 1.0D0 / TWO ) +* .. +* .. Local Scalars .. + INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL, + $ KLNEW + DOUBLE PRECISION TMP1, TMP2 +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN +* .. +* .. Executable Statements .. +* +* Check for Errors +* + INFO = 0 + IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN + INFO = -1 + RETURN + END IF +* +* Initialize NAB +* + IF( IJOB.EQ.1 ) THEN +* +* Compute the number of eigenvalues in the initial intervals. +* + MOUT = 0 + DO 30 JI = 1, MINP + DO 20 JP = 1, 2 + TMP1 = D( 1 ) - AB( JI, JP ) + IF( ABS( TMP1 ).LT.PIVMIN ) + $ TMP1 = -PIVMIN + NAB( JI, JP ) = 0 + IF( TMP1.LE.ZERO ) + $ NAB( JI, JP ) = 1 +* + DO 10 J = 2, N + TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP ) + IF( ABS( TMP1 ).LT.PIVMIN ) + $ TMP1 = -PIVMIN + IF( TMP1.LE.ZERO ) + $ NAB( JI, JP ) = NAB( JI, JP ) + 1 + 10 CONTINUE + 20 CONTINUE + MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 ) + 30 CONTINUE + RETURN + END IF +* +* Initialize for loop +* +* KF and KL have the following meaning: +* Intervals 1,...,KF-1 have converged. +* Intervals KF,...,KL still need to be refined. +* + KF = 1 + KL = MINP +* +* If IJOB=2, initialize C. +* If IJOB=3, use the user-supplied starting point. +* + IF( IJOB.EQ.2 ) THEN + DO 40 JI = 1, MINP + C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) ) + 40 CONTINUE + END IF +* +* Iteration loop +* + DO 130 JIT = 1, NITMAX +* +* Loop over intervals +* + IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN +* +* Begin of Parallel Version of the loop +* + DO 60 JI = KF, KL +* +* Compute N(c), the number of eigenvalues less than c +* + WORK( JI ) = D( 1 ) - C( JI ) + IWORK( JI ) = 0 + IF( WORK( JI ).LE.PIVMIN ) THEN + IWORK( JI ) = 1 + WORK( JI ) = MIN( WORK( JI ), -PIVMIN ) + END IF +* + DO 50 J = 2, N + WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI ) + IF( WORK( JI ).LE.PIVMIN ) THEN + IWORK( JI ) = IWORK( JI ) + 1 + WORK( JI ) = MIN( WORK( JI ), -PIVMIN ) + END IF + 50 CONTINUE + 60 CONTINUE +* + IF( IJOB.LE.2 ) THEN +* +* IJOB=2: Choose all intervals containing eigenvalues. +* + KLNEW = KL + DO 70 JI = KF, KL +* +* Insure that N(w) is monotone +* + IWORK( JI ) = MIN( NAB( JI, 2 ), + $ MAX( NAB( JI, 1 ), IWORK( JI ) ) ) +* +* Update the Queue -- add intervals if both halves +* contain eigenvalues. +* + IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN +* +* No eigenvalue in the upper interval: +* just use the lower interval. +* + AB( JI, 2 ) = C( JI ) +* + ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN +* +* No eigenvalue in the lower interval: +* just use the upper interval. +* + AB( JI, 1 ) = C( JI ) + ELSE + KLNEW = KLNEW + 1 + IF( KLNEW.LE.MMAX ) THEN +* +* Eigenvalue in both intervals -- add upper to +* queue. +* + AB( KLNEW, 2 ) = AB( JI, 2 ) + NAB( KLNEW, 2 ) = NAB( JI, 2 ) + AB( KLNEW, 1 ) = C( JI ) + NAB( KLNEW, 1 ) = IWORK( JI ) + AB( JI, 2 ) = C( JI ) + NAB( JI, 2 ) = IWORK( JI ) + ELSE + INFO = MMAX + 1 + END IF + END IF + 70 CONTINUE + IF( INFO.NE.0 ) + $ RETURN + KL = KLNEW + ELSE +* +* IJOB=3: Binary search. Keep only the interval containing +* w s.t. N(w) = NVAL +* + DO 80 JI = KF, KL + IF( IWORK( JI ).LE.NVAL( JI ) ) THEN + AB( JI, 1 ) = C( JI ) + NAB( JI, 1 ) = IWORK( JI ) + END IF + IF( IWORK( JI ).GE.NVAL( JI ) ) THEN + AB( JI, 2 ) = C( JI ) + NAB( JI, 2 ) = IWORK( JI ) + END IF + 80 CONTINUE + END IF +* + ELSE +* +* End of Parallel Version of the loop +* +* Begin of Serial Version of the loop +* + KLNEW = KL + DO 100 JI = KF, KL +* +* Compute N(w), the number of eigenvalues less than w +* + TMP1 = C( JI ) + TMP2 = D( 1 ) - TMP1 + ITMP1 = 0 + IF( TMP2.LE.PIVMIN ) THEN + ITMP1 = 1 + TMP2 = MIN( TMP2, -PIVMIN ) + END IF +* + DO 90 J = 2, N + TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1 + IF( TMP2.LE.PIVMIN ) THEN + ITMP1 = ITMP1 + 1 + TMP2 = MIN( TMP2, -PIVMIN ) + END IF + 90 CONTINUE +* + IF( IJOB.LE.2 ) THEN +* +* IJOB=2: Choose all intervals containing eigenvalues. +* +* Insure that N(w) is monotone +* + ITMP1 = MIN( NAB( JI, 2 ), + $ MAX( NAB( JI, 1 ), ITMP1 ) ) +* +* Update the Queue -- add intervals if both halves +* contain eigenvalues. +* + IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN +* +* No eigenvalue in the upper interval: +* just use the lower interval. +* + AB( JI, 2 ) = TMP1 +* + ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN +* +* No eigenvalue in the lower interval: +* just use the upper interval. +* + AB( JI, 1 ) = TMP1 + ELSE IF( KLNEW.LT.MMAX ) THEN +* +* Eigenvalue in both intervals -- add upper to queue. +* + KLNEW = KLNEW + 1 + AB( KLNEW, 2 ) = AB( JI, 2 ) + NAB( KLNEW, 2 ) = NAB( JI, 2 ) + AB( KLNEW, 1 ) = TMP1 + NAB( KLNEW, 1 ) = ITMP1 + AB( JI, 2 ) = TMP1 + NAB( JI, 2 ) = ITMP1 + ELSE + INFO = MMAX + 1 + RETURN + END IF + ELSE +* +* IJOB=3: Binary search. Keep only the interval +* containing w s.t. N(w) = NVAL +* + IF( ITMP1.LE.NVAL( JI ) ) THEN + AB( JI, 1 ) = TMP1 + NAB( JI, 1 ) = ITMP1 + END IF + IF( ITMP1.GE.NVAL( JI ) ) THEN + AB( JI, 2 ) = TMP1 + NAB( JI, 2 ) = ITMP1 + END IF + END IF + 100 CONTINUE + KL = KLNEW +* + END IF +* +* Check for convergence +* + KFNEW = KF + DO 110 JI = KF, KL + TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) ) + TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) ) + IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR. + $ NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN +* +* Converged -- Swap with position KFNEW, +* then increment KFNEW +* + IF( JI.GT.KFNEW ) THEN + TMP1 = AB( JI, 1 ) + TMP2 = AB( JI, 2 ) + ITMP1 = NAB( JI, 1 ) + ITMP2 = NAB( JI, 2 ) + AB( JI, 1 ) = AB( KFNEW, 1 ) + AB( JI, 2 ) = AB( KFNEW, 2 ) + NAB( JI, 1 ) = NAB( KFNEW, 1 ) + NAB( JI, 2 ) = NAB( KFNEW, 2 ) + AB( KFNEW, 1 ) = TMP1 + AB( KFNEW, 2 ) = TMP2 + NAB( KFNEW, 1 ) = ITMP1 + NAB( KFNEW, 2 ) = ITMP2 + IF( IJOB.EQ.3 ) THEN + ITMP1 = NVAL( JI ) + NVAL( JI ) = NVAL( KFNEW ) + NVAL( KFNEW ) = ITMP1 + END IF + END IF + KFNEW = KFNEW + 1 + END IF + 110 CONTINUE + KF = KFNEW +* +* Choose Midpoints +* + DO 120 JI = KF, KL + C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) ) + 120 CONTINUE +* +* If no more intervals to refine, quit. +* + IF( KF.GT.KL ) + $ GO TO 140 + 130 CONTINUE +* +* Converged +* + 140 CONTINUE + INFO = MAX( KL+1-KF, 0 ) + MOUT = KL +* + RETURN +* +* End of DLAEBZ +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaev2.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaev2.f new file mode 100644 index 000000000..98230d053 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaev2.f @@ -0,0 +1,238 @@ +*> \brief \b DLAEV2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAEV2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1 +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix +*> [ A B ] +*> [ B C ]. +*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the +*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right +*> eigenvector for RT1, giving the decomposition +*> +*> [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] +*> [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION +*> The (1,1) element of the 2-by-2 matrix. +*> \endverbatim +*> +*> \param[in] B +*> \verbatim +*> B is DOUBLE PRECISION +*> The (1,2) element and the conjugate of the (2,1) element of +*> the 2-by-2 matrix. +*> \endverbatim +*> +*> \param[in] C +*> \verbatim +*> C is DOUBLE PRECISION +*> The (2,2) element of the 2-by-2 matrix. +*> \endverbatim +*> +*> \param[out] RT1 +*> \verbatim +*> RT1 is DOUBLE PRECISION +*> The eigenvalue of larger absolute value. +*> \endverbatim +*> +*> \param[out] RT2 +*> \verbatim +*> RT2 is DOUBLE PRECISION +*> The eigenvalue of smaller absolute value. +*> \endverbatim +*> +*> \param[out] CS1 +*> \verbatim +*> CS1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[out] SN1 +*> \verbatim +*> SN1 is DOUBLE PRECISION +*> The vector (CS1, SN1) is a unit right eigenvector for RT1. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> RT1 is accurate to a few ulps barring over/underflow. +*> +*> RT2 may be inaccurate if there is massive cancellation in the +*> determinant A*C-B*B; higher precision or correctly rounded or +*> correctly truncated arithmetic would be needed to compute RT2 +*> accurately in all cases. +*> +*> CS1 and SN1 are accurate to a few ulps barring over/underflow. +*> +*> Overflow is possible only if RT1 is within a factor of 5 of overflow. +*> Underflow is harmless if the input data is 0 or exceeds +*> underflow_threshold / macheps. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1 +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D0 ) + DOUBLE PRECISION TWO + PARAMETER ( TWO = 2.0D0 ) + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) + DOUBLE PRECISION HALF + PARAMETER ( HALF = 0.5D0 ) +* .. +* .. Local Scalars .. + INTEGER SGN1, SGN2 + DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM, + $ TB, TN +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, SQRT +* .. +* .. Executable Statements .. +* +* Compute the eigenvalues +* + SM = A + C + DF = A - C + ADF = ABS( DF ) + TB = B + B + AB = ABS( TB ) + IF( ABS( A ).GT.ABS( C ) ) THEN + ACMX = A + ACMN = C + ELSE + ACMX = C + ACMN = A + END IF + IF( ADF.GT.AB ) THEN + RT = ADF*SQRT( ONE+( AB / ADF )**2 ) + ELSE IF( ADF.LT.AB ) THEN + RT = AB*SQRT( ONE+( ADF / AB )**2 ) + ELSE +* +* Includes case AB=ADF=0 +* + RT = AB*SQRT( TWO ) + END IF + IF( SM.LT.ZERO ) THEN + RT1 = HALF*( SM-RT ) + SGN1 = -1 +* +* Order of execution important. +* To get fully accurate smaller eigenvalue, +* next line needs to be executed in higher precision. +* + RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B + ELSE IF( SM.GT.ZERO ) THEN + RT1 = HALF*( SM+RT ) + SGN1 = 1 +* +* Order of execution important. +* To get fully accurate smaller eigenvalue, +* next line needs to be executed in higher precision. +* + RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B + ELSE +* +* Includes case RT1 = RT2 = 0 +* + RT1 = HALF*RT + RT2 = -HALF*RT + SGN1 = 1 + END IF +* +* Compute the eigenvector +* + IF( DF.GE.ZERO ) THEN + CS = DF + RT + SGN2 = 1 + ELSE + CS = DF - RT + SGN2 = -1 + END IF + ACS = ABS( CS ) + IF( ACS.GT.AB ) THEN + CT = -TB / CS + SN1 = ONE / SQRT( ONE+CT*CT ) + CS1 = CT*SN1 + ELSE + IF( AB.EQ.ZERO ) THEN + CS1 = ONE + SN1 = ZERO + ELSE + TN = -CS / TB + CS1 = ONE / SQRT( ONE+TN*TN ) + SN1 = TN*CS1 + END IF + END IF + IF( SGN1.EQ.SGN2 ) THEN + TN = CS1 + CS1 = -SN1 + SN1 = TN + END IF + RETURN +* +* End of DLAEV2 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaisnan.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaisnan.f new file mode 100644 index 000000000..c3cd27803 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaisnan.f @@ -0,0 +1,91 @@ +*> \brief \b DLAISNAN +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAISNAN + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* LOGICAL FUNCTION DLAISNAN( DIN1, DIN2 ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION DIN1, DIN2 +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> This routine is not for general use. It exists solely to avoid +*> over-optimization in DISNAN. +*> +*> DLAISNAN checks for NaNs by comparing its two arguments for +*> inequality. NaN is the only floating-point value where NaN != NaN +*> returns .TRUE. To check for NaNs, pass the same variable as both +*> arguments. +*> +*> A compiler must assume that the two arguments are +*> not the same variable, and the test will not be optimized away. +*> Interprocedural or whole-program optimization may delete this +*> test. The ISNAN functions will be replaced by the correct +*> Fortran 03 intrinsic once the intrinsic is widely available. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] DIN1 +*> \verbatim +*> DIN1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] DIN2 +*> \verbatim +*> DIN2 is DOUBLE PRECISION +*> Two numbers to compare for inequality. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + LOGICAL FUNCTION DLAISNAN( DIN1, DIN2 ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION DIN1, DIN2 +* .. +* +* ===================================================================== +* +* .. Executable Statements .. + DLAISNAN = (DIN1.NE.DIN2) + RETURN + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlamch.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlamch.f new file mode 100644 index 000000000..25c2c8e6e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlamch.f @@ -0,0 +1,193 @@ +*> \brief \b DLAMCH +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* DOUBLE PRECISION FUNCTION DLAMCH( CMACH ) +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAMCH determines double precision machine parameters. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] CMACH +*> \verbatim +*> Specifies the value to be returned by DLAMCH: +*> = 'E' or 'e', DLAMCH := eps +*> = 'S' or 's , DLAMCH := sfmin +*> = 'B' or 'b', DLAMCH := base +*> = 'P' or 'p', DLAMCH := eps*base +*> = 'N' or 'n', DLAMCH := t +*> = 'R' or 'r', DLAMCH := rnd +*> = 'M' or 'm', DLAMCH := emin +*> = 'U' or 'u', DLAMCH := rmin +*> = 'L' or 'l', DLAMCH := emax +*> = 'O' or 'o', DLAMCH := rmax +*> where +*> eps = relative machine precision +*> sfmin = safe minimum, such that 1/sfmin does not overflow +*> base = base of the machine +*> prec = eps*base +*> t = number of (base) digits in the mantissa +*> rnd = 1.0 when rounding occurs in addition, 0.0 otherwise +*> emin = minimum exponent before (gradual) underflow +*> rmin = underflow threshold - base**(emin-1) +*> emax = largest exponent before overflow +*> rmax = overflow threshold - (base**emax)*(1-eps) +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + DOUBLE PRECISION FUNCTION DLAMCH( CMACH ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER CMACH +* .. +* +* .. Scalar Arguments .. + DOUBLE PRECISION A, B +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION RND, EPS, SFMIN, SMALL, RMACH +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. Intrinsic Functions .. + INTRINSIC DIGITS, EPSILON, HUGE, MAXEXPONENT, + $ MINEXPONENT, RADIX, TINY +* .. +* .. Executable Statements .. +* +* +* Assume rounding, not chopping. Always. +* + RND = ONE +* + IF( ONE.EQ.RND ) THEN + EPS = EPSILON(ZERO) * 0.5 + ELSE + EPS = EPSILON(ZERO) + END IF +* + IF( LSAME( CMACH, 'E' ) ) THEN + RMACH = EPS + ELSE IF( LSAME( CMACH, 'S' ) ) THEN + SFMIN = TINY(ZERO) + SMALL = ONE / HUGE(ZERO) + IF( SMALL.GE.SFMIN ) THEN +* +* Use SMALL plus a bit, to avoid the possibility of rounding +* causing overflow when computing 1/sfmin. +* + SFMIN = SMALL*( ONE+EPS ) + END IF + RMACH = SFMIN + ELSE IF( LSAME( CMACH, 'B' ) ) THEN + RMACH = RADIX(ZERO) + ELSE IF( LSAME( CMACH, 'P' ) ) THEN + RMACH = EPS * RADIX(ZERO) + ELSE IF( LSAME( CMACH, 'N' ) ) THEN + RMACH = DIGITS(ZERO) + ELSE IF( LSAME( CMACH, 'R' ) ) THEN + RMACH = RND + ELSE IF( LSAME( CMACH, 'M' ) ) THEN + RMACH = MINEXPONENT(ZERO) + ELSE IF( LSAME( CMACH, 'U' ) ) THEN + RMACH = tiny(zero) + ELSE IF( LSAME( CMACH, 'L' ) ) THEN + RMACH = MAXEXPONENT(ZERO) + ELSE IF( LSAME( CMACH, 'O' ) ) THEN + RMACH = HUGE(ZERO) + ELSE + RMACH = ZERO + END IF +* + DLAMCH = RMACH + RETURN +* +* End of DLAMCH +* + END +************************************************************************ +*> \brief \b DLAMC3 +*> \details +*> \b Purpose: +*> \verbatim +*> DLAMC3 is intended to force A and B to be stored prior to doing +*> the addition of A and B , for use in situations where optimizers +*> might hold one of these in a register. +*> \endverbatim +*> \author LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. +*> \date November 2011 +*> \ingroup auxOTHERauxiliary +*> +*> \param[in] A +*> \verbatim +*> A is a DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] B +*> \verbatim +*> B is a DOUBLE PRECISION +*> The values A and B. +*> \endverbatim +*> + DOUBLE PRECISION FUNCTION DLAMC3( A, B ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2010 +* +* .. Scalar Arguments .. + DOUBLE PRECISION A, B +* .. +* ===================================================================== +* +* .. Executable Statements .. +* + DLAMC3 = A + B +* + RETURN +* +* End of DLAMC3 +* + END +* +************************************************************************ diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaneg.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaneg.f new file mode 100644 index 000000000..0d9980368 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaneg.f @@ -0,0 +1,227 @@ +*> \brief \b DLANEG +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLANEG + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R ) +* +* .. Scalar Arguments .. +* INTEGER N, R +* DOUBLE PRECISION PIVMIN, SIGMA +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), LLD( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLANEG computes the Sturm count, the number of negative pivots +*> encountered while factoring tridiagonal T - sigma I = L D L^T. +*> This implementation works directly on the factors without forming +*> the tridiagonal matrix T. The Sturm count is also the number of +*> eigenvalues of T less than sigma. +*> +*> This routine is called from DLARRB. +*> +*> The current routine does not use the PIVMIN parameter but rather +*> requires IEEE-754 propagation of Infinities and NaNs. This +*> routine also has no input range restrictions but does require +*> default exception handling such that x/0 produces Inf when x is +*> non-zero, and Inf/Inf produces NaN. For more information, see: +*> +*> Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in +*> Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on +*> Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 +*> (Tech report version in LAWN 172 with the same title.) +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The N diagonal elements of the diagonal matrix D. +*> \endverbatim +*> +*> \param[in] LLD +*> \verbatim +*> LLD is DOUBLE PRECISION array, dimension (N-1) +*> The (N-1) elements L(i)*L(i)*D(i). +*> \endverbatim +*> +*> \param[in] SIGMA +*> \verbatim +*> SIGMA is DOUBLE PRECISION +*> Shift amount in T - sigma I = L D L^T. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot in the Sturm sequence. May be used +*> when zero pivots are encountered on non-IEEE-754 +*> architectures. +*> \endverbatim +*> +*> \param[in] R +*> \verbatim +*> R is INTEGER +*> The twist index for the twisted factorization that is used +*> for the negcount. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA \n +*> Jason Riedy, University of California, Berkeley, USA \n +*> +* ===================================================================== + INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER N, R + DOUBLE PRECISION PIVMIN, SIGMA +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), LLD( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) +* Some architectures propagate Infinities and NaNs very slowly, so +* the code computes counts in BLKLEN chunks. Then a NaN can +* propagate at most BLKLEN columns before being detected. This is +* not a general tuning parameter; it needs only to be just large +* enough that the overhead is tiny in common cases. + INTEGER BLKLEN + PARAMETER ( BLKLEN = 128 ) +* .. +* .. Local Scalars .. + INTEGER BJ, J, NEG1, NEG2, NEGCNT + DOUBLE PRECISION BSAV, DMINUS, DPLUS, GAMMA, P, T, TMP + LOGICAL SAWNAN +* .. +* .. Intrinsic Functions .. + INTRINSIC MIN, MAX +* .. +* .. External Functions .. + LOGICAL DISNAN + EXTERNAL DISNAN +* .. +* .. Executable Statements .. + + NEGCNT = 0 + +* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T + T = -SIGMA + DO 210 BJ = 1, R-1, BLKLEN + NEG1 = 0 + BSAV = T + DO 21 J = BJ, MIN(BJ+BLKLEN-1, R-1) + DPLUS = D( J ) + T + IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1 + TMP = T / DPLUS + T = TMP * LLD( J ) - SIGMA + 21 CONTINUE + SAWNAN = DISNAN( T ) +* Run a slower version of the above loop if a NaN is detected. +* A NaN should occur only with a zero pivot after an infinite +* pivot. In that case, substituting 1 for T/DPLUS is the +* correct limit. + IF( SAWNAN ) THEN + NEG1 = 0 + T = BSAV + DO 22 J = BJ, MIN(BJ+BLKLEN-1, R-1) + DPLUS = D( J ) + T + IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1 + TMP = T / DPLUS + IF (DISNAN(TMP)) TMP = ONE + T = TMP * LLD(J) - SIGMA + 22 CONTINUE + END IF + NEGCNT = NEGCNT + NEG1 + 210 CONTINUE +* +* II) lower part: L D L^T - SIGMA I = U- D- U-^T + P = D( N ) - SIGMA + DO 230 BJ = N-1, R, -BLKLEN + NEG2 = 0 + BSAV = P + DO 23 J = BJ, MAX(BJ-BLKLEN+1, R), -1 + DMINUS = LLD( J ) + P + IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1 + TMP = P / DMINUS + P = TMP * D( J ) - SIGMA + 23 CONTINUE + SAWNAN = DISNAN( P ) +* As above, run a slower version that substitutes 1 for Inf/Inf. +* + IF( SAWNAN ) THEN + NEG2 = 0 + P = BSAV + DO 24 J = BJ, MAX(BJ-BLKLEN+1, R), -1 + DMINUS = LLD( J ) + P + IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1 + TMP = P / DMINUS + IF (DISNAN(TMP)) TMP = ONE + P = TMP * D(J) - SIGMA + 24 CONTINUE + END IF + NEGCNT = NEGCNT + NEG2 + 230 CONTINUE +* +* III) Twist index +* T was shifted by SIGMA initially. + GAMMA = (T + SIGMA) + P + IF( GAMMA.LT.ZERO ) NEGCNT = NEGCNT+1 + + DLANEG = NEGCNT + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlanst.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlanst.f new file mode 100644 index 000000000..b4eb093e8 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlanst.f @@ -0,0 +1,183 @@ +*> \brief \b DLANST +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLANST + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) +* +* .. Scalar Arguments .. +* CHARACTER NORM +* INTEGER N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), E( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLANST returns the value of the one norm, or the Frobenius norm, or +*> the infinity norm, or the element of largest absolute value of a +*> real symmetric tridiagonal matrix A. +*> \endverbatim +*> +*> \return DLANST +*> \verbatim +*> +*> DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' +*> ( +*> ( norm1(A), NORM = '1', 'O' or 'o' +*> ( +*> ( normI(A), NORM = 'I' or 'i' +*> ( +*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' +*> +*> where norm1 denotes the one norm of a matrix (maximum column sum), +*> normI denotes the infinity norm of a matrix (maximum row sum) and +*> normF denotes the Frobenius norm of a matrix (square root of sum of +*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] NORM +*> \verbatim +*> NORM is CHARACTER*1 +*> Specifies the value to be returned in DLANST as described +*> above. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. When N = 0, DLANST is +*> set to zero. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The diagonal elements of A. +*> \endverbatim +*> +*> \param[in] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N-1) +*> The (n-1) sub-diagonal or super-diagonal elements of A. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER NORM + INTEGER N +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), E( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I + DOUBLE PRECISION ANORM, SCALE, SUM +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL DLASSQ +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SQRT +* .. +* .. Executable Statements .. +* + IF( N.LE.0 ) THEN + ANORM = ZERO + ELSE IF( LSAME( NORM, 'M' ) ) THEN +* +* Find max(abs(A(i,j))). +* + ANORM = ABS( D( N ) ) + DO 10 I = 1, N - 1 + ANORM = MAX( ANORM, ABS( D( I ) ) ) + ANORM = MAX( ANORM, ABS( E( I ) ) ) + 10 CONTINUE + ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR. + $ LSAME( NORM, 'I' ) ) THEN +* +* Find norm1(A). +* + IF( N.EQ.1 ) THEN + ANORM = ABS( D( 1 ) ) + ELSE + ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ), + $ ABS( E( N-1 ) )+ABS( D( N ) ) ) + DO 20 I = 2, N - 1 + ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+ + $ ABS( E( I-1 ) ) ) + 20 CONTINUE + END IF + ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN +* +* Find normF(A). +* + SCALE = ZERO + SUM = ONE + IF( N.GT.1 ) THEN + CALL DLASSQ( N-1, E, 1, SCALE, SUM ) + SUM = 2*SUM + END IF + CALL DLASSQ( N, D, 1, SCALE, SUM ) + ANORM = SCALE*SQRT( SUM ) + END IF +* + DLANST = ANORM + RETURN +* +* End of DLANST +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlapy2.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlapy2.f new file mode 100644 index 000000000..e6a62bf4a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlapy2.f @@ -0,0 +1,104 @@ +*> \brief \b DLAPY2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAPY2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* DOUBLE PRECISION FUNCTION DLAPY2( X, Y ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION X, Y +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary +*> overflow. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] X +*> \verbatim +*> X is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] Y +*> \verbatim +*> Y is DOUBLE PRECISION +*> X and Y specify the values x and y. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + DOUBLE PRECISION FUNCTION DLAPY2( X, Y ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION X, Y +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION W, XABS, YABS, Z +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* + XABS = ABS( X ) + YABS = ABS( Y ) + W = MAX( XABS, YABS ) + Z = MIN( XABS, YABS ) + IF( Z.EQ.ZERO ) THEN + DLAPY2 = W + ELSE + DLAPY2 = W*SQRT( ONE+( Z / W )**2 ) + END IF + RETURN +* +* End of DLAPY2 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlar1v.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlar1v.f new file mode 100644 index 000000000..2aa46910e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlar1v.f @@ -0,0 +1,486 @@ +*> \brief \b DLAR1V +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLAR1V + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, +* PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, +* R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) +* +* .. Scalar Arguments .. +* LOGICAL WANTNC +* INTEGER B1, BN, N, NEGCNT, R +* DOUBLE PRECISION GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, +* $ RQCORR, ZTZ +* .. +* .. Array Arguments .. +* INTEGER ISUPPZ( * ) +* DOUBLE PRECISION D( * ), L( * ), LD( * ), LLD( * ), +* $ WORK( * ) +* DOUBLE PRECISION Z( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLAR1V computes the (scaled) r-th column of the inverse of +*> the sumbmatrix in rows B1 through BN of the tridiagonal matrix +*> L D L**T - sigma I. When sigma is close to an eigenvalue, the +*> computed vector is an accurate eigenvector. Usually, r corresponds +*> to the index where the eigenvector is largest in magnitude. +*> The following steps accomplish this computation : +*> (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, +*> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, +*> (c) Computation of the diagonal elements of the inverse of +*> L D L**T - sigma I by combining the above transforms, and choosing +*> r as the index where the diagonal of the inverse is (one of the) +*> largest in magnitude. +*> (d) Computation of the (scaled) r-th column of the inverse using the +*> twisted factorization obtained by combining the top part of the +*> the stationary and the bottom part of the progressive transform. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix L D L**T. +*> \endverbatim +*> +*> \param[in] B1 +*> \verbatim +*> B1 is INTEGER +*> First index of the submatrix of L D L**T. +*> \endverbatim +*> +*> \param[in] BN +*> \verbatim +*> BN is INTEGER +*> Last index of the submatrix of L D L**T. +*> \endverbatim +*> +*> \param[in] LAMBDA +*> \verbatim +*> LAMBDA is DOUBLE PRECISION +*> The shift. In order to compute an accurate eigenvector, +*> LAMBDA should be a good approximation to an eigenvalue +*> of L D L**T. +*> \endverbatim +*> +*> \param[in] L +*> \verbatim +*> L is DOUBLE PRECISION array, dimension (N-1) +*> The (n-1) subdiagonal elements of the unit bidiagonal matrix +*> L, in elements 1 to N-1. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The n diagonal elements of the diagonal matrix D. +*> \endverbatim +*> +*> \param[in] LD +*> \verbatim +*> LD is DOUBLE PRECISION array, dimension (N-1) +*> The n-1 elements L(i)*D(i). +*> \endverbatim +*> +*> \param[in] LLD +*> \verbatim +*> LLD is DOUBLE PRECISION array, dimension (N-1) +*> The n-1 elements L(i)*L(i)*D(i). +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot in the Sturm sequence. +*> \endverbatim +*> +*> \param[in] GAPTOL +*> \verbatim +*> GAPTOL is DOUBLE PRECISION +*> Tolerance that indicates when eigenvector entries are negligible +*> w.r.t. their contribution to the residual. +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (N) +*> On input, all entries of Z must be set to 0. +*> On output, Z contains the (scaled) r-th column of the +*> inverse. The scaling is such that Z(R) equals 1. +*> \endverbatim +*> +*> \param[in] WANTNC +*> \verbatim +*> WANTNC is LOGICAL +*> Specifies whether NEGCNT has to be computed. +*> \endverbatim +*> +*> \param[out] NEGCNT +*> \verbatim +*> NEGCNT is INTEGER +*> If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin +*> in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. +*> \endverbatim +*> +*> \param[out] ZTZ +*> \verbatim +*> ZTZ is DOUBLE PRECISION +*> The square of the 2-norm of Z. +*> \endverbatim +*> +*> \param[out] MINGMA +*> \verbatim +*> MINGMA is DOUBLE PRECISION +*> The reciprocal of the largest (in magnitude) diagonal +*> element of the inverse of L D L**T - sigma I. +*> \endverbatim +*> +*> \param[in,out] R +*> \verbatim +*> R is INTEGER +*> The twist index for the twisted factorization used to +*> compute Z. +*> On input, 0 <= R <= N. If R is input as 0, R is set to +*> the index where (L D L**T - sigma I)^{-1} is largest +*> in magnitude. If 1 <= R <= N, R is unchanged. +*> On output, R contains the twist index used to compute Z. +*> Ideally, R designates the position of the maximum entry in the +*> eigenvector. +*> \endverbatim +*> +*> \param[out] ISUPPZ +*> \verbatim +*> ISUPPZ is INTEGER array, dimension (2) +*> The support of the vector in Z, i.e., the vector Z is +*> nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). +*> \endverbatim +*> +*> \param[out] NRMINV +*> \verbatim +*> NRMINV is DOUBLE PRECISION +*> NRMINV = 1/SQRT( ZTZ ) +*> \endverbatim +*> +*> \param[out] RESID +*> \verbatim +*> RESID is DOUBLE PRECISION +*> The residual of the FP vector. +*> RESID = ABS( MINGMA )/SQRT( ZTZ ) +*> \endverbatim +*> +*> \param[out] RQCORR +*> \verbatim +*> RQCORR is DOUBLE PRECISION +*> The Rayleigh Quotient correction to LAMBDA. +*> RQCORR = MINGMA*TMP +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (4*N) +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, + $ PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, + $ R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + LOGICAL WANTNC + INTEGER B1, BN, N, NEGCNT, R + DOUBLE PRECISION GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, + $ RQCORR, ZTZ +* .. +* .. Array Arguments .. + INTEGER ISUPPZ( * ) + DOUBLE PRECISION D( * ), L( * ), LD( * ), LLD( * ), + $ WORK( * ) + DOUBLE PRECISION Z( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) + +* .. +* .. Local Scalars .. + LOGICAL SAWNAN1, SAWNAN2 + INTEGER I, INDLPL, INDP, INDS, INDUMN, NEG1, NEG2, R1, + $ R2 + DOUBLE PRECISION DMINUS, DPLUS, EPS, S, TMP +* .. +* .. External Functions .. + LOGICAL DISNAN + DOUBLE PRECISION DLAMCH + EXTERNAL DISNAN, DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS +* .. +* .. Executable Statements .. +* + EPS = DLAMCH( 'Precision' ) + + + IF( R.EQ.0 ) THEN + R1 = B1 + R2 = BN + ELSE + R1 = R + R2 = R + END IF + +* Storage for LPLUS + INDLPL = 0 +* Storage for UMINUS + INDUMN = N + INDS = 2*N + 1 + INDP = 3*N + 1 + + IF( B1.EQ.1 ) THEN + WORK( INDS ) = ZERO + ELSE + WORK( INDS+B1-1 ) = LLD( B1-1 ) + END IF + +* +* Compute the stationary transform (using the differential form) +* until the index R2. +* + SAWNAN1 = .FALSE. + NEG1 = 0 + S = WORK( INDS+B1-1 ) - LAMBDA + DO 50 I = B1, R1 - 1 + DPLUS = D( I ) + S + WORK( INDLPL+I ) = LD( I ) / DPLUS + IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1 + WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) + S = WORK( INDS+I ) - LAMBDA + 50 CONTINUE + SAWNAN1 = DISNAN( S ) + IF( SAWNAN1 ) GOTO 60 + DO 51 I = R1, R2 - 1 + DPLUS = D( I ) + S + WORK( INDLPL+I ) = LD( I ) / DPLUS + WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) + S = WORK( INDS+I ) - LAMBDA + 51 CONTINUE + SAWNAN1 = DISNAN( S ) +* + 60 CONTINUE + IF( SAWNAN1 ) THEN +* Runs a slower version of the above loop if a NaN is detected + NEG1 = 0 + S = WORK( INDS+B1-1 ) - LAMBDA + DO 70 I = B1, R1 - 1 + DPLUS = D( I ) + S + IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN + WORK( INDLPL+I ) = LD( I ) / DPLUS + IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1 + WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) + IF( WORK( INDLPL+I ).EQ.ZERO ) + $ WORK( INDS+I ) = LLD( I ) + S = WORK( INDS+I ) - LAMBDA + 70 CONTINUE + DO 71 I = R1, R2 - 1 + DPLUS = D( I ) + S + IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN + WORK( INDLPL+I ) = LD( I ) / DPLUS + WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) + IF( WORK( INDLPL+I ).EQ.ZERO ) + $ WORK( INDS+I ) = LLD( I ) + S = WORK( INDS+I ) - LAMBDA + 71 CONTINUE + END IF +* +* Compute the progressive transform (using the differential form) +* until the index R1 +* + SAWNAN2 = .FALSE. + NEG2 = 0 + WORK( INDP+BN-1 ) = D( BN ) - LAMBDA + DO 80 I = BN - 1, R1, -1 + DMINUS = LLD( I ) + WORK( INDP+I ) + TMP = D( I ) / DMINUS + IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1 + WORK( INDUMN+I ) = L( I )*TMP + WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA + 80 CONTINUE + TMP = WORK( INDP+R1-1 ) + SAWNAN2 = DISNAN( TMP ) + + IF( SAWNAN2 ) THEN +* Runs a slower version of the above loop if a NaN is detected + NEG2 = 0 + DO 100 I = BN-1, R1, -1 + DMINUS = LLD( I ) + WORK( INDP+I ) + IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN + TMP = D( I ) / DMINUS + IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1 + WORK( INDUMN+I ) = L( I )*TMP + WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA + IF( TMP.EQ.ZERO ) + $ WORK( INDP+I-1 ) = D( I ) - LAMBDA + 100 CONTINUE + END IF +* +* Find the index (from R1 to R2) of the largest (in magnitude) +* diagonal element of the inverse +* + MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 ) + IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1 + IF( WANTNC ) THEN + NEGCNT = NEG1 + NEG2 + ELSE + NEGCNT = -1 + ENDIF + IF( ABS(MINGMA).EQ.ZERO ) + $ MINGMA = EPS*WORK( INDS+R1-1 ) + R = R1 + DO 110 I = R1, R2 - 1 + TMP = WORK( INDS+I ) + WORK( INDP+I ) + IF( TMP.EQ.ZERO ) + $ TMP = EPS*WORK( INDS+I ) + IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN + MINGMA = TMP + R = I + 1 + END IF + 110 CONTINUE +* +* Compute the FP vector: solve N^T v = e_r +* + ISUPPZ( 1 ) = B1 + ISUPPZ( 2 ) = BN + Z( R ) = ONE + ZTZ = ONE +* +* Compute the FP vector upwards from R +* + IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN + DO 210 I = R-1, B1, -1 + Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) ) + IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) + $ THEN + Z( I ) = ZERO + ISUPPZ( 1 ) = I + 1 + GOTO 220 + ENDIF + ZTZ = ZTZ + Z( I )*Z( I ) + 210 CONTINUE + 220 CONTINUE + ELSE +* Run slower loop if NaN occurred. + DO 230 I = R - 1, B1, -1 + IF( Z( I+1 ).EQ.ZERO ) THEN + Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 ) + ELSE + Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) ) + END IF + IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) + $ THEN + Z( I ) = ZERO + ISUPPZ( 1 ) = I + 1 + GO TO 240 + END IF + ZTZ = ZTZ + Z( I )*Z( I ) + 230 CONTINUE + 240 CONTINUE + ENDIF + +* Compute the FP vector downwards from R in blocks of size BLKSIZ + IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN + DO 250 I = R, BN-1 + Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) ) + IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) + $ THEN + Z( I+1 ) = ZERO + ISUPPZ( 2 ) = I + GO TO 260 + END IF + ZTZ = ZTZ + Z( I+1 )*Z( I+1 ) + 250 CONTINUE + 260 CONTINUE + ELSE +* Run slower loop if NaN occurred. + DO 270 I = R, BN - 1 + IF( Z( I ).EQ.ZERO ) THEN + Z( I+1 ) = -( LD( I-1 ) / LD( I ) )*Z( I-1 ) + ELSE + Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) ) + END IF + IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) + $ THEN + Z( I+1 ) = ZERO + ISUPPZ( 2 ) = I + GO TO 280 + END IF + ZTZ = ZTZ + Z( I+1 )*Z( I+1 ) + 270 CONTINUE + 280 CONTINUE + END IF +* +* Compute quantities for convergence test +* + TMP = ONE / ZTZ + NRMINV = SQRT( TMP ) + RESID = ABS( MINGMA )*NRMINV + RQCORR = MINGMA*TMP +* +* + RETURN +* +* End of DLAR1V +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarnv.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarnv.f new file mode 100644 index 000000000..8195ae9c7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarnv.f @@ -0,0 +1,178 @@ +*> \brief \b DLARNV +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARNV + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARNV( IDIST, ISEED, N, X ) +* +* .. Scalar Arguments .. +* INTEGER IDIST, N +* .. +* .. Array Arguments .. +* INTEGER ISEED( 4 ) +* DOUBLE PRECISION X( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARNV returns a vector of n random real numbers from a uniform or +*> normal distribution. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] IDIST +*> \verbatim +*> IDIST is INTEGER +*> Specifies the distribution of the random numbers: +*> = 1: uniform (0,1) +*> = 2: uniform (-1,1) +*> = 3: normal (0,1) +*> \endverbatim +*> +*> \param[in,out] ISEED +*> \verbatim +*> ISEED is INTEGER array, dimension (4) +*> On entry, the seed of the random number generator; the array +*> elements must be between 0 and 4095, and ISEED(4) must be +*> odd. +*> On exit, the seed is updated. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of random numbers to be generated. +*> \endverbatim +*> +*> \param[out] X +*> \verbatim +*> X is DOUBLE PRECISION array, dimension (N) +*> The generated random numbers. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> This routine calls the auxiliary routine DLARUV to generate random +*> real numbers from a uniform (0,1) distribution, in batches of up to +*> 128 using vectorisable code. The Box-Muller method is used to +*> transform numbers from a uniform to a normal distribution. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLARNV( IDIST, ISEED, N, X ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER IDIST, N +* .. +* .. Array Arguments .. + INTEGER ISEED( 4 ) + DOUBLE PRECISION X( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, TWO + PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0 ) + INTEGER LV + PARAMETER ( LV = 128 ) + DOUBLE PRECISION TWOPI + PARAMETER ( TWOPI = 6.2831853071795864769252867663D+0 ) +* .. +* .. Local Scalars .. + INTEGER I, IL, IL2, IV +* .. +* .. Local Arrays .. + DOUBLE PRECISION U( LV ) +* .. +* .. Intrinsic Functions .. + INTRINSIC COS, LOG, MIN, SQRT +* .. +* .. External Subroutines .. + EXTERNAL DLARUV +* .. +* .. Executable Statements .. +* + DO 40 IV = 1, N, LV / 2 + IL = MIN( LV / 2, N-IV+1 ) + IF( IDIST.EQ.3 ) THEN + IL2 = 2*IL + ELSE + IL2 = IL + END IF +* +* Call DLARUV to generate IL2 numbers from a uniform (0,1) +* distribution (IL2 <= LV) +* + CALL DLARUV( ISEED, IL2, U ) +* + IF( IDIST.EQ.1 ) THEN +* +* Copy generated numbers +* + DO 10 I = 1, IL + X( IV+I-1 ) = U( I ) + 10 CONTINUE + ELSE IF( IDIST.EQ.2 ) THEN +* +* Convert generated numbers to uniform (-1,1) distribution +* + DO 20 I = 1, IL + X( IV+I-1 ) = TWO*U( I ) - ONE + 20 CONTINUE + ELSE IF( IDIST.EQ.3 ) THEN +* +* Convert generated numbers to normal (0,1) distribution +* + DO 30 I = 1, IL + X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )* + $ COS( TWOPI*U( 2*I ) ) + 30 CONTINUE + END IF + 40 CONTINUE + RETURN +* +* End of DLARNV +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarra.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarra.f new file mode 100644 index 000000000..08b846b4a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarra.f @@ -0,0 +1,204 @@ +*> \brief \b DLARRA +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRA + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRA( N, D, E, E2, SPLTOL, TNRM, +* NSPLIT, ISPLIT, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, N, NSPLIT +* DOUBLE PRECISION SPLTOL, TNRM +* .. +* .. Array Arguments .. +* INTEGER ISPLIT( * ) +* DOUBLE PRECISION D( * ), E( * ), E2( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Compute the splitting points with threshold SPLTOL. +*> DLARRA sets any "small" off-diagonal elements to zero. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N > 0. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the N diagonal elements of the tridiagonal +*> matrix T. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> On entry, the first (N-1) entries contain the subdiagonal +*> elements of the tridiagonal matrix T; E(N) need not be set. +*> On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT, +*> are set to zero, the other entries of E are untouched. +*> \endverbatim +*> +*> \param[in,out] E2 +*> \verbatim +*> E2 is DOUBLE PRECISION array, dimension (N) +*> On entry, the first (N-1) entries contain the SQUARES of the +*> subdiagonal elements of the tridiagonal matrix T; +*> E2(N) need not be set. +*> On exit, the entries E2( ISPLIT( I ) ), +*> 1 <= I <= NSPLIT, have been set to zero +*> \endverbatim +*> +*> \param[in] SPLTOL +*> \verbatim +*> SPLTOL is DOUBLE PRECISION +*> The threshold for splitting. Two criteria can be used: +*> SPLTOL<0 : criterion based on absolute off-diagonal value +*> SPLTOL>0 : criterion that preserves relative accuracy +*> \endverbatim +*> +*> \param[in] TNRM +*> \verbatim +*> TNRM is DOUBLE PRECISION +*> The norm of the matrix. +*> \endverbatim +*> +*> \param[out] NSPLIT +*> \verbatim +*> NSPLIT is INTEGER +*> The number of blocks T splits into. 1 <= NSPLIT <= N. +*> \endverbatim +*> +*> \param[out] ISPLIT +*> \verbatim +*> ISPLIT is INTEGER array, dimension (N) +*> The splitting points, at which T breaks up into blocks. +*> The first block consists of rows/columns 1 to ISPLIT(1), +*> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), +*> etc., and the NSPLIT-th consists of rows/columns +*> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRA( N, D, E, E2, SPLTOL, TNRM, + $ NSPLIT, ISPLIT, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INFO, N, NSPLIT + DOUBLE PRECISION SPLTOL, TNRM +* .. +* .. Array Arguments .. + INTEGER ISPLIT( * ) + DOUBLE PRECISION D( * ), E( * ), E2( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) +* .. +* .. Local Scalars .. + INTEGER I + DOUBLE PRECISION EABS, TMP1 + +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS +* .. +* .. Executable Statements .. +* + INFO = 0 + +* Compute splitting points + NSPLIT = 1 + IF(SPLTOL.LT.ZERO) THEN +* Criterion based on absolute off-diagonal value + TMP1 = ABS(SPLTOL)* TNRM + DO 9 I = 1, N-1 + EABS = ABS( E(I) ) + IF( EABS .LE. TMP1) THEN + E(I) = ZERO + E2(I) = ZERO + ISPLIT( NSPLIT ) = I + NSPLIT = NSPLIT + 1 + END IF + 9 CONTINUE + ELSE +* Criterion that guarantees relative accuracy + DO 10 I = 1, N-1 + EABS = ABS( E(I) ) + IF( EABS .LE. SPLTOL * SQRT(ABS(D(I)))*SQRT(ABS(D(I+1))) ) + $ THEN + E(I) = ZERO + E2(I) = ZERO + ISPLIT( NSPLIT ) = I + NSPLIT = NSPLIT + 1 + END IF + 10 CONTINUE + ENDIF + ISPLIT( NSPLIT ) = N + + RETURN +* +* End of DLARRA +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrb.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrb.f new file mode 100644 index 000000000..b6018b399 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrb.f @@ -0,0 +1,401 @@ +*> \brief \b DLARRB +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRB + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, +* RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK, +* PIVMIN, SPDIAM, TWIST, INFO ) +* +* .. Scalar Arguments .. +* INTEGER IFIRST, ILAST, INFO, N, OFFSET, TWIST +* DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPDIAM +* .. +* .. Array Arguments .. +* INTEGER IWORK( * ) +* DOUBLE PRECISION D( * ), LLD( * ), W( * ), +* $ WERR( * ), WGAP( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Given the relatively robust representation(RRR) L D L^T, DLARRB +*> does "limited" bisection to refine the eigenvalues of L D L^T, +*> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial +*> guesses for these eigenvalues are input in W, the corresponding estimate +*> of the error in these guesses and their gaps are input in WERR +*> and WGAP, respectively. During bisection, intervals +*> [left, right] are maintained by storing their mid-points and +*> semi-widths in the arrays W and WERR respectively. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The N diagonal elements of the diagonal matrix D. +*> \endverbatim +*> +*> \param[in] LLD +*> \verbatim +*> LLD is DOUBLE PRECISION array, dimension (N-1) +*> The (N-1) elements L(i)*L(i)*D(i). +*> \endverbatim +*> +*> \param[in] IFIRST +*> \verbatim +*> IFIRST is INTEGER +*> The index of the first eigenvalue to be computed. +*> \endverbatim +*> +*> \param[in] ILAST +*> \verbatim +*> ILAST is INTEGER +*> The index of the last eigenvalue to be computed. +*> \endverbatim +*> +*> \param[in] RTOL1 +*> \verbatim +*> RTOL1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] RTOL2 +*> \verbatim +*> RTOL2 is DOUBLE PRECISION +*> Tolerance for the convergence of the bisection intervals. +*> An interval [LEFT,RIGHT] has converged if +*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) +*> where GAP is the (estimated) distance to the nearest +*> eigenvalue. +*> \endverbatim +*> +*> \param[in] OFFSET +*> \verbatim +*> OFFSET is INTEGER +*> Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET +*> through ILAST-OFFSET elements of these arrays are to be used. +*> \endverbatim +*> +*> \param[in,out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are +*> estimates of the eigenvalues of L D L^T indexed IFIRST throug +*> ILAST. +*> On output, these estimates are refined. +*> \endverbatim +*> +*> \param[in,out] WGAP +*> \verbatim +*> WGAP is DOUBLE PRECISION array, dimension (N-1) +*> On input, the (estimated) gaps between consecutive +*> eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between +*> eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST +*> then WGAP(IFIRST-OFFSET) must be set to ZERO. +*> On output, these gaps are refined. +*> \endverbatim +*> +*> \param[in,out] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION array, dimension (N) +*> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are +*> the errors in the estimates of the corresponding elements in W. +*> On output, these errors are refined. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (2*N) +*> Workspace. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (2*N) +*> Workspace. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot in the Sturm sequence. +*> \endverbatim +*> +*> \param[in] SPDIAM +*> \verbatim +*> SPDIAM is DOUBLE PRECISION +*> The spectral diameter of the matrix. +*> \endverbatim +*> +*> \param[in] TWIST +*> \verbatim +*> TWIST is INTEGER +*> The twist index for the twisted factorization that is used +*> for the negcount. +*> TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T +*> TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T +*> TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> Error flag. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, + $ RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK, + $ PIVMIN, SPDIAM, TWIST, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER IFIRST, ILAST, INFO, N, OFFSET, TWIST + DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPDIAM +* .. +* .. Array Arguments .. + INTEGER IWORK( * ) + DOUBLE PRECISION D( * ), LLD( * ), W( * ), + $ WERR( * ), WGAP( * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, TWO, HALF + PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0, + $ HALF = 0.5D0 ) + INTEGER MAXITR +* .. +* .. Local Scalars .. + INTEGER I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT, + $ OLNINT, PREV, R + DOUBLE PRECISION BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH, + $ RGAP, RIGHT, TMP, WIDTH +* .. +* .. External Functions .. + INTEGER DLANEG + EXTERNAL DLANEG +* +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN +* .. +* .. Executable Statements .. +* + INFO = 0 +* + MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) / + $ LOG( TWO ) ) + 2 + MNWDTH = TWO * PIVMIN +* + R = TWIST + IF((R.LT.1).OR.(R.GT.N)) R = N +* +* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. +* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while +* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) +* for an unconverged interval is set to the index of the next unconverged +* interval, and is -1 or 0 for a converged interval. Thus a linked +* list of unconverged intervals is set up. +* + I1 = IFIRST +* The number of unconverged intervals + NINT = 0 +* The last unconverged interval found + PREV = 0 + + RGAP = WGAP( I1-OFFSET ) + DO 75 I = I1, ILAST + K = 2*I + II = I - OFFSET + LEFT = W( II ) - WERR( II ) + RIGHT = W( II ) + WERR( II ) + LGAP = RGAP + RGAP = WGAP( II ) + GAP = MIN( LGAP, RGAP ) + +* Make sure that [LEFT,RIGHT] contains the desired eigenvalue +* Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT +* +* Do while( NEGCNT(LEFT).GT.I-1 ) +* + BACK = WERR( II ) + 20 CONTINUE + NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R ) + IF( NEGCNT.GT.I-1 ) THEN + LEFT = LEFT - BACK + BACK = TWO*BACK + GO TO 20 + END IF +* +* Do while( NEGCNT(RIGHT).LT.I ) +* Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT +* + BACK = WERR( II ) + 50 CONTINUE + + NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R ) + IF( NEGCNT.LT.I ) THEN + RIGHT = RIGHT + BACK + BACK = TWO*BACK + GO TO 50 + END IF + WIDTH = HALF*ABS( LEFT - RIGHT ) + TMP = MAX( ABS( LEFT ), ABS( RIGHT ) ) + CVRGD = MAX(RTOL1*GAP,RTOL2*TMP) + IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN +* This interval has already converged and does not need refinement. +* (Note that the gaps might change through refining the +* eigenvalues, however, they can only get bigger.) +* Remove it from the list. + IWORK( K-1 ) = -1 +* Make sure that I1 always points to the first unconverged interval + IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1 + IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1 + ELSE +* unconverged interval found + PREV = I + NINT = NINT + 1 + IWORK( K-1 ) = I + 1 + IWORK( K ) = NEGCNT + END IF + WORK( K-1 ) = LEFT + WORK( K ) = RIGHT + 75 CONTINUE + +* +* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals +* and while (ITER.LT.MAXITR) +* + ITER = 0 + 80 CONTINUE + PREV = I1 - 1 + I = I1 + OLNINT = NINT + + DO 100 IP = 1, OLNINT + K = 2*I + II = I - OFFSET + RGAP = WGAP( II ) + LGAP = RGAP + IF(II.GT.1) LGAP = WGAP( II-1 ) + GAP = MIN( LGAP, RGAP ) + NEXT = IWORK( K-1 ) + LEFT = WORK( K-1 ) + RIGHT = WORK( K ) + MID = HALF*( LEFT + RIGHT ) + +* semiwidth of interval + WIDTH = RIGHT - MID + TMP = MAX( ABS( LEFT ), ABS( RIGHT ) ) + CVRGD = MAX(RTOL1*GAP,RTOL2*TMP) + IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR. + $ ( ITER.EQ.MAXITR ) )THEN +* reduce number of unconverged intervals + NINT = NINT - 1 +* Mark interval as converged. + IWORK( K-1 ) = 0 + IF( I1.EQ.I ) THEN + I1 = NEXT + ELSE +* Prev holds the last unconverged interval previously examined + IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT + END IF + I = NEXT + GO TO 100 + END IF + PREV = I +* +* Perform one bisection step +* + NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R ) + IF( NEGCNT.LE.I-1 ) THEN + WORK( K-1 ) = MID + ELSE + WORK( K ) = MID + END IF + I = NEXT + 100 CONTINUE + ITER = ITER + 1 +* do another loop if there are still unconverged intervals +* However, in the last iteration, all intervals are accepted +* since this is the best we can do. + IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80 +* +* +* At this point, all the intervals have converged + DO 110 I = IFIRST, ILAST + K = 2*I + II = I - OFFSET +* All intervals marked by '0' have been refined. + IF( IWORK( K-1 ).EQ.0 ) THEN + W( II ) = HALF*( WORK( K-1 )+WORK( K ) ) + WERR( II ) = WORK( K ) - W( II ) + END IF + 110 CONTINUE +* + DO 111 I = IFIRST+1, ILAST + K = 2*I + II = I - OFFSET + WGAP( II-1 ) = MAX( ZERO, + $ W(II) - WERR (II) - W( II-1 ) - WERR( II-1 )) + 111 CONTINUE + + RETURN +* +* End of DLARRB +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrc.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrc.f new file mode 100644 index 000000000..9c2201f31 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrc.f @@ -0,0 +1,243 @@ +*> \brief \b DLARRC +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRC + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN, +* EIGCNT, LCNT, RCNT, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBT +* INTEGER EIGCNT, INFO, LCNT, N, RCNT +* DOUBLE PRECISION PIVMIN, VL, VU +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), E( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Find the number of eigenvalues of the symmetric tridiagonal matrix T +*> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T +*> if JOBT = 'L'. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBT +*> \verbatim +*> JOBT is CHARACTER*1 +*> = 'T': Compute Sturm count for matrix T. +*> = 'L': Compute Sturm count for matrix L D L^T. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N > 0. +*> \endverbatim +*> +*> \param[in] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> The lower and upper bounds for the eigenvalues. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. +*> JOBT = 'L': The N diagonal elements of the diagonal matrix D. +*> \endverbatim +*> +*> \param[in] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> JOBT = 'T': The N-1 offdiagonal elements of the matrix T. +*> JOBT = 'L': The N-1 offdiagonal elements of the matrix L. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot in the Sturm sequence for T. +*> \endverbatim +*> +*> \param[out] EIGCNT +*> \verbatim +*> EIGCNT is INTEGER +*> The number of eigenvalues of the symmetric tridiagonal matrix T +*> that are in the interval (VL,VU] +*> \endverbatim +*> +*> \param[out] LCNT +*> \verbatim +*> LCNT is INTEGER +*> \endverbatim +*> +*> \param[out] RCNT +*> \verbatim +*> RCNT is INTEGER +*> The left and right negcounts of the interval. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN, + $ EIGCNT, LCNT, RCNT, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER JOBT + INTEGER EIGCNT, INFO, LCNT, N, RCNT + DOUBLE PRECISION PIVMIN, VL, VU +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), E( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) +* .. +* .. Local Scalars .. + INTEGER I + LOGICAL MATT + DOUBLE PRECISION LPIVOT, RPIVOT, SL, SU, TMP, TMP2 + +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. Executable Statements .. +* + INFO = 0 + LCNT = 0 + RCNT = 0 + EIGCNT = 0 + MATT = LSAME( JOBT, 'T' ) + + + IF (MATT) THEN +* Sturm sequence count on T + LPIVOT = D( 1 ) - VL + RPIVOT = D( 1 ) - VU + IF( LPIVOT.LE.ZERO ) THEN + LCNT = LCNT + 1 + ENDIF + IF( RPIVOT.LE.ZERO ) THEN + RCNT = RCNT + 1 + ENDIF + DO 10 I = 1, N-1 + TMP = E(I)**2 + LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT + RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT + IF( LPIVOT.LE.ZERO ) THEN + LCNT = LCNT + 1 + ENDIF + IF( RPIVOT.LE.ZERO ) THEN + RCNT = RCNT + 1 + ENDIF + 10 CONTINUE + ELSE +* Sturm sequence count on L D L^T + SL = -VL + SU = -VU + DO 20 I = 1, N - 1 + LPIVOT = D( I ) + SL + RPIVOT = D( I ) + SU + IF( LPIVOT.LE.ZERO ) THEN + LCNT = LCNT + 1 + ENDIF + IF( RPIVOT.LE.ZERO ) THEN + RCNT = RCNT + 1 + ENDIF + TMP = E(I) * D(I) * E(I) +* + TMP2 = TMP / LPIVOT + IF( TMP2.EQ.ZERO ) THEN + SL = TMP - VL + ELSE + SL = SL*TMP2 - VL + END IF +* + TMP2 = TMP / RPIVOT + IF( TMP2.EQ.ZERO ) THEN + SU = TMP - VU + ELSE + SU = SU*TMP2 - VU + END IF + 20 CONTINUE + LPIVOT = D( N ) + SL + RPIVOT = D( N ) + SU + IF( LPIVOT.LE.ZERO ) THEN + LCNT = LCNT + 1 + ENDIF + IF( RPIVOT.LE.ZERO ) THEN + RCNT = RCNT + 1 + ENDIF + ENDIF + EIGCNT = RCNT - LCNT + + RETURN +* +* end of DLARRC +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrd.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrd.f new file mode 100644 index 000000000..a4be90c51 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrd.f @@ -0,0 +1,855 @@ +*> \brief \b DLARRD +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRD + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRD( RANGE, ORDER, N, VL, VU, IL, IU, GERS, +* RELTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT, +* M, W, WERR, WL, WU, IBLOCK, INDEXW, +* WORK, IWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER ORDER, RANGE +* INTEGER IL, INFO, IU, M, N, NSPLIT +* DOUBLE PRECISION PIVMIN, RELTOL, VL, VU, WL, WU +* .. +* .. Array Arguments .. +* INTEGER IBLOCK( * ), INDEXW( * ), +* $ ISPLIT( * ), IWORK( * ) +* DOUBLE PRECISION D( * ), E( * ), E2( * ), +* $ GERS( * ), W( * ), WERR( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARRD computes the eigenvalues of a symmetric tridiagonal +*> matrix T to suitable accuracy. This is an auxiliary code to be +*> called from DSTEMR. +*> The user may ask for all eigenvalues, all eigenvalues +*> in the half-open interval (VL, VU], or the IL-th through IU-th +*> eigenvalues. +*> +*> To avoid overflow, the matrix must be scaled so that its +*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest +*> accuracy, it should not be much smaller than that. +*> +*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal +*> Matrix", Report CS41, Computer Science Dept., Stanford +*> University, July 21, 1966. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] RANGE +*> \verbatim +*> RANGE is CHARACTER*1 +*> = 'A': ("All") all eigenvalues will be found. +*> = 'V': ("Value") all eigenvalues in the half-open interval +*> (VL, VU] will be found. +*> = 'I': ("Index") the IL-th through IU-th eigenvalues (of the +*> entire matrix) will be found. +*> \endverbatim +*> +*> \param[in] ORDER +*> \verbatim +*> ORDER is CHARACTER*1 +*> = 'B': ("By Block") the eigenvalues will be grouped by +*> split-off block (see IBLOCK, ISPLIT) and +*> ordered from smallest to largest within +*> the block. +*> = 'E': ("Entire matrix") +*> the eigenvalues for the entire matrix +*> will be ordered from smallest to +*> largest. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the tridiagonal matrix T. N >= 0. +*> \endverbatim +*> +*> \param[in] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> If RANGE='V', the lower and upper bounds of the interval to +*> be searched for eigenvalues. Eigenvalues less than or equal +*> to VL, or greater than VU, will not be returned. VL < VU. +*> Not referenced if RANGE = 'A' or 'I'. +*> \endverbatim +*> +*> \param[in] IL +*> \verbatim +*> IL is INTEGER +*> \endverbatim +*> +*> \param[in] IU +*> \verbatim +*> IU is INTEGER +*> If RANGE='I', the indices (in ascending order) of the +*> smallest and largest eigenvalues to be returned. +*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. +*> Not referenced if RANGE = 'A' or 'V'. +*> \endverbatim +*> +*> \param[in] GERS +*> \verbatim +*> GERS is DOUBLE PRECISION array, dimension (2*N) +*> The N Gerschgorin intervals (the i-th Gerschgorin interval +*> is (GERS(2*i-1), GERS(2*i)). +*> \endverbatim +*> +*> \param[in] RELTOL +*> \verbatim +*> RELTOL is DOUBLE PRECISION +*> The minimum relative width of an interval. When an interval +*> is narrower than RELTOL times the larger (in +*> magnitude) endpoint, then it is considered to be +*> sufficiently small, i.e., converged. Note: this should +*> always be at least radix*machine epsilon. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The n diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N-1) +*> The (n-1) off-diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in] E2 +*> \verbatim +*> E2 is DOUBLE PRECISION array, dimension (N-1) +*> The (n-1) squared off-diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot allowed in the Sturm sequence for T. +*> \endverbatim +*> +*> \param[in] NSPLIT +*> \verbatim +*> NSPLIT is INTEGER +*> The number of diagonal blocks in the matrix T. +*> 1 <= NSPLIT <= N. +*> \endverbatim +*> +*> \param[in] ISPLIT +*> \verbatim +*> ISPLIT is INTEGER array, dimension (N) +*> The splitting points, at which T breaks up into submatrices. +*> The first submatrix consists of rows/columns 1 to ISPLIT(1), +*> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), +*> etc., and the NSPLIT-th consists of rows/columns +*> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. +*> (Only the first NSPLIT elements will actually be used, but +*> since the user cannot know a priori what value NSPLIT will +*> have, N words must be reserved for ISPLIT.) +*> \endverbatim +*> +*> \param[out] M +*> \verbatim +*> M is INTEGER +*> The actual number of eigenvalues found. 0 <= M <= N. +*> (See also the description of INFO=2,3.) +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> On exit, the first M elements of W will contain the +*> eigenvalue approximations. DLARRD computes an interval +*> I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue +*> approximation is given as the interval midpoint +*> W(j)= ( a_j + b_j)/2. The corresponding error is bounded by +*> WERR(j) = abs( a_j - b_j)/2 +*> \endverbatim +*> +*> \param[out] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION array, dimension (N) +*> The error bound on the corresponding eigenvalue approximation +*> in W. +*> \endverbatim +*> +*> \param[out] WL +*> \verbatim +*> WL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[out] WU +*> \verbatim +*> WU is DOUBLE PRECISION +*> The interval (WL, WU] contains all the wanted eigenvalues. +*> If RANGE='V', then WL=VL and WU=VU. +*> If RANGE='A', then WL and WU are the global Gerschgorin bounds +*> on the spectrum. +*> If RANGE='I', then WL and WU are computed by DLAEBZ from the +*> index range specified. +*> \endverbatim +*> +*> \param[out] IBLOCK +*> \verbatim +*> IBLOCK is INTEGER array, dimension (N) +*> At each row/column j where E(j) is zero or small, the +*> matrix T is considered to split into a block diagonal +*> matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which +*> block (from 1 to the number of blocks) the eigenvalue W(i) +*> belongs. (DLARRD may use the remaining N-M elements as +*> workspace.) +*> \endverbatim +*> +*> \param[out] INDEXW +*> \verbatim +*> INDEXW is INTEGER array, dimension (N) +*> The indices of the eigenvalues within each block (submatrix); +*> for example, INDEXW(i)= j and IBLOCK(i)=k imply that the +*> i-th eigenvalue W(i) is the j-th eigenvalue in block k. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (4*N) +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (3*N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: some or all of the eigenvalues failed to converge or +*> were not computed: +*> =1 or 3: Bisection failed to converge for some +*> eigenvalues; these eigenvalues are flagged by a +*> negative block number. The effect is that the +*> eigenvalues may not be as accurate as the +*> absolute and relative tolerances. This is +*> generally caused by unexpectedly inaccurate +*> arithmetic. +*> =2 or 3: RANGE='I' only: Not all of the eigenvalues +*> IL:IU were found. +*> Effect: M < IU+1-IL +*> Cause: non-monotonic arithmetic, causing the +*> Sturm sequence to be non-monotonic. +*> Cure: recalculate, using RANGE='A', and pick +*> out eigenvalues IL:IU. In some cases, +*> increasing the PARAMETER "FUDGE" may +*> make things work. +*> = 4: RANGE='I', and the Gershgorin interval +*> initially used was too small. No eigenvalues +*> were computed. +*> Probable cause: your machine has sloppy +*> floating-point arithmetic. +*> Cure: Increase the PARAMETER "FUDGE", +*> recompile, and try again. +*> \endverbatim +* +*> \par Internal Parameters: +* ========================= +*> +*> \verbatim +*> FUDGE DOUBLE PRECISION, default = 2 +*> A "fudge factor" to widen the Gershgorin intervals. Ideally, +*> a value of 1 should work, but on machines with sloppy +*> arithmetic, this needs to be larger. The default for +*> publicly released versions should be large enough to handle +*> the worst machine around. Note that this has no effect +*> on accuracy of the solution. +*> \endverbatim +*> +*> \par Contributors: +* ================== +*> +*> W. Kahan, University of California, Berkeley, USA \n +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA \n +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLARRD( RANGE, ORDER, N, VL, VU, IL, IU, GERS, + $ RELTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT, + $ M, W, WERR, WL, WU, IBLOCK, INDEXW, + $ WORK, IWORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER ORDER, RANGE + INTEGER IL, INFO, IU, M, N, NSPLIT + DOUBLE PRECISION PIVMIN, RELTOL, VL, VU, WL, WU +* .. +* .. Array Arguments .. + INTEGER IBLOCK( * ), INDEXW( * ), + $ ISPLIT( * ), IWORK( * ) + DOUBLE PRECISION D( * ), E( * ), E2( * ), + $ GERS( * ), W( * ), WERR( * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO, HALF, FUDGE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, + $ TWO = 2.0D0, HALF = ONE/TWO, + $ FUDGE = TWO ) + INTEGER ALLRNG, VALRNG, INDRNG + PARAMETER ( ALLRNG = 1, VALRNG = 2, INDRNG = 3 ) +* .. +* .. Local Scalars .. + LOGICAL NCNVRG, TOOFEW + INTEGER I, IB, IBEGIN, IDISCL, IDISCU, IE, IEND, IINFO, + $ IM, IN, IOFF, IOUT, IRANGE, ITMAX, ITMP1, + $ ITMP2, IW, IWOFF, J, JBLK, JDISC, JE, JEE, NB, + $ NWL, NWU + DOUBLE PRECISION ATOLI, EPS, GL, GU, RTOLI, TMP1, TMP2, + $ TNORM, UFLOW, WKILL, WLU, WUL + +* .. +* .. Local Arrays .. + INTEGER IDUMMA( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH + EXTERNAL LSAME, ILAENV, DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL DLAEBZ +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, INT, LOG, MAX, MIN +* .. +* .. Executable Statements .. +* + INFO = 0 +* +* Decode RANGE +* + IF( LSAME( RANGE, 'A' ) ) THEN + IRANGE = ALLRNG + ELSE IF( LSAME( RANGE, 'V' ) ) THEN + IRANGE = VALRNG + ELSE IF( LSAME( RANGE, 'I' ) ) THEN + IRANGE = INDRNG + ELSE + IRANGE = 0 + END IF +* +* Check for Errors +* + IF( IRANGE.LE.0 ) THEN + INFO = -1 + ELSE IF( .NOT.(LSAME(ORDER,'B').OR.LSAME(ORDER,'E')) ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( IRANGE.EQ.VALRNG ) THEN + IF( VL.GE.VU ) + $ INFO = -5 + ELSE IF( IRANGE.EQ.INDRNG .AND. + $ ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) ) THEN + INFO = -6 + ELSE IF( IRANGE.EQ.INDRNG .AND. + $ ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN + INFO = -7 + END IF +* + IF( INFO.NE.0 ) THEN + RETURN + END IF + +* Initialize error flags + INFO = 0 + NCNVRG = .FALSE. + TOOFEW = .FALSE. + +* Quick return if possible + M = 0 + IF( N.EQ.0 ) RETURN + +* Simplification: + IF( IRANGE.EQ.INDRNG .AND. IL.EQ.1 .AND. IU.EQ.N ) IRANGE = 1 + +* Get machine constants + EPS = DLAMCH( 'P' ) + UFLOW = DLAMCH( 'U' ) + + +* Special Case when N=1 +* Treat case of 1x1 matrix for quick return + IF( N.EQ.1 ) THEN + IF( (IRANGE.EQ.ALLRNG).OR. + $ ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR. + $ ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN + M = 1 + W(1) = D(1) +* The computation error of the eigenvalue is zero + WERR(1) = ZERO + IBLOCK( 1 ) = 1 + INDEXW( 1 ) = 1 + ENDIF + RETURN + END IF + +* NB is the minimum vector length for vector bisection, or 0 +* if only scalar is to be done. + NB = ILAENV( 1, 'DSTEBZ', ' ', N, -1, -1, -1 ) + IF( NB.LE.1 ) NB = 0 + +* Find global spectral radius + GL = D(1) + GU = D(1) + DO 5 I = 1,N + GL = MIN( GL, GERS( 2*I - 1)) + GU = MAX( GU, GERS(2*I) ) + 5 CONTINUE +* Compute global Gerschgorin bounds and spectral diameter + TNORM = MAX( ABS( GL ), ABS( GU ) ) + GL = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN + GU = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN +* [JAN/28/2009] remove the line below since SPDIAM variable not use +* SPDIAM = GU - GL +* Input arguments for DLAEBZ: +* The relative tolerance. An interval (a,b] lies within +* "relative tolerance" if b-a < RELTOL*max(|a|,|b|), + RTOLI = RELTOL +* Set the absolute tolerance for interval convergence to zero to force +* interval convergence based on relative size of the interval. +* This is dangerous because intervals might not converge when RELTOL is +* small. But at least a very small number should be selected so that for +* strongly graded matrices, the code can get relatively accurate +* eigenvalues. + ATOLI = FUDGE*TWO*UFLOW + FUDGE*TWO*PIVMIN + + IF( IRANGE.EQ.INDRNG ) THEN + +* RANGE='I': Compute an interval containing eigenvalues +* IL through IU. The initial interval [GL,GU] from the global +* Gerschgorin bounds GL and GU is refined by DLAEBZ. + ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) / + $ LOG( TWO ) ) + 2 + WORK( N+1 ) = GL + WORK( N+2 ) = GL + WORK( N+3 ) = GU + WORK( N+4 ) = GU + WORK( N+5 ) = GL + WORK( N+6 ) = GU + IWORK( 1 ) = -1 + IWORK( 2 ) = -1 + IWORK( 3 ) = N + 1 + IWORK( 4 ) = N + 1 + IWORK( 5 ) = IL - 1 + IWORK( 6 ) = IU +* + CALL DLAEBZ( 3, ITMAX, N, 2, 2, NB, ATOLI, RTOLI, PIVMIN, + $ D, E, E2, IWORK( 5 ), WORK( N+1 ), WORK( N+5 ), IOUT, + $ IWORK, W, IBLOCK, IINFO ) + IF( IINFO .NE. 0 ) THEN + INFO = IINFO + RETURN + END IF +* On exit, output intervals may not be ordered by ascending negcount + IF( IWORK( 6 ).EQ.IU ) THEN + WL = WORK( N+1 ) + WLU = WORK( N+3 ) + NWL = IWORK( 1 ) + WU = WORK( N+4 ) + WUL = WORK( N+2 ) + NWU = IWORK( 4 ) + ELSE + WL = WORK( N+2 ) + WLU = WORK( N+4 ) + NWL = IWORK( 2 ) + WU = WORK( N+3 ) + WUL = WORK( N+1 ) + NWU = IWORK( 3 ) + END IF +* On exit, the interval [WL, WLU] contains a value with negcount NWL, +* and [WUL, WU] contains a value with negcount NWU. + IF( NWL.LT.0 .OR. NWL.GE.N .OR. NWU.LT.1 .OR. NWU.GT.N ) THEN + INFO = 4 + RETURN + END IF + + ELSEIF( IRANGE.EQ.VALRNG ) THEN + WL = VL + WU = VU + + ELSEIF( IRANGE.EQ.ALLRNG ) THEN + WL = GL + WU = GU + ENDIF + + + +* Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. +* NWL accumulates the number of eigenvalues .le. WL, +* NWU accumulates the number of eigenvalues .le. WU + M = 0 + IEND = 0 + INFO = 0 + NWL = 0 + NWU = 0 +* + DO 70 JBLK = 1, NSPLIT + IOFF = IEND + IBEGIN = IOFF + 1 + IEND = ISPLIT( JBLK ) + IN = IEND - IOFF +* + IF( IN.EQ.1 ) THEN +* 1x1 block + IF( WL.GE.D( IBEGIN )-PIVMIN ) + $ NWL = NWL + 1 + IF( WU.GE.D( IBEGIN )-PIVMIN ) + $ NWU = NWU + 1 + IF( IRANGE.EQ.ALLRNG .OR. + $ ( WL.LT.D( IBEGIN )-PIVMIN + $ .AND. WU.GE. D( IBEGIN )-PIVMIN ) ) THEN + M = M + 1 + W( M ) = D( IBEGIN ) + WERR(M) = ZERO +* The gap for a single block doesn't matter for the later +* algorithm and is assigned an arbitrary large value + IBLOCK( M ) = JBLK + INDEXW( M ) = 1 + END IF + +* Disabled 2x2 case because of a failure on the following matrix +* RANGE = 'I', IL = IU = 4 +* Original Tridiagonal, d = [ +* -0.150102010615740E+00 +* -0.849897989384260E+00 +* -0.128208148052635E-15 +* 0.128257718286320E-15 +* ]; +* e = [ +* -0.357171383266986E+00 +* -0.180411241501588E-15 +* -0.175152352710251E-15 +* ]; +* +* ELSE IF( IN.EQ.2 ) THEN +** 2x2 block +* DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) +* TMP1 = HALF*(D(IBEGIN)+D(IEND)) +* L1 = TMP1 - DISC +* IF( WL.GE. L1-PIVMIN ) +* $ NWL = NWL + 1 +* IF( WU.GE. L1-PIVMIN ) +* $ NWU = NWU + 1 +* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. +* $ L1-PIVMIN ) ) THEN +* M = M + 1 +* W( M ) = L1 +** The uncertainty of eigenvalues of a 2x2 matrix is very small +* WERR( M ) = EPS * ABS( W( M ) ) * TWO +* IBLOCK( M ) = JBLK +* INDEXW( M ) = 1 +* ENDIF +* L2 = TMP1 + DISC +* IF( WL.GE. L2-PIVMIN ) +* $ NWL = NWL + 1 +* IF( WU.GE. L2-PIVMIN ) +* $ NWU = NWU + 1 +* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. +* $ L2-PIVMIN ) ) THEN +* M = M + 1 +* W( M ) = L2 +** The uncertainty of eigenvalues of a 2x2 matrix is very small +* WERR( M ) = EPS * ABS( W( M ) ) * TWO +* IBLOCK( M ) = JBLK +* INDEXW( M ) = 2 +* ENDIF + ELSE +* General Case - block of size IN >= 2 +* Compute local Gerschgorin interval and use it as the initial +* interval for DLAEBZ + GU = D( IBEGIN ) + GL = D( IBEGIN ) + TMP1 = ZERO + + DO 40 J = IBEGIN, IEND + GL = MIN( GL, GERS( 2*J - 1)) + GU = MAX( GU, GERS(2*J) ) + 40 CONTINUE +* [JAN/28/2009] +* change SPDIAM by TNORM in lines 2 and 3 thereafter +* line 1: remove computation of SPDIAM (not useful anymore) +* SPDIAM = GU - GL +* GL = GL - FUDGE*SPDIAM*EPS*IN - FUDGE*PIVMIN +* GU = GU + FUDGE*SPDIAM*EPS*IN + FUDGE*PIVMIN + GL = GL - FUDGE*TNORM*EPS*IN - FUDGE*PIVMIN + GU = GU + FUDGE*TNORM*EPS*IN + FUDGE*PIVMIN +* + IF( IRANGE.GT.1 ) THEN + IF( GU.LT.WL ) THEN +* the local block contains none of the wanted eigenvalues + NWL = NWL + IN + NWU = NWU + IN + GO TO 70 + END IF +* refine search interval if possible, only range (WL,WU] matters + GL = MAX( GL, WL ) + GU = MIN( GU, WU ) + IF( GL.GE.GU ) + $ GO TO 70 + END IF + +* Find negcount of initial interval boundaries GL and GU + WORK( N+1 ) = GL + WORK( N+IN+1 ) = GU + CALL DLAEBZ( 1, 0, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN, + $ D( IBEGIN ), E( IBEGIN ), E2( IBEGIN ), + $ IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IM, + $ IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO ) + IF( IINFO .NE. 0 ) THEN + INFO = IINFO + RETURN + END IF +* + NWL = NWL + IWORK( 1 ) + NWU = NWU + IWORK( IN+1 ) + IWOFF = M - IWORK( 1 ) + +* Compute Eigenvalues + ITMAX = INT( ( LOG( GU-GL+PIVMIN )-LOG( PIVMIN ) ) / + $ LOG( TWO ) ) + 2 + CALL DLAEBZ( 2, ITMAX, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN, + $ D( IBEGIN ), E( IBEGIN ), E2( IBEGIN ), + $ IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IOUT, + $ IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO ) + IF( IINFO .NE. 0 ) THEN + INFO = IINFO + RETURN + END IF +* +* Copy eigenvalues into W and IBLOCK +* Use -JBLK for block number for unconverged eigenvalues. +* Loop over the number of output intervals from DLAEBZ + DO 60 J = 1, IOUT +* eigenvalue approximation is middle point of interval + TMP1 = HALF*( WORK( J+N )+WORK( J+IN+N ) ) +* semi length of error interval + TMP2 = HALF*ABS( WORK( J+N )-WORK( J+IN+N ) ) + IF( J.GT.IOUT-IINFO ) THEN +* Flag non-convergence. + NCNVRG = .TRUE. + IB = -JBLK + ELSE + IB = JBLK + END IF + DO 50 JE = IWORK( J ) + 1 + IWOFF, + $ IWORK( J+IN ) + IWOFF + W( JE ) = TMP1 + WERR( JE ) = TMP2 + INDEXW( JE ) = JE - IWOFF + IBLOCK( JE ) = IB + 50 CONTINUE + 60 CONTINUE +* + M = M + IM + END IF + 70 CONTINUE + +* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU +* If NWL+1 < IL or NWU > IU, discard extra eigenvalues. + IF( IRANGE.EQ.INDRNG ) THEN + IDISCL = IL - 1 - NWL + IDISCU = NWU - IU +* + IF( IDISCL.GT.0 ) THEN + IM = 0 + DO 80 JE = 1, M +* Remove some of the smallest eigenvalues from the left so that +* at the end IDISCL =0. Move all eigenvalues up to the left. + IF( W( JE ).LE.WLU .AND. IDISCL.GT.0 ) THEN + IDISCL = IDISCL - 1 + ELSE + IM = IM + 1 + W( IM ) = W( JE ) + WERR( IM ) = WERR( JE ) + INDEXW( IM ) = INDEXW( JE ) + IBLOCK( IM ) = IBLOCK( JE ) + END IF + 80 CONTINUE + M = IM + END IF + IF( IDISCU.GT.0 ) THEN +* Remove some of the largest eigenvalues from the right so that +* at the end IDISCU =0. Move all eigenvalues up to the left. + IM=M+1 + DO 81 JE = M, 1, -1 + IF( W( JE ).GE.WUL .AND. IDISCU.GT.0 ) THEN + IDISCU = IDISCU - 1 + ELSE + IM = IM - 1 + W( IM ) = W( JE ) + WERR( IM ) = WERR( JE ) + INDEXW( IM ) = INDEXW( JE ) + IBLOCK( IM ) = IBLOCK( JE ) + END IF + 81 CONTINUE + JEE = 0 + DO 82 JE = IM, M + JEE = JEE + 1 + W( JEE ) = W( JE ) + WERR( JEE ) = WERR( JE ) + INDEXW( JEE ) = INDEXW( JE ) + IBLOCK( JEE ) = IBLOCK( JE ) + 82 CONTINUE + M = M-IM+1 + END IF + + IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN +* Code to deal with effects of bad arithmetic. (If N(w) is +* monotone non-decreasing, this should never happen.) +* Some low eigenvalues to be discarded are not in (WL,WLU], +* or high eigenvalues to be discarded are not in (WUL,WU] +* so just kill off the smallest IDISCL/largest IDISCU +* eigenvalues, by marking the corresponding IBLOCK = 0 + IF( IDISCL.GT.0 ) THEN + WKILL = WU + DO 100 JDISC = 1, IDISCL + IW = 0 + DO 90 JE = 1, M + IF( IBLOCK( JE ).NE.0 .AND. + $ ( W( JE ).LT.WKILL .OR. IW.EQ.0 ) ) THEN + IW = JE + WKILL = W( JE ) + END IF + 90 CONTINUE + IBLOCK( IW ) = 0 + 100 CONTINUE + END IF + IF( IDISCU.GT.0 ) THEN + WKILL = WL + DO 120 JDISC = 1, IDISCU + IW = 0 + DO 110 JE = 1, M + IF( IBLOCK( JE ).NE.0 .AND. + $ ( W( JE ).GE.WKILL .OR. IW.EQ.0 ) ) THEN + IW = JE + WKILL = W( JE ) + END IF + 110 CONTINUE + IBLOCK( IW ) = 0 + 120 CONTINUE + END IF +* Now erase all eigenvalues with IBLOCK set to zero + IM = 0 + DO 130 JE = 1, M + IF( IBLOCK( JE ).NE.0 ) THEN + IM = IM + 1 + W( IM ) = W( JE ) + WERR( IM ) = WERR( JE ) + INDEXW( IM ) = INDEXW( JE ) + IBLOCK( IM ) = IBLOCK( JE ) + END IF + 130 CONTINUE + M = IM + END IF + IF( IDISCL.LT.0 .OR. IDISCU.LT.0 ) THEN + TOOFEW = .TRUE. + END IF + END IF +* + IF(( IRANGE.EQ.ALLRNG .AND. M.NE.N ).OR. + $ ( IRANGE.EQ.INDRNG .AND. M.NE.IU-IL+1 ) ) THEN + TOOFEW = .TRUE. + END IF + +* If ORDER='B', do nothing the eigenvalues are already sorted by +* block. +* If ORDER='E', sort the eigenvalues from smallest to largest + + IF( LSAME(ORDER,'E') .AND. NSPLIT.GT.1 ) THEN + DO 150 JE = 1, M - 1 + IE = 0 + TMP1 = W( JE ) + DO 140 J = JE + 1, M + IF( W( J ).LT.TMP1 ) THEN + IE = J + TMP1 = W( J ) + END IF + 140 CONTINUE + IF( IE.NE.0 ) THEN + TMP2 = WERR( IE ) + ITMP1 = IBLOCK( IE ) + ITMP2 = INDEXW( IE ) + W( IE ) = W( JE ) + WERR( IE ) = WERR( JE ) + IBLOCK( IE ) = IBLOCK( JE ) + INDEXW( IE ) = INDEXW( JE ) + W( JE ) = TMP1 + WERR( JE ) = TMP2 + IBLOCK( JE ) = ITMP1 + INDEXW( JE ) = ITMP2 + END IF + 150 CONTINUE + END IF +* + INFO = 0 + IF( NCNVRG ) + $ INFO = INFO + 1 + IF( TOOFEW ) + $ INFO = INFO + 2 + RETURN +* +* End of DLARRD +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarre.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarre.f new file mode 100644 index 000000000..109328a7e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarre.f @@ -0,0 +1,891 @@ +*> \brief \b DLARRE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRE + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, +* RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, +* W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, +* WORK, IWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER RANGE +* INTEGER IL, INFO, IU, M, N, NSPLIT +* DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU +* .. +* .. Array Arguments .. +* INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ), +* $ INDEXW( * ) +* DOUBLE PRECISION D( * ), E( * ), E2( * ), GERS( * ), +* $ W( * ),WERR( * ), WGAP( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> To find the desired eigenvalues of a given real symmetric +*> tridiagonal matrix T, DLARRE sets any "small" off-diagonal +*> elements to zero, and for each unreduced block T_i, it finds +*> (a) a suitable shift at one end of the block's spectrum, +*> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and +*> (c) eigenvalues of each L_i D_i L_i^T. +*> The representations and eigenvalues found are then used by +*> DSTEMR to compute the eigenvectors of T. +*> The accuracy varies depending on whether bisection is used to +*> find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to +*> conpute all and then discard any unwanted one. +*> As an added benefit, DLARRE also outputs the n +*> Gerschgorin intervals for the matrices L_i D_i L_i^T. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] RANGE +*> \verbatim +*> RANGE is CHARACTER*1 +*> = 'A': ("All") all eigenvalues will be found. +*> = 'V': ("Value") all eigenvalues in the half-open interval +*> (VL, VU] will be found. +*> = 'I': ("Index") the IL-th through IU-th eigenvalues (of the +*> entire matrix) will be found. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N > 0. +*> \endverbatim +*> +*> \param[in,out] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> If RANGE='V', the lower and upper bounds for the eigenvalues. +*> Eigenvalues less than or equal to VL, or greater than VU, +*> will not be returned. VL < VU. +*> If RANGE='I' or ='A', DLARRE computes bounds on the desired +*> part of the spectrum. +*> \endverbatim +*> +*> \param[in] IL +*> \verbatim +*> IL is INTEGER +*> \endverbatim +*> +*> \param[in] IU +*> \verbatim +*> IU is INTEGER +*> If RANGE='I', the indices (in ascending order) of the +*> smallest and largest eigenvalues to be returned. +*> 1 <= IL <= IU <= N. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the N diagonal elements of the tridiagonal +*> matrix T. +*> On exit, the N diagonal elements of the diagonal +*> matrices D_i. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> On entry, the first (N-1) entries contain the subdiagonal +*> elements of the tridiagonal matrix T; E(N) need not be set. +*> On exit, E contains the subdiagonal elements of the unit +*> bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), +*> 1 <= I <= NSPLIT, contain the base points sigma_i on output. +*> \endverbatim +*> +*> \param[in,out] E2 +*> \verbatim +*> E2 is DOUBLE PRECISION array, dimension (N) +*> On entry, the first (N-1) entries contain the SQUARES of the +*> subdiagonal elements of the tridiagonal matrix T; +*> E2(N) need not be set. +*> On exit, the entries E2( ISPLIT( I ) ), +*> 1 <= I <= NSPLIT, have been set to zero +*> \endverbatim +*> +*> \param[in] RTOL1 +*> \verbatim +*> RTOL1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] RTOL2 +*> \verbatim +*> RTOL2 is DOUBLE PRECISION +*> Parameters for bisection. +*> An interval [LEFT,RIGHT] has converged if +*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) +*> \endverbatim +*> +*> \param[in] SPLTOL +*> \verbatim +*> SPLTOL is DOUBLE PRECISION +*> The threshold for splitting. +*> \endverbatim +*> +*> \param[out] NSPLIT +*> \verbatim +*> NSPLIT is INTEGER +*> The number of blocks T splits into. 1 <= NSPLIT <= N. +*> \endverbatim +*> +*> \param[out] ISPLIT +*> \verbatim +*> ISPLIT is INTEGER array, dimension (N) +*> The splitting points, at which T breaks up into blocks. +*> The first block consists of rows/columns 1 to ISPLIT(1), +*> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), +*> etc., and the NSPLIT-th consists of rows/columns +*> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. +*> \endverbatim +*> +*> \param[out] M +*> \verbatim +*> M is INTEGER +*> The total number of eigenvalues (of all L_i D_i L_i^T) +*> found. +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> The first M elements contain the eigenvalues. The +*> eigenvalues of each of the blocks, L_i D_i L_i^T, are +*> sorted in ascending order ( DLARRE may use the +*> remaining N-M elements as workspace). +*> \endverbatim +*> +*> \param[out] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION array, dimension (N) +*> The error bound on the corresponding eigenvalue in W. +*> \endverbatim +*> +*> \param[out] WGAP +*> \verbatim +*> WGAP is DOUBLE PRECISION array, dimension (N) +*> The separation from the right neighbor eigenvalue in W. +*> The gap is only with respect to the eigenvalues of the same block +*> as each block has its own representation tree. +*> Exception: at the right end of a block we store the left gap +*> \endverbatim +*> +*> \param[out] IBLOCK +*> \verbatim +*> IBLOCK is INTEGER array, dimension (N) +*> The indices of the blocks (submatrices) associated with the +*> corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue +*> W(i) belongs to the first block from the top, =2 if W(i) +*> belongs to the second block, etc. +*> \endverbatim +*> +*> \param[out] INDEXW +*> \verbatim +*> INDEXW is INTEGER array, dimension (N) +*> The indices of the eigenvalues within each block (submatrix); +*> for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the +*> i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 +*> \endverbatim +*> +*> \param[out] GERS +*> \verbatim +*> GERS is DOUBLE PRECISION array, dimension (2*N) +*> The N Gerschgorin intervals (the i-th Gerschgorin interval +*> is (GERS(2*i-1), GERS(2*i)). +*> \endverbatim +*> +*> \param[out] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot in the Sturm sequence for T. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (6*N) +*> Workspace. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (5*N) +*> Workspace. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> > 0: A problem occured in DLARRE. +*> < 0: One of the called subroutines signaled an internal problem. +*> Needs inspection of the corresponding parameter IINFO +*> for further information. +*> +*> =-1: Problem in DLARRD. +*> = 2: No base representation could be found in MAXTRY iterations. +*> Increasing MAXTRY and recompilation might be a remedy. +*> =-3: Problem in DLARRB when computing the refined root +*> representation for DLASQ2. +*> =-4: Problem in DLARRB when preforming bisection on the +*> desired part of the spectrum. +*> =-5: Problem in DLASQ2. +*> =-6: Problem in DLASQ2. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> The base representations are required to suffer very little +*> element growth and consequently define all their eigenvalues to +*> high relative accuracy. +*> \endverbatim +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA \n +*> +* ===================================================================== + SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, + $ RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, + $ W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, + $ WORK, IWORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER RANGE + INTEGER IL, INFO, IU, M, N, NSPLIT + DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU +* .. +* .. Array Arguments .. + INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ), + $ INDEXW( * ) + DOUBLE PRECISION D( * ), E( * ), E2( * ), GERS( * ), + $ W( * ),WERR( * ), WGAP( * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD, + $ MAXGROWTH, ONE, PERT, TWO, ZERO + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, + $ TWO = 2.0D0, FOUR=4.0D0, + $ HNDRD = 100.0D0, + $ PERT = 8.0D0, + $ HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF, + $ MAXGROWTH = 64.0D0, FUDGE = 2.0D0 ) + INTEGER MAXTRY, ALLRNG, INDRNG, VALRNG + PARAMETER ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2, + $ VALRNG = 3 ) +* .. +* .. Local Scalars .. + LOGICAL FORCEB, NOREP, USEDQD + INTEGER CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO, + $ IN, INDL, INDU, IRANGE, J, JBLK, MB, MM, + $ WBEGIN, WEND + DOUBLE PRECISION AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS, + $ EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL, + $ RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM, + $ TAU, TMP, TMP1 + + +* .. +* .. Local Arrays .. + INTEGER ISEED( 4 ) +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH, LSAME + +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DLARNV, DLARRA, DLARRB, DLARRC, DLARRD, + $ DLASQ2 +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN + +* .. +* .. Executable Statements .. +* + + INFO = 0 + +* +* Decode RANGE +* + IF( LSAME( RANGE, 'A' ) ) THEN + IRANGE = ALLRNG + ELSE IF( LSAME( RANGE, 'V' ) ) THEN + IRANGE = VALRNG + ELSE IF( LSAME( RANGE, 'I' ) ) THEN + IRANGE = INDRNG + END IF + + M = 0 + +* Get machine constants + SAFMIN = DLAMCH( 'S' ) + EPS = DLAMCH( 'P' ) + +* Set parameters + RTL = SQRT(EPS) + BSRTOL = SQRT(EPS) + +* Treat case of 1x1 matrix for quick return + IF( N.EQ.1 ) THEN + IF( (IRANGE.EQ.ALLRNG).OR. + $ ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR. + $ ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN + M = 1 + W(1) = D(1) +* The computation error of the eigenvalue is zero + WERR(1) = ZERO + WGAP(1) = ZERO + IBLOCK( 1 ) = 1 + INDEXW( 1 ) = 1 + GERS(1) = D( 1 ) + GERS(2) = D( 1 ) + ENDIF +* store the shift for the initial RRR, which is zero in this case + E(1) = ZERO + RETURN + END IF + +* General case: tridiagonal matrix of order > 1 +* +* Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. +* Compute maximum off-diagonal entry and pivmin. + GL = D(1) + GU = D(1) + EOLD = ZERO + EMAX = ZERO + E(N) = ZERO + DO 5 I = 1,N + WERR(I) = ZERO + WGAP(I) = ZERO + EABS = ABS( E(I) ) + IF( EABS .GE. EMAX ) THEN + EMAX = EABS + END IF + TMP1 = EABS + EOLD + GERS( 2*I-1) = D(I) - TMP1 + GL = MIN( GL, GERS( 2*I - 1)) + GERS( 2*I ) = D(I) + TMP1 + GU = MAX( GU, GERS(2*I) ) + EOLD = EABS + 5 CONTINUE +* The minimum pivot allowed in the Sturm sequence for T + PIVMIN = SAFMIN * MAX( ONE, EMAX**2 ) +* Compute spectral diameter. The Gerschgorin bounds give an +* estimate that is wrong by at most a factor of SQRT(2) + SPDIAM = GU - GL + +* Compute splitting points + CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM, + $ NSPLIT, ISPLIT, IINFO ) + +* Can force use of bisection instead of faster DQDS. +* Option left in the code for future multisection work. + FORCEB = .FALSE. + +* Initialize USEDQD, DQDS should be used for ALLRNG unless someone +* explicitly wants bisection. + USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB)) + + IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN +* Set interval [VL,VU] that contains all eigenvalues + VL = GL + VU = GU + ELSE +* We call DLARRD to find crude approximations to the eigenvalues +* in the desired range. In case IRANGE = INDRNG, we also obtain the +* interval (VL,VU] that contains all the wanted eigenvalues. +* An interval [LEFT,RIGHT] has converged if +* RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) +* DLARRD needs a WORK of size 4*N, IWORK of size 3*N + CALL DLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS, + $ BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT, + $ MM, W, WERR, VL, VU, IBLOCK, INDEXW, + $ WORK, IWORK, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = -1 + RETURN + ENDIF +* Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 + DO 14 I = MM+1,N + W( I ) = ZERO + WERR( I ) = ZERO + IBLOCK( I ) = 0 + INDEXW( I ) = 0 + 14 CONTINUE + END IF + + +*** +* Loop over unreduced blocks + IBEGIN = 1 + WBEGIN = 1 + DO 170 JBLK = 1, NSPLIT + IEND = ISPLIT( JBLK ) + IN = IEND - IBEGIN + 1 + +* 1 X 1 block + IF( IN.EQ.1 ) THEN + IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND. + $ ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) ) + $ .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK)) + $ ) THEN + M = M + 1 + W( M ) = D( IBEGIN ) + WERR(M) = ZERO +* The gap for a single block doesn't matter for the later +* algorithm and is assigned an arbitrary large value + WGAP(M) = ZERO + IBLOCK( M ) = JBLK + INDEXW( M ) = 1 + WBEGIN = WBEGIN + 1 + ENDIF +* E( IEND ) holds the shift for the initial RRR + E( IEND ) = ZERO + IBEGIN = IEND + 1 + GO TO 170 + END IF +* +* Blocks of size larger than 1x1 +* +* E( IEND ) will hold the shift for the initial RRR, for now set it =0 + E( IEND ) = ZERO +* +* Find local outer bounds GL,GU for the block + GL = D(IBEGIN) + GU = D(IBEGIN) + DO 15 I = IBEGIN , IEND + GL = MIN( GERS( 2*I-1 ), GL ) + GU = MAX( GERS( 2*I ), GU ) + 15 CONTINUE + SPDIAM = GU - GL + + IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN +* Count the number of eigenvalues in the current block. + MB = 0 + DO 20 I = WBEGIN,MM + IF( IBLOCK(I).EQ.JBLK ) THEN + MB = MB+1 + ELSE + GOTO 21 + ENDIF + 20 CONTINUE + 21 CONTINUE + + IF( MB.EQ.0) THEN +* No eigenvalue in the current block lies in the desired range +* E( IEND ) holds the shift for the initial RRR + E( IEND ) = ZERO + IBEGIN = IEND + 1 + GO TO 170 + ELSE + +* Decide whether dqds or bisection is more efficient + USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) ) + WEND = WBEGIN + MB - 1 +* Calculate gaps for the current block +* In later stages, when representations for individual +* eigenvalues are different, we use SIGMA = E( IEND ). + SIGMA = ZERO + DO 30 I = WBEGIN, WEND - 1 + WGAP( I ) = MAX( ZERO, + $ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) ) + 30 CONTINUE + WGAP( WEND ) = MAX( ZERO, + $ VU - SIGMA - (W( WEND )+WERR( WEND ))) +* Find local index of the first and last desired evalue. + INDL = INDEXW(WBEGIN) + INDU = INDEXW( WEND ) + ENDIF + ENDIF + IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN +* Case of DQDS +* Find approximations to the extremal eigenvalues of the block + CALL DLARRK( IN, 1, GL, GU, D(IBEGIN), + $ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = -1 + RETURN + ENDIF + ISLEFT = MAX(GL, TMP - TMP1 + $ - HNDRD * EPS* ABS(TMP - TMP1)) + + CALL DLARRK( IN, IN, GL, GU, D(IBEGIN), + $ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = -1 + RETURN + ENDIF + ISRGHT = MIN(GU, TMP + TMP1 + $ + HNDRD * EPS * ABS(TMP + TMP1)) +* Improve the estimate of the spectral diameter + SPDIAM = ISRGHT - ISLEFT + ELSE +* Case of bisection +* Find approximations to the wanted extremal eigenvalues + ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN) + $ - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) )) + ISRGHT = MIN(GU,W(WEND) + WERR(WEND) + $ + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND))) + ENDIF + + +* Decide whether the base representation for the current block +* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I +* should be on the left or the right end of the current block. +* The strategy is to shift to the end which is "more populated" +* Furthermore, decide whether to use DQDS for the computation of +* the eigenvalue approximations at the end of DLARRE or bisection. +* dqds is chosen if all eigenvalues are desired or the number of +* eigenvalues to be computed is large compared to the blocksize. + IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN +* If all the eigenvalues have to be computed, we use dqd + USEDQD = .TRUE. +* INDL is the local index of the first eigenvalue to compute + INDL = 1 + INDU = IN +* MB = number of eigenvalues to compute + MB = IN + WEND = WBEGIN + MB - 1 +* Define 1/4 and 3/4 points of the spectrum + S1 = ISLEFT + FOURTH * SPDIAM + S2 = ISRGHT - FOURTH * SPDIAM + ELSE +* DLARRD has computed IBLOCK and INDEXW for each eigenvalue +* approximation. +* choose sigma + IF( USEDQD ) THEN + S1 = ISLEFT + FOURTH * SPDIAM + S2 = ISRGHT - FOURTH * SPDIAM + ELSE + TMP = MIN(ISRGHT,VU) - MAX(ISLEFT,VL) + S1 = MAX(ISLEFT,VL) + FOURTH * TMP + S2 = MIN(ISRGHT,VU) - FOURTH * TMP + ENDIF + ENDIF + +* Compute the negcount at the 1/4 and 3/4 points + IF(MB.GT.1) THEN + CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN), + $ E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO) + ENDIF + + IF(MB.EQ.1) THEN + SIGMA = GL + SGNDEF = ONE + ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN + IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN + SIGMA = MAX(ISLEFT,GL) + ELSEIF( USEDQD ) THEN +* use Gerschgorin bound as shift to get pos def matrix +* for dqds + SIGMA = ISLEFT + ELSE +* use approximation of the first desired eigenvalue of the +* block as shift + SIGMA = MAX(ISLEFT,VL) + ENDIF + SGNDEF = ONE + ELSE + IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN + SIGMA = MIN(ISRGHT,GU) + ELSEIF( USEDQD ) THEN +* use Gerschgorin bound as shift to get neg def matrix +* for dqds + SIGMA = ISRGHT + ELSE +* use approximation of the first desired eigenvalue of the +* block as shift + SIGMA = MIN(ISRGHT,VU) + ENDIF + SGNDEF = -ONE + ENDIF + + +* An initial SIGMA has been chosen that will be used for computing +* T - SIGMA I = L D L^T +* Define the increment TAU of the shift in case the initial shift +* needs to be refined to obtain a factorization with not too much +* element growth. + IF( USEDQD ) THEN +* The initial SIGMA was to the outer end of the spectrum +* the matrix is definite and we need not retreat. + TAU = SPDIAM*EPS*N + TWO*PIVMIN + TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) ) + ELSE + IF(MB.GT.1) THEN + CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN) + AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN)) + IF( SGNDEF.EQ.ONE ) THEN + TAU = HALF*MAX(WGAP(WBEGIN),AVGAP) + TAU = MAX(TAU,WERR(WBEGIN)) + ELSE + TAU = HALF*MAX(WGAP(WEND-1),AVGAP) + TAU = MAX(TAU,WERR(WEND)) + ENDIF + ELSE + TAU = WERR(WBEGIN) + ENDIF + ENDIF +* + DO 80 IDUM = 1, MAXTRY +* Compute L D L^T factorization of tridiagonal matrix T - sigma I. +* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of +* pivots in WORK(2*IN+1:3*IN) + DPIVOT = D( IBEGIN ) - SIGMA + WORK( 1 ) = DPIVOT + DMAX = ABS( WORK(1) ) + J = IBEGIN + DO 70 I = 1, IN - 1 + WORK( 2*IN+I ) = ONE / WORK( I ) + TMP = E( J )*WORK( 2*IN+I ) + WORK( IN+I ) = TMP + DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J ) + WORK( I+1 ) = DPIVOT + DMAX = MAX( DMAX, ABS(DPIVOT) ) + J = J + 1 + 70 CONTINUE +* check for element growth + IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN + NOREP = .TRUE. + ELSE + NOREP = .FALSE. + ENDIF + IF( USEDQD .AND. .NOT.NOREP ) THEN +* Ensure the definiteness of the representation +* All entries of D (of L D L^T) must have the same sign + DO 71 I = 1, IN + TMP = SGNDEF*WORK( I ) + IF( TMP.LT.ZERO ) NOREP = .TRUE. + 71 CONTINUE + ENDIF + IF(NOREP) THEN +* Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin +* shift which makes the matrix definite. So we should end up +* here really only in the case of IRANGE = VALRNG or INDRNG. + IF( IDUM.EQ.MAXTRY-1 ) THEN + IF( SGNDEF.EQ.ONE ) THEN +* The fudged Gerschgorin shift should succeed + SIGMA = + $ GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN + ELSE + SIGMA = + $ GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN + END IF + ELSE + SIGMA = SIGMA - SGNDEF * TAU + TAU = TWO * TAU + END IF + ELSE +* an initial RRR is found + GO TO 83 + END IF + 80 CONTINUE +* if the program reaches this point, no base representation could be +* found in MAXTRY iterations. + INFO = 2 + RETURN + + 83 CONTINUE +* At this point, we have found an initial base representation +* T - SIGMA I = L D L^T with not too much element growth. +* Store the shift. + E( IEND ) = SIGMA +* Store D and L. + CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 ) + CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 ) + + + IF(MB.GT.1 ) THEN +* +* Perturb each entry of the base representation by a small +* (but random) relative amount to overcome difficulties with +* glued matrices. +* + DO 122 I = 1, 4 + ISEED( I ) = 1 + 122 CONTINUE + + CALL DLARNV(2, ISEED, 2*IN-1, WORK(1)) + DO 125 I = 1,IN-1 + D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I)) + E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I)) + 125 CONTINUE + D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN)) +* + ENDIF +* +* Don't update the Gerschgorin intervals because keeping track +* of the updates would be too much work in DLARRV. +* We update W instead and use it to locate the proper Gerschgorin +* intervals. + +* Compute the required eigenvalues of L D L' by bisection or dqds + IF ( .NOT.USEDQD ) THEN +* If DLARRD has been used, shift the eigenvalue approximations +* according to their representation. This is necessary for +* a uniform DLARRV since dqds computes eigenvalues of the +* shifted representation. In DLARRV, W will always hold the +* UNshifted eigenvalue approximation. + DO 134 J=WBEGIN,WEND + W(J) = W(J) - SIGMA + WERR(J) = WERR(J) + ABS(W(J)) * EPS + 134 CONTINUE +* call DLARRB to reduce eigenvalue error of the approximations +* from DLARRD + DO 135 I = IBEGIN, IEND-1 + WORK( I ) = D( I ) * E( I )**2 + 135 CONTINUE +* use bisection to find EV from INDL to INDU + CALL DLARRB(IN, D(IBEGIN), WORK(IBEGIN), + $ INDL, INDU, RTOL1, RTOL2, INDL-1, + $ W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN), + $ WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM, + $ IN, IINFO ) + IF( IINFO .NE. 0 ) THEN + INFO = -4 + RETURN + END IF +* DLARRB computes all gaps correctly except for the last one +* Record distance to VU/GU + WGAP( WEND ) = MAX( ZERO, + $ ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) ) + DO 138 I = INDL, INDU + M = M + 1 + IBLOCK(M) = JBLK + INDEXW(M) = I + 138 CONTINUE + ELSE +* Call dqds to get all eigs (and then possibly delete unwanted +* eigenvalues). +* Note that dqds finds the eigenvalues of the L D L^T representation +* of T to high relative accuracy. High relative accuracy +* might be lost when the shift of the RRR is subtracted to obtain +* the eigenvalues of T. However, T is not guaranteed to define its +* eigenvalues to high relative accuracy anyway. +* Set RTOL to the order of the tolerance used in DLASQ2 +* This is an ESTIMATED error, the worst case bound is 4*N*EPS +* which is usually too large and requires unnecessary work to be +* done by bisection when computing the eigenvectors + RTOL = LOG(DBLE(IN)) * FOUR * EPS + J = IBEGIN + DO 140 I = 1, IN - 1 + WORK( 2*I-1 ) = ABS( D( J ) ) + WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 ) + J = J + 1 + 140 CONTINUE + WORK( 2*IN-1 ) = ABS( D( IEND ) ) + WORK( 2*IN ) = ZERO + CALL DLASQ2( IN, WORK, IINFO ) + IF( IINFO .NE. 0 ) THEN +* If IINFO = -5 then an index is part of a tight cluster +* and should be changed. The index is in IWORK(1) and the +* gap is in WORK(N+1) + INFO = -5 + RETURN + ELSE +* Test that all eigenvalues are positive as expected + DO 149 I = 1, IN + IF( WORK( I ).LT.ZERO ) THEN + INFO = -6 + RETURN + ENDIF + 149 CONTINUE + END IF + IF( SGNDEF.GT.ZERO ) THEN + DO 150 I = INDL, INDU + M = M + 1 + W( M ) = WORK( IN-I+1 ) + IBLOCK( M ) = JBLK + INDEXW( M ) = I + 150 CONTINUE + ELSE + DO 160 I = INDL, INDU + M = M + 1 + W( M ) = -WORK( I ) + IBLOCK( M ) = JBLK + INDEXW( M ) = I + 160 CONTINUE + END IF + + DO 165 I = M - MB + 1, M +* the value of RTOL below should be the tolerance in DLASQ2 + WERR( I ) = RTOL * ABS( W(I) ) + 165 CONTINUE + DO 166 I = M - MB + 1, M - 1 +* compute the right gap between the intervals + WGAP( I ) = MAX( ZERO, + $ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) ) + 166 CONTINUE + WGAP( M ) = MAX( ZERO, + $ ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) ) + END IF +* proceed with next block + IBEGIN = IEND + 1 + WBEGIN = WEND + 1 + 170 CONTINUE +* + + RETURN +* +* end of DLARRE +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrf.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrf.f new file mode 100644 index 000000000..1c11f9298 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrf.f @@ -0,0 +1,488 @@ +*> \brief \b DLARRF +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRF + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND, +* W, WGAP, WERR, +* SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA, +* DPLUS, LPLUS, WORK, INFO ) +* +* .. Scalar Arguments .. +* INTEGER CLSTRT, CLEND, INFO, N +* DOUBLE PRECISION CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), DPLUS( * ), L( * ), LD( * ), +* $ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Given the initial representation L D L^T and its cluster of close +*> eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... +*> W( CLEND ), DLARRF finds a new relatively robust representation +*> L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the +*> eigenvalues of L(+) D(+) L(+)^T is relatively isolated. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix (subblock, if the matrix splitted). +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The N diagonal elements of the diagonal matrix D. +*> \endverbatim +*> +*> \param[in] L +*> \verbatim +*> L is DOUBLE PRECISION array, dimension (N-1) +*> The (N-1) subdiagonal elements of the unit bidiagonal +*> matrix L. +*> \endverbatim +*> +*> \param[in] LD +*> \verbatim +*> LD is DOUBLE PRECISION array, dimension (N-1) +*> The (N-1) elements L(i)*D(i). +*> \endverbatim +*> +*> \param[in] CLSTRT +*> \verbatim +*> CLSTRT is INTEGER +*> The index of the first eigenvalue in the cluster. +*> \endverbatim +*> +*> \param[in] CLEND +*> \verbatim +*> CLEND is INTEGER +*> The index of the last eigenvalue in the cluster. +*> \endverbatim +*> +*> \param[in] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension +*> dimension is >= (CLEND-CLSTRT+1) +*> The eigenvalue APPROXIMATIONS of L D L^T in ascending order. +*> W( CLSTRT ) through W( CLEND ) form the cluster of relatively +*> close eigenalues. +*> \endverbatim +*> +*> \param[in,out] WGAP +*> \verbatim +*> WGAP is DOUBLE PRECISION array, dimension +*> dimension is >= (CLEND-CLSTRT+1) +*> The separation from the right neighbor eigenvalue in W. +*> \endverbatim +*> +*> \param[in] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION array, dimension +*> dimension is >= (CLEND-CLSTRT+1) +*> WERR contain the semiwidth of the uncertainty +*> interval of the corresponding eigenvalue APPROXIMATION in W +*> \endverbatim +*> +*> \param[in] SPDIAM +*> \verbatim +*> SPDIAM is DOUBLE PRECISION +*> estimate of the spectral diameter obtained from the +*> Gerschgorin intervals +*> \endverbatim +*> +*> \param[in] CLGAPL +*> \verbatim +*> CLGAPL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] CLGAPR +*> \verbatim +*> CLGAPR is DOUBLE PRECISION +*> absolute gap on each end of the cluster. +*> Set by the calling routine to protect against shifts too close +*> to eigenvalues outside the cluster. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot allowed in the Sturm sequence. +*> \endverbatim +*> +*> \param[out] SIGMA +*> \verbatim +*> SIGMA is DOUBLE PRECISION +*> The shift used to form L(+) D(+) L(+)^T. +*> \endverbatim +*> +*> \param[out] DPLUS +*> \verbatim +*> DPLUS is DOUBLE PRECISION array, dimension (N) +*> The N diagonal elements of the diagonal matrix D(+). +*> \endverbatim +*> +*> \param[out] LPLUS +*> \verbatim +*> LPLUS is DOUBLE PRECISION array, dimension (N-1) +*> The first (N-1) elements of LPLUS contain the subdiagonal +*> elements of the unit bidiagonal matrix L(+). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (2*N) +*> Workspace. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> Signals processing OK (=0) or failure (=1) +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND, + $ W, WGAP, WERR, + $ SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA, + $ DPLUS, LPLUS, WORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER CLSTRT, CLEND, INFO, N + DOUBLE PRECISION CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), DPLUS( * ), L( * ), LD( * ), + $ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION FOUR, MAXGROWTH1, MAXGROWTH2, ONE, QUART, TWO, + $ ZERO + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, + $ FOUR = 4.0D0, QUART = 0.25D0, + $ MAXGROWTH1 = 8.D0, + $ MAXGROWTH2 = 8.D0 ) +* .. +* .. Local Scalars .. + LOGICAL DORRR1, FORCER, NOFAIL, SAWNAN1, SAWNAN2, TRYRRR1 + INTEGER I, INDX, KTRY, KTRYMAX, SLEFT, SRIGHT, SHIFT + PARAMETER ( KTRYMAX = 1, SLEFT = 1, SRIGHT = 2 ) + DOUBLE PRECISION AVGAP, BESTSHIFT, CLWDTH, EPS, FACT, FAIL, + $ FAIL2, GROWTHBOUND, LDELTA, LDMAX, LSIGMA, + $ MAX1, MAX2, MINGAP, OLDP, PROD, RDELTA, RDMAX, + $ RRR1, RRR2, RSIGMA, S, SMLGROWTH, TMP, ZNM2 +* .. +* .. External Functions .. + LOGICAL DISNAN + DOUBLE PRECISION DLAMCH + EXTERNAL DISNAN, DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL DCOPY +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS +* .. +* .. Executable Statements .. +* + INFO = 0 + FACT = DBLE(2**KTRYMAX) + EPS = DLAMCH( 'Precision' ) + SHIFT = 0 + FORCER = .FALSE. + + +* Note that we cannot guarantee that for any of the shifts tried, +* the factorization has a small or even moderate element growth. +* There could be Ritz values at both ends of the cluster and despite +* backing off, there are examples where all factorizations tried +* (in IEEE mode, allowing zero pivots & infinities) have INFINITE +* element growth. +* For this reason, we should use PIVMIN in this subroutine so that at +* least the L D L^T factorization exists. It can be checked afterwards +* whether the element growth caused bad residuals/orthogonality. + +* Decide whether the code should accept the best among all +* representations despite large element growth or signal INFO=1 + NOFAIL = .TRUE. +* + +* Compute the average gap length of the cluster + CLWDTH = ABS(W(CLEND)-W(CLSTRT)) + WERR(CLEND) + WERR(CLSTRT) + AVGAP = CLWDTH / DBLE(CLEND-CLSTRT) + MINGAP = MIN(CLGAPL, CLGAPR) +* Initial values for shifts to both ends of cluster + LSIGMA = MIN(W( CLSTRT ),W( CLEND )) - WERR( CLSTRT ) + RSIGMA = MAX(W( CLSTRT ),W( CLEND )) + WERR( CLEND ) + +* Use a small fudge to make sure that we really shift to the outside + LSIGMA = LSIGMA - ABS(LSIGMA)* FOUR * EPS + RSIGMA = RSIGMA + ABS(RSIGMA)* FOUR * EPS + +* Compute upper bounds for how much to back off the initial shifts + LDMAX = QUART * MINGAP + TWO * PIVMIN + RDMAX = QUART * MINGAP + TWO * PIVMIN + + LDELTA = MAX(AVGAP,WGAP( CLSTRT ))/FACT + RDELTA = MAX(AVGAP,WGAP( CLEND-1 ))/FACT +* +* Initialize the record of the best representation found +* + S = DLAMCH( 'S' ) + SMLGROWTH = ONE / S + FAIL = DBLE(N-1)*MINGAP/(SPDIAM*EPS) + FAIL2 = DBLE(N-1)*MINGAP/(SPDIAM*SQRT(EPS)) + BESTSHIFT = LSIGMA +* +* while (KTRY <= KTRYMAX) + KTRY = 0 + GROWTHBOUND = MAXGROWTH1*SPDIAM + + 5 CONTINUE + SAWNAN1 = .FALSE. + SAWNAN2 = .FALSE. +* Ensure that we do not back off too much of the initial shifts + LDELTA = MIN(LDMAX,LDELTA) + RDELTA = MIN(RDMAX,RDELTA) + +* Compute the element growth when shifting to both ends of the cluster +* accept the shift if there is no element growth at one of the two ends + +* Left end + S = -LSIGMA + DPLUS( 1 ) = D( 1 ) + S + IF(ABS(DPLUS(1)).LT.PIVMIN) THEN + DPLUS(1) = -PIVMIN +* Need to set SAWNAN1 because refined RRR test should not be used +* in this case + SAWNAN1 = .TRUE. + ENDIF + MAX1 = ABS( DPLUS( 1 ) ) + DO 6 I = 1, N - 1 + LPLUS( I ) = LD( I ) / DPLUS( I ) + S = S*LPLUS( I )*L( I ) - LSIGMA + DPLUS( I+1 ) = D( I+1 ) + S + IF(ABS(DPLUS(I+1)).LT.PIVMIN) THEN + DPLUS(I+1) = -PIVMIN +* Need to set SAWNAN1 because refined RRR test should not be used +* in this case + SAWNAN1 = .TRUE. + ENDIF + MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) ) + 6 CONTINUE + SAWNAN1 = SAWNAN1 .OR. DISNAN( MAX1 ) + + IF( FORCER .OR. + $ (MAX1.LE.GROWTHBOUND .AND. .NOT.SAWNAN1 ) ) THEN + SIGMA = LSIGMA + SHIFT = SLEFT + GOTO 100 + ENDIF + +* Right end + S = -RSIGMA + WORK( 1 ) = D( 1 ) + S + IF(ABS(WORK(1)).LT.PIVMIN) THEN + WORK(1) = -PIVMIN +* Need to set SAWNAN2 because refined RRR test should not be used +* in this case + SAWNAN2 = .TRUE. + ENDIF + MAX2 = ABS( WORK( 1 ) ) + DO 7 I = 1, N - 1 + WORK( N+I ) = LD( I ) / WORK( I ) + S = S*WORK( N+I )*L( I ) - RSIGMA + WORK( I+1 ) = D( I+1 ) + S + IF(ABS(WORK(I+1)).LT.PIVMIN) THEN + WORK(I+1) = -PIVMIN +* Need to set SAWNAN2 because refined RRR test should not be used +* in this case + SAWNAN2 = .TRUE. + ENDIF + MAX2 = MAX( MAX2,ABS(WORK(I+1)) ) + 7 CONTINUE + SAWNAN2 = SAWNAN2 .OR. DISNAN( MAX2 ) + + IF( FORCER .OR. + $ (MAX2.LE.GROWTHBOUND .AND. .NOT.SAWNAN2 ) ) THEN + SIGMA = RSIGMA + SHIFT = SRIGHT + GOTO 100 + ENDIF +* If we are at this point, both shifts led to too much element growth + +* Record the better of the two shifts (provided it didn't lead to NaN) + IF(SAWNAN1.AND.SAWNAN2) THEN +* both MAX1 and MAX2 are NaN + GOTO 50 + ELSE + IF( .NOT.SAWNAN1 ) THEN + INDX = 1 + IF(MAX1.LE.SMLGROWTH) THEN + SMLGROWTH = MAX1 + BESTSHIFT = LSIGMA + ENDIF + ENDIF + IF( .NOT.SAWNAN2 ) THEN + IF(SAWNAN1 .OR. MAX2.LE.MAX1) INDX = 2 + IF(MAX2.LE.SMLGROWTH) THEN + SMLGROWTH = MAX2 + BESTSHIFT = RSIGMA + ENDIF + ENDIF + ENDIF + +* If we are here, both the left and the right shift led to +* element growth. If the element growth is moderate, then +* we may still accept the representation, if it passes a +* refined test for RRR. This test supposes that no NaN occurred. +* Moreover, we use the refined RRR test only for isolated clusters. + IF((CLWDTH.LT.MINGAP/DBLE(128)) .AND. + $ (MIN(MAX1,MAX2).LT.FAIL2) + $ .AND.(.NOT.SAWNAN1).AND.(.NOT.SAWNAN2)) THEN + DORRR1 = .TRUE. + ELSE + DORRR1 = .FALSE. + ENDIF + TRYRRR1 = .TRUE. + IF( TRYRRR1 .AND. DORRR1 ) THEN + IF(INDX.EQ.1) THEN + TMP = ABS( DPLUS( N ) ) + ZNM2 = ONE + PROD = ONE + OLDP = ONE + DO 15 I = N-1, 1, -1 + IF( PROD .LE. EPS ) THEN + PROD = + $ ((DPLUS(I+1)*WORK(N+I+1))/(DPLUS(I)*WORK(N+I)))*OLDP + ELSE + PROD = PROD*ABS(WORK(N+I)) + END IF + OLDP = PROD + ZNM2 = ZNM2 + PROD**2 + TMP = MAX( TMP, ABS( DPLUS( I ) * PROD )) + 15 CONTINUE + RRR1 = TMP/( SPDIAM * SQRT( ZNM2 ) ) + IF (RRR1.LE.MAXGROWTH2) THEN + SIGMA = LSIGMA + SHIFT = SLEFT + GOTO 100 + ENDIF + ELSE IF(INDX.EQ.2) THEN + TMP = ABS( WORK( N ) ) + ZNM2 = ONE + PROD = ONE + OLDP = ONE + DO 16 I = N-1, 1, -1 + IF( PROD .LE. EPS ) THEN + PROD = ((WORK(I+1)*LPLUS(I+1))/(WORK(I)*LPLUS(I)))*OLDP + ELSE + PROD = PROD*ABS(LPLUS(I)) + END IF + OLDP = PROD + ZNM2 = ZNM2 + PROD**2 + TMP = MAX( TMP, ABS( WORK( I ) * PROD )) + 16 CONTINUE + RRR2 = TMP/( SPDIAM * SQRT( ZNM2 ) ) + IF (RRR2.LE.MAXGROWTH2) THEN + SIGMA = RSIGMA + SHIFT = SRIGHT + GOTO 100 + ENDIF + END IF + ENDIF + + 50 CONTINUE + + IF (KTRY.LT.KTRYMAX) THEN +* If we are here, both shifts failed also the RRR test. +* Back off to the outside + LSIGMA = MAX( LSIGMA - LDELTA, + $ LSIGMA - LDMAX) + RSIGMA = MIN( RSIGMA + RDELTA, + $ RSIGMA + RDMAX ) + LDELTA = TWO * LDELTA + RDELTA = TWO * RDELTA + KTRY = KTRY + 1 + GOTO 5 + ELSE +* None of the representations investigated satisfied our +* criteria. Take the best one we found. + IF((SMLGROWTH.LT.FAIL).OR.NOFAIL) THEN + LSIGMA = BESTSHIFT + RSIGMA = BESTSHIFT + FORCER = .TRUE. + GOTO 5 + ELSE + INFO = 1 + RETURN + ENDIF + END IF + + 100 CONTINUE + IF (SHIFT.EQ.SLEFT) THEN + ELSEIF (SHIFT.EQ.SRIGHT) THEN +* store new L and D back into DPLUS, LPLUS + CALL DCOPY( N, WORK, 1, DPLUS, 1 ) + CALL DCOPY( N-1, WORK(N+1), 1, LPLUS, 1 ) + ENDIF + + RETURN +* +* End of DLARRF +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrj.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrj.f new file mode 100644 index 000000000..3b4ec34c5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrj.f @@ -0,0 +1,373 @@ +*> \brief \b DLARRJ +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRJ + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST, +* RTOL, OFFSET, W, WERR, WORK, IWORK, +* PIVMIN, SPDIAM, INFO ) +* +* .. Scalar Arguments .. +* INTEGER IFIRST, ILAST, INFO, N, OFFSET +* DOUBLE PRECISION PIVMIN, RTOL, SPDIAM +* .. +* .. Array Arguments .. +* INTEGER IWORK( * ) +* DOUBLE PRECISION D( * ), E2( * ), W( * ), +* $ WERR( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Given the initial eigenvalue approximations of T, DLARRJ +*> does bisection to refine the eigenvalues of T, +*> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial +*> guesses for these eigenvalues are input in W, the corresponding estimate +*> of the error in these guesses in WERR. During bisection, intervals +*> [left, right] are maintained by storing their mid-points and +*> semi-widths in the arrays W and WERR respectively. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The N diagonal elements of T. +*> \endverbatim +*> +*> \param[in] E2 +*> \verbatim +*> E2 is DOUBLE PRECISION array, dimension (N-1) +*> The Squares of the (N-1) subdiagonal elements of T. +*> \endverbatim +*> +*> \param[in] IFIRST +*> \verbatim +*> IFIRST is INTEGER +*> The index of the first eigenvalue to be computed. +*> \endverbatim +*> +*> \param[in] ILAST +*> \verbatim +*> ILAST is INTEGER +*> The index of the last eigenvalue to be computed. +*> \endverbatim +*> +*> \param[in] RTOL +*> \verbatim +*> RTOL is DOUBLE PRECISION +*> Tolerance for the convergence of the bisection intervals. +*> An interval [LEFT,RIGHT] has converged if +*> RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|). +*> \endverbatim +*> +*> \param[in] OFFSET +*> \verbatim +*> OFFSET is INTEGER +*> Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET +*> through ILAST-OFFSET elements of these arrays are to be used. +*> \endverbatim +*> +*> \param[in,out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are +*> estimates of the eigenvalues of L D L^T indexed IFIRST through +*> ILAST. +*> On output, these estimates are refined. +*> \endverbatim +*> +*> \param[in,out] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION array, dimension (N) +*> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are +*> the errors in the estimates of the corresponding elements in W. +*> On output, these errors are refined. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (2*N) +*> Workspace. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (2*N) +*> Workspace. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot in the Sturm sequence for T. +*> \endverbatim +*> +*> \param[in] SPDIAM +*> \verbatim +*> SPDIAM is DOUBLE PRECISION +*> The spectral diameter of T. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> Error flag. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST, + $ RTOL, OFFSET, W, WERR, WORK, IWORK, + $ PIVMIN, SPDIAM, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER IFIRST, ILAST, INFO, N, OFFSET + DOUBLE PRECISION PIVMIN, RTOL, SPDIAM +* .. +* .. Array Arguments .. + INTEGER IWORK( * ) + DOUBLE PRECISION D( * ), E2( * ), W( * ), + $ WERR( * ), WORK( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO, HALF + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, + $ HALF = 0.5D0 ) + INTEGER MAXITR +* .. +* .. Local Scalars .. + INTEGER CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT, + $ OLNINT, P, PREV, SAVI1 + DOUBLE PRECISION DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH +* +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX +* .. +* .. Executable Statements .. +* + INFO = 0 +* + MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) / + $ LOG( TWO ) ) + 2 +* +* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. +* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while +* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) +* for an unconverged interval is set to the index of the next unconverged +* interval, and is -1 or 0 for a converged interval. Thus a linked +* list of unconverged intervals is set up. +* + + I1 = IFIRST + I2 = ILAST +* The number of unconverged intervals + NINT = 0 +* The last unconverged interval found + PREV = 0 + DO 75 I = I1, I2 + K = 2*I + II = I - OFFSET + LEFT = W( II ) - WERR( II ) + MID = W(II) + RIGHT = W( II ) + WERR( II ) + WIDTH = RIGHT - MID + TMP = MAX( ABS( LEFT ), ABS( RIGHT ) ) + +* The following test prevents the test of converged intervals + IF( WIDTH.LT.RTOL*TMP ) THEN +* This interval has already converged and does not need refinement. +* (Note that the gaps might change through refining the +* eigenvalues, however, they can only get bigger.) +* Remove it from the list. + IWORK( K-1 ) = -1 +* Make sure that I1 always points to the first unconverged interval + IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1 + IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1 + ELSE +* unconverged interval found + PREV = I +* Make sure that [LEFT,RIGHT] contains the desired eigenvalue +* +* Do while( CNT(LEFT).GT.I-1 ) +* + FAC = ONE + 20 CONTINUE + CNT = 0 + S = LEFT + DPLUS = D( 1 ) - S + IF( DPLUS.LT.ZERO ) CNT = CNT + 1 + DO 30 J = 2, N + DPLUS = D( J ) - S - E2( J-1 )/DPLUS + IF( DPLUS.LT.ZERO ) CNT = CNT + 1 + 30 CONTINUE + IF( CNT.GT.I-1 ) THEN + LEFT = LEFT - WERR( II )*FAC + FAC = TWO*FAC + GO TO 20 + END IF +* +* Do while( CNT(RIGHT).LT.I ) +* + FAC = ONE + 50 CONTINUE + CNT = 0 + S = RIGHT + DPLUS = D( 1 ) - S + IF( DPLUS.LT.ZERO ) CNT = CNT + 1 + DO 60 J = 2, N + DPLUS = D( J ) - S - E2( J-1 )/DPLUS + IF( DPLUS.LT.ZERO ) CNT = CNT + 1 + 60 CONTINUE + IF( CNT.LT.I ) THEN + RIGHT = RIGHT + WERR( II )*FAC + FAC = TWO*FAC + GO TO 50 + END IF + NINT = NINT + 1 + IWORK( K-1 ) = I + 1 + IWORK( K ) = CNT + END IF + WORK( K-1 ) = LEFT + WORK( K ) = RIGHT + 75 CONTINUE + + + SAVI1 = I1 +* +* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals +* and while (ITER.LT.MAXITR) +* + ITER = 0 + 80 CONTINUE + PREV = I1 - 1 + I = I1 + OLNINT = NINT + + DO 100 P = 1, OLNINT + K = 2*I + II = I - OFFSET + NEXT = IWORK( K-1 ) + LEFT = WORK( K-1 ) + RIGHT = WORK( K ) + MID = HALF*( LEFT + RIGHT ) + +* semiwidth of interval + WIDTH = RIGHT - MID + TMP = MAX( ABS( LEFT ), ABS( RIGHT ) ) + + IF( ( WIDTH.LT.RTOL*TMP ) .OR. + $ (ITER.EQ.MAXITR) )THEN +* reduce number of unconverged intervals + NINT = NINT - 1 +* Mark interval as converged. + IWORK( K-1 ) = 0 + IF( I1.EQ.I ) THEN + I1 = NEXT + ELSE +* Prev holds the last unconverged interval previously examined + IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT + END IF + I = NEXT + GO TO 100 + END IF + PREV = I +* +* Perform one bisection step +* + CNT = 0 + S = MID + DPLUS = D( 1 ) - S + IF( DPLUS.LT.ZERO ) CNT = CNT + 1 + DO 90 J = 2, N + DPLUS = D( J ) - S - E2( J-1 )/DPLUS + IF( DPLUS.LT.ZERO ) CNT = CNT + 1 + 90 CONTINUE + IF( CNT.LE.I-1 ) THEN + WORK( K-1 ) = MID + ELSE + WORK( K ) = MID + END IF + I = NEXT + + 100 CONTINUE + ITER = ITER + 1 +* do another loop if there are still unconverged intervals +* However, in the last iteration, all intervals are accepted +* since this is the best we can do. + IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80 +* +* +* At this point, all the intervals have converged + DO 110 I = SAVI1, ILAST + K = 2*I + II = I - OFFSET +* All intervals marked by '0' have been refined. + IF( IWORK( K-1 ).EQ.0 ) THEN + W( II ) = HALF*( WORK( K-1 )+WORK( K ) ) + WERR( II ) = WORK( K ) - W( II ) + END IF + 110 CONTINUE +* + + RETURN +* +* End of DLARRJ +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrk.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrk.f new file mode 100644 index 000000000..e4db3b942 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrk.f @@ -0,0 +1,249 @@ +*> \brief \b DLARRK +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRK + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRK( N, IW, GL, GU, +* D, E2, PIVMIN, RELTOL, W, WERR, INFO) +* +* .. Scalar Arguments .. +* INTEGER INFO, IW, N +* DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), E2( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARRK computes one eigenvalue of a symmetric tridiagonal +*> matrix T to suitable accuracy. This is an auxiliary code to be +*> called from DSTEMR. +*> +*> To avoid overflow, the matrix must be scaled so that its +*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest +*> accuracy, it should not be much smaller than that. +*> +*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal +*> Matrix", Report CS41, Computer Science Dept., Stanford +*> University, July 21, 1966. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the tridiagonal matrix T. N >= 0. +*> \endverbatim +*> +*> \param[in] IW +*> \verbatim +*> IW is INTEGER +*> The index of the eigenvalues to be returned. +*> \endverbatim +*> +*> \param[in] GL +*> \verbatim +*> GL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] GU +*> \verbatim +*> GU is DOUBLE PRECISION +*> An upper and a lower bound on the eigenvalue. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The n diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in] E2 +*> \verbatim +*> E2 is DOUBLE PRECISION array, dimension (N-1) +*> The (n-1) squared off-diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot allowed in the Sturm sequence for T. +*> \endverbatim +*> +*> \param[in] RELTOL +*> \verbatim +*> RELTOL is DOUBLE PRECISION +*> The minimum relative width of an interval. When an interval +*> is narrower than RELTOL times the larger (in +*> magnitude) endpoint, then it is considered to be +*> sufficiently small, i.e., converged. Note: this should +*> always be at least radix*machine epsilon. +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[out] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION +*> The error bound on the corresponding eigenvalue approximation +*> in W. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: Eigenvalue converged +*> = -1: Eigenvalue did NOT converge +*> \endverbatim +* +*> \par Internal Parameters: +* ========================= +*> +*> \verbatim +*> FUDGE DOUBLE PRECISION, default = 2 +*> A "fudge factor" to widen the Gershgorin intervals. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLARRK( N, IW, GL, GU, + $ D, E2, PIVMIN, RELTOL, W, WERR, INFO) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INFO, IW, N + DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), E2( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION FUDGE, HALF, TWO, ZERO + PARAMETER ( HALF = 0.5D0, TWO = 2.0D0, + $ FUDGE = TWO, ZERO = 0.0D0 ) +* .. +* .. Local Scalars .. + INTEGER I, IT, ITMAX, NEGCNT + DOUBLE PRECISION ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1, + $ TMP2, TNORM +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, INT, LOG, MAX +* .. +* .. Executable Statements .. +* +* Get machine constants + EPS = DLAMCH( 'P' ) + + TNORM = MAX( ABS( GL ), ABS( GU ) ) + RTOLI = RELTOL + ATOLI = FUDGE*TWO*PIVMIN + + ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) / + $ LOG( TWO ) ) + 2 + + INFO = -1 + + LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN + RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN + IT = 0 + + 10 CONTINUE +* +* Check if interval converged or maximum number of iterations reached +* + TMP1 = ABS( RIGHT - LEFT ) + TMP2 = MAX( ABS(RIGHT), ABS(LEFT) ) + IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN + INFO = 0 + GOTO 30 + ENDIF + IF(IT.GT.ITMAX) + $ GOTO 30 + +* +* Count number of negative pivots for mid-point +* + IT = IT + 1 + MID = HALF * (LEFT + RIGHT) + NEGCNT = 0 + TMP1 = D( 1 ) - MID + IF( ABS( TMP1 ).LT.PIVMIN ) + $ TMP1 = -PIVMIN + IF( TMP1.LE.ZERO ) + $ NEGCNT = NEGCNT + 1 +* + DO 20 I = 2, N + TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID + IF( ABS( TMP1 ).LT.PIVMIN ) + $ TMP1 = -PIVMIN + IF( TMP1.LE.ZERO ) + $ NEGCNT = NEGCNT + 1 + 20 CONTINUE + + IF(NEGCNT.GE.IW) THEN + RIGHT = MID + ELSE + LEFT = MID + ENDIF + GOTO 10 + + 30 CONTINUE +* +* Converged or maximum number of iterations reached +* + W = HALF * (LEFT + RIGHT) + WERR = HALF * ABS( RIGHT - LEFT ) + + RETURN +* +* End of DLARRK +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrr.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrr.f new file mode 100644 index 000000000..df343fe4b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrr.f @@ -0,0 +1,204 @@ +*> \brief \b DLARRR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRR( N, D, E, INFO ) +* +* .. Scalar Arguments .. +* INTEGER N, INFO +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), E( * ) +* .. +* +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Perform tests to decide whether the symmetric tridiagonal matrix T +*> warrants expensive computations which guarantee high relative accuracy +*> in the eigenvalues. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N > 0. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> The N diagonal elements of the tridiagonal matrix T. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> On entry, the first (N-1) entries contain the subdiagonal +*> elements of the tridiagonal matrix T; E(N) is set to ZERO. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> INFO = 0(default) : the matrix warrants computations preserving +*> relative accuracy. +*> INFO = 1 : the matrix warrants computations guaranteeing +*> only absolute accuracy. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRR( N, D, E, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER N, INFO +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), E( * ) +* .. +* +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, RELCOND + PARAMETER ( ZERO = 0.0D0, + $ RELCOND = 0.999D0 ) +* .. +* .. Local Scalars .. + INTEGER I + LOGICAL YESREL + DOUBLE PRECISION EPS, SAFMIN, SMLNUM, RMIN, TMP, TMP2, + $ OFFDIG, OFFDIG2 + +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS +* .. +* .. Executable Statements .. +* +* As a default, do NOT go for relative-accuracy preserving computations. + INFO = 1 + + SAFMIN = DLAMCH( 'Safe minimum' ) + EPS = DLAMCH( 'Precision' ) + SMLNUM = SAFMIN / EPS + RMIN = SQRT( SMLNUM ) + +* Tests for relative accuracy +* +* Test for scaled diagonal dominance +* Scale the diagonal entries to one and check whether the sum of the +* off-diagonals is less than one +* +* The sdd relative error bounds have a 1/(1- 2*x) factor in them, +* x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative +* accuracy is promised. In the notation of the code fragment below, +* 1/(1 - (OFFDIG + OFFDIG2)) is the condition number. +* We don't think it is worth going into "sdd mode" unless the relative +* condition number is reasonable, not 1/macheps. +* The threshold should be compatible with other thresholds used in the +* code. We set OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds +* to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 +* instead of the current OFFDIG + OFFDIG2 < 1 +* + YESREL = .TRUE. + OFFDIG = ZERO + TMP = SQRT(ABS(D(1))) + IF (TMP.LT.RMIN) YESREL = .FALSE. + IF(.NOT.YESREL) GOTO 11 + DO 10 I = 2, N + TMP2 = SQRT(ABS(D(I))) + IF (TMP2.LT.RMIN) YESREL = .FALSE. + IF(.NOT.YESREL) GOTO 11 + OFFDIG2 = ABS(E(I-1))/(TMP*TMP2) + IF(OFFDIG+OFFDIG2.GE.RELCOND) YESREL = .FALSE. + IF(.NOT.YESREL) GOTO 11 + TMP = TMP2 + OFFDIG = OFFDIG2 + 10 CONTINUE + 11 CONTINUE + + IF( YESREL ) THEN + INFO = 0 + RETURN + ELSE + ENDIF +* + +* +* *** MORE TO BE IMPLEMENTED *** +* + +* +* Test if the lower bidiagonal matrix L from T = L D L^T +* (zero shift facto) is well conditioned +* + +* +* Test if the upper bidiagonal matrix U from T = U D U^T +* (zero shift facto) is well conditioned. +* In this case, the matrix needs to be flipped and, at the end +* of the eigenvector computation, the flip needs to be applied +* to the computed eigenvectors (and the support) +* + +* + RETURN +* +* END OF DLARRR +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrv.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrv.f new file mode 100644 index 000000000..c5826356a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlarrv.f @@ -0,0 +1,1028 @@ +*> \brief \b DLARRV +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARRV + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN, +* ISPLIT, M, DOL, DOU, MINRGP, +* RTOL1, RTOL2, W, WERR, WGAP, +* IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, +* WORK, IWORK, INFO ) +* +* .. Scalar Arguments .. +* INTEGER DOL, DOU, INFO, LDZ, M, N +* DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU +* .. +* .. Array Arguments .. +* INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ), +* $ ISUPPZ( * ), IWORK( * ) +* DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ), +* $ WGAP( * ), WORK( * ) +* DOUBLE PRECISION Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARRV computes the eigenvectors of the tridiagonal matrix +*> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T. +*> The input eigenvalues should have been computed by DLARRE. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N >= 0. +*> \endverbatim +*> +*> \param[in] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> Lower and upper bounds of the interval that contains the desired +*> eigenvalues. VL < VU. Needed to compute gaps on the left or right +*> end of the extremal eigenvalues in the desired RANGE. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the N diagonal elements of the diagonal matrix D. +*> On exit, D may be overwritten. +*> \endverbatim +*> +*> \param[in,out] L +*> \verbatim +*> L is DOUBLE PRECISION array, dimension (N) +*> On entry, the (N-1) subdiagonal elements of the unit +*> bidiagonal matrix L are in elements 1 to N-1 of L +*> (if the matrix is not splitted.) At the end of each block +*> is stored the corresponding shift as given by DLARRE. +*> On exit, L is overwritten. +*> \endverbatim +*> +*> \param[in] PIVMIN +*> \verbatim +*> PIVMIN is DOUBLE PRECISION +*> The minimum pivot allowed in the Sturm sequence. +*> \endverbatim +*> +*> \param[in] ISPLIT +*> \verbatim +*> ISPLIT is INTEGER array, dimension (N) +*> The splitting points, at which T breaks up into blocks. +*> The first block consists of rows/columns 1 to +*> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 +*> through ISPLIT( 2 ), etc. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The total number of input eigenvalues. 0 <= M <= N. +*> \endverbatim +*> +*> \param[in] DOL +*> \verbatim +*> DOL is INTEGER +*> \endverbatim +*> +*> \param[in] DOU +*> \verbatim +*> DOU is INTEGER +*> If the user wants to compute only selected eigenvectors from all +*> the eigenvalues supplied, he can specify an index range DOL:DOU. +*> Or else the setting DOL=1, DOU=M should be applied. +*> Note that DOL and DOU refer to the order in which the eigenvalues +*> are stored in W. +*> If the user wants to compute only selected eigenpairs, then +*> the columns DOL-1 to DOU+1 of the eigenvector space Z contain the +*> computed eigenvectors. All other columns of Z are set to zero. +*> \endverbatim +*> +*> \param[in] MINRGP +*> \verbatim +*> MINRGP is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] RTOL1 +*> \verbatim +*> RTOL1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] RTOL2 +*> \verbatim +*> RTOL2 is DOUBLE PRECISION +*> Parameters for bisection. +*> An interval [LEFT,RIGHT] has converged if +*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) +*> \endverbatim +*> +*> \param[in,out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> The first M elements of W contain the APPROXIMATE eigenvalues for +*> which eigenvectors are to be computed. The eigenvalues +*> should be grouped by split-off block and ordered from +*> smallest to largest within the block ( The output array +*> W from DLARRE is expected here ). Furthermore, they are with +*> respect to the shift of the corresponding root representation +*> for their block. On exit, W holds the eigenvalues of the +*> UNshifted matrix. +*> \endverbatim +*> +*> \param[in,out] WERR +*> \verbatim +*> WERR is DOUBLE PRECISION array, dimension (N) +*> The first M elements contain the semiwidth of the uncertainty +*> interval of the corresponding eigenvalue in W +*> \endverbatim +*> +*> \param[in,out] WGAP +*> \verbatim +*> WGAP is DOUBLE PRECISION array, dimension (N) +*> The separation from the right neighbor eigenvalue in W. +*> \endverbatim +*> +*> \param[in] IBLOCK +*> \verbatim +*> IBLOCK is INTEGER array, dimension (N) +*> The indices of the blocks (submatrices) associated with the +*> corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue +*> W(i) belongs to the first block from the top, =2 if W(i) +*> belongs to the second block, etc. +*> \endverbatim +*> +*> \param[in] INDEXW +*> \verbatim +*> INDEXW is INTEGER array, dimension (N) +*> The indices of the eigenvalues within each block (submatrix); +*> for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the +*> i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. +*> \endverbatim +*> +*> \param[in] GERS +*> \verbatim +*> GERS is DOUBLE PRECISION array, dimension (2*N) +*> The N Gerschgorin intervals (the i-th Gerschgorin interval +*> is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should +*> be computed from the original UNshifted matrix. +*> \endverbatim +*> +*> \param[out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) +*> If INFO = 0, the first M columns of Z contain the +*> orthonormal eigenvectors of the matrix T +*> corresponding to the input eigenvalues, with the i-th +*> column of Z holding the eigenvector associated with W(i). +*> Note: the user must ensure that at least max(1,M) columns are +*> supplied in the array Z. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1, and if +*> JOBZ = 'V', LDZ >= max(1,N). +*> \endverbatim +*> +*> \param[out] ISUPPZ +*> \verbatim +*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) +*> The support of the eigenvectors in Z, i.e., the indices +*> indicating the nonzero elements in Z. The I-th eigenvector +*> is nonzero only in elements ISUPPZ( 2*I-1 ) through +*> ISUPPZ( 2*I ). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (12*N) +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (7*N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> +*> > 0: A problem occured in DLARRV. +*> < 0: One of the called subroutines signaled an internal problem. +*> Needs inspection of the corresponding parameter IINFO +*> for further information. +*> +*> =-1: Problem in DLARRB when refining a child's eigenvalues. +*> =-2: Problem in DLARRF when computing the RRR of a child. +*> When a child is inside a tight cluster, it can be difficult +*> to find an RRR. A partial remedy from the user's point of +*> view is to make the parameter MINRGP smaller and recompile. +*> However, as the orthogonality of the computed vectors is +*> proportional to 1/MINRGP, the user should be aware that +*> he might be trading in precision when he decreases MINRGP. +*> =-3: Problem in DLARRB when refining a single eigenvalue +*> after the Rayleigh correction was rejected. +*> = 5: The Rayleigh Quotient Iteration failed to converge to +*> full accuracy in MAXITR steps. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERauxiliary +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN, + $ ISPLIT, M, DOL, DOU, MINRGP, + $ RTOL1, RTOL2, W, WERR, WGAP, + $ IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, + $ WORK, IWORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER DOL, DOU, INFO, LDZ, M, N + DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU +* .. +* .. Array Arguments .. + INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ), + $ ISUPPZ( * ), IWORK( * ) + DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ), + $ WGAP( * ), WORK( * ) + DOUBLE PRECISION Z( LDZ, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + INTEGER MAXITR + PARAMETER ( MAXITR = 10 ) + DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, HALF + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, + $ TWO = 2.0D0, THREE = 3.0D0, + $ FOUR = 4.0D0, HALF = 0.5D0) +* .. +* .. Local Scalars .. + LOGICAL ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ + INTEGER DONE, I, IBEGIN, IDONE, IEND, II, IINDC1, + $ IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG, + $ INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER, + $ ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS, + $ NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST, + $ NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST, + $ OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX, + $ WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU, + $ ZUSEDW + DOUBLE PRECISION BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU, + $ LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID, + $ RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF, + $ SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DLAR1V, DLARRB, DLARRF, DLASET, + $ DSCAL +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, MAX, MIN +* .. +* .. Executable Statements .. +* .. + +* The first N entries of WORK are reserved for the eigenvalues + INDLD = N+1 + INDLLD= 2*N+1 + INDWRK= 3*N+1 + MINWSIZE = 12 * N + + DO 5 I= 1,MINWSIZE + WORK( I ) = ZERO + 5 CONTINUE + +* IWORK(IINDR+1:IINDR+N) hold the twist indices R for the +* factorization used to compute the FP vector + IINDR = 0 +* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current +* layer and the one above. + IINDC1 = N + IINDC2 = 2*N + IINDWK = 3*N + 1 + + MINIWSIZE = 7 * N + DO 10 I= 1,MINIWSIZE + IWORK( I ) = 0 + 10 CONTINUE + + ZUSEDL = 1 + IF(DOL.GT.1) THEN +* Set lower bound for use of Z + ZUSEDL = DOL-1 + ENDIF + ZUSEDU = M + IF(DOU.LT.M) THEN +* Set lower bound for use of Z + ZUSEDU = DOU+1 + ENDIF +* The width of the part of Z that is used + ZUSEDW = ZUSEDU - ZUSEDL + 1 + + + CALL DLASET( 'Full', N, ZUSEDW, ZERO, ZERO, + $ Z(1,ZUSEDL), LDZ ) + + EPS = DLAMCH( 'Precision' ) + RQTOL = TWO * EPS +* +* Set expert flags for standard code. + TRYRQC = .TRUE. + + IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN + ELSE +* Only selected eigenpairs are computed. Since the other evalues +* are not refined by RQ iteration, bisection has to compute to full +* accuracy. + RTOL1 = FOUR * EPS + RTOL2 = FOUR * EPS + ENDIF + +* The entries WBEGIN:WEND in W, WERR, WGAP correspond to the +* desired eigenvalues. The support of the nonzero eigenvector +* entries is contained in the interval IBEGIN:IEND. +* Remark that if k eigenpairs are desired, then the eigenvectors +* are stored in k contiguous columns of Z. + +* DONE is the number of eigenvectors already computed + DONE = 0 + IBEGIN = 1 + WBEGIN = 1 + DO 170 JBLK = 1, IBLOCK( M ) + IEND = ISPLIT( JBLK ) + SIGMA = L( IEND ) +* Find the eigenvectors of the submatrix indexed IBEGIN +* through IEND. + WEND = WBEGIN - 1 + 15 CONTINUE + IF( WEND.LT.M ) THEN + IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN + WEND = WEND + 1 + GO TO 15 + END IF + END IF + IF( WEND.LT.WBEGIN ) THEN + IBEGIN = IEND + 1 + GO TO 170 + ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN + IBEGIN = IEND + 1 + WBEGIN = WEND + 1 + GO TO 170 + END IF + +* Find local spectral diameter of the block + GL = GERS( 2*IBEGIN-1 ) + GU = GERS( 2*IBEGIN ) + DO 20 I = IBEGIN+1 , IEND + GL = MIN( GERS( 2*I-1 ), GL ) + GU = MAX( GERS( 2*I ), GU ) + 20 CONTINUE + SPDIAM = GU - GL + +* OLDIEN is the last index of the previous block + OLDIEN = IBEGIN - 1 +* Calculate the size of the current block + IN = IEND - IBEGIN + 1 +* The number of eigenvalues in the current block + IM = WEND - WBEGIN + 1 + +* This is for a 1x1 block + IF( IBEGIN.EQ.IEND ) THEN + DONE = DONE+1 + Z( IBEGIN, WBEGIN ) = ONE + ISUPPZ( 2*WBEGIN-1 ) = IBEGIN + ISUPPZ( 2*WBEGIN ) = IBEGIN + W( WBEGIN ) = W( WBEGIN ) + SIGMA + WORK( WBEGIN ) = W( WBEGIN ) + IBEGIN = IEND + 1 + WBEGIN = WBEGIN + 1 + GO TO 170 + END IF + +* The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) +* Note that these can be approximations, in this case, the corresp. +* entries of WERR give the size of the uncertainty interval. +* The eigenvalue approximations will be refined when necessary as +* high relative accuracy is required for the computation of the +* corresponding eigenvectors. + CALL DCOPY( IM, W( WBEGIN ), 1, + $ WORK( WBEGIN ), 1 ) + +* We store in W the eigenvalue approximations w.r.t. the original +* matrix T. + DO 30 I=1,IM + W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA + 30 CONTINUE + + +* NDEPTH is the current depth of the representation tree + NDEPTH = 0 +* PARITY is either 1 or 0 + PARITY = 1 +* NCLUS is the number of clusters for the next level of the +* representation tree, we start with NCLUS = 1 for the root + NCLUS = 1 + IWORK( IINDC1+1 ) = 1 + IWORK( IINDC1+2 ) = IM + +* IDONE is the number of eigenvectors already computed in the current +* block + IDONE = 0 +* loop while( IDONE.LT.IM ) +* generate the representation tree for the current block and +* compute the eigenvectors + 40 CONTINUE + IF( IDONE.LT.IM ) THEN +* This is a crude protection against infinitely deep trees + IF( NDEPTH.GT.M ) THEN + INFO = -2 + RETURN + ENDIF +* breadth first processing of the current level of the representation +* tree: OLDNCL = number of clusters on current level + OLDNCL = NCLUS +* reset NCLUS to count the number of child clusters + NCLUS = 0 +* + PARITY = 1 - PARITY + IF( PARITY.EQ.0 ) THEN + OLDCLS = IINDC1 + NEWCLS = IINDC2 + ELSE + OLDCLS = IINDC2 + NEWCLS = IINDC1 + END IF +* Process the clusters on the current level + DO 150 I = 1, OLDNCL + J = OLDCLS + 2*I +* OLDFST, OLDLST = first, last index of current cluster. +* cluster indices start with 1 and are relative +* to WBEGIN when accessing W, WGAP, WERR, Z + OLDFST = IWORK( J-1 ) + OLDLST = IWORK( J ) + IF( NDEPTH.GT.0 ) THEN +* Retrieve relatively robust representation (RRR) of cluster +* that has been computed at the previous level +* The RRR is stored in Z and overwritten once the eigenvectors +* have been computed or when the cluster is refined + + IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN +* Get representation from location of the leftmost evalue +* of the cluster + J = WBEGIN + OLDFST - 1 + ELSE + IF(WBEGIN+OLDFST-1.LT.DOL) THEN +* Get representation from the left end of Z array + J = DOL - 1 + ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN +* Get representation from the right end of Z array + J = DOU + ELSE + J = WBEGIN + OLDFST - 1 + ENDIF + ENDIF + CALL DCOPY( IN, Z( IBEGIN, J ), 1, D( IBEGIN ), 1 ) + CALL DCOPY( IN-1, Z( IBEGIN, J+1 ), 1, L( IBEGIN ), + $ 1 ) + SIGMA = Z( IEND, J+1 ) + +* Set the corresponding entries in Z to zero + CALL DLASET( 'Full', IN, 2, ZERO, ZERO, + $ Z( IBEGIN, J), LDZ ) + END IF + +* Compute DL and DLL of current RRR + DO 50 J = IBEGIN, IEND-1 + TMP = D( J )*L( J ) + WORK( INDLD-1+J ) = TMP + WORK( INDLLD-1+J ) = TMP*L( J ) + 50 CONTINUE + + IF( NDEPTH.GT.0 ) THEN +* P and Q are index of the first and last eigenvalue to compute +* within the current block + P = INDEXW( WBEGIN-1+OLDFST ) + Q = INDEXW( WBEGIN-1+OLDLST ) +* Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET +* through the Q-OFFSET elements of these arrays are to be used. +* OFFSET = P-OLDFST + OFFSET = INDEXW( WBEGIN ) - 1 +* perform limited bisection (if necessary) to get approximate +* eigenvalues to the precision needed. + CALL DLARRB( IN, D( IBEGIN ), + $ WORK(INDLLD+IBEGIN-1), + $ P, Q, RTOL1, RTOL2, OFFSET, + $ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN), + $ WORK( INDWRK ), IWORK( IINDWK ), + $ PIVMIN, SPDIAM, IN, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = -1 + RETURN + ENDIF +* We also recompute the extremal gaps. W holds all eigenvalues +* of the unshifted matrix and must be used for computation +* of WGAP, the entries of WORK might stem from RRRs with +* different shifts. The gaps from WBEGIN-1+OLDFST to +* WBEGIN-1+OLDLST are correctly computed in DLARRB. +* However, we only allow the gaps to become greater since +* this is what should happen when we decrease WERR + IF( OLDFST.GT.1) THEN + WGAP( WBEGIN+OLDFST-2 ) = + $ MAX(WGAP(WBEGIN+OLDFST-2), + $ W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1) + $ - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) ) + ENDIF + IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN + WGAP( WBEGIN+OLDLST-1 ) = + $ MAX(WGAP(WBEGIN+OLDLST-1), + $ W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST) + $ - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) ) + ENDIF +* Each time the eigenvalues in WORK get refined, we store +* the newly found approximation with all shifts applied in W + DO 53 J=OLDFST,OLDLST + W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA + 53 CONTINUE + END IF + +* Process the current node. + NEWFST = OLDFST + DO 140 J = OLDFST, OLDLST + IF( J.EQ.OLDLST ) THEN +* we are at the right end of the cluster, this is also the +* boundary of the child cluster + NEWLST = J + ELSE IF ( WGAP( WBEGIN + J -1).GE. + $ MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN +* the right relative gap is big enough, the child cluster +* (NEWFST,..,NEWLST) is well separated from the following + NEWLST = J + ELSE +* inside a child cluster, the relative gap is not +* big enough. + GOTO 140 + END IF + +* Compute size of child cluster found + NEWSIZ = NEWLST - NEWFST + 1 + +* NEWFTT is the place in Z where the new RRR or the computed +* eigenvector is to be stored + IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN +* Store representation at location of the leftmost evalue +* of the cluster + NEWFTT = WBEGIN + NEWFST - 1 + ELSE + IF(WBEGIN+NEWFST-1.LT.DOL) THEN +* Store representation at the left end of Z array + NEWFTT = DOL - 1 + ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN +* Store representation at the right end of Z array + NEWFTT = DOU + ELSE + NEWFTT = WBEGIN + NEWFST - 1 + ENDIF + ENDIF + + IF( NEWSIZ.GT.1) THEN +* +* Current child is not a singleton but a cluster. +* Compute and store new representation of child. +* +* +* Compute left and right cluster gap. +* +* LGAP and RGAP are not computed from WORK because +* the eigenvalue approximations may stem from RRRs +* different shifts. However, W hold all eigenvalues +* of the unshifted matrix. Still, the entries in WGAP +* have to be computed from WORK since the entries +* in W might be of the same order so that gaps are not +* exhibited correctly for very close eigenvalues. + IF( NEWFST.EQ.1 ) THEN + LGAP = MAX( ZERO, + $ W(WBEGIN)-WERR(WBEGIN) - VL ) + ELSE + LGAP = WGAP( WBEGIN+NEWFST-2 ) + ENDIF + RGAP = WGAP( WBEGIN+NEWLST-1 ) +* +* Compute left- and rightmost eigenvalue of child +* to high precision in order to shift as close +* as possible and obtain as large relative gaps +* as possible +* + DO 55 K =1,2 + IF(K.EQ.1) THEN + P = INDEXW( WBEGIN-1+NEWFST ) + ELSE + P = INDEXW( WBEGIN-1+NEWLST ) + ENDIF + OFFSET = INDEXW( WBEGIN ) - 1 + CALL DLARRB( IN, D(IBEGIN), + $ WORK( INDLLD+IBEGIN-1 ),P,P, + $ RQTOL, RQTOL, OFFSET, + $ WORK(WBEGIN),WGAP(WBEGIN), + $ WERR(WBEGIN),WORK( INDWRK ), + $ IWORK( IINDWK ), PIVMIN, SPDIAM, + $ IN, IINFO ) + 55 CONTINUE +* + IF((WBEGIN+NEWLST-1.LT.DOL).OR. + $ (WBEGIN+NEWFST-1.GT.DOU)) THEN +* if the cluster contains no desired eigenvalues +* skip the computation of that branch of the rep. tree +* +* We could skip before the refinement of the extremal +* eigenvalues of the child, but then the representation +* tree could be different from the one when nothing is +* skipped. For this reason we skip at this place. + IDONE = IDONE + NEWLST - NEWFST + 1 + GOTO 139 + ENDIF +* +* Compute RRR of child cluster. +* Note that the new RRR is stored in Z +* +* DLARRF needs LWORK = 2*N + CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ), + $ WORK(INDLD+IBEGIN-1), + $ NEWFST, NEWLST, WORK(WBEGIN), + $ WGAP(WBEGIN), WERR(WBEGIN), + $ SPDIAM, LGAP, RGAP, PIVMIN, TAU, + $ Z(IBEGIN, NEWFTT),Z(IBEGIN, NEWFTT+1), + $ WORK( INDWRK ), IINFO ) + IF( IINFO.EQ.0 ) THEN +* a new RRR for the cluster was found by DLARRF +* update shift and store it + SSIGMA = SIGMA + TAU + Z( IEND, NEWFTT+1 ) = SSIGMA +* WORK() are the midpoints and WERR() the semi-width +* Note that the entries in W are unchanged. + DO 116 K = NEWFST, NEWLST + FUDGE = + $ THREE*EPS*ABS(WORK(WBEGIN+K-1)) + WORK( WBEGIN + K - 1 ) = + $ WORK( WBEGIN + K - 1) - TAU + FUDGE = FUDGE + + $ FOUR*EPS*ABS(WORK(WBEGIN+K-1)) +* Fudge errors + WERR( WBEGIN + K - 1 ) = + $ WERR( WBEGIN + K - 1 ) + FUDGE +* Gaps are not fudged. Provided that WERR is small +* when eigenvalues are close, a zero gap indicates +* that a new representation is needed for resolving +* the cluster. A fudge could lead to a wrong decision +* of judging eigenvalues 'separated' which in +* reality are not. This could have a negative impact +* on the orthogonality of the computed eigenvectors. + 116 CONTINUE + + NCLUS = NCLUS + 1 + K = NEWCLS + 2*NCLUS + IWORK( K-1 ) = NEWFST + IWORK( K ) = NEWLST + ELSE + INFO = -2 + RETURN + ENDIF + ELSE +* +* Compute eigenvector of singleton +* + ITER = 0 +* + TOL = FOUR * LOG(DBLE(IN)) * EPS +* + K = NEWFST + WINDEX = WBEGIN + K - 1 + WINDMN = MAX(WINDEX - 1,1) + WINDPL = MIN(WINDEX + 1,M) + LAMBDA = WORK( WINDEX ) + DONE = DONE + 1 +* Check if eigenvector computation is to be skipped + IF((WINDEX.LT.DOL).OR. + $ (WINDEX.GT.DOU)) THEN + ESKIP = .TRUE. + GOTO 125 + ELSE + ESKIP = .FALSE. + ENDIF + LEFT = WORK( WINDEX ) - WERR( WINDEX ) + RIGHT = WORK( WINDEX ) + WERR( WINDEX ) + INDEIG = INDEXW( WINDEX ) +* Note that since we compute the eigenpairs for a child, +* all eigenvalue approximations are w.r.t the same shift. +* In this case, the entries in WORK should be used for +* computing the gaps since they exhibit even very small +* differences in the eigenvalues, as opposed to the +* entries in W which might "look" the same. + + IF( K .EQ. 1) THEN +* In the case RANGE='I' and with not much initial +* accuracy in LAMBDA and VL, the formula +* LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) +* can lead to an overestimation of the left gap and +* thus to inadequately early RQI 'convergence'. +* Prevent this by forcing a small left gap. + LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT)) + ELSE + LGAP = WGAP(WINDMN) + ENDIF + IF( K .EQ. IM) THEN +* In the case RANGE='I' and with not much initial +* accuracy in LAMBDA and VU, the formula +* can lead to an overestimation of the right gap and +* thus to inadequately early RQI 'convergence'. +* Prevent this by forcing a small right gap. + RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT)) + ELSE + RGAP = WGAP(WINDEX) + ENDIF + GAP = MIN( LGAP, RGAP ) + IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN +* The eigenvector support can become wrong +* because significant entries could be cut off due to a +* large GAPTOL parameter in LAR1V. Prevent this. + GAPTOL = ZERO + ELSE + GAPTOL = GAP * EPS + ENDIF + ISUPMN = IN + ISUPMX = 1 +* Update WGAP so that it holds the minimum gap +* to the left or the right. This is crucial in the +* case where bisection is used to ensure that the +* eigenvalue is refined up to the required precision. +* The correct value is restored afterwards. + SAVGAP = WGAP(WINDEX) + WGAP(WINDEX) = GAP +* We want to use the Rayleigh Quotient Correction +* as often as possible since it converges quadratically +* when we are close enough to the desired eigenvalue. +* However, the Rayleigh Quotient can have the wrong sign +* and lead us away from the desired eigenvalue. In this +* case, the best we can do is to use bisection. + USEDBS = .FALSE. + USEDRQ = .FALSE. +* Bisection is initially turned off unless it is forced + NEEDBS = .NOT.TRYRQC + 120 CONTINUE +* Check if bisection should be used to refine eigenvalue + IF(NEEDBS) THEN +* Take the bisection as new iterate + USEDBS = .TRUE. + ITMP1 = IWORK( IINDR+WINDEX ) + OFFSET = INDEXW( WBEGIN ) - 1 + CALL DLARRB( IN, D(IBEGIN), + $ WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG, + $ ZERO, TWO*EPS, OFFSET, + $ WORK(WBEGIN),WGAP(WBEGIN), + $ WERR(WBEGIN),WORK( INDWRK ), + $ IWORK( IINDWK ), PIVMIN, SPDIAM, + $ ITMP1, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = -3 + RETURN + ENDIF + LAMBDA = WORK( WINDEX ) +* Reset twist index from inaccurate LAMBDA to +* force computation of true MINGMA + IWORK( IINDR+WINDEX ) = 0 + ENDIF +* Given LAMBDA, compute the eigenvector. + CALL DLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ), + $ L( IBEGIN ), WORK(INDLD+IBEGIN-1), + $ WORK(INDLLD+IBEGIN-1), + $ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ), + $ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA, + $ IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ), + $ NRMINV, RESID, RQCORR, WORK( INDWRK ) ) + IF(ITER .EQ. 0) THEN + BSTRES = RESID + BSTW = LAMBDA + ELSEIF(RESID.LT.BSTRES) THEN + BSTRES = RESID + BSTW = LAMBDA + ENDIF + ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 )) + ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX )) + ITER = ITER + 1 + +* sin alpha <= |resid|/gap +* Note that both the residual and the gap are +* proportional to the matrix, so ||T|| doesn't play +* a role in the quotient + +* +* Convergence test for Rayleigh-Quotient iteration +* (omitted when Bisection has been used) +* + IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT. + $ RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS) + $ THEN +* We need to check that the RQCORR update doesn't +* move the eigenvalue away from the desired one and +* towards a neighbor. -> protection with bisection + IF(INDEIG.LE.NEGCNT) THEN +* The wanted eigenvalue lies to the left + SGNDEF = -ONE + ELSE +* The wanted eigenvalue lies to the right + SGNDEF = ONE + ENDIF +* We only use the RQCORR if it improves the +* the iterate reasonably. + IF( ( RQCORR*SGNDEF.GE.ZERO ) + $ .AND.( LAMBDA + RQCORR.LE. RIGHT) + $ .AND.( LAMBDA + RQCORR.GE. LEFT) + $ ) THEN + USEDRQ = .TRUE. +* Store new midpoint of bisection interval in WORK + IF(SGNDEF.EQ.ONE) THEN +* The current LAMBDA is on the left of the true +* eigenvalue + LEFT = LAMBDA +* We prefer to assume that the error estimate +* is correct. We could make the interval not +* as a bracket but to be modified if the RQCORR +* chooses to. In this case, the RIGHT side should +* be modified as follows: +* RIGHT = MAX(RIGHT, LAMBDA + RQCORR) + ELSE +* The current LAMBDA is on the right of the true +* eigenvalue + RIGHT = LAMBDA +* See comment about assuming the error estimate is +* correct above. +* LEFT = MIN(LEFT, LAMBDA + RQCORR) + ENDIF + WORK( WINDEX ) = + $ HALF * (RIGHT + LEFT) +* Take RQCORR since it has the correct sign and +* improves the iterate reasonably + LAMBDA = LAMBDA + RQCORR +* Update width of error interval + WERR( WINDEX ) = + $ HALF * (RIGHT-LEFT) + ELSE + NEEDBS = .TRUE. + ENDIF + IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN +* The eigenvalue is computed to bisection accuracy +* compute eigenvector and stop + USEDBS = .TRUE. + GOTO 120 + ELSEIF( ITER.LT.MAXITR ) THEN + GOTO 120 + ELSEIF( ITER.EQ.MAXITR ) THEN + NEEDBS = .TRUE. + GOTO 120 + ELSE + INFO = 5 + RETURN + END IF + ELSE + STP2II = .FALSE. + IF(USEDRQ .AND. USEDBS .AND. + $ BSTRES.LE.RESID) THEN + LAMBDA = BSTW + STP2II = .TRUE. + ENDIF + IF (STP2II) THEN +* improve error angle by second step + CALL DLAR1V( IN, 1, IN, LAMBDA, + $ D( IBEGIN ), L( IBEGIN ), + $ WORK(INDLD+IBEGIN-1), + $ WORK(INDLLD+IBEGIN-1), + $ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ), + $ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA, + $ IWORK( IINDR+WINDEX ), + $ ISUPPZ( 2*WINDEX-1 ), + $ NRMINV, RESID, RQCORR, WORK( INDWRK ) ) + ENDIF + WORK( WINDEX ) = LAMBDA + END IF +* +* Compute FP-vector support w.r.t. whole matrix +* + ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN + ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN + ZFROM = ISUPPZ( 2*WINDEX-1 ) + ZTO = ISUPPZ( 2*WINDEX ) + ISUPMN = ISUPMN + OLDIEN + ISUPMX = ISUPMX + OLDIEN +* Ensure vector is ok if support in the RQI has changed + IF(ISUPMN.LT.ZFROM) THEN + DO 122 II = ISUPMN,ZFROM-1 + Z( II, WINDEX ) = ZERO + 122 CONTINUE + ENDIF + IF(ISUPMX.GT.ZTO) THEN + DO 123 II = ZTO+1,ISUPMX + Z( II, WINDEX ) = ZERO + 123 CONTINUE + ENDIF + CALL DSCAL( ZTO-ZFROM+1, NRMINV, + $ Z( ZFROM, WINDEX ), 1 ) + 125 CONTINUE +* Update W + W( WINDEX ) = LAMBDA+SIGMA +* Recompute the gaps on the left and right +* But only allow them to become larger and not +* smaller (which can only happen through "bad" +* cancellation and doesn't reflect the theory +* where the initial gaps are underestimated due +* to WERR being too crude.) + IF(.NOT.ESKIP) THEN + IF( K.GT.1) THEN + WGAP( WINDMN ) = MAX( WGAP(WINDMN), + $ W(WINDEX)-WERR(WINDEX) + $ - W(WINDMN)-WERR(WINDMN) ) + ENDIF + IF( WINDEX.LT.WEND ) THEN + WGAP( WINDEX ) = MAX( SAVGAP, + $ W( WINDPL )-WERR( WINDPL ) + $ - W( WINDEX )-WERR( WINDEX) ) + ENDIF + ENDIF + IDONE = IDONE + 1 + ENDIF +* here ends the code for the current child +* + 139 CONTINUE +* Proceed to any remaining child nodes + NEWFST = J + 1 + 140 CONTINUE + 150 CONTINUE + NDEPTH = NDEPTH + 1 + GO TO 40 + END IF + IBEGIN = IEND + 1 + WBEGIN = WEND + 1 + 170 CONTINUE +* + + RETURN +* +* End of DLARRV +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlartg.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlartg.f new file mode 100644 index 000000000..aa68c3776 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlartg.f @@ -0,0 +1,204 @@ +*> \brief \b DLARTG +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARTG + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARTG( F, G, CS, SN, R ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION CS, F, G, R, SN +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARTG generate a plane rotation so that +*> +*> [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. +*> [ -SN CS ] [ G ] [ 0 ] +*> +*> This is a slower, more accurate version of the BLAS1 routine DROTG, +*> with the following other differences: +*> F and G are unchanged on return. +*> If G=0, then CS=1 and SN=0. +*> If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any +*> floating point operations (saves work in DBDSQR when +*> there are zeros on the diagonal). +*> +*> If F exceeds G in magnitude, CS will be positive. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] F +*> \verbatim +*> F is DOUBLE PRECISION +*> The first component of vector to be rotated. +*> \endverbatim +*> +*> \param[in] G +*> \verbatim +*> G is DOUBLE PRECISION +*> The second component of vector to be rotated. +*> \endverbatim +*> +*> \param[out] CS +*> \verbatim +*> CS is DOUBLE PRECISION +*> The cosine of the rotation. +*> \endverbatim +*> +*> \param[out] SN +*> \verbatim +*> SN is DOUBLE PRECISION +*> The sine of the rotation. +*> \endverbatim +*> +*> \param[out] R +*> \verbatim +*> R is DOUBLE PRECISION +*> The nonzero component of the rotated vector. +*> +*> This version has a few statements commented out for thread safety +*> (machine parameters are computed on each entry). 10 feb 03, SJH. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLARTG( F, G, CS, SN, R ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION CS, F, G, R, SN +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D0 ) + DOUBLE PRECISION TWO + PARAMETER ( TWO = 2.0D0 ) +* .. +* .. Local Scalars .. +* LOGICAL FIRST + INTEGER COUNT, I + DOUBLE PRECISION EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, INT, LOG, MAX, SQRT +* .. +* .. Save statement .. +* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 +* .. +* .. Data statements .. +* DATA FIRST / .TRUE. / +* .. +* .. Executable Statements .. +* +* IF( FIRST ) THEN + SAFMIN = DLAMCH( 'S' ) + EPS = DLAMCH( 'E' ) + SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / + $ LOG( DLAMCH( 'B' ) ) / TWO ) + SAFMX2 = ONE / SAFMN2 +* FIRST = .FALSE. +* END IF + IF( G.EQ.ZERO ) THEN + CS = ONE + SN = ZERO + R = F + ELSE IF( F.EQ.ZERO ) THEN + CS = ZERO + SN = ONE + R = G + ELSE + F1 = F + G1 = G + SCALE = MAX( ABS( F1 ), ABS( G1 ) ) + IF( SCALE.GE.SAFMX2 ) THEN + COUNT = 0 + 10 CONTINUE + COUNT = COUNT + 1 + F1 = F1*SAFMN2 + G1 = G1*SAFMN2 + SCALE = MAX( ABS( F1 ), ABS( G1 ) ) + IF( SCALE.GE.SAFMX2 ) + $ GO TO 10 + R = SQRT( F1**2+G1**2 ) + CS = F1 / R + SN = G1 / R + DO 20 I = 1, COUNT + R = R*SAFMX2 + 20 CONTINUE + ELSE IF( SCALE.LE.SAFMN2 ) THEN + COUNT = 0 + 30 CONTINUE + COUNT = COUNT + 1 + F1 = F1*SAFMX2 + G1 = G1*SAFMX2 + SCALE = MAX( ABS( F1 ), ABS( G1 ) ) + IF( SCALE.LE.SAFMN2 ) + $ GO TO 30 + R = SQRT( F1**2+G1**2 ) + CS = F1 / R + SN = G1 / R + DO 40 I = 1, COUNT + R = R*SAFMN2 + 40 CONTINUE + ELSE + R = SQRT( F1**2+G1**2 ) + CS = F1 / R + SN = G1 / R + END IF + IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN + CS = -CS + SN = -SN + R = -R + END IF + END IF + RETURN +* +* End of DLARTG +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaruv.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaruv.f new file mode 100644 index 000000000..70755a255 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaruv.f @@ -0,0 +1,446 @@ +*> \brief \b DLARUV +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLARUV + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLARUV( ISEED, N, X ) +* +* .. Scalar Arguments .. +* INTEGER N +* .. +* .. Array Arguments .. +* INTEGER ISEED( 4 ) +* DOUBLE PRECISION X( N ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLARUV returns a vector of n random real numbers from a uniform (0,1) +*> distribution (n <= 128). +*> +*> This is an auxiliary routine called by DLARNV and ZLARNV. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in,out] ISEED +*> \verbatim +*> ISEED is INTEGER array, dimension (4) +*> On entry, the seed of the random number generator; the array +*> elements must be between 0 and 4095, and ISEED(4) must be +*> odd. +*> On exit, the seed is updated. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of random numbers to be generated. N <= 128. +*> \endverbatim +*> +*> \param[out] X +*> \verbatim +*> X is DOUBLE PRECISION array, dimension (N) +*> The generated random numbers. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> This routine uses a multiplicative congruential method with modulus +*> 2**48 and multiplier 33952834046453 (see G.S.Fishman, +*> 'Multiplicative congruential random number generators with modulus +*> 2**b: an exhaustive analysis for b = 32 and a partial analysis for +*> b = 48', Math. Comp. 189, pp 331-344, 1990). +*> +*> 48-bit integers are stored in 4 integer array elements with 12 bits +*> per element. Hence the routine is portable across machines with +*> integers of 32 bits or more. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLARUV( ISEED, N, X ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER N +* .. +* .. Array Arguments .. + INTEGER ISEED( 4 ) + DOUBLE PRECISION X( N ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D0 ) + INTEGER LV, IPW2 + DOUBLE PRECISION R + PARAMETER ( LV = 128, IPW2 = 4096, R = ONE / IPW2 ) +* .. +* .. Local Scalars .. + INTEGER I, I1, I2, I3, I4, IT1, IT2, IT3, IT4, J +* .. +* .. Local Arrays .. + INTEGER MM( LV, 4 ) +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, MIN, MOD +* .. +* .. Data statements .. + DATA ( MM( 1, J ), J = 1, 4 ) / 494, 322, 2508, + $ 2549 / + DATA ( MM( 2, J ), J = 1, 4 ) / 2637, 789, 3754, + $ 1145 / + DATA ( MM( 3, J ), J = 1, 4 ) / 255, 1440, 1766, + $ 2253 / + DATA ( MM( 4, J ), J = 1, 4 ) / 2008, 752, 3572, + $ 305 / + DATA ( MM( 5, J ), J = 1, 4 ) / 1253, 2859, 2893, + $ 3301 / + DATA ( MM( 6, J ), J = 1, 4 ) / 3344, 123, 307, + $ 1065 / + DATA ( MM( 7, J ), J = 1, 4 ) / 4084, 1848, 1297, + $ 3133 / + DATA ( MM( 8, J ), J = 1, 4 ) / 1739, 643, 3966, + $ 2913 / + DATA ( MM( 9, J ), J = 1, 4 ) / 3143, 2405, 758, + $ 3285 / + DATA ( MM( 10, J ), J = 1, 4 ) / 3468, 2638, 2598, + $ 1241 / + DATA ( MM( 11, J ), J = 1, 4 ) / 688, 2344, 3406, + $ 1197 / + DATA ( MM( 12, J ), J = 1, 4 ) / 1657, 46, 2922, + $ 3729 / + DATA ( MM( 13, J ), J = 1, 4 ) / 1238, 3814, 1038, + $ 2501 / + DATA ( MM( 14, J ), J = 1, 4 ) / 3166, 913, 2934, + $ 1673 / + DATA ( MM( 15, J ), J = 1, 4 ) / 1292, 3649, 2091, + $ 541 / + DATA ( MM( 16, J ), J = 1, 4 ) / 3422, 339, 2451, + $ 2753 / + DATA ( MM( 17, J ), J = 1, 4 ) / 1270, 3808, 1580, + $ 949 / + DATA ( MM( 18, J ), J = 1, 4 ) / 2016, 822, 1958, + $ 2361 / + DATA ( MM( 19, J ), J = 1, 4 ) / 154, 2832, 2055, + $ 1165 / + DATA ( MM( 20, J ), J = 1, 4 ) / 2862, 3078, 1507, + $ 4081 / + DATA ( MM( 21, J ), J = 1, 4 ) / 697, 3633, 1078, + $ 2725 / + DATA ( MM( 22, J ), J = 1, 4 ) / 1706, 2970, 3273, + $ 3305 / + DATA ( MM( 23, J ), J = 1, 4 ) / 491, 637, 17, + $ 3069 / + DATA ( MM( 24, J ), J = 1, 4 ) / 931, 2249, 854, + $ 3617 / + DATA ( MM( 25, J ), J = 1, 4 ) / 1444, 2081, 2916, + $ 3733 / + DATA ( MM( 26, J ), J = 1, 4 ) / 444, 4019, 3971, + $ 409 / + DATA ( MM( 27, J ), J = 1, 4 ) / 3577, 1478, 2889, + $ 2157 / + DATA ( MM( 28, J ), J = 1, 4 ) / 3944, 242, 3831, + $ 1361 / + DATA ( MM( 29, J ), J = 1, 4 ) / 2184, 481, 2621, + $ 3973 / + DATA ( MM( 30, J ), J = 1, 4 ) / 1661, 2075, 1541, + $ 1865 / + DATA ( MM( 31, J ), J = 1, 4 ) / 3482, 4058, 893, + $ 2525 / + DATA ( MM( 32, J ), J = 1, 4 ) / 657, 622, 736, + $ 1409 / + DATA ( MM( 33, J ), J = 1, 4 ) / 3023, 3376, 3992, + $ 3445 / + DATA ( MM( 34, J ), J = 1, 4 ) / 3618, 812, 787, + $ 3577 / + DATA ( MM( 35, J ), J = 1, 4 ) / 1267, 234, 2125, + $ 77 / + DATA ( MM( 36, J ), J = 1, 4 ) / 1828, 641, 2364, + $ 3761 / + DATA ( MM( 37, J ), J = 1, 4 ) / 164, 4005, 2460, + $ 2149 / + DATA ( MM( 38, J ), J = 1, 4 ) / 3798, 1122, 257, + $ 1449 / + DATA ( MM( 39, J ), J = 1, 4 ) / 3087, 3135, 1574, + $ 3005 / + DATA ( MM( 40, J ), J = 1, 4 ) / 2400, 2640, 3912, + $ 225 / + DATA ( MM( 41, J ), J = 1, 4 ) / 2870, 2302, 1216, + $ 85 / + DATA ( MM( 42, J ), J = 1, 4 ) / 3876, 40, 3248, + $ 3673 / + DATA ( MM( 43, J ), J = 1, 4 ) / 1905, 1832, 3401, + $ 3117 / + DATA ( MM( 44, J ), J = 1, 4 ) / 1593, 2247, 2124, + $ 3089 / + DATA ( MM( 45, J ), J = 1, 4 ) / 1797, 2034, 2762, + $ 1349 / + DATA ( MM( 46, J ), J = 1, 4 ) / 1234, 2637, 149, + $ 2057 / + DATA ( MM( 47, J ), J = 1, 4 ) / 3460, 1287, 2245, + $ 413 / + DATA ( MM( 48, J ), J = 1, 4 ) / 328, 1691, 166, + $ 65 / + DATA ( MM( 49, J ), J = 1, 4 ) / 2861, 496, 466, + $ 1845 / + DATA ( MM( 50, J ), J = 1, 4 ) / 1950, 1597, 4018, + $ 697 / + DATA ( MM( 51, J ), J = 1, 4 ) / 617, 2394, 1399, + $ 3085 / + DATA ( MM( 52, J ), J = 1, 4 ) / 2070, 2584, 190, + $ 3441 / + DATA ( MM( 53, J ), J = 1, 4 ) / 3331, 1843, 2879, + $ 1573 / + DATA ( MM( 54, J ), J = 1, 4 ) / 769, 336, 153, + $ 3689 / + DATA ( MM( 55, J ), J = 1, 4 ) / 1558, 1472, 2320, + $ 2941 / + DATA ( MM( 56, J ), J = 1, 4 ) / 2412, 2407, 18, + $ 929 / + DATA ( MM( 57, J ), J = 1, 4 ) / 2800, 433, 712, + $ 533 / + DATA ( MM( 58, J ), J = 1, 4 ) / 189, 2096, 2159, + $ 2841 / + DATA ( MM( 59, J ), J = 1, 4 ) / 287, 1761, 2318, + $ 4077 / + DATA ( MM( 60, J ), J = 1, 4 ) / 2045, 2810, 2091, + $ 721 / + DATA ( MM( 61, J ), J = 1, 4 ) / 1227, 566, 3443, + $ 2821 / + DATA ( MM( 62, J ), J = 1, 4 ) / 2838, 442, 1510, + $ 2249 / + DATA ( MM( 63, J ), J = 1, 4 ) / 209, 41, 449, + $ 2397 / + DATA ( MM( 64, J ), J = 1, 4 ) / 2770, 1238, 1956, + $ 2817 / + DATA ( MM( 65, J ), J = 1, 4 ) / 3654, 1086, 2201, + $ 245 / + DATA ( MM( 66, J ), J = 1, 4 ) / 3993, 603, 3137, + $ 1913 / + DATA ( MM( 67, J ), J = 1, 4 ) / 192, 840, 3399, + $ 1997 / + DATA ( MM( 68, J ), J = 1, 4 ) / 2253, 3168, 1321, + $ 3121 / + DATA ( MM( 69, J ), J = 1, 4 ) / 3491, 1499, 2271, + $ 997 / + DATA ( MM( 70, J ), J = 1, 4 ) / 2889, 1084, 3667, + $ 1833 / + DATA ( MM( 71, J ), J = 1, 4 ) / 2857, 3438, 2703, + $ 2877 / + DATA ( MM( 72, J ), J = 1, 4 ) / 2094, 2408, 629, + $ 1633 / + DATA ( MM( 73, J ), J = 1, 4 ) / 1818, 1589, 2365, + $ 981 / + DATA ( MM( 74, J ), J = 1, 4 ) / 688, 2391, 2431, + $ 2009 / + DATA ( MM( 75, J ), J = 1, 4 ) / 1407, 288, 1113, + $ 941 / + DATA ( MM( 76, J ), J = 1, 4 ) / 634, 26, 3922, + $ 2449 / + DATA ( MM( 77, J ), J = 1, 4 ) / 3231, 512, 2554, + $ 197 / + DATA ( MM( 78, J ), J = 1, 4 ) / 815, 1456, 184, + $ 2441 / + DATA ( MM( 79, J ), J = 1, 4 ) / 3524, 171, 2099, + $ 285 / + DATA ( MM( 80, J ), J = 1, 4 ) / 1914, 1677, 3228, + $ 1473 / + DATA ( MM( 81, J ), J = 1, 4 ) / 516, 2657, 4012, + $ 2741 / + DATA ( MM( 82, J ), J = 1, 4 ) / 164, 2270, 1921, + $ 3129 / + DATA ( MM( 83, J ), J = 1, 4 ) / 303, 2587, 3452, + $ 909 / + DATA ( MM( 84, J ), J = 1, 4 ) / 2144, 2961, 3901, + $ 2801 / + DATA ( MM( 85, J ), J = 1, 4 ) / 3480, 1970, 572, + $ 421 / + DATA ( MM( 86, J ), J = 1, 4 ) / 119, 1817, 3309, + $ 4073 / + DATA ( MM( 87, J ), J = 1, 4 ) / 3357, 676, 3171, + $ 2813 / + DATA ( MM( 88, J ), J = 1, 4 ) / 837, 1410, 817, + $ 2337 / + DATA ( MM( 89, J ), J = 1, 4 ) / 2826, 3723, 3039, + $ 1429 / + DATA ( MM( 90, J ), J = 1, 4 ) / 2332, 2803, 1696, + $ 1177 / + DATA ( MM( 91, J ), J = 1, 4 ) / 2089, 3185, 1256, + $ 1901 / + DATA ( MM( 92, J ), J = 1, 4 ) / 3780, 184, 3715, + $ 81 / + DATA ( MM( 93, J ), J = 1, 4 ) / 1700, 663, 2077, + $ 1669 / + DATA ( MM( 94, J ), J = 1, 4 ) / 3712, 499, 3019, + $ 2633 / + DATA ( MM( 95, J ), J = 1, 4 ) / 150, 3784, 1497, + $ 2269 / + DATA ( MM( 96, J ), J = 1, 4 ) / 2000, 1631, 1101, + $ 129 / + DATA ( MM( 97, J ), J = 1, 4 ) / 3375, 1925, 717, + $ 1141 / + DATA ( MM( 98, J ), J = 1, 4 ) / 1621, 3912, 51, + $ 249 / + DATA ( MM( 99, J ), J = 1, 4 ) / 3090, 1398, 981, + $ 3917 / + DATA ( MM( 100, J ), J = 1, 4 ) / 3765, 1349, 1978, + $ 2481 / + DATA ( MM( 101, J ), J = 1, 4 ) / 1149, 1441, 1813, + $ 3941 / + DATA ( MM( 102, J ), J = 1, 4 ) / 3146, 2224, 3881, + $ 2217 / + DATA ( MM( 103, J ), J = 1, 4 ) / 33, 2411, 76, + $ 2749 / + DATA ( MM( 104, J ), J = 1, 4 ) / 3082, 1907, 3846, + $ 3041 / + DATA ( MM( 105, J ), J = 1, 4 ) / 2741, 3192, 3694, + $ 1877 / + DATA ( MM( 106, J ), J = 1, 4 ) / 359, 2786, 1682, + $ 345 / + DATA ( MM( 107, J ), J = 1, 4 ) / 3316, 382, 124, + $ 2861 / + DATA ( MM( 108, J ), J = 1, 4 ) / 1749, 37, 1660, + $ 1809 / + DATA ( MM( 109, J ), J = 1, 4 ) / 185, 759, 3997, + $ 3141 / + DATA ( MM( 110, J ), J = 1, 4 ) / 2784, 2948, 479, + $ 2825 / + DATA ( MM( 111, J ), J = 1, 4 ) / 2202, 1862, 1141, + $ 157 / + DATA ( MM( 112, J ), J = 1, 4 ) / 2199, 3802, 886, + $ 2881 / + DATA ( MM( 113, J ), J = 1, 4 ) / 1364, 2423, 3514, + $ 3637 / + DATA ( MM( 114, J ), J = 1, 4 ) / 1244, 2051, 1301, + $ 1465 / + DATA ( MM( 115, J ), J = 1, 4 ) / 2020, 2295, 3604, + $ 2829 / + DATA ( MM( 116, J ), J = 1, 4 ) / 3160, 1332, 1888, + $ 2161 / + DATA ( MM( 117, J ), J = 1, 4 ) / 2785, 1832, 1836, + $ 3365 / + DATA ( MM( 118, J ), J = 1, 4 ) / 2772, 2405, 1990, + $ 361 / + DATA ( MM( 119, J ), J = 1, 4 ) / 1217, 3638, 2058, + $ 2685 / + DATA ( MM( 120, J ), J = 1, 4 ) / 1822, 3661, 692, + $ 3745 / + DATA ( MM( 121, J ), J = 1, 4 ) / 1245, 327, 1194, + $ 2325 / + DATA ( MM( 122, J ), J = 1, 4 ) / 2252, 3660, 20, + $ 3609 / + DATA ( MM( 123, J ), J = 1, 4 ) / 3904, 716, 3285, + $ 3821 / + DATA ( MM( 124, J ), J = 1, 4 ) / 2774, 1842, 2046, + $ 3537 / + DATA ( MM( 125, J ), J = 1, 4 ) / 997, 3987, 2107, + $ 517 / + DATA ( MM( 126, J ), J = 1, 4 ) / 2573, 1368, 3508, + $ 3017 / + DATA ( MM( 127, J ), J = 1, 4 ) / 1148, 1848, 3525, + $ 2141 / + DATA ( MM( 128, J ), J = 1, 4 ) / 545, 2366, 3801, + $ 1537 / +* .. +* .. Executable Statements .. +* + I1 = ISEED( 1 ) + I2 = ISEED( 2 ) + I3 = ISEED( 3 ) + I4 = ISEED( 4 ) +* + DO 10 I = 1, MIN( N, LV ) +* + 20 CONTINUE +* +* Multiply the seed by i-th power of the multiplier modulo 2**48 +* + IT4 = I4*MM( I, 4 ) + IT3 = IT4 / IPW2 + IT4 = IT4 - IPW2*IT3 + IT3 = IT3 + I3*MM( I, 4 ) + I4*MM( I, 3 ) + IT2 = IT3 / IPW2 + IT3 = IT3 - IPW2*IT2 + IT2 = IT2 + I2*MM( I, 4 ) + I3*MM( I, 3 ) + I4*MM( I, 2 ) + IT1 = IT2 / IPW2 + IT2 = IT2 - IPW2*IT1 + IT1 = IT1 + I1*MM( I, 4 ) + I2*MM( I, 3 ) + I3*MM( I, 2 ) + + $ I4*MM( I, 1 ) + IT1 = MOD( IT1, IPW2 ) +* +* Convert 48-bit integer to a real number in the interval (0,1) +* + X( I ) = R*( DBLE( IT1 )+R*( DBLE( IT2 )+R*( DBLE( IT3 )+R* + $ DBLE( IT4 ) ) ) ) +* + IF (X( I ).EQ.1.0D0) THEN +* If a real number has n bits of precision, and the first +* n bits of the 48-bit integer above happen to be all 1 (which +* will occur about once every 2**n calls), then X( I ) will +* be rounded to exactly 1.0. +* Since X( I ) is not supposed to return exactly 0.0 or 1.0, +* the statistically correct thing to do in this situation is +* simply to iterate again. +* N.B. the case X( I ) = 0.0 should not be possible. + I1 = I1 + 2 + I2 = I2 + 2 + I3 = I3 + 2 + I4 = I4 + 2 + GOTO 20 + END IF +* + 10 CONTINUE +* +* Return final value of seed +* + ISEED( 1 ) = IT1 + ISEED( 2 ) = IT2 + ISEED( 3 ) = IT3 + ISEED( 4 ) = IT4 + RETURN +* +* End of DLARUV +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlascl.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlascl.f new file mode 100644 index 000000000..5b4d3b24e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlascl.f @@ -0,0 +1,364 @@ +*> \brief \b DLASCL +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASCL + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER TYPE +* INTEGER INFO, KL, KU, LDA, M, N +* DOUBLE PRECISION CFROM, CTO +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASCL multiplies the M by N real matrix A by the real scalar +*> CTO/CFROM. This is done without over/underflow as long as the final +*> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that +*> A may be full, upper triangular, lower triangular, upper Hessenberg, +*> or banded. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TYPE +*> \verbatim +*> TYPE is CHARACTER*1 +*> TYPE indices the storage type of the input matrix. +*> = 'G': A is a full matrix. +*> = 'L': A is a lower triangular matrix. +*> = 'U': A is an upper triangular matrix. +*> = 'H': A is an upper Hessenberg matrix. +*> = 'B': A is a symmetric band matrix with lower bandwidth KL +*> and upper bandwidth KU and with the only the lower +*> half stored. +*> = 'Q': A is a symmetric band matrix with lower bandwidth KL +*> and upper bandwidth KU and with the only the upper +*> half stored. +*> = 'Z': A is a band matrix with lower bandwidth KL and upper +*> bandwidth KU. See DGBTRF for storage details. +*> \endverbatim +*> +*> \param[in] KL +*> \verbatim +*> KL is INTEGER +*> The lower bandwidth of A. Referenced only if TYPE = 'B', +*> 'Q' or 'Z'. +*> \endverbatim +*> +*> \param[in] KU +*> \verbatim +*> KU is INTEGER +*> The upper bandwidth of A. Referenced only if TYPE = 'B', +*> 'Q' or 'Z'. +*> \endverbatim +*> +*> \param[in] CFROM +*> \verbatim +*> CFROM is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] CTO +*> \verbatim +*> CTO is DOUBLE PRECISION +*> +*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed +*> without over/underflow if the final result CTO*A(I,J)/CFROM +*> can be represented without over/underflow. CFROM must be +*> nonzero. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> The matrix to be multiplied by CTO/CFROM. See TYPE for the +*> storage type. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> 0 - successful exit +*> <0 - if INFO = -i, the i-th argument had an illegal value. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER TYPE + INTEGER INFO, KL, KU, LDA, M, N + DOUBLE PRECISION CFROM, CTO +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) +* .. +* .. Local Scalars .. + LOGICAL DONE + INTEGER I, ITYPE, J, K1, K2, K3, K4 + DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM +* .. +* .. External Functions .. + LOGICAL LSAME, DISNAN + DOUBLE PRECISION DLAMCH + EXTERNAL LSAME, DLAMCH, DISNAN +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input arguments +* + INFO = 0 +* + IF( LSAME( TYPE, 'G' ) ) THEN + ITYPE = 0 + ELSE IF( LSAME( TYPE, 'L' ) ) THEN + ITYPE = 1 + ELSE IF( LSAME( TYPE, 'U' ) ) THEN + ITYPE = 2 + ELSE IF( LSAME( TYPE, 'H' ) ) THEN + ITYPE = 3 + ELSE IF( LSAME( TYPE, 'B' ) ) THEN + ITYPE = 4 + ELSE IF( LSAME( TYPE, 'Q' ) ) THEN + ITYPE = 5 + ELSE IF( LSAME( TYPE, 'Z' ) ) THEN + ITYPE = 6 + ELSE + ITYPE = -1 + END IF +* + IF( ITYPE.EQ.-1 ) THEN + INFO = -1 + ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN + INFO = -4 + ELSE IF( DISNAN(CTO) ) THEN + INFO = -5 + ELSE IF( M.LT.0 ) THEN + INFO = -6 + ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR. + $ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN + INFO = -7 + ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN + INFO = -9 + ELSE IF( ITYPE.GE.4 ) THEN + IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN + INFO = -2 + ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR. + $ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) ) + $ THEN + INFO = -3 + ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR. + $ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR. + $ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN + INFO = -9 + END IF + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DLASCL', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 .OR. M.EQ.0 ) + $ RETURN +* +* Get machine parameters +* + SMLNUM = DLAMCH( 'S' ) + BIGNUM = ONE / SMLNUM +* + CFROMC = CFROM + CTOC = CTO +* + 10 CONTINUE + CFROM1 = CFROMC*SMLNUM + IF( CFROM1.EQ.CFROMC ) THEN +! CFROMC is an inf. Multiply by a correctly signed zero for +! finite CTOC, or a NaN if CTOC is infinite. + MUL = CTOC / CFROMC + DONE = .TRUE. + CTO1 = CTOC + ELSE + CTO1 = CTOC / BIGNUM + IF( CTO1.EQ.CTOC ) THEN +! CTOC is either 0 or an inf. In both cases, CTOC itself +! serves as the correct multiplication factor. + MUL = CTOC + DONE = .TRUE. + CFROMC = ONE + ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN + MUL = SMLNUM + DONE = .FALSE. + CFROMC = CFROM1 + ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN + MUL = BIGNUM + DONE = .FALSE. + CTOC = CTO1 + ELSE + MUL = CTOC / CFROMC + DONE = .TRUE. + END IF + END IF +* + IF( ITYPE.EQ.0 ) THEN +* +* Full matrix +* + DO 30 J = 1, N + DO 20 I = 1, M + A( I, J ) = A( I, J )*MUL + 20 CONTINUE + 30 CONTINUE +* + ELSE IF( ITYPE.EQ.1 ) THEN +* +* Lower triangular matrix +* + DO 50 J = 1, N + DO 40 I = J, M + A( I, J ) = A( I, J )*MUL + 40 CONTINUE + 50 CONTINUE +* + ELSE IF( ITYPE.EQ.2 ) THEN +* +* Upper triangular matrix +* + DO 70 J = 1, N + DO 60 I = 1, MIN( J, M ) + A( I, J ) = A( I, J )*MUL + 60 CONTINUE + 70 CONTINUE +* + ELSE IF( ITYPE.EQ.3 ) THEN +* +* Upper Hessenberg matrix +* + DO 90 J = 1, N + DO 80 I = 1, MIN( J+1, M ) + A( I, J ) = A( I, J )*MUL + 80 CONTINUE + 90 CONTINUE +* + ELSE IF( ITYPE.EQ.4 ) THEN +* +* Lower half of a symmetric band matrix +* + K3 = KL + 1 + K4 = N + 1 + DO 110 J = 1, N + DO 100 I = 1, MIN( K3, K4-J ) + A( I, J ) = A( I, J )*MUL + 100 CONTINUE + 110 CONTINUE +* + ELSE IF( ITYPE.EQ.5 ) THEN +* +* Upper half of a symmetric band matrix +* + K1 = KU + 2 + K3 = KU + 1 + DO 130 J = 1, N + DO 120 I = MAX( K1-J, 1 ), K3 + A( I, J ) = A( I, J )*MUL + 120 CONTINUE + 130 CONTINUE +* + ELSE IF( ITYPE.EQ.6 ) THEN +* +* Band matrix +* + K1 = KL + KU + 2 + K2 = KL + 1 + K3 = 2*KL + KU + 1 + K4 = KL + KU + 1 + M + DO 150 J = 1, N + DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) + A( I, J ) = A( I, J )*MUL + 140 CONTINUE + 150 CONTINUE +* + END IF +* + IF( .NOT.DONE ) + $ GO TO 10 +* + RETURN +* +* End of DLASCL +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaset.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaset.f new file mode 100644 index 000000000..166a8da97 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaset.f @@ -0,0 +1,184 @@ +*> \brief \b DLASET +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASET + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASET( UPLO, M, N, ALPHA, BETA, A, LDA ) +* +* .. Scalar Arguments .. +* CHARACTER UPLO +* INTEGER LDA, M, N +* DOUBLE PRECISION ALPHA, BETA +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASET initializes an m-by-n matrix A to BETA on the diagonal and +*> ALPHA on the offdiagonals. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> Specifies the part of the matrix A to be set. +*> = 'U': Upper triangular part is set; the strictly lower +*> triangular part of A is not changed. +*> = 'L': Lower triangular part is set; the strictly upper +*> triangular part of A is not changed. +*> Otherwise: All of the matrix A is set. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] ALPHA +*> \verbatim +*> ALPHA is DOUBLE PRECISION +*> The constant to which the offdiagonal elements are to be set. +*> \endverbatim +*> +*> \param[in] BETA +*> \verbatim +*> BETA is DOUBLE PRECISION +*> The constant to which the diagonal elements are to be set. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On exit, the leading m-by-n submatrix of A is set as follows: +*> +*> if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n, +*> if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n, +*> otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j, +*> +*> and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n). +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLASET( UPLO, M, N, ALPHA, BETA, A, LDA ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER LDA, M, N + DOUBLE PRECISION ALPHA, BETA +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ) +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + INTEGER I, J +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. Intrinsic Functions .. + INTRINSIC MIN +* .. +* .. Executable Statements .. +* + IF( LSAME( UPLO, 'U' ) ) THEN +* +* Set the strictly upper triangular or trapezoidal part of the +* array to ALPHA. +* + DO 20 J = 2, N + DO 10 I = 1, MIN( J-1, M ) + A( I, J ) = ALPHA + 10 CONTINUE + 20 CONTINUE +* + ELSE IF( LSAME( UPLO, 'L' ) ) THEN +* +* Set the strictly lower triangular or trapezoidal part of the +* array to ALPHA. +* + DO 40 J = 1, MIN( M, N ) + DO 30 I = J + 1, M + A( I, J ) = ALPHA + 30 CONTINUE + 40 CONTINUE +* + ELSE +* +* Set the leading m-by-n submatrix to ALPHA. +* + DO 60 J = 1, N + DO 50 I = 1, M + A( I, J ) = ALPHA + 50 CONTINUE + 60 CONTINUE + END IF +* +* Set the first min(M,N) diagonal elements to BETA. +* + DO 70 I = 1, MIN( M, N ) + A( I, I ) = BETA + 70 CONTINUE +* + RETURN +* +* End of DLASET +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq2.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq2.f new file mode 100644 index 000000000..94feaba7b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq2.f @@ -0,0 +1,582 @@ +*> \brief \b DLASQ2 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASQ2 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASQ2( N, Z, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION Z( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASQ2 computes all the eigenvalues of the symmetric positive +*> definite tridiagonal matrix associated with the qd array Z to high +*> relative accuracy are computed to high relative accuracy, in the +*> absence of denormalization, underflow and overflow. +*> +*> To see the relation of Z to the tridiagonal matrix, let L be a +*> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and +*> let U be an upper bidiagonal matrix with 1's above and diagonal +*> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the +*> symmetric tridiagonal to which it is similar. +*> +*> Note : DLASQ2 defines a logical variable, IEEE, which is true +*> on machines which follow ieee-754 floating-point standard in their +*> handling of infinities and NaNs, and false otherwise. This variable +*> is passed to DLASQ3. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of rows and columns in the matrix. N >= 0. +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension ( 4*N ) +*> On entry Z holds the qd array. On exit, entries 1 to N hold +*> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the +*> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If +*> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) +*> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of +*> shifts that failed. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if the i-th argument is a scalar and had an illegal +*> value, then INFO = -i, if the i-th argument is an +*> array and the j-entry had an illegal value, then +*> INFO = -(i*100+j) +*> > 0: the algorithm failed +*> = 1, a split was marked by a positive value in E +*> = 2, current block of Z not diagonalized after 100*N +*> iterations (in inner while loop). On exit Z holds +*> a qd array with the same eigenvalues as the given Z. +*> = 3, termination criterion of outer while loop not met +*> (program created more than N unreduced blocks) +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> Local Variables: I0:N0 defines a current unreduced segment of Z. +*> The shifts are accumulated in SIGMA. Iteration count is in ITER. +*> Ping-pong is controlled by PP (alternates between 0 and 1). +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLASQ2( N, Z, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INFO, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION Z( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION CBIAS + PARAMETER ( CBIAS = 1.50D0 ) + DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, HUNDRD + PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0, + $ TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 ) +* .. +* .. Local Scalars .. + LOGICAL IEEE + INTEGER I0, I1, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, + $ K, KMIN, N0, N1, NBIG, NDIV, NFAIL, PP, SPLT, + $ TTYPE + DOUBLE PRECISION D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN, + $ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX, + $ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL, + $ TOL2, TRACE, ZMAX, TEMPE, TEMPQ +* .. +* .. External Subroutines .. + EXTERNAL DLASQ3, DLASRT, XERBLA +* .. +* .. External Functions .. + INTEGER ILAENV + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH, ILAENV +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* +* Test the input arguments. +* (in case DLASQ2 is not called by DLASQ1) +* + INFO = 0 + EPS = DLAMCH( 'Precision' ) + SAFMIN = DLAMCH( 'Safe minimum' ) + TOL = EPS*HUNDRD + TOL2 = TOL**2 +* + IF( N.LT.0 ) THEN + INFO = -1 + CALL XERBLA( 'DLASQ2', 1 ) + RETURN + ELSE IF( N.EQ.0 ) THEN + RETURN + ELSE IF( N.EQ.1 ) THEN +* +* 1-by-1 case. +* + IF( Z( 1 ).LT.ZERO ) THEN + INFO = -201 + CALL XERBLA( 'DLASQ2', 2 ) + END IF + RETURN + ELSE IF( N.EQ.2 ) THEN +* +* 2-by-2 case. +* + IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN + INFO = -2 + CALL XERBLA( 'DLASQ2', 2 ) + RETURN + ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN + D = Z( 3 ) + Z( 3 ) = Z( 1 ) + Z( 1 ) = D + END IF + Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 ) + IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN + T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) + S = Z( 3 )*( Z( 2 ) / T ) + IF( S.LE.T ) THEN + S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) ) + ELSE + S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) ) + END IF + T = Z( 1 ) + ( S+Z( 2 ) ) + Z( 3 ) = Z( 3 )*( Z( 1 ) / T ) + Z( 1 ) = T + END IF + Z( 2 ) = Z( 3 ) + Z( 6 ) = Z( 2 ) + Z( 1 ) + RETURN + END IF +* +* Check for negative data and compute sums of q's and e's. +* + Z( 2*N ) = ZERO + EMIN = Z( 2 ) + QMAX = ZERO + ZMAX = ZERO + D = ZERO + E = ZERO +* + DO 10 K = 1, 2*( N-1 ), 2 + IF( Z( K ).LT.ZERO ) THEN + INFO = -( 200+K ) + CALL XERBLA( 'DLASQ2', 2 ) + RETURN + ELSE IF( Z( K+1 ).LT.ZERO ) THEN + INFO = -( 200+K+1 ) + CALL XERBLA( 'DLASQ2', 2 ) + RETURN + END IF + D = D + Z( K ) + E = E + Z( K+1 ) + QMAX = MAX( QMAX, Z( K ) ) + EMIN = MIN( EMIN, Z( K+1 ) ) + ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) ) + 10 CONTINUE + IF( Z( 2*N-1 ).LT.ZERO ) THEN + INFO = -( 200+2*N-1 ) + CALL XERBLA( 'DLASQ2', 2 ) + RETURN + END IF + D = D + Z( 2*N-1 ) + QMAX = MAX( QMAX, Z( 2*N-1 ) ) + ZMAX = MAX( QMAX, ZMAX ) +* +* Check for diagonality. +* + IF( E.EQ.ZERO ) THEN + DO 20 K = 2, N + Z( K ) = Z( 2*K-1 ) + 20 CONTINUE + CALL DLASRT( 'D', N, Z, IINFO ) + Z( 2*N-1 ) = D + RETURN + END IF +* + TRACE = D + E +* +* Check for zero data. +* + IF( TRACE.EQ.ZERO ) THEN + Z( 2*N-1 ) = ZERO + RETURN + END IF +* +* Check whether the machine is IEEE conformable. +* + IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. + $ ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 +* +* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). +* + DO 30 K = 2*N, 2, -2 + Z( 2*K ) = ZERO + Z( 2*K-1 ) = Z( K ) + Z( 2*K-2 ) = ZERO + Z( 2*K-3 ) = Z( K-1 ) + 30 CONTINUE +* + I0 = 1 + N0 = N +* +* Reverse the qd-array, if warranted. +* + IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN + IPN4 = 4*( I0+N0 ) + DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4 + TEMP = Z( I4-3 ) + Z( I4-3 ) = Z( IPN4-I4-3 ) + Z( IPN4-I4-3 ) = TEMP + TEMP = Z( I4-1 ) + Z( I4-1 ) = Z( IPN4-I4-5 ) + Z( IPN4-I4-5 ) = TEMP + 40 CONTINUE + END IF +* +* Initial split checking via dqd and Li's test. +* + PP = 0 +* + DO 80 K = 1, 2 +* + D = Z( 4*N0+PP-3 ) + DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4 + IF( Z( I4-1 ).LE.TOL2*D ) THEN + Z( I4-1 ) = -ZERO + D = Z( I4-3 ) + ELSE + D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) ) + END IF + 50 CONTINUE +* +* dqd maps Z to ZZ plus Li's test. +* + EMIN = Z( 4*I0+PP+1 ) + D = Z( 4*I0+PP-3 ) + DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4 + Z( I4-2*PP-2 ) = D + Z( I4-1 ) + IF( Z( I4-1 ).LE.TOL2*D ) THEN + Z( I4-1 ) = -ZERO + Z( I4-2*PP-2 ) = D + Z( I4-2*PP ) = ZERO + D = Z( I4+1 ) + ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND. + $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN + TEMP = Z( I4+1 ) / Z( I4-2*PP-2 ) + Z( I4-2*PP ) = Z( I4-1 )*TEMP + D = D*TEMP + ELSE + Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) ) + D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) ) + END IF + EMIN = MIN( EMIN, Z( I4-2*PP ) ) + 60 CONTINUE + Z( 4*N0-PP-2 ) = D +* +* Now find qmax. +* + QMAX = Z( 4*I0-PP-2 ) + DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4 + QMAX = MAX( QMAX, Z( I4 ) ) + 70 CONTINUE +* +* Prepare for the next iteration on K. +* + PP = 1 - PP + 80 CONTINUE +* +* Initialise variables to pass to DLASQ3. +* + TTYPE = 0 + DMIN1 = ZERO + DMIN2 = ZERO + DN = ZERO + DN1 = ZERO + DN2 = ZERO + G = ZERO + TAU = ZERO +* + ITER = 2 + NFAIL = 0 + NDIV = 2*( N0-I0 ) +* + DO 160 IWHILA = 1, N + 1 + IF( N0.LT.1 ) + $ GO TO 170 +* +* While array unfinished do +* +* E(N0) holds the value of SIGMA when submatrix in I0:N0 +* splits from the rest of the array, but is negated. +* + DESIG = ZERO + IF( N0.EQ.N ) THEN + SIGMA = ZERO + ELSE + SIGMA = -Z( 4*N0-1 ) + END IF + IF( SIGMA.LT.ZERO ) THEN + INFO = 1 + RETURN + END IF +* +* Find last unreduced submatrix's top index I0, find QMAX and +* EMIN. Find Gershgorin-type bound if Q's much greater than E's. +* + EMAX = ZERO + IF( N0.GT.I0 ) THEN + EMIN = ABS( Z( 4*N0-5 ) ) + ELSE + EMIN = ZERO + END IF + QMIN = Z( 4*N0-3 ) + QMAX = QMIN + DO 90 I4 = 4*N0, 8, -4 + IF( Z( I4-5 ).LE.ZERO ) + $ GO TO 100 + IF( QMIN.GE.FOUR*EMAX ) THEN + QMIN = MIN( QMIN, Z( I4-3 ) ) + EMAX = MAX( EMAX, Z( I4-5 ) ) + END IF + QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) ) + EMIN = MIN( EMIN, Z( I4-5 ) ) + 90 CONTINUE + I4 = 4 +* + 100 CONTINUE + I0 = I4 / 4 + PP = 0 +* + IF( N0-I0.GT.1 ) THEN + DEE = Z( 4*I0-3 ) + DEEMIN = DEE + KMIN = I0 + DO 110 I4 = 4*I0+1, 4*N0-3, 4 + DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) ) + IF( DEE.LE.DEEMIN ) THEN + DEEMIN = DEE + KMIN = ( I4+3 )/4 + END IF + 110 CONTINUE + IF( (KMIN-I0)*2.LT.N0-KMIN .AND. + $ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN + IPN4 = 4*( I0+N0 ) + PP = 2 + DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4 + TEMP = Z( I4-3 ) + Z( I4-3 ) = Z( IPN4-I4-3 ) + Z( IPN4-I4-3 ) = TEMP + TEMP = Z( I4-2 ) + Z( I4-2 ) = Z( IPN4-I4-2 ) + Z( IPN4-I4-2 ) = TEMP + TEMP = Z( I4-1 ) + Z( I4-1 ) = Z( IPN4-I4-5 ) + Z( IPN4-I4-5 ) = TEMP + TEMP = Z( I4 ) + Z( I4 ) = Z( IPN4-I4-4 ) + Z( IPN4-I4-4 ) = TEMP + 120 CONTINUE + END IF + END IF +* +* Put -(initial shift) into DMIN. +* + DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) ) +* +* Now I0:N0 is unreduced. +* PP = 0 for ping, PP = 1 for pong. +* PP = 2 indicates that flipping was applied to the Z array and +* and that the tests for deflation upon entry in DLASQ3 +* should not be performed. +* + NBIG = 100*( N0-I0+1 ) + DO 140 IWHILB = 1, NBIG + IF( I0.GT.N0 ) + $ GO TO 150 +* +* While submatrix unfinished take a good dqds step. +* + CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, + $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, + $ DN2, G, TAU ) +* + PP = 1 - PP +* +* When EMIN is very small check for splits. +* + IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN + IF( Z( 4*N0 ).LE.TOL2*QMAX .OR. + $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN + SPLT = I0 - 1 + QMAX = Z( 4*I0-3 ) + EMIN = Z( 4*I0-1 ) + OLDEMN = Z( 4*I0 ) + DO 130 I4 = 4*I0, 4*( N0-3 ), 4 + IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR. + $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN + Z( I4-1 ) = -SIGMA + SPLT = I4 / 4 + QMAX = ZERO + EMIN = Z( I4+3 ) + OLDEMN = Z( I4+4 ) + ELSE + QMAX = MAX( QMAX, Z( I4+1 ) ) + EMIN = MIN( EMIN, Z( I4-1 ) ) + OLDEMN = MIN( OLDEMN, Z( I4 ) ) + END IF + 130 CONTINUE + Z( 4*N0-1 ) = EMIN + Z( 4*N0 ) = OLDEMN + I0 = SPLT + 1 + END IF + END IF +* + 140 CONTINUE +* + INFO = 2 +* +* Maximum number of iterations exceeded, restore the shift +* SIGMA and place the new d's and e's in a qd array. +* This might need to be done for several blocks +* + I1 = I0 + N1 = N0 + 145 CONTINUE + TEMPQ = Z( 4*I0-3 ) + Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA + DO K = I0+1, N0 + TEMPE = Z( 4*K-5 ) + Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 )) + TEMPQ = Z( 4*K-3 ) + Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 ) + END DO +* +* Prepare to do this on the previous block if there is one +* + IF( I1.GT.1 ) THEN + N1 = I1-1 + DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) ) + I1 = I1 - 1 + END DO + SIGMA = -Z(4*N1-1) + GO TO 145 + END IF + + DO K = 1, N + Z( 2*K-1 ) = Z( 4*K-3 ) +* +* Only the block 1..N0 is unfinished. The rest of the e's +* must be essentially zero, although sometimes other data +* has been stored in them. +* + IF( K.LT.N0 ) THEN + Z( 2*K ) = Z( 4*K-1 ) + ELSE + Z( 2*K ) = 0 + END IF + END DO + RETURN +* +* end IWHILB +* + 150 CONTINUE +* + 160 CONTINUE +* + INFO = 3 + RETURN +* +* end IWHILA +* + 170 CONTINUE +* +* Move q's to the front. +* + DO 180 K = 2, N + Z( K ) = Z( 4*K-3 ) + 180 CONTINUE +* +* Sort and compute sum of eigenvalues. +* + CALL DLASRT( 'D', N, Z, IINFO ) +* + E = ZERO + DO 190 K = N, 1, -1 + E = E + Z( K ) + 190 CONTINUE +* +* Store trace, sum(eigenvalues) and information on performance. +* + Z( 2*N+1 ) = TRACE + Z( 2*N+2 ) = E + Z( 2*N+3 ) = DBLE( ITER ) + Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 ) + Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER ) + RETURN +* +* End of DLASQ2 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq3.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq3.f new file mode 100644 index 000000000..a1ce68bf1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq3.f @@ -0,0 +1,421 @@ +*> \brief \b DLASQ3 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASQ3 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, +* ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, +* DN2, G, TAU ) +* +* .. Scalar Arguments .. +* LOGICAL IEEE +* INTEGER I0, ITER, N0, NDIV, NFAIL, PP +* DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, +* $ QMAX, SIGMA, TAU +* .. +* .. Array Arguments .. +* DOUBLE PRECISION Z( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds. +*> In case of failure it changes shifts, and tries again until output +*> is positive. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] I0 +*> \verbatim +*> I0 is INTEGER +*> First index. +*> \endverbatim +*> +*> \param[in,out] N0 +*> \verbatim +*> N0 is INTEGER +*> Last index. +*> \endverbatim +*> +*> \param[in] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension ( 4*N ) +*> Z holds the qd array. +*> \endverbatim +*> +*> \param[in,out] PP +*> \verbatim +*> PP is INTEGER +*> PP=0 for ping, PP=1 for pong. +*> PP=2 indicates that flipping was applied to the Z array +*> and that the initial tests for deflation should not be +*> performed. +*> \endverbatim +*> +*> \param[out] DMIN +*> \verbatim +*> DMIN is DOUBLE PRECISION +*> Minimum value of d. +*> \endverbatim +*> +*> \param[out] SIGMA +*> \verbatim +*> SIGMA is DOUBLE PRECISION +*> Sum of shifts used in current segment. +*> \endverbatim +*> +*> \param[in,out] DESIG +*> \verbatim +*> DESIG is DOUBLE PRECISION +*> Lower order part of SIGMA +*> \endverbatim +*> +*> \param[in] QMAX +*> \verbatim +*> QMAX is DOUBLE PRECISION +*> Maximum value of q. +*> \endverbatim +*> +*> \param[out] NFAIL +*> \verbatim +*> NFAIL is INTEGER +*> Number of times shift was too big. +*> \endverbatim +*> +*> \param[out] ITER +*> \verbatim +*> ITER is INTEGER +*> Number of iterations. +*> \endverbatim +*> +*> \param[out] NDIV +*> \verbatim +*> NDIV is INTEGER +*> Number of divisions. +*> \endverbatim +*> +*> \param[in] IEEE +*> \verbatim +*> IEEE is LOGICAL +*> Flag for IEEE or non IEEE arithmetic (passed to DLASQ5). +*> \endverbatim +*> +*> \param[in,out] TTYPE +*> \verbatim +*> TTYPE is INTEGER +*> Shift type. +*> \endverbatim +*> +*> \param[in,out] DMIN1 +*> \verbatim +*> DMIN1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] DMIN2 +*> \verbatim +*> DMIN2 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] DN +*> \verbatim +*> DN is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] DN1 +*> \verbatim +*> DN1 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] DN2 +*> \verbatim +*> DN2 is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] G +*> \verbatim +*> G is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in,out] TAU +*> \verbatim +*> TAU is DOUBLE PRECISION +*> +*> These are passed as arguments in order to save their values +*> between calls to DLASQ3. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +* ===================================================================== + SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, + $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, + $ DN2, G, TAU ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + LOGICAL IEEE + INTEGER I0, ITER, N0, NDIV, NFAIL, PP + DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, + $ QMAX, SIGMA, TAU +* .. +* .. Array Arguments .. + DOUBLE PRECISION Z( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION CBIAS + PARAMETER ( CBIAS = 1.50D0 ) + DOUBLE PRECISION ZERO, QURTR, HALF, ONE, TWO, HUNDRD + PARAMETER ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0, + $ ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 ) +* .. +* .. Local Scalars .. + INTEGER IPN4, J4, N0IN, NN, TTYPE + DOUBLE PRECISION EPS, S, T, TEMP, TOL, TOL2 +* .. +* .. External Subroutines .. + EXTERNAL DLASQ4, DLASQ5, DLASQ6 +* .. +* .. External Function .. + DOUBLE PRECISION DLAMCH + LOGICAL DISNAN + EXTERNAL DISNAN, DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* + N0IN = N0 + EPS = DLAMCH( 'Precision' ) + TOL = EPS*HUNDRD + TOL2 = TOL**2 +* +* Check for deflation. +* + 10 CONTINUE +* + IF( N0.LT.I0 ) + $ RETURN + IF( N0.EQ.I0 ) + $ GO TO 20 + NN = 4*N0 + PP + IF( N0.EQ.( I0+1 ) ) + $ GO TO 40 +* +* Check whether E(N0-1) is negligible, 1 eigenvalue. +* + IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND. + $ Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) ) + $ GO TO 30 +* + 20 CONTINUE +* + Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA + N0 = N0 - 1 + GO TO 10 +* +* Check whether E(N0-2) is negligible, 2 eigenvalues. +* + 30 CONTINUE +* + IF( Z( NN-9 ).GT.TOL2*SIGMA .AND. + $ Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) ) + $ GO TO 50 +* + 40 CONTINUE +* + IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN + S = Z( NN-3 ) + Z( NN-3 ) = Z( NN-7 ) + Z( NN-7 ) = S + END IF + IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN + T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) ) + S = Z( NN-3 )*( Z( NN-5 ) / T ) + IF( S.LE.T ) THEN + S = Z( NN-3 )*( Z( NN-5 ) / + $ ( T*( ONE+SQRT( ONE+S / T ) ) ) ) + ELSE + S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) ) + END IF + T = Z( NN-7 ) + ( S+Z( NN-5 ) ) + Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T ) + Z( NN-7 ) = T + END IF + Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA + Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA + N0 = N0 - 2 + GO TO 10 +* + 50 CONTINUE + IF( PP.EQ.2 ) + $ PP = 0 +* +* Reverse the qd-array, if warranted. +* + IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN + IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN + IPN4 = 4*( I0+N0 ) + DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4 + TEMP = Z( J4-3 ) + Z( J4-3 ) = Z( IPN4-J4-3 ) + Z( IPN4-J4-3 ) = TEMP + TEMP = Z( J4-2 ) + Z( J4-2 ) = Z( IPN4-J4-2 ) + Z( IPN4-J4-2 ) = TEMP + TEMP = Z( J4-1 ) + Z( J4-1 ) = Z( IPN4-J4-5 ) + Z( IPN4-J4-5 ) = TEMP + TEMP = Z( J4 ) + Z( J4 ) = Z( IPN4-J4-4 ) + Z( IPN4-J4-4 ) = TEMP + 60 CONTINUE + IF( N0-I0.LE.4 ) THEN + Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 ) + Z( 4*N0-PP ) = Z( 4*I0-PP ) + END IF + DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) ) + Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ), + $ Z( 4*I0+PP+3 ) ) + Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ), + $ Z( 4*I0-PP+4 ) ) + QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) ) + DMIN = -ZERO + END IF + END IF +* +* Choose a shift. +* + CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1, + $ DN2, TAU, TTYPE, G ) +* +* Call dqds until DMIN > 0. +* + 70 CONTINUE +* + CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN, + $ DN1, DN2, IEEE ) +* + NDIV = NDIV + ( N0-I0+2 ) + ITER = ITER + 1 +* +* Check status. +* + IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN +* +* Success. +* + GO TO 90 +* + ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND. + $ Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND. + $ ABS( DN ).LT.TOL*SIGMA ) THEN +* +* Convergence hidden by negative DN. +* + Z( 4*( N0-1 )-PP+2 ) = ZERO + DMIN = ZERO + GO TO 90 + ELSE IF( DMIN.LT.ZERO ) THEN +* +* TAU too big. Select new TAU and try again. +* + NFAIL = NFAIL + 1 + IF( TTYPE.LT.-22 ) THEN +* +* Failed twice. Play it safe. +* + TAU = ZERO + ELSE IF( DMIN1.GT.ZERO ) THEN +* +* Late failure. Gives excellent shift. +* + TAU = ( TAU+DMIN )*( ONE-TWO*EPS ) + TTYPE = TTYPE - 11 + ELSE +* +* Early failure. Divide by 4. +* + TAU = QURTR*TAU + TTYPE = TTYPE - 12 + END IF + GO TO 70 + ELSE IF( DISNAN( DMIN ) ) THEN +* +* NaN. +* + IF( TAU.EQ.ZERO ) THEN + GO TO 80 + ELSE + TAU = ZERO + GO TO 70 + END IF + ELSE +* +* Possible underflow. Play it safe. +* + GO TO 80 + END IF +* +* Risk of underflow. +* + 80 CONTINUE + CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 ) + NDIV = NDIV + ( N0-I0+2 ) + ITER = ITER + 1 + TAU = ZERO +* + 90 CONTINUE + IF( TAU.LT.SIGMA ) THEN + DESIG = DESIG + TAU + T = SIGMA + DESIG + DESIG = DESIG - ( T-SIGMA ) + ELSE + T = SIGMA + TAU + DESIG = SIGMA - ( T-TAU ) + DESIG + END IF + SIGMA = T +* + RETURN +* +* End of DLASQ3 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq4.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq4.f new file mode 100644 index 000000000..dc6fb719c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq4.f @@ -0,0 +1,425 @@ +*> \brief \b DLASQ4 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASQ4 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, +* DN1, DN2, TAU, TTYPE, G ) +* +* .. Scalar Arguments .. +* INTEGER I0, N0, N0IN, PP, TTYPE +* DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU +* .. +* .. Array Arguments .. +* DOUBLE PRECISION Z( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASQ4 computes an approximation TAU to the smallest eigenvalue +*> using values of d from the previous transform. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] I0 +*> \verbatim +*> I0 is INTEGER +*> First index. +*> \endverbatim +*> +*> \param[in] N0 +*> \verbatim +*> N0 is INTEGER +*> Last index. +*> \endverbatim +*> +*> \param[in] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension ( 4*N ) +*> Z holds the qd array. +*> \endverbatim +*> +*> \param[in] PP +*> \verbatim +*> PP is INTEGER +*> PP=0 for ping, PP=1 for pong. +*> \endverbatim +*> +*> \param[in] N0IN +*> \verbatim +*> N0IN is INTEGER +*> The value of N0 at start of EIGTEST. +*> \endverbatim +*> +*> \param[in] DMIN +*> \verbatim +*> DMIN is DOUBLE PRECISION +*> Minimum value of d. +*> \endverbatim +*> +*> \param[in] DMIN1 +*> \verbatim +*> DMIN1 is DOUBLE PRECISION +*> Minimum value of d, excluding D( N0 ). +*> \endverbatim +*> +*> \param[in] DMIN2 +*> \verbatim +*> DMIN2 is DOUBLE PRECISION +*> Minimum value of d, excluding D( N0 ) and D( N0-1 ). +*> \endverbatim +*> +*> \param[in] DN +*> \verbatim +*> DN is DOUBLE PRECISION +*> d(N) +*> \endverbatim +*> +*> \param[in] DN1 +*> \verbatim +*> DN1 is DOUBLE PRECISION +*> d(N-1) +*> \endverbatim +*> +*> \param[in] DN2 +*> \verbatim +*> DN2 is DOUBLE PRECISION +*> d(N-2) +*> \endverbatim +*> +*> \param[out] TAU +*> \verbatim +*> TAU is DOUBLE PRECISION +*> This is the shift. +*> \endverbatim +*> +*> \param[out] TTYPE +*> \verbatim +*> TTYPE is INTEGER +*> Shift type. +*> \endverbatim +*> +*> \param[in,out] G +*> \verbatim +*> G is REAL +*> G is passed as an argument in order to save its value between +*> calls to DLASQ4. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> CNST1 = 9/16 +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, + $ DN1, DN2, TAU, TTYPE, G ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER I0, N0, N0IN, PP, TTYPE + DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU +* .. +* .. Array Arguments .. + DOUBLE PRECISION Z( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION CNST1, CNST2, CNST3 + PARAMETER ( CNST1 = 0.5630D0, CNST2 = 1.010D0, + $ CNST3 = 1.050D0 ) + DOUBLE PRECISION QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD + PARAMETER ( QURTR = 0.250D0, THIRD = 0.3330D0, + $ HALF = 0.50D0, ZERO = 0.0D0, ONE = 1.0D0, + $ TWO = 2.0D0, HUNDRD = 100.0D0 ) +* .. +* .. Local Scalars .. + INTEGER I4, NN, NP + DOUBLE PRECISION A2, B1, B2, GAM, GAP1, GAP2, S +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* +* A negative DMIN forces the shift to take that absolute value +* TTYPE records the type of shift. +* + IF( DMIN.LE.ZERO ) THEN + TAU = -DMIN + TTYPE = -1 + RETURN + END IF +* + NN = 4*N0 + PP + IF( N0IN.EQ.N0 ) THEN +* +* No eigenvalues deflated. +* + IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN +* + B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) ) + B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) ) + A2 = Z( NN-7 ) + Z( NN-5 ) +* +* Cases 2 and 3. +* + IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN + GAP2 = DMIN2 - A2 - DMIN2*QURTR + IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN + GAP1 = A2 - DN - ( B2 / GAP2 )*B2 + ELSE + GAP1 = A2 - DN - ( B1+B2 ) + END IF + IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN + S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN ) + TTYPE = -2 + ELSE + S = ZERO + IF( DN.GT.B1 ) + $ S = DN - B1 + IF( A2.GT.( B1+B2 ) ) + $ S = MIN( S, A2-( B1+B2 ) ) + S = MAX( S, THIRD*DMIN ) + TTYPE = -3 + END IF + ELSE +* +* Case 4. +* + TTYPE = -4 + S = QURTR*DMIN + IF( DMIN.EQ.DN ) THEN + GAM = DN + A2 = ZERO + IF( Z( NN-5 ) .GT. Z( NN-7 ) ) + $ RETURN + B2 = Z( NN-5 ) / Z( NN-7 ) + NP = NN - 9 + ELSE + NP = NN - 2*PP + B2 = Z( NP-2 ) + GAM = DN1 + IF( Z( NP-4 ) .GT. Z( NP-2 ) ) + $ RETURN + A2 = Z( NP-4 ) / Z( NP-2 ) + IF( Z( NN-9 ) .GT. Z( NN-11 ) ) + $ RETURN + B2 = Z( NN-9 ) / Z( NN-11 ) + NP = NN - 13 + END IF +* +* Approximate contribution to norm squared from I < NN-1. +* + A2 = A2 + B2 + DO 10 I4 = NP, 4*I0 - 1 + PP, -4 + IF( B2.EQ.ZERO ) + $ GO TO 20 + B1 = B2 + IF( Z( I4 ) .GT. Z( I4-2 ) ) + $ RETURN + B2 = B2*( Z( I4 ) / Z( I4-2 ) ) + A2 = A2 + B2 + IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) + $ GO TO 20 + 10 CONTINUE + 20 CONTINUE + A2 = CNST3*A2 +* +* Rayleigh quotient residual bound. +* + IF( A2.LT.CNST1 ) + $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 ) + END IF + ELSE IF( DMIN.EQ.DN2 ) THEN +* +* Case 5. +* + TTYPE = -5 + S = QURTR*DMIN +* +* Compute contribution to norm squared from I > NN-2. +* + NP = NN - 2*PP + B1 = Z( NP-2 ) + B2 = Z( NP-6 ) + GAM = DN2 + IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 ) + $ RETURN + A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 ) +* +* Approximate contribution to norm squared from I < NN-2. +* + IF( N0-I0.GT.2 ) THEN + B2 = Z( NN-13 ) / Z( NN-15 ) + A2 = A2 + B2 + DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4 + IF( B2.EQ.ZERO ) + $ GO TO 40 + B1 = B2 + IF( Z( I4 ) .GT. Z( I4-2 ) ) + $ RETURN + B2 = B2*( Z( I4 ) / Z( I4-2 ) ) + A2 = A2 + B2 + IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 ) + $ GO TO 40 + 30 CONTINUE + 40 CONTINUE + A2 = CNST3*A2 + END IF +* + IF( A2.LT.CNST1 ) + $ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 ) + ELSE +* +* Case 6, no information to guide us. +* + IF( TTYPE.EQ.-6 ) THEN + G = G + THIRD*( ONE-G ) + ELSE IF( TTYPE.EQ.-18 ) THEN + G = QURTR*THIRD + ELSE + G = QURTR + END IF + S = G*DMIN + TTYPE = -6 + END IF +* + ELSE IF( N0IN.EQ.( N0+1 ) ) THEN +* +* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. +* + IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN +* +* Cases 7 and 8. +* + TTYPE = -7 + S = THIRD*DMIN1 + IF( Z( NN-5 ).GT.Z( NN-7 ) ) + $ RETURN + B1 = Z( NN-5 ) / Z( NN-7 ) + B2 = B1 + IF( B2.EQ.ZERO ) + $ GO TO 60 + DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4 + A2 = B1 + IF( Z( I4 ).GT.Z( I4-2 ) ) + $ RETURN + B1 = B1*( Z( I4 ) / Z( I4-2 ) ) + B2 = B2 + B1 + IF( HUNDRD*MAX( B1, A2 ).LT.B2 ) + $ GO TO 60 + 50 CONTINUE + 60 CONTINUE + B2 = SQRT( CNST3*B2 ) + A2 = DMIN1 / ( ONE+B2**2 ) + GAP2 = HALF*DMIN2 - A2 + IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN + S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) ) + ELSE + S = MAX( S, A2*( ONE-CNST2*B2 ) ) + TTYPE = -8 + END IF + ELSE +* +* Case 9. +* + S = QURTR*DMIN1 + IF( DMIN1.EQ.DN1 ) + $ S = HALF*DMIN1 + TTYPE = -9 + END IF +* + ELSE IF( N0IN.EQ.( N0+2 ) ) THEN +* +* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. +* +* Cases 10 and 11. +* + IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN + TTYPE = -10 + S = THIRD*DMIN2 + IF( Z( NN-5 ).GT.Z( NN-7 ) ) + $ RETURN + B1 = Z( NN-5 ) / Z( NN-7 ) + B2 = B1 + IF( B2.EQ.ZERO ) + $ GO TO 80 + DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4 + IF( Z( I4 ).GT.Z( I4-2 ) ) + $ RETURN + B1 = B1*( Z( I4 ) / Z( I4-2 ) ) + B2 = B2 + B1 + IF( HUNDRD*B1.LT.B2 ) + $ GO TO 80 + 70 CONTINUE + 80 CONTINUE + B2 = SQRT( CNST3*B2 ) + A2 = DMIN2 / ( ONE+B2**2 ) + GAP2 = Z( NN-7 ) + Z( NN-9 ) - + $ SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2 + IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN + S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) ) + ELSE + S = MAX( S, A2*( ONE-CNST2*B2 ) ) + END IF + ELSE + S = QURTR*DMIN2 + TTYPE = -11 + END IF + ELSE IF( N0IN.GT.( N0+2 ) ) THEN +* +* Case 12, more than two eigenvalues deflated. No information. +* + S = ZERO + TTYPE = -12 + END IF +* + TAU = S + RETURN +* +* End of DLASQ4 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq5.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq5.f new file mode 100644 index 000000000..d78dd867b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq5.f @@ -0,0 +1,281 @@ +*> \brief \b DLASQ5 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASQ5 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN, +* DNM1, DNM2, IEEE ) +* +* .. Scalar Arguments .. +* LOGICAL IEEE +* INTEGER I0, N0, PP +* DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DNM1, DNM2, TAU +* .. +* .. Array Arguments .. +* DOUBLE PRECISION Z( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASQ5 computes one dqds transform in ping-pong form, one +*> version for IEEE machines another for non IEEE machines. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] I0 +*> \verbatim +*> I0 is INTEGER +*> First index. +*> \endverbatim +*> +*> \param[in] N0 +*> \verbatim +*> N0 is INTEGER +*> Last index. +*> \endverbatim +*> +*> \param[in] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension ( 4*N ) +*> Z holds the qd array. EMIN is stored in Z(4*N0) to avoid +*> an extra argument. +*> \endverbatim +*> +*> \param[in] PP +*> \verbatim +*> PP is INTEGER +*> PP=0 for ping, PP=1 for pong. +*> \endverbatim +*> +*> \param[in] TAU +*> \verbatim +*> TAU is DOUBLE PRECISION +*> This is the shift. +*> \endverbatim +*> +*> \param[out] DMIN +*> \verbatim +*> DMIN is DOUBLE PRECISION +*> Minimum value of d. +*> \endverbatim +*> +*> \param[out] DMIN1 +*> \verbatim +*> DMIN1 is DOUBLE PRECISION +*> Minimum value of d, excluding D( N0 ). +*> \endverbatim +*> +*> \param[out] DMIN2 +*> \verbatim +*> DMIN2 is DOUBLE PRECISION +*> Minimum value of d, excluding D( N0 ) and D( N0-1 ). +*> \endverbatim +*> +*> \param[out] DN +*> \verbatim +*> DN is DOUBLE PRECISION +*> d(N0), the last value of d. +*> \endverbatim +*> +*> \param[out] DNM1 +*> \verbatim +*> DNM1 is DOUBLE PRECISION +*> d(N0-1). +*> \endverbatim +*> +*> \param[out] DNM2 +*> \verbatim +*> DNM2 is DOUBLE PRECISION +*> d(N0-2). +*> \endverbatim +*> +*> \param[in] IEEE +*> \verbatim +*> IEEE is LOGICAL +*> Flag for IEEE or non IEEE arithmetic. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +* ===================================================================== + SUBROUTINE DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN, + $ DNM1, DNM2, IEEE ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + LOGICAL IEEE + INTEGER I0, N0, PP + DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DNM1, DNM2, TAU +* .. +* .. Array Arguments .. + DOUBLE PRECISION Z( * ) +* .. +* +* ===================================================================== +* +* .. Parameter .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) +* .. +* .. Local Scalars .. + INTEGER J4, J4P2 + DOUBLE PRECISION D, EMIN, TEMP +* .. +* .. Intrinsic Functions .. + INTRINSIC MIN +* .. +* .. Executable Statements .. +* + IF( ( N0-I0-1 ).LE.0 ) + $ RETURN +* + J4 = 4*I0 + PP - 3 + EMIN = Z( J4+4 ) + D = Z( J4 ) - TAU + DMIN = D + DMIN1 = -Z( J4 ) +* + IF( IEEE ) THEN +* +* Code for IEEE arithmetic. +* + IF( PP.EQ.0 ) THEN + DO 10 J4 = 4*I0, 4*( N0-3 ), 4 + Z( J4-2 ) = D + Z( J4-1 ) + TEMP = Z( J4+1 ) / Z( J4-2 ) + D = D*TEMP - TAU + DMIN = MIN( DMIN, D ) + Z( J4 ) = Z( J4-1 )*TEMP + EMIN = MIN( Z( J4 ), EMIN ) + 10 CONTINUE + ELSE + DO 20 J4 = 4*I0, 4*( N0-3 ), 4 + Z( J4-3 ) = D + Z( J4 ) + TEMP = Z( J4+2 ) / Z( J4-3 ) + D = D*TEMP - TAU + DMIN = MIN( DMIN, D ) + Z( J4-1 ) = Z( J4 )*TEMP + EMIN = MIN( Z( J4-1 ), EMIN ) + 20 CONTINUE + END IF +* +* Unroll last two steps. +* + DNM2 = D + DMIN2 = DMIN + J4 = 4*( N0-2 ) - PP + J4P2 = J4 + 2*PP - 1 + Z( J4-2 ) = DNM2 + Z( J4P2 ) + Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) ) + DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) - TAU + DMIN = MIN( DMIN, DNM1 ) +* + DMIN1 = DMIN + J4 = J4 + 4 + J4P2 = J4 + 2*PP - 1 + Z( J4-2 ) = DNM1 + Z( J4P2 ) + Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) ) + DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) - TAU + DMIN = MIN( DMIN, DN ) +* + ELSE +* +* Code for non IEEE arithmetic. +* + IF( PP.EQ.0 ) THEN + DO 30 J4 = 4*I0, 4*( N0-3 ), 4 + Z( J4-2 ) = D + Z( J4-1 ) + IF( D.LT.ZERO ) THEN + RETURN + ELSE + Z( J4 ) = Z( J4+1 )*( Z( J4-1 ) / Z( J4-2 ) ) + D = Z( J4+1 )*( D / Z( J4-2 ) ) - TAU + END IF + DMIN = MIN( DMIN, D ) + EMIN = MIN( EMIN, Z( J4 ) ) + 30 CONTINUE + ELSE + DO 40 J4 = 4*I0, 4*( N0-3 ), 4 + Z( J4-3 ) = D + Z( J4 ) + IF( D.LT.ZERO ) THEN + RETURN + ELSE + Z( J4-1 ) = Z( J4+2 )*( Z( J4 ) / Z( J4-3 ) ) + D = Z( J4+2 )*( D / Z( J4-3 ) ) - TAU + END IF + DMIN = MIN( DMIN, D ) + EMIN = MIN( EMIN, Z( J4-1 ) ) + 40 CONTINUE + END IF +* +* Unroll last two steps. +* + DNM2 = D + DMIN2 = DMIN + J4 = 4*( N0-2 ) - PP + J4P2 = J4 + 2*PP - 1 + Z( J4-2 ) = DNM2 + Z( J4P2 ) + IF( DNM2.LT.ZERO ) THEN + RETURN + ELSE + Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) ) + DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) - TAU + END IF + DMIN = MIN( DMIN, DNM1 ) +* + DMIN1 = DMIN + J4 = J4 + 4 + J4P2 = J4 + 2*PP - 1 + Z( J4-2 ) = DNM1 + Z( J4P2 ) + IF( DNM1.LT.ZERO ) THEN + RETURN + ELSE + Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) ) + DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) - TAU + END IF + DMIN = MIN( DMIN, DN ) +* + END IF +* + Z( J4+2 ) = DN + Z( 4*N0-PP ) = EMIN + RETURN +* +* End of DLASQ5 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq6.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq6.f new file mode 100644 index 000000000..e069fa6f7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasq6.f @@ -0,0 +1,254 @@ +*> \brief \b DLASQ6 +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASQ6 + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, +* DNM1, DNM2 ) +* +* .. Scalar Arguments .. +* INTEGER I0, N0, PP +* DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DNM1, DNM2 +* .. +* .. Array Arguments .. +* DOUBLE PRECISION Z( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASQ6 computes one dqd (shift equal to zero) transform in +*> ping-pong form, with protection against underflow and overflow. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] I0 +*> \verbatim +*> I0 is INTEGER +*> First index. +*> \endverbatim +*> +*> \param[in] N0 +*> \verbatim +*> N0 is INTEGER +*> Last index. +*> \endverbatim +*> +*> \param[in] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension ( 4*N ) +*> Z holds the qd array. EMIN is stored in Z(4*N0) to avoid +*> an extra argument. +*> \endverbatim +*> +*> \param[in] PP +*> \verbatim +*> PP is INTEGER +*> PP=0 for ping, PP=1 for pong. +*> \endverbatim +*> +*> \param[out] DMIN +*> \verbatim +*> DMIN is DOUBLE PRECISION +*> Minimum value of d. +*> \endverbatim +*> +*> \param[out] DMIN1 +*> \verbatim +*> DMIN1 is DOUBLE PRECISION +*> Minimum value of d, excluding D( N0 ). +*> \endverbatim +*> +*> \param[out] DMIN2 +*> \verbatim +*> DMIN2 is DOUBLE PRECISION +*> Minimum value of d, excluding D( N0 ) and D( N0-1 ). +*> \endverbatim +*> +*> \param[out] DN +*> \verbatim +*> DN is DOUBLE PRECISION +*> d(N0), the last value of d. +*> \endverbatim +*> +*> \param[out] DNM1 +*> \verbatim +*> DNM1 is DOUBLE PRECISION +*> d(N0-1). +*> \endverbatim +*> +*> \param[out] DNM2 +*> \verbatim +*> DNM2 is DOUBLE PRECISION +*> d(N0-2). +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +* ===================================================================== + SUBROUTINE DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, + $ DNM1, DNM2 ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER I0, N0, PP + DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DNM1, DNM2 +* .. +* .. Array Arguments .. + DOUBLE PRECISION Z( * ) +* .. +* +* ===================================================================== +* +* .. Parameter .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) +* .. +* .. Local Scalars .. + INTEGER J4, J4P2 + DOUBLE PRECISION D, EMIN, SAFMIN, TEMP +* .. +* .. External Function .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC MIN +* .. +* .. Executable Statements .. +* + IF( ( N0-I0-1 ).LE.0 ) + $ RETURN +* + SAFMIN = DLAMCH( 'Safe minimum' ) + J4 = 4*I0 + PP - 3 + EMIN = Z( J4+4 ) + D = Z( J4 ) + DMIN = D +* + IF( PP.EQ.0 ) THEN + DO 10 J4 = 4*I0, 4*( N0-3 ), 4 + Z( J4-2 ) = D + Z( J4-1 ) + IF( Z( J4-2 ).EQ.ZERO ) THEN + Z( J4 ) = ZERO + D = Z( J4+1 ) + DMIN = D + EMIN = ZERO + ELSE IF( SAFMIN*Z( J4+1 ).LT.Z( J4-2 ) .AND. + $ SAFMIN*Z( J4-2 ).LT.Z( J4+1 ) ) THEN + TEMP = Z( J4+1 ) / Z( J4-2 ) + Z( J4 ) = Z( J4-1 )*TEMP + D = D*TEMP + ELSE + Z( J4 ) = Z( J4+1 )*( Z( J4-1 ) / Z( J4-2 ) ) + D = Z( J4+1 )*( D / Z( J4-2 ) ) + END IF + DMIN = MIN( DMIN, D ) + EMIN = MIN( EMIN, Z( J4 ) ) + 10 CONTINUE + ELSE + DO 20 J4 = 4*I0, 4*( N0-3 ), 4 + Z( J4-3 ) = D + Z( J4 ) + IF( Z( J4-3 ).EQ.ZERO ) THEN + Z( J4-1 ) = ZERO + D = Z( J4+2 ) + DMIN = D + EMIN = ZERO + ELSE IF( SAFMIN*Z( J4+2 ).LT.Z( J4-3 ) .AND. + $ SAFMIN*Z( J4-3 ).LT.Z( J4+2 ) ) THEN + TEMP = Z( J4+2 ) / Z( J4-3 ) + Z( J4-1 ) = Z( J4 )*TEMP + D = D*TEMP + ELSE + Z( J4-1 ) = Z( J4+2 )*( Z( J4 ) / Z( J4-3 ) ) + D = Z( J4+2 )*( D / Z( J4-3 ) ) + END IF + DMIN = MIN( DMIN, D ) + EMIN = MIN( EMIN, Z( J4-1 ) ) + 20 CONTINUE + END IF +* +* Unroll last two steps. +* + DNM2 = D + DMIN2 = DMIN + J4 = 4*( N0-2 ) - PP + J4P2 = J4 + 2*PP - 1 + Z( J4-2 ) = DNM2 + Z( J4P2 ) + IF( Z( J4-2 ).EQ.ZERO ) THEN + Z( J4 ) = ZERO + DNM1 = Z( J4P2+2 ) + DMIN = DNM1 + EMIN = ZERO + ELSE IF( SAFMIN*Z( J4P2+2 ).LT.Z( J4-2 ) .AND. + $ SAFMIN*Z( J4-2 ).LT.Z( J4P2+2 ) ) THEN + TEMP = Z( J4P2+2 ) / Z( J4-2 ) + Z( J4 ) = Z( J4P2 )*TEMP + DNM1 = DNM2*TEMP + ELSE + Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) ) + DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) ) + END IF + DMIN = MIN( DMIN, DNM1 ) +* + DMIN1 = DMIN + J4 = J4 + 4 + J4P2 = J4 + 2*PP - 1 + Z( J4-2 ) = DNM1 + Z( J4P2 ) + IF( Z( J4-2 ).EQ.ZERO ) THEN + Z( J4 ) = ZERO + DN = Z( J4P2+2 ) + DMIN = DN + EMIN = ZERO + ELSE IF( SAFMIN*Z( J4P2+2 ).LT.Z( J4-2 ) .AND. + $ SAFMIN*Z( J4-2 ).LT.Z( J4P2+2 ) ) THEN + TEMP = Z( J4P2+2 ) / Z( J4-2 ) + Z( J4 ) = Z( J4P2 )*TEMP + DN = DNM1*TEMP + ELSE + Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) ) + DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) ) + END IF + DMIN = MIN( DMIN, DN ) +* + Z( J4+2 ) = DN + Z( 4*N0-PP ) = EMIN + RETURN +* +* End of DLASQ6 +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasr.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasr.f new file mode 100644 index 000000000..bbe6217dd --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasr.f @@ -0,0 +1,436 @@ +*> \brief \b DLASR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) +* +* .. Scalar Arguments .. +* CHARACTER DIRECT, PIVOT, SIDE +* INTEGER LDA, M, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), C( * ), S( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASR applies a sequence of plane rotations to a real matrix A, +*> from either the left or the right. +*> +*> When SIDE = 'L', the transformation takes the form +*> +*> A := P*A +*> +*> and when SIDE = 'R', the transformation takes the form +*> +*> A := A*P**T +*> +*> where P is an orthogonal matrix consisting of a sequence of z plane +*> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', +*> and P**T is the transpose of P. +*> +*> When DIRECT = 'F' (Forward sequence), then +*> +*> P = P(z-1) * ... * P(2) * P(1) +*> +*> and when DIRECT = 'B' (Backward sequence), then +*> +*> P = P(1) * P(2) * ... * P(z-1) +*> +*> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation +*> +*> R(k) = ( c(k) s(k) ) +*> = ( -s(k) c(k) ). +*> +*> When PIVOT = 'V' (Variable pivot), the rotation is performed +*> for the plane (k,k+1), i.e., P(k) has the form +*> +*> P(k) = ( 1 ) +*> ( ... ) +*> ( 1 ) +*> ( c(k) s(k) ) +*> ( -s(k) c(k) ) +*> ( 1 ) +*> ( ... ) +*> ( 1 ) +*> +*> where R(k) appears as a rank-2 modification to the identity matrix in +*> rows and columns k and k+1. +*> +*> When PIVOT = 'T' (Top pivot), the rotation is performed for the +*> plane (1,k+1), so P(k) has the form +*> +*> P(k) = ( c(k) s(k) ) +*> ( 1 ) +*> ( ... ) +*> ( 1 ) +*> ( -s(k) c(k) ) +*> ( 1 ) +*> ( ... ) +*> ( 1 ) +*> +*> where R(k) appears in rows and columns 1 and k+1. +*> +*> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is +*> performed for the plane (k,z), giving P(k) the form +*> +*> P(k) = ( 1 ) +*> ( ... ) +*> ( 1 ) +*> ( c(k) s(k) ) +*> ( 1 ) +*> ( ... ) +*> ( 1 ) +*> ( -s(k) c(k) ) +*> +*> where R(k) appears in rows and columns k and z. The rotations are +*> performed without ever forming P(k) explicitly. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] SIDE +*> \verbatim +*> SIDE is CHARACTER*1 +*> Specifies whether the plane rotation matrix P is applied to +*> A on the left or the right. +*> = 'L': Left, compute A := P*A +*> = 'R': Right, compute A:= A*P**T +*> \endverbatim +*> +*> \param[in] PIVOT +*> \verbatim +*> PIVOT is CHARACTER*1 +*> Specifies the plane for which P(k) is a plane rotation +*> matrix. +*> = 'V': Variable pivot, the plane (k,k+1) +*> = 'T': Top pivot, the plane (1,k+1) +*> = 'B': Bottom pivot, the plane (k,z) +*> \endverbatim +*> +*> \param[in] DIRECT +*> \verbatim +*> DIRECT is CHARACTER*1 +*> Specifies whether P is a forward or backward sequence of +*> plane rotations. +*> = 'F': Forward, P = P(z-1)*...*P(2)*P(1) +*> = 'B': Backward, P = P(1)*P(2)*...*P(z-1) +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix A. If m <= 1, an immediate +*> return is effected. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. If n <= 1, an +*> immediate return is effected. +*> \endverbatim +*> +*> \param[in] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension +*> (M-1) if SIDE = 'L' +*> (N-1) if SIDE = 'R' +*> The cosines c(k) of the plane rotations. +*> \endverbatim +*> +*> \param[in] S +*> \verbatim +*> S is DOUBLE PRECISION array, dimension +*> (M-1) if SIDE = 'L' +*> (N-1) if SIDE = 'R' +*> The sines s(k) of the plane rotations. The 2-by-2 plane +*> rotation part of the matrix P(k), R(k), has the form +*> R(k) = ( c(k) s(k) ) +*> ( -s(k) c(k) ). +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> The M-by-N matrix A. On exit, A is overwritten by P*A if +*> SIDE = 'R' or by A*P**T if SIDE = 'L'. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER DIRECT, PIVOT, SIDE + INTEGER LDA, M, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), C( * ), S( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I, INFO, J + DOUBLE PRECISION CTEMP, STEMP, TEMP +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + INFO = 0 + IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN + INFO = 1 + ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT, + $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN + INFO = 2 + ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) ) + $ THEN + INFO = 3 + ELSE IF( M.LT.0 ) THEN + INFO = 4 + ELSE IF( N.LT.0 ) THEN + INFO = 5 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = 9 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DLASR ', INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) + $ RETURN + IF( LSAME( SIDE, 'L' ) ) THEN +* +* Form P * A +* + IF( LSAME( PIVOT, 'V' ) ) THEN + IF( LSAME( DIRECT, 'F' ) ) THEN + DO 20 J = 1, M - 1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 10 I = 1, N + TEMP = A( J+1, I ) + A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) + A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) + 10 CONTINUE + END IF + 20 CONTINUE + ELSE IF( LSAME( DIRECT, 'B' ) ) THEN + DO 40 J = M - 1, 1, -1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 30 I = 1, N + TEMP = A( J+1, I ) + A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) + A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) + 30 CONTINUE + END IF + 40 CONTINUE + END IF + ELSE IF( LSAME( PIVOT, 'T' ) ) THEN + IF( LSAME( DIRECT, 'F' ) ) THEN + DO 60 J = 2, M + CTEMP = C( J-1 ) + STEMP = S( J-1 ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 50 I = 1, N + TEMP = A( J, I ) + A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) + A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) + 50 CONTINUE + END IF + 60 CONTINUE + ELSE IF( LSAME( DIRECT, 'B' ) ) THEN + DO 80 J = M, 2, -1 + CTEMP = C( J-1 ) + STEMP = S( J-1 ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 70 I = 1, N + TEMP = A( J, I ) + A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) + A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) + 70 CONTINUE + END IF + 80 CONTINUE + END IF + ELSE IF( LSAME( PIVOT, 'B' ) ) THEN + IF( LSAME( DIRECT, 'F' ) ) THEN + DO 100 J = 1, M - 1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 90 I = 1, N + TEMP = A( J, I ) + A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP + A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP + 90 CONTINUE + END IF + 100 CONTINUE + ELSE IF( LSAME( DIRECT, 'B' ) ) THEN + DO 120 J = M - 1, 1, -1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 110 I = 1, N + TEMP = A( J, I ) + A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP + A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP + 110 CONTINUE + END IF + 120 CONTINUE + END IF + END IF + ELSE IF( LSAME( SIDE, 'R' ) ) THEN +* +* Form A * P**T +* + IF( LSAME( PIVOT, 'V' ) ) THEN + IF( LSAME( DIRECT, 'F' ) ) THEN + DO 140 J = 1, N - 1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 130 I = 1, M + TEMP = A( I, J+1 ) + A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) + A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) + 130 CONTINUE + END IF + 140 CONTINUE + ELSE IF( LSAME( DIRECT, 'B' ) ) THEN + DO 160 J = N - 1, 1, -1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 150 I = 1, M + TEMP = A( I, J+1 ) + A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) + A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) + 150 CONTINUE + END IF + 160 CONTINUE + END IF + ELSE IF( LSAME( PIVOT, 'T' ) ) THEN + IF( LSAME( DIRECT, 'F' ) ) THEN + DO 180 J = 2, N + CTEMP = C( J-1 ) + STEMP = S( J-1 ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 170 I = 1, M + TEMP = A( I, J ) + A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) + A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) + 170 CONTINUE + END IF + 180 CONTINUE + ELSE IF( LSAME( DIRECT, 'B' ) ) THEN + DO 200 J = N, 2, -1 + CTEMP = C( J-1 ) + STEMP = S( J-1 ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 190 I = 1, M + TEMP = A( I, J ) + A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) + A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) + 190 CONTINUE + END IF + 200 CONTINUE + END IF + ELSE IF( LSAME( PIVOT, 'B' ) ) THEN + IF( LSAME( DIRECT, 'F' ) ) THEN + DO 220 J = 1, N - 1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 210 I = 1, M + TEMP = A( I, J ) + A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP + A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP + 210 CONTINUE + END IF + 220 CONTINUE + ELSE IF( LSAME( DIRECT, 'B' ) ) THEN + DO 240 J = N - 1, 1, -1 + CTEMP = C( J ) + STEMP = S( J ) + IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN + DO 230 I = 1, M + TEMP = A( I, J ) + A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP + A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP + 230 CONTINUE + END IF + 240 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DLASR +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasrt.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasrt.f new file mode 100644 index 000000000..fe8f526a2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlasrt.f @@ -0,0 +1,303 @@ +*> \brief \b DLASRT +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASRT + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASRT( ID, N, D, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER ID +* INTEGER INFO, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Sort the numbers in D in increasing order (if ID = 'I') or +*> in decreasing order (if ID = 'D' ). +*> +*> Use Quick Sort, reverting to Insertion sort on arrays of +*> size <= 20. Dimension of STACK limits N to about 2**32. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] ID +*> \verbatim +*> ID is CHARACTER*1 +*> = 'I': sort D in increasing order; +*> = 'D': sort D in decreasing order. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The length of the array D. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the array to be sorted. +*> On exit, D has been sorted into increasing order +*> (D(1) <= ... <= D(N) ) or into decreasing order +*> (D(1) >= ... >= D(N) ), depending on ID. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +* ===================================================================== + SUBROUTINE DLASRT( ID, N, D, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER ID + INTEGER INFO, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + INTEGER SELECT + PARAMETER ( SELECT = 20 ) +* .. +* .. Local Scalars .. + INTEGER DIR, ENDD, I, J, START, STKPNT + DOUBLE PRECISION D1, D2, D3, DMNMX, TMP +* .. +* .. Local Arrays .. + INTEGER STACK( 2, 32 ) +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Executable Statements .. +* +* Test the input paramters. +* + INFO = 0 + DIR = -1 + IF( LSAME( ID, 'D' ) ) THEN + DIR = 0 + ELSE IF( LSAME( ID, 'I' ) ) THEN + DIR = 1 + END IF + IF( DIR.EQ.-1 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DLASRT', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.LE.1 ) + $ RETURN +* + STKPNT = 1 + STACK( 1, 1 ) = 1 + STACK( 2, 1 ) = N + 10 CONTINUE + START = STACK( 1, STKPNT ) + ENDD = STACK( 2, STKPNT ) + STKPNT = STKPNT - 1 + IF( ENDD-START.LE.SELECT .AND. ENDD-START.GT.0 ) THEN +* +* Do Insertion sort on D( START:ENDD ) +* + IF( DIR.EQ.0 ) THEN +* +* Sort into decreasing order +* + DO 30 I = START + 1, ENDD + DO 20 J = I, START + 1, -1 + IF( D( J ).GT.D( J-1 ) ) THEN + DMNMX = D( J ) + D( J ) = D( J-1 ) + D( J-1 ) = DMNMX + ELSE + GO TO 30 + END IF + 20 CONTINUE + 30 CONTINUE +* + ELSE +* +* Sort into increasing order +* + DO 50 I = START + 1, ENDD + DO 40 J = I, START + 1, -1 + IF( D( J ).LT.D( J-1 ) ) THEN + DMNMX = D( J ) + D( J ) = D( J-1 ) + D( J-1 ) = DMNMX + ELSE + GO TO 50 + END IF + 40 CONTINUE + 50 CONTINUE +* + END IF +* + ELSE IF( ENDD-START.GT.SELECT ) THEN +* +* Partition D( START:ENDD ) and stack parts, largest one first +* +* Choose partition entry as median of 3 +* + D1 = D( START ) + D2 = D( ENDD ) + I = ( START+ENDD ) / 2 + D3 = D( I ) + IF( D1.LT.D2 ) THEN + IF( D3.LT.D1 ) THEN + DMNMX = D1 + ELSE IF( D3.LT.D2 ) THEN + DMNMX = D3 + ELSE + DMNMX = D2 + END IF + ELSE + IF( D3.LT.D2 ) THEN + DMNMX = D2 + ELSE IF( D3.LT.D1 ) THEN + DMNMX = D3 + ELSE + DMNMX = D1 + END IF + END IF +* + IF( DIR.EQ.0 ) THEN +* +* Sort into decreasing order +* + I = START - 1 + J = ENDD + 1 + 60 CONTINUE + 70 CONTINUE + J = J - 1 + IF( D( J ).LT.DMNMX ) + $ GO TO 70 + 80 CONTINUE + I = I + 1 + IF( D( I ).GT.DMNMX ) + $ GO TO 80 + IF( I.LT.J ) THEN + TMP = D( I ) + D( I ) = D( J ) + D( J ) = TMP + GO TO 60 + END IF + IF( J-START.GT.ENDD-J-1 ) THEN + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = START + STACK( 2, STKPNT ) = J + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = J + 1 + STACK( 2, STKPNT ) = ENDD + ELSE + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = J + 1 + STACK( 2, STKPNT ) = ENDD + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = START + STACK( 2, STKPNT ) = J + END IF + ELSE +* +* Sort into increasing order +* + I = START - 1 + J = ENDD + 1 + 90 CONTINUE + 100 CONTINUE + J = J - 1 + IF( D( J ).GT.DMNMX ) + $ GO TO 100 + 110 CONTINUE + I = I + 1 + IF( D( I ).LT.DMNMX ) + $ GO TO 110 + IF( I.LT.J ) THEN + TMP = D( I ) + D( I ) = D( J ) + D( J ) = TMP + GO TO 90 + END IF + IF( J-START.GT.ENDD-J-1 ) THEN + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = START + STACK( 2, STKPNT ) = J + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = J + 1 + STACK( 2, STKPNT ) = ENDD + ELSE + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = J + 1 + STACK( 2, STKPNT ) = ENDD + STKPNT = STKPNT + 1 + STACK( 1, STKPNT ) = START + STACK( 2, STKPNT ) = J + END IF + END IF + END IF + IF( STKPNT.GT.0 ) + $ GO TO 10 + RETURN +* +* End of DLASRT +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlassq.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlassq.f new file mode 100644 index 000000000..51d5a22d2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlassq.f @@ -0,0 +1,151 @@ +*> \brief \b DLASSQ +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASSQ + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASSQ( N, X, INCX, SCALE, SUMSQ ) +* +* .. Scalar Arguments .. +* INTEGER INCX, N +* DOUBLE PRECISION SCALE, SUMSQ +* .. +* .. Array Arguments .. +* DOUBLE PRECISION X( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASSQ returns the values scl and smsq such that +*> +*> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, +*> +*> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is +*> assumed to be non-negative and scl returns the value +*> +*> scl = max( scale, abs( x( i ) ) ). +*> +*> scale and sumsq must be supplied in SCALE and SUMSQ and +*> scl and smsq are overwritten on SCALE and SUMSQ respectively. +*> +*> The routine makes only one pass through the vector x. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of elements to be used from the vector X. +*> \endverbatim +*> +*> \param[in] X +*> \verbatim +*> X is DOUBLE PRECISION array, dimension (N) +*> The vector for which a scaled sum of squares is computed. +*> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. +*> \endverbatim +*> +*> \param[in] INCX +*> \verbatim +*> INCX is INTEGER +*> The increment between successive values of the vector X. +*> INCX > 0. +*> \endverbatim +*> +*> \param[in,out] SCALE +*> \verbatim +*> SCALE is DOUBLE PRECISION +*> On entry, the value scale in the equation above. +*> On exit, SCALE is overwritten with scl , the scaling factor +*> for the sum of squares. +*> \endverbatim +*> +*> \param[in,out] SUMSQ +*> \verbatim +*> SUMSQ is DOUBLE PRECISION +*> On entry, the value sumsq in the equation above. +*> On exit, SUMSQ is overwritten with smsq , the basic sum of +*> squares from which scl has been factored out. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE DLASSQ( N, X, INCX, SCALE, SUMSQ ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INCX, N + DOUBLE PRECISION SCALE, SUMSQ +* .. +* .. Array Arguments .. + DOUBLE PRECISION X( * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER IX + DOUBLE PRECISION ABSXI +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS +* .. +* .. Executable Statements .. +* + IF( N.GT.0 ) THEN + DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX + IF( X( IX ).NE.ZERO ) THEN + ABSXI = ABS( X( IX ) ) + IF( SCALE.LT.ABSXI ) THEN + SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2 + SCALE = ABSXI + ELSE + SUMSQ = SUMSQ + ( ABSXI / SCALE )**2 + END IF + END IF + 10 CONTINUE + END IF + RETURN +* +* End of DLASSQ +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaswp.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaswp.f new file mode 100644 index 000000000..937e12b2f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dlaswp.f @@ -0,0 +1,191 @@ +*> \brief \b DLASWP performs a series of row interchanges on a general rectangular matrix. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLASWP + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX ) +* +* .. Scalar Arguments .. +* INTEGER INCX, K1, K2, LDA, N +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ) +* DOUBLE PRECISION A( LDA, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLASWP performs a series of row interchanges on the matrix A. +*> One row interchange is initiated for each of rows K1 through K2 of A. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix A. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the matrix of column dimension N to which the row +*> interchanges will be applied. +*> On exit, the permuted matrix. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. +*> \endverbatim +*> +*> \param[in] K1 +*> \verbatim +*> K1 is INTEGER +*> The first element of IPIV for which a row interchange will +*> be done. +*> \endverbatim +*> +*> \param[in] K2 +*> \verbatim +*> K2 is INTEGER +*> The last element of IPIV for which a row interchange will +*> be done. +*> \endverbatim +*> +*> \param[in] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (K2*abs(INCX)) +*> The vector of pivot indices. Only the elements in positions +*> K1 through K2 of IPIV are accessed. +*> IPIV(K) = L implies rows K and L are to be interchanged. +*> \endverbatim +*> +*> \param[in] INCX +*> \verbatim +*> INCX is INTEGER +*> The increment between successive values of IPIV. If IPIV +*> is negative, the pivots are applied in reverse order. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date September 2012 +* +*> \ingroup doubleOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> Modified by +*> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX ) +* +* -- LAPACK auxiliary routine (version 3.4.2) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* September 2012 +* +* .. Scalar Arguments .. + INTEGER INCX, K1, K2, LDA, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION A( LDA, * ) +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + INTEGER I, I1, I2, INC, IP, IX, IX0, J, K, N32 + DOUBLE PRECISION TEMP +* .. +* .. Executable Statements .. +* +* Interchange row I with row IPIV(I) for each of rows K1 through K2. +* + IF( INCX.GT.0 ) THEN + IX0 = K1 + I1 = K1 + I2 = K2 + INC = 1 + ELSE IF( INCX.LT.0 ) THEN + IX0 = 1 + ( 1-K2 )*INCX + I1 = K2 + I2 = K1 + INC = -1 + ELSE + RETURN + END IF +* + N32 = ( N / 32 )*32 + IF( N32.NE.0 ) THEN + DO 30 J = 1, N32, 32 + IX = IX0 + DO 20 I = I1, I2, INC + IP = IPIV( IX ) + IF( IP.NE.I ) THEN + DO 10 K = J, J + 31 + TEMP = A( I, K ) + A( I, K ) = A( IP, K ) + A( IP, K ) = TEMP + 10 CONTINUE + END IF + IX = IX + INCX + 20 CONTINUE + 30 CONTINUE + END IF + IF( N32.NE.N ) THEN + N32 = N32 + 1 + IX = IX0 + DO 50 I = I1, I2, INC + IP = IPIV( IX ) + IF( IP.NE.I ) THEN + DO 40 K = N32, N + TEMP = A( I, K ) + A( I, K ) = A( IP, K ) + A( IP, K ) = TEMP + 40 CONTINUE + END IF + IX = IX + INCX + 50 CONTINUE + END IF +* + RETURN +* +* End of DLASWP +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dscal.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dscal.f new file mode 100644 index 000000000..32dc5e54d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dscal.f @@ -0,0 +1,111 @@ +*> \brief \b DSCAL +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* SUBROUTINE DSCAL(N,DA,DX,INCX) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION DA +* INTEGER INCX,N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION DX(*) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DSCAL scales a vector by a constant. +*> uses unrolled loops for increment equal to one. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup double_blas_level1 +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> jack dongarra, linpack, 3/11/78. +*> modified 3/93 to return if incx .le. 0. +*> modified 12/3/93, array(1) declarations changed to array(*) +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DSCAL(N,DA,DX,INCX) +* +* -- Reference BLAS level1 routine (version 3.4.0) -- +* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + DOUBLE PRECISION DA + INTEGER INCX,N +* .. +* .. Array Arguments .. + DOUBLE PRECISION DX(*) +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + INTEGER I,M,MP1,NINCX +* .. +* .. Intrinsic Functions .. + INTRINSIC MOD +* .. + IF (N.LE.0 .OR. INCX.LE.0) RETURN + IF (INCX.EQ.1) THEN +* +* code for increment equal to 1 +* +* +* clean-up loop +* + M = MOD(N,5) + IF (M.NE.0) THEN + DO I = 1,M + DX(I) = DA*DX(I) + END DO + IF (N.LT.5) RETURN + END IF + MP1 = M + 1 + DO I = MP1,N,5 + DX(I) = DA*DX(I) + DX(I+1) = DA*DX(I+1) + DX(I+2) = DA*DX(I+2) + DX(I+3) = DA*DX(I+3) + DX(I+4) = DA*DX(I+4) + END DO + ELSE +* +* code for increment not equal to 1 +* + NINCX = N*INCX + DO I = 1,NINCX,INCX + DX(I) = DA*DX(I) + END DO + END IF + RETURN + END + diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstegr.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstegr.f new file mode 100644 index 000000000..298e1c766 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstegr.f @@ -0,0 +1,293 @@ +*> \brief \b DSTEGR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DSTEGR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, +* ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, +* LIWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBZ, RANGE +* INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N +* DOUBLE PRECISION ABSTOL, VL, VU +* .. +* .. Array Arguments .. +* INTEGER ISUPPZ( * ), IWORK( * ) +* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) +* DOUBLE PRECISION Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DSTEGR computes selected eigenvalues and, optionally, eigenvectors +*> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has +*> a well defined set of pairwise different real eigenvalues, the corresponding +*> real eigenvectors are pairwise orthogonal. +*> +*> The spectrum may be computed either completely or partially by specifying +*> either an interval (VL,VU] or a range of indices IL:IU for the desired +*> eigenvalues. +*> +*> DSTEGR is a compatability wrapper around the improved DSTEMR routine. +*> See DSTEMR for further details. +*> +*> One important change is that the ABSTOL parameter no longer provides any +*> benefit and hence is no longer used. +*> +*> Note : DSTEGR and DSTEMR work only on machines which follow +*> IEEE-754 floating-point standard in their handling of infinities and +*> NaNs. Normal execution may create these exceptiona values and hence +*> may abort due to a floating point exception in environments which +*> do not conform to the IEEE-754 standard. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBZ +*> \verbatim +*> JOBZ is CHARACTER*1 +*> = 'N': Compute eigenvalues only; +*> = 'V': Compute eigenvalues and eigenvectors. +*> \endverbatim +*> +*> \param[in] RANGE +*> \verbatim +*> RANGE is CHARACTER*1 +*> = 'A': all eigenvalues will be found. +*> = 'V': all eigenvalues in the half-open interval (VL,VU] +*> will be found. +*> = 'I': the IL-th through IU-th eigenvalues will be found. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N >= 0. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the N diagonal elements of the tridiagonal matrix +*> T. On exit, D is overwritten. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> On entry, the (N-1) subdiagonal elements of the tridiagonal +*> matrix T in elements 1 to N-1 of E. E(N) need not be set on +*> input, but is used internally as workspace. +*> On exit, E is overwritten. +*> \endverbatim +*> +*> \param[in] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> +*> If RANGE='V', the lower and upper bounds of the interval to +*> be searched for eigenvalues. VL < VU. +*> Not referenced if RANGE = 'A' or 'I'. +*> \endverbatim +*> +*> \param[in] IL +*> \verbatim +*> IL is INTEGER +*> \endverbatim +*> +*> \param[in] IU +*> \verbatim +*> IU is INTEGER +*> +*> If RANGE='I', the indices (in ascending order) of the +*> smallest and largest eigenvalues to be returned. +*> 1 <= IL <= IU <= N, if N > 0. +*> Not referenced if RANGE = 'A' or 'V'. +*> \endverbatim +*> +*> \param[in] ABSTOL +*> \verbatim +*> ABSTOL is DOUBLE PRECISION +*> Unused. Was the absolute error tolerance for the +*> eigenvalues/eigenvectors in previous versions. +*> \endverbatim +*> +*> \param[out] M +*> \verbatim +*> M is INTEGER +*> The total number of eigenvalues found. 0 <= M <= N. +*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> The first M elements contain the selected eigenvalues in +*> ascending order. +*> \endverbatim +*> +*> \param[out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) +*> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z +*> contain the orthonormal eigenvectors of the matrix T +*> corresponding to the selected eigenvalues, with the i-th +*> column of Z holding the eigenvector associated with W(i). +*> If JOBZ = 'N', then Z is not referenced. +*> Note: the user must ensure that at least max(1,M) columns are +*> supplied in the array Z; if RANGE = 'V', the exact value of M +*> is not known in advance and an upper bound must be used. +*> Supplying N columns is always safe. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1, and if +*> JOBZ = 'V', then LDZ >= max(1,N). +*> \endverbatim +*> +*> \param[out] ISUPPZ +*> \verbatim +*> ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) ) +*> The support of the eigenvectors in Z, i.e., the indices +*> indicating the nonzero elements in Z. The i-th computed eigenvector +*> is nonzero only in elements ISUPPZ( 2*i-1 ) through +*> ISUPPZ( 2*i ). This is relevant in the case when the matrix +*> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> On exit, if INFO = 0, WORK(1) returns the optimal +*> (and minimal) LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= max(1,18*N) +*> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (LIWORK) +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. +*> \endverbatim +*> +*> \param[in] LIWORK +*> \verbatim +*> LIWORK is INTEGER +*> The dimension of the array IWORK. LIWORK >= max(1,10*N) +*> if the eigenvectors are desired, and LIWORK >= max(1,8*N) +*> if only the eigenvalues are to be computed. +*> If LIWORK = -1, then a workspace query is assumed; the +*> routine only calculates the optimal size of the IWORK array, +*> returns this value as the first entry of the IWORK array, and +*> no error message related to LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> On exit, INFO +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = 1X, internal error in DLARRE, +*> if INFO = 2X, internal error in DLARRV. +*> Here, the digit X = ABS( IINFO ) < 10, where IINFO is +*> the nonzero error code returned by DLARRE or +*> DLARRV, respectively. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERcomputational +* +*> \par Contributors: +* ================== +*> +*> Inderjit Dhillon, IBM Almaden, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, LBNL/NERSC, USA \n +* +* ===================================================================== + SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, + $ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, + $ LIWORK, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER JOBZ, RANGE + INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N + DOUBLE PRECISION ABSTOL, VL, VU +* .. +* .. Array Arguments .. + INTEGER ISUPPZ( * ), IWORK( * ) + DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) + DOUBLE PRECISION Z( LDZ, * ) +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + LOGICAL TRYRAC +* .. +* .. External Subroutines .. + EXTERNAL DSTEMR +* .. +* .. Executable Statements .. + INFO = 0 + TRYRAC = .FALSE. + + CALL DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, + $ M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK, + $ IWORK, LIWORK, INFO ) +* +* End of DSTEGR +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstemr.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstemr.f new file mode 100644 index 000000000..24e0a4b47 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dstemr.f @@ -0,0 +1,764 @@ +*> \brief \b DSTEMR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DSTEMR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, +* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, +* IWORK, LIWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBZ, RANGE +* LOGICAL TRYRAC +* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N +* DOUBLE PRECISION VL, VU +* .. +* .. Array Arguments .. +* INTEGER ISUPPZ( * ), IWORK( * ) +* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) +* DOUBLE PRECISION Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DSTEMR computes selected eigenvalues and, optionally, eigenvectors +*> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has +*> a well defined set of pairwise different real eigenvalues, the corresponding +*> real eigenvectors are pairwise orthogonal. +*> +*> The spectrum may be computed either completely or partially by specifying +*> either an interval (VL,VU] or a range of indices IL:IU for the desired +*> eigenvalues. +*> +*> Depending on the number of desired eigenvalues, these are computed either +*> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are +*> computed by the use of various suitable L D L^T factorizations near clusters +*> of close eigenvalues (referred to as RRRs, Relatively Robust +*> Representations). An informal sketch of the algorithm follows. +*> +*> For each unreduced block (submatrix) of T, +*> (a) Compute T - sigma I = L D L^T, so that L and D +*> define all the wanted eigenvalues to high relative accuracy. +*> This means that small relative changes in the entries of D and L +*> cause only small relative changes in the eigenvalues and +*> eigenvectors. The standard (unfactored) representation of the +*> tridiagonal matrix T does not have this property in general. +*> (b) Compute the eigenvalues to suitable accuracy. +*> If the eigenvectors are desired, the algorithm attains full +*> accuracy of the computed eigenvalues only right before +*> the corresponding vectors have to be computed, see steps c) and d). +*> (c) For each cluster of close eigenvalues, select a new +*> shift close to the cluster, find a new factorization, and refine +*> the shifted eigenvalues to suitable accuracy. +*> (d) For each eigenvalue with a large enough relative separation compute +*> the corresponding eigenvector by forming a rank revealing twisted +*> factorization. Go back to (c) for any clusters that remain. +*> +*> For more details, see: +*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations +*> to compute orthogonal eigenvectors of symmetric tridiagonal matrices," +*> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. +*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and +*> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, +*> 2004. Also LAPACK Working Note 154. +*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric +*> tridiagonal eigenvalue/eigenvector problem", +*> Computer Science Division Technical Report No. UCB/CSD-97-971, +*> UC Berkeley, May 1997. +*> +*> Further Details +*> 1.DSTEMR works only on machines which follow IEEE-754 +*> floating-point standard in their handling of infinities and NaNs. +*> This permits the use of efficient inner loops avoiding a check for +*> zero divisors. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBZ +*> \verbatim +*> JOBZ is CHARACTER*1 +*> = 'N': Compute eigenvalues only; +*> = 'V': Compute eigenvalues and eigenvectors. +*> \endverbatim +*> +*> \param[in] RANGE +*> \verbatim +*> RANGE is CHARACTER*1 +*> = 'A': all eigenvalues will be found. +*> = 'V': all eigenvalues in the half-open interval (VL,VU] +*> will be found. +*> = 'I': the IL-th through IU-th eigenvalues will be found. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N >= 0. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the N diagonal elements of the tridiagonal matrix +*> T. On exit, D is overwritten. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> On entry, the (N-1) subdiagonal elements of the tridiagonal +*> matrix T in elements 1 to N-1 of E. E(N) need not be set on +*> input, but is used internally as workspace. +*> On exit, E is overwritten. +*> \endverbatim +*> +*> \param[in] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> \endverbatim +*> +*> \param[in] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> +*> If RANGE='V', the lower and upper bounds of the interval to +*> be searched for eigenvalues. VL < VU. +*> Not referenced if RANGE = 'A' or 'I'. +*> \endverbatim +*> +*> \param[in] IL +*> \verbatim +*> IL is INTEGER +*> \endverbatim +*> +*> \param[in] IU +*> \verbatim +*> IU is INTEGER +*> +*> If RANGE='I', the indices (in ascending order) of the +*> smallest and largest eigenvalues to be returned. +*> 1 <= IL <= IU <= N, if N > 0. +*> Not referenced if RANGE = 'A' or 'V'. +*> \endverbatim +*> +*> \param[out] M +*> \verbatim +*> M is INTEGER +*> The total number of eigenvalues found. 0 <= M <= N. +*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> The first M elements contain the selected eigenvalues in +*> ascending order. +*> \endverbatim +*> +*> \param[out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) +*> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z +*> contain the orthonormal eigenvectors of the matrix T +*> corresponding to the selected eigenvalues, with the i-th +*> column of Z holding the eigenvector associated with W(i). +*> If JOBZ = 'N', then Z is not referenced. +*> Note: the user must ensure that at least max(1,M) columns are +*> supplied in the array Z; if RANGE = 'V', the exact value of M +*> is not known in advance and can be computed with a workspace +*> query by setting NZC = -1, see below. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1, and if +*> JOBZ = 'V', then LDZ >= max(1,N). +*> \endverbatim +*> +*> \param[in] NZC +*> \verbatim +*> NZC is INTEGER +*> The number of eigenvectors to be held in the array Z. +*> If RANGE = 'A', then NZC >= max(1,N). +*> If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. +*> If RANGE = 'I', then NZC >= IU-IL+1. +*> If NZC = -1, then a workspace query is assumed; the +*> routine calculates the number of columns of the array Z that +*> are needed to hold the eigenvectors. +*> This value is returned as the first entry of the Z array, and +*> no error message related to NZC is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] ISUPPZ +*> \verbatim +*> ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) ) +*> The support of the eigenvectors in Z, i.e., the indices +*> indicating the nonzero elements in Z. The i-th computed eigenvector +*> is nonzero only in elements ISUPPZ( 2*i-1 ) through +*> ISUPPZ( 2*i ). This is relevant in the case when the matrix +*> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. +*> \endverbatim +*> +*> \param[in,out] TRYRAC +*> \verbatim +*> TRYRAC is LOGICAL +*> If TRYRAC.EQ..TRUE., indicates that the code should check whether +*> the tridiagonal matrix defines its eigenvalues to high relative +*> accuracy. If so, the code uses relative-accuracy preserving +*> algorithms that might be (a bit) slower depending on the matrix. +*> If the matrix does not define its eigenvalues to high relative +*> accuracy, the code can uses possibly faster algorithms. +*> If TRYRAC.EQ..FALSE., the code is not required to guarantee +*> relatively accurate eigenvalues and can use the fastest possible +*> techniques. +*> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix +*> does not define its eigenvalues to high relative accuracy. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> On exit, if INFO = 0, WORK(1) returns the optimal +*> (and minimal) LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= max(1,18*N) +*> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (LIWORK) +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. +*> \endverbatim +*> +*> \param[in] LIWORK +*> \verbatim +*> LIWORK is INTEGER +*> The dimension of the array IWORK. LIWORK >= max(1,10*N) +*> if the eigenvectors are desired, and LIWORK >= max(1,8*N) +*> if only the eigenvalues are to be computed. +*> If LIWORK = -1, then a workspace query is assumed; the +*> routine only calculates the optimal size of the IWORK array, +*> returns this value as the first entry of the IWORK array, and +*> no error message related to LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> On exit, INFO +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = 1X, internal error in DLARRE, +*> if INFO = 2X, internal error in DLARRV. +*> Here, the digit X = ABS( IINFO ) < 10, where IINFO is +*> the nonzero error code returned by DLARRE or +*> DLARRV, respectively. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERcomputational +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA +* +* ===================================================================== + SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, + $ M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, + $ IWORK, LIWORK, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER JOBZ, RANGE + LOGICAL TRYRAC + INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N + DOUBLE PRECISION VL, VU +* .. +* .. Array Arguments .. + INTEGER ISUPPZ( * ), IWORK( * ) + DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) + DOUBLE PRECISION Z( LDZ, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, FOUR, MINRGP + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, + $ FOUR = 4.0D0, + $ MINRGP = 1.0D-3 ) +* .. +* .. Local Scalars .. + LOGICAL ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY + INTEGER I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW, + $ IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD, + $ INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP, + $ ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT, + $ NZCMIN, OFFSET, WBEGIN, WEND + DOUBLE PRECISION BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN, + $ RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN, + $ THRESH, TMP, TNRM, WL, WU +* .. +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION DLAMCH, DLANST + EXTERNAL LSAME, DLAMCH, DLANST +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ, + $ DLARRR, DLARRV, DLASRT, DSCAL, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN, SQRT + + +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + WANTZ = LSAME( JOBZ, 'V' ) + ALLEIG = LSAME( RANGE, 'A' ) + VALEIG = LSAME( RANGE, 'V' ) + INDEIG = LSAME( RANGE, 'I' ) +* + LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) ) + ZQUERY = ( NZC.EQ.-1 ) + +* DSTEMR needs WORK of size 6*N, IWORK of size 3*N. +* In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. +* Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. + IF( WANTZ ) THEN + LWMIN = 18*N + LIWMIN = 10*N + ELSE +* need less workspace if only the eigenvalues are wanted + LWMIN = 12*N + LIWMIN = 8*N + ENDIF + + WL = ZERO + WU = ZERO + IIL = 0 + IIU = 0 + + IF( VALEIG ) THEN +* We do not reference VL, VU in the cases RANGE = 'I','A' +* The interval (WL, WU] contains all the wanted eigenvalues. +* It is either given by the user or computed in DLARRE. + WL = VL + WU = VU + ELSEIF( INDEIG ) THEN +* We do not reference IL, IU in the cases RANGE = 'V','A' + IIL = IL + IIU = IU + ENDIF +* + INFO = 0 + IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN + INFO = -1 + ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN + INFO = -7 + ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN + INFO = -8 + ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN + INFO = -9 + ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN + INFO = -17 + ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN + INFO = -19 + END IF +* +* Get machine constants. +* + SAFMIN = DLAMCH( 'Safe minimum' ) + EPS = DLAMCH( 'Precision' ) + SMLNUM = SAFMIN / EPS + BIGNUM = ONE / SMLNUM + RMIN = SQRT( SMLNUM ) + RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) ) +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN + IWORK( 1 ) = LIWMIN +* + IF( WANTZ .AND. ALLEIG ) THEN + NZCMIN = N + ELSE IF( WANTZ .AND. VALEIG ) THEN + CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN, + $ NZCMIN, ITMP, ITMP2, INFO ) + ELSE IF( WANTZ .AND. INDEIG ) THEN + NZCMIN = IIU-IIL+1 + ELSE +* WANTZ .EQ. FALSE. + NZCMIN = 0 + ENDIF + IF( ZQUERY .AND. INFO.EQ.0 ) THEN + Z( 1,1 ) = NZCMIN + ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN + INFO = -14 + END IF + END IF + + IF( INFO.NE.0 ) THEN +* + CALL XERBLA( 'DSTEMR', -INFO ) +* + RETURN + ELSE IF( LQUERY .OR. ZQUERY ) THEN + RETURN + END IF +* +* Handle N = 0, 1, and 2 cases immediately +* + M = 0 + IF( N.EQ.0 ) + $ RETURN +* + IF( N.EQ.1 ) THEN + IF( ALLEIG .OR. INDEIG ) THEN + M = 1 + W( 1 ) = D( 1 ) + ELSE + IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN + M = 1 + W( 1 ) = D( 1 ) + END IF + END IF + IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN + Z( 1, 1 ) = ONE + ISUPPZ(1) = 1 + ISUPPZ(2) = 1 + END IF + RETURN + END IF +* + IF( N.EQ.2 ) THEN + IF( .NOT.WANTZ ) THEN + CALL DLAE2( D(1), E(1), D(2), R1, R2 ) + ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN + CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN ) + END IF + IF( ALLEIG.OR. + $ (VALEIG.AND.(R2.GT.WL).AND. + $ (R2.LE.WU)).OR. + $ (INDEIG.AND.(IIL.EQ.1)) ) THEN + M = M+1 + W( M ) = R2 + IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN + Z( 1, M ) = -SN + Z( 2, M ) = CS +* Note: At most one of SN and CS can be zero. + IF (SN.NE.ZERO) THEN + IF (CS.NE.ZERO) THEN + ISUPPZ(2*M-1) = 1 + ISUPPZ(2*M) = 2 + ELSE + ISUPPZ(2*M-1) = 1 + ISUPPZ(2*M) = 1 + END IF + ELSE + ISUPPZ(2*M-1) = 2 + ISUPPZ(2*M) = 2 + END IF + ENDIF + ENDIF + IF( ALLEIG.OR. + $ (VALEIG.AND.(R1.GT.WL).AND. + $ (R1.LE.WU)).OR. + $ (INDEIG.AND.(IIU.EQ.2)) ) THEN + M = M+1 + W( M ) = R1 + IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN + Z( 1, M ) = CS + Z( 2, M ) = SN +* Note: At most one of SN and CS can be zero. + IF (SN.NE.ZERO) THEN + IF (CS.NE.ZERO) THEN + ISUPPZ(2*M-1) = 1 + ISUPPZ(2*M) = 2 + ELSE + ISUPPZ(2*M-1) = 1 + ISUPPZ(2*M) = 1 + END IF + ELSE + ISUPPZ(2*M-1) = 2 + ISUPPZ(2*M) = 2 + END IF + ENDIF + ENDIF + RETURN + END IF + +* Continue with general N + + INDGRS = 1 + INDERR = 2*N + 1 + INDGP = 3*N + 1 + INDD = 4*N + 1 + INDE2 = 5*N + 1 + INDWRK = 6*N + 1 +* + IINSPL = 1 + IINDBL = N + 1 + IINDW = 2*N + 1 + IINDWK = 3*N + 1 +* +* Scale matrix to allowable range, if necessary. +* The allowable range is related to the PIVMIN parameter; see the +* comments in DLARRD. The preference for scaling small values +* up is heuristic; we expect users' matrices not to be close to the +* RMAX threshold. +* + SCALE = ONE + TNRM = DLANST( 'M', N, D, E ) + IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN + SCALE = RMIN / TNRM + ELSE IF( TNRM.GT.RMAX ) THEN + SCALE = RMAX / TNRM + END IF + IF( SCALE.NE.ONE ) THEN + CALL DSCAL( N, SCALE, D, 1 ) + CALL DSCAL( N-1, SCALE, E, 1 ) + TNRM = TNRM*SCALE + IF( VALEIG ) THEN +* If eigenvalues in interval have to be found, +* scale (WL, WU] accordingly + WL = WL*SCALE + WU = WU*SCALE + ENDIF + END IF +* +* Compute the desired eigenvalues of the tridiagonal after splitting +* into smaller subblocks if the corresponding off-diagonal elements +* are small +* THRESH is the splitting parameter for DLARRE +* A negative THRESH forces the old splitting criterion based on the +* size of the off-diagonal. A positive THRESH switches to splitting +* which preserves relative accuracy. +* + IF( TRYRAC ) THEN +* Test whether the matrix warrants the more expensive relative approach. + CALL DLARRR( N, D, E, IINFO ) + ELSE +* The user does not care about relative accurately eigenvalues + IINFO = -1 + ENDIF +* Set the splitting criterion + IF (IINFO.EQ.0) THEN + THRESH = EPS + ELSE + THRESH = -EPS +* relative accuracy is desired but T does not guarantee it + TRYRAC = .FALSE. + ENDIF +* + IF( TRYRAC ) THEN +* Copy original diagonal, needed to guarantee relative accuracy + CALL DCOPY(N,D,1,WORK(INDD),1) + ENDIF +* Store the squares of the offdiagonal values of T + DO 5 J = 1, N-1 + WORK( INDE2+J-1 ) = E(J)**2 + 5 CONTINUE + +* Set the tolerance parameters for bisection + IF( .NOT.WANTZ ) THEN +* DLARRE computes the eigenvalues to full precision. + RTOL1 = FOUR * EPS + RTOL2 = FOUR * EPS + ELSE +* DLARRE computes the eigenvalues to less than full precision. +* DLARRV will refine the eigenvalue approximations, and we can +* need less accurate initial bisection in DLARRE. +* Note: these settings do only affect the subset case and DLARRE + RTOL1 = SQRT(EPS) + RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS ) + ENDIF + CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E, + $ WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT, + $ IWORK( IINSPL ), M, W, WORK( INDERR ), + $ WORK( INDGP ), IWORK( IINDBL ), + $ IWORK( IINDW ), WORK( INDGRS ), PIVMIN, + $ WORK( INDWRK ), IWORK( IINDWK ), IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = 10 + ABS( IINFO ) + RETURN + END IF +* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired +* part of the spectrum. All desired eigenvalues are contained in +* (WL,WU] + + + IF( WANTZ ) THEN +* +* Compute the desired eigenvectors corresponding to the computed +* eigenvalues +* + CALL DLARRV( N, WL, WU, D, E, + $ PIVMIN, IWORK( IINSPL ), M, + $ 1, M, MINRGP, RTOL1, RTOL2, + $ W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ), + $ IWORK( IINDW ), WORK( INDGRS ), Z, LDZ, + $ ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = 20 + ABS( IINFO ) + RETURN + END IF + ELSE +* DLARRE computes eigenvalues of the (shifted) root representation +* DLARRV returns the eigenvalues of the unshifted matrix. +* However, if the eigenvectors are not desired by the user, we need +* to apply the corresponding shifts from DLARRE to obtain the +* eigenvalues of the original matrix. + DO 20 J = 1, M + ITMP = IWORK( IINDBL+J-1 ) + W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) ) + 20 CONTINUE + END IF +* + + IF ( TRYRAC ) THEN +* Refine computed eigenvalues so that they are relatively accurate +* with respect to the original matrix T. + IBEGIN = 1 + WBEGIN = 1 + DO 39 JBLK = 1, IWORK( IINDBL+M-1 ) + IEND = IWORK( IINSPL+JBLK-1 ) + IN = IEND - IBEGIN + 1 + WEND = WBEGIN - 1 +* check if any eigenvalues have to be refined in this block + 36 CONTINUE + IF( WEND.LT.M ) THEN + IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN + WEND = WEND + 1 + GO TO 36 + END IF + END IF + IF( WEND.LT.WBEGIN ) THEN + IBEGIN = IEND + 1 + GO TO 39 + END IF + + OFFSET = IWORK(IINDW+WBEGIN-1)-1 + IFIRST = IWORK(IINDW+WBEGIN-1) + ILAST = IWORK(IINDW+WEND-1) + RTOL2 = FOUR * EPS + CALL DLARRJ( IN, + $ WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1), + $ IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN), + $ WORK( INDERR+WBEGIN-1 ), + $ WORK( INDWRK ), IWORK( IINDWK ), PIVMIN, + $ TNRM, IINFO ) + IBEGIN = IEND + 1 + WBEGIN = WEND + 1 + 39 CONTINUE + ENDIF +* +* If matrix was scaled, then rescale eigenvalues appropriately. +* + IF( SCALE.NE.ONE ) THEN + CALL DSCAL( M, ONE / SCALE, W, 1 ) + END IF +* +* If eigenvalues are not in increasing order, then sort them, +* possibly along with eigenvectors. +* + IF( NSPLIT.GT.1 ) THEN + IF( .NOT. WANTZ ) THEN + CALL DLASRT( 'I', M, W, IINFO ) + IF( IINFO.NE.0 ) THEN + INFO = 3 + RETURN + END IF + ELSE + DO 60 J = 1, M - 1 + I = 0 + TMP = W( J ) + DO 50 JJ = J + 1, M + IF( W( JJ ).LT.TMP ) THEN + I = JJ + TMP = W( JJ ) + END IF + 50 CONTINUE + IF( I.NE.0 ) THEN + W( I ) = W( J ) + W( J ) = TMP + IF( WANTZ ) THEN + CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 ) + ITMP = ISUPPZ( 2*I-1 ) + ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 ) + ISUPPZ( 2*J-1 ) = ITMP + ITMP = ISUPPZ( 2*I ) + ISUPPZ( 2*I ) = ISUPPZ( 2*J ) + ISUPPZ( 2*J ) = ITMP + END IF + END IF + 60 CONTINUE + END IF + ENDIF +* +* + WORK( 1 ) = LWMIN + IWORK( 1 ) = LIWMIN + RETURN +* +* End of DSTEMR +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dsteqr.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dsteqr.f new file mode 100644 index 000000000..9e165bb6b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dsteqr.f @@ -0,0 +1,572 @@ +*> \brief \b DSTEQR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DSTEQR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER COMPZ +* INTEGER INFO, LDZ, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DSTEQR computes all eigenvalues and, optionally, eigenvectors of a +*> symmetric tridiagonal matrix using the implicit QL or QR method. +*> The eigenvectors of a full or band symmetric matrix can also be found +*> if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to +*> tridiagonal form. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] COMPZ +*> \verbatim +*> COMPZ is CHARACTER*1 +*> = 'N': Compute eigenvalues only. +*> = 'V': Compute eigenvalues and eigenvectors of the original +*> symmetric matrix. On entry, Z must contain the +*> orthogonal matrix used to reduce the original matrix +*> to tridiagonal form. +*> = 'I': Compute eigenvalues and eigenvectors of the +*> tridiagonal matrix. Z is initialized to the identity +*> matrix. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N >= 0. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the diagonal elements of the tridiagonal matrix. +*> On exit, if INFO = 0, the eigenvalues in ascending order. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N-1) +*> On entry, the (n-1) subdiagonal elements of the tridiagonal +*> matrix. +*> On exit, E has been destroyed. +*> \endverbatim +*> +*> \param[in,out] Z +*> \verbatim +*> Z is DOUBLE PRECISION array, dimension (LDZ, N) +*> On entry, if COMPZ = 'V', then Z contains the orthogonal +*> matrix used in the reduction to tridiagonal form. +*> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the +*> orthonormal eigenvectors of the original symmetric matrix, +*> and if COMPZ = 'I', Z contains the orthonormal eigenvectors +*> of the symmetric tridiagonal matrix. +*> If COMPZ = 'N', then Z is not referenced. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1, and if +*> eigenvectors are desired, then LDZ >= max(1,N). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2)) +*> If COMPZ = 'N', then WORK is not referenced. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: the algorithm has failed to find all the eigenvalues in +*> a total of 30*N iterations; if INFO = i, then i +*> elements of E have not converged to zero; on exit, D +*> and E contain the elements of a symmetric tridiagonal +*> matrix which is orthogonally similar to the original +*> matrix. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERcomputational +* +* ===================================================================== + SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) +* +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER COMPZ + INTEGER INFO, LDZ, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) +* .. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO, THREE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, + $ THREE = 3.0D0 ) + INTEGER MAXIT + PARAMETER ( MAXIT = 30 ) +* .. +* .. Local Scalars .. + INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND, + $ LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1, + $ NM1, NMAXIT + DOUBLE PRECISION ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2, + $ S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION DLAMCH, DLANST, DLAPY2 + EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2 +* .. +* .. External Subroutines .. + EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR, + $ DLASRT, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SIGN, SQRT +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 +* + IF( LSAME( COMPZ, 'N' ) ) THEN + ICOMPZ = 0 + ELSE IF( LSAME( COMPZ, 'V' ) ) THEN + ICOMPZ = 1 + ELSE IF( LSAME( COMPZ, 'I' ) ) THEN + ICOMPZ = 2 + ELSE + ICOMPZ = -1 + END IF + IF( ICOMPZ.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, + $ N ) ) ) THEN + INFO = -6 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DSTEQR', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN +* + IF( N.EQ.1 ) THEN + IF( ICOMPZ.EQ.2 ) + $ Z( 1, 1 ) = ONE + RETURN + END IF +* +* Determine the unit roundoff and over/underflow thresholds. +* + EPS = DLAMCH( 'E' ) + EPS2 = EPS**2 + SAFMIN = DLAMCH( 'S' ) + SAFMAX = ONE / SAFMIN + SSFMAX = SQRT( SAFMAX ) / THREE + SSFMIN = SQRT( SAFMIN ) / EPS2 +* +* Compute the eigenvalues and eigenvectors of the tridiagonal +* matrix. +* + IF( ICOMPZ.EQ.2 ) + $ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) +* + NMAXIT = N*MAXIT + JTOT = 0 +* +* Determine where the matrix splits and choose QL or QR iteration +* for each block, according to whether top or bottom diagonal +* element is smaller. +* + L1 = 1 + NM1 = N - 1 +* + 10 CONTINUE + IF( L1.GT.N ) + $ GO TO 160 + IF( L1.GT.1 ) + $ E( L1-1 ) = ZERO + IF( L1.LE.NM1 ) THEN + DO 20 M = L1, NM1 + TST = ABS( E( M ) ) + IF( TST.EQ.ZERO ) + $ GO TO 30 + IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+ + $ 1 ) ) ) )*EPS ) THEN + E( M ) = ZERO + GO TO 30 + END IF + 20 CONTINUE + END IF + M = N +* + 30 CONTINUE + L = L1 + LSV = L + LEND = M + LENDSV = LEND + L1 = M + 1 + IF( LEND.EQ.L ) + $ GO TO 10 +* +* Scale submatrix in rows and columns L to LEND +* + ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) ) + ISCALE = 0 + IF( ANORM.EQ.ZERO ) + $ GO TO 10 + IF( ANORM.GT.SSFMAX ) THEN + ISCALE = 1 + CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, + $ INFO ) + CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, + $ INFO ) + ELSE IF( ANORM.LT.SSFMIN ) THEN + ISCALE = 2 + CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, + $ INFO ) + CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, + $ INFO ) + END IF +* +* Choose between QL and QR iteration +* + IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN + LEND = LSV + L = LENDSV + END IF +* + IF( LEND.GT.L ) THEN +* +* QL Iteration +* +* Look for small subdiagonal element. +* + 40 CONTINUE + IF( L.NE.LEND ) THEN + LENDM1 = LEND - 1 + DO 50 M = L, LENDM1 + TST = ABS( E( M ) )**2 + IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+ + $ SAFMIN )GO TO 60 + 50 CONTINUE + END IF +* + M = LEND +* + 60 CONTINUE + IF( M.LT.LEND ) + $ E( M ) = ZERO + P = D( L ) + IF( M.EQ.L ) + $ GO TO 80 +* +* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 +* to compute its eigensystem. +* + IF( M.EQ.L+1 ) THEN + IF( ICOMPZ.GT.0 ) THEN + CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S ) + WORK( L ) = C + WORK( N-1+L ) = S + CALL DLASR( 'R', 'V', 'B', N, 2, WORK( L ), + $ WORK( N-1+L ), Z( 1, L ), LDZ ) + ELSE + CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 ) + END IF + D( L ) = RT1 + D( L+1 ) = RT2 + E( L ) = ZERO + L = L + 2 + IF( L.LE.LEND ) + $ GO TO 40 + GO TO 140 + END IF +* + IF( JTOT.EQ.NMAXIT ) + $ GO TO 140 + JTOT = JTOT + 1 +* +* Form shift. +* + G = ( D( L+1 )-P ) / ( TWO*E( L ) ) + R = DLAPY2( G, ONE ) + G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) ) +* + S = ONE + C = ONE + P = ZERO +* +* Inner loop +* + MM1 = M - 1 + DO 70 I = MM1, L, -1 + F = S*E( I ) + B = C*E( I ) + CALL DLARTG( G, F, C, S, R ) + IF( I.NE.M-1 ) + $ E( I+1 ) = R + G = D( I+1 ) - P + R = ( D( I )-G )*S + TWO*C*B + P = S*R + D( I+1 ) = G + P + G = C*R - B +* +* If eigenvectors are desired, then save rotations. +* + IF( ICOMPZ.GT.0 ) THEN + WORK( I ) = C + WORK( N-1+I ) = -S + END IF +* + 70 CONTINUE +* +* If eigenvectors are desired, then apply saved rotations. +* + IF( ICOMPZ.GT.0 ) THEN + MM = M - L + 1 + CALL DLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ), + $ Z( 1, L ), LDZ ) + END IF +* + D( L ) = D( L ) - P + E( L ) = G + GO TO 40 +* +* Eigenvalue found. +* + 80 CONTINUE + D( L ) = P +* + L = L + 1 + IF( L.LE.LEND ) + $ GO TO 40 + GO TO 140 +* + ELSE +* +* QR Iteration +* +* Look for small superdiagonal element. +* + 90 CONTINUE + IF( L.NE.LEND ) THEN + LENDP1 = LEND + 1 + DO 100 M = L, LENDP1, -1 + TST = ABS( E( M-1 ) )**2 + IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+ + $ SAFMIN )GO TO 110 + 100 CONTINUE + END IF +* + M = LEND +* + 110 CONTINUE + IF( M.GT.LEND ) + $ E( M-1 ) = ZERO + P = D( L ) + IF( M.EQ.L ) + $ GO TO 130 +* +* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 +* to compute its eigensystem. +* + IF( M.EQ.L-1 ) THEN + IF( ICOMPZ.GT.0 ) THEN + CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S ) + WORK( M ) = C + WORK( N-1+M ) = S + CALL DLASR( 'R', 'V', 'F', N, 2, WORK( M ), + $ WORK( N-1+M ), Z( 1, L-1 ), LDZ ) + ELSE + CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 ) + END IF + D( L-1 ) = RT1 + D( L ) = RT2 + E( L-1 ) = ZERO + L = L - 2 + IF( L.GE.LEND ) + $ GO TO 90 + GO TO 140 + END IF +* + IF( JTOT.EQ.NMAXIT ) + $ GO TO 140 + JTOT = JTOT + 1 +* +* Form shift. +* + G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) ) + R = DLAPY2( G, ONE ) + G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) ) +* + S = ONE + C = ONE + P = ZERO +* +* Inner loop +* + LM1 = L - 1 + DO 120 I = M, LM1 + F = S*E( I ) + B = C*E( I ) + CALL DLARTG( G, F, C, S, R ) + IF( I.NE.M ) + $ E( I-1 ) = R + G = D( I ) - P + R = ( D( I+1 )-G )*S + TWO*C*B + P = S*R + D( I ) = G + P + G = C*R - B +* +* If eigenvectors are desired, then save rotations. +* + IF( ICOMPZ.GT.0 ) THEN + WORK( I ) = C + WORK( N-1+I ) = S + END IF +* + 120 CONTINUE +* +* If eigenvectors are desired, then apply saved rotations. +* + IF( ICOMPZ.GT.0 ) THEN + MM = L - M + 1 + CALL DLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ), + $ Z( 1, M ), LDZ ) + END IF +* + D( L ) = D( L ) - P + E( LM1 ) = G + GO TO 90 +* +* Eigenvalue found. +* + 130 CONTINUE + D( L ) = P +* + L = L - 1 + IF( L.GE.LEND ) + $ GO TO 90 + GO TO 140 +* + END IF +* +* Undo scaling if necessary +* + 140 CONTINUE + IF( ISCALE.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, + $ D( LSV ), N, INFO ) + CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ), + $ N, INFO ) + ELSE IF( ISCALE.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, + $ D( LSV ), N, INFO ) + CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ), + $ N, INFO ) + END IF +* +* Check for no convergence to an eigenvalue after a total +* of N*MAXIT iterations. +* + IF( JTOT.LT.NMAXIT ) + $ GO TO 10 + DO 150 I = 1, N - 1 + IF( E( I ).NE.ZERO ) + $ INFO = INFO + 1 + 150 CONTINUE + GO TO 190 +* +* Order eigenvalues and eigenvectors. +* + 160 CONTINUE + IF( ICOMPZ.EQ.0 ) THEN +* +* Use Quick Sort +* + CALL DLASRT( 'I', N, D, INFO ) +* + ELSE +* +* Use Selection Sort to minimize swaps of eigenvectors +* + DO 180 II = 2, N + I = II - 1 + K = I + P = D( I ) + DO 170 J = II, N + IF( D( J ).LT.P ) THEN + K = J + P = D( J ) + END IF + 170 CONTINUE + IF( K.NE.I ) THEN + D( K ) = D( I ) + D( I ) = P + CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 ) + END IF + 180 CONTINUE + END IF +* + 190 CONTINUE + RETURN +* +* End of DSTEQR +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dswap.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dswap.f new file mode 100644 index 000000000..e5ec80690 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dswap.f @@ -0,0 +1,123 @@ +*> \brief \b DSWAP +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* SUBROUTINE DSWAP(N,DX,INCX,DY,INCY) +* +* .. Scalar Arguments .. +* INTEGER INCX,INCY,N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION DX(*),DY(*) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> interchanges two vectors. +*> uses unrolled loops for increments equal one. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup double_blas_level1 +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> jack dongarra, linpack, 3/11/78. +*> modified 12/3/93, array(1) declarations changed to array(*) +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DSWAP(N,DX,INCX,DY,INCY) +* +* -- Reference BLAS level1 routine (version 3.4.0) -- +* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER INCX,INCY,N +* .. +* .. Array Arguments .. + DOUBLE PRECISION DX(*),DY(*) +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + DOUBLE PRECISION DTEMP + INTEGER I,IX,IY,M,MP1 +* .. +* .. Intrinsic Functions .. + INTRINSIC MOD +* .. + IF (N.LE.0) RETURN + IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN +* +* code for both increments equal to 1 +* +* +* clean-up loop +* + M = MOD(N,3) + IF (M.NE.0) THEN + DO I = 1,M + DTEMP = DX(I) + DX(I) = DY(I) + DY(I) = DTEMP + END DO + IF (N.LT.3) RETURN + END IF + MP1 = M + 1 + DO I = MP1,N,3 + DTEMP = DX(I) + DX(I) = DY(I) + DY(I) = DTEMP + DTEMP = DX(I+1) + DX(I+1) = DY(I+1) + DY(I+1) = DTEMP + DTEMP = DX(I+2) + DX(I+2) = DY(I+2) + DY(I+2) = DTEMP + END DO + ELSE +* +* code for unequal increments or equal increments not equal +* to 1 +* + IX = 1 + IY = 1 + IF (INCX.LT.0) IX = (-N+1)*INCX + 1 + IF (INCY.LT.0) IY = (-N+1)*INCY + 1 + DO I = 1,N + DTEMP = DX(IX) + DX(IX) = DY(IY) + DY(IY) = DTEMP + IX = IX + INCX + IY = IY + INCY + END DO + END IF + RETURN + END + diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dtrsm.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dtrsm.f new file mode 100644 index 000000000..dec5c8d02 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/dtrsm.f @@ -0,0 +1,376 @@ + SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) +* .. Scalar Arguments .. + DOUBLE PRECISION ALPHA + INTEGER LDA,LDB,M,N + CHARACTER DIAG,SIDE,TRANSA,UPLO +* .. +* .. Array Arguments .. + DOUBLE PRECISION A(LDA,*),B(LDB,*) +* .. +* +* Purpose +* ======= +* +* DTRSM solves one of the matrix equations +* +* op( A )*X = alpha*B, or X*op( A ) = alpha*B, +* +* where alpha is a scalar, X and B are m by n matrices, A is a unit, or +* non-unit, upper or lower triangular matrix and op( A ) is one of +* +* op( A ) = A or op( A ) = A**T. +* +* The matrix X is overwritten on B. +* +* Arguments +* ========== +* +* SIDE - CHARACTER*1. +* On entry, SIDE specifies whether op( A ) appears on the left +* or right of X as follows: +* +* SIDE = 'L' or 'l' op( A )*X = alpha*B. +* +* SIDE = 'R' or 'r' X*op( A ) = alpha*B. +* +* Unchanged on exit. +* +* UPLO - CHARACTER*1. +* On entry, UPLO specifies whether the matrix A is an upper or +* lower triangular matrix as follows: +* +* UPLO = 'U' or 'u' A is an upper triangular matrix. +* +* UPLO = 'L' or 'l' A is a lower triangular matrix. +* +* Unchanged on exit. +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n' op( A ) = A. +* +* TRANSA = 'T' or 't' op( A ) = A**T. +* +* TRANSA = 'C' or 'c' op( A ) = A**T. +* +* Unchanged on exit. +* +* DIAG - CHARACTER*1. +* On entry, DIAG specifies whether or not A is unit triangular +* as follows: +* +* DIAG = 'U' or 'u' A is assumed to be unit triangular. +* +* DIAG = 'N' or 'n' A is not assumed to be unit +* triangular. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of B. M must be at +* least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of B. N must be +* at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. When alpha is +* zero then A is not referenced and B need not be set before +* entry. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m +* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. +* Before entry with UPLO = 'U' or 'u', the leading k by k +* upper triangular part of the array A must contain the upper +* triangular matrix and the strictly lower triangular part of +* A is not referenced. +* Before entry with UPLO = 'L' or 'l', the leading k by k +* lower triangular part of the array A must contain the lower +* triangular matrix and the strictly upper triangular part of +* A is not referenced. +* Note that when DIAG = 'U' or 'u', the diagonal elements of +* A are not referenced either, but are assumed to be unity. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When SIDE = 'L' or 'l' then +* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' +* then LDA must be at least max( 1, n ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). +* Before entry, the leading m by n part of the array B must +* contain the right-hand side matrix B, and on exit is +* overwritten by the solution matrix X. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. LDB must be at least +* max( 1, m ). +* Unchanged on exit. +* +* Further Details +* =============== +* +* Level 3 Blas routine. +* +* +* -- Written on 8-February-1989. +* Jack Dongarra, Argonne National Laboratory. +* Iain Duff, AERE Harwell. +* Jeremy Du Croz, Numerical Algorithms Group Ltd. +* Sven Hammarling, Numerical Algorithms Group Ltd. +* +* ===================================================================== +* +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Local Scalars .. + DOUBLE PRECISION TEMP + INTEGER I,INFO,J,K,NROWA + LOGICAL LSIDE,NOUNIT,UPPER +* .. +* .. Parameters .. + DOUBLE PRECISION ONE,ZERO + PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) +* .. +* +* Test the input parameters. +* + LSIDE = LSAME(SIDE,'L') + IF (LSIDE) THEN + NROWA = M + ELSE + NROWA = N + END IF + NOUNIT = LSAME(DIAG,'N') + UPPER = LSAME(UPLO,'U') +* + INFO = 0 + IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN + INFO = 1 + ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN + INFO = 2 + ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + + (.NOT.LSAME(TRANSA,'T')) .AND. + + (.NOT.LSAME(TRANSA,'C'))) THEN + INFO = 3 + ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN + INFO = 4 + ELSE IF (M.LT.0) THEN + INFO = 5 + ELSE IF (N.LT.0) THEN + INFO = 6 + ELSE IF (LDA.LT.MAX(1,NROWA)) THEN + INFO = 9 + ELSE IF (LDB.LT.MAX(1,M)) THEN + INFO = 11 + END IF + IF (INFO.NE.0) THEN + CALL XERBLA('DTRSM ',INFO) + RETURN + END IF +* +* Quick return if possible. +* + IF (M.EQ.0 .OR. N.EQ.0) RETURN +* +* And when alpha.eq.zero. +* + IF (ALPHA.EQ.ZERO) THEN + DO 20 J = 1,N + DO 10 I = 1,M + B(I,J) = ZERO + 10 CONTINUE + 20 CONTINUE + RETURN + END IF +* +* Start the operations. +* + IF (LSIDE) THEN + IF (LSAME(TRANSA,'N')) THEN +* +* Form B := alpha*inv( A )*B. +* + IF (UPPER) THEN + DO 60 J = 1,N + IF (ALPHA.NE.ONE) THEN + DO 30 I = 1,M + B(I,J) = ALPHA*B(I,J) + 30 CONTINUE + END IF + DO 50 K = M,1,-1 + IF (B(K,J).NE.ZERO) THEN + IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) + DO 40 I = 1,K - 1 + B(I,J) = B(I,J) - B(K,J)*A(I,K) + 40 CONTINUE + END IF + 50 CONTINUE + 60 CONTINUE + ELSE + DO 100 J = 1,N + IF (ALPHA.NE.ONE) THEN + DO 70 I = 1,M + B(I,J) = ALPHA*B(I,J) + 70 CONTINUE + END IF + DO 90 K = 1,M + IF (B(K,J).NE.ZERO) THEN + IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) + DO 80 I = K + 1,M + B(I,J) = B(I,J) - B(K,J)*A(I,K) + 80 CONTINUE + END IF + 90 CONTINUE + 100 CONTINUE + END IF + ELSE +* +* Form B := alpha*inv( A**T )*B. +* + IF (UPPER) THEN + DO 130 J = 1,N + DO 120 I = 1,M + TEMP = ALPHA*B(I,J) + DO 110 K = 1,I - 1 + TEMP = TEMP - A(K,I)*B(K,J) + 110 CONTINUE + IF (NOUNIT) TEMP = TEMP/A(I,I) + B(I,J) = TEMP + 120 CONTINUE + 130 CONTINUE + ELSE + DO 160 J = 1,N + DO 150 I = M,1,-1 + TEMP = ALPHA*B(I,J) + DO 140 K = I + 1,M + TEMP = TEMP - A(K,I)*B(K,J) + 140 CONTINUE + IF (NOUNIT) TEMP = TEMP/A(I,I) + B(I,J) = TEMP + 150 CONTINUE + 160 CONTINUE + END IF + END IF + ELSE + IF (LSAME(TRANSA,'N')) THEN +* +* Form B := alpha*B*inv( A ). +* + IF (UPPER) THEN + DO 210 J = 1,N + IF (ALPHA.NE.ONE) THEN + DO 170 I = 1,M + B(I,J) = ALPHA*B(I,J) + 170 CONTINUE + END IF + DO 190 K = 1,J - 1 + IF (A(K,J).NE.ZERO) THEN + DO 180 I = 1,M + B(I,J) = B(I,J) - A(K,J)*B(I,K) + 180 CONTINUE + END IF + 190 CONTINUE + IF (NOUNIT) THEN + TEMP = ONE/A(J,J) + DO 200 I = 1,M + B(I,J) = TEMP*B(I,J) + 200 CONTINUE + END IF + 210 CONTINUE + ELSE + DO 260 J = N,1,-1 + IF (ALPHA.NE.ONE) THEN + DO 220 I = 1,M + B(I,J) = ALPHA*B(I,J) + 220 CONTINUE + END IF + DO 240 K = J + 1,N + IF (A(K,J).NE.ZERO) THEN + DO 230 I = 1,M + B(I,J) = B(I,J) - A(K,J)*B(I,K) + 230 CONTINUE + END IF + 240 CONTINUE + IF (NOUNIT) THEN + TEMP = ONE/A(J,J) + DO 250 I = 1,M + B(I,J) = TEMP*B(I,J) + 250 CONTINUE + END IF + 260 CONTINUE + END IF + ELSE +* +* Form B := alpha*B*inv( A**T ). +* + IF (UPPER) THEN + DO 310 K = N,1,-1 + IF (NOUNIT) THEN + TEMP = ONE/A(K,K) + DO 270 I = 1,M + B(I,K) = TEMP*B(I,K) + 270 CONTINUE + END IF + DO 290 J = 1,K - 1 + IF (A(J,K).NE.ZERO) THEN + TEMP = A(J,K) + DO 280 I = 1,M + B(I,J) = B(I,J) - TEMP*B(I,K) + 280 CONTINUE + END IF + 290 CONTINUE + IF (ALPHA.NE.ONE) THEN + DO 300 I = 1,M + B(I,K) = ALPHA*B(I,K) + 300 CONTINUE + END IF + 310 CONTINUE + ELSE + DO 360 K = 1,N + IF (NOUNIT) THEN + TEMP = ONE/A(K,K) + DO 320 I = 1,M + B(I,K) = TEMP*B(I,K) + 320 CONTINUE + END IF + DO 340 J = K + 1,N + IF (A(J,K).NE.ZERO) THEN + TEMP = A(J,K) + DO 330 I = 1,M + B(I,J) = B(I,J) - TEMP*B(I,K) + 330 CONTINUE + END IF + 340 CONTINUE + IF (ALPHA.NE.ONE) THEN + DO 350 I = 1,M + B(I,K) = ALPHA*B(I,K) + 350 CONTINUE + END IF + 360 CONTINUE + END IF + END IF + END IF +* + RETURN +* +* End of DTRSM . +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/idamax.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/idamax.f new file mode 100644 index 000000000..2cc0f9a5f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/idamax.f @@ -0,0 +1,61 @@ + INTEGER FUNCTION IDAMAX(N,DX,INCX) +* .. Scalar Arguments .. + INTEGER INCX,N +* .. +* .. Array Arguments .. + DOUBLE PRECISION DX(*) +* .. +* +* Purpose +* ======= +* +* IDAMAX finds the index of element having max. absolute value. +* +* Further Details +* =============== +* +* jack dongarra, linpack, 3/11/78. +* modified 3/93 to return if incx .le. 0. +* modified 12/3/93, array(1) declarations changed to array(*) +* +* ===================================================================== +* +* .. Local Scalars .. + DOUBLE PRECISION DMAX + INTEGER I,IX +* .. +* .. Intrinsic Functions .. + INTRINSIC DABS +* .. + IDAMAX = 0 + IF (N.LT.1 .OR. INCX.LE.0) RETURN + IDAMAX = 1 + IF (N.EQ.1) RETURN + IF (INCX.EQ.1) THEN +* +* code for increment equal to 1 +* + DMAX = DABS(DX(1)) + DO I = 2,N + IF (DABS(DX(I)).GT.DMAX) THEN + IDAMAX = I + DMAX = DABS(DX(I)) + END IF + END DO + ELSE +* +* code for increment not equal to 1 +* + IX = 1 + DMAX = DABS(DX(1)) + IX = IX + INCX + DO I = 2,N + IF (DABS(DX(IX)).GT.DMAX) THEN + IDAMAX = I + DMAX = DABS(DX(IX)) + END IF + IX = IX + INCX + END DO + END IF + RETURN + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ieeeck.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ieeeck.f new file mode 100644 index 000000000..132e43677 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ieeeck.f @@ -0,0 +1,203 @@ +*> \brief \b IEEECK +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download IEEECK + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE ) +* +* .. Scalar Arguments .. +* INTEGER ISPEC +* REAL ONE, ZERO +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> IEEECK is called from the ILAENV to verify that Infinity and +*> possibly NaN arithmetic is safe (i.e. will not trap). +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] ISPEC +*> \verbatim +*> ISPEC is INTEGER +*> Specifies whether to test just for inifinity arithmetic +*> or whether to test for infinity and NaN arithmetic. +*> = 0: Verify infinity arithmetic only. +*> = 1: Verify infinity and NaN arithmetic. +*> \endverbatim +*> +*> \param[in] ZERO +*> \verbatim +*> ZERO is REAL +*> Must contain the value 0.0 +*> This is passed to prevent the compiler from optimizing +*> away this code. +*> \endverbatim +*> +*> \param[in] ONE +*> \verbatim +*> ONE is REAL +*> Must contain the value 1.0 +*> This is passed to prevent the compiler from optimizing +*> away this code. +*> +*> RETURN VALUE: INTEGER +*> = 0: Arithmetic failed to produce the correct answers +*> = 1: Arithmetic produced the correct answers +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER ISPEC + REAL ONE, ZERO +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + REAL NAN1, NAN2, NAN3, NAN4, NAN5, NAN6, NEGINF, + $ NEGZRO, NEWZRO, POSINF +* .. +* .. Executable Statements .. + IEEECK = 1 +* + POSINF = ONE / ZERO + IF( POSINF.LE.ONE ) THEN + IEEECK = 0 + RETURN + END IF +* + NEGINF = -ONE / ZERO + IF( NEGINF.GE.ZERO ) THEN + IEEECK = 0 + RETURN + END IF +* + NEGZRO = ONE / ( NEGINF+ONE ) + IF( NEGZRO.NE.ZERO ) THEN + IEEECK = 0 + RETURN + END IF +* + NEGINF = ONE / NEGZRO + IF( NEGINF.GE.ZERO ) THEN + IEEECK = 0 + RETURN + END IF +* + NEWZRO = NEGZRO + ZERO + IF( NEWZRO.NE.ZERO ) THEN + IEEECK = 0 + RETURN + END IF +* + POSINF = ONE / NEWZRO + IF( POSINF.LE.ONE ) THEN + IEEECK = 0 + RETURN + END IF +* + NEGINF = NEGINF*POSINF + IF( NEGINF.GE.ZERO ) THEN + IEEECK = 0 + RETURN + END IF +* + POSINF = POSINF*POSINF + IF( POSINF.LE.ONE ) THEN + IEEECK = 0 + RETURN + END IF +* +* +* +* +* Return if we were only asked to check infinity arithmetic +* + IF( ISPEC.EQ.0 ) + $ RETURN +* + NAN1 = POSINF + NEGINF +* + NAN2 = POSINF / NEGINF +* + NAN3 = POSINF / POSINF +* + NAN4 = POSINF*ZERO +* + NAN5 = NEGINF*NEGZRO +* + NAN6 = NAN5*ZERO +* + IF( NAN1.EQ.NAN1 ) THEN + IEEECK = 0 + RETURN + END IF +* + IF( NAN2.EQ.NAN2 ) THEN + IEEECK = 0 + RETURN + END IF +* + IF( NAN3.EQ.NAN3 ) THEN + IEEECK = 0 + RETURN + END IF +* + IF( NAN4.EQ.NAN4 ) THEN + IEEECK = 0 + RETURN + END IF +* + IF( NAN5.EQ.NAN5 ) THEN + IEEECK = 0 + RETURN + END IF +* + IF( NAN6.EQ.NAN6 ) THEN + IEEECK = 0 + RETURN + END IF +* + RETURN + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ilaenv.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ilaenv.f new file mode 100644 index 000000000..867464de3 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/ilaenv.f @@ -0,0 +1,624 @@ +*> \brief \b ILAENV +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download ILAENV + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) +* +* .. Scalar Arguments .. +* CHARACTER*( * ) NAME, OPTS +* INTEGER ISPEC, N1, N2, N3, N4 +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ILAENV is called from the LAPACK routines to choose problem-dependent +*> parameters for the local environment. See ISPEC for a description of +*> the parameters. +*> +*> ILAENV returns an INTEGER +*> if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC +*> if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value. +*> +*> This version provides a set of parameters which should give good, +*> but not optimal, performance on many of the currently available +*> computers. Users are encouraged to modify this subroutine to set +*> the tuning parameters for their particular machine using the option +*> and problem size information in the arguments. +*> +*> This routine will not function correctly if it is converted to all +*> lower case. Converting it to all upper case is allowed. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] ISPEC +*> \verbatim +*> ISPEC is INTEGER +*> Specifies the parameter to be returned as the value of +*> ILAENV. +*> = 1: the optimal blocksize; if this value is 1, an unblocked +*> algorithm will give the best performance. +*> = 2: the minimum block size for which the block routine +*> should be used; if the usable block size is less than +*> this value, an unblocked routine should be used. +*> = 3: the crossover point (in a block routine, for N less +*> than this value, an unblocked routine should be used) +*> = 4: the number of shifts, used in the nonsymmetric +*> eigenvalue routines (DEPRECATED) +*> = 5: the minimum column dimension for blocking to be used; +*> rectangular blocks must have dimension at least k by m, +*> where k is given by ILAENV(2,...) and m by ILAENV(5,...) +*> = 6: the crossover point for the SVD (when reducing an m by n +*> matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds +*> this value, a QR factorization is used first to reduce +*> the matrix to a triangular form.) +*> = 7: the number of processors +*> = 8: the crossover point for the multishift QR method +*> for nonsymmetric eigenvalue problems (DEPRECATED) +*> = 9: maximum size of the subproblems at the bottom of the +*> computation tree in the divide-and-conquer algorithm +*> (used by xGELSD and xGESDD) +*> =10: ieee NaN arithmetic can be trusted not to trap +*> =11: infinity arithmetic can be trusted not to trap +*> 12 <= ISPEC <= 16: +*> xHSEQR or one of its subroutines, +*> see IPARMQ for detailed explanation +*> \endverbatim +*> +*> \param[in] NAME +*> \verbatim +*> NAME is CHARACTER*(*) +*> The name of the calling subroutine, in either upper case or +*> lower case. +*> \endverbatim +*> +*> \param[in] OPTS +*> \verbatim +*> OPTS is CHARACTER*(*) +*> The character options to the subroutine NAME, concatenated +*> into a single character string. For example, UPLO = 'U', +*> TRANS = 'T', and DIAG = 'N' for a triangular routine would +*> be specified as OPTS = 'UTN'. +*> \endverbatim +*> +*> \param[in] N1 +*> \verbatim +*> N1 is INTEGER +*> \endverbatim +*> +*> \param[in] N2 +*> \verbatim +*> N2 is INTEGER +*> \endverbatim +*> +*> \param[in] N3 +*> \verbatim +*> N3 is INTEGER +*> \endverbatim +*> +*> \param[in] N4 +*> \verbatim +*> N4 is INTEGER +*> Problem dimensions for the subroutine NAME; these may not all +*> be required. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> The following conventions have been used when calling ILAENV from the +*> LAPACK routines: +*> 1) OPTS is a concatenation of all of the character options to +*> subroutine NAME, in the same order that they appear in the +*> argument list for NAME, even if they are not used in determining +*> the value of the parameter specified by ISPEC. +*> 2) The problem dimensions N1, N2, N3, N4 are specified in the order +*> that they appear in the argument list for NAME. N1 is used +*> first, N2 second, and so on, and unused problem dimensions are +*> passed a value of -1. +*> 3) The parameter value returned by ILAENV is checked for validity in +*> the calling subroutine. For example, ILAENV is used to retrieve +*> the optimal blocksize for STRTRI as follows: +*> +*> NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) +*> IF( NB.LE.1 ) NB = MAX( 1, N ) +*> \endverbatim +*> +* ===================================================================== + INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER*( * ) NAME, OPTS + INTEGER ISPEC, N1, N2, N3, N4 +* .. +* +* ===================================================================== +* +* .. Local Scalars .. + INTEGER I, IC, IZ, NB, NBMIN, NX + LOGICAL CNAME, SNAME + CHARACTER C1*1, C2*2, C4*2, C3*3, SUBNAM*6 +* .. +* .. Intrinsic Functions .. + INTRINSIC CHAR, ICHAR, INT, MIN, REAL +* .. +* .. External Functions .. + INTEGER IEEECK, IPARMQ + EXTERNAL IEEECK, IPARMQ +* .. +* .. Executable Statements .. +* + GO TO ( 10, 10, 10, 80, 90, 100, 110, 120, + $ 130, 140, 150, 160, 160, 160, 160, 160 )ISPEC +* +* Invalid value for ISPEC +* + ILAENV = -1 + RETURN +* + 10 CONTINUE +* +* Convert NAME to upper case if the first character is lower case. +* + ILAENV = 1 + SUBNAM = NAME + IC = ICHAR( SUBNAM( 1: 1 ) ) + IZ = ICHAR( 'Z' ) + IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN +* +* ASCII character set +* + IF( IC.GE.97 .AND. IC.LE.122 ) THEN + SUBNAM( 1: 1 ) = CHAR( IC-32 ) + DO 20 I = 2, 6 + IC = ICHAR( SUBNAM( I: I ) ) + IF( IC.GE.97 .AND. IC.LE.122 ) + $ SUBNAM( I: I ) = CHAR( IC-32 ) + 20 CONTINUE + END IF +* + ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN +* +* EBCDIC character set +* + IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR. + $ ( IC.GE.145 .AND. IC.LE.153 ) .OR. + $ ( IC.GE.162 .AND. IC.LE.169 ) ) THEN + SUBNAM( 1: 1 ) = CHAR( IC+64 ) + DO 30 I = 2, 6 + IC = ICHAR( SUBNAM( I: I ) ) + IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR. + $ ( IC.GE.145 .AND. IC.LE.153 ) .OR. + $ ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I: + $ I ) = CHAR( IC+64 ) + 30 CONTINUE + END IF +* + ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN +* +* Prime machines: ASCII+128 +* + IF( IC.GE.225 .AND. IC.LE.250 ) THEN + SUBNAM( 1: 1 ) = CHAR( IC-32 ) + DO 40 I = 2, 6 + IC = ICHAR( SUBNAM( I: I ) ) + IF( IC.GE.225 .AND. IC.LE.250 ) + $ SUBNAM( I: I ) = CHAR( IC-32 ) + 40 CONTINUE + END IF + END IF +* + C1 = SUBNAM( 1: 1 ) + SNAME = C1.EQ.'S' .OR. C1.EQ.'D' + CNAME = C1.EQ.'C' .OR. C1.EQ.'Z' + IF( .NOT.( CNAME .OR. SNAME ) ) + $ RETURN + C2 = SUBNAM( 2: 3 ) + C3 = SUBNAM( 4: 6 ) + C4 = C3( 2: 3 ) +* + GO TO ( 50, 60, 70 )ISPEC +* + 50 CONTINUE +* +* ISPEC = 1: block size +* +* In these examples, separate code is provided for setting NB for +* real and complex. We assume that NB will take the same value in +* single or double precision. +* + NB = 1 +* + IF( C2.EQ.'GE' ) THEN + IF( C3.EQ.'TRF' ) THEN + IF( SNAME ) THEN + NB = 64 + ELSE + NB = 64 + END IF + ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. + $ C3.EQ.'QLF' ) THEN + IF( SNAME ) THEN + NB = 32 + ELSE + NB = 32 + END IF + ELSE IF( C3.EQ.'HRD' ) THEN + IF( SNAME ) THEN + NB = 32 + ELSE + NB = 32 + END IF + ELSE IF( C3.EQ.'BRD' ) THEN + IF( SNAME ) THEN + NB = 32 + ELSE + NB = 32 + END IF + ELSE IF( C3.EQ.'TRI' ) THEN + IF( SNAME ) THEN + NB = 64 + ELSE + NB = 64 + END IF + END IF + ELSE IF( C2.EQ.'PO' ) THEN + IF( C3.EQ.'TRF' ) THEN + IF( SNAME ) THEN + NB = 64 + ELSE + NB = 64 + END IF + END IF + ELSE IF( C2.EQ.'SY' ) THEN + IF( C3.EQ.'TRF' ) THEN + IF( SNAME ) THEN + NB = 64 + ELSE + NB = 64 + END IF + ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN + NB = 32 + ELSE IF( SNAME .AND. C3.EQ.'GST' ) THEN + NB = 64 + END IF + ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN + IF( C3.EQ.'TRF' ) THEN + NB = 64 + ELSE IF( C3.EQ.'TRD' ) THEN + NB = 32 + ELSE IF( C3.EQ.'GST' ) THEN + NB = 64 + END IF + ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN + IF( C3( 1: 1 ).EQ.'G' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NB = 32 + END IF + ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NB = 32 + END IF + END IF + ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN + IF( C3( 1: 1 ).EQ.'G' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NB = 32 + END IF + ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NB = 32 + END IF + END IF + ELSE IF( C2.EQ.'GB' ) THEN + IF( C3.EQ.'TRF' ) THEN + IF( SNAME ) THEN + IF( N4.LE.64 ) THEN + NB = 1 + ELSE + NB = 32 + END IF + ELSE + IF( N4.LE.64 ) THEN + NB = 1 + ELSE + NB = 32 + END IF + END IF + END IF + ELSE IF( C2.EQ.'PB' ) THEN + IF( C3.EQ.'TRF' ) THEN + IF( SNAME ) THEN + IF( N2.LE.64 ) THEN + NB = 1 + ELSE + NB = 32 + END IF + ELSE + IF( N2.LE.64 ) THEN + NB = 1 + ELSE + NB = 32 + END IF + END IF + END IF + ELSE IF( C2.EQ.'TR' ) THEN + IF( C3.EQ.'TRI' ) THEN + IF( SNAME ) THEN + NB = 64 + ELSE + NB = 64 + END IF + END IF + ELSE IF( C2.EQ.'LA' ) THEN + IF( C3.EQ.'UUM' ) THEN + IF( SNAME ) THEN + NB = 64 + ELSE + NB = 64 + END IF + END IF + ELSE IF( SNAME .AND. C2.EQ.'ST' ) THEN + IF( C3.EQ.'EBZ' ) THEN + NB = 1 + END IF + END IF + ILAENV = NB + RETURN +* + 60 CONTINUE +* +* ISPEC = 2: minimum block size +* + NBMIN = 2 + IF( C2.EQ.'GE' ) THEN + IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ. + $ 'QLF' ) THEN + IF( SNAME ) THEN + NBMIN = 2 + ELSE + NBMIN = 2 + END IF + ELSE IF( C3.EQ.'HRD' ) THEN + IF( SNAME ) THEN + NBMIN = 2 + ELSE + NBMIN = 2 + END IF + ELSE IF( C3.EQ.'BRD' ) THEN + IF( SNAME ) THEN + NBMIN = 2 + ELSE + NBMIN = 2 + END IF + ELSE IF( C3.EQ.'TRI' ) THEN + IF( SNAME ) THEN + NBMIN = 2 + ELSE + NBMIN = 2 + END IF + END IF + ELSE IF( C2.EQ.'SY' ) THEN + IF( C3.EQ.'TRF' ) THEN + IF( SNAME ) THEN + NBMIN = 8 + ELSE + NBMIN = 8 + END IF + ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN + NBMIN = 2 + END IF + ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN + IF( C3.EQ.'TRD' ) THEN + NBMIN = 2 + END IF + ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN + IF( C3( 1: 1 ).EQ.'G' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NBMIN = 2 + END IF + ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NBMIN = 2 + END IF + END IF + ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN + IF( C3( 1: 1 ).EQ.'G' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NBMIN = 2 + END IF + ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NBMIN = 2 + END IF + END IF + END IF + ILAENV = NBMIN + RETURN +* + 70 CONTINUE +* +* ISPEC = 3: crossover point +* + NX = 0 + IF( C2.EQ.'GE' ) THEN + IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ. + $ 'QLF' ) THEN + IF( SNAME ) THEN + NX = 128 + ELSE + NX = 128 + END IF + ELSE IF( C3.EQ.'HRD' ) THEN + IF( SNAME ) THEN + NX = 128 + ELSE + NX = 128 + END IF + ELSE IF( C3.EQ.'BRD' ) THEN + IF( SNAME ) THEN + NX = 128 + ELSE + NX = 128 + END IF + END IF + ELSE IF( C2.EQ.'SY' ) THEN + IF( SNAME .AND. C3.EQ.'TRD' ) THEN + NX = 32 + END IF + ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN + IF( C3.EQ.'TRD' ) THEN + NX = 32 + END IF + ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN + IF( C3( 1: 1 ).EQ.'G' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NX = 128 + END IF + END IF + ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN + IF( C3( 1: 1 ).EQ.'G' ) THEN + IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ. + $ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' ) + $ THEN + NX = 128 + END IF + END IF + END IF + ILAENV = NX + RETURN +* + 80 CONTINUE +* +* ISPEC = 4: number of shifts (used by xHSEQR) +* + ILAENV = 6 + RETURN +* + 90 CONTINUE +* +* ISPEC = 5: minimum column dimension (not used) +* + ILAENV = 2 + RETURN +* + 100 CONTINUE +* +* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) +* + ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 ) + RETURN +* + 110 CONTINUE +* +* ISPEC = 7: number of processors (not used) +* + ILAENV = 1 + RETURN +* + 120 CONTINUE +* +* ISPEC = 8: crossover point for multishift (used by xHSEQR) +* + ILAENV = 50 + RETURN +* + 130 CONTINUE +* +* ISPEC = 9: maximum size of the subproblems at the bottom of the +* computation tree in the divide-and-conquer algorithm +* (used by xGELSD and xGESDD) +* + ILAENV = 25 + RETURN +* + 140 CONTINUE +* +* ISPEC = 10: ieee NaN arithmetic can be trusted not to trap +* +* ILAENV = 0 + ILAENV = 1 + IF( ILAENV.EQ.1 ) THEN + ILAENV = IEEECK( 1, 0.0, 1.0 ) + END IF + RETURN +* + 150 CONTINUE +* +* ISPEC = 11: infinity arithmetic can be trusted not to trap +* +* ILAENV = 0 + ILAENV = 1 + IF( ILAENV.EQ.1 ) THEN + ILAENV = IEEECK( 0, 0.0, 1.0 ) + END IF + RETURN +* + 160 CONTINUE +* +* 12 <= ISPEC <= 16: xHSEQR or one of its subroutines. +* + ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) + RETURN +* +* End of ILAENV +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/iparmq.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/iparmq.f new file mode 100644 index 000000000..bd5bd7a0d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/iparmq.f @@ -0,0 +1,322 @@ +*> \brief \b IPARMQ +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download IPARMQ + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK ) +* +* .. Scalar Arguments .. +* INTEGER IHI, ILO, ISPEC, LWORK, N +* CHARACTER NAME*( * ), OPTS*( * ) +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> This program sets problem and machine dependent parameters +*> useful for xHSEQR and its subroutines. It is called whenever +*> ILAENV is called with 12 <= ISPEC <= 16 +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] ISPEC +*> \verbatim +*> ISPEC is integer scalar +*> ISPEC specifies which tunable parameter IPARMQ should +*> return. +*> +*> ISPEC=12: (INMIN) Matrices of order nmin or less +*> are sent directly to xLAHQR, the implicit +*> double shift QR algorithm. NMIN must be +*> at least 11. +*> +*> ISPEC=13: (INWIN) Size of the deflation window. +*> This is best set greater than or equal to +*> the number of simultaneous shifts NS. +*> Larger matrices benefit from larger deflation +*> windows. +*> +*> ISPEC=14: (INIBL) Determines when to stop nibbling and +*> invest in an (expensive) multi-shift QR sweep. +*> If the aggressive early deflation subroutine +*> finds LD converged eigenvalues from an order +*> NW deflation window and LD.GT.(NW*NIBBLE)/100, +*> then the next QR sweep is skipped and early +*> deflation is applied immediately to the +*> remaining active diagonal block. Setting +*> IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a +*> multi-shift QR sweep whenever early deflation +*> finds a converged eigenvalue. Setting +*> IPARMQ(ISPEC=14) greater than or equal to 100 +*> prevents TTQRE from skipping a multi-shift +*> QR sweep. +*> +*> ISPEC=15: (NSHFTS) The number of simultaneous shifts in +*> a multi-shift QR iteration. +*> +*> ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the +*> following meanings. +*> 0: During the multi-shift QR sweep, +*> xLAQR5 does not accumulate reflections and +*> does not use matrix-matrix multiply to +*> update the far-from-diagonal matrix +*> entries. +*> 1: During the multi-shift QR sweep, +*> xLAQR5 and/or xLAQRaccumulates reflections and uses +*> matrix-matrix multiply to update the +*> far-from-diagonal matrix entries. +*> 2: During the multi-shift QR sweep. +*> xLAQR5 accumulates reflections and takes +*> advantage of 2-by-2 block structure during +*> matrix-matrix multiplies. +*> (If xTRMM is slower than xGEMM, then +*> IPARMQ(ISPEC=16)=1 may be more efficient than +*> IPARMQ(ISPEC=16)=2 despite the greater level of +*> arithmetic work implied by the latter choice.) +*> \endverbatim +*> +*> \param[in] NAME +*> \verbatim +*> NAME is character string +*> Name of the calling subroutine +*> \endverbatim +*> +*> \param[in] OPTS +*> \verbatim +*> OPTS is character string +*> This is a concatenation of the string arguments to +*> TTQRE. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is integer scalar +*> N is the order of the Hessenberg matrix H. +*> \endverbatim +*> +*> \param[in] ILO +*> \verbatim +*> ILO is INTEGER +*> \endverbatim +*> +*> \param[in] IHI +*> \verbatim +*> IHI is INTEGER +*> It is assumed that H is already upper triangular +*> in rows and columns 1:ILO-1 and IHI+1:N. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is integer scalar +*> The amount of workspace available. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> Little is known about how best to choose these parameters. +*> It is possible to use different values of the parameters +*> for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR. +*> +*> It is probably best to choose different parameters for +*> different matrices and different parameters at different +*> times during the iteration, but this has not been +*> implemented --- yet. +*> +*> +*> The best choices of most of the parameters depend +*> in an ill-understood way on the relative execution +*> rate of xLAQR3 and xLAQR5 and on the nature of each +*> particular eigenvalue problem. Experiment may be the +*> only practical way to determine which choices are most +*> effective. +*> +*> Following is a list of default values supplied by IPARMQ. +*> These defaults may be adjusted in order to attain better +*> performance in any particular computational environment. +*> +*> IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point. +*> Default: 75. (Must be at least 11.) +*> +*> IPARMQ(ISPEC=13) Recommended deflation window size. +*> This depends on ILO, IHI and NS, the +*> number of simultaneous shifts returned +*> by IPARMQ(ISPEC=15). The default for +*> (IHI-ILO+1).LE.500 is NS. The default +*> for (IHI-ILO+1).GT.500 is 3*NS/2. +*> +*> IPARMQ(ISPEC=14) Nibble crossover point. Default: 14. +*> +*> IPARMQ(ISPEC=15) Number of simultaneous shifts, NS. +*> a multi-shift QR iteration. +*> +*> If IHI-ILO+1 is ... +*> +*> greater than ...but less ... the +*> or equal to ... than default is +*> +*> 0 30 NS = 2+ +*> 30 60 NS = 4+ +*> 60 150 NS = 10 +*> 150 590 NS = ** +*> 590 3000 NS = 64 +*> 3000 6000 NS = 128 +*> 6000 infinity NS = 256 +*> +*> (+) By default matrices of this order are +*> passed to the implicit double shift routine +*> xLAHQR. See IPARMQ(ISPEC=12) above. These +*> values of NS are used only in case of a rare +*> xLAHQR failure. +*> +*> (**) The asterisks (**) indicate an ad-hoc +*> function increasing from 10 to 64. +*> +*> IPARMQ(ISPEC=16) Select structured matrix multiply. +*> (See ISPEC=16 above for details.) +*> Default: 3. +*> \endverbatim +*> +* ===================================================================== + INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + INTEGER IHI, ILO, ISPEC, LWORK, N + CHARACTER NAME*( * ), OPTS*( * ) +* +* ================================================================ +* .. Parameters .. + INTEGER INMIN, INWIN, INIBL, ISHFTS, IACC22 + PARAMETER ( INMIN = 12, INWIN = 13, INIBL = 14, + $ ISHFTS = 15, IACC22 = 16 ) + INTEGER NMIN, K22MIN, KACMIN, NIBBLE, KNWSWP + PARAMETER ( NMIN = 75, K22MIN = 14, KACMIN = 14, + $ NIBBLE = 14, KNWSWP = 500 ) + REAL TWO + PARAMETER ( TWO = 2.0 ) +* .. +* .. Local Scalars .. + INTEGER NH, NS +* .. +* .. Intrinsic Functions .. + INTRINSIC LOG, MAX, MOD, NINT, REAL +* .. +* .. Executable Statements .. + IF( ( ISPEC.EQ.ISHFTS ) .OR. ( ISPEC.EQ.INWIN ) .OR. + $ ( ISPEC.EQ.IACC22 ) ) THEN +* +* ==== Set the number simultaneous shifts ==== +* + NH = IHI - ILO + 1 + NS = 2 + IF( NH.GE.30 ) + $ NS = 4 + IF( NH.GE.60 ) + $ NS = 10 + IF( NH.GE.150 ) + $ NS = MAX( 10, NH / NINT( LOG( REAL( NH ) ) / LOG( TWO ) ) ) + IF( NH.GE.590 ) + $ NS = 64 + IF( NH.GE.3000 ) + $ NS = 128 + IF( NH.GE.6000 ) + $ NS = 256 + NS = MAX( 2, NS-MOD( NS, 2 ) ) + END IF +* + IF( ISPEC.EQ.INMIN ) THEN +* +* +* ===== Matrices of order smaller than NMIN get sent +* . to xLAHQR, the classic double shift algorithm. +* . This must be at least 11. ==== +* + IPARMQ = NMIN +* + ELSE IF( ISPEC.EQ.INIBL ) THEN +* +* ==== INIBL: skip a multi-shift qr iteration and +* . whenever aggressive early deflation finds +* . at least (NIBBLE*(window size)/100) deflations. ==== +* + IPARMQ = NIBBLE +* + ELSE IF( ISPEC.EQ.ISHFTS ) THEN +* +* ==== NSHFTS: The number of simultaneous shifts ===== +* + IPARMQ = NS +* + ELSE IF( ISPEC.EQ.INWIN ) THEN +* +* ==== NW: deflation window size. ==== +* + IF( NH.LE.KNWSWP ) THEN + IPARMQ = NS + ELSE + IPARMQ = 3*NS / 2 + END IF +* + ELSE IF( ISPEC.EQ.IACC22 ) THEN +* +* ==== IACC22: Whether to accumulate reflections +* . before updating the far-from-diagonal elements +* . and whether to use 2-by-2 block structure while +* . doing it. A small amount of work could be saved +* . by making this choice dependent also upon the +* . NH=IHI-ILO+1. +* + IPARMQ = 0 + IF( NS.GE.KACMIN ) + $ IPARMQ = 1 + IF( NS.GE.K22MIN ) + $ IPARMQ = 2 +* + ELSE +* ===== invalid value of ispec ===== + IPARMQ = -1 +* + END IF +* +* ==== End of IPARMQ ==== +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/lsame.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/lsame.f new file mode 100644 index 000000000..315304c3d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/lsame.f @@ -0,0 +1,125 @@ +*> \brief \b LSAME +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* LOGICAL FUNCTION LSAME( CA, CB ) +* +* .. Scalar Arguments .. +* CHARACTER CA, CB +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> LSAME returns .TRUE. if CA is the same letter as CB regardless of +*> case. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] CA +*> \verbatim +*> \endverbatim +*> +*> \param[in] CB +*> \verbatim +*> CA and CB specify the single characters to be compared. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + LOGICAL FUNCTION LSAME( CA, CB ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER CA, CB +* .. +* +* ===================================================================== +* +* .. Intrinsic Functions .. + INTRINSIC ICHAR +* .. +* .. Local Scalars .. + INTEGER INTA, INTB, ZCODE +* .. +* .. Executable Statements .. +* +* Test if the characters are equal +* + LSAME = CA.EQ.CB + IF( LSAME ) + $ RETURN +* +* Now test for equivalence if both characters are alphabetic. +* + ZCODE = ICHAR( 'Z' ) +* +* Use 'Z' rather than 'A' so that ASCII can be detected on Prime +* machines, on which ICHAR returns a value with bit 8 set. +* ICHAR('A') on Prime machines returns 193 which is the same as +* ICHAR('A') on an EBCDIC machine. +* + INTA = ICHAR( CA ) + INTB = ICHAR( CB ) +* + IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN +* +* ASCII is assumed - ZCODE is the ASCII code of either lower or +* upper case 'Z'. +* + IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32 + IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32 +* + ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN +* +* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or +* upper case 'Z'. +* + IF( INTA.GE.129 .AND. INTA.LE.137 .OR. + $ INTA.GE.145 .AND. INTA.LE.153 .OR. + $ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64 + IF( INTB.GE.129 .AND. INTB.LE.137 .OR. + $ INTB.GE.145 .AND. INTB.LE.153 .OR. + $ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64 +* + ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN +* +* ASCII is assumed, on Prime machines - ZCODE is the ASCII code +* plus 128 of either lower or upper case 'Z'. +* + IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32 + IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32 + END IF + LSAME = INTA.EQ.INTB +* +* RETURN +* +* End of LSAME +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/vandermonde.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/vandermonde.f new file mode 100644 index 000000000..60848966f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/vandermonde.f @@ -0,0 +1,15 @@ + subroutine vandermonde(a,mc,n1,cc,ipiv,info) + + integer n1,cc,info,ipiv(n1) + double precision a(n1,n1), mc(cc,n1) + double precision mmc(n1,cc) + + a=transpose(a) + mmc=transpose(mc) + + + call dgesv(n1,cc,a,n1,ipiv,mmc,n1,info) + + mc = transpose(mmc) + + end subroutine diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/xerbla.f b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/xerbla.f new file mode 100644 index 000000000..3e93bc4e0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/eigen/src/xerbla.f @@ -0,0 +1,99 @@ +*> \brief \b XERBLA +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download XERBLA + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE XERBLA( SRNAME, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER*(*) SRNAME +* INTEGER INFO +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> XERBLA is an error handler for the LAPACK routines. +*> It is called by an LAPACK routine if an input parameter has an +*> invalid value. A message is printed and execution stops. +*> +*> Installers may consider modifying the STOP statement in order to +*> call system-specific exception-handling facilities. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] SRNAME +*> \verbatim +*> SRNAME is CHARACTER*(*) +*> The name of the routine which called XERBLA. +*> \endverbatim +*> +*> \param[in] INFO +*> \verbatim +*> INFO is INTEGER +*> The position of the invalid parameter in the parameter list +*> of the calling routine. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup auxOTHERauxiliary +* +* ===================================================================== + SUBROUTINE XERBLA( SRNAME, INFO ) +* +* -- LAPACK auxiliary routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 +* +* .. Scalar Arguments .. + CHARACTER*(*) SRNAME + INTEGER INFO +* .. +* +* ===================================================================== +* +* .. Intrinsic Functions .. + INTRINSIC LEN_TRIM +* .. +* .. Executable Statements .. +* + WRITE( *, FMT = 9999 )SRNAME( 1:LEN_TRIM( SRNAME ) ), INFO +* + STOP +* + 9999 FORMAT( ' ** On entry to ', A, ' parameter number ', I2, ' had ', + $ 'an illegal value' ) +* +* End of XERBLA +* + END diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/experimentalInputs.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/experimentalInputs.h new file mode 100644 index 000000000..fb7562ee1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/experimentalInputs.h @@ -0,0 +1,135 @@ +/** @file experimentalInputs.h + @brief All the experimental data required for the source terms calculations + @var double Pr + @brief initial/final pressure of the mixture, Pa + @var double Temp0 + @brief initial temperature, K + @var double A_OH + @brief pre-exponential factor for the gelling reaction, 1/s + @var double E_OH + @brief activation energy for the gelling reaction, J/mol + @var double OH_0 + @brief Initial concentration of polyol OH groups in the mixutre, mol/m3 + @var double NCO_0 + @brief Initial concentration of isocianate NCO groups in the mixutre, mol/m3 + @var double W_0 + @brief Initial concentration of water in the mixture, mol/m3 + @var double A_W + @brief pre-exponential factor for the blowing reaction, 1/s + @var double E_W + @brief activation energy for the blowing reaction, J/mol + @var double RR + @brief ideal gas constant, J/mol K + @var double rhoPoly + @brief density of the liquid polymer, kg/m3 + @var double rhoBL + @brief density of the blowing agent, kg/m3 + @var double DH_OH + @brief Reaction heat for the gelling reaction, J/mol + @var double DH_W + @brief Reaction heat for the blowing reaction, J/mol + @var double C_Poy + @brief Polyurethane specific heat, J/kg K + @var double C_CO2 + @brief CO2 specific heat, J/kg K + @var double C_BG + @brief Specific heat of the physical blowing agent in gas phase, J/kg K + @var double C_BL + @brief Specific heat of the physical blowing agent in liquid phase, J/kg K + @var double lambda + @brief Latent heat of blowing agent, J/kg + @var double C_TOT + @brief Total specifc heat of the mixture + @var int phBL + @brief type of physical blowing agent 1 = pentane, 2 = R-11 + @var int denMod + @brief density mode, 1 = modena, 2 = constant + @var int kinMod + @brief kinetics model, 1 = Baser, 2 = Baser with R(x) + @sa http://onlinelibrary.wiley.com/doi/10.1002/pen.760340804/abstract + @var bool dilution + @brief use dilution effect + @var double M_CO2 + @brief Molecular mass of carbon dioxide, kg/kmol + @var double M_B + @brief Molecular mass of blowing agent, kg/kmol + @var double M_NCO + @brief Molecular weight of NCO, kg/kmol + @var double M_air + @brief Molecular weight of air, kg/kmol + @var double CO2_D + @brief Weight fraction of dissolved CO2 in the mixture, - + @var double L0 + @brief Initial weight fraction of blowing agent in the liquid, - + @var double CO2_0 + @brief Initial weight fraction of CO2 in the liquid, - + @var double surfaceTension + @brief required for the computation of partial pressure + @var double sig + @brief correlated to variance of initial distribution + @var double init_size + @brief initial mean bubble diameter, m + @var double NN + @brief correlated to number of initial bubbles in m^3 + @var double air_g + @brief air weight fraction + @var double abs_err + @brief absolute error + @var double rel_err + @brief relative error + @var double dt + @brief time step, s + @var double tend + @brief end time, s +*/ + double Pr = 101325.0; + double Temp0 = 297; +/* Inputs for gelling reaction, XOH */ + double A_OH = 1965.0; + double E_OH = 5.487e4; + double OH_0 = 3765.0; + double NCO_0 = 3765.0; + double W_0 = -1.0; +/* Inputs for blowing reaction, XW */ + double A_W = 1.385e3; + double E_W = 3.266e4; +/* Constants */ + double RR = 8.3145; + double rhoPoly = 1100.0; + double rhoBL = 1467.0; +/* Inputs for enthalpy */ + double DH_OH = -7.49e4; + double DH_W = -8.6e4; + double C_Poly = 1800.0; + double C_CO2 = 836.6; + double C_BG = 593.0; + double C_BL = 870.0; + double lambda = 2.0e5; + double C_TOT; +// physical blowing agent (used for solubility model) + int phBL = 2; +// density model used + int denMod = 2; +// kinetics model used + int kinMod = 2; + bool dilution= true; +/* Inputs for weight fraction of gaseous CO2 in the mixture */ + double M_CO2 = 44.0; + double M_B = 137.37; + double M_NCO = 615.0; + double M_air = 29.0; + double CO2_D = 4.4e-4; + double L0 = 0.155; + double CO2_0 = 0.0; +// Other physical properties + double surfaceTension = 25e-3; +// initial bubble size distribution + double sig = 1e-1; + double init_size= 2.0e-6; + double NN = 0.138e12; + double air_g; +// integration parameters + double abs_err = 1e-6; + double rel_err = 1e-6; + double dt = 1e0; + double tend = 200.0; diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/growth.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/growth.h new file mode 100644 index 000000000..33e1a9dd9 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/growth.h @@ -0,0 +1,78 @@ +/** @file growth.h + @brief Source terms due to the bubble growth + @fn void growthSource(double *sgBA, double *sgCO2, double *we, double *vi, int &nNodes, int *mOrder, double &CO2_l, double &L_l, double &tmp, double &dVdt_2, double &dVdt_1) + @param double *sgBA - source terms due to blowing agent + @param double *sgCO2 - source terms due to CO2 + @param double *we - weights of quadrature approximation + @param double *vi - nodes of quadrature approximation + @param int &nNodes - number of nodes + @param int *mOrder - order of moments + @param double &CO2_l - weight fraction of CO2 in liquid + @param double &L_l - weight fraction of blowing agent in liquid + @param double &tmp - temperature + @param double &dVdt_2 - growth rate due to generation of CO2 + @param double &dVdt_1 - growth rate due to evaporation of blowing agent + @return void +*/ + +void growthSource(double *, double *, double *, double *, int &, int *, double &, double &, double &, double &, double &); // function prototype + +void growthSource(double *sgBA, double *sgCO2, double *we, double *vi, int &nNodes, int *mOrder, double &CO2_l, double &L_l, double &tmp, double &dVdt_2, double &dVdt_1) +{ + + int i; + int counter = 0; + double k; + + while(counter<2*nNodes) + { + sgBA[counter] = 0.0; + sgCO2[counter] = 0.0; + + // using static_cast to convert moment order from int to double + k = static_cast(mOrder[counter]); + + if(counter == 0) + { + sgBA[counter] = 0.0; + sgCO2[counter] = 0.0; + } + else if(counter == 1) + { + for(i=0;i 0.0) + { + sgBA[counter] += dVdt_1*we[i]; + sgCO2[counter] += dVdt_2*we[i]; + + } + else + { + sgBA[counter] = sgBA[counter]; + sgCO2[counter] = sgCO2[counter]; + } + + } + + } + else + { + for(i=0;i 0.0) + { + sgBA[counter] += k*dVdt_1*we[i]*(pow(vi[i], (k-1))); + sgCO2[counter] += k*dVdt_2*we[i]*(pow(vi[i], (k-1))); + } + else + { + sgBA[counter] = sgBA[counter]; + sgCO2[counter] = sgCO2[counter]; + } + } + } + + counter++; + } // end of while +} diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/initializeMoments.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/initializeMoments.h new file mode 100644 index 000000000..adf276161 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/initializeMoments.h @@ -0,0 +1,30 @@ +/** @file initializeMoments.h + @brief Initialize the moments + @fn void mom_init(double *momz, double &size_0, int &n, double &sigma, double &NN) + @param double &size_0 - initial bubble diameter + @param int &n - number of moments + @param double &sigma - correlated to variance of initial distribution + @param double &NN - correlated to number of initial bubbles per unit volume + @return void +*/ +void mom_init(double *, double &, int &, double &, double &); + +void mom_init(double *momz, double &size_0, int &n, double &sigma, double &NN) +{ + int i; + double v_0 = (M_PI/6.0)*(pow(size_0,3)); + double mu = log(v_0); + + for(i=0;i T0) + { + double tempDummy = pow((tm-T0),2.0); + lMax = (aa + hh*exp((-tempDummy/(2.0*ww*ww)))); + break; + } + else + { + lMax=aa+hh; + break; + } + case 2: + aa = 1e-7; // - + hh = 4.2934; // - + T0 = 203.3556; // K + ww = 40.016; // 1/K + // double T_in = 300; // K + if (tm > T0) + { + double tempDummy = pow((tm-T0),2.0); + lMax = (aa + hh*exp((-tempDummy/(2.0*ww*ww)))); + break; + } + else + { + lMax=aa+hh; + break; + } + } + return lMax; +} diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/modenaCalls.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/modenaCalls.h new file mode 100644 index 000000000..4b117dd58 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/modenaCalls.h @@ -0,0 +1,40 @@ +/** @file modenaCalls.h + @brief instantiates the surrogate models, allocates memory and fetches arg positions +*/ +#ifndef MODENACALLS_H +#define MODENACALLS_H +/* +instantiate the surrogate models: + - bubbleGrowth1, + - bubbleGrowth2, + - density_reaction_mixture, + - rheology, + - simpleKinetics +*/ + +modena_model_t *bblgr1 = modena_model_new("bubbleGrowth1"); +modena_model_t *bblgr2 = modena_model_new("bubbleGrowth2"); +// modena_model_t *density_reaction_mixturemodel = modena_model_new("density_reaction_mixtureSM"); +// modena_model_t *rheologymodel = modena_model_new("rheology"); +// modena_model_t *kinetics = modena_model_new("simpleKinetics"); +/* allocate memory and fetch arg positions: + - bubbleGrowth1, + - bubbleGrowth2, + - density_reaction_mixture, + - rheology. +*/ +modena_inputs_t *inputs_bblgr1 = modena_inputs_new (bblgr1); +modena_outputs_t *outputs_bblgr1 = modena_outputs_new (bblgr1); + +modena_inputs_t *inputs_bblgr2 = modena_inputs_new (bblgr2); +modena_outputs_t *outputs_bblgr2 = modena_outputs_new (bblgr2); + +// modena_inputs_t *inputs_den = modena_inputs_new (density_reaction_mixturemodel); +// modena_outputs_t *outputs_den = modena_outputs_new (density_reaction_mixturemodel); + +// modena_inputs_t *inputs_rheo = modena_inputs_new (rheologymodel); +// modena_outputs_t *outputs_rheo = modena_outputs_new (rheologymodel); + +// modena_inputs_t *inputs_kinetics = modena_inputs_new (kinetics); +// modena_outputs_t *outputs_kinetics = modena_outputs_new (kinetics); +#endif \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/momentsConverter.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/momentsConverter.h new file mode 100644 index 000000000..640dd9d37 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/momentsConverter.h @@ -0,0 +1,29 @@ +/** @file momentsConverter.h + @brief Converts moments based on the unit volume of foam + @fn void momentsConverter(const state_type &y , const double t) + @param const state_type &y - vector of all the variables + @param const double t - time +*/ +void momentsConverter(const state_type &y , const double t); + +void momentsConverter(const state_type &y , const double t) +{ + double kappa = 1.0 - (y[8]/(1.0+y[8])); + double M[4] = {}; + M[0] = kappa*y[7]; + M[1] = kappa*y[8]; + M[2] = kappa*y[9]; + M[3] = kappa*y[10]; + + ofstream MM[4]; + MM[0].open("../results/M0.txt", std::ios::app); + MM[1].open("../results/M1.txt", std::ios::app); + MM[2].open("../results/M2.txt", std::ios::app); + MM[3].open("../results/M3.txt", std::ios::app); + + for (int i = 0; i < 4; i++) + { + MM[i] << t << '\t' << M[i] << '\n'; + MM[i].close(); + } +} diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/partialPressure.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/partialPressure.h new file mode 100644 index 000000000..838093136 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/partialPressure.h @@ -0,0 +1,100 @@ +/** @file partialPressure.h + @brief functions related to the calculations of partial pressures + @fn void ddtpartialPressure(const state_type &y , const double t , const double dt , double *dpdt , double *pOld, const double p_1, const double p_2, const double R) + @brief time derivative of partial pressure + @param const state_type &y - vector of all the variables + @param const double t - time + @param double *dpdt - time derivative of pressure + @param double *pOld - pressure values at the previous time step + @param const double p_1 - partial pressure of blowing agent + @param const double p_2 - partial pressure of CO2 + @param const double R - bubble radius + @return void + @fn double bubbleRadius (const double m0, const double m1) + @brief radius of bubbles based on the moments + @param const double m0 - moment of order zero + @param const double m1 - moment of order one + @return bubble radius + @fn double partialPressureBA(const state_type &y) + @brief partial pressure of the physical blowing agent + @param const state_type &y vector of all the variables + @return partial pressure of the physical blowing agent + @fn double partialPressureCO2(const state_type &y) + @brief partial pressure of CO2 + @param const state_type &y - vector of all the variables + @return partial pressure of CO2 +*/ +void ddtpartialPressure(const state_type &y , const double t , const double dt , double *dpdt , double *pOld, const double p_1, const double p_2, const double R); +double bubbleRadius (const double m0, const double m1); +double partialPressureBA(const state_type &y); +double partialPressureCO2(const state_type &y); + +void ddtpartialPressure(const state_type &y , const double t , const double dt , double *dpdt , double *pOld, const double p_1, const double p_2, const double R) +{ + // dp1dt: + dpdt[0] = (p_1 - pOld[0])/(dt); + pOld[0] = p_1; + + // dp2dt: + dpdt[1] = (p_2 - pOld[1])/(dt); + pOld[1] = p_2; +} + +double bubbleRadius (const double m0, const double m1) +{ + double R; + R = pow((3.0*m1/(4.0*M_PI*m0)), 1.0/3.0); + if (isnan(R)) { + R=init_size; + } + return R; +} + +double partialPressureBA(const state_type &y) +{ + double L_g = y[4]; + double CO2_g = y[6]; + double m0 = y[7]; + double m1 = y[8]; + double PENTANE = y[15]; + double CO2 = y[14]; + + double R = bubbleRadius(m0, m1); + + double p_1; + if (L_g == 0.0) + { + p_1 = 0.0; + } + else + { + p_1 = ((L_g/M_B)/(L_g/M_B + CO2_g/M_CO2 + air_g/M_air)) * (Pr + 2*surfaceTension/R); + } + + return p_1; +} + +double partialPressureCO2(const state_type &y) +{ + double L_g = y[4]; + double CO2_g = y[6]; + double m0 = y[7]; + double m1 = y[8]; + double PENTANE = y[15]; + double CO2 = y[14]; + + double R = bubbleRadius(m0, m1); + + double p_2; + + if (CO2_g == 0.0) + { + p_2 = 0.0; + } + else + { + p_2 = ((CO2_g/M_CO2)/(L_g/M_B + CO2_g/M_CO2 + air_g/M_air)) * (Pr + 2*surfaceTension/R); + } + + return p_2; +} \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/pda.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/pda.h new file mode 100644 index 000000000..c63ee8817 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/pda.h @@ -0,0 +1,131 @@ +/** @file pda.h + @brief Product Difference Algorithm + @param double *we - weights of quadrature approximation + @param double *vi - nodes of quadrature approximation + @param double *mom - moments + @param int &n - number of nodes + @return void +*/ +void PDA(double *, double *, double *, int &); + +void PDA(double *we, double *vi, double *mom, int &n) +{ + +// Construct P Matrix + int i,j; + + double p[2*n+1][2*n+1]; + + for(i=0;i<2*n+1;i++) + { + for(j=0;j<2*n+1;j++) + { + p[i][j] = 0.0; + } + } + + double norm_mom[2*n]; + +// Normalize the moments + for(i=0;i<2*n;i++) + { + norm_mom[i] = mom[i]/(fmax(mom[0],1.0e-10)); + } +// First column of P matrix + p[0][0] = 1.0; + p[0][1] = 1.0; +// Second column of P matrix + for(i=1;i<2*n;i++) + { + p[i][1] = pow(-1,double (i))*norm_mom[i]; + } + +// Recursion method for calculation of P + for(j=2;j<2*n+1;j++) + { + for(i=0;i<2*n+2-j;i++) + { + p[i][j] = p[0][j-1]*p[i+1][j-2] - p[0][j-2]*p[i+1][j-1]; + } + } + +// Computing zeta + double zeta[2*n]; + for(i=0;i<2*n;i++) + { + zeta[i] = 0.0; + } + + for(i=1;i<2*n;i++) + { + if(p[0][i]*p[0][i-1]>0) + { + zeta[i] = p[0][i+1]/(p[0][i]*p[0][i-1]); + } + else + { + zeta[i] = 0.0; + } + } + +// Coefficients of Jacobi matrix + double aa[n]; + double bb[n-1], cc[n-1]; + + for(i=0;i> Pr; // initial/final pressure of the mixture, Pa + inputs >> Temp0; // initial temperature, K +/* Inputs for gelling reaction, XOH */ + inputs >> A_OH; // m3/mol s + inputs >> E_OH; // J/mol + inputs >> OH_0; // Initial concentration of polyol OH groups in the mixutre, mol/m3 + inputs >> NCO_0; // Initial concentration of isocianate NCO groups in the mixutre, mol/m3 + inputs >> W_0; // Initial concentration of water in the mixture, mol/m3 +/* Inputs for blowing reaction, XW */ + inputs >> A_W; // 1/s + inputs >> E_W; // J/mol +/* Constants */ + inputs >> RR; // J/mol K + inputs >> rhoPoly; // kg/m3 Density of the liquid polymer + inputs >> rhoBL; // kg/m3 Density of the blowing agent +/* Inputs for enthalpy */ + inputs >> DH_OH; // Reaction heat for the gelling reaction, J/mol + inputs >> DH_W; // Reaction heat for the blowing reaction, J/mol + inputs >> C_Poly; // Polyurethane specific heat, J/kg K + inputs >> C_CO2; // CO2 specific heat, J/kg K + inputs >> C_BG; // Physical blowing agent in gas phase specific heat, J/kg K + inputs >> C_BL; // Physical blowing agent in liquid phase specific heat, J/kg K + inputs >> lambda; // Latent heat of blowing agent, J/kg +// physical blowing agent (used for solubility model) + inputs >> phBL; // 1=pentane, 2=R-11 +// density model used + inputs >> denMod; // 1=modena, 2=rhoPoly +// kinetics model used + inputs >> kinMod; // 1=Baser, 2=Baser with R(x) + inputs >> dilution; // use dilution effect +/* Inputs for weight fraction of gaseous CO2 in the mixture */ + inputs >> M_CO2; // Molecular mass of carbon dioxide, kg/kmol + inputs >> M_B; // Molecular mass of blowing agent, kg/kmol + inputs >> M_NCO; // Molecular weight of NCO, kg/kmol + inputs >> M_air; // Molecular weight of air, kg/kmol + inputs >> CO2_D; // Weight fraction of dissolved CO2 in the mixture, - + inputs >> L0; // Initial weight fraction of blowing agent in the liquid, - + inputs >> CO2_0; // Initial weight fraction of CO2 in the liquid, - +// Other physical properties + inputs >> surfaceTension; // required for partial pressure +// initial bubble size distribution + inputs >> sig; // correlated to variance of initial distribution + inputs >> init_size; // initial mean bubble diameter, m + inputs >> NN; // correlated to number of initial bubbles in m^3 +// integration parameters + inputs >> abs_err;// absolute error + inputs >> rel_err;// relative error + inputs >> dt; // time step, s + inputs >> tend; // end time, s + inputs.close(); + if (W_0<1e-8) { + W_0=-1.0; + } +} diff --git a/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/write_kinetics.h b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/write_kinetics.h new file mode 100644 index 000000000..3a3bfa061 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/CFD_tool_0D/src/write_kinetics.h @@ -0,0 +1,127 @@ +/** @file write_kinetics.h + @brief write the results into text files + @fn void write_kinetics( const state_type &y , const double t ) + @param const state_type &y - vector of all the variables + @param const double t - time + @return void +*/ +void write_kinetics( const state_type &y , const double t ); + +void write_kinetics( const state_type &y , const double t ) +{ +// write_kinetics - write the results into text files +// @param - const state_type &y - vector of all the variables +// @param - const double t - time + int n; + n = y.size(); + + ofstream out[n]; + out[0].open("../results/XW1.txt", std::ios::app); + out[1].open("../results/XOH1.txt", std::ios::app); + out[2].open("../results/T1.txt", std::ios::app); + out[3].open("../results/L_l1.txt", std::ios::app); + out[4].open("../results/L_g1.txt", std::ios::app); + out[5].open("../results/CO2_l1.txt", std::ios::app); + out[6].open("../results/CO2_g1.txt", std::ios::app); + out[7].open("../results/m01.txt", std::ios::app); + out[8].open("../results/m11.txt", std::ios::app); + out[9].open("../results/m21.txt", std::ios::app); + out[10].open("../results/m31.txt", std::ios::app); + // out[11].open("../results/EG_XNCO1.txt", std::ios::app); + // out[12].open("../results/EG_XOH1.txt", std::ios::app); + // out[13].open("../results/XH2O1.txt", std::ios::app); + // out[14].open("../results/CO21.txt", std::ios::app); + // out[15].open("../results/PENTANE1.txt", std::ios::app); + // out[16].open("../results/POLYMER1.txt", std::ios::app); + // out[17].open("../results/POLYMERBLOW1.txt", std::ios::app); + // out[18].open("../results/UREA1.txt", std::ios::app); + // out[19].open("../results/R_1_temp1.txt", std::ios::app); + + for (int i = 0; i < n; i++) + { + if(i == 11) + { + out[i] << t << '\t' << (1.0-y[i]/5.0) << '\n'; + } + else if (i == 12) + { + out[i] << t << '\t' << (1.0-y[i]/5.0) << '\n'; + } + else if (i == 13) + { + out[i] << t << '\t' << (1.0-y[i]/0.2) << '\n'; + } + else + { + out[i] << t << '\t' << y[i] << '\n'; + } + out[i].close(); + } + + double rhoPolySurrgate; + switch (denMod) { + case 1: { + // // Calling the model for density reaction mixture + // size_t T_denpos = modena_model_inputs_argPos(density_reaction_mixturemodel, "T"); + // size_t XOH_denpos = modena_model_inputs_argPos(density_reaction_mixturemodel, "XOH"); + // modena_model_argPos_check(density_reaction_mixturemodel); + // // set input vector + // double EG_XOH; + // double init_EG_OH = 5.0; + // EG_XOH = 1.0 - (y[12]/init_EG_OH); + // modena_inputs_set(inputs_den, T_denpos, y[2]); + // modena_inputs_set(inputs_den, XOH_denpos, EG_XOH); + // // call the model + // int ret_den = modena_model_call (density_reaction_mixturemodel, inputs_den, outputs_den); + // // terminate, if requested + // if(ret_den != 0) + // { + // modena_inputs_destroy (inputs_den); + // modena_outputs_destroy (outputs_den); + // modena_model_destroy (density_reaction_mixturemodel); + // exit(ret_den); + // //return ret_den; + // } + // rhoPolySurrgate = modena_outputs_get(outputs_den, 0); + } + case 2: + rhoPolySurrgate = rhoPoly; + } + + double p1,p2; + p1 = partialPressureBA(y); + p2 = partialPressureCO2(y); + double rho_bubble = ((p1+p2)/(RR*y[2]))*(y[6]*M_CO2 + y[4]*M_B)/(fmax((1000.0*(y[6] + y[4])),1.0e-8)); + // double rho_foam = (rho_bubble*(y[8]/(1.0+y[8])) + (1.0+L0)*rhoPolySurrgate*(1.0 - (y[8]/(1.0+y[8])))); + double rho_foam = (rho_bubble*(y[8]/(1.0+y[8])) + rhoPolySurrgate*(1.0 - (y[8]/(1.0+y[8])))); + + ofstream rho_bubbleout; + rho_bubbleout.open("../results/rho_bubble.txt", std::ios::app); + rho_bubbleout << t << '\t' << rho_bubble << '\n'; + rho_bubbleout.close(); + + ofstream rho_foamout; + rho_foamout.open("../results/rho_foam.txt", std::ios::app); + rho_foamout << t << '\t' << rho_foam << '\n'; + rho_foamout.close(); + + ofstream R_bubble; + double R = bubbleRadius(y[7], y[8]); + R_bubble.open("../results/R_bubble.txt", std::ios::app); + R_bubble << t << '\t' << R << '\n'; + R_bubble.close(); + + momentsConverter(y,t); + + double p_1 = partialPressureBA(y); + ofstream p1out; + p1out.open("../results/p_1.txt", std::ios::app); + p1out << t << '\t' << p_1 << '\n'; + p1out.close(); + + double p_2 = partialPressureCO2(y); + ofstream p2out; + p2out.open("../results/p_2.txt", std::ios::app); + p2out << t << '\t' << p_2 << '\n'; + p2out.close(); +} diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/.gitignore b/applications/PUfoam/MoDeNaModels/FoamConstruction/.gitignore new file mode 100644 index 000000000..a1f190d0f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/.gitignore @@ -0,0 +1,16 @@ +*.geo +*.txt +*.cmf +*.ply +*.stl +*.vtk +*.prj +*.rco +*.rst +*.sco +*.stcell +*.stedge +*.stface +*.stver +*.json +*.out diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/FoamGeometryConstruction_Periodic.py b/applications/PUfoam/MoDeNaModels/FoamConstruction/FoamGeometryConstruction_Periodic.py new file mode 100644 index 000000000..c22a6dbb2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/FoamGeometryConstruction_Periodic.py @@ -0,0 +1,282 @@ +__author__ = 'Mohammad Marvi-Mashhadi (IMDEA Materials)' +import os +import os.path +import numpy as np +mypath=os.getcwd() +def main(MU,SIGMA,NumOfCells,filenameOut,packing,tesselation,geometry, + statistics,hypermesh,deleteFiles,dx,dy,dz): + #####To create input file for SpherePack + if packing: + myfile=os.path.join(mypath,'Project01.prj') + f=open(myfile,'w') + f.write('{0:34s}\n'.format('# RANDOM COORDINATES: 0 OR FILE: 1')) + f.write('{0}\n'.format('0')) + f.write('{0}\n'.format('# NUMBER OF SPHERES')) + f.write('{0:d}\n'.format(NumOfCells)) + f.write('{0}\n'.format('# LENGTH IN X-, Y- AND Z-DIRECTION')) + f.write('{0:f}\n'.format(dx)) + f.write('{0:f}\n'.format(dy)) + f.write('{0:f}\n'.format(dz)) + f.write('{0}\n'.format('# EPSILON')) + f.write('{0}\n'.format('0.0001')) + f.write('{0}\n'.format('# NTAU')) + f.write('{0}\n'.format('963800000')) + f.write('{0}\n'.format('# NOMINAL DENSITY')) + f.write('{0}\n'.format('0.25')) + f.write('{0}\n'.format('# MAX. AND MINIM. DIAMETER')) + f.write('{0}\n'.format('3.0')) + f.write('{0}\n'.format('1.0')) + f.write('{0}\n'.format('# MAX. NUMBER OF STEPS')) + f.write('{0}\n'.format('50000000')) + f.write('{0}\n'.format('# DISTRIBUTION')) + f.write('{0}\n'.format('3')) + f.write('{0}\n'.format('# DISTRIBUTION PARAMETERS')) + f.write('{0:f}\n'.format(MU)) + f.write('{0:f}\n'.format(SIGMA)) + f.write('{0}\n'.format('0.4')) + f.write('{0}\n'.format('-3.3')) + f.write('{0}\n'.format('3')) + f.write('{0}\n'.format('0.10')) + f.write('{0}\n'.format('0.20')) + f.write('{0}\n'.format('0.70')) + f.write('{0}\n'.format('0.902113')) + f.write('{0}\n'.format('3.000000')) + f.write('{0}\n'.format('1.000000')) + f.close() + ########################################################### + os.chdir(mypath) + command1='wine SpherePackFB.exe' + os.system(command1) + if tesselation: + myfile12=os.path.join(mypath,'Project01.rco') + CentersRads=np.loadtxt(myfile12,usecols = (0,1,2,3)) + Centers=CentersRads[:,:3] #All centers of spheres + Rads=CentersRads[:,3] #All radii of spheres + Rads=Rads/2 + MaxCenters=np.amax(Centers, axis=0) + L2=int(0.5+MaxCenters[0]) + print (L2) + X=L2+Centers[:,0] + Y=L2+Centers[:,1] + Z=L2+Centers[:,2] + Centers27=np.array([X,X+L2,X-L2,X+L2,X,X+L2,X,X-L2,X-L2,X-L2,X+L2,X,X,X-L2,X+L2,X+L2,X,X,X-L2,X,X,X-L2,X+L2,X+L2,X-L2,X-L2,X+L2,Y,Y+L2,Y-L2,Y+L2,Y+L2,Y,Y-L2,Y,Y-L2,Y+L2,Y-L2,Y-L2,Y+L2,Y,Y,Y,Y+L2,Y,Y,Y-L2,Y,Y+L2,Y-L2,Y+L2,Y-L2,Y+L2,Y-L2,Z,Z+L2,Z-L2,Z,Z+L2,Z+L2,Z-L2,Z-L2,Z,Z,Z,Z+L2,Z-L2,Z+L2,Z-L2,Z,Z,Z+L2,Z,Z,Z-L2,Z+L2,Z+L2,Z-L2,Z+L2,Z-L2,Z-L2]) + # Creation of input .txt files for neper + myfile3=os.path.join(mypath,'Centers.txt') + ff=open(myfile3,'w') + for i in range(0,27): + for j in range(0,NumOfCells): + ff.write('{0:f}\t{1:f}\t{2:f}\n'.format(Centers27[i,j],Centers27[i+27,j],Centers27[i+54,j])) + ff.close() + #mypath4=r'/home/mohammad/' + myfile4=os.path.join(mypath,'Rads.txt') + fff=open(myfile4,'w') + for i in range(0,27): + for j in range(0,NumOfCells): + fff.write('{0:f}\n'.format(Rads[j])) + fff.close() + commandTessellation="neper -T -n {0:d} -domain 'cube({1:d},{2:d},{3:d})' -morpho @Centers.txt -weight @Rads.txt -o RVE27 -format geo -statcell vol -statedge length -statface area -statver x".format((27*NumOfCells),3*dx,3*dy,3*dz) + os.system(commandTessellation) + ################################################################ + ######Extraction of middle Representative volume element######## + ################################################################ + if geometry: + myfile12=os.path.join(mypath,'RVE27.stver') + verX=np.loadtxt(myfile12) + NumOfNodes=len(verX) + myfile12=os.path.join(mypath,'RVE27.stedge') + EdgesLength=np.loadtxt(myfile12) + NumOfEdges=len(EdgesLength) + myfile12=os.path.join(mypath,'RVE27.stface') + SurfacesArea=np.loadtxt(myfile12) + NumOfSurfaces=len(SurfacesArea) + myfile12=os.path.join(mypath,'RVE27.stcell') + CellVolumes=np.loadtxt(myfile12) + NumOfVolumes=len(CellVolumes) + #### Reading the GEO file + myfile12=os.path.join(mypath,'RVE27.geo') + text_file = open(myfile12, "r") + lines = text_file.readlines() + #### Extraction of Nodes + t=0 + Nodes=list(range(NumOfNodes)) + for i in range(0,NumOfNodes): + currentline = lines[i].split("{") + a=currentline[1].split("}") + b=a[0].split(",") + c=np.array(b) + Nodes[t]=np.absolute(c.astype(np.float)) + t=t+1 + ##### Extraction of Edges + Edges=list(range(NumOfEdges)) + r=0 + t=0 + for i in range(NumOfNodes,NumOfNodes+NumOfEdges): + currentline = lines[i].split("{") + a=currentline[1].split("}") + b=a[0].split(",") + c=np.array(b) + Edges[t]=np.absolute(c.astype(np.float)) + t=t+1 + #### Extraction of Faces + Faces=list(range(NumOfSurfaces)) + r=0 + t=0 + for i in range(0,NumOfSurfaces): + j=NumOfNodes+NumOfEdges+(2*i) + currentline = lines[j].split("{") + a=currentline[1].split("}") + b=a[0].split(",") + c=np.array(b) + Faces[t]=np.absolute(c.astype(np.float)) + t=t+1 + #### Extraction of volumes + Volumes=list(range(NumOfVolumes)) + #print NumOfNodes+NumOfEdges+(2*NumOfSurfaces) + a=list(lines[NumOfNodes+NumOfEdges+(2*NumOfSurfaces)]) + a[0:21]='' + o=len(a) + a[o-3:]='' + lines[NumOfNodes+NumOfEdges+(2*NumOfSurfaces)]="".join(a) + currentline=lines[NumOfNodes+NumOfEdges+(2*NumOfSurfaces)].split(",") + c=np.array(currentline) + Volumes[0]=np.absolute(c.astype(np.float)) + t=1 + for i in range(1,NumOfVolumes): + j=NumOfNodes+NumOfEdges+(2*NumOfSurfaces)+i + currentline = lines[j].split(" = {") + a=currentline[2].split("}") + b=a[0].split(",") + c=np.array(b) + Volumes[t]=np.absolute(c.astype(np.float)) + t=t+1 + ##################################################### + MAX0=list(range(0,NumOfCells)) + for i in range(NumOfCells): + MAX0[i]=max(Volumes[i]) + MaxIndexOfFaces=max(MAX0) + MAX1=list(range(0,int(MaxIndexOfFaces))) + for i in range(int(MaxIndexOfFaces)): + MAX1[i]=max(Faces[i]) + MaxIndexOfEdges=max(MAX1) + MAX2=list(range(0,int(MaxIndexOfEdges))) + for i in range(int(MaxIndexOfEdges)): + MAX2[i]=max(Edges[i]) + MaxIndexOfNodes=max(MAX2) + text_file.close() + #################################################### + # Making GEO file containing Periodic RVE + myfile13=os.path.join(mypath,filenameOut+".geo") + text_GEO = open(myfile13, "w") + for i in range(int(MaxIndexOfNodes)): + text_GEO.write('{0}'.format(lines[i])) + for i in range(int(NumOfNodes),int(NumOfNodes+MaxIndexOfEdges)): + text_GEO.write('{0}'.format(lines[i])) + j=int(NumOfNodes+NumOfEdges) + for i in range(int(NumOfNodes+NumOfEdges),int(NumOfNodes+NumOfEdges+MaxIndexOfFaces)): + text_GEO.write('{0}{1}'.format(lines[j],lines[j+1])) + j=2+j + text_GEO.write('{0}{1}{2}\n'.format(' Surface Loop (1) = {',lines[int(NumOfNodes+NumOfEdges+(2*NumOfSurfaces))],'};')) + NumOfCells=NumOfVolumes/27 + j=int(NumOfNodes+NumOfEdges+(2*NumOfSurfaces)+1) + for i in range(int(NumOfCells-1)): + text_GEO.write('{0}'.format(lines[j])) + j+=1 + text_GEO.write('{0}{1}{2}{3}{4}'.format('Volume (',NumOfCells,') = {',NumOfCells,'};')) + text_GEO.close() + #################################################### + # Creating periodic domain - not working yet + # minDomain=[4,4,4] + # maxDomain=[8,8,8] + # def inDomain(point): + # inDomain=1 + # for i,pos in enumerate(point): + # if (posmaxDomain[i]): + # inDomain=0 + # return inDomain + # return inDomain + # NodesInDomain=[] + # NodeIndex=[] + # NodeIndexNew=range(len(Nodes)) + # for i,point in enumerate(Nodes): + # if (inDomain(point)): + # NodesInDomain.append(point) + # NodeIndex.append(i) + # NodeIndexNew[i]=len(NodeIndex)-1 + # EdgesInDomain=[] + # for i,index in enumerate(Edges): + # if (index[0] in NodeIndex or index[1] in NodeIndex): + # EdgesInDomain.append([NodeIndexNew[int(index[0])],NodeIndexNew[int(index[1])]]) + # geofile=open('PeriodicRVEdomain.geo','w') + # for i,pos in enumerate(NodesInDomain): + # geofile.write('Point ({0}) = {{{1},{2},{3}}};\n'.format(i,pos[0],pos[1],pos[2])) + # for i,index in enumerate(EdgesInDomain): + # geofile.write('Line ({0}) = {{{1},{2}}};\n'.format(i,index[0],index[1])) + # geofile.close() + # End of Geometry construction + ################################################################ + ######Statistical info for Periodic RVE######################### + ################################################################ + if statistics: + myfile14=os.path.join(mypath,'EdgeLengths_PeriodicRVE.txt') + EdgesLengthsOfMiddleRVE= open(myfile14, "w") + for i in range(int(MaxIndexOfEdges)): + EdgesLengthsOfMiddleRVE.write('{0}\n'.format(EdgesLength[i])) + EdgesLengthsOfMiddleRVE.close() + myfile15=os.path.join(mypath,'FaceAreas_PeriodicRVE.txt') + AreaOfFaceOfMiddleRVE= open(myfile15, "w") + for i in range(int(MaxIndexOfFaces)): + AreaOfFaceOfMiddleRVE.write('{0}\n'.format(SurfacesArea[i])) + AreaOfFaceOfMiddleRVE.close() + myfile16=os.path.join(mypath,'CellVolumes_PeriodicRVE.txt') + VolumeOfCellOfMiddleRVE= open(myfile16, "w") + for i in range(int(NumOfCells)): + VolumeOfCellOfMiddleRVE.write('{0}\n'.format(CellVolumes[i])) + VolumeOfCellOfMiddleRVE.close() + ################################################################ + ######Creation of input for HyperMesh########################### + ################################################################ + if hypermesh: + myfile17=os.path.join(mypath,'HyperMeshInput.cmf') + HyperMeshInput= open(myfile17, "w") + HyperMeshInput.write('{0}\n'.format('*cleanuptoleranceset(0.001)')) + HyperMeshInput.write('{0}\n'.format('*toleranceset(0.001)')) + for i in range(int(MaxIndexOfNodes)): + HyperMeshInput.write('{0}{1}{2}{3}{4}{5}{6}\n'.format('*createnode(',Nodes[i][0],',',Nodes[i][1],',',Nodes[i][2],',0,0,0)')) + for i in range(int(MaxIndexOfEdges)): + HyperMeshInput.write('{0}\n{1}{2}{3}{4}\n'.format('*linecreatefromnodes(1,0,150,5,179)','*createlist(nodes,1) ',int(Edges[i][0]),' ',int(Edges[i][1]))) + for i in range(int(MaxIndexOfFaces)): + HyperMeshInput.write('{0}\n'.format('*surfacemode(4)')) + HyperMeshInput.write('{0}'.format('*createmark(lines,1) ')) + for j in range(len(Faces[i])): + HyperMeshInput.write('{0}\t'.format(int(Faces[i][j]))) + HyperMeshInput.write('\n{0}\n{1}\n'.format('*createplane(1,1,0,0,0,0,0)','*splinesurface(lines,1,1,1,1)')) + HyperMeshInput.write('{0}\n'.format('*createmark(lines,1) "all"')) + HyperMeshInput.write('{0}\n'.format('*deletemark(lines,1)')) + HyperMeshInput.write('{0}\n'.format('*settopologyedgedisplay(2,0)')) + HyperMeshInput.write('{0}\n'.format('*plot()')) + HyperMeshInput.write('{0}\n'.format('*settopologyedgedisplay(3,0)')) + HyperMeshInput.write('{0}\n'.format('*plot()')) + HyperMeshInput.write('{0}\n'.format('*settopologyedgedisplay(1,0)')) + HyperMeshInput.write('{0}\n'.format('*plot()')) + Tol=0.001 + for i in range(NumOfCells): + HyperMeshInput.write('{0}\n'.format('*createmark(surfaces,1) "displayed"')) + HyperMeshInput.write('{0}{1}{2}{3}{4}\n'.format('*selfstitchcombine(1,82,',Tol,',',Tol,')')) + Tol=0.0001+Tol + HyperMeshInput.close() + ################################################################ + ######Removing unrequired files################################# + ################################################################ + if deleteFiles: + os.chdir(mypath) + os.remove('Project01.prj') + os.remove('Project01.rco') + os.remove('Project01.rst') + os.remove('Project01.sco') + os.remove('Rads.txt') + os.remove('Centers.txt') + os.remove('RVE27.geo') + os.remove('RVE27.stcell') + os.remove('RVE27.stedge') + os.remove('RVE27.stface') + os.remove('RVE27.stver') diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/README.md b/applications/PUfoam/MoDeNaModels/FoamConstruction/README.md new file mode 100644 index 000000000..f58c3360d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/README.md @@ -0,0 +1,77 @@ +Foam Construction +============================ +## Installation +The code depends on several third-party applications: +- `wine` to have ability of running windows executable files (i.e. file.exe). +- `neper` for tessellation +- `gmsh`, `vtk`, `meshconv` and `binvox` for mesh manipulation + +To install all of these on Ubuntu, do: +``` +sudo add-apt-repository ppa:ubuntu-wine/ppa +sudo apt-get update +sudo apt-get install wine1.7 libmatheval-dev gmsh gsl-bin libgsl0-dev \ + python-vtk +``` +Then download and install `neper` from http://neper.sourceforge.net/downloads.html +(follow its README for instructions), +download `meshconv` from http://www.cs.princeton.edu/~min/meshconv/, download +`binvox` from http://www.cs.princeton.edu/~min/binvox/ and copy `meshconv` and + `binvox` to `$PATH` + +## Files +The folder `FoamConstruction` contains following files: +- `SpherePackFB.exe` - packing algorithm +- `FoamGeometryConstruction_Periodic.py` - tessellation, creation of RVE +- `periodicBox.py` - creation of the box with periodic boundary conditions +- `vtkconv.py` - conversion from binary vtk to ascii vtk +- `run` - main executable script + +All files must be in one directory. + +## Inputs +The code is controlled by the `input.json` file, which must be located in the +root of `FoamConstruction` folder. Default input file can be found +in `example_inputs` directory. Following inputs can be adjusted: +- `MU` - mean of cell size distribution +- `SIGMA` - standard deviation of cell size distribution +- `NumOfCells` - number of cells in RVE (representative volume element) +- `porosity` - desired porosity of voxelized foam +- `filename` - name of the output file with RVE +- `deleteFiles` - delete some redundant output files after execution +- `packing` - call packing algorithm, which creates seeds and radii for +tessellation +- `tesselation` - call tessellation program, which creates foam with desired +cell size distribution based on results of packing +- `geometry` - limits the foam to RVE +- `statistics` - compute and save cell volumes, face surfaces, etc. +- `hypermesh` - create input for `Hypermesh` +- `moveToPeriodicBox` - move RVE to box with periodic boundary conditions +- `renderBox` - show the box with periodic boundary conditions +- `binarizeBox` - voxelize the box with periodic boundary conditions + +## Execution +Prepare `input.json`, then: +``` +./run +``` + +## Outputs +Several output files are created: +- `PeriodicRVE.geo` which is the periodic geometry of foam in .GEO +format. +- `CellVolumes_PeriodicRVE.txt` containing the volumes of all the +cells in RVE. +- `FaceAreas_PeriodicRVE.txt` containing the areas of all the faces +in RVE. +- `EdgeLengths_PeriodicRVE.txt` containing the lengths of all the +edges in RVE. +- `HyperMeshinput.cmf` which is a input file for `Hypermesh` to +recreate the geometry. +- `PeriodicRVEBox.stl` - surface mesh of the box with periodic boundary +conditions +- `PeriodicRVEBox-ascii.vtk` - voxelized verion of the box with periodic +boundary conditions + +Generally, `.geo` files can be viewed with `gmsh`, `.stl`, `.ply` and `.vtk` +files can be viewed with `paraview`. diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/SpherePackFB.exe b/applications/PUfoam/MoDeNaModels/FoamConstruction/SpherePackFB.exe new file mode 100755 index 0000000000000000000000000000000000000000..d67a9184c24ede87d7f0380ed15689630f44f327 GIT binary patch literal 214093 zcmeEv30zd=`u`c2K|t}KNvUOyhJ~dB?v@rPQ$vB0N@|&aFf3gJfb5v z-d0<#*KQk{-3DC1R?-&DGAykjw9G8gtoeVRcbVnPKy~~5@8|RT|1Uc8F3M=}E-cNn#79L%#tPCICPm4+t&g%ic4nrsIz+LC zE6Ne&Jf&wyNPp!CAdSE$8lM=EO3A1$gv*VbVxR*3B|)1oMVSVTNH0Y(vTsI%<)|V4 zM54(8U8fw1U>N-Ch@$M~gnTNy&Ki?+N?Z_d%}||U79s`#EAduKl@)-b$MHq7k?zpL z_s^(gWXI>_SaVQmB$=G}P{%!skI!F{Qs#^==ZMvP0BFUhFFxyikdRGMGLquUI3Cjx zx-xoBEnY%Wd=<-*a4tT63dBpDDc4(Xe~_xWRZW5%+YG{UPE zct?ZajUCVMvZIh}0A6pT1CjdtLEkACj!$4UXBv<=0VjRpw0Mwj0+(-fCg81rUyU?A z2;Rg|0Ki6Mj|6lw^+!!09^w4=@BbYOY{_ST@#^3jrj*%sD9-FKeE7DaB<^fh$U#y3 z2t`j}k8j~2-@^2_6eWN8g!F5yRcLerK=zo&F{wC|TBmjPM)D?C?pjc6Zgk_%b?IWF z97;=tiP`QAr9Ev^KHH2Xs9(YqxY!h@=OQO?k+ZwlJBgyFM1+pDa z=hvHa&6CW!mgN&@Vo_@=!A5=6+&_Q$iJm&EiINbtHVd`322!}UdfN;X94k9fNZeVw zL%pY|J&77gd(=e@0AH6LUxJ~n%8F)Z0x88&?PBdrwN7f-19gG+oB%B{p+#Dq;i+Gt zOkK>=EQwl&1ezJDSkZ6;CH9n9Bk&JG$rMMpYx1M8p`m~vwyhJkCeO;8ef3Q9 z@p1GByJh*^DMw7J$<`Gwgr_Uj#B;dX@CI(2GI zA0Rrypm0q#a?OTKzbMR21h@w(Yu%h46d8f0=sr-g_A(_pHvy_7?r^ud9W}>-{aeEc=LJcnqeKM6vb3m9IH#uJ)GKjFf`5H?t0^4 z)YTp^+qan=lbe8`uD%A|nYcIKJH8yfK6gC|Jab){&TRkQ<)FMhkxv96t;bzSnj+^>^l_yXM$qq9Cqdr37+5u>-yE%+p zK&@>9f;yPS)QZsdT`2JWFx%gE$DG+)r?g*Ab@iaJgVXpYlIAcr*q4D)`zpXqiHFi z1dpVnY9CWHzS8?QP%E?D)Y);K>!$}10M+lDN7eK3iH_R7Nl}if^Ba$q zLIlJVov+55Iv2lVc9=R*=b}0nqaV;R2-k+6_Ga)w@RiNl85u+B# z2<_%Dmg&gNZ;`Mgt}8UM4)n+xoqhz;wJZvQaM2xleD@D7VwpO;@`%?G&89H$ z=t^3_Dj{KXdMiOLmyoMh62G}eh#!W$sg0<>fO9D~hin=hH5ADC>a0d7QyVz8c{r+Z zl^Ca6%Yt>6RJYT|a_Ovxqg_q#R@cX1FUhic|DMnGnw0gthaM?nBt`B;6$EV*Dx0ER z{TyDBOksvsBJfBM!iD(ES6W;LZujE5Bm-}cISi+DVzfFd;}E06k#(JOKShXNj$`s| z(b)~hkZ~Bk#W%*D3YhEU8nTzy_uqU~)2ANkcQeQwjEd-}w>cJ*3Z|H6g79-qyQvqB zxGwb(veR|HhCz{rK^s}729-3l+SC=-BW6Ky8eUv!^jEg0zl;s!iGUqxHbFlGlyJlr zv%?VCM2X_a>@?@@G~1eV=Eg5V&AKLlzH8*5bbxl4ZH)l!2Z*SL1H2YshmQ^BHlp%1 zzcyZc)_pu8VC7@DTcB~Sj3Zo}SVyWF8Le`$1y!X1Q*=?Bzh#1`q4II#OIGes;S% zCQJ6e+vS{K&F%CKEhWs?Ubm%QOx8wwdNhpP-}PxF1g$e1`~}ITjPla!ExFbNEXnel zlfn}*CZaaTC_M=%1*csX~Px zU=w)~d0_u6=snKqEhRz@LnS4G-dqp8_o(^xKJ=cWiZ}8Zy}uw2dKU<{naSx*B0>(s zSV}aP z%ukcl9WlFufREiFWUJ%M524J4#!axYJsS2ZM}`hiyfQpaEFTA=l;Hplc3qu_43MEB z2$MU2D-19z2)Imw>$nVsC^H!@L{~8x&PB#whQa>;%fUdDGGvnsRxZPLhXd`<6Sz!< zI?f~%WyYjQGT9iwWE0WcwA#z$=f9&u)t-18&Iv0?chauBIo1s9PZi_lyu`0BH$cqS5jP&VzT=L{QrtU#lH#sJ?zhBkCQi+_d&Lc>inB=EX%N@MNqEGqI17~t zf-bVJA7d4M67DC>KvfZ#8m=42D_@)`nGki0NS0*qd^Ly8!;@SCJ$~2(YI+>JzB`N3mATA`t zeJvZYVb4~K#8G2q`U;UzWz>SDdj*R zW#8YB@-yP`*$S_eXH&%}kCZ#_WmOS$x`KvS;)uCJ6-mQpSS zb+V8c#xv_hDK^Ojpf=Em?dV<0Iu_79WRl%2D57Mr5|j55*4l2GNxAsVOpSJnuW66 zkPb|T;c|TY4(_vw_}MWLa}4_rhQ)2?A64hZ0)qf;ny%k)khk9p3jJ8h8OVc7PifH>gtQJ@+RM138#XG znL3xKRJ>6Zt=OeRokNbh9<2HG!CAK_8zB|+v_`N1O&H;UZvm!r!0;eONC)2U zHNvsSA;~eD*9c>&B6Tit3Wr{YzaYKB)m4SGqi`5rK$#4!0}tMR;*yNm53zGf&wgkr zl!0bdl!)FomB~z@%w)qNb)f5-2RR&uTag8a*{m=T1zhSX?YI=o(@;pOGvSCYJ;Pj= zIl*k76^mV4W)fwL>2!Un1-reW@P3lf0t$%xx9DxADms;mLUXFmL_KJ(hbR6Mc64M` zVZnm);{6>Rp>qDFfciRPp)MSi)D{2a zt+oIZtQ8>xu~A*Y!bY9pfi4h1{&)cS#j{Zz9;la}Qv%2?>LYu2*JJ46 zUuKc)hWdTK%X{+CguLgOWghRT46~V*>N-L?`a%*NV>i*XR9*Ex&YdWI@s&eS3?p zb5h7{;qGwSHv#=cLBFScPHI-UG%2cn}oBD=>id| zyZ{uhynfDly3o>R4ElML$5{`9Mli3Y{_vBZ$TMfX_BTi~XC2oC63E^cAhp+7&s_^= z&6q(G-%_0imwDP=c$#b76(p^pWiJvqsB$w_EEoBB(plV-lz_g%^2D_S5l)V5_-s`9 z-ze10XV*x;zu|6%lIw~;v?g= z-N_i)h0Oz8YJUK0wyp|?p7X!*HG-c@Z2`#N1iY1(yqyQi2f9E6`QriPdHf5ou0LrW z|GFld5KTXJh;TCZskBZ*5pzEd!WGxhGjO^ub}kT?BUl{@xc7K3u|g0^Uk+u#b7; zO9>wfN*D~`6vT@jp}Y*Dbur0k%egEAJ&83{gLSQkR}rX6tU($qi$~%sf#r=_;AdiD zIU&{>D9ah1&PmaahB%iy7=8xQ$w{x{JA1 z4#R?v*@kTjTJ&Hou$8(6bqFlu_S4b5p+Bn8hFyq0Kqhlw@f9^V9XDPzgp;!a^`R=7 z$WEc8v_HoOz($Vh$n;)<$EA950wxblK7h!%j7b$`VQnICTiL1fTxV)yTWFfDG0hQy zMcXJ6*bxB2YC7s4A1O+@{mnFcCf(+e-jHr@5_wYtUzpSFg1E6`4?fiKA3lK5@cm*M z4W}r;jssh|VtGnkHI;8J=7A*X^#PC&YSTsW9u(zXp-t%9Q3?ugbHn;6OWg$!+o#Yv z%f}7?k&iV3d}kLe2~66w`EK#rguu0E!~|Yy1Bn8ZIK}xUHaN&RW)NMh2(jL&MXoO9 zeo=vO%ki1FR{+Q)@!ltt-rzc1fB+0Hqou+#ZA6Ir?NQ1x@45MNP8@!T94U&A;lc+w zEr+2GsA4qkz-Vh>fm?X2h0zKDt&2rFWD|In#1Jc&x|mh_83UraqXyYJ!%#HkjJyNj z5sn4uDbRpqYc}Z>YS`%dvXWAg{|1Ic@=r(359wbXqyuQrm0SQmj%a(U&Z%p)xkBuw zx6#r>EqyDoxifsA#oX#Jy^T95eWbX~!{B0%6p56B7&s;Avk7;M(ABZIYv7RcF|9jH zE&deF^iX);BVse-E9xXNo(c&tia5bYKw2%}|^HA91q3~W13Mx_P2MWz5 zy61#Eht~TJ<@jzmo9&{0=DGjYBu!9HZFMm*Gz|9b0-nL;@!g>6g!lCaoDD5I)g# z-<$U&$3^!R;g+n6O>e8K7r;fl%Dm=P#%C_{Q3j)hI6Mvx=wXjwLK&lw9?H-t9E+ka zR-pJ-1`~fAtNb0}x2UVj{KQ|&6lZ}>MzuoJ@%g_5IevR?`$N22^`9_&;xPcre@_3;XGu;^6b|EvF2w-VdOvC**>V_MQ1p^GFoIxe?=E{X6zM|BkKq6umu?hB{cF+3?)k z{Beo~c#G1p5X3eLV#uEBX*sXaHK2snBK)4`ClTuN)!A5Bjd0pcha9Fu7n@EkJs(Zp z5(b4G3fZh)is{d4SoGc?5d}vptjZMqn9%6<|jsDv@89;926& z1V6FFPk@y{XgQZa$Zc}DCd~0Jdh-Zq7uSXSx?5W1c^>H>gg6?D%VD(=mI(qP?GJjr zgq9eqX?x+{ZA2s*0|>_Ot_vu(ObL!l!|8Z%n-W8-Kf^)6i3Bioq3I35af#uyt~Ctx zXZU;%K9b3}>{ zj3|)3{Y&N^=u62XsNT1h2|Ca#=-2Nv=Dsw&g1V%jZA{R&dO^t zP#}8+ZG)i8eJOba{floc6Z8hJ^3wuodIcq#>49!S7fr;ZcloY>VM0(^Y@_Xt;LtV^ zxq&eq7$OEt!GlXaVSM?aBM5T1IT;UBCK=*YC-2iA(m(X>9 z-U?^&PUGlQlarn&!LvLxB|ZU+IcV>Xfnya9##&%}5)*DfQtv?ZeUmgFu=uwQ4fr-fWfS^hT9OEoL08hc}D=!pWr7<0JNazn{E+Pn4y8r z3GAj1K;%aB4ss*$j_u}_9_oriap(h6i_h~Qm#svNd>&*X3eeTv<}f{hC*|7TgF2An zBdH2|CPzpCHC+zVTD$33`x=h60?Try@iAXvF_1`r0}j(en0DLeaoh_e$s_)_2MBjJ zc=nYDyL}MA^Hh5;PT@vrnt=1Kc_t@6%CwtSf>NOrD+pqPM63ql=iMM~5Qw!^nB^%N zujFgLx#=sZRE@YxUvpYe5;${3I;YV!HUsgGomJUuY2ylJN8c633Xp0Jd-f%Y`hudl zY{za-s54xH@eUpYs--Fk&gOE}Qi`a_*r>N{g)4#CVb08Kubm*!D0MwDow49_M4LsU zNdpp+IPf&OjyRz#Qt!I?ZX(RWAh~=fBnOw_{BC3*>3t~7ek;J$ zNQ)#UM_QrIV|gHh0EaZ_*^^16{hqs9Gi`pdvVAq52NA>3;1H+ZPX zW;%l7ts@tk>ebb2Sos*r$1XPAt*)NO%HsHIjkL*bBxx^H<@>5y`E5$ay$ zXb(wYx(jtTaa?KV%&tP+d6H*9sJnnuSS?*3AXaEX-OW<0Ac%gU?pQa7G}pf^;X-B{ zhqb~tFku}FBql>w2^wZp$-1uu*y5eYA}@o*v;Q!s*z8O{IN** zC1+;VM8dnTU@ZPbB)pvnvq%_+9Jdwj@4S_ZE+gTomY}-+p-33bX#R&I;b|~-kVtrH zJFgBF$25`f1=-F1k?;Xg9gKn|hKvs`gHcomqo9c)=|WteYi1M)$4MNuFIr!W!uUK?0oLqOU@V6$FvCI(JF95IabKGtrvxEr}O|&YxQo z4!JBK67JjT-?0IaaM&$8oMf6Gz}P_|;n7B39V`lIBH`1roBbnUy{HaGK@$l_2AAP< zQ5}qeCWcHE;%Xw{2&u(yN5cJq9Y~SzO;Pj)8C2yCnDjF0iH-0 zWdQj)!^cw2E+XMadWN=A3e#OAe1PLhJ9ilgPm??YBH8MK?0LsBrK9*1wo`p zXqWKch=h$2F9;o4GTtxY|Ih~PgU_~qY0FQUS|R6j|IvNoS9h@ zD03hdg4v%4l(UI23zYPG5i(FF3(;ku+yNMiH~x12LxJ+M#YF!<94Om13&H)v+zwG4 zEJ$erR=Q!fl`kS4-%{ocO!!)#0->Lc+F2?E>u!L^=~X08v;9!DEv)S z|BgU;NpKm?>qZ8R7V}>7cOp%od|tC;yhgKRJX^D5{Q4x8jBERO0;SkIua|Om5h%sx zIZF!DU7!@3XKCjy1LZf8SU{i@o9C;f3wS$_wz4!H*pc`U2^T^KTM5!J;tZJzH{J&{l>8K01Hb`c51k}*>X(_JJKOGatuE+b)^ zBo+_}#gg%IjQJqr#}f(9knrD#gl9-bUPtgmRKG~Lx*J4VGUiM85q^y)Na+3duD5I( z7Z50KeYq>;#VO;C5*Ed@f%2PwvVi0baK9%|-prY417$qK`g4IYmI$*z+4K^Viv`Nw zLUb7@?*%MKNB^NE}LN!IYv|mqo4^f?+2G* zQ#UebLd@4M1el+~T&t)K7Uncs)CP7SQ794B!6<07=qa`Ej!~j;tQ#3LS`61{p$U}# z){=2yq&86AB<1WrP>zto{Ek2=?c8Ocd{q+bDo~#NVn7Fa0-O_8{8l4$khsOJJb$~P zYdW;`?kxrRjji`(63^S29(n%Uit?evfIvC7OQA)eTwBDVm^M(-k0$YT^&hw}J&Q9l zYxdR#i1p_J<A33?VK3K>_mw|F2VFlhG_lE-Iaz^t%94KpG>>z=1p{NcP z<}@K@sO)C{K-p7N2cw_~G3$cM@Yil+(1e(OJs)6x3Q|vt>R@3`qs6?y4kQXDQ5}qe zMvE_k%kWk=GHA3=G!*_P0%ZzL9>s;}5&RHxhO~AUf$~RwEEp<<=`K)iwx zqjj1y%8NB;ly00!dY*5?4L&U>*W)%`r)N-%V0XXawnfz90bX%0oUCm_?S_EbPho{e zp#ytT&t=E$lx^(ky$eNMtHboEyk$|^J5v)b4}r$sC;c4_%7NA)HnPr>rt`J~EE=%o z^!v1mcvfurAzWdhn~6R55r2wuSGNUs5)2!9u*KbEnIkge zl9@J{sh63RGE*%wZ08Qm-K8MmPt-qP5GW(W*Oal3N5bcukrG%Nh0%eHIf zkIKjK$#a{;6!VbBwc1bciEM-v((C`835eaB4=-YmV4W!`1wr&&c5^|vJG(*j9FnvF zaUu|9T)l2SrV%_xgc~^Vqym0Z$nXP)5=QzFy1$fW3;YHP6Xue~yiJGtG7`J1;1 z9vl!&R`}NXHj(xd0^;Fw*(A@aF}*9o%LN5I&m-^2g#he%iMjO91iL4fu=(pH8eLDv zdM0a(cs%F+xPRags}u!IO>03ZYW+MC-*YQ2yU%>*TBZ`!o7RXaT>NM~_1*^cwp&9$ z7SFkG>SjBeg+Y#`uAvZuw1&XqFYleU=MxzgE?T@cF!U3WQNy)h z_7Gs*OvGLend{JmzWCj>o3ABl{3c(M+*z9HNj7}Vg@O5E#I({=<&ss^o~kxcB_qJc zFjbIA)+wrkOp%_ucSE34mFymG5TLm!M^p!EUM(b`<~n#;5bob}&E5A-V4`q_l;1n% zNdQGsK(*!)pr8B=fqg>F|0b$~%&jJ0`ICclKfi14TKTgc^>+$S^y7EV{vsw$$P@)k zdXfb%o!E|A%!mjz!f!{gly1)Fb7~>GQY33X5Ob=3Z7XQzKu|V&?xxxE12%hp&-mcS zT<8%6-0Qp{O%XkLHR9}ZG!S! zB+V6+-<&`w(@#_fAk_LWIhehv z@teWA*7rN<5s~{8RN+xgycMb(y>J0#k9G8SWFA8;ExhoX3$BCsfg%)#n~vFTKBiQe zKVzI)1pGjeSiVx^b@uMrcH~A}IS`qrfX^vX_uz1XN5|fD@v#lmMd}O01Ue!CY z=oV(%)&!}@)@nE>xa^(<0qks6`iN&~q4OcnI+5MUv$S+-=t(7dC(Y-`rP>>l8-@e4Nrx}|bjV|%7@Fk^q|LIt&j3iYLJxv$kyj?g~a1^2IC@cpm}}f?fR} z$VLOh0*qukVORymiyULbLjq%}2ct+}{FP&@mo$cWFy;%4QjXCeG2E*qmze@1-75z@ zX^!{$00r+p6K|q1t;0g16+cT2!N!Xw1E~r02O@q(C>oFn0-|up{eT2mao$W=@%V+T zX%+FPix~#7=vN+U^sIIPPiXtdn&Jmpc6khOBIF}>5Dx?xZuJa0M;0PuD z6tcV&4#YDp2KiIy?WM4VBP{i|!$MJnkdJYME&eQC^0HXY5l;Feba)Z6IYN##go^yvlm}=$2etWtJ`kX@IOrW8P@@3pIB1g(XuSY^h0`w3e_DWO z06i!`ZvjNF522S;&Bj|YafksoeLl7tX|t(6z2VZ_Y;vN6>P)^b-55b7_RdWFAg~i- zJ4^d(VS3hO0U-LdF#GM@{aRQGe#V!6!WV%> z{#sac24cgO3!n~u_ZN*x;ms)8OlRpJ^9k61)?#O=s|I7XsK;Rd8IxYi!hh5x8qo?L ztY{FANIRtcNnzi8Q70-)op@H8{lxg99t{-UI}8n=NE49nOe(3>(GMRqx?VUR^8-Bx z-JgDih1X4H(q@8dqiZ7a)YCMF&Au94-3HRKtIhVhY837Fti-pYmcEa-+H2<_ZLXbz zZ~P|*SPMlPCgNA3$5Pq;vDv=;2lJC=yoA$!QhhZ%-yUhMn}H=%Qi%FW_)03kG)X$! z>qJSZn#eO@%M$Q|$!i^qKK-B^B6nk(-aMQVTJ7R7UG}40Q5&bh=3ir;v%OAIC|1?A z8VlWx$SSUXpx(ixgRMy$yo7U$-|Hvq@wz5@gQfRfj^= zZ=$sws#1qrW0Tb3OJg%q)ZutvsBI!%{q{b%IQqc8lcs}tZohii!QE!A8x#&3$oK0W zO;Mwhjb_IUaGK~F$$M^yc9nuS01yLaHD_ZyzJn%^YiVp;s{Q*^`)=f|u|`)I5bM=A zFi&)+f-W z7KP@u&Q$wWwdPA^uHuD?8LziZwI5Ck9k~c(Q|+ecSfAmW%6+bg*Nix7Hr zo4tb=IP})G%Sk#%T3on0riJDrIH1*$5}Q(&amx0^&(;w(SCXym4Qp(wy*({7Y5=g4 z8>h5v2%X}Nq2GIh zy{|#H*_&L~(z^>ChRtY9f+844g#(i2NQnz~T|&URsE^ao!v2ZtLKL~dJ>x4g`D!vb zy>Xen_%+)xs0gHL_gZ7j_CpYWUXq(UAMeTK{?%-_jKn0{?C%AtYs_`}Bz(4=O?uhd zj<^Q)LB=um2O1QPL8mAgzO~tK8k*4`xe~^tp(n}|hKBDp+d6yPawoof-g0h=<4jZS zUbWT)4k?bAdQ zKpJS~i9e{eaWEO)1bsK;NUK}en))vig6xQfj!^ZLnc-==wlv*-+ey4uSW#<|K}fwV z1mCukMz!W9mPt};=OdFk+?i(oCe8j`n%!v*)yZGcG_|@+*y;$Db=hx6%krRJ{ zkgH#Y(bF7bpT=wh0p2EAknI?d&)&~$+YSfa(*NSI$8F$Sw~{){zS|sX=s?*KUAxoz znb~0u7w%_2ne6@uZl>1sg*fQ;ZNN&mx8vt@aOR%gn&Qy+$NQ~2o&j-)fInt~QA~tk z^%$Y%x|>^>=E>}r6fg^bJxs7aREOV&b>T^0H=2}x+CCm8vYiaCEK*ne^n5p%pXx;uJn5nP&v_Yf%TK`7qAVoHcq()BCyDsXh zD*Tu-aXy zP29P$C&{_-9I(Pm0@RvIsZ*$TPDh3T-L2xK>ass3-_2-mL&L>WC*R2m>xji&$W|@` zO)$rsl>|*ps#dGHb|*8l^<@Th@AS}2QYPPncGjZFa4BbH5}K1;T<3a3LOmA=j-oIi ziPTP~NX-8x52E(XlUGqPl(9kNiQB^BHKgV0S~DKju``YXrE2CGeYi; z17vSnei+S;K8}!NyEA!t8=%JI<(*TfUT#!t+(2Wliz!lF0U8SPVATdcR+txCM=hSr zyw^IMd2VI0^xDuNyu;L*;W}=gbA`vsrK|DUE&27#Kh&Dnh#>Qk{fIgR%Xo`V_&jC2 z*6eN*^8@p5>&1%~GvBtp$o={)=_YkX&b9IaAOEOArHe*X`*Nr!Q5OhQYYBCpox6T3 z6Rv$e@Ob?EX^I{Z|2TYvFIm`lP-`XtfsF~ZHjUF{j@Db!Ok=||5g;)pINdN*_z3p- zV90dX&;NY(w||@Zg2813z{cl#UwG$us_v zFu6ZUQZ|fw?DLWL)4rt{GdmD5=WMZ_VLragY#&rd82A}BG2-&;*^=BHLuX29jyzfb z{j?hEm~A3$cE|Jvh_Dju+ubn(2yb*A3Mb91i`;HhBpx)|zcVL(jD=DnmUX|Hhio@b z+-E(9))RQwt9@)3v9%jiO1#|J`nTcj>x?_|KY(HWHChPX@s8KNnQ|diX12cz6E0mw zBl9uH2z?8xY1Qe(whBK(yT=`K7gf`0vQe#hoD{Fao1kHZ31kJV;xR4n#v&D~WUTY) z=dM!dT{DI_(4;(+pUVgvdV??_j;#Zz*$`TzC=q(a*=+d5#*GhULQn}uxgeez7wSOga-26Scd?yxBu&;FypTP#>7y}4SLU@o698sH*XE?6gsiF=i2WeQD#!*D0 zZgTx_CbePv$1Sc!tWg?)4NHiM1r>}oDsG^Pw+S6Rj_vxjTVRenn1g&In%8*dOR}%) zavGOdC)`axC3Tz{#mOjvrY|GTBB1gJV$MyTWY#q%I+st(07+}e4_gwQ`O9zY-!lZw zx76n^pO}7)H3DYg@v!4vwxRN@??rp{)#QFydF%SCucn68?ywHGwPT;(%br%3))JTE zNa~e3u{F)!xHvr2j2?KiyeD=|acL7)JQ~a@sn>7oUlt zF(w5b?9N|)F{C+@rb63Rnr62oq9;5Bbuih)6$kav;d{)vGojlj>Z?;A+q@9SHX{ta z*J%3&vgz+M*Dc)=*AW4yh%-<8+4{0vZqx3_WgW=o{4X#^`!LA&_~W3*F&4Nuz4)4i zZJ5FTU26U$LNr7;Xdb=~McQ$p4-h8bpDw#*xVo3k&mYXy!IJun*wq6a#+p9~I%?eFFm-~RdHvCBKjGSq z9Rw)vGv{7D$#Hj&dWZ=(de4pt=mc$hJ84q`gxAfwpHZ&t+wr1jJleh`^YwFFfn8)} z566^Vz&o?{r)6I|uJ2{m{o>1%^>^Z7->Uk0kGyqJe?=g5$DBcd#W5(40xUXcwAnH8 zZdNsU5R!UFPxps7gL8k3$-Ot$gXl)=P+)ah1za1ACY7He1`MDkby1fP6`?d+V=2O) z9EP3%frbh&8))*p$NrK1y-odL0{&jOyH6)MoMtQ%CfO&L?PYX8@bxVu>B1ENISiXn zK;14%?1P?X$<%0f%)J1!k;BNd$+zRqdNv*$hB}~udmn+|-47rV*F~)W)EyJW=*L_` z6wx1NIYK7xu8itPOK~X46L(vO(Sf033RHGh;s&m$8LSb#Ls1fC^EH0E-H{Y+woi$6 z^(S5GqJ}fX<2X&}_>d8x%SwhHZbtc2IuDGaX(zRO0H(0YNQdDI0Kg*OGpB69d&qd* z0*7HMa@e+1?g!ykxV~=Z+&b#(eQCc4@eHBBZLgHe z9p=y3WX}v{PqVaVn%17UcnN!Ez>|t8Dhe}V5Hd63P&wML`ywW4TI>W|s%}{lLPuyY z9_%_{&q=Qt$p#td#%$VOnHxKB$>KX_?cN)|CK@%M;e$}m`meIis|M^<>#T|d?$`|A zcF?)<*h`Re6`dwz;r-#U5FL2qFd4m~0*!}-Z7y$rNLiS@L3=&Pp$BUF43C*S{`&|0 zuLqOgIz88xU4~WBjknGam5aOjaW~9 zjY{})#|GC7G$tEe0d!7)NC_Nam~#PR?KvseQ=mfb+Fqiy0DPBS4alIY0okx@N~{@} zM=%7_(AaPaYyY6Gqt?(-j2Mm&APXNEyARmvieFHowk;^3cDuS_H>-hg2{b78e6t%T z-G{>WEREG;eG#j#e!Ew`T_3w=MC_hZdm8a6j>UPz*6=-zdq;M_M0=Wc@7VXno~^sT z+_z&N>Y7ov`|W*=dyedJ?Q8sO&z@gC+k=0efz2F_t}kSRO4SxRbA5>mkl6j8e> zvO4^w*lLKb4&NMGj}%v`YGT*&%&OQ8$ZS-Sm^D){d8DXuPDo^hSx;#Fwaor;M6(qu zq5O@YQhO3jp~BMGDl}M1j#@A-(8;UpA4P1pRzQ*3HE59BprAK^JoX|WgI)Y~1jLNx zCur(aYd-`^ej2?EOU_3j9Q)8%^x>nJfO!9bFG3fD{5(IIzXIwtAn;Dq9gs0hC>|#j zkCTeWam8`9(FumMA7R#oaC(yBI&^aF&U_RNY7M(#A96a?+v&|MYVACHcRa=#zz}+V z%7nGWfE~;CQ~TwOq)YpL+A?_dM^G>cq-$`@tKgiDUch0!7L`cVTDoHBr}aK)4dt3Q zftA~p)B^zxGjXBoHY^%w^mTIc%ke8#&K^SW2QCL47EpIIwl9b7*t%gELJ*=r>+Ke5 zm5jT!)Z0IU$ZGA!TyQK`Ab!+U5T7Q<^4|D1T#1ruI|zwMwRDusbu>TLVI=}0vz&B^ z!u~xQLo6DyCCV@|l>{usx`h@h2$lPGFmOJ=OhKyWHWbm$8aqL?ZzuD5%)SGCLt^)l zVlN59aSl)*(6CjbN!Z!P+V4aK?2WpyNvLa|&C7mf9L2gbesTd2h{$x9m9$!nGMNcl z;ZiO-gtVexpr2Ao!{I{@~dE!*7?I8+^#P}v(&|fbWhRuY*{Rli z!!2eQ1#k@Hu#qlhTqygh{W=YFCUAsHI+mAzI zS}%}pyAy?O%=OjVzb9d8-UmkeSAIIahfq&Co*_jFrlY;Fv3>A__tg~

}6hYj#?r zYn;Ss8aS!7H-YkmR&_--h}Ym+#-l zQeOY~VGAhw+|xn(%V;*(abZ6#HayM#rpb=GK)*5CTa)d(8aw+9Bc)St_X|vuZ0j6- z%UKlDKvb>y0AgTjjK;!R(g((A%dV%Z#VZ>D#Wq$|QtXYpTy!y6U)ySZ59W>f2?xb+ zHuM>u|4`%Kuh@v23u<@X*eiJ>*#ixdcb!Ply?MNK2;K2wq$5IFc=M^)mtWn=!|0{g z;K}Y?9VxYMsWpG$ULAF(hKFjq3J|QdSX@88E4A@UWAczs(j#`IVg2eyolL~_!u%f{ zW9F3bmY+GTB&~W|4@Rk~FNSYp`$?LRr2e!YbT3PZcvG$Uf`YZ^pCfPhsL#W+_`I$9fXUhyD^DEAw3wTd!>QfgiCaF~z2|%X8cA5BpoZ4ZFsF&x z)3MvRXUCo&MMdS0Ac)nzFG0AEna>qitc-y@TI`LOu4!j{g1%|7HH@4fqNOLIE{cs< zX5H;fiD*fl;8a)K1G%u=+6lWhEs3P|YRz(9M@w8BDkE4M@$$D%P?{GThf*9wq6IbI ziR2NqPhRW<@SkLFTK)y&jWrau;deK3)~#SYfi3%XGSplzpDP#V7+t?9Q8Mr$e*^uU~DHsX7eZc3|&01>fsjO z`U9kzpdM`h)d_3k{CXHOwp?AClkGc_BXDizKA429-p<+u>T&lmTne74&b;g@4IOJ zS*OD-kUOnzinA zwYBLeMvMU`98LD&q{N~*i?RRC*%9R#@8lPn-4*=1=1Hzk)Yzb`-UO@dew1TC8M2Q3 z<$SF4XT?rpFOkFTMU(utRv*LDu{;+$=kq_o5yNIQa24#P2*gi&e71RHA5`x@j@#Sj zw;{K+eLag+al6}JVIe4q^-Vo!;HLFts2*SzwRRvJm%6AgQXiSCDr?!4`xi7;?I%Ev zt;}gQq?pGrp^@QAz{RG+PB$D--G!)Y-%g^`W2T_pmRj>F6Nuz7gcJB_PkC$`?#gTb zikDODPW$_|BRZ@RAg;An4OYQuURwq5@tt^L0tB&IV4}649d0B7q{dUXnbloEbvr6= z1u`*wlvR#JCB=Kg8sc{zmFnx=!%E6=I*0ULk@B*P_c+i^Em9O5#q;@^M$rnxII3bp z$UW?`3f_LTNG}m-zMyxtA6@sbS44T7z*{8BvR#;{m+-vUH*o#NNjy=$TBJ`&x}sbn%D0K~=^~ZoMWTGRNIi0h@>6A^ zKSX+oNM8}Dgr6wh zVt*JS>`z;k_5WMb$UiCg+S?Ebl>y3V_V?wbG8JT#ZtA!G^8HJmxRjTVXwo);zw3>E zR}ACGMB`K z30fLUP-QhPu#{Vhti}RMh1F7AY&9;nl!Jk!Y8*M*n37|)6!|w=Qn}EWW~qQ61(s4v zetwBX+mHwtM~-2QODY1m7Fdc|bAN73nBA@Znzsqj_aCp1)3LGsCjVi z#*yQLafXF*3yVuDNbBGYeZ}|7Pk1rOudE$kZa=8P?w#p30kZc%`DeBkq2Y<^R{yyrK&0MaE%y6bF`G;dZ}{&jj3`xE7yq z+!|Jfj|(5NgVX(a5~cWa_8*xt>*pZ@l0<(k5_W6U*{qGAgyhVW3d z&}b?u;lp)NX^HW&;+%r48960+r3)c#U=vhkNF9x)vWlW&G+J0$QDH17FSTI!lpCj2 z78e^UV3c^Spcj9dHK(#`WG`MuN$En4w`6e<#wEriBWi>dN!$u!agl|r!x*IJR241E zq41efS)NzYm|d{iT?Cx7?UhTwz=ol#xeMDTgt+WJyk8vGHnn0R`d8 zl7b2rm8=NMOsulfiXv;#B4MOyl?xYwLmob8f@oY!E#NVKu@*_=$`+-BmB1TDnkq!7 zG8RC}+(PPt&n?C);W))5M(#q^cqP3EjEfP}tj2t}sBv0pIm|WE$Y`aN7L4Q-i+~Ux zOum^`xI+#+dck7i0^x#T;l7d5Vw$x;r|>|rwWJ6JBfpTMlbu)xdipeh6%+kB6Fn-- zmr-821asg5>TdteO!W0GMTrDv0fybeoJv^DQdmwB=CcX4FejhpKnxsdoMoD!uNU0TBWSSc$- zw<~3q@?2Olr@*3=m0R*G`OrJh7?+PAfNh5|@^}74Dv>D=x4dXUC38$8{t$O7l*p-A zTU5~ErD|keQF%P8&hx3hF?jV7ziJEvtX7Pr`B=|jF=MHqm=2bf5)76bi5dSx_1O5t z(fOdCQ=D6gH4lvvtZ&L#i%1wcaZE9pIxv9>y!RGbiu2$mB)(?($k%t?d7|yo2kxi8 z@BL@QPY^2o*nWv(t09{^`n^Tf&F~()2O`kcF zQJPh1?GkI22TM_A6ijFFe8%}1V?jKeWH>_ZUaah4{qcN`BVqKI|JQ)R8c-0GT_d6Th?ny|~ z@R^5CF+NN2K|C&4JaX~4F-DABYtcfBF+T?}u-tMH@0#SiJV;bw99Cv5%&9Pzlo}Df z3oIimEVl;%`fmCNXi6fsoiPn_+Ysv|la{U1R_8T;1XT87vNh|%!Yc=@Q(f;(D8u&_0 zxkgj2)|4-wI`txB+~w0Uha1PlPmCX>X#Rd5+?uy=+?bJxL1^&yzXkuZ{Qukj&-LH` z@AmtzfBxU{A5A#<&ljU{vo=0-%XT!$57xEjBzS~bx`XS$n^e8@Y z$SX05G87*(@(D=q!lw{y*e-I^_&nkmy)ihkQNqlpgJ`C=Ve|>4gIoWgYUA zUOGroUP3+z=^OYsk*D+#BldX6Q@Va6ZrMbh(ri_!q?_v%B^G%n(yBY5JMz^?ZTL(=z8>i|e3A$s>9D)d*T^RzO~Ypv@)=0ay&E>6 zdZZWJ10SF~(ky(ckk3ZC1D|T-TaoUc ze4ZeDq(|{thrDth9yP@0dE_&Yev8ir-#d|HsNM%w#+MQKGo8mSqd zPm#|+`XoLs4jgmf=HdC0dRZC!`G2=bIZ{S54b{05|Ro`Zdm zKZ11s^RN%${2j7wfPJVQX(v7#kXK$%l%Dv!MET$ON0>UjPSH;h=>nu`xT5M#Q^FH^ zWQUa*GW5=n)(C;q3SQLa1H^zs_>k{Vs)g%g;Ai*{oKjtQs3E)@*38i4dl?M93d5A} zok3vK=AS094ZZ|JEzn|vcf$MXGoo^bm5(466u55`N#6r+&D!Y;wu_YJG<8ycybq=aTO-Kfvx zhx!Hn!^)>eD5tLsQ=+R3O3y;Q67~gj&ju_kR0&%k^1XT}y&m)JS-|^582bD(Dl{@7 zB0IdShttp++Q#IOei0d_M2-qeFl6h?LNh{~IzxzJ7^O?_^Bv+bMercms7<*~n@EEp za%Wg*XhKM~A8l-O}zC!<7QP$EDc0lq!@;AvyT=`!#e(9iQs7^WMQ`d&Nlykf| z5|`4qV|o1nk)9H1^e|q3u1F_|G)<)QMOr1&l_GsYq?<+hkw_1TR5_Q^9VpUxk*0}s zmPiXlx=5sViu4JQN*!Jj<+nxpiAcW@=}#inpU3(36Y04ky-1`fBAp@9c_PghX_-iu zinKqX8S&{xzq?<&#Ritl=^aGLZ6X{nXJtERhkz#?vRE`vBUy%+JX{<=& zMLJHTNg};Mq_adiPo#MwEf(n_kyeXzrAY4-=|duYN~E$M{_97)fBx%7+z$V)AMI9B zaPNfGG8I<|aKc|aQ=D;kDkhxBmust)cXXFqtWzt?%W+_jW9(de5O}|58~dkzuUz8=)OR z#KnQklEp{kX|qqR~E3gmo-dXMH#PTWlhbhD6{0!m7FXt4eUP+ z^?Aj(rf#V!vMN`hRA8~vRi&Krf(m5@%D8xq8vzz6GbvxXAPd)ta~0(pl!|e2a1n!J z--t3@fXpc?%d*~BhAWE;cugg)(2MIfw7bp9$z7ONT%z2B+`@{2EXG!;Q?hb-?kyz? zS9nTrKiMxzR{la<6v3~a=ok~2Yat%f%EGmfzbFervV_c|LbEDMSlw%(S#&jL+!!TH zpR=G87a>%A4(^ntenDD<-H0A84qU9S_2^{y)L=d5J5-;ai|bwBc8)&ZLT!fW^Ye=< zD+;k!(dWY`6-vB5zqAZDGbQNr%gS*jG+!BwTqPjm_4(x%w7poLUxCYHXgx)rzZgRb zbqn>lUXqxg+@Pn6Uc~!G{X)ya+%ot}wO$ZXYV?edvO<4D1xbFp9vA1}J$LBKE!>ap z)zfvjoMP<%^%V^GgdP`18J%Y+S4{U=Jx{rk+=XSzTlz&(Oqw)kee!?lbERp zQSopjV$~0P{x^RXRxHZJtqDRK(kS>}cAuo6faqvmzv15CaCto~;hx~|phW*$`M<{k zNy$vsY>}=K*GG~x*Kz*$DD+=ReJz0JH^e=a;k;Um_n`(~EN`CU|Lr_Q;rJU?Brzb4 zfP(&U{8}U&zg6Ie2E|qsjz1JPr*Zr?fj^Hg4Fg(n{AFV$ev&b0t0cY_jl)l3{uceOLE!M=IQi}l{@HK9S66q{p7+P(oZ1H0m(#PZmGJBbk{GM=LL^83l+z2rNp5%a zUhu%{AL8^z`IGUKIK6A1?TQ|UPk*&5IG2B5gM_yVephtsZ>g_KeB&crz9HS>|IjG$ zGalvmKX^3o&v1EKwtMi`a{NQx(trDHiJ$Zs$FC3brz=aGzWrl~-@1h%_|4SGC&+R$#fW(*g-=En9{r^_~XD#qBW^z9Dh3jyagK;Xq z&BZtpH>}_b_g`Bk<7RP7c~LHkIk-i9a@B-!BMDew965cIab$%xZ*oCN<;01KZt6uB z=9c3|%RI}X3oFWVFT@!Dzd3Q_qR}G@imW~r*pvX5eJoX$_+0F3lbGhd3y%<8SZ-lX zxe`iu`(;^`&~sh{PDpqU?C}e5ODDc6af53C-H}Uo^M-^Qyb!7gt;BbkwVc{sNo_+H z6G192_?1Y7^r$Gr7F9z=Z(!8)oEqiz;SU2{A5K4`9-{A|;o5`bVfWz8^6ojxN)S)>1J#4wDcFwfD-R5~@#-x-l?0Do^aJ!w#( z={@wbGRE=p3RaE_69-j7;gw-zh=j28s;L#_ir&tO zW5Q-y3Z_Dv+r!2JI)REQC^}g2A}X3tT*Zo$sEB7g^>wUx2^B9#aWyL@QE?`Ucd+7= zFq2?h&p4%orIaTq`oA*S%qS$HZ&)D%g;D4bR+xjrXmkiGWTP++eZUHZD2#{MS)nX! zMoty1%nDUuGjdT_!wS`5GxAWlpA}Yy%~*iK1FTRVHlw0U(LcxvYXCvvAy!xmNRgs{ zm=)H601A(=!iKOJ6BPZUEZ-0|W1^y8%ks{!892+)|BV$|P=Gd%u|g{f(B^Sg*o^|T zd4d(%P#B}=pJW9W3S$-hQ><_#Y(^1;d72eEBY%m2!|HlojWgKN@)?!_-29FsLcKHW zLRzYY3IO$Pd1U*YG7E~5^s+(B#I(<(%W}SkQqTIq+rHs!O2HD^Xxvac& zA%ksYum%qE3?BJxvMNkGQ z$Rq*EBr}vr0Z~dByVko=49EK{a>{9H>p((IqxE${D{ETnn(8soEs0Ei9p^u+SDAohtua5em|0Fl zJhiUwY-~Z~&)SQy(8^_lbRdvNiIYd+lE($Ggj7!37!f~j4}jnC%JJ(ao9E46QUgt9 zox2Bcya|V%oq9Kcu!^tj+qg+N4esxes;6=^tFyu#0X3iOpU3}#T4bD|;V=1cp2}yd zf6s@L$nS>$#);JSoSrRPMGc-0EheT813I3Uf%8Ez=w)%_zRz4R<2AHEvz&41F<^1L zdH5}A!%tq?&jL0B)BgOPP`rW3x>A!_TXI|6qFkm^Fu3c)^Vyh zME8FvXwI=(hE}q4HX?QlJKQe&am)i2Wie%&WNCL<8?Si-)drSmDu@$3nOn6 z&Y~bPM8tMM75mb8hr}z@V6wSu_-y6u6kJ8Tfv<@#79elWjX#8*s*JDMyg7nBFV4>1 zljT<$lIQ$5`+JY2a?)GZxgh>tw0-d&%eg=PbBLe#N*HP=bRG~8oO@+}0!II6%zc8H@D*-gC52NU z!6k(Wc-Q?Ef%AnpML_Frh2u#lXxz~}i0T;A~_<||t`CJOm($nD+@h0+0vQpY+SCEIG@WsE*o_W zX0awrq{{icE;vO-_u0$4VC!+7m83k4YU>f1TAgV*i(MJ7 z8Nz*7a8C*@8#vf_ou>rKC4_9A z7APN3_wd%uc%1|u2bk-bX9Ow|DqbaliUIX+=#oNxUNEJ=Y}p1=pYyE1Wq@(-3Oyh- zt{}O0b038Lb3&hH5Lj(1XTP9k=qPx*~g6#T(Jrjc7B4FwSpUJzDi(7fTJ^VAmp840glahj+7Arj>}j^V5`UG&EBv6;}5ZTTbpdsTqQZ5j-l^IC_9}u7^<3<7( z3ecAEH3GW?=*;*96ZoJ2Ycf7Y;35Ie%%Gyq`H*zYI+f2+FbTaR?^j;%+N5ETZaV0!p& z0Zb3yBT1VczE=R#!}kebdiZ_;Ob^dIV5@vS8%%>-}4s^C> zIjCUTC3Ki$cA76rfN#v>%PnT?8ma$SA6e1;c=RolzlK=7e^@|yD zDChfM8>PXhsG&L=+sXa|Oxn)0>xWC44kq2X)-n3CV>rI>E zm5nVOoi#1B^-1id+ygbBOx!wvV=z6+J-}TR_P7BLQ0-uFJSGrp>uhaHHr1bA-xN`E zK_p`xr@R6d0lVYF@r+voo{A*$Z|_{)*4Wa}TB9~4CclZp zv1!ZpGjO~Lo8ZK;oM5X_KfhA*Rbn=A%Oe#9?zppnTRCx4$4F1(08ZPe#GIc1(gd>_ zrA-z?C`V&WOQ*^vu)5{6mew;`R1Sf<`dTcAnp7@<#(64VI1nh%f%$5j4lGoK!m>ma zX~YsWUJyvOSYr?>VMtUnr3|4dI?yI+0s$&>${6UVX{fJhZ?9Ra$_du$a0SDwJL=o( z>KmY9sZ$e)(5jnBI(P=_JegsmCZ5JHwnUQlbONh=Xa*s!d^#JO>(xGK`sGcn%hhud zL`wBF&1$~^THCQiSIxYC<)>m@q+SSkLfngjV|qT910!(`6B+c2zRIZj)W6+-uwG8`Q2{GE~r{_3fvleRl2A zL#C;zeg%5)uYZ-1)2PAbnvT=Jqf_o&+g48mKov{2o!)S|$}X|7vH;LXpp>ejDkuBu z@(Bl{R{zMnR!6aS}s0ec(jS-xd#FnJ1XXEfW+qqA+ zFSZ{8Ha4XU=L3zZ2RN!RXCO_Vu4X1X>zAupE&fT_&R%RGZ>>BT(PECr*wd1Y+%)ps zVsB6Fmd%4*L%rCqVgtOf*WXauzlu@q7<+)ZK|GJ}cqokwAPBC02ZSmj5JArAOsH4R z1{w^i_9$W>MQTcxhvfAqo!4KOS0@^awfU3IMxQ?g#8lMLJzEF+aa4GuH#s;+?=0{g zq^wcPdLQhQ)4RGEW@k+A+QuNUGrG3*E9(}k0zz;`pR#Thh8Y9O+9SAQW`KN`br({n z1SQ+CN$yTJZud2efdR%>8Cd7|)-U8Gf7a-4kk@Q@kH9XHzA=<_4t0)J`)r#WaU5iw)1rBh?D7`D1BE}BCe7DLv0D<6Dn z4r-9>)+cMN53n)wjis-~RMr|jb|R)xR=CKJ*ap_FFQ72<7@S{-(1IEG;opKK2rOox z34uYuE!=8iUN{{JV4xRS?bdv?@Ph_@6VSiaXgl#&wfJF!e+Kx4uSDXOp(u{+Y=ZVMB>WuS4wP?=bPQW=K+r*ev6dV3D;d5vvS< zHHlcM57^r)6WGqzn3U!ulX7smw!ITOX`Uxn*7w+UdrjJt%<&a#^y`(lpxQq;d@kM> z^k`3$bpJu3uSIH0O?=w*l=XuIhGT5^fe)O}H&7?q@KsykzC~I8PFvnV@Sj+XpXV!? zCSK>H90j(1&6j00vOi%1Raa1BSid1^Cs6}*j|j}0EZ@WUzibxXyC0c?<|8@&S-*K; z5}XYG6tXFuL}3y~lm$rflyu^P@t|x51%Gqv5dMQncoz`XZ@+^?Prec8tH5&dr3k!? zKsCR9r)v2ApHx_lAQ}$;ty=3EY>-c$fsytX@|PpffR>y`>VkQI&Ih#MBm^F1UYpxnEPsu_lJb^T`*TAydxe*xP0$h7((t5`RFT(!`@s&k5Ez8+I`I}Gv- zjkM-s;92t*S!=AhYViezcrD6N_b~(HR_Y?ke0mc)^GBsHQVBsnQoC4rtout*O7H%=c@gqUnax1m};@%l2pqLAgM0J zM1=|GG_r;=gILTxt2mE@!ec2eF+e1=YpgFt$Sajtt<%Ui@?WEAv+|<6d*Ie z8Jgz#G`NdOc8i_JTBAw$oVnC(sjQ1+Rb;K@(kT>OD{$wcf6IE&y27g<7-7*;c}+|J zw7$)QNplmznmt=^*!J}G_jJQWp0XBdwqPMP5RE2MmzOuPw{af!Q!{rkvd?2%0Lf*= zHYj$r*yI!PE&H~gp<9mPs_jq~3Od}0&7I1DQ-t4@k~ZeXA$+S3AEpS{y2-X|n_=rt zg6$*&_3Ru-j`R;p<&(Vdu^tM4WmP`|=JBr;O2Yc`$a>h=u}oP04Nx4986Zzhf(t(g zKN42xg-CF-#j0niPxTilxSheVlHAlNp7Od;$rar6Ct_>LYNYQEVeKER-E1bEm0zzU zYuj6~4sfRnZe=xc>x)sduUZmCL3O#d^!H#hwM+))WL2&@or!v<7Jp@ zisVxV2Q_^oE1!sYhQ1=%+}N_>3~ZRN#cgWB-f#J8;A%QoV$-OsKDNMVIt|9}9~tg} zW3nX9!La^k$igU%j!rS;HDi#6w{G#tYtzYC72|l#4rRSZC{1ZMjk53NN+pj)Qq9TU z0oruoaZ4LzvLE84%Oy*mtX^AqOG)HI_N9!0#B?=)j$T#DdGrm&;SWZ}Z}AWVz6-gX z#~&ci#hcNbdS5F0dZu|YnK;h#_|oYg;`2yAM85vb=E6??;=6$3#FxiSi)uBOgfgCz zBL|%M^2nju%$*_Dg7c76C+}<*A=>rTswA8;FIciTX?)sY--4GE*Pd{*?aUUxmh7x# zuWx3vo@cR|<>J<1EcqWzWGKZMD~|!>gnLD>s6+A}wF(Ji@GGmSS)SQfFhx#V(jR#g zF!F;~`i57*@lBDNU)dkw^ric*NnTiNiZ&~2F=wefzJ2ne+U1s3#(ax&fM!S5aLBin z-VM#0jvIM>y{e#39mK5R;Bpo=fk)(ko*q$~di${%8^$@k^aKC%V%Sueb9#Tn$-K9H z^6u|HZ5Q)`V>yRAdt<-l0g*HXn0@Wz7#Hqg6kzc{0TxsCN_3qI)rL`kF{l+_3{e3l zPbk3nqykKyP=N7C1sI=N0mhJ4fC(;8fDtkZFkuk|7(;;qj6k3OBM>OS2v7kg98`em z02E+400o$^Kmn!^P=E=73NVeK0*oQ80AnanfDsS{7y}Un7(rhF#&C)Pj0mFu(?P8O zW7t=KG3=|nrV|JiV1yzHFoH$_#$ccT(}1r43rV4}>jmky4p<07+>3%sRe&+BD8M9O z6krUGp#USAJ?JaIG#jmuP=FB#6kx*XE5Hau6<~yo#)}HD2pA~9h>I$~GLk(w9}$^N ztit6O#{TP!K`MXN=%o}j$-O{fo<)Tdg+|upulWnnJ31N-5RYX!-l+p|{slX@?UJnR}>VdE0YOEgFe} z;Q!4%|8MTmGuIKCd*Ezg>jpR*So5!xBS}sV&RPpY89+DhSG?!H81`hxt(^CgldBq816e)IZ49PJZMk{H;4_zS;ypNsRWk= z%30610@GP&eR1!ZjlG8_)))6)MpvH1bng>_huLACa__$hgnR?f>^mIESy6zrF?=?Tq~EwrD-^~YaXa9({%#PH_%rAVk?(tAWOuX=o#NBN!AbZBOYwI@fUG^qBlvqpRY`c!RPgv8uTM z3YQt4Ow1ujG4^Y!(Tl>$m07HS@6-3cgOq;Clm>MVDQh~LX$4T@rH8DUtmQR;i*GdP z&qDeo&l`XzOU6;vzT=zKlHxdPjXez1S}0w|LDTNMS#pzwz%1v@QVGm;-kfj~N8Ip8 zN}pvfK}Lz#RYvbsDx3A_&f0y9IcKxJYC^=NNW60?@G+00z0CJq5#K4b%_b?ERVY{L za|N7S&qiI2%}m`VTW)(em(OQdU;S{dxB!6T zU;VK4oe$@#gTT7pU1T)(K%Cvg0n)cPZoES{JZM2O&~DLNAx`vGh#lSvap$r9?2g9w z)F(TYdkr-xwoWeoM<(Y4OCl$ACE+ET>zi@dF^N+gjkVZ3HMF)v2L=N@u2Yp2lwup7 z;DJH^>|?yVpbm+vL=8{Ximg`88OJLG??v#wqn`N0g3qA{`3auj-!dR4XX29z79*L` zM29G1*GT*YW@hJuGM}k>w*G3dN`y2!^RE`rrvE)L) zxow+v4%7QnP?2RNELE;K+o?-+lHf4;=wq=RID^1zc;=w;toR8f*WlGnw9o_}Us`ek z5>|<3d`?HjPcC7$ULx(RX#5mOGCRQxS~s+JZI^?W@oGWmCxRoe0i{MLMG=bDa-r#l z;Y(4dr6HAuy#e{m2dK3|tw{JMaoeL&>q;I$g)0MMO3Zp8PD#Mpo^pCN-XKX%!xv%3 zY?Jtkl1I=auE$2sOIwy^T>BHy@(-gDDF{>|p0Y211k4YYr3`A72t!nf$P+3NKB*Fs zCsZPQQYFHtR*5jARU(25R3e0oN<>&hCBjgk5+M+%LTr}A`AyA z5dxt~giu5!LeQv07z|V*8t_#jAt_XUydd3{t`hOn3(o`*BPtOI7?lXaW2i(Vc4S$q z*^EkrK%f#4PG2QLAgU4}98rlxz(6HJTvR18jy}M+EKQU-xZF}G%hE*od-3uB;IcGP zu@Zn+sF$UQi6rG0>SbwS5^1G?xGYUfCRBlFW?7o3B%%^g^|CZkMR;0axGYUfVREyS zEz8oxG`EY#`XNI_2Wsn=-QmzhK1kB z`ADKD+iJLiNe%CW5_&~yIx8ieLawiI;H8le-pj+JiUs7U@71X`z0OqS1_$zL)(Hy; zrWT#B`J#)mS`U}>HbiK91gVXm%sIlkcLnYy6~YLV9MoTxQP%xBd1%MANe>oU9!K{I zVV;Dq@dqiU^KlXn@vVn45WOUs6lY~g*ci6JkDcXO)>XilqD6-Yah5E_?R181W=mgV z2)~YYRwX@KlF>F*)&k2qDU&g1P$VevrEg4_Mna!3fw|DksjNj-6>^$@rBx5F`b6L@ z-ATVc7i*?%^OL;JVjVAeO+aXgRf}B9Cg9M4UMTX_-v)=hd(GsHAFU>{ z`dmJS@I?mrI)GPDk}4hp*k{((RXAEOuL?&CPE(UFkH)&m06AFU{!U`8!Xg};JozyB zHbb2cD$1Uf1-m(yYg6H3;B4ALc*03KQal%0k6WjMWt#58$A5!{oxWaKpXRD%I)=e# zI1HxaG}e=R$<&N?bogGA#d>1!XN`UeTa}sb2WbcDJaan&e`erA2wa55o0X3&o-wfw zGDePd5u+Rj{BOW;6p=^s`dDoDRTmypi@;9AJ*EkP*Ab{J{8%+OZ~_Lk`Vo+5DbyKf zWexuQz#rRhfE*-^)?-p^6>qLO_AW!J5)yFLs`5t$*NQf*7Cc&i$+vVys?xqphe%HP zWaX1*kBg9{-wuZT#-b^8+`pO(K8V7Bg?ls>>(|yQ6bp|v=oOgAV0^=_bPLwveK<2_ zdI+-P`__LVTekfV*!Jv}f0u5-Ys|M;S^pu!b6iluosLLH{{R8$&0iw034L}<9Ow_BO2>>x;7bV1;%Lggyjlu2$b_G>eu?t{GH@IQ zIFx2Fz`=DI0<%ALg=XidMQhqy@w)~G(sW{NCb4}?>}BiZT$9*Xm`5K2h!tGOT1+tfb15zdEvdm&=FS?dV1PAv zKLWECj9G()%t#uf-q6=Esn1(>o~gqXesYia$?*=^>~qFUZk|c(IYZsU#9pvk{ltFf zCss}j%XTsXvwvdPQyTwr6FN4^H1do0V0k-GS|0aRUFFf|ECeC*yKhxLpKEG)wzZA+^9`Bl+ePvn^ zf|nJ7B6*o6-iCJ(2k$rG9E*(dy^B$hMC=|j_+5_^A10E9kul;%tY>b;Ebsog3`ki9C!U4~M_C6XIH)$+E9b zR8ScgqV;7P`x?PJiRFl6ejAVlw)6?-~>~t zGVubGAd9SsryTo(aR-Td##4@cQGAya(Rj+SKP0f{8BaO(hXu~}jHev?Vu4FN<0;4f zh`^Pe@swjM&v?qQuacbVJbKEpcT3q;0+@%s5ugnK zw)ocwum->abcg`!04!GawE}DcaJ;gw6JXGzryTow0d{!wlw;o@z%GxTa_k!gxYVPk z9Q%_3T;HT1bD-vmm2$S0e+wTOT47Y z%1QH-WABSk#gI}lL-1YV*w0C{Jx)%FryP5~pzm>V(mmza&kJR5l;V54v0o6{lbRO1 zO4?J7{h|=}r4fU;FA15Ra*TfTB)nAGHI8%nf3WDjesmTHf%P-y>qk$)2!y&4zrLRw zXE$+&JERkfszNEpbRM{G;O-Yt>q6~6Qa0p@HygXuQpjHbjrb4iD~OpJI=r!eXfbkz z@0Z4|)81$3m&UGlpGKjSCw^({2KQb-p32pJY3vp5D}eLptfm-R{QL@Jm7(DoKAZ>N z-Jmb_;bhcsovNkH8pCId-5-Al`xJSrvt9UnJTp zvGWBN_>8f)31?9d886FrK^6OQYKO!t)u8qnWA7APg_q_t#y&S5N0U~1aElW9jIqy) zvm^H8_?5;xcz&FHvBy%m={{rZ3*xOH73{I>`{O^ri|CnaF7^WgD$n?gu^$XGgCuw; z&K}>xtkI|s3$&LInq#j(`v{?aj|g;t5K8i>KnDpy96Tn_8##a=_Z}Ark^mqi-xC7n z3kad~X#pz*gk1WJfO7?;XnIoMY7L`EPYK+nVHE0Vf!Apm#rmwkgBnJ`o)LJLhEcT7 z2@IbxGPEh8WN2GzoU-kEL^KupK4a{AWq<x=PQxTsprQ_aEj{ECbO%7(co+3EkA# z4=0vji=kH=dlLu2h}*(kdOVU~OQ2+7hCwv@(S$-QETQo$BBKuhBT~jY_K7980xnE9 zaM;UAIMo+M4IK7KfLD@tBNlQ@3hAYz6r*| z-)WDJV`3$T7*Be!l`K7s@nk~Oc=8AAiA$l$HfMSm)W#ErXgrZ8j3<23cp^_2Pxz$q zgimceVMrTK1Q!@j2pQvvu!!-5p}=@TATXW~2#hBLXgm=P8c%cp#uFWY@kCf)Jkbak zPXs~ZiN?@)!jLweFtpOYP)$ILCk#Z4Cj@KFg=&UVj3-1GPctRjF zo)C%{PY4?034?+0L<7F@BqT+RCq7Szdr`VF^*kxL#CReBV?1Ga4C4vW(etF5%@|Jz z1jZBL^o=J3qQ(=#5#vb&42&nlMU5vhdj$O{^2^GB(8J z_d)SdZk$`y4D{%|m{q~mkSd1>7+(_+d#p8)D63qy)~y?~DCdR_ij7Gm+2svGu*Le* zJkl}?4Qn#Vv2rsVv~CC%vBBlqN=iqpQln+Fs&Y`Y3V(CoQNL1a%>BKzvfju2r@x>6 z6e`C*YxEZA2qtn9X}yno$orAXqxTAiAFrzZ7-4_YpcfkU zqK{Xj5SS!TC+50PRjn{67G|13OX~B~v?fE7Qujv~o1=_#@sZOAtuIQOr>gFa&@T4# zWqIbQ>CZ-JK`YFQba2{Tkp*nS118eXq$+6H(Ou|;8PqwWe_+yCM6N{aWusD?4AkQL zfa-$IXYwFaPB7ST7JYzlGNM^pG9M%E-+`U>eUrzJ*k2h}RZCX?4d7H{g_0&>2Yd}= z)uo0!8xhxQGHoR@_Zqygt8q1w#uS(gwjor(!#Uwuws8FJR~R+^*VCUwn19yjV&pwZ zAFQHAfLl@$8IdnCu~&i7L+~Xw%zdS((nOvS!ykLS3?nvZdPb z(S2q>AI%d-uqY;$aZSNy6s237kUA#38TH;{57C{@;0QlD*#NgSZS_X^x_qasCar0F zC-`0HIDb&rS$NF89l_&LBh>HUD>R+#alTjh>M#D|tT_-zMw^ODy{PuQxlpC1f9T^c z=qo#HlSDclC*|*yd8Qm~d}K<$vAdfW*HHNMuZ|32wE24Azd`dG3lHBpYxbdU-o;y6 zfxhT)>Y&I4fK)w-k#kC#%`CME1WRq<^q1NMqDyVUk)?J743^r&r7X4S@j%UO?(7w`R-U& zJ0?&X#!0i)O^gT}I7*;z{_C_gzXVulyh?%9juH2z z5reodNnBX%vczf^yX-i;R9SMXA$IxKQ1mQqwToRb0ffUXzOsUe+nIAOBZjs)XI_Ya zZO(a4K>u47&VB)XQym3Dwr{HYB@z+`I^LG1%n~mdrzicX}tdD$Jyk2ER~(! zx-b~B^$YjVVEDcSdsBa80tQ2Z7-;$<6EGMCnTf%W9lM8FqfsA@6WU7%&9PUYeS}cI zM+7=R2qk$`po4_OV90oHWC9X{At4AMfMPHtm@l9h3<*{WCMv{D z5rZKydA0b_DeU!An4q#F_Cik6*--;xArQ{k21Fixbkhxp92r<>q!yGO_Lz3WDb&vooil0E7@!_t@i+yh%R+z;-+aWmd{^_sL$G$Jk z0xV@yh(0JSqq2fcS?mYDM0!~*op7bpxw-=?d&=1o&zgKbQZ3yuk{rg>D}1ues=60t z6~xHU)@~dFp2B>QR44Whs}RI}$>Fhl-dOYfCGj`F&p&Il5IU8zZtWAtTDSsPej7WF z@?m__0v{ZJrk1(KcJIBg9A0WRbklFe;wB77Tw$%a$!sxfq%n~m;`UysCOvPEK!8UI zV-C)59Ny5?*T0qe-;HxW0TTZHB)=@k_1H8_h6wFGyVjIuBS*kYT;(kH%hz`|nC#tc zK*-0f+G>?`Hg_&oM|t1ojr#DRAY!|pys(^3(o(GlLPN32P?LHjflCbi9Lr}hmrVmb z6q~pP@DU_w?_ODPsww49bOoW`Gg~HA(Pc;;O2n!T<9C(4ZPP^Y1z2&1A=hfMH5YjD zh&M_<6+pA>Z9DLoYi}FGV+rgF75{0Xp6*9g6~8m6b2KUuJLs#nE3&SwmL~kDkXFSD zK6>e{UFWOHe1jjL#<76?%C<9tql%4PzM>-;tZ>X1UaaYSV^Gi18cCHrW*O~s%%J!P zTOuVDV{pcXc2+6!4a+%&@7mPJu=IQMSe6XR*ynXE4rNKgC){9v@8(|I8M0<;?tH^N zO&?fwt1b0S3`y)_p~^in3PL!N!^RVv&h)PaKZ~LBzu0s}KCft>b{G2MZSO+$_Z0tr zpBk>GPlUnReJrGG@XfZ^g}*~_V)FgA*oP$SFKfvcY+PZl7u8qn#&)7pFX6t`r`eo& ztZPiibpObhar1RG_eyB_0fq}!_lK6WOt@)I-77m@8D_AIxH*)N;Wt#IHj23*)1S{@YZhl!2F2`g+Rt=2=#!>%hhFehf6GqPp=fUvG zsyj}IURDsTaR6@llv^nH{19IYe}u~+3x}0kB(%~jeK_Pjy+d2*{a(4_%UIaTtn||u zZm|%isklCjkzN6}q>S|)i>lnCrEbQhw^ddI#%$=sBCZnQ8*>o(S`VWQa<+nQwf`I7 zoXaH0BIWFo;MEA`4pPCUtWI+04ni=jK7htSySD(57p6>Io3gHC%KjTPhm82cg%!Nn z`I6O@%<3r!>wL-XN@n*ff|BKx%<>rM!3tIz>Gv?if*SW;@|L{j-)YxxA%pH4iHTn5yVxa~1w){E6*}jlFRnn^^-S zT!ov_pz#>8SsFh#f)_us*&44>@ZitU_gPwS$Ka?}USljrj>ah73tjGo;TG;$95W3(b(^5;LR(j2V*QG0c!eM^F4| zHe-e)5SSr_(>FsBh?*e@N6e5BFfc@8sJjQ3U2u zTV+W6TREB`#K!c~9m}~BRP5U()rb&GFt0ys0$3QX5x-%Z%FDvU>$Yi5i4`jcydRXuaGkPp53hsYKL%}JFUR?OM#z1 zVg=qYvSWn4-BIA5N`Z}U_xRmX+`VbV{hI9Oe}2S@3y;_Xv~Q!h2d}M05taHE`GspF z%o`zL<;|-cTc{3tF{z(Sd0m^AQ0@Ta} zP(|-vR{)js?oBH1RKs%@W4|{7k>!pxo~>6xu}9Mh7B_xk z<;>z%5*a9w5Py&X3pF9#aku*r(`9Sw49f8tJDo+bPG0?AG=rly;r#QFS?kb;7MxpP zTH9+n28wz4yApHlKliluwswl595#|X7XZC zPhJdh@{%VeFFrYW$rF4lRQxn%N^fSJ4) z9%J$%I=X4pY-aKz5KLae=}%q+qLUZl$mA6PgUO4y=;Y<;Pi;D-T^PKH%{!C*u!?Ro zPMz}k0;Ip!i+P1&=*8XTA|eHEtp zG|+gy7WlfBuLK*wJsY^wD>_n=Zm<_NaIW9?nd;tRH0k%CV7{R9J-66XA48S?hV%RH zqDs^8BDS~RpqSbzMC`I9=y&ZDB6j)ri1+PqQ$YxXrEv-oyXsnCUGF`N6qx23$@z9o zb8I4=he!bD*%uKzE~m-dQj5CPRO6g(Qm040h6vB2jyMoDUHx};E_7fdNITeb~sQSP$>mjNE?MOOQy#uX&@ZpPOj-RFcp z%^>)xNq4`XX6PvJm;U_tPoR}%0Y)a!11R@}@jpg8EmIk6E)u1YV;ZInO5lWV1B|q} z`{HkQmBpW+d};3L-o#I3x>d!xyL?x=<~9?mIYlUT z))Pp}omxDEVmg_@b@h&&o7ZpY?-c)p?lhr#nL#2#L>kkDke#XRqG=y|cV|cr`B|?r zhnWJ5^XnTewL7c$yQr35Axz6Pp}7}F?#?Wx|J|(Dnao*|qmmqz`#xQ4Khd<9ZnF3x zM9g69VyqRV#q)xETHELqxu(f99_-3*xYrfe;fxlVPsaN7rtzA)-oIrC*YMBo9WvK_ zm3u=m-yS=&xo_YQ+KobsnP!ng;O-}NQ4Ov!ybB=bUEG_5>>2Xv=$Dr@!>BN1X9i|# zIXff$rQDl^n4ihhH?13VhPMc=C^Njd>E2pQXJMt8W)Rf$Tvf6b7dyX+Px9< zZGxVL_CN!)@`J_jh`zA{2a|d?2Q6{Cw9+iy5^u$HhcF$jQ<5SD@$VGUu{wS#=`JB1 zr(<<&UC$#?k(@szN4y4`wuw`@SxBdOu9I;(0#T!jj7y+q)S#t zX|?zQBX4y)ETp!uIR4j;mAh9+Ya%2+(j!7ym)W$Xs|Odh#RIPUsFZh8@cy=M>%tv# zzO<;`V?ylDcZ;Xx+$oZdFIj_=E!Bd~59M?~sS!$1gc9*7 z;w~3zX-JJa6>)2YS`m(qXwN{%N8{7D4 zu_AYI*)p7v%)g2IXg!~uD3P2@xJ=xRkFUZZ!6x3+a!(RGW-_|IcTW~58)GTV?i9i0 z`{Vx5?A&T8w_nLI7;4HcKyh4;g(^rw;`H_4C~7E&t639;yT63dT9a}^F^Y@6Y3Ra}M8oJY#_Xl2dj zz*g5+;|E_YmS1E$`W2*FA+?;%T0UNh^Cd&ua9CybH`oZPCP^jdu#!IqZPEj*^IWFI z&lXSm9l?1SU_Aq1danMZ>{{}-nY?ca^8O;uN=zQq_qJ;ZoQE`uq%id?jLy4(c~6+) z=e>eyEh8v-uVmgs04v$vy(W)*bdS|~4U(*4TTdY@jU6`E)Ef*hn`@d;)T=yawt=jHcJXJmY3*gF~ElMm>YBXZhbSsnrH;aS2W# zOvZi5^*5nD*P%YT9eQNwNr&{ZL!_3!HL=@R%S}5GQ`eGkdM(RusFplZYFW0xU^%9E zBuMLZ5AiZO$h}mx;XP5(L5`#2VV%;&8)EVFdoavyn#oS6HxYKRc-wT*7)~$Rrm>2a zK7{l&{fpRWyA1!8K|x+cK_>UMz)kr@cLA9-)i2kF!{Ku=%XJkfvt;OggehTI%iy_$ zgXbmCq}-R7^!K5x*2i?Y8BQJ?J?Su_~GuB7eJ_?S#CW(iF+D*fI zIvF>G_i+eci^A%9?PtC8fPJ0=<0zeIUGFfC#JzAPMsL}4zn(9$o|^y~reQhG+J1VC zvR>kJco|6YK0ax3-^C{QmjrS)gMN%Acs;ENwn`ItpRAUW`%SPF4MC6f3T`e?@95XS z$8mFdjQQwsd@;v8Wzw;11~nV_fo^;NAl}4!3sV1(58ocfe@Ar|V;yru&Jjev_%xdz zbb|8flSSC49nN92@dcgnMHD^}d(Ah4``>yxTvWJ__H?uZCYt&fCTB-|;D|K=&UTJ$ z8tOsC*O^YAX|roEbjFLOiF!sAYTX_O<^Km-w>MEtU(@z|hJ8)jG`uOHrY%sbol5lE zRjaWLTwja!-vq)F?@TDJZ{ydubhfX>ExxmC4^5iU&<~XWln?@`jO7|k3h2Sb;MWk- z6_?~XqPxx}>Md;|@nm~v6VBc?b~e^RE#dDSZ{ml~+%*$( zQK|e4(JN>#;O^Rq8&TlO47quBa@E##dLlf{5EAD#*oHcf7rj+Q|jE=#s zpz*a3=#rr_@RsIH#&&o_51v(o%%Bo~y(+yv|Y$gVO*690P z>}YWLT73sISK(Dg{P=s5<4OHGsDA;q=zc>Tuh+k-c&kCQgAGVrNGhw*375PY@TJ)lm4Jj3kj$j`gQh_0S)n{98 zqz=`rLz_wC)}Ri5Kt{R_)vUuF6tHY?sCSz#^m2CDUx~vTp;5I&oiz(v!wXGfPaRU$ z;>Qh%2ftFwTXDdUK7iU6eb)e~Jgkjg=BFH}-`Ru$zF}fqAJ!lPHP{4gnRaBTtet!> ze}xj_n?iD;(K?q^`~6XZ!M8@Y_2Tltc^rR#IU0LNjzBe9EeY;J*!uW&NOBT`lQ{${ zwi+VGvf(c>s5i)eG2Qo0Vo>v6oWfsRZNMLZE489Un++)yttumL6hGcFVItBF$7?Ft z*a*v(p+OU|*UjP~huvL?ktdFC^cN|u8SFdU<1;)}ysQADNycX^N(%N!=BE%%e$bTtQl!DcT!?u6s!&%weSz#N!hH}q|s)3;#B;yK+r zH*SZ|untwb^vv#|EyKe-z1z+dPhwCc51q+xeD=&9>Djz^A+cxfSh6^|c;RdamDw_s z7tB9XC#qJotgfu-sGNV?{DsFY!iT|jy@Abyqs|$lVMn$O^q#b_cc6Euue)+KKKazW z=_DjPd-1}`*&8cox6Tj$Z;%2&3}dazvRBUDFt7z{Y|Q4f%}2s`Co5WIgvYG4PGCNk zeSdFNSCya-{KfBEe#_K8C(UdhDl@v6?~U8)wCJ&?!>#{q}*|I z``Eqg9lU%!eOUhBd#;VvCD@b2*MQQwx}`qZQMD3Qnx@r}tW;)5Zm+ND=)lK$c(kOmmFBH(uDvtC7=(^U`%YAfVi1xW#+i=|H5N2SW2Y(&N$9T5GiusV*7o{_dW;md z%<}q{`i90@jA=C?WNoT#GsCDXM56QR(2{kH4Qo|-h-PCow$$Rlld1@@=wbSoN!B$W zM!j@Ehng7DVIxY`tXQokg{T^yZ(_SA@x|U`OVp}oGo zO&uL#>(_K9m&{$Tm8Mn<3!40zF@}zND=s;s9I(wvWoxUcJq_(^dZDqUqb1;+o65-( zS55UD9q5Ku9N1FxQpqgK+~o4L$+k7H2F(wN9FFZMGz2btv4gS&ji44BhNYpswON=J zj>&|EH3!f-)S{3>OZAlD22rM&(Fuz~PL34a5y>dW@ndoX2`mZ8HK(tczi9DWb;SvX zVNC6fr74{A<}V3a|HP1D1lk#moh$ins%0Umrs<5DwH?U@Oe|}Yn1e98EID4C6f&%C zfjEX1qqDuKzD1oJ5;|5kHgwKYr-YdI)bqt!(@8~~&a0(P?TgIHc=4KBA^OdmLW!WB zi_jZt@ZC2`xW+YVe*_Tn*@1_oXP+lysH6xatdIkXAP8`Tykz%~Xu-h)XVEW_n;zGi9Xdzeb20 zOKWOZu2`p=0^49 z2#;A`pa<$2&9}z!@^z>K5gy$lGE~%S5xn2Gt4yJC`hSe;8N*0f{YL(!iKx3S&K3eK*&F*t=7b1rAOQ_`YZT51;@go!L)hy4f?JhjGv;P26FB8T;D}02h8a$8 zE6aKwg~nmp{ndDe8%=#bJa@v8*cY?>bMSEpRN#Qw*NV;$#p^)ZMs_#0-kbs%NzQ1*_Sz>>j_J=;4UWUwE+ z=kpjW{Ct7czJTe)mm=uc7w$K)c1b{DeNZw9bp9SW?Tc;$qmyr6GLJe~Da@tO!U*6b z_y*#G0)x0-0&hn4N7)EYe!iE$(NFk^`| zQK$%A_ZmX*$;K>W9-A-bu{mPiI>E4IW8N3>>oG6;`m+Vi1CyC|fg4KW4TIhNUBknD z8+I!DS&OxbQLUYgnmlVU#hgtz&1*kreG`##&^7xlwq6eEr$bDHjkg|0)9evjQdnnF z7_q|?w%JTUzMOq$xW7;@M0vouRv?}bIR!* z;wKNRxg04hbOi%&=mK$xlg_aM3w;_mJ{juj8|H~?k*3PtTfw%k_;bEy>O5P8W)h{{V1hw@Tjk(U$>keBpxCGt`NA}_y*oDY$gWVf$iVd5hQ zLS8=3m?AGFM0xo%QIwbaG>!7|B?d)az9Ll0%da2=iO4Kt9-A-bu{mO1mtfekG4B=p zdd$ndo?dlh-cRr=TJ%HYC2JL109Gw8nW8T*zlBIzUb4Zoyp(oKm6wu2mq}s74pZ1> zGX<5)0j}&9Nk|{$*61d@eiWGVNKPJyhUHBKYXQMy=RoEK@^c|G8uwpFa?vf-2rBrT zh6r5vQ)FG}v9i0@6cIIk9Dw3U`1v#vD4vDD&k#Ul*0a+@-p9y`N|1fYsX#wA7owB6 z@tuGm@P1+VSilM8w^kFWwgD)kEGwgMtTe*0%<7KsUin*Z)GDKF91Ue-nU;;CXutA6 zQrUolFIc5Zs)?-S#Q#7oC$b5`AEjPH=8ih5;)qGA?k&Su*tMCq_%#~@e;&$mMTX*pb~V>>fh!-CEc&uYb(K zE*B$K*-vuHPan0`=n!6~V5tVJ&6rEIUNhL=5NYuMN*XNHhzgf#pGE?*RI8fLm!kL% z6Op-m5z$Iy`Bh?;U#0(I$o$rQ@ox-p8-Pmu2d^~`tch5gkuW9U@~b3m`Bfq!CWhr# zX?#yL^HxlB!cqe;(f>t)T+h(~AX@N{I9;%@Isc}+KpzR^b<(0x#U2sDgZln%OW$=UJ7gUlaP7i5bJD`?}Vfax3`;Fl0t58 zH<@Uac(tv~*=UHO4CHq40!T>Win+fn;r{lFg$T?<;B^GB=3+fwFtN`d27lHiO-$i@ zkiNbMaxI-+axo}>1qI@29a8@TxXW>}U@MEbVlh(Xu6fyQ)#Ok(w=93w)?1h=cg`ON z&xCY(vED^jw3~SQQSpfv8sGqcpCbAsis*IUu9g%hS>3V=o|Gn^Cy9J6g*dI4b-QL| zVyfc4Xwu(|Bu!5%lQ0D=_*>I|Gm_%uGLsn#%hcxm4XKInuk4 zPTe>lB3_i?Pi22KQK~AK1M)FYr@Yl1FqPwDD(8Ty?3wTfE_ZQQ+)=wHAF(-LaLabg z0oAuxqhQ!pU=;E1(^zT0^&DVMf4qZw%-|SF%%iY)SLT3)7{*xVjx`57k1|B(0J54n zU;x3lHwTdOe>(@T5u$T|hQm2PV3`9}AeY0<0i>Hb;JpaGTXO*ON|^&biy9p=2e2A{ z-y9$*9BvNq)n`fg$lHM1U3>xk(atdctkDFD>z{@dmhV9_=Jnwla)?5G?y}?2%t$MV zgU&d4yNXe_0w+q%kKJAkP^lB;7wMfXE9ECZFHEO}%Vw*+nDT$-5{XrU7g5?3-+xJMAStn z;sl(y+{T1ryDz;ke`vTL^$~c(GRz~K#j@|H23bo3YxqlO8>!EaKrg3+kUA7|78^Jj zbDGRzr!a!VZZ@$Gg3}twMkOTn#u~&XE{y&CYGgLV75AcB~##R^{0BY zXFA>Jd?oJgJFA&aIMdzzVL$G?2E)79`{LVL?qvH88@A7;!do@Nz%qRnz<{9 z4!V);x)=OXp4ZdUytxRRlIC~7QQNfRkQwK16+Ku zpW(a}h@4J0k;}MDSZ?CBp+eT>kNEMfK)iC|46jsd-KWy>dEw_i|2M#2m`;zzjoqCV z_mZQKx-`m?m57^8kH)<SdrlbqIB)83QcTx6{&QZRQv{^ZupK8^grhAm3Gu`h-(!Ist??8DR{FjcC!LcgA!STDtt>59K`aOn?Lkz1(->kzmCBECD zkKd>366aJ{_{kSlMz05C&XG?1u`PB@VmFB}1SRT6z5F2_L1NfBp zjzQx8%O=PoYy8Y)5_1zSMGl0SNJ6R~e71VBii_7ImaqrzsRjlg#JN{LyLVu{GH|gY@oV}^bOHZz&=!#$ z$ve3BKqq3u0sYLt#!7}`-W$m8o!NqHwtUUcc?kpqH537;p+1Y&#unrTK%$1a87#&o z_%MTF6FiL(J+j&tFunLa>?8Za7fh^O63}WW$s|-mk<-5D4lq&;wE%*`sG*{Txl{^s zh#HEG5Z!`kINX8=EL)HdA{T5yI*`1mp(G$S!EdqX>1Qa&ZePK|#IHpVI}$pp(l$W} z(I)s=qG%I*PSa=;`~rhw6MR*uv?p|YEIByAWU|e{iEo2HTMkaJm9pjFgfw1`FJZ}@K3K70M{c=T5GF{z zZ6yFm*8#xNY>k-u#MYNZ@<{;me~66!Xx{E!8CZg4e;NfU_zTc?fj*8nG4&M{0UtXR z3o@Gdwj%)D5@VnHKsCc^uKXf}LI;JA6n+e@;&ghL+Je(eYIh?5wbbWKN~{Dffcf)L z3@xCv41Uj4w5U}w1ywh^XFgaBs!}q!yps}1XE-1k4k5#JCZm_lQ)aDqGQ)p$`EFh$ z8S;WqZKYg9!cn+);XE7Q7)87o(0xTb z0Z2e@E+GNm&Z!8pno|)TyXbA5iXi7d{#3*dP&7zDISj#5WDn7L-N#Sv~!^CXeO$_s5e>&oY?{d z)Eli#_=#2kTD>9gUjWM)iq{{k1{upoirMBew2Fwrp*BcC;=)4|kFSE<+`L)BzaD7*Yw*KKCPJYP}M38hOq-9Kx=xCcz!gdg{; zd;PdQjGIo6#y$GsYKaxZUHv0J?j?+yPLIa@UV7ZVDimMJ{1e7ar<=HPmc-ku^UcTB z&RXB>$6K=+jYyo~Eo(A)uv5!-8i2Nx3T~Y%xOJZUZ#t<8Zk({$!pUnarLKe=sDVm~d3(bk0}rx-{qM=DqKf?j@8wD7 zH%udzqtN{O&uMr=|MsPA)vF&sR0`~&3^$yzYUG=FOtUeFtrz0|trJk^L zy(duMI6Z1)r2Wh$?uTq9SKAriL@<%&aooAK0HYxDFdoOV0*~W3;(r(3l}xyQHXg?r z)E>tfqQ`N0!s9rf^f)e0cpT@G9>@9A9>*D?ziQ|2^f##43FV)oM`r-F4A8o zYc}I?oIv1lTsVD?;{>7}#|cL~jz_@2<2Z3qkK=HZ$y2^?0C0A14?Z0X39+%)cw&eK|>jlCl{K>QX0NLjfLgVh&85Zdx* zjppmf!-tO?XJqwAwM5F2UrYs~PeZmB(A9 z|Dmx8*Gd9!1PM$6{Qv&m{T8qatm$51R?I7~#%1J}V1ApXva(JF0&ht%_WMh-PRwd7 z#JryeJOgf_74x#PfOjo`@f^+MHWn_yz|8=dOPU5f#==mMIIbTjGe?1pA(It}3^02J z8X(8yiWKnvjkjh_Xe?w#c`hPh$!b{|E~o-L2Z@gxugHVN76TaTjKdh?XGo0VLMtoC zx}+oml!n=3g~md`>;{IQa^+G`-HdFtT5mIbqDk z!j!o9hWxz3c58LXnyj@_?s-`Nl$yU#%|pvA;KK&I@S_)57<}`jZx?;+B1_q&yO$%k z#US7#JY+uJ=TT~j=1}ScQ*)LL$t;b4h>W&fUBVt(#$vEwelbppATZQUc1<}>$wDc{ zVJ}im3^o{%@=LER*9=UwHkt+zb-I8I*6W~B4MFFjS<@P4MOfNXCa}j=F2aa!tisQ! zQ4(AIG=o4FYu=`4!po$inxm-3LXB(*Mu8N7*|Y|HGN3eHn?|yb3sD$WVpTLMBeq8) zY94i1k)hvrCm8rL1YG}xhzEFS+KeFeLz@c924DEFH4^E~bNFIJ>k;V#wDbR1dJ2KJ zTmDq3;H651L{xlcYFU&O$}<@AnN?1-4N~5u+(-*xq(lBi8zet$5VlW&Km5i;UZp~f zymt8nj_jf!Cm94Od5w>xhP;Xq(Y%8tIt?aJ8YF=3(t}|_YD06#lm%R7tYNQ;0*=-4 z(FTffXN#Pue9sM|qJe|K zDT6lOAG8GlUa}h(he(H zru1AzWLTi*CbFp~MS2tPC4nv=`!>vJqH{u!XG6%=Ko{wd*JJ+s{H4@3GM42LMR1FDG*8pgp#DC6p$8@ zHiiBt{|ZSdyu2na$)ox6$a`tiQfO=oR7DKPpQ6|VtS-70>w?IZs$D@WTHUT9e-!;i ztu897T|h;}<@Y`J-gEEF+<8febr<)u1I?U!=G=46J?GqW|IEA@9tEaLeMp=0STzhd z5>#=EvBr#QzP6VbD^VYq;VHrtGi5?Q-{kLEUcK=9AJZI}VQ1UXe4!RTu02MnQpP#Lr;`aaDCNa_)nXeyPEskw6`(wlt;&rROWVkToe*BK=h8m)s<#42Yb#1wT6 z>M5Sd*;v`9#)&$5hBTfhXGfdPL36cyZ@)T*`&9w=t7E;htO?#(7WWVl*c0U}>v(T3 zJi#Qz6Lnt`oof>J!ILyzv}>|%rXa&KjZ-5vbBf>IzK}Tu@vP=qG<`VLgf|sWGZ8_> zLKHp3r*njo|E796&lx6)rvX%%^F2&%rfX_Kb(Xw>37Z5E=*059M*3wZQ9xtXrXt@H zIOpo{5?PpLaXjl&ROm~xH)G=FuOFI)z16j?LMcsN&apI*6L2%i3-63(C&v6v9OKna z3Ra0^tT6PTbXk$(sendwb;3YTywf z^H1aji6|Z;J6(a{g$V=q;0fG=kMs86iQXPeec}|4dry^UbW?w?r9n;gxzpuxhetERR(7aqI@VQc z9^9c`W1EyK9X85q{LwP-W1Nl0$Z#2}?IzsdUG2hd8e{h7krE z!v-6x@iO53&eekp1ud38JZ4kS9&KzvuJS}aT~+Cu@_m6!0&?HrSWkACz}X>?zI{?B za&7Dm8HqAPz0(lce*XXe_Az<+Hjis{HCeXq(^9m3d5c_{T%=t4QcfS~SKe^|px6-@= z8Im96LeD5TUSvu={0*{5GxZP)Vw428W4-p~R64<=MeGe4S7IfMg6_G;n;fYo3-}tB z+@lhS5bIuEwqR8zFHF`JrI7S_J79ZSo+(ij$Ta;_TdEZ1v{3V04UTJ`<%);{+)*ZZ zQ{`$(%{mD)&C?I`w37nyOqq7i@^Zqo(<2sIc;=m?BUWjwqs-Cg`mHNhK+|OxIWKr^ zWJzwgv8UouEG0(yM_1Z;R$HPpD-k=-)TzespgdM;ESEca!h+=vx0b3MEz>q;k`l}N zrNjC%cxiKGmV#W0@R;V{_+|lF4kE7t@O+v59Ih*l#DMFt|OHuHxdIIUk zyJ?6x@oX9*fP=w-go*e?LO}e|mOW1qIjl`y^oH9cPhg*9LXT1;Vmu^2%KU-ENWMNr z&&c)S)i)*dM_gE%_}}FgO2EgOK84k3&`WX#4=+uWUcx+vjC=xn=|mpACK+dtUz9T@ zd)#%hZG7L}2^k+F7Wv8a+yDJO7)jS)1B;yQF>wwj=pL@3o~oTJEj`6{$|+v*zv~{s zgDPh=Pkst!CvTerS&e3PJZ_=C92e{&*sYNRF;=&f$VA`3Sj$~x5>=o$=9_~j@zNJt z?ehMiX8}uH(mSSlU45#@)wIp7I+-=FT03-RSQU!~{5a|Fyq_7*l413&WRHW%j-CNX zWIC@Skn7lQY62A)f{^n}mK!8IJj*sL*-SE}p>1+7R!){7GR3P2^~O^;60k)~`E^(~ zQS7dZ8!FzFAaTYm70RgZ@m}GzByOrGa?cd(ERED-B+_x%)atLn{m;&PbQ49p<-MnI zs+)^h&UocVIseh*!Xmzi3*I*M_@4qW=>KCm<|fEMz(SGSE#^KHqQ?gV!)%kGzpHun zB-`=tz(fDDmX|BUaoVCD2mB4@oPKZQnB2hZxh6Nc+mq0qPM zgE%(}*udb4fY*a35~6SckA)aZMR%atrN>h!9&hf^AqO)9xxhM+x2-Tu{J-Px%L3=& zClgWUFWAqBME;D&AtE@?0xG}5*N-=JX7OPq^Tu-h4XNUmj!gEvY)40H1ASs#eoU&k z+xn0cp6+jG?P^RGr!$Rf@T4t$r|Af=^KqdMLzy2&hrUK#Y2i3%P_jFTUlza^_$_NE zRL7@kTZ{0!MRBn)*_1&62E+%n+OrY_bChsN7FQ?mByFZq7Vv6!e1l5D_#L2lBo|+{ zN~BW~hwoW6;ER*^-XK22n9*pw2%p&K^1AH$bW%x%UgCwuV1P${={>-bRTif1lwbpq zOAw!?g**u>VX}Z-vZzx~Dni%&ofC1#ycThP5m|hryS}LT*=N7y-h1=&ndasPW50-1 ztaQihaa*(QuOiQPeI-`^P517bW4-_4{y38DcX!?#JtMMYeQd#Pu{YdHvhJ~m+)UOz zdXJk~>>k~e7j^G(dy(jVyYV%^Zy&W7@P{@Ox!u_r_W<#`qc#JvWy5B7Y^~dsb;lL$ z-r4_8xBPr>U94s0-jzT67Jfz-eZ(F2yxRqKvHeRH-Lmd3;POVjHY(-*$jQboyZF+s z*wkmAT{QRcd+&5VwkaEbA=w-&X>7Tr@ADvxxNBZ>OAmEi`-nSs$0M~ME&+U&l3^NwYcpRHRt(;X8ll2G(0bdQ%{q^R>G^^tc=hk@hi zJC*U4WNSLvN$*xg#QLHJ0jr}1Fu8m8ZKVV_?s1XGr3WIHMk8oY8xT>a8h?*OHuUMCZSU!^$Q-K2!Y4=$sSfl; z<(>hy)G?8z`)bWbU(aQ}!W_9L;fxeqU! z>u%WL7VWsE#Xb48xo&f8M~izxY{Fc3eQZZ&i<_yv#x2-0*Ztznu^pXVi`wLyd6BW=b^CBb#TsIViWz*nA)$tM3XQ@$RA~GJKZ1>3c*2vP`e>JX zS&{pNP5a$hvFD#$H1`6xbdI~vsh!c~9z*zEchd8MYSo_aBA{yBmfBz3=^kI?CW*S` z-`%>+?wne8dF{{LHQArL^J5bp+DgOHs2!uO$@IA=@2GQI4n4Wi-H<)Exg1{KdFhpx z_g(soyJ3!?Y8vGh?2i?@uR5_q*To)WXc0kB!ytnE!0o>zB-JaSNieBktI&yRK+`pSym?#?O7O`PtZ9_xjq;MGIgv zdVL7qV)X8^8NTQXo2h6TZnp9mmXc4&J<4ErL?RXLNxiY@E8S0R+O_7%mX&UPt=s*4 z*O#}PbDx{pXCOtZ)YCHybFDCvBisQbXCEM}Bhx4Q`79QQ4N9k{e^ zQS4TXH5(Q$tO5Jjo9=(z+~nRG$+~~KxyaoX$;M7=j-Bbg2IM_J{u;=SKL)lU5mbAK! zn4nH6ijGGTX@IZsq5C7`ao_qA-;&QLw>eo6Sid|%V!UJ6$h(|_83c9#)v(~3bPhJ@ z@=PHl8Lgbk|chuayO z^YcsQ&M02`&2^obWzEHIcC%Zsd6hePhntEOeQWJXcU%mCx7aPH{ifS>XlopQuDA?e z)?DJI_PFQmaI1G{1dFx7P--AuCz#_M zMfPA+R8;K!pHe9tb)I-FSuwT-P$+KbXm3h27pKm@2yd=#SlCjq=8$`aqsC{&Av5ef~(uz<#!Gj`vq|DZERsNN&qR zJ+tj5-p6OQ-S|t4?)eegqQ29uT~d5?e~bJ1$S!OWf9=Lzcg*J4lUKjsW}2cGALou= z45Do=lGd&WZDxa@%H41XmwxYHRSzmXbb#`In>CjSK`CSC^S2i}|@;~0RABg9ov7(g=sr=|ou|w{Od)%XYf&RYW z@W{sAZ73XYW0cvxD)>dQk@KHG{@5i~?%YV!FAMk|Huk!!pGWZz;-=s2vhr_a<&SRc zeagLLhkJDNtVnd~@zGTir}sm<$f%}K(KGPg`b{F5{^Gs{rr+AwdmHXZ(q;G2P0@x3 zc)sDro=5Qxp+jWU=25YSfc=ddJ(COt?t;2_v%6xmfKH4R;`(=Gt=&>{)N;>=9TL|o z<@s3{rWS+;6r;x_Bf9e#`5gUuKmAGFLVrI%f81=5IE~-z9{aqzHYQ8UV%e=CpT*(m zsB;SbTH~#w-snxSfN2H4?;H2y>gHlbF}G!IOL0lx+_}wLwiM3=aOvDj>mDSyuWw!5 z7n&bBecBQ+;h-0ZN1apg*A~Gq@g@e#m$gfT)d>N8JC;uaGfqR7q=8IK|LVPShD2w84_2#VCKyL-=0dNZmvgI} z^A>(-GM0^q-Y4B1h|K*PDGBd!7vF{(Lu}P&ir-4Ctm=HOR6y_+Tvc3rI{gWF41Oc`2_wr*u5i};{$a(s zo>`N_5CRm7OVB&!;zUw#P*9L3nfnQ1WO%pDvcy}6haMXE^{u$!C`Z#jMi;y8*A&_J)2?^V&8L*uHBj! z6&dP*JdDf&I)w4o%^q^U;ZT4)7Nt4K)|+Ue_HdrasxRLtMvB;6;*Q~$PVU#7#ki?h zwB$T@+Bl(_ryHY;(zx)B*w2)mxb=S&NKT##qE=e*@>=UGjoSLpOv8bKJ%gxb-@teifN{N#kk(aN}id1}^ z=-e0J?_b@yY3bul2qRvW9O*}$uw9+w{e&`qAmI-37?baYIz86JyW)Up_~4fty7`fb za1#9gyU{e-ez<#w=-Hyz{@Rf+psetfOX>pY2mqr)m$DCEFyjxwT_wds(FTdc! z(RulkZg;qssD2wvH;xzi7+oEAkIU+`8!4{ENz-$}cHpkUmwgqg=jlJMn$jVq=V=QzfV2C zY5ilKS->no!cewNN3qPDU zFaPY@DUNQTINCb8EWdP1Z2r-ss>VK5_H^0T=N*{$?RnoRduIITixw)rx%^M|EJUpG zLn5D6?V*0qfDW)|TyzOe3&usS7Tw`G{9Qb5y?{xtrK5)?X0Egh3n|=zemw=uhf)H=J01l$l6qlqQT|anNDImvL zA^r;g==dw`7;9o~k#qp*LG?=10|X?8j$C@T;@T6S=LZg+7u18=HQkoOuJgx5yK-FO zuoL-^x)EyH3-PWG!3p|hN<2zx5J zdPSE~bl!ek3J>ePJAa(ls+<;u{Yc(H#Yd&xoOUJu6`&1#OYd1w7p3AryJ|RJh2<5pQxEF#tw4UqaW4B2emCg(78<^2B@V_9+*>Nj z6C_%+ljxoMBz}Ryufmz|6$-yY;bGrfs9!37qQx+BAv)9~^u_}8MvOR%0+{k~(UpE0 zy!K7;KdkuAH~dXMsPXu(eB3JIOxce}ztZicqUI&0zUb$uD!TdQFx!P55ztrm@!{4+EsZhsd*|-&^AmdutUDXfG4}QC}`?x82 z)c=XkZpG&jqsOh}zgwt3Zl%1scD*zveL;G~7)qOeyWL`5DZ zeia`t6@2h+aB+a2h@T2QI7AmKP~Ul>`Wbu8Yw&z8^KNeFrnukNj7YV3R=V-YA2DbzG`AzUIeMs{E zxR4^}_aA_x=cDV>Ktyp#bOR5S0)p)@me3K1%PaB+BCGEkzkTfev5$?y1OH=xKoiSg zP@-NgyOBQI#)JPqmIA`pFU4Qdry}|z5qNT7%vFCD==Y;OZ>{hLpvv==z1(RLHrO^{ zA33z=;zxMAePnhl}(G<63t0x z9-bh$vS~gZB6F(os7tD&y{r|FNw+2OZNFuy_Kr?n|0?|Q1ecxiL^e^L>I88|=X%Af zI-6)%Gryy)EtPcyUt+7S3Es;R*LQR-O|`E{b}}ES#X|h-sR~cobgpIkMR+JNg^$2& zNH&rvuLM6KRaG*DrhfMEcoGl#rPe0n;$gq8G@Y|7WJNnY`{)%@*4T)T%w?`@T7WH- z_2P39j?mgNfL6Q_7Lhbp;%7M!*4|t#OwCQaJk^>s=3L&@wmR8)WmDDKL|JcMv+k_YqocKvpU<~+gqiTIi>7p!b!B0yxut?W z`Q3tcEEFH^aaz+v5BD}Yjq9qCi3~z0mv7Q41f3du-xSVIBCgufPI`F_e2r!yg#ETj zn_#;t)tT)|v?@0`DQ3l=gl$~i8mH|peCLNzts%Ikw4lm($eLQS!I~izN6u{IHAB=0 zK^;;4BWE`9njvipLA`VSe;4`tuT}B|#bA<}M?{>8^A$+H&7%V-37Ee>Qy|xJo%E!> zU_F5}btLr1u$n=luPVu3SDQFdr=*YJbJR)|TAiCGD}F_ti7XeZ?|4`-{DQ(ooT?uy z@J)ka@J|YLl+*3ZIIC|sLVvFG$88UBgegY9yP|`BtVc)0sbSU^s`daSubIDG>s$|K zhOg6>S#i4Jz#Jpa3I^wRjK%N=wZIiS6v#G3O(R`G+&Zr1I^9qkaw6lx!yZ7=Uinnw%1t4Ei5P#I`**zxJBM;g2MBM`JAc^xhhya zqPMzrJ$Bg1y4DK2mSujf)uePMYcRZBhd?!RdPXr1GuqXPoU6kh3{KHHT@~a6DrU;I zi8xp3Rw>{n#rxA*B`cVFlnk%0gKVBtG{077#MRq(GeC$YCVFNYKcSCBjiGfXhScRme~oE9gS0V5M|ex?#Wifbsx!>S;9CkMD{^U-N(CTP*Y&AiL4Q)` zh*Mpls83R7^u>M8mx}9sjGJz*mAs&?F>a2z7UOG-TWYQiFi*y@mXO!P^^{iD=}d(| zix^C3lzO(sR7xw5ehEnjYB6}TQV8v4@Bm3T<%03|9J z+@x#OFvyZY#UP6%B`W*4#F9bCpi#og0&I!zY9(qJ?9ocBV2~w8oLUB1EGbc|l`s;m z40@}Q#0LK#vHeR*3EVjs2XYaEX^mRN_WPPaG5Bv9Rl%TXGxt^{#BsRI>|YuV82*-` zia2#_OO_ipYMd68^zTvUkSzL3b?LW;guwzm9@H{;l0rqDw8QY33U{=Vaqi9=Pqzpr zZ*->qMWNrLGk-0E(-kUEW41!CG&LAZgx6T3&^MbJn-us7gJN)}LIuQX!z-XcS>gxA zB5WixqpkXqYTk3|4AV0B3x&#eGI<_@^fCUI=K4nOb;iG@Syr(T>Ao5rh<~Wfq-^}XN10@=Hcd5yY%Lcrbm(JNFKJd*LgRX~bYrWz zv5(}g#c{wbjyf}~Q8h>t5x-2*Z6JV2JT~-QM}edIT%}*sxyX_fqzRG4B%a6#O5#Z3 z@W5cg;Oj~_jN0AD1vV4tf~LPfCB08sZ>4s5Ngu=PBrNn;5f1W@wI6eyrvP+Y23r(L zP6oJiuOVb`uaA&R-#3H|{@F*!C0_4CG=mqaVMvPR(iM7es$!6zkdTCmy>*(aRjFi< zn?n^V`?z$cA!Lx7BMG^5&=4}n&5?v$;uc}r!XP(C5^`ytZd@gU-p1vg&R?!osb!Fx zLlSCr<345x8RX_jLN4(v0@EP|xjB-MOWYz5GRV!5gj`yp8&}Jqw{f*rhg7OM+#<{( z81y!-E~IgFVU4Tnvl~|z*0{PpyK!}4jjQXk8&?4K8E`=Zbl!&?A@@b z-W5vCdUeKp#hIvUzrsl93%!GTCim$3O@p?;l?>h(#UQ}oacXeG?14dkkdv}Y zRUemTYQic8FW0DQ1{Z2n6@!ZuO0wfpyCG!oE{&>Y@P3V|VsMW}RWtY>8db$$ZSFZE z-$$OHYgJ?vc$-1(P~hhc>NN$9*1RhwD6r6=&Q#!~234-WDuW8T`cuk7>;sA`h9@bx zt~2Is?T+0FNrViuJp>^aVoE3xGR$fVLM~k9A!L{}7ld4>_7F16_7;T0X4D~=7^xq%kWMQ9XFR1A$~zURw%^P>WrMo;58amy-|T%HL8Nado;?LYBQsxAz_fm zQq0;n>EULrp;M4P@iMDcldNK}UZKW2YaL!$pVh}$7I?hAnpRY2ZFJ7++|uTbNiE~kLD z8Qy;TvdNay2NV^L)yRDe{!r)D8bzc}C#p;QFcCt9!75#=Zl405)~E^w4evV5GyqIf zWoX18KRYUOWq@86nHtkw2E7$?&tjPxQ%MHB73~>fiIQ1mRAulwg_5drDPss3yvs+( zC0^E`@eJPYBUA-_vQ?=JQ>C)cR;4mbmC8O_mC7(xY;)SG)P|{28=^{Wm@2g)s?>(5 zVmrugY*m;9`vwPBWFv&_oG=Y@MA$IM)yVs{R!sGNZQ?XRBy~0Rj@RmU( zG8HFkw2?usIDw|CXUw@fFIG4$R(K`~Q?0>(jlM<8XN*EP4ohlOn6QaNue!EFv#Db6 zD;ib9;68 zyh9?C8AnyEFw>N%Yvr1A6@$wZN@~res|+E7t2L^I!Hlo2ZifPR9R7i>SjFH^HL99H zehNbB!KGI;VHJZH>ZMur`xLmupn^)gsTf?ONou&(QiIA>>v%;HX477E?bDh~6@#Bs zDA^V+J#GjY{F+A9F!*y{-JoLMR#(5TD^~nOfj={-V6DUI(pWV$M?YndmotcC22W5_ zQhP3)Vd^rtO`~c)q`;3GR8Wa!>QaR|kHQ2o<4o=2GCw?lsArIudm(*=*Rf0*(lIVn zg63&p<>V>?MywRH^La!CS)L+qFU6f&LJchs!JDXk_rYnF^23zq!so1b*(A} zKcG<37hK{D3O_RV@4D^^24C^j<&f)j(6YEBgl&eJHpt!`AP zU==)jg$(kZA#4-WDx@d!-r;ApxGDx8Qz&UZE`7xiGRT8~B;*or@j(v;9hJ!>A(uw$ z)K|seF+M^rO*DiIp6Daw(lkTJ;8{MxpyO>TREAlhvd^|cWtbHz`)n&zhFJj%A*I-O zt#c)V+-@>gWgnNg>2M~4+-^z8C2l$h8T4AgUW3_Is1371ZHN_W!>mvnVuji;D`2%_ zS)n$}3bi3ts1371ZJ%w0+Au5F3oVX~76n9{1cUF_D82UDtWe?sv}5rQ86$XofqcZ^ zH-of{SgiY$mGRC|bu{^qw~|G@VNk_Ns*!HZ zX-`trg}PP+gJ)_~C4;PM6bdn1s>v!CWWC2pz47azO_M`Zu3(k%Z{WmPBu5*Xy=J!&y{v!arr^+2SL5nFZj zY6iDyRDwaCTj=VH7^Ce|&EQyt(zJ}=4Z4uVj8!79Q|GbHj+g=+)|6f7y~ematp?t& zCM&X3*o8q>z{`Q9@cA4Cm?zjOgVjSuzP~=UdA^81V~`u}3p7UZok7qu$SV8jgUb6Z za-;b?O9326|GhC4R5c_{SkWp4KtTrAXjC@3FWamic z+ifa+L4jX1CLG!sw3AgWSHjX^|iUKZf zVVLihfQ-S9d&vAeO(~&31UZ9TO|DN2sf6+rg7;dy7GWH72($KLRi8JlsSONs`;Kf= zmn(@Y)ES+C!D}?Ciov)-L9bSZH)yg72DyodP~~gS#}Ug+aC^^kUE$me*R^u$L<9eNvriBaMG3$)QR(j?oRu zHiTn)MO8o%j;(XNQjBm6pQ&)8oEz{vy2*Xqu0MKc8D6GhfoZvXqrwwkhPio6s~e{P z`p5iXIk*KK7dV-KAA=kUf=+ut0l!n{lXb?Z zWRR1|1n17XH|cp{FTm4v@?gt{(eO2P1qNdVInjhwV~=o}38P^vbCL<831*ux8ukJw zm@pdl0H>EQ8n!+smoS>3LqRuev_Dx)1 zD|&`hHld*70$UDrL5l&!QO@QPRk^_74LSzdaDt8t9O9s3kWDD)xWHKkbPTdF1sxYS z)IrA}n^n+pfx{hi46=a*9Tzy{LC2sc;cVX|t!)0DqwH-=TxnZVCyF(C+EK|MTNQom z0h5-ti?qbXece=Jkc}Kxjct9t9{DO6WSfUovrS*gR{o-%yi_vC)(+#uMz7RazLG&U zepofz2bIRq65_m2Xi^1(d@qplvbxI7frlU1#D#iOl|gnMx|r}mc$Ps%<6d!_p<03HnT5bUqOSbkp!Dlo_{_g7$Nvu9Bu=tzGB_9;8if0bRwe)3-pddPn@ z=q$czY$j!?plTS`gS9G^ZFw3B5>|?*3P5q^mB2iv(H*d1iwxiF#%kJohRDQWS$+ zZSZ{@-ck4NYR^9 zjPSDny0=Iu4_V8Pr5n?kYHCzd%`VUQLXz;DhSSoN{=hCCD_)8@yY%Q}OiJtA*^vc$Nig(Ds(JsGtZ+u_=Q3vrOKWguNJK zF^JkAU!a1FxXia)5hD!pqoU}94DxsmDhByC4WMFhnjW$f44UUZTNpfFQ6W+nGJK<{ z$>5hXs)fP53MKnFZVNNwWkbuLc_~GL!IG$KG&E*#fkq`5yh)>482q$GB^dmRMp?Ox zE&F~2!1xS4pivcUSvC}?Y-3ciF}R_aA?@A7g=ciDD;WHaMpZJ%20^4Sc%4?hl0j~& z%x_$J#1Jz01%=AP&QW0>m)IQP>9Jfj`%!g13Uy~p?&BhxViY~>13Z`cQ3pk?i@J>! zM=6kFQc+%_&}==0<|5lKM#j854-y%}W;_a+4`?p3-4vhSD)t;i_#p#>bG5-L7-S2p z%3N&Il(lT_4=a?S&jP@hK{lA45Cl_ch=hEVPPwm!cUwD6w{Sk@DF7-m zXi~J*X8!#KPcKl5L6#9_Da&+!YXoOw?f?gsK;E|DSguqK3hKi@d^t8xUO8Qzd)2vL zo%v0X!TNtxd^x817c8eJcLnL^s%7`%>KuGIWsrWOLTpjz+toR(U^y_zfZ~Er_RCm_q?Rq9n|N5s((dfz^3i2yZ^7&^kQ&gGv zoz7I{bJaOmpI^@!TAi=S5ns0`{O#&| zhdSS*&i(5AusR3Dena7T+W$RO{((Ak|NM^}^?84k<2tV5vPqrO>fEi)LHYM8{3q18 zPn|hMKB~%3s&laZn+pH7I=d>4`1f9gs(f~i_+tBfR<*A{@hQw9FZgo?rsLlU1ob;! zAuds8_WyH1!T?>lDl;9=wMvwp7w7N?%bTU@_p9?`>Kr^V9qZSl2(|_ZRhjwoFG$Z@d->|Z1a&SC z5~?!$gRiq)FUg@lPycqS`fUG!9P~VInXB5%la@s}`cn=y{}26lVu7M2e1rtL(xa3A z^)}9thE9CwBZ=?D`i|>WDdH45ZjRWYP1XYZ6EuSU9{fE#p56wJf03BDCNAI)2h?6d z96dPAPeD>J1WgQD4Gbacy`bqIH@GbN&Edfz_#{C?t)crQa$utQWXTYB;uBV!)s*B-@_oY+j3kQ|QHr*g0Ec z066C=cN>dc08GyyvcS1BiD8K%%G9brt=&GIR}<$!_>lD5KvOUT&F4Uq=acm%V0wqJ z;g3OccnF$N2$6k5(9mzxcMn3-mPoaeInW4?HRhpK#SrbP1x@J?H1zVc^bj;#K~p~j z&Bs7<5Jsekf?;s%0*3Ap!e!9As1=`GYFy{Msxd?()^ZphWi8N%Pcr2RjH!ih^=b^& z`Z_rG524SmL9=@hnj-q95i!F-8oCksG{ACE=08P^^qDDnP@CKcMT!3?TAkrNOzEA- zbUy(~McsxGgn$oi8u0ip$&1p4hNQTWh4{;J0!c%EU0kI6L;r$#m9Eo4_woyI9*pKh z)f5CC_&j))e$|N1dXHd|KL|J(~EoD2*0r0Pm>0pLOrICMEkf=$)eer8!3b!vVu8y z^t=HmJ$kNAHmBOn_{lL=qM|o!^yC;L`^gwHG8p0*Bg=_=Xg6DsQoBkAX&39<4{E7% zCf$gSiFKw{8>Mk=8~8|_(U(JHi8}F_&PPSNKqI8zi(0dxp2+|Y0yA$kW6~Y#@S!fp z`LM=NwOu3&XOrh22j(?|uHi%994Q(9l;L5ftzjMZQs-qwP)5^bSEY9&IWZ zLe^QJafYCo2byBYGOefrreug(jiBitLc?y*>>h&VcF+tAL9+ui2Zx|}3^e-&p|K;801vg`<=OxRGOfy@3vq=wxRDzC<(01_FX}XzRz^!bE+8la z2lb|U-JAS8h?INN*8y{HYDsn`)A-^ccPARViI#e$hy)Xqgx1G5(4em}jlez!4E-R> z#Lxc&=8;ppnBM|JyPT%)&{H+PInzrM!^J-rGX|e~Oye_qPW=qVkg(%HbKES(v~|#D z2a%0tGlpnR2h9&I_F|?3b5;{$GV2m)qQmDTmCl(CeD4p(#T|^n_x`$Cfs2AtwhL2& zcxP9;b377*X(?rqmq8~n_@Y|_zV+u^fZ3*@SqPdfK1>xb&u9!srnEdo!s_cChrc&O zdclJ#5J~~d+{<%Sx+)LOy`?BZ0QeB(KRBZ5ftC?f2vW*H=HTev2NawHK5v+d3gYN} z0A(4yhXBFofrBEmXBd$=fO;}A+wcX-b@7&DD?Ue=;ox-Yq2=y%%BndcGYy)3OyjUs zWi4vO#DH$bsy#5Nw5mnouvL3-Nm`ZK>p$3Hv~MRZ=C>$Ov&DKqBQ3`36F)DS?a&+t z=@&X5LW!jM51Q@J97oP}Zu4JMC7Q{U07gm#AA+cb{)1*IG&g~RKtsEKwrR^(Tpt4KYs#BdbzQ+l@?{%zm5~f2RR9KkUeOtqJ1i9NN0*+|G_Aqq3v;|eAPwn_&pPmdF)pL`bogRlOoqJ&5fkAvqWcPwb z`$E*)2~0^hXVG|DB8%~=vs7cacT3J>`Bh3+B^IZVMM6l=RcoSskRT&rnh~NPj)a|{ zfpMV^(TwrYaqcCH$lO~BYI`)NXqj5X(Q+*aj`Q)M0!7Pz;-8F`4d7!RwBDgrP5~~t z5qd8>Y41NMqR8??MHGEBM@AI=6yFv{5j8N3h@ze%BZ~cP^x=rQ95gbb(wSseW5;=& z$<~er6IoBfex>VWY=o^-h~qawvzuvzhyh@B0>TN_M>rwjG-Mvu7$SNV7Yp&+k{P>4 z!TS9^n&W{<4>32s95g+H&~Wt1R*-k-PV70Pfm@4f5CvUiqO7;qIV4xmeD)aPU4`Z=%p2z zjNX*pEkQ%kyAS8VqL)_d1E8Ui3*(?Y2m(*zAkAWBgr5f*G%|3|YMs{Ta<%U7*-T2k zfWlkaIrmt3Hu%V1@Fpsd=gh&qV2$nt*z4x+Ses7ZWMG>@Jijes)mB$9r1k5;P2PC^ zBryANO+<^J`6pm#YG5#X2?LG>^9(TidYBJKuar(!rN{O$-S-^tBzpIuo{$yU2R-}; zN9GhEZ5dboJ8!erw z0!8mXB2;Ab-WD1z6upN*J6QBmWYQLajLg5Fg|@3HGAW{DWX`hmB?Lug;V>ez5XO;_ zIe=Q^6?1T8-U=0Dex6@dgKwzMC^2D)qWH9W&t?@Zwz`fYaWsvd*GUX{&`t^OB%*py zT}G7Ao*|B?Ik1?FD3~U2a6}b=hOQ1aue$^3P0rQ70!o{g7^y)Zqs5=&Su90DAuKgi zB>WfRNJawfPT8gr~XzUe@s=^&x-l1(m;t z+wlVy0UPSIo{k^epBz7>Xq1efNkSvoc# zBjabH?R1b+wwZYnXPbZUGf*Xpv5H~DSQ>RkLg8go*B3f2PZiK%?jEUV;)nJ?mM@JoK=oz%ZXf}eTWUDvE zJ_5`>js(G{pD_3*a*Mz`iqZi7fein6WRyCS-+u_LPZgB>hvTpp%1C|qiaB!}YUz>f z6l%VMXyu2X^IuoN_K2lSy>4fsOsG3r)`IV5T3KPXn;Sk1Az9$bg!(bwMZcaYsE9-rH zQ1Bd5R(YAWd?5c2X%Rw!&V~3#(?BD-^`wr^w)VXATzuWH!MM?erpHJqo zsSf70$*8~6^Abb#_pd^b?Cu&Io{fi>NKFH1k!?5#0ZRd5V*2acJ zXXD81+z&qZKfHfgb|ypE2if_(*e8*>?lBP1sNg@y&K=m&k+FJ?|Dr09oeQDNP$uU7&a^%h7DV_4ZE}5*}ts~cMrpccl2-^emxW^(Uk}5ErNgk{hqMh7 z*^c&PcgnYl!#o4+mg8Vy=ueNG^nL1wuL46msy_8e}N^XI5uZJ81FS@5AT+Z;T? z4kyC*Y44c&4Dk$>R&8T4Z(Yk;>lX@Of(vU35w|<>%zx#C|L3)*~ z{T@Q2?)_2xNWX{BsFe$ijC3_@w@}W|7R^5!*UikzuQTaHv2px1j*VZT6h7j&;Fh2q ziTF45RNEZn_ubG(jzqcreg|Sq`h9XvzxNEo?>*Y@wk-DhLGAZ+68GK$Il^(u;D>#K z_?=pJ4QK`w4cOsm2gbRLa{^&*0;a-;xeJ)XKFsHVDTSTQoxX1X)8oVZ0GNUgcxiqG zOob0K8V262F+AqVR!}6+$F@+(b8uvmcc=xS5w7Mf2T>J<4X06&xf4ueWY&A6NRTrU zMX!uZOvnTKQA9~m_x9}^b)9&WceP~T`AZooibN%&u8LH*4$4Sl3OOTvm(;Qjip&Aj z9xO8Ho*nJiAvn=?S{d30Wvz#ysf^y&LZg@FtGgfz0SrDhHWOgPdTRhUAo$LOBGQJ1q5Xo0 zt|evhPxKv8YYj>R+?xbuJunA9=)vSpPw>k?rT$xC2AX`F;YFC^l}^ zvGGOQ>7b$h{=@fhe}6BT+d3$IN}vx6r}VMomHPWW{FD8?-r_+Bim?dp$I2L^w=LQ# ziM8h-F-Cl7mQo5Y%UMbRn4tNdgX55FsN=8=_uxIV6!v>BawcgpyuJ*uk*1am-+dez*Si!U({<~6as16knFr3ewTK}&8d)s>`c>6 z(!!09*Zc?D@EmQ!ro@`0pN2}*t}p0zeHIvE>_4bo*Xnlp^Da}8&d+O|@c>VtUADhw za#elie!36gNf8?AQ#CFRt@63jFyWdG)zVb_K!*8J#P%dzg4G(D>=I+Y}hhf9t zY8y5Nq{t%KuvFVHcVA9x8@6^ddt#8d03(=58y1GH@ohUVhSMpM%)xz-RtkSjALM7= zXzESYbt8pFh=O=LrLjqlr<6JU2al)pU0m{b*vgJ-P`{Y`1pAcsX~XZ0=AXp*`93?~ z!H34vyy-liUgJ*)BnSuPmc!5osRR0i=N1}I3!#M^Pt&4a@DJt8YQ&h#^CvgHijQ!5<2*r_NtPuZ(im_fDWA&=0|3oo%Jz`$Q*n6OltrEr9vSGwn z&oE-_u#Pd($KN!LvBz|bHFTKYmq@*V5kSR9hK?~wLw0^0b^f+7R-t1IMhF}nW0a$Y zin01(#MtZq!ZG%Jcm~c3928^kox(B3ZvyfYQH<5h;25j0oepw}u?qYfD#i}$7_<8q zNu?P32x4Bw*c-su;wZ-GSKmYBvHoGiSOtcxq2_Ea>KIFQ2Ok0fhSYW{dUMBEgKFvk zLYSi1bsAtzI&{|3yWf%z#UVZa>L0)D@w8BI@%|akyoJZpdL4&ndszsWe?T(Hxkw5w9Pi z(WQ6EI1F3wpcaui1B%AnbCI=3!(Q0sbV0>`IO+~_^xB5dd+(*t01Uu~YnwAiR3lm; zBg&2fj;L8dHsvrE7t=9MBpHw4h+Mmi9+s`v|cbg;T5FCYZ9{shbEsIQ*_E_mYh!T!E-+B<@E|tij4f%XUH^$1fwmu^*x)(R_F?q* zhX?8JWO3>{t6t*1b2>^V6WVuB--%7-5v|JKC`C#0p9dH6{O3wYwGWEt{y}^}HE0*B zXEe`$Xmqd-n*SV)IFzI3Sm9vV+aKw_zxktG`lEhL2Vsfh-k2 z9nCZS6CloYhaZrdj&eBHy=gF1i<xe?g}>j+-RTN2*;s zt1RJJT%_J7hYFkz`_YjRLeQtcrcuvp(M}+m4;nE)x9BJz#(&KH>pNgK-J+p z4!_eCHRZ#@OE@3yz$(-}C?A##;xDQ}`Ea++hrKovU??9R)Nwc&zOYrId`NG)A1WUf z4kI7#hv{TKtblZg^Bg)h`lS~5eOz$Vv-bgpVl;zJdk z?H-KTHIlNZ$I;9p5G}#j2>BhNy;m8sx>3)??S{o<1_+^18DJl1&=H`|B>bfo`VYzg z=N;kgconXACwADI)u#D|$Z8!qtoi%BDr{+uP9 z-pS~bHLKB*ewQV^a75DS>3yH93mPry^owsF&FoT3`q?9rzR;3>x0Mr?MuO6-pp4Q- z<-?K@NiVmg(;ktprL*X357^r*zR{BYmL;9u z{N~eV_5n-!!VyWIZb@HdNvF30_@(~}xk_P_-$y3B)RMl{l0L_h{=OsBcDnEBYu5!k zE$Q^$FCWe9rXwVMpCz5X@8Xj+YmU|58?F9cF(SV=TG9_#ZKpf@K7D3yx7uDiBIyS# z=?_?Kud&+RW3|10MA9F#q_kWzoxb1Wv-2!^tAGzPdz&RaJtFCJ zm&(Waf@zlYmm>k1*>75Y?;er#+b!u+Ea}f#(hpnGdqyNZZAm|5#ry-7bb5o8vY5(s z+eRe4)sp_QC7pibu4Kt|%Iwct(tAfF{RvBY*0TI`E9z>jsM|gw=~+wqt5(~0T5aEB zwY`5t(t9lFc~;x^TGF4hq(3|&>HU`Ua!dMKmh{P%<#&%r`c_N&cuV@zmh>N6ZGU1! z(x0}Z-)>1Sx1z4qYWuzsN#AQp-)KpnWl3LUN#8#r>33Vwr(4nwS(c|qy2Fw;pI}KpJR<4cmh?BQOuNgH{b5TGGc_ZFe3D z?&%F@_h61CeWTU(S(fxOt+vNTB)!Cv-e^gmVoCqKwUR0rk@S}>>3c29XRVn3v}O58 zBa+@?Nq^32`|VcSAF?c8I3nr$E$Me#ZC`4&eXZ5@vqvPo){_31)%I4a?HjGOmyAgI zG)wwYOM0Fq{eTs97mY}Iy(Rr=OZrAj`W;r=OGhMql_hx=G_d ztaiPly8~~U=#{>>V7!S0HM@8k0!1tMzTWJmR<3K|Xn9A{->{_TSgH3uakuf7Oz{(`tLqh@{6X>C-Lghb-xL zS<<(SNIJb$(`VHSc3GBhw4~3mEZ;jK>4z-ohb-xMaK^9U?B^}%+eajw-e>M_`(8_W z){=gmCB1({()U@?AF!m?SkmcvQGd)oJR<2&The!0(pOp1&$OiP9+C9tEa^{M(l=Vt z>5FLowm&f<=>wMZmo4dcThjMh()W!>`YV?7S1su~E$OdX()W)@`m2`oH!SJ9Ea`N6 z-*5SYBa%+`pw=C(8S<)w4(q9~r^gJumPO~!Y%a-)Dmh^!UN#AR={cfx6OD*Yd zhkk#xuM`xL9~&sox2 zthPI!9Lc`T%U0W;v)X>UC4HyW-(w?^{+K0wt0jGoCH;V9`GOHif6>bzlD^Hf zU9BeGf-izo?V$#7|?I9H(Bl;_}u+b9_O2Bjs>(RmHg( zwFV#^tQ4jb7#{JZtPcRw@{r7{67wlw`hB(j37CDpR_p`jRjna@4b^~+6X$Hfrx3Ez zo!7@{gQXO9l=>`9w5@JTKxd_kl=W@!p#!0)G<+GD0{k;N|5?y@y)zmCI{?m-27Ygi zgY!k;A^lDqPXWy~U%So$hSw=l`aEEIAX;izo=UXgb1mJyT4&-@M>HzxqE5U)zQ^@! zZF!<;1I^!hJKP@TCsyLI82N^P8bBM#88YOc*V1)#)JO~nwYjK)&Bu7TYa)# z5u6J>oTGSr5-Hq+ITaYceM*4gT!(g%4IA;!bJUVHylO2;bDVDcBWp>EEk&(20UFE= zz`UXLiQ~0*^!@pI)G$812{iTEU%2Fa6qxRZyiwN=3_ZtcJorz*9MrXLP@lP#_i783 zKHmV%?OJ+MrXkVZgf}btyz?SxOxv59lUaICMz@dV70~b=qipH#fZ463lg>xeBj-3w zyCwm1JuuSC%R3Mqt*x1U9Y1Z!Hj!-#eX`C%Eq*ptW{DE;cv#mW8D*f^t$RVbOQ`I~ zXEUhnRms)_d4@DJ(Ncw4Pxvs`0n-DF)Q~uD1!f=4vexAtoejx&x3kYz>l2{a2{X`2 zL0aQ+U$N_bzkr5kr?S=<^sQGO^2XR?8X9mIi=7QjIT~eJ zIv<#=YW5}hECW&!fag`;=(DLA8J}`aBN|-_Mn` zegaH|kLFciXcRF%rQd$lYMRz~Q)lu9$EnvCl9dmd!#b-=zi)6_d^D$lhF7Cf`W#?L zXQSaFU}!8*kw4X}oD1{fMJ4Q3NCpwfyk*B+*jNNT*D|OhwaF<2&HQ{S}|AD?nq~6_4Y4!tpqfc{29Zpz&i`f!XWR z=YznE_r>Zx!0-xD+UK*t>;p(8iTMUF9VnTWJ`YS*^Qma>Xe+_>3ROea`Uz+#qD-yB zz)(*$Bih@*lgLz zkwr0flf1*4PlL)o+kKIF18VKmEu|Va15=2z%<6IukZONZ^C6mTpn35jjwr%B2+Te` zb0Ey4!0@Uq>flZCO@!U%lm1oEH2S0;0LIKb@ohmdvD>d}HDpubF4bX;A+Endt=oNk z{s7D&7)IK;x-}`nuHL8fu@j-Q&x2Eep}r;i7tL2^5_{x%(+6jOrVt(^tJ6Qnxs+=8 zXchvq)Thr1s`W{)#TtOA@kPQqVCXQhaVKGr$E9@4Nm4W=qF6K;;1i%BFN2lR=gYwG zE~wP-o4_2@ISPc%OTgfNC97g}gP70Lh-O;)pCIT31Jlwmcq!u~)RNLMzNZtN*$n+Y z#nd_pG+EFXea-@=_aSb34ICJUWvA#`o%mf6DmV*$KD`9B9ACTYfZ<&l*{&>Mbkt>1 z&3F?5>?~vzDr;;4%|6UsjE46TXB@_c4+C@1NAox^4?u|Y1y)Jz4Q*+s!pHd_Xj*+9 z{24G4eV9K1tY!MGK(L36gY7-?S)OoGyd#a-t+R8cqa;cWHgpjWtw2*J?f>c6Nehm6k=A z$ADSr zL)WhG=`#_SyM5A62WFbah*c6Y5{-<~rwh`VRBK1OST~W?X(ff_4~^ypJf;Bcl!8y5 z=0lj(z|f2cNYtWZJurJUO}U(;IJG_vZv&0lE1;2@$m)GG_YmiYIRA(&n(*bZY@&YYnN^3&1#^^vG(Ul{g(H=3fQPMqe%WB%&zr zMAQ^uYJIhefFWIEzlb-{w{4K;b@n3;b3jw#^XV196rh@ES0gY}eA3qfGobB5e6|7O z2n@B9Mh9AnxA?4jKWL`wn5SC*0L*SZ%B&<5jtv<_N3rwC**7d;j`e@by)2R8BV`qi97x?tKjcREd()GK6;V&D?oj0mB$yaL^ zX!>=m^4FvKebS!-%|$vkn$~sV3wQ9l#*nOUgQn2O`31sg&P4MoVEEamC?T9Tf$8=2 z+|lY)BPNHR=EHO**QIF8f5Iod1T+OcS>?d=-p;*=WK{xF>eH|unEgJ?T3~8nL*wOM zVA4J>_XAVo^Vcq59@aE*`Qam{RAWf`S3zS|zH;Xa`uJM$Z=m6K1WEh+9vFg*H6~2K zJi#aZG+^j3G#3K%w2l_Kwg8x{#>A7Io$Xk*)CvtbBdr9@Htl!Jx>HoMM{5{wkRR#k zheD(i{d1g7)S9C8Sthcf>`jK|X3!vDJo)g$z_jXG#OGtclGgT%GoYc& zX1wzRFf@Wl4CY#`Gz?GDIunm?fF`Xu6XtoU<%^a-1G8Prk}LZ4;_Hw`)~HiZ)mLjW zFnlLVTB8J*R{_eoA7wx4aSvT#Bq$Nme2j`NDoKBG}ox?JVMY zscdUD)7aUOjW^K_;^1WK+lN7w>FOAYO7-QSuy{PxmS|4KS0^$_OuRxhPNdWE?D}*P z+mh{|ZA3Xp7*{zE)3;ogRwtV=-3ka$QrFE9d2V`Au6Lnd<s z45bcwCs{)}8|SxmSnPxy6Af*Rt+wf&o_44Vj{rOgJLHiZf8)v5Mn z0ZX<@qpd?g4Qk@%_O3V@m`rC=9qlnTB^s}aRr+Wv;rcB9loS0<7MI$)+E(LDFPUVvoRm(j?jmys zNpVXnP+3e$Eu7uQF+~VasR1T{rQ0BF_*hIl-Pv(HJ`(42CKHXcYlPiNC>L+Q`#&2~ z=ul{fFyX9OB_()?S|*Ed>g>W!b!XB^qq`tIqc?V>9q|rCY++M#M5+~gPzprfa>T?o zo=LYPkvPN?6!?>jizRPUvIQ@|DeKBKCsrq&cw@2wizvJoOE7h?Q1zG9sL+{6A(3)O zX0j_X$9i8ioXxFT$1cvFZ zhE33tj1x~MQ|DhaJKovVPMV@RMk!3+I-PY$ER;ElEnOzI0J_O?<)fay$JGRw1sNQ@voJR9*K_Zm39NNls3r92pwQT{L5+ zlWgmX%a`#GBwyVV5AX5Vy-Knj9cxlF^wYbiJQopegWwU3ZRyrz8+tD|DhD=ani8p23d1X^ zP&R57mrkAoOCAH)!1>K=riY0^1z$#ls5R}9QCRAn&f&J zX4(Q$Te{wmariPABW1_YUuVxU1c}B*&A`jJLH10Gz7yRXvj}F&RpK>EtM%|NQVzX1 z7yCF(c+8(zW!n?&7}lI3+R08fQi6xOktP*BF5a?BgyNmM;EPXOnAgHO(*C%g4-zqv zm6?`ivZfyoepzR;!B|k{&MhJ572%aZ@)e~Yn%qzT$qCvb%=60>R^DBN2~w-!8~j}Z zBP3hTpBYa;85y0_-{m|6i4R^Z_v8!7TTMV!K`gC!DvvQuqN}p4SEVpNOth|O7yA^| z$?S@DnerNSkH0+C3cHej#6m!foahH)$Psa=xT*VY(1zxKVrD6_vaA*dsc*_DXOr=` z=^QLU>8yG>jI=b7$zlvbN+FA_&t#KrbaSOF1J#lQseqtNiPec&P$0QwF1f-Hq+&Y(qj9nm{U(L}KxWS%C&xRQsI3iaD5>K0&*DO=V|Bc# ztDQQhcM=<{0V^gu(SO8nl(@d5GoI;Moe}MeuT6GlXyPc`i%0P2F&(z4-~d{ii^swWaoOcA}%yYX$?#z(LT9H%Z+WzG-KwAC8Vh* zcg7Wg+|LQHKxkv14pVs(J(xpbsX-Gb_^_!P?4*YfsxS}KODj7{vB8Wo)#4H!32Wm%#dCQPO?4%A*F zb8t;-2Ba9kx{^)}CRSpSsH&jJcL#ip&V6vTXySN_%tLJX0oGPK? zFU1U@D}6bFl;&j%+OxvX9MLVwMA{e7GFzFB$c^_dJB_NMbDyp zIXyiUUyVVu5qD>qLN60!vvcU&oNTA$FB1`0rP;WOU|2Fs^KltEdN;tkc;GNi2MoP5 znOGarza*zL#Vh<1;tSS75)vKnU+7q>Nj0pIlLjW{;I`t=5Dev2(+=)#&;UuLBjd{^ zJo1F)QK_JK$_pWp?6k7WU>g{zc8VEKcO^+;!_c$=H}(^-TFSp~qdKUb5mH65r3>wJ`DsA=l1fGnVim{@X0tf6_K?gDz-N5verhg8^! z34nC7cygsNNoy;?UET5U=W}@}9&b*Ht)WC`Gsw})8^fjk-Y3^ zR*U3-gtp9D8b>Gql#kXnG_+y>gGH2&{iaClgl6SOZtHUE%Zd73p z%4oxNamGd$cc%tVT97jaxf>{%hoyNows(ahToaPteM>#IwSVPgw$dbH_4tQ3Yi^JO z3OUr_j3{g-c136^Lb=K}8N%EJC<;e0$Ri=r-cO>v0bLEN8O->UG$_Q za^B)WxxKojV;#n2m2lGyB4BmHa;=g7f8*A&+b|5n_IthV2ZEx*R-ny#$o?OrC{nhQ zIoNTl<=CZze5rpB=uCi+>Y(tym&)5p3#yZjfJ)p5d#u*Z#PKIg{ z1AIfth^W^NZXzFKaU|;>fnZvlBfi^%t%K)6=h(}*st|H>o)y40(%$OPWK(@BqZt%<7xi9Wec}zirgtx9E2kPky_mJ%~JzUe_FGW^rf6-Do3qc+f z(oy==-Ah|WDh7sDSuC&?ax+FtPe{D%GOM}FAJPqT;+_CKU)K*%`%k=e3Fc+F9_2^0 zzCX5~$FgoHnHh;l^E>WII=qiu_scg-4DpXF^T^AyU#(e95rHwV#wkj*U#H~*et*jO zcxc&U?SV(V&;WFC>f;>Tah9}maK4CWW-68yv#KA}nnrI*^!GG`&q&rJ`DZscZ&U>9 z&M;$V8y4rOs;+;=agW&W412jooNK~`fKY|8K`^D(2-;6#+gSm+a70uQAMl bPh_=*XPGZla`ufxty!t^!Y+JOCg;z;_O}$m literal 0 HcmV?d00001 diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/.gitignore b/applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/.gitignore new file mode 100644 index 000000000..0521c5fb4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/.gitignore @@ -0,0 +1 @@ +!*.json diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/input.json b/applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/input.json new file mode 100644 index 000000000..a3e511a53 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/example_inputs/input.json @@ -0,0 +1,16 @@ +{ + "MU": 0.15, + "SIGMA": 0.01, + "NumOfCells": 27, + "porosity": 0.94, + "filename": "PeriodicRVE", + "deleteFiles": 1, + "packing": 1, + "tesselation": 1, + "geometry": 1, + "statistics": 0, + "hypermesh": 0, + "moveToPeriodicBox": 1, + "renderBox": 0, + "binarizeBox": 1 +} diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/periodicBox.py b/applications/PUfoam/MoDeNaModels/FoamConstruction/periodicBox.py new file mode 100644 index 000000000..d60d7e195 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/periodicBox.py @@ -0,0 +1,172 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Dec 3 12:25:27 2015 +Takes the representative volume element and moves it into a box with +periodic boundary conditions +@author: Pavel Ferkl +""" +import vtk +def main(filenameIn,filenameOut,xmin,ymin,zmin,dx,dy,dz,render): + # print vtk.VTK_MAJOR_VERSION # Check the version + # Read the file and create polydata + reader = vtk.vtkSTLReader() + reader.SetFileName(filenameIn) + # Define planes for clipping + Origins=[ + [xmin,ymin,zmin], + [xmin,ymin,zmin], + [xmin,ymin,zmin], + [xmin+dx,ymin+dy,zmin+dz], + [xmin+dx,ymin+dy,zmin+dz], + [xmin+dx,ymin+dy,zmin+dz], + ] + Normals=[ + [[-1,0,0],[0,-1,0],[0,0,-1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,-1,0],[0,0,-1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,-1,0],[0,0,-1],[+1,0,0],[0,-1,0],[0,0,-1]], + [[-1,0,0],[0,+1,0],[0,0,-1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,-1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,-1],[+1,0,0],[0,-1,0],[0,0,-1]], + [[-1,0,0],[0,+1,0],[0,0,-1],[-1,0,0],[0,+1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,-1],[-1,0,0],[0,+1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,-1],[+1,0,0],[0,+1,0],[0,0,-1]], + + [[-1,0,0],[0,-1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,-1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,-1,0],[0,0,+1],[+1,0,0],[0,-1,0],[0,0,-1]], + [[-1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[+1,0,0],[0,-1,0],[0,0,-1]], + [[-1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,+1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,+1,0],[0,0,-1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[+1,0,0],[0,+1,0],[0,0,-1]], + + [[-1,0,0],[0,-1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,+1]], + [[+1,0,0],[0,-1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,+1]], + [[+1,0,0],[0,-1,0],[0,0,+1],[+1,0,0],[0,-1,0],[0,0,+1]], + [[-1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,+1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,-1,0],[0,0,+1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[+1,0,0],[0,-1,0],[0,0,+1]], + [[-1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,+1,0],[0,0,+1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[-1,0,0],[0,+1,0],[0,0,+1]], + [[+1,0,0],[0,+1,0],[0,0,+1],[+1,0,0],[0,+1,0],[0,0,+1]], + ] + # Define directions for moving clipped regions + Direction=[ + [dx,dy,dz], + [0,dy,dz], + [-dx,dy,dz], + [dx,0,dz], + [0,0,dz], + [-dx,0,dz], + [dx,-dy,dz], + [0,-dy,dz], + [-dx,-dy,dz], + [dx,dy,0], + [0,dy,0], + [-dx,dy,0], + [dx,0,0], + [0,0,0], + [-dx,0,0], + [dx,-dy,0], + [0,-dy,0], + [-dx,-dy,0], + [dx,dy,-dz], + [0,dy,-dz], + [-dx,dy,-dz], + [dx,0,-dz], + [0,0,-dz], + [-dx,0,-dz], + [dx,-dy,-dz], + [0,-dy,-dz], + [-dx,-dy,-dz], + ] + regions=[] + n=27 + for j in xrange(n): + polydata=reader + # Clip it with all 6 planes + for i in xrange(6): + plane=vtk.vtkPlane() + plane.SetOrigin(Origins[i]) + plane.SetNormal(Normals[j][i]) + clipper = vtk.vtkClipPolyData() + clipper.SetInputConnection(polydata.GetOutputPort()) + clipper.SetClipFunction(plane) + polydata=clipper + polydata.Update() + # Move it if not empty + if polydata.GetOutput().GetLength()>0: + transform = vtk.vtkTransform() + transform.Translate(Direction[j]) + transformFilter = vtk.vtkTransformPolyDataFilter() + transformFilter.SetTransform(transform) + transformFilter.SetInputConnection(polydata.GetOutputPort()) + transformFilter.Update() + regions.append(vtk.vtkPolyData()) + regions[j].ShallowCopy(transformFilter.GetOutput()) + else: + regions.append(vtk.vtkPolyData()) + regions[j].ShallowCopy(polydata.GetOutput()) + # Append the all regions + appendFilter = vtk.vtkAppendPolyData() + if vtk.VTK_MAJOR_VERSION <= 5: + for j in xrange(n): + appendFilter.AddInputConnection(regions[j].GetProducerPort()) + else: + for j in xrange(n): + appendFilter.AddInputData(regions[j]) + appendFilter.Update() + # Remove any duplicate points + cleanFilter = vtk.vtkCleanPolyData() + cleanFilter.SetInputConnection(appendFilter.GetOutputPort()) + cleanFilter.Update() + # One more rotation - not needed + # transform = vtk.vtkTransform() + # transform.Translate(-6,-6,-6) + # transformFilter = vtk.vtkTransformPolyDataFilter() + # transformFilter.SetTransform(transform) + # transformFilter.SetInputConnection(cleanFilter.GetOutputPort()) + # transformFilter.Update() + # transform = vtk.vtkTransform() + # transform.RotateWXYZ(90,1,0,0) + # transform.RotateWXYZ(-90,0,1,0) + # transformFilter2 = vtk.vtkTransformPolyDataFilter() + # transformFilter2.SetTransform(transform) + # transformFilter2.SetInputConnection(transformFilter.GetOutputPort()) + # transformFilter2.Update() + # transform = vtk.vtkTransform() + # transform.Translate(6,6,6) + # transformFilter = vtk.vtkTransformPolyDataFilter() + # transformFilter.SetTransform(transform) + # transformFilter.SetInputConnection(transformFilter2.GetOutputPort()) + # transformFilter.Update() + # Final data to be saved and displayed + finalData=cleanFilter + # Write the stl file to disk + stlWriter = vtk.vtkSTLWriter() + stlWriter.SetFileName(filenameOut) + stlWriter.SetInputConnection(finalData.GetOutputPort()) + stlWriter.Write() + if render: + # Create mappper and actor for rendering + mapper = vtk.vtkPolyDataMapper() + if vtk.VTK_MAJOR_VERSION <= 5: + mapper.SetInput(finalData.GetOutput()) + else: + mapper.SetInputConnection(finalData.GetOutputPort()) + actor = vtk.vtkActor() + actor.SetMapper(mapper) + # Create a rendering window and renderer + ren = vtk.vtkRenderer() + renWin = vtk.vtkRenderWindow() + renWin.AddRenderer(ren) + # Create a renderwindowinteractor + iren = vtk.vtkRenderWindowInteractor() + iren.SetRenderWindow(renWin) + # Assign actor to the renderer + ren.AddActor(actor) + # Enable user interface interactor + iren.Initialize() + renWin.Render() + iren.Start() diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/run b/applications/PUfoam/MoDeNaModels/FoamConstruction/run new file mode 100755 index 000000000..5ea03049d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/run @@ -0,0 +1,113 @@ +#!/usr/bin/env python +""" +@author: Pavel Ferkl +""" +from __future__ import division +import os +from blessings import Terminal +import json +from scipy.optimize import newton as newton +from scipy.optimize import minimize_scalar as minimize_scalar +import FoamGeometryConstruction_Periodic +import periodicBox +import vtkconv +dx=dy=dz=4 # size of RVE +########## Read input file +with open('input.json') as data_file: + data = json.load(data_file) +locals().update(data) # Creates variables from dictionary +########## Create terminal for colour output +term = Terminal() +########## Function for finding size of box, which would give desired porosity +def porOpt(vx): + vx=int(vx) + vy=vx + vz=vx + if os.path.isfile(filename+'.vtk'): + os.remove(filename+'.vtk') + if not os.path.isfile(filename+'.ply'): + raise SystemError(".ply file is missing. Nothing to binarize.") + os.system("binvox -e -d {0:d} -rotz -rotx -rotz -rotz -t vtk ".format(vx)+ + filename+".ply >binvox.out") + with open('binvox.out') as data_file: + for line in data_file: + if "counted" in line: + solidVoxel,totalVoxel=\ + [int(s) for s in line.split() if s.isdigit()] + eps=1-solidVoxel/totalVoxel + print "porosity: {0:f}".format(eps) + return (eps-porosity)**2 +########## Create periodic RVE of foam +print( + term.yellow + + "Create periodic RVE of foam" + + term.normal +) +FoamGeometryConstruction_Periodic.main(MU,SIGMA,NumOfCells,filename,packing,\ + tesselation,geometry,statistics,hypermesh,deleteFiles,dx,dy,dz) +if moveToPeriodicBox: + ########## Convert .geo to .stl + print( + term.yellow + + "Convert .geo to .stl" + + term.normal + ) + os.system("gmsh -n -2 -format stl "+filename+".geo >gmsh.out") + if deleteFiles: + os.remove("gmsh.out") + ########## Move to periodic box + print( + term.yellow + + "Move to periodic box" + + term.normal + ) + filenameIn = filename+".stl" + filename = filename+"Box" + filenameOut = filename+".stl" + xmin=dx + ymin=dy + zmin=dz + periodicBox.main(filenameIn,filenameOut,xmin,ymin,zmin,dx,dy,dz,renderBox) + if deleteFiles: + os.remove(filenameIn) + ########## Convert .stl to .ply + print( + term.yellow + + "Convert .stl to .ply" + + term.normal + ) + os.system("meshconv "+filename+".stl -c ply") +if binarizeBox: + ########## Binarize and save as .vtk + if deleteFiles and os.path.isfile(filename+'.stl'): + os.remove(filename+'.stl') + print( + term.yellow + + "Binarize and save as .vtk" + + term.normal + ) + # Find the size of box, which would give desired porosity + # This method is not optimal, since the solver doesn't know that the + # function takes only integer arguments + res=minimize_scalar(porOpt,bracket=[100,120],method='Brent',tol=1e-2) + vx=res.x + vx=int(vx) + vy=vx + vz=vx + print 'box size: {0:d}'.format(vx) + porOpt(vx) # Call it with the optimized box size + if deleteFiles: + os.remove("binvox.out") + os.remove(filename+".ply") + ########## Convert binary .vtk to ascii .vtk + print( + term.yellow + + "Convert binary .vtk to ascii .vtk" + + term.normal + ) + filenameIn = filename+".vtk" + filename = filename+"-ascii" + filenameOut = filename+".vtk" + vtkconv.main(filenameIn,filenameOut,dx,dy,dz,vx,vy,vz) + if deleteFiles: + os.remove(filenameIn) diff --git a/applications/PUfoam/MoDeNaModels/FoamConstruction/vtkconv.py b/applications/PUfoam/MoDeNaModels/FoamConstruction/vtkconv.py new file mode 100644 index 000000000..141754ac2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/FoamConstruction/vtkconv.py @@ -0,0 +1,23 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Nov 24 11:32:34 2015 +Reads binary vtk file and creates ascii vtk file +@author: Pavel Ferkl +""" +from __future__ import division +import vtk +def main(filenameIn,filenameOut,dx,dy,dz,vx,vy,vz): + r = vtk.vtkDataSetReader() + r.SetFileName(filenameIn) + r.Update() + data = vtk.vtkImageData() + data.ShallowCopy(r.GetOutput()) + data.SetOrigin(dx,dy,dz) + data.SetSpacing(dx/vx,dy/vy,dz/vz) + data.Update() + #w = vtk.vtkDataSetWriter() + w = vtk.vtkStructuredPointsWriter() + # w.SetInputConnection(data.GetProducerPort()) + w.SetInput(data) + w.SetFileName(filenameOut) + w.Write() diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/Description_Density.pdf b/applications/PUfoam/MoDeNaModels/PolymerDensity/Description_Density.pdf new file mode 100644 index 0000000000000000000000000000000000000000..78b36a5b8e82caf9ca11b74cf50af3e2b883a4da GIT binary patch literal 105746 zcmb@u1z40{*DnkV-QB{_4Fe1e-GX$Nbcb|<(jk&cBa$kugmiaFN-ENVLAUg|2YjBt zZ=CBr=lc%V#hyKDuf6ul-|Tz#1||(Tc`jaVC??bRRPP+7AQ%F6wR8lFiDB}n*tpnv z*@OA`h4{d?KbSo74o+S+9$+4MCkrndIU6fiYa2`n2~1Bf4;u?-OusMh43#~Q{Odu+v0=J7)FH@)TN{6@B!n9M;0$fdoJf1{=@$Xw!~&CwcaG3#xTXjOFr*CJ-pi zf)_$$b|U16t~W%Gxc3_wdCZB8xJ4f3ttHJV|MHVh`znhksyHzk%H5ykL#GA zX4-F28d4ib9CB{AkeDh@)Gw@)wOPytq)XG+ar$mUN!1&4t^C)@o;JZ;4Oc3^w$sP* zW2l@YyH%7>eJ%spn?`r$24v@{4FVh`Ok?Reo5i6Gl3$;Hl6La=JZ@Ncg<7L!K$J20 zWnAyNq0>Q4Gw-TxWw%6&wnBizB&fl1rK`(&`Mf^(`pL!o@B_`=9;JhQ5zF4#mFsJj zv()vSM6TV+CECojtM+_x-W~a`w3-ddSbS-gsi=aB3!m){OEQ` zxqP$IrtvzAzXsUHzUv|KaTnl!>=;$}aMT2_rwh{nN7tF;Xl^(mIh{j zj%Y?*eg9Ol!=}@=LOX%-#mdY8VQf4m#UP9F^2~>{KWHK?a&4Ox<FQdU~ip>xfR zFX=|m_U|s;A#YHKNO8sNeO|dv%INQKHu3mYWwaLv|1Pm#P$wFz3PHD)$Z*J+k2K)k zERsITjj0owTdd12*4TMTWe~f!hb%u;5oE{+ttg;%HXrgDI{@i!!!qpHV*2R_KHTa70xVq zKFH>=Vl-A{snzNJxagG9)pFfCt|>WFpJ0{OllpzK`e15hThMeMEo3OFu4pJ4{fpc= zYv)UiPZWahd0?>bv@VVOXwev%Vq{;WY(c23@t3lwT==nsaa~?QJ!0Q-=hi1zI(b(i=){DcMEF(l|NOIdq>tp8$uY+zh<# z*=x9$?7ci@dU-acCJ)}TvRjZSbNM=kCB@X)($yd6a@J8CosOFTAkaI3IWx35NyPm;W z{7dyxY`3<}TZL4~FP3jvPIUBLVt?5aPM9y&JXKt4TeX+*dHV|zrHrxVzEZX7uJ=_M zp{5cVYaw#rX%@8BDx1K29bA^PO@M+SsyH2vJdg8EF7KmL_IBjR%i3^lR9mG53$b_E z`lLPVzLdMdjm5e~p4yV-G=caDXn51BffF>-NvU61n+`(MlIJbSqN{q3JzgKMLNvFe z%~AXr(}y{*UUd4Rqt~15CB0!Cy}qRJS9`|fwQi8GzwH$2r+II5TAom*|%9siebpGk46cT(#34*`Zv((sM1<;(_@x*KN8+O=mR}#Tk8X*UK(EO8AfLo zz7x8^l7?-646DUqA}yv7X@sfjD_<-yg&!ExE^&R)pF^1-@-h{VD)hdgj8}`_$Vb`>s>WAMys5CVYs#2V?(s7(;yrX zO=?!>S2QNGgg4)VUKQEOBlw~IoCtI`_VZ1F+A*Q$6_*cP)KS0D;W8%PeeuOO^x%u@ zp_6g6A^8N~y4P#M$qRSn?o`;o$W0;+vwE8%n&TiEc5!?{H#mVlRHx4G`?C$?Xp^9x zXJ55dYg**rIW`2)&aa-Zu04&bHdS>a;P&wvA=|T*^XHBdV|n~hY&joleZ}~|5=C^_ z%COb+Fa$#jr}dOZ;wlZpwV)mb_7^U`x zPWamS?{q0mEFN`u%QVP$=eL-3`nF_8Wtum8vF8rolZZ#a4qmmZf@HlSC|vW9ImJYc z|GcR2bx)r>`)OllKd*LzC?DjfR>I?pn7DG;_i7Wby{R7VX$Mlz167bp~vTwLO<4o#Wj zYnfmh7TZxM`-9BaYt)7#ihFGsjFyv4Qdi!yXJ?c|7?(eSOv(>zl4c*Yu4UZy~bG z7vo2uyV+ny@1xF^FOBzdeO|JmR4{Alr(SpKE#(pVU7*Z~Kg-fMnA9< zm^Lofe>PS?57?Ap3jDP>)A4t+0rO~B*x6w6$hx|C*|>Olg5kS2EleIQ8&6kn4=Wo_ zF!YX~YGdtSA>--?Hi7^IL0&#EOqkCE6PWG+%meen1#1BtIq;u_;M4x>0>OZECsz+` zHw!BpFh86RzN#0n3v>bV-Mzi<=cS3)c|JZc@2yo}VBg83;o)kf zZQ}(t0+f=I2lMFI_<4a%{<4G@zRrKz(88dwyZtQqf8Nl>>khiiL-1QKIQ-bah^aD; zwE@amg&#}q2R;fgcj{x#>!mAcIJ+2id%)v>Ni5+u1LIF*c=>^AZEG^@>EV^5yElg; zv)|&rTIDq85!TEB_jeL|suO;SLMTVtp!~6eUYd<%_D;C{)FSe3iympb?y6781L8p{ zfrr~#=zfK9MK$k|V#NL4?H(S@{@QeZlUNps z5X#>f!Fu?9)8O;8zsZb~I42F6m}`q@&f=WTVoxbkVqY0gxH)WcRrHeH2YHmGc7kRIh5@5$$u2IFc`KgfY1JsVy_AN&PrpD~B=e`hG(FP~-L9rakBJ zPaSk&`-U*(2v^!_+Sz&zt*JH6>>T;2QY(Q?1jJtE7YtvQH;@sxx~3@NjP>u~SlU?? za@iPvom@BRA@Xy`EIz1q#QcUb?wFHqB5e;F`nByR+0u265pD^W zhVentyvZ*$e2t-xaI`~K2aX|`4p!rKndKn0}OaBPlSnTpR5bPqgTVjgBv(w3c&vpNP=@SK_v%O~_ zO6vW3O!r=kv2lpx(@44}T3i2M*Cld^4BZr0JDI3xgOs#4AO4z8%IvO9KYF;J@ zto!qcs12INYaZkk-YfO3Z;3D5s6;PC$a+)Z0z-v>zKnyHr-qG(tgEw|s|y^}gy6vVZ|E}O zQFO7k@w2f8^T^rwI9SIbG%hdx|4S=k_o|a#2XFD{#W+z5iZ*IkceQ&to z@<{UiBB&~`*JwBq~0)6$Mv=oFFKfevUPFBDpp;Zs+o*|CGdyCLDeljVh9@rd|Baa+`_4D{}ab{s? zWuTec03m{Oudy~6sf{Y))%(j!T{APLS;~?jm{@&CHC7M|N4qzE^&x}qSyTz_H~wYW zI`^09(gV%Uez3a`!})xjl-*_P)w)}ZV#-$K-QT?^#YX71ldEXQhFt=fEX4~V_{;b5v)`b8+thzSj>M*Xyp6aa9 z^~dnp$m9y_GRPg>fMA|~`D1+UMO8K_hu!BJ_WSSh6`YZ-9k^T4DCgum(O^OL%|SYt zrPqzR7eC7jc4~>~%w@62L$`yBOe)1&KMmHY?^1l;W%W7jXav*Z zXWemwMfnq&y(L|JMBk+MA>;-q7+7L9sm2IaJ_`kq^tM-t_e6svkUUbm&mAsW6c|_!h$MK zvF)2M5GBJxPe#7@%zPXgA{NqP?=8I9J=1+>XE`u65xGd^MT%4kELwl=1i~ zTfwZ7r1+r}c8%|d5mITO?ztWRj|S^-VkMfAopZXeubCrn6Wje?!7^O6f@kZ#)LxO* z9AK%0HUSD+ZojNY))BA1Zge`xYLYjauCe53B+&}CDv*2TjF#qih*BuEj`RurrO9Dh z$ioNXNf7D10HUJi?esSN3{RC;V)>MMC9iJTj*%?$-pu!2d~JmsUG^VHvfD{pAwR)% z2Oo)gga-~?11qMR%}AQz-aPHXvOkD`9xNr4f>qq;v8Uc8Daut6?FE8PrjRIgnrGi{ z&(HHzKEhDltEdGSt3&lkkTJ*fj>FB1f|SIMq-q06_kIwlolR0A=9;3u2o@?4qIS(i z%zY}6k8xeAmxE7|sRgA2>F7D-)jn!VpIB^Yr%l*iNk@k;H*o@tgC-8}M-po|l%^-of!pD*K#1#`~R z6>^9%mXKWhWxUdde%fS2690JamWu%v4bb2WHhY^>&l-!X6%I?bWHv`vXpjhzh5%jTf zoOG!^AYy4!Gf0-^*Wb9n3vMUY+~9cg9cvyi>W1ny(kC1{RYZVgLxlifX-lC4quMId zAsv7-INqW^V8~!wM~@CQ)OsF5p25I`5gkgQl>&5WZ7>GRg+wulp36gEF+}*F!vZlx zUI+&!F+Rw%Kn{^2##-(LT&iq7AeB3X9gr$h1(%ApjtNLbA+YKm$m?rOAS4nIjAJ0r zkm$SzaiHvTaIw9|CF149ssAG?nZ@O0)Hj)T5RGufGD0e~Y*S_->` z1i7cfNV+2mty5H53I%l$1<4Vz$Bge5>hhZg-wg!XML@(M_XDBZOT(Usqc?y+6{v`( z=F7cuxN2`EBNz!^4PZ2_JbISFA}5v*WlE7D<0ohb*;At5z|gcP&^2BpM$!og2_+*G zSC1|ShvK)Ij^mgqY>Ck&*X+!Q(G_)cltsT}kyCst^1!^9g^Bg544l&9%H?<}wMP^6K7ymdVnCo<1#CgM-?~ zysGtTeBgU~T-s_*N5?=V#R?WVIT`XLDqfhTbjPl_xg7pDB6b`aQj-*n8VA`61Y!sc zNia93#vdoajzdBcIp_~JC&nKqNE+_#><;z+6+n0H5@4boYj(E%+?pGA6n8kA{B6J? zl!j}w@7<+K9km%bIi($1PhDdv#ktgmHG}yFn}!u>2xJu3%T>}?!ygGg4O@nqZqOK5 zgtloVq(O8%rp@`wVgPANn1D_ zls&m;g{5{x&Ry|-gX+})4z^f)BB;xTp=OYXKD?UCEZ5mjP#?0#DS>;$4M&8HO-~$+ zpNI>4iY-mcWZ}4T{oylaxen2$l8`-OQ{09Y{Q5DXf_8~^F*>`B4t_u3am=Thd)(>+ zE~hej4wPykp)7mudEOK#y9W_KzT<_lpi7`v9Y#Fa4oe;-@<7Et>O4K&h2k*aUTgP) z<-$XAB4|-)YeGm=x}C;xE(o3wI~_zAn3-L|!+*X!je?b~S!o!?6)s`BI|x7mLY4#&KxTteu8PFqV>JSqQN^!ldljn(n%5~e)2RCBwK+>mzd*cjlUYV6U@7ZV~RU$ z!gH?iZ1oAp7&T?5RYr6hHnvz-e`xKJ^KNkqf;}?c-piOdJ6K2%))o~0)b7J4D1=~JsTVJdv-hoZ zEowCd9f6|&KB9L1Cl_+W$$TXc0ff#G3J?mqT;@3VWT+qt(XQ*M8rh+y9CX>hli;RI zhrT2K_*iJ;HYgHROw*r9X9njnP_iolmdIk(0+li2pIE5vkA2!7vsZ-mN+F9$`E+$x zH!mLyl}Y<{qyO&u`V+nNjYITEyX45iEWy2s-ys|Oc!*YqiKKgx&q3z9LuId%E(OaY z-YAnC@|tEQsik1(`NvN|n4&`zwcA2jkQtS(BZ*z}nnBDa-j&DZ$d_tA7xpr_f2R#? zzI6gopcJW3#DkGGq&iXQ%}G-p$suaqM>8U)?jaXDH{!?$M{Dc z%e+WAvmwp2nrrJ!HaK(vAnmkJcWRCJT(J5B>KHyq4CrC)TP$W(SvRF$QLWS(B}vq2 zt0Ds0#b|WmNb-5qpg`*9`~4=PS>EX!MHW3mFIX5+?~}vBy@1&on+5U0ma)`Of>B#3 zc)8XmYe^JZSZYLt<`7MAt2|OZb#qN4da5GVpN|d_XDKk5+rXd&JvXfn;OxDhAK^0R zN-yFTXNr88dWmxsfNHJag(X<4$Mj|y%kz9WHwmed*MVS4ZI=XlxehE--}eiIf^IXDt}w2%<^e z&U8*1WP(a-KFBzOX8dyP@YaJRskGH0<}<(x$}H|6f=a(nf{+H#jOXebB%L8iMxlvp z#swS&4=H)%t#7M?5QzlzF&};mD)K?ZW7HztVGeW+f61SMVL+fi_A>K9=>m3HbU_Ro z7!KZKUz1oEF$kTJ;qOF*$$zRay>VzrXT*tH4H+f+^h=D63#m{hCf*zyEp22{q^w&i z=Xu0~j~xc>H%#i$4yWW1jItiLqpf9yDAttBbcFnnFwmntdJ46@eQefRD|!*SPkaE0 zSsh*3T`@@qHf$R~sW>2oT%P2GE!QEU*avh|bl@gG`~<;A++@N4EVR`65k*kxxB~+S z8$JNRV`m2-1ndAXv7!eez;{utiU=A1nrVrFC|y7$jT|xm+gCk-2RS10u@)yCxcqAp zFw*JP9f6G$)_c53kB%<-UJxJAVyqXa$}awN%IJ{2u2gs*ah4)F#I45$-sdF)`g>82 zC_AJ5Wy<5|kXeS3II!a~Sb9Y0#f)-{&CPp&kJo5~)JDQ~ssw;cO;7+cv!o*DRgV^? zSAWnaCkV04dA=PD#Stc&?Er)f6Cl~DPNBi&4HNjw@UbL?zBr7?U_hm7B&xuHOQz<< zNfw`IT7j>~z+7<1q6eeC=BS6S^R@vg+6tUS(2>fz06_{9CBT-G+5@+QqN7V7??w^e zU!psKk-}Ik0Q-?$WdM_w)ujO6sNuh-l9v*?&kFQM35p5iq=c05;dG(`p#M8`2?uB+ zbAeeAOTQt(T_6*N}OafJ2WpZ3R(t$z7QNWL!oL5y=GG2!D^ueSC)y{$& zurE(U91v5l=4Vz43T&VR#=|wnp75#gAn8TF4keg`a^9-|tIB3S*^Oc-av+BxQbbHW zQ)U48x@){URl0Rzx(yhC)!pw!KnP5@mYP@gydMry1c>8wYZ7yB38%+nE;=A4anMvO(A=r|Na~Bp%S6&e@nM@ z1!hfeQ3C$ltO6X;fM^8}?l}R1yTmzB>A_zk;CwE!z#49}H~9E2>r0Zz5k}Hd4J7}5 zx%ho?L1g!VItl?Xloa2E$ue994$dMzkY#5sNIG4jz+Rqr>7JO} z?paw|o6>s$t<+o%e;LY&SX1#clrf^D$-A$4Lhsiqbf5Yi!~!r~MAcg>UwQx%QIBR; z%6b0k?i-&|PJfv+yrqK(sRcQFw?QIHt6#OTlkgrH#}B>YeT^#P%gkKk_$a!@H` z;OXGcw?m+RefW!mtGN!&G2cU^PcU9+9ImaET6 z)$JjhAWG!50{dlJ#_9LRDLN?iL*iJ!2)h6!e)>OFk-nKf^oSf4c+aF8FHvvD=BIPU zG{D|$arLcAU!D~DxcQ0T=dH0*RtLcs810XyQJyX~=dt_$IvEICtp9$DY4XTe*-`A8 zN41l`{=4s#OQflIS#dU|s}EKi+uSdS!eh4IPud<2zGE?Y|D}GpiSFygL-nsTy5koo zEvEU8;%97q;p*o!h_~}^>TjGooh%VMi8RJnJ^G3@blAUemcTR{HlzEPROfMb zZ|0-pR`Eim_IXdY$OHiwCMJpce&VAxak>m|PmVOYtjFuhoq9Kp4|B_cB$gKZb;p|= z+ru`trFI`3w}~rDkIj2}MY;&=EIv7E6fa!PoIm7O=C2cM>S{b&!2H#ZQju_U_9Pd# zO0vOmHtgJMNusYw?{xkH$x$;rMtZN=0GH*IwbWsm^3+n)i*B7DG?74W3|exGdk3YX zOUI0B&7==k!%u60P-?$D!%Ppmop!ACbZMIxMSU^HY>vA&vreMV0o?`jW$>zm)#=q4 z4U>(ucB7qi{2oWK5`5y`)b?ky{IS}dYyWdSe;t48zCjV=oa%da4`*L1P#C&-aQ^ZbjSp}7Sr0*Ez6(`zh(nHD((ym*q#>Yj|0!> zz59HnkZX=Tbs;nS%ag)G6*Gix7?SlEzlqsGMX!G_{0r^X@=Fs;1Xn4kKk;zekc`V@VE?a&BDbdn|LHuDPZ;ule4cnO zu}WD+lelke@to9zSm7z=6{rO#J}ee`9);g^pOV23?J1>cxCSz}KUqI3ehrhj3$6q& zrsI!%9QEjB53=;Mibs3<_eMi$mwXZMU(5uEMnuyg^T`vd7J0cHpbQdnSZrNT6S6Tw zkXnup{GXOice(%cYBJzV`?wy^N`ow2H2L%Nf}SsHB#9Bx94oTUVJW!WdHOv9Q9UF> zj6B@e!@+AyY#_36VedyUo_0xLnGCVXXz;-Pj!fSG;Wk+%Sz;(t`Dq!rR=J=3}BYktps_Bv}fD-VGEvA6=fT26dyDMpoj5CPGj%-(A zpPnFw)TT4}Gdr7HQf!P;>Tud1S7Z5i)$N(=&(2zdgLJLAfq`PUcHUhS?+i#rs~IPg z`jYD}uX}_VN1#^UI8^z2Jr5c^19$JMsx-%m#Kh3r{?yV;YB%o~tVl@?KoYG6`x=+J z27UDDZp$jlWQ{(SSB4CcvT?!+T_#jr^|~J)ITZ|DFJ|TYa5*lpQ{viI7Qf6|?6Wr( zvvO+;|F~z`P@0uB+|Ios{4R!ZEy+=LrF)`%Dh!)yvk5fBF`Hkxw_^1?sL?y#rRjw ztxt2IsT_Mtc2QSwegLbOZV;o3f80yhezCtI4S~-V2O;U#CUUc-W-^M0Q_GAxV{86D z(3-c$v^Ck;V?U^{(qx2;c`{4+4VG`P>h`ck4_QzBuNVbfO8Fm- z%K2{Zul#*A2e{Po|LLgwcHaLZJp6Aj=lpXc2ab*Z;|&|&qRt(X83_vuar2w}8>{}@ zR>CwA;OFJ$2Mh5Daznv)eE|VsZeVR;0d66%5Cph=4u%Q9;5;y1I2|Sgw1O}`fG)%b z;}!We0Q>$( zy0!Rj{+|{2gy9Jx$Omx#S>bNY+ZLWoz{-D71c7Mq|JxH#VD6nAce?*=(;Wp!7kJ8m z|9N-E^AGLsIdCeU0Ne^8Ubx5a^!nQ`xAOSl33?YRetx*-0{piz1ZE2g!gYcQ!aW9s z`{SRu|G9()lmf8t5CD=K;NypTNB{}}Y!bLF1VKJ{z6uJ!M+Je@764=k-j2d4LVQ9% zX29q310E9s_~6;c3xPoXbHfLN>wnh@0K@+`zkkn#-O7Q_{--Cv4}nKT0H6s70UE-1 zp@7bJMGE5=0yGi?A_ioz5WL=mZtDTcFAUEOKwn_{1r>(p4^YB_U||>p;1mKf44yT& zHbLPR6X9bp03ZOq+xim_g8Nla2+koO1kV9sD4YWKh`=oz2;Pngg87BuIrDe>kAI-N z@Hhzoa|FRqAoGB_2I2=u1keNSX?WzJLU2u?FnEmM`tt+p0AoN+-th?n)h+~I83y?O z7FVEvZU8r61Mk11%@4m&bc-K%+6vre)mN zxE+TA7y?u;Fay{+{KIuScITlxzT5U6U;e$7ySowyJP-nC_pb|raM0z0UpTxQ1on0R z>H<#S7rJ{G`_~1+|NURe#n+%{P|uNaVPcSe%^nv*_62^FK{(J)QfoW-#)M)*$WNDd zItjnh33X=Yb<$*Jit?Xcn;n~a>-ttWZJm4FgEz8qd9#kB=fphaWxi(+LVNNE|$ zBxZv;`uYaD`uajuWM8BBRDrJg6I5PDx_3d7Ik9~dY`hRtG!m*06p z7GEKDjE;?cJW>#m`bvY0k_Dneu*r)R7`V=ypteUF_ky5>8;jkPA-6uSjg5Vcz){xR zEQ&S0nAwZy$kf$=?1t8C0D?-5f{UpJkoJuDq)_bf&Xp;#_;92?Qf^%q$xe2D>b-}K zf|!HjWA2IHb0*wNVu=`rl=B(!<$)4{t^)qIG4r>QpbUgy6WoyO$g5qCV4E9m;tq%=2Pb)4YIqt{B@uN8-&>U`pIrid9c7N z>FP4>{xx1TvMeWO@W)CwZ|mu(kZfb=1Fhg*v8?AeRfeI)2w$C?oLa;#5uOtve6w&F zInR>%I7x8yH2JFj%rLy7{&hG*$AKa00GSg;z_s*=4{B2=0=I_#^NQ24Px8JGOKam&-ETg=qQxO#L@4m+f@w zgx-XX)ur;mk{SjE8eRyDAI1`r8J=~oV{~*7Z+YDo^!wU3yWMqJ^4CpeDPm`EcEWaU z%mKbK8p2I3eU9s{q|Ddrm)Pg+Gf{|pOW5qVV~5yC<2U@*@=jl!Hpa}hZpM`N6ozh= zwr<`Z1mC;45q}X^mc2k5bS??HmJG@hpBp`_i2m;HOf1bPU zKW*{cs2fX+IrOZ!b_>nX|JBa+mTm)=wB0u`JPQpWLMAk4z-bKB*Exc-XB%v)h4s9j z_5+T&O{h?VSP?=_?->&3y}W^T(V=dTdFpTHbE17D1Ew44CkT2a?F73Y)X!Xd`cchw zFVNhP31g>um>%hL9Zb3?Q1~%=XSuO|DULdz-I8!a2{x zfbKJ~n~W?KjmK1< zaQa!u2YJjRHE$A}&%n&96NvpV()1Y%&apYSv(ltl3|Eq*A1!p2E~>so-?jA+`0K3k zj5){qIkf$|v>ZbC726Dt?+=wT)omXxe|t@2e^E_Qrya`NKbVSV!iD#}?<%%j!P)HR z=}P5iuH$WXn)@jipAxa%QsZPer~ZnG)w)!JfeU6YO$WE7}v6T$A2&?+==B zTI6(d&h}Q$Q~e0_nc5FK-5Bdhdi)*|)Nt z@M2I8IqeOj?P_Gfh}&_gOcB|+c7@VRsDI^;f@k9=@5q0})(W${gp9ezdU{^R5iX*)O&wyTZK2fSvjS9in2mkQ^Zo7 zOF%q!)=qR}rcyp&>7Y4DxbMWQ#2LFUSkFCjl#dmo`C)p`D6%T9Qaty!IKU_z$iG?9LLFrVEYpMWrie)0#SBGwFKtJdQpe6Qto0`EAf} zz5RXW62bPi=jf;OoD8bW3$eqWUt^YvCLdW8k+<$tSWkA^|b$dE| zXui)huH@mr?rn=iyKGnQ;g$Q69~w9DOY$H%6b2ape>ml3aYM(bNWi1UOoCP8X@_DQ zhQA4%TN06J9ip@3rw^#qkr@f;8X4?my&PJcfhYKTlP5kXfFW-6d79=cu?8NjvyKH@I zgK0qrv+|D+BK&bi1C=GXd#U(o{6b|gyzy}++uG>mD=X}F{5~{&uI)R)X#eef#*Zf>BP-87sX%^v& zS5b$9%L@z2;|Fz-9YS-|u7V>Q(g$jpYyI;UF7|J=zN&{l>7uPg32&ca7m>f5p&9Y4 z{GPJZ#%>zhkze@@Mxr@iad1D0jkU29KQwnqtyj_U!Tql?s{u>$ecw?6^5c7orTmbC zm91m%N3b(?F@D!~&=N#1tv|FP&jc} zQ)SA{ZJ~Uy*)$Y)fzk|9o$O{rI)8IKO#dc9wnbl2Rf)^j8+3?j2ucd71^J}cr?0=5 zdq?W9g~EVT9@>teN37BS8rW8D<8A!$>vddF^yMp&#gGKXWAf(DpwC0+Q8-Xja!lz1 zvdSE_xXpPRJNslzZ^i3Xv_15Sx`p@72Kj6Jv9#eh15*%+1_`54zEY82nQfl?AU77O zJ_m9QEW_^)-ZvE0CFd@qAhV8Y_Cyr7Y+y3h_y z8C^N(!?;@g@wT({ar4vB%Tj?#a(i~Xc9WaM#q&V6frD4?-?5qZkF&k5LVw2Osh2d8 zsw2Ala;q}C&TCUN`F9V8udR~&`-i_$WnK(!gy~q6Dm~9wrCK0!{zRb5?N%r|jJZvV zsxdquf7pE(Oli=Qoo4WqrGHkgH;`aoLzsQg$o*@aXV4kj2SYtJbLraghu`c@Qe=mF zr=-=~ncc~T3&NI5kY2wKKVTIuL7KRSw=zp(ME`2e@Iop`37JHv!>DA?rTav?lOA--?ARi+U+-{$SU^+^~GZP#B{`D6r8?%J|EVmDp^V% ztX&SX=(9FFmS5J!Y%z)?*z2!QThiJlL5QhE_;~WlH^&v~YB3R5LElj=BDT{ZZxH6~ zc<~Yfqf_Alc@q-7&Aca=8i-SL#1XUW>i5(*RcBs4a^zCsGGSLWoy1i90qS5Zrh6_) z*K7Oy0AaG}duL7Tt*UxCz)j7(ZzEb;88ZIi?!zEyj=77|Nueo5)m?z!lq;i`!Wu{d<> z;Y;X_Fn`(cSe=bwU4&CLsPRnuIHN98rFcEk>BV3x0nFEraC#$*D#xPu+Tb2&5w~p> zZ$yUZlZfO4&xetGRg3qCXq_c^@ZT+ko%7lVWAye!>XM1NEqazuwjW|y5PTZ*c+c#8 z-!%$lg&;%2q(l(wg&vya_;rDF)S3(-uTTU<1YKcT@sTy@ckQ72>*(r(lO^Qg@8#YX zo;pu|#JE%R=cacOaQ_O{nS$MmL09n!)CdUGQ`xTNlmmZrV;mO3io&{LBjX` zH0z_2xS8tOZZd~_qp}yGFJ(+ta?vfXJKW~|zdwxsx;_;BNZ-!=EW9kJVz8{ocu@FK z{5n1jDJ&o1N#i{0e&7$EnqrrTA=MPV#VpdAG4{RXWGkkRxoLcp<@XC%&mi5j)DVTI zs-X>88^1+sG7q>m0ODgULK&6trfv-$U&&$@_NZd>htZuh7(`zIs*l zeZTfbHF0F9xQAw8^?id&j=lPd!W?gcv{@WVE~f8o#sB`r zU1{>@?d$!p*IG|m^R;^Yz4=adsJq+4<>~z8Z6}^5};7>JPT~m$xjCbS+V5_(JWG z=<8>}gKsbiao$)ycb;RRaj$Eo+2l6Hp|~FV{P08Z;{K6;O-a#IS^oYt(h_&M=(CDk z?zNO$rzRi#*bkcD6>%L_ZA|fhM2K;M>NF*6@>v%EV z_f^th`JMIP3ioHm6#KcU=V))HNe@757~ZUIf)0aXm2>avVsVGEwVab9lDlzVXCk6* zIa~1RI)C(tVoCieX&u621YPK1KJ0vqvm=_Eqk~8KQ=KQEEjz;ElTfh9@kdAiMpJx4 zCSPHqxS<^BoCumn4RN&EGAEb+(+wx*A=@!qx@XhqN8i7s-u&`JbvfMT_8O>D`6c(T z&Xm=>cAeXsni%(EH)gA|M1l>ecpH?|`r1Dv5xiNZct!amJfL+aL}b={Q^|KVC-h7s zb(I30;X^KE_3E5a|2}2?*%g`D8H~dlnJ~$UKBwSkX`yW8p0hFA+$j>3;0*wH#O(|Bv!W1 zW!73K+&{q%J18_;er;V?Z00|*li!*UyBRRMDm)&gFuZyxfSlQEts<3fsSa^E{@epO zs>&?fF^)?9v55Hr((J|*BdGq__xkZZ*sd;RJMVa&{IyeYS>(X4%w>TF!&f~uYeGnP zpQZb}=tsVuXfaud{EDJJ5Zq0lr(VPcDFl2vt?8ki(owJ%t0!7aWO;CEBTAKuBhTlO z{^e^IHcW~JN#eZvlBh&F*m>ZeA3Bv=&D8E-)3T4wz0Kdov7l(% z07kRx?rL(Qux8xsP@$T4y^s7$rIV4fbg>l=yST;4sxk~wQjj5c64I_QzB9&Kb6Nhj zUvy+hhT4%PftDot4bEx8&o3`eBh-ZxA35b7rOtA!IX*(I)Bi zLA&gy=$YRe{GCX?6>3u9$vp;-z?rCJ-F>BZx%yE_^~ntcaeZ$D1Y}b}(qjt4K2@`n z#4FCEQy{VvJuI;<(Bf&9^S-aA*3Qxq6(a`8VeNDE%wv@NcW$eDW2=OnF z!;IQBx5t}ZTcjhX3o7BGK-TGeRl%13%;M=%hPSM_S+xhz0><)c$vRF-vr>m-p5LWm zg~$H5b8>zD(0#qH3C-gcb(b}|L^xNrj5lO~rOi3?|mm;31u!IASpGwH8=f z^NT_rJ!M`9nSZq`jAhirW`3RPjo@4|ebfCB$FzDytM{5@DDgU4k}S%6ZieDE*KOL1m+}~<(N{>3FozVK=G?H3M;(!EF{UtVR`!=@#NzwnNdQS z=zyM6=aBcE%ep3~(QMEAhLA=orX?4hJoPnwo3^Ax`#H9#PuO{Wl_}X8ERrOPnNxdV z2h|>Ssl8bVDzaR7!Y^5lmGfd+joz*c@AR$y4}n7;T&1U&mkK6g)Fy{|_FsiYP3@7T zYl?#tag*;OloQl07kQ9ram8~}8r%FY#_lmlwnkgfb=kIU+qP|Um2Fq8vaMCNZQHhO z+v@f0efsq7xEDRwBbHuJfGDC44{OUf{yv@-~gk2WA? zEksz@w_@8G4a;Y-WXd}DpjFvjyr>{mmZSmFc-Dk=e*CC;5wNg$B&8dlmKO^75I*X@ z?F8&(d7!o625hdxxrc2=bVe1urk@H5Ax)^Q@dg8VVn+Hws5!F_~>s;VY&Bc zy<*yc={TiVPA!~Z7e3&hU#3*5t!=wxOhO+v*2>nKmial96$)$0@Gqq9usehF5xK(@ zy67CU;nH;=Kg_lKqS}41>5Mibb&HX{esQ36=M`JHT7-k8TEpMx($|S1E>feJ z%3#1U@|$ zi5U3;CaQf@L}Nc3yEP2rA%p_!z6>+qua^TOEzH@e)KSDReG{M$t3J^6KKG#k2q8+| z_YN;wH73)6hP)@n&+UO@q!e3TeA3~X5nkl=YG7gp!$|HhOM4N)GX&)R1mmQ@SYUwo zLR0H<=B|Z07t)Kq&I!1~ahSrjHv6coATK&m z;H44NY}isiG(8vKDZYLXVX6zV@7~qXd(X7Q?yPm7dxX{(#U9NAnfiiFHqM)v?N*OA zl`2&z%7ennQiH0Fvx1a1&rTS#^;(ns>0E^2li8znI)1OR>|Rg&CwY(P+@X(p9Bo;_ zhx0gVbuZH}WZ&3`%wADwR%|E{)tAm7k$|Ks@c^>^wQpFGa=O=7+Yy54m4z2tNoMNJ=EG^@Dh z^G|}>0{QP;eVlB;$z=(Su%ZQ3nkM_3s41$g+}~Fhn~3O3*tB{McO>I|- z(fIbixaXM56C83;^hH7or*s)`OfU|%ML7yc#T`oe`-~VU($_$XsWULv_gF!rNJ5^0 z{C3@Xp;+gg^sf>1@Q%Z`AwoY%v9^+3$YVSFa%X-wE1~1DAlDJ-b501X^Jku9 z#0F=~m!o=mFVh*fw{2XGE@R5i7RBYb#i>NDRO8bZ1vg#@_0dT48)qf%){{Wx9 zL+^HMvu`k82^D3gJGxhnHkj4D8H)4OgIAF71yIYq(e0{+#e!QlmMaF6$ByY*c|O0WHwDcgKIllXM(O#p)stg1m(*zx)pF9l zzw1ZE+;?xo)*m?mLHZ4${ip<@XC_Ygj=LD{G<`E3Le<|kpq{*>BdHnQ)#&ZF2}nRb z3eoDov(67x8<`y1o|o_QP1;iAcS^+NJEow9?>)qE=zx}$9bvh+wLv>gc(ITpY>?op zv@O+XjT}k9+h>=477$4o552a$tuDefbf{d#VkWBtyK60QC%>31zPLM$=kbRCVYk>U zX9ziW5u58B$wJ&HmSRRPeLQ zqeB;tjUwv3wo*JW4&^rAKspE`$3U)N-#7Oi=#`I!RkKpjI)-+B8 zI%N<`aH~_EmxZb0{&*G|8o&*9c*Y}0M}u%j6#A)r>DT9OvED8fMW~&e57@1V73GFE zLDIG!xh8OZe%RtiD0RK!zpG!fGNtioU)k!8;HbarJ7|b8xp~-;f6aUB9>M|Z%}R=D z(=4BQjU(g?+B8&Nf2JFtEYRa$PheWN!ZYSC3=*ySI|zGlR#eOPS?Gx-t0UjQ5%b&T z5&yC6L{F9t&6Vqx6UJ!O?h+_V4+sOt9eUaz=ww7R8kKe0ynG1R;i{_M*$AmMkovs79lYm#^M zp{w^UXD5qQKwkYsWhD}nVAKHN&MwaP8uDuhh`#34D`@&&p2+hAB=+OQVL?3hmAQ=1 zIneSF3Fr9~%s5zZnWGt2&cC<~P*r>N7#lJg;d>tsz_g=#l!!?xv=;(nMexkHuRPK! zDgPu`7Oe&;%`@g($IJmaUob-HO^A*%v$kJaXo5jj-)k2B9z0>4A9xb5Ftx(|Sja%8 z`E(E}emc#E&=Y->7_Oa)+N>S}xkw@NZ3vZid3z#{>p4uoDaQm_xvQp1 z`MnfRxlSeoIx*C7g+utB3IbY;k87m)ORn_D;H$>LY77M&K;1oY&rlc75h)zkq6VGI zVEtq>A}BIH{lkcFkM_3hIjfd#L!JM=XrOcfW_EBk=bRksLX_NFpyzr~TQvWLd+juV}7L6(R`$79+wKNM(L=l)F5;FGD zQ944m1(fXm1mFHyKEw!&RODI&R0++`KtoPE99jzZSv1Ae^r#v3^yF2viLA#-aGC$N zW);HZI;75r6p($>yt*8Lfe-0b1vN3~jnE29mSPFn#3gdzr<0}o2(gMR$%H0X%!wzA zeA3Bnsw{7^l7td)hKA*sTS(O!w@DarG_R(w{jHnnrB(O>;d)w({`WzG<)L?7#1 zcSHFq7IK(Il~jc7VT^UnbnWQA!3SEw*&r9VstlwUexhxyT>TvJ3O4uSogSK$R{`r_ z`t6Kw!HWkda?{AH(Jq25k$b4qED7IuPcv;r+92_AioT@5_$Yx^+>OK^{1!sODo)2} zb-A%bHowReKR9YE?XkqC!bzTy+Q& zczG$l*-*`Yf4g2HRGgK+&kDN(4=C65732VjZg_E9>OtHqi4(P=m%U`rqIG#W7*EU% ziUI}(iJv5stpFbeEvmtl4HaFUKr@NubAsU7yh(XG;O?Wi+OpLYsfHiH6!(nRaq2mH z@^lh|3|@$;f(H&6E&85+76@AE3N_i?bLEW$T6#a$@PJ-n9G;0GomctTEv3ogP zm?U!l)7zrV_J+!^SOqa$dY}7g9WCgR;-{4fwa~fVH-xKQ9DD@6@oNTQa!R{tER#?Z zHo-_MwJR3rRk3Y|oWY+xb9X{09#+Wkq zN~(y!Zd>f60zOvsT+e;=k{7y4-d!w7lA%4)u0f)SKap|PxYED~{=K$f&rtzW)%7X! z+T}mDdEyxC+HV?Njf$6y)u^*XwBbnFIBgPgp9ulXTl?75x&Bo66T#m?u z3D&%~rU^4?yJn$&LzvJC6I1|hTCVul)FOi zU_cF6tzg-5KzUkFGloD+k$!!|Hb{x$^9{&sk*Rgj^IjaQB-t)Tvk_^D`3@S!L^?AZ*g3co7RoukRqvp{ehvCI(T!B5XcZfmj~nK?<5Hl# zOOjL}s#iz^y{V9rCMHVFhA!jX&$!{_etg=?5jQ!+LP?oh6Vo*3w_7lf31aDEYPE*x zAL_Px`p>u-fVwfz@V58#K5-koaGD(T&o*7u?v_sni4F8YOG00AP9b7p`&3?dATGb+ zt)=!gP0BMVS=13QrB!4I>B_B@-qdw@EQ=Foy2Mw+u9U7xyfdrV;I+S$Ao!M;=KR%Yc~8wz3{`fcsoMFvv^sMFm2XX z4!-*nMNoAvrvKSR_+hTeI9o6DFo4){m|Qj}Bg1s#P45=3Eho&bD>QMym^p47HTPoJL9iIx=QlDU-FB38`%ztw7%xUpLy+Aekfk0eaj| zj9s9=KQ1~Eu$~3git+TUM4$1dI$06W@JzY^g+%q$&u<})9WdBA0eo7{P?1@ z@^;0#|~o^L6ewg=}Gl`BQvecH!Y)H>gJo`sBtE`GYm z25dB*zN2n4r9XnXj6KN1-7F|tvXShVu!8RPnb6lFIN7a}vT`5W`GYur1OrM+B)+48 z0J%$mGsqb%_7)~Mtj%T)B~t6A(Luq0MLw&DU87n%8Gv59cTqFa+)(f41Xg6{L0(#_+Bii8uXFK`?d__sIAZhmVvA+FQXQD-)DR!>S zJdIfJdb3>d3axKw6_h2$cOL8^(dAH|Zi4W#VP=-!OR9>%=ksJ+q9YnPAE)zJO?@F# zTH|k>jIdBrykk;+JhIK+YWx95K5Zf&dD{@}mn=6X|EXt#K#iTiA3{e83N~_q0c}l!b_s>gCGYG;%+_2xs=Tq;m>NGoW{c z>*KkItgH0f$2oIF6tes1+_u(I+t#*rybz8rC|)>wKCYSQZ~z)d3N2mLZHZrb-wnF9 zZ(8l{PqN}b`5&Z2(icjF%?c&>zRSg9nt>OEa~L=X^<6KXHAX6=9ML-!pqFb0k*^3^ zO%oqq79%<@2WHEoAP(U(q4BFK%_vs}hij#zQ(N64&$XIs2>4mF`scMP@*wN>@!{kS zu0U;?!1`Z&&T?zU;LLx9m!h~}fk$MT%?qH(a>SrE^yPVAy$9VSnx#0mO4P|E$F_>W z8fDH3cdcbO{g{@vRXUO`98r^(^`8kCVVT*YnEzhcWkq5{7p@(i>b;fD^Lr|3TZGh z{XJl9X!f@+{qIKz{i`ia%gRhZ%f$MZOEWV6Ye?j8R8`Q)_@5Rl8|U9g3LD!0SFn|h zgAMBMgzLYL(K7yXP}14Z+QL}S*38=UA5pFBY-*$SS6XxaozDHAl~W~XdSq+w=nyUg1QxTgP6Rs>vw%DU11%I(QWA|r zh!+zQ5;!{+?fLrnneo_Za9TZSe`vctY3DbqWxT+;9bY4~HW-IshoKLGr-4(MomUF< z4=|_&z{i+`H!x-nGS)HhTLZKnW@y(X$DnyuCjcUaQwj3yz4F)c7H|o|hJiIu79i+Sv&k#~+s-{JAd6fY7}WNKSotOn0Dn8P2SDf@*E8{z{#AjndF95mxQw$qiAg-ARe-OL}D71Cy3o4{L8+PGc3XXCO)YJy|>f=nIpeY9r(e>+4DU+qT<}(5p2g z>x&-CH8zfbn7#FbIPK4V4&w@0FFzYN1{ehh8Y&_JDp3Ds00X_Y_-qYW$hO3)9rN5dZYl5b^QhZw}C6e6@37GmPKH&!Cbt)PoJNwS9%};0s-z;S}=29C;tw>?=oMT zkhPzHnj3u37a%?m{Rwy=ke~O@FB69<2JWDY$QS;-o*Ilo%fhNEi{UTwqn@n$dkFem z`WgWKxKw=zm>_>p(Ey?q`0t;phZm4#t72`juKR;eXN8)sJJzqF} zAfJAp3hJ$qFFAjo;~Uhb2S+>j6w&%+R|E{tq;HLyG9)rxJwU-lReZb??DLU zt@pRz>Yll2EBd4ydQ6?mr?8CQ*02jadMmaJdO*mJ=besOK;O?n$2PC_$weyk`}_2_ zz2MwRWZ0WeR}aIb=hC+q94WhY&{j>>AvzM6kRnAX`>qz!iUhLpwD)5LqY(n!N5*U!NpJ)ODK!VXdeFYE*$8U5L(BC@WphNxy zD}K9Aa{dTEzdr>K?(Ha?vm!c|LHe)lkbhjPk`DMW`&Zt~(J9vNT8{WLZSeCHR)pVZ zmoEZ7gZ+Av3>fIsXm=+-`qhXQ%g7p^TD4-f6WvTDknG5>R+DnvN@o)g7AjaQo6^kV zp1h?Bbl#-lMb_ragtfQ7IJ~YOvTqz|m9tuQ3F#B>{{Sb-ehx0}McX|zW%9%hL!xx#gUS)2I2ShbTU@~o9fC5tW&Xf)F-gnewF^qlIH!BPVzr zvnQ&*a{(9P)F#X3y+Q*NUw&msxQD7n6ne^6T_pZTI!8@CuPS&3McxQ;U!eH1K04-f zmIJFhrPPbQB-N7${<^z2re%O?X}XGI3qJpQHq?9w3BWxGY$)6IUB}wU44?^clncMp zaccuHFr7+&ubnni}iNfGw7+37^Ng+@6-ktU=M zzY4~Rl>TBgf%E-g`_Hkv5Ryz0J3@W-D@(Jgtzi!*d5F^`>euV?)Ur|;fe>F^z1kpZJQJ^Vi&1-hn~=uVH{pzd4u{`5`e$~o;mRT20vheJqp;d>2I%QE*M0z# z7I^?OOIw`HNQ__08nfER(*&dH8L;S2Ab!w-CS=zy%EBsbml^^&cq(BWDaku-0=BEE znWc$5-{q?q2U50J&JLa_Ay;es`oOFNzr{48aCdxe0NWzYc`TNYqlN?C=MoXU`xx6* zc@3aEGh{V?Jx_E&{DY@1R`##1U^uY~jx=jkTJ+{veM_MT$jll=>$nF=KhI+C*1klK z#@^e7lIb>{lsdL>On&cec4VROolr=vu>*RW&HjQ+&I@d=;7j{h8O5kAf)86I{ed62 zaQABW=T0K1k}c`?tS_^r^@UIwv=FIKT{+Bm;5k5oYv%nU({oq@F|4=B$kY1RGZ~`# zU;O0E(#dPD=47MQ0d0f|{c;RFy|rPNk#QU|^JUen2?tULV08Jv>LILpDWzA){g;zudiPlw9Q_enL;h8qSIyuPn1 zRhy~Zihl|+F5|PZ{N0K*jihfP(B)#AFHVX~f7{B^u3#R^!4Wh+@iGsi4FMv$F&j>C z1I*GXs!U)J3!}p}y{xGrm-(67g8XtBXW=hA%9hxz<|cFQ`(ErxbaWv}Z{X5FSrPD? zWEuK^D>`&?#_ds#h%vn|l7QyaKA9>J)1)GS1MNXMTHtbZ};QdhLiAMm*yu(3Wp%hN(HT#m;wev*MI=RhNJb2y-&1e`_uir z-RxC3yNcPsdtGb(ZEYC6?u`kK$l7xJlm9=oLl3mY_uTl=LK5if|hhh+3{)Sa^F zHgXu7sse)G^eVI0kpqa-yAP`%|CXw#in36>5hNM--%>%`z}w;hZdpgj#2<9J%|*P( zCo=3LJ>`FfRA2TyJrtU^?%{RRj!maJQ!RvtCKYcEDoac30^>`s$aUSQtk1_B$@G?s zc~QJML+ITTy7~3FosLLGk}a+nu=3Qu%R|BnUNZ(iaxHn0h>I0K3#Zn>HNy{VL1`FQ zxjOEJV=x51Jys<@CF>>;WO1OVJ*lgjhAexSqWp~(^+IP&u8E(OEac7#kZ&&)g)*5b z>Jqx7PIr$t=H?UMN!xS{R78jY_LpNsB4g`q*2lsyYLl4l;r7djCN z&{^X3vymm<$7AgE`OAyRlBG9(ZsOW`j!Oa;x5(Zn$YV*)P?VxOw~B}3Q^`3%IyqSy zGVKj0>>?{h8g3(>t_|tf$pt4nuwv}G^HuT|WRe=ZV5?_ET8O0=MC<{RCTWwMZYeIka5Ac%NE0{HR>&w zTn?#VDOFH^u6c!=a{43L4|C`0I`X9ChTXe0<4So)4Z`*+P>iP{6$$N-Vfk}<=eml_ z_&z2*ti(YEj1iPpF>9*Fx0<^GyncKYC} zQS}v#S=<$D+5A%$ezI_z-g>_mU$4O;`I5Ta8dp=|UCP;Snc3kb1wY~Lpr^y)%TJ&S zO$mE%A+75XQ9ek#p@Csan?O&#JP0N_;)iUPP{IcwH|g^WUL|h^5BE0@5}0;wRUkn4 z2c<72tt3uODX7!2G{>^v=!(v*5=Tq7?ew*@3!T;`zgLw*%RK8ZHP`8Kh3oJ0lWA~T zhiHCA_g5iF;~}GuGgX=4?`>3IpCPo^t zXGQ{S#6-Jp{Bl<&wdynbKOX>(?HJ0TutB(Q6;!Al_FsC zpA5TTeC;||!F_M65u&}<$zFgr>Og|Y;H)AWhn0Wgoc}uib)M4vLyqZgGAC{l7!7-? zyo7BoQY%R{nh;J{L%ND|5LWMBd9j4wa>ombE;%t37o!qHnd%lnwxl$Wck8pq7uKP( zj;h8Z9@u`49nM2;u=H*L*ZILMYH3Krsp%JY_+Mf&d<~+%p}~sOl95a*v=ZK2Uun@5 znnd?GaiYrS=?$!u+XEY#4vL!lmq}vfHdjCOQ99Xl!h91Z|_zPMVt>rETEWvLLmp9%U=C z`_?uzmiW8X?2i`^7oYW>B>+*&kKSZsq6b2_^S1RaS`&7Zp?w zr$jiuAxXEKn&)7OX)tv4MF#MsgUkiIBU_UUC@1`)%bXFQ?tXZ^ARY^w%-ht?ljncj zqw%3fQZ+0H6M}2%-nz6}e5d3~aXfdu3t3twuus$rYvW<;0L?`Da*<+-;%p)`(2O^a z5>?qhKIq(Pui#~&GmbeDYf1|2kNpg4&(%y%Y?_+k13_|7LzAp3^}qNLR!uC=7f5s3 zzwTl+3}!+^4JDtlAh$ak8k0LL8q|P?@O`$Mul?o73Pp~S3CEE?3YR7vmS#Xtvb>!L z7W3!vK6xD!r%dN}@;q8-SS{3v3E>2+sDs|^x%q+PO9o`1tSagl{TO-N4h~e4ox7*@ zqHW;ST74Xf=x(vT?IRyaxi8pjlKIDJf5(~x z|ELEb`S&}z4_GeU_v9h94{&HFSiSEJKCwfydvM&p& zvG2fVx=xmGtJFNWP2jir2H*GHL&^+=RQK%~X}mm?JPqoh6T0zod0F8v#XI8VvJRCQ z-A#SRTkT2LLaTw(2A1W7zNV-hQz^0dxW$5;!4wCJjzX0d%1RetnCi4bmR~g{Npfne zr_9W2R&6i&PzuMDpCXm;{3E|R$>M;nG&1z3qVDxtLwA>)47E@4{Y}Lk2k8@|L_XfV z5bty(9%Vz2k&5z#(NB=DHQ9Nuy96P>f;3t#2Pu4S_HL=pXX#3@j6_P9 z2ic9+B?Z@tDki%UpFq0FUTpxw{p|D?D!Y73|ns%)dv->sZNj7 zKKR@AY()%v`Pe8Mw=lIxzu>gG0N-C-gYAXzM z8oIiviiIDQbZ?w0j(0_inx(8|eu-!XZYuM;7)@9Bs5n_r8>I zqXnm<2X9c;_>pwKaL&8@u4#c_0%3j#daf49{Cut!R4xOrRt@b4lo6^dx zgoZ|^`V+RXlAM2D)A9Jh>dzmO9C^q+!1gM^$&$S2LQ*Ek=p>(w#QKPgiNYvIJl|q1 zQ=9}I!PiR%Jq=kfDpd83vX{A)YHTm{eooIn+mv^2%aV78&qX2NdVu;q)6LttTNmh_ z(4BOCjG#Imp};7X%fYz@B&o|PO4I92qKui;Em_tqsv^CCzBH68;?^bGbN&ea;c?m* zwUcJTqol7`t%f4*T#@HKc?fcWAkI82Nf9yaHxcToqS)_>8IUq?e>K_BW_*(d52%o= zLzT{#g?Xe}nn_F)n(_>|G-bzudJ25b+i-tdY=DV>0RcNSSyS&a-DocDi2)6~y&I_I zRz}PnC`m))GNRv4>H@wNw4{p7xpl38NHdwK|kD+EzrjQ}4=hU>Mia8)l zc<8KB1mLg)X6lr2ms80l>6|<@`W+EBh~CMw>}e)yW{8oFXU{)X5OF6XHiNy}i15tV zVbA#HfbQ@I->#{OjMMhiH;a%?bh=r-7XTFW`GMMVO1a%W{w_b2Y7?Go=VWxG`%mok zYMdp}p%Fd|6G|BZtUC_kOafc`?8;uky;#zjE3mSxopxfuyQZ;&I-M|IsPbm=6cl<> z5i`ThRGBo1 zO+;9{gpBOLra9~ItjGvgrr~2KK~4;Mg?j!9dqj?WjBJLvlYXZg!jeK>{W{nR6SyqF zvrmMqkS|PkXynU5Mx*1+KHoyA%@s!u!{F1WT8L{bgZJDu22IqT_0=UABXoAg$ZHE( zc>p@jB=lvgb;%JiQ3ERklZ4T1NN=VcwpldvDeBzr8~+YH9(i*T=8-m@YP$h8N4DTF z8yFew#27R(&GR$(T^ZteNf4E!rwmUhAAl{dp3{>|y>Y+-Q_#7|GWEs^1a?}IttbmR zjvK!x?LB`&T*YAWL)q?&j9glSBvpdZ}c|$r@+qtSdO=LXAxW zxVhC1b9eBzLli+$KaXg3WW3$;gkbztu(Kh7$5Ylcy9f<_V~@*jZe8SkY@3uEa(5?3 zI6jhHtxGklHlMIpeEbC3-buW3hRq0{yL8e$bv_p@p-Ll_;|P&M-uVc}wKl37$RxV` zSzLM*qIIy2$y50_R^`kC_vZM?5Z2Y2%A5aS>GHXmRl{_=#b`WoIg%g7%_}UL@kKW_ ztOo=hqItv)zs6$YeR^vH<2`&%g1CQ|1GByfBy`iu`{n%B$d@&=sg@hqJ!$d-Q1ip1 zg}f)2dv(z<#y0f9;7Xan9?e~no&Zlcace3UP?Bd#nQ(rEcY71+GAmjR#fdw2&o- z)x`+e58q@{NsrY--@?#4KBI*8Z4*sISZ8V4L>|1@le|{8d`T_c7Ubf4255579QwRy zeLwXJO}T*KuInx0RvtTdo&2+!&hh?kJJIOQ&cP5e7T+KP4p2CDfzM1{US#Lm$P+vT zb_!?mJ4PRq>+>}maD@f5OCR(^HlafSILi507MkSI{>1R&oUe^R)W89!lf2b~?JX4B7kjB6(j^Coz( z-F1`fBXt8iOAk=p^Cyl2Z7@+&dF!LtjVBdV<_d3b>TPPqnn4-R=WM#;dZQl^EXd=v zglSWGB-KH^@Mh9^@XO{$iztdENU9c!x`aXd{qT_zFqG-&Sw^o(!z>_n*9@y-D7IWx z0ajOB5f7ewXni4}^!JUbJUjmH!ls@IyFLoUVsq3#8eIHD!WAUq!Exc73kw>Q6U4yG zdqGGY4nDx?)v_7IfT6cEvG??7yp67nAt~{2fuu!!qCj{4RC&Q6D%>0N@H3uSzF}@1 zTdncGR=LX<7$MqB-RrSvcs$zY^;d92Kz=2IKwF%!jlPDVzd*h6P(0;>J<5>Xf%m@# zepK3#GHlH!L1l&WbX<=5nh3dSoteXZXV1rDzl@9K@96RWJjjq^(f~zC#_& z+KZCjGvTG_aB)^NC+oIOD3pvlivs4kizlyerhUbf@y;3S)#ISbI#I|`=qVw;6nFQ) z8^P_)vzMy7tQsgZURUlHGyRBjx?1C*^jx-Q&9h2xL8=+!Es?`8~ zLS(=LNKSb{vMns&N@^g%cCdWV$w3+JBnegn9(d8!h)iXm~#M zdKX=1kYRtY9W=M_=J!hvlAB$AQ(vQ#6pNfkpQk&dPcG*%(|fK?IqTl+Iy)RvHzvWJ zjE15qA3B`Kq=1SJ<9s#amqk?95OlkpixOqGI#Q6k-H23=;~4#OMrZUfkbO?}+JU*< ziyG^cTn9$nFAErl{TXYP8|lMQL)r2~7jteAe-Ha#wXvaz5$v?*h>Nmid%Voks7w5T zggUQY(Zz_N>ioJxdNmqebv^upUf9}qteL`Z$nfvV@z>0PvT^AA6$(dZ&Ri2L$P`L6 z1Ov{R3{ZG}aSLU$+C}E$mPP}5!FiPKZ@}UOjhJ7^gWBYOI2i;PxML;@LAiM$aC*h2qB9iaw z+SP(Ve}dUfXt%4@8n;NK9hgug*ePZ7Jo+I_+cog6~PeCjyDGLv#b9V6pa~ zun3W^w0zg^ok?qEUsoFEp;)2+{we+~CW$GI@djI#iXqmv|C)iH1e&a|$-2V51h0fy zWOXzIp*AU*wjy#I+c+8YaG{5QL_n*#nKslgQ0r%#Y~wD!Ew-kaV~3fxKl4}{KOC1J zcNlXTmRpC9yHjjT3lc`bR7CZs+s8MMsU5;v;?!Y@BYGy7brS_*vvegKKfxI9YdL?g zlb+^4F{QVKuGIDS*fpjUrTWnGEhUrZoLc`Lq8<~F;x`fWPvxbY>guP~cs zKFWNz;M2DL<91=yUwHl^ozu5J06@RQ9sduG=)Y3W|H{(;zZ{W-s+^pR=3hr7E6Mm* z)BK+t(O;YM*Ae}b>ty*?tn>fkh?xIxj)<1=uNeBbB>IQ({5K?G{=4A$e?cO_zm&*~ z-s)du=pQg-Z|Z1aXF~62Zb$EAZRlkFzp0^rt)Bmn{qoHJxw!hjbCE0ze|^*cR70$s zod0cz{!M~h~Vnw6bmN7!nEeM=3g^EoP1*=v?lG;@M_nEuz%+Fib4d;!Q<23tAQ_YNzPjyDl$f$}8Y>cajz$`^& z8VE!s#3BR3Y%=KYJ|zMM4W!-~yO63ImG0ad66?5^CE`V4B-H92xAvkWy4RQ$=f$y*}A$s9ioCH08mNW9RYJC-8 zfFu-Ji47r=*a`c=LB$RHgZ2fKb$xbeM-y{>}P-2KDB`)Bmnj#FwjoJ?8Wi{ zeoV+q5#@SJ`)?T~{BmK_dU+uUUQcfLOSnNi`{pQK{QWllrqnk_RR$DfwGY|%e^wWl z=DvFggk%{dF&Pwul(c{-#5q8IxF`H>f1xB-tbt2wKm)TFaw_~>S%$xMje|jO%#R%ORJChR81gPEOoK#3N=gLw z&i6b?*g?$W1F{Pl8PfHHKfcgFux`dv1R<_tzdZ~Qiu~0=ro`5`lhL>3?#N`%8z4_) zl?2Z#_I~3K{Rv+k@U$o}us?0l2~70@6kx!x00ng5L}ng4%ml1xnvqKCKQAA^bpK7?^`YC`DVBMH=yV z)s0_}wK3JmcE-5s6Hu^yt;NHymatm%rC6tCGP=S;Cm$sQE_JwJmbzk~wtK$N9_vy% z=mg#cqOj|)C$G|YTzmySj}2!DN0unp#qz~dFwb=&Ow;s;h^Jd8{1mtRxnKU=FKnY$ zo@M)S+0JsJdk_5%iutvX-|-?l8yK_pr-Sp_4S*^7T&_&HP@wwaH`u; zwcrCQeU;PEKf^xG=$`FeMnNwf zjxFvY#zI2p>KAZSS%eNfC#Cj}v(hgg5gH^0H&=0(!Jho?&heljT|lMF(R@9&Yf9}0-QUi6D@hB&(WAFSO|kS0;MF6gqmY_rR@ZJS-TZQHhO z+qUiMva9~GHNAK2GqWdRpO|wodA%Yt)>TI4v%dHJ>*Dcl{GvN<#k$0?R&B;$#Tajb zWElCah_J)TkD2~nFR4weywR8ca%ZdNRb1E+m4EF)l-m_C05&nf8Rc3mncIxC2?BU0 zC{t)o2sM?LGBKpp(%ZjjkyjLQFsn`@_IAbT*lw3l%}Ak=cDwGAG?~|Vojqe!lCWX! zlshmJUURVnZrUiN#MRB^u#Yhwa(62}#yiH%TUAfB+2#RA4t`+_?G3?aNT~wxz5GF! zii0?LOOzB7N5=V+{mjLht3t@!26T;Km^*gjZPdP^|!nc$}t!_3Eq~7~J(wGiiZT zaST6K&j>c1yc!L{^V=N3C~{Q)Y~gJo1A-9E(q^c{I0Rl_SGgAiD-7WeAMayOpk%ER zdmPDXJ$i#n6S31vQXFdGRcAHyEjW-ZBk`hNdYABq16D9{A^E;L@1JR0K6?TPvwdtY zJtGW3#^W;S7v)~*i8iPEF%85LPFNO6rFQnYu>ayZN*k$8sGnbL4p&+?4L2!u#R9r~ z|9GNg`OweaKa7Cq+suJTV$?SOCUtH{H(|*Wi7a`CAuk4oZp-Z2FbGc@_em3bVJg3= z7mP$}QQ`$BR*nKl>)f2%h`EsNtcN!H@S{W>tLcPoL8Of#yr@g6+ff@|nBP0v%a86z z$du+wm3yQk@^X$p%fuBi>%H%N_YN>zKEKAcojh$sFH0#82jqV}!3h<`M660B$Z*#M zzYU*}1%W1`rhB#Wc#Th>I39l<;Jd&;I!15mASdKs9t`#M%6R`NA|tIHN;oV{L?Uh? zO<#paseHhn&i0g1;{dC~sG28p!qlxi&*OYdWtFMYQ=K0O9Wb2=$HHuqLqq11grM;1 zsnw3?)^+o5C{XBu?oZf4YFS2y*qDUi^0N zG>UOxi361OfayoV|0N!9d8e4e@A=voYUjiChgh)%7A32+Zj<;SvALXc(+D@D<6RWa z1|tj!M^k$zej|ds>z(qsdgZa?RWr=*B9ma0nn%7dY#DJOEcF9>`y>ruWV-;w$F#OEA2>(S(;VN?gAll;6{q1E?IZF z2Pb+W(8Nz@6+wA3roQ_b7Ch21L;D23kRVg}{tM~WNWyg3aealbbC3u0SHW(rO&iPo zVquMF&QUC)pFiIRitwL~F#=U=nzF~P4D|-k;g8xXO~unqBbGrsKGgb-srknv1}Qt+ zalS!rZmb;UHa0*W=BZ`r1+^>S3^+E}YDPqSs+*=&&Oxq+>k{fAWiGv`lXRahog%Z~WsU^ika(#z5s2Y0KtV?%*ozrB?bf?}| z6(=wM4Tg=Zh{%B|RKD-Dq|@%#wG()|9wC8SiwVAWrBi#co=bc;?9_($hEOMShRl5c zl(!Ko-VZNzAb%buofx>D7~gD84T0zAb4SF^sV<(3<4TzA=I7Y&OOm#%uB5%UO{Smp z=z%C5TG$P^fFbuxLxyE~Dqkfr1ljHQS%$|MOJ z;MuOL^rVh3kMMK&=r3_Ozb>Y3oBZ4sBJE95eLKdt1}%MSj${zOD^2YBGk8z)*&6dp z-Ltkr)(jgq*wiPD21cjszY`m2(ocDQT8u-a!cp2}F(=d+v(C5S4{O}{+eGJN>_RZ& zezQIjm3}1f&QOQxewFT&H0N|r%rTUtWlz+C-JLjaqH(g-_8R#pqZ^{tRb8+8^v8BZLj;cx|6CEB3WM1h#`sOnv4 zhIq|dBbpczp&z!);Fx%`|E0St;P$|x<+I}OV>glQOeyI(HS|tPxh4&nE`CqQMi_d| zl;@dgQkl`Mqh_JUQDBldSk=V>tPJ^FY+P-hf)eL*JTs8NmN;iadc>Lpi>Xv*3`|=n!){dAR0#AvQ z6Lt6g$qOYOGuqmcFyn;%;?H!;VKeHk_5y2{D6LIauF$B#?8O*1D0PJ!PN#fuG;5^`ury|Noozo% zqSL3n2hid5l+b@740?J)7LDa~(6r-t$cznzjtSn2j=nwnLV7PuHq1}*8{Bp`1q1^L zw*%qN7q!IDUi$N8-1U+``$*c~5VCd2Ht9K76JCWr6lLhpGN+WI&%M%GZ45(Cfj z?6lj{tGHs@<~yd3MeT9^I5^F)=D`WsEIR&`c?5v)*Il#lNMTaD9^iGDGLB>NhTPYnJqzyTPqCm?;#>7?N>UTsff~rW^ z8@su_MhDiOm5NxNijRq*cr$K=R~#P2g{hC!UX%px8v2ci)qO?lE@YXLMJ0d^ly7OLAK8%MkeBzqOGM{p5*C?Q1n27EX+}SB*U1fl zh!d#Yl33xn%ANeI*Mg`USNhATyHI%2GRn}eX(f8}Pj?x&!WW-;RF4JY8IRga7oXYe z5z0o1%pXGh+dV_LB^$cK|M@tMB@%F9yP)85 zLfQ9X)9-esBOf);b!i~`F9AuU3&;wMjpsKpzoL!=4q8iuyq_w`S7gS)#uCGOnEX2G zf)ltXvfeofmunpyWUf>q>BeJ|sou|WD80e@Jv*(Q-pRZ|bHCiC_ui)Q_uhcbW-J`v z+xCw?YBBhjItPBEDvS0bU%tlqQ372agvWXxtUJc$pDFiBj@=#oXC5p~(h*F#yiB?h zb9}4Jkv4lIRF^?>h9ZSNqq?~%Nu&qe6YuU-;M30A!dhAd-t~=Hr3?IrlX_Pmz`QPW z-#UGuH*v3bkWvcL{hxzlR?zA376yZi+sIpXt~o53@&t-Lg}%;POHkEH^fr9HjnFFC zDk;Ipx6ZW-Ud7}M8-564BLOENZq>#>R2N1P{F>7^UVATutmuvEYpMP@;+=~e&A#Ad z$r1jbU9>-=JA80u1|MR5S{b`awOUCNRNm33h&CMJh|Tz?!@nWa-C=X`1E@JfF2XGRVCQ!3}l*h9TEKv?Xf7Fp(W+=sd;~Hso#f9 zS+3DD9sQ+$L4q0e;8U9r_zgSKUGdHCn&;O5FRf64N*e-MzJT9z-rWVfH>#yH#yY@? z9={}87P4tcNoqRWgT!4%X*Ez+cEy@G4`5t@9zSop>0|Pg*bo;7FEmn&8(qmX&(LB5=ej0WX{FWr(Xz-JB=^L7|l z70&-h4yukCm}|Dv3;|X7TCpjk1Bh5StHU zw%TI}PB-64kFYdfzpdmlz1$+)2^5h3)J9KJM{(qB1iLQ7PsKEjPpXv4&v6=deb>|F zjvV&UZ^*luTOrZtwvEU!d7K(|pM2e@&+OywQKD`ECg!|`QRYY=p~%UFVff_h|ryIo(Bw?vgpWQCz!bFQJFDOy}f4D+lbN)1^>0ybVK7nu*5IAO=9g zkv?1UpkPAh)b+=M!U94u(>PlaPu@GV1oSX+2-%l-1H}2150ga9I?0# zHe&>3V`8uZRYXAt#+cd#-zEB>+>nqG2=+T#cl`s-Ii0N;DXk8tgZ)9g&%#Imgf^P=`^~8P_efdi zTcJ2Vp_)%%2pJ;Tg?g7i-G;m#0T1#}}>@aCcM)mr}cJ}{KT%)0M>TI5+< zH$LbHpX#0>IoOIJbQD3KM~QFp2Qotim?#@Eq1(jt_;h5l9fP*i#5 zDWBemmJCT4|UlfeA3xngQ%_i!zu zQLdu+3XRdt&NC2*Fk2V|ee7ASBK>{L1aDPc%U_GogMrxsWwT>7Ou+euyX>Ddsl9_( zT>rQQE^{odh(~-?BKi)s_Vv8ML^o}p{>?Q(BMmAtHBgu?c#-~#)yhZqK9>7Ydy%bCwS6ui8IH5(ch^fapmn?p>VxAb zH+eCh$V7b_c^NcK?IDKN{K8wP_iE#(#3^&1`mgG#hfb5qguK|A`~uGwqXTuqD$Njt zq4e=oVtOU@(9Kp(mve@y@hKs0YM!@NBAHVzv9(rcFC`hlp9jLJ)B2hEjGwK>XI}k9R zMUxSvh^+_*nwRA11QqIOSk}^$;pOGLcYb__mMZy4@*0 zAT1f0NN{0)7h<|A0IjlaLDuU=Fov7g=eh4%u}NNS8o2_5fr8N*sOyy|`wjJ+Oxd^4 zMbM~H_HXk<{0zwir8>r|`4r_T$68WvKo46aTg8{fq2v&y>jU zhtxIKNP@Cfv($w>?9j=2I%`YBK4ibtD0E?*E|1YA9X|3~V20ZyJZ&vrTaxtR8dZ(6 z(3pTgBS+(XM#~XgkA`gy0Ca!#{q_xPRZT)EP@!5+Wnc5Ly4WfT0X!e=#rndsMdR}d zova##nh}el+7Z_I0oLtuGf@CWO1gTJMNU$D5pZqaX)+;Xwk)RHI}*_igHZ9dV(yox zy;YNCpa;n}b%pcGw&P4wop>`Y=-)KXInITv1dF|tl5Rz&qN;BAI_Jtss8Rr5l*zato?;qdwQ96Obx~LU2;pG`8kS+`bL1DR?4e5hjm&zvo=Yq2!=4qY}n&yDHf;$ zBy~Y~Vj^;uv&d=zcII@s^@*0=yo6)GlZ?B?9(#tm3t~%#tK6j!9X3oIXxsPg@e?@Z zr|K*M+QUHAhL2@@!G4NV>X)t(ldmI7?F5WsWrLTf(YI@P0jI|{x(=Ft@6;B&{es-g{=O3X32CZ;L;lvv5bmlBbNa zfszm4-*>&)I(JBdl{$Q$2!D6%IR6BaVno9aPN<(We1p({UP%3b3i$et{|_AbUj?rJ zM;xi3EG#D|{+}HA&+PsOjbvo}FN|dR$94aj1OI=(NDkKjEk=s`zqIi`d&vL0HvU(E z?0@V3{+ChkuVC~4(MC3AhW|06fSrk*^Z#5M!Bvv2w&)5aFq5SYVTa}!LE)6BVw_0` zS^I&6r-7K8ou!~8q}ZX5K|o*@@fIm52nh?E!#;}uJ$-(Dr`0aAnJs@k0KIjmy#UDR z;@S}sivTv^@d8B+d;)F__k&r&ih$5KRw$cMAyoFC!}-VECHwtb zS&<*a>q1(GI|p+Rf#eLrSj6)g+M&#n!3UxH(IA^qlYv#i0biGL7zhb(8dVANsB|##*93&Vfzm7c>(w_xQqIw`WVsCi?4Ilvy z5GZyht6shHmK{9AzL!;*AKSkPzsG))g}8$9c)WrGNvDk9|^Tv0~JF_%ZM05$WkDpd5 z{r&c@coEHgj#*H&qY$X?1rkO_3HIO+E@Ug)uP{l!IS}$^i=WF+?5&o_L=iYMk#dY9t}C?I=sa`tY>xJ35IaJRt+ z&#NH&&sn!X1oSX5BOyQ>)4Kj-n-NEA=^+4M@5MfqJ~9JAfB6prNhp|GgR4Ev%iT=B z6jnD^$HAwkEZX+m?^Hj2XsBSE!E9qoTpK!cb7dqAKNUL3)5)es#cX}%bBVaTQ=?i& zq}D&K>&D+9YFZb~N(tL4I4ZO2rHZPPcNAX_!?mY|$2(MR1E9HGj?`*yGlgUH@N_Yw zp7@K*aY?HOCcJX-hN!gmmSf6hP~=v`zUBriwcx*fCe;?Wur4P(s}umah6+8F!pa^7 zmG^j_NIN&Mnd@$*e>SD-c`aL`!9U9V>ySd{kX4g1QigG2C3V|V6J}hVooC|P7+JzT zC_7*2Z5qIgCQL>;&rHCer<~0i?Q%^}+pEcy-7_bYrFIvTCJYygf1fAL#(K3$+PFgy zFE>g0nBqw{%E`VHaldKjvTm~9X#lMv6K1C~PU0G(omdd@QJ0->-P#fto26gaN9xy_ zEdaEZ^zpo?&MKZR2k{7QbR}!-vx=3RK=J>MWrRCSRJ08S#Q5I4A?5|KL;d7aRZ<#nsrbVAfoJ!P$zxf*5r^b5{@g~%| zaC}|Y5qXKCM$e7*ErvHv%GJk6H(~@s$zyn?R)mhYx9Jg(ZPOcclR08IJ$x5A!$OG5 zH-SfV=}|uVFyFol$c1-kXcm?ib7NgmNQFG ztRP)vmRUi-OliPIq1NO9%*?ply=P?9{>mgsKQLlz%T(62`3aTzxyH9R@~D|CW4l3J z;Rk12XF#_|^5<(g*DQ|`g+tD)Y!I=y5KGbDvp&j`9=-E(W zPw-WC)Dc7DNwe1G>g*nqWFv;?w-yC>eO~=I})8t__JMCY^x;Y=(Ovk8b$w zdfQtB2;u$i04jf2N-maVi1BvugU4J&o?P5U9rLNWgRvUg5sVJj1(lS4&r?N~+CsNC z#`~CZOmsy+N9gJ5ez>B1vaGq$`G~!9~cFPMKVu zo>#KdxPfp>tV~3x3-V%XjFn=aLY^SfrQ$!pEf5$5=JNr|(plX|1Jc0s?WE=~z}`|o z^i&~L@Yd;TX84}>N~T)13>zboyM?lzoQ?aBJ0yq$KO+wXZ>+<*wo%4XDHmf?MZCGQ z2oqO=NYtguHIuOIq7TgY;HxyM(U#N!qeygKtQ0%c0T)3pKk=a%`?vML z@|)1W_R#a(!C>cA^quR0*I$Qk#K8Jv;wI-Vl0=!$}Mzaj-*+@w(_Pi*-?mrDi!|2H4K#@$JL6>ykO~ zn2*_K?4KKNbaRGtv{cTo&%<*W9=ea{XAV@g3(;#~VqfoOrou4PoFsf$uCa*XyHle^;p9b7{1_SP9a<7oSWaTW zUck0X{0I$cgpB$i88OWX1}hG}R2F@xWoc5K+i`1}9SEY&;GvD`{#yTI;nJ>!wHQQl3M&}lWr;SSiTES-@q?;ooDFU6;F$aY zsm6%n(QYJobbZZT&O2>qDRWPmXTrl*}jTa(|iDnYM7|pN- zZB*eZ<+Hd!6TB_BDWk_Qespp)#wfcd6E?0i`?PB2GVrAr`9v!eFX??_>JN4m(398m zgTV3*ZD48wCy+_=NPuM3?(x09&U%sUdzm4fGC+6lU{0Q)^ z73LQ%d=ZEJW~cY0s~^7`?||nt4l6yJI)z1ZI#>;9?d(TTIDBZlL^&!#A9;LVmfrv| zj024vnR|YmU}^f6i3E&Hsn3cmF&k(-oI zKC!JW9mavyt$?c=r1n4(+5qizNTnh%| z%IQXB=cZ6t6JMoF<{RX`(tQmM^QTNwIjw4Pc%;a>RGyah; zPC{e(D7PA{^jsf(`c2CRlhR0rdBX!W7RMRBkZt9-nqv=oUCd|ShTzAaJILkcvU~lt z5ZP7-pvq&FqC+ELyt_MwD;L!|G3xCNGhy50#*M)^Ad$3_Y6~?FTmQC90N1 z+S&UIrqR<=$rgw8Rs2J{;3W1oKZYnqL5_1ziP{5$V`_OxY`XHR$zZf6$)dd8^j_)v zUd&QbWPHq#dQLIMrXHg_sdE1N$|eLC*!W8>@BWAQqRft}J+k0iiGHc%=EymrT@w|*iz!2-u@17bH1t-L7rGh zVpE5xR>`}c7KwUfSm;8os-AQt%!h4Yvt0FLWPt_UQOF+QqQWlUVEpl2Gf|hpW;$eV zn`PS(G(r-deL9vjQ5f)0^eZ##Y~e(UkC3ANkHB3;yy&$W?9D>64;jc^;3f4h-wyzeu8 zo=5kvd=Tqsd(RreD?*t$X9r!@yr0b5y$yv$*u)vO&BzXuSarX1pT61-&um>sMR6Lc z`IHVDp2cJA_u`TCcHiS}cOY7yh;eHaB+au@+p2ply!HBSE;EMAC7dY`ClwF%;Nh7g z*TAX=j_U23#xuODM?{!mP7ulWzv#WBo36eI$2RLFd}nfZRuLv==D_z;DJx_&b!y@} zDh%2TeeoESya*7n^o~v&U7eGo`+)1{A~s?&((I{gmBNUy6WK&EX8&v8$=Xv~r|N+p zt<;m`jQck-Fuqk%&S^d<|!Nr}kuXU1_?eVeqWa)sW4v zG43TEdzWCLWS);D2P!~tf6(?e9#!fo2G_`Fv`C8H_9A!_yCcSA&R+%RYZHF_3$ZHV z`2KfmkKBpwNkj4KbHd{xc^Z3sox+q+5F>tvAj%VGNw?X~q?CU!f0W#m>YH1nOw&14 zS{6J>THWbin*2=af8Q8hKMTEQkBfp8!^qn(|0AhiJXr-qQQ%EtvNhN~NX`!?B=#Zrg$W*j`29Fc= zJnfM`M4wSJP;;+5y=~<#+fzqI=KLlx`AT;1RnzQdyYfYFu)%k)ELsNdPR35ftGOuW zf}ne&cx{+PKxvqAcO1d7%|#+!V3!x_7Jrr5mJhdqHt}{KLsiNUIiTX`zQoLpFlR#3 z61Fn>qDoDEL9&I>Ko)&Eki9soVJD$m+-nR%F1OyZUE(Xz78Epy*Xdi*!B1UCo>_(B z&em2fiJ!A^>sCD7Ol2D_!sbVK27WL2k&Qh~8-wc8rKW4+7P4Ry�hI!)fBUE++ac z`Q^aYC4bO@lNRV5x%dW7ALcotO%D()VtgTwXB?9kMGPaS`MJY>j4a@{8~iC;igF*K zpmm|rwAEpDwR&jQ8>wRX<%{p?h|zptc54yQ<@cd;_*iBtYC6&H{FD-lGv_TVDILI4 zPhga#gnF z5(aPJW$?b^LtpyrI7nR&d$&0pVN2>Lh!G~Vv@{WhPsHxX{eYn6(66MJo!N)CFZLdf z3n^5A<;W(8-=aH;#Z?09%-rdD40A-)61wzObx~1Pl#^WwrB)39;~1hB(_Uh-ciDcd z&!r-j)O3ttO0LX>!TyO%JYICpH3SlY!CRKDW7Wa?iNdniu!1`(OIx>HCnIts<<6F! zQfMHZ4DoFe=t(cvO>+w2BymJh@M&w;jMSKBAtlLIO>;c?_>BF$S48AYOx_Xovw zBYmlq`f1_4K@Kw+5n*I~Hcdng5UFQTshV>?SSb+*|DE}ZS>|WF&Y&XCG|}e?kLW@kP1)GAf@af~ZXS)G zD8WFn)aJHM3xlg;*MquRy=!udM1y0-LYls0PU7d^Vl}*y%I0N6uKM&2vM_iwsSm`^ zP!jI&rF$WI$VXLHCmsh4hx&#I8Xfs79pinEBk13PU!0jkpa8VbezSLN{luEjlj1fR zX5UYa%u#NKl!u3=&r^y>cgXCDH2L)gN|iI>GkIp}j)#OI zdQ}%RSz|fvV;Hozn5QIe@22UyV6}E!z8nWqgW0^@p_8=5uX}h4E;J8;Jd&J+)?w?1 zA&;mEiP*lKw+9}4^czV*wj)C(6OrjdsHK59Da_A;p|1u>x%V3E;@#23<(M#u#}tdv zeSgQ3DV$4oT0FU_%?Uqhuh<~I%^8O&w1i*mOwqj~XT+J)iOm>#%Z&*g=i%Bm!ja)n4S6=A*!u8f z@Zk-?k~K^Zomvs05vy}^*vCa-d7|fkwaAm6TO3s+Y;p*eS!ByjT&R#GM^m$qzTI5| zu|;{W9Mvh;Tp@wG>TMQ?mMHBkF)fdZJ#aqZi*W1AOa>m$5ARvS#H4Yd#*!jMi+;2n zB^i~JV_nkQP7hy5HJaF%Ut?r*#>S87wK-^VS;FtR`<5jN*%x_#oQ%&5+bAUMKJb)%mNZEM98_@<5;g1p~SFLfrv?zeCXl-l-Ev7wB!q=Va zMJGwkVM0P7~vo z-yCr$`faM7fpjU?5lHI{c!eBL(#=uZXwM^iGp{J|UT8iz@G!~yT|%>}R&9p5=;vNl z(T|5ms|q_}%fV2#nY}I^2GI-Fy|4F#3BGV=T0k1wUX8W7o?)Ro$8^nEcvpwk_|h|R zy6LY3x9}_};j%*{^3%nxa$JvGveI$O&j*|E|9F!;jjT0W$2v#Ga-3P&Rs?$C6yFEf zEsq*=Nty(d#I^n+@cKplu^iY5eccZ zJ2fP)TMN{boEd}peiC%5n7TsVHON)9nw7L)7<^aVhpjK9#W(BC`cY8xP5ya?^J zNBSY?tG>6^zhiOu_1hlZK$cy?SS^v)^#)J%uuADmN%;e%uPuHRIaRR_1y9tcJR94u z{&Ua$%M~H=aS22jS2c7WaZ{Mi3&(_S{pd41-TBwQ3mL(*Ri_3eP3hb`6N~1Zg3nsG z8M-?D)plLr5NN&IHjeIkxlX%vv80p|zwL2HSXbke`NDwj@0$`$9VtnFSoDsHIsl32ha9F5N~-#(^LYkA@*<7Y zN}KdxN^sE^hd#b+ z7)%%8#lBwF2X+lma=sI>$1LV1XNzg4bUWoW`I}?5bo6ew4j?xj(@+gosJu&b0AN5| zJg?>rFln4T(^tOBAN{?a$HvEMYE;F+XkyWlYo)0 zd9rO@!XU|J{#C=>-fXrwu-o}G6q{A7hS^k z=Sd(!d~E72bLP{#B0E3)%;XX3PPOny+)XOVBjjP#pb{c)em z)_ZuPBpZ^*o!T4Q7F2yT&7kEnNXRns#pskQN@`I|*OHm{+0?Ni+wNZK3Q6ZY!%2Q$ zch0x%v9Y_un8@tHS%DnEwF8;D}u%4(>#)V+*K6J zUn9O+KUQ9p<%ToWp5Sq8wfU14RjAE>RRR0}1=c|o!O$m!St~DrAe+Ku7d`3X$$hWJ zg}(z|&I~IzgZd`%#Q3vFPK;oGN8VMa)=QE|h^yng`HL`Jpn`t-)G@xfc=ZwBwp~as z4Bkl2ASfBaa@%_%;p;~+OeW>dJ@g#Q>EGcq@?)I{;C&v6g*LQ<7P)EMS&EWfccm9) z3)xB^nQeVae=M+4f#_WOH=zybpR+~G{|hSFlZ|Rta1vAn zOt|%#C*c(|(DRs>x9|;8=SK&QOpAbzlr&Qokpvik@4s9j-#}hw7G>O9jxpRw-8r+f z86}Nj!Y}5h%2-}JCO3H?Rtywtt!T&mfU*nFu>KEz%lR*w-OkYR|HyCUH6-LkH2%|X zIsQk#rDbCIFTiDFWcdFHaM}Mo>VGp$Don5PKa7q3hui-5uz41S|F*^dH8%P$I{*J3 z6lEf0V*E$B|I2m%``joKGXopje^Tzh{r-QX%}2k0EBx8m1dlubpl8Q){m0eh;N}L4 zyd7v2zlSJc?*=lkLu+n-3UGemJb&m@cd=6hxAJB?F|(qhkW^j95~acN z(0Btmh_b4o1Hr;_qrk%AfRL4h#&q%C5-@_4pwF+&j7}un=s_IR3Mjk9%M32#8JC?M zLB&7RL)JHfYIMA6bi8S309n(}bpJ3qJ062dqW1GAho1F7li+J^RR0~f*zsN*;(i~AQ=bg|9@51ZRsA}F{qwE=g2e9A*%16#Sd znemyL($mxbR)%E%O|DK&qy^!h7SqKl@aqi1`3X!5$d?>Wfyo8vI|mB|giK&)bM)G- zqcf?bE3JYW5eRvGD;*SXM*tr`7F|FcC>%GRt_n!O6@u&Aruw!G7<4ah6G$UN;|B*o zaI+g=jr-%s#>(#IXwT;I*x=9%qOrLS3OuO{S zjvvq?X9t&vs05J_g#J#-&FZL%Y3jmB%8L2ALCx?B16I{sToBrx7yv#y1BBjwcq6mb z3OFfj_@w^;s&k5x(u#KZ`xi$S2JhXF(eY=eGh^B4@C7s@{A2`(gZY`L^SS+#LPA2a z((r(sfq{BvYX04G?bZR}yTtg57QzH^@AT>jt{#jG7_PnnEbyD~wIjn51Q<|@-w)L1 zNBxaKRNn|fV?DhCY$`yFBOc7ZAZVC>yoF>)Mm|pi3e4gsw(B2~G=lpW_4M-q z@_Bs!V+ZgPfAhon`tc&9MDY6PTW0Y)|M6Qcg=c%_`@!@V+Ze)YMvs)sKeqquE8Xnx zQ`bZ?H#pqC^=oMal;%Gnx->Wb*kRdh7h87+pi{8{PFDTq=KVT>VC?J;p;R0ko8G<} zff)j^pZ%QkLzvq@dla?>dfuhM!LFBnl%%*axivp^dD!IW{41)eDiA=*p9qJcZ;ilh z%E9M9>J}gvm^ryRf^>lLA3=apxkCVHp#Bo<1~NVV zA;zEARQV=E?ArXdMEyUOVE@OGhkr|~z61$fuYZVj5t+V%1k4yef&@CUIx;i2fCbwk zOFjrVKm3mUZu7rb5@oPx&JzFz2_DgklVU z=v4pa@Rxfc$2}9BzOucB`BVmnL5{l&tK;G1{cJ;{lox6Te#Fa1iAmlz`~*E zp34jL*YOFc^&9)nYfI}0qb@H7`0dc=Lw_TDU*dp3JwjxX(9CdWJcMnr1-I?4MIgH~ z0%T!k6#y1yi%jpd9j@*?h5e-qt0%#>?SCUnV;&1@01}Ja;WSCzuXuhofidr?g`3Yu zKi1jBY&~nC^&BD0uRTW^%?|!hx$%m^#=AcwBYM=s@b}d2X}BfV3^_ zhXTiw?nj@w7rwMi<~_^S?NOEt#Fsd<6HRha0MIW1uTxZ>o)sibCeGa+OTVmdG5mp2&R( zxrAP>{QT8_vQaN}5;bFq`#S=L06FByW_CnR7_|hqanZ*MmX(ANqJXazp?gHeOlu|6 zCL(*Jvbc-9AsQuYhG@vp0O_l{4LxkDO;y!UY+YPV3jt$AcfpW^pp~V42zJ-468zMy zi_%OoYE&qB=X&~SAS)ryGTbAPtC=+4(h7&2)tDW#y4Mn?%hP5>?PMvp}& zmHfQF0v@&3-Dd%9YIUa2TLvsVDX9G+kkQl!B5AwLxLEjfiKZ7V@aM2MeA^AB+HQYr z82)_y5k4f(r)7XV_FD~z-%JO+*asQyd{FLotm>CwW_!B&RQjrmEd4^M$>96dhTz`l z#4SfMCZ{zdH*D(sQ3PCmaUhr3pMqrkOB+72IoBYk6SV5@iIWawWN+U~@MZV) zKF|+}sTe#MG6KRmY>;0?3DeS3N(Kq&E@ktt$M?G{jtv;ie1_i*dkDRY-YGC^J34CV zwB5nxL|!Agzc3*e+`ECa_-h^_$FxQLgIr?Iq~^aqdf?WXsF?WGSJzg7)IAVZNuJB% zG7t3U*$5mmjkl|CO3grQee5Gn^+0DLD1Wi(%m)4H_1QXAIJqTVnPcls`chMI`>XL0 z&D(B=A2rt~sNzyV@sgijH+Ap9Gq4nA1Fe4V03X~xp02yird*NDlJ4T8qs^mO=M>qTmYCNkr= z;A34xEsTFATAS&6c%4bJiwK}kl^Y?sk0M~@29p~L=&IJ5b{H}YBz{_pD=Vg% z;Oz{N>qS5tQ zVIOslZjUy^r{h+zGj$0>OnG!~uLCYF_aseU2{U?_(YeWEvHRipH?KW#XnCTG<&gfm zac)&APWHjKYZ4PESw>9)T>gO*(%L-hq|vt0fN3Nt5B`gocGD?grJZaAzREP2Mml5O zIqo+>oWTdIGMiF5t=+rhH8+JS=?2VOc#DX|$_Q%u3pka-EC(a?$b(1}JHYY!&FXWs z6Ukz{kM=@ys&S8_5UW7BC~X6n4db9cDD9?5x$4tC8V*nB;6wbA z{HY}-M-4{_o{iF-aC{0LRfkL%9*n}$z~2`IllIZ~BrdImvzyS`T2)xf1Xh*5wmd^H z_=x^Ra1*n2Q?CZKf~%BqHI(=qeaJ(HGH2IcxBCG9O1FoIQR38__VqgxHWeA(GM_sZ z^7@#|d-8gSr%H{8b1Jv614c^})bp_E>>!f2uT`qCec?*g4F~v^=2r~ZE%HJ$g?L8G zo3*8{X<{={y|fbx#k5V+9i*b#{EH@`D}M1uB~_7F`$#SLQ};TF0i>`0Mb4tYuJ0 z?LXcMgY5F<@uyK{ufSi0i)f6c&E-tf%94f5YKoazX+mlPCn;2-&I^(M7XUgy#lK+7 z(Voi(JW38eK}xy#Qa~Pl?^tD`MEQfLDDJ3dWJ=Kb5BnmjgXVkPy@e*~rAaXD<*B_e zs_r6|5P85W9`;9O8+e)fKN6XMOB$>!`?jvty*65?eK8QmWKRrK5j)8a*tCqB60AY?__D z{Z553y;|1%iN0%T_Vcjr%>d@9 zt_v`ry?&7psWkR(Q8!BE@fu-L3S3jN=;Z1(?qWthta}bsCXTwHSqNNDRb&!Xc4^a{ zvUv9`J*Qj0oR+(vs`I(PdeSi$sUGi0mwI-^wD*ff-!Ez%*Pz*rEM`Yz$23Seg+d%e zIGS`3gocBHv8j&;)y+yoe)3Yy8!Hz^cG+g@y^cQvaZXJXYKslwR!mDY3&Fn*_&rBs zcy6C7Y^;9UFXBkKX3eAs!gO^IeLHhY!|ENpx^&drfTYW66Rfx!b-TH6%EmGi@k{cV zM}#947bl7JduI;Eq#dO9<>Z`rpXHq+;-;B%gq530rUeD#w83rd*TC#1p2J6`k^b~A^p=xDzCPuiVI*6|4Pw4Eqfz;h*KER`v+Zy&5I?WlZx*8Z zbihrENqO+*N*oZAOd4Mkepcs#3++%VOT4z;{j@#YAYi73GK{|T%8+{C{kO+1f-`P{-Y6ORC%9gNEmrmUIb!i7Yx|SGlI68DF0`u7>o&A$KZ2@3@O9 zK{F~KJEq5G2tymM;}{u7tXN?sHwWh73?}f$n-JGcotDdsMXg_O0sFu7tdi6wwIT?m z9@=-QIwwWqR}}@#&~`_D$$e-py=0E(hgHX;Ml$+(!?)`WC0B1N@)OIusxeHGhDCam zfASmlimD65hl-(8I}Pfu7kOy>c>;+p1dfZl9wF}b3gWCOI{g673H%HMm!yS$mmj4e z!n?6kzO3Tv^xcHTDy)5h#J~{P@|`GqoHZ@tOf$1N{em*X1x+nt*B2v2@+Elb>J@q_g0% zaI?C5rINL+C&W+Lf?`YKvW5h~>M*Q#0P?GuZ|K%2aMRorknsp6# zwoyfBJ8syn*rDF5=?MEwy+X@V^R=~w-|aGLmhJobsnTo71rC-!)?ES($sL}=Apxcwrpn#r^U_6*1xl*Bo20L2ymFxporq!aPK0fU`e7|Ps zvGUAGi@h(P(?iX^E56RZ-(t25VBbj3J{~I@+98v!NJpRhD^!8=3e(V*KzWmj5uSVe&F4XYoMrDg-#;Q%^LY5IQn+5GuU(~iAXo;NyY$g>_V@&n zzN{I}n3~^v6TRAW;J|V%LUyVL&`Z#E`%tdgqjOv`uejF>zX$rnl$Zdi(0AYFQo%I*9Y%odXx+hx$Ww95Ucf+*H|qYm_7`Z_ ztUbplw-1>tj&vw~D7E&&dKJD`v1y|iu|ll}Jf|eij0)3K!^KaK=kg{(0F$P2%3hQ7 zqO-NG5w}X=Z=PdqgGL6=@9C1U=U-Gux5|~wEF=(E;Z`FRTBk**zL*y{F;Ls*B+us4yTT;}6MQTD>+N28u8 z7X_eGLr$jV=~W=oU1@Ui6t~a`?O@4OmW*R!9>lluYEf>oBR`2qH34Qe_ZP*1q3Z{? zy|UmZJ6>6x>txH~ikxZ4?YHkQPxP2eWjc~4pVHBWnSO4Oc2D(@(aEi-bE9-G>k`+( z5gtOH+pZuJQT_N5SRUppLJhi~gQ`1-C{a2R9qAhvZWQ!wl>*SY>yUtTPPZN3)}*3o@ztTpvJK1@FAil?h8a_adN6k06%mL*-X3q?F{*3l14!biqzes!2$luozZLx zBoRI&B7YWqxBpKyfP_JRD6)*lEZ3Xrz{^x7b*?J=uo=HMdFuxf_A3(galT4hGxXCH z%2s!|Bv@vl(L&|7vm7Et_4m^KwL2K7p+J+hZFvlG`-B;CRqe5WFdQs?gul->|w)pdH-Sn35n)3#Y}YR|)j zbZ}UHm6B+&PFP`DY}A0DHByJ3W+aYq^a^-kK#bN?YL&#E5(mGoy+hPRj8}sOHv9I@ z-d?b`|1d!Kvgm&L`l`FdX_D|xD$qFFyC*&jQZvs#mRcvdc_=DeS_D;d9*s*D(SRf? z{9yG~=$UUs%lHXmL};#zmrj-?0B5GzfXr_Z8}6K4bJ=(B*NDfiRE{O&_)g%xJZ7`DqS-=>8vdFj{MRqSYMSeGHh(wufTCuGL2BFPBy zkkZ@BgqJwxC(F3O&kv~nFk|kWwye{G*`f!ouQAv)-P1L% zc;j-Oy$tds{^0PJO%dPIwAK?7a}YA0vsJ^J^jFsfG<$UT2%$okSA@;!Zz(tH;ZK#? zR>jmgc_Z(`dK$swEAzxn}T-TF8nMm@r3&1RyZl0>HU^4aV#*QO93ma^yMi=_W$t z8Sxg@v`f|ZRAMJ;L@TAK!}@XhS0CRsPW>2{JZD>+l2PIAc~?t(s=KQ_!q^}+f+4Ax zv|#vgSnU0FJ_QDt;V(8y0oAYj+kyL#)<#>zJ4fRubwR~L@Gk zupp2GNgs$^FRabp@@r=88fWMErorK<`&potAo6HC)haiBN)Q*4J#F&Eu@p_O=-)|)L4tLYqSuXOc@eq9pohAO%yAWY|R zVOyJ;Ah3~Jn0r-TxeZVN@Cuu#<%-_(uyC_4^HRrIq7M;EZ6B5S?qN1JpVL-yiDR-^ zp%+e65}Po(R z)N^zm!V#ONQk@eYaa5TP-PW{eJTO@|VCi1I-5@R=IR%moUOjB9di(V-ATB}pcX{gt zlU&?e?H64yIw07<+vN~el6i%)Y|kBA9P#?&d8EwfU|lLdO-?{pVa0iMwYkDa&dKI^ z@{!zGoI)9%?g&8SZZprSMBZS(l(=;H7mE2RO7@GPdWrg1XbDcf%N?3Im7wq&c8*to zVtLninzG+&^)(K+6I$R*3k{CdvP){&Zc_{XM7F24D#6PG$%auVgQDeQNKNHOE7+jG zYOeS0Uf=XzC*a~V^ijscj6-z#=j%9I8lGt!lPjI^(K&acf$0&ix95+~Lk=klB!sPCycNCn#$*PS%8N|j=}QKY z(c(T%7`_J&iZ*+cNSTR3jN_Vgr;b2Q>cz^-6_~j5H_9=MG z1gKfBjk%9Onz1}5SY_&8{#A7OT?@O6W$-({c^52aetw_*r!}}0@0KAy)il+Sx=Hqs z9KX0;xY@bW+n6#L@wShI^uTy{l9!0@$?rG3&oHjmn|1^z(gSb;bE+`}GVC3q#P8yV zrXqd%;sX77vx6g;Gzjte-W0U!zTw$zL>qn)Jcb=4WcnJD79d!|zDs%hF!!w>S%_?W zI1~OLb6D@ClpPPZsSdA^=d;v2Pn28}4qP4iHuSRmw=tVs5rGh^kDlyp82OS9XI8Z% zbx`U_7-Gd(+Lv2x$~`~Ws!_-M(S8*we5Q%K-%u#Ytdl?SGhJ?@WO^V59-Ye^qe0A0 z>DH^aN1!JB7o^moJH;fajEo#KQI}~ z3eJ9uMxR|FAYDlJa9>uHE>OwuaP&8GJNKo-0?E0OMvc!2p1o()YOV4; zAI*uB@Hsa*lv+GQ*NE_W@zR#?OhOIGq79dw>5T8fS+H5O!nTHB^Ws$M@xt&&mk-Kc z?JJV(2jZc0pQp7c2@3ho&5{V|C97-HWEvJL!b!`C`9h`0C&o7gp9!j2E&Qa}va&u?v!Btl!LJ};3UsddgI z=FW7>7a+cmA#W>{l|!12HSB#tLYB-08*wxcjruCFgdO-DlfkUxPWcHfV7~x~=N5@o zoBYdc2pEQXAQW~Siv=1=mB>cn2s)3dh=hM*7Nnm{Rq=vFODE;SJ$lLMwQpM=v$2Wu z?kWk=Zqqfn)Eu9+#u?2E0kc~D>nd9*^_fU#&N`)?+g^|xT&NqM$-|$mtzq5N;g>gi zC2{tLIpWG36WyT{I=lrl2N7JXQB)k(sdz2sDGLzki@R|bsnRhmgxoEl= z_PHHG<_$YwxnrQ>Tr~LPCrc+Z)OuIt^Xuzzlo}Cs+#cg<#Gk@Z-*sGeRZyL-enNbW zmrs2zhoaVc>1vEH{qeQ@Hgdia;sf7PdnA~sNGEUuNg*J#gz*C#|D(xQd3m|d--QG; zgI`5;r{uNunZ>KrBEuU^6y z=nxYhdkoM9ag|j+R>@gZ2ePofZcp{438bbh27QSpBORxjz%%!AJ*kX(YpUw*^U{#z zPt2KyV=H0GgjV3VUZ6QT1nlTqhrqECQ6Z2dj}*m>K)_7qiB>_P!x97OS0x7x;YI~@ zgT5^eo%BdYZe?$-o%5EGKHsw>-yhT!MDMd9h%q=*u0g82!;Au}Q~3GQgfDu=aoe}4 z?AN_QDbYTcL($!lS6ZQ}$$E56t$yMyi-(yE39R=nbcN%U{pf94Zh-Won&usH*Ca10 z+Rdzpaoj+P_qW3YM$)w7w09JV2HizmL{oF?Opey{(y z@Qk9t2G7S}_W4)(E{t#kKN4mao3utW)pYXPFv2*u&-U5v-WbHRG!BI_lcC&kMAGH%gQ%2mC$IM5_aAfB zh?wA{qMcwcu`gGh5b{T65($J{lNU()jHMz4EGwT;e!>}C+(N%%a}JyDJ=s0MLki-L0WjlaFQEJh`VK46i~Z;&kn z$+~KJk83H(|M{c0VKapONZj3Pb#d!HnWC*n;idb!u{B=PF!C9fX$2CD~LE(sy9LhWthAEaWA=^S8`I0jSh`N6&BDd}Yzh=Ig~)neRp+Ic4fN%`QKH zvwp81bo~%OK(@ZBc4}@bzL`YfgfH>6>K|k)x`WRLxoi$v*Hp^N?_XTHR=3{}M-R zjwwrdcV_@GqV-PBjDfw0Ewh$7ak@8rhU>kEgjX%(O|G`{VyEQ+hI37dzr`^4k@W5jlXiG=Rbg7#Zvf|+$q zbm^c5YKLs84@-hobKw2sg`(EGRDvRR?QdQ8N=dy)w@^aV;gb@6`?cKgVnrDqJe{qT z@XnjP(XweY56NoW&^)8UNV|}~6g~aYydFLD!^Y|{X2a}8KUOzF55^_Zv8TsuYol$* zid}u=h+KX)6qyk?7bJejbV@jB(zlkWQIw})9aUsb2x5WHeu^j~bQ9j)6hl3nv5c49 zJB~k`O}h0)9@)Mu*pFhSSmPnExEmfqvC2{db zAL-Oj)E+Dkd@pL91H#pb^+B=U?(|-PGCddLG>=+`FmLn|ZZ@*r@ z^U&eQ3OG=?GvTa0o`w%{xNmGS=5Mi+4h0%+ow4^>ZQ)wmc5~g`H3r(ZY~q>6#hckB z*CO6V#K;hpoIPtMmk*L@6xB_R4yW?T@R-;DvZ;}gDZ?)n?x@c0l)SZjjT-TEY=}R_ zebZ)o3T|~aCW|8Yi3w>$Lz_WgQn^NSp(zjeWqBv(>R7^euP_}O(cJj7&|x5UeHxNj zPUGC_Gf%Tec!5?f7s5vJXI?a?6L0O7k(BeZ9#i$;z<4!GAs^*;8TjUWAuMUy5*y?C>;c`-PWhWKD3ejK0;5 z*2x{JRjs5i7@5;E>Ptj2O{M1NB*-Rl>}GD-jl0W4ZCp#1IQ1(q9>0PyrOm$4KT?2 ziN^Xd0D299Q|!FBYNA|nCliBKBR;G0r_G0RR%q0zN85%@8L0#o^RD ztY<^V7t+!FkTKSwqF{_?^G<3Q?7NLbO(;6sDRZBQ6rE5{aX7mqaq=fGE4N?D#PcxI z2^pF9MOyflFydNM4Baf9G9i^0$Vp??c;KYneM|PMM#TLq4$#B|~4?ucPR0rxUUv z^qm@pe@jr{3Qtj;7Wwh8!+(PMxf7FO;`}GMn7&g^{IRkhkuJf9Al(zz*)pGu@O5`x zA=Q`1Dfa{+8m%%5nQHs2e!ns0dwuus$hH-ZvNgMOa?HVLQ;nu@;bQS?4Y`T;R$#mE zTK#6HaL_L1{c2BuG}g1tIxt|WZegEBg(f{B{_2nUIl0$#W_mIiJ9QN!Q>J$pL0kM4h>eX{5~N#_~--8em;TA9Kz6lYU09pN{%rDD|F8`$EQR@MCO+`8feR`sUC(}$TtxSK z^IiB~{9mFefTWZ_8Q9T|i~!oVmFkbFP$cj(^47%4TC}mUlx}nM_IS0Yc6;q(9KC#E zKp&TKk;Y9lx`|yu4H;KfZ-qv<3@lj$5l_!UMQN}wV4q0dSiR2|LK2)3T-SyEBNPaG zwEblv*=9(JdSVP;)k5vbg-XS5%6f1J{65e!Y*2|`KJ261{&HP@Hi|f}l&_iF&mJ`k z9*1T5-k`f9gY{E;MSLtqmtFt0cFqRC%858=ESN#>069w%)r}AtbtCwub57MYjIAw{_JT-|sRgz|fep1n z%tZ6^DR>SCb?^LmG9A@}EsDG@3I3BNL_AB>%1t#9UYMpoSgw;uMs#|sEcU!S3YuO& zoh93^j~Fdb##y@d_Vea*gpAh`46C#Y3FxzAYCl>{b#Ss&j{!27s#5e<&DZuFt>>__qudcHB= zFJ)`9m~51a+K?~iXIaR?c#`-23n~N-^%8vT?w^avcp>e@+GEi0HC}P=N~}$Eqd0AJ zPFj5J4S0<5KDDdXhF)Q`#Abj&_%ZzytTgG+JA3cJz)#{?H!4bQNZdpwX2NaEx(fzV zsH4KVJ)8)kU7a5x)H>K-5DZ#J| zcf$!_y8v6Bc&oQ-?EvyX<$elszswu_41DxDLH{!A#5nl?{r*lq96SCPRCsP^spnMU z!L@`0sn3bP5E}u6vCiwvXRpT4S4E7-pvmK?!sUkK5*?IlJdcpUx*{y$`IObkB^E<# z1U}#s_vn{!)b2d-uQRwl&)1|HCb=iRh=g2T1X%B;t7Nh_CEt0piV>HEAXa$L)h2g+ z8;s$~>HS23C_4A1ZkPB8;W4(T`sU)s@a7(q#w$$x`lbFU{ATo6Ts3mNE_UEidXB9m z>?NeJV&$zIRJ#FzA7N|NegronwGcVR$FqK441VKZtq;F3{Wa8vG06EIV~r%Y&!(+nrlppmjvp6`?` zv9>I!`&i~1I-0W;uT1Y4k`~JL@@kg)=$S%$dJEE(w6+GW88;aD#`BOmDm45=_~A>x ze6wvj6d=l?QSf{ySJNiqY@&v-hoVXTnej6W^LXBSExQiQ2H!{!9}OuD4B^d z7Yg6(%yrTXEtg1E?EVK$Qo@vI%B35+bi_RFjWGO#5Nn-zjMsMldhR6K-nwUheJEIU zm%Dzjma|spU|8zu7xtrSuFI{dDU|I+6icS|xWY*2YTL#@A6mppHxacO19X(uE$!i7 zg4h+x0uMApER#WHu#@_a2^acs@%_<2FOwl<%QXtJpTt-EnUjMwUoCN3wi3hLS&|iz zi$#olD`oK7<(GWy0|0_i4(Bwy!KTo*JmxIfZtsLbuo=nRSTbpn^F4}%L=-z8FK#3R z`;c%uRfZEipuO1$v_FcKm$v}TnvV;G<8Gj^w$l>S(&MJQ6l%I%&_MSfg1h~q;`Y>4kCGz=SJl>QsYx_=;3leJKweSyS@88pR){nUJc%bG z(64$8PN75VaG}7ZW8joumrA`;G5(;HX0jB7;t&&HR)X(WP{R-oS>YmKKvrA{n# zFB%DpQ9VL8$mxE~*2YE*=`F@-MgIHdSqBqpmp#$z^rv-4s*Kd@QIutx3SHe zo?vh^aQx6&J3Z~wdKAC+Kz9Lgp}(+(6-CJ1z&KIgA??J3H(iFe>`JRsa_9$mutK^p00vOew@)#ns{7=x{OOa;Lwg}A3xys zx>Db(&0!k31}hBdQr2lsC{Ta;!2~k5A;a_gtt&Udt(^ikf8N5}?Y#3G`mfm?t_b*W zIW5gyhU-=?nEW2qg2`WXkGGjwR0*wZI}r#R^KPy|FYqcBfp45KW{U|XRVEQD2meQ-;;4f1m)6o6nQax0r93KoFh?(CiUhr9Erq^m zVv*hmP507OrfKND@+o^SHx4^mDyqTRX^>nK7;InBmZLp+u!YFJpb1 zR6#bODTS)-ltXv2C?DjDE?juAH@P}=ii^fLitqc4DD>W?!!3y8Xx14tt9ZqZ&dp*7 z?rYr6F-&LB=&f890SE(bn0cB}8Q$47to z{DPq|!q>Zk+%-nAtJ;URK?gUZ-Pl4pwaBOC3^~FS&iVzV9vu@Okz*bEM{C0H7le1@ zHfd~nqU_LEmYpxq-k&Ti?zr?dVR08l z-o#=LCd^Hcuvg3Bc017nZqe*5ojTQe^N2iOEZgDpC_3@EwiCOSK7`BfJ0_21h)39r zGsb&Yo%L*6ML=|3Vx7I#&RBe1`c7T%UVGIO`*P7}tkoceoAEG&hMPjm(YMPzM@QvK zzvXPPV!EhO0q&xGM14$DHaT;mju$vCEDj~lC~s{=NxZ-{e{i?5s$A@ z8pVoST45q}BTkZ-Sy$tfdX4E6Mfd|B#T@JH5;UymnWo+w-nj?!|bl%Rcuks((dg*ouiCIZ7J~yj5gyc~htg z_JKAa(|GmhW)3h)YIkO&rZFxHtA~_JGI$<;kN=8MX+@{m&tq>O+qG1XqWkmO;~iNW ztL27(`um3=^B<0#9S{x?nI+-OcF5!w!hu6L+k@hBJ(>80n~}O1EMq*dFiiS-(O>No zZT!|hE|x0=xhKwfRX?V>AGl`j)1-)$O#{yGe9>Xo(Q$RIe8UNQjanO9Qtrct5SCS@ ztDAt&hE_*4y6b@w>aro0E|TZp#~UX45u)MHFWxY+_)G3H%d?Pj9GLh!^7w`&jvNuCOv{Q|uh^PpjMHW8Un$LABb2pf z$GTMWx>Ceityqvyz8wdnO9WwMt!xv}&s=vjShWIxJ#34|IJ@lTkQ_$H__U;zt&8**IiVZ%R4b?o8wWFptFi?`xU*KVwA%iK3CC~iq9Zi1d(iZ zvVeuk_9l%8@b{x;1nGv`xwzpQNY>!mGUqY%G1=?sUua*Xd2q{<(yGgZoF1X^Fw+PN zs~u36LNxH*IzkKe+nSEO)p7C)F zLWmt&o4yf_k6LOwV2*&stBSb5&ecz3smtN&lh^r1je1Qa;#0^x?kKyVUvgEIoQ|GvG zkOMepow8oW+sA7^&e%1<^)OOzIRz`_8>zq*Nv}8Ph9(YP*;91j6mr?li)^ejiw;)_^trMHI*d^ffcmx(qR)=X{^3*RE z?6$JUcc#HJ&O@9QGWcJsyr7LT>%5c8RQ=B4WDxf866I#-fB&7yhm=HRoy#MGFKu{}T^z?1uiV=>Xn(yJ_$3cp#6mRlUR`T4jJa+h&P(|)2mGl##yV?bM{m- zcBsJr6IvLh=kU2lSg8p!So-#3ZlO;}7`SExiF|mBH)h^@bN269Uc~oiz)lEDgHc~r zE-2i(8=X@PE~tjww@=h z7Z<_0r;ui?1xlT1LhYRXYlKPA&yEYx2BbC4K0}xB0ljYzL=Js_O->CI1kg-cpSZM$ zNJx(J2tv+n>ufXR;yPQ5TCcNG9uE#HQHtr;Xwx!1fw`?gE^!cjLr^^*Vp?}g9 zq4qQFnEB}YCP$34COmQDup>}~>c(Er*q5M3#cMabiZ{LuA?w4EAUb`torq82j2_FW8uBi+W zy{tufS;O40f#R=8ozb#5;yVxyP}(Q|BtYq8`;WW84p-AR5mRZk&(f_hMp2%5oE{Bq{nEe=A|hO9vo|akwZNXy5=h(lZ%`e?`F2D zK{RCwc=I=}`pyNgp4LA+02r`*tkmy~KfNCX8rcIM1>~vw@2r|!5cvcDb|Os7%Q@>U zd-*`mu63M=+2i4oI!aVoEn7L$eWo$QixA}^1x7?>e}*&hOYxN;F?Y1oi3KrbuV+LQ zRHUB%*RR~{Zr%mxB}OF=GcxQSc#Tez#~}HNS!)fb&I=1Lpj^W9M`dtRMMX~)uwNz`v{e=T^Nu(N0v;94oQoFm zdCy@5u|`uRUh)LVZ85RHuk}TnTpw3XH`{p^aevAp8nCZ)W}bK6dWBTc_%pr_X{sQz zp+0b~)0*X~$7{XH-CgEr1pW6zj>)<#X{sgB5$4jmQL;nhAm*v_w|=h99YZI~xF{zo=$VRJoV7W+=cV&Zu%3lo(5%k&NqIF9eHc67`N z+D_hah_5GQG1{Z|XYc`bsJQJ-HLF35!Lw_A7dGg~a=F!SQ#LtL`G3nMOX5ormZFv+`Xq15(m zS=GCWwjtBopfMg12#H`;nXP|9rf+*NsF+mZ>&X|W1SN`n7dF}W-V^68LGsJL@N+8oHun*$RdgqoQCd)?E+ zOKwum-=G?c-Zm%572z-kuK@iDD8I2d341@Zae+EK?@muh%NZ? zB{CfYBstmwDxo$MKh@!kILt^BayG_bp1H)S5~TJE?wl@7x}T)1z%y1Q${xMi1H(o1 z-J-H!0JZa@6J3#RTd(D9HR{uJ*Kop0Gwuf%LRnFR)~effWwf7_6slPq@w5MocTqf5 zK1J&kBJ1Q65&zL0YfaG35BXcW_`|1r+}OV>Erc)#VIP zFaa2++A$mmT6LffQ6A1a=7YYp4=KWp)w&6Y*(?~n^ExNifk76W>_^o56!&<)%JJt@ zE^d?;fj<|4610I+t}|rhv}3p)5rm<2~Jk{!cla6=svZGTf0UalEaTU6?P^jSZZLOqy zOjwhYFLUEQl}BgSTzV|g9y|DP2d1OWNVk#Ffk);mv4!qa5x}Xkd6kUyJteB+=1iYs z4;DhHj8F@)EJQJVE*iBUAxfRUUuqlJe>I~l?G7gAI_09i?GMzQVZD#(n!em5DQ4iY zfl3d=!;Roy`%h#*_kp|zaA^V0&;0<~k-W+TL<{*7_RZVRYpC*kxWjbd#9QSYuS^0+ zb1RMIC@sC$hegSi=P2tdPN> z>Ti@L#oowAXk(nsb!#U1xp1!y57H;YHYEYP=M3_7j1DCvh|{0HV(on{lZ*^Ff*r7C zi>93?5W)@h@(`Rucw0Y)0RfG+5Mi8_QWF|`O;vjW#hIfMAHyAJE?n!{YZ;yANLVM4 zM|YV^i79$nR}(5-3>XVMLz|lLW#dF8Hr{9W9)YHx`s8IJL``)dva}KnZTp0-FTQ1I z1m0P!&!z-jH!i$9s>*s<;B1h?Qb?6^7Ij<8+XGntLkM81`b`{D^CG zD68;mjfb0F@VvEF+rXFGiT6=)1`cwZ*vlDIs5FHlkYoQ!$1jWO!VnGpjABd5Hv8~s2B5p)g zxCK=fKV^2yu$cP0BLin|?B+QB9Pyd%xKRJ8YPo;D)n7xr=Z9rMvJyEq+xOPsY<5G& z9_4>Ae%RK05ofc5Ryg#-*!`eD`;b&t=H)DaAU5$Zq}VG@#0MXu!bh`X$vI?=TE z0vi_m7Q#8JHDCD6wboYRyE$X9Bc1k|Jdn9Hu5Of$1t+J+Oww_2d z10^JLq}%3*DE=i$w=VjHF>?;5qDgevHk{I77?zuH9NC?ToOf8H`>Y5@2&Q$Y&we3D zU$!XQ0$sdZlj*Rl%cR#KyY2a-`0zGOZq#6A4-l1Ff>@(A@2H~Fc5w~e#D<@sss!5kMvGsZtfG+!Ojk|Gwn>i%_)IM%g)f1pw(dMMAzb#5-E@q| z7gI3gSrsIsqinfJVCnvHI$?yw_L~&=QAl0^*-)- zk}+qF<-LLmqh9$OhX6SNy8%A=~iHcC_Rz2@mb-&FBh z&f5X5tLXg*{zNA;dbp4xe(lP*_xR%kf5lYSR%^(}3{%sE_Kp~A8hS7}dnSTn#I|YsB{F^Vzx)w9f7&^jTYVcQ`vQJ;1YbKy(zi|aULA-} zK42;BEdNx2txKKPzqdW{@RVBPvx z-P8~l&#~b~AnJ7;z`bnq3U{kW^M3pjE6InRZr#DYBqj6gA`Rob8TxbViU%g22*0+6J&VP4QZ@F;7WBLs+Z?KfVWtt)bKwMSxO7NAUYkx5j* zk}+!JWOEIDt&F+*6vy+cNbNb%mj(Cq)js3$jKRm&2yzfL{6MdZCvT8!yg?Ku8%)!7 zd~H%7sj*#I3nXMl&!r%r=gP2)4=s4m7G))z{6EcuS-o4kGTvQgBHZ1I z80x|KI`a)%=~5@`w6;2LGdPWU&7vCvM0~$6zLv(Iom&Zw3XsHyz_BJ7Le0qqQyu&G zij#amA%~XW`XOVdvxkWxl~w%>Yqb(w%GuE%d1P(hnJ1R?&U(5ZIrdMuWhU2`ERWXu zU(2Rnkej6NXJH=B@utV9-lfX=fy)9~7)uI)O$R-%noDfyv9TpzawQ1X#1wL5K(@yv z&(Y=zYebPB1J4;qsIX&f6+ErWO-|^$OD>pE2hwB;URH9%NKvh+Gi4ZGBcU4&Ru|1j zh;*xtul$&PLLMP)%Ov6rZr&$R&6}TU1NZ)(3nm4`rB`hRu%y5Q`Qz^ZZg861#m zP=yLE2O@W{HR-Ap>JA@$kVL%id~nv&ONmaRAcdTi`{k%<)D2HJu_aE{c?#nrF=Oso z$R5BMd1s_bJW&O0wEFOS=?+3Ggao}4w@<=CO^ru;?}0zX313IXB8NuCNW=SCwahi_ zy=VdapMX0w{-kqeenNv^P0~UV#O+A)M`@;|6Rs2NYr5-hC`(^i+@+icVIM-=T35t0 z^BWQ)I;GO$=Q3|}ClId{g8_Kgn~YbmCjPaB_VQ16iV~bZdIz(+1J+dZ$BA2 z%#-%VC9@#O-TS%6hhEC zF0hdb*tx%Np<$IpBHQhGDdr0Ra%jDX)hd(0vT#Tf#ZJbB>=>p@Pa1{pamXuG@vLO? zcZK26c+lndg>_7D2>Bk_=@_jV`6&k};nJyMBdJ^K*#?3l*COvrEN<}H>+X6<@7p&* zrHE7>=<)^M4N1iCGc-S(y9gDPV09iw!QA52OtYIB+o2j*28}k3F+iQdrb%Ouo94HV zJeI;m^;p;x^0Lr|n=QH@gvu87vgpH{I}H)WtlnW%LnVI&dD-k_V;na}^%}Q16uftL z+8`ZTirz@3S}h!~t@4JoqL#Pe0Mn)S=O$GOlHnOSEozfq?Z2;_O$0HdU|Vu#OTSGibVYr8_uaU0e- zi09`Nfj$Lc9E4F_68(7edH+k!LF@W#^BEuA&FC&w&wQO%t;c)x-l(~83Van~dA`nW5DqIEwZ&dv;PwOUgp$&a$ZX1Pg>#0$LA-%Voz%K0uge_v!!XsxX zVC2RcVRQxGAse={)d5rApp{JEZbcAGrZPJ-Dty{*)-fk<@+RIy^e@e_w{!QxOl9tZBp$Rnpke~44?6ou7@I)ps0GytyV;1%LESvgvCi{lG7ZA2;RiOh*tUz<+~Z3 z>-y%YvQ{QTVv{xozRINtiRhr3%r8N}^|o@|k@9PT2^$iOVTtlsmA(kv_uqO~IKwGI-TgQE@+oW6d?9JT7{g3x+Mf2#7ey-<{5P60?)Pw{x zb=5p&=td02W^mS-ee4ulGTY{*HQxnvS*8x>)M>xa*JM2J%shASJD7Dee*wF69+364 zr)v-Y#elA=zK&u7tg1!_M199Tl3gXOVa_z;04zmDep3V|VJEQiTNVwX*!t#t3l=Xl zxbQcIK&H~R)Kq&SC527p7io+tA>l^;+^WFAqBE1VxP!_5C5L@ReOUv^K9}ZX+Km$z zNt9a4Rztol6e*kPK-3N0Dhoe63NV$=Scp)ykw!hzj8R2>+(?>qa>hR)PQ@h7D{+P$ zQX$^_eyYSl8aVVk;vbvWw3?5-ch#6i>;3#nNV6$JX}f4CCLUZ^jD4jKB;tp}?V=n~Atr!miBtANi8R%sL?baw$mvY!*+L=p;B zYJiq$?bw)nnipV0K5{qz5_)<_f$1MJMMU%m2xM8;30~b=NSQVPT;qbpG;nT>XX z;ZR#%=y$HLaFFe!u7Kg2(k%|BVW5%d%aDa*qQ^R|XFMrv+rxvP|R9Gfc7zk;+q zXEvvz#8$KLW}#vH$EA2uSY1Jb9yM6mj`hRg-D2UfEX>J;^rjRdxJd{p()4Ilp2}F} zEB|h#mCY}BMs7vY9j?W3BJqIotHfjfqO6JO(`;~@X4I!uXT_l2-B&23dVfeQl|m}O zG+$=fIRPFrtVv5vA6M```3xZsztsNI3sFj{gtHZ4rPdKnx%bkOW8pqyaJjS%4fs9-shF z1SkQN0jdDCe@Jc(zz={Xz!+cxFmW+9wKaFMGq-U2ufB`5rIj1N6kzIT=jiaSwYN70 zm;uZI<_>1Yu2ukZXLn;efCb;U!v2Y`dMgE_zv;P|g~0yr7Fm^=K(g8$L`&*hxVT};g#+yMXf){bTXXMnT2qno*z ziQRt;{I7%m9P0vb1-P1f{9D1*+6&+YaIAreu(aG<^gm&=obm>0(ckD zZz?M3F;HfYu(t2uxVF; zqoMpFC^TbGSGVs6Btcn4pdeu<&)9sPx)4K{=S*iv!CxjckMxLdzch?JCY-RbnGwzv zUoHaZP$1T@KL75B_D=pq2=(pv`>wtsW#)S~#JJ?w3zs)S;XEWQ{-Ccd|+75HHi{4$j@7l z_xCTy!N6;nVBsLbAuQN>P(ER!ux|^gL8EseU$y)pD9b#-M{79-Euw?b5ul-zK8^dxkkC@84dP$1!y;h;%p;opH4uaV!oTY<%I zBx8o2=wDpLR8vGqiEm<{pB{mWw;yuoTY=5+$a_LcbK%AA2vAPn^uBV&|F{f~&@bPN zU%RB=T+`nZ_uq-1fxA-E;BcSz$6w}OLe(VLFiY>x&mD;lNdpTq3yOVBr3BqM<1i2?z$( z7XZIw)h>6wc!*HHVwZ}!BlYV+S|fvT>soX6XOtX>Fbu?4Hj2L2qawi`yg1iyLL8v( zDhR0v4#7_((1P<<@XLLe0Ye~0G8jx@7S_~+IgbMQ9)BjrZUzb$9RBJJ53{&?{(3F}2~{!D9ay(+tC?c^on<*~xf~s9 z0Cq9xf=+OOyyy+#XNk&4gk9oQ!LPBdgpEoaUGYgg)>~caLQL;x(f;(gp&W_5lVLaK zcJ67OYsKBNBmQEY(qdV1R%K$(#Ri%j)G!dS+nk+mUC;Id+#(xGswaC?K=l)>lC6%( zUESVueamR=v7=uybqKtus?j-ED;Z~UFG(gIo0CV)&8|%v)WXkT0vu!g=x!Xsd}jhkSSaLAIeMWO~JTRBHzxUQz~|>9dSs$vBF1v=s`yhMZ7SOZ?h>ozRs?B#jVjYuk25m=ZrQoQWSUQHGuhtfDowhY zr1LTr2puN{ivoqh^FlE!@a?}k;1Y$0tiJI*qmX)*g=+S%nFo?SN*Ka%RPAwhoBUm4@qGv&BVJA=)umq0f{Egb?HMv>^C`{ykHWgeG=?}d# zM+B13_I0uQO11sOAan__Y57hqIq%tDx46^Qb>QWSIo2wC<(?BU^dP#5b^FrUGb{V@ zfydMFmPJeW&A|-$@OVh~zs)T%X8QtGQGKjM(K+8qH6HhC@|iq683 zBfEC=Dw?GQIDe;wj#(jMoT2cw6?yP?<;uL-7xtx6Ok*5&e<$GVdQvuGVX(^|pfGkz znLkIC4K>hA7tu`XW`?YJDq#g3$m~+Eq=Vs|-L_1*vN*7Gzvb{YYRdnhFhZ+bU^yWR zlyhrycwS~>`q*}Ti&`0oNL8g%yGIoq)E*HA+OFz3rf$mPk>}AEu9C>=+Us0~s1;~F ztVFK7I?F~dWl4wlG}{yELpzX9m17FGeNZ4jITUxvH-#WA8|~*MU7LjaRINLA!G+mD zD~3RlQ_Tko*e-qakJ%|gjt;zD$jEnz)eQ@>b{0P*{*C*I+3k1GKl;Vu`>XtIEBGeq zH}x;iP-R~#9Nk<-rZ{KDQKcM%jVHd<24CsbL%cMV*$7DybuIgXWg)1&HcXOEid3%(3sx~s5dvI}M z30@H3J{avA+Ly?eBDs7{T7?mvws}G!MZ+f5DupT2x+|V*xK0X;J^BY!wi$+}d4lB~ z;#xk0y;h2Fk9%vawd3mK4P-V$N%VSy(pyD}xl`xxYDi6vGN&jRnZCO}Y`uEDDJMWK zR+w>B_pJ(A~ zzI^E#wsR$$!s6ArvZ#)H)xuw8El*9p?u3n#@gopeUtF~IF;Zuazy?%F6OKJt|?P7#`E~0`Gi|~j+nii zmweP=)$&(LNo^|@!Qm3jwCWR@8Vqvgo@MvF*IbbTmT7YB^B^HgKRiyqIgVh*d-%Gqx2nKlRbZWp@; zFjfP$Syry#`tN}0&+!~`9?^#1z1xRPkwi6xNoePWcG4c|<27^OaTM2VL?l*BZa9Pf zASQA#0|}1O3viKBtfK$I5vZPeLsz_6mo?)*K~@S-f(eHP-?`JLk^&eNz)UROd~SEu!{$Un4;xrd1=4v)rqJ z0(zI!DJ7=zlz?JB+X89R$n`F4P7WXq(D#-L+|ofPYaV&!cd%r*s6Y7cXW{X(Q-1=z z+u1xjDl+G4%udRgsrUn^`@2ZMgcoO#Dj|2XLH$irin1Dn0@5u2IKzW0P`3X8v!&sR zPk3~-xu1K%HF*>l6PY417>KieQKnq_+L6hIs_tw|`^dCzoZnwC1?*Y1L+((Ihhui^ zV1q3iPIMhfI2d=3GvCR0jo}GFj4C8tNrI!rIFYB)uhR)PpxfZQk5@JBQoXFlFio4! zy{#EEN9|nqbq;3?&}&$!)n8_zAGM)ll3vO>Oz88g_ZydgU${EYQh~w(r0<98FswZ^T5f@zGBn@wX8>+*c%+F z?x4Uj-!P$6i(ERCzh7#9yuT{4PU0FyRJ)+m&XOr&ljUbGSC;DPR*t!;AVlzYGLQ!j z$mzS?Q)Y~-86}BkcJk~F98c8!V1CQ>FuVL@dCX@*GUaExCEw3svcI&=_u93Rwxs_% z#WT-em71@_aKb9@Vs%%sP1Zg;@A$&v%9;AIaX?a-veMbJ7QyE~soSAtn~)mt%;FIe7G(GJ^OPHENrq>1&; zQv-Kp@iB`6gDZq6x&ypbXeg$eNQ_R;zWZ^EVa@B_$~mc}?!5S5+GUQkx_;8Wy-47z z`E9S2Y#j9qEGd(`PD`+EZ0r_h5RgKn>*v|EdpE zicQ8Y81xo@LTYEt64J%uQ$2=XV?9ZsDx+5KlCq6z_H@5Subg@Cj9JH0@_eyJXMLeg zl1x0Pp47Mdq1KBpI={xhhTXo=yG-D2-Q42{yv5iQpI5)>a>cl9*Xu$?oICRkK1 z30tGJElmI8fL7)t7iY(+mYh5?Q^%5uEHGzRJ@AI_F4yiF3zDBp8_&iis4_V-CnW$+ zS^;A-1)<&+2fLrx`&&T=B{l!&%{YS9;9zE15uJ&fQu)kzG#A_>*L2#ETn9xrH^LJ^ ze{U<6;7!-Z@v`Si4`)YLg6|hiP)^A!@;A!F&Sl5d)@aLYOmCwiA7sk##Jj6%@@58R z>1yY+uzInCqp3i4z2K=B3 znajZ`$B5DxVHzU6tZO?LUt8-U4<6K~ZfVCrYn1VKJPyK>jY`D9rG1J<*EpdYc%?he z+9`NLdPjDVS}B8C?-h-o)y#%jJJ36~lP}~vS3{mEnU3wr>WV|^6W_ta_a7a(U!#go zT-#l*qM75R6=^3K2kftS#KEBOY?igJ7~B)FN|It^=4vl@2d5=mCXOpi^92R-uPhWD zpszE#G4Fzjoq`PC?0BC;u7(Ic9rRS&V#E?uZH&Npibo#lJDPSzJeNSKZcXza@>lU+O&~KuG~}%#DVOm9ic!X`igvM#cP}!;zR1OR1;2FEl_#3 zg+Q!^)x8k{EoRDf>T1Lrg&VpO?$`tGq?f3P8TTju zpqunL-rdXwpDUx1i%eYXtp>bI^FH*9ZpbRCzG+8$Y(oy567%?I9II(be1ACjsQYZM zW+X5!PJFSfTdsL}1}-P^&k-7MAS$7VS(imu_h~)DJ0UR5tRyaja@9U%R7RCNnum$v(78JdAIJSp@Z=A1A1JyXW(3+k`Z+z!6asEkM0fap@C#H0+}WdL z9(ep5&KqZ%4j#%tzz!x#8Q8D+*`9EBeTZdGhBN&Of~7ns&4%y@>w_tjSmX^-(_^qbFDPic*(FCre?2R#P@yFeS679W@ ze#`Ync9UX+t`Si6JF}K2BynATuI=doRZ;eJC=nEtqG4vky@kZV+y}G( z+~!8Au{EiodMGcn{{e?O8_l<>W}&F1(OgdP<16cUG~IFFjX4$0A%hHCV(4wXr(&B? z$1734!oPT;>d)1E^mz=nN`Dt)U|=(OVBV$vI~B&LQV(Cu#(~Le#ZLOBeFV-+gXiG_ zQryuzZ^){&P~Jk_VXn<(SvOL^ zJ!Ja87yy_7FFr_T?aXRFgG*6<^eRjzKE-8J9xcal%;|Pj;^q9MCljqTurG!&6&1S} z=%}o~Cr1GK$hA3Pos^C{e^#Sowz7Jtfq7V;hckf0c^hAX1_AK^s>>{fB=`n^Af7}( z)Ws_mBQB>?_d9Bf+tfGf3Tr|D)@JH<>jFy~gnEAnBKD@S(hXnCX?*)`$LyT`uv1c!#=8RO(?~k&NT*3$K zhC#7%Vg?vP-^z%+_e!0v$`P+LbC8sny9l=r?FA6`!TV>&!3$WT^eQx}y1wCU&EWUH zb*VbWH-|#}bGWfn?F*(ovEvZL`qPI;Pzn�axs)o?-aWzCy|Qv$s<>m0aHyeHyK^ ztJep)Og&{zQX3qeIc4ug_`5aZM?arY3dhjCV)8*BbKu0>JESucGd}VyU9<+5#i8%= z6ZQ@HHi+(01G;abU6*A81`6@7P8Xrk2ZM%qWjVAUsUh`Iw(t!f8YI9^N|(qy#Rt{!+NvXXsxD)pDV+hbRq0pCj8oni=PEKdKCvF!ZvEhUAtF$ystV z@HSQyLZ-)~$(bncX=#5RS90lObFv-HqDyUrSG$wC(M5fJhx3h6nsLs#tOt(oJ4tFC z+ifPx{XP3-(Fsl0@l^QApkW(~HXtBk;+f4&nUr8VT!LkYtoXrCq*J8Fp%z$U>0+vG zjznAjNAk|wvRch&K&r#$qeLP|C^yMSLD@u_yKzyyJD;>IqbOCLMUbEP9iM9dr(x^2sEO$>i~qQ5+t#_rt` zDzbpb+$9w8{bEB7-z7eZ@M{djjjJsS6@Xh9@OVkAY_EM~mp0xL3~A9Z1cVm9)>eGs zFDr|odop+}+0VZVaJ#W=>6N_gtQrqK*6GI@@I+kWOzK^|GlENm5_xfD^#`wZIpGg{D2T;Zm44!b?V zN&OPHGB9(ia?NW0&{tQ$zHnZ3RG0H~H8vMiv!L{Z10 zka~r^MX-`Lf5L41jdm?fV%xeg_D7*_&1edg{_0ZRV`N`NAb8MVm`N=4|-*S^4klr0slP)<8wqFZ08B#viiyCZH7*>u& zXS-T>I08ycyt~LL6J}WS@^r_R#M3$P+So9(`)H>#HvN-C=i?DK?1bw`)(w1nTeUY- z$oK-iB!2k!{aSXAz~Ked@B*z5G!906Zh};o-Wl;DQ#cHiBnt1Q3+J3~SW|#&y^Od= zK}wf?bD7oaz9u2IrgQC-xi=hCVj*tmY$a)}Mab=aYF60Dih9{{b_de12@m$5a$t_1 z_!9LGeaGcvtn@F_Fg3g&=-tWv$EVanQ9o7s?`DgG1GY)zbM<%Qt9bbI=DUjysSP+G z+2b)$oyO?DeV({xLjAN(|1!t6a{EVV88u(uz{FXTP07S-Tx0^Eli~E#+v$AzasyQ-tbHGiWXgx!)(Ah z7xPibfHFM#f0MlbOIrW0b=S(uk|J9FLwBwEf3RJ%asF5E&h`JxcKtttcP`HVWAOeT z>GuCN+qQFe{m+p4e@UeOM*#i5B+~5v?aBXVBF)Cb_Fow^D+vb=^Zz{h?};=gHwVlA zbt3H!slNF6&dI2l2nB2I24m_b>nR<|EPTpoGz7JIc8&B4N<~zd0#ckvRtLfw7FAqC zw1n?-)+=E4`?dRq=f>A#=IL|mwf*|Nqvvp+nHBR#aPbW}`#eofJq-*4v^pDea}sDs z{{acJ7DC^kX~a-F$yWv_KNbuE)=$at&pHqe1hDAA&80$azZ_6J$R(f?Xmm8VMCp-u z>2aS?0S*qsyC(@AIkbAD581vjIEpfMoTw2fzl{|aF~UMWYNX@CGkGF06$nOZYAV)S zDw4Xhgi#_h4V)FoFb|pD9ig!@b^$G3g!rD{mqv);zZ+bW(NXX2@4-a$8%WqkL{x-f z&ccUyz!XrlAV$zZp}!yyx)9wZJ|v;QZb7CAey#0#sQnR`fsYmexr4%{KnNZNbMs--M1QhY>Hw7@yW7!~Md>+A=Z) z<>j#y$~rn&IJY;f-?)9ddx6?<1!F?#;NNO0(B=tH6JH}i#5=p({NHmS-w9?ALEqO- z_;IJKU}N9NK>NNVBb+a}$8TMbUezzhu5az*Z;8+Ep2V`qm`MQFH{knwKca(7-|q`z zui`RzaB=`74jcM!uNWh0Z>e2S5V?Tf_hwaS=)rMeh)bWEo|ZZoMB0nJlnKW_7)Bc^ z8no+&LP@V?@XdaRIBD#h*3m2%k{~?77l7Eno!Rn37c$0h4S)>>s0@5w7Ve+B&Hsy@ zoB}4wf>VwR5=)(llLr}4YFx;Ve z6sQs5ZN%)g{YeJWbG3VFNG3(nh05Ib2!TgMeEmq)^;)hIzAX20!PlsiuWOoA(@{+6 z+?A~KK>++m=!)y8+6mRvyO?Fp^1HcBHbqK(Q8+C+lkh1Nz(`K0E{w%0j&9A8D38oW_)zFt#BFv^XyeNN&@c-|!E$kRd6~VHca3nD z3)VeDR}n4EYvE(4AK&$rVqg&g-QIzy1!kZz4&H2OJ)SeAq)+aB8dbQRyNI$rvRcJW z<9b~hHVy5Yg_uP^F;ShkQlX-6?A7;KbB)~;k)A7NC6T>a{9sH=-IU!?^#L?9Oa-k` z{rTmO1|{)xy7K|;3Cj){!*{uSjP^nMNC<)5hpU+{^G`Wf*|>m{_%c5M$<;YPy1bb9*1;+$oxT2iHnmBdX57>7QGj!dpHLb{|Q)3a7cb0up+jcqnOKY`J5D8FU^wS zc_^#y)yrXH7W8aq2ssg&m@21e`+o`0;Bwh4*%4m(?}_ z6=rf5B#&Qj`(-&LE^zJc&s5OwBYQIUXxL_7hj~hf8?nKq#3f5{o#u_Gb$4FCb}P3; zXMdAW{jvF?%lOkYLOoU}7T!|A5p9^t@XR^G6?`@vniN_@bPF^0Eaw&M5qZc*B;&CY zca@iTU!b+1JZje9AOV?)h*|{K@HyWaXf3p^aZ&fWTzacvgI_3@I80HFeP9^_wV7 z{p5;r6H}zy+>`Ryq+E}Bw$aDB6tTn^xHk(%P5 zCY0g*6Jv9G_{fD&5+Ga|Iv1&5d$=C+1u1_#zfk44RTv=XG_+QqdsrBJL@EmpUv-3bwT-Cj&^V`aMp}Z%IQJ>6R=n3t&={9Ajp@b;Gm<2XQESk-Vs0Cw zJB)>PitkJCF0g<|<10;+p`^vz~z1qAIUcm$xeYE#J%#?gsMk;@}zJ)Dd}1W&P}=%z1`;?Iw!T2NF}8Q+0i^%#(Q#6S-$D$ z;;z)kZS?)^Grd+aF+oGzHKXNBUcfu8wLurexj~e1H{-zaEuxArY z<6IVrugng5MletPuA(;5OGB;)Mxu;)bwU~agqGjnU4MIkcX#ATYzN_x{UrcH+C&G; zH#{8S^q;C{MZT5PwdP**q(Hcl$G^rc>r9$jixl>+&hTC=_Cd#6h2=ASPxJ}9?$8}8 z3-VQ?Q#a(31qX&vu4fFchQQ~54VA!qJJqP?aB`_xx3#8>mkQ%F_h({{K0H+r+wL9O z(uo1J1!3!$ue-Zzw`KMlvHQ7sK{Rl8mI~CC#bGk6d>gkF`u46Uk@#{iJVhX60e>$2 z>WqU2G_iL3MtPS@dw>yu`=~Ll9MMtdgRMo5N;*}-L0#CSa1Ggxd zajUN`O{v{xwfMJ4XWKZ0>WLKJzzd*O%l?-SZQ!{bre~O2=IgpO-pyym8C8v#Low+$}_@N1sZ^O&m9;xyEzfGM`-1;l&%$wGnkGf29e3t_vQx`uIZH zRxTymO{=4c*LqN}?FO>|IjFU>kpR!*qY0MQM99PpL~Z0H(_x9_U}LcNwTM=XX#Qgii#oY;$asdZ8E+d& zqKf4$Kf+j=JT-?xmq33w!VEzm;$nYRU%>X-!Y-Y4`sY(ub-0aLcR{a^cPSM8;{gg) zF5Wqt`H(1=dqxgqH`}gFj>AjFx1`=Tq(;xPNRDeKU(T}D8_r2PB8`9FA1Q~;%V)Y$ zQDf_#xE*Vt(BKhxW7%F(v!RQ?pf7* z_pu}T{oGc)5HqS>+1N0h?570KH@uo^=fQA9XWV22OMqYksRfyrmlIN~M2%@@4{`z||EfeCWf zo&SD7A(F`OCf4C~Jd?K;@vDNT4LN6t=zpCDr=U)6JofWJf!9v>;igshkxqKZ>u=h2 zkV7L&B6A>mohlzk;C|N^NuIz;+c;0(sgfP$yx6r1X2B1vO83qM2$7zzz!g@QWNxaL zkBF*VBI5l_K|Y-JY=aV*u;h@>@FT=Xw!LPs`wQflTGD8tWRJC}UJk<=vy>HS z{8Zef?{jE>`0Xe5z~80?$kF1PD4R0iORbAvc3Ug@mWN#;s(I6vGEJxfqLLA+b+1*+ z>V{{Io>iP;?Km6Kj8aL70-15!%b9M8*UGmGvtB17W#<`42ppyFnz)_zrW~u93Qm*; zc$@{TW_CXNDh~G|Vps3$knywHQn1=pQYcF>o=7+Tgb&rkiCTqYGhvohxrmE+e-{vb zQF=IP08tjb6U_C4c*k4Fr8PuV>7q>#SYs&3eoAMiWhz9yJo8K1>Qf$C1!q=nGT7t* ziD$Q2`44czrrT^(yPEgk-Hd6J) zZnriFbuifeTlVfVM>CbNe0JV2vsOrfV4K?PlYM<#zh%^_>@VjNAqiH<$XkZA9Bb8L z?BxaSM2`A>HU8SxO{T8(*W5N;%C=LOR{OyI{wqQDwWegGfSFQ4RZdIC;^Nn3*@`N& zNFjJ!vCjyJl7CG!mB@q`%gi%Z|LVoLYuz8BNO}uQ1)^Ws3;;T1?>J7Or_;wvN@gA| zU1Bi3kFf&RZmW)=5^vf==flnsI{THTpMyCY5IXL_gywD8I##*Ad0s9}T#P85ELUQ( zWmrPi2|9>PYcF`8Q4pl~1FA3h3yNaIanuQ7*-fSAw%2Zf-}f>fqZM8X0U>ZT>kyAN zskurKIRYD_A7!h$uc(#(z69uhU1dl&DUZphr9ljm5^m~KF&&M!|4#i2utt z_TW<+lgMD4dc;Q6|Ln)1x3qg035;+deGB!@@LCoQW=WdMXLT{)>M#-!``t<;%YHg1 zO~3+%X;oZ!tc|{||5h0QtWfPs03W_~OZez4oK~$P2x9`UbK+%mx<5C;tOg0D zh__))v|;tMp(LmBg*&{&EvGgpZ2-HOnLc@|3OL8Zt{Rm~?GY!g`dquSviz_kg=LW#zgE9QB^v#W`0hC@&ouLPLz-=I6#Vep z=ol%IJfPla)rnp1&PKO?F?sFw0UW=&G)zC^RkwY-N@n0un@*&DZEWW6WAm&x9Ye6X z4+U+ji~?$CL>2R!R3VDU@zip?OYmzDuM%JHr7cC!z;%2}mlWc20r}3PdNfR!#*mH! zMX4cQLSgvGzNp!K^kxrA7Ahs?cHNqfdkk+-$`McKcC9acT=wv!t1G7ui2cp+&<{u&{G8AE^arnMU3L0bmG|rT!MA#q0r~pjk|w+p_jb zz$Q;$MpFZv`*Y82Lng_t9U~SnXrf{8A~o#gxY59zq|#q&`YPC5=;7#o1}5jSPcMCw zc&=IjOh4nmGEZ^E?YgZviC104t%4A--7w3`8RUFbX*5BY9;x{ob9qzy0C^b>{z;3E ziRv#hpgLQcx$nyHy9?20Zi`8}l{DcQnqB0UzF2b5De|CAVN)z@B=sPYGb z*_iD}4qFuyfqLtg`|7>FU2quT^Tt-QWe&#$4`$_bB^7}wvuv5Xh1S{qpETdVuR=>> zoJGpbyS|Ou$c+&2#-K;eO#{~EjO(9Z`>_dJBl(#Kydpb>u1L;EW;CbLnEMp^gi1VQ z7;zq^rBMk&yD{E>mM#0m+Qc3RocPy$R+V$?oCDFS8Oy(dKIF!CbQ3XB0ob@JGEQC* zq2JS1!V-Q?Z0Q~k6_zGvwT{9jn6y_~#?4Q~|1dAU*!`0bqa|(E7miY4!USCUWiASm zJAM!$b7U5*{kT;sBSMO((LE?g*^$qz*k(D?OVMf}|JWUZknS9-C&Ye24E;fs#wuI? zPibEPRoAj?3&AA>w-DTQBO7;1fZ*=#?(QzZ-5r7lcL);P-5r9v+uu3&-Fwf;x$nLI z$KM0S*sE5r?%7q}s~M0)PrYo~ms5t`P>u!2R<26VgcSD$_w zO00AWvw8OBl{|@=W_$wY7vKo!Z+;p%Y7RRXFWhZu2B(c|Gf_1J_@tkYG|Vb25I5y< z3=*6*RhOW(nsAQNIgzs^wDss@WKSevx)qkKvN%JJm>)2_gSblba&eSo_JF@b5bwx* z#(egYXSgiiGA|^_iTh#eSp$UsD&cfG{c^Chr7bFaWwf%_Re;j5qUKrHv!{mK72Mer zZ5HD0*syQ>Lo7V_`}NXQ`aO57Get-{z{QG9JSOQRz$jRQ=U%ju8Yr*E{AhaXv4@BO8vAr%=-*b z#zMl-4YrkaRNs^pLV5M#WY+=SX=iio!i=iLGb@Ln1n2o=iZ}ymXSiN1@=hT#wQUPU z+w9sF)Gz@i!Q-pFG6bvBeVI9$#QE!Zm`bD7h{ATlsIr`SEaGbhw+c%B_Gw<1wcM@B zW^2v|O?T$BT4b@!gBZa+kw?JpuM$bWvJ9kJO+ zF7XG$P!C%rq*RbHcI}yEZgo^&00Z0Z`KxMq$Ea^`ErO277it5nx^ zYdNoIFad%hH=>9&gbkD`sdr93Kic#a-xykbg&Xq!ro6!bD*B_(vQyqMm|`-nuzVH} z&dUHh?rMlGc5?h$*tvnd_mHb!_pN2F=PB?0@L?{K(DP!mL@4OoL(F_8cmAdqmFW1V)!TvKSnCWDVt2dySRJzyCYj8?W60Rg(Bb}RT}L0 z*QV1qJKeI4Dxl5Xc{l6lqwF|$Kw2Kr;ooo;IL{vNA3w-`zd-68rK4h=tAwz+?PEf$ z6}oIADS38wph?F?`=R6nyL3UFBu1r7sMxoIj^8r2@a9-FoIUYtEboBqD)gx)yQ;i( zsD`&altna$=~mDVg_1@=Ves&~_ivMx%vcG~%>@+X5SPNpoV;D^)qjA$#RQT>;kCz8 z$vR7EEn>A|`;b10F2J%q5~;jp9x4*kjzr(hyLrn=dgc?Tgs} z%vT1p`qg!R7#|T6nl0Y1)E|$3}-R#$74M|Wyx-F{nK5#5_ zH9egKVmM+L3fUMdM*JvQXeqT1glY1G!{UuHEw^^hzT|?RAD-|we7C>C>w(-l-i=G? zeHGf0!s?zajn-0Dmof2qrJir=3v+(Ib;;0%te3<_O7c^#34T9uHl|rQE>GU5Nouy& zS@Zf*dGsszRiil0e~1|Z{}ee>aJ4ZcWDvEsau7DO*S9mZaj>=nv2sDjQo5F)GYXPI z!h({Zn4!Gte-|_av2{6sKte`Fb|4`e8;2%5gMj@ncIq$cE4&e1V)u)s5jIp|uL>I+yITNr{QAi+QQx-9>F*wE6{%F+HWfx%yKz`q0rS^qS> ze+35Fnf?_DWFll_Vq^aobM?=WK}Kc{mVb~{K{_zCa4@t3>Bd6W!BE&x-`c*^0IqTG9g|u&LSstoO~NY%1XJT^oFi3oeQ0-9g+O+&c#R{l^kpz9 zULq+kA|xa*ESTVR@3%ywf?znz%2iPO32(C@ZNUU4ObUo1@ke!N%;%ZMya~V&`9;Bs zvI+TyvQEIn+@qPXO?JU#fc~ofM_D+&MowUsu*ishu20gi&?x5E!?Gb6D69?^$oxqeRXHS=#bI3kKn7po@AN$LFcZNO)X4n!9JJ+uK3_BL&%0lhH)TWFz0=J z31NQLgopb>_2ZlkBaJI5fERQ5;l1dWT@XNEc507++f>`Wd^lk^<$L4%;l+U!;tkPF zq!ALn4h)SC**p@YOp?5=e^a*#m=O}DH+JfR0MXcsQH7BX7xSgDKc74sM8BBXo8e5F zr&3|oStUIntZ zHees*2kwLKnxF|7K8BEVUNj*_zne$Bdh*|e0@_1?>x|M95>$HAykODon0h~$L-n*8e8b7W`M929Fd z?49t`ASVvLiFBs7vkO&acMft5jwTndr?GduukZIxk)9eJ_zG~1);p>nm4!uMBw+c^ z_(Zs!Pdfq|Uw}A>-sNve*1d723CAuG-vFMNUrsq(IDE#m(_gca)}@nPy=z`S#=p*; zzjojZG|ewOe>J{~`u-ZVI*f0zcb?RH$=%YK=`4hC(Mp8$I;TKzl@+K2rRt-3^jfKe zVsz6=5{slXW@LEHH;ICs)>&-|KaQKr1!h6ly0OWut^{O@7~K?V_JB4 zuODw)-T0UGTA&_047^MD$I`AlTC0)xLwX5l`g@090QOF-m;COTKE^!=XPX|YiU`q< zStLk0#`Zp)nVMi@zy~l|qEQoXJX!(varVgk#z!CBVVUXb>z&8v z)?;980R|^q-3zxVh2dpw`Ym z4kbITy^Ntwi+n?F!nSA_ddkNPsl@^f14tHvsp~Zjn8IKa9YY^wCB~>LJ3x0+LTN!o zDNyE<&nn9mH)>9sdS${iGK-;lxVNPjpjeAbOKQ(=t5v|4RzSjNv&U4lIwEY0r9=C; zpuXe2rc(9|iG|3Mm?O)O5TjB_=yBOR$R06-6B%V256URU%&qOD2m>++B~*`D-?$o` z{mo-V+T6Tvfsd3#;Pv@crd}4g3`5j%n)SAcj23dbWHh_W*y^V-t+nv?L+$TwpF{GC zx;N<&m_}SzSHAKg>k<>Ja(tP6A=+xe2`YuJ%frdNS;3mk72L!tJzfM5%&T^%24KNy z3Z55l^cXhp!-&)po(AGkj$+T-ZRU7ocn}W%q-qq0BubyZyuF1ulRv;}xk7vHDTW2R`-Zs8RD%lY4w$Mzs#=915Mizydu}jUhV4( z934d4vX<=TqolK0c7IXhJ%%>$usW(1udnb@ zm&q`#bXZqb>SNI*5_T8kQIRqIT?zRt@eQ9%t`PMdT`JZ|d$Yz;X_|fK z;Jy*6g-`ISY|xCWF+bs4r=qlP|KsDkS{hpzj~gr(eS+<#4TH9D*AwB?)-$Gx-`#o7yO*VBN9<741n~N{=qbwSH^c(9!GPb$N zV_%TcS{^jvI)aqE)E2UiE!?NkfL-Igq^M^f@K#mAdthkOSIz=tN$xML5IT4%EWTpZ zr)Vm}yBV~nln3X_i&!L~Gr9Ftfa)l_G0W8&IaCvKG#p%uN9{Rx!#q<2F>dF4J3bstX_jGKX*3*K&i?qP%`nyy99hdk+2rH9& zgS~wIEG(KE6yL)W)Jut>p+Q%%Ym}BooeDXA5q!zz4@^H=psRh+O=!qSVIVM0_Sz7S zj=bh9gzoEJtF&{Y$MBru2wM))V|H{Qs=uda?5NToW-M3T(q?xf`_K=#isF?lWcXZv z$vBh+%a*K4t6q?4?XyZ}*Ug~_Jio|LC6LODHCD_JK>#H@^4Vo;foltj#$wCfAx zxIHM7n&sS}mWhT!)`7aRbJqwG&=q$;7mae%sKJF^;n?CUqPx7rkeB^s%%b?A+29)8 z9_3!4J-74QjR|zSeOW0x^JX2V=*%le%cj&Ifpw;mH-V@lB`R93kaF!Gi5N*S+0Ep@ z`Ppceq(nujVLd}>q1Dd)aP=2IAP9eW=#4SNmSWUn74B7gcIrFgyXzivH7Y%SLHgKB zHqzaR$7hV=(%mcN2^$>fZMCnQJdh+QHdHLKWZg~*FqTip=m|!ZF!lZ%t+sV#$FCHp zn0hgTd=-8XH9(Q#Q(cpKs|_Ji*BJT$dqUe&jEEJKcLViap&LjO6O1;0T}WFpJGh}u zU&qWRZplE5tgw6#Hx5OWi4Q{`OQXeED4~V9smeTq1;MFu71Qo`v>u(InWD4f**#H5 zH@TOZShN%ouz(3rKMZZ9Vx9O#t+0?)?&#`b3x0);&c|Ajd3N`lA#i8TI(OUK-4-q| zyYOE7g(;Vwqzhi9)^kaHveC(?Q3tA1>WC{Ch0wEAYXDf(csXh^gG~%UTJV098y;rCrC2z)!8+_GMSRHR7IU8}f!CYs* z)G*AeJB02KBOFyTS=$9-10{{nKH-z=NQ^q!8#t>>MDAGbeep;0m(}Ria;r%u{+u=3 zS)fbm*Su@PbMAQoJ#yk%bakrws+hAJP$zAAwOWQY&L4&BXR75g{^0XjmzxZBPwS?; zUxw_~gV@MR0LisWlHwzhwI9UJn4b3>(>D`xYJ^T2gS)lJx?v4i|Mt>861q{(h%WK2 zYbyPXQgIES`xd^aMS26n+{RAewE3n-&z-)xPxN2K@b5;jWc_h(=JzvZ3HY7fN70=Q4nsX2 zCR)$bhGqD_*P67WjH|%Ettw{|{g8~{aIj4(;qGZLL1@E)F6=EJ@nv>7V=$C!n&S~| zuZvwq73-tz_nLM}d#mmXr*hP0N!U3-?Q~igr?{f61GX`W7!<~kAI*4**zHyV4jJjN z+(KB)pSIz6NXQRU^VRc$aGF>T?Xs>p4CflWp%*IJzW|HYo3FXPHYiu!ckXXpjmwzj zei!-KWKL=zogVGXI9m++O0x;az`In*sP{WO&m2h9mT)KhD* zp&CGHlQ;BOv1;(f{#~18gzfE{09v!P4yQQ+%Bw4xJ`S8v%NK}^gwMX~5HVvu>89A5 z4iY$hK%2+DAfd=vJ((@b5%dxEZ9f(OOK3DJ;kTM$;mgR zCrZ%K*|I?7`F&gZ9HS+Z$8oe?sx!hr&lfb=B4U--@nklfAC-h=t)v>Ch4}(5=kE4u zdki!Z}!sYsH+0 z=}3B#4)F6EEF-nibP<}v(GG9#?zm_qeSS8n*K>HKmYaOTVOeBc#(czXo|{y&@71v- z%|)4NRIR*;-&%9jG*PZ2L+EDH1%x!P9z1dT#{C{n^nW6U;vPO7)P%;+efiApm8?WdXCbij~ zSvz+uLKNZnp60^RdHX=X?4dzxv3Nw}Xq*O0AmQ=F`@)wDt+<;HD#}b3Dhx@ka8|@O zl9dtCw4z%DPdld>4$;L0VQfllKKIeK7=9mOtZ2>MuJgA0PI7b2X-}XRP+q@vkVV?* zV=&hessCUOM{rvVRJc-U>FZvuKb%{B(v|=8dGh<%xm2*HTSesPI+a;9gEy7C07aOH zAO)rHd^!5_d9zC_>E%!LP-E*Y;SK7I{!9v!g9ozBSW8-&>6*RmNsBF|?+$}kZzqyy zGNsbFXlr9a6g2`lT(?-9+~y^oDV~GBy{s*D({Hza-qj4D?D6ZE@wz4wRhp7ix*LAY z7BhBh3Sk}b#-eWi@Z-c&nIyxyGhvsHBU^f2e1|;6h2Lmt>0@OcHE|9PCN`exszE7{ zj+mSp1G!eSy%r`D?EJLv)`hZBrRtKEtd;AlxW$g+c3RIsQ+pJ1P4Jpx?TprW{ZJ@9 zv)9kU+!Pca7}whoq+UriPicNuS(>a_;o|NV4RqoWdT|C}@o;sQN}Br?GWY>O;jVz< z4!5sQkd~4RDk?y8*W@|0n~-cX@23Lj<>&c)bYAAi6_d5M7HjoWIZQIio^{Z)GS7^O zhBTO^*(%Wdv;nbc3Lb1tYs}of`eWVN3hX(G*siAcM5FyS&%OI$VpzyFIszmr%7{gr+GQZ`mj{ zZkec@qCl*p0$!NgtMOFb;$`+8C2?f^1xV5{m3X#bOH!k>w z|G<*jS36atcV|}ltDN!uL@oa1MueyGDZXqZ?x{d(D)rN2pNsulV>z%ss78yt36HYm z`TgDZfsy|1d}50${+#&p6!?TvX^p-X>x*p4{Q`EuAEtz7ZJf8;F%9-00y`}YdaXq) z&ghgKAD{Nc4f}gwc(pldR5C0}@C*i6DGJ)LFfQNIBF!1derZ|=CM8>4dcV>EOMlIU z4)?Z-;_jn^XWAgWD0v9wlC>LzD_P(FlY?svc1`QvX;U^PYW2 zR^f0GMkheotqnT zQlre0?2vQ;r&tGe$`a*b6pL@=SOHtPO+xNCfj{5a>lZ)sAbi?=ci2^0rbRHkmU16R zH9O8j5a!%X+;C)bqHFL~=R$|JENDL``+ay%yRgv6C&p{YQXyU=8vHW`s{&jxs1{F~ zu@DN^b!B(*7_z(1J@0;`UTQx@|)B5U~NZczD@Rrl2WaC_)j`7FESIsD0bIhpr-c2 z4Yb{tiT#FOf!HHOIE3DdczNp}GeMo@1 zcb9!4E@yR5ZNRcC)xkCEGk+2TZdaKgS1swo*)epqz?{s^B38iGru+fqGv>TnPwxF; znnqxwQcY`{Dz4nn2(e3o1GCUFMEBNhyKD4gaRGhI;GT&m-pC<0T$#*@h*G=Vc-M)> zv$T;&SIG(FJX}IMS*ZH$#5;Gfy6>Xi33cJuZau*b@^vR2<;IIaFmE5^`nH%goNd5cGq-ME^0moIvnJuS$`_1hD#7&r- zaeQ$2rH7C7=K#HoZLE*9&Z$sAOT}T=w=Lfl<*HjgiH|spez6{rg?sGyYVM36{lGZ@ z_r~4S3SQi|Q#dwjYG4GDn#Xk)Z$%qg&4ySmvAktSK>ROe|K6h1$iTv`}nL_F$||V`fFGW`)7? z+^Wf7SLm8-SRdFg&za~IjhV;yKmAQ#YDb?-ID#|G zi8%2F`%NO0YwtGUJrth|If%c+@t2z4pmqWTm#+(2T7$Vc3$21D!-DO~V*4W7%7^$7 zVqB-yCnmY)X_nlug;=?`$3xhDWw`vgp%?P`ms#Sv|P9I`W~=1m>S zb1Oj{gl8jQom#^|G8e{IB;$i2DNAhxCA{Tcmv-PyWWg~;teBa3qakklZgkyJACGP% zV3|a6(8Y1on*xrI72kiU|EwFOTOoNq&K%llv~&RZQx>f>i4T=?j;%h$;rBYYo`elp z5)5lwDAN1Qt%S7_wK&gjNo|SFEd9yD&1z#zC{~0kHm;IANX$9r0@h`;-W~YK$qDp{ zH`AZfac@mjH${!CNOvtCuF|*-tE7>d>AW>*nE6sp>NYr1Mdm3tv3W$u9X9(USfIgi z<2b#{ay23v9~6aj@`7wl&0dDiucyMT(xL>4mLJs1)r1*Ndg<{EYXBocw2Y6d%x)>H z(?3;EJDut7HK73WZTRur46K4l;_$Vd8!lAuz7tK zvbW`pVVrcUZC!_J`i zgz%Y1$xDE9>+?sIW7fOkifPX|Z=5jZ7yeJ(u!_iA1}WAxL)Em3!_0a%&0N(b=JmSQbx7!EiFqqZor%X$TB!iO4@heht}>#$5?D?9_(sch9kXb|OEexzcb4FxG3k^i>Hf%`hFjqDT zLct$DglSkr)jz_NenPb_8elVJbXPUCn0T(pH4lt8IMg!I~7g3>}O864{$I_nq1FNM$2ezLCmOJYI9TFDbn&D7C^R zn3xG`gLtC3N%kCT`34m#d9!{Q3vWAadgT+K_FV$n#i`u`wjiX!ie0#7O~MIO>A_0f zb_{#3td;>cc;kpDv_{^#Ar>(ff-L($T7ZjY4kDzDwT1JSk;XbO18lUP&X)2=DVRH2a?(bR)z3KhbssJRX%sgV4 zQP8YCdZ{+-Gedxvk49SioUXZN@Ij_gPOsu_UWEPhvUptYbyiTF=wikADmq!wDj4*x z8#_KnRg6li2BlWE@-vXVty|UPQjh>EBO%KOp+786l-C2SS(Z$*5J|xab?-aIW^cHcD*$-Tm zwnpLYC|hjlHv34(HPs_(Qq-hdrY)o}oGDYYsiDme^qwlV;hB|M+UaU+zo_ox0pK=mX{wk=(%yHo&?!sAsShVeZYhME;x&G1D0r zIr`RJEqSRzDkD#C`M#(6j3G4WW3myUsP%hEf!~t9WgD)RloeLE11CF# zrutTX;=9uruIKnx5;xOgc6q}|J+E&op-86tw&BhTcd+OC-S>V2WE@w^q)}2-HZ-*Z zx6Y3bO}doB6XdUZrw3C(ZdbR~BySl!dh}dro!@o&Y>k$NiwISR(q1)auN0)^XIvWb zQf=az^^d3??rEx;eqR29po7r9k6)pOWug{H(NFY%3zl^5xpQ2ihv5$lhUhEO;HpR0 zYkWTgtE3fJ(I(7i@E!_nV-8y(0_RPypLX>PPt$eOcIEs-P`IpW6ElOm>`|XLe340Ir*Cs6klG64Sw{P{BQ#Lab z^)%LQgONGKOz6!VWa@(&Z26nH3nppGgkfAxX1pTF91mKb5<+D#JXFS)Ucv90vO^Vl zSn#seYDk7AM}G>Z?OL|TK9+~IN+B5bCX4Yq^T*J?nR8L_f1d}o3*MAJ!1*nhc=sT@ zvMOG842D%7CoEX%i($9X)J5$JlND0vr|&i-w2pO_12D%gc%d+1Pl_7BCod1n^^iIv z`MFmdyV+g$o_%3ytomPF(OpFZfc>5VG^h1!!|CwNEj{#HhI>sARegqtom$*&(1y9A z%1GBa=bR6*CMF(e%%NwbX?8ijB$;C__J;YKBKwLVZBfen*ya~KFu|J4MTEP|XoTJK z-H%W!*p0r{ZBCtMGt4cwUx6FE!8KyB3k3>BW!`3mwX3yv+lsX^!%Mo;=k_X&R`_Lg50jG}UW`LOqr3L+0{=JBG z>XPem-Ou_mJhMAD08$0(?hbcPZ;M8%h8Kh^No!J{qkx6=Ji!{eRYiC@{;5b$PGqUM zGzs5bHJd#J3oVJ z;TYir3gs8r#K&z_TX_ms)x6YY5*1Hl7Vx2*Ye3!Cd!4?6V+8Ma#9OO=J`#cGUxqFM zd0Umq_!nmPr>sG*>>ti*u2c!AQu-Qqt)P;t5uA3C0Vg;O4~JNXqkdn6%;!xwqJ#qO zm0LN!;E)X6Ht9VZseB&Bf%S&;$bVe^erY&UXWBwDyIgX!^+w>0J3^kJ$V`ue1fpB% zWhF7J7Mri;8wT-L@|17PdeY?WC&euHaGE-`x1!GUYD0lxGBaoB6q^NH0uCy4uAeSY z<}dSCzYfU2FN|BID?X7#8~U-&Jh|BU{d|ehS*Dp39@JYM`VL;2kj7V|cR74`Pd539 z+%an?(Ep5lG2fqhNj~>We^|^Wny(MvtLU8#zbr#p2$m(RC_iiV`mNe#V(zc;Wpi9zek3|Iyw%y`^H6 zoJsKDlH!?X;3s|Xq3ijVc16=69y&G>gI7NR1(DHrR39?#a|6N#>!~L^zLSC;Q1xdj zF6|Sp*f=VE!q$>4Vc`9!H$M&8>f4~67?{=6T|d|tYWjtLYBnTj%cLbPTRBh-YuBUSI>dZ?<6-#$sk?3H!W zDA{v1w=X9JA0k@zmcrOR*ckHNb6)2s@A{sNyZK&ZMQNWzkU znJee$#$%q`!hCs^A!AL}ZxuAwnS_u~^-N?3)1TaU=aMOv;tPvgwo zx!x11A~B}9`p&pOiQkx}r+zilrC!YDvPa>unrXnppvcM?HPqW{7QyR};8Pk#;BqtS z4*6LOoPk3_(j&>0`&tDA@1NYBr`a?3vGZuzW4v-rW@l0p#CB{}y{vO{x*px{CRs@*|zcx=_EA_pZ-c&cf)fZ$Bu@7$=W${gXlWW7}GqUZp^) zy@VXcL5o(s=aj%VDFqTg>#j~Zg?^w**#fqVfK}1(4sJeStXk*>PzpGDS6r)VyhFnfngu4m0B&dI z1=SF?RSKzvaJp0txh?5*(v$Zz1ae;@Hs`)cpM;)HU)@&@qGg^%BDEt@3RDv1JvM0d zIB9R=QZFEPme7HjAqtp+>y=j@J|}_SF-}3(Cfno&4w}S$1T)z#nOorh3X9eYkH24? zG?@{&)M;9rCqz;!kZTnlx)n47J6E?x|D^fx!G+uW$Kzui3ugdgt{Q(;c8#q`TXuVq z#`y^6lliMycb7mA5z*9EUwSUCacyh9J}9$nfSRjh^&uM-#U1y>y8z@5z&l^(=|HZL zyn#BQa0z9<9%~Wn#FtjRt|AKlofi#LBOTBF9*_M<>)v|TTekRx*m z(cn-G*=28cj;rO6nH~79&lB(wY+ycBZi&!a^(=sG=hLRVO8`X`tGEL?1xj6ryMtMo zu;{>h_@=pdncgm!^9vE7C@Uz}87&CO06%kDO|OV!s!q11Q8KX!d&xC`sT@0?U7150 zyd@y@%HAhJ(h^;98B#cT|HRC{A6Og_+A`fQ;$O-;$EuPId;TrYxQ|g2Z(jzrCd+#xn4DGW**N}v%B~crOFCiDvxC(cE$Eq-{!$=z>HA940EFw zS%Fb41xBD6>9a9?OsP+@HJ5TTTCX(>nZCtPU8OF7&U;He_G0k?cqUP18)De*$G0->Y+OtG{fr*o^ziZ%#mK3ac-}&-#??svWY8~; zqo;_+4I_%PTv4jAQ{My?xzyN=OUC&qO77#mrSzb+nI7ZAKC1gpSuRIB4nyBF&aE2nou75uvQY)mBL4#m^9IBZ z10o_ZXWapI3N#2zXmO}hyNn3bm3t=r+Ga`%42D~GOIb9vH-WyZIiG z?}5BE#obJ7BkZ?&N`(-?($Y_5>&`g^#Ldz8IZa+v_~NX1{@k)LKPE5%sG;K&3x0_ZFek7p^fIY=ksry zITY|(etqv=G zsT|Z~1WK_?{*=k|G`n3CtPUh65jww^ttxaYmZBp@qiSYhSyD|f0`ykZhgpSk%9i>*VD7HHA+J$nT z!J;Vd$L1O^gPSajHvBD_lADukh@_Mx;jOq{62}f%#w1}wf_8f0Le~tvk`);vBNeHO zr?f|H;G!NOCYX%3r-9?X%OK5z4wwU0ST-mvEL6D){mp+78qVSnz>$I zzn?_@u3FKMWHSl<`6qCLGfJRFaJbU#hZj<&U|yVn7?<#Ni7j@#IQrTW zUQu0w17Z$uvpaTf!nACJ+#AH)PMolaw2wQ z4I8&{N&$e)ynxC+&JVfzt@`mD<55{Jm#n*>M9XY0af%D*pV|WD%1+ z#sk9+-O8n?8Dy+C;u^i%WGQ8%KB|g+4RYQZdg8V%)+g$O1rGJiT)JfSGdCOY;<0z- z7-z0-oJuLhboyyb4X&l^j^eYMp5fBNPDd?ozM>ZIGo)Hj`U%@4|YpN>nbw zmN}TNJAYtNb>tjLv8!j={q*%dYp1xjdE|USfxL3YmkQEB05?({oYh7qrf2tR_25Zh zYE!TeeD%3nikE(I$IVSid^$3K0glvX7v(GfGIIeGHA(j5d+N%^y?0BE!FNB4)hC=e zaqtSQIn$e;6s*6fw!#(d(?KjXsr0>>(F78x3(lwO#&_q!9DLpQmfpa1(niT-e;Jut zXI^Pz%Mo7T?_!5;V|u|fp6lW!CaqnVp7thzc#cOLNP|+aO2rh57z0DFMp`i>Cu$@CUHPG*G!hdK@8akZ11zWIMs~V{Qk2Y&RF0gW6(7ZFkX6l+@`M1uK2@@qoI`&Q-zC+ZWx<`wq$dAU{gm(P{r+ zS$WPz=!AfQ@M0G>(9`ci^D$h~<1)jfBzzbD*A}L2?mLH%NSv3Y4)lk z7vP%=PA}~EF(ZUybgaVSwBX#MhPa#gWBU=?;#a>g5u0p}^@fKnCx>qhpUU36c%t`@(L#=s!?QF;aAm&%QyE zZ~@8*G$h~e1FDCQl4*yekKib^PT`|^G!Up-tM@e8Q(25sTJ1TCv5-r4cO{u%lH=pK zj4#(RBZaz?tk%e0a=nR`;;a)OH1fVATXg#9o7_FUo%%j2i=+7{bvt>nj^z@ua;N$A zA)#=8(fvGi3B1kM5)Dydt9^{sAX#EAz%u*=*lH#@4gE%4rG@{3l>sAP1qHai z1+WwxILUb&Xusy7wH8b^ZAcJxEH#$>DbA#$i-CPXzJP*A8x1Gk;^X>$%yiG!`?b2C zq!5QTp5AtREadrp{*@oy+^fj?!orL^Nfr%++O;XIxun?KBq!dHc{mn%;-FfUS9RNt znftC5HND;L?;rAyUz-fCt>d*yG?L8zmV+;HD^dM^3SZR! zdx*1!>ZCU*a15oeIK^XWS1(PY$U^m_t|5zLP+i~x*HPH>!WK>{*Vz{4KJ5@QoNOhw zUE2<$t2Y`-k`$RXgDsS#|A(#U`^IohW~_H)VFE@$HOKEZ)M@ve(^cKg+P7wyttj4| zrnXyt3g6t3M2m?mGFio6N*`CPokj{#IYs^%B3jHZx7!DFAP6yeE6P^{cl>nqV}EM) z4%ciZN*4TO6%H3t$ZK-N)fWjSDXHKQvo}rIZT$WacYVsT3H44YSCff%V=7$f(JEUM zCoL`=#)1p$W)$g5xEg%zTPc#v)(77b(wuEvJtZF#h<_opWK8oaha38XW9hNS_wQ%CYgHDV5cyQ+CD5D@1vQSzrNLH{6VM)EwL`Y_Gzg}S^)}>(k1IM$ zn!@gqUZnBsI$0p#Rb`pDzs?Q>!H`8|jz%R;)F_8@%iXlK^S`mRmq)qpQW zKk(cmg4zPXU|ZZ`H$aB5zDFjS(TjDg9<1O%Svu+cwEaQjQs)~62PyUp9S2b@JPMA( z^~5aPgCLimiJ5vIiZGS^L93UK107Da93A4lN*eIv~nch zIyBVPQuJpWGX2}?ckbGe9=JtO8?4_YDLQz06FPRWgh*I-DKrH)2j|Z^OwR(PU^c|& zMij63N$bUdwbWYZaENG|mKdH+iN$em+O^X}PX!}jDUThV291k&WZ5?)8dA1-<2%5W zWh7PuD<}lBFDJ?8t?rM3=N~!FlP$uXHHOA{-nSkq=R=Ns{Bl~(;hlIK)mtb}gGlrk zndH^BwxB)46~=Q`T>_L^GLq^xj4feQ0h}4YiLR!U(e8vz+tjV^SdhOo#|Y0LsB3TdivUT;pe(8=B`*U~ zm7oeE(?3{||7J-NGXKiGD));hXlL&rWTIB+tgyoZ>l+1_WeDAFpQq=kPa zwUrbDb^JS&f6VpICIT7dUr^XVjMINY`G*2|c?m&5q)YnjlW`KV6RH z?>;A_3t~uH8^bgF(IFw@?_SFC=Z!?h&f36HAH-Rvv@tMJFjS#qq-O!8GX#KkMIjJr z8N}=cr8zKE`RAdjwUsc4+Du3(%*g~`WC2YP2;gAk0J72m7%2b%3Q#*qYlHu-iGrQ3 zjg6rJh$pRUVQ&Zmsvx35FY0Jvp{HwQ^$UxFiK#sy=zqA8@==Hzh1AuCI|GEkO zr5z(9D+g%V{U!sl|Bi(bz{>hJ86*3zE%mo+*;#*^FMyE=@Vicb$w1Y`f4i26@mJC7 zzxK!UHyZ&MnHib?rWa;5*57OiT2Fw#`4tlo_#b3{$IQ&a&i;FU%s|Fp_xQiyV_^cV z*1ySEe%(a>+Kz*r@poMTLH7849&F4^py$26UdzVJ2Kdci0PKuR?4Zr-FJrJX0-66N zV+R8ME@NZ*4KpLiUpRhi2XZwgw%;&=WFUb59@oK6*VMw$4xXEvkU`$m&G6USXOOeD zb|Cy?BL&@T#jK313IEt4e;o)Ds&lgfS=g9F*hPT?!mI)u!ayMaiwFxqh(nkez%0Nj jD#A. + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from modena.Strategy import BackwardMappingScriptTask + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# Source code in src/twoTanksMacroscopicProblem.C +m = BackwardMappingScriptTask( + script='../src/MacroscopicProblem' +) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/README.md b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/README.md new file mode 100644 index 000000000..935104871 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/README.md @@ -0,0 +1,42 @@ + +Example simulation with Density model: + +A simple macroscopic code calls the density model for different temperatures. + + +How to run? +----------- + +# Make sure PYTHONPATH and LD\_LIBRARY\_PATH are set +# TODO: +# Make this easier to use +``` +export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig +export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages +export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib +``` + +# Compile project specific sources (only locally) +``` +cd src +cmake . +make +``` + +#Compile detailed model code +``` +cd src/ +cmake . +make +``` + +# Initialise the model in the database +``` +./initModel +``` + +# Start the workflow +``` +./workflow +``` + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/initModels b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/initModels new file mode 100755 index 000000000..4497f6fda --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/initModels @@ -0,0 +1,62 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors +''' + +from modena import SurrogateModel +from modena.Strategy import Workflow2 +#import flowRate +import modDensity +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from fireworks.utilities.fw_serializers import load_object + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +initWfs = Workflow2([]) +for m in SurrogateModel.get_instances(): + initWfs.addNoLink(m.initialisationStrategy().workflow(m)) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/modDensity.py b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/modDensity.py new file mode 100644 index 000000000..700b150e7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/modDensity.py @@ -0,0 +1,208 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks +This is the Density python module. Basically, it contains the following: + +The FireTask which controls the call of the detailed model. This detailed model is called +at the very beginning of the simulation in order to generate initial data points +which can be used to fit the parameters of the surrogate model and during a running simulation +as soon as the Density model is called with input parameters which lie outside the range +the parameters of the surrogate model was so far fitted for. This FireTask is stored in the class +"DensityExactSim" and a more detailed description of the detailed model can be found +in the description of this class. + +Furthermore, this module contains the code of the surrogate model function as well as the +definitions of its input and output values and its fittable parameters. Care should be +taken to set reasonable bounds for these variables. + +Also, this module contains the backward mapping model. This model consits of the +surrogate model function, an initialisation strategy, the out of bounds strategy and the +parameter fitting strategy. The initialisation strategy defines the initial data points where the +detailed model will be evaluated at simulation start for an initial fit of the surrogate model parameters. +The out of bounds strategy determines, how many new points and where to place these new +points, once the Density model is called for input values outside of the +fitted range. The parameter fitting strategy defines tolerances and maximal iterations +which are passed to the numerical solver which performs the actual fitting of the +surrogate model parameters. + +@author Jonas Mairhofer +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +""" + + +import os +import modena +from modena import ForwardMappingModel,BackwardMappingModel,SurrogateModel,CFunction,IndexSet +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +# Create terminal for colour output +term = Terminal() + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# ********************************* Class ********************************** # +@explicit_serialize +class DensityExactSim(FireTaskBase): + """ + This FireTask controls the execution of the detailed model of the Density model. + The detailed model uses the PC-SAFT equation of state. A + detailed description of PC-SAFT model can be found in Deliverable 1.3 on the MoDeNa website. + + In order to start the detailed model, the input values for the model are first written to the + file "in.txt". The detailed model code picks them up from this file and performs the according + calculation. Once it is done, the output value is written to the file "out.txt". This FireTask + then reads in the calculated density from "out.txt" and inserts this value into the + database. + """ + + def run_task(self, fw_spec): + print( + term.yellow + + "Performing exact simulation (microscopic code recipe)" + + term.normal + ) + + # Write input for detailed model + ff = open('in.txt', 'w') + Tstr = str(self['point']['T']) + ff.write('%s \n' %(Tstr)) + + + ##TODO INPUT SHOULD COME FROM IndexSet + + ff.write('2 \n') #number of components in system + ff.write('air \n') #component 1 + ff.write('pu \n') #component 2 + ff.write('0. \n') #molar feed (initial) composition component 1 + ff.write('0. \n') #molar feed (initial) composition component 2 + ff.close() + + #create output file for detailed code + fff = open('out.txt', 'w+') + fff.close() + + # Execute detailed model + os.system('../src/PCSAFT_Density') + + # Analyse output + f = open('out.txt', 'r') + self['point']['rho'] = float(f.readline()) + f.close() + + return FWAction(mod_spec=[{'_push': self['point']}]) + + + + + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void surroDensity +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + + const double T = inputs[0]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + const double P2 = parameters[2]; + + // const double expo = 1.0 + (1.0 - T/P2); + // const double pwr = pow(P1,expo); + + // outputs[0] = P0 / pwr; + + + outputs[0] = P0 + T*P1 + P2*T*T; +} +''', + # These are global bounds for the function + inputs={ + 'T': { 'min': 270.0, 'max': 300.0, 'argPos': 0 }, #check if boundaries reasonable, from this range, the random values for the DOE are chosen! + }, + outputs={ + 'rho': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': -1E10, 'max': 1E10, 'argPos': 0 }, #check if boundaries are reasonable!!! + 'param1': { 'min': -1E10, 'max': 1E10, 'argPos': 1 }, + 'param2': { 'min': -1E10, 'max': 1E10, 'argPos': 2 }, + }, +) + +m = BackwardMappingModel( + _id= 'Density', + surrogateFunction= f, + exactTask= DensityExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [270.0, 290.0, 300.0], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 300.0, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/.gitignore b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/.gitignore new file mode 100644 index 000000000..0c66e77c1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/.gitignore @@ -0,0 +1,20 @@ +# Backups +*~ +*bak + +# Various intermediate files from automake +CMakeFiles/ +Makefile +libmodena.pc +CMakeCache.txt +cmake_install.cmake +install_manifest.txt + +# Intermediate files generated by SWIG +*_wrap.c + +# locate results (executables and libraries) +*.l[ao] + +flowRateExact +twoTanksMacroscopicProblem diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/CMakeLists.txt new file mode 100644 index 000000000..c2e39aabe --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/CMakeLists.txt @@ -0,0 +1,47 @@ +cmake_minimum_required (VERSION 2.8) + +# I am specifying two projects in the same Cmake file (not sure if good idea) +project (PCSAFT_Density C CXX Fortran) +project (MacroscopicProblem C) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) + cmake_policy(SET CMP0028 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + +# ---------------------------------------------------------------------------- +# NOTE: +# This will look through **all** subdirectories and find **any** FORTRAN file +# it will then attempt to to compile and link all the files together. +# ------> FRAGILE <------ +file(GLOB FORTRANFILES ${CMAKE_CURRENT_SOURCE_DIR}/*/*.f90) +add_executable(PCSAFT_Density ${FORTRANFILES}) +set_target_properties(PCSAFT_Density PROPERTIES COMPILE_FLAGS "-fdefault-real-8") +target_link_libraries(PCSAFT_Density MODENA::modena) + +# ---------------------------------------------------------------------------- +# Compile C project +add_executable(MacroscopicProblem MacroscopicProblem.C) +target_link_libraries(MacroscopicProblem MODENA::modena) + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/MacroscopicProblem.C b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/MacroscopicProblem.C new file mode 100644 index 000000000..b1fc312a4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/MacroscopicProblem.C @@ -0,0 +1,108 @@ +/* + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Solving the two tank problem the MoDeNa way. + + A prototypical macros-scopic code embeds a micro-scale model (flowRate) + through the MoDeNa interface library. + +Authors + Henrik Rusche + +Contributors +*/ + +#include +#include +#include "modena.h" + +using namespace std; + +int +main(int argc, char *argv[]) +{ + double T = 270; + double Tend = 290.0; + + // Instantiate index set + //modena_index_set_t *indexSet = modena_index_set_new("species"); + + + // Instantiate a model + modena_model_t *model = modena_model_new("Density"); //muss das FunctionModule genau so heißen?? + if(modena_error_occurred()) + { + return modena_error(); + } + + // Allocate memory and fetch arg positions + modena_inputs_t *inputs = modena_inputs_new(model); //How many inputs and outputs is defined in the function module!! + modena_outputs_t *outputs = modena_outputs_new(model); + + + size_t Tpos = modena_model_inputs_argPos(model, "T"); + + modena_model_argPos_check(model); + + + while(T < Tend) + { + // Set input vector + modena_inputs_set(inputs, Tpos, T); + + // Call the model + int ret = modena_model_call(model, inputs, outputs); + + // Terminate, if requested + if(modena_error_occurred()) + { + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return modena_error(); + } + + // Fetch result + double rho = modena_outputs_get(outputs, 0); + + cout << "T = " << T; + + + T = T + 10.0; + } + + + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return 0; +} diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 new file mode 100644 index 000000000..7a243184b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 @@ -0,0 +1,1667 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_derivative ( ya, x1a, x2a, y1a, y2a, y12a, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(OUT) :: y1a(r_grid,NDFT) + REAL, INTENT(OUT) :: y2a(r_grid,NDFT) + REAL, INTENT(OUT) :: y12a(r_grid,NDFT) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k +! ---------------------------------------------------------------------- + + +DO i = 2, i_max-1 + DO k = 2, k_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k+1)-ya(i+1,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) + END DO +END DO + +i = 1 +DO k = 1, k_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + +k = 1 +DO i = 1, i_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + + +i = i_max +DO k = 2, k_max-1 + y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i,k+1)-ya(i,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) +END DO + + +k = k_max +DO i = 2, i_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k)-ya(i+1,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k)-x2a(k-1))) +END DO + +k = k_max +i = i_max +y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) +y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) +y12a(i,k)= (ya(i,k)-ya(i,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k)-x2a(k-1))) + +END SUBROUTINE bicub_derivative + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_c ( ya, x1a, x2a, y1a, y2a, y12a, c_bicub, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(OUT) :: c_bicub(r_grid,NDFT,4,4) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, m, n + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +DO i = 1, i_max-1 + DO k = 1, k_max-1 + y(1)=ya(i,k) + y(2)=ya(i+1,k) + y(3)=ya(i+1,k+1) + y(4)=ya(i,k+1) + + y1(1)=y1a(i,k) + y1(2)=y1a(i+1,k) + y1(3)=y1a(i+1,k+1) + y1(4)=y1a(i,k+1) + + y2(1)=y2a(i,k) + y2(2)=y2a(i+1,k) + y2(3)=y2a(i+1,k+1) + y2(4)=y2a(i,k+1) + + y12(1)=y12a(i,k) + y12(2)=y12a(i+1,k) + y12(3)=y12a(i+1,k+1) + y12(4)=y12a(i,k+1) + + x1l=x1a(i) + x1u=x1a(i+1) + x2l=x2a(k) + x2u=x2a(k+1) + + CALL bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) + DO m=1,4 + DO n=1,4 + c_bicub(i,k,m,n)=c(m,n) + END DO + END DO + + END DO +END DO + +END SUBROUTINE bicub_c + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: y(4) + REAL, INTENT(IN) :: y1(4) + REAL, INTENT(IN) :: y2(4) + REAL, INTENT(IN) :: y12(4) + REAL, INTENT(IN) :: d1 + REAL, INTENT(IN) :: d2 + REAL, INTENT(OUT) :: c(4,4) +! +! ---------------------------------------------------------------------- + INTEGER :: i,j,k,l + REAL :: d1d2,xx,cl(16),wt(16,16),x(16) + SAVE wt + DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4,10* & + 0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4, & + 1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0, & + -6,4,2*0,3,-2,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2, & + 10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4, & + -2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0, & + 2,-2,2*0,-1,1/ +! ---------------------------------------------------------------------- + +d1d2 = d1 * d2 +DO i = 1, 4 + x(i) = y(i) + x(i+4) = y1(i)*d1 + x(i+8) = y2(i)*d2 + x(i+12) = y12(i)*d1d2 +END DO +DO i = 1, 16 + xx = 0.0 + DO k = 1, 16 + xx = xx + wt(i,k) * x(k) + END DO + cl(i) = xx +END DO +l = 0 +DO i = 1, 4 + DO j = 1, 4 + l = l + 1 + c(i,j) = cl(l) + END DO +END DO + +END SUBROUTINE bcucof + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE BI_CUB_SPLINE ( rho_rdf, xg, ya, x1a, x2a, y1a, y2a, y12a, & + c_bicub, rdf, dg_drho, dg_dr, i_max, ih, k ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: rho_rdf + REAL, INTENT(IN OUT) :: xg + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(IN) :: c_bicub(r_grid,NDFT,4,4) + REAL, INTENT(OUT) :: rdf + REAL, INTENT(OUT) :: dg_drho + REAL, INTENT(OUT) :: dg_dr + INTEGER, INTENT(IN OUT) :: i_max + !INTEGER, INTENT(IN OUT) :: k_max + INTEGER, INTENT(OUT) :: ih + INTEGER, INTENT(IN) :: k +! +! ---------------------------------------------------------------------- + INTEGER :: m, n + + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +IF ( rho_rdf < x1a(1) ) THEN + dg_drho = 0.0 + dg_dr = 0.0 + rdf = 1.0 + RETURN +END IF +IF ( x1a(ih) <= rho_rdf .AND. rho_rdf < x1a(ih+1) ) GO TO 10 +IF ( ih > 2 ) THEN + IF ( x1a(ih-1) <= rho_rdf .AND. rho_rdf < x1a(ih) ) THEN + ih = ih - 1 + GO TO 10 + END IF +END IF +! write (*,*) 'in ',ih +CALL hunt ( x1a, i_max, rho_rdf, ih ) +! write (*,*) 'out',ih +10 CONTINUE +IF ( x2a(k) /= xg ) THEN +! write (*,*) 'error bi-cubic-spline',k,x2a(k),xg +! DO k=1,NDFT +! write (*,*) k,x2a(k) +! ENDDO +! stop +END IF + + + +y(1) = ya(ih,k) +y(2) = ya(ih+1,k) +y(3) = ya(ih+1,k+1) +y(4) = ya(ih,k+1) + +y1(1) = y1a(ih,k) +y1(2) = y1a(ih+1,k) +y1(3) = y1a(ih+1,k+1) +y1(4) = y1a(ih,k+1) + +y2(1) = y2a(ih,k) +y2(2) = y2a(ih+1,k) +y2(3) = y2a(ih+1,k+1) +y2(4) = y2a(ih,k+1) + +y12(1) = y12a(ih,k) +y12(2) = y12a(ih+1,k) +y12(3) = y12a(ih+1,k+1) +y12(4) = y12a(ih,k+1) + +x1l = x1a(ih) +x1u = x1a(ih+1) +x2l = x2a(k) +x2u = x2a(k+1) + +DO m = 1, 4 + DO n = 1, 4 + c(m,n) = c_bicub( ih, k, m, n ) + END DO +END DO +CALL bcuint ( x1l, x1u, x2l, x2u, rho_rdf, xg, c, rdf, dg_drho, dg_dr ) + +END SUBROUTINE BI_CUB_SPLINE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE hunt +! +! Given an array xx(1:n), and given a value x, returns a value jlo +! such that x is between xx(jlo) and xx(jlo+1). xx(1:n) must be +! monotonic, either increasing or decreasing. jlo=0 or jlo=n is +! returned to indicate that x is out of range. jlo on input is taken +! as the initial guess for jlo on output. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE hunt ( xx, n, x, jlo ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(OUT) :: jlo + REAL, INTENT(IN) :: xx(n) + REAL :: x +! +! ---------------------------------------------------------------------- + INTEGER :: inc,jhi,jm + LOGICAL :: ascnd +! ---------------------------------------------------------------------- + +ascnd = xx(n) >= xx(1) +IF( jlo <= 0 .OR. jlo > n ) THEN + jlo = 0 + jhi = n + 1 + GO TO 3 +END IF +inc = 1 +IF( x >= xx(jlo) .EQV. ascnd ) THEN +1 jhi = jlo + inc + IF ( jhi > n ) THEN + jhi = n + 1 + ELSE IF ( x >= xx(jhi) .EQV. ascnd ) THEN + jlo = jhi + inc = inc + inc + GO TO 1 + END IF +ELSE + jhi = jlo +2 jlo = jhi - inc + IF ( jlo < 1 ) THEN + jlo = 0 + ELSE IF ( x < xx(jlo) .EQV. ascnd ) THEN + jhi = jlo + inc = inc + inc + GO TO 2 + END IF +END IF +3 IF (jhi-jlo == 1 ) THEN + IF ( x == xx(n)) jlo = n - 1 + IF ( x == xx(1) ) jlo = 1 + RETURN +END IF +jm = ( jhi + jlo ) / 2 +IF ( x >= xx(jm) .EQV. ascnd ) THEN + jlo = jm +ELSE + jhi = jm +END IF +GO TO 3 +END SUBROUTINE hunt + + + +!********************************************************************** +! +!********************************************************************** +! + !SUBROUTINE bcuint ( y, y1, y2, y12, x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) + SUBROUTINE bcuint ( x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + !REAL, INTENT(IN OUT) :: y(4) + !REAL, INTENT(IN OUT) :: y1(4) + !REAL, INTENT(IN OUT) :: y2(4) + !REAL, INTENT(IN OUT) :: y12(4) + REAL, INTENT(IN OUT) :: x1l + REAL, INTENT(IN OUT) :: x1u + REAL, INTENT(IN OUT) :: x2l + REAL, INTENT(IN OUT) :: x2u + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: x2 + REAL, INTENT(IN) :: c(4,4) + REAL, INTENT(OUT) :: ansy + REAL, INTENT(OUT) :: ansy1 + REAL, INTENT(OUT) :: ansy2 +! +! ---------------------------------------------------------------------- + !U USES bcucof + INTEGER :: i + REAL :: t, u +! ---------------------------------------------------------------------- + +! call bcucof ( y, y1, y2, y12, x1u-x1l, x2u-x2l, c ) + +IF ( x1u == x1l .OR. x2u == x2l ) PAUSE 'bad input in bcuint' +t = (x1-x1l) / (x1u-x1l) +u = (x2-x2l) / (x2u-x2l) +ansy = 0.0 +ansy2 = 0.0 +ansy1 = 0.0 +DO i = 4, 1, -1 + ansy = t *ansy + ( (c(i,4)*u + c(i,3))*u+c(i,2) )*u + c(i,1) + ansy2 = t *ansy2 + ( 3.*c(i,4)*u+2.*c(i,3) )*u + c(i,2) + ansy1 = u *ansy1 + ( 3.*c(4,i)*t+2.*c(3,i) )*t + c(2,i) +END DO +ansy1 = ansy1 / (x1u-x1l) +ansy2 = ansy2 / (x2u-x2l) + +END SUBROUTINE bcuint + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE spline ( x, y, n, yp1, ypn, y2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: NMAX = 500 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(NMAX) +! ---------------------------------------------------------------------- + + IF ( yp1 > 0.99E30 ) THEN + y2(1) = 0.0 + u(1) = 0.0 + ELSE + y2(1) = -0.5 + u(1) = ( 3.0/(x(2)-x(1)) ) * ( (y(2)-y(1))/(x(2)-x(1))-yp1 ) + END IF + DO i = 2, n-1 + IF ( (x(i+1)-x(i)) == 0.0 .OR. (x(i)-x(i-1)) == 0.0 .OR. (x(i+1)-x(i-1)) == 0.0 ) THEN + write (*,*) 'error in spline-interpolation' + stop + END IF + sig = (x(i)-x(i-1)) / (x(i+1)-x(i-1)) + p = sig*y2(i-1) + 2.0 + y2(i) = (sig-1.0) / p + u(i) = ( 6.0 * ((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1))) / (x(i+1)-x(i-1)) & + - sig * u(i-1) ) / p + END DO + IF ( ypn > 0.99E30 ) THEN + qn = 0.0 + un = 0.0 + ELSE + qn = 0.5 + un = (3.0/(x(n)-x(n-1))) * (ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2(n) = (un-qn*u(n-1)) / (qn*y2(n-1)+1.0) + DO k = n-1, 1, -1 + y2(k) = y2(k) * y2(k+1) + u(k) + END DO + +END SUBROUTINE spline + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE splint_integral ( xa, ya, y2a, n, xlo, xhi, integral ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, INT, x0, x1, y0, y1, y20, y21 +! ---------------------------------------------------------------------- + + integral = 0.0 + klo_l = 1 + khi_l = n +1 IF ( khi_l-klo_l > 1 ) THEN + k = ( khi_l + klo_l ) / 2 + IF ( xa(k) > xlo ) THEN + khi_l = k + ELSE + klo_l = k + END IF + GO TO 1 + END IF + + klo_h = 1 + khi_h = n +2 IF ( khi_h-klo_h > 1 ) THEN + k = ( khi_h + klo_h ) / 2 + IF ( xa(k) > xhi ) THEN + khi_h = k + ELSE + klo_h = k + END IF + GO TO 2 + END IF + + ! integration in spline pieces, the lower interval, bracketed + ! by xa(klo_L) and xa(khi_L) is in steps shifted upward. + + ! first: determine upper integration bound + xl = xlo +3 CONTINUE + IF ( khi_h > khi_l ) THEN + xh = xa(khi_l) + ELSE IF ( khi_h == khi_l ) THEN + xh = xhi + ELSE + WRITE (*,*) 'error in spline-integration' + PAUSE + END IF + + h = xa(khi_l) - xa(klo_l) + IF ( h == 0.0 ) PAUSE 'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0 = ya(klo_l) + y1 = ya(khi_l) + y20= y2a(klo_l) + y21= y2a(khi_l) + ! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & + ! -y20/6.*h*h*(x1-.5*xL) & + ! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xL-x0) ) + ! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & + ! -y20/6.*h*h*(x1-.5*xH) & + ! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xH-x0) ) + INT = -1.0/h * ( xl*((x1-.5*xl)*y0 + (0.5*xl-x0)*y1) & + -y20/24.*(x1-xl)**4 + y20/6.*(0.5*xl*xl-x1*xl)*h*h & + +y21/24.*(xl-x0)**4 - y21/6.*(0.5*xl*xl-x0*xl)*h*h ) + INT = INT + 1.0/h * ( xh*((x1-.5*xh)*y0 + (0.5*xh-x0)*y1) & + -y20/24.*(x1-xh)**4 + y20/6.*(0.5*xh*xh-x1*xh)*h*h & + +y21/24.*(xh-x0)**4 - y21/6.*(0.5*xh*xh-x0*xh)*h*h ) + + integral = integral + INT + ! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h /= (khi_l-1)) GO TO 3 ! the -1 in (khi_L-1) because khi_L was already counted up + +END SUBROUTINE splint_integral + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION praxis( t0, machep, h0, n, prin, x, f, fmin ) + + IMPLICIT NONE + +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: x(n) + REAL :: f + REAL, INTENT(IN OUT) :: fmin +! ---------------------------------------------------------------------- + +EXTERNAL f + +! PRAXIS RETURNS THE MINIMUM OF THE FUNCTION F(X,N) OF N VARIABLES +! USING THE PRINCIPAL AXIS METHOD. THE GRADIENT OF THE FUNCTION IS +! NOT REQUIRED. + +! FOR A DESCRIPTION OF THE ALGORITHM, SEE CHAPTER SEVEN OF +! "ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT +! CALCULATING DERIVATIVES" BY RICHARD P BRENT. + +! THE PARAMETERS ARE: +! T0 IS A TOLERANCE. PRAXIS ATTEMPTS TO RETURN PRAXIS=F(X) +! SUCH THAT IF X0 IS THE TRUE LOCAL MINIMUM NEAR X, THEN +! NORM(X-X0) < T0 + SQUAREROOT(MACHEP)*NORM(X). +! MACHEP IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT +! 1 + MACHEP > 1. MACHEP SHOULD BE 16.**-13 (ABOUT +! 2.22D-16) FOR REAL*8 ARITHMETIC ON THE IBM 360. +! H0 IS THE MAXIMUM STEP SIZE. H0 SHOULD BE SET TO ABOUT THE +! MAXIMUM DISTANCE FROM THE INITIAL GUESS TO THE MINIMUM. +! (IF H0 IS SET TOO LARGE OR TOO SMALL, THE INITIAL RATE OF +! CONVERGENCE MAY BE SLOW.) +! N (AT LEAST TWO) IS THE NUMBER OF VARIABLES UPON WHICH +! THE FUNCTION DEPENDS. +! PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. +! IF PRIN=0, NOTHING IS PRINTED. +! IF PRIN=1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR +! MINIMIZATIONS. FINAL X IS PRINTED, BUT INTERMEDIATE X IS +! PRINTED ONLY IF N IS AT MOST 4. +! IF PRIN=2, THE SCALE FACTORS AND THE PRINCIPAL VALUES OF +! THE APPROXIMATING QUADRATIC FORM ARE ALSO PRINTED. +! IF PRIN=3, X IS ALSO PRINTED AFTER EVERY FEW LINEAR +! MINIMIZATIONS. +! IF PRIN=4, THE PRINCIPAL VECTORS OF THE APPROXIMATING +! QUADRATIC FORM ARE ALSO PRINTED. +! X IS AN ARRAY CONTAINING ON ENTRY A GUESS OF THE POINT OF +! MINIMUM, ON RETURN THE ESTIMATED POINT OF MINIMUM. +! F(X,N) IS THE FUNCTION TO BE MINIMIZED. F SHOULD BE A REAL*8 +! FUNCTION DECLARED EXTERNAL IN THE CALLING PROGRAM. +! FMIN IS AN ESTIMATE OF THE MINIMUM, USED ONLY IN PRINTING +! INTERMEDIATE RESULTS. +! THE APPROXIMATING QUADRATIC FORM IS +! Q(X') = F(X,N) + (1/2) * (X'-X)-TRANSPOSE * A * (X'-X) +! WHERE X IS THE BEST ESTIMATE OF THE MINIMUM AND A IS +! INVERSE(V-TRANSPOSE) * D * INVERSE(V) +! (V(*,*) IS THE MATRIX OF SEARCH DIRECTIONS; D(*) IS THE ARRAY +! OF SECOND DIFFERENCES). IF F HAS CONTINUOUS SECOND DERIVATIVES +! NEAR X0, A WILL TEND TO THE HESSIAN OF F AT X0 AS X APPROACHES X0. + +! IT IS ASSUMED THAT ON FLOATING-POINT UNDERFLOW THE RESULT IS SET +! TO ZERO. +! THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS AFTER +! THE INITIALIZATION OF MACHINE DEPENDENT NUMBERS. + + LOGICAL :: illc + INTEGER :: nl,nf,kl,kt,ktm,idim,i,j,k,k2,km1,klmk,ii,im1 + REAL :: s,sl,dn,dmin,fx,f1,lds,ldt,t,h,sf,df,qf1,qd0, qd1,qa,qb,qc + REAL :: m2,m4,small,vsmall,large,vlarge,scbd,ldfac,t2, dni,value + REAL :: random + +!.....IF N>20 OR IF N<20 AND YOU NEED MORE SPACE, CHANGE '20' TO THE +! LARGEST VALUE OF N IN THE NEXT CARD, IN THE CARD 'IDIM=20', AND +! IN THE DIMENSION STATEMENTS IN SUBROUTINES MINFIT,MIN,FLIN,QUAD. + + REAL :: d(20),y(20),z(20),q0(20),q1(20),v(20,20) + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 + +! --------------------------------- +! introduced by Joachim........ + idim = n +! --------------------------------- + + + +!.....INITIALIZATION..... +! MACHINE DEPENDENT NUMBERS: + +small = machep*machep +vsmall = small*small +large = 1.d0/small +vlarge = 1.d0/vsmall +m2 = SQRT(machep) +m4 = SQRT(m2) + +! HEURISTIC NUMBERS: +! IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF +! POSSIBLE), THEN SET SCBD=10. OTHERWISE SET SCBD=1. +! IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED, SET ILLC=TRUE. +! OTHERWISE SET ILLC=FALSE. +! KTM IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE THE +! ALGORITHM TERMINATES. KTM=4 IS VERY CAUTIOUS; USUALLY KTM=1 +! IS SATISFACTORY. + +scbd = 1.0 +illc = .false. +ktm = 1 + +ldfac = 0.01 +IF (illc) ldfac = 0.1 +kt = 0 +nl = 0 +nf = 1 +fx = f(x,n) +qf1 = fx +t = small+ABS(t0) +t2 = t +dmin = small +h = h0 +IF (h < 100*t) h = 100*t +ldt = h +!.....THE FIRST SET OF SEARCH DIRECTIONS V IS THE IDENTITY MATRIX..... +DO i = 1,n + DO j = 1,n + v(i,j) = 0.0 + END DO + v(i,i) = 1.0 +END DO +d(1) = 0.0 +qd0 = 0.0 +DO i = 1,n + q0(i) = x(i) + q1(i) = x(i) +END DO +IF (prin > 0) CALL PRINT(n,x,prin,fmin) + +!.....THE MAIN LOOP STARTS HERE..... +40 sf=d(1) +d(1)=0.d0 +s=0.d0 + +!.....MINIMIZE ALONG THE FIRST DIRECTION V(*,1). +! FX MUST BE PASSED TO MIN BY VALUE. +value=fx +CALL MIN(n,1,2,d(1),s,value,.false.,f,x,t,machep,h) +IF (s > 0.d0) GO TO 50 +DO i=1,n + v(i,1)=-v(i,1) +END DO +50 IF (sf > 0.9D0*d(1).AND.0.9D0*sf < d(1)) GO TO 70 +DO i=2,n + d(i)=0.d0 +END DO + +!.....THE INNER LOOP STARTS HERE..... +70 DO k=2,n + DO i=1,n + y(i)=x(i) + END DO + sf=fx + IF (kt > 0) illc=.true. + 80 kl=k + df=0.d0 + +!.....A RANDOM STEP FOLLOWS (TO AVOID RESOLUTION VALLEYS). +! PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM NUMBER UNIFORMLY +! DISTRIBUTED IN (0,1). + + IF(.NOT.illc) GO TO 95 + DO i=1,n + s=(0.1D0*ldt+t2*(10**kt))*(random(n)-0.5D0) + z(i)=s + DO j=1,n + x(j)=x(j)+s*v(j,i) + END DO + END DO + fx=f(x,n) + nf=nf+1 + +!.....MINIMIZE ALONG THE "NON-CONJUGATE" DIRECTIONS V(*,K),...,V(*,N) + + 95 DO k2=k,n + sl=fx + s=0.d0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + IF (illc) GO TO 97 + s=sl-fx + GO TO 99 + 97 s=d(k2)*((s+z(k2))**2) + 99 IF (df > s) CYCLE + df=s + kl=k2 + END DO + IF (illc.OR.(df >= ABS((100*machep)*fx))) GO TO 110 + +!.....IF THERE WAS NOT MUCH IMPROVEMENT ON THE FIRST TRY, SET +! ILLC=TRUE AND START THE INNER LOOP AGAIN..... + + illc=.true. + GO TO 80 + 110 IF (k == 2.AND.prin > 1) CALL vcprnt(1,d,n) + +!.....MINIMIZE ALONG THE "CONJUGATE" DIRECTIONS V(*,1),...,V(*,K-1) + + km1=k-1 + DO k2=1,km1 + s=0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + END DO + f1=fx + fx=sf + lds=0 + DO i=1,n + sl=x(i) + x(i)=y(i) + sl=sl-y(i) + y(i)=sl + lds=lds+sl*sl + END DO + lds=SQRT(lds) + IF (lds <= small) GO TO 160 + +!.....DISCARD DIRECTION V(*,KL). +! IF NO RANDOM STEP WAS TAKEN, V(*,KL) IS THE "NON-CONJUGATE" +! DIRECTION ALONG WHICH THE GREATEST IMPROVEMENT WAS MADE..... + + klmk=kl-k + IF (klmk < 1) GO TO 141 + DO ii=1,klmk + i=kl-ii + DO j=1,n + v(j,i+1)=v(j,i) + END DO + d(i+1)=d(i) + END DO + 141 d(k)=0 + DO i=1,n + v(i,k)=y(i)/lds + END DO + +!.....MINIMIZE ALONG THE NEW "CONJUGATE" DIRECTION V(*,K), WHICH IS +! THE NORMALIZED VECTOR: (NEW X) - (0LD X)..... + + value=f1 + CALL MIN(n,k,4,d(k),lds,value,.true.,f,x,t,machep,h) + IF (lds > 0.d0) GO TO 160 + lds=-lds + DO i=1,n + v(i,k)=-v(i,k) + END DO + 160 ldt=ldfac*ldt + IF (ldt < lds) ldt=lds + IF (prin > 0) CALL PRINT(n,x,prin,fmin) + t2=0.d0 + DO i=1,n + t2=t2+x(i)**2 + END DO + t2=m2*SQRT(t2)+t + +!.....SEE WHETHER THE LENGTH OF THE STEP TAKEN SINCE STARTING THE +! INNER LOOP EXCEEDS HALF THE TOLERANCE..... + + IF (ldt > (0.5*t2)) kt=-1 + kt=kt+1 + IF (kt > ktm) GO TO 400 +END DO +!.....THE INNER LOOP ENDS HERE. + +! TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE IN A CURVED VALLEY. + +CALL quad(n,f,x,t,machep,h) +dn=0.d0 +DO i=1,n + d(i)=1.d0/SQRT(d(i)) + IF (dn < d(i)) dn=d(i) +END DO +IF (prin > 3) CALL maprnt(1,v,idim,n) +DO j=1,n + s=d(j)/dn + DO i=1,n + v(i,j)=s*v(i,j) + END DO +END DO + +!.....SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER..... + +IF (scbd <= 1.d0) GO TO 200 +s=vlarge +DO i=1,n + sl=0.d0 + DO j=1,n + sl=sl+v(i,j)*v(i,j) + END DO + z(i)=SQRT(sl) + IF (z(i) < m4) z(i)=m4 + IF (s > z(i)) s=z(i) +END DO +DO i=1,n + sl=s/z(i) + z(i)=1.d0/sl + IF (z(i) <= scbd) GO TO 189 + sl=1.d0/scbd + z(i)=scbd + 189 DO j=1,n + v(i,j)=sl*v(i,j) + END DO +END DO + +!.....CALCULATE A NEW SET OF ORTHOGONAL DIRECTIONS BEFORE REPEATING +! THE MAIN LOOP. +! FIRST TRANSPOSE V FOR MINFIT: + +200 DO i=2,n + im1=i-1 + DO j=1,im1 + s=v(i,j) + v(i,j)=v(j,i) + v(j,i)=s + END DO +END DO + +!.....CALL MINFIT TO FIND THE SINGULAR VALUE DECOMPOSITION OF V. +! THIS GIVES THE PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF THE +! APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE CONDITION +! NUMBER..... + +CALL minfit(idim,n,machep,vsmall,v,d) + +!.....UNSCALE THE AXES..... + +IF (scbd <= 1.d0) GO TO 250 +DO i=1,n + s=z(i) + DO j=1,n + v(i,j)=s*v(i,j) + END DO +END DO +DO i=1,n + s=0.d0 + DO j=1,n + s=s+v(j,i)**2 + END DO + s=SQRT(s) + d(i)=s*d(i) + s=1/s + DO j=1,n + v(j,i)=s*v(j,i) + END DO +END DO + +250 DO i=1,n + dni=dn*d(i) + IF (dni > large) GO TO 265 + IF (dni < small) GO TO 260 + d(i)=1/(dni*dni) + CYCLE + 260 d(i)=vlarge + CYCLE + 265 d(i)=vsmall +END DO + +!.....SORT THE EIGENVALUES AND EIGENVECTORS..... + +CALL sort(idim,n,d,v) +dmin=d(n) +IF (dmin < small) dmin=small +illc=.false. +IF (m2*d(1) > dmin) illc=.true. +IF (prin > 1.AND.scbd > 1.d0) CALL vcprnt(2,z,n) +IF (prin > 1) CALL vcprnt(3,d,n) +IF (prin > 3) CALL maprnt(2,v,idim,n) +!.....THE MAIN LOOP ENDS HERE..... + +GO TO 40 + +!.....RETURN..... + +400 IF (prin > 0) CALL vcprnt(4,x,n) +praxis=fx + +END FUNCTION praxis + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE minfit(m,n,machep,tol,ab,q) + + IMPLICIT NONE + + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: machep + REAL, INTENT(IN OUT) :: tol + REAL, INTENT(IN OUT) :: ab(m,n) + REAL, INTENT(OUT) :: q(n) + INTEGER :: i,j,k,l, kk,kt,l2,ll2,ii,lp1 +! IMPLICIT REAL (A-H,O-Z) + + +REAL :: x,eps,e(20),g,s, f,h,y,c,z,temp +!...AN IMPROVED VERSION OF MINFIT (SEE GOLUB AND REINSCH, 1969) +! RESTRICTED TO M=N,P=0. +! THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q AND AB IS +! OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT U.DIAG(Q) = AB.V, +! WHERE U IS ANOTHER ORTHOGONAL MATRIX. + +!...HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... +IF (n == 1) GO TO 200 +eps = machep +g = 0.d0 +x = 0.d0 +DO i=1,n + e(i) = g + s = 0.d0 + l = i + 1 + DO j=i,n + s = s + ab(j,i)**2 + END DO + g = 0.d0 + IF (s < tol) GO TO 4 + f = ab(i,i) + g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + ab(i,i)=f-g + IF (l > n) GO TO 4 + DO j=l,n + f = 0.d0 + DO k=i,n + f = f + ab(k,i)*ab(k,j) + END DO + f = f/h + DO k=i,n + ab(k,j) = ab(k,j) + f*ab(k,i) + END DO + END DO + 4 q(i) = g + s = 0.d0 + IF (i == n) GO TO 6 + DO j=l,n + s = s + ab(i,j)*ab(i,j) + END DO + 6 g = 0.d0 + IF (s < tol) GO TO 10 + IF (i == n) GO TO 16 + f = ab(i,i+1) + 16 g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + IF (i == n) GO TO 10 + ab(i,i+1) = f - g + DO j=l,n + e(j) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(j,k)*ab(i,k) + END DO + DO k=l,n + ab(j,k) = ab(j,k) + s*e(k) + END DO + END DO + 10 y = ABS(q(i)) + ABS(e(i)) + IF (y > x) x = y +END DO +!...ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... +ab(n,n) = 1.d0 +g = e(n) +l = n +DO ii=2,n + i = n - ii + 1 + IF (g == 0.d0) GO TO 23 + h = ab(i,i+1)*g + DO j=l,n + ab(j,i) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(i,k)*ab(k,j) + END DO + DO k=l,n + ab(k,j) = ab(k,j) + s*ab(k,i) + END DO + END DO + 23 DO j=l,n + ab(i,j) = 0.d0 + ab(j,i) = 0.d0 + END DO + ab(i,i) = 1.d0 + g = e(i) + l = i +END DO +!...DIAGONALIZATION OF THE BIDIAGONAL FORM... +eps = eps*x +DO kk=1,n + k = n - kk + 1 + kt = 0 + 101 kt = kt + 1 + IF (kt <= 30) GO TO 102 + e(k) = 0.d0 + WRITE (6,1000) + 1000 FORMAT (' QR FAILED') + 102 DO ll2=1,k + l2 = k - ll2 + 1 + l = l2 + IF (ABS(e(l)) <= eps) GO TO 120 + IF (l == 1) CYCLE + IF (ABS(q(l-1)) <= eps) EXIT + END DO +!...CANCELLATION OF E(L) IF L>1... + c = 0.d0 + s = 1.d0 + DO i=l,k + f = s*e(i) + e(i) = c*e(i) + IF (ABS(f) <= eps) GO TO 120 + g = q(i) +!...Q(I) = H = SQRT(G*G + F*F)... + IF (ABS(f) < ABS(g)) GO TO 113 + IF (f == 0.0) THEN + GO TO 111 + ELSE + GO TO 112 + END IF + 111 h = 0.d0 + GO TO 114 + 112 h = ABS(f)*SQRT(1 + (g/f)**2) + GO TO 114 + 113 h = ABS(g)*SQRT(1 + (f/g)**2) + 114 q(i) = h + IF (h /= 0.d0) GO TO 115 + g = 1.d0 + h = 1.d0 + 115 c = g/h + s = -f/h + END DO +!...TEST FOR CONVERGENCE... + 120 z = q(k) + IF (l == k) GO TO 140 +!...SHIFT FROM BOTTOM 2*2 MINOR... + x = q(l) + y = q(k-1) + g = e(k-1) + h = e(k) + f = ((y - z)*(y + z) + (g - h)*(g + h))/(2*h*y) + g = SQRT(f*f + 1.0D0) + temp = f - g + IF (f >= 0.d0) temp = f + g + f = ((x - z)*(x + z) + h*(y/temp - h))/x +!...NEXT QR TRANSFORMATION... + c = 1.d0 + s = 1.d0 + lp1 = l + 1 + IF (lp1 > k) GO TO 133 + DO i=lp1,k + g = e(i) + y = q(i) + h = s*g + g = g*c + IF (ABS(f) < ABS(h)) GO TO 123 + IF (f == 0.0) THEN + GO TO 121 + ELSE + GO TO 122 + END IF + 121 z = 0.d0 + GO TO 124 + 122 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 124 + 123 z = ABS(h)*SQRT(1 + (f/h)**2) + 124 e(i-1) = z + IF (z /= 0.d0) GO TO 125 + f = 1.d0 + z = 1.d0 + 125 c = f/z + s = h/z + f = x*c + g*s + g = -x*s + g*c + h = y*s + y = y*c + DO j=1,n + x = ab(j,i-1) + z = ab(j,i) + ab(j,i-1) = x*c + z*s + ab(j,i) = -x*s + z*c + END DO + IF (ABS(f) < ABS(h)) GO TO 129 + IF (f == 0.0) THEN + GO TO 127 + ELSE + GO TO 128 + END IF + 127 z = 0.d0 + GO TO 130 + 128 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 130 + 129 z = ABS(h)*SQRT(1 + (f/h)**2) + 130 q(i-1) = z + IF (z /= 0.d0) GO TO 131 + f = 1.d0 + z = 1.d0 + 131 c = f/z + s = h/z + f = c*g + s*y + x = -s*g + c*y + END DO + 133 e(l) = 0.d0 + e(k) = f + q(k) = x + GO TO 101 +!...CONVERGENCE: Q(K) IS MADE NON-NEGATIVE... + 140 IF (z >= 0.d0) CYCLE + q(k) = -z + DO j=1,n + ab(j,k) = -ab(j,k) + END DO +END DO +RETURN +200 q(1) = ab(1,1) +ab(1,1) = 1.d0 + +END SUBROUTINE minfit + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE MIN(n,j,nits,d2,x1,f1,fk,f,x,t,machep,h) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER :: j + INTEGER :: nits + REAL, INTENT(IN OUT) :: d2 + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: f1 + LOGICAL :: fk + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN) :: t + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h + + INTEGER :: i,k + EXTERNAL f + + + REAL :: flin ! function + REAL :: small,sf1,sx1,s,temp, xm,x2,f2,d1 + REAL :: fm,f0,t2 +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +!...THE SUBROUTINE MIN MINIMIZES F FROM X IN THE DIRECTION V(*,J) UNLESS +! J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS MADE IN THE PLANE +! DEFINED BY Q0,Q1,X. +! D2 IS EITHER ZERO OR AN APPROXIMATION TO HALF F". +! ON ENTRY, X1 IS AN ESTIMATE OF THE DISTANCE FROM X TO THE MINIMUM +! ALONG V(*,J) (OR, IF J=0, A CURVE). ON RETURN, X1 IS THE DISTANCE +! FOUND. +! IF FK=.TRUE., THEN F1 IS FLIN(X1). OTHERWISE X1 AND F1 ARE IGNORED +! ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. +! NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT WILL BE MADE TO HALVE +! THE INTERVAL. + LOGICAL :: dz + REAL :: m2,m4 + +small = machep**2 +m2 = SQRT(machep) +m4 = SQRT(m2) +sf1 = f1 +sx1 = x1 +k = 0 +xm = 0.d0 +fm = fx +f0 = fx +dz = d2 < machep +!...FIND THE STEP SIZE... +s = 0.d0 +DO i=1,n + s = s + x(i)**2 +END DO +s = SQRT(s) +temp = d2 +IF (dz) temp = dmin +t2 = m4*SQRT(ABS(fx)/temp + s*ldt) + m2*ldt +s = m4*s + t +IF (dz.AND.t2 > s) t2 = s +t2 = DMAX1(t2,small) +t2 = DMIN1(t2,.01D0*h) +IF (.NOT.fk.OR.f1 > fm) GO TO 2 +xm = x1 +fm = f1 +2 IF (fk.AND.ABS(x1) >= t2) GO TO 3 +temp=1.d0 +IF (x1 < 0.d0) temp=-1.d0 +x1=temp*t2 +f1 = flin(n,j,x1,f,x,nf) +3 IF (f1 > fm) GO TO 4 +xm = x1 +fm = f1 +4 IF (.NOT.dz) GO TO 6 +!...EVALUATE FLIN AT ANOTHER POINT AND ESTIMATE THE SECOND DERIVATIVE... +x2 = -x1 +IF (f0 >= f1) x2 = 2.d0*x1 +f2 = flin(n,j,x2,f,x,nf) +IF (f2 > fm) GO TO 5 +xm = x2 +fm = f2 +5 d2 = (x2*(f1 - f0)-x1*(f2 - f0))/((x1*x2)*(x1 - x2)) +!...ESTIMATE THE FIRST DERIVATIVE AT 0... +6 d1 = (f1 - f0)/x1 - x1*d2 +dz = .true. +!...PREDICT THE MINIMUM... +IF (d2 > small) GO TO 7 +x2 = h +IF (d1 >= 0.d0) x2 = -x2 +GO TO 8 +7 x2 = (-.5D0*d1)/d2 +8 IF (ABS(x2) <= h) GO TO 11 +IF (x2 > 0.0) THEN + GO TO 10 +END IF +x2 = -h +GO TO 11 +10 x2 = h +!...EVALUATE F AT THE PREDICTED MINIMUM... +11 f2 = flin(n,j,x2,f,x,nf) +IF (k >= nits.OR.f2 <= f0) GO TO 12 +!...NO SUCCESS, SO TRY AGAIN... +k = k + 1 +IF (f0 < f1.AND.(x1*x2) > 0.d0) GO TO 4 +x2 = 0.5D0*x2 +GO TO 11 +!...INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER... +12 nl = nl + 1 +IF (f2 <= fm) GO TO 13 +x2 = xm +GO TO 14 +13 fm = f2 +!...GET A NEW ESTIMATE OF THE SECOND DERIVATIVE... +14 IF (ABS(x2*(x2 - x1)) <= small) GO TO 15 +d2 = (x2*(f1-f0) - x1*(fm-f0))/((x1*x2)*(x1 - x2)) +GO TO 16 +15 IF (k > 0) d2 = 0.d0 +16 IF (d2 <= small) d2 = small +x1 = x2 +fx = fm +IF (sf1 >= fx) GO TO 17 +fx = sf1 +x1 = sx1 +!...UPDATE X FOR LINEAR BUT NOT PARABOLIC SEARCH... +17 IF (j == 0) RETURN +DO i=1,n + x(i) = x(i) + x1*v(i,j) +END DO + +END SUBROUTINE MIN + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vcprnt(option,v,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(n) + INTEGER :: n + + INTEGER :: i + +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 + CASE ( 3) + GO TO 3 + CASE ( 4) + GO TO 4 +END SELECT + +1 WRITE (6,101) (v(i),i=1,n) +RETURN +2 WRITE (6,102) (v(i),i=1,n) +RETURN +3 WRITE (6,103) (v(i),i=1,n) +RETURN +4 WRITE (6,104) (v(i),i=1,n) +RETURN +101 FORMAT (/' THE SECOND DIFFERENCE ARRAY D(*) IS:'/ (e32.14,4E25.14)) +102 FORMAT (/' THE SCALE FACTORS ARE:'/(e32.14,4E25.14)) +103 FORMAT (/' THE APPROXIMATING QUADR. FORM HAS PRINCIPAL VALUES:'/ & + (e32.14,4E25.14)) +104 FORMAT (/' X IS:',e26.14/(e32.14)) +END SUBROUTINE vcprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRINT(n,x,prin,fmin) + + IMPLICIT NONE + INTEGER :: n + REAL, INTENT(IN OUT) :: x(n) + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: fmin + + INTEGER :: i + REAL :: ln +!---------------------------------------------- +INTEGER :: nf,nl +REAL :: fx,ldt,dmin +COMMON /global/ fx,ldt,dmin,nf,nl +!---------------------------------------------- +WRITE (6,101) nl,nf,fx + +IF (fx <= fmin) GO TO 1 +ln = LOG10(fx-fmin) +WRITE (6,102) fmin,ln +GO TO 2 +1 WRITE (6,103) fmin +2 IF (n > 4.AND.prin <= 2) RETURN +WRITE (6,104) (x(i),i=1,n) +RETURN +101 FORMAT (/' AFTER',i6, & + ' LINEAR SEARCHES, THE FUNCTION HAS BEEN EVALUATED',i6, & + ' TIMES. THE SMALLEST VALUE FOUND IS F(X) = ',e21.14) +102 FORMAT (' LOG (F(X)-',e21.14,') = ',e21.14) +103 FORMAT (' LOG (F(X)-',e21.14,') IS UNDEFINED.') +104 FORMAT (' X IS:',e26.14/(e32.14)) +END SUBROUTINE PRINT + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE maprnt(option,v,m,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(m,n) + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + INTEGER :: i,j + + INTEGER :: low,upp +!...THE SUBROUTINE MAPRNT PRINTS THE COLUMNS OF THE NXN MATRIX V +! WITH A HEADING AS SPECIFIED BY OPTION. +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM... +low = 1 +upp = 5 +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 +END SELECT +1 WRITE (6,101) +101 FORMAT (/' THE NEW DIRECTIONS ARE:') +GO TO 3 +2 WRITE (6,102) +102 FORMAT (' AND THE PRINCIPAL AXES:') +3 IF (n < upp) upp = n +DO i=1,n + WRITE (6,104) (v(i,j),j=low,upp) +END DO +low = low + 5 +IF (n < low) RETURN +upp = upp + 5 +WRITE (6,103) +GO TO 3 +103 FORMAT (' ') +104 FORMAT (e32.14,4E25.14) +END SUBROUTINE maprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION random(naught) + + IMPLICIT NONE + INTEGER, INTENT(IN OUT) :: naught + + REAL :: ran1,ran3(127),half + INTEGER :: i,j,ran2,q,r + LOGICAL :: init + DATA init/.false./ + SAVE init,ran2,ran1,ran3 + +IF (init) GO TO 3 +r = MOD(naught,8190) + 1 +ran2 = 128 +DO i=1,127 + ran2 = ran2 - 1 + ran1 = -2.d0**55 + DO j=1,7 + r = MOD(1756*r,8191) + q = r/32 + ran1 = (ran1 + q)*(1.0D0/256) + END DO + ran3(ran2) = ran1 +END DO +init = .true. +3 IF (ran2 == 1) ran2 = 128 +ran2 = ran2 - 1 +ran1 = ran1 + ran3(ran2) +half = .5D0 +IF (ran1 >= 0.d0) half = -half +ran1 = ran1 + half +ran3(ran2) = ran1 +random = ran1 + .5D0 + +END FUNCTION random + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION flin (n,j,l,f,x,nf) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN OUT) :: j + REAL, INTENT(IN) :: l + REAL :: f + REAL, INTENT(IN) :: x(n) + INTEGER, INTENT(OUT) :: nf + + INTEGER :: i + REAL :: t(20) + + EXTERNAL f + +!...FLIN IS THE FUNCTION OF ONE REAL VARIABLE L THAT IS MINIMIZED +! BY THE SUBROUTINE MIN... +!---------------------------------------------- + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +IF (j == 0) GO TO 2 +!...THE SEARCH IS LINEAR... +DO i=1,n + t(i) = x(i) + l*v(i,j) +END DO +GO TO 4 +!...THE SEARCH IS ALONG A PARABOLIC SPACE CURVE... +2 qa = (l*(l - qd1))/(qd0*(qd0 + qd1)) +qb = ((l + qd0)*(qd1 - l))/(qd0*qd1) +qc = (l*(l + qd0))/(qd1*(qd0 + qd1)) +DO i=1,n + t(i) = (qa*q0(i) + qb*x(i)) + qc*q1(i) +END DO +!...THE FUNCTION EVALUATION COUNTER NF IS INCREMENTED... +4 nf = nf + 1 +flin = f(t,n) + +END FUNCTION flin + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE sort(m,n,d,v) + IMPLICIT NONE +! + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: d(n) + REAL, INTENT(IN OUT) :: v(m,n) + + INTEGER :: i,j,k,nm1,ip1 + REAL :: s +!...SORTS THE ELEMENTS OF D(N) INTO DESCENDING ORDER AND MOVES THE +! CORRESPONDING COLUMNS OF V(N,N). +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM. +IF (n == 1) RETURN +nm1 = n - 1 +DO i = 1,nm1 + k=i + s = d(i) + ip1 = i + 1 + DO j = ip1,n + IF (d(j) <= s) CYCLE + k = j + s = d(j) + END DO + IF (k <= i) CYCLE + d(k) = d(i) + d(i) = s + DO j = 1,n + s = v(j,i) + v(j,i) = v(j,k) + v(j,k) = s + END DO +END DO +END SUBROUTINE sort + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE quad(n,f,x,t,machep,h) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN OUT) :: t + REAL :: machep + REAL, INTENT(IN OUT) :: h +! IMPLICIT REAL (A-H,O-Z) + EXTERNAL f + +!...QUAD LOOKS FOR THE MINIMUM OF F ALONG A CURVE DEFINED BY Q0,Q1,X... + INTEGER :: i + REAL :: l + REAL :: s,value +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + +REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 +COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +s = fx +fx = qf1 +qf1 = s +qd1 = 0.d0 +DO i=1,n + s = x(i) + l = q1(i) + x(i) = l + q1(i) = s + qd1 = qd1 + (s-l)**2 +END DO +qd1 = SQRT(qd1) +l = qd1 +s = 0.d0 +IF (qd0 <= 0.d0 .OR. qd1 <= 0.d0 .OR. nl < 3*n*n) GO TO 2 +value=qf1 +CALL MIN(n,0,2,s,l,value,.true.,f,x,t,machep,h) +qa = (l*(l-qd1))/(qd0*(qd0+qd1)) +qb = ((l+qd0)*(qd1-l))/(qd0*qd1) +qc = (l*(l+qd0))/(qd1*(qd0+qd1)) +GO TO 3 +2 fx = qf1 +qa = 0.d0 +qb = qa +qc = 1.d0 +3 qd0 = qd1 +DO i=1,n + s = q0(i) + q0(i) = x(i) + x(i) = (qa*s + qb*x(i)) + qc*q1(i) +END DO +END SUBROUTINE quad + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 new file mode 100644 index 000000000..cebd3d769 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 @@ -0,0 +1,125 @@ +SUBROUTINE VLE_MIX(rhob,density,chemPot_total,compID) + + USE parameters, ONLY: PI, RGAS, KBOL + USE basic_variables + USE EOS_VARIABLES, ONLY: fres, eta, eta_start, dhs, mseg, uij, sig_ij, rho, x, z3t + USE DFT_MODULE + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE + + +! --------------------------------------------------------------------- +! Variables +! --------------------------------------------------------------------- + + +!passed + REAL :: chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + INTEGER :: compID + +!local + REAL, DIMENSION(nc) :: dhs_star + REAL :: w(np,nc), lnphi(np,nc) + INTEGER :: converg + CHARACTER(LEN=4) :: char_ncomp + REAL :: Polymer_density + INTEGER :: i + CHARACTER (LEN=50) :: filename + + + ! --------------------------------------------------------------------- + ! prepare for phase equilibrium calculation for given T + ! --------------------------------------------------------------------- + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12*EXP( -3.0*parame(1:ncomp,3)/t ) ) ! needed for rdf_matrix + dhs_star(1:ncomp) = dhs(1:ncomp)/parame(1:ncomp,2) + + nphas = 2 + outp = 0 ! output to terminal + + CALL START_VAR (converg) ! gets starting values, sets "val_init" + + IF ( converg /= 1 ) THEN + WRITE (*,*) 'no VLE found' + RETURN + END IF + + ! rhob(phase,0): molecular density + rhob(1,0) = dense(1) / ( PI/6.0* SUM( xi(1,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + rhob(2,0) = dense(2) / ( PI/6.0* SUM( xi(2,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + ! rhob(phase,i): molecular component density (with i=(1,...ncomp) ) in units (1/A^3) + rhob(1,1:ncomp) = rhob(1,0)*xi(1,1:ncomp) + rhob(2,1:ncomp) = rhob(2,0)*xi(2,1:ncomp) + + ! get density in SI-units (kg/m**3) + CALL SI_DENS ( density, w ) + + ! calculate residual chemical potentials + ensemble_flag = 'tv' ! this flag is for: mu_res=mu_res(T,rho) + densta(1) = dense(1) ! Index 1 is for liquid density (here: packing fraction eta) + densta(2) = dense(2) ! Index 2 is for vapour density (here: packing fraction eta) + CALL fugacity (lnphi) + chemPot_total(1:ncomp) = lnphi(1,1:ncomp)! + LOG( rhob(1,1:ncomp) ) ! my0 = mu_res(T,rho_bulk_L) + ln(rho_bulk_l) + +! WRITE(*,*) '--------------------------------------------------' +! WRITE(*,*)'RESULT OF PHASE EQUILIBRIUM CALCULATION' +! WRITE (char_ncomp,'(I3)') ncomp +! WRITE (*,*) 'T = ',t, 'K, and p =', p/1.E5,' bar' +! WRITE(*,*)' ' +! WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) +! +! write(*,*)'Mass fraction:' +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) +! +! write(*,*)'Molar composition:' +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) +! WRITE(*,*)' ' +! !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I density', (rhob(1,i),i=1,ncomp) +! !! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II density', (rhob(2,i),i=1,ncomp) +! !!WRITE(*,*)' ' +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I chemPot', (lnphi(1,i) + LOG(rhob(1,i)),i=1,ncomp) +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II chemPot', (lnphi(2,i) + LOG(rhob(2,i)),i=1,ncomp) +! WRITE(*,*)' ' +! !!WRITE(*,*)'Phase densities ' +! WRITE(*,'(2x,a,2(g13.6,1x))') 'SI-DENSITY [kg/m3] ', density(1),density(2) +! !!WRITE(*,'(2x,a,2(g13.6,1x))') 'NUMBER-DENSITY ', rhob(1,0),rhob(2,0) +! +! WRITE(*,*) + + + write(*,*)' ' + write(*,*)'--------------------------------------------' + write(*,*)'Output detailed model:' + write(*,*)'T /K:',t,'p/bar:',p/1.E5 + write(*,*)'Liquid density /kg/m3:', max(density(1),density(2)) + write(*,*)'--------------------------------------------' + write(*,*)' ' + + + !write liquid phase density in kg/m3 to out.txt + Polymer_density = max(density(1),density(2)) !* w(1,1) + + filename='./out.txt' + CALL file_open(filename,78) + write(78,*) Polymer_density + !write(*,*)'Polymer_density [kg/m3]:',Polymer_density + + + + + +! WRITE (*,*) ' ' +! WRITE (*,*) 'temperature ',t, 'K, and p=', p/1.E5,' bar' +! WRITE (*,*) 'x1_liquid ',xi(1,1),' x1_vapor', xi(2,1) +! WRITE (*,*) 'densities ',rhob(1,0), rhob(2,0) +! WRITE (*,*) 'dense ',dense(1), dense(2) +! WRITE (*,*) 'density [kg/m3] ',density(1), density(2) +! write (*,*) 'chemical potentials comp1' , lnphi(1,1) + LOG( rhob(1,1) ), lnphi(2,1) + LOG( rhob(2,1) ) +! write (*,*) 'chemical potentials comp2' ,lnphi(1,2) + LOG( rhob(1,2) ), lnphi(2,2) + LOG( rhob(2,2) ) +! + + +END SUBROUTINE VLE_MIX diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 new file mode 100644 index 000000000..3f54b25ea --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 @@ -0,0 +1,7156 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE start_var +! +! This subroutine generates a converged solution for binary systems +! or performes a flash calculation for mixtues. This routine is a +! fairly weak point of the program. +! +! IF a polymer is considered, starting values for mole fractions +! are determined from the SUBROUTINGE POLY_STA_VAR (see below). The +! polymer needs to be placed as component 1 (first line) in INPUT +! file. +! +! A phase equilib. iteration is started at the end of this routine. +! If no solution is found (converg=0), the program will stop within +! this routine. +! +! Currently, this routine assumes two-phase equilibrium and derives +! starting values (xi,density) only for two phases. +! +! Prerequisites are: +! SUBROUTINE INPUT needs to be called prior to this routine, because +! all pure comp. parameters as well as (T,P,kij) need to be in place. +! Also, the variable to be iterated "it(i)" and the variables to be +! calculated through the summation relation "sum_rel(i)" have to be +! defined. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE start_var(converg) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: ph, i, k + INTEGER :: ncompsav, n_unkwsav, ph_split + LOGICAL :: lle_check, flashcase, renormalize + REAL :: den1, den2, x_1, x_2 + CHARACTER (LEN=50) :: filename +! ---------------------------------------------------------------------- + +converg = 0 + +! CALL RACHFORD_RICE (converg) +! CALL Heidemann_Khalil + +! ---------------------------------------------------------------------- +! This first condition (eos >= 4) is for LJ models, not for PC-SAFT +! ---------------------------------------------------------------------- + +IF (eos >= 4) THEN + + ncomp = 2 ! set number of components to 2 + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + filename = 'LJ_START_VAL.INC' + CALL file_open(filename,84) + READ (84,*) den1,den2 + READ (84,*) x_1,x_2 + CLOSE (84) + + xi(1,1) = x_1 + xi(2,1) = x_2 + xi(1,2) = 1.0 - xi(1,1) + xi(2,2) = 1.0 - xi(2,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,2) = LOG(xi(2,2)) + + val_init(1) = den1 + val_init(2) = den2 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = LOG(xi(ph,k)) + END DO + END DO + + CALL objective_ctrl (converg) + IF (converg == 1) WRITE (*,*) t, p/1.0E5, xi(1,1), xi(2,1) + IF (converg == 0) WRITE (*,*) ' weak starting values' + + +! ---------------------------------------------------------------------- +! ELSE: PC-SAFT equation of state +! ---------------------------------------------------------------------- + +ELSE + + renormalize = .false. ! for renormalization group theory (RGT) + IF (num == 2) renormalize = .true. + IF (num == 2) num = 0 ! if RGT: initial phase equilibr. is for non-renormalized model + + flashcase = .false. ! .true. when a specific feed conc. xif is given + IF (xif(1) /= 0.0) flashcase = .true. + + lle_check = .true. + +! ---------------------------------------------------------------------- +! IF: non-polymeric system +! ---------------------------------------------------------------------- + IF (mm(1) < 1.0E8) THEN + + DO i=1,ncomp ! setting mole-fractions for the case that + ! anything goes wrong in the coming routines + xi(1,i) = 1.0 / REAL(ncomp) + xi(2,i) = 1.0 / REAL(ncomp) + END DO + + + ! ------------------------------------------------------------------ + ! determine an initial conc. (phase 1) that will phase split + ! ------------------------------------------------------------------ + IF( ncomp == 2 .AND. .NOT.flashcase ) THEN + CALL vle_min( lle_check ) + WRITE(*,*)' INITIAL FEED-COMPOSITION',(xi(1,i), i=1,ncomp),converg + END IF + + ! ------------------------------------------------------------------ + ! perform a phase stability test + ! ------------------------------------------------------------------ + ph_split = 0 + CALL phase_stability ( .false., flashcase, ph_split ) + write (*,*) 'stability analysis I indicates phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! determine species i, for which x(i) is calc from summation relation + ! ------------------------------------------------------------------ + CALL select_sum_rel (1,0,1) ! synthax (m,n,o): phase m + ! exclude comp. n + ! assign it(o) and higher + CALL select_sum_rel (2,0,2) ! for ncomp>=3, the quantities + ! to be iterated will be overwritten + + ! ------------------------------------------------------------------ + ! if 2 phases (VLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + ! --- perform tangent plane minimization ------------------------ + CALL tangent_plane + ph_split = 0 + + ! --- determine, for which substance summation relation is used -- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe a VLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! test for LLE + ! ------------------------------------------------------------------ + ph_split = 0 + + IF (lle_check) CALL phase_stability (lle_check,flashcase,ph_split) + IF (lle_check) write (*,*) 'stability analysis II, phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! if two phases (LLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + write (*,*) ' LLE-stability test indicates 2 phases (VLE or LLE)' + + ! --- perform tangent plane minimization ------------------------ + IF (flashcase) CALL select_sum_rel (1,0,1) + IF (flashcase) CALL select_sum_rel (2,0,2) + + CALL tangent_plane + + ! --- determine, for which substance summation relation ---------- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + val_conv(2) = 0.0 + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe an LLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! equilibr. calc. converged: set initial var. for further calc. + ! ------------------------------------------------------------------ + IF (converg == 1) THEN + val_init = val_conv + DO ph = 1,nphas + DO i = 1,ncomp + xi(ph,i) = EXP( val_conv(4+i+(ph-1)*ncomp) ) + END DO + END DO + dense(1:2) = val_conv(1:2) + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + + ! --------------------------------------------------------------------- + ! ELSE: for systems with polymers + ! --------------------------------------------------------------------- + + ELSE + + ncompsav = ncomp + ncomp = 2 ! set number of components to 2 + n_unkwsav = n_unkw + + CALL poly_sta_var(converg) + + IF (converg == 1) THEN + val_init = val_conv + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + ncomp = ncompsav + n_unkw = n_unkwsav ! number of quantities to be iterated + + END IF + +! --- for RGT: set flag back to num=2 indicating an RGT calculation ---- + IF (renormalize) num = 2 + +END IF + +END SUBROUTINE start_var + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE objective_ctrl +! +! This subroutine controls the iso-fugacity iteration. It uses +! the variables defined in the array "val_init". If successfull, +! the converged values are written to "val_conv", and the flag +! converg is set to 1. +! See also above desciption for subroutine PHASE_EQUILIB +! This routine calls SUBROUTINE HYBRID, which is a solver (modified +! POWELL HYBRID METHOD). HYBRID is freely available for non-commercial +! applications. HYBRID requires three definitions: +! 1.the number of equations to be solved (=No. of variables to be +! iterated). The appropriate parameter is: "n_unkw" +! 2.the equations to be iterated, they are here gathered in the SUB- +! ROUTINE OBJEC_FCT (see below). Since HYBRID is a root finder, +! these objective functions are iterated to be zero (essentially, +! OBJEC_FCT contains the iso-fugacity relation. +! 3.an array of variables is required, containing the quatities to be +! iterated. This array is termed "y(i)" +! +! INPUT VARIABLES: +! val_init(i) array containing (densities,T,P,lnx's) serving as +! starting values for the phase equilibrium calculation +! it(i) contains the information, which variable is deter- +! mined iteratively. For syntax refer e.g.to SUB BINMIX. +! sum_rel(i) indicates, which mole fraction is determined from the +! summation relation sum(xi)=1 +! +! OUTPUT VARIABLES: +! val_conv(i) array containing the converged system variables +! analogous to "val_init" +! converg 0 if no convergence achieved, 1 if converged solution +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objective_ctrl (converg) +! + USE BASIC_VARIABLES + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE objec_fct + END INTERFACE +! + INTEGER :: info,k,posn,i + INTEGER, PARAMETER :: mxr = nc*(nc+1)/2 + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + REAL :: x_init, x_solut, r_diff1, r_diff2, totres + REAL :: r_thrash, x_thrash + CHARACTER (LEN=2) :: compon + LOGICAL :: convergence +! ---------------------------------------------------------------------- + +info=1 + +ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + +IF (num == 0) acc_a = 1.E-7 +IF (num == 0) step_a = 2.E-8 +IF (num == 1) acc_a = 1.E-7 +IF (num == 1) step_a = 2.E-8 +IF (num == 2) acc_a = 5.E-7 +IF (num == 2) step_a = 1.E-7 + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') y(posn) = val_init(3) + IF (it(i) == 'p') y(posn) = val_init(4) + IF (it(i) == 'lnp') y(posn) = LOG( val_init(4) ) + IF (it(i) == 'fls') y(posn) = alpha + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') y(posn) = val_init(4+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') y(posn) = val_init(4+ncomp+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') y(posn) = val_init(4+ncomp+ncomp+k) +END DO + +CALL init_vars + +x_init = 0.0 +DO i = 1,ncomp + IF (lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0) THEN + x_init = x_init + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + x_init = x_init + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO + +CALL hbrd (objec_fct, n_unkw, y, residu, step_a, acc_a, info, diag) + +x_solut = 0.0 +DO i = 1,ncomp + IF ( lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0 ) THEN + x_solut = x_solut + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + IF (lnx(1,i) < 1E300 .AND. lnx(1,i) > -1.E300 ) & + x_solut = x_solut + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO +r_diff1 = ABS( 1.0 - dense(1)/dense(2) ) +IF ( val_conv(2) > 0.0 ) THEN + r_diff2 = ABS( 1.0 - val_conv(1)/val_conv(2) ) +ELSE + r_diff2 = 0.0 +END IF + +totres = SUM( ABS( residu(1:n_unkw) ) ) + +r_thrash = 0.0005 +x_thrash = 0.0005 +if (num > 0 ) r_thrash = r_thrash * 10.0 +if (num > 0 ) x_thrash = x_thrash * 100.0 + +convergence = .true. + +IF ( info >= 2 ) convergence = .false. +IF ( ABS( 1.0- dense(1)/dense(2) ) < r_thrash .AND. x_solut < x_thrash ) THEN + IF ( x_init > 0.050 ) convergence = .false. + IF ( ( ABS( 1.0- dense(1)/dense(2) ) + x_solut ) < 1.E-7 ) convergence = .false. +ENDIF +IF ( r_diff2 /= 0.0 .AND. r_diff2 > (4.0*r_diff1) .AND. bindiag == 1 ) convergence = .false. +IF ( ncomp == 1 .AND. totres > 100.0*acc_a ) convergence = .false. +IF ( totres > 1000.0*acc_a ) convergence = .false. +IF ( ncomp == 1 .AND. r_diff1 < 1.d-5 ) convergence = .false. + +IF ( convergence ) THEN + converg = 1 + ! write (*,*) residu(1),residu(2) + CALL converged + IF (num <= 1) CALL enthalpy_etc +ELSE + converg = 0 +END IF + +DEALLOCATE( y, diag, residu ) + +END SUBROUTINE objective_ctrl + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE objec_fct +! +! This subroutine contains the equations to be solved numerically +! (iso-fugacity: fi'-fi''=0) as well as other dependent equations, +! which can be solved analytically, namely the summation relation +! xi=1-sum(xj) or the condition of equal charge for electrolyte +! solutions. +! This subroutine is required and controlled by the solver HBRD ! +! HBRD varies the variables "y(i)" and eveluates the result of +! these changes from this routine. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: density_error + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph,k,posn, skip,phase + REAL :: lnphi(np,nc),isofugacity + CHARACTER (LEN=2) :: compon +! ---------------------------------------------------------------------- + + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') t = y(posn) + IF (it(i) == 'p') p = y(posn) + IF (it(i) == 'lnp') p = EXP( y(posn) ) + IF (it(i) == 'fls') alpha = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') lnx(1,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') lnx(2,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') lnx(3,k) = y(posn) +END DO + +DO k = 1,ncomp + IF (lnx(1,k) > 0.0) lnx(1,k) = 0.0 + IF (lnx(2,k) > 0.0) lnx(2,k) = 0.0 +END DO + +IF (p < 1.E-100) p = 1.E-12 +!IF ( IsNaN( p ) ) p = 1000.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( t ) ) t = 300.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( alpha ) ) alpha = 0.5 ! rebounce for the case of NaN-solver output +IF ( p /= p ) p = 1000.0 ! rebounce for the case of NaN-solver output +IF ( t /= t ) t = 300.0 ! rebounce for the case of NaN-solver output +IF ( alpha /= alpha ) alpha = 0.5 ! rebounce for the case of NaN-solver output + +! --- setting of mole fractions ---------------------------------------- +DO ph = 1, nphas + DO i = 1, ncomp + IF ( lnx(ph,i) < -300.0 ) THEN + xi(ph,i) = 0.0 + ELSE + xi(ph,i) = EXP( lnx(ph,i) ) + END IF + END DO +END DO + +IF (ncomp > 1) CALL x_summation + +CALL fugacity (lnphi) + +phase = 2 +DO i = 1,n_unkw + skip = 0 !for ions/polymers, the isofug-eq. is not always solved + IF (n_unkw < (ncomp*(nphas-1))) skip = ncomp*(nphas-1) - n_unkw + IF ((i+skip-ncomp*(phase-2)) > ncomp) phase = phase + 1 + residu(i) = isofugacity((i+skip-ncomp*(phase-2)),phase,lnphi) + if ( density_error(phase) /= 0.0 ) residu(i) = residu(i) + SIGN( density_error(phase), residu(i) ) * 0.001 +END DO + +END SUBROUTINE objec_fct + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! REAL FUNCTION isofugacity +! +! calculates the deviation from the condition of equal fugacities in +! logarithmic form. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION isofugacity (i,phase,lnphi) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i + INTEGER, INTENT(IN) :: phase + REAL, INTENT(IN) :: lnphi(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: p1, p2 +! ---------------------------------------------------------------------- + + +! p1=1 +p1 = phase-1 +p2 = phase + +isofugacity = scaling(i) *( lnphi(p2,i)+lnx(p2,i)-lnx(p1,i)-lnphi(p1,i) ) +! write (*,'(a, 4G18.8)') ' t, p ',t,p,dense(1),dense(2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_V',i,p2,lnx(p2,i),lnphi(p2,i),dense(p2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_L',i,p1,lnx(p1,i),lnphi(p1,i),dense(p1) +! write (*,*) ' ISOFUGACITY',i,ISOFUGACITY, scaling(i) +! write (*,'(a,i3,4G18.8)') ' ISOFUGACITY',i,ISOFUGACITY, lnphi(p2,i)+lnx(p2,i), -lnx(p1,i)-lnphi(p1,i) +! pause + +END FUNCTION isofugacity + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vle_min(lle_check) +! + USE PARAMETERS, ONLY: RGAS + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL, INTENT(OUT) :: lle_check + + INTEGER :: i,j,k,phasen(0:40),steps + REAL :: lnphi(np,nc) + REAL :: vlemin(0:40),llemin(0:40),xval(0:40) + REAL :: start_xv(0:40),start_xl(0:40),x_sav,dg_dx2 +! ---------------------------------------------------------------------- + + + +j = 0 +k = 0 +nphas = 2 + +steps = 40 + +x_sav = xi(1,1) +sum_rel(1) = 'x12' ! summation relation +sum_rel(2) = 'x22' ! summation relation + +DO i = 0, steps + densta(1) = 0.45 + densta(2) = 1.d-6 + xi(1,1) = 1.0 - REAL(i) / REAL(steps) + IF ( xi(1,1) <= 1.E-50 ) xi(1,1) = 1.E-50 + xi(2,1) = xi(1,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + + CALL x_summation + CALL fugacity (lnphi) + CALL enthalpy_etc !!KANN DAS RAUS???? + + + + + xval(i) = xi(1,1) + llemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t + + IF ( ABS(1.0-dense(1)/dense(2)) > 0.0001 ) THEN + vlemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t & + - ( gibbs(2) +(xi(2,1)*lnx(2,1)+xi(2,2)*lnx(2,2))*RGAS*t ) + phasen(i) = 2 + ELSE + phasen(i) = 1 + END IF + + IF (i > 0 .AND. phasen(i) == 2) THEN + IF (phasen(i-1) == 2 .AND. ABS(vlemin(i)+vlemin(i-1)) < & + ABS(vlemin(i))+ABS(vlemin(i-1))) THEN + j = j + 1 + start_xv(j)=xval(i-1) + (xval(i)-xval(i-1)) & + * ABS(vlemin(i-1))/ABS(vlemin(i)-vlemin(i-1)) + END IF + END IF + +END DO + + +DO i=2,steps-2 + dg_dx2 = (-llemin(i-2)+16.0*llemin(i-1)-30.0*llemin(i) & + +16.0*llemin(i+1)-llemin(i+2)) / (12.0*((xval(i)-xval(i-1))**2)) + IF (dg_dx2 < 0.0) THEN + k = k + 1 + start_xl(k)=xval(i) + END IF +END DO + + +IF (start_xl(1) == 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + lle_check=.false. + ! write (*,*) 'VLE is likely', xi(1,1),xi(1,2) +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) == 0.0) THEN + xi(1,1) = start_xl(1) + xi(1,2) = 1.0-xi(1,1) + ! write (*,*) 'LLE is likely', xi(1,1),xi(1,2) + lle_check=.true. +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + ! write(*,*) 'starting with VLE and check for LLE' + lle_check=.true. +ELSE + xi(1,1) = x_sav + xi(1,2) = 1.0 - xi(1,1) +END IF + + +CALL x_summation + +END SUBROUTINE vle_min + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_stability +! +! the index 'LLE_check' is for the starting density (which determines +! whether a liquid or vapor phase is found) of the trial phase. The +! feed-point exits either as a vapor or as a liquid. If it can exist as +! both (feedphases=2), then both states are tested. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_stability ( lle_check, flashcase, ph_split ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI, x, eta, eta_start, z3t, fres + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL :: lle_check + LOGICAL, INTENT(IN OUT) :: flashcase + INTEGER, INTENT(OUT) :: ph_split +! ---------------------------------------------------------------------- + + INTERFACE + REAL FUNCTION F_STABILITY ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) + END FUNCTION + END INTERFACE + +!INTERFACE +! SUBROUTINE F_STABILITY (fmin, optpara, n) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE F_STABILITY +! +! SUBROUTINE stability_grad (g, optpara, n) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_grad +! +! SUBROUTINE stability_hessian (hessian, g, fmin, optpara, n) +! REAL, INTENT(IN OUT) :: hessian(:,:) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_hessian +!END INTERFACE + + INTEGER :: n, PRIN + REAL :: fmin, t0, h0, MACHEP, PRAXIS + REAL, ALLOCATABLE :: optpara(:) + + INTEGER :: i, feedphases, trial + REAL :: rhoi(nc),rho_start + REAL :: feeddens, rho_phas(np) + REAL :: fden + REAL :: dens + REAL :: rhot + REAL :: lnphi(np,nc) + REAL :: w(np,nc), mean_mass +! ---------------------------------------------------------------------- + +n = ncomp +ALLOCATE( optpara(n) ) + +IF (lle_check) WRITE (*,*) ' stability test starting with dense phase' + +DO i = 1, ncomp ! setting feed-phase x's + IF (.NOT.flashcase) xif(i) = xi(1,i) + IF (flashcase) xi(1,i) = xif(i) + xi(2,i) = xif(i) ! feed is tested for both: V and L density +END DO + +densta(1) = 0.45 +densta(2) = 1.d-6 + +CALL dens_calc(rho_phas) +IF ( ABS(1.0-dense(1)/dense(2)) > 0.0005 ) THEN + feedphases=2 ! feed-composition can exist both, in V and L +ELSE + feedphases=1 ! feed-composition can exist either in V or L +END IF +densta(1) = dense(1) +feeddens = dense(2) +!write (*,*) 'feedphases',dense(1), dense(2),feedphases + +10 CONTINUE ! IF FeedPhases=2 THEN there is a second cycle + + trial = 1 + + ! -------------------------------------------------------------------- + ! setting trial-phase mole-fractions + ! if there is no phase-split then further trial-phases are + ! considered (loop: 20 CONTINUE) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + w(2,i) = 1.0 / REAL(ncomp) + END DO + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + + 20 CONTINUE + + DO i = 1, ncomp + rhoif(i) = rho_phas(1) * xif(i) + rhoi(i) = rhoif(i) + END DO + + !write (*,'(a,6G16.8)') 'startval',rho_phas(2),xi(2,1:ncomp) + + ! -------------------------------------------------------------------- + ! calc Helmholtz energy density and derivative (numerical) to rhoif(i). + ! The derivative is taken around the "feed-point" not the trial phase + ! -------------------------------------------------------------------- + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + CALL PERTURBATION_PARAMETER + xi(1,1:ncomp) = x(1:ncomp) + eta = rhot * z3t + eta_start = eta + densta(1) = eta_start + ensemble_flag = 'tv' + CALL FUGACITY (lnphi) + ensemble_flag = 'tp' + + call fden_calc ( fden, rhoi ) + fdenf = fden + + grad_fd(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + + ! -------------------------------------------------------------------- + ! starting values for iteration (optpara) + ! -------------------------------------------------------------------- + rho_start = 1.E-5 + IF (lle_check) THEN + densta(2) = 0.45 + CALL dens_calc(rho_phas) + rho_start = rho_phas(2)*0.45/dense(2) + END IF + DO i = 1,ncomp + rhoi(i) = xi(2,i)*rho_start + optpara(i) = LOG( rhoi(i) ) + END DO + + ! -------------------------------------------------------------------- + ! minimizing the objective fct. Phase split for values of fmin < 0.0 + ! -------------------------------------------------------------------- + t0 = 5.E-5 + h0 = 0.5 + PRIN = 0 + MACHEP = 1.E-15 + + fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, F_STABILITY, fmin ) + + + ! -------------------------------------------------------------------- + ! updating the ln(x) valus from optpara. The optimal optpara-vector is + ! not necessarily the one that was last evaluated. At the very end, + ! cg_decent writes the best values to optpara + ! -------------------------------------------------------------------- + fmin = F_STABILITY( optpara, n ) + + + + ! IF ( n == 2 ) THEN + ! CALL Newton_Opt_2D ( stability_hessian, F_stability, optpara, n, 1.E-8, 1.E-8, g, fmin) + ! ELSE + ! CALL cg_descent (1.d-5, optpara, n, F_STABILITY, stability_grad, STATUS, & + ! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) + ! ENDIF + ! CALL F_STABILITY (fmin, optpara, n) + + + ! -------------------------------------------------------------------- + ! determine instability & non-trivial solution + ! -------------------------------------------------------------------- + ph_split = 0 + IF (fmin < -1.E-7 .AND. & + ABS( 1.0 - maxval(EXP(optpara),mask=optpara /= 0.0) /maxval(rhoif) ) > 0.0005) THEN + ph_split = 1 + END IF + + IF (ph_split == 1) THEN + + ! ------------------------------------------------------------------ + ! here, there should be IF FeedPhases=2 THEN GOTO 10 + ! and test for another phase (while saving optpara) + ! ------------------------------------------------------------------ + + rhoi2(1:ncomp) = EXP( optpara(1:ncomp) ) + dens = PI/6.0 * SUM( rhoi2(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + rhot = SUM( rhoi2(1:ncomp) ) + xi(2,1:ncomp) = rhoi2(1:ncomp) / rhot + + ELSE + + IF (trial <= ncomp + ncomp) THEN + ! ---------------------------------------------------------------- + ! setting trial-phase x's + ! ---------------------------------------------------------------- + IF (trial <= ncomp) THEN + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.05 + END DO + w(2,trial) = 0.95 + ELSE + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.00001 + END DO + w(2,trial-ncomp) = 0.99999 + END IF + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + trial = trial + 1 + GO TO 20 + END IF + ! IF (.NOT.LLE_check) write (*,*) 'no phase split detected' + ! IF (.NOT.LLE_check) pause + IF (feedphases > 1 .AND. .NOT.lle_check .AND. densta(1) > 0.2) THEN + densta(1) = feeddens ! this will be the lower-valued density (vapor) + CALL dens_calc(rho_phas) + ! WRITE (*,*) 'try feed as vapor-phase' + GO TO 10 + END IF + + END IF + +DEALLOCATE( optpara ) + +END SUBROUTINE phase_stability + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE select_sum_rel +! +! This subroutine determines which component of a phase "ph" is calculated +! from the summation relation x_i = 1 - sum(x_j). The other components are, +! by default, said to be iterated during the phase equilibrium calculation. +! +! Note that for flash calculations not all of these mole fractions are in +! fact iterated - this is raken care of in "determine_flash_it". +! +! ph phase +! excl exclude comp. n +! startindex assign it(startindex) for quantities to be iterated +! (further it(startindex+1) is assigned, for a ternary +! mixture, etc.) +! +! sum_index indicates the component, with the largest mole +! fraction. If ph=1 and sum_index=2, we define +! sum_rel(ph=1)='x12', so that this component is +! calculated from the summation relation. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE select_sum_rel (ph,excl,startindex) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph + INTEGER, INTENT(IN) :: excl + INTEGER, INTENT(IN) :: startindex +! ---------------------------------------------------------------------- + INTEGER :: i,j, sum_index + REAL :: xmax(np) + ! CHARACTER :: compNo*2,phasNo*2 +! ---------------------------------------------------------------------- + +xmax(ph) = 0.0 +DO i = 1, ncomp + + IF ( xi(ph,i) > xmax(ph) ) THEN + xmax(ph) = xi(ph,i) + sum_index = i + + IF (ph == 1 .AND. i == 1) sum_rel(1) = 'x11' + IF (ph == 1 .AND. i == 2) sum_rel(1) = 'x12' + IF (ph == 1 .AND. i == 3) sum_rel(1) = 'x13' + IF (ph == 1 .AND. i == 4) sum_rel(1) = 'x14' + IF (ph == 1 .AND. i == 5) sum_rel(1) = 'x15' + + IF (ph == 2 .AND. i == 1) sum_rel(2) = 'x21' + IF (ph == 2 .AND. i == 2) sum_rel(2) = 'x22' + IF (ph == 2 .AND. i == 3) sum_rel(2) = 'x23' + IF (ph == 2 .AND. i == 4) sum_rel(2) = 'x24' + IF (ph == 2 .AND. i == 5) sum_rel(2) = 'x25' + + IF (ph == 3 .AND. i == 1) sum_rel(3) = 'x31' + IF (ph == 3 .AND. i == 2) sum_rel(3) = 'x32' + IF (ph == 3 .AND. i == 3) sum_rel(3) = 'x33' + IF (ph == 3 .AND. i == 4) sum_rel(3) = 'x34' + IF (ph == 3 .AND. i == 5) sum_rel(3) = 'x35' +! write (*,*) ph,i,xi(ph,i),sum_rel(ph) + END IF + +END DO + +j = 0 +DO i = 1, ncomp + + IF ( i /= sum_index .AND. i /= excl ) THEN + IF (ph == 1 .AND. i == 1) it(startindex+j) = 'x11' + IF (ph == 1 .AND. i == 2) it(startindex+j) = 'x12' + IF (ph == 1 .AND. i == 3) it(startindex+j) = 'x13' + IF (ph == 1 .AND. i == 4) it(startindex+j) = 'x14' + IF (ph == 1 .AND. i == 5) it(startindex+j) = 'x15' + + IF (ph == 2 .AND. i == 1) it(startindex+j) = 'x21' + IF (ph == 2 .AND. i == 2) it(startindex+j) = 'x22' + IF (ph == 2 .AND. i == 3) it(startindex+j) = 'x23' + IF (ph == 2 .AND. i == 4) it(startindex+j) = 'x24' + IF (ph == 2 .AND. i == 5) it(startindex+j) = 'x25' + + IF (ph == 3 .AND. i == 1) it(startindex+j) = 'x31' + IF (ph == 3 .AND. i == 2) it(startindex+j) = 'x32' + IF (ph == 3 .AND. i == 3) it(startindex+j) = 'x33' + IF (ph == 3 .AND. i == 4) it(startindex+j) = 'x34' + IF (ph == 3 .AND. i == 5) it(startindex+j) = 'x35' +! write (*,*) 'iter ',it(startindex+j) + j = j + 1 + END IF + +END DO + +END SUBROUTINE select_sum_rel + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE tangent_plane +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +!!$ INTERFACE +!!$ SUBROUTINE tangent_value (fmin, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: fmin +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_value +!!$ +!!$ SUBROUTINE tangent_grad (g, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: g(:) +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_grad +!!$ END INTERFACE + +! +! ---------------------------------------------------------------------- + INTERFACE + REAL FUNCTION PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE, fmin ) + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: optpara(n) + REAL, EXTERNAL :: TANGENT_VALUE + REAL, INTENT(IN OUT) :: fmin + END FUNCTION + + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + END FUNCTION + END INTERFACE +! +! ---------------------------------------------------------------------- + INTEGER :: n + INTEGER :: i, k, ph + INTEGER :: small_i, min_ph, other_ph + INTEGER :: PRIN + REAL :: fmin , t0, h0, MACHEP + REAL :: lnphi(np,nc) + REAL, ALLOCATABLE :: optpara(:) + +! INTEGER :: STATUS, iter, nfunc, ngrad +! REAL :: gnorm +! REAL, ALLOCATABLE :: d(:), g(:), xtemp(:), gtemp(:) +! ---------------------------------------------------------------------- + +n = ncomp +t0 = 1.E-4 +h0 = 0.1 +PRIN = 0 +MACHEP = 1.E-15 + +ALLOCATE( optpara(n) ) +!ALLOCATE( d(n) ) +!ALLOCATE( g(n) ) +!ALLOCATE( xtemp(n) ) +!ALLOCATE( gtemp(n) ) + +DO i = 1,ncomp + rhoi1(i) = rhoif(i) + lnx(1,i) = LOG(xi(1,i)) + lnx(2,i) = LOG(xi(2,i)) +END DO + +DO i = 1,ncomp + optpara(i) = LOG( xi(2,i) * 0.001 ) +END DO + +! CALL cg_descent (1.d-4, optpara, n, tangent_value, tangent_grad, STATUS, & +! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) +! +! updating the ln(x) valus from optpara. The optimal optpara-vector is not necessarily +! the one that was last evaluated. At the very end, cg_decent writes the best values to optpara +! CALL tangent_value (fmin, optpara, n) + + + +fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE2, fmin ) + +! The optimal optpara-vector is not necessarily the one that was last evaluated. +! TANGENT_VALUE is reexecuted with the optimal vector optpara, in order to update the ln(x) values +fmin = TANGENT_VALUE2( optpara, n ) + + +! ---------------------------------------------------------------------- +! If one component is a polymer (indicated by a low component-density) +! then get an estimate of the polymer-lean composition, by solving for +! xi_p1 = ( xi_p2 * phii_p2) / phii_p1 (phase equilibrium condition, +! with p1 for phase 1) +! ---------------------------------------------------------------------- +IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + min_ph = 1 + other_ph = 2 +ELSE + min_ph = 2 + other_ph = 1 +ENDIF +small_i = MINLOC( lnx(min_ph,1:ncomp), 1 ) +! --- if one component is a polymer ------------------------------------ +IF ( MINVAL( lnx(min_ph,1:ncomp) ) < -20.0 ) THEN + CALL FUGACITY ( lnphi ) + lnx(min_ph,small_i) = lnx(other_ph,small_i)+lnphi(other_ph,small_i) - lnphi(min_ph,small_i) + optpara(small_i) = lnx(2,small_i) + LOG( SUM( EXP( optpara(1:ncomp) ) ) ) +END IF + +! ---------------------------------------------------------------------- +! caution: these initial values are for a flashcase overwritten in +! SUBROUTINE determine_flash_it2, because in that case, the lnx-values +! treated as ln(mole_number). +! ---------------------------------------------------------------------- +val_init(1) = dense(1) +val_init(2) = dense(2) +val_init(3) = t +val_init(4) = p +DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO +END DO +!alpha = optpara(1) + + +!DEALLOCATE( optpara, d, g, xtemp, gtemp ) +DEALLOCATE( optpara ) + +END SUBROUTINE tangent_plane + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE determine_flash_it2 +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, ph + REAL :: n_phase1, n_phase2, max_x_diff +! ---------------------------------------------------------------------- + + IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + it(1) = 'x11' + it(2) = 'x12' + IF (ncomp >= 3) it(3) = 'x13' + IF (ncomp >= 4) it(4) = 'x14' + IF (ncomp >= 5) it(5) = 'x15' + sum_rel(1) = 'nfl' + ELSE + it(1) = 'x21' + it(2) = 'x22' + IF (ncomp >= 3) it(3) = 'x23' + IF (ncomp >= 4) it(4) = 'x24' + IF (ncomp >= 5) it(5) = 'x25' + sum_rel(2) = 'nfl' + ENDIF + max_x_diff = 0.0 + DO i = 1,ncomp + IF ( ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) > max_x_diff ) THEN + max_x_diff = ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase1 = ( xif(i) - EXP( lnx(2,i) ) ) / ( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase2 = 1.0 - n_phase1 + END IF + END DO + lnx(1,1:ncomp) = lnx(1,1:ncomp) + LOG( n_phase1 ) ! these x's are treated as mole numbers + lnx(2,1:ncomp) = lnx(2,1:ncomp) + LOG( n_phase2 ) ! these x's are treated as mole numbers + + + val_init(1) = dense(1) + val_init(2) = dense(2) + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) ! - LOG( SUM( EXP( lnx(ph,1:ncomp) ) ) ) + ! write (*,*) ph,k, lnx(ph,k) + END DO + END DO + +END SUBROUTINE determine_flash_it2 + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE poly_sta_var +! +! This subroutine generates starting values for mole fractons of +! polymer-solvent systems. +! The determination of these starting values follows a two-step +! procedure. Fist, the equilibrium concentration of the polymer-rich +! phase is estimated with the assumption of zero concentration +! of polymer in the polymer-lean-phase. This is achieved in the +! SUBROUTINE POLYMER_FREE. (Only one equation has to be iterated +! for this case). Once this is achieved, the rigorous calculation +! is triggered. If it converges, fine! If no solution is obtained, +! the pressure is somewhat reduced, the procedure is repeated and +! a calculation is started to approach the originally specified +! pressure. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE poly_sta_var (converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k,ph,sol + REAL :: p_spec,solution(10,4+nc*np) +! ---------------------------------------------------------------------- + + p_spec = p + + find_equilibrium: DO + + CALL polymer_free(p_spec,sol,solution) + + WRITE (*,*) ' ' + WRITE (*,*) ' GENERATING STARTING VALUES' + + val_init(1) = solution(1,1) ! approx.solutions for next iteration + val_init(2) = solution(1,2) ! approx.solutions for next iteration + val_init(3) = solution(1,3) ! approx.solutions for next iteration + val_init(4) = solution(1,4) ! approx.solutions for next iteration + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = solution(1,4+k+(ph-1)*ncomp) + END DO + END DO + val_init(7) = -10000.0 ! start.val. for lnx(2,1) for iterat. + + IF (p /= p_spec) & + WRITE (*,*) ' INITIAL EQUILIBRIUM CALC. FAILD. NEXT STEP STARTS' + + IF (p == p_spec) THEN + n_unkw = ncomp ! number of quantities to be iterated + it(1)='x11' ! iteration of mol fraction of comp.1 phase 1 + it(2)='x21' ! iteration of mol fraction of comp.1 phase 2 + CALL objective_ctrl (converg) + ELSE + outp = 0 ! output to terminal + running ='p' ! Pressure is running var. in PHASE_EQUILIB + CALL phase_equilib(p_spec,5.0,converg) + END IF + + IF (converg == 1) EXIT find_equilibrium + p = p * 0.9 + IF ( p < (0.7*p_spec) ) WRITE (*,*) ' NO SOLUTION FOUND' + IF ( p < (0.7*p_spec) ) STOP + + END DO find_equilibrium + + WRITE (*,*) ' FINISHED: POLY_STA_VAR' + +END SUBROUTINE poly_sta_var + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE x_summation +! +! This subroutine solves the summation relation: xi=1-sum(xj) +! The variable "sum_rel(i)" contains the information, which mole +! fraction is the one to be calculated here. Consider the example +! sum_rel(1)='x12'. The fist letter 'x' of this variable indicates, +! that this subroutine needs to be executed and that the mole +! fraction of a component has to be calculated. The second letter +! of the string points to phase 1, the third letter to component 2. +! If the fist letter is 'e', not 'x', then the subroutine +! NEUTR_CHARGE is called. This is the case of electrolyte solutions, +! neutral charges have to be enforced in all phases (see below). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE x_summation +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, ph_i + REAL :: sum_x + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno + LOGICAL :: flashcase2 +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF (sum_rel(j)(1:3) == 'nfl') THEN + CALL new_flash (j) + RETURN + END IF +END DO + + + +flashcase2 = .false. + +DO j = 1, nphas + + IF (sum_rel(j)(1:1) == 'x') THEN + + phasno = sum_rel(j)(2:2) + READ(phasno,*) ph_i + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( sum_rel(nphas+j)(1:1) == 'e' ) CALL neutr_charge(nphas+j) + + sum_x = 0.0 + DO i = 1, ncomp + IF ( i /= comp_i ) sum_x = sum_x + xi(ph_i,i) + END DO + xi(ph_i,comp_i) = 1.0 - sum_x + IF ( xi(ph_i,comp_i ) < 0.0 ) xi(ph_i,comp_i) = 0.0 + IF ( xi(ph_i,comp_i ) /= 0.0 ) THEN + lnx(ph_i,comp_i) = LOG( xi(ph_i,comp_i) ) + ELSE + lnx(ph_i,comp_i) = -100000.0 + END IF + ! write (*,*) 'sum_x',ph_i,comp_i,lnx(ph_i,comp_i),xi(ph_i,comp_i) + + ELSE IF ( sum_rel(j)(1:2) == 'fl' ) THEN + + flashcase2 = .true. + ! ------------------------------------------------------------------ + ! This case is true when all molefractions of one phase are + ! determined from a component balance. What is needed to + ! calculate all molefractions of that phase are all mole- + ! fractions of the other phase (nphas=2, so far) and the + ! phase fraction alpha. + ! Alpha is calculated (in FLASH_ALPHA) from the mole fraction + ! of component {sum_rel(j)(3:3)}. IF sum_rel(2)='fl3', then + ! the alpha is determined from the molefraction of comp. 3 and + ! the molefraction of phase 2 is then completely determined ELSE + ! ------------------------------------------------------------------ + + ELSE + WRITE (*,*) 'summation relation not defined' + STOP + END IF + +END DO + +IF ( it(1) == 'fls' ) CALL flash_sum +IF ( flashcase2 ) CALL flash_alpha + +END SUBROUTINE x_summation + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE FUGACITY +! +! This subroutine serves as an interface to the eos-subroutines. +! (1) case 1, when ensemble_flag = 'tp' +! The subroutine gives the residual chemical potential: +! mu_i^res(T,p,x)/kT = ln( phi_i ) +! and in addition, the densities that satisfy the specified p +! (2) case 2, when ensemble_flag = 'tv' +! The subroutine gives the residual chemical potential: +! --> mu_i^res(T,rho,x)/kT +! and in addition the resulting pressure for the given density. +! The term "residual" means difference of the property and the same +! property for an ideal gas mixture. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE FUGACITY (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + DO ph = 1,nphas + + phas = ph + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(ph) = eta + ln_phi(ph,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE enthalpy_etc +! +! This subroutine serves as an interface to the EOS-routines. The +! residual enthalpy h_res, residual entropy s_res, residual Gibbs +! enthalpy g_res, and residual heat capacity at constant pressure +! (cp_res) corresponding to converged conditions are calculated. +! The conditions in (T,P,xi,rho) need to be converged equilibrium +! conditions !! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE enthalpy_etc +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! + INTEGER :: ph +! ------------------------------------------------------------------ + +IF (eos <= 1) THEN + + DO ph=1,nphas + + phas = ph + eta = dense(ph) +! eta_start = dense(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF(num == 0) THEN + CALL H_EOS + ELSE + IF(num == 1) CALL H_numerical + IF(num == 2) write (*,*) 'enthalpy_etc: incorporate H_EOS_RN' + IF(num == 2) stop +! IF(num == 2) CALL H_EOS_rn + END IF + enthal(ph) = h_res + entrop(ph) = s_res + ! gibbs(ph) = h_res - t * s_res ! already defined in eos.f90 (including ideal gas) + cpres(ph) = cp_res + + END DO + IF (nphas == 2) h_lv = enthal(2)-enthal(1) + +ENDIF + +END SUBROUTINE enthalpy_etc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dens_calc +! +! This subroutine serves as an interface to the EOS-routines. The +! densities corresponding to given (P,T,xi) are calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dens_calc(rho_phas) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! +!------------------------------------------------------------------ + REAL, INTENT(OUT) :: rho_phas(np) +! + INTEGER :: ph +!------------------------------------------------------------------ + + +DO ph = 1, nphas + + IF (eos < 2) THEN + + phas = ph + eta = densta(ph) + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + CALL PERTURBATION_PARAMETER + CALL DENSITY_ITERATION + + dense(ph)= eta + rho_phas(ph) = eta/z3t + + ELSE + write (*,*) ' SUBROUTINE DENS_CALC not available for cubic EOS' + stop + END IF + +END DO + +END SUBROUTINE dens_calc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE fden_calc (fden, rhoi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fden + REAL, INTENT(IN OUT) :: rhoi(nc) +! ---------------------------------------------------------------------- + REAL :: rhot, fden_id +! ---------------------------------------------------------------------- + + +IF (eos < 2) THEN + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + + CALL PERTURBATION_PARAMETER + eta = rhot * z3t + eta_start = eta + + IF (num == 0) THEN + CALL F_EOS + ELSE IF(num == 1) THEN + CALL F_NUMERICAL + ELSE + write (*,*) 'deactivated this line when making a transition to f90' + stop + ! CALL F_EOS_rn + END IF + + fden_id = SUM( rhoi(1:ncomp) * ( LOG( rhoi(1:ncomp) ) - 1.0 ) ) + + fden = fres * rhot + fden_id + +ELSE + write (*,*) ' SUBROUTINE FDEN_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE fden_calc + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE polymer_free +! +! This subroutine performes a phase equilibrium calculation assuming +! the polymer-lean hase to be polymer-free (x_poly=0). Only the +! equality of the solvent-fugacities has to be ensured (only one +! equation to be iterated). This procedure delivers very good +! appoximations for the polymer-rich phase up-to fairly close to the +! mixture critical point. Both, liquid-liquid and vapor-liquid +! equilibria can be calculated. +! See also comments to SUBROUTINE POLY_STA_VAR. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE polymer_free (p_spec,sol,solution) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: p_spec + INTEGER, INTENT(OUT) :: sol + REAL, INTENT(OUT) :: solution(10,4+nc*np) +! +! ---------------------------------------------------------------------- + INTEGER :: k,j,ph, converg + REAL :: grid(10) +! ---------------------------------------------------------------------- + + sol = 0 + + grid(1)=0.98 + grid(2)=0.9 + grid(3)=0.7 + grid(4)=0.5 + grid(5)=0.3 + grid(6)=0.2 + grid(7)=0.1 + grid(8)=0.05 + + DO WHILE ( sol == 0 ) + + DO j = 1,8 + ! Phase 2 is solvent-phase + ! starting value for xi(1,1) of polymer-phase 1: w_polymer=0.95 to 0.05 + ! from simple approximate equation + xi(1,1) = grid(j) / ( (1.0-grid(j)) * mm(1) / mm(2) ) !xi(1,1) Phase 1 Komponente 1 + IF ( mm(1) < 5000.0 ) xi(1,1) = xi(1,1) * 0.8 + xi(1,2) = 1.0 - xi(1,1) !xi(1,2) Phase 1 Komponente 2 + lnx(1,1) = LOG(xi(1,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,1) = -1.E10 !ln(xi) Phase 2 Komponente 1 + lnx(2,2) = 0.0 !ln(xi) Phase 2 Komponente 2 + + + + val_init(1) = 0.45 ! starting density targeting at a liquid phase + val_init(2) = 0.0001 ! starting density targeting at a vapor phase + ! val_init(2) = 0.45 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO + END DO + + + + + n_unkw = ncomp-1 ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = ' ' + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' + + CALL objective_ctrl (converg) + + IF (converg == 1 .AND. ABS(dense(1)/dense(2)-1.0) > 1.d-3 .AND. dense(1) > 0.1) THEN + IF (sol == 0) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + ELSE IF (ABS(solution(sol,5)/lnx(1,1)-1.0) > 1.d-2) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + END IF + END IF + + END DO + + + + + + IF (sol == 0) THEN + WRITE (*,*) ' no initial solution found' + p = p*0.9 + IF (p < (0.7*p_spec)) WRITE (*,*) ' NO SOLUTION FOUND' + IF (p < (0.7*p_spec)) STOP + ELSE IF (sol > 1) THEN + ! write (*,*) ' ' + ! write (*,*) ' ',sol,' solutions found:' + ! write (*,*) ' lnx(1,1), dichte_1, dichte_2' + ! DO k = 1,sol + ! write (*,*) solution(k,5),solution(k,1),solution(k,2) + ! END DO + END IF + END DO + + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + + END SUBROUTINE polymer_free + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_equilib +! +! This subroutine varies a predefined "running variable" and +! organizes phase equilibrium calculations. For an isotherm +! calculation e.g., the running variable is often the pressure. The +! code is designed to deliver only converged solutions. In order to +! enforce convergence, a step-width adjustment (reduction) is +! implemented. + +! VARIABLE LIST: +! running defines the running variable. For example: if you want +! to calculate the vapor pressure curve of a component +! starting from 100�C to 200�C, then running is 't'. The +! temperature is step-wise increased until the end- +! -temperature of 200�C is reached. +! (in this example end_x=200+273.15) +! end_x end point for running variable +! steps No. of calculation steps towards the end point of calc. +! converg 0 if no convergence achieved, 1 if converged solution +! +! PREREQUISITES: +! prior to execution of this routine, the follwing variables have to +! be defined: "val_init" an array containing the starting values for +! this iteration, "it(i)" provides the information, which variable is +! determined iteratively, "sum_rel(i)" indicates, which mole fraction +! is determined from the summation relation sum(xi)=1. Furthermore, +! the number of phases and the variables provided by the subroutine +! INPUT are required. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_equilib (end_x,steps,converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: end_x + REAL, INTENT(IN) :: steps + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k, count1,count2,runindex,maxiter + REAL :: delta_x,delta_org,val_org,runvar + CHARACTER (LEN=2) :: compon + LOGICAL :: continue_cycle +! ---------------------------------------------------------------------- + +IF (running(1:2) == 'd1') runindex = 1 +IF (running(1:2) == 'd2') runindex = 2 +IF (running(1:1) == 't') runindex = 3 +IF (running(1:1) == 'p') runindex = 4 +IF (running(1:2) == 'x1') compon = running(3:3) +IF (running(1:2) == 'x1') READ(compon,*) k +IF (running(1:2) == 'x1') runindex = 4+k +IF (running(1:2) == 'x2') compon = running(3:3) +IF (running(1:2) == 'x2') READ(compon,*) k +IF (running(1:2) == 'x2') runindex = 4+ncomp+k +IF (running(1:2) == 'l1') compon = running(3:3) +IF (running(1:2) == 'l1') READ(compon,*) k +IF (running(1:2) == 'l1') runindex = 4+k +IF (running(1:2) == 'l2') compon = running(3:3) +IF (running(1:2) == 'l2') READ(compon,*) k +IF (running(1:2) == 'l2') runindex = 4+ncomp+k + +maxiter = 200 +IF ( ncomp >= 3 ) maxiter = 1000 +count1 = 0 +count2 = 0 +delta_x = ( end_x - val_init(runindex) ) / steps !J: calc increment in running var = (phi_end - phi_init)/steps +delta_org = ( end_x - val_init(runindex) ) / steps +val_org = val_init(runindex) +IF ( running(1:1) == 'x' ) THEN + delta_x = ( end_x - EXP(val_init(runindex)) ) / steps + delta_org = ( end_x - EXP(val_init(runindex)) ) / steps + val_org = EXP(val_init(runindex)) +END IF + +continue_cycle = .true. + +DO WHILE ( continue_cycle ) + + count1 = count1 + 1 + count2 = count2 + 1 + ! val_org = val_init(runindex) + + + CALL objective_ctrl (converg) + + IF (converg == 1) THEN + val_init( 1:(4+ncomp*nphas) ) = val_conv( 1:(4+ncomp*nphas) ) + IF (outp == 1 .AND. (ABS(delta_x) > 0.1*ABS(delta_org) .OR. count2 == 2)) CALL output + ELSE + delta_x = delta_x / 2.0 + IF (num == 2) delta_x = delta_x / 2.0 + val_init(runindex) = val_org + IF (running(1:1) == 'x') val_init(runindex) = LOG(val_org) + continue_cycle = .true. + count2 = 0 + END IF + runvar = val_init(runindex) + IF (running(1:1) == 'x') runvar = EXP(val_init(runindex)) + + IF ( end_x == 0.0 .AND. running(1:1) /= 'x' ) THEN + IF ( ABS(runvar-end_x) < 1.E-8 ) continue_cycle = .false. + ELSE IF ( ABS((runvar-end_x)/end_x) < 1.E-8 ) THEN + ! IF(delta_org.NE.0.0) WRITE (*,*)' FINISHED ITERATION',count1 + continue_cycle = .false. + ELSE IF ( count1 == maxiter ) THEN + WRITE (*,*) ' MAX. NO OF ITERATIONS',count1 + converg = 0 + continue_cycle = .false. + ELSE IF ( ABS(delta_x) < 1.E-5*ABS(delta_org) ) THEN + ! WRITE (*,*) ' CLOSEST APPROACH REACHED',count1 + converg = 0 + continue_cycle = .false. + ELSE + continue_cycle = .true. + val_org = runvar + IF (ABS(runvar+delta_x-end_x) > ABS(runvar-end_x)) delta_x = end_x - runvar ! if end-point passed + val_init(runindex) = runvar + delta_x + IF (running(1:1) == 'x') val_init(runindex) = LOG(runvar+delta_x) + END IF + + IF (ABS(delta_x) < ABS(delta_org) .AND. count2 >= 5) THEN + delta_x = delta_x * 2.0 + count2 = 0 + END IF + +END DO ! continue_cycle + +END SUBROUTINE phase_equilib + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE new_flash (ph_it) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph_it +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph_cal + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + ph_cal = 3 - ph_it ! for two phases only + + DO i = 1, ncomp + IF ( lnx(ph_it,i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( lnx(ph_it,i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i)-ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(ph_it,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + DO i = 1, ncomp + IF ( xi(ph_it,i) >= 1.E-300 ) lnx(ph_it,i) = LOG( xi(ph_it,i) ) + END DO + xi(ph_cal,1:ncomp) = ni_1(1:ncomp) / SUM( ni_1(1:ncomp) ) + lnx(ph_cal,1:ncomp) = LOG( xi(ph_cal,1:ncomp) ) + +END SUBROUTINE new_flash + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PHI_EOS +! +! This subroutine gives the residual chemical potential: +! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! The required input for this case (T, p, x(nc)) and as a starting value +! eta_start +! +! or it gives +! +! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! The required input for this case (T, eta_start, x(nc)). Note that +! eta_start is the specified density (packing fraction) in this case. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_EOS +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + +END DO + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + +END SUBROUTINE PHI_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE, ONLY: z_ges, fres_temp + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + INTEGER :: k + REAL :: zres, zges + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: delta_rho + REAL, DIMENSION(nc) :: myres + REAL, DIMENSION(nc) :: rhoi, rhoi_0 + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +!----------------------------------------------------------------------- +! density iteration or pressure calculation +!----------------------------------------------------------------------- + +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_NUMERICAL +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (tv) or (tp)' + stop +END IF + +!----------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +!----------------------------------------------------------------------- + +zges = (p * 1.E-30) / (kbol*t*eta/z3t) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.E-30) / (kbol*t*eta/z3t) +zres = zges - 1.0 +z_ges = zges + +rhoi_0(1:ncomp) = x(1:ncomp) * eta/z3t +rhoi(1:ncomp) = rhoi_0(1:ncomp) + + +!----------------------------------------------------------------------- +! derivative to rho_k (keeping other rho_i's constant +!----------------------------------------------------------------------- + +DO k = 1, ncomp + + IF ( rhoi_0(k) > 1.d-9 ) THEN + delta_rho = 1.E-13 * 10.0**(0.5*(15.0+LOG10(rhoi_0(k)))) + ELSE + delta_rho = 1.E-10 + END IF + + rhoi(k) = rhoi_0(k) + delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres1 = fres*rho + tfr_1 = tfr*rho + + rhoi(k) = rhoi_0(k) + 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres2 = fres*rho + tfr_2 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + rhoi(k) = rhoi_0(k) - 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres4 = fres*rho + tfr_4 = tfr*rho + + rhoi(k) = rhoi_0(k) - delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres5 = fres*rho + tfr_5 = tfr*rho + END IF + + rhoi(k) = rhoi_0(k) + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres3 = fres*rho + tfr_3 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + myres(k) = ( fres5 - 8.0*fres4 + 8.0*fres2 - fres1 ) / ( 6.0*delta_rho ) + ELSE + myres(k) = ( -3.0*fres3 + 4.0*fres2 - fres1 ) / delta_rho + END IF + +END DO + + +!----------------------------------------------------------------------- +! residual Helmholtz energy +!----------------------------------------------------------------------- + +fres_temp = fres + +!----------------------------------------------------------------------- +! residual chemical potential +!----------------------------------------------------------------------- + +DO k = 1, ncomp + IF (ensemble_flag == 'tp') lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' .AND. eta >= 0.0) lnphi(k) = myres(k) !+LOG(rho) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta + ! IF (DFT.GE.98) write (*,*) dft + ! write (*,*) 'lnphi',k,LNPHI(k),x(k),MYRES(k), -LOG(ZGES) + ! pause + ! write (*,*) k, myres(k), fres, ZRES +END DO + +END SUBROUTINE PHI_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +! SUBROUTINE H_EOS (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! IMPLICIT NONE +! INTEGER nc +! PARAMETER (nc=20) +! INTEGER phas,ncomp,eos,i +! REAL kij(nc,nc),lij(nc,nc),x(nc),t,p,parame(nc,25) +! REAL eta_start,eta,tfr,h_res,cp_res,s_res + + +! i=1 + +! IF (i.EQ.1) THEN +! CALL H_EOS_1(phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ELSE +! CALL H_EOS_NUM (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ENDIF + +! RETURN +! END + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS +! + USE PARAMETERS, ONLY: RGAS + USE EOS_CONSTANTS + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL :: zges, df_dt, dfdr, ddfdrdr + REAL :: cv_res, df_dt2, df_drdt + REAL :: fact, dist, t_tmp, rho_0 + REAL :: fdr1, fdr2, fdr3, fdr4 + + INTEGER :: i, m + REAL :: dhsdt(nc), dhsdt2(nc) + REAL :: z0, z1, z2, z3, z1tdt, z2tdt, z3tdt + REAL :: z1dt, z2dt, z3dt, zms, gii + REAL :: fhsdt, fhsdt2 + REAL :: fchdt, fchdt2 + REAL :: fdspdt, fdspdt2 + REAL :: fhbdt, fhbdt2 + REAL :: sumseg, I1, I2, I1dt, I2dt, I1dt2, I2dt2 + REAL :: c1_con, c2_con, c3_con, c1_dt, c1_dt2 + REAL :: z1tdt2, z2tdt2, z3tdt2 + REAL :: z1dt2, z2dt2, z3dt2 + + INTEGER :: j, k, l, no, ass_cnt, max_eval + LOGICAL :: assoc + REAL :: dij, dijdt, dijdt2 + REAL :: gij1dt, gij2dt, gij3dt + REAL :: gij1dt2, gij2dt2, gij3dt2 + REAL, DIMENSION(nc,nc) :: gijdt, gijdt2, kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: ass_d_dt, ass_d_dt2, eps_hb, delta, deltadt, deltadt2 + REAL, DIMENSION(nc,nsite) :: mxdt, mxdt2, mx_itr, mx_itrdt, mx_itrdt2 + REAL :: attenu, tol, suma, sumdt, sumdt2, err_sum + + INTEGER :: dipole + REAL :: fdddt, fdddt2 + REAL, DIMENSION(nc) :: my2dd, my0 + REAL, DIMENSION(nc,nc) :: idd2, idd2dt, idd2dt2, idd4, idd4dt, idd4dt2 + REAL, DIMENSION(nc,nc,nc) :: idd3, idd3dt, idd3dt2 + REAL :: factor2, factor3 + REAL :: fdd2, fdd3, fdd2dt, fdd3dt, fdd2dt2, fdd3dt2 + REAL :: eij, xijmt, xijkmt + + INTEGER :: qudpole + REAL :: fqqdt, fqqdt2 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: iqq2, iqq2dt, iqq2dt2, iqq4, iqq4dt, iqq4dt2 + REAL, DIMENSION(nc,nc,nc) :: iqq3, iqq3dt, iqq3dt2 + REAL :: fqq2, fqq2dt, fqq2dt2, fqq3, fqq3dt, fqq3dt2 + + INTEGER :: dip_quad + REAL :: fdqdt, fdqdt2 + REAL, DIMENSION(nc) :: myfac, q_fac + REAL, DIMENSION(nc,nc) :: idq2, idq2dt, idq2dt2, idq4, idq4dt, idq4dt2 + REAL, DIMENSION(nc,nc,nc) :: idq3, idq3dt, idq3dt2 + REAL :: fdq2, fdq2dt, fdq2dt2, fdq3, fdq3dt, fdq3dt2 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! Initializing +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +sumseg = z0t / (PI/6.0) +zms = 1.0 - z3 + + +! ---------------------------------------------------------------------- +! first and second derivative of f to density (dfdr,ddfdrdr) +! ---------------------------------------------------------------------- +CALL P_EOS + +zges = (pges * 1.E-30)/(kbol*t*rho) + +dfdr = pges/(eta*rho*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + + +! ---------------------------------------------------------------------- +! Helmholtz Energy f/kT = fres +! ---------------------------------------------------------------------- +CALL F_EOS + + +! ---------------------------------------------------------------------- +! derivative of some auxilliary properties to temperature +! ---------------------------------------------------------------------- +DO i = 1,ncomp + dhsdt(i)=parame(i,2) *(-3.0*parame(i,3)/t/t)*0.12*EXP(-3.0*parame(i,3)/t) + dhsdt2(i) = dhsdt(i)*3.0*parame(i,3)/t/t & + + 6.0*parame(i,2)*parame(i,3)/t**3 *0.12*EXP(-3.0*parame(i,3)/t) +END DO + +z1tdt = 0.0 +z2tdt = 0.0 +z3tdt = 0.0 +DO i = 1,ncomp + z1tdt = z1tdt + x(i) * mseg(i) * dhsdt(i) + z2tdt = z2tdt + x(i) * mseg(i) * 2.0*dhs(i)*dhsdt(i) + z3tdt = z3tdt + x(i) * mseg(i) * 3.0*dhs(i)*dhs(i)*dhsdt(i) +END DO +z1dt = PI / 6.0*z1tdt *rho +z2dt = PI / 6.0*z2tdt *rho +z3dt = PI / 6.0*z3tdt *rho + + +z1tdt2 = 0.0 +z2tdt2 = 0.0 +z3tdt2 = 0.0 +DO i = 1,ncomp + z1tdt2 = z1tdt2 + x(i)*mseg(i)*dhsdt2(i) + z2tdt2 = z2tdt2 + x(i)*mseg(i)*2.0 *( dhsdt(i)*dhsdt(i) +dhs(i)*dhsdt2(i) ) + z3tdt2 = z3tdt2 + x(i)*mseg(i)*3.0 *( 2.0*dhs(i)*dhsdt(i)* & + dhsdt(i) +dhs(i)*dhs(i)*dhsdt2(i) ) +END DO +z1dt2 = PI / 6.0*z1tdt2 *rho +z2dt2 = PI / 6.0*z2tdt2 *rho +z3dt2 = PI / 6.0*z3tdt2 *rho + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT hard spheres to temp. (fhsdt) +! ---------------------------------------------------------------------- +fhsdt = 6.0/PI/rho*( 3.0*(z1dt*z2+z1*z2dt)/zms + 3.0*z1*z2*z3dt/zms/zms & + + 3.0*z2*z2*z2dt/z3/zms/zms & + + z2**3 *(2.0*z3*z3dt-z3dt*zms)/(z3*z3*zms**3 ) & + + (3.0*z2*z2*z2dt*z3-2.0*z2**3 *z3dt)/z3**3 *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3dt/zms ) + +fhsdt2= 6.0/PI/rho*( 3.0*(z1dt2*z2+2.0*z1dt*z2dt+z1*z2dt2)/zms & + + 6.0*(z1dt*z2+z1*z2dt)*z3dt/zms/zms & + + 3.0*z1*z2*z3dt2/zms/zms + 6.0*z1*z2*z3dt*z3dt/zms**3 & + + 3.0*z2*(2.0*z2dt*z2dt+z2*z2dt2)/z3/zms/zms & + - z2*z2*(6.0*z2dt*z3dt+z2*z3dt2)/(z3*z3*zms*zms) & + + 2.0*z2**3 *z3dt*z3dt/(z3**3 *zms*zms) & + - 4.0*z2**3 *z3dt*z3dt/(z3*z3 *zms**3 ) & + + (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/(z3*zms**3 ) & + + 6.0*z2**3 *z3dt*z3dt/(z3*zms**4 ) & + - 2.0*(3.0*z2*z2*z2dt/z3/z3-2.0*z2**3 *z3dt/z3**3 ) *z3dt/zms & + -(z2**3 /z3/z3-z0)*(z3dt2/zms+z3dt*z3dt/zms/zms) & + + ( (6.0*z2*z2dt*z2dt+3.0*z2*z2*z2dt2)/z3/z3 & + - (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/z3**3 & + + 6.0*z2**3 *z3dt*z3dt/z3**4 )* LOG(zms) ) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT of chain term to T (fchdt) +! ---------------------------------------------------------------------- +fchdt = 0.0 +fchdt2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + dij=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + dijdt =(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) / (dhs(i)+dhs(j)) & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) + dijdt2=(dhsdt2(i)*dhs(j) + 2.0*dhsdt(i)*dhsdt(j) & + + dhs(i)*dhsdt2(j)) / (dhs(i)+dhs(j)) & + - 2.0*(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) & + / (dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) & + + 2.0* dhs(i)*dhs(j) / (dhs(i)+dhs(j))**3 & + * (dhsdt(i)+dhsdt(j))**2 & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt2(i)+dhsdt2(j)) + gij1dt = z3dt/zms/zms + gij2dt = 3.0*( z2dt*dij+z2*dijdt )/zms/zms +6.0*z2*dij*z3dt/zms**3 + gij3dt = 4.0*(dij*z2)* (dijdt*z2 + dij*z2dt) /zms**3 & + + 6.0*(dij*z2)**2 * z3dt /zms**4 + gij1dt2 = z3dt2/zms/zms +2.0*z3dt*z3dt/zms**3 + gij2dt2 = 3.0*( z2dt2*dij+2.0*z2dt*dijdt+z2*dijdt2 )/zms/zms & + + 6.0*( z2dt*dij+z2*dijdt )/zms**3 * z3dt & + + 6.0*(z2dt*dij*z3dt+z2*dijdt*z3dt+z2*dij*z3dt2) /zms**3 & + + 18.0*z2*dij*z3dt*z3dt/zms**4 + gij3dt2 = 4.0*(dijdt*z2+dij*z2dt)**2 /zms**3 & + + 4.0*(dij*z2)* (dijdt2*z2+2.0*dijdt*z2dt+dij*z2dt2) /zms**3 & + + 24.0*(dij*z2) *(dijdt*z2+dij*z2dt)/zms**4 *z3dt & + + 6.0*(dij*z2)**2 * z3dt2 /zms**4 & + + 24.0*(dij*z2)**2 * z3dt*z3dt /zms**5 + gijdt(i,j) = gij1dt + gij2dt + gij3dt + gijdt2(i,j) = gij1dt2 + gij2dt2 + gij3dt2 + END DO +END DO + +DO i = 1, ncomp + gii = 1.0/zms + 3.0*dhs(i)/2.0*z2/zms/zms + 2.0*dhs(i)*dhs(i)/4.0*z2*z2/zms**3 + fchdt = fchdt + x(i) * (1.0-mseg(i)) * gijdt(i,i) / gii + fchdt2= fchdt2+ x(i) * (1.0-mseg(i)) & + * (gijdt2(i,i) / gii - (gijdt(i,i)/gii)**2 ) +END DO + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT dispersion term to T (fdspdt) +! ---------------------------------------------------------------------- +I1 = 0.0 +I2 = 0.0 +I1dt = 0.0 +I2dt = 0.0 +I1dt2= 0.0 +I2dt2= 0.0 +DO m = 0, 6 + I1 = I1 + apar(m)*z3**REAL(m) + I2 = I2 + bpar(m)*z3**REAL(m) + I1dt = I1dt + apar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I2dt = I2dt + bpar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I1dt2= I1dt2+ apar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + apar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) + I2dt2= I2dt2+ bpar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + bpar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) +END DO + +c1_con= 1.0/ ( 1.0 + sumseg*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - sumseg)*(20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) +c2_con= - c1_con*c1_con *(sumseg*(-4.0*z3**2 +20.0*z3+8.0)/zms**5 & + + (1.0 - sumseg) *(2.0*z3**3 +12.0*z3**2 -48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) +c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( sumseg*(-12.0*z3**2 +72.0*z3+60.0)/zms**6 + (1.0 - sumseg) & + *(-6.0*z3**4 -48.0*z3**3 +288.0*z3**2 -480.0*z3+264.0) & + /(zms*(2.0-z3))**4 ) +c1_dt = c2_con*z3dt +c1_dt2 = c3_con*z3dt*z3dt + c2_con*z3dt2 + +fdspdt = - 2.0*PI*rho*(I1dt-I1/t)*order1 & + - PI*rho*sumseg*(c1_dt*I2+c1_con*I2dt-2.0*c1_con*I2/t)*order2 + +fdspdt2 = - 2.0*PI*rho*(I1dt2-2.0*I1dt/t+2.0*I1/t/t)*order1 & + - PI*rho*sumseg*order2*( c1_dt2*I2 +2.0*c1_dt*I2dt -4.0*c1_dt*I2/t & + + 6.0*c1_con*I2/t/t -4.0*c1_con*I2dt/t +c1_con*I2dt2) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT association term to T (fhbdt) +! ---------------------------------------------------------------------- +fhbdt = 0.0 +fhbdt2 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) THEN + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1,nhb_typ(i) + DO k = 1,nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO j = 1,nhb_typ(i) + no = no + 1 + END DO + ELSE + kap_hb(i,i) = 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0) ) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + ! kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l)=(eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l)=eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN + eps_hb(1,2,3,1)=0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1)=0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ! ass_d(i,j,k,l)=kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + ass_d_dt(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) + ass_d_dt2(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 & + * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) & + * (-2.0/t - eps_hb(i,j,k,l)/t/t) + END DO + END DO + END DO + END DO + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l)=gij(i,j)*ass_d(i,j,k,l) + deltadt(i,j,k,l) = gijdt(i,j)*ass_d(i,j,k,l) + gij(i,j)*ass_d_dt(i,j,k,l) + deltadt2(i,j,k,l)= gijdt2(i,j)*ass_d(i,j,k,l) & + + 2.0*gijdt(i,j)*ass_d_dt(i,j,k,l) +gij(i,j)*ass_d_dt2(i,j,k,l) + END DO + END DO + END DO + END DO + + +! ------ constants for iteration --------------------------------------- + attenu = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-12 + max_eval = 200 + +! ------ initialize mxdt(i,j) ------------------------------------------ + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + mxdt(i,k) = 0.0 + mxdt2(i,k) = 0.0 + END DO + END DO + + +! ------ iterate over all components and all sites --------------------- + DO ass_cnt = 1, max_eval + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + suma = 0.0 + sumdt = 0.0 + sumdt2= 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + suma = suma + x(j)*nhb_no(j,l)* mx(j,l) *delta(i,j,k,l) + sumdt = sumdt + x(j)*nhb_no(j,l)*( mx(j,l) *deltadt(i,j,k,l) & + + mxdt(j,l)*delta(i,j,k,l) ) + sumdt2 = sumdt2 + x(j)*nhb_no(j,l)*( mx(j,l)*deltadt2(i,j,k,l) & + + 2.0*mxdt(j,l)*deltadt(i,j,k,l) + mxdt2(j,l)*delta(i,j,k,l) ) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + suma * rho) + mx_itrdt(i,k)= - mx_itr(i,k)**2 * sumdt*rho + mx_itrdt2(i,k)= +2.0*mx_itr(i,k)**3 * (sumdt*rho)**2 - mx_itr(i,k)**2 *sumdt2*rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) & + + ABS(mx_itrdt(i,k) - mxdt(i,k)) + ABS(mx_itrdt2(i,k) - mxdt2(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + mxdt(i,k)=mx_itrdt(i,k)*attenu +mxdt(i,k)* (1.0 - attenu) + mxdt2(i,k)=mx_itrdt2(i,k)*attenu +mxdt2(i,k)* (1.0 - attenu) + END DO + END DO + IF(err_sum <= tol) GO TO 10 + + END DO + WRITE(6,*) 'CAL_PCSAFT: max_eval violated err_sum = ',err_sum,tol + STOP + 10 CONTINUE + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + ! fhb = fhb + x(i)* nhb_no(i,k)* ( 0.5 * ( 1.0 - mx(i,k) ) + LOG(mx(i,k)) ) + fhbdt = fhbdt + x(i)*nhb_no(i,k) *mxdt(i,k)*(1.0/mx(i,k)-0.5) + fhbdt2= fhbdt2 + x(i)*nhb_no(i,k) *(mxdt2(i,k)*(1.0/mx(i,k)-0.5) & + -(mxdt(i,k)/mx(i,k))**2 ) + END DO + END DO + +END IF + + +! ---------------------------------------------------------------------- +! derivatives of f/kT of dipole-dipole term to temp. (fdddt) +! ---------------------------------------------------------------------- +fdddt = 0.0 +fdddt2 = 0.0 +dipole = 0 +DO i = 1,ncomp + my2dd(i) = 0.0 + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 ) THEN + dipole = 1 + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END IF + my0(i) = my2dd(i) ! needed for dipole-quadrupole-term +END DO + +IF (dipole == 1) THEN + DO i = 1,ncomp + DO j = 1,ncomp + idd2(i,j) =0.0 + idd4(i,j) =0.0 + idd2dt(i,j) =0.0 + idd4dt(i,j) =0.0 + idd2dt2(i,j)=0.0 + idd4dt2(i,j)=0.0 + DO m=0,4 + idd2(i,j) = idd2(i,j) +ddp2(i,j,m)*z3**REAL(m) + idd4(i,j) = idd4(i,j) +ddp4(i,j,m)*z3**REAL(m) + idd2dt(i,j)= idd2dt(i,j) +ddp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd4dt(i,j)= idd4dt(i,j) +ddp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd2dt2(i,j)=idd2dt2(i,j)+ddp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idd4dt2(i,j)=idd4dt2(i,j)+ddp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + idd3(i,j,k) =0.0 + idd3dt(i,j,k) =0.0 + idd3dt2(i,j,k)=0.0 + DO m = 0, 4 + idd3(i,j,k) = idd3(i,j,k) +ddp3(i,j,k,m)*z3**REAL(m) + idd3dt(i,j,k) = idd3dt(i,j,k)+ddp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idd3dt2(i,j,k)= idd3dt2(i,j,k)+ddp3(i,j,k,m)*z3dt2*REAL(m) & + *z3**REAL(m-1) +ddp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1) *z3**REAL(m-2) + END DO + END DO + END DO + END DO + + + factor2= -PI *rho + factor3= -4.0/3.0*PI**2 * rho**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2dt= 0.0 + fdd3dt= 0.0 + fdd2dt2= 0.0 + fdd3dt2= 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + xijmt = x(i)*parame(i,3)*parame(i,2)**3 *x(j)*parame(j,3)*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2* xijmt/t/t*(idd2(i,j)+eij/t*idd4(i,j)) + fdd2dt= fdd2dt+ factor2* xijmt/t/t*(idd2dt(i,j)-2.0*idd2(i,j)/t & + +eij/t*idd4dt(i,j)-3.0*eij/t/t*idd4(i,j)) + fdd2dt2=fdd2dt2+factor2*xijmt/t/t*(idd2dt2(i,j)-4.0*idd2dt(i,j)/t & + +6.0*idd2(i,j)/t/t+eij/t*idd4dt2(i,j) & + -6.0*eij/t/t*idd4dt(i,j)+12.0*eij/t**3 *idd4(i,j)) + DO k = 1, ncomp + xijkmt=x(i)*parame(i,3)*parame(i,2)**3 & + *x(j)*parame(j,3)*parame(j,2)**3 & + *x(k)*parame(k,3)*parame(k,2)**3 & + /((parame(i,2)+parame(j,2))/2.0) /((parame(i,2)+parame(k,2))/2.0) & + /((parame(j,2)+parame(k,2))/2.0) *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 =fdd3 +factor3*xijkmt/t**3 *idd3(i,j,k) + fdd3dt =fdd3dt +factor3*xijkmt/t**3 * (idd3dt(i,j,k)-3.0*idd3(i,j,k)/t) + fdd3dt2=fdd3dt2+factor3*xijkmt/t**3 & + *( idd3dt2(i,j,k)-6.0*idd3dt(i,j,k)/t+12.0*idd3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fdd2 < -1.E-100 .AND. fdd3 /= 0.0 ) THEN + fdddt = fdd2* (fdd2*fdd2dt - 2.0*fdd3*fdd2dt+fdd2*fdd3dt) / (fdd2-fdd3)**2 + fdddt2 = ( 2.0*fdd2*fdd2dt*fdd2dt +fdd2*fdd2*fdd2dt2 & + -2.0*fdd2dt**2 *fdd3 -2.0*fdd2*fdd2dt2*fdd3 +fdd2*fdd2*fdd3dt2 ) & + /(fdd2-fdd3)**2 + fdddt * 2.0*(fdd3dt-fdd2dt)/(fdd2-fdd3) + END IF +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of quadrupole-quadrup. term to T (fqqdt) +! ---------------------------------------------------------------------- +fqqdt = 0.0 +fqqdt2 = 0.0 +qudpole = 0 +DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + IF (qq2(i) /= 0.0) qudpole = 1 +END DO + +IF (qudpole == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + iqq2(i,j) = 0.0 + iqq4(i,j) = 0.0 + iqq2dt(i,j) = 0.0 + iqq4dt(i,j) = 0.0 + iqq2dt2(i,j)= 0.0 + iqq4dt2(i,j)= 0.0 + DO m = 0, 4 + iqq2(i,j) = iqq2(i,j) + qqp2(i,j,m)*z3**REAL(m) + iqq4(i,j) = iqq4(i,j) + qqp4(i,j,m)*z3**REAL(m) + iqq2dt(i,j) = iqq2dt(i,j)+ qqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq4dt(i,j) = iqq4dt(i,j)+ qqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq2dt2(i,j)= iqq2dt2(i,j)+qqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + iqq4dt2(i,j)= iqq4dt2(i,j)+qqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + iqq3(i,j,k) =0.0 + iqq3dt(i,j,k) =0.0 + iqq3dt2(i,j,k)=0.0 + DO m = 0, 4 + iqq3(i,j,k) = iqq3(i,j,k) + qqp3(i,j,k,m)*z3**REAL(m) + iqq3dt(i,j,k) = iqq3dt(i,j,k)+ qqp3(i,j,k,m)*z3dt*REAL(m) * z3**REAL(m-1) + iqq3dt2(i,j,k)= iqq3dt2(i,j,k)+qqp3(i,j,k,m)*z3dt2*REAL(m) * z3**REAL(m-1) & + + qqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END DO + END DO + END DO + + factor2 = -9.0/16.0 * PI *rho + factor3 = 9.0/16.0 * PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2dt = 0.0 + fqq3dt = 0.0 + fqq2dt2= 0.0 + fqq3dt2= 0.0 + DO i = 1,ncomp + DO j = 1,ncomp + xijmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2 = fqq2 +factor2* xijmt/t/t*(iqq2(i,j)+eij/t*iqq4(i,j)) + fqq2dt= fqq2dt +factor2* xijmt/t/t*(iqq2dt(i,j)-2.0*iqq2(i,j)/t & + + eij/t*iqq4dt(i,j)-3.0*eij/t/t*iqq4(i,j)) + fqq2dt2=fqq2dt2+factor2*xijmt/t/t*(iqq2dt2(i,j)-4.0*iqq2dt(i,j)/t & + + 6.0*iqq2(i,j)/t/t+eij/t*iqq4dt2(i,j) & + - 6.0*eij/t/t*iqq4dt(i,j)+12.0*eij/t**3 *iqq4(i,j)) + DO k = 1,ncomp + xijkmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /sig_ij(i,j)**3 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,k)**3 & + * x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /sig_ij(j,k)**3 + fqq3 = fqq3 +factor3*xijkmt/t**3 *iqq3(i,j,k) + fqq3dt = fqq3dt +factor3*xijkmt/t**3 *(iqq3dt(i,j,k)-3.0*iqq3(i,j,k)/t) + fqq3dt2= fqq3dt2+factor3*xijkmt/t**3 & + * ( iqq3dt2(i,j,k)-6.0*iqq3dt(i,j,k)/t+12.0*iqq3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fqq2 /= 0.0 .AND. fqq3 /= 0.0 ) THEN + fqqdt = fqq2* (fqq2*fqq2dt - 2.0*fqq3*fqq2dt+fqq2*fqq3dt) / (fqq2-fqq3)**2 + fqqdt2 = ( 2.0*fqq2*fqq2dt*fqq2dt +fqq2*fqq2*fqq2dt2 & + - 2.0*fqq2dt**2 *fqq3 -2.0*fqq2*fqq2dt2*fqq3 +fqq2*fqq2*fqq3dt2 ) & + / (fqq2-fqq3)**2 + fqqdt * 2.0*(fqq3dt-fqq2dt)/(fqq2-fqq3) + END IF + +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of dipole-quadruppole term to T (fdqdt) +! ---------------------------------------------------------------------- +fdqdt = 0.0 +fdqdt2= 0.0 +dip_quad = 0 +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,7) /= 0.0) dip_quad = 1 + END DO + myfac(i) = parame(i,3)*parame(i,2)**4 *my0(i) + q_fac(i) = parame(i,3)*parame(i,2)**4 *qq2(i) +END DO + +IF (dip_quad == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + idq2(i,j) = 0.0 + idq4(i,j) = 0.0 + idq2dt(i,j) = 0.0 + idq4dt(i,j) = 0.0 + idq2dt2(i,j)= 0.0 + idq4dt2(i,j)= 0.0 + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + DO m = 0, 4 + idq2(i,j) = idq2(i,j) + dqp2(i,j,m)*z3**REAL(m) + idq4(i,j) = idq4(i,j) + dqp4(i,j,m)*z3**REAL(m) + idq2dt(i,j) = idq2dt(i,j)+ dqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq4dt(i,j) = idq4dt(i,j)+ dqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq2dt2(i,j)= idq2dt2(i,j)+dqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idq4dt2(i,j)= idq4dt2(i,j)+dqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + + DO k = 1,ncomp + idq3(i,j,k) = 0.0 + idq3dt(i,j,k) = 0.0 + idq3dt2(i,j,k)= 0.0 + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + DO m = 0, 4 + idq3(i,j,k) = idq3(i,j,k) + dqp3(i,j,k,m)*z3**REAL(m) + idq3dt(i,j,k)= idq3dt(i,j,k)+ dqp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idq3dt2(i,j,k)= idq3dt2(i,j,k)+dqp3(i,j,k,m)*z3dt2*REAL(m) *z3**REAL(m-1) & + + dqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/4.0 * PI * rho + factor3= PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2dt= 0.0 + fdq3dt= 0.0 + fdq2dt2=0.0 + fdq3dt2=0.0 + DO i = 1,ncomp + DO j = 1,ncomp + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + xijmt = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 + factor2* xijmt/t/t*(idq2(i,j)+eij/t*idq4(i,j)) + fdq2dt= fdq2dt+ factor2* xijmt/t/t*(idq2dt(i,j)-2.0*idq2(i,j)/t & + + eij/t*idq4dt(i,j)-3.0*eij/t/t*idq4(i,j)) + fdq2dt2 = fdq2dt2+factor2*xijmt/t/t*(idq2dt2(i,j)-4.0*idq2dt(i,j)/t & + + 6.0*idq2(i,j)/t/t+eij/t*idq4dt2(i,j) & + - 6.0*eij/t/t*idq4dt(i,j)+12.0*eij/t**3 *idq4(i,j)) + DO k = 1,ncomp + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + xijkmt= x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + * ( myfac(i)*q_fac(j)*myfac(k) & + + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + + fdq3 =fdq3 + factor3*xijkmt/t**3 *idq3(i,j,k) + fdq3dt=fdq3dt+ factor3*xijkmt/t**3 * (idq3dt(i,j,k)-3.0*idq3(i,j,k)/t) + fdq3dt2=fdq3dt2+factor3*xijkmt/t**3 & + *( idq3dt2(i,j,k)-6.0*idq3dt(i,j,k)/t+12.0*idq3(i,j,k)/t/t ) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 /= 0.0 .AND. fdq3 /= 0.0) THEN + fdqdt = fdq2* (fdq2*fdq2dt - 2.0*fdq3*fdq2dt+fdq2*fdq3dt) / (fdq2-fdq3)**2 + fdqdt2 = ( 2.0*fdq2*fdq2dt*fdq2dt +fdq2*fdq2*fdq2dt2 & + - 2.0*fdq2dt**2 *fdq3 -2.0*fdq2*fdq2dt2*fdq3 +fdq2*fdq2*fdq3dt2 ) & + / (fdq2-fdq3)**2 + fdqdt * 2.0*(fdq3dt-fdq2dt)/(fdq2-fdq3) + END IF + +END IF +! ---------------------------------------------------------------------- + + + + +! ---------------------------------------------------------------------- +! total derivative of fres/kT to temperature +! ---------------------------------------------------------------------- + +df_dt = fhsdt + fchdt + fdspdt + fhbdt + fdddt + fqqdt + fdqdt + + + +! ---------------------------------------------------------------------- +! second derivative of fres/kT to T +! ---------------------------------------------------------------------- + +df_dt2 = fhsdt2 +fchdt2 +fdspdt2 +fhbdt2 +fdddt2 +fqqdt2 +fdqdt2 + + + +! ---------------------------------------------------------------------- +! ------ derivatives of fres/kt to density and to T -------------------- +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! the analytic derivative of fres/kT to (density and T) (df_drdt) +! is still missing. A numerical differentiation is implemented. +! ---------------------------------------------------------------------- +fact = 1.0 +dist = t * 100.E-5 * fact +t_tmp = t +rho_0 = rho + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr1 = pges / (eta*rho_0*(kbol*t)/1.E-30) +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr2 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr3 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr4 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + + +df_drdt = (-fdr4+8.0*fdr3-8.0*fdr2+fdr1)/(12.0*dist) + + + + + +! ---------------------------------------------------------------------- +! thermodynamic properties +! ---------------------------------------------------------------------- + +s_res = ( - df_dt *t - fres )*RGAS + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS *t +cv_res = - ( t*df_dt2 + 2.0*df_dt ) * RGAS*t +cp_res = cv_res - RGAS + RGAS*(zges +eta*t*df_drdt)**2 & + / (1.0 + 2.0*eta*dfdr +eta**2 *ddfdrdr) + +! write (*,*) 'df_... ', df_dt,df_dt2 +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h,cv,cp', h_res,cv_res,cp_res + + +END SUBROUTINE H_EOS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE H_EOS_num +! +! This subroutine calculates enthalpies and heat capacities (cp) by +! taking numerical derivatieves. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS_num +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: df_dt, df_dtdt, df_drdt, dfdr, ddfdrdr + +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +df_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +df_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +s_res = (- df_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*df_dtdt + 2.0*df_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_1 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_2 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_3 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_4 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + +dfdr = pges / (eta*rho_0*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho_0*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + +df_drdt = ( -f_4 +8.0*f_3 -8.0*f_2 +f_1) / (12.0*dist) + +cp_res = cv_res - RGAS +RGAS*(zges+eta*t*df_drdt)**2 & + * 1.0/(1.0 + 2.0*eta*dfdr + eta**2 *ddfdrdr) + +! write (*,*) 'n',df_dt,df_dtdt +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h, cv', h_res, cv_res +! write (*,*) h_res - t*s_res +! write (*,*) cv_res,cp_res,eta +! pause + +END SUBROUTINE H_EOS_num + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE DENSITY_ITERATION +! +! iterates the density until the calculated pressure 'pges' is equal to +! the specified pressure 'p'. A Newton-scheme is used for determining +! the root to the objective function f(eta) = (pges / p ) - 1.0. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE DENSITY_ITERATION +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, start, max_i + REAL :: eta_iteration + REAL :: error, dydx, acc_i, delta_eta +! ---------------------------------------------------------------------- + + +IF ( densav(phas) /= 0.0 .AND. eta_start == denold(phas) ) THEN + denold(phas) = eta_start + eta_start = densav(phas) +ELSE + denold(phas) = eta_start + densav(phas) = eta_start +END IF + + +acc_i = 1.d-9 +max_i = 30 +density_error(:) = 0.0 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- +iterate_density: DO + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = (pges / p ) - 1.0 + + ! --- instable region correction ------------------------------------- + IF ( pgesdz < 0.0 .AND. i < max_i ) THEN + IF ( error > 0.0 .AND. pgesd2 > 0.0 ) THEN ! no liquid density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) > 0.0 ) eta_iteration = 0.001 ! no solution possible + IF ( ((pges/p ) -1.0) <=0.0 ) eta_iteration = eta_iteration * 1.1 ! no solution found so far + ELSE IF ( error < 0.0 .AND. pgesd2 < 0.0 ) THEN ! no vapor density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) < 0.0 ) eta_iteration = 0.5 ! no solution possible + IF ( ((pges/p ) -1.0) >=0.0 ) eta_iteration = eta_iteration * 0.9 ! no solution found so far + ELSE + eta_iteration = (eta_iteration + eta_start) / 2.0 + IF (eta_iteration == eta_start) eta_iteration = eta_iteration + 0.2 + END IF + CYCLE iterate_density + END IF + + + dydx = pgesdz/p + delta_eta = error/ dydx + IF ( delta_eta > 0.05 ) delta_eta = 0.05 + IF ( delta_eta < -0.05 ) delta_eta = -0.05 + + eta_iteration = eta_iteration - delta_eta + + IF (eta_iteration > 0.9) eta_iteration = 0.6 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + start = 1 + + IF ( ABS(error*p/pgesdz) < 1.d-12 ) start = 0 + IF ( ABS(error) < acc_i ) start = 0 + IF ( i > max_i ) THEN + start = 0 + density_error(phas) = ABS( error ) + ! write (*,*) 'density iteration failed' + END IF + + IF (start /= 1) EXIT iterate_density + +END DO iterate_density + +eta = eta_iteration + +IF ((eta > 0.3 .AND. densav(phas) > 0.3) .OR. & + (eta < 0.1 .AND. densav(phas) < 0.1)) densav(phas) = eta + +END SUBROUTINE DENSITY_ITERATION + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE F_EOS +! +! calculates the Helmholtz energy f/kT. The input to the subroutine is +! (T,eta,x), where eta is the packing fraction. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_EOS +! + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean ! ,lij(nc,nc) + REAL :: I1,I2, c1_con + REAL :: fhs, fdsp, fhc + + LOGICAL :: assoc + INTEGER :: ass_cnt,max_eval + REAL :: delta(nc,nc,nsite,nsite) + REAL :: mx_itr(nc,nsite), err_sum, sum, attenu, tol, fhb + REAL :: ass_s1, ass_s2 + + REAL :: fdd, fqq, fdq +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t / ( PI / 6.0 ) +zms = 1.0 - eta + +! m_mean2 = 0.0 +! lij(1,2) = -0.05 +! lij(2,1) = lij(1,2) +! DO i = 1, ncomp +! DO j = 1, ncomp +! m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : hard sphere contribution +! ---------------------------------------------------------------------- +fhs= m_mean*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + +! ---------------------------------------------------------------------- +! Helmholtz energy : chain term +! ---------------------------------------------------------------------- +fhc = 0.0 +DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : PC-SAFT dispersion contribution +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + +! ---------------------------------------------------------------------- +! Helmholtz energy : SAFT (Chen, Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdsp = 0.0 + DO n = 1,4 + DO m = 1,9 + fdsp = fdsp + dnm(n,m) * (um/t)**REAL(n) *(eta/tau)**REAL(m) + END DO + END DO + fdsp = m_mean * fdsp + +END IF + + +! ---------------------------------------------------------------------- +! TPT-1-association according to Chapman et al. +! ---------------------------------------------------------------------- +fhb = 0.0 +assoc = .false. +DO i = 1, ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + IF (mx(i,k) == 0.0) mx(i,k) = 1.0 ! Initialize mx(i,j) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l) = gij(i,j) * ass_d(i,j,k,l) + END DO + END DO + END DO + END DO + + +! --- constants for iteration ------------------------------------------ + attenu = 0.70 + tol = 1.d-10 + IF (eta < 0.2) tol = 1.d-12 + IF (eta < 0.01) tol = 1.d-13 + max_eval = 200 + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum = sum + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,j,k,l) +! if (ass_cnt == 1) write (*,*) j,l,x(j), mx(j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum * rho) +! if (ass_cnt == 1) write (*,*) 'B',ass_cnt,sum, rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF (ass_cnt >= max_eval) WRITE(*,'(a,2G15.7)') 'F_EOS: Max_eval violated (mx) Err_Sum = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG( mx(i,k) ) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1 / 2.0 ) + END DO + +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! polar terms +! ---------------------------------------------------------------------- + CALL F_POLAR ( fdd, fqq, fdq ) + + +! ---------------------------------------------------------------------- +! resid. Helmholtz energy f/kT +! ---------------------------------------------------------------------- +fres = fhs + fhc + fdsp + fhb + fdd + fqq + fdq + +tfr= fres + +END SUBROUTINE F_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE EOS_NUMERICAL_DERIVATIVES, ONLY: ideal_gas, hard_sphere, chain_term, & + disp_term, hb_term, LC_term, branch_term, & + II_term, ID_term, subtract1, subtract2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + +!-----local variables------------------------------------------------- + INTEGER :: i, j + REAL :: m_mean2 + REAL :: fid, fhs, fdsp, fhc + REAL :: fhb, fdd, fqq, fdq + REAL :: fhend, fcc + REAL :: fbr, flc + REAL :: fref + + REAL :: eps_kij, k_kij +!--------------------------------------------------------------------- + +eps_kij = 0.0 +k_kij = 0.0 + +fid = 0.0 +fhs = 0.0 +fhc = 0.0 +fdsp= 0.0 +fhb = 0.0 +fdd = 0.0 +fqq = 0.0 +fdq = 0.0 +fcc = 0.0 +fbr = 0.0 +flc = 0.0 + + +CALL PERTURBATION_PARAMETER + +! ---------------------------------------------------------------------- +! overwrite the standard mixing rules by those published by Tang & Gross +! using an additional lij parameter +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*mseg(i)/t*( x(j)*mseg(j) & + *sig_ij(i,j)*(uij(i,i)*uij(j,j))**(1.0/6.0) )**3 *lij(i,j) + END DO +END DO + + +! ---------------------------------------------------------------------- +! a non-standard mixing rule scaling the hard-sphere term +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! (uses an additional lij parameter) +! ---------------------------------------------------------------------- +m_mean2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + ! m_mean2=m_mean2+x(i)*(x(j)*((mseg(i)+mseg(j))*0.5)**(1.0/3.0) *lij(i,j) )**3 + END DO +END DO + +! --- ideal gas contribution ------------------------------------------- +IF ( ideal_gas == 'yes' ) CALL F_IDEAL_GAS ( fid ) +! ---------------------------------------------------------------------- + +! --- hard-sphere contribution ----------------------------------------- +IF ( hard_sphere == 'CSBM' ) CALL F_HARD_SPHERE ( m_mean2, fhs ) +! ---------------------------------------------------------------------- + +! -- chain term -------------------------------------------------------- +IF ( chain_term == 'TPT1' ) CALL F_CHAIN_TPT1 ( fhc ) +IF ( chain_term == 'TPT2' ) CALL F_CHAIN_TPT_D ( fhc ) +IF ( chain_term == 'HuLiu' ) CALL F_CHAIN_HU_LIU ( fhc ) +IF ( chain_term == 'HuLiu_rc' ) CALL F_CHAIN_HU_LIU_RC ( fhs, fhc ) +!!IF ( chain_term == 'SPT' ) CALL F_SPT ( fhs, fhc ) +IF ( chain_term == 'SPT' ) WRITE(*,*) 'SPT NOT INCLUDED YET' +! ---------------------------------------------------------------------- + +! --- dispersive attraction -------------------------------------------- +IF ( disp_term == 'PC-SAFT') CALL F_DISP_PCSAFT ( fdsp ) +IF ( disp_term == 'CK') CALL F_DISP_CKSAFT ( fdsp ) +IF ( disp_term(1:2) == 'PT') CALL F_pert_theory ( fdsp ) +! ---------------------------------------------------------------------- + +! --- H-bonding contribution / Association ----------------------------- +IF ( hb_term == 'TPT1_Chap') CALL F_ASSOCIATION( eps_kij, k_kij, fhb ) +! ---------------------------------------------------------------------- + +! --- polar terms ------------------------------------------------------ + CALL F_POLAR ( fdd, fqq, fdq ) +! ---------------------------------------------------------------------- + +! --- ion-dipole term -------------------------------------------------- +IF ( ID_term == 'TBH') CALL F_ION_DIPOLE_TBH ( fhend ) +! ---------------------------------------------------------------------- + +! --- ion-ion term ----------------------------------------------------- +IF ( II_term == 'primMSA') CALL F_ION_ION_PrimMSA ( fcc ) +IF ( II_term == 'nprMSA') CALL F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! ---------------------------------------------------------------------- + +! --- liquid-crystal term ---------------------------------------------- +IF ( LC_term == 'MSaupe') CALL F_LC_MayerSaupe ( flc ) + +!!IF ( LC_term == 'OVL') fref = fhs + fhc +IF ( LC_term == 'OVL') WRITE(*,*) 'OVL NOT INCLUDED YET' +!IF ( LC_term == 'OVL') CALL F_LC_OVL ( fref, flc ) +!! IF ( LC_term == 'SPT') fref = fhs + fhc +IF ( LC_term == 'SPT') WRITE(*,*) 'SPT NOT INCLUDED YET' +!!IF ( LC_term == 'SPT') CALL F_LC_SPT( fref, flc ) +! ---------------------------------------------------------------------- + +! ====================================================================== +! SUBTRACT TERMS (local density approximation) FOR DFT +! ====================================================================== + +!IF ( subtract1 == '1PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract1 == '2PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract2 =='ITTpolar') CALL F_local_ITT_polar ( fdd ) +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! residual Helmholtz energy F/(NkT) +! ---------------------------------------------------------------------- +fres = fid + fhs + fhc + fdsp + fhb + fdd + fqq + fdq + fcc + flc + +tfr = 0.0 + +END SUBROUTINE F_NUMERICAL + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE P_EOS +! +! calculates the pressure in units (Pa). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_EOS +! +! ---------------------------------------------------------------------- + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + INTEGER :: ass_cnt,max_eval + LOGICAL :: assoc + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean + REAL :: zges, zgesdz, zgesd2, zgesd3 + REAL :: zhs, zhsdz, zhsd2, zhsd3 + REAL :: zhc, zhcdz, zhcd2, zhcd3 + REAL, DIMENSION(nc,nc) :: dgijdz, dgijd2, dgijd3, dgijd4 + REAL :: zdsp, zdspdz, zdspd2, zdspd3 + REAL :: c1_con, c2_con, c3_con, c4_con, c5_con + REAL :: I2, edI1dz, edI2dz, edI1d2, edI2d2 + REAL :: edI1d3, edI2d3, edI1d4, edI2d4 + REAL :: fdspdz,fdspd2 + REAL :: zhb, zhbdz, zhbd2, zhbd3 + REAL, DIMENSION(nc,nc,nsite,nsite) :: delta, dq_dz, dq_d2, dq_d3, dq_d4 + REAL, DIMENSION(nc,nsite) :: mx_itr, dmx_dz, ndmxdz, dmx_d2, ndmxd2 + REAL, DIMENSION(nc,nsite) :: dmx_d3, ndmxd3, dmx_d4, ndmxd4 + REAL :: err_sum, sum0, sum1, sum2, sum3, sum4, attenu, tol + REAL :: sum_d1, sum_d2, sum_d3, sum_d4 + REAL :: zdd, zddz, zddz2, zddz3 + REAL :: zqq, zqqz, zqqz2, zqqz3 + REAL :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t/(PI/6.0) +zms = 1.0 -eta + +! m_mean2=0.0 +! lij(1,2)= -0.050 +! lij(2,1)=lij(1,2) +! DO i =1,ncomp +! DO j =1,ncomp +! m_mean2=m_mean2+x(i)*x(j) * (mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij , and derivatives +! dgijdz=d(gij)/d(eta) and dgijd2 = dd(gij)/d(eta)**2 +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + ! j=i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + dgijd2(i,j) = 2.0/zms**3 & + + 6.0*dij_ab(i,j)*z2/z3/zms**4 *(2.0+z3) & + + (2.0*dij_ab(i,j)*z2/z3)**2 /zms**5 *(1.0+4.0*z3+z3*z3) + dgijd3(i,j) = 6.0/zms**4 & + + 18.0*dij_ab(i,j)*z2/z3/zms**5 *(3.0+z3) & + + 12.0*(dij_ab(i,j)*z2/z3/zms**3 )**2 *(3.0+6.0*z3+z3*z3) + dgijd4(i,j) = 24.0/zms**5 & + + 72.0*dij_ab(i,j)*z2/z3/zms**6 *(4.0+z3) & + + 48.0*(dij_ab(i,j)*z2/z3)**2 /zms**7 *(6.0+8.0*z3+z3*z3) + END DO +END DO + + +! ---------------------------------------------------------------------- +! p : hard sphere contribution +! ---------------------------------------------------------------------- +zhs = m_mean* ( z3/zms + 3.0*z1*z2/z0/zms/zms + z2**3 /z0*(3.0-z3)/zms**3 ) +zhsdz = m_mean*( 1.0/zms/zms + 3.0*z1*z2/z0/z3*(1.0+z3)/zms**3 & + + 6.0*z2**3 /z0/z3/zms**4 ) +zhsd2 = m_mean*( 2.0/zms**3 + 6.0*z1*z2/z0/z3*(2.0+z3)/zms**4 & + + 6.0*z2**3 /z0/z3/z3*(1.0+3.0*z3)/zms**5 ) +zhsd3 = m_mean*( 6.0/zms**4 + 18.0*z1*z2/z0/z3*(3.0+z3)/zms**5 & + + 24.0*z2**3 /z0/z3/z3*(2.0+3.0*z3)/zms**6 ) + + +! ---------------------------------------------------------------------- +! p : chain term +! ---------------------------------------------------------------------- +zhc = 0.0 +zhcdz = 0.0 +zhcd2 = 0.0 +zhcd3 = 0.0 +DO i= 1, ncomp + zhc = zhc + x(i)*(1.0-mseg(i))*eta/gij(i,i)* dgijdz(i,i) + zhcdz = zhcdz + x(i)*(1.0-mseg(i)) *(-eta*(dgijdz(i,i)/gij(i,i))**2 & + + dgijdz(i,i)/gij(i,i) + eta/gij(i,i)*dgijd2(i,i)) + zhcd2 = zhcd2 + x(i)*(1.0-mseg(i)) & + *( 2.0*eta*(dgijdz(i,i)/gij(i,i))**3 & + -2.0*(dgijdz(i,i)/gij(i,i))**2 & + -3.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) & + +2.0/gij(i,i)*dgijd2(i,i) +eta/gij(i,i)*dgijd3(i,i) ) + zhcd3 = zhcd3 + x(i)*(1.0-mseg(i)) *( 6.0*(dgijdz(i,i)/gij(i,i))**3 & + -6.0*eta*(dgijdz(i,i)/gij(i,i))**4 & + +12.0*eta/gij(i,i)**3 *dgijdz(i,i)**2 *dgijd2(i,i) & + -9.0/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) +3.0/gij(i,i)*dgijd3(i,i) & + -3.0*eta*(dgijd2(i,i)/gij(i,i))**2 & + -4.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd3(i,i) & + +eta/gij(i,i)*dgijd4(i,i) ) +END DO + +! ---------------------------------------------------------------------- +! p : PC-SAFT dispersion contribution +! note: edI1dz is equal to d(eta*I1)/d(eta), analogous for edI2dz +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I2 = 0.0 + edI1dz = 0.0 + edI2dz = 0.0 + edI1d2 = 0.0 + edI2d2 = 0.0 + edI1d3 = 0.0 + edI2d3 = 0.0 + edI1d4 = 0.0 + edI2d4 = 0.0 + DO m=0,6 + I2 = I2 + bpar(m)*z3**REAL(m) + edI1dz= edI1dz+apar(m)*REAL(m+1)*z3**REAL(m) + edI2dz= edI2dz+bpar(m)*REAL(m+1)*z3**REAL(m) + edI1d2= edI1d2+apar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI2d2= edI2d2+bpar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI1d3= edI1d3+apar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI2d3= edI2d3+bpar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI1d4= edI1d4+apar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + edI2d4= edI2d4+bpar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + c2_con= - c1_con*c1_con & + *(m_mean*(-4.0*eta**2 +20.0*eta+8.0)/zms**5 + (1.0 - m_mean) & + *(2.0*eta**3 +12.0*eta**2 -48.0*eta+40.0) & + /(zms*(2.0-eta))**3 ) + c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( m_mean*(-12.0*eta**2 +72.0*eta+60.0)/zms**6 & + + (1.0 - m_mean) & + *(-6.0*eta**4 -48.0*eta**3 +288.0*eta**2 & + -480.0*eta+264.0) /(zms*(2.0-eta))**4 ) + c4_con= 6.0*c2_con*c3_con/c1_con -6.0*c2_con**3 /c1_con**2 & + - c1_con*c1_con & + *( m_mean*(-48.0*eta**2 +336.0*eta+432.0)/zms**7 & + + (1.0 - m_mean) & + *(24.0*eta**5 +240.0*eta**4 -1920.0*eta**3 & + +4800.0*eta**2 -5280.0*eta+2208.0) /(zms*(2.0-eta))**5 ) + c5_con= 6.0*c3_con**2 /c1_con - 36.0*c2_con**2 /c1_con**2 *c3_con & + + 8.0*c2_con/c1_con*c4_con+24.0*c2_con**4 /c1_con**3 & + - c1_con*c1_con & + *( m_mean*(-240.0*eta**2 +1920.0*eta+3360.0)/zms**8 & + + (1.0 - m_mean) & + *(-120.0*eta**6 -1440.0*eta**5 +14400.0*eta**4 & + -48000.0*eta**3 +79200.0*eta**2 -66240.0*eta+22560.0) & + /(zms*(2.0-eta))**6 ) + + zdsp = - 2.0*PI*rho*edI1dz*order1 & + - PI*rho*order2*m_mean*(c2_con*I2*eta + c1_con*edI2dz) + zdspdz= zdsp/eta - 2.0*PI*rho*edI1d2*order1 & + - PI*rho*order2*m_mean*(c3_con*I2*eta & + + 2.0*c2_con*edI2dz + c1_con*edI2d2) + zdspd2= -2.0*zdsp/eta/eta +2.0*zdspdz/eta & + - 2.0*PI*rho*edI1d3*order1 - PI*rho*order2*m_mean*(c4_con*I2*eta & + + 3.0*c3_con*edI2dz +3.0*c2_con*edI2d2 +c1_con*edI2d3) + zdspd3= 6.0*zdsp/eta**3 -6.0*zdspdz/eta/eta & + + 3.0*zdspd2/eta - 2.0*PI*rho*edI1d4*order1 & + - PI*rho*order2*m_mean*(c5_con*I2*eta & + + 4.0*c4_con*edI2dz +6.0*c3_con*edI2d2 & + + 4.0*c2_con*edI2d3 + c1_con*edI2d4) + + +! ---------------------------------------------------------------------- +! p : SAFT (Chen & Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdspdz = 0.0 + fdspd2 = 0.0 + DO n = 1,4 + DO m = 1,9 + fdspdz = fdspdz + m_mean/tau * dnm(n,m) * (um/t)**REAL(n) *REAL(m)*(eta/tau)**REAL(m-1) + END DO + DO m= 2,9 + fdspd2= fdspd2 + m_mean/tau * dnm(n,m)*(um/t)**REAL(n) *REAL(m)*REAL(m-1) & + * (eta/tau)**REAL(m-2) * 1.0/tau + END DO + END DO + zdsp = eta * fdspdz + zdspdz = (2.0*fdspdz + eta*fdspd2) - zdsp/z3 + +END IF +! --- end of dispersion contribution ----------------------------------- + + +! ---------------------------------------------------------------------- +! p: TPT-1-association accord. to Chapman et al. +! ---------------------------------------------------------------------- +zhb = 0.0 +zhbdz = 0.0 +zhbd2 = 0.0 +zhbd3 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO j = 1, ncomp + DO i = 1, nhb_typ(j) + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + delta(j,k,i,l) = gij(j,k) * ass_d(j,k,i,l) + dq_dz(j,k,i,l) = dgijdz(j,k) * ass_d(j,k,i,l) + dq_d2(j,k,i,l) = dgijd2(j,k) * ass_d(j,k,i,l) + dq_d3(j,k,i,l) = dgijd3(j,k) * ass_d(j,k,i,l) + dq_d4(j,k,i,l) = dgijd4(j,k) * ass_d(j,k,i,l) + END DO + END DO + END DO + END DO + +! --- constants for iteration ------------------------------------------ + attenu = 0.7 + tol = 1.d-10 + IF ( eta < 0.2 ) tol = 1.d-12 + IF ( eta < 0.01 ) tol = 1.d-13 + IF ( eta < 1.E-6) tol = 1.d-15 + max_eval = 1000 + +! --- initialize mx(i,j) ----------------------------------------------- + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + mx(i,j) = 1.0 + dmx_dz(i,j) = 0.0 + dmx_d2(i,j) = 0.0 + dmx_d3(i,j) = 0.0 + dmx_d4(i,j) = 0.0 + END DO + END DO + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + err_sum = tol + 1.0 + DO WHILE ( err_sum > tol .AND. ass_cnt <= max_eval) + ass_cnt = ass_cnt + 1 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + sum0 = 0.0 + sum1 = 0.0 + sum2 = 0.0 + sum3 = 0.0 + sum4 = 0.0 + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + sum0 =sum0 +x(k)*nhb_no(k,l)* mx(k,l)* delta(i,k,j,l) + sum1 =sum1 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_dz(i,k,j,l) & + + dmx_dz(k,l)* delta(i,k,j,l)) + sum2 =sum2 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d2(i,k,j,l) & + + 2.0*dmx_dz(k,l)* dq_dz(i,k,j,l) & + + dmx_d2(k,l)* delta(i,k,j,l)) + sum3 =sum3 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d3(i,k,j,l) & + + 3.0*dmx_dz(k,l)* dq_d2(i,k,j,l) & + + 3.0*dmx_d2(k,l)* dq_dz(i,k,j,l) & + + dmx_d3(k,l)* delta(i,k,j,l)) + sum4 =sum4 + x(k)*nhb_no(k,l)*( mx(k,l)* dq_d4(i,k,j,l) & + + 4.0*dmx_dz(k,l)* dq_d3(i,k,j,l) & + + 6.0*dmx_d2(k,l)* dq_d2(i,k,j,l) & + + 4.0*dmx_d3(k,l)* dq_dz(i,k,j,l) & + + dmx_d4(k,l)* delta(i,k,j,l)) + END DO + END DO + mx_itr(i,j)= 1.0 / (1.0 + sum0 * rho) + ndmxdz(i,j)= -(mx_itr(i,j)*mx_itr(i,j))* (sum0/z3t +sum1*rho) + ndmxd2(i,j)= + 2.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxdz(i,j) & + - (mx_itr(i,j)*mx_itr(i,j)) * (2.0/z3t*sum1 + rho*sum2) + ndmxd3(i,j)= - 6.0/mx_itr(i,j)**2 *ndmxdz(i,j)**3 & + + 6.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd2(i,j) - mx_itr(i,j)*mx_itr(i,j) & + * (3.0/z3t*sum2 + rho*sum3) + ndmxd4(i,j)= 24.0/mx_itr(i,j)**3 *ndmxdz(i,j)**4 & + -36.0/mx_itr(i,j)**2 *ndmxdz(i,j)**2 *ndmxd2(i,j) & + +6.0/mx_itr(i,j)*ndmxd2(i,j)**2 & + +8.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd3(i,j) - mx_itr(i,j)**2 & + *(4.0/z3t*sum3 + rho*sum4) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,j) - mx(i,j)) & + + ABS(ndmxdz(i,j) - dmx_dz(i,j)) + ABS(ndmxd2(i,j) - dmx_d2(i,j)) + mx(i,j) = mx_itr(i,j)*attenu + mx(i,j) * (1.0-attenu) + dmx_dz(i,j) = ndmxdz(i,j)*attenu + dmx_dz(i,j) * (1.0-attenu) + dmx_d2(i,j) = ndmxd2(i,j)*attenu + dmx_d2(i,j) * (1.0-attenu) + dmx_d3(i,j) = ndmxd3(i,j)*attenu + dmx_d3(i,j) * (1.0-attenu) + dmx_d4(i,j) = ndmxd4(i,j)*attenu + dmx_d4(i,j) * (1.0-attenu) + END DO + END DO + END DO + + IF ( ass_cnt >= max_eval .AND. err_sum > SQRT(tol) ) THEN + WRITE (*,'(a,2G15.7)') 'P_EOS: Max_eval violated (mx) Err_Sum= ',err_sum,tol + ! stop + END IF + + + ! --- calculate the hydrogen-bonding contribution -------------------- + DO i = 1, ncomp + sum_d1 = 0.0 + sum_d2 = 0.0 + sum_d3 = 0.0 + sum_d4 = 0.0 + DO j = 1, nhb_typ(i) + sum_d1= sum_d1 +nhb_no(i,j)* dmx_dz(i,j)*(1.0/mx(i,j)-0.5) + sum_d2= sum_d2 +nhb_no(i,j)*(dmx_d2(i,j)*(1.0/mx(i,j)-0.5) & + -(dmx_dz(i,j)/mx(i,j))**2 ) + sum_d3= sum_d3 +nhb_no(i,j)*(dmx_d3(i,j)*(1.0/mx(i,j)-0.5) & + -3.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d2(i,j) + 2.0*(dmx_dz(i,j)/mx(i,j))**3 ) + sum_d4= sum_d4 +nhb_no(i,j)*(dmx_d4(i,j)*(1.0/mx(i,j)-0.5) & + -4.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d3(i,j) & + + 12.0/mx(i,j)**3 *dmx_dz(i,j)**2 *dmx_d2(i,j) & + - 3.0/mx(i,j)**2 *dmx_d2(i,j)**2 - 6.0*(dmx_dz(i,j)/mx(i,j))**4 ) + END DO + zhb = zhb + x(i) * eta * sum_d1 + zhbdz = zhbdz + x(i) * eta * sum_d2 + zhbd2 = zhbd2 + x(i) * eta * sum_d3 + zhbd3 = zhbd3 + x(i) * eta * sum_d4 + END DO + zhbdz = zhbdz + zhb/eta + zhbd2 = zhbd2 + 2.0/eta*zhbdz-2.0/eta**2 *zhb + zhbd3 = zhbd3 - 6.0/eta**2 *zhbdz+3.0/eta*zhbd2 + 6.0/eta**3 *zhb +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! p: polar terms +! ---------------------------------------------------------------------- +CALL P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) + + +! ---------------------------------------------------------------------- +! compressibility factor z and total p +! as well as derivatives d(z)/d(eta) and d(p)/d(eta) with unit [Pa] +! ---------------------------------------------------------------------- +zges = 1.0 + zhs + zhc + zdsp + zhb + zdd + zqq + zdq +zgesdz = zhsdz + zhcdz + zdspdz + zhbdz + zddz + zqqz + zdqz +zgesd2 = zhsd2 + zhcd2 + zdspd2 + zhbd2 + zddz2 +zqqz2+zdqz2 +zgesd3 = zhsd3 + zhcd3 + zdspd3 + zhbd3 + zddz3 +zqqz3+zdqz3 + +pges = zges *rho *(kbol*t)/1.d-30 +pgesdz = ( zgesdz*rho + zges*rho/z3 )*(kbol*t)/1.d-30 +pgesd2 = ( zgesd2*rho + 2.0*zgesdz*rho/z3 )*(kbol*t)/1.d-30 +pgesd3 = ( zgesd3*rho + 3.0*zgesd2*rho/z3 )*(kbol*t)/1.d-30 + +END SUBROUTINE P_EOS + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(OUT) :: fdd_rk, fqq_rk, fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd_rk = 0.0 + fqq_rk = 0.0 + fdq_rk = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) + ! IF (dd_term == 'SF') CALL PHI_DD_SAAGER_FISCHER( k ) + + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL PHI_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL PHI_QQ_GROSS( k, z3_rk, fqq_rk ) + + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) + + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE PHI_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdd_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdd2, fdd3, fdd2x, fdd3x + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd4, Idd2x, Idd4x + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3x +! ---------------------------------------------------------------------- + + + fdd_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2x(i,j) = 0.0 + Idd4x(i,j) = 0.0 + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + DO m=0,4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m)*z3**m + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m)*z3**m + Idd2x(i,j) =Idd2x(i,j)+ ddp2(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + Idd4x(i,j) =Idd4x(i,j)+ ddp4(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Idd3(i,j,l) = 0.0 + Idd3x(i,j,l) = 0.0 + IF (parame(l,6) /= 0.0) THEN + DO m=0,4 + Idd3(i,j,l) =Idd3(i,j,l) +ddp3(i,j,l,m)*z3**m + Idd3x(i,j,l)=Idd3x(i,j,l)+ddp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -PI + factor3= -4.0/3.0*PI**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2x = 0.0 + fdd3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(i,k)**3 + eij = (parame(i,3)*parame(k,3))**0.5 + fdd2x = fdd2x + factor2*xijfa_x*( Idd2(i,k) + eij/t*Idd4(i,k) ) + DO j = 1, ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,j)**3 + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j) ) + fdd2x =fdd2x +factor2*xijfa*(Idd2x(i,j)+eij/t*Idd4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t/sig_ij(i,j) & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,k) & + *3.0* uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(j,k) + fdd3x=fdd3x+factor3*xijkf_x*Idd3(i,j,k) + DO l=1,ncomp + IF (parame(l,6) /= 0.0) THEN + xijkfa= x(i)*rho*uij(i,i)/t*my2dd(i)*sig_ij(i,i)**3 & + *x(j)*rho*uij(j,j)/t*my2dd(j)*sig_ij(j,j)**3 & + *x(l)*rho*uij(l,l)/t*my2dd(l)*sig_ij(l,l)**3 & + /sig_ij(i,j)/sig_ij(i,l)/sig_ij(j,l) + fdd3 =fdd3 + factor3 * xijkfa *Idd3(i,j,l) + fdd3x =fdd3x + factor3 * xijkfa *Idd3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2x /= 0.0 .AND. fdd3x /= 0.0)THEN + + fdd_rk = fdd2* (fdd2*fdd2x - 2.0*fdd3*fdd2x+fdd2*fdd3x) / (fdd2-fdd3)**2 + + END IF + +END SUBROUTINE PHI_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_QQ_GROSS( k, z3_rk, fqq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fqq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fqq2, fqq3, fqq2x, fqq3x + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4, Iqq2x, Iqq4x + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3x +! ---------------------------------------------------------------------- + + + fqq_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_QQ_GROSS: do not use dimensionless units' + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2x(i,j) = 0.0 + Iqq4x(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m) * z3**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m) * z3**m + Iqq2x(i,j) = Iqq2x(i,j) + qqp2(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + Iqq4x(i,j) = Iqq4x(i,j) + qqp4(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Iqq3(i,j,l) = 0.0 + Iqq3x(i,j,l) = 0.0 + IF (parame(l,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,l) = Iqq3(i,j,l) + qqp3(i,j,l,m)*z3**m + Iqq3x(i,j,l) = Iqq3x(i,j,l) + qqp3(i,j,l,m)*REAL(m) *z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/16.0*PI + factor3= 9.0/16.0*PI**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2x = 0.0 + fqq3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(i,k)**7.0 + eij = (parame(i,3)*parame(k,3))**0.5 + fqq2x =fqq2x +factor2*xijfa_x*(Iqq2(i,k)+eij/t*Iqq4(i,k)) + DO j=1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2x =fqq2x +factor2*xijfa*(Iqq2x(i,j)+eij/t*Iqq4x(i,j)) + ! ------------------ + xijkf_x=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *3.0* uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3x = fqq3x + factor3*xijkf_x*Iqq3(i,j,k) + DO l = 1, ncomp + IF (parame(l,7) /= 0.0) THEN + xijkfa=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,l)**3 & + *x(l)*rho*uij(l,l)*qq2(l)*sig_ij(l,l)**5 /t/sig_ij(j,l)**3 + fqq3 =fqq3 + factor3 * xijkfa *Iqq3(i,j,l) + fqq3x =fqq3x + factor3 * xijkfa *Iqq3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2x /= 0.0 .AND. fqq3x /= 0.0) THEN + fqq_rk = fqq2* (fqq2*fqq2x - 2.0*fqq3*fqq2x+fqq2*fqq3x) / (fqq2-fqq3)**2 + END IF + +END SUBROUTINE PHI_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdq2, fdq3, fdq2x, fdq3x + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4, Idq2x, Idq4x + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3x +! ---------------------------------------------------------------------- + + fdq_rk = 0.0 + z3 = eta + DO i=1,ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2x(i,j) = 0.0 + Idq4x(i,j) = 0.0 + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*z3**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*z3**m + Idq2x(i,j) = Idq2x(i,j) + dqp2(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + Idq4x(i,j) = Idq4x(i,j) + dqp4(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + END DO + DO l = 1, ncomp + Idq3(i,j,l) = 0.0 + Idq3x(i,j,l) = 0.0 + DO m = 0, 4 + Idq3(i,j,l) =Idq3(i,j,l) +dqp3(i,j,l,m)*z3**m + Idq3x(i,j,l)=Idq3x(i,j,l)+dqp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END DO + END DO + END DO + + factor2= -9.0/4.0*PI + factor3= PI**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2x = 0.0 + fdq3x = 0.0 + DO i = 1, ncomp + xijfa_x = x(i)*rho*( myfac(i)*q_fac(k) + myfac(k)*q_fac(i) ) / sig_ij(i,k)**5 + eij = (parame(i,3)*parame(k,3))**0.5 + fdq2x =fdq2x +factor2*xijfa_x*(Idq2(i,k)+eij/t*Idq4(i,k)) + DO j=1,ncomp + xijfa =x(i)*rho*myfac(i) * x(j)*rho*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2x =fdq2x +factor2*xijfa*(Idq2x(i,j) +eij/t*Idq4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*x(j)*rho/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(k)*myfac(j) & + + myfac(k)*q_fac(i)*myfac(j) +myfac(i)*q_fac(j)*q_fac(k)*1.1937350 & + +myfac(i)*q_fac(k)*q_fac(j)*1.193735 & + +myfac(k)*q_fac(i)*q_fac(j)*1.193735 ) + fdq3x = fdq3x + factor3*xijkf_x*Idq3(i,j,k) + DO l = 1, ncomp + xijkfa=x(i)*rho*x(j)*rho*x(l)*rho/(sig_ij(i,j)*sig_ij(i,l)*sig_ij(j,l))**2 & + *( myfac(i)*q_fac(j)*myfac(l) & + +myfac(i)*q_fac(j)*q_fac(l)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa *Idq3(i,j,l) + fdq3x =fdq3x + factor3 * xijkfa *Idq3x(i,j,l) + END DO + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2x /= 0.0 .AND. fdq3x /= 0.0)THEN + + fdq_rk = fdq2* (fdq2*fdq2x - 2.0*fdq3*fdq2x+fdq2*fdq3x) / (fdq2-fdq3)**2 + + END IF + +END SUBROUTINE PHI_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_NUMERICAL +! + USE EOS_VARIABLES + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + REAL :: dzetdv, eta_0, dist, fact + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: df_dr, df_drdr, pideal, dpiddz + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +IF (eta > 0.1) THEN + fact = 1.0 +ELSE IF (eta <= 0.1 .AND. eta > 0.01) THEN + fact = 10.0 +ELSE + fact = 10.0 +END IF +dist = eta*3.d-3 *fact +! dist = eta*4.d-3 *fact +!***************************** +! fuer MC simulation: neues dist: +! dist = eta*5.d-3*fact + +eta_0 = eta +eta = eta_0 - 2.0*dist +CALL F_NUMERICAL +fres1 = fres +tfr_1 = tfr +eta = eta_0 - dist +CALL F_NUMERICAL +fres2 = fres +tfr_2 = tfr +eta = eta_0 + dist +CALL F_NUMERICAL +fres3 = fres +tfr_3 = tfr +eta = eta_0 + 2.0*dist +CALL F_NUMERICAL +fres4 = fres +tfr_4 = tfr +eta = eta_0 +CALL F_NUMERICAL +fres5 = fres +tfr_5 = tfr + +!--------------------------------------------------------- +! ptfr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! & *dzetdv*(KBOL*T)/1.E-30 +! ztfr =ptfr /( rho * (KBOL*t) / 1.E-30) +! ptfrdz = (-tfr_4+16.0*tfr_3-3.d1*tfr_5+16.0*tfr_2-tfr_1) +! & /(12.0*(dist**2 ))* dzetdv*(KBOL*T)/1.E-30 +! & + (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1) +! & /(12.0*dist) * 2.0 *eta*6.0/PI/D +! & *(KBOL*T)/1.E-30 +! ztfrdz=ptfrdz/( rho*(kbol*T)/1.E-30 ) - ztfr/eta +! write (*,*) eta,ztfr,ztfrdz + +! dtfr_dr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! write (*,*) eta,dtfr_dr +! stop +!--------------------------------------------------------- + +df_dr = (-fres4+8.0*fres3-8.0*fres2+fres1) / (12.0*dist) +df_drdr = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +dzetdv = eta*rho + +pges = (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) *dzetdv*(kbol*t)/1.E-30 + +dpiddz = 1.0/z3t*(kbol*t)/1.E-30 +pgesdz = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 ))* dzetdv*(kbol*t)/1.E-30 & + + (-fres4+8.0*fres3-8.0*fres2+fres1) /(12.0*dist) * 2.0 *rho & + *(kbol*t)/1.E-30 + dpiddz + +pgesd2 = (fres4-2.0*fres3+2.0*fres2-fres1) /(2.0*dist**3 ) & + * dzetdv*(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) & + * 4.0 *rho *(kbol*t)/1.E-30 + (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) * 2.0 /z3t *(kbol*t)/1.E-30 +pgesd3 = (fres4-4.0*fres3+6.0*fres5-4.0*fres2+fres1) /(dist**4 ) & + * dzetdv*(kbol*t)/1.E-30 + (fres4-2.0*fres3+2.0*fres2-fres1) & + /(2.0*dist**3 ) * 6.0 *rho *(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*dist**2 )* 6.0 /z3t *(kbol*t)/1.E-30 + +!------------------p ideal------------------------------------ +pideal = rho * (kbol*t) / 1.E-30 + +!------------------p summation, p comes out in Pa ------------ +pges = pideal + pges + +END SUBROUTINE P_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_numerical +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1,fres2,fres3,fres4,fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: f_dt, f_dtdt, f_dr, f_drdr, f_drdt +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +f_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +f_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) + +s_res = (- f_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*f_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*f_dtdt + 2.0*f_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_1 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_2 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_3 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_4 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL + +f_dr = pges / (eta*rho_0*(KBOL*T)/1.E-30) +f_drdr = pgesdz/ (eta*rho_0*(KBOL*T)/1.E-30) - f_dr*2.0/eta - 1.0/eta**2 + +f_drdt = ( - f_4 + 8.0*f_3 - 8.0*f_2 + f_1 ) / ( 12.0*dist ) + +cp_res = cv_res - RGAS + RGAS*( zges + eta*t*f_drdt)**2 / (1.0 + 2.0*eta*f_dr + eta**2 *f_drdr) +! write (*,*) cv_res,cp_res,eta + + +END SUBROUTINE H_numerical + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_POLAR ( fdd, fqq, fdq ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fdd, fqq, fdq +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL F_DD_GROSS_VRABEC( fdd ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL F_QQ_GROSS( fqq ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL F_DQ_VRABEC_GROSS( fdq ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE F_POLAR + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PRESSURE_SPINODAL +! +! iterates the density until the derivative of pressure 'pges' to +! density is equal to zero. A Newton-scheme is used for determining +! the root to the objective function. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRESSURE_SPINODAL +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, max_i + REAL :: eta_iteration + REAL :: error, acc_i, delta_eta +! ---------------------------------------------------------------------- + +acc_i = 1.d-6 +max_i = 30 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- + +error = acc_i + 1.0 +DO WHILE ( ABS(error) > acc_i .AND. i < max_i ) + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = pgesdz + + delta_eta = error/ pgesd2 + IF ( delta_eta > 0.02 ) delta_eta = 0.02 + IF ( delta_eta < -0.02 ) delta_eta = -0.02 + + eta_iteration = eta_iteration - delta_eta + ! write (*,'(a,i3,3G18.10)') 'iter',i, error, eta_iteration, pgesdz + + IF (eta_iteration > 0.9) eta_iteration = 0.5 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + +END DO + +eta = eta_iteration + +END SUBROUTINE PRESSURE_SPINODAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_IDEAL_GAS ( fid ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, x, rho, PI, KBOL, NAv + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fid +!--------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi +!---------------------------------------------------------------------- + + !h_Planck = 6.62606896E-34 ! Js + DO i = 1, ncomp + rhoi(i) = x(i) * rho + ! debroglie(i) = h_Planck *1d10 & ! in units Angstrom + ! *SQRT( 1.0 / (2.0*PI *1.0 / NAv / 1000.0 * KBOL*T) ) + ! ! *SQRT( 1.0 / (2.0*PI *mm(i) /NAv/1000.0 * KBOL*T) ) + ! fid = fid + x(i) * ( LOG(rhoi(i)*debroglie(i)**3) - 1.0 ) + fid = fid + x(i) * ( LOG(rhoi(i)) - 1.0 ) + END DO + + END SUBROUTINE F_IDEAL_GAS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_HARD_SPHERE ( m_mean2, fhs ) +! + USE EOS_VARIABLES, ONLY: z0t, z1t, z2t, z3t, eta, rho + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: m_mean2 + REAL, INTENT(IN OUT) :: fhs +!--------------------------------------------------------------------- + REAL :: z0, z1, z2, z3, zms +!---------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + fhs= m_mean2*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + + END SUBROUTINE F_HARD_SPHERE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT1 ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, & + rho, eta, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + fhc = 0.0 + DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) + END DO + + END SUBROUTINE F_CHAIN_TPT1 + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT_D ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, rho, eta, & + dhs, mseg, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL, DIMENSION(nc) :: gij_hd + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + DO i = 1, ncomp + gij_hd(i) = 1.0/(2.0*zms) + 3.0*dij_ab(i,i)*z2 / zms**2 + END DO + + fhc = 0.0 + DO i = 1, ncomp + IF ( mseg(i) >= 2.0 ) THEN + fhc = fhc - x(i) * ( mseg(i)/2.0 * LOG( gij(i,i) ) + ( mseg(i)/2.0 - 1.0 ) * LOG( gij_hd(i)) ) + ELSE + fhc = fhc + x(i) * ( 1.0 - mseg(i) ) * LOG( gij(i,i) ) + END IF + END DO + + END SUBROUTINE F_CHAIN_TPT_D + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, rho, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: a20, b20, c20, a30, b30, c30 + REAL :: sum1, sum2, am, bm, cm + REAL :: zms +!--------------------------------------------------------------------- + + zms = 1.0 - eta + + sum1 = SUM( x(1:ncomp)*(mseg(1:ncomp)-1.0) ) + sum2 = SUM( x(1:ncomp)/mseg(1:ncomp)*(mseg(1:ncomp)-1.0)*(mseg(1:ncomp)-2.0) ) + + a2 = 0.45696 + a3 = -0.74745 + b2 = 2.10386 + b3 = 3.49695 + c2 = 1.75503 + c3 = 4.83207 + a20 = - a2 + b2 - 3.0*c2 + b20 = - a2 - b2 + c2 + c20 = c2 + a30 = - a3 + b3 - 3.0*c3 + b30 = - a3 - b3 + c3 + c30 = c3 + am = (3.0 + a20) * sum1 + a30 * sum2 + bm = (1.0 + b20) * sum1 + b30 * sum2 + cm = (1.0 + c20) * sum1 + c30 * sum2 + + fhc = - ( (am*eta - bm) / (2.0*zms) + bm/2.0/zms**2 - cm *LOG(ZMS) ) + + + END SUBROUTINE F_CHAIN_HU_LIU + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU_RC ( fhs, fhc ) +! + USE EOS_VARIABLES, ONLY: mseg, chiR, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: fhs + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: para1,para2,para3,para4 + REAL :: aLH,bLH,cLH +!--------------------------------------------------------------------- + +! This routine is only for pure components + + a2 = 0.45696 + b2 = 2.10386 + c2 = 1.75503 + + para1 = -0.74745 + para2 = 0.299154629727814 + para3 = 1.087271036653154 + para4 = -0.708979110326831 + a3 = para1 + para2*chiR(1) + para3*chiR(1)**2 + para4*chiR(1)**3 + b3 = 3.49695 - (3.49695 + 0.317719074806190)*chiR(1) + c3 = 4.83207 - (4.83207 - 3.480163780334421)*chiR(1) + + aLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*a2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*a3 ) + bLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*b2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*b3 ) + cLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*c2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*c3 ) + + fhc = ((3.0 + aLH - bLH + 3.0*cLH)*eta - (1.0 + aLH + bLH - cLH)) / (2.0*(1.0-eta)) + & + (1.0 + aLH + bLH - cLH) / ( 2.0*(1.0-eta)**2 ) + (cLH - 1.0)*LOG(1.0-eta) + + fhc = fhc - fhs + + END SUBROUTINE F_CHAIN_HU_LIU_RC + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_PCSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: PI, rho, eta, z0t, apar, bpar, order1, order2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: m + REAL :: I1, I2, c1_con, z3, zms, m_mean +!--------------------------------------------------------------------- + + z3 = eta + zms = 1.0 - eta + m_mean = z0t / ( PI / 6.0 ) + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m) * z3**m + I2 = I2 + bpar(m) * z3**m + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0-m_mean)*( 20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 )/(zms*(2.0-z3))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + + END SUBROUTINE F_DISP_PCSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_CKSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, PI, TAU, t, rho, eta, x, z0t, mseg, vij, uij, parame, um + USE EOS_CONSTANTS, ONLY: DNM + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: i, j, n, m + REAL :: zmr, nmr, m_mean +!--------------------------------------------------------------------- + + m_mean = z0t / ( PI / 6.0 ) + + DO i = 1, ncomp + DO j = 1, ncomp + vij(i,j)=(0.5*((parame(i,2)*(1.0-0.12 *EXP(-3.0*parame(i,3)/t))**3 )**(1.0/3.0) & + +(parame(j,2)*(1.0-0.12 *EXP(-3.0*parame(j,3)/t))**3 )**(1.0/3.0)))**3 + END DO + END DO + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr + fdsp = 0.0 + DO n = 1, 4 + DO m = 1, 9 + fdsp = fdsp + DNM(n,m) * (um/t)**n *(eta/TAU)**m + END DO + END DO + fdsp = m_mean * fdsp + + + END SUBROUTINE F_DISP_CKSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ASSOCIATION ( eps_kij, k_kij, fhb ) +! + USE EOS_VARIABLES, ONLY: nc, nsite, ncomp, t, z0t, z1t, z2t, z3t, rho, eta, x, & + parame, sig_ij, dij_ab, gij, nhb_typ, mx, nhb_no + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: eps_kij, k_kij + REAL, INTENT(IN OUT) :: fhb +!--------------------------------------------------------------------- + LOGICAL :: assoc + INTEGER :: i, j, k, l, no, ass_cnt, max_eval + REAL, DIMENSION(nc,nc) :: kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nsite,nc,nsite) :: delta + REAL, DIMENSION(nc,nsite) :: mx_itr + REAL :: err_sum, sum0, amix, tol, ass_s1, ass_s2 + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + assoc = .false. + DO i = 1,ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + + DO i = 1, ncomp + IF ( NINT(parame(i,12)) /= 0 ) THEN + nhb_typ(i) = NINT( parame(i,12) ) + kap_hb(i,i) = parame(i,13) + no = 0 + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(i) + eps_hb(i,i,k,l) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO k = 1,nhb_typ(i) + nhb_no(i,k) = parame(i,(14+no)) + no = no + 1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0.AND.nhb_typ(j) /= 0) ) THEN + ! kap_hb(i,j)= (kap_hb(i,i)+kap_hb(j,j))/2.0 + ! kap_hb(i,j)= ( ( kap_hb(i,i)**(1.0/3.0) + kap_hb(j,j)**(1.0/3.0) )/2.0 )**3 + kap_hb(i,j) = (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + / (0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF ( k /= l .AND. nhb_typ(i) >= 2 .AND. nhb_typ(j) >= 2 ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)*eps_hb(j,j,l,k))**0.5 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + ELSE IF ( nhb_typ(i) == 1 .AND. l > k ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(j,i,l,k) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + eps_hb(j,i,l,k) = eps_hb(j,i,l,k)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + +!-----setting the self-association to zero for ionic compounds------ + DO i = 1,ncomp + IF ( parame(i,10) /= 0) kap_hb(i,i)=0.0 + DO j = 1,ncomp + IF ( parame(i,10) /= 0 .AND. parame(j,10) /= 0 ) kap_hb(i,j) = 0.0 + END DO + END DO + ! kap_hb(1,2)=0.050 + ! kap_hb(2,1)=0.050 + ! eps_hb(2,1,1,1)=465.0 + ! eps_hb(1,2,1,1)=465.0 + ! nhb_typ(1) = 1 + ! nhb_typ(2) = 1 + ! nhb_no(1,1)= 1.0 + ! nhb_no(2,1)= 1.0 + + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,k,j,l)=gij(i,j)*kap_hb(i,j)*(EXP(eps_hb(i,j,k,l)/t)-1.0) *sig_ij(i,j)**3 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! IF ((i+j).EQ.3) delta(i,k,j,l)=94.0 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + END DO + END DO + IF ( mx(i,k) == 0.0 ) mx(i,k) = 1.0 + END DO + END DO + +!------constants for Iteration --------------------------------------- + amix = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-14 + max_eval = 200 + +! --- Iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum0 = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum0 = sum0 + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,k,j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum0*rho) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS( mx_itr(i,k) - mx(i,k) ) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * amix + mx(i,k) * (1.0 - amix) + IF ( mx(i,k) <= 0.0 ) mx(i,k)=1.E-50 + IF ( mx(i,k) > 1.0 ) mx(i,k)=1.0 + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF ( ass_cnt >= max_eval ) WRITE(*,*) 'F_NUMERICAL: Max_eval violated = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG(mx(i,k)) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1/2.0 ) + END DO + + END IF + + END SUBROUTINE F_ASSOCIATION + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_DIPOLE_TBH ( fhend ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, eta, x, z0t, parame, uij, sig_ij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhend +!--------------------------------------------------------------------- + INTEGER :: i, dipole, ions + REAL :: m_mean + REAL :: fh32, fh2, fh52, fh3 + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: polabil, ydd, kappa, x_dipol, x_ions + REAL, DIMENSION(nc) :: my2dd, z_ii, e_cd, x_dd, x_ii + REAL :: sig_c, sig_d, sig_cd, r_s + REAL :: I0cc, I1cc, I2cc, Icd, Idd + REAL :: Iccc, Iccd, Icdd, Iddd +!--------------------------------------------------------------------- + +m_mean = z0t / ( PI / 6.0 ) + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + + 2.78E1*(t/293.15))*rho_sol**2 & + + (-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + - 1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + + 8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Dipole-Ion Term----------------------------------- +dipole = 0 +ions = 0 +fhend = 0.0 +DO i = 1, ncomp + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*sig_ij(i,i)**3 *1.E-30) + dipole = 1 + ELSE + my2dd(i) = 0.0 + END IF + + z_ii(i) = parame(i,10) + IF ( z_ii(i) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + e_cd(i) = ( parame(i,10)*e_elem* 1.E5 / SQRT(1.11265005) )**2 & + / ( uij(i,i)*kbol*sig_ij(i,i)*1.E-10 ) + ions = 1 + ELSE + e_cd(i) = 0.0 + END IF +END DO + + +IF ( dipole == 1 .AND. ions == 1 ) THEN + + ydd = 0.0 + kappa = 0.0 + x_dipol = 0.0 + x_ions = 0.0 + polabil = 0.0 + DO i = 1, ncomp + ydd = ydd + x(i)*(parame(i,6))**2 *1.E-49/ (kbol*t*1.E-30) + kappa = kappa + x(i) & + *(parame(i,10)*e_elem* 1.E5/SQRT(1.11265005))**2 /(KBOL*t*1.E-10) + IF (parame(i,10) /= 0.0) THEN + x_ions = x_ions + x(i) + ELSE + polabil = polabil + 4.0*PI*x(i)*rho*1.4573 *1.E-30 & + / (sig_ij(3,3)**3 *1.E-30) + END IF + IF (parame(i,6) /= 0.0) x_dipol= x_dipol+ x(i) + END DO + ydd = ydd * 4.0/9.0 * PI * rho + kappa = SQRT( 4.0 * PI * rho * kappa ) + + fh2 = 0.0 + sig_c = 0.0 + sig_d = 0.0 + DO i=1,ncomp + x_ii(i) = 0.0 + x_dd(i) = 0.0 + IF(parame(i,10) /= 0.0 .AND. x_ions /= 0.0) x_ii(i) = x(i)/x_ions + IF(parame(i,6) /= 0.0 .AND. x_dipol /= 0.0) x_dd(i) = x(i)/x_dipol + sig_c = sig_c + x_ii(i)*parame(i,2) + sig_d = sig_d + x_dd(i)*parame(i,2) + END DO + sig_cd = 0.5 * (sig_c + sig_d) + + r_s = 0.0 + ! DO i=1,ncomp + ! r_s=r_s + rho * x(i) * dhs(i)**3 + ! END DO + r_s = eta*6.0 / PI / m_mean + + I0cc = - (1.0 + 0.97743 * r_s + 0.05257*r_s*r_s) & + /(1.0 + 1.43613 * r_s + 0.41580*r_s*r_s) + ! I1cc = - (10.0 - 2.0*z3 + z3*z3) /20.0/(1.0 + 2.0*z3) + I1cc = - (10.0 - 2.0*r_s*pi/6.0 + r_s*r_s*pi/6.0*pi/6.0) & + /20.0/(1.0 + 2.0*r_s*pi/6.0) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + ! I2cc = + (z3-4.0)*(z3*z3+2.0) /24.0/(1.0+2.0*z3) + ! relation of Stell and Lebowitz + I2cc = -0.33331+0.7418*r_s - 1.2047*r_s*r_s & + + 1.6139*r_s**3 - 1.5487*r_s**4 + 0.6626*r_s**5 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Icd = (1.0 + 0.79576 *r_s + 0.104556 *r_s*r_s) & + /(1.0 + 0.486704*r_s - 0.0222903*r_s*r_s) + Idd = (1.0 + 0.18158*r_s - 0.11467*r_s*r_s) & + /3.0/(1.0 - 0.49303*r_s + 0.06293*r_s*r_s) + Iccc= 3.0*(1.0 - 1.05560*r_s + 0.26591*r_s*r_s) & + /2.0/(1.0 + 0.53892*r_s - 0.94236*r_s*r_s) + Iccd= 11.0*(1.0 + 2.25642 *r_s + 0.05679 *r_s*r_s) & + /6.0/(1.0 + 2.64178 *r_s + 0.79783 *r_s*r_s) + Icdd= 0.94685*(1.0 + 2.97323 *r_s + 3.11931 *r_s*r_s) & + /(1.0 + 2.70186 *r_s + 1.22989 *r_s*r_s) + Iddd= 5.0*(1.0 + 1.12754*r_s + 0.56192*r_s*r_s) & + /24.0/(1.0 - 0.05495*r_s + 0.13332*r_s*r_s) + + IF ( sig_c <= 0.0 ) WRITE (*,*) 'error in Henderson ion term' + + fh32= - kappa**3 /(12.0*pi*rho) + fh2 = - 3.0* kappa**2 * ydd*Icd /(8.0*pi*rho) / sig_cd & + - kappa**4 *sig_c/(16.0*pi*rho)*I0cc + IF (sig_d /= 0.0) fh2 = fh2 - 27.0* ydd * ydd*Idd & + /(8.0*pi*rho) / sig_d**3 + fh52= (3.0*kappa**3 * ydd + kappa**5 *sig_c**2 *I1cc) & + /(8.0*pi*rho) + fh3 = - kappa**6 * sig_c**3 /(8.0*pi*rho) *(I2cc-Iccc/6.0) & + + kappa**4 * ydd *sig_c/(16.0*pi*rho) & + *( (6.0+5.0/3.0*sig_d/sig_c)*I0cc + 3.0*sig_d/sig_c*Iccd ) & + + 3.0*kappa**2 * ydd*ydd /(8.0*pi*rho) / sig_cd & + *( (2.0-3.21555*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + IF (sig_d /= 0.0) fh3 = fh3 + 27.0*ydd**3 & + /(16.0*pi*rho)/sig_d**3 *Iddd + + fhend = ( fh32 + (fh32*fh32*fh3-2.0*fh32*fh2*fh52+fh2**3 ) & + /(fh2*fh2-fh32*fh52) ) & + / ( 1.0 + (fh32*fh3-fh2*fh52) /(fh2*fh2-fh32*fh52) & + - (fh2*fh3-fh52*fh52) /(fh2*fh2-fh32*fh52) ) +!---------- +! fH32= - kappa**3 /(12.0*PI*rho) +! fH2 = - 3.0* kappa**2 * ydd*Icd /(8.0*PI*rho) / sig_cd +! fH52= (3.0*kappa**3 * ydd)/(8.0*PI*rho) +! fH3 = + kappa**4 * ydd *sig_c/(16.0*PI*rho) & +! *( (6.0+5.0/3.0*sig_d/sig_c)*0.0*I0cc + 3.0*sig_d/sig_c*Iccd) & +! + 3.0*kappa**2 * ydd*ydd /(8.0*PI*rho) / sig_cd & +! *( (2.0-3.215550*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + +! fHcd = ( + (fH32*fH32*fH3-2.0*fH32*fH2*fH52+fH2**3 ) & +! /(fH2*fH2-fH32*fH52) ) & +! / ( 1.0 + (fH32*fH3-fH2*fH52) /(fH2*fH2-fH32*fH52) & +! - (fH2*fH3-fH52*fH52) /(fH2*fH2-fH32*fH52) ) + +END IF + + END SUBROUTINE F_ION_DIPOLE_TBH + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_PrimMSA ( fcc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, x, parame, mx + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fcc +!--------------------------------------------------------------------- + INTEGER :: i, j, cc_it, ions + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: x_ions + REAL :: cc_sig1, cc_sig2, cc_sig3 + REAL, DIMENSION(nc) :: z_ii, x_ii, sigm_i, my2dd + REAL :: alpha_2, kappa, ii_par + REAL :: cc_omeg, p_n, q2_i, cc_q2, cc_gam + REAL :: cc_error(2), cc_delt + REAL :: rhs, lambda, lam_s +!--------------------------------------------------------------------- + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + +2.78E1*(t/293.15))*rho_sol**2 & + +(-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + -1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + +8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Ion-Ion: primitive MSA ------------------------------- +! the (dipole moment)**2 [my**2] corresponds to an attraction from +! point charges of [ SUM(xi * zi**2 * e_elem**2) * 3 * di**2 ] + +! parame(ion,6))**2 * 1.E-49 / (kbol*T) +! = (e_elem* 1.E5/SQRT(1.112650050))**2 +! *x(i)*zi**2 *3.0*sig_ij(1,1)**2 *1.E-20 + +! parame(ion,6))**2 = (e_elem* 1.E5/SQRT(1.112650050))**2 /1.E-49 +! *x(i)*zi**2 *3.0*sig_ij(i,i)**2 *1.E-20 + +! with the units +! my**2 [=] D**2 = 1.E-49 J*m3 +! e_elem **2 [=] C**2 = 1.E5 / SQRT(1.112650050) J*m + + +ions = 0 +x_ions = 0.0 +fcc = 0.0 +DO i = 1, ncomp + z_ii(i) = parame(i,10) + IF (z_ii(i) /= 0.0) THEN + sigm_i(i) = parame(i,2) + ELSE + sigm_i(i) = 0.0 + END IF + IF (z_ii(i) /= 0.0) ions = 1 + IF (z_ii(i) /= 0.0) x_ions = x_ions + x(i) +END DO + +IF (ions == 1 .AND. x_ions > 0.0) THEN + + cc_sig1 = 0.0 + cc_sig2 = 0.0 + cc_sig3 = 0.0 + DO i=1,ncomp + IF (z_ii(i) /= 0.0) THEN + x_ii(i) = x(i)/x_ions + ELSE + x_ii(i) =0.0 + END IF + cc_sig1 = cc_sig1 +x_ii(i)*sigm_i(i) + cc_sig2 = cc_sig2 +x_ii(i)*sigm_i(i)**2 + cc_sig3 = cc_sig3 +x_ii(i)*sigm_i(i)**3 + END DO + + + ! alpha_2 = 4.0*PI*e_elem**2 /eps_cc0/dielec/kbol/T + alpha_2 = e_elem**2 /eps_cc0 / dielec / KBOL/t + kappa = 0.0 + DO i = 1, ncomp + kappa = kappa + x(i)*z_ii(i)*z_ii(i)*mx(i,1) + END DO + kappa = SQRT( rho * alpha_2 * kappa ) + ii_par= kappa * cc_sig1 + + ! Temporaer: nach der Arbeit von Krienke verifiziert + ! noch nicht fuer Mischungen mit unterschiedl. Ladung erweitert + ! ii_par = DSQRT( e_elem**2 /eps_cc0/dielec/kbol/T & + ! *rho*(x(1)*Z_ii(1)**2 + x(2)*Z_ii(2)**2 ) )*cc_sig1 + + + cc_gam = kappa/2.0 + + ! noch offen !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + cc_delt = 0.0 + DO i = 1, ncomp + cc_delt = cc_delt + x(i)*mx(i,1)*rho*sigm_i(i)**3 + END DO + cc_delt= 1.0 - PI/6.0*cc_delt + + cc_it = 0 + 13 CONTINUE + j = 0 + cc_it = cc_it + 1 + 131 CONTINUE + j = j + 1 + cc_omeg = 0.0 + DO i = 1, ncomp + cc_omeg = cc_omeg +x(i)*mx(i,1)*sigm_i(i)**3 /(1.0+cc_gam*sigm_i(i)) + END DO + cc_omeg = 1.0 + PI/2.0 / cc_delt * rho * cc_omeg + p_n = 0.0 + DO i = 1, ncomp + p_n = p_n + x(i)*mx(i,1)*rho / cc_omeg*sigm_i(i)*z_ii(i) / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = 0.0 + cc_q2= 0.0 + DO i = 1, ncomp + q2_i = q2_i + rho*x(i)*mx(i,1)*( (z_ii(i)-pi/2.0/cc_delt*sigm_i(i)**2 *p_n) & + /(1.0+cc_gam*sigm_i(i)) )**2 + cc_q2 = cc_q2 + x(i)*mx(i,1)*rho*z_ii(i)**2 / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = q2_i*alpha_2 / 4.0 + + cc_error(j) = cc_gam - SQRT(q2_i) + IF (j == 1) cc_gam = cc_gam*1.000001 + IF (j == 2) cc_gam = cc_gam - cc_error(2)* (cc_gam-cc_gam/1.000001)/(cc_error(2)-cc_error(1)) + + IF ( j == 1 .AND. ABS(cc_error(1)) > 1.E-15 ) GO TO 131 + IF ( cc_it >= 10 ) THEN + WRITE (*,*) ' cc error' + STOP + END IF + IF ( j /= 1 ) GO TO 13 + + fcc= - alpha_2 / PI/4.0 /rho* (cc_gam*cc_q2 & + + pi/2.0/cc_delt *cc_omeg*p_n**2 ) + cc_gam**3 /pi/3.0/rho + ! Restricted Primitive Model + ! fcc=-(3.0*ii_par*ii_par+6.0*ii_par+2.0 & + ! -2.0*(1.0+2.0*ii_par)**1.50) & + ! /(12.0*PI*rho *cc_sig1**3 ) + + ! fcc = x_ions * fcc + + my2dd(3) = (parame(3,6))**2 *1.E-19 /(KBOL*t) + my2dd(3) = (1.84)**2 *1.E-19 /(kbol*t) + + rhs = 12.0 * PI * rho * x(3) * my2dd(3) + lam_s = 1.0 + 12 CONTINUE + lambda = (rhs/((lam_s+2.0)**2 ) + 16.0/((1.0+lam_s)**4 ) )**0.5 + IF ( ABS(lam_s-lambda) > 1.E-10 )THEN + lam_s = ( lambda + lam_s ) / 2.0 + GO TO 12 + END IF + + ! f_cd = -(ii_par*ii_par)/(4.0*PI*rho*m_mean *cc_sig1**3 ) & + ! *(dielec-1.0)/(1.0 + parame(3,2)/cc_sig1/lambda) + ! write (*,*) ' ',f_cd,fcc,x_ions + ! f_cd = f_cd/(1.0 - fcc/f_cd) + ! fcc = 0.0 + +END IF + + +END SUBROUTINE F_ION_ION_PrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, eta, x, parame, mseg + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd, fqq, fdq, fcc +!--------------------------------------------------------------------- + INTEGER :: dipole + !REAL :: A_MSA !, A_CC, A_CD, A_DD, U_MSA, chempot + REAL, DIMENSION(nc) :: x_export, msegm +!--------------------------------------------------------------------- + + dipole = 0 + IF ( SUM( parame(1:ncomp,6) ) > 1.E-5 ) dipole = 1 + + IF ( dipole /= 0 ) THEN ! alternatively ions and dipoles = 1 + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + fcc = 0.0 + msegm(:) = mseg(:) ! the entries of the vector mseg and x are changed + x_export(:) = x(:) ! in SEMIRESTRICTED because the ions should be positioned first + ! that is why dummy vectors msegm and x_export are defined + !CALL SEMIRESTRICTED (A_MSA,A_CC,A_CD,A_DD,U_MSA, & + ! chempot,ncomp,parame,t,eta,x_export,msegm,0) + !fdd = A_MSA + write (*,*) 'why are individual contrib. A_CC,A_CD,A_DD not used' + stop + END IF + + END SUBROUTINE F_ION_ION_nonPrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_LC_MayerSaupe ( flc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, phas, t, rho, eta, & + x, mseg, parame, E_lc, S_lc, dhs + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: flc +!--------------------------------------------------------------------- + INTEGER :: i, j, k + INTEGER :: liq_crystal, count_lc, steps_lc + REAL :: alpha_lc, tolerance, deltay + REAL :: integrand1, integrand2, accel_lc + REAL :: error_lc, u_term, sphase + REAL, DIMENSION(nc) :: z_lc, S_lc1, S_lc2, sumu + REAL, DIMENSION(nc,nc) :: u_lc, klc +!--------------------------------------------------------------------- +INTEGER :: stabil +COMMON /stabil / stabil +!--------------------------------------------------------------------- + + + klc(1,2) = 0.0 + klc(2,1) = klc(1,2) + + alpha_lc = 1.0 + accel_lc = 4.0 + IF ( eta < 0.35 ) accel_lc = 1.3 + IF ( eta < 0.15 ) accel_lc = 1.0 + + liq_crystal = 0 + DO i = 1, ncomp + DO j = 1, ncomp + E_lc(i,j) = (E_lc(i,i)*E_lc(j,j))**0.5 *(1.0-klc(i,j)) !combining rule + ! E_LC(i,j)= ( E_LC(i,i)+E_LC(j,j) ) * 0.5 !combining rule + ! S_LC(i,j)= ( S_LC(i,i)+S_LC(j,j) ) * 0.5 !combining rule + IF (E_lc(i,j) /= 0.0) liq_crystal = 1 + END DO + END DO + ! S_LC(1,2) = 0.0 + ! S_LC(2,1) = S_LC(1,2) + ! E_LC(1,2) = 60.0 + ! E_LC(2,1) = E_LC(1,2) + + IF ( liq_crystal == 1 .AND. phas == 1 .AND. stabil == 0 ) THEN + + count_lc = 0 + tolerance = 1.E-6 + + steps_lc = 200 + deltay = 1.0 / REAL(steps_lc) + + ! --- dimensionless function U_LC repres. anisotr. intermolecular interactions in l.c. + + DO i = 1, ncomp + DO j = 1, ncomp + u_lc(i,j) = 2.0/3.0*pi*mseg(i)*mseg(j) *(0.5*(dhs(i)+dhs(j)))**3 & ! sig_ij(i,j)**3 + *(E_lc(i,j)/t+S_lc(i,j))*rho + END DO + END DO + + + DO i=1,ncomp + ! S_lc2(i) = 0.0 !for isotropic + S_lc2(i) = 0.5 !for nematic + S_lc1(i) = S_lc2(i) + END DO + + 1 CONTINUE + + DO i = 1, ncomp + IF (S_lc2(i) <= 0.3) S_lc1(i) = S_lc2(i) + IF (S_lc2(i) > 0.3) S_lc1(i) = S_lc1(i) + (S_lc2(i)-S_lc1(i))*accel_lc + END DO + + count_lc = count_lc + 1 + + ! --- single-particle orientation partition function Z_LC in liquid crystals + + DO i = 1, ncomp + sumu(i) = 0.0 + DO j = 1, ncomp + sumu(i) = sumu(i) + x(j)*u_lc(i,j)*S_lc1(j) + END DO + END DO + + DO i = 1, ncomp + z_lc(i) = 0.0 + integrand1 = EXP(-0.5*sumu(i)) !eq. for Z_LC with y=0 + DO k = 1, steps_lc + integrand2 = EXP(0.5*sumu(i)*(3.0*(deltay*REAL(k)) **2 -1.0)) + z_lc(i) = z_lc(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + END DO !i-index Z_LC(i) calculation + + ! --- order parameter S_lc in liquid crystals ----------------------- + + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i) = 0.0 + integrand1 = -1.0/z_lc(i)*0.5*EXP(-0.5*sumu(i)) !for S_lc with y=0 + DO k = 1, steps_lc + integrand2 = 1.0/z_lc(i)*0.5*(3.0*(deltay*REAL(k)) & + **2 -1.0)*EXP(0.5*sumu(i)*(3.0 *(deltay*REAL(k))**2 -1.0)) + S_lc2(i) = S_lc2(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + error_lc = error_lc + ABS(S_lc2(i)-S_lc1(i)) + END DO !i-index Z_LC(i) calculation + + sphase = 0.0 + DO i = 1, ncomp + sphase = sphase + S_lc2(i) + END DO + IF (sphase < 1.E-4) THEN + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i)= 0.0 + z_lc(i) = 1.0 + END DO + END IF + + + ! write (*,*) count_LC,S_lc2(1)-S_lc1(1),S_lc2(2)-S_lc1(2) + IF (error_lc > tolerance .AND. count_lc < 400) GO TO 1 + ! write (*,*) 'done',eta,S_lc2(1),S_lc2(2) + + IF (count_lc == 400) WRITE (*,*) 'LC iteration not converg.' + + ! --- the anisotropic contribution to the Helmholtz energy ---------- + + u_term = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + u_term = u_term + 0.5*x(i)*x(j)*S_lc2(i) *S_lc2(j)*u_lc(i,j) + END DO + END DO + + flc = 0.0 + DO i = 1, ncomp + IF (z_lc(i) /= 0.0) flc = flc - x(i) * LOG(z_lc(i)) + END DO + flc = flc + u_term + ! pause + + END IF + ! write (*,'(i2,i2,4(f15.8))') phas,stabil,flc,eta,S_lc2(1),x(1) + + + END SUBROUTINE F_LC_MayerSaupe + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: zdd, zddz, zddz2, zddz3 + REAL, INTENT(OUT) :: zqq, zqqz, zqqz2, zqqz3 + REAL, INTENT(OUT) :: zdq, zdqz, zdqz2, zdqz3 +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE P_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdd, zddz, zddz2, zddz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdddr, fddd2, fddd3, fddd4 + REAL :: fdd2, fdd2z, fdd2z2, fdd2z3, fdd2z4 + REAL :: fdd3, fdd3z, fdd3z2, fdd3z3, fdd3z4 + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd2z, Idd2z2, Idd2z3, Idd2z4 + REAL, DIMENSION(nc,nc) :: Idd4, Idd4z, Idd4z2, Idd4z3, Idd4z4 + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3z, Idd3z2, Idd3z3, Idd3z4 +! ---------------------------------------------------------------------- + + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2z(i,j) = 0.0 + Idd4z(i,j) = 0.0 + Idd2z2(i,j) = 0.0 + Idd4z2(i,j) = 0.0 + Idd2z3(i,j) = 0.0 + Idd4z3(i,j) = 0.0 + Idd2z4(i,j) = 0.0 + Idd4z4(i,j) = 0.0 + ! IF (paramei,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m) *z3**(m+1) + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m) *z3**(m+1) + Idd2z(i,j) =Idd2z(i,j) +ddp2(i,j,m)*REAL(m+1) *z3**m + Idd4z(i,j) =Idd4z(i,j) +ddp4(i,j,m)*REAL(m+1) *z3**m + Idd2z2(i,j)=Idd2z2(i,j)+ddp2(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd4z2(i,j)=Idd4z2(i,j)+ddp4(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd2z3(i,j)=Idd2z3(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd4z3(i,j)=Idd4z3(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd2z4(i,j)=Idd2z4(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idd4z4(i,j)=Idd4z4(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + Idd3z(i,j,k) = 0.0 + Idd3z2(i,j,k) = 0.0 + Idd3z3(i,j,k) = 0.0 + Idd3z4(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) =Idd3(i,j,k) +ddp3(i,j,k,m)*z3**(m+2) + Idd3z(i,j,k) =Idd3z(i,j,k) +ddp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idd3z2(i,j,k)=Idd3z2(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1))*z3**m + Idd3z3(i,j,k)=Idd3z3(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m)*z3**(m-1) + Idd3z4(i,j,k)=Idd3z4(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2= -PI *rho/z3 + factor3= -4.0/3.0*PI**2 * (rho/z3)**2 + + fdd2 = 0.0 + fdd2z = 0.0 + fdd2z2 = 0.0 + fdd2z3 = 0.0 + fdd2z4 = 0.0 + fdd3 = 0.0 + fdd3z = 0.0 + fdd3z2 = 0.0 + fdd3z3 = 0.0 + fdd3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j)) + fdd2z = fdd2z +factor2*xijfa*(Idd2z(i,j) +eij/t*Idd4z(i,j)) + fdd2z2 = fdd2z2+factor2*xijfa*(Idd2z2(i,j)+eij/t*Idd4z2(i,j)) + fdd2z3 = fdd2z3+factor2*xijfa*(Idd2z3(i,j)+eij/t*Idd4z3(i,j)) + fdd2z4 = fdd2z4+factor2*xijfa*(Idd2z4(i,j)+eij/t*Idd4z4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa= x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) & + *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 = fdd3 + factor3 * xijkfa*Idd3(i,j,k) + fdd3z = fdd3z + factor3 * xijkfa*Idd3z(i,j,k) + fdd3z2 = fdd3z2 + factor3 * xijkfa*Idd3z2(i,j,k) + fdd3z3 = fdd3z3 + factor3 * xijkfa*Idd3z3(i,j,k) + fdd3z4 = fdd3z4 + factor3 * xijkfa*Idd3z4(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2z /= 0.0 .AND. fdd3z /= 0.0) THEN + + fdddr= fdd2* (fdd2*fdd2z - 2.0*fdd3*fdd2z+fdd2*fdd3z) / (fdd2-fdd3)**2 + fddd2=(2.0*fdd2*fdd2z*fdd2z +fdd2*fdd2*fdd2z2 & + -2.0*fdd2z**2 *fdd3-2.0*fdd2*fdd2z2*fdd3+fdd2*fdd2*fdd3z2) & + /(fdd2-fdd3)**2 + fdddr * 2.0*(fdd3z-fdd2z)/(fdd2-fdd3) + fddd3=(2.0*fdd2z**3 +6.0*fdd2*fdd2z*fdd2z2+fdd2*fdd2*fdd2z3 & + -6.0*fdd2z*fdd2z2*fdd3-2.0*fdd2z**2 *fdd3z & + -2.0*fdd2*fdd2z3*fdd3 -2.0*fdd2*fdd2z2*fdd3z & + +2.0*fdd2*fdd2z*fdd3z2+fdd2*fdd2*fdd3z3) /(fdd2-fdd3)**2 & + + 2.0/(fdd2-fdd3)* ( 2.0*fddd2*(fdd3z-fdd2z) & + + fdddr*(fdd3z2-fdd2z2) & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)**2 ) + fddd4=( 12.0*fdd2z**2 *fdd2z2+6.0*fdd2*fdd2z2**2 & + +8.0*fdd2*fdd2z*fdd2z3+fdd2*fdd2*fdd2z4-6.0*fdd2z2**2 *fdd3 & + -12.0*fdd2z*fdd2z2*fdd3z -8.0*fdd2z*fdd2z3*fdd3 & + -2.0*fdd2*fdd2z4*fdd3-4.0*fdd2*fdd2z3*fdd3z & + +4.0*fdd2*fdd2z*fdd3z3+fdd2**2 *fdd3z4 ) /(fdd2-fdd3)**2 & + + 6.0/(fdd2-fdd3)* ( fddd3*(fdd3z-fdd2z) & + -fddd2/(fdd2-fdd3)*(fdd3z-fdd2z)**2 & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)*(fdd3z2-fdd2z2) & + + fddd2*(fdd3z2-fdd2z2) +1.0/3.0*fdddr*(fdd3z3-fdd2z3) ) + zdd = fdddr*eta + zddz = fddd2*eta + fdddr + zddz2 = fddd3*eta + 2.0* fddd2 + zddz3 = fddd4*eta + 3.0* fddd3 + + END IF + + +END SUBROUTINE P_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zqq, zqqz, zqqz2, zqqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fqqdr, fqqd2, fqqd3, fqqd4 + REAL :: fqq2, fqq2z, fqq2z2, fqq2z3, fqq2z4 + REAL :: fqq3, fqq3z, fqq3z2, fqq3z3, fqq3z4 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq2z, Iqq2z2, Iqq2z3, Iqq2z4 + REAL, DIMENSION(nc,nc) :: Iqq4, Iqq4z, Iqq4z2, Iqq4z3, Iqq4z4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3z, Iqq3z2, Iqq3z3, Iqq3z4 +! ---------------------------------------------------------------------- + + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + z3 = eta + DO i=1,ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2z(i,j) = 0.0 + Iqq4z(i,j) = 0.0 + Iqq2z2(i,j) = 0.0 + Iqq4z2(i,j) = 0.0 + Iqq2z3(i,j) = 0.0 + Iqq4z3(i,j) = 0.0 + Iqq2z4(i,j) = 0.0 + Iqq4z4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) =Iqq2(i,j) + qqp2(i,j,m)*z3**(m+1) + Iqq4(i,j) =Iqq4(i,j) + qqp4(i,j,m)*z3**(m+1) + Iqq2z(i,j) =Iqq2z(i,j) +qqp2(i,j,m)*REAL(m+1)*z3**m + Iqq4z(i,j) =Iqq4z(i,j) +qqp4(i,j,m)*REAL(m+1)*z3**m + Iqq2z2(i,j)=Iqq2z2(i,j)+qqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq4z2(i,j)=Iqq4z2(i,j)+qqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq2z3(i,j)=Iqq2z3(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq4z3(i,j)=Iqq4z3(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq2z4(i,j)=Iqq2z4(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Iqq4z4(i,j)=Iqq4z4(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k=1,ncomp + Iqq3(i,j,k) = 0.0 + Iqq3z(i,j,k) = 0.0 + Iqq3z2(i,j,k) = 0.0 + Iqq3z3(i,j,k) = 0.0 + Iqq3z4(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m=0,4 + Iqq3(i,j,k) =Iqq3(i,j,k) + qqp3(i,j,k,m)*z3**(m+2) + Iqq3z(i,j,k)=Iqq3z(i,j,k)+qqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Iqq3z2(i,j,k)=Iqq3z2(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Iqq3z3(i,j,k)=Iqq3z3(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Iqq3z4(i,j,k)=Iqq3z4(i,j,k)+qqp3(i,j,k,m) *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/16.0*PI *rho/z3 + factor3= 9.0/16.0*PI**2 * (rho/z3)**2 + + fqq2 = 0.0 + fqq2z = 0.0 + fqq2z2 = 0.0 + fqq2z3 = 0.0 + fqq2z4 = 0.0 + fqq3 = 0.0 + fqq3z = 0.0 + fqq3z2 = 0.0 + fqq3z3 = 0.0 + fqq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2z =fqq2z +factor2*xijfa*(Iqq2z(i,j) +eij/t*Iqq4z(i,j) ) + fqq2z2=fqq2z2+factor2*xijfa*(Iqq2z2(i,j)+eij/t*Iqq4z2(i,j)) + fqq2z3=fqq2z3+factor2*xijfa*(Iqq2z3(i,j)+eij/t*Iqq4z3(i,j)) + fqq2z4=fqq2z4+factor2*xijfa*(Iqq2z4(i,j)+eij/t*Iqq4z4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa*Iqq3(i,j,k) + fqq3z = fqq3z + factor3 * xijkfa*Iqq3z(i,j,k) + fqq3z2 = fqq3z2 + factor3 * xijkfa*Iqq3z2(i,j,k) + fqq3z3 = fqq3z3 + factor3 * xijkfa*Iqq3z3(i,j,k) + fqq3z4 = fqq3z4 + factor3 * xijkfa*Iqq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2z /= 0.0 .AND. fqq3z /= 0.0) THEN + fqqdr = fqq2* (fqq2*fqq2z - 2.0*fqq3*fqq2z+fqq2*fqq3z) /(fqq2-fqq3)**2 + fqqd2= (2.0*fqq2*fqq2z*fqq2z +fqq2*fqq2*fqq2z2 & + -2.0*fqq2z**2 *fqq3-2.0*fqq2*fqq2z2*fqq3+fqq2*fqq2*fqq3z2) & + /(fqq2-fqq3)**2 + fqqdr * 2.0*(fqq3z-fqq2z)/(fqq2-fqq3) + fqqd3=(2.0*fqq2z**3 +6.0*fqq2*fqq2z*fqq2z2+fqq2*fqq2*fqq2z3 & + -6.0*fqq2z*fqq2z2*fqq3-2.0*fqq2z**2 *fqq3z & + -2.0*fqq2*fqq2z3*fqq3 -2.0*fqq2*fqq2z2*fqq3z & + +2.0*fqq2*fqq2z*fqq3z2+fqq2*fqq2*fqq3z3) /(fqq2-fqq3)**2 & + + 2.0/(fqq2-fqq3)* ( 2.0*fqqd2*(fqq3z-fqq2z) & + + fqqdr*(fqq3z2-fqq2z2) - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)**2 ) + fqqd4=( 12.0*fqq2z**2 *fqq2z2+6.0*fqq2*fqq2z2**2 & + +8.0*fqq2*fqq2z*fqq2z3+fqq2*fqq2*fqq2z4-6.0*fqq2z2**2 *fqq3 & + -12.0*fqq2z*fqq2z2*fqq3z -8.0*fqq2z*fqq2z3*fqq3 & + -2.0*fqq2*fqq2z4*fqq3-4.0*fqq2*fqq2z3*fqq3z & + +4.0*fqq2*fqq2z*fqq3z3+fqq2**2 *fqq3z4 ) /(fqq2-fqq3)**2 & + + 6.0/(fqq2-fqq3)* ( fqqd3*(fqq3z-fqq2z) & + -fqqd2/(fqq2-fqq3)*(fqq3z-fqq2z)**2 & + - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)*(fqq3z2-fqq2z2) & + + fqqd2*(fqq3z2-fqq2z2) +1.0/3.0*fqqdr*(fqq3z3-fqq2z3) ) + zqq = fqqdr*eta + zqqz = fqqd2*eta + fqqdr + zqqz2 = fqqd3*eta + 2.0* fqqd2 + zqqz3 = fqqd4*eta + 3.0* fqqd3 + END IF + + +END SUBROUTINE P_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdqdr, fdqd2, fdqd3, fdqd4 + REAL :: fdq2, fdq2z, fdq2z2, fdq2z3, fdq2z4 + REAL :: fdq3, fdq3z, fdq3z2, fdq3z3, fdq3z4 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq2z, Idq2z2, Idq2z3, Idq2z4 + REAL, DIMENSION(nc,nc) :: Idq4, Idq4z, Idq4z2, Idq4z3, Idq4z4 + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3z, Idq3z2, Idq3z3, Idq3z4 +! ---------------------------------------------------------------------- + + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2z(i,j) = 0.0 + Idq4z(i,j) = 0.0 + Idq2z2(i,j) = 0.0 + Idq4z2(i,j) = 0.0 + Idq2z3(i,j) = 0.0 + Idq4z3(i,j) = 0.0 + Idq2z4(i,j) = 0.0 + Idq4z4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) =Idq2(i,j) + dqp2(i,j,m)*z3**(m+1) + Idq4(i,j) =Idq4(i,j) + dqp4(i,j,m)*z3**(m+1) + Idq2z(i,j) =Idq2z(i,j) +dqp2(i,j,m)*REAL(m+1)*z3**m + Idq4z(i,j) =Idq4z(i,j) +dqp4(i,j,m)*REAL(m+1)*z3**m + Idq2z2(i,j)=Idq2z2(i,j)+dqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq4z2(i,j)=Idq4z2(i,j)+dqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq2z3(i,j)=Idq2z3(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq4z3(i,j)=Idq4z3(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq2z4(i,j)=Idq2z4(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idq4z4(i,j)=Idq4z4(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + Idq3z(i,j,k) = 0.0 + Idq3z2(i,j,k) = 0.0 + Idq3z3(i,j,k) = 0.0 + Idq3z4(i,j,k) = 0.0 + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) =Idq3(i,j,k) + dqp3(i,j,k,m)*z3**(m+2) + Idq3z(i,j,k)=Idq3z(i,j,k)+dqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idq3z2(i,j,k)=Idq3z2(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Idq3z3(i,j,k)=Idq3z3(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Idq3z4(i,j,k)=Idq3z4(i,j,k)+dqp3(i,j,k,m) & + *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/4.0*PI *rho/z3 + factor3= PI**2 * (rho/z3)**2 + + fdq2 = 0.0 + fdq2z = 0.0 + fdq2z2 = 0.0 + fdq2z3 = 0.0 + fdq2z4 = 0.0 + fdq3 = 0.0 + fdq3z = 0.0 + fdq3z2 = 0.0 + fdq3z3 = 0.0 + fdq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa =x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2z =fdq2z +factor2*xijfa*(Idq2z(i,j) +eij/t*Idq4z(i,j) ) + fdq2z2=fdq2z2+factor2*xijfa*(Idq2z2(i,j)+eij/t*Idq4z2(i,j)) + fdq2z3=fdq2z3+factor2*xijfa*(Idq2z3(i,j)+eij/t*Idq4z3(i,j)) + fdq2z4=fdq2z4+factor2*xijfa*(Idq2z4(i,j)+eij/t*Idq4z4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa*Idq3(i,j,k) + fdq3z =fdq3z + factor3 * xijkfa*Idq3z(i,j,k) + fdq3z2=fdq3z2 + factor3 * xijkfa*Idq3z2(i,j,k) + fdq3z3=fdq3z3 + factor3 * xijkfa*Idq3z3(i,j,k) + fdq3z4=fdq3z4 + factor3 * xijkfa*Idq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2z /= 0.0 .AND. fdq3z /= 0.0) THEN + fdqdr = fdq2* (fdq2*fdq2z - 2.0*fdq3*fdq2z+fdq2*fdq3z) /(fdq2-fdq3)**2 + fdqd2= (2.0*fdq2*fdq2z*fdq2z +fdq2*fdq2*fdq2z2 & + -2.0*fdq2z**2 *fdq3-2.0*fdq2*fdq2z2*fdq3+fdq2*fdq2*fdq3z2) & + /(fdq2-fdq3)**2 + fdqdr * 2.0*(fdq3z-fdq2z)/(fdq2-fdq3) + fdqd3=(2.0*fdq2z**3 +6.0*fdq2*fdq2z*fdq2z2+fdq2*fdq2*fdq2z3 & + -6.0*fdq2z*fdq2z2*fdq3-2.0*fdq2z**2 *fdq3z & + -2.0*fdq2*fdq2z3*fdq3 -2.0*fdq2*fdq2z2*fdq3z & + +2.0*fdq2*fdq2z*fdq3z2+fdq2*fdq2*fdq3z3) /(fdq2-fdq3)**2 & + + 2.0/(fdq2-fdq3)* ( 2.0*fdqd2*(fdq3z-fdq2z) & + + fdqdr*(fdq3z2-fdq2z2) - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)**2 ) + fdqd4=( 12.0*fdq2z**2 *fdq2z2+6.0*fdq2*fdq2z2**2 & + +8.0*fdq2*fdq2z*fdq2z3+fdq2*fdq2*fdq2z4-6.0*fdq2z2**2 *fdq3 & + -12.0*fdq2z*fdq2z2*fdq3z -8.0*fdq2z*fdq2z3*fdq3 & + -2.0*fdq2*fdq2z4*fdq3-4.0*fdq2*fdq2z3*fdq3z & + +4.0*fdq2*fdq2z*fdq3z3+fdq2**2 *fdq3z4 ) /(fdq2-fdq3)**2 & + + 6.0/(fdq2-fdq3)* ( fdqd3*(fdq3z-fdq2z) & + -fdqd2/(fdq2-fdq3)*(fdq3z-fdq2z)**2 & + - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)*(fdq3z2-fdq2z2) & + + fdqd2*(fdq3z2-fdq2z2) +1.0/3.0*fdqdr*(fdq3z3-fdq2z3) ) + zdq = fdqdr*eta + zdqz = fdqd2*eta + fdqdr + zdqz2 = fdqd3*eta + 2.0* fdqd2 + zdqz3 = fdqd4*eta + 3.0* fdqd3 + END IF + + +END SUBROUTINE P_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_pert_theory ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, p, rho, eta, & + x, z0t, mseg, parame, order1, order2 + USE EOS_NUMERICAL_DERIVATIVES, ONLY: disp_term + USE DFT_MODULE + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + REAL :: I1, I2 + REAL :: z3, zms, c1_con, m_mean +!--------------------------------------------------------------------- + + ! caution: positive sign of correlation integral is used here ! + ! (the Helmholtz energy terms are written with a negative sign, while I1 and I2 are positive) + + IF (disp_term == 'PT1') THEN + + CALL f_dft ( I1, I2) + c1_con = 0.0 + I2 = 0.0 + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + + ELSEIF (disp_term == 'PT2') THEN + + CALL f_dft ( I1, I2) + z3 = eta + zms = 1.0 - z3 + m_mean = z0t / ( PI / 6.0 ) + c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + ELSEIF (disp_term == 'PT_MIX') THEN + + CALL f_pert_theory_mix ( fdsp ) + + ELSEIF (disp_term == 'PT_MF') THEN + + ! mean field theory + I1 = - ( - 8.0/9.0 - 4.0/9.0*(rc**(-9) -3.0*rc**(-3) ) - tau_cut/3.0*(rc**3 -1.0) ) + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + write (*,*) 'caution: not thoroughly checked and tested' + + ELSE + write (*,*) 'define the type of perturbation theory' + stop + END IF + + ! I1 = I1 + 4.0/9.0*(2.5**-9 -3.0*2.5**-3 ) + ! fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + END SUBROUTINE F_pert_theory + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_pert_theory_mix ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1 + REAL :: int10, int11 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + + DO l = 1, ncomp + DO m = 1, ncomp + + rad = rc + + int10 = rc * rc * ua_c + ! intgrid(0)= int10 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int11 = rdf * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int11 + int10 ) / 2.0 + + int10 = int11 + ! intgrid(k)= int11 + + END DO + + ! stepno = k + ! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) + ! CALL SPLINE_INT (I1_spline,dzr,intgrid,utri,stepno) + + + ! caution: 1st order integral is in F_EOS.f defined with negative sign + ! --------------------------------------------------------------- + ! cut-off corrections + ! --------------------------------------------------------------- + ! I1(l,m) = I1(l,m) + ( 4.0/9.0 * rc**-9 - 4.0/3.0 * rc**-3 ) + ! I2(l,m) = I2(l,m) + 16.0/21.0 * rc**-21 - 32.0/15.0 * rc**-15 + 16.0/9.0 * rc**-9 + + END DO + END DO + + + fdsp = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + fdsp = fdsp + 2.0*PI*rho*x(l)*x(m)* mseg(l)*mseg(m)*sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! ( 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + END DO + END DO + + +!!$ IF (disp_term == 'PT1') THEN +!!$ c1_con = 0.0 +!!$ I2 = 0.0 +!!$ ELSEIF (disp_term == 'PT2') THEN +!!$ zms = 1.0 - z3 +!!$ c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & +!!$ + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & +!!$ /(zms*(2.0-z3))**2 ) +!!$ ELSE +!!$ write (*,*) 'define the type of perturbation theory' +!!$ stop +!!$ END IF + + +END SUBROUTINE f_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE mu_pert_theory_mix ( mu_dsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: mu_dsp(nc) +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1, I2 + REAL :: int1_0, int1_1, int2_0, int2_1 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + REAL :: term1(nc), term2 + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + I2(:,:) = 0.0 + + DO l = 1, ncomp + + term1(l) = 0.0 + + DO m = 1, ncomp + + rad = rc + + int1_0 = rc * rc * ua_c + int2_0 = 0.0 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int1_1 = rdf * rad * rad * ua + int2_1 = dg_dz3 * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int1_1 + int1_0 ) / 2.0 + I2(l,m) = I2(l,m) + dzr_local * ( int2_1 + int2_0 ) / 2.0 + + int1_0 = int1_1 + int2_0 = int2_1 + + term1(l) = term1(l) +4.0*PI*rho*x(m)* mseg(l)*mseg(m) *sig_ij(l,m)**3 *uij(l,m)/t* dzr_local*(int1_1+int1_0)/2.0 + + END DO + + END DO + END DO + + + ! DO l = 1, ncomp + ! term1(l) = 0.0 + ! DO m = 1, ncomp + ! term1(l) = term1(l) + 4.0*PI*rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! END DO + ! END DO + + term2 = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + term2 = term2 + 2.0*PI*rho*x(l) * rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I2(l,m) + END DO + END DO + + DO l = 1, ncomp + mu_dsp(l) = term1(l) + term2 * PI/ 6.0 * mseg(l)*dhs(l)**3 + END DO + +END SUBROUTINE mu_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DD_GROSS_VRABEC( fdd ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + INTEGER :: ddit, ddmax + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, xijf_j, xijkf_j, eij + REAL :: fdd2, fdd3 + REAL, DIMENSION(nc) :: my2dd, my0, alph_tst, z1dd, z2dd, dderror + REAL, DIMENSION(nc) :: fdd2m, fdd3m, fdd2m2, fdd3m2, fddm, fddm2 + REAL, DIMENSION(nc,nc) :: Idd2, Idd4 + REAL, DIMENSION(nc,nc,nc) :: Idd3 +! ---------------------------------------------------------------------- + + fdd = 0.0 + ddit = 0 + ddmax = 0 ! value assigned, if polarizable compound is present + fddm(:) = 0.0 + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'F_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + alph_tst(i) = parame(i,11) / (mseg(i)*sig_ij(i,i)**3 ) * t/parame(i,3) + IF ( alph_Tst(i) /= 0.0 ) ddmax = 25 ! set maximum number of polarizable RGT-iterations + z1dd(i) = my2dd(i) + 3.0*alph_tst(i) + z2dd(i) = 3.0*alph_tst(i) + my0(i) = my2dd(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) = Idd2(i,j) + ddp2(i,j,m)*eta**m + Idd4(i,j) = Idd4(i,j) + ddp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) = Idd3(i,j,k) + ddp3(i,j,k,m)*eta**m + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2 = -PI *rho + factor3 = -4.0/3.0*PI**2 * rho**2 + +9 CONTINUE + + fdd2m(:) = 0.0 + fdd2m2(:) = 0.0 + fdd3m(:) = 0.0 + fdd3m2(:) = 0.0 + fdd2 = 0.0 + fdd3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa =x(i)*parame(i,3)/t*parame(i,2)**3 * x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 * (z1dd(i)*z1dd(j)-z2dd(i)*z2dd(j)) ! * (1.0-lij(i,j)) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 + factor2 * xijfa * ( Idd2(i,j) + eij/t*Idd4(i,j) ) + xijf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 ! * (1.0-lij(i,j)) + fdd2m(i)=fdd2m(i)+4.0*SQRT(my2dd(i))*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + fdd2m2(i)=fdd2m2(i) + 4.0*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + IF (j == i) fdd2m2(i) =fdd2m2(i) +8.0*factor2* xijf_j*my2dd(i) *(Idd2(i,j)+eij/t*Idd4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 / ((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) / ((parame(j,2)+parame(k,2))/2.0) & + *(z1dd(i)*z1dd(j)*z1dd(k)-z2dd(i)*z2dd(j)*z2dd(k)) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3 = fdd3 + factor3 * xijkfa * Idd3(i,j,k) + xijkf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3m(i)=fdd3m(i)+6.0*factor3*SQRT(my2dd(i))*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + fdd3m2(i)=fdd3m2(i)+6.0*factor3*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + IF(j == i) fdd3m2(i) =fdd3m2(i)+24.0*factor3*my2dd(i)*z1dd(k) *xijkf_j*Idd3(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0) THEN + fdd = fdd2 / ( 1.0 - fdd3/fdd2 ) + IF ( ddmax /= 0 ) THEN + DO i = 1, ncomp + ddit = ddit + 1 + fddm(i) =fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i)+fdd2*fdd3m(i)) /(fdd2-fdd3)**2 + fddm2(i) = fdd2m(i) * (fdd2*fdd2m(i)-2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) / (fdd2-fdd3)**2 & + + fdd2*(fdd2*fdd2m2(i) -2.0*fdd3*fdd2m2(i)+fdd2m(i)**2 & + -fdd2m(i)*fdd3m(i) +fdd2*fdd3m2(i)) / (fdd2-fdd3)**2 & + - 2.0*fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) /(fdd2-fdd3)**3 & + *(fdd2m(i)-fdd3m(i)) + dderror(i)= SQRT( my2dd(i) ) - SQRT( my0(i) ) + alph_Tst(i)*fddm(i) + my2dd(i) = ( SQRT( my2dd(i) ) - dderror(i) / (1.0+alph_Tst(i)*fddm2(i)) )**2 + z1dd(i) = my2dd(i) + 3.0 * alph_Tst(i) + ENDDO + DO i = 1, ncomp + IF (ABS(dderror(i)) > 1.E-11 .AND. ddit < ddmax) GOTO 9 + ENDDO + fdd = fdd + SUM( 0.5*x(1:ncomp)*alph_Tst(1:ncomp)*fddm(1:ncomp)**2 ) + ENDIF + END IF + + +END SUBROUTINE F_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_QQ_GROSS( fqq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fqq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fqq2, fqq3 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3 +! ---------------------------------------------------------------------- + + + fqq = 0.0 + DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m)*eta**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Iqq3(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,k) = Iqq3(i,j,k) + qqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/16.0*PI *rho + factor3 = 9.0/16.0*PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2* xijfa * (Iqq2(i,j)+eij/t*Iqq4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa * Iqq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF ( fqq2 < -1.E-50 .AND. fqq3 /= 0.0 ) THEN + fqq = fqq2 / ( 1.0 - fqq3/fqq2 ) + END IF + + + +END SUBROUTINE F_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DQ_VRABEC_GROSS( fdq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fdq2, fdq3 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4 + REAL, DIMENSION(nc,nc,nc) :: Idq3 +! ---------------------------------------------------------------------- + + + fdq = 0.0 + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + ! myfac(i)=parame(i,3)/T*parame(i,2)**4 *my2dd_renormalized(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*eta**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) = Idq3(i,j,k) + dqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/4.0 * PI *rho + factor3 = PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 +factor2* xijfa*(Idq2(i,j)+eij/t*Idq4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.1937350 ) + fdq3 = fdq3 + factor3*xijkfa*Idq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0) THEN + fdq = fdq2 / ( 1.0 - fdq3/fdq2 ) + END IF + +END SUBROUTINE F_DQ_VRABEC_GROSS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_dft ( I1_dft, I2_dft ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, mseg, parame + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: I1_dft + REAL, INTENT(OUT) :: I2_dft +! +! ---------------------------------------------------------------------- + INTEGER :: k,ih + ! REAL :: z3 + REAL :: ua, ua_c, ua_2, ua_c_2, rm + REAL :: int10, int11, int20, int21 + REAL :: dg_drho + REAL :: rad, xg, rdf, rho_st, msegm + REAL :: sig_ij + REAL :: dg_dr, dzr_org !,rdf_d + ! REAL :: intgrid(0:NDFT),intgri2(0:NDFT) +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- +msegm = parame(1,1) +rho_st = rho * parame(1,2)**3 + +ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) +ua_c_2 = ua_c * ua_c +rm = 2.0**(1.0/6.0) + +int10 = rc*rc* ua_c +int20 = rc*rc* ua_c_2 +! intgrid(0)= int10 +! intgri2(0)= int20 + + +sig_ij = parame(1,2) + + +I1_dft = 0.0 +I2_dft = 0.0 +rad = rc +!dzr = dzp / 2.0 ! this line is obsolete. dzr is defined in DFT-nMF2 (dimensionless) +dzr_org= dzr +k = 0 +ih = 85 + +DO WHILE ( rad-dzr+1.E-9 >= 1.0 ) + + rad = rad - dzr + ! IF (rad <= 8.0) dzr = dzp + ! IF (rad <= rg) dzr = dzp/2.0 + k = k + 1 + xg = rad / dhs_st + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + ua_2 = ua * ua + rdf = 1.0 + dg_drho = 0.0 + IF ( rad <= rg ) THEN + CALL BI_CUB_SPLINE (rho_st,xg,ya,x1a,x2a,y1a,y2a,y12a, & + c_bicub,rdf,dg_drho,dg_dr,den_step,ih,k) + END IF + + int11 = rdf*rad*rad* ua + int21 = rdf*rad*rad* ua_2 + I1_dft= I1_dft + dzr*(int11+int10)/2.0 + I2_dft= I2_dft + dzr*(int21+int20)/2.0 + int10 = int11 + int20 = int21 + +END DO + +dzr = dzr_org + +! stepno = k +! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) +! CALL SPLINE_INT (I1,dzr,intgrid,utri,stepno) + +! caution: 1st order integral is in F_EOS.f defined with negative sign +I1_dft= - I1_dft - ( 4.0/9.0 * rc**(-9) - 4.0/3.0 * rc**(-3) ) + +! CALL SPLINE_PARA (dzr,intgri2,utri,stepno) +! CALL SPLINE_INT (I2,dzr,intgri2,utri,stepno) + +I2_dft = I2_dft + 16.0/21.0 * rc**(-21) - 32.0/15.0 * rc**(-15) + 16.0/9.0 * rc**(-9) + + +END SUBROUTINE f_dft + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) +! SUBROUTINE TANGENT_VALUE ( fmin, optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + !REAL, INTENT(IN) :: optpara(:) + !REAL, INTENT(IN OUT) :: fmin +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: lnphi(np,nc),ph_frac, gibbs_full(np),xlnx1,xlnx2 + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + + ! --- setting of mole fractions --------------------------------------- + DO i = 1, ncomp + IF ( optpara(i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( optpara(i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i) - ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(2,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + lnx(2,1:ncomp) = optpara(1:ncomp) - LOG( SUM( ni_2(1:ncomp) ) ) + + ph_frac = SUM( ni_1(1:ncomp) ) + xi(1,1:ncomp) = ni_1(1:ncomp) / ph_frac + lnx(1,1:ncomp) = LOG( ni_1(1:ncomp) ) - LOG( ph_frac ) + ! write (*,'(a,4G18.8)') 'FF',(xif(i),i=1,ncomp) + ! write (*,'(a,4G18.8)') 'AA',(xi(1,i),i=1,ncomp) + ! write (*,'(a,3G18.8)') 'BB',(xi(2,i),i=1,ncomp) + + CALL fugacity (lnphi) + !CALL enthalpy_etc + + gibbs(1) = SUM( xi(1,1:ncomp) * lnphi(1,1:ncomp) ) ! dimensionless g/RT + gibbs(2) = SUM( xi(2,1:ncomp) * lnphi(2,1:ncomp) ) + + xlnx1 = SUM( xi(1,1:ncomp)*lnx(1,1:ncomp) ) ! dimensionless s/RT + xlnx2 = SUM( xi(2,1:ncomp)*lnx(2,1:ncomp) ) + + gibbs_full(1) = gibbs(1) + xlnx1 + gibbs_full(2) = gibbs(2) + xlnx2 + + TANGENT_VALUE2 = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !fmin = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !write (*,'(a,4G18.8)') 'TP',TANGENT_VALUE2,(lnx(1,i),i=1,ncomp) + !write (*,'(a,4G18.8)') 'al',ph_frac,(lnx(2,i), i=1,ncomp) + !write (*,*) ' ' + !pause + +END FUNCTION TANGENT_VALUE2 + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 new file mode 100644 index 000000000..a53ec5cb0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 @@ -0,0 +1,4097 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE eos_const +! +! This subroutine provides the constants of the PC-SAFT EOS. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE eos_const (ap,bp,dnm) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ap(0:6,3) + REAL, INTENT(OUT) :: bp(0:6,3) + REAL, INTENT(OUT) :: dnm(4,9) +! ---------------------------------------------------------------------- + + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +! square-well fluid +! ap(1,1)= 0.79152347258784 +! ap(1,2)= -0.62269805320654 +! ap(1,3)= -0.06798823934067 +! ap(2,1)= 1.07120982251709 +! ap(2,2)= 0.48628215731716 +! ap(2,3)= 0.02837828512515 +! ap(3,1)= 0.92084839459226 +! ap(3,2)= 1.11652038059747 +! ap(3,3)= 0.09713202077943 +! ap(4,1)= -7.84708350369249 +! ap(4,2)= -2.04200599876547 +! ap(4,3)= 0.06475764015088 +! ap(5,1)= 25.90284137818050 +! ap(5,2)= 9.27791640100603 +! ap(5,3)= 0.07729792971827 +! ap(6,1)= -57.1528726997640 +! ap(6,2)= -16.8377999920957 +! ap(6,3)= 0.24883598436184 +! ap(7,1)= 42.02314637860930 +! ap(7,2)= 7.62432635016420 +! ap(7,3)= -0.72472024688888 + +! bp(1,1)= 0.79152347258784 +! bp(1,2)= -0.62269805320654 +! bp(1,3)= -0.06798823934067 +! bp(2,1)= 1.07120982251709 *2.0 +! bp(2,2)= 0.48628215731716 *2.0 +! bp(2,3)= 0.02837828512515 *2.0 +! bp(3,1)= 0.92084839459226 *3.0 +! bp(3,2)= 1.11652038059747 *3.0 +! bp(3,3)= 0.09713202077943 *3.0 +! bp(4,1)= -7.84708350369249 *4.0 +! bp(4,2)= -2.04200599876547 *4.0 +! bp(4,3)= 0.06475764015088 *4.0 +! bp(5,1)= 25.90284137818050 *5.0 +! bp(5,2)= 9.27791640100603 *5.0 +! bp(5,3)= 0.07729792971827 *5.0 +! bp(6,1)= -57.1528726997640 *6.0 +! bp(6,2)= -16.8377999920957 *6.0 +! bp(6,3)= 0.24883598436184 *6.0 +! bp(7,1)= 42.02314637860930 *7.0 +! bp(7,2)= 7.62432635016420 *7.0 +! bp(7,3)= -0.72472024688888 *7.0 + + +dnm(1,1) = -8.8043 +dnm(1,2) = +4.1646270 +dnm(1,3) = -48.203555 +dnm(1,4) = +140.43620 +dnm(1,5) = -195.23339 +dnm(1,6) = +113.51500 +dnm(2,1) = +2.9396 +dnm(2,2) = -6.0865383 +dnm(2,3) = +40.137956 +dnm(2,4) = -76.230797 +dnm(2,5) = -133.70055 +dnm(2,6) = +860.25349 +dnm(2,7) = -1535.3224 +dnm(2,8) = +1221.4261 +dnm(2,9) = -409.10539 +dnm(3,1) = -2.8225 +dnm(3,2) = +4.7600148 +dnm(3,3) = +11.257177 +dnm(3,4) = -66.382743 +dnm(3,5) = +69.248785 +dnm(4,1) = +0.3400 +dnm(4,2) = -3.1875014 +dnm(4,3) = +12.231796 +dnm(4,4) = -12.110681 + +END SUBROUTINE eos_const + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dq_const +! +! This subr. provides the constants of the dipole-quadrupole term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dq_const ( dqp2,dqp3,dqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: dqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: dqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: dqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mdq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i=1,ncomp + mdq(i) = parame(i,1) + IF (mdq(i) > 2.0) mdq(i) = 2.0 +END DO + + +DO i=1,ncomp + DO j=1,ncomp + + msegij=(mdq(i)*mdq(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + dqp2(i,j,0) = 0.697094963 + mf1*(-0.673459279) + mf2*0.670340770 + dqp2(i,j,1) = -0.633554144 + mf1*(-1.425899106) + mf2*(-4.338471826) + dqp2(i,j,2) = 2.945509028 + mf1 * 4.19441392 + mf2*7.234168360 + dqp2(i,j,3) = -1.467027314 + mf1 * 1.0266216 + dqp2(i,j,4) = 0.0 + + dqp4(i,j,0) = -0.484038322 + mf1 * 0.67651011 + mf2*(-1.167560146) + dqp4(i,j,1) = 1.970405465 + mf1*(-3.013867512) + mf2*2.13488432 + dqp4(i,j,2) = -2.118572671 + mf1 * 0.46742656 + dqp4(i,j,3) = 0.0 + dqp4(i,j,4) = 0.0 + + + DO k=1,ncomp + msegij=(mdq(i)*mdq(j)*mdq(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = (msegij-2.0)/msegij + dqp3(i,j,k,0) = 0.795009692 + mf1*(-2.099579397) + dqp3(i,j,k,1) = 3.386863396 + mf1*(-5.941376392) + dqp3(i,j,k,2) = 0.475106328 + mf1*(-0.178820384) + dqp3(i,j,k,3) = 0.0 + dqp3(i,j,k,4) = 0.0 + END DO + + END DO +END DO + +END SUBROUTINE dq_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dd_const +! +! This subroutine provides the constants of the dipole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dd_const ( ddp2,ddp3,ddp4 ) +! + USE PARAMETERS, ONLY: nc, PI + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ddp2(nc,nc,0:8) + REAL, INTENT(OUT) :: ddp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: ddp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: pardd(nc) + REAL :: mf1,mf2,msegij,sin2t +! ---------------------------------------------------------------------- + +sin2t = SIN( 0.0 * PI / 180.0 ) +sin2t = sin2t*sin2t + +DO i = 1, ncomp + pardd(i) = parame(i,1) + IF (pardd(i) > 2.0) pardd(i) = 2.0 +END DO + +DO i=1,ncomp + DO j=1,ncomp +! IF (parame(i,6).NE.0.0.AND.parame(j,6).NE.0.0) THEN + + msegij=(pardd(i)*pardd(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + ddp2(i,j,0) = 0.30435038064 + mf1*(0.95346405973+0.201436*sin2t) & + + mf2*(-1.16100802773-1.74114*sin2t) + ddp2(i,j,1) = -0.13585877707 + mf1*(-1.83963831920+1.31649*sin2t) & + + mf2*4.52586067320 + ddp2(i,j,2) = 1.44933285154 + mf1 * 2.01311801180 + mf2*0.97512223853 + ddp2(i,j,3) = 0.35569769252 + mf1*(-7.37249576667) + mf2*(-12.2810377713) + ddp2(i,j,4) = -2.06533084541 + mf1 * 8.23741345333 + mf2*5.93975747420 + + ddp4(i,j,0) = 0.21879385627 + mf1*(-0.58731641193) + mf2*3.48695755800 + ddp4(i,j,1) = -1.18964307357 + mf1 * 1.24891317047 + mf2*(-14.9159739347) + ddp4(i,j,2) = 1.16268885692 + mf1*(-0.50852797392) + mf2*15.3720218600 + ddp4(i,j,3) = 0.0 + ddp4(i,j,4) = 0.0 + + DO k=1,ncomp +! IF (parame(k,6).NE.0.0) THEN + msegij=(pardd(i)*pardd(j)*pardd(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + ddp3(i,j,k,0) = -0.06467735252 + mf1*(-0.95208758351+0.28503*sin2t) & + + mf2*(-0.62609792333+2.2195*sin2t) + ddp3(i,j,k,1) = 0.19758818347 + mf1 * 2.99242575222 + mf2*1.29246858189 + ddp3(i,j,k,2) = -0.80875619458 + mf1*(-2.38026356489) + mf2*1.65427830900 + ddp3(i,j,k,3) = 0.69028490492 + mf1*(-0.27012609786) + mf2*(-3.43967436378) + ddp3(i,j,k,4) = 0.0 + +! ENDIF + END DO + +! ENDIF + END DO +END DO + +END SUBROUTINE dd_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE qq_const +! +! This subroutine provides the constants of the quadrupole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qq_const ( qqp2,qqp3,qqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: qqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: qqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: qqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mqq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i = 1,ncomp + mqq(i) = parame(i,1) + IF (mqq(i) > 2.0) mqq(i) = 2.0 +END DO + +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + + msegij=(mqq(i)*mqq(j))**0.5 +! msegij=(parame(i,1)*parame(j,1))**0.50 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + qqp2(i,j,0) = 1.237830788 + mf1 * 1.285410878 + mf2*1.794295401 + qqp2(i,j,1) = 2.435503144 + mf1*(-11.46561451) + mf2*0.769510293 + qqp2(i,j,2) = 1.633090469 + mf1 *22.08689285 + mf2*7.264792255 + qqp2(i,j,3) = -1.611815241 + mf1 * 7.46913832 + mf2*94.48669892 + qqp2(i,j,4) = 6.977118504 + mf1*(-17.19777208) + mf2*(-77.1484579) + + qqp4(i,j,0) = 0.454271755 + mf1*(-0.813734006) + mf2*6.868267516 + qqp4(i,j,1) = -4.501626435 + mf1 * 10.06402986 + mf2*(-5.173223765) + qqp4(i,j,2) = 3.585886783 + mf1*(-10.87663092) + mf2*(-17.2402066) + qqp4(i,j,3) = 0.0 + qqp4(i,j,4) = 0.0 + + DO k = 1,ncomp + IF (parame(k,7) /= 0.0) THEN + msegij=(mqq(i)*mqq(j)*mqq(k))**(1.0/3.0) +! msegij=(parame(i,1)*parame(j,1)*parame(k,1))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + qqp3(i,j,k,0) = -0.500043713 + mf1 * 2.000209381 + mf2*3.135827145 + qqp3(i,j,k,1) = 6.531869153 + mf1*(-6.78386584) + mf2*7.247588801 + qqp3(i,j,k,2) = -16.01477983 + mf1 * 20.38324603 + mf2*3.075947834 + qqp3(i,j,k,3) = 14.42597018 + mf1*(-10.89598394) + qqp3(i,j,k,4) = 0.0 + END IF + END DO + + END IF + END DO +END DO + +END SUBROUTINE qq_const + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SET_DEFAULT_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + + ideal_gas = 'no' ! ( yes, no ) + hard_sphere = 'CSBM' ! ( CSBM, no ) + chain_term = 'TPT1' ! ( TPT1, HuLiu, no ) + disp_term = 'PC-SAFT' ! ( PC-SAFT, CK, PT1, PT2, PT_MF, PT_MIX, no ) + hb_term = 'TPT1_Chap' ! ( TPT1_Chap, no ) + LC_term = 'no' ! ( MSaupe, OVL, no ) + branch_term = 'no' ! ( TPT2, no ) + II_term = 'no' + ID_term = 'no' + + subtract1 = 'no' ! (1PT, 2PT, no) + subtract2 = 'no' ! (ITTpolar, no) + +END SUBROUTINE SET_DEFAULT_EOS_NUMERICAL + + + + + + + + + +! SUBROUTINE READ_INPUT +! ! +! USE BASIC_VARIABLES +! IMPLICIT NONE +! ! +! ! ---------------------------------------------------------------------- +! INTEGER :: i +! REAL :: reading2,reading3,sumfeed +! CHARACTER (LEN=4) :: uoutp, uinp +! CHARACTER (LEN=1) :: uoutt, uint +! CHARACTER (LEN=50) :: filename +! CHARACTER (LEN=30) :: reading1 +! ! ---------------------------------------------------------------------- +! +! filename='./input_file/INPUT.INP' +! CALL file_open(filename,30) +! READ (30,*) eos, pol !J: specify by numbers! eos(1=pcsaft, 2=SRK,...) pol (=polar) yes(1) no(0) +! READ (30,*) t, uint, p, uinp !J: t: value of temp, uint: unit of temp, p: value of pressure, uinp: unit of pressure +! +! ncomp = 0 +! i = 0 +! sumfeed = 0.0 +! read_loop: DO +! READ (30,*) reading1,reading2,reading3 +! IF (reading1 == 'end') EXIT read_loop +! ncomp = ncomp + 1 +! i = i + 1 +! compna(i)= reading1 ! comp.name +! mm(i) = reading2 ! molec.mass (mandatory only for polymers) +! xif(i) = reading3 !J: molefractions +! sumfeed = sumfeed + xif(i) +! ENDDO read_loop +! +! CLOSE (30) +! +! IF (sumfeed /= 0.0 .AND. sumfeed /= 1.0) THEN !J: in case mole fractions dont sum up to 1?? +! xif(1:ncomp) = xif(1:ncomp)/sumfeed +! END IF +! +! uoutt = uint +! uoutp = uinp +! IF (uint == 'C') THEN !J: unit stuff +! u_in_t = 273.15 +! ELSE +! u_in_t = 0.0 +! END IF +! IF (uinp == 'bar') THEN +! u_in_p = 1.E5 +! ELSE IF (uinp == 'mbar') THEN +! u_in_p = 1.E2 +! ELSE IF (uinp == 'MPa') THEN +! u_in_p = 1.E6 +! ELSE IF (uinp == 'kPa') THEN +! u_in_p = 1.E3 +! ELSE +! u_in_p = 1.E0 +! END IF +! +! IF (uoutt == 'C') THEN +! u_out_t = 273.15 +! ELSE +! u_out_t = 0.0 +! END IF +! IF (uoutp == 'bar') THEN +! u_out_p = 1.E5 +! ELSE IF (uoutp == 'mbar') THEN +! u_out_p = 1.E2 +! ELSE IF (uoutp == 'MPa') THEN +! u_out_p = 1.E6 +! ELSE IF (uoutp == 'kPa') THEN +! u_out_p = 1.E3 +! ELSE +! u_out_p = 1.0 +! END IF +! +! t = t + u_in_t !J: calculate temp in Kelvin +! p = p * u_in_p !J: calculate pressure in Pascal +! +! CALL para_input ! retriev pure comp. parameters +! +! +! END SUBROUTINE READ_INPUT + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE file_open +! +! This subroutine opens files for reading. Beforehand, it checks +! whether this file is available. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE file_open(filename,file_number) +! +! ---------------------------------------------------------------------- + CHARACTER (LEN=50) :: filename + INTEGER :: file_number + LOGICAL :: filefound +! ---------------------------------------------------------------------- + +INQUIRE (FILE=filename, EXIST = filefound) +IF (filefound) THEN + OPEN (file_number, FILE = filename) +ELSE + write (*,*) ' FOLLOWING FILE CAN NOT BE OPENED', filename + stop +END IF + +END SUBROUTINE file_open + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE para_input +! +! This subroutine provides pure component parameters and kij parameters. +! The following syntax applies: +! +! compna(i) component name +! parame(i,k) pure comp. parameter: +! parame(i,1): segment number [/] +! parame(i,2): segment diameter "sigma" [Angstrom] +! parame(i,3): segment energy param. epsilon/k [K] +! parame(i,4): model parameter; not used for PC-SAFT (=0) +! it is 10K most of the time for SAFT [K] +! parame(i,5): Param. for T-dependent segment diameter [/] +! parame(i,6): dipolar moment [debye] +! parame(i,7): quadrupolar moment [debye] +! parame(i,8): number of segments that are part of a branching 4-mer [/] +! parame(i,9): +! parame(i,10): ionic charge number (positiv or negativ) [/] +! parame(i,11): polarizability [A**3] +! parame(i,12): number of association sites [/] +! parame(i,13): (=kap_hb, see below) [/] +! parame(i,14 to 25): (=eps_hb, see below) [K] +! nhb_typ(i) number of different types of association sites (comp. i) +! nhb_no(i,k) number of association sites of type k +! eps_hb depth of association potential [K] +! kap_hb effective width of assoc. potential (angle-averg.) +! mm molec. mass +! scaling param. for roughly scaling the set of objective functions +! +! As opposed to low-molec mass compounds, the molecular mass of a +! polymer is not obtained from this routine. Rather, it is a +! user-specification given in the file INPUT.INP +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE para_input +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i +!---------------------------------------------------------------------- + +IF (eos == 1) THEN + CALL pcsaft_par +ELSE IF (eos == 4 .OR. eos == 5 .OR. eos == 6 .OR. eos == 8) THEN + ! CALL lj_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 7) THEN + ! CALL sw_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 10) THEN + i = 1 + IF (compna(i) == 'LC_generic' .AND. ncomp == 1 ) THEN + mm(i) = 1.0 + parame(i,1) = 7.0 + parame(i,2) = 1.0 + parame(i,3) = 0.0 + ELSE + write (*,*) 'PARA_INPUT: define the component !' + stop + ENDIF +ELSE + !CALL saft_par +END IF + +DO i = 1, ncomp + IF ( mm(i) >= 1.0 .AND. mm(i) < 45.0 ) THEN + scaling(i) = 10000.0 + ELSE IF( mm(i) >= 45.0 .AND. mm(i) < 90.0 ) THEN + scaling(i) = 1000.0 + ELSE IF( mm(i) >= 90.0 .AND. mm(i) < 150.0 ) THEN + scaling(i) = 100.0 + ELSE IF( mm(i) >= 150.0 .AND. mm(i) < 250.0 ) THEN + scaling(i) = 10.0 + ELSE + scaling(i) = 1.0 + END IF + IF (parame(i,10) /= 0.0) scaling(i) = scaling(i) / 1.E4 ! Electrolytes +END DO + +END SUBROUTINE para_input + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE pcsaft_par +! +! pure component parameters and kij parameters +! (as described in SUBROUTINE para_input) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE pcsaft_par +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i, j, k, no + INTEGER, DIMENSION(nc) :: nhb_typ + INTEGER, DIMENSION(nc,nsite) :: nhb_no + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb +!---------------------------------------------------------------------- + + +DO i = 1, ncomp + parame(i,4) = 0.0 ! T correct. required for SAFT, not PC-SAFT + parame(i,5) = 0.12 ! Param. for T-dependent segment diameter + parame(i,6) = 0.0 ! dipolar moment + parame(i,7) = 0.0 ! quadrupolar moment + parame(i,8) = 0.0 ! number of segments that are part of a branching 4-mer + parame(i,9) = 0.0 + parame(i,10)= 0.0 ! ionic charge number + parame(i,11)= 0.0 ! polarizability + lli(i) = 0.0 + phi_criti(i)= 0.0 + chap(i) = 0.0 + + nhb_typ(i) = 0 + kap_hb(i,i) = 0.0 + ! irgendwann sollten nhb_typ und kap_hb durch parame(i,12) und (i,13) + ! ersetzt werden. + + IF (compna(i) == '14-butandiol') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + ELSE IF (compna(i) == 'air') THEN + mm(i) = 28.899 !n2 and o2 according to mole fractions + parame(i,1) = 1.18938 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,2) = 3.28694 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,3) = 95.672 !n2 and o2 according to mole fractions (weighted artihm. avg) + + + Else IF(compna(i) == 'mdi') THEN + mm(i) = 2.50252E+02 + parame(i,1) = mm(i)*0.030769 + parame(i,2) = 2.886003 + parame(i,3) = 283.052778 + + Else IF(compna(i) == 'po') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + Else IF(compna(i) == 'pu') THEN +! mm(i) = 2042.22 !pu n = 5 +! parame(i,1) = mm(i)*0.008845 +! parame(i,2) = 5.680270 +! parame(i,3) = 497.997594 + mm(i) = 340.37 !pu n = 0 + parame(i,1) = mm(i)*0.043312 + parame(i,2) = 3.008359 + parame(i,3) = 273.445205 +! mm(i) = 680.74 !pu n = 1 +! parame(i,1) = mm(i)*0.024106 +! parame(i,2) = 3.744327 +! parame(i,3) = 321.486386 +! mm(i) = 1021.11 !pu n = 2 +! parame(i,1) = mm(i)*0.015076 +! parame(i,2) = 4.537837 +! parame(i,3) = 400.036950 + + + + + Else IF(compna(i) == 'tpg') THEN + mm(i) = 192.25 + parame(i,1) = mm(i)*0.01239 + parame(i,2) = 4.549 + parame(i,3) = 148.678 + parame(i,6) = 0.41 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 2 ! no. of sites of type 1 + nhb_no(i,2) = 2 ! no. of sites of type 2 + + eps_hb(i,i,1,2)= 5597.844 + eps_hb(i,i,2,1)= 5597.844 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.03 + + + + + + ELSE IF (compna(i) == 'ps') THEN + parame(i,1) = mm(i)*1.9E-2 + parame(i,2) = 4.10705961 + parame(i,3) = 267.0 + ELSE IF (compna(i) == 'pg2') THEN !Polyglycerol 2 + mm(i) = 2000.0 + parame(i,1) = mm(i)*2.37E-2 ! from figure 5 PCSAFT paper + parame(i,2) = 3.8 ! from figure 5 PCSAFT paper + parame(i,3) = 270.0 ! starting value for iteration + ! this is the extra parameter + parame(i,8) = mm(i)*2.37E-2 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 27 ! no. of sites of type 1 + nhb_no(i,2) = 27 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2544.6 ! taken from butanol (same M/OH) + eps_hb(i,i,2,1)= 2544.6 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i)= .00489087833 ! taken from butanol (same M/OH) + ELSE IF (compna(i) == 'peva') THEN + parame(i,1) = mm(i)*2.63E-2 + ! -- 0 Gew.% VA------------- + ! parame(i,2) = 4.021767 + ! parame(i,3) = 249.5 + ! -- 7.5 Gew.% VA------------- + ! parame(i,2) = 4.011 + ! parame(i,3) = 248.1864 + ! parame(i,3) = 247.6286 + ! ---12.7 Gew.% VA------------ + ! parame(i,2) = 4.0028 + ! parame(i,3) = 247.2075 + ! parame(i,3) = 246.24454 + ! ---27.3 Gew.% VA------------ + ! parame(i,2) = 3.9762 + ! parame(i,3) = 244.114 + ! parame(i,3) = 241.9345 + ! ---31.8 Gew.% VA------------ + parame(i,2) = 3.9666 + parame(i,3) = 243.0436 + ! parame(i,3) = 240.46 + ! ---42.7 Gew.% VA------------ + ! parame(i,2) = 3.9400 + ! parame(i,3) = 240.184 + ! parame(i,3) = 236.62 + ! --------------- + ELSE IF (compna(i) == 'pp') THEN + parame(i,1) = mm(i)*2.2E-2 + parame(i,2) = 4.2 + parame(i,3) = 220.0 + + parame(i,1) = mm(i)*0.0230487701 + parame(i,2) = 4.1 + parame(i,3) = 217.0 + ELSE IF (compna(i) == 'pe') THEN + parame(i,1) = mm(i)*2.622E-2 + parame(i,2) = 4.021767 + parame(i,3) = 252.0 + ! HDPE: extrapolated from pure comp. param. of n-alkane series! + ! parame(i,1) = mm(i)*2.4346E-2 + ! parame(i,2) = 4.07182 + ! parame(i,3) = 269.67 + !! parame(i,3) = 252.5 + ELSE IF (compna(i) == 'ldpe') THEN + parame(i,1) = mm(i)*2.63E-2 + parame(i,2) = 4.021767 + parame(i,3) = 249.5 + ELSE IF (compna(i) == 'pba') THEN + parame(i,1) = mm(i)*2.5872E-2 + parame(i,2) = 3.95 + parame(i,3) = 229.0 + ELSE IF (compna(i) == 'dextran') THEN + parame(i,1) = mm(i)*2.E-2 + parame(i,2) = 4.0 + parame(i,3) = 300.0 + ELSE IF (compna(i) == 'glycol-ethers') THEN + ! mm(i) = 218.0 + ! parame(i,1) = 7.4044 + ! parame(i,2) = 3.61576 + ! parame(i,3) = 244.0034598 + mm(i) = 222.0 + parame(i,1) = 7.994 + parame(i,2) = 3.445377778 + parame(i,3) = 234.916506 + ELSE IF (compna(i) == 'LJ') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 1.0 + ELSE IF (compna(i) == 'LJ1205') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 140.0 + ELSE IF (compna(i) == 'adamantane') THEN + mm(i) = 136.235000000000 + parame(i,1) = 4.81897145432221 + parame(i,2) = 3.47128575274660 + parame(i,3) = 266.936967922521 + ELSE IF (compna(i) == 'methane') THEN + mm(i) = 16.043 + parame(i,1) = 1.0 + parame(i,2) = 3.70388767 + parame(i,3) = 150.033987 + ! LLi(i) = 1.185*parame(i,2) + ! phi_criti(i)= 11.141 + ! chap(i) = 0.787 + lli(i) = 1.398*parame(i,2) + phi_criti(i)= 16.01197 + chap(i) = 0.6 + IF (pol == 2) parame(i,11)= 2.593 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 16.0430000000000 + ! parame(i,1) = 1.03353666429362 + ! parame(i,2) = 3.64824920605089 + ! parame(i,3) = 147.903953522994 + lli(i) = 2.254442763775*parame(i,2) + phi_criti(i)= 42.060975627454 + chap(i) = 0.704895924 + lli(i) = 1.935801125833*parame(i,2) + phi_criti(i)= 26.363325937261 + chap(i) = 0.700112854298 + lli(i) = 2.610103087662*parame(i,2) + phi_criti(i)= 38.192854403173 + chap(i) = 0.812100472735 + ! 2.122960316503 34.937141524804 0.734513223627 + ! 2.082897379591 33.036391564859 0.877578492999 + ELSE IF (compna(i) == 'ethane') THEN + mm(i) = 30.070 + parame(i,1) =mm(i)* .0534364758 + parame(i,2) = 3.5205923 + parame(i,3) = 191.423815 + lli(i) = 1.40*parame(i,2) + phi_criti(i)= 15.38 + chap(i) = 0.520 + IF (pol == 2) parame(i,11)= 4.3 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 30.069 + ! parame(i,1) = 1.74034548122 + ! parame(i,2) = 3.4697441893134 + ! parame(i,3) = 181.90770083591 + IF (pol >= 1) mm(i) = 30.0700000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 5.341907666260094E-002 + IF (pol >= 1) parame(i,2) = 3.52104466654628 + IF (pol >= 1) parame(i,3) = 191.449300423694 + IF (pol >= 1) parame(i,7) = 0.650000000000000 + IF (pol >= 1) lli(i) = 0.0 + IF (pol >= 1) phi_criti(i)= 0.0 + IF (pol >= 1) chap(i) = 0.0 + ELSE IF (compna(i) == 'propane') THEN + mm(i) = 44.096 + parame(i,1) = mm(i)* .0453970622 + parame(i,2) = 3.61835302 + parame(i,3) = 208.110116 + lli(i) = 1.8*parame(i,2) + phi_criti(i)= 21.0 + chap(i) = 1.0 + lli(i) = 1.63*parame(i,2) + phi_criti(i)= 20.37 + chap(i) = 0.397 + IF (pol == 2) parame(i,11)= 6.29 + ELSE IF (compna(i) == 'butane_debug') THEN + mm(i) = 58.123 + parame(i,1) = 2.3374 + parame(i,2) = 3.6655 + parame(i,3) = 214.805 + ELSE IF (compna(i) == 'butane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0401146927 + parame(i,2) = 3.70860139 + parame(i,3) = 222.877405 + lli(i) = 1.75*parame(i,2) + phi_criti(i)= 23.43 + chap(i) = 0.304 + ! LLi(i) = 1.942079633622*parame(i,2) + ! phi_criti(i)= 24.527323443155 + ! chap(i) = 0.734064026277 + ! LLi(i) = 1.515115760477*parame(i,2) + ! phi_criti(i)= 17.682929717796 + ! chap(i) = 0.335848717079 + IF (pol == 2) parame(i,11)= 8.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 58.1230000000 + ! parame(i,1) = 2.45352304112 + ! parame(i,2) = 3.74239117802 + ! parame(i,3) = 214.185157925 + ELSE IF (compna(i) == 'pentane') THEN + mm(i) = 72.146 + parame(i,1) = mm(i)* .03727896 + parame(i,2) = 3.77293174 + parame(i,3) = 231.197015 + IF (pol == 2) parame(i,11)= 9.99 + ELSE IF (compna(i) == 'hexane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0354812325 + parame(i,2) = 3.79829291 + parame(i,3) = 236.769054 + lli(i) = 2.24*parame(i,2) + phi_criti(i)= 33.25 + chap(i) = 0.205 + IF (pol == 2) parame(i,11)= 11.9 + ELSE IF (compna(i) == 'heptane') THEN + mm(i) = 100.203 + parame(i,1) = mm(i)* .034762384 + parame(i,2) = 3.80487025 + parame(i,3) = 238.400913 + lli(i) = 2.35*parame(i,2) + phi_criti(i)= 38.10 + chap(i) = 0.173 + IF (pol == 2) parame(i,11)= 13.61 + ELSE IF (compna(i) == 'octane') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* .0334228038 + parame(i,2) = 3.83732677 + parame(i,3) = 242.775853 + ! LLi(i) = 2.0*parame(i,2) + ! phi_criti(i)= 18.75 + ! chap(i) = 1.0 + lli(i) = 2.63*parame(i,2) + phi_criti(i)= 42.06 + chap(i) = 0.155 + IF (pol == 2) parame(i,11)= 15.9 + ELSE IF (compna(i) == 'nonane') THEN + mm(i) = 128.25 + parame(i,1) = mm(i)* .0328062594 + parame(i,2) = 3.84483643 + parame(i,3) = 244.508457 + ELSE IF (compna(i) == 'decane') THEN + mm(i) = 142.285 + parame(i,1) = mm(i)* .03277373 + parame(i,2) = 3.8384498 + parame(i,3) = 243.866074 + lli(i) = 1.845*parame(i,2) + phi_criti(i)= 21.27 + chap(i) = 1.0 + lli(i) = 2.68*parame(i,2) + phi_criti(i)= 45.0 + chap(i) = 0.15 + IF (pol == 2) parame(i,11)= 19.1 + ! --- adjusted to Tc, Pc und omega --- + ! parame(i,1) = 4.794137228322 + ! parame(i,2) = 4.030446690586 + ! parame(i,3) = 236.5884493386 + ELSE IF (compna(i) == 'dodecane') THEN + mm(i) = 170.338 + parame(i,1) = mm(i)* .0311484156 + parame(i,2) = 3.89589236 + parame(i,3) = 249.214532 + ELSE IF (compna(i) == 'hexadecane') THEN + mm(i) = 226.446 + parame(i,1) = mm(i)* .0293593045 + parame(i,2) = 3.95516743 + parame(i,3) = 254.700131 + ELSE IF (compna(i) == 'octadecane') THEN + mm(i) = 254.5 + parame(i,1) = 7.3271 + parame(i,2) = 3.9668 + parame(i,3) = 256.20 + IF (pol == 2) parame(i,11)= 30.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 226.446000000000 + ! parame(i,1) = 6.66976520488694 + ! parame(i,2) = 4.25025597912511 + ! parame(i,3) = 249.582941976119 + ELSE IF (compna(i) == 'eicosane') THEN + mm(i) = 282.553 + parame(i,1) = mm(i)* .0282572812 + parame(i,2) = 3.98692612 + parame(i,3) = 257.747939 + ELSE IF (compna(i) == 'triacontane') THEN + ! mm(i) = 422.822 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 422.822 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'octaeicosane') THEN + mm(i) = 395.0 ! param. by extrapolation of n-alkanes (sloppy!!) + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'tetracontane') THEN + ! mm(i) = 563.1 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 563.1 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)*0.026287593 + parame(i,2) = 4.023277 + parame(i,3) = 264.10466 + ELSE IF (compna(i) == 'isobutane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0389105395 + parame(i,2) = 3.75735249 + parame(i,3) = 216.528584 + ELSE IF (compna(i) == 'isopentane') THEN + mm(i) = 72.15 + parame(i,1) = 2.5620 + parame(i,2) = 3.8296 + parame(i,3) = 230.75 + ELSE IF (compna(i) == '2-methylpentane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0340166994 + parame(i,2) = 3.85354665 + parame(i,3) = 235.5801 + ELSE IF (compna(i) == '23-dimethylbutane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0311599207 + parame(i,2) = 3.9544545 + parame(i,3) = 246.068188 + ELSE IF (compna(i) == 'ethylene') THEN + mm(i) = 28.05 + parame(i,1) = mm(i)* .0567939013 + parame(i,2) = 3.44499904 + parame(i,3) = 176.468725 + IF (pol == 2) parame(i,11)= 4.252 +! eigener 3-ter Anlauf. + IF (pol >= 1) parame(i,1) = mm(i)* 5.574644443117726E-002 + IF (pol >= 1) parame(i,2) = 3.43281482228714 + IF (pol >= 1) parame(i,3) = 178.627308564610 + IF (pol >= 1) parame(i,7) = 1.56885870200446 + IF (pol == 2) parame(i,11)= 4.252 + ELSE IF (compna(i) == 'propylene') THEN + mm(i) = 42.081 + parame(i,1) = mm(i)* .0465710324 + parame(i,2) = 3.53559831 + parame(i,3) = 207.189309 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 42.081 + ! parame(i,1) = 2.086735327675 + ! parame(i,2) = 3.536779407969 + ! parame(i,3) = 198.3529810625 + ELSE IF (compna(i) == '1-butene') THEN + mm(i) = 56.107 + parame(i,1) = mm(i)* .0407524782 + parame(i,2) = 3.64305136 + parame(i,3) = 222.002756 + IF (pol == 2) parame(i,11)= 7.97 + ELSE IF (compna(i) == '1-pentene') THEN + mm(i) = 70.134 + parame(i,1) = 2.6006 + parame(i,2) = 3.7399 + parame(i,3) = 231.99 + ELSE IF (compna(i) == '1-hexene') THEN + mm(i) = 84.616 + parame(i,1) = mm(i)* .0352836857 + parame(i,2) = 3.77529612 + parame(i,3) = 236.810973 + ELSE IF (compna(i) == '1-octene') THEN + mm(i) = 112.215 + parame(i,1) = mm(i)* .033345175 + parame(i,2) = 3.81329011 + parame(i,3) = 243.017587 + ELSE IF (compna(i) == 'cyclopentane') THEN + mm(i) = 70.13 + parame(i,1) = mm(i)* .0337262571 + parame(i,2) = 3.71139254 + parame(i,3) = 265.828755 + ELSE IF (compna(i) == 'cyclohexane') THEN + mm(i) = 84.147 + parame(i,1) = mm(i)* .0300695505 + parame(i,2) = 3.84990887 + parame(i,3) = 278.108786 + IF (pol == 2) parame(i,11)= 10.87 + ELSE IF (compna(i) == 'toluene') THEN + mm(i) = 92.141 + parame(i,1) = mm(i)* .0305499338 + parame(i,2) = 3.71689689 + parame(i,3) = 285.68996 + IF (pol == 2) parame(i,11)= 11.8 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 92.141 + ! parame(i,1) = 3.002119827762 + ! parame(i,2) = 3.803702734224 + ! parame(i,3) = 271.9428642880 + ELSE IF (compna(i) == 'm-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .030011086 + parame(i,2) = 3.75625585 + parame(i,3) = 283.977525 + ELSE IF (compna(i) == 'o-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0295409161 + parame(i,2) = 3.76000631 + parame(i,3) = 291.049123 + ELSE IF (compna(i) == 'thf') THEN + mm(i) = 72.1057000000000 + ! parame(i,1) = mm(i)* 0.34311391E-01 + parame(i,1) = 2.47404685540709 + parame(i,2) = 3.51369375633677 + parame(i,3) = 274.181927093696 + parame(i,6) = 1.63100000000000 + ELSE IF (compna(i) == 'co2') THEN + mm(i) = 44.01 + parame(i,1) = mm(i)* .0470968503 + parame(i,2) = 2.7851954 + parame(i,3) = 169.207418 + IF (pol >= 1) parame(i,1) = mm(i)* 3.438191426159075E-002 + IF (pol >= 1) parame(i,2) = 3.18693935424469 + IF (pol >= 1) parame(i,3) = 163.333232725156 + IF (pol >= 1) parame(i,7) = 4.400000000000 + IF (pol >= 1) lli(i) = 1.472215*parame(i,2) + IF (pol >= 1) phi_criti(i)= 17.706567 + IF (pol >= 1) chap(i) = 0.5 + IF (pol == 2) parame(i,11)= 2.911 + ELSE IF (compna(i) == 'co') THEN + IF (pol /= 1) write (*,*) 'parameters for co missing' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 28.01 + IF (pol >= 1) parame(i,1) = mm(i)* 5.126059746332587E-002 ! 1.43580933494776 + IF (pol >= 1) parame(i,2) = 3.13556624711756 + IF (pol >= 1) parame(i,3) = 87.7191028693595 + IF (pol >= 1) parame(i,6) = 0.1098 + ELSE IF (compna(i) == 'n2') THEN + mm(i) = 28.01 + parame(i,1) = mm(i)* .0430301713 + parame(i,2) = 3.3129702 + parame(i,3) = 90.9606924 + IF (pol >= 1) parame(i,1) = mm(i)* 3.971157114787596E-002 + IF (pol >= 1) parame(i,2) = 3.42116853868336 + IF (pol >= 1) parame(i,3) = 92.3972606842862 + IF (pol >= 1) parame(i,7) = 1.52000000000000 + IF (pol >= 1) lli(i) = 1.5188*parame(i,2) + IF (pol >= 1) phi_criti(i)= 19.9247 + IF (pol >= 1) chap(i) = 0.375 + ! better RGT-results came later, with: 1.5822 21.201 0.3972 + ELSE IF (compna(i) == 'o2') THEN + mm(i) = 32.05 + parame(i,1) = mm(i)* .0353671563 + parame(i,2) = 3.19465166 + parame(i,3) = 114.430197 + ELSE IF (compna(i) == 'hydrogen') THEN + mm(i) = 2.016 + parame(i,1) = mm(i)* .258951975 + parame(i,2) = 4.43304935 + parame(i,3) = 29.6509579 + + mm(i) = 2.016 + parame(i,1) = 1.0 + parame(i,2) = 2.915 + parame(i,3) = 38.0 + + ! mm(i) = 2.016 ! Ghosh et al. 2003 + ! parame(i,1) = 1.0 + ! parame(i,2) = 2.986 + ! parame(i,3) = 19.2775 + ELSE IF (compna(i) == 'argon') THEN + ! mm(i) = 39.948 ! adjusted m !! + ! parame(i,1) = 0.9285 + ! parame(i,2) = 3.4784 + ! parame(i,3) = 122.23 + mm(i) = 39.948 ! enforced m=1 !! + parame(i,1) = 1.0 + parame(i,2) = 3.3658 + parame(i,3) = 118.34 + IF (pol == 2) parame(i,11)= 1.6411 + ELSE IF (compna(i) == 'xenon') THEN + mm(i) = 131.29 + parame(i,1) = 1.0 + parame(i,2) = 3.93143 + parame(i,3) = 227.749 + ELSE IF (compna(i) == 'chlorine') THEN ! Cl2 + mm(i) = 70.906 + parame(i,1) = 1.5514 + parame(i,2) = 3.3672 + parame(i,3) = 265.67 + ELSE IF (compna(i) == 'SF6') THEN + mm(i) = 146.056 ! adjusted m !! + parame(i,1) = 2.48191 + parame(i,2) = 3.32727 + parame(i,3) = 161.639 + ! mm(i) = 146.056 ! enforced m=1 !! + ! parame(i,1) = 1.0 + ! parame(i,2) = 4.55222 + ! parame(i,3) = 263.1356 + ELSE IF (compna(i) == 'benzene') THEN + mm(i) = 78.114 + parame(i,1) = mm(i)* .0315590546 + parame(i,2) = 3.64778975 + parame(i,3) = 287.354574 + IF (pol >= 1) mm(i) = 78.114 ! PCP-SAFT with m=2 in QQ term + IF (pol >= 1) parame(i,1) = mm(i)* 2.932783311E-2 ! = 2.29091435590515 + IF (pol >= 1) parame(i,2) = 3.7563854 + IF (pol >= 1) parame(i,3) = 294.06253 + IF (pol >= 1) parame(i,7) = 5.5907 + ELSE IF (compna(i) == 'ethylbenzene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0290120497 + parame(i,2) = 3.79741116 + parame(i,3) = 287.348098 + IF (pol == 2) parame(i,11)= 13.3 + ELSE IF (compna(i) == 'propylbenzene') THEN + mm(i) = 120.194 + parame(i,1) = mm(i)* .0278171627 + parame(i,2) = 3.8437772 + parame(i,3) = 288.128269 + ELSE IF (compna(i) == 'n-butylbenzene') THEN + mm(i) = 134.221 + parame(i,1) = mm(i)* .0280642225 + parame(i,2) = 3.87267961 + parame(i,3) = 283.072331 + ELSE IF (compna(i) == 'tetralin') THEN + mm(i) = 132.205 + parame(i,1) = mm(i)* .0250640795 + parame(i,2) = 3.87498866 + parame(i,3) = 325.065688 + ELSE IF (compna(i) == 'methylcyclohexane') THEN + mm(i) = 98.182 + parame(i,1) = mm(i)* .0271259953 + parame(i,2) = 3.99931892 + parame(i,3) = 282.334148 + IF (pol == 2) parame(i,11)= 13.1 + ELSE IF (compna(i) == 'methylcyclopentane') THEN + mm(i) = 84.156 + parame(i,1) = mm(i)* .0310459009 + parame(i,2) = 3.82534693 + parame(i,3) = 265.122799 + ELSE IF (compna(i) == 'acetone') THEN + mm(i) = 58.0800000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.870380408159182E-002 ! =2.82871694105885 + parame(i,2) = 3.24969003020675 + parame(i,3) = 250.262241927379 + lli(i) = 2.0021*parame(i,2) + phi_criti(i)= 21.336 + chap(i) = 0.24931 + IF (pol >= 1) mm(i) = 58.0800000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.725811736856114E-002 ! =2.74475145676603 + IF (pol >= 1) parame(i,2) = 3.27423145271184 + IF (pol >= 1) parame(i,3) = 232.990879135326 + IF (pol >= 1) parame(i,6) = 2.88000000000000 + IF (pol >= 1) lli(i) = 2.0641*parame(i,2) + IF (pol >= 1) phi_criti(i)= 28.1783 + IF (pol >= 1) chap(i) = 0.22695 + IF (pol >= 2) mm(i) = 58.0800000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.902301475689938E-002 ! =2.84725669708072 + IF (pol >= 2) parame(i,2) = 3.23880349104868 + IF (pol >= 2) parame(i,3) = 220.884202656054 + IF (pol >= 2) parame(i,6) = 2.88000000000000 + IF (pol == 2) parame(i,11)= 6.40000000000000 + ELSE IF (compna(i) == 'butanone') THEN + mm(i) = 72.1066 ! PC-SAFT + parame(i,1) = mm(i)* 4.264192830122321E-002 ! =3.07476446724498 + parame(i,2) = 3.39324011060028 + parame(i,3) = 252.267273608975 + IF (pol >= 1) mm(i) = 72.1066 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.137668924230600E-002 ! =2.98353238051926 + IF (pol >= 1) parame(i,2) = 3.42393701353423 + IF (pol >= 1) parame(i,3) = 244.994381354681 + IF (pol >= 1) parame(i,6) = 2.78000000000000 + IF (pol >= 2) mm(i) = 72.1066 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.254697075199448E-002 ! =3.06791740122577 + IF (pol >= 2) parame(i,2) = 3.39138375903252 + IF (pol >= 2) parame(i,3) = 236.527763837528 + IF (pol >= 2) parame(i,6) = 2.78000000000000 + IF (pol == 2) parame(i,11)= 8.13000000000000 + ELSE IF (compna(i) == '2-pentanone') THEN + ! mm(i) = 86.134 ! PC-SAFT + ! parame(i,1) = mm(i)* 3.982654501296355E-002 ! =3.43041962814660 + ! parame(i,2) = 3.46877976946838 + ! parame(i,3) = 249.834724442656 + ! mm(i) = 86.134 ! PCP-SAFT + ! parame(i,1) = mm(i)* 3.893594769994072E-002 ! =3.35370891918669 + ! parame(i,2) = 3.49417356096593 + ! parame(i,3) = 246.656329096835 + ! parame(i,6) = 2.70000000000000 + mm(i) = 86.134 ! PCIP-SAFT + parame(i,1) = mm(i)* 3.973160761515879E-002 ! =3.42224229032409 + parame(i,2) = 3.46827593107280 + parame(i,3) = 240.904278156822 + parame(i,6) = 2.70000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == '3-pentanone') THEN + mm(i) = 86.134 ! PC-SAFT + parame(i,1) = 3.36439508013322 + parame(i,2) = 3.48770251979329 + parame(i,3) = 252.695415552376 + IF (pol >= 1) mm(i) = 86.134 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.27863398611842 + IF (pol >= 1) parame(i,2) = 3.51592571835030 + IF (pol >= 1) parame(i,3) = 248.690775540981 + IF (pol >= 1) parame(i,6) = 2.82000000000000 + IF (pol == 2) mm(i) = 86.134 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 3.34821857026283 + IF (pol == 2) parame(i,2) = 3.48903345340516 + IF (pol == 2) parame(i,3) = 242.314578558329 + IF (pol == 2) parame(i,6) = 2.82000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == 'cyclohexanone') THEN ! from DIPPR + ! IF (pol.GE.1) mm(i) = 98.1430 ! PCP-SAFT + ! IF (pol.GE.1) parame(i,1) = 3.084202 + ! IF (pol.GE.1) parame(i,2) = 3.613681 + ! IF (pol.GE.1) parame(i,3) = 286.15865 + ! IF (pol.GE.1) parame(i,6) = 3.087862 + IF (pol >= 1) mm(i) = 98.1500000000000 + IF (pol >= 1) parame(i,1) = 2.72291913132818 + IF (pol >= 1) parame(i,2) = 3.79018433908522 + IF (pol >= 1) parame(i,3) = 314.772193827344 + IF (pol >= 1) parame(i,6) = 3.24600000000000 + IF (pol /= 1) WRITE (*,*) 'no non-polar param. for cyclohexanone' + IF (pol /= 1) STOP + ELSE IF (compna(i) == 'propanal') THEN + mm(i) = 58.08 ! PC-SAFT + parame(i,1) = 2.67564746980910 + parame(i,2) = 3.26295953984941 + parame(i,3) = 251.888982765626 + IF (pol >= 1) mm(i) = 58.08 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.60007872084995 + IF (pol >= 1) parame(i,2) = 3.28720732189761 + IF (pol >= 1) parame(i,3) = 235.205188090107 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + IF (pol >= 2) mm(i) = 58.08 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.72471167411028 + IF (pol >= 2) parame(i,2) = 3.24781643022922 + IF (pol >= 2) parame(i,3) = 221.642071811094 + IF (pol >= 2) parame(i,6) = 2.72000000000000 + IF (pol >= 2) parame(i,11)= 6.50000000000000 + ELSE IF (compna(i) == 'butanal') THEN + mm(i) = 72.1066000000000 ! PC-SAFT + parame(i,1) = 2.96824823599784 + parame(i,2) = 3.44068916025889 + parame(i,3) = 253.929404992884 + IF (pol >= 1) mm(i) = 72.1066000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.86783706423953 + IF (pol >= 1) parame(i,2) = 3.47737904036296 + IF (pol >= 1) parame(i,3) = 247.543312127310 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + ELSE IF (compna(i) == 'dmso') THEN + mm(i) = 78.1300000000000 ! PC-SAFT + parame(i,1) = 2.92225114054231 + parame(i,2) = 3.27780791606297 + parame(i,3) = 355.688793038512 + IF (pol >= 1) mm(i) = 78.1300000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.02433694138348 + IF (pol >= 1) parame(i,2) = 3.24270742566613 + IF (pol >= 1) parame(i,3) = 309.357476696679 + IF (pol >= 1) parame(i,6) = 3.96000000000000 + IF (pol >= 2) mm(i) = 78.1300000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 3.19078234633277 + IF (pol >= 2) parame(i,2) = 3.19778269816832 + IF (pol >= 2) parame(i,3) = 286.337981216861 + IF (pol >= 2) parame(i,6) = 3.96000000000000 + IF (pol >= 2) parame(i,11)= 7.97000000000000 + ELSE IF (compna(i) == 'acetone_JC') THEN ! Jog-Chapman + ! mm(i) = 58.0800000000000 ! Dominik et al.2005 + ! parame(i,1) = 2.221 + ! parame(i,2) = 3.607908 + ! parame(i,3) = 259.99 + ! parame(i,6) = 2.7 + ! parame(i,8) = 0.2258 + ! mm(i) = 58.0800000000000 + ! parame(i,1) = mm(i)* 3.556617369195472E-002 + ! parame(i,2) = 3.58780367502515 + ! parame(i,3) = 273.025100470307 + ! parame(i,6) = 2.70000000000000 + ! parame(i,8) = 0.229800000000000 + + mm(i) = 58.08 ! Tumakaka Sadowski 2004 + parame(i,1) = mm(i)* 3.766E-2 + parame(i,2) = 3.6028 + parame(i,3) = 245.49 + parame(i,6) = 2.72 + parame(i,8) = 0.2969 + ! mm(i) = 58.0800000000000 ! no adjust. DD-param. + ! parame(i,1) = 1.87041620247774 + ! parame(i,2) = 3.79783535570774 + ! parame(i,3) = 208.885730881588 + ! parame(i,6) = 2.88000000000000 + ! parame(i,8) = 1.0/parame(i,1) + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = -0.005 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'acetone_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = mm(i)* 4.603296414764944E-002 + parame(i,2) = 3.29454924451643 + parame(i,3) = 221.052649057645 + parame(i,6) = 2.70000000000000 + parame(i,8) = 0.625410000000000 + mm(i) = 58.08 ! form as expected from me - no DD-param adjusted.dat + parame(i,1) = mm(i)* 4.364264724158790E-002 ! =2.53476495179143 + parame(i,2) = 3.37098670735567 + parame(i,3) = 254.366379701851 + parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 - no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.694644361257521E-002 ! =2.72664944501837 + ! parame(i,2) = 3.27842292595463 + ! parame(i,3) = 238.398883501772 + ! parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 and fdd*sumseg- no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.458214655521766E-002 ! =2.58933107192704 + ! parame(i,2) = 3.32050824493493 + ! parame(i,3) = 218.285994651271 + ! parame(i,6) = 2.88000000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = 0.035 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'ethylacetate_JC') THEN ! Jog-Chapman + ! mm(i) = 88.11 + ! parame(i,1) = 2.7481 + ! parame(i,2) = 3.6511 + ! parame(i,3) = 236.99 + ! parame(i,6) = 1.84 + ! parame(i,8) = 0.5458 + mm(i) = 88.1060000000000 + parame(i,1) = mm(i)* 0.03117 ! 2.74626402 + parame(i,2) = 3.6493 + parame(i,3) = 236.75 + parame(i,6) = 1.8 + parame(i,8) = 0.5462 + ELSE IF (compna(i) == 'ethylacetate_SF') THEN ! Saager-Fischer + mm(i) = 88.106 + parame(i,1) = mm(i)* 3.564165384763394E-002 + parame(i,2) = 3.447379322 + parame(i,3) = 226.0930487 + parame(i,6) = 1.8 + parame(i,8) = 0.849967000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_JC') THEN ! Jog-Chapman + mm(i) = 58.08 + parame(i,1) = 2.0105 + parame(i,2) = 3.6095 + parame(i,3) = 258.82 + parame(i,6) = 2.0 + parame(i,8) = 0.3979 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = 2.1341 + parame(i,2) = 3.4739 + parame(i,3) = 252.95 + parame(i,6) = 2.0 + parame(i,8) = 0.916 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == 'acrylonitrile') THEN + IF (pol >= 2) mm(i) = 53.06 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.168 + IF (pol >= 2) parame(i,2) = 3.575 + IF (pol >= 2) parame(i,3) = 214.83 + IF (pol >= 2) parame(i,6) = 3.91 + IF (pol == 2) parame(i,11)= 8.04 + IF (pol >= 2) mm(i) = 53.0000000000000 ! second parameter set ?? + IF (pol >= 2) parame(i,1) = 2.45403467006041 + IF (pol >= 2) parame(i,2) = 3.41276825781723 + IF (pol >= 2) parame(i,3) = 195.194353082408 + IF (pol >= 2) parame(i,6) = 3.91000000000000 + IF (pol == 2) parame(i,11)= 8.04000000000000 + ELSE IF (compna(i) == 'butyronitrile') THEN + ! mm(i) = 69.11 + ! parame(i,1) = 2.860 + ! parame(i,2) = 3.478 + ! parame(i,3) = 253.21 + ! parame(i,6) = 4.07 + mm(i) = 69.11 + parame(i,1) = 2.989 + parame(i,2) = 3.441 + parame(i,3) = 234.04 + parame(i,6) = 4.07 + IF (pol == 2) parame(i,11)= 8.4 + ELSE IF (compna(i) == 'propionitrile') THEN + mm(i) = 55.079 ! PC-SAFT + parame(i,1) = 2.66211021227108 + parame(i,2) = 3.34032231132738 + parame(i,3) = 294.078737359580 + IF (pol >= 1) mm(i) = 55.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.50958981615666 + IF (pol >= 1) parame(i,2) = 3.39806320429568 + IF (pol >= 1) parame(i,3) = 239.152759066148 + IF (pol >= 1) parame(i,6) = 4.05000000000000 + IF (pol >= 2) mm(i) = 55.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.54684827683436 + IF (pol >= 2) parame(i,2) = 3.41240089912190 + IF (pol >= 2) parame(i,3) = 218.299491580335 + IF (pol >= 2) parame(i,6) = 4.05000000000000 + IF (pol == 2) parame(i,11)= 6.24000000000000 + ! IF (pol.GE.2) mm(i) = 55.079 ! PCIP-SAFT my_DD adjusted + ! IF (pol.GE.2) parame(i,1) = 2.61175151088002 + ! IF (pol.GE.2) parame(i,2) = 3.37194293181453 + ! IF (pol.GE.2) parame(i,3) = 233.346110749402 + ! IF (pol.GE.2) parame(i,6) = 3.74682245835235 + ! IF (pol.EQ.2) parame(i,11)= 6.24000000000000 + ELSE IF (compna(i) == 'nitromethane') THEN + mm(i) = 61.04 ! PC-SAFT + parame(i,1) = mm(i)* 4.233767489308791E-002 ! =2.58429167547409 + parame(i,2) = 3.10839592337018 + parame(i,3) = 310.694151426943 + IF (pol >= 1) mm(i) = 61.04 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.191475020685036E-002 ! =2.55847635262615 + IF (pol >= 1) parame(i,2) = 3.10129282495975 + IF (pol >= 1) parame(i,3) = 256.456941430554 + IF (pol >= 1) parame(i,6) = 3.46000000000000 + IF (pol >= 2) mm(i) = 61.04 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.394323357988009E-002 ! =2.68229497771588 + IF (pol >= 2) parame(i,2) = 3.10654492320028 + IF (pol >= 2) parame(i,3) = 225.973607468282 + IF (pol >= 2) parame(i,6) = 3.46000000000000 + IF (pol >= 2) parame(i,11)= 7.37000000000000 + ELSE IF (compna(i) == 'nitroethane') THEN + mm(i) = 75.067 ! PC-SAFT + parame(i,1) = mm(i)* 4.019977215251163E-002 ! =3.01767629617259 + parame(i,2) = 3.21364231060938 + parame(i,3) = 286.571650044235 + IF (pol >= 1) mm(i) = 75.067 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.928506808347654E-002 ! =2.94901220582233 + IF (pol >= 1) parame(i,2) = 3.23117331990738 + IF (pol >= 1) parame(i,3) = 265.961000131109 + IF (pol >= 1) parame(i,6) = 3.23000000000000 + IF (pol >= 2) mm(i) = 75.067 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.117677400894779E-002 ! =3.09101689452968 + IF (pol >= 2) parame(i,2) = 3.19364569858756 + IF (pol >= 2) parame(i,3) = 246.676040248662 + IF (pol >= 2) parame(i,6) = 3.23000000000000 + IF (pol >= 2) parame(i,11)= 9.63000000000000 + ELSE IF (compna(i) == 'acetonitrile') THEN + mm(i) = 41.052 ! PC-SAFT + parame(i,1) = mm(i)* 5.673187410405271E-002 ! =2.32895689571957 + parame(i,2) = 3.18980108373791 + parame(i,3) = 311.307486044181 + IF (pol >= 1) mm(i) = 41.052 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 5.254832931037250E-002 ! =2.15721401484941 + IF (pol >= 1) parame(i,2) = 3.27301469369132 + IF (pol >= 1) parame(i,3) = 216.888948676921 + IF (pol >= 1) parame(i,6) = 3.92520000000000 + IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 5.125846581157176E-002 ! =2.10426253849664 + IF (pol >= 2) parame(i,2) = 3.39403305120647 + IF (pol >= 2) parame(i,3) = 199.070191065791 + IF (pol >= 2) parame(i,6) = 3.92520000000000 + IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT my_DD adjusted + ! IF (pol >= 2) parame(i,1) = mm(i)* 5.755347845863738E-002 ! =2.36268539768398 + ! IF (pol >= 2) parame(i,2) = 3.18554306395900 + ! IF (pol >= 2) parame(i,3) = 225.143934506015 + ! IF (pol >= 2) parame(i,6) = 3.43151866932598 + ! IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! mm(i) = 41.053 ! PCP-SAFT dipole and quadrupole + ! parame(i,1) = 1.79993 + ! parame(i,2) = 3.47366 + ! parame(i,3) = 211.001 + ! parame(i,6) = 3.93800 + ! parame(i,7) = 2.44000 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'dmf') THEN + mm(i) = 73.09 ! PC-SAFT + parame(i,1) = 2.388 + parame(i,2) = 3.658 + parame(i,3) = 363.77 + IF (pol >= 1) mm(i) = 73.09 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.269 + IF (pol >= 1) parame(i,2) = 3.714 + IF (pol >= 1) parame(i,3) = 331.56 + IF (pol >= 1) parame(i,6) = 3.82 + IF (pol >= 2) mm(i) = 73.09 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.375 + IF (pol >= 2) parame(i,2) = 3.667 + IF (pol >= 2) parame(i,3) = 308.42 + IF (pol >= 2) parame(i,6) = 3.82 + IF (pol >= 2) parame(i,11)= 7.81 + ELSE IF (compna(i) == 'chloroform') THEN + mm(i) = 119.377 ! PCIP-SAFT + parame(i,1) = 2.5957 + parame(i,2) = 3.4299 + parame(i,3) = 264.664 + parame(i,6) = 1.04 + IF (pol == 2) parame(i,11)= 8.23 + ELSE IF (compna(i) == 'dimethyl-ether') THEN + mm(i) = 46.069 ! PC-SAFT + parame(i,1) = mm(i)* 0.049107715 ! =2.26234331 + parame(i,2) = 3.276640534 + parame(i,3) = 212.9343244 + IF (pol >= 1) mm(i) = 46.0690000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.048170452 ! =2.219164566 + IF (pol >= 1) parame(i,2) = 3.296939638 + IF (pol >= 1) parame(i,3) = 212.1048888 + IF (pol >= 1) parame(i,6) = 1.30000000000000 + IF (pol >= 2) mm(i) = 46.0690000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.939183716945787E-002 ! =2.27543254655976 + IF (pol >= 2) parame(i,2) = 3.26584718800835 + IF (pol >= 2) parame(i,3) = 206.904551967059 + IF (pol >= 2) parame(i,6) = 1.30000000000000 + IF (pol == 2) parame(i,11)= 5.29000000000000 + ELSE IF (compna(i) == 'methyl-ethyl-ether') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0442404671 + parame(i,2) = 3.37282595 + parame(i,3) = 216.010217 + IF (pol >= 1) mm(i) = 60.096 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.3971676124088D-002 ! =2.64252184835325 + IF (pol >= 1) parame(i,2) = 3.37938465390 + IF (pol >= 1) parame(i,3) = 215.787173860 + IF (pol >= 1) parame(i,6) = 1.17000000000 + IF (pol >= 2) mm(i) = 60.096 ! PICP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.4580196137984D-002 ! =2.67909146710834 + IF (pol >= 2) parame(i,2) = 3.36105342286 + IF (pol >= 2) parame(i,3) = 212.871911999 + IF (pol >= 2) parame(i,6) = 1.17000000000 + IF (pol >= 2) parame(i,11) = 7.93000000000 + ELSE IF (compna(i) == 'diethyl-ether') THEN + mm(i) = 74.123 ! PC-SAFT + parame(i,1) = mm(i)* .0409704089 + parame(i,2) = 3.48569553 + parame(i,3) = 217.64113 + IF (pol >= 1) mm(i) = 74.123 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.0103121403686E-2 ! =2.97256367 + IF (pol >= 1) parame(i,2) = 3.51268687697978 + IF (pol >= 1) parame(i,3) = 219.527376572135 + IF (pol >= 1) parame(i,6) = 1.15000000000000 + IF (pol >= 2) mm(i) = 74.123 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.04144179873E-2 ! =2.9956379 + IF (pol >= 2) parame(i,2) = 3.501724569 + IF (pol >= 2) parame(i,3) = 217.8941822 + IF (pol >= 2) parame(i,6) = 1.15 + IF (pol == 2) parame(i,11)= 8.73 + ELSE IF (compna(i) == 'vinylacetate') THEN + mm(i) = 86.092 + parame(i,1) = mm(i)* .0374329292 + parame(i,2) = 3.35278602 + parame(i,3) = 240.492049 + ELSE IF (compna(i) == 'chloromethane') THEN ! R40 + mm(i) = 50.488 ! PC-SAFT + parame(i,1) = mm(i)* 0.039418879 ! 1.9902 + parame(i,2) = 3.1974 + parame(i,3) = 237.27 + IF (pol >= 1) mm(i) = 50.488 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.035790801 ! 1.8070 + IF (pol >= 1) parame(i,2) = 3.3034 + IF (pol >= 1) parame(i,3) = 229.97 + IF (pol >= 1) parame(i,6) = 1.8963 + IF (pol >= 1) lli(i) = 1.67703*parame(i,2) + IF (pol >= 1) phi_criti(i)= 20.75417 + IF (pol >= 1) chap(i) = 0.5 + IF (pol >= 2) mm(i) = 50.488 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.68559992E-2 ! 1.86078 + IF (pol >= 2) parame(i,2) = 3.275186 + IF (pol >= 2) parame(i,3) = 216.4621 + IF (pol >= 2) parame(i,6) = 1.8963 + IF (pol == 2) parame(i,11)= 4.72 + ELSE IF (compna(i) == 'fluoromethane') THEN ! R41 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for fluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 34.0329000000000 + IF (pol >= 1) parame(i,1) = 1.94494757526896 + IF (pol >= 1) parame(i,2) = 2.96858005012635 + IF (pol >= 1) parame(i,3) = 168.938697391009 + IF (pol >= 1) parame(i,6) = 1.57823038894029 + ELSE IF (compna(i) == 'dichloromethane') THEN ! R30 + mm(i) = 84.932 ! PC-SAFT + parame(i,1) = 2.3117 + parame(i,2) = 3.3161 + parame(i,3) = 270.98 + IF (pol >= 1) mm(i) = 84.932 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.2687 + IF (pol >= 1) parame(i,2) = 3.3373 + IF (pol >= 1) parame(i,3) = 269.08 + IF (pol >= 1) parame(i,6) = 1.6 + IF (pol >= 2) mm(i) = 84.932 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.3435 + IF (pol >= 2) parame(i,2) = 3.2987 + IF (pol >= 2) parame(i,3) = 260.66 + IF (pol >= 2) parame(i,6) = 1.6 + IF (pol == 2) parame(i,11)= 6.48 + ELSE IF (compna(i) == 'difluoromethane') THEN ! R32 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for difluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 52.0236 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.814700934384165E-002 ! 2.50478075530028 + IF (pol >= 1) parame(i,2) = 2.79365980535456 + IF (pol >= 1) parame(i,3) = 160.893555378523 + IF (pol >= 1) parame(i,6) = 1.97850000000000 + ELSE IF (compna(i) == 'trifluoromethane') THEN ! R23 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 70.0138000000000 + IF (pol >= 1) parame(i,1) = 2.66039274225485 + IF (pol >= 1) parame(i,2) = 2.82905884530501 + IF (pol >= 1) parame(i,3) = 149.527709542333 + IF (pol >= 1) parame(i,6) = 1.339963415253999E-002 + ELSE IF (compna(i) == 'tetrachloromethane') THEN ! R10 + mm(i) = 153.822 + parame(i,1) = mm(i)* .0150432213 + parame(i,2) = 3.81801454 + parame(i,3) = 292.838632 + ELSE IF (compna(i) == 'trichlorofluoromethane') THEN ! R11 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trichlorofluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 137.368000000000 + IF (pol >= 1) parame(i,1) = 2.28793359008803 + IF (pol >= 1) parame(i,2) = 3.69013104930876 + IF (pol >= 1) parame(i,3) = 248.603173885090 + IF (pol >= 1) parame(i,6) = 0.23225538492979 + ELSE IF (compna(i) == 'chlorodifluoromethane') THEN ! R22 ( CHClF2 or CHF2Cl) + IF (pol /= 1) write (*,*) 'non-polar parameters missing for chlorodifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 86.4684000000000 + IF (pol >= 1) parame(i,1) = 2.47218586047893 + IF (pol >= 1) parame(i,2) = 3.13845692489930 + IF (pol >= 1) parame(i,3) = 187.666355083434 + IF (pol >= 1) parame(i,6) = 1.04954264812860 + ELSE IF (compna(i) == 'chloroethane') THEN + mm(i) = 64.514 + parame(i,1) = mm(i)* .0350926868 + parame(i,2) = 3.41602397 + parame(i,3) = 245.42626 + ELSE IF (compna(i) == '11difluoroethane') THEN + ! mm(i) = 66.0500000000000 ! PC-SAFT + ! parame(i,1) = mm(i)* 4.109944338817734E-002 + ! parame(i,2) = 3.10257444633546 + ! parame(i,3) = 192.177159144029 + ! mm(i) = 66.05 ! PC-SAFT assoc + ! parame(i,1)= 2.984947188 + ! parame(i,2)= 2.978630027 + ! parame(i,3)= 137.8192282 + ! nhb_typ(i) = 2 + ! nhb_no(i,1)= 1 + ! nhb_no(i,2)= 1 + ! eps_hb(i,i,1,2)= 823.3478288 + ! eps_hb(i,i,2,1)= 823.3478288 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.96345994 + IF (pol >= 1) mm(i) = 66.0500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.949665745363346E-002 ! =2.60875422481249 + IF (pol >= 1) parame(i,2) = 3.13758353925036 + IF (pol >= 1) parame(i,3) = 179.517952627836 + IF (pol >= 1) parame(i,6) = 2.27000000000000 + IF (pol >= 1) lli(i) = 2.03907*parame(i,2) + IF (pol >= 1) phi_criti(i)= 26.5 + IF (pol >= 1) chap(i) = 0.4 + IF (pol >= 2) mm(i) = 66.0500000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.093647666154238E-002 ! =2.70385428349487 + IF (pol >= 2) parame(i,2) = 3.10437129415885 + IF (pol >= 2) parame(i,3) = 170.464400902455 + IF (pol >= 2) parame(i,6) = 2.27000000000000 + IF (pol == 2) parame(i,11)= 5.01000000000000 + ELSE IF (compna(i) == '1-chlorobutane') THEN + mm(i) = 92.568 + parame(i,1) = mm(i)* .0308793201 + parame(i,2) = 3.64240187 + parame(i,3) = 258.655298 + ELSE IF (compna(i) == 'chlorobenzene') THEN + ! mm(i) = 112.558 + ! parame(i,1) = mm(i)* .0235308686 + ! parame(i,2) = 3.75328494 + ! parame(i,3) = 315.039018 + mm(i) = 112.558 ! PCIP-SAFT + parame(i,1) = mm(i)* 0.023824167 ! =2.6816 + parame(i,2) = 3.7352 + parame(i,3) = 308.82 + parame(i,6) = 1.69 + IF (pol == 2) parame(i,11)= 14.1 + ELSE IF (compna(i) == 'styrene') THEN + mm(i) = 104.150 + parame(i,1) = mm(i)* 2.9124104853E-2 + parame(i,2) = 3.760233548 + parame(i,3) = 298.51287564 + ELSE IF (compna(i) == 'methylmethanoate') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0446000264 + parame(i,2) = 3.08753499 + parame(i,3) = 242.626755 + IF (pol >= 1) mm(i) = 60.053 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.366991153963102E-002 ! =2.62250919768946 + IF (pol >= 1) parame(i,2) = 3.10946396964 + IF (pol >= 1) parame(i,3) = 239.051951942 + IF (pol >= 1) parame(i,6) = 1.77 + IF (pol >= 2) mm(i) = 60.053 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.492572388931002E-2 ! 2.69792449 + IF (pol >= 2) parame(i,2) = 3.078467837 + IF (pol >= 2) parame(i,3) = 232.1842551 + IF (pol >= 2) parame(i,6) = 1.77 + IF (pol == 2) parame(i,11)= 5.05 + ELSE IF (compna(i) == 'ethylmethanoate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* .03898009 + parame(i,2) = 3.31087192 + parame(i,3) = 246.465646 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.825407152074255E-002 ! =2.83382336418509 + IF (pol >= 1) parame(i,2) = 3.33160046679 + IF (pol >= 1) parame(i,3) = 244.495680932 + IF (pol >= 1) parame(i,6) = 1.93000000000 + ELSE IF (compna(i) == 'propylmethanoate') THEN + mm(i) = 88.106 + parame(i,1) = mm(i)* .0364206062 + parame(i,2) = 3.41679642 + parame(i,3) = 246.457732 + IF (pol >= 1) mm(i) = 88.106 + IF (pol >= 1) parame(i,1) = mm(i)* 3.60050739149E-2 ! =3.17226304235232 + IF (pol >= 1) parame(i,2) = 3.42957609309 + IF (pol >= 1) parame(i,3) = 245.637644107 + IF (pol >= 1) parame(i,6) = 1.89 + ELSE IF (compna(i) == 'methylacetate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* 4.286817177E-2 ! =3.175631296 + parame(i,2) = 3.18722021277843 + parame(i,3) = 234.106931032456 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.228922065E-2 ! =3.132743176 + IF (pol >= 1) parame(i,2) = 3.2011401688 + IF (pol >= 1) parame(i,3) = 233.17562886 + IF (pol >= 1) parame(i,6) = 1.72 + IF (pol >= 2) mm(i) = 74.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.298900538E-2 ! =3.18458252 + IF (pol >= 2) parame(i,2) = 3.180642322 + IF (pol >= 2) parame(i,3) = 229.3132680 + IF (pol >= 2) parame(i,6) = 1.72 + IF (pol == 2) parame(i,11)= 6.94 + ELSE IF (compna(i) == 'ethylacetate') THEN + mm(i) = 88.106 ! PC-SAFT + parame(i,1) = mm(i)* .0401464427 ! =3.537142481 + parame(i,2) = 3.30789258 + parame(i,3) = 230.800689 + IF (pol >= 1) mm(i) = 88.106 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.039792575 ! =3.505964572 + IF (pol >= 1) parame(i,2) = 3.317655188 + IF (pol >= 1) parame(i,3) = 230.2434769 + IF (pol >= 1) parame(i,6) = 1.78 + IF (pol >= 2) mm(i) = 88.106 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 0.040270267 ! =3.548052143 + IF (pol >= 2) parame(i,2) = 3.302097562 + IF (pol >= 2) parame(i,3) = 227.5026191 + IF (pol >= 2) parame(i,6) = 1.78 + IF (pol == 2) parame(i,11)= 8.62 + ELSE IF (compna(i) == 'ethyl-propanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0375692464 + parame(i,2) = 3.40306071 + parame(i,3) = 232.778374 + ELSE IF (compna(i) == 'propyl-ethanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0370721275 + parame(i,2) = 3.42272266 + parame(i,3) = 235.758378 + IF (pol >= 1) mm(i) = 102.133 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.687149995200072E-2 ! =3.76579690459769 + IF (pol >= 1) parame(i,2) = 3.4289353421006 + IF (pol >= 1) parame(i,3) = 235.41679442910 + IF (pol >= 1) parame(i,6) = 1.78 + ! IF (pol.EQ.2) parame(i,11)= 10.41 + ELSE IF (compna(i) == 'nbutyl-ethanoate') THEN + mm(i) = 116.16 ! PC-SAFT + parame(i,1) = mm(i)* .03427004 + parame(i,2) = 3.54269638 + parame(i,3) = 242.515768 + IF (pol >= 1) mm(i) = 116.16 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.411585209773470E-002 ! =3.96289737967286 + IF (pol >= 1) parame(i,2) = 3.54821589228130 + IF (pol >= 1) parame(i,3) = 242.274388267447 + IF (pol >= 1) parame(i,6) = 1.87000000000000 + IF (pol >= 2) mm(i) = 116.16 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.442139015733717E-002 ! =3.99838868067629 + IF (pol >= 2) parame(i,2) = 3.53576054452119 + IF (pol >= 2) parame(i,3) = 240.154409609249 + IF (pol >= 2) parame(i,6) = 1.87000000000000 + IF (pol == 2) parame(i,11)= 14.2000000000000 + ELSE IF (compna(i) == 'methyl-octanoate') THEN + mm(i) = 158.24 ! PC-SAFT + parame(i,1) = 5.2074 + parame(i,2) = 3.6069 + parame(i,3) = 244.12 + ELSE IF (compna(i) == 'methyl-decanoate') THEN + mm(i) = 186.2912 ! PC-SAFT + parame(i,1) = 5.8402 + parame(i,2) = 3.6871 + parame(i,3) = 248.27 + + mm(i) = 186.2912 ! PC-SAFT from GC-method Tim + parame(i,1) = 7.716 + parame(i,2) = 3.337303029 + parame(i,3) = 204.250907 + + mm(i) = 186.2912 ! PC-SAFT from GC-method (tightly fit) Tim + parame(i,1) = 7.728 + parame(i,2) = 3.334023322 + parame(i,3) = 206.9099379 + + ! mm(i) = 186.2912 ! PC-SAFT from fit to DIPPR + ! parame(i,1) = 6.285005 + ! parame(i,2) = 3.594888 + ! parame(i,3) = 236.781461 + ! ! parame(i,6) = 2.08056 + + ! mm(i) = 186.291000000000 + ! parame(i,1) = 6.28500485898895 + ! parame(i,2) = 3.59488828061149 + ! parame(i,3) = 236.781461491921 + ! parame(i,6) = 2.08055996894836 + ! parame(i,8) = 1.00000000000000 + mm(i) = 186.291000000000 + parame(i,1) = 6.14436331493372 + parame(i,2) = 3.61977264863944 + parame(i,3) = 242.071887817656 + + ELSE IF (compna(i) == 'methyl-dodecanoate') THEN + mm(i) = 214.344 ! PC-SAFT + parame(i,1) = 6.5153 + parame(i,2) = 3.7406 + parame(i,3) = 250.7 + ELSE IF (compna(i) == 'methyl-tetradecanoate') THEN + mm(i) = 242.398 ! PC-SAFT + parame(i,1) = 7.1197 + parame(i,2) = 3.7968 + parame(i,3) = 253.77 + ELSE IF (compna(i) == 'methyl-hexadecanoate') THEN + mm(i) = 270.451 ! PC-SAFT + parame(i,1) = 7.891 + parame(i,2) = 3.814 + parame(i,3) = 253.71 + ELSE IF (compna(i) == 'methyl-octadecanoate') THEN + mm(i) = 298.504 ! PC-SAFT + parame(i,1) = 8.8759 + parame(i,2) = 3.7932 + parame(i,3) = 250.81 + ELSE IF (compna(i) == 'CH2F2') THEN + mm(i) = 52.02 + parame(i,1) = 3.110084171 + parame(i,2) = 2.8145230485 + parame(i,3) = 158.98060151 + ELSE IF (compna(i) == 'naphthalene') THEN + ! mm(i) = 128.174000000 + ! parame(i,1) = mm(i)* 2.4877834216412E-2 + ! parame(i,2) = 3.82355815011 + ! parame(i,3) = 341.560675334 + + mm(i) = 128.17400000000 + parame(i,1) = mm(i)* 2.6400924157729E-2 + parame(i,2) = 3.8102186020014 + parame(i,3) = 328.96792935903 + ELSE IF (compna(i) == 'h2s') THEN + mm(i) = 34.0820000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.838886696385162E-002 ! = 1.64918936386199 + parame(i,2) = 3.05478289838459 + parame(i,3) = 229.838873939562 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 536.634834731413 + eps_hb(i,i,2,1)= 536.634834731413 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.000000000000000E-003 +! PC-SAFT from Xiaohua + mm(i) = 34.082 ! PC-SAFT + parame(i,1) = 1.63677 + parame(i,2) = 3.06565 + parame(i,3) = 230.2121 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 275.1088 + eps_hb(i,i,2,1)= 275.1088 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.E-2 + ! IF (pol.GE.1) mm(i) = 34.082 ! PCP-SAFT with quadrupole + ! IF (pol.GE.1) parame(i,1) = mm(i)* 3.03171032558E-2 ! =1.03326751316478 + ! IF (pol.GE.1) parame(i,2) = 3.6868189914018 + ! IF (pol.GE.1) parame(i,3) = 246.862831266172 + ! IF (pol.GE.1) nhb_typ(i) = 2 + ! IF (pol.GE.1) nhb_no(i,1) = 1 + ! IF (pol.GE.1) nhb_no(i,2) = 1 + ! IF (pol.GE.1) eps_hb(i,i,1,2)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,2,1)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.GE.1) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.GE.1) kap_hb(i,i) = 5.5480659623d-4 + ! IF (pol.GE.1) parame(i,6) = 0.97833 + ! IF (pol.GE.1) parame(i,7) = 3.8623 + ! IF (pol.GE.1) LLi(i) = 1.2737*parame(i,2) + ! IF (pol.GE.1) phi_criti(i)= 14.316 + ! IF (pol.GE.1) chap(i) = 0.4473 + IF (pol >= 1) mm(i) = 34.0820000000000 ! PCP-SAFT no quadrupoLE + IF (pol >= 1) parame(i,1) = mm(i)* 4.646468487062725E-002 ! 1.58360938976072 + IF (pol >= 1) parame(i,2) = 3.10111012646306 + IF (pol >= 1) parame(i,3) = 230.243457544889 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,2,1)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1) parame(i,6) = 0.978330000000000 + + IF (pol >= 1) lli(i) = 1.2737*parame(i,2) + IF (pol >= 1) phi_criti(i)= 14.316 + IF (pol >= 1) chap(i) = 0.4473 + + + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) mm(i) = 34.0820000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.806418212963168E-002 ! 1.63812345534211 + IF (pol == 2) parame(i,2) = 3.06556006883749 + IF (pol == 2) parame(i,3) = 221.746622243054 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,2,1)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol == 2) parame(i,6) = 0.978330000000000 + IF (pol == 2) parame(i,11) = 3.60200000000000 + IF (pol == 2) parame(i,7) = 0.0 + + IF (pol >= 1)mm(i) = 34.0820000000000 !PCP-SAFT D&Q + IF (pol >= 1)parame(i,1) = mm(i)* 3.974667896078737E-002 ! = 1.35464631234155 + IF (pol >= 1)parame(i,2) = 3.30857082333438 + IF (pol >= 1)parame(i,3) = 234.248947273191 + IF (pol >= 1)nhb_typ(i) = 2 + IF (pol >= 1)nhb_no(i,1) = 1 + IF (pol >= 1)nhb_no(i,2) = 1 + IF (pol >= 1)eps_hb(i,i,1,2)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,2,1)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1)eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1)kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1)parame(i,6) = 0.978330000000000 + IF (pol >= 1)parame(i,7) = 2.93750500000000 + + ELSE IF (compna(i) == 'methanol') THEN + mm(i) = 32.042 ! PC-SAFT + parame(i,1) = mm(i)* .0476100379 + parame(i,2) = 3.23000005 + parame(i,3) = 188.904644 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2899.49055 + eps_hb(i,i,2,1)= 2899.49055 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0351760892 + IF (pol >= 1) mm(i) = 32.042 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 7.213091821E-2 ! =2.31121888139672 + IF (pol >= 1) parame(i,2) = 2.8270129502 + IF (pol >= 1) parame(i,3) = 176.3760515 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,2,1)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 8.9248658086E-2 + IF (pol >= 1) parame(i,6) = 1.7 + IF (pol >= 1) lli(i) = 1.75*parame(i,2) + IF (pol >= 1) phi_criti(i)= 23.43 + IF (pol >= 1) chap(i) = 0.304 + IF (pol == 2) mm(i) = 32.042 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 2.0693 + IF (pol == 2) parame(i,2) = 2.9547 + IF (pol == 2) parame(i,3) = 174.51 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2418.5 + IF (pol == 2) eps_hb(i,i,2,1)= 2418.5 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 0.06319 + IF (pol == 2) parame(i,6) = 1.7 + IF (pol == 2) parame(i,11)= 3.29 + ! mm(i) = 32.0420000000000 ! PCP-SAFT with adjusted QQ + ! parame(i,1) = mm(i)* 6.241807629559099E-002 + ! ! parame(i,1) = 2.00000000066333 + ! parame(i,2) = 2.97610169698593 + ! parame(i,3) = 163.268505098639 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2449.55621933612 + ! eps_hb(i,i,2,1)= 2449.55621933612 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 8.431015160393653E-002 + ! parame(i,6) = 1.72000000000000 + ! parame(i,7) = 1.59810028824523 + ELSE IF (compna(i) == 'ethanol') THEN + mm(i) = 46.069 + parame(i,1) = mm(i)* .0517195521 + parame(i,2) = 3.17705595 + parame(i,3) = 198.236542 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2653.38367 + eps_hb(i,i,2,1)= 2653.38367 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0323840159 + IF (pol >= 1) mm(i) = 46.0690000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 4.753626908781145E-002 ! =2.18994838060639 + IF (pol >= 1) parame(i,2) = 3.30120000000000 + IF (pol >= 1) parame(i,3) = 209.824555801706 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,2,1)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.349382956935725E-002 + IF (pol >= 1) parame(i,6) = 1.69000000000000 + ! mm(i) = 46.0690000000000 + ! parame(i,1) = mm(i)* 5.117957752785066E-002 ! =2.357791957 + ! parame(i,2) = 3.24027031244304 + ! parame(i,3) = 175.657110615456 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2273.62670516146 + ! eps_hb(i,i,2,1)= 2273.62670516146 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 7.030279197039477E-002 + ! parame(i,6) = 1.69000000000000 + ! parame(i,7) = 3.63701294195013 + IF (pol == 2) mm(i) = 46.0690000000000 + IF (pol == 2) parame(i,1) = mm(i)* 4.733436280008321E-002 ! =2.18064676 + IF (pol == 2) parame(i,2) = 3.31260000000000 + IF (pol == 2) parame(i,3) = 207.594119926613 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,2,1)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 2.132561218631547E-002 + IF (pol == 2) parame(i,6) = 1.69000000000000 + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) parame(i,11)= 5.11000000000000 + ELSE IF (compna(i) == '1-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0499154461 + parame(i,2) = 3.25221234 + parame(i,3) = 233.396705 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2276.77867 + eps_hb(i,i,2,1)= 2276.77867 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0152683094 + ELSE IF (compna(i) == '1-butanol') THEN + mm(i) = 74.123 + parame(i,1) = mm(i)* .0341065046 + parame(i,2) = 3.72361538 + parame(i,3) = 269.798048 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2661.37119 + eps_hb(i,i,2,1)= 2661.37119 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00489087833 + mm(i) = 74.1230000000000 + parame(i,1) = mm(i)* 3.329202420547412E-002 ! =2.46770471018236 + parame(i,2) = 3.76179376417092 + parame(i,3) = 270.237284242002 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 2669.28754983370 + eps_hb(i,i,2,1)= 2669.28754983370 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 4.855584122733399E-003 + parame(i,6) = 1.66000000000000 + ELSE IF (compna(i) == '1-pentanol') THEN + mm(i) = 88.15 ! PC-SAFT + parame(i,1) = mm(i)* .041134139 + parame(i,2) = 3.45079143 + parame(i,3) = 247.278748 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2252.09237 + eps_hb(i,i,2,1)= 2252.09237 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0103189939 + IF (pol >= 1) mm(i) = 88.1500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.138903382168521E-002 ! =3.64844333138155 + IF (pol >= 1) parame(i,2) = 3.44250118689142 + IF (pol >= 1) parame(i,3) = 246.078034174947 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,2,1)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.040067895187016E-002 + IF (pol >= 1) parame(i,6) = 1.70000000000000 + IF (pol == 2) mm(i) = 88.1500000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.161521814399406E-002 ! =3.66838147939308 + IF (pol == 2) parame(i,2) = 3.43496654431777 + IF (pol == 2) parame(i,3) = 244.177313808431 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,2,1)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.049516309928397E-002 + IF (pol == 2) parame(i,6) = 1.70000000000000 + IF (pol == 2) parame(i,11)= 10.8000000000000 + ELSE IF (compna(i) == '1-octanol') THEN + mm(i) = 130.23 + parame(i,1) = mm(i)* .0334446084 + parame(i,2) = 3.714535 + parame(i,3) = 262.740637 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2754.77272 + eps_hb(i,i,2,1)= 2754.77272 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00219656803 + ELSE IF (compna(i) == '1-nonanol') THEN + mm(i) = 144.257 + parame(i,1) = mm(i)* .0324692669 + parame(i,2) = 3.72924286 + parame(i,3) = 263.636673 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2941.9231 + eps_hb(i,i,2,1)= 2941.9231 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00142696883 + ELSE IF (compna(i) == '2-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0514663133 + parame(i,2) = 3.20845858 + parame(i,3) = 208.420809 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2253.91064 + eps_hb(i,i,2,1)= 2253.91064 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0246746934 + ELSE IF (compna(i) == '2-methyl-2-butanol') THEN + mm(i) = 88.15 + parame(i,1) = mm(i)* .0289135026 + parame(i,2) = 3.90526707 + parame(i,3) = 266.011828 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2618.80124 + eps_hb(i,i,2,1)= 2618.80124 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00186263367 + ELSE IF (compna(i) == 'acetic-acid') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0227076949 + parame(i,2) = 3.79651163 + parame(i,3) = 199.225066 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3092.40109 + eps_hb(i,i,2,1)= 3092.40109 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0870093874 + + + mm(i) = 60.053 + parame(i,1) = mm(i)* .0181797646 + parame(i,2) = 4.13711044 + parame(i,3) = 207.552969 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3198.84362 + eps_hb(i,i,2,1)= 3198.84362 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0586552968 + +! mit gesetztem Dipol-Moment + mm(i) = 60.0530000000000 + parame(i,1) = mm(i)* 1.736420143637533E-002 + parame(i,2) = 4.25220708070687 + parame(i,3) = 190.957247854820 + parame(i,6) = 3.50000000000000 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3096.36190957945 + eps_hb(i,i,2,1)= 3096.36190957945 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 6.154307094782551E-002 + + ELSE IF (compna(i) == 'propionic-acid') THEN + mm(i) = 74.0800000000000 + parame(i,1) = mm(i)* 2.359519915877884E-002 + parame(i,2) = 3.99339224153844 + parame(i,3) = 295.947729838532 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2668.97826430874 + eps_hb(i,i,2,1)= 2668.97826430874 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 3.660242292423115E-002 + ELSE IF (compna(i) == 'acrylic-acid') THEN + mm(i) = 72.0636 + parame(i,1) = mm(i)* .0430585424 + parame(i,2) = 3.0545415 + parame(i,3) = 164.115604 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3065.40667 + eps_hb(i,i,2,1)= 3065.40667 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .336261669 + ELSE IF (compna(i) == 'caproic-acid') THEN + mm(i) = 116.16 + parame(i,1) = 5.87151 + parame(i,2) = 3.0694697 + parame(i,3) = 241.4569 + nhb_typ(i) = 1 + eps_hb(i,i,1,1)= 2871.37 + kap_hb(i,i) = 3.411613D-3 + ELSE IF (compna(i) == 'aniline') THEN + mm(i) = 93.13 + parame(i,1) = mm(i)* .0285695992 + parame(i,2) = 3.70214085 + parame(i,3) = 335.471062 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 1351.64234 + eps_hb(i,i,2,1)= 1351.64234 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0748830615 + + mm(i) = 93.1300000000000 + parame(i,1) = mm(i)* 2.834372610192228E-002 ! =2.63965121187202 + parame(i,2) = 3.71326867619433 + parame(i,3) = 332.253796842009 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 1392.14266886674 + eps_hb(i,i,2,1)= 1392.14266886674 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 7.424612087328866E-002 + parame(i,6) = 1.55000000000000 + IF (pol == 2) parame(i,11)= 12.1000000000000 + ELSE IF (compna(i) == 'HF') THEN + ! mm(i) = 20.006 ! PC-SAFT + ! parame(i,1) = 0.87731 + ! parame(i,2) = 3.0006 + ! parame(i,3) = 112.24 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2208.22 + ! eps_hb(i,i,2,1)= 2208.22 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.71265 + mm(i) = 20.0060000000000 ! PCP-SAFT + parame(i,1) = 1.00030000000000 + parame(i,2) = 3.17603622195029 + parame(i,3) = 331.133373208282 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 348.251433080979 + eps_hb(i,i,2,1)= 348.251433080979 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 2.868887975449893E-002 + parame(i,6) = 1.82600000000000 + ELSE IF (compna(i) == 'HCl') THEN + ! mm(i) = 36.4610000000000 + ! parame(i,1) = mm(i)* 3.922046741026943E-002 + ! parame(i,2) = 3.08731180727493 + ! parame(i,3) = 203.898845304388 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 245.462773177367 + ! eps_hb(i,i,2,1)= 245.462773177367 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.256454187330899 + mm(i) = 36.461 ! PCIP-SAFT + parame(i,1) = 1.6335 + parame(i,2) = 2.9066 + parame(i,3) = 190.17 + parame(i,6) = 1.1086 + IF (pol == 2) parame(i,11)= 2.63 + ELSE IF (compna(i) == 'gen') THEN + mm(i) = 302.0 + parame(i,1) = 8.7563 + parame(i,2) = 3.604243 + parame(i,3) = 255.6434 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 0.0 + eps_hb(i,i,2,1)= 0.0 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.02 + ELSE IF (compna(i) == 'h2o') THEN + mm(i) = 18.015 + parame(i,1) = mm(i)* .05915 + parame(i,2) = 3.00068335 + parame(i,3) = 366.512135 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2500.6706 + eps_hb(i,i,2,1)= 2500.6706 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0348679836 + + ! mm(i) = 18.015 + ! parame(i,1) = 1.706 + ! parame(i,2) = 2.429 + ! parame(i,3) = 242.19 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 2644.2 + ! eps_hb(i,i,2,1)= 2644.2 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.153 + + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* .0588185709 + ! parame(i,2) = 3.02483704 + ! parame(i,3) = 382.086672 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 2 ! no. of sites of type 2 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! eps_hb(i,i,1,2)= 2442.49782 + ! eps_hb(i,i,2,1)= 2442.49782 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = .0303754635 + + ! mit gefittetem Dipol-Moment - Haarlem-night + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* 7.0037160952278E-2 + ! parame(i,2) = 2.79276650240763 + ! parame(i,3) = 270.970053834558 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 1427.8287 + ! eps_hb(i,i,2,1)= 1427.8287 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = 4.335167238E-2 + ! parame(i,6) = 3.968686856378 + + IF (pol >= 1) mm(i) = 18.015 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 0.922688825223317 + IF (pol >= 1) parame(i,2) = 3.17562052023944 + IF (pol >= 1) parame(i,3) = 388.462197714696 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,2,1)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.040614952751225E-003 + IF (pol >= 1) parame(i,6) = 1.85500000000000 + IF (pol >= 1) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_RPT + ! IF (pol.EQ.2) parame(i,1) = 1.0 + ! IF (pol.EQ.2) parame(i,2) = 3.14540664928026 + ! IF (pol.EQ.2) parame(i,3) = 320.283823615925 + ! IF (pol.EQ.2) nhb_typ(i) = 2 + ! IF (pol.EQ.2) nhb_no(i,1) = 2 + ! IF (pol.EQ.2) nhb_no(i,2) = 2 + ! IF (pol.EQ.2) eps_hb(i,i,1,2)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,2,1)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.EQ.2) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.EQ.2) kap_hb(i,i) = 4.162619960844732E-003 + ! IF (pol.EQ.2) parame(i,6) = 1.85500000000000 + ! IF (pol.EQ.2) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.0150000000000 + ! parame(i,1) = 1.0 + ! parame(i,2) = 3.11505069470915 + ! parame(i,3) = 320.991387913502 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2037.76329812542 + ! eps_hb(i,i,2,1)= 2037.76329812542 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 3.763148982832804E-003 + ! parame(i,6) = 1.85500000000000 + ! parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + IF (pol == 2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_0 + IF (pol == 2) parame(i,1) = 1.0 + IF (pol == 2) parame(i,2) = 3.11574491885322 + IF (pol == 2) parame(i,3) = 322.699984283499 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,2,1)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 3.815764667176484E-003 + IF (pol == 2) parame(i,6) = 1.85500000000000 + IF (pol == 2) parame(i,7) = 2.00000000000000 + IF (pol == 2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.015 ! Dortmund + ! parame(i,1) = 0.11065254*mm(i) + ! parame(i,2) = 2.36393615 + ! parame(i,3) = 300.288589 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 1193.45585 + ! eps_hb(i,i,2,1)= 1193.45585 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.091203519 + ! parame(i,6) = 1.8546 + ! parame(i,7) = 0.0 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'MBBA') THEN + mm(i) = 267.37 + parame(i,1) = 12.194 + parame(i,2) = 3.064 + parame(i,3) = 270.7 + e_lc(i,i) = 13.7 !Hino & Prausnitz + s_lc(i,i) = 0.176 !Hino & Prausnitz + ELSE IF (compna(i) == 'PCH5') THEN + mm(i) = 255.41 + parame(i,1) = 11.6 + parame(i,2) = 3.2 + parame(i,3) = 270.7 + ! E_LC(i,i) = 16.7 !Hino & Prausnitz + ! S_LC(i,i) = 0.176 !Hino & Prausnitz + e_lc(i,i) = 8.95 + s_lc(i,i) = 0.2 + + ! mm(i) = 255.41 + ! parame(i,1) = 11.6 + ! parame(i,2) = 3.2 + ! parame(i,3) = 290.7 + ! E_LC(i,i) = 7.18 + ! S_LC(i,i) = 0.2 + + ELSE IF (compna(i) == 'Li') THEN + mm(i) = 6.9 + parame(i,1) = 1.0 + parame(i,2) = 1.4 + parame(i,3) = 96.83 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.008 + ELSE IF (compna(i) == 'Na') THEN + mm(i) = 23.0 + parame(i,1) = 1.0 + parame(i,2) = 1.9 + parame(i,3) = 147.38 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 8946.28257 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.001648933 + ELSE IF (compna(i) == 'Ka') THEN + mm(i) = 39.1 + parame(i,1) = 1.0 + parame(i,2) = 2.66 + parame(i,3) = 221.44 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 3118.336216 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cs') THEN + mm(i) = 132.9 + parame(i,1) = 1.0 + parame(i,2) = 3.38 + parame(i,3) = 523.28 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cl') THEN + mm(i) = 35.5 + parame(i,1) = 1.0 + parame(i,2) = 3.62 + parame(i,3) = 225.44 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 6744.12509 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00155252 + ELSE IF (compna(i) == 'Br') THEN + mm(i) = 79.9 + parame(i,1) = 1.0 + parame(i,2) = 3.9 + parame(i,3) = 330.82 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 4516.033227 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Io') THEN + mm(i) = 126.9 + parame(i,1) = 1.0 + parame(i,2) = 4.4 + parame(i,3) = 380.60 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 1631.203342 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'OH') THEN + mm(i) = 17.0 + parame(i,1) = 1.0 + parame(i,2) = 3.06 + parame(i,3) = 217.26 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 14118.68089 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'NO3') THEN + mm(i) = 62.0 + parame(i,1) = 1.0 + parame(i,2) = 4.12 + parame(i,3) = 239.48 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 4 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'bf4') THEN + mm(i) = 86.8 + parame(i,1) = 1.0 + parame(i,2) = 4.51 ! *0.85 + parame(i,3) = 164.7 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'pf6') THEN + mm(i) = 145.0 + parame(i,1) = 1.0 + parame(i,2) = 5.06 + parame(i,3) = 224.9 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'emim') THEN + mm(i) = 111.16 + parame(i,1) = 3.11 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'bmim') THEN + mm(i) = 139.21 + ! parame(i,1) = 2.81 + ! parame(i,2) = 3.5 + parame(i,1) = 3.81 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,6) = 0.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'hmim') THEN + mm(i) = 167.27 + parame(i,1) = 4.53 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'omim') THEN + mm(i) = 195.32 + parame(i,1) = 5.30 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'sw') THEN + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 100.0 + parame(i,4) = 0.0 + parame(i,5) = 0.0 + mm(i) = 1.0 + parame(i,6) = 0.1175015839*2.0 + ! use Temp. in Kelvin in the input-file. For dimensionless quantities + ! (P*=P*sig**3/epsilon, T*=T*kBol/epsilon, rho*=rho*sig**3) calculate + ! P* = P *1E5 * (1.e-10)^3 / (100*8.31441/6.022045E+23) + ! T* = (T+273.15)/100 + ! for rho* go to utilities.f (subroutine SI_DENS) and write + ! density(ph) = dense(ph)*6.0/PI + ELSE IF (compna(i) == 'c8-sim') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* 4.095944E-2 ! =4.67883774717337 + parame(i,2) = 3.501769 + parame(i,3) = 163.8606 + ! mm(i) = 114.231000000000 + ! parame(i,1) = mm(i)* 3.547001476437745E-002 ! =4.05177525654960 + ! parame(i,2) = 3.70988567055814 + ! parame(i,3) = 192.787548176343 + ELSE IF (compna(i) == 'argon_ge') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 100.188975 + ELSE IF (compna(i) == 'argon_ge2') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 0.8*100.188975 + ELSE + WRITE (*,*) ' pure component parameters missing for ',compna(i) + STOP + END IF + + IF (pol == 2.AND.parame(i,11) == 0.0) THEN + WRITE (*,*) ' polarizability missing for comp. ',compna(i) + STOP + END IF + + IF (nhb_typ(i) /= 0) THEN + parame(i,12) = DBLE(nhb_typ(i)) + parame(i,13) = kap_hb(i,i) + no = 0 + DO j=1,nhb_typ(i) + DO k=1,nhb_typ(i) + parame(i,(14+no))=eps_hb(i,i,j,k) + no=no+1 + END DO + END DO + DO j=1,nhb_typ(i) + parame(i,(14+no))=DBLE(nhb_no(i,j)) + no=no+1 + END DO + ELSE + DO k=12,25 + parame(i,k)=0.0 + END DO + END IF + +END DO + + +DO i = 1,ncomp + DO j = 1,ncomp + IF (compna(i) == 'ps'.AND.compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.0075 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'ethylene')THEN +! -- 0 Gew.% VA------------- + ! kij(i,j) = 0.039 +! -- 7.5 Gew.% VA------------- + ! kij(i,j) = 0.0377325 + ! kij(i,j) = 0.0374867 +! ---12.7 Gew.% VA------------ + ! kij(i,j) = 0.036854 + ! kij(i,j) = 0.0366508 +! ---27.3 Gew.% VA------------ + ! kij(i,j) = 0.034386 + ! kij(i,j) = 0.0352375 +! ---31.8 Gew.% VA------------ + kij(i,j) = 0.033626 + ! kij(i,j) = 0.0350795 +! ---42.7 Gew.% VA------------ + ! kij(i,j) = 0.031784 + ! kij(i,j) = 0.035239 + ELSE IF(compna(i) == 'gen'.AND.compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'vinylacetate')THEN + kij(i,j) = 0.019 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'co2') THEN + IF ( pol == 0 ) kij(i,j) = 0.195 + IF ( pol == 1 ) kij(i,j) = 0.06 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.021 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'hexane') THEN + kij(i,j) = 0.012 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'pentane')THEN + kij(i,j) = 0.005 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'methylcyclohexane') THEN + kij(i,j) = 0.0073 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'ethylbenzene')THEN + kij(i,j) = 0.008 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.181 + kij(i,j) = 0.088 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0206 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'argon') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'pentane') THEN + ! kij(i,j) = -0.0195 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'hexane') THEN + ! kij(i,j) = 0.008 + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.0404 + ! kij(i,j) = 0.0423 + ! kij(i,j) = 0.044 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'ldpe'.AND.compna(j) == 'cyclopentane')THEN + kij(i,j) = -0.016 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0242 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'pentane') THEN + kij(i,j) = 0.0137583176 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.1767 ! without quadrupol-term + kij(i,j) = 0.063 ! with quadrupol-term + ELSE IF(compna(i) == 'pba'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'n2'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = -0.04 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.051875 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.0353125 ! PCP-SAFT + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co') THEN + ! IF (pol == 1) kij(i,j) = -0.003 ! PCP-SAFT + IF (pol == 1) kij(i,j) = 0.018 ! PCP-SAFT + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.095 + kij(i,j) = 0.021 + ! kij(i,j) = 0.024 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.042 + ELSE IF(compna(i) == 'argon_ge'.AND.compna(j) == 'argon_ge2') THEN + read (*,*) kij(i,j) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.115 + ! kij(i,j) = 0.048 + kij(i,j) = 0.036 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.143 ! without quadrupol-term + kij(i,j) = 0.0 ! with quadrupol-term + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.125 ! without quadrupol-term + kij(i,j) = 0.0495 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.11 ! without quadrupol-term + ! kij(i,j) = 0.05 + ! kij(i,j) = 0.039 ! with quadrupol-term + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.128 ! without quadrupol-term + kij(i,j) = 0.053 ! with quadrupol-term + ELSE IF(compna(i) == 'dodecane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.12 ! without quadrupol-term + kij(i,j) = 0.0508 ! with quadrupol-term + ELSE IF(compna(i) == 'benzene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.087968750000 ! without quadrupol-term + ! kij(i,j) = 0.008203125 ! only co2 quadrupol + kij(i,j) = 0.042 ! both quadrupol + ! kij(i,j) = 0.003 ! both quadrupol + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.110784912 ! without quadrupol-term + kij(i,j) = 0.0305 ! with quadrupol-term + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.13 + lij(i,j) = - 0.00 + ! kij(i,j) = 0.045 + ELSE IF(compna(i) == 'chloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.04 ! PC-SAFT + kij(i,j) = 0.025 ! PCP-SAFT + ! kij(i,j) = 0.083 ! PCIP-SAFT + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'n2')THEN + kij(i,j) = 0.035211 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + kij(i,j) = 0.023 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + !kij(i,j) = 1.722238535635467E-002 ! PCP-SAFT + !lij(i,j) = 2.815974678394451E-003 ! PCP-SAFT + !kij(i,j) = 1.931522058164026E-002 ! PCP-SAFT + !lij(i,j) = 0.0 ! PCP-SAFT + !kij(i,j) = 1.641053794134795E-002 ! PCP-SAFT + !lij(i,j) = -5.850421759950764E-003 ! PCP-SAFT + if ( num == 0 ) write (*,*) 'calculation with lij only possible with num=1' + if ( num == 0 ) stop + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.015 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.02 ! PCP-SAFT + IF (pol == 2) kij(i,j) = -0.005 ! PCIP-SAFT where DQ with my=my_vacuum + ! IF (pol.EQ.2) kij(i,j) = 0.0 ! PCIP-SAFT where DQ with my=my_RPT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.0288 ! PC-SAFT + ! kij(i,j) = - 0.035 ! PCP-SAFT for co2 and PC-SAFT methanol + ! kij(i,j) = - 0.035 ! PCP-SAFT + ! lij(i,j) = 0.3 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.00896894 ! PC-SAFT + ! kij(i,j) = - 0.015 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'h2o')THEN + ! kij(i,j) = -0.134 ! PC-SAFT + ELSE IF(compna(i) == 'dichloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.06881725 ! PC-SAFT + ! kij(i,j) = 0.05839145 ! PCP-SAFT + kij(i,j) = -0.00944346 ! PCP-SAFT co2 dichloromethane PC-SAFT + ! kij(i,j) = 0.06 ! PCIP-SAFT + ELSE IF(compna(i) == 'h2s'.AND.compna(j) == 'methane')THEN + ! kij(i,j) = 0.0414 ! PC-SAFT + kij(i,j) = 0.0152 ! PCP-SAFT Dipole momnet (d with Q) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'h2s')THEN + kij(i,j) = -0.002 ! PCP-SAFT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'h2s')THEN + kij(i,j) = 0.0 ! PCP-SAFT + lij(i,j) = 0.0 ! PCP-SAFT + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hydrogen') THEN + ! lij(i,j) = -0.08 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.0251171875 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hexadecane') THEN + ! kij(i,j) = 0.1194 ! PC-SAFT ohne QQ + kij(i,j) = 0.0588 + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.038 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.037 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.072 ! no DD + ! kij(i,j) = 0.041 ! DD non-polarizable + kij(i,j) = 0.039 ! DD polarizable + ! kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.063 + kij(i,j) = 0.038 ! PCP-SAFT + ! kij(i,j) = 0.036 ! PCIP-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.035 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.059 ! no DD + ! kij(i,j) = 0.03281250 ! DD non-polarizable + kij(i,j) = 0.028 ! DD polarizable + ELSE IF(compna(i) == 'hexadecane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.07 ! no DD + ! kij(i,j) = 0.0415 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.027 ! PCP-SAFT + ! kij(i,j) = 0.033 ! PCP-SAFT with lij + ! lij(i,j) = 0.13 ! PCP-SAFT + ! kij(i,j) = 0.042 ! PC-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.042 ! no DD + ! kij(i,j) = 0.027 ! DD non-polarizable + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == '2-pentanone')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.031 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '3-pentanone')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.055 ! no DD + kij(i,j) = 0.027 ! DD non-polarizable + ! kij(i,j) = 0.026 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.036 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable 22 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanal')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.025 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'octane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'dmso')THEN + ! kij(i,j) = 0.025 ! no DD + kij(i,j) = - 0.0105 ! DD non-polarizable + ! kij(i,j) = - 0.019 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acrylonitrile')THEN + kij(i,j) = - 0.05 ! DD polarizable + ELSE IF(compna(i) == 'heptane' .AND. compna(j) == 'butyronitrile')THEN + kij(i,j) = - 0.002 ! DD polarizable 11 + kij(i,j) = 0.002 ! DD polarizable 22 + ELSE IF(compna(i) == '1-butene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.04 ! no DD + ! kij(i,j) = 0.004 ! DD non-polarizable + kij(i,j) = 0.005 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'dmf')THEN + kij(i,j) = 0.0135 ! DD polarizable 11 + kij(i,j) = 0.022 ! DD polarizable 22 + ELSE IF(compna(i) == 'ethylene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = - 0.0215 ! DD polarizable 11 + kij(i,j) = - 0.01 ! DD polarizable 22 + ELSE IF(compna(i) == 'nbutyl-ethanoate'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.016 ! no DD + ! kij(i,j) = -0.01 ! DD non-polarizable + kij(i,j) = - 0.015 ! DD polarizable 22 + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.066 ! PC-SAFT + ! kij(i,j) = 0.061 ! PCP-SAFT + ! kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate'.AND.compna(j) == 'decane')THEN + kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'methanol')THEN + ! kij(i,j) = -0.07 ! PCIP-SAFT + ELSE IF(compna(i) == 'pentane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0498 + IF (pol >= 1) kij(i,j) = -0.01 + IF (pol >= 2) kij(i,j) = -0.027 + ELSE IF(compna(i) == 'hexane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.05 + IF (pol >= 1) kij(i,j) = 0.0 + IF (pol >= 2) kij(i,j) = -0.03 + ELSE IF(compna(i) == 'octane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitromethane')THEN + kij(i,j) = 0.14 ! no DD + ! kij(i,j) = 0.07 ! DD non-polarizable + ! kij(i,j) = 0.055 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitroethane')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.03 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'nitromethane')THEN + ! kij(i,j) = - 0.017 ! no DD + kij(i,j) = - 0.021 ! DD non-polarizable + ! kij(i,j) = - 0.023 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 ! PCP-SAFT (no cross-association) + ELSE IF(compna(i) == 'methylcyclohexane' .AND. compna(j) == 'acetonitrile')THEN + ! kij(i,j) = 0.09 ! no DD + ! kij(i,j) = 0.033 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable 22 + kij(i,j) = 0.04 ! DD polarizable 22 und my angepasst + ELSE IF(compna(i) == 'ethylacetate' .AND. compna(j) == 'acetonitrile')THEN + kij(i,j) = 0.007 ! no DD + ! kij(i,j) = -0.045 ! DD polarizable 22 + ELSE IF(compna(i) == 'dimethyl-ether' .AND. compna(j) == 'propane')THEN + ! kij(i,j) = 0.03 ! no DD + kij(i,j) = 0.0225 ! DD non-polarizable + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'pentane')THEN + ! kij(i,j) = 0.012968750 ! ohne QQ + ! kij(i,j) = 0.004921875 ! mit QQ=5.6D (gefittet) + ! kij(i,j) = -0.006406250 ! mit QQ=7.45D (Literatur) + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.01328125 + ! kij(i,j) = 0.0038 + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == '1-hexene')THEN + kij(i,j) = 0.0067 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.04 + kij(i,j) = -0.029 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'vinylacetate') THEN + kij(i,j) = - 0.013847 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'ethylene') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.061953125 ! polyethylene parameters + kij(i,j) = 0.039609375 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.06515625 ! polyethylene parameters + kij(i,j) = 0.04453125 ! param. by extrapolation of n-alkanes + ! --- kij and lij adjusted ------- + ! kij(i,j) = 0.045786119 ! param. by extrapolation of n-alkanes + ! lij(i,j) = +8.53466437d-4 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'eicosane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 ! assumed equal to eicosane-C1 + ELSE IF(compna(i) == 'chlorobenzene' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.013 + ELSE IF(compna(i) == 'chloroethane' .AND. compna(j) == 'butane')THEN + kij(i,j) = 0.025 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.0070105 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'hydrogen' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.1501 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'co2') THEN + ! kij(i,j) = -0.08 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'propane') THEN + kij(i,j) = - 0.07 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'ethane') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.028 + kij(i,j) = 0.016 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.037 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '1-octanol')THEN + kij(i,j) = 0.06 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.0508 + ! kij(i,j) = 0.03 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.034 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'decane')THEN + ! kij(i,j) = 0.042 ! PC-SAFT + ! kij(i,j) = 0.011 ! PCP-SAFT + kij(i,j) = 0.000 ! PCIP-SAFT + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'isobutane') THEN + kij(i,j) = 0.051 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == '1-octanol') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == '1-butanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.015 + ELSE IF(compna(i) == '1-nonanol' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.076 + kij(i,j) = 0.01443 + ELSE IF(compna(i) == '1-propanol' .AND. compna(j) == 'ethylbenzene') THEN + kij(i,j) = 0.0251757813 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = 0.085 + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '1-chlorobutane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'aniline'.AND.compna(j) == 'methylcyclopentane') THEN + kij(i,j) = 0.0153 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'nbutyl-ethanoate')THEN + kij(i,j) = 0.027 + ELSE IF(compna(i) == '1-hexene'.AND.compna(j) == 'ethyl-ethanoate')THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == '1-butanol')THEN + ! kij(i,j) = 0.075 + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'acrylic-acid'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'bmim'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'bf4'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'butane')THEN !K.R.Hall FPE 2007 254 112-125 kij=0.1850 + kij(i,j) = -0.07 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-butanol')THEN + kij(i,j) = -0.12 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'aniline')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methanol') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = -0.027 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'styrene') THEN + kij(i,j) = 0.1 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propyl-ethanoate') THEN + kij(i,j) = -0.205 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethyl-propanoate') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-pentanol') THEN + kij(i,j) = 0.0165 + ! kij(i,j) = 0.0294 + ! kij(i,j) = -0.082 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methane') THEN + ! kij(i,j) = +0.06 + kij(i,j) = -0.08 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'hexane') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'co2') THEN + if (pol == 0) kij(i,j) = 0.0030625 ! for T=50C, according to X.Tang + stop ! very T-dependent + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'caproic-acid'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.041531 + ELSE IF(compna(i) == '1-octanol'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.07 + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02132466 ! PC-SAFT + ! kij(i,j) = 0.01495148 ! PCP-SAFT + ! kij(i,j) = -0.00735575 ! PCP-SAFT but non-polar benzene + ELSE IF(compna(i) == '1-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02017 + ELSE IF(compna(i) == '2-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.021386 + ELSE IF(compna(i) == '1-pentanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.0129638671875 + ELSE IF(compna(i) == 'CH2F2' .AND. compna(j) == 'co2') THEN + kij(i,j) = 2.2548828125E-2 + ELSE IF(compna(i) == 'dmso' .AND. compna(j) == 'co2') THEN + kij(i,j) = -0.00 + ELSE IF(compna(i) == 'dmf'.AND.compna(j) == 'h2o')THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = 0.032 ! association: eps_kij = 0.16 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.004 ! PCP-SAFT (taken from simulation) + ELSE IF(compna(i) == 'difluoromethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'naphthalene'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.137 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + kij(i,j) = 0.09 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'methanol')THEN + kij(i,j) = 0.03 + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.05 + ELSE IF(compna(i) == 'PCH5'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = -0.047 + kij(i,j) = +0.055 + ! kij(i,j) = +0.036 + ELSE + END IF + kij(j,i) = kij(i,j) + lij(j,i) = -lij(i,j) + + END DO +END DO + +END SUBROUTINE pcsaft_par + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE init_vars +! +! This subroutine writes variables from an array "val_init" to the +! system-variables. Those variables +! include some specifications but also some starting values for a +! phase equilibrium calculation. (val_init stands for 'initial value') + +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(5+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE init_vars +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +densta(3)=val_init(0) +densta(1)=val_init(1) +densta(2)=val_init(2) +t = val_init(3) +p = val_init(4) +DO ph = 1,nphas + DO i = 1,ncomp + lnx(ph,i) = val_init(4+i+(ph-1)*ncomp) + END DO +END DO + +END SUBROUTINE init_vars + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE converged +! +! Once a converged solution for an equilibrium calculation is found, +! this subroutine writes variables to an array "val_conv". +! (= short for converged values) +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(4+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE converged +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +val_conv(0) = dense(3) +val_conv(1) = dense(1) +val_conv(2) = dense(2) +val_conv(3) = t +val_conv(4) = p +DO ph = 1,nphas + DO i = 1,ncomp + val_conv(4+i+(ph-1)*ncomp) = lnx(ph,i) + END DO +END DO + +END SUBROUTINE converged + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PERTURBATION_PARAMETER +! +! calculates density-independent parameters of the equation of state. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PERTURBATION_PARAMETER +! + USE PARAMETERS, ONLY: PI, KBOL, RGAS, NAV, TAU + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, no + LOGICAL :: assoc, qudpole, dipole + REAL :: m_mean + REAL, DIMENSION(nc) :: v00, v0, d00, u + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb + REAL :: zmr, nmr + REAL :: eps_kij, k_kij +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- +DO i = 1, ncomp + u(i) = parame(i,3) * (1.0 + parame(i,4)/t) + mseg(i) = parame(i,1) + IF (eos == 0) THEN + v00(i) = parame(i,2) + v0(i) = v00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t))**3 + d00(i) = (1.d30/1.d6 *tau *v00(i)*6.0/PI /NAV)**(1.0/3.0) + dhs(i) = d00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + ELSE + dhs(i) = parame(i,2)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + d00(i) = parame(i,2) + END IF +END DO + + +! ---------------------------------------------------------------------- +! combination rules +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j = 1, ncomp + sig_ij(i,j) = 0.5 * ( d00(i) + d00(j) ) + uij(i,j) = ( 1.0 - kij(i,j) ) * ( u(i)*u(j) )**0.5 + vij(i,j) = ( 0.5*( v0(i)**(1.0/3.0) + v0(j)**(1.0/3.0) ) )**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +z0t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + +m_mean = z0t/(PI/6.0) + +DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO +END DO + +! ---------------------------------------------------------------------- +! dispersion term parameters for chain molecules +! ---------------------------------------------------------------------- +DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +END DO + + +! ---------------------------------------------------------------------- +! van der Waals mixing rules for perturbation terms +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO + + +! ---------------------------------------------------------------------- +! SAFT parameters +! ---------------------------------------------------------------------- +IF (eos == 0) THEN + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr +END IF + + + +! ---------------------------------------------------------------------- +! association and polar parameters +! ---------------------------------------------------------------------- +assoc = .false. +qudpole = .false. +dipole = .false. +DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + IF (parame(i,7) /= 0.0) qudpole = .true. + IF (parame(i,6) /= 0.0) dipole = .true. +END DO + +! --- dipole and quadrupole constants ---------------------------------- +IF (qudpole) CALL qq_const ( qqp2, qqp3, qqp4 ) +IF (dipole) CALL dd_const ( ddp2, ddp3, ddp4 ) +IF (dipole .AND. qudpole) CALL dq_const ( dqp2, dqp3, dqp4 ) + + +! --- TPT-1-association parameters ------------------------------------- +IF (assoc) THEN + + eps_kij = 0.0 + k_kij = 0.0 + + DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) THEN + nhb_typ(i) = NINT(parame(i,12)) + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1, nhb_typ(i) + DO k = 1, nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no=no+1 + END DO + END DO + DO j = 1, nhb_typ(i) + nhb_no(i,j) = parame(i,(14+no)) + no=no+1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1, nsite + DO l = 1, nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + IF (i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0)) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1, nhb_typ(i) + DO l = 1, nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN +! write(*,*)'eps_hb manuell eingegeben' + eps_hb(1,2,3,1) = 0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1) = 0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ass_d(i,j,k,l) = kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + END DO + END DO + END DO + END DO + +END IF + +END SUBROUTINE PERTURBATION_PARAMETER + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE OUTPUT +! +! The purpose of this subroutine is obvious. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE OUTPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + CHARACTER (LEN=4) :: t_ind + CHARACTER (LEN=4) :: p_ind + CHARACTER (LEN=4) :: char_ncomp + REAL :: density(np),w(np,nc) +! ---------------------------------------------------------------------- + + CALL si_dens (density,w) + + IF (u_in_p == 1.E5) THEN + p_ind = ' bar' + ELSE IF (u_in_p == 1.E2) THEN + p_ind = 'mbar' + ELSE IF (u_in_p == 1.E6) THEN + p_ind = ' MPa' + ELSE IF (u_in_p == 1.E3) THEN + p_ind = ' kPa' + ELSE + p_ind = ' Pa' + END IF + IF (u_in_t == 273.15) THEN + t_ind = ' C' + ELSE + t_ind = ' K' + END IF + + WRITE(*,*) '--------------------------------------------------' + WRITE (char_ncomp,'(I3)') ncomp + WRITE(*,'(t2,a,f7.2,2a,f9.4,a)') ' T =',t-u_out_t,t_ind & + ,' P =',p/u_out_p,p_ind + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,'(2x,a,2(g13.6,1x))') 'DENSITY ', density(1),density(2) + + !-----output to files-------------------------------------------------- + IF (ncomp == 1) THEN + WRITE (40,'(7(2x,f18.8))') t-u_out_t, p/u_out_p, & + density(1), density(2),h_lv,cpres(1),cpres(2) + ! & ,(enthal(2)-enthal(1))/mm(1) + ! WRITE (40,'(4(2x,f15.8))') t, p, 0.3107*dense(1) + ! & /0.1617*(0.689+0.311*(T/1.328)**0.3674),0.3107 + ! & *dense(2)/0.1617*(0.689+0.311*(T/1.328)**0.3674) + ELSE IF (ncomp == 2) THEN + WRITE (40,'(12(2x,G15.8))') 1.0-xi(1,1),1.0-xi(2,1), & + w(1,1),w(2,1),t-u_out_t, p/u_out_p, density(1),density(2) & + ,enthal(1),enthal(2),cpres(1),cpres(2) + ELSE IF (ncomp == 3) THEN + WRITE (40,'(10(2x,f15.8))') xi(1,1),xi(1,2),xi(1,3),xi(2,1),xi(2,2), & + xi(2,3),t-u_out_t, p/u_out_p, density(1),density(2) + END IF + + END SUBROUTINE OUTPUT + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE neutr_charge +! +! This subroutine is called for electrolye solutions, where a +! neutral overall-charge has to be enforced in all phases. The basic +! philosophy is similar to the above described routine X_SUMMATION. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE neutr_charge(i) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i +! +! ---------------------------------------------------------------------- + INTEGER :: comp_e, ph_e + REAL :: sum_c + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + +phasno = sum_rel(i)(2:2) +READ(phasno,*) ph_e +compno = sum_rel(i)(3:3) +READ(compno,*) comp_e + +sum_c = 0.0 +write (*,*) 'there must be an error in neutr_charge' +stop +! there is an error in the following passage. The index i is an +! argument to this subroutine - I guess it is INTENT(IN), so the +! index in the following loop can not be i. +! +! I have commented the loop until I check the code. +!DO i=1,ncomp +! IF ( comp_e /= i .AND. parame(i,10) /= 0.0) & +! sum_c = sum_c + xi(ph_e,i)*parame(i,10) +!END DO + +xi(ph_e,comp_e) = - sum_c +IF (xi(ph_e,comp_e) < 0.0) xi(ph_e,comp_e)=0.0 +IF (xi(ph_e,comp_e) /= 0.0) THEN + lnx(ph_e,comp_e) = LOG(xi(ph_e,comp_e)) +ELSE + lnx(ph_e,comp_e) = -100000.0 +END IF + +! xi(2,1) = xi(2,2) +! IF (xi(2,1).NE.0.0) lnx(2,1) = LOG(xi(2,1)) + +END SUBROUTINE neutr_charge + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_sum +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, j, ph_i, phase1, phase2 +! ---------------------------------------------------------------------- + +phase1=0 +phase2=0 +DO j=1,ncomp + IF (it(j)(2:2) == '1') phase1=phase1+1 + IF (it(j)(2:2) == '2') phase2=phase2+1 +END DO + +IF (phase1 == ncomp-1) THEN + ph_i = 1 +ELSE IF (phase2 == ncomp-1) THEN + ph_i = 2 +ELSE + WRITE (*,*) ' FLASH_SUM: undefined flash-case' + STOP +END IF + + + +IF (ph_i == 1) THEN + DO i=1,ncomp + IF (alpha > DMIN1(1.0,xif(i)/xi(1,i), & + (xif(i)-1.0)/(xi(1,i)-1.0),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 1st alpha-bound' + alpha=DMIN1(1.0,xif(i)/xi(1,i),(xif(i)-1.0)/(xi(1,i)-1.0)) + END IF + END DO + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF (xi(2,i) > 0.0) THEN + lnx(2,i) = LOG(xi(2,i)) + ELSE + xi(2,i) = 0.0 + lnx(2,i) = -100000.0 + END IF + END DO +ELSE IF (ph_i == 2) THEN + DO i=1,ncomp + IF (alpha > DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), & + 1.0-xif(i)/xi(2,i),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 2nd alpha-bound' + WRITE (*,*) 0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i) + alpha=DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i)) + END IF + END DO + DO i=1,ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) / alpha +! write (*,*) 'x1,i',xi(1,i),xi(2,i),alpha + IF (xi(1,i) > 0.0) THEN + lnx(1,i) = LOG(xi(1,i)) + ELSE + xi(1,i) = 0.0 + lnx(1,i) = -100000.0 + END IF + END DO +END IF + +! pause + +RETURN +END SUBROUTINE flash_sum + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE flash_alpha +! +! This subroutine calculates all molefractions of one phase +! from a component balance. What is needed for this calculation +! are all molefractions of the other phase (nphas=2, so far) +! and the phase fraction alpha. +! Alpha is calculated from the mole fraction +! of component {sum_rel(j)(3:3)}. If for example sum_rel(2)='fl3', +! then the alpha is determined from the molefraction of comp. 3 and +! all molefractions of one phase are calculated using that alpha-value. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_alpha +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, phase1, phase2 + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! first calculate the phase fraction alpha from a known composition +! of component sum_rel(j)(3:3). +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF ( sum_rel(j)(1:2) == 'fl' ) THEN + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( (xi(1,comp_i)-xi(2,comp_i)) /= 0.0 ) THEN + alpha = (xif(comp_i)-xi(2,comp_i)) / (xi(1,comp_i)-xi(2,comp_i)) + write (*,*) 'flsh',(xif(comp_i)-xi(2,comp_i)),(xi(1,comp_i)-xi(2,comp_i)) + ELSE + alpha = 0.5 + WRITE (*,*) 'FLASH_ALPHA:error in calc. of phase fraction',comp_i + END IF + ! IF (alpha <= 0.0 .OR. alpha >= 1.0) WRITE(*,*) 'FLASH_ALPHA: error',alpha + IF (alpha > 1.0) alpha = 1.0 + IF (alpha < 0.0) alpha = 0.0 + END IF +END DO + +! ---------------------------------------------------------------------- +! determine which phase is fully determined by iterated molefractions (+ summation relation) +! ---------------------------------------------------------------------- +phase1 = 0 +phase2 = 0 +DO i = 1, ncomp + IF ( it(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( it(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO +DO i = 1, ncomp + IF ( sum_rel(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( sum_rel(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO + + +IF ( phase1 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 1 is defined by iterated molefractions + summation relation + ! phase 2 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + IF ( alpha == 1.0 ) alpha = 1.0 - 1.0E-10 + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF ( xi(2,i) < 0.0 ) xi(2,i) = 0.0 + IF ( xi(2,i) > 1.0 ) xi(2,i) = 1.0 + IF ( xi(2,i) /= 0.0 ) THEN + lnx(2,i) = LOG( xi(2,i) ) + ELSE + lnx(2,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=2',i,lnx(2,i),xi(2,i) + END DO +ELSE IF ( phase2 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 2 is defined by iterated molefractions + summation relation + ! phase 1 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) /alpha + IF ( xi(1,i) < 0.0 ) xi(1,i) = 0.0 + IF ( xi(1,i) > 1.0 ) xi(1,i) = 1.0 + IF ( xi(1,i) /= 0.0 ) THEN + lnx(1,i) = LOG( xi(1,i) ) + ELSE + lnx(1,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=1',i,lnx(1,i),xi(1,i),alpha + END DO +ELSE + WRITE (*,*) ' FLASH_ALPHA: undefined flash-case' + STOP +END IF + +END SUBROUTINE flash_alpha + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE SI_DENS (density,w) +! +! This subroutine calculates the (macroskopic) fluid-density in +! units [kg/m3] from the dimensionless density (eta=zeta3). +! Further, mass fractions are calculated from mole fractions. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SI_DENS (density,w) +! + USE PARAMETERS, ONLY: pi, nav, tau + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: density(np) + REAL, INTENT(OUT) :: w(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph + REAL :: mm_mean, rho, z3t + REAL :: dhs(nc), d00(nc), t_p, pcon, l_st +! ---------------------------------------------------------------------- + + +DO i = 1,ncomp + IF (eos == 1) THEN + dhs(i) = parame(i,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 0) THEN + d00(i) = ( 1.E30/1.E6*tau*parame(i,2)*6.0/pi/nav )**(1.0/3.0) + dhs(i) = d00(i) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 4) THEN + dhs(i) = ( 0.1617/0.3107 / ( 0.689+0.311*(t/parame(i,3)/1.328)**0.3674 ) & + / ( pi/6.0 ) )**(1.0/3.0) * parame(i,2) + ELSE IF (eos == 5.OR.eos == 6) THEN + l_st = parame(1,25) + IF (ncomp /= 1) write (*,*) ' ERROR for EOS = 5' + t_p =((34.037352+17.733741*l_st) /(1.0+0.53237307*l_st+12.860239*l_st**2 ))**0.5 + IF (l_st == 0.0) t_p = t_p/4.0 + IF (eos == 5 .AND. l_st /= 0.0) t_p = t_p/4.0*parame(1,1)**2 + t_p = t/parame(i,3)/t_p + pcon =0.5256+3.2088804*l_st**2 -3.1499114*l_st**2.5 +0.43049357*l_st**4 + dhs(i) = ( pcon/(0.67793+0.32207*(t_p)**0.3674) /(pi/6.0) )**(1.0/3.0) *parame(i,2) + ELSE IF (eos == 8) THEN + dhs(i) = parame(i,2)*(1.0+0.2977*t/parame(i,3)) & + /(1.0+0.33163*t/parame(i,3) +1.0477E-3*(t/parame(i,3))**2 ) + ELSE + write (*,*) 'define EOS in subroutine: SI_DENS' + stop + END IF +END DO + +DO ph = 1,nphas + mm_mean = 0.0 + z3t = 0.0 + DO i = 1, ncomp + mm_mean = mm_mean + xi(ph,i)*mm(i) + z3t = z3t + xi(ph,i) * parame(i,1) * dhs(i)**3 + END DO + z3t = pi/6.0 * z3t + rho = dense(ph)/z3t + density(ph) = rho * mm_mean * 1.E27 /nav + DO i = 1, ncomp + w(ph,i) = xi(ph,i) * mm(i)/mm_mean + END DO +! write (*,*) density(ph),rho,mm_mean,1.d27 /NAV +END DO + +END SUBROUTINE SI_DENS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION F_STABILITY ( optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) +! +! ---------------------------------------------------------------------- + INTEGER :: i, stabil + REAL :: rhoi(nc),gradterm + REAL :: fden,punish + REAL :: dens +! ---------------------------------------------------------------------- + +COMMON /stabil / stabil + +punish = 0.0 +stabil = 1 + +DO i = 1, n + IF ( optpara(i) < 0.5 ) rhoi(i) = EXP(optpara(i) ) + IF ( optpara(i) >= 0.5) rhoi(i) = EXP(0.5) +END DO + +dens = PI/6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + +IF (dens > 0.65) THEN + punish = punish + (dens-0.65)*10000.0 + rhoi(1:n) = rhoi(1:n)*0.65/dens +END IF + +CALL fden_calc (fden, rhoi) + +gradterm = sum( grad_fd(1:n) * ( rhoi(1:n) - rhoif(1:n) ) ) + +f_stability = fden - fdenf - gradterm + punish + +! write (*,'(5G16.8)') F_STABILITY,(rhoi(i),i=1,n) +! pause + +stabil = 0 + +END FUNCTION F_STABILITY + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE p_calc (pges_transfer, zges) +! +! This subroutine serves as an iterface to the EOS-routines. The +! system pressure corresponding to given (desity,T,xi) is calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. This +! routine is only used for one-phase systems, e.g. calculation of +! virial coefficients) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE p_calc (pges_transfer, zges) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: pges_transfer + REAL, INTENT(OUT) :: zges +! ---------------------------------------------------------------------- + +IF (nphas /= 1 ) THEN + write (*,*) 'P_CALC: can only be called for single phases' + stop +ENDIF + +IF (eos < 2) THEN + + phas = 1 + eta = dense(1) + x(1:ncomp) = xi(1,1:ncomp) + + CALL PERTURBATION_PARAMETER + IF (num == 0) CALL P_EOS + IF(num == 1) CALL P_NUMERICAL + !! IF(num == 2) CALL F_EOS_RN + + pges_transfer = pges + rho = eta/z3t + zges = (pges * 1.E-30) / (kbol*t*rho) + +ELSE + write (*,*) ' SUBROUTINE P_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE p_calc + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL ( only_term, type_of_term ) +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! + character (LEN=9) :: only_term, type_of_term +! ---------------------------------------------------------------------- + + save_eos_terms(1) = ideal_gas + save_eos_terms(2) = hard_sphere + save_eos_terms(3) = chain_term + save_eos_terms(4) = disp_term + save_eos_terms(5) = hb_term + save_eos_terms(6) = LC_term + save_eos_terms(7) = branch_term + save_eos_terms(8) = II_term + save_eos_terms(9) = ID_term + + ideal_gas = 'no' + hard_sphere = 'no' + chain_term = 'no' + disp_term = 'no' + hb_term = 'no' + LC_term = 'no' + branch_term = 'no' + II_term = 'no' + ID_term = 'no' + + IF ( only_term == 'ideal_gas' ) ideal_gas = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hard_sphere' ) hard_sphere = trim( adjustl( type_of_term ) ) + IF ( only_term == 'chain_term' ) chain_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'disp_term' ) disp_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hb_term' ) hb_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'LC_term' ) LC_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'branch_term' ) branch_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'II_term' ) II_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'ID_term' ) ID_term = trim( adjustl( type_of_term ) ) + +END SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + ideal_gas = trim( adjustl( save_eos_terms(1) ) ) + hard_sphere = trim( adjustl( save_eos_terms(2) ) ) + chain_term = trim( adjustl( save_eos_terms(3) ) ) + disp_term = trim( adjustl( save_eos_terms(4) ) ) + hb_term = trim( adjustl( save_eos_terms(5) ) ) + LC_term = trim( adjustl( save_eos_terms(6) ) ) + branch_term = trim( adjustl( save_eos_terms(7) ) ) + II_term = trim( adjustl( save_eos_terms(8) ) ) + ID_term = trim( adjustl( save_eos_terms(9) ) ) + +END SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL + + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/main.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/main.f90 new file mode 100644 index 000000000..44cc5cb21 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/main.f90 @@ -0,0 +1,132 @@ + +! +!THIS CODE WAS WRITTEN AT +!UNIVERSITY OF STUTTGART, +!INSTITUTE OF TECHNICAL THERMODYNAMICS AND THERMAL PROCESS ENGINEERING +!BY +!JOACHIM GROSS +! +! +! +! + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This program calculates densities of a liquid phase which is in equilibrium with a gas phase +! using the PC-SAFT equation of state. +! The input parameters are read from the file "in.txt" which has to +! be in the same directory as the executable. +! +! The input file must have the following format: +! Line1: Value of temperature in Kelvin +! Line2: Number of components present in the system (ncomp) +! Line3 Name of component 1 +! ... +! Line3+ncomp Name of component ncomp +! Line3+ncomp+1 Molar (overall) fraction of component 1 +! ... +! Line3+2ncomp Molar (overall) fraction of component ncomp +! +! For a binary system, these molar fractions are only treated as an initial guess and may be set to e.g. 0. +! +! So far, pressure is set to 1bar in all calculaions +! +! +!If you would like to use this code in your work, please cite the +!following publications: +! +!Gross, Joachim, and Gabriele Sadowski. "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules." Industrial & engineering chemistry research 40.4 (2001): 1244-1260. +!Gross, Joachim, and Gabriele Sadowski. "Application of the perturbed-chain SAFT equation of state to associating systems." Industrial & engineering chemistry research 41.22 (2002): 5510-5515. +!Gross, Joachim, and Jadran Vrabec. "An equation‐of‐state contribution for polar components: Dipolar molecules." AIChE journal 52.3 (2006): 1194-1204. +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + + + + + +PROGRAM PC_SAFT +! +! ---------------------------------------------------------------------- + USE BASIC_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE + USE EOS_VARIABLES!, ONLY: dd_term, qq_term, dq_term + IMPLICIT NONE + +! ---------------------------------------------------------------------- +!Variables +! ---------------------------------------------------------------------- + + REAL :: tc,pc,chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + CHARACTER (LEN=50) :: filename + INTEGER :: compID,i + REAL :: cif(nc) + +! ---------------------------------------------------------------------- +!Read information from inputfile "in.txt" +! ---------------------------------------------------------------------- + + filename='./in.txt' + CALL file_open(filename,77) + READ (77,*) t + READ (77,*) ncomp ! read number of components in the system + Do i = 1,ncomp ! read component names + READ (77,*) compna(i) + End Do + Do i = 1,ncomp ! read component overall molar concentrations + READ (77,*) xif(i) + End Do + + + + !calculate molar fractions from molar concentrations + !xif(1:ncomp) = cif(1:ncomp) / sum(cif(1:ncomp)) + + + +! ---------------------------------------------------------------------- +!General simulation set up +! ---------------------------------------------------------------------- + + num = 1 ! (num=0: using analytical derivatives of EOS) + ! (num=1: using numerical derivatives of EOS) + ! (num=2: White's renormalization group theory) + IF ( num /= 0 ) CALL SET_DEFAULT_EOS_NUMERICAL + + + eos = 1 + pol = 1 + + p = 1.000e05 + + CALL para_input ! retriev pure comp. parameters + + ensemble_flag = 'tp' ! this specifies, whether the eos-subroutines + ! are executed for constant 'tp' or for constant 'tv' + + +! ---------------------------------------------------------------------- +!Start phase equilibrium calculation +! ---------------------------------------------------------------------- + + CALL EOS_CONST (ap, bp, dnm) + + dd_term = 'GV' ! dipole-dipole term of Gross & Vrabec (2006) + qq_term = 'JG' ! quadrupole-quadrupole term of Gross (2005) + dq_term = 'VG' ! dipole-quadrupole term of Vrabec & Gross (2008) + + + + CALL VLE_MIX(rhob,density,chemPot_total,compID) + + +END PROGRAM PC_SAFT + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 new file mode 100644 index 000000000..595a8ba80 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 @@ -0,0 +1,1645 @@ + +MODULE Solve_NonLin + +! Corrections to FUNCTION Enorm - 28 November 2003 + +IMPLICIT NONE +INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HBRD + +! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +! FINAL ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +! PRECISION. + +! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +! IS AT MOST TOL. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +! BETWEEN X AND THE SOLUTION IS AT MOST TOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). + +! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... HYBRD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! Reference: +! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +! Breach, London 1970. +! ********** +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 1.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0 + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0 + alpha = delta / qnorm + IF (gnorm /= 0.0) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0 + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0 + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0-(delta/qnorm)**2)*(1.0-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/modules.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/modules.f90 new file mode 100644 index 000000000..4147cd131 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/src/srcDetailedCode/modules.f90 @@ -0,0 +1,368 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module PARAMETERS + + implicit none + save + + integer, parameter :: nc = 6 + integer, parameter :: np = 3 + integer, parameter :: nsite = 5 + + real, parameter :: PI = 3.141592653589793 + real, parameter :: RGAS = 8.31441 + real, parameter :: NAv = 6.022045E23 + real, parameter :: KBOL = RGAS / NAv + real, parameter :: TAU = PI / 3.0 / SQRT(2.0) + +End Module PARAMETERS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module BASIC_VARIABLES + + use PARAMETERS, only: nc, np, nsite + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture +! ---------------------------------------------------------------------- + integer :: ncomp + integer :: nphas + + real :: t + !real :: tc + real :: p + real, dimension(np) :: dense + !real, dimension(np) :: rhob + + real, dimension(np, nc) :: xi + real, dimension(np, nc) :: lnx + real, dimension(nc) :: xiF + + real, dimension(nc) :: mm + real, dimension(np, nc, nsite) :: mxx + + real :: alpha + + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- + real, dimension(nc, 25) :: parame = 0.0 + real, dimension(nc) :: chiR + character*30, dimension(nc) :: compna + real, dimension(nc, nc) :: kij, lij + real, dimension(nc, nc) :: E_LC, S_LC + real, dimension(nc) :: LLi, phi_criti, chap + + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real, dimension(np) :: densta + real, dimension(0:nc*np+6) :: val_init, val_conv + + real :: h_lv + real, dimension(np) :: cpres, enthal, entrop, gibbs, f_res + + real, dimension(np) :: dp_dz, dp_dz2 + + +! ---------------------------------------------------------------------- +! choice of EOS-model and solution method +! ---------------------------------------------------------------------- + integer :: eos, pol + integer :: num + character (LEN=2) :: ensemble_flag + character (LEN=10) :: RGT_variant + + +! ---------------------------------------------------------------------- +! for input/output +! ---------------------------------------------------------------------- + integer :: outp, bindiag + real :: u_in_T, u_out_T, u_in_P, u_out_P + + +! ---------------------------------------------------------------------- +! quantities defining the numerical procedure +! ---------------------------------------------------------------------- + integer :: n_unkw + + real :: step_a, acc_a !, acc_i + real, dimension(nc) :: scaling + real, dimension(3500) :: plv_kon + real, dimension(2, 3500) :: d_kond + + character*3, dimension(10) :: it, sum_rel + character*3 :: running + + +End Module BASIC_VARIABLES + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_VARIABLES + + use PARAMETERS, only: nc, nsite, PI, KBOL, TAU, NAv + use BASIC_VARIABLES, only: ncomp, eos, t, p, parame, E_LC, S_LC, chiR, & + LLi, phi_criti, chap, kij, lij, ensemble_flag + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture (single phase) +! ---------------------------------------------------------------------- + real :: x(nc) + real :: eta_start + real :: eta + real :: rho + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real :: fres + real :: lnphi(nc) + real :: pges + real :: pgesdz + real :: pgesd2 + real :: pgesd3 + + real :: h_res + real :: cp_res + real :: s_res + +! ---------------------------------------------------------------------- +! quantities of fluid theory +! ---------------------------------------------------------------------- + real :: gij(nc,nc) + real :: mx(nc,nsite) + + real :: mseg(nc) + real :: dhs(nc) + real :: uij(nc,nc) + real :: sig_ij(nc,nc) + real :: vij(nc,nc) + + real :: um + real :: order1 + real :: order2 + real :: apar(0:6) + real :: bpar(0:6) + + real :: z0t + real :: z1t + real :: z2t + real :: z3t + + integer :: nhb_typ(nc) + real :: ass_d(nc,nc,nsite,nsite) + real :: nhb_no(nc,nsite) + real :: dij_ab(nc,nc) + +! ---------------------------------------------------------------------- +! auxilliary quantities +! ---------------------------------------------------------------------- + real :: tfr + integer :: phas + + character (LEN = 2) :: dd_term, qq_term, dq_term + + real :: densav(3), denold(3) + real :: density_error(3) + + real :: alpha_nematic + real :: alpha_test(2) + +End Module EOS_VARIABLES + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_CONSTANTS + + use PARAMETERS, only: nc + implicit none + save + + real, dimension(0:6,3) :: ap, bp + real, dimension(4,9) :: dnm + + real, dimension(28) :: c_dd, n_dd, m_dd, k_dd, o_dd + real, dimension(nc,nc,0:8) :: qqp2, qqp4, ddp2, ddp4, dqp2, dqp4 + real, dimension(nc,nc,nc,0:8) :: qqp3, ddp3, dqp3 + +End Module EOS_CONSTANTS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_NUMERICAL_DERIVATIVES + + use EOS_VARIABLES, only: dd_term, qq_term, dq_term + + implicit none + save + + character (LEN=9) :: ideal_gas ! (yes, no) + character (LEN=9) :: hard_sphere ! (CSBM, no) + character (LEN=9) :: chain_term ! (TPT1, no) + character (LEN=9) :: disp_term ! (PC-SAFT, CK, no) + character (LEN=9) :: hb_term ! (TPT1_Chap, no) + character (LEN=9) :: LC_term ! (MSaupe, no) + character (LEN=9) :: branch_term ! (TPT2, no) + character (LEN=9) :: II_term ! (......., no) + character (LEN=9) :: ID_term ! (......., no) + + character (LEN=9) :: subtract1 ! (1PT, 2PT, no) + character (LEN=9) :: subtract2 ! (ITTpolar, no) + + character (LEN=9) :: save_eos_terms(10) + +End Module EOS_NUMERICAL_DERIVATIVES + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module STARTING_VALUES +! +! This module contains parameters and variables for a phase stability +! analyis as part of a flash calculation. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + Module STARTING_VALUES + + use PARAMETERS, only: nc + implicit none + save + + REAL, DIMENSION(nc) :: rhoif, rhoi1, rhoi2, grad_fd + REAL :: fdenf + + End Module STARTING_VALUES + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module DFT_MODULE +! +! This module contains parameters and variables for DFT calculations. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module DFT_MODULE + + use PARAMETERS, only: nc + implicit none + save + + INTEGER, PARAMETER :: NDFT = 4000 + !!integer :: discret + REAL :: box_l_no_unit + INTEGER, PARAMETER :: r_grid = 200 + INTEGER :: kmax, den_step + LOGICAL :: shift, WCA, MFT + REAL :: rc, rg, dzr, tau_cut,dzp + REAL :: d_hs, dhs_st, z3t_st + REAL :: z_ges + REAL, DIMENSION(r_grid) :: x1a + REAL, DIMENSION(NDFT) :: x2a + REAL, DIMENSION(r_grid,NDFT) :: ya, y1a, y2a, y12a + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub + REAL :: fres_temp + + REAL, DIMENSION(r_grid) :: x1a_11 + REAL, DIMENSION(NDFT) :: x2a_11 + REAL, DIMENSION(r_grid,NDFT) :: ya_11, y1a_11, y2a_11, y12a_11 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_11 + REAL, DIMENSION(r_grid) :: x1a_12 + REAL, DIMENSION(NDFT) :: x2a_12 + REAL, DIMENSION(r_grid,NDFT) :: ya_12, y1a_12, y2a_12, y12a_12 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_12 + REAL, DIMENSION(r_grid) :: x1a_22 + REAL, DIMENSION(NDFT) :: x2a_22 + REAL, DIMENSION(r_grid,NDFT) :: ya_22, y1a_22, y2a_22, y12a_22 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_22 + + End Module DFT_MODULE + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module ........... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module rdf_variables + + implicit none + save + + real, dimension(0:20) :: fac(0:20) + +End Module rdf_variables + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains the variavles that are needed in the core DFT_FCN +! They are not passed directly to DFT_FCN because the nonlinear solver +! needs a certain calling structure: fcn(x,fvec,n) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module DFT_FCN_MODULE + +use PARAMETERS, only: nc +use DFT_MODULE, only: ndft + implicit none + +INTEGER :: irc(nc),irc_j,ih,fa(nc) + REAL, DIMENSION(-NDFT:NDFT) :: zp + REAL, DIMENSION(-NDFT:NDFT) :: f_tot + REAL, DIMENSION(-NDFT:NDFT,2) :: dF_drho_tot + REAL :: rhob_dft(2,0:nc) + REAL :: my0(nc) + +End Module DFT_FCN_MODULE + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module Module_Heidemann_Khalil +! +! This module .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module Module_Heidemann_Khalil + + implicit none + save + + real :: error_condition2 + + End Module + + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/workflow b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/workflow new file mode 100755 index 000000000..ed3dee6c5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/ExampleOfUsage/workflow @@ -0,0 +1,57 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + A simple workflow + +Authors + Henrik Rusche + +Contributors +''' + +from fireworks import Firework, Workflow, LaunchPad +from fireworks.core.rocket_launcher import rapidfire +import Density +from modulefinder import ModuleFinder + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +# create the individual FireWorks and Workflow +# Source code in src/twoTanksMacroscopicProblem.C +wf = Workflow([Firework(Density.m)], {}, name="simulation") + +# store workflow and launch it locally +launchpad.add_wf(wf) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/PolymerDensity.py b/applications/PUfoam/MoDeNaModels/PolymerDensity/PolymerDensity.py new file mode 100644 index 000000000..ef894deec --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/PolymerDensity.py @@ -0,0 +1,176 @@ + +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +import os +import modena +from modena import ForwardMappingModel,BackwardMappingModel,SurrogateModel,CFunction,IndexSet +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +# Create terminal for colour output +term = Terminal() + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# ********************************* Class ********************************** # +@explicit_serialize +class DensityExactSim(FireTaskBase): + """ + A FireTask that starts a microscopic code and updates the database. + """ + + def run_task(self, fw_spec): + print( + term.yellow + + "Performing exact simulation (microscopic code recipe)" + + term.normal + ) + + # Write input for detailed model + ff = open('in.txt', 'w') + Tstr = str(self['point']['T']) + ff.write('%s \n' %(Tstr)) + + + ##TODO INPUT SHOULD COME FROM IndexSet + + ff.write('2 \n') #number of components in system + ff.write('air \n') #component 1 + ff.write('pu \n') #component 2 + ff.write('0. \n') #molar feed (initial) composition component 1 + ff.write('0. \n') #molar feed (initial) composition component 2 + ff.close() + + #create output file for detailed code + fff = open('out.txt', 'w+') + fff.close() + + # Execute detailed model + os.system('../src/PCSAFT_Density') + + # Analyse output + f = open('out.txt', 'r') + self['point']['rho'] = float(f.readline()) + f.close() + + return FWAction(mod_spec=[{'_push': self['point']}]) + + + + + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void surroDensity +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + + const double T = inputs[0]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + const double P2 = parameters[2]; + + // const double expo = 1.0 + (1.0 - T/P2); + // const double pwr = pow(P1,expo); + + // outputs[0] = P0 / pwr; + + + outputs[0] = P0 + T*P1 + P2*T*T; +} +''', + # These are global bounds for the function + inputs={ + 'T': { 'min': 270.0, 'max': 300.0, 'argPos': 0 }, #check if boundaries reasonable, from this range, the random values for the DOE are chosen! + }, + outputs={ + 'rho': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': -1E10, 'max': 1E10, 'argPos': 0 }, #check if boundaries are reasonable!!! + 'param1': { 'min': -1E10, 'max': 1E10, 'argPos': 1 }, + 'param2': { 'min': -1E10, 'max': 1E10, 'argPos': 2 }, + }, +) + +m = BackwardMappingModel( + _id= 'PolymerDensity', + surrogateFunction= f, + exactTask= DensityExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [270.0, 290.0, 300.0], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 300.0, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/README.md b/applications/PUfoam/MoDeNaModels/PolymerDensity/README.md new file mode 100644 index 000000000..e69de29bb diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/__init__.py b/applications/PUfoam/MoDeNaModels/PolymerDensity/__init__.py new file mode 100644 index 000000000..2c66c26e0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/__init__.py @@ -0,0 +1,38 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/initModels b/applications/PUfoam/MoDeNaModels/PolymerDensity/initModels new file mode 100755 index 000000000..4497f6fda --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/initModels @@ -0,0 +1,62 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors +''' + +from modena import SurrogateModel +from modena.Strategy import Workflow2 +#import flowRate +import modDensity +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from fireworks.utilities.fw_serializers import load_object + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +initWfs = Workflow2([]) +for m in SurrogateModel.get_instances(): + initWfs.addNoLink(m.initialisationStrategy().workflow(m)) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/CMakeLists.txt new file mode 100644 index 000000000..13afbae49 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/CMakeLists.txt @@ -0,0 +1,40 @@ +cmake_minimum_required (VERSION 2.8) + +# I am specifying two projects in the same Cmake file (not sure if good idea) +project (PCSAFT_Density C CXX Fortran) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) + cmake_policy(SET CMP0028 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + +# ---------------------------------------------------------------------------- +# NOTE: +# This will look through **all** subdirectories and find **any** FORTRAN file +# it will then attempt to to compile and link all the files together. +# ------> FRAGILE <------ +file(GLOB FORTRANFILES ${CMAKE_CURRENT_SOURCE_DIR}/*/*.f90) +add_executable(PCSAFT_Density ${FORTRANFILES}) +set_target_properties(PCSAFT_Density PROPERTIES COMPILE_FLAGS "-fdefault-real-8") +target_link_libraries(PCSAFT_Density MODENA::modena) + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/Numeric_subroutines.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/Numeric_subroutines.f90 new file mode 100644 index 000000000..63f65c284 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/Numeric_subroutines.f90 @@ -0,0 +1,1672 @@ +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This file contains subroutines for subtasks like spline interpolations, +!! spline integration and function minimization +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + + + + + SUBROUTINE bicub_derivative ( ya, x1a, x2a, y1a, y2a, y12a, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(OUT) :: y1a(r_grid,NDFT) + REAL, INTENT(OUT) :: y2a(r_grid,NDFT) + REAL, INTENT(OUT) :: y12a(r_grid,NDFT) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k +! ---------------------------------------------------------------------- + + +DO i = 2, i_max-1 + DO k = 2, k_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k+1)-ya(i+1,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) + END DO +END DO + +i = 1 +DO k = 1, k_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + +k = 1 +DO i = 1, i_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + + +i = i_max +DO k = 2, k_max-1 + y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i,k+1)-ya(i,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) +END DO + + +k = k_max +DO i = 2, i_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k)-ya(i+1,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k)-x2a(k-1))) +END DO + +k = k_max +i = i_max +y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) +y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) +y12a(i,k)= (ya(i,k)-ya(i,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k)-x2a(k-1))) + +END SUBROUTINE bicub_derivative + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_c ( ya, x1a, x2a, y1a, y2a, y12a, c_bicub, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(OUT) :: c_bicub(r_grid,NDFT,4,4) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, m, n + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +DO i = 1, i_max-1 + DO k = 1, k_max-1 + y(1)=ya(i,k) + y(2)=ya(i+1,k) + y(3)=ya(i+1,k+1) + y(4)=ya(i,k+1) + + y1(1)=y1a(i,k) + y1(2)=y1a(i+1,k) + y1(3)=y1a(i+1,k+1) + y1(4)=y1a(i,k+1) + + y2(1)=y2a(i,k) + y2(2)=y2a(i+1,k) + y2(3)=y2a(i+1,k+1) + y2(4)=y2a(i,k+1) + + y12(1)=y12a(i,k) + y12(2)=y12a(i+1,k) + y12(3)=y12a(i+1,k+1) + y12(4)=y12a(i,k+1) + + x1l=x1a(i) + x1u=x1a(i+1) + x2l=x2a(k) + x2u=x2a(k+1) + + CALL bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) + DO m=1,4 + DO n=1,4 + c_bicub(i,k,m,n)=c(m,n) + END DO + END DO + + END DO +END DO + +END SUBROUTINE bicub_c + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: y(4) + REAL, INTENT(IN) :: y1(4) + REAL, INTENT(IN) :: y2(4) + REAL, INTENT(IN) :: y12(4) + REAL, INTENT(IN) :: d1 + REAL, INTENT(IN) :: d2 + REAL, INTENT(OUT) :: c(4,4) +! +! ---------------------------------------------------------------------- + INTEGER :: i,j,k,l + REAL :: d1d2,xx,cl(16),wt(16,16),x(16) + SAVE wt + DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4,10* & + 0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4, & + 1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0, & + -6,4,2*0,3,-2,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2, & + 10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4, & + -2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0, & + 2,-2,2*0,-1,1/ +! ---------------------------------------------------------------------- + +d1d2 = d1 * d2 +DO i = 1, 4 + x(i) = y(i) + x(i+4) = y1(i)*d1 + x(i+8) = y2(i)*d2 + x(i+12) = y12(i)*d1d2 +END DO +DO i = 1, 16 + xx = 0.0 + DO k = 1, 16 + xx = xx + wt(i,k) * x(k) + END DO + cl(i) = xx +END DO +l = 0 +DO i = 1, 4 + DO j = 1, 4 + l = l + 1 + c(i,j) = cl(l) + END DO +END DO + +END SUBROUTINE bcucof + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE BI_CUB_SPLINE ( rho_rdf, xg, ya, x1a, x2a, y1a, y2a, y12a, & + c_bicub, rdf, dg_drho, dg_dr, i_max, ih, k ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: rho_rdf + REAL, INTENT(IN OUT) :: xg + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(IN) :: c_bicub(r_grid,NDFT,4,4) + REAL, INTENT(OUT) :: rdf + REAL, INTENT(OUT) :: dg_drho + REAL, INTENT(OUT) :: dg_dr + INTEGER, INTENT(IN OUT) :: i_max + !INTEGER, INTENT(IN OUT) :: k_max + INTEGER, INTENT(OUT) :: ih + INTEGER, INTENT(IN) :: k +! +! ---------------------------------------------------------------------- + INTEGER :: m, n + + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +IF ( rho_rdf < x1a(1) ) THEN + dg_drho = 0.0 + dg_dr = 0.0 + rdf = 1.0 + RETURN +END IF +IF ( x1a(ih) <= rho_rdf .AND. rho_rdf < x1a(ih+1) ) GO TO 10 +IF ( ih > 2 ) THEN + IF ( x1a(ih-1) <= rho_rdf .AND. rho_rdf < x1a(ih) ) THEN + ih = ih - 1 + GO TO 10 + END IF +END IF +! write (*,*) 'in ',ih +CALL hunt ( x1a, i_max, rho_rdf, ih ) +! write (*,*) 'out',ih +10 CONTINUE +IF ( x2a(k) /= xg ) THEN +! write (*,*) 'error bi-cubic-spline',k,x2a(k),xg +! DO k=1,NDFT +! write (*,*) k,x2a(k) +! ENDDO +! stop +END IF + + + +y(1) = ya(ih,k) +y(2) = ya(ih+1,k) +y(3) = ya(ih+1,k+1) +y(4) = ya(ih,k+1) + +y1(1) = y1a(ih,k) +y1(2) = y1a(ih+1,k) +y1(3) = y1a(ih+1,k+1) +y1(4) = y1a(ih,k+1) + +y2(1) = y2a(ih,k) +y2(2) = y2a(ih+1,k) +y2(3) = y2a(ih+1,k+1) +y2(4) = y2a(ih,k+1) + +y12(1) = y12a(ih,k) +y12(2) = y12a(ih+1,k) +y12(3) = y12a(ih+1,k+1) +y12(4) = y12a(ih,k+1) + +x1l = x1a(ih) +x1u = x1a(ih+1) +x2l = x2a(k) +x2u = x2a(k+1) + +DO m = 1, 4 + DO n = 1, 4 + c(m,n) = c_bicub( ih, k, m, n ) + END DO +END DO +CALL bcuint ( x1l, x1u, x2l, x2u, rho_rdf, xg, c, rdf, dg_drho, dg_dr ) + +END SUBROUTINE BI_CUB_SPLINE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE hunt +! +! Given an array xx(1:n), and given a value x, returns a value jlo +! such that x is between xx(jlo) and xx(jlo+1). xx(1:n) must be +! monotonic, either increasing or decreasing. jlo=0 or jlo=n is +! returned to indicate that x is out of range. jlo on input is taken +! as the initial guess for jlo on output. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE hunt ( xx, n, x, jlo ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(OUT) :: jlo + REAL, INTENT(IN) :: xx(n) + REAL :: x +! +! ---------------------------------------------------------------------- + INTEGER :: inc,jhi,jm + LOGICAL :: ascnd +! ---------------------------------------------------------------------- + +ascnd = xx(n) >= xx(1) +IF( jlo <= 0 .OR. jlo > n ) THEN + jlo = 0 + jhi = n + 1 + GO TO 3 +END IF +inc = 1 +IF( x >= xx(jlo) .EQV. ascnd ) THEN +1 jhi = jlo + inc + IF ( jhi > n ) THEN + jhi = n + 1 + ELSE IF ( x >= xx(jhi) .EQV. ascnd ) THEN + jlo = jhi + inc = inc + inc + GO TO 1 + END IF +ELSE + jhi = jlo +2 jlo = jhi - inc + IF ( jlo < 1 ) THEN + jlo = 0 + ELSE IF ( x < xx(jlo) .EQV. ascnd ) THEN + jhi = jlo + inc = inc + inc + GO TO 2 + END IF +END IF +3 IF (jhi-jlo == 1 ) THEN + IF ( x == xx(n)) jlo = n - 1 + IF ( x == xx(1) ) jlo = 1 + RETURN +END IF +jm = ( jhi + jlo ) / 2 +IF ( x >= xx(jm) .EQV. ascnd ) THEN + jlo = jm +ELSE + jhi = jm +END IF +GO TO 3 +END SUBROUTINE hunt + + + +!********************************************************************** +! +!********************************************************************** +! + !SUBROUTINE bcuint ( y, y1, y2, y12, x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) + SUBROUTINE bcuint ( x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + !REAL, INTENT(IN OUT) :: y(4) + !REAL, INTENT(IN OUT) :: y1(4) + !REAL, INTENT(IN OUT) :: y2(4) + !REAL, INTENT(IN OUT) :: y12(4) + REAL, INTENT(IN OUT) :: x1l + REAL, INTENT(IN OUT) :: x1u + REAL, INTENT(IN OUT) :: x2l + REAL, INTENT(IN OUT) :: x2u + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: x2 + REAL, INTENT(IN) :: c(4,4) + REAL, INTENT(OUT) :: ansy + REAL, INTENT(OUT) :: ansy1 + REAL, INTENT(OUT) :: ansy2 +! +! ---------------------------------------------------------------------- + !U USES bcucof + INTEGER :: i + REAL :: t, u +! ---------------------------------------------------------------------- + +! call bcucof ( y, y1, y2, y12, x1u-x1l, x2u-x2l, c ) + +IF ( x1u == x1l .OR. x2u == x2l ) PAUSE 'bad input in bcuint' +t = (x1-x1l) / (x1u-x1l) +u = (x2-x2l) / (x2u-x2l) +ansy = 0.0 +ansy2 = 0.0 +ansy1 = 0.0 +DO i = 4, 1, -1 + ansy = t *ansy + ( (c(i,4)*u + c(i,3))*u+c(i,2) )*u + c(i,1) + ansy2 = t *ansy2 + ( 3.*c(i,4)*u+2.*c(i,3) )*u + c(i,2) + ansy1 = u *ansy1 + ( 3.*c(4,i)*t+2.*c(3,i) )*t + c(2,i) +END DO +ansy1 = ansy1 / (x1u-x1l) +ansy2 = ansy2 / (x2u-x2l) + +END SUBROUTINE bcuint + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE spline ( x, y, n, yp1, ypn, y2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: NMAX = 500 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(NMAX) +! ---------------------------------------------------------------------- + + IF ( yp1 > 0.99E30 ) THEN + y2(1) = 0.0 + u(1) = 0.0 + ELSE + y2(1) = -0.5 + u(1) = ( 3.0/(x(2)-x(1)) ) * ( (y(2)-y(1))/(x(2)-x(1))-yp1 ) + END IF + DO i = 2, n-1 + IF ( (x(i+1)-x(i)) == 0.0 .OR. (x(i)-x(i-1)) == 0.0 .OR. (x(i+1)-x(i-1)) == 0.0 ) THEN + write (*,*) 'error in spline-interpolation' + stop + END IF + sig = (x(i)-x(i-1)) / (x(i+1)-x(i-1)) + p = sig*y2(i-1) + 2.0 + y2(i) = (sig-1.0) / p + u(i) = ( 6.0 * ((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1))) / (x(i+1)-x(i-1)) & + - sig * u(i-1) ) / p + END DO + IF ( ypn > 0.99E30 ) THEN + qn = 0.0 + un = 0.0 + ELSE + qn = 0.5 + un = (3.0/(x(n)-x(n-1))) * (ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2(n) = (un-qn*u(n-1)) / (qn*y2(n-1)+1.0) + DO k = n-1, 1, -1 + y2(k) = y2(k) * y2(k+1) + u(k) + END DO + +END SUBROUTINE spline + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE splint_integral ( xa, ya, y2a, n, xlo, xhi, integral ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, INT, x0, x1, y0, y1, y20, y21 +! ---------------------------------------------------------------------- + + integral = 0.0 + klo_l = 1 + khi_l = n +1 IF ( khi_l-klo_l > 1 ) THEN + k = ( khi_l + klo_l ) / 2 + IF ( xa(k) > xlo ) THEN + khi_l = k + ELSE + klo_l = k + END IF + GO TO 1 + END IF + + klo_h = 1 + khi_h = n +2 IF ( khi_h-klo_h > 1 ) THEN + k = ( khi_h + klo_h ) / 2 + IF ( xa(k) > xhi ) THEN + khi_h = k + ELSE + klo_h = k + END IF + GO TO 2 + END IF + + ! integration in spline pieces, the lower interval, bracketed + ! by xa(klo_L) and xa(khi_L) is in steps shifted upward. + + ! first: determine upper integration bound + xl = xlo +3 CONTINUE + IF ( khi_h > khi_l ) THEN + xh = xa(khi_l) + ELSE IF ( khi_h == khi_l ) THEN + xh = xhi + ELSE + WRITE (*,*) 'error in spline-integration' + PAUSE + END IF + + h = xa(khi_l) - xa(klo_l) + IF ( h == 0.0 ) PAUSE 'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0 = ya(klo_l) + y1 = ya(khi_l) + y20= y2a(klo_l) + y21= y2a(khi_l) + ! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & + ! -y20/6.*h*h*(x1-.5*xL) & + ! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xL-x0) ) + ! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & + ! -y20/6.*h*h*(x1-.5*xH) & + ! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xH-x0) ) + INT = -1.0/h * ( xl*((x1-.5*xl)*y0 + (0.5*xl-x0)*y1) & + -y20/24.*(x1-xl)**4 + y20/6.*(0.5*xl*xl-x1*xl)*h*h & + +y21/24.*(xl-x0)**4 - y21/6.*(0.5*xl*xl-x0*xl)*h*h ) + INT = INT + 1.0/h * ( xh*((x1-.5*xh)*y0 + (0.5*xh-x0)*y1) & + -y20/24.*(x1-xh)**4 + y20/6.*(0.5*xh*xh-x1*xh)*h*h & + +y21/24.*(xh-x0)**4 - y21/6.*(0.5*xh*xh-x0*xh)*h*h ) + + integral = integral + INT + ! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h /= (khi_l-1)) GO TO 3 ! the -1 in (khi_L-1) because khi_L was already counted up + +END SUBROUTINE splint_integral + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION praxis( t0, machep, h0, n, prin, x, f, fmin ) + + IMPLICIT NONE + +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: x(n) + REAL :: f + REAL, INTENT(IN OUT) :: fmin +! ---------------------------------------------------------------------- + +EXTERNAL f + +! PRAXIS RETURNS THE MINIMUM OF THE FUNCTION F(X,N) OF N VARIABLES +! USING THE PRINCIPAL AXIS METHOD. THE GRADIENT OF THE FUNCTION IS +! NOT REQUIRED. + +! FOR A DESCRIPTION OF THE ALGORITHM, SEE CHAPTER SEVEN OF +! "ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT +! CALCULATING DERIVATIVES" BY RICHARD P BRENT. + +! THE PARAMETERS ARE: +! T0 IS A TOLERANCE. PRAXIS ATTEMPTS TO RETURN PRAXIS=F(X) +! SUCH THAT IF X0 IS THE TRUE LOCAL MINIMUM NEAR X, THEN +! NORM(X-X0) < T0 + SQUAREROOT(MACHEP)*NORM(X). +! MACHEP IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT +! 1 + MACHEP > 1. MACHEP SHOULD BE 16.**-13 (ABOUT +! 2.22D-16) FOR REAL*8 ARITHMETIC ON THE IBM 360. +! H0 IS THE MAXIMUM STEP SIZE. H0 SHOULD BE SET TO ABOUT THE +! MAXIMUM DISTANCE FROM THE INITIAL GUESS TO THE MINIMUM. +! (IF H0 IS SET TOO LARGE OR TOO SMALL, THE INITIAL RATE OF +! CONVERGENCE MAY BE SLOW.) +! N (AT LEAST TWO) IS THE NUMBER OF VARIABLES UPON WHICH +! THE FUNCTION DEPENDS. +! PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. +! IF PRIN=0, NOTHING IS PRINTED. +! IF PRIN=1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR +! MINIMIZATIONS. FINAL X IS PRINTED, BUT INTERMEDIATE X IS +! PRINTED ONLY IF N IS AT MOST 4. +! IF PRIN=2, THE SCALE FACTORS AND THE PRINCIPAL VALUES OF +! THE APPROXIMATING QUADRATIC FORM ARE ALSO PRINTED. +! IF PRIN=3, X IS ALSO PRINTED AFTER EVERY FEW LINEAR +! MINIMIZATIONS. +! IF PRIN=4, THE PRINCIPAL VECTORS OF THE APPROXIMATING +! QUADRATIC FORM ARE ALSO PRINTED. +! X IS AN ARRAY CONTAINING ON ENTRY A GUESS OF THE POINT OF +! MINIMUM, ON RETURN THE ESTIMATED POINT OF MINIMUM. +! F(X,N) IS THE FUNCTION TO BE MINIMIZED. F SHOULD BE A REAL*8 +! FUNCTION DECLARED EXTERNAL IN THE CALLING PROGRAM. +! FMIN IS AN ESTIMATE OF THE MINIMUM, USED ONLY IN PRINTING +! INTERMEDIATE RESULTS. +! THE APPROXIMATING QUADRATIC FORM IS +! Q(X') = F(X,N) + (1/2) * (X'-X)-TRANSPOSE * A * (X'-X) +! WHERE X IS THE BEST ESTIMATE OF THE MINIMUM AND A IS +! INVERSE(V-TRANSPOSE) * D * INVERSE(V) +! (V(*,*) IS THE MATRIX OF SEARCH DIRECTIONS; D(*) IS THE ARRAY +! OF SECOND DIFFERENCES). IF F HAS CONTINUOUS SECOND DERIVATIVES +! NEAR X0, A WILL TEND TO THE HESSIAN OF F AT X0 AS X APPROACHES X0. + +! IT IS ASSUMED THAT ON FLOATING-POINT UNDERFLOW THE RESULT IS SET +! TO ZERO. +! THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS AFTER +! THE INITIALIZATION OF MACHINE DEPENDENT NUMBERS. + + LOGICAL :: illc + INTEGER :: nl,nf,kl,kt,ktm,idim,i,j,k,k2,km1,klmk,ii,im1 + REAL :: s,sl,dn,dmin,fx,f1,lds,ldt,t,h,sf,df,qf1,qd0, qd1,qa,qb,qc + REAL :: m2,m4,small,vsmall,large,vlarge,scbd,ldfac,t2, dni,value + REAL :: random + +!.....IF N>20 OR IF N<20 AND YOU NEED MORE SPACE, CHANGE '20' TO THE +! LARGEST VALUE OF N IN THE NEXT CARD, IN THE CARD 'IDIM=20', AND +! IN THE DIMENSION STATEMENTS IN SUBROUTINES MINFIT,MIN,FLIN,QUAD. + + REAL :: d(20),y(20),z(20),q0(20),q1(20),v(20,20) + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 + +! --------------------------------- +! introduced by Joachim........ + idim = n +! --------------------------------- + + + +!.....INITIALIZATION..... +! MACHINE DEPENDENT NUMBERS: + +small = machep*machep +vsmall = small*small +large = 1.d0/small +vlarge = 1.d0/vsmall +m2 = SQRT(machep) +m4 = SQRT(m2) + +! HEURISTIC NUMBERS: +! IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF +! POSSIBLE), THEN SET SCBD=10. OTHERWISE SET SCBD=1. +! IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED, SET ILLC=TRUE. +! OTHERWISE SET ILLC=FALSE. +! KTM IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE THE +! ALGORITHM TERMINATES. KTM=4 IS VERY CAUTIOUS; USUALLY KTM=1 +! IS SATISFACTORY. + +scbd = 1.0 +illc = .false. +ktm = 1 + +ldfac = 0.01 +IF (illc) ldfac = 0.1 +kt = 0 +nl = 0 +nf = 1 +fx = f(x,n) +qf1 = fx +t = small+ABS(t0) +t2 = t +dmin = small +h = h0 +IF (h < 100*t) h = 100*t +ldt = h +!.....THE FIRST SET OF SEARCH DIRECTIONS V IS THE IDENTITY MATRIX..... +DO i = 1,n + DO j = 1,n + v(i,j) = 0.0 + END DO + v(i,i) = 1.0 +END DO +d(1) = 0.0 +qd0 = 0.0 +DO i = 1,n + q0(i) = x(i) + q1(i) = x(i) +END DO +IF (prin > 0) CALL PRINT(n,x,prin,fmin) + +!.....THE MAIN LOOP STARTS HERE..... +40 sf=d(1) +d(1)=0.d0 +s=0.d0 + +!.....MINIMIZE ALONG THE FIRST DIRECTION V(*,1). +! FX MUST BE PASSED TO MIN BY VALUE. +value=fx +CALL MIN(n,1,2,d(1),s,value,.false.,f,x,t,machep,h) +IF (s > 0.d0) GO TO 50 +DO i=1,n + v(i,1)=-v(i,1) +END DO +50 IF (sf > 0.9D0*d(1).AND.0.9D0*sf < d(1)) GO TO 70 +DO i=2,n + d(i)=0.d0 +END DO + +!.....THE INNER LOOP STARTS HERE..... +70 DO k=2,n + DO i=1,n + y(i)=x(i) + END DO + sf=fx + IF (kt > 0) illc=.true. + 80 kl=k + df=0.d0 + +!.....A RANDOM STEP FOLLOWS (TO AVOID RESOLUTION VALLEYS). +! PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM NUMBER UNIFORMLY +! DISTRIBUTED IN (0,1). + + IF(.NOT.illc) GO TO 95 + DO i=1,n + s=(0.1D0*ldt+t2*(10**kt))*(random(n)-0.5D0) + z(i)=s + DO j=1,n + x(j)=x(j)+s*v(j,i) + END DO + END DO + fx=f(x,n) + nf=nf+1 + +!.....MINIMIZE ALONG THE "NON-CONJUGATE" DIRECTIONS V(*,K),...,V(*,N) + + 95 DO k2=k,n + sl=fx + s=0.d0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + IF (illc) GO TO 97 + s=sl-fx + GO TO 99 + 97 s=d(k2)*((s+z(k2))**2) + 99 IF (df > s) CYCLE + df=s + kl=k2 + END DO + IF (illc.OR.(df >= ABS((100*machep)*fx))) GO TO 110 + +!.....IF THERE WAS NOT MUCH IMPROVEMENT ON THE FIRST TRY, SET +! ILLC=TRUE AND START THE INNER LOOP AGAIN..... + + illc=.true. + GO TO 80 + 110 IF (k == 2.AND.prin > 1) CALL vcprnt(1,d,n) + +!.....MINIMIZE ALONG THE "CONJUGATE" DIRECTIONS V(*,1),...,V(*,K-1) + + km1=k-1 + DO k2=1,km1 + s=0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + END DO + f1=fx + fx=sf + lds=0 + DO i=1,n + sl=x(i) + x(i)=y(i) + sl=sl-y(i) + y(i)=sl + lds=lds+sl*sl + END DO + lds=SQRT(lds) + IF (lds <= small) GO TO 160 + +!.....DISCARD DIRECTION V(*,KL). +! IF NO RANDOM STEP WAS TAKEN, V(*,KL) IS THE "NON-CONJUGATE" +! DIRECTION ALONG WHICH THE GREATEST IMPROVEMENT WAS MADE..... + + klmk=kl-k + IF (klmk < 1) GO TO 141 + DO ii=1,klmk + i=kl-ii + DO j=1,n + v(j,i+1)=v(j,i) + END DO + d(i+1)=d(i) + END DO + 141 d(k)=0 + DO i=1,n + v(i,k)=y(i)/lds + END DO + +!.....MINIMIZE ALONG THE NEW "CONJUGATE" DIRECTION V(*,K), WHICH IS +! THE NORMALIZED VECTOR: (NEW X) - (0LD X)..... + + value=f1 + CALL MIN(n,k,4,d(k),lds,value,.true.,f,x,t,machep,h) + IF (lds > 0.d0) GO TO 160 + lds=-lds + DO i=1,n + v(i,k)=-v(i,k) + END DO + 160 ldt=ldfac*ldt + IF (ldt < lds) ldt=lds + IF (prin > 0) CALL PRINT(n,x,prin,fmin) + t2=0.d0 + DO i=1,n + t2=t2+x(i)**2 + END DO + t2=m2*SQRT(t2)+t + +!.....SEE WHETHER THE LENGTH OF THE STEP TAKEN SINCE STARTING THE +! INNER LOOP EXCEEDS HALF THE TOLERANCE..... + + IF (ldt > (0.5*t2)) kt=-1 + kt=kt+1 + IF (kt > ktm) GO TO 400 +END DO +!.....THE INNER LOOP ENDS HERE. + +! TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE IN A CURVED VALLEY. + +CALL quad(n,f,x,t,machep,h) +dn=0.d0 +DO i=1,n + d(i)=1.d0/SQRT(d(i)) + IF (dn < d(i)) dn=d(i) +END DO +IF (prin > 3) CALL maprnt(1,v,idim,n) +DO j=1,n + s=d(j)/dn + DO i=1,n + v(i,j)=s*v(i,j) + END DO +END DO + +!.....SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER..... + +IF (scbd <= 1.d0) GO TO 200 +s=vlarge +DO i=1,n + sl=0.d0 + DO j=1,n + sl=sl+v(i,j)*v(i,j) + END DO + z(i)=SQRT(sl) + IF (z(i) < m4) z(i)=m4 + IF (s > z(i)) s=z(i) +END DO +DO i=1,n + sl=s/z(i) + z(i)=1.d0/sl + IF (z(i) <= scbd) GO TO 189 + sl=1.d0/scbd + z(i)=scbd + 189 DO j=1,n + v(i,j)=sl*v(i,j) + END DO +END DO + +!.....CALCULATE A NEW SET OF ORTHOGONAL DIRECTIONS BEFORE REPEATING +! THE MAIN LOOP. +! FIRST TRANSPOSE V FOR MINFIT: + +200 DO i=2,n + im1=i-1 + DO j=1,im1 + s=v(i,j) + v(i,j)=v(j,i) + v(j,i)=s + END DO +END DO + +!.....CALL MINFIT TO FIND THE SINGULAR VALUE DECOMPOSITION OF V. +! THIS GIVES THE PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF THE +! APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE CONDITION +! NUMBER..... + +CALL minfit(idim,n,machep,vsmall,v,d) + +!.....UNSCALE THE AXES..... + +IF (scbd <= 1.d0) GO TO 250 +DO i=1,n + s=z(i) + DO j=1,n + v(i,j)=s*v(i,j) + END DO +END DO +DO i=1,n + s=0.d0 + DO j=1,n + s=s+v(j,i)**2 + END DO + s=SQRT(s) + d(i)=s*d(i) + s=1/s + DO j=1,n + v(j,i)=s*v(j,i) + END DO +END DO + +250 DO i=1,n + dni=dn*d(i) + IF (dni > large) GO TO 265 + IF (dni < small) GO TO 260 + d(i)=1/(dni*dni) + CYCLE + 260 d(i)=vlarge + CYCLE + 265 d(i)=vsmall +END DO + +!.....SORT THE EIGENVALUES AND EIGENVECTORS..... + +CALL sort(idim,n,d,v) +dmin=d(n) +IF (dmin < small) dmin=small +illc=.false. +IF (m2*d(1) > dmin) illc=.true. +IF (prin > 1.AND.scbd > 1.d0) CALL vcprnt(2,z,n) +IF (prin > 1) CALL vcprnt(3,d,n) +IF (prin > 3) CALL maprnt(2,v,idim,n) +!.....THE MAIN LOOP ENDS HERE..... + +GO TO 40 + +!.....RETURN..... + +400 IF (prin > 0) CALL vcprnt(4,x,n) +praxis=fx + +END FUNCTION praxis + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE minfit(m,n,machep,tol,ab,q) + + IMPLICIT NONE + + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: machep + REAL, INTENT(IN OUT) :: tol + REAL, INTENT(IN OUT) :: ab(m,n) + REAL, INTENT(OUT) :: q(n) + INTEGER :: i,j,k,l, kk,kt,l2,ll2,ii,lp1 +! IMPLICIT REAL (A-H,O-Z) + + +REAL :: x,eps,e(20),g,s, f,h,y,c,z,temp +!...AN IMPROVED VERSION OF MINFIT (SEE GOLUB AND REINSCH, 1969) +! RESTRICTED TO M=N,P=0. +! THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q AND AB IS +! OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT U.DIAG(Q) = AB.V, +! WHERE U IS ANOTHER ORTHOGONAL MATRIX. + +!...HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... +IF (n == 1) GO TO 200 +eps = machep +g = 0.d0 +x = 0.d0 +DO i=1,n + e(i) = g + s = 0.d0 + l = i + 1 + DO j=i,n + s = s + ab(j,i)**2 + END DO + g = 0.d0 + IF (s < tol) GO TO 4 + f = ab(i,i) + g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + ab(i,i)=f-g + IF (l > n) GO TO 4 + DO j=l,n + f = 0.d0 + DO k=i,n + f = f + ab(k,i)*ab(k,j) + END DO + f = f/h + DO k=i,n + ab(k,j) = ab(k,j) + f*ab(k,i) + END DO + END DO + 4 q(i) = g + s = 0.d0 + IF (i == n) GO TO 6 + DO j=l,n + s = s + ab(i,j)*ab(i,j) + END DO + 6 g = 0.d0 + IF (s < tol) GO TO 10 + IF (i == n) GO TO 16 + f = ab(i,i+1) + 16 g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + IF (i == n) GO TO 10 + ab(i,i+1) = f - g + DO j=l,n + e(j) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(j,k)*ab(i,k) + END DO + DO k=l,n + ab(j,k) = ab(j,k) + s*e(k) + END DO + END DO + 10 y = ABS(q(i)) + ABS(e(i)) + IF (y > x) x = y +END DO +!...ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... +ab(n,n) = 1.d0 +g = e(n) +l = n +DO ii=2,n + i = n - ii + 1 + IF (g == 0.d0) GO TO 23 + h = ab(i,i+1)*g + DO j=l,n + ab(j,i) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(i,k)*ab(k,j) + END DO + DO k=l,n + ab(k,j) = ab(k,j) + s*ab(k,i) + END DO + END DO + 23 DO j=l,n + ab(i,j) = 0.d0 + ab(j,i) = 0.d0 + END DO + ab(i,i) = 1.d0 + g = e(i) + l = i +END DO +!...DIAGONALIZATION OF THE BIDIAGONAL FORM... +eps = eps*x +DO kk=1,n + k = n - kk + 1 + kt = 0 + 101 kt = kt + 1 + IF (kt <= 30) GO TO 102 + e(k) = 0.d0 + WRITE (6,1000) + 1000 FORMAT (' QR FAILED') + 102 DO ll2=1,k + l2 = k - ll2 + 1 + l = l2 + IF (ABS(e(l)) <= eps) GO TO 120 + IF (l == 1) CYCLE + IF (ABS(q(l-1)) <= eps) EXIT + END DO +!...CANCELLATION OF E(L) IF L>1... + c = 0.d0 + s = 1.d0 + DO i=l,k + f = s*e(i) + e(i) = c*e(i) + IF (ABS(f) <= eps) GO TO 120 + g = q(i) +!...Q(I) = H = SQRT(G*G + F*F)... + IF (ABS(f) < ABS(g)) GO TO 113 + IF (f == 0.0) THEN + GO TO 111 + ELSE + GO TO 112 + END IF + 111 h = 0.d0 + GO TO 114 + 112 h = ABS(f)*SQRT(1 + (g/f)**2) + GO TO 114 + 113 h = ABS(g)*SQRT(1 + (f/g)**2) + 114 q(i) = h + IF (h /= 0.d0) GO TO 115 + g = 1.d0 + h = 1.d0 + 115 c = g/h + s = -f/h + END DO +!...TEST FOR CONVERGENCE... + 120 z = q(k) + IF (l == k) GO TO 140 +!...SHIFT FROM BOTTOM 2*2 MINOR... + x = q(l) + y = q(k-1) + g = e(k-1) + h = e(k) + f = ((y - z)*(y + z) + (g - h)*(g + h))/(2*h*y) + g = SQRT(f*f + 1.0D0) + temp = f - g + IF (f >= 0.d0) temp = f + g + f = ((x - z)*(x + z) + h*(y/temp - h))/x +!...NEXT QR TRANSFORMATION... + c = 1.d0 + s = 1.d0 + lp1 = l + 1 + IF (lp1 > k) GO TO 133 + DO i=lp1,k + g = e(i) + y = q(i) + h = s*g + g = g*c + IF (ABS(f) < ABS(h)) GO TO 123 + IF (f == 0.0) THEN + GO TO 121 + ELSE + GO TO 122 + END IF + 121 z = 0.d0 + GO TO 124 + 122 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 124 + 123 z = ABS(h)*SQRT(1 + (f/h)**2) + 124 e(i-1) = z + IF (z /= 0.d0) GO TO 125 + f = 1.d0 + z = 1.d0 + 125 c = f/z + s = h/z + f = x*c + g*s + g = -x*s + g*c + h = y*s + y = y*c + DO j=1,n + x = ab(j,i-1) + z = ab(j,i) + ab(j,i-1) = x*c + z*s + ab(j,i) = -x*s + z*c + END DO + IF (ABS(f) < ABS(h)) GO TO 129 + IF (f == 0.0) THEN + GO TO 127 + ELSE + GO TO 128 + END IF + 127 z = 0.d0 + GO TO 130 + 128 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 130 + 129 z = ABS(h)*SQRT(1 + (f/h)**2) + 130 q(i-1) = z + IF (z /= 0.d0) GO TO 131 + f = 1.d0 + z = 1.d0 + 131 c = f/z + s = h/z + f = c*g + s*y + x = -s*g + c*y + END DO + 133 e(l) = 0.d0 + e(k) = f + q(k) = x + GO TO 101 +!...CONVERGENCE: Q(K) IS MADE NON-NEGATIVE... + 140 IF (z >= 0.d0) CYCLE + q(k) = -z + DO j=1,n + ab(j,k) = -ab(j,k) + END DO +END DO +RETURN +200 q(1) = ab(1,1) +ab(1,1) = 1.d0 + +END SUBROUTINE minfit + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE MIN(n,j,nits,d2,x1,f1,fk,f,x,t,machep,h) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER :: j + INTEGER :: nits + REAL, INTENT(IN OUT) :: d2 + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: f1 + LOGICAL :: fk + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN) :: t + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h + + INTEGER :: i,k + EXTERNAL f + + + REAL :: flin ! function + REAL :: small,sf1,sx1,s,temp, xm,x2,f2,d1 + REAL :: fm,f0,t2 +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +!...THE SUBROUTINE MIN MINIMIZES F FROM X IN THE DIRECTION V(*,J) UNLESS +! J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS MADE IN THE PLANE +! DEFINED BY Q0,Q1,X. +! D2 IS EITHER ZERO OR AN APPROXIMATION TO HALF F". +! ON ENTRY, X1 IS AN ESTIMATE OF THE DISTANCE FROM X TO THE MINIMUM +! ALONG V(*,J) (OR, IF J=0, A CURVE). ON RETURN, X1 IS THE DISTANCE +! FOUND. +! IF FK=.TRUE., THEN F1 IS FLIN(X1). OTHERWISE X1 AND F1 ARE IGNORED +! ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. +! NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT WILL BE MADE TO HALVE +! THE INTERVAL. + LOGICAL :: dz + REAL :: m2,m4 + +small = machep**2 +m2 = SQRT(machep) +m4 = SQRT(m2) +sf1 = f1 +sx1 = x1 +k = 0 +xm = 0.d0 +fm = fx +f0 = fx +dz = d2 < machep +!...FIND THE STEP SIZE... +s = 0.d0 +DO i=1,n + s = s + x(i)**2 +END DO +s = SQRT(s) +temp = d2 +IF (dz) temp = dmin +t2 = m4*SQRT(ABS(fx)/temp + s*ldt) + m2*ldt +s = m4*s + t +IF (dz.AND.t2 > s) t2 = s +t2 = DMAX1(t2,small) +t2 = DMIN1(t2,.01D0*h) +IF (.NOT.fk.OR.f1 > fm) GO TO 2 +xm = x1 +fm = f1 +2 IF (fk.AND.ABS(x1) >= t2) GO TO 3 +temp=1.d0 +IF (x1 < 0.d0) temp=-1.d0 +x1=temp*t2 +f1 = flin(n,j,x1,f,x,nf) +3 IF (f1 > fm) GO TO 4 +xm = x1 +fm = f1 +4 IF (.NOT.dz) GO TO 6 +!...EVALUATE FLIN AT ANOTHER POINT AND ESTIMATE THE SECOND DERIVATIVE... +x2 = -x1 +IF (f0 >= f1) x2 = 2.d0*x1 +f2 = flin(n,j,x2,f,x,nf) +IF (f2 > fm) GO TO 5 +xm = x2 +fm = f2 +5 d2 = (x2*(f1 - f0)-x1*(f2 - f0))/((x1*x2)*(x1 - x2)) +!...ESTIMATE THE FIRST DERIVATIVE AT 0... +6 d1 = (f1 - f0)/x1 - x1*d2 +dz = .true. +!...PREDICT THE MINIMUM... +IF (d2 > small) GO TO 7 +x2 = h +IF (d1 >= 0.d0) x2 = -x2 +GO TO 8 +7 x2 = (-.5D0*d1)/d2 +8 IF (ABS(x2) <= h) GO TO 11 +IF (x2 > 0.0) THEN + GO TO 10 +END IF +x2 = -h +GO TO 11 +10 x2 = h +!...EVALUATE F AT THE PREDICTED MINIMUM... +11 f2 = flin(n,j,x2,f,x,nf) +IF (k >= nits.OR.f2 <= f0) GO TO 12 +!...NO SUCCESS, SO TRY AGAIN... +k = k + 1 +IF (f0 < f1.AND.(x1*x2) > 0.d0) GO TO 4 +x2 = 0.5D0*x2 +GO TO 11 +!...INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER... +12 nl = nl + 1 +IF (f2 <= fm) GO TO 13 +x2 = xm +GO TO 14 +13 fm = f2 +!...GET A NEW ESTIMATE OF THE SECOND DERIVATIVE... +14 IF (ABS(x2*(x2 - x1)) <= small) GO TO 15 +d2 = (x2*(f1-f0) - x1*(fm-f0))/((x1*x2)*(x1 - x2)) +GO TO 16 +15 IF (k > 0) d2 = 0.d0 +16 IF (d2 <= small) d2 = small +x1 = x2 +fx = fm +IF (sf1 >= fx) GO TO 17 +fx = sf1 +x1 = sx1 +!...UPDATE X FOR LINEAR BUT NOT PARABOLIC SEARCH... +17 IF (j == 0) RETURN +DO i=1,n + x(i) = x(i) + x1*v(i,j) +END DO + +END SUBROUTINE MIN + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vcprnt(option,v,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(n) + INTEGER :: n + + INTEGER :: i + +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 + CASE ( 3) + GO TO 3 + CASE ( 4) + GO TO 4 +END SELECT + +1 WRITE (6,101) (v(i),i=1,n) +RETURN +2 WRITE (6,102) (v(i),i=1,n) +RETURN +3 WRITE (6,103) (v(i),i=1,n) +RETURN +4 WRITE (6,104) (v(i),i=1,n) +RETURN +101 FORMAT (/' THE SECOND DIFFERENCE ARRAY D(*) IS:'/ (e32.14,4E25.14)) +102 FORMAT (/' THE SCALE FACTORS ARE:'/(e32.14,4E25.14)) +103 FORMAT (/' THE APPROXIMATING QUADR. FORM HAS PRINCIPAL VALUES:'/ & + (e32.14,4E25.14)) +104 FORMAT (/' X IS:',e26.14/(e32.14)) +END SUBROUTINE vcprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRINT(n,x,prin,fmin) + + IMPLICIT NONE + INTEGER :: n + REAL, INTENT(IN OUT) :: x(n) + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: fmin + + INTEGER :: i + REAL :: ln +!---------------------------------------------- +INTEGER :: nf,nl +REAL :: fx,ldt,dmin +COMMON /global/ fx,ldt,dmin,nf,nl +!---------------------------------------------- +WRITE (6,101) nl,nf,fx + +IF (fx <= fmin) GO TO 1 +ln = LOG10(fx-fmin) +WRITE (6,102) fmin,ln +GO TO 2 +1 WRITE (6,103) fmin +2 IF (n > 4.AND.prin <= 2) RETURN +WRITE (6,104) (x(i),i=1,n) +RETURN +101 FORMAT (/' AFTER',i6, & + ' LINEAR SEARCHES, THE FUNCTION HAS BEEN EVALUATED',i6, & + ' TIMES. THE SMALLEST VALUE FOUND IS F(X) = ',e21.14) +102 FORMAT (' LOG (F(X)-',e21.14,') = ',e21.14) +103 FORMAT (' LOG (F(X)-',e21.14,') IS UNDEFINED.') +104 FORMAT (' X IS:',e26.14/(e32.14)) +END SUBROUTINE PRINT + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE maprnt(option,v,m,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(m,n) + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + INTEGER :: i,j + + INTEGER :: low,upp +!...THE SUBROUTINE MAPRNT PRINTS THE COLUMNS OF THE NXN MATRIX V +! WITH A HEADING AS SPECIFIED BY OPTION. +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM... +low = 1 +upp = 5 +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 +END SELECT +1 WRITE (6,101) +101 FORMAT (/' THE NEW DIRECTIONS ARE:') +GO TO 3 +2 WRITE (6,102) +102 FORMAT (' AND THE PRINCIPAL AXES:') +3 IF (n < upp) upp = n +DO i=1,n + WRITE (6,104) (v(i,j),j=low,upp) +END DO +low = low + 5 +IF (n < low) RETURN +upp = upp + 5 +WRITE (6,103) +GO TO 3 +103 FORMAT (' ') +104 FORMAT (e32.14,4E25.14) +END SUBROUTINE maprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION random(naught) + + IMPLICIT NONE + INTEGER, INTENT(IN OUT) :: naught + + REAL :: ran1,ran3(127),half + INTEGER :: i,j,ran2,q,r + LOGICAL :: init + DATA init/.false./ + SAVE init,ran2,ran1,ran3 + +IF (init) GO TO 3 +r = MOD(naught,8190) + 1 +ran2 = 128 +DO i=1,127 + ran2 = ran2 - 1 + ran1 = -2.d0**55 + DO j=1,7 + r = MOD(1756*r,8191) + q = r/32 + ran1 = (ran1 + q)*(1.0D0/256) + END DO + ran3(ran2) = ran1 +END DO +init = .true. +3 IF (ran2 == 1) ran2 = 128 +ran2 = ran2 - 1 +ran1 = ran1 + ran3(ran2) +half = .5D0 +IF (ran1 >= 0.d0) half = -half +ran1 = ran1 + half +ran3(ran2) = ran1 +random = ran1 + .5D0 + +END FUNCTION random + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION flin (n,j,l,f,x,nf) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN OUT) :: j + REAL, INTENT(IN) :: l + REAL :: f + REAL, INTENT(IN) :: x(n) + INTEGER, INTENT(OUT) :: nf + + INTEGER :: i + REAL :: t(20) + + EXTERNAL f + +!...FLIN IS THE FUNCTION OF ONE REAL VARIABLE L THAT IS MINIMIZED +! BY THE SUBROUTINE MIN... +!---------------------------------------------- + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +IF (j == 0) GO TO 2 +!...THE SEARCH IS LINEAR... +DO i=1,n + t(i) = x(i) + l*v(i,j) +END DO +GO TO 4 +!...THE SEARCH IS ALONG A PARABOLIC SPACE CURVE... +2 qa = (l*(l - qd1))/(qd0*(qd0 + qd1)) +qb = ((l + qd0)*(qd1 - l))/(qd0*qd1) +qc = (l*(l + qd0))/(qd1*(qd0 + qd1)) +DO i=1,n + t(i) = (qa*q0(i) + qb*x(i)) + qc*q1(i) +END DO +!...THE FUNCTION EVALUATION COUNTER NF IS INCREMENTED... +4 nf = nf + 1 +flin = f(t,n) + +END FUNCTION flin + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE sort(m,n,d,v) + IMPLICIT NONE +! + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: d(n) + REAL, INTENT(IN OUT) :: v(m,n) + + INTEGER :: i,j,k,nm1,ip1 + REAL :: s +!...SORTS THE ELEMENTS OF D(N) INTO DESCENDING ORDER AND MOVES THE +! CORRESPONDING COLUMNS OF V(N,N). +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM. +IF (n == 1) RETURN +nm1 = n - 1 +DO i = 1,nm1 + k=i + s = d(i) + ip1 = i + 1 + DO j = ip1,n + IF (d(j) <= s) CYCLE + k = j + s = d(j) + END DO + IF (k <= i) CYCLE + d(k) = d(i) + d(i) = s + DO j = 1,n + s = v(j,i) + v(j,i) = v(j,k) + v(j,k) = s + END DO +END DO +END SUBROUTINE sort + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE quad(n,f,x,t,machep,h) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN OUT) :: t + REAL :: machep + REAL, INTENT(IN OUT) :: h +! IMPLICIT REAL (A-H,O-Z) + EXTERNAL f + +!...QUAD LOOKS FOR THE MINIMUM OF F ALONG A CURVE DEFINED BY Q0,Q1,X... + INTEGER :: i + REAL :: l + REAL :: s,value +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + +REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 +COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +s = fx +fx = qf1 +qf1 = s +qd1 = 0.d0 +DO i=1,n + s = x(i) + l = q1(i) + x(i) = l + q1(i) = s + qd1 = qd1 + (s-l)**2 +END DO +qd1 = SQRT(qd1) +l = qd1 +s = 0.d0 +IF (qd0 <= 0.d0 .OR. qd1 <= 0.d0 .OR. nl < 3*n*n) GO TO 2 +value=qf1 +CALL MIN(n,0,2,s,l,value,.true.,f,x,t,machep,h) +qa = (l*(l-qd1))/(qd0*(qd0+qd1)) +qb = ((l+qd0)*(qd1-l))/(qd0*qd1) +qc = (l*(l+qd0))/(qd1*(qd0+qd1)) +GO TO 3 +2 fx = qf1 +qa = 0.d0 +qb = qa +qc = 1.d0 +3 qd0 = qd1 +DO i=1,n + s = q0(i) + q0(i) = x(i) + x(i) = (qa*s + qb*x(i)) + qc*q1(i) +END DO +END SUBROUTINE quad + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_main.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_main.f90 new file mode 100644 index 000000000..24a45a65c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_main.f90 @@ -0,0 +1,131 @@ +!> This file contains the subroutine which starts the phase equilibrium calculation. +!! It also prints the calculated density to the outputfile "out.txt". + + +SUBROUTINE VLE_MIX(rhob,density,chemPot_total,compID) + + USE parameters, ONLY: PI, RGAS, KBOL + USE basic_variables + USE EOS_VARIABLES, ONLY: fres, eta, eta_start, dhs, mseg, uij, sig_ij, rho, x, z3t + USE DFT_MODULE + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE + + +!> --------------------------------------------------------------------- +!! Variables +!! --------------------------------------------------------------------- + + +!passed + REAL :: chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + INTEGER :: compID + +!local + REAL, DIMENSION(nc) :: dhs_star + REAL :: w(np,nc), lnphi(np,nc) + INTEGER :: converg + CHARACTER(LEN=4) :: char_ncomp + REAL :: Polymer_density + INTEGER :: i + CHARACTER (LEN=50) :: filename + + + !> --------------------------------------------------------------------- + !! prepare for phase equilibrium calculation for given T + !! --------------------------------------------------------------------- + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12*EXP( -3.0*parame(1:ncomp,3)/t ) ) ! needed for rdf_matrix + dhs_star(1:ncomp) = dhs(1:ncomp)/parame(1:ncomp,2) + + nphas = 2 + outp = 0 ! output to terminal + + CALL START_VAR (converg) ! gets starting values, sets "val_init" + + IF ( converg /= 1 ) THEN + WRITE (*,*) 'no VLE found' + RETURN + END IF + + ! rhob(phase,0): molecular density + rhob(1,0) = dense(1) / ( PI/6.0* SUM( xi(1,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + rhob(2,0) = dense(2) / ( PI/6.0* SUM( xi(2,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + ! rhob(phase,i): molecular component density (with i=(1,...ncomp) ) in units (1/A^3) + rhob(1,1:ncomp) = rhob(1,0)*xi(1,1:ncomp) + rhob(2,1:ncomp) = rhob(2,0)*xi(2,1:ncomp) + + ! get density in SI-units (kg/m**3) + CALL SI_DENS ( density, w ) + + ! calculate residual chemical potentials + ensemble_flag = 'tv' ! this flag is for: mu_res=mu_res(T,rho) + densta(1) = dense(1) ! Index 1 is for liquid density (here: packing fraction eta) + densta(2) = dense(2) ! Index 2 is for vapour density (here: packing fraction eta) + CALL fugacity (lnphi) + chemPot_total(1:ncomp) = lnphi(1,1:ncomp)! + LOG( rhob(1,1:ncomp) ) ! my0 = mu_res(T,rho_bulk_L) + ln(rho_bulk_l) + +! WRITE(*,*) '--------------------------------------------------' +! WRITE(*,*)'RESULT OF PHASE EQUILIBRIUM CALCULATION' +! WRITE (char_ncomp,'(I3)') ncomp +! WRITE (*,*) 'T = ',t, 'K, and p =', p/1.E5,' bar' +! WRITE(*,*)' ' +! WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) +! +! write(*,*)'Mass fraction:' +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) +! +! write(*,*)'Molar composition:' +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) +! WRITE(*,*)' ' +! !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I density', (rhob(1,i),i=1,ncomp) +! !! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II density', (rhob(2,i),i=1,ncomp) +! !!WRITE(*,*)' ' +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I chemPot', (lnphi(1,i) + LOG(rhob(1,i)),i=1,ncomp) +! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II chemPot', (lnphi(2,i) + LOG(rhob(2,i)),i=1,ncomp) +! WRITE(*,*)' ' +! !!WRITE(*,*)'Phase densities ' +! WRITE(*,'(2x,a,2(g13.6,1x))') 'SI-DENSITY [kg/m3] ', density(1),density(2) +! !!WRITE(*,'(2x,a,2(g13.6,1x))') 'NUMBER-DENSITY ', rhob(1,0),rhob(2,0) +! +! WRITE(*,*) + + + write(*,*)' ' + write(*,*)'--------------------------------------------' + write(*,*)'Output detailed model:' + write(*,*)'T /K:',t,'p/bar:',p/1.E5 + write(*,*)'Liquid density /kg/m3:', max(density(1),density(2)) + write(*,*)'--------------------------------------------' + write(*,*)' ' + + + + !>write liquid phase density in kg/m3 to out.txt + + Polymer_density = max(density(1),density(2)) !* w(1,1) + + filename='./out.txt' + CALL file_open(filename,78) + write(78,*) Polymer_density + !write(*,*)'Polymer_density [kg/m3]:',Polymer_density + + + + + +! WRITE (*,*) ' ' +! WRITE (*,*) 'temperature ',t, 'K, and p=', p/1.E5,' bar' +! WRITE (*,*) 'x1_liquid ',xi(1,1),' x1_vapor', xi(2,1) +! WRITE (*,*) 'densities ',rhob(1,0), rhob(2,0) +! WRITE (*,*) 'dense ',dense(1), dense(2) +! WRITE (*,*) 'density [kg/m3] ',density(1), density(2) +! write (*,*) 'chemical potentials comp1' , lnphi(1,1) + LOG( rhob(1,1) ), lnphi(2,1) + LOG( rhob(2,1) ) +! write (*,*) 'chemical potentials comp2' ,lnphi(1,2) + LOG( rhob(1,2) ), lnphi(2,2) + LOG( rhob(2,2) ) +! + + +END SUBROUTINE VLE_MIX diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_subroutines.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_subroutines.f90 new file mode 100644 index 000000000..6d821cb27 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/VLE_subroutines.f90 @@ -0,0 +1,7163 @@ +!> This file contains the subroutines which perform and control the +!! phase equilibrium calculation. + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE start_var +!! +!! This subroutine generates a converged solution for binary systems +!! or performes a flash calculation for mixtues. This routine is a +!! fairly weak point of the program. +!! +!! IF a polymer is considered, starting values for mole fractions +!! are determined from the SUBROUTINGE POLY_STA_VAR (see below). The +!! polymer needs to be placed as component 1 (first line) in INPUT +!! file. +!! +!! A phase equilib. iteration is started at the end of this routine. +!! If no solution is found (converg=0), the program will stop within +!! this routine. +!! +!! Currently, this routine assumes two-phase equilibrium and derives +!! starting values (xi,density) only for two phases. +!! +!! Prerequisites are: +!! SUBROUTINE INPUT needs to be called prior to this routine, because +!! all pure comp. parameters as well as (T,P,kij) need to be in place. +!! Also, the variable to be iterated "it(i)" and the variables to be +!! calculated through the summation relation "sum_rel(i)" have to be +!! defined. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + SUBROUTINE start_var(converg) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: ph, i, k + INTEGER :: ncompsav, n_unkwsav, ph_split + LOGICAL :: lle_check, flashcase, renormalize + REAL :: den1, den2, x_1, x_2 + CHARACTER (LEN=50) :: filename +! ---------------------------------------------------------------------- + +converg = 0 + +! CALL RACHFORD_RICE (converg) +! CALL Heidemann_Khalil + +! ---------------------------------------------------------------------- +! This first condition (eos >= 4) is for LJ models, not for PC-SAFT +! ---------------------------------------------------------------------- + +IF (eos >= 4) THEN + + ncomp = 2 ! set number of components to 2 + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + filename = 'LJ_START_VAL.INC' + CALL file_open(filename,84) + READ (84,*) den1,den2 + READ (84,*) x_1,x_2 + CLOSE (84) + + xi(1,1) = x_1 + xi(2,1) = x_2 + xi(1,2) = 1.0 - xi(1,1) + xi(2,2) = 1.0 - xi(2,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,2) = LOG(xi(2,2)) + + val_init(1) = den1 + val_init(2) = den2 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = LOG(xi(ph,k)) + END DO + END DO + + CALL objective_ctrl (converg) + IF (converg == 1) WRITE (*,*) t, p/1.0E5, xi(1,1), xi(2,1) + IF (converg == 0) WRITE (*,*) ' weak starting values' + + +! ---------------------------------------------------------------------- +! ELSE: PC-SAFT equation of state +! ---------------------------------------------------------------------- + +ELSE + + renormalize = .false. ! for renormalization group theory (RGT) + IF (num == 2) renormalize = .true. + IF (num == 2) num = 0 ! if RGT: initial phase equilibr. is for non-renormalized model + + flashcase = .false. ! .true. when a specific feed conc. xif is given + IF (xif(1) /= 0.0) flashcase = .true. + + lle_check = .true. + +! ---------------------------------------------------------------------- +! IF: non-polymeric system +! ---------------------------------------------------------------------- + IF (mm(1) < 1.0E8) THEN + + DO i=1,ncomp ! setting mole-fractions for the case that + ! anything goes wrong in the coming routines + xi(1,i) = 1.0 / REAL(ncomp) + xi(2,i) = 1.0 / REAL(ncomp) + END DO + + + ! ------------------------------------------------------------------ + ! determine an initial conc. (phase 1) that will phase split + ! ------------------------------------------------------------------ + IF( ncomp == 2 .AND. .NOT.flashcase ) THEN + CALL vle_min( lle_check ) + WRITE(*,*)' INITIAL FEED-COMPOSITION',(xi(1,i), i=1,ncomp),converg + END IF + + ! ------------------------------------------------------------------ + ! perform a phase stability test + ! ------------------------------------------------------------------ + ph_split = 0 + CALL phase_stability ( .false., flashcase, ph_split ) + write (*,*) 'stability analysis I indicates phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! determine species i, for which x(i) is calc from summation relation + ! ------------------------------------------------------------------ + CALL select_sum_rel (1,0,1) ! synthax (m,n,o): phase m + ! exclude comp. n + ! assign it(o) and higher + CALL select_sum_rel (2,0,2) ! for ncomp>=3, the quantities + ! to be iterated will be overwritten + + ! ------------------------------------------------------------------ + ! if 2 phases (VLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + ! --- perform tangent plane minimization ------------------------ + CALL tangent_plane + ph_split = 0 + + ! --- determine, for which substance summation relation is used -- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe a VLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! test for LLE + ! ------------------------------------------------------------------ + ph_split = 0 + + IF (lle_check) CALL phase_stability (lle_check,flashcase,ph_split) + IF (lle_check) write (*,*) 'stability analysis II, phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! if two phases (LLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + write (*,*) ' LLE-stability test indicates 2 phases (VLE or LLE)' + + ! --- perform tangent plane minimization ------------------------ + IF (flashcase) CALL select_sum_rel (1,0,1) + IF (flashcase) CALL select_sum_rel (2,0,2) + + CALL tangent_plane + + ! --- determine, for which substance summation relation ---------- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + val_conv(2) = 0.0 + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe an LLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! equilibr. calc. converged: set initial var. for further calc. + ! ------------------------------------------------------------------ + IF (converg == 1) THEN + val_init = val_conv + DO ph = 1,nphas + DO i = 1,ncomp + xi(ph,i) = EXP( val_conv(4+i+(ph-1)*ncomp) ) + END DO + END DO + dense(1:2) = val_conv(1:2) + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + + ! --------------------------------------------------------------------- + ! ELSE: for systems with polymers + ! --------------------------------------------------------------------- + + ELSE + + ncompsav = ncomp + ncomp = 2 ! set number of components to 2 + n_unkwsav = n_unkw + + CALL poly_sta_var(converg) + + IF (converg == 1) THEN + val_init = val_conv + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + ncomp = ncompsav + n_unkw = n_unkwsav ! number of quantities to be iterated + + END IF + +! --- for RGT: set flag back to num=2 indicating an RGT calculation ---- + IF (renormalize) num = 2 + +END IF + +END SUBROUTINE start_var + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE objective_ctrl +!! +!! This subroutine controls the iso-fugacity iteration. It uses +!! the variables defined in the array "val_init". If successfull, +!! the converged values are written to "val_conv", and the flag +!! converg is set to 1. +!! See also above desciption for subroutine PHASE_EQUILIB +!! This routine calls SUBROUTINE HYBRID, which is a solver (modified +!! POWELL HYBRID METHOD). HYBRID is freely available for non-commercial +!! applications. HYBRID requires three definitions: +!! 1.the number of equations to be solved (=No. of variables to be +!! iterated). The appropriate parameter is: "n_unkw" +!! 2.the equations to be iterated, they are here gathered in the SUB- +!! ROUTINE OBJEC_FCT (see below). Since HYBRID is a root finder, +!! these objective functions are iterated to be zero (essentially, +!! OBJEC_FCT contains the iso-fugacity relation. +!! 3.an array of variables is required, containing the quatities to be +!! iterated. This array is termed "y(i)" +!! +!! INPUT VARIABLES: +!! val_init(i) array containing (densities,T,P,lnx's) serving as +!! starting values for the phase equilibrium calculation +!! it(i) contains the information, which variable is deter- +!! mined iteratively. For syntax refer e.g.to SUB BINMIX. +!! sum_rel(i) indicates, which mole fraction is determined from the +!! summation relation sum(xi)=1 +!! +!! OUTPUT VARIABLES: +!! val_conv(i) array containing the converged system variables +!! analogous to "val_init" +!! converg 0 if no convergence achieved, 1 if converged solution +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objective_ctrl (converg) +! + USE BASIC_VARIABLES + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE objec_fct + END INTERFACE +! + INTEGER :: info,k,posn,i + INTEGER, PARAMETER :: mxr = nc*(nc+1)/2 + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + REAL :: x_init, x_solut, r_diff1, r_diff2, totres + REAL :: r_thrash, x_thrash + CHARACTER (LEN=2) :: compon + LOGICAL :: convergence +! ---------------------------------------------------------------------- + +info=1 + +ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + +IF (num == 0) acc_a = 1.E-7 +IF (num == 0) step_a = 2.E-8 +IF (num == 1) acc_a = 1.E-7 +IF (num == 1) step_a = 2.E-8 +IF (num == 2) acc_a = 5.E-7 +IF (num == 2) step_a = 1.E-7 + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') y(posn) = val_init(3) + IF (it(i) == 'p') y(posn) = val_init(4) + IF (it(i) == 'lnp') y(posn) = LOG( val_init(4) ) + IF (it(i) == 'fls') y(posn) = alpha + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') y(posn) = val_init(4+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') y(posn) = val_init(4+ncomp+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') y(posn) = val_init(4+ncomp+ncomp+k) +END DO + +CALL init_vars + +x_init = 0.0 +DO i = 1,ncomp + IF (lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0) THEN + x_init = x_init + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + x_init = x_init + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO + +CALL hbrd (objec_fct, n_unkw, y, residu, step_a, acc_a, info, diag) + +x_solut = 0.0 +DO i = 1,ncomp + IF ( lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0 ) THEN + x_solut = x_solut + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + IF (lnx(1,i) < 1E300 .AND. lnx(1,i) > -1.E300 ) & + x_solut = x_solut + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO +r_diff1 = ABS( 1.0 - dense(1)/dense(2) ) +IF ( val_conv(2) > 0.0 ) THEN + r_diff2 = ABS( 1.0 - val_conv(1)/val_conv(2) ) +ELSE + r_diff2 = 0.0 +END IF + +totres = SUM( ABS( residu(1:n_unkw) ) ) + +r_thrash = 0.0005 +x_thrash = 0.0005 +if (num > 0 ) r_thrash = r_thrash * 10.0 +if (num > 0 ) x_thrash = x_thrash * 100.0 + +convergence = .true. + +IF ( info >= 2 ) convergence = .false. +IF ( ABS( 1.0- dense(1)/dense(2) ) < r_thrash .AND. x_solut < x_thrash ) THEN + IF ( x_init > 0.050 ) convergence = .false. + IF ( ( ABS( 1.0- dense(1)/dense(2) ) + x_solut ) < 1.E-7 ) convergence = .false. +ENDIF +IF ( r_diff2 /= 0.0 .AND. r_diff2 > (4.0*r_diff1) .AND. bindiag == 1 ) convergence = .false. +IF ( ncomp == 1 .AND. totres > 100.0*acc_a ) convergence = .false. +IF ( totres > 1000.0*acc_a ) convergence = .false. +IF ( ncomp == 1 .AND. r_diff1 < 1.d-5 ) convergence = .false. + +IF ( convergence ) THEN + converg = 1 + ! write (*,*) residu(1),residu(2) + CALL converged + IF (num <= 1) CALL enthalpy_etc +ELSE + converg = 0 +END IF + +DEALLOCATE( y, diag, residu ) + +END SUBROUTINE objective_ctrl + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE objec_fct +!! +!! This subroutine contains the equations to be solved numerically +!! (iso-fugacity: fi'-fi''=0) as well as other dependent equations, +!! which can be solved analytically, namely the summation relation +!! xi=1-sum(xj) or the condition of equal charge for electrolyte +!! solutions. +!! This subroutine is required and controlled by the solver HBRD ! +!! HBRD varies the variables "y(i)" and eveluates the result of +!! these changes from this routine. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: density_error + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph,k,posn, skip,phase + REAL :: lnphi(np,nc),isofugacity + CHARACTER (LEN=2) :: compon +! ---------------------------------------------------------------------- + + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') t = y(posn) + IF (it(i) == 'p') p = y(posn) + IF (it(i) == 'lnp') p = EXP( y(posn) ) + IF (it(i) == 'fls') alpha = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') lnx(1,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') lnx(2,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') lnx(3,k) = y(posn) +END DO + +DO k = 1,ncomp + IF (lnx(1,k) > 0.0) lnx(1,k) = 0.0 + IF (lnx(2,k) > 0.0) lnx(2,k) = 0.0 +END DO + +IF (p < 1.E-100) p = 1.E-12 +!IF ( IsNaN( p ) ) p = 1000.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( t ) ) t = 300.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( alpha ) ) alpha = 0.5 ! rebounce for the case of NaN-solver output +IF ( p /= p ) p = 1000.0 ! rebounce for the case of NaN-solver output +IF ( t /= t ) t = 300.0 ! rebounce for the case of NaN-solver output +IF ( alpha /= alpha ) alpha = 0.5 ! rebounce for the case of NaN-solver output + +! --- setting of mole fractions ---------------------------------------- +DO ph = 1, nphas + DO i = 1, ncomp + IF ( lnx(ph,i) < -300.0 ) THEN + xi(ph,i) = 0.0 + ELSE + xi(ph,i) = EXP( lnx(ph,i) ) + END IF + END DO +END DO + +IF (ncomp > 1) CALL x_summation + +CALL fugacity (lnphi) + +phase = 2 +DO i = 1,n_unkw + skip = 0 !for ions/polymers, the isofug-eq. is not always solved + IF (n_unkw < (ncomp*(nphas-1))) skip = ncomp*(nphas-1) - n_unkw + IF ((i+skip-ncomp*(phase-2)) > ncomp) phase = phase + 1 + residu(i) = isofugacity((i+skip-ncomp*(phase-2)),phase,lnphi) + if ( density_error(phase) /= 0.0 ) residu(i) = residu(i) + SIGN( density_error(phase), residu(i) ) * 0.001 +END DO + +END SUBROUTINE objec_fct + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! REAL FUNCTION isofugacity +!! +!! calculates the deviation from the condition of equal fugacities in +!! logarithmic form. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + REAL FUNCTION isofugacity (i,phase,lnphi) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i + INTEGER, INTENT(IN) :: phase + REAL, INTENT(IN) :: lnphi(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: p1, p2 +! ---------------------------------------------------------------------- + + +! p1=1 +p1 = phase-1 +p2 = phase + +isofugacity = scaling(i) *( lnphi(p2,i)+lnx(p2,i)-lnx(p1,i)-lnphi(p1,i) ) +! write (*,'(a, 4G18.8)') ' t, p ',t,p,dense(1),dense(2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_V',i,p2,lnx(p2,i),lnphi(p2,i),dense(p2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_L',i,p1,lnx(p1,i),lnphi(p1,i),dense(p1) +! write (*,*) ' ISOFUGACITY',i,ISOFUGACITY, scaling(i) +! write (*,'(a,i3,4G18.8)') ' ISOFUGACITY',i,ISOFUGACITY, lnphi(p2,i)+lnx(p2,i), -lnx(p1,i)-lnphi(p1,i) +! pause + +END FUNCTION isofugacity + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vle_min(lle_check) +! + USE PARAMETERS, ONLY: RGAS + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL, INTENT(OUT) :: lle_check + + INTEGER :: i,j,k,phasen(0:40),steps + REAL :: lnphi(np,nc) + REAL :: vlemin(0:40),llemin(0:40),xval(0:40) + REAL :: start_xv(0:40),start_xl(0:40),x_sav,dg_dx2 +! ---------------------------------------------------------------------- + + + +j = 0 +k = 0 +nphas = 2 + +steps = 40 + +x_sav = xi(1,1) +sum_rel(1) = 'x12' ! summation relation +sum_rel(2) = 'x22' ! summation relation + +DO i = 0, steps + densta(1) = 0.45 + densta(2) = 1.d-6 + xi(1,1) = 1.0 - REAL(i) / REAL(steps) + IF ( xi(1,1) <= 1.E-50 ) xi(1,1) = 1.E-50 + xi(2,1) = xi(1,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + + CALL x_summation + CALL fugacity (lnphi) + CALL enthalpy_etc !!KANN DAS RAUS???? + + + + + xval(i) = xi(1,1) + llemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t + + IF ( ABS(1.0-dense(1)/dense(2)) > 0.0001 ) THEN + vlemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t & + - ( gibbs(2) +(xi(2,1)*lnx(2,1)+xi(2,2)*lnx(2,2))*RGAS*t ) + phasen(i) = 2 + ELSE + phasen(i) = 1 + END IF + + IF (i > 0 .AND. phasen(i) == 2) THEN + IF (phasen(i-1) == 2 .AND. ABS(vlemin(i)+vlemin(i-1)) < & + ABS(vlemin(i))+ABS(vlemin(i-1))) THEN + j = j + 1 + start_xv(j)=xval(i-1) + (xval(i)-xval(i-1)) & + * ABS(vlemin(i-1))/ABS(vlemin(i)-vlemin(i-1)) + END IF + END IF + +END DO + + +DO i=2,steps-2 + dg_dx2 = (-llemin(i-2)+16.0*llemin(i-1)-30.0*llemin(i) & + +16.0*llemin(i+1)-llemin(i+2)) / (12.0*((xval(i)-xval(i-1))**2)) + IF (dg_dx2 < 0.0) THEN + k = k + 1 + start_xl(k)=xval(i) + END IF +END DO + + +IF (start_xl(1) == 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + lle_check=.false. + ! write (*,*) 'VLE is likely', xi(1,1),xi(1,2) +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) == 0.0) THEN + xi(1,1) = start_xl(1) + xi(1,2) = 1.0-xi(1,1) + ! write (*,*) 'LLE is likely', xi(1,1),xi(1,2) + lle_check=.true. +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + ! write(*,*) 'starting with VLE and check for LLE' + lle_check=.true. +ELSE + xi(1,1) = x_sav + xi(1,2) = 1.0 - xi(1,1) +END IF + + +CALL x_summation + +END SUBROUTINE vle_min + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE phase_stability +!! +!! the index 'LLE_check' is for the starting density (which determines +!! whether a liquid or vapor phase is found) of the trial phase. The +!! feed-point exits either as a vapor or as a liquid. If it can exist as +!! both (feedphases=2), then both states are tested. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE phase_stability ( lle_check, flashcase, ph_split ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI, x, eta, eta_start, z3t, fres + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL :: lle_check + LOGICAL, INTENT(IN OUT) :: flashcase + INTEGER, INTENT(OUT) :: ph_split +! ---------------------------------------------------------------------- + + INTERFACE + REAL FUNCTION F_STABILITY ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) + END FUNCTION + END INTERFACE + +!INTERFACE +! SUBROUTINE F_STABILITY (fmin, optpara, n) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE F_STABILITY +! +! SUBROUTINE stability_grad (g, optpara, n) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_grad +! +! SUBROUTINE stability_hessian (hessian, g, fmin, optpara, n) +! REAL, INTENT(IN OUT) :: hessian(:,:) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_hessian +!END INTERFACE + + INTEGER :: n, PRIN + REAL :: fmin, t0, h0, MACHEP, PRAXIS + REAL, ALLOCATABLE :: optpara(:) + + INTEGER :: i, feedphases, trial + REAL :: rhoi(nc),rho_start + REAL :: feeddens, rho_phas(np) + REAL :: fden + REAL :: dens + REAL :: rhot + REAL :: lnphi(np,nc) + REAL :: w(np,nc), mean_mass +! ---------------------------------------------------------------------- + +n = ncomp +ALLOCATE( optpara(n) ) + +IF (lle_check) WRITE (*,*) ' stability test starting with dense phase' + +DO i = 1, ncomp ! setting feed-phase x's + IF (.NOT.flashcase) xif(i) = xi(1,i) + IF (flashcase) xi(1,i) = xif(i) + xi(2,i) = xif(i) ! feed is tested for both: V and L density +END DO + +densta(1) = 0.45 +densta(2) = 1.d-6 + +CALL dens_calc(rho_phas) +IF ( ABS(1.0-dense(1)/dense(2)) > 0.0005 ) THEN + feedphases=2 ! feed-composition can exist both, in V and L +ELSE + feedphases=1 ! feed-composition can exist either in V or L +END IF +densta(1) = dense(1) +feeddens = dense(2) +!write (*,*) 'feedphases',dense(1), dense(2),feedphases + +10 CONTINUE ! IF FeedPhases=2 THEN there is a second cycle + + trial = 1 + + ! -------------------------------------------------------------------- + ! setting trial-phase mole-fractions + ! if there is no phase-split then further trial-phases are + ! considered (loop: 20 CONTINUE) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + w(2,i) = 1.0 / REAL(ncomp) + END DO + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + + 20 CONTINUE + + DO i = 1, ncomp + rhoif(i) = rho_phas(1) * xif(i) + rhoi(i) = rhoif(i) + END DO + + !write (*,'(a,6G16.8)') 'startval',rho_phas(2),xi(2,1:ncomp) + + ! -------------------------------------------------------------------- + ! calc Helmholtz energy density and derivative (numerical) to rhoif(i). + ! The derivative is taken around the "feed-point" not the trial phase + ! -------------------------------------------------------------------- + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + CALL PERTURBATION_PARAMETER + xi(1,1:ncomp) = x(1:ncomp) + eta = rhot * z3t + eta_start = eta + densta(1) = eta_start + ensemble_flag = 'tv' + CALL FUGACITY (lnphi) + ensemble_flag = 'tp' + + call fden_calc ( fden, rhoi ) + fdenf = fden + + grad_fd(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + + ! -------------------------------------------------------------------- + ! starting values for iteration (optpara) + ! -------------------------------------------------------------------- + rho_start = 1.E-5 + IF (lle_check) THEN + densta(2) = 0.45 + CALL dens_calc(rho_phas) + rho_start = rho_phas(2)*0.45/dense(2) + END IF + DO i = 1,ncomp + rhoi(i) = xi(2,i)*rho_start + optpara(i) = LOG( rhoi(i) ) + END DO + + ! -------------------------------------------------------------------- + ! minimizing the objective fct. Phase split for values of fmin < 0.0 + ! -------------------------------------------------------------------- + t0 = 5.E-5 + h0 = 0.5 + PRIN = 0 + MACHEP = 1.E-15 + + fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, F_STABILITY, fmin ) + + + ! -------------------------------------------------------------------- + ! updating the ln(x) valus from optpara. The optimal optpara-vector is + ! not necessarily the one that was last evaluated. At the very end, + ! cg_decent writes the best values to optpara + ! -------------------------------------------------------------------- + fmin = F_STABILITY( optpara, n ) + + + + ! IF ( n == 2 ) THEN + ! CALL Newton_Opt_2D ( stability_hessian, F_stability, optpara, n, 1.E-8, 1.E-8, g, fmin) + ! ELSE + ! CALL cg_descent (1.d-5, optpara, n, F_STABILITY, stability_grad, STATUS, & + ! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) + ! ENDIF + ! CALL F_STABILITY (fmin, optpara, n) + + + ! -------------------------------------------------------------------- + ! determine instability & non-trivial solution + ! -------------------------------------------------------------------- + ph_split = 0 + IF (fmin < -1.E-7 .AND. & + ABS( 1.0 - maxval(EXP(optpara),mask=optpara /= 0.0) /maxval(rhoif) ) > 0.0005) THEN + ph_split = 1 + END IF + + IF (ph_split == 1) THEN + + ! ------------------------------------------------------------------ + ! here, there should be IF FeedPhases=2 THEN GOTO 10 + ! and test for another phase (while saving optpara) + ! ------------------------------------------------------------------ + + rhoi2(1:ncomp) = EXP( optpara(1:ncomp) ) + dens = PI/6.0 * SUM( rhoi2(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + rhot = SUM( rhoi2(1:ncomp) ) + xi(2,1:ncomp) = rhoi2(1:ncomp) / rhot + + ELSE + + IF (trial <= ncomp + ncomp) THEN + ! ---------------------------------------------------------------- + ! setting trial-phase x's + ! ---------------------------------------------------------------- + IF (trial <= ncomp) THEN + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.05 + END DO + w(2,trial) = 0.95 + ELSE + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.00001 + END DO + w(2,trial-ncomp) = 0.99999 + END IF + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + trial = trial + 1 + GO TO 20 + END IF + ! IF (.NOT.LLE_check) write (*,*) 'no phase split detected' + ! IF (.NOT.LLE_check) pause + IF (feedphases > 1 .AND. .NOT.lle_check .AND. densta(1) > 0.2) THEN + densta(1) = feeddens ! this will be the lower-valued density (vapor) + CALL dens_calc(rho_phas) + ! WRITE (*,*) 'try feed as vapor-phase' + GO TO 10 + END IF + + END IF + +DEALLOCATE( optpara ) + +END SUBROUTINE phase_stability + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE select_sum_rel +!! +!! This subroutine determines which component of a phase "ph" is calculated +!! from the summation relation x_i = 1 - sum(x_j). The other components are, +!! by default, said to be iterated during the phase equilibrium calculation. +!! +!! Note that for flash calculations not all of these mole fractions are in +!! fact iterated - this is raken care of in "determine_flash_it". +!! +!! ph phase +!! excl exclude comp. n +!! startindex assign it(startindex) for quantities to be iterated +!! (further it(startindex+1) is assigned, for a ternary +!! mixture, etc.) +!! +!! sum_index indicates the component, with the largest mole +!! fraction. If ph=1 and sum_index=2, we define +!! sum_rel(ph=1)='x12', so that this component is +!! calculated from the summation relation. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE select_sum_rel (ph,excl,startindex) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph + INTEGER, INTENT(IN) :: excl + INTEGER, INTENT(IN) :: startindex +! ---------------------------------------------------------------------- + INTEGER :: i,j, sum_index + REAL :: xmax(np) + ! CHARACTER :: compNo*2,phasNo*2 +! ---------------------------------------------------------------------- + +xmax(ph) = 0.0 +DO i = 1, ncomp + + IF ( xi(ph,i) > xmax(ph) ) THEN + xmax(ph) = xi(ph,i) + sum_index = i + + IF (ph == 1 .AND. i == 1) sum_rel(1) = 'x11' + IF (ph == 1 .AND. i == 2) sum_rel(1) = 'x12' + IF (ph == 1 .AND. i == 3) sum_rel(1) = 'x13' + IF (ph == 1 .AND. i == 4) sum_rel(1) = 'x14' + IF (ph == 1 .AND. i == 5) sum_rel(1) = 'x15' + + IF (ph == 2 .AND. i == 1) sum_rel(2) = 'x21' + IF (ph == 2 .AND. i == 2) sum_rel(2) = 'x22' + IF (ph == 2 .AND. i == 3) sum_rel(2) = 'x23' + IF (ph == 2 .AND. i == 4) sum_rel(2) = 'x24' + IF (ph == 2 .AND. i == 5) sum_rel(2) = 'x25' + + IF (ph == 3 .AND. i == 1) sum_rel(3) = 'x31' + IF (ph == 3 .AND. i == 2) sum_rel(3) = 'x32' + IF (ph == 3 .AND. i == 3) sum_rel(3) = 'x33' + IF (ph == 3 .AND. i == 4) sum_rel(3) = 'x34' + IF (ph == 3 .AND. i == 5) sum_rel(3) = 'x35' +! write (*,*) ph,i,xi(ph,i),sum_rel(ph) + END IF + +END DO + +j = 0 +DO i = 1, ncomp + + IF ( i /= sum_index .AND. i /= excl ) THEN + IF (ph == 1 .AND. i == 1) it(startindex+j) = 'x11' + IF (ph == 1 .AND. i == 2) it(startindex+j) = 'x12' + IF (ph == 1 .AND. i == 3) it(startindex+j) = 'x13' + IF (ph == 1 .AND. i == 4) it(startindex+j) = 'x14' + IF (ph == 1 .AND. i == 5) it(startindex+j) = 'x15' + + IF (ph == 2 .AND. i == 1) it(startindex+j) = 'x21' + IF (ph == 2 .AND. i == 2) it(startindex+j) = 'x22' + IF (ph == 2 .AND. i == 3) it(startindex+j) = 'x23' + IF (ph == 2 .AND. i == 4) it(startindex+j) = 'x24' + IF (ph == 2 .AND. i == 5) it(startindex+j) = 'x25' + + IF (ph == 3 .AND. i == 1) it(startindex+j) = 'x31' + IF (ph == 3 .AND. i == 2) it(startindex+j) = 'x32' + IF (ph == 3 .AND. i == 3) it(startindex+j) = 'x33' + IF (ph == 3 .AND. i == 4) it(startindex+j) = 'x34' + IF (ph == 3 .AND. i == 5) it(startindex+j) = 'x35' +! write (*,*) 'iter ',it(startindex+j) + j = j + 1 + END IF + +END DO + +END SUBROUTINE select_sum_rel + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE tangent_plane +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +!!$ INTERFACE +!!$ SUBROUTINE tangent_value (fmin, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: fmin +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_value +!!$ +!!$ SUBROUTINE tangent_grad (g, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: g(:) +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_grad +!!$ END INTERFACE + +! +! ---------------------------------------------------------------------- + INTERFACE + REAL FUNCTION PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE, fmin ) + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: optpara(n) + REAL, EXTERNAL :: TANGENT_VALUE + REAL, INTENT(IN OUT) :: fmin + END FUNCTION + + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + END FUNCTION + END INTERFACE +! +! ---------------------------------------------------------------------- + INTEGER :: n + INTEGER :: i, k, ph + INTEGER :: small_i, min_ph, other_ph + INTEGER :: PRIN + REAL :: fmin , t0, h0, MACHEP + REAL :: lnphi(np,nc) + REAL, ALLOCATABLE :: optpara(:) + +! INTEGER :: STATUS, iter, nfunc, ngrad +! REAL :: gnorm +! REAL, ALLOCATABLE :: d(:), g(:), xtemp(:), gtemp(:) +! ---------------------------------------------------------------------- + +n = ncomp +t0 = 1.E-4 +h0 = 0.1 +PRIN = 0 +MACHEP = 1.E-15 + +ALLOCATE( optpara(n) ) +!ALLOCATE( d(n) ) +!ALLOCATE( g(n) ) +!ALLOCATE( xtemp(n) ) +!ALLOCATE( gtemp(n) ) + +DO i = 1,ncomp + rhoi1(i) = rhoif(i) + lnx(1,i) = LOG(xi(1,i)) + lnx(2,i) = LOG(xi(2,i)) +END DO + +DO i = 1,ncomp + optpara(i) = LOG( xi(2,i) * 0.001 ) +END DO + +! CALL cg_descent (1.d-4, optpara, n, tangent_value, tangent_grad, STATUS, & +! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) +! +! updating the ln(x) valus from optpara. The optimal optpara-vector is not necessarily +! the one that was last evaluated. At the very end, cg_decent writes the best values to optpara +! CALL tangent_value (fmin, optpara, n) + + + +fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE2, fmin ) + +! The optimal optpara-vector is not necessarily the one that was last evaluated. +! TANGENT_VALUE is reexecuted with the optimal vector optpara, in order to update the ln(x) values +fmin = TANGENT_VALUE2( optpara, n ) + + +! ---------------------------------------------------------------------- +! If one component is a polymer (indicated by a low component-density) +! then get an estimate of the polymer-lean composition, by solving for +! xi_p1 = ( xi_p2 * phii_p2) / phii_p1 (phase equilibrium condition, +! with p1 for phase 1) +! ---------------------------------------------------------------------- +IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + min_ph = 1 + other_ph = 2 +ELSE + min_ph = 2 + other_ph = 1 +ENDIF +small_i = MINLOC( lnx(min_ph,1:ncomp), 1 ) +! --- if one component is a polymer ------------------------------------ +IF ( MINVAL( lnx(min_ph,1:ncomp) ) < -20.0 ) THEN + CALL FUGACITY ( lnphi ) + lnx(min_ph,small_i) = lnx(other_ph,small_i)+lnphi(other_ph,small_i) - lnphi(min_ph,small_i) + optpara(small_i) = lnx(2,small_i) + LOG( SUM( EXP( optpara(1:ncomp) ) ) ) +END IF + +! ---------------------------------------------------------------------- +! caution: these initial values are for a flashcase overwritten in +! SUBROUTINE determine_flash_it2, because in that case, the lnx-values +! treated as ln(mole_number). +! ---------------------------------------------------------------------- +val_init(1) = dense(1) +val_init(2) = dense(2) +val_init(3) = t +val_init(4) = p +DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO +END DO +!alpha = optpara(1) + + +!DEALLOCATE( optpara, d, g, xtemp, gtemp ) +DEALLOCATE( optpara ) + +END SUBROUTINE tangent_plane + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE determine_flash_it2 +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, ph + REAL :: n_phase1, n_phase2, max_x_diff +! ---------------------------------------------------------------------- + + IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + it(1) = 'x11' + it(2) = 'x12' + IF (ncomp >= 3) it(3) = 'x13' + IF (ncomp >= 4) it(4) = 'x14' + IF (ncomp >= 5) it(5) = 'x15' + sum_rel(1) = 'nfl' + ELSE + it(1) = 'x21' + it(2) = 'x22' + IF (ncomp >= 3) it(3) = 'x23' + IF (ncomp >= 4) it(4) = 'x24' + IF (ncomp >= 5) it(5) = 'x25' + sum_rel(2) = 'nfl' + ENDIF + max_x_diff = 0.0 + DO i = 1,ncomp + IF ( ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) > max_x_diff ) THEN + max_x_diff = ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase1 = ( xif(i) - EXP( lnx(2,i) ) ) / ( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase2 = 1.0 - n_phase1 + END IF + END DO + lnx(1,1:ncomp) = lnx(1,1:ncomp) + LOG( n_phase1 ) ! these x's are treated as mole numbers + lnx(2,1:ncomp) = lnx(2,1:ncomp) + LOG( n_phase2 ) ! these x's are treated as mole numbers + + + val_init(1) = dense(1) + val_init(2) = dense(2) + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) ! - LOG( SUM( EXP( lnx(ph,1:ncomp) ) ) ) + ! write (*,*) ph,k, lnx(ph,k) + END DO + END DO + +END SUBROUTINE determine_flash_it2 + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE poly_sta_var +! +! This subroutine generates starting values for mole fractons of +! polymer-solvent systems. +! The determination of these starting values follows a two-step +! procedure. Fist, the equilibrium concentration of the polymer-rich +! phase is estimated with the assumption of zero concentration +! of polymer in the polymer-lean-phase. This is achieved in the +! SUBROUTINE POLYMER_FREE. (Only one equation has to be iterated +! for this case). Once this is achieved, the rigorous calculation +! is triggered. If it converges, fine! If no solution is obtained, +! the pressure is somewhat reduced, the procedure is repeated and +! a calculation is started to approach the originally specified +! pressure. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE poly_sta_var (converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k,ph,sol + REAL :: p_spec,solution(10,4+nc*np) +! ---------------------------------------------------------------------- + + p_spec = p + + find_equilibrium: DO + + CALL polymer_free(p_spec,sol,solution) + + WRITE (*,*) ' ' + WRITE (*,*) ' GENERATING STARTING VALUES' + + val_init(1) = solution(1,1) ! approx.solutions for next iteration + val_init(2) = solution(1,2) ! approx.solutions for next iteration + val_init(3) = solution(1,3) ! approx.solutions for next iteration + val_init(4) = solution(1,4) ! approx.solutions for next iteration + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = solution(1,4+k+(ph-1)*ncomp) + END DO + END DO + val_init(7) = -10000.0 ! start.val. for lnx(2,1) for iterat. + + IF (p /= p_spec) & + WRITE (*,*) ' INITIAL EQUILIBRIUM CALC. FAILD. NEXT STEP STARTS' + + IF (p == p_spec) THEN + n_unkw = ncomp ! number of quantities to be iterated + it(1)='x11' ! iteration of mol fraction of comp.1 phase 1 + it(2)='x21' ! iteration of mol fraction of comp.1 phase 2 + CALL objective_ctrl (converg) + ELSE + outp = 0 ! output to terminal + running ='p' ! Pressure is running var. in PHASE_EQUILIB + CALL phase_equilib(p_spec,5.0,converg) + END IF + + IF (converg == 1) EXIT find_equilibrium + p = p * 0.9 + IF ( p < (0.7*p_spec) ) WRITE (*,*) ' NO SOLUTION FOUND' + IF ( p < (0.7*p_spec) ) STOP + + END DO find_equilibrium + + WRITE (*,*) ' FINISHED: POLY_STA_VAR' + +END SUBROUTINE poly_sta_var + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE x_summation +!! +!! This subroutine solves the summation relation: xi=1-sum(xj) +!! The variable "sum_rel(i)" contains the information, which mole +!! fraction is the one to be calculated here. Consider the example +!! sum_rel(1)='x12'. The fist letter 'x' of this variable indicates, +!! that this subroutine needs to be executed and that the mole +!! fraction of a component has to be calculated. The second letter +!! of the string points to phase 1, the third letter to component 2. +!! If the fist letter is 'e', not 'x', then the subroutine +!! NEUTR_CHARGE is called. This is the case of electrolyte solutions, +!! neutral charges have to be enforced in all phases (see below). +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE x_summation +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, ph_i + REAL :: sum_x + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno + LOGICAL :: flashcase2 +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF (sum_rel(j)(1:3) == 'nfl') THEN + CALL new_flash (j) + RETURN + END IF +END DO + + + +flashcase2 = .false. + +DO j = 1, nphas + + IF (sum_rel(j)(1:1) == 'x') THEN + + phasno = sum_rel(j)(2:2) + READ(phasno,*) ph_i + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( sum_rel(nphas+j)(1:1) == 'e' ) CALL neutr_charge(nphas+j) + + sum_x = 0.0 + DO i = 1, ncomp + IF ( i /= comp_i ) sum_x = sum_x + xi(ph_i,i) + END DO + xi(ph_i,comp_i) = 1.0 - sum_x + IF ( xi(ph_i,comp_i ) < 0.0 ) xi(ph_i,comp_i) = 0.0 + IF ( xi(ph_i,comp_i ) /= 0.0 ) THEN + lnx(ph_i,comp_i) = LOG( xi(ph_i,comp_i) ) + ELSE + lnx(ph_i,comp_i) = -100000.0 + END IF + ! write (*,*) 'sum_x',ph_i,comp_i,lnx(ph_i,comp_i),xi(ph_i,comp_i) + + ELSE IF ( sum_rel(j)(1:2) == 'fl' ) THEN + + flashcase2 = .true. + ! ------------------------------------------------------------------ + ! This case is true when all molefractions of one phase are + ! determined from a component balance. What is needed to + ! calculate all molefractions of that phase are all mole- + ! fractions of the other phase (nphas=2, so far) and the + ! phase fraction alpha. + ! Alpha is calculated (in FLASH_ALPHA) from the mole fraction + ! of component {sum_rel(j)(3:3)}. IF sum_rel(2)='fl3', then + ! the alpha is determined from the molefraction of comp. 3 and + ! the molefraction of phase 2 is then completely determined ELSE + ! ------------------------------------------------------------------ + + ELSE + WRITE (*,*) 'summation relation not defined' + STOP + END IF + +END DO + +IF ( it(1) == 'fls' ) CALL flash_sum +IF ( flashcase2 ) CALL flash_alpha + +END SUBROUTINE x_summation + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE FUGACITY +!! +!! This subroutine serves as an interface to the eos-subroutines. +!! (1) case 1, when ensemble_flag = 'tp' +!! The subroutine gives the residual chemical potential: +!! mu_i^res(T,p,x)/kT = ln( phi_i ) +!! and in addition, the densities that satisfy the specified p +!! (2) case 2, when ensemble_flag = 'tv' +!! The subroutine gives the residual chemical potential: +!! --> mu_i^res(T,rho,x)/kT +!! and in addition the resulting pressure for the given density. +!! The term "residual" means difference of the property and the same +!! property for an ideal gas mixture. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE FUGACITY (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + DO ph = 1,nphas + + phas = ph + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(ph) = eta + ln_phi(ph,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE enthalpy_etc +! +! This subroutine serves as an interface to the EOS-routines. The +! residual enthalpy h_res, residual entropy s_res, residual Gibbs +! enthalpy g_res, and residual heat capacity at constant pressure +! (cp_res) corresponding to converged conditions are calculated. +! The conditions in (T,P,xi,rho) need to be converged equilibrium +! conditions !! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE enthalpy_etc +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! + INTEGER :: ph +! ------------------------------------------------------------------ + +IF (eos <= 1) THEN + + DO ph=1,nphas + + phas = ph + eta = dense(ph) +! eta_start = dense(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF(num == 0) THEN + CALL H_EOS + ELSE + IF(num == 1) CALL H_numerical + IF(num == 2) write (*,*) 'enthalpy_etc: incorporate H_EOS_RN' + IF(num == 2) stop +! IF(num == 2) CALL H_EOS_rn + END IF + enthal(ph) = h_res + entrop(ph) = s_res + ! gibbs(ph) = h_res - t * s_res ! already defined in eos.f90 (including ideal gas) + cpres(ph) = cp_res + + END DO + IF (nphas == 2) h_lv = enthal(2)-enthal(1) + +ENDIF + +END SUBROUTINE enthalpy_etc + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE dens_calc +!! +!! This subroutine serves as an interface to the EOS-routines. The +!! densities corresponding to given (P,T,xi) are calculated. +!! (Note: the more common interface is SUBROUTINE FUGACITY. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE dens_calc(rho_phas) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! +!------------------------------------------------------------------ + REAL, INTENT(OUT) :: rho_phas(np) +! + INTEGER :: ph +!------------------------------------------------------------------ + + +DO ph = 1, nphas + + IF (eos < 2) THEN + + phas = ph + eta = densta(ph) + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + CALL PERTURBATION_PARAMETER + CALL DENSITY_ITERATION + + dense(ph)= eta + rho_phas(ph) = eta/z3t + + ELSE + write (*,*) ' SUBROUTINE DENS_CALC not available for cubic EOS' + stop + END IF + +END DO + +END SUBROUTINE dens_calc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE fden_calc (fden, rhoi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fden + REAL, INTENT(IN OUT) :: rhoi(nc) +! ---------------------------------------------------------------------- + REAL :: rhot, fden_id +! ---------------------------------------------------------------------- + + +IF (eos < 2) THEN + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + + CALL PERTURBATION_PARAMETER + eta = rhot * z3t + eta_start = eta + + IF (num == 0) THEN + CALL F_EOS + ELSE IF(num == 1) THEN + CALL F_NUMERICAL + ELSE + write (*,*) 'deactivated this line when making a transition to f90' + stop + ! CALL F_EOS_rn + END IF + + fden_id = SUM( rhoi(1:ncomp) * ( LOG( rhoi(1:ncomp) ) - 1.0 ) ) + + fden = fres * rhot + fden_id + +ELSE + write (*,*) ' SUBROUTINE FDEN_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE fden_calc + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE polymer_free +! +! This subroutine performes a phase equilibrium calculation assuming +! the polymer-lean hase to be polymer-free (x_poly=0). Only the +! equality of the solvent-fugacities has to be ensured (only one +! equation to be iterated). This procedure delivers very good +! appoximations for the polymer-rich phase up-to fairly close to the +! mixture critical point. Both, liquid-liquid and vapor-liquid +! equilibria can be calculated. +! See also comments to SUBROUTINE POLY_STA_VAR. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE polymer_free (p_spec,sol,solution) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: p_spec + INTEGER, INTENT(OUT) :: sol + REAL, INTENT(OUT) :: solution(10,4+nc*np) +! +! ---------------------------------------------------------------------- + INTEGER :: k,j,ph, converg + REAL :: grid(10) +! ---------------------------------------------------------------------- + + sol = 0 + + grid(1)=0.98 + grid(2)=0.9 + grid(3)=0.7 + grid(4)=0.5 + grid(5)=0.3 + grid(6)=0.2 + grid(7)=0.1 + grid(8)=0.05 + + DO WHILE ( sol == 0 ) + + DO j = 1,8 + ! Phase 2 is solvent-phase + ! starting value for xi(1,1) of polymer-phase 1: w_polymer=0.95 to 0.05 + ! from simple approximate equation + xi(1,1) = grid(j) / ( (1.0-grid(j)) * mm(1) / mm(2) ) !xi(1,1) Phase 1 Komponente 1 + IF ( mm(1) < 5000.0 ) xi(1,1) = xi(1,1) * 0.8 + xi(1,2) = 1.0 - xi(1,1) !xi(1,2) Phase 1 Komponente 2 + lnx(1,1) = LOG(xi(1,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,1) = -1.E10 !ln(xi) Phase 2 Komponente 1 + lnx(2,2) = 0.0 !ln(xi) Phase 2 Komponente 2 + + + + val_init(1) = 0.45 ! starting density targeting at a liquid phase + val_init(2) = 0.0001 ! starting density targeting at a vapor phase + ! val_init(2) = 0.45 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO + END DO + + + + + n_unkw = ncomp-1 ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = ' ' + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' + + CALL objective_ctrl (converg) + + IF (converg == 1 .AND. ABS(dense(1)/dense(2)-1.0) > 1.d-3 .AND. dense(1) > 0.1) THEN + IF (sol == 0) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + ELSE IF (ABS(solution(sol,5)/lnx(1,1)-1.0) > 1.d-2) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + END IF + END IF + + END DO + + + + + + IF (sol == 0) THEN + WRITE (*,*) ' no initial solution found' + p = p*0.9 + IF (p < (0.7*p_spec)) WRITE (*,*) ' NO SOLUTION FOUND' + IF (p < (0.7*p_spec)) STOP + ELSE IF (sol > 1) THEN + ! write (*,*) ' ' + ! write (*,*) ' ',sol,' solutions found:' + ! write (*,*) ' lnx(1,1), dichte_1, dichte_2' + ! DO k = 1,sol + ! write (*,*) solution(k,5),solution(k,1),solution(k,2) + ! END DO + END IF + END DO + + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + + END SUBROUTINE polymer_free + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE phase_equilib +!! +!! This subroutine varies a predefined "running variable" and +!! organizes phase equilibrium calculations. For an isotherm +!! calculation e.g., the running variable is often the pressure. The +!! code is designed to deliver only converged solutions. In order to +!! enforce convergence, a step-width adjustment (reduction) is +!! implemented. +!! +!! VARIABLE LIST: +!! running defines the running variable. For example: if you want +!! to calculate the vapor pressure curve of a component +!! starting from 100�C to 200�C, then running is 't'. The +!! temperature is step-wise increased until the end- +!! -temperature of 200�C is reached. +!! (in this example end_x=200+273.15) +!! end_x end point for running variable +!! steps No. of calculation steps towards the end point of calc. +!! converg 0 if no convergence achieved, 1 if converged solution +!! +!! PREREQUISITES: +!! prior to execution of this routine, the follwing variables have to +!! be defined: "val_init" an array containing the starting values for +!! this iteration, "it(i)" provides the information, which variable is +!! determined iteratively, "sum_rel(i)" indicates, which mole fraction +!! is determined from the summation relation sum(xi)=1. Furthermore, +!! the number of phases and the variables provided by the subroutine +!! INPUT are required. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE phase_equilib (end_x,steps,converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: end_x + REAL, INTENT(IN) :: steps + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k, count1,count2,runindex,maxiter + REAL :: delta_x,delta_org,val_org,runvar + CHARACTER (LEN=2) :: compon + LOGICAL :: continue_cycle +! ---------------------------------------------------------------------- + +IF (running(1:2) == 'd1') runindex = 1 +IF (running(1:2) == 'd2') runindex = 2 +IF (running(1:1) == 't') runindex = 3 +IF (running(1:1) == 'p') runindex = 4 +IF (running(1:2) == 'x1') compon = running(3:3) +IF (running(1:2) == 'x1') READ(compon,*) k +IF (running(1:2) == 'x1') runindex = 4+k +IF (running(1:2) == 'x2') compon = running(3:3) +IF (running(1:2) == 'x2') READ(compon,*) k +IF (running(1:2) == 'x2') runindex = 4+ncomp+k +IF (running(1:2) == 'l1') compon = running(3:3) +IF (running(1:2) == 'l1') READ(compon,*) k +IF (running(1:2) == 'l1') runindex = 4+k +IF (running(1:2) == 'l2') compon = running(3:3) +IF (running(1:2) == 'l2') READ(compon,*) k +IF (running(1:2) == 'l2') runindex = 4+ncomp+k + +maxiter = 200 +IF ( ncomp >= 3 ) maxiter = 1000 +count1 = 0 +count2 = 0 +delta_x = ( end_x - val_init(runindex) ) / steps !J: calc increment in running var = (phi_end - phi_init)/steps +delta_org = ( end_x - val_init(runindex) ) / steps +val_org = val_init(runindex) +IF ( running(1:1) == 'x' ) THEN + delta_x = ( end_x - EXP(val_init(runindex)) ) / steps + delta_org = ( end_x - EXP(val_init(runindex)) ) / steps + val_org = EXP(val_init(runindex)) +END IF + +continue_cycle = .true. + +DO WHILE ( continue_cycle ) + + count1 = count1 + 1 + count2 = count2 + 1 + ! val_org = val_init(runindex) + + + CALL objective_ctrl (converg) + + IF (converg == 1) THEN + val_init( 1:(4+ncomp*nphas) ) = val_conv( 1:(4+ncomp*nphas) ) + IF (outp == 1 .AND. (ABS(delta_x) > 0.1*ABS(delta_org) .OR. count2 == 2)) CALL output + ELSE + delta_x = delta_x / 2.0 + IF (num == 2) delta_x = delta_x / 2.0 + val_init(runindex) = val_org + IF (running(1:1) == 'x') val_init(runindex) = LOG(val_org) + continue_cycle = .true. + count2 = 0 + END IF + runvar = val_init(runindex) + IF (running(1:1) == 'x') runvar = EXP(val_init(runindex)) + + IF ( end_x == 0.0 .AND. running(1:1) /= 'x' ) THEN + IF ( ABS(runvar-end_x) < 1.E-8 ) continue_cycle = .false. + ELSE IF ( ABS((runvar-end_x)/end_x) < 1.E-8 ) THEN + ! IF(delta_org.NE.0.0) WRITE (*,*)' FINISHED ITERATION',count1 + continue_cycle = .false. + ELSE IF ( count1 == maxiter ) THEN + WRITE (*,*) ' MAX. NO OF ITERATIONS',count1 + converg = 0 + continue_cycle = .false. + ELSE IF ( ABS(delta_x) < 1.E-5*ABS(delta_org) ) THEN + ! WRITE (*,*) ' CLOSEST APPROACH REACHED',count1 + converg = 0 + continue_cycle = .false. + ELSE + continue_cycle = .true. + val_org = runvar + IF (ABS(runvar+delta_x-end_x) > ABS(runvar-end_x)) delta_x = end_x - runvar ! if end-point passed + val_init(runindex) = runvar + delta_x + IF (running(1:1) == 'x') val_init(runindex) = LOG(runvar+delta_x) + END IF + + IF (ABS(delta_x) < ABS(delta_org) .AND. count2 >= 5) THEN + delta_x = delta_x * 2.0 + count2 = 0 + END IF + +END DO ! continue_cycle + +END SUBROUTINE phase_equilib + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE new_flash (ph_it) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph_it +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph_cal + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + ph_cal = 3 - ph_it ! for two phases only + + DO i = 1, ncomp + IF ( lnx(ph_it,i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( lnx(ph_it,i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i)-ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(ph_it,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + DO i = 1, ncomp + IF ( xi(ph_it,i) >= 1.E-300 ) lnx(ph_it,i) = LOG( xi(ph_it,i) ) + END DO + xi(ph_cal,1:ncomp) = ni_1(1:ncomp) / SUM( ni_1(1:ncomp) ) + lnx(ph_cal,1:ncomp) = LOG( xi(ph_cal,1:ncomp) ) + +END SUBROUTINE new_flash + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE PHI_EOS +!! +!! This subroutine gives the residual chemical potential: +!! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +!! The required input for this case (T, p, x(nc)) and as a starting value +!! eta_start +!! +!! or it gives +!! +!! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +!! The required input for this case (T, eta_start, x(nc)). Note that +!! eta_start is the specified density (packing fraction) in this case. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE PHI_EOS +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + +END DO + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + +END SUBROUTINE PHI_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE, ONLY: z_ges, fres_temp + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + INTEGER :: k + REAL :: zres, zges + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: delta_rho + REAL, DIMENSION(nc) :: myres + REAL, DIMENSION(nc) :: rhoi, rhoi_0 + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +!----------------------------------------------------------------------- +! density iteration or pressure calculation +!----------------------------------------------------------------------- + +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_NUMERICAL +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (tv) or (tp)' + stop +END IF + +!----------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +!----------------------------------------------------------------------- + +zges = (p * 1.E-30) / (kbol*t*eta/z3t) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.E-30) / (kbol*t*eta/z3t) +zres = zges - 1.0 +z_ges = zges + +rhoi_0(1:ncomp) = x(1:ncomp) * eta/z3t +rhoi(1:ncomp) = rhoi_0(1:ncomp) + + +!----------------------------------------------------------------------- +! derivative to rho_k (keeping other rho_i's constant +!----------------------------------------------------------------------- + +DO k = 1, ncomp + + IF ( rhoi_0(k) > 1.d-9 ) THEN + delta_rho = 1.E-13 * 10.0**(0.5*(15.0+LOG10(rhoi_0(k)))) + ELSE + delta_rho = 1.E-10 + END IF + + rhoi(k) = rhoi_0(k) + delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres1 = fres*rho + tfr_1 = tfr*rho + + rhoi(k) = rhoi_0(k) + 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres2 = fres*rho + tfr_2 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + rhoi(k) = rhoi_0(k) - 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres4 = fres*rho + tfr_4 = tfr*rho + + rhoi(k) = rhoi_0(k) - delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres5 = fres*rho + tfr_5 = tfr*rho + END IF + + rhoi(k) = rhoi_0(k) + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres3 = fres*rho + tfr_3 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + myres(k) = ( fres5 - 8.0*fres4 + 8.0*fres2 - fres1 ) / ( 6.0*delta_rho ) + ELSE + myres(k) = ( -3.0*fres3 + 4.0*fres2 - fres1 ) / delta_rho + END IF + +END DO + + +!----------------------------------------------------------------------- +! residual Helmholtz energy +!----------------------------------------------------------------------- + +fres_temp = fres + +!----------------------------------------------------------------------- +! residual chemical potential +!----------------------------------------------------------------------- + +DO k = 1, ncomp + IF (ensemble_flag == 'tp') lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' .AND. eta >= 0.0) lnphi(k) = myres(k) !+LOG(rho) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta + ! IF (DFT.GE.98) write (*,*) dft + ! write (*,*) 'lnphi',k,LNPHI(k),x(k),MYRES(k), -LOG(ZGES) + ! pause + ! write (*,*) k, myres(k), fres, ZRES +END DO + +END SUBROUTINE PHI_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +! SUBROUTINE H_EOS (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! IMPLICIT NONE +! INTEGER nc +! PARAMETER (nc=20) +! INTEGER phas,ncomp,eos,i +! REAL kij(nc,nc),lij(nc,nc),x(nc),t,p,parame(nc,25) +! REAL eta_start,eta,tfr,h_res,cp_res,s_res + + +! i=1 + +! IF (i.EQ.1) THEN +! CALL H_EOS_1(phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ELSE +! CALL H_EOS_NUM (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ENDIF + +! RETURN +! END + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS +! + USE PARAMETERS, ONLY: RGAS + USE EOS_CONSTANTS + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL :: zges, df_dt, dfdr, ddfdrdr + REAL :: cv_res, df_dt2, df_drdt + REAL :: fact, dist, t_tmp, rho_0 + REAL :: fdr1, fdr2, fdr3, fdr4 + + INTEGER :: i, m + REAL :: dhsdt(nc), dhsdt2(nc) + REAL :: z0, z1, z2, z3, z1tdt, z2tdt, z3tdt + REAL :: z1dt, z2dt, z3dt, zms, gii + REAL :: fhsdt, fhsdt2 + REAL :: fchdt, fchdt2 + REAL :: fdspdt, fdspdt2 + REAL :: fhbdt, fhbdt2 + REAL :: sumseg, I1, I2, I1dt, I2dt, I1dt2, I2dt2 + REAL :: c1_con, c2_con, c3_con, c1_dt, c1_dt2 + REAL :: z1tdt2, z2tdt2, z3tdt2 + REAL :: z1dt2, z2dt2, z3dt2 + + INTEGER :: j, k, l, no, ass_cnt, max_eval + LOGICAL :: assoc + REAL :: dij, dijdt, dijdt2 + REAL :: gij1dt, gij2dt, gij3dt + REAL :: gij1dt2, gij2dt2, gij3dt2 + REAL, DIMENSION(nc,nc) :: gijdt, gijdt2, kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: ass_d_dt, ass_d_dt2, eps_hb, delta, deltadt, deltadt2 + REAL, DIMENSION(nc,nsite) :: mxdt, mxdt2, mx_itr, mx_itrdt, mx_itrdt2 + REAL :: attenu, tol, suma, sumdt, sumdt2, err_sum + + INTEGER :: dipole + REAL :: fdddt, fdddt2 + REAL, DIMENSION(nc) :: my2dd, my0 + REAL, DIMENSION(nc,nc) :: idd2, idd2dt, idd2dt2, idd4, idd4dt, idd4dt2 + REAL, DIMENSION(nc,nc,nc) :: idd3, idd3dt, idd3dt2 + REAL :: factor2, factor3 + REAL :: fdd2, fdd3, fdd2dt, fdd3dt, fdd2dt2, fdd3dt2 + REAL :: eij, xijmt, xijkmt + + INTEGER :: qudpole + REAL :: fqqdt, fqqdt2 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: iqq2, iqq2dt, iqq2dt2, iqq4, iqq4dt, iqq4dt2 + REAL, DIMENSION(nc,nc,nc) :: iqq3, iqq3dt, iqq3dt2 + REAL :: fqq2, fqq2dt, fqq2dt2, fqq3, fqq3dt, fqq3dt2 + + INTEGER :: dip_quad + REAL :: fdqdt, fdqdt2 + REAL, DIMENSION(nc) :: myfac, q_fac + REAL, DIMENSION(nc,nc) :: idq2, idq2dt, idq2dt2, idq4, idq4dt, idq4dt2 + REAL, DIMENSION(nc,nc,nc) :: idq3, idq3dt, idq3dt2 + REAL :: fdq2, fdq2dt, fdq2dt2, fdq3, fdq3dt, fdq3dt2 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! Initializing +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +sumseg = z0t / (PI/6.0) +zms = 1.0 - z3 + + +! ---------------------------------------------------------------------- +! first and second derivative of f to density (dfdr,ddfdrdr) +! ---------------------------------------------------------------------- +CALL P_EOS + +zges = (pges * 1.E-30)/(kbol*t*rho) + +dfdr = pges/(eta*rho*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + + +! ---------------------------------------------------------------------- +! Helmholtz Energy f/kT = fres +! ---------------------------------------------------------------------- +CALL F_EOS + + +! ---------------------------------------------------------------------- +! derivative of some auxilliary properties to temperature +! ---------------------------------------------------------------------- +DO i = 1,ncomp + dhsdt(i)=parame(i,2) *(-3.0*parame(i,3)/t/t)*0.12*EXP(-3.0*parame(i,3)/t) + dhsdt2(i) = dhsdt(i)*3.0*parame(i,3)/t/t & + + 6.0*parame(i,2)*parame(i,3)/t**3 *0.12*EXP(-3.0*parame(i,3)/t) +END DO + +z1tdt = 0.0 +z2tdt = 0.0 +z3tdt = 0.0 +DO i = 1,ncomp + z1tdt = z1tdt + x(i) * mseg(i) * dhsdt(i) + z2tdt = z2tdt + x(i) * mseg(i) * 2.0*dhs(i)*dhsdt(i) + z3tdt = z3tdt + x(i) * mseg(i) * 3.0*dhs(i)*dhs(i)*dhsdt(i) +END DO +z1dt = PI / 6.0*z1tdt *rho +z2dt = PI / 6.0*z2tdt *rho +z3dt = PI / 6.0*z3tdt *rho + + +z1tdt2 = 0.0 +z2tdt2 = 0.0 +z3tdt2 = 0.0 +DO i = 1,ncomp + z1tdt2 = z1tdt2 + x(i)*mseg(i)*dhsdt2(i) + z2tdt2 = z2tdt2 + x(i)*mseg(i)*2.0 *( dhsdt(i)*dhsdt(i) +dhs(i)*dhsdt2(i) ) + z3tdt2 = z3tdt2 + x(i)*mseg(i)*3.0 *( 2.0*dhs(i)*dhsdt(i)* & + dhsdt(i) +dhs(i)*dhs(i)*dhsdt2(i) ) +END DO +z1dt2 = PI / 6.0*z1tdt2 *rho +z2dt2 = PI / 6.0*z2tdt2 *rho +z3dt2 = PI / 6.0*z3tdt2 *rho + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT hard spheres to temp. (fhsdt) +! ---------------------------------------------------------------------- +fhsdt = 6.0/PI/rho*( 3.0*(z1dt*z2+z1*z2dt)/zms + 3.0*z1*z2*z3dt/zms/zms & + + 3.0*z2*z2*z2dt/z3/zms/zms & + + z2**3 *(2.0*z3*z3dt-z3dt*zms)/(z3*z3*zms**3 ) & + + (3.0*z2*z2*z2dt*z3-2.0*z2**3 *z3dt)/z3**3 *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3dt/zms ) + +fhsdt2= 6.0/PI/rho*( 3.0*(z1dt2*z2+2.0*z1dt*z2dt+z1*z2dt2)/zms & + + 6.0*(z1dt*z2+z1*z2dt)*z3dt/zms/zms & + + 3.0*z1*z2*z3dt2/zms/zms + 6.0*z1*z2*z3dt*z3dt/zms**3 & + + 3.0*z2*(2.0*z2dt*z2dt+z2*z2dt2)/z3/zms/zms & + - z2*z2*(6.0*z2dt*z3dt+z2*z3dt2)/(z3*z3*zms*zms) & + + 2.0*z2**3 *z3dt*z3dt/(z3**3 *zms*zms) & + - 4.0*z2**3 *z3dt*z3dt/(z3*z3 *zms**3 ) & + + (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/(z3*zms**3 ) & + + 6.0*z2**3 *z3dt*z3dt/(z3*zms**4 ) & + - 2.0*(3.0*z2*z2*z2dt/z3/z3-2.0*z2**3 *z3dt/z3**3 ) *z3dt/zms & + -(z2**3 /z3/z3-z0)*(z3dt2/zms+z3dt*z3dt/zms/zms) & + + ( (6.0*z2*z2dt*z2dt+3.0*z2*z2*z2dt2)/z3/z3 & + - (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/z3**3 & + + 6.0*z2**3 *z3dt*z3dt/z3**4 )* LOG(zms) ) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT of chain term to T (fchdt) +! ---------------------------------------------------------------------- +fchdt = 0.0 +fchdt2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + dij=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + dijdt =(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) / (dhs(i)+dhs(j)) & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) + dijdt2=(dhsdt2(i)*dhs(j) + 2.0*dhsdt(i)*dhsdt(j) & + + dhs(i)*dhsdt2(j)) / (dhs(i)+dhs(j)) & + - 2.0*(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) & + / (dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) & + + 2.0* dhs(i)*dhs(j) / (dhs(i)+dhs(j))**3 & + * (dhsdt(i)+dhsdt(j))**2 & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt2(i)+dhsdt2(j)) + gij1dt = z3dt/zms/zms + gij2dt = 3.0*( z2dt*dij+z2*dijdt )/zms/zms +6.0*z2*dij*z3dt/zms**3 + gij3dt = 4.0*(dij*z2)* (dijdt*z2 + dij*z2dt) /zms**3 & + + 6.0*(dij*z2)**2 * z3dt /zms**4 + gij1dt2 = z3dt2/zms/zms +2.0*z3dt*z3dt/zms**3 + gij2dt2 = 3.0*( z2dt2*dij+2.0*z2dt*dijdt+z2*dijdt2 )/zms/zms & + + 6.0*( z2dt*dij+z2*dijdt )/zms**3 * z3dt & + + 6.0*(z2dt*dij*z3dt+z2*dijdt*z3dt+z2*dij*z3dt2) /zms**3 & + + 18.0*z2*dij*z3dt*z3dt/zms**4 + gij3dt2 = 4.0*(dijdt*z2+dij*z2dt)**2 /zms**3 & + + 4.0*(dij*z2)* (dijdt2*z2+2.0*dijdt*z2dt+dij*z2dt2) /zms**3 & + + 24.0*(dij*z2) *(dijdt*z2+dij*z2dt)/zms**4 *z3dt & + + 6.0*(dij*z2)**2 * z3dt2 /zms**4 & + + 24.0*(dij*z2)**2 * z3dt*z3dt /zms**5 + gijdt(i,j) = gij1dt + gij2dt + gij3dt + gijdt2(i,j) = gij1dt2 + gij2dt2 + gij3dt2 + END DO +END DO + +DO i = 1, ncomp + gii = 1.0/zms + 3.0*dhs(i)/2.0*z2/zms/zms + 2.0*dhs(i)*dhs(i)/4.0*z2*z2/zms**3 + fchdt = fchdt + x(i) * (1.0-mseg(i)) * gijdt(i,i) / gii + fchdt2= fchdt2+ x(i) * (1.0-mseg(i)) & + * (gijdt2(i,i) / gii - (gijdt(i,i)/gii)**2 ) +END DO + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT dispersion term to T (fdspdt) +! ---------------------------------------------------------------------- +I1 = 0.0 +I2 = 0.0 +I1dt = 0.0 +I2dt = 0.0 +I1dt2= 0.0 +I2dt2= 0.0 +DO m = 0, 6 + I1 = I1 + apar(m)*z3**REAL(m) + I2 = I2 + bpar(m)*z3**REAL(m) + I1dt = I1dt + apar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I2dt = I2dt + bpar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I1dt2= I1dt2+ apar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + apar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) + I2dt2= I2dt2+ bpar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + bpar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) +END DO + +c1_con= 1.0/ ( 1.0 + sumseg*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - sumseg)*(20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) +c2_con= - c1_con*c1_con *(sumseg*(-4.0*z3**2 +20.0*z3+8.0)/zms**5 & + + (1.0 - sumseg) *(2.0*z3**3 +12.0*z3**2 -48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) +c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( sumseg*(-12.0*z3**2 +72.0*z3+60.0)/zms**6 + (1.0 - sumseg) & + *(-6.0*z3**4 -48.0*z3**3 +288.0*z3**2 -480.0*z3+264.0) & + /(zms*(2.0-z3))**4 ) +c1_dt = c2_con*z3dt +c1_dt2 = c3_con*z3dt*z3dt + c2_con*z3dt2 + +fdspdt = - 2.0*PI*rho*(I1dt-I1/t)*order1 & + - PI*rho*sumseg*(c1_dt*I2+c1_con*I2dt-2.0*c1_con*I2/t)*order2 + +fdspdt2 = - 2.0*PI*rho*(I1dt2-2.0*I1dt/t+2.0*I1/t/t)*order1 & + - PI*rho*sumseg*order2*( c1_dt2*I2 +2.0*c1_dt*I2dt -4.0*c1_dt*I2/t & + + 6.0*c1_con*I2/t/t -4.0*c1_con*I2dt/t +c1_con*I2dt2) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT association term to T (fhbdt) +! ---------------------------------------------------------------------- +fhbdt = 0.0 +fhbdt2 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) THEN + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1,nhb_typ(i) + DO k = 1,nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO j = 1,nhb_typ(i) + no = no + 1 + END DO + ELSE + kap_hb(i,i) = 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0) ) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + ! kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l)=(eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l)=eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN + eps_hb(1,2,3,1)=0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1)=0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ! ass_d(i,j,k,l)=kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + ass_d_dt(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) + ass_d_dt2(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 & + * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) & + * (-2.0/t - eps_hb(i,j,k,l)/t/t) + END DO + END DO + END DO + END DO + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l)=gij(i,j)*ass_d(i,j,k,l) + deltadt(i,j,k,l) = gijdt(i,j)*ass_d(i,j,k,l) + gij(i,j)*ass_d_dt(i,j,k,l) + deltadt2(i,j,k,l)= gijdt2(i,j)*ass_d(i,j,k,l) & + + 2.0*gijdt(i,j)*ass_d_dt(i,j,k,l) +gij(i,j)*ass_d_dt2(i,j,k,l) + END DO + END DO + END DO + END DO + + +! ------ constants for iteration --------------------------------------- + attenu = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-12 + max_eval = 200 + +! ------ initialize mxdt(i,j) ------------------------------------------ + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + mxdt(i,k) = 0.0 + mxdt2(i,k) = 0.0 + END DO + END DO + + +! ------ iterate over all components and all sites --------------------- + DO ass_cnt = 1, max_eval + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + suma = 0.0 + sumdt = 0.0 + sumdt2= 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + suma = suma + x(j)*nhb_no(j,l)* mx(j,l) *delta(i,j,k,l) + sumdt = sumdt + x(j)*nhb_no(j,l)*( mx(j,l) *deltadt(i,j,k,l) & + + mxdt(j,l)*delta(i,j,k,l) ) + sumdt2 = sumdt2 + x(j)*nhb_no(j,l)*( mx(j,l)*deltadt2(i,j,k,l) & + + 2.0*mxdt(j,l)*deltadt(i,j,k,l) + mxdt2(j,l)*delta(i,j,k,l) ) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + suma * rho) + mx_itrdt(i,k)= - mx_itr(i,k)**2 * sumdt*rho + mx_itrdt2(i,k)= +2.0*mx_itr(i,k)**3 * (sumdt*rho)**2 - mx_itr(i,k)**2 *sumdt2*rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) & + + ABS(mx_itrdt(i,k) - mxdt(i,k)) + ABS(mx_itrdt2(i,k) - mxdt2(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + mxdt(i,k)=mx_itrdt(i,k)*attenu +mxdt(i,k)* (1.0 - attenu) + mxdt2(i,k)=mx_itrdt2(i,k)*attenu +mxdt2(i,k)* (1.0 - attenu) + END DO + END DO + IF(err_sum <= tol) GO TO 10 + + END DO + WRITE(6,*) 'CAL_PCSAFT: max_eval violated err_sum = ',err_sum,tol + STOP + 10 CONTINUE + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + ! fhb = fhb + x(i)* nhb_no(i,k)* ( 0.5 * ( 1.0 - mx(i,k) ) + LOG(mx(i,k)) ) + fhbdt = fhbdt + x(i)*nhb_no(i,k) *mxdt(i,k)*(1.0/mx(i,k)-0.5) + fhbdt2= fhbdt2 + x(i)*nhb_no(i,k) *(mxdt2(i,k)*(1.0/mx(i,k)-0.5) & + -(mxdt(i,k)/mx(i,k))**2 ) + END DO + END DO + +END IF + + +! ---------------------------------------------------------------------- +! derivatives of f/kT of dipole-dipole term to temp. (fdddt) +! ---------------------------------------------------------------------- +fdddt = 0.0 +fdddt2 = 0.0 +dipole = 0 +DO i = 1,ncomp + my2dd(i) = 0.0 + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 ) THEN + dipole = 1 + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END IF + my0(i) = my2dd(i) ! needed for dipole-quadrupole-term +END DO + +IF (dipole == 1) THEN + DO i = 1,ncomp + DO j = 1,ncomp + idd2(i,j) =0.0 + idd4(i,j) =0.0 + idd2dt(i,j) =0.0 + idd4dt(i,j) =0.0 + idd2dt2(i,j)=0.0 + idd4dt2(i,j)=0.0 + DO m=0,4 + idd2(i,j) = idd2(i,j) +ddp2(i,j,m)*z3**REAL(m) + idd4(i,j) = idd4(i,j) +ddp4(i,j,m)*z3**REAL(m) + idd2dt(i,j)= idd2dt(i,j) +ddp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd4dt(i,j)= idd4dt(i,j) +ddp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd2dt2(i,j)=idd2dt2(i,j)+ddp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idd4dt2(i,j)=idd4dt2(i,j)+ddp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + idd3(i,j,k) =0.0 + idd3dt(i,j,k) =0.0 + idd3dt2(i,j,k)=0.0 + DO m = 0, 4 + idd3(i,j,k) = idd3(i,j,k) +ddp3(i,j,k,m)*z3**REAL(m) + idd3dt(i,j,k) = idd3dt(i,j,k)+ddp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idd3dt2(i,j,k)= idd3dt2(i,j,k)+ddp3(i,j,k,m)*z3dt2*REAL(m) & + *z3**REAL(m-1) +ddp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1) *z3**REAL(m-2) + END DO + END DO + END DO + END DO + + + factor2= -PI *rho + factor3= -4.0/3.0*PI**2 * rho**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2dt= 0.0 + fdd3dt= 0.0 + fdd2dt2= 0.0 + fdd3dt2= 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + xijmt = x(i)*parame(i,3)*parame(i,2)**3 *x(j)*parame(j,3)*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2* xijmt/t/t*(idd2(i,j)+eij/t*idd4(i,j)) + fdd2dt= fdd2dt+ factor2* xijmt/t/t*(idd2dt(i,j)-2.0*idd2(i,j)/t & + +eij/t*idd4dt(i,j)-3.0*eij/t/t*idd4(i,j)) + fdd2dt2=fdd2dt2+factor2*xijmt/t/t*(idd2dt2(i,j)-4.0*idd2dt(i,j)/t & + +6.0*idd2(i,j)/t/t+eij/t*idd4dt2(i,j) & + -6.0*eij/t/t*idd4dt(i,j)+12.0*eij/t**3 *idd4(i,j)) + DO k = 1, ncomp + xijkmt=x(i)*parame(i,3)*parame(i,2)**3 & + *x(j)*parame(j,3)*parame(j,2)**3 & + *x(k)*parame(k,3)*parame(k,2)**3 & + /((parame(i,2)+parame(j,2))/2.0) /((parame(i,2)+parame(k,2))/2.0) & + /((parame(j,2)+parame(k,2))/2.0) *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 =fdd3 +factor3*xijkmt/t**3 *idd3(i,j,k) + fdd3dt =fdd3dt +factor3*xijkmt/t**3 * (idd3dt(i,j,k)-3.0*idd3(i,j,k)/t) + fdd3dt2=fdd3dt2+factor3*xijkmt/t**3 & + *( idd3dt2(i,j,k)-6.0*idd3dt(i,j,k)/t+12.0*idd3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fdd2 < -1.E-100 .AND. fdd3 /= 0.0 ) THEN + fdddt = fdd2* (fdd2*fdd2dt - 2.0*fdd3*fdd2dt+fdd2*fdd3dt) / (fdd2-fdd3)**2 + fdddt2 = ( 2.0*fdd2*fdd2dt*fdd2dt +fdd2*fdd2*fdd2dt2 & + -2.0*fdd2dt**2 *fdd3 -2.0*fdd2*fdd2dt2*fdd3 +fdd2*fdd2*fdd3dt2 ) & + /(fdd2-fdd3)**2 + fdddt * 2.0*(fdd3dt-fdd2dt)/(fdd2-fdd3) + END IF +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of quadrupole-quadrup. term to T (fqqdt) +! ---------------------------------------------------------------------- +fqqdt = 0.0 +fqqdt2 = 0.0 +qudpole = 0 +DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + IF (qq2(i) /= 0.0) qudpole = 1 +END DO + +IF (qudpole == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + iqq2(i,j) = 0.0 + iqq4(i,j) = 0.0 + iqq2dt(i,j) = 0.0 + iqq4dt(i,j) = 0.0 + iqq2dt2(i,j)= 0.0 + iqq4dt2(i,j)= 0.0 + DO m = 0, 4 + iqq2(i,j) = iqq2(i,j) + qqp2(i,j,m)*z3**REAL(m) + iqq4(i,j) = iqq4(i,j) + qqp4(i,j,m)*z3**REAL(m) + iqq2dt(i,j) = iqq2dt(i,j)+ qqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq4dt(i,j) = iqq4dt(i,j)+ qqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq2dt2(i,j)= iqq2dt2(i,j)+qqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + iqq4dt2(i,j)= iqq4dt2(i,j)+qqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + iqq3(i,j,k) =0.0 + iqq3dt(i,j,k) =0.0 + iqq3dt2(i,j,k)=0.0 + DO m = 0, 4 + iqq3(i,j,k) = iqq3(i,j,k) + qqp3(i,j,k,m)*z3**REAL(m) + iqq3dt(i,j,k) = iqq3dt(i,j,k)+ qqp3(i,j,k,m)*z3dt*REAL(m) * z3**REAL(m-1) + iqq3dt2(i,j,k)= iqq3dt2(i,j,k)+qqp3(i,j,k,m)*z3dt2*REAL(m) * z3**REAL(m-1) & + + qqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END DO + END DO + END DO + + factor2 = -9.0/16.0 * PI *rho + factor3 = 9.0/16.0 * PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2dt = 0.0 + fqq3dt = 0.0 + fqq2dt2= 0.0 + fqq3dt2= 0.0 + DO i = 1,ncomp + DO j = 1,ncomp + xijmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2 = fqq2 +factor2* xijmt/t/t*(iqq2(i,j)+eij/t*iqq4(i,j)) + fqq2dt= fqq2dt +factor2* xijmt/t/t*(iqq2dt(i,j)-2.0*iqq2(i,j)/t & + + eij/t*iqq4dt(i,j)-3.0*eij/t/t*iqq4(i,j)) + fqq2dt2=fqq2dt2+factor2*xijmt/t/t*(iqq2dt2(i,j)-4.0*iqq2dt(i,j)/t & + + 6.0*iqq2(i,j)/t/t+eij/t*iqq4dt2(i,j) & + - 6.0*eij/t/t*iqq4dt(i,j)+12.0*eij/t**3 *iqq4(i,j)) + DO k = 1,ncomp + xijkmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /sig_ij(i,j)**3 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,k)**3 & + * x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /sig_ij(j,k)**3 + fqq3 = fqq3 +factor3*xijkmt/t**3 *iqq3(i,j,k) + fqq3dt = fqq3dt +factor3*xijkmt/t**3 *(iqq3dt(i,j,k)-3.0*iqq3(i,j,k)/t) + fqq3dt2= fqq3dt2+factor3*xijkmt/t**3 & + * ( iqq3dt2(i,j,k)-6.0*iqq3dt(i,j,k)/t+12.0*iqq3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fqq2 /= 0.0 .AND. fqq3 /= 0.0 ) THEN + fqqdt = fqq2* (fqq2*fqq2dt - 2.0*fqq3*fqq2dt+fqq2*fqq3dt) / (fqq2-fqq3)**2 + fqqdt2 = ( 2.0*fqq2*fqq2dt*fqq2dt +fqq2*fqq2*fqq2dt2 & + - 2.0*fqq2dt**2 *fqq3 -2.0*fqq2*fqq2dt2*fqq3 +fqq2*fqq2*fqq3dt2 ) & + / (fqq2-fqq3)**2 + fqqdt * 2.0*(fqq3dt-fqq2dt)/(fqq2-fqq3) + END IF + +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of dipole-quadruppole term to T (fdqdt) +! ---------------------------------------------------------------------- +fdqdt = 0.0 +fdqdt2= 0.0 +dip_quad = 0 +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,7) /= 0.0) dip_quad = 1 + END DO + myfac(i) = parame(i,3)*parame(i,2)**4 *my0(i) + q_fac(i) = parame(i,3)*parame(i,2)**4 *qq2(i) +END DO + +IF (dip_quad == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + idq2(i,j) = 0.0 + idq4(i,j) = 0.0 + idq2dt(i,j) = 0.0 + idq4dt(i,j) = 0.0 + idq2dt2(i,j)= 0.0 + idq4dt2(i,j)= 0.0 + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + DO m = 0, 4 + idq2(i,j) = idq2(i,j) + dqp2(i,j,m)*z3**REAL(m) + idq4(i,j) = idq4(i,j) + dqp4(i,j,m)*z3**REAL(m) + idq2dt(i,j) = idq2dt(i,j)+ dqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq4dt(i,j) = idq4dt(i,j)+ dqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq2dt2(i,j)= idq2dt2(i,j)+dqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idq4dt2(i,j)= idq4dt2(i,j)+dqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + + DO k = 1,ncomp + idq3(i,j,k) = 0.0 + idq3dt(i,j,k) = 0.0 + idq3dt2(i,j,k)= 0.0 + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + DO m = 0, 4 + idq3(i,j,k) = idq3(i,j,k) + dqp3(i,j,k,m)*z3**REAL(m) + idq3dt(i,j,k)= idq3dt(i,j,k)+ dqp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idq3dt2(i,j,k)= idq3dt2(i,j,k)+dqp3(i,j,k,m)*z3dt2*REAL(m) *z3**REAL(m-1) & + + dqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/4.0 * PI * rho + factor3= PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2dt= 0.0 + fdq3dt= 0.0 + fdq2dt2=0.0 + fdq3dt2=0.0 + DO i = 1,ncomp + DO j = 1,ncomp + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + xijmt = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 + factor2* xijmt/t/t*(idq2(i,j)+eij/t*idq4(i,j)) + fdq2dt= fdq2dt+ factor2* xijmt/t/t*(idq2dt(i,j)-2.0*idq2(i,j)/t & + + eij/t*idq4dt(i,j)-3.0*eij/t/t*idq4(i,j)) + fdq2dt2 = fdq2dt2+factor2*xijmt/t/t*(idq2dt2(i,j)-4.0*idq2dt(i,j)/t & + + 6.0*idq2(i,j)/t/t+eij/t*idq4dt2(i,j) & + - 6.0*eij/t/t*idq4dt(i,j)+12.0*eij/t**3 *idq4(i,j)) + DO k = 1,ncomp + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + xijkmt= x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + * ( myfac(i)*q_fac(j)*myfac(k) & + + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + + fdq3 =fdq3 + factor3*xijkmt/t**3 *idq3(i,j,k) + fdq3dt=fdq3dt+ factor3*xijkmt/t**3 * (idq3dt(i,j,k)-3.0*idq3(i,j,k)/t) + fdq3dt2=fdq3dt2+factor3*xijkmt/t**3 & + *( idq3dt2(i,j,k)-6.0*idq3dt(i,j,k)/t+12.0*idq3(i,j,k)/t/t ) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 /= 0.0 .AND. fdq3 /= 0.0) THEN + fdqdt = fdq2* (fdq2*fdq2dt - 2.0*fdq3*fdq2dt+fdq2*fdq3dt) / (fdq2-fdq3)**2 + fdqdt2 = ( 2.0*fdq2*fdq2dt*fdq2dt +fdq2*fdq2*fdq2dt2 & + - 2.0*fdq2dt**2 *fdq3 -2.0*fdq2*fdq2dt2*fdq3 +fdq2*fdq2*fdq3dt2 ) & + / (fdq2-fdq3)**2 + fdqdt * 2.0*(fdq3dt-fdq2dt)/(fdq2-fdq3) + END IF + +END IF +! ---------------------------------------------------------------------- + + + + +! ---------------------------------------------------------------------- +! total derivative of fres/kT to temperature +! ---------------------------------------------------------------------- + +df_dt = fhsdt + fchdt + fdspdt + fhbdt + fdddt + fqqdt + fdqdt + + + +! ---------------------------------------------------------------------- +! second derivative of fres/kT to T +! ---------------------------------------------------------------------- + +df_dt2 = fhsdt2 +fchdt2 +fdspdt2 +fhbdt2 +fdddt2 +fqqdt2 +fdqdt2 + + + +! ---------------------------------------------------------------------- +! ------ derivatives of fres/kt to density and to T -------------------- +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! the analytic derivative of fres/kT to (density and T) (df_drdt) +! is still missing. A numerical differentiation is implemented. +! ---------------------------------------------------------------------- +fact = 1.0 +dist = t * 100.E-5 * fact +t_tmp = t +rho_0 = rho + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr1 = pges / (eta*rho_0*(kbol*t)/1.E-30) +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr2 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr3 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr4 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + + +df_drdt = (-fdr4+8.0*fdr3-8.0*fdr2+fdr1)/(12.0*dist) + + + + + +! ---------------------------------------------------------------------- +! thermodynamic properties +! ---------------------------------------------------------------------- + +s_res = ( - df_dt *t - fres )*RGAS + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS *t +cv_res = - ( t*df_dt2 + 2.0*df_dt ) * RGAS*t +cp_res = cv_res - RGAS + RGAS*(zges +eta*t*df_drdt)**2 & + / (1.0 + 2.0*eta*dfdr +eta**2 *ddfdrdr) + +! write (*,*) 'df_... ', df_dt,df_dt2 +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h,cv,cp', h_res,cv_res,cp_res + + +END SUBROUTINE H_EOS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE H_EOS_num +! +! This subroutine calculates enthalpies and heat capacities (cp) by +! taking numerical derivatieves. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS_num +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: df_dt, df_dtdt, df_drdt, dfdr, ddfdrdr + +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +df_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +df_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +s_res = (- df_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*df_dtdt + 2.0*df_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_1 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_2 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_3 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_4 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + +dfdr = pges / (eta*rho_0*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho_0*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + +df_drdt = ( -f_4 +8.0*f_3 -8.0*f_2 +f_1) / (12.0*dist) + +cp_res = cv_res - RGAS +RGAS*(zges+eta*t*df_drdt)**2 & + * 1.0/(1.0 + 2.0*eta*dfdr + eta**2 *ddfdrdr) + +! write (*,*) 'n',df_dt,df_dtdt +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h, cv', h_res, cv_res +! write (*,*) h_res - t*s_res +! write (*,*) cv_res,cp_res,eta +! pause + +END SUBROUTINE H_EOS_num + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE DENSITY_ITERATION +!! +!! iterates the density until the calculated pressure 'pges' is equal to +!! the specified pressure 'p'. A Newton-scheme is used for determining +!! the root to the objective function f(eta) = (pges / p ) - 1.0. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE DENSITY_ITERATION +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, start, max_i + REAL :: eta_iteration + REAL :: error, dydx, acc_i, delta_eta +! ---------------------------------------------------------------------- + + +IF ( densav(phas) /= 0.0 .AND. eta_start == denold(phas) ) THEN + denold(phas) = eta_start + eta_start = densav(phas) +ELSE + denold(phas) = eta_start + densav(phas) = eta_start +END IF + + +acc_i = 1.d-9 +max_i = 30 +density_error(:) = 0.0 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- +iterate_density: DO + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = (pges / p ) - 1.0 + + ! --- instable region correction ------------------------------------- + IF ( pgesdz < 0.0 .AND. i < max_i ) THEN + IF ( error > 0.0 .AND. pgesd2 > 0.0 ) THEN ! no liquid density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) > 0.0 ) eta_iteration = 0.001 ! no solution possible + IF ( ((pges/p ) -1.0) <=0.0 ) eta_iteration = eta_iteration * 1.1 ! no solution found so far + ELSE IF ( error < 0.0 .AND. pgesd2 < 0.0 ) THEN ! no vapor density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) < 0.0 ) eta_iteration = 0.5 ! no solution possible + IF ( ((pges/p ) -1.0) >=0.0 ) eta_iteration = eta_iteration * 0.9 ! no solution found so far + ELSE + eta_iteration = (eta_iteration + eta_start) / 2.0 + IF (eta_iteration == eta_start) eta_iteration = eta_iteration + 0.2 + END IF + CYCLE iterate_density + END IF + + + dydx = pgesdz/p + delta_eta = error/ dydx + IF ( delta_eta > 0.05 ) delta_eta = 0.05 + IF ( delta_eta < -0.05 ) delta_eta = -0.05 + + eta_iteration = eta_iteration - delta_eta + + IF (eta_iteration > 0.9) eta_iteration = 0.6 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + start = 1 + + IF ( ABS(error*p/pgesdz) < 1.d-12 ) start = 0 + IF ( ABS(error) < acc_i ) start = 0 + IF ( i > max_i ) THEN + start = 0 + density_error(phas) = ABS( error ) + ! write (*,*) 'density iteration failed' + END IF + + IF (start /= 1) EXIT iterate_density + +END DO iterate_density + +eta = eta_iteration + +IF ((eta > 0.3 .AND. densav(phas) > 0.3) .OR. & + (eta < 0.1 .AND. densav(phas) < 0.1)) densav(phas) = eta + +END SUBROUTINE DENSITY_ITERATION + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE F_EOS +!! +!! calculates the Helmholtz energy f/kT. The input to the subroutine is +!! (T,eta,x), where eta is the packing fraction. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE F_EOS +! + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean ! ,lij(nc,nc) + REAL :: I1,I2, c1_con + REAL :: fhs, fdsp, fhc + + LOGICAL :: assoc + INTEGER :: ass_cnt,max_eval + REAL :: delta(nc,nc,nsite,nsite) + REAL :: mx_itr(nc,nsite), err_sum, sum, attenu, tol, fhb + REAL :: ass_s1, ass_s2 + + REAL :: fdd, fqq, fdq +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t / ( PI / 6.0 ) +zms = 1.0 - eta + +! m_mean2 = 0.0 +! lij(1,2) = -0.05 +! lij(2,1) = lij(1,2) +! DO i = 1, ncomp +! DO j = 1, ncomp +! m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : hard sphere contribution +! ---------------------------------------------------------------------- +fhs= m_mean*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + +! ---------------------------------------------------------------------- +! Helmholtz energy : chain term +! ---------------------------------------------------------------------- +fhc = 0.0 +DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : PC-SAFT dispersion contribution +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + +! ---------------------------------------------------------------------- +! Helmholtz energy : SAFT (Chen, Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdsp = 0.0 + DO n = 1,4 + DO m = 1,9 + fdsp = fdsp + dnm(n,m) * (um/t)**REAL(n) *(eta/tau)**REAL(m) + END DO + END DO + fdsp = m_mean * fdsp + +END IF + + +! ---------------------------------------------------------------------- +! TPT-1-association according to Chapman et al. +! ---------------------------------------------------------------------- +fhb = 0.0 +assoc = .false. +DO i = 1, ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + IF (mx(i,k) == 0.0) mx(i,k) = 1.0 ! Initialize mx(i,j) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l) = gij(i,j) * ass_d(i,j,k,l) + END DO + END DO + END DO + END DO + + +! --- constants for iteration ------------------------------------------ + attenu = 0.70 + tol = 1.d-10 + IF (eta < 0.2) tol = 1.d-12 + IF (eta < 0.01) tol = 1.d-13 + max_eval = 200 + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum = sum + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,j,k,l) +! if (ass_cnt == 1) write (*,*) j,l,x(j), mx(j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum * rho) +! if (ass_cnt == 1) write (*,*) 'B',ass_cnt,sum, rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF (ass_cnt >= max_eval) WRITE(*,'(a,2G15.7)') 'F_EOS: Max_eval violated (mx) Err_Sum = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG( mx(i,k) ) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1 / 2.0 ) + END DO + +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! polar terms +! ---------------------------------------------------------------------- + CALL F_POLAR ( fdd, fqq, fdq ) + + +! ---------------------------------------------------------------------- +! resid. Helmholtz energy f/kT +! ---------------------------------------------------------------------- +fres = fhs + fhc + fdsp + fhb + fdd + fqq + fdq + +tfr= fres + +END SUBROUTINE F_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE EOS_NUMERICAL_DERIVATIVES, ONLY: ideal_gas, hard_sphere, chain_term, & + disp_term, hb_term, LC_term, branch_term, & + II_term, ID_term, subtract1, subtract2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + +!-----local variables------------------------------------------------- + INTEGER :: i, j + REAL :: m_mean2 + REAL :: fid, fhs, fdsp, fhc + REAL :: fhb, fdd, fqq, fdq + REAL :: fhend, fcc + REAL :: fbr, flc + REAL :: fref + + REAL :: eps_kij, k_kij +!--------------------------------------------------------------------- + +eps_kij = 0.0 +k_kij = 0.0 + +fid = 0.0 +fhs = 0.0 +fhc = 0.0 +fdsp= 0.0 +fhb = 0.0 +fdd = 0.0 +fqq = 0.0 +fdq = 0.0 +fcc = 0.0 +fbr = 0.0 +flc = 0.0 + + +CALL PERTURBATION_PARAMETER + +! ---------------------------------------------------------------------- +! overwrite the standard mixing rules by those published by Tang & Gross +! using an additional lij parameter +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*mseg(i)/t*( x(j)*mseg(j) & + *sig_ij(i,j)*(uij(i,i)*uij(j,j))**(1.0/6.0) )**3 *lij(i,j) + END DO +END DO + + +! ---------------------------------------------------------------------- +! a non-standard mixing rule scaling the hard-sphere term +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! (uses an additional lij parameter) +! ---------------------------------------------------------------------- +m_mean2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + ! m_mean2=m_mean2+x(i)*(x(j)*((mseg(i)+mseg(j))*0.5)**(1.0/3.0) *lij(i,j) )**3 + END DO +END DO + +! --- ideal gas contribution ------------------------------------------- +IF ( ideal_gas == 'yes' ) CALL F_IDEAL_GAS ( fid ) +! ---------------------------------------------------------------------- + +! --- hard-sphere contribution ----------------------------------------- +IF ( hard_sphere == 'CSBM' ) CALL F_HARD_SPHERE ( m_mean2, fhs ) +! ---------------------------------------------------------------------- + +! -- chain term -------------------------------------------------------- +IF ( chain_term == 'TPT1' ) CALL F_CHAIN_TPT1 ( fhc ) +IF ( chain_term == 'TPT2' ) CALL F_CHAIN_TPT_D ( fhc ) +IF ( chain_term == 'HuLiu' ) CALL F_CHAIN_HU_LIU ( fhc ) +IF ( chain_term == 'HuLiu_rc' ) CALL F_CHAIN_HU_LIU_RC ( fhs, fhc ) +!!IF ( chain_term == 'SPT' ) CALL F_SPT ( fhs, fhc ) +IF ( chain_term == 'SPT' ) WRITE(*,*) 'SPT NOT INCLUDED YET' +! ---------------------------------------------------------------------- + +! --- dispersive attraction -------------------------------------------- +IF ( disp_term == 'PC-SAFT') CALL F_DISP_PCSAFT ( fdsp ) +IF ( disp_term == 'CK') CALL F_DISP_CKSAFT ( fdsp ) +IF ( disp_term(1:2) == 'PT') CALL F_pert_theory ( fdsp ) +! ---------------------------------------------------------------------- + +! --- H-bonding contribution / Association ----------------------------- +IF ( hb_term == 'TPT1_Chap') CALL F_ASSOCIATION( eps_kij, k_kij, fhb ) +! ---------------------------------------------------------------------- + +! --- polar terms ------------------------------------------------------ + CALL F_POLAR ( fdd, fqq, fdq ) +! ---------------------------------------------------------------------- + +! --- ion-dipole term -------------------------------------------------- +IF ( ID_term == 'TBH') CALL F_ION_DIPOLE_TBH ( fhend ) +! ---------------------------------------------------------------------- + +! --- ion-ion term ----------------------------------------------------- +IF ( II_term == 'primMSA') CALL F_ION_ION_PrimMSA ( fcc ) +IF ( II_term == 'nprMSA') CALL F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! ---------------------------------------------------------------------- + +! --- liquid-crystal term ---------------------------------------------- +IF ( LC_term == 'MSaupe') CALL F_LC_MayerSaupe ( flc ) + +!!IF ( LC_term == 'OVL') fref = fhs + fhc +IF ( LC_term == 'OVL') WRITE(*,*) 'OVL NOT INCLUDED YET' +!IF ( LC_term == 'OVL') CALL F_LC_OVL ( fref, flc ) +!! IF ( LC_term == 'SPT') fref = fhs + fhc +IF ( LC_term == 'SPT') WRITE(*,*) 'SPT NOT INCLUDED YET' +!!IF ( LC_term == 'SPT') CALL F_LC_SPT( fref, flc ) +! ---------------------------------------------------------------------- + +! ====================================================================== +! SUBTRACT TERMS (local density approximation) FOR DFT +! ====================================================================== + +!IF ( subtract1 == '1PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract1 == '2PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract2 =='ITTpolar') CALL F_local_ITT_polar ( fdd ) +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! residual Helmholtz energy F/(NkT) +! ---------------------------------------------------------------------- +fres = fid + fhs + fhc + fdsp + fhb + fdd + fqq + fdq + fcc + flc + +tfr = 0.0 + +END SUBROUTINE F_NUMERICAL + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE P_EOS +! +! calculates the pressure in units (Pa). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_EOS +! +! ---------------------------------------------------------------------- + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + INTEGER :: ass_cnt,max_eval + LOGICAL :: assoc + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean + REAL :: zges, zgesdz, zgesd2, zgesd3 + REAL :: zhs, zhsdz, zhsd2, zhsd3 + REAL :: zhc, zhcdz, zhcd2, zhcd3 + REAL, DIMENSION(nc,nc) :: dgijdz, dgijd2, dgijd3, dgijd4 + REAL :: zdsp, zdspdz, zdspd2, zdspd3 + REAL :: c1_con, c2_con, c3_con, c4_con, c5_con + REAL :: I2, edI1dz, edI2dz, edI1d2, edI2d2 + REAL :: edI1d3, edI2d3, edI1d4, edI2d4 + REAL :: fdspdz,fdspd2 + REAL :: zhb, zhbdz, zhbd2, zhbd3 + REAL, DIMENSION(nc,nc,nsite,nsite) :: delta, dq_dz, dq_d2, dq_d3, dq_d4 + REAL, DIMENSION(nc,nsite) :: mx_itr, dmx_dz, ndmxdz, dmx_d2, ndmxd2 + REAL, DIMENSION(nc,nsite) :: dmx_d3, ndmxd3, dmx_d4, ndmxd4 + REAL :: err_sum, sum0, sum1, sum2, sum3, sum4, attenu, tol + REAL :: sum_d1, sum_d2, sum_d3, sum_d4 + REAL :: zdd, zddz, zddz2, zddz3 + REAL :: zqq, zqqz, zqqz2, zqqz3 + REAL :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t/(PI/6.0) +zms = 1.0 -eta + +! m_mean2=0.0 +! lij(1,2)= -0.050 +! lij(2,1)=lij(1,2) +! DO i =1,ncomp +! DO j =1,ncomp +! m_mean2=m_mean2+x(i)*x(j) * (mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij , and derivatives +! dgijdz=d(gij)/d(eta) and dgijd2 = dd(gij)/d(eta)**2 +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + ! j=i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + dgijd2(i,j) = 2.0/zms**3 & + + 6.0*dij_ab(i,j)*z2/z3/zms**4 *(2.0+z3) & + + (2.0*dij_ab(i,j)*z2/z3)**2 /zms**5 *(1.0+4.0*z3+z3*z3) + dgijd3(i,j) = 6.0/zms**4 & + + 18.0*dij_ab(i,j)*z2/z3/zms**5 *(3.0+z3) & + + 12.0*(dij_ab(i,j)*z2/z3/zms**3 )**2 *(3.0+6.0*z3+z3*z3) + dgijd4(i,j) = 24.0/zms**5 & + + 72.0*dij_ab(i,j)*z2/z3/zms**6 *(4.0+z3) & + + 48.0*(dij_ab(i,j)*z2/z3)**2 /zms**7 *(6.0+8.0*z3+z3*z3) + END DO +END DO + + +! ---------------------------------------------------------------------- +! p : hard sphere contribution +! ---------------------------------------------------------------------- +zhs = m_mean* ( z3/zms + 3.0*z1*z2/z0/zms/zms + z2**3 /z0*(3.0-z3)/zms**3 ) +zhsdz = m_mean*( 1.0/zms/zms + 3.0*z1*z2/z0/z3*(1.0+z3)/zms**3 & + + 6.0*z2**3 /z0/z3/zms**4 ) +zhsd2 = m_mean*( 2.0/zms**3 + 6.0*z1*z2/z0/z3*(2.0+z3)/zms**4 & + + 6.0*z2**3 /z0/z3/z3*(1.0+3.0*z3)/zms**5 ) +zhsd3 = m_mean*( 6.0/zms**4 + 18.0*z1*z2/z0/z3*(3.0+z3)/zms**5 & + + 24.0*z2**3 /z0/z3/z3*(2.0+3.0*z3)/zms**6 ) + + +! ---------------------------------------------------------------------- +! p : chain term +! ---------------------------------------------------------------------- +zhc = 0.0 +zhcdz = 0.0 +zhcd2 = 0.0 +zhcd3 = 0.0 +DO i= 1, ncomp + zhc = zhc + x(i)*(1.0-mseg(i))*eta/gij(i,i)* dgijdz(i,i) + zhcdz = zhcdz + x(i)*(1.0-mseg(i)) *(-eta*(dgijdz(i,i)/gij(i,i))**2 & + + dgijdz(i,i)/gij(i,i) + eta/gij(i,i)*dgijd2(i,i)) + zhcd2 = zhcd2 + x(i)*(1.0-mseg(i)) & + *( 2.0*eta*(dgijdz(i,i)/gij(i,i))**3 & + -2.0*(dgijdz(i,i)/gij(i,i))**2 & + -3.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) & + +2.0/gij(i,i)*dgijd2(i,i) +eta/gij(i,i)*dgijd3(i,i) ) + zhcd3 = zhcd3 + x(i)*(1.0-mseg(i)) *( 6.0*(dgijdz(i,i)/gij(i,i))**3 & + -6.0*eta*(dgijdz(i,i)/gij(i,i))**4 & + +12.0*eta/gij(i,i)**3 *dgijdz(i,i)**2 *dgijd2(i,i) & + -9.0/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) +3.0/gij(i,i)*dgijd3(i,i) & + -3.0*eta*(dgijd2(i,i)/gij(i,i))**2 & + -4.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd3(i,i) & + +eta/gij(i,i)*dgijd4(i,i) ) +END DO + +! ---------------------------------------------------------------------- +! p : PC-SAFT dispersion contribution +! note: edI1dz is equal to d(eta*I1)/d(eta), analogous for edI2dz +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I2 = 0.0 + edI1dz = 0.0 + edI2dz = 0.0 + edI1d2 = 0.0 + edI2d2 = 0.0 + edI1d3 = 0.0 + edI2d3 = 0.0 + edI1d4 = 0.0 + edI2d4 = 0.0 + DO m=0,6 + I2 = I2 + bpar(m)*z3**REAL(m) + edI1dz= edI1dz+apar(m)*REAL(m+1)*z3**REAL(m) + edI2dz= edI2dz+bpar(m)*REAL(m+1)*z3**REAL(m) + edI1d2= edI1d2+apar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI2d2= edI2d2+bpar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI1d3= edI1d3+apar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI2d3= edI2d3+bpar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI1d4= edI1d4+apar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + edI2d4= edI2d4+bpar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + c2_con= - c1_con*c1_con & + *(m_mean*(-4.0*eta**2 +20.0*eta+8.0)/zms**5 + (1.0 - m_mean) & + *(2.0*eta**3 +12.0*eta**2 -48.0*eta+40.0) & + /(zms*(2.0-eta))**3 ) + c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( m_mean*(-12.0*eta**2 +72.0*eta+60.0)/zms**6 & + + (1.0 - m_mean) & + *(-6.0*eta**4 -48.0*eta**3 +288.0*eta**2 & + -480.0*eta+264.0) /(zms*(2.0-eta))**4 ) + c4_con= 6.0*c2_con*c3_con/c1_con -6.0*c2_con**3 /c1_con**2 & + - c1_con*c1_con & + *( m_mean*(-48.0*eta**2 +336.0*eta+432.0)/zms**7 & + + (1.0 - m_mean) & + *(24.0*eta**5 +240.0*eta**4 -1920.0*eta**3 & + +4800.0*eta**2 -5280.0*eta+2208.0) /(zms*(2.0-eta))**5 ) + c5_con= 6.0*c3_con**2 /c1_con - 36.0*c2_con**2 /c1_con**2 *c3_con & + + 8.0*c2_con/c1_con*c4_con+24.0*c2_con**4 /c1_con**3 & + - c1_con*c1_con & + *( m_mean*(-240.0*eta**2 +1920.0*eta+3360.0)/zms**8 & + + (1.0 - m_mean) & + *(-120.0*eta**6 -1440.0*eta**5 +14400.0*eta**4 & + -48000.0*eta**3 +79200.0*eta**2 -66240.0*eta+22560.0) & + /(zms*(2.0-eta))**6 ) + + zdsp = - 2.0*PI*rho*edI1dz*order1 & + - PI*rho*order2*m_mean*(c2_con*I2*eta + c1_con*edI2dz) + zdspdz= zdsp/eta - 2.0*PI*rho*edI1d2*order1 & + - PI*rho*order2*m_mean*(c3_con*I2*eta & + + 2.0*c2_con*edI2dz + c1_con*edI2d2) + zdspd2= -2.0*zdsp/eta/eta +2.0*zdspdz/eta & + - 2.0*PI*rho*edI1d3*order1 - PI*rho*order2*m_mean*(c4_con*I2*eta & + + 3.0*c3_con*edI2dz +3.0*c2_con*edI2d2 +c1_con*edI2d3) + zdspd3= 6.0*zdsp/eta**3 -6.0*zdspdz/eta/eta & + + 3.0*zdspd2/eta - 2.0*PI*rho*edI1d4*order1 & + - PI*rho*order2*m_mean*(c5_con*I2*eta & + + 4.0*c4_con*edI2dz +6.0*c3_con*edI2d2 & + + 4.0*c2_con*edI2d3 + c1_con*edI2d4) + + +! ---------------------------------------------------------------------- +! p : SAFT (Chen & Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdspdz = 0.0 + fdspd2 = 0.0 + DO n = 1,4 + DO m = 1,9 + fdspdz = fdspdz + m_mean/tau * dnm(n,m) * (um/t)**REAL(n) *REAL(m)*(eta/tau)**REAL(m-1) + END DO + DO m= 2,9 + fdspd2= fdspd2 + m_mean/tau * dnm(n,m)*(um/t)**REAL(n) *REAL(m)*REAL(m-1) & + * (eta/tau)**REAL(m-2) * 1.0/tau + END DO + END DO + zdsp = eta * fdspdz + zdspdz = (2.0*fdspdz + eta*fdspd2) - zdsp/z3 + +END IF +! --- end of dispersion contribution ----------------------------------- + + +! ---------------------------------------------------------------------- +! p: TPT-1-association accord. to Chapman et al. +! ---------------------------------------------------------------------- +zhb = 0.0 +zhbdz = 0.0 +zhbd2 = 0.0 +zhbd3 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO j = 1, ncomp + DO i = 1, nhb_typ(j) + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + delta(j,k,i,l) = gij(j,k) * ass_d(j,k,i,l) + dq_dz(j,k,i,l) = dgijdz(j,k) * ass_d(j,k,i,l) + dq_d2(j,k,i,l) = dgijd2(j,k) * ass_d(j,k,i,l) + dq_d3(j,k,i,l) = dgijd3(j,k) * ass_d(j,k,i,l) + dq_d4(j,k,i,l) = dgijd4(j,k) * ass_d(j,k,i,l) + END DO + END DO + END DO + END DO + +! --- constants for iteration ------------------------------------------ + attenu = 0.7 + tol = 1.d-10 + IF ( eta < 0.2 ) tol = 1.d-12 + IF ( eta < 0.01 ) tol = 1.d-13 + IF ( eta < 1.E-6) tol = 1.d-15 + max_eval = 1000 + +! --- initialize mx(i,j) ----------------------------------------------- + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + mx(i,j) = 1.0 + dmx_dz(i,j) = 0.0 + dmx_d2(i,j) = 0.0 + dmx_d3(i,j) = 0.0 + dmx_d4(i,j) = 0.0 + END DO + END DO + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + err_sum = tol + 1.0 + DO WHILE ( err_sum > tol .AND. ass_cnt <= max_eval) + ass_cnt = ass_cnt + 1 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + sum0 = 0.0 + sum1 = 0.0 + sum2 = 0.0 + sum3 = 0.0 + sum4 = 0.0 + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + sum0 =sum0 +x(k)*nhb_no(k,l)* mx(k,l)* delta(i,k,j,l) + sum1 =sum1 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_dz(i,k,j,l) & + + dmx_dz(k,l)* delta(i,k,j,l)) + sum2 =sum2 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d2(i,k,j,l) & + + 2.0*dmx_dz(k,l)* dq_dz(i,k,j,l) & + + dmx_d2(k,l)* delta(i,k,j,l)) + sum3 =sum3 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d3(i,k,j,l) & + + 3.0*dmx_dz(k,l)* dq_d2(i,k,j,l) & + + 3.0*dmx_d2(k,l)* dq_dz(i,k,j,l) & + + dmx_d3(k,l)* delta(i,k,j,l)) + sum4 =sum4 + x(k)*nhb_no(k,l)*( mx(k,l)* dq_d4(i,k,j,l) & + + 4.0*dmx_dz(k,l)* dq_d3(i,k,j,l) & + + 6.0*dmx_d2(k,l)* dq_d2(i,k,j,l) & + + 4.0*dmx_d3(k,l)* dq_dz(i,k,j,l) & + + dmx_d4(k,l)* delta(i,k,j,l)) + END DO + END DO + mx_itr(i,j)= 1.0 / (1.0 + sum0 * rho) + ndmxdz(i,j)= -(mx_itr(i,j)*mx_itr(i,j))* (sum0/z3t +sum1*rho) + ndmxd2(i,j)= + 2.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxdz(i,j) & + - (mx_itr(i,j)*mx_itr(i,j)) * (2.0/z3t*sum1 + rho*sum2) + ndmxd3(i,j)= - 6.0/mx_itr(i,j)**2 *ndmxdz(i,j)**3 & + + 6.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd2(i,j) - mx_itr(i,j)*mx_itr(i,j) & + * (3.0/z3t*sum2 + rho*sum3) + ndmxd4(i,j)= 24.0/mx_itr(i,j)**3 *ndmxdz(i,j)**4 & + -36.0/mx_itr(i,j)**2 *ndmxdz(i,j)**2 *ndmxd2(i,j) & + +6.0/mx_itr(i,j)*ndmxd2(i,j)**2 & + +8.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd3(i,j) - mx_itr(i,j)**2 & + *(4.0/z3t*sum3 + rho*sum4) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,j) - mx(i,j)) & + + ABS(ndmxdz(i,j) - dmx_dz(i,j)) + ABS(ndmxd2(i,j) - dmx_d2(i,j)) + mx(i,j) = mx_itr(i,j)*attenu + mx(i,j) * (1.0-attenu) + dmx_dz(i,j) = ndmxdz(i,j)*attenu + dmx_dz(i,j) * (1.0-attenu) + dmx_d2(i,j) = ndmxd2(i,j)*attenu + dmx_d2(i,j) * (1.0-attenu) + dmx_d3(i,j) = ndmxd3(i,j)*attenu + dmx_d3(i,j) * (1.0-attenu) + dmx_d4(i,j) = ndmxd4(i,j)*attenu + dmx_d4(i,j) * (1.0-attenu) + END DO + END DO + END DO + + IF ( ass_cnt >= max_eval .AND. err_sum > SQRT(tol) ) THEN + WRITE (*,'(a,2G15.7)') 'P_EOS: Max_eval violated (mx) Err_Sum= ',err_sum,tol + ! stop + END IF + + + ! --- calculate the hydrogen-bonding contribution -------------------- + DO i = 1, ncomp + sum_d1 = 0.0 + sum_d2 = 0.0 + sum_d3 = 0.0 + sum_d4 = 0.0 + DO j = 1, nhb_typ(i) + sum_d1= sum_d1 +nhb_no(i,j)* dmx_dz(i,j)*(1.0/mx(i,j)-0.5) + sum_d2= sum_d2 +nhb_no(i,j)*(dmx_d2(i,j)*(1.0/mx(i,j)-0.5) & + -(dmx_dz(i,j)/mx(i,j))**2 ) + sum_d3= sum_d3 +nhb_no(i,j)*(dmx_d3(i,j)*(1.0/mx(i,j)-0.5) & + -3.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d2(i,j) + 2.0*(dmx_dz(i,j)/mx(i,j))**3 ) + sum_d4= sum_d4 +nhb_no(i,j)*(dmx_d4(i,j)*(1.0/mx(i,j)-0.5) & + -4.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d3(i,j) & + + 12.0/mx(i,j)**3 *dmx_dz(i,j)**2 *dmx_d2(i,j) & + - 3.0/mx(i,j)**2 *dmx_d2(i,j)**2 - 6.0*(dmx_dz(i,j)/mx(i,j))**4 ) + END DO + zhb = zhb + x(i) * eta * sum_d1 + zhbdz = zhbdz + x(i) * eta * sum_d2 + zhbd2 = zhbd2 + x(i) * eta * sum_d3 + zhbd3 = zhbd3 + x(i) * eta * sum_d4 + END DO + zhbdz = zhbdz + zhb/eta + zhbd2 = zhbd2 + 2.0/eta*zhbdz-2.0/eta**2 *zhb + zhbd3 = zhbd3 - 6.0/eta**2 *zhbdz+3.0/eta*zhbd2 + 6.0/eta**3 *zhb +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! p: polar terms +! ---------------------------------------------------------------------- +CALL P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) + + +! ---------------------------------------------------------------------- +! compressibility factor z and total p +! as well as derivatives d(z)/d(eta) and d(p)/d(eta) with unit [Pa] +! ---------------------------------------------------------------------- +zges = 1.0 + zhs + zhc + zdsp + zhb + zdd + zqq + zdq +zgesdz = zhsdz + zhcdz + zdspdz + zhbdz + zddz + zqqz + zdqz +zgesd2 = zhsd2 + zhcd2 + zdspd2 + zhbd2 + zddz2 +zqqz2+zdqz2 +zgesd3 = zhsd3 + zhcd3 + zdspd3 + zhbd3 + zddz3 +zqqz3+zdqz3 + +pges = zges *rho *(kbol*t)/1.d-30 +pgesdz = ( zgesdz*rho + zges*rho/z3 )*(kbol*t)/1.d-30 +pgesd2 = ( zgesd2*rho + 2.0*zgesdz*rho/z3 )*(kbol*t)/1.d-30 +pgesd3 = ( zgesd3*rho + 3.0*zgesd2*rho/z3 )*(kbol*t)/1.d-30 + +END SUBROUTINE P_EOS + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(OUT) :: fdd_rk, fqq_rk, fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd_rk = 0.0 + fqq_rk = 0.0 + fdq_rk = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) + ! IF (dd_term == 'SF') CALL PHI_DD_SAAGER_FISCHER( k ) + + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL PHI_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL PHI_QQ_GROSS( k, z3_rk, fqq_rk ) + + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) + + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE PHI_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdd_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdd2, fdd3, fdd2x, fdd3x + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd4, Idd2x, Idd4x + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3x +! ---------------------------------------------------------------------- + + + fdd_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2x(i,j) = 0.0 + Idd4x(i,j) = 0.0 + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + DO m=0,4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m)*z3**m + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m)*z3**m + Idd2x(i,j) =Idd2x(i,j)+ ddp2(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + Idd4x(i,j) =Idd4x(i,j)+ ddp4(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Idd3(i,j,l) = 0.0 + Idd3x(i,j,l) = 0.0 + IF (parame(l,6) /= 0.0) THEN + DO m=0,4 + Idd3(i,j,l) =Idd3(i,j,l) +ddp3(i,j,l,m)*z3**m + Idd3x(i,j,l)=Idd3x(i,j,l)+ddp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -PI + factor3= -4.0/3.0*PI**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2x = 0.0 + fdd3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(i,k)**3 + eij = (parame(i,3)*parame(k,3))**0.5 + fdd2x = fdd2x + factor2*xijfa_x*( Idd2(i,k) + eij/t*Idd4(i,k) ) + DO j = 1, ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,j)**3 + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j) ) + fdd2x =fdd2x +factor2*xijfa*(Idd2x(i,j)+eij/t*Idd4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t/sig_ij(i,j) & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,k) & + *3.0* uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(j,k) + fdd3x=fdd3x+factor3*xijkf_x*Idd3(i,j,k) + DO l=1,ncomp + IF (parame(l,6) /= 0.0) THEN + xijkfa= x(i)*rho*uij(i,i)/t*my2dd(i)*sig_ij(i,i)**3 & + *x(j)*rho*uij(j,j)/t*my2dd(j)*sig_ij(j,j)**3 & + *x(l)*rho*uij(l,l)/t*my2dd(l)*sig_ij(l,l)**3 & + /sig_ij(i,j)/sig_ij(i,l)/sig_ij(j,l) + fdd3 =fdd3 + factor3 * xijkfa *Idd3(i,j,l) + fdd3x =fdd3x + factor3 * xijkfa *Idd3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2x /= 0.0 .AND. fdd3x /= 0.0)THEN + + fdd_rk = fdd2* (fdd2*fdd2x - 2.0*fdd3*fdd2x+fdd2*fdd3x) / (fdd2-fdd3)**2 + + END IF + +END SUBROUTINE PHI_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_QQ_GROSS( k, z3_rk, fqq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fqq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fqq2, fqq3, fqq2x, fqq3x + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4, Iqq2x, Iqq4x + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3x +! ---------------------------------------------------------------------- + + + fqq_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_QQ_GROSS: do not use dimensionless units' + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2x(i,j) = 0.0 + Iqq4x(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m) * z3**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m) * z3**m + Iqq2x(i,j) = Iqq2x(i,j) + qqp2(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + Iqq4x(i,j) = Iqq4x(i,j) + qqp4(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Iqq3(i,j,l) = 0.0 + Iqq3x(i,j,l) = 0.0 + IF (parame(l,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,l) = Iqq3(i,j,l) + qqp3(i,j,l,m)*z3**m + Iqq3x(i,j,l) = Iqq3x(i,j,l) + qqp3(i,j,l,m)*REAL(m) *z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/16.0*PI + factor3= 9.0/16.0*PI**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2x = 0.0 + fqq3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(i,k)**7.0 + eij = (parame(i,3)*parame(k,3))**0.5 + fqq2x =fqq2x +factor2*xijfa_x*(Iqq2(i,k)+eij/t*Iqq4(i,k)) + DO j=1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2x =fqq2x +factor2*xijfa*(Iqq2x(i,j)+eij/t*Iqq4x(i,j)) + ! ------------------ + xijkf_x=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *3.0* uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3x = fqq3x + factor3*xijkf_x*Iqq3(i,j,k) + DO l = 1, ncomp + IF (parame(l,7) /= 0.0) THEN + xijkfa=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,l)**3 & + *x(l)*rho*uij(l,l)*qq2(l)*sig_ij(l,l)**5 /t/sig_ij(j,l)**3 + fqq3 =fqq3 + factor3 * xijkfa *Iqq3(i,j,l) + fqq3x =fqq3x + factor3 * xijkfa *Iqq3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2x /= 0.0 .AND. fqq3x /= 0.0) THEN + fqq_rk = fqq2* (fqq2*fqq2x - 2.0*fqq3*fqq2x+fqq2*fqq3x) / (fqq2-fqq3)**2 + END IF + +END SUBROUTINE PHI_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdq2, fdq3, fdq2x, fdq3x + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4, Idq2x, Idq4x + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3x +! ---------------------------------------------------------------------- + + fdq_rk = 0.0 + z3 = eta + DO i=1,ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2x(i,j) = 0.0 + Idq4x(i,j) = 0.0 + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*z3**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*z3**m + Idq2x(i,j) = Idq2x(i,j) + dqp2(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + Idq4x(i,j) = Idq4x(i,j) + dqp4(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + END DO + DO l = 1, ncomp + Idq3(i,j,l) = 0.0 + Idq3x(i,j,l) = 0.0 + DO m = 0, 4 + Idq3(i,j,l) =Idq3(i,j,l) +dqp3(i,j,l,m)*z3**m + Idq3x(i,j,l)=Idq3x(i,j,l)+dqp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END DO + END DO + END DO + + factor2= -9.0/4.0*PI + factor3= PI**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2x = 0.0 + fdq3x = 0.0 + DO i = 1, ncomp + xijfa_x = x(i)*rho*( myfac(i)*q_fac(k) + myfac(k)*q_fac(i) ) / sig_ij(i,k)**5 + eij = (parame(i,3)*parame(k,3))**0.5 + fdq2x =fdq2x +factor2*xijfa_x*(Idq2(i,k)+eij/t*Idq4(i,k)) + DO j=1,ncomp + xijfa =x(i)*rho*myfac(i) * x(j)*rho*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2x =fdq2x +factor2*xijfa*(Idq2x(i,j) +eij/t*Idq4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*x(j)*rho/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(k)*myfac(j) & + + myfac(k)*q_fac(i)*myfac(j) +myfac(i)*q_fac(j)*q_fac(k)*1.1937350 & + +myfac(i)*q_fac(k)*q_fac(j)*1.193735 & + +myfac(k)*q_fac(i)*q_fac(j)*1.193735 ) + fdq3x = fdq3x + factor3*xijkf_x*Idq3(i,j,k) + DO l = 1, ncomp + xijkfa=x(i)*rho*x(j)*rho*x(l)*rho/(sig_ij(i,j)*sig_ij(i,l)*sig_ij(j,l))**2 & + *( myfac(i)*q_fac(j)*myfac(l) & + +myfac(i)*q_fac(j)*q_fac(l)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa *Idq3(i,j,l) + fdq3x =fdq3x + factor3 * xijkfa *Idq3x(i,j,l) + END DO + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2x /= 0.0 .AND. fdq3x /= 0.0)THEN + + fdq_rk = fdq2* (fdq2*fdq2x - 2.0*fdq3*fdq2x+fdq2*fdq3x) / (fdq2-fdq3)**2 + + END IF + +END SUBROUTINE PHI_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_NUMERICAL +! + USE EOS_VARIABLES + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + REAL :: dzetdv, eta_0, dist, fact + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: df_dr, df_drdr, pideal, dpiddz + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +IF (eta > 0.1) THEN + fact = 1.0 +ELSE IF (eta <= 0.1 .AND. eta > 0.01) THEN + fact = 10.0 +ELSE + fact = 10.0 +END IF +dist = eta*3.d-3 *fact +! dist = eta*4.d-3 *fact +!***************************** +! fuer MC simulation: neues dist: +! dist = eta*5.d-3*fact + +eta_0 = eta +eta = eta_0 - 2.0*dist +CALL F_NUMERICAL +fres1 = fres +tfr_1 = tfr +eta = eta_0 - dist +CALL F_NUMERICAL +fres2 = fres +tfr_2 = tfr +eta = eta_0 + dist +CALL F_NUMERICAL +fres3 = fres +tfr_3 = tfr +eta = eta_0 + 2.0*dist +CALL F_NUMERICAL +fres4 = fres +tfr_4 = tfr +eta = eta_0 +CALL F_NUMERICAL +fres5 = fres +tfr_5 = tfr + +!--------------------------------------------------------- +! ptfr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! & *dzetdv*(KBOL*T)/1.E-30 +! ztfr =ptfr /( rho * (KBOL*t) / 1.E-30) +! ptfrdz = (-tfr_4+16.0*tfr_3-3.d1*tfr_5+16.0*tfr_2-tfr_1) +! & /(12.0*(dist**2 ))* dzetdv*(KBOL*T)/1.E-30 +! & + (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1) +! & /(12.0*dist) * 2.0 *eta*6.0/PI/D +! & *(KBOL*T)/1.E-30 +! ztfrdz=ptfrdz/( rho*(kbol*T)/1.E-30 ) - ztfr/eta +! write (*,*) eta,ztfr,ztfrdz + +! dtfr_dr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! write (*,*) eta,dtfr_dr +! stop +!--------------------------------------------------------- + +df_dr = (-fres4+8.0*fres3-8.0*fres2+fres1) / (12.0*dist) +df_drdr = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +dzetdv = eta*rho + +pges = (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) *dzetdv*(kbol*t)/1.E-30 + +dpiddz = 1.0/z3t*(kbol*t)/1.E-30 +pgesdz = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 ))* dzetdv*(kbol*t)/1.E-30 & + + (-fres4+8.0*fres3-8.0*fres2+fres1) /(12.0*dist) * 2.0 *rho & + *(kbol*t)/1.E-30 + dpiddz + +pgesd2 = (fres4-2.0*fres3+2.0*fres2-fres1) /(2.0*dist**3 ) & + * dzetdv*(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) & + * 4.0 *rho *(kbol*t)/1.E-30 + (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) * 2.0 /z3t *(kbol*t)/1.E-30 +pgesd3 = (fres4-4.0*fres3+6.0*fres5-4.0*fres2+fres1) /(dist**4 ) & + * dzetdv*(kbol*t)/1.E-30 + (fres4-2.0*fres3+2.0*fres2-fres1) & + /(2.0*dist**3 ) * 6.0 *rho *(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*dist**2 )* 6.0 /z3t *(kbol*t)/1.E-30 + +!------------------p ideal------------------------------------ +pideal = rho * (kbol*t) / 1.E-30 + +!------------------p summation, p comes out in Pa ------------ +pges = pideal + pges + +END SUBROUTINE P_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_numerical +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1,fres2,fres3,fres4,fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: f_dt, f_dtdt, f_dr, f_drdr, f_drdt +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +f_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +f_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) + +s_res = (- f_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*f_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*f_dtdt + 2.0*f_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_1 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_2 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_3 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_4 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL + +f_dr = pges / (eta*rho_0*(KBOL*T)/1.E-30) +f_drdr = pgesdz/ (eta*rho_0*(KBOL*T)/1.E-30) - f_dr*2.0/eta - 1.0/eta**2 + +f_drdt = ( - f_4 + 8.0*f_3 - 8.0*f_2 + f_1 ) / ( 12.0*dist ) + +cp_res = cv_res - RGAS + RGAS*( zges + eta*t*f_drdt)**2 / (1.0 + 2.0*eta*f_dr + eta**2 *f_drdr) +! write (*,*) cv_res,cp_res,eta + + +END SUBROUTINE H_numerical + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_POLAR ( fdd, fqq, fdq ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fdd, fqq, fdq +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL F_DD_GROSS_VRABEC( fdd ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL F_QQ_GROSS( fqq ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL F_DQ_VRABEC_GROSS( fdq ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE F_POLAR + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PRESSURE_SPINODAL +! +! iterates the density until the derivative of pressure 'pges' to +! density is equal to zero. A Newton-scheme is used for determining +! the root to the objective function. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRESSURE_SPINODAL +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, max_i + REAL :: eta_iteration + REAL :: error, acc_i, delta_eta +! ---------------------------------------------------------------------- + +acc_i = 1.d-6 +max_i = 30 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- + +error = acc_i + 1.0 +DO WHILE ( ABS(error) > acc_i .AND. i < max_i ) + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = pgesdz + + delta_eta = error/ pgesd2 + IF ( delta_eta > 0.02 ) delta_eta = 0.02 + IF ( delta_eta < -0.02 ) delta_eta = -0.02 + + eta_iteration = eta_iteration - delta_eta + ! write (*,'(a,i3,3G18.10)') 'iter',i, error, eta_iteration, pgesdz + + IF (eta_iteration > 0.9) eta_iteration = 0.5 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + +END DO + +eta = eta_iteration + +END SUBROUTINE PRESSURE_SPINODAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_IDEAL_GAS ( fid ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, x, rho, PI, KBOL, NAv + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fid +!--------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi +!---------------------------------------------------------------------- + + !h_Planck = 6.62606896E-34 ! Js + DO i = 1, ncomp + rhoi(i) = x(i) * rho + ! debroglie(i) = h_Planck *1d10 & ! in units Angstrom + ! *SQRT( 1.0 / (2.0*PI *1.0 / NAv / 1000.0 * KBOL*T) ) + ! ! *SQRT( 1.0 / (2.0*PI *mm(i) /NAv/1000.0 * KBOL*T) ) + ! fid = fid + x(i) * ( LOG(rhoi(i)*debroglie(i)**3) - 1.0 ) + fid = fid + x(i) * ( LOG(rhoi(i)) - 1.0 ) + END DO + + END SUBROUTINE F_IDEAL_GAS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_HARD_SPHERE ( m_mean2, fhs ) +! + USE EOS_VARIABLES, ONLY: z0t, z1t, z2t, z3t, eta, rho + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: m_mean2 + REAL, INTENT(IN OUT) :: fhs +!--------------------------------------------------------------------- + REAL :: z0, z1, z2, z3, zms +!---------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + fhs= m_mean2*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + + END SUBROUTINE F_HARD_SPHERE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT1 ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, & + rho, eta, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + fhc = 0.0 + DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) + END DO + + END SUBROUTINE F_CHAIN_TPT1 + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT_D ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, rho, eta, & + dhs, mseg, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL, DIMENSION(nc) :: gij_hd + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + DO i = 1, ncomp + gij_hd(i) = 1.0/(2.0*zms) + 3.0*dij_ab(i,i)*z2 / zms**2 + END DO + + fhc = 0.0 + DO i = 1, ncomp + IF ( mseg(i) >= 2.0 ) THEN + fhc = fhc - x(i) * ( mseg(i)/2.0 * LOG( gij(i,i) ) + ( mseg(i)/2.0 - 1.0 ) * LOG( gij_hd(i)) ) + ELSE + fhc = fhc + x(i) * ( 1.0 - mseg(i) ) * LOG( gij(i,i) ) + END IF + END DO + + END SUBROUTINE F_CHAIN_TPT_D + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, rho, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: a20, b20, c20, a30, b30, c30 + REAL :: sum1, sum2, am, bm, cm + REAL :: zms +!--------------------------------------------------------------------- + + zms = 1.0 - eta + + sum1 = SUM( x(1:ncomp)*(mseg(1:ncomp)-1.0) ) + sum2 = SUM( x(1:ncomp)/mseg(1:ncomp)*(mseg(1:ncomp)-1.0)*(mseg(1:ncomp)-2.0) ) + + a2 = 0.45696 + a3 = -0.74745 + b2 = 2.10386 + b3 = 3.49695 + c2 = 1.75503 + c3 = 4.83207 + a20 = - a2 + b2 - 3.0*c2 + b20 = - a2 - b2 + c2 + c20 = c2 + a30 = - a3 + b3 - 3.0*c3 + b30 = - a3 - b3 + c3 + c30 = c3 + am = (3.0 + a20) * sum1 + a30 * sum2 + bm = (1.0 + b20) * sum1 + b30 * sum2 + cm = (1.0 + c20) * sum1 + c30 * sum2 + + fhc = - ( (am*eta - bm) / (2.0*zms) + bm/2.0/zms**2 - cm *LOG(ZMS) ) + + + END SUBROUTINE F_CHAIN_HU_LIU + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU_RC ( fhs, fhc ) +! + USE EOS_VARIABLES, ONLY: mseg, chiR, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: fhs + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: para1,para2,para3,para4 + REAL :: aLH,bLH,cLH +!--------------------------------------------------------------------- + +! This routine is only for pure components + + a2 = 0.45696 + b2 = 2.10386 + c2 = 1.75503 + + para1 = -0.74745 + para2 = 0.299154629727814 + para3 = 1.087271036653154 + para4 = -0.708979110326831 + a3 = para1 + para2*chiR(1) + para3*chiR(1)**2 + para4*chiR(1)**3 + b3 = 3.49695 - (3.49695 + 0.317719074806190)*chiR(1) + c3 = 4.83207 - (4.83207 - 3.480163780334421)*chiR(1) + + aLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*a2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*a3 ) + bLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*b2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*b3 ) + cLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*c2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*c3 ) + + fhc = ((3.0 + aLH - bLH + 3.0*cLH)*eta - (1.0 + aLH + bLH - cLH)) / (2.0*(1.0-eta)) + & + (1.0 + aLH + bLH - cLH) / ( 2.0*(1.0-eta)**2 ) + (cLH - 1.0)*LOG(1.0-eta) + + fhc = fhc - fhs + + END SUBROUTINE F_CHAIN_HU_LIU_RC + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_PCSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: PI, rho, eta, z0t, apar, bpar, order1, order2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: m + REAL :: I1, I2, c1_con, z3, zms, m_mean +!--------------------------------------------------------------------- + + z3 = eta + zms = 1.0 - eta + m_mean = z0t / ( PI / 6.0 ) + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m) * z3**m + I2 = I2 + bpar(m) * z3**m + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0-m_mean)*( 20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 )/(zms*(2.0-z3))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + + END SUBROUTINE F_DISP_PCSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_CKSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, PI, TAU, t, rho, eta, x, z0t, mseg, vij, uij, parame, um + USE EOS_CONSTANTS, ONLY: DNM + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: i, j, n, m + REAL :: zmr, nmr, m_mean +!--------------------------------------------------------------------- + + m_mean = z0t / ( PI / 6.0 ) + + DO i = 1, ncomp + DO j = 1, ncomp + vij(i,j)=(0.5*((parame(i,2)*(1.0-0.12 *EXP(-3.0*parame(i,3)/t))**3 )**(1.0/3.0) & + +(parame(j,2)*(1.0-0.12 *EXP(-3.0*parame(j,3)/t))**3 )**(1.0/3.0)))**3 + END DO + END DO + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr + fdsp = 0.0 + DO n = 1, 4 + DO m = 1, 9 + fdsp = fdsp + DNM(n,m) * (um/t)**n *(eta/TAU)**m + END DO + END DO + fdsp = m_mean * fdsp + + + END SUBROUTINE F_DISP_CKSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ASSOCIATION ( eps_kij, k_kij, fhb ) +! + USE EOS_VARIABLES, ONLY: nc, nsite, ncomp, t, z0t, z1t, z2t, z3t, rho, eta, x, & + parame, sig_ij, dij_ab, gij, nhb_typ, mx, nhb_no + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: eps_kij, k_kij + REAL, INTENT(IN OUT) :: fhb +!--------------------------------------------------------------------- + LOGICAL :: assoc + INTEGER :: i, j, k, l, no, ass_cnt, max_eval + REAL, DIMENSION(nc,nc) :: kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nsite,nc,nsite) :: delta + REAL, DIMENSION(nc,nsite) :: mx_itr + REAL :: err_sum, sum0, amix, tol, ass_s1, ass_s2 + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + assoc = .false. + DO i = 1,ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + + DO i = 1, ncomp + IF ( NINT(parame(i,12)) /= 0 ) THEN + nhb_typ(i) = NINT( parame(i,12) ) + kap_hb(i,i) = parame(i,13) + no = 0 + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(i) + eps_hb(i,i,k,l) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO k = 1,nhb_typ(i) + nhb_no(i,k) = parame(i,(14+no)) + no = no + 1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0.AND.nhb_typ(j) /= 0) ) THEN + ! kap_hb(i,j)= (kap_hb(i,i)+kap_hb(j,j))/2.0 + ! kap_hb(i,j)= ( ( kap_hb(i,i)**(1.0/3.0) + kap_hb(j,j)**(1.0/3.0) )/2.0 )**3 + kap_hb(i,j) = (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + / (0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF ( k /= l .AND. nhb_typ(i) >= 2 .AND. nhb_typ(j) >= 2 ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)*eps_hb(j,j,l,k))**0.5 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + ELSE IF ( nhb_typ(i) == 1 .AND. l > k ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(j,i,l,k) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + eps_hb(j,i,l,k) = eps_hb(j,i,l,k)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + +!-----setting the self-association to zero for ionic compounds------ + DO i = 1,ncomp + IF ( parame(i,10) /= 0) kap_hb(i,i)=0.0 + DO j = 1,ncomp + IF ( parame(i,10) /= 0 .AND. parame(j,10) /= 0 ) kap_hb(i,j) = 0.0 + END DO + END DO + ! kap_hb(1,2)=0.050 + ! kap_hb(2,1)=0.050 + ! eps_hb(2,1,1,1)=465.0 + ! eps_hb(1,2,1,1)=465.0 + ! nhb_typ(1) = 1 + ! nhb_typ(2) = 1 + ! nhb_no(1,1)= 1.0 + ! nhb_no(2,1)= 1.0 + + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,k,j,l)=gij(i,j)*kap_hb(i,j)*(EXP(eps_hb(i,j,k,l)/t)-1.0) *sig_ij(i,j)**3 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! IF ((i+j).EQ.3) delta(i,k,j,l)=94.0 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + END DO + END DO + IF ( mx(i,k) == 0.0 ) mx(i,k) = 1.0 + END DO + END DO + +!------constants for Iteration --------------------------------------- + amix = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-14 + max_eval = 200 + +! --- Iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum0 = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum0 = sum0 + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,k,j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum0*rho) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS( mx_itr(i,k) - mx(i,k) ) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * amix + mx(i,k) * (1.0 - amix) + IF ( mx(i,k) <= 0.0 ) mx(i,k)=1.E-50 + IF ( mx(i,k) > 1.0 ) mx(i,k)=1.0 + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF ( ass_cnt >= max_eval ) WRITE(*,*) 'F_NUMERICAL: Max_eval violated = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG(mx(i,k)) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1/2.0 ) + END DO + + END IF + + END SUBROUTINE F_ASSOCIATION + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_DIPOLE_TBH ( fhend ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, eta, x, z0t, parame, uij, sig_ij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhend +!--------------------------------------------------------------------- + INTEGER :: i, dipole, ions + REAL :: m_mean + REAL :: fh32, fh2, fh52, fh3 + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: polabil, ydd, kappa, x_dipol, x_ions + REAL, DIMENSION(nc) :: my2dd, z_ii, e_cd, x_dd, x_ii + REAL :: sig_c, sig_d, sig_cd, r_s + REAL :: I0cc, I1cc, I2cc, Icd, Idd + REAL :: Iccc, Iccd, Icdd, Iddd +!--------------------------------------------------------------------- + +m_mean = z0t / ( PI / 6.0 ) + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + + 2.78E1*(t/293.15))*rho_sol**2 & + + (-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + - 1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + + 8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Dipole-Ion Term----------------------------------- +dipole = 0 +ions = 0 +fhend = 0.0 +DO i = 1, ncomp + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*sig_ij(i,i)**3 *1.E-30) + dipole = 1 + ELSE + my2dd(i) = 0.0 + END IF + + z_ii(i) = parame(i,10) + IF ( z_ii(i) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + e_cd(i) = ( parame(i,10)*e_elem* 1.E5 / SQRT(1.11265005) )**2 & + / ( uij(i,i)*kbol*sig_ij(i,i)*1.E-10 ) + ions = 1 + ELSE + e_cd(i) = 0.0 + END IF +END DO + + +IF ( dipole == 1 .AND. ions == 1 ) THEN + + ydd = 0.0 + kappa = 0.0 + x_dipol = 0.0 + x_ions = 0.0 + polabil = 0.0 + DO i = 1, ncomp + ydd = ydd + x(i)*(parame(i,6))**2 *1.E-49/ (kbol*t*1.E-30) + kappa = kappa + x(i) & + *(parame(i,10)*e_elem* 1.E5/SQRT(1.11265005))**2 /(KBOL*t*1.E-10) + IF (parame(i,10) /= 0.0) THEN + x_ions = x_ions + x(i) + ELSE + polabil = polabil + 4.0*PI*x(i)*rho*1.4573 *1.E-30 & + / (sig_ij(3,3)**3 *1.E-30) + END IF + IF (parame(i,6) /= 0.0) x_dipol= x_dipol+ x(i) + END DO + ydd = ydd * 4.0/9.0 * PI * rho + kappa = SQRT( 4.0 * PI * rho * kappa ) + + fh2 = 0.0 + sig_c = 0.0 + sig_d = 0.0 + DO i=1,ncomp + x_ii(i) = 0.0 + x_dd(i) = 0.0 + IF(parame(i,10) /= 0.0 .AND. x_ions /= 0.0) x_ii(i) = x(i)/x_ions + IF(parame(i,6) /= 0.0 .AND. x_dipol /= 0.0) x_dd(i) = x(i)/x_dipol + sig_c = sig_c + x_ii(i)*parame(i,2) + sig_d = sig_d + x_dd(i)*parame(i,2) + END DO + sig_cd = 0.5 * (sig_c + sig_d) + + r_s = 0.0 + ! DO i=1,ncomp + ! r_s=r_s + rho * x(i) * dhs(i)**3 + ! END DO + r_s = eta*6.0 / PI / m_mean + + I0cc = - (1.0 + 0.97743 * r_s + 0.05257*r_s*r_s) & + /(1.0 + 1.43613 * r_s + 0.41580*r_s*r_s) + ! I1cc = - (10.0 - 2.0*z3 + z3*z3) /20.0/(1.0 + 2.0*z3) + I1cc = - (10.0 - 2.0*r_s*pi/6.0 + r_s*r_s*pi/6.0*pi/6.0) & + /20.0/(1.0 + 2.0*r_s*pi/6.0) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + ! I2cc = + (z3-4.0)*(z3*z3+2.0) /24.0/(1.0+2.0*z3) + ! relation of Stell and Lebowitz + I2cc = -0.33331+0.7418*r_s - 1.2047*r_s*r_s & + + 1.6139*r_s**3 - 1.5487*r_s**4 + 0.6626*r_s**5 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Icd = (1.0 + 0.79576 *r_s + 0.104556 *r_s*r_s) & + /(1.0 + 0.486704*r_s - 0.0222903*r_s*r_s) + Idd = (1.0 + 0.18158*r_s - 0.11467*r_s*r_s) & + /3.0/(1.0 - 0.49303*r_s + 0.06293*r_s*r_s) + Iccc= 3.0*(1.0 - 1.05560*r_s + 0.26591*r_s*r_s) & + /2.0/(1.0 + 0.53892*r_s - 0.94236*r_s*r_s) + Iccd= 11.0*(1.0 + 2.25642 *r_s + 0.05679 *r_s*r_s) & + /6.0/(1.0 + 2.64178 *r_s + 0.79783 *r_s*r_s) + Icdd= 0.94685*(1.0 + 2.97323 *r_s + 3.11931 *r_s*r_s) & + /(1.0 + 2.70186 *r_s + 1.22989 *r_s*r_s) + Iddd= 5.0*(1.0 + 1.12754*r_s + 0.56192*r_s*r_s) & + /24.0/(1.0 - 0.05495*r_s + 0.13332*r_s*r_s) + + IF ( sig_c <= 0.0 ) WRITE (*,*) 'error in Henderson ion term' + + fh32= - kappa**3 /(12.0*pi*rho) + fh2 = - 3.0* kappa**2 * ydd*Icd /(8.0*pi*rho) / sig_cd & + - kappa**4 *sig_c/(16.0*pi*rho)*I0cc + IF (sig_d /= 0.0) fh2 = fh2 - 27.0* ydd * ydd*Idd & + /(8.0*pi*rho) / sig_d**3 + fh52= (3.0*kappa**3 * ydd + kappa**5 *sig_c**2 *I1cc) & + /(8.0*pi*rho) + fh3 = - kappa**6 * sig_c**3 /(8.0*pi*rho) *(I2cc-Iccc/6.0) & + + kappa**4 * ydd *sig_c/(16.0*pi*rho) & + *( (6.0+5.0/3.0*sig_d/sig_c)*I0cc + 3.0*sig_d/sig_c*Iccd ) & + + 3.0*kappa**2 * ydd*ydd /(8.0*pi*rho) / sig_cd & + *( (2.0-3.21555*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + IF (sig_d /= 0.0) fh3 = fh3 + 27.0*ydd**3 & + /(16.0*pi*rho)/sig_d**3 *Iddd + + fhend = ( fh32 + (fh32*fh32*fh3-2.0*fh32*fh2*fh52+fh2**3 ) & + /(fh2*fh2-fh32*fh52) ) & + / ( 1.0 + (fh32*fh3-fh2*fh52) /(fh2*fh2-fh32*fh52) & + - (fh2*fh3-fh52*fh52) /(fh2*fh2-fh32*fh52) ) +!---------- +! fH32= - kappa**3 /(12.0*PI*rho) +! fH2 = - 3.0* kappa**2 * ydd*Icd /(8.0*PI*rho) / sig_cd +! fH52= (3.0*kappa**3 * ydd)/(8.0*PI*rho) +! fH3 = + kappa**4 * ydd *sig_c/(16.0*PI*rho) & +! *( (6.0+5.0/3.0*sig_d/sig_c)*0.0*I0cc + 3.0*sig_d/sig_c*Iccd) & +! + 3.0*kappa**2 * ydd*ydd /(8.0*PI*rho) / sig_cd & +! *( (2.0-3.215550*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + +! fHcd = ( + (fH32*fH32*fH3-2.0*fH32*fH2*fH52+fH2**3 ) & +! /(fH2*fH2-fH32*fH52) ) & +! / ( 1.0 + (fH32*fH3-fH2*fH52) /(fH2*fH2-fH32*fH52) & +! - (fH2*fH3-fH52*fH52) /(fH2*fH2-fH32*fH52) ) + +END IF + + END SUBROUTINE F_ION_DIPOLE_TBH + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_PrimMSA ( fcc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, x, parame, mx + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fcc +!--------------------------------------------------------------------- + INTEGER :: i, j, cc_it, ions + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: x_ions + REAL :: cc_sig1, cc_sig2, cc_sig3 + REAL, DIMENSION(nc) :: z_ii, x_ii, sigm_i, my2dd + REAL :: alpha_2, kappa, ii_par + REAL :: cc_omeg, p_n, q2_i, cc_q2, cc_gam + REAL :: cc_error(2), cc_delt + REAL :: rhs, lambda, lam_s +!--------------------------------------------------------------------- + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + +2.78E1*(t/293.15))*rho_sol**2 & + +(-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + -1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + +8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Ion-Ion: primitive MSA ------------------------------- +! the (dipole moment)**2 [my**2] corresponds to an attraction from +! point charges of [ SUM(xi * zi**2 * e_elem**2) * 3 * di**2 ] + +! parame(ion,6))**2 * 1.E-49 / (kbol*T) +! = (e_elem* 1.E5/SQRT(1.112650050))**2 +! *x(i)*zi**2 *3.0*sig_ij(1,1)**2 *1.E-20 + +! parame(ion,6))**2 = (e_elem* 1.E5/SQRT(1.112650050))**2 /1.E-49 +! *x(i)*zi**2 *3.0*sig_ij(i,i)**2 *1.E-20 + +! with the units +! my**2 [=] D**2 = 1.E-49 J*m3 +! e_elem **2 [=] C**2 = 1.E5 / SQRT(1.112650050) J*m + + +ions = 0 +x_ions = 0.0 +fcc = 0.0 +DO i = 1, ncomp + z_ii(i) = parame(i,10) + IF (z_ii(i) /= 0.0) THEN + sigm_i(i) = parame(i,2) + ELSE + sigm_i(i) = 0.0 + END IF + IF (z_ii(i) /= 0.0) ions = 1 + IF (z_ii(i) /= 0.0) x_ions = x_ions + x(i) +END DO + +IF (ions == 1 .AND. x_ions > 0.0) THEN + + cc_sig1 = 0.0 + cc_sig2 = 0.0 + cc_sig3 = 0.0 + DO i=1,ncomp + IF (z_ii(i) /= 0.0) THEN + x_ii(i) = x(i)/x_ions + ELSE + x_ii(i) =0.0 + END IF + cc_sig1 = cc_sig1 +x_ii(i)*sigm_i(i) + cc_sig2 = cc_sig2 +x_ii(i)*sigm_i(i)**2 + cc_sig3 = cc_sig3 +x_ii(i)*sigm_i(i)**3 + END DO + + + ! alpha_2 = 4.0*PI*e_elem**2 /eps_cc0/dielec/kbol/T + alpha_2 = e_elem**2 /eps_cc0 / dielec / KBOL/t + kappa = 0.0 + DO i = 1, ncomp + kappa = kappa + x(i)*z_ii(i)*z_ii(i)*mx(i,1) + END DO + kappa = SQRT( rho * alpha_2 * kappa ) + ii_par= kappa * cc_sig1 + + ! Temporaer: nach der Arbeit von Krienke verifiziert + ! noch nicht fuer Mischungen mit unterschiedl. Ladung erweitert + ! ii_par = DSQRT( e_elem**2 /eps_cc0/dielec/kbol/T & + ! *rho*(x(1)*Z_ii(1)**2 + x(2)*Z_ii(2)**2 ) )*cc_sig1 + + + cc_gam = kappa/2.0 + + ! noch offen !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + cc_delt = 0.0 + DO i = 1, ncomp + cc_delt = cc_delt + x(i)*mx(i,1)*rho*sigm_i(i)**3 + END DO + cc_delt= 1.0 - PI/6.0*cc_delt + + cc_it = 0 + 13 CONTINUE + j = 0 + cc_it = cc_it + 1 + 131 CONTINUE + j = j + 1 + cc_omeg = 0.0 + DO i = 1, ncomp + cc_omeg = cc_omeg +x(i)*mx(i,1)*sigm_i(i)**3 /(1.0+cc_gam*sigm_i(i)) + END DO + cc_omeg = 1.0 + PI/2.0 / cc_delt * rho * cc_omeg + p_n = 0.0 + DO i = 1, ncomp + p_n = p_n + x(i)*mx(i,1)*rho / cc_omeg*sigm_i(i)*z_ii(i) / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = 0.0 + cc_q2= 0.0 + DO i = 1, ncomp + q2_i = q2_i + rho*x(i)*mx(i,1)*( (z_ii(i)-pi/2.0/cc_delt*sigm_i(i)**2 *p_n) & + /(1.0+cc_gam*sigm_i(i)) )**2 + cc_q2 = cc_q2 + x(i)*mx(i,1)*rho*z_ii(i)**2 / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = q2_i*alpha_2 / 4.0 + + cc_error(j) = cc_gam - SQRT(q2_i) + IF (j == 1) cc_gam = cc_gam*1.000001 + IF (j == 2) cc_gam = cc_gam - cc_error(2)* (cc_gam-cc_gam/1.000001)/(cc_error(2)-cc_error(1)) + + IF ( j == 1 .AND. ABS(cc_error(1)) > 1.E-15 ) GO TO 131 + IF ( cc_it >= 10 ) THEN + WRITE (*,*) ' cc error' + STOP + END IF + IF ( j /= 1 ) GO TO 13 + + fcc= - alpha_2 / PI/4.0 /rho* (cc_gam*cc_q2 & + + pi/2.0/cc_delt *cc_omeg*p_n**2 ) + cc_gam**3 /pi/3.0/rho + ! Restricted Primitive Model + ! fcc=-(3.0*ii_par*ii_par+6.0*ii_par+2.0 & + ! -2.0*(1.0+2.0*ii_par)**1.50) & + ! /(12.0*PI*rho *cc_sig1**3 ) + + ! fcc = x_ions * fcc + + my2dd(3) = (parame(3,6))**2 *1.E-19 /(KBOL*t) + my2dd(3) = (1.84)**2 *1.E-19 /(kbol*t) + + rhs = 12.0 * PI * rho * x(3) * my2dd(3) + lam_s = 1.0 + 12 CONTINUE + lambda = (rhs/((lam_s+2.0)**2 ) + 16.0/((1.0+lam_s)**4 ) )**0.5 + IF ( ABS(lam_s-lambda) > 1.E-10 )THEN + lam_s = ( lambda + lam_s ) / 2.0 + GO TO 12 + END IF + + ! f_cd = -(ii_par*ii_par)/(4.0*PI*rho*m_mean *cc_sig1**3 ) & + ! *(dielec-1.0)/(1.0 + parame(3,2)/cc_sig1/lambda) + ! write (*,*) ' ',f_cd,fcc,x_ions + ! f_cd = f_cd/(1.0 - fcc/f_cd) + ! fcc = 0.0 + +END IF + + +END SUBROUTINE F_ION_ION_PrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, eta, x, parame, mseg + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd, fqq, fdq, fcc +!--------------------------------------------------------------------- + INTEGER :: dipole + !REAL :: A_MSA !, A_CC, A_CD, A_DD, U_MSA, chempot + REAL, DIMENSION(nc) :: x_export, msegm +!--------------------------------------------------------------------- + + dipole = 0 + IF ( SUM( parame(1:ncomp,6) ) > 1.E-5 ) dipole = 1 + + IF ( dipole /= 0 ) THEN ! alternatively ions and dipoles = 1 + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + fcc = 0.0 + msegm(:) = mseg(:) ! the entries of the vector mseg and x are changed + x_export(:) = x(:) ! in SEMIRESTRICTED because the ions should be positioned first + ! that is why dummy vectors msegm and x_export are defined + !CALL SEMIRESTRICTED (A_MSA,A_CC,A_CD,A_DD,U_MSA, & + ! chempot,ncomp,parame,t,eta,x_export,msegm,0) + !fdd = A_MSA + write (*,*) 'why are individual contrib. A_CC,A_CD,A_DD not used' + stop + END IF + + END SUBROUTINE F_ION_ION_nonPrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_LC_MayerSaupe ( flc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, phas, t, rho, eta, & + x, mseg, parame, E_lc, S_lc, dhs + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: flc +!--------------------------------------------------------------------- + INTEGER :: i, j, k + INTEGER :: liq_crystal, count_lc, steps_lc + REAL :: alpha_lc, tolerance, deltay + REAL :: integrand1, integrand2, accel_lc + REAL :: error_lc, u_term, sphase + REAL, DIMENSION(nc) :: z_lc, S_lc1, S_lc2, sumu + REAL, DIMENSION(nc,nc) :: u_lc, klc +!--------------------------------------------------------------------- +INTEGER :: stabil +COMMON /stabil / stabil +!--------------------------------------------------------------------- + + + klc(1,2) = 0.0 + klc(2,1) = klc(1,2) + + alpha_lc = 1.0 + accel_lc = 4.0 + IF ( eta < 0.35 ) accel_lc = 1.3 + IF ( eta < 0.15 ) accel_lc = 1.0 + + liq_crystal = 0 + DO i = 1, ncomp + DO j = 1, ncomp + E_lc(i,j) = (E_lc(i,i)*E_lc(j,j))**0.5 *(1.0-klc(i,j)) !combining rule + ! E_LC(i,j)= ( E_LC(i,i)+E_LC(j,j) ) * 0.5 !combining rule + ! S_LC(i,j)= ( S_LC(i,i)+S_LC(j,j) ) * 0.5 !combining rule + IF (E_lc(i,j) /= 0.0) liq_crystal = 1 + END DO + END DO + ! S_LC(1,2) = 0.0 + ! S_LC(2,1) = S_LC(1,2) + ! E_LC(1,2) = 60.0 + ! E_LC(2,1) = E_LC(1,2) + + IF ( liq_crystal == 1 .AND. phas == 1 .AND. stabil == 0 ) THEN + + count_lc = 0 + tolerance = 1.E-6 + + steps_lc = 200 + deltay = 1.0 / REAL(steps_lc) + + ! --- dimensionless function U_LC repres. anisotr. intermolecular interactions in l.c. + + DO i = 1, ncomp + DO j = 1, ncomp + u_lc(i,j) = 2.0/3.0*pi*mseg(i)*mseg(j) *(0.5*(dhs(i)+dhs(j)))**3 & ! sig_ij(i,j)**3 + *(E_lc(i,j)/t+S_lc(i,j))*rho + END DO + END DO + + + DO i=1,ncomp + ! S_lc2(i) = 0.0 !for isotropic + S_lc2(i) = 0.5 !for nematic + S_lc1(i) = S_lc2(i) + END DO + + 1 CONTINUE + + DO i = 1, ncomp + IF (S_lc2(i) <= 0.3) S_lc1(i) = S_lc2(i) + IF (S_lc2(i) > 0.3) S_lc1(i) = S_lc1(i) + (S_lc2(i)-S_lc1(i))*accel_lc + END DO + + count_lc = count_lc + 1 + + ! --- single-particle orientation partition function Z_LC in liquid crystals + + DO i = 1, ncomp + sumu(i) = 0.0 + DO j = 1, ncomp + sumu(i) = sumu(i) + x(j)*u_lc(i,j)*S_lc1(j) + END DO + END DO + + DO i = 1, ncomp + z_lc(i) = 0.0 + integrand1 = EXP(-0.5*sumu(i)) !eq. for Z_LC with y=0 + DO k = 1, steps_lc + integrand2 = EXP(0.5*sumu(i)*(3.0*(deltay*REAL(k)) **2 -1.0)) + z_lc(i) = z_lc(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + END DO !i-index Z_LC(i) calculation + + ! --- order parameter S_lc in liquid crystals ----------------------- + + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i) = 0.0 + integrand1 = -1.0/z_lc(i)*0.5*EXP(-0.5*sumu(i)) !for S_lc with y=0 + DO k = 1, steps_lc + integrand2 = 1.0/z_lc(i)*0.5*(3.0*(deltay*REAL(k)) & + **2 -1.0)*EXP(0.5*sumu(i)*(3.0 *(deltay*REAL(k))**2 -1.0)) + S_lc2(i) = S_lc2(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + error_lc = error_lc + ABS(S_lc2(i)-S_lc1(i)) + END DO !i-index Z_LC(i) calculation + + sphase = 0.0 + DO i = 1, ncomp + sphase = sphase + S_lc2(i) + END DO + IF (sphase < 1.E-4) THEN + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i)= 0.0 + z_lc(i) = 1.0 + END DO + END IF + + + ! write (*,*) count_LC,S_lc2(1)-S_lc1(1),S_lc2(2)-S_lc1(2) + IF (error_lc > tolerance .AND. count_lc < 400) GO TO 1 + ! write (*,*) 'done',eta,S_lc2(1),S_lc2(2) + + IF (count_lc == 400) WRITE (*,*) 'LC iteration not converg.' + + ! --- the anisotropic contribution to the Helmholtz energy ---------- + + u_term = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + u_term = u_term + 0.5*x(i)*x(j)*S_lc2(i) *S_lc2(j)*u_lc(i,j) + END DO + END DO + + flc = 0.0 + DO i = 1, ncomp + IF (z_lc(i) /= 0.0) flc = flc - x(i) * LOG(z_lc(i)) + END DO + flc = flc + u_term + ! pause + + END IF + ! write (*,'(i2,i2,4(f15.8))') phas,stabil,flc,eta,S_lc2(1),x(1) + + + END SUBROUTINE F_LC_MayerSaupe + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: zdd, zddz, zddz2, zddz3 + REAL, INTENT(OUT) :: zqq, zqqz, zqqz2, zqqz3 + REAL, INTENT(OUT) :: zdq, zdqz, zdqz2, zdqz3 +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE P_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdd, zddz, zddz2, zddz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdddr, fddd2, fddd3, fddd4 + REAL :: fdd2, fdd2z, fdd2z2, fdd2z3, fdd2z4 + REAL :: fdd3, fdd3z, fdd3z2, fdd3z3, fdd3z4 + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd2z, Idd2z2, Idd2z3, Idd2z4 + REAL, DIMENSION(nc,nc) :: Idd4, Idd4z, Idd4z2, Idd4z3, Idd4z4 + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3z, Idd3z2, Idd3z3, Idd3z4 +! ---------------------------------------------------------------------- + + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2z(i,j) = 0.0 + Idd4z(i,j) = 0.0 + Idd2z2(i,j) = 0.0 + Idd4z2(i,j) = 0.0 + Idd2z3(i,j) = 0.0 + Idd4z3(i,j) = 0.0 + Idd2z4(i,j) = 0.0 + Idd4z4(i,j) = 0.0 + ! IF (paramei,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m) *z3**(m+1) + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m) *z3**(m+1) + Idd2z(i,j) =Idd2z(i,j) +ddp2(i,j,m)*REAL(m+1) *z3**m + Idd4z(i,j) =Idd4z(i,j) +ddp4(i,j,m)*REAL(m+1) *z3**m + Idd2z2(i,j)=Idd2z2(i,j)+ddp2(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd4z2(i,j)=Idd4z2(i,j)+ddp4(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd2z3(i,j)=Idd2z3(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd4z3(i,j)=Idd4z3(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd2z4(i,j)=Idd2z4(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idd4z4(i,j)=Idd4z4(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + Idd3z(i,j,k) = 0.0 + Idd3z2(i,j,k) = 0.0 + Idd3z3(i,j,k) = 0.0 + Idd3z4(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) =Idd3(i,j,k) +ddp3(i,j,k,m)*z3**(m+2) + Idd3z(i,j,k) =Idd3z(i,j,k) +ddp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idd3z2(i,j,k)=Idd3z2(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1))*z3**m + Idd3z3(i,j,k)=Idd3z3(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m)*z3**(m-1) + Idd3z4(i,j,k)=Idd3z4(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2= -PI *rho/z3 + factor3= -4.0/3.0*PI**2 * (rho/z3)**2 + + fdd2 = 0.0 + fdd2z = 0.0 + fdd2z2 = 0.0 + fdd2z3 = 0.0 + fdd2z4 = 0.0 + fdd3 = 0.0 + fdd3z = 0.0 + fdd3z2 = 0.0 + fdd3z3 = 0.0 + fdd3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j)) + fdd2z = fdd2z +factor2*xijfa*(Idd2z(i,j) +eij/t*Idd4z(i,j)) + fdd2z2 = fdd2z2+factor2*xijfa*(Idd2z2(i,j)+eij/t*Idd4z2(i,j)) + fdd2z3 = fdd2z3+factor2*xijfa*(Idd2z3(i,j)+eij/t*Idd4z3(i,j)) + fdd2z4 = fdd2z4+factor2*xijfa*(Idd2z4(i,j)+eij/t*Idd4z4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa= x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) & + *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 = fdd3 + factor3 * xijkfa*Idd3(i,j,k) + fdd3z = fdd3z + factor3 * xijkfa*Idd3z(i,j,k) + fdd3z2 = fdd3z2 + factor3 * xijkfa*Idd3z2(i,j,k) + fdd3z3 = fdd3z3 + factor3 * xijkfa*Idd3z3(i,j,k) + fdd3z4 = fdd3z4 + factor3 * xijkfa*Idd3z4(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2z /= 0.0 .AND. fdd3z /= 0.0) THEN + + fdddr= fdd2* (fdd2*fdd2z - 2.0*fdd3*fdd2z+fdd2*fdd3z) / (fdd2-fdd3)**2 + fddd2=(2.0*fdd2*fdd2z*fdd2z +fdd2*fdd2*fdd2z2 & + -2.0*fdd2z**2 *fdd3-2.0*fdd2*fdd2z2*fdd3+fdd2*fdd2*fdd3z2) & + /(fdd2-fdd3)**2 + fdddr * 2.0*(fdd3z-fdd2z)/(fdd2-fdd3) + fddd3=(2.0*fdd2z**3 +6.0*fdd2*fdd2z*fdd2z2+fdd2*fdd2*fdd2z3 & + -6.0*fdd2z*fdd2z2*fdd3-2.0*fdd2z**2 *fdd3z & + -2.0*fdd2*fdd2z3*fdd3 -2.0*fdd2*fdd2z2*fdd3z & + +2.0*fdd2*fdd2z*fdd3z2+fdd2*fdd2*fdd3z3) /(fdd2-fdd3)**2 & + + 2.0/(fdd2-fdd3)* ( 2.0*fddd2*(fdd3z-fdd2z) & + + fdddr*(fdd3z2-fdd2z2) & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)**2 ) + fddd4=( 12.0*fdd2z**2 *fdd2z2+6.0*fdd2*fdd2z2**2 & + +8.0*fdd2*fdd2z*fdd2z3+fdd2*fdd2*fdd2z4-6.0*fdd2z2**2 *fdd3 & + -12.0*fdd2z*fdd2z2*fdd3z -8.0*fdd2z*fdd2z3*fdd3 & + -2.0*fdd2*fdd2z4*fdd3-4.0*fdd2*fdd2z3*fdd3z & + +4.0*fdd2*fdd2z*fdd3z3+fdd2**2 *fdd3z4 ) /(fdd2-fdd3)**2 & + + 6.0/(fdd2-fdd3)* ( fddd3*(fdd3z-fdd2z) & + -fddd2/(fdd2-fdd3)*(fdd3z-fdd2z)**2 & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)*(fdd3z2-fdd2z2) & + + fddd2*(fdd3z2-fdd2z2) +1.0/3.0*fdddr*(fdd3z3-fdd2z3) ) + zdd = fdddr*eta + zddz = fddd2*eta + fdddr + zddz2 = fddd3*eta + 2.0* fddd2 + zddz3 = fddd4*eta + 3.0* fddd3 + + END IF + + +END SUBROUTINE P_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zqq, zqqz, zqqz2, zqqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fqqdr, fqqd2, fqqd3, fqqd4 + REAL :: fqq2, fqq2z, fqq2z2, fqq2z3, fqq2z4 + REAL :: fqq3, fqq3z, fqq3z2, fqq3z3, fqq3z4 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq2z, Iqq2z2, Iqq2z3, Iqq2z4 + REAL, DIMENSION(nc,nc) :: Iqq4, Iqq4z, Iqq4z2, Iqq4z3, Iqq4z4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3z, Iqq3z2, Iqq3z3, Iqq3z4 +! ---------------------------------------------------------------------- + + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + z3 = eta + DO i=1,ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2z(i,j) = 0.0 + Iqq4z(i,j) = 0.0 + Iqq2z2(i,j) = 0.0 + Iqq4z2(i,j) = 0.0 + Iqq2z3(i,j) = 0.0 + Iqq4z3(i,j) = 0.0 + Iqq2z4(i,j) = 0.0 + Iqq4z4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) =Iqq2(i,j) + qqp2(i,j,m)*z3**(m+1) + Iqq4(i,j) =Iqq4(i,j) + qqp4(i,j,m)*z3**(m+1) + Iqq2z(i,j) =Iqq2z(i,j) +qqp2(i,j,m)*REAL(m+1)*z3**m + Iqq4z(i,j) =Iqq4z(i,j) +qqp4(i,j,m)*REAL(m+1)*z3**m + Iqq2z2(i,j)=Iqq2z2(i,j)+qqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq4z2(i,j)=Iqq4z2(i,j)+qqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq2z3(i,j)=Iqq2z3(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq4z3(i,j)=Iqq4z3(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq2z4(i,j)=Iqq2z4(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Iqq4z4(i,j)=Iqq4z4(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k=1,ncomp + Iqq3(i,j,k) = 0.0 + Iqq3z(i,j,k) = 0.0 + Iqq3z2(i,j,k) = 0.0 + Iqq3z3(i,j,k) = 0.0 + Iqq3z4(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m=0,4 + Iqq3(i,j,k) =Iqq3(i,j,k) + qqp3(i,j,k,m)*z3**(m+2) + Iqq3z(i,j,k)=Iqq3z(i,j,k)+qqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Iqq3z2(i,j,k)=Iqq3z2(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Iqq3z3(i,j,k)=Iqq3z3(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Iqq3z4(i,j,k)=Iqq3z4(i,j,k)+qqp3(i,j,k,m) *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/16.0*PI *rho/z3 + factor3= 9.0/16.0*PI**2 * (rho/z3)**2 + + fqq2 = 0.0 + fqq2z = 0.0 + fqq2z2 = 0.0 + fqq2z3 = 0.0 + fqq2z4 = 0.0 + fqq3 = 0.0 + fqq3z = 0.0 + fqq3z2 = 0.0 + fqq3z3 = 0.0 + fqq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2z =fqq2z +factor2*xijfa*(Iqq2z(i,j) +eij/t*Iqq4z(i,j) ) + fqq2z2=fqq2z2+factor2*xijfa*(Iqq2z2(i,j)+eij/t*Iqq4z2(i,j)) + fqq2z3=fqq2z3+factor2*xijfa*(Iqq2z3(i,j)+eij/t*Iqq4z3(i,j)) + fqq2z4=fqq2z4+factor2*xijfa*(Iqq2z4(i,j)+eij/t*Iqq4z4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa*Iqq3(i,j,k) + fqq3z = fqq3z + factor3 * xijkfa*Iqq3z(i,j,k) + fqq3z2 = fqq3z2 + factor3 * xijkfa*Iqq3z2(i,j,k) + fqq3z3 = fqq3z3 + factor3 * xijkfa*Iqq3z3(i,j,k) + fqq3z4 = fqq3z4 + factor3 * xijkfa*Iqq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2z /= 0.0 .AND. fqq3z /= 0.0) THEN + fqqdr = fqq2* (fqq2*fqq2z - 2.0*fqq3*fqq2z+fqq2*fqq3z) /(fqq2-fqq3)**2 + fqqd2= (2.0*fqq2*fqq2z*fqq2z +fqq2*fqq2*fqq2z2 & + -2.0*fqq2z**2 *fqq3-2.0*fqq2*fqq2z2*fqq3+fqq2*fqq2*fqq3z2) & + /(fqq2-fqq3)**2 + fqqdr * 2.0*(fqq3z-fqq2z)/(fqq2-fqq3) + fqqd3=(2.0*fqq2z**3 +6.0*fqq2*fqq2z*fqq2z2+fqq2*fqq2*fqq2z3 & + -6.0*fqq2z*fqq2z2*fqq3-2.0*fqq2z**2 *fqq3z & + -2.0*fqq2*fqq2z3*fqq3 -2.0*fqq2*fqq2z2*fqq3z & + +2.0*fqq2*fqq2z*fqq3z2+fqq2*fqq2*fqq3z3) /(fqq2-fqq3)**2 & + + 2.0/(fqq2-fqq3)* ( 2.0*fqqd2*(fqq3z-fqq2z) & + + fqqdr*(fqq3z2-fqq2z2) - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)**2 ) + fqqd4=( 12.0*fqq2z**2 *fqq2z2+6.0*fqq2*fqq2z2**2 & + +8.0*fqq2*fqq2z*fqq2z3+fqq2*fqq2*fqq2z4-6.0*fqq2z2**2 *fqq3 & + -12.0*fqq2z*fqq2z2*fqq3z -8.0*fqq2z*fqq2z3*fqq3 & + -2.0*fqq2*fqq2z4*fqq3-4.0*fqq2*fqq2z3*fqq3z & + +4.0*fqq2*fqq2z*fqq3z3+fqq2**2 *fqq3z4 ) /(fqq2-fqq3)**2 & + + 6.0/(fqq2-fqq3)* ( fqqd3*(fqq3z-fqq2z) & + -fqqd2/(fqq2-fqq3)*(fqq3z-fqq2z)**2 & + - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)*(fqq3z2-fqq2z2) & + + fqqd2*(fqq3z2-fqq2z2) +1.0/3.0*fqqdr*(fqq3z3-fqq2z3) ) + zqq = fqqdr*eta + zqqz = fqqd2*eta + fqqdr + zqqz2 = fqqd3*eta + 2.0* fqqd2 + zqqz3 = fqqd4*eta + 3.0* fqqd3 + END IF + + +END SUBROUTINE P_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdqdr, fdqd2, fdqd3, fdqd4 + REAL :: fdq2, fdq2z, fdq2z2, fdq2z3, fdq2z4 + REAL :: fdq3, fdq3z, fdq3z2, fdq3z3, fdq3z4 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq2z, Idq2z2, Idq2z3, Idq2z4 + REAL, DIMENSION(nc,nc) :: Idq4, Idq4z, Idq4z2, Idq4z3, Idq4z4 + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3z, Idq3z2, Idq3z3, Idq3z4 +! ---------------------------------------------------------------------- + + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2z(i,j) = 0.0 + Idq4z(i,j) = 0.0 + Idq2z2(i,j) = 0.0 + Idq4z2(i,j) = 0.0 + Idq2z3(i,j) = 0.0 + Idq4z3(i,j) = 0.0 + Idq2z4(i,j) = 0.0 + Idq4z4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) =Idq2(i,j) + dqp2(i,j,m)*z3**(m+1) + Idq4(i,j) =Idq4(i,j) + dqp4(i,j,m)*z3**(m+1) + Idq2z(i,j) =Idq2z(i,j) +dqp2(i,j,m)*REAL(m+1)*z3**m + Idq4z(i,j) =Idq4z(i,j) +dqp4(i,j,m)*REAL(m+1)*z3**m + Idq2z2(i,j)=Idq2z2(i,j)+dqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq4z2(i,j)=Idq4z2(i,j)+dqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq2z3(i,j)=Idq2z3(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq4z3(i,j)=Idq4z3(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq2z4(i,j)=Idq2z4(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idq4z4(i,j)=Idq4z4(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + Idq3z(i,j,k) = 0.0 + Idq3z2(i,j,k) = 0.0 + Idq3z3(i,j,k) = 0.0 + Idq3z4(i,j,k) = 0.0 + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) =Idq3(i,j,k) + dqp3(i,j,k,m)*z3**(m+2) + Idq3z(i,j,k)=Idq3z(i,j,k)+dqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idq3z2(i,j,k)=Idq3z2(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Idq3z3(i,j,k)=Idq3z3(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Idq3z4(i,j,k)=Idq3z4(i,j,k)+dqp3(i,j,k,m) & + *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/4.0*PI *rho/z3 + factor3= PI**2 * (rho/z3)**2 + + fdq2 = 0.0 + fdq2z = 0.0 + fdq2z2 = 0.0 + fdq2z3 = 0.0 + fdq2z4 = 0.0 + fdq3 = 0.0 + fdq3z = 0.0 + fdq3z2 = 0.0 + fdq3z3 = 0.0 + fdq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa =x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2z =fdq2z +factor2*xijfa*(Idq2z(i,j) +eij/t*Idq4z(i,j) ) + fdq2z2=fdq2z2+factor2*xijfa*(Idq2z2(i,j)+eij/t*Idq4z2(i,j)) + fdq2z3=fdq2z3+factor2*xijfa*(Idq2z3(i,j)+eij/t*Idq4z3(i,j)) + fdq2z4=fdq2z4+factor2*xijfa*(Idq2z4(i,j)+eij/t*Idq4z4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa*Idq3(i,j,k) + fdq3z =fdq3z + factor3 * xijkfa*Idq3z(i,j,k) + fdq3z2=fdq3z2 + factor3 * xijkfa*Idq3z2(i,j,k) + fdq3z3=fdq3z3 + factor3 * xijkfa*Idq3z3(i,j,k) + fdq3z4=fdq3z4 + factor3 * xijkfa*Idq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2z /= 0.0 .AND. fdq3z /= 0.0) THEN + fdqdr = fdq2* (fdq2*fdq2z - 2.0*fdq3*fdq2z+fdq2*fdq3z) /(fdq2-fdq3)**2 + fdqd2= (2.0*fdq2*fdq2z*fdq2z +fdq2*fdq2*fdq2z2 & + -2.0*fdq2z**2 *fdq3-2.0*fdq2*fdq2z2*fdq3+fdq2*fdq2*fdq3z2) & + /(fdq2-fdq3)**2 + fdqdr * 2.0*(fdq3z-fdq2z)/(fdq2-fdq3) + fdqd3=(2.0*fdq2z**3 +6.0*fdq2*fdq2z*fdq2z2+fdq2*fdq2*fdq2z3 & + -6.0*fdq2z*fdq2z2*fdq3-2.0*fdq2z**2 *fdq3z & + -2.0*fdq2*fdq2z3*fdq3 -2.0*fdq2*fdq2z2*fdq3z & + +2.0*fdq2*fdq2z*fdq3z2+fdq2*fdq2*fdq3z3) /(fdq2-fdq3)**2 & + + 2.0/(fdq2-fdq3)* ( 2.0*fdqd2*(fdq3z-fdq2z) & + + fdqdr*(fdq3z2-fdq2z2) - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)**2 ) + fdqd4=( 12.0*fdq2z**2 *fdq2z2+6.0*fdq2*fdq2z2**2 & + +8.0*fdq2*fdq2z*fdq2z3+fdq2*fdq2*fdq2z4-6.0*fdq2z2**2 *fdq3 & + -12.0*fdq2z*fdq2z2*fdq3z -8.0*fdq2z*fdq2z3*fdq3 & + -2.0*fdq2*fdq2z4*fdq3-4.0*fdq2*fdq2z3*fdq3z & + +4.0*fdq2*fdq2z*fdq3z3+fdq2**2 *fdq3z4 ) /(fdq2-fdq3)**2 & + + 6.0/(fdq2-fdq3)* ( fdqd3*(fdq3z-fdq2z) & + -fdqd2/(fdq2-fdq3)*(fdq3z-fdq2z)**2 & + - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)*(fdq3z2-fdq2z2) & + + fdqd2*(fdq3z2-fdq2z2) +1.0/3.0*fdqdr*(fdq3z3-fdq2z3) ) + zdq = fdqdr*eta + zdqz = fdqd2*eta + fdqdr + zdqz2 = fdqd3*eta + 2.0* fdqd2 + zdqz3 = fdqd4*eta + 3.0* fdqd3 + END IF + + +END SUBROUTINE P_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_pert_theory ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, p, rho, eta, & + x, z0t, mseg, parame, order1, order2 + USE EOS_NUMERICAL_DERIVATIVES, ONLY: disp_term + USE DFT_MODULE + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + REAL :: I1, I2 + REAL :: z3, zms, c1_con, m_mean +!--------------------------------------------------------------------- + + ! caution: positive sign of correlation integral is used here ! + ! (the Helmholtz energy terms are written with a negative sign, while I1 and I2 are positive) + + IF (disp_term == 'PT1') THEN + + CALL f_dft ( I1, I2) + c1_con = 0.0 + I2 = 0.0 + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + + ELSEIF (disp_term == 'PT2') THEN + + CALL f_dft ( I1, I2) + z3 = eta + zms = 1.0 - z3 + m_mean = z0t / ( PI / 6.0 ) + c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + ELSEIF (disp_term == 'PT_MIX') THEN + + CALL f_pert_theory_mix ( fdsp ) + + ELSEIF (disp_term == 'PT_MF') THEN + + ! mean field theory + I1 = - ( - 8.0/9.0 - 4.0/9.0*(rc**(-9) -3.0*rc**(-3) ) - tau_cut/3.0*(rc**3 -1.0) ) + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + write (*,*) 'caution: not thoroughly checked and tested' + + ELSE + write (*,*) 'define the type of perturbation theory' + stop + END IF + + ! I1 = I1 + 4.0/9.0*(2.5**-9 -3.0*2.5**-3 ) + ! fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + END SUBROUTINE F_pert_theory + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_pert_theory_mix ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1 + REAL :: int10, int11 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + + DO l = 1, ncomp + DO m = 1, ncomp + + rad = rc + + int10 = rc * rc * ua_c + ! intgrid(0)= int10 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int11 = rdf * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int11 + int10 ) / 2.0 + + int10 = int11 + ! intgrid(k)= int11 + + END DO + + ! stepno = k + ! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) + ! CALL SPLINE_INT (I1_spline,dzr,intgrid,utri,stepno) + + + ! caution: 1st order integral is in F_EOS.f defined with negative sign + ! --------------------------------------------------------------- + ! cut-off corrections + ! --------------------------------------------------------------- + ! I1(l,m) = I1(l,m) + ( 4.0/9.0 * rc**-9 - 4.0/3.0 * rc**-3 ) + ! I2(l,m) = I2(l,m) + 16.0/21.0 * rc**-21 - 32.0/15.0 * rc**-15 + 16.0/9.0 * rc**-9 + + END DO + END DO + + + fdsp = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + fdsp = fdsp + 2.0*PI*rho*x(l)*x(m)* mseg(l)*mseg(m)*sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! ( 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + END DO + END DO + + +!!$ IF (disp_term == 'PT1') THEN +!!$ c1_con = 0.0 +!!$ I2 = 0.0 +!!$ ELSEIF (disp_term == 'PT2') THEN +!!$ zms = 1.0 - z3 +!!$ c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & +!!$ + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & +!!$ /(zms*(2.0-z3))**2 ) +!!$ ELSE +!!$ write (*,*) 'define the type of perturbation theory' +!!$ stop +!!$ END IF + + +END SUBROUTINE f_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE mu_pert_theory_mix ( mu_dsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: mu_dsp(nc) +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1, I2 + REAL :: int1_0, int1_1, int2_0, int2_1 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + REAL :: term1(nc), term2 + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + I2(:,:) = 0.0 + + DO l = 1, ncomp + + term1(l) = 0.0 + + DO m = 1, ncomp + + rad = rc + + int1_0 = rc * rc * ua_c + int2_0 = 0.0 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int1_1 = rdf * rad * rad * ua + int2_1 = dg_dz3 * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int1_1 + int1_0 ) / 2.0 + I2(l,m) = I2(l,m) + dzr_local * ( int2_1 + int2_0 ) / 2.0 + + int1_0 = int1_1 + int2_0 = int2_1 + + term1(l) = term1(l) +4.0*PI*rho*x(m)* mseg(l)*mseg(m) *sig_ij(l,m)**3 *uij(l,m)/t* dzr_local*(int1_1+int1_0)/2.0 + + END DO + + END DO + END DO + + + ! DO l = 1, ncomp + ! term1(l) = 0.0 + ! DO m = 1, ncomp + ! term1(l) = term1(l) + 4.0*PI*rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! END DO + ! END DO + + term2 = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + term2 = term2 + 2.0*PI*rho*x(l) * rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I2(l,m) + END DO + END DO + + DO l = 1, ncomp + mu_dsp(l) = term1(l) + term2 * PI/ 6.0 * mseg(l)*dhs(l)**3 + END DO + +END SUBROUTINE mu_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DD_GROSS_VRABEC( fdd ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + INTEGER :: ddit, ddmax + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, xijf_j, xijkf_j, eij + REAL :: fdd2, fdd3 + REAL, DIMENSION(nc) :: my2dd, my0, alph_tst, z1dd, z2dd, dderror + REAL, DIMENSION(nc) :: fdd2m, fdd3m, fdd2m2, fdd3m2, fddm, fddm2 + REAL, DIMENSION(nc,nc) :: Idd2, Idd4 + REAL, DIMENSION(nc,nc,nc) :: Idd3 +! ---------------------------------------------------------------------- + + fdd = 0.0 + ddit = 0 + ddmax = 0 ! value assigned, if polarizable compound is present + fddm(:) = 0.0 + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'F_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + alph_tst(i) = parame(i,11) / (mseg(i)*sig_ij(i,i)**3 ) * t/parame(i,3) + IF ( alph_Tst(i) /= 0.0 ) ddmax = 25 ! set maximum number of polarizable RGT-iterations + z1dd(i) = my2dd(i) + 3.0*alph_tst(i) + z2dd(i) = 3.0*alph_tst(i) + my0(i) = my2dd(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) = Idd2(i,j) + ddp2(i,j,m)*eta**m + Idd4(i,j) = Idd4(i,j) + ddp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) = Idd3(i,j,k) + ddp3(i,j,k,m)*eta**m + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2 = -PI *rho + factor3 = -4.0/3.0*PI**2 * rho**2 + +9 CONTINUE + + fdd2m(:) = 0.0 + fdd2m2(:) = 0.0 + fdd3m(:) = 0.0 + fdd3m2(:) = 0.0 + fdd2 = 0.0 + fdd3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa =x(i)*parame(i,3)/t*parame(i,2)**3 * x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 * (z1dd(i)*z1dd(j)-z2dd(i)*z2dd(j)) ! * (1.0-lij(i,j)) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 + factor2 * xijfa * ( Idd2(i,j) + eij/t*Idd4(i,j) ) + xijf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 ! * (1.0-lij(i,j)) + fdd2m(i)=fdd2m(i)+4.0*SQRT(my2dd(i))*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + fdd2m2(i)=fdd2m2(i) + 4.0*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + IF (j == i) fdd2m2(i) =fdd2m2(i) +8.0*factor2* xijf_j*my2dd(i) *(Idd2(i,j)+eij/t*Idd4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 / ((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) / ((parame(j,2)+parame(k,2))/2.0) & + *(z1dd(i)*z1dd(j)*z1dd(k)-z2dd(i)*z2dd(j)*z2dd(k)) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3 = fdd3 + factor3 * xijkfa * Idd3(i,j,k) + xijkf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3m(i)=fdd3m(i)+6.0*factor3*SQRT(my2dd(i))*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + fdd3m2(i)=fdd3m2(i)+6.0*factor3*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + IF(j == i) fdd3m2(i) =fdd3m2(i)+24.0*factor3*my2dd(i)*z1dd(k) *xijkf_j*Idd3(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0) THEN + fdd = fdd2 / ( 1.0 - fdd3/fdd2 ) + IF ( ddmax /= 0 ) THEN + DO i = 1, ncomp + ddit = ddit + 1 + fddm(i) =fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i)+fdd2*fdd3m(i)) /(fdd2-fdd3)**2 + fddm2(i) = fdd2m(i) * (fdd2*fdd2m(i)-2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) / (fdd2-fdd3)**2 & + + fdd2*(fdd2*fdd2m2(i) -2.0*fdd3*fdd2m2(i)+fdd2m(i)**2 & + -fdd2m(i)*fdd3m(i) +fdd2*fdd3m2(i)) / (fdd2-fdd3)**2 & + - 2.0*fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) /(fdd2-fdd3)**3 & + *(fdd2m(i)-fdd3m(i)) + dderror(i)= SQRT( my2dd(i) ) - SQRT( my0(i) ) + alph_Tst(i)*fddm(i) + my2dd(i) = ( SQRT( my2dd(i) ) - dderror(i) / (1.0+alph_Tst(i)*fddm2(i)) )**2 + z1dd(i) = my2dd(i) + 3.0 * alph_Tst(i) + ENDDO + DO i = 1, ncomp + IF (ABS(dderror(i)) > 1.E-11 .AND. ddit < ddmax) GOTO 9 + ENDDO + fdd = fdd + SUM( 0.5*x(1:ncomp)*alph_Tst(1:ncomp)*fddm(1:ncomp)**2 ) + ENDIF + END IF + + +END SUBROUTINE F_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_QQ_GROSS( fqq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fqq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fqq2, fqq3 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3 +! ---------------------------------------------------------------------- + + + fqq = 0.0 + DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m)*eta**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Iqq3(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,k) = Iqq3(i,j,k) + qqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/16.0*PI *rho + factor3 = 9.0/16.0*PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2* xijfa * (Iqq2(i,j)+eij/t*Iqq4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa * Iqq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF ( fqq2 < -1.E-50 .AND. fqq3 /= 0.0 ) THEN + fqq = fqq2 / ( 1.0 - fqq3/fqq2 ) + END IF + + + +END SUBROUTINE F_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DQ_VRABEC_GROSS( fdq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fdq2, fdq3 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4 + REAL, DIMENSION(nc,nc,nc) :: Idq3 +! ---------------------------------------------------------------------- + + + fdq = 0.0 + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + ! myfac(i)=parame(i,3)/T*parame(i,2)**4 *my2dd_renormalized(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*eta**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) = Idq3(i,j,k) + dqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/4.0 * PI *rho + factor3 = PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 +factor2* xijfa*(Idq2(i,j)+eij/t*Idq4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.1937350 ) + fdq3 = fdq3 + factor3*xijkfa*Idq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0) THEN + fdq = fdq2 / ( 1.0 - fdq3/fdq2 ) + END IF + +END SUBROUTINE F_DQ_VRABEC_GROSS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_dft ( I1_dft, I2_dft ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, mseg, parame + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: I1_dft + REAL, INTENT(OUT) :: I2_dft +! +! ---------------------------------------------------------------------- + INTEGER :: k,ih + ! REAL :: z3 + REAL :: ua, ua_c, ua_2, ua_c_2, rm + REAL :: int10, int11, int20, int21 + REAL :: dg_drho + REAL :: rad, xg, rdf, rho_st, msegm + REAL :: sig_ij + REAL :: dg_dr, dzr_org !,rdf_d + ! REAL :: intgrid(0:NDFT),intgri2(0:NDFT) +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- +msegm = parame(1,1) +rho_st = rho * parame(1,2)**3 + +ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) +ua_c_2 = ua_c * ua_c +rm = 2.0**(1.0/6.0) + +int10 = rc*rc* ua_c +int20 = rc*rc* ua_c_2 +! intgrid(0)= int10 +! intgri2(0)= int20 + + +sig_ij = parame(1,2) + + +I1_dft = 0.0 +I2_dft = 0.0 +rad = rc +!dzr = dzp / 2.0 ! this line is obsolete. dzr is defined in DFT-nMF2 (dimensionless) +dzr_org= dzr +k = 0 +ih = 85 + +DO WHILE ( rad-dzr+1.E-9 >= 1.0 ) + + rad = rad - dzr + ! IF (rad <= 8.0) dzr = dzp + ! IF (rad <= rg) dzr = dzp/2.0 + k = k + 1 + xg = rad / dhs_st + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + ua_2 = ua * ua + rdf = 1.0 + dg_drho = 0.0 + IF ( rad <= rg ) THEN + CALL BI_CUB_SPLINE (rho_st,xg,ya,x1a,x2a,y1a,y2a,y12a, & + c_bicub,rdf,dg_drho,dg_dr,den_step,ih,k) + END IF + + int11 = rdf*rad*rad* ua + int21 = rdf*rad*rad* ua_2 + I1_dft= I1_dft + dzr*(int11+int10)/2.0 + I2_dft= I2_dft + dzr*(int21+int20)/2.0 + int10 = int11 + int20 = int21 + +END DO + +dzr = dzr_org + +! stepno = k +! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) +! CALL SPLINE_INT (I1,dzr,intgrid,utri,stepno) + +! caution: 1st order integral is in F_EOS.f defined with negative sign +I1_dft= - I1_dft - ( 4.0/9.0 * rc**(-9) - 4.0/3.0 * rc**(-3) ) + +! CALL SPLINE_PARA (dzr,intgri2,utri,stepno) +! CALL SPLINE_INT (I2,dzr,intgri2,utri,stepno) + +I2_dft = I2_dft + 16.0/21.0 * rc**(-21) - 32.0/15.0 * rc**(-15) + 16.0/9.0 * rc**(-9) + + +END SUBROUTINE f_dft + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) +! SUBROUTINE TANGENT_VALUE ( fmin, optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + !REAL, INTENT(IN) :: optpara(:) + !REAL, INTENT(IN OUT) :: fmin +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: lnphi(np,nc),ph_frac, gibbs_full(np),xlnx1,xlnx2 + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + + ! --- setting of mole fractions --------------------------------------- + DO i = 1, ncomp + IF ( optpara(i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( optpara(i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i) - ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(2,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + lnx(2,1:ncomp) = optpara(1:ncomp) - LOG( SUM( ni_2(1:ncomp) ) ) + + ph_frac = SUM( ni_1(1:ncomp) ) + xi(1,1:ncomp) = ni_1(1:ncomp) / ph_frac + lnx(1,1:ncomp) = LOG( ni_1(1:ncomp) ) - LOG( ph_frac ) + ! write (*,'(a,4G18.8)') 'FF',(xif(i),i=1,ncomp) + ! write (*,'(a,4G18.8)') 'AA',(xi(1,i),i=1,ncomp) + ! write (*,'(a,3G18.8)') 'BB',(xi(2,i),i=1,ncomp) + + CALL fugacity (lnphi) + !CALL enthalpy_etc + + gibbs(1) = SUM( xi(1,1:ncomp) * lnphi(1,1:ncomp) ) ! dimensionless g/RT + gibbs(2) = SUM( xi(2,1:ncomp) * lnphi(2,1:ncomp) ) + + xlnx1 = SUM( xi(1,1:ncomp)*lnx(1,1:ncomp) ) ! dimensionless s/RT + xlnx2 = SUM( xi(2,1:ncomp)*lnx(2,1:ncomp) ) + + gibbs_full(1) = gibbs(1) + xlnx1 + gibbs_full(2) = gibbs(2) + xlnx2 + + TANGENT_VALUE2 = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !fmin = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !write (*,'(a,4G18.8)') 'TP',TANGENT_VALUE2,(lnx(1,i),i=1,ncomp) + !write (*,'(a,4G18.8)') 'al',ph_frac,(lnx(2,i), i=1,ncomp) + !write (*,*) ' ' + !pause + +END FUNCTION TANGENT_VALUE2 + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/getting_started_subroutines.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/getting_started_subroutines.f90 new file mode 100644 index 000000000..c56278f18 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/getting_started_subroutines.f90 @@ -0,0 +1,4102 @@ + +!> This file contains auxiliary subroutines. + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE eos_const +! +! This subroutine provides the constants of the PC-SAFT EOS. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE eos_const (ap,bp,dnm) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ap(0:6,3) + REAL, INTENT(OUT) :: bp(0:6,3) + REAL, INTENT(OUT) :: dnm(4,9) +! ---------------------------------------------------------------------- + + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +! square-well fluid +! ap(1,1)= 0.79152347258784 +! ap(1,2)= -0.62269805320654 +! ap(1,3)= -0.06798823934067 +! ap(2,1)= 1.07120982251709 +! ap(2,2)= 0.48628215731716 +! ap(2,3)= 0.02837828512515 +! ap(3,1)= 0.92084839459226 +! ap(3,2)= 1.11652038059747 +! ap(3,3)= 0.09713202077943 +! ap(4,1)= -7.84708350369249 +! ap(4,2)= -2.04200599876547 +! ap(4,3)= 0.06475764015088 +! ap(5,1)= 25.90284137818050 +! ap(5,2)= 9.27791640100603 +! ap(5,3)= 0.07729792971827 +! ap(6,1)= -57.1528726997640 +! ap(6,2)= -16.8377999920957 +! ap(6,3)= 0.24883598436184 +! ap(7,1)= 42.02314637860930 +! ap(7,2)= 7.62432635016420 +! ap(7,3)= -0.72472024688888 + +! bp(1,1)= 0.79152347258784 +! bp(1,2)= -0.62269805320654 +! bp(1,3)= -0.06798823934067 +! bp(2,1)= 1.07120982251709 *2.0 +! bp(2,2)= 0.48628215731716 *2.0 +! bp(2,3)= 0.02837828512515 *2.0 +! bp(3,1)= 0.92084839459226 *3.0 +! bp(3,2)= 1.11652038059747 *3.0 +! bp(3,3)= 0.09713202077943 *3.0 +! bp(4,1)= -7.84708350369249 *4.0 +! bp(4,2)= -2.04200599876547 *4.0 +! bp(4,3)= 0.06475764015088 *4.0 +! bp(5,1)= 25.90284137818050 *5.0 +! bp(5,2)= 9.27791640100603 *5.0 +! bp(5,3)= 0.07729792971827 *5.0 +! bp(6,1)= -57.1528726997640 *6.0 +! bp(6,2)= -16.8377999920957 *6.0 +! bp(6,3)= 0.24883598436184 *6.0 +! bp(7,1)= 42.02314637860930 *7.0 +! bp(7,2)= 7.62432635016420 *7.0 +! bp(7,3)= -0.72472024688888 *7.0 + + +dnm(1,1) = -8.8043 +dnm(1,2) = +4.1646270 +dnm(1,3) = -48.203555 +dnm(1,4) = +140.43620 +dnm(1,5) = -195.23339 +dnm(1,6) = +113.51500 +dnm(2,1) = +2.9396 +dnm(2,2) = -6.0865383 +dnm(2,3) = +40.137956 +dnm(2,4) = -76.230797 +dnm(2,5) = -133.70055 +dnm(2,6) = +860.25349 +dnm(2,7) = -1535.3224 +dnm(2,8) = +1221.4261 +dnm(2,9) = -409.10539 +dnm(3,1) = -2.8225 +dnm(3,2) = +4.7600148 +dnm(3,3) = +11.257177 +dnm(3,4) = -66.382743 +dnm(3,5) = +69.248785 +dnm(4,1) = +0.3400 +dnm(4,2) = -3.1875014 +dnm(4,3) = +12.231796 +dnm(4,4) = -12.110681 + +END SUBROUTINE eos_const + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dq_const +! +! This subr. provides the constants of the dipole-quadrupole term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dq_const ( dqp2,dqp3,dqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: dqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: dqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: dqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mdq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i=1,ncomp + mdq(i) = parame(i,1) + IF (mdq(i) > 2.0) mdq(i) = 2.0 +END DO + + +DO i=1,ncomp + DO j=1,ncomp + + msegij=(mdq(i)*mdq(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + dqp2(i,j,0) = 0.697094963 + mf1*(-0.673459279) + mf2*0.670340770 + dqp2(i,j,1) = -0.633554144 + mf1*(-1.425899106) + mf2*(-4.338471826) + dqp2(i,j,2) = 2.945509028 + mf1 * 4.19441392 + mf2*7.234168360 + dqp2(i,j,3) = -1.467027314 + mf1 * 1.0266216 + dqp2(i,j,4) = 0.0 + + dqp4(i,j,0) = -0.484038322 + mf1 * 0.67651011 + mf2*(-1.167560146) + dqp4(i,j,1) = 1.970405465 + mf1*(-3.013867512) + mf2*2.13488432 + dqp4(i,j,2) = -2.118572671 + mf1 * 0.46742656 + dqp4(i,j,3) = 0.0 + dqp4(i,j,4) = 0.0 + + + DO k=1,ncomp + msegij=(mdq(i)*mdq(j)*mdq(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = (msegij-2.0)/msegij + dqp3(i,j,k,0) = 0.795009692 + mf1*(-2.099579397) + dqp3(i,j,k,1) = 3.386863396 + mf1*(-5.941376392) + dqp3(i,j,k,2) = 0.475106328 + mf1*(-0.178820384) + dqp3(i,j,k,3) = 0.0 + dqp3(i,j,k,4) = 0.0 + END DO + + END DO +END DO + +END SUBROUTINE dq_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dd_const +! +! This subroutine provides the constants of the dipole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dd_const ( ddp2,ddp3,ddp4 ) +! + USE PARAMETERS, ONLY: nc, PI + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ddp2(nc,nc,0:8) + REAL, INTENT(OUT) :: ddp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: ddp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: pardd(nc) + REAL :: mf1,mf2,msegij,sin2t +! ---------------------------------------------------------------------- + +sin2t = SIN( 0.0 * PI / 180.0 ) +sin2t = sin2t*sin2t + +DO i = 1, ncomp + pardd(i) = parame(i,1) + IF (pardd(i) > 2.0) pardd(i) = 2.0 +END DO + +DO i=1,ncomp + DO j=1,ncomp +! IF (parame(i,6).NE.0.0.AND.parame(j,6).NE.0.0) THEN + + msegij=(pardd(i)*pardd(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + ddp2(i,j,0) = 0.30435038064 + mf1*(0.95346405973+0.201436*sin2t) & + + mf2*(-1.16100802773-1.74114*sin2t) + ddp2(i,j,1) = -0.13585877707 + mf1*(-1.83963831920+1.31649*sin2t) & + + mf2*4.52586067320 + ddp2(i,j,2) = 1.44933285154 + mf1 * 2.01311801180 + mf2*0.97512223853 + ddp2(i,j,3) = 0.35569769252 + mf1*(-7.37249576667) + mf2*(-12.2810377713) + ddp2(i,j,4) = -2.06533084541 + mf1 * 8.23741345333 + mf2*5.93975747420 + + ddp4(i,j,0) = 0.21879385627 + mf1*(-0.58731641193) + mf2*3.48695755800 + ddp4(i,j,1) = -1.18964307357 + mf1 * 1.24891317047 + mf2*(-14.9159739347) + ddp4(i,j,2) = 1.16268885692 + mf1*(-0.50852797392) + mf2*15.3720218600 + ddp4(i,j,3) = 0.0 + ddp4(i,j,4) = 0.0 + + DO k=1,ncomp +! IF (parame(k,6).NE.0.0) THEN + msegij=(pardd(i)*pardd(j)*pardd(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + ddp3(i,j,k,0) = -0.06467735252 + mf1*(-0.95208758351+0.28503*sin2t) & + + mf2*(-0.62609792333+2.2195*sin2t) + ddp3(i,j,k,1) = 0.19758818347 + mf1 * 2.99242575222 + mf2*1.29246858189 + ddp3(i,j,k,2) = -0.80875619458 + mf1*(-2.38026356489) + mf2*1.65427830900 + ddp3(i,j,k,3) = 0.69028490492 + mf1*(-0.27012609786) + mf2*(-3.43967436378) + ddp3(i,j,k,4) = 0.0 + +! ENDIF + END DO + +! ENDIF + END DO +END DO + +END SUBROUTINE dd_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE qq_const +! +! This subroutine provides the constants of the quadrupole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qq_const ( qqp2,qqp3,qqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: qqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: qqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: qqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mqq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i = 1,ncomp + mqq(i) = parame(i,1) + IF (mqq(i) > 2.0) mqq(i) = 2.0 +END DO + +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + + msegij=(mqq(i)*mqq(j))**0.5 +! msegij=(parame(i,1)*parame(j,1))**0.50 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + qqp2(i,j,0) = 1.237830788 + mf1 * 1.285410878 + mf2*1.794295401 + qqp2(i,j,1) = 2.435503144 + mf1*(-11.46561451) + mf2*0.769510293 + qqp2(i,j,2) = 1.633090469 + mf1 *22.08689285 + mf2*7.264792255 + qqp2(i,j,3) = -1.611815241 + mf1 * 7.46913832 + mf2*94.48669892 + qqp2(i,j,4) = 6.977118504 + mf1*(-17.19777208) + mf2*(-77.1484579) + + qqp4(i,j,0) = 0.454271755 + mf1*(-0.813734006) + mf2*6.868267516 + qqp4(i,j,1) = -4.501626435 + mf1 * 10.06402986 + mf2*(-5.173223765) + qqp4(i,j,2) = 3.585886783 + mf1*(-10.87663092) + mf2*(-17.2402066) + qqp4(i,j,3) = 0.0 + qqp4(i,j,4) = 0.0 + + DO k = 1,ncomp + IF (parame(k,7) /= 0.0) THEN + msegij=(mqq(i)*mqq(j)*mqq(k))**(1.0/3.0) +! msegij=(parame(i,1)*parame(j,1)*parame(k,1))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + qqp3(i,j,k,0) = -0.500043713 + mf1 * 2.000209381 + mf2*3.135827145 + qqp3(i,j,k,1) = 6.531869153 + mf1*(-6.78386584) + mf2*7.247588801 + qqp3(i,j,k,2) = -16.01477983 + mf1 * 20.38324603 + mf2*3.075947834 + qqp3(i,j,k,3) = 14.42597018 + mf1*(-10.89598394) + qqp3(i,j,k,4) = 0.0 + END IF + END DO + + END IF + END DO +END DO + +END SUBROUTINE qq_const + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SET_DEFAULT_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + + ideal_gas = 'no' ! ( yes, no ) + hard_sphere = 'CSBM' ! ( CSBM, no ) + chain_term = 'TPT1' ! ( TPT1, HuLiu, no ) + disp_term = 'PC-SAFT' ! ( PC-SAFT, CK, PT1, PT2, PT_MF, PT_MIX, no ) + hb_term = 'TPT1_Chap' ! ( TPT1_Chap, no ) + LC_term = 'no' ! ( MSaupe, OVL, no ) + branch_term = 'no' ! ( TPT2, no ) + II_term = 'no' + ID_term = 'no' + + subtract1 = 'no' ! (1PT, 2PT, no) + subtract2 = 'no' ! (ITTpolar, no) + +END SUBROUTINE SET_DEFAULT_EOS_NUMERICAL + + + + + + + + + +! SUBROUTINE READ_INPUT +! ! +! USE BASIC_VARIABLES +! IMPLICIT NONE +! ! +! ! ---------------------------------------------------------------------- +! INTEGER :: i +! REAL :: reading2,reading3,sumfeed +! CHARACTER (LEN=4) :: uoutp, uinp +! CHARACTER (LEN=1) :: uoutt, uint +! CHARACTER (LEN=50) :: filename +! CHARACTER (LEN=30) :: reading1 +! ! ---------------------------------------------------------------------- +! +! filename='./input_file/INPUT.INP' +! CALL file_open(filename,30) +! READ (30,*) eos, pol !J: specify by numbers! eos(1=pcsaft, 2=SRK,...) pol (=polar) yes(1) no(0) +! READ (30,*) t, uint, p, uinp !J: t: value of temp, uint: unit of temp, p: value of pressure, uinp: unit of pressure +! +! ncomp = 0 +! i = 0 +! sumfeed = 0.0 +! read_loop: DO +! READ (30,*) reading1,reading2,reading3 +! IF (reading1 == 'end') EXIT read_loop +! ncomp = ncomp + 1 +! i = i + 1 +! compna(i)= reading1 ! comp.name +! mm(i) = reading2 ! molec.mass (mandatory only for polymers) +! xif(i) = reading3 !J: molefractions +! sumfeed = sumfeed + xif(i) +! ENDDO read_loop +! +! CLOSE (30) +! +! IF (sumfeed /= 0.0 .AND. sumfeed /= 1.0) THEN !J: in case mole fractions dont sum up to 1?? +! xif(1:ncomp) = xif(1:ncomp)/sumfeed +! END IF +! +! uoutt = uint +! uoutp = uinp +! IF (uint == 'C') THEN !J: unit stuff +! u_in_t = 273.15 +! ELSE +! u_in_t = 0.0 +! END IF +! IF (uinp == 'bar') THEN +! u_in_p = 1.E5 +! ELSE IF (uinp == 'mbar') THEN +! u_in_p = 1.E2 +! ELSE IF (uinp == 'MPa') THEN +! u_in_p = 1.E6 +! ELSE IF (uinp == 'kPa') THEN +! u_in_p = 1.E3 +! ELSE +! u_in_p = 1.E0 +! END IF +! +! IF (uoutt == 'C') THEN +! u_out_t = 273.15 +! ELSE +! u_out_t = 0.0 +! END IF +! IF (uoutp == 'bar') THEN +! u_out_p = 1.E5 +! ELSE IF (uoutp == 'mbar') THEN +! u_out_p = 1.E2 +! ELSE IF (uoutp == 'MPa') THEN +! u_out_p = 1.E6 +! ELSE IF (uoutp == 'kPa') THEN +! u_out_p = 1.E3 +! ELSE +! u_out_p = 1.0 +! END IF +! +! t = t + u_in_t !J: calculate temp in Kelvin +! p = p * u_in_p !J: calculate pressure in Pascal +! +! CALL para_input ! retriev pure comp. parameters +! +! +! END SUBROUTINE READ_INPUT + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE file_open +! +! This subroutine opens files for reading. Beforehand, it checks +! whether this file is available. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE file_open(filename,file_number) +! +! ---------------------------------------------------------------------- + CHARACTER (LEN=50) :: filename + INTEGER :: file_number + LOGICAL :: filefound +! ---------------------------------------------------------------------- + +INQUIRE (FILE=filename, EXIST = filefound) +IF (filefound) THEN + OPEN (file_number, FILE = filename) +ELSE + write (*,*) ' FOLLOWING FILE CAN NOT BE OPENED', filename + stop +END IF + +END SUBROUTINE file_open + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE para_input +! +! This subroutine provides pure component parameters and kij parameters. +! The following syntax applies: +! +! compna(i) component name +! parame(i,k) pure comp. parameter: +! parame(i,1): segment number [/] +! parame(i,2): segment diameter "sigma" [Angstrom] +! parame(i,3): segment energy param. epsilon/k [K] +! parame(i,4): model parameter; not used for PC-SAFT (=0) +! it is 10K most of the time for SAFT [K] +! parame(i,5): Param. for T-dependent segment diameter [/] +! parame(i,6): dipolar moment [debye] +! parame(i,7): quadrupolar moment [debye] +! parame(i,8): number of segments that are part of a branching 4-mer [/] +! parame(i,9): +! parame(i,10): ionic charge number (positiv or negativ) [/] +! parame(i,11): polarizability [A**3] +! parame(i,12): number of association sites [/] +! parame(i,13): (=kap_hb, see below) [/] +! parame(i,14 to 25): (=eps_hb, see below) [K] +! nhb_typ(i) number of different types of association sites (comp. i) +! nhb_no(i,k) number of association sites of type k +! eps_hb depth of association potential [K] +! kap_hb effective width of assoc. potential (angle-averg.) +! mm molec. mass +! scaling param. for roughly scaling the set of objective functions +! +! As opposed to low-molec mass compounds, the molecular mass of a +! polymer is not obtained from this routine. Rather, it is a +! user-specification given in the file INPUT.INP +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE para_input +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i +!---------------------------------------------------------------------- + +IF (eos == 1) THEN + CALL pcsaft_par +ELSE IF (eos == 4 .OR. eos == 5 .OR. eos == 6 .OR. eos == 8) THEN + ! CALL lj_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 7) THEN + ! CALL sw_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 10) THEN + i = 1 + IF (compna(i) == 'LC_generic' .AND. ncomp == 1 ) THEN + mm(i) = 1.0 + parame(i,1) = 7.0 + parame(i,2) = 1.0 + parame(i,3) = 0.0 + ELSE + write (*,*) 'PARA_INPUT: define the component !' + stop + ENDIF +ELSE + !CALL saft_par +END IF + +DO i = 1, ncomp + IF ( mm(i) >= 1.0 .AND. mm(i) < 45.0 ) THEN + scaling(i) = 10000.0 + ELSE IF( mm(i) >= 45.0 .AND. mm(i) < 90.0 ) THEN + scaling(i) = 1000.0 + ELSE IF( mm(i) >= 90.0 .AND. mm(i) < 150.0 ) THEN + scaling(i) = 100.0 + ELSE IF( mm(i) >= 150.0 .AND. mm(i) < 250.0 ) THEN + scaling(i) = 10.0 + ELSE + scaling(i) = 1.0 + END IF + IF (parame(i,10) /= 0.0) scaling(i) = scaling(i) / 1.E4 ! Electrolytes +END DO + +END SUBROUTINE para_input + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE pcsaft_par +! +! pure component parameters and kij parameters +! (as described in SUBROUTINE para_input) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE pcsaft_par +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i, j, k, no + INTEGER, DIMENSION(nc) :: nhb_typ + INTEGER, DIMENSION(nc,nsite) :: nhb_no + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb +!---------------------------------------------------------------------- + + +DO i = 1, ncomp + parame(i,4) = 0.0 ! T correct. required for SAFT, not PC-SAFT + parame(i,5) = 0.12 ! Param. for T-dependent segment diameter + parame(i,6) = 0.0 ! dipolar moment + parame(i,7) = 0.0 ! quadrupolar moment + parame(i,8) = 0.0 ! number of segments that are part of a branching 4-mer + parame(i,9) = 0.0 + parame(i,10)= 0.0 ! ionic charge number + parame(i,11)= 0.0 ! polarizability + lli(i) = 0.0 + phi_criti(i)= 0.0 + chap(i) = 0.0 + + nhb_typ(i) = 0 + kap_hb(i,i) = 0.0 + ! irgendwann sollten nhb_typ und kap_hb durch parame(i,12) und (i,13) + ! ersetzt werden. + + IF (compna(i) == '14-butandiol') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + ELSE IF (compna(i) == 'air') THEN + mm(i) = 28.899 !n2 and o2 according to mole fractions + parame(i,1) = 1.18938 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,2) = 3.28694 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,3) = 95.672 !n2 and o2 according to mole fractions (weighted artihm. avg) + + + Else IF(compna(i) == 'mdi') THEN + mm(i) = 2.50252E+02 + parame(i,1) = mm(i)*0.030769 + parame(i,2) = 2.886003 + parame(i,3) = 283.052778 + + Else IF(compna(i) == 'po') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + Else IF(compna(i) == 'pu') THEN +! mm(i) = 2042.22 !pu n = 5 +! parame(i,1) = mm(i)*0.008845 +! parame(i,2) = 5.680270 +! parame(i,3) = 497.997594 + mm(i) = 340.37 !pu n = 0 + parame(i,1) = mm(i)*0.043312 + parame(i,2) = 3.008359 + parame(i,3) = 273.445205 +! mm(i) = 680.74 !pu n = 1 +! parame(i,1) = mm(i)*0.024106 +! parame(i,2) = 3.744327 +! parame(i,3) = 321.486386 +! mm(i) = 1021.11 !pu n = 2 +! parame(i,1) = mm(i)*0.015076 +! parame(i,2) = 4.537837 +! parame(i,3) = 400.036950 + + + + + Else IF(compna(i) == 'tpg') THEN + mm(i) = 192.25 + parame(i,1) = mm(i)*0.01239 + parame(i,2) = 4.549 + parame(i,3) = 148.678 + parame(i,6) = 0.41 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 2 ! no. of sites of type 1 + nhb_no(i,2) = 2 ! no. of sites of type 2 + + eps_hb(i,i,1,2)= 5597.844 + eps_hb(i,i,2,1)= 5597.844 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.03 + + + + + + ELSE IF (compna(i) == 'ps') THEN + parame(i,1) = mm(i)*1.9E-2 + parame(i,2) = 4.10705961 + parame(i,3) = 267.0 + ELSE IF (compna(i) == 'pg2') THEN !Polyglycerol 2 + mm(i) = 2000.0 + parame(i,1) = mm(i)*2.37E-2 ! from figure 5 PCSAFT paper + parame(i,2) = 3.8 ! from figure 5 PCSAFT paper + parame(i,3) = 270.0 ! starting value for iteration + ! this is the extra parameter + parame(i,8) = mm(i)*2.37E-2 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 27 ! no. of sites of type 1 + nhb_no(i,2) = 27 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2544.6 ! taken from butanol (same M/OH) + eps_hb(i,i,2,1)= 2544.6 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i)= .00489087833 ! taken from butanol (same M/OH) + ELSE IF (compna(i) == 'peva') THEN + parame(i,1) = mm(i)*2.63E-2 + ! -- 0 Gew.% VA------------- + ! parame(i,2) = 4.021767 + ! parame(i,3) = 249.5 + ! -- 7.5 Gew.% VA------------- + ! parame(i,2) = 4.011 + ! parame(i,3) = 248.1864 + ! parame(i,3) = 247.6286 + ! ---12.7 Gew.% VA------------ + ! parame(i,2) = 4.0028 + ! parame(i,3) = 247.2075 + ! parame(i,3) = 246.24454 + ! ---27.3 Gew.% VA------------ + ! parame(i,2) = 3.9762 + ! parame(i,3) = 244.114 + ! parame(i,3) = 241.9345 + ! ---31.8 Gew.% VA------------ + parame(i,2) = 3.9666 + parame(i,3) = 243.0436 + ! parame(i,3) = 240.46 + ! ---42.7 Gew.% VA------------ + ! parame(i,2) = 3.9400 + ! parame(i,3) = 240.184 + ! parame(i,3) = 236.62 + ! --------------- + ELSE IF (compna(i) == 'pp') THEN + parame(i,1) = mm(i)*2.2E-2 + parame(i,2) = 4.2 + parame(i,3) = 220.0 + + parame(i,1) = mm(i)*0.0230487701 + parame(i,2) = 4.1 + parame(i,3) = 217.0 + ELSE IF (compna(i) == 'pe') THEN + parame(i,1) = mm(i)*2.622E-2 + parame(i,2) = 4.021767 + parame(i,3) = 252.0 + ! HDPE: extrapolated from pure comp. param. of n-alkane series! + ! parame(i,1) = mm(i)*2.4346E-2 + ! parame(i,2) = 4.07182 + ! parame(i,3) = 269.67 + !! parame(i,3) = 252.5 + ELSE IF (compna(i) == 'ldpe') THEN + parame(i,1) = mm(i)*2.63E-2 + parame(i,2) = 4.021767 + parame(i,3) = 249.5 + ELSE IF (compna(i) == 'pba') THEN + parame(i,1) = mm(i)*2.5872E-2 + parame(i,2) = 3.95 + parame(i,3) = 229.0 + ELSE IF (compna(i) == 'dextran') THEN + parame(i,1) = mm(i)*2.E-2 + parame(i,2) = 4.0 + parame(i,3) = 300.0 + ELSE IF (compna(i) == 'glycol-ethers') THEN + ! mm(i) = 218.0 + ! parame(i,1) = 7.4044 + ! parame(i,2) = 3.61576 + ! parame(i,3) = 244.0034598 + mm(i) = 222.0 + parame(i,1) = 7.994 + parame(i,2) = 3.445377778 + parame(i,3) = 234.916506 + ELSE IF (compna(i) == 'LJ') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 1.0 + ELSE IF (compna(i) == 'LJ1205') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 140.0 + ELSE IF (compna(i) == 'adamantane') THEN + mm(i) = 136.235000000000 + parame(i,1) = 4.81897145432221 + parame(i,2) = 3.47128575274660 + parame(i,3) = 266.936967922521 + ELSE IF (compna(i) == 'methane') THEN + mm(i) = 16.043 + parame(i,1) = 1.0 + parame(i,2) = 3.70388767 + parame(i,3) = 150.033987 + ! LLi(i) = 1.185*parame(i,2) + ! phi_criti(i)= 11.141 + ! chap(i) = 0.787 + lli(i) = 1.398*parame(i,2) + phi_criti(i)= 16.01197 + chap(i) = 0.6 + IF (pol == 2) parame(i,11)= 2.593 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 16.0430000000000 + ! parame(i,1) = 1.03353666429362 + ! parame(i,2) = 3.64824920605089 + ! parame(i,3) = 147.903953522994 + lli(i) = 2.254442763775*parame(i,2) + phi_criti(i)= 42.060975627454 + chap(i) = 0.704895924 + lli(i) = 1.935801125833*parame(i,2) + phi_criti(i)= 26.363325937261 + chap(i) = 0.700112854298 + lli(i) = 2.610103087662*parame(i,2) + phi_criti(i)= 38.192854403173 + chap(i) = 0.812100472735 + ! 2.122960316503 34.937141524804 0.734513223627 + ! 2.082897379591 33.036391564859 0.877578492999 + ELSE IF (compna(i) == 'ethane') THEN + mm(i) = 30.070 + parame(i,1) =mm(i)* .0534364758 + parame(i,2) = 3.5205923 + parame(i,3) = 191.423815 + lli(i) = 1.40*parame(i,2) + phi_criti(i)= 15.38 + chap(i) = 0.520 + IF (pol == 2) parame(i,11)= 4.3 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 30.069 + ! parame(i,1) = 1.74034548122 + ! parame(i,2) = 3.4697441893134 + ! parame(i,3) = 181.90770083591 + IF (pol >= 1) mm(i) = 30.0700000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 5.341907666260094E-002 + IF (pol >= 1) parame(i,2) = 3.52104466654628 + IF (pol >= 1) parame(i,3) = 191.449300423694 + IF (pol >= 1) parame(i,7) = 0.650000000000000 + IF (pol >= 1) lli(i) = 0.0 + IF (pol >= 1) phi_criti(i)= 0.0 + IF (pol >= 1) chap(i) = 0.0 + ELSE IF (compna(i) == 'propane') THEN + mm(i) = 44.096 + parame(i,1) = mm(i)* .0453970622 + parame(i,2) = 3.61835302 + parame(i,3) = 208.110116 + lli(i) = 1.8*parame(i,2) + phi_criti(i)= 21.0 + chap(i) = 1.0 + lli(i) = 1.63*parame(i,2) + phi_criti(i)= 20.37 + chap(i) = 0.397 + IF (pol == 2) parame(i,11)= 6.29 + ELSE IF (compna(i) == 'butane_debug') THEN + mm(i) = 58.123 + parame(i,1) = 2.3374 + parame(i,2) = 3.6655 + parame(i,3) = 214.805 + ELSE IF (compna(i) == 'butane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0401146927 + parame(i,2) = 3.70860139 + parame(i,3) = 222.877405 + lli(i) = 1.75*parame(i,2) + phi_criti(i)= 23.43 + chap(i) = 0.304 + ! LLi(i) = 1.942079633622*parame(i,2) + ! phi_criti(i)= 24.527323443155 + ! chap(i) = 0.734064026277 + ! LLi(i) = 1.515115760477*parame(i,2) + ! phi_criti(i)= 17.682929717796 + ! chap(i) = 0.335848717079 + IF (pol == 2) parame(i,11)= 8.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 58.1230000000 + ! parame(i,1) = 2.45352304112 + ! parame(i,2) = 3.74239117802 + ! parame(i,3) = 214.185157925 + ELSE IF (compna(i) == 'pentane') THEN + mm(i) = 72.146 + parame(i,1) = mm(i)* .03727896 + parame(i,2) = 3.77293174 + parame(i,3) = 231.197015 + IF (pol == 2) parame(i,11)= 9.99 + ELSE IF (compna(i) == 'hexane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0354812325 + parame(i,2) = 3.79829291 + parame(i,3) = 236.769054 + lli(i) = 2.24*parame(i,2) + phi_criti(i)= 33.25 + chap(i) = 0.205 + IF (pol == 2) parame(i,11)= 11.9 + ELSE IF (compna(i) == 'heptane') THEN + mm(i) = 100.203 + parame(i,1) = mm(i)* .034762384 + parame(i,2) = 3.80487025 + parame(i,3) = 238.400913 + lli(i) = 2.35*parame(i,2) + phi_criti(i)= 38.10 + chap(i) = 0.173 + IF (pol == 2) parame(i,11)= 13.61 + ELSE IF (compna(i) == 'octane') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* .0334228038 + parame(i,2) = 3.83732677 + parame(i,3) = 242.775853 + ! LLi(i) = 2.0*parame(i,2) + ! phi_criti(i)= 18.75 + ! chap(i) = 1.0 + lli(i) = 2.63*parame(i,2) + phi_criti(i)= 42.06 + chap(i) = 0.155 + IF (pol == 2) parame(i,11)= 15.9 + ELSE IF (compna(i) == 'nonane') THEN + mm(i) = 128.25 + parame(i,1) = mm(i)* .0328062594 + parame(i,2) = 3.84483643 + parame(i,3) = 244.508457 + ELSE IF (compna(i) == 'decane') THEN + mm(i) = 142.285 + parame(i,1) = mm(i)* .03277373 + parame(i,2) = 3.8384498 + parame(i,3) = 243.866074 + lli(i) = 1.845*parame(i,2) + phi_criti(i)= 21.27 + chap(i) = 1.0 + lli(i) = 2.68*parame(i,2) + phi_criti(i)= 45.0 + chap(i) = 0.15 + IF (pol == 2) parame(i,11)= 19.1 + ! --- adjusted to Tc, Pc und omega --- + ! parame(i,1) = 4.794137228322 + ! parame(i,2) = 4.030446690586 + ! parame(i,3) = 236.5884493386 + ELSE IF (compna(i) == 'dodecane') THEN + mm(i) = 170.338 + parame(i,1) = mm(i)* .0311484156 + parame(i,2) = 3.89589236 + parame(i,3) = 249.214532 + ELSE IF (compna(i) == 'hexadecane') THEN + mm(i) = 226.446 + parame(i,1) = mm(i)* .0293593045 + parame(i,2) = 3.95516743 + parame(i,3) = 254.700131 + ELSE IF (compna(i) == 'octadecane') THEN + mm(i) = 254.5 + parame(i,1) = 7.3271 + parame(i,2) = 3.9668 + parame(i,3) = 256.20 + IF (pol == 2) parame(i,11)= 30.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 226.446000000000 + ! parame(i,1) = 6.66976520488694 + ! parame(i,2) = 4.25025597912511 + ! parame(i,3) = 249.582941976119 + ELSE IF (compna(i) == 'eicosane') THEN + mm(i) = 282.553 + parame(i,1) = mm(i)* .0282572812 + parame(i,2) = 3.98692612 + parame(i,3) = 257.747939 + ELSE IF (compna(i) == 'triacontane') THEN + ! mm(i) = 422.822 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 422.822 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'octaeicosane') THEN + mm(i) = 395.0 ! param. by extrapolation of n-alkanes (sloppy!!) + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'tetracontane') THEN + ! mm(i) = 563.1 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 563.1 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)*0.026287593 + parame(i,2) = 4.023277 + parame(i,3) = 264.10466 + ELSE IF (compna(i) == 'isobutane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0389105395 + parame(i,2) = 3.75735249 + parame(i,3) = 216.528584 + ELSE IF (compna(i) == 'isopentane') THEN + mm(i) = 72.15 + parame(i,1) = 2.5620 + parame(i,2) = 3.8296 + parame(i,3) = 230.75 + ELSE IF (compna(i) == '2-methylpentane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0340166994 + parame(i,2) = 3.85354665 + parame(i,3) = 235.5801 + ELSE IF (compna(i) == '23-dimethylbutane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0311599207 + parame(i,2) = 3.9544545 + parame(i,3) = 246.068188 + ELSE IF (compna(i) == 'ethylene') THEN + mm(i) = 28.05 + parame(i,1) = mm(i)* .0567939013 + parame(i,2) = 3.44499904 + parame(i,3) = 176.468725 + IF (pol == 2) parame(i,11)= 4.252 +! eigener 3-ter Anlauf. + IF (pol >= 1) parame(i,1) = mm(i)* 5.574644443117726E-002 + IF (pol >= 1) parame(i,2) = 3.43281482228714 + IF (pol >= 1) parame(i,3) = 178.627308564610 + IF (pol >= 1) parame(i,7) = 1.56885870200446 + IF (pol == 2) parame(i,11)= 4.252 + ELSE IF (compna(i) == 'propylene') THEN + mm(i) = 42.081 + parame(i,1) = mm(i)* .0465710324 + parame(i,2) = 3.53559831 + parame(i,3) = 207.189309 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 42.081 + ! parame(i,1) = 2.086735327675 + ! parame(i,2) = 3.536779407969 + ! parame(i,3) = 198.3529810625 + ELSE IF (compna(i) == '1-butene') THEN + mm(i) = 56.107 + parame(i,1) = mm(i)* .0407524782 + parame(i,2) = 3.64305136 + parame(i,3) = 222.002756 + IF (pol == 2) parame(i,11)= 7.97 + ELSE IF (compna(i) == '1-pentene') THEN + mm(i) = 70.134 + parame(i,1) = 2.6006 + parame(i,2) = 3.7399 + parame(i,3) = 231.99 + ELSE IF (compna(i) == '1-hexene') THEN + mm(i) = 84.616 + parame(i,1) = mm(i)* .0352836857 + parame(i,2) = 3.77529612 + parame(i,3) = 236.810973 + ELSE IF (compna(i) == '1-octene') THEN + mm(i) = 112.215 + parame(i,1) = mm(i)* .033345175 + parame(i,2) = 3.81329011 + parame(i,3) = 243.017587 + ELSE IF (compna(i) == 'cyclopentane') THEN + mm(i) = 70.13 + parame(i,1) = mm(i)* .0337262571 + parame(i,2) = 3.71139254 + parame(i,3) = 265.828755 + ELSE IF (compna(i) == 'cyclohexane') THEN + mm(i) = 84.147 + parame(i,1) = mm(i)* .0300695505 + parame(i,2) = 3.84990887 + parame(i,3) = 278.108786 + IF (pol == 2) parame(i,11)= 10.87 + ELSE IF (compna(i) == 'toluene') THEN + mm(i) = 92.141 + parame(i,1) = mm(i)* .0305499338 + parame(i,2) = 3.71689689 + parame(i,3) = 285.68996 + IF (pol == 2) parame(i,11)= 11.8 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 92.141 + ! parame(i,1) = 3.002119827762 + ! parame(i,2) = 3.803702734224 + ! parame(i,3) = 271.9428642880 + ELSE IF (compna(i) == 'm-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .030011086 + parame(i,2) = 3.75625585 + parame(i,3) = 283.977525 + ELSE IF (compna(i) == 'o-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0295409161 + parame(i,2) = 3.76000631 + parame(i,3) = 291.049123 + ELSE IF (compna(i) == 'thf') THEN + mm(i) = 72.1057000000000 + ! parame(i,1) = mm(i)* 0.34311391E-01 + parame(i,1) = 2.47404685540709 + parame(i,2) = 3.51369375633677 + parame(i,3) = 274.181927093696 + parame(i,6) = 1.63100000000000 + ELSE IF (compna(i) == 'co2') THEN + mm(i) = 44.01 + parame(i,1) = mm(i)* .0470968503 + parame(i,2) = 2.7851954 + parame(i,3) = 169.207418 + IF (pol >= 1) parame(i,1) = mm(i)* 3.438191426159075E-002 + IF (pol >= 1) parame(i,2) = 3.18693935424469 + IF (pol >= 1) parame(i,3) = 163.333232725156 + IF (pol >= 1) parame(i,7) = 4.400000000000 + IF (pol >= 1) lli(i) = 1.472215*parame(i,2) + IF (pol >= 1) phi_criti(i)= 17.706567 + IF (pol >= 1) chap(i) = 0.5 + IF (pol == 2) parame(i,11)= 2.911 + ELSE IF (compna(i) == 'co') THEN + IF (pol /= 1) write (*,*) 'parameters for co missing' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 28.01 + IF (pol >= 1) parame(i,1) = mm(i)* 5.126059746332587E-002 ! 1.43580933494776 + IF (pol >= 1) parame(i,2) = 3.13556624711756 + IF (pol >= 1) parame(i,3) = 87.7191028693595 + IF (pol >= 1) parame(i,6) = 0.1098 + ELSE IF (compna(i) == 'n2') THEN + mm(i) = 28.01 + parame(i,1) = mm(i)* .0430301713 + parame(i,2) = 3.3129702 + parame(i,3) = 90.9606924 + IF (pol >= 1) parame(i,1) = mm(i)* 3.971157114787596E-002 + IF (pol >= 1) parame(i,2) = 3.42116853868336 + IF (pol >= 1) parame(i,3) = 92.3972606842862 + IF (pol >= 1) parame(i,7) = 1.52000000000000 + IF (pol >= 1) lli(i) = 1.5188*parame(i,2) + IF (pol >= 1) phi_criti(i)= 19.9247 + IF (pol >= 1) chap(i) = 0.375 + ! better RGT-results came later, with: 1.5822 21.201 0.3972 + ELSE IF (compna(i) == 'o2') THEN + mm(i) = 32.05 + parame(i,1) = mm(i)* .0353671563 + parame(i,2) = 3.19465166 + parame(i,3) = 114.430197 + ELSE IF (compna(i) == 'hydrogen') THEN + mm(i) = 2.016 + parame(i,1) = mm(i)* .258951975 + parame(i,2) = 4.43304935 + parame(i,3) = 29.6509579 + + mm(i) = 2.016 + parame(i,1) = 1.0 + parame(i,2) = 2.915 + parame(i,3) = 38.0 + + ! mm(i) = 2.016 ! Ghosh et al. 2003 + ! parame(i,1) = 1.0 + ! parame(i,2) = 2.986 + ! parame(i,3) = 19.2775 + ELSE IF (compna(i) == 'argon') THEN + ! mm(i) = 39.948 ! adjusted m !! + ! parame(i,1) = 0.9285 + ! parame(i,2) = 3.4784 + ! parame(i,3) = 122.23 + mm(i) = 39.948 ! enforced m=1 !! + parame(i,1) = 1.0 + parame(i,2) = 3.3658 + parame(i,3) = 118.34 + IF (pol == 2) parame(i,11)= 1.6411 + ELSE IF (compna(i) == 'xenon') THEN + mm(i) = 131.29 + parame(i,1) = 1.0 + parame(i,2) = 3.93143 + parame(i,3) = 227.749 + ELSE IF (compna(i) == 'chlorine') THEN ! Cl2 + mm(i) = 70.906 + parame(i,1) = 1.5514 + parame(i,2) = 3.3672 + parame(i,3) = 265.67 + ELSE IF (compna(i) == 'SF6') THEN + mm(i) = 146.056 ! adjusted m !! + parame(i,1) = 2.48191 + parame(i,2) = 3.32727 + parame(i,3) = 161.639 + ! mm(i) = 146.056 ! enforced m=1 !! + ! parame(i,1) = 1.0 + ! parame(i,2) = 4.55222 + ! parame(i,3) = 263.1356 + ELSE IF (compna(i) == 'benzene') THEN + mm(i) = 78.114 + parame(i,1) = mm(i)* .0315590546 + parame(i,2) = 3.64778975 + parame(i,3) = 287.354574 + IF (pol >= 1) mm(i) = 78.114 ! PCP-SAFT with m=2 in QQ term + IF (pol >= 1) parame(i,1) = mm(i)* 2.932783311E-2 ! = 2.29091435590515 + IF (pol >= 1) parame(i,2) = 3.7563854 + IF (pol >= 1) parame(i,3) = 294.06253 + IF (pol >= 1) parame(i,7) = 5.5907 + ELSE IF (compna(i) == 'ethylbenzene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0290120497 + parame(i,2) = 3.79741116 + parame(i,3) = 287.348098 + IF (pol == 2) parame(i,11)= 13.3 + ELSE IF (compna(i) == 'propylbenzene') THEN + mm(i) = 120.194 + parame(i,1) = mm(i)* .0278171627 + parame(i,2) = 3.8437772 + parame(i,3) = 288.128269 + ELSE IF (compna(i) == 'n-butylbenzene') THEN + mm(i) = 134.221 + parame(i,1) = mm(i)* .0280642225 + parame(i,2) = 3.87267961 + parame(i,3) = 283.072331 + ELSE IF (compna(i) == 'tetralin') THEN + mm(i) = 132.205 + parame(i,1) = mm(i)* .0250640795 + parame(i,2) = 3.87498866 + parame(i,3) = 325.065688 + ELSE IF (compna(i) == 'methylcyclohexane') THEN + mm(i) = 98.182 + parame(i,1) = mm(i)* .0271259953 + parame(i,2) = 3.99931892 + parame(i,3) = 282.334148 + IF (pol == 2) parame(i,11)= 13.1 + ELSE IF (compna(i) == 'methylcyclopentane') THEN + mm(i) = 84.156 + parame(i,1) = mm(i)* .0310459009 + parame(i,2) = 3.82534693 + parame(i,3) = 265.122799 + ELSE IF (compna(i) == 'acetone') THEN + mm(i) = 58.0800000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.870380408159182E-002 ! =2.82871694105885 + parame(i,2) = 3.24969003020675 + parame(i,3) = 250.262241927379 + lli(i) = 2.0021*parame(i,2) + phi_criti(i)= 21.336 + chap(i) = 0.24931 + IF (pol >= 1) mm(i) = 58.0800000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.725811736856114E-002 ! =2.74475145676603 + IF (pol >= 1) parame(i,2) = 3.27423145271184 + IF (pol >= 1) parame(i,3) = 232.990879135326 + IF (pol >= 1) parame(i,6) = 2.88000000000000 + IF (pol >= 1) lli(i) = 2.0641*parame(i,2) + IF (pol >= 1) phi_criti(i)= 28.1783 + IF (pol >= 1) chap(i) = 0.22695 + IF (pol >= 2) mm(i) = 58.0800000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.902301475689938E-002 ! =2.84725669708072 + IF (pol >= 2) parame(i,2) = 3.23880349104868 + IF (pol >= 2) parame(i,3) = 220.884202656054 + IF (pol >= 2) parame(i,6) = 2.88000000000000 + IF (pol == 2) parame(i,11)= 6.40000000000000 + ELSE IF (compna(i) == 'butanone') THEN + mm(i) = 72.1066 ! PC-SAFT + parame(i,1) = mm(i)* 4.264192830122321E-002 ! =3.07476446724498 + parame(i,2) = 3.39324011060028 + parame(i,3) = 252.267273608975 + IF (pol >= 1) mm(i) = 72.1066 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.137668924230600E-002 ! =2.98353238051926 + IF (pol >= 1) parame(i,2) = 3.42393701353423 + IF (pol >= 1) parame(i,3) = 244.994381354681 + IF (pol >= 1) parame(i,6) = 2.78000000000000 + IF (pol >= 2) mm(i) = 72.1066 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.254697075199448E-002 ! =3.06791740122577 + IF (pol >= 2) parame(i,2) = 3.39138375903252 + IF (pol >= 2) parame(i,3) = 236.527763837528 + IF (pol >= 2) parame(i,6) = 2.78000000000000 + IF (pol == 2) parame(i,11)= 8.13000000000000 + ELSE IF (compna(i) == '2-pentanone') THEN + ! mm(i) = 86.134 ! PC-SAFT + ! parame(i,1) = mm(i)* 3.982654501296355E-002 ! =3.43041962814660 + ! parame(i,2) = 3.46877976946838 + ! parame(i,3) = 249.834724442656 + ! mm(i) = 86.134 ! PCP-SAFT + ! parame(i,1) = mm(i)* 3.893594769994072E-002 ! =3.35370891918669 + ! parame(i,2) = 3.49417356096593 + ! parame(i,3) = 246.656329096835 + ! parame(i,6) = 2.70000000000000 + mm(i) = 86.134 ! PCIP-SAFT + parame(i,1) = mm(i)* 3.973160761515879E-002 ! =3.42224229032409 + parame(i,2) = 3.46827593107280 + parame(i,3) = 240.904278156822 + parame(i,6) = 2.70000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == '3-pentanone') THEN + mm(i) = 86.134 ! PC-SAFT + parame(i,1) = 3.36439508013322 + parame(i,2) = 3.48770251979329 + parame(i,3) = 252.695415552376 + IF (pol >= 1) mm(i) = 86.134 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.27863398611842 + IF (pol >= 1) parame(i,2) = 3.51592571835030 + IF (pol >= 1) parame(i,3) = 248.690775540981 + IF (pol >= 1) parame(i,6) = 2.82000000000000 + IF (pol == 2) mm(i) = 86.134 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 3.34821857026283 + IF (pol == 2) parame(i,2) = 3.48903345340516 + IF (pol == 2) parame(i,3) = 242.314578558329 + IF (pol == 2) parame(i,6) = 2.82000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == 'cyclohexanone') THEN ! from DIPPR + ! IF (pol.GE.1) mm(i) = 98.1430 ! PCP-SAFT + ! IF (pol.GE.1) parame(i,1) = 3.084202 + ! IF (pol.GE.1) parame(i,2) = 3.613681 + ! IF (pol.GE.1) parame(i,3) = 286.15865 + ! IF (pol.GE.1) parame(i,6) = 3.087862 + IF (pol >= 1) mm(i) = 98.1500000000000 + IF (pol >= 1) parame(i,1) = 2.72291913132818 + IF (pol >= 1) parame(i,2) = 3.79018433908522 + IF (pol >= 1) parame(i,3) = 314.772193827344 + IF (pol >= 1) parame(i,6) = 3.24600000000000 + IF (pol /= 1) WRITE (*,*) 'no non-polar param. for cyclohexanone' + IF (pol /= 1) STOP + ELSE IF (compna(i) == 'propanal') THEN + mm(i) = 58.08 ! PC-SAFT + parame(i,1) = 2.67564746980910 + parame(i,2) = 3.26295953984941 + parame(i,3) = 251.888982765626 + IF (pol >= 1) mm(i) = 58.08 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.60007872084995 + IF (pol >= 1) parame(i,2) = 3.28720732189761 + IF (pol >= 1) parame(i,3) = 235.205188090107 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + IF (pol >= 2) mm(i) = 58.08 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.72471167411028 + IF (pol >= 2) parame(i,2) = 3.24781643022922 + IF (pol >= 2) parame(i,3) = 221.642071811094 + IF (pol >= 2) parame(i,6) = 2.72000000000000 + IF (pol >= 2) parame(i,11)= 6.50000000000000 + ELSE IF (compna(i) == 'butanal') THEN + mm(i) = 72.1066000000000 ! PC-SAFT + parame(i,1) = 2.96824823599784 + parame(i,2) = 3.44068916025889 + parame(i,3) = 253.929404992884 + IF (pol >= 1) mm(i) = 72.1066000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.86783706423953 + IF (pol >= 1) parame(i,2) = 3.47737904036296 + IF (pol >= 1) parame(i,3) = 247.543312127310 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + ELSE IF (compna(i) == 'dmso') THEN + mm(i) = 78.1300000000000 ! PC-SAFT + parame(i,1) = 2.92225114054231 + parame(i,2) = 3.27780791606297 + parame(i,3) = 355.688793038512 + IF (pol >= 1) mm(i) = 78.1300000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.02433694138348 + IF (pol >= 1) parame(i,2) = 3.24270742566613 + IF (pol >= 1) parame(i,3) = 309.357476696679 + IF (pol >= 1) parame(i,6) = 3.96000000000000 + IF (pol >= 2) mm(i) = 78.1300000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 3.19078234633277 + IF (pol >= 2) parame(i,2) = 3.19778269816832 + IF (pol >= 2) parame(i,3) = 286.337981216861 + IF (pol >= 2) parame(i,6) = 3.96000000000000 + IF (pol >= 2) parame(i,11)= 7.97000000000000 + ELSE IF (compna(i) == 'acetone_JC') THEN ! Jog-Chapman + ! mm(i) = 58.0800000000000 ! Dominik et al.2005 + ! parame(i,1) = 2.221 + ! parame(i,2) = 3.607908 + ! parame(i,3) = 259.99 + ! parame(i,6) = 2.7 + ! parame(i,8) = 0.2258 + ! mm(i) = 58.0800000000000 + ! parame(i,1) = mm(i)* 3.556617369195472E-002 + ! parame(i,2) = 3.58780367502515 + ! parame(i,3) = 273.025100470307 + ! parame(i,6) = 2.70000000000000 + ! parame(i,8) = 0.229800000000000 + + mm(i) = 58.08 ! Tumakaka Sadowski 2004 + parame(i,1) = mm(i)* 3.766E-2 + parame(i,2) = 3.6028 + parame(i,3) = 245.49 + parame(i,6) = 2.72 + parame(i,8) = 0.2969 + ! mm(i) = 58.0800000000000 ! no adjust. DD-param. + ! parame(i,1) = 1.87041620247774 + ! parame(i,2) = 3.79783535570774 + ! parame(i,3) = 208.885730881588 + ! parame(i,6) = 2.88000000000000 + ! parame(i,8) = 1.0/parame(i,1) + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = -0.005 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'acetone_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = mm(i)* 4.603296414764944E-002 + parame(i,2) = 3.29454924451643 + parame(i,3) = 221.052649057645 + parame(i,6) = 2.70000000000000 + parame(i,8) = 0.625410000000000 + mm(i) = 58.08 ! form as expected from me - no DD-param adjusted.dat + parame(i,1) = mm(i)* 4.364264724158790E-002 ! =2.53476495179143 + parame(i,2) = 3.37098670735567 + parame(i,3) = 254.366379701851 + parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 - no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.694644361257521E-002 ! =2.72664944501837 + ! parame(i,2) = 3.27842292595463 + ! parame(i,3) = 238.398883501772 + ! parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 and fdd*sumseg- no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.458214655521766E-002 ! =2.58933107192704 + ! parame(i,2) = 3.32050824493493 + ! parame(i,3) = 218.285994651271 + ! parame(i,6) = 2.88000000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = 0.035 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'ethylacetate_JC') THEN ! Jog-Chapman + ! mm(i) = 88.11 + ! parame(i,1) = 2.7481 + ! parame(i,2) = 3.6511 + ! parame(i,3) = 236.99 + ! parame(i,6) = 1.84 + ! parame(i,8) = 0.5458 + mm(i) = 88.1060000000000 + parame(i,1) = mm(i)* 0.03117 ! 2.74626402 + parame(i,2) = 3.6493 + parame(i,3) = 236.75 + parame(i,6) = 1.8 + parame(i,8) = 0.5462 + ELSE IF (compna(i) == 'ethylacetate_SF') THEN ! Saager-Fischer + mm(i) = 88.106 + parame(i,1) = mm(i)* 3.564165384763394E-002 + parame(i,2) = 3.447379322 + parame(i,3) = 226.0930487 + parame(i,6) = 1.8 + parame(i,8) = 0.849967000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_JC') THEN ! Jog-Chapman + mm(i) = 58.08 + parame(i,1) = 2.0105 + parame(i,2) = 3.6095 + parame(i,3) = 258.82 + parame(i,6) = 2.0 + parame(i,8) = 0.3979 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = 2.1341 + parame(i,2) = 3.4739 + parame(i,3) = 252.95 + parame(i,6) = 2.0 + parame(i,8) = 0.916 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == 'acrylonitrile') THEN + IF (pol >= 2) mm(i) = 53.06 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.168 + IF (pol >= 2) parame(i,2) = 3.575 + IF (pol >= 2) parame(i,3) = 214.83 + IF (pol >= 2) parame(i,6) = 3.91 + IF (pol == 2) parame(i,11)= 8.04 + IF (pol >= 2) mm(i) = 53.0000000000000 ! second parameter set ?? + IF (pol >= 2) parame(i,1) = 2.45403467006041 + IF (pol >= 2) parame(i,2) = 3.41276825781723 + IF (pol >= 2) parame(i,3) = 195.194353082408 + IF (pol >= 2) parame(i,6) = 3.91000000000000 + IF (pol == 2) parame(i,11)= 8.04000000000000 + ELSE IF (compna(i) == 'butyronitrile') THEN + ! mm(i) = 69.11 + ! parame(i,1) = 2.860 + ! parame(i,2) = 3.478 + ! parame(i,3) = 253.21 + ! parame(i,6) = 4.07 + mm(i) = 69.11 + parame(i,1) = 2.989 + parame(i,2) = 3.441 + parame(i,3) = 234.04 + parame(i,6) = 4.07 + IF (pol == 2) parame(i,11)= 8.4 + ELSE IF (compna(i) == 'propionitrile') THEN + mm(i) = 55.079 ! PC-SAFT + parame(i,1) = 2.66211021227108 + parame(i,2) = 3.34032231132738 + parame(i,3) = 294.078737359580 + IF (pol >= 1) mm(i) = 55.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.50958981615666 + IF (pol >= 1) parame(i,2) = 3.39806320429568 + IF (pol >= 1) parame(i,3) = 239.152759066148 + IF (pol >= 1) parame(i,6) = 4.05000000000000 + IF (pol >= 2) mm(i) = 55.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.54684827683436 + IF (pol >= 2) parame(i,2) = 3.41240089912190 + IF (pol >= 2) parame(i,3) = 218.299491580335 + IF (pol >= 2) parame(i,6) = 4.05000000000000 + IF (pol == 2) parame(i,11)= 6.24000000000000 + ! IF (pol.GE.2) mm(i) = 55.079 ! PCIP-SAFT my_DD adjusted + ! IF (pol.GE.2) parame(i,1) = 2.61175151088002 + ! IF (pol.GE.2) parame(i,2) = 3.37194293181453 + ! IF (pol.GE.2) parame(i,3) = 233.346110749402 + ! IF (pol.GE.2) parame(i,6) = 3.74682245835235 + ! IF (pol.EQ.2) parame(i,11)= 6.24000000000000 + ELSE IF (compna(i) == 'nitromethane') THEN + mm(i) = 61.04 ! PC-SAFT + parame(i,1) = mm(i)* 4.233767489308791E-002 ! =2.58429167547409 + parame(i,2) = 3.10839592337018 + parame(i,3) = 310.694151426943 + IF (pol >= 1) mm(i) = 61.04 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.191475020685036E-002 ! =2.55847635262615 + IF (pol >= 1) parame(i,2) = 3.10129282495975 + IF (pol >= 1) parame(i,3) = 256.456941430554 + IF (pol >= 1) parame(i,6) = 3.46000000000000 + IF (pol >= 2) mm(i) = 61.04 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.394323357988009E-002 ! =2.68229497771588 + IF (pol >= 2) parame(i,2) = 3.10654492320028 + IF (pol >= 2) parame(i,3) = 225.973607468282 + IF (pol >= 2) parame(i,6) = 3.46000000000000 + IF (pol >= 2) parame(i,11)= 7.37000000000000 + ELSE IF (compna(i) == 'nitroethane') THEN + mm(i) = 75.067 ! PC-SAFT + parame(i,1) = mm(i)* 4.019977215251163E-002 ! =3.01767629617259 + parame(i,2) = 3.21364231060938 + parame(i,3) = 286.571650044235 + IF (pol >= 1) mm(i) = 75.067 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.928506808347654E-002 ! =2.94901220582233 + IF (pol >= 1) parame(i,2) = 3.23117331990738 + IF (pol >= 1) parame(i,3) = 265.961000131109 + IF (pol >= 1) parame(i,6) = 3.23000000000000 + IF (pol >= 2) mm(i) = 75.067 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.117677400894779E-002 ! =3.09101689452968 + IF (pol >= 2) parame(i,2) = 3.19364569858756 + IF (pol >= 2) parame(i,3) = 246.676040248662 + IF (pol >= 2) parame(i,6) = 3.23000000000000 + IF (pol >= 2) parame(i,11)= 9.63000000000000 + ELSE IF (compna(i) == 'acetonitrile') THEN + mm(i) = 41.052 ! PC-SAFT + parame(i,1) = mm(i)* 5.673187410405271E-002 ! =2.32895689571957 + parame(i,2) = 3.18980108373791 + parame(i,3) = 311.307486044181 + IF (pol >= 1) mm(i) = 41.052 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 5.254832931037250E-002 ! =2.15721401484941 + IF (pol >= 1) parame(i,2) = 3.27301469369132 + IF (pol >= 1) parame(i,3) = 216.888948676921 + IF (pol >= 1) parame(i,6) = 3.92520000000000 + IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 5.125846581157176E-002 ! =2.10426253849664 + IF (pol >= 2) parame(i,2) = 3.39403305120647 + IF (pol >= 2) parame(i,3) = 199.070191065791 + IF (pol >= 2) parame(i,6) = 3.92520000000000 + IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT my_DD adjusted + ! IF (pol >= 2) parame(i,1) = mm(i)* 5.755347845863738E-002 ! =2.36268539768398 + ! IF (pol >= 2) parame(i,2) = 3.18554306395900 + ! IF (pol >= 2) parame(i,3) = 225.143934506015 + ! IF (pol >= 2) parame(i,6) = 3.43151866932598 + ! IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! mm(i) = 41.053 ! PCP-SAFT dipole and quadrupole + ! parame(i,1) = 1.79993 + ! parame(i,2) = 3.47366 + ! parame(i,3) = 211.001 + ! parame(i,6) = 3.93800 + ! parame(i,7) = 2.44000 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'dmf') THEN + mm(i) = 73.09 ! PC-SAFT + parame(i,1) = 2.388 + parame(i,2) = 3.658 + parame(i,3) = 363.77 + IF (pol >= 1) mm(i) = 73.09 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.269 + IF (pol >= 1) parame(i,2) = 3.714 + IF (pol >= 1) parame(i,3) = 331.56 + IF (pol >= 1) parame(i,6) = 3.82 + IF (pol >= 2) mm(i) = 73.09 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.375 + IF (pol >= 2) parame(i,2) = 3.667 + IF (pol >= 2) parame(i,3) = 308.42 + IF (pol >= 2) parame(i,6) = 3.82 + IF (pol >= 2) parame(i,11)= 7.81 + ELSE IF (compna(i) == 'chloroform') THEN + mm(i) = 119.377 ! PCIP-SAFT + parame(i,1) = 2.5957 + parame(i,2) = 3.4299 + parame(i,3) = 264.664 + parame(i,6) = 1.04 + IF (pol == 2) parame(i,11)= 8.23 + ELSE IF (compna(i) == 'dimethyl-ether') THEN + mm(i) = 46.069 ! PC-SAFT + parame(i,1) = mm(i)* 0.049107715 ! =2.26234331 + parame(i,2) = 3.276640534 + parame(i,3) = 212.9343244 + IF (pol >= 1) mm(i) = 46.0690000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.048170452 ! =2.219164566 + IF (pol >= 1) parame(i,2) = 3.296939638 + IF (pol >= 1) parame(i,3) = 212.1048888 + IF (pol >= 1) parame(i,6) = 1.30000000000000 + IF (pol >= 2) mm(i) = 46.0690000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.939183716945787E-002 ! =2.27543254655976 + IF (pol >= 2) parame(i,2) = 3.26584718800835 + IF (pol >= 2) parame(i,3) = 206.904551967059 + IF (pol >= 2) parame(i,6) = 1.30000000000000 + IF (pol == 2) parame(i,11)= 5.29000000000000 + ELSE IF (compna(i) == 'methyl-ethyl-ether') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0442404671 + parame(i,2) = 3.37282595 + parame(i,3) = 216.010217 + IF (pol >= 1) mm(i) = 60.096 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.3971676124088D-002 ! =2.64252184835325 + IF (pol >= 1) parame(i,2) = 3.37938465390 + IF (pol >= 1) parame(i,3) = 215.787173860 + IF (pol >= 1) parame(i,6) = 1.17000000000 + IF (pol >= 2) mm(i) = 60.096 ! PICP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.4580196137984D-002 ! =2.67909146710834 + IF (pol >= 2) parame(i,2) = 3.36105342286 + IF (pol >= 2) parame(i,3) = 212.871911999 + IF (pol >= 2) parame(i,6) = 1.17000000000 + IF (pol >= 2) parame(i,11) = 7.93000000000 + ELSE IF (compna(i) == 'diethyl-ether') THEN + mm(i) = 74.123 ! PC-SAFT + parame(i,1) = mm(i)* .0409704089 + parame(i,2) = 3.48569553 + parame(i,3) = 217.64113 + IF (pol >= 1) mm(i) = 74.123 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.0103121403686E-2 ! =2.97256367 + IF (pol >= 1) parame(i,2) = 3.51268687697978 + IF (pol >= 1) parame(i,3) = 219.527376572135 + IF (pol >= 1) parame(i,6) = 1.15000000000000 + IF (pol >= 2) mm(i) = 74.123 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.04144179873E-2 ! =2.9956379 + IF (pol >= 2) parame(i,2) = 3.501724569 + IF (pol >= 2) parame(i,3) = 217.8941822 + IF (pol >= 2) parame(i,6) = 1.15 + IF (pol == 2) parame(i,11)= 8.73 + ELSE IF (compna(i) == 'vinylacetate') THEN + mm(i) = 86.092 + parame(i,1) = mm(i)* .0374329292 + parame(i,2) = 3.35278602 + parame(i,3) = 240.492049 + ELSE IF (compna(i) == 'chloromethane') THEN ! R40 + mm(i) = 50.488 ! PC-SAFT + parame(i,1) = mm(i)* 0.039418879 ! 1.9902 + parame(i,2) = 3.1974 + parame(i,3) = 237.27 + IF (pol >= 1) mm(i) = 50.488 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.035790801 ! 1.8070 + IF (pol >= 1) parame(i,2) = 3.3034 + IF (pol >= 1) parame(i,3) = 229.97 + IF (pol >= 1) parame(i,6) = 1.8963 + IF (pol >= 1) lli(i) = 1.67703*parame(i,2) + IF (pol >= 1) phi_criti(i)= 20.75417 + IF (pol >= 1) chap(i) = 0.5 + IF (pol >= 2) mm(i) = 50.488 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.68559992E-2 ! 1.86078 + IF (pol >= 2) parame(i,2) = 3.275186 + IF (pol >= 2) parame(i,3) = 216.4621 + IF (pol >= 2) parame(i,6) = 1.8963 + IF (pol == 2) parame(i,11)= 4.72 + ELSE IF (compna(i) == 'fluoromethane') THEN ! R41 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for fluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 34.0329000000000 + IF (pol >= 1) parame(i,1) = 1.94494757526896 + IF (pol >= 1) parame(i,2) = 2.96858005012635 + IF (pol >= 1) parame(i,3) = 168.938697391009 + IF (pol >= 1) parame(i,6) = 1.57823038894029 + ELSE IF (compna(i) == 'dichloromethane') THEN ! R30 + mm(i) = 84.932 ! PC-SAFT + parame(i,1) = 2.3117 + parame(i,2) = 3.3161 + parame(i,3) = 270.98 + IF (pol >= 1) mm(i) = 84.932 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.2687 + IF (pol >= 1) parame(i,2) = 3.3373 + IF (pol >= 1) parame(i,3) = 269.08 + IF (pol >= 1) parame(i,6) = 1.6 + IF (pol >= 2) mm(i) = 84.932 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.3435 + IF (pol >= 2) parame(i,2) = 3.2987 + IF (pol >= 2) parame(i,3) = 260.66 + IF (pol >= 2) parame(i,6) = 1.6 + IF (pol == 2) parame(i,11)= 6.48 + ELSE IF (compna(i) == 'difluoromethane') THEN ! R32 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for difluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 52.0236 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.814700934384165E-002 ! 2.50478075530028 + IF (pol >= 1) parame(i,2) = 2.79365980535456 + IF (pol >= 1) parame(i,3) = 160.893555378523 + IF (pol >= 1) parame(i,6) = 1.97850000000000 + ELSE IF (compna(i) == 'trifluoromethane') THEN ! R23 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 70.0138000000000 + IF (pol >= 1) parame(i,1) = 2.66039274225485 + IF (pol >= 1) parame(i,2) = 2.82905884530501 + IF (pol >= 1) parame(i,3) = 149.527709542333 + IF (pol >= 1) parame(i,6) = 1.339963415253999E-002 + ELSE IF (compna(i) == 'tetrachloromethane') THEN ! R10 + mm(i) = 153.822 + parame(i,1) = mm(i)* .0150432213 + parame(i,2) = 3.81801454 + parame(i,3) = 292.838632 + ELSE IF (compna(i) == 'trichlorofluoromethane') THEN ! R11 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trichlorofluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 137.368000000000 + IF (pol >= 1) parame(i,1) = 2.28793359008803 + IF (pol >= 1) parame(i,2) = 3.69013104930876 + IF (pol >= 1) parame(i,3) = 248.603173885090 + IF (pol >= 1) parame(i,6) = 0.23225538492979 + ELSE IF (compna(i) == 'chlorodifluoromethane') THEN ! R22 ( CHClF2 or CHF2Cl) + IF (pol /= 1) write (*,*) 'non-polar parameters missing for chlorodifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 86.4684000000000 + IF (pol >= 1) parame(i,1) = 2.47218586047893 + IF (pol >= 1) parame(i,2) = 3.13845692489930 + IF (pol >= 1) parame(i,3) = 187.666355083434 + IF (pol >= 1) parame(i,6) = 1.04954264812860 + ELSE IF (compna(i) == 'chloroethane') THEN + mm(i) = 64.514 + parame(i,1) = mm(i)* .0350926868 + parame(i,2) = 3.41602397 + parame(i,3) = 245.42626 + ELSE IF (compna(i) == '11difluoroethane') THEN + ! mm(i) = 66.0500000000000 ! PC-SAFT + ! parame(i,1) = mm(i)* 4.109944338817734E-002 + ! parame(i,2) = 3.10257444633546 + ! parame(i,3) = 192.177159144029 + ! mm(i) = 66.05 ! PC-SAFT assoc + ! parame(i,1)= 2.984947188 + ! parame(i,2)= 2.978630027 + ! parame(i,3)= 137.8192282 + ! nhb_typ(i) = 2 + ! nhb_no(i,1)= 1 + ! nhb_no(i,2)= 1 + ! eps_hb(i,i,1,2)= 823.3478288 + ! eps_hb(i,i,2,1)= 823.3478288 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.96345994 + IF (pol >= 1) mm(i) = 66.0500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.949665745363346E-002 ! =2.60875422481249 + IF (pol >= 1) parame(i,2) = 3.13758353925036 + IF (pol >= 1) parame(i,3) = 179.517952627836 + IF (pol >= 1) parame(i,6) = 2.27000000000000 + IF (pol >= 1) lli(i) = 2.03907*parame(i,2) + IF (pol >= 1) phi_criti(i)= 26.5 + IF (pol >= 1) chap(i) = 0.4 + IF (pol >= 2) mm(i) = 66.0500000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.093647666154238E-002 ! =2.70385428349487 + IF (pol >= 2) parame(i,2) = 3.10437129415885 + IF (pol >= 2) parame(i,3) = 170.464400902455 + IF (pol >= 2) parame(i,6) = 2.27000000000000 + IF (pol == 2) parame(i,11)= 5.01000000000000 + ELSE IF (compna(i) == '1-chlorobutane') THEN + mm(i) = 92.568 + parame(i,1) = mm(i)* .0308793201 + parame(i,2) = 3.64240187 + parame(i,3) = 258.655298 + ELSE IF (compna(i) == 'chlorobenzene') THEN + ! mm(i) = 112.558 + ! parame(i,1) = mm(i)* .0235308686 + ! parame(i,2) = 3.75328494 + ! parame(i,3) = 315.039018 + mm(i) = 112.558 ! PCIP-SAFT + parame(i,1) = mm(i)* 0.023824167 ! =2.6816 + parame(i,2) = 3.7352 + parame(i,3) = 308.82 + parame(i,6) = 1.69 + IF (pol == 2) parame(i,11)= 14.1 + ELSE IF (compna(i) == 'styrene') THEN + mm(i) = 104.150 + parame(i,1) = mm(i)* 2.9124104853E-2 + parame(i,2) = 3.760233548 + parame(i,3) = 298.51287564 + ELSE IF (compna(i) == 'methylmethanoate') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0446000264 + parame(i,2) = 3.08753499 + parame(i,3) = 242.626755 + IF (pol >= 1) mm(i) = 60.053 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.366991153963102E-002 ! =2.62250919768946 + IF (pol >= 1) parame(i,2) = 3.10946396964 + IF (pol >= 1) parame(i,3) = 239.051951942 + IF (pol >= 1) parame(i,6) = 1.77 + IF (pol >= 2) mm(i) = 60.053 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.492572388931002E-2 ! 2.69792449 + IF (pol >= 2) parame(i,2) = 3.078467837 + IF (pol >= 2) parame(i,3) = 232.1842551 + IF (pol >= 2) parame(i,6) = 1.77 + IF (pol == 2) parame(i,11)= 5.05 + ELSE IF (compna(i) == 'ethylmethanoate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* .03898009 + parame(i,2) = 3.31087192 + parame(i,3) = 246.465646 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.825407152074255E-002 ! =2.83382336418509 + IF (pol >= 1) parame(i,2) = 3.33160046679 + IF (pol >= 1) parame(i,3) = 244.495680932 + IF (pol >= 1) parame(i,6) = 1.93000000000 + ELSE IF (compna(i) == 'propylmethanoate') THEN + mm(i) = 88.106 + parame(i,1) = mm(i)* .0364206062 + parame(i,2) = 3.41679642 + parame(i,3) = 246.457732 + IF (pol >= 1) mm(i) = 88.106 + IF (pol >= 1) parame(i,1) = mm(i)* 3.60050739149E-2 ! =3.17226304235232 + IF (pol >= 1) parame(i,2) = 3.42957609309 + IF (pol >= 1) parame(i,3) = 245.637644107 + IF (pol >= 1) parame(i,6) = 1.89 + ELSE IF (compna(i) == 'methylacetate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* 4.286817177E-2 ! =3.175631296 + parame(i,2) = 3.18722021277843 + parame(i,3) = 234.106931032456 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.228922065E-2 ! =3.132743176 + IF (pol >= 1) parame(i,2) = 3.2011401688 + IF (pol >= 1) parame(i,3) = 233.17562886 + IF (pol >= 1) parame(i,6) = 1.72 + IF (pol >= 2) mm(i) = 74.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.298900538E-2 ! =3.18458252 + IF (pol >= 2) parame(i,2) = 3.180642322 + IF (pol >= 2) parame(i,3) = 229.3132680 + IF (pol >= 2) parame(i,6) = 1.72 + IF (pol == 2) parame(i,11)= 6.94 + ELSE IF (compna(i) == 'ethylacetate') THEN + mm(i) = 88.106 ! PC-SAFT + parame(i,1) = mm(i)* .0401464427 ! =3.537142481 + parame(i,2) = 3.30789258 + parame(i,3) = 230.800689 + IF (pol >= 1) mm(i) = 88.106 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.039792575 ! =3.505964572 + IF (pol >= 1) parame(i,2) = 3.317655188 + IF (pol >= 1) parame(i,3) = 230.2434769 + IF (pol >= 1) parame(i,6) = 1.78 + IF (pol >= 2) mm(i) = 88.106 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 0.040270267 ! =3.548052143 + IF (pol >= 2) parame(i,2) = 3.302097562 + IF (pol >= 2) parame(i,3) = 227.5026191 + IF (pol >= 2) parame(i,6) = 1.78 + IF (pol == 2) parame(i,11)= 8.62 + ELSE IF (compna(i) == 'ethyl-propanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0375692464 + parame(i,2) = 3.40306071 + parame(i,3) = 232.778374 + ELSE IF (compna(i) == 'propyl-ethanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0370721275 + parame(i,2) = 3.42272266 + parame(i,3) = 235.758378 + IF (pol >= 1) mm(i) = 102.133 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.687149995200072E-2 ! =3.76579690459769 + IF (pol >= 1) parame(i,2) = 3.4289353421006 + IF (pol >= 1) parame(i,3) = 235.41679442910 + IF (pol >= 1) parame(i,6) = 1.78 + ! IF (pol.EQ.2) parame(i,11)= 10.41 + ELSE IF (compna(i) == 'nbutyl-ethanoate') THEN + mm(i) = 116.16 ! PC-SAFT + parame(i,1) = mm(i)* .03427004 + parame(i,2) = 3.54269638 + parame(i,3) = 242.515768 + IF (pol >= 1) mm(i) = 116.16 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.411585209773470E-002 ! =3.96289737967286 + IF (pol >= 1) parame(i,2) = 3.54821589228130 + IF (pol >= 1) parame(i,3) = 242.274388267447 + IF (pol >= 1) parame(i,6) = 1.87000000000000 + IF (pol >= 2) mm(i) = 116.16 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.442139015733717E-002 ! =3.99838868067629 + IF (pol >= 2) parame(i,2) = 3.53576054452119 + IF (pol >= 2) parame(i,3) = 240.154409609249 + IF (pol >= 2) parame(i,6) = 1.87000000000000 + IF (pol == 2) parame(i,11)= 14.2000000000000 + ELSE IF (compna(i) == 'methyl-octanoate') THEN + mm(i) = 158.24 ! PC-SAFT + parame(i,1) = 5.2074 + parame(i,2) = 3.6069 + parame(i,3) = 244.12 + ELSE IF (compna(i) == 'methyl-decanoate') THEN + mm(i) = 186.2912 ! PC-SAFT + parame(i,1) = 5.8402 + parame(i,2) = 3.6871 + parame(i,3) = 248.27 + + mm(i) = 186.2912 ! PC-SAFT from GC-method Tim + parame(i,1) = 7.716 + parame(i,2) = 3.337303029 + parame(i,3) = 204.250907 + + mm(i) = 186.2912 ! PC-SAFT from GC-method (tightly fit) Tim + parame(i,1) = 7.728 + parame(i,2) = 3.334023322 + parame(i,3) = 206.9099379 + + ! mm(i) = 186.2912 ! PC-SAFT from fit to DIPPR + ! parame(i,1) = 6.285005 + ! parame(i,2) = 3.594888 + ! parame(i,3) = 236.781461 + ! ! parame(i,6) = 2.08056 + + ! mm(i) = 186.291000000000 + ! parame(i,1) = 6.28500485898895 + ! parame(i,2) = 3.59488828061149 + ! parame(i,3) = 236.781461491921 + ! parame(i,6) = 2.08055996894836 + ! parame(i,8) = 1.00000000000000 + mm(i) = 186.291000000000 + parame(i,1) = 6.14436331493372 + parame(i,2) = 3.61977264863944 + parame(i,3) = 242.071887817656 + + ELSE IF (compna(i) == 'methyl-dodecanoate') THEN + mm(i) = 214.344 ! PC-SAFT + parame(i,1) = 6.5153 + parame(i,2) = 3.7406 + parame(i,3) = 250.7 + ELSE IF (compna(i) == 'methyl-tetradecanoate') THEN + mm(i) = 242.398 ! PC-SAFT + parame(i,1) = 7.1197 + parame(i,2) = 3.7968 + parame(i,3) = 253.77 + ELSE IF (compna(i) == 'methyl-hexadecanoate') THEN + mm(i) = 270.451 ! PC-SAFT + parame(i,1) = 7.891 + parame(i,2) = 3.814 + parame(i,3) = 253.71 + ELSE IF (compna(i) == 'methyl-octadecanoate') THEN + mm(i) = 298.504 ! PC-SAFT + parame(i,1) = 8.8759 + parame(i,2) = 3.7932 + parame(i,3) = 250.81 + ELSE IF (compna(i) == 'CH2F2') THEN + mm(i) = 52.02 + parame(i,1) = 3.110084171 + parame(i,2) = 2.8145230485 + parame(i,3) = 158.98060151 + ELSE IF (compna(i) == 'naphthalene') THEN + ! mm(i) = 128.174000000 + ! parame(i,1) = mm(i)* 2.4877834216412E-2 + ! parame(i,2) = 3.82355815011 + ! parame(i,3) = 341.560675334 + + mm(i) = 128.17400000000 + parame(i,1) = mm(i)* 2.6400924157729E-2 + parame(i,2) = 3.8102186020014 + parame(i,3) = 328.96792935903 + ELSE IF (compna(i) == 'h2s') THEN + mm(i) = 34.0820000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.838886696385162E-002 ! = 1.64918936386199 + parame(i,2) = 3.05478289838459 + parame(i,3) = 229.838873939562 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 536.634834731413 + eps_hb(i,i,2,1)= 536.634834731413 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.000000000000000E-003 +! PC-SAFT from Xiaohua + mm(i) = 34.082 ! PC-SAFT + parame(i,1) = 1.63677 + parame(i,2) = 3.06565 + parame(i,3) = 230.2121 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 275.1088 + eps_hb(i,i,2,1)= 275.1088 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.E-2 + ! IF (pol.GE.1) mm(i) = 34.082 ! PCP-SAFT with quadrupole + ! IF (pol.GE.1) parame(i,1) = mm(i)* 3.03171032558E-2 ! =1.03326751316478 + ! IF (pol.GE.1) parame(i,2) = 3.6868189914018 + ! IF (pol.GE.1) parame(i,3) = 246.862831266172 + ! IF (pol.GE.1) nhb_typ(i) = 2 + ! IF (pol.GE.1) nhb_no(i,1) = 1 + ! IF (pol.GE.1) nhb_no(i,2) = 1 + ! IF (pol.GE.1) eps_hb(i,i,1,2)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,2,1)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.GE.1) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.GE.1) kap_hb(i,i) = 5.5480659623d-4 + ! IF (pol.GE.1) parame(i,6) = 0.97833 + ! IF (pol.GE.1) parame(i,7) = 3.8623 + ! IF (pol.GE.1) LLi(i) = 1.2737*parame(i,2) + ! IF (pol.GE.1) phi_criti(i)= 14.316 + ! IF (pol.GE.1) chap(i) = 0.4473 + IF (pol >= 1) mm(i) = 34.0820000000000 ! PCP-SAFT no quadrupoLE + IF (pol >= 1) parame(i,1) = mm(i)* 4.646468487062725E-002 ! 1.58360938976072 + IF (pol >= 1) parame(i,2) = 3.10111012646306 + IF (pol >= 1) parame(i,3) = 230.243457544889 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,2,1)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1) parame(i,6) = 0.978330000000000 + + IF (pol >= 1) lli(i) = 1.2737*parame(i,2) + IF (pol >= 1) phi_criti(i)= 14.316 + IF (pol >= 1) chap(i) = 0.4473 + + + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) mm(i) = 34.0820000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.806418212963168E-002 ! 1.63812345534211 + IF (pol == 2) parame(i,2) = 3.06556006883749 + IF (pol == 2) parame(i,3) = 221.746622243054 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,2,1)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol == 2) parame(i,6) = 0.978330000000000 + IF (pol == 2) parame(i,11) = 3.60200000000000 + IF (pol == 2) parame(i,7) = 0.0 + + IF (pol >= 1)mm(i) = 34.0820000000000 !PCP-SAFT D&Q + IF (pol >= 1)parame(i,1) = mm(i)* 3.974667896078737E-002 ! = 1.35464631234155 + IF (pol >= 1)parame(i,2) = 3.30857082333438 + IF (pol >= 1)parame(i,3) = 234.248947273191 + IF (pol >= 1)nhb_typ(i) = 2 + IF (pol >= 1)nhb_no(i,1) = 1 + IF (pol >= 1)nhb_no(i,2) = 1 + IF (pol >= 1)eps_hb(i,i,1,2)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,2,1)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1)eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1)kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1)parame(i,6) = 0.978330000000000 + IF (pol >= 1)parame(i,7) = 2.93750500000000 + + ELSE IF (compna(i) == 'methanol') THEN + mm(i) = 32.042 ! PC-SAFT + parame(i,1) = mm(i)* .0476100379 + parame(i,2) = 3.23000005 + parame(i,3) = 188.904644 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2899.49055 + eps_hb(i,i,2,1)= 2899.49055 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0351760892 + IF (pol >= 1) mm(i) = 32.042 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 7.213091821E-2 ! =2.31121888139672 + IF (pol >= 1) parame(i,2) = 2.8270129502 + IF (pol >= 1) parame(i,3) = 176.3760515 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,2,1)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 8.9248658086E-2 + IF (pol >= 1) parame(i,6) = 1.7 + IF (pol >= 1) lli(i) = 1.75*parame(i,2) + IF (pol >= 1) phi_criti(i)= 23.43 + IF (pol >= 1) chap(i) = 0.304 + IF (pol == 2) mm(i) = 32.042 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 2.0693 + IF (pol == 2) parame(i,2) = 2.9547 + IF (pol == 2) parame(i,3) = 174.51 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2418.5 + IF (pol == 2) eps_hb(i,i,2,1)= 2418.5 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 0.06319 + IF (pol == 2) parame(i,6) = 1.7 + IF (pol == 2) parame(i,11)= 3.29 + ! mm(i) = 32.0420000000000 ! PCP-SAFT with adjusted QQ + ! parame(i,1) = mm(i)* 6.241807629559099E-002 + ! ! parame(i,1) = 2.00000000066333 + ! parame(i,2) = 2.97610169698593 + ! parame(i,3) = 163.268505098639 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2449.55621933612 + ! eps_hb(i,i,2,1)= 2449.55621933612 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 8.431015160393653E-002 + ! parame(i,6) = 1.72000000000000 + ! parame(i,7) = 1.59810028824523 + ELSE IF (compna(i) == 'ethanol') THEN + mm(i) = 46.069 + parame(i,1) = mm(i)* .0517195521 + parame(i,2) = 3.17705595 + parame(i,3) = 198.236542 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2653.38367 + eps_hb(i,i,2,1)= 2653.38367 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0323840159 + IF (pol >= 1) mm(i) = 46.0690000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 4.753626908781145E-002 ! =2.18994838060639 + IF (pol >= 1) parame(i,2) = 3.30120000000000 + IF (pol >= 1) parame(i,3) = 209.824555801706 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,2,1)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.349382956935725E-002 + IF (pol >= 1) parame(i,6) = 1.69000000000000 + ! mm(i) = 46.0690000000000 + ! parame(i,1) = mm(i)* 5.117957752785066E-002 ! =2.357791957 + ! parame(i,2) = 3.24027031244304 + ! parame(i,3) = 175.657110615456 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2273.62670516146 + ! eps_hb(i,i,2,1)= 2273.62670516146 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 7.030279197039477E-002 + ! parame(i,6) = 1.69000000000000 + ! parame(i,7) = 3.63701294195013 + IF (pol == 2) mm(i) = 46.0690000000000 + IF (pol == 2) parame(i,1) = mm(i)* 4.733436280008321E-002 ! =2.18064676 + IF (pol == 2) parame(i,2) = 3.31260000000000 + IF (pol == 2) parame(i,3) = 207.594119926613 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,2,1)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 2.132561218631547E-002 + IF (pol == 2) parame(i,6) = 1.69000000000000 + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) parame(i,11)= 5.11000000000000 + ELSE IF (compna(i) == '1-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0499154461 + parame(i,2) = 3.25221234 + parame(i,3) = 233.396705 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2276.77867 + eps_hb(i,i,2,1)= 2276.77867 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0152683094 + ELSE IF (compna(i) == '1-butanol') THEN + mm(i) = 74.123 + parame(i,1) = mm(i)* .0341065046 + parame(i,2) = 3.72361538 + parame(i,3) = 269.798048 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2661.37119 + eps_hb(i,i,2,1)= 2661.37119 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00489087833 + mm(i) = 74.1230000000000 + parame(i,1) = mm(i)* 3.329202420547412E-002 ! =2.46770471018236 + parame(i,2) = 3.76179376417092 + parame(i,3) = 270.237284242002 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 2669.28754983370 + eps_hb(i,i,2,1)= 2669.28754983370 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 4.855584122733399E-003 + parame(i,6) = 1.66000000000000 + ELSE IF (compna(i) == '1-pentanol') THEN + mm(i) = 88.15 ! PC-SAFT + parame(i,1) = mm(i)* .041134139 + parame(i,2) = 3.45079143 + parame(i,3) = 247.278748 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2252.09237 + eps_hb(i,i,2,1)= 2252.09237 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0103189939 + IF (pol >= 1) mm(i) = 88.1500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.138903382168521E-002 ! =3.64844333138155 + IF (pol >= 1) parame(i,2) = 3.44250118689142 + IF (pol >= 1) parame(i,3) = 246.078034174947 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,2,1)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.040067895187016E-002 + IF (pol >= 1) parame(i,6) = 1.70000000000000 + IF (pol == 2) mm(i) = 88.1500000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.161521814399406E-002 ! =3.66838147939308 + IF (pol == 2) parame(i,2) = 3.43496654431777 + IF (pol == 2) parame(i,3) = 244.177313808431 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,2,1)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.049516309928397E-002 + IF (pol == 2) parame(i,6) = 1.70000000000000 + IF (pol == 2) parame(i,11)= 10.8000000000000 + ELSE IF (compna(i) == '1-octanol') THEN + mm(i) = 130.23 + parame(i,1) = mm(i)* .0334446084 + parame(i,2) = 3.714535 + parame(i,3) = 262.740637 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2754.77272 + eps_hb(i,i,2,1)= 2754.77272 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00219656803 + ELSE IF (compna(i) == '1-nonanol') THEN + mm(i) = 144.257 + parame(i,1) = mm(i)* .0324692669 + parame(i,2) = 3.72924286 + parame(i,3) = 263.636673 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2941.9231 + eps_hb(i,i,2,1)= 2941.9231 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00142696883 + ELSE IF (compna(i) == '2-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0514663133 + parame(i,2) = 3.20845858 + parame(i,3) = 208.420809 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2253.91064 + eps_hb(i,i,2,1)= 2253.91064 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0246746934 + ELSE IF (compna(i) == '2-methyl-2-butanol') THEN + mm(i) = 88.15 + parame(i,1) = mm(i)* .0289135026 + parame(i,2) = 3.90526707 + parame(i,3) = 266.011828 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2618.80124 + eps_hb(i,i,2,1)= 2618.80124 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00186263367 + ELSE IF (compna(i) == 'acetic-acid') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0227076949 + parame(i,2) = 3.79651163 + parame(i,3) = 199.225066 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3092.40109 + eps_hb(i,i,2,1)= 3092.40109 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0870093874 + + + mm(i) = 60.053 + parame(i,1) = mm(i)* .0181797646 + parame(i,2) = 4.13711044 + parame(i,3) = 207.552969 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3198.84362 + eps_hb(i,i,2,1)= 3198.84362 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0586552968 + +! mit gesetztem Dipol-Moment + mm(i) = 60.0530000000000 + parame(i,1) = mm(i)* 1.736420143637533E-002 + parame(i,2) = 4.25220708070687 + parame(i,3) = 190.957247854820 + parame(i,6) = 3.50000000000000 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3096.36190957945 + eps_hb(i,i,2,1)= 3096.36190957945 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 6.154307094782551E-002 + + ELSE IF (compna(i) == 'propionic-acid') THEN + mm(i) = 74.0800000000000 + parame(i,1) = mm(i)* 2.359519915877884E-002 + parame(i,2) = 3.99339224153844 + parame(i,3) = 295.947729838532 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2668.97826430874 + eps_hb(i,i,2,1)= 2668.97826430874 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 3.660242292423115E-002 + ELSE IF (compna(i) == 'acrylic-acid') THEN + mm(i) = 72.0636 + parame(i,1) = mm(i)* .0430585424 + parame(i,2) = 3.0545415 + parame(i,3) = 164.115604 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3065.40667 + eps_hb(i,i,2,1)= 3065.40667 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .336261669 + ELSE IF (compna(i) == 'caproic-acid') THEN + mm(i) = 116.16 + parame(i,1) = 5.87151 + parame(i,2) = 3.0694697 + parame(i,3) = 241.4569 + nhb_typ(i) = 1 + eps_hb(i,i,1,1)= 2871.37 + kap_hb(i,i) = 3.411613D-3 + ELSE IF (compna(i) == 'aniline') THEN + mm(i) = 93.13 + parame(i,1) = mm(i)* .0285695992 + parame(i,2) = 3.70214085 + parame(i,3) = 335.471062 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 1351.64234 + eps_hb(i,i,2,1)= 1351.64234 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0748830615 + + mm(i) = 93.1300000000000 + parame(i,1) = mm(i)* 2.834372610192228E-002 ! =2.63965121187202 + parame(i,2) = 3.71326867619433 + parame(i,3) = 332.253796842009 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 1392.14266886674 + eps_hb(i,i,2,1)= 1392.14266886674 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 7.424612087328866E-002 + parame(i,6) = 1.55000000000000 + IF (pol == 2) parame(i,11)= 12.1000000000000 + ELSE IF (compna(i) == 'HF') THEN + ! mm(i) = 20.006 ! PC-SAFT + ! parame(i,1) = 0.87731 + ! parame(i,2) = 3.0006 + ! parame(i,3) = 112.24 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2208.22 + ! eps_hb(i,i,2,1)= 2208.22 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.71265 + mm(i) = 20.0060000000000 ! PCP-SAFT + parame(i,1) = 1.00030000000000 + parame(i,2) = 3.17603622195029 + parame(i,3) = 331.133373208282 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 348.251433080979 + eps_hb(i,i,2,1)= 348.251433080979 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 2.868887975449893E-002 + parame(i,6) = 1.82600000000000 + ELSE IF (compna(i) == 'HCl') THEN + ! mm(i) = 36.4610000000000 + ! parame(i,1) = mm(i)* 3.922046741026943E-002 + ! parame(i,2) = 3.08731180727493 + ! parame(i,3) = 203.898845304388 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 245.462773177367 + ! eps_hb(i,i,2,1)= 245.462773177367 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.256454187330899 + mm(i) = 36.461 ! PCIP-SAFT + parame(i,1) = 1.6335 + parame(i,2) = 2.9066 + parame(i,3) = 190.17 + parame(i,6) = 1.1086 + IF (pol == 2) parame(i,11)= 2.63 + ELSE IF (compna(i) == 'gen') THEN + mm(i) = 302.0 + parame(i,1) = 8.7563 + parame(i,2) = 3.604243 + parame(i,3) = 255.6434 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 0.0 + eps_hb(i,i,2,1)= 0.0 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.02 + ELSE IF (compna(i) == 'h2o') THEN + mm(i) = 18.015 + parame(i,1) = mm(i)* .05915 + parame(i,2) = 3.00068335 + parame(i,3) = 366.512135 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2500.6706 + eps_hb(i,i,2,1)= 2500.6706 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0348679836 + + ! mm(i) = 18.015 + ! parame(i,1) = 1.706 + ! parame(i,2) = 2.429 + ! parame(i,3) = 242.19 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 2644.2 + ! eps_hb(i,i,2,1)= 2644.2 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.153 + + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* .0588185709 + ! parame(i,2) = 3.02483704 + ! parame(i,3) = 382.086672 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 2 ! no. of sites of type 2 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! eps_hb(i,i,1,2)= 2442.49782 + ! eps_hb(i,i,2,1)= 2442.49782 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = .0303754635 + + ! mit gefittetem Dipol-Moment - Haarlem-night + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* 7.0037160952278E-2 + ! parame(i,2) = 2.79276650240763 + ! parame(i,3) = 270.970053834558 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 1427.8287 + ! eps_hb(i,i,2,1)= 1427.8287 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = 4.335167238E-2 + ! parame(i,6) = 3.968686856378 + + IF (pol >= 1) mm(i) = 18.015 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 0.922688825223317 + IF (pol >= 1) parame(i,2) = 3.17562052023944 + IF (pol >= 1) parame(i,3) = 388.462197714696 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,2,1)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.040614952751225E-003 + IF (pol >= 1) parame(i,6) = 1.85500000000000 + IF (pol >= 1) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_RPT + ! IF (pol.EQ.2) parame(i,1) = 1.0 + ! IF (pol.EQ.2) parame(i,2) = 3.14540664928026 + ! IF (pol.EQ.2) parame(i,3) = 320.283823615925 + ! IF (pol.EQ.2) nhb_typ(i) = 2 + ! IF (pol.EQ.2) nhb_no(i,1) = 2 + ! IF (pol.EQ.2) nhb_no(i,2) = 2 + ! IF (pol.EQ.2) eps_hb(i,i,1,2)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,2,1)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.EQ.2) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.EQ.2) kap_hb(i,i) = 4.162619960844732E-003 + ! IF (pol.EQ.2) parame(i,6) = 1.85500000000000 + ! IF (pol.EQ.2) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.0150000000000 + ! parame(i,1) = 1.0 + ! parame(i,2) = 3.11505069470915 + ! parame(i,3) = 320.991387913502 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2037.76329812542 + ! eps_hb(i,i,2,1)= 2037.76329812542 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 3.763148982832804E-003 + ! parame(i,6) = 1.85500000000000 + ! parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + IF (pol == 2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_0 + IF (pol == 2) parame(i,1) = 1.0 + IF (pol == 2) parame(i,2) = 3.11574491885322 + IF (pol == 2) parame(i,3) = 322.699984283499 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,2,1)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 3.815764667176484E-003 + IF (pol == 2) parame(i,6) = 1.85500000000000 + IF (pol == 2) parame(i,7) = 2.00000000000000 + IF (pol == 2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.015 ! Dortmund + ! parame(i,1) = 0.11065254*mm(i) + ! parame(i,2) = 2.36393615 + ! parame(i,3) = 300.288589 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 1193.45585 + ! eps_hb(i,i,2,1)= 1193.45585 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.091203519 + ! parame(i,6) = 1.8546 + ! parame(i,7) = 0.0 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'MBBA') THEN + mm(i) = 267.37 + parame(i,1) = 12.194 + parame(i,2) = 3.064 + parame(i,3) = 270.7 + e_lc(i,i) = 13.7 !Hino & Prausnitz + s_lc(i,i) = 0.176 !Hino & Prausnitz + ELSE IF (compna(i) == 'PCH5') THEN + mm(i) = 255.41 + parame(i,1) = 11.6 + parame(i,2) = 3.2 + parame(i,3) = 270.7 + ! E_LC(i,i) = 16.7 !Hino & Prausnitz + ! S_LC(i,i) = 0.176 !Hino & Prausnitz + e_lc(i,i) = 8.95 + s_lc(i,i) = 0.2 + + ! mm(i) = 255.41 + ! parame(i,1) = 11.6 + ! parame(i,2) = 3.2 + ! parame(i,3) = 290.7 + ! E_LC(i,i) = 7.18 + ! S_LC(i,i) = 0.2 + + ELSE IF (compna(i) == 'Li') THEN + mm(i) = 6.9 + parame(i,1) = 1.0 + parame(i,2) = 1.4 + parame(i,3) = 96.83 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.008 + ELSE IF (compna(i) == 'Na') THEN + mm(i) = 23.0 + parame(i,1) = 1.0 + parame(i,2) = 1.9 + parame(i,3) = 147.38 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 8946.28257 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.001648933 + ELSE IF (compna(i) == 'Ka') THEN + mm(i) = 39.1 + parame(i,1) = 1.0 + parame(i,2) = 2.66 + parame(i,3) = 221.44 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 3118.336216 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cs') THEN + mm(i) = 132.9 + parame(i,1) = 1.0 + parame(i,2) = 3.38 + parame(i,3) = 523.28 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cl') THEN + mm(i) = 35.5 + parame(i,1) = 1.0 + parame(i,2) = 3.62 + parame(i,3) = 225.44 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 6744.12509 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00155252 + ELSE IF (compna(i) == 'Br') THEN + mm(i) = 79.9 + parame(i,1) = 1.0 + parame(i,2) = 3.9 + parame(i,3) = 330.82 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 4516.033227 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Io') THEN + mm(i) = 126.9 + parame(i,1) = 1.0 + parame(i,2) = 4.4 + parame(i,3) = 380.60 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 1631.203342 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'OH') THEN + mm(i) = 17.0 + parame(i,1) = 1.0 + parame(i,2) = 3.06 + parame(i,3) = 217.26 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 14118.68089 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'NO3') THEN + mm(i) = 62.0 + parame(i,1) = 1.0 + parame(i,2) = 4.12 + parame(i,3) = 239.48 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 4 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'bf4') THEN + mm(i) = 86.8 + parame(i,1) = 1.0 + parame(i,2) = 4.51 ! *0.85 + parame(i,3) = 164.7 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'pf6') THEN + mm(i) = 145.0 + parame(i,1) = 1.0 + parame(i,2) = 5.06 + parame(i,3) = 224.9 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'emim') THEN + mm(i) = 111.16 + parame(i,1) = 3.11 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'bmim') THEN + mm(i) = 139.21 + ! parame(i,1) = 2.81 + ! parame(i,2) = 3.5 + parame(i,1) = 3.81 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,6) = 0.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'hmim') THEN + mm(i) = 167.27 + parame(i,1) = 4.53 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'omim') THEN + mm(i) = 195.32 + parame(i,1) = 5.30 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'sw') THEN + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 100.0 + parame(i,4) = 0.0 + parame(i,5) = 0.0 + mm(i) = 1.0 + parame(i,6) = 0.1175015839*2.0 + ! use Temp. in Kelvin in the input-file. For dimensionless quantities + ! (P*=P*sig**3/epsilon, T*=T*kBol/epsilon, rho*=rho*sig**3) calculate + ! P* = P *1E5 * (1.e-10)^3 / (100*8.31441/6.022045E+23) + ! T* = (T+273.15)/100 + ! for rho* go to utilities.f (subroutine SI_DENS) and write + ! density(ph) = dense(ph)*6.0/PI + ELSE IF (compna(i) == 'c8-sim') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* 4.095944E-2 ! =4.67883774717337 + parame(i,2) = 3.501769 + parame(i,3) = 163.8606 + ! mm(i) = 114.231000000000 + ! parame(i,1) = mm(i)* 3.547001476437745E-002 ! =4.05177525654960 + ! parame(i,2) = 3.70988567055814 + ! parame(i,3) = 192.787548176343 + ELSE IF (compna(i) == 'argon_ge') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 100.188975 + ELSE IF (compna(i) == 'argon_ge2') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 0.8*100.188975 + ELSE + WRITE (*,*) ' pure component parameters missing for ',compna(i) + STOP + END IF + + IF (pol == 2.AND.parame(i,11) == 0.0) THEN + WRITE (*,*) ' polarizability missing for comp. ',compna(i) + STOP + END IF + + IF (nhb_typ(i) /= 0) THEN + parame(i,12) = DBLE(nhb_typ(i)) + parame(i,13) = kap_hb(i,i) + no = 0 + DO j=1,nhb_typ(i) + DO k=1,nhb_typ(i) + parame(i,(14+no))=eps_hb(i,i,j,k) + no=no+1 + END DO + END DO + DO j=1,nhb_typ(i) + parame(i,(14+no))=DBLE(nhb_no(i,j)) + no=no+1 + END DO + ELSE + DO k=12,25 + parame(i,k)=0.0 + END DO + END IF + +END DO + + +DO i = 1,ncomp + DO j = 1,ncomp + IF (compna(i) == 'ps'.AND.compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.0075 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'ethylene')THEN +! -- 0 Gew.% VA------------- + ! kij(i,j) = 0.039 +! -- 7.5 Gew.% VA------------- + ! kij(i,j) = 0.0377325 + ! kij(i,j) = 0.0374867 +! ---12.7 Gew.% VA------------ + ! kij(i,j) = 0.036854 + ! kij(i,j) = 0.0366508 +! ---27.3 Gew.% VA------------ + ! kij(i,j) = 0.034386 + ! kij(i,j) = 0.0352375 +! ---31.8 Gew.% VA------------ + kij(i,j) = 0.033626 + ! kij(i,j) = 0.0350795 +! ---42.7 Gew.% VA------------ + ! kij(i,j) = 0.031784 + ! kij(i,j) = 0.035239 + ELSE IF(compna(i) == 'gen'.AND.compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'vinylacetate')THEN + kij(i,j) = 0.019 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'co2') THEN + IF ( pol == 0 ) kij(i,j) = 0.195 + IF ( pol == 1 ) kij(i,j) = 0.06 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.021 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'hexane') THEN + kij(i,j) = 0.012 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'pentane')THEN + kij(i,j) = 0.005 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'methylcyclohexane') THEN + kij(i,j) = 0.0073 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'ethylbenzene')THEN + kij(i,j) = 0.008 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.181 + kij(i,j) = 0.088 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0206 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'argon') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'pentane') THEN + ! kij(i,j) = -0.0195 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'hexane') THEN + ! kij(i,j) = 0.008 + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.0404 + ! kij(i,j) = 0.0423 + ! kij(i,j) = 0.044 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'ldpe'.AND.compna(j) == 'cyclopentane')THEN + kij(i,j) = -0.016 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0242 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'pentane') THEN + kij(i,j) = 0.0137583176 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.1767 ! without quadrupol-term + kij(i,j) = 0.063 ! with quadrupol-term + ELSE IF(compna(i) == 'pba'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'n2'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = -0.04 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.051875 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.0353125 ! PCP-SAFT + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co') THEN + ! IF (pol == 1) kij(i,j) = -0.003 ! PCP-SAFT + IF (pol == 1) kij(i,j) = 0.018 ! PCP-SAFT + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.095 + kij(i,j) = 0.021 + ! kij(i,j) = 0.024 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.042 + ELSE IF(compna(i) == 'argon_ge'.AND.compna(j) == 'argon_ge2') THEN + read (*,*) kij(i,j) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.115 + ! kij(i,j) = 0.048 + kij(i,j) = 0.036 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.143 ! without quadrupol-term + kij(i,j) = 0.0 ! with quadrupol-term + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.125 ! without quadrupol-term + kij(i,j) = 0.0495 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.11 ! without quadrupol-term + ! kij(i,j) = 0.05 + ! kij(i,j) = 0.039 ! with quadrupol-term + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.128 ! without quadrupol-term + kij(i,j) = 0.053 ! with quadrupol-term + ELSE IF(compna(i) == 'dodecane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.12 ! without quadrupol-term + kij(i,j) = 0.0508 ! with quadrupol-term + ELSE IF(compna(i) == 'benzene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.087968750000 ! without quadrupol-term + ! kij(i,j) = 0.008203125 ! only co2 quadrupol + kij(i,j) = 0.042 ! both quadrupol + ! kij(i,j) = 0.003 ! both quadrupol + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.110784912 ! without quadrupol-term + kij(i,j) = 0.0305 ! with quadrupol-term + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.13 + lij(i,j) = - 0.00 + ! kij(i,j) = 0.045 + ELSE IF(compna(i) == 'chloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.04 ! PC-SAFT + kij(i,j) = 0.025 ! PCP-SAFT + ! kij(i,j) = 0.083 ! PCIP-SAFT + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'n2')THEN + kij(i,j) = 0.035211 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + kij(i,j) = 0.023 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + !kij(i,j) = 1.722238535635467E-002 ! PCP-SAFT + !lij(i,j) = 2.815974678394451E-003 ! PCP-SAFT + !kij(i,j) = 1.931522058164026E-002 ! PCP-SAFT + !lij(i,j) = 0.0 ! PCP-SAFT + !kij(i,j) = 1.641053794134795E-002 ! PCP-SAFT + !lij(i,j) = -5.850421759950764E-003 ! PCP-SAFT + if ( num == 0 ) write (*,*) 'calculation with lij only possible with num=1' + if ( num == 0 ) stop + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.015 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.02 ! PCP-SAFT + IF (pol == 2) kij(i,j) = -0.005 ! PCIP-SAFT where DQ with my=my_vacuum + ! IF (pol.EQ.2) kij(i,j) = 0.0 ! PCIP-SAFT where DQ with my=my_RPT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.0288 ! PC-SAFT + ! kij(i,j) = - 0.035 ! PCP-SAFT for co2 and PC-SAFT methanol + ! kij(i,j) = - 0.035 ! PCP-SAFT + ! lij(i,j) = 0.3 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.00896894 ! PC-SAFT + ! kij(i,j) = - 0.015 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'h2o')THEN + ! kij(i,j) = -0.134 ! PC-SAFT + ELSE IF(compna(i) == 'dichloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.06881725 ! PC-SAFT + ! kij(i,j) = 0.05839145 ! PCP-SAFT + kij(i,j) = -0.00944346 ! PCP-SAFT co2 dichloromethane PC-SAFT + ! kij(i,j) = 0.06 ! PCIP-SAFT + ELSE IF(compna(i) == 'h2s'.AND.compna(j) == 'methane')THEN + ! kij(i,j) = 0.0414 ! PC-SAFT + kij(i,j) = 0.0152 ! PCP-SAFT Dipole momnet (d with Q) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'h2s')THEN + kij(i,j) = -0.002 ! PCP-SAFT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'h2s')THEN + kij(i,j) = 0.0 ! PCP-SAFT + lij(i,j) = 0.0 ! PCP-SAFT + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hydrogen') THEN + ! lij(i,j) = -0.08 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.0251171875 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hexadecane') THEN + ! kij(i,j) = 0.1194 ! PC-SAFT ohne QQ + kij(i,j) = 0.0588 + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.038 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.037 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.072 ! no DD + ! kij(i,j) = 0.041 ! DD non-polarizable + kij(i,j) = 0.039 ! DD polarizable + ! kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.063 + kij(i,j) = 0.038 ! PCP-SAFT + ! kij(i,j) = 0.036 ! PCIP-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.035 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.059 ! no DD + ! kij(i,j) = 0.03281250 ! DD non-polarizable + kij(i,j) = 0.028 ! DD polarizable + ELSE IF(compna(i) == 'hexadecane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.07 ! no DD + ! kij(i,j) = 0.0415 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.027 ! PCP-SAFT + ! kij(i,j) = 0.033 ! PCP-SAFT with lij + ! lij(i,j) = 0.13 ! PCP-SAFT + ! kij(i,j) = 0.042 ! PC-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.042 ! no DD + ! kij(i,j) = 0.027 ! DD non-polarizable + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == '2-pentanone')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.031 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '3-pentanone')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.055 ! no DD + kij(i,j) = 0.027 ! DD non-polarizable + ! kij(i,j) = 0.026 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.036 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable 22 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanal')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.025 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'octane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'dmso')THEN + ! kij(i,j) = 0.025 ! no DD + kij(i,j) = - 0.0105 ! DD non-polarizable + ! kij(i,j) = - 0.019 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acrylonitrile')THEN + kij(i,j) = - 0.05 ! DD polarizable + ELSE IF(compna(i) == 'heptane' .AND. compna(j) == 'butyronitrile')THEN + kij(i,j) = - 0.002 ! DD polarizable 11 + kij(i,j) = 0.002 ! DD polarizable 22 + ELSE IF(compna(i) == '1-butene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.04 ! no DD + ! kij(i,j) = 0.004 ! DD non-polarizable + kij(i,j) = 0.005 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'dmf')THEN + kij(i,j) = 0.0135 ! DD polarizable 11 + kij(i,j) = 0.022 ! DD polarizable 22 + ELSE IF(compna(i) == 'ethylene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = - 0.0215 ! DD polarizable 11 + kij(i,j) = - 0.01 ! DD polarizable 22 + ELSE IF(compna(i) == 'nbutyl-ethanoate'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.016 ! no DD + ! kij(i,j) = -0.01 ! DD non-polarizable + kij(i,j) = - 0.015 ! DD polarizable 22 + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.066 ! PC-SAFT + ! kij(i,j) = 0.061 ! PCP-SAFT + ! kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate'.AND.compna(j) == 'decane')THEN + kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'methanol')THEN + ! kij(i,j) = -0.07 ! PCIP-SAFT + ELSE IF(compna(i) == 'pentane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0498 + IF (pol >= 1) kij(i,j) = -0.01 + IF (pol >= 2) kij(i,j) = -0.027 + ELSE IF(compna(i) == 'hexane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.05 + IF (pol >= 1) kij(i,j) = 0.0 + IF (pol >= 2) kij(i,j) = -0.03 + ELSE IF(compna(i) == 'octane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitromethane')THEN + kij(i,j) = 0.14 ! no DD + ! kij(i,j) = 0.07 ! DD non-polarizable + ! kij(i,j) = 0.055 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitroethane')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.03 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'nitromethane')THEN + ! kij(i,j) = - 0.017 ! no DD + kij(i,j) = - 0.021 ! DD non-polarizable + ! kij(i,j) = - 0.023 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 ! PCP-SAFT (no cross-association) + ELSE IF(compna(i) == 'methylcyclohexane' .AND. compna(j) == 'acetonitrile')THEN + ! kij(i,j) = 0.09 ! no DD + ! kij(i,j) = 0.033 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable 22 + kij(i,j) = 0.04 ! DD polarizable 22 und my angepasst + ELSE IF(compna(i) == 'ethylacetate' .AND. compna(j) == 'acetonitrile')THEN + kij(i,j) = 0.007 ! no DD + ! kij(i,j) = -0.045 ! DD polarizable 22 + ELSE IF(compna(i) == 'dimethyl-ether' .AND. compna(j) == 'propane')THEN + ! kij(i,j) = 0.03 ! no DD + kij(i,j) = 0.0225 ! DD non-polarizable + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'pentane')THEN + ! kij(i,j) = 0.012968750 ! ohne QQ + ! kij(i,j) = 0.004921875 ! mit QQ=5.6D (gefittet) + ! kij(i,j) = -0.006406250 ! mit QQ=7.45D (Literatur) + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.01328125 + ! kij(i,j) = 0.0038 + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == '1-hexene')THEN + kij(i,j) = 0.0067 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.04 + kij(i,j) = -0.029 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'vinylacetate') THEN + kij(i,j) = - 0.013847 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'ethylene') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.061953125 ! polyethylene parameters + kij(i,j) = 0.039609375 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.06515625 ! polyethylene parameters + kij(i,j) = 0.04453125 ! param. by extrapolation of n-alkanes + ! --- kij and lij adjusted ------- + ! kij(i,j) = 0.045786119 ! param. by extrapolation of n-alkanes + ! lij(i,j) = +8.53466437d-4 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'eicosane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 ! assumed equal to eicosane-C1 + ELSE IF(compna(i) == 'chlorobenzene' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.013 + ELSE IF(compna(i) == 'chloroethane' .AND. compna(j) == 'butane')THEN + kij(i,j) = 0.025 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.0070105 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'hydrogen' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.1501 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'co2') THEN + ! kij(i,j) = -0.08 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'propane') THEN + kij(i,j) = - 0.07 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'ethane') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.028 + kij(i,j) = 0.016 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.037 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '1-octanol')THEN + kij(i,j) = 0.06 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.0508 + ! kij(i,j) = 0.03 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.034 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'decane')THEN + ! kij(i,j) = 0.042 ! PC-SAFT + ! kij(i,j) = 0.011 ! PCP-SAFT + kij(i,j) = 0.000 ! PCIP-SAFT + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'isobutane') THEN + kij(i,j) = 0.051 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == '1-octanol') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == '1-butanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.015 + ELSE IF(compna(i) == '1-nonanol' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.076 + kij(i,j) = 0.01443 + ELSE IF(compna(i) == '1-propanol' .AND. compna(j) == 'ethylbenzene') THEN + kij(i,j) = 0.0251757813 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = 0.085 + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '1-chlorobutane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'aniline'.AND.compna(j) == 'methylcyclopentane') THEN + kij(i,j) = 0.0153 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'nbutyl-ethanoate')THEN + kij(i,j) = 0.027 + ELSE IF(compna(i) == '1-hexene'.AND.compna(j) == 'ethyl-ethanoate')THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == '1-butanol')THEN + ! kij(i,j) = 0.075 + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'acrylic-acid'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'bmim'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'bf4'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'butane')THEN !K.R.Hall FPE 2007 254 112-125 kij=0.1850 + kij(i,j) = -0.07 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-butanol')THEN + kij(i,j) = -0.12 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'aniline')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methanol') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = -0.027 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'styrene') THEN + kij(i,j) = 0.1 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propyl-ethanoate') THEN + kij(i,j) = -0.205 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethyl-propanoate') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-pentanol') THEN + kij(i,j) = 0.0165 + ! kij(i,j) = 0.0294 + ! kij(i,j) = -0.082 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methane') THEN + ! kij(i,j) = +0.06 + kij(i,j) = -0.08 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'hexane') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'co2') THEN + if (pol == 0) kij(i,j) = 0.0030625 ! for T=50C, according to X.Tang + stop ! very T-dependent + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'caproic-acid'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.041531 + ELSE IF(compna(i) == '1-octanol'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.07 + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02132466 ! PC-SAFT + ! kij(i,j) = 0.01495148 ! PCP-SAFT + ! kij(i,j) = -0.00735575 ! PCP-SAFT but non-polar benzene + ELSE IF(compna(i) == '1-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02017 + ELSE IF(compna(i) == '2-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.021386 + ELSE IF(compna(i) == '1-pentanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.0129638671875 + ELSE IF(compna(i) == 'CH2F2' .AND. compna(j) == 'co2') THEN + kij(i,j) = 2.2548828125E-2 + ELSE IF(compna(i) == 'dmso' .AND. compna(j) == 'co2') THEN + kij(i,j) = -0.00 + ELSE IF(compna(i) == 'dmf'.AND.compna(j) == 'h2o')THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = 0.032 ! association: eps_kij = 0.16 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.004 ! PCP-SAFT (taken from simulation) + ELSE IF(compna(i) == 'difluoromethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'naphthalene'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.137 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + kij(i,j) = 0.09 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'methanol')THEN + kij(i,j) = 0.03 + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.05 + ELSE IF(compna(i) == 'PCH5'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = -0.047 + kij(i,j) = +0.055 + ! kij(i,j) = +0.036 + ELSE + END IF + kij(j,i) = kij(i,j) + lij(j,i) = -lij(i,j) + + END DO +END DO + +END SUBROUTINE pcsaft_par + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE init_vars +! +! This subroutine writes variables from an array "val_init" to the +! system-variables. Those variables +! include some specifications but also some starting values for a +! phase equilibrium calculation. (val_init stands for 'initial value') + +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(5+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE init_vars +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +densta(3)=val_init(0) +densta(1)=val_init(1) +densta(2)=val_init(2) +t = val_init(3) +p = val_init(4) +DO ph = 1,nphas + DO i = 1,ncomp + lnx(ph,i) = val_init(4+i+(ph-1)*ncomp) + END DO +END DO + +END SUBROUTINE init_vars + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE converged +! +! Once a converged solution for an equilibrium calculation is found, +! this subroutine writes variables to an array "val_conv". +! (= short for converged values) +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(4+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE converged +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +val_conv(0) = dense(3) +val_conv(1) = dense(1) +val_conv(2) = dense(2) +val_conv(3) = t +val_conv(4) = p +DO ph = 1,nphas + DO i = 1,ncomp + val_conv(4+i+(ph-1)*ncomp) = lnx(ph,i) + END DO +END DO + +END SUBROUTINE converged + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PERTURBATION_PARAMETER +! +! calculates density-independent parameters of the equation of state. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PERTURBATION_PARAMETER +! + USE PARAMETERS, ONLY: PI, KBOL, RGAS, NAV, TAU + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, no + LOGICAL :: assoc, qudpole, dipole + REAL :: m_mean + REAL, DIMENSION(nc) :: v00, v0, d00, u + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb + REAL :: zmr, nmr + REAL :: eps_kij, k_kij +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- +DO i = 1, ncomp + u(i) = parame(i,3) * (1.0 + parame(i,4)/t) + mseg(i) = parame(i,1) + IF (eos == 0) THEN + v00(i) = parame(i,2) + v0(i) = v00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t))**3 + d00(i) = (1.d30/1.d6 *tau *v00(i)*6.0/PI /NAV)**(1.0/3.0) + dhs(i) = d00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + ELSE + dhs(i) = parame(i,2)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + d00(i) = parame(i,2) + END IF +END DO + + +! ---------------------------------------------------------------------- +! combination rules +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j = 1, ncomp + sig_ij(i,j) = 0.5 * ( d00(i) + d00(j) ) + uij(i,j) = ( 1.0 - kij(i,j) ) * ( u(i)*u(j) )**0.5 + vij(i,j) = ( 0.5*( v0(i)**(1.0/3.0) + v0(j)**(1.0/3.0) ) )**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +z0t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + +m_mean = z0t/(PI/6.0) + +DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO +END DO + +! ---------------------------------------------------------------------- +! dispersion term parameters for chain molecules +! ---------------------------------------------------------------------- +DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +END DO + + +! ---------------------------------------------------------------------- +! van der Waals mixing rules for perturbation terms +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO + + +! ---------------------------------------------------------------------- +! SAFT parameters +! ---------------------------------------------------------------------- +IF (eos == 0) THEN + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr +END IF + + + +! ---------------------------------------------------------------------- +! association and polar parameters +! ---------------------------------------------------------------------- +assoc = .false. +qudpole = .false. +dipole = .false. +DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + IF (parame(i,7) /= 0.0) qudpole = .true. + IF (parame(i,6) /= 0.0) dipole = .true. +END DO + +! --- dipole and quadrupole constants ---------------------------------- +IF (qudpole) CALL qq_const ( qqp2, qqp3, qqp4 ) +IF (dipole) CALL dd_const ( ddp2, ddp3, ddp4 ) +IF (dipole .AND. qudpole) CALL dq_const ( dqp2, dqp3, dqp4 ) + + +! --- TPT-1-association parameters ------------------------------------- +IF (assoc) THEN + + eps_kij = 0.0 + k_kij = 0.0 + + DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) THEN + nhb_typ(i) = NINT(parame(i,12)) + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1, nhb_typ(i) + DO k = 1, nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no=no+1 + END DO + END DO + DO j = 1, nhb_typ(i) + nhb_no(i,j) = parame(i,(14+no)) + no=no+1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1, nsite + DO l = 1, nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + IF (i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0)) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1, nhb_typ(i) + DO l = 1, nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN +! write(*,*)'eps_hb manuell eingegeben' + eps_hb(1,2,3,1) = 0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1) = 0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ass_d(i,j,k,l) = kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + END DO + END DO + END DO + END DO + +END IF + +END SUBROUTINE PERTURBATION_PARAMETER + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE OUTPUT +! +! The purpose of this subroutine is obvious. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE OUTPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + CHARACTER (LEN=4) :: t_ind + CHARACTER (LEN=4) :: p_ind + CHARACTER (LEN=4) :: char_ncomp + REAL :: density(np),w(np,nc) +! ---------------------------------------------------------------------- + + CALL si_dens (density,w) + + IF (u_in_p == 1.E5) THEN + p_ind = ' bar' + ELSE IF (u_in_p == 1.E2) THEN + p_ind = 'mbar' + ELSE IF (u_in_p == 1.E6) THEN + p_ind = ' MPa' + ELSE IF (u_in_p == 1.E3) THEN + p_ind = ' kPa' + ELSE + p_ind = ' Pa' + END IF + IF (u_in_t == 273.15) THEN + t_ind = ' C' + ELSE + t_ind = ' K' + END IF + + WRITE(*,*) '--------------------------------------------------' + WRITE (char_ncomp,'(I3)') ncomp + WRITE(*,'(t2,a,f7.2,2a,f9.4,a)') ' T =',t-u_out_t,t_ind & + ,' P =',p/u_out_p,p_ind + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,'(2x,a,2(g13.6,1x))') 'DENSITY ', density(1),density(2) + + !-----output to files-------------------------------------------------- + IF (ncomp == 1) THEN + WRITE (40,'(7(2x,f18.8))') t-u_out_t, p/u_out_p, & + density(1), density(2),h_lv,cpres(1),cpres(2) + ! & ,(enthal(2)-enthal(1))/mm(1) + ! WRITE (40,'(4(2x,f15.8))') t, p, 0.3107*dense(1) + ! & /0.1617*(0.689+0.311*(T/1.328)**0.3674),0.3107 + ! & *dense(2)/0.1617*(0.689+0.311*(T/1.328)**0.3674) + ELSE IF (ncomp == 2) THEN + WRITE (40,'(12(2x,G15.8))') 1.0-xi(1,1),1.0-xi(2,1), & + w(1,1),w(2,1),t-u_out_t, p/u_out_p, density(1),density(2) & + ,enthal(1),enthal(2),cpres(1),cpres(2) + ELSE IF (ncomp == 3) THEN + WRITE (40,'(10(2x,f15.8))') xi(1,1),xi(1,2),xi(1,3),xi(2,1),xi(2,2), & + xi(2,3),t-u_out_t, p/u_out_p, density(1),density(2) + END IF + + END SUBROUTINE OUTPUT + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE neutr_charge +! +! This subroutine is called for electrolye solutions, where a +! neutral overall-charge has to be enforced in all phases. The basic +! philosophy is similar to the above described routine X_SUMMATION. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE neutr_charge(i) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i +! +! ---------------------------------------------------------------------- + INTEGER :: comp_e, ph_e + REAL :: sum_c + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + +phasno = sum_rel(i)(2:2) +READ(phasno,*) ph_e +compno = sum_rel(i)(3:3) +READ(compno,*) comp_e + +sum_c = 0.0 +write (*,*) 'there must be an error in neutr_charge' +stop +! there is an error in the following passage. The index i is an +! argument to this subroutine - I guess it is INTENT(IN), so the +! index in the following loop can not be i. +! +! I have commented the loop until I check the code. +!DO i=1,ncomp +! IF ( comp_e /= i .AND. parame(i,10) /= 0.0) & +! sum_c = sum_c + xi(ph_e,i)*parame(i,10) +!END DO + +xi(ph_e,comp_e) = - sum_c +IF (xi(ph_e,comp_e) < 0.0) xi(ph_e,comp_e)=0.0 +IF (xi(ph_e,comp_e) /= 0.0) THEN + lnx(ph_e,comp_e) = LOG(xi(ph_e,comp_e)) +ELSE + lnx(ph_e,comp_e) = -100000.0 +END IF + +! xi(2,1) = xi(2,2) +! IF (xi(2,1).NE.0.0) lnx(2,1) = LOG(xi(2,1)) + +END SUBROUTINE neutr_charge + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_sum +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, j, ph_i, phase1, phase2 +! ---------------------------------------------------------------------- + +phase1=0 +phase2=0 +DO j=1,ncomp + IF (it(j)(2:2) == '1') phase1=phase1+1 + IF (it(j)(2:2) == '2') phase2=phase2+1 +END DO + +IF (phase1 == ncomp-1) THEN + ph_i = 1 +ELSE IF (phase2 == ncomp-1) THEN + ph_i = 2 +ELSE + WRITE (*,*) ' FLASH_SUM: undefined flash-case' + STOP +END IF + + + +IF (ph_i == 1) THEN + DO i=1,ncomp + IF (alpha > DMIN1(1.0,xif(i)/xi(1,i), & + (xif(i)-1.0)/(xi(1,i)-1.0),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 1st alpha-bound' + alpha=DMIN1(1.0,xif(i)/xi(1,i),(xif(i)-1.0)/(xi(1,i)-1.0)) + END IF + END DO + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF (xi(2,i) > 0.0) THEN + lnx(2,i) = LOG(xi(2,i)) + ELSE + xi(2,i) = 0.0 + lnx(2,i) = -100000.0 + END IF + END DO +ELSE IF (ph_i == 2) THEN + DO i=1,ncomp + IF (alpha > DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), & + 1.0-xif(i)/xi(2,i),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 2nd alpha-bound' + WRITE (*,*) 0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i) + alpha=DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i)) + END IF + END DO + DO i=1,ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) / alpha +! write (*,*) 'x1,i',xi(1,i),xi(2,i),alpha + IF (xi(1,i) > 0.0) THEN + lnx(1,i) = LOG(xi(1,i)) + ELSE + xi(1,i) = 0.0 + lnx(1,i) = -100000.0 + END IF + END DO +END IF + +! pause + +RETURN +END SUBROUTINE flash_sum + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE flash_alpha +! +! This subroutine calculates all molefractions of one phase +! from a component balance. What is needed for this calculation +! are all molefractions of the other phase (nphas=2, so far) +! and the phase fraction alpha. +! Alpha is calculated from the mole fraction +! of component {sum_rel(j)(3:3)}. If for example sum_rel(2)='fl3', +! then the alpha is determined from the molefraction of comp. 3 and +! all molefractions of one phase are calculated using that alpha-value. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_alpha +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, phase1, phase2 + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! first calculate the phase fraction alpha from a known composition +! of component sum_rel(j)(3:3). +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF ( sum_rel(j)(1:2) == 'fl' ) THEN + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( (xi(1,comp_i)-xi(2,comp_i)) /= 0.0 ) THEN + alpha = (xif(comp_i)-xi(2,comp_i)) / (xi(1,comp_i)-xi(2,comp_i)) + write (*,*) 'flsh',(xif(comp_i)-xi(2,comp_i)),(xi(1,comp_i)-xi(2,comp_i)) + ELSE + alpha = 0.5 + WRITE (*,*) 'FLASH_ALPHA:error in calc. of phase fraction',comp_i + END IF + ! IF (alpha <= 0.0 .OR. alpha >= 1.0) WRITE(*,*) 'FLASH_ALPHA: error',alpha + IF (alpha > 1.0) alpha = 1.0 + IF (alpha < 0.0) alpha = 0.0 + END IF +END DO + +! ---------------------------------------------------------------------- +! determine which phase is fully determined by iterated molefractions (+ summation relation) +! ---------------------------------------------------------------------- +phase1 = 0 +phase2 = 0 +DO i = 1, ncomp + IF ( it(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( it(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO +DO i = 1, ncomp + IF ( sum_rel(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( sum_rel(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO + + +IF ( phase1 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 1 is defined by iterated molefractions + summation relation + ! phase 2 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + IF ( alpha == 1.0 ) alpha = 1.0 - 1.0E-10 + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF ( xi(2,i) < 0.0 ) xi(2,i) = 0.0 + IF ( xi(2,i) > 1.0 ) xi(2,i) = 1.0 + IF ( xi(2,i) /= 0.0 ) THEN + lnx(2,i) = LOG( xi(2,i) ) + ELSE + lnx(2,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=2',i,lnx(2,i),xi(2,i) + END DO +ELSE IF ( phase2 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 2 is defined by iterated molefractions + summation relation + ! phase 1 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) /alpha + IF ( xi(1,i) < 0.0 ) xi(1,i) = 0.0 + IF ( xi(1,i) > 1.0 ) xi(1,i) = 1.0 + IF ( xi(1,i) /= 0.0 ) THEN + lnx(1,i) = LOG( xi(1,i) ) + ELSE + lnx(1,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=1',i,lnx(1,i),xi(1,i),alpha + END DO +ELSE + WRITE (*,*) ' FLASH_ALPHA: undefined flash-case' + STOP +END IF + +END SUBROUTINE flash_alpha + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE SI_DENS (density,w) +! +! This subroutine calculates the (macroskopic) fluid-density in +! units [kg/m3] from the dimensionless density (eta=zeta3). +! Further, mass fractions are calculated from mole fractions. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SI_DENS (density,w) +! + USE PARAMETERS, ONLY: pi, nav, tau + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: density(np) + REAL, INTENT(OUT) :: w(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph + REAL :: mm_mean, rho, z3t + REAL :: dhs(nc), d00(nc), t_p, pcon, l_st +! ---------------------------------------------------------------------- + + +DO i = 1,ncomp + IF (eos == 1) THEN + dhs(i) = parame(i,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 0) THEN + d00(i) = ( 1.E30/1.E6*tau*parame(i,2)*6.0/pi/nav )**(1.0/3.0) + dhs(i) = d00(i) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 4) THEN + dhs(i) = ( 0.1617/0.3107 / ( 0.689+0.311*(t/parame(i,3)/1.328)**0.3674 ) & + / ( pi/6.0 ) )**(1.0/3.0) * parame(i,2) + ELSE IF (eos == 5.OR.eos == 6) THEN + l_st = parame(1,25) + IF (ncomp /= 1) write (*,*) ' ERROR for EOS = 5' + t_p =((34.037352+17.733741*l_st) /(1.0+0.53237307*l_st+12.860239*l_st**2 ))**0.5 + IF (l_st == 0.0) t_p = t_p/4.0 + IF (eos == 5 .AND. l_st /= 0.0) t_p = t_p/4.0*parame(1,1)**2 + t_p = t/parame(i,3)/t_p + pcon =0.5256+3.2088804*l_st**2 -3.1499114*l_st**2.5 +0.43049357*l_st**4 + dhs(i) = ( pcon/(0.67793+0.32207*(t_p)**0.3674) /(pi/6.0) )**(1.0/3.0) *parame(i,2) + ELSE IF (eos == 8) THEN + dhs(i) = parame(i,2)*(1.0+0.2977*t/parame(i,3)) & + /(1.0+0.33163*t/parame(i,3) +1.0477E-3*(t/parame(i,3))**2 ) + ELSE + write (*,*) 'define EOS in subroutine: SI_DENS' + stop + END IF +END DO + +DO ph = 1,nphas + mm_mean = 0.0 + z3t = 0.0 + DO i = 1, ncomp + mm_mean = mm_mean + xi(ph,i)*mm(i) + z3t = z3t + xi(ph,i) * parame(i,1) * dhs(i)**3 + END DO + z3t = pi/6.0 * z3t + rho = dense(ph)/z3t + density(ph) = rho * mm_mean * 1.E27 /nav + DO i = 1, ncomp + w(ph,i) = xi(ph,i) * mm(i)/mm_mean + END DO +! write (*,*) density(ph),rho,mm_mean,1.d27 /NAV +END DO + +END SUBROUTINE SI_DENS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION F_STABILITY ( optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) +! +! ---------------------------------------------------------------------- + INTEGER :: i, stabil + REAL :: rhoi(nc),gradterm + REAL :: fden,punish + REAL :: dens +! ---------------------------------------------------------------------- + +COMMON /stabil / stabil + +punish = 0.0 +stabil = 1 + +DO i = 1, n + IF ( optpara(i) < 0.5 ) rhoi(i) = EXP(optpara(i) ) + IF ( optpara(i) >= 0.5) rhoi(i) = EXP(0.5) +END DO + +dens = PI/6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + +IF (dens > 0.65) THEN + punish = punish + (dens-0.65)*10000.0 + rhoi(1:n) = rhoi(1:n)*0.65/dens +END IF + +CALL fden_calc (fden, rhoi) + +gradterm = sum( grad_fd(1:n) * ( rhoi(1:n) - rhoif(1:n) ) ) + +f_stability = fden - fdenf - gradterm + punish + +! write (*,'(5G16.8)') F_STABILITY,(rhoi(i),i=1,n) +! pause + +stabil = 0 + +END FUNCTION F_STABILITY + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE p_calc (pges_transfer, zges) +! +! This subroutine serves as an iterface to the EOS-routines. The +! system pressure corresponding to given (desity,T,xi) is calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. This +! routine is only used for one-phase systems, e.g. calculation of +! virial coefficients) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE p_calc (pges_transfer, zges) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: pges_transfer + REAL, INTENT(OUT) :: zges +! ---------------------------------------------------------------------- + +IF (nphas /= 1 ) THEN + write (*,*) 'P_CALC: can only be called for single phases' + stop +ENDIF + +IF (eos < 2) THEN + + phas = 1 + eta = dense(1) + x(1:ncomp) = xi(1,1:ncomp) + + CALL PERTURBATION_PARAMETER + IF (num == 0) CALL P_EOS + IF(num == 1) CALL P_NUMERICAL + !! IF(num == 2) CALL F_EOS_RN + + pges_transfer = pges + rho = eta/z3t + zges = (pges * 1.E-30) / (kbol*t*rho) + +ELSE + write (*,*) ' SUBROUTINE P_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE p_calc + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL ( only_term, type_of_term ) +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! + character (LEN=9) :: only_term, type_of_term +! ---------------------------------------------------------------------- + + save_eos_terms(1) = ideal_gas + save_eos_terms(2) = hard_sphere + save_eos_terms(3) = chain_term + save_eos_terms(4) = disp_term + save_eos_terms(5) = hb_term + save_eos_terms(6) = LC_term + save_eos_terms(7) = branch_term + save_eos_terms(8) = II_term + save_eos_terms(9) = ID_term + + ideal_gas = 'no' + hard_sphere = 'no' + chain_term = 'no' + disp_term = 'no' + hb_term = 'no' + LC_term = 'no' + branch_term = 'no' + II_term = 'no' + ID_term = 'no' + + IF ( only_term == 'ideal_gas' ) ideal_gas = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hard_sphere' ) hard_sphere = trim( adjustl( type_of_term ) ) + IF ( only_term == 'chain_term' ) chain_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'disp_term' ) disp_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hb_term' ) hb_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'LC_term' ) LC_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'branch_term' ) branch_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'II_term' ) II_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'ID_term' ) ID_term = trim( adjustl( type_of_term ) ) + +END SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + ideal_gas = trim( adjustl( save_eos_terms(1) ) ) + hard_sphere = trim( adjustl( save_eos_terms(2) ) ) + chain_term = trim( adjustl( save_eos_terms(3) ) ) + disp_term = trim( adjustl( save_eos_terms(4) ) ) + hb_term = trim( adjustl( save_eos_terms(5) ) ) + LC_term = trim( adjustl( save_eos_terms(6) ) ) + branch_term = trim( adjustl( save_eos_terms(7) ) ) + II_term = trim( adjustl( save_eos_terms(8) ) ) + ID_term = trim( adjustl( save_eos_terms(9) ) ) + +END SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL + + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/main.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/main.f90 new file mode 100644 index 000000000..467d68829 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/main.f90 @@ -0,0 +1,121 @@ + +!> +!!THIS CODE WAS WRITTEN AT +!!UNIVERSITY OF STUTTGART, +!!INSTITUTE OF TECHNICAL THERMODYNAMICS AND THERMAL PROCESS ENGINEERING +!!BY +!!JOACHIM GROSS AND JONAS MAIRHOFER +!! + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This program calculates densities of a liquid phase which is in equilibrium with a gas phase +!! using the PC-SAFT equation of state. +!! The input parameters are read from the file "in.txt" which has to +!! be in the same directory as the executable. +!! +!! The input file must have the following format: +!! Line1: Value of temperature in Kelvin +!! Line2: Number of components present in the system (ncomp) +!! Line3 Name of component 1 +!! ... +!! Line3+ncomp Name of component ncomp +!! Line3+ncomp+1 Molar (overall) fraction of component 1 +!! ... +!! Line3+2ncomp Molar (overall) fraction of component ncomp +!! +!! For a binary system, these molar fractions are only treated as an initial guess and may be set to e.g. 0. +!! +!! So far, pressure is set to 1bar in all calculaions +!! +!! +!!If you would like to use this code in your work, please cite the +!!following publications: +!! +!!Gross, Joachim, and Gabriele Sadowski. "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules." Industrial & engineering chemistry research 40.4 (2001): 1244-1260. +!!Gross, Joachim, and Gabriele Sadowski. "Application of the perturbed-chain SAFT equation of state to associating systems." Industrial & engineering chemistry research 41.22 (2002): 5510-5515. +!!Gross, Joachim, and Jadran Vrabec. "An equation‐of‐state contribution for polar components: Dipolar molecules." AIChE journal 52.3 (2006): 1194-1204. +!! +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + +PROGRAM PC_SAFT +! +! ---------------------------------------------------------------------- + USE BASIC_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE + USE EOS_VARIABLES!, ONLY: dd_term, qq_term, dq_term + IMPLICIT NONE + +!> ---------------------------------------------------------------------- +!!Variables +!! ---------------------------------------------------------------------- + + REAL :: tc,pc,chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + CHARACTER (LEN=50) :: filename + INTEGER :: compID,i + REAL :: cif(nc) + +!> ---------------------------------------------------------------------- +!!Read information from inputfile "in.txt" +!! ---------------------------------------------------------------------- + + filename='./in.txt' + CALL file_open(filename,77) + READ (77,*) t + READ (77,*) ncomp ! read number of components in the system + Do i = 1,ncomp ! read component names + READ (77,*) compna(i) + End Do + Do i = 1,ncomp ! read component overall molar concentrations + READ (77,*) xif(i) + End Do + + + + !calculate molar fractions from molar concentrations + !xif(1:ncomp) = cif(1:ncomp) / sum(cif(1:ncomp)) + + + +!> ---------------------------------------------------------------------- +!!General simulation set up +!! ---------------------------------------------------------------------- + + num = 1 ! (num=0: using analytical derivatives of EOS) + ! (num=1: using numerical derivatives of EOS) + ! (num=2: White's renormalization group theory) + IF ( num /= 0 ) CALL SET_DEFAULT_EOS_NUMERICAL + + + eos = 1 + pol = 1 + + p = 1.000e05 + + CALL para_input ! retriev pure comp. parameters + + ensemble_flag = 'tp' ! this specifies, whether the eos-subroutines + ! are executed for constant 'tp' or for constant 'tv' + + +!> ---------------------------------------------------------------------- +!!Start phase equilibrium calculation +!! ---------------------------------------------------------------------- + + CALL EOS_CONST (ap, bp, dnm) + + dd_term = 'GV' ! dipole-dipole term of Gross & Vrabec (2006) + qq_term = 'JG' ! quadrupole-quadrupole term of Gross (2005) + dq_term = 'VG' ! dipole-quadrupole term of Vrabec & Gross (2008) + + + + CALL VLE_MIX(rhob,density,chemPot_total,compID) + + +END PROGRAM PC_SAFT + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/makefile b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/makefile new file mode 100644 index 000000000..cc3271c6d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/makefile @@ -0,0 +1,31 @@ + + +#Source files +SOURCE = modules.f90 \ + module_solve_nonlinear.f90 \ + getting_started_subroutines.f90 \ + Numeric_subroutines.f90 \ + VLE_subroutines.f90 \ + VLE_main.f90\ + main.f90 \ + + + + +#Object files +OBJECT = $(SOURCE:%.f90=%.o) + + + +#define target for non-PETSc files +%.o: %.f90 + gfortran -c -fdefault-real-8 $< -o $@ + +EOS: $(OBJECT) + gfortran -o PCSAFT_Density $(OBJECT) + +clean: + rm *.o *.mod + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/module_solve_nonlinear.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/module_solve_nonlinear.f90 new file mode 100644 index 000000000..a4582bc27 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/module_solve_nonlinear.f90 @@ -0,0 +1,1623 @@ + +MODULE Solve_NonLin + +! Corrections to FUNCTION Enorm - 28 November 2003 + +IMPLICIT NONE +INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +!> ********** +!! SUBROUTINE HBRD +!! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +!! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +!! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +!! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +!! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. +!! THE SUBROUTINE STATEMENT IS +!! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) +!! WHERE +!! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +!! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +!! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. +!! SUBROUTINE FCN(N, X, FVEC, IFLAG) +!! INTEGER N,IFLAG +!! REAL X(N),FVEC(N) +!! ---------- +!! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +!! --------- +!! RETURN +!! END +!! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +!! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +!! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. +!! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +!! OF FUNCTIONS AND VARIABLES. +!! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +!! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +!! FINAL ESTIMATE OF THE SOLUTION VECTOR. +!! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +!! THE FUNCTIONS EVALUATED AT THE OUTPUT X. +!! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +!! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +!! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +!! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +!! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +!! PRECISION. +!! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +!! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +!! IS AT MOST TOL. +!! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +!! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +!! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. +!! INFO = 0 IMPROPER INPUT PARAMETERS. +!! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +!! BETWEEN X AND THE SOLUTION IS AT MOST TOL. +!! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). +!! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +!! THE APPROXIMATE SOLUTION X IS POSSIBLE. +!! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. +!! SUBPROGRAMS CALLED +!! USER-SUPPLIED ...... FCN +!! MINPACK-SUPPLIED ... HYBRD +!! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +!! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE +!! Reference: +!! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +!! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +!! Breach, London 1970. +!! ********** + + +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 1.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0 + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0 + alpha = delta / qnorm + IF (gnorm /= 0.0) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0 + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0 + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0-(delta/qnorm)**2)*(1.0-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/modules.f90 b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/modules.f90 new file mode 100644 index 000000000..c0a9831f7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/DetailedModelCode/modules.f90 @@ -0,0 +1,366 @@ +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains constants and upper boundaries for the number of +!! components and phases in the system +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module PARAMETERS + + implicit none + save + + integer, parameter :: nc = 6 + integer, parameter :: np = 3 + integer, parameter :: nsite = 5 + + real, parameter :: PI = 3.141592653589793 + real, parameter :: RGAS = 8.31441 + real, parameter :: NAv = 6.022045E23 + real, parameter :: KBOL = RGAS / NAv + real, parameter :: TAU = PI / 3.0 / SQRT(2.0) + +End Module PARAMETERS + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables that define the +!! thermodynamic state of the system as well as simulation parameters +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module BASIC_VARIABLES + + use PARAMETERS, only: nc, np, nsite + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture +! ---------------------------------------------------------------------- + integer :: ncomp + integer :: nphas + + real :: t + !real :: tc + real :: p + real, dimension(np) :: dense + !real, dimension(np) :: rhob + + real, dimension(np, nc) :: xi + real, dimension(np, nc) :: lnx + real, dimension(nc) :: xiF + + real, dimension(nc) :: mm + real, dimension(np, nc, nsite) :: mxx + + real :: alpha + + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- + real, dimension(nc, 25) :: parame = 0.0 + real, dimension(nc) :: chiR + character*30, dimension(nc) :: compna + real, dimension(nc, nc) :: kij, lij + real, dimension(nc, nc) :: E_LC, S_LC + real, dimension(nc) :: LLi, phi_criti, chap + + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real, dimension(np) :: densta + real, dimension(0:nc*np+6) :: val_init, val_conv + + real :: h_lv + real, dimension(np) :: cpres, enthal, entrop, gibbs, f_res + + real, dimension(np) :: dp_dz, dp_dz2 + + +! ---------------------------------------------------------------------- +! choice of EOS-model and solution method +! ---------------------------------------------------------------------- + integer :: eos, pol + integer :: num + character (LEN=2) :: ensemble_flag + character (LEN=10) :: RGT_variant + + +! ---------------------------------------------------------------------- +! for input/output +! ---------------------------------------------------------------------- + integer :: outp, bindiag + real :: u_in_T, u_out_T, u_in_P, u_out_P + + +! ---------------------------------------------------------------------- +! quantities defining the numerical procedure +! ---------------------------------------------------------------------- + integer :: n_unkw + + real :: step_a, acc_a !, acc_i + real, dimension(nc) :: scaling + real, dimension(3500) :: plv_kon + real, dimension(2, 3500) :: d_kond + + character*3, dimension(10) :: it, sum_rel + character*3 :: running + + +End Module BASIC_VARIABLES + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables to identify thermodynamic +!! properties +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_VARIABLES + + use PARAMETERS, only: nc, nsite, PI, KBOL, TAU, NAv + use BASIC_VARIABLES, only: ncomp, eos, t, p, parame, E_LC, S_LC, chiR, & + LLi, phi_criti, chap, kij, lij, ensemble_flag + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture (single phase) +! ---------------------------------------------------------------------- + real :: x(nc) + real :: eta_start + real :: eta + real :: rho + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real :: fres + real :: lnphi(nc) + real :: pges + real :: pgesdz + real :: pgesd2 + real :: pgesd3 + + real :: h_res + real :: cp_res + real :: s_res + +! ---------------------------------------------------------------------- +! quantities of fluid theory +! ---------------------------------------------------------------------- + real :: gij(nc,nc) + real :: mx(nc,nsite) + + real :: mseg(nc) + real :: dhs(nc) + real :: uij(nc,nc) + real :: sig_ij(nc,nc) + real :: vij(nc,nc) + + real :: um + real :: order1 + real :: order2 + real :: apar(0:6) + real :: bpar(0:6) + + real :: z0t + real :: z1t + real :: z2t + real :: z3t + + integer :: nhb_typ(nc) + real :: ass_d(nc,nc,nsite,nsite) + real :: nhb_no(nc,nsite) + real :: dij_ab(nc,nc) + +! ---------------------------------------------------------------------- +! auxilliary quantities +! ---------------------------------------------------------------------- + real :: tfr + integer :: phas + + character (LEN = 2) :: dd_term, qq_term, dq_term + + real :: densav(3), denold(3) + real :: density_error(3) + + real :: alpha_nematic + real :: alpha_test(2) + +End Module EOS_VARIABLES + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables of the PC-SAFT EoS +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_CONSTANTS + + use PARAMETERS, only: nc + implicit none + save + + real, dimension(0:6,3) :: ap, bp + real, dimension(4,9) :: dnm + + real, dimension(28) :: c_dd, n_dd, m_dd, k_dd, o_dd + real, dimension(nc,nc,0:8) :: qqp2, qqp4, ddp2, ddp4, dqp2, dqp4 + real, dimension(nc,nc,nc,0:8) :: qqp3, ddp3, dqp3 + +End Module EOS_CONSTANTS + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables that control the +!! numerical approximation of derivaties of thermodynamic quantities +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_NUMERICAL_DERIVATIVES + + use EOS_VARIABLES, only: dd_term, qq_term, dq_term + + implicit none + save + + character (LEN=9) :: ideal_gas ! (yes, no) + character (LEN=9) :: hard_sphere ! (CSBM, no) + character (LEN=9) :: chain_term ! (TPT1, no) + character (LEN=9) :: disp_term ! (PC-SAFT, CK, no) + character (LEN=9) :: hb_term ! (TPT1_Chap, no) + character (LEN=9) :: LC_term ! (MSaupe, no) + character (LEN=9) :: branch_term ! (TPT2, no) + character (LEN=9) :: II_term ! (......., no) + character (LEN=9) :: ID_term ! (......., no) + + character (LEN=9) :: subtract1 ! (1PT, 2PT, no) + character (LEN=9) :: subtract2 ! (ITTpolar, no) + + character (LEN=9) :: save_eos_terms(10) + +End Module EOS_NUMERICAL_DERIVATIVES + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! Module STARTING_VALUES +!! This module contains parameters and variables for a phase stability +!! analyis as part of a flash calculation. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + Module STARTING_VALUES + + use PARAMETERS, only: nc + implicit none + save + + REAL, DIMENSION(nc) :: rhoif, rhoi1, rhoi2, grad_fd + REAL :: fdenf + + End Module STARTING_VALUES + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module DFT_MODULE +! +! This module contains parameters and variables for DFT calculations. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module DFT_MODULE + + use PARAMETERS, only: nc + implicit none + save + + INTEGER, PARAMETER :: NDFT = 4000 + !!integer :: discret + REAL :: box_l_no_unit + INTEGER, PARAMETER :: r_grid = 200 + INTEGER :: kmax, den_step + LOGICAL :: shift, WCA, MFT + REAL :: rc, rg, dzr, tau_cut,dzp + REAL :: d_hs, dhs_st, z3t_st + REAL :: z_ges + REAL, DIMENSION(r_grid) :: x1a + REAL, DIMENSION(NDFT) :: x2a + REAL, DIMENSION(r_grid,NDFT) :: ya, y1a, y2a, y12a + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub + REAL :: fres_temp + + REAL, DIMENSION(r_grid) :: x1a_11 + REAL, DIMENSION(NDFT) :: x2a_11 + REAL, DIMENSION(r_grid,NDFT) :: ya_11, y1a_11, y2a_11, y12a_11 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_11 + REAL, DIMENSION(r_grid) :: x1a_12 + REAL, DIMENSION(NDFT) :: x2a_12 + REAL, DIMENSION(r_grid,NDFT) :: ya_12, y1a_12, y2a_12, y12a_12 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_12 + REAL, DIMENSION(r_grid) :: x1a_22 + REAL, DIMENSION(NDFT) :: x2a_22 + REAL, DIMENSION(r_grid,NDFT) :: ya_22, y1a_22, y2a_22, y12a_22 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_22 + + End Module DFT_MODULE + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module ........... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module rdf_variables + + implicit none + save + + real, dimension(0:20) :: fac(0:20) + +End Module rdf_variables + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains the variables that are needed in the core DFT_FCN +! They are not passed directly to DFT_FCN because the nonlinear solver +! needs a certain calling structure: fcn(x,fvec,n) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module DFT_FCN_MODULE + +use PARAMETERS, only: nc +use DFT_MODULE, only: ndft + implicit none + +INTEGER :: irc(nc),irc_j,ih,fa(nc) + REAL, DIMENSION(-NDFT:NDFT) :: zp + REAL, DIMENSION(-NDFT:NDFT) :: f_tot + REAL, DIMENSION(-NDFT:NDFT,2) :: dF_drho_tot + REAL :: rhob_dft(2,0:nc) + REAL :: my0(nc) + +End Module DFT_FCN_MODULE + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module Module_Heidemann_Khalil +! +! This module .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module Module_Heidemann_Khalil + + implicit none + save + + real :: error_condition2 + + End Module + + + + diff --git a/applications/PUfoam/MoDeNaModels/PolymerDensity/src/README.md b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/README.md new file mode 100644 index 000000000..a08cba2b4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/PolymerDensity/src/README.md @@ -0,0 +1,28 @@ +# Readme file for PCSAFTi\_Density + +The program is automatically compiled and linked by executing the following two commands: + +``` +cmake . +make +``` + +Afterwards it can be used in some way that Jonas will now explain + +# Minimal test to check that the program works + +Create a file with inputs to the program: + +``` +printf "270.0\n2\nair\npu\n0.\n0." > in.txt +``` + +Create a file in which the program can save the output + +``` +touch out.txt +``` + +``` +./PCSAFT_Density +``` diff --git a/applications/PUfoam/MoDeNaModels/Rheology/README b/applications/PUfoam/MoDeNaModels/Rheology/README new file mode 100644 index 000000000..a0f92b5aa --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/README @@ -0,0 +1,29 @@ +How to run? +----------- + +# Make sure PYTHONPATH and LD_LIBRARY_PATH are set +export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig +export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages:/home/christos/Work/tfem_projects/modena/fork/MoDeNa/applications/PUfoam/Models/ +export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + + +# Compile project specific sources (only locally) +cd src +cmake . +make + +cd autoSrc +cmake . +make + +# Initialise the model in the database +./initModels_rh + +#Loads surrogate model and its parameters to database. There is only one initial implementation yet, detailed models will be uploaded later. + +# Start the workflow +./workflow + +# Run again to see that no fitting is done on the second start +./workflow + diff --git a/applications/PUfoam/MoDeNaModels/Rheology/Rheology.py b/applications/PUfoam/MoDeNaModels/Rheology/Rheology.py new file mode 100644 index 000000000..72470b5c7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/Rheology.py @@ -0,0 +1,181 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors + Christos Mitrias +''' + +import os +import modena +import SurfaceTension +import polymerViscosity +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, CFunction, ModenaFireTask +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from jinja2 import Template + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + +# ********************************* Class ************************************ # +@explicit_serialize +class RheologyExactTask(ModenaFireTask): + """ + A FireTask that starts a microscopic code and updates the database. + """ + def task(self, fw_spec): + + # Write input + Template('''{{ s['point']['T'] }} + {{ s['point']['shear'] }} + {{ s['point']['X'] }} + {{ s['point']['mu'] }} + {{ s['point']['ST'] }}'''.strip()).stream(s=self).dump('RheologyExact.in') + + + # Execute the detailed model + ret = os.system('../src/rheologyexactdummy') + # This enables backward mapping capabilities (not needed in this example) + self.handleReturnCode(ret) + + # Analyse output + f=open('RheologyExact.out','r') + self['point']['mu_ap'] = float(f.readline()) + f.close() + + os.remove('RheologyExact.in') + os.remove('RheologyExact.out') + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" +#include + +void rheology_SM +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + const double T = inputs[0]; // temperature + const double shear = inputs[1]; // shear rate + const double X = inputs[2]; // conversion + const double lambda = parameters[0]; + const double alpha = parameters[1]; + const double n_rh = parameters[2]; + + const double A_mu = 0.0387; // could be loaded from some library for consistence + const double E_mu = 10000; + const double R_rh = 8.314; + const double mu_a = 1.5; + const double mu_b = 1; + const double mu_c = 0; + const double mu_d = 0.001; + const double X_gel = 0.615; + const double mu_0_const = 0.195; + const double mu_inf_const = 0.266; +// const double lambda = 11.35 ; +// const double alpha = 2; +// const double n_rh = 0.2; + + double mu_0, mu_inf, f_t; + double mu_ap; + + mu_0 = (log(X+mu_d) - log(mu_d) + pow(X_gel / ( X_gel - X ), mu_a + X*mu_b + mu_c*pow(X,2))) * mu_0_const; + mu_inf = (log(X+mu_d) - log(mu_d) + pow(X_gel / ( X_gel - X ), mu_a + X*mu_b + mu_c*pow(X,2)))* mu_inf_const; + f_t = A_mu * exp(E_mu / R_rh / T ); + + mu_ap = (mu_inf + (mu_0 - mu_inf)*pow(1 + pow(lambda*shear,alpha), (n_rh - 1) / alpha)) * f_t; + //printf("apparent viscosity %f", mu_ap); + outputs[0] = mu_ap; +} +''', + # These are global bounds for the function + inputs={ + 'T': {'min': 0, 'max': 9e99, 'argPos': 0 }, + 'shear': {'min': 0, 'max': 9e99, 'argPos': 1 }, + 'X': {'min': 0, 'max': 1, 'argPos': 2 }, + 'mu': {'min': 0, 'max': 1000, 'argPos': 3 }, + 'ST': {'min': 0, 'max': 100, 'argPos': 4 }, + + }, + outputs={ + 'mu_ap': { 'min': 0, 'max': 9e99, 'argPos': 0 }, + }, + parameters={ + 'lamdba': { 'min': 1.35, 'max': 21.35, 'argPos': 0 }, + 'alpha': { 'min': 0, 'max': 2, 'argPos': 1 }, + 'n_rh': { 'min': 0, 'max': 2, 'argPos': 2 }, + }, +) + +m = BackwardMappingModel( + _id= 'Rheology', + surrogateFunction= f, + exactTask= RheologyExactTask(), + substituteModels= [ polymerViscosity.m_polymerViscosity, SurfaceTension.m], +# substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [300.0, 310.0], # 310 is the maximum that is supported by Surface Tension Model + 'shear': [0.01, 0.1], + 'X': [0.1, 0.3], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 0.5, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/Rheology/WorkflowTest.py b/applications/PUfoam/MoDeNaModels/Rheology/WorkflowTest.py new file mode 100644 index 000000000..f28c03a01 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/WorkflowTest.py @@ -0,0 +1,23 @@ +import os +import modena +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, \ +CFunction +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template +import Rheology + +## Create terminal for colour output +term = Terminal() + + + + +# For the case, when only foam conductivity and no aging is needed. +m = Strategy.BackwardMappingScriptTask( + script=os.path.dirname(os.path.abspath(__file__))+'/src_dummy/workflowdummy' + ) + diff --git a/applications/PUfoam/MoDeNaModels/Rheology/__init__.py b/applications/PUfoam/MoDeNaModels/Rheology/__init__.py new file mode 100644 index 000000000..2c66c26e0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/__init__.py @@ -0,0 +1,38 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + diff --git a/applications/PUfoam/MoDeNaModels/Rheology/initModels_rh b/applications/PUfoam/MoDeNaModels/Rheology/initModels_rh new file mode 100755 index 000000000..6da6560d2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/initModels_rh @@ -0,0 +1,57 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors + Christos Mitrias +''' + +import Rheology +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +m = Rheology.m +initWfs = m.initialisationStrategy().workflow(m) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/coefficients.out b/applications/PUfoam/MoDeNaModels/Rheology/src/coefficients.out new file mode 100644 index 0000000000000000000000000000000000000000..50ec1470b4d9cb66f01e9acf01aded7ba73ee601 GIT binary patch literal 2632 zcmd;JU|{$K#3z851BhQRGcd3LX(k{>28=)svKUAWP$}I3HSGlXX%vixz(@@NP+oTc zWn?h;U=L#vOaEE<@se*+0Ll6YnQsgRkEw1hA$v#VM?+vV1V%$(Gz3Ts0Z<(R06uUG Ab^rhX literal 0 HcmV?d00001 diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/mesh.geo b/applications/PUfoam/MoDeNaModels/Rheology/src/mesh.geo new file mode 100644 index 000000000..cef483ea1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src/mesh.geo @@ -0,0 +1,37 @@ + ox = -1.00000000000000; + oy = -0.50000000000000; + lx = 2.00000000000000; + ly = 1.00000000000000; + dx_box = 0.10000000000000; + dx_part = 0.01570796326795; + nobj = 9; + biperiodic = 0; + xp[1] = -0.80000001192093; + yp[1] = 0.33999999910593; + rp[1] = 0.10000000000000; + xp[2] = -0.20000001291434; + yp[2] = 0.26000000089407; + rp[2] = 0.10000000000000; + xp[3] = 0.43999998529752; + yp[3] = 0.37999999831120; + rp[3] = 0.10000000000000; + xp[4] = -0.80000001192093; + yp[4] = -0.03999999910593; + rp[4] = 0.10000000000000; + xp[5] = -0.22000001450380; + yp[5] = 0.01999999751647; + rp[5] = 0.10000000000000; + xp[6] = 0.39999998609225; + yp[6] = -0.03999999910593; + rp[6] = 0.10000000000000; + xp[7] = -0.88000001430511; + yp[7] = -0.34000000327826; + rp[7] = 0.10000000000000; + xp[8] = -0.20000001291434; + yp[8] = -0.33999999910593; + rp[8] = 0.10000000000000; + xp[9] = 0.39999998609225; + yp[9] = -0.26000000089407; + rp[9] = 0.10000000000000; + + Include "particles_in_a_box_2D_rp.igo"; diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/mesh_options_2D.igo b/applications/PUfoam/MoDeNaModels/Rheology/src/mesh_options_2D.igo new file mode 100644 index 000000000..4d8327e65 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src/mesh_options_2D.igo @@ -0,0 +1,5 @@ + +//Mesh.Algorithm = 6; // Frontal for surfaces +Mesh.ElementOrder = 2; // Second-order elements + +// vim: set filetype=gmsh : // diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/outputmesh.out b/applications/PUfoam/MoDeNaModels/Rheology/src/outputmesh.out new file mode 100644 index 000000000..e69de29bb diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rmsh.igo b/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rmsh.igo new file mode 100644 index 000000000..3d7834773 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rmsh.igo @@ -0,0 +1,110 @@ +// Make a mesh consisting of a rectangle with particles, all defined by +// a mesh consisting of +// four points +// four lines for the box +// nobj lines/curves for particles +// NOTE: the mesh has to be merged before including this file. +// +// The full rectangle, including the particles, is meshed. +// The space between the particles and the rectangle is physical volume 1 +// The space inside the particles is physical volume 2 +// +// The input parameters are: +// +// nobj = the number of particles +// +// NOTE: the parameters have to be defined before including this file.A +// +// The mesh consists of four (Physical) Points and 4+nobj Physical lines + +// Create domain vertices + +Mesh.CharacteristicLengthExtendFromBoundary=0; +For i In {1:4} + Point(i) = {x_geo[i], y_geo[i], 0.0, dx_box}; +EndFor + +Physical Point(1) = p1; +Physical Point(2) = p2; +Physical Point(3) = p3; +Physical Point(4) = p4; + + +Physical Line(1) = {1}; +Physical Line(2) = {2}; +Physical Line(3) = {3}; +Physical Line(4) = {4}; + +//Periodic Line{4} = {-2}; + +// Create outer boundary + +lin_loop[0] = newll; +Line Loop(lin_loop[0]) = { 1, 2, 3, 4 }; + +// Make nobj particles + +For t In {1:nobj} + + lin_loop[t] = newll; + + Line Loop(lin_loop[t]) = {t+4}; + + Physical Line(t+4) = {t+4}; + +EndFor + +// Create surface mesh (with holes) + +Plane Surface(1) = {lin_loop[]}; + +Physical Surface(1) = {1}; + +//For t In {1:nobj} + +// Plane Surface(t+1) = {lin_loop[t]}; + +//EndFor + +//Physical Surface(2) = {2:nobj+1}; +// add refinement points + +If (nrefine > 0 ) + +//generate a list with the refinement points + For t In {1:nrefine} + + p_refine = newp; Point(p_refine) = {xp_refine[t], yp_refine[t], 0.0}; + + //apparently, Gmsh start counting with 0, so t-1 is the first index! + refinement_points[t-1] = p_refine; + + EndFor + +//generate an attractor field that returns the distance to the closest +//refinement point + + For t In {1:nrefine} + + Field[2*t-1] = Attractor; + Field[2*t-1].NodesList = {refinement_points[t-1]}; + +//use the values generated by the attractor field to determine the element size + Field[2*t] = Threshold; + Field[2*t].IField = 2*t-1; + Field[2*t].LcMin = h_fine[t]; + Field[2*t].LcMax = h_coarse[t]; + Field[2*t].DistMin = d_min[t]; + Field[2*t].DistMax = d_max[t]; + + FldList[t-1] = 2*t; + + EndFor + +//use the minimum of all element-size-fields to determine the local element size + Field[2*nrefine+1] = Min; + Field[2*nrefine+1].FieldsList = {FldList[]}; + Background Field = 2*nrefine+1; + +EndIf +// vim: set filetype=gmsh : // diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp.igo b/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp.igo new file mode 100644 index 000000000..8cc253794 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp.igo @@ -0,0 +1,138 @@ +// this file is similar to particles_in_a_box_2D.igo, with the excepting +// that refinement points are used to generate meshes that are refined +// around the particle. This has the advantage that is gives more control +// over the element size in the domain + + +// Do not let Gmsh determine the element size (instead the element size +// will be specified using refinement fields) by setting +// Mesh.CharacteristicLengthExtendFromBoundary to 0 (its default value is 1) + +//Mesh.CharacteristicLengthExtendFromBoundary = 0; + + +// Accuracy of evaluation of the LC field (characteristic length of elements) +// for 1D mesh generation (Default value: 1e-09) +// see: http://www.geuz.org/pipermail/gmsh/2013/008319.html + +//Mesh.LcIntegrationPrecision = LcIntegrationPrecision; + + +// Create domain vertices + +Point(1) = {ox, oy, 0.0, dx_box}; +Point(2) = {ox+lx, oy, 0.0, dx_box}; +Point(3) = {ox+lx, oy+ly, 0.0, dx_box}; +Point(4) = {ox, oy+ly, 0.0, dx_box}; + +For i In {1:4} + Physical Point(i) = i; +EndFor + +// Create domain sides + +Line(1) = {1, 2}; +Line(2) = {2, 3}; +Line(3) = {3, 4}; +Line(4) = {4, 1}; + +For i In {1:4} + Physical Line(i) = i; +EndFor + +// Create outer boundary + +lin_loop[0] = newll; +Line Loop(lin_loop[0]) = { 1, 2, 3, 4 }; + +Periodic Line {4} = {-2}; +If ( biperiodic == 1 ) + Periodic Line {3} = {-1}; +EndIf + +// Circle + +Function MakeCircle + + p1 = newp; Point(p1) = {x, y, 0.0, dx_part}; + p2 = newp; Point(p2) = {x-r, y, 0.0, dx_part}; + p3 = newp; Point(p3) = {x+r, y, 0.0, dx_part}; + + c1 = newl; Circle(c1) = {p2, p1, p3}; + c2 = newl; Circle(c2) = {p3, p1, p2}; + + lin_loop[t] = newll; + + Line Loop(lin_loop[t]) = {c1, c2}; + + Physical Line(t+4) = {c1, c2}; + +Return + +// Make nobj circles + +For t In {1:nobj} + + x = xp[t]; + y = yp[t]; + r = rp[t]; + + Call MakeCircle; + +EndFor + +// Create surface mesh (with holes) + +Plane Surface(1) = {lin_loop[]}; + +Physical Surface(1) = {1}; + +// add refinement points + +pcount=0; + +If (0 > 0 ) + + For i In {1:nrefinement_field} + + // generate a list with the refinement points + For t In {1:nrefine[i]} + + p_refine = newp; Point(p_refine) = {xp_refine[t+pcount], + yp_refine[t+pcount], 0.0}; + + // apparently, Gmsh start counting with 0, so t-1 is the first index! + refinement_points[t-1] = p_refine; + + EndFor + + // generate an attractor field that returns the distance to the closest + // refinement point + Field[2*i-1] = Attractor; + Field[2*i-1].NodesList = {refinement_points[]}; + + // use the values generated by the attractor field to determine the + // element size + Field[2*i] = Threshold; + Field[2*i].IField = 2*i-1; + Field[2*i].LcMin = dx_fine[i]; + Field[2*i].LcMax = dx_coarse[i]; + Field[2*i].DistMin = distmin[i]; + Field[2*i].DistMax = distmax[i]; + + pcount=pcount+nrefine[i]; + + EndFor + + // use the minimum of all element-size-fields + Field[2*nrefinement_field+1] = Min; + For i In {1:nrefinement_field} + field_list[i-1] = i*2; + EndFor + Field[2*nrefinement_field+1].FieldsList = {field_list[]}; + Background Field = 2*nrefinement_field+1; + +EndIf + + +// vim: set filetype=gmsh : // diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp_geo.igo b/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp_geo.igo new file mode 100644 index 000000000..995539db2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src/particles_in_a_box_2D_rp_geo.igo @@ -0,0 +1,127 @@ +// Generate a mesh with holes, where the outer boundary is given by a +// collection of geometrical points. +// +// lower left corner : (x_geo[p1], y_geo[p1]) +// lower right corner : (x_geo[p2], y_geo[p2]) +// upper right corner : (x_geo[p3], y_geo[p3]) +// upper left corner : (x_geo[p4], y_geo[p4]) +// +// npoints is the total number of geometrical points on the outer boundary + + +// Do not let Gmsh determine the element size (instead the element size +// will be specified using refinement fields) by setting +// Mesh.CharacteristicLengthExtendFromBoundary to 0 (its default value is 1) + +//Mesh.CharacteristicLengthExtendFromBoundary = 0; + + +// Accuracy of evaluation of the LC field (characteristic length of elements) +// for 1D mesh generation (Default value: 1e-09) +// see: http://www.geuz.org/pipermail/gmsh/2013/008319.html + +//Mesh.LcIntegrationPrecision = LcIntegrationPrecision; + + +// Create domain vertices + +For i In {1:npoints} + Point(i) = {x_geo[i], y_geo[i], 0.0, dx_box}; +EndFor + +Physical Point(1) = p1; +Physical Point(2) = p2; +Physical Point(3) = p3; +Physical Point(4) = p4; + +// Create domain sides + +For i In {1:npoints-1} + Line(i) = {i,i+1}; +EndFor +Line(npoints) = {npoints,1}; + +Physical Line(1) = {1:p2-1}; +Physical Line(2) = {p2:p3-1}; +Physical Line(3) = {p3:p4-1}; +Physical Line(4) = {p4:npoints}; + +// Create outer boundary + +lin_loop[0] = newll; +Line Loop(lin_loop[0]) = { 1:npoints }; + +// make sure the line pieces on curve 2 are periodic +// with the line pieces on curve 4 + +For i In {0:p3-p2-1} + elem_c2 = i+p2; + elem_c4 = npoints-i; + Periodic Line {elem_c4} = {-elem_c2}; +EndFor + +If ( biperiodic == 1 ) + For i In {0:p4-p3-1} + elem_c3 = i+p3; + elem_c1 = p2-1-i; + Periodic Line {elem_c3} = {-elem_c1}; + EndFor +EndIf + + + +// Create surface mesh (with holes) + +Plane Surface(1) = {lin_loop[]}; + +Physical Surface(1) = {1}; + +// add refinement points + +pcount=0; + +If (0 > 0 ) + + For i In {1:nrefinement_field} + + // generate a list with the refinement points + For t In {1:nrefine[i]} + + p_refine = newp; Point(p_refine) = {xp_refine[t+pcount], + yp_refine[t+pcount], 0.0}; + + // apparently, Gmsh start counting with 0, so t-1 is the first index! + refinement_points[t-1] = p_refine; + + EndFor + + // generate an attractor field that returns the distance to the closest + // refinement point + Field[2*i-1] = Attractor; + Field[2*i-1].NodesList = {refinement_points[]}; + + // use the values generated by the attractor field to determine the + // element size + Field[2*i] = Threshold; + Field[2*i].IField = 2*i-1; + Field[2*i].LcMin = dx_fine[i]; + Field[2*i].LcMax = dx_coarse[i]; + Field[2*i].DistMin = distmin[i]; + Field[2*i].DistMax = distmax[i]; + + pcount=pcount+nrefine[i]; + + EndFor + + // use the minimum of all element-size-fields + Field[2*nrefinement_field+1] = Min; + For i In {1:nrefinement_field} + field_list[i-1] = i*2; + EndFor + Field[2*nrefinement_field+1].FieldsList = {field_list[]}; + Background Field = 2*nrefinement_field+1; + +EndIf + + +// vim: set filetype=gmsh : // diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexact b/applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexact new file mode 100755 index 0000000000000000000000000000000000000000..6c3296b10353c38eb5bf777dd0774a9b2787c8ac GIT binary patch literal 8423952 zcmeFaeSB2awLg54$!HXCf`Uec8Z~G%qS1gx1Db(E&%haoiZvogAOsT$kedWViy8>A zIUa_lEwpK?ZQ857wAGq=r8hwd6W$UKF<{jQq7mQDh+qJPh)SOCcb#*R!^^b&{GR)K zp68EeU}o*L_TFo+z4qJMYwvUNM2>cQY)p*ed}5Vb6=L(R&k~aLt0=ikDh20HmXe{w z?Vh=rj9>*GjB$nyF=S$5EZ zUyLXb+<}UcBslX?)-F4~Ys5C8_rjabvhc4g=;Wh#%$Ib(#W(4GE1v@sZ22AN)Q@%J zcZeN7BsL2e@hk!*TYmeX=mNCdPby|IT)C=PQdF+`(+MzpxS)yyoqTs9ALaaaKM8ii z>q?4e+&JR8l9|Ixis#N>IDBEojl*voac%j$Yi|(wnU1=qgNlmSoR=%*_Mp| zVwrmLt~bYjslWF5<7bxNT7N;^18b@f_hWqdnT~G;zE|VhA7AG)-VRIz%)$3|d}rXB zjqgSHI-fEG?#6eHLjYW0hv(byVH*YkFSWyqZ0P7J#l|NCI{j;kO(Ph9?`(YSrXxuy zm0v}<*M?T>D9V$-C)u=!D&x8i#)zBBRtzw>cM=D*@`&c8@-!D-?zJ`L>( zo92wGey2&}kgh}E2R3px;5AN!3tnr7FLcouyurrpp{-m6JRM&@zRozk4B?UZrsC`V zICJ4GZX&`QmzUt1dlH@KD4RAE@H~8Pv++9tGx5C(-vGX2@lC`x4c{N)%g+Q0C-MV?^bED9IAB8?E3Vm;satos9`Ct@2Uq#{bQk3-V zQThpuhSQCgyQ9dnCkmhKQQG(1D15GsLf;WZ{)?l~Ux-4VhJKg?Sx^3CM=5uC6h5P) z=;y{L^ol5a{uE_gY>UDt97Ug8|4-Lm|A@k0i9$cmnU|il=A{+3Vf@1=@(hkbpDX+a zD5ds#oo_4rnJDS^MbS@p6nY>E{pBe9&xn%Vu;r|M^$#MUBWG3=K95AH7TNg!6PZT+)M&bWJ6#j2S;lC>ipY$l{KaWE9N70WFh5zIz z^*RuRJ~RrSDwKOVeSRE84^<-n0Hyvbt6wG9jkz`opNpc%vmlB*FMv+FG~pz>RDs{5 zw4$i2aQaL-OVX5Sfl0w>GYiWKA1p4fC@h;499uGPZsDZqGfE1TY2y}5yUUIkTQa@8 zys+F#f7;YG+i3;!=FXf}Jh!+)aVT@|ci^By^gdO||U`tWpDR-v3eXUV*R z*}cppU3u|?bElW|(NN2Z!d~>DdBt;k5lf``bA?IyBdGcuW!kjDva-4JrhzuSqIlk1 zWmdu5iV~%yys&WgjU$w@>BZ%R3d)#XAhC0&&z)CZQdn3@oz9^)Zv=}6=ggZst-NA- zS;e$zO5s98&U;XqRak+_7cML)EUi%HOs^DUO3+GOsgJLVn3Q8YQ%8TYaSXiMvIH#g`PT{mN6aZbZF=rN+DYNF47S3hLvVx*A za4s)iIBibhoarS{i&Bar=arGc^a^EGMcMqhsAM6kRZudoyil@N6qb}Q`&=oh_`%Y$ zc?EN(m(OOV0w@C7DxNFYOewSkic+S}n1^bVSImTR7nGNl70<1hrJz)b08vYeXDYLc zExxlTH1tt0y~GwDg;mTeQHsl_S5!Qr%$YO2R4FegDx5j(k>bLVnNZujS;{PMDYwbx zg%#6h&0?2sS7x!@L=-3%{6&w`rp;Q2)~P_n7nIMn z#f2tBbR|!a8mC6gI&z+@!hr=ENvrL&Ye=aq{X0{rDO~h6# zh63i1UBSap*287R==6x>LRvJ^EL#bVj7T!? z;leVJ6axc|h58lFnKN%eA$kD&qVzLzD<~)|xA=&{%B(InZ5qZyfjtK1Oh>VWS(zMd)WvEhNi88bN;pwH*W-BwN zFD!io@D437X6&>ZuD#*fk;)xo$4*Pf>}bLC-neuyb<*`wuOHDzyq2Cu`e0+RC5VOD z$lo~m#Zn-2##yme$O?NU%^9u~R$eQXT&&QUt`r`eXPnH<;oxXH%D_s#;D4kR9vz4=fS)Ul>{|IXs*SREo=U-F|x9FM5 z#r8g)+;uxX4e_~GJOa0+SGf}L%yYNkamsbB^jJbAj_J!TB)>D1o9y%!e~*iQobo$l zATNH-D=vmJ;cR8Boqokne*t&tSxV5xD}-OXl6L~X*j|2VQ@05p`dBH4^T}}0AyDrp z%SBJ_rNYnbqSF`ad~#j%u?`V1&qb%N)A{7P=#DR+aYZirlTKnl$1XtibQMIYv(*SP3cxahSm`jswvor|90qSw3VSGnk`T=c75^adB*eYVo*qPx#>!Y(@Z zkj|&gMR(457}xHiyXU127oGF2^XYWaoijehnJ)SbPGZ0=7oBHD&ZpZ&w^mX+W?EnW zAL%3pjCax9=Q9Z|I?r&NPoj&S;Sd3nTy*!DP>PH0KC4P|(Ruddd@@{g=e&w>SuXl$ zCo!PvqVv4b`Q*Cj&N&z3@?7*RCoy2Yi|%*Pi(K?EE_$hp?p|LOy6D-i^p!4pj*DL7 zqTlYK*ShF;xaf5*y6U3WyXfw9ZIz48^E&6#;G&Orh=7eQy5^#XUG$)f-sYk^XM~Jy zchM)h(s#J%xh{IAi_Y^%=VQ9)cR57BE*Jf77rom>pX8z|`F;KWhc0@&i+-<*p5UV2 z=b|UN=#yRaBp02&QRkE5qPy=Jq`Bx*oy33{F8Tv5dX|fx@1m?7yTg@z1Br9anb8s^f@kiy^B8A zMPKEjm%8W;F8Y7C=#4IVnTsBF(aT-*HW$6ZMQ?Y}=ey_~F8Tr&z0*a1*hM#8^o1^Z zmy7P4wKKZgMSs+lUYXw4{};LF@ht=%PR2q9?iNl`eXUi@w-JPjk_$ zT=WbVeW{C{<)T-+=xWs$@v7mizHynNR);IRCJ&6%s*Uj*T!|3u8My>WdWJ2K^PWGoF;XoQ}AOWfzys% zP3B0w;Jb)(YZIvzd?#_5&XG#Nw-Tqx94QriJ#m`Kk$l0|5T}V8$rb!1;xvsTS%UwW zI8EY6n&5vRPE$CNB>1n14<();_|J&b^o=NjKSi7-Z=~yc)_)1{B;uWdKT7;k;_ZT$ z5vOSz2@C!Z@ym%f2tI>&GVyxBClen=yjJkLh|{EvR0=+hI8E6|so-OXrx4E<{1)Og zT_d@I-$0xuYa~nXtBKQ8jid>F8S!g~CkcKLahj%)1i{ZGPLnjE2!1wknxc`e@1*^S z(*%ul3Vv(^aGIWxcEJx3r^y)!3;sEAnwpUY!S@oUi5aOEd>3(=mXTV)cM_*b8L1R} zD{-2Vky63e6Q>Co$rpSLahi^iT)|%=PLnZ`CHS9-(^QP43H}G-G!Y|7g8!QMXyOTi z|BN_I!iXaHQ^aWsM!LS0_9vc2yi@Q;iTjDS3tmQ?CSN2h_(R0U5^oTE2Jvj-^@2|( zoEGvK8`p|xk#ztV~DH7^98?!I8C=muHZKiA4fb(@T-Z_REwkuei?C% zc#_~35vOSuNf7*8;xx%3ir{AxrzsZcIwtK;oF-VLQ}AQyz-f9#+66yEoF-Q!EcoZd zX=+6p1m8=XCRU_g@Lk03Azmx^PU1ARB9($~B~BA7QY!d*;(5gL1z$s)rdA|Z@Rx|w z#EN7I{%7Jets-fH|A9D7sz{RHza~DFc!JIL6LoTg5sR`8v~Y2rjG z1>Z`XrcI<2IN<;P`F~LZ#(*JE%#YcSYfc-Rr?h$xPG2bkO^);==P9$U^!gy)lb9%-U2iUc8a=ZOFMk3?Ztv^z7R<3!mOf7~b=3}wd+hZG<4E~E0wBDWxm&Z z^vXO4_nCPJ)&${0m***x>@vhxoPU3-w*h%so2mXO8_Xa5AWzxXY-S_ZzK_f~#NN4n ze?Z^yfU56Rt3K|^ofK#dcaC`$m2W8(&{}#!mSVny(eYJn<7XvrDfg(uI|0L2Tonbh@Q?_P9sg-!0PtZx0&(xsEZE>gO=kSFi`a_wZ*(mjoGa3I9@Th zms>xFo9_|@e5AcAM<2We-C_Q~dyvtbix!!>+50|7F^4y>J=Z0U+y=pJgJ$;q9Qk^g z9b|@{_NkFak*80dyH))o)VlJXdsJg~ysDQZePr#7H}tv^<$HnV>Gr1zM{ zMFmjz0X6hko!NtRz@#Z?esbSrMKk8qs`?jGRsFsDA&b>XSt|NyJNsxan{_nTRsER; zEC8Cmc9nqD^#Wc93wW*(!2AIU^ZoT1E-dSE$3Ckp4l$TjiN5>Sl?oc=BI!%d)h+%OAK6*8++0E5Of_PtF_7ey+ z_=h2aP#&Vpvf%@iHQZ;ccMND&+Rq#xNPc8T&P^*RM z01w%;dKCbEQ1De2v0&pM*0<-Hyh+J0$G#K7*x9KX zL*o(BjA1Qrhm^+?)v9BOzU2=mgI&wsSPbm+Bjy_y6af1uHa)DRel*KBFRnTXj1K#K zPh>BRQ>()GcE^`}3Z`F!2d^G0{?_bd@Bo+UoeZa(L83k-`5M3ebaFkB)}_f`0J04= zWB6;x2_cp`LiG17|IOthgvSzM9E1q8eBzPn1XDk0-i98xCIPus8Eo)@-KI8u_ost9 zgEMk(3pA$7=cC&KdUkSr03xIzDdsXQIV-3yO|AoC{_yGyWnKPz+mz-Ks;7wR*||~F zQ}svgpm#zf9U%xf2Eb8I8TLVzdcK5u8qTL=AII{JsuE270(uDb=KeWCetl|xde;C>glt817PpDh1c>GS%^dW@A>zAtwl z@+E}q@P1#)4v=~vi)U7j@5}vx)c5?aa-gB9uHM6+FZlEQ;T+%9`w#i13^-@dOy#ie zzM+4&;PAg%aP%Juvwimse+Gd=zWWC3Igbe^@5XmOzCGYD85|xM@DD_=te!sAllymv ze0f9L5eGQD&4Q!DgxMghLxAi@-wO7sK3)yjE!eqEH3m$N`H8R$YkKu6))MT|4&FO$ z`p25@#TFK_kw0(o=VSapD6sVIvw08RYX^qCYZp6OB?Sq?{MpH$k5yyzWeNt7Q~qsG zr`J3eQrVMc*E+RzYz9^DOX*Vev03UXM5MFn&(uLYH8kXV5|DG)wJ1S7x?3{_FY8&Z zWcyM&pu7(Qo?QS3QT6-Yg+7KgfIr~KRfN#T(BD~sgaHQ-2(WQVD>EnG+zp_Nw)}?;!7ho^OiKG%V4y@T&gn2DN?Prw)Dj!(ij1z+$UpMh@{zN%&n z7z70ctG9sf;Hyxh*6J`cdA2muz)(KIXaMg`Qr5ui3s`ct5A)tej4ri$i*ITA4=`6$ zeG~6nb`?YV;b7<*C2(|iP~RS?+K`x&{&7(MAW-#bcQCa(==mP2sR~U7^;RwQSm5Xf zLC?1qHJADgjS8`c2))}Kn`g!9n&%rUGMM@Snw2YT(6bNipMg+L`fjY*SxjoIWDeDM zhHO=1HOr*Zo`g~+ghu^`qNWEyNawx}_aAq(xY&$nbGrYY2qRY%2GZ&Z_& z4(P81eJ{Qr%sg0r#l+B*^U&uK2CVd9p!95(UJX|LAkn~nn&(}lD*Hg%9qpOoYR~)O z8ME5+PKHiu&y@dE_S`h!-)PSa-||9d zd{)8ywc7I$gw&(&YoTNrWNOvs3@tQ5SC8%r9DPso98~qA0Z)6-(-}DWe!vsPOlL&} zJ)492>l|F3w>8hFfz+-*)hFGm2mjkOPp9hHoPLC&T@BH+P~1)IYhZi>JAXnjG-?C~ z7v_R^^x*Rc#RoI@IAg54e_xw0_JaQLV35X)SE!*8+k3~^InFrSY~_%4`2lkbIVZ{( zd)i9rZW9hKrFUqtKx=4akkP1k-;x_Kv{bz<;CpdXFf&q~JT8=-kin`=1hYWTCK*M( zym(BO@v5f!W9BRT5O+R0<0TR$!=F#%XIcqdB#ytwN!@96^rW zPFQE=lk29UcP4lb^uuCfF+*YA-wC?14atCxjc;BEwi1F#QB7-xkc%rss%A3ty**Qv z=F`hm>Bz*{0;RiTB84t{P&rk8MVSsYTQdE5_VPZNoYL;|&bDN0M{-NH8jlx#tcH7J!9j4v!`Q?*kgwGwWDBH9e(^`)d&?K$)32^5UcjAS9@C2%=X8>L?l(Q z4{UtP-=k14ntjV&g$0W&`N*PHedwz=S3TOoQxRYF9}v?d+(UQ9tC{P4%W9cc-;lmj zO?_9b`shrU8mgxQ>(zqGF=vtmO6dQ#FQwg=(t@IA`L0|4u*a9OUd`N523tq$1@x4# zFQxz1S-xp)zLe~(2?(_KQYLLpLI4@Fx2CC8E%88*?X|Lh_)^+t`3AQgLMk=0qkOo{ zh9&KCO2Q_&x1^4;kN2S~C3w#gh27`95HNkWZ0XX`4+jstYMIiU{}8sz`rzRRpR}!_ zjw{jh*x2k&S>|l7HX^9%LpKTV9C_$J4{vp0yNAIuF7W3!|?CAjk84Gj}PVQa*npx1Bkj?|_qWHq4fSo?tba z$vY0BXub*E2u@^BKZdRAe1y_rCJtDNKogY7{pSdTxg#BCTf&;|9Sjm;E(2h3nm#(! zqGSMYe~2`flA;g20l*x(ehT#e1)}0 z_s2$?6lyVQ{Y~}Lx1s5)sSHSc!qh+-H(;Pr6Y(0RhW{#vI?2=tzebB6Rdq5y(l~Cx zkNO@#e)oc(;T@bxi&|#V=6bMELn}LxLa*kpd3jaTGFM5N?^$J*BJs&(l4h5=5W!I_ z^P?G4xj}gPs=h)StU^sBQT1v9^Mxf*OKp@=l^LSBN+dqHRMPB8wFbd#mO4jDt*+&` zwW}JoO6@`tluBUU6us0oDK*(DwHAp_E|oN_^we)1f_W_U=ycY#y2e#%yH#p8lAu%q zvt@DAx^^ISPI~x+vdkTgQ?cJ4z4H*aSl>XGVT3R@A6HvCJunwAPk=BkG(xt0YHGW+ zx!_E#86*FbiS?B{(}G83qA%&J$g{B~JdN`nejKW-NC&}<0QsF#ct7N%P zqFgAP)q&f`r&e`#si~c+-iayW@dd%^Bfg~{VT}q@^~Cy?y^B!#5iA!}Li!fXsHRfj z@ePC)b->X0W?ZQMe_)|FbJiGa32yRT71sshEj9oXevhUfQGG8S3S_=hehF4b(PpUs zyQ;D1ocMs}h^mij$NGloGI(1;B9GnezOrCt9hs zw4zez@QErR%~nY+g0;pZmzDWZfRA{emgaA3+(2AD%SQpF^m?i^*-H*2l8FdC6Pz|A_!jNzv z1Q1!h7f_UHF)C%IG6oM5Ne5e!HYS}Q=@t>ZSJI$qN!l4j(lrmeBwgDBm!Ku7X-V4Y zNNS3tK@*aSgpCj4oC3DNfn?ec2mMD6w0v_(%dyzh9jI4`b6aS{&pb!`nMZup{jqf7 zGEZ2V3H20P8S6=kU zB(pU0wQnw>s9EB+_OGR#VVNrIhW<(ZNkx>;?r)H|DYv|aOJf@<3@Nc{Z$zkwLc_tV z=`Xai^Xt!;0FbFezze*}17bWuYjrn>ah6PElWWP;iJ&gr%(sIVQ>Y|EjHaHjF0iWm zEZ_2CuxRFW5)9%lR(;vgw+Vo)5p%_LZq0Ee+_^e+=fkKA2*$jJ<$atVcn|HNa49|8k zOtTnvTMP+ohG`Z<1x-MPM}*M>-oM%m8EwXZVHC}0fUmPYJ6bpIY`%}Sbh8MTAT~$N z4g0YJ@&4}n0;T+1jtdSOQbM4V&GIiko`s3ax0FxOH=|6)NO3iC7K)Na=4orIHxJyI z(7&20axIIDwymFh1naph{;pxFvhVCx@8!tEkH6}8%=`hZ-t+pHSfl)e;oUc^v8Pau z$dOo#ubR&tH74N4o|2nn@ei%dgI3ohaRLafuBW207ZC8wLI4bjB8ymS5$gnmY6!5d z0EC-f=MXKGh?T1ZJQD`s5VwdO7O_)6sGR`A8zAZZZ8E$OG!LHTabz<;N$@C8QFhG> zJkV?PUW$fApvQk?6RL6qW8K+#{pG``wz>+{`J3}aN9O~ zGPwJDHerXC%h2NQr5i18#gVjAud!F4MU0^pCe6P0Rcs#h4t2)?Y-2oO>>vAeSvy9o zLpLLdx%8zen1Mbzj*X9>S&X5(KKqwBf5#-P-md`oF>mW*@-(B2p(Fn_lVhI>lZg(K zV}F}sAD~*|9Adm-oedju46GT}p|D{c5gT$~3^|@hN`83gydiyeRroR{smfL6^G^ssjrGQ6gM!S4cSdSMMtjUGqPxBOa+Ayv*azQH;a&^KwJL3iOW z?en1ib};p8&2t0?8or8zz|qYdZNBQQlI;Cp==S(PW}9!>8o}Fwsh5S zsd)|rj&=m~4>foWtB)+WAn?lP%j$2w@7AkspQulH9aaz=irdQ$`%=6$M+%g&zN@mo zwtf>NoFu<#fvU}Lp>~yhpk=m{Um1WU*yOOmsSDh!9tgTi^SnP%@4q3?6GpPKuL62l zJ=%c?oPd4iff#D)QGc^+#OU1p1iQF@d>vAPo_45dJwn*Dkk2=oG4wxyjth;7#Ti%z z=9FM4E>|rc-EugjBw}<2T0ZjN6zNvxPJJVo`mO32U5vP(=M5OEbwPa}*4;$pgXyjU zsCrJDs?Wzgj9^&R?`c$x$7(eFLsj28u3*RuonnZ*tyVqOhGw`40;)z%on|~%i^HBQ zmToNdGz{m6>fnu(U}#YfHb@&ZJ*QzpsDCvY11%Y>S9f%4`eUnL48>!<%hp$$(rHkX zQ7yt4!8)~iw{Q7>B13wQ|5d6Y2kye^@PfN=O{4~H>om+cEYOa}sXeV0u3a4;s9K+(W_FkD(oh6k?T?W&_HoHQYUT$E zZklMU5Pqn3gO++vJ*tMXt{FA4pyJQp;S6Y03`(sX9~#xA8G~+`7)t&ws81RM8@@&L zKv|yoVKp<@=38;-sk$M_dJw>IRQop~Vc+{B)593QjK3FNa#cCUOy1`?E9MW({3aR zwCwe0p&^$9Q+MG!@JGSaV?o|~>W+l~Q|{-9-INC*#eF!?zYklOy!RH(v$?4~ZJJer zruV>!|AA)wiX6e7-8AUwQ9bVmQoog6`fb4TfiLBAU&@ERl*5O{_@y@J`VJ(2mdd8DLAmW?lAqs?`xUuWjHInbGI+0)0eX0kZ7h3>r=-`I3r-4P}W@O=3a?IfZC35c}LA)c0 ztU3r2WoIN0%U(|U{>bk?B|H+j{1Xd~{|I`hIu^HRJh~T5nW_)JOFv?ru8)AD{DSNa z=yw$x;CDw5_ib=}29w!dHFK-4>b&=nw>9oHbTI7u;c(wt))hIvhyIg&FfNY8`Iaq4 zl%_}IuwW1l3t$l{^XI8YaU#%?pteL})sPTjcXY_F?6_27g|^&H|+!9ZNc zkr@RApy67|zNBn8D|#ZE6J!hWZZGRnGY|Qyu0+8|y_(V>^=1&uzKjf{I7jyFkvaxX zs$)POv61Ia*&E{ndd0>BE8JVlPO0U{_b|h@#%;6M+Ox!nO8&Iv#>qCqDW!oNr`ztLbmz{GXGN zrms#D@Em9L*0Cj=Ce_f7lCjE|93G+aBn%PmNY&8zA#ne6A&B{$Q`kO_KDGo`NBsNQ z4ja1yM|b%f+hEgbo}Jhc2aAt!(5MArwKy#M17qadUm$6yv7rI80e1XS2h5h>d57`z zt*b79qhG&2`3~dRTc4M3LDE=b#jR}!>vs>q%qfBxB82(*RfAbq>pF_+yd8Sds`7KAnjaLtn`yNHtc(tYW2kv+UKFMg%7sONa46 z5Z`iY4y$A((k^6LnTvC9t!8Q+ym-t$-dHg#7irbmx)h}vPsh{>J6x(+8dHy;Z+RBk zRDFx<8dqW`Mk@?CF}I5SInj7^SUxyRG?oop2sqw&d03_3D~2Tqd{(5vor2FWnI42W z@K~24Di(_s8kTX~qtT3)V;WE#(i}&c`B*jPw2cpq7^oQ~G5NvNZCdJ=LC+3NpV~el zG^83SA<36$Gt9(XyFBk;^$u&8F<~oliG_IrlPQSnz(K6+o&!Non_s#T(u84Tz;tMY zCK`CrPRo34d`PQSa`YWoMt_N`CON(d+k&az2U6b%q;AK#98%Wj_$Ka!RI76OZNuV@ zMM4yz8sKA0ZGi0!&xD#fAM0-1lUQR{@od|;r{3&5FoOn2CC7gc)Zdd+gJrK$&8%jt zl%EF=uho>5Y~RRq_Ew{}iB$bL`dL)tryZ-&?F_w(AQbmHRe)u0{fVAom>=l8n0R1w z-GP4c_z1R08(JbAOZ~|A_Mz+Wn%(Gg5s6z~7fWAS9S=!-Klv}TbmS5Ekx@5_)XXx1 z#n86g1^X!_Rzp5tofG1ZvgiAIN+@mNPrzt?CVxBF#KwKU-Ej z3GhB*fJ;?-)@wNKL$Se7$tDg|Qqk2hpRc3>d`r&6uhqojLxYR_gjqlht>F}7o_WUw zn1Ajrfo-6-i&?NdfJHRImkeV(b>I-1?G{Wu9DqHJyG%jPVcboFjlEi73HsZZxo->V zhq)B(IF8veLCAJ9Osz}bZJF=vFh>^L&9PjAo`P!^Rs-Wmz!~nIu3$m(2NR9tk0$8J z*9Qw`egK1YgN4t$K3*2X%=c-q+S9{`sZbVd)(J3Kcle&1(w}p~)50GX5#}Ee9mnaZ z&rn#H%IAPc0ml_gdF4A8ZSSJZyMo4u+X9~M33|m@-5AU}G)IS7tcqb(g}bq-b&=b# z6Gq3uS%^m(>gT8FIOs6#t`4K79#d1l!Qlu8D~?>N_R5uj_11>$Rn)**enMj~NrZjN z*f%x31rv7aR_O^b2g$$|vU=-;L3{g2uUI3~OKCM3Tx7#g%AaCAN0 zmlYSm(ur%I6@v^g8)hO0*7p`P2vx-qX~?=~HTe;*IRGaU^W(7yM%YwM-2ZC& zA?${^Oj$c=QLnwOq9>41K;LFBpaK1@VDa~2vKo>nsCNa7iZdH{-K+R}`p&fC?O6ap z&v(4bS8%V18)X;81dH$O7Bcrv^lb$7jY0hlZi{iqRxrLqE#4t)i?@gau6R*GLl|Z& zwjdlos^`^&QouFj5%BbkE3Sy?X8br$MNA`(tIWBP89WXMEZ!_h7Pm@inV&py7Dg*; zx9?Y4!R!)C6OO3Hb7T%t{l*>b`et5B=;XBow_7P-Jke;T)lUKUO@XQh+m8oY@8Fs% zwsp2XyTrFV0`{lqoc0AAtCssc|6-gSZG)lFL~DbywQWn7N0NtFHo@%CXE%kEdbkoc zG-4O5V|TS4hL>h6yNRnkZrrH|vSi=#iD*1byRxIt-{9=QIW&Tlkld(k}%JmrQ{AvItV7xk%<)v@I=;_AnvoUCBL-T|B zR+;~?`tHQOKalz+{n-!z(;kQQgplU@E|}VeE3UF;H|Ep8O2z%Kx3OX5!seIlhnBe$ zN#o;k^j+D$2|F+|V_L=?1oH6vCcdT_Atui5w*xIm{=TKJ!{v{SX9H%3K(M88RxQTU&j>9wMsY-S9tLD8r9G06))< z85YfqLzw}+yD5y)=>O1<)84o1X4QoI|I9<#`n!JLgss6)4U=+-@lAZw-*2mLspf@G zoJ6zjQ>-3~H%eD-2O)h+U;jX7VaL!1C2M%@D4st!KU&1|qeVPFT9ll^pEUkt@F$Bu zDt~hMlgFQY{uJ@2ls^kK{ng}3w4r%x-jEYYTf^e*BGDKBL6MQ+f4kV$d!>8VVi(9h z>aMR#0!<&4tcC6ux#Jt*0ux!R+T)?C6vkfVTj*oJL3Y`0;D4Lb!soooVPP;h)=1!jlF?!_7+mKRB1odhC1 zm;hMXQL=Q?PI~C|)nffYmM+Bf!`DnZ1~o3;sBqH87sg;Ut&NkXX>@vPzF*7MWd>}NT~n3w@@}Z9gYS8Z~;3kCzt4y#8dt^)c)#e)lSt? z?a@{KeDc4ea^|PX%$RR_)n$w?>1ol&m(VG@{BtzOI?lz-JlJ2uV_bXQwr2tJ-f5R` zm@vjV@UKtckuFE3`J+p(<5bSDZi)^R8#fY&d?VxL|-GgTq<9Y2s)4O_`dV^-|8v_MD3v*M7U0`TLR=_vm zou&lo8Ed(w!6x+btZj&8LAO5HjSB~yjy3&{CW5N|Tcw13t+@-BrvE(&n5zFGL5P3P z5bU=pg8ea3z;Dw4XbhrQA^eEVboBFFbNACG@vW z03`A3^!M9oT{AO3T7ktBS+P07qd6s*W^p)t1-qkVxAe})vj5i%Yr}8I_FoP}I0w^f zk!X7@eAO?q=5Ei$58;2nbc1iLW5S5rrJi^g@^GdmQZH-o{0M&%dc^;EVAzcKBIM-2$h!GMYt1X3<{BvKIkXn zWNIrr5b^NFR8@DJFO(@`@0)!)G|wB@q-y$Bu|iRw^{{VnEby7sXBTWlcw#<})k0(9 z0<=Znu3G#!AZ1EDgg;Cc%1flVpx*c10xQ-T!5+BD2tpa9l*5 z01w;$*9keT8!fG4#JPu&HlTBN0q)<=^O}H|DCtbVQb#iitK~ugk5$6@t%0ME?mO7t zT5$(A6ujq>9LDo{X9hyAaEraB1HI9jv>hWn5PCT|ybQbV;tMTfT*HQBVkmA)pr!N7 z!0cKz^t#d*Fe>8#RYQwi2$6luS5To<-@sp7hpnS#%#2lo`bX#t(!DlV-Rm(#S*L60 zUi;9!%F(^H`<4}guIk&GXg?n0lW_#7tPoUeI0Vd>)#Yhvh{=kXYaRC1G5 z$y%DoJgeM|j=BF+;a}zpN`z zyoJr5jfXNqjcnXt@fJQI3x{0jZ|nzty>cVSfzVIu?ncu;aPK9GR&akw`p!V{1||&7 z{wNRTc&L%l=r8Of>Ieq6nE!F%bx1rLiG#&oGjU+{CL|7on(f56Ktcl#X{{4Nn0G0_ z^QhcVUHrB1=~`QBM5G}Cbee#)$r7PcMCKz13fELt3p*z=L_`LFnUzEV#+RVX;uev% z_+461(z)F-|99i1sN9E7U;pnWzY@t``uCGxjO104{6{6Y-x@6bl3EWMtLd@~8X-FR z;3N5(6~qkCa-!!leM>rYgvoGA&{#=N;NuAaV2S<}D*^GK@@2Uvz|E)HHL# zTJs(k_0TIxN4G(ifDYFJtny@R6>;&9Kd?EStA^&!-mq;>s|fN@i@U|bHlC{K-iARC zXn`#h`Uz`+MOzL15BrH`{8~k<7W#1`+7(_RSZ3pO?ZWu+dc}o_6ZPy1lYGmcffWNo zO{QSOnt}~$3N|nW8&l!v#+{Xb{${{fO}8y(koR#SQ3vm-WsB-LIK!Xcj#Un4IylVM z3s(W}fHyX*>G!~8oYM*CEsUZ$JhrIku{I97>u~?sx3oW+Do}MC?!H)r;F9l@r6TAt zIVEYn95WD_3b!35pAXS_G~=Ew_(E}_Zej+)^b@1$-v*2&;y%NZJ-F`>^t?YI1Rt7_ z)0ut*(-JNNC<}&ZaK5JIK&JUPI&amC5gr`+2K5mK;o%EpeqFX-Gv+tq7(R@?eKjEc zi>)}22!w{j!q4Xcc_F5;^W!pc_aZKWxh$4*Stp*~xClu<2*Sju8VCtdZWqNh*d#pt}i(G6H_U{yYiUuz%)LU%(;FpzbS;AldZf*S{RIv?D_qkLS4G~*gH!ZmM* zd-1ihF1Thpa2P6P$xs}4C&YEIirF3UV^GHrurPro%*=h~je$e6;{@XVKxVtI>d%zQ z&}D!cxL&T0+96lW+hIj4M_l^OeeayMj>_rkxEFqL7{ZZNGzH-TUIfRM4E{(grbx!D z$FU+#jd#Mz#QQ>UBlaG={Xa%-g1z2Ohp&@f%3g6UL}}{0$rmC-*V1-$}syT5+4$HLxF>IHy=*-1g)-*i#|P z$pygdX%gFJ&s9U56ks898d-2YvRFKSU}$fG*=>1P2t!R=@T}Om*IajEEY5+FC5nET zc&=>0&`+(Ett2^#L~cj1s%0lH)%4y9yHh*rrT zd)x^)nMnd`CPWLG1#kDaMcaa!ahj9mx=AKC%+y#9u*%CqnDX59y|u8C3NKD~R$*r% zf!z$!WU@D1D&24Rn}-aHl>;!>@T7ow`WuM9L>e>pDQs}7KEdhB@ZT|yF+Ahn$okzu z1KRT5iKP6Puj;*AzCjeYy!3ByS%5U)@)zU~E(`j&lry_ATqCo8QH=ykmSK)8Y2bq4 z5PlP@k2P*sKa}%PmsJj``W1ragI^5A^H{~m7sZ_p-)cHyd%L&!Rt=v^qux$>F0kJr z=U%7xLc}8DWP++rmb=fcpQ?MQH(|$qWj-nFR{c|US6l36_pu`ne!y-3sKO2%O)+m0 zc1{13U8couQ6D?}=s z!710=my~_bPRjlxN%_<#c9W`~Z`kr(QptE5a6R$=5HGy?A_WUMPR773V@C*~uT;GK zrXDE+`te3WUrJ?ZaJzzwnOLz?YVswl#o;1YZLWkT;Q%nDE=$5w;=;a^`ZNj8jB8M< z%-s3Sv_D5A%fhv$)7rqA{eF5qWvfl!ujxnSnUto=yPkwKIVric_gNI~ap|qJ-+xt- zoWM{bf0Fo2CM|jfY|5D8Pm}>k+4wzacG=Cu_ ztPl?|^ve0&O!(~-rTHs~uu_plg2OJfLc*jag0_**q`&_Rnj6pcU}=E1)KGSEmZ)qE zg=q@I;SY;i)vv)lA}nXDwp&qHwoHJ+7LRS<;crxOgcEIZGKrUk z@HTDQPCO}de^=&2Cv#e4GK?{Kzne8){P*6?AybD0>+)$z^?Kr);-EU3 zV+Dz+=tL5m+ZQeCGukNE{Q0>lR91qdFb5AxwK$pIUXiLau|LWAy$oL}NeewKrw(F? zX&4+TPD%s%cHCY@X_~$#eYd7pB*%wJ)&>UdujjOOpYG+s5MK z*I%{|G%Bn!xFY7nLEOv9l`I+O5j6sF636yenJNEn=L35XLH{KDw0iH`zk=fd{eDCk z-upNXs!G9sK?6}btJ!!dhWz4tDqT zjq`UplJ(a$bb0i4oa2s2Zsz-tgT{kt!Rn9s{=;~V!%D0+LEnUrTo3caqp>u+gON@b zTG4N5cQNl1?JRKMs46j01*1^i~WIkXt6?M+RPQQ9HBBW%eG*?NTD9PWH zRKShtQaOsVW*8R64;eQC5@k3Hm>tBB&m6|*Mmd`8Dm0s5g;zu-cc3`cz$jlPK{F-? z&qsAhq*Yn+X#*dtK~_kZw06**o&er&WFrSvoOwmwOa6(x31H-JDz)Y9MwV0M zCDoCarKC~bU6)f{_z^52niFktO^S=Dn$Uc1EM!eONmkDGj;st*R!-j{YdLd7(QS&z zT4&43+5J>mNp)mRLO6r6UMsR%%St6;o6~GzyKG?z&F(QMI^!f^IgR4K^c;pMY#Jbi zMJ?l*aUC*7Mqp5>#X~<>Z$06ldWO~^*sC6?Qr`oJiRdO8)}h2~TSM6^Kqguva zc#jm7!fY7s2E zU6kr~mr~KLLQ#oENMjYdLc-=lEHKNJh_a}TWGb;-k<9;3BvVDQgqfT^vXk>pm5hHc zOca;jP075JEZ0>iBnv|_{1=@uY_?}1QJyOiWhrtbDB3Xtl*}_vL zTWCqPG`SLGE9}KZNqF6bdqyh~8CE2>K`Qh`0yCXumYyKoQdx%_<<@{3J8>N=wMT3}K8`5ynMOIP~B*8+kP_70+zooqad(wT8RGI9|ue zTWT1`PCRe*w9*P(mfQ)JI7QVUOBg}F-o{afg7xQ5VQ4XlTCy*&{hfLEg55( zjLzGQr{llEs9(Bs{+X{}1@75*X8P{RW3d%+>HGJ2*OJn2AAGo$xyF_D%^Y7&M-Fen zZAa}V7|+MI4Iq3uz5x)YDB}=Z#UOl!@SPr+;Cu1;_^_mTHNFmTobhUW9-s;=4;~%LQCM_Q@kt|D*1E*5b zKw79g28ysMi^rWt!ZflMoK?aT);>xZhdY>D&>1$}+d>r&_0KhE)6)rj-aJu^LT7z%=X<1DZ*+HA86Du+%nJ0?Jf_?2cv_ zCXGjIqM08e$9N+SI~ZFB?UH*%auWHX?Fr2^^6fZ@Zyk6z^=FuT>jAC$XX1S)Jsa@= zQO}0#OmunF#kYjdC!?#g`}oCvW}~ooVbnZj^)9~$SL3bGaD2V$>ZcNu4-~ zQtbs_PFyVGk3lmIHE+&6Y0ZyEjH4@t$vy#4bhYyq+wwLd1sj&oyq856og{1uVjN)^rm$&%BJ8k#B5bJ$tJ=b5 zAj_%3k_t5n(=3GZC~W725M!ZB49=2a#B$6Nnt#0+DJoqlD3ppAM^J`I%LNoc7coZ^ zt=5R3rM94X$a1Qnr1EfrO!E=Wr=T}MP}yPdoKSjjPW8t)#6rAkOiIRaXGak*M5Zk#>}cgR-NgU6oU!C@lLQan2~&kj6RM(@C=WP72&gpM&CMx}H- z!*2EMp#Gk-Simb3txC00r5d|RZKtggsrWBdYDb`yRhpRyJ=M813jt^;Q1ygndIl2I zyAn_%9mwuXDh!j>2`H0F404P&`d`!A_f|=6G$r|BQYAEZ-vqu5C-F7G!)a26$+rto zn)FZ15v55R!3dM8UH@)mIkibi#eZQ+=_{oE7l3KlB?ju>X4jw4OlPTWt^|}R9@(Ax zGfY|npjCh52pIi`^wz&!a$|zC>rZIzz7c#oPU4#g9!~ukCf_7LtNzRprT(2@ z>z{%wr`DfTr~YXOFATE%&j(Y}B?ju>Vb`C~OlPTGt^|}R1KIIkdI`g%WdU0CM-H_A zO}+K+mfS0nJMH=tn!87WuW|>sqmD4_ZE!uyn}(KFt|^&#K#mj}TO7M_Ur`i}=^oMpZ9 zdVghIRwi$kg8iCguxLuM`1s|1r#bisBdip7arwLFUSOyGn5mht36`N^R^Bl(YR5}K zDqanRHIBBbM9cC+w^qDBY%eT-4V*$~NZ5COog9@}2AKJqifqN@omO$AI!kmu!m>pF z_Po<9(OKZeX{-pH-uBNhXiiUumQ{)D>v=_Bh5uFt1X!C=KW}&N6>@2hAqL= zcd@a-1AmtzIiBjljYqsWk7Bi>AXE|F$WDaBn+anHhLfMqioBfM2I|QhAA2}rZdrxc zY-2@&>~pp_`<(b}{k6((Vk^Aa`s=+r9l!pSwbKC+`2fLwIh&<|I%O$2*{4-!vr*OsjG>( z^rwiixk8}%Vj5B`bfsW}HzGer6uUUXq=f-x4t@+dXkD{idbd2R^@&@aO5wR8ISr*b zTONkZ(JZm%q!Qb}9W10ohFM}epme)_%n@ab)Pj+}smoSP2eO>18dC9Jn06u{Tb|86 zFs*ZmLDgi~sv$I2T!$3(t`ro?M1Ds#43pLcD5{x(94G8~R!Qy^$ywx!UO;G$BHxCS z_;!PbqX34dd*tL91-r$zU>OVXY;(iBo>)H%%Axby%eEpQw z(T=y+J04sEUGffAwP^Zmgk1inln1SKi=7iwFpA;O`{yemCGMM~;cGz-XJ)EL_$w|$ zx#vv97#)4p4jiL8`<<|@q=lH2vN84v%?qxDlG;vE5=S`xOD|!VMRGKWl0F%Z9E_C* zPjYYzYxyoH67$vWcAnjO-vhuEB3x?AOK84%4H9&^5>Q`7 zU`1}Sd?7$uDWG)V-y=uRh{NLr_NLvG+?dV4kKQLj^GD>{brRo&;6d$^FT>Iu0HtjL z%n@Y-cY~3?smAVcHOO+RE=YBBQHyYY9&N<+2UA7uGxJdYZoB@3=9{TV5bsJrnd*=o z|3yxQNvj96>W>_#|Chb>PmtUzk~x2{{)Fa_$T#sMzN^5)sXxQy+W=_QpE;t`KM9Pm zzp(4yh%BeppH#;(2_u{+_3sC!DK0Tk|9DOvXaPd=&8v|h&6R*MwIMtHODcv*YbVPf zRQh}5z_mc{BY(x~Z|pvR-gX~*GQ3w{+MEG?cmW_bB`l(pMP!{+L0e44pcoM4u5CM8Vr1&V$ll)u$hDpJXzo@s$jq@WD!Lt6%h}1jw%>t z5ea~zigf0PqKZ;5!v3MicF!Qosj5f>6(tMPB!sV_Dh|Yh=|YznP(=z-u>lFqwJAtY z=}JJEQjpzI1;eDJ0g5UNd!FwW&v9DXO1ZK zuLC34>vsKBWI46|q@rYDnv3uVssEW^TJI7A_0K>m)}PQ^dnFRAawVWldC2b6pJCGS z0j>HY2S-KuUrskFvcR;t0sN#Z5HlyUh{ltOC;~f26%4b8Qb18f3Uc&pPAco$XRCB3_@S%&jKuWvYBzmBoxEMqtifMJeTdkx0D#Fq!>cki_kX;x*PU80dMaeVtqJZO zb5H#=vnFejZm_Sd@*ai1s`Wd(2!9yznO$AyDUpv*1GT{Wk3Zls#dTK2!U*?O43BAf z7nM5I2;#*7aQwDI`B=75DfrFOcaCSZ#)n?Mn$q*4Q3f6m&#;MF@%B8XQFj}J|9 zRcc2t^LVyC1C^TLsuW~VQ9fMFQY-&m|IR=A!icM){=2He-|61(e-9brQBT~Gs7IaF zi879uD?QjlGu%81{oL9^pM!XFRK`ff+KOw4NZ)DgtgqN`6K_IN&CWHQ4U^9yN%+|} zcN##7HUz`y!2YIsdk8i{eWwmVQk{i4jIf;K&W=O(Z*z5j48ckmbsU0(<}J8C(A@4y zz_CCJ6aOU@!=$mzWPHRkN0h0eL*#6;<)oo@s+^>JX?v*G*6g5Z!@hqEmKmjvYFN* zTtTMi{}ZP9V0x+pbHvR1IESiGr0b^HEa&}g_27(G!tzlzUaXU+!ts!%3LI~H!Bd-A z2-(lEAzcRU)&pc&KqbIaZvd4dX>}fgqGtV>d@D_n1xhWj5TI)Gd9C73y=N$Fh7w3E zclT8NP*agr1@pQ$&xRH0jw!Wc1~Z08Z=MP}=G&c!A<`Q|)=-G~A!5{m!MFSb@AKvJ z_m9=6z6o#o*XBcJc|sm<4@?jDKKjS%R3nO&M-Y`~tx#)L7Z~fnS7ZtH0xM?Dn}WO3 z^2c@XMw%)-mlIl@0s2XQujR2C^B4EvkG0@Eost*tSPItQ4X1cF5nu9pujawcynO+~ zXsp<#;7P8;?tt;%4HB+M#EW}gSta2`iDu9+>JgrZG@XH}eM$4T+D!3Gc)oD03ghYD zHa;HyC;yQ%U?4rnAyVKSiP!ny&xiV3Z?|5>R~>$0py93Bv;x);9mBZw>9p<6QQxqK+NpfndK8wLi%S7{^;UyZmC2FYuUGjc|Nf$P% zp^AR>XdCra7;}2(BGou!N^CoZ9$!$-*MuQhOYMh7t%fqt7^@qA@?F|^4+Xr*$DnR`Z5Z#! zbg7=hLC4tRo?KogCht1Oqo|cae=aQGg@ugP*X9$$`_PE-e#_aY3f_<_ z@A{!94fi~sWb;gbba>`%HM5~Uhw;TL#MZJNc&?DFshav=>Vb*Iv!iNIt)PAY30NEa z$wn=8H7heQGz5SD5s&sgQ^Sm&j$py4?w+L?;V##=Yg;dIr_q3xla>eZ&AIsNLU#OQNM_fJukAK%| zsUeCmzF^U6yk++-M6)iqs8fQ9d7cqLL&*@a|GPnBNE|xXReTXI-+|_-ZbVWwGZY5! zEqN2e7DeZihVBND)y%a;!1RT9uhb4W6eADIFdMx6DGsyFzG1eL!)(a<-eD%g5ig!Y zW^0%Yxc}EU2MAr0g?C)5B@b|C_2DJPFrw|-!7-)(1 zK;sC*$ot7+7rp7>w*=7<=_Xls`;> zLBta9__S|%BAO9V;aeZx!1p-buEp{&X?W`K zSMSCdOEcK%RsCHI1Ch}40mik6mKu`UhDPCyYWt%a{Q9Vi zi3jyX{V?b@Bxsp?%XWOvEo8&&{_Hl z4aq<{se`AQ;!G@9^y}{e`XMbVLq`5nmaGqj{U(b?A)vHHrdeQ`PdW(LJRWzjr?osfzS_g{Z0HU<9H{c8VKE< zrs{G37klp?Uqx}fk0;!K5n?xL&{RRw8rx{lQo%|a)Lcwp7w(0$qQ(ksYAQ{XDvg2C z7BFygW7f@uv;~`5vGE6(zKfc+*hVy%fRX?T0e=Ok5`W=dPzfjy5HFwSIkOuA!K}VN z|9!sS`-04z-F;@x%$zwhJ3Dhux_x&W_zS&|9J+c65{;X8HeMci*1&zAygTqUtUO?H zwi;iDG2)@mXCM-1uX+j}htu+KV~pIe|Hcc1u5Q5Nt2n=TX11E6C__W`2ggR>YxAd# zGClegrr$DlhrfZ2(5*@$x%J9QYGf|z^+n9>IMW(&5Y|Q{ar1`y5$nwxR>E6KJL}9G zl1_cj4aojyWk%2A5~OjyWlDM)|77qFiaUkJil*>b(G(sln!;m6I3dA51^iRQKQs7e zHg`Oip$jH;(qJK>BrXi%^RoF^!UO=JZAOZ^lbNNLNlyA1f@iU8QuAiEW;_Yg(zu{)LI^nAS*t|eQW_sF9{XhI8Z23e)|2pcA zn#EBpj)F;UaP>>7|5-9lO_9bw{~uB?R2)<=d=+I=^{HfVpGt;G>C5Vt?w2!}d}H3h zK@b-?;zL3>^g{hq^J0rMR~wfZ@Y;$iSe)Tl7M_W+yCx1YoE=!7ZZM5nexU zqS#@YggqmxDKO^d&<97SX?McE^fYZotC)^z{C!~@%+k}iP)^xV1BTJ2X|d+4LnXVj z4&VK?V=ZIMIkO`;(+k+q|DPBM*^pmqBy@z7&x?>Ej!=Uy6Y8?d5!k;HCVYsh)jx3;dNLEt&i<2Mm`LenV#cYNxEpCXOiYoC zF8(C~Fma=z?h$Hmkx-WvBd|Xl$C|hXQHKed@;sRdW@n$Jm{?Td*2L^nGqGt!HxvIs z6gAO`08IQtQQL(YyjG~oUO-^~LYVk7q7D=EnR+r4%+8KvvnKiv6egNHA;IDzwgs-50_B!qN9&-K;;1r5qzm z+EZKbe_z1-rHxBfcp_--#$Km2hy{GR)jp?>Ct5k9vICiKz-VAUc&@-3d!;C*?XX0h z0S|nY17@+>1BFAc`Y?h8v(b2oY6}#e z@m)}X!i&Gfz+5sMiQ<*_uR0u7O^75d3cy1atZF?TFoRhA6Hi$Uu&mXDmv=sjl`gV@ z^%C-hwF71aKL=%4-mRmt!ORT?JSg~b;pSp)TaG#OcTX)wjgG_$Xs}7$gy;3!aS>mQ ze}TZThIDdLm)?mc{0S~-887LDL->4ydLByw^kkGg1eUa}&cPG=wJ96*!lZaONrK6@ z(XG5W8dj#R{*Jo26Av84O}c1;WzjhYWUt8d11Rp*DU!pBFgO3ET%G(T8t=*h3b=+T zmA;G&Zf-&vujBs##J9o?6P(xHd=Q?O;C(57JO0P$g$e(U8bf3dM)?pJe0zC@oyi zWj{+kqu`NI(s1h2i6!4sur`y2i(+gIi^EUNT8L(8b6?rQO;}YNg>Bam<-@jzsF>WaWldEL>5}%&?MZczm(Ms3G1BXz*`>Rh7!O zc5UHrq@+{pV6-%~7FQt7WkGA@5PECF!uF6_ggP8rH1D|3+HrVrEDE8oPiax7qLS239pxIgXOuIA_I}%V1fA1 zEG$jm&}5kCjklGdwaL|_%yQvmk~RIj0_=kR2F%iy3y*lVF5rtu1z zVyh4PG7jLwz?{>%CKXPuItrU}4OpMvVwj`jssHFE4*vDBZfL_kRx}$jWSwEBhSO|x zp#$?GTrI`ixd8aKKvpC5inibq03dH{ZfChn8eJ`yaS?6A4qB=h3)f4HO4wUi(9-L% z^jJhJ%rj$$D85GYr{TM-uDidl^cS5~8|LRht27-Jd)E;(^A;oYLO~$w-I6F%hC?8g zrMos4FtL-QtEZup9xg)dqHAbV>jPMjk}qaR51K`Iirx=rWbla&|Ih-4j}KT$fqodB z?$|lmr_52=>5|4S7)eP;X97VS2}_MmLrplvf&FTBJ$$v$u@VhuL;Vfkn}Mu7cb^lq z=Aj%?_?ZU$F`^uwlL%mAL=$?Z+{zEKxTg)TxG0qYKk z=Zi#X;UF&Pp|u5ANyn$NZ6)vIS`}ruy%pdRwNKD`l6MW?i-9a#3)SaS{FbF5 ziC|=IYA~{ln*f7ZN43x^D2Ly=*Oil(rwZu`N|_>ENx^v`KJ1Fht|>ygvhrs|y227r zq$@4QZjpywarvhrU3s}pk*>g`D$^q7o;)2g%ZLdEx1f1BwPua zwfgGK1c$j>ljOZ1gONsV8$~_jv$C>|-aQ7+ZPIvqggia2i1GcXHWarWRYY=`BD)+i zA0)EPK+__HlGVs#22$gb$8N&lX@wg=x&n5aVJ&HsmT9a-z?W?2E4e|RE{C;HEyQj| z9gJBN2rYc%X8=Yjc=Uk_T9mWA6QoM^_XzJ#@*!8MUd#KkQnmjEsYq9o$IuEe{gY6EH!Lgq@ z;KEmss!REJafK@akSY;@-cnV4l2p}0nL(bCOhb;*O)M_>e1ANAxc%Rp(BW znscRULr_Rps^%)vm8#*2bfxOufIRF<)%}WerOHsGD^*8v?i5YrO4U<}bfxN6MY>Wo zSdp$&wT>68D^3tvI1Ch_s&3ReUmRU!htrKPseF`X7j{I!l+>iLL$+Tl z4>viarAW8`Tm$kH{U$cgW{QGo5ggLzXCV)F7v66S-UcM%q^*Us_&}t>R#^}4(RtrT zil}-yuZ1Y8g%7!%cl-BxcHRuu%ClEV4b5Quw}|Ijkp=+WV*HfKP!ejaMWCj8TjBm^ zv*?|*NbrQY-lw?WK%jnDf~_z!jpjsGHoI3B9U{!Ih!4C%o;dnD5vEAmt?@roKe#mXxL>7)U_lpVyLoW`Gc73q{b z=eOL9weW`{0CeZypKA-UQD`jKcA-^K$TF&cti4)jC9%p|oGa0Dfka%5n-UM#<0*2p z_X^%>Wa-orL@5Mvi7MdJ9g%ztC^LepyB<=-$hjAe}$b>LIbODxrX_IVZLnm zj;=1d9qq*Gus^?>?IaJQnR&@c12`-v@d8v@3A~iOr-~W077BZG_HsY@oi`(BVo~{B zquIU|B@g=Gr)`_Dr7IY2n)Pk26wr&Ane+W*v;6x7NKT*MT#Kt7a8&4J>ii*#ZpdufEy=s`$IMJ%cPp)p}1`p2F zto1i9o&wFXkjeO06(CJ)GwlbC8gLUXS%j&eZ($nl3vW4Am@*MCw_y8$=}!PRWw@u< zynhCw;HDA*Zg8T*AFkA?8#NN#UyHy#Td_&>so5k8V6&2JeowJkgogtr%prt%GiY`g zXsxW)yMNkHzq6sbK1Is|L<*~7U;EYM;ih;Etc!Q$ulN&1rHc0r~K=!gpX8AyNF+Nj|kU7}z zT}o$%O~xG+!ik}n^rPzhXkTaD+nSt+i8VZ=$$0?(pf<~C7rB+&T-JdYd~0hgNuV%r zW(uSmkH;bTAh*jz5|-i)T`ryEEIx3@gJ(+C$Ri(5qkF=}#hJ_-DYK7Q5BgXq+QL2L zr~7f|A?~Wdo|+~|LnM`ju~zzO@i>@l7nUQf!g6C90{0^g)`2;M<(T0nd1gr+0`uuk zAsX2oFfx!EES*ac!XIf1FGlu8=yUien{X+bCX#fH5qeuI9fZ!o?fgb_6z?-1RTxz*l0m>FYI(k8G`Whtv&TRY5@lYa(o3?`iDh|HT({2HV1v5>zNT5T7BzA z;7e-CIVk?Dj2t+x0!O*#fn49Ph8%O)D)Gd2m`;CsGO7DEp_8!C`1tc(jE2v+-f_Eq5H?Rsi&)Yk&?3?VmNbDX zDMXk}fE^Q&pT?sKw1o|*dZ#I{l*WdEw5V@rk|rE$J%O4=Rd2^vs1+FMf|+mOlNuZ; zLJs&*2w$?(Bv_ItXyKvn_NQ=9vdXWbNMi_?WG%j`7Ex_sBmNrVi#aKSJ`Jm`Vl!h? z`4R-6SBh6`j0o)f{93;c|2Jay|5XLB2@AuoVE6X{IHX3iTT2vM*olrp`5L8cJ{X1F z5cF+C2f#NpvJVIGbl{ASdFIkQ(9S6qc%?QVHCac{@VpF9V%t%BOe=TLMy(k-!89vRJC{ChV;_eM?!rH`Fw_qfFF%E^Wl7f-xOZeI#`J3v2EU9iy zoIE)ViNx4@oQ6E11w|1c3n~ZhbHd3br0b7l_w&Q!m+!Ez^vq-oqMT;IxtE`I;}3lkQ7Ta6NVb;^gs#PilZY!pb9tAd zGC&#T{i$-XA`OB4M+_;Lm=JmD@rTlg8m>iP|N8<=P6}^KQ~P`iuLjKz z__fk(OasA>mf3Jjzq;ctOpwT&{omW!@~XSdU&~8|b-yIxTZ73xFX(XDj@b+nk!^-X z;n*}dqQmq^n9ba;RqlgC8^s&=F!PK2Bpx4cg7D;kGbBOtvp^(p4z3(Awj98c|AC1LL%*NkR zp3GwwOeNQvn6xK>e=&0kMCQ?bnq-bo@i>XXa!00IfG?$=;T!s_OiTxP4az9j42*(f z_o`7Jve@&Rm@&PDzK4uu-WH7H9}8xEHtXW!8RPNfAzd(`e5O-il#5xjV3^n)YR9CY zKNN$uP~KV07MVKk1t)uga0(l0>2GYI-XRN^F3cM1jGOofI}pl@m#L!2TDpQ67{2X+;vG&Eot*|w@f2EREgA;CJry5t zB)b-TU{6A$;$z1b@__~_9hyWwXj!eBkI#DZAx(86A0kg|s&t1B9E3}zN(sY_t}oZh zPsuSKSp01^VU4^JnGekVj!=9Z!o4|);(HRP0(s4^;hPbtpDT*5OQ3YT(;yYTB!LPj zif>M!hL4kbd|v`JQc-+~0+l*R?(wAw)DT7SeF{|EO>&R#PoNSM#g{5jHa-C&KfX$V z`cSCZ$+*IItX!*%?@Br5f>)<;jFOpEj=8EDMa9!?xah~E3a<%qT4f5_(GgtiU4fja zHw}@HiIJQE@y^RepOTWy7V0{!M+>$0ZXrifu7jj>Ig--dLK)qXB3ogt_1PKFuGkgK8piwv`oA(MhM=#e}W2^-`-rZhkd;-J;q9Z9$d>LCZZYgi6+ zR|@jd`z!6xUh+PMb7^KhG8XE-ZPxkny18FoH?dQyjb#Ju+#KYE(JKx5W&|b@`;<$X zepnOMTPkcQVvbU}xv(A4fca#n1j{=VmHahcTpou2k0dgfzpf4U>?h8}7*t%rk%2iG z*1tKHNaA{C=ZIsgoE&E0VJC+IM3Lug1gf@|7a@u~#kiumyi!s15-hJ(R4W328W2e3 zn+vPe{W=xUKqGj{M__*)JOz95Bp>ckYIB>ggI#3M+v;7rWq#XW#o74CN?!xwx;eiI zLBRZ5y95unDymCSHUd1-iNLNu=c{Ct4+yJ(8D*L42sw+=E?D#IDH%-0b(bubE1WL+e|!}*FTQ`8Ja)gS<<5`j|(1?v866;vaz z&-_ZP)n0s@HFeT-el;$Ekva(;u2EF0q8boTR1ny8DPN@yG5`rXazLN#NF|j)%lzR8 zoH|HD6j|p<@Nl-GiWHTvs4@fq%|PJPfv)Zss9-h%`wXyV6wAzw{ZoXV+dE~1f)xh5 zNR8qEZ7$&}BVMDM;;=64^ z;o^)Fj%cerjaa_Os0B}9q&vxcFrymrNoG|>orH@sY8<*1;RJJWMuX4~W;7wR4}6`= z9c!@6K~>|Y?Fqba)3qoUdW+YSEr(fu^E+JsAV=3(ixZh8EI-9pB6OBPwmQooooAul z)U+0dlkuA9f1V3)!NNfLbT0Q4uj!%F)H{d20qU1abn>QFxOhM!lI2@KVbuV-$iZvC zD>#u3w^IYsa0lc@oGciSfp{1|9Do{-iZ~8~F98Yq!2t!NwWqf6x#JSBVgTD-Hy01c z=6!R;fFhx*2IM<*8EIf#0bts?+PpZ17&qUP~ zPD!7h3up1g8^yi$aWONBKVi+`J%h79BXhsgG}vB8!3kK2Fk&DDnrJPS0*$|;{PY?O zQMKcJ<)`N(g2frWj0RD)Ry9|Cbn}KfZQ-vV>X^mm;}#O*iU@b}fr9yn84}!3kE7~& za$jDWu_bu6P)pnJwCNmCm9G|fX%!4kq4No=ww6s|l@DZs+2dx$HY&9bj)8Xgh z*+|&EyEkYpmMRXITZ2|re1SXxzm2lCK@axuP>wVrEG9PKR~pUl^@ES<>Of{!F!Pn5 z??WT=Q=EDa`t}Ah-wyg-GY>I8|CwTW<(Mm&|wNXlJaNWH?vIlVR2#!)3a}x!WU4ro&j4j zxP)nmsJRC-B15!@-9TdyBed!$Wu zF-xRFTW~H~-N^xJPjax7d?+UHibBD#lwi1<+C@HG;T&sKogRmcxVc<~`Wi&RF9-Yf z;k|@%+{y-Pe!ri%$*CGp2@=abmq4d>AmQKNgpSd9f>)D0TKxQ;D0b9lznMQc)tmI=YesfX+UMLfeHD?_u z>5R-dFW%f5nG~NBxu+i#cT1?nhhY6Qzjo)&Y1;H=5N{yduB}^(MZdcueDg!aGd<|@ zoZo|~HFDa}$a<~hqZ~786n^f{S|6D_DE{tYJ_cjGHZr=AlBX^DCf@fjtM&V~<>GAH zbR+Z`&U-I~6-2D6;2i&Z&T`MQR3l3B%IE^c%Vk5%2du8tN$^lT0(-^Tvdlx|sh4>qee3BOWMgkmk`B=& z>W*K#ODpqlmZcRw>jsdkLOFt zgk7~pgpv{4yJVwO$*AU~WZCF0CzNbP|L&6U^BGDuTY}|W6=Dk_K*=g4c&HkI-G#vh zB_s0GC1Y+Vna+}(FD0wsP6*v>#*(0nIC!!2wd+}H@1Ev=mMrO5Su(d9)&sNg-DkWx zB^frT{y9V9rOBN^Ye5m>6V04t*r2+vK;nVq4nw{TIcZ|ek}2U6iR6Xk=dY2Zvo@C0 zqK!wYnqYsEn&6(26KaB+O2SHdIWI%m+ay@dtvH}M5uhfxI|XfQBd|YCmYN{))HT7} zP!rj#i8BXE8_Sj!lWokKC%5svXk&6_uf0*)SlFH4!b@mlVpSWf9WhFJN2`+AZpm~M z;)Ielpz@uP)gg+qG)b_$UQrzgP_i}&9%@Hmr>K$B56 zTs%;1T!hy3ugV5jx;6Ct`8>>*pN+O|n036Z>m{z*x(;!-t!pLTv#llLP_yo4h&)1T zbRDf+gI3N~b-j7=9;+_ttgu5MO|~`8BaJnxl3tRTsbRK@4o?Q-VLTFu zB)x`!l@NzZSUXQez&9JzRU)FOxlz1f-k+hUJfRk5OYqQexwueAV7Hth709GdU4i5T z6_~*a+&zFFL**N2(0m)+WEAEUnAT#>%A^D4M!a<}S>3t<-j|#=BmL0!p!EFhh)%n5)h^1CA?3kRL$rnHn&0{P6|7FlR)vKXMbkw6p~9HGKYB zPSi1c<1@>#(@Xy7E-kl=O+ePD5p_%kAJ@p9CC6m&Op#D>c1E4-GoMaoF(N}=X2Fd^ zu&6k-owG=DDP1#(Y>ka=Z=7UM|HpBO_k+m78(mFtG$sM#^E58N3n8{)}%%B-Nm?yrW z8Zz@;`-eZI#?7t7m(qamm+gV9+scBGk?XVtLs8b~4eCuNPHOH6R-p4yC&zR?X3GTE zc^5&Ix1q{Uc)bCGb*Ni>s=gL|kds-ye2ll$>mlAKUcqZJU$S71?R@wWgN>~LeAVMZ zY$Qn|fbSxxo9+0&C78J<;Io6i-A3qrt&}@>F#*7loOduq<68<&4I0fK;p_L@1U>5w zt!jh30XFhY0U!SJAzUm(&^!t=6$Wi?iYNp#@eZ*_zK}z z-Y&@bEwZP`1$}P^BY~m#aGz3T99pBH1f}PHG6o;UpX&ZFUdOp@FzaLaF#biiWS3pN zwCz&XAvo3yY!rgzSW8uzM-Re>seo@Y>yT8QCaSafvke&cay zQr_Dq`l?hj_--k{ewG}y!6L`pJjOTrUt`SC^*E==y?Gz;cw|mO6+s^_ zG*R0psRfQmWGvW1NazEW~i62#R8@~f|W4)m~3R?yJw0T!ZHsl zzmx%A5ZvJSuADxeib8agZ7TR>*J`9gp zIIlga2{IJKcYkeCyMNGHt-K613%!BY-(W3HyrLBWi;Ql?CIEa57-Sy~xOxTF<>t1z ztf-U6z9;g@d}Ii=X3Q+p7Eo(K#V7Nkr7Bd30LA2#Vi2vxYnoGyV56rH1tXKM#5&14 zTIt#7T(G{djtt>YC8v6$E9J0kcEMY(BdsWIDs<=@`k@x-!bA682j>lK)2`Fb$!SZxPP-%lo3+;T3ue7i z^8TK)uhTLT+D^FmQ6Ovk-FM=%@8wKsqLs9Bl9|+w7gAg==|l%Z1#M*I1$;fLO;y=z zwEFVZs_d6tklwyiz2~c^dM;8`E#QcijDf+(=mFSLByG^5+F&o&ES|?7Y{s61HrS$7 z{TCFMZn>G{2HVKQptV>Hk)gNIzpG@J#5f3z45Pc{YG&a>^g$UkVNSva*IvQQb{r5N z4q538`d+}ZZP;-Q3#e=OVQzSLpA@;$t(i8BGZ^NOefW6BFLP*4=a$2H%8{TCn|FqM zW*l1EqhY(GVY{SZ4`T_WA5V%n4coJ&clK^y|dX4&Iz0A9j76=|#|o z1Mv7zzZu%ATna6AH_@nzrEoA`afJItVG05#(Km{o-9To8Cymvc?oJGto1!8$Y8{53=QYC)YiRi++G7zI2*JO!IW689LHWiyVO{jaVPuM|CF` zevX6F&@<5ixY2XecngewiBaSFj|o2*O+?4XqG7b{BSW9{-c|a~C3bSIo z93^8P2sVxW7`x!sYE_rvI;Ke`Jflr*2xMaZQ^PTj!#igvP+7}BatZu1tddTx$Lb+m zng*<*0u1@V%)PKUY+xsaZ++0$Y4{H4*pTeogGuhJ!88|eofU}0jWLrJ8ON~ob3@7A z@sXrQp*+!n@7En6Iv0Dg@5)(%HK=*cT+u}ts?OuQ34{ASsOCC&_eQlqhr`$g z3b!5)RLh|6%PSaT4f!W#DgS_OK)xlN(Mymqt9ll)#Da6e98{OX#?xd2^Bfs`tg0(y zN?|>B1v5qFS1?bcy_s`0RHj-kwjR7fm^6O(Ipx}~kFCtP_PjBbrPrR1 zT6{g{+9AB1o>sEi*-m5>%a5~{n!fM&x#+H*FFdh$gBo3}$d+PRyxT=wzF_w=(QNc z-y3L{`_8z4fBSzOf7vRlu0wk{TeFH^kyp-RYu6>5J3W}SEvGW)-1y4Cx&07g zHTdW`-Q;!W+d(z$h_cnvegaxy2?E#--= zV42BSXPkR=ByP_D>kJJcmLUSBZJ4iMzBwx$>-2szkd@*$tFnF$GrK$6!XC=wsdJL&}zhfkk&bZErb3beM7ejL@(SA8RriStBQSaL*ESFlV`6L=s2fhe}Rh4_W~u_3l+$z*k7Px&n2jb@F=4y zp-u6F9Qm<-EEri?Q#>x`LSQWVul0P{+2mJ^l6$;W{DZoirLh(eJ5^E$GtM8xrvX7M zItnTDHtS+o*PhsW?Dj*fB~BfIeJ>U?VI#o`*Mf|$Z|%FH=H}ZE2s$?(j{|<&j9B!C zUZ7)b^9;{#;4XU7kDfL3$K%>K9FWTDe3 zXtESEp6EWMdyYc#!-9k4$BbC?$rt)&wlSF>DXtN8m~n+(mVsz2dX*Qt1_yxcIE7~1 zLGxU2EV_HGN8V{fulba96=vK)^N?{Yy3`9@he6IRS7^o^G*2wYqIq8E;Y5#BXvQ5h zk3YwvJ}K9=}i z#vOElpm#s-!MTm;p8cdkGwz_{1ijP?T}ku|g=XAA*CL8O;f2m1`U-_++(Bmx+UJFC z?FaOyolznh&QLMEwf(|pzA7(YQz7dO-d!gIOd4fVS?w~t`^Q*kjl|--mn6(yW+(Fk0 zdiS#)oM#YSsnCo&=xjkR^+LDeaeKT%GtM8%-GKnT!~;Edwyg;?ceaD87ToDxxK#U% zk67H?RE4{3cr5zjD$m*2BLb=@>eeL7%S0Dk3n=!r=iqn{UMBF$MiYijy=R@b5+8aW zvoO)3K@(PDlw}#r$CxV5C7oziCc5UCzUzN=B5-!1;*4=sqUCAA*$AThoULs7kQGtE ztu79d+iNgmXkc}$<8fP*DfjprsDDtW`x+=_$LuOeAxslwDurbYh{mFKA%!n97Y`7R zNqBdysJS@Oh<^T`z6;-&kEiTGiUGzQ252-b7X6I}`uPq#Zoj;T6>u-({B;lCXL9=>1sci)_2_?|4#p2PPdFHoX=p#t?7z9)Ks8f}cU_6NIJ$}r=K&t>YB zYv0p-^V!Jhz5O?ZX52wnA{vW6=7Cm&{~dzvJ@}9FLf28WFH>m7Ro;&`iD(~L**E9U z>qPI3O6xN2pbG^3gcsUIFR=fi(2P6iI6)V9p(}~LTcH_u&}#5M+Y6mR^py(DxPw-M z|GIy9l)IHf$st?H&A5YBga2>5&_zT)qtJ{yXf^l`^Fk*Q{X2zb+(E0sf9F3vIIrVS zaxogY#NEZif__asIjo z|GyL6rxG>49nBt#js)_{Dd7c@LT@GfOx>4L!efX(wGtkOB)pYyykel25?=dw-)N?dQ-~HxPw+o zcx|b6E?;{?ZixNKYUnzGl zCA`QBElT)53f)TykMTm+qM-I~6q<4Vx|Q&Ohx_Jywar?~5_ARQ3cWlIO&^O+@j}-U z{rL`-yMl2CO_O%9Xn!wsKGDxBG~*6>hM*g2Jvi^;`@?*NX52w13;GT(bUo46DKz5_ zx)sq_^a7y!9)Rpb1uZ%bEfeUge?8U8lx}66^qH`AJ1Pw;Q+kVZvVaMP1X!6u8eEw| zAS+YKRY>$FNVKo9XmuI@_Dm+(B3=`m(u@+8Ha_HmZpY*HRSL~GfB16Vi69m&CA!Bj zuA4iZqPQQIKi?+#awU*IAnOpsqM3c>t6R^?hl=Nc)>}gEG+7TlsyV~&LG-UXvQ71($Lp>p!3(2P6i*@9mCfJeFGh#suaj63L5LI2td zU5m%6EiRWWIF*<*z#JNZrUG*m7;q}pGysu~%mN7FY z@K5&N;J?v-)Acv#^FK^P8Ze7yu1xPh$^mn&ZkDIlpb6o@h*1s$295?IT8HRAn?ZI}Pg}i4reO#Ieiyafss_T4IM0iozskj5Z_nvLmO@d(v;^q!-Y7 z@IS7@#%61AI+Yl$0hbR#D;vdN78mkRQ--x7oyt!4y{OYM%LUokqZVds5TeMS~%4N;``r-gw|m5hQDEI_@6#nvw=85P6ygpHT~Z69$Cl`jw^dmrz59 zi=A#u;uZCd^sw?!_AZCqcco;Sfwn{nC999S;`uY~zzk#q(srflHtb=hD;{i&SFU(y z(OX>WxE8&4!X|mpy7Ra=B_kCFMUQ0e^Nv;TS5M493;z}P6Pg|!M4DbXxR4GKA5$H~ zm6z}{=vC}7TunYffa-b(5Y@9QK(j9Q6rcyix_P$%O;V&QK>ZZy3eeM6NS(R@RHR5( zfX-K>D?poIlN=4;3ebE-x&ky(k*)xJFkBvX1?T}qx&jnbq$@yiAir3E9{WyD0m=u} zhX5tuwktquQCncR-jNtqUJn7f1SB#&g#c~2?0+FZ=K^$s0O`2!6$I#wVM>6yn;rrr zO@9gja^)o)77eyIo!^8{5TMQ;0@Tz)fS&x8rvSa0Db?g^pnDbR3eXP}=?c(Cm&(Jg z0M#ne6`<=C=?c&QMY;m?%q4<#1!%e=T>-jKk*)x3&5(y(0SYV96`)ZdzgU3&`|X|r zM3abp2+(NUb_M7&)K(7xV&(M^pr3&}wE&%tJ0~iLQg013>Ee?FNFA>bz4c`@kOn+8 zPgvJE z&qs?Ympbde$;PdA`glmF4u`r*sBCAr-}4PVS?f@L6^dJMI7nSDR35S=bs8v$NG(VV zQp%Z5@1gq9G!X~4qui)Sx1*e{NVlUrccDD&c9gpm>2{QFD$?yJuU#MyyB(!ck#0xH zQe+(JgUo(BR30vH$cGi#2{RUK=$q^t}mUx50P@`CrY`?u*vd-!TBcKcDu$o z67SZn>(L-Ry2c!kCw2|)*d({9?;!aZDs}hR4Qb}bC<+{=N^y_@m^`cWJ z6nEb8$tj>H`Q6e2$rou+Zggbq-SoK{dtDI=|6JxU<>|@JH06O*mY^z~OUHCtQ(hKF zi7!v*Jcg3bS0LE&6h}9@?=_uHbLO23u9VN5i-AAxGG`}mgx$HyA3?cEVa7~>bW<{X zi&e_-ne%kd{KIWmsjkQ!ye6YmDKhAB4 z)5RFzF7LaTsv~19Nx&xQcz%L?*JIO81h_jfUn(RI*@roKe z#jI`wiBk?t1AV81*pt&(!mEy395-Vvyz@*V#H9@R7q>Vp7*8D;EYLEbobt@WvrciY zVYIt6`;%qNVrkqK`x&M$}0_3+GKRBfz9K@;o;9x-Pk+>H2@o~j9 znOty-v=3hXz%{Gm5e+$;AFM8T1O|e{1~rR7*lP;^Ks8WRmU}e zS6MWu2Nh=ATp=qAx>+R)30zR%G6R2HNKgw0Rox2;ow&zmsfUSeV+afv6u@nqo!xv( zoCO279|Q}3o$POzV>|{azbggyB=A%h=2_&xA4&L$-}fdLFPtlgwjzpDUr3J*92?P1dx zs;&uDs%O3l!~90^y(Bmi>BS#O5Z*EG7hKTca1<~{rW@uuqxd<&G+}YcDE(ych~_afw6(u7WAYFT^ct;A_om9#Z7T^iJH{WK-K0~Pct z9^nsB&T$|vIQN(SDWa@(ZDAAv>eI#r9Kk(+oTV{2p?3L&Jw>T!f7ZB^nS-1(nb7Sh z3TzUTOReXT2WG+Q=L#09KLKF?4^VyrpgH{7ojVO_2E+Q3)LHQwDNf-EVM{MQAVs$p zu^Q;IJhRDRp5+)5dTzida<7$7LlC^akLl$`OJv>;Nl#lbw6RgsU z@&h=m^x-XfSN~vE&WPdn4Ah;1@41%`uw??4Vni?AFI7>jgiEBuQW7EJ z0k;r5GELVbo%X7Mx5h!PiPw*9Jl2H1!gv-sA_8sUHF%F^OR}58H32vEn(f%ri@mVE zCVXyicfjI+w5SQ&M7PyL@5c1VbSwr!Mg$poQ0}tt)v#;gr^6fhd9Xi;WdO$`??TkI zjG0+`N_OeH@Fu zIt62^={2|nBLaq)FWLwh)6L20iPUTvxDzl_()T37Z;dbn`|1-S30E1Y6Y2!z*GYS- z1qZgfVE;3nnt^gpCSg(GH7N|NFZebFGg~J`650ZpcukOGTXjSw2Mn|1GmzO5%v_75 z)=`P#i+o)J(b}XnFeBc-3kJ_uD|-K+bz1pK%mj5bFAHi!=6pX9UTIX-&@ag9L@I`L zhVLWY$HHf=l!9vuMxvKSH*tvWst$pKH9=7*o?SM;ecTV87*+kT}A^eeN**{7DWZK@|dF1w$s5k z+L$#Nz-ThV38kjYgmh+Agli1hs4&4RjjEOJ#7udu&T0`mlr_~)d4$PDYmy~a4#5<_pX@f@*)zVktY1>#HDD^^OS>DK6UUe__cu%I;3 z1YKf|Mm1N7km_iP;kd)j)r8RPIIfOlccEPCR!X{V1<-%cpv<2#VYsiPA8tGZ6{58rNTmB_PRLig7 zCG_`vJPS)R(jlRpAqY^D6a>mY9Qf6G@dBlPgvf(_uvk7$p)0Kr_*kTL7knk`vO6 zNYXX5paQ!$zn);FBu$E>2c~If#|N@L)6JCcmO!7n$$q&CgaH&b4LNber&@A9hRLEk4eWBoBQpPkQP*($v> zAEPn{YYfb1=V7$wPBAEO&fFnTsK(A5l%fH-!(G^qav+fPh$Er?*F}b1F)lLsig8u*A7f4*kQgYeQbj3zP6p-)kzt13{C@xOR_Ra{V4@Yc3Io>ztGQ3SpAD)O@ zv?NxjRG5uBwU~$ zdUL#Q*yVn!bQF>=JtM(QJ`l#*26XuP^m^qiZ6Ra_20uat*tJr2rW6biQ`55ycGA!K~ zbLFK%Iu8{#1&W*Gxt8+yQFuTU493Me#C3R}W4C8KI_995l5y2d^m=pyN9WAu{XMYe zlLKAC8BGAw{eYtxqtidZdj#zURo%m>t{KDpqkHB8RmYBvNlTR)cbnfvpXNjbF3pTc zDJB%5U0Uf``k{50Ex`U)7Sa$au12S&aORY!wA@+6EA)g%vy8zT__;D+g*j8BW8n=GEh7qG>{77r6(jVRyyVBCLp!~8PQeUb z2OxIK)7%dcW}H9WwS@BQUa-((ztM@Cjj$gg(XIj%`ys#yvxX%USn=sVJeo)B7g|C= z&U}-ygDPjn`9se22x8GTY?$Z^4NE9z2~=4^(L=O^67d2h+HbC8NtHnafYM^oAVGat zLQyre3^?qY?I4r*;gDt*f>`w3kNV=1c53jL{R=@?FwS4MC6wtNXw>g8f%d51Xod$! zRqUt#5{BK11;eUh|Mp?u45MP75ok{nGq-tx676yYa^!#&n@&&<;W=(j!`-ZwCm6Ms zsOsf0SsRT-*Y5EWT^RAH1;$QNcl(PXrEE+%xy7}?Rhf=R`MA$jSX}|nWRukR= zD0?`YYT_F;zG8rkzO~z-fceYg=1_(s;hr4> z-=&<&bIqYtGexML{2olr5T+in`>H!v?c@P}Dz)<+4>Sy-3>K&|hytZihLXgh(GU90 z6$Vk>tUtN`FYgn?Awn#oJO&`kN`gPC*<>l}#Y~`woFA_zSI&zZEWet#SbiyqMYrwh zn`31aB}16*wu*xCDyt~dywGA5W%pB3%dS-vs@Ory`#dkSSVdW((5_V!pp{jWP49bf zE>=K3ed_b$^tL6SVbAG(5_V!pp{jW?|GrcD$4#RrQEJn6rhz=l-=)na4uF+ zRw}e>6$NNz73HBm(NOpuXkmL6(AfUVIDb(1YPcBdg{Ho?M=3Pp`~j_W_u+T@;vBWFSJhd>no&v7l9WF&?u_B^t6`FAeT_)&SFLWZ&w<3gki^uKT6`FDWAm?g^ za$%on^s!N_wP8S`k1@_4`dFUS+Ou!<#W~RJ_7s2PF$XHuua|CMy+$lqTd3x z@0vkFax~kSOfGsglKA2p z00Z1}VDDZo3^2|g7*GaMp4rwH+8xPP0DY>F{AXTh8OiTd=w2gviU%4a`3Qmb9Ld{Y zfA))uD{temW#qQ!+v1`=L8v1egRZ>}I5ZODP91R{M=W}U7n;+3yHcSUchHrH#-h94 z=$m0R4;U{z_nrsb=Y_7Lcqb_|Xw?ShHbc#YV?x58?;B+r^D@T>rAC+=5?x58?;JMd4 z%3VZsjY2c-pw&F!E-!Q<(LYvb#vQbp2Yk~DUB^*nh(a^&pqpe=dF@pX&I^cs>k%n8 z;|^NQ11i1HaYWZDG~*6h%>%N$(6xBnzEzw;Xp&573N)3PdvIplyM4ze9 zj5}zhh9CDrCldY2QYkm%4qB<Yquio~zpl`| z)bQP2=voxi-tnN6n{ocS)$q57?o$mvEJ$_mNI@TyEgrGx{Tsim8lH+YPBk085GnLt z#qB*C9!efgJsW;vLtmBWs^S0sMHuL%hA-(8?W*C2fIgKP-m<>0ynz-qT%gds)Nr{6 z8fy4rf%a6x*5FrqMGeRPEbY@v4L{+97B$?Y(7n`fffw4QDqNt@jH}+^sNu7{(3M2zC^X{^ zTB+f6>paSxLG%EHX52w5HT)YdbSqV1YmL+z;|^M>;bC6rBBJk8XvQ71Qo}o6^x!;^ z=zu~q?x2+#{(~1<)bQ67x|bTx^+JmpZu^szyO$d7dclKpQNw>w=w530?_TIy6x5!q z(2Voft%iT%fqqUl2-<@MuJ(>AJU$(w^<&ZXYx`#YIoY#rzj{B*u8zpN2{fP)V$s>2 z3FNck{^%q?!cAa?B=Bv|1iJV(@gpYz5^e&?lECY0yoylI1kQ94AmJv^ig+vHOjUY!VI(KnmGL7!uMql4w5A%DcyA&fb6zS-U)=p|n00(O)$6`FA;@7aR> zmKQpX=vRI(Cb^B&ujh38rok%0} z^Yj9^%>j;QW7zMaHy>5RaL7Zn=u<_=p0-!9Sx1i0@J=>1D3GYfqFeO0_zpyZdl90! z__PuP!S&4OY%Jny7aq5tqML2lMmG5RZP*HL?$ZnN=*?PN_zZFmZ=E+px9a(gKVX${ zYgoXl$&;X3M*!Dr+l|amCPWg>!k$JSlF>#S_3D=Q2Hkug zmSU>$$sgya;C{8?2r9}v3h%1<$EfJVjWt}Z=6}ZP2aUoh=_z`6hi+~QXp=T_gQnj6 zc0#~>B2gZA4elh%;1jhLm9Snn#d{{~wrF~&qfRu>s!&U_LFrci^FYCiavrGF1vhQN*^$O-$kZx2X1AYs<7aV5`{0LFaSde< zDrC?R6E;7=CG8UBem7(A0il+}p~|$3vg)auaId^S)6_C5%Y>}z&kVJU>KQ^V?ytD1 zDG>6({$y1T+1WE!`<-JGsOEVWqONx6g>4X)RBhqq-$tc1zta!LrA8dIhqwO>8=`TZ z1`A2S@D6UtJjd1w6zLK}GC37bGz8)EOERfYcYe>L^huOp82(QK2_3CfQIjf5e>3r?6okEp3=YsjKXW+>m7#~?p!-fn{{lOHlqofO5fEpXVwI)srWy)3~ueNeDu{@ z>E7BPV0vGqN73A(j0l`?!BKbSH9m@9iVt(2x_*a6ZC{IR>pXNB@a@$j zf2gm28Hy&vshDp4i`r*WA-v{}x1NiyM>cTO9bZchAQ+P(QzCH_3KK@4Z0KF^KHL$o z{;pJ%<*2AA_VBh~Z}fBV)X7HXfr-}i_<}&@UTo!ud+(rceZcw)m0Qp}!s9LQY#hwo zh%;gaHrp2l`s4IR!e%`(w*!24=#gNjQJB*|5gS!?Yb2a}&b0N&Oxyk!`Y2S;)J_~V z)-s^aelocFm0M8`i!y2yuV>xhf&Tqa&3a}twA#(%lEEx@t?t*Rw&6l@Re$Pu=(G)5 z#qUsj=(Y8@eksfl@%A_pS@WE|Pj54DFhx?RcT21qrlH)9&7e+dG;;w1L=;WOl5Xrp-gu%xy=t9|1FM z$hIBXKa8wbKTobl91Q*DXgp3$&ew7e!As&r>(JXzFR_ino2KI|Zuw@+9>mYD_7ns- zJevizBJ3GsT5@WSqVRFY;-i1VQ<#(BUZgRZ!K%1p<)Jj(eWna2Wk=vFVz`LcTf)2z z5ND#i0%HP<&Or2~iI1Uk23zeH!c)*z!B+ARort8-fJ1+Q3SyHsNq7-ruh#JX4MwbCsmTE0Su-ZRWjs6G@jT4}Cc zjIvR$Wj0&EYJV2`;>_V}x94$@ZhY53IF*dfgm>SB_%Y_3+M|KUkbhif&PhGGCxMAU z&pM}%16j9qX$wD>5nU-pOBACT8*JtC z_U}!sISwv&UHN0gp>xeK)3t@uz6L%+hcQrm1REdVL8cuzZnp!BU4S`>7H%p{uJdW( zmvR44d#EY7+3x2zUoaw*(-Y`Rx@skEVEi&S;JA#rlSfs2YeF49oIT2H>z>Cne~=J} z48s9}*hGv%IB1MJe+if~YYz8ffiGFI+h^BE?dX+zPG#)2oB5{5#X9IlG z`a_?`quwiXwVdss25lT`4YB;8&*I_2_`ZNOvl`E>0f}eo@XV1x&DU8;3v&i_jc5uT z#zQIh@d2Da2_3;RGaK;Ce*d7BoI#yqtb~Qo7HG{HJaS~jLI0rGIBVo0e<&7@3;U7z zphM7~^<%8ji$cfZnR?EknEz0V$YZjTe)Yj`~;^-{v{j%S_d_T2CezYr{HZumX_bG!rMo!sz8{ziw`ojd6L+(G~K585$k z>F@VZOoU$JAtfVt+rquW|EX;=))!y5RSvqjuzV2 zLR(sBOUvmHXiIp3X6r*EQ|!@|A&obbLEhiwn1~P~Z?FsD7Pc}bS#M*GGPlwZ2ayj2&uhI7)bVP z#)!EIky))M*XA58Z+&ifed(`o>=+ZqR=xNjRgeErv$Xv{JUFlX3N}B|ylWk6l>Apd&?cNxbj2p;Z%iCu@%{t@J&_?VJ3hjzF zpJqFh4j5-8J-)|>S0+oI;34>@*|ADbyUr?oJYi425eKbCVnZJ!n2qdfyff$VMBF(R zl3tfsdK!Az<4H{BBk+3X+bG1HtmQj5lY9+-rgyMlEsSlzpS?SBwRLZ^HST&9hW{h z&_qRy4oYT>W3VV00ViV_O(Dg5?G0oEoV;4bIQS=w493!8d<6`onaTC^Vtq@-YRPMy z3KOT!P)#!iN+J9YAXxCv6zf0*m2(ANs{D(H@cVqf`<#1EZm7=hd7tO^yU&xXv({dF z?X}ll`~N=s=t=26_7uwg*C2Iu}Jrcs_wTS@*KHpM)w<}$wJ+4w(eryGf(JaDuz$~r*x9W z_kUk8r0m20Db)E<20m$PSMC1&RQH#vCeeyrVIN3rf3S$y|B8iqF!_XN%@xWA1tnLi zTXQh&^e9eqc{ML~6&d~{9 z_wVK3o@b=H3?Fot&4cI6@f39bzMgJRbN29eE4rT;9jh{^`u}?t*@)wo$Y=h!YWM#ieP&^siQQ}4Ozd9MW@7hDo4H?~ z`4t5c+DtX@q1}-O?Aa$Tcf0eP{Meo%&kvrWZu5S7zF1sMKdB};)K#@;dz9pP@=HtE zGq>Wu(W74K9yRSuX~=I=H+gT;qpq*?sP`^e(4($@d)lKqpxUFZf4h5B>#)3W&s^H8 z|NZaj)h`RZdgCYWO!Y`KpvO-%5TUAo=~f`2C+VB6^z*|vEn%`T)Ohg$Pp9Lq%=n5S zwFXtm9YV|QZX7<+URpL7n9=Wc@1As^JB>y*;5dkS2vR60Hk@r%>y z?oTcq^{3rSA3V8q_+5F{N=t`sX03DyOkXY3|KjA*q5o8BhCam}R|+B3}e#6TnYLUg%UxojjIx4Snv=C&14>!ljHuZYeb)4*1v=P-0X zW60y#V{Ti1@Z(+4;a}3&Jvx44GIYP4fpso&QW{?$eAn{m*njFe_&3Mg#wa{Gd?TWm z1w2I@2B?|@FnIr7*TKJ99v!lQ@qHnTb)dsFyW-%xRz$~=!gCs|Gw6SQ#lhDX!i-}@ zbjTN%6GN%2ICwrC#W!XK@&B8l7=ym$9-OBlM;J^ncz?kW`^Zzi;l=~~>frzXBmN@3Z9jl-uQqPxVMN8Q{fre)IZW&h{g6S|`dc-7r=m&TFTatR!SfePVv9JM>z z>4mwJ>63EaaFresR$r^j<@QRpu5Rv*xM(cpJjk&xtcsgyl(=gbh&uxsbMM#+adoq_ zo0F?A((XxS&kMA>!i0s|t%R1%I!hetGV(X?US@Jl9n`^rCL=oyjUW#+D6A_WdCxxtRy)HF`d|Hr10GiU`)P zn_EU^1yQI0LsSatr`!oDVo#QMaYEdbCB88s&S!}?F#%I_orI{!{Afa)$P!QZPNE@e2`xuPJJ6qe3c%cH;IG(Te&nvce}5url+e4x!|X}<6>8t=qJ6}}&_+D_bw zEbV;JF1k6?^v70j{5^hnja9BG;#aPz7O`@qpNd$9P%ej*%d{@uY$6STiC*dBLM&p) zN_&$S+DJ{j^q|B`|7RM`&Y?T6;H(GXtliN^`zjZ?z1bozm#bB1x`DAfx_n=j_NhSY zu>T~Nz#XRIyy)g3X!7-cNjks63slH!yxCi0h?ksOHH5ODpA4bA$`DO5bZUqX;d*Ld zbt@T7nKl8tmp!7UY%NV$FwBUS+#%4EC4_%7VLCKr3GIE#L)vUVvbZTL&|T1LG=*M6 z+p9EX=l+ozD=xrG+QYlhm4Qo+pw&NzTYIE9g7#X){hBQI+K;B3+=4aIM>mu!-bAO~ zs}3ph#%>|w@1Ye{RcH@PaW@!Hr=w4U)xr` z<##V^z;KH|jf5UckP)l*3Un8P!|Th zZ(((L@tuC$o}sR(M$GIdWe{iq<2fk$5mvk$OQo(?JI9~?8WZI<#tr{8VQe|lX__NnBMXI+X8ZD)>ST+BLpjsz#^T zv#UBaXC!H4Qa)$Dl6KLh)JQrnBT2!jP8#@>8}}<|bg`tPGLjUWO47KhyzQy|<*swF zqz67x&7Fc%NgB45|7yRI_AYkjO&LiFP9?q#tTxvbeG?x*>HfLPD#t!UFQe zGn&h9`)@|>c%jGzZf$!ZPri171ZuMI^jT>Z{z0Mobr(GmD}RnF%3es!g|(gIR7J)~ zy+Ob^1Le2wFLrI`xV9R*DT&=yzVBB``?;>-d`+`E0ZUC5jGlkC;XM z`@VjeK{C?*{epq=;rokSn}u&zV<%a-psjr8z8B8I3zfpBDgrX4;JJEv)qcb*DuuUJ zWTd5V;XwJN`-@$hg~vXg8sMZP3m3MPb*bBbw-o-pB49*iq+fS2l)`)WBW6)4{9Q#x zrWEEm$oWD_Tu_^ZqpGp1rSJ`6Gmt%+8^$;_!0!KrC{`%`CO7=k#x;j>Tc8^6wP)v^ zzSlPfIXSNzd2v$>_e!UOAlCE%}hT#ilVCI6`0<({9-ExTUl!@OPj zxg}pf0x|De{j1!vU-S8u-E6quy5u{7_ZDcJ2u=#W*t)lhk3(f|oiN|2hvsy5FX=9S{&w9Inu|8} zfpJ%;jv#gwVc-DWnfK`C(7x`Gdva0KLU?!M$-9>C^y=7|XCKs%D{&ny zg<_eLNX0^Hv;GY(zltD~T*4*WUAnlrtF@`XjovMKYSX_y{p;7i0bSKRWOlv_lE7UF zoCgk{*u<67y!65Ii0O*|)&=`LF3DBjjbBM!efI1s4&yG1|dwp{(MbIX2o?uT>rcXL1` zAANgp>@GfcxaO67?(pgXKcD}~ecjQ;{XFxD!&maT!_W8mx$w%p`QcykxxS^ZVc)^+naptF3Y&H>MJGKB9PpwSGf)Lr=5F7DD)vG~&RWErY>i!Ra> zQ|_#(*@p1FfL#655RduNHLuZo-5l$%R{($|`~UMYjsDyvK#}N!}m6 zO4szxA}*AB7s8dKuB()N^QDsy$S=KRxlf@|g9>Lk6Zy05vdSZ~7p~DQr4o=Y-c?oj zrtad+83lFww@jT}Ss%3J`ux&0FPFmc0aovzZ+@pu20GCuQEePn`T;Bw{x<*4!GyRTJ^y-I0NeQoSQF;X19kSoE#1GkRy zSSSup7(^QaHVeoVH|pSSp}2Jh5Wni9_})fEOkK|zT;zF5K7PmF$n&gWj@}Z(h|KBU z`tRkI{pQ@hT>Ue4ywA^UlH(O#gX4XBo1fRbMvgbhGmiHfIo^by3$Lj-UXYvkT@cO5 zV3(ETU%#3LiTA8jT*=Dwx?zxv8`>PX;T_6g-Gvuai}cof@w>URb}0WUGu>&ODN-k# zuYY!BY5R*@q;LCI`Che1Z;}#)WtMy4cTzt~wR!kZ8cJEPvV2nD%QTC-5mjK<>gvY| z;-68MX@@l&P;no_G0C7B8Q?e>?N-Qf<0ZGDLdGj;^;GEWke$ORL(Vqq*6`3;2ba#3 zmi(D6)ozpD6t8C&g)5*BQbtzjy@C}ybiV!3<-^Z3HLm|hK5A1aee=&QWA%x%zf6GM zy`uOi=Z@AiFMs-GI9W$OSs%W6`oESB-`u(U`bQ63UOJO`oJvz9v{u>gYr)$3PO+B#-`8e3uzo9rfF?8uSPUDF~J$tl8sXfW_IGXe^j>0~t zo$`;(^6xpF@cHq_!oKAmo&UIBXJ;SLImwT4Y)BF>{l-Tmhb>J`0evi%=yl&%W6{q& z0r`{KEI;pO2;u}0XI&7jV++r5ESEDyaBu&{HByib)CZ;SH^1@SfZqRO(9c~KG9oeW zY5d&!Bs0iEvQ7`2cMnQ@Zo9K3+H>fpBUU=D#1TW%Qc@%;=I69Y|FL<>|GB#eV`T8$ z?;vyPNr^X-B3gKlb`G9BKIVeJJ^bB|K=@WP4m|R5MY$UW9f0CE)O#9#^z~p&p1%2w zRmwX$t#`hp-Pdg*Ec3ZbgJqyy<7~1g(8RY~8ZXYVQnmc~8&}{Q7i%e(uDY=F`<+9- zJ76sx?UUutL*t(3CFlRTiwm!dPY(b5Szb{2a_-DWGrKM>;H@fP8FKwryFjJ5*oIbN zQ$}R_31BGdv|Q4H_DL^JgrVbQmSFo@D%!Fu`{?Q~<=OK%K2Q2xQQ%pz>?aoO$k5V@GFj1hl|cKKj)<41t7ETR~%!Fz!;o1_DqFPCh~e)HrI= z_@y4BiDw(Q5{dulL$v#+wGO7O{u=g_YDXK=Ek2?5gLQ>Z?3m;^9T3uB(Jc*MSCC8U!j_$kgZ}P<(^QH5iKP9^KXeH)%lb+sF;2R5lh5Gx`7KvlcRQFlV1K+be zI{Z~96c2yN@@UnomMo7>dlgr;uX@Rn6N;z3gnP8FKZGxdtY(lC45u6Xl_&Z|UZ|jr z;PnSyk2>uXlu&ZWeG;H=0?abR1pRid{xr7X>ThK*Q7B$dz+LP^bB*@(UBy+0J<%1d zYFH8#8XAPn7Ym0y%iZ0FbT7Mo_4iJUx{e;)Pd^|;W{+stx#=HbKSg4Hrrxd@^&wd#s z2SeW}(fZ@01mCY%8ErpKdNp2BA{3v{kbv&04@@rDY{+-E;88a=3)D+km41qg?9(yg z6RBTtzWS8tvg4F@UM-?jkDK7J@e=K{b1s~Bk>1MwqmowEd3Qm!tdmw!h2kC;&S~(w zDCj3}$>aJ^E5G!5O&^wC&!;i|K`ta6^|2$=%;|CI4f*<6y=GK@b8hK#xn(yb8 zgYODG!TWK14C4?wyF>gbktAeUs8Nj<|Ar=1{5Bf>pv zFpW!T@z{f9jLIVR05v*y=DCM@(2;H!AHz@s2hit8F1eEAR$@|_nAaR`UKw3u^YSLi zZ_*-JNuqrmOFuBTRQ>47c6^oh7CC^<5rxJpZ-2b;!jBxls{{kP)Ls9C7MiY?qnC}( z(Kr2wpj3QTv_&E=SNxvdSxHk;B3#l>0d+-%jzhZ7ysfb8&I@0%eE52nY#=b@Sv|_& zsfoQLnpzsudzSA|1FGg#Wx`SZLzqo>7kT~Qu5nk2WQ7E3>+7sXNKirTurw!?`t&7@GDG@*OK8>B3 zMCV3knbPXrD2CE{tE%x5yua*RGa4qW^`*ngl-bSc|~fkF_&;Ijrzlv%p6lYZEy8u?~T* zM;boX_yI;uA7Hrf0p4Z#z>|%K{kZY4=NgYZd~4&8=WlHyV-0-LbM@CAUX~_A#19iP|Z`rFYT^9*EOi_@{VlIHC)R zHcDbzk^IKtqPjGT^!VRTQGc~nVwh)O1k2^4P#3L>s@b4r#fFJ!0S1+v6*j_2)oKTDt>dugTz_*MLAxW-CLh8KBi+HOK&OE&*zKJbk{$f zE5@qOp^|^o)ugsA=ZEL1!g~;0D1GGB)aaizuHoZAH*o@mdE1T9!+W9m5^Y;y*^Q0s zuY}fJyoLJPz4VDf>1;*%#X-Ek+FieoSAouZJ)V4o)*7k0A6T-3s{D$s-)VZ*z3kc5 z52>n1A2Ai`pApNJ6Z!1P&+B+BY-!-R@K6)ar)_EC`Lu^xcwV)ondemxwdaR#YS6o` zbKT4KH4eWOO`On)Ncr}!)l%$Zphg()AwGY7q5ked{k^=ll&k+yVcB|TzwzROF?G3# znDp^Kl-8x=C)JkNNcB%v2OG~9mOfKpyrCAPYPF=drSDh&N|T9^lX)_!Fle78bCs2< z;oo3feG;d;v}SU?yZ&*%?8{M!Thx&>j@%2#y!o3iokWu|*SKDby}9BY*f_uRzLllp z4`<)yp!f2Me(vc#x%zwc`tR$=Z&TMiFW`qpvgv%sn+ z+XPN~vV%qxfrV7yj}iExia_2GOr}iB?rj`Ck(NY;lhJ5ayLJad;fr78b;uiY%kJd^ zT=+_Txlqsdlqt(@e1)&!s8|~>J|P)IHLLI|OM{`H%m1l8a*g*m3HuDamwUY%LW$lg z3-ccH@D22OzdW!|I)NpL-P9VnMe$yZbeG<)RY9f0+CB^R_vY*GP;**Z^4jy7PKpj0 zI;nWbKQg~zF1UK1zn~`VN{2Lemk#}6{^=XsxxM;vUWMB5G2Zn45@{{TExUX5qYuA| z@lq`@zwD02;cM6|tc;ePzF*5#yi4sd+RA!{xhtY2U+5~bF~Hki%kE(LKO(|0w>^9V zJ^YgMpISU*Ugt5L-aoAjmGevIb4!0yeo&UH-A(ksGCPbs@?^D&53=-~oH^7dF$Wj7 zZ7(2c@jBQ~x>I49hbbJY!y|AS0%)Ivc#_^#GT%fsy$tjEr^Li*jAYJ9=+>7;*R=NMb+ZC_ z=q}!0SoX~4+Vf{!k}jck7vt{we^7db`s}vPhjbPHx*OF!1ETG9E(q@su1BfQ@p$0x0-yLJPt zirs}>dz5TXJn+#~bq{ZBJYq;nC1AmR-6ZrG6&wpV697H(vABm1q6-tAJ2Tk{$elH> z>l>EuQ2FLc*ZBsAGfz2GUz@z-Pl;Ce#FuRJT=b8!cp>_iFmn2ihC>`mJWyuVS4X4u z2g>ra40qB({DOP44s=TFz~!T^1N+oIGO6anX=nK($YE9ex-i1}s)t-lpUvqOhvE~t z`lkv@xp?F8?)ryv^x%+@lNG6 zerCe36~%X1k`}VAov?$P z#+OW2aVgPhXA*wajZ)59%}Bp%`+o9WbltGwlLG4Snx0()ZO*AW7D_pWOQ%?4#42= zHRm1x-*Cr(_+|s`=btiPZZ|r}GHnk1Dib3A^#X1bK3pNaL z=NBxfX-y`<&6ikE`*bG3Ln8C_X8C?xG~ZyBZ{s_h-~@b?1poLrB{&Nk3Epvx1=X$1 zB>3gGTTsh?WD@-Dk><-~`M%O-zWyxV4R12vhAiI(x;-qhEz9?Au4zeD2zJcEoGVT3 zB|QGu(uXTGrf^oQ8q>`;7PI0WejTk=G*1AsY{_uVy26R$B2J zJ}oQzWh|Ce*)YK>ZLn7=ekUywe$->Wq~ag+Qu7UD`5taC-=-|zx0#qDZzjw4PaOD1 z-rg+VN9dE`tGgH(ykUE!?X%4PD=b+s+_+B3#&2DwRjRaaP8#fs2GnCm8)hVC z`1S*sw*4+w3~01rP6{?&`9;OgMc)b;yh>8z=Rd!wjLUm8$6*;r-090(THeAo%3NX_ z%xZa!R}L#H$iJJ-fyR-o;tXcU6{nQ{s!cnsz?6(hbQzO%UP-~w!I+VZ$z@kku4>a@ z%&B%0H_Cvy;*Maz;b6e1N5piraMm5}rHWs+n3Anih$dtmmVka&DEhJdQ!>i8ZW+i2 zuNh`F{q7i*6phWH1D9Vkr?TT>*7*IMn4NV!Li8(NLBCJNVtFdPA%Hy08$=CB9t^fL z8*FVcm}&!%u{pdMEA0Z1`fg(z<>INc#17fK&tS{E!PYubFBGR50BK&U&LSOf7D<+~ zDA~B~FRIQGR`o*{pO3yJ_N%|iKmq1&i8&vA*>$Wqmm9w0fP8e7bsT>1cln|N;x|rd zK$d!*+XK0T^R-3HtUKBsr9+4G{#L&J2Zd!1G!B1U$4ZJ1afa2cOdO4JghUH&x#(OL z)ZM49Jz@D%D_UsF4^oXy$}vBDQ%~-!Ju1s2A@-)383ggU`i)L>*#oP;R<0+FAYt95 z6b}RO)~0-PdJ~yDy@P)mS1r3??Pv4RiU!?j*^t-3%Nz{LVC`<;s?B<{vHW z0O{qvwmf6aw(e*}dp8lf!{5q9t|llYhxnm7yQ4BJTBn4K_jQFTpgJFz8(zm-z=f3&p3i2pPOeQsaBpE$%G-mc<{+GW6JCc)Tv@ER;FCM0!!omWP)p zD-|zEItz0arvq-X>MajnB zfBOqL%clR1vnW2!5;Ay|q{f$Dyx3V@#ycxG%YeAkCM9teWe#VNUX-@w;VjBZt+SZ3 zIHmmKEQw9~9dAm;B>IrS4oSgTf-xf*Q`cxJUd5)tm{YwbZj=FWmSDi)V8Ccl#6`|x zF{O)So!{>)(zEI;idN$+&;GfcMIm;UALyMEb}F5Rs5#`J#UN@=@?fx~(_m}PV5$c| z#`bBr&pspoXQ`9&#f=Ss)LEK%E)+L68*FJY*xF_=)ecDWT6GrbfU`)loJGmTSF~rH zB@6~iQIDPFiwlRL0gb*m7y5~fijNnB4DOKBcyMU3v&``N3^l$@-07j#+prK(rBIHW zpreh>CZlu_8n4`_+@Rtd8wQOdmx;MJB^C-*Ccq%#AYMp(s>Q18kXdoQ4gmfV>>0_P z_)D*J$J~47&+K*I2bRo@sfE`F~mzPa#66zUIyiUEI*2&^20x6=ov{d9%)TD z)L?Tg=L+ZL7m-&DJ@1P5s1d)_1#1V1c%_F=p3gFe%SWX-gYjJeO)?EivBCI0gUja) zrt8R1zBn?WVl0*>4aT<_jA@c+2k9=3%<|k_EX^5=?=rZ2x54yYK;g`9woaf)_gTM7 z<|)>p^c_paL6mGf^0umj)C@hvUKx6dnW3i?$XAA*lEemzhMo$DCnu{z&tyi81wzzu zG4s~C?7`UZX4xpYIv~e^3l3!rzkxT1xGIwOSi=bPB^Q2}4dG8P{#%<4KpRK)Fn?VB z6k{Pqp+933S}1KDLR5xl?O!i{D!kJH%MKPxQ%mG7x^XY8-Df=-3=%ZE=q3?sRLa+n zIdiCW@mY+p$`|u$P*v=@V?1LW9wnx}$Y9ub<)uEIh=&hr6&epu4oE;?hQjsGOuT;M zDC=5>MBpU400Rv`Du{+4$X)LPkvQ-MhlV`CthHB-0=ttnPU_19Bwb@Y3B*|i^oG7x zz;#aEDED0(hSSxGyvxCxMP|M-YcMQgcd|h)rrjp*PzFdy7}a#hz?!6LJG&B9$#6`VuI=b`%-mp>;u7~U%6dXkg;zA6O&x=#0I;6o-+_l zx#CKO*bJ`=#SSfQ;@{2)VYhS!DSxeT#Ayk=NU{7zxHLh-Xg7-IVf z(uqBK;9%5=y?W^5p-&I}JoM{ffQJD+4Dv9j2V$JhgrxCGjn*}B>8IG|<994Y`{=~V zKs^_ImdU}1ElCv3VH&SIEfZx|9yJ@{H+&Wg{TTz@#I=*b*@+zVSlN{4m}`%6+QgA6 zrbrf{^iI^jl^wo1R{Kco+PgVb1g33D`c!I9t*xX?i?j+(RFJ(^Vy{)Q*9VzBovou` zpI{2LrWJdUIA-kZCc`-dlJnE_`qXEIU@x6bEuMvk zQt+rCyWAG-2gQpUkCdAv6*)}ls%^n0ILcQz^W$L!Fx;-Q&UacwBkmH?9%am}YvYw8 z>HzSDu)3pZUA6OYqh0BVcDW@VR~N(*qq-ngDMK5*Gju^C>VmqXk~@k@PZYYK@mbQz z7su4?2Q)SFWP4g1i9c|Gf|#l< zv5pQ(cTqspul)00x?3Hz-ld_CnNa}U>L!EIgu(cv!R6Zwre^?jtG&p{K?xbD-{aaYo>mT&V%I>tAMExCTljRqaAGsmrA1X040hv$tbD-{RPjIL@1 z<)3(oO-CJXT*f52jERF-O0+W=b413(L7e4^O@lGV2PLdHCIjLiN)-nQ1{~Q0mKrdB z)}3MbuP8CO(nYckp9Klae-EJ0R`^gwLu8^m8t6%Cc z81J;+BRz@w2IGAOm-ib?4*>9!CgfnCW`pq-gRwS1>L=|y<0l;k z!!PT=GBJUa$8}0Je({@L$WI3TJAR`0_=z%zpGa!Fd(C1$`3#rRa6?i~Y&Cx3%teW9 z#w1UEqO8>VNn!@&ziQJ?MTo{_O#GzRVA@imoxzwRGA4fFELUtAj5*#eVZ|{S5I<3> z_(?F}NDo+Qz^b1}41OZ({C+=?o>f0lw5p#R`xg6&i1w2ezp$Ug>71 zNYpnNZ#KBR#bCM(fS=51yQo;&WiYRwxHkLAADG7}K9ezJkUmCI<87-K`^k~qVMINz6L&i4*F26A zmO^~ChC+5Wqn#3oYGcX`uEML0$vlqhP6CT92quFhn^F|A_tuI#6%Ap**6@Ux?=%M$BGwBnJY!gJRTEFIbu^5BXQ=U{mkR`KF74lI)qgr`Wo@qO!QyX zW(QG-9pu>uHNhR;Wcx)E04AT42GNYc=2?R+a|T;?8BFa4FqjyWM!eq&VE8<0Y~u!i z9YjMEhislO*fMFbb(_J|3}Ep@Upg?+mt;AJl8tw^R2`&d9w+w7JWkBa^Ss1a@(GqcGhI9KV6-USTTFkKVF01Urnrk5{`ParMBv$mjV*bGEiwjnRI zPjY2gx)V{=H&^dM;8L=fSW@=lQ#GZFe;THALDss{l^mlhcr>Lk)C|reI}Na;hh}g` znK5jzbVt(@iohsIAdOcX3u4xXabK~t&7nbWn3ZH$$G^;@Olrz3B#mR|1Zh`{hWEBL zfZc8Un%2DzE=d^%Ql=Jn24bp-gr_6Zd@}ZBdOMph9l{ahUo{Tj?kUxI>707)F;AV? zj4>a~#v8sRr_LV|@A%~S;>v8HwB&Z3YQDMrdEz_Dx^<3nQhP2swSk7<)OP$)r-yG? z`}eu1J|Dd!UwpB`^2PTvA7Lg_JQ;^LkxiVFnw9?oQ>E_WNiBtl`A6~OwnFs5_Coa8 z4(OfT#lK;TM%zaL2A=p6hbuoT1}gc9F6c!UPwT{%ta>mU;V^uT>q zFqb}`OAED%&>27TIvcz#V{j_WiZ7Zq#QdN4#^hQkzD7ECcapCh zS?b9bFKAN4@`tLnMDf&?x@;z~x_w0v>`#O55)Q)1DudPN662~7pP zO|Up(KtazKEg4YWvqqD4GrV7d*Uv#s=izw$ZZYBYyAtwV;l-Us84H*i?s>()fh}JB zT9rdsByd+sP`J&6?m?-$GgT?kgKEAC$&Gnv*W-WQxQaBVMJ})LVU?+E^pcfPRkAy) z5do{&>YZ8XR_96!I;{S`GWymuJ{dc(YNoEaIuMz3yeW-9h^`TcMt1;4Ct(BRL^C2*wo<&YPfzb5L)e{_M0RIIDL=@jS+YAD zIMNL_G1UyMX5PRc%p_LS<4y~+X7+NVH9{J+pp;a^-vbROdjIL~t&|z~luU50ba&x79*3pjgUr5(z zs-MEIt>JP^YPg()Vo({YhRY3WYq&X!Q}PgMcv2tw9B)b$f#`z{6*kMYq*$dYWR=n z!>Hj3aShM?$Thsd%12FBcevRgYD<(i*wSIJwbNiK2cU+>I!s!O_5qkY%^TZThw!w9 zH}K3ZX_LX0W`nIQ22*W-G?UdDE*+@hlB^o8WaFV%?YD-Dy;8%)ObwR;)f#RcLk(9z zyruL)H9TZ*ijK7Z9XGVB?Y&tP5a3Dhc9-Kz(* z8b|)jGboRaXdv#RfykFG^Rywuw)T|ePmRn|La@A+p>b*^=184tQYxppoMSGq5;4)2 z16|GqXT~lr;QZyDAE-4+#I1X~Ql#^a-LQ-quvE|_GIyo5CJ$q6DM1gkHjNfQ54+b9 z!%Qb%3>S}SwLoNE77ubu`;3O`$%v%9h*>a9tj6n<054z(YAr_q4#Q|%@6>e@YRKw? znWkF+EO_XB*zV$b>#7T{O@`U@Xs1<=#yP|d*ELLLLqfvy;CnN=q>5K95HcQ3iz|Nf zhiUCTm+XqQL%4bVRz+SW)#W|9NQm*mm*pv;MT@8&J!~q+rFMj-N4T zE)Bu192xRGGozO!W9R7&Mz@ElLNqcVG}^fdAe#zJCdSHcN}delZ3&lQ7#}IpObDG# zLJcF&Y85&cLU$#hhLHzr3f&z-gG43(jaLR;m^~;WjpuxPXQNuK>nOO zthZej?8N<&X!M%>8snoD+hcT{p=juon9gWU6FK2jX}K=GI;sT8hhbFOU^MIov!9}@ z$aM{q^@l`BJZM6p(auSLs!Pbn*o@;OBVEYC$=PheWf+A_5$Zg#+LweHavD8B1I(DZ zydmSkLvU5PY?!Le`-sEtr&$X^jj=(8f9?fw0}~paq>U-X%6f6V z+hbgIAE;c`Fe=R(UGMe`mvtLlX^W>rTf9AdEF&5TZSYR_42Td)x@vUQ-lXKvHjjkX zc3o(7+20W}kqo1e&<3vymr_MLtt8EdWdId9{$B@&rb9YbOMPLxT|O~P+*;`IYln3j zjWDd!$bfN~dPoiHH1?<+)|s<7rC|ZXx?~X4?08ce{b+D*uprJyz@CN*LC;<1TIyrTp>g#4T{7!#Xk54C|h6 z@~}=J`jzwF)v#{IK3?pxKcLAjTV=<*UI{Ah*llchQdksi128R}F^Kd!5V@N(*s{xD z>u!Uoy#_mC0P^c(oZ|4PgmDT6z$kE&L8SML82L>aY}sb8b;e+7)?mjR0A2P9R0g|# z6EPRfNT*zBn`Jj%IivI`z8PgH9(YN0JeaP3m!g=3pj`9^c3ToT8zqMvSbQ`kJH+q& zAJtu#L~8kw+gVCYUXWV%I=mAuYmXCHpq#Pt)hp!E`%JN)CBJ~Sg?gKz{Ch5{I#1Y@cl z3Se_6fGwc_w$3?hN}6(xVz=XMTv#08wSlCJQyVYZzuBC0Fr=r3;7(_z`n@0_{Y%tim$zW;%fZugm;V1{d?|O`F>;VhQ7SBG;8dlWNL$r0X#YxxS#3V#!DJK>Z?C-h(KvG3 zDcYJ@(aw}%36FX;WN-n)L)~KVLNh!Ef+er3g?oAOrRiBoKgQB8^B`kE{Lid({Jk&{ zf8~3X#$|5j7qIQgnXQw`0^7g6C$NpW?qt;c>`7*u2yCBUkf$fr|flc2TT9D`)-eR^+=p?$YEwGK&vJJi2Y!iX)eSaF* z;##%`TFq8>kfm*ZV_?gHE=cs^KQUWhVEf`92eu8hY=7Khw#mTu_!~0LvJV>0A`rjg z)ZmlzwekP%^^V`vU~P_1-)ogm^+F@QKz#T6Li|3E1#154b&fw6;@5$>cx&12q7|Sb z&jz;t(tE5F@4i~Lt-Q<%TfEOUNSPPS~~uHhmsbY)v%C8Md`6VQGVgq!lX( zO4oI{ZbY2PnoPAZXJ6Zm`9(LoX{RN>_#KQ|%b&i%>oGypx{GMQG@yquG=FjDu_&IpF^){P07L` z_a|J2d=)-H4WqHa1T~Dth7vTuG?zhf<|au>&EmppodJ$W7DKdMoTF*tG0vUBbn)2C zC`Jot&U#4@*>T?SRsQ+zw#sA1s<_GX@!Ra;CPS+9~_vO;8_zeK}vE`02afj zBwy2lk0EC;jb7Gj7){R_`Ax)QP$OpE6T#ljM(x{?SSbDp#Wlsv4r zr54l`?sPz-F)K)2F~m^=zMuqIb(}=L>WU$&S4Pv^dR=Hn8el%ds5EPIy-Sfvw)E1v zkYO~vOYsxsSr-yY8SfSq6+#xrV#m3rH6;rt(!PYtFbX*((tHRFrN}2BRD97`D8)-# z159%n6fd8h@&0W@&v^eP(5m-ec3|*+QSJSA(3Vk}Es7MpUyrHxxA83R7o=?31+a`E zt%y-t5r>X<8l@F6I-N60^8qA7W2t$NWsC}a1{V7>EFQ#ji9OWc)w7*zfV+DP@V`K z5S21c$-*HICR~Q}1qo^xjg2O#A$NHsXn<)hgW?OkzXQgM_qTvnz5jndPvO$`i)!z` zLaQ^h>Kd2?@7H7M{o8n!_X|=sGXiQCjFvQNQQL1wyI_=d!J*T;jM5+gNnx+4J9i61 zgixrls8}W?3x~Wf;WDIkPf$ZzcbkINU69s2K@FpkrUW%)yr+CMt-YD#&7Z5HnUIM&7Ro@s;nv``^NAu6VyF{&DCYwOqjBja?>A&~2{ct6?-z>q$D-o>`$FivsFZO^7EYv4inQ)3AX;~q6Rmqd zLn$)c3uq|COIrg>a~Tw0;Qb*dm5r@Q(yDs@#IwQsMYZ=|#LKmmW;=M|{d!Ejzk_Fa zzaVAPDWG=2XenoucERX)k5SqMqtm@cX%K*<&~NI_K4FLu3UxqKwF?PZIOM?uHKcV< zP(xbx1T~~}Pf$Z%O-WEg#u5o?m`ILxc8H4i_XTJf_Wt{y2;QF~AnX0@i5SsS1*5S< z%vg;WdA}mW-|E8qU&MR6c)wz1ynoPwf@vvyp;%Y~<^74kG3QC%pFFI$rC!MUtsvfS zi0cKsWDS!N#QQsyD&A`tStpf7$gM{{J<-!Pi)m$*cEyk98Z zKOib9C{KhAiAou#WZ{rU6D~tq_XIU$AeW$q3^5Zlz%-XZ@de(WgE7>tr8GUo4Q;<3Q}5r$v%FuBvY8jaGKNv94k2p$4Wsb}qpZycGAl8$D?c!~5x=~JFaZ;1R8p!qSBt@PunH4fi(y7Ptt=u>4z9Q zv9sUP6eDJ^I*A}WDab8tawuE;f;8RTU;eyw#9{tRf@I^vKqOYp+8&p_+sW*I^SYOiB~r>UNzx%k2coT~2^B4Wm+zQO5rc9q%=IS*u|*-Di|5t%0O4 zAV6F}DrJA54hkbTMhO*8ljC&pAd%xej|LA?GFcDm5HE2=$AgkMV?pw?LgU%L#B=_E zn}qQkv1OVZv)9CuqbPc|$#E()IcaJE52@iOK};zp9Waz2xl>xomQ@Q)POmvq>x}f7 zgL~W^p`=u4as~{h2OYTHx~O|InGQ{KmA!OG#V=@blwPLn#aAu+V;&D>FRIJ_L*b2D zukVJk*JE1t^IH2POM;YroztX&7mP{`M%T9*M&nIJS=w~ybhFXzt%8(&n*b#xh;>>5 zwOtswF-oX#%HHWx_9DmkKOD+l$z;o3ib|sBlzkFsEJ&VKXnfN$%Kl7VmZj{)mMMF) z*ThoUD|)ukLfMPzvOhk&B|8b8PBVE-%YGZr z%90>uKO=y(4OxCN$~4oV<8wxtW*VK|Wt3?qkh0$^KwLqrvpY~@VdTarp~5M9r%Tz3 z96wkNWv^tiWj`ri;)qV!CvnDtD0?N7E&D$4 z5=V5(K8Z6HBu^_e{_dYs_OIuqR?1#%nX)%~O)QnYqG!wAsZjQ5Y5@;kg{(Oz}kkKl{L!gSci@`8|5Ue z(dibWoS6lZLc6Iu+k_!PDAW#7$xTWY4!JYoGGv^QpoY;%Pl6gUo)?OvSO!p$;{W)0 zaF`~LtivdGN?&vwCW$+i#2pI>PKztvcpQ%Nb>3#ham0?}q{B={TNIlPO;WWF6d+3x zJlK(3qD*I~1({)Hk3+9<29%I+xm~Jw6ZnE*rU)6g6JOQs=6)I6 zPE@-EBnHD8vgB-(jYJ9aU8ARmV90Pl zWJHj-0p33d#fOxG$cS=LG=ZJIx39Z7$sCVJ)P6V zgG7#hw>Nl@lF52dPQ1hs9S=(4j0MTl3XLCV$8*;Impw;pnV!zIbV$W7=;@SRrtHO6E&J1d5z1avm;Fb7;2CBOv`>B&&rY@Wj`-~wGCNJ zvkLTsf-I&PWx2@cbdymQ(}0wHi>W)Cg&{&H)HYGcO-dFHxjo@Bq(4khL;Ar4HDu*Y zO5!M%0aT>;yY~f$sRPM6jB=;+MaN;1xMNA&v5?@jxZ-cT4aYfZj~z$snI^~47R6?+ zBB?Yv79&s6L$=9r@_16JM!sX6mEBkUqKxad&cb?ZBcA`8cEeUUVzM-c*we)lgI5+H3A;g z!0m$E(k4a6?1l_5j55HGu+Y;@nv~jlWE-do#*lS9qpafzMkQ&bbvytLwcCNr0S#Hl z6B)NNoprpxwb!An<0YZO<#tw>lqSFzxSa?Yw-aC0?LPj~;C7~G{- z+s8|mjO)doaXUv_6q_M{q~dlKqt;FjS+{fYxLvA7z=ImNU65PqkQmHvNb7EtNrHq0 zx67H7+Ipl1R0U(m_Lfn$w*=YzGMMfM;C6!!q*FFzw@YN)&UALY0@sj3+3iX~h0E=% zFe!C{FK{~%GHxfns@v^T-$QFBs@*Q)6;R6AXLf_z=`nS?T{;&@{snQn-2$X(7?pIO zSL1raXgoH0S*sxz6B^y#Do6@-q{z@?UKk>TLTwP0+@xgTkedYHGUUWTf*R6aC#WIy zQzCIU%K$1;{PF(`ZYSNcZl~Nyvgo*75_c?#I~Ee07FXQ$X58+5-?!U|J>zzcwkS5E z4@t%CEJkjphpgKydq+Di}jv+9Fjg zJsPr|rqF0Q*mhh-RH>QD+LXyKn;zMEIHzo@f^kj=wXMNZ#ii2%w-X`bcH*nL-DlMI z;C7zy4?WJ%D*6PHz+{v40$8gC~w3%bbQq4WvzzM^ai865evkV zCd{;RlQ2XGg*quJxk<^wA#Y2#44Ew@s3HAzf*Mjkh2n0O0aT=T-w%S@4S{6cu0M$@ zI&PQ59ZTYlg#@R?72ny4+il-vw-bBD?Hp}UY(^iFirZO?+)fW!w{!BiU8+XFgBrM9 zkXss*7|d=+>uz+N?VPyXs7a}c?}U<{-238P%uDj1cd6>c{Pz@cUwNDpqv9W5f` zSf;aZ9Jpp3%B8DGsBpD*R+yBAz!$ik2pP8%U)Ajn{BdwQQSEl8e9vyzph&^(^q9I` z6VJ-OAa2(zK$?b8sl_Pk`VJj$Gs^P5(dl-htnvf#q)t*USWZllm<94YU0S{{6c0q2bSz<7|A+5VnreP8mI@vap zQd^I-gQ{Q*nGYD{42mEpNDZcQ0Nk$Ef%M>poE#Myw=_` z2%%6%MJ0DBSvcek36~)==ma&SzfMp?>ZefL%`$+B6i0Ukx9bDRx?L`bD>`nM#2riG zj)erL#TECz9=H23Z%;C%5PQb$9Bol-Mjw)j+gXgHaUjMHk#Q{3Sr-Ug z6AopKHVGB3*3Jr(QXlvNw-X`L+KI2~cH`=MXzfI`+pWFTZda#Bp|#Uv>UIr0EB}JH zU6TN58nPZ_l)k{B<1I!ReHxu^Gs?OU5Krn5Ag&-&i}pb66h>~05-OZETc?W$i5%ze z2p*(lvK~|?UgC(32PJXFg5+t1#&7#0Jm)jF*mJ~&=cI?=%w7{qj-u#xlu7J^-cAKa zNmC1WNDW5`VoFWY0YeFrJEf&;S+%fc+hUH?IwNi7U~cCKC8f&JXNSRbrvq6)Fl0&1 zaC@*0Vx>bWe!-fp(#w>+_^M_9HFW@#y{Inx_ucHW_sg!K?Dd$I{Up!Ik|1TjO#o{f zvM6Je2HBzGvqo96F*-eGl*Jh!Hr#FM&RxO~Ar$IfQOQk877jU1xD4s|64a26FF_5t ze?=&cVi`b1ikoi>4l@Iib(o1HuIM;S5_c?#I~Ee07FYaaGmi7xo9sAZ&onuXwkS3| zjil1#Sd2VL57{Qi$>T|>8UYV#;7LJlX`94gc0&djMj2p8SZH!)O-gM&G6$-HF=Tzr zDC=Q@9AGz?-V30~+2=r(2n;!~E;3Dy>6}~-T=NcPjW!7tt|rF{lhO?Mf+k0VjN6H? z>UM9rE4ZDgcDwDoI7vBoDpGJeJ*IA#<5~F^#O-3*Xu z&Hzba(A1p+!Vn=8>X4}9CM64pJeqJB((xszAst_W8b&*FLUA|C04h@awOfMQ^@3#G zt}}@%I&PQ59ZTYlg#@R?6<>H5Zui;i?RH|%xSgXdicL==skoiR$nErybvq}I+ofs* zJg9-&1-YdjiNWlK3^0r`z>u)uc6}zLwjSvRRlyjtK4z5lFu|xKtr%bp0dTtw4rGbI zaC@uCxSi>dt*8Fbp{&s=lKMfzs^Y!i3*1hGjN2(=Rkxc`uR&`ks@?9eS-YLD76@*q z$JFgQ^|mni7sTyy0_4t+vzJD(jzhqz2?j@u=1$C9{XA;D>J#RnaV z+iktpZYTDP+d0~z*c7{@;&v7zx6?z`?VLPrm#Pu)payOiSQ(f7sTyi0n#+&GYLl7 zHg)Luyiw*QMyKmYLf7UA;z>qLQ1GEF5x6!ez+zX@VNEZJMBl(M~Ig zyIBTMk>aWAgWE~BtlKGfN?&x`E{Qvq#2pI>PKztv@Cw}SW!Kp4#GY|GM_Uw|S-LdC z?JP!ar-!WDIeFYJRU_a*4csosEy=zzyCGu?qe17y?dDBNZ9P&)GAbBD4&WN)h^ZjQ za}B10ZO7Xj$e`JfW4S;%mg$_w70M|hhhF0hDAcy5pi;%9(*m~>A>(%9tGeCI>U(fI zQSEk2uxX;y%^ zg1FyIpw0;+H%18+&bZ#`;z1(EpSmu1kdn!I(5QHcBRU?G#2E{crxhB%zY)*bc$Gaz zY+_^M@pn>ql>UR0O;*)uNt zHbn|$ugA3P+j&-&1S$It0jzDv?xa!rL5Gg#jIv{9bh^hVyOTi5zR%R1y}}S76l%Yy zuHGQEY}ll1h_fG4domWSbl(k0+&S1U#sLCk45s4vE3+hKzoV zGCYy6(9`8iN^L#T1FC{CWOvdi!!JPw!Uog*02-4)2Qn-+WB@EOjf&~)egv)|hcfa_ zLWRritS~8cf-h)tM98?E_^NLAz8iwuiE6jIYuau%2a>p*9#gm5#k2A+h}-QJAWcJd zCymk%3bH$ClpQmp)BB9FI|;;->PV5wI4=wlLZLQ@N^VlJaL7#pa2e7cCa59(V1gR5 zJ1LR4n`HnMDZcIM;C6cn%(|U&C&{AYc1hf^ByPBhmtzZr##g))w;S7Tw-bBD?Hp}U zY<4Fl6}PkAayva_-OkD5cBvWxuenXMv|C~@yCHLKqe17y?P8NsTi4t$S#zaixNwr) zNtrFZ-Iv`-L}(;pGHxg1Qb57vA>($+Sk>+JsMnyi6IH)* z`;^>n1)o3k?Yx7j!wnIroD1S`qXLwc;eY3{S7m5|Nchk;0pbdhugO525k|g@5-OZN zZb$&%5jif+1mD>JQuUql^_30QB*n=qvI3NJ5W99T9&Er{-u!KQi+J#so6X87+i+nN zIfvrfIrN!dSwpwsl1P{Cz76a&MMDnsH#=mRQBbm@B$N-U6FRj`Vx*`9vE76K3LA1n zSSUw>4gA3s9~d?hr&kR*A`H~Ms9cU5WS5&VuWKr?N*TjcE#PO=%5yvFARKk&SANT- z+nkhcb5gq9ExLQTh3kU(utt||!SCia`2ttUM`v{C{#L%Kv9?o}%y(jq9&T*S$rwE# z+~#_|z7x{5;I`ToTpiq{tAqLS3J(L^U)w^V5RHF*@y-9Ca_nkt&lX~{INQ0CR-C7c zQy*4Y+Z=!A#T4KP+f;zM$ggsLZA+H73nd&w_t*Bh@Ycy>{>aGrT=$RgW=G&oV`6r< zDa&nyw>#ZXeb4C71+?UL1-b3gwY6vP1(8+ykZCvH6IsiRyl3>wGF;osCuGFjk2TQq zi~$*yem(VF!y4lxtN=dV?$Fvsu?k0Rq5Kn3m zz>^F)J8zWJ@(vwuH_BMp=yZos&d>v?g*j7qb_zp;P^dkk;$bOSION`h%aD;uf*LYJ zNl-(ECJAcD&?G?(8JZ-hVIr9&UQwy$odKqoQq9L-*&eEV8v#{sq4`V1h+aN|zLE<= z2e})v_TF3FgUMyCx|5PSL3O1hcM}Zj)=OaZyQAFHYR=-6E~Ml>)8zWi0mqxty_-bW zy_?+MDJk3x8}8kVbnhlNlKM`|VtV~%xOa1^Pr`~Db=M|$x`w+phr?Z)(U6Fh8(z~7 zmiVH~aPO@o@;L)h%8z~%w+Npz2ps9Xw_>Wf_x2!qSUzW<5W7^vT3;yIY~`btpnRJ_ z)R8D}uq9`(wZ~wp7r=$0^XE$WsLt99Hvn{#FThU8Evn59+1z5VrOjY#yTMckAkAd; zLQ(0!g`$#7pMHLYL;HbqHibfkl z_O^(bn?!Ao(h|MwQkT2_frI$2cluR>8_rcF)Mq@BPnYDwhetf>PP3CAzG*PM-!91J z(c*)9^I8$x~~mCXJS?MJ*X^J0E#ci${}2 z+rCO|yFT(nvqnosi>FUJkr)(Oyz^=3!Fs@GpW=?#*znADWipxt(Cp3`M7s<&?>5-7*I;XGFtyKM z$2))2AgLLw#*uAoimu)Ww2v60A2P8RGRA>^*S^ca!V&J zmth}LNkc`9G;F$}#gRK)|Z43$9^0@Jwau@9gmLCq5 zkAmelOFkDh2g`4j<++es>T@BtOEcOS%E1M|mDnl(%o++{cm|BFBox5rPyky(0c_pv zuqkQEh1{{@ZCqF!>4n_Zw-f~%|Go>km2A@dB=)Ti$Zl0nbgNBZH~rk-yZ;<;?xR6x zZFtBa+F-DGlfjk=gRPSWQ`-RapFLJM>b3gAeL?+xK-zx}IArsn!ImL|t)m808vv=- zRr^orK>sPpG(p!X+4xgitKL@Ae~P`*e~Ov@Qwmi3PwN=^PX)x6zG-p)dDgJg;e`@? z?Mu=9EmfJt-%{;5yYekn4Q1oH-}a@qM_uUfw+FU%rogbh@o2MYRb~O(({BxI8v%XHk%IoElBi>zCk&hAB631s#hrQ?1wjBVqFaw z-#g!@WCm*Ef9VxLn^6LYe?*g$iEG&&=gwrAKK{D+G#j8Uy z9Xu~k^J?Y~ir*9B-=Z7hO5;PdY+vExB(ZG@Y**0w!!}pT_CHBlYWQi?wnEb6S15 zg4xxVPYV<7PYZX^iCaiFGn4|rH{`F z_f?~gO(2Qrd|mh-iU0qw_cri#RaM&frAZ-3@dhoJnJJoa!Wa!|hJq6fI0+nfMBra(kT|PEU=NjKMYJU< zo#F3c20sV%9L#Gk<8c{|F{7R1fMWVSrwSA+GjlL`M+s0h{taT;;e8h0A`UKmp(Zl& z!SPk3!+(hQdJHS!hlm5sX8(IXM0}Qm4-(^pk7wc2KcA}tg~^|*9{)fw{PsO3X#OQ< z*OR_dTsUsI;^@b3CVJQ^>Cybfe`f^*M>st)vV#*=G-)+az(r2QPHQaYo5pJ(#@Ad) zh`w4dyW-$2%BpT^)T;gaGT$lzkGEV0T*BI$-_Vd;jao#}>;{8|l9A^(kBr&lv$<)3-f z@H`rC_&hME4GC?{Cv|OnG?vuF`XXrfVzI3vX!sJbT_kLHhty4xu;I(BxQe{nBi2ok zW5cUlHaz9QhF_@RSx!d7=Q6FUuxvKG&4O(o(qV$RgQjQD@LhU2ayYVt4X+G`WJJSL z!GwlaNqE*^3N)N8&^6)MxC-)h)+b^8bx=zQk^;q;405Xn2|cr%`!k!;?=pJQJlG{-|H6;VD$Z|9H$?@fxkw@H`rC_(3pe zcoH`J5UHyuV}g_;IX=uS0+R!=ts-dnQL$YlZ1@O@L_3ktF=JMoL*DHX>!!%D;Z-gh zp7P+jpR3_nPDaDiP$;C74R5pH?OhU>aNXc1Pov?R@#@l1-FKzqe2!yy^b@Ki9N z;Z+jerccEfZKdB9=-NPNJoeIApM>?3Q`{a|XRr7`DXf361%xTxln9*3QrYmvL3qL? z$0)EKSG=Tdm;B?(5;%>@GaH_Ky5VVOy5ZluUJXy78h#1hmCR;oU>-F*kH#Cm5eyoh zgbm+Bitbvh3AaYWw}?exm(I3|pyAuac9F1zZcthkrF+auOZk<)7%N!jp} z2b)^e@GK{z;TxF7O;O5*m#Lh58O<1KnDu9S(eTS&Fb&V7>4sN^Lo%Y_sbE6Gt0X*U zV@a+FYYy|d%|?w0`G>2TkcjnTS*Vw+vkl*-{MJ8sf~FKH5i~qYWy5!i;u8)!?Mv*o zO6qn|h%26!Sml`w&%)9T&qV2lKc2&7zl>MIe^GB@M!&;6YIq)vH+&fw)P{r&?~tOq z7K>epVto;qTrIX$1Pxy!wu^)fUq|XHR-BHhwc>iE>JjUj&~cnqxomjKgWff2c$SmV z@H7+(DP_akELU317;2bx{S#>TdC!@KXVP@TE5jif(eNyDLc^;hyuO(wp>HM$^SRAN z%}V(Ou5xge^D^8-rZm^>>kB=7c!#egj-f}B_`8=mr@|0*>+%gJbX8VZG!vK?#| zjJ*;dj0)$2-;AK)XW>oD?CO~`-SEnANJca~6-;P&m4xl-ra;5l0^Me##)L@2RmL}n zk$@7^OV-(jr(-b28~F8qmb#%g8Ytj_46blgI~rk*@Un8|wZ00+TtI2(NOae%L0 zuQJBQ4@dyMD%~KPaB)OrNhvw&l3|~!F~|UN&L%9 z8)@#EXl&@XTHBUoGXf=4Fk!S+NqD<1OTawqoOtFIi_t+hL`!{y|8CQkd{|IFqGvv>g*g5Q7}!OYGW+>@NAol_ger=4i{p z(hW~L(+%Ink)&V7tKnb8+llG_8s<^M^Ju)`Yr&x5N!ajpq?jX%4Fhy-^sWu&MIWxS zCTur>&JQe0XptB@-pJ#A$co!2c1=((mYS`!-6Rr0-VVcxfbBM{2z*TI)ZIum;lg~u z$C?C}dK_oKh1Emxl(O|~UhHe9fVeSb;`RW7;K*U%rVlSF<}8hQFi_g=MmZ0o!Gwm7 zYXXp{aYA<^8}I@{7U`Pc=}?i|Z1iG*QfGY;)L8}_yTk6LK`E@iF=m2Ay%V1-7h`M~Gu>Q7j+PFW0l-*VdscYl45lbQQMjO7qRxZU-jKr?O zxiRUhQX=C&qOMvxdgKxef#85TYc>taL>>7w>X;~vy6qe<`c+e*ZW~^z%*NNlSD}ta zaHD!iK|43Py!20`I#vJ?+1l@0e+ zm^Y==51C2smHI6e-$LgVYO4-ylFYW^=AnHt+=oBCbemMlx{qaGAI_62E zPB{;wAvIAGP)CguP$wG@7tA8jzmtTDTod69m{jSkiSS09Ww5b3L|u(iSby7)ZahMS zlzm-2DV~Xm#egk}1zk`As!69!#J6iAzVR$fiH!f4s6~lPq_?X`Z=lYaO@lH~M?Q@@ zCQ7630S-I;s;N-t;(g3)W^G#$>UcDcx_}S*U7v)g8zsf!zF4dniSC5>ZF9IW4_>vKM?9@ zT?Xn{JrqwVo7(2Z{Umh~b*4;o3P=%r;vS$balb(w^Q2LyoQKhnny3k=qs9rSlMM(9 zHl`TPn&LJay_n$ZtS^E(%V1-7h&nnN!=mvwZcf3XaYWD>^0(V60ua+G_I1X?cwVQ} zzQk^qq!2iW1=+bzRqE%KSiNX_vCJax(4PE z>UcDcx<)WS9SKp_M2Zz1u~^X&>x;m~HnFWDs9(F-E)oK%n=CNWK^{Ye757q%$23Mt zj)?~hD*|@Vup(fG3@ZYSjbsTnDd7S01@|X~x)vN~psvB>rIe_%dGTF`D+bSVEN{g9jNQrvH zVuOzonU@V1OEOW{g0pGVu~KQ&J;PxK&xjxt>gM8I&TQs<<`L?6G>*DLFsM2SD^^U3 zRT;5Zh7s$Fz{WDMts+33Besi#B~+6|jjG6FsIcN1it#MPNXapAtzkvL))`g=Y`tMc zps|oF!6qdia zhIO`81oaEVc99TBV@icZF!C5GtTdJyjU+YN^n<8a_OK>EiA}qm)#q?iieG$}I1{=G>5q4N9tiSDBMch;Xsg~YIaSI?8 z1GZ@RI+3;J-4=NCs8o8{2vA1{vu7|qz$i@~OS5zd25XVfY#Nk_I`Zkhj+IKIZu$zL zjzXdC_&W{i>X}EVkVp~PfY;9t@NC>13Qr!Pi zii)*caW{FlM=Zu&N%4*tQsRg5pyLwZhvj78r=Dpr+>@ZuY!=*>N`ME-ph5HPfKA>m z0~;m>eS*Vw+vkSE? zN@4wjWdo&1iJ&uLsYFYMD8hPm+LstBY2vylM0Z0Itn$o-S{9aWcqU3W{EW-h@D!@y zU%U1aRyxSOkPUadNwca zCn;bjVanVnj|3Oo3fyeMi;>ygFi*O>QO?6?NKMoPAW`Fl?nX8sq?JYD)`lchRwWU&E~z*zEs0R@duCh z19h|RFsNgmH0qS|Fd9-5H34sn)3^>m|u_@yF=6s zNo4(vl>o4491*m}sMuB!ppI4%bz`6e6n%*aio|Z0q}U)rAv|jQj*(D_dcS$oPuVbP#>hdoY>L}#DkDaJNZ;)n9!wq?W*ZcM=_N(-kp zS`CVVP@EQ_h2ShaTxJ#2G-y)hfBEUJpiD(Jj1;2dLR4NO0Vt$2@;e3&Eu}#;rm5IvL!C>0Q8*q(8AiP;8qEZkQX`_?DH&#9XI)QEJ}f*@)y2YL`KnhSzx(L8ah z^FahCgen&5%$j16btNJj%0xOHkg$^Js6E<%s6A>%tKZ0CgUuKH$*4UhACKB&VnprH zfOOQJY&21OJP|y&_bVtCR{$Ik2AnQRsvKYkQF|&{QG0ZYqV^V^Ix%YR>}@rZqxSw5 zBE%i>LYol9G!?Zs$szBesJ*}H6DI1g&tL*3{+pxrZs=7pCEN*^8I<`hirNb=UqtQc z@|_&Dx4zg+Bse@^BGEPt!_8FGp2lg7#K~J~-ceC|zwW{8@q^SS)zR3!|si?g>H=|XjqV^)e+5e=5uMQjj zZ4tHi!Xh<%A&kzrE6fFp+XPB^E0#yfyTURFY}DTFO=$S3sJ%$=h3}~0=`>yOZ;PnC zSH7->A6BHoz!ByqIt-$tlnp;f%7!140JoE%!9%}8!%s!+MS|*Ysp07qHT>HmYA-kS!%s!+MS=@CT)y3+_TKYVHGCCXGNa*n zgMx;qlnq}-%7(9%z((yo-HC>uirT~TX%3ffx2V12{y#N*1TC7;@Bwas(eRYA;YZ1` z;qz?6^L()HS~UDr)Lta`7Kh8JsJ+*W+WYl|!dW9%R%J`f3@K1!ycg^Ri(ZgYjuu*%B{|?wp zMeRj`gB(fT9Z`Ers|A;O;2@*BsUa*(^c&$)8^Wb2JZR?up2jj^P}L6HOhxU{C2u8a z&%HpXqf6D@yo00m4$KqkOf=beCl!$g-)Pj{?)5<3RMeh9UA4%YiQ0SrSA;tHUZ{Hq zN9{G9E7WyoP3Y^|z@o3Clzm-0DTl_v@F36`8@2b?#;~a&19ijP zc{5RaH*?r|cSP-d=JP_`5VqlGpsrWD^51CG-U&Ye>ZYRh4C?X>>M}f- z8PH(-9EQ;_Q97VuE{7eg*FmUx-PJ5GixVEy@Bo7x69&KfF>o^# zwMUn{m8iX8_Wb>dPZa9j!BKnj%7i)-O*Xzz%YYW3j#8qomz1cR7;6XAF=6mGO+ejL z)Sf}zn~&Q2Mx{_km-64+BWmyX&k{dxK5DPB`;e%;G6Y~vj@o0e8KU+W_=T`L27WMV zkD+CgqxO{2?PSy!qV{ZzTZ!^@GPn)dt3)=h~7E+nJ zngMNy+A{%dNfXfKITRiewWnw_6SYT;h}xqhGiuMI2&49xXj0VPSI$z@9?u94+g?3@ zn8xIAC+pw^ATWMZ#EV$tMb_ntY{(Po%m+c#Uhfhb?+t(;YHv{7>LHLYYHwI))&wH! zMnyJ^iF8I_L|Dmm)E;d>)E+gXces(o2GdXflTmw2J|4Bl#E9CX0qLkc*=VBncp@nL zkHbansT}NuM%12)R@5HdqNu&bR}LJEyHDe@sMqJgZ^4z`AyIqFA)1QXV_^RnX5{$F z+SIr9f^WIP1UDc}2&emRj@moY6vIui6N-5kMeT)`FQWEz`A&}7>mNIymrhJY?M0T& z)`#;_@91ysJ(t4l@%5ti=3rR)ACKDm=xLnmyt$}7zf_aEw^!6&$*HXHn~K^yaRpj+ zDryh&k58-N-(FFBe|L%+{>?<~66}1-${*A*#zdjVG8@IPb)L!BfYIw%yWi)()X?RN6@Q07uJLNJo z{8ZFlB>44gH9VcBhJRapYwx_1)$ng7YVXsRpy8*Y_V9kjzfr^Uu1*dAw)ocGS3ahO zkHF}RD?TuBD3tPwA0^9`-#iKMDpd%Avj2sKpNiUx1i$;F8lFy3!%ux{ugw4kFVMpQ z)@H|o=RP8wHIh$HDY(#rDFvnf#i+e){|xX=MeY5+5VhCMvE$tlwfFIpgyOdpwRiL~ zAa^QiPgnk1h}t`o1J~Q_TYGyyEc`G&FQXUiRaD38MD6Wb0@zGN?L~rEp&Fh}(`fq+ z{?^`>e8J@{MeY5x4!D_$+S4WW7QVH2Cwu;WeN|AXdk07DIUf}2-cr3>&5?alu)q3$h3 z?UgJ7>ZYRh4C-18>N4UUGk13zKZm=!nJB%x`=2=MygR$=MZ&Flt$gl9CqFvQG0bWg}RoBsA~X=B{)j;aEFvjy@!w5 zi+>fUn~K_#&)&kf_EH>n-W^eUFC8b;mB3{geO_eXkm*n~K^qsC)BKdmA}k^y{mFLfzZq zTYDECN&LL|sJ$OH91^uRh5)R|QF{zFv$1LjyJO%7qxKkDHaTifDcw#+eWhdE7~F=h z_%XN**>glTQwsv$OmLgW;5J0FfqMG-{7FAZm}A z8MVh^gSpx1s6A)VK&7p=|80VT8x%`AOD39B-Wk_}Ah$_}-*6H5~|)7zZYe1HEnv$74Hh zqg&$cRZ?TT6ZhKaotQAA!;yy$jDMJscH$e2(_%XVn8a+8z*2v-z``^9H`26CV5w3a zylPX28WFF~)Hnre}CH6j~oMLO$1 z!n&qIJZS^KLd^sViw!i4c%vWy%b2*;5hxGAl7r*8yCzp;U7pB>e38yVkg%?4u+Rp8g_;Q# z78|^9@O-2UKfD?CEY2GN3-bdkrh=QOHRzvvC|Ew!E3o7<^(3&casUhMLTgJOz{09b z28&X7CaG3++sUh1n*7<%81&7M>AU9@|1EZ63W2A=nW-RE9x=a?a*4h`!W{0`}kUenF;(Td%yQt-o9Gf_5V#xE}zmgg}}((|y!cs^-7?+ro-uo=&eFged#_e?O4f;Z z4I*nAMbefT0K)w>eE;`T%oiJ z7?M6vQJ8L9dO$P!| z#(_!WK(B$q@yj;s)1<~eJ4S2rN7!ux#HXu;i%@UcRYAp@>&v z>mahu5!p~B(pe3HijCE=4qgQ6&`IThu(JjU!IGylYw|_b6^d*q7U?Vj3G12$3vB>c zsF`44vBC3WX|U+C=5aH>j(OKI`S=Slm>4g_paJO@V#r4GLJXb=K5)^YFU0VYrh4m` z81KZ8Km3_xPT#}RV_A2_OCOFVujoF255O-i$g^l#c4qm$$~?UJ;WYMOw#{P6n`-R6 z5bz>rS_PCoyrgU7Gtg%=thfnn5%Vevieuiq9MpPVF@7ov93Jwgq9Dg% zr?*z=<{@o%LCl?55c3i_F*jb26Z0;}jk)s+a-kqE=AH*5aibCQF3pd*mlWhDyvo9a zTTxJ$@GdAxAYDnqOB5%(Wo1ZGm4JrgguAq$jESof-lY!2)d?^TCDk#P#X)JNc`(d7 z9TqH$1j{~;Rgjl#Zxw?glx|nEPcKM!R68)h#QL)f1UyVQ;LS?F<}s=lUJk7e49}zC zd9XL1cA_d5peplOm1S^OWf=`eRW2=wAsy;d>CkX-u&}a<;wl`V78R(9cPSlwDII*N z6Rg<>li+w5Y~S0&!bWED`?p?aG2k@bb?kuIXi`EQT?b)@Yo85_E+a``k9QrvWJ+^U zpz9{)kk4LWh052-OAFb{L^d1jCC#Pf@zO%qA=r*zVdm26#~3uuO{Z4vUE<^%*C;f~&7z*SebSTV3ii2CrouydeC}KA?nE8Apk|9al=Xll2EmtWW7o;E&Ekb~+OSjB#etIMbsuff5>*_Nj4Z z=b(hE=|Ii|LEvcPKyQ@7Lk1YB@t4y(uRXxf&h!AoY?Ht;@}j`PGXhIqr@+#vI(SVW z93(}&c9At5BI~+EHuQ>g4uGIywKUiD>OfG3dU2~8KtixI>dcxZk##L18`?xV+d;y* zroloR02XQ{SXgYZ`q{&QWnljsSi50kqJ4pSCDpC!LAxbSA(;EpW7PrblN2EHp0dQ{&9eMhREbfdGqf zVA43yYp3uKut<%+oZfkDu+YvlSeR`RSZ>%au<(q)vaLg4DN`Lh$JC)p#H+D&5Ls6z zvY}q2vjGGZ%cr@nR|o>I6pLG30uq9yOlQ_OBI~L|HdKpr)_{a{O@oCt04&r@u&~%* z;bA7_#cOis2gs$|0^*|PVVWQEw+HbL9; zW0j0sC!y^>k1@#_Cnx**dz7rrB>Oa$ELl^2;$(uh?RbG2+{^vt(6)xry-4POosg^u z4T)qmCfTddBEL;eb{lL*vR;#HH{8c${PtLewq@raNe&dEzmT7I+e1o&Luhp~U8;%d%5t*RBLurz%5aSWx!yk?Q;HO-9F1MF86*n{ShP{0FC zNymUWyxzuqBJBqAsWf+m{bZU^Z$M;60<($LzJz#O0l+pG~uQ4 zNRUF*Yb_MJwm{VLX;s4ODh7#ptz|m7Qnn`CjRg|BYYQazdStrS>L}F>1!8fQe9TQ7 zo+D+GJzy&Cb+MYk4^GE)H#t7t-DvH%GhU-AJ?kC9&=Tu69)YhSBc+=8rucC%$9<6X z=b@bd`yKQYTto^7bdw;7sOJ+L37i%6S_j0g)tBnvh(WO%3rNu>!z9Q{n(%stj5HvJ z3X8>A@-eSRQmLNb%~Ws&DQYK=pjt95`8e)<iH}+;k6p)bOk!OQnn9c)&}&pbas+P=urL!t0t&|Oc1*f-+ux6o zf^E;-{5LY|72frv9A+|Y&%?0ot8mOJk)rLZNno(3=hui`sjtbw@LI8J_1QVJeVy2i z1*9mUfvne4PYx=`LfS|vY7vUbL)>IjiF&CP%ZhrbHp_~7Jym1@6zKqErr_KW1DF~x znSf#KSU%-wdYiY|=500wb}>~@{AmE^k(UGisc1Z3OrW)v`q=rc1fsn*$ zxb-uU6q+Gw6#+>`uU}2$;C4|@{d8!v?UibkBJ_2t4lEl+)N5@JyH-w4cs?tK25Dp- zueC)dSISoQN)iKLl6&$VQne}74XOYkOP;Wk!Pb8xSkD@V9X*r*JElv+?rTpO*ip)V zBbQ+@9PZEnW?;v|5O$*+kx+k9z;28LWr})!1WMTDhh;J-z)dBNUcw+`& zXY~5?FWoNcsqoNd3p@IlXfVD`<$`6yh!_ zo&h^$J0v%z0MrWDNeyAggG|_|c)%_+!|=uoz|QFPTc`$(6-DnZ7S9%`EIG_^vt6Rl z*QpM$Y#33mwO8y~IT^5{Re;?9^LVX8I*CD9bYp?U0G8yQyoXf7I(vipcp%P_C+uV} zN}??jU`Ig)?3gYMyMN}`1K3e2*q!;jU{}aYrnlo^2)kk&v;L%jT?q-w6!rWvu`3Hi zFdZ~KLiekLBtSGKevVfa( zfHG6?)I$b#WneO4S7`H64%pee%{FhdDX@#Fg4_NEusixW!H&r@V5e+{elRVMM*w8nJ8TWWbJA z0d}>_v>Q!tI#0rAOKXiPGSTX#RgQ00W8UJCvQ^q>g)|B5)o&~v$vDM)_)UV z*MI~Wuw%M3?B4gVfgPoSUG0;CT@EuD*zqugT`rDUe^S6Mj|63kV%0oWP6eje4p?V{-2#o{)M%FNuZP@>S+sba8f7*X60h{b&Xspr!wz|H{y z?5cGVBe>|s0*L`E$+0eAQq}0}4dw%aI7^ws7+4~gv>6pO_(P#|eo(w-r5 zP(c>bfKt>Z6qAQ|)TR=}9kgXdFJY{C$+Li)bbvBb@V+4fJKB~ByLPLJa=^~! zZMJ!vO@UoZ6+HbB!0tzZV8`Scuv4}}a%1*Et$>}>5OzGsgq?~9>_RgPZ_EJfj9$N+ zYT$NJ^zLGD8%AXYb^{WHzD^B-Wy6T#en2el14ywlC(;#w0CrSASdwF1 zz@(yY*)U>p*7!VaIBl5#J7e7Vnk_4qhFt;29>9)L!S3Y81-lyXwzuP92)kMwv;L%j zT^$K(CyMnTu^0<1+C~nw6N|Itv1Y4sfgp;5 z!MhEDSWG5@YM2&zC2i1&wtWtcStU}meJ%;S zEs8}MvFMO>wl!ZYrhsC*3dLe^1{7^yB56-CIjA5DX&I%cO(-T0v13z-V&Jo^Cu zih4acWC0ZE0A;4&=XV;wIH zk{crpwW7B>ORQ7D$XvMRHHx<9MjESfgbooFz}#$zYU}2Yy1A zLqP`Ym@W;wYdHX*%b`@T`{u)fT^kq+J06Cx(`ASHlLB@fBq&o9i!x%-A?s{wuUJe0 z#dZyd#o`PokTfJ|kG@j}6=WeDrWCaa#pEFlNRUbt1D|C@G4NSd)az*{3%E%KC^H3x zI}Pl*!DPa&jftU|a=^~!ZMJ!vO@UoZ6-@t2!0wcX1Un|rfSs}(k{crpwE}ihL)h^k z6LxJ(0N9Db48t2U06U}C?_espT@(`xvBqW#yIzSxU#AAZvSCEAJ|-6HVWgf_IVU3oVaF#q_*CuLgnE<Fr1G{XvKZE=JxP@eVlg=;UKfC<|`~JAQ z1Dka0UY085>*OXDWUm$3OfA@?V>YpP+{A)SI@%yIzL&*pV(BcSGIupMu3(dn*|?H4 z8&|v<3dc9;gkgBvbz=7YQ6s|eC>d#c0L_~mK7jo(CPldKkBKJj&iUY7+MUBQg2t;W zwL535gLUvC#`qi&FV7k;vaV2ML$OF_2?%!Q41I^jd&3~yjwWvPD2Tv?-SlHRvnFE9 z%@Ns_(3JBK!4cMdh9!Ea=-!NBe5-8s&pFpQx@Te)5*jDh*l{HB7NsWtfN ztQwSSx&y0i84mhPd%{E>j zgh|kvbO9W~6v$@^@63@Yo9R~gIv)f;G5+-EPXNXEbG0Fz#-E$Vq|-A#Od98Ta-MMo zf{~QL_l!pl2|C!z-3iHu01%Ic;SiyBBd9L3mG?a~t$aD^njNWdcLcAZE62uAo)JJc zUUA@H^g|W!$A?x(GS6`zb(TL_hifeEUR?s!3HNTtZLPvl-0g8hy2?b>7lYXS(CyeX z)Xgr}@q3zHhWG}0+3~xEz|6kydThvvl=oNWu@J{iwLlto*LQ$Gd7DUTzz7G$HTRPA zr>Lx^5bkr=x9db|7zEsyxYoc3bMcrS!aNYiZO$R-PqFNp4=e8|4ud_ppTvHfGwwRx zi{xon>9JRTz(ZehZ`_-{21g0^RzQ)*tdlEGxv$)t6HSFM8vNFsc3911aVTkqN|RBJ}3FowCKu8Zb8D#mFc_|mW%4ev+j*YuW4xl z7td-bBXL{HkR+CTB)atdvHjbyZz>W^<#2b}X8FZGYnoF!7+v|oiQMycH4Ajy!C29@ z%GvuI>~$cY96lo9HFu*D&iAmyzNOuit?fA`X26P0Av0slJK_OUxn2mr7maPRjPgI)|EE6ZH zK-h)gkO~Y!<-y>~ujWLYP3Oy%s}1iE;4RzV!0 z2RRPIF8GtjpM3rl@~4*2JY7P4l=F~73*wQHAu%?evPRO)rF zYD8$U@|jmPoKky}h3D&B*?*#T!B2Lc1ZTfi8$|97+u(3k!i3_mU2OjYk(2wKyV08< z7V2akAfxSv{u?ZQbnqm0n(T`-&58S6)tt>q0}1QW#?GefKg!33{XTu+k`wiwdLbNwln+xG3dIhCoy zp3fS{ zDa2c7q|VLWUf$i#exduPSMlHRWsW=jy6<4Z=1%Vf36A{2dm`}#C+_*Ui`n2~FnExo znENn}#&8t6CGK9(5bM6Io4X7ypfII_@Bp2 zV=TJz3MO}7KHH!1D8!L?(H>|2y_lID5zE@axv4vp$l8Oz%3R(_qz+zug0o=O4;*jS zy)k!IuLk@6B~Q-2&smVYlkA@sD}8y%o-+uR`qLzO&uahhhh}A>ooIBkrd-h3z2%#8K+CUJz4}uDoSIUC)**S?9|eK8hs8DL(yy)`5os<2 z!K6M-ZB!@?xqG87!PIyhZI3IIwa#GtbyTD1l zI3v1hFTxvQUI!a*jz5FjRyje7xz8oCZch~5A1~T5*Ppqw+=Q8w?kdN3JE@cY)z!xgXggP%-W^4yT|{15$`d2Se45@fm@V>JK%Vg z4RQCDgg5i~*ulPpH~;w@Cu=m}&SZdSNlq-;n;S3PzGP3_9dlfSpBx+g8S#7{@R$V? z<5|aUX?1xQR;Ol2ZI8L<=i{$1y6PH8V(zVR_gjszK?QQ zjiWfgS`unOO@HLiBmB9aKX>zI2Y>eSr!Q9eZ1nOu=u8$yt6#<6Blz2izft_Xg1>w4 z_fpI+JHja)Sb`y8N33YnNglw>(?@dYhJME#jrBdAjhnDN01GyiKaj|JT=VRLSn}p+ zDC7i;w6Ww(`Oq{LFAbJF9CL4u^*x&Hl-_dD2V=k{^Cq%}adpDi)fFe9gSa^tXP4}a z7WOZU9^d~gazZ73a7%N^z4^H8V#$}MMK4#+iU~FvqW9V8$F{QESU$^)6)ud<>|GfB z2i(D~=LLaCT`nV5xWmrQr*L&-^_Fx6Rp(=fEyp}1!h=flgid<%zSyPUG1cT;3H zI_3rQ7MFK7U_^_3b60g@(QY<|vuIRX#5RTF6TGVSaF6{}ErvRO;|Zf5V`ukc2dxyW z``~-f=Tz2Vob7chJL0}yVw*Sa&+D))>ns{%KZ#&mHfjI#|5aoLc-vs{Zw^&s6dZ%O zasTq}kK7TNjZxrQwsV{T=)T9I;t1}};XDDs;JLO*^Vp90YFv!_xhNT~i-15~p~!mP z(BT|G2Y=Ef9cGr0W0IAb^VK}>wmL>wXN2{J)QU8-V$f6t!V-&v|NKEQ=NDzHzvdTp z$+2nCRjnvv_P!hG;n}-pZ->dj9iM+sBnEFg2e)EqTZ|HuV(JD&sm0wKoy<5n??38s0)y1eXv6VA>W)Ow z17?uwdqacNtGMruyH5xIc4Q4)@smNm0L`l$z!K?J_xQd7j8YTE%-L`uE?X`-@rksP zx-Ytl*G|msOSnOz=#F?1kWe{fuIad&7>v7@cE?<_(6WYv`&5OyUcPj1k9!vk$J`g3 z1l6AqrTz^JxJZs(%nk`X!TSas($em{N z1v6NA%+~0NS1`pwrqOf!Q$OK&^9IiGPcIC%Pe;WL_M3|@>ubXafAIr|+PpMa@^e&l zH11v69ruSQT3j%*Udu zK7dnn#ENAo-@!~Uy7HSiig~}&irD@KV_BnEc>Em~bz)h+(}Ecwk$gz=!ag%E{4|J} zRQUgh`PwTOji}9ii3@H;J1b}J#S0{kaQ5$Zvi=iDxcEc#D~6fex!&nd#W8LMKV+rmcqcy= z&w3>8p1czm6tXPYt6^!Vx3#OGHyeYQaOx>3E zbN1=ZSzMlc19zcnA#6ai6?kTlp4sYJN{GGL0`(cYv9F zU-^yDiU#b`dYrqyk$T-$u8=|4CbGU=q^E`F`cu?mSD71hqN`hE{UFb~t-VGV7~!Z$ z&oIyRr&wssEFxz801ksQUit(JkDzP8Li(7}uFn(KRYu~r=71ncvB>%ok)A@H>rXL* zT`bQv$sCichUc-0Z-n(m*dWqV$8-1&35cymH4cO8UW6$NPTQQ1E8N}fxI4qn3lk!C zUT6EKzW`U^gHU*_eLd^sn&a^nnMzngdl^IFGSuGIT+KQx5+M7?Zw6~a7PDQU4koO?efcK*%)coYzl(3m$L}Rr14;JgBuckMFF%9hSm}Ki zB~U}UAYSzQxN$+EXpnV9t>F_^8I6O^t>W$oF5&69#>Dfp_rR$6*+Z!DaoP9d%7d~c z4>}9Bm_9wlRztVm@1Ak%2Pb#y=w2$(wcn@yjO~u67132s;y@kyaH8mTbnK4nH<_mA z(;M8u@sSQ5f|w^a&3x)(ZUM1n49BtL0d(zau@nsG@Ij94-Fx_m2fBnNubE0>{;410 z?GO$zg+SXn{)|(ctS*-0l>Qz)JRa2TXRlv*%s_NS8HWqcr%v?sr#slLjzf6m)4}e8 z7oxkr*%X!4$};Bqr|*xKUd>XM{16M@%;sS8u83*`1vGv(I;Wr6zCZ4*GJQV~`fVUI z?)`v$zjXobSD7J^>W!}YB+k-ZE7s+}U7TvHyb4E-QJ|i3JN&+iJ*AVi%5?v?IY~Tv z!JNQ8digqX=*f%YpNnOItM$PuNi3XBf8zegzsRO zy*Ik@Hi7)!*?9bdYwD8I(1Z^ifibR7_tdwci7!4O?#=vt+?}}tPf=pHX|#o$y`%qL^dPu=o@k$( z^(TKK>wEde5cetEMGA|z7!UEjWeY%!)vh`4(e~)dTfjK(tY@3pkbCiJdPN zUKq==cXHIK*qMXTBl|8~Md&Sd5ngyanZ0v@(75Vygj?7JE#sW*yR2_UM;79o@y+SF zd)ocP?HG7Rc44dh?B0=2U>~8g=(H94uCUM3kH28-iU%AcJv9>* zYaE=DJn;!tFX!Kh^bd&RrkjD2b=z?0}u3ZFm-|s_Madmj;T% zJXq%~ihZz-=jO-p5i*u?k(b_L$6TbUC9+qSOp3$<5x)rK$LX znptH(%sCIP*BN`vxWVV>Cy(bU#{={*6EJ+3)aC)YmX1B&c)FFov5vvI7k!3T_+&mm z$Do7f=T6qWi6X>Z00r<4wx!|#_a|4WX}qiHn^@LW=K1-R1@vvgkDr0HmhngEbjd@{ z!Xw-46ZA*MpP&yTw|Rn2v_vm|2t5L@K-2gH-GIl;WGb!@c*+m-#g>~D^yIejC+II? z(E1GWzSa};Mx5s*V4t8jF*!EJu*CjU3kcy0Q1_Y>1Lj0G2ybnWh6?Nx^fnv@c@O5` zLmb1pq}O7k#b9{`mN@K0$WGYI#bxGg2|xR&NrUD?P#wem55ErG&A#YL-uoxqX9>k3 z+@sI<2s%FwnkBLQyAxUWaL_#d9B<~mXS*{W1ilj3Q8B8L=K8Zfg1>FpbCS`g^{G$m z%N#PdhJ9LJ#*n#n$=*ciJr{iicO<8?w7K4l!8z`XdtwK-Le3%cX5b)R`ZT9}(aXQb zu0Nb-9%jBbat!0)x%BIE)d_d}Pqa-^QSy2!29N-57-5X_!lv@`%IB4Tsr>KHomV;g z56*(m&va6~j$2VM6kYXQUG(pbdtWMXyi*+SizRXI#&&csG2GyIKdhS0Rz0tv1LG{9 zhR0Po^RQ(p>t)CLIk!=wtGx|>cRJp`)FKlq_lsW zj(ei_fghvnSx4~fFwYhZsIz&BzZHAAteraxH#IYk;L&*xptC>yK^~sGgTG(pz4jS% zpagQ<$DVPH4lmhD@#oDkR)5?x&N9bJ{&zS==K1KH@LTbKm|4^}A5#~Slb?Dvdj57E zeHA7|&&SIA`S;;(7nbn{K=;caZ1fA;@rQHOPl95#|3w_WjK5crdk4FOYk?6wP$lQX|+l{m``h{MU{0{@qRz{CIB9V0~ zx~LhSakB1-mwpwvy8IWKJXaL7Io^3_9Qdu>oqqZWKaRM^pTgf`3-NowSIRFe|A+Dm z%I9yJupcmuS10*oVGK`}yc77G%)cTZuOQP@tA>lu?%gr>`Gk9O+`Ti-cbJ-`(50W& zR0@w6F_jwDR0^$sX%6O5$sI?8Pa=Y^|2mvXRpOq8WACN;&{F%_TB;^#`OCDHDyyZI z_bxaN6`grFb9!2kVv?@A+e3>|Jj;KW+)))Yj)A zF?H$TZDbI{B#nQQ*2uH`2aQw(jg7CXkq-eUY25Rx@mlK-i5@mlk&)ksy)*#5d2 zn-10Zle9*jwHm1k8b{L_qp5Rn?eNvW&hne}w9Icbm(>XFd9jv<88n{ZVcq=NBW^V3 zuRMw?huvi2UgOvr?r)1v8^c!4Q60~ph6U@!z{=6BwhUYOu#*h(m)&}x&spBj>G@`U?9 zd{Hm&wDDqRsyk=FmHFAc(M;`%^;aA{m_n@`|B{0ISai~u=MC&?!>#~=%IwW z_~-#1jo~fDM+ZDLx`_q^#{kuCAJz;bxXX@viIP|m#=5f>W1tx*_pUsG?mOGxm@@>5 zDFwD#;4%Ns@G(Ei3;ygE+)jQL_TT=|+U9r(413!-3gySV?{>$t`eUVI7hQ}R&~)xw z&8o=3Q1=Yh)AD{!pH}3+r*5u}<2mr@@*FFNPnSpRF?>1#pRzP~RSq=X$Sl!WzLjSZ zS>@d*b;%WYsAl}8!q41S@!>{{aGMZsn3u$EN5g>1R@p*->4n0H>zptFA~F5Aem4`K4_qQ2UaGsekf@}|O!;Unha zHYHJl_QH+>Ou6w)YbN$xViO=o``k)zHJh-)y$54LIa+Y%QW^Iy5GRtXwu;j^oWNz-{pX2TUGdmeUQ3;1!rR@-ihJey9u^;u|Qo`{5(l|IkeV?h^TE7cRn_dkAUm^8>e)PbjZD0&4h_2)B)V z?3-}!K?Xi}1gSQp1_ZNn^K5cG8w=;^MZVR*g?0QjK@^dit8)y=1wpPnaqIJqu+WfV zL-e%6y}HbBoUcMlt|56K$j*nUu)EL*iw!9;#5_;E+A&-cs)p<>hO~hoyLs-ho)0Z> zuGZeoC(_cGuUMBz1<=8`5A%BM4Rl_MCw2D&1vp zyW=`#*sW87uMVB<#v@}fuccVW^CP2JyC~H0(nt{Vy7P5>Nn|)?`n#=oKIt^Pbo6Dv z-BLCOd%*mj2$o~6=Oq~I7`ZTlo?Iv{hZ0n=+LM?PXoyLRyFl z(rna>W(U7mdp`Q)TOIGjnUCV^^^t=slKHrr989%0 z4RG@z_Tc-eVO~vHCwBaS3m%9<_}ybyL~sGc7kn=}k+nNsbjD*4z_?*J8D{DbS#oix zTkV%|E`Xq7?k_njt^QmUrh=(qyrD06e$AKd{=I6PoV{xkb}`}oMAJ^=lCF|iFD!JT zm-T9=AM#G$dnA`-PJD{QZ!U&z)F}YBX%JSUwtv7eEN|gk05{8b*q_g8xUD5j?fQJK zgmn`~q_qtR;l6GV7~2lQiePzV(3}`DCk8;!0kMWuUHlD3B&_eiVep>WIcB4T3l=Y&^5lV|FZ+NgD!TbDeIT2!O#8!~_&rY6 ziwW!#_;C64D1=KCXO_$icP9!Pz{8&MV|L=~k|*|UJ!09J?ggXhK#3x3q-b;eWi4^{Yu%1NZxmNa zJL(DlEyK2vuMOc3s}%Eiz9Ts9I&SpTqm=q}Ln`l)<&VG}x9O3IKE(n1_IRQ(e1`2YH4GknliUHv#q*zco-{PP^&LScgUd>nT;CwC(B@)@u$yK@FK?RMo@!b)el4x9 z6Kk$R^eEs^G@2ThT@Tm!fKDzD!mb7od!1F86SX{X*y~JY=sG)-qf~gE9edeBHQ{xZ z&Fc(}{r&7WaGedHBwc54N*hZJFSPYsmPEfsi(q3ri0t?M791k=pvd|mo=4cA;W|Kq zX&)ZH!hF*)_+7L+IJ$#4Xw9Q5U%O{h@;|nqvsI^NvP|p~ce77?_z2BV!wIVG6JakE z(B5Eus05)(XlB*H^nfFOr5Vx4$R67BhRw1gNDvPdyN9#xHG1q!>yCnw+1oXgTtBQ4 zQ4=0MMQ6niu{rqb2acM6Oxrs)b5@9EsAqrY`|QGqFLJ;ah^e=E1QJGfn&-6rDW)zn z<9H(ugNN@pDw6Es1S)b_bvVp%YPRVQX3*xGESPm^P6Yd#%%m;2>@zbXTNYyiV+EMU zXfXThmrhNm3is~y{pgqo7F+cnv!UG2Raw}T&x`*3^sEN~Wxu%_rl@en2ynJgzKI?x zpV!TSlvALePQ!vDR@0FXl^qhXPi9i1MmPon4+J2*o4_H}_L}XAgE$Pj&Hz{u&$0#J zfa}cmpYdtnrT|5%-x(#&C-gg%{JBv&hQmux`QRfz#wVfh{y^$l&}GJmeXuct=83La z$JE{#e||gGYTXgc*K&B|9sldwNY3~v2%dYqhzThk&7Jr?u+Zf|7ouSA;7L4@;{#hf z?#9EpX;_iP3~(uvVT+G<{Cjv*vMUEe2(XV+km)6w1o% zImgl}ORFud0mUWPv>TV4+guOVVseAGPSiq9|Nf?+&Zexlw82uXJ-Sy5>8@?{RF2wa zeZI)mxgfxPi4m5OL&pqKWjdQY9P&DT_`r`~Y*&>@S1WRLwMbWk5jKJ#vjZ|{F5ViQ zK&!x>p!X{?h@dtcn=WHtu=li?9BT^4Xv1sHqB&CzF8lE~kd?)2t$Y2P)l7nUG6>o% z5_~$XM7i;L!Pi%!&-5YKDpd0PkH#%gZoD^>`(s|a4*IerZkR$P*QAvwH{QPc`bvtK z1f6B5e#Fw#M?8lH&W1po2Z)`($yN(}SaRIK5*dn}24njV% zOyGO#?9*ad*m^t~O+NS;%C@lk3iG6DrDzMgoN?K)M#c_dTz1_V%G;YM`+FnHM;|_( z?v>M(t|3$Q3nLrOlzq;~v{oAK-G8D~dE0P5HLkD8$gn(=mYrr~HJP&Arf$8NvhN!i zUsf}&uK==4AH}lpdNw*_`7LxA{dD;d8e_6^Q@{8$jl*k&DCS*hUsHz{E+aK#6#N-qbow5`ClhyIXLvMuqVipaJ4*AKl+>3X2=m2~ zx736goU8$ECBJi0A<@)*e`{mSdPu|ZO!DA;X9E3H7Ulrpdw!vcEXpcCQDY30R>a_D zF}F7hX*HF$rp;rePufb2)o4(I3111K5(`h*qx=8Xh`?h8!+h(u zz36d-?7oh3Sm=6Osim8BNFt;ZzQv2@^HAl>@fFzpOPM`}(I~^hXiGPf??i@w3xl2V zK@JUTR7>$*SiJhj6G@yCnTm;y;n@#${Ok9LIz_4*lysuE=;+S})ii>07 zNh&UmiC_JWl#OHJB`PkCiN~tAI415oTgt{U@y#kOj)}jb;^LV2sRAh*$Ha40TpSY* zL)_;v@dIZG&%`nD4;c43OuUz*k7eTJ5)seD=c%|jCf@a}<1=vu(&KsT3o!9xSbdIT z;`b!t3p4R;%nl|FGa8v#7%c@8lS9)maqn2g#69Fu&Djx6+>gkxCT?d2t%*y&2107E#Hu`aZG%Rii>07Q&e0W6Sw9|**GS?Ud6>R zai)rkW8(ilQ_99Mu}8(lG4cMde?Al6gFN7wI3_-aai7D)TS@v@CSEKN@l5;;6&J_E zo5viViA$0GFEjCfeU*h`H1RHp_`*#5BW4E^hZ&7bER2?diOHd9n7I24GVv2~IZwpI zy-gyYm5ZXnX4KEzJf8_R9&?u?6fwBy4;xaZ|&Db;E?n zNVh$YNc_Hz_=ZQnJ5^k7Y}{BCHwEKvB;S_Pq-A@angRDii?x>$to^R+Fu(bW#gp%ZWR|N?PsaDIB9PMcFuMFI91I(mot=^R>4n7DVUkTzsKJFGK z+gRU6o;bjIzgt9R_PT>|FU%HtrFJ{)6+RW+#@23&&ZvYI% zBbSD4c>cOxWCpj(NTfa%^4E|6UZhBqmnBLNLQ1P~^xv1<^r<{x_x&7LL#(5w?L`7< zT{X*wExUIm)4Dh+-;1~~aJt-3Vj{5bm%30v2(Tx{wMOx;`U$6H-GV00 zl10dKKY091VA3{^1L`6FIs!|>7bCNq}TkIgdo|y?4maaLybbZi@=BZkxsvh1D17T zc_iXIiTDHQ5sBN4k|v zCQo48ukc}GmdE-jsIm#gz!*P3IvhEQ-GNcqB;P{`h^@iye+2^-{Nq$3kJ;~bNh4)E zjc|ePU>t5j_6cj2E2QK`dSSSiZW3=l$J_S1+i(MmUaAWN2&|!h3l;ep9;+3;Ju#yr#%V=pES@!D$`A_{Q9k=-Y1r zhS51q&~W?S#U>g=(7LA=utG}!B&lP7$|@u#pyDDJ?7;yQrt;@DMM;F-=I(1Elew+C z62A`^76EZtu_}LKdFWSZ3MV#WbBPP0)9dRd;q}DMctjt zn985m6r~z^92y`M7<4XjCBSh+;GlDn%pZ?mCsjh@(?G%jJPBYv`B@kpxYa5c7%@V- zu#Ewa^8_A6i&AvSV*-NQu`JvrUQ@=g(3CV_mL&Gc%@G*WrBA%(P357Fur-tli6x1R zI5%2ax8bJz&>y5UKH!b}>V%@gkv)M7A1(}&K@I$2YSP#VjR&L@jJ2*2xf0;41{}qn z%b3ca+Y~b+)Fhu!CzJHfL>NCJE}ccHFr?0F!iup3UdTbu`eYtoQj&nj*CKdKFHuO` zP!Vdv{!OaFxe0}P7la!zJy#bl2wf{*h9_!1xpyI%oWBPIYCmcoTBQ6@^U$sgJtbet zB@6~`>(T@)t|bgP3sF(jyb)AT;6gJ1BDJK@OiuuGvLHi=!P<%%jYTL|sJ&7P_7NaFQrQ2?6Pm*j_PrF5#!8Gsd) zfWk0=pgM=i3Jo=QV%A!WBTC4>3!)-Wx6Ox0kx zTosy=4vdiu=1);DOx0kx5*9kfISWMjOg_QT;kv^oux+GHqSjzVFohSEqV zGtxjQNQTn&(@2Y$s-a9Fl>NA6F%@09kST$>cSoTxl|Rs>7eVNO)KHczN&snCAr5_+bu7YM|4830EyZy2XXaSN-(rc66oTO zf?+CuVY_8j8Zb$Ai!%Zv#%`IOu5{vD*%mDwwObD3M!r<^Ofgg5@V_EG%T)eAPnjnN z(m>%3Mgkq~j6z|mhEj{i&_qBi#&n5Ja;`S_*?7^d=vUJ>i( z=5%0;WH3!pFih28#QOP4IxxXx8T?Tc3{y22v3{OA(~u zgW36?5!x_SgAwazSUNCW$)n-&C>W+{Fk=1u>Gd>?Do+Me6a~Xn4Mwb=8R@`eCxbcm z<4B{Js=#HXTQn5x0Fb3m+52c|R`Ohpt7Q#BZ|elAJ}CLdE*~x8r6tg38MK{S%fxB6@2#6vBOO=HCj44l)T@Qnw}|!l0_)5 zdp2<>xibxv6hq1RQ7DN+$yh*1*()iAlD^U~DUv4At-I5JNimc>90ij&lw6+%m;z%m;z$Q3I~mO5Q7}x^U}Pxi zeK}2|QVb>YqhJz;5`Q`{DTb17MZqKvCErO0CdE+l`t=doBn~CpcBW}mBbuI|=^luJ zVJd&&p`K$@f!3Ng7Hv&JBY| z9!fTEPmM{6q2$g8n50?BMSzl0Y4xJj2?V|nVA2dFJG;|>Nimdsd|d=g;!v_E4Va{% z)0IvfN^Xvpjt(Wex22|MilO8jlut91+?)nVilOBFYa>t+hmunOC1tOq z7)lxeCe5s*>7_JaQVbWPGg@=*{ z(t)W>22&FS!&D7MhLVfZfhkA^^MfcDrfM)Ul)U*unnracEAK-kkw!69gOQ!>i-JiUN}hW@O`{so^aM@kiGpD&f8n9z#{wqR=4UXO##sVKEtN5uKkiIt zfQv#;ZXrUcAT=gKdirY8NAGdRK;j2$p=;7YDoKV^5d(?IVVw9qTxg&x9ZmzuQ^0S> zKw@$jQZ6C=CM~4qWJv$GD%v_Ghaq+0IdqXgO0}d|o($<%0!eMZGg(2xQYj(r?M%f2 zZYy!A)Efa3zf?*XHwlbXy_TPhO;$|1n5?jQLOx>;?cAJ>);-9Vz>!bSj#7xp{E?IT z5r(P+QYs2@p*jIlg+NjiVlsa;Z<-K>MyG+aF2%reRs_(p@NyV@i?X?@R=+7Vq1UAt zczS=RBp(hv;eiKWWI61jbYM~pJim#82@gB~Bg`K83n^s{s2biFg5AG z)Fy)&83n^s4Mql@v(teoNCva<$_Q&>^U{Vijp|Ak`8%Uvn5x0Zz;k;#Fy+Z$ zE{uXG#Si~ zqF|V+!N_vhh;(2wlEIu21;bPgMwY`K=}6P4M&wFp)Xw4vZJ5d**sm2q=n4UotauiW zGZKKT5Fi{YaGkFLfe+|Io$bWq<51rd3`3#0kMqpQYG%Oc%QXzc=TADXxe5m_ms{uh zJ{z`Rw#QmB*|5IrF8r7Wm}H%cL!gJB|NBzhAAaJEJgmkwt^~)f3_lZ5xM^gL>rR}f zDk-@hrp&=n)FmgKz*PImhzZ$1Am3-13l^sW{AvRLzi>hXFs?2EKvwx2Q~s_}vc};` zkGojwpAn1Htb*VJNU|58vfQk3!J}U$gjfV>C8Hp4H(I(5KDsz?;No#H2XO^)yq0rq z7yf$!u5nXvP*ErDk;IR8MouZv4@UMCI1MLsa8Aa$eq<#K6X&fMf!X7VgX>Sh;arEF z8#BHs=D1Vu6dnc+ zS>Hp`mau7|4cI(DL7UzGO@J`0+fexXM&U89b(WWx(cU=OTeyKly#(js8CK5EaHh&~ z&~k>ElP5PdNavq{D(owM23WW+G#lUJlUTl^xIODu#NoQxg!_i)AXeWuJS&?AdN02W zF*x&!*UD|fsd^)LFClK?z|F#WWV@VCgp+W6Xbx{7!L>`3LG<=b>fG=G90E5gWG{Hd zUho?3h{fd(b4CsF|J=b`20tF;U8Qs84^F@}5Tge14+;2>c>G5+t|JB-M=D!*BZ}`) zC|jxYg-E3@=mY$Mpu_2;ZcF(c zZXy_P^QN%6e1$9mq85B&MTZxi|R-cQJ%yPa$M28xxNy&Ny61@V+rmPn7d)(me2)o@<%g5{7P@) zq0r`Id~NT0oM(Ez?6oeNj2qFi!9sTb@5r4(B?DAS=7jSR8_x;(q-#n}$aQySy#RQ) z=BWcGU{>P(sE^yBV6v!jT%vJYqH$bdjdQHBS9W0EZPj*AYOz{@>peL(wHYa-WfZO)G*M>YtibSnmSw-E9_w#I<36mQI*^g)Y@_faul040 z`GyxalDG?xfF%80=)lIJFF~4Xu#I71 zYU}tGv5x=O2RQHC`V#mn>k3cdCMp%MIBt=+8R~UXIqt6<5qd<*e&4X%lZ`^$os)ag zpMO<~QeXF)J@#u(T8tN5tL>)FvKMqf#t3Z|1{;Jqml)Rg@6RyDLj=ZODJF9xq2v26B!_Y9%iDIs#)vjKWjgL+vm`PA4*k4TlimIyN4T0&DPk z=M5Vsei-6elM{zRjrcwgZ+q~$BHq^HGfKR9Xdn)SCc$vQ+d*w7Hm<{1l(;<5Dzltb zpEt{C;w0@{dG)orlQ_D+|FGd@ZhcfN~lB8-&3zM{bap8i_nPYaDYtpmY2TA&jP;0G3Y<4%`48c#2_N z2R*iv<*$%jxsy)8MDjWm8+Wa};B|WeW-~X80T|rxg-gtGF|)?==y3|w@NSu$Xp?aD>g$3fK=r8V=j;`9=WqfBEQk#;2xC15m`5-J zM#PMmnst1XZ#QZH{Jljjbwu758+sLwL%Gke;8fidvK|gxn=^M+~$ioMx;QVKEd@e6?nom7KYi@ zE+4?RTl@e@!|m7F4KzuheQWe8qZWm7M`b$fG18M$W}qF3i4EtuYv*<@G1u6 zoGd}Z6a;|D6Ce;-tb!61l&YXy1r;h-q=IS{6w9}}Z6zuwm7t+qf|d#uxkv@oDo`K$ zw$-V(RVrvyL6Zax%@VYpT~bg7_Q1wAV0RY6b%{Sq_`NYKLTt4Rj zNzl+OK}(N{>{UTf1^p@*P(g-#Mc$UJf?Nq2@+4@HtOSy`yP{ASSR_G1wFE7- zDzZ)mt5ndaf+iJ|C=o4H0gtbSY*t9nvPeZ%tDsf|bt>Q)IY5F}Od#O(5eRti1d6Yc zpruhoHmRUl1-ym~KRu$QjbRk>Q5x6OL{M1$U%$*aGXaHfJuE1E7XeYYP(nq8 zN<{?~RH&d-1;r|uqJjws;!(($9j1aLMNxPNRK`?4=4(P1vLIA=lDV?%w}xVqkVG_&eN{I@OmQu9zBV$W|sv7>3&f;-o# zX--=|x;ttKtStpt=h{h+;7-bbU#3mi3iUG+s)tc0aX598k4>0WJu&xT+^tyOjUx+! z-Mi*wxNz$`k1q%a;C1Byhg(mYff{l#2>$jE&YG_f>^}-#|D`b*rk_{zNEE&e3tlc! z{Q!bX$#XRz<7u0|!ftI9ipt$3t%rw(tP2kQeI;=TV~A0k@ffn(5g?%p!3hfAZalsW zd=cA&M-mi|y?E?JY;b?YHNfR%;E08H|I7^_a_;rCx9UmRbv&d21@VZ7jNs!CjVRqT znrm0FT_7BCIoFnhiWA$d3yO(ipkX|OJO)!dGFvgRFdLfi7(DmKB^m1^0{72=xQ4mM zF!u*nJ$P+~^J&IkZqGM4lXyJ9la6nGm*a+ z?=zAAS$SVRx<}rZkA4F0Zr{Fw1%GkbpA7s1Z}unsuOYze=-Xh%+MoQvPZ2mf-puXj z&31OYmFpVW)$x9|YvgWZ8D5OEqLJMw`#KAa+){+?ftp8wWg6CM1Z|vas}yTha7Nx9 zPY%Z6{8M%c??}i8@q>$BhArEKl3_;Z^j9N|Q-1IjACbEj!Ntsd$tTF&9G9EdGe}S4 zRzBtq_}Nt0QLFG4JP8Gib&=~471uu9Di8wg$RV8e21~^7SRl{}jztV}c!3ITaO=V& z%)@R%y(e@HI({uB%-6=O!|bjOQ+THd^O9$Yd}Ov0W}S9aiY0k6%$dz`JRR)(-qk1& zmVj`9E))Q-EyBqqEVS>@xIz#Fra%y?5s*j-=+uVCIy{zuUU*!EM{+hE8}V4GVw>LZ)x2JXEpJBwO|1ZB%DUhJAkE9; zP<>Q_1I!fs`(H|Ml4t|-IoD#dC}W-K#;$R zUoO_;{m6|NTt8>=?n1=oA)uY_35=3`5wAMC!fQT0nHkLc3J~C}Sl+BD@@7qt;64LE z@a=QeJ;9=8aaAx6{=;2`z{RR#okpN}0ISeG-rW_xA2@id0PLkSv)3H-n(tbRawoQ9 zmb&6j&<$6&Ld)S2$uQ|^nt)?6XJnN~N4JBKATojLAF(d@Yz;cwTrH|LN;>EfW(tlt ztpwG|1jVo(U}La0r}u-p;%{K{Sbt!f4ReDmP(A<}VPV^_o?>G>)&p$2VLeAG;R2`i zM#uX$S;4JYjd%<$_T|68llyQF_9MNvP1u4w<|*vt>a-2(?B!5aJ+a+-}GDcH81Y(wLiMYYun(qDzd${^;m)5ip@ssFfRUZ zT@J_))&ge0pacfwnol&ln9ZJYL8RFpYo+v|AD1xS!v=cH&0cf8eZ{L}0_zWK7Iw-# z)^lv9z2;93qY=I%XwHLp!mZR3+g)Z$4@WY#$lS+zRkW8olc1Bjb>d7$dTY`5*7h6C5to$@6#`?RdD-<}Ja3L>iVzQ4IFfsd;cIrXfX z7DiMfXMc2q$F|*F*o_)?qO8=6YK_8Oxc$m)gG0_F*@iSLQQ1znW6R`G~+x`^ku>W0rI_#M+pB{et{}7)J zfDBPSFMOtmH#rI?uzi~O2wydf={=H`84Ms-L}lj6`$^hC}%_& zbmER+-gClS!X)NKTz6|-|A^D^y1ix+m^Y0vF$NHvYwMITQ3|Ri8WW7mBk$veOgvU$ z$O@kO0?dPP(YldVfi$NQ5k4Yj5rW1WX%F@x_xQNn)kwp6Rum{cB6lr<4|-N-1UE4E zq-buak6Q3Jaxw@$%;bxs$tYTfq9-X}d_>GD1a(AoA#=N;xy^<;1&cwj1gYsf4TB@U zL_g9^+3ul@E=LOo82jB1!YENIT-pqUetxbI6@>@!6M#l=>Drh<{K}_NNw^0n!Q{x7 zK^(B21;W+^75^P)c|eOWLva5?=+?4&=E2wkiQwgD9H`Zu$?If1Hbc^J&1jb&NWf}Q z6V~t)Rn1#lI4Q+dZfd5wrkhl_5@V}X&w{vo3d1fgTjZ3tqc;l!aQD*ZGvK<7L6DUO z7k&fda4agN8WlleE%`*ym;wMAjR|-}mlz0$s1X=bj{pej<+zq|X26xc2(Xe^t+H1j zphbjsluCNTA_T!dokd&;J%VciUJ`L7R>9}<6L2k$!*xEO3$DGOtH!mPBvw~(C*azH z6kwMvxYQ4*w|u_gf;R+TRk&tIx*UKTJo;_oO6U<>yYP~TE3pcG9k@n}mn&iWclx_A zasVg@Rupubou0r|O z*FZdki$UO{PJhk{JXGknFp&AA`I7Zy6bux5>Z7WyuBL_7yc4{xPtTbBfGQ zV826P+~y|Shdi`FD{*yKcns=gd)M}&GMD8IdICkgoFZKHfpx*WhgW74nVyD0+=dJC z_5&md;W4l34K6qd#%$Sw{)s!h{zGoNcNY%O&NSfD8+RQpDn_z>#R?Sjng=1J?vB1o z*K!E=+FplKn|u4G9?MVGq481{AhE&YYd6+xNXSeIJ9sS>^C^#9D!q5t+n`jgHCgC z08P58Rg+^~PzZfhEAAC;557=HA#Wohf_md48ufOf{&XDbFhbjeB32;WgedNCQJQqA zo14j#*1@|H4y?}^w(e<`Yg5Kl({<$_pMY~aUalVW+ID*#8;JX;B87XU;6B=0xXojK z^r+LCT|bC(>DM~V+20$)A=B*N%gbh;H|QywRR18>m~=eav@e^ zAdfxZKod@Yb$EH;;$iTp6gSbsp!qcs>J#(r3DlpYslNm*IJ|I_+t%eS+=52DOQaIP*ItFk>~xc+A6)u#S%v)!nvZFa?e6SVgHPp4iIQ41-CP zpbLiCJ|i&dt8h~W9q%=4+h+wXw%oRDMb_efW=uC1I|uoMOIA1IWhzkLK;P>(acuhn zMfA&o^8SS&`cB}xM~DtbvwK1Gk%Q|7qVk9_{^7I1Czx2684^;Q-gqr>vGkYzX(}G4~FFoBF8v2<`-4VfPcwGjH6j|qV`y4 zQ7vxGfO5L37I%BsJ;K5Egm>m-OtVO4y=avq1+Ho~z0JW7xSKyJ4#Fy2H9`oh0HLv+ z5IT`5?STA?V-Bka1Hyba3$=+1nAc8@SW@^xMaQI z*l_!pi9_mEcHhNIGt6U7`>cLrsD0!vq*Z=^8`ywO)ZR<5WW8c2~_mX>$v~{=PdkbydW7u{kwzXNc)ur0n6>cl=ufXN=x~;9MtqbXe z_yyVuKj59QZLO2Gy3p43BVR%q+S-BTlDW76q?HU0^DCp;^mk)mm6q?5UT&kRR4xAw zavJC~-+R)_o4Foh_m5&MJkoue(aRs9m#3><9)!Ju1w?vB7w(E}IaIvM%DTtp=vZuX zVayn6#|)tI19WY;xwqy#1#sxrTeqX_=*^qZ`v-2a@8#?IO1OQpi=}7T%{MU`W%r`1 zKgRQ|=;>Scpxb-M89j(Z!d^stjOQhu!;0O3}R zHqg`_PI%WwZRND6eVWy3^JWbX>eN zIylC9zz@4-26AL6YM%*UyeyL*mVH7y9+xaN~sfD?Nmzd zJWUCi>brOu1obVK-L(T~I!8Y5b#zq1fi}XqP)bvwl~!P31H88opSFNep_P#5I9dsk z+If4d>SHZXeN+di1?r%)a-Rt6@;|bX{w~O*lgqf(2KEY8RI}+^VCpCNJ?4;M>sRFG z07nP%$)2*DBc3wX5saptB>jWf;VE*wJl)Fj^Kr4Q$b7lTv9ZYRg-hPC%5F~}OY8!7 zpaRt2yzo>|e(9jgF;23(>@(E^KHq}N%k2-L{@CeFH5i05tymTXM{?I!bEMi14sQUf zUEvmP`C>|=_JP-MA2|5I8RSS7jBsQfUJ^Ny6$W!hA+Mi1H^^(sL)A%#L>!>!#z4BQ zHV$%J|9nw#3tFbn^rRrPN;M?nUmoak&koeTB5g)Jf$oMo@JFat}jpt#Xfx_>TqgXBFa; zQ92QE#%aW-;875N;%T5VKMs`=q+Os;;Uf?)MNmsr7Vbgrs<_hMjYQ`6Ahb2(1V)wEAWUpajgVxi_}{a0!$lM$=jMn1i}5Mk@ZVwmL*$;9X1J6VgmZDP4B~9#Quc1nejT$b>0kODSV8ZIyJn0Xuk` z)X&0^`t$LUSU;-^*5^j+UzJ!ty)|_G%8f%DH&8#lIduJbs{U+Me=dUHehe^HJqt(b zr!z=m{j4rHI;Q@{#QO81^=IP|t<6V(`g0NJ`lm3)Y?vVFYbGNI-X`_4aHReWyd>7o z>Voz5X#1NI>!+uVZohKj5vLv0Pfs3QKV5ZDzw+N%L;s!N{?Tkd3rFgwBT!=ftS&e@ zrvB!{`swDR>sS6y;_-y~=?10i&sX*5BEaHC9)jR)Qa=kv>Zcb~V*RWxSpVf{`&$$1 zuLU$+|001eK2NB>8gIJ(W;~+(jgr2m2|;i_)p#H>86JImG9ab`mP1{pThRDaHRfKcuB0E)dfeRetc+U9>JU&yGK~6!JKU` zM`yEv8}86SY8%jO;C{SW&s}`8o_qJ$f8mzBy=M7uF|^4S-CrIpPnmZA<=B1ksF5Ap zZkgPy%$E%z`VX29U{G)2e8fk2sjx?TDee05>&3QR1yxy$xVP7i$8XRv>Z_ z1GByWg}jBYU}=CN1}~=xh;aMfwi{MGl^(2uMnJ*mnm=(_Yr08c-&=O4?_GGCteJwm zh^5)9V~PpRd=2+6*--yvP>pYg5wR&3wHXB7@nI&==tgw_J_T8jGZ%pytA&U6u&A4B zWWM#eZcN!a_GJPq1L-bvbt!7{*y`(us@0$xw3@V#=^Efpu;1Sd{AZMn zdZ@^%x^K|wI|hnpE+?Ij4O@@}-(tQuZ){)c@wXUmZ5#Gv!gCd@`Jg5~OK zW1BF%(+>xIDFov>;{3Wnkf0qzb;{zFeZ?~v2e3y23;1q}d8Kh!0k0Zu_}YjWCT-;^ zMNkV&&4QU~Up^ag9+;gIhv28IEnv5;18bnIfDQl)Z^O>qDm26S9Iat+D^S7)KU)qH z8H|*NCoB{&zYAOJ($fv>xFSc+?_B1aPP=QHF|@%oGQD!4C zOI~q1I_$pL_tM~#8dEn%;g8m^PDhT>}m8B-u9Xc zV1|L3PW1tANAS|3i64TR#`Xc|9S{b;yI{OycL*=Yi>2#QJW;;v%bM|D6BcXO8cj`n zMRu&$FuN6CajSt4<0(GP%Ib3#cKl}I`oi^&4R?+(H#h^Hal^2T*_V|ZpXnajst72-A$;eZLrW!CQwL7v+o??GTVr=r)&)a zurk%dbVpUwpuOe~U~cZWtB&?qZA^pWLPo4w1_m!Pt5y#7eG7#s!Y;=_%T+hHAjjdS zQnS~TqPQu~F7qJlD@9mO z=z}eO>p#Lg^ETEDdR-%fx|{7aMACtmYB5NnxQE=fr%?9|sI!*wc&yuAy zt5^-J9+E^g>U4}*>M~yi^Wr24Fz*q!W78LvJ%S+tccYDj6(f6?=ZrL!e0#(f=jxX9N11uvX(5IRF?$U(23c`5C7(>@{P- zw+1|Pb{LR5ErGTU@PJ6)0Om>fDe0Sl29nF|%l?A@VTEAsjuWHMtVCy&=7#T0&D^?LEKo;RHlc^YNNg3^u0gKV{4Hy-)v}=f^XZQ%xdw7 zJ76);*Wrm~2>_G$I2x1IM>Vq^ehu|6lAN!*5AUTNf&vvx@@;@g(pJt#bGKL?aI&G* zf#Nh$u#W}PV@)YC05Ay;P{jzGB0IE9%$5mwS5gECZHIKV8Hk}qf^EaJw#oRf*;^YU z+K|DT8L`DcmyawYrUVV`2re%h^?S&p(^~xNK`gp??i<8<{JXBPs~fS5;yVJB+vI~X zJfbX^5$CtVHG~Gt5Db{7V89GG4|T$TIRGu_)OY>X{2edc{n}z*aW5W~rSdg^0Vk0l z7!*Z2vH{SJHkHCgcmj*EypC=5ejszgnWvzseqMt3&)W$HjjrGWSFIzvv#?;2gQ#L1x z65L2oG)BhUqgHEZi(nBNw#ac5BDzMIGfQ@O905MsmyJNnVo+AbhpvFQ;zCv`Lf|^G z+v|9hHi)2#T?;gfEmdACt<-7If2N*sPaC`N{)xl>vZ}yK<6E++-M3s z><`NtqstVynx9kgq3#0R954!7Wdw?0a6G^8TumQz2cw;q>w!UCzr#<2@8s76Ofvm! z26T@E*mVcJ9G*HD9#4)C!vp!)G(cj~RC96d;8fFd?_ggcQo5Nt(1ri;R>v<;)|7Z< zd(iN>32|T+OvE52G&n+dz4cq`uBO4U@LllRXJNzRct*#7Q(tLavjCP%M1(HD3s!b~ zZFxWjOW(9e^c$@H5ALEY)h|LC{a!HLL8Gh2AVY~{_it4hikU&BB0DpA0>8jiK%m-J zu2#8N1*SxxF>`neKbDyh^qFlRw9*vB>3)M*ix*0r7aMuk#Bi}1>d}YH05+AXthQD_ z22ZbanfPGe^$P61k?XyVt>9@j(Ml(UF!JN2&`&JFO;B(}7#~QS7#vp^1qy7vZa@-% zj(WD;?puk|%2Kt4na~YZ z=L)p)Ba#}PD?r6@q*g-vUm~<3s&L>48&>8n+<%Qc5L$xJh{8(wG)XpZpv-=nEVDN# zncWPT{S31L0T&~)1p9?#mZ(C0B!J8sim{eUd)a-xg~IsTP9&kiy+GC^^Bnr zrIg$rgCuC;L%*OB4UjoB;UUGXl;WpjrML&_VJRNKv%TgCKr#c2H~oxp4y_M0A`aqu z&RIV!g}nKWoC%rbs1U@oc4tQ?Zpgd;buM3 zVlMAAHxyxV!350ZlM*sv*gN6eZa7}5T#tE>`6@GlkS+<72$Omu!lWj;l1cGHuS`HV^fJj5f=ONB4&Nqw4gid7C7SkAK8u><9K>3qyfi0em0l>b( zkO@mYrzaqTnwQioP75zxk`f+#+l{#a9sguD@ita28)%fc&7In(4(pwmFv!%MkT!=%j4i0wY(4xWWNd&J{(OJy}98YNSzjYl9vRC^YDw7lR(YCb#!+p{NVG9}A31 z_dl=cjB-m}a&w{M&kI2bg|KpJQVp887nl$)mt*`d%^u*4eSYBFk3yAwD8Mx5;mx8x z6wcvQ#R9}lYxyThJPCsen+GEmiqgFk-U|o3W$;mxrNZfsxlk-;!JyPdAeR)#>E`^}!Rh8) z*z?&g$KI;p^s>c*MyJPd#J=JkZYq4vVg?p6tkEYtX=OML7@gHzis!x#Hhz0h7+$q% z3$|>B?7dRKq`E<*141?da(sW&}%N8j90JuSg{0ar>M6I1a9+}rSi7496|7!lvuJdtBxRn zC9kiE$FlN(d}YCg!NUq&!u*ES%AAI6H;z?;Tifl^+;AhbeY!5A`K64f*_PlLm)=Nq z!gB7Vos0^XUAjTNg+X|5INt^+c&lVwm<~lxps%q1UR{S;bYGRCUXUT&S9DuuPgPeV zi|(mactlUtO3>Vj06oZPl?d&|ndQcpBWYpEQu3QZ!(G!&=Ln zLIW&r3Jp4i2CZQloO%gqAmySokg{PKgh7O9V3b{vM_V$`R*ovztY`RDjcRn~Qg~nr zIlv3%Z&u;OV?L%f9o9Cgw{8T6`O9_*e$yqvtHJ9Jr)o8;u<8gCt*%25-|9vE39V*+ zw3<0nw7MOwCa%H!AH=qrQRsOoyL5wk3xh~(b?4H_P?WmAdm%j}fEI*5D;m$%;Br(zHO&%UCBc0KkYCmsr(1Cq!V?+`{l z^BBxey6NxWwk^JI526x#&CPH@Mg(?mPdpKAu`IR>#-`}t$hxb?x{qCq8mS5(PevG8En+8o;GbdK3g z9^?Dh7H|m&GteD|qm7UDW!vU+8G-1eYGG{KWHro^DL|xcV`^PyH`=xVGdOy@WBEw6 z4R(0Sc45zxdc-{HR3F;Pl$1J^^HEye_}v9H(<$aSvSOQ=<~RGozHAHr8}R)?gzgsI zAsSEB5FCxKI|yHCWB$VOR!b}Yx3LN!M$&@d(m__%9%o^@vJyLCC3ZRkw{xnx2UcQ2 zG$yJWxF&31B^$fkJ*GhQ1jdLlXbN;}PY}P)?_zgg8kUv@7JeHHPDEfQuEPE^QB%kW zJ-8z#{t1|hvI)psjLa^_Vr(RzX3Sf!4GgM3xrh%9mp0CLmd zg0DI{SU}q#^^pQsp+J#2Kr61k76sf(HB3LVpv5!G=KclyYl|}roSm-B9CpfdYkUL0 z3Mw+^XHE#60tlRvY=dGKF@cCjH?7Zbat&E+T7y+~a{7^a(|V+uzHJl@P=U&!0UWU! z;E>h;10aOf0H=xuIEF>3bAO`boJi{}8EQvpfYB<2YENl^gZAaa5QniSRs*~a4M2lk zX#g7FeiEW`s(yrPl#J0uM!Zd?urnbY+&6g=L41#N2R$k5j`vl`p{23&60bd_BcL z?VEmKiPsZg2&Oby)};MALgu6h z6|@S90q)`B`@maaK@Uhwo2-d-ypQ#;H$1jB+EekiVjZ&~H;iJ`!j{rN^eD?3W}CDf zgA5W_Z`3%1xfPTu9#_UAPF6u#-11PG#ls$ZGOUu_K*!s6xXw}N; zGRl(xMC%bq@7Ymy6&}U1RHi6DMnQ&Z#+tHu2Na7zD6jcXR8hi$IQRo&F`X0ft(CY4 zylGR8iXWkDU<%8^9Y7nI+JbB=MKoA};P8Yx4CV`4ui|DGwpHr8k)-TPZLq@6My)Fb zXrW<@CpqCsgVwRbAS3KrtSLTpnN{`c!6HA#6s*3$O`y*;c8$0R=(R<92P7>m&Lqz& z|2ccjD_Gfp)yK~>HsMhjqPxpv7+OS}^)SSCVi;;uDU{`1y>bC{R2EU zazdVhfff0DLcnifu{L;wKGH<3x-r-=6PNxGT;`Yr7pfr)x1ZwMj*+`Pj`oOJj@V^V zoWl#p?w6vY3b=+fL*@wziT|>j0E=rYlaKagPy7cyD^a#{6my`g>WM*lfW{GH16z^7KV;CHt9d z&dn@=v2yvAmP>r+y+h=Z=HYdvBA3-@S6D8oULcoFl|n6}&BL%4`^BbHa!E5-8+BoeE;_w~T(%-z$z^nU_l4wAW^(}+SF<_DCCTw`$R%M#<&s!_ z5xJBGs`Yy%mj^^Hi3{YCsR?pPz#^AS!@3#%N9S}+C?;|_4kJ`Qq{iSU=If1lJzD01 z$S~wOBPX<5=69R>iji@ErNo<4$>{`#IQ=Yu=tY6}WhpNi&=du16_j`@kZzZ3Rw2J1n=-h;2R|S!MT)dnY+pYrFct;H$tgo_urv1l;90! zL^d_4C4nb!EjIOHEDHO|St>6<%SNZ{J$Vb?h^!Og195RLP&|UMnX@RU0P!NaL663e zfyl~)Qsh<}^MP4eJ+whHDkySHTI<462qwi)yCc`*&M>;)D5tN4#UX(LUD=&9Sj$u) z+#oob0@nb0cMidL~CTGblgsv~Tb zq%{poT=bH5*=y!Q7wDSdRqDo}9QZECcGSInNNoplJcpZB)HeZyFGbZ#h0x+-7uc6Q ziT@hg_znn<_Z-@pUF{dbzTkXL_lMKU+7cc|osM?;EwnoWcW^OiOJsD9Nl<e~g!@PyH6&OH@}qRH3~b-}E9!l*3(b#w{lm8WvTSdPMx2_s##IbFjy zT9`iJJE3xv4o?`>>``2`qZ7u^>(qy8Mrc@%b1I0v2(?8Z^Fyo`ias^lxRxGzRI)#= zCXoA$GQXNGwqtuitxUEwBb$B2?PUZcj@p1g*~ObIqr>M~PO1^tYNW9rjCoRw)M1n0 zS|Q(JX=OtfYs*qQ2MwH%;es&;1PxNmkF-9)EDSSoPCs#~KI6cooQolnAH`#r0p8V| za>*)nyjun>OT#9!zwk5&2k!$ftb)imgKyM{B@V+!PAwRE)`gx@A|N$l5MYOa@!0>K zvMlQ|%j3hEy>^+FkG|kD9q({)GN_I(OaL1zcFi!kFbgBexF+r&y3G1<4ID1+6H|-| zd*n5wtwKqE=0z-FitWEzQi!^N&%ETIgVz|xFW5hfe&z*JAJapc0?_yiZ_*MU@ehzT zhzqqeLwjOaZ7hJPHC1qtcd(2)lo|@DgaJDg4t*Pw@&y2`Z)TA(8qnb3<-{K)rpW<}_*Gx@TjU5bM@&rCF zAiuylmjBxb5}1$(Fu`^?3pd8Cq{|m2yP!N1qA@jEPnR#R;}uSg2y13w{8hvmDNcs+F}tF`YEc%k(x)yB!1)^~8fz`Nvzd9AjbZV>+m7p#%*8!8*kl7;_V?m=E?MpL1g;r!!+-rOs3hVA zVEED$J7>5((>rem4b{u6`*RJD%w^7Q#qqtLqGnc!swPaeP>cC&W;wRSr&o2c@LuF@NDO&EqFN8Q^8a5d?|Z(@>c z&c0;4dH*G&IMH6ZS=H24`5tQWinz+*B`+=fCdL}p`2>I@4PK++;nSsHrWT~>iin)a};O#d9i@#lln3iUZiWD zZjIShWIi~ItTf%4y9>3g=euI14n@}8l|54V80kZAU`Dv|dR6&$R6fkY6Ij+w=&SZ?fCf}Jp)lUShAMZ?_Y0T7B58izIaY3A$`v!Q2ilI8$ayRb7O z;eoU7Cz#N*IyFf~;_wb~wWAI#*W3zVT;{^_lOWLal-~sfw*U`QB z6VE(9?KS0H^LRV3hRQLgjY3UJzHO*PvC3>du8l+4L)EA_=F0a< zr0`mH09cNL5T=?ZfFh7a8ItDtXkO+~`tV`2Uhpq-WftI+;Lkv&uiEeFL?zy`c3eNV zsT7w}V4$HNm@#ivq@-0RQWkKXk>}j(%FdaOP1Wq|s{gF~5g)QD=gr4MR`zWRe)MCE z7%bhlz;*BNO@*Zyu3A^->3DutKaaulWBU1Pc>a@q{yLt2$LD)bS}DP3Q>UEiY|h{8 z%FL^B)p|0|aMjMv{3?Ow^WQi4@0a`Zb~>)YkZ z9OjuP{yj3mux&>R-bd2(TGv-jm|pAo%8C3plK*l-GXV`Cs+@lp5E~*O;xPe;W+Z_K ze_?|mi`ZiyzRwNW7(V7Kf*JnX(*@f7 z5{zDfK&YC&ez1ekQPQL1DEfMw=-;u7Kk&i*aslUJ-ZGjplo7XWqhYP%plg)fKZ3fNt21Su5#h@RjLw=7wTSkk z9Q@t3dCW&fEMhjq*C9knIIB(KbQKjpF`}Jm_DA=7%x6bb$ro{adjI^ocY+dQ%`8(=15 zUM<^3{ot{x*)UIG$29Byd^Tc6;EAjXgyL3*?=sbS%E5EG;8!=a!M${&s1=7yvT%Vi zz=dr+CFD_Bm(3U_Cd?P5cUZG1dQ-Xl-%alcFucR`UiV@edNUK~&9-TJi`M*Hdbe%< zg7kK_mXfUkZ56Dk?1ywdm22Cz-zAnCJAKt)dB1RtuL6%A^YK~`>cnh+S~eXHcn z*N7na!3z=JQJjKm*~nU=r#Ma?8^)hC)93rn=c#l zTEl~Y=cl!#OQYNNnb!vGAP%+=7`6UUC#@=*eMuhfE}}vRv`q$iW^}qv%psR>WtWSa>Z#-ECD9OB~+g#xl-ucj0>Y9p&fYeB>ZhoH`_-6t za>A$_WVvLmk_r&u1Q@+)M{5!CWgm=u%GbC}c{GWjT^vP}G`D3_s1U|Xdv(S~w zC-*le(@nWPmtG709g?pXvs9I@duAlxZ7N?E({#R7k$m~ld~W1}uLeAMYdxTVoXB)w zj6A`o_gUPQ6a5Ma0|-|Ov82GYdHaftu~epVS}oR$=xr;080yO(Z{bEPlQkhD=-9<( z;=~;)VSE09%+)$&D1cbo0rLY(}goRTd|MjhpffrSK80htY?b0UvL-)@i>hatiT zSsoE13ymsX$AVx;q zh)3jn@4yp7PJrONjwHl=eSpBPqV!qdm}a#K%(pS=r&p+|Pu2yHyFh604CM+rxjg1I z-^SuzIl=RTt9qUsA+?(=YRUNV0*(aAUBrWL6lB@*4V2+_By4t+k>yO=fGkzo9_M!& zn24z38)SV1jpCY~VP4-8IXy}aa*8a@G_V)7--iBztA*<-TrNu#@h($4at73J}`2={jjf>M6 zMb`WlEHVBP={gEimbR(P-9QX5qmVNiNI5Js{!yiHIS^i$SZ4H#C;CbY@nAJs?}nDe zge80ca`(h`PVkDcyvio46-6+oOoZj5E>a5LN8#8d`KU`yuG#O#3C;YdOUM}cR)~e5 z1B7;1PTa*cMSP+g_Ui=(%zqOPtXYLV)d$w#P^iy4pFx$w(jtzAR?hXlKRL-V8c(ok z4EjKU^+2fDVBn4q()e*#XY}K)Fz))}E@X|t-Cpwz@FRp#(MvuB*WWJcuff$(Hqjj% zoB@QTNBgoGXy7m^a&!%$!tFwRR;uyB=UaQ73Eye`jGu4q#d2c&=UYF+av~gaxts{c z+{ghnvTAia>hlOF-TAkl305IF;L7n#%;#EMPvPfU$Gl}c6qrIj)v>sFQ1)1<7>dq+ z2ilBEYPx*rHPk-c#0OuP?oheVFg~;qUspfGCc_;IT1KQqrba0uAJ4n3Cr%S19ll}Kv!~HM$9-2=l)!~iPn_0H z5a>s|JbN1LbGLQ>X*8?(t)&f1RN}z~qX>Iprw-z1pQ&cnqc{r8YuoR2yuBn8`abev zQDNJ}_NOtPU3eLs~ zs~)x>CH1xHA^xIzm@z^15LArn;kX@DJ+u*&>Y)vAT-Afq%cy#2SjMOx0#K?)(NNM; zsUE`bD{{2a&WzJC{K9}h6SNGY;;zbvv#j}Jr`T8A0v+Twcj1#UoDu#U6_N+noNR{!R!bd9;TjL9v|2pbmmOgXO@9eq z0Gc))lv^?0W?5BZi=mV9m=YM(jOfXD^gzPwkM5dff3#|B2~461jDxD0VO=~nqPlRE z4j}|C{u>-&u=NP*u>cX+pLi7RneM`4@J}!b2cX^zMC;)U)hjHddT4k_!+D3S!D=By z7+%C0T)}4Glc=k)mvnLabZhYsdE1H0T-=F6&vC~8?$O4EupSN9?#W|PWdRwlm<_ii+hrm%Qv z6yvQ}ztQlO5B20sGMpd;h_H3?m|Xb0GGrUr0r+l@D+w%$y786X6^P+lj@}hQ0=HWb zNuwFONblql#K0!O;2Y!M7j9ul}%LE~^r@-_dpkf0POkKj#|&$PxoXl(ZVSgK62+Ugc`^>T$TbSaFT%? zN+x)TW=pHoLa%Q<$&i_VOfule02-s-2~zJ?PBJ7nCp9hVAY5^;z%Coo8kxoht5fEP zi1K>SG|fl4o_zqPYP^9;s~G45=de-6ESO?Q(2&P8IF=#MvjzF25S#uv6#N{euf&|5p^Fxq|U zFxvST#W|W^h@QoUkn_pNq`|&|2Sr5Z3;Ql4L+FnU)tPPuzz2hNw@P8N;p>O_f-(zYc^IgQG4zjvyxt zl9)(7DITUG2JhV*!M8-`4Zwt5f!JH;`q3^P!yi4^jh=UDPP&9Eg)X=R2VUxl!}Aw_ z8VY5OovIn(-BM%JX(sgH;(1>y*1_J1m#Bx?GM+lCK&`&1qxd@$LVh4$~ndm<{0`c+HiE#oBL=bkBA^JunPm_Y?IJ!5uKf)>2VVe z08zNOS~2m^wW^Q*F!A`zTlOJxQ1GWZ=Hfd(I(OFLt>}Cl5x9oR6r+FBAWm_^#G@&0 z;;|Wg|67tJY2rZupF8UiAF#f;sE@kP(ZE>;R>B$w7mUJ@Sc&GqB;<>qbR^F>#7E2& zK&C(dX4JgOF2Ul1%r|6!2+udA5b1J~3(a*CRERG!ENHgFpdT})k# zA^eXh(TYc}^{`Ag!lSzT@ITzvgEH;#+Io${dvROr!+P2QM?U+b4<=4KJhr!hBw@L2 z|G*j*@rapy{1tNR;q2p0%s$>fL1rIY@f~CvIW^X+ePTAJ9}C~*6a=z@6S!`DIsF{u zJ?F?>a+b{vT77X~qWWr~`l7{#3D*lseen%*4%hiqMlI#&S=dJEz+OBeE?KcT zDp%J)c`?uNl^3@m>G=dG9xTzrFF>g(w`~^|r|?1ZMD1jSN};mwNi&T$+OhU!e-d3K zBZJrEdD*fkhXoL|E@*bU)W?9(n}UdywKc36oR0N$OkM8`ETLoS)`+5tNl=cdo8g$+ zC61}M?M1CP!pIdv5@#<=1~M=R2>y6o6+2IXzf}wKW1g}uMpF@z9Na5LX_@$lKo>M3 zr?{X}VKw6g=fq>AAHb7~UzNyxFbHE;N_cv_R#;O&*O=)F0YG6XUX``-6mt~;9;2{0 zWr-*(E{(^{U#PHHOLYE%uVwHaJ9!Zodz^cPXpjv5!KSn!;}sU$6j>l?pcM%9!!=84 zDW$OR0orn{usXP&5m8votrb=fU}6+j08D}v+5efsA}pn_h)0aVvgmt3h4n5J)`hZM zvhbWIZFJFBOC||^`jEenESJO{8VF(g&^dC`|3}^Xz)4-z`~Qox)+X3sE`^A?_qN^0 z)k490u?5?eU7XPwphU%+8Q)e76U!DPEkJNt+z%gS#SkU`QfXOgQA&a)ETHU)iGXQ< zsi>(l;-6JZ5K(^5*ZX{C_A|481p9OQ@z6b=Ip^~^f8YPk`@G-pBf09Wu$JUqC=$TG z)_nFwsRl7+P^zCgN~K>=s=JOhvFRcWHwZ00mS-r{k6cMiowv~9jrt^dRjZ`Fcn}d!ZV17Hp8BZr389K^o0uXwaQ{k!J1>(IC^6C{(|O zfz78SgzD!_qd^M6zl zO}kKA+wI5Ti$fpth|FPp)S)ElAT4ag1kC zR1O`#M2QOp!+ukWZ|rXulOvtwDXHS0so}9nF4&F!`ZaDVopLa$1@lZvR=gMUiw|a- zXvzc^LpXpE2w9UjD|N8TZkA2Eu4i4Fj64#rKxhsk>RJREI-#zyg;(oLvGg|JqB;Oa zGW`_S<1rL;B&Twf!tgXYk~6rEcO%!UrZM_^Fj4thJ<^$Vgr*IgsA!uFv5UQDA~g{! zz`spB5g;1ROXmFi%$U@aTjAvA96X*AZRjnd%^)1=Dv{`~&pCK(BC=Bh9_f!eZuiNl zvlN`Q^wTn#sk~oWkZAL06m^+Te}vhtvr9=6-W%L}7;RP-z0;PT+0yPMR<~4;!rr;R z>tmY%L8F~&dP~ji&U+$OfqkKA5tvJ-LNRwSGPUXF0DKhnX}Z{;1Evix_98Sq53vjG zaxj!VezRLY73e0bCo%nr7`8Gwi`A2F;%@ypH^kt|qg)?Gja znA&S~738%Wf!nF@JY}#!IMsQB}P&37ehm)Poh^IOFr}JHvbRDDz?USL`M!132w_wfAna4n>%4 z$46C8TIBZM%jjk8u`R5b@OYFzWf9^mw?30{PRQL8?%=Nl`KZarZh`jQ;s(X)wsvg6 zjYoJj*X(vDsM&)*tAG1RHI;X2^DWM@HmH63vGmHmGLI-}jO~z5SsiQ!EL0D1hS2wX zp4VH@CXt^U{V^RZu%+!d2%Yr-l>!%>3lLo^;YzbgSKacst2PaZ}%(hPlgnBhK zZ6V_BGs%jFSuzu6Qp2w`RXc`6@5U>1WrElN#M>p-0&GNm0uJ_r+DLfLU zO-8N$25R+ZP^+Wh-ctXp_Ayk1THQG|6hO$=iQl4xQW`8$Oi7#`Q%_%^%$_z#AEu9 zpN;2UH&vXw*KIsM3h#9jB}k9BS+;Cu^pr>~lXal?&Ss2&f6e;3w(z}^7&XDHoLZw7Iq1>qs^Za5qB3f*^OQnnH?!+7zm2& zBcd%;9kfMUhIn8mae222fn(?YFxyJZpEp4JG%&--Nlv|3;929Xji;uSU#_L^rHpZNWNZ4||E6u`tLbyOq0B+M{dac&^+uO6VIZ(vj(0Wo(E&>6S90i(a3 zH=xDJW)IMLcQTSrM*fCAO9E*!vYzO9H=pDW{lzG6=uH+udQ1H)+|z_%*UzBh3IF$2 z6ByNK4Mu+rCfs2)f{b4R1s|sg3xW(1nuNuXLB*rV)X>Yx5PuhR%Lf4|?a_F}dnc#* zTuSJJc*Xi;#e2z$H6Ug@vMa&8B}CZ>BK|tUzlx{&TtSbG-?rcrYxf*;S^3&z zWh307XI!mr|7r0xXPhJn{&PM0J3jv(k@b&K5k`a(NHv#xINy zwfu_nqDid0RdQAI@^Z5a%X;_?QxTE1Epf{a-tmo~IN`m>mEctLTx{cOX3)psM(;Og ztuHDnE=vDk@pvK^wc_n%=-ApQfYhXN(S!t=X!E5|QckGecWA6L4BiN1b9tB8tfQhX zuvxgiH`weJ?eE9tQ+~2n*sSK#-?_efY|i#O<{TPgS#16Rhccb8Is0=uKrIA<6n-=^Z#R?vDvmwVQdyB{yVT)c>2NEtVRNCRtFq5>(l7$2ao6uoAhxG3Oj>9yi1SBV+YIE`0fqE+%rooTuHiSLm$P(u=PZIvZCm zWX{)Rdmi)Ws^_5dA$`T1?--)R3<3koINkVjg~jN_*GER(vAWW^1#CHKTdxLf2aPQo zQ=q#_qh1DP4JBfJd3^d22#{Fk6xaGLsW0R3Tjj0>H zaqJNa0$VvFP--W!ve)Tk3A^11ww zbH!jwS`!`fTC(EJL?!;^qj%Kwehu+j^+sopCoXd`!v25lDXHNN=@XwjyJ-8dHk&gl zIL@y8)8ul^DFX23WaL2xS;HVB#l8JL^Q*l+^RaN0rV@VN1^Z5VuOuqXfj@frM;+^S zljC6H!?Es`MOkDYiwMP?brV3j5c?LkMw?Ij0QP-qUw|3$S(7Gj1Vguu%gMJP#A{)g z{tY|=#%W9L-|T*sXrIMS)PCJr#IN+`>x85FFegB_@uN_HR)gu?3xuOi7*3fHbzb{* zu6M1Ci>N@|P!H)!lQp+=u_gD}jYbke$_k8@p_$&bRW6p37X*ScaO zVMfePK;3qJ0%roJfj>d~Sy6TCGO_=ve{XVA-N-VI>1T|Jdnn}B#Lu^o9FlY55p%>2 z2v9t-JN*t;6e#loAE`v;_RBs7Y-;bYog0!m)r)sjxZW(&r(TH`p?ZJ(!S$k@v-NWR zKhfqpMfxrVRLLcjJm|EVuIy& z?7`VM&%k&3h7&|safeU%x16w8OUIER&d2!kqI$iR44KnLue^YOmvR|nqq=j?8t+C) zyV~71tewD}9(d@u05(qGl-KU9f;Ce(YFmyRtscf3cB9p5l-U-W#)g-oQ~Jktv@$_x zw7#QUY}y)HvFmw#zgX&fL_vBnI`0hf6W()pImasg6qvrpBYz}>$J8Ux=eR3D8ixOd zu)l5G2*)KLYpZ)>sJ26zCpq$7)WQ+>>)bl{oj%K{T}QYCx!8qrYLzLc+5)%U?OC^8 zyMxNydgGOUoIDUU-7;y&8irq01R;;sv_nLCucfU16`eIT(0_M`o4UVURO8;FJ+m9c zgO*P_^OmCO<(u(%N~G*8Lk?VxdPx(@qxJ%ax<}E0zn*7x73R z^*Dh?p4hp%wK8aOYqgw^r!mf3^4IF8$_=m87}o09=scf%HZr=Ep<)Ny88nYi$0L8$ zS{-iTCs?qC;fu6XC>mD*P}LC>h0oYhG2^e}V*Q;y%lL!taO%TuwRRB%<$XC?*FQ%= zcC|V?VH2t9uagH@Gu#(Ad`Xe_ZnS0#-~cpN{-mvX``l4B75&<`>X!}QlDQ3dO({kJCXFDo> zJydb}bJVE)GJ~-9{aeL{-YCQe?d=|T|-@q|k6l45Zy%lUZy;-2) zT7|i=HD%w^qME{!b2F5~aqWgSaS89PZI;}(!TnW$wkcaHHXac{u zz2_23mQ8fO7Ljm6Op_&x=9A$3e9RBk`}_f`0sku1$biR_R0nTpmqZ7gyluq0cCHk|cm!Bb zH`7l)5rzfpxr^}%EVy66_c>T7PGkoxjkdu;j3H)WVHpddA!`D>MYr(_STIGSw`_^~ zC4D8Zu)&f=n@NC$&j{NJU_lM|SE)t@yqF|^z$be8#Kbj&1*c;78}w!j7azgG+R5LM z6~gi=b;&<$&+&6qKt?9) z&%7!I44Oi}VKtAr7Kt!&6)>^ooh@4`W5$^c5cxeC5o7%MeX){RuOZwByG=Aiqdg^**1HgR>T~o zZH^3|W8CRrHCmgxlF5GMny!4TzNxjkxNFX`D9c&=<9^rYN=Y$Uu_}G`)u(CA+w6q< zY4I0tv$(*vUXd1&^LEEuz*-$+r;iZ1Xm}o%cJ~QJP?F+s1n=R?MS7*RQ5DeXqV!fF zmaD|R#%=F|E767PRHC}9l7$_W*w;j~(n);JJ+Z_3R&!RiO2&3nVqbGpr~IvZu0(O) z#n))gD(T%(iGA(gIP-&N)64)`?IK01WUX+|&53>O-`M`aJu&BSWY+A&&g!VdzQ$(z zgDa6o1jA8X)|25KmDty8Rz&xDo|A2Qg-EK|N_GfM+;Hq`|HdXctM^=qyhx}-by-h- z+fj*q4X}N1PZqhJs4lDI!fYkLPEawxYZU=9k}Y9R!Kv{iCwidU}I&-$0p;+YXD z5gs|e*&Lnok`2pMt^Fo?v&h5LKQCys=7b6HiU-*c^X2?R-IN1%6Ju|QP5b3vkudBO zcREVtL`mJpZHgpwe>+>VhfYqFzM#d-Z2qcjF&?7B_B)C5Rt08H#V2I$`dQOC}92zRn0)u-#u9bc3wKHv3o6SvBBTy>$!sY9I2 z_9blq=xYx1jSzXdB+|FM|_aVJ9K4EDBUfwD~etjRSQSaw**+fR5Q&WN!#1B1Yvp zP7K${@IbNQ+W5^W!-neK>!$pGmTcR%{1JqtlvT*#vgm1g&d>X?X-TQq1l$uhVc!cQ zQjCXMV@1^=UZk$bjzvS5H{0%_)H63`XuG3Q>l=u{V`kI0HAg$KjgLmb%p#>F6dOt!0aWuQVfs_4RLL9@JVi5Dq_eBv794-r4?0_BM;gJr^_BFMLmcotevXVErC# z{Klme%>2Hz9GO=x;k&h&pX(P_4EN`XVJ|i?bFIH;kK7d+htA;Ly2}hZyhaH)nGMtT z>_K_c*fxtF1bd(wKu#Nr%!y>FXnZ3-ZkZDlX{VdnGMk3X3M{iu1+Fn&X{`1>OM8Lo zYqaqOkM~#3)z_Khc(#uGXaSjjy_(Dxkv6qfLY9@yx|Uy0EegttRQB360#dt427)Lb zk4)no!RyU8^6M`*1+PnonfWwXR@DJN=GTQk3CbjcW^P{W26gnU{J8pO6luIWHK@h6 zsM{8=HQIQ_FUgs4yFSgl`HRqaez}5zwJY^uW+>0Of%aKL!Jr4M;F{HjRYiyq5IuED z7KzS&3fxn^KV`{oZ|J?5&#YA)t&UBl)=|fE4_h65dCnCa^C$)1-(cOjdwrKi4bP&Q1n?bR-SQH6NN`O8A1m5%JoROuephtfJo33U4pJDeARwgOy3Dn4iY(f9 zlwUgYB(Jmqgd+H0eLEDrDZZn{FloSBMA0a2I&UO6Ja1w)y&_;I%Gq87}Vr#NuYi2Nziq16i(ktrY(@4P39|#ZhC(;7t zll~+m45ts78AvxBsug4kG4RYun$a$*koRV|iYG41RiPsFjw&P4g!^6T7KGwy@z|9N1BXih^E9ILd72Pgeuc zflj!Jbu)5vkv;377m~R$S9eo|bW7nXuIQ*jML{nl%4J4$Q-$rIW=!GQ2 z%!_al2^WWCfbGgH(aUdAo!!YSA4^l%u&a35v=}O+hUcSGN|Eb?9T$HK>(ZDx;}SP0 zbqbiVaoXveg+j+;6>B=2w`5uwZ7sgi#-S+057)mThioyDo2h^gH`fzXY<0Au=0#N4 z#aFmDQRT0ONem{BQ;+T3hqsy7R|L9^W84#YP zbC(s*a_p}a_E(B#x>GJ{wP?dno}u3ua<%P`jG?2N+0GUVt!_ihewkuc)F{j^RA+(hRY~+Y^jN~ z;r}1O8;~Op4ja&gPdx|@*gVP`ccsEEi^07P6kd}RCJl|Q0rzXJEmnkjVnt-ps4zEP z*%EEI@NrGneKs51RtMIiuJnh`@utmk+qf2RBgRXj5s$=)4m|B|h3~(UIRvI?WNdmi zYA|GMt&y<{LJ@-rWo~5b3`}exV~L8j96E3z@8$%T-(aheN5+s~vt;ZZjzcAJ*JHQ< z8Jqqa9Q^`1W^(oF`u5C3G7-eLKlQKc$0JL+=*KcLL;Z+*I~gNn9XjXcgW*D<5O~rE zJTW&PG4BcHBVN&tFrl+Oq8|au;rWnrr<;!xwLzc;gqyY4TU5RoZ5T+Kt;P2MHk>7| zC5tsHArCnPy6&8=28JS?;nR3#s4DKT02ckG;QgRZ{yoF?)WsUE!xiZ#hf}>dDmKcZ= z194)h?=pu^Ogmj>+f1VZ18T}6noR^oV5)=Rt?GcOE2)4F*Vk*NqqA$-s^m@Kv^O%x zkf$kpi9OJi8IU!%Eg6`(h9CY?-6ayH%mLYVtG-gD5*(uca31k+%nvjFV>J^e>)SlsVvQ>fOpJGFJ4} zd%43yr(x)I8XAT%XBlE=1_bG}GpH%m$IPxW&!5`uAU2GbdgOsS?EHNv0#4x|lozN+ ziVzM>J@V)w3}Q21cBn^6D8tW3gU};`=u5I$L%xdB`fk-DHRI^~m%proU-QALZTw4z z1xB>_mD4D}a+p1FEcLbaj-dxFFF%W3=p+`gQAe`LSN!81`dc%)3LWdWzwd-XoyPJ) z`lL6`z}L&7yJdThS2-`OI7fp)lgV40^Jo-$9Gyzc+Reu$`uKl)k1tv=DKu!@i=~W9 zEmV@Oq&QJ`VY^HUUX4eSkITxYlfheDQT$(xHp^N)>7|EoZk+y-9mpeMq2uDt0c>cb zi~*Jtb>^RlZMJkV#PRpGV1fIkc*Ucqq=sG_i@d=B`21L;4aca_yQ{t8_j!opH1Q}d z*6%~}TXiwjb3lRl(|}&6?OvPOk6W=2qu!y81=aqv|KZDN&AZv^_GOg8w5*t7xTw{98mu( z?*^*V8H`}Z)Kc`Uar|YXzka%!-6>0uSgIu`3oXGkw*<;U4LC?k@TZdT*c#E}W=*c# zNn0=ka&wQ-r=k}i0j5ky!lBeH7E^Ei{!+qw$W8q^H}xBdk#!v%!PVwLq?Bpj-K{6} znIHAcK0LZreb3JR$@KjV!H@hNH2Vvg{XRcp_7B*-Vs-~+4B3=Enw}=O)WmxLyp|(R33}ppEM;7!tP<(k4RaP%AaRfFEIVq$~$_r?dw$DbJ zhV+9r&F|<8SiO@n%x;9$dK8|sU%x}N>2E{NECS?ywL1&=i`=a5gl`eohQH}eys~0( zUWFxmj?I-3JMH`-b|fvT@D|?gme`#!W_(e@^!ELxeW`lS1A#+CO{Gz{Xmc5R&VUFO zI2vVM9IIFZ4yQ7ufMYikcAHJuU^iiX(OeZynDT-N>(8T2*nXvqZ%N+x$|wtnxgHtc zAQB_y4-DyHeBT=lG5-(Na%F7xW60!B581SQEc28;yXn}X*ov&tS1{N2je;Rzs6a= z%3QySsICxbEYJ0;gyNa>3nO>2C*DYTf}1F@;cK5qM&MUqaB6s4Q>fW}$zgB(L zngE*_RfzbFXMEMm|H`<~t(0p`a-%9P{|uiiqohg(j#YgDk_o(TGo$>z>Ow3vuDox; zn^fLE{qey)tkbHK0g%7J+6-$G-rHHMy>0ffMVUWS5Iy3bwO)t4@l;t} zz3YY5N2m4Lo%!dj*ZhxnS}%1Wv|eX_zK8WXDBjI_?Y#V-zFrr;{6Xt=>J1;TUcde0 z-@9H!rth>~iS$2jy|(q~v|j2$XuW=QR1fR*|4!;=y<)RE*6Z|G-A7TDz8`DYd06y{ zZ^#d)u7%r(7Hg~Mk0!n<-b=Ehj`=4z2hwk_eMil;V)6gpBDE>%3A8XA&}wVpZgfV) zQZ1TSgs(^oPBqEYReCv5xrvO;wY}Fw8;_#K%;&Azpp7HKZA{$XwQr01h+A867!$W>B>>Vh$;Ltm4X>UU$QvAw*~S=wvMZ)y94 z00w59kz1QVw5#>+3zOVyT+z#+d7FJCGm-x59cLGviSf-kIC8^tyLG71D5QEzx;%H< zv6|~hD>qKw!sU`G@rtiCm#U5RuWf(O&Lob{|6Fj^`Sa`eTqWVp=M34jor@;IZ3}=p zeH?8#6ETAdR2r%vbE2dVjzy;5OHEJcDLPLoaKx{I_5P`H3)j01{{?${J)^I9GpFKw zL+f2y;}NDFvrHSmKAXfQC zv|%11h+n)^^>|!4C%xz!^{-_vCVR-++y9(ZRO2XPit1?Noz{7*6W0Q)uK}zIo=E5A zE#RiFg24xe(Ho_&w$2Mta-CmmonNZFaOW*Uoi|Ok6tqF-yC?t(q79F-U1KFwPk1Gk zk!|yz8o`>d8k^i|+-qHg4ZLXB7Yyi@ZU!{Z-fqKE0n(qvzE#-)ExgDL$id$e8c^v{ z<;8Za?pO}X35}>dHzK{7Uw|b`wBbF}U4Ch!O1)CI(yLgG7s(#dvi;APMV!myKWtTm zhJ~x5yu4LWMyRVDtJ1l^R^@n&p?IN6!>jV2>bS5Xe^pX_G`3Bd&yWQA^V4G93+!E5 zSb&5#eM8)1Gj?H1(tF&ZB6%0LRr_c3QCN<1m&N^53<4W%PGc`u?O!3L3N!Yvm4!8m zCE_#z0>-G51m@w@q<_yv;=KOKZF;s;<(D_w_OBTL*v2iII`QYBaCR{=am~i#uyK#tclM1B>DLN4S73W z!LG*QBVp>SlZ-_mdLO5y?`*`)%r1;v$Ays(ao9ciQ>KjbhhGPms(l}u zl?Y*wHrKya?Tsms@~iHl>g8f7cD>Z}G?sL2W=S`su60 zT`6PnxOcOR#gpC@G8X5TjKwK4EAb~MaOaeNtv+!Eb@9|aX4e!?QB;AeekTJO)Luhq0Kd3 zpDR!FhW>DSu}TbdOKSaZmef}MA=>ydiogBdootJj^o`eiHa5k5l(p5)%M;(yaV{T9QVB1CF#R% zl>Y-M$l+;JS?isa1-Z5XdR%Og@KAL^l{DbYTfkQ2V%lrRYV{Z?wtquNB#d`&Wd>M%=$yWFz67 zwj_F`PKE5q`O*5FtQZT?mnsZZw9RPLD82QDLh#QoVV@g$BewDVEImZaeFOjdvK}57979Ydkk|UDpB4zyik*=%7jNPI9;@R9 z9(>?A68KLwo|f9k zQ?-%T;+P0WHlO4TT#f<2Am*|7x8+_t8PTb_wYDz} z6lH4o5%*f`WWIx~-9%9yTN}$6`*YEGbI1p`hir=HtbD<3v9-Q%v}>SE3V#r1Ythc& z=VaxiPnk919N5}r#WUT3{i^!y+xwX*Vqtb1Le_8}%6yDFywWCYc*&`MGjkhR<}sW~ zFz6uY35l9q z6x6YzoG)Xk)8yr%1ScWjBJgoOV$;kRcv<~+Z884iFK}kTV+pF@FY*|#JFUNNB-<1t+L^mW zk{Q?uoEY;r*D!Y#Rvg7WZHl19y%&?jJmo3r-MZ5fD~nO&5KIV>!pFxyfC|v;dE2EL60RadC$s`Gk9oHn-?OLF%}>FT?5F zvz*)tv&Cs{oNsSEH1+5c{lww@PxSh1IMJVX_(X^<7tk*zbpDB6Vgp#ob=n*2pX6{T zxbi*@_PsN;jCg>Fh_1WGW-odEsCudeiSea<f`X{x@SRu-0 zIF_}W`X;$~<{w`MNwFCoV{hYZwl!AqMzF_>M|Ozsme%^E^J_7m^ht!v*H_m+MS(=k4M9YM^OViUPm=LE&)-4W z@EvaKo4lDS&O=sxoq{LHKyD=r^p-d`x|UY^rAw;SiE4F%Fb6y8UlB}l;0Y_Osa~n+ z20XcZ8(8A}+)dFMZpf+ill_6!A`r-7e-8JSx6eY|kgDA#Rez&iU>1eu+tTyLoLLk< zKPA9f!UDz#ufUTr#E^lje97evwmG1G!@jj%fO6H&H_?Xik& zF>f34jL?sc&iH=Z+XQ35w>;^$1{C7RXI2l=$JikpwN2C0!qgBulAaMz&-pRIL zC`e)(3TLJ0@_-n&g=Qr^V>JHp2u|Ju$@7{u=>uL`X)>?lw zvzBa6A8B>&NZ0>LYqlf(MVN@v=f3CC15S16SE^ikav5_6SDe+V<&IbWIofMmR{QYlI0#Qr&`+t?kgn!^! zmh}6YC5N4D$#Gw|WW)p#Y^*M!Hs?3Yojz*1g(Jxr4_K~@wPc~<9TPlqf+b5QT5|tI zBoN3pV6>5Wi(@2X6!6v!BysP?7Wb>&el6T)Nh(c}UU{lfM}3*2j!XDaKpm$qNx#4u zAfTv^fwQE)RJB1X_4bVZ7=YVgl*PTs-l@}4~*fZ4jPgcC2^ft<{ ztN9|nVT(IKb* zV*j!6w+6~$tDONZ>yA#^}igktI=z~pf6R$&{43l0Tu zZL(hrFVXxvbWMMkEPIzvN{S5Luzqyp{=m;e#24rbFxE@Y>Y>i3g6kk(9B|*N#I|ji}{vT@gp9& zUsy{6gH+@-4kiIJhbi&h`|i3Ht^~QZ7`EhX5pS*HqgwBe*nb_4H4R-AatFwZZOt;P z#T=@jd=Aa;@2?j8J2lijE$qOwQtB6Ef_wI$7}pjXx%i!?#J}62Z0gcpv5Mb2{NsL8 z!#q)_gg;Gq%q}angbL#kt{S;b4R{OZlW-M`^&z;_RiH#^Sx zXX2$V-(8!!xECA1<-14uL+?8&HRIx>u#)GAW zT4nzvdHirgdpG*vt{b8vQ;t1bFbQS$Hb}n)r2iA%EslAqUjgf49rXoarErX@!8J07 z5CB&UyU_GH1;l80$$T(*UsFo#I``@8=>?DU;^*t>iY+cZ_;0-gh9-HW?pK%5p;WK5 z;A7{nQvyIq=7`tTmZ8d|DlHf2wgz*LWAp-MFPaCCYB32fv{`cN2Fq-0v0sf=b!($$ zY8G8e4*)@Ec$q|=)cu?FF3Ou+lb5(A6{UJojCYc+p*m#Hkj)eY9bjV&a!nzrQDcFSzsX1`Ka zBLWM*tksD}s?|oDUbyu68w`5txM@uqs+6XeM&9BVkaK_=-E+!Grk3az1<~fddMmip z%!vaC`+$Hk#U$6bd97pWZW&RIyo%Dk@h_)%XN{PNN$H=f??v4h1Z+u7Ck)8egtt*# zs~6d)wAPGh5_K8lT|MFwka3Kc7%^XemZ*ZoW4v)AZcBd;mQwAX-jwA$zq^Px3+evm z^x~1@i?}3o#A2xaDLz%qIMPW@qYPU{E#dT4Qp&2h->e$U*i})Ozj@W!1R0+|H{e)1 z0~xWfn;Tp=$Bk%F_cp8NZG1t`6C-x2vuSm8o^lXM@q5$uJnbMw6xzn~ zXfJWlHWyJywQyoM0j=Opb}|!U#JD5?${lXTt$HKg5f*^;D*_8q-~mh}JQ0F@nHI)G z@Z<%fb}mjvMlFlC*7WbM@h2}hT{)*O!^&$wN%DfT_3LbvA6fiE@KbA+&~<876X&z0-jSngNMOB^w*;}_qKm6inq>Im-4H^=!5eHIVHXt^E9A-UeP#?&? zm5qIQi%pAtV&I=5la_W(Y z24|I*CHON)PlNSmnEq7hPfUNt>d$!nnV>%t_2(k}xg_S@P(G7IQQ8!ww#Vf6qTu)9 zAiXU}CGP9}WkK2!q(Um?ZwS)OLAotS(?QxEq&tJO2(Z<6B|+LZNG0wl-w97Qln)Ai z4-V2{K`J>(@5O?2Y>C7N)B1NxqY8fFHx26Atbqxev%qw1ZaT)jN zNCgRG<9T;_FO(27z6*^-{=;49OS)H>cpZPXI7e|7*FvKoIi!eA1iu zNrU-WYo)13;(GNG$7V@-!CBoY*t2h(dN@Z$3BovGLPhkF^H=Hp*4g{Xx60}v46f@> zx$gJrt{>uW|KxrwRFpI3WhkZ>vaJzvO_ExT$zawjKv`HaAijkk3>r}bMiSD=`eds=j!4u?+h?;c@HG~WWlZZ~8{lV?)0Av*7JK1uqcm!Rp@ z-X1%Qq<@Y3ejCoy8;voq<^-*gsL_4qPVHOWS}aYe4v{z?tLL6f9K7W#{TsPP#yCdD z6L2*i-oRhnpSr}($KJ?t_EewWv=+~D-v@5rhe|SO*^a@MhHx2Wg!IYxvb!)(&00+> z8>XF!iyZ{ML&b`xqExKvppHrCAPo?fA=km?te>58RlE_qZr;^aiFeIcu|3lyM=kGZ z=ewEhO@YtfzV=2i)44Y}uRqtDhhDYbggqzQGk25edgDEvseU=Db7k8hJC6?4Yug0b zS`U5FoZvRd)+2}YVk<=*R3bY zBLivi7X%E*9?N9y@lQPstCnTZ$C&pXftg%TcH*&nzb|j00Zufzd59y%-`95rB;^h@az7peCzr4MLw>2Lp^OScYp z>3`zWq4EJ7+7K?An-rtX7qZTpN`=0nPIX*TXtk`rW-3SBhT0=QJ*1!EQEFuR7j2%* zQ_R13m?8ruur`S{zD0iAtoj=90Kh4^q~Ofu+hi9IgG42kai^1?&{_Dd7)l*yNv60F z5QKi{{pXidSH7w9jyHotm+d-qL6{2;T@p<+RCwybIZJTr^5?(r)Maa2W@k1*{eWO?!t6q0EE5;-5VDc02!2eF@SPQ*k@kO=%S!1y?*;?bDGqyxW zNLyQR;Bib_UBNAnlM9D&k& zW*?CxSrEM|LC07z!K)T3;ay#xh1DuDw5aLJhNJPj+Lk@5^1IuhzhFn@8c8ocZhVoM zqkv!0=IzuFt6NijpQi9?|4;M-J~KQuCa==+_Qo02of3R+OmNfYCr}-2eRn zG9ZbkuHMg%6TNBWgOjP*`$>*hq0B^LWRBI3ZTdkZ0eneOeH|c!lDL2O0n3y|et&?h zPB>pGk9kwdWAW4!?s@Wtm&a4n_A61(O3Z16-2mtbK9O37hb6po%B%Eeyz=|cB0v4` z&(RC*X-!tX7j6Ec2^)yx;D_(f!&~cu^C&h?NcqH7FE-Hhv|;E*nfDS+I{!GfwAq@? zbB)&yc&thv;coq`ju7*G-Nv1Y!r)Iw3qW%5u&Kv83;HC0Qsd7%V+qqyi`|fa!&p5E zT-E_QfXic9aA~W5q9#@IF_hX>1d(o^dMH;S$12`urrK*NiM+>W1VM8TG%kW^d?4ygbb#?6JYwg)MXLD=KWM_k+KNE1u@7ytxh-w`5AEjH>2~ut9+v45>UuSsB0Q`t5x!o_+TD|nIa2o%p5>%5>fMT(czUiO@oi17i&%eL>s zp0h@0Y$gmqv|#~5toG;4S9j>me(DS-zFbwl{Rh^46dhdNeVS95^XAn4 z*cV|jwrXVM?1(-a86E8&1U8`mBASH~IORX)NC7FZZMjb1K9~wz3drsq6;NC0>yD8- z-D!i}LAzi@e72GQX<9$Ukc}qryp3m@7oN4@)W0mlm<|~2$zvE29M53`(*?swlHG}6 zAom_eenPQ7@)!oOKROu38=}&0gc(N1Dg8f}VQ@^31g)vTNm&dddseStmX2XynG3^s zIm<8z^|n5M9>*|RVFZ`JFfM{&Y=L21WDH|VZRN92fIk=o*ddig0mIm245Jl`iBXja zV;KD9uuBlLSP;|rP%=8^9fO)2sO-|}X}Ppw5_U`lK%N97V;G|`$pKWf;2jL3gI5{SZFpEMCA|Bn<$BXix zoVvT0U|(uvP>ss|>Mm&l?%faA=+FYTHfW~6%A(eWtNF{U z7p-kr#NTm*$u4188hMU+{!YFnr!P5TN+fTp3`}l;vK%YdL7k@%rm?)^|4Sc;E_a5f@Ypg{5`&2*dhM3>hpua!^ zih0|k&EMiHDDOrmKCnea^O)djTJI>SU$8MfId#-0h;9~(JQdsVl*K1U-3PMTVSPOE zGRB@Ud|pxP)s&aTdQA!AprrQ)dB+YGaEc^iitt|p)QxfFC2rq? zidM?O;pGV`8&A|+6p23mwD<#;m&8*;kHF4&S8;Bj)vIYqvG^WF5#$l&jVOj_K8L4ThMf5Qu)|KB_dM& zRa{qEK1dA@Ru_h4Mp4U35sNS+EGuCxoH3l8K-{n2o&kkt0O5ck76JxhruPI4zO9XS zyDgUI8z6YMYnk~l1O#OQg55_72(EWP@MOZb*Q3qX_Z1Md40$yN1M7lC$0j@g1VM;k zp#uoc~xB z&=6~Q5a6vTFG)nwiHLwJve|V&Ffq2C3p?{+;#kyVE430~m?)$U0trVQ0G@z4gaKk7 zsDrA?QU}j)Kc6y`QJ#KjP?wZp4mTz3J7pNlSN|}|016jUhO!pbldDR4?k_Lw-_yU=ACXO)%yF>4{ZrAWlSinK;B_ zaEKNp!edm5hfw9aWVH2O6`dUc#*He#9NeelfT`5*LFsArSy<>RScq}Ua6Iy=Yt@ki zRPy;G;fUSCec@jATkh~{(5xDyF$NQ)E3Uo|z0~=Bk1twTRj_8ugt7PQkBzo7Q~z>a z=WhRSOr0)!yLRDmRiiI>A(n7VYAzMqrq z=JOQ`$(C^%!V?<1ie0hP&_+fD^CY$)E;;LTlpFINws^TZ9tL4z{y?y4C=8F!2zVBt zG3q3-bojSPa)0iS#^$DAVJX9UK�|3Q+Y9 z_}L2Or>9*AswU~h%E1Dd9@tyQ7DyQL58DEHzR)0xz^w-Ow*A?!OjDKJ{^Z!(k9k{4 zNNsUW_7#wDApo-i6*nZBoKNqMC*qhE031%yN&{eP%kH%61PXH}+uWRHP!p_CL zhtOCB$N-uUmUg#LMM8|pr&-MSqhUtUdoU1bg&YUja`h<>bZ6iZ$N`^|fWv+#;e=Zl z8M1M9n=^q`kZ=o1`rR;(M2LB0cZA;UeFcbIuSKGNzwY&VAu#g4|M82+c0{!6?jjrq3 z4QBNMfVYW!Y^JpZ$clVULjcZ)OU<&{bV!M~{ipzuDpv1q_ z6gUCf!Nn|(FlKBBW3q|?m4(Is>Bwr??V!rQ8O)Q1r5h(^ISJS(9YiE8@ej7L)9DE$ z`^D<#6f%@ggAFT99uHAU6Cn&L3>2KkNRUyuCk%rGVu8sMo@tD_0ts6>07P;ei6fI? zS;9c#$pQHsWftw`5GN%31&H$#09@_>hB$A;xS#mGCCp2_BGV!Ky;msw9TGyEr$HQj zQGhs?GSMrPpFZ-NxUU6r7k6PupzzWBi0F-t`RIIXzEe~7M>th5j(9e@NN));+}esM z2)C6J`gtnHD(^?yS_62MAl+@j(9U`O&f=tnrfp3kBerL92=}wHArF3d7@4r$1;`RaL zbW@h7d=zshqchQlZ!&aTBaXyk{>mEvSFZh4CwWI5?Al+0iO!?-FNAebu}CIaxh;D6 z(_E2J2x79-brFLU+BA_Gr-@R`p!kj;X3){(qvl~`Ow`LvRK1(1e#+NGy-FxiZWM46 zbymkjZOWUdGOhcb2brkDT}L(WmpdlvTD_2+s6%a{EK3tryui)t#`>4GA7b;=RZ(b~ zCXX4DD!mfH^vGKOm#$^}(qjp%vZbmqVNi!R>%F7HAc zGiEyk=%Jw~WgqGY%KkuVUO<>ircjnaz@Uq8GlQw+3J2kRoP$bEpel%9`y?w8Au6Dz zc58wg9R!26NyYKB+V>_H3=%%1Po+ZRy8*7Pf5F=2P}nx1*?S!Z=vpI}l?$~JCjd@* zdw)4zc2$CX9c0X$aVC!i?yd#yU7M>%dBy*uqZRjb$1(Tw$hnT zY8ou?R~*Vn)^90PABQ<ChiFcK>ybbqq21l@eFnag1cKlm9R zfPtCw4Z;GRQl+8BMBK+FP#P!THK?C9Km;K+y%kAd_MO{6M?wu;R{Sf%N&r_c*T016 z3u|J6%;eEY zRTpn=ksYE;ic+H)4x{>3fHxrmrA5rF`X`~x*v=@UtUQ!aMwcklxxi4Sm_g;Cj5QKQ znddmN`#_XQJ;hrh+E-JbRyD@?3=6HT6zhu^p{Z za@;)k<~x{Z7QXpcg8Vz`Xp6ijbAc9F^zW?#`lsX9PV^50vc*RK+Ts;2%h-yOIoXg! zwzJZqM+n@zqp*m z_-Fw^{CsDE$ORt6%p#w-3+#m})}x91l*F3RL3rvQ5(Bd^P`ia%fA((|GwfOqDz69v zZ`TtZy_lnodnV>Vw8n?^ITpJXnUv!><@5a?;D$2zOl+7))H-$vY=$$mfx+C0ZRa4Iqtucu*?O?q zIF;L)>aH*gy!EEGM5!jdibZ#r;yv>if9%|{$FXS#8H`Pe>3tuYD#(uQ z%YE|4mZS@LV_S-POk-Pe?p}{guZG9=R~pQGk9t;4Qp-K9+o2s}W6%2`#-<9gW4oAJ zNW$y(UHXwXwpnZfHMXj~ADdnckFCGPHj;YwY2AS44>7jzy8Y;Y{IM<6eme}44{NZD zZNuJ=O|OQ>Hk>*$De74{Nd4_;-N1+}OfnZAVr;4)yKeV?EPrgv(RAmH?Jvq;Z0&nL zHoY1i+XSk}{6s2r!=cdFj2?t+N2)!eC?ujLA#6)}a~vgUZgX^_gOW6hl29&6Lb8n{ z{Svo;grV_yfFN&Fy-j7Zb4A&CdyQ#&H9V@h)S3Ahqr&ypdSgd;LmmpofD1$SqqxRK z;Wg{KxOa_4V6>H02@L}e%G)R*Fn;yfnNo(dvRtzgn!gS^i+~nGQL?aMtGv&&SQTVp zdc(l6>M}G8*gUECI%jY4m#X3pK;Tg9oIu2 z$sd>GfxL0G2IHEr_v6y5;c-o(&dh^=$jbieYfo!NW7%=p?C~jGjpld%=ku6W79$f{8RegeOWUn8>oWp*bXWf+ku5+`(`k< z`FlS$y&4|d-N@3JbN6*@#x3@F-NIu#t~h_)j*+Y%#Af;|wYN$1#K)IGdB; z)p%kD0n$^F{1l`-@Y!2ePk{6dlQ**;REcxZw0Q2@(XwzaB>~b`;S$V|CT;}8&W4fc z^B`XMMt$Bk`A2?fN+llZS~)4S5nsKLu!_%17H!CjH1{j!F3*Tvw^MUH=QYar)+%0X zHqe|bN)>31VCD}J)XnOlxF7deN-ARu@b1$cKx8=huEz0XqRWgVyuRxL*(>J+?QujUtkkI{x>={l>T((tMrN;ccyE+X$cOzYfx zhiO7;c8TakgpHB5Z0{Fd6kd;Pp!&k~SgN-|oqQv^jqjpB;r<(@p!SAH=(7-!$b5}# z!!3tt4}obG;>eT|LBRc<$IQv<4z~&cekd<*6_zR|G>#7Z=v-j< zF%GRY_@UA;evBYHG!Eg1I8ka4`J9_olbkodJAajJ?1clZ71dVF9r2eLUw6){bNAoK zBepy-b`Wz9e2^bibB|t0!hOZdEjjQmOZweu$zeaYWWJ{YMM@&Uek2yjGCse zURKj|-%N^|8ZNiL4fc1o{cW_rbNGw7!vxw;29^zD)oN?QL=wqWJdWp4|9HHFM>Wgi zd>+*_pUmWuoJAxO($kN>!ws~)z2SUiG=ymLPP_p)M{vF}dO74Pql%rcjEx#2Ol8Pd zW;I{^!z|*9;QdLu9LMozK%1a(cPTngZQAHW0nP67B%1^B)S z@ckeQe88ZfnnXZIA}A!8?Gk|=4LZuk2)_JaZh# zHKOj#dgeHYlV^^G=R9)+b~(?S9LSB~tA88MoQK%c@1?rs;YIaMwG4yWRoZ z^|M`>1Gww=3g8j}E;!1kj*uhJA}IvHXa3qH)!Q%ZA-LC6?+@~n`A2yO?z10IGkxxn z>UH4%Vqc(G)pWZ+k)!|=6Fo6uj8{dzct^C0UxLPf9Xt38 zvt#MN)1%%D(?)E!^+~k(d~EI0$M4b2xW*J58*4$0sn1WlddvQ z?bbD^YNDXBJJ%$Y=D8-l!h{)F#H!nUnsrTjc0?9D!?svGx+ax;T=4n$ln{JA#1G(8 z$=rSq+K;1uM*@5IE`PJ|sYTvb_{}8dw+%Lb`MO|pf#A)&rT&NjiRdT@4ZNiUnRrVH00~TP4up9w7-bNTee;&m z7X=2h-={Mxl%Ia55=-;Z^kPWMZ_CV<82Q0WaB-C~(WmLuOPWr-wCU9EH=X)}rcYC|LM2FRT26i$$LtIPKYP_+ zK&1-u;oFWU+WZiQN-UE(U}=cX0Za3t7~8(popZo)gNHsX;4A3UzsLbA0X!O`{7?>9 zEs!7C%5~v@rJ}F{*5LrC23c5VK|OnK)?U??c8?% zIUaM{{U`W=l)HfhioVX010S%Y-wI0(TV~0K-;!kM_h8NKUT^ocdjIn6epk3_Tm6?a zTBht)KPOup$SFzAFU;suhhLb{1fuKtM%!Y(sY*Sf{2CB(Sy7?u9oIiezm!K14AN%4 zBuF!=Z$4?iq}w@yU_NOEXa4nK1<~f|tV4lM+C?nKzWJo-ivof$7XPRf%1=K!1cFdb zV-SQ-U65U-1NY}KSSA)|=eN+kNRP%Uy~;ED-Ipxs_pBv{J!#2^$4OYFnY`&-+&a?( z$Ht`rymYy0l-k7v6t~altbb{0Fi~Xhb$?C@@%)Jl3SK{+ME`PpJYe7^cLYM5wjAjf zUeMBXC|?2wUJ}V}FrW*L2;>~$L;QZ%(?i{qVoc2d_x$-jffW zUdXprzgAght=`!OuZyD4H0Al=xt90N2k*=-+!VX>!8^K(cmGd(@T5%Pj;!u|@a%;h zEy!j?Qvx46W#vx#@_g_*mvrTW=h|Go_da;PB$9TaOF)l4c$aqZ!M}+QUKwy%;De{E zu*bksWoUvs`QUXf=-LO*8VNfT{Tuk;ahTDw51vj*0%CWluDrzukF2oAN!SOkb5Ykm zc-HJb_~0EuSn@(x>(K}AwHG>n@S%P1T0pJ6^}*A-d*_3feywvCyY|6b(Z!qp=RSCY zJEM%U@=!(@U7}3qg06k=tdTIv{1bifs_5)q`rzr+z4O7lrwjMVu6^)QUA*}(^TE4_ z0eJ;Jc*@HflQ(zOqsHS}-ogEx~w_T+=7@(zke!l0myVla~bgcEKv|=A>tyND?Yh6Zp`sT;N zYpoblw$^h1l$_O=7CU4$rge5!W48AG0)ecp^;lUL{G;qA%J$W2?1B$tHFg2Cq&urI z%EJ1iFEe2w`-yE7r>l<0Dwy}ye&Q%>cHZ9qdkf}rv)$~^fY9c~*)1^01G57d4&&E{ z0|wR86EIAoJpIFs0tR0TY}($LikM9xMy)@g4}lJWLd?HjE6!aSm@^e?S528^M%_Im({&0T$F&B+G6qCFl8g(WSSsxBL+ge1#c7q9QB z9!%aS3!A)s2Ktq??U+DW_GIRx13M5WFnP1!v$04z9E`eCG>ODb1 zm{sl-`JAv`(6B%&Y?c%jST>6>ruGypU`gRH<}+IF{J674lY}w*5_eW#6kyC>IEY=L z{PeE}fH7?x!L4vZg;tf-!z$jTt0Oywi_WaV>qT6cQ~SuyO&k(J-7 z*vk;-qCYkTZ87gr#DsXo&IAD}cRaJAjA6zi?-Hxcf{(?$UB>naN<}D?%1y*((;Lw- z?YTLEd%qQ(J&|hd-c07PRM@xB3(zQ|3G3toH^&8|>>`dj^(paxKIW+1@0AnG^tTkE(yH+DGrrGb|GvJk{%-OEiG-K*SI@)Gn<-`k_WjXQUZMYGGLcC!5ge}-*DZHsnvIMdg5ZiGt-*;$) zSyl^Q$t=sRIN=te3NC^;N;^h^h(6AxoE8?_g8CN3#a3Qw=$sf=S?qmW?9aiP_t`9q z2!aY}x?}lbmZuxDEER>#vfdSa^xizhLTaa$syKbm!P!IHa+4z*PvCls?&4zK0+wg3 z?sD{h8B-Y!hn|%uZRx^`etS<+MECL}gwH6RlP8V%AHMbszH zx^tvGsm(TV;!*<_8Y~c`xeVbm*ipZ@+v1_?t^#ep*>z)AV_WYa+%wk`>>^Chkszz$ zq?ZKdxNNqoEDm~%4~RcUh)M0gwf|+uO=0dblf{VkVY{9`=+XkAEFqs&maO~(k$m9V zTx;_lT*xeYaG6k9!h6mxGig0Y>-`{6m#EyL*S6;_GjVHQ$sW9O^x8YI@Yxr(-)ZId zLVny!wqO20J_q>(UCR;2&TM~fXAZIf$lo`%uP+LS;{*{$<)_IZ-@MZqL}Mw6uc^yny)^i6t^jUS#P9(lqeFNBx|EBhhYtm^5B zX=s0w-nuHE&9xqTCTS#-ze4%x&wZRpI+0%N%OtV= z{AW(m(w6*5`YDXRheEl+pMI`)$c85Y55cF(qF_q7%g?bL!L&Ut(RlU$WA9twqpGg; zgA+9t?1>hwZPS|D8*k}vY%gtSOYhLi=tR!3XN1=0ZGG@>)Y4ub7y)gI8kht)o=m_} z(bj8?SFKpJq81H46J80Rm|#U7RigDV5z&AO;UW2d-`eNQoHIEy1WazZ-s?{?Gkc%2 z&pvCdz1FwaUVClHgemz>@1t{8R^jer3e$L`vkI9oTikr7T4ELzMe@Y2!w4oS?76%g z%dN4_ycN&xw)t$?ho=Q1xJvp@bA^H$DT0jzMOGjf#R z)I-Tfu!`A6YD=L&n4n^sF4;C0S9KbZb}jKa-mX2ELW*5I{4%qH;5y4$k7!2%k8Wha zU`{|uo7vB4gE`^L3Rz&0cY$Rg3j)_)dsoN;i;n)LlN_e-Lh=yr`s=@_H_DkdnAs1t zx{VY-Z%W~TAV5KH0kT;r)yd1tal81QT=nR#)BPUDcP5U|L>v+Ct)_OC`{Oipu!Mg^mHwV#J1aYh?MK z%?tcX%u*yv%r`J8J2SPq$?Jovyg@h2u|AV|ujQ$MF*nE?EUO^8p5Vp*Bwy&fEp==cnDQPSA@u6#8h9OJ9JvM+hBo1i3U z@vv;k$(5{Aak8U3`TNHi7QCFV;~WN+<@;{Vki_cUX(W~+*X^5CZ<&$Brzgu~(tlO_ z^yGQ91u%EK4uOF%cO#U!VK&^k`7%t$A4_67t1T!Ks;ffsiKQ0BY1 z7<0x#Eos8ik&Qod45n81il}%`%H)Ai6Qy|FY&F3$znWl4u$l;{5j8O$S+JoLGipK} zKDl;EKF&Dk^@AsQBI|x%?~2gN`=%EX(_Tl1qmS z)I2A-@B&xIJ14oYh&nzniaems7ar|7#YH_kR|L6Q?{+g#|Ei;R^vlUAueWOzM!VOZ z9&qikxEApS>WGp7NDg0s=|r{$V3}V7uq0Rm1k{KIxIm@z&S(I6kVgZ2kLkSg0R`xD zc(5FcmYL9W-b39#0F>a=Gn*1D^HYK)!ITK75lWm1E8)|H@*oc-%5gznN^m?S)m5G2 zaPdH-bT8%G`%}8J$g4^oU;$N0uW+*76{1Rh43n3J#!Trh5AlSPeHRyS`j#i9d)6eg zY-8`?^gfV;%IBVSo_nI{BV^G!UYofUx0bg&ySN;e8Q>&_M#0Lve(xFP)@S&E1>?T#R4jlE zZxOO8u3ENG-QlQZlV8|WMs7NbwKlng`51sw-i>>duEISLS= zhfFYlQvk80P#pk>b(Ax?j*=(sSsPw)f2FJ;kCd^_D`o!*ns}s))v4>d_bFxf!h7wm z2&CC8E=t)EE0PDfbCgB{XstBLeIj?3J)hFk7j5Fo-hJ7cWY?d_<6D&`Va%1%B*&v; z>6k0U<8;iG$h5>66&98wk&Yxgk>k_kWGm;)$00nQ7^i)&ZY;P$ zX%n3GojxNKE&{BX{r3B;^Tu4=3@LVFu2|>BT+Q8{;dQ>4tIo$jGWRgtG{?Qm8{^xvZ z_SpUYJ%MAl5|7>gvCCs051O%i8F_+b?tPBkaSoe<#xCo;V|P7QXfQZOgVC&W8U50> z45Ran-K=nPH!snCokDsDs2ntReH)UpA9Gitn7linc|q3Pl|{Mcu0eI4xvQ4gOwFD- zg;YI1*Zfryf~4o9$H1-8ncni8d=twPz^I!W$cmupnHg|+>lbp6EyVJ^Px%}6MK)fL zMK%`YB3n?Mhiq4k_MA$po}Ft)w4Y=;d|RDK%u>A|)t%#qSviqYSeey5=g@N|>6vx9 zUyy_ROG3)t4)Vi#ardsllXnlxq!U1Z+j98;l}Q) z!$L^9-|2$@JK^!|yb@LF2kfgbvCcEb(xHw!5o!z)WJAQP5c6>E7cEMS?^@cv} zo$(kux^;d^ue=a*k!w3lYw|kNx~xr4p3-Al7q`NPaEWeR+ojEX??PND$HR>WJ?wLI zGkI2*J;sdk=qN0dTt6=Q1OXsc++)eAK^4{q$gMYRY2R*@XjgU?p0b{J&Ay09c>jV+B?7nWI*XT_}A;Vc|`V#}Bj^cbxO?u(Pte!ukkLtL0Oybrsr!@7N33b`<#zvJMvAb$$XDlUwcdHzs9ndb?6&%!Qb)M zu%~sSPg?y=U{l<_u>n5_@2#5(@KUCA+d6bSX5C$iU%K^Fm;8F56(4cyWl*pY->l>U z{$1F{zqiqvnbyXbwQxSZ#jVvb>!}8OGprUxNYlQXjp7uoHlapS+@8^aZ(4mLf6G~X z&(DSJvg_G3oHxmN9Xj`iE__56jeiB}kJ^K);QQL7+Y8xG-P)mtcb=9UGL45ZSi6ky zN&_K>;Z;U>rxC_!oqKfaCPp*3$N9m?>Jg+htz}R2kK5U){e^t70f2S_TMpo!ka zY=>Z5W3~{?7J}JAFk1)~vxUMjTZk63gu}iPSTX*Zt z9XM{fNz)S@U3$1fw>mISi6(ju(XEO(BqzA7Uc9BEfu0Qf?^$-<+KE%|RH9AXLn{?Oc=_))H&sNO_&Js?nF2C2xgzT@3Gqqft?z z87mR`SqQ1o@iS_@fP=hGiXt2(iv5N5jhiG;Gj*;WA%IXd; z4llNolu3v^-vZ&V=$CZJy0{@ZbX@2r_Vwgs;Ww<>3AoO%wp%w%#Fq+dDQL?6R#-3M zXf_;^QwU6c?JcP_H=k1=6ZOPX)I@mZf1(eDeOTh!>O!25K8LInCfQH1C0poxa&qd0 zg&^ox22~_WMkTKsbcuHP>csLxNY5o;4t{Pb$61}1Hsjk`d~QInP?Gf3mM@uwGt3b( z6q~h2$AbMO+TP}9WOvouk+Z6=`e*wo_WRUi$ye}*&xd06`PDs(t*N-Qr@5yk8hN3r zOSdZ;p$hFJ`-`Y1VA-=4=%EdUb>`vSa4iU?H103qd8EAZQLp)97xb>WF zpWhg_N0r2Dd$jr)Bx#}t5yo@s(1v|hgL`x>crZr=8^`VQO5j-=@^9D|@D#g*-MkNB z7#iUvCXPu@H0?3NuZV70EQ1f>#I5QC`VBGd^rnizty;}D*?OX755)VQbz8)$DK+tp z^YO@vrg&(_=0esyt(bpJQR-{qNq3vXVD3#^cR{@%eb`Cn|5dVO|aZOOPC*k-) zNlXTNf@OFxXE>SD{Psz%>Tt(J(laJ;c&D0v#?Gn=FeNNux)Pv`_iG+!s%l4RYE!#XfWPo|COJ z@8~wI9${MQqTi8W%V`PBh-flx`cH&sj$Tr)+eZq+K+hrBcx0_j5w#Zyq7pN?eHjX@ zU9MHbUNn_&pB6l_CW-+ARi%yHgbna!xW}Z$d#VX2j>V%&m0*aW>boBIc?4MrG{1P4X!HAAo9 zp$mj+H#PFZK{t&}01{?+otc~|-$EOm-2@vdtW{tUuZ>}ILOiq-5i>+4vBB%W05+x7 znCKf;1M2lqw~_oy8Cytw@l^pO5JL|3B1j}a3Exty8wzQRTRWrMr%_8`Klp7Rj$!|< zm@ezujfVYDDZW9{h`+S@pUvbCi_zWXO@_jVpkwAmTKOVYl8r<6axeoC$lF;@Q9?jh zafa3c>fKy~rsMWK9n$ps_^ZhK!Ymfg<`WScbvHin%-KYIE{Vher#+ZdE#7_{+Cc=8 zY$b`?GudNYu>_pBjgL0%h3ppWsKaG!STHTbx_$_1vZqFPIhhmQY=n24A*6(O*$h1& z4{eTH*sk&%qk6+D%ApBXDosLNf&C)QacjL97LCTw2X@uq=8AJ8iKv8|qHgZlbDJGSJhc_oy+{Bf!ulX{44!)asVtZ)d7jn9~9B z>pPZEBWX2%MOo(t@Fiwnp{7X}nhvabfb=O}VVzT2k-T_N%a}6US5T3>4E8V;Oa6Kg zrYC!1$*VXmS{}2mFR{j)Xq_{nWy~nHY@IV2Wta#Jv&Ig$#*R$=tOt-=<~d7s=z7d@ zFh@DIisS2q&)~zfZ%pAnN#!l#60^S7b0w?4w?{q>-Kjpd<3p>z2oJ$_S=(yBO;9!+ z=qu(Llwx2qG7O5n3m=BH7gi!A-=2ddCn=%DfEtB&)(5Vfy>CDZp)n{(!(P~dZ(99h z{4EOdNsLni03HPxv3kFW5M07;-aRq8OCU!F_v`DM_BN?@#qIL`JeokiHIsv>q32<>q z8jrJoda^|HAqIapdtz-){C$sg8=0$f*Ljj~4BRFx1_c}B8b7zUJKT<2FFHJqT6^$j zZMZgrg=Hp&`3Or>Pu877*vs!~;Bnrg)y)QT4g1)H07{_a`)&X{7xtc#oD>PgFfC7> zdI;WOd185pSQv}7EAVrj)tZfk`EJC*Q9xh@bH=9cF%UsdG#o<+Ybuf?{jVyu#Tzgt zIpp|Lljaejo@M|FTndjsPcyE2Pq$?@9qqvw5?bgX_!yTLk4c^v8Dv=IG0@P<0LSj` z;sd7-A+^*bLbssg6~Pqu{mkZ&%mKd&kLFD92@YzWTA%0!Y3Rn(n^Py5Fe%nTz8!eu z_Ruf6KufpKnzdH21Sfhvob?^NDIXBGFa46>tW)f% z%L-1mrV7wn<^@`B07R#OmYy7|fR@~7Cd&@T`?H~_9eWBuEB0Tor|&7CwR<*!RtqU< zM#MsLF?nP7=!wl)xZg+s|g!3B>YpaW7x9gD&KvdhzFo!l& z{R)rfyq*KEzX`9JC;nq4lW6?8tPFQUUE;j zf7bvW0>j!j61F%j!7x(%b4J-hd4Mvv7-^yxT!rc=Ps~G=@=T)~*ju8Uv^Cy}2RV8( zA?8cl~?#-avbjrkgk%7R6{sSQ_{_5&UKu---gg$T69 zT}Bx1{1jir2rq-4jfc0v8sivEECcDZ#_z++WQ0~zg2SsogUCvm2cMQKxf8b7q%D3x z=n!5N40+-fUao90AF9>-Wg6Zv^!^W$g*VU^?|eyYaU<#wfDK#Bw{cCf zQtP^FiXaSU`VeOBO@LR4!^g{WXNcmG0cW4C-9`XN5F`Xj++ z;0*(i%AQ7)rJ(72JW!x1S(|}S0G)(TUT@izHRRSa0)f(2ZYBW|&b!ebbWI!^3@~wY zkb(4wybeaDqhXr_na-AP8Dt78=R>B?Vnn2^9J!*^v`t6PVC5WO$_7$3Yh7U4#aXBV zrhG@`EiYV-5IiJ=K?$`DjTV-7hry<*_)t} zV5nN*IJ)A{=LX|6GHP!s@>x*i%B>NLEP*25aMh=KmYi&zhjOUw4OQDr`*#yTKRI6R z-fDcajxm2uX4MO`RzN`rnlNBhcWeL(8is4IT|y7F3HQ`|0<%*kMf9jD;A%Y&ywilY zg_leuSNX1>k6Tgb_@_9a%b2gi4_(+8)MteFkBa$nc$JE!vqDgA(P+O;C9oNCulXd zU(Zn?&N@A`S6n$${whO|9pS!eThxW#vse!ajK>Pm4CuNxRAbg%qen#TX>}V=fM+%E z18z`jX=n4VGH5vZG`LhyzNTdi2PMGh)nx?3G3#d~(PRYx%GJXJ_QJ(~^$3)Xw9Xj? z=xd!5OHKKJT|B=FWA%!kS@`+{@vQ_0&Q)5u9BspWY(LV#3M)wxb0>Uy%0srgy4HFY zz=pjvtQWD3-a)DiCBn^G{h!!`Ak`hPAc!^MBQVtvJ!;yIcr`Bc=_~m6A*e}(Wm+#m zSB_1V*zqth=w3RY!dv6vSB%hJN1C1A;Stv$Z8@nSO`YX5# z4z_@p-E$(@EZtTD^vRl9z@5j;=lo-a@iWQ9zG~y>~s{Vrdi` z08@oc_7gfNrzm+YzJbDDyo5uF+meK!1+3o}LE-vw2nzpQLR?C8YT9 zAU&012)@fszP0^`atvXyuI@rSP`9>WE2ta+y%@>?`@am9A~jfIaWUL*hv>ES}!SGOEueCksJ%> z^2BybGtW7sB6(pb3h%K%YyMfxKY!<+O#s*g*?-rTKRb&$**NUN0&UoO0P2OvY|MH!@#-EZHrfKK^C(GASE0KrhR7F5&q=nw+@jkH1-4%9tmhH$N4BuRoKn>q7$7dvasH9ESS~<0`OczE7K{Y zKDmVrG4;vZ`S_;Q)3zaQ02cP1>xAR%4ZJpDQlX0*dA;NLb96CO#{*RVz_msgsB+Xi zgzF-%1=%-~T_}%-5YoG_1K;3%iZk~O{ICEBa7fGIUmOSDN4CZAdTOmA!~B;rT7yIm&>z+{k!kZgCCGrlZ*7$*GSOg6?|Ke7I0|0DwzFafzc3 zv;cZU0J&DTUT#*@0?L7jz2GV+YJjTOWmkFe^|GrxHnRlYf2=}w7h%_*)nN~<9gZ67 z%$cKzsgV?*>K!iRr%JZ4-{<2+Y-Lh;;-oUEjQomQZy6T)KDPmUh~t=XHN%NpA3`J2 zfG`r5RXp)G(SdJT{r&iBBzA*kVb0rBb1o)26xM85B}Ael_IyB9_|Kj ztMzcRtQR*MA-HH4!&n;Ob|dr=o=$-RqLQU2!4oi_&!9mF!7R3^jopi>38y41)W)tJ zyc4wMT}ZGAYYq!KT`cIMygHR!Mc9kk>N3FI<$%3_OM+jtx-VnGPt*wAL-Qm@anf!f z9gmkVG>^fAnM*S$KDdN3gAbxd3N6x>!!)ot(?N@P4$WY+vEVAi+-MJO1$CZ9*NIyU zYd4m#BneY^hq%DDGXEW=7ml#@cdko_56s zzoOMVkJ*Zz#8N%c#iP7Bb>&KzHXWc%sh2j#r)i^i3>cmp=OUZHVp`E*lIr7{BpXNHoQ7@)(V$4@DeSjVo%FWhBj28N^YpMvS>q% z8B80|fhvcW(t(OL)Pakp32oRMJf||tfZR|AMjJ~f^+9g7dE{n|Pi_R<_LdvAnvXXB zTHK%meZh>8ddtWu6Eeq82z5>7o1BU#PJ4aH%Ba(eCVRI}99+5KK?p`p5|Ha0XmF z45NeuT!?_#WrUU)J2vT|mUw8FLgmPO4W9$mUu3aqwSn;O>S37{A}uyF;~l2e&ef`L zD<&54@On79)d{vdnX40?mBB3s5JC5koAD7b<^=)~BE*0p#%|k)I4$#lo zL4O#4>Ib0J_QY}c0nR=1UEv(3<5F4O;@|*x!SZbI1ER_s-J&<6P(1{~#O?EHF9%3zRnj z3XBhg0!O_;rV$FvRZsxn?>+?u27|10_u*Jzh=TZ1WO+qq*ba1ar_mTc9h4Ubx^-ie z9YLqG{RG>BN*7IoQO{8pePY2cMQw4R7L#acHEu07!!M;5YT*b&R`|6*0rBt)V(#Dq zSB_Rk2db5I$QSKA7HipNBf5;pKsrL&(q0f6Q+Pp^#0IxvI4D$b3BAObWm?{wnzDo{ zY&quC&NA&X1Pu`GXmy`~=>vrnCIE%Rh->vlLLp3p5)^fzi$fuxc$Y#11eidj=f%{5 z%F%F_00LV{vs%Z7=nEitq76L)by^{<%N;zK4z061p>+s&X@zb{ht~0B-N_K6JtVY_ z?~KqowkZ^fS(^}AXM}dB(7GiOS|@k9^qB)Q1J~><@fJSD8&l^jCV3cI2Myl>4bN3< zMIMIMfjnLErXbG~1yCVcy%HdjXTFdJL=o~+sM6$Fr^o{VO5vMVfYu5okhVMm)Qzj4 z{(hAfpdAn(zTiFuXe}Np(~oQc;+sQ&*rt#tTYz{|Mu2#=R#Tqv2@vm1eXH4_&~o@R z>5*aZVMc(`2JjZXvi*ocQB z3NzfTY#{<;;?^b@y#^S!)d&DE!?K)Y!lEK)C0F>lu;5))ScX_GO!5?4HY-I6@4$^T zfpQhyG=3fTs*LemeWz;AhKAqH!DyVFXLLx}7PPz{M2=HAHYsRP% zA4Z=j9sr%hHv6oTHcmz7GDeN}rtWys)k)40k6$P0l|P6vQyl}E-`v;w&Wh{Kl=Yqe zz;m7{#PEn(ZP7#r-A*kGUv-vu-ragZ0i8|$)tzXhyQ(u5S$tJ7B3DkexbD+~wfn_Y zU66ORzyr&1ClQ);%oAhjbGm^eX$>HOh_->n1<7_yfGO)c*afu3aW@%Ah^y9j6eHWf zQYa&(7@hT5wb34(bAs285OZqvYeh{Gz?@Ezv~9t-$sw}F1T{%S39zZAVKC4z z(r}eH3%k3_a69q|E{KQQF>!wgz9msTw&-g(!8+Kj^wJJ4sYl}DcxWvnqTDD!yvI5U zB>cPXQV;0B`PdT7D~!;GFxq$^o5G?uPM44+=8C~fUEaIiMTu@+- zDNb~22u>bTGWm#>F(;y%1)GN?x{D_tj$iCGUCXO+WqA{?8jkS>BsxbS(b38&b%^7X znz@0!9w4XGJ;Zy#PN`B16ELw~olJ zb3x6hGR}opA;^$@niP+7K`>}z(||Y^*eZlMr&H<&gnenJ6t7PG?J<`&ufw@e65w30 zPoX4Ennc;V0*s!6_kjj)IrPYm*##N|@w$H}&SI&o@o^al3gzk1lU@{EBI~j)ZgwL~ zw!ou^p1utn9Z$~Ur4nc|b^|8eTFv_DNSJyudIlZQC6A*+tN^AX%jrY#tDHVm23{|! zy^dAlWK`fc!$?-5JMzV_YCV{c8 zhnb2wC8k|qXa?K}NPT)dx`n~qjA;}6r~(Sp9_Bf&hk1zs3<`G(JOtc|>5IYoc6F z;poXep&_~ZBs7$++(N@vvxJ5>q=lwVAc^Z?=G7_fFRsw^Qgn_NH9b-KhkFYDD3$<J0=qb?Sk~ykvT=QfWxUi2%N_-AO5OLs{=hQow?4wMFQfHb zuxt)2zXz7F)qb$BY&9P%>U^+_SEnAh-(|&qz%t+Zwt{6r3;%N!EW^1(2^|1Ut5=Yf z(U8vyEDK)4?dXe`?)UmOTg^wCZxautrxLt6b>n?5ZT?%=aHq(^RSsl!^+3qYXtbJ- zHXZbCq-n#eQ%mAmY{4US{&$li{%qkN9F7jdP}vDOvn zSo?Yl2|hreZHr(NXNIIg;4x$8TGG=U&?)^5+Sq13(DoL9NhaEhSEp{j+tq6O0or_F za9q&|j@r3ZIo22kryOgUFt}1eBv;JSgrQ^Y>CxBpKVjHrKEiw+$SOk^UY(k8*S-iN zUbQ3XRXfV>ReR~#*#$@RhHrlaI-*x?eBa?4FZIH=yQTrYy>q9)w`|YR$A>7zXdUov zJdjJTFtY~GWS{VDzaa`+&1Z&xMbMNs!@N56?ti&_$puliCra@KnNX@;3zB?6t=Reo$BOs>{Ri1zxx~dMwfSeNvFEYyfCwJ_hGIz~zHC`_rO7#O^z=OxNwE^xL=qD8f zkmj5d1n>aHHV4E1z#zDn2rn|6yW{o)<6MWAb8$#{8bCdMGzs@e4gj^Rg0%w*plTK8 zK5?$C>3+_=b=&@NuJg2*0#L8CUjXfXRu?>6M{dJ+fl>G~7O53viLzx(>@di8>X@g= zD}U_Uog5Ha{Z9P##=bFHgcEvMahAv~n0z?HoE3@=xrsZT3|U@ED&wyPmr9I*z#KtE z3ot|9-xUf^3_Rc#5Cl*J)@ai)@N849P$2LGJ3q%RmxwNU;BhB2hH_zfLe_Y-x)ZV@-JYPBY4wCae0Mj}jiFqM9&RWX-cNxcu7W8rv_R;= zh$C)3#h77Rp4BXZp=e_Pg3BDci(R)lLf^Aivyi&QU9!osn#ER?-Q5!y`aWtJdX&UD zd@4^1FHcRrm1IGL+wv6Rw~q71Z+%ITMIjQ#DbT{UoHCr;aHRzck`_8nuBs+=93$#N#an4apYBl7vII8rZ`tcv-W?MN07P^^uN@PzFCbf5*rtMt z0n#!Ncm#oe$f*Zud6bu?F8F;;JmN@;!XFI$qdoUZ%LJiEptLA#L1~#UH)W*d(LBpo z;|D}q*lIp$k+|cGwD9uOnBTe5f`+0|5UjJ0-D74BtizT0M1*+CtUn^OT5XhYU)+ zn>>jJMmy1dn7lEX3G1pdupsH|F2wIOCJ>NEr=#87{gL4=>=e&LyBp!vMtD!0iI$K+ zpxKRf-<^(j$5!|-^b~^K*I}U$hmxxh-cSbwZ+_guL3eL*7jw8H9)8V?ycT^D??U#x z86C_;T?X}NH4mj7CCDGJGqvdEzFUjsXh0(Ul#zEL{dRfRuU`BV*^1Aj-^=rxiC54meV!e0zCaERfgFJx3KlSsLrJ;vkuZ>B z>~vDyaRsJf5~cj<(TXtr8py#m6-){akdi-;LwqEI=_5JX z?;~0A#O#7Yp}4Xlk6x@+K9Y%j_mS{YuaD#<*yvR2Z#Z`BY#)h_DMhdiIhZn%Re{kp zqhuK;FuG>q05FAZ=3@%ia5B*~ygK#VjV@DiMb{iW4wB7EkrOU@yxqih|Faz=skA1S zy=MP5r|+8F8$nVHLZlreha*@h4V(Vqu|M;Cxan?U5R5mP=p39=xapwZB{Qki z0`Rs-PD~jPEm8(lh698oW!JC-6!ehPIR#HIz@1Ke)@@yY+4=8|SG&H3M!DKm9faf%Gwz0w zzplc_UqcKzFBK%mWQDJ3H763u?VZJO+~2z=Zxts>@b1Yj5Wtbwe%n3CHUs6AK7;Jt zlijfN9(m=xsU0(2REMaggLwDkqtL>i(A|>@CW9@ZE_e6j#WTdf(2eX13#J1G?hYxB zIQfx-cTYa+#Ra!Oo582jYq63FLuK=W_TW5Hd@A%Dx)14}-IG66jN{`zX}c%S^E2-L zngd{*g5r)d?0K%m*!{hG@)T(`c=u$%)c)5=Y_rcgse$o385_!bQDg; zGlekh!Mi6HG=A*elgVQbg58s!p-BEu+&wuNskO3pPo6hT#uL5qSS$NDyC?tn73IL( zu+VW}9@^W1d4$h_*@P<--E!IRmNBC#INWO);}`C=l&fQOG)Zc&=pF36e@(N00Px|& zm^t!!6lVr+zvc5_n}LIu>y8;fK`W%yTvUzDWd<+rP5truJ_F$Ulnu&cJfRsv5C;qp z;fpWh3Ei1$bGUM6J^|9JO@;T0=S)^iJqar~?~Fb%d;loKHv3GW!-xkn6ym+9n(OjX zNL-tT(zSVn-?dqEPoQh_CIq+;5YOp5Am*iBK>S+(!_<~*&(HXQZYH^NCd)`lZLee* z6cJ~MIA4Sle9!cQN_G~1vW)lBOuae??ui@7-7boSv7JEEPO_*3eS4m5iR1ATD>1EH zU{lLya#)wjzfB~Cg|l@2Z3?r&{M$R@*y_#GFuJpnWt2CW;hp|m8FCuNa+NEC4VXv~ z7kb_dt&WHBe=EqV5;SAC_;b<0&CqRX1?@5c4O_A3HV5;f)YVf($qDJaxiZ*kcX7)_ zdpr%Jcdm@NUbN@%EeG0j_?C_K`p&mo(tP9UF_tOSV9fCCt3hZ_vhC&ITce+EO$ROC zj`#EJnO_|M-+W;2<^chFgY$sBaT#scZxc|q8K@0|CZH4iV2}5vru?%1!Cp6bl?UuC z`SXE;JxRW19kXBv!JZ90$YiF@ioT8mBbWk=nDNnlgnV)>As^he1^!!N zhogwMNF1BsKI3LGU?6bcvT1BN*zq|&GmiTW_p!~uaU6vEzFdvYWl#<8P5pUtUQ~l= zty;-Oypk`E8{@YW?!!oNa32t$MEjx2!F}ma|3>gY;lA;L`y9t-dVOEvzH0Ocj?a~V z0Bf`JxTTLsT_GuNS4ti?q`c)3sbUE;iOPI=+}Ng2$aQ=&B@7X9?>uflkk!*dBpN|D z*FxTynmvi+L81{lK9{LHZcg@F=5Z6yS2*dH6j30*!~MwbOSjD~pzviaYHxx%CGuv$aq>;M^V=NCgzUR&Z$HqZZP5~4!q!R&Ea8)p*)0;=m5{TIcY|K1zd=k!) z&6P)v(Aha9s1JGM+HkeXBiDg%&JlE3dF0md8kI+m7pXjQyiu#!d?lsSmq+eLm&$+= z1TUV@R$PfQg8X^pSh%k|a{q~KG|Ub+{0;{jhkAQLKjrg;9*Zk|p`4}DfV}i%)>BLZ}=+0g#f}M?>4U|I3k#87gnT?&T7aths6uNUb_x}Wk*=lbNw<0NY=hKA* zcsX=oxA1~?LIJ#tomeBo=MgsNu@j6CjW!lDFs|RvdSR>ibm1t9MS7z-uTIroVrVMqLUSc3l}mF>$PkLn4rg2U~L9+&h)he(%L+tNBQ@k$5LfB3_;PX{C=u zdJhg4cbp|(0Es%+A`3z$o!W2!lI&nbl}>G(f+|_jioZ?Zf%^qj=7SR6R8@JP%BLj& zEEuW`cjybx6ptHXt9_y`838SF6ZL=Z45Dl`i@v-eoec6CiTZNQF|SS?@>7?-c~VvN z5vuf}O>U^tNMPXZN6msNqX&dGY&9Qkz6=PEkv(3WdUO1~X_E<3yvv$h0Ckk@nR^0$ z2cnavzM~Uf>P07uVBS*yj?NIx;Sp*N(0F{yN_0yUqO?ITR*YnoAZlIi%V^3I&^lPb z=3G61=bVe5NOU_OtYEA8STUPMA*}{@b?PSla;X-zo+MR_#k zEv&8;O*vm~&S=Uc6gM>`8+9o}P1%Uw(Z=x(iTYPlvehgSk)`R8{61}Qnnb)hHSz+N zL}E;OY0CQnoe|-^QKGuX2PjG$u#Vi|)q#rgKSY;R;FOwK&VhBN-N;Fpl0d`4hVUi2 zJ*NRhq8??TD{j4m)&B-`Jab?jWUE8&BQR12)~!?SVK#@&=}CN0AZ1RsXrdx7BfH&& zO4Dl6!#KQe)NGt-p<9b_rjs68E}O5L53^B_vN;}F zR^G#-EVQvZ2XkSJ+ES~DDmAIjd|k+kQyb4CaS_YC6l#)ZlVY#2vtj?AV1__C9Q9() zaug+KL)TswZPc6&NBH%ojZ&0o!8y7$L!0YGQ92Mi*5N1Z~)89@?b1wZlCR zcOfrMJ@b=3(Zdqg#w1M8@QKZ3g<7h6^Zcv(wqGDJ$Uyx%;X)c@=@5s%L%$QPIi?mTn zD?^*-l!H_0thC&S%39Qrq0I-****IlQ}D{kl1t7p#YPovmIsZg?+}l>w0V>lr)K^; zX@hJJJnqRk&Cl7|DPzh$KV{k%<7k=7+Dv=$I@7+kL$}^Je~D>zF9LlE^ybt_p?=J;CzTZ0qt;qe+xNun^Gb@M_M{gItr6`!Q#;aD zwFwStS~CRA>N{T1ak{16{4S0cJ{t%5F4pQkK&@flPE`lZ zg%i!G<@E4csJC@)1^}E?9Ku9iZJXM$k*5@gZfk{RGWe|x2ay}0bvPutcKa0cuf&d7 zC9`qVtsYrj#c6ee8EVIwnlv;%>6rJmD+(XM8MK9up*!ftwyG_gKSL{!RS1%3 ziOa6RbL`pdAo|JalfGlUj$WuU$n}sqx?OwlcFv{H?b-4Mq1$MlP|JSWBW|=t%yo#o zt@HC}vV6_v2CUTcu(BfG^~B%z8ZFa!A^$V1-*wgc6_WhF~UNd+AP2o&*s1P=`YV+n}P|&+r#BTbvq^gVy z!+wkgf-;8zqz(s$^rgUEbonu=cYNONkee18wH^4dN6ocx>aZHy+dBUhP5Q)+t-2W+ z;`Yr>L%To&6=1?B9W~R1*v&(OCWH7|O>1S=+2PAT@2s=KO^ls7YG2b@TMpM64v0~1 z`^1|e5s_^;K^$76l=LfXtgs3f@c`n;t|~yPr@HVk4B1ifWXT+3#}c98u^hH@a8&s9 z$Q&f+fUm83XY){w+w4*!vQ0}YxtVE?VFdt8=yud?{v=#MniHdP9Z}x%akm#6$D0hzJbs3jh!!mz8F1mXe4V* z7KPr*rcf1Rak*CaJj<=+IB*OkVz`td54=h|VEs#`^;XQjeKhtu;%K5VR!K3>%vSQV zvg!>Z`Q&d|r|)PH3Vi{?^oklO5;Fb9CDU7*KZk0s~?+u)JZzO-DGz9XjLp$Q|=Oyv*N?6pyt04mioq{7A z?DH_#Z^o!HaM(R|CJmjZ?^x^^<@02e-;72v%3ny2^6X+9vZB=-21{TM{ev}>%0rK= zo4T#@{i~Ha)RHDu+{VqD;`XIqD(d_)%F9=D-aWa`LS`mUE;J%d9wFN(Lbf7H$l_La z)Sgu;Lbl`-YsgU)Fax?C$GTR%5l`0KEOn0cR6-_2!9o^PB|@g8KudfJFd=T&Qvb#Y zN_MP^;}ksvBU6K!A=$rMVgHT~#o&b0AHvR%o=V6*gwpp4*;8yOBV^KyU&yEoX*5L0 zLM;X+N7mx35xNSE_;eUY=xVL*5tdu4MTY?!QZuFLw-tkQY_f3Vl;R3|NMpE9C{-p&e35QhEP|~VRPKUNgWnYsz+37QP6`c1e4x>gLfb67nHv==o0Afw4}=y~TRGzKBNyc&-U zJ&zO24QmCYU#w~~#xATXHJPzvJy?P<(}^*2rB{L z@YExYvGmZ8E$Xla6f)58LRfb&1nuKBE(1b}?3X`yL(D84pNtn}F(|X&@#U_Zj%RdPl;!MIE zM64!Z7+No4bB7V?;v`HE@z8n9BJ<#7jIB?K%ji%Vx?C1oZP;Ww!aNIJC#W@ zLhTfCn6#~!)|T=_!k(5>t-@o~w3ZHqZesJg8B*uW02OSKB7sfQU8#4mc~F%R!J(b* zJbSp9G&!)tNDcw$#60^0Y7~VB7INa3?vQVujb?z&yRH*~zYixaXHbDB_o*}kUVtCZ zDviPxDeTNnC{w=`rq$X9%B^uJw8r+ZOO>im>rkx*`0FUkc}0h?zi zw*j+~G#D5G%4J~zMY$QOL!?|93lQSJ(fNDMYSwH9;n3ee0WfD96N` z&qLt$l&^`0R^lD5sF~MLg%xd&6QHf?EhDl72iMkeuxp8hVtD5|hIfWcVgHI}NOnU# zBtBbv5nDk932Rh()S{89w>q!J-B^QxGs-c!t^>e1LIQ(h7fkM7y#r)t=NX)-HFZwH zhxkAHXnCPw=>AMw-j(?*uj~HwSzb)f+fB^SJ(jlwme+BArY$espYTO_+@D!SR=Gd3 z3ZXW%#5kYjB?wL%1-d^xme&~tuH_Y**~=)j!}5N_>4{igM-j1A*Zt`kPGFjfXcf!L z_7INcSY9}p_nXMd@{-6oE$=^w$ag6sJC?U850M=u?ONX4ME+sg@_MwrhsdtB&rRh0 za`wT?pqzcpu#@4HX=mT7m;^%Gwkl`euqm27YC+T*^$;fZ^t*4x2Ba=BHaYcMoWkFn znJ8zw_1XiSeJC{|ty<#YS}H0D2!ebXA(%GevfteVAi(E&+jsM5}xILpeq9`4Ub8C}`H|)D)$eem?k> zFh>^h=t3R>iZ?MqE=GcD%v4U5`LUXj(pd~Z@t5DSPESu!#G}U|QSOdUv|Z-NxvKO? zE6k$IVYS57;#`XgR^eweQ{+}C_wR5VuW+4x zpdniV4W)S~HEBlWAlsp6sL=DyPEJwywpK?LoSOjA_jvnKH+@Jr_d4MmtN5R3-C2#V zoe#rD5!eP@f8I8Jm}!GmP8+3cW8rlJ!^46+JY-!K4_TChhXGYS9v&~yW^MuA#?QlU zqWClq<)J}5+{7ummxpZ0!$WB%ClCG0MQt$4SJcdILn?AH(CPJ}w|q0>(*#q<-b8fy zX3-C;A$DrFPuerXX4HC78jYbDh~1}nzpNKQEU{@J~xktEfwoCSFNwe^sp&2J?!Sv zhCO$@ba}|k%=A#EFYfe^tz=IRn=n0m9Cr(3vh=9iFjwn4*Mb?lSJ@7-%3RbWhI~=M+MTIyZlo zu?7JZhyu}SW&w%WLl?3kYv^M#zv-I#Zs(N*Xh17kG6DnwrL%cM|I0vA9w(&K`DK7b zIb`ohmh(}mP3dmzBTO-a%6x;!6O4QGY@d3IZjBwLr6yayi#|>J2Rkc zhtPL_DIuyQ+WqkzLZ7Uqn1Wd(XTL7RJdkb7iNid`oY0G!^?%P&%vp-a z{fU?kL6bgMdH{&24`}D_Z{$QfgJ%o~+QEssInfU5{JM|Fis#UM0aZTTca?bQ_KkL= zLjm@$T)E^96zwqfu3r~mc>27eT<--Ksq<5gMMAmW3orpyzGZ|jV(AUYL4htWa!{bl z#fhpzS(M{4!pneN3OO9u0!)7+>^XTbm(=+w$D$lE7f|Jsxt4ukE@$aVbtsE+g0S}+ zbFoEt(XV$*Eu*1=Vrp+C7GoASY&gN$Yp+R&6p}q+p;R!}xD4hp;Kg|dVRN-Cb1~N! zBtTY*B;djcl5G}mCWB;ysu1w4)!ZYvE6K*v5eL9sbJDo$JA%7j9SGc2kRCzlWu)}t zuhjYFfJHgvAfU=82P681yHtk)aMuU@iM#L)T!_QG@%=mtaToUqcd?Zq-1QaQ{V^Bf z4g_~mMXBfvQB4O?bcP1&3EagFLX|f0BS#2KBkK^I;V9SKPLwCP2;vQaVXGe8#fAm~ zcZtXGpo}xRND;X|-GN7;Ngt8_*Mr+dipc#5ZZF9u^1y)G!#3sww^tx|D$pI6y`;5x zL%NO3lGc6I7;2qY!W|}y6a5PF8m`F=^Q6viq*#;#<^@#wVBY%c`vmh;hqAy5Vczd> z|AE82{sSxH1HcN)vcL+9a)6b9Dgi5t5EN_=O|sexR{o2z!r~;#fEB;1Lz&#s;7vZ0 z+eFY~&*jKMh?pn#MTP4)u`g^T$mCAP-D#7{HaxK}YyhSpf9wlR&xQE94p}E&rvuZW ze0_djmIL<{uftY?`n(W#r~6E`?dh`H1wK^#x0YzOu$4q-q9WCj5{>k#nUN?gr|)n+GDc1_@Zk{=|8&No9Vv8w=^ z22{X~+C1jlKhhSwtpvr4Gf33Rf{V};>+m!6PJmIox^Vk7WTFit{T4eAb zqja01w6bN7(CXx(w6nA|R}IBHl)g5b(#n>lDb0rRQ(9C>-D5H(+m*G=Lc=yz<&Lt?s z=@y%jl`9}Xq!o73yFfST1zJ-H5MdSnLx4yJt?6P~sjnw(9sT2iI`GTrs$~Qu`>1c^>%Ho=2?tn7K4g!QVwGh_}z7N%M zqHZrz{aI{{I?N5CMI-QAe*l*YZ0Q4ii1vNn8_c+?lY<`-(jHB|3i=xpzK$SA`{K;f z+An-dYaZ*PCL)gYVJq31d@(wFqAab!zmr*7a}!tJ$_60v+y?wNZ)bgxm;KM{f;_yI zIzO*jl!Mm+RX$!Hcby<7Ww;B$YsAbw&!_{XEyO`)H>&=C*YMY2eI5Ii6t6b`KKOXe zc7hjG0(l*%%n2~;++!xS{{NLoBOTtxKBn)M~BC5 z{a?6==p#jB1&I1*6VactiL3xon#c|y%CkHeI5E$L5?@`Fo|tE#gxWgv2;+2uVtpn+ zqj=%S8!OXou!{d-`;koU7cyQrC}M>N$jbyNhpN3x7EksSvBFk@RP80W`(s6{^k3Y? z#LToh9e2SpcUrCDE?5#6chS2-;x2B0(*SW7to6oSTt#0*R@_Ap^+)f6`ZtPYcBj-H zL#HgWJEhJ+{WEZPn))0Qo_Had&g?T@$Umi4K&;s9bB>6Ir9R{A0b)Mm%vQ1`h7k`l zylwzxoLwL$(?rfa{#R{*u`Pl#H{yXHf^!Gie0rc;U`C=zWt{(S3k-}i_8DzbM0V^( zQywDA^e40V)CtoSmqliWFZUVMWfPgLx&shvC{9CiQl2of*FGb0#`ZPe%|Chz%obb3 zRQVwKum$ERT>tU5!0ZKqg+%?l1*QOL(Q^gUvo0%`o<%b6>b(Ufpvo6a|FFc_>~jl@ zJTxenzKTIL-t7~_f1d3Vj(bg#H6Gv=nBOc;dpI(XLT!QBf>n<|FG&#u-3v=j&$PiR z1xxNM#n;X*@sc34q@Q`%1?!TFhpfxuA&YYGFrdoE!yk*EWS?7LYZuR1&o@&<)S{2t}$5Q%amh(aPPPlQBu1|6j%Bv|I6BPT+FML8B7 z0;*)u;hXTRV9|lq-bIHm&|M=4X=IO3U}NBRo+fZc;AyVyJOo;Zeg>8DZRcS#!P|Kp zpeDWm1(E*o+j$z$+g#Gix-98sQ4Z-1sPakgJ6^1odpnOjG)Q{y$NfI(C1UePuRy*$ z+j)>Wue-Ml7n7SgQs+6_l_@Oh_yteuyf*j_nI-{21VM>HRJKM*owtIaLCmJ*Zdc~M zOlE6D>b&-kmpX5SKnYvT^CgWl!J23FLozmENJ|nQdf5~%c6{4EsKL+mWtB*mg~LymbdpEw6!R}L1gRQxBPAJ zY#>0}xICbZby+HtMLASvK$TBrzTG#_CJzl#nSUC1(Drg;PSAD&yjgt$ZNJO3kqz3u z3V&2@rG0?FV@?3@U|AOMU{Ma>5l|(-V+S!boSTLkX%)1@1Vw4V zoBagkjv-d@Qu>n(<*rWpp`14bO$sIe`KEm-XvW}rsIL7;LBm$OP;Mp&JP_)?DUbSR zU6%T1Q4aMVP~}tq5t%^v{cmDA#c>vLlUc|^gVg_S&KA6;Gq?ZElO>Zh>~jj5qaVx( z<)#2g_6f?Z{&TvGY$*3D`tZ25tDpUE3-a)gby+-QQ4SskRQY)LhHQ(=?SFINk32Mp zhj(*ZoR^3D^uMu1mxtoBLd>Z;v0$YvkR_|}HsZ6g)aGp@4)&#>nJtLT@maaqfdg{T zu$@4s)#+@2z5oWWP-l9=PGzF5*2vbXDVW>earCpT>AVsj1Htm~=xr{i73;EC&Y~PF z52*67T&1GiXAT;9Xb{UK6{VNu`-j^0Bf0IitQ33OoQPc{^n@3|6R}I5l_z2so+>wD z7a8#PmE0B)y9b)wcCD89wDJKcf0b;KOs_9ea&o8Go3CoKmcG_v>FWu{^cso1UVl|O zWWw=RIf#f{sfeubO`o<;so7hO48kOGF`871xDJsOzDX0= zaaH9ZvS@+cn?2NF5n17>NUHigUAtD^q^hMn$w<=C_TJMgbvx97ByKudTrN7G_nux} zomJ)A>~Rg?3lDwcdZUvLL=UaPpi(DhA~Q2%05R`XT?*Ll@ofU2HJk5s58QY%@aRqW zXSqVV${+W+7;WdEUSKlczNMrs&O<$^^HYySStN1}+L#eg<)hwb72GCV@#j)ez{jPX z>QDgfUQ)A|OiEe@_(&2|EXOztkDgpA!w=TmhjpO)ix&h;z*&|x0cTN;33x!2Ou%Vj&IR^{5BiUKN%QcdNDfclf$oM=uQ0n}YV^I#u1yuPcHy-wr7KCOq%Yw*qQQCs2 zE(Or;OUeR!EC}0z>r{y69!Z+pg2(`_`x+NJ?Ptczt!nKVM{W@!;Z835Z}+aG?2>&3 zYkME@^f8jY{-FtnqX~2`N#|HiCw*mI7IbHk5ZyW9$&>Uopvni`4=W53(SJeHRC9IIO|6#JWnQl zsqhOPi*g8FK$TDMmdXNB?sO!?)l6h2BOyTSYPf*pRdz~r(pk+N(eVsfw&)t){xf<_ z0Y;BySw@dVIgDOFl^DId;FW;UW3|`lB~d)EMo-DX=v;Cj6@EEjQ4To>sPf6dH?WMB z30>)J^c*>mhx*UAK{FT&TY&+5aRoZRSTA!76+X$_4&e+=y)f=%=Zyb;e3~P^3)*WJx`VA zl{}^L(!_Iceh$fto*6wWdUo_2J@Jknw_d6!-x7Tq$JZA;4F>{_ksehRx4O!k;`Z^; zCxK=QjLI|0pxlhgACwx}=`SMnsnL>XLC~rs zce2!;!>6E=bVm6*8J13pSPsjk>_|n~5$T~cy&Cs>C_529LD^aO!2h11^rvg^8K5l5lN9wGbdQo+2rzhaU-{~p!X>k~y-RaS))1xw- z?!f(?PPgGFI-SA?{`Yoz9e$(JMRZPDzv))L#8qkCP>e!!x0g%C+}Sl#hq5!AB}Jw^zSM+H-h2`ptCj z{(c{Ue(Q;)di28R1<~`P=Pl8WkKw?nDc>b-ojojWU2q&e zbwbyg<}GyA+4OqpL=8N>Ou1AyjRfQnk8`7E?c}gA3L^9WuPauus(u z`?{j*zJn|-$7%JUBcOM;GyOFlfxQW_vhlh#wQQVjnPumuKDXgKWSYY_wlhw*QCnf3 zR8iZb)i+~=>GtH2I+mAAyP_aw57zCo#%Z=Htz9TSaI+R6)G5C)&Q-#6w5MtgqCq z(8ML{P>70+D0mOwuiJowgs&=&41MhS5Y85sWae9|x}w&x(ZrrZrcMy?j3&*po~YGY zzCGHUI(|&jECeri#w!uozhcVQ;N>vGO;LMXQ8aXB*N_VP%&y|7g>TW&8h#d|Q3IzH zznVPr+k=u-J(1N@j?%5YdgU5D++~~d3J00WwMO%+!h~?Ej22Ai%A2CJ zThL*rPT&|ht@2E*Q1r(I=W;L=VQ4{_oH`MMW_;Y5F^AV$^Q!R?xBkE}ntBsT9|LGY zdH{{hY>|HhahNLG8*meZ0W&XSRoysk%&JU`{raD8@Rk-VkwSUyBX{pq+s zci!E!;{|pEV}BfUiypVnE;8&#g~ImPD7p+pI)9{AdlYZMae7+q;r!N8SSGENzfLW( z7vFWTRku=RxZT>>+((YXKYLE*Rby~T43|JDLHtieZB-*w->_J6>bIdauI`EK)n@!0&*KI5q_Sdc z0C^f`){m{cG`t6`e27*aKr1DGg658eN)Ce(i$yLfy9Q1DK5o6QO+N{dADcf_QBI3c z+jITV`n08#!}EWVwkdpV+zsmy52r{R6HE)QMUtHYp;0{at^ouEukDUkKrcPi#RY&a z6riSkrxDsJMB7ZYdtCW;(>k%tgkCSr5D{jGG+aa)#;uQph%;d%O(^(Mldr{5cbo~0 zJ3Jm*!n;StL+_Ku@z5&m_!`_-Q1FAw5tkd*MiBTFP&SP0O|j&dK^0bExWX=cIGUU~ za*$!I1F=cuA5@O|xfx2~;+CjAVwf4(8B1P(i%W)8*d>oglatB^>6P1Y<-=9?up1-M zaT||^PC021IZ%=Oc~3O*kv3x$dJPR@STCcoRx>oDY;5I-&tW(EyA`(iwE}SPVWD_M z^54<^c_>Mqrwsxh6bqJU(?5bIwzCF*Dy)@;wL9AUHmuRQicovBeOJ5^O8&gEk%sjG zmHg;9;$p*V%rI#Cf?>UH?AU0A_#GLqzO8=nG96#VcE&^NGUhXF&f=9XiSTAjm>4)( zFP)Zkv{*D6+F`V@!)0nG0=|*TU_=b!KP;XcH8`FeQ53Hna)Hsa41$&{#P{Sef4uEd}6?VabNCwM8m z36qyiZ^gCy^(LpV-!SW)|Hdyo5O=EUmLH0=d(_;Mf8pBzHxXKU_0+R|C>}g!-gOo2Yfr4B~wGHjffxT6dM*f=^h>R(zzMnME@>k9WG3@=@0JGM3{~uTP_~6uB#35w~aX zvbfbuTAN{{OFUyZGQV-OoEvS4(ykY1^%|sIx6go0-38}CM5~otboimwolu0T>{HB( zS?JB)HW6TLEmAWAOEEkK7S-jC5t0*!J^azr{2_ZJj~2$kHh8zS1WkE{J@oN!-8|W} z)|NNv&F`KReS)LX2yN5b_wo&juu?MR`_Lg~cms#@ak^Df2BeRnQWQ^?oB{bf*($l> z6szPvFkJM=@~SPYI}X~Tf-UKGNtuy6rN@l4P0=tsH|XJA(U!spstU?`Dr#TX>Q~a( z*cXfwWgN55$35k`eac9~{@1uYPnp{b0oO4&1(oX7f0i}jb{Jq>b3Q)LhHX9v3hh0; z`L#m~z!2!S33~WtI8M#bZr%DzSp%*IGB84C17J@D#wX-HuWX`e)s;~u!~n!F=NL`= zjoAlYA!c9ncu__9idguf#|r^6Ad}@AF+Xm0c*N=7pvk z3Oo6ivUMmmt^3O;>ZbK%8A(i?4(<4)JguU3<7t&sXBKMphv9u-$<+h|N*l;io57)N z;?gF50#}&!U*t)qRa4f6vKXG+iqCjxhZ%ZO9*2{P##WYG4jZ;4niw^_VDiy==w+j) z8KN+pB*SUGgVi-xLlhr zXmy*8&hVY%m1W=8trmcpJ&94@DVThe>Pt)EcT`u(24gB>Mrwpf+VnS}cQ+s9D|!J% zq<~P)cDSqTi^F1ct^tpN{?U6@ozhZ>QHx*6=pbztx5&q>XF*M)`JIzwyv0MWRzTyn z?}2ztIU6)xMy^dzOmU>9e1#EOXNF>B6M-})!am~lx~(DKKdo}qRc7cz=T|)PPSqwF zt7}e6mR!d7(HXvmPZOgs9%;o1teoWP$@2ye!aXmaURf5x13SQp5x5GM|EG)y1IKWL zx?z`}D8h239(hufC8#0h%NaFQIUgeaFjsVi~3mTQGHq!wBIRSvqEL(n9%0J^Y;a4B0JHj*do#-g12* zwi?`mS+E{?**j-M62~F)(U@<}s7E?6@9U>IW9wB%N9~eXkquK1u{PkWT}*VU-i=yk z7s|Bp$4`;yGHt}XXCo$!(d3zhJ?*8o8c64r@rIU|4^ks)}3nUFugUe!&tJOX0lZ@R9m6tQ-s? z?@k-U4*bY6h@;9%D}}TY;pOSsm!_6J|rjm!ZdDCCxK@b>XBtvU26|bSVN}~bw!p{ZQFdAVWmK1qdDbH zHi(izA50Jm_` z`QDVz>tP^h?*G6H=Vdr$^w7I@;c-^%-aVKpk=mY_67b~3jHh4GSp)2du=?);%K220 zz6*eHA~2_Ryx%`JOh~&MlV#;waQtsd1&U`uuRNnT+E~rL^(;26p=IH)R(Z(D8({V7Tz;n8JCnNb}TC3>cD# z`NgVt-~@voi%u};vp@INXQ{M4dj(e}m+VoN(|o6j8Tz(_R{k<0%!(m)bryK_=HprsaVI-|XGYLzP1h^XO3 z0$3&B8*0_~ej)v>zxvU#=P(uC_p z9iyay%+9}td7E8am76uTi4*3mRS8!tV$J|a*)M>#BC|STR)K17BSC=Pc1&n91gohU z>BEpH8=p9gL+J2SnxGi~sZ%^T+f{4zkIdCSvG|1QReJVxRZm0VOkvBXNUykLB(ypL zTN+D9U~*pu}Q(_fIBAc_w_isw~fp_?mOMCv8(pV$&M{ zF$AqA$aJDlvo|==b|>_614(VbiO|Y*d`m#v2^WjF)n4pCkBKhR3RGIrpQ2nu1Fj|{ zXdz(2Nw}6L+d$&pg6s2>ZdW|I;QBBkt5kY_s&Rj$`CiqKuDu?ac&@nHi`A1pS~XML z3N`U#USaV#1?khqVr>YxOZmM>L|c4>+JHnF_mEDcv34TS>RCdOl-6{%JT<*M9bW_6 z)L;co^AL#Bp2aN*3%lv2iR*bFaz(Hz47 z+h#=Wj9*kS!<&5(UtS(M!<%vuEJ*^V)9KlJ*}`jo+6zT!q-p%8y()E@JNx=xea%1l zSMA)-)NIVe*|{r@mAtvgNu=BGa<4k5eZd#09bA8a+82D0+MO?!ns2@BGrWmkOk_qi zC(_|4#b4K7`E^0%@#}ld7x@|+@asO{+@I%?sLga`!7zqZ>2(A$=x3^#fzfs8M88#zYot$*S^wQ=FWbo7n1W8 zgd(Yu*DPA|8dAaUYj9GTuR~StTy#cxX7+?3v(l9}_DpM!|DsoQKs+voc-)jiURTm& zAQ@S98~d2!1ppWjGz2ZA&yk+KFvdL$RWLN}b|-cpVD*ODSbqbp?!RX%wqBb=vi|j> zIkBq|p1u-=3rm|{Rk=oe?t!*&+&2aZt~ZLx94NRh2VFyb-m3RdpRn1SyL$=2HJ2J} zm#k_8vcL85lFdTbn*-^!&~>1*5dFDPGHlSY2u@J*WgUr<_xkYle_3Z?^ykE;lD9$F zZ|CSw_v_>8KO7oq5=!(n2AR|`_pu3Wn+}ZO8Ztvinc7Lmb|0e)(@|(}q%#QxnTWnE z#fEXKZ%xfC7 zrP~tGom0K|((u$F@um6u@^h7nO%pQmiPofPnRYl)JgWQbQ$N`n;B|9;qi)Ph&kl=% zb=;L}HOWw~3HLW`JVGL@BOumk!O9MMxpFT-_6Ts{t!(8Hs6k^0rO-m;1hg*(9 zLj1#6f5(Nx@te)-?Jp>m(w?n(Yu^Z#$q8@mtiF!$c+L%ZxjT$I5F_5jJ6p|}nWBpK z?0XW*_)R!cN!21vOK6*ev|kM72*yx7xq86~)L2I?s@4wmpq~=kEJ~~}haIg0kJfaX zQcAbK-6;wT9z-I}&5`;Kj&RbwJ*=^Sc4kRzuIcW2otIo5@&Yvb|3=)&3d(K7UFUxU zeXboV;eH6{#5OFZoId(|1s@z2J}!~IbfixU?e+mq8+sc_`#1I`+Z{!5?d5$P|MlES z2mo6;+f9SrRr$0(DAbOjP`k0h9KoQSJkj1*2leKYS2tAi=(vr`EyyhPV`~W#?hUIg zc0&t6b_t;7-Jp!Qg?G<9A}209YRLX_ffin)5`bof`PFR}6zYYNEm!>@cE83X5!#$` zpG|r<&3XB;ycup~VNcS#tHPca7Ir7S4GDX$EzG98Wu-jNa^r=aDewBp_UshyP1e6T z_UZ?7<)bJ^$mQ2cMfIB(3r>HQNPlOfFXDk~)J znlt|fQ6}r)znse(H6F{I&<(;W4qI3Bo+@&rLhX)sa}iG(H_q; z5*Ez1!)!!mxpVXK;pNRlZH8N$R{_oap3+H3Lg$>kLPjC4bcQ=SZ@ix7%-~%@Pu0p? zrJu>lIZya?u^Qc4NY)8$*%$xi8;J6DBrd{&PB>Pi(?;9h1i;%#+ zB75YYVeS$6*S9ZDE`3-7qt2JCw;}maK`@+M`?WL~N8%b5a3ei$$F<@A- zATfWtMvcRh8m-tymNL>dY@KzhZ;Iv{S7j$1_-0;X zTP#wxm3GC4_XN#yO5R=ah!iA+Nq3*nDCNAb_;xM8|h& zM84XqttBtJZhwCx+T+8!`x^0KeAu!$Zq19`*Yo0I z$P>fG;3&|IKIl(-%oi*~Z!oX^*1YTwPyc4#gKcCHG+Ie)OoittO$OP5F>$MvaOwpl z+&(B_(WD?@krIyGsDz(Z!j3@+$4hdl62~jyGRwRD+%^(mBQV2Tb8d$o#eGV6 zE@pALYRXKBh+(YbSxja%;S6upx$24d_nAKb-gCNMH&_|a^GEjfRUX;`=?_cRaPD@p zBtyq|-gs^&&oe^ta~F$0M532{_wGtzK*Y1Dl6PxvPQYEMdPyo^tgLpBr)oF4;jzfF zuL`5Fr)k#^d!`u*H8bJ$kMH%3kJ}8u_K%GdEu!n z)KH}1n-DuOpE}IFit~!5G@_JitWZUfS$kt9_d-gkc~UKns)=WHRJ)j-I|+r$H0By$ zz00Ej)u%nLn=sP6Uor22BHkvAkvj7XeSQzF$mqpQpblDpOs$7W!uBh%sSA2BhQ6{b z()0%Jv4Nw3(VXd55>pPibL3tlt}8?C6e#$W#x!B;G@ z#oU6K}w6v#^&+Z?!LC0>BQwX zuO&r`LrABWvx&{YT=n9_{ER@$s3fnkM-7Gd^X}>9$?-B0cF7t@hHt6N2y7l7P~Q<7 zEmjX?@e_S16+M)S?&f4+%I!kCON**fp-u@qtmC0=&@$^(UUX+bQzSw+Yw0-zG{y-T z^g4j~c-{(Cw9qDr!wgk`LRQ;*+wz-=#}W~ZgP3fxJ-#ZYYO-uJDLk zq+l8w*-9l6UadA=e<)*KUEVs zOEnqLL`5QKC>II)F(2b5(oKcc?D7C0nOBfZ)=kY{Q`s<@XyLGrnCabqR#u;=ZQgXR zp=2RBW_Y)kbX&N-Wc()#SC%9!TvJj?2(kINWG~|r(Kn^bo2+W9H9a%Erq8RHQp!jW za$u&n@vOa8{!v*Cl=Hns(a;giBz)iLLuTS6V>bJ>dn439PL0K-h3O4j=2Z{%tq9w^5UV*vE4mosEI1oPr=t^E2d^fRma#!($6K+ z3x6I)0evW$uEh#BQ~Lm_w%VKWftjD@W9;-*1de~wcZ|#ItGz2jcXhw^92Iwo4ED-0 zmtZs2fl+W8`-EfMorh|&K9PQ$yt}bkTW0y=59E=5D00Myos!$F&yi)Hw>`=qEUhIQ z5qer}J@!YYAGrMy(#U88g?=>NbUBrt`-SkV^tfM^eeu=l-jqA0dkgLemqice#Kn>X znkk_#S{9qp!mIu{@M}a{eZSzjg;Hl_raYv@>d%ee+uSs2uc}iEg1L;-VgU^uFaRYw zmd_d_O<8U&PV?gTGIbrGs;8!UwReYYTt?k@Nr`h-@71Tn(>Fc_YKx(%X?&OmwtMaM z+j9fsZV?b@XtevQk&_FM@VL3$2 zS=;r+TX@#uL@1kz9+6Q?Dd=U6Bt*IKOJ>I1A*@yEgs?ftLBkqrgmA#Tq>D9M<@Y&| zaOVe-Lr3m>kt;G^>)_DzCGNt>VMU%G!lpueB%A&#HIL*vKPxlNq{O-Pn?kKE!-_gu z7OCHF!#B5hUOCuA-AuWi;CDJZGujaJYvH*_i#ZCA3T>P2jr;8%sLA@)N%Hc{!t;id zd$ngR=GA(?yP3IP4X31BnOj^@=8mhAu|wh#uc1f?Z~%tsGPz#=EG(fd{;4vNb^Wuj zRrPr5gIRbXn1x$UG7Ag8I&cTGNI`gG08v+%p(7w%&q-QI90Nh@T=h(Xh6T%S()N8x|G*H^6}!n zp}%U86`1Q+%FSXj)CXgkx#Ny8g#E*;#+Ng&L;9vAa_6nVa4#H(9*D7Keh`S&Q6r80 z=po-X+ESkEGX_>Bus?+og2kU(^trK0g#2wmYfr0O!{a0BH36dbH|N2~1?5d6tG@um zJ)(KKx3D=JkG@?d)?*XxEpy+Mlwi~TF+S=p3mu5<{;&*r;MF;dgxDlN;t~HiOoKX_ z2R@$>L)IyLUb{y4{C!YoFiv`uv*fKY*SV;-=Aj%i z0hj;HkR0YH%aoJs(4w(ej2KRT8l1k$Nk2jnJHhEIDJGQ}*E+2|{#nzrm;}dwNs>iT8DuD%$Ec*dMP7#ghNp~2@ zW5lQk7a*;V^Z^2j62343o~J4)K^w-?@B_Ohqx*>iZi4S@L546op9Co?K98GY2rj4O4bhn?sF ztgSI&K`(eVc=wPjc@TX$A*q<0=(|o7#qRTH8d9O|6sTKfUz?=TDpd;&bJVGOv^htg zvp2}tVxGviv0B`SIej#X-Tnh&ooA&-wMH7Glugdxukm)$@zF)W87wV4*@bd%=!{HQ z93NEq%crE=XRtE0zM-Q@rwk%RJ;lD9Ob#z-I`WPfT z5?suO1t}P0wkOb911A+T(gpvDPVDN_cv!(Pgh<1$)v#lmQzacsUN(}KrP`|Nlken% z=+HS17P82+s;CZaYP8|gJ!&PYJGQz{ck4OC{s#wN`$aT3>p$ITo#1?h&Kj-%bPLfL zp($TXq@B^l^!*dzR!YvB6^)~cZQL={n|R%lg>3huRV@4I4=9^s_n14}xoWhE2iS%| zy^QYU*}CZ6KDtHE(SwQ5lQX>q z2N1mdLHVRN*tF!$%M7L1&CtwZr1`5R8-VKyK$gDGV`Q8XY;GdW3s9fhFbIvZ=me~6 z8gn$l71Bm7-K5EtXq(d?RTu(Cnol*AtN4{b;xJehg`{Q6-a zUc#=_K{WsjA9wd~rFCo9H-q+;PIbc@xEs{{FxARAe1WpQEl{13kY&->7*acc(%B`4?z(1f<^qZfUHErDbX zW0v2wO+#gRp@S5jlK`3gXT2|c3L*b_VSxPS2+!-!?Nn-${~)J8dV9Q_y`;Q%);We3< ziVD=;ta9PN1CbTXR3M~kw+46eX-3FFNEO=D9&RN@`Iu?GkCv>0lDJ#^*Z&uY*Y(G` zO5SA{-4{??9;bBlt#Sr}&12so*) z-NNmH&yX+?@djExq4rd!auVVwG?tuXFpcHawV2NU@`XvXm8r}$Xri84a5O@L?o{-V zRA#m^ycFVmVk)#t2PrYw4lmQdK}n@bwxI2shNkZ(${_DEHHT6qyRIsn+8%cOG+6WP zs_C|qA&(>^KIx1syBt98df#QA>P!4>Pj#?u&KoWY`l#)XtjW?69562Xee}I0X$Z$-l;TY3T zP}YC40d&m@N2_sh(8m0h<%qj)>-jTCC^3Om;45zX<*|FaZ!*0;gZ*N64?c&ud7*WdD9&Ink&{||{@wRZ>$AcJ)x zvmO~Bc%9JZWJcV;@X)Ir8Y}G=JR@yXETI9_c2Sk>o^6JIV{?+$g~f#@h*?!f_EWR8 zYoO%efCU`Lk_ypKr3v>LaVv$XM$7?gi>sD=2`|IQR$D(MN&uK$4e#ut-BtS!tT7nrR_jM*SI1nrK z2L_KvZo+~kea(3P3_4QgZza4Nsu*a*w{r-<)4PFm4L!Qwe7%vmZ4`^*ovF|cj*(&S zC`QLh4|OD=Wz*riV8_-$uS`7_Udn%$Gr&u--lc^!S@u3mQ1i1&2=+@0)%zfM4y)s zP+1p(7CPzga2k%2O$?z>H5*BXg-yksgpuYoYKYe;hyt(#QLs*^2n?ctF+r3JxMel# zb|gX^RfWdt5Jahf6vxS7byT(!+Ns)AyiZhfes={&XMY0ujH`rR1b=t+PWNhm*Nbf{ zKbe0TGTohfS8qJD;I3Xy^Ipsu+Wo1L$KkK1y9?L$x(i!-m)tL8Zs&;A^u-!;Bd|dV z7|$=J@vT+-FyxWu-wdY_^Y7908D^vDnax>; z$J*>W>wxc)(^T-@KSU^KDkUb7e}z&pW9pvpqWUFvWU<2Zleo#oYi~U zU1woavFu+sY4`ae|G1PyH!opOKhv9?kLQCYI5Ar8Rpz7ii098?C|?1D_9`-uhn|^U zL4Gp2E9ve^ML(eHPH1nrw;;b1-*_6)RP;lb^Hd0@7%v&xwVtpts9OWO!s48N3fk0S zp)YTdz@*#Kfl7nEE+-!MuyECTS>7r?eHC0v3}efHFkkWXxYg2YH}1^W$5mEX61E#` zr!m6Qf!FlqZb4Dx&K;oIrZ4vpNqHN;+({@M8OMmeT#VQ><*oX13-35VueG5OWF94{ z7i1*T@4`5L2^JN$WTUkeKBD$Z*doWjRI2rbpyEpjFm>oXQ_9~?e)hNyf|;4{sRE~N z$}#aJX63vV7TK$i+5`=nS3yG}UAY2-@%Nnch+oW1SFY?e(|`;3Ql6fDW3Ps+(1r?Q zWwi{D1xlD9Umx?r50!cGhmhg5p>vlZvDyi(;tJAf{9LpJQZ2?Yj|vf4jU7H_!(_YjxqIwGt==? z!)0GQ<}()Qg6op$xW~{lK>Nv+OgqiJxk=0ov(~j{GMOn@o|_hb7l|+DB&bRc=2(>r z185Bks|Y@AV$zjA0h^Bcg}3k*VaMGPi~b2G2L?drkjxz1tS^?EA&F93l@mZ(XCW(y z5R~<^^3154OvYlsOr^)&!WsS5sdTTy;luH~iZsrnNzz~m9Yh+xP3&ZRz*yr0 zW(Tr{3M%qt4TU`EPy3_Zo)bLJ;kn>ii2LnteIxI|@qzV=QY&Q@;b^7Itg>glo5#EH z%5iN0_A-+P<*4Q>3QEhNXXRK-SfL!V$stfsr?jK1ng>g*gjMD!nkCW3yKGcNCk7Q= z#}_slD_YMgdO2a0ihggnU$jQ3ujq=P=+2hJ6Uql3hnkxz`e&6oLfe9g*g{Oi1M;ncRwr zUmrlBkQns{`V8|(kR?z!33iPgZb#>4o>!=So#2?(v=YYM&$XYkoZ#H81PIa!t4w>Y zRfE?9-voWrn->EtNG&7Ghg%)%i%@$t=LEnU~rLQf_-9v#?CVbyOB4c$8s1 zJiG$PyTq;h3Om85hgT6n+=s7@NqMprHvL$K1}8Jlv^0I&0{StIlSZyRQ|+Pcw%5?h z9*c9TLt$q2uw&@Lnp7&%NncNjCR}ZF$K8}jFT9|*D=P>Y)O!TOg;i!owUe(1dwsgb z`kM?r8T9v?nn;y}vYmle6NCoWTGa(VbKIk;On90)ir|E9vER14<1V0MQ{8bxYF^Ck zb%{*Dpw7k6KxG$A>F-!T2xMjtG3c@04en8UST}9BcNBtC&7%=0{!IPL!e3AUgbmc8c?hM?L*eLAX$pQ$vtzEEz|`gL^tULXK}eahlE=|{-UDdG(I2%9 z*q;6tTY%}<0`%YoiR12g{0bdrd%6cix|N)5$@G-pAq0CMZ(4i2Fi;!GIY(sKRQ9Oc z<`V2t>U?ey8e?dS?)RIN`T`mFBa!Bx zN{Xo|vn&B)j;wg>3Fk5fiZnln!P{^s!(S%|7zzc7fq6LMnz6Bs;s7>O@gt?N8bFV? zs*;>R)Bpphoar^(4k>(wTD-EHVwu4bw;&bq1)Y{L4nAujkZx6pz_ax*J!(0QdW@>N zSnv6sCu9QDCM?b-Vquew>CCiqT2a8g1LaTAL`dU_^Ux=kd$T7(G|!$m2mQswY78n% zS=Y}3FVcHtXL?g6!hIy7AA+dFNummmPb^JjMi`IpgpMVnZziLAlF`knXip-9BIIcd zCh@tEjAnIVx?b)Rm(Z#9;8O@N*lUk3>hPf!vi5z=YK}|dAl%(>1b5Zf-jjDM(vVha z>+vuuQbBgCYA%nQb3n3(un>{bjEmP>>Zs zLE^;!QbBtK0~93gTYuTFP!B;9r=GwNZL2m5gf&JN+Kv=jH(NHzJq9@JhPacsXXs$he70&9Y~7tMi5yQowQ zD*V?)^HR}g0l)Q&?bxc<~mr2v31xhM~+ zgRsRN!q!*K5X5OV*HN^%@)lK*uDzjG4KhF=k@_NxtTvaY=jIoeXU1*NI?E@w!{O8< zhf_t5ueDNqLo3ng>hv^k;my6u2?XHsW*-kTy;b?07B=OppAsP;bf#1JEsBO7b)s)4 zz1e5MWj-tOzkH1VI3XE&474))tcn!II@F43syFd0Op`9C9v$^qm z^13o)J+1*daeMNdCuzVXl+p)Kw7QelX>$BY304WvS*P~_z?Hcp?(VvA03jT^mrexi zGI-{%p@F-OyhE!|f7aIK)CC-gGh^+m|9OzA00LZ2zn(fyO(4${zV@>JnA@g)?WLJ! z<1I|u%eN!--`gjrUpfC^yh0B-lXoDkeH?uBn{gBsqMgh$KObtwARiyrj1FY)108&D zH1DvKs6PgnY5u$KMWgh(DnSbcl~jhxmf&5LYXW;h7htLwp!R%_Le#oSH2A0pQ)W_YGjq zeQw__D(ZUqbtw_!5E_9$bn~}6hX!J7jc~)~Qd}HsanKAZB>w>luY;yVYldfG$RsUb ziMMqCfCTtd-W~4~3pnJ?SmDx2*701fxB!R+wHMpw@7(FC541Ownzf7dg~t=Sbmni`vAc4*1*wAjouy)1g5t7Ht!v`?KnV4hD7D- z)IhVH~m!OD!mYgp1r|FQT(~l>iOTaTS{$1M~S54f4H7pPu zY2L~)$deL?5}nZI9-t!%WXHM|L(@Oks*fa}&3PDOV@58!;Cv~5l+1_w^H6OH!%H4+3t9UMVZ$Eu;5UwUv=H(V|IDG|S_QJ{d zUE-<%Hyh)w0VZv-@o(NI8Pb?tJ>XY7)mt@0g>!jJ{v1L(wi)ZYg5cr{IJfD(8N07a z?WGhoSThT`)sYJQowYKBBE`kAAIDknlHN)wYHG^8el3qF_dnWHe*3a@1p4Dmr{1_X zb=ddo_Y!0qvAc4S(1vGMRyxrxEZT6KLKpXoFp+={zc$+~<8Rvh zj8Edtrdp3tlV!C~2gN;))1`I1Ek`~itR}u(f7(=*lSB(^uUeIJra-^D)x1o28B8#m zVJ%HjIUsuxPo0*@m)XeRl>9x)PqXqhB7rJFY~>2Qht5)S1uz-}(ObT301rkgipgsu zoRMCz67kQ(wK#{qp%atxm^beCW!~K1qf>azW>H8r?!IoqbUbL_)IAn@XZKO|pP5rL zv%iyvP61^y8mXU#>GzRTdcg{G3gdo_=HT#3^qwXZ*i%Ht%WQvvV9CQhrxjc4gWLcTeEmN(o z2Zs*})mzz%`@@EjM~(r=iMqs}YK#-YSyNb^Vn z8tYXvs(7BT=d#Fx{eOxq@mB)K{58(oB{Jc4yqA&JvCHC-D~HwG`5icv@V$zhb}12j zxIa;(*qIj*n_#I%kK*x9(<4_dI3@fiKGmKQzO0M_^>c)ue|!yYKFlt2)qH-J3jpfa{i;SH{r1%}Vwh)pryr+4E|{Tl~E9 zX0n7t??89F^Ca;nvdZ?1$~(f-Rqqz@c;)LV@NMEXua420>SdA>aH6hF^BLh9$7s~mqp&kug%f-@Qn;_M7`}4vNxYsJwzz}s@+BUPU0m!PRXNJ z%?2ho0u}&74j7OSuhTn2Sec3U+WC0Ya?M&)2WO>cyYixktDzM!ch9u?+Gy|4cqIOG zSqN*`M{AyPF2BDMB;O*CZvnP+14VS@YHbm0b#=S}OU)r_Tb&cSUl{wo0+u!s*ax(Y zU*d*;;%k&SKGoPZvps&Ed1TqI$7^4RDQOG%?!l=ed{1={Tmz$K}NyjrZ@1kFh@H&h_etAatW%VTb$_QGcRAC zZ{0~A1hG4G=lc9H}d9%+6yfZwVyZyrNX!dKLl@${_KXs(smn0bOq#-)R zh~}D?HnzUI+%k??23re4J_iXMUfA87ng(5)sG3klm8LFlw6@rC|1AZoOX|ADTx(mX zL+d)39&xSl**xdaeNtzRe6<%C{$E92RV!&`#7b=}bCf;6+zt+g)5ROu(*DSn1{!Rg zT3`F~-l36(m@EQh+4>>(HT2;pzf=vXN>q2Ov;c4AknDs#h&A&QG=8S%^wa`#n0$K{*(^uO-lw z&Y@?Ju58{)rawLF?Rmj-70(N#YP@9^n$oI3IcbHGQZ)PDD;w`%SUsrd#e69Yiq^A=t|M$!(Lb`O3^%WAtp@ zBK(7L>^k5#Mwp|oF?B&>T1Z7>6l8xz!jo!Bzx6j-cRv2Xp|6)Q$|`z;$R(sKDX&og zilz6^q<7C^9s%)gu-gqHqjbQr>SxW$A7N3C*HiIQ&bY zsACaoO(#Q`L18nbM-Er8=G*Ko6s*6I10=Z>hE>LY=#rg@{Ty~L}$mW}*5lu*9? zM47wSKm8_WU|bqd7TOXVU!5^MGx6)DqdE*`{(XR%=iUpsQ`~Zi>x}E2m7e>1kvnhj z{oeetk`4%=wR}0Zw}w-bKDl#AX08-eoIxuq*}LfPIWdLKD;fGD4Z4M_crk2~xd^(c z6@hLF*GwPw(LBrq9fRFAsjvE2zqKld4TQSvGY1RT@r`?UB>G~E))MojC9=mU6$IoE zAMNT;k?xxup@$(#gz!wxAy`a;%Dh5ZF4~Qa4-^&G5*^)A z69}kmUpSiE7xsvn(!Q`MS#sp6zsFywfU#9Qn{cdt%3XQx2a)(*^ki7HahVR>#18ys z`yMRzk_dUvBYjc{NB#$P`p#7u7A*@KpUE1rZ0mUlo{%Kwq)ro0beO6Vvzi}uwredb3*qB@54R;Hy}#p*tfaSS@}lqJnu#s;1t;_@XW)|f=+&a~ zb)d(+>GkSee&0L%Lh=sh3bFdlL(8}|YR5ErB#dM9 zTUOGkiYQX1t)nD{=J?f<&5%Qumm~4TsKYgJx3k|l;EMxvjM=Ns zL6%ehYM&QBS@Vue-~t|7C`qa!%{ucVgxEv7{*t1wlQh{Piaf#J;AJPCy3nqo44`Ao z-#^ruGB_}DOKyl||3BA#!q=2m+HrZ0H>az$?wI(MaWOm>N zM)LHK09CBPcp~7WTTNhE=DwrmsS*<-Sm^6SHLVF1#di%4X4Pk4a(G5K?oN90UvX~Vg}GZ>jfd$`1BX)4-{VJ(KpZgv%@!2Q5{*=asX%;4PyeG&>G(eQTlov#fn3S z*%W#H6p1;}*h=7$XN|}F(n54<7W$*1&e>?vIgO^cCk>1)vM6ObeSgTze?oIhq1BcM zb8t&^YjK?S9QZt|H05reSzmkBc);fp9bKa#N~2L#9`xVi=5SQm6iBrH8Q5FqyAsWC zXw*2Gzh(+0VLfw+JEDGON#(flKRN}#7+1QFQzk)C%(#l`dV@1_0t3y8X3G!%?{vIt zD5D9P(pB26PWZG^*G807Y*}rrbDwRxgLSDZ@Th$}!;EJi0QhNuzHrdRfQ?Ex@M6Fu z2Oqm?{{=*lLP@~UBvgL>UWznJSGh^CCLx^WIa#tJP^>N2Wq@1&C^ww%UWI$S_q0G& zcQU$NbYwELyb1GWMS3+>Ke!;T)v5AY9o+T}7Zhr96el7q zpn=izYMy<9#kY@QPC+6_iFvP?7c!CbvyG4gz4q2OERcFlDQ(db?hU?eR}Sy~B4ud$ z$|z+YtbIFAZ$Co&7U4bGH>lTsHSGU0+BfFq;GfgJ2|w_U;key5MPl?dRvLYwZH;60 z?$4O^O*53EgE$93?4z}BPkhQ}B{lYT+gzZ1Ya?#jw=awYU~<~G*Jxt9lim)PN1EF> zPlk|QiP1aaf5%`P?4-t!J(C+XJ9xwc{bnjJU^pN;mnOcGj-c( zTm5j@A1wS4M@Pwsn(fxW4h0tyY7p?L4oGk>45eLXxy5~HjrJbN_N4`o2wS5)nSxNW zA^tf|&$ggn&t{s{@k*w>S^Bl-`zYCy=+|xy^lKYUDOc{^db(&oZS3=C&I$UqZKM9O zzD*7I3;MQQXMTjfP4fy~`ndYGe`}+m$LZVtP2#sf`nEHz!EJw5-=>QHyuNJ=?S(W8 zv~3-x;d(qcSf$*M%#r}2ZNo_RuTZ#6ex+aGHr}3nh1*zr_7!eLJpUC6H#KLV!i{YM zpX02OZiI!t@g=t#Hsa9Z?ud46c5&t_={})FzMafT_fb)-ZR%F~@;L~KO`!Szk;=7b!1}eF&DSji)c zMw^Ek^=+t`CN)g*77gqogi zg^|>|6Aqh>-M`!b;Z9cRKq`3*SAzIR3)h%+iSiXH9R#cwBcJ?^O%e-Gnj~C=YYvxjfaVrWSCBsMH{G*kw7qAmU>NZ6v3eeu2sOFT$vnaqA<& z(*|p;zZ0=XNWv$Wi8TB|mKx>);Rdig7ehVU~5OLNeNW{#w%WmlTgN9r!3XYNpxhtcbJkdke|sbQ(yYR?+1 zYfIL*ov3Tu{9n_xp+U=1`#aqD221e&gRX7AuWLgKhlUOAq%2Q*H@!7w8>%f|ktPKj zpD&eu4DFhfZ)oATTpH~gT0%5n{n|Ha*`#<2)NJrI(zy*(w^0(KY}z*-Q*5mR^lgzv zTl>{*|Lf1H+j2{bCM@YmmK?jP1|WgD&Vfh{yX2-EO-#MM31+a_sc!|$0G{WZ^xXS| zAznh0&E`Zx4$KSN8!*=&)}ky+bPq3gBT_(zD*yv=Bj=bI=GU*`GwiWSjDT);2P zFSPA{mWysi@3m&}j6OSm4!+;>afM!+Z(a25pW}g>m3AriD}x0rsA=T!6{a{OOlYyC5J zl?Jx9_pm)!#zB#LVDT$I#e_ePYedyH|3C#;3^V0PQ}APeMMTQoY6fJVQXQb&)zs-^ zrYyp~cbI6rk-QfN-Kw@oUSa9h`=`P{<7@4`uR4+FY6WrpicYdNYcroq1AVd6_dhA# zxnYuu#EKIn+Xma*FiAz0d#fgGSJm!rC|l@cF>4_1?M`M?E5diSqgD{&tc>%i-q?mB z_6LksCLH5hwol{O@Kh$h$p#q{aNqno7AgM#WuWXmd1XgG$|AG2$A-TbX;^d`(5x~f zQqa_7Tjx{;g4jJe0b<~|=%12ad<<65oa^wdU}$lCOhwXj#vs(e;LV#j#%wi^m1$H$ z_yjF@(#lOwd9s-Dy@|`?Ubxkr_~dwET&nTpMAeEZ2>0pY#UOmC)@p*wh7#O1^p%wA zGaqPveL%C-w~+eSrP3oBM=3jZgL(yH5=d#Ldj+S&-Gat(dQD#p+)&BoF_OXl>mPby zqVjE`0uc%OY$0*|X)iWTgvl+nG{^xIl1AmI<(l}BJZGyfI3v%L9!7bIwfAKRqtTa( z+9_omWE_HawbROy?7QFw?dQmb3U08%Oc(MTmy7JKd5O5{*fr6Fy+6tgY)MJ~D3;1;WM%&>KHItPy2)ry(KtkNm?z==iwpstazdw@RSq&kzG}(z z5T-6S+P@{~qeiajPI;9DrH=bTvc9%peBP20tmz8?GCViFn8YDb=zSR&bIzckA{Cla zFx|U-)mxN<`4EmU?@g7=E3mXPbPHlu~+*^RPFCF!${3PSs^yJ;eZtE=8Nl9 zQ?-A9OFf$U4Bba;9sVSS5V&3WWT|P}A+*4b$>_EK9=ZW_sHP-F)9h?la3OkN*K|cT2r~ZM}eh3q2n3;6xM5Gtm!g^``2mm$&>->Q3k~BD|*RygH}q) z32j<3IkkeG_4Yii5uOt~S4z?Kxpip7HXf%D^G&_aQA!l<6{J*-IfM<$u@4o!W>V9a zQ|>*u)k^SB&#{8*NSxhF!Uz8_sOT!b6b41>Sw+tyT&tp2D900na#Zs*r*PM^ax5k^ zh5L7v-b_yv@s%byib*Ti{+8BOHVtj$ab&2wJqMom9M}51}@K}8t zeB0f^tiYEiiXB*c3dl9{N4PtY<Ku}R9tKlZTH@7w5|_8wLZA3Y3ok#!qgJDZ|HUQVf?uG8-)Eew z?prFug4WKe#W*io#udS#=Yx}?-!^d-1x?RPNyoT|Eq#nbK^wyK@6gQjg4S>%Gwwg8 zyUrwTYFn@&pRRWCy%lZzE7%|2RpvUMM;kBU{ay;OE0c5lNLl8)=*;#7N_mcrzK}|D z9AAqQLMUCldRlw@-vgyQCMEAimR$t!3n{4YgYkyWHlUl=A^mxLjx;wRL5@@JSjNm} zOLIDSvAf_=VHx4qyQO)zbG$DJ=IV7w<4(#UQT$T zc+aAEUyMxoh_850xJOdBi{$uW&J*8J4Br^vavECy z*3A*iC^}HR!+d-!)jK=W(W}l4bjlDNvHJ{BpyubUI4}kGYqk&HNurv4hc{uD^E#$%j>NH%PWC$cTTab-<;pcRSrb+4SD7ZxB#}r+1a!YkCn*51w9s zbB2Lodaq}CxsEN~fr=#-+Ual=Z=V9bZ)W=y@XYYXQ^0G6F|O!Wz%$MDQ#LTcTTBJt zj=x6c_bpvP2|cw}okjT_nYF7=Z29LE@E7HOJO%vsh6uNhDhALEfk+t>ce^I+$?4x? zp+_ei-u)ip)y5r?t}epE***~Av#HQC5Vs$xd{3m`4|MOWig@O`I7q6j?+sM%{;Q$( z>eyz4V~}BwW#WIUD=*_vpBD?!T z&?3!txC~slR$IbfI3~P;G}*Nj`H_0}1b{t2k1Y~X8GHsvY-CRFE`-^qcUKZ{uCI6Z z_a*7w9}V>GUrtHyegM7ue3kGq^zPOXwrv%xzwD8rYHU1jM zVYChmd)II5)V@zR8x8GK%{dy{r=82(SG2vh&?{{!t1a|7*shHja#79~WX~1atxg6m zN$@J{zR!h%G8_L<_#We&>bJ20yj|0U*<+-BKH5<@MLd=plgMdQpL?7cYA|jQ@51hg z2P~f%m)0EUx=;#L%t31}Bx8<`%yFGFz4cZQV~fDz&TZU?VdcPQ!ee%Q7d(&4)duVh z8gK`i+t<2ILCxr^Ol8l;jy6DLs@d{YrceH7RHjnT{iju?s@qqYauo4Il_|#(O=X&R zO`~{p-&UM2cP)8U#}exV6gmHg}z94pcpuxDjn}DW2}%fOD*`^ zw=9_SZI$H>`v;4SuC&-`-?8A#?^-bWd-iSEJjK`nD=4kZyJ8}^R00-X=Iozm6zw&V z&l1NJsZts#az>3AZ*gCdC80;D#eE=zaLQ{|#gV3Nv2pVcsdBJBsim2ON+PV@O@ChIpejm` z2|FTV;(hP}cedt&PHs#~8fA6G?H6?XHz^XYxb=cLW9?!61qn1bII%AJqT>I!55qZv zcliGfn3|SThh;t#Qe9_G44{oYJ7734r^y< zlaXUw8S)9$f=yaHQno|Ftl{z*5~QzrF?OU)LltS5KoD$FQ;G)|MHVg-X_k1^=iur{ zs~sj>%!9E!dh?m!S(1*ph@~t44XSD+IT61Ui!l*(DxAWr*QW0cw&KUn5m*;D4Q7Xm#2ca0-{G zwrKuYS}j=pMVdW+xz{|&#iCkbre<>P0a81!RJt!w`Tkr z8WiWEUvK01ViuQv<_-5ZPSuVNl3@J6%*1WGgqNy8^J=k&;bV6esEXfdYJdyKn*yU?L>G&+w5@au3e zcK`@$i#!2@%RczHAgsEwm%ZadMwVgGX!Z@}ULpfle>YLm8x(aC>hG^u{Ws=T|Jx_5 z{=EZN|K4~>538U1c>dDr=Q@eU6Z7}j>W`n!>gPwc$qeFR8j6G>5h>qm1DRX>OgW=h z$XDwL1cx5p+!n>DD@8 zIks?%5hG6K)>FkT;b)xr!F5OfS+0Eca9ON3`1e*Kjwz)S=-S!3R1n{l6qfzFLmXLh z-^hOVYeymO-^l*=m>)iNmLDE|_d|RC)mQxR!Yv;j>$-y5fhO#k@Lbow>;4}1XdLm{ zp!*;U=3XBz+3NR4-72B!8Zgb-#aitrnaZwRM`_h_T{CG@ zWK3z^r3v@7#L~Aq>2hp?VFLF%+Y_?sL>6<+I$K$GvwEymW1KVSbgyYcK7;$^t6LN8 z_1%0CT5;T!ofg#hSm60^TyH?NROFe+Hu)&lX4p-{(kcR>dyX}Mizw{8ggLCcIxfnj0VTX6)zG4gUT$QWQdFJwu8SvxX+hcW#~Us2 z)5vY@kX1WT*21s!7SF|;-9~withXF1;6pg^;l1M?LNE~B)pyA1F+54jO-%SME}Rm5 z)@Bamj+mPm@h5F?7FQN*pfvb}D>+hi5T(#%9b8C+wYj33bEk0ZQ06oFeAR2zN6*1( z9OPNN$Ca2-UbUAZF5AmXKFCu2AkRzoCQBZ}P0YmWOS*9rgQ^h|=ErIdy3^u5=1ruh zao@ZK8Jr(!K4zfw{k2K=kDA4VyM=@H$XGHD6tPNt2Bd$DcQ55eoJ?8ggtkO`qY^Me z2>w!?*{|$JS~cHC#^!J(0bN-&_P)?`x~6VCfPiy7{?@QCzEqj zv;BC0loOb0%>hp8|5p;Rxetw|t3cW};TXV}65=Ker1PTBP4yOz89UXT*fG^xKc+CB zoJ-p~;JK!{3;Q7v6}&-V0>8?fmt9nZ;fI4NT=y=)z`dVkvnk{5(o%3w+>NipFK3Dy zrfgIaZrR?!Ba;_kzp{=2Ba=N3hrU>P0d}eRzMxxUlj15ltsRQ1VhmHE1A|M;;nK2h zN>dt*bD5W7`Ntn=$`3^zv~wAJeYm&c|Sb#z=zr!`)+9e zAkzFPkeB0qf2|f|!u!s4$Gf`K@vdo0xNm)D3kxzSb;ro$kv0aEHE;{RIy!(rJc+&| znWapG&hH&S1Ubk7^H+#T`b0HELQ`W&yo3E@b_VSpy= z*!L7?29ELaGGqIXv#(!Ht=xa(c;{vwy-vH7H>rt-gg5C23Us*vptD_+9oUH@XB`| z@3`S&o!!dUO(9qTR<$w>dYhi?lXV4sZym1{TZF5)r~J8AWD zBApt^SsHBRf)qTC%oqmw@(kZUfM^WCw_KW(W|FoBK?WzJ+cUdUZlK%p)f0 zZGsyLf5M@GS0HPa6yr;MC8u~E*8PW}?CuY7Mk2TBKmKQ}cif!dwWLQgQ!h`dyQM^= z1Y?^0so>HMypz;c`Wpd+j=PC_JW)bq7M^-+_fg*+_@c2fuRMQR$Z0RQ#BdA3dIhIsTg^+CWSl%0tK_kgO^Z&$D+rgi{y02sNc_k7@W`=NNFJbJnH@`iM;R*Ab$nJTA`4tGm!PCAus{S}aKBpNIIOiKE3dRfdRBCr@>%-*i zmsR7RJAFyn+3%||QsK;t(5CFP(l3f`xQk?SrRg91sYyE>D!h68_ z?A?|i2RvJEq7R(z(HPkUH~wwiSYf1a_#AyF6?&ChIs~@KBY)%qZ-JeeN@oOl+@2t( z1P*4;5O1I);)XkbiZ5`QUTqtmnzvAX`TZ13vOLR1DXIxp^ZWRAHnQo|F=-V(yc;= zIl4YpxkVkF!*cWW|0(uj?jJ4ZKDfeG5}F3>5nTdTxQ^&7Z+&44q2`HO9SW5^ zEk^E++HVP&MK?k6vR`2(hmXe{i%y@`9>0we=$I_AUaC0=J=KOd_eb#zJb*6C+g`&N z`OT5~bFj{ewa2ya866ojZLT@kb(&mfx}E#}XbrrB{nc;aR|YlEKL~|8Oy3VB4SWHI zUo`Ll4V>QBK-oS;nach)9=3C7KlUp{+5Z^l(t;+2`#e!{HjNgRLS(?;T{obC-Ca>$ zs)5h@`(vX1EzTlf`!JoQEFNT&&zNw|C6Vs23sDvd3;V~&irKUl6z8YhKL}S8s$!ij zV}Tzrgd)^F)^Q(Bd0&X#uT3)L{ZCxi9Y9_6F86RuD!^kj7tsqpjYrVniy0mF8O#)n z=fzpwq-sbm4Qjc&W>OW;%IB<|DXOI$wU5 z&M#t~fw8&g<9Eq9Uw)U)7mES-Ip^bdY3}(6C6(W$^L@WdGdckwZegf@7!xE2#~&3i zvg%yd_k^x=Vt#?HQPmM~$74l7%;f9BH-thgr35`L5`i-ojoh3qK2mFGQ!f3JM--bXbarumPGkd3?ypYKMQovG@m(>yc(Q&<^^?#Kw7o2x_^Hy* zJpDj5u^MheFU;rJk&9E7Domg{SE+g>0ZK480r?n*6b<&kuUnBg;Zi-7vJ&;LOySWSM7#Zg_DLq#anb& z0h4NQ7#Y(*Ujd?l{)$&qfNv4-{Y~P?d@(Hs0?k1*Up08c%8A0nRakK5w=5X_Z41u* z2Lf_zwBU2s=q2T7;7?{CAYE1-1*<*{6b1rE+f>NtF;?WTQVULtS#a)D3(lNo!RWXJ zpDQDv)>#VBT#lre7?uG84FlGgOkRyCQYF}VkG1etlU+;8G1=m40)v3teXR%S=kPw# za0JPm`5^lef@8?|g{L^_&wJ-Hy8dHZ61?$CQs*oQq>0!1Ph@<&rg$4I%x+Suu>(v1T6ilWQYrN; zDZVhInG>v3>YO>tj}C zc4&yn_TPtFU-UKPmYj$PECzHcOfBNZZ%&NnjVO7)%v+x)djy2c@5f8tMhp2ATW?^4 zAb0efG7j=&!dF|9GS#f(#}cWtQ1RKHJO$x4-^@Lj%t(_ql)j1dXEEtMEYoqD?|y}4znKCv zX=VyzWu`E8HR}>Hg|XdCEoKU1dk8U87<-(VLNsYa;edI+ZP0vwOlyTb&p^%(P&Q83 zW4&mj7g2x3!G8E=RK5zwx1-8jJtXG79ozKgnCY3>XAYULKeqdQbm^M=|ABp9GP)z- zqiKxv4#!WUgOQR|r^&8>iL&r;!)d-ngFeWhK_3)~DPH=p6p~4J-J-Z8}fw4FgCx!UiNiB%C z-6??hE+GDnb!3Gt2_Swr5Wgcy$LaO#lR*5#F>m7#O=Zb@0R0fzGywGP#Y+wW^p6?P zn;nCIo+GIr1@zlK0_dBD%|kR0ndOHJ%mj1949siI!Hl;OaW#AykY>?Xm zw1Oo`nO8YvM4ZEp46@-9lxEN1#4xq%_>p}&F#wI=v`!<6NfT(KEl_EfG!667h#zW1 z_lOH%M5}E?%XiyQPG~a=2fKB0P^J)d>;@r)Z(e0Js@VUdGE;@T2E z(y+nM1VWIpGHfvPz!qodApx5BNW+HN$hyq1!M2A~N$+24*l_og();F!!@CpWv6Bk)VrfT@2>g0z4T3@IGJDb#;o9~zhvfHX!0Ik^xqKbr9zMD zX?Xz~ckqBJJYCa8+iUuUp8nbsuhMt$~>SNeD#Jzt& zONV1(!NhqT*sr@UX0IH76c+Tw>_tU>_~LsXTKtqJ{jhwqA71irm^&Qg&bkSEy58s3 zxQ}P-u$x7EGGm7m`-Q_lIr|%AKrxc$4m5qZ#>$k}zZ2)WYctH3@7uKNQEl8ZvyFWN ziDCsz*GG|>`GIy6n~*YZ7Cx(ddsWo?#iiMyoV=txH}pt-c_jPt z<9>MlCO*RTu-#AxlE_}D*QLk&*SgTv ze?7)hhjvlTl;RCz5p`q>^eXREz1mnT;fMeF-Ltsi-WzuGMe%#=ZDX-1Yf&%8){QUR zl^6MJL%8}pMVA*@v?*L=(G`UjT@|jd=;}O+t_hb~w52hEol@^DZ|>A3z%x`RqovF0SGq|Tx%I)X~7ExNib zsHDoGE$b|LYq)}FUnNB^`@^MH=b&rd2)`#9Ld}Uqo5DpFU9rNVtHOmAU0r9?V5TC`=nMQ;t~ z5%qf#89VI4-(8p2TBr5#SsX88r_VZBhb_F;NufoTw^+0(oM+J$D=fMy+7h!+}yr3x4bi>%8cwN|P1lGYnuP_$rC1j9Xm$juAjr4cXP z5z&YW!5hE#`#EQ3cITq>`}yNHyvXc6=bZOE=Q+=Lp65JsX0}qkPS2k!UuTxf*SqqY zw`FdaeOnkLb*JPuXOT~sZjjC9m)~ZowDqc5e)CT!Ft68It##bA)__-_z@OcJE zVCF}PSH=3Y2KhQYzfwwPj+U=?<(JFXSvB(YzWfq=wNZy=qpB`9l>b+uD%Pi!$X95H zl0cDsg@z~z(nSH}vVYdvPnC zF%bKF1_IknR{krN?2g-CxOXo1zW4`E@6|_2GPQ+20l@Nd11mMYiyHZ-CCIwtH?VMD zF+DHRK*NZ)a1@~I#SeguP$-tHDahRM=IMD07%*GEr-p}m%25};0f2>PrF_Is#?6bA z$Gf zxPMpA_eNqb0RL3-kHJ6H{4$;7c(L+unFS~&NBagL-&h6V+40L zn(QRe6D*za@r8yXrh;v(knn|JA*wV9S9mY2KF^Xf7D4)Z1J3Rq(KWC~Tcpnau}AN3 zS3SagLxW;#gPzL!4byn+ix=Os1*}Fx=V9xF49^A<*(p3fj*nPCR;9*uu1ey!ZqT%s zyl{xSffopO*n=!*{A{c~x5^n0x9IOJa>naVV3H`Q&T^g?DUdUQ1x@dv&!spsEF*K( zc%um06oH24;d1|7ocn!M$NZi%)N%*iqy@sFL(nr1jy#O^;gEJGGynKA zvN@Xx5OOvRXZCwG&Wf{HEK!^_%SYj?1s^qM3-Gbm3mMHB0Y+=inppBFaFV1ShN4#MX7E?XS zx_dRmkeYJV0%~l!FpU$M+;!GmoRMI{U0`hIt2(O&8$_dJ%`rRyo-R(x&uwB;qyF`T z=YWCKy7iNr@$|X*QT!<8^m|Firp?d>J|Ua@Jc>K1vO9SNvqXjGCcE5@{WsWqQ-?mkB`PI1{D>@f%J%)gB4_i8iTf{eZ zy!(8-9FBdP>F%47Jsln1c!DmfE*T*R9Y75V2z%>R)U_cAhu1SEw;|OS+P3iTEZD+(u=G$C%TRJ?)lhE34hp;yWx!cA=cn^4qtfSCXcK-772U>89}K7L^a&?6 zuVS~i;_eLgsG8WLD(`s?PhSW+fBiDF0V&Nmc0{Xvs`$lV?iS{7PR1a_u>;jLoVWmA z_`I4om)DIcg_BpqDP0cbb~)K)n%r4mSN9cX3Kxi+CR||}>EcM{oMdN42Ozb=cfF|M zjGnmt+?;7#f4VN3c^Zn^FfX}kWKpeMREfY_&qGxdM-k^rDcZ=3OVCRY;Ie>^7ntC+ zpoj`!G@_~NB1L#5Sfn~UefCO};jx}Z{EA2sHscq6_Wor)sFuOMP76!#xieA@-7E*twNyDSq$URw7FepTh3823Z& z>K!i1UoxV1_^AAi;nVUrr7n~{@1vx+Agf^i!6>BS;`}p6eu9JYEsKY7XSHA^)jp@6vIM-jQ$b|K#DAhJ{=5(J6=g;J3+?nOXYGX166N?5M1!K;{bU+xU@2ot#h)Ba~Y{KtB0L)BW3AOqD zP;5-1YXigvo;?s>;^CVdh(|zhL)2(4gc}dUS#F5TLNA1b58y($@j%>+7CBs$`9Meq z03qCXAQoYlMh?UcAh6u~TI4{S^?QP8eGAI zad;4@86T~iuv4bv3$D6_#i{wT`7K?H$7;5BjE2C|t}$J$(sb8KJe<}MkB8*2Rr#E- zg@lJIDR8_>IC1Z@WbBdZY})S>ZB{nz1Nd~*YtN=7 z6>U(qbv;wjnzCt|pOLniY}z@pdm>@dqWBY|rQKZa~avT*8W>*J2gh!;QB)^`gm@c-kjFR@R0SIVyco&oAZRw+OlaEDO!*0F7J7qU0&HBUH+=>F~4wd z5qWZTdGo)l5Fx=*9(d}I{X&DM7a9&Enw4m34)})FXK<~H@W5V2!4_~7dCD7Kcy}0g+-gv zB9im57Z4|>n1P=JuJ}0I_(~Jo>UzuYvoo+OcoOq{*p;!c73$|+69u>erxrmi+MIs~ zO<4+E?;=H0hCr>-iDOj<#6Vc;!S6`8suWS`xSL|3VKKW%{3x5TCg z$@3h}6-&LQU^v(h+5kXg+W-S^(5cuKZanV+R8Nhnv6>|M1I9=_DavJO>6cRJNzQt^ z-o1*(S#Q%SLDQE*0Km!bn4G`L)ho8u{n^E2V)^~T9cQ=QnQKW?vm0}hvpdS!4ZSY4 z>l}nSAdI#N3-2T0e$H;2b`@!Ab^{@2c5@<6K1*&6&wi5{918E zGmBI6X>hcFv*QXW4TvkY-79SUKwLpk7iZ_#oJo9z3SdqcgHfhZ*!HzM;6YQaK(C>; zVq+!!6|}*wH&M}AvS}v^ZBY^CzwU4SL}OH<6yFD-v$QGE(8^dv+nArlM$HkjikcjI z|Ib;d)3|a_aMVN;SMO@(SaMIWlm~i8He#tcD$3E(#&Q%HBjtC<*+X=ylFWwih;8eb z+SthXqw$p`I;y~`MMnTF_s}(rk65v4I5Acz_?>ZJ+SQKIL=~&)w*S5xH6|?=Ttp9# z`bH0A#MQ59PubA}OL-uAV298zT3$Pf(*0ThTDj`iG!{GkvPyKnAaKpww!f-=!NY3G zZ9>8QVqDH9mTF=i&~4)CyYOYwa$b>9k$=C)h^t?7pS1hMQXc3RJA~PiA>*1CYqsRU zD?ouZpvY&oNNLV&aTc4IzW}XqQ|2^Y`L>k^-DU0evKpJR#dL_ zX(nj8Uo|Xt^vNpm^s5BC<@ReG?2)HmH)vu`zrrB?s6LSqSHEf=xBJCX-7j_s{c0xT zR=@OWV+&}W)y8aA%w27;-jA#{eu^jHJ*$m{GZaz95PDt>*2K!}DfC@h)ojWpJ^wq+K|$K)yD4u z>RxResA$T?XhA%cl6o|U)FfNw=^m- z2nCE1@IIkd3IDU;!ijH_B4-r=sJ!}cy!)mZd_py$?l63I_#X|ei!uDKKqIVqoD9bw zK+vuDGoU0J%^r<&spI1Vk4iBkBxj}G)UrHQ)6NIbtoPN8rE{~*P76b%JI~E z%HF08S2X3Vb-jZ@!@63oGiilLjCL{`Fl?2A zKgdU4w-eAnfJ4xP#i$I1l^@o$VTz{Arlu8u28QK2lUC4Pi=kEwXET?$XRR-<@x7GEsa_{JpBKB<(BTohgMK}U=$1g*#QJCxJKW{+#u6~c+X zq5?#x9A~bWEcXa8bp{ibm=13cF( zUv3qK$B`p#F)c;3{2myt$zr%@qA+Zg<}iF9&~g}FfXZ%$hbUSO!yP~a!*U%D!`aLw z{yae#Zq8=7B~My!0nP2|=FmGtL$AlUP@Z>-T`!tkj?qP8tyK+j)yoidrP+ju~5HUc! zB;0ia`lqAQ1Mxy9a)8WbUE0NH;_h*%m*t$s?^Vu;4|mA=^>~~sb}(7h(goR{#%oc4 zmkl^<9|Z)=SH-mw{FK{y^^u8YFwK`KB9Nwc!Ow*8N8cMyM`>*29IG@Q`Yf7ykcP!x zWsmHXLq?%gS z{fVMAWz(Ljm$rG3s$K6QMXSlCwU1H!Wz!x|v;xS*Zd*m#q*atv96ypV`4c=tWJy1k z++BqXU~YDo;&cTcnFknre8k{`r9AM;H4Y2LJV$-*s1sU__H}aW+UC&)SrhSgq0Ohk zx6I2F`VeSz4QQDI*<_IzX|2)pcF<_MH2H9(2ZA|hHs4dh2b!YkD?3Ni&+z@PxaAdY zES7#eM6I{1dSdMj1b&EGZ_`FA8nxc09jR#4dYks*_0pDFZ_}<+G-|y~%U3jNy-j=k zI%!)e{Z%e8(O=P;vT0w8l6us7yX`DRqt@HBvlXp5o3{O0X-loQ>)i$#@_N*I%0#pt zvwj-CTeI&t)B!CIBD87CMuL`pP>J=KK^P9+MZ5&}9ZPKNt564oTAOgV5VALwgcJX+ z6{gy=2VpR1V5$_t1!~gDME-xV!K_bU}GNB2LxO4{b={_UXsnC_RLj$8Lv z)`0dSx_>q5?%SpRZ@Ry6una|x?%$+n zIl7OBWWnDEZqmZSU6TrO>Mbbo-N<>>z2%cNe8?mwVtIlA9l z(QNKB=zg7`?6>ZJHvkv?zvw=d)usE*ciFnnQmy+`dc;*F;m~f5lRShX-PhggZjK_hJ+^ zt{S%=5hB1`J=y&i_C!U9DCNNj5g)-?3rF6yrwA_vW9=`}pQxD9<9CEJ68fD$rDl49Z9adKxjD@Wt5`jSd=0~%dsf)`%Bv# zi*mW5F|Kwbd5xmwSdT)`xNU@E zSh0gq;{#2+f;H}sMgfp|fcy1rT1?T5Y}zhE>NRK6W+_^aL$cbQqiA!pX&;;?ZA+ox z_BC!NZIb+g8g62SCwKe7z|s5TA%1&mZk@?#CpV-xi+JD$C+8cCMNvmw&{{~X=qt3* zS+prHqdJz24DvBc2jPT8Wdn@IPqgK@(ke}NZ-CYKi82`_c9*&V6rQ1hIF@+-(?@6= z5}TGFZPF@EKU$ZCR-Ej6zmt5ptjnxBZ0o{O9 z^>SpQGiVvsO3lxpmSz9mBx&RvyVTeIIr}8$^+wawP-maS2q8SZ05E#%M*Wp|&EW=o z=R6=eiATN*vAelDeuMYjaO0EbvPfze>8^NJde$E4*HLCPF5|w447QYT3sW|9IB^3T zPg=>2h)!RLch>|jhJ19IeRqlS$+WH0Ead^6rVOzsjH@cyrF9a;XuE_Vj!r(%i~Si= zYb#&15bmeluxYz1S?T_4C7mLMC6y=wFp`q3te!4jfm5E|c&PW*^}{w8R)Vy2X$HSK zi(MMn<~gy%8t25oO5!Y@h4wb>>)(mET0z71vAXr1ANPr-7O~JJk-tsnvp(;CA6=DT zDUWDUnCAu>^2_ZmyP2rc3r}l;#giXFXblCd@?p5~P}Jp%keCp0gg4X?UKcW$8tMq| z)pJOAAV+xhLVH>XPsJy4KOV10Qo?(*6&yl%G$r}!&gqylbSbvUf&4zmZ}V=jBd>SP z#+C54oLI&Cbsu_ugcmPvCa6m=4JiudLkMOnOL;_-!WfiN2?mDtr$3~WsX4PC9m{?s ziogY&hrDcO(sG`7J8<&dA9JJN!}>YN`yx!qf>GW&TyO+au|L7z+!S)6Cn@uE3Rx#( z`SYUDk?NN!tD)S?G0!B|`o7hu9;D^o+4-tMXlhBKv+4ILnhGE^?RSc%0tij};J4CN z1rVB+R5TSpXxf>IrUD2}+x#18s{#m38>eV0fY7w#6io#XnzmH+Lj@3;c8#K`07BCW z6|DfGu$Fm=XV1!&Q4}wx5E)HcL6PzP-sCONb+>R6XQCkm+D3s|esBG+6|n~;ZxKgp zVuM4hAIabNnFRuIYjO6umuPqtsvlKpw5-U ziGwsTCu{mdcg1*4+Vp%)%*mU6(oNOOL+osKF)hS-k(|uwlO0e4>Q{rBlE9+5U@NVD z;WLz7pnZs@ukRdB&#&dsRD5b>Nf#{;;p!Xq@BI>DN-a{VscBOcO{u1)l_{E1O-p(T6OmvoX&NO_tH%fLx9c+VCSyH`v+X}g2%cD52^!!0sE}%K% z-3cYOZ}=nXfPi>cU#wIJi{@qvd|g*zsy&-l2bzv|fy#Jyj>?kiix;9CG__h58Z$+I zWtNmT-*EEL^b5+^C~G(K6d_0}A4SJbUZ-d|`g@q7<>>G8r%Kx#{k=lba`ZP((Q@?nkyE5?j{f#jv>g5Y>}OIhM}O}E z?Z@=@bkuR{?*_>A$Mp9G)XCA`6NHefzspY+rgHRmBxpaRzaf<8s@Hz#Z{L&HC`*5D z5yF1!?@w4A`fF(#^;a~_M}MV{$0fI1c^tXnC zrs8m4`}_4V!qER_f6taiS^8Tig#Fgv?>gh6&|gc_sK26VKKh%bqK^L70f6SUBp*Ol z+;oH{HaNukKSop2BTO$!+=R1ulj3!7QOHBShdksOYr|0Aqgg8}e7Y3`t2w+1x7%m8 zGeRxcXjJ!#L{ZKq!-?;XQkPSSMeQ6;;Y320TTzplMYd9@MYSjF)lONHD|J1Rh}uEc z0Sy{6lMGw5;}xwno3{K&saJ{6&928S7--v+O)F9~l|J3!HLCibQ0l=%C#XsZVewpys~u>SD_YK^ejUo9*N|MPGpJHYM1AoaS&k@Al7pId zq@t-LqNXi`BBGv3B5K-Iil&l?ns%U~sU)JN%|S*HZB-Ic(=H}0OUXH}Mak7$`6aG8 zLB~~Dv%{I!E#R0lqX;ppJ+DU!ab9G!5cPbzn=-;nYZ%?K1v77YQIGtf+9Os1sbdQp zqFBA4drt`S8$`aEHeJz_d^PPCpjqHZV#u7bbB}k)wXg}T?jahLY_1YdW3^7A%K8af z{ncE8ZP08o{igQL;xWDYbx;b-DLPxLQY_saJ9Q^u7p+#*BLRu+v)rkRovI(#ZFk{^ z6OW@gMW7OSYAB|3LlA1ph0 zE~SpQMagalJ`wpLMjkdE8lg3IJLWnFn1Y({7a=^Yrl6*APaKkE*;8;zO7u^sl%8(I zH%~rJDdEpy_%Wckq#n?xgs^B90W8{u^bRUP1%2~HyPH%hz;iBE66-pkvC1g%vCqlJ zLNw9jr*ZBar}9+n3^%@w#?}xs$3}@D0!403_wjs!KoBNJ`_vuNo)5eM*qRMSO6qhYz+o} z&rk+q5}yP2Jh>lDc}62_W2n)HCovj74{Gfmj*az}e)pB(KxQobmE+)JfN5ha56u|u4C`G8mS5wL_Q(p2mVAu zVoA82)YK+I+|G^5$#-$1DQl-Jq&dh1v1AOn;C+q0gU}8v3>|Im!w;GJH7;^Bp5inv z(v3^aXVKWZ>5k^c=bqiUK;SN2nj7n;T^#R@WoTh`5+wH>t7vM1Ta@2oA4zmoAF?2V zfL=ln3ekK7&lmag!)VIYqvwdE`C%~+^27MYEC@ha)QVazppiCEf~7p-$@%R#nbUUr zGc=*rh4C{Rqfe~{XdpnhAON?rfA9yZH`aU|TVlQ^zZK!9?CppETrB)k5IAA+4q+7Y zpgSm{JmP}n-j2|oCC|=X%@A-ZPm;lfB!RG-mbSthty?cWV!%`k_pyG6r0Wcn?bFYnIIh~2M=2=0l z-Scp;(^@;7i6v&H&3{zdu^e&rpbOe-oo6Wz=sZ{A=0u=)(?tm;E@QH z^1xmF0#4;4f?#HQVP-fmEY&c~CzuO93*g4^!kp*8uvEh^RbdVZg2`Y7;gU_B1H)1c zlSh~iK`_(2FfUwZ%Z8;Ih6xt)u}=d!RqBPQb6{AiVVJuyV?i)2Sd_RrRp!93RKqYW zWPZLgfSXz`%m<_FPO((OFymz29RyS0g}L8>VX1~GAxuRO%xtW8T%EeafnlkJVV=xv z#iGSmi)*|vVF!k#8ipx2GZ6%n=Y?sx)|L%RH4M}E=IKE&O{nGS)FcOnr93dF7T{#A z-{C*Odw3;W0TeyKS;_+woS8~ssm73P{}3TlN}V6@_<}gaWZ$CzPwBr=YnXhwS>}VoNhmp z?f)6jzO$=+lheMlYJYvXc_AA6EmrVT6kbC&6bRgx%NUBqJQzbY&_=zG@kctx#l|r< z2=V}Ij}$&4T;iE$2Vmfr1iajAxW?gz#R^T`WH2B4FS+rH=$gH@ZmJ-u*qy}+39sX( zwW|V>pQ`X)x2tRC07ol7OL<_Bd9TJ?^pP)$TR7j2un_3d)S6EPwRT4>k2$<9&^ zg*o4WVX20Z*k@c2OvXC{^BowLY8Z)qjthdB=7m`_%$5yHHH^eQOWzCVRH+x{CI^P4 z8b)HDYl2`}yuR?~4h%~*jKn^LK`^ymn9T3(PO((ONbK`$Ye1(8yfFW8U|6bQB=)%^ z2xhj|9bWFhuvEh|(;a^Ep8#%Zyf8;NFf7$D68kg-!Q^>iUb)Ja4NEnQ#6Eq3V46_N zH8m3s3`==fvCqfvvQvJJggZD~IA;rvawII~!K4c}b(j@E@-sL-j^wKv+u*nz$-H-b zQQVH?Up9irk@WUQ@N*>B+bAAK^6$3;2D=q~c8TQ_zyvsw>L3^&NAjO5Z5X#B`RXly zZaj|U?>0u3BY7yOwcC*laauc$WB^+GjjN9%IS%au9LdMq{84-y$(uuM6t^Rp36%YH zBr^e{N5#E}{#g)=k0XgXFm6Y(W@`X9K8~b=1LJliHwM9Eyfbj&5W7<><$;+jj-)sU zW||kK-hpAMh7m{d!j^zem3m>$a9~)fVZ@OP4T5R$n(mJV+nr*mh7m^+3WBNi!aV4} zuvEi{BbohXK&J}4FoPTzmTDMrB=H~^A4hVS1LJliyWR-k#>bJYxx$u>+mYN81mojK z8XXw7Bk36g(}b?OEL~3rhNV0#NAlk5?3AA)DfcSQmzT3w%8{^`2OWul&*m?IyFHwO%MEBfpb?>m>-gUwPN5N|t9 z=6OLdK91yW2gdD4KH22YjmME(WMgDGl6!+%yB$ff)7o()=cBdXxcWGf*9O_+>Ryq& zx6vQP$C1o%P~48>HlXaUBRLN+0gj|g5R8u_$#Y=bj%3M(0B(F7$qSd-+_)Xdh#;7Z zcLvruFf8R^Ig&$yV5WIt${ZM$Y8Y`ObJquSs?-bf!6kO5SgK*fkqiuiY4Muw`yCjT zY8Y`OU%wi_O|2K^5(kE*8b%z+gF!F_UYM{0!%__+j-)CG#>bJg476qAb|mJyfKK^1 zl1UDX+mXx&g7I-Azja{Tj-*=3rVRKgb z_iK@lOPZgyZ;$^+`R04H<#GIq-Ac*aKz7s#&!gmxLf!>l0iLQM0wz5uwz@3Vb# zSDf9EcfeS?H}MVxZr(H>UrIi_yQ#)U++p?{0pX6rs))qd@g$xSH@7cgi0s)?=C|o` z6cE&|vZ>ZmA)1sY*v-EFD4rb`r8b1M>2heT`Bk$o3lrTv*b%d?uXg!iS6hks7#jNt zU~vOv?HYtprMGMfl#Qd2w_U^oG0$VQrM@W0B z^Hi4dur@fx7Ey*DRV7=qw1P@Elq56F(clLAnDcKrRsL2-8cJs>;&TAugskaTq+pi|SlFsrI;*|1c@NT@$L z2&U8v)8N3cRKrN9e`F9$i#NFbjRV6{4I`oci_Zphs@4m$tGC@LmTDLY^{)(qDe%HP z>AR;`^SfM`k2649e_}qX_F_?EvhT|L9_Z8poXlB(@d@r0b5EZOB?=Th!CA@!6I^!uof?3$ z#oMKjgThjcB0K)pJ?+oSG%w1cUN$c*)hJE)XpRX$DfOcK(LrIUMyVvqF##wosN|B% zFB}w>@_<}gaWY?? z=AtKjPz>)QHIHiuJb@=%7|9_By#>zf=Z6tZz3j86?)MHS&Yn7XgSff)@qjtkiVM25 z;#k1wpEhSH56roCoXksuU}mAz1@qcDHVjL707l}1Z)f{+bBlXV-Ao&!ceMf-R%<>H z)Y=^vT;#OYalx<>^9r=~F&i)Y+`&2=?UmWM&AEdmuY)%~f6O1n=ML5@coDBgaqeKr zi{{OHfU>{QMFKE-RNT=;*C3eLUY$S3fnliYy8b+dvn}T36 zUVlEWw*&Z75KP8va-VTv zSjq!4P#nPVK`_(2FtrX0OEru*fMxdubgI+~bD{&oQVk;xpf(7m#cOi6{mPaNOEru* zfKEX$wO*LNI4~^LFya87`+GpA3cN5e2Zp5@MjXJUK`=fJprZrhb^zbr8^Dc^16bVM zmW|s1{38g)#{vA&fpI&4zCkce=(@|&l{+vjW9{`lSuyb^sj$U_1_B zhK-Ts0OsE9-0Be3>qqrTw{Xp4Y2ha$Z z00;2PAQ&G9(9?l&JAgOu3gE`a0en?%bK`aZV0E^DFW#e`L4+p{cIDnfR7`Fq6 z2EjC;>n=<8a|ec{JS+$B=}dOYCzF)%ia2uyJ0&{-SgK&=)M}!VA{QltRoy4mTH(Ha&vqTjL){USGwA=v39K? z%hm!!bJ+}E8|u#U-3|n0g`GU#iD>FOIwjtY^m901sqRP*a*#*|z-&P+msmp%3`=>S zBW*aDrvt{%rTE+>T2y9r<~A#jgImpVm*}SH{wO|1{ErTbWyFEfj8u%-B>=_8hX2Ar zv1~X{B#W~&<AG%v~{4hl;(idgVN15ir6C|5ctEY&Dt zz~|lW-=h}q1Ukk+VW~!GrRHBAfKuy4*?gKU7nW+22BPEzpcHsf(hdqsHA)Fl9!>i9 z$j5k}=b%`|oBF~j5DP%5@lK=z92AynUd9n+*ED}#^1LVuOKrKZRHJkz%B%pCCRB3G z#<30xOL?G23ve>e0g9h(m|(ategO<+w)+?ah$XMDF`v54zxARX-ZW_2sTM$jr3yoS zjoCce7l!X^D)EYBw#MOG3s}s98&}0fJv7yiAtL!0si9d&mX)%%z*Yq!@t%!KIK^2= zEapL^**KdYCj5Ew?z3BWiV~4)pWPh-;N6t8h%azz_3)qG~=WB$P{+RyEk~zH1Ak_`!jY(cJ#882X-Ge;iK6-2&U8vGv9$>sfMW} z%+|&LZdy^xC7T-@7?$z?H|;o?6N6x8q0|L)ssqDP9)OvPlX-FgjAs+a`w>epY7<91 zIkwi^IGKI%8Rr`B0R2+{WSm*b1LMqxl+99s@fn~DD!KY{h0RBTr99A=JWBT8lL92$ zgi0=$Vh4t$JOHx*Cv$KB%!ENMj14E-A{nFr#*Q`*4r=Y*5O=53x=6P!H5WDn2(+_T zpce{&2$ZEfAW%N6XPzQ3`zO$YZ9Y5#oqy~83v}5@mM{`cWCe#M(8~j0JOaJd#^~b+ zv>>RpTcEw1){a15m>3|?4PIxQCjcT)mhyl=GjzrgfpISv@DfP(9q*S;gcw%!?aan> zK6r4VoIle>ki`=Mc$wzqrJgvA!V61zfETVC%##FW{|5IAfe~}&o-NOg-~Yk=s3dT3 zFA0G04DLT|jI6=U4{Gfm+^e0|&fw0!B|xB+UV)x003uM9YJqYEWtIqxk3ic{%QffU zKEaj*OL;)e3uu0xxj8_f^rnadsJr-V^v=nQ9WBqFwufvP83Vo!7FsBE>)Ox$L?>M_lEY)3VAk6wd25?j2g<0UhuvEiHv{xSl zvjw$W0{(*o!%`j)FtyG+CJ1IGN?kCgJ1{Ke0T^nXx%ei(PWikQ_MX# zb2HH`(*8C^UlD0MIkCp9k=8yznNRTDNdUwux`XfKb^c7e6q)8#`4vC4WP)E<&^jMa z;yuOqY<3PrD)l1Wl7+-#9z?1n(hGkG;;9wYT#EmTEF>25AW}Qd=H-D%vrz0p`tLDL z?^w)(NON&EzZvb%)A&fW3#Q42sftu9jPa3L^N|1myfPb=To{9G47@U%7&ypE9>w$6 zjsC1)98k@Lba)mLi+K=f0nVlofHXeh4uaQqwq#Qk8Kf}AM@E~wZt!Pie8lYoZqEWJ zvH(iW2Lk|nrP9~N@R7<3*ZZ^LE0u4Lwz`9NUXvRfwp1<;K=Mjuz73NjmHa>ew^Zu0 z0J5a=>~-vmdv5#0q1~lDe>OnHqVeR2a&z0LAW8UW+ODGK8E3O80BL-r#szb}4O11VK~rFikBl?>1p>GO!Gp5^I$Hqc=ALWV z7avV?OLa{#B_f)pg*u|tEb(oPjk-R;TT%lc0pt$e?jGUC1Yl|*ZkHg=bzoS^1946R z$E6|&ro;>L%@L|Q;D)6dMuLRa;Q`!iK`j?I^BfqK^00!pgfC1qL#bL=oA{4nlJv|=gRnrX`iR%ey!W%xqRzsIsC+Q5ucW;78K7@mwrD- z-*y_z`r96N_>tn90@$Jzq?vV4XA|(`KRc}MJA5~+HmByaunHSYU zRxTF)F74&lzgfxyL(@Q^X0G%f;1Vy&KnI1T8iiSUa|Ten*Fxa0LpFHVl4vLj01&ZWJhX$bdBnRK`WcSEQ4gy7zgZTj{K54!C9TY3A z2NX%`J#mG9k9=}jmpUj`E(<7<%c>4QY4vLDVGasQ^%%8NYjCr7sBwg{2y$nkeT6pwRZYP=4p2u#^YnQb3f=QTv`hQEXu+GG7NkaMYVb*9c{L#6ld&VX^|tU>IC%kOyI|F6+jhYjMu z+d?4CV+8Wf~7p-$wwC8Wd89|e;7{?@U)F#<$Q;aHh&h> z+8qUqc3Kyy%MUL#-?+r@+A!}vVZhHd0L;4;1|SHNFkqCx_#}Kvyvmt5h?4Nl8!a73 zZhT<2fMJ(F|KY%}l!ui!x+Vx_CMvmLE_Yy9%EQVV6$Zd~@@pS)4s#s0#5DdOXUduJh8PMFK7O3wZx0+CuF zK9_*^9%v0Wetj3kJc!hevpMggAf9HS*oE{=77~kj5NR&X=D+|XZ{DcZhRMkr?Yl5w zynOue&jdp9e3n1Pc!@v0Cb09d#VGt@$ty_I53t+28?**`+{J6 zTynJoW4UC&h)eDj1mokA4{~5Ep9~oB$sb)1&?z6MytJb&8_OvJMx1gg2&UC*Y;JL2 zSjq!1;+4yTU>dwI-5nT~Y8Y|LulEn=l#gHDnQwQ>^2^{x{PN8~Fm1S)Ya%@Az_64D zV8k(>;0xn*X~Q%`_G)-a+^;9zwx{~EeKzLT)=1q_(=Gwi|6m>wQq1*JJ;?P)Y^URa;LR(?Qi<+=e2ir@acCdsI~jr^PJYswR;A& zcFX)Gr?u1XSE2!&yRY5DY3*ElLQre>wZA^Vr{A4|TD!0PlGEC`_F^M|bN96;I<1|4 z_YZ3AzILV4+PU_=^Y-)F9h}zAweJXO?Y{Q%JX>ncwJU>KyZb%WY3*ElL*D?--Pbmp z*3Pvj1+{i3G!AxJOF{#0#;P$73ux{B+0b?S21t;s->k*AYMIOX1n}*?@=Uw2N~Oq^ z2L!ZsU-@FYv8=D<$_ECt^(1kQvKwbz`JO6&zTH>e`n|W${Q}y0u6&=}IP1#Wdhg$r zue2LGeNG3o^<4QRyK&Z)j|*t+?(>J=dHcNKTz{@TSDtM*&bo3?J|7X# zcHtK9zLzq)eIrYG;2DTE?t8hr7dy~qK2X8)=jMXns`IAbsPp(9_{nsXPdZDT@BcLx zpN(JVho?^kN;Fm9!!VLxVSyR0FUC)PlfSVy8hhTsk8>9pOLlfJ(tYp)-5bVVVI()= zI!4(#qw&3vv1h9hT4N-3-V|PyPoO+wU$arMqVDq%;m?{!gm2A%8USc$*6lJX)`S}` z{S|(mJXO`hSd~9bRbK*n-RI^xC;;C(wuVor%nP5;z`|wW6Q=NNeeZSY#RHATPil-| zCm2u_qp`g(eA~&`M_>$V-WOR>nS40UNZruGNF8sKy|XJ^RCQe5uJC0Yf7LiRFSB9c z<@j<~egyRVQ6wKv^49qz7Zr~Rmu>?Q{}02<9YKk)ZBfU)lLr%Hi7p!)DMF1{WKgC_ z8lrM%8*m-!W~M1XR6&!~C_D0b1<`4xIv0b3%VNa2Y=B(pYF=sZ8hnp{ucE<`&f(He z@NEnJ<2-1sKCcU3+NmEf%%36kP2Ps!3;T;Y%~qc;lRgjXcooVr-_CRQ`E-&$RAlrs zmL7k7-mYGd$O*Ve$3m8_Vkt<4CxlDi0~P-v9)7SzB#cs4MV+=z68Wq~i_5wYq!8U3 z^gces*tyGE(6v`^?$nHm<|wQw$@xS062$pqD9fA+Cc>p?tjDTOE+c|J)#{XD9%utu zi0kK{kU3Zi$uGVagP$S{gyNfwk!P~R^Psin+t6}9g~=xiFaOIeyqygo&sJow@Yb{R zb}23D4t3gqi(@dV!lkcqW#z~LS8eC=Y zYV%c?5kG0{z7-vN_PN{vc@IQA6YfTl%q)9Ama|X|$e*OJXn@Sb{T!A)0gPNvMoO)# z*}8EF$%m=y6hdmem{wg!W2wm;e3@*Qbz!wm$4MVVSus&B`8jTt| z4&|_p;HP}}pVi^gB}U`&nju&8x^mg#eK?GC&xrA2-o7bv_wI!jIE-E|%*NkXx++rH ztr=b^LVsi64ZoEq>kmfF?GNW=M&COyZ}A3t7+@p^N2-nVfJk*F`r^R6Zo6OZ(sgzo zujqhxTivHybGK%#2)kYzKt%w*CT^zh)Bdg3fL@n~Pn-0~OkOPcT~+F&UX9-#U<^Ax zJY{4-ULL-52q#X2orsCH?m z=W&wxFMTZt&o~A@^c_pZdqf-e7Q|8m^TLU1sf~@_6ojW2u`KxpUT+(&Kit@}l8*_7 z6JO(pv=^fegnLPWQL!yNJp+o7+}drEQT8eVjRPgnSZgG9-}F<+G5hwC@!@Eq@mW=F1|`V_$Yg ze|Fz2^w=)+vuMDVB`6s1Woh`*Bi~U419p|5VDOjaC>Z=@kMO0(EmsADca3SXN4rCcan+Uald9hU=M1q?r zTe_`|mVJJHx;Ppy+j@SwXENH@+HQp2Fhbu)Ltpgi_LeQS(vIez2IpOnj{FpTc%^^3 z`%g#o3LlXl>7VX-!ie7Cqw@>(WJQV$V3`OBf2fR{3 z^3fz0htbKILLU4IM7E@WMO`A%iWU}kDXg0sORkBApV<(rSQc(vgL$y)Ty%MPbYC-i z-4`wK{jmJQqoIwcQMcWEOih(gIPp9p48N)J3pC2Sq6}$OWSpb;omsH?Nj+6MUy$y3 zlN6o`CGYsnI21l_74}fAXp%6Yidmz@@i5AmqacF0S=6x^O;KSvCdI>%2FP7zhk?I? zBQ=@dTbQFAPG<08r&%nj*(_X)WkI>sqEuR(!oOWk1ux-JMq9kPb?#WDuKm8S34;J% zRE@s_BDMH?HGv36CIyVbG`iu$LE$MJn+fF*N?-%eGA>>m0y^bDu z@cXqHJ4wdH7kTQTcWJlAD}@q(fcg>)gLWjAw2f$ z*NX17U&pBeul>qb1-7l(<=8KCY_9#x$M_}>&1S(=CWTKggp2)*srCw{o3GXzYb=Pv+UPY zv~=08|H8rh1t{$jplk^UP$JL?Mk>Y>1}N+Qi~uDMpBSK2C9k$3l*gX6BNR_`lDYhq z0eR-gfbinGF_`$Xp3WBtGAxP*Wqh~j+av_E@{g5S!EM!;IpfC%Px z(HXrJ{dLs&7XPmkb1)d@fNSm|P5l(p9!rA3-+`?zob~v{hwzNSSbXG8_aXLl{{zcB z)BOribEkWh3z#1cUMAJ$sJ=URsl(8YaLxCjXyP~D`zpG3zMr8Ayz{+S71;AVD_+_A zhuryY%J=N~{-#i}=lcqwxaRxkobQNN3L!n(E!w#0sOXAUcA}#)-@DjSJ{+I^pW~I^ z;1c^0uN*GbeB+fpqh-Fk$b_<^tJjr{~LT=ZT{8eA5-fIq{s#t$#42}+Z|1Q z8B5kj%K4`U|5Wbo-T8p`} zVpA-cABiQA&WVTnzY)XIr*p4`Flo?mI9MZ%=g5s@RiqTFr_{yey zs0hzE5=pU92-kVb7sIj*(PNNzA1 zTf_B78;=79i<|$TfERCUMj|zXM5=*&=-%-3Rir2P8f7hZCUw1$XuheaZz})!zRCRO zqWf0HD%$GWV(I*;(LK!!1nQ6cB79^1R3=s@0}wz<>UQopVuY7yRICp-_7$G;7p975 zB#WoXB4K^qF7xMd<#r_q@btS_au)<+Y;5QCe;G}-#mbh%(}hO=bpFDsRPiN!Qe7@I zLL1LZ7Pp<39Nd<#Ir{+RV=2sNx^kaU(H@@qI=&fYpCfi}iHBCD@_%t|va0c0ljbp= zs-ikIQ)8;3N-KN4KrIp#j1JonORhE&o2Ve&ntQ!WQ0gl*kxB+9*SSHHpdIzdTqZF9 zw(3B8lecKqxkana`8_gEWqw3;sxw>P8z7@BLwqzYi{vzixE(`Wj3GWGoOl!$Rztjr zy-Q-avWIsOiP^(D2&3{%c={t!`5U7QBmX`U3G|H$y3o9h1DxykO&TElCkyHCbS z*csl*9NtN4c$Znj>mnKz{~0qXm49zC|8K^=W%yRNYsVGQWIHy?MmeCNRnd*@koHYy z8p+M%A>E~SRjRNKqdCS1we?LFe%?1Z;B$^-96E-P?5RicN{r+;H-(L|4H!iXVG)M# zg>Q`%=Do3J89D`(-Y6njKFG3Qyy1}gj=S0RLYKq!sJTQb|GlhG3HHY1%s!+6}0&kV}v4nRWC zYb^P=h|!8S!;NQuyKi4A|L$b|J;)G%0@XhqBv^?2a2lIRaKmBOj@M(!FU&cxus+-A zdq%K-;E=XSuhQ0J=DZJGX?!0WjCGcXwh##>TMWqO3}i-!1~{7hRt)f0R99Fs%K-P< z4PAx_-h??w3#)8!Je41b!?+a0Dd#AxS_u^q>Mw?PV2~Zgx)&Phvcpjt?p#A0A2uEa zIrOG7V3sN7l&rLDaU3&>Z~hQ#97op*;;2^=2j@lnR2ijFXF-q5#UBpH>xHXmtBhTU zK2~|+yUHqGsI78gG}SW_p0Uz4%in?d|HUjbO3oCNT>-fv28@@jXW%g7pP)ulV=-sH zhxGd3Gp>^OH=vP!>JXm(50t|$V|bNaKFoMrC7q_BKwJSVa)(&O>hScNK%pHHi+ljo zHX4Faf<-<*)xE7>vimM;%0|=Oo2@C^1rbeAelr#pM^!Z!U_G`JGq(c`^G7=l?-ef1 zZ_cKD8pVYgKUH=acfyKWj3oZ=TLOAroB28|b7FUR$`|;c_&24l5C7aImCHYEDfo}W zn!CGj#09A?9b%z3`X{?sz1SH|?usGFazVOF5&IB|r;F>@jr?xe9Jd;P3qP|_82^

oPkIgTAcF zCVdvI*br`9%!!i9f73|jzage<19ata5}E2-&yF;bWVyXOxsX@23lZVJO5wjs;jf1u!E9Zlh5u?c3BrdLnSmf2 z!iTbB0F)nTGyeo4{78pz8apnfsxBcDd5bTZ(=Y~eGM!FVsO5- zn7!c{OF2j2;A)U~>eKB5Mli|gkrrI8+s!qBQpW$4K5M4_SA6%b+ulC!p!r z*h}&>)DF)W2c&rTnQcb0YouSgE7!Yu6hi^yGQ6X!0pCGifm0rKEkw(97@>Efp|@fo zT=Kq1Gsw}<4kM*5gBZmq+Z9c2j+MP-B&S4Xp_n1^IL2oM2*+2(%2vceON><4NDQwX zBM(Muim(_1T$9wF5}7UMyJYh+W0TSG=iPYd3#?>sIwqFv zf`D-F3e@Ye1Xe6sv8wK~SPC~u()kcqe!I42$20X+^<5qkk4IH~SI`^gYj3o1Rfl-R z_jMoaDDE9DMPUy0lX%4!V-V5gf7vgY&sYH85o2Sm8Tzjg`YamS6b)@NZ1Elo@tXZ$ zGek7K_#wHSI69RatxX=nnI0*b|MryGZy;%f@GJy(S57p743DHv?zhzjEg4MVYX&sp|5Z! z=uA4i1LNuI;(6ln!W86^D8jo~MRVP|(PRreBZg+#7&y+tBFwvZvT(VK7S?SLseu(u z=(BiedyYsCq)7Kb+oGu(VOBR``xMOG$GsL7kaymq9`?FeX)K82$t|$12Ff=L|huP41w)=J-Y3Tr;f%-8nX=3 zFg1cREuK0LGi^6G5_Q@otjWk=I&Dx&@Emk3nl3y|R+3Ht@OO}P0B{-P|5kW<5|mi- zEeyX=wiWXTE#5yMp6>ozEVf}mA)cF#rRyrdfPa5Ma`1OBFRNk|dpVJ~yh-=`E&i{^ zOqI3e@f_{^S0#{twE&scs&&vL1_x_7l^DvunoIp8TJhGHA|q9Z%u?Ytti$nLrcyN2 z91XQcL$5_cpBNP|N8!mO81x+-(d%20RTvy8wb#;XFq+5+(w*y!AOoU!5~;Q&@v=5V z^3YY>4~>P|;EXt>#>JBAep)Q~uo!3B>(R7wQj285R`;%vT!t*e+wqF`88sFkVuZFJ z_S_!bw;UvyLeWqQogaM=M9RBn@PrS2UFz?UR`EZrBZWv~MQlz7r)*i-f@_J?$YVBb3cVem=OJzL|Ub#nJkJmm$c zuG=n1cHI))w=7oiF7kEC3n}Lv54{~vcljc^XPGG3aiV0qM9Fqh$?_4cuj~-To`DZ{ z96=pJg)HLEc*VLg!((FfyPwoQRs8A&ST9EREdjl*4b~f3CCgVDA=7e~j(a?%J=;B6 zp3!^{WH@}pub+tkSMRucKftykJ?;2f8|*HCb$iSFl(KjK5H>Tkd=}8oqFe)ep|U90 zNdg&5G*s%H0SLRycd!)5+7F8CirN8+;PyKsb>v`kDnj6|j8vz~@hO(-cm+;Is$*B4 z9;X#FQfD71MaLD$>BxiR)ah{6NF8?sPcVoGWwD4b|>>bHrL>reCAPSsAT0A}Aw04H$6`Oj!NJ15|^s$O< zI59t8KeAtX{G4z5rRyKh&+P5YEWMMP9D4}Ym10PTEb~#u+=bX%>n&Y$W%Mk7bk&*P z=B9gJ0zWzF-fAQ?kqCGgbc8%sN0~ll+H-p-7Fy5S{prFpks631azu9E@Tyeof&8ju z>~G&n_I69%r$&14)OUnAbJ!<6ova1NGW%SrmM+@T6Y`CB>;+M-MVODvKgt{!n>=Ig(}~QOJbO(>K$42 zM}Ki{nD;KuMfUbKph9j-q*H!mqoO6;_)koKxpi@e+`4E%{`L+g2f%$ejR&XDnXNls zHc4(X9u z3}yZigRr9|%OK!xV75UhR0iQW+aTwX_KQc?ioQ5Q-+nLV!tV7n5Kol4b)Ux4v6Tf;wfCpK3vQoRtt?>1YGo0k(j~Y&6UPg#Ud%}uBlOK#t>78ap{SOgKcc~q7~aF$?A z=$5qvt0o8G>1mK)41l4G0kh^tNEw4zst`eJp-P%5W3bXP2FJ-=@|7?K=v4uO!c}Tr zwS;ldxrl>S<`8$<2EjlKge=5*Z4%ndv@!_@W$;8Idh_0n&3^eZju2)w=ie8!6*bZ1 zYdj<2^A;u>X7xbKE8JM%k)2T7paY<#$t9$BsBpQC6hCu+CbK&0T|!_mdHxu zOsL^!xmIdIEk85ofjXlN7!PAu+=vb9BXyccPxi5G27-wKtd;q_1d$EPitxFT6C^z4 z0qn`8r%!BRwyhO37@p0Gr2%eCByl^J`8=+r!~K_OvzG4qS5!nVudl`;*i=?%Ah-n= z$$_I0s?^{Le2EY1)MiRBv3|fhsq1F?Egyh^cuEA=t(kcPhT)J_4VIVjVYuguAt(vY zm?81m^hg6rqv^iiQ}}!W8OdtKryLi$-|#bVQ_~}S#5tP21fi=ES(M?|bb*e-HHV*B zA44qzwHPLi#+X;flP&OlF~CwtFwC{c`*4j@j%5+~Dgim3e8<32tOq{A(Mf>AC0P+$ zlzkja!Du7Hj&b5U3}VUuM$2$Jcu6euu@Tx33uTZfj)hFzW1=P?hq*3Zmg$%7`La>= zb+l|97kQo04qJ7hfaONnUToV9ebo&qf&WB9ZPep>q|`(06bUnEG9K}=Z<*(t3jxHE z^HiP>d5u!CUJ?TLGNOx^l(F@CDyj9r9*)%C%T(Qw!N40!epMcL^XnI+Ju{J*jlF@EK!wP^SD)I!;B1 zp)o7L9T2A)AF=v303o9iLPp>zrLLi+OpI0%F!XV(;$hLn@Z{5J2s!L*E^Mbdh@8u`#XQ9Aajl$WizPc%I|`2czf%*+x{CCjapi>|i7NOg%!gt?3( zf*De6qz1yQ4bOWS*TaNtpI8`69l=E39p}lc?PGBN`AW$bO+qF#hUI+&s>YMsu&#pb z!)XGh8BSws5jt~D0{Ci9Ob8P-DIaC}uE&T!rAK(4PEg+^0%P)=8bN_mizw`7Ip3v3 zhjI=oC+q^D|9|Yg3w%`7xi%h{K~qI{RH#w0MvWRBsTpL)7K22;F z`5V7LmKGv8t;`ZmRLFO78agqg6MDwAWExq{MpUeuAEUcLZ&@$c%j#jZXlA2s_AbRF zydGI@L|}C4s5{8Cs2hlBQsnT~(jx5IFE>I>SWh7{SO67EE6S65@G852$i!2Kj;Sq3 z*kV!rdT6E7nh+N{Qnquh>5-Q#KRdE^@th?Z2R8Q4K-XiK2jLR{aP+IQ1eP;$L(O2* zh-j^pO3iFGB8RomE131dJdzgKBql!(v*Rfnnh4)#L{`8K(GFlbrCATXX@pi1IJ8oY zv|%4VyJi;FVE+g%ysSIhwkWB>prZ&B*>fvU1jsifloh~yJKZJgneBmP?8|V`rn!v8 z5*FeqEf|-(c2$r+#R$dRWg^^z?SiRcK7F$QbMM}w2C=p1dS_ANIw8_dw<**Lxq)uH z1kL*5st9HCl~wmAyK(NB+BTk7^QJCo1I0IdW%3Q8B zrM{y@mSfdc3$4&L9&`j(cG?}y+@A#X{ysNL%=nc^x*2o!optN(YAx~!suu0~dwsF+ zq=h~~o(oW`w=oSS@eW^OO}VPz8nfSrBqD7(amt6-J%o9>cWYn90+vXkCMII{&^l$t zX^4v*FzC(~0vy}Dp4^U_H?Xi^jqj^R-a#YSr-$CrqMr}2dY(VPyyN&Ia86dH<0KB` zCar5py~Nd5vB9n%GKHzM-db!sb{Jto4Xnpn@&zCR8xsf^rtZY@^nkF&<>8Y^H@T}4 zatY1T73(q~49_po4q(Qt12eIcN}P5$zzRML`OYT1 z(?1=c{5bq8thwA9{xx14Hn9JS!}DBZJ=!sT2;O_{kVN>BYprgJu#4_FF%jKiPvCu# zP=GK0LK_ziumG9ad9|3SJBCyR>8T1a!JEQK&>g~Xo@ICIXOq2XVyZnKJ@Hh`#4W;G z(&nObOrxMjP9HV>VyQEaQdL@xT0vVQWEK+Y7*(!JzYQ77tmY36c63lGQ_qP!%a-bN zIZhjQItizGQXh-Ru*Z>MjH0`swPWoKL%(Jz8;#5g7HMP6*nRd1cAs4~4+cdGGpjnE@OhiQ=ij{;O z&pQ*mVuR-M+@bayUW*x%qs|UBA5n`QP-16dj9rQCo|R_!DXbTPhH08EVs4gu)VOHS zYyZwy#Uhcg&Z!7sj&HK9^VQNiU*lNk%jDWmqK9pqkD_sog=E-|<|tvD&etZNScFVsW~`$akzH7q!0vKA^r;qUV_(@OGO^0QuGP>M z%zO?_+_410@rY1IG%Yb^(<1M1c`=gGu{@vnIp&?DiP{UQbi0}ugz?8L(Q}h6a-VTkf+?c>sRZLdN;)4&fRl}j#7np^BQHr~x3B>;1H0g6KZq|{>?n-#17h>Q(}GX1!+X*|B_tN*%fxPB zVUxcGoBVZ*P`LX*yg0fJl=Wg$_coZCZ0jtFYdfLvs>mS5jC>~gT};N$5y-teC4b$S zR=I7m<0&G+Y(~1t#K9m2kfNSK%eeSbLlkU%f`%U_zNS=|&~^B#OutwtH=6}W)`-%v zbqE%q*rG~MnHt<#QGi160(+*% z8I+pX0nr^!1#ES7h`~j9jB<5zEvx(HMWHC=LNZ}n3*Mj&mWz0@ZYdXAMEXpz&akyH-GJFb*by8$%)TFAC?byZ z7aJVI|4F`9d2%yFn^{7Ch#n7%Hnuq~c#0ZT@p>`NL~GK_xAe#ddSn&lkX%-q-o^Cs zEYVMBiJ_gyN10#nad09W<_f;K8Qs?!fd9!ZTklfroa}0Z-c>``YxX3-zMJqw3OepY>ps6fC59wB*+q z!)Cl(WnzmXPPPfox2Kul2j#vZ7D}4nd$_M?tH?sV;J;W{lam*&3I5vAn=z7xy8+^X z8FIMH2Ffbtexfow*>;5p!vtqu9249rnJj@@;*MrDy4Y@k*T4u#ErJ6Nb`-%6q(4$) z&q)}o#llRrH^N6ih8EMX5gryhR#Sck+hDyi>on3$crA9o85?FQ&0Eac_Jf(qJz%if zCzUu1f@8>w*P7wy#hUv;E;M_LtKn-ypJU1W0cS&lTyS|nn5p;U#V}LXx(hCTvL4+! z{yHdu3;FJAtZu)7nffcSqP^8MQ)NGwn{n_WP^O&ytP^Gw0c!W8@~Ou@f!gAWZh%KK^!l3bv#p05Dg5OVvoTB9$~J$bqkS+!ZXv?A(Yke_ zZe3r9kr?cN0WbsLD+4bt#;W1Jar`&g*^MYBA84?^9>8XQPA^t00yxm8l&UWl;u}|} zsw)?XuhwA1!@(AK1E#dOWzzay1yk0jW3Dgfa+dXPD!a3Bsxkz#7UQecF@w4BQ*LFk z?j8a9%c^;Ip=u7Oz~2Z?ZQk9NbI}drtr6Ayw<0ysb2EP7)iAyAbewiYZP&2xzi;=^+4aWig2l0+0{J7c$}~0WJ?Jf1z$}qfa#Yh*f_=c(%B$k zz7#t~pA?3by)cm&hCvu?vql6DPE6=y&$bBb>~+W64wH-`PtgOe%bkh2G`8h-q@#7l zaTM5S5cF7+#^p1{Kv)EMG zm@Qq1ugdhEqMxzLk36vaswHN->Cy*bGcjjKlg2*8gROw9fk>kDVZ()az=*6dB8Ra2W<+3quZ0l~&AAd1vzCny_R?lO zf^EY|ZqSUZ!;H=4Z1AFH6FtkZEz)aYGLw7~!(@%(IZKEgMNIINW&%Y9 zawE!$@^OrkWLy+n3Qz@_ih@2Wb1Zkp=H5(=0?99|vaRh|nWnxO-Hg-ao zaF$Z6CBolOL#X?~iD6fXWQ|BBgsoXkOgN#)k+?KTdlxa7Ue>Z>fX%Y4@P}oQAV);P z8(XlA?qv%EAfD8inQ;mlDn(Nd8< z(ZW9aizZsi(kEIjVV5Ob(6HtMd{hQk8KkQ*BVx{4XkEw-`O4Oz6i}E z@5DAB*d?Ox9Dm-BMAc@_u3nAJ(O06$!;NJG5ei}76e4ErN9+cUu}H9UV?7b>tYvOTUJlMU%;Kv5A!QaN3iIW((Tqt;ni6tkg!X?KMiwUKWrANO^T_Uy(!u@v#Mtp;;ZmS2G-PQ_|Vm(ZX%^*t8m2W^KZIhxNSuH3Kc7)1< zgSbTgIYz^!OB>EwU+{bpXvx{1-ds@g6b_i6e%@A{{lVr6H36#$NaFM>U?5r4m=I?JEJwZ5}VPNG;wXTlO|pyfSxI4QX41!OjN|1oKCx0(i+og9p4u5Xq~ueeB! zTGMH}uM}x3LTPD#A!!Ziw7!xC?^N#{Z_9FwPNz+mw8nJWMUqwsR=D|l=?eTv< zZ&u=^HnB*s--ce?KR0rd3t_ADIlS9SvdWnyR$|@A5^KpK!Q5v203VNhOVFff+O*$FniNf& zc8#P-(X?qhFBfU0Xxg+nk|ssdruC6DDVjFzjdGDzil$AwSJI?t+B7Z%AkR`XZQAO~ z1Wk&jO}k6dq-ff-({O6^{0+KwPYDLfl9vx54hXQ~ZNdOSSn^al!;?Kl=G)V03DA(KGD=i* zckLhW@^M`KcV2!G!a-Z)(I(ucS&0pz{-0^UBZs8_D8fW{IXl>}6H^dGDk|X8iWt;yF|+GoLutDt`F-*NAu8-f1Lb!h;`rrvC;0kB@@pba zhWvh85HjU=+xa5%8S+~X+CP%tZy-EVypBPBe{dcXrOEF+K{#glJ(tlTzmB9)eubpv zkl!>B_2hTnxl(?&P&^&=@ASWIAUg8f$OyLjFFq?j`Q1?>*qI@}4@g>u{Pvc#4Ef!9 zj!0WVmEd$aQzfk~op!#YwWiZrz9G_P$nTw!mLb2VN?L~e{{3u`HbZ_#N?L~ec9OIV z`F*^{7t3!y#PQ4Td*JIA$!{IvWXSL3f{-b{ubn9}pCP|@gZ7W)w>!e~mfsO)Fj1QP zCIsP_<+qs8A-|5KQGSJ_<&fVr5%uIZQ7p}ak}!ZARdT6Ktn-KyeyX7hpAUktoA4Cc zr0YJYC@gAxcs!5dvCXF+oX%Kj=F_i1aFRo-OjZ*a>1-?NC1FK*uTkHYCP~=t+XLgmj=QW#7<4T>B*0`)Y%UuPT_&Rg(#2jYWDe0Ax)|yV+)?LJ_fTDHd z#U-sFofeU_wshLYZX#_pT9KRfr=%sGXaEgXK^xQ}JLQ~)Ru@EtvdL)Zf8eOZT9VPw zhe}#TL;vhl5ig^m|4Py_8v50emeJ6+pCZy`H1wI0meJ6^DQN|wK5YACQ;|qJI-T}Y zNo!1}^^mlThRzcwa~N7hg=y@&5pifufd($t!D`T>`^Mj3SW`WtYTwC}gQ=cT^|&A` zeG2vJ_IiUQEu&GlL0GhDt7udKRTxzbc!OJa_cI(;9*+oiWTsrw)O6Zw5JbdlOs7qe zw7w^%r9Ds5o=T^+;0Mx{A;^8lU8JQ6Ioq`m@@Xq6^TMt=$F{4|T8G!Jw<9NPPerr= zoSfGSA~xg-qTQb6kw=(>qIJs@Bk)86eF!U+$7!LL^=L|oMZpupnh1u=MDZhn@JyZH zuTA^Cq)GnTG#xYtT${F1v?&*RmUtIlQ2U?kRMK-5UybS}agmqR3Ab_xw!zM31D?9M z10%83T4KsRu;ddZ7NU^Yk#vL@*jDe>e>nqVD^*NnV$_zZeb0xl#8;qgk_9yC9j4WH zfo!lUia|`GyiAp3uCS(wRh?LW(2d(MRbYp^hN*Rn=Xv{0wtDN9ajq-wHon68^CAG+ zl|JG7nl*a^8EQS+Kr*K2Q3Om|e2O!-lvt@qA!4YBo;X0_Zm(!V5T?eKtEjgfYIJMu zdzsKm{3B+VGuC`gTg7sS{&KG}9oO!`JeP%br$z8v3=SR18HIF4;^|TjZO~AZ*atvB z9}kJJ2ckSg6$CUvoA75r__J(+Htl*rTbkYk>n-NRn#WaJ!}@b8exVeb@hDIuYaoOe zl}jNMCj+DprMUCTu$Ih6RJW4vpmvaGkhfN%_|ayQN&)z*VP#|`o}}^P_6ExIv%nh7 z+-+cnsE)!D{aA^;MM!(>!O5a>A>ntGxJ`E~LBI%?P%H?75iU)hQunxIggB{Y!dNHU zHWP4oqiiW*EZN{z6D9UJUTsIx6QvJnP49;@hL)w&M6s3C*tCKL-yIb2^fxH+#RQP$ zGf;`sarq7=ie*)EF9FL!QJBxd%6gnwsZCoUX3D0mGh8mS~p1OZ^fcS?*oP3MJ78^Zs1UqO(jh7|M@k3Ry@U;X-uwovc%< zeGtEOA+D*G>F=sZ{V^c1zZkcAiDgmDyGl}{kXSI`P-d;9^U|r5^8sLAV%o~LjBrLr$ z9Do}IKt^R4c4dqWfN^WX!8pyukhNi$sEuwxsh#R@Qg8l+BjVSH>Oks})JpD_%GpTR zUHcgM3m2hY^yZS2vinZm1SE=-ueB|0KrA25VBpw-$xwbEn2Yd8y@H(p+4YKpPJIxC zgb>?b?G^%!WX)?J#E${Ny}WN^3fR;UK8TeMF&Dhm{hAR-hb-JOF7-ZEzH=pZ?)i0? zInzsAWG605%|l{wjr-orS7RYQo0-=Df%mwx$6+u(26vp{dulIEAjoC|k8kr8qJSvP z14U{!704wRfz=73+%Hh}S7Daf*8|ef@*zF@pqC#8^TYhmG)jGpeLuNMwxkuYd_Z@) zKyilhW7t>1-x&aNPmK@bVi#jzjSWzTXR0^|z%T5{IZkPu_Byd7wQ3(rkxL__UBv9v z@Z$nOY6RydW@>~Y^5a_qDHmsHDf(F3<_DlG#0bEb zm;N3KLv0j}WKvfLpp<8$9GUHwh@mzL$4II7_vS8966S#~FVA`?47E`>`bym&fHE^1 zWt@k?P#cBgx>Pw(a<%DPn(t!31Zck1djepn<9%g%FX6&4lpiQin#HNR0${R~&Z91d zqjaX$qwTjKJOB4CO~RmlU!ow|^12EM6M)i!NIvdfAMm9W zkJOu~oF%$vvJc|@`y8eWoNT9`!}RwBq<8Kpb}XRZdFhK~`a8>0|ANH1ZK#^;j_zN9 z;Ebvn%nxm-I`&bICUYZQ?JLIFE(j)om>#qHuyBc&IxhfYacN<8ZeE??<%Yo$?N6m8 zM4I^#bCb)WYs~KJ?iWbXc4x3ef-4bwyNiL8V<5DI%izAE^#_hE{0!v>mCR-I)PH=K z6UEP*0vACrM-$AMOR&`Cxe=C($j-;}aW@|fwe!Ix{?ub11oTg>h~+EJc)-wVftF<` zKj;zK@km`A1T!C@KA4^!3`6+=jIdg^zn?od_c#+5j_fAuovaM3mH_wEq#g`P?YCO~ z;H4H;3nySw{gFCXz2+Dw{|M>rdSxg-s8>$yrnYR)jlyA;j}N6D3PWv_nKW9a0wt%` z$YJ}u9dlTbW&4~K1hX)^_002N7|IW7rIBrC(R%^8QL|x&dN2&NVMY^XR1i!uy9E|{ zFbuU}3JB9V2xewBOw)9iHw?95gzfYDcLNGlmJRcB4~C&OjIe$5AefeHUD(TmVWacZN zK%quw!<_EHFw}+-wog0=rXU+;L!HYThT1T~_PHborU9{hP1E#X7|M@h`>cP5h03K! zxVgiJQz>wyB4IE;oEqSMk5mbea&h~^`&1XkuSni_Gk0#X6v=N~j5I|uGbpuR zk^I0*?J1Hgkvdns=1?T(B7J}&S^q|ElpKoW&3jxFzap6klw(yS4+F-o75^amgdmt4 zip20>{EFnstpT~op-7JNVEl??SP)Dyy9K^D#Vr&=`9Vt-isayyfZWW?hMDZaFw}+- zisaECn6hk`%RLx|+AuMp*DM# z8c=j!Pgmi=Fq9uhk*wOxLgi8<<=KMM{xgi1a z*B*>tk!;+QJ2zR14I>oEw}W6>vb*lzdN2&NVT2;t zwl1JhHQ6vXdoT>OVT2;74}vMohB?iHVWiLDjVs(G$aN)d1}G;)I)(tHQ7j4r6DocL8>ECuK*;!)@}cZQ!t@* z-APhnEL|N`u9EEBJm~_-Lu;Je^d(Xx5NQkI`6TkTG$aP|LteMxnR=;(dCFznaEjW8 zbe2Gp#tnn{p>eYi&(xg(NV%2)H;p5g2;@$MVQWGmXVgA!&YhtpITVlO!8nQsFk&j~ zp&*zXil@qhaTE_=#8lW7K`_beuKx2MyMoKg+VYa*-gI8gJGx*)5>PLc4a`JYO-P8z02hdLv5Hk!i)=oDa?lX zwFkpc8>WOX-GgALT6}VRy$8ck8>W#h>-iM{g&Lg=)767vs0|~g!oD8_Q;-d_@=ljG z47FjzR9H9&rU9{hg_`QYFq9vN-y%Fx|FxWj%2qr$U&RMY&H=#K zIcfgd`*8G&@YilEb^Nv8dFEzZ^~0%To`^Q)`fm0C-(qvDGGwEDsli6vx4ekORGYgz z5SvjD$5-9#J{ezivx_MnC)LVd|Bi=hcCQz|y2tTIs*p#k`_1?o6E}1(Z8&3nf$uI7 zoC1e^9?3gvU}{_4uOUc$)6^cgoaF?5j~&9XP*+@y95lVxx!3;Wz-M`~$Ha2nuru`@ z9O#APf^o*F$Ro~%#X)yG<jzzLWak1}U6;g?-r7i?A=XWAK=M z{c+Z1rCIgDkwIgo3@p$?xCdjk_+9&+ng|=B)I6Uhx@S^1obI(uk8Bz=CR|k6j7zHt z0f%*L_bz>Y^k%gnx%9OYaJN;O54$ne^I`u%9emiWv%iZx(XAc3%5d^wj>{;lt4>Fh zj&KL7u*BRqxgOFF_ItNecD2%mkB!&i>*6u)!NgPg<5 zZ6U@BbXm{C5njsgmvV$ZR{7mg0)x@#AN!RfJZj5#5Xo1L@Oe1GOZokO*AZScuCE;7 z*>P~v!8LBaa)eJ~#{Ywk@UmTh;i?V&^7C?pA1i>qoFn{s!1!-) zgn#n}XY<29?Fc{Lh4?2N;lJl4797Pc{rnu^&jbKBOk^A?kiR4RE5jX_c%7(NR&Ab+ z@DI2cj$>_}j_^YS00qpgjJzG;PjE3DpTv9|;a?i&i1)Jo>2!G(aK>2TR zgnxoa_Ex$t&#H;XfVfmgq}3 z!aw1md!HObu>&R_NBAioOoON=QBz_EOdgK#{{j@dfqw}{_%_W&*}{Dv_`vftUq|>q zcqlVHlm=E)9**$0dMITcN(E8!aD@MchteVo#1ggQ>oGgRzo|M*`R5$r|J_Sp%q(bT zzK-xW0l^tn*QD7{b#z!gR!8`5E=cAcPh#Zd2*37PFE@p0xhWx1UXJk71d`mD*=YBf z+?koLBm9-Xv4!97zj%y}@CUAO5VG7(@^FOzi;I%wc9M@H{Eq-*J2+5K`9a4bEdP8Q z;m`MA9IFK|PXR4;%#QHe20B?ub2~X^NBG}*sfE>&uOs{qklwCWzuQS3j__xBD1Nt- zd>r9lt#Vl5?*0Wk#qQsH9N`lljNkUj#}WP-55{l%V{ zS&AeNNB9~SB}q;iX

    ukD|7#D%uSoK7gumW{@hg&i9O1iqFn&dn zk0bobsLLC_BFV=QeyRuKS0wp3!e8ORGzc}~DU!S#;XnB{OC=S_mvMyuJ#Yd>B**9o zf18VtrAYE{gg?hc$x6bP_wiu-iXE^_T;Qs)a8tRUXJin(~!QLBYf{Pq?)um z)p5r7SRLU%`Ib|#%t=yW z!aw1`IEn`_Vi_5cbPij_`0G4^Nq*nesmSZrTB{;4<+?+JP;&B)v#$N_N%~ z6}WwA!;~9T6aMZR?q`p^8&VH!RYPldhrQAqzK{Kn+R>;*8*BHBRX%CNUF-LT?*l+s zk2clrQKM^=*x06yj^^+KGHMe@wR=+E1+CZWo!gXi;LOndXH_%c%ZHX+_k>6^_%PA@7=Fd-nD+-B)GuG zR@CvT^-omX@l}VU_TB09<~Qj!UR7GCf*VCo<4$(|D(1fu{ww3Za{lYfe--?v@?SOo zjo`o0{8z(&O=RE_E&>0X;;lh#7O|Ex!lOOul@J^xV1OueeJVK8&ULXY^mbjU-s?J)nkdi zq-EaMe!2k4ysv$6RK%n7yDsEEkTfwjB zH4>7cRJHEyaC_{l+4~B%*w@27WE1N=BJXR*y`vzo(rA(B<{n7NB(>=y+zfYAj~-BB zFZE$?nwxqT06FQT_pVH!h7KY@j{Dm07YM%l+9NixNU-0|<4g7}>^%3#EzO-ak=CS3 zJlQ4|h+46eKiNx`L`|zI`@Z&BIqqwhH{V_UO*Y&|N`)svVw87Z`#a7xqAx5G%(buN z4B;iZ^#XfO*V}2KxSRb2DVlaXL(-&Z+O)lwi?mWSZQ3s-O^T*X>nCYaG;P|ua(o+xw?Bna+b{}7VCUytrrVn2y6(Ji>I zeK~O9xBIvtq}>5&O?3=T`bs{A-}(ov<&&JlC%u@O_hnX8S*<@ z(lX??m!xIL@0N>1+6?)g59L=! z9KZbT1z*2Ne&--ghWu6vLZ0=$?pO|IA-}R zV|2)`BWaXhA!*Ki*J<*bCZek4$nS!4rTlVpOqTq%f#}F@BO};1kDhZ@e)7AgM6feM ze&s4$nP1FmLb1O#Xanq z{qGn_%aGqfNz0JmCwhFb{0=}Izx<}a*DsRa`w%BXe)|eSru@ErX14rJ2kjrpZx4j$ zEx+GCgNf4Q_hCUeX8Apb(ILN%q)~o_q~(y`G!gaW_u*p7ue>kCwKV$J#JVuhrKckA zYhUcUuN`(%@6Vw%aQM|nxUc=FV?Nc0Yu3}ur{99$B$xNKXQZ>OsO z4eh!WT;&DrY}Zeb!_Ix}&`UY*Yj^b04&;vQx`;Nc<7{jRV&={0_46S6yyKkKEmP1v z3Ju$YnTY$^_vz8yxRV?_$+)jQB#@q|V_N5IvpR8 z+SkH%CJSiPJ500hYoF!b$L`(NzD|$s!Qpm@oOxfnJ+Ml@ue~>rGwy5ukgxcH``Wjl z8oc}3BO*oa``U*i%)YNZne)E(-4p{$IyOSyldQMUNiW?2Hwy|3Me_G~M#DF9jbwSR&x+UpIR``X_z-22+! zcJ6DJRqVN`-%{c>@jD4(-Gckt?Y4Z5AUsM&xHR%3^EUOg``RC622~uw=-$`97L}^R z!bp^LUwhinGD1xhTW;Ui{zmqF?aP5{moM$UcDpPAZtALgU;A>-o$1jJj`6;Bh!Bs? z#J%mDCmbcOZBL0yi{BO3wy*YG+rG!Xw!PCCoVu0ESXticcj0KuW4*S0Q89sXdaLgb zxVHW7Li-R?=j!(fz)+h9pz8qZq%UrXb8Y(^ac%oMs3_jV+$svynETrHZxTkhcRV%}1cx&evB@%{%hYh`IG z3TyMhsgyea!1CwtR$t@Xx9)>kQkM;LfeRC7C_j$3`ZWPC?zQbsR^I)(lNHDN72fKf zIX9;JBrN^fb_bwA08qf(%5c2ZzaIeO)`o*I(#3Eb2jQ)LQc!BAI-Jzs@KTHF5ZAUZ z#bxW_WL;ko7K?k?ef9BHcdwBo(e+AB+Sj&!7f8HABIy&%2E_8o_rt)ETcTz#lpn`i z{Uztx_V#ob@7i`pFs~zo-&y|&$fI9cSvcWwLI?JPxh!*H%`cM@;x z<~9tNn9M)C)gM4&aTfWWOxe!3w%w_Y2Y}%0FU#^)-zhF!$7QZQ@pi9mcThBOz%T5VdjPhu!(07D=i2rxVNbiZ-O0iyr+UJkb!~gZxwhTMkHx}Z z_A%r!fg~5(X;1S*-=-FPPrW2AT+b4?^lRH4nHvQh*`KFf+b&G_)W84~`lI_A-{~HT z=dHd#T-&}=T$P@km$Yl!oxE&3#m$T7t-gT6j?{wzDD+47<;C()Ja2U|ph;a3fRc7? zyOWoJ9*XC!zJNoe)Z4f!Jx6n1LVt8$UOI~05_#V0Vi1;!1)$I$-G}m=hr&>PG;;xm zcd3hkA~at{*9O(yiby_~TEGNozGcph>3*2`*)S0ghN1j8*S7yK0LE214tGCNoUAxX z2j1%4gHk)~&`JGYUTV7?!drcnxVAl8&ghTsW5n%9Z_B*rt-e5btB-W9ZO>qYYQ4a% z^gfvL>};sbF>j;&3!D~6?Qt$j_rq`_iVx<^lO--F?=wF2g6VsrhqW5yK~7Jcr!B_<~R?Ap*9SsU{diQn6hk`7f*6| z!%!QBvpcCvf?&82#aF1w9*nb11-#+JQEI(&QM$jTxDmw%bGZk@P&+rAlS)kpf+@^~ z+0oT46hm#862hDj1jCIezTEt$2jgs0q1+&1YN>Nky1!7PvtdShFbuVG!`b-Mm>`&f zY?$sI3`1=gPV}b=gJ2pE%U7s%C%U|0C_gCFB0N%0?9AQm(jVQ2G7~6v17|2d=rB2# znd%pSvL(An{XGNBz>da@}W*IX4nHAY)w+OgJ$; zCiyXSNW9cp0T>zAwmU#)yFm5gR(B^iB}AHr%hq$-?u}kw=ODdO$Z|=Gj=>Vi_EtX+ zNV#l|v`Z2l4qL#nh2L{B6pP)de;1doXH~Mp90x&j5d?EE3;}cE1WR3#8zKFYLIh4#tp;^W;Ofua1MM`*_*bwv;i?Ghi%L=T3c`~ZeiS*f?) z&#l+)cCKxAN_4r4F`!xk++CBpKPa`|YWegyryz0?28W@Qq@qZjt6n)0_LbmoNN?Ax zGfqb1+9EZe7R5X?d}316AE zb#Zu-W&8ZaxhUPA8#Nndz6Zlleo(o>_PHSlCh4_6r+%;VU>It{2;1lIySZf~m+f!iX+Axh&hg-J=)YRx~n9&{#Lv0vg z`%DdjDaeL7!-HX{4I^xy^Mha-5X)ELn>xF^VJJV2?bG61+nzNwz&#!|j-yEK7dTRp zFqj`s4RG5>>I`vhdzK1Vl0%X72Tp(@c}QHko`vF9Bn2))mLfSfH$pB&@_Z*ZA0wcH z_(7M&En}&<&VB2C32sFsAA83GM!K`b7|M^MNG=V6$)QMkdN6)P@(Qj_&mN4cR+b`3 z7C2c+QzX-ZQu`IjAH39J_$w62w~#uQ3do^IeuVS^ilhZMrRPG)p-4(S6u%<5%eime zUn@Bj$=e;*JGJ5;M2CW4aww8{9t=b6%5B8g)I#UJb$@PhD3YNbj9-x$K`>MmK2a<5 zU>IuWMktcKTXM@tE=AIG)aA`g4@M}GUk1TYRrqrAa}S20c5Z|s=@$gklHGOp@?aQh z!w5z4u5(ekpT#xVFuOi?3&l_yMktaQK`@2cFpqgK47Fi|B8ddS-RenoP~ zxhUOVxj7Vx;lcP7$!~&SawwAHJQ%+ssS1KgdM(fyk-XUM7K)+#pd|}Ml5#Fe_ZMnr zHq2xXhM_i$P$aX1V9K&#F85#nE&)( z7;3`^MRHFNOkp<6NDqdgHjGdt=LNy!P$bs+?(n`pxtzsF-ok+kn)spLi&2J_>3s~;bT z)R2wz=QJb+J4o~|N-cCQThGeVh-{==(~ubKAklp(r3E6jd&57cbZ4d^G1x&WBGL}$ ziu9~J(H-69w}Z6dGmlRUc92@|J!J(V)np^hNJC<4FHY>rRpq zsjS0$<9str(U@j?Bu2|kxB!RwjiF5Lw`;~VlY3hxB5!wvh^(EW)7nHkZu)7 z(zszTKQwL@;+Yy7fRui1yThfkT%as(^$(qk(tR09zqZ|hd37&&#Qek^#e*FVVgzFa z!K5i32PWacIEn`_qd5>N4}wX0UA+TyjR(U}egGpB&t~VMbbp~{X2W#saSO#z8%8Le zp9jH|Wy37;U>It{2*q zVK&V6HkUUHwP8vKb8-+2Rf|uKAMs!qYQr?LW&LdhwQ2TNoh75QVTOA!47Fh<6J|sZ zOhGox$sP0@CL-~RDEy5%99|8u~w);9B@7i`phNlaV zEN}H<0MPMUIj4@e!&UPGxPZ6eYp+I}Alssk`Hm5X@j7aQYHrt*q0MSjYiHe@h`>7+ zY363#yzME?{7j8CDr&5?O^vjwW~*kds@xCn?@kl%T-t$;npjfA$MXdp^|2BZ|G7nQ z5U+f0G%jY>6Y*+uP`y^;`t@Fo z$@A7-kGt19rkf}muP33c} zlgg$Y=k(fC71~(2@sMGKO9#d`8P>?sib>HSiLMKn8|}bWBh;df*;JL7a%v}SOx4D) zHfGAk!hzhq3h*1+;!o78xtstj2cZ&YS4V;;=LUYjbLlIQeVT@`Aq+}Li6X*8^Ur8o#cSX3XCzOgNBZ|_36-fCDq zN_BIG78zDrF*p(aTddz4_@z!{Oso3^Vca%voqZu6=I}Y7oR6=%)#bAg4=-qBu>m+= zwXRwNifVOPD;_7kga^(v*eo91Un9{R-k^;cSz4~dqv+>#a{)P{cC0lloK9d^dTEhi z4J$1sW3lBICllyqyarKpGcis)=1#_=@_A-lH%HZ}=D?YnGUSb=$SP!3$jl3zRnvfl z6Aj)_O=FI3Zq=+QrG0ri!aeiV#64U1x(eMK*kG95N_j*?aU5w3b0jih>ZK)yISe_$ zw+aokat8EGCU#$6P|4h3+i~o@PS_FM)EW+LI&s6aH3d*Ns&&tn^Ri^(dH(Ohy z7IJI8xdPvCO2%zZ>DHZ#bPN5Qbx(_G?i#f`YXGlWOIT=h)+ah6)U$WU(K|XY1~Ff% zDPFvDwviZiOH5@obccgwqsXGcwV$N^192fgJ6EZ(gW)OroLWtFCA%pgE686H!@X8z!s+UN z$&&v&O9)}aX(%dALs1jeDES&?R*ZCW4f=F7vO$f#ha*wmP(vHhVNNQ##_Brb8nf$t zT1TUfGf^Nw;Th;0L@B#}io(no%L7t?39MzcAMZSEY&KDiZd78IBTH6zo*DinI0j1X z-qbgkOO!xK2z9h+=WDu&B7F!A5*L!Qad#zJ<-kxQD!kIEaorp~Q#Xw|Rdyb#>`GKz zjDpf9PfkK7q2EhQ!VYrirLZ#VUX;%;_h_+ql?gZ(rit8`cqdeh7HfhGq#y$tg!_B<3N~q1 zHiu_3uG-NAT5VhEP`fx9<{jmndeRFjZ@hlE8rxN(nujYFvBf<%6aQ3eK)E_5i9O+J z{A1`+l5W4gLa-t9x?wh}W)Gb9a#%NSEiKecoUU?5X_02WteX=`i=q6lwe$;$tIT!a zUS;gvP8)X*46PPivyG9#)|3khl5HQttm$YT++1}5UQkdlICkp=#YgE1haYQH zmCp;2>1a`A|ACa-Zxe!|hi*eCY#3A@_9M~iQ_Yns)Lfx%zS7@%`1~Yd_m2)cfAl@W zZ7XqcX&q>uZTDQGFcT*TGqJw3FED5)){AI}i9$%K=r!=Y0x>Eqn2N(ptSNRh!wJ<9 zri2casL~~xIf3#oM3+_|l)7#i_%R%!HL4iQD}kDYQ2@5-P|w9uL+W5CboLG%1t_b0 zfv8%?GByD48j4>{EG|_A^1yN!1CpQCa4>dQDGG!SUIz{j2N#AH!I0i0>$Dm&AuI!! z8eoi3g1-vgd|1>Cq5^DG-{eFHkTu-43g80bvkK&^lfT(U%itco;gAleKxPLo2{mic z_VKl9sJ(J=oybR*^oGCdH3o7bOk2 zeYJ`oBQI*z&|yqmCEhe`nc%PeHnofR#W!xKoh>_*%Ef|aE;HDbSm>< zg9bHMT{MU02*c|5Yd-Bhg3s*LIK&)z(V{`XTgY!4hL{sB0tLX+=>gT)}KgR3<}Td2e@Mz9)xQ<=>#y4e%G0DDmY;uoP&ppN4d%f8wma zfTEe(V1wZ-fJD!$(UW!3Fy;syR^$68^$bsL^$`yG7rvCAwY>gKm#{ zph;-yv-c`RRr?CYDqpYKS6HcBjPGh}Rc8%{Eq$=Fn^K0~nbci+^so}U3@+Zfxp8o! zXJ>Ij+RK{qq#ka;(NdxigRGv12AMq%qQN72Z5uSB7TTzV4jR$r%Jk1*pQJjUBpLO< zj4lNQlsM6XD?3(JntFK4!1%{1h(*fmpK{1x85J1G=(IxKSDW5DUWegZt)mXvUt(0a zMuRj*HV)Wde_jI^)k%qe6UmI*TgXw2r3PYKrmk6OkK za3-D*RxR{dXj7#tu-|&~dTxphBYN1U=qU%8; zvPTcK?eAaQNvU6m%<9(7BQ#66?P{^5%w>Tx`#%vNOnk7hr24Xe_x1i=pOk(7~n7CfsEm}4m{CS$=~c) z@!Lprdr3EEl@=j28u#fVFa$llT1`}R46>f?)5;jilUoNVPd?p;aQIR$zUa!6vqZ@Z ztLN#k!{0_AO1HSQkU-`qL#+BfGX<&Hh#bZ-9Sq~tk`XziMUJ3>^0bTsL4YOqh{&7~ z*{+8=)W{Y+wA+Zhr$-JOp{8Xb4QV{OFkRVcl>pVGdmXryrx`HtoCDjAXo!U=SoRmv; zMUx?>6hOPyAd)JCcLW5IR^>Pv1T~c1(M~&eOog4@23qqPfLwWC8H$J=@${^3^HCuO<~*{h(wxWgX&ozVO=mj)e}7-8!0XN^7vA`3u*>- zqvP@Z3Fp+Lem0^X)V@a?zul~w>(fo=uE>itouTTP8x>8nEY+R;rFlR%S3~&J$Qm67 z?wRNv4(YI^#&H-inugX0sx-IZ#y2VT=TN?cV(X4?hWQG0f*29Mjb=2GitQ0wvAyF{ zZ0{rYwqm;ritTM>)+SI?^KDFAsgd32w2{$H>Vdb_&`v703n&=K28JMd=#!yV>7{yT z?@+V!uuwBcYd;nmj>D00oCj5&+^vTW3{CXAbZ@0nbi9$cV|c;XO6BX})1lGApHj`K z(S5b=Xyz-3`?eb0sl-Mg1G@RzP@&h}!Kob3YZIu~o)%?5%RdowY+%A}wPPhx)P5{f z+iIvbJqqbnrhi1`b^%}(32}ioH=CdDjH#l^#S~V@xWuFkj7wOy%>zX(;CluBV7dH9Qw>Ku@dhJOw8RH|Q#dsMk#zeI=7%zjtI9HYS;$^TG z7gR`d@iLf;AD2vAlV&d3W}@?^4Yl(`TeNLEVb;OGQ>`NA=*G#g@MzItoMYZtW6#T> z?T&_)#0&@y1Bn<`p`i@fTlqpEvaXvy9_JW%y7@qzAnj3`ueB%Ow&>>faZ2g6Tw6fo z8)4=DumbOarTs$)+)q`6_tnjN(MRKu(Zg?$ITH&o^oP-{Vhmy3P%KS1dr~f0_9``@ z0X1=*id-7jbt9D77lQqeE9*p9Z@TrpYSsE)UkGlYX8i;+lOcpc#+2EdB2vv3ieT(0 z%(Y3hKg?HPW_?>d@TMAi8xnC-wH7)9atiSjhT2LwNWYTFvt$w?PnEiI5b3i{(+lIFeN%ZUlQT-URP%DLn z)`QX;-bKl++Eob2-KoY_0)BVxhdWQLRLa7;(rLSK+Ti#La%LDtSsRS9PqmI!h*aCA zV!|!7+z2gKqlc8~C&NKsGk>pwdL3lo6x}NAgx3r)OLvGW++F)| z8ds;3j>Zul><|8cf2iA3BV3j>^G!_YYE3)8vxpsn9>UM}wT*`{#877Z8I(b=BU<@P zbQ5-qYk*Lx(<0Gr180!6SQs3fkc+hQBx5Ulg^KAQ>y9g6$4$7Rnth-OLq=$DEwT~? zU8iHjP4%aT8ubt+XI2@BJ3EFbPyR_5Ia=uRp$YwE99pwcv$}>cqSnl={RUeT!kAW? z(5+C5ttjGb<$JIthBN<|C+tw8Zy@V%ymw5nL9o+W8Hm%9VVv-Fn2bMt1Qtfr5Vm08 zx1P|?=l~z5oL-HW&k`@k3d`w(tUrlDX^Gy=dZKD2+IrR1?Ssv#!uHf)z9Rdef_|k? zaItlr9GxrLzufp0F2$=LG*FtUSK2!|s?66a(N{oK4-9SExLZtt?Ul!&z$sbw*xfK@ zlh%rmCeL6^Zg_=V54w5VE`dNfhK*`*O<@KR_|amIH{fwJbsMtW>*LgXO#S&a#S-L4 zx1dh#DUj5DI7`dHdFr=q9UW*BsY`KI2L&75;Raz1z;MDE#RqDl#|AC*mLA83z-8yBmhZQ^(b_w1Fd8MUW3IZL7g zkr6iYiN&eA(5YbHmiiltkvRrzLjf}ie-Pf))JXP8ND~GdW-GLx1`}v#qH8N=*R|-u z@qKizWxmRjp;2Zr-8c~gi6+|!N}EX3(dM^s9!@h?2;aROq5$uS!(%p)4R*aJ4{c=5 zIhiPPj&;=H)Nh1SD3)=3M|)(++G0Dk)+}YsfH{S!#DSPfyr&@b12DjzNVFdqZy&!` z8F`#CtjiB>`d-0aWm%URJUfk5rZ(chZyx$xFBs^|KVt52xNbelEfO@V#++(|-Z0QH zVSH#r*5c6xp(O~_try3!hdi)t@EHBX5?FBB?XUAxOx=2*x(fovl6in(YGzakUMrJK}W zh=g^M`mT7R%wuQq?rly_43iN{$S|A}VNH)TVa3ISw6$YVk8&GohsnW30WRxfm9KDU zqIU@T=CtF6B>K@LJw1FfNS#PJUX8vcC|;f1Q}ZUcdA40g9eA~MdjrGtjT8 zp-oz(4NZrOBcVg8)qMgN%#|n6w7Zq#M7>i7nO%>^-!-b$N8=)T(}!4VJn3j>#ER_a zDr{(vI;P7FpUf&4Vs^V0Ca#KhCCr&s=w7;f{GD0oTTbb6Ri_!4!}$y>HLOmW^|NX% z_Orf)6DO(h4yFD~G)piTRxbAf!Z72I3%U|3n;#v;3Sxg)m-`B?SYLnz?P6gSC3@UF zRyi$XL=TLG)JALH<`}t6GY_NR*k-_vjG1^9EX~iEjB80|&yXHsP;F}GIPuoMLl)&* zpTM{Oj<=47)sXXzY6P5KgD$tr=BsC6Gs-5gCfr263@jjDx-ctNC3>NDj03)gp+NOS zWOBb!f4rN?&ru-Vd>!o@OzG7KmTWFT*tJQc2b=7LCs}aZ2f8H)sfxrK}9@NbK6L(`!fBp~lpB?Dg zW&gPk-*of;_x-159{dA+g{hPr`f5j(zTzp&|Fit&7E;OYss9`F6-E`FzQUZcb#^;e zAysP-rg7KnR)46h&RV2hjbM+UgbbMx4A%Vjs>?!(4@qvFZr!_i66T-taghdRX*^$6>MJn%eg` zp^?N+2q>yg4UAV~zhc+R+B zkr*12?|qAVzRI!vsWaauRpd6R$WU#oP?7fQm)m-B{5PCeBgc-G+(Iq6OT>hwpoZ2{ zarNx$Dy}`s>;qI2)^$)=hp4ci$*NE)s;z$&YGkjgM#LD~+`wt9)}w0TxQ&uEtJDXEZfUbHC0ku1KP8DzXrTc~i zzUk%$sFzb6MYW7COH));FC}wmDQV62;`|D=R6F3upKHTl?gq2Z81mW~=q6Rvvf5pa zh6+LBKttUjG}N1^i>ZzpQ&&<$HSTnnCo9f$xfH`hk3f9gm2a@RmE5iGv`~O zbPzM~lz^MN5RU;?{V6mHD)%4PX+k*OIN^j?d#4FqV(pzLc1a$tWESzt53!l^xyCiG za(O!0eR>$>yXsQQ!j1zjJtdaR1V41E&ztvK1xpKBUd0a4?!O-*giE)+c@iQ%U)Kz( zb@tcr{kZ~suUypd5-5tk0o$nNBYEX>h0KPS$sU}jI?8;`0Uf*R7UBVBAuEYSzQ}y6 zMLgy%5|0I2B(YUIp4fl~FqtK!ZNOt1(k9Qj>2ze^o0E}6=K5{qI>`jq1s5>aC2N`M zE_)2-x)C|O5!B~LqsZ8CdOf})tBo>?a>de2v?2M>#Dra#Uyc`ILm9J(7q|1pW}*ZX z-JDw{9`R!FNc5G&3h`J_E*{S?8-OUlFOk#XLryPLXmc0g&Y`P53*stg*ju)d`4eZX7vXFTfaE(9NC3= zcO>}Wczdfs{QXHqScYOZ0_%L05&cYVSL3|rNBCFuQIYsxBL1U8TT#e`rB*$f8efDV z=1!Rqv(+iFs;`DHq1TLEZ_4x=A@@7K#_T^Zn8hB`=SqDR3i`g-fV>Iq4f~1L&9Lye zYCRvAWiYHW4JaDJ`cXA%@VB7idbFGQFgKtzU~ZvFk6-}Zq+&tU>NAcZk=LPM_M4Cp z%olYxQ0qbu#LLmnG4Mv)np+`jR~3&1BgEsGay-y-i^b!a(c*E)z_h+@rqF3$$pJ7& zX58M@hL&E&WU=kXW9wjFLYq(Y6=@O`;#XW1kH?Bgv;;b~pAsGA6@&fRabXV}Mb-WN z99GF{FlU0oDe?H@AjoY@2BtF%91lM07a$p&-EPDVa!fTl)n;&hd-bFt*f(9mELlrL zKCql4-n@jR+&e%i>be~NZ|d4C{;$~EpWiX(hPv6SjA*KT%g&u{2^igqvmD6iYNc!| z6wMX`a}nt3ssX2zH6fe~Rmw1xzGMVw2In#wv6|L`4SZafQ0n`1Vsm$L#e_&@XO7$h zTYP!!y>9QdN|C;u&>mGCiTT{*K~x}N{1tQSGU){CG!)|X?G?ALEyU&zOl^~Gba zRlYuKeHkBjtnW+Wgms1drLPlVx2_XmQ`YqztK9V2*ed0w^8S>5^$9)0s9wGObE7 zZCD1=CP=1LNu~|6O9iHpp^|C3WZFoXZ zZV81A9YFQHzf&ixzKEJTOKY$E4*NrCdsxDV&@EwAfH}g(u!PZ}a-TaUyt%bE@{tN`%Tg#yJ2cS3nRGQ2pus(pAAa%xX=iF01YhqCS1me5}{?6h{poi zeI-~pVbJwI3po)AMqbeK7~|3Dz>3&=8WnY@Og{}$m#Ri=SQ2B};sw3l zgdy}Jd_ji`kDRGRFqL}oCuYSSc=inL(yUz6`0}f$B4Nlu1zU4z*i}AP0BfTfQ+XCl z<6fJdqw!Ilyzl5q!jgj$TY-BPFm;9(t-&|++|YUp@olPsg%EO(BdzW;L>PG7MaMU2 z#JPBkRmQaxC=dKA=5eu2zGvZ;mBw8o6#Vpux=%w+adoR2J#uBQ!H6uhk4EHN0~&UIx=n1z%7gsQe3%7W4|BArtHZ zl-VD`h(pk(U5Fv|G#vw)c7F#On~?I2dy!-#wnClV%5QP<8gSgvw?bU9m3Ik*bwmU8p(jk^4B<(j9O+sPX!RM60YFf~MU1v&vD zpnsz>G$LEz4aD+c1Kvu$+=whg6v5?)j9;fCNJm-9knPc3n4YYMxt22;2?m zDA>8oFy68ZFJy5r%)-w11#G79?9d{OuvZ!ZHYCyG1NpM$hKbdp?bx^XObY_E(5L7V zHsBi?@)i-Z6sx|=j1a~VkFm?ZgrOF~mcK+RLeU{$s8mgOYc504GQ`WQ1B3D zy>a4^Ah(b;@(vvdS%RK}d4@SbCZInq3J*X(%P(CkjnGPT)#0DxU)Ra#z)uN(8<$*R zmf)1G-!ek47}0lYIoJ|aVaXb?B(p4=`+{fKj5(0vj#skqcqNO9SBi34qMXP$3xv*> zrO^@tI^epZ%y>{Fd#o>LhWQ?^=Y<7?AA=JU&PR9m8fG>G&rzrfkg*sW!jKE=?r;Y} zRxuhnze9!mDNjBlODn`j6!Ubg>3vMz3rkH-ki;nwS_DewG1foU(py>la=eqwQ6tSP zdKj)YZ(@iL+E$4jM7ZD<-Hti89YYW-|NaW~Fd8UQXdzlEempk~(IB!T5T|l6$7=Yo zhzZOE3&kT|41DxnarS25K|8C&oLhrHJX++Vj6|#ZfMfhr%P@c?^Rax~hz@8(F>1?>KLDWLlik7HkrM1iW$4ilBhn>WQe_ilB0N zzrVGg6Ost_KJ)qi-#4F6&VDZY+1It#ZLhVqt`OFeAT~BQBKvqbiAUfdLwHoXgj)tw zKu=9-UMgssrvzny9{MYXD9K)gH-n7~9+6btnu@UwT9H7Kv3=pwdRKsTtUF?2>nKE5Cq_`TQSDFQ3X2!jEVgtP zFSRCY$CyU@@1wFa`_mKS>)6g=SaZtnJ+M;asx^u!%|0^RtJ~P_H0D|uF&)^Pj{Jtr z{88CBpGTTOOb(!e;!j~V)f-5Ala;6`6t2QntaeQi4w|V-;|RRQU1slNQ<>*6j7bQY z3+=qG@f!b$T(FNS1D5MHN*wwI48q*^aelZYWfsmTE%>1Db`tNlYj7;cpK~_r@5EI6 zHt9d(jBrhnAlFi6(ePHV(qXYa*Q%w#C1XjF!MKx)==~F^sqYf2SvD&K6vJlWG4DA5A`8Sb*3-7?Ryea51JXp)Qw6Q zP(f-k@^&(^scJc*enD>Dg;y8+Qfw6J>XEHTAn{Xo03ZoDX5O!Y=l-PXz$y_aul~&s z6cqe=dh?U$;$R_vxn%8=Y!>H^+{UeNI(_mF%H`B4GK%Ss`|wav};;w zFswiShK6V}dwHJ$_jGVq^%;1F-lMX`XF^Ri>SMCet5^=22ekY^ol0e8vWirVKD9`o?Ay>n5b(ScvlU>gBLw?IJGFX{ut7)G&rpO$e7bxIqw=!mB=o z%e-itk)!mzXbACf`2PFFY>r&&wiV&scncJ4wq)c&FW~(U` zxp7e{a?=uc4#4<}_sTZd4Qt>U7+BBVDE#-wQHIX!9~6F2RPDitSN9aF z8n7y#p*cb}D*Omn&X)@Cd#^oihP)oF5i01noW!fUQy*cV>owfQ6&pO*fxQBn0)st~ zXKSUUj~#(8z$`Ewc^d)VU%5l0hB8Z9Z;Wu#ks}hjxJ%=I6v0Jy}!^t3SL^zQWbiuS5`ygxO1^27sh3v3k-!li1)>-o$Aw4^azud6* z*b{e)9__U5x2M{zyewRfn*X9;0{}O^cxce~#}gdMIWT$PSp@vi* zA_gaiWB5~8%J?zq_04lfGN|Wpr&0I6IFA)`*H<*eeST-jC0ch3__r&TPaAs|qi5RljSp91JiVeKc_L`QUU$kc1x%ULw=NvWAyp-6;H zVo+($nbgels2bosz`ooi?|0RnLBcvk(c9Nl`16G#z6U| zwbTj^K0bh_vWX4~H{L*dd~DoaiU`JH`%|$Ffl6#OrgcD(qyzNv;&McxO$*(m^-Rl+ zV+>4Ql~0D~oJkWn(tC~Hz+>%nE9zC=C^T z)@*iZ#6_!2vAoJDmRC8&@+wm-U$?qI&78B^X_i+z&GKreSzhfFp{t!{d9~9luXdW{ zRZg?K%4wEYInDB_<7$?XVF#~K3*xO-%fwczWoGLTDW~JDR>Z_sD`IAA1^U#prmZ=l zX1PWB*Xk1eeyLQyH+QO)H-H?*KdK-2v1Y8X+lHG`U zZi6+`4OZL@*0^qiHPa1N+zr+^H(1jcENPV8V5Qt(O|-%4sZj<>2Cp%-ajWUhQ>~^u zpU7BA*(~%o;b!Z6wRQelbzbUZSywr|`orD&e!fvsTLlirLV#l^Dh$TPZ{cgSXyc#h zsaW1JBOWrRS|Pxb1FOzGmDF>Boe9O;?e`h`-HfRKHUbW|L!c&@Lu3`3@t5Iy@FXXL zVp00IH~$8MQCrcbTDH}TjV-KWDX(B1QxQWLh$G?(0BbFZRAp9tfH%LD-;SSvf6?=- z0W)rZ#h4;~230RS#|}&mb_x0Dk#?Ca#D!u(hy(Ny4iL{{E#`fQ6~{VawCt27f|x|e zspw!ok??QIrDM;+D&m{+poj>R1+wyAC^V80JhyhpV4p}Bk{6!EZyjHURAdu8Q4(!d zq_sL5^%Vqz{W)|FGy}0wRsrDd^lmD6kC;$IM}@dqNB&f#wab&o5fW39C>PHb8I7z< zM_#r}aMapxo~?Ne*(U#<>FTA6?*cBhJ_j}$%$llZP^}op@(Dfb13#OvQm$SAr!<^P zWDl?IYz&(vOw^qw3uj|7qPl`PBa2jB=wY~mY&llP4n8J$#SR41BjG?JyfF)ILb84F zlUq5~KK?CQ6{{Orkq5GLITg%Ss*95e_QJC7yH<-OilTc0`q8iCD0z3Pl88*%X?+Tm zkKj_-VV*LL`#8Gb@mlt0;=Oj6cQy}j5&EEVeLz3g@V@VFm33kty(y*87xm&oJsbQ< zzLxLMnYulD@F!u6JiV>d&yD)_sPfIUZ_ne~BYQ{E&gyL0qe5NLPqK+Nz6~UF=E>Zj z9aRCRD$AM30(*3kF5qq7jmj-WKIm$L9uLxk0iWca<;Ul`KYPF@z4<$tY#3h+RycK? z)9U6Ew?ls&;Qj>vXz|kv%;Wre6MyP8hZ=b`KLVB6>rIIE##x2s*oy^-Pc(Y~Z)0?W z=XvCsd5OxE0u^t5R0vYxr$V&=*3+Rp5US;qwMPgBbNfI@bGGba+hfPWV3p)LuYL}X zSpjl>Nw&O7M3{+X#C6%{HDq{UZj(FHu|p_!`S4{-N5oRHuQ02$>Q~ebM7>s3JM0HU zM2hc37_2&Vf3ot~nhvY^tB<4hU#qFTq3@5V044vd_36r&C!_1H>By`80UD|PZ(xgT z##ZeEJi5o3wTcIFJS9W;wtJJ4{YGY7%$#3eh!8?k$G>8Ypn~Utk>%H)U zJhs4d7MkrXyqr)GTr!ELSheL2b|Cf~eV8IOFY7yw{7%x~{*IHj+uU`0lOto;O7F3$ z^blv`$hf29bj$We$3O5H(o+R~4MY$i&eERe^q?dmn{O(J(Svp7$G%|FgnS755u?lpYO@;#177dwDZgH!Cb1P0*sM`y8h6-6Bu zZ8cwqHr)EM(YF)-Zmxspz*R-xR%{2PsPm(5$@&W=QcZ5>=@=2e-SyF~gpODrZVkpa z){pL$yFYrY-5oJKlmXtd&SopD3~CvRnS{$;=%QgJN+vTVvtOg4$GwJIEMvQv%9f#T zz=GnjhaBAk8lHtFq3_#Tr+(kF(46DmgYe>u(Cv|p^CQ?bf6Uo8n?>Ep=}KrgqEyZE zE*B`X#jDLe3)u;VF?r1if0zp5am{NTH}V|&)AQDfQBx^8$6I9{%#cztI}H_2MQ@;5aY6|}O^woiuoFpRss z`M&`kp!XV1o0a1zMyhP5(fJ?a#m5#^k0~OI-kT`XQ?bpM{zNu~vs2{|fSVxO%P?ht z^MEpf$j#YTazEtyD zoQS>JSKymQWs0o|Q0gO~{_0@Bo-zJ_J$XN486m+dBvA>0n;5i_tjYYK9Z!`c{!Rm` z(0?W-!XImy@Z44g`!w9y*4h=vT_)NBZ~7aph`sRRCteXx@>VNi(qCsq#0!ia{BK?l z@)po~uulAG>%o+f|HJFyBQ*c`>!B}iv>t~4?bgFT!7yq)sEWVhdJw?7^{f-qc8x!80l$7w{ z&eci(H#>v|q>CkYoJ#%Ur=R?uBEl<5IhlvBF>K zDj4{I&xpU<9CD0PXkN%MPU2D)4&oPa(~hu_-fHRS2z4njf_s5#FuV&UF{W88F%V|=5N4?AEo z$?jtu7#Yx#Q0!So?m2P8NayMoA2nO4W`Y>aX|iE_(eBCdwcSWR@@)p z7tJV%8G>It0evK{V4gm%XLhs)?me*W`26C&KaXGB=hf!vqpASKJ>HXF+-GhDEOLZP z;};n;$1l1;I|09_<>Ba~mIeIcBs~b~ZC#)|Y!vN;&JI?myb_CAG;LMlRi3w z0%w^JILidA30TdS_D~f)2@m4@Uy|8RBdikLsl`-9`-q_)dj_LdzId@0(MnOma;(8N zDU5LKk(onuL(-3Klv^>#`o%blE?~x3==<90*Ta7>HiV9| zXCHKzGAg?xOJL=X$brnC>!^0Ofpv(MU5QHbzO;!OXB1u~-jTqAz08aQd&|t70#r?)A8WufkdRtz40XS$Ofvv+7N|0uU4Y^c|(;Q^b zT}pN~48E3**e7gMk)P*|(d)Z_{Mfq?O=csiw?qotgxD60ie`~zlKb>O`ILZOpH4-d zr_wa;A^u81h2m7O+cm_>yGO7P>iYTAkcD&o(l(W{1o!A8c4Rcf6j5Q{Ef&NuApKRB zvx>W{cFxKu+UxftMV|nGXEV)2*UQ!~Q3g2Xk(2b-kIv3{6Gvs@?-Wl!=Y29N@8}?w z{cab_c(+`Qw=w;Dla)`-7=(sXlf!y{6E}|2_z;Enu=R#fo~&WYvzp8Na`Nl%C9~`B zv86gM-_s?$?9x*hb3Ms5)s6$6*pyv$f}vWFFJNi+0w_yQ!d0}K%b6Ogk(6fvF;@>Ieeh5KC+d(NYVPfEuNh`q*tmDs6a{tg8yB6yv662=?t z@7KA~9;o?0G4Q@=r8t%}nHVGy;aC}jryCAO_ueBqev zob!q#%qz$dvqhHOsBp)(lg&H7SSn)n5ZRg>a3Qd%RY8vJ6!MndoUM=g4&sd#1D|a{ z$J<^)mIL{E-2SIN7SMP7_(S@*Y!EFtpc-GLMtoCV_s*ZzZhGcRRqe0~`DBagW7Ta@ zouAZa7Y*VI8aSsNC9)z%nH=WLKSu~XudU3F&TQrZz{9~5*psU}G0YCl_!yhYwyd0* z6T-C@n2n!~?Z9IYuJQ4c1d(iJGJ%-gRvyCrwkJqVKk`nHT$qQbDZK0sl6sQseTzU6 zpjc&^S@X^G=5L1!0Avh+91b`Ez%I%c-%PK}&nvs$pf0Ni)Ynd;lb~{U&a+VeSPD<) zkvIQgWy6k|X#nYrB{|`lQLks9Kt&vx%Qj3ajYeo5L4KkucX({Vb>GWOzR+19SWGyf zqlE)*yX*{pNZ+_B^ErOR;ex2XJMQ3>9q6IcJUE2qXmrju33LbNajrZ%d}6-tB_tY? z_VJ5_OXVw4_n(Ugx7OCb+)3o7!&ZpYj}hwNn$Sein~dK>J7xXeV;%A z=^L}QF?p+2nR{&0hA*)sBYUvuXA71M%~|IGr-cs}6SWSbnCJ@t>jWHEv^nsCEJktC zL0&wp?Y$UrccW{Xi>nT5`b%OD?G-VP#DyR`8+;6W5g}nYOM} z$((gVw1wHu&$#vyey?MNvJupdP0(5Kc2@6M1i7C#fr@QD4M z;&s{pTBi*lishG5-P&E}&7aJ=-T93!=dF3=h5vr4n%U<^mh}6fB?IpuQIn$9%#>^9 zIM>XH>uApeqO@TL*A7rj7}qW{jEU_-s4c4M$%1!X*t=UYe$S+-rJY!Pz-wC2DEaa#f3ep@o&eE%X;~Kkze! z_jV3lpYL)BE7!yeau)u;25n%iB^TUhNxvp{_g^Gr`4>z2EU={Cog}$3Yv*UU4BIL9 z(|5G9B$smSTzyJ@U_YQ1)7<{=GO(3&Kb+?>jm@!vJ)hffV9(%^p;TT5R{6LaX-S`t zkT9@kThgbTBsb$04eakmb~adk4DV=g|J)D1X#?B0v%&wUD;iw-E)D)L#fA+&lglm* z?$2%5;9gwPMCGNy%E#SBmh>4&LW57Tq|ezTxz>4V@RRY*1}`}tB$Vb}`Gz(4Tkpw_ z@W1Pd2A97}gWtTgv%xQL*`>iRa~n2zJ(o05d1GKjv?sRML zkGTv%qIC6fMz}n8v1{-toee%%0K)gO!iF zpIXxAha@z(&XPV&B)Lg9YlN@lGHmd?<286lZozCD;a+Mc$ics$?Wd4PM!16OO}ZA2 z$Xt-H3>bwBoMjKIpX-7#2+oYC;a_qUuSn)72~Uw>c_z74_qe>AOV^)%)m&2AB<1xl z`3I8ReRI|3bGZ!LTyXId?*!wD+>>9Y&9$qB+Zj_`=*88E;DTmgieS46FpD9`hSw>n z+aUlD_Ik497HaJ((yV_$R-XhHyj1lEzx;`^v=t8L1O4SjA1mZuy$UXPzpc@Ct^Osg zinhYf^MMs|(y>Bb)T`iv0V7D>y${d3mVBQNtdJJ1Y}cJ_t|ebr^6rHUbA^1D#0r^n ztdNUcAwR{~>kkz2b!BNQe3hkRg?#c@Av5(VxZtrrT*&uaAs-^KLiTDIx$fNN3MpDD zaCz5(ee40Uv=xrX7jl2Tkha4A;FbQE?O$_w4Uv7>ujq1~SQrpjfjbky^dX6$JQ2*U zNCm^k&VBFDji{20fx<}(+!j^4Wn0HHvAi-x zOh5lEV~tRF^`kCI~l|2);^0e|%iNKp>^P5?zDS z9Ao^MvG|o$c=h6OZ5--bxElI~&Ojw7FdF`cxla)vo+t$aiWGirIbo9&Mb`{~mlbN% zE;=10Z`UyNi+P+6L;qFAj6*8E!=r>9Qjv_kj&8FOpuyZ}@agWP3Ji;94X};5H@(jm z-qg#u<E{M3?uKe1%s-B!?NqkAs%K1<8^rD6Qiu0K@%eH@fA z;~a_5oK^7I!Y@;jq+24)*%2Bqv8#s#8WyT%{k<_!ITMJV|3$>VooBEL5I(S!)fC<~ z%Vs>KqbNR&i6wEQCumZGWJQt)CW(L$T#8Sp=y+a32il^9znaT zVY`ET&fZ#w5v5{Co9+4MRGYPLtZN_PTAV?czX3zVWUK=N{A4or%;@Yz1d)E8K{=d= z?B_s*pBf&X%jMHM2~7->vGOR5|eBn%_iDQ-0hx5ip0uUdxRJ| z%TwTKXz!(pZ^yYcZ<)Wq_7o2zcsaDv+)ubiN!;2MOChq4d))C-oH9V94vv_?;6Gl5 zNjA$<2S?--bsy~+i&W?S?Ol~%MQT2Ph+RzXO`_wXJ;0oK71|ZA2# z-8m^$`IszhKgE4a_xYQ_U2i_38$1;b<2*oK#peZ`Ws z`KpE~;IWR!fCS{A0*Okx<;|BHtU8Au1byw$hEjJbQEtW+-D%#7GRF0{cHBm(< z{0v>&akCUlYdgv{=4{>coRD8=yX)6v?b(ETKr~&Na4Ut%3iv`=23kBuuhqgyVaU>C zFckvyPZ*AJ4oUD03*`4v5u$WZMIgUcdJF<_XNhAOi;rRLVNlXeGu0e?5)t`~$b<*S zJjr9{NtDc9118xCQsPn4=Ma^*)3N7(A3ia6yj0{ll(a^dpVhdU7AeF`;Nj@2LdLHe zU4B()KK?3bel;$BI~Bz5Ij?pD1*3}EqK|Edi;rdR8DR-=!Xqk?PYZHakWD?f?NsQv zi?;{es1Vsq1|L;Saj(9P(yII%q}C2i-x`msw)M)%=|k7*>~!pZaW~ox z(}Fs6cEU;&QOD#4Xgw95sS=jNH%9rZ+J@|)o+|NG6|cLjlNH(RLcbY zVcLo<@3-)FOdczU0}zP3H^z^C5JlkUs{QB(Fj<`~Wcb^7HvS&YU>{CvW(}fC^kWd} z8p4%!Z3$sN{ODO)5>wcjgjZ?i3{ya52cyQBNetZBbSJsG8usNzc$zdLcwc^9*K0eS zwF;_(^66BV#vkh)Xs{V8qco8bjbZsW*bp4I&+Fkku#m@j-vOxmX0Kr`Pg4FiV49|~ zEx;Eqoy;j+r%2Dq)(1`m1BB6FQ9x;r9t=^M;?kxnkJkJaCgl{|k?^<=HG5BW_UmV$2FVJYY)9ySHtVJYZRhozt!cUTI#iHF6gOrQ!7@s*bJ8*RzJxRUdu z2jNlSmRj?X7+A#u~XvWOw9Qs5%eeGe}&h$NN_89Uw@}vDU#lRU^S1O^Z6W4 z?ZBf%_Hz2%j=t9NwZr_x)?j=OXM#$$1^(DLlbw{u`iF;ly^}N9$BN%4&SalBlYI=| z8j9L2&ZK3A*qMjjN1$I0s)mbA#9rwzzYd+{_K&L1LcxujIx{T>a1g?%g)!4K!~P#5xY&~Su~R``F@2Pav!iDcXj8`f;zhC-X(#3E zXkVP^bk+q7Nvd+a9>x2a*ZfKL`mCB|3df1RzuFFa(oFNuwdP0ms`;-0XoZ(FDsJ?I z!jYuR;c0Ieai^eeyvtKb|54H5SVt=M61r{9Sd`H_wBLV{gH(xsmWsW|!FTrRWpv(f zGoMIDUc!6fJv=jqF1*q>Yl=t#+Y&9WU22c^CL=r9AQG+Ko!D?#e9S>naUMQ{c>l@Yj;!p(%%P1;Y=ws===X1&&a zbO?oR_uw-DJ zl0S}rnV_uYeXg{m-)Kt)#+Cd<{L2}X@MrTc3b7;t^#Aym|6cy(rh3P})Q9Pfq>$pv zUt=!4)Bk_Z$9&;cTS}iL`J?!ltVu$cYP}mD^PYTZC*WiH{`L8op=y_j_~-xGe2kNC z{s;M&kNuVSm*1X+Tf>X)o!M7=0ptP;7OrihuEX671CZh3f3HQo#Zh2U%qR3S zRzKtQGf6*F^uzhs95AYbVM?XEqry35LlW5)cK*2}fC@SA#><8yF$R}&tZ}?7kq*94 zq0h$B;^8{al5-K+>EwuQ9wbuUm=4`cN@rfVQdKiB0+|Fon(#$GRR zkA~>AhJ)7?y4H}SGh^Ig7S|5fBaMz7^PKd(q>e4G=E%)4B~(l(@P@L4)&HEoj9H3xaqWiMQPfv=6IGXhNt}-hVZN+ zw`7v4{A_2HN8VAT%FnHxz(ygovOkl_NTA`-dG&r>*$&=%jsLq?`kRf(;56DL$qpEK z8aN!QU^b!D{_bR3P*h&ysbEgHxr*ALBG`dQQ0|v$ITs9 z66T&maxdIHK^p2X>UZQm*II;L%r7+{k-KdWQk5%gl)U*f4L`arsMng6L_ia1UygR9 z0@o*-yJWzISV*+mZoMtj3j%SCe+ANdT0fEbZ@8I4D9X zr(;hkq+2Yf<8^?+v3iRlB)F8gP#hp#mW&-pBZpTIf4qMl_OLvb%wCl82b2kV4pOw{ zSAd|I6f`CMS5;oKy?RVouO!9&cwPyt1rlsGDTI9X`d*2n?aDlfhjXT4Y^-=K(l|3& zDigh?!5bZ8qJKw`7+|ijYTZ)S=6LoZv=f9Hs%CsSoUsi>*IV4JA9?B)ukIz3o`M@y zi#g`@-0y!h0Sdjs@DbzKOYgZ=%Zt3aFM*0wxmph>F@!9LyWF}1&`U7nAHrm1XKpEC z(vmH|i^vN4j&=pUUn2}-RHfAH`pOh`Ol*QNGi71MG@^?5)$lu3&8Uz zMg_CptL?8S3Z(HZ;;!OvOD57GV=qh1#ED>-oDMD{Zbq}VqnXbkG$|FVut`fr4)YY{ z@6(-%-)~uO?z3#f_xO#>U{pol-$;iv@u?Ce*F9CLWZF}d(&&Q4PL z5i0ur2A3Xc=aZ$meDQ+%R{`wiaq z8@y5Xap3J;%kK_vHn7==+krRpHHfZ#C%mzpeGJ|B2iLU?-(coP*c z%*2uwfyzU-2G=kX0k1ejp3h4JIF*jIP_@3>$8E4t?YXX2JsM@ZPD)9bUsqo^X1DcEt83v+?akY{e+1Rxkr!Lz=REYdFMI# zEVv#%-R<4$$;#h*wHfxD^I2Sbg1(sPkK0YfY(@RPW>?2>vapPMds(@f41HrKCv&{X zTC|Ra0l0S3vb@DVPL(;Y;TfJ_7^c0O7B+0?BRfc|Wy`O)VMLjYKFxMGObDAnSpxqY zXgwAFk zmBD4nVDQ^XfAE_&OK;K@%GYp;SP;sRU92Y(Zu4^HK*Q!Ti&5X8FwwQ@oI=Xs8d{~e zW8EI&8v2wwD-_1K6u#sWqk`h6NBhNu*lXpT+(X+444w-4$ArR!_hcN;*{`)2vhj?8 z)}rvA)?hcLQLHeG_|0q-++6FVjfIrnWxoJ_eLLZw7W(?O>6gzL%Cxopg zaWPgGY};Rt9EL=f3@%hUI~m-7BywNbJQ~JziLTW#u7N&>q_{5C^&o5 zUgK?i&o(ERdzwVl`$9DgGF`$4L$L)757Nvxh=HM)u}#@jdor>=iNQ_hN6Q>5AKNXl zXEzxn(-cqv2A{i})e8ryzspWKPuT2CNYsu#)=L&;eoNKQ_K5!7ori@_7&m5^qn zw)QRLATvh%5 za#1A)H#1KuGQkKjwDJH~?ITa!;MI*bc2GrAh}tN@^C0zs<%T4)GmDFIzivWkI=VV+ z2J(?wKwSJpjVf;<039Xo$=;R3dQASzDWkv3W;fWX6`geS_bm9ZwlRc zjX%|g{$WJA)nqP6#CDqd+&*a1V|swDBSb*4Cx8p-NK@JP>Vv7uR=V>7(qO7`9amdM zp8BF!cbAHQv&$8z`OE@q@7?(q&3ta}=)Z)2S(g9$IQ)yyXczt^iCLlIt74iR24i1A z{cezx*|CtmbzXznJNfJKLz0ZGHy5!NddXY)z!sK3WP_}#PG>{-^&%8PyO^kCWv*t| zs4TI?69-lsB|lf3a-86ZFvamTu&n1t+mf}-utBXgzunmvMwXY|p1vxh*xJ?NtT0)##P#67!Fgt3SBDwRDTHbEBVtE3?qqJmwZalLkTPfu`j!#42pcpQm1B`YUsivO zQ%Pn;>YpYu5Ra1nCPfNW_y^g$LF%I)wD1pvpkF)dy)YM$`f&$~h*9{KwgB+Cgd^)) z2Ecw0{mv8g+Dw#Yo+~Lq{(%@r$J=EM7wwDyL9Z3nu)TX+h*wjUTZqd+L1O~=K`g(v zn|0h4YLFGso5w&NQ=k)p{NKZtb`(LHvG`$VdNVY@=FT7g2}K-W-@juu<%ISOcnwG% zVnGd>rzAYTdi@1jF^fx77qJZdm8w;-zy0hy#ijKhEZ_k)FNvUbdW5{3_mdfvj69r} z+Mbi9#kW)L@~4O0K7>5!05xnqdX4)JQh$}0WN=gVUdltK`cx{@aLN?)5D?kSRi)rt zf*$N9W5TO$1yp*cGcQ#Aa-RDpL9i~Wn6gz(x!;|&b^mx;#GT@DDbRr>i>JGX?vSzj z-Emy^FK`bRTJn`eDgP@=_`f&hU%iy$QI>Pv%zr!o>-pbIq3emgOS0J|J1l9+S+aPy zdw9?#1ut37BA1l7q`yl_T~cmI(-2D*SGb46U6OFgSeJ}<$t0IdamjQ`nr2(Fc%FN> zz$FV^vdAS%Tyn2VmbzrQB~8tiEN*uX*Slo1OLn*<=aO>PDt#Z~k_tV|+A>@8&(y%8Aepw>bewHYM z{DJc-c#%6jJE7pAc_W|T#mebCuuQqP8+f{8jC;B@|MYh}T`qpkE1$RYvrk~UQCGO0 zy1eoQOYF9xu-R@GF0|V_3e_2}e9=6+y{k|S^U9Y@x7)i57jm1Z&5gbBfrpyMTV2C9 z=Ii7TncK@;_6bc3YVZu0Wnvcfb@^Ed%-zX!8tYaTp+6~2nDMX zne`yxo8fm~3Ay%_Q|PfdCrb!w614M;pj|cOR*$^O+Q9k5JVFzIB%R1UxR9G30)Z8j z``xEpeg<7dC2PM?5%uatq-l)T_;oRCwFik9|Fs)?!DD4r5Qp2C=A}Ps1jq?$>v4L? zQJS@_C5e_-a96o9nyhT~8iw&ai5a246OR&vdP3$S(5p+{t;4L-9~}`4`{xniy0gLSzB$Ws$wAs0#21(z#%pjwGU|6~nl7z>5LXrx~{cxDe z4DZ?Yentk-zt6+Z$e{1v3xF>7$8CwSW|A$h2!L2E$qjFD z4o%HNe*^%jvQ7Z1{Z?O;4Od})y>hdbHmqIMFEzD>Nq}cXIdBj(5(iijz^h@u(qg+{ z!P1D_SF>QZ3|eVgP`G695>PKHT;a{DV^K#iqmFFIKc&0Ytw6s%JC0jwN=W@ zJ@RrAez=W7h|SVoL*%EH8RYu5%Y~;)OU)i^FkpDM!rVUR#LIMMEBAA+Nd_mSvG(>? zjt8mQZZ*MoTUpOzSmU3mNM)j@jCdpd?L+t*-ZNc5Hm1V8e?qTqlkKo&Y9kXuz|pxY zi9@8q&|Prop1%fHafWTf>)rgsb2nUaRYC2yN;EyV!>ruFxA9;!wiHa!uewYTp6_{u z+*cOGIVg>i6K(m~x`x@(iG#*4hqHCf`dsU!e_*y$UGCM2ZcWJX?A;)wemHB|0ZG#k zE|C`!mfTTfk##6uAw;`vH|em?0FlL=gukl z&<%h>kY1GXQQsn39s`~}ym<%ktoIuBgJ@Dd;zBpzX%+C4RJBEQ{Bs_9b{q6m0X}{n zeD*-L@IeT!Uep$y-w8skHG9C$>Y6oA0YF^y=BYA*bX%u;wlKrX z2^*1<7AkcMgRw*d;Wf_vihBFSMd{#EO#fJTEOBIfCo-A3KCptJqnsVj5}L&lnhSNi zua{InvO>sQ^eG${ux7Zg*HS$S8hR}u)fnN2D~CajhMLxEQnGS=GLy;{RJFw$fQ_R^ zYktHat3D7S=X#i4&?-(rhmB?<`*{g{)Q^zg~hYudu3<$j%SBQ*h>0pYdkxaV~nP^%YW&s z4^Q^Ks>ABOx!5pIUmT z=GT|Wuajfq;+44^|jVU zo!x`wCMOIgW0wmxS9GH0zSvN|BGg0@w!8)$|h@gc3M%i%8xg( zdGHUmn60rk5KM+BilKNL3(kO|@2Sk^iwRi|)8;k4tziy67WR|~sO>hURt9uQ;(SP# z64%#TOSLuVJurfy%39vos0y=~>O~hSG*6JXF+qcMSv@N78Z%Uq3_g_ze&!AVzrUII z{)}n~92k`pk%${)MweUd_a9_NXiI@OG=F7(%eL6G1%aD%VwKzcSOZhn|1g}9$C-{j zELMFXf>|Bh7wMc8Bbe39N<Iw2b4vFgaQ$fWAb#3smclWMkT3s2J5+Y`V{ z>iYYw`>EIuD|8#V{UE4KJuluuS(m69%um|ws|{3h$0e?syDo9n5RiE@yZqIWahFU= zMHZ{m)tLc5pfdHgv$Ce;8k^YSdzD0*rjR5mZKSB{^x`ev{603zZm5F%s0h-NnY{pq zMZ`P0DqXqBo1b7!6W3kP>sAJ*BQwIsXuiy{2w_1$PO^CO*Ha4P?lz&0!vug*44Y}a zzVIapku7dR0s&os6=_dycvB+Ft-s=}1eIUVSejr+ft?DR3^_oFq1ZAe6aDAW*_j)n z;D~>w*~t3eKE%(z97_5RCtG%2%5Wt&yiGT1+OXEWS~xnDO&$eL&w4)?$IuPdSZtwK z;bSu6{6iz!;{QY!RO9VZ;7iZIs>^uE$lBD@XH1751XA0N%FKLkQOMEhl$X;ezmu22 zThmyEw7)Gp92K(R#HOk1RfvMr#_CQl$F7w9zteL<=9%dHP`arP!OG|4bMzd>-Xy2C zTJ5nrdf8Xm2iqYRY$Ep3$Bs-UvLolkgW~VT{q#K6!g^zA?$0S-Tm5Dd%BAY2g16}) z%43%t)O){P#qn?lNiKcG5sJQP5g|*{mA}9FECwJPkc8`fN6f~^W*A@yIi!$Mbe-fz zb;WNDC;1g7xg!*!vG^Gs4n1U)sbyby?XjsHm7TdZoZ1$o@NXaD=N(h~h)r#}>(rKV z+LvvgwaRHbXc93=WK#1FwZ(5cr2fB)AUOF#L?n}~P9Q2O)~w2_{o>LiNPde{UTz3q zLAD*ZV0gSGojDsco0z&z6P71jfo=APa52a#B%UoEo~XTNIG2=FUkY{CymMK?rMMn0 zyJ*9uCg+Lt-|BBXk~*arE_&`cj9E51T;|17H>t)Ek@y+K5XGJ7DRWG$>CZ!@ZC-6z zYU-ZWUtlz^ou#&VY0yz zRh^XKL_oE+U_rIcOM9}xc*aOV*`wr2&V(!aR z*_acyLajJ5$8tl#g0*i-5q8nR04pE|R?j|sS4{h0Chv792q~G*SRl{lE z0)gto^^~~ilmh@7!xKEHvCNNxlP4KS>-zD=D?d;KBUT>iXWd|_P>_2#Sp99Vp!tkf z|NMCM567#2e!NaJPz*-2e1soAC90t+$q&^Ce_Rny;uU?n4Ay1-I9Z&vFj`G+v?l!N zqjjbOs}PW!(~kiY%${}3!PL7A+Hs+)%V-&3bdFYc(E7_pi_vhSC9{%>{#{3lCkA$% zprz5`Y``9)6^f~jZF8ywlcV9EgryK!B<0s{6kS7hfVL&3witDB*gc*daAiC@?#f=$ zHDor%BNKZS8~K-}u5ydl@C895A&v2XAe_|HHhnuPSkY@Kq$pg#A$S6b;o`P-=yer0xA65%#9w@ zgAu`i4~+09-g*ey^z$e-OISbryeJjfg&)Ap_yBw>9oaS_xafmd1lRpt!3ck5?V&6D z>uT9LFaZNE5GhQ=RVn;l*EtHc3C1#nN(Cp~R4reB<5Tin=odWrIq)9#@Fjf~+GRMQ z^^4%|yz*8ksTe*(s&h0uoP6sww4)Q}d~I>dNq;XaV$y#EmO@n4d%!V@5&Vu;ib=%M zay!Q#m&_x3sqn?0$=jSo2BUjyK86#G<}aI%Bk&wu=i_y||Fh?VgRyNs z%9xL5Cwmt@r}=oU=X`Aa)8?ZrKOfh=n4cWx^BiMk44~K44sHo=L^MeWt61S|H1Rs~mE|x^CGaI&t zuTii_2eaI9QJ5y?cMzsws)(gzfBlr|r(8cnWH5^yJFRTEeiHf_tDo`unWUd7`kAhu z*>V({2d|=ZL6|NKQ{cj$FA39o!&Ed|`9;K)HixMUA9cSzOgD$=jxd$6p5E^c(}Q6u z>q9*+3R7oV>8ug;+{`dZ%ft6W!n7hxhlgn*Ovi@l_%NLmrs8f?9veTF&JNRgVY+}6 znk`Wn3CAf0?sxKkeYwg1O+!dvYD-CEVZxan;)#h}GmAO6l z`hLVAe>>{7>Ez0J6;U0C;>;a#Ut80s05zbyd#Gd~XR)lUTCN@Q+?t=o3LYxuN%(f? z#$VX;BlRCC_~j7yd@_Qw`_r;6moJnNf$Jp`*PA zmYpLkQypA)&g^vT`Rd5smIe2p(Xkch2qD!Ddx)LrMQ89GCNot3F&uGQQknA-nWhpD ztV~rJ|5GbISghT3NiAwJhv0y)LvRPcP5TJza2g_{9U^qRT zDJ@I~bIux%`gYD)#2JX5m5jAvBbtoFbvy1Xd?Q|mq4;`*%|6x@#A=P*ToDW}x~ww# zDX-qwu=#sg@2=62^{J_QRqN>3U14=@g(kAm&$F9Sm<%SKJRZg6#FHt%@5zbSCOx4g zFZNDG#+{6#GJ&N*5jDtErkcC){Lz_l!J+?@5GvSvBfjuZuN(W?!|+iXkKj^|1|t_7 zZT3elsH$A$HST5#7BVwZvO-L;{)SSD?r|Uxc|(A7g0{&EA(nuqztO_3{Sze`x(Ayn zS<^}%r8)bLtF$5l)1L&j!fAPg$q}wDf7ETK%85Q^$`Dsl}&1sab2xi8Z);Bt* z_2($rQh1dFHu*q#XdgQdtG_r)i3F9UwgOltiZGX%c}ADHPG!EbAmzV4I<{=6@FR0Q zROk_}kXgx==L^v!oHibCpL5#S(ZNNh;m18XGV`>t)j{gC;qElguUC+-xBMnxB!iWz z*5-Q_^L-KXy`NRda43UnPDLJ1Pu-)QAZv$JuCOZ6c7CNG(ee`THSLpvuW6qotYz^h z)3L|&WH`R8z0;A@C&$7!6Nw<5`C5L$y?O44mE|Nr5^$Q@7_3#ZNfAv!MD(3%UY3mcjEb1s^wc9N zK9RX`LE3+b8K{t8S52yB3ZYaq>wzvL`i+h(tB_R3rz}m^q{^-PWK(c!&0VZ(RZdqb zx6imS+&B#r>L2auhmjnWnW*abbyk0ktNyN@)!)^#`n$sF_vNdnD$E?Tsaa6-LtNOU zE$7Id$G!PK6FS4pk1++A+0b@_^Q4b5v`^^wP2WtUEGM*G7{D5<5_xg;QsPnGWu9BM2Hv2X0`~v3;D+_3>y` z?XZ)vZ~G6rg+z%snas@5kZn&+eOT>G26q(*5YqmOz(j#y!-B!z#0LauU4%UGSlWL= zqWjT@#|R*aT9}@?U*7_SLo~hBu@yr?Ii3k#F+>ea)~@Q!&D}#Z+w9E@QOPhYLp1A@ zhAfW04VflYxwSfT(S4}%ml_(I+Ze{+7uI^*YuxtdjQ(Z8veNz_6XBLRM>1r_NME$z zy7wZLN!O+QN2_CZ50SdQI#@A8diu+1hy7c@%r74IljCGh1z%Z2KmP5qH{uV1p)WY@ zch#|m?sc?9Z=+cSm|4`ZPs?UNU0i)02a5h-XO+k7CX>S7=I-w9tD z>z?rSd1&2)qb}0Jn9M~#2Tc?n z8Wme{uI5;up1YKbF|lRmF42R?oO36kK>PV+{>+7kP(`OJpPXAyOVrqRG8gJIW}GOs zB2T8=X3G`99YtE9BgH4mT6(0vDb%F3>>PxsG%~WKYQx*IfVg!JHM-@Hjy#%ndwa04 z{k2>}f?XYH=&w~y=` zX$ijpzV7AKeFi2F6J0lTs4X9&{Wr6jZCeym-%^9cb7-mwL6r{fs8GW%4<`Qjkk?qG zk82OZcsx_Dn(;#4j=E6arX2e|8f>f&420jx<7T35|2kRwGG>j0UZD(0A`}2eNHmm^ zWXrDJ$?VOnMLgu^@fmuak%u{#P3 zx`Mg_4R8=$SQUHt&Y`Wb*2*Ta8i zkOalO@<$-}M(P+e8E3sh?MI&F2$sp0<0)_(AHTJl@+a@+YS$XwuHp8EgOf*klh;r7 zCLiQZR>WKNWa~QI3);xEeSUYodnFk9+==Q-`uccvNvN3QO_s8K%025RVfc| zKoxic2NKTMN=qj1IZst2Z+S<$yS2U=dHuB@mcqXbG*1mRSS<8!EdOLS*x^n-F*^-b9D%Nq%$XSN7 zo=!}4D=)Uf788t_ExRDPybDwizF(XvpAaVFK*BM^NtjzfMH(v^TdBcCx1_UUdL07` z+qmCfa~mAyaPar#erm~~j(dPv7H7I6HkoGwdbc^+ZL#LAtT-XEG5RD8P&Ty0tJ6cR-Fy?#Q^nWd{ z4}#8BMfPksf^dE7D>fI;(096>n7Y<*eX#5lLw_wV^)|R#c8X@ZcFu1gawwnwsN9^N zuqct?leYLT%&y{({Ek{6aerzpMfqCdn4TYPg}_xs*5V+9Ew$*|IgFghn^CuQvp$zn z0JtuELBgn;b$T?Mko9)hPYYwxIec{V+DtHy=WM#mb?(a^|LP`O0e(wXA#7-bV& zE9^(*O52!jd>vI7`)+1$5IEhL(}sn6d!af`_EBJ3*`1~*!KM(&a{^`TFysdZ{xXr(*uJWz9YZ6o6IT&@OcByaf6#QeLTxguFeSfi&rs}nb zvE|N>Od{eO{Qbwq1b3acggHg|J|H#Phs9R3SRjNVr>}^S#Dvfgr52wnDs&)C5=89c=|X zSSO8zyrU-?4*&~|mWBk#k~N5pO3yI`+zr6+g%P-DMo`Nz9x&`F6qPNzE|vKjt=xdx z|EPECJR2+XS(2$3g?5qmQ^)2k6)^yY$B(K|#s}s(YBSBDA)Jq$&P10Jon=ilks0=o zbfPV2%wc}g3 zpw2C7#?W2}D;wYnU|`o069nDs^cJYy$hyw>dhZ-REWL@#agHe0=%67gs6*k}5EXbK zDMkf*(!fRqc&Or{f-ej|sw4MV9?WCd)rqPxh@iL*_k9R9djqU>Yt46It~uJ~H8IYx z?K|PI#mCRs0-L@QxngchnyrOed55W$zXZ0VsW++{`nyd1Nq&{3B0muVOt8h3z39CV z+v=chu$qgaux_wx?ux--b5{&ja{-9KYHl*Nd!&C5t+8cG5D+o8Y_M89qITHN3*uh9 zwd&M%no_ec9$4+P*)}ph|IuF9k=AKvq^_!Rjn{Y`D>#Ieka)PY5H5sd2F9T^dCMvz zJJ_r={)=gILL*@!TH0<`-abovW~U?~k0%K9Gu0HoA>$8YXnl?RO34*L!w19zqV@QI zAm|D|^?{-*{Ba*B&K(-Y26j+?FZ?kfQ=Kg{yksI%WVXzBcCn58rZIzVZz1uH@ z^Q1NwdCHDnH-GvHIErIl(8HAjo7b?w+>IxREm2jS_NOJ>^t3-!A-Ow`Ua2lv5wgM& z)9#$-n=TYv(xfk07ZxN3kw0{Uoy|)r-q|8f;s%?{ema_v^ZX>9qt?LRBpKU)!#!@W z?A)!#R^2=qzoYJHgS>LBI~Ix{I5$VXLosL!*46AuRIZ-^Tas0!UHu-{^U6)W8|QGY z)GiG*#%b%)4g^xpHm^E!_xm-3>-o=@#V-$;XE}?B? z@I0-awf~a}8h{NfN4P&wn^0pS1S^0Y$d2pXi)ZEr0a4U58G&&YsnhN0ruY?Xa%7j2 zz<%oV!mTp{Zcgu`v_nqDv?=Ycp;=NaM#7dkwMyVj;*qR5di#N2Sv(`$ zb*3_d7ly55%x!S+8@870!f5Oywb6a;@+YvewWjT&Sy9een^-(TZM!sVo6?m3mU(jy z5()}xhtq4Be;vxoT+f^$z~d4|fp@p>c#jmj*o6rhdyV%ZktS-bRyI`j4F<@}a<4;I z!OErJ6?P@byEUDibP@1yZ+A6bUmB|Vz#|POBQ66UBV*H2t-T3(D6fWF)BY(dCV*UwK*m$HAv3_ zH^c2T;}eQ=bAWRALnY zkX0l(-=mzx=O?qp!;+D=*Di+qwIYB z4!BU+%l4P58m^5vN-+)ul!LA5+7wvXo|2@ zd!G5wH1Q%;dC;q!qh;Wn@t`Z3>{Re$!9xfIUHG9ic9@)6NWAeFJ|tM*zl6nsK?Tbv znHlyoq7dUsV-bD(e#9%^0-R6md)VfVs{!uHn}EqG^6o(z^GMB4un%nUzFqKPAk!TF zy~dA&Xc6#?B{U>L^9PuHX>owjE3It8bVnCut5F#vxn7RqXM2Z#W z7USeF_Z&<#LL{oQBV169&N5V z6(7CknvMf)!p}2HP^r%Y9KaJrHxv}?NR|A^;5V6 zRX`!?6&#Bv(@A*1Zf%26f59PKCP7wyL*-*0=&ThupEH_m-qAj{Wx#1th@a^WYm?yVu z99pNiU7SRwKyGT?_@89v4mX0@cX~vm#+hgV=FXPN^gGUh9UxN4aEqGEL~y&vcCvQ1 zi0?wR7wqeA0^7(+JIv&)^W~y1k%qAN=dhd|IinP$j_@k&&~d_l!}cVDqI{EL2|QqjS9EVz6;z-| zn5no*bhmAqYnsxKtr4D6B!Ra@Mvsx-n{E~Py~jAAJf;1QZj|=CzXPC*()QO?p3<%o zrA=i&cakHq;5MOI5Dnzj#!j(Of2Q$7IhzWMZW|pYz#dE35n3bgd7m4%ovWiaTC@)Z zQwPA26{@RzW3tl*z12B+ndmK=_-yoXPN{|>p4~}kH83~AP_-+#;>=5cfoX#d<-ePp zr@MSbYaHplSl=I`sCmlE(G4Xdt)MH2(&!30(pgaa7~P$)-<9U*u9bF-ntBr**%f(q zbeCeU&KEoG5>Cn)T$zl#B_f$G9MWpzMgFd&m|CE#MvZ0IFFIO$vGO>wtM-1ez!6$n zeBC9YtY;0lR5?OQ%T-8eMVyV&ipp*@Qmc@piuOH!_VLNBObD3{M{dne3UUixHfD{e z<+Za|1Hgeev5>_=3UgG~xLfm!Px~)pBbJK2m5lA-Y*PF_>9zIN(c7Oodb?ZfWZzHa z>Fw`2>8-mmddt4Xj;{3f((|BR1jDTC@ER{PdTVgq4VeH_5-dj4&RKG(;6@^*IGkp; zUS05hm7x6+A)}iSLqcOaliiY;lR9qTV|Fk?lH8rlbusD{Gjd{;vuF(M6S;xs9j~VP z+3A*q(I>MDxdSK8vxiL!NOC`dAOsecvXgj><#|uyp{jFh_89Td=RHEdEGacjv%Y+1 zaGF|PYT@;?`n_Hs`2=Xm;bjtvbaLDbMY?0ugF}0bdUOd+gGfgJG>LTesI}AJhm{-TPvk4`IE+&N=4$&4MR1<+N%^pTo8wzIjO=kvd0MJw__5(k# z{q)cPpo1 zLtTmi5i4RK3}qY!v4YYH8W-BASaCr?0mCB1okayvG2-@~s30h$8ejh3?>Tpp36s3{ z@aO0ApO2DzX72gk?c96rx$nGlv3WJE<7*a%Y1pgT>0BoYSL2s0v7tsZxbdd9)+L<( zT5#g6z{7nW@=9R5#Rdg8;W^G^rdI<4rt46?f=3rEeZHUa{S)}9BWAt zqAxX*Zb)Yf(U%UC>b3H)XM3lXYq$~L{~v3}DaZr#Ju6uvkp>uji8e$MTWGV2rw+6v zUq4___#%pbJvIdo0cOVY^3LmTIcR5(%2PKE`>-Gmk!7LNw zBTQ0cxuZUs|4G@S=mD|SBw!6Tm)s!12E%KPe?mL(EP50sj5DSWs>&LN1Dm;L!NUaT z?jDUUML zitcI}YYj^y-j?AG*#yRW4<}yj$6}8Rdkq0g-);)RCWhl`@ez>Pua0%W%vSv~Cl^T` zq065qIx964f1rOtLd_YBKh}vmsDH@VsDC zqYO1ba?*rE);P(@4k!kd$-*C0GzWjInNV;E3836q8HQNivob8&TJ)t<2A#DKBw_%4 z*1RToSG_5uV5}POrZV%Tz+{d5d19ebmi(E!QU1)V#UCq2DnrJ`%2a{avob8*Is=u# z6TlicR%i%MZpzmk2$9l>rH2E?D8lj&x#PmpXIJ(VxO+`y#wHI#OlZmj9IV3e`cTQU z?fBk`I6IdJ;!HYR;Al(Ub-_z31XHj6=01=i)E4Knh@;kaI?N_qKL!&(!ypdr$W8wO zjx^t67OyXaG1r5HeEukMk4T8y5DD?OJi`s*u${){YdBEPgG<;aur=X4fLA;l5XfRg zvPqifwW;D6H=Xdm!mORwrV=EgxV2#|TUCvWOKtFW7$(%uTB9Q|M~v| zK2Ag5b=h_{>A+hXFQ5Z zeKfG-y3N_CU-~E7@JySYs%gzj0-1Fx#&qauMdyI#E;kM6THwe>mqnn;0DRHbrhD#5Aj!ZSHljL6^HG} zI)oC_`7ko1&TC=B%F+EpntX(D7wPVgaG^nTgak{7mJInGe$VO;ieOjb4_cJyxwC(~ z=Ux0UJN08xqHt$69?bWTXWtc$|BrGJ3A}|UN#Xo&`FvVVmayAL)LqX18_~1QmSX0zTR5`&$%`EP$zkH}4S{dTm&r4dPyw zE|pk<;cAPuRNlFODT)@Wmu)tpZQ!sO^O0}L>sv)|5|>wrLh;RX^Um1_c9fA*!@roa zIeZL@ht=Y(g5?yUzjFBCbzoq&om*)>9nAFSMAY=Q*E{M3s_s9OF=H>U5u-VP%++wKqG?RP{Z z@NslRJ-ZPdCoj)1*o3?!GZ3DbY!l>4JCDSd(Y*SBfyI(98d!}%>&$_P z=JWQh+q37F&9D=#SEgzInpq#Wn)s}R=!!d8?X>z}7RpdI>%D0HhrtS|sIC*u2O94m zt$}EwyYSHP&k{VwfJ2YR$mojU{caj<3l>-C%qEr~q#PSx)yHfoVCo^<9 z3NMVGyp-dcKB8ebhw&XHJFIUy;jU9NuW-<-?=m4Qtn5*Kg!lR*L77*$Kv<_%qYuCg zsbeH>s#J|r6?#T$hXb^>AZCc%K~YMjB7vz=Wl@;l!7|H*u0NLZ>P2iu;ww7&J+tjHJQTk4>0Yuzw;h3 zZ4n_gZK-BZ7wu!tB@xc_xzw|9F7=#MHV1R5hEus&mp7Y4lSFRQCw!y-3*;dj|48Ja z`)MK%wUmd{6q=MPQ;5?gZ*i_no!zYI;#|%ggpH7z=E~d(EY8)Ma_)#T4jw3&xiibY zHKPvFPpy=X{*jV@PO0g0rLp|xy~F4!6;h)_QpYj149a@a^YqkuB9j9v2z(RGc_HZFKROuMMMH$;Ej>$K_xx^6HOLYXXA*f63?0j zm5h6_eo#r_!w6V+-BQFN+<-Snpt64muZ0`_b(66bT3v=cn}{KHMB-Ow`XZF1d)b;X z{pqR`*ex1ZqW-a+Y@BTB-VI|1%o<<|q`MHaeHwR9eWYZ_qIwwNcZstZ-U5(wU$K-% zwKsN^{q7F#S!8c$9@>fxB@bie+?yWDyk`;NoG+KW>GnHZHlRjZ50J+_yVa={hOAh? zt!HH25de>941h;I3{I9+`w@9*cec(e+pdbaG_lD`DB*pCysbuhryDg&Bs94QB3w5} zi9Eb+y+qleHjDe$L%7De*0UJDqC`ToM1n|(^_yWYBkG>10kROs!AaJSZk6CMu~ki8 zhN_RRrA%P&731YL_``c_07VQqjm8GkOwOypzJYuwj#uHt$bq&a$%nW2aXymc_X*{# zVZgw~i%oi?s!fl4*AN*oBn_AK6~|Yu)@eK&sKjr3o(&Mh>adC9$;xzF2lt)$r-8m5 zf}xf}LE}Ig`NSS$2>$%bIs}umP|e+&3Ic24+Jqk~et>Rt_GM^jo-`FDufYGeI2Bv! zvB=)AyeN6ePk1V?F`@aA4&G$KKVL{NXe3Nv=w?Bor_|FqpFyGVZd{qYODY=}ePTg; zUBT{6c$KbD>(#KlFdjkXhGhi}uN3638}|*Sk#r58`z~hBO6`WCc34{2BYcOW0{7y= zO~KsGl8+xTzoDw(rtl>k%m%>0Y%NX~@I8hUCn&gC9O3ohV8%%7d_vHnU!vy}SO$sI z(`oFAr^927d&AL3ijtZx{$_Ur6`SF;Wm~r%F6;lEU*l20s3W(occxMFIOy?gyDne&g5U5ThWKt?J)i4JWjd{lf%d3Bo=Mm zyrH$nNnibs2R5>-W4QV!8r+x@d=j^AB-$~0b*Q900@*Zw znp85Aj)%sBf)ivlb(Wq7>H)N#2kM)>kR?814aYw;2U7`iKEFiH=S#Xz3FR%|8GK=4 z-1FImc|D(xmf&;`uYW}Vi@VZ8dFB~yOb?~y853?fNbyBV4tpLppq#`vKh%!o&E%o> zz+`0K?2Aj<-vv=l@GaDxl>PWj?kc1C+it>Rp)EXZ<%xElgha>7W3wRtm>QM%6G}!g zf#xhk5^r|Ki)y*df&dEYw_pvk#OG|(KQ;0vNp^fWAAhWk+kQe+m6uV}?V}-lasV%8 zE_+rUKbt22dK3t4PTvGHiM>K=zoh+i`pYL4h$9n7ruEIm zC5N%8cXQTu!b-}>E^Mo88MXwc{RQYy59Xn8^F#cWqFQy%KNBzT$=xo&Y4=N`H!;Ex z&ecRu!66g7JUv_+b456D1Om_M92-8J&T7d&G|4BQd0?|h`Gh1k$|quoE<%jw!UrLr zAEKKnsF5q{@#%4Y|381?V!!YQ&jG6B8bN6+{ADu99h zC=%ag^+l@_v8ni$=YuQIiUJd&nr~G@KNbdR@M1Lr?~eH^25Hu2jzFR_4nvyRJ1}-= zvSXo#H%U)PB4qba*wPiT<2}wa(1>X>=RZA zfBqNat2GE3khRCUtt-UiV~`RUFW$FPVf^A;YuOsOl1uP3-pyvM`!b-x(@0?lgn!vl z*6Ft#n6-4A#zf;!h?U0R#MZhVXExAfBEyP3^vJiRyKd)yg@u@2|)78zBUAzE3u~YbzvD!b z^Uo}isk@HldRJdS)VI896$xzy=6);M|C1AE*9w=cg=cbY51PUFqs z)NMQ1z&EKy@B%qrUpMCq*l8RBQ|6d9IKq&S+n7dW-^i{ik{ot)8@>x7TdPq1yVzaa zj!^4mABXb49d$@3IpnxDIM^zTD!n zOm+*``w|En?_6Uu!zG8^5z50IK^RKz{d6e1qSBa3_wMnA{xSHv*&F(U(8guKsR4e^ zLA0ZJZ(-o+7>L7kzM_xXjy@Q*MP!s=&%+#hOWTP1L$GVa6O<#{=&S3uNA85?`(N1? z&~~E^!4C(cW5{$T+%jv*zKN7v+({lULosW-lqGCmw{^PO#aGEi8=aw@isBp9U8i7~ zb$on7Q2_BezbRN-SHxrG=g~y?lySa><8KX2X3wSQMDkwb#1;cQ#$M^47`GICIj&3g z_@m*A*7)Nx{4hDYpy4gPxr8SNJ`i%;5Q^d-HLNaJw(WR2P89`yELhu6kdK(vR0D;{ zaTm1-mB7KG`)#y53X(S?n#ATY{c)uO1*(LhvO{^#uyQy%G_5K~jC(G-Z+_2-r3>0`JNZ#2I(= zO?1DbPu}P!v776DM>xNFJnmZIC2hfJys&3FPXZwgf(iSZ3a*B9n*>7Q79aMkfbzFnCA18m(=@ZrY|*hG}9<5fe+Vthk$0u338 zq!n66Q-B3G+NiA2o;E6N8SA>&F2!X&ySQpCreqthK)ChIZ|J&iYul$A_Fsd?Qls~Q z!|B#j3M!nyP1*Asw&rxLMml?Rb}G*zh+Y;lMuJ6lx=Nypl&)hXUlU#2WTNpJxse!TDTD(>*oGEt!@>IU(V6%jDhbyl;3ds8ja1$27BvRuR7W+wdo%$kumy49 z9#s-83$}iBcIr(fd`m|)d7qH+T43mQdnJs$VjK^RBr*kjlR1@eF~%Y7#oum)^o)4h z;B`Eip1Pe6;l>SEk&Gvbm~awLG?G9(Q3xiEqZfDOkswaHyXwg)Ztr*xQyss|?#h$H z2*M{)hVclu>wMCA$`M-j1-jsBM1x<|KAZ>N*^dxzB^3AwzLWz>Ivs<{PmaSHGONCC zVjS*tU4>;U4hpBOh!8QWJ~(l>C>^P1>h3T($bu6LdV==Ua4fn7@fwj^uFcrN1eT>1 z=9v%#9BG#Vr6B&gX)s=b4#7KHU5+YxZp7Xh5wY<&Ufzd>d60!e3BEj)To6Jk9C$gR zSARzn@|yHQ8q}EJ64fP)@Sm9Bg90-oxJyxD7;h_$4JHJ<^!X=QG`%o>)pR^jEG4-* zHWYsVftqQ|%lMM9nw`br%VPYolArv9l~V?)V%)}TRPyd$vXZ!z{uijEwdE&ld1^xq zE70==ft7g7S^`)7jlqd?FgzjnSI2kay-QI%+$_jQBnuJcVQ>T7F(yBXCXqu0yJFl# z8Zt7`^nJ(1!PwL|81F>PEh_phT`2jR=|I5yv*K5ep}^fFGD3JHD{qeVPjtd4o#n#(89J#ygda2VHRas5-lHEK4UDrH{g+E@0E78!; z4}H#gn;0z9SMN7U+(*B73`cJYWI|>_>iG|rI;>x^JHWfAocj8LU`hKsBk@(CyhIPq z|A2Vb!-Ks&ZvK-8%8YumGZI*}BY4GuoqvP4-Ef1?#@k?5>~kWi;83IwZvS!}-Z_Kf z!wTDW{0#6Pc-`gvwZlG-^h`kMp0#WY!kX8>I_Ze2AyNt!J6r|2_8VL(*9Lo+qQEN% zg|Z{K{J>k0zYT+e*AyIpOA^*hcrz;t<_jM1z%L|{C)+OAd)%xg4!gHc{IChu*{@uh z1-${Q8Aq?g=Rq%50dz4UhdJ4|AA^5!obWVW`4xQuDVT?}{V?AFPCh|vCz2GW?r8p3 z!HSy?0^hEpV)Sz0GbUp^_5lEtKvsA}tQvpV@8N*FFA~NTPWXlsM=o97RYCU;Fi-px zs;HtPBn!mZLX1_S_7nb6t;C%|j7MX3(jF-IyjQmK_6O3sB!-KbQScGPi7g@l^a4p}go#h_?VV>GF3QE&c{ z(fky}MUtaBhLRPf=$1(S_F%;u=z)S=lg$wS{R5%Q73g;HsOHG!19xT|6$@Q}L*zhkzL7#+b*Xbp==Jj3X|DRIEt$`b51f5)iPQ6dFr z<2(3SGh<`YC^$_y%icAh!B{EsW{xq$oFgt`-U+G>lBF^c+xa%@ADiAxLaLf1WUNXE z|M--UVS+f>NXULl83}oAz4VrmkP@Yggmh5KNXU|PlG8}YUz9Qua->p5LRPMooJK-! zRLV%maY`8pd2Nm4G!ilvl$V5bK%PbkdFd@T2`R;|MnX=OWJ*HTVnN6JF%mK!l$(Sc zjoB;+zsZW6NX<)0%V6T#(ILJmP* zNXQ;z+=7ItOvL7_WNTu%s&xk_RZeO&4&7(YLW;@}e-J+&>l6Mi+k&9+Yp5gnEp%iT z)sY)kFt4ycM~-bZf7u!oC`ANgSAz#s4GRoT>ZMAq7St3R=R(QNM>3jNz(1nUIw1$f zp$k^lFPFx8IQ;us-})W5nIHP&rWTKy;Xmfg{0#^FUHi;)S99104V%J-8-jw;yI zHy1x1fFF1DrLKJCMHXqqe5?>g%1;G>Qm84L0LotCqy-pQm%(fSm9@W6Hz*ZS>KLV} zm8w}JIeQ!+Id4*GzEUSD)ftii%(u|}5bQl<1Cx!CLfM%3DUN0uWhr(g@`LK2+l76V z8cAw&DRy$)MnJHK;t#ZUIfS|$Bw9#FbU*Eke?HGHDA#cxD1_;PpPnPTpr9uxXPGEv zFQ9xWF&LYI{Gb*}`Gw$Iqvcm>`PHFh`}HBXv77DYNea(Qm`WkcD$Up)8N0t4%HJ&8 zO+gFBo?0N-x)+-C3~GyhV$c_h$w17~qWDLo`7V6Dt8ZuY=|$k&)psOPKRwHqqLa`) zMOa^_P;e~TPuF+Nn1DRo`_G=ETaJ$eLAS$L~J zIB|b1OG+O0GX7*?>Efju2(~BRVz7JbU|$U8T@|yC1x5Vu6d8pdHI0>}am+(Ig5k?v`t8 z3*?7Av@f_))vs7F*vMvDM#@iWTQl>?^h&2{H}Q`;Dzi{qAm&M?mpfpB)9joW#|?L| zMn~fL9jsBhCGTmCR{xjn_?gz|MPP1RWWRZWgjrfq+0)WAp}dYN=rjF(D-a-P{^= z9+i&Rj{NAz$Cc^<$pkf2sd7^Ot%D45}(+;);}@%!G}8Z#e&g!;5be}%jd^Ws3W69=x_`x-HCZjH{zat1m3 z1+CGe1TiHctL8}m7zr7rl#!5JrHq8UFNO+x0~`Ew-XB5?VYkhi9Zg!r~buS9-GNN%=_=e|mnliF)* zbVd?I@1-?*40xz2rTD$GM*lNaMjt&+6>z0ewMy-)RBx5iXA_dMQmH>EWvtPIlrq-n zi+7+29@gk($kVt{YAb}1|EJ>o#fX2g5JvigLKxv+I)&Mc>|Za05&cd=7|DO_@648^ z1M@c_ij_D`h-xJ^PG&YE^?wIpwneR5qsJmstJY{u3~*wNPG%})jh-Wfk@8O`Nhz&c zqvMeQ%cikL^OQ2y=*9~9%~+!`rHnP&RVibQel$^X8f$baC@9BTv^wpi0+X#3YxGFr zPFbTXClE_*L;u$3<=|?xMh_6ebioVdly(2sXc6+Ge81Lc?d<~Z&lbU(Mq6 z%3q|^`6?J=l#-baSp;P!WsA>7UmC#@_x9Q7rQq_rliX4&VqT2#Pka8|x;1(|@BxLI~ zlG8}YETxQu6e(pSWJig&gxrBVjS_M`h}I=!%O6>=*c$gsGNlVHR?0|7-5=Z~WCniU zdkHxeTz)0w`C^d}-_~d!s&!ZXR;Y4Pdu@$g z0_MH7MmJtA1^ygs^crEEJYCoFBbBOEYUOVTJGplo(WEyjRjJf*N*QbPwIPzzSfgV> zd0C?!kf(8@^wMP{jQrmqgc1K^g)q|p`lZZfg#T6{jO?E-gc1GsE@3t!`BQ|*(t$Zo zh+-u^AIxmkO3W0(NPQs)Piu73AZcXF&qibTQLWLwOr@;R9Ro=iDSr?IN@?91%|`}w zzp+NGs8GflovD`=*>*|w?+>}cE8r> zgZ*XTd|RVuAiujcy0#x1EQ@hclBvb`0;NPu_u3kLxrkjbOBayQAby55T2~0RM#C=k zT-V35(aB&mP3j}bRFk&#xg2gI^UI&^QX(M1Iu471B96~ZjCM+#vU*;T!n%`CDv31Jr5lZ7yg?D~tC%`CDL zg)ock*+Q5_wze0unML+aAbetjXjVlSSJjzxZS#CGY3*sql8p~`4oPx-B! zlz(elr?&- zQf81lDrH9b8Aj{7We#A^nvy67tNhdv{lMT$dkYJmXQ9)(Lc9W3N_|-^A7fGfh)V~xIasMN-4^a@UljyA%|Iv2S_rt81D}9ho9-GI}yx{*67(F zQs&%VcSI{C98OTJu^Be}l1Y6Zg8*q7s#e*WG3XNjg` zSB^u333xTP@G|uzd6{~azD&(40``2Fn%`ZEfyUdqyz8m>ZoL2etFCVEKVQdiadNx2 zxr=p|gloiWE;KiBjR{^W##Qo+AV1<&u_6-B?#H=@y9=U;#rrYbNN^gXn1t|JaB%AR zpp~nMC7O6d@*&V@6ahvPv-h+1LBN3I$q(;w+hIMvMyAwlhvDRqlMyRoM{w#V_yKns zpqs*Zh->%-qWd5axWoHmC(m7u-}JU26VI=)eDh{J!pFYj;A|u{oO>l*^sRLpvz7-C< zl|m{^ocuzlVKsP*;wLA{R&PB~E75Em3wBM~&pdpcf$dpiHO(+bOJ?uKw>cyj(EGt@ zCpSt1Um72=MJiA-;{<9T#0%gBybF;9>GVry!tqtn_%>cVFb$&wNt>$;k(<<`@%6Zg zlhMQibI2bZAx^s&CuX;)1!_3{AtJ-fYqJq)1d?e}!;%mX3?bPoR*GBq2Pgi4uR@gUmKGuCrMdS#70m}%GM$7BjnRD4Bgrm>jf-OT41+KOGZ!&?lQ9eH z7-nZ$00e%66^e6qJCY+AE^KwI4oM74meuc-!CY9X@a}@SFwLv0ubRg$fdU@r{+c?(VHC+pUW;se7QGJ2!jCxLlw2#LwU6!UXx|=EJskL!OYFL zB2UX4Pu=Q!1q-P7U)$i+K}eyGq=JZukdT;b0COS2NB7e;F!bx^{D$qjeK8{3^d7`{@5O)Yc=#ylP;!bhB_8Sox^qyPX9*rL& z@z29~Q!mtMx*4&QFXZIJ{-SNDBywjq0{i2IAp~N0Wd{NKq+XQ1dd2uh}2Sh zIJM#k$nah?uO=LLjnN@mYzHJB?dU0ioe+~DvA8GOk=BOY0~77{i^SV6XSj&`7^__N z5aRL3ZP4+V9h!8BN@r7ajz=Jt5Xv0n=vEzGhOlr=qKV6#_`P*_#bp#gii>DA6)Kcu z#4BHJTnbKnNOYSlpoqHM$~>5d0*ks;H`80z`a1_@+3);^Beu=nA1htAYWq%TXpLQB zE`BY*UEN%-T8UPe!HI1j>c z{oei>$KeTy)!IsVhy}vHi`Kp<4xPp{0a9_1?d`h(;2N~qdOb$gqFKuKr}>WkUo!cK zFm2r>tc@X}QL03Zwo3%SM=a~X3XqCV4FCyQZ67WG-tnKUpaSd}?Aczui%sB`s`ZXz zjB4x6Nz!qtc-5!@nH>8T0pJF$bpQr^vXTnGwCQ;=Id+}^_=q_jQ2=Tr10X@B?GL|a z6S#S7y#|bhVjZ9WskkU;f`m%3?-T%TMOz18jA8553h4u;O%2H8*aZT>jcw}y(^-SK z0x)d=$mG~Nzhe`)O>P|^2ftb&1z_3$kjb&<3II3VtphOLvbC=QFl_+Hb@wJ%ScJCW8VS3f`k~Ot@DNxOSytrK5jJDeDwW3^L8sWuok^AoCgn7!cG2}q)MzZVI2dcXGrpYMKerwz#H_m$hE`@H&n z_3dnbdcWVMj9&ddO&Qbr{d{2*FM`(l383dln)v?!o!+u|guUf}I zzgHrIbpSBX?@aT9ekY$}UkwaMPRG^}!iiqi8{^q>6edcEh-})H+@O`j#Rmxyj+!7n0j^Vf%EPj9A*jR>vz) z5^|Q>da>wvZlSHYU`O+r<_FF1AkDu`L3q^f3c{!yRGzsD+mw6T|ugl!HOsd(*}fmj=k8D=J0&o6@=$%*1ihDv;iTXV~97C zz*L)s4A%Fz2nN&qV6vzpK9CrFUGxE#x53u)!rfQ&FqSv!VQh=NC)w@Fmo~{JgAY>4 za4M}=8oP%&m_=4^utO@D<_Eh6@;Ua&EL`4{YaIg(-_AK!KUNyfG(Tu~j!e`Sad4Ut zXGd3zDq<{D45keRA4@s*Uj&2Ct6VWc#2Bp@OdAaHIrdS4k>!P9VV$dJv-Ahk27^!H9Q$U$;3GO$jLyWUQVgaI2KgNO6v5y#KUa(zWU#JL z45keR`5gP5PuP}nFN{)Rj_4#7e)>-J{TkY!L-33pJR6u3_j*`ZA%q0 zShEy^X@fyN$KJAqZQ*lMSBzp}3{ecG4F>rf`!2!g=!KC*j1G#yw80>sWA_$}h4{|3 z9+k*oy?&GQ2h;puzK{>*!pAak`3Sjn5KP=2?9{&l1QVBOelT&#=h%}KgiobiK{m2A zeH4Ug142HGjDl2pflMLDPot$KOdAmLId*NWG^e*0NN0j9R1l^O2>Bd4sUWrZ(zQ7? z$Y7095T^M-pVZ=yV_%>k(?Pg_j2~;AEeQR_A}86&;n-h)#D?_i;>z36`hFDqpp5YMF|7!5%Vp&`1t6Xq&0E0SY@@k&GwUqw7_LR)gnW+u#fO}s3!z|I$DmGl zV~+xcw_!0_YLI4FbdaJMAk($zp)C45Et+Y5P&D}*`<@R(itF%Q>mZnvwa8%YxKXA8 z)BHe!$miH+D+u=kt{}6J!FobLnC1r{2^@4F>rf zyAl}K(d4*-U<_n8asxoHFs61R=sxl}_IV0Y4asi3CIG48j5tj}nC1r{X0yEbPEL9SE~rVR-B9DD0V zX-;o1kj?}-TtS#NAmnrGSqf6?rM7CQw$|JreZsT>A)jLxDM+~&NGU-Q3c|DjA)jOK z*dWcx^#aKuNIwN(+JKPHu^&*7YN#LAj;%rltBry%Z9vH9*bxO8>jhFwkj2+apD=Ae z$miJqdsmv%(F-JtAU7)r(*}fm&_N2a5MR1BrxF>gt_s35KM;HJVIdF@aS(O`Su&P# z@-}?k9PZ6A{MQ132Yk`49 zs18kX>jPB;_O&vkwd??V(2?YG>~;#`PZ2z#AhQHQKvWStvtByEOA-7@*wYokb;_9Q zR(~jhGn6q+5p)KlUq$fEUs_fKtMDAruOfI%F)|dvO~CN22>t|+mJ~sI1*!I0enk=F zDoBPRShQAZ!Uf%}H`N0e!pJN}bAmv^lr39I%AWRz&@;UbEx1>3_ zULZLHxllovHX!74?9mER?X~=hBB=YbG$%t5oS-276u~nJlA#FRd{dg^PZ8XpAQ_6_ zRt4dL?kcgB$Y7nOAWZYqs0ca>h(vgI16e|+2=U^OKtbk)L=oKehJQs+35=E$ z!Lh*bRs?^P8l)+L7hdrwEb?lA#E!8flI{MG#Vu3`H$UvWaQR*ON9hx$%?u$QPQzA9bIQFyN(pj{f-r4B$miIz6(rXSB!?i~ z6@+O6LO#b1D~LZuuK2$;Y zBCIROP=Z{dAWRz&@;P?(N@-39FOWK#TJ05tX#+w&$G%=cYCJX!OXd?~_3x!mm^L8f z!~RD>%Dq5J2{KVZm^L8f!~SOlmT9kt(?wuzc4l}DxG<(Yyo%0c(fexAOq-&~=h*gg z0ojf(U58^MGFZ#6mQG-r9|#8daOkEWRUlkJrXz!On}RUS4?xK0*nI)w_Yv0lz`!;m zb!ddsD?K!NYZ)=zH3Uw;s1>a5uM&)uh5!cn9DBTAxGM-?P$^hXDMm^`0E2vv{cFL< zLb~<-;7J^}UDqo{NGW?S6V12Cu(tkV>OX?}n~K6us$MsK8D>(QAQpAD1# zVA^1i52x{hQR_O@P>&j9upU$lrVR%9AZ0JHE#+PqrNp>OF_<FwGCzLO#b10HYvLRNT6BgcG-gtXHq(ye|ro zH(c?jVm#+rBFlz9r@e%*XFBa2As{}FX!;4rkmF` zN#_I0t@Y}(_sSLQfXTC@Xepe0j{W+J1o7O_-y!VjJNlS1=DHP)qn%5XF>Oa*AdEiy z>=3PXZBw=Dq}nT9pa`=yt(OncDMtqD&7m?4nC1tfLq5k25yP|Jrwezw(_R34zWe>S*fX8>?gWTmr@hO8K}(vQ zj!)y1Jw__x<+RsPYLI40FMOWE<>j>Z@#Qj2hH8m)+Pg&fyqxwPRlW{}4^DeQ@S(r_ zIqm%g?AUN-IPFb;j+ORs+WWPXEm{kXIB?qgHMmeTjnLM`8(wSTw72ayQgnvX-l7E@ zDo&TyF)&4Hk->T#7#J$1`N2?;4-ZKMqa0~B3^?umMF942+WX;IHr_>2#T)r7Wfe(P zZ{!8wL-RX$HD8?ewhxi!XE^O$pddA_I~ergd}Od5R}iN8!H$l6c$EAMYvR*sZ@7SD zI_;Gyh(D*j6BH!FY43Oi@#nPn!DZ}|$r(<2uRkr#@#nO6uYzPa?cJgv{+#wMRges) zy;Bs#pVQuf3XOaewr)8rVza96~bYE(N`Z^dAm zA51k>#IMfhWN~@KB2Ig4g*)A8FD86mlkC+?WLZp`WPQO0(e~%GmjF8is?PW-VC$kz zdmlf^&U1fEj)v39vHD9DGA*95f>DhuZflHMJORb1GV>IjM?S|sRWORZFlgmiFAbJK zWZDb>`5gP*|FSJvUKkeEY3o+SVA^1i&#_~I;m_hZPcf!6VW`E^T`>GvJUa(TTQV%3 zPo7{~YP~Ft8d@4pDhAW0E#!0Te+Wjo7e*;Du2l@C4F>t}dXZq{dST=c<5b09+F+2+ zvA54-TdH9(xXTAJSf31({-E_^Fvy2T?1JIX;(0(ZikmRh;u$Cy{w$u~DMp6H^V8#O z%R&I#O!L#YeVPXhOx(e)otkpmTNjmy+rxA!CNBAKRG}dLoc59mveEPi zK-6h(`(wKP;``Q{gPKf11}mf>O!EVfN+cb7j)L^|0_jYUfPye>K*;CV0~DkdU%J+$ z1{tiS5$O}A`9V!;@yD@uKPt_c4#EutPJ817VGpOh$AsO}X|K2Pc0?&CnofHq!syd! zuZ^&0I_-T@1*S^sq_FK?Z9wxUt7&S}Q-7eCW6T2#7zY zy#fWPHme?XTI#g-2tfQg?fo=BW_gCwUKgo|mtpY|xSPEV^v1tgv_D^siCT2VBf86g zfk|11j&YM6_0_mgYB0H0x={p>e2)FiTmf<4M_@k9LT;-rEKVTEK0*wCkLa9`U}QX^ zy9yW>1NYqsx=(f^ivWTh4b%Lf`^e|m-#siK)%f16Bh+bcw1QMMfsoI!A5@THFA(lQ ztg{q^X;TyOIrcyW$?^h`4at}Nr8%h$37SJbyy^CkG{=2M!X+B>(VD9uOq-hMj-*OK z+_xkE=}eGf1!3BNkk7Gyqad|jYO4krtYZ{}X#+w&$8M`2Dxn3YS1i4E=m^L8fbL?RXQVsRvE+@!fMHHk8X#+w&ym_o3?)wsSY%xLhRS>2P zi0(_CtCZ%rZ%hD^MUdr1(kDzC5b{9>Dab;6>Dru1WUy{i5T^Nou#wNPI|ztRr@bBm zlIgT}%LD!u!FPo%D}sH1;q9yO9Jre)f`{(+uLy3@qB9ghXJGhN1l^?ulWWMKDG|xS+dED^UceC`g7PI7vbL zDT0p+q&Zg8@~etq&A+5M{uIG%1<6nZw<(A}Meth%$xsBRD@d)^@>|2@_YehPnjg#% z@;UZ~e@b)8y+BF{@uwM&{5!DsifIX<2C&JvJJ zr@esy@oN!m?bWg(*mMso;$;y$0q$ms;AXJ-wFpLP(HV;1r~56(olsw<`$K284Wg(?UV~DS`_WBtsEAGhO<`pCb7Fd}&UG zA}Cf6e~Mtff@COy0~N%dBDhvTDz!_R6u}F3vN=AT_D&IyOsBn*6ok%qZlklLlB4r+ z5B5onX?}3NL_Wt}GfiqT(hG!+de&?OVcLL@&#`Y)kPcoTb=390RS>2P2>B2QL_uos zy=!yCY3~pP$#B}+kd)?>dx4a)CU2Z4eZsV<3Hh-90f^_B;dC%JJ2N~%i|*l7bS{g& zREuWX6iq(7BsNv*za3w?cEUzvuntrZruo5`k`FJ5DM%FvSCHw*VAY%}oxn6d03n}a zX92|TBdkflfUZg%8sYRx4~?cKh~cgw@ED9*!RoCTDGky12rFMO+!X{cs1&UFbEFnP8NAVU!Z1N->x=805pbm0;w0 zVdN0w8pUARV35zTvjwBtb;h7A)CN|rVlZtm$miJ4OksbF^};A7#s}S`KbSTcc#5A~i^J+PevC-cEaGNTGd)vQUk*caZRTIqiLSrVMij!w09m*UMQ=pH6!Vz}}M6 zUKAjn`=YT@wrDMN+WYc$DcYaY-UV88hSS~{fcW)B+VyK0s#>-lA54)t{J}#K!6-+% z^=S@gqEc&t0PNwk_xyM^-bGTyY42~!Dw3*Bdu8B5&--)Q%LhApKEr8m_iX}FUs&`($#4)84rX;?HSsj)G)3?R|2qG{>LQ-cSX}aN3)$ApV^84pop0r@adS z;&+<7b$ZLwWaHn6;jR#{k)aZ>5{khzKbUH&i2qIuPp7@8aHl)%^$|X=Np`sMrA@Ld z@Ij#bIqkiBn#e+i)875Ju;H{^+|~zm+WQAETC#Y~5e$D8&p^efGV>IjM?QqM8OwUm za&fH(tsHBA#bDYD0QnsIZo$a%!mwy*tm-UnVcKAj&$0UmhChpEqGC*G!cdFn+nd=I ze-=+K#mKODDg~p~%hIT!rSZe5(iWyoTgd0wg9M}83!{`6&nX7e27`Q#?Tleta=kEe zh*72(OdAaHIrbBRQ4Nd1b!^4rIa4t*ES_P4;m_jv@)YTh42$Og!SHAC{97?HES?u` zVt*_|`&`>ni44{s6@zJhAnW8qkWye^;tqE0R6L~b!A?CEAXvni<_9(h`EXRBApV^8 zHvURLHev`2h&t^(F# zYVl?39gCXOAcM7^f-ubw&wug9v7a3!&6y6u4Fpbmt50T!?BTTcXJPkr+Dj;JN0fr1 z>9m(Cj6R+ABEp{Ov{zXM$?|gA3xc`X0o=LZ!cHsKb=dAbuawg@8fBqAA?nLJ4>G^+;C4>k-}lQiC+Z;tsI+eMI-hiBfdN zBf1V!w9kWpDFDHwtfdIx(|8c@_+Lc;-S-iYV(uNRz6!!LKLF8v#83h8G%T})J>9T8 zSQ&F&Wk1Jy?F5m1*-5C=-WxZt|7ah!&Wha+ZAmK$ZVX+@uEe6IcICB#F~w^mL5s)= zD@KOX-qFCo!sxymLHCK%UbZwN(`oOi>jk9RV@9ac-b=YMkg4qm#(;c?C9fdGULdj` z`I~~I_9FlxpJN}OAX#1@vLQJ~K~ftMfRN9z7hWgLao>?}iRP|m`|;8orj1DHj^s}Y z;=UyTNN0jPt{_Ys5b`s+JKM`I!Hmd!*Fd*B{Enw$4Z|t%@2f)e2)Fb2sX#3 z(_V#uWIFAg3lP7G;38nOqzIOmvLarJppDcZO%ePaY5Aa<;nI7#ZuQ5>?s8>JQv?rz(XS$y z1n!m;L2tqErwDp0MusBT_9qzwe~RG8qh$IAEir^sy$xsAe zlt^=Gy_Vk^F27eP2-EyvbjXM6Qxv4!3#61F9TkLW142H$Ql=oeULZLHS>I9mglPjp zKD=r1M`=zqmQmLs7DX^kK{6DaLlJ}&#GfL_R*(!u@ckd8IsO#EOGiqd zRBD$rDT0Rt#HZ8V-vlJnY3~4l_*Dew0;45GaBneNtY@V+HZ22+mfJ3`NjZKs*(}j>Fjt>5AaRtEKn66u}~8 zOj86mgVC=dxE0(jDT2cV!=EBJPcbqS!OE*-4E!mA9fyf9XDEW-DTqHs@PvY7D1saX z@uvt%6(mCuEEp!u@uvt*QjiQq@J9vlrwBG5Dt(fn2!aaYPZ9i6K{6D<;@?SgYQ2`< z8ZN&>6ohGh8Wq6^1>u73y8MOqrT#sKD;ERAlvb!+l*VX5gDwZ3c@r$7!LB` zB{2o50^tfW9T}`c6@+Pi075>;Uh*62Dt8ru(P27`P!w-St8FN_>wJgFE=8w~O}_OeUamTK1-gSJo`Sl22B z(*}clxP4JD#(H5C6XR6HVA^1i&#{jejE-IyS;Y9{0O=2=4F>rf`^`((7I(FPwp4=2 zdO$Il<_GdYJ~%%E!-vyeG1!|s?d>a!KArYX5cbSSd(#KAbf0JSAM7vcv6l762m6jX z{J~vj0P*&1xgXrko%WUulEUW$#BI&eGydOe;j>sWJ}8`gj@?f{Ja_cD!k)gPZy3nZ zJ+H_8Vm~%IJ>uJo!sxTls)T)VE$fU=W1n3J5Wh})*8l@%LAfA^=&%!9 z>5=ws10M$6U%!8mBZHpN?>|PQ`&=R`$t^}z!k*sm&njcC+mPc(?XSw1W=V|{MxRc5 zU4%U|(%yam@jGR|+E@C$vZ>z}O25y%SeowPwD(_dH?yR>g3a4$?`A2q?@$)1PJ6En zAfK1h-bKpS!SKOpFAhHL6 zX@t5BvqsvBftx!_WafuEOgVMz1`xmANCi@ZidsRCDN=_d9+HHJQI2%$^$@4MECJZV zX>T;SJ)QPm-e=E+?JV%2=R0^cUn1>I20NOc;k5T`e*vk%PNem^r=0c*6l6X!^MgJl zpJV?)Kzusw)o068&$u4!%?8oc4aLAQ?`3 zJBy?_{+#x#fb>a*(_W>5_;cEOSV1zJ_M!^n&uQ;!1<7#Q`=QYPG&vd=&?L1YBx%!R zreL@$1Z-re1gv-43I@~sU?Zc7xR4m0PJ6S2JKbrop|77wR;+xY4%9Pt3HTtD{+#ws z06U&8WjO8qj)nWQcs^_+4bQN6cJv`ewd*|PjusiLe<}vkrt`>$&^Cfm?1d2`#%~mZ zX@fyN#~v&gSzZ_xEscW}gK2|7KF4k-U|alIJa1%4e@tn@P>bikg5l5Ni7Q5i#dDQl z)OuMOHMBH}6oYBg7V%io|=o;7JnAcw~n+W!{WJFFczYHu5GDA z2I~pMV49ysi{}(zVB!vT?NmIZr=y-#3XqnZ_LlS#5Pwd4Cn?BAW4~b&u1t?QG}7MsA7m=j zN;irClFzYA6~uiX0V$q^+}1P&VVWOEvF;-d7Z6W_evq)I8!c>B{RlwF=h!vp zN^`QjKx9Kwt{|xm2|&o_*f%MN`;LT5G_lhg6!HY&0*Sr zkk7H-I!BsQ>!r48sJ5O`5T*?X`5b$kf|PrKloI4R1!3BNkk7GCQ;=LQkQ{=Xsvt}o z5b_}|b9ZS@HPnx*uvH<0wPly|3DX9Ie2!hAAnyATbZjv}<|qi$284W$-91QDr0nj+{VMf(f68q}gQ6v0DhOGnnBLtHzu78$HpzZ1D&njdr|`5gN~ z1@Wf{VhS=#Akq}UmtCY2yiOSV346LCcvu;8-RciTaG)}#DT3dF(XS$SYiG-f;HR^Q z;ZG4H6eB|s%mW5?$o>>TKY+BP2>L2Wwb$~?#oub9AQ_5a` zPp7??x3Nz$o%U)@_pb;h0HY;EFa#LhilDF5AWac`dm4-OrwH0<(HV;1W?*0u@}~%v zeIs&FE8Uo;2o6yYe~Mt7f@COympV%)cqxJlg*{ynj8#T2MUbtGX^Nmb82u`ORbRKP z2-cnIUlB}Hj0{CE0T{j&!G!>6NfC5Z5PyoG?kk<(Sn&D5j3A$5zkG_+q}Z1tct$}o z6hWDSa6xySn_T>@8x$l%5ge}|{uIG!3X-7+UjLOe$DbnjbgT49h9bB{L2A90-x@Bz z4=4!Jren#6hvy1X?gdgxkSi60X#+w&$6kN3G$+>!B!?h}D+tpDgnW)&t|0yt!J02s zPMY@Nah zlT4?*IVZ9?KArY%R*=fZ(J@YY0~CbLcW!fMi8$?bRges)z1=5BP5e3SeQil|>Kcc5 zt~%{Kq98RM8wPdSt5T2*r@c!Qq}&Un6d9}%1!0;WJl!N8_CL8;V!dAUJq66o&J6DZ z7lxyUSJAmF+WJB|foW4T`S6mMf^5f^uEVhr8LWpDglT?IfAZlavE!vCRUlkJrXz!O zwSq9s4?xK0*nb0v-$z(S0|VQP)S(ehp7hYDonW|Yh}0vjcRv@5l&Js=)esAgV?Epz z1Td%+tbZs*NpEY7QG*QDM8#m*V2}?|CK%;j7^TGMr5H>b z4D#XJsuSCi>xGd+j2}LgwlHll$cL+s1*6(^#-J@#oH5TS2Ga(Ee9#PnG1d#Cm>6Y> z!L-33pJRV;4BOJt3nPmdXDSBM27`RK`dBdB)dJd52`1~yPozJX<_GdYJ~%%E!-vz} z<6v*@w72r;hK6uOecRxq!Ke&Uf#9Tn0}`q1VC=P{va%wH#9$ocMiO_2 z_O5Se2ql(e;ZN}RNvus)G+q;mFAMM97|MG!8dw$yK3PGYP)YkcBk@(CyhIODfoF)Y zBiNz+o00gtq1~JDUpTNc5?Hk(c*TJ|Znz?AM?tVdb`7X~x{?YGMf%|OFW24lPFAR) zI#f~DcKi%G|EPurUv(?Y$_gG|{!7)b>iYEhJw&SI`rX&@|4aQkHmlzut=I3zBO4mJ zy<+ckXhTCZZrc|ggzCn>u`fN4e{K89_ADp~T%?NUe@_{;{DU#@|=RIwFbT&I-ksbU_l|p!4mNRRqZ-ra0OWW=Vl zMhq;OeKacQ&iS&<=>6Dc|4j!68~ zNZ#Wz{o>z-0(Z+C2KesxcJv7j&HfTYCtn3#jRao7WZP%LrFUfQ=o=i`-UfBxt)T2` zsk+vtSqnmm{X=;JdV~^v@W1qBX!oXpCD$EP9}c_|8nHtg^AlSb*oIa-uB}KlAv=d_ zK>@{q4MCfu84Vd&av0k1WhC!zwjtcu24u#6(uQ@W4UquW9@cuFC6{O$BJZFh4nFWX zkfD;~n(Z91??bUyg414ypoO4UwX62I?%FG|3a7*dv%lkWhjRS7eTtziMk*Am9v<8V zox|uBOMD;PH^f3q#}tIwSKFR_x(t+f4gAkPlBD-M-s_O6dSJiybf?< z0T+#b5{k!4CAB;hPmV+i-SBa+^Q+-_eR%f=5Fq9Y?cO-3WZa|Z$<-GpBiTQMQbLf- zULFe63`&m6u1A+jb-;giBv3azctrQJk@>L3%)|QxhjssOJD1Nu&5ojAhkb_^1&_!+ zkK9g*dw9R#uc1V)_*;>@4dLA%MFJbpIMJDdN`_ToUjH~S+35$&sSbx78tl9YGCSQz+b<$Mu zicR5$Re(o%ua(Uo9z1JV@bBNDlyJk#k$gKiZ46eg!aGDlbtQ@o9fq=hO{OI}Lfm6+dJLr!K&n21UW;HC;zU60^-L ze?J<);Z{5035_+Pw;lS;5#%_`|(H#i|aWW#6<7B?o3l^4A8ZUWMCy(sF>HMOor1+AWPcePsbH<|K&;is7p~M`1X_n}4 zeDlC$_I}~ro1-Py?TZ2WK04wXwrpVDq|@1)fr)viTj|D_@izw~I~^p26|%7H(Gjay*v{Zzv!5T3 zH@mGY;uWj12PU3v%TmMnJ0YaEXWw78V(Y~|!BRLWjNt@F7iOn{nJT05rq(t7qEQuqvGY zZEzY)VuGm$azx%V)l*jx^EOB8>%;`6rH6s`Rxux{DsZ4cNn;Z5#`tbcEy4H4sn zKu>TB6{?uaJru&%{ph6TN;JO0-hyQS%badc-jngf_8>aqJ@#q8#Ehdkn1xbKffQ6E zB^9KK8jx5lQet&uk%^gR?**U>_E;7gw~mu!Jz%{c9n25uxG1&qn36F-QgXOri!(5; zX)I{WZA8khLV79stAV>n&iog$8YWfbLR1zlp7uyq!J@a%e=94JjFn?*qW!C5%p|3* zmhYmh!0Ol({9Hcsku0n0t#BlFOS8J| zda2VHRas4icY6iB-L2Ysc)=xDKNDTJ#wjWUk~=!=3AirX7yZDth-NW6&P0*}Rxlp} zA}fBM#E`0bv+VbY4|%ZOZulR!6`$Kz<1csc=l;)W=(f(js?KSxE1s3EsMf9+{C;Lv z@VkRJ^YAtVlEpL76{r5qrD3l=3j?zx7{OS7N!dwO;*WjpP6s=wb@tOc`1gG~woU)$ z+YV~_rTx24^zTz!^l!~atyX!eRC%6Oxy!oDD)YNC9lah%*4~XOkG{pF%15Hgc3`uV zTwtu4ne(wBK>v@V^^=Gdf6hO1*&B)W(=peoFv5M~k;;0z>O(f=Q+xLZ4m#hq-`vQ* zmfd%QgVp671&ri9(F|}-DUgh)_DN({p`X~j=(S?`GnaA)^MD)wKJmf_>g~_pVKEK% z(fG?ATfe5&9=c9?Xta@UY)vxc8{c&?@{MHA>FA+L$BKNj$IOgbI$8z0^xK98Y*g{D zb?mH5vzCsNuXR$bj!g$ZZ(=29G6^}Eg+E#B^lkULboxV2qtk2O&^|i{e`#C(c{TfN zg+1|ktU?t_*h$z(%qKk7L(cAsk7bLnOt%R4@D~^{70a+iu(3rb$PVSl$aed944!my ze0eBuZKz^P047N&um;6o<3Hv|F0cSBSe-oqAabgZzpQLKxcD_T@7V0$o;?N7fPA%V zM<{ugdEh;V!rl}zB<@QBS^ zI3tP0$EjY!h(CKAHAE!7H8^brDuVT$0vw6Yl%arGj1nSonSJ4SH8dN}Rl+0c6lX>+ z>ZwR#UN0&sY&U20QVj(|%LX~G7gbXvF{zgnl9=6#nu#EJo1h#cf!UHj8dwz#Yz;N6 z7*sMOmKDjH(MwhQ;$FHB`KZt8?0eZw!HL}EL=sZRqHbS9V5OP~t!6^18H%rn#QJ~T)>>AC>SN2>PO z?WCsy>#4`vu@eU-9%;t{V2VWoUkpr4YBv(ppybJw(ZC1MzWzX z*co&PFZ;4>GaA18XumL+= z-LpabIft^!?tyY>j%Xaw4>_VoX!%>&H%FNAMP#J>*+*#kE2aFc;f9s}kGXe&kE%%8#sd@FsL_dv z$|_3KsA#;P@G2VA1SW6}%z?NP#dk&79nr9eFB=nNSHQqzFvr6{Tt(4cCA+I@T$cqE zG|I(rkpvVB7ct;1ikBI2C7^~Vk$lfnedazBk@x#w^83L#(|x+SySlony1J_xH4SNS z`G}9S()p-b?`*)FF!ByLXUzapfB+C$4KZmoQIpMpVB7O#Y+nVhqXGgcj;?6l7H8S1 z+H;CpUO^pL*=ycTSWX?7l$1aWzK-gc+=kw?kcq_~y- zsG0r{7#cE4_Xq!o95Dy``*HSzwQVkh;qZ(3NbXz>N^<9IaL&5tkwcxqUn0$bc*?fa z^SAz(Z|?jPzUlF>;`V`u)bmbd=M3jwFqO1uWix*`~yNW;Ow4HpD;XFAO~O9W##7ylXo4z&!b7 z$UHgbV6=HMiz)-`op^|Oa_{Er)2#XJpq#L6k{W8fZIVC&CpEHJegVPN&UbUr4Da_~ zWNoZoY0hj@3>EESUWAI=ehoZlgLBRrr0eDe@Emt;qcU{r-jBg~c0zk6EuB>0FHIk8 z4tN5CSJ1h}o!4CYp8^v$Q8pZl&bv1j`p0y;!#R0NT7iFZ_X7V^M*#?lId9(Kyc@=? zyT9O%<~y8sHR9iH=lZv*Kv+HAyXodMXWyN7I1g>aKV;wEdlpGhhj9G@WTN{Ex;ee4 zvUjRa1>kU<^#z#yL(QHKf}HSC>6gLpgnoj1-m>P`LI-*s>-sch-mS(@$JRPF)Hd%n z_?nO=!vxhEuh5|z@d&J1Po(--f^B=d_+~7&?@tTf1Zxk{DaxR#YF4!@e60#<L#!`c8S|8 zuW_4`>Y&i-p4+lC-+OLze7)uzwN_i*(j8sL-ZMU2mL-qzjTmw#NVQeVZPCmY=syK* z!!lq=dLAsl&>G*X;J`YLSJ|XhC_sf%wByJU?JJr0gRYh(S`At+^PV4}6el~=?0H{{ z*ZfB@@8?bGV%}d~dwp7g_x@hpW~8d~TdA{1)tQE7#n;I+O;w+P*9z8odRKL>dKUEO zdvC_+n)hHY=iIYEv)bz2-QDJa{%xAMD{$tCV@RJwniyk>`ay}&og!(_&_x~CkQLYtNDxAZDeCt-qsJ#V;U=~dJ!-Bw{U z_61iJw7IG}U=O;7ZS8E(^A64kh%J?(*YUNU_x_A0+}5O~D6%Qf>%SE{Rk~T6)gKKl z?)O@Em^EadsE(b)24^pdaosdBbh9uU|MKxZFtBJ18A2iUDA#EgsM;D|572dP3)F2* zuhq=2#;$dnO)%5?Q5=I6xK4Mh(YCa^%x8K5Dcr)6$1`miqT;vUu@a1#|Zbd3Rg4pEeHG&Ur@eXNLJ1G)p6QkK6I}DnRNS;ThCXV3w`w z7~z@rV>;9icV4^vF8vHern7Hu{~evslbo|@KXZF7&>j2SxvDW#P((bZ zWZEDi3qd6C`WG4)_TAY9cYfq=umJS_ zuh*xw4e8Y_A|vCfOaoR6UVUFxnGcvU3Q<)utx#2|u^|gk<;1S4JRVg7eKSsnvJZKs zflKSFKUMMyi;}?I$BMinGW%~;YNcjrkS7};Pd2(eJ7ur@2@IBDJ*#m&Y`sFCYTdc` zTWBpTr(3VLBVWrsq*>kF*6@M)gvY|n#F|GZXmGmo4eJ5=T95SS+^MbpxVugz0~@`$ ztwwH(?s$wmr$DiK$2=b7bD4`cPeCC|Sc!Q6O3MPx(+h`A+!OYQ6!J{FFhlcoI_K^L zN@)F;@8{docOZXxvUKwsU7Z4O=lMbtwYm6@y z8r}R6a-&v}lG}4nKezd=n1)V3rptVigJ~|~$ZDRY-AgbA*!bf{-`sa)5X-AIv$#q# z3oA5hNWNiyB-0%WB8LO!h;9_Zu#IS*o^@`=ewszPQ5=uVUD2(EPe)m|aU(oER~hDx z0xSKYLTlPX>8{*%!_#T_I%nLbdFq9XM8hp^*39WmZgVV@hjOGFb#BvWfp}R0O`=x! zkM5C%A$<`;x}CLlt~c@y%m`4XxGj{iP{u+T3uP=Rvq09(A3En!07C<*)+}_zLRY8+ z9dgb+8tE=ea9{}z3Od)iuva~I8?ZvoKs87+Kh(?{pa$Xpcr^&2%|s2-%n=!yIV2nZ z^6@?}@Q+tzT_kLfnvif&EEC96v7J;e4`Ha#2%7Lq6eHc=Gkv(H=ZkHwhpDgO@KvW- z4C})((j7XwAS66Fr8Ivrgt8*t29cP+N*d^&Qv?~D6nLnaGM^Cei*qCJ{k9H3D{c<) z7szK%X0`4gG-sp-TbcfJQOyQ7xV)mk1YtbjggR@uC%qQBpU5%`YtT0GoanZ- z^0&XZ1`0z4YO@8D-L`CLhGjg-R z5$i=nMns0SiVRz-1WGmX;spxRhH)5SompHP)ya z`z5K7X`@w*1M%9zC0FfjUDP;&H4a6MN&^k%;nmqEKV-kO^$8wBr9SaYBY@(x4HO9> z6tj@bq#9e^IX%JJ@xB26mf&9<{$bW*>0qyUA!;~(3SO^3^PqlE5fS}&QIouF0?mxU z8^l2c9}R^y{1Q)cMa+a}S|!(4LA^Fc8Nn>6MqYvC%E^G`$n;g=6KCb_{`P&J2-Y4%cfDqhD?H7L5Z3%q`_Kv)L5(v}a_ z6JA8e)to6c*Q%Pclhn+#D^w%;;+Ih~(NNghe*+e{L~WY0 zu<_V^2i6mx&dOh9LOS@`%Kkf)TUNA+#h|{%wXwIfu}QTtAAsVq!!%vBQNwHY<7ngM zXd|V4wpz;<9199+)BHW3#CKRzuH=XXjP9Z!Rp8xi<@dw72dm}$8Pjl9#b#%#gV&)p zZ0xZLN29jodumVC6;m#?VZ6pRyFESEyFIt8Plss?>N|FKAM3z>3p+|bbNhQ1vctN6 zaHl)3eoD66Y{U)+tbkmpT7I@e^OVi*XmGtC?8ksETZw)DwEi31<`*ztYX0&nuz^4} z5C(ZuhczqsEkxAxsu}m-^seG;*iX9-9Sk*bN?wP{IE2YlMRdb3RYO{+TuyDpa|KKm6`*aGxr`hfQ>zFKHP6_40kr*? znWdX=cvo^ZfnJU~8WzQs4 zByrgiJRpc`<>9Zv!|>5g{j*jXrE;2rcA=v^111+W?Ec^}QdzNCV0DfqC$6O<+J zG5Z9tr2xagOu*Rq;6wIsopY(&xImZCjTRu8BL@A5oiFrtmR|!Fgh|xDQ|wO45+Mj8 zm-h*Q7D6*Etc99L0Rokg>SAGi;G!kMMoFKvLD_t)>~zdbLVPs`tVv9P^T*(mz}SR6)tdi$Y&EUH#sbWdE_2O+X2%-X4sx47+n%k|GR}q8$60E4%Dm~Y%e>Oj zt?cLmC|oE&6pKaS6I#@d%fA^cM5NUn&M8}AWY}OY+(YN>J!Mw9;hAP-;C$!ZWlKN@ zWmYENZ>j6RzQH$qy-Ou$@%{ECO#aHb{yS_Zya%(zlzo7@AA1cS0TLef;}P1F|Er$Y z)$BtH0>2BCouOuh*w8^1>9bki1-a*xA z<)@nE+cp36Dh$TZ9Oy3Uy5Hn)n!Ph0)vb^SN!j;-33 z9|!}M)d-_}6*L4^JfP9-aW#Tb;`rdkLeu>c7^T|_Mv1kPfx*Pdi5tPmw~~{8sXM;2 zTjX(9ci5Ig^{ce}eI{gLxq@Oy-{;(RW-xNbV|k>+S0VU?Xf)$LDTWjGqa6HWlrEBifk z^e18Ho1j(;z_kf8n|~Q6C=?&E1I=%=V7~X_D=xIe13;lM`D7u8gAvS7rZz0ERl)gW z1c8+e9XQbe`1qlEXccbntj`nci*xQNNX3enxWJ;VPV;P&F>>eO6tOGl&RfR0?wltp z)6Vq;2i_pMoRx|{2qRG3mL36DB2O_zg+rP^l~_jyedyp=nEBDK3V<|=w@Yu$VpuQn z4;md(!A*tb;0z6Z*L z*d)J1#|3X_k*{DXM{OpyuyMu^b>fgA#CvRg*CeTL&toTzP$=<$T zg*cyAgvttD{S?ZY$X=>)f~p3|xeV{1kumsaG&RXNH*_I;FP)3E!8!O82hrBR#0h1D zRO9vxcmiB*85fQ#z6afqRgej|%yKSo^Vu$QK5Z?a%vOxvIKH9*ct~5+au$rf0-2NL zbH6I(8-rhg^WNydY78~thmxeh8&Hul_09wcZufg}vMFrp{huVJ-d}4l^={R2SA)0X zFcXX%V(L8s1TPCtaArAxv^Qkyb@?&aJif$30yOq6J^);XPB;i3Ut792_&8FdjlFR? zP|T_@jo7P4-=lOOrrE2)47|#!F#T6ujKi~YFb*@@LI_~vZT=mLg!_{qVIpV_4akLQ z{Bt1TL(TCGMHbFRs5MhVdIi9RgcOf+RijOUk;rkb%{TnmJt0=Lp*UZZ7=~g_y*#&o(rtKMO`4}PZp3e z=$pt=nUo$?V~5z>D^!hHNor)8ZFBF1*Y|02pWaoC*{tz-9P6W6aW3dF7;NWaxq^s@ zwZCV9LqO@q1`lQecSW{oR*#BLy=2Oq7yaw8RfHAuR>LzY(`}tx%q-_9Xenp>3a_w~ zL4`TabLNA1wT(Sb$^@~F8_Z9wYliSMtA|S-#}&%sylkrR9mjvs%2m;g2>DA5czvvD2 zzI-?rOP?nyczOdqqlRagSe)zlFIzX=Ij|eMa`O4sj~N34u77~hdQL7sLt0a*|}f#wxL2_>7{vpfIYt~1C_vjEBnuZzkYKQmJ+TUnD6U# zYjjTjjEQ<^@uy?)hvT|#N29*wd)>;+!3q2+7ZlV1gE)@ed&@A>^;E}5&n;W9N4dtx zQ@=|;gEK`jWr+d9G!A@BIW1=C=NUb-1KdX$#f%B_s9n%149jvgUPVIUY_Oc}e2-ay@KEd39Te%+I$`L%8ZW@d#3?_8W^ZB<%~ zcX|N+I^RIr!Jw}J!!Z9B@!?#&f%`9b#n7}PAKNbuckULL@2MKWFXU)Fx6y!(O-H*e z#>CfY(yDQr#aQ$h72IycLL0NR2In3jS^q)FIs&l^u5Ti&55JE+y+mtJmV+!4cLY zm)79-D9d%}IHC63dUq}?BgL>Grw=qdy*Ge@7jQmh?xK4Y&Ma(5zt`dH+Xxk%S@7~< zZu+kM&ataYH^bs=tLYll^et0zb&q>yhqG@JHq)!zp7d*>^i&JD24~;ZD6?h{-5Glv zjUGX#UV!(^V^L9~^MOBN)eao|QgA@k0Vn#%qih_!eK~PJ4I5t3UE*Lj038tyDvl5b zW^u*g;GrT39=f4d-1@-UBAvMSrNYJCFg~>P7}85{(T+aD{zY71i%#g_vJfud1S_~8 zPXbqVybYGbW5Jnmb;(yfYstrpofhy^w0=; z*cd|(I8hg(hucUGB=abm(DJ?)nwUkJAT3~BHy2wKM@8Y{Hk&4TpjV^`pulx(hVy|5 zm^W=b2A?WO_%;CvoBJIu5`G12h6v(kA)(@kkq|==@kl^sN+hJAS3m+~oa>hv_m%)> zHBhr#p|l9^D|nSML{4@13!!ey3J=mei`3B|D@5c|==VhmGWw}Uwmf7FgTxH{3M_h6 z6z_kC;w>k9#|NBqCy4Ixu8RoTfb}MQdVJ!{us}a^5;a4~iv=9Hj$6`9dueiJF&RuWht_ePh zVp6^ijX#3&x1t!gyJuHIkHpGc>IZ2=)&D(qcvoYcFZIj(kS*QZ1A6Yh;DuB_SzgDu z96|ZLDBr(6I8D|$av&dwGt5?;Q^7h%KTwZpiz6*KvZBK>rNcC(`}46@X___$!V*Rm zm>xsxoHa0{%aNA3f_xk~=8{H~dO0o*2ry~Ym+phKb9&F0RZi6Lmo?b?I#DfhK1_bT zqzDuTu?4LX`_a>JfazW6w>3LOza^Pazb#h!twH^^oLNf0EyXKD9e0D5K*zoRB++rH zz1Ug^l-pbRjn(5ec^o%R9w+}s9%uYk9_M=SP-j)ff_8A8r5r{>>bI8z;9)4XXadCh z_}WC}mfH)3ORzWp29Z~GjD^jkB^c8^$27>3sj{0q1PTfkS4oVTY8%;Y4#`m4$Ro1s ztz_)i4;dJ^>Cd906M~x??1}qv+SlgKl z4S2_tOLR|}XuyU)eTm`8M9hzsM1UwfZ;KKfQh0izUmDJ~FrH85l}ht_T(scA;{_E* zgY%-eB0}(u)-lsiWM%AQmVwVL{byraIhkD62VGnvGo4AicYYCz0`Fj zG~+U0psh#W%&dBV|Qo*9dZ`6!~M zLki0Qd8PzNNjp+haF~t|6{h$ug{A|HQDR3)h7neh1S6}?5{!Un!h}G>%~c93Glge% z{vrj>oQGnE$0RNUrG*Ft2kN5<#I_*_fnbfK2qY{?ID|==#9^2b)C362R-Tp-N#eFG z2|^!TtfT9)6`csrbb@D=3eWuZsPKG=<(U=u{_xQ8Yh_ZA`SP>S!SOp{bg*zVk;J1z z<)<_&Jl99ip?Kz18Ta04^UQXDjj}74V_V(ItUyr&R@jSEBYK-TWKS5V@|BT6#5ums zLSo>?=VY7tDdCtna-!vp1;;E@W(DfqSVwhbR^V(5ob{)$S%JU7f1o@+DWxr*9HEC& zGt3G&Gd!stW(AlQ;QT@lB{2&;h5a))v4`|Pc-M#?h$a0Fm=z9D8L9zD(F1ijox!GH zBdZ`+P0Wj`4ggeZgQ+8DCG+f_=I`W|H9&HWC zzItcn4oDPwz+9+2V4la;4R*_h`+GhEa5(S@eX0m`25xV@2`e~x*R4_cba0zsVE0V? zDeT=d9D0%6vr}nM=(`GS;@;WTA!eEEoo%)E&g3`u&U(w>m5r(dD zEbxoy#;i2 z{hdw=k zC*K=r>MHzTBbOjQ>L9>CIeO482LTEzkuE018IXsuzc!_i;1LQ%L?T!BvV1lu*VyFrDL^D&%CJloca z5LvLgUlTx{3fR(J^9*_lJ4-y_c1X)9gb;Hif~t$G@zEXo86j53Jd$G101+g8RDgKygly8u`Xw zs~!vRz$8@#{T28Xc&|phV*++h1>vBz7nLeviMOiS=%{th{XxJ08}MszS%M*)=^~No zp0`#BdFAcI(YH1zFg4D3>)8gxg9x3dXG}~IreS`fTetP#&^U5P+~j6gXoB za^`Qn0kfC38~{+qa5*+0i!>6Y^`y|IWjo-m?1e<|Rq}nDaIMhIn=<-u)y-e%<|v%8 zxUH9N-kYtP_xCl-n{d)%7#z_@coGEbD!e3_I{jqoWGZ))B9w`nJxPz0 zU3GC6r*_`I6K7}|*-b>to_3!?k(}d_AeQA5ctj~2!16}Mc$rr0Hb3S$uFW_kxOSBC*sFw~dWq2+amK!Mzn=G&)0+(irXk%@Ut%NVEgV+LL|Xq1 zdp?SGGHSyVj%o;ehZ7nyCV4~XJ1jwg?3P4)hhGjgWuG*qJ5)G)8`+e33mYx}X_vNq zc!&7#+xh@QwnMqCmSH*wmQRv*dya?S45`{Z;rYzbM_1NZP`K`)-w%af#Ikas|8_lqNXL&%*+gk}ZDO|2o6-XUi-W7Q0h zJS#!F=`M?k&B6d!(>pSf{`5!VzgE>D9)!7$oJaPXWQQn5c>!CM_L%B;N+>{K=65WD zqqi?mV?kH3&jtqrN`11Ke54>l!=r5o<8lOHx^E~Xf5qHY&NXG3I2tzwJ-4#VV(cqP zEXK4M=OLB-0JMCb7nhSoXVUU7TPaZjN%A-9aC(h|7k{=;5`%&@>9fh{-Mj*iA7&uOja4vRb6pgT^W#ntCzvw>7 z>Y0Hf$L`#wQI63WMc5AJegN26_%-nSS`O z=NC{71ksk47dgn#^U$X^fXRd@#Jr(a@7g^*hFZ6r-D-HY8E~SpmQ(jeMC(>OM*1@! z0}aTiqbmj0AKthVhhYTeKCr9sawr39x&!qO)7K=@ZZ-@m53UBV=y}2z zHsX8Im?LaA=c>Z4zp>9^?a;21SXJU&%%PvKqWM6cP!L|L{^ZeYHpd3#sQLvh#_IW|h&R9!>HH3F12Z z3f%cPWo{wbrkp{oMQK3GV9TA|(YCr}!xz24u2);f=T!T3_VmGHxHC|!M?^BB>3>1B8@Z`BK zbnzrs4ot}x{&*|v} z)}U7ltey`Ivo3nB{A9DqmAA)PISKqnqGGI{@y4E$TxI}%^_AT-!ih^T7b25jEL_3m zToSCeRc87|94j@aZR{{z8`}}B2Bo95YIwRwY1Dy}D(K?&*&&>|1a*>n3d9~$7tqXj{mR*Xt%{}lsLwiQR+cY;xU3{l)uv**po)+S~4Z-({`6V*Fu5T ztUr@GAq?(=9YgcdEvIic)qKYRBlkPqn#*9}0Hj;9=`A+nRx|;}QvZ!laF;F}$29Yx zmMd`#AYS~$00{vOQFeTt4I08sJ4bDnILcro&G=p59NFqRcC)kcVRA`J7IJ~78*YNX zBUDH0sV2b1`3>vk7FIyljgLW-;9$fHeXT-9xAFj1@P_#o+ERy4!P*V$-;GiT>$bT< z$P)g??eBdG0s&OZQl+>8+9JK?NG`RCNqE%Ie&XETSkKN&{1>qV`Vw}df zM4WqadKXLYih+X{W$>ZcTeC>q;yl)jVSiD`z@c1GoQr1(aX4Ni;h=j~PYWlGfjyq0 z+8?BHi^ap!^d_9v7EN}VwMvRuj}p4udX&|^B?4dy3noUNAVwFW8h}T9Lk7TOI>;{K8K0c-$ZSCq96+6H4#*K$Xq2f~TWltMHEt&MbB~;)g#*7Mw+D z!AXTp7M%PDUFC{_X&0(j^4ScAuWURML6*m%WC$M2D#$yVpZVv@5(r_HkTQT@KX`2y z%hPLa#`1JJByo!NY0|y{aSP(8_7$P2=c)E_DNqj|D+<;?4%=81)keQ8_R%Af)0wJ7 z30?#A%KH48F539`7@8J~7X;7aQ9=8dy;WXii&nE|tGP=lnPZoj(^@;s(XHT~Fd>42 z4EJQt1ij1pK^>*GmXVLZSH9P`gUzyD?Jiu|!J)A!1#pL&?p_F+F08_3-M$~6OxxdK z_1r(yyglRFq2{!V_JUUkA%p&xWJi#tEnvmf4X$n-=vi9ulJ+n}O7*D5rtdeKBaPh; z*}uO%IFc~Lae&5pu6VrBzFvu8z2pq!4$w-Jn-c;8s<2*_Y=TXak)`<@<>|GVXCU_@ ztk-^7nlDw~!lwzGCs=|+_%waE3hhZktocF=*@_s_Fn008%C!Gt|SJI%HS@CG!IyfQYPKA7W>o#ggBdI|RH9JP%~9Zr+MM8Gl7P1xQS zjlmmM=|z(8799OK*s%*|cpjisY???IINbME4)@nW`G|G6pI=X3m>U@xQMX3s&zPW_ zP3nY&ju3$G+;BVA=v&$mGnOY&L$>^$jc|c!gc%?4mKtHkpWlK1o`h#FmYU)+p!-W9 z(st06k6V=xqXChew`v|&HEsDmS%}i}rXNrd3CRe9CY7y*!Wtk6YQYImk3jDg{o8QY ziIahTJ~Ygoz?fm~qH7KocoKtxkOpc_;~*|exekh%VVw`>INcgHP&Z*2LWFe4DCNe8 zSPC6nHY0+ygWeU0sfFn2^x%dPiNoo8;rvv-gbv;pb-x*?Dul}wR7tEAq4u=GAPeJV zc?;tq!TcKFDi-=h9oDNF$HywKKpl?sj@B)Q=%Nkd*iFMN_u2VM!QVODk$E;J87_ucP5*Sp z4LlxB)pHrvP{ovBRz~tHrO%hH8RmDVbt~}eop4mTd^lQ>k2qcurDFAPtLNEJo)JK- z=d3o@LjZpQ8oi*v9Q`PwRxq3_=YJu3{|tK^OKb>Hjqbzv%9$d;{47!DimUs>p0{@c z(Tpv7iNQQ&HB#u$bANgTpg>NoDcudo)o|Cmr|)a5r@+db4P$rVMseVwBwAa#N5SP) zJNy^}b+I??<}?US92-$~!@X^&r?dK-0_TiOez4;X=X;y*{G2JbRO9UIl+8$jYueto z@ebSIn)ExIzeVfz!lmdS?m+tOd(cDfaBhcp(Lr2`w0&LaizwfChx4ADD7}649lCQy z1KW8jmQ594NN}lgJAPpMzTV@2#t7wcC2#r4zosYPPfx!(!E)_H8j->|8Shd+d1U~d|XYR z|6vw9&2S~n+=S{G+iR%q?F4cD15+##@gx^ft+&!i-#JRWwXnF6AB}~_ZgEy_m98|9 zmjnuz3mI2H=Ubxrm!)Bx#Ne;256Tb?g+H6bfqPc)P>4{gLsR4x7+yc-hqv8&;aA`w zT>T+-gsiB#7S;f>ZpS2;T=1G#2&?`=&>ub#)+gF6nJBbdaz)HR;gK-*%P--nqTOOZ zuy5>EY#sFZz*Ep5_5{)UI5)Pxu%FRxYz!CigL4iUxM8-#D=-{v(tx^5sRSMOQRukU zqL;yo4U4zA(48Z??ObYNRiVg}wr(4jXyi3Gy$G8Q!%ENDgUy~;9@HZZatqPNVPD5h z5PnKhFor$bI02@WLom03bCw+o@@Y;hACKRN+%TBx9=!;5Qi5)@b#e`B8$@S_4U7rT z0GTeFfH1%+)f*D@O+?Uwt`}w8MjBdDKm~Ba9?TX7>6{6S9Iof~F196d4F!VOZJ0vO zZ666EB+e5(x8ba(!RFw-O-$|4e%{;Qxve9$|JFSpMB?+?^0fvqQK9EV$`x_gJxF&2 zE~de~!Ntq5O#^{CsZ~e3=NN-Bw%SlAq^TOu2= z<^3SV2!YtUU;Zml z>0Q0^Q4;YV@I55E%+eUa&gQyws|?@KrMwk#wKr_@FW{b{&FR>*-;Bl=Jm{X+G3-IK zylqQC+cwwPALUoQU2yh6$o|rIhx;>aC&AxS;yY*GBb;SD<0lc~K0-tskQV>}p^pmM zwz$rIy8zZhr;k*W|1wOnTN!=nUByCH?}gS;uYsLzp|N(#6^7;Roi8S{MuI|pCe9hd zU-1@1bM34ja(3Cg4*a*U!;L9}V8NLZBuexD0nK@rnB{GH5|xAgyll#={QiNC{I>Po z$}Y!J9QX1Wd0#tcA)-0h2)wKC3p*py*I3NgL8G|d8C17Y$4CsLC>RB80u7Tf&HWm z@{D=XgLu!Q2e8us?zrC8x)CpiJcD;TU`pFs_nSzh)*Zbc#`x-(mvyjr(QJpP>YCM~ z-!on$isLiq?hW)ea(hP5->3((l)q7Tyn?_NVEcwWgkshNx1)@YOr*;0FZQd53Ai17 z@wB)d1>|vDP#!0LDUUPu$m86v@UXeU5^#lDa0RGx&F0C=KQz&pm7>t89VB~`!rs0> zEhVUhTV|}x9N(CPjnMO`Dc19-25qM25uZd;LEBJ7lY{G#+iVLRRuOx;^7(8SYJ1xc z&Ct!E*!mrbZQ!B#cw+l^=)l1HcVM&GbMkR$t&#f`6dCce|NH|}T#x>7V2rpPxy}`b z`8ScwKeh^;rteX`_#XA8@6ii(uJ|6E3l-1I>Ua^$Ri=p&A!YU)B?~!gDpXhtEFwW0jG0wyAvsa80^N(XlF@skU2J~^h zQdeMG3`79t zJ-!e)D*86-f$I|FkJ$7AA5WxL5*ritO6rFnab8I)SxKPBcnquM7ly!-9s^K=-5#vu zSLUy4E?{`gS5fspshpj zgnf3fIZY0Z!4IeO)7W?mP{j1ywb)N-Mlf3kZVj8&(I)c@X8tRBMEswcv8XIQh6uGU z6PDY(VY%Djw!8!JAujrkI>>Kt;=~{1*CzfsbdbLlWCCqBfCo5J6(b>;<<$lQ^uGgj zd@;}R{~hGe*2BHar2GFNj2DlGa2%EU|EJ%KL8~@0J-O>U$DDh|vop~0kUs|&@zG8{ z=)%E}(@&!R6I+?|0Q=AIe@cCFozSCBu7~}f&@XPoi2u{^>eTuI5M^7B!kvN&+y6;X zy7GV8PgHc_|0Lv(Suy*XBlUmcNFDJpZ5Hn8n6}DKc}%-Ix(AGa0o!N!FH=~V1x>T9 zNB?HQitYatg_W1~9WGYx#P(c>Kz^406NfMMXxEj{ldqW-Xg)O4LckHF46hyc(+*u*_%4GL_5dFW(Uopn#5L znScG7Bycz^^BpuBB+#Fma|kpEmf4>Y6YNqVrhsMkufcDy%>LulR(iceOp(BtNm=Iq z75671Ac|#%#(v9xA}rH=Tv{~GJYjp7XU5`UKFX-+@KfUB=p)4iN$&`8VIS*^;tq@> zlg$5#l_WvQs;}aB<^|C_vvX?-o;eT24v$Inhjb262x3G;Q;6+JD-;4}5Je$j|0j-N zQl5D@{!cOkqOcP0@T2k*cxFhp*6oSnna72B=C@l?@XQK)e|YG)9TNJ8(82LLVsx-@ zSAtdLr$ondUq%ZnpaxV$*>&_{{oZAU1?M^*7rjtMz3UDJL<zVBQ?gj&I^kX zBknP#|9==d!|C0EZCbeI#>9yWu0SH)yCS>SKVe7v$p}7O+R;K0e44%%JK6(4iZYEe zg3od!DpxZXwngpzhM=z`*c8w+l_p%}LqR$+YvJFsSc2RqxU?BBkP^Am$| zUduu<{EXmxq??-pfBfrBY2N#AEnw*?kOok&B8MMDnKV1#NmKA@%WrtKQ)NyOGHKSV zl+UDvcxS54*5Z8(-m{;8*|M|a`qUS||LsZ=P$8_^I1r9|+py&X6Llqb?5!c0-uCY0 zxt&XM8Uaf)Khn&v)upiT^fS!w?To&g9!;!Y<0yfe=ASZD8UEO&vg85PZt#Z|U;LGbB z`0PVsK5%Gaci=E5NAv$hu;XEgkJBo<*>8`i&aIP-M}H1~khJ8>Y>mXVu>%J{y^leAteYQyn8q0**Cr(LJg z>Z8*>y;{oBgCShjRB60LB%F4MN^6Nu+jf{%)#DtBFoKL#5#k!^n4QR6oW= zr`@U2>Z8*#Rayp65w7EfEAb-=N4ld@;b`U?L>ciki|e9zU=)@6rVqJ9N zSN+wOX)-Eyala%k&C#NUs`7aj18T=1QTaOlOD zU}weK6D@{gfg;TY{DA55ik1ryZ@*6lvON|GrepD$=ymZcu58H0`wZOXNF6ns(Zg zNYfM<5+}310vYNE$qpQ8A(H5iZ;+OTV>;oqoxrQ^U(^q2Kq)x}ir;f1RKjfifDQXz ze1n9Na6(^6Sh+-~+5TwLMbfDD=(JL#p;3KFQF&jN{u7l?Mh)T0Gm($9x=32tcsRf| z;Wt2E%k09-*==VZ=6HmWQ!0S)Z@7?$&hJO15T%iRh0>DHZxo3}==Z*}6#X`nJVW9?#D80n7~;S6{J^H) zA5Z&v^!s+UpfiSk%T!tn{r*y=#nA7nK2kP@emyEJhJG_tS`7Uz!Wmic?il+0l}d}D z-vejJcQN$)7nK%6zXd8ShJHWqEoEcq*FxG)(eGLKCZ2v9PDk2L@Za(HCWd}bk%Utry^1bpYf*2B78R+|>HF~%Rb8Vb+E=KZ$BBe4w;-_!evvG-gdfx(Ut)Oyx{I0U^Hf^QL?58iVkY{|6Qyj-M4zG3VkY`IDlKNB zH=ZD6VG6PgH4XG9I?B@=BJJ9T%N;i%P4HPV1)9VkY`OoWN6}qLq~qg}y=f zhT0U;fW-=E4eq?}?zz#hW<->#UB{CSW<-=KOA=Ns!MKJMt$r#kW>UWcV$o-=r&0x| zqEywOhVa<^5A&hrVLvyVcCt#-qSKax5b<4oblPuJ+Cc2zhs*v#r7ek0TZA7d+ZS2k z?`~jP6p?dY3z5%!gETLCRUccgikcmfdEJPXaAssdXARHm36i)phYmAgVf83+gp1aw z-Lk|OJTXBlu*q_i?s&(Y_odUD4V)NOIS{TUq3>f!SXLqUwbSOPG=*O~?J}f=fI}yg zITeQeh}4A&O8-u#65T4_zcJiQtcx_Y>~=1}n(SuQ;K`F;{>-hqzibmwg2fAkZRjJn zf52A5nvO-BO{gc6g1m2NIP%-dO5r&d1K;U;4#kNAD)k|xRrUaFa46^(7(jnnD!^7b z;NRGaNX|$%Cj2X$A687QTl?DA7CC(R#ha~%nof_B2g zlJIXe1?{wflC~;(3RYTdi#0n7Xof3e3x1&&Z{U#z-&znMR^^HaF9qYrfTBu!K>sBP zD;MC?a2gCbA!wkt7D9=K_9#Uc*l(`XPEVpD}R#u>yah>?4AOyz8T>crR%+Fv+ z3NQ&nvN#Mw4U2&x37#UQ_$%i2P?5f@0YUlS(iJ%K#|}RjjJPS8;HD3ph4m zGM9fK%sM=RUt>ovaa=VkFAhW>f@lC&MNyd{5IffF8iIHbAYe6*yQf4V6OdhpH^P!>R8kAw2rpfD8X+EA$a2aihu zB|8zy!Uz=R+EBQt2)@Mlnn`+83pGEkEjLG?FxQ5{2wxVCJ{3*&{kHWV(gg3qLYLQNwM$^#K7%(bC#@fIAxZSKRAeE9&ALh^lz zedVNJDC6T=^ZnIfFwEtjVaoC|Xr=&@Aas_6VT6RvjFRA$sY=Js!+Rs8ZJ{$GI~Zt9 zJ}T{4j>PrgN|d*0p1J%3&2uFloB=3_h`8`X^CKVEzeK<=mw%X3 zb$A5d-jjTSGj>@VlpA>zLKZ1L=JF2{oR-Sqttp^1Cw3_-0)@FY6xu+8=_#O8B|_Qw zU*Wbe*M?Fu5LkIw9wvNfxP%wHCIyTYIT?wq+0#GL8fGhKYLg-O_b=F*WEx$4 zBCq?aKvKFpvlXPJIo!(#x&SGe&cVIzxUSs{I5zP!mwy;!?$rcWex4LcJaSGALlETX zf*c=#1>MOZtQ?crjxCpm+reDB9o)wc)_<0QKegbixb8d%Fg9ahF8{z0+VKe9oC?eW z#+5&^?p{s9avcELlRCU4F3c*8~KWuc}Nis1q#l#<}TQk9O^T2@C&i`GH|OmHkp zCmYu!3+0(8Z;vZ;`G;|({Wkc`?&MIo%!5#49a$0<71HxbN35ircP!HDj2XDTp_iL!8b1PpU+FrxcprUFxv z2*wcs!(1DT=sqvBr07&eBA6AIgmJ@M8;s~aH>LtpnhPi;KgZVy+EFbf3ahU~2GH+|;azfMG8GLb}hFAF@-)1PM=Y z#K9ROaFifnHvedJ;h~OT9v~%SI7tLa7T}~1BuhU?3MF2UY`!Q2AwiG~Ne&^IAgKyN z@x=?0SKd!C*e&RD99jwhCWRm=N(Cl~Ao(FT3?^QXeD_}R)+7j$m%}ik1j*l1m5vuA zQzNA#f@CyGCmYu!f@C1drw}Ax?n(|Ni6Gg3VHirhAgKnF!xbdY1B^W?@r&qlQ-Mh$ zNN$gSi5Darccy4f5+Ti-!(1DT2ogssFeQm#Uh5mi4RdWUB1mfA zP0^{0L@@V6z%bVaBZ9<81ty6gxhMiAUXbkHk)kz81j%RThdUK7NFGZCCW#<5VO2%-K2$F{L z!mJ{GMe_Xiq)_4oi7yNxL6BUX96~Zda$Oiof*|?#wiJWif_sOAxL_s0+U3LoE`xaFGyB5rD#nOL9+dvaBJcP z$sMV{1QKVUKLUoi{0j+^V^e{tN(3`B0*1LZ7!f2(-cHe}zKLKu&klErxi%OPB*m$~ zG$yj{x(FEN+F(SG{IEGiYf2Kq{5}GPxi%OPBnwl4$w&lqVFV0wZ7?E8T&ch$5hT0M z3gaeTkOViS=u{Fx@|OshctJ8Z6__M~q&Na5UXb)p1*QgFkK=U5N5C+be<4BA{1!Wv zY}+%Ch~xFyM2<4qF`Iuh*`RBalQ2kI=CsT($u62{IAsalhr*qZfcMli(eP-_Mf($JKUn(mp#7YlCUwH2wUI6rCzb z1k-+cxKqrv!Bh~8l?qHoBA6E=|wPoQh}+#S8<)19|6N${(=1J@CdG3%T6T< zo@qH+9FQUbLaF1*(G&=HGY78*fcW_5EodO`M_tqx$3*3d)RhDAhUkxz0KP6UjynpuffQ&Q_Tlg4!+b~HZMTFD-tkUYE)ACgs={Wq| zXG5hdr${*ML6z1Lopz~82hYsx)%CaN1gQ7X7G?PAgGq z*njzd}u(%^zXq~TaKaTxZ`j>9&BI}?v?OOWXFEk@V*Nh|TKuJ?5Mjvb;B2Legq z#D#;ISSgOw+H=TBE1Ra{u>AsJ63#~y*_!z_!qnqT{1gy&4@8x}Ol})lQ4lqNn?PD= zpcFVP;Do&Gh!DgVIQ$RK?etU7be@opt|`9N6Ztt>-N-sat?tZMiPT}ji4WU}RFT4o z=i7JCzng(N2{XL(xm~q-+dD->lMNDEiRVs(sNE{dbiXL(v-2w3%y#0{|zs zTlc~$;3({u@!?e*q=m|@do4zvKFUn!l^p2%oCb+N0CXKpGm=7gYf&J&+bEw{E-gR~RP2T3Cl#?MBiq_A%wwy_lvWhtKbkKNDzC8=Nk zUosjoq~3-g3mBmoQvb6`iy`%Vl@>$lpCRl5%EplTgDNeC)Gt+OF{Hj-q9nW&L+XD} zX)&aJrb>$;^|hBtz4g(gUZT=sNc}jZ{S>MHy&uOTmeh5o{RF9hAyE{fNPU4M#FF|o zDlLZ8Ke?o9QlEzWSV}w$QeSy73q_Ioen~iNQlHMxLF!=w1gVn%laYEg2~$afu1S4+ zJ{$Fj98*ak_0}j-ua6@2(dS`o|M#SR%0)sVF{HjcSJGlgeVj^*A@v?AEr!(pd7+ez zA@xxzEr!&;y+FQ;A@#>qS`4XQtI}dfeRp3e8$;?BlYIPCG|E4eUf@MSW<}8eV3oZ#7a4Src^m~)jdB{KIH0HncHk&__5Fh!>d1m z8~F}gJl7qus-52J&Ib0CS{_pA%=Iyj<#*u=CaAO+ z7IC~vi(wHjogq^-hDD4~X)!F~$KLW?42$@iN{e9;!&F)fi}>nvDVv5-2Bt=0IbAu032$2i7w!$Ze*nUStw-25 zgkG>$Ynu6{-7CXK(;>N zk+6e0`xhV}tfl<}PQX38xQZ`}ShkrQme|Qwl;#fIx-H_;{+kn6)ol@%_LC%GVI6Q` z6KvVty7fvEejC=}8a%L4!IHggl;8bEn!$BSF{%aK^AlKsGHBlM_kPc?#$(|wUeQk9 zRDL3O7|;wKf3o=KDsZI~i#dJA2q@)ENr48Ch=hEt8}=RXbB@JI*A)CeP8NPdyxnz# zQ{_x9dUzCKG7U0wHgt!T5x+T!S zh*}6G7Mku@CaHNJ(l0)yDZXtKiz@Vuk@uDIiw_Z?*%F>0G7`4ohv=hkH!h2FdNa@m zo4Vq$2ilinx{1i*iP-Bc0yzqMo8kBdbi`n<3~8}VrZfGrXw2a*LjRzbah)KX=?`jo zA341*fv?&hAyUN4`s&Z&On)C1^mcH8UF5sowQ!~%a6Hh=Xc4hUDJ6g?q_||sn{)vj zgBYqnL`=x4v<;#L0nbT2m3a)3c1laWe&OM6A#}8L+czfHUK2P(&?B8aJsq zBuTe?B|>mlz>jwzCabQmZs{@78l8rlRJM+^+-dpFdH;PB4a2D4?R2--;d8ddIrkyF z*rQpnf~lbaHP;XJPJ0O#6y75D&*46%$!LxXf#eY_pT{O+`lPTV(c z{1SI{X^#E4xy9{RKio5VCN5umxPuKh5PXmA_pWQz59~7hg_&-LTrGpqHYV(%8OpF$ zR`V18vT+y>Q(ffhpMN`kSaKsDZ}n7He~<9H^Rh6BisVCnp*5uEu%5uQ%A;9J7NY#2 z3%<4)_nQ0ErG=}5efn>8Y~J!cqW-dbKHQ$-Cl;n$J>0&wTP~BtO-@@~{?R9PbNQ#8 z*xl{9r73-=Ir`5XZqMkZjLtQATX5s-!yTnN<(mTk;Lg0(DJL49t-Qh0v2lbay~<^d z_IB{{EVc+Y-Blop`J+%p^@%G%2?f#nKL}soiPTG-Gn?K zL-V|+<)SP8K~L${09=&S)2V~cpar;LZxdSOMyqmhlR7@Ig^o4);SRH>bIAz|BtFdWjo7r`M*<=mE}k{|$!uJ}%9uaL(EW@&_F5FoossLtIE% zKG|R5RdQ;F%94F4h_}9icG<6j;xG`uH1n&m2zWB72D6i6<5IFq?mWZY?MPAg&=>aq z)bRbsIeQic2KR<8Fo1tI@NanX45FTdn@STvFRO(z+#MjNuuSgZ7NHa!~t6?%eS$ zqx^$TLDjcp6uBMJv=xRmjg9`u?U>F+PfIH@tQ_=cd|;Gk^l7-UdTbL~w{(=}_G>%P zm2F69MxT#C;%>YzG0dK4>W+h`vktcm>kiyCjOa$?wa!^@VLXD9gbQrJVESdUtPWy6 zZPdWOlx~XoL6H_V3Mj#PYLNw2}Utc}DKn zxcABJ*lXl|V>rH51xI+M{g~!5Z(rVlw?jZ-gFEkg`OPb=a;7W%-Idd6>aW?$I2}*iJ34xMGz5_Gi*CGy^&YH@KE}5R7wHkr0&V3Q4u6 z;FIm7vAED0n0RF3*wGD#(wW&&1a7;V-nYyWq?tn7!HckNQ^QMC6ZwMfgJF#SH$HG% zLcYLSh}pQ*#$E6&gk0fOsga&IXFX2bD;t0EW`B<8751Fugbelo5MGKp?LN-PmDt?DM80G5Om$`mrLPMdxMW32^4iv{1tdd zY6()GX29`H3%iJzK6zJBTJSfh6}L31uiw>*bRATH>@sD_X7sf zl6TGfiTH7bLL=#>(inp~La{LR3EYnb?grgj*@70@VE4`3oCdo|pak&j131j(9}Wv} zfe{=gU=Z>I@&V1W!D!Zfp`)-N7&&ZH!w|F?Qbomn$%e+*LLeVY1d9(jsu37y3Kt!5 zP5Iz^MWZ+i#9aRA=9ARmgF}-;2_NYVwd9E~2z8`aH^-I)zmvcf2~7w`6bcm{8!4>1 zVvfxYK8wO~Eb1_D*&6^-;PP_`HG$JrF<>-nc?G%`hlh9C6&S6-%Uu4sOrq~X;z<~bX^1qD1WLkK93KV|H5R!k3dfVwmII;s z?Vwv6iw{~^^LlfQ(9$PD*0_;T=An(l{We)Y#PXKpXxBRE*V#qmzv zdc6i8+2C4jaD&6md4Re6(@ili1eZu)hs02134wtQwP9Gpfq_0fWSFpCSOPCN1V9ql zxNhAaA0g>Az)-_7Y>aBeZIgpb5X>Q2;rIwi(<6nm?81G6zm>v=h0|+TJ{G5pqNG46 zJ6Et)VlX70B22(W>vz%EzyUyL<%EVygAKF1SMUM=!mW}fZeoqFM&9NFCKxw3&j1we z*A$lR{aD7D213;?Wugn-BViO0+ZD|cLxWw+rl~WDEecGSC4Pp`1<4LcCWK2mAq*on zTvBx^0HFyGYDCkwp+-c7OS%@Nlgf+4Xh|V?Q3W`0@`4}pkMbf5hzib;AP8|{$OaIH z>#GvM(GDB}N84|(uYgOOS4jdWefdp@o*#$=P+CaSbI>m_5fY&!383_J1WF`;(n1NK z)ISB3BmtCejX;S6P+BMfly(M^&al^$1W@V~ff5Ozv`_*l-Jb$Vk^o9u_lNNk37{k< z{@}SOpd<;PG$#Tj5NQ6Y}CJCT4Gy)|OKxv@_Q2ITfBu)oNwH6RW9OZQG zQv?mE#$5hEs)?d;Oe!!@NlBVXh5^J7vKSKTVF$Tv_vp}i-2LS4W<{t z6r}=FgRkN`_3H>2=JF47st%9fcP+^$_`pOApA0BUNqc~~{KEw29(=Ge1(fE*F1`I# z7z%T3DBRr-UYG((RU#BK0)@FYlo~>5`Y3si`X)jd5`n^88%jQ*Oi2Ny5g)~2_s2cq z9x<1Hz)K4r!QRQC+#er6>9sJ3VN>n$)hyrmVbZ?bA0I&JkCF1dRQcQb1@D!@hou5v z&GNA-aEZD18MC41+nI491qwSON2@@X}Uo+REE-bpl9&S_ycIf)elNh)SeYf|u}n zp0&?8GdVMp`1bex{`DO`+tw880yz4z6+LrNg`!=t)(;EadMia9afoqac?G$jtmv1>@Zv1#=o;tc97W{Mm}mH&Veg zB9jYdx8cArl|Nh2`MbD5NaQ9#(a{}@I7R1Ysi@tGPB2CtQ*=%PbuvYVPuH#*3w6<)ngXPh375ylsTVX6fq>XIiF%(}!CbWjY2sTNF>E9jH(!H~2US0uu0e8-Uu zQ!N-#m#$9*la>fGI|jp43r5tXUU9;Zq~A0lm#h1Yior0IKU-aT1TbH7J$di#gyo6n zs`=x3!n4$7r}$M!SP7m=vYz~oaNOy$pBPhROr0h44sxjP2qUQgzyfJs7^<)d^Q>-VyN`aDOJ-IW6;$BZq2TIabN%Htz;8Z5z z@%u6He2`=aC0S3*E?Xuc_j+=5Dwrhe$-^-i_j>Y~xGYG*jgdHm|2PK2RI97Wdh%c@ znA${`VKEq{S}?Mn6s3a6ON9By0Y^4WwP0jDc~{&XB&k$;;takt2E$YfM%I&iQ^8aw z!dw}HVX6fq>&f?0!DJ=E^t|Czim4WitS2vuw}T{=O0u5(B?jYOPkx;WCdqnoYYfJ{ zo}8TuCdqnoZVbk~o@^I)2}vr|gsQt{y8W*^vSBKJ_IgqYn6J5>tN@DZai_rQK3q?H zxHnh9Z9=kHC&_y9L&7CrPX;GPNmx%Z9EimAGPanNt3pT;`(_@=bz$97n*2ZA$ zB@ZXqqTB?#Iu%TkCGVyfjJ@Omrh+h^ZA`(9k+{fY$6%PsA7IoYR4SO-M3_B$9oaC| zf{`V!C>2azBFw!p7^Ye^Y}~*Qq}3UEiV)qu#W%QaYHLTkF^81*!$7L2;(O#;4r?3x_ZK z`lJFJ|HUUE>iyagzh_c=V8)xl@H;;3XE=L4dB^0)sHng7-3Ejg2rCSm=B&nZ#d{ z*}deX9-n@Hx7<%TsoSUj#gO|sCmB9{LzmpoKdB4(JFWbkC?yZ2^tSp#+scb;jt*Y9 zD!xc>uN3)*Bt@1liWONV_o_&r+^Zss1&l}9BMsXz!)TZ<45CRQP| zp&q@-leefD9Im|5+XuSjxM=pcz>A$mk({0-~&YxTsgD}K?Sl7&O%uuo`5#KH@Gq0h5D%YOcSULv!i!mGJ?IGV^&vM=4B>t;I?o((p$iCEv`X5kTowD-sM@g9A*1MM>9Ni zXQ3cJ%yoP|p84+Z zAEKezzF_*Ruv5IlJFYF`H=Mrw$F>CuJF2^9dVZOiH={glrswXA#X!pN7jCaU94vfw z_HbBAW%-c*0hNC{BCEUcY33^QZ(zsOZf|`3476bY^L-Zoz^ZUcZZ`kq@J}B96!6bj z{wd-gAODo`PdWco@J}WGRPoQe0Mx`9Fl=mF;>DDnve*y*FBLlx#iG)jii^ee4Ku!H z*$xD;oU98(rnbO-h}}6zYwh*yaY5}3nhGgNjo!;I$!Z7C_^L0co)FMRU*0saBc3Rgi>uTT% zYr8I1T#IzD#@ebhPC)Q6ix5>t+)@S=vQDq+WL9v{jTD%Orx`DtcMAIn6*253T5C0I zj*JO)r>0?=Qj7O!HB^j-pV^(c_?rIy(d;nN(1q?LL#%iMYgT-X@#)O-SXvEAE*-sZ z1J`6QUW4_d*wRiS%?xlWfGO<=1TTe^n?g$XipsJlqgyjtM3FiDC|`oh&P^}a;_zvDkv3@&W0Y; z$N2k?&yk@G<84G2UjqTsTFaU=QQh~Zj*#gRQe+Ne=5^Zg# zYMLiJ!fZ3*!yUxP?3{rsn(j_hdJNKXBrU?_2dWzeV`LR&!>;IMg-UX>#ZVd@n*j{W z5)RA~4$Kk`OsKg0gMnGXfmyzSfTB!UIO-=$O9h6v!5-DmW zCXx0)k_uM{ziI|R&C4X%P_8buxS-}WxL7r3y3zC;deNdCl&x<=)3$@X6MawqpoOa& zY@VAjuLt$x@L(|3v+MxY@PM|>uRRZgK^We4a;`_F4#>Qj;M%Hna)F($Os9VB75E0= z1HtIeM5@zbKh&@sowHbjHFsnlr(x|a)|zplZ5g;N!!5?-SX`!EJq?rbCX}Bx4J{v|uFBERUK25m&jg*85kD$!uSZF{^G6Koi-62y4Qk;Lp9q`bE6OJ8@PU%QjWI=&(@U->gGQE)h+rfmdU(9YJ8Y0=%J6+ZqH^)QJ$IbK zs3C)jBNGrkbO)jtF=bE|GX0O8=^Km-49Y^T!N|25@vu4fhg!W56+CwxtX>O6ji$V5 zllAFWlm#Ki$>azI!!JzMhk&00!Te`nAnz~y^o}3;)1!xrQAleK3c1=Yq@eiqlGdIF zU+*l@S`VH}@-n-QlOY&lZBtmU1oPYBgupjr7wkg!5^4zUzW0o0@i@-&6yUdb6Y9-~xOWjrd_Ds*P z=y*@wkoK9Lo7!)_-aA3ByNC~$3rDF3 zq7TnaOPioCkvLyI%>I{LMDseRKA08!k;~eRf-F3ng}xXxDe~Awe3thtdG}lJ_VU^2 zUG(?@t$H7N0H!cbqg17F!9?34Axy#WE+XttjZV@_yzm)=>&@OG_!l^#$g}L1Lc4AB zK40qxS3ZS6nm@h62X`6TRD+L^+6`TvrSBqol0NGMIER>WLOJ|DycF>K`Ei!Oheavx zhV}^r4CtFLXYKs0@8j|50NnV<(_tWe^X04++*X_bk#vA0s2vLAf9{J6gL8`!-U*S* z4g}KSb>u6Q<1Gs2_xg{#?#ur?nEoO1cS;fK+oizuq=vVGF8J2@lTW{)9d_@`5YU50 zV8&&yP1eVJ7rqyI;r-&Z4777lpL1yzc1FDZ!dDqz{hCi#P?5`SV1?r(zOcP z`aNGx$X|ILMKMX=d>-o#K8EA@a?AmE08o2WzVslv-rP>l;-4ZN)o7Gzs20>!3!(!C zv=1glHebY@qW}!VBkQS8Zmfwp*tqgh3&PJ^gq1#6Ca&)x8o@Ifrqz9^=Pe%lgpoo6@LAP`dU%$70ci9SIL3M_J*d4I)L!$$c|;(8uRs6gVES_bctFVi z#1BUj>ChE^u`ZbZ#zyIX+RN5pa3Lp=PF zZ0DR_@=_Wu<;UaCDaZS2Y1q#v6 z=fGd1UFgI}20RG8j>eiaW6s~c45ojKhLmFcp=deR+l)hpJ>?~1doW$&uP^;5*0aH$ z#g{?0l!H9HP(QXGUa%Lbo@m(2R^%qmBWg|wsHY1I-6nPeO*$adF-|_n1Z8WL^n9&> zy&VZ04oXjpNXO9{IM9tjKRs6!!){`iJz}&K$&O)1zJj$R5Lv_43aDNcEPQWv0UXfe z#@tkY3l1k4Q{i}K=@^L^HF+X`b%!sqil{*1GmpP;zbEuZHhsMRvl~Iv$4#S0BE*`| zaftS$@;liBVkho;6<36Ia^iZGkICBjxJOi6M|_-5#brZC4(&&0LXwNN`xpmK7f<7W zh^&(5n8+GFbRl~7t$mok3p9P0A0-ig<5PtLyypyN`kObNfjd-Od3@Yihyw%E7*SI7 z3KTAnijnmkqW;1+W}g|*XXH7~_8!kh{?PVvq*T9$%<=>ZA6@8JiJ8a6XGVj_qnp({ zg>QR8(^0C7waBboZ!q#?E@d4o{CM`bpuPZQT8`GXz<(tos+@@1C1Oj9RM^UNDxF*| zdfHG3)mwv+$8x)XA1wToa0_E_e}YR(M8x2xOT^YbaD(Xga?wr&_bK6?%xy<2C35$` za2IzIB%&{Ohv028o;!5dW^Dfj3;#vtZU=KugI6e;wc?iYb}(l}{6Hd}P|R6zZ_rPr z&D_7Lw|dSgO0(Xa1R&SNkIDSaeXTXzw`7OnY)z5x#I~u3T%VI$VfB_d<=C0bofp(+ z@gW#)l!ol}N9OzkA8`2C6Z%;EMRE%-GG;GY0e%-Pi4P|i@VkhGuRBoq0sY^_Fg@Y* zAPnk{$?lF-n>n}ewRx0H1czJoxCXGR7Ezw&{prsKpjU?uL9g!P!Z%MiP;{6vD{KOB zP5(*t3$8*u;l~9*eci~B<0LC`EPJ{w+(XbjNnR5lS#L$Q$46c$kx%CGoP#a4>Hgc6 z=jI`zoESaKo{rr^1H$lxs^B3qc-xb9dR%vIqVLGi)8+oiu;VPb^}+Ro$B-5h;<*ib zL@#+5;_~0JB$o#`SP7QNHv<0jr}?Fg(4U4P?v^Lx(iapsZS|_P1@YzEDq#OXUoAy?A z)HIGzNVx;-s&Uch6AIJl-qFg2!Ep^7M8e@*oY3!P27FPZPeU7V!U>;>926s8pC&Z4 z50SRSvYEkZ=zFu2#A4}j5)0AqWBgn>Mk4x3>{TM@eI>RKag>;plqj)y4#QbO|D^JQ zZ#mR;`e%I{+ZAza-;J4v4IN95V|yMRv-_}pzC`q8`*|X`*q)6zvMnVgvdve~wqV0w zK_#TLqj8Z-{=pFdfKEjE;9#cptqfRO;)1rsGQnob5kE~vhf^#l!PQFJ}oKhvM(Z=&9$k!C#l|Ld2U{F|D^mJFOE7!U!6TTC9 z$#xc5wI?~YD07xcr26>C5~@T*t&|cU%N>g=o_=tU>8;~Ai*X8DjH2*~oC-&P_2|2B za=K2cVSUBqA{EyiANQINu2)m7mG5ryZ54=>um-_cdCR4IPKNinIStcOCYDRSFPFt_ z+)*rL@?1PM8c6@ZU-;7Of`IcN+k2gPxGb1LsBdw0V?Zes zHPX!0eBMYRTzD8oRu@wDV|IPim{v$?Rx+;?BzRuyiT8d4uW5X`Z~^_d0KJdniD9NH z9GN@J=eT#IC4tFHgsF(ZFx7%7!matMR4`r0<>Kay7z|VS3tFFdJ}nhYBQm*Q_Wp^| zkxDU@KfpBOVs838d8HixW43v~G6$oyOaUyYG;a}Vw>b*WA#v$&aS;#%^_5E|D-^Zh znHx9(B@?cJY%ZX5hm|l>`9pQmDBP=3!89S03uf~l9jP#tKftu$Vjjd}buw-ixIKu? zb1+KF6~KZj^MO> zP$!cq)lgR*9u)-DPnoPLp;TG(5uS`mBGUzK-xxO%rL8oZ)Es+34N5GQY9gA2f|86M z>eeoPhQ;y2Wd67WQQtNj<>hRmRJSAxsZHuNKCeQqE>IVK{Za!Qz!Ddka{19)sD&hIbWZyOo>#FY%ZiHb?0%Ui3P6%+#a$Ki zVd*^Nz@Bu$2C&R^A10UW)+S_i3FHx?NXJ>qRQ`gRY!;gPZ~!}56D@Qr1~)kvSCuP( z+pA116}5X1d^1KZ0|Da9GcOhDL@8`(LIJKSbp02rAkz|4`E%xI_>)XJpSY{A(!q$I zqf=44t8inC+N#2WJoEe%)X7?5qyrGw3bLPUw!jT#vMMCB!mCZT80=P9SY^&kMeVM_ zgE4BW3Jdeh(^F6eGKYYU^*rv9hpMNjZ@4zYIco9HAn~`VMhEuc<>9_%Zz_sS zmUi)H34r)yWGa6!I4tK>xf%{4WlC|w^dOTp7HpUoS5pQ8!&LqN<0Z`aR4~oRkZystB(_T^2E$Yfrh@|gRVtXOM3~EBFif>zY6){%Di}UY zyV~W`l}@FYYQeC>n44^WknT!#A(sp0i5Lu1`9t%v!cF?g86w2hN=7kh8@Pt zOaYV7OU`vL;(E#7Y&Vdux;Vbd?M8n0L0cYieqn9~b&?&k*a~b@|2L=;x7*BaxP44Q zpRnUr>5#|oxHXX)CnD01^1Zrxg?{t^K0MLVg@i>r3a}%Gv$}Gup|sgP+#1kEI?tO<=XulVeAPCc=S`>cyeakx`KOY9s`zJKKwFtx zBTcf>I&Zo%w;o|14p_3enBHVvss1p`w&S(Mx<+yBd)UzU{>8aGJ=uX2)3+a03Voh2 ze*usA@Nfu>6L6RWCoIxiafI#53Hp$-SvdUJi!*7s z&4%?vhOe-v`YrjE*MWUJS@WcIgy{JR`ep&aYrEYzx7&)6ak?XltkvD--;j57^k5rA zY6f>(>`cN3lW=ko4B!AG%MNIP-BQ$Uh%~Sp=ig2**`3F4JK)>y)oOc*Zbs~F>Is*Q`Kke8q#P3p2vUA(f< z{CKvy@H`F*&y!1-T^^WY)ul*XeCkq$i_zOPEp2N~o!GW@KnYj2Z3bdtYjolHp|qA7 z2pYCV9oPtjZQFk!3bt)DNrG)#frJ{Ay;4nmz1SgTD(kh{8VS~A7GS5zlUH9Q!R47b z5^SuH;L1!dg1(Re+cp%KCV1g8JY%D*!K$nZ2@TIsWmQRN(8zB{NNf;1dFKt2(3)ajLx4FTNpfU&eyxLhs~j#pIoC*KtV zwI*~9ur@4;q^! zxH2<}j^H%kq7$S(s{KRWI|Oeej}m$E^fU?9jpUIePu_34m08-zdI>(*rOeVs)*$E$ z9Yl9PL;gxJS%q!2mL`lwFj??`Vp7SaHb;VWnG_lX;g#U>OeN9AGzqTEte4cL?ncr+ znpuOO5=2Y4LhZItSrWwCWuaC`u)f1WEt6nl)Iu$iU{kXMAI&U4P@(!~+?1m}JA~6V zUt&T?lL5Czjpa2Qwn6Q~fM@dCTd5vxsK+0iNSCkEaM*_tMwf}34`4pap^r!oedCPZ zm8Izo%!<#?gz!m?$ofhITDvmR_ny?T=ox+^25Se4H7>8mN~=eh?$>s~4K8DY8a`r# zE2pv@Ts1KQ?h>mCNQ&Fidt7|=F1S@&JIZ?x`lIJCLm zx`&aRK?7Q=)J3fPyS-+?_T_D=Fv+>dVUHK2Xpd)K~lDetLls)Ylft z{mlhk{?NxcbDy!nL#-7Sx-Yb?Lg3r0*KW;t5XMrGEnW=njcK?y=G{wyHTV!gqep#x zIqvYbGaHwMSh8t=dDj)l0|QKaZxGgx)AmopEEH)%h8Av(;MMkE--em|9d~^Z3Z>m@ zF#kPtiwfM~+z(%#r{P>IY%Q~Ti(w6tfueZLD~2{Sip#4n&f0SQk~am8Ww5z5T6fy|1TZ~+U)XDnfb;A=Gp`y#~|=suphY{Un&c4~C_)Oyn8dxx$3 ztdzI7ErT;K^p$PC!ad5)GI~BtA&Rl$*Q$?8wO4Nh;s`3Vd| zo4{!kq*{UNM7=IcdTw~vWc|skCi1oH4dxf-mtIEZS7uRt!w1FI;{rpCNW{mqjFpLVx5p#%2txMiaoKK^l}uU>*o!@ z4b%R2Y}z~qv_~za|1nYe8LyQ7$8wv%K)lr?)7V28$7bOGVq6sWyz;T1*ADC2X|77+ko{Fp> zVj0C76hcE3oE1+s?z_M-qe9-u`ex`b*aESN6S{^n#9_)Y9vOD7#dH~T$_>MW6~%ey zx6V;aGNl+FqN7bG%Ts+81syliv2SD^W9ivq-zfLDUg+32`XXV@(jY?@<21{!m6 z)~nihHzW`tQ_|IZm{C3Go+wqvVwfF^*Qj+( z)~SroraLx?YC>1iK?POKRE=0cnj=ch_~+lKnOGoZTSKghAoIvwjm6#9shv^2+_58+ zm-+ zE#As`!UqQ|(3x;Cc!|udr&a9wW(IUow-gR^vJT0xd^8I}uv>zXa~f$PT`GbSMW`Ji z7#Ln-b-inFJU@ykxzZn@8{gJ1CubH=vPCFFUWzT}(aI2?tor_45M+Bwz0tP>+ggH`9_<$xEH zeoB9dFEX{;$idedp;nR$7-E$|F)i($pwGDw_C=rJgQ^$y1ZD)6c$Uos;Dpfp3%k=` z;4}s#VjZ{-cQCZ%Azy95IxM0+0SzC$o^@dlye?$X7(@pNj-|o+@DL1}F6{ERzLP!y zkxl;mFR`fah6xe0hf_;wH+f3QOPY{r7|UU%{0P zNZ%!CMlOv8H`&Fxe5ix!tKp06r^Gy z6`4Q$II_?Lo2oB^`G=rjW=)RF{|8iiobKN~({t+ahsUAl?|2qxL3}tXw+Dd0tYEif#WzI2Wg=2aSj>JvRiR-3i%me zgR5yC`foP?ME_mG=iY@Q(C5@cEZu+n{rhNG*aJcNy?zgrU+rTIdY^XKukG9A45_)u<0Q1OyW3(z$@P%OKB`CUG( z3m^RTYfobfQJ;S)%(tPL&$+ZnK99~rpaDVBOD=^Pvmgr3N9{PR-@zddk>DvsGn3gYPlu15l%(pG<@YA}TFse2q5 z@TuFN_9_|(V_^aGLlimJfC20vVGUpK_US_|4W@q%jyhqJ%MT1=H}F$51ZKFoEpW|; z{_-h4?cK$w36UX3Vbym>2`sK_@m=B1ppFL8Kk;b`8UyM7gdty(PhWsXy`SMRa6#8Z zeb^ZE>j~O0e4f26h)u+gkW`B-jXoV&^PdL<9x;N@`WJNi(w{}I{uHHOh_QPd^xxZ| zp`MoUALBjeXS89*7RJS`)mcif6xxA;ffvrOtpKOi?52smegf*C@mcY@}_{xp|K);6v2wbRE{c|qn|=Ol1Ns=j;zeJY}i;? zJ97M&-%>eQMLV+hBp9~oYx2-QjvdvnFF?t<+MzwNofY?li$`IwMjof)8;ES-{%)}F z(CmwF1RI7N)-mb>`RGad+<8t!JtAUzkOoo8ypP3sOYj2)xB)hD5AyMn)&@59c$Jd|%j!o226S z0?di~XP)HayEP}SQN?w{$6c=C_(ssl_ttk1SoE|HapY92>0f6GbH=d81Ra|*|+zE&S9~|eD>W*?)k2hT%( zSi2&n`aSdjQT!uYIMWcxkB6pgEK2)ibQPU=yl?bo(s%H+YN^!>^AAHY^!7W2h#>DUnC1$fcLO6i?zeNe{ARs`hH-Wu&wqyc(bCIzRd*7CbzU*P% z>C4`toy}OhX+By?vw%FuSo9~z$(Sl9#v?K6otYE)mmG&Z+LUgJGq9tK7yps-n5~?M zjL{H$qO}@N8e$dp(E2t+P@h?0%>Z+*_3P8-`Sly2HgrOr-U~0X_|E+sp3vW+(K0O% z$%Srk7ly3WF#D;Thqlw+uFF^W8tv^II8V4n$X2g|M6GJfnd#S8L=nbbB8PQA>#|Mf z{IGW}eA5$(TGq5N``Uj=jF4f0sjvye*6z*f7yNpB37+uXl6`e|tW>y8Q*mR_K^%cT zJCc=JT@xSoD;3usA9p(9z^<2l;m8i8q|GV!-?kzTVHhc{?qS~a7bvpA*F2#cMj-cX zYbCW$r`C}mR;rOl6y%A>`q?7zf($TK8sB_vit^`kbBr>2>KI7U;t=+CZ#0kUtY92qg+x7RuMND>TA2Hnz zBVa_t=CW}T(N|3G1Hdh&I>bRtQci-H;+YGd#p3m~^O7)JA7hv{2sXowFuO%Zv{U;q zd>@R3`!HN25q%kc7XWUC@1-rTzEsLdU^t$+@EI&#UmJ~QSQbfrX(zetV?u|PUMH-- zAmjD2Q=}B;^J_cMx-g*Q12P*K+JiNCehqtH@Yftac+OUFJ@IkdfrflV@%^(>#Wlsp z4OOKIBa60o#rmw~sz-RGm;9}!^_(+vjYAyrDdRbrkvvP*kPUq)ZRe0Z-gJ(W6KAHs z!n_uC^A&a{3~zx+FZ@<;dUoP|s^U0#I&sIVIGGC61n3Dr1~98QEW$OYK+JM(g_Mpd z?tT}O;qQ@Z(N5aU$(nUH>`fBZEbb>^&64MBDi7~T6RM|fr95Df!MvuX;_ERs>!t2D zR=Ag~aYMUxyiyg%dC`eG2zy+V z!CA|RyI;j|VsPRvQE?o5PTcERLM!9UerO0G4q{?AushL`cFI6s%08Pg9&;FJ_0qM_ zP^^6YjK{aR&Egu5wJNU9c)UQx^%;+QQ37cDjK@1wslrIYc#N+{_&CYAnqAnD!DE?H z-}dcar)|JX17dP?V652T%Ymy9l*H9<8zYfkv`+`S1PX0csvbp5F3k29FJ1E zH6G)c3_rkGPhagt!A@naWL#u*5#lgZdGv=)G@zi*fJUt*oAB%CDTu%#WJN5Kh(}u3 z$adUlb|+gwf1{5_2pRkr^NG8U!s?J-66?it^N^>9PvyEgSES3KBfLA7!$!IsQWEP} z>>Thg0aCap7Suk)n2&No52n9IrxxFZF?URJT>(}RQDIH-b0^~Ai1SFW@Wbktc~-A8 z-r6ys9l?ud$96M1y9|@Z+c?=P`)?parbC>&!e$TJ$YK$*e05hu0 zF{!BS^W8QF8)MX7i#pGIm%ZBEef;{?9*j&^4gM4K>agfirt;_4WH6d{aepI;5VvwD zyI@9JZ1~%jGL^rewwB}E%t;CZdFEh%xnMr5vSkrsDu0kCCmHh*9EM8d1~6RMTrg{5 zFihnSFr2?kUn&@mI~UB2F&L)u2N*8A=0{>Ro1}H!7S?Av7~_2kU`B=cAgGhI4;3dD z53l{wX&$WDxM3=P;HC!` zvn~}(BT`*3cgA3t${%2waWOAU0ppzawuj+p2g5$^eOIMxUJrdlXe!pu+#6h5}Pc==`w zg{c+_)jRY26ezWcDEnqPa$%~4LdDVC&69>nYE+bn(hx&os)a(8)SR0Fr7N-5PL824 z)k2}NYo3(?r6v*Ogcu4_EtE#0v|O2-U0bDp^|sR^%7FLV+AiY&BAf9ISM(6Ga(UsYjF7kc+h zk6D(Jrwii(hk>O`RXoTevU#tV;ksckujM2*?t8bSTm^@wg6TwIE^Z!*!7!CSdlmd^ zcQTQJ8?JLMnDQ75Q~9%3!Ru1M+~r;chdCH=t6(OmlXds*#3|{;O1pn7Wh#H{s9e70 z;rw8--m#VY8m_8D0AsC!Oyv)&ASYaNq`Ga(VKb1s;x1SaV!_!#%Pzve1aHi8h_5y|mk_D_utbda@0j+XON!8Cz&SFH+S zFihpoZrta^MmLe0gwgWhPm?t6{8ZHL#(g429c$bRggS{pljw=R5CCahTTg^QMNe!L z8{NbzZ0bfmU6S~=!$*jz{6P|;R(&TG%sOOp!5sLBEsPLT`2$Q87t7Q)k(;|JTo?~J z7~?BI2!Olhng1!Kxk;$q9rcD7wRBcc7nu1%okXD2gk8mt5C9PeZRd%xI$=&QXG&ur^TuAeP*>xkVq+OyeJK5_x=y}}$P)QP>s zt-b#Z#EIIw&wS@V(hjmYw+SVIj)K6k z3iB^-BxMAj#&Xe{H`rX@Y`aaLXWj(*WQ$9(UCFh8u=Yioh=89x6My`Aa+rjf_@@p= zoZhlB6}7t(xiM;~1163gB!+L|s`~~p=uohg+*Y+o?1zk_N zTjN0o#%hfqzbIxdNeSSt$&cayq$&h}%8(QQ%2N~gb5-SZ3j&*FOy$pRj_AH*6-lD? zyzpbYN#mO1_EgmFN;Jf%W6g1nP$# z>B8wMiyD4#z9ZC$Wp61Olpwy&AF=8zKFn19;ODX&w`TLJWFiSn4>Gx0;rECDON9Ar42G!|3_Fau^W_wk>OwA;Y;KFeFqJ0U7rZ)vlLNDpM&K68uFWLH1^13W=_mYQW)UjUj%T(0vwfN>3wY3(*FYIS8 zrYPH8`)|jnt*Xz>Hvc;nb%jfI#x$qi6(q;k<>#5-PetukS^pTL&bFuv%(q{_;;Tp0 zo7pXVGaJx)@J@0UKZ0z%lfGHd}4~F!wn0N?i+T zsIGYi$ldR4zw$*!!1MLnnf~+xfx<6lkHmpnTQGcK`*cMB-z@vUKE|8yuFzHclcnIK zFKkcP`!)O4GgIu!m$G@;JF?Ac@Q!ou=7`;>10Al2)nYo&9RXFQ=Z;DQ7ec)N+ouT#^9iJ5`OfMyu1<&z?{z22b zgOP@L&UUM?fV(iK2$m*JS=!)~MV0oZly>$umR7Rc8&}*RGYhdSF3u?nzGy_#6gp+$ zHl;Xa!AEbSUOzsG>yH$n25`y(_cWmM=SM9wZJ5*3(u8K(byf*<2&0^`jECj&59v(e^rhnfKnq_g2lJ02BR@z4e}X5qpcH=B7hit!{CUYqoD_qIZo<{y z+BKLTZNfL$g6SnERRr_*`16kj(_i5?r)C7wvVt?Fr)30Zl%x%Tsh4-yGyFSZwl~2$YE|1fR1v0Humu6gGQPLuz^|XaVTD!V*s7t51(2x=)RgL)H#1En1Q}E5O zcWS|X6#vEC3fE2}@AvR(Q}kczi|yEoR9JiRGvc`Yb3Zblb%E11w(nYnIL%K zCR83}1yoth5*j{9l@*oH$TA77>X6WR*GOnh7ea7`G6f-ssaw)Ar%75k4QDWbSuUZ7 zS3<*oB%y{J35}dCp;ZMEI`2jattmnXm=y@omhI$uv#R+ zx=gPG>kA~fJTpy#jX4rrnb|GXZ1PI*(abIc6|0ca@GnG471At2PnS@nNoVDG&=txgxI9z!sm3A+uFNb_@-2`c zJn%U3ZOOqxL~lWVQK(+Lo@EDJ(!*wk&Ib|9!)ZEKFW z6xb3)m)kf3_eKY%N!Y3Oun*Et%a$y@FVt7@i}JRgmJ^u=ep>hi^3RMXR!qYZ^8Vn_ zd;R$bTDV+-sti=xwOQJ=L$qrPv}=n1Swx`l-nQ`>I9QmbjnC7@j{>k4(EmzJamn_vibQ$Z9EEH z)yzWisZ)HK(3ifdilMe}IWE!TeAv1QSKzjOC~wDSHT`vbntuj-LKUGFMkN-6mD*i zuDlsBme$5DZ${4q=*_6H1#WoYk&oVt8k?cj3O#x`&BtW4(1B z^JXNaI^K*}vVYOGdej-ED{n^PfdEo&L7L^w2$r|4^z2mHEYi_Ro48^jOr0If&FzF~ zE>^D64r5#pf|%NDOJQ!KTLgqPW?e-Qls4jYFw9pO1-&YuJQYpfTA|qSYe$0mJ>~dL zAUqX~g{PwX%H%#U7M_ZJ=ac&>W8tajp(44TJ{CIMA@NiMWcnsj&~TGeA=n+&f1s@< z9d^7AQ_UhSs<{{f%8LR0La;io@TX3P`cmg#=KR)aUgL!utz_NkC@-B8Z1*Ox zz#s|zR1)b<5ub=daw}>Wu;h& zN_*TcOFr~0`xy{zmnEkavUBi*=0k9&T$cPl@2*6o+Q(xFJfBz|OW=S-JeC|y;<4oO zq#jE?6ptm>vHf&uKQtR#6G{-9G4@Sw<*uYnd9N z!SZMHK5YCI6pY4-HLC!=NIvr{8;))ApgyI*2agd2(_GFThfYvH?A zYOO_BYdo0c;R2@?o@Mu;KN3+nC7C}K{V?=7oRU=I4j%D{p+0<^z8l^~=$GUff5Z>J zBzrt{laNRJlDw$=l5An_VE&un#D_baZW~0Ni{NU;uMaE0#tHZs%RK3CK{#X+em*|s zc!rKxiy*u*LIVGQnpuQwOn@OZyl?Ef<0iN`D?$#q4f#Zzm0*oh&MD}xWW5hbP-O@X z&x0%-1rP&nIYtN5Ux&kx9`Rjrl)g&@33Hr9RmPI@_s}DWFTa6&u(N;|mPyK$$&l}3 zOb>EgnVe5oCXh!fT$wy4u1s>2E0ecokCU3J%K7y`L6Idy*28gV0w>G)djjdZf$!Ic zoF)!UhP)|${obNO6LI;8{tT5HK227!S$&bqUhypU3va4rb=9)EYFS;itS&7J|3E*0 zXOoZcef1w$o=pPUA^5TJwH{KQP4LxpI6Cp|!Mbzoj>(hsIX^%v!3E4eC+HbJu=)oa zl{8P9F{Wd(KIGg<+K|KesC5TCn{0!UcP>1eZ1)BVUtxUpYp7!$I0L~{&YQl-JbcLZ z&>d&vi3Ofbd`Iy23w*Nu2k56e;JRtbCVDo(^dD9uUVWa?Pp2aU> z{8`hi8h_&3gsMOj7SRoPSc+|ZVDjd(aWC=4BX6IbRxHa{TbR9`KYU)7x7Z!#LmgHj zweE$vieqWSEUvT(OMf6fb=~?C#mO6Ybg0W@!DFiJNf7Sdau}D#KVL`j@hP|A|Areh zDoIp0d8H!CYt*{7Th|Wj+KH=iibovTb>Y6RI$(vSDdnD(-OzP_Rcv4tA&BA)qaal{ zZMov194amqpM`5Nl?|G6Ct9n9QVB;f&iH)4a2`gGQkHs#V5yhAf@R->aW^^|#`V)E zU9|hiFuC<>pIGh~^LI~*WVGTDBY$Tgy$!Coi#?N{4HQ08>Y4mP@k!5kmRtc7ZX>XC zTH3*37z~vx_Q*E&EKgV)4N%p5fk=bhd=c>}6|0prW`o^|9XBjQ6(de7`Y1&Fy0472 zXF!|sZ?`ACI@SQM0HR~t)Z(63>T$d_%GGuS|G#tGhs_i!U4)UQy?Ch8v}i7LdDUar zOI;%k)P}998h;9XGtI6l9sJ1XARYz+v^RP#J4f+*b=di+AxM4XG0AgPDaFaulPA;CRCrh3S1pve#%=; zu44k&SovXBS=!diWFQM(iMC}P($FD!F|yOHPTN`%OSTpUYKq9h`5iHw?Q`Ks$oSw` zSsGulpsFku8}i@9?)&wb-+J*nWS?5IH2@@RtC!XoPa*5pDSd#;00YBr0`nHY<+v0O z_1*mtxN!4kJcD`BGbJK1u9a5 z9$DP78NgPkVS8R^7Q0mmL!UvlzKCw@1~&2Un-8#6~GMvR)Pi%P*Ht%SifID}K2Y z%eG&x-oNJ)v#9u38)k~Zo@I?a$Bx~aWw{5F63V#xs7Lt%?6qzvLX|MsSRm$WtU1qo zLmY(_DBoU)ww-ge{{9r@v5Q*(cI4)lJlvJ)+Xld6>tG5j!m43Zc3Q5!IN8~R*E*5N zVn_Z*vz3$jfgO2tA|`NsZnN|L{o+xKc)SH|<9xb#cs}QhRa}bTmzc%ELy{--D3o)3 ze9pQ-a|*Pb-0FL8aC&sl$9)eN;B-}%5xN-7ft^-#0f=x$POm<`azL^&BcRC2EV9a8 zJ=BbQQ2wC50>$3K@Cb2;D-(ad&?BS;L=P?lLUbXM@!UmZJH&hb06|(n@Sw|p5Ih)T zXbQqUBm)T20;2ZoK=6o;ag~CwkLv(}w1DXNIuJZ8WTYzy``{2DNDBxaLmIFmJho&+ z$A~QKBTRrGEg&ks4up>o3ls$J`2z%L0kQ7uK-3fBQU$?#3xc$O=oSc1cofDgJP`1u z3H#{c=`vJS)nMNOU6=22>D=pE`uKu%gFN9~*i+KS&*QCzTM(`TEOJ!8f&R{p4kEq` zCebi`d>(UtmpMb*%b5+kBC9wWk&ViCe75Jm-8UQOPh{gRcYL;LS2m@Ttl{frX1hZM zm?wN1vdN(FgkL@nx7I-LgzuG*>eHU^6%tb2(-S_7oou_OdBSTYq&kf!{38je_V@hT0)9isf7hd8JQ!!moUbY2{W(M+orj ze}sP$@SKnVU+xmeDCUe4u4uH8HGJtFFSU+u#$^MH(hXOM@Zd>3^lg-cXLN211S2^0 z8;m@eOBn?VduNX>)_*7sISnAVuOj!u<^G-)t1|65;B--&p-8I#5sYlk?E)s9=7Ihy zp}!rOa4+;1$o*2AzUv&)?^N_hNdIJRJA~V({H4fbmtQLPPWe4&_bnf1pqkO8>C?g~ z{vqVCi@#Cso#Iasa;x}%RsSRIOo@EF-auc4(+t@+!Gz9DKdZqhyf-o(;T7YMZ-w%R zG-n!K1LV%5S3MujbJ1BG{Fd$x6!v;Tc_YD_ey4p{$rGN82+593e4pi4t{qvcUyVcb zguCJYtQaSf*Fnx!DV5v=jv|bA71rYg%M$-w{&W;~)Ds#bZqwq5yBQHS9ZIaQ3B+IA z(drlamf;Ei^DLIDoW-;CAGX3{(Zmd2ZG~&BaGDivx59tM36f&HE|;bipS2Ex7ron- z=jI_$9@Np%kjtO`GG0Ig3J-fi8IpNg-e=o@JQe{bGo3BsQwYda{YD&|C%gxK(2604 za^iz*$vqH=|CS}WRfr&yET#ze{&c)Z==OwuolSzPWKz3Hh_8}a?QFSUN_nzgdnDV^ zEUOwz5R6B~s}zO0XeSE+a`hkM*$96_=$Fffl>6}20$vI%zG~z6+K9(od$=^=x!LZo zH_5%zU%#P(X%=5kgNl6FsN_pf7wu#r4qr_uNu+wM6tg+kK!nwgZf1W-HBk>y9o zvdvNWw{&Q>Xa}8_$fRGu?G9(sSDPxUWC`G;e;ed&t(csm=UKyOI)_9(xZ=ED;hy*Z zK7o-qBSaY#jh9Y6JVN?B@2P{s9``lIlJ)~Cd7M6g8CrJDL< zWx!P^@=HTned0f?aG4c;9nR92-e`sEtZA@Kg!cNt^Z=CT!QlVM6yZcK3ShI6_|~!{pWDdG8F9Iu*2s z$(1T-50k?}xYQmdYY=2_iz_j4n6O}Hn6Lwq+3@*-v?Q0Ej_v50frL zaF{gX8tckxxX(tMJxqQo0M0NOu7dV3AuMWX50kqPB;y26GE7*OGfZrb!kL1xB$po1 z$nukD2&!w!8`=(fL+hh<-Gp>-CsX&?a_>x$d(h@6*I*YeOrmx@0xi}WfzI>xJLp%= zgZA5?#CtnAVycVkjYn}lw1A3_A$+9-4Do&D*LvivGB)6%XijXvHQ}#%yX=pY4dzkf zx(K599WZ<_B)=W!vj_1kN_x8-R}SbyprZ_V1z(l&^S}h&-|WODG$yvRIU{9*X(zqf zm+Z_Mhj&5Z);@p(-0vPdb(|+JV`rbpkGS0zx(b%vK7H8pK5f`;In|9r&|>cG3-t{4 zL?&Q&h6k=+z(#wAXrODFa0&A0!-yzOYi0P;_tTm4c|m<4bV%!1EX%+{4=C>|uSf=y`sCkVcc7Jd8~i00TAv zCz4)sBOIOeSJ$mM80W@aLcf&vihM1nu3qzp15tBzGcH%uyyp*c<~-PIevXB`-?BMm zjAP%DR^mN>pk9Xy1U>*YhQbaZjT;K)Edvm37FEU2g;41&s?bMeY3McIha0s11)f8J zPp|+OumQN(^qMOOkaE`%=H%QYGfq^M=Di|c%SEo&961nm9;u)ErihI97Il$OcVOeU z-?F=q-B_lmdCwmN-h)f885)SX5!s9~Ma_HuK;4W>uX*tR)C<0BTOX zW;>R@{$##c9`cMcEC4?7*#K0UO>6w+95^6S?s_3xEL| zfXZU8`4Zfg^1sFkk~T3c%=v z{kYeB3x3M_uR=EnjNe)S4DjaSy+vJw+g@|rK-68xZhS{k^PWFvnfVk>&H61{mKpO*Y3zh$ zX59ePSZ1CO()eZOW)i)Oujf&V+UpE%%MzAal&lhSg-~r5DV86V-Kt)5Kb)8K%d>&} z#zl%}-t&hVr-{6NF%WeVavMj^kQ(!zKTx;e(re}nKn-nmvyjGXtNU@zzCVT+dX0M& zkyjN)ZS_GC^(!V>3nvMo+U--skILz2XfFelx>dwFx&Xxbk_2! zY^!k!dbvhWcQ8M}vuuCFn`KAZ_=5nb?Pg|Fm@lkoX zfyWQ{JnL6X-N*t32FSC|BHc$yv8g=EKlI-%xb&LOboI~Y-Q~v7Q&`0xmMglSW7=Cf5Ruo|p@=L#e-1uN2Ov`NtP{FK zdA@a^e?B44tA#XPo~s8U@){!)QJg$)7=TF0^BpgRk|@v5-{_xD$ny_E8ZXcP8HmVh z%uz&f@|@c*5zdf#jVnQfGh{-9Gh}FlFJAADJs~qVA$aJneTs~t~xIdF<~><6tIH1}G| zyA@ycyz0E_Nqn)@$FJ2Gu$1D()>L@zN7x_y-T^#yLf zXeSHx`*frzEywRA9b8=8JV;zs9UX*k)OO(GMbF}o`l>SCY1qf2_u@UZ`Pn~EDeYwq zZWG=cjPuRDJs+n>Ei<6F_l!PG%+!q4C!m8VlQka>^5d-|?S-VzXky`Ge)~C|1AoVS zqMdI&51L;*jRO8X2U^#NODmTHt;;QsR&b#8fw?nEIT_|lPsIx9!0T6-Vc1@}o~4(r zXJPU+>sj&A^(?$}wZg|$JH2#m^Mvl)4AQoY?NWzhmZPelB2pYx3Fiy^8XRQByUeU9!E{7KYH5R0!gUmRU#i5XLDf1~#%vNznM@Lamr7CD)ISQykK@~ymiF)#& zt*8+ew$|cebfLGQ#7d{cvV;=LjgzFr;qUB#%NkW`1xuCkHn3!txU?NNs?e=1Qo<7* zxcIdvqAJuap%q;cQhQ53mC{#`(q`a)xQ-?8P+{CN7!!uRm8m`)AgzG;%B8--p4o7t zcF-3Ycf7B)XK)bC<64c&efmYMzph0S1iZ)d!;Y;-;SuH;-<}V^{2e1<$?Vg{jP+@A z#%B4@!T3epgD{u5L0ae-j+eI1&cJu*+k7*IAKvcNxH3tNsg7ASPQxuEoQ(@=oTWlz zCA5MHLQvaUfQwO;MR~6vrBmacWHqid8U{&?naUbh_Fv;y=KUY3aayd#RY_`G4!*4# z`=nM+RN#Udm#I*VgjQ5ZXzM&&jD^QbjY;X$n0it|8&?^Rq_M`UnaUbhp~h$8`@yrP z`LvJiHdYOMdH0=8b-NQ9c&AUhEZe8e&$b%)FdKN(T)@I*#y|3}^1 zz}H<=`TuEe3Q>wTKnoFDj5OsJNx@1{qp3?Sr0~7;-X=(aparuV#OMNsHpS>x2qeLL z{r1+VRIA&v(JdNx>snpV6xxtJCOoGVusj+N@EglRXrT>H?f?Cm`QF@n(>zpnU$5Wq ze_w6p>CBm#GiT1scjnBQVp!tF52C06=Joquq1&hthI}c zOx(J_4$$lIOS59tQ}5q=3wBXEk&@v>KPRBh+b_9*YOKXYN?n!z0Bz;@~OgqwcE-%ZMJwG+PXu}#Wx zb@-ZH3O%$**$CaI&~`jsX}aV4u*JwBXr~yT58ljTOqD?3$I?tvBH7K;9 zppvQj#7mxBQtWL0O9(TGAqN9gm`RKl4MdCX!&Ju;hTwRfH3Y}=lp(mWWb@?WXW*h1 zdN;SyFjOnv2J2mgcffkv)cs#D0PTXkGM*LbK8l5uE^jxGcEuMWUyNKCxngUSwZgTE zPp%c5l(9|6O&Z&DMl-fK1tlP+@kcT_R;{(;!{uFgG^7gyl=;zz&8|*3z#! z2cC5rcjP*oU!CYA&Nr4X8O}RZbkW18l3@k{RkHh?=KVJ?jepxBXN|BUn8q>T^Lr4G z@%6=fjTz1_Q)GAcchjozdjG{iHJ4NuH1NV{*lZH?~RR(0sUZCOF7ZWY=^r*7w! zmZ>>f#^&G7jlaIN6tQ3Yh_i=r0PM6>Kr*cdI4|4nU!wo7va99`QKzTIj z=0J;HY~4gXXEyg=5ulGa)vsedMn)(W<}ge*Xuw47)?kU;W5!nX@#b!2b=K9<@O4k< z&o2FWAaak^5e%KD%&5{>3g5K6pv^?yWVLCDSzXXTjN`ILYh1L|sf**@S>O|n5ieO2 zbFV6>(EWRiU(`tfcNz1EuGu^819W%+H`Fa4vt!K5cf6Y7Ska44_}6>R-Cs5{i)GF& z)INp^rm)Z1g`tTH-GwvrqT%wLk-Jq#0h*V&u z%CBAEHqC4W>O%LnnGLuLa9eQwhna*_o1rC9-K^njqKyT@@4xX@ISa9=58ZQ%v9N^v z4=;cks)z{DiyJJ-(kjw4Q+YLqs>BZCHq8|50(be$t{|*FQ_cEJ__moou79?v*=+_v zl2mujT2Iojxzv{JFQk4KdQCG0;pqB;+{BclSd=gMin$PaDa)p}Cq_2Vr_5-7{VWU0 zvyPVWi$koK4)UR*VOfNg%Ij-em^!=A^PCv-rdAWe48TODqAl3A*s=JT1&PV?gd}?C zzF5g4OOA28ss8}bh3=FdDD!i*ZGvLKD7i z=4@R5_(SFN-EA|4AVnc@%V88!+5TCBmO_FMg%tUBQs}a;rBf(MXj}>v02ENj-7qqR z`l!%I6sn|wNeVfJ0!=fkjJtehMG$Vl6@_X|__mq#xc%GX>$GAFs%0qHHR7%b7=Ui=Je@NZEHJj5D&#}X`MOnN^+^WC!Turbm?%dnF#^p?#G z7Hc)kFu`K&D`l4gV@L83Sg>5%!*VECuAK`Q%e4=6nC04q-AyxBQJ_S!{B3w8nB{NB zZ&z%y$iBeaI8#Fsi$6IFyya#@E$~(wCS1S>6aOsm?wl!-hnFuQ2g@vLu7|JK&~}OE z4q%)_1$BQu+`Oyq1N*nIescgdwhr7sI*AKdzV(KepG{nu`}lz;Lyuz|#4P?ApJ(;< zMA6<06H}f64U4xYqoMnvp*azEvmb0b8E)yQ&jcT^;@!HxaC7c|oi7+*Z(lNArYQl5P)qAIqn=a`+o#Q73<% z@$2uxw+fA4e;2-0Z2ZN{T4gM$^f%A^Ei`|N9oBFTm-~L*|1XqqM3qpLvJCE2$+k>N z11mK$xb-*owk=J6V{h9s^*6>UPjyL^A1&Ftq&T|yCDv?z4#kUJ#XKp_)_Bn)(eAR> z4OQ_BBp1nV22|ZaJ{HMvPYZmYMVtJs__b=2e-(Z$+vIPY{{Hilt2?ZlKMrp+zVt3~ zUh9jPn>}Pqy)4t1`VMW=a6RhJT0?bb9}r2MLpz8=?fzjR=j`9Z8V&>PN4UI;y6`0? zYuM1iOyllYXv?^(yC`=A_hR2B+^DzRvB78-f|_wkwor?Y5J^M!Jo7(Y-c9(|F_w30 zA7go!hlc6!{hx(tJ3xhuPAq-LT&`_G^|;H&<^xgpk5Tu{(z9NP?9VP>v9tpcj#Skc zh8!Xry6)6Ulo3XLI%#MzYGb(Q!+I1ILsGYCNgDr&HUyU!)KD_UtqM998gmf0nFDr* zdaMUhW^X!h{qWrwxL9N$SOkNoi`bdMnczY!e#Q0R_6qlN8^)l=ZI71oReK04Lx4y4 zATOThof9efqiYwR;e@V7kJQYoOf!2;GY?;I>q3KBa1W{mU;D9I*OY4AHKy(h3o0B8 zN7*&2{~4;;SvS-u_Pi;X7HJ=drF+fO-@XHVRRJwa1FHQ*08}fW`mBGWxPcCUngXCQ z7tOzbG;;l2N?ksLqN$*PSguqX;>j=Kwcr*D*IJ;dx#Xkim)lIn+sr~dSdaS+z?9x4 zqm|*NOR4lcwAUKQ;C-m9C1f&+Vk{lGVus(4vS8IPQmzdu z)CPp6Ah}``O>X{6zo)J1(%QP7SW8w|3%}YbQE!ObA?Q2Ppu0#pOHg7fxne8aN>S!J zg5DTFGcgIT0Ok7EDsfvHs$Q}si7dZR?Z#a$RObl#!2ntvCRrz3a{Z5x3VBOg_B8yN zakq;v5gGhzT877I+-Qa3mu=rmpz}L|^05yh6hMhP&v67t;D{HnIFO zkn*d~ig69Ic!GX84Z4(+Qv+!E1?}LjQx9Ju=r;oBGN`j#5Y#}fe~wb$O~X||Ecd(( zg#5x)iQ6k&#|b){?|lu(G8c*q0$g(aeRo!5tv`g-Tqm^7_Du*~Qc_|icbYy5ueko8 zrd!)nr7hcIUeH;59QY~}w@Tb1CR=nES6Ks)0atz2B*zLISjyS_+(fYpdmY}1j&}nL z^|)oIL(xzShVo8{y8FdC($g~Bw7eisUbt#dZ4l=Z7B}gre29yvtH}cE2tHmt>%(x) zX@+wWqjAn;yCV{CP9F`+?9lpZc**|?@_budyoaoT~hPqL9 z&Zdi&+BwT^gMdH(9t3=Jh}_KGpEk7COb$?Gfq<_64M0z)0ae+~O-|%h0*V2Ibzw87 zzF=TE3t%x&>z_r+sML7z0c{TbOFpN%I%zG#xX8{|`Nj=(rJu6Oj#SCZ<$TJS=i>9p zQ8Qi+8gO0?jmh#Sq;l58yn8g^jg#3Zf3DXFKb9EQ96%HiM| zZtPSJ%Z4@wi4`Q$1d~C2|HlB0%9yeHj+8Nf)}Le#*!XW^%$iirzl$*ohw}eV81s2Q zS%1sde;;G64zR!kmNA{?SN>Ms3^#qAe%U`yTi1V~r^b_R%&K%~<}9d~B+KRCH!OGW z@*$S9-&Y!eNp_Q8%#(*}*zM+ZL+oauXOnVjz&Y|8=EOCucCnx>tIaI{jV5~j88(y0 zKMR0S+3dv~Od{SD`8=&G`NzTcNaF8XIsV+g0LYWMjtj7N1qT6RWi|khTZF?zMuFcBhEuz4frEjvbuX#xJ-IPLNa(ip6%o?i+=7CZaX@*4K zXFx(<8yYm1no0y{nyu(-ZZmCbwxX}uioWJnAiL+0qOXh>!cE_#Pl7N0mx&8_Y*|6+ z=&}tAVluvpg+;xePgIi23h^5*yZk#tTqbmYsg_ALGc_j8A)3GrGh2+??qCq(KhV=KVo$@1_0bCUIUjfmu z;49&#TEl`y%w^254FHVFg%w~C7ux*|;gVmmNk&wC3?ue_dx#M?7BmEqwWKC_QGVsF z$2GjT;uk}_n99*gYLXr0SB_P z5`9f6B+3mEb<;RVECZ%Q-#H+$qA%(i(HC_M8bX%&n%f{dAkk};OiO&t+RW_&bT~`3vMrxApJKxH{)>KCL?)Dy4ZA`A|)J#eCK>iJ7H(9|T&KU=T<-1#jNI!pa z3W;)qWPHBsEEQz;t-__B-~DWg?`}1Tu0a!ZZ?$}PYa3vMEZ-Tu7ecL|L7hb?_(0aj zMcVgtpns9^{gI<`-S^l{*`R}zxc4RAcX%PZLiSan-aHO@2D78yCD=JytMVG(+p$XI`Un4kTZrQY94J#oL)&x? zcg&2*zcq&^2Nu71b@;l?SBGo6ILdk|`)=@{#4@;eF9%yaSBIB8!I{)kq<^iKz?0bo zwp<;)5e3$5ORkzR`4;C;7v9Bh?zxQDWU>0p)3N7Rv*_{AHj0hzMB79Lm}YR);}l_( z@a*$vO#UW@&}U4((FtMbyJzuh3ldY}(1R1(#k@1|(hbMx87_>}MP^Js-Wb|?fW(oO z#xI)>|Fxrh_+u87kyKXTH0g8wS2r_^-bnkVulS78*_^i@{%ZwP|5Je8O#`Z$5dc*Q zQ%#?ME(R##9c4cJvpF2lAQTre@yYS$kUr`h@X|dxt#~0GUhtP_^`nuEYB#&R;T6Ay zX}}7S0Y$OLW*FSN0)DubjksrcNaf}IWz+Sk@EQ<9%edN61z87Rb{SWT&q@{Cq!jDI zZ=~4w8)&uN6IsS-9r8s3I4Q!+U?#4YI3vO?ZUfxzjs)PlNjjDPqJ;cH(T8i~R{`Lh zKbTgb30xb|q>lW{Vs|EK3ri!8tA$y9DWQ16_s#*c$wnpAhMFtT6yvdR<0hBkEtA`q|Q(|jDGo*!@)Je@-*eJQqtxi zv6V#CO&R3(Cjd06#Jux&nv!9PSa`uew0cMIHnmQ~oQF5Ia1vAFl;;%L#!Jn8fj-@&tnle0o~9&MYi9!9m~6qtT$o????v;n^nqx1iT zrdlz&vA`e&vW3*7B$Z#eTXBsfeIMuifh0}kSVd}5n98plZMa65{_!W|NPdK<3=(CZ zElEyexb3$9jY`fh-NgjtT{9~mi-J~|`XdNazHw*e_#03)(ABHB3%oKROvlNj593)@ znEp#z?wYu_Zk83MVNWor)C6o>ECyk+ z!gL%=rO;NGgi$~L--YQAdLu6$jJm65DLw95WD2hWMs8c+N|-7vVJcU`l#kqa~>>3}w zP<%?UBM8W?#51G71 zCE}2POf3;d+da(`j_NCoX1g_^k)@cVV07>s!Fco68D*)pqTO^z3dIVblvB)OgyMNW z0y?#5v?q)+)N{zUssOqM*9gR^g0=$D?w&G;5n~283%~!y562k2zxd6l!tg1uNEkXs z49;OMI#UqFycsd?pNr!~FCqwEJugt0&YW0;Vl+v(ipm8Oi|VT?Lj}bqC1D$WBMBon z(8i=BROZvLRI?AscUARUPKBOE;NvIqoRx(Od zH)W9DZwF{pN%)2J7IEtGuO-}#Uy^3=5-Kc7C|8p3Jn0hZCsF8xS6pgD;fP|8 zeMG&0#96>>vsRQ~TyZowVqTn^EN^9VCzlWApMuP3e20aitd2Ww_ppWHlZs83gXMhi zJ`rBN#X$4EZb}Y1yhUlgmZ!8B3%`#TIha}~cG!jDcye%yQ?gGB#r0;jxleMCmlUPi z&hw4-YncZXS)tnJ8~Ie;tcy2^$>Ef*ibDA{DAl1x z6c&FUa4QM}aP{#F^@!Gb0r)ChBMaXra4QRg9ezeP{|s~v9{(>K*N-}Yf3nVO)-*rG z4HonWw%!9?rb`xvf0WGO+p>j-q#Wcfa&k==^R9(ymLdyZWvgM|dHb`^9KI+l6^7A7 zVGmWaqEKM^i3*BMio#y}MihSXdYYINg$5~*yGc!oLiv@u57&soH(JSIKd;%CS2alW zNj+8NKt}l$H-KwI;TGjcibCZev5JvGy2&8FzXqUDDOvHKMiibot|&Y+$6xzEQhY2s zQ=;(9aYf;o5`|}4QFwJ)Zi&J(k3N>5}jj)O8(nfOY9D zFSzu^vqg$czxcMmO2T^$^fQu#tc_n}Mfi*p+9U1gV`c=B@Zn*SaJ{|!_U1S%LL}jy zB~>$~w4S2z$7459EZyznB|D*3@Xul!a~3-i~I0>8H`9*rYgY$8W@8&9#g)D-Jgn zGz5_ANli*b`IWl^*GR)EUanXqI0&dT@k$S4ifrj!cM?S8Ri0hRjDG`-}#2OO$XEMm|djO3}!+-d>K9iT7F}6hH zGx>}h|NA?v6p6dQE7RB#QJM6ad`6Dwh{_*a;OQ9pl~FxkZ+pS>nM?pkCDOCri` z3*7d=l|)p$Bw~aH5)C=fd=**3D=so3(Xy>MTHZrfaz;A4L)(XDNvN&EIAx` zAk6-%1Y!1gf{-uc?Bn#pN5&ZL5+PD!I8zSxLN_~x1*V_Ilwy-|a5sJ<2diorUr9OG z6+rfpnv{d`E4Pnpa&9$ zzuyhesAKq>KTDH?8SBH}NtPi7+v(sruWWft z!1R+}u}R@K8@~~L|L4mzDk=N~Ey!Y0lfqAa#g*b3;rHUL%H4oKFzUV=cOQzm z-21dw!}bSSVy7LGm341yjUGSW?{8muyiVy_$zbAix4DmNKX)9 z{BJ6ute`f)ebE035tsxS!rLdPg%+yb#=6h?=h=vwAmUa3EE`c3;Ca>mh{3aC2u~K| z^Cw%VN~hXh1mk=_w`vyrA+jlla?(v7_0Q=FEFYB>7%Kp5co*bG`GfJJMZ8mk5A#P{ zEmK0Ne-Rv~n`S9f00qNM0W8A=(lW*}r(#Iv-Oj!THIqTVI{*ii*uC-ivK z-5SMgq@}~jgK=KJwRAWcnt1J&4ktsCAG8_&!jqxN9zzq%bPGr0=BlBhLT|Gmsd7pl zS-jS%ma!sBlLoipI{UWvn{#yZq?2SJtB*0UPIpRA3-FQO&E-M zExE=Yn=labT62tl;RHYCt;#a~MHBjfAA~-F-|aN|g-bh!@Hg(LA1aoD8oTQqF7~d9 zS7Rpt1qCjXa@6>aAxdC3EXIvGP0F;=Qf6JjY(s%{M!Qv%DGtIlxU6%{@c_p{<^aIY z-()Ex1S!fC5*kJsiucdsz%vdllzg$-zs_)`*yq95N#I+0|!^Wn&5p zQjD!-S%CoqV`FM^U}Fl&ao>{c`R-gK2anwbtg%WYH>}~{%VZ7BPf6CO$1hgUTqOcD z1mX3@z0G_;i#6H_`ybwD2_OV10@M;3Mu3fGgm9nEvW6gJ6%AQp>V>*^=yeBy_f;Nt z8;NJ2yiQdH?6 zG>j?~?9aN>vW1ex7WHGZMWX0`hb^jtmdmo-VJ(;LVY21Y$Tp(ExF|3O;Zoz;OD<}8 zF=6h1+m;JKs^wXP4r_Uhf7XB7mMd8;uNk}L|9blWyybE1RUiwhtlGi8^d664IEhZL zqB6;*SKwFEYmAGYbP#UAjdL}!-ni=u8gTt7%#rGJAxJgdA#_;NtNc&>);3+qYI@b! zO>h6`|Gep9_sT#Pv<=CEs>5VKJ5@@`f>roMfc3^*ZQch}xYvZ)FQ46WyQ`aVz?)lW1H5`Gs9VzTmM!HZz5>FA9Nv;&jzeWjAKILDiB6CtR002 z9|D~rLiSIo$qAKwuU?}Xa2s0D6`xXiBB_~~FQ8|2Bwv>XRFxk9RVhnNrGPd76yXri zsAeuRz{xwAx05vL_wGgC*C@NDAb&jd7Ve7N!H5iWVhZw=iSOMpHAwgph*HBGs+;A1 zIW0GveT*1l$3bAHMB%6~IA#ptu-S!X@JP_~0VL6-$xc8235_hH-(xWdla?ssR;Uml zVd^t@!1UcTOu`^cn(N2KqzPV_gi$|#UK%E05GKu!<6_dhC``g=FulY1ezJAKAWWKX z#>JEckT40O!StInOu`^c65r!ulGqj|VKkV&oQ6plgh_I6Tuc&v!X%6a)ARt7B9*A0 zrdMH0-o4S)*T@xI>6Teb#%`sRS3~<)8Ydf?7$?T!U}VFijMriE>Jy+fLv@)3Sk1yQ zM$s|fEk}p^wJu7n+BoVfSlaPz+chhk_>c=?w}ikWK%;kx5FR9uF8@1 zp}uIzR0QcWH2SCor=Q)}=v?(RiDzG(CO#M#kk z(a!ma$!@gq`N3#tAR6kyB+;B*s)3RJe5d3@6WJ$R9X=r|TJkoAJWtBbaT3`lDq<*f zTq*=GhOSS*$k&wnZTjMSV($Iuk?)F^Jig?F=%Fnac4wcg8b?DriCX;1s1ovH2~@DT zs!rF+Oy|})yZR^5oAc)E+OsaH-j?#Pp4#U}Em?P<}R_%Iu%Wo-XsgKi#KT>DKM$!zDYm67AtvY z$ux)kkNRk+D|)D#kvd6bu^f7pw8byO$FWeb)ll+4_?B5ZB(YkCv{J^pD*FG^R8GzN zBfj#)%G7bD+Z1?<`b#{(>>e^D@gDU;eI3 zm0Wyy$upBJZB@zFjaBk-lx&3aBF0DD8&Noa)r`|;&BkNQ#jl4{J$%lx6_ov zgtJy&MmUR8t#E!wQGdH|w(H~ntMd7~-#$z}PaH0vQ||+`(oU>j#H!Dfgm$V=AGR*o za3`D**${&%v@)p3ToY6zIis>eoUt%A22UQil`+5#;1wb=vqcPzWh}RP$8b1{0H0qG zZtf7#1#+jU)x*)o_Yg%NM&id3XCKFv6(fp*$y^hG)o6$&ZbWXp7GD0Qc+T}TjUwl# zk)!Wu?8?ML+hIvFqrU@UL{WDX#St^3pQjm}Kg{UnZ@&49DB6K_?t#U9@sjOJa+w=< zC?g7ZgclDmU804@Oc^VAEPTtQPV4DfQ3cZ5%@Rnv5lA9<^0N^G*AK_shvP-B zV_-WL+P@$%SNusE_8>`1<3)q>6WI-#z@njp(a;W-2D9U#1G0#W9b`nkCbAYXIIQ*> zjJrtJ9+2lU6V`MB^sqF1pN1S-LiL(6uOfG1+KHOCOySFrpj+eZ*Bx0tmZ1Z`{V;lc(F#Cx^%s%<=XZGa${QnZapOVS%&4z=!`pa=g;P(Nd)A;=| z13ir287*)9GR9Ie*v}dMe$2&}c$50RpqE7Ud()qi$2(&;4wkf^FwXQRaq1@VoXpbW z+@swuW;^cJa$@dfxiR;Pd2ATgWqT9dqdBsyo8(P!FUUq3)g2x6kW&}rFwx3C0e`O6 ztH6`!n8ds*zCc|v&!<;~^eML;U2jbqa$3{u>S5xvcey2 z%Fd_%!-XwvCb&F1*92QzP4KqtEE8PSV1lc&2Q+RQ{nDkK-lWMC;2ryZ{&FgLG!Cb+ zImS8meK_n|)>E##ykHrQF`sDa#-iG|SRTfW7#luKKW4#6!sldc68ex#)#Py|3lQ zy_+g-{D$K#$>q{G#;Lzh5nk~m3IkCWv&?hfquo+|j}<-Ugx=%B@I^)NB!H8c{EWQV z!!^4eeAc|J>AL8Ncw+KyeRP%FUluOMc@n30-Z5LkO~0UIr-*ZsZVs1rfXMGDfTi3GSm_PU6mjHjo=Duqp(D+X*aEs^;PNgQmcHGyy~#x93KSUW>V}IgQ)7 z)Mw9N9f;6nvahzciwXA;j?pK*CVrhouPqzGH}l^=Q#!1P)#jMaNvt!4IVI05xz0N; zUusbwqK@8qHS#_MZ*a&;E``2pLW4m_mQOunc1&ppi1iw^E2WUWo4iKtEb+8iwb!Vf zA$+GeH*eK04W%vqzCK21W^(RlD`xcf${f!=HF)0bNYd`Zo*LZqi!rl`ihhpGYA8zW zcyCYDJJ|n4q{*1MYnA){HKt(s^&_{Mda(bb@p5bP&R=eG%OB*{M&QBz2M|VMmfZ)q zzrf~}U%#Pu25%ZKx4!lKT$@{d{f6EdoHI^t-WhyswHj>=-|^BWuSgD{VmMZXG0oRz zGnqvTneq?zuP4)-{ThVf_#5Wb*mMFP$a+*I#nt-_WW;|Fg~^CmBHPFUu9e6>BS$nbKEDs_#=1jjn?CQ4k9!Myko*fD$>G~PT5{jw zSLY{UJ-oTIS=QO>KD_t5aBf+To})RjtjB)sQ~YL1=~?{eJyXvM7m{i||A(UYU`8U` zxCvz?2W#f2dCQV?*DXG0j4zz2-{h3$A9zh~ zq~d0q;${cMHGnX)IK|jCq}`)wQgNZNiu?IDC~n(ZBNta_ikoJNJN)R$s2FN1!BHt| z{$Y$pm8z75qm+_wO34XIsZDPY%3Y;2NlW7TtaeKI)L5lFSx+f{#&Y~fq{}mSzRd&#;uFQ_hmnma~|Z~3}50}e(S zUz)&n%fxxy=H2a7GBfp0L-|c!Pz)Xciavv)IVt1)X(=qq4i?Qf<5fh0 zGuquOWcvA!|1jAWlN~HAM}S3BBv_Jjo!^?mqU>PlJpwG6A;2PJrY;wzuqZoN>~Yob z{>db*&X&NEob&zc01I(S(l72BOi9aFY)V!Hk8P#BcXo-xQ>Hh+oX=u3YWJ=?+Q^If z#etanEkEWi?TfkB?vA>T#oRBkJD$)y>9}_d8Yhu;P`rOr^ZLN;3f$hn?F(Fes<2+4 zBzU>PBDXJadjq#iXdC^CrMq;Z%OrHDC*q;eKF_;6$6c9&XfJcuKO;NJNyc=d48xuUzv?KES z365StYwQX$`3*QleU94~b(#7&e$oeL4CC01Z|5wHv1>RnynHgn%fiSmpbzeigmbfZ zvH5Xg*{&R&96ieGLlaT(Tl^yCLc)!YQ-!EEWlPkZvMsP1GSI(S^}+~Hldce2q@DP9 zAlBSn&BfT0-HC4})~JtOz+8%P6Rj<=ITCXpj}>(@KSL&`XfLxijbYB_?&>tu3uB4P zC&WtrgoT0GQFq#dG53kZ{r0Y8;(`ghp0$P5|51Cxxf7g3cE#1<6SI#~#ouLNKQW3a zsOQkWW4DH_nH@_`juq_!V>D4afgAl7dXsbKyOXy?-GRmZG57gBM`1U7-dUKlic~s@ z=3KhCBI?C+Vu_Vvi^%69hwjq&#nI4-d(qrjVvYJIaxrmYSF)+sDhT!&$ffd%xp6d7 zKIbGhsV|+xU19RnW!IJHja?Jt zp`EJtHU^ z$VM%`1IBXPW(TNPVv|_Tao1ESUJL#!M&DibGa9$$N{W(?{T2kHha~i_-OW*CAIFluAOfP|?uo1;OxJ+EM(CsNJkI;Cs3lxQknoyTIo-_-IC_W!BaJOM{*^*hp@@VL z3F)}Z@U-Zf+XUjS>5$Xi+>WCkF}vk-H>)n<2k`dd_(y@)sWxra1$*<_U2kNANC(~W zA%!7W%)L*F@XcB|Sh^&9gJq4rq~dP#fDP%JEb6Y*)Dm|S`XcieeovHIshmk-8BsM% zdCipNf1NYQWHTl5Y%_C&yxZ8d44OIHl(WW>)7@N*qaV$zu`!i6?>8~cRe1dm>#Vcd zOoQpo6k?iLIJ}uHNr0>hiBviw#Z zJ&szP*~6>T3!b1lU3k@-I8>*{h6atZ(l?Qb0UZBXluMwxat>9egTV0Ws4Ra1)xk1p zA?Z=iuot!zEBw1#%LuQmAzCl3F)?TnVzfV2rolR1glBor%>h(QrnlRGY5erWrBgd3 z3EZ-?a`->FyX-98#my@7BH5}6&!Lr_m0#vHYhIey+~t}zhufS(A&4_AbTk=;SBTTN zbLJqHqnlqqS>RCgz|*nNb5ZZ+K9X2`P~h%(^{!~><~AZ0R4;1HUQk`vniDVD7hZ8Z za|?3-1}@(F0M~^QQ&#IaPt5}-Iloke!p$#`01BiuMj?HSLe^sx@<4d`gT$jL5n-+> z8jNe&`wO?b|HMHP`>{7nKHr`49SoD{GyM&u`gKW57dK_!0xB+tcQ4+{A=;8$PN-Iw zxl=lVL$x=8=FKbV4d3!fS|2&oRc0H`3-We>c*h{$$c}eeu~Tvxt1cIU#k?<@RTq0E z<=eF6+R;1!5Fah+D=!4NPps~}uei|U`jlCHU9J!R@bc>>sY%Z>*1b)F(`)o*+STNA zV%ZK&yO;pcbhTyiOVN@?!;RTu01M4U`NthMTeCMwsO+e3%uG8SytafBR04Aq$XQ^q zOo$%nveWHbh!s5vpD1OzWdo(3aNPYfN{9I{on^8I!qi-{ zHMvyV8ZUWz$wy+|O4T`5w3iiIoJXAECEG6a=FUdp|H-(!RTHoQ*mInvJ2c@)&=Nas z0cTff!2<45R$&?{HSIS%mQ~Zn9~N+$V9Wxp58_1*9pQ>??h3nN`;O`KCQdH@jqIkI ze~3qYx}VEY=ji^B*DNNAh8}fxvMnvK9`kZ;SP<9EfcoNC(H|MhhDp3>EH=+J_Zzs% zd7#{#b{1#COIf~U5&jbfSh$~^!>&_TZn-;`XS??NuE#}=N=~3owdJrel_z$6Q)9aL@2|i*r05zRI!k^0* zU_Z8oyq zgzj2poK30)`5NRTS8e-s4#29-GfM)mxrff;0lyU|!^G+;^~~Pz>GaI$TNp5ALP%`t zqy3%G<51exVU<>;iRSfSSEpW>8`JWl-sPl^cTW4Q1+$rEc>~P+|xRIK&7xpgVWzRz)E&k|6Rxx`nx~D z9xPN7gk^C<&|PKT9ip>Z2%yHnxjFj#p#J=EIAI<3y&!BpxFQ=GAgLjzp`*xJ3z2YF z)>~o;BlQw_mE+^qTZng>$h+gC5Uc`>LE(VSCQWN6$SW@~#W)p$Zi!lgnU1iv6;lA& zU`oxMy5h9UvN|il$4Jx=-fV~NO+*vZyEi;*3#%xA{kh=ktjZ|4G*z;^lGS2-t7cxNOs$4cmotDWck}HseIC)B4HN;) z%nAY|Ji#EDJ{LdjdeSsy=0Dh!Khumn->sOUZC4??o{>r z&IfvZ3cAd_qm42JsiHS4xg(WK*7al!m|k9DI&ci@{Xo!NDd;kHQ@ceb$FEazPb!(L zU1SY7N?u}ma12MCFX-M3=w8x-Zjcw~-8hD$@_>fmQ}btt;8r?>b0>X}pzVvxS8BM^ zuJt&OzgeSRU33&6ox3T=_RE!1UpdvVQ_vr;5h5k%4`ue(@u)#(Uq;RPs7KHr@=`M& z$MnaIg7!0@2S^LrAurH_IEI}nfEGL1%9?fra-+l6cj~27sB^&9H)zD=lRj>0d8Khv zvSf~}dmu}Mz#k~1HiH?p$s#_eyS&sU2glTXi=eZDNdoamS}tkKeBvc}iOIw15ii{a zwCdic_zaoXMT~mqCm*5iIpBk$UHmuAOx3rMWZMgpeahsQss_0kHOMDEU_g1PK_QM| zz~e`)K@T9RL7r-mXKP@nmnwZyM(N7nZ{hT|Ge4vB*~AAND=(!N;~0*;P0)oI(50jW zJuNTL4vyj2tAQRyt#ILx;Hb?vf}GPy8sD=0HCVimy9_sV{+4d*EtNoh^nGsTYKo6;%3zrO?Q%J2}E{Q2x}>^=?yGRZy5Y5N$FrfSGctv|dwz zHMJ^mV}1qi_?{TKmjVNw*?D?s;0}T@uSjMQwPO}_pDuI%Fj}E~rqEhbsMW$zBU9z- zsoO5F_zNg4=Dse~g9gH~$xz(stBGtLYbydphaM$_wwHO?Ic4ZDDCi$WizBG!9@?Ro zhF8?lcv-wt%|@%!fT`2!fDq>VIaMLGzt)U=ok7=&5dZz*3ifE0W*HM75%YJR4hNb{ zJ*O3nR?Z;hNa@pBd`NFKiWg?H(Z$Yf3=9w~YC#)i?#&jAsihmj5IXlf?e{Xd-oHysg=wi;^X2h=JZ#-nDA5RY!tbyQba zJ#4@yd32RJ&|Jhs@wh@aWh(uJ9O-wqnFM=XvkG%D2CB+1UxR4=F#)v)K<2ev17n|u z@Q+h!lFeI{G8&r)y(<{~Oz$Syyxy?+V?4Vs5}W@N@H94`=RP`GiJ3g!M?OpJWTE15 z#rj{RsDQ^!r4b;*S=I1g%Nmf_TKME7C zhqhwnEK>4p8mkLOTBnb|>VnYEf8#@A%mhEWl>Lgs#(}*ry^t4VFS*p*lMbGk@N1rB zmf@;2sziVCzhDBdDDaxUfB<_>bqvzK_z@F0RChe{3!4Y_TJ)m+(}}j%q8D+$ak&2M zCE>zJ^>d8=Y`E~)8|CxP_?mGhRpG?E>DL=)>ObLd`JkXL{Lxs!K;3!Ls0}-)&W@%} zi=wPFXVIb^(x^q>b4a5$?~1L`sqNFnF5lr>#`+Z!iDQwP4G^my30|2?b7c-!b{GAIEBYvDd(f;{8F*-N0%GZ34xOB zZ>(l*Hkz}au-+WJ8yE{#$+qbOc&(D{50DjslI=-&rDQu>R-zsD;Zd_SDz*+%S*1t? zuim(Kn$o0R*Ftz4<=UT{J>dU!<=Q1|MbePs+&XwgPuu0kMPYJl0SvOQm$!{PP%CS`9x!ip z@EpAE`=!0{iZ$VM%`)ZhBflCbJo<^@)HZ*v5Sh1617sl8_O^^5WgtychZ4demv~Z#@`?)lX5S{8xb;xcTcS zaQpFN6j-AIA0Hg02P#Z~bwPn`U>sJUq9XiPf$g|m5*iD~D)2yz0zW@mfsQG#Dk!iO zjKd04R8mT-7 z%@K8r?C8&7geah=A$8U@XxI9WW@Q|2Ar zKEW&JIlbHj(@ODFNIUe0tmzI-guT`F_u^|ANk1Kn&oYRzs_ z@gx!ZY)E8tf`d?ZjcDojTw9*SAvWpuXcMKtUIN38How*DzjifqK=sO85^WWBtNeRd zyIBi&R7k96SR<%IzAZKAkU|?$7f=VsIBP0!{4!IA*?5QQkVjy69d`TwtU7qj;-R}W z=XeQK$GzkQ$Ez)NFY(>@%P6K6k{t0?NZv%eA2#4PCABC_+(4F?cZYJvT>rl(#JLB{ zQ+Y$W6Nf2HNY}}nrq3Z~P_8wbk-PNsRA7%=jTz7kp_R(WEtQJ&Z<$V^ExJ)fBg(JaM1WWHF;ni(;dm@k15iHLEhwOy!AXq{Q99 zA?1l{O!zqzAmT+m4hfCVO^6>R}b*MLMlFsIA{QSrTp0Jx$LQ<4mn$xVwGx;3 zpNo1wln`S8a3$_8!;1-JiNE3h`n!&fsY{!l3OC(Ff0>Sxif6LpJO}O7xA?A<&njh~Z}{qCKOjm@(k z;5v`AQ&HYbn3g8a-i#d`qs#h{AdX$*Y;2dDShiWru{Eh#`NNRT%{Id}n8`VZn%ahaLJhNBli9dw!x}d^*|^u#I6dT)-afk56dCuj z-?C6N3=7?Ra~ZRL-_n@HGM%i!gly^1PA7ENA8eIs&rj_98VlrVlJ+$i<5O1!&< zI59WSP5G5=UUP*|xSJ}~Sk6jt3WdU5W2Muk*(QBujd8x!z?4^OyqBP1`>i&odtR$l zHqinxb#XV6@AwgeuXxA~lH{Y+jOZ1Fd;(zdqn$_3j;dF$>mm|f!|b#6U^>_RS@#8Hq{Z1q3Yxj7&g0aQi1+=u2gka zYSm*F8Jjxrjk3;wKBiJAa2bjjib73wgNByq$2!9}YeZE4X*!;ZEqGHkAuzlqD$~!R zCV|@V4LRwm)#vA{)Tn!YZrr`GkO$cF2r>=d=-@B5iqz+q`dwF)Ybl=Cq$Oh1yCKKF zuJ3#aWJ!&9%sQx$*U3GP~;{o0TA>-DIv9t*(7xSyBZvJViEf)Cqy4_Vi5?+ z0%U-cS^n=q!m3lXA28Ecca7bHaLYvwY>TYhu z31&GV1-jliE7#jlk8yt0VI%u&q>n@1-8jLFr%I5w%OnIhOP=Qd&CGb*TTo;4jkGBj z2qQZ*J6pM?ZtrxhO2 z#P2kYh6@iB>TkW=h%rM~Q?(sg1kWRZ$szvr~M7ac*zH@jqgU zzqBS<_6@_I57?w4{0nWthVM8(x zoCGS<@2Z3Z-Wv0PZ%1t8;y`%C5_gz&|H7DeaUQHA2`T00U=8NT zLR5-#S@UNRxYP(%H8Sd1VU{psJnk*1VDO6r{M?H!5J!|!hkC-}3|bZFAB#>zFx*X+ zzhxaM1oTsu-}40_VJxl67)!xAazIRLmn&4X7@2V7>&QX!(o4C@I+%uQniB9>X1G|5cwMDkP6Vh1w5UrGD@vY zl`1c#*5erMt%akO+L2c3bt<)OsMIfKlqx`fvPx~wD7Aqyw1}Vu@=|IGj?vnBmb3TH z^%>Buqy_3t@&dgI$7pS>2b#7Y+k5EJBq;;RbWyaZ@-Qi#9pHl&$Nq)@>RE=6=rSGq zOTr?brPzO()Fj1(z^_nkx-x3hM%i$g>Mk#}X~!|TOs5LECj)vtX+hoP1-b*rsAj#v z5k56+&g@m`B=-b$KVEh3wRP{3dfDp-RsSoEOT7af<$WerT3XW6Q)Yh^xI1@e)TE1Y zgL=zLO?q%ly}v5xz6|JI(gGb-d4b-IV{}yK3ffOWyK8zWl4{HGPf_YXDwUjlxRA2t!Xyaf25Y_$ts(Wc#-BWcv@Q$H#!28PJ zuLfVIlTmsF@c{?QOX-z3h6Aq~we&$iRQhs?=&T4z7lBiye6IC!R}mj@ ztGtw6gJZaLAP?xO4Cq?Yf?k#v=z1K(ty_RrFQ-Y2G#%9!-WCt9%wm%0tg+QK%nKVP zJACSTU?fP|jB6QpEq4L7$fNmu% zXp+1@ufj2m``SsSNx>*HjGJts9e}yhCsQNZm7{hw*mlv~$u_ACmrvdOmSJS$rrPqP ziA@edA@Faayv~-4+O<)ape^!JJ9V;Y%SAwsdVePSEKZ;%?&JIR!%dp%llGr8-d`Kk zO!2?2kGhHmaD@i7n(_5f*X-94H%-^C&9pvKAGHRBfKKhZB~={L7CwWfFsbyYuqy4f zG!-<^F8y>;JWL;T76p!^sCNh8X^MJd>!W7nZ5pFg2;Hcf|Urxu#A}2ZR`3A9V&*`+M|J^C)L*ebl$+kD!m5pV?@A z9r9R8Qb|ui{~y14B>Jd@ATs)>FVoaavis$4z)gqg;RURdp_tNc*rqC=R;lo$J&%&9 zkNVcWVLZBi1RmX{1NjbOur$0)F<~2@wln9^ihYgxDR|9i!12=fCKx#Q6Dv(#qA)^tWt95 zo9PTO&_X#zAN5mIQM~>)>Z2ac>dD3@^-*gJ!6%2>l@k!Ut{USo-k>=h>a?r2bM8s)Lq>Ka7YxzR7&^ch+lMYlNri1iJ# z$dS&k)<9*Ff;j;N{SUr62K6=;QnyTfLtakjq17~H!#wIA#m@KP1RJJlsGO;1nDpjp zzWM7IX6ZjqbzPL{Z=JWAoG%}tG5t^DftMGd8K@|A>p+F1+NKs zF;gEclM!loB~r(gu?-IPJS%6X#R7mt8?H$lA%0_uG&-~TWfE%m+#_5N*q z>fLLp$E|CAeqULTz5ClK>KQB%V`)!oSxqTv3hIa5_ZWWvBeL)k%qO;kKI&o-?oDIc zyZLFb?7x7!3eEpTO2EDu3*y_*+T;zx&HAJ{e44i_DlTXZ-p>B8@3TL=nhd%@s3#v# zFfw0k*KjfGo*Y)OYlB4d0d@*S3ZP1%npM97!w&%(b@dXR0a=1a4lz|dQf;p?wXHj% z+I~j0y=Ii!9;@2crPp?9Mr~)Sw*JuoElUHcEe(Kb)uj5;^#E-ZP}2~Q9rSYzoP9k) z?AxNSP_7j8@-*mHQjQIvFP*m1vvDEQ~xL(!5h4A`Kq6xyjcc@^%dKxHuRjT(2Lqro_`P14>-}EhVN?;w?GTaUwZ=uMYCJq6M0u;gipaWAYj z#=9%4^zKTReL6=*`FGv$RqpUjuZVG7tOwIb(ugdZUWs+2=~=O&LFo?`ZO6uC^uV*R z(3|lhjQu`)VIsS&JTdnd@#4eItLg-0T1MG#yrgQV@Axwa8h*d9}@UE`5 zttT{S?zmA0boS2vwBC~GK$mZUTbDJ+LwQcB6^22d)1G)3MO>T0EjD#N)Fd zR`g`N=&$k6Gdx*yeB6CpT@A5$j)!)}Lw~g-cQ(IzPCSGe)n_0)Z~kCg+z>h*f)@P_ zw_tt8ea7^K>4+FKA9Qve)H^!6)xB*&S1c@OAL@@5^#@&1rmlz;bj`W1L!`lqjx=U( zb;T(31>Lr=V7F;%xp&RSIT4=w8Qr_3Czlm4s=G19`CfVW*VlZ!vfMlSI~cTM1e3x1B}=X0Wb|hn|#L z3-(U4O@E;}N`G;MFx3lh`v>7gxgukN@?-b6Bt0q;xP! zT(2H&@q;rxmMVber#lmO-1)?igG_pS^};>eqLg8H^k7 z=mGn7Ty#}=J(A}c<3wmM#=Oc3r#dbH3Z+*e-adzTn*Oci5ahv_tD9=ZTnl4vKlH4dsxdc}F$en`j268S z4ed9)_=X*GPU7raW>viCFY%&xutgXT{Uz=)>fV8q)obmNgo=Jgy?~`cx&RoB!XD8bk-A=A z`$Gh`qY<1P5Z$~jXI>%Mb;B|mb5e@<)UNKN%9uCzBuje@qV{Ofo5>E4(9__dR}t~a zeu#zk#X@`LSI_N^dUM}JUwpxZ)yqtG*zmG=Ry_28x&wx!4$#hYM+^}tW~V!TWrsRt zV|JOoraNNl4mg7P(IflVv7%CC1??hDm-=cwL%F5Ay6hA0@;+lXSGnI8b7!5R-f4}6 zUUEVj389CB-jF@M{yK&fOft%VyOBeW{)+&iaM-{gqDLJJK@Oog7X_C7Gc3#~CH+L> z_Wh=$%}8)lm=VSU4s2rOv5xTjUjo;#^%0AsK|_ge_ljLvtW+Nr;{mX*^k{C5c|X!( zY|eff{r-F-79M0RED;MIepDhcFXk4ow{mBJ0F_Xz0q4ZL%Mk?Ma2)UYnwa;Gbof__ zW8Sxgl(m+ue6aP*LMzIWUEwWQLVoa+>QTVf~X{oV*0uKu?Pdt&ZN93+Ol z;)S(cL9_bKE(O#G6LII}mqO9dA7omiL%FE)I7VwFThx#Ndim_xED|#07 z$w^{e-ky7ptLLnaVidVvnL*NSid=5aIg-m#qNoOIUk7PsT8>Di(FFzKQ)ojY#5Q^1 zrhjMLt4nGf7d8GToCz_CC26+fEjJZ(ir$KaSY$B!K4B><5*XS#482ljU5LEgES{r@ z?DJwYzk%{C;TIL;YxPqYWA&p2v&x6kG)9lisjYLK;vSU*x%?>USz=~|S3IVb4z?JZ z58ZSePsE*q(ab0}OdjcfKnX#YD#7$lMo+)a}j^Ro)3L5178GM2%4PUg|kN{Oee5g;UgI zm@giBmwEj;Rv@`BL3RgZ!2ay)cjKW~=X=??vC!I}FJ`qztILjs%a&VaO-x4Vb=Ifj z?yOmAb{Cj+)dUi1Ktx0DIwh+M+VF;NSt{A_V^~z&bQt%+SB3?X?3ZLct-A7cZmG^s z7OOV_;p}U88<9V--<_t6AvQe3>W@i)k1b;rUS>K2?mIr3SU3re>lOR`u|KAifc;EL zG=#yRpfGo!J$Pp@F(2=lNH-R};Q$9T23M@YiIE;}9mJ^S=n(SBC`nDsBO{{P5( z|M)7aE8jnQqD?FHM2$98I;3s%=6a~51*U1kwTT9N9(Yb*MzonLw&}!i;%HlnXqgc) z5KtZ;PD(3OYO!)>Z0nuUN-MTFA_f!z9VK8@@Mo%3&oTZ$tr+|P_x)M>Ip>7@fPU}2 ze|*2MZ(c8W&a+VobyK4WZwKK# z-N#iP)MaP=p(!)&TR@MwfweK-Tu)LFZ?>>Rtj?xr^_K@AJ?&flWwkHgp2^YLFZahA z*FG<`HpUya%!^L1C!R4I-v&69Gr*Y_J(|z`$UmRbI<8csq9vEkC`^SLTCTXE6$pr_n78rsoOE#+#uGS#H_R#`@ zqihi%b=*V3h#M9p9!V#5rDZql|aFpv2Bo^1TUdW7=D|ZQy4^M_MBdV7 zu7TxRWQqjUlCy$R#%+2jbmRFWwIP?MqY0%km}!1ud%VwIRNbt*+gm4m(9}BNuBK?h zdsD-?LCo4=Secn{HSK16ttDS$S6OD%D%o*5yNY_Mex);` zKhIeDEEssq8tbn{Ky72Ip>NZxtER-Ar`gj>*+Upbb*Y~2AUfX;w_578&KUK9mw3p} z1Q{k8VbN%3W+VZe85e}r_h|evP2t?*k>+7N0>)uXP&WfUX2Ew^vXU+iT%)*bLd}DP z4CMr~i2PjYCYi~Ei}}#o_}W+1_{1A|EJ*C~c6`YEiwmknbo^^C91RQkp^B?JVixNC zRF-QHy~N{wBFoJt;!Nd^@_;ZV@q{pj55mM2n?_^dSkL7u4F5F_fYWuwtzi_G_7*WJ zmPTIFE_Cg?LPw3hC_;@yo$|@iGKXKu+n=1AynUHX!Q^O(p_b4#+-~b1JO~m9OHT>G zQV($gCPaDRNIx^~cJY3oPDLs1DgRUGHOEUmY8b{{^T~rTOnKY9gqs72(_nvfbvl7m zwZ6KY_W23)W--qPF=Tt?g8P2h_CD%_e*)R|_d~Y#(J1^=I>Ci*`)B<@d>DrB<6>M> z4RESn=KOy6cC!t{T$tF*gfk4Wgl_LXIXPPS5#gZqlObY6R(`~mAB+}Etx%6G>myos z4)uZ*dhk5zNo;DFl9_uC_~wvLh-e5Hv`%mcD7@nmn~xFN`=mi=7l=WLAe}U4(8tf~ zd96qECW6-gY8P$)i3QF$gLzz!0jWYB=x_x6DJ^;Ccv?EDs18!U)Qzh#Ua%(h zr8bEE&C%sZL^z0UFwz~}Jw`w;c_xdqzt?(&427hLv3+2Jx=+lSQEOBpEMDEhf>e(#9t$#OeVyHJh4<9+SO^&U-C zMsW8cc2+QcTAmmC6St*Y`7MTL)K={;@9qxx*`uFOms*_5q2WtLb&+7V6Y6D`eO)qY zCeI+jj+KM2`Xj2dcS@$V&i*63*8M^FWqS|8e}>W8Se~wXVb+r{TK_;VV6>V*ZQ79R z_&U3zDzv)UeW^Z?6BXE|gaE5z5B2h#JB?X#O-oUQ}8=aqM0vhuIGM+Lc^d3rfP4+JFf*Izo1a5l4dW z@en=9u&uWVvs<+wkv3ss)YviB+kl}2MaE|5dkb!OAH?Xgrq;P{F>w#*9fEZU#3`tI zXV%lOq*u5(n=YveWw8LAd04V+0sA2n$OT^KOwyL@Gla*yB8eVjVXn+^}QZ&GeBGCX%v0HKj?$9TTC71-LC9Hh zl%oRoA1R6KC@sLI#FC>#1=3v167Dde3+W0XU;G(gI) znaPgtLIYHtqXG9(nYL8Wp$2+pRjFRJO%0-LB1G06YeKZznxOUPX>*%qG~lv(Bvegp ztsWu0Mm>5G7AqKvYEU#_LOPuN1@yCA`?1f1gBp`u@TM?kKf96*|2vXx7=E3Qg^#6E z&j&gac`@KjglIQ~Gm)*P+jyloJAs{v96U$q#7hC|p1J4ZCuYcIZ16N)CWh!DaZDi5 zkh6wGj;5~cV6xD4l>`6olp5d)}t znN{7dIkuZX7CgnMNZEUy?DpRK~~(`lLy=uSOO=XAtYTa1pP-{gn(bB`@j znqOGg%-P?l5&ZuV$jy-ToZ6k)idON7C#^a1oCVD&NoY`w5Fh=-#3Wnv&iZXoq{ zJ6d7fsZy!a6LLWs#7)y9D1k_V(FVk^e$-&6sKK%$96mkS6sF{5m2AiM;uLzCu)Zl!u2#Fxs zG25uYN~>A&xMUNs2!h4VYgMUUwM`8I$pEG%EOSkWR$CK94eCV=ydpJt2JPVqVz$|4 zMk2;A5K}W1Z$S;}pa!Qy4Uk<>Z?GZ7)L;)WvP`Z1GCzuA&!H&Hs2l!t>P;jKCLpaN zFA)ch7oQ12$QY~el_2q+2V+K(pV*Z@5+f_;s9NiY)BCj2n~T%p!LorVEu!JfB2#Ab zsO`Hlh(@BpMq1D!C__hkkG5vC#*3axUaPrBtNCd+WzQmQf7(siY)#p7(r$j*P1%+s zd0GEyxBM?-6cTGc?dFa1HE<=Jnf*D?S;AZ5wRCGKhiau8(_!hnbZg@lsbSrFW(F8g<`fG9u?hRV)(M1t)i#$Y?IS!6R|6X6q@?SZw%ZaBhpusC52)TFUxFkK0yRZ0M8Lh0Mb6$w{`MN#Y=HUT# zI&*}b&g@w{LiFJFHGDaHZ{v7On--Sx8+T}E3F6|EF;k-1<7Xy2A7lc9)(dq~8zoS- zM^}LoZ+X!L@D=ZuF^A)8%fuGkoM#JkTc`B;(hCJ)m#~CgBd>j(?J$Wg1l;mF_Hp-D zgVCgAPP?8N`7tisO3psPfA>B}7Jxs)=LWMp_cP}b3+ch+k|ar*2prbA2lf4Q>V>J% zvhmYshZF@8^U={SvljRX;nlM79v_*u8ROfgM03YC`yGEeLIRj+$liV0<9c^EgsD;E z_{y<+xrG&N&(y@S@qILbWg!8i!f&1M+aM|h_evafr4)~l#OZz86}O{KUsmAypIrjM^or@E&kR>n=*Ik|P*zd;(`njB8(L7JhSS+BC6i2FttfFZ?$+D}@N z3swky{@^C(nsPKRLW{ikKp35^j$_-H*Kg?D#CWo~)iV`epXJ8d@A6Vxg4FwdVvCQ^ zAi|;F`iL!$$r^a0$PgsKgfFaarw*Y#+E%BB%Ok`=*dUVP5CJuvSxzBuYG1qd2Fm-K z$g86Fn7_Fij9YEs?2E~oLzo~ba^hoAWu=*ITswYu7DYJMg~PoMHQ zX3kIKfz7n6Fp;!9KMKUkQa6NEk_Bhl1gniGAz7TTfa|BW&KL<_c%Qmdsm*N8)C@t- zq6xKrIN@UwVcOz}Rfq%8+-bT0!Y}R`&3zw+TsXkJfc^5VD&#v5e;k#IotKVxX$^8h{HI83>UW4pJ zSk2e%;b|1=NGKF%ylZ$L+jUk{G5@S6m|vQDP%_6<5;;_!CZRle`;DHS(Jg(XnrC?H z&U6Z0+KshJPu$`@Pa2aZ>|=C>-|;*q5m(l7x9<&JEAatlc0r&ntL_s@^hiCMm29%- ztZ2gZ@UOP5{!TqZ&$sYxe)t`I#H-2ii_aG)zr7t0+of?m6%SIrZW)u zi_cDedt_ZYbJ?9G7oU~<_UJRybqdG#?dtF8|1Vvf{QF-1{h5F7T%5e}&5M)0kIy1d z*>@hiIC=SQ0;}}y;N?kPo+{<#Q3}m_+z;QO*XZPSU0&62x2B0(CmZUhZDO+Vea=HB z9)m`l8;Ez!dMSTN{b%edNQUlIvTMui6H51pd}hU}?;)0!Qr8LGfKR=8wi`yC?0G99=_f`6tU-vL@(L_sGM9RHV`+L!K z&6~CZr18u?k9oD<)6d+aGk*IWoJlKhskh%V&g}6z-l)3bLBI99S|b%Z324&YKxiZ& zWgMkxh%RJSAHS=dH29D3uPkC^jAfaTkCBY|dOm{E*NLEXKKJNOs!WGXo*$lH%aiyg z=Od|p9lgodo3p2%qNpq9SGjm2oJS0ZHR7txo?C$tbn8jFo>@^(*1O#&*|bACZ zkC3-6d+St1yzSE4mTR~2(D+biH;?QECtDDic7Er3^wOXnEmh9>Cs>bU+P2e6Ha*&K zSALvDTCujX`wh8~MF93vM8T%UX8(WZ< z)6s=3$xf;6{pbqB(?3bbt<;g%6^Oj=`q4bjYo8+)R;{)uPn=-Xr1LUAIv+9UJj4>T zQ=$*G$(^~*NKWlTs$`RC@$0tpw&$4r$%WgGqCDrGtAH4A z_>-skHaaW zDvlkPTy!E{{tbHk5&AquR$G5~=~gGIf)IlR6o)!3O>OlK|s{LtlgHa1eCzy_-Bf?^R- zm1QVg1Ix#;WE|p3C=f}~47eFxVn#ArDrJ`LY-_xZ11y=(nP9cHx(mpTkD&!t4Nn6D z|0^&$NXe9r^soo%;dQd)R~AxZa_UBeW6XQ9r21U$Jau2=FC4_CcF8+pI3q|-0GA7VOWNJj$s*3s~hVS!>GEo*7W3pD{YH+9Z`^dA+bQOQRN4^ z0!)&G{>cSDf(XapsHaB{+hSBiZ>Y{vZ1q zD^6sbr6z*UGF8)9A3cBonYAR^BwO=DLA}UjTBNTmMwJBJ)8YGIyl!9y<+=RoT#`XT z@EHsz1k`9~?!%B@&e$*F)H?jL5GnPDP_x|6jQoPp-yESNW9kbPeqAR}x=1YbwwKz@ zag`#=t1rdkOVs*6aYDAL9XmzuX zKzc=MS$#Up?Rc*;+4(!k*Z?Vuv1J4{Q>HC}&Kiz1ehSq9w{9`Zo`1ilGA|tB zJ7gP4ynR&AOX+&3uMEZQ2-s;8(>FnX5Yv14-*GMJ%vnd`z>-|DizGkXBI=xaFP#}# z;di`z1ZQ1eGP$l#rqm~k>eNn&MsJ)Fj=m2Zl+7*NpKV=GCmBj*O1rtM+rk%r>aDX8 zw0FQ;pVYXcO!1%}m2xdz_r$Chdrvr<@V`3_N_;J->%08#sPZ#SnbI#!jVk)4h86q# z16xR^8tGqAd>^zK<@cfFf|vRn!|e8=+yZG-JNk}HX7-!Bb)ffO4+G$52Los@00+=` zG;0ZDN=to3d`8m|Uqs$Oa?D0$Jc4!aOD;KsB&2YBJyLxf48$Wi@(de6Y5uOPL^i}J zV!}53H+&cM*)43HC)*4pOo(FhLXM)cVb9+(wOq(<|7XNrGOS53Q#S8 zkce_VbnYN}_Q1h2@fGsPSgQ*JEp7}4Zvc7vm^+u*w)L%*#%dqII$)ujmebG7JqqsW zWs6(71%88t@C^UMK6)KnP=mig+|sF~LEVnz5^cHZ@CodvQU|7HW_%oR^5ujUEpv$u zfGzyWlZ_bQY~DFBtcWa(_x4$PtR}6*F+Nt^IMn2)@}#$u-znXIWOz;K-BefV*BzMk zYHtN{DJh{kIisXWc3{~z0O;E>s zrOC`Oj4UJEdpkyq2gg~473-mg{o^FpAA@I|e2ceSt55nv3Nf-Xn9>Y}H?OTfu(v;! z2R5lKhSbh8_ie4JAqty^>Yms$|98d0Wv=kot8%|VX*&D`LUDhxS5dTo2ReSP4(!kU zH*TpsROxwb*?KD)H@D;GYVQ8r+j|aEt}I*T%DI+yT+FpazoJmA-{m$mbh}HT3qdpq zmjCD}v1_1gAnP_=jx>W_PG%_$(buZ*l_S!8IdmnuQT5yVV)w3o*!x#_52A@<{P|nz zfm;N4UP%Cc{GMypaN)N-1&T9|FqlY5(Mbx`E*tzr_c|2|qQxuj!~Hc3jzq<3(LX*olp*oWGPJ#Di{Gi<~@au>S^5GPvV zT8qhHaLS%^)FG`!Q`mS)HXTLMS~QW~<9GDZ)yb{XPepAZ{Q#2xj#!$WTU|3LYCJU` z9Ck|0*e)-eGRbP%3h9)wdWgYW`|;#@}P0=R;+ z>$8`GMA5kgt;OB}A~V%yS0z|dttaGF7BDVqm+31ew=OwVTpDBZcCou3^&M-YZ%PF%b!j3&WoNkD!wIHnBG2<76cVsQwPi!*_qblZ}=8J=+-{Nv`(G+iT zH1||5**V3spN*}g6Lcm=vriRM_K=evV_lNg3G(Io>ULV`5mpQoMJDftEN%hS^xP>{+v6QejTxJR@VYt4+&m9t?dH{xj-Y7XisD4gXB(J3&*9qZF&dr}G(JAO0zYdF5C-vG1osR4$#$%9Xb+*KijwN|2kZ0X_U~IA&vV;X-vGC0hwuOi2FC{%cwy5}ck>#U&S{ z*t>FHko!?|Ip>WJFotZ`=b%(LYwyBS+j(Om{tUKoKrSqVZ}p-Z3@tSs3s2S0Wamrd z!1|_(7mNi?)e}n^hs3B;fU0f_N8}aCPhpJ+Q&kX}muTlUQ?#r#p{*%Xfz-0h1UH7w zre~%VkX(cu(W03V{%L0B=*hqfBq!dd-bUp?biF1HlnJ6ADk0gK?U#)+wh@}fHYgzg z9qX0sY%>9Ki9up|jKt`eLhTmoqZ-qY*l7Mb>tLu=2)W(J+)aRRu8kIMtP3W^Ffpg7PPCe;hz-tJPI$K*SNtL@;^#8xly%^opj8gE%CI zW40N)k!}lCn34>ZdW#h$PYg9o zW+5mCRJTri`Kh{v0jfBA?_^1P98@_40H!6#?RL^FV}7{}f@r})H zo3@^yUWn8`)~He35EL}o#pm8+TvwrvJPnI9fCI>wN)*Z1vQw312uhYETb`12@w*=- zbAD6MtDC_QZax%1N6*ywe)Q~SjwBC3&s2rcvy-(vi}cJn-(|OZ1(K#gNG>=@BuxPa zn7%$$nx|@SkcLHztPJV{WPbLH*DxW76&5f_(gs!{@GqsW68O0S=shIUFWKn4i>PVz zUJITzxy=kC`q=Z6+~;H>>qaN_e}w#Q|4e882C08%a><`*hw#?C6>%TOPWEAT2<*NC zHVC;>Ji-Y-jwCx#=-_S&7F}767xa#%aP$+z#!xVfJ&?t1{=1uEiS;am{%xG1oz%Fk zOy}#{Wtx?)dq@)NSqS~x4oXB~ee!Z{41N(_uD(3<;1{6w%ZwO^*uf|ZrA<;QA8l%Z)KvYBr`DLmB8lJ!i?+Gs& zhi-Y?RufjXaYfp7Xd%XK%T3Me8MrKD6v&_(Q>|$cyM68+sVXEjFKHC8FkV$gfreRF zm45#AljA7j3`xrgCvzmL3-O-SwU71B3wzry@LK@Q>e^+|v5?joHzsi=m6ah0hd@&GO?064oXF5Rxu-J%6UwBRb! zL*z@JQ7m2NN?%@;nh?9_v;j$gQ@FXsM+LzTX!E&E}gik@RbO}Tc8@6XjAu3TAmvnyv!^*jENroR8W zY)<<7@63O-QglN0&L0MuOVJBBF9A?k6ItK@48>|ej{9Bw6xoP zPfzUeqs3e8H@5tKw64p3&rS6BPR-GJ9*k4oG+;4s!V@HH69Z)$GPdMvle_cg01alf zfW53^%)`r@olb&>F*e?d9FYZ5?nDu8o6rvf;)MJj|KJa>+!8+nEA7t~7}&&~h? z`>6#6pQNj8*=yehTcjB%NYMowi=_tb@w^~?H;hJ6f?mOklb}c2(Fx+Q;056gtL)L? zN=IG1AxN*W#Aug2ZrEy%pRBXTFSWk2zXo$6Qx|lY)E|Vy*eX2sR#S;P`Tr8b5kwcX z8T;Nk2h%<7j+>M0lxGt+$a&l#S0?ok8Z3q=x?-jmojp@0G$;@*Z{{mU>yF3tLb(0e z_*?Dh(MG@6UBHpeasGf zA44?wkgp8WyRv;xVcPk$9RR=YrFO{c2D3x_K4nb)mU#Xwd6DT%7_^gJ-x>UM2?lMd z9DK-YwX=WN2G3xxQdVY1NT`|b;Ta%C+{RO~bF%Y~8s}IJiI44;*+8fT4$PAHDAgHi zfO`J_lf&K$){y2~oS>cP4LI!GHQ~^Qy^dEY9=Ql_++lAXizH)eK}oi@j=95Lt-s^~ zIi%<2+45*bFCxqT6=*dSj&r$d zsf#o&=WMr!nPSLzVXqzNz6LYLu`bSsY6qu*2#sBqF>2Q%eBuAgC%xa%fc_t!^qyvG ze5jM&`@SOCfAir_dhzelEPC&5b`$%eK+eBkdtbkkUMHh`gG5X~O5vhRpm@MZc^=8; z_3UMuoIvr{q~Kwo!z|nxOY`TFpSQEDeOOFhStU_jD3OjvJd_SchB1mDivTp>e9|q!lO!rYujWXC zXlKxJ^VJ|UMC*8w#M8x7@N6pc2aVpU8ECAZsWdaq1tyQ_-Gq=MZ z6vE!OlQUbPhV*Mh$G>T&_vfxVQKi+8K%a#m$PttXIC9D`#XL#k)x3=&MLflm;11G zSZGwj$dx5KkEJ%8m$1JSM+*JJ+oHn#Og-XsR#MQ{J%}=RH^OpLrnCcvvqD7FZ6a;Q z#ABYEU6Z|F{COpRhk~r(>kSuThfiepyvdB5XbWGcX~6xZj_B@|Z@Ig_^l!LzbW?Ik zyBdQ*dTIx1n*=%v9o$L>c2+dfYp7J~OhD%1j4#qK^7IFP4A~Kma{B z>$Tn!bkaW{(W~oDc3g~%9F6!oJLfB?3X6?*Z~e(_!BzuE?pfS7myVzyh# zNp<4{aB^>BHNO{j*YO)Gs}Ue6yoldA9fhSZ?7|UuGlYD*thz#m*5&N96S2)G2l*;x zsBCEGP%ivd#XZ8hiQ&X@E+)8*pF)9jn9=n3;jcu0iCDhMy=lMlL$l~4%U0g9DOOiQ zv|J^f43f^=xs;dq01}x$f19yuNp|u}^gOypc|78;LaWt4+-4MZ1T&1uIydNI@o`@5 zCk||=FX=A%5A`s+=ZkFV`TXC87eijEk4g!_?41lW2-tkQ!wlV~RtpHuIzmlil@h+x ztx_lO!Yl@Zh zv;UN1=I}+nG~;^arbSnIG;DmnR6LfN9b`(&&W@(n;?6d^tc8yRmrCqxIA*6?-PzgC z8%_&^M!pNk@u+Lu6lht)#F*@DOwNINeFm8Mj1XG9flJg-q#Vv|OEeySv?Qr#va?iq z5kb`hkB}*_kLsMxz*bpOY;sI`JMU6Tpu%9W*^9#NIYu?$I8zSZ0SAuyCVsKYo~zwq z8ni{DL(NC6vh;HiJcKqPi&nyQk{|dX&HiGGXj*EY zM+8^GD5Ty^ryfrywiB`>ND$-TKTWrbm}3<2k+e)BW0L)%v;HY4b`+T@y?V?=`T6p$hLe=^f>0Z zIcDWR^?*Cp5!e-!QV>UtU~<7?W5L}7+49l>TiIBYPw_lO3hf!s6Z4~a>OB_Ewvst} zH?s5HHRm4^C0rMV4LB}iy0$*n zMY&*%dGcIX+)x1_Z2p8?i+`29JF4VGBQa22UEQuU_yqM!1VQ~2G8);os@v{1J(?*`-yf!KEPo}ckDxDSk3602`oIHm#pJdb(7>#=3AC6vZdzqeyp^&6o(x?)lM7nK#Kv5Z7MWX6 zwm5n#($Sqlv%+EcXU8}Oaio(>U4jP283|VfIt($heffkA;F!>LB$j zu`ASW*o^%|!N$m?BR12k+u86R`T+m*C>EX#_r@>pPdw&{x4VLG+GT8+klp*3BF zrpZrb^iF6)f}&IlMv!d69e1NhGRs-0tHEmLspYL@AQIhh?|e&fQHw=1R_P1d{?a(z z77poMmcFpMou?pZ5$n96o2SZU?YYtxoYG4mUrH~tr?b^kxgPRm{~64YyhH%M^@dE* ziO>GT7DQno+@quwx?2(`zcfx?Vfmnv_5=fYW`F%THGe zuCC#!ZM)K**jn<;zL3&XaxU3m*7VVdr?1dNzNN<1GH9&L$MZsLk;+~{Ks(!{W*(KF z%0(^wWGd&_rc%{sFMrHLT4gYicA>RO z_iiLG`sup-V&?>a8#Dd~(eLLVt@`2Y+P)zA{!D(S!=M&dfE(NF_w-s^0d8rr-!p1^ zoL9fB6jhZse^Wgp22-fY{KOt_{zfHub&t=wCEdC=jd7&9!}?UZTP&-# z_9dI%Ch7s(sYZE>Mp-grrZmLqk3fCa-haq5RB&|S=7^gZK8o7W?EfD^^g-B%TH5PE zd+p1=eu-Ca{${nwuX|$_0bL0JpUX2Lj;hDoh971(SZ5Y(n|I+|)(dSBG|A&ajLgEL zb(>QV-Q+wcW|T8rH#yIV8RZPuO|j=hIm306^PHGb&Tze=AP9&f^B*wabsOj1Mwmb^ zBp@YSZ+)b}DmAhHAMu`$L^;RmtRR|SAn7r$Kyr+em^Et@jFd9^nU$_(nX3x=;t{6; zD069B-b~_tI7iGRdKi_0nZzv83=h0$sXQcbs(>4g7Ry6|ikZr2ojfF9;}dkLT^-~GnsAN*KaJ-Ec#%tkK<>m{)k9sYTX3$1~2$&Jz;SCXc zC&+(dOWsl9f*LF$3KkMrL|`E?r8zs9?WUha#6Wek1D>6|6J2Q0R|3;rs+0wX$yvBd zjGrkDt25;|*oq@=R%U{UUO{-bc69`ceX+iOku~~)gIy)2%)w~lHog?xC2r`lx7c06 z*`@b)m-xvlz5`u6LH3GWGMs4Vr(4>=5HSp4Dg@Rv1JJrdGR;x_kAKEtf4X+k(Jf;`c6JiPjjKD`-D=EUG2+4;}3fY>?jus z2Rj|U3Q8D9mWJj}fqw$fvr|V(WZN7NszF^(E;xn8_8!N;7wrbdRhi-V_o<*BHFihTHNrP8pGQCfz$ z&*ba2-(0#wx<^?}h$J>mRgXQ{!wuH@>S_8;cl&rpPc^=c=E{SOs?PQh9h&UQpJ)O%9)}E3mw;V!KKsZDJ~no6i6xt35PykSB#&Z=MwU3!W6}pYx<}BNTg5SeKXrwKTb~@kGkWli~w; zQmA3FnZKya6?Jjs|qYqPiVI9Ay*7VhF_? zPgBJUE|e`z6X-yI?RLhsU{3SgNG*%T@#|O<*BV`lohcw&|5mF6bNL$Im+ZXCKIc6t za5WMQMX@@*C)p_jjl63^e47!@J>yqFxo*)!wX0QyYmU~N>>|pwm~@emrTR|36?&Tc z#IH3})?$CkCFt4ZpD0kS70Tu)R|U2)eRQ*68?*OhUZT=! zRIv4$1z0Qzzufr6f$|gPK;amtSagr|PBF75_I+H#I)zq@PP}1Bfqk#1#$nj^aWVV8 z73|S=3U9uSpRn)U_PDvrz3s8b@*W;!$@0klkd4q)1{1IH1txwCFN2tPH6r`#Z6=Q? zgDWZ&*B41=2v_J#IH5e>3pb-{Z43#FjC=ow8&-V^*-YKarcZLRnaXe?sWj9kf~Vs1 zH(OXqe1>r`*wes;>89Z*s8IGw;ue1?7T&tldfqr#ct5pVZ?LdZpa`1ySgkn@Ga(Zy zViK;N$U8>E^c!k2&7N$EJeA%Sr_Z$awbd>59*Y6M^5T5$alRGy#5XZcUlXUVvnP%> zmX4m7XZF`qoxDAv;a-o~icVa9y-C|@oabgauSwij6w)S6h-Z1-QTbWE=Qe&a%U$-k zd5wGPvB&am9_jF&T|Ba@A2A_KB@6SrikCt2tLn3lY>|+bQHB8d0*a+%rd2^r>b6~e zNs!puaCf~>KKl4?md>XMem&=p>$ceW<0p0gxW<0Z{-nH_Z{s&+9-q|t<0|_-{geI9 z9}RfNCNHj1ejy!QL~`0O>qZHNtyfHtltcKuPK(EN>Dp@ba2+~LJyFZ0A<1ei7rn}l z8yD{FdC^2CkC#5R4lh8*dEz}ievT-yJKx^Jbil6ej78$zMe~xz(JhN?CCwN;Egd$F zZcB&LM>nU#g`*df?DH}w9j+YR&P%rGVMaIH=wEtszF}%j170x=8~NsCXE?8hvX`a*x)e9sJLumBCq(mn!y{>@#(+)=detO`E^)d379Gyr0JNGa) zAb%MtQlq=K8hcw_$pd9m6_4!g4;k{SWC8iJ+lM;0C+xO8y)q7#qB1!%aG^+k3%c|8)@%TPYR<5a=IWkwO9sT0_ zN~4KLmtO~5C*ognz?ImK@gSG6o>tEyI43GS?VKn$t@NB|`e|h>g(u9Xz2R=nDJt7h zW`Wfh2BS*Hb~T36N0oV78b{SEQrp7WqbhL@A2kNM_fb{)g*Eu}QM7gTC{MJk53IM9 zl^y*cgL+A(*lHVJW`jA?XZ9D$SsRI+$8^W*qW(TnqkB{~eaRLRY`AVB zx>?;mdvD`uH7t$Aw1*{e+O)}0kf2`}Ds-rc9DO7^zgVtyGdEGrxuqIT%e5|SiA<&M z<$mhTbc#tGur6SCF&WvJ&WxDvtVAAd(DCj80yuEH-f7bmDvH>vr*R|4MixbT_R1uS zLZ`8b8as`h#ez&<@|Vi`mfAcuTypYlJg0;!Pwuk!g(piG(|eCS zmz~^g=}S)D#WQ>CVH&Uc8lq*#s)EUxwO?4p^WZLwR2LkMa8g}B^cYKYVlEi4DRnA~ z(BjL$Z8^XFOWt*>g7~9It{*>(tr*>@Mj zEU^8c-!5>}$C=Q4#q0uFFhJfa7}-T5vCF5t(2&##h~Ij36DuvB*E;?4*yV6W4@|c7)U@=atMge_yDXr3IQ?^N z4fg<7=>Ayx()IZ)>n%$!6iS|s?3r#h<>0Yh~mOe5uE%fR%!auC4be!r*%^=U2O|%9k-F5 zyowagcmGOHR{ZB=g){|gBo9x<#5)D5`pP}3bfr})3Ty)%-R-FC8#WJ@t~|2`AnW8* z6a7TBGn8ivE*hqkJuh97>fs$`#zk}I_OF51m zVqDCn5JrH`=2;cY9bLSCuA)f6vvlbKwz^GP{K!933FWv2&)~(_?=@H&49n(*W4a_w z3ruohaEvi7pRx%t#wGX^jEhh<%Exh<2J4g?ZCXo9z5)pUdAxK3P+aVcsxr)Fayo=jPA9zgc^C=1x6=@a3%c z3;MHVqAqAYfG0&8@=AYCiUfiG-`9mV^2)BnE1PQIvgBGXYhP}b@HW0eT(Ez_jCXT# z$tcoA=eDXqH$d*We*&??&(Q5ZhRJ3)`bj zNSbi6@_Ft~a||QL?1|CHHI0}Q>u!U(w{VAGAOmh;&y4sXp2jTrlG!KWPVt@6r7|tP zk+#vM$1I505UE~WHrdhpq=w5`g5<5iq<&QM^KD1x`4KgeTgthX`8f9zHVkH8sR;!G zSo;y%S+K7;PCq6mW`Cq*N@DtPEzyL34=4PZnW8!jm#?C}v9I-ZfP`R|V!qbyVzmgU?e=t` z^U|5=|E**|e8Z12O^!Yh1)ku1Pb8P@rHEqR9KdpiYi5q3$P2_bEG6iG3v94cUNG+J zUheSdONZn35n|p~%r)unmc~`8%~%4Xjef#=cZVWp2Gu1mp#V83=rW7y1+u98g4)2hAp!f7;IGY%2UOaFugOImp@vH~UGRw|PP3kOj~^6&Vgm6eh~x5qEB?fpbcFa5qp?UsH&;_=lVs%N?N=%O zglmz{0hvNjjM&{2j(Dy(YyGtBKYkgd;%!+s?EflcHNl2OI1|#6d!7k#?pvD}K;d*B z$y%Gc?1`LVPmAQE4g8=G6aDnh#Sjxc6hMRAB?an`Atsus>EI9(lQelWt=V)z;QAl1 zz*pd8-P5_y)T4v|J(;i!>BI{%CG(UKNt-wfx0-63A!!`H6btYm@e;%2C+>It$BGV8 z(bW`I6yi%DkQYLNo~)}ky19CzvHPIt64~D4@D=OsA6()M3odcuE202yP((h|U_XR? zct$se&{P|}%mjiONB$N&YGhF;B%V@tfMespVa5$4n%sPa;+X8N=`->2#0 zmok*?-M0GNiGgDD!^sl7cwk_OIXMd~Vcr^Y-Pn;_@G)jz`@Nc#yNmBELt;w&RsY5E zm&KG&h}NNEN<2F3q6yIG=2y(1fD#i3C^6yxPC$u6ua>)YLI`%y8n;>|MI(MZDI9Uj zfYq{s5lSvNl_AP~iAffbven`w2&dZ4{Yk4Oe9x#m;WpyUdAkkGlh9bgZM?!2th3k% zA4o3wJ?Y%%>QpJ1k#UbN#J(vC(8+XQ2C673(E44vE@CGKH{q4#jnRnTHijd#=la@n zr9=0yc>Iy~?gK{KUAT=OTDXlHsgZCSj~2ph3``E{b|pK$LF@w44;8dJx>|f=9`d!5 zqSBvE3QOI1>>@tN85B_WH`=cGj+M{1r1?u)lx^1k6FYhI;4?3-!Q=(2T^6A&@ z>-$F;d9cv!fys)P+VL+$moV{Pvidac1_=^f2A0uOpMON3g@0tG&jGm+`g>sq_m$3l z#|q{~4B2Nl+q$K%UvQNN-E6~PIa%$XZa4p>-PVvbb9-0xzu)cey>;LK9G`22sNq)T z578}ZtRw*cgztm>H=YxYSX$`$BnqhK%(i-NqNL6CU?x;sWieJHx4dSKm>FBbQ$Au`%AwruCCCsbsM+MdsDLU`fHXu=#b#)y7XQ9J-YmyAT z6Z@K?8OR5jk$0O|a!xd&1FCSHMIq_}BmVfd#-*#@Dmc!|Wm*5>egaV|+R6cowsOq7 zE=;UJ$zH#z#NsIkDd4C3I(>_ZTDTRbv5abzXqlJf-8JqgwXoW>MWRkZnr1 zII2238t8#en6@yR0_b;KR5^2hZh<1HJi>OUW^HrLdeb$_X~5)4o_+lemF5>}rbM}l zPwu!VQL{fc^|fK^w#9FCud&jl)l;@KmRe_Mcqt7p(T*4nc9!h{et&1#nUs&6W%Wsa zILr3&$Zh!(tm9Dru@*ch?@;)80L1>WZ7Lmv|JJV3FFZd?X$zi{Fa73k3#H3kX}oKH z@Ejd~K-yu(t*a0`CoYo@p7T434i!9S8hq)YN?+BMy~>K7ZS5@t%_%)xxw7opuAH^h zdF9@VBr|-t8!x)2hhAlmv2u&_TYp~1&osdMbJ6ZYm%h3!+x;8$a$?-npS4@L#>15> z%dT+c;-<=1vxGuH=4%8fmk3+fCD#KH!e87a|CZ3!(9K&(Plpd-`Vi}^xZ8|eFC=vR zIt~wbcyJ#C0_pLSqPf2?t_hDFN zh$M&P8Cnf7gpl;*lI#-}zKLK1gkS2h08(8XZT7*{^mhZc z&mzY&Fe`fk7_EGf5Kvk<3hCbUBCVeQX0iu%n+# zJelI%VtedvvA+0jv6*Nexk}84n|{o!Q6Km*XN@iwTYc^!E*G2H$>m~O?<-tkc5ppC zR?pLMJ<|r%GY$J&tEV|oJ&n|}AxjC@TIz2ZuM8Q*+u^Nkj&dD)`5{`fF+*$4pf$-+ zjZD(0cFOmQKXpD~w8sSQW>zmc7JiQK{mG7hMh)eKveP7L;-B%^4>I4vp7G8$Y4Pe_ zPj*zm45OcxnBnJjw|BC3Ns~ccA??4rv^o9L4xqszUswOMTU}a})L(gczDsNGpZ2Alm*dbnGZDzDU>YNp?ugOGn>ksmEQIPC{IYyXH{+x%}{CsNHzdWO|d2Vsy|vHT*>MFMWTf_;!k|=KGZ{|0bu_4Kh>d^ zwH4{B{;(P`cI=Abz^owC05CTd!RV|003&SAojeSftEUZsaee{D#Ayz|)or=0a$6mu zFBW7%5f1Y+Q&}tx%~JJOSLOcMN)Iu$I?fnS{S&tprdD6|$AD_(=Z+l?%*?@HmKMS2 zYYaw2C3naBL-*w#*)0udjc;IVUi4Le3}~6ac*B9YZ7`T4i(vFM1|!m#drkiLLyYV_ z(m@Sq&E3B!V2QrQU_^CuKO7E>^o0Y!%r1h_*BDHR!00OTAzQO}FqqF3!RTuYMteo> zX=3OO38rQ+n3sND=#;+3V6+Y8<_`yEE97}Vr*0{N(bpJ^cDUSW!+~iV45qmVMqgtv z+B|a)>2PVNnJOC$=C~pleT~6X3Czslz{pi;K&Kx3Sz&DSH3p+CKX>AAU|I%)=_rEH z*BFeriQIqauJNHdRWcaNgd!Myjlqaf$$euuFssNlpi}SMTIiI%>W?+Gjz_K(Fa-7- z#9whsimG9AQCLG=QOYfd1jE3$rMiv97}UL=?2ziSA-Yz8bam9yw+dsV0P zdV_oIieD$WS51(OWK8nzn{U# zo^8j^EVE-zWQHs28>Fp=bPDz?GUaem0whmvBaU4N-}bi>|9shp)>cNUeL#BS`K9`Cnn#dFk)?w0 zz=p1EbYCoU_PST5!leObpK{ zpNQ933tz{OIyyRUCTW!u!>JVw_kxrR+Vtv~jnRc|3er@DVsIi6N!uFk*3d;0FT)(; z(I`E;F*@%e4ew>xN&#+m5bm2u!HeQk)h&2#f>w(tlg8>~4-LgQqq>YV>@}-pC8&4V zIru!Cogg0Qyl1cdHyH{N=#&@ff-unxpB-c+s9t4%xe|k;MXx0n?gaJZPH%t|rf7-5 z4u~iLl%!ontMFpny~dTo5@dZ8nOZ?!bf+Fy{0okd>x9#s=YQ2Fiq{Tq@!EOi>G&2u zf=gV-2Vv<$UTfncrS7HiAubpv2I7OWp7k=NX)BnS#)aaWlGkdef^cU55DxIet%`ms zefL(KhKpEOCFn!q7JW@Ey7F_@8qTAi3{qGRb3C?H3Wmf!0x(&FIK|v}R#aMP zZSq^)>T!1kLuk$D(_G{H)}VR>22YyPIW~vfh^ax81H4^j#626a$Aa>7@y#9T(%5}I zSh1LtMf6#}m-1U1z7IyU^E-_%!y2B#2wB|feXG4gbmI3Oy;HWEC)AicoQ(22JMDis ztWgCHYfu3Vz#6)eopX~cZZd+a3xhG$;FtU;F$Z(i&_9atE>(j4Mi_jsxs!dEq2p00ukCMr3I%z_*# zQXjd2i|gt55A)7Iw;l!6Rmsjrz&BmF<8c_dm!XYoPTo$mlAwA{I`yW42kSamcbP?A zOQk5nm5MOj;$gwWK@e6<#Fp?AsP*3W6VIYR^JQPag%8fqLWWKoU*^1Mm!HBJ4F|I4 z>?VunqzO!L`pfmLnCv}*3rHka*WiJ)+Y_;H+Q-pzMoyFkU08xxPV$ z6pQUugk2$t-KHP}P%@!cTD)j9HXY027$-Pp^Fa}StAygUipVoYVUlZPpQb5LeAbz| zC8>?&jlJnLpjN+ND2&Ie?}7XBl5uQBgDWfnPP)jAhpfyqgcAW48|^&3x*64TuxgUxj9##(sq0#@ zeruyvR+liZeBLF(uP(!hjIcnd%-aYC#97-rWb~q&g*dvG^$PM}2*Vj3L$*qZ+?`C& z8GfOwO+)O2TcV4CC!|)%YmOfrJXV8>q0=t4ZJMXsB$Kzl%)i}W6Gt8Ja+-T0Ii>#W zV||nWW4O$r8&&03g$_IVFp-$7k@6_8gN32Xf`wFQ2O6uZ&=Sc1R0I>FUUZizY_6!~ zZ2k+X7^i`!3>AoR0?|8JPXEc+wVXQ&S7ggP_gi&DThWlF#7PN=1R=eAW=NkcSpT|+qXuDmIdEgiyr zCqdI2^9D$tc>8QK3p*RTupi|0@VXOXsALYQFF%jcU*=HumPujb&FE^dKH4?w4f)h1 zUN55e-eJ&tE@FCaq;yfHFm^YrKGpm4zqI@Wm4BN5_AU|+aK!9?(Q?q%&H^C-wYKzm zS1D>#797@Uk2i7dgjc5j!#JVIg$sa^{rn%Nm-L<}HbIRj1PUD?X7}J7a(#6>vn9`n z|F>_FDKu_ z(@!Q}W&Q9~yU%^L0`cGKVpD~LLC}0qYrQUlBuaqxLV}I8$a``t-)x)E;rJ?hnXQdu zt^zi@FkN_NxKRCeIlFm$v}!w$^V5H~ePO!pbGwYaNFmHbxQJ-zeCI{^YT1_YE7hj0 z$N*S&iU_qR!V^Tg+~cmF)GL1YIPQ4q6wVO^oW<>l zTQ5%`MxWk0_OrX+r)h|X#T4E7QPUi%IL$m2Q?7*uV{&HtcuXR?FayHf*luZeKnX*V zzoq?vVABo_s}Asb?A^5ma_Fw)KKU7G$G14uI+-+2UIO0U;hu##b79S7q`8%^y0TEs zPA>R++x7D!6VEX)tWz=O#cs>1tbi21xeHM9hzMyV=84e4NhA&t@z<>hcIbjO_Ig&a zi~5UwArSN@cH5v03W{Bvh8W*igVw`*>mVIv43CW6>@c}t4}B)7+Uha6a`w=Z*~Z>X zE;&uPL%bV6p(p)JAWK}^$hasOQ>$ksVpX0UjazzFIPM2#1G7^$CULYps_UV_Tu#N# ziIMXrJ6G;!89j@k#jLMsC)Ku%xo&SC3(b6XN4nvVq4j>b}JZ+ZhqR* zGNc`D+LmY|V*(sPyXneJXUA8tu)h$7Hx!I=aSa{&Ia0lqUs!nM(!vn!nM?kaZp)3g zgA3YV#x_EKIR#syRD$Ya>eMd^_1rn)sknuc51i5y8k@L#ib36oRTa)-E^ahdRoHeB zgW3(^pcvE-<*jx4$Dk(Blg-*OC{Uw{pN18;7=rG?l)DcU#3-$2NHolXYW>kL@q;27 z>YM(AhT2(kzXsCqb{nGfWfaNYyA-VX*HF0^p#O3vK zf9|J;E#IQ@UyaM_B`&X@nCl$2e2K~*_`YkuUgGlliG9Xl%S&;Ty*Dnem$<=2rvdv9D`FZ$yKE&be|`!eMl!$;)k%rWD{ z*x-yaxrSq6qqA&BTsD7J>UXeT!N`I;Bx!*qa}^3*rj0tucTCi@+=_=EMHn4Tk}+L8qeG&szCw^CzT! z$Il&U{=(r(>o7F?;`QqPwfTclN_QDy{L@Q^Zu|zFfo6Z9T9&1g~POb71^_OuC#vZ4_tF3 zcsZr}-ABl2rIThRjqxtoI*oCNPVXJCvu>|=u} z7&F!R;R8e#$qyfvOjX;7PAN+!4Yadlf-&#QetWygYU#TD^PX@(#_r53Yx8DI-9hVv zm@y?gcQKM?%JhyGeXUkUn5hTTL@hyoFvkq1X6TMQRG63PfaKR0A2C4TDvL6c) z@1>&~-Au}F3ts)3G=?-clX2Py3KOtv_H^v^0}Fe({$H2X>KOtw2!$oH+5Wie`)rlvLp*(5M61^Xp!n7=9xlOGUEtLWx!!BFvQ1 zp$#3kmZQ7&r(p&WejjfPcbZLBe7P)_oA$H)i7$8!!iwswzfk7971gM1vCXkvGC#Q^i09so7Oxt|%v579pDZ-W7rXK#xE%9lqi z%Sd+bTfg8h`7@+dS0EPCsrF9uj8fX|yP+7K=5XH(P< z554SnV}N+R8QK)Bi*6Jt%3VDiz!ts^9>ZzbsuCm>e+~*LUQ+;5Bm^6b5bQ)NGL&7GF}(v?b88Vyartks<^R3m zz+{VyE8m(6i(vFse{{+g{m9|KEFKKzq#_u7jltMb-#Cnw*oKn+29(J~wW=F}n> zeT~7`B5fQF%qnsX0Q2nJ!r17m{y;xlnmN1$#b2M-aDKzr&OOiTc(q&(7qE+pQP_{U zR)pFhti}TVvDo1v`WC9@&1zP1(FcSi!KQvGFNL&UxU`=BX$oCJzIsX(^1TViP1>sd zX+Lsl3K3t(r_063H;slA(t6;y@l;r)#%1o@Bi?v8=Z|k2bAGV%#|bV?^HN}(Wo&~V zLs$Q_3tgJ9sgUnTmnK9lr2WE}^Mjo~0+*)cRmk_IG3@tf&-NuYa0u;3QvH z|Fj-}l2!{k70NDhX>0nYo$k_Vz~w@|?P_G~>tRUlaNSQ}1X7nvF8HjD6wJ>f;5Mp) zc=Q#b&d44od{;Mw;+3(X>P?A9U$u~*{ro(pZ8ATP06&ji250}+o$;|&KjCN-hoAGl z;zggpUdZ`)#L&}3*^j0oC_U##UsB|@#&ZCe&LS9njlpQ(bKf5hOx0j8=M=%{ zYYawnnj1G9nA^aD0j()1g3;F)jL;>w+xXQXIyGi6n7h7L7#n?!!3Yy`^M(VH1)m4B zW>yi5zQ$mL}+dEBHD9%*{nG`l>&`hyvt}9tO<3fzB^~SAa2TngcMeEw|Qq*TIdLCzs~_&M&7F zOS2AC{k*E&KUnD@rdP_80RW!7qA5DCvwY81_J{$U%3WUQl)lDbdia_9 z)^K3j27~$6A{c#*!D!dd9X}kHvcX_3D1y<~7>pQ--0z2BmhTyYJ*_B$DYB==tK?=3 z2d0HRaKP9+JgYD^`Wm;!*wZ7115+{>%(X=@`Wk~V_Vnk&@Z9&TBG-V{e6NiC&`Wk}~Cz_i#9GJy}!TeJZ zjK0QTRtd~!hXYeH7|dsjVDvQxQ!g-EVcmz^PPUS3zz{z@voJRLsz1i2hez&P!+^PZ z&HxxI3NR+li2;b;&s7cwpmG3!uN47QIso4qlY4-0AOr5ZZl-r8V|?gmW>i-^RdoGnoPww((t&0QDP5S?Q#JY}TGg-6pM)3upVy`|s&X_u~9R(e~U zetw)TBvN`yoc>{z8i2hr>9Q7Y7Ep;CfgI9LFet0-5E@QVHgn}9q3LemEO#CKwUD{r z1Bep-7jx$xUuRY2{XmLj#_FkBH6ltzqefF8NYQBeItjgS4n3!hLZK>X6mWttSlc3* z5lY%Lwa3FL)d8#yVjLap2uK~N21+qpN>b!fK%gR*fC|r{Tnb2=g0%1VxAt>8x1{ra z=8yM$KFRYu`|{gsuf6td?X~x=$Il!-;5+mL4)-7CLJS2C%Y6qm78d15-$9L#IXwDa z7iBbX$oURxG%ds@dkFecCKeXrM>ufo zqZS9!ZGTCuc$=AFITq+>N#$QWQhzH(cKVF`pyJ`KX@?l9c?XvnENRyssU94)Cu+#H zjbW?pe}B#Yt|PGg-|K&O`rmi4Rm@76Zza~_C$`jg*I-OmbiFlfws8Vb?|W&uC$H6! z*NyBY6PgB;@@gR~eylFvOG8$9wMJf(d@l`(<)v!s$6AlX3sA#uc_kySG+wsv>d$OE z(uBl&^RKagKW#x0%O%XXv@b}LQchKHf}K1q!@ag!ZD$r6jiwUdcPX;m;EZI&X-+7@ z7Tk`WcyJR3`WpRoCD8R2m*8oq1&7F zHJQ1d*w|8i`;eL`@9b`DTxYjn;5rkT%xKqv_Jlx0rvH!FKrBkEnSlrU_p`{qD-htflTI7Ioa^%G8n4PQZ%en^^Ywb z6U4HT_geCB#Mg`L;r)g|cvA*13&Su@Z z6#LDrUswFLLg#}jW!c27v*%O{+|Sl-jMKF*<81OJ#>oDa?S3~l4j7!<>3mT_>9KA19d}Hn8>8ZA1&Y&IRJk?tNPTRJ7aM=0A zy@{1OX*^`eIAqDZ8tmPW2`Ae&j`B|aReak$NnZM7%c`TXxrdtTJo&Qoz)?0I=(lBf5xvz!gOz+L?;*`>uc zK&VvyI=wqimle8#!ihiOEGu-uIxBM}ggrW2ru3Fr^PrW+rE1ELX4G+F;}q?5QL@SG zy=(^5TZWS`FfbLZ*iz~aa=w%Us;vx}6q!v1=7N;A$Z(uWaK5&#Q2dECUsobr_l3&i zVQq)e9f@jtbVOz|m-D_T;qDZ+Y`QUZo|m6dr=v@?t!gs%%^Y*jCFn2fgriLD-E5jl z=@Ro>v9?aJN3i*2jIYydm;r^xaFSV8%Wk|~7TlPf7gxt*ZiZDqF}SA!k4Ruc{^Z*1KA#b#8LHR0!B*hgFV7ii1z%^$nO*RN3AmIig|1 zex91f2DPx7?Yy?Anw{O)nPyYX!gTHFaH^K(LVKaQ7hhUdiEPV-N<6GbZ`Br9YC|0z z>KjBihd5IPfnJFfT|4x|+8b!0AqrY3nh=iveLLDDj=tio*;^=E^uTW=cKrC?-HD52 z{f*L0`)yv$C|++X(q$?$ExO*+W-w zYG9`AW?7OmI?x$=tsKEKpX16oWXo*G-Hxan8=x+n^lcL4*v@lCxJ}SknnSHz4G576|QFT>}OeKux z<#^hq8j`wJULAl9P`SmT;|3}ZBeVQA4JLJ@Ck;v1%+uuiExlTEsp{0i)9OFK!&>XL zxXEul&!DAWCpW}@#GYJQ?|+Zl6Dv@jYUzjUd3ob@p5Ep&TuZM+Dz@~{C1L3C{`3VV zeso*Cgw!?-|Mtr3EhCWMQ*zIR$dj_tbxs#G?j)YbtHUirpE%}!H}P%z%gz0w#s;3= z2Ys>xP=zep3DgTeyi^foy08dN-q*3oQRenaX;-v{x|!2lZ%l|g?EV&%=b7vu()npV zZ`lMYLK5?Cq5mkvib48Ymlrxy-j%;jo~jpOYrEXY-y(Zn(%9vHueK+*TKnGvJeB{o z_T*>`dtTkRj;D77eW^BoDY1(AcDd2+i`B~dyi?Wps_^K0{|-s89bkM?59udId86-T z531g51eaK|+jYRJaX~QE-_)tIl{l~sgdSLL+_0ixHrt=& zqHe3nHa+WKz5Y!}toe@Xfp2HLOb`5Yt?mr*hmG7)VZG}Zur!}F8MZCevNM!UEmJ$9 zP#UvxS^+&bC;kqnn_o+@Q@M6n?R@jgY3?|zy*pidEAHB~nq_dDpKiscF1S;BE*GkQ zr!PHQJGzQHV}Dd{8@1VGXDMkzGTWLoL}sLZdhq~~A+l&|;TUL!!Y3UhMowxB`ebcF z)gVSaYo|X5X6`UIKXrQ1=4I{qigqsVK{nOewkp~}?MLejd*#oqH=8&=0Rq))vxq;~ z^>;5B*>uz0x<9IG@ru$G%x#L4T!cOJNBCf~CV~}g*5uVTYv!AH^EYcMM&HK45wo4KclLPm(#fbuYROFY9Yle6SUxC|&w0kz$M+rzWp zxFfOhJecOK_*uAFQz`GhRgn|@X;`tVUjmN^pHFR)FsgE}^_VwR7fsf3oAs7h^EC@` zQDckTbDLM|;Y$o#7FGE)C~L>dLLiLrIIqejcRIGsy}WDZqMm7O+(Ue|kB3b=To%HN zNg&#yEo{{%7x|*bQRr2z>cU-hKs8#ECl7atT2h0L8p%BbsiRcg>eSEg6OGz_DLYlFb-Wn^W!NlbK*R==G`eBhyFsEvn8OKVQ)coL{mQPTBHtiGe%CU zTV_=3${NRZfOn9})h@qO>!ez7VjZ8K^mleZKq`BSn_y;lXop}OtjKUS9n#&BY<@Ju z{h&AhnHe%|AF7T|CHo&F^ldE)&Y^xASN>fcGsd=U=pJ>KAVx;(c=qOALWRe_x zuz_canvhs?4iXp4iTxYlC|`%;Phn{r2MDhr`J`!fMm=Ag@7e4o!F${!SkP`<{-P$q zBTV>2nb>4Qb9Urfv>6RdfnBP5AH`RbUddas))zGf z=7dV{Dk1Ha98xS8vfiF9gSzpN-IXgYWV};&KlEr9qpD(9JG+g@8%=GM%x_#TKR~3a zVzMmFmG{h>7^%BSasNSRaJ8AV-TXJ2`fB+Wr>ZI_ViFH;kQfyv2)ga!B3=6tY)54r zS#~W*0rKPX0bWcr;K7JhWKJ7 zh&KU2-y(<2xwbJvk0rXZ5x;?;7!eNB>$8S)VCO??Y zPJYNF<$l|r$O$BFf1=$4@tAIccuY4zJf7^k^}rN|5V)Hl9*aA@U&-<)@#9-D?e&+fBf#HuRXf=RM6YLM; zTr7&)`+FZi9{~kJyzec1aY6t|pttn|$AeHDp+Mrew@^DFfP~Lm?E{382!JGUZ{cSX zZ1v*I8UY;V1B5~dfP`>wVeW(gtpa$151@~L2b~7+(ga(!7<3}1-j>fe9_S+gs55{c zPYAGH04sd}eFOkQyzeb^P6*H?fSEpkJ_3Lq1K2mgzA+AepxSu{`T$`ago&zydkfze zK=DEIvMBO*?rQh8?XbN0(>@QR$>%3Y)Dq|3Lc@dr>xtv_`T+U}0JLbjw{SNXHjGa} zQUL$x1Lz|F&@$}a!ub;dcnovBy`3%#`Un7O4B#UZ0<0FmW*fB_0c$a8NYDS&a0La_d9sSltJ{RAKjoV|rx9-9b2ouhZO z51@|#V5eo_%n1S1(|Rvu91rvn01OzwlnDWv1n^5AKpz1>y8-;>(TTD!LIiJ-51cO9lc=8JnM zG90kSfX3Mt;M9rwBbB{?1LrPiMI(DFYK?nS!?WxA1(PR_d^D(?$Yf8QlFBY4$NxZU292tY?}K|K>1&L_pbsbmdPJbH7I5!`7DS~&a$LS+`w3!K!)w%&?;L>Kf* zSsWal*|ABP@DI$)PrsB8Zn2nYG;yq^uZH|Qmw(SR($d)zSmK-8p3I)m!gC?+Nr^P? zi;~&7UFq!SS@>Imnuxn^j)dgg2|mRP-AX8S)Onvhj*PL^R*%B$HL%#^+Jz=prVbcI zaFOtC9NDqk%{i*c3_Eu@y{}WdZ>0ck;#MdWl~Oy(ilRNmI9%Ed={qvnmt_XgozaP1 zT%G%f6j)I0ueYNl8dYvV!KhpcO;l$nz0f`h!PF3FPCUz<)@o6O$TePH$HO6u02_kv8S^~ks_->886XhiCj^xoUkV2ACAR5 zaT|_OIj-i()ESl4r;t%8vDV?@HVpVS9@3ocwBRe9jR#{F(ZaMF)zzVq>T2oXsH%p8 zgSgzeOR2Wq!9iSKV^|X^m$I*F8a)CG8jyy$`RPsGW#2K~l}j5{)pn)ntFWXDF&b)r z>SP7gmGTwXZ@63va!|3D09(fP-JEW7YsQHcH%edi2$|%(NY*BAQv;jmFCas^W~)}b zn?@m>JFCm=4wfuRo0-r%apVx@h3VXB?djZ1XTi;7XUZRvxwj>A zry_kinNCM`Qje0kf3{Txq<)9aZbGPAtS+$(hTx0;(x57nsuxrV)&e3Wusb2k*8^*5 zov;Ihl~TA{im63K^}+4}pQCy$Ggz_Z9rzv1z<`sw1?UoLKiTOY5oT-=~|OKzLKxJJZd7p*-Ix zS+YVvqFrTtS#$T+B!`T_fH6`|)xtq0j;Y!mfqhakJaUf1X8*#Ov^xAwD&ITNK__eZ zq+X$nzJuD8s^tv3S5nPeSvWa5)qLMP|7t5>Q_bw%r}AHII#+>9)RN3{*IACE^Jp6? z)EY^tNDnHE>i=4c@6P=V6!=se>_%=DxBdEQ!mCo0a8{}~f{9feQFVNNf{Js$38Al* zbrnZrtgzyox~90|NVZgQOtxYbXH@P~9FM1~ILfFPBIT)Eg9^m)tjRW3kuBiAQE_&> zC7C;m1IxC!S|jx~%2;*fF>4LjfeNk*NA9kkZdX`F_W-AGc0FJ!pF#(BbK;_pDI_|$ ztt|gjb`4Gkcj%E$2gmUZP6sy#73ko8hYs!zy9aBl)4|DIsxI*mQ9yORHMknf-OT(u zyP5fSb~E!G7z1FMaZg~H@jK~aLr2rWeF;+lwCIzM#57|MrWt#Rba0pg6gNpSDKnmh zP0@9xI`tb%zu^snr9b`$h zC_Eb|Os(+72YOn3_q)u}`c?P|KtbWDaMp_kWOxJ5vR23M%?e+od@5Z1*cR8w{Y!_` zirQPJBBSY{ww6`U^2;AJ!i&Rv6c}Cp$RJrTlOs--suMZEU2c2 zk8`78wjX9sZpdW6IE80>DtmH^H*coK>45m@}|MB2$xX9XAM@12=3gqocFM7k}Z-pRc5|r`9F? zWA~HU3ye5M0t*__+1XRl*-U$q`3p~$iWgwGaB8dfK8OjYFUU+8DP7)tNa@%$r~ZJY zC#T%CU(3G8K2nxbIQQ*ii8X(L4lQl_ooSK|H@nl(Md@-g0xR@?u!BD_T)TyjduPA# z;l#>GMDyh#sfOR{ynzlpd$91?7Rt-7klGVl}14kQy^m790f`y4Sdk9Lc z$mFIrGOFPYU5$iJ)U*SpXL1YpVnK;L5?W-U4_B>8?tYA^3cj<6`kV|%n6_{-FRS5p z@XvpO$q)zYZiY7ZX{p(U#!cz$3_1UNEU2GCR@uXG$hNZE}j^ zakZNK3PTRXK`w_mUB8x#(2})Sd$QupfaETYK+QCB8#?ADxGLDdEu+=d9`cNfb5pZqDWl4 zTzP0!&(yx-t(r+j7sMRLlwj9PjlTaw#g$t?J-rVDea71}k&7$LF~i7v0Y(_JJJY!g zhvK_|Z#wr)M&Pee+_E)7D0)dtcfKPhO-v7yxtZ0Hj%*zihLP-WIypA2C1A8OAK5! zkz~FJqcph_H*wIkXc0{e>%R|1tH{T)iu@3lyS`)ALpFjnJ7R7= z&lsuI?c+|+taL=Gmyu_tcx*|sa9Wus+w4#9nn#B zEp%zz)3=9p_E#8#u+08_GiluqptFjB-l@@*6LxFmCc|b)J^yHFXUXz+)J%qlG<-?) zKgs_hnMpF@yf<;t9k^rYuPMXW{QN0zBHq)ri1Np5$oZ;-2eS=8XXU0|JUcrzXA_1I zjW=;rsWRETn{nduXrw8*`IcD>_aUQL3=fCmRO*~*dv!@Y<@#X|KE^!?j5H^?k>;!7 z@s_kSIZ+jg)taX$JJ%4t^Ogc;p+7jAJ@?CPYms5lY7+} zDq&f@E8mNmqA!V$?M?zm$1kM(4OkhPv--jX%rz=qs{D`fsPDF@x=`8Hnlst+>I)yT zQDLtrva?(KD@cp)yw$1{W_Vf#2#@s0IJcg-+e;KX;fCUF-*avngN1QtIJe%o+Y@}~ z#)7!pD(9v}pfGN;a~p`eY0aCsTCNJio$K7R1{S&<;@pPfZoehx#El($axQKB3$ZJ_ zZd*pvn!|c+HX7Qx?1H*)&z-zFGdVYNO6~+yN9o*>&RMycC(g>vT{tUu!YQ+IpRdn- zekx--hI83WI(u&CtnBO)XEDH=m0fVkEXqB5>QuG09Jx_?Y5_)yv7_#S1BJePjLQ6J z-KQEHahLY5xs>HhMHrPCgIRD{ubVhPOer-#(Y*M||K3qPs` z<565CF!=~ZzCKKiU}jZ=SzQh@CxVf$4nNDRD&5o z6iYHS7{SQbhmlYhj;;pNT@Lg02u8j>jOt5aJ8e(JOx2acd?bRAuMg88m{J4S6G9A4avj@V;s=(jS$;Tpq#5*N0I9QW&P6shFvna+n1XjC_3$T;1<+piHnlHmHjoiG8|^4mrQQVf==y-cp@wkH?g(2-j+#yeD` zbB&FO{+|Pu%pLUdwB<}$8!U&b?2%hO`1(CHbF;JFJeJCRXM??;_~xCdTz0*^r{C;l za?1yJpHG<4R9~Ut+&emUy@A|qB!Qb~l}8tPd3PRVsdu~7E2$Og zys?kC0Dm#}w}@h|y|i!vRabmded(#Wr4Ah2*lusob(Ur|MuFnppE*ET-&Usc9mF z`QxK8y+;M5$GrTk{u*sBsl7d}{5VSXP!E1X%8yj;oQ60piuaXcc zPGpT5u3{UTtYz5F#G08QHCrNT+-vjQm8scMftr&=O){XSJEZ2rM$JkS<^z^~6N1EA zpCBPjRxpP}9!CHAPph ztWTJcShI;G%G8-FZTEBo&0~hcE##@yt=0CtuCbSACjZk(qdcWY?&X<2bAyp^W69j=ZT6l% zcxN&BzoQ&7QA=Ws%XDMQrUDoI-L^ zdDbaeQzg+VKEMZwU8t4GJv=dAWtkJru-`O(aSHD?#L8sn(>!uEboOML$CJBK+4<;# zPR6w3I2-h!K5qBkdALgZz%Ro%Cxdd7)41X)hs75uY*j99Q*$+ z70H?Gk5mjCH#=aDZ>_b*#X~$&+3!ivGuew(zX&p7j~@-%nue-!}DrKC`gM4o61jq7moL4q*#$EQ&{*3j2y93>EbEXF`eMwP!2w!burPCmNs`-<{XJ@?-4J$&5?bGTQJ($LUGk(YHv%| zZpk#?o~A))zB$bcOWO+xXKLcM;raQg>^x%ACr&DJ4i4cBS}r$2(YX$B5o9JyJ-Wo= zWtwl3tw&N2wPWmPVwcJM{G@v`wJ4HaOL8oI^NmJbvUV?PVz#M4nP?|M$Bjw>{T~PG zV+1dkH{Pa0ER;j>PZ>}FiJHX9rx}eTn_o=n*1GH5?wi`zlWa9n;uxfG?4!y{INqyY zGqtZ2MRkh2Vk#3YK}w!g+u3gdpNIHLw(XGyTfvl8y*-_9uydNJOyQY>#PF{*glA&@ z$kqtlQZxg>i;0rTSye%`pUM43b%*vu8}Rg+ShL(hT&${P!vC!y-egm&CmRs)&g8z; z%SSptbu$k>Nm!yzVsbOU#O4 zN5W4lOe6c^e651!z9p1Y_F=?r1hKnS8wKT*&JH6}_p?(C#bz_UtRLKgz`s+J)IdCX zPzi)ZZ~h%iFmyoF3s0%G-DRp;B8^)0NoCxDAMsWT%yWP^w+cM4D(zOq!+a9p| zC*~L4_<)L2@QIbbS3a;@(zaO4GF<+>sprU$U`x8~YRedhk3 z#ou=;=P!+lrsZ4gfpo0qGqL7hbl{%P@s44sy7rZij?3>s`+=~^?m&P36{Gfm7`5n^S;(5?c1F3I+wKnZ+O{+5ZtaY^ zTRWrf;Wjw%?(%m=-5qy&!3aJ|)a9l=pUh6>3Rfd}XW>vsvcEG5k}5VZbkWSYz!OHlO$m3jeoeCH>((r(_1 zSdk`xUwUW4?JbFmK8cGNZ73D4|IlXNEm~qi^r$E5Nmvqi7ndS(F?O={64xvC{pA2^ z^eHS1C$81{-tI?r31Y3s9m+PiKvLP+bqhPYhB?Cm;|Vm<`AK&K$5vR`-=VUtZq7>b%{8g@`yeo0h9yJoRV@bAy?cRDiOqi_(iPimh;!q4h9^!nQhK{U*K) zSFO=6yp04ZEiYWCV{$`)-R}(mj$<6D*k5ZXe2_(g@eKEk4DUuo9S+mw20V2(dkf#- zbjI;wUs&fYx2P_~RNp@}>@6Hlq%vz6e_k7>_c&t8VuneiQqzxV;|3muufJFk!VVP< z^Lua@-<>F&%AV6*_~FjVF^f2L*L#ALHR4vX=QI=^c!9iD-7n;QpEyuDs_^`{p-RQO zw{YHsmmKyI&ikB2U)iV+{j@8<@p#V!w-ll{@(#7wvl<<>nD)cwUrrFu^a$RQhZ@-- zgZr)&gZCERKSAteo!-wZs?XcLuXOJ%{BeTqh0E%^#V(Rh=vScgdqnb;rG?9>42i?q zYn=TOw+%F~{{VB~1`I#6hjdnUGT5RGs%O0b>}2K~w`VP(+L$qZ11% zqr!Xq-C@k`OzuCG{|O>*7Q2Yw$)m>mk>a1WV3IS->JL~sNHa(sGrW!)NBLlcoLKV^ zFESp$>K7X(yV(jegX{yDGdHUBHvK{EMg^arJAXPE-|I5IM;U+OfZDCfxW7qlE+Oi? z!;Jo?_s-7}etz!8>7rnQcsEY(CD7dAS<@X4{&)xy&v22IsJX){%@coAzz%KZ@TBSb z4u+F$k0#d4r8Sd{1B5q}!fYe2q^HMJcI? zZ9tAmj`yc`xw6OLY1qgGPlcv@bYy2w;*U1ywuX)`bew7zSnZmXeaXPW3#@Kz>?JUu zT95Ou`tfpxtM%BZN@tihDo2HniF4U zk)-Ct)-x_dX_U!-rBlldwxaO~b0}KT@YrGNuV}F3S>LhyX36lc6z_&fyJpw8MG6&QY>|SkO#eG;6jvfm6Rc6(|5n-o&NqXC z*b;?p{7UALPk)VIPi$SpU!qu6b&298F~|F`OWa?gpjMVyKGt~)TPnLhL8vGX z#4Rwyw3d~=b^~tx{BhU7fIU_X+GC9vh)#Js4^-8HBgi%$-cRbqf(e%=?tF{Rr)6>C zY=3bA!?xtIMZwwxTS!=%*e>-<7Q^^Srli0cCcZRbN>hyAoIU1~jQ=>rVs*(WN`FeM ze1<`@H{%P=Eb}Y0f&RXiOPIaxn$5ZdDQeykDK_6M`kDPslcOe!Kd`>jRedL`xFTBK|J>m)ME~ z2TVz_6Kg*3ze3R`MbSTqqN$mjjY~qJc9TH*w0|yNj<~TC0>b48G^bAlqFS~daivF4 z#H5CHiidh%q(u!~CVQpkV&1v$FliYh9Aggl8D-$PHrY4CE^Cu<&yFJ}fT>s+lxtbp$1SwB=}HY96*IBHo$V~KrW z>MUDx*^tc7`bcLcfA+z3srVS~M=55hoe^?Keh z)Gwu zPqJ7?Pr*_eJIe)>8usAX1?aa=ZTEIgmBsWps{~!%d){oC_rn$)u=I17p-P>-?8{hb z1q+FXVXAr@^-P+U$Z9&7eWk*ZU9uVF%`>6Z^jB$kydQo}wIZGSXR4>a!A8fSruN;I z>KpD%w{hst5|#+9Tnd-cIY%lrHAV5Z+}HJBr0Ji%dAV3#L8Z15cmMdFo3XvCrBg^o+J!#EXm=9l!c(5yDq+F$Dj&^p>zhe$@Y;NkRW3yAg zWoi$d-Lncur&OCq=ZS3XKtsNNDykU4;dw)7R?_kFhW10NCIa1gL!nkpPVT%R?b9hc zZ|L)m=JF=|nEFOH%b=|pWP97WVw*}FTK!Z8(@UAy((=iOMpBbdy2Co5hB z4Z@!}er;Cv_6~JHiaHcU^{ohvTlI?W2I>LRg4Juz$rk&9A-mn_QJwcbJH6q_Mvr=Q z{m^KLe|rlLPoVTcHE@wdjjIN}J5i)M?_?Lrc$VsuY9LJ{+t(D=2mDPt6dI5^H!t=o zDg+p+dIt*+{gKRQQ3=okP8bQLfIrdlw!SfnjauMpGs>6%fYXn}C@@TBynbO|VuWfy zYAiSI7cYI?fCKH=tk9+$SjCGe2U2Wcaryz9P^Heg+;qDeQtWXYB~T`J{(IoTIJyD$ z@w}(bs}%+NP^#)ms#)*x<&n4@e1W54WopKaahI3Q<=qmK-{EQLZj{hVkJACNHkZ$i zAy41c6p(XXQ6?{$#`by+B?zYR=bkO-SeSHMVKHaEJKXYCBVPN`fA5&DY57V^SfplH z;?`KKgRL0M%-IPr{>bg}lzooqtSF zXtQD8z0a#oQ=!RvN6_*dPoO$)u2K3lC(RLMUhc+Yddat6-s48?K7M%CF;>jp!6Al= zE*Pal}ed>UW5>&JXiFpT5$^;z9u4u$O~Tzchj!h(}fudvys zff<3?Ar=wJiL+*TIpF^0085R{0S&{m1yb|bQ$K&}S6ut%?p6iuHM9}AvtXJvZ(Lph z?2`x7-ly8(E0;LlU`n<&J9AQYW}WvwgJ)Z5mPom?*tq5*R%#ZBsFO;jC~dFs2I$K5 zZR6dxrDo4sW6@BlN?^9y%|d8r_&(qT>=*$;FJhf zrtBKha~Cq?;e6d7!1IfrOy(Rw_W7(=O+`3#kP1*6cl!oJ9KU4NMWgwtYV2>@cH<`c zJ>W=6gIyx&>;>#Ba|Ph|Yb$d>e}_bzq}`0!JIO^d`?6>Ei|O z2tG3Xe_mS0H9_7#*vG!5Z%t=u#%`;#$;T-L^lOqg1o@O(i|*6vdzO8UukD(t8&7VX z!BoE%tF!a$z1V9 zlRtmV+%&HaH*I8{TTk5W2+iM@SaIuXhiT(lH;;hMSGOjJ(;uyv9tCv{u zkTsIVU0SSJ^a)fH+Bj-`Q8VYY)vC5$)e2Y2YPf_d)_GD{HTy?gm7spisGqZ~bgUL%k4U$8WoEfsSs`(SP5vQ<7(0 zwVwBZWbF$y3bYfc?4w9sM=pJ2y)_QjHWaOGusP~TZx)GZ_%b}{NF|c$JN-zt3&UNR zw!bdp==sOf93Yh2)C;y>XiMi%r`9Q5+UNY#_Q>dd$+TEokm$dzg)n_vx{3llv-pob z-1xUG@-pNaE|W1i7)Ws<8bc<;=b= zd=1&Ju;<{M&i`{gmpyk=fK@NaZlxHwT)IBuccTAMnjhSH;%+OP+fdx?L(Z+J65n~a z#VxADUw3XrmG~Xbtv$+AqJPsgi#rf^>vC>ImG~g%R#b_9-fVG;D)D^hR#b`q`VqM3 zs;qdj;#sS&*Q|y|p(ZFx819;`VWbec9U-^;H7&U5{%k9k=XG)R1r1^2a_5Id!v!c> z{Y$bhFo(?>kb%(cea>wx?l#FpV1neE?sDQG12$q4~d#{qMhFl;o!$g_1#W2ap7h7*7oA!-xnv4=>L*}#{?_q zeoNSI?ztVd%sv3>1zwDFv>Swiq>LcOyt4UNf266POMh~y58fVa# zlvjZuMXd+cqHE#NVxfNB7)0|sT)u?lBMOEXPMvGfiH9q6q zimJx$_glE4s&TnW+={Bk`ooN6*s)nC<2mTP`s)o76 zs>WtlH8idDs|E|ndlG#sxE!XZD4HmD^-8SFvhH zHpj0TN4;iMqsgxtg3>Rj8UiS*8Y*#?j8LsA_CK#NxI`nM(9u;M@k{Ztrt$ zMO9psZ@>(o}j40hCn@ZMyD}L0avm4ZNyq%>P_aH54%zP>tXlRSgTPs!;K2I6j)I=7-~`bp?6+*Ue}J4I3w@2%cs4#idSzu#y?6;;WTaVx2kI^R7^ zd?%B3wGli*w@aOyPNEOpKIz7_wbH_7Us!rRb3hG5nA`O-0epi_v}}83$r(%l8$uELIduWW0I&f&8PQS^_)=~=5+0*^Z;{RY|D{{u?#^RU7jkz;?ZU{#|Q#Qj50SqQ_VA3|A z9Q1Epc5?cxO`~#8*S?OaTq^q@3bx~Nvu2=JyWJFPqo!CZQX|jJ&6wdGL}E;z=MGPr zp+r!t&CvAuwqyo{|7PeN1lDKB(&MF!Qj)qcS30t#cd?h{`6VAk(~~Sxq_HZga3#vL z$9y~{-sLO+Bc`J8&VI>cqTT0$a;o2EkAHAMWQ8)3SaTqamriL~gcVEr%&VFxkb0E# z>DsG20%AINI93C@+;Y&)3VK+ULJprYJA3-!HTpM6|LVNLi|~fE04(YbZxY6$2{9J3 zgmO5I8l#}A6g#)_@NIkqD8BwQecDdbpDOS|1HOe zI94;x$Z`;s?e}{?iwW$OM77Fx1+*lybLna0=}^&>O!E#AL0pSEJZT!p(v(aKihA#| z&Cax6ig=*Y+RVmkm~4VD-CT&J<>7;h<18(g9#^79{kRb#vCDmdh3VjiH#NZ0&5EBpqbW2R`n+|@XDkXGCY!^5y3Cuo)6y?$^kNY=59nd5T=%8W zD03NUqOX&-CkT;mWW!r*?DI|a#eKs`wv3IY+g@G#WI7jzPV~P`kz;h`Hdz*2PJ=n} z@sjM^CS|p}8pRpd^a6D#ch$POnwqTVS0v%-x1N*H4PxmG^ixtO(oSGKa_{rBUA@GJ z13mscKu*CeFa1#D33peYG#Cdgot(^X(wlesef#$9>XSahIqJ>(B9}-UJ@l2t3qx9! zsAFN`<-~A5m!q| zDYq(>%6_3fY=is;rf_DJQ(MZGBMQ$d8>Pz;o2=7u9YNs`+g4JlmZoq<$#w~CKM3La z<*OfOu8i?0{MM`{%3&_(F2Oh{#F*Xf1M~{utJMGkbLrqPrME`_Cde$YG!!)PEtd^) zq1%m0DER#jG36!|W=g*L0i)4k;o(=RWJ&$z(6+E^K6KS}8A~X+t3TheWYW z^oiY2_=?3YZ59#zG1~2tQX*gdC|*s53a`CXnTSf~nSIw_WNi|jX9g$g=$8s> ztHG>i3Q$7L+z3X#`T--&OW~MmFv)V5NfC^EeHhIa3lFn}tP*E8dkkz!sM-8Gd03UrzBI}Q(>m$ z>%(YfUO1;3Om{iVk0TiQ`Y@XG7v5G4rmh_3a}kVueV7Kp46^aAVy4zJo+`=I+aehG z`Y=*e6i%%M(^U?0=U+nJ$k&IF9=~v4HJF-mnEnVxzCMifpoO1t1z^QY4G^j%Q=f`p zyTxNcY~f!Y1%u!aZsFHys#Eh;?xoT#Y)v%Nf18zLC_>IaMzQH2Yu z!K^NaIWvNhuMaaIn8s=_P317}i(usI!?X)#D?2YMW@>~`CA|6LpF-ZqS3fc}%A;^j z6_^WpN-(|`V$AOG0oDrOUDW_|V`IDrI4J_CcL3+M6o%P|Suqz{ttbI_dkA2sdiz8S z60mR?yDZCL%16leJ?R(`J4jR`WI;4mgrGOkETDvvoDai5O1?fNT8k-suOLcFhl7>7 z=UE10y~(IUk>ro@T4<>Tvku=9YF>XLtj_Y)510)+3J-XdsVVE8uMaU|-E&{H*rg-W zZ$`1B?s>Y!u2AbVjVsB*Ck?O+r* zQX*gdkP_?VU*f{eiqxzwhgloJ$k&IlUjBR4V4BKdQW1=NeHiQIXH1XplY%v5(d%%;ae-pJR7v0i>vHJG|`n57Yne0><}<(sR)tS@i$507Bv>%$DG z(ci|UoE0%&+te{MCHnsS&QMKJR9VXT)wq#Dcsp-Sr1!U#sb`USoG zZ_%(+tl<^QytKHx3YU@G(hd;S;}c4;5*>&GioQ`QG;3^8JT!0FXum-YeYMX{qk z;O!QB|N4NB89>E8;OCE3D%#3@zzYw%;-y?l`+)fdvwwZSdV{Ih2mJZb$_(9Hp%3^{ z1XJ1vWUIkc=mQRkU`qRdBdWo8<*n}he+Z>SzWN1y!2OR@$<*p{n2RD9`T8){2lP~f zX)1@A9l^-ghp|53J=I`F%3IyN+rv!B*N3q_;FdpD$y9ea%x@wX`T8){2mDhtn7VS9 zMG=gAeHiNlCRc;0&Y?1Y3ojmVC1V`&<6|{O!-zjvsx;Fd6U7&WIZ+yFoVFt!tJ7_6eg7`)ivMop!lL) zOAIkZ#W|)a*8u*hhblo-?gRRKn4&)58k+}v)?g~MHKU|glA##}Q?UA@=Ot0ly3}Vtv5uYOzcEfF)7vs1MlnKoy2om<}1NO2S zS8)_IQr_ymdS93+`T8){2mGWOOm{iVuOb-v`Y_f9B&)&HmBXAJ!N}K#u|D9rd#hxs zLLcyf2&S|T_--|r3Vpz1_lCSF?E^ku4W>dL@VyA8v=4Y>Ta`==koA(bt}}v>uYN%v zu)HD+tBj=>lYNZhy+&?7hT9%dsJW*SNwne>s`=(^jzP2*^3{*Uy*grY6)QO!} zV0DygemqtCi1r%p!=gwALklx!ZVp1Haz7LVcQ78BX?`KYwi1LE-GVd1dQnDLC1=&4 z;8p$bzJ8}lL3URbhp4J@6Gioi%95fG^z*oFIzUl$P*ndXLQ!)8ioguzFTV>>6djbI z{XkLM1xnENct46z6de?`j1$qKh7=Tm87-d$MMs><9%}h*DiM5x))r<7Q`h`)-qV*b zRWVB|6)?6!Ba|uQ0LS}EyQC@b4TSMtxx>`}nO!PQZqpR1-UvXC&K2+UB8|4Myg8+r~H55ybn= zNC>BIA5O6g58qn387>=`ECHi})se{a8CKY9(tTFf_)Xt8lir6ydS)gaF=urZ=0M3! zn9y@(jXH2+ivCUQ;N<;o5%>{hDSvgN zI;>RgT1vI%6?6*^0 zu+h?BE7+<*Fu4=#Y&KsAO+&V#M2}<(1;OM_uy;*y!PH+C1$%^@3$s1;cfooc*=q6-$ilY>DMu^)z_H19w6YEyw~}pzw2}=R zzv??Si1UHt8+}KWPUv_wABt{e6okz9j#eUp$D0~cdfJgw$z`E9C?@k3-w3{`JztT64GbE_HwcZh5>5^!nl z_;&^vW%jN&Hm--Tl9A@VTOt^F>!-75RqBOyn##&Z$#SHPF(i2hNMcdpFJ!bblEzyl zG@TVg3Wj5%NhMHNRTW9&zY?T>h#|>4ph*Q>_)t}(rgEf*ZjSgQ?*K{iQy9TSw{q@A z5VI1R@-ZZN2S^gn!kJZ(y33Jf#*pM4AW8ZQe_s`;t{iF4P?S4)2S^Pq-mH40qhL+mriz6o!idYRunZ>57Xf_I*iXy**uc#aH+gH_@o|y`hFW zlgehemT)$AZeHRrTR@Zs_h{;cvKA%Y>^D%>&u~RZI7V3cBeEt66^^_9kR>Z? z!_h?^N*$m(IN1H%Zzzi{E8Kmg2-E>1-A@tHiOpcq{8swey~wgl@msOE>^MP`IM-Nl z&6c<$>KR1cQSXYXRU`lMq7o5NQ9ZxO6_s4|E9}9VUUVcyhpX0|yo$qJJmuA6-%+(* zD|f$I_wuf4xtga)TxZYg8V3{x7A!P>hb8Ikw(mT<>H>uKE?O{Hv1{k5PdyE84!UBx?vG9@O)U zcL6PO_hqGlca?P$Pm$efPi}Wp7_vGhSTKYoS*f!pM=sjag;#uqSN4-UtICQJRwAAD zyv_vC>-_J^vLdQQy&|cwL;+M^(x~k5VqJi8?HzF-veM7q0%S#@VzQ#JFd;MTp%l=qLk?>I1yysi}^>g zqRfpeD+&iYS@|ft8;})+iph$?#$?4fAz2YB9CtKdYCWM$0!BUw=z(nWs%%{S?S_kW!=qFWcS$fy2f6GA*-$C@315* zN&BWFu%`>J_zEvsSKjVmh(5Xs70f9YgJt|lv=WB-UU+Kq!RD~kk4lD$0Twa&gHS=k_Wzg-#N zU1hzVr^p_(C(0v*A*(&+@355R)%HzCU{4ob@fBXOqQa{xD@s_2Y_sQeCWzj^e^r(h zQ7!5fNrh#(k*q9|hu^L!*WR){$jT?!y@ISLR7_SBHYO{^3CW5;#R8KR(Hx{yCM#k< zkbEF3gSZ9l$~N95D@s`H%78r`L&d-$`z~f&AS5>r?7Nt8fvkv%Ql_imM37{q$NVE%Q5xgQiULHka>Lb5R^)23aveKslu>B_ zeOb{8v639(DX;DJ9m&d0x%;v*%Dc+i<0-Po?1=&xd}Vde{2i8L#jRJ<5tzFRulNct zSyACtl@%qdL{x$rK&u?Q1r2qEIne zQP`NQ7$+nv0u5zFGzTe_$%+^dBp=Ai7;b^AC@+!~B`jHqGgJ%|V@eqp$cm^aWx5JZ z1W8uJpSUVaX^bl?3J}T4nx8vak*mqdm)P4Qnik>U%Stz|VR^}KEe>&2SeL?*zaD!s z{<0?nQ+uK`u_sCso}yjhl)s2>#`WfguEd_`N_cvmKdD^qMgZk4AWDPgM=xrQ6zh{O zQ`Ws~=b@|>g0c=&VG0*hg&B@iVM-mKNEN1d8b__OCtU$g6|vk^tdfOA=0|s7Pr3z# z@l|00%pmJ7JM^vQSF8#XmMf|%sxSqJit116T~W!^it1vv8i|e?9Q>lH6C@n2=P9oi z`;Mx0Qtp1WZslFovYn?Stka%o9u$UBo?`wEOVZh3-@!G>F1+F^ysC8<&rnQ?iuXxX`|f87IDoS)!tp z=_)u8BXB(+*1FWHO5Rbigo zeOcMgyUKc$r^w!EPc#oamDLSA#R_3bR)*}!5YnD5yy7dovaiCcDl1A@iKqnC1*jan z**~f*E23J|E0PLJ6hJkaS@&Y9umRq^_rHLwy!&yJ6@`k)io(WZ#W*2Z5ojnYqB%&Z zOjg8zAo)O6cH$Puit-XM2z`%I^cgA!iZP{(3uHx9lrmifCxRp^;!o6+Iu?v8E6RN& zE4iOKS&^%Lg@SFudcpf|so0=#kZBIm=}3YES}O|cYPdc_H2oA!gFiaWR~lNu=lao2j=8v>2{T>W{cb<^nn_0-vFfTyZ!j!c9rApb`{-ykZIek+f`hG zx=n$$&aKb-sbO`dq{J5OAok5*mY$qq6thh^u;cOUv~2$ps2LH_w{v?>c=yU_#fQjq zn%;|x!}J1t*j{4NLW>fZJ9{5jKD4$6--E5q)+j(op(EI3_o|u{UDe4I8uvx}+JcLj zUs99Lv1j4FHb^Ab!V5B0_%w@%{zX6jqa(bJ=q9yj<66veeVWSDTkWUBRYHox#YE~j zCyHwA@9-)i=;s|9p(r{iJ^O*uMHp@~5}2X6b7z6BF=m6a%J1yjMt)sM{%71 z;6@vF38UUH{wu_A(FM~^8BYk)L?CN~1;fw#Vhl+Lv&qinj=t9qR49ekFR`-kL$sf} zxcLne#5wOH*O(s;Py`bgtS$+g!Cxqc{Kf$yq;lVg zY+8TSVD^uy#w7kjvuWK}qkP0eeW}Q#b*`DTZtN-z)mdcG`mbiuy3uM{9P3kuIKxb0 zlVXz@v~HB}7p3?t7ObJ3s{cWq`pyL|rJ;UMWX`(M%vm=|c#E)-Mb@kzHEY(5Ch2jy zc1^JqCEL(7s*}6(8&~sHg!R)RTh=vZ%ev7k4fUBKQ`Q+~%DT~(V&f_5WI*z$0TU@c zQ)elz=c_2i7br$TX)r{ncd0dBzGbI{irFSVN?%4O4V?%zjCVRe4LjDKTCbOBdp6NG z8IH4qLq#1LeV$A}+|>StZhs>;xT!S_-G1!chT?8>oLhs~9hjT$;DflmaksV3O|4KE z?ilALW`}MMJNgFVZWlVY8f7;~qtUsEZK2y%GDW&#lJ9ozV!mx88JVuy1y$n3ioeS4 z$?ZiM$8@#QhQW*0sew^fUAl#3#}(zBJX?cQp!D_e)3A~ehJ5v78;poA99P9?b+e?W z1m=JUM!r6b_)^$e#X7Xo5r8**FU*ky*@vkSj4phxm?_nZ5^9!2F!J?bRGNiPR)c9O zhnW_^$k&IFpcEdjVidYrHNJ$Jzg!k(O1?gfWU#QZ8jPBk5|}F@82S1z67Rx?tHIQj z!<-z!$k&Hy5X{|GtV%bl;VhwMN(3WcA4Zk3u%sG{TImv)t(S(pk*^P<`d+B722)cG zvm%0#uMeZ9q_DY)S?cBiLX}X{7Qx6@KPrP-slu15+oZ0g9h7!K)4{kFMy8N~7N&`J zDGge9N+B>p9F3}Nc#jgH#{6BQDP_VG`>t-2x}Eq{wJ<{lj3 z+(-*EMy-SV$R_oNkD`S+iqne2#(m`|tP!~io5_xp*`$h+bmH1uOk*dS#V7Fv$005o zFSkim@_`nnoq*DkC?C?ms0o#}F3wD8V3N3_MX4)gT%d&s_z`Eiv@jw__~K7o3u82l zXOpS`h>mZQdeFbYSq4#Z)vvIx$R>4{?3XvdAiuoknZ2#F5UK1k88Gj$g$3gvMtOjU zNotIhXSKx2*N8ot58Bf=@FWjOqkRqv`FRbQ>`54EvIu2vmp88F=?&*p?sHWs3J%Fe+ibq-mbXEv$A;udSnha*KiL(0f}SOKD<`rLP1QOVVc>IlqkP2p>q zvZCtbHI;Rx)MM{KDY@|x$+I2QxAsKwtkUZxoJvi7pO`yf@lb6_ZvyEJq^DBs#$9U@ zi|k33EIhUW7XFgPcEXvM#EY{YM}aiila&FU65m#yo|mm$yrNtbtrarGEK01Hl|5dp zT8muo_CHY6Z^ky4qVB>WRIak-%BNN9c~;cM4JlVeQCO`-PLNVrwO$B9kbJ;YWm;mY z{D}81^Vnnv6_Q0n#8hXO3O}rR#~G-CkVZP-kC-gJIR0Rx$alm?#{wrSk*Rr+tcXXE ztQ>K%lNGs|tUO{islM?jN>#YJld(XMt$NE=Br7$12eQ&4KVMcFco)As;!0N9Egoh} zzN`%Kl&sX@E?JpkPm14<*J|OZR)i~)l|dh5#GcH?c#0?6d3rZ~tFo+!a#3Vdk}FYS zvZCw-vLbT5A3TJt+*rXTl{HuVW3po0kgSNJP*y}vkW!hfjDa9oQSt#(m1)U}@*`Ps zna3tWsE{lsOI93Hon2}mD{%$}vJ&t|Ocq}pf9PWPj?0SCVC_m3Sy6yURt{9>N*5qk zla+6qO{#A^>SSfDvgfxe(y&LZzf+zEva(HnzN`%KE`F`HCuMH&n6DeTn9uQ)tgOdf zva-RR3@2P zXO|kZD{%$}vJ&t|Ocq}pe^@}~J1#3m!+5fy0FkWxe6^DmxtgpzWj3k4@u-uPZA{&Q zY>nA_BrBR^2JOleW!aaN8s5dP5&UfvnX$udI@eHRK+J_L9{!S*o%Up1*N<0k;V)?% zB3zlQtiw?t>+Ol@AW!jRkf+zWyt1r_a#3VdQdr#tHd#^j0$CBc-aGC^R&K9glZs6{ z{xMlGZb(){Q79`SCrGJGRbv!~kxDey7Az0vb4%Zex$MMfos zB}z@=HH-+0uuD;v*!zWwJ5|f@DR>2TWC_RhG(+ zWW{CP&7CDHVzQXynCk3O16hePFp!miKVq_EMFa_7%#6#5(J-E@C_p4Dud2mn9wb+j zl`D#DQmqf_hEyxBAa83eZ-Kx#n^TotDHm1Q8H`p#&Y+7lpoFA`KSY&mKQCC^D-iD*{KWfil zn;R4!goE{cpwm_9&YD`sUcsMaFa+jKiceN6?MR3-}e$Evk)L)BUoh1J>< zvY%2}wVnck%3R3@Ol_AN)lT_QwRV|z$`n=Wdi=#4$5dyR8dU2B^K(YMLA4I}v)$4N z_~TSoQMK@C7_VB3$VgV+ug;ZfEmxD3Z<q&tRJ%O&#Cf zFPB!96;Uo^qmsfBB_=D%ULY$2yn7elhOB(Pf=wzD1^i>OV%(6dh@wzdRtworsZ3Tj zfFM~>@&Qvv<%X;%Kav%fd8bT~tcb~y6~|P{obNzZhRn|~Fp!miKVq_&E`o$FX2xa3 zXc$jc6d;n7-T&fbMXvf4KK$6eeKI}MC3hNHn%PY?ThuXhw%&Du@J-O!7?Kc#w0?h(w4i0ZIZs1+ zcMM4gLh9L{V(lW3kc6n8j9*W|O+RnTc@fWqCe)$*L0#{o3f+*t8AB3+km@iwnvnZD zeIy|o(or!aAqc5+e~?-Uq?`)Tke*hr;lp%``dsr#{eAJBN=sh^IEv^#J=V1!Y;>fk48zg82->oYiKysubd z+s^%oy`4ZJOep$!pNJs|K}ec9Pe_N&i9r&gA-%99CifudXL8Sb;RoDGfxTvE@4KvF z0{hlwb>0;Q_%u5dmNm$n6}*Web*F~sSUvQ<6h^j)#8>w?LHwIW2?Inoj~eg2J_Pos za@P<0Q^9n&+dG^YYT~f=n!uj<#Eu2Z;|U9rea|LS*#01qyL09IlvI9IHxu(D z=Y6&(+qS#29d(0zdph@%K~Tf{)9187Y3?T)3x;kxK51?}aksV3Z7A+`jB}GJA&mR* zCoFDn-0ec=HX3(pbZ*xF@3wo}6a8CTE$)EE3W3`>&duf@f!o`hTbJe}f!pB6E$&d< z?NsL`JyaO(K-`kcZ#CUp+oOpU&tkF#w-))_YE9-AVl;Xy*`yX<{4rwYS9!i?Q<3L1 z=h;F}C_cBO@|P{72TEp7Y^+bV-IB@Q)QZ=VIUTv<>en-LP!Bc#m%V?Fue!SO|MB37B^C6fE!wn$nzosmHaJZSj%h<_B8k3_ zoCCCKCvCCiGqDs#Z7CpTETw2J=G`|ZrIk=-3N%`6`E)>WiZ)unfJg$~0^Xunjn?W3 zc!@WNH~2nZYrjuU5(u{Qd;I>G$M?(QLDs&kz4uycuf6u#m-jxYTZrG;LMWExZYL#k zQ>#d-43g&0CL3DG^Mbi~<-9@O|1RyUFL1NCerL3P_UCoQI9Uu`bdPlR2;9A&3vvJa zPlmh9;Yz2E!2QLUA?~(uhTG+ErRzuFo>dg$p8Z+FHPe)A&=@!Z_xFV%?z%G!cclhE zvO#0x2;9>@9pZlC9}Tz9;cCnrfxG-uA?}J#8g7*aOtL{^=?L5pej>yjm2bGM4p(FB z2;9Zoem40oIn{9UG?QTWMe3oRN_>!GmX<|K zjdGu;pHI!45F zZE{PCDzKMAt<}`kPfdm7kn;7)ot7-PB)0XrO4Awj7ZT#=Rf$3L*s@)<6p zvvqLD^WoTC?;}66?XYA{g16-v3V4@xWhbblZ=O=cL+GZ>Jlf&EJCN z%c1wjxEGbsb}97#sKoOpmq8SyKyy$Dofq&{Jz9kzU}AC=zX~Mz{aEt*v6uShzd{9$ zLi*uX%IEcb8qyh{bvvLf79^!(OziZLLa36P^rN>lOLI){tAyz{S$<%>9}DWGl!>$z zXl_&4AStCx>xqA}Iz8q$7^c6*G`#jNygs|au>B@sqqnA^*m#RIcN;LhMr|$6Z*tnZ zLV4i;O1KJp7NA4wh?sAdDC~<+g){xp`#l@nqDcRGzKKDJ1?#Jbhr{w_g-M!epnkT2 zVqv+q{f2V1U!FVs$~O8cqO()J-G{xDCj5;8Ayf{ zGzg*%_wzPuw7$hKtrog)Hd)Z>T1eJd3#*OCus#2FYjzOF&~62+C!4I0zs7N0Z%jFk zLw2!HmgpNDgBgzb##Oq)=q)eyd?FlH^rjO-`0lPDW_t6Jv#d8ooc{I9;$>pGE|+-R zf1Vyv$n|TmKF|27&o_`PG_blDK!=tn=HF~6euJU-O@`vHF%-W+CsLw3^*iM_=YDlfHcTX8N+8%gqD&(h(ifo(vmr5FFZ< zs)fGH2SBE4Az5sRtBt*|J^yyY9K)uD7_K*_f~05lHcvNjlO_5_$6$u( zOI4q)a7bUOk<7>xVx}*@&SW%T%I{gg73f5;S(7*hlO?S})|aGq5{B6>14+&9bbAUw zU-k<4TMUKyPI=6C25vSKzrj#~)qTQ@-trEEGYeYy0Tr}0$B}P&ev{JaOC_epTx@-* zss{9>Yuu=#FGVCj_maw4PhVcg?PZ*<^tcp7{j?|5fUIl?9~?L?RZGYo6uB0Xq8)cZ zv}4u`#lKx(Ftbo=1(^Qe+Y0$>T%q;GR8VhB1xe%7Ndet=3^zE2o0Laiy6UY$32NZD zbYe)4OCe_Z@~6x<^raGQTwcS|!f?KXI6v$Hy$YrKvXL;%E;Eo^37`{O3?$bI_*)Fc zZ!i?U$x!?TLt!?ua`hVkoLBTAuT}-sm#f>9$HW6bEJ{Z)m6-CrWqqlt2K1$($aaZ= z+XU2?6aS08yq;Uu^0U*ODUx8xC<~HmL7f@GL7nMpGyWjSHIZzwCe}ORU4#DZ!W_&k znq)s=GtTNC%Q+XH<15JkF zHyDcFWGMa$LkW_zLBY;#MQ(Ey^xL6dArfj_aiNf?m?uhq@C|irldAJ-ck;~rGa3dK z75#y2tuRnatiZO^cm6M(yNYYkTB?Pe+vKP>CZJwT(78>5{YPRg$RK2p`aPkzN=Z~} zlrvs}q~pc4>))<+Gt4_OpLq`t$FTh-VWY#wmg5>NtFc1H1=U-gzrq104!-O+6l+Bi z8`!z7k@QFv0RuXBbV2G#=BSEbv^rOr`qy(c7o_Rj6iYqVrM~TDk<@F8;$$BH9bh4H(-Q)ozb&=ocXaPhxXC=QdmRhL2`s1yb+6#i?iCAAVZc?2{M8!e z9M4I|&=zagzukef1RR;xy^j4RVbi_FRFyN)gS+>=8U5X>OzYlDxYJBi+PmcY+Zq52EisU6G|;@v!0MF%XfsT-Oo=$R2AT}h zUtyRSDq&)|4K%M6z(^ZdVKFQ-F&b)fi5Bx46eF=yiTVHt)5QO`A#Vdoq4qT?jG}c2 zuwt-SbC-eD-2f>}i53cmu)=cuHI}1Y$<)7GWCp)csQo{G(V!?cVXlGO1iauvuwyr& zHu*e8EQ?=lOV<^S_@)|=AXhO+bg||ZB}Q*aGqJ*`K&O61Eu~K-{!efyR_g0b_k`%PesA7Xb z*iM?vf|kgZf~#VKVH!8I*yhT02(Zs!pve;b6_yyR?j(`Qx(u_vTQNrgU9SRkVOk2- zK3&<#0JdVR-&D+RaK%jQ+Vsw`AN>heZ;ha2rlPsT`qfzm;B((hWVwk*S*FZ$xpWOl zIV$MyK%a97A;vrdwhxFf3N5y}7=Y-6EMHZLeuH89P5BmEVVL;+iUrLj!bBetor2h> z=`Q7+SkPRiAk&BSNbd z`mGKY{9);4VZvRW0rye>3k+hkU_xRe-SQlb{_RF8Mq7z2qX3~^8n)jg>`gjJ4}t zdTsBFh(7-x?(7apcE#fAio1$a>=Dftqdw;*gTMCQN5d6l4^vbt$qYD-{fqEduNX0n*k)Nod;!1Ibna zOt^stOZ1zR=#=BKsiqt?O2}9fMd=A6)%{?uQ;u)1K{>AH?({%wB2FMkfM!FYn*`I= z#2QBx1T)Gq(3)5sSd*}HvoPUqt^xbSUZxCDMGGdRAlYbnjz<4>BNf*}iGG7)$7VUh z_M3!_wy1vOxYEj+@X!`Z#3!+`O)Z9Ew4!AjEY{pA;5UdYddm`7BNC%0UDK}3q1L1Z zl#DeI=26tE@q)qXB{Wm7f8usFQpi#zW=(PkA%R>2$vgwi`36=O0#Gj@LzH3q4Tg!4 z6^g&YFmaHrKy$G$oq8#VSUi^^^(s*?NR|mOnE}%3r6g#WZXj7D;IC0hSz7~5N_6UV zV%*d#PYD_IQWW(vQr)jQJM}vJE7a>0u3HaOFL44v0yG;E-6WV+FKZn25>QdLJE?Fmgi{nZ#Po?CM$poKwdam88+L0R@UlAjwM#sgoo7C zC?c{%zp2bHjaJlax+_;@C=DVD^|C~Ng%asW*R*SMsCwmrl2I>V9!0%A^VPxXB{Wm7 z-*8(RDcB*csn=T09+1EW14*6XGGy8etnL7yUP6W_!({6~d6*LeD-6?LBTUM53e%~V zf`}#MQlws83UcNo;IB|DtzJrkhF$~7J^_D?N}^tt$O?;?Q?Hw2re3W|$f%d1sF#uI zesA2VSId8(UIAC52dbAifgk~z4T)|NOskhQj(Q0mUA?Rh9e$`TpfKTXg8}>Tayh)j zXu*WU+Qjl4jsERMDt1MQ_|kw-y$qWrjFq+ekz<#YHQ}LNY7`M!B72vHX|!sNbmjUC zr9ouTTb9TiNsOL!O}jRSs#hy08TAt8QPgV}GswWnQD~-Kd0enY3T3Lq)XO7;1g0BE zRvBoXX<+qi0O}=Vh%!vfiSpRzF|fig{WZcwz2*wjsh5I?rO~BGy=oL>r6j-#2#{7U zB|*b71Id*F%(n&_ERh8fF{fVB&NKC@QbI<(6h*y^)ZjJ&r(Wg1M7^?}9;{yC1cC%; zHYB=9Fs)wJIO-*MboH`2P^++XvoPUqx&b2q^%7OIFw;PCw&gh*{o9RH?1~auQ2;{q zGHky|*r7;~V~v$H;h|n?6cJe>t4PB%T2ZfMuG~sPX%JcTmL=km5Thqu)2_{->Qx0w zM!kf26!p548DyY(3C+|i$yI5jU{_a6y;59aK?1!7lDgRfPg$VDQw{+25;8;?Cgwya zm=gml4AWmDOv>e|fKx98siM%ONWJnDq2uzHCT2ntybiEa{1tCuy7dI=s~y{rz@ zD=gh?jAA>iY9j#ka^kFa;!NgH8AHH{^L7WCtN`l|W5;|iC(Ifz@jPsF#o-$}rhqQ6A>RzzV~}4_7Q`-XKh;UJ4?X4woYJ zYE_U$qySzfAgx|Xf`(25$u0rrTLTT2$gT-7r(Qol$JA@35;E3HQM%4ZbuSA#>s9*; z)N3D~9Soct#R&un&}>L_lVDoCtZ~#!@aXDgb)a5h>1JWV-7*92X+v%-5u*hY64whX z&(X+9hho?j0}YNHQ!m5jP{+zz{m8M^%9`*{FExsYERjXFVH&NdSEno2WhnMWE4^ij zcqAm!ldfsk=1}!o2};I#3G*oGwVoMdp!E`(sn?ZVre67~#MG;h5E3XhkSsCKTxMXk z2S5TshA6}I8w?Y3A{4fh46G3*>NQ=MPQ4UFEVEsT)T>HC7Oet!nSiu`s{{24OE(J>?urc<0a!0lMGIvHlAh%`8vWaiRP2fpIhO*2lcQmCTw{f- ze&kqXWleZUU5z3lOJrqlm_{q=HP@A^F_Z?8g?d>c9tkme(lzbc9I9R=pk&lbm`72s zsg;A(OK7HEFFs=GWp_(Wy*k+WLjs)!lDc||nsggjodTdYap2?zLqw|^|CrpudsBp zF^cW5s*M2DOH{#_2`NZQNNF0`#!?KsVxYmXW7f;CIdr$ORzGs=v$7^U)Ju&bB1>dt zFG+EfWFYCJ*zBZeuU(^FPKqm(h=s*LnA~(!j0Kr6Wx|+uEG60M z(3C-0OJwOu%qh$brKT{dY=FWjN@rNR?h#(6Fv|lJ=E^;x!i3wLA`68v>Vo=^f+j&J zOh!QlZgW~0RLHQIDpiHQ!a(@wFS|}wZ_*fKlCzj2$-mtwV-Jc%-9ki0hQ?_aDTq<^ zB909PR<{Z;eJmV%%gO7R{7xW7MgYUxx1~q^N73d&L>32 z6dJG#@{m|!vDIY&xDc{ToDw;bG|*IRV1;3_eXkg6BS2_P6l4_4bSbhX(-mY>UjTax zNLv#nLBnhV$+-gl8kM9uOT^j|bIMWwMN^JqC1fTmMNtkT)xFy6l;cVt<@l%0!PZ2a zK#%~i)zC(TG6uEuH0NhX%JaxnI*CUBt}oV zrd^vutw}K`naN6+M^UfqCk<9Fp_zL9=>bzO`xwI}t2UC6K!*YQRs%KZve@cw0O}=V zh-w4S--d~iwb%;7(ghOda3;Z>ZK^^)oQ?=;C1SicP;AmoBIc=SDRrq3(#yxbdz9Oy{vK6 zOYrFGrNS_lX1UoIWv@xe;Y;PX0K{m)gv9dM@*IuahEzs*$ z)k|pl*He5ShkO1Gf15Nk{d*rC=fhN@&k52$_%XsN$Sz<+@f^9`K392d$Z^4~=jZq8 z@$Q%Pa|^16Z#?+jkhWOxm9U!L@G0FpH4oW$k(821__ir<_oIUqEu?w=WAX5dsGg5d zspmiHcMh&IeRXxf*AAXPrXclg>h^*$koc@ftg;qFqJ5y%^SxcF?J2)&NNp+3!G=&d zMm5#`MYSkb|F|Tr>mfZ&JC9z=+#_pw;7k3rC^xL7kzh{|wQ#St!tWkPj2HZ=*X>dd zU@dhm)x>I_JLI+3Dp&vF{%>@s+VjVbVX9esWHn`(YLpvR(?+mo#&FeW%YBGw-qKv* zs8McM%}iA@Vz_EjY)1^K=D#!5C^xJ|o9{ipZ6AiI#v`k_G*gXo!)jUx_DmVBn!+Qi zDacf#+_0K5Rnxm;7-~9jBZn~c=aPQeC^xL8n_y4#aMjE{vYHi{YLpvRvqaT=X}D@~ zj;v-{rW)mj)#R(1r|%htskNA!Ax!0Ds!?uOO&h_Uy5Xvsd1N(PH3>MqQEpgGjjH*~ zaMj2{525C&Of||4tI=fH^T76Dm}&uQNHya#)hJj07*jHeJ@ct1dU~Cu-JK4E-}_$V z`G4itXNvh!EY3zJt$M831pJG8<9@PF4+#64r*mQAE>Rcvn`aV^`XmTg}=Gafie!`?^?Fu#;j=J@u$@tb0DP1QLLT{bH^cX!sT z=)$&GZTGvCCJF;WRiKAwfN54Pzi;3je+F8->k1L6l_5useITgJu+v>}7;cjNx%E-D<)BQEXPQQK8zrA;-HF&cI$g2xd%VCy6?R6O?jahcBB*{M>JA!uyFATcicm%&=q40`*V{G= zPnux5G0lyEHipsOu#+?d63L0BrWjwGrXhfe6qI<30Rm&s`~OKX7zjHP{@pnBU3|qc z|Gco#EgBA?V$kEFv0ptVmrg9Lh{m5sJt{}tmx!p~Q1vJuwfn#}KArr;Ww@O62cmUn z%0lo%eHcx4G)x(iQjyeE|5xI>O@>S+nP&SRBDkIW^zZ%5AyY;&%)H`bUcdwpe7BQt z47=jN72SMinDYD=FTVQ-j}sX$qa+hj|1a|0RO}o@uieZs?LeH>zyEiTIOMnds6fVd zU@fu5kD0%fU!xNl7KTp$*Pdc9O3J3O$8Ph@CNR!D;c&@+-h34MKI5(q9TW`e2T z<3*=-mfI}nRqwJvwVkH<0TK^8S&!>~QAr}WV!9Wd)|Cjpn^nG9qto-7JEdTLQf3A+ zWWqf@7^jKBJpn6oNz5@;E^j1SLsVoj+qE#Gu4T?$iB6~}(Iu(7en8`v1^+i?R zpD#rsp$vlCgqC`HJ>`BxIg}~aQGLk(sc0&l z`WOE|k?UNM=@g09nN#JzaObkOZ_K(wy;I&QuN7Bjr3Cub^;3B&V8I#K{W9WKq#kkD zD5eLEywns9ReL7d?+U$e=kj-sTGL3YDO#7$Xa39+)2WSlVjiFMGb1QA{y;pK3m*rf zP4^iEmg)t35FNS*;h zIrfx9GJA70APzy7S^S6MkzHiZdjUq%Kic*<3w0a^_)SEozEL^; zrAq&e%KGO#-z-CAH1T4h`XxTIUoSy;wQW%*yk4)U+w*awx0Tz6{NP8M^cir4|Lpj- zt@}ZnN0$Qn_eoP4;Vw0q%a64iUXqF3=9@AZOOwdoz~@~TIF-ivI-acL_LW^_{ZjGw+c zeh*fB@kO!P_fXuML5%w;d?K6dUui?$hq8a+(U)Fn=RDk)AK(`Va^bp?M4{#ah z@5v{E=dyTPtn{Awqst>>u7Q5S^WI?SIK#djsg&QLodK;w(5d9+e9a4J;}(tQI8IfY zi4v2p>80KhlUfiUqA~z00k16rZ?J5CH^rX9%KG<-q!By!5!`STgSI0s&|y%scuEEnib0L(tIO_Dfz>k zXj6*atV#C7 zwmuW#&7d~k42mR*cv|AZ5oNL3MI(x{7Eei3pO)a)pr#}z?De)jABh$9;@$Jhq!*OM z4n7f&?C}n7iw9$i&kM$0SLx62-^D&qWC(h!bV~7Jbje&s@9^F65jTn3SnWNz@yKmr zHQ`?}vX57Ya=p^k5=pe_qv|N`!4T0;D|0`F5T@Eh5tu0Gg5w5v0SYoDdEuE^;eZ>D z-}&}&(WO1=kFEQ@f|OM`O5rr?-cYm&|Gx8+WBx7S-{Ua`o$zD9nA78IrfHeC3pI=R zd)!Y%Q;&RCe!_V7+ll%;3;&t`HtRLv5C(PM))HWO-=^64fZyhIX*8svT z)b1l2qDTHhZb(b&girUorlL)x&><=vddWTd(WEWJapN|($>F&(>u_DIb~x^sxba3h z_mWASxKZ`RybpmzXs;KN)zfZiyi>)y9`z+;FUM&}RqaY-ZK=cc##i%?g5D2)IPpH>bd!kio9-Z|Z{}Fa=USBYW7cI443^%o^tnj>xJXL!?P(Wd*2 zJ3FoRf_eDS>?xcOtvip0(HwVQCS=?V@uR(D_QKGQ7LOS}n)SgL`O&wUAAMT9bdPu( zJ70hQem^?8xFhDj277yqz4AL`tmPD!7MxJ&@5hsV9QMjb-5rlS3dXz_Dn_-HA8fN8 zt>4BESjVfU!!UB2}d zX6Ahf8jAFJTc6F2)&Aw(^4*80BrDFu(r!CHIojOt7&CRE8kJk^oT>VJIm>=?9$;E> z!oS6KA1c37ZY3KV#g>&ccRKAIZ1za3VAC1EPJEV7*qb-ZX9xQo<{8v(7ADJ}F|ZRl zUCgKqg;0Ch1BeHIOyQ`-gAc}oZv6Gze`XT7p**5~_dUhIfyN?vL5PPTX;c(#PigCsVsxo}7$-ctkv~=9AwzT)J8e&M)z*cP5JN zrTZWE0;AeHxOZCh=ut5i8FSuIV~L_0CyAs)P%)|MykJaAg_<9~SF44uyVb%**6@f% zT{C_!tHCzUe}J_>_DZkzZYIvB=CNQs#(LrISn2)qM@7aq;&2k2_a zUhH8pip3(~ao5S=Qh`nJC&ssxw@TwMrM=+P6XaMWJa_0Lh2GZj1FHu02i{4JbxU(D zAocd?S}v$y|8l`L&xR}))OzZ)kC}m%#>Lna8niC7Ta@H6OpT1ghJ(0f_P`yl-fm|#SEJ! zC0370xXN77MDPI^EHeggD*+6t1m9bk>?*UGJiS617h`224-3VZ7G!sx7i2e9_!V1N znY15K`(TPxORV(Yix=NXwQ5YRG(cN`Bi5VDYj@;&k<}7-!oO@ZF5q@Na_g>W)Ai~b z2D?i5EMHxRxWz$us1S}N7F@^0{f@!vm!hrOKe@24#-2Ux(ImR`Vo`9%4k4}}Yu{a+csGah*&w)>q#{oaLV!K^Ax z1dC3y^-Fm$@xjWV;=ycx(F5=D!ps9U#O|H<0<&mB<0g?Th{u!PX8H1vmM;_wmoKV@ z<;x$_%a_A$`O=yfE?;(N`BDs0^qOzmh%!Pks>W1WQpV9>fgwx{LDn?d>_E?{c9QhhH zGz{D>f6b%>AxGPE$1zr0@zR^JB)+Eka-`jwt7knQMa!=`a+|Y7r2pGW=T}{Y!DanC zn>2ISc11<$@%L6QK^pb5D z?BpM+h2X?_2F{ufhzG|nFmU1(22NgR;M6M(oLK{amfaRR>!$|394OImo~t_jWQ~E_ zmH@C1jRum-3^cDau)4*-`n3S~>jfmLdHT5iB}UH%%iG*4P+eWN_=Abk7o&FhYYS?o zb>~b8IJ55T`;*q4>%MC1&PF_bbI*m8#XlwzrG3%`ml2$?1NXf9Pb?p@Hrcw<>T9oG zN!~vSE!nIf1zP}1gnh$auyY1suO-hGSjlDu!QKE^E9?cr&dp$>Ao*GIBHO&ktDe8xJNUR#=4{mi71M%C##NOE z%d@1}<1PJ`)_ zU*9RUawmG7Vu{l0@#k*&l*Ta9Wg^=xhemCH7^HkS?CyoNy7{9J0u|Mb+N zO&^j9O$`=&sA_8UjVGz=r&KT6k{$Egy?Sil2WeDOU*r$6Wq4<~R6)I(m8r)jZhv#0 zRiD%}igTw)C-mWwN9a{+*6}#hWU}mEB-j=lmQ`dinOpH-wTff))lfKFO}TXW$GRc2 zbxLIU$65%)Fa7me$Y}{(2d#XCU9>S*W5WyLxt^DtJYrg~JR)>VaJ)KxYj(70H!)@( zHt0Tsc8BF~_M1tk+~(<26P}8)-#IN<7ilG93iWIN;)U;<5-fuZ}W-{O-n9l zrq|b(QIN&JO;!(AVT_!uQ@X9q`acOL{W-;*mvWl`^q;9lYPKf&QDg1 z%x3enlq)e-t~@&JaK)%sa9>nuv`*(ZWQnv`(VLtVu=Bi311&jmW$J_9xDK zH!sNAKZb#zQP%%U1?#DfYY|CnD7AU~30xv!VYv7^mHaswl@kH*zt%vr22qTD$8gpj z9|DCbqd52>~9TmZhTeB-lXWW{zAV-@C{)}JXEcOyV^rMx00ynTdi(BVgpRU!?fEs4G^qoBg_ockl@>vRf`f?zzF3CFlBM zYPrFtE%Dx|$?Qfp;qhkEo92yda{VMb&@nk(+rMc(G}$ZN9j!gYLzxvpHrw#o*D+#9 zW7E8cM7L=kL(9hR+5fPua(X^XI@`=w^FUwPPc->u{KO}%Kb~~`QNt6nL;FK%;Wq9P zg1z$PT5qL4o*UF3jpP-({!ozqSOzFie_XX2>=!fGcz$!){-);yQr{wbSkLdI7wN8_ zSalz6yH7(_t%kQA~#|*2|cMru1RU$**&$(liUL`59Ga^Z44lm-c^z4XB}s@zS{bYbr_YFnCdYYOy!JD!AI=XdigTgA7W$VM{fwfX zC^@2*A3g+*Kj|yz^8erB^XPuzyV)~+>-+E!#%z8yJBy4Z3y7+fl zc10?)s-iiL)UN8Gm%lH)U{gtRfAX^9-sOW1vlI6?J8=SLo2^Y97{|80gq^sEk^O9R z>1$F0zE-1H!hb$d^yYXDm7kAb63lyw17qx2BC|3I3yjM8)#wGhXE)Hk7H}lgqW^VHA zjPCc6f5lp8zK27)m*?%Q-k%SNNNIRy&drU2^K3rI~l7I}xBhrI7R z3U=__LfaKN3*#J2o<@$Oy!f<` zFR`M{Rago(o%x%3Stsk44XQDZ@}Vc8AT{O#;;OL?YC@II8t?e5T zz4jEv{mq4lQJYyeQs54D<1)vN%MfI0b-mln3a|@ol4?YANLZg|F%5NMkMUbWUhR*o z2#!`&w2fin7!H7)ESuM00T!Q$V*M-D|-6~w^L}aya5n2wuRjfKOdW(!$y!ulp*m?dX zr;XtX*)xA)1(n6TG}(`zmK*n<#ogY?M&|go^ZZ4pjdtrjJnhqpl^%*(hBK4f$!eV~zY{3We%>N#>+g*K1eIqNucG2cEw|v{Kcy>1=iy1iO65gt_I~6891r$5{R`uCk2A7_lLtiKS z8_(_wke zdnle&Yg&9bIMS`3DS&F;=hf~=V~m;R-nxWvPQ2L$`~zLpUgy7#4~ zQZwF*L!lLis>NfGi*UJD#)i!ameMyJKiwfYmb_HtT}m=L>;!2DYc8=# z-UKCYbvVHd1SzAS62#U{DVbYb7gnH57=b1KQTnZKc{ zRB`Iocj6fDhPe`@>xQ%q?@F=Z6N{|TTUM;yQ`df3(mohsr8>$;uHD`nOE&dMncbOB zy6^la=qdGE*o*OGQvDY9ClsV^Udqz;*D$WW)2;eDXlTfkwQsTOyA_4Bf}sS#`tJEN zGJRKIeOHj~yU}D>-$e+d`=pzKsl-F-4N>!V_r^c{N~a^{Kay zF>p>TKnQN&ymQ{5fiscyB%Ro*o}x?W!LU~}8Hb~3PN(ZnduTB1oUqfv&PjKb`sjqf zs^Y4>`@ZJbR}^hXeouqm?ZqgL;I$Vc%@2*9yiX zrGJV3?0W>f>eaUOIcKlA5d+LDPmG{zUgV()|Hj-lD(g4MMV~+fbL_ok72?BxH{b4z zRrBj<^?MjWy9Z82nt>oK+^n;Mj(eGEMlGY#a2gu5gmA*I8@1Bl(ov0JTsA)DFCVqm z;>&G`6!&+hPG&B&FCy!wQ*}AhM>!X55UW~>&sid)FXG}sqljZA6_4D@rX+V9z2t(A z)szQ6SMxUQl#kjIdJ@sTxJH+%jLm6K9r8u!*+g)&s==dMLMb-ymKTbmXx-JPOUio| zf7}_|Kc7a_^oI3mVNGgFrEN8-MbHV&9ySKtNfTrXBgUP8-EXn?s!th5 zdcjXh7G9K?W6yY-7Z-U*--#7HJte3+S#r_ZijNR}gbq%LRGeH>ekZG84iO9HvW377 zR7;|I;(RZ1klh4gt@HlMG1Nt71i66A#?!*_u}tlJnb=Ne$BWuy!BSWK!N02F(!uk z)%z|k3bM1BBF$D@-5o=uOeja(18%f+V^^82Yg@55Lsv^mJB#v6 zNNof!)Vgu{8dfXI2CZv5$oss|lFbT&-3eGK><@1Nd*vYPF7miZA#4S~?gq38`?<}S zMt98Nh~3iSmZXK)YHn@tH`NBtuv>HUyW&}QtyLLLJ7^>I+5=JBKj)Z*@#4+dkQpx< zY_J5&Piw)`^8AZ71WQj_OVCfWmi=_oY3m4 zbLK=Eu?sw{;wHuy=yUGO)Xru5|5gL-6_a%7;xI=t6!n)*TB4ho?QOY|K=^436<@)3 z)Gyqric+_f%a*^eMUgwVPaWhBrk=f0^WcJ!b~$4|>yr?#^V@?in5OOo&uUP$ZDe}> ztM2Y;j2j!P$gRZV8EJ0${two-UGe4}Ocu1u*OA*%EHhY}b4cpHQIjAqxp_K$5SzoV zocG(E*STpJY$_15iRuLfqqQ7qfk|gI*PXqLu+r87ktr5*>Dem@YpK!!^s1XB8VppT z`o^X!vSEA?%ocxb9Qc-zuov06u?qi|R{m<8Abdy$Vc>JN; zaaB}nD;8F1b8a0VlSFWb8W7)E97v{R(M!$ZJBKt;-WSFTi4Ty2zwT^(1&18i{#<@` z9$}l9Qg>tfkIJ72d4K*=jz3W}gugpq6@RAATt*1Lsp{u!pkBwEUVH6zlRWAXXK{bs zq!PkPn+|lEv}sZq;kdtQ(p=^B_p(wNNrAh^@V^voA*Ly zYl*P@Zg%*diu)TU)fm=|la?7=H)*!PRg+c%>6)2HWD8x8m1;UTjL?Mg{z5CJK9oYt z4iQ>??*O6gb=wVmbO?>*Cc4-lgMf-;MAt@bY0+&E!HBK{=tQ?_QY+!OziCoRc>_eZ zX;K#ZIZ_M>s>`r8PU;P@^T><)H%`hC3XuO6UrcMM7cq&kA!7RWE19u#mwJSG(rH-Sf5vTc#OBSic?1;5Q)u|#MFA~tT%^|m{8tdV)@jE#KhnbiH&=Cz}CW*4BF73X&&;N z6>~n{GLuqr!VU1`JRJX|>;y~EJNw#R_&HhyzWW#zI&4#Ab~ zXt*u5%*K=3mzq)?FV*(b6n|A|Hx7)To@_+4yR;Oe-YM;MrM+aSpA_yREa^`3mzSmp zPxF_S>Uqa${*9%2^G5Mv;1poK!BwS&z|>z}j~{!BO=N0YMy+XErVD7o>)&YW<#g^y zKHc2sSk-L^Y@POj;=26#Y-s1)9*KPeDJG^vkQfrNWrU~sb){7zmOKxrf09Lw<=t31 zTY1EnS-h@viNU3%a}6#pZ3L!{dp`z6oETK=Vz2}_n8B!yAD6vEcZFVEw+=%xr>EU^ z%dR_NUR^%B_vY0JNfhI5DJ}d+r;uRx-FRMCEyqtwQ4&?K`uISGyich_vROe2mH_g% zgFSI0*u5ESeQ~4%4R*@`sZ+@w)@P{x$@MaSb>f=k8N_18gaXNFYR*gzhieuyyzNofUi2)kN``dt}p z7@IC1m7Neks)Foc89R7Cj1>(af5@qJ9&Ty*9gXg6qK)nt>TN46B)@~;1QGP?FCZv? zkpJ9C-p3sI3POGtV6L!l{O@DX_b;MvLMkKPA@t=KeKn507OEUdpVGopuC)ZWZ==O? zL|^V8`ZkbP9Ez8q#0$t0ec8vN?~nIEpU*X1&LZ1XzJBL|ui6pB0&Z7VRt33!^ClTq z{}mi@3x$Ug$>u^F$kf7?K=Ce@Z zq0B2S?3^5eGsJx5&tX1m5c9d@ebzCrAk60hRtkG07Ziq7o;&Y_`Tcyi!xBAv(T~z+ z^<%=b`YYxPI;St^f=A~fUcGtIw8%(7z`DX(%2Q0 zk(o_!wAjvHhLCy(oo>w~FI)jC2zCu1F6?J-Ifjs$cOj$`8DZS)k|)m6B)y|u!|)9E zLSxm_nXdLwYbQ9&51Og?V&#Z!(S=;Q`5QLkRCVeY!(K)}&)bdNKCHXULqiVOqZIv?BYQx*} z#}=d(UCEB=!|4jH*7`pS2od6U4uHRiaf}crBo1+ z&IEJ|`-?Y&-JQY4QkKY=CYuFPA18ZQWxv0Je!O{jOVnoMw>t8>m=K4Oue3>y{BD9X zMNn%Jf;ut;L2Qb=lN|X9lF|!k5%yJ_&JRo9nWAr>J_ty!i2gq3eghs|+PQBbEQhld z=v>xSlhzWJbKj-B0WK>au9A{=?mI%PUV|Gab%*gB?HDG<+3Hs-uN3Jx_b;GEOtr|NJE=k(OI2A7_?GK_Zsr})cHZMFFFQ`>;4t5d`9 zrPkh`uSV*CFEu}eubOA12sdfN+IA#w#W;@F_fQ4wD0AWb9x`|ogBQuzd=Ew!MC%&C z;65&oo-8I5_xm`sWU_+w33|sS{aR1=ySk6mmdzs@QLY4if9y$Ikp87Y<4)k#m_EKO z_^SSX{(tyb&x5=z$gOW4OlhBgx>;21dDTwL$>I~^2bf07N4*t~@VG#`J~759*xq}2 zaBd!-C(x1FuI1y52L~}Y0R~&RrR*47K}fH<*$r&}Exp@A8}@1s``zNUjeYxp?-CV@ z!7;hKOSDX(f)9u95{>*yCa1$SJ{z5-HE1>cW5n?s2=N16-KXQAAVl?RAF?>&{KuC7yk3GrwZ1>fK!D{ zC#!+*V1WFZ;srxY#n6^H@hko-W(GKhWD^c$QvEZZ8x-Vl!biFLPbUYz;I-GX% z`I~)Rp8ksdnT&RS)U-PX?f#=__eoqfH0}Q3(X{(-`-tAYq3@;J`M&qQ`JcQ?V$$|Y z?ZjNZq2G;yKgfrP<)gO7BRjy5f-fvd8j8)9Md%3(&Xc2|uJKI`ur^`TtX` zejx7e;{IW0qICQG&!N?##FT+;%!<;nU#j%q<`u%-+|cA9su;JQOSkJ4LhHs+JJxbQ z(qSD+53b`ULb<0Y-F(@ddBq}cK>F@O2~N7yt?sbvNX?|Jfyy~RF?lWEszmh|&knmL zE<;0OUgSZq^wD$ui7SVy<+IU-LTLE=RTB=fdS2ppH;3^D=i1V4gFEQaxF70JDb3bw z?e@t?z7Au)SBFDYGiY_AuS$w&3olPW9I70^xXoaH=0+XeNczlNT3l^eVnywt06qaH zBXvAD!#Z89TbLIY;IT7Kdd>jqDH7_@f+)H)sZI*&%$mg6;IDllx`4$|yXNXE=6eU9 z<~vg^F~7nk=4mXBb}#x4pQ~Y4iXOzQvN+RlU-;=Dn&1XKJT1&Bww9+p`;8k*#F0O!@+OyaDsrFw(9vX*W7)cOFIBN}C`W zSh^ETX-nm;YmoNLLDJSY=%KXjfg&7QQcT)^xB=Wy7O`2k$}aBfRvEPcG+(xc&p&eFFzn;OUeN>nJ=4M9(z5lJvQBoh{824i7vc^4 zB>Rst9UdPjvTW^$)?P)!e70rHwP*j-m7rfb=$CIBKl>kZD$@XAcEEiERX-R+)l}1$ zZ|Q;Io$;a_{TJT1g;d$WD@M}et-k)nv{8len)ezX!9;5}ciWBd!kTm1vzO2=4^45S zeH%Bze?tx$&5dw<>Q~M0cslB?1!-zfQCM??HqSkZHqSVQHaiidwHcuuMVt4h=|h$K zMJ83=Lk6n+1Pg<;P-J&8?s*E5gDb+j7>hnrS^E4>3I^Pz@cgdu=A&1%wZd=dr008n zMWJEFLz#_-nQlB(u@^Md`Y0{jTbW64oyJ4YPZ$s0pz$!9yl`(tK}OG9z!G8q*RR2z zp24p0Z=0}q##KBudZ zMMux;N(%Rqh73yfk_HUQb5VcWOG5peR~*54tqPM~MBm4HsV#UYOeTN!@v|XKvFQ zG$VPdDNH)b22F6S-KGk6W%wW_+?CPoX1ht{MSfX>%^SE)^T>DUh#gO4I^r$+0O$QS z^&UmRieAN#(h+=n{o3EKsrP_7;x)cZL5x=6bt*rRbX$-V6#_L%$$RM z3#4BD)iLz@`rFa(NnOK^&gDjauiGoy!0b1ae5HNGk>5%%OP^OQ{SgGM$`AyxZRF`m zUWihVln%g)x^X}CSoDn$eOEm;EPZuGU!fE4bgCRmpVI8|3>Jc5t6F^VD*HA=3;Xo^ zzSO8~o(T%yW(e?Y#%w_9mj674`2O`a$h&TM@hvd&s+{;**a8?zp3*|wyq4f>k(YqH zEsHYZZ?u`)ijR#TFdTrXnVU{~M@0mg(Pjs`&;9~O`tRc0ynx(~6 zMR4h8HhZ>Ll%}HfQyFABwbYvHZc4|3sjRtJn4A)=D{A_uj3X>(TZgJkS&G3ZPCTcWqWw6kX08i;d5ZCvsVgZ=d&k`pcI3d)48!oBLpkyKDcY7~gOc!C&HL9&GZu_pb8N`=j;RZ5Wv8 zS?09edaAQdU&swJ+$XvYFSkRqGP-MMhb!$YRnEjl@G^b#GNXnLugG*bdDF?u6B`_6;+yF?am)>XwdvpdHxwlD~u)%=TBV-RN_r?uy@jCN8HlytSvl;*Yv>7j& zCbT(C=%Vw6YJ$>2o6$|sY)0V%`t}V%c4KI%W2l4%hBBnI&}NhoG@EhLJV?AR zLn7pR$sShj`Qk!; z#xQQuef$Vq`5hCT+N8i6O1`Bz@_Wf{)Nc7Gk^e9yGm~QjK;Lv5e6>ZLC^~a$L ze^Z}47AueZCZ2xrqUXfxL}}0Oexc)mojt$)`LGPGG6u(luOUIqPzGz1Cds101p78+ z82rs_7`$;1gN>koDG)NajG!_2-NvB|u5%3L7=!woDhFp+TlvNf83sSJ%otq92YEWt zyRB(h2A3OyS&qRH8X3x<(n43Ej9}XU2Dg3h8036+067bjhxuK_)9a8EJ5Co~f-WmS0r<_40qY;G%^8NX$P}8T@!6@8HFPi|59I^-E|X+H?vB z^?WeB_|#bN<1(-I9lpC?%=VJr&>OQF4DQd3;)+IfySwur3vSQj%1YdSFc#^J1x|h_y!*dO5@pw-!Fek^ZSNRyLa6UQK^K!AG*EtwEzj`#!ink~9BUf*? zXVd+>Ew@iJ@XOMUhQWehb2f!tMS8exuyk&C58PsOY@&PFa60wM@ zJGiLKtM;?`#60*;JotQ@MJJ^;IU)K$zXV1d2h6~kXFNwH|-4Z zUUuZikj9}KXV#90_dOOcBAyZvnPY+1|JGxH*Q2!sjGBSR0qRH8W?6m`( za)*7x!ETCJ`W|v#|C?cZlsfRuFx^G&iZ0a$!@S!!42_a~=037J*tJK(bg0VF#q0Aq z{{5rF;v^IL$`3y6R1uw&8ajm>UK@EiT!!uM(MTxHTD-4k4&}xl=(&>CGxi}pqWD!| z9c(B3hcOeeU`9cXJv;C=!->=4;8M1yUy3$8F6M)XWqpO$B;vsoU6zT~eSwI3slQOk z{yxud*M>ANeGc4^c0Z+2^cF9nxSMWcCfQw}5AjY`lQyWweTdU!yD?)IWxnt~+Lq?W zY-6R5%pb>3xtp1b2a`);MQz-k>5E0Ue8*$&+iE9{v|DfGqu82$WZny~SHV%R`z_PK zj85Z8jCgPXjP8lnokPSiTB2lsAMeMBQEj5{2rmTLt-dzwm;I_nqG(&(e@ySK@ea&L zyBBmC&*T5nxMX#_%Qoi!=f6=W`iJLLKe<&=I$v)#jmP8&Pzo8%ugR+^mwpb*Ls=!mliCMG6%P%&f%b)q<1)DynqQlMui8+V=7W|`32+cz$ zgyL{QnDcr_|5@gUhtopcS)%92nISuz8S>w6xIE7`K>u)goQTt+2bKK4b+{B9ZMYm@ zFQtFD^bm23KCR^c)x+gq*?>C6aM4YvJWlrBcev=n)c@OuOQ8*y^EJD)dBFv^htuMt0#H+8!mAv`oYfVE;u^vP4F3pen;FWN!z1?E^4lIapC7(A?n#+{I zuXY5QBj7JBm^gw#aQV|*@F;2FYR4_c-xm7m)UmK&MVlH-2j;n<6M ze%tOYRVT6&MJ(EWu$#3CA7?DuniGq>^IA0b^jXnU#-2STIq{Q3&gR!>-(?YV%7m|g za*t4EMYp{^f~+&ZD-hmiiF^*}y_Y4#aYDS?A>e3SxXRNxD*RYY?~ zLdl_7=SEM-R)K9QzrMDZ5tu1j}ml+j#Kn>eu=nGg~onmR%LYC6T+N( ze-7cf-8qE!cCav;`;Y}6RGd#Y_I8rJ_Zc$wJ{&J~{T{t$Bx(ioPw+F-d$U1$NJ5b` zy|Aw&Jc(3-lRPP}-)(#o$Lb}obl?0h#{B(sMm(r4NfbSdyY?g>atFFxDH)Nwt@8C)@Of;(817&*ahX@ab^2HS6O+$(C5o5S% z3_$1i`B{(68dqNXJt8U*Y%Ex!w*9wbJnEe&+HE6@zKZd3_AD>@{d*FT1^CIyaXvpX z$ZtiD{&zMY6a0i&WM3kJc0I?>i2ONL^irbe5ij^itmr)+A912Zfi)~Nd?b4L$~6Wz zhQq6_U@r0Wu)$2|Lr4?Ac=N@>Ve@HAWnbb{1!@m5Y(An8VpDxKZ1xNsHa0-qu&FWx z8#c2EYS{Q2ZM3;z<4ASGW|fi4ut_URX80^QG}ji1-)lY57Z zpVL%ktjgHG`!PMCtJE#wY+1o6Y4a$Hov0TUc7q^~p5`|K>DuAqhH29vIoH0f&z8|ka3Ld?biq;DX{Ztfvcg++QRuuYev zzoQ!foBB!LSdbTzE|@Am7U^#^Li%5Hgukcf*AA@Xxa??*EH_3vLq?X+_+Unql4hil zurc!gkoPX|RaIx+f8ZQ6Ezun`LS(R}BMKUO(>Xi9U?a)?Rda=b;Xu>T46apv&@DeZJ2^S5qKvX3E?{BSha)DrH z=AC&z@Bj1XL(bZJ?X}ll>sf0(>sinB(Bg;wO(VY9fgzP`* z(2?v^N0cV#^7Nczkgtv$CXzE9`FETAj=;-Zb!49D$jX#-XiCRkAmFiGK(=GrpQH9K zYHNR_|4iHXLcC!j0Ghi}&3Zo3Gf>Sg?a=IuRI`;PKl^FTUh@de zepJ3kb~cW-$sKt4a4t{Fw-CV`fD>OvP3*}2IJoX;SC3Puk7DB4;00iEz3~Qs)iEJ# zU2i^rvk9+!+V$?Qa=m+2N4+=!DxZ@ODB@l4Oy3G*z!&_CBpZw80xs}{l;NP2DAOXN4_y+|zUBJUHh(JhI3*k+xg|M0Yhr05Eh}V6Auu$s1j)KNcPu}H@zj5Fp00?Q z<=#9}52DHUR>%X`zv%0xcK@fU);d^-2i_HxgPR3T7r<*d@bB8kLgb2>6?|D?xTYv7 z*IdQtnuec+D}-S1t8j(T5+2U35aLN*{qNRunGrzhvnhdPTW|nIzI7H(H3X>&|7j#yvB0v76{N&1y|n2e*5)YK%H_*h4r9DX-hZ7T9Wwd!8GcXc*3#+9v#xU%RdN~~dZGZR$O;Oaz7VC-k z5)Q7Ha^>wx&2BTTi;v>P;d})p%C8=qaE}74RhmOscf|t7WB%MpHIYB4o{ZS^)eR)8 zV}aExNI|aKr)Wse$VabW`-HRd3b#)?E3at#q_gstZP&y-E4yg>+_Un2vb~I=Lt4j8 zuN>CE)#`D9%3&+Gh)pju_pv~kxlNRENGhzIVkSn)Gt56eg{P6$jf94?;EIF}&&o=v z2sFM5lp+N6Gl_v7hI0blkex#|gHnl=_);R=EfQ*Q7On#R(c)u~{5QeiW(W*UXoLDI zDX2d$7{bdGhL%6pwVII{0ffiG07Shf#)c}0C30?x=AVq_?{WP{H53v>__t4r2VNSV z$a#Xe+v?S=HIYZnu#DHBxzoSfK;~)=53oJ22X=vu zwoFLBlBzHDCdg##v~#@`*)r)|Z!OxYaXa^mbGv>KAB$VdcyY}17e+LYt{xM3VZ;h9 zkoUb2_5Y|#0#s~^BB6OBI{l9g+^=>6dxj7)ws1?Q5qjHw2?e24wCT;*lSZ8Jgo3Q+ zD$E`q>B)KZ7mNe;HOUX&y zsaLQ+G1upYd6uaxk8$cT^IIdVp))dW1tCte- zBfmWb2AO|eBozE@>BR*^z`T&l%!h0|$;e}bzrwXf^MY48?s)$9&5R7-)TF4_r1Acu zUMuJlL4ZxzR!Nl+aQy-f+t@_W(TwrapXt@W^VPR{IakCI!TMNDq(`nWgWV&?PXC>K zPUv7$QFsk41VY32x*iUw$4~!>eXb9z&=Y*{B!c@1zaGpJV#k8tz9_b1TWxwj%KO=8 zy-&DFy*zZ}*y)SXH9uo&jwRgJ7^=d|!LC<5*8iQ!98xuYdZjH#ov#~*MsfD)VT_^H zWAd=J5K9mklxer@xc4TzpPP?a{+k3DA+!iA7nL7Bec8Q-pTNu=ukaJAyIo+9PW?i*I0}PCxxJj^>BI? zGsA6wOv2`^LoXe|AIiZw}nv){+43Qt;hBOsn0nK!2(W;|1eIu5cPK zY*N~30D3vb1%^}cYZXF5)8+=_?qD>u%c=aK^6?XhD-0gC`w48FlNAnRtxCDU_zN6k z`I=94g`;n z^4wuTL;lVVhFeFE1R(M!PE4nIVuP)AeTZ>?HnQ3Iby4rgFScllDl9J~h&bEuA7Qwr9pd zFVDKr4}Raq<>aoU8T8rs0*(iaoowQET1#loJ@MiNBUuBIQ^ttaSG>UuwKz*AwIANk zJgE%jOb~v4E@YRRsFxn8)cVhCY(LZ34BOZSGiIHSRm!uC ztw?g2q4xgcEi|QndsBF$iDv^%lONY5IV~j1)$ps;@ImdRY4{2nz9O0ZX$@ch4I2I; z42F~IPb2Ed8b@Yi|;w@bewgc?`e*_ zzbE0y+rW{RNWoPO%c#kQA>hbc-}RA~IPgRbPyYM;=FA(GMua)^eu23NQRjT;N-j24 ztOgXgoS2{F?0X3s0b2YD2!Ot(G$JV@*wQx7}ad_p~RVqd>S1x&RE{Qq(mVcGf^E#C-TyKk$y8@mt2B@4@3`!GeJf80Q= zo4*B>JI_RY!aM0oswDi@3X%dpJTT&IB3yEqZEweW1%WCg3gMnj4{yuhTpaVinH}~% z6ZT@6$?o4rA=o!>iM;jhuXCq+4SbXx>){ooV-tl(fn7M8Yk5L^MQODB9|oT0n@jc0 zL{8mpexz6Kr+jg&KfG7+2ag+1k7^)3J@l#_bJ}CR6r28719h*4MykSdlIb#hVT9dm z$Ej!dbzi|PPU8#|(EQspwtQ;e+|$wfsz~^a zd5O}Cvkj8~N~o{l48%RRZ*GjA!B7@`^K>;qS0nWxn%uk8C0e=WC>nmh(Fhb@`*fx# z)T4$%)iOamZz$;O(168hUeV`VB}#^E4jVG{!4D ze=ysHCNu7>Og6M-y5>zxo$kYiR3%-eKJ32OeRfuBipEiQGqAzWLtrbR*WLWuaCw_s zRkO0DFS@jWqEM-JWyJj-uF$K2*Wrj>lA(j5kEFTLKlL^q!RvsH-4QAynsASpxOMe^h5j5)V_@*Xmc zfNn#C!3eZ7L^GQ3JVV6MHAo|Q`(u_jY8Srwa=`B3ZH!%g%P-8GiF7$|248n7!pKi+ zbyVMNZ*}e2tzI-_HDxOJQ^S`HS;>`JTxHVAA!6+6zJXLd5Mx*6>Pc-6ma_3FYVD`= zK;LCO>r2tZ?*c1GJ9BuSL?qd^rQcU)2f*S#_NFRchayld@RT?vRobvVR^q}0*iW^*SwJ^rI^gj}?RVlSLW84Tl+*aduO4!J{^oUx#S`hs$4U1{!|w$*BL$Hhyq)`tuDuSRD;KuU50S))=1S8To9VH51Ot zE3KJ!R$gJvq_gsVS7Q))=TEs_Va?pLidNQ?sTt{=G#aqmIy1i}dPZTtux84T){gw( zzehM3Zmj`mDd>ehnRP*$5^UTLxO_v9!blWIaYboKO#?~86vkU^V>nUJEmY?$yan6t zSn=^Nx-#B#+HJ$$E2$x91OE2sA|ECW3V>L|S$5bl{Vp+8D2P@2FPIEj^2TOR1WeNM=PGvWx zU(;j567KSmMN=?_w@gb_2_vf6o&JLcYDXHd6Y&R(Vf(c+9*y%BZP5U_UDk|jY|Gqp zJ*wPN*8XC2`kx!PTkTGN@^khg@Z{%KkON1&$?$_wj`_fFilJ9JGlu6?n4wKEh6_TU zI19gX)(|#63O6BEEG0pZx6z1J*cWuY2>T+uww8s+Fs!NL)egtPt~m`V#5+0`&gHd{ z<}$@;c=lS(Z7EKJsjMqb!(7SYQ=A4Big>f_f&FeCobyDMJA(m%@Sb&g z77qf!IforX6{?{1Z`x)E|BlDJ@G$SJq`$Qu2o@>%*q&%m233JYJ#w!-c1gb;q zS1|>1q_7|9-!BY3p9`gG1qEJ0AWux_<~=@GC3iSW{>-=6a;+J7+^13xLhhZd}cl)lEa(n`Y?#6_DfX^_saSZ?v+VatMnFR{Ct76=ZVcbNt#fX6y}Gr$+=}rp z2aYHsp}Jzl!@m-1t@cV+pNeuB4eX7FYIRp~fUm~cS?RALqSnvpOMKTIE{st7Ch<=% zs)@+Y0(F*~Z2;Di*(vc>3ml{V1gT4-enBNMZzo5aSoNVVnFwC!Y??I~*csdL5vO-) ziTLM5{W-(td{GXF;nHtI5%r&7o~V^$iieMkwXXMyor55L4^k@30R?-9={1F#3i&C=?h5`~#^kSh@@m}5EXp#DyN=6QoxslEMttMG1#8cp=OL!oQEU5FQ)SpIsfxn%)vn+I$EeB0 zv*9&PtOb7{2q>rmU92>mOaCd`@~6$%`9^lfVQh7C*vSs|Hzu`rqG1zLCo0Et#fhyB zsF(KQR9B1aAVi)Oe#H_6nS_UMDhH~VSH;}O-w1vvZ#aKkVrVa8QVs-;&dEmtlWZOZ z3*iQoLw7g>cQiXiS+Dbx!_S>N6r3#dTC+20UCCaF0B|_Z8}(SXGNa~KIRp1O1Gk`P zTJKsGP7IA+=U1S>`Rv@yNEVW@z(>x&>Ud&!Z}sCJGqG&#J=MuXpZH>Bd?V8tctm-n zCa-sMfs=h3d8hBa&FLL6d3}`k_n8IGz*=P%I+={j7H;?PUeTbWe*2r>dC6?ul#<-$ z6uHSfB@vqxB?s%Ski@z32!E$hZoRWsKj?Q)dX2w5oX#f6YIoB5SouZ(m~KHCn~^#UtD0xJPG zstj0PmB^udeI~%@73?1?-;jxOPQE>Vm9wxr>zpHb>S%5!k#8nZUmIRAJn3eAA`2kJZ94WGohJS4ER6TsAcNrqvyn|H*1Iu#;z!>Rx#vFgT+;l z#(UOj<7WHOo@(!A!gF(BXY@C?l00w->b?^-!{ED_MO-lCD02;uVDB^Eb^+4rsJBK- z1?2Rh@B=FpT{pA*q1QgrfzcGYxw8XSEFff}N6@ddx?P-&D);FkN#!DG0$b_fhrOLgIf|`!K2c3_e1QVXlK$UP2auxd09V1TbS77EWFUpVrrg*X8xpgT1w6( zwMdi&N9JKQOw`rnYM9zE>Fkv#lh}Fv26LMr-IJ5CP|K_@0Pqi^iNYH+zq`Yvat78h z%bDF5^A})(*F^*Ml%(PlC8eb#iMvvnu0WXMgaqv=|egac%st{b_;iKG|$YV5{&ovo1X8F~W z96zxR&nMq!0@IHkgb7?@>F7MSX~$flM# z0b~z=RbfMseDmrUVLauk1Z68DHls6W`aozDT;Kw__ zKd`^s1_qCHE4{Q}QB`TC8I0>wgK>RgRJZV|Zgk*Suv_WhsK95;;9Q>`oa-|aqq zY*8fAKQT-HM05^BeA$*Fb|@*e-RG`lzrP{;>n!0fjDIHKue?!I2q`ZtQzf~wbGeRUod|!?M40)B@Hga?i9UEGM27~l!28*4uJ zPQy|MqiE=xnMC%m!5n8DjtkDy)aZsj=Ui=$!JFwv z9Vm`(>?moFDhnr=)c0mx#X>dT@`E=-1AAPLF1Io-H>0faSs-t~hW{x{%>+O@yVef3 z=Q_Oz4Q&&1q)l!b9*2-croZ7F6Cz?JL{`M;WT?(ACWNw66GF(YMH6Cvzc>uBN^?Bn zqke$SFFMD7{GBC|7Kn?Z6ANak9S<=&)HsW_Yi5*x$Sl~%6;^+nV#H}e zpKQnp(4<*pczTHEZ-_B3jQ5!;^3NA^gZ(kSn#tDCJ2({ZHWB}&JNk1aZ@AtG$T|Y9 z?3ndA5pc0YzrC@1h@0V`Lyk7a8(xRE6`qzHWgbrv{8AuwEl5q4rIC`~3Z-Gm6rZcI zMono2QlK)<6pKOAOCbc78z~Ugnd4LXoMcJB)*3Uzbd1_OXA%Ojo?^zk{xdzrr(nJu z62ai2I5q_$=ZSd!@i(g9l*XkSrW5L-Xr+HuRTHMqd1z~MQHNkRfvvEd#L2cZ;XGKhnHDdAaJX}wg--MSuq_y!Pv6N}=yzvnPUMFx|dLBzb3f5!)KZrE6Lty@ti8C2|i-KWW)T@P33k4h&@jEbyx$XN^}Io9(f}(hC+wy z4F$D~8#Q&_X!~)?9Ra&Sc3QVx4}%tv+^#DD!c<(`sbU(S08Tui;%KVkb6~5#SPLY( zeU&kv&fGkeXAJDDO3omms-1n<4o?{?Bg=)u5hum2(#R%^_<&7sIXTl*df83lnu+_C zMg>8O3M5(Zj9pD~CS}gaHM`<=IH0c{7Fm9@aVdIQ_d1tHGBQ&9(4{O;8ZBO`w+kY2 zF1_c(wKV3PgtA% z(-G^!9buoGpAAa=ezvg7{nI@2GwHh@OUhhiG zS<;g(M?7q3s;b|=JRHDu{&96>2MYy6auFMJ)Grxk5Ton=ND^At_a(G-9{E?s$n^;P z#lHTy#uidOVP^2jee_4wfY;FFp9Ul_woqq~=oqZ+8?}9;_1JX%1?09a$d+<&)QR8~ z-DYQUtQswbV(L+5SC15qtEL2#ZS$R56NMSwFh4M#@YA2rcN5$lMk77>H212kH}3dqj0L6FsILQ&emM zyafXzue8TB6QdTzl;4)5Om{Tc8ceK?G>U2A^!ycwG)*G% z=bO1fe`0}8Y)9H!Ps5qz#qNk~`i4#VhqA~tUwkCi9kh`NRM zhY_+}Gy#fJ_eN=ne3@cm);=P`q{~KFThsX~Z4lm<|LL!EZ)KS9qYczKCh@z0wWOWp z*6(~>oot)wII=WT{CTyCI{{ zdNz#IzOg8CntAq<%t<)6Bop$5ra1 z8lpZ9B<=zYy*S=)hS$%&LiZWB)w-jczrj`^dez=w+Y zx6cI0)HzF*sEz(pLPwCro?(lVOwen%`SNd_5XWU!to-9lDvOdE_s2|%`D3C^#TZ^S zbfGTLT@!i*poWm7pCUVA-d1@Ia|5vD3K~F`LNKZ2Ek|PB#Cj(9ax&p;sSR-21fLW> zAhNJNsrZB@F?$`@uy)7^!|o^2Fh}DD;{La$N!uJc@eRP8sDb%UjOu9_3Z$ts))mEy~l`JK~R>8u9O#7V*D2BjW$_O#hBjf9zo1 z7&NLTl4qQ1jOLXi=9Oi6O(uOZ?=L2OA+Lp0Ri83xW!`F&zbH?f)~G)#cZ~PD>sD~h zc9%EW`^j}HxqkH4{-YKzy6zb+{=aU@cHJM+>xt zR(D>Yci$@{)D|>09{8n&KvmTLt++(!q+D$pP_cQO|C6iLCL&vz#rUTNp1c0{>PeW+ zA4UD|RdE?Z*1~=i^~+c3?j%Q`Kh0E04~FkkW@6{Fr9NerN}^wdK!UR|xEtRVL6E;c zMo`cEH)4VP!UF+{7C^;F9Al(^EYLc%f`_131z*j>Y0hNUrgY0EHbJ^f(*m^na@>0_ z=DjrDUv{H`XvI#HC~p*yoh3CIhVqZ#+daYLMd$KH0hPILT0_9l8`V)r06Sp#Aflg|Y;YE3GhMKXDuX|c#!U;B zL%GR?zrJ0|P-~h^A8y2^XuzDtqyEHNH}Fx^Ku_SQi-w*PXq<&dguPN!g-ADJ3o{hb zLnNL(XD$by8EVnLpU=(axH*5RIcl~c&p|2Vd4DpF;%R(Z<*g z+`~L8%-R8;wxLc-(ioffHoST!LN$^Kn4Ow0G)I#K-iyu<2Cwe7%kBin`#Jw)@oHRn zbvxsPb5P+`1nD~rUX3R^A=T|5)jZJXYnrsX#``&az^lEL0bX6-o>zDwsC5&l_4N{l zAcb19Qo`0RgIeL+mzQc(ic1sNGpytDxR%yvHdzeoe1jzBl7GWk=T~;cjSVa^D=O^g{K3nSy_a|? z#~KIl3htk)Sff}joxMJ7Wk9(~>r(4g>oSUW&ivDj2Lat$V46Nwbzn*^dQQ3!ODzvd z8+cczI#dwEoYXeI_(jfXr#{1}u97!X$26X4bZ%C$PN%vjReJ5!lwQ`Uvp<)r=4P1+0Zz0u|DS|zh3lZ#@CaoMXm^4a$ zp1FT=gpj4q0t1zwSfi7a-7)jn?xb(pPIY%al9-~}G1UU?nDwNccg$<={tuAtDN}As zy&I~1jSeFz!hHhGvfW#jInp$>GINre3gI3l)jzz`WzIFvev&!Oq>D0_nzS;r%%saQ zXPWfM%*CWB!aX?xRhm!jq1vGysuAkpFw)LF9D5ghg*!S}*RA4}4y$N}Sw$o5Dr(}{ znX5>7Dc(p6m#${|@6Tghly+Jd8LZJO=qjs7m#m9Sk~~Eyo_m#vF{*(}t-7`I%)3T( zZCRbkJ1BI{#dBVmPJHiuu^}E93d5lRYA)8gF1;K`)Cs^>Uz|*_0Sd_~1S026bjVrPP98Ky}QQ zcRQM=0dYO{w~o)q7wEgnA8GQ>sEhKVJLu+F^-MWO{>-lP3(8KEPhy9{y6g5U85SEL zwpPm*22>AoL&=i2aomT}Kn~Qk;T+zIuyw<|&g5Dy zA{!C5POj#va3jLj$#o`gFt#@cTPGuBsp%kWos2d3hqG=(Y-9A9vRcvtSKMZ%zDI$Q zw+~;Wj-$Q=J}SW^A1{z-O!Nxw;z*|_uU%5e$zf*-9!}+XbS&mUqF_kW4uK}AY_8Uv z#h15*z-wd~2)xq;1kgsvYDhzX{-s2~@lZp_+sK@ZtXXnq6pxG~*~psvx5=9Ox5=9O z)BO!2C2LmqU+f@jR`;)>2c3IvMa}B@J66=(gZ?4m>J{WjMbL}cXr(kmhA}rZ!=!U! zrbvoFy{8F@hn-?(3W?FX=-Yjn9#V3e2LR%J9DdA)nQ?zM6V@E}oQmHIFy$>s-nL28 z)7y*RR|CFkJAqb{n^G%Cgu5FJxu?lOLr#ZsR5vj>O)JM?g+AUNzI(hke3t?lAX;le zyJ%bNq;8HNuUNgT{jD}k>P{2BGYi77SutUCED>g*9jZP{fUglN14P=VJrr_esow$ zuom+tPH-y36lJV}PQ@l&dB+58R7Y%Q0^2w-ph6;1;@6|7`{3Xp5uA{YM`DFK@9$(a zUlZJ|-@@HN$x5@>aM$UgC_~zFMOnl2TQm&KhP!I{+h-JyhUu3~CU~|6an+baaH1BF zi+oxBm>%h)t=mK4;r%K%Ulm>xc?3>j)&$kdBe<)V|_W5u& z0E-)V9keR6$%t|#JQ`2Tn8+udUCOod$isA{1IkTd<`m*i`4!^ar^ABZ?vPSh`y^F}5h?^-HP6+IEa=U!~r2rsl-R^Eok9 z)6g<~C^0gSx}B*HV)Vq3iig@1+{CnQJZz*RTKR5bW)E(UaW+uDK&Q83Fv-3&S8oQ^ z!EK47x=2=lkT?aLxr5&|1!mWu{j>pdr&oZBY%cYb|M^KwfZ)ox98s=hC(zM-nGA(hix zIq)YEr58vm@qvCcP6~4>C~yuQ;i{-vRUYTnTBGR0@S`EEM1@W#O^tP~OFo=iEtf0zS_&i_~quV45 zk#C2{?h|Nkj0KIp$^@!WjVLLaDX(1-FFDik zPz~0I1=gXpcTEt7xv2^N1_3|Z(0e7@!I2k4E=3Z+0r5HU&3>`QrKP6mPP?i2$-$ocn87W!XX0w06*rqM$T6 zoWdScFMuGBp5}F1M73;*hjx|hW(PtwHfM8c7jhOYVV0ZM>opFMdTGNI1?zb~hxes3 zrl)Sb6r+2)^|^Y?oiYpS^ORXwKhP<>;9wS|d8SNM&YZ$aURI8C_YV91VEg_s`#!|L z`b^$hMVWYLFU7Vv3ui+L9-g*TTVH)!E0)+=L`_Uqj69p0aL)>rRJebtm7-1%#x z+P_xvLzLQ3VXa2nt=0`~o@HTJn}(sZmw-VYZ*+tqB};a5YSI2B4NKOoNNtO`KgKRV ziaO0KHi9|V(kv;|UB`!|3d%^S zA(#B1rxfkh)fp$nyTU!!$5E}?g*Izdw5Ey{AX}eVmmx>lRm{1|noRLK(Kf#^&Ltzh zf0R==l-Y}4XyfylQde#V*pWTjDU9r3#N|)j$=OMP%U)Fh<6E5tpREMH?AkL~sC--n2I=OXjXw$4TxH8mOfs2??Re)<6ZD<46 zj&M&j(KeOrTFLq5_Yhye9i0Ma+?ySoWFof&pO=@h{*38w)bnR@Esls+zQSBp>x5lC zm+J}^jq8<9Gui*P)FkE0Ns@OLioF3@vkG+4CP=RGm+G}>V$~Fq&fJXoad`$Yrf)_B zE*^Yher>7|1lGAd3+5*bs2xM9Qj~kmLY-&Sh?w`pDlX&R!djC&y4v2E&?DY=>$#&y z14(k@9bL7o)?cc+XxU1V&MkY}Rm)6IhHN&}2Mwz;4T}{|Fs<^+B)W-tizPt9wZx8? zS2mc-6t^cnOZ?-+^{5kIFFvt_iGvzRqT)FKWh z3l8y;pe7@OCEw~z-~6?L43>fIAJ4^ol0x~@4Vn|H{-Z>i?36Ton7ep6=p^b>Jsn)67U`p4@_6xn|h5*N$XrLNQIOl?h^Q+(!#*NwQB_Bl1 zwk1G_s!*te2RJu=jeY3B9=|>h)BuhGan0C5M$T{e0sH?&5fX$(@R7!cS>k`;@qTuy zS;z8lU&fN(TC$z8ATX7mwU2|edBMCX$7&s3pfqJ3#7q5yZ&Pe9)y>+aA|N^Y5|0(M zVb%xa9)6o9E`U#6J!`f)V*QgiG@81!31yJvkJ zE1o#9c>G6O@H;ieb1y=+^_wPhU3w9rPyd)S*YhsI;lRQMuJJy5QA6B+wBB617uCng z4-K5XmTgp@fr^9D;zQ-@N!vaK>i&MT_%RElDvJ#3tQkB|syE<4<~gLw4wmK62|Tc@ z>Qt@wRFVYZuHN2dvc#a>TTEsmgS+Ivk8?Bp#~aAu1P>gdiRWs$!E0i>=R;(k^~r6w z2`UCD+RuU71r&d=ppA(3yV2@{L6+Wv&qb&2Tony0H85*kUlRnIP@;U(1nfB$9Q7w< zN4&RWBD#no?^09J=!mPCX#q}t;R8h}OjiOh&^ zTf}+jSqxncfJRT==Jmg>THpJH9yhTh!}E`=zT+(L~QQ z(HnY$R-m`RHxs0F9lk1;Y=;?k_-Zt9pGD&mR*qp1Hm)!?jmwWnKG66){_IJz3GI-Y zNfzJOjVoHbSZmBqYYpl-0ldfMj4Dg!8Xgo&@ zsY3OSfUi68?2wr!m_x(B4V#yV3-YO%1IK%%nYp@(j>X~WFg+NV%o{6TQEbv?nul44 z;p(^8x8^5VVEUZvFV<%;h9VA3Lol9Si$8^{^YCnbL8d`p;hsBFE|mKto|O4%`9>Dp zohA8fq!vu+#q|8=J1pIX|I*Sepwcs!?k(hX zv2^!Cp7>_vLa-Je)55Jd!P?!_)!OAC^9^AD?^xVBD4rS~<195wTuGQ}ELbgFPz{U= zyL6w>2+WxhpZ-UU2+Q_kmaTY@EGkx%mgng%mTimjyI8i+B}j{5^wy+-Hq>mEvBUya z?#Vf4(zaL@t5gcDUC^SBQMkqSoFA8N6*Y+3V zi)U;?3%IHcO;P@qjPdzJw@_xrEm#uQ-0DT1$|(86ZHc0cZsEi~w}!UQ84|}}?d0A# z-rM}|+D`5pU!3(Q91`5~um`>w#9_gO(foNAMsfdpVWt;c+gjzBj)v9~#sP(Z)Ov(~ z*S<^qYbep~HD!~)L9EbLxYs-0V>dSb8`JI^+2#a*o&6@l`)OLlp31KA9E;d>IoaxapN-A#%Y(0{-gZP}6w)6loe}yME4Y^mz6d{eC0? z=x%Mp;3_2v;N*%V06sdBfKf2gw_8cTW=R4@!4BEhDf6gg7>oKK0LQWJwy2l0-2_Lk zo!8XZU73qS@TEM{Dc!K~=#+%C$`k3u<#H}FUP7{6d(b7ijg^C& z`f7|l!vGaaJibC-uv##=D*Y(B0p}EP-|~4x+&@Q7&th$yX41`#KWC#A?{C6Kci^Iy z8|=s%m$DagertT=pztZ@%dbQDfoyfCL}~*=(C`LvMG0R}+@m-OYvl(FGif8Y9L}C0 zvD8C6F*!5NN~-*!Dab){e?0$qto$I%B!h%;&M-(UkzlK;5g1x6E z2P!E|4uj8E6l~OQVWaV;Ftt%^!lKf~!C0L4SkiJw2I(b_*!0Q;Hob8UDLlKZMt+JK zv-zFTn8)uty;j8O5z}>P&v0N#!A*z!Nq!)H#~9{$9pS3YUe8<&y(2YZO%FY6FLbc|m* z#4jCb>w%m~#6wN9>;N~>&+M#Y{1yd|X@HygQriGGo8Zn(CHTc=ub)n6Am*7)3=rj0 zs3*mdmds5ewx|!TnplRH6GIgoMz2#qiDnq(+58k{2l<_vjj-*S((EiXKC730i+X8H zi)Qo^kGW`GuUvX`!9dfaJ1@(#>9x5gm6YzzTe7&Ok49kU+;xQ1&X7wvPO6SxMVFdc zGUHNnH}BG1uxnmCblh1Oq5qH-Fj*6l9FdF8PrOIQ6d0zIb4HNiisC0VdX@4Vp0 zCj{CQoBw0uli+koU1JU}f#;n?=Rqf1Zty9Hv$*#m2?yPH=$X6xf&a6MiFE?%dvN)+4^y5Vx}Ou zl2GgO;uPidr|jpz4_D6li&oLsc1S#BC0uvC-FzF8h$f9<_KapN`Q9^{b0sTsn{tiN zie=LO1JyRv)HYnT>B*fJ46xOmMtECmgbqwX5q!& zg-yfgWzin0Ers_av6g9Qu)k1ZxoYev+oC&#AF%2-fw!2gzXGm}vTOZM0KcCBzP?@5 zgxebf{i1%&f>F?XIx7wF%YynmjJg!WVYL|vc=o&|1L}FeSPQaQD2WiN)X?A5Fvvog zmAJ0i)NsTA**S=Z5tbr=C~7jWEdr=`&?#y*=*)tZMgZ2VHn3i{Ky?7t+B8^qa7RM~ z&n9``={*l1QVq}rj71iVw1jE~_1DPU5=vEZM57`XCwHBu#S^o;xuFwgi5*Jeu{$qF@U=FKa2Sz%$(F_*yp2ZD;b*~~ zjdw^B`r-8=YZZkhe(h;^hF262w zVwlZyj6JOY-hVN8DWEl(^|xrk{}x*8fqqx<C%SnK9+XiLO# z;TrBO@N$;B-u{x;n1G9!Y}yHz%(9cOtZnlBD7&l4S3z!9lka|0`v02Ax8Q$t@ya{`?&XOMsZhjl~i~3J! zE}|rQq3A8-?uwg(m>%+rlhyk$%}{+qPK}54LwHy(VexKrD)*3&g1kJeH@BIi;A4B| zoIbGQ{uIgYw;J|UxOIKl`PJ4~=%W&pq8_M@nr6@dD+FWX{T>UiIz>XU_AdD8VfHyh zVPM7?$h9B5WFr}+BR&}AJlOAhEZ>j%EhV>sr7GE2T^`~q3A2nG3!dgWgj$3fcV;!^ zxuM-iu{M-!I6R#9^tRqh)nMK{t#0u`hZ@@6)~nP|vVph2)DKGLW~6K8llt~feVZok zm*9<^+&N5{2XO^vq-&DL+g8z5+fE*vrlq87&Vn~%p<}Zy_J{vAf4FRD@b~qr?PQ?` z=y&(VWcwqt%3CnhoCL2-yo-v97!rc3X}Ca_uK)j-9n3r6e*;VUV~U{?jO1?(w^kQ8 z(XH`fcDq_woA{>hs7)R7I1}$&O`RDbf>z&^NtAmAM4HMvJ$bNW5`(!Sx;;T~@;QnJ}I_8X8EH zUf-=1UnZrCPa&BOZCP*-9-vwcdlRiGj)B=kF}%2itui|jGFFt%l7HYiLKk%@?%_Gn zbkmB+;oPcQX|F}}30j?u7*1o+e(DT2fQGN)&sZKLf)uu2)M0~KOx5pwsZB>c1*lir z0fqMcI5CW^-<=fL;@(LPL1X=#;Zkcy2DL=00Z5%KcvK~P6Nwb9X!VPT0@VdWSZ{nf$fCuYCEJ@8m05E6hq+Pz zE0dfhyP@rvM~HKtVw6#QuR|-q@L=(ECWYF3R8;qK>On76%SqnS0ZDotXvM#S3+8N4dyZHV|cuwWzk*XwPy;8<$a;t+56b2Ks|`S$}lu3Ci8YJ1f8)DypZ z#P1ajt($ib*0igK5UjCaX*hqK>`E|B^JlS&Cuc+g_->tuE$Rrl$#pe~@v?}2KRzU~ zzA-9M*ryvy`z3aYKmPJdEmJFmjk`UAdWJmT~)2?-EM?nW}(Nu z(%~(dtD(tQNXpC|PBw~}3I=ETo95yW>dP-!Nr%MQl55W(=2JuSlJl=}rCTsI5&WW6 zL(_UQD(*+sMQCY((t^yDyT*G~#l0875Sjs;;viRUD!ZD{1GdxZm$f)bVK*lI}0ZY zNSWxWpf8(WhNv7DIa{$NF+PkwTt#!d{Abbt#K&#*UG7 z1M6@n4MQ2<%x%c?mK5^rw-sP*26+~31$p+9HX$CQg*+|9L7r_87xKI%(}FyWJb!cs z@_g`W18lPeg^b~pv+yf`?+oN=x_36TxT&zIVe=PTz%p3^yR#PUB$ zBhT|@33)al32L0IZQl|RhMah`OcURGoB7y3?0pnIxi9QrKPnOF-L0Z3?6~Wr#Z_I5 zD=5Is^#VVue+1`El|l^#`8&d`>%u0!f%-UWeLFO1n`R@?Tp4?BT)zBVP% zi1EPd@Gb0~l;q27Py5)O8VY(IaTdwuw8QrFlYc_f3?ZG7wKX7XOM;b}khQVZB4^`# zYQ~f8j{peq#F(HFph0n011Ko&U+{|vkzEmryAg`}%R%`AF_9``p2E`;^ch7nqa0fe zX+NhI6!%h&@!#bbkDII=CGR6fTbvf7<%)I=F6I#Y5TS?7X3I=Jbhx*u;#w7aPt0c$A-0hFhX<2Mv8uUGjconI7uAZ%_be^YB(fUNrt%HpqXidp|!%_r6O$ zdO1`Fe+l1UDAMhd@{Rg8+V59(n^&|@Z9p5R7Mm%u` zfbDc{vZL7H+;sa{qbL>Uwo%-vQS8qsPW_%8#hqppmv$b-rDhbr$H$nHL>W!@@~nI_ zigUo+3ZDko{OnP@Q)s>OD550u0=22?SoasM}UB+er%`Hgz`?q4peO1LgtU4OMqDdk=BB+f=^ z-2i)9PJc+^57UgmRJ_ZWw+|V{*I?K0k%5PMBfDV@T%wP~sN@bg0NU&u^sMN{Ov$`* zte}M(rwALuJL`GYtMFPQ59@z3nQtp&>b2NBL4btbE_o91wLX0hokT!-CoHqAbE5L3 zk|^rcYUaj%zGxZ`WZZ2n($k^&tZ%9+Qbqt{h&$y5yw)_~a{KLGg)g(G)a81i!dnGR1l1Nww|VFhs#O9^iD6 zhT%vUs%5;w7X`nsh;i@s0Cw`RAxIXvw+NDkq2D9Z0F(~sLE$Yx?#?>;G0DiRdI`$h zNkO?6?}Z29SnWz-1H1)poTnE!V|Y01;y9BbPc^Xb^cA zwM8e`WRgv$kl=@~igt89PN&XLe7tkM3HRs~l!&i z6T|2`=Y>~*5@<^k7dvnnk24%21sCfVkufeacNI|*Msl%9o^CP8vxD^vZ`US?*DGd( zaP7(ZJD7+l%QjLwG&Kg_qcHe>;1cfeHiXhyV(87Xhb-@;FEN_uX?=-%kfOcnR1P64 z?m=+1#`6!v%HKg>;?;QIZDiRggYVO6bLVyg?0D!CnL7{PgN+L^*)?jpMEUQf4Zh#c zP8)o`4};7ae7|qx^)mR5hmLeI_y(oU`eHmWNa!NlJ%ELgTx_!d+bq6?bl((yE%Qljc0Lvb5oaR<~20#e35^Yu=7JXvlbZum;~8#WZ6WKa`d^0-K3qJZ@rcsY!%zO%n{Jm*$dZ zCbcpD-g+5xQA!YxGRHZyqwnxBCdUQL3S-aV&&te1oHEA(sjl{7&~)ukO2T_yko>mW>fN9v62 zcO8@tCfPgE8eeq?Sux~GWkQi}bINxy(&PM`+VN@U+S{=G<_v5W#-aoL=$+x!?dK|v zkCpOHrt2HYwM@5o;>$F@*{S@EUV&HW!Q94j=Od`mZiX7&Eo$`h;8j5|?hoo7m!kh5 zeDNDa&7&#U#=U*)m5AtvqtTH~jEbDEs7t}i)p)oUvS!~>(tsH~yXO{J49GutH`LvTxadUyFqqqJ4S&;+dO+a zztTsMszBNv{8HYKN{P-b;zPT#<6-sBA(p8(P*OG=Wqel3InVMS7%xBH{r>^blFWrt$FC{IT3bK`c8rw&Z+v=kM^n(iGd;12Fu3fC=YL`xgdgIKCi_O2d1Fn3eWSgMx2B#f zc7~0B3u^ZbH*g5eWc|gwRC!#=y&Nf~gG>_nxN5cAo^m z=5_yB15zBl>2>Q6MO-QF(7c&q65|*dNX_JqHeD^q58xza39s_rwgNU6ZcSd zjV{jc^Ko={IW5GnoT`V9K!NrrtIu^Sqo^ac(e#9@|hS2ROeJMQBiG zEHRRyt#vAYL{?OO08Zm760qO`NT!YAsHW|USMU`zEC(HxP1qM_>fTA4V;A(?g-?!> zUD29N5YVl3`T^vnDSK>=ZP}MiG3AXt_L`Rjpq%};VvmhlQAd01|3xWer)&-F_SjeH zP1$2#W~*qk$DU0+vd6yP*7pwe&8W`44SVcr#-f8gwyOf|_Slpts)jtP>ST|ND;pNp zf88D%6H2UJt7i>L*{?syM-9M;93zA5JujvK<}BD9>A9P-B`?Fx)M>-1_@)T1ig!@% zUdqhJ=JDOIu^~#E_F;vcHh#tedjdz63f^-)f271=Uil=G{3&Yh=9=W+rkTW_Ns_GX zow9z^@i1+cZ9WG7h5|BxBrz65ZC<|Lc4Yr->;uC_C}o;MBem>Nzkq{R{Nj3y8*0`%QwfsBVD?*%p>w zvsXDw&X+z`S7zF4H0y*kjG6W;ZU-~%myDTqzifKG;VUxJUesUEke&8;eL;OqeE|jj z12AU0`a*l%Mn03W(zbQ?;GN_&>W=z%V5OZjLh%)}DC(!Jw0k-ga#bERVufGpi}+RV zth4tc<(_G!jexM+ltw!GaYr-lbyC_hX4*ge6f~9GOi&3|>(njSmk0BeZs#6q2({yBKm<)Z6;MVW+)2ZKqwU5B4nZ7WE$rc>mO( z<&BIeu|{+n+eFmc3(l%B=m9)sn7?wkTSG{7){s_Q%zLtbF4s8H?myV1FZ9n#-A^zn z0ZvI(E=rp0eNk8IP9OA_s#4ZnHc97ocYRMuv5hZ8*TZnkG!PcGN)nY(#{Qu_v;Glr z15D4Dzi`q7nQcd8w*AKm=6c>mP4HHuT+38DiK+HTbM0Q#fT?!gY}Ch1_0fkn2@L5^ zJX~$>+P;Jp?hm8IO9d|`IH0Ph5SOhvASWlS*&gXv|+6+o?D6;C!bH;VYF@8 zZpNW?vN>Bu+v3u-8ExlrbB58j`E;`PXWKwyg7k@TFR1v71$IclSLjYgH2)(^^Lj|d zqkr_iovIBBZUes7O*KJ$Zc*mpng%7IV+#)X(Okma=m2{eLamyLe!L*$V&jNP(*B#r&XRwnGJGk;JXrV1FU8>{_-oXGc%T~LG*q!bsiorE;8Ok{1XSmddSWiP z_x(Xbp%NS!(FJ%MU~rg1;@rc;m`)6 zS0E$v&Ady^HQ!8J49kh#eG?B4e-Xh}W5gJ+y<<6%jbF5Pjn`mX9``k)oj#wk;T%yueCJqn`f{sh=w(ciFw~_kj{2Y(EBR1Vg^>`eRJ{KVTN?P=k}ch zXMl1u`pOEuFIMO?`c4^3{sdjk)q8So%zLGMN2>hHk|BeDTM8gZc@f zJwmt@-_sHWrTgvTS6X5l`JrB6(icWpG0-z3s&t=PUs1|Qj^ldIn3yywUu*7{jaY5c zR4|%^IhUgYn_S5DVy*Mf=z5aD`|Dj_cB$HlPv@Rxq-N)8x7ME%v|2n5uW#U?8+uw3 z!r1KVTa8C0#kF|Q&JVlepMk{fQkC;~mTH$syv+?qYX8C$$02`0ZpF@a-0dv+IqbMp z{i}qzuruvlHkhQM=qdK_3S zG-V=_+@C}sS~sRRvLxtFmeJTo#+U830pBY<#`#YUsN;5wzidD~DXgqrV~Vo|jPVx@ zDB~WFtK<9^22^ngKaptn?{;?sb+AC=f&F9r!T}S)Uf*%Wg9e~&_KR3xQ!F1vPAu+s zM!XDLO=Q571rLlXp0Ol|+BUoNQEJMF=f8%_f*vtE6-1->JS3gVmy1Hkxo3nX#r?w2 z6c}o+@OM0xZ?f@e;O3*xv=1BB`dA_hg`IvMA;gb){Vt3Lj=SjRAJrH6whd>pVCtCS zq9tt4{Zixw^o#u@^-raKzBHFT;%#FIbMiHWg$Ta7^T`=BBQQ0T84nzZ<-4IM3Q!HP zg!>ZVTKc^V)!};mGNXa@=u!~^RiRMhM1y}41QGG?sWaF`3hZc;dI^bLjasYOkqfjV z{~i}DzQHG{L5=v&ik7rGy1I(UKm1pXCzq#00=M~37|brq{W<+7XylXU2Ox*7{{-C& z+^`@`J$^-%(7DvQj5MBu{Bq$n8@>Ua^Gb7PBM5f%s4$Vnq~>GewNxs?@Y_!j7qW3D zKWUc=^HH8^oOxVQh%;R(te_S4^n@~)b*Uibqc)ccL{3}#q6 z_*Hnu_*JO0eidf&%=lGMA^Ihi2<4^xD$G@`JSEJ08ovs^vwjs!eKp3B?*P4#FmVfc zaWSQhUxgbsy65(*aNv!x8IA8kV~UpiS5ncKze(!;qsE`TOc_<4hO^E3Hym!9w7}5DJZE6xdNHo2uFvDQbiLtC2iFdZC&8QxzyLr`WQJ;C$7(7-X)5Djo%>3o$lJH03(@$)Wz5pUiNzbeJEeck_ zD((?jE#7L%pF`R_0&{;z?B;hhD~!u6PKQ;lKT@Jq8TmUEBLE%ZLe6UPf#cPoggL^h zxZ+k8ZIM{@hgkS;b{>(W6$vaYxW7Rn3I60vJ3DJ2SH`x#XdtQp*!Gh-V_>$tYI8Mj zU~bAtwo7Aw`D!RC%C*M+xz^Y}mpAUbAOwU-FB@XhYx7Ntq!8QQ%ee+V$eXbVPFwp6 z%!3Vl2OBWY7@Tb&Iye_LH} zY}pYeD5rDREwy;6)F~W3<|v{-vEEb3$TOfdh6X1o>KB%>s3Bwv`qr#(_EZCMz6btS zyM8_%4`~wc`M(06{}-&U+pOOPzYo`T>+x1}L)FA?>TVjL%IM5VY^KPr>PE62lc}V_ zXQKp3Y2ETuk+++9tB>A7#s5yH|NlIIcywK5pvQCyEZS7fxHLE`9uJQpimGBKnr1-B0`_3NB~ps)k6I4b`0d#cSZuZ6is@YMJ1Wqs;I#I zr?w72o7X?l<{|+QFsJZsG=S4aSY;Q}uDR`>`gvCyfdGn|x&;EDzM8gz{S;-b1*)j5 zb+C$>HWvusQZ$xtyFdWLq=x)+dN)ws=3jc^H+0X%0VsU5TO0reS=Kg8H7bM&Rn2Zy z@Zo(AsI*6+h}VPy5x=U{QCiDYvK=v|3HJkdQs7a z*uf^CVxWSxOv|=ToE8B6tb@NcpyP#aKzG3a7}D%EgZ6B|%nF&^nnwo*8lVfUg7XZ} zEY$m41;hdX&Y4&M0HdPKz*_-aFJ=9=7Er-#2U)rRWYq{&BZg$o7XARB}N5J=k` zNP#7_0AQe5;h;%BsO3D(&0k#*)X*&w058t&22dsA3TzIJs=5^&B#{A$(ZjWOzN~l2 zj~QtZDHO>_JcId}twjvn2@bGHL@oEJ&foyk=|Cs(*pc)$S8r+wQ=0rS&X? zBm@T#&!*r21uuNWf>|m4EmoOqj#ZL4Q1Jl1vlG_O?cP<8^d9=!AfJx-^CRN{tmdxC z@4CeUSS1=Li|9Yb1Hc5G^ef6t@W*%n|2gphB=Ru{aS#tcq9})ae~brkOyv7xJb?c@ z@hCvNBjN#Ms2}kFgp2=G;sM5rX`eb(1xm=*JHGdEf-OMf=fV5T?K8X0H78WGDn!>^6*Nq$K^D9w_D6-aYHBJ`QL~1;)v1jos;a8kG z5zDQFUsG6sJpWxZ*%hajC;X|WW+fv8D}5&s!CC2J%ZAWS_~C?KM!;M=Jc(g*L&AU9 zeE8SD9-5GQKXETN$f!iHv8vey( zr5|Ns?)J~w^2E7^E1E`Sfx>>6p>P&$ue#U#0Qi<_7Y-85v#$K*MXUI&~rg)PR$zis2g4ZRYU2 z{`bVLV7P6G&{aS!^a3dqmf^Y@Xt{FRERkT4sae|oJpy7LGa?;S_I`QlmfR{&-MJF- zGC$$PQ@P@;U~ZUD=H?ArEK}b|q=~U1fzxbmoGV&786k6K0R9(nw7h}rs~M;V^Mu^| zdMq#KEnaBEoTw-qzLpm^qh@n zn2lR)HXc#ma^G;X;oOO7!Oh07L{Xy9w5-{9yKW87fAp|K`2;$^1j8GfA9s-s&?sxR zUb$^9vz3kA9}y4cvF4;)j{D!39$tKxlzm>S1%CZZ>|l@;`eyE$oQaUHE~fVad#@cA z1Ir2RJc>4=lASe(7Nj7^D|<#tTNDT=8BuL25Xb4<3*xivB0|rWASOz9!Todsbmpu4 zE%^K>`p8vV(Jknn`R2K#9Z$7M2M;O-q8@^&**{> zq6-zu_4D*xmvei2^&WzSJi&Hi$wI;l)^_3ocL5}LlgHEw8J=*+pvmfA_JkqB6NU^= zIAnNYWO(qvEzGQ@VYW>}LYUK)T0t}0EW|LJ*e#rRLw^nlF;D`QlY%!~&iDMK0^Tey z+cFFl;1)1}T8CJzL%7$836~2K<^-4^`Xh7*58elssT)^qDNu*h3x}o^hNf46rX&H- zQ1bVo8O59W3c?;=@f!b$TU?&6eoz5_se!*W>IM}LQLRH%>kw`Qy{Psz;|6JFydsgA z>+)QFo^F}cHP?IMmGh-AGew(RelANo0zeEwLaWsCh^Qxx6ogh;MPXYoZh?w?g5^l` zZ57{&zSEJue}x4=Y4OVb_u&}ArJ^_I?l6L5&Ihz3y@;9^qqr^94`!);DsH5p868S& zi+kS%SFz$-(RVx2-wf)$#4Ed>;3^o3zc=@pSnZ=DyTw-_e$mMQo+1y+S&liaDKw2B z$q5fFCnd@2{J=@6HQnKEHgHpHL+dCq;FL6t&Ii}CT7S=5-&-2!7blw00_4+Tr4a3p zIGl~~HOvpgt1DOEn(8J~u;_tJ-A?Q6^1W8n6L25nk}op9us0l-OWk#YmtSUb0iSyypqjLCe?Dkc@U0{8o2sKS70i4_DYb z4VSAuK_1I~0I8q8o-J$dVKRH@1Ez|Q>*(S85N$61BEmTRk|jOus=qQ{Tm=gMArH>S z#NuWC6CC`zWLcR-7~{6bs&NVXVKZ@kcR@_r@K#lb;2FD#N7p99skx10sKhX`IbPH> zV-Ox6YVJY)gIk+wi!aQIve!oULrJ6kHpW9w@LF{`UU_K&j{(alUbHbP?h{r@?)O_> zT?e~!c){R-nK6EzE4pa+F=x|AhabQ*Q_Vqn4>RITS>sYs8+&8c@F#od$Ai(IqS3P( zzVlWvdSb`@D@F_qA6Fh8ekFjwyOgM(zDJ}JLZXKcDNK4hBi>rQ761T*86?RLw*eNV zBX!W&ENEaf^)}Gh7cbfdqvFb6MIlR?`6U^EVh!kqzfyx8?PvE#2YAcy4cL}P zHblMsgdU8O)Mvu8(SDn$hKTCEead&Lt?kqROb$k+{nnQpYy@~D+5~avpJ6jwK&=>$wc<`x>}hy6FxO z&AO5H=3wUcv@`Rw#!|~y2#;NcrJ+Hs+^LXJ;JB6MdZqOfjDtu?^$aIj^f$!u$*)s4 z!V4bLXT75l$7?^zo*6YPxt-?@=RZrV3%s?3*smRam*9T>_rlj@2Z8IiVs2Y>aK<%$ z?r*$Yg`4JA_5QZ+Q^(xz>MN|G-*&;pNc)J;+=UA{KbV?vsobfhe)cz_e(n|V&q@W-o` zOoyJQvHmXc`+$HXM#iJDs$F;D{x62{Fcx|@79o3J%BHFg)7~Xh;KajA9tNq53Y~XW zW=0CRVm+Ldcca-aO=Bs1K>t`ljhMBtJ{x&VnDAKSAsZNr7EdsvP7tmip1Wd+%#CI} z*=;39sct>Dai&rP$7w_J;6X4x#8zqcXF-HU9bBf3_#1-U{)#8lSl{3M2!`alTlHrf zx4yStUo`XQkp8^4i$$vZztQk}Tln+b^ZLE7fJfvDPKM|1=IRH}B`bHw*B_FR(zJVT z(|~og>}Pfryfk%x@DkAn_4KaJ_wI1-m4>IjSsLE>{z96WwU0mVD8@$H#_;@e!3G9= z9GZ&Z_&Xrf2cjb77P{!Cu`aX%TtM;!Sa}hNzrx)^@&nxyu#k zzKXxN6+>;-zvJQz#Y1AA$ZM4RthDk?93dpF=}M; zlN-jgk=y<`^F|Ibu_nCT3`x9K z{;I9cGCz)8~O6|ewf8{S6DL;#@07n5l5m`?XZ4%dfH6GdoaaJ#2>D0+ss_rDsNZppLR8_ZJCTRYvLF{eJ^C08Z9N%Iokl?$23c739l;y+kQ0Gxmg!p>4O z%+Kz33z6ve1%57u(vY|Qg%FW~a1w#i*a8|b|p89bgw;ZKu z$M&BOCiwRbO+(`duO-9-&@QEtw=ofMy$T{7$0G#0Bj)_;eVvVa)H6rqMC9Q3RN0d3 zWTb^)YloAmn(MP+(~1K3ppx)}cN0a#J{rH9AoP>zc1gc?fyETA!V4M{U;^mz1NPcW z|NVfkWm&%`R3?VzLNJKrKKuYiNMKobod3I_&Ga<9CpF>=r2{{kBU>n>cp`0qOtu$zGsyuxXJ;^ys5hqpkeBNPKe@_m?kZSe z&e-k;Tw&|ph@%tM#IIQ9lSjY}g0Fl{FC8R1!6U?BZX*u!C1gG!EY3yTSFd&oyxx`x zOvGL;yF*K8!R`c5S>!jhFZrkbTjJq#(-TZ_gzU7v+MU_CX(BOOHcY2*_EQ%q`( zHI?qwn25WP@JiFkRQAP4G#^ajM3%~LNQT$}OWVQHStAr;-%yGeMfg9oV|JU4`g0me zy^b-V>_ua|XbM#?F$K3&zsa)|8h9c?;QY|X8BQaF^Lc3tUTGnw=x2cqd(AoAY-f7X ziW!}|g816a@EF(S-lk~ViK6GKUvC?gd4&hZc;zf!SxtmWxXksj&{JZVikfH40rYd< zB8IJe41S~tA%JRvf2%={Bv2E=Yi>255@rbc5RQj7j0>-E@DscRxMbwr2_XmiC`lFY znTvYQhKg5s#Xna{YdjF%QJcgqlzxHrU6foMo}a^V3(!5_RHe0rO(?Y`lk;&>7RztoBpZM^w*l%c`BcE zuF*O}T7Notbd3J&gm?x0X%>ltm9Zk#;(lfEDg9};U&}iv(!XGL^Ox(x&i*v=qj!JQ zXnI4F=&=oluFM?>xm4eg@k5a zgtl$}K#|-1htw354hmxxF@e-KYt;D4{AT>;Za$nf^HdyvFZH4~lLVpchQs44%bK%~ z`ovrgH&s72CRKJaNt?&wFZjW%f@I~BxOgr-Ts!-E>N=geqTYHhalNAa-*C9?B!0E^ z9lij({YbPtfaR1Sgpfv1Tasub5oo z|A-7gV@Y*#TZ{%v{F19m{P^G!?*_HclfnF)QsUh>(SBBE^TE^-@BT7-`Nz{2o$%^s z@!s+tF6RcQto^BE;pj6Pn3OCUsDW{!p?EgYTNa)A0Pl`k^rhcWz_OnZolm4O@4LAr z-p`Gz_P#;*p0PtqHjW-JwPfMgKQ&&fWMTE^Y+*p$cifOoGjVTz2P>NC_in3DKQ`Ww zOHtr*sm7b;XR*5pN#ow4c3w<+59V-(Lfc-_n?HbpX9X1LtjEV?5!tiqdV$q(U$(_} zhP2X%M*GVKtI~Mt-V?Mp_KXp8>SN=O(OCto2W=!tcU%Z20XYhBuOm?Fg|_ed^V9(g zv!qy~?01HwwH*TjnOJzq%?je-Tfmacah`+9PP)S3Odg!txg_v_2Z4J?k`5r!;sQa$ z{Y81F(NzL@!v#VP?RBR_C!j?<^dWe#2znyC0T(!a->BW0ps>D0VkSGm)3L}_LODgl z&4oGjm=Ddyy;UgKs^@*sEfjY>6AS&px+~6 z;BU^XOwN5;dYoRCol)A-Emh_jaqX;5l2bk3?O(Xtfbz%(3B`M-?@I_54 z`|AM3&q3Y^xZ}!~l@gysG1-c>j(Ks(F1;&PSeS44Zq>6~OcbQpF*bHajrp|;?PLHd z)~?_xyrf;I1m+RdkUkNBdNsFUk?Oe5&wr@b`~GhmDdHXy2EUmrxRvd&SlgHzW7T5* zZ_4!^(zeL`c-9K@8!$WV-;qDMG zGT?^i|C;&GdY~#z4IIk~zBW*2#EW-pQH$vR1=VYgHIB#z&9qT?sDUN}gdlp6O~#Gl z5ApGvqRKryj9=>;_4dZLzs>G9M6l8RvnJl+9y(5Pze*|6=RL~o}BLlMs!OP{Pt@P3!5#dCE* zuXyQ*D!W(LRHy1xPr8{U6u8d|aJolDR)g>K1HP#PaGK8(e*2~^VDBt2G$%a@!IGer z#@k!OBo`;iEdTQT>T_95&+7?F7ecO#9kkSuipm|MsLImB^28F>Vfp)@N{ofVcar;+?Qbd^V1rhu8drO@2UeMJ|8i@Nvf_e(nvUz1;b*pwveo^L#2~8ruE| z0-rq_YZoK#4B)85{X-fR?ghmC*F>FB$%^}Zl5cF)%P zBfz^cy!bKQx7?AEe%HPhvUn-vF5EQh45+5imozS+c}onZ4&P;>WuIn z+Ug;Bx9SQJfQd3dc04*ikxr18>YsJr+f0H((mQ7IHd!h;Lg?vypN1!a zPo8ypsXyX3Q4cB+%*Q(rfLZ_(EH%w~Edzuq(Fm1qu%&ji+m^)XR|HmriB)$cSWz>C z5L-fC#oV8vo4T21ET_{utqXXQOit*UxZPk%$v|lzPr>=4K=^O!v zm# z23I?06~A&VF3P0FjGQfyufZuz6l4&w!F(F#JJ}gLl4E~f4Ps$uAnp7Sl-eBK*_jdsK;$pi=p56(7jeq zBJwVYfk?nM#?K#s{{ny;a9FwN4!&3#dbTt~^2`lnuSD^MLh?_d-VE~HK7!HX-s-Jz zz?PXQp86(R*OjZnwc;zr`*&Cm5UM#Dw7*t8;cTVOsLP~tupC6_FGk#}*EO)%CtDfB z9oDC@nb9O8@9DWlkm)aRq55(=8QNd!mwld)B3CxjTe?a=>Cit)E;hz1>vtH*SOP|% z$l`E@=ie@9dM=2l6Hu{Zij!^qj_{l=eX`YLYCS*u+hczAMLuJ`TfacLj(Rfsp>DBk z(x#sp5$LBNY9^%5%5ZMzr??mBx*NHat~-6lx6n_u^Cf};y^7MJnP*=Dw9-#;$(3XFm3uKm~@AUxCdIawETo}P?uksCQvU~NcZCH zneb-rOd`Gaet@hvI5;BsR|4N{Y$~ zbHjCe*u5lUM-)s@YzYrysX6s*lqT*<`jbW~4K9pV(!Zln0tM`h|1=(IN>rt_`An$1 zYG@7zOeAbCl{_S&vT5|d3J1%V17(sdib#+E;0!84nL1v^%F4~aoetP{3)ty>4HDMs zolaq`rmL5*c20eIz^}(;SwHD>1JUFIy=Z`$PAMHUQ%?oVa5DuEZJ?le+F$PQ;m)1* z{B9vh`bXA&BbS}+ujWVZ_8ZbG?&)eD+&`lIYxyc@e+riYM$`Uueg*BXvIloAwc_p- z6zP5UYyA4Sv;E2Z=-qx}dI0S+c}vk4tVmYfnGyXY{go#A;aCg|lac2W{^XJ5+(|~B zCZy^YVpSWAZ#b}EfaHm!Xdh>%KzE9*V^do;K&(J`$r!tDL0n^)r7@TFP|Wb+jV6Dy zAHCS`yY!?t`~7iv@iOkm$>|e><3%e8BdL=O$6r{E@&4ig#&3k0;-P&|2s?Abn_t8! za1?`pppK+KKCLGlveXg61wTNz-E~TgSoA?PnxEh$_X%upD*xud!dAK=lmEkV>08+s z83VsW41AnmA#b()SA zDL@tMJ(T9l3=14&&^BQ$<|T{!XnNwxw3ynOn-J_n0a5=Mujn zmBmyoF}2>d>UVgoPkYW7hFc)W{TY_}T&7BOAZbz^c9vadXW54t2_rZJgUz&df5}d^ zyoxl6s=o9*!2f*qOWObfnq&Lrc9*KEgv?F67CtzokA>Vib2 zv)?RaeI$zxhj09xc;>1mEvQ6jCoFdQmDZ0Kc4kp7&n!w7zg8p5P^*!pn5;65iDAPX z09P0y&w^Tg5v%G@m2rQqp+&?pFULZ^)i1!59-m7@q1s2=V=3eQU~eZ2<5CVQke#Jc zA{j|rdgkRfDUo=f3mjtHyE@>w{vPDE-(q!s^7pYQ<+pq znXEG*!U%$kvI;R3Yas$QR+yWsF;qRKQD%7VW`qkf&a@VW9~fO*T$>e+?qdP=+aamL zn+G;P)E;G-tWzJv=xLl?#(I-&tIoO9OeZxfi4Chs8)YQPR*&%7*++g=2@N9K(a_k*O>!5+AfM51DJ$IX{Le(a zfn?W2DXBAf(bnp1P}bn6H#Tg{A7RaA# z(NWJ!pE85s*vOW>M~}&x-k;J2H;E0-lzQ>1`C1$zm8Zpkl_d?rgDhEE5sGRy#_ND$+q@MR{)*Oy{g*!Ok z?_iJ|yj!ZDhZqG`M3-^^YgX#K^|8w6Zw@PcFWUJKxs{h$ZGO!ShrOCbhsRY$FU+Mq zEvfr}pZccLm0De;g|&WfUyM6eV=u7^1{t-&tLB8_gR2v$OD9iSN9=H+4sC#cH?n~X zb>hT^;6k15;*k&aScg#_%k^*f1phAUMLacdNiu@v#R#9H+Fv7LC2DR0O>5{yLf((7 z9C$kt;g!(g;(xZZu&-6OG0yP(S(+H1UitLO$HYf;Z)SGMC!-4x0B9>at{gvo(_K#d z9~jH?O(W~*xZg0L+P_#X?ZJ{uj|*yXN(8IHzf(-m@hif(Ia9;QnHsw6{OFRZU{oZ8 zySf>=%x0#HRCB;P&yJnYaWu!36=TK=y=tk z?!+0PE!qyC6py?Yj~o_xUUT9{pR`usXR(gkM?xtUv01=wlwX#@JwsCXv<8c94C#Z6{N<`?+AM$p2kGHk)Mlsb^W!Llgn5*x? zMOuBjsZ5<4X`Cub)PFZl~zIL2s)*=YB=(T)Tly+^BigIveO z?8%Ol?NVb%zdxS-kL=O^m_UjhB86F%a%AGt%t`N`=B%vwGNAhFM%lM!1%f%Ls{DIi zI_8*5Jv$7m?bdIA7$jGb@%n3hVZ~8Mg&G6Q?XE#Wy~FE4k2BLW`htOxUlAT40YrrqEbhlh`5=H;HYy zZlRuZm)d^aF@Mv!pY+J2nfnl+&q_o-7Fnx(Jp_Uu+>_zR$$5w-qLU*(aD0xu#2drk{p=nIh-Kd2og=qb#F6)U1+`YV_Hwi_M{?y2 zqrLnG0?k)@>-oIXi^*H?Io9?tN#2`8qH8s zuu62hweHDf;$l=bT-tKdYG)jEM2-Q`bmb&30OIz!JnrMfy(_I|nwFa!o#xa(z0#bqen4O0AwSF*vT;-ruy4pZhG!{_J zbD*-?no8@MmvM6gT^ zIPPh?SVWi7Ax26bOeJRh39QO1j8&DvpXPgs70#_@PGbP?bqftzNcFudo6~Jmx?BT} z!y+!L)iN~W#$@DIVh@v5Z)tmu`Juq&B@tt+K_{m#{IL}iZyI{nVp@9dccFcmNoSEG6R!CsgO7>qgWh%gn1 zgO@VMW1v!_q0*b~@S*L_)?F7GnMqYfPRL_Jrnkp{OwHYq$u_+&Yx0p33TNGsrFa|b zuKxSSS$CE5S$Asp82zia{Z2mi-(JSiyMMYD^iKrJ`gfZ8x1vY?M8g8Dgpso*BVDGIXu0}0 z{i~fv|3-)sJ7Om)*Lp6@YtMYyfqZ`+Nbc$o2uiI$YG4j0V4ELQtr-|*s-5pc6( zFbRH=bN0(0<1L-N5m)-?#vJmQucs~Lq^M5Eik=GBKCK?;ML&B7QWJz0FfvbJ$6)GX zwf7^nXElFcS28%4p853HFQGY5k;}O2WZV5T45*fYd+=NiP|a>2dRT^JF2l0SU+QGQ}%rK z7V#U_BhvULNe;}3sP(JzT+AZ70T5Qs12(Ne%87_yNUHc!BKdr>VYD}5H2=pWLXG4N zAX!YRI5^o~!``%Y)@gz@vlHY3O!{{fj$%(>m){A5uvWR-+6K-&w&9q!ftucO&w6dq z7@L?JXE{$1-w+<=eEgl0UK-6d`F&rQbUC;8b`U2$dnbSGqg!$2SWjs9 z=IXu4qQ_?Rk86|XU;8KHz1)qU2zRUBb3&o*pUc!rb@)u1K<&EhMG~l~227J4n~^s< z0AKJeei&~h$$L7HLAs1N7^jICg_kHXT2i@NdBl2c;ii5L<|k6nYUZ@RB>29Fif(l1I;;~^A> zYv<{WP%}dRg}U*9azSosB4{#VgF{-wW>*uqb>wBYcFM zMWl3pH;E8%{z*_%_z~P#4452R1sgOL0t^5%xcW}(?_r`B$ld4 zq=RSh=6pO8!Z8aYplZf?Wg9z0xOy+BBY9m}{~-{)NrSb8)G|P*nYMLw=hu`uWN(Kk z;wJt?H<7!AzvOP=@32gykiBuOqgZAgT^ILqmBO04nRQf?sg&B>GJ<(t0A>BD_=%PPd^GrT0hx{(T1>qe`?Etuz&UDz#{Wwv108=DO`%`F_96(VzDF+}c? z3Xn7u04nWmc+Eq$!Z6sjsWaVs+CajED%Eq-j?%`dP(iCG~lUXk;r(i90E~Lza z3kz68uHuxIlx;8wo1s&c>o*64!>@sa|c$UL-{1tiu3L2Y<-HW2+=y^hDPxL9OVPN3d9qvOKUU z)&|~XJoOP`c;_noqSpyaWsNS#L{e%4Q_U+^@+tH z(Ru&gYXjsgTaUCFo<`^fv%#b^eO3f%r#98Fm_DH#pfSCP3pyDCJ-X^8$+ECMYCZ4vRN^`abX z03A@H4sh*z@$j^l;_M`Dt(=#H!N5*;9&z(RiBNmoUuH{2;p_ZA$C^Lp&l;JCyoM~- z$X2QlRTRSc+&Z8mZF4g8dT;`ahqf`7lW8s)I*2Ho_fS&Kqs@|s)CozrRO_E4@DA|5 zITBMvtfvu?vjX?>7BwaPo3txZQ_}au1Q19s>1_p$(+DR08Z_%5+u{md)_w(Z+d;py zrJ>N;NwBHB&;HHjbD1jJ5Micw@`y#hR3G?vsw?O|Z5)p7LZ#Crcs<_*mdc1OcCus} z?Mp|vy|uPvgPjnutLpJ=0du5Q8=4lK}0)@it~LgOp5nUAYs&Txw5Y1+E5oAU zva@E6yBv&rpK3Sk>BGb6ujHtXFLUF$S5@x_ylO|BqMyH4N6%A7hpO@uGnLo8RzMAG ztU2o3`))WyS+p;em8rbuHRaXHJI}Ze`#zbM4cpa^ z4e$5i*0Z`5-q3D6JCsA)(?3=#&nZ~X+c~_aEBpT@51(UEJoiqb=<1H}e4i->g9tq| zV<(#4=b$QXzJ2D~pSh5O%Ti8LE6mx~NyGw_rlPrTE2~zj@FJ+lo;YUwwg14<2XTd- z79BBi5Yq>tV#5F5!sY-mfXVOKXAlqWKydZGgxnd#oz#xGJPyyL^%i2VI2kg4W_J)U zZUf*c&&36&iHnNd;o-7V-;5KqBt&+y4b4Pcn!6=>&bxG^`Vl1hX<@HhekBJtinfRA z_KGx_SC1`YrHNcJS*j(+y7nXmo$Q%ggq-$Q>eUVqVmG4+ayy@wtjY>BoeKwF|o!i21|jSx{WN> zNH-~TdhJrgYc8Xt9?=T4%^Gd{`_4fa1KBw;qi(&2)O#$Kc)5Sx8lgrc;swCZF`dEo zp>Qg3cqq*-nrm$pM!F!sGD9&<><29!JPK_fOdJk5G`4dS(Ljv^>0cbfE;UP@S`BMtn>Ix6(VbTNVJ{)eZauAb;&s0`4(!62`sst z!zm-!YkdyZT1o?E1d#GMBIO)7P8OLQU{rkMgjDt^MzR$rHAAmO@gT8KXA$nVjb@Xf zOk|i8W1_%s4^yPs5hJNh1h(Qu5#(1(A$dlP)qrxv_0LxW{q!?SKeP3LXkS396@oLM z)p{{kKaI2uR`o;mc0cv5>>agUUh__{31oUi8}LF4$aI-?;9cBkwH4)U$+4`AITMKvR1Nl~5SabUjskhS2g zH(BujAX*23Vh!X7xZQ-KSP^r_jt}1QVO;XgNQ(4BSjzaz^<}5csOWVsn^9{f{nGVP znV36%7Z0BjOX#@wuX366PfYsLMpC^XlJxHlnDv0CU;kPtAUo`*>W4&TcFu*(C*pM6 zQzSp5P>vu3h!V&CC=nvK_L)ilGE9pH7UF_x{PuSCXyXH6w(+=KmGD;tbpBmP=}wz~ zr6!c~7usgv&$G>+sLUgi-kZ35tWHK=hk%IGjZ5W^jEA1)jPRH!Jy5@vK3X0<;{s*K zgQP>pfzXqLGl80F{uMUvkWLdW)LSxDym9!G4SabW)N~>xjz-Tc5x>fwb+y`WL;xT7q*m>~2Q=r9d^GuyAJ%bi4x7$ZX$03e~lHU8niQ?ln zRd4NHYe4Z+EEPC)355f^W*Nq4nG=C}1?pP|SZVMDtB~+YI+&=;KPkMV3=|^5huKKM z-b1+MCUpHv!aBzC~)ow{hc}@2i{ZBZO;r3er12Sd>8*;;^$XI4f1~onQqe6 zh-pOVCUhdvU0>$^ZlWTWKgO#c!K1yxkBW`lMWSE+C_k$GH=Z8n`Ps*`K>L>FLm!uqdXo;CM}AdL$)!Q{z@c+;#)piT8`5$6-?VOBrEkBeyP znm+DcPUcU+W8(d87k*`WqrcM`bNr zBiKq9F`9dy2?rc6A~|$G6A&dBU61=;1|#Q5WFTq)ZyfXc!Kg_^CH~D@t0f?o4hm*u z!v%jeH_`*RT1tL^SG342m%BOk$3xF@&one!W1$_~0Z&BYc%Y#Ac(G(+>0AzdY!gXi z7#)xVt!H!+$S{(AzocI|QW8}WHcO5TvCxVtk=ZH)V$YanW!udk&(cdKy+bWg!OYG*#Z+V zSP&rrzzK}_fgPG)+D23TuvFPL*%f`|s(BWYs%p$p&*iqT0vx;?OXUDxOdc?{js9L{{b7!t-AQ zmedFvY}y58Lg0s3F)0RUM5nB#VB-)$WJ?#V)AWh~e@eP$HHyM9b+T&QU~ zb8!+50aOd6DbE%+SDwq=3dLO~HNzG7g%TbZQDXUazQ-WMXycXhkS*pr#U%XN{C{+s zYT;Y3GJHc_u-+Y&9g$?eG0eor%q;{F!iI|=gg++Wh@Fn&-U~8~en<-{Yu4Cc7d$#m z{LxWp;*a_&2$yK$dMR$J+1c_Fvc5! z^wMp|A=}y$Vo2wY6(5;~kHikV^)C7*ThcegY_$GWtNmI%G6Z89NyvP=Cr3z*>YJ{>z}x%*|RV2uJksA2CsV~ z2y}c#lxY554N2>DIRHTsYSslbB#aRXGRhS(iljdm^LO2x=x$DN#dKF(>xy|4MC3tzXI7=Sytq(<(660( zI}F&@FIB2TkvBTT7+vpW#PB^qgd05 zv`w7p?<&6ZekdRhi81{sN2z1Qm=4d~s$2t^fZIWncJAg#j7p&op~bd^$0Lqv>~}C0 z+F}8>70e4esw9VUbKa2W-#7YaMl_MDgm(!15fP?qG)^>a{HZmzM)uv8iSuD62vnS4 z0AVA}V7s4|Pw3|2+jLdf4<8|D$h3i1=#O2g&>2u41!+|;}Xc|?no}pA^0D@fa%Sf&h*AwaRF2> z)@!Nd3we#Vmr|^d>C&XpT^7ci31~20^sR2;uAkFqUP~{vX6=XBGsjA9vP3b-9MWz3 zjHW0P?pk327I*XJAfN;$u;JQ;ypOfqy?VJ4l=#cNVy#O%kkv zc{w!e0*J&T>}#47LUX961T(43&WlwwtGQ@V*#&t{VpkfDwv_gJx#XbSppZwWEIO&< zV$eMHNd`QB`R~0Roe|(p+o7#hZ0%1vDDp*+gQA^v>@r<>EcK? z#w(wOn#wv@foqmL$fw7c%7Xjl61~{1($#dj$E32XbT2UcujkSNNQcg5Jr3r}%&K?p zx@ zN5dV|Z=#u=kubIG=%}FMKbJ7}ldZ6*iTs+!FP6x3yJ;T0>B89(%;>{T!OSRr^cKvh z!E|h<5cy7huAp572x;^#*1k~re>shv_5f#y};naLIb$gx)CQNZ4-<3WJ)CfHr8 zCO}Xj{MgEY7h%hUQ1}*XxaN+;*!P>r+)p6=)$n0SZ##LahL4J4N}LRB#wLq{v<0ic zmLz=RZgj^1<&ji?W29P&Bh~vQgSW;rx=dRP!6IO_0hI8Prx+cJG5`#QXi<FQJ%u-2gjTb#V zqyO*&c<0rA&?j8Fm7OmdBD2KP1iG!dQ%g#g%gL&hvR9UyTi^gHOPtVq4m;zOI|5~i z#YxSvS=uh_g&Z_37%uN&;b_uZHoP68kn|P|&*5IuTRglY_$?>7IM3xbr}qjd4c*f- zf9wJg)^+wER3~%k&QO$UZ?wOxK+O<{Fgs0^Jp&QWuVz^x9^xzdO@z=q*^Mn%Ev${f zd>>xY7liYg+&I?1bN289p$>MgN?1>q(}k__`W2e!D*Hg72#}V;Vt#;?wZ;3gYKD;P zE1H`68o)iD>tE~Ch*pH|95@WyQr7DZ;Utew%XbIva@Qw7`)&2IPWL+W$S~$ zA`w}a;bAlt{c@iG8B3tZMH^;a9ItGtoqf~cteO$Tpw!URQ(738D#oRF!Noy`uy*7m zl<;r8*mWpz6OqfZYfG`nulpTgHo<4Ndl7}fb}vaFD)SUcsp7G%7Sw9Fi5YFN$K4X#W4B&}DW&mV(U{Yn= zZ4D7jfHsnq#eWApE)5NBKnU=YSm;At#tBRH`>1Cx!dnJ=R`*q#*}Bf{wsql1>>}rB z>%z`&bZCU<67O^aB7zK!4Ng%Z&o)8o)EmwR+Zzy1Bk5tyazcAZdm+fb#mT~)P@Q<2 z{TDLxb-ak5f=nNnrEP>RV^eXF@1-l$e~a^<3W4xaTXi%Ff=Vp3Ai;&SUd0>6*75tACW;w3UL)!J5sO0Zdwjmf>uHoM0tb(4DPWAgARiqrywt zfHG1b<$sp6Efph<)B)$vyd5?OyGb6~_rmNvhD+eW@pKBf;>*t?_a`p?jBIgMpTK&zmmwiII4zm%o`9&s%Xm zwqIqNVa17e-fR&XyE#_x3tzv4&hY)Uj3!AC6`zq{@#HUaV@TzG5yNLfM3P?g;&LWB z8G4lAL@%Bg^K&mI9DxM!Na1;3gCCztC_2xYC&yKe=wo1vEVco1Z?Sc}Yh)WpJC%2s zOc?U?!CJW#q*VFkbn!5ZkhfLC6!Bkt`>M7Cjk)hIszMIGYh zy%@1vhU%yR?a$8>k2>Ih{wR#X=+h zY{=GZfbc8;aRVInJ{H&VlVB1Ae5|t_jw93dXZJ0~Ah$1Li-!&q@@sbAiGX;q!<$gC zBH;CjM;!b+@irM+Y`~6(wnzQ!Z8&vpj{1ph*#xB9oE>huKZzYDK|d zy$Jbh(v+vd^FMDDIy&eUYZR+BvBSX$%unfi2&=YXr)Z5;o*9pLc$A!S zeO;mVh9aWPqp?LNoch4mvZ9MlILV4r`%oaD-Vq%%aEy2FpeeLSB(_15$9NTku2NG| zF7XnBre4C&>1wn_?G3wRV|37fsh2E_4mxuTfBtmL!o;A@=_cuMaa(5t3jFI)(UjD_ z+NU)1D)v7m{oZq7eoH@M)mSp68^q#D^WaLfzf|R##AUj5T ziH5_;%Gu9=i%6BW+wbb%BZ~{%IWFUz{ABq0kw%=Tm{_%7WRf7*;Wbl-gJb!_d#%Zix?~|EIg={< ztjRJtvFb6cNc5y54yO=Zishg3?K|L6Q&znLSNeP$?s9>VmsO;H zS;yHo)^+yf(5o-l!BwOe@p$;AhjUx*$XbV!NLE(>6cewczcJRtCYqntzeC}Mkhy~K z0G#mrui13|dqDA*irIOfbqwM90I?p+BQ?WG>*t)5H!iVZk z`ZtB5;CcG@_kVGm{*}_dxD%Fj6Qs4SXIjCJq0(D4wkFYAC~`}uSUr%bw|<`o#~9et zCb2DW1Dj4?dJjzZf`MJjr48(0E(3eMhirD9hT#ULO9r-(qDFv!VCZoMHgybue-RZ+ z;077!FT_t1a+GtANUk_ZOK=*5JWL71#%FfrKQ(Zo%2nfD%KG4?)CYbob;Sx-ta61A zgJ&(S*y)PBuIO+@mMyoVXFM%%&j!0fVh<{dxniO#M8&x|*%eb;*>zCbq*qG4ui0nkAE~<6UokckwLn|FqX!))dYa?$sonEF!cf2==$4@(xX-;g;g1_djlZ_|2LVaQBPaBD%KdYP4!VJ!s zs4itpZfE|_ffwVeb&u&Wt}&U+v_YsXb_J@7S5V2IxFrE9(Wj1?tk3eF;)K5j8uRRo zL9kcqpp^FT8dArcXzG~62aue8gsVFstwnk@P7%L7TSq_>^EZN_Hl|hFb7Q)htIU{4 z>1tzAMpr3fjvQ0|NE-8K@L+KggWz>KU_F*~=BVzkEExWv5$;y1Za(0w> zBjH&w z(@oX$%qX2+0x2^4zpWv+{|CCMMqUW$Uo)4Ye?iaF?I%G7=Q;Xrjk!2)+H_c8!-875 ztY@!J|9X&VS+uZ&A>hZll#wKhs=H~bOl#O%Q^nbiz!HYS|BGrJ=6(t8p@*g_nqro_ zrDnxM>)?!^l=z9YSzUUn_O>b1Gq<9zVS#iAdLDqiPsM=k*vvxN|Xt4Q*#klEQPbCo$18W*iDn66`8d7 zB{H*eNK$2r2$I402y*G^jeMoNtUo;Wy#bfAB8#;mH!%`6LIpo&KPUi(7^nR3tj|z4 z^8NlS?4f64UP9HZ(&Eo6shXDQh#8z-@8i{J{UEgefn=?T@Z9I9{|C<{DnE>^|4`O5 z)9!shW9RO)Ww+Q>@Y2-%!ApsvU3%}X&iC$c?;Sf?>mUv6nDmmfi~+z&rx@v6tm+Nh z$g~=+{Rsd^9wMNcxk?673g++KEd-LT#Jf|JL;6yO;C}Y!IXsif5$x`sIW$_d>b-%^VSBXSZl!ZYdtx=gVsYG3O`^uGLyjOjmc-j1Ua~=}6bWv~eEFl^O1&QRB2#sV=)}a5RHKB+-u)j z-?80h1nF~m>6r9kXK}aOwPKm-94Vi|rG(tHCJst);c_~cTtNu_mA~Xr?J4e8Fa(!F zwIW{ik;#ZdhNq&g&;b!zX81Cs_+5EZEq^UpXvtr@gJh^@93_A4N#s Rsx-p>g1 zhj3os$d?72uQT85U$y!v0W7mG%&Dc zyek4Iq+j~hza<{B)tx?}98pD;FT`~q@I`D%(`LDAr!Xagaia346FGq^tS+`h+!VBx zB~A;i2a`KlXo&p>g{DC|UM|B+BnGmb?a6LF!CeLzxH}lYae=HMjqQ)H56b{4lg2qz z(I>aWkIux^^uW=cC15KFJ&;LcJKc6ZC9*ZBcYR^Wy#e%TU5RWF$ZC|*pbv8ZciC(S z_DL#Rm($kP!|Kjqt+X?XJ4_icJUiE>uf9^S7u-74*Aw~CTYar&(%#q2uRw?<<4rdU z!Uq2&JjCfSlMqohTcaqp+2NF``ALv7l#tMs&b_DZ$zF|3Hb zW3u{n!Pcl=vU1O8KYC71qOxVIfA2Y_(xZ#1aip#FfO6atL-rwUE!iQ?Nkh&jq@pXc z<5Ib&a-GB(hgLNAriency_EDX_epmU!6R`~l7U6`k+di~o|;{MIIzjb_4?4mnnW1W zjU=nZn`&uz{K06yjdHIEFL(rl4hZqetn~hWx{M?sbZ~rS#X01smEYCy17x%~rUq()0?FJF-S0&%?J&rDNTfE{@yG+G z9IQlLleICYPy_Up^_c{=W+G3<+Qyha2Y&;WNrFYA(Ba|5-_aF0Tk%-K`1SV|T=+4j z9*Tb{kDwwly^ODai}2K?7$kOt7oW#{;t-xAZ9&}Y5Ok%)NJbumw+9*K>?Pz0ekdJm zfM|2iF~tiJ#9{n3dMOR??cm)#$p}sh%Bx$dG_~ylD_$rH9VcA?rnINC(CQOP)t3Dm zg_f;*Yu5Q-%L?hU7!0EPt4UEivoY$mmxQt(F7dK|hrdI-=%Z>p-gu4iCL+mZQtu=p z%N@i}UWD*jO`HHaY1A&OLYR(1*>31(7_w1U^^t7uPIk8&Oq^B*>V}!iNc>Dz( z*Q1hXfSW+Kq#(2e*QuRH%`(Gih0aQRSG$O|K!d%4ia>@LuTq#8B+>VhH}_=n)1nku zU_cx1-(}Fk8GC%_E_;jow2kr5W2N5qOGCNy;K*G{rzXP4SsI>(&J4Bn;rXYtyiD`w z94s>K*A5*><^t=fwG~y?Ugz{H&sa0#W;Mw2U60{UY{?cSk??;Htbe&{*DD_5FyvwJ-nTGM!`o4S8$Tl(g(<>s1ja8H)c8 zd240(Gnd1nN!w8PK#sH{U={$kuC8&;Ro583Hik^zT61tnRQ-dP0c}Gi{z>Gj?M!2< zW7mTwhwo%?Nl#|m5i>(|9E;HK9D*iX7>{g-`q!Wan@)bFYX(yePE?sFK^1$k9GI*N z;*rhC$Y%eV$x&}|Zq&0a%)3V^ZT)Mm^6pVGTmPCV-aSfV>t8d~yGIFZ{cEOs_b73# ze@%^dk5b8wOV#un;7`bgx?eaT>P;Eu#fGNuz7=z?s#*=jssF8`;`u_`N`7lQwhQMa zo+f2R0q|KHoVwCE88$7*$=C)NBXDa@yOD;)IXRfkB)nxg9l>vHaS3lhj?9A+-mN(@ z4}x(R-kARSBv~|c??|Xt5bHD#l4z*JUv`pO8k@Rzq_)GJ77dl-g{H=#C8~BgX3^?k z{flyvRqLcUS(E%F>PF1J&jt5J4Z2HYj&p;s5*;)K3u$I4yyPw=s&%&F_$Lfg+PokK zBY2@#sM(GV&Yc9d*>6y;w4}dKS<;BFmZE0Lfe)#4)=qw7!Q`g|=0f!Sr-ejtc* zQncCIM;_2Eocq|Q>6Km~SM7@|mU6+M-xk?2aRp-`WC||`F}FN*9Wn$lsh-vL?A8;t zHJhyqxN*_tpMo3exo|_B6mCqX?1>v=65`%F7cA#LTaKZQ1Q}=pHqcAf$Nh)ZIkvo{ ze}lS<4LrO8s{tc{VZhkfLvNq7cvw3|Hp>YF#iZte%|N?Mz$ONBi=)vLZh}#oJD8w( z&|ys!tfFQ`jAOtq67J|IDQsT{F2u;gE@BJa39=kA33c4(=clHyP0l-B{@Qwu2y|gp zCVy?|LYKUDDR^!z^iE!@5q2i8B>_QK^4b+WlGiQ`lGm=XMT9)R16&J-tBWa|3x{B>H80nWSSiEzMx+_lfM z^J|rh><@{D$VS|mwN^8Gl&rN<_%D1gM#&Fr4BjA z{}LqX3N4@hc~=egDTZ>N-nMO|L@cK*p+IV~YZc)3`Dr~Nawbh#1^Jm?xVX!@ z$B?WB=Yxp|se_jRX_lsk9Q0P0zRNWBN9L?$ISBa?C$J1OHJwMLnf1N%*46|0SSD}n zz<+<<+SC4^ytS8DtC_sDH~#^7Yi(E|w>=y+Z|$xiZ|$oOGdMlv}`h^3=}HB(5#RQngf>YrF1{x%M%nEnBKv zRA*|aS=q!>Nsj)T!q>k8@kMxpFnrDU%BdHSfp5cv%BlZKeN)$9QpO!(S;dRqt6o6# z5D_i6$O0}p;GkQ7Pt0=?MV!)FPuKDDu*|iCbnRH|*0uWdXqju@1Q6_vhSWyQy7gjIvY77yB~!Kwbog4+@7X|MS`n*vh9yqLk4CKfnO>OZ~;`5sL zVSuF#T8a$ly68=`>q5i7(bk_kKg>SjK3TNGwRd9sK>`YEf$py41eASa)Qc{n1tKtR zu70O=zRW{5wSlB$4aNxlrM|7_u*s+HvU$kO5wdyi1**^%F3l9= z%{R!kcWY1CJkKr^tdPxf$=<9inXgI*`m0lpBXdHpWsTn6!rRBxEX*x5+b(HeTC4Wh5C>66{}LEnL|$u+apxFQG|>j#=mwpp zmfnNby06-Ul2q1N$Vk2 zRQT*ne$qxZMeV;w`X4)H%tSt2{>P(4RJ=g)6Nr!NrnsBaDFXjvahbjSk5THi=nd~M z-H&lK&y8dvmvAHaAGb2Lq<@~ymx2HBI_?mu))`7Q@}l`4-(A462ru|K51kfwsl9d# z|6{%UpYMOXo9(d$$Kn}-VUX2iNdteN*PCjKFG4>_Y~AtAazMsx`Kj&>$caK7dISo2 zAV1vcQ@z%Fsz22OSxxw%d^0hhtT8O){8 zw!GI^F;BY{W34oq0o5pdOu{r?qmFqLlV!j6vTQvT3MOt!*4gxQnQ1%^ z9I^G#8$D)3N^$O`pDHr&32xnNJu;KKpjHkt54=hx@P9ojNZ-Pj$E3KqXNy!Bg0cO_ zs}>i^GJGPta=h~NSk->JB7lt)hcV>#5yD4f+A$tCMc;O+eNuzV4Ozjr zGj7N(CXjL{JCi)LM&3gM7`zK@%Q4SEIsY3-NXgP0W&iK=G)`PBH{{ZA=|`pg_Vji` z?(r}V%Ydhv)r@#yj!0W@gp8%CO$m7(E9$9OWc|YidEX*##VYep2}T($N}QP2z-L+E z(xzy?oh2?hWw@>{Dl$xwRs;EsbyN9U5Ll%a6mWGFH>Q1m>eZaExvHtI`p(9>*<4L! zG3dtC)!%8VtKq7;YARRLx%$z}?_AYDq;{5AV}Xju-WX=7DD-$3^Kvjc;KG}pGiuR8 zYH!rSYjY*H;4+b#a%$X5X5py7uM%&j-cfTU3+Lnp^JumZ#Q4V+!dXHjD^E{Gmf6IT z1I}hN^gB1BMAPBp^w%F^3ztlpJdK^7N#tOSY)pTd=iYiFK$5GQ(QvqQb7|cHT*UX6 zoI@mtM-QyWmhj7{_u`e&!a{s23Y`%|W4!Vi_AY_%2*>MQ=$q3ZE9b`@ZCcTLB|uDc zZ;%1bq6(Sy!=jg@u@%!pN|!C5^Yn)O4X4);|yMbrWD;4R#;PEln z%HGdOb5d4#G|%fSkm@M99BsG~bs@JK$t6eciB_1qD8Huj3%W4bZZ4lfk^a|B0w{u~g&GXtss_EP75Q0^vRxuCI2ee64 z5O`kipoj6ly|*xMyH@v|2TJ<^KYc1M%XmOz^O+0jOVc>mTPlXUE)hofJx3Zk~ zg4K@LM$ND;waEV?-q&MtY1GAi2)wV=OyGTOjdOUkmK_ZU);=@^z;t?F2f#tE`!Lvk zr1$kNb+@EH*w#kFzx1j{miF&UthN$*BA8G|55MjXO8N9{fxY?@7B7KHX>Pd zYhgysqNrh#K*I)+Gxh(4|MmMt&Si8#S06$PtPhDLH*07rj92LSYF`MuYS?GCd40i7YbiN7gRG%;g`=;KR-KdfN9ldAqo;d2>i@3`4LF{$! zxq9Z;^j>Dy#l5vFrQeNqt?jLiAN|&@)WCXu-Nc>N*~)P#_qHEJICt-@{9rB<-4rrK z%hEp@JW7F8y7yPbCm&{%=_`#gwSmy=p3}H?7-g9(e>i{$ZTeYqg6&wkS%WMw*|ze+ zvPQ`b1ZXnJaK@k78=q3+rU`v3#?bPQXzjgm#=B+&SxucQ0+WJznn+{EOw4xV!%R4V z3lmTQm#{V=UnwZkEfeWBH*uKKNf7sEQ4QJ$aoxt z#;nNjU@zNWX1eXK3WQLP;eHSYUjIpP+;d$V_kz|q?nx>*lljag5cn?}$F1^R9QT57 zoA*zN<5thPIPN9?FXFhxF0z;<$x08^&=HU#&Rqbo)5&=I-LS>+q<<3G8rj+{?o_ z?s^x;y$nCBrS0OlsnSrzao4er@vHPVzI#X<_gwkyzh@k`I)PjmKz}`P+^SO;$Gzmk zi{qY~DEav;a`xuk=R@_rb$s5MoVEg5ut~-dba82Msxe3GK$WjhuIN;4I zaG~7$HIW5QHadaN`d(r*oDMT0J0q~kPfP1iY~q+(l$)qLF*$kLSP5&^fl}O)lW%EN z>#?zWIXHEGQUS#vsFF1wYi23)6JBmKs6yqQ!O34iRV*5OGZB1kEU07U(co+2f{QDV zXn7P@>PJ16ITC&W&T8OVyR!@O)B%ty{QDgd(%p}n_;d>%DTTk>KB{*kXAa{ zdMUosX6;D09x(F&&O?0*(%+tC`}NX++#3C;E`WHUvX*_N2hldu_kUL2Ip(p#8mo!t zkZr47%*4v-A#J&F&MC_1a$3y{q{))$Kr~<>B}L{h7V0hMQHvq}Afeu>sSEYC7O?zr zEl{&Ms$4Bi#5b>`$1-N8cKaEHXu;aAwV+^>YboO}iwu8t+@kX6b}6@EsJCUGVHu0r zPM>$SMSL4QL%UXAQ?BgtjSy;bVrhbn- zME!R0Wt+)nEbmHP{d7zH#&M~a;rQQPJxu))s^4WViH0o=X_2SpdA7(p>|U@Cm5glZ z!TWB;!U}7~1lNqYl-!xjdKNZg0k_Wnt!CWUp&5&K_i5J*-O`LDTn3BG55IDlX3Rg9 zW_+7Xy)eFeESfFeLz?2<_O@@|*A?01(edW99cW)$8@AK>DqGq?Qr4aCc< z`6(n_$!kfmEWT|wKnBC+M3==aY;`#Atml-7ZzRC(g@r{NEuUd>bHr`oS$_y;RLS9HK8YC+t_RHa&ab|_ zNDugo43A3FYIsz4buv88S(YBh_NMdAO(}-unJ^$Koy%XI-umgb^5OkM%AdtoVfmA|rL?(R=+S9h!t(3v zg*#Z%zikP>(gUn~ecW391b%cbzdk*V@=3A}l3C1WUu0)`xT@vftd%UQKD}XSp^97(^ttN-zt2hzkOg(O zY8UG+m&kn**~I?KkMIgH&y6!M&RDMQ+t+Z{xL!fn3xQO@U8u3@<(;4En1mSD&PkZ! zr=N=r%qq+3ShW}tNan{*e($N*w(fmeop)szTo zd#HPWt4De_lMEx?HDehsBETVCq(h=shSd)S z`F(8PTI;bhaYR-gaHjHjZ3O+X(mby2r6siBt*V_n>DKm%cztN1cuCXrfw7>*+CX~c z285`e`y&jbysX+|eWn55+Gp8fWY$TzCG>XhdDO8C_U;r z5^!h?X&2E_iXygJO~zd9AkbkZul5A>Gw{_muJL-KKv?(yq8)pSPACSI77mItu2*@r zJM`SIXLAFfIfk=yRn%cBr-q0h4_6QUEirgej)GrX+UsE)^Qt%i;%X2?rZo~XXUA=S zD?iY2+l16N0pbV3$hxW)MqhUT72dV$5+(K1KVc;d+zX^gb(R<941xMyTX<3R(%#hw zH32uTgeYB1)eCH@Uf`x`QI@@8|5@a67W9x@)}+hhaJCj{ZMI%|Kk|N2huL}(??&j0 zlzDGUw)3R$NoMPRd`_z1CAg2Hmj5FF{)D=X9GvvVyb%W>EKxEt$E(qXSHj=b5$@bJ zitg2$;3y6g&7N5*#lWk*%!K-jg8g{rZF59h&<;jooe4^2)bYalvUc>_UV4eohfzW85EtU|z?h(Bh-Boo-{xd&ivx{;=L)Bz zh@A43+6%A)vyUe~+V zuR-)}V}e_)7PuuZ2U`-WNt;}@9Ro0(mDa6}O{46VaLh`T7g)x|+Xn@(dpy82m8rg4b_ zv*H}~8#+|;7sEv>J1CWv4#HftboE^h!Oyh_I($ZMlihNNXL4u@G9V{qq4VQd27`}> z{(-Slv9IR4kC#ZxS^FgoTeiGu7xNf21_02GPg|bhkCOS=#jutkqw!s6FPyQI0t5(^ z;>EAWi{F-be)ZdLA8e`M%#xKn?m_@fGXXT%2_Q{Jopl90GuO-z`0inW+1$LJr|C0R zA%teNjVy+gP23FzDD`(xLR2N?P(DgO*G%fU9a3xJ1?F9s^jcnbJNmwJK%>t}Z7F~{ z$;vrJaeOWqbS$}ImBa&^p@W&&Tln`R=%%&fthEzdYX?J+&aKt6vs}fs*poK})1}&w zKDVCwPv}tpm`I8XA(v1Q9?PvcRqT68BG)PvDrhSw*|#@}bpCuJ;KL;9w$1b3Qk$*p zmaoAWF@K9(!Ja>gr8vAFsSi1~-5IYez(mWi#+hzfaf+&9ZxGk8h|w|3n(B-F#kDf~ zaochO-ren%B8QHd5{HbiO_CIY=Xv^YGK<*3lrn4&ni@#|+Px=CK zv@KK}?W+m?g$NA3@2Sj+JQ>*^$FCgd6N-_a!C_bAr9q#6E%p0oT@{nhddKx0dkV}O zcOAMSw{^5u|tfr!*$MQ%y7BJY$WNuYc6mx;+ZbXC5bRry^oDoOC3{~T!` zT>C{{&8d3!K|6SR!TamrUtuXk+i4jo_U)oj3Bvc}sw>~4(2O*Nt0cEu=C=db)Z(U{ zy&`6#vX2{;%jw;jFuePs7}=p`!rDzd>9-N#GwF%L zjI>ktjm&Df?o|z(7tB_HMwHbuh6mp1(X5PrvibM~BRFtrJge&~;3(o&w`mD&+Xizm zC(TU9edeC4n(@o~w7d&4XFysQ1(euN!@Y$svs6Vk=tsQrD@6#c(UtuseD7oOS2{LP z@}jr!PDaE^s3w7J%jq_!$T}ldvk|MT4obPxfoZG~+Bj|~t8>&UTWX~G=er@*Qb#Jw zt)Xn0B}iRD7+l$M!y3DAyD?FkN)eC{RAEE|D{0KTV1ctj{3a{JCrn1{@3=w~Lg>tx zEgb|fr+^TzcD@F>znkR;XjK|bKh$VilnGLJnS~q31|$#i1785Xwv^km^Sk78?M%M3 zxGT^_ZN;=Pw&_i2;KL=ks2&Jbwip5(;)${#`&59fFA0~38!ig+djWOa#1gT|t)4b% ziReCvrM`^6-JWYsWT~=)5va^qpXU3CB^+Xmoe+EjNAH!(j9QmK-SLg-;%z3&n^pE< zmWYqMK9X)VdtS2mS6Ut>C%Khp{^QM}weH-#$^)al^`!Q!ElSVWB|SzN5E zH@_dvxgdxR%^6V=Eza@g&xW4*ovYuN$~Hhc{m$0!?3sluDp*Kdv5Q4TGm8oq7{c{n zUx%;=X;>?}W~H>T($ta8PDmOXcWrEB8+hTk(;R2a^x3;$rd{os$&TI($DQUsSW#<` zI!*e!wjO5O{nu-ZyWu45rhZ$keq&wz3Q5n9m#^?T*_)UT;S{qlGh)=#(8uYily zZ`osqph~-nt{eI-xB3;h`iXlx*H6#F`f1!-{YI;P^&RRbQ65I;=$86vz^n7L-WP^kN0U#)q;EN{1yBq>O+h4Z(XhUk2|=Vbj8FfhmSw$idn>e-0Bi7zE8EZKLkDK&(edw=s-)25B zP>YUVsb$eK?zC^t=9~7xFk%dXVY-Nd>8mK1U95VEKs@p&n5aqU+)=htU4lUEFq{#x zdKTJk>bSKin3`W9ixVAWv5XZ+O37l~^5HTrvo<4(FWgA#^0w5SqF~PAb+@LPZRwGJ zfhd?;dL4NbOk?(uN5R~5u|>hu(`S(NqbL}Ow$5h|e#lWU-?{fM8wHbv#X)-&@_rOl z#a}K8=GB}`6ijO!aDG=E-bWP7TRl2Q!6*Yo!6?&@qF@w-@=+9wdCUHdMZqlU*(nO9 z+fk+|`G}%mQtWifrCLMGMZqY~kD_1@I3MIR!;hk1{+y>7PC)1TC<><2X@+$laum$h zFZw77COjpyyVDH+I-+1CvK0j*fz3{YjFY$>>_^40P^=(OO2B&L$B(3%ycgbh7Y_f4UhX z$Iy24c2O{&cP0_DRXOw9aG68~-g6k6$McV|xpSB(m?Ep+Bd&hKyQrU@h4qVN>bL18 z>esJB{l@an?05traEr-i9G7~T&wq#uK({uT3st{ygfih!wMqza^)1Z=lXTd_2{&+B z4)9_ngCfJK?R*pV+a6k-YsOqk?o4Jq3!AZkTO;#vYDQLvW-Q{}ryQAeE0YzMC$tB- zf$jNjoAJFZG~=J1)1FyY$NjQqHia3b!D#$Baf<=Z)!#_)Lt_kF!OBev?SGiv>w04Q zIoRYGoc(Z6P;A0giq5SgHbw!u;KOQ5FX|tE%|BM7MIJw$OU%E5w3l@91+^m=I)hQ& zTd;z?4j-_avUIv~!|_-S?=KB1iVDgEF>-01Y{)yk8^&_8)^N~~^fZDyaZcrk=(Y}nHo#AeWbKATQ z!dCx8COuU!b&uueT(!(GEp?-IwE1u>mu%d;(q(@jbw!8N<9PQuWtuXNX;N#wxpXb5 zdn@(Cw$z-J0fsYiF7L8G-feIG`VkC;=vHzKC9)+JStIvqN{E9#Bxlg{?JvKLl_pFv zd6(WLD_`cMZF^1M(qq$Tw!BQnq-MX2Bj*bd-1!UCn#tRhp7R{A@5G8zN;i<`C{_bm z4$UIg5dB2o`AU2|j-?MMrwjn}tid`SBoXAyj42oZM=+_4cx2<=olFb&&K!mRRjwfa z>RdsZN(^=l=tUrZslQrE_|m< z_@!O{^xG%pph!C>VEOT1TiyyL!oeQOm;*j=2xY*fau?{GKqO*v(A~EcKiOq($4mCi zIl8oD=&~6na5l*CB|~$*mxE(lsXrU!&x31ueeGk($%~Dx#0avCiJKA;j;c#GkD5|@ zN;7R(j`Qy+b==?>ii7egOSl~qOg&|sIRiID2NZ}kaGW1CWkvWwihab=yNrSSd=l5# z_sK}ZXg_gGj$^7ZQ*O;MQB&jkM=Aqy@wp-bnMFYMnBqG87h$g>NwBBrrJsj zYQrjWD16i#PKS(zmSd*W98yNyFV7;149{l!V$77qE(zx-B>lv3gA@J(>1p`nAd-X+ zqA_Q~2~-#(j{iU+vOXr%fyUD6=X#W`dM+E6N|lzFQuB#s>b*QU~1^0^uvB!&#Xwp_;|cnd$ruJg!X=n$M0T@XxA)@Tsw4KA{b zLlPFyU%&$6z|Da%>o~6-f5+8e9BeM@wc4vWTbvZkY)t=n$d@v;iA5~hg0Vz*E>Imb zmj7EfHg0!wmk1K4i~~-bNQ(CO##?wrc^Q1;cxoEK7i+!RmHL>$isLb}#`6(*c}8|I zxUR`9jpW{C2kh*xdYx#CRR9vdn|+;tiW4Pkbsluh4m*6fkOOrH%eWS| zuwBy$6PbO=xJd5r1tHA&Wp6BpqMAlZRce->IEBMJ_IPFZ#?IMFd`H=?(q3DLyO`Ni zaqz>5m%$f``q@-UnP|_prFCHikN^)Jq)y8uA0CR@JM zll@*ia4T2Wf+6qS0+ma6qDqRT?ugWJ?bwd8mUeUfeVsOPlkKH;rNrimoTC~qZsHst zi1+IyYB|B11nULg8P^c~z2+$->RruTIM(W}I{j>jHcSvNbb8Jjr(x_N&t^1CI^mJ|)i%tvq~Vkri>$Ee3eIncbxItRH%u6K(AX#(3|TKQe;sUq zXd(4V-kE-UW;NKd9f}2xzJZYx!1(a-uFPk8?I+fa z?fO-?`0%6aCWTpoGPEZ#<;TtBz8n~tk-So!lx?S1qy3t7>cFmZ9>s^Vx_ec-Zf@I$ zu_^a9^J{rx%1xhiH<6n@S;rGvw~MH!fuO<N;+g>@6!ckP+aS=SD%H-eXy zyyMNg!TPR!7q+BcM?h#|^J<2$7+^NrYARE#68X11RGic~D;bgWhf{Rg+@GeRqLkh> zmO-CL%`YVX&We+seVXr4Zu)XtA?0Rd3gu=7UuN=autVYhPRUYsrkXS^Qk&wGdmE`| zcSt>)ccJ2>TT;iknBw%uTS;BhmO9EwJxYR##U*_&ue(*Bsv5BOOkQui*iJSG=g(Gj zgohM2B0n97sNfxxv!BvnC<{tC>}xIYGo=L3Y$i`WW3SIb~5Z4PPD)=GJiqHy@>|VR#<*&~)gdy2h&~^fkwSPM&JIh_w@^ zeQmU&p0=VMu%dRmqDBQnPazgSLnvKnMOi(=QH8URsv8fkt5e3|0@NwboV7HlKGu+Z zj>^oeP2+*dxr|WA2z27^8b(!5Jf+~>mM6h=iC0z>4NqblwgAP0YvPq0DX&$YjGl?{vSx3)?Qxm#(8n+X+!#Z9-_YQ6AUf#{(U4fE?5tj{RbMKRS{>c9! zX|ydVD)bUm=q2g9dC@HoTzx+Vk!`!Wt#u!(b(X7j6O`;+Yds5Vy_MT6)%w!wsY+2> zRj73{@A|r0>y{^JE=yGLQ&sVPZK(;Lq}~hCk;B#dclS~6{h-Dy3h_*KF+bi#0dqkV zP@Q7_0c3F_ci8Ng*@GMN^sDlpSrk@FC*=64v0Sk1Bq}R8m+l!vcD;Sz5PN+)$Id_L zH{)c>Iq!BZ=%P|dy@f3l#c5U+#lqPRUhOlZwQlRY!r#EtPAhz!7E*f$&lCQZ_A7jj zs?rMoO88tH&q;+ff8w<^Egf0pHq&Qm~bv>?^nOkQdu|@GAG$K91@;{o|#<&|jClIr}L8 zO{WZ3y@J1|P8#%2y5piemW2%-M$zy0<*-P zSmz*Y#F<9gp#`B$cKJL=4d(giRKI)ZbDDYEE{bp~t7tG~Fv~9uNkm&Lh@)~+9}C!s zr!MJ%ToRjm3x5Wm;TounV!=7F;9{&haLxRFdQK#`SNpXK;1qvXCk-*Gr|mVwv1m-| zyxM*|kNKQ+!tyPH>=1zh_17F9^===uGE@;?Gbr1*Sz0J50~LIA! zutd+Je}W4Y7z_FT!mr1#^j;T}Y(jHHeUx^|6Vh#mOQ!EG#Oy;X|N1JS4vVQsKYbhA zW*^v>(mC6GKx)!_Yd!yWknC}?o4#2|p3Z#4>+Q|_c#Wq!cc8Id`#cAlPoJ#TxTwQT zRj=**THJqt#T!Tk=ey$uIT{D8F}~?dArqVx^Y?KQFRQ4pUdU$`a=?zR7bPOAlO>y~ zb|S-Fq*Lmj30!*Unq0+L$BOrqk!WDDlG8JPxS%I=t=xkkh#4>3SU~pyQhF}bPD#Eg z)@orrq+H2+EfD(aVcPuTDgc@bFDmkJ`!-TlYo|= z^T5O_SW}y_Q7X3jOcgI}%h?Ml=xn zwhH>~VA?IqV$hcx@6SJHnl>2D_JJq=!HviQkFWLqLt^oA%BuioL!I5EC& z4WJl=YJHp3u4m(^ujj-{)_b)Rm7TvnzVC^6@%Cio8P29VhK0f&pp=u57h)X9Rs5WR zaBsinv^^JidAYB9eVe?#t2oK|O7C+`-;Q{F>HgQMc5sq1hwokK<<}=8FJ9pF&3)oZ zZ+s&+(I@k`Tg6@Zld#|TCVR$V%xmE3@f^~$y^0JODknAWAziHG@##Zp5{naSg0*Yk zc3Q*=oVEHBv~W);71{185<9r2wIY0r1=XQ8L##dC3E2lkJnzRB<9IhU<|yaYex19d zzrj(hSx7&repVQy>qN5tB<)19)0B@$_N0;Q#SSEU)kyYINU~3gWQjMj+S6=xE6tvP z>WRoRj%Lq5mc)};S9+Hl(Vl>4mmATZfM}N+(Vhs2cDWJlp;n?@{sD>RYLX$EiRY5C z{YJHz-{8%wVbcdQ)PBrQbAhik#ta-|x>L)67S3Zhu-sohTr)i!|5c1Ah+;jC1>cpG zJtq+ymk2H%JM+tgUmoSvZaGiv{f`U zB^$hItyz^c9^@nZ^EcY*Pa6nLUZEG9EK)Ow!d>2<;SNi=vh`+sJhpF@j1gz#8qU!6ao{BNQ1MCqmd1QKTtYmc~gF(k)@Q?e0 znhaj#5wZ(sEF;k=M6nL`=IcO73rn4^Q^;vl4r6?%>dLO!Gn@rWP1y^Wvq%R6`LJRqiC@|i_41;-3zd4t?n3YEsr&M-jM6o``zrm6-F=mQ_HXsDVl96zYtR=J zyZa;P^AfxJN4>M7`wI0*#qPmZmU$;9b`O57%zM84w*~yFc$`0%Z6i^|zWxNPBZT&N z^Ug)cK`F2LWC=$90kt!j3A%0WmsmU1Qu&i7;ZHw zB>Z*pVnY45CVWm>zb{sdA@u?9STDZjS|X^$_g%_xq>_CdxHG|n+pGW@X$`!92A-k@ zp2$Iadq&X4Ua`ni*31iN=PU7p_a{nPsy2gzU?p@l7&V2&{nwdwpJq)yO|@p*)cvx; zQbpG!BF(&0i;$^OTQ2Kg%xN6H>Dz&N2E3YFIIW1-fBJvW7X* zLT{0Pk-TVhYUpRg&S!~%i_RaD8hW;V9;2Vx=kxYdmS$Jy4&(RLy;-$wdd+*D^;tzT z!(m70f#RKA)R>ICBOdp})Vb&LLUhnWGW(n|>!-{HDzibB+4*Gl?rTx+`34P^2gUh~ zd{)3`41h#qUYO$-l;a>(>@zB$w|?d;ugH}bdRO-u#_y}o;?FmCXdu1BUBw>$T=oW; ziE3mvqp>ioNpIC8Uzzn&X6GkUQ{TxV^~poeUqpKKC@Cr)OGFMR_o2fGIDbt|7d^h& zK--y$FWcmuUEat5UBv)3BtmcAoknpt8=(GMKOKf0B>??BguOTNAAG9&rVnKslmpFy z`yQ)qF~%QZj6VX-KOq)!zQm+){s=fa`M-agXIftLywQn?Svu<}jq~Fcd zsfpJ+pXSBRN4$B(v=@yAUC7kwolU6Fn?&T#YW{=pG{EXb1M(j;>YlW+Rs>kxM7^%v z(rcrLyT#5m`X+qBYGpq>oOSIN&}FYZC&31qce~*#pe?e0`P0v9p0Ee32za&21js#; zs7Si#lV4)R&#`p(NFAkruGCCD`R*kw-s>%$0h!r;r~5E+_qcFjA5IA2YCa0u)^I*9 z(?;e2`nt?t?GDW@UG?JWN&oS(NK+|Ca8=4F=9)Q);FclNOpUl{$Ske`l1Kn*HNl?M z3@OwzY2(FfMy2``aaMP{nElMH$nnw@RQ2HK${FjkSw-&~U0KnXos7JuYtDuK#NWKF zS2@BKd0~QUqlkA2tW-J zEK!`XO)gdtGEZer@t0EZy3piC-FIQov$B0FI~H8hCQQdKD6Re?EA2@GDUMBC?Vyd( zy_Vmf*G=_XEbaSoH#)fW*yZACPNS1bm>%uje(SN?#T*^na%>&f_^M}*Vo5MMGV$06 z%t(W+p=EQ0iJNV^-TvM&sqA@UQvF^)^H`FI+@_8M^KDeB;!K8jUaw@TXf|uu+>#5t zvvZ$9lVnl<$ExO5**|_k+&=)n{V{>XZA_*{M^v3T(3*O1o`V%WCg^uYBJ$K2zu!JI zUb17^KL6oTsUFCH0obOO zi_2x%&!?Zdek|?jS3knfcF=NH?5}#v2#@&++2=CG=Z5)`){(LEyo ziIQ#8af2ZzVJ?9X`BS9RyPQ<{2IsGr^?IK7RV^aG-HrfKnr+#gPaVwWR(l+Gf^JOp zxrWYlm3mpkP{l-;r2i&f2TK{0dvO!wz<`s?aF$=fO65+-d3Dh+{`C1ae?G?oiV5$V zC??;0Nv-Mk+c+RswC$B-$!==>VAZ{3+f9qw6HBdIANSvYDP9G_X!`l8N$E;8RCSY+ z0Z4uq2Kje`d{tIbeje?{KP9;(5qYJo*EWHsKGQzGvR*q%_X#R9YbK{G6pQ`KQZswZ z9)NPVG#XT9mj$O{_}amX$VI6c{d&yq&C?t`qN^kgxGkDq7I{4yF@(o5|D2?cH%!?s zZ=O49+C)Pr7Nk+DszH0{fKmXU>x4wfRdc<0o9y_B!|3Xz)$igIHxTi`wzt+xuRf5d zJn6jBYI>_aQF+?uxMRY(_E?FT8%{%?g0dWEHTyPhrf^%c)c!`x<@N>$4vefn*f?)ldD^&$;vP1!aoRLO^!HlG~p6>G)_93j-+kEugx)dHh#|vf7gZY7uofuoVj+b$yvhnE^U7e ztWW1XBv+62wTV=#8m*2Vs``jv@n99q;Y-KFxY{mgtG~x-jd$71I`JG6&%&?znq+r($A@>`n{jurOQ=MCe{aNeE)i$gpKdN zjC(z6p*1sm(@6#}kKhS=cT3J#yVm4rNu;!s?7BE-oLz6q(OTs$F(^$ec&{d^ z9%`a0p(Yk`?byUK*RspXHkS6cTI4H=>d8k3SNjf_HLz8p3`A~bM|iCs_^>StIxZN% z80WKi^#L{|p8gC@F{#|6%`m|^>>+6IIv%$J15c#Bk)14g!mIra&y)TWaoiw^pB|kW zbTr_hAP1wA?~v8%gbPag{Ay-IKB>-H@G7J5TlogmEr?)@X;*r00TG-m+2K`RMP?&P z`urmN;65I5Wc$HY_|V+TI*~6Mp%OFPo!iJA5(WiQD<4Ulz1|J?_oc;?gN%@Hf@f&I!^xc(f`s=E z7a~ne@VGH3!Lw0f#fc;hL?@BhfJoqyTaTO>FiyjuP0kF^a1V#tfKbj1n4~m*?SKVb zWB%d+v%=qXc3nImlrsb7+V7eHOYFMEL{0h^>og!*+Y^hJv|}e9EPDK?BxW!m=7Ocx zS7pO;xiPM=9LGII9`4l?I@H|0M)~|ULl=`a?4y`sfwbA3kv0cIX_Jt`osl%5IPq(T zEhle;jk9p`dq2OSgcCHw>iHG6epo1IhBfjm6g0!q+$a1yhHbU$;$e~|2%2G`pcz)6 z-widx+6kIr&6c)ym;_BI0!`keQx6=LGLkhJ%BWtV%u=q0Q0B(fa<2GkhB6tEvz+ow z80_mrYHT{UJ^QZ3iguF(YuV$N%|{#N$4c~ zJ9^0jd-_++140#%0xW zczwupK~7&`JMXP)PRGM)WUBnLJra?JIqB~Qob-2eX+zDiQkvB*ZlI#!c?a?`rN@W<1`UZU zX)!6T5??4&ek}6GMCI4tMm$|RX-sO+Pf@FnPDXZt6Mas9(t{s;&S0*rA)mY`C_1O~ z;C&bQMdz@_8568HrLR@p`S|lJcF~fNmy^Xi%KY4-F_nYP8KY$`#yS$0 z`p2M5MgCZ_`r3c-P9IJu%$e(;{=J1?p~BjH>DamLRN`l&{+U1ef_x{={2>>jX`VqA zM+_R=%)cEs^yB_2z3Q;Z4+Oni7OvBY?8Uz{4siT1DmCLa-1?tCI#GG6^|7I=|3{G+ zo{h8B%spPb`Wa8&wmTC3W2n!^#HwGwN}f5ZQCupExLv}-VeGsTlEm!cZDL{crUfj< z>s!03W`Kqf_J#o(W+=C4J+}#NKszWe=bq{3ZwLAnDHS+ERtLbM_~=guZPNu;;BJ50UNpm z?fKY5@fGZ0O}&{KIow$9^cqz#YjkDy@1&~c-Z!Q)dS^Bc@F%-lHi*VIni6Yoa`h(L zZZV~fU!^zs_A_5^+--rjd)vP0gYw2s%Rcw1Hh-(I<6&+-3A1<^7EE@3(Ug-V2d01B znrEK*Gnb9>Zl94ic1%!|mneRQe!dAAnP~(tjVsw*MQgKKzhnm4)_v&%RZs2A6G6}X z4n|vc%taHdr3)ag_Br3xyWO*7Q~rENX|J~SQ}2h$?I|qkipmf*Q$HiJ#&#GFcR2c9 z-YtDE@0PxoABMh{ccw2J#UXva{HM`3vxhDE%BbA)&Tm8CU?%SUW!jm`W*y81@&E-7 zItL$QuUMV5$8VZFhcS4|04*TsF06(FvNWXq)$A>e(>V0+XY6_l2%F9mmA? zZI1;j1{6>#4h0M#Onzq9B`?H+<_e7kY@GwN`jITkQw{k>0^*w4aeTl**(V(z?_ffB zi*-2g-)wHNuY$;D^X7hKku2uH&xeyR9P7!*>ySbvAlw(gJlfsN%YR*ev-e>SWv^g0 zmTj!t6-_)m;VU`G$Q~X4fnmr<$anRSEgo5=fz3R%A->N}e(`FCQ%PJ$`daSRAS{e3 z93vEET~TkNbOSrxRQrI2Vfls}BJjAYD1T6R|RvMM?E0r8KK& zMa_6>c9wj}4kU|d;$owCBC^;~9I2ZqewaE;eGoBI@e=lkb8_MlHU>__IMln}>B?OF zs4C3ZP)HSOTB|T)Ltj;4#)E|_*LVy^l8~XO!mdnlvDEBHHm!e4>8wu0ggb_vF2P^C zjVjE3u#hUeJ318|NEO(CIq`gvVJQ3ij+gda#Mb$S{%vHqh<)=7gRi^@o8N=|Rj?z& zHkE5+V3(yn!&S*t^r)lxb~WT@n$A&OjQb*vsIgT$sK|kf*pYe=N03!HY?f3sj#j4- z;+8B~&+ilUuy<~rSN$d9S65=D$({K*Q}0X-TAq}{$Km*g>K%X*`C_4vX<#2JY-|Jj zyg$Bar4)I>KYvMnp=ie_6b;|}Mfs$)+4Lp+^8bK8rk^Vo6gM6*Z}iYQyPc>G1vn>C zN!%nOJ2egLy#~=>BJ3aHBZxtKCtOzil!6qcBJ$rb9LUBLQ?j}ae{(0TQKxI z>1L956OnsFg=BO_dk*hbEeF4pN&<+5@fA$ob*)fjH2t;pDv9?Iw-wChjv#MqtN@M`t)$6RT*?Z1Mo! z#2kLLItRjp6X8YPI3|o%VlZ)tAj(*kNfvWW0_5dunbANW*ND+^v*xu7_S49!1fg^ zK@QI+@FshO?fInQNcrSccw$G+px}uc;FZHN$J2)}2e}*(bDX6$Mv)pkRlV58 z4wO5U#YVXP>5?IAV07jO8yxS09~dKY{p;Ot@btfL9T6e-cgqVOGZA9E!1jL}^L4fK z%QhaWb+eCmyU-09l&{SRoPlW(%o<2;378>LB2w!{4=Yoqi9{qNSt$1crh<566ElJ> zrE|9;`t=9tSL%(+-HL-S6TwKWT&YJDD}RTk!C5=usqb2BWy}`tUBP)qslBcgE3q2$6}$-(lsGhMz^R{<71?Z74JtH6SU|y zx_mQ3=!{5m+^T`)4r1X%B-si=yNG7j;r}SB06yT~P$n5Fn z*Td0?N6`eFllY@%Mc`TaqpY%>llY@7b63mmfQR{GRc-#x<5wk1-kd(A)1uzm+{QId zyp2p%M0&tWPVL}4-bA>pk4LuSXPK9KAmf_d(CS4_=2bg(=8EF4Ou88TWOxsfo)B%| z#9n;L^Lp0v)LS?)>;$iNim^keE`$OIc3?$ti%}U*hEp>OA+uqHgP8aTI-@C3yc4=5 zif@xS3g`J`YR02<@AK9hYh7>TP=pJLNv5vONtQh5)xN=QA-yps)u$rKAyjk+$JSYo z;KWXkMBd~ib+%VH-flC#`)cgYOk?k-u^Aoyl`4Wp^6N+7vj3W#-?)jsMsHlcio5dH z=#9&p>>0hWmfpCW-q_d9W&d*Pjc=%dt?G@NtP_zYt&7wrw%|hcT36WO2Mtdg$nxya ze#lf!{b1&Wul$3|3wByfti)p5tVh=5u&(sxHDd!0M`_ETj}iT-^^yz_wSUL2(5{JV zM8?#Jth|k3aa#-l!Z1BL7WttWlq+j`%iczukGC)j>T-e}?lFUviUUF2I1Ps*QmJ=n zrtCe7!A5tpw7Ru-p$1;@PKI*t33|NhY0Q*nZXA`0_RNYGv!h;K#;gnM(G)C{FUKk? zmSx8)qrb^6wM{l};lG%P@=h~R`UdQe>04{;c=69{%mzQ3q+#t2<4y((Et(`%gfa5j zo*dmH+og0x42+8s#p}lev(FelaQm1bdIq35_ei90d|5L1nHe{+PbP!kxd@awa}f`J zRA9BW*g_#g*Cos&&QNIl$jG2i;fj$cewA3FAIFOK;kBe9S=7#Two0=C@$yHALM?EyseOXT?WDhF z(df#edyQe9$4}>;Y$nH(bM4mIC*ksJ``#py85#O1tdqYt>*QLi^D7;# zle@53ey5`i}Zw^v#G5(bvRB@5)x|87a8ZV>J_~u;)sO#T`&DSptue0;yz(YL=jl- zm>#hj<+Cqd55mg=*-KeO_YNnn6}=@Fk+k`1VZe%f+$(Q!Wf3J5++q3Su`f#tljGDid6=}1mTLN{Q_SuNtMR(Bbk(>ctj4ocgXCqp>I=ZuEv?AG?b@0BQqOV-Fvms^CI*E@HRH}5T&Fd5k# zGGMX<7IWN|VKoVWpItF0%d4IXgQTYD=C_JeVB;QiFC>QQ6)M>?{+ ze4ZT3|C+nFzYPNe^JI=Bw_Nfa_nXsM{sYX|8Rn;x@;4f8O}^b(iz^9lZ)}& zrD%%xNr7`b%eUk5H?qJr7LdZ&#u=}TPF0BSSX&w6=Nsea52etGjWBrY*ir>5)*H)f zK(IZV&76Ic(J;R6j}(mip{yEfRj{MJ3btI_z;g=qEnz2M{Ga_PN`5sNc|%Vm*&E5o^D4N=np~tN zPu*zT?YRDrDtYR9p1ARa0pRGP7iESXZnCtQ=uKHw?#Gy5{O<;!+HF~d?QS(DWX9vZ zaJX@D@=n}{+Ku@$v%Gn|q|XG#7$LvMWpmijQ^aCAsS9PypaU`K*5rAV_BLn5^B$TZVc?q)=PMQ)R6hA6?gn~7kSaV$n(t)doH zkINn1LS77-z?*ln9e!%dHyt@0n5Gsk9HkEu#%TKBt+r&V?Y%@oI9S|U`XIGOC#~td zfO~M*ddIlR3WOsCOE>AR(h`%!O{UCl!Kp%vMw6d>wN*I*yP?U*Ej+OUJ_wO`dS{+J zwQ5N?oLv#F!JJySpUvV@)?g>G4pa|IS~#`P3DZ!*ip7l`I;w>s4|l5;-pl59d$n*4 z^PKj>SyGx>h&r;qO)bQYdIPr1znogQ-_$~Dn3-f3XC{!vt^A^iBbKV@Won_5l%^J1 zg2SqX`!j0cV_(y5a%m6j3ek;dh4t!&|HH$KR=A((|7K%~n=D(&bYo$s6&jI4tI4Rx4CD*s^Z;rKT0yASp4o6LrXXj5({kdC!8ep@BhZW;8_?i^;Z{)ce%z<9Z+grS4b&Gzt%J5sDs(+hMeFDaR$W zm$`)YI>Za~b$4QQ(tkbU1v<1>s~70=p%>`T+Yj{uy#cv~-+Tuz(C5ACGbrwYlA(2N zUZBs*3v@NUY0Hu&n?V8mwKwmZCT?cVrS&2atyfDj3U_pin$mLHJzO4W8M)eieeOQH zv@~in|B;sKALZJ~xAe_NIy?wDRfJvk0K8Cr0+gs{@ zOvX7)dpqC%H*kkrP8Mo1lDXweFDVlvG|nK@|C@uI_5H)R%j^18R$sWOw#?ud zb~4iH=KKGK)NjcLAI>r=;5hou6d9}b``uCG9JQ8K|AbU3WBxl|XqT3e54zv>8Ks^xy;cn&O`LM5nA)ht#d(uCv z8}eeSUOg(78k0=`{p=|~@Dj=ff^7BE5iwI_9lKuFuwiXJ4y6s*%QU5E+QX#7cDSkj z`0UmT_jV=Oki>|TqtSv(*#0UBn$mjM?mRg z*u@?rbadilh3GDi^+(Of-ol^qEvUj36Sqk3n6ZV&m-c-5%L=x<^rYw9^~@*T_1s6f zVsIlkv|ECa1Nh%ui43gk_zPk*6uGtoUJA0$( zdERX<&D6$1rI~R(7KY12rP-Na<#pb?e=wqeCeXM>9NRu17s4n|HkaNCVFiAm-2!%t zFFpR_R6GMLpm0(Jk8W$ z#YD_+0mKhf!RLj+XsAce7PfG14cfnwwS4 zDNrCDp${Ddg3u&lvW|z+GeHm$n`)V6J46D4vEBp(#$)VwHQ%RmLoZpPF+wk;tzZrg zXO7ak6ffPmnR-RGunDZ;8H*4#X_bseUJL8Vrm)qs=l~d(CyU`QFr6Gdki)Y7IW*jI~AanTvgPke!caLvXKxAJn$OQM^ds_BDz#_6E3bU*g+0H0(s~3g`@h zDL@_5^v&5YCtZcExCxc~haC zT`H#+bdSGxTb+GsUhw`&Lynd6__?3w!ZwFC2E2tkDY66b-VbBaCmK5er_JFhUI*yn zdGS^0qXeyOz>c7=auYqmq6`V4?C+-qs-=$_vWgU^BI84MpM z;-;jQ0K>QUa4>v*5#?P~L#wDmpSvv`VEDpVncKFK%mvUy9SooL!8*Y36{r#phOdd+ zRv5lrDxhl^zW4?3%^@&+1NF2$H-#{Kr}Dge7`~y0gW+RU(gh6P_eLUuMtFZkFnlkt zj58R%p&tx}Z)ga^H}oRBciszzZzwQ)^h_HJp9NqF5P%*7hVMM6ovK&wy&o99X?)Om zL9b`FQg<;H2E+HC=Nd zx`pA}^Q~4GzT#uGVmo3OK3nMm^;-bPvnJZFI`}us%pjrthZsUzUKkU_o~=lH34R?p z5?^mpcY>A6Hg5l4hQucs0kP0H91`FBi)19r9pNbF)gCAn)s6^>uZg6cNOlj8V*mS) z_)J1~iNq%bga!FHSTX8=q_D;qe+I^%UhRJkZ_{3l_)dFOmZ8@F{uJ1LWm+&^dQy?Q zp4rD;&&}uhAu6!vp@v#@9f((G;gCwvNr#vq8vFM=W{G<^HTF1{lrFv*n?XL{Ai%Q4)=j z*)>sJyVGZX3MsnLXC-ml^jYh=F7(;!>F7{cAF9vpry`*~Yi45UvxZse^jYQU^jXIZ zhBd6Jno8SS{P!LzZEvZxy+?>y{uGtglY(>nL#39_pQ_S+L7AO9PnkKDc4)(&s?wgT z%-&0-9rx$x3Dar~)UHddR`fsZ$HR?o?^mn!`1ZW7yKmpWR%=u~t&cv3%4oHY%I{mN z-FCjq;k~q4w;bsp?%TB5=`k!mHbOc|h;EhIBI@0xQj0Ydwm<#}YUM55iaO|wUN?6E zwCBpZM?!p64LfTcnP2)4Ddolaj1?t{EIMlsn z7{pNb_6l`x5BA9$^@t4(Q1|K_>Yg4r)V-~G<-j%5zuGu9MBN+ATtF`!in=E?S35Vw z4(*^l>Yk05a8mkEQ1@1JLfr$EAcMO1LcAFFzxJqmvki6c-4J!}Kn8X14{wjIoSi}4 zdpAk6sG;ut;q5;g>fYMXl|$xE zqrb#%_XDXnin}qv9eEB??^zs@5}b#KA5xyS?trGqtK%A9^&F6TPmYO9&6^PJ)Ci?| zOy%rzv)S**;VO+Q<*)G}At#@XVexIjsJtO<7mqI#0nhf0Dpb&0Pn-s7|GvW3??Uglw;06!sR7w-es6><0 zLf24vwROhb`-hS)arfvWv~T=CLd06^@4xPkOS`yVD2FCA~tsU08qOR zjJUV;JrMV{3URMKgSht^y$v*rSCdZ#+!2UvhF> z$t7)gd&jro?Y(Gtd;5jA*Op&dXS}`rZFqZ2I^gZ??*ebHKkOj9y)QewJq0Lttv=WV>R!X{ zdB9-_b?+|jxmFl{7azj{p5S^0Whbkj|dj` zpP&_3>W-shTsxw#{bE)JfH}j#>I!vlZyV~K#C;nU)?Xd!-u!FdgD9%Mh*BRCMYB*x zqWs|79f*>FzzR|KHg=D?rzuc-8h>Wgz5kr^9!*p|)WpH^?WErexpr*g?bl>b_of%L z{G2J;`6>tlOJg`(B|6l-u{=P8wW02{H{S*~E4@SA+XkLp7pQw{czlSz6{vf^4?3jj_bIQ-!1l@7Kba35PNTN zQMgrh1lW7~sRCMgmfGRpEQZBRMBIzc9J61yjk8ND_MTcs#L@e}-qRQF3wv)GQy9x^ zE2+VJtYHE6@BVVwd$JQ8ioNFyPG*uq74Et1Ga>fgAT7OGvG*STw6xt18+(s<*8i1w zdv~6V(Y71Bz3X__9&a!B)cc_xNO(O|XK#R}A) z3k-eyH~#)GczY8_)Ggj#UZF;S@b-@84s;|5lngqOWDMv?FCB`v_xSt7+nYwN5(R`y zIm9zC6cn{2zzpd&ctNP{u%;OM&`8~5#HXvoMm`>65@X*ygi#AK0Lg=-vgZIW|Z3mp%)mwNoGdTI+Ypa zhrH>8w>MXbj}&ijQtNb*0V?|t@%EIt%_0h!|B&$ZWN{|Xxo9E7E&Gq~_J~CI2yf3J z3<|$1%_=A(A+$=;swjiE*A4dwO6w!My*4n$zX`lO+q?Sz5^qoD2yfnZ3F{5bEPqD4 zJt_Ph@%C&C`8PX10<%!a63}!?mw0G=&yl{rPnW-kzky`^DRnNO>>3y=hi-25+y>e%Y~@>?D{-a!v^nN#~v1CEnh3?-y@R zMYhA+o1iis-kuh?e-(Ips#A!!r#gL@czeB1l9(~PJ)^xH2+|I3@2PwVoHo3@0e>Ri zo|=L=Ud{OH!P|56HN3qHeLpO`yjaQ|BI_J+f-t$2H5jeCW+rxhUXyjeW>)A06U_M@2D>Y_OT4}OKMUU8O1$1W;qCpBM}J#*d;ic&yUCsK_P)r&j8-VT zy_?Lv;7`ZfQ*U>Jw>N|$+G~a2?fo5({#NkznvONC&<06~`H>uox2K`w@b)xlLt73o zW?kUznV*a=yuErpa(H`<+!+Sn&C9tXY-5RC47ddI_)`02NGBoQ-e5{`y9lj87(bWJ zMBKjAwGeMlOHSeKnU@b2gc@&T;E-yB+004OIUt8h!+MG(Wc-EymQ%leeZf|!8w-Ao?Ma&w%-)y~ZtoW%+}`F8Zf{%&w>PsL+}=+Fw|7zo zZtoLa!0naOk$?z`@4BYOkPvb2rzBLhtAWew8gVaV0r}Mt57W{QoW1ao{r*AQZ(-CZ z$rkeJ0KF$(`jepdltCBJdwQ&BsxF}S-fXmLDn)1Ly+88m!-n45zkB5SfZqGV35NmU zxT+t}dv7}Ez26%2-UBTc3VQE>mY(&-Q|nin;@5L}Pmq!h@&i7bC$=`Eq*>f)&b@-S z8Kk72>+Rl_vzJ4Z`SmS-T+hX$ExUH8&pnGAhJITY>3zl5<7 z^Y189C>8igE*3slZYJ(^qH@ZhSY_YX{Fl9j|3|uH$;;ji{~`45ZqsMH>TfNZra^QR8XO$Jx@=b(tPps1+Ke}QAaTgpma zD)Y++=9PKL=gPdqJH&h7l33=?9+YXfmnSR|E-|ogoJ__g`4iLKv{-6IQI<)+@_`d#ezb@KH=+Y4nM*P8 zEB@l5M!rn{J{h|Dx3)4;tyWe)-DB0$*=%WBCP8`6{;|}Iz6Bkf{MTJ*zSgau21eLY zDLGL29k&x43u>(>nv@7CigJ>E6BOsv@n%xFmMk9Dq%U}u=BgIyUJ=at$64;fa%f4y zUolL)px=f3)=B1h_MDT=?RwL&0zIeYO7FaP6t16?m_T}2Kt^1-Q zv#N&{9p%*=X9w=xtNor(j1}CBf(E-zvLHU3QFl>y0x{KO)3x7X zCZ-T4D*t%(JA_tlW$704-x{6D{z5XCIA9W62#*l2)*KI}4j2~?Dh3q9Rz0V)KV!vD zj!aEGBPUkc_Y3f`xd*|HL%_BI zJ|DSq&8HI7O!6lg^m`=XPu-kj@QsgFafX9?F*21uB$mp5F}82D;2LL~CNzrdmjuuk zeJRH~JGzrwsYPXQvVFjZZm&NSrgv zi7B6@deP5PJuuRP#Agd)#T;%LZQ*3P{ptT+G&YMPo;k`ZQL@5vs#>AEtW&F3m~_vY z898{tpxAZyX&{XMdg6zk%wHU+r8gLX6UttWKw9db;y%dm^YuLdxi z4weKEYpZpPbOmZf$X?2#(0)4(%(PvY@HML;hU2s4+$H>nLEJv4mCta8+CeMDXH&&z z!1HoocX12nRh>x(?=U`FUeH*6^AN1o|AA@yAu93V)Hl0BM&7~MJE{J6~T{R z!%ytw>^`vBlT?i}oH$OCV}c$h?L+aBcf9Iq`_>xxUfeb^=mXl}`j}tw7S#X+@SUoc zjN$5GxJ1bv)(_siKfrbB6%E!*Z^Wpr4QhJB@sgvudZ}5|3HhPr>$b?OZ`ngwC&A`~ zd1rW%U~{E*BH-<8ulBcmm-N>r{3kWuC&m0X>6q6flfc4!wLV_F7O={}aOWT6h^TQK zZou%f1A$j3BD+SWqG^tmTNCq#g4)|V+Q{rU8@O8z%ZqL-5aM>cWPR1s@sgLOU!3sk z!J!#!Ylu~37}aR3&}igf%wUE_<7>p`zCwPhVh!11Y;c+H=i91Xa6YFJdGlhd|5|#| zx|sjY&i~0gJx5PprLA4iv5LeWn2slsCyVKi(-$3O!ac0fC3U;%9f?>;<3oDoepCQL zsy^T}zY7-2O!Lj$Yii%mm4V={>glKUYojiZ6s1!?bP8Y&Wd0 zo~MQuxheiN<}80z`x(098fIt_Q=Y1!DQ_#+j#FOtup^k>*|au+Qo3B#wds9!Q4VVw z&EI3GPG)W&ZdI(!8K)}pF2+^=G?z;pu!_laY6hChzRP-(K&gR<%~E;bE<&b*k00^TM)bJ-eB*da6c?TWi!%Q#6{ zcpu5vW`kvTQzm(o`Cw6)RM+$`c-<{7;nz-wmj5GF0DU77{IXedH6y+9{#Z%cTX;Kf zx}@?9YtJNWPfgJh%IVM~_vnkN1~skYx>OD8_bd&YovEo_E#;L1U0iJUdbW&bjcZ8$ za)gG}WRk04^}G@dbWLyMb+-+>?vpfZ7n;9!D1PlS7+!14tLk)cfj?(i%pVW_#LT5} ze{WeZCl6rC=y3)@_w!CfoUcTD1L^D;emA<61#7_u zsPe)y5OIZ3#pTy9KZke5uBjV!OX@r>HR9XydZE)BK2Q-V&!s30)H^q4CIyA}yxVN7uc5Fgdx_QkZrz zdAsz^WTe*Kmj)lhD&wb=UD^DDBm6|K+<0X&S2uayLP5Sp{kMowT=nAV&e)7mPGm2Q zJhtgA*5$$ASTJpH)UUs0VjK;ucndwX2ou`^(r^%H6?iWqf3h;o{Q1g=z1iRDF*BD* zBbu7f<060JZ{EIOZ}ybdM@QMC(u4IJmYUO~o3UU3 zu;@V#t{+%GGBwE5U)hpW${!?!NBT2*IfeE@?(#=AM0=TPtQ!f!tkHf&ufC)G@?QU! zxwnC@s=D(26K>Qf(GzPdnHH6{Y0LE5mKGkRy;!+&FWdv?5*(q$P8gYqT6o0D1h7m6 zM3R&oPi}}6YTBZvQ?0Sp%2XI*6->fQ0=@+l3}7|BRByy;K!u1%p6^=w+~g(%(9hHV z{~14$eeOQ{oU>on+H38#etYfdlifvwV{$cjA{{p~*}$CdHrlhz$f&LxfR`AM)WUah zt2Z?ui{AWxi{70VPt34quk9Hy8?h-5aux;Za9B>%@-fg*PRjqt_jp%k>VlG9TU~??+WY~-5 zxn*b7zzTdt#9MRZtSoM0POcm@lb1xim4j+DT|H>ErfUb)O6pdgwT8zc?#i>0nyx_@H~VeC41zO;-+jK-1NOW@);1(AAQPvI-=?7v+6Zn zd)8V~RL@*J)YN@Ezn0%#W$tty54)B5b^IKA>)PBR`CYL#{{eo-XQRQ=A=-FvZ7=)1 z7k-TFj9BqXt%lh366;0!z=vUX<;9&W%a~Sn7|Ya1=I_djrF$4HySeP*TzI#f=P9x+ z?ykN#gWpbK)GD$typ>&?&u>bz?pS$oHrH{t^5W5?Hou4azo+Q$%8SS9@6{KN&~)v^ zF;c^sk?)?2WVOmrt<*=Twu@@_WzH!hCuYR2OVmNuwQ;X}7U{Tyk<5iq%8Ok0nV$ly zwSz`BO!6Mj6blBYTAwe~lkV{<&zBloRZj_rxEyV1#4+S9w1)5&s%P320%z0aQYe2R zmxS(8LPMCC$XF)KxjCeX%^_OGE6dexDQ}qURSvGzPp{6E9rD5k~G#Mix?+ z*WtNMP>P@W0%AB3b4$-`b-b&yX9~*Ddmvldz`{OTRG(NP=T7rP*>|Ojf!cpp8iY0I zEd*K@E8TKw0oT)(qQrk!`qFVI6IE?3M{~+y+PBz3c?` z#{)0H;6e}?96uckaw_vdC$z_wBb=VZC4DP>A>3`&1W~K7Qvx^z-=r{x3Mbg^gkB{# z=|}I44*tL@`vP_*J8&SD$f}899htRcinLwCqIlZ6nK8PxzNuj_&N^$^9n1rmXhYibAuRtti#j*TlQ zb8pYsNaySp;|=lCK9JU;r^)zXk+vJ(y)+(tjuWY!V4J-i?k%iXhA7x{ZcKkZmuS(7vTNTr--1YEm3lTPNe^Q6=dYzu-fFrLiPHMKXknRJxg$o zjN}LW>u|iE=5tzh+$Hkf$4*e=g%Jnq15~9C;>8#4!Az2z>|S_jym-!@EX+;j_neC{ zd^G3E@$q|{#Dz2H8SsNMh?72}%PM^hZgz-5P1gr!ES2@U_0SJz6&BC`{Shbd4&=uI zoqSk9sVFW>!zDhZ0ID4q3ZS^TAxX&LFSP(==Ql1oa97T6}LcM+wJyW+4u!vyAwR@Mcj52;9rad zK7={2g2qZY*ghYFDqMr{Sab+6QrSEGSa6%1 zokfs8Go>8bZ6De*(TkivlbFSmy?f4=X=LQyiQd}tWg>wG-eC0QtYwZ^ZH)!CFg@Ow z8}Wt`mvHFa5L7I*rv$^%&?*O`Y+}^UV~4h=o%h`LtQ)d8J?7@DJE)nQ-c|CqediF6 zr+=m$YOzYs!ZZVDQtO(U90ygG zSvmm*R*n>+nHY#zGrge|?$BHHe5jU^10DZ~;RX-ma-na|$qeikYF2Ws)>_Cx#wQ`y zg?M)*F!!QIO*;XfI+;88O%3#0yw$_!S)Ke2KBK_M^FYKJmoE`rNRrHZcpGs>^ zGQc8~)3j!>=g8D7=Ad>N|1`7G$xTVCeN)m(-;|^Zpb^jae*2{2c?yj|JWCZsJRfUP z`mf+8(w(7HVaha{(t24G{QqE8YWUVk8!0uRk-lXqe>78NUmfJBuVFNJrq_nke?odu zC!`n6dcBpm^`DR=j}Wr5UT@>_ZCQa|{2Wuv>wPAqcJBETl3Y?cNutJ_4-c>;M|?`Q znUXfVtbliDp`I$80hn)~-aZ$l2S*jbO&c;}AYieO1+GAB+Ns$c$ zPrRG7ompn$&8JNNc50q!=P+*9OFIj9(9Wm&v~xK3{3A8wl6HkfhP&`LA^2b?8KZtDCW{l*R=OH=|q!qqqM<_m9}@rg6%Pv|2Gnr)+$?vhHe*s zmf2OTCu3qL5p;AmEwHMdXP!q{>5PR;#)^$(=%9#>DE1TXC2|@hOV%m=gJ`L_Jnv0y z$#-`lSE1AG?*w*;Xgy#=Ys?$dlKeb~1~f}43em_HG1s>+Fepn`x8xsHzvO@M)AlBe zmH?f$H)O&0@C4y*n5mjV5?@Ve`w^M&IWh0%EKfWIu~19N-|W!ld1rY!%iNq&6ghsC z9N=~Pu65jZC4dxal)o=J@G;J_?Z6+pZ~O*lJmM;&LE(s(Q-V$O-(!K!@ovsWOe7n# zn6;fybII$I6FE`F2(`uTc0wID-iIR$yGo;%mCGkCb0gjnkr^VCjgqdav~9&Vk31Nb zLw_^WS|WOzG}%QDCin_zEh|(sHjQbEzQ2&W-~mp{7`fw7`5rG{@{O>E893%GPI~jb zBX;QN#ixWudGoFEgG&a7I&VG=AE-P3jw32@o?fyye%}Mn2GExane}Mw|EjerB8VzrvK9BAY}`o84R0`GXj*!@QB z`Gb5J;^)Y&7)N%+5^~7W0TZ1p<{l9G3c_r!a!x1?<6R(YZpbrjPZu7r9#Zh`2a6&DtUWfzTCkXcFdhvXqQ#`HD#cz!89c4 z<=pP(RI4j|7aE7ft&uzSQP-nci|EoZgFC)XR%+&y=`T%XEkKnFKRVOQoHDoT%qfMm zvzvAM8i!YigpfIZwJ4$IKF!Q|p;1Ehea$+}`%0+H_>}G}}8P0B8wS};aPs1<6H78kRqV)6=YXBv{)TUCFi*ap5K z(x_isbF{4$rma$){%w^!;{#B8bWCdhk5AFoy!5t4>-4nM#I(9tb97Ca6ncN3Hc@4x z-^8J&i6VI1a`~HlmO{sE;<8g|;!zeRzWKjQx<8{29!sW4)`Q|_ujLYGR?OWQbKkSw zkFow+Wq+Vg;>BNOSYvQwC7d77wtY0HH0!Nak zxWKSxuS*rcj1F(f)Uj9W+%c>0xpbSV9atw1B9^@CnMNL0KZsg)oKd-=B93eT4K)fN zlrw6slgQagWw9g88I==ui$>+y&5==RBaZWHnEVpGhL%koHQeS;%;ve7a&wBj!C04* zKOb(irSeoI?LfKIA~ofhT7*hSIeV(Y2~Q7nywr* zQ`6O>7Lww*O>RUKh-v)z!zmw@HcDlrjl)U%w((h9fk2VwUvlhgSosvx@&YA=aQ80w zV?kE9J1PJd>8vz>OIj}hE7Ts+o>2sy8bea_j@|b=)oDOwOL5cyZl(Il5ji!KO6HuXWlwb5 zP?^e>jz3~TVwuxNe$^=bqxYY3&2_R(_1tSUIrB#(j(5r|P0pOH$+`bqlk=`4iFseY zN0akbNdk^`Y>a-6#ayRgio?(84p%cB@@6@1Q31}MQ$qT{xnndrbDAcX$oKe=`QDl4 zd*_<(ooBxHW&Iw0dueT~_#2=O1^y&GB;Q>q7`CPQqf+4vg5#;>x5(r=O>xj^y3%0Z zc(_4-8%&&CeAU<`r^iD3tg6?@_6K=PK^nn!=@>tt$GxNHP)de5tAGnA)#QB9ziuNf z+QLAWZDgP`^tg9kMyYo0d|66?J&N&_rF0i*os`a( z(z$+V+LOUBNO#_+s2p)EIF6hjFMw8Rd*6bm%P z0{dk(d1$xf%x)BCTFfgtZ@Rbgv=&k99-8{_ky!B#C-CaXy(noySkega8ZU;|GYjz6 z#}#;J)@SY>$L$!|pfj%wNG&DG`6sYMX^7w`h2|t}(bT}By=9wNyhT(FqfN=B`Hb@*3QILa+Q!^HI`{X~0Zua&m?O+L$4rb< zctY#2R8!awlw`ret<7zx zO7*e8+T2<$@U{gt4VHaN8V!ehD~5f5laZEZQ9-gWldx_+prG-};2L?z6=SftR4Rk@ z`q2E~OpXwCg21u(%EZK&+w8_y2H|7#Rk)+()MCuH1xuwm!ENy%#hc^!;)0Dh=wu39 zsE_77$Q$|SmLpE+fB}~~v_c-U6N@skSeYM^g>mRGSIyDEomSa*=vQf>d^;B09}BMa z-<4I3*=15qWoFf7z30$lk>E#W$y{xlSlG-1qUn%ayFMs!<#rYm0;qb=dJQM z+zl`%m!;Zc<@%OF`*c>(IMsu`G$0`q#SF+L|A$xbIDiPv12Ek0z5K*iFlERvm&9$!`br%%N%hd)fkVq z#F*b+=Qo@Aux>r={exRneI!16d5YQM-U?x|kxYlrh}W7)BAbehbEjr!W18HlQ-?oa zXcNaZXUTfHds1^Gd$=^d(4CW=Kgli19x;ilVRAJEn^N{zxe-gQ`J7P%d%kD~l&yPL zc=El=ys0CG+ll$7=JwSBo6Zs2l0E>o*zT?OM9 R!pe=WU*v2rw)sGiGH5wEgF#< zb3cv+_c1^T>WE_Ama;DGjfLKVa(6@h5Sedk;&>gaEKWsY?n}w9&lFmHprDoqW9~aK zM46k6ZGVS3F96xToF>qcUl=0Fl?LhxS71n6LI>zPduJOjhMmeMuuM z6ns)Vb-wTd1%H-z;V;|^?@+7Kb0s*-^X^J*s!(U!U1F}fn-}t;-6>~Vzf7#MR;dkF zd3jZC-U=*~Vy8XOagkWqunj_tz6$950=jP{`hQ{!J!vw==EzeQ`jZRFqV zG<(~21cvwtbN&!7nZW!MD1)t-s9l%tWu6I$H-=5WMeo>_U$`Y&NDwI z8*`FXT5zTpI)+biaxG!S^43^QW3o=QJY)H;}-_Gc$68yLDH6zWUHv0%)Qn&0D z(_J6RgJ>b8TNvPX7~t`=Flkl3LOyev3Iog;IPtgOWnHVn0QF*GB1`9erX{s*z7h~@ z)YRZi2*D2SvI9>$fFR|g=rcY>=;#jJ-`YmHMab^=Agnd}#+%?f*Y zo;$U|w|19wc5G*%0R=rKE`mj9eXk7ac%BimE?7#-GkpKb6gr8;eZAy~nOP6W14Xg8 z!gg`>Em#T|Q%vu1cQcXx=W+$MrcT6xn^w7AZ)BszN*ifW%rM`!&J`mk&b%1GKta2G;x02v9-c?o9?3 z$rq-W*0xd!InB#`21&_j88U`oUEfbxHvTM1H%Dq3=P$Kxpnym!qD}e3E(6WE$m^s( zz}T2^U1tWn+#gUg%B$Kb%5f1g*vZ$CMx0~9WlH^BSI3Wj3h;WVU@{x`r|qqXQ5oi8 zH<2Ol@yg{rad#tkrgO)3x7o!%8DSsV3xWbsJd-?in3T(VS=wYvhP$duKn3oqc9XQ3 zq}3!XBv#cL=!+=;dALfxgzsq$`Si|0DuXTz1Jp}-->$>P8aue#3A`ug%m?<{iM(pc z*2qUGE2`m}@c{0{=bS*h6Fd+PzJh+hJE|$cJ}AHA?yZoY?t=~bsr9oMA9^!eGZVR* ztQxJ!ol7P0)=OmxSs+yhwj&LZ&Fdr*kwp^q5nU+zi`{Z51CRreeP*bGuB!v z^)bKcrmsBhD+XK$Ubeg-U?T2TQ5{~%3~UwgvfsE@WvZg(ez*FalKjJ2VyDtOcIhhw z1=be%pR}8o3)#qjaaX_4A=2Q9Z2rU&O0j<)#1b)FFQwE}Traazvx4R1st?bUuaU;O zi55wk%j-!fBIA?P8|7^#5w@XNC%>p|yGgo8k{_QwF(drAzSvX3jtkmQSphysGUEaz zsR{YsRp_Qf^H^JyMqukBB)S4u!9ORSU9P?GjCOEsNBaFR=RsoOXfxU-IHI&!I$ zbXV0#Vqji=53eyd>NQE!X>zB2!EDdCg>uP%`Q~X5!-HlR?iFfb-KUGVW03-$Zg)V$ zP+=K9xKFBS;`%x6J7LpljqhB_+-nCuh;4_s)@wD(4?=M=o(!F|^+r4HHen!FkSNoa zOk$-?gPg$2s3Y5fGZq#PeSd;C^jG8Ep`C@rMek>sA4Q$`-?uoSgC#F91*_d9p16Xb zV{hF!3g;IaA%Te!zYCZsZ=F=^tOYT+oe>o+wzP2&4tl}_JbRg!a~oSVYL1xY@s%*P z<8Eam2KQT>U@Kt4(`7`3KmAGy+%hrrE~*Bn7ot}=!R>NNa-h@1uW>>gybGi_9OMLd$6PECA0F=1ki2)E&p$iQ!_pBEj_sw)| zasL@e#;rDM1Ed1`V|Yf!nn_e1H_(Aq@=lQRe3zx>zr#2{@TBK$m--m_gvQ4%NsbS0 z^T&r-`65Atx$nge?PU28dKwlDb#wUOt&qC2ueMR#N` zU=3?9*M5do_A{CbT25BhOR)d>>*l{Wf8t>*^$Mvi%E^Yux8V|iu@|s@-5QNw0ER(p2IluYF3*fq!`2I{PJ%^ywA)& zcH$A4)cemqb;;T+fqUMk@4!Xu-61c9Q*}BrtZP+mr(2+8`(t!ToGyjiRR$*Ns z3#7ObiW`Lqrqy%YHpmY#DRd*15NyJfDQ#qxJT8qyBhgOq;?Qg4%jhA|`d%gEVxxpi zOQvZc_ag47LnlZ5c7g9-<0~HDNV>^gKM%X3Zi8FxP-_XD=WBqgYGjTJJdea%mNH}vd2bx+ z(PeDVzd7p`F$xgwQdg-1Wjmpl=FO2x^MbS`7n$FB2NXs6E@&&4+I zj8*xxu{@_^e6f!4ZhwrGhr-^NKZV^f|0PFBhdO19eb!pgWd{y25Bw|z z3;&b@yn9|D1N=4Ka4`dXSI+?N_6PVFMzfX$pk$xRI#zKlRv{}9pkwLaeGlju4)EAh zm~&E({fja~-Ua9w#2-}~n2)vpz4p}}l%-r7ti7H1CyY7-O8GhYj?2V{jRtqp%Yr*Y z3j=y)2X+!#M~^A2f3_XkX_a0o z0CXmNHk>kN17dIXa;n1yb4G!Z{T=5~0;3oW5GxGoRbgW2>7rkCe37o$z`p^k4^OG} zA!)1+NqV8b^+EE~EeX7g%hzAPp75*Roxosl$t$*)Jv#ORvOUg6*Xl3YhNYsLT8=XwJK1goxC@b4)kWc}av5B(wKj zfktRmodZqTp-t9`GlaNO&#sVX3aiccdRPumIk^-6}$mWNmQnu z0%*-iO-^o6`g!IjvM5OflmC4fzq`K#qo&>+qQv3J#7yKXam5oxu&QBdMJ*Acq(|f4 za#0AG%)WUW@!i+XoI*ipH z8*~$Sx&U;7dobNQfju@W_IRL;2vIyy<3Ay$CYFS|S=>9py=e5jqndk;??2;b1wWxJ znGt-em9M+8G?E#k$GW1`V7rRc0VPH1j7XFgAT^~u%)rt*S-VIPH!+Ju+;>*hrQ$?& z*Qcv;>rC4drYFkfb##{0W>O;SD`HpTvPY$xdP#gDK50WV`xU$7Yd5#m}=r(8OGm_;|!uTi+rLuqOAQ#nh&1wBM8=HjNol zM#Vl%(U%!mQ?!{u$&hxZ>_mOctK~=SPhwt`x+U*FWP^%*AGo4&Y$yIwtLnYK(ILez zq8--BFqVFl)njIQLZ%#6IWm#Niwj4{>}pkhm9BGU@0KaWnVr-L1_J_CPxnsg+_<;$ zTyd1zY{yUo?E~kEv$QZ#bS{!wxuY;K_1r8G@X_)e^Yg>0{dCXpned@KVPt$586S0b z#uGD$e6*MFO6C?e%8aNguD6Co&yKxo$X?$ZH)(5O5sEP+l@EF0m>c52%K69xd~+_cfGQjr(f#j9HF;yp7XP;ao(ck zS)pg$!_%f$L2L&>NSQB)e!1aC=4LgnwXgS`>d31{{0kF zd+QCWsI5a3cITli@!Ce|so-bIu>+@6g}drJGUh z-!5s~H+8_bq6!`RR^Fy>=Kd?(-)#qOH3OJcVY4^IbAFRG-kVyR6%B2Rx~+t; zY$TNB_VI4keV96ahv~x!y;joJVNn%-UVzSZ^772&<>_d%fcjQHh4Ttsfb~&0)lD4I z1=vPefbC%+eU{P9vo2NLyiGJt)?fP4u$P5qm}S;qJ4844CrY(h+JP5XJ+W)kMCUW= zxluW96HPQ8dah^v)j!(_waxn%)bnrghD-abzuJ8D{2eFIcdksEB)@`t@kFy@$6qL* z+WLv!(vGw7gm1Znw_vL3=+s$7Jlwxv4wALjC1@!d_&0zaT&cQQh0)FGVXOYSndF6G zaZxL{9QG30*3W;9wzaZX+u~je_r&{(#wC~Jw32k~qV&|qPN009w#&w5UYy-=h*jrt z>R6_AbW9y(`QE>dlIQE{ves{rufFrE6MXfyou6Fg>zHx;n$6Lg6_}cJ4Nx=5^EKNH zhUIGQ4{EkyexKgU=AN(6%O$;+OR`!@fA-ImUesF}!8TfoB-Ce>JoM-Zn)&A-mI-7e~&4sY!Qo4r3k#~PoPwApQrSp4B z%O$0UkxZA;PfO{m`;;EeJytoojxwc3ki58o(sxt(cq;~Tu2s@`&c?BSu;WWa(zY%b zoAUPy^o?zTscm)d#l)@Ydma5P>T0aA-M>1;<8v@BMBGy6^#uZ2p-bqCis-eyaF0`%aG)e}A-EtEofiIjeH`nY7Q_AW>d$loDxD zP&I*%V%ObO$HZFec>k?fw8WSv9B)I6QYh7j9Ph5tT-ro9lxf!cMVBb?_)LPkVvTQ} zifquX1o>6SPhrPGmfR8_%ys3x{4Av zryE~NN!dxoX7o4)y*m^o=Peh|9IN;y$6L`(mpVZ<%H2IoGVv&&mz<3TRG28ZJRW?F zIgW0O6-WM*#U`z_=u_9QNLxW!UR{SjVXWQw*Hft28jQ8I;x&kS&Y5Eg-gxGSxO>Ph zeG@b6;&z0RvCO(rjGoa}In-#y?=NSu3kY+te7W=}rxkn*$=EzP#U=y>9u6uw|IF!e zZ_$~UsGT6Aebf#fKw4t9hzFYDL0-1FJ?3^@YvpZ4$*#gGyaIfBym(B_0Xd8Ih*P}i zt}F@FX)d#`wXWJOcXISjj@&Vqx!l<%cZTYnJh@{o33_?e?%rpH0*=a#h1$%c+^o)}3u-RjRpor zoiVX^%+DAmlwBDns%FM%w~mwS_}d-Gd{@d9a8JhA9pW~7JwdTC4e6tlsV`^~35xVD=6eLhB<=imptZBffG zIZxUD>{0pbrP9(dr_l!U(U-?t!y{WqTsz(>inP!H+Lc(phn(tnJwZvbQ{69pdu_zJ zk{~I^?_gf&w2ZJz8?&#CT1A9%Hr*T#J;m>Hvag+B4apf{E&C$$6DJxovvxf6nsB^N zJwEBoTgcQcedpJMZ-3~2)^=Y=Rn&UuC^vS+gU{k9;{oXgkaV=a181A##hF9jVmEWE zPHwNt-@I4&Ta@z()O^6YvgLqPv>gUGdzuUkH7VJt6uY_)#r{Z^JW8=MWU1_KgkojJ zVKt%iG88L>Yr8vW4}`m*mEO;LMky5sV`_jM?>-qvt&-A^edtB158Yge{dv#gS7t8i}Kl`tz}D+A-2++s4r1AF>Mr@VxCrd`5+#6Lq1ucZ7h&B z&Ur@Y)3os=`R1IhWGH78CL*7OVDA%-!MRHtH}TC5R?mZ2oC*CZ3! z9DB&;k}cA|p(o|rK8t=i!&>%ro$W*niITxc<9=mT_a7)6@=d=l`0iUwusa|`>3M2m zvjzswK?QtTzRxh~4YMRVdOY~HP-)<;m^TeVeHzWf5bBEv#-f}(N}uDb={YYVB85n8 z27@WRtpw@1#R%yIE!MJA@L}+Z3Tn3$QbcrGRdGx(j`xGZ7K&l@pQ z;h}v4_R}yDvBc%sL`}0QpC>2oz6_HRWDOmt6}{^;=!GC`=yA^jpNI$E7C6J!8_!pP zwiAK28<~d2iuz&18ph0$S4GqiKc7R=MGkZ2JgriftD>iwFlX%6yb%C#L{g)(JX`Xt zFIGjQ#zP;?`!|1|ChfjUFB&y-)HJnRZ`QXas>S>>SYK2 z8ibh%M0h#@`~~M2c;5*wr~&#|m>9E*UbN<)V;^cZ{eB~_HQQ+7i5s%xfN(2|$%+#v zJ(1%eJ~3f{xZei2=QILg39kkAv5aAtGIzG$c%C-!K&pXTdKABS=upXP((^Jg9u^gq z3+J$^q+AsprsJ>Lt$E0fW;*_=C*uT(Z|&*$tLXTB^VqVoLWoO%QiiH@6Pv`ZUm=`` zxEdrqFO(Mx6wZnTwriE%N>yodT9x+E=c_yAB&DBtC~mMB&y#R)ZKF=W1dQHyWp-yWMO#|F_w%%Go!$jF(`{ z+?|9POl~g9l-<$_#^WRnLX|Xt^J#U8n{<{K3fJ1+H2y6fO(;^^I~4$m?M>zf%f-~` zIYevlcUQ8vs$F`PJ!nZ%*%v09Eql_IlE&RPWn;%ewyDW3yScKRsgr!-z?_-!OLybQ zJ;6Qf9n7MN_x~n-9fG(Yq(Lns0xJf3i(cCd9Fw zEZ;jTSnOwTB~jv28yJI9ip`_7ercH}ua?q(s-tvvTIn_187-wKE!Xk}q0MS3T_&Y- z(@HmR$CwdJtZgaXLf%tS`ukEk-!IK(npSSeYb8y7hnvTI@8qgaR3WT1W>MxDZs<`$d%++))_l^s5&M z?atpUrxC;bM(E!4QQC~D1ykhL^fqoK=iEo35ov{HnojXIvCq=(m>`8l`-SL^3VqK? zO_N{a=5f2@FO9bBRd)hw3)*?e2|Qp3ICPH^uvK+AJSaQmmU34%J1vZPLcq6d5`OYe z6!8O`NRgDiM()yhcLo*?5%6Y-yeqDO9w8~F5sHEh-@7jO<(HM&_$J?q3gh?ykf#;e`MwOEM60vL5SbIhH-(_1GWWg?b( zqZ8F(_!iULpUtLW30oSk<2`aadCzW)xt?Ad#4_ch;1jC;I7A5H{4lr>tMXU;(E5cF zOS*}<%#+c?Bs zJ9~>qp3oRu#61t|^T6UhcmLBp<4|zH;2qNhod|7HPB>=Vj68B9X z^PueNOypgZ+CT`Q93EsTxInej4GEyn z)=cv9*uvR{mC>r2_*q`(?n(z>6ZQOn0I)&EUPK*b;0nF@U(F`0*)PFT?;7tGZ9g)> zE7}E`b?A1xyU7XdDtQA?^)#x+ezKug*ojHvq`vVV^f_Gf0i1I3o^f8}t|M;bSJ)H| zZIGc)cD*Q*z-IJ|TqpFPRMc8lB;Da@yTs$eFC6Yd(fvBEeCrb1U?rc%{2V7DUCQ1U zY(VEW5*C&)n=L_#x0$PL(ZRc|vfuKIBf@b@^5L&cfv(Dx8{JJEXPzU>n`M<}aiPo$ zCvFK_llwBSRIKla!31!CM>5IOluJO6Gje$^mM15(#0}07dDTC7SvhGK0|XTdqOUbcni8d zDGO)&EF3ZOCX6e+>koJwP`{Zzdsz7C{w%y;4J>@ID7V7G)1lJiv+%{Ru)KbfS9EbU z$i4f=dqba779Q^vJvSf=W1c|$^m+Jm`XFKbgooutmwAz2A0bHL?}_L8vSH$pOxQ?r z!^BE4*0LXJr)kR~Cz}0wnfMlB89VN4DJG5u+n51Uv)>Ma^|D2RfEa9~maE3-;8vKJ zJ&HaPzwoiNK!dPNKWh}8uekSk!9I8|<9?mod?&4sQ`v|bpuF*m3$8y7w!&Y=_v*yrL#V=lZcHXHAa2kXT5MD z@B4<2ShuOfW!z(QV-(Gy^o=8Mce!vh4HEtf%UM~ya#p)tI9%DAK_5#QVR1uSDPA?; zR&#=juSST_PL9|ioExuJwgqJ%EG&A5d5=}Kla97MD=diA%0_pqVqC5jcOWA z6kQ^DzT5@x_7}skHz@Tf3x~xnKW9&x=)J9nal@>(--@{JVn+>!8s~kM+2E@xd?_Lf z`!TsC??Qs3rRl=7i)#$iF0KuCKgD5RpMhzca=V|5hCZ;C4W<-DYELA14a>es#8V`8 zx?gT!!FxuJ;5E|QaIMe7dT^P_s2;9;sz290C{>4Xzv&>UgmLHQo``Wp_WF$bO<~;M zd=kbjn3~SF-^`9D3i|WyfA;e2O-$E-dJW&MlOea3{j>Jmr{UXQ!$hB!Zy)Cv9iMM6 zy5P8cE1FHLmv7}~@=X+$j_Ih}DBql%@vptg_hRM`Rlch}nesgldq-=G{GNsa(VZ^6 z(ZID&jPy1ET<#R+96*4NY!GR0CU;hcPfu#GH*zZd`1**Zi)iu%Wo0g4>L+J?^G4t zdd9d_`Af1?a)${3l4;H}VHzkH6ybCFfKfgcf18CO_#v*A{h?Nd_9_SDl*5&E)hpOvyyBb`@&(IcSmN z`3T#D^AGTA*mWq@-4tNKtRh<$%*`m-^~$oD(;C9vPs6TR$m>nW>quxZI`+AI3FdA% z5x@T5>DbaoC)Tl5Af%Sb3uKwxqhkvW;rN^?I<~z2@1kSNiw4lKpM5%A$Cj%0=-Bea zC)BZje)^}E)obA*pI2`kqP%LRw7xp_k-oB8ekMa`1|1KiEMT8_5l!4|bZb3#4d!(c zH)UH@YkL?N<$5#?mc@W5*s4{-z{Wt3V$sFbeY9x_M8Nn>t2wSJ&9pF9x=~ijYO4{Z zR7u;bL#LGOeloUq9b5xCTLvTf>K55Eq1Wm%6Jh!ST~GXZ6{f1iT9xa`^3+toiF;qp z949;6M3`m@yKW1+@Zyi#!r&pSA2(yqQd#Qj)7Fn$MVH2EA)S$?QWMRF5cbBJb=X&_ z4~L$ccOFW;6g7%pGh$^ z>uQ9jJaKY<9Z!Ou*gwb=SMImP1yeQ8zQ&3HN9 zuiGer(5Lott^n@WCu82j1`7WMPgV z8?#}8J7%qhpEy+VcATxmPp3SSGdcxfz{vq%rf^YkE`!CU%AI^`{8V@8=CL(oXrtOhb!H1GS1 zs;V6q@Do?+!^!UMn-6ttBM}NNnQ z;8tnSb1Kn0&fx|P`Yn4PXwYU7^j&JFqvD5{6Plyf+1ARaBpDSs(}4ypmxi(xc?Y2{ z=mUb{F%RhuWC<~sYLIR(XJnS98f5m>F4d7KlilQwznfe}rhhg;^Q_YPP6>@y6L#}f zv-LpY=11YAy4s*^ zbPtr@b4Ue2^PsiyP{ss98F7?9&~@xGIn;m}kTKu1D2>)&=7DHUv+*8SrElQRkFW(K z>Smcihk848bky@lBF~ie+2>uW%~vYL)(ZKGEkUCl)4-tdEt4gJ`^6>m_~7Zn58#NWB+WWxb0o= z&`|aq4NVc;{*LwJrSZ^?eLGe7cbr51$Q>QOW|$bC$4JZqQ~kXCTty=A``Z`~n$@c6 zZ`irjlpJ-NF}iYsCK`vja@jRHf@j0HauZ`d1J+**$VTxZUX;AmXi14NKahoCBJT&j zvII=RHz6;sc|z8o{vtLkFc7ssC+SWD?XjK_H+iakGEEPqt|JBQiIXGqiJHg!}dve;|Xm>(%*j% zn~}WdSewy=Cyr+`GEFmn+v7THqp%V?q7N|{eL9=b{LlF+?Ww1$N~c!#(XPC@&Oc-cxsFyJ=k#)M;%+ho^zXiAwhndY8ysmNYx@wwY zVJ)oB-lpLs267m6KMcE@)r58@Sd->)qvX@9yU&Ohzk$E{qDWAE*gpYI)8NkISbD5x z?hLHU;&o0e?y6bxMNg@G-zjdVJ8l$)qIxWf8SWL>@?MQK zH{c~f9dGBvIh?p_CM0r(N8DJ}gv9*eEZ0X&NJNI?1|OTP5A`YT#WBq}@eE2Q{v*>J zo%r`|cW$;ho4(I$+1Mnnre~gy5C#lCSPczml}{XH8_|Ts&~HZE>3nkPH~C~PpZrz; zFZqjZ{PmGr*~mhx-=@`_sGE@l>++i;Uarhp40X2nqgkA^x|2r4+)Xy2ymfg|e$WPp zC+iNYYA+3pb3>OO8j12fdYOH_dL9~TuExD&S9pP}XgJeXH#M=IX^Qg>S)-tg#feBQ z>l6^ZPqJ1KWR66lJs1nV2b!1@iV0w4OK_`bMJ%w<23j0!VmDVcJ8)e)&}gG>2MM~n zsEYHi4(qDfJqqNZ(++}a=A5!n6Y<3{<1MZT55{vYahamkR#_8uCuUYWaDdGeK(^z7 z_b>?vrP+xwRmm$)nUX8KnA$j)k6N43U-FR(8z9snA9L*({cK^mkEghd02g|=9wU*H8Y zj_q{395XLt!MIfFKmkN{h)N#-UBDr)W^ll|$r##!U7k~#>*g$zi1eW?sOr09IWC8+ zeK$3dJp&B{PCk$#fH;KVf9NoyEr&hNXz2J3RbdLbhNO9%Y_-ei_#D>*;NxUI>4T5s zoQX7i9II#$&JBW(V*_J@kB^(lyZUM{ijUh8@oviVPIsquMG_NX!)K$3A1OF)@sZLG z!Ny5w8SgB)EV~rER_TXe<0guQ|3k2G%h3}?9wdZ9#C^qzJrgU&IM0SjMaCJCo$i$t z$`$7v#=(OrIGl!G_#=%4KEq+&fZxQvKbpF_M0ru0Y}B%MAKD8b=CVZ5cQYe+i`;FB zZxik5&!QROls8kUyD{QkBghkD_(Ka;6$%+G^P<=Rr;uVsBvRXqdhwh&?k$2fIo-+!qAvwoBdZ zVBN$jNQv$SQKEK;PhI9-(r-Ve95CK8<^WTV3@br}72WsmJchf;&baUmcGQ29^5L)sX zo}8#~H*nFaW%?t5VWmP`?kTui)w#!LPlQNFhr7v$6?#{HGX;0sgu$v&;BK1)E7Pbp zk1Yy!iwcvm-WZp1xdV6OIUnvO??HQ7?Ze&PG)BSG|JyeT3fxU$96cU4X_v3H4%m0_ z{@Y19$5HB?RhDEM}X!3(?sX!ih-g zxI+Bqz&gq&av}T(RCTL0xi3E|A@>`vy_i%%yu}h@v+=hH$6|BE-^Kz)=vjF3&>m%Q z^bKLRsQaortvYPk?-P6E2vV~mn)rcW*n|bdkuL1009m2{&A?v(PEdy(1h0^`;Y;?H zsz6LJBr6l3Gz(xzWq3uf#p`^+h~i~4OlhWj=us+~241T%%a-If9s-@MD;R%uLu8jr z6}vVhTzZ7njW)rmEKvMfyqbApBmBYgV=%C_h$Wu1XU8QLWh?MhxzS(Q2orMCU)iL) zzyY8NSF&*FS>eEys36uuhlMkrpZ5hgN4hSt=rk~F@ml3kjaVNJd`N*34z-_VP;Bvf z-)P^!d9|){F6*1kxv;Nd*aQ$0@vb?-{!sjHY>Cjm8j#Q=z^m{}ztJ|_>Bmj=xigbt zHp?5IJGK907LB_v4#b*`eb2aAirv{@5h=#C2GGiXqY@XRk!g7 z(MvYMnt5rgnWwDD9;Aq!m}m_4`W$GOLH;Tf58Lfxuunt7T+eiT95js5C(io;`%4%z zW*DRajO{dJn z;v=yH7{i1DX_FbBL%{zGFviHO%COH^vHg9Z482bpeG>r(P;P-$)6{3O+8mA}^UJYLYAdATIA|HO8T%l9Ek*TE?onmQIX& zSp{H%keHVXJdNoBsQ%FJr4Xih=S$X;v=LU^1Li&DPLpbqwL^e42AmegfUJC34_`K` zw2XxIlq93>dw>Mm!l9;lLlC~7$Jrfqizw9H91XlgwlJf{PY!p}su|Vd;C3=+)OJ6~ zNpjy&Q5o)jHX3@zT6Q*HHT)>}HTcnB0tOVC;8TvlsIedWSZuiNCQ)p7iXDZP3_Cv6 z%Z>sJ*YjT0b=4y&9~A0H=SYeFLP!LI4acaB4~+nkP4;$)1R&V(b@F07Y0jlcJyGw;Yjdl^Wex`Hwvz_2cIVIN%_3fICAeFkIRwTuus5|U#AU@`>8nc za>b@8NB*iyIZ}B^IWm`u9?OxEoBXi=)80qlE&UK&+RZIuJ#w~4kY>o(#7&uq*+^m>JEqlqN9MDM zn*zel$Ct9{N^d{$Dhlt=95vq9z)lF>f zSX`4R3gOTdHcrV>H#wkq=+SwP-QV$P6M`IA`%f%;Gc&}85nX>V7@23maj(<}=MB%-X ziynpdqzh0H;fcAzhijA%h244--ZjF9zW5XtM#+6qjrB7cgcJQyLv>a07;#^N^WZl3 zIim4k_!ys<%Hq^lgae0Fu0~rBwYs09mk}{h)v2^asP>>!rtm$VFQe{XQhe#@^1`>R zL4;D>6lbC<>s^(s|LYzjS&ial9wV$EfOZ9w9R^JH6{~W!g2~LbjV)fZ0vOq;DHxe^ zER3uV@>4394kKHMTs1qc`ohSX=KTXOGH{>YF*q{H85~)Yu0>IEH?u|tF2c^M%s87h zSnYvL5hpToH4?fWAek&fjbM#Z;3SIf@mTU?T5hg<y4#&z=$xVI^ z>D^K5OUqBTEEO|RO!sG?t%UXT88e!)EPcRexwxs1$OBmTsIoTl}%A~mbgX?Rw9R-<|%k_ynM``57S^f{Pf$yyA` zYm)cZ3NJ?2^g7tKDr^kVC=NE=&|+2oQE+3hqO3qwS&t-~Kqe|_rXt6-g2fK#)!wk{ zn}f`*M`;ac74}srbWEBld>Ll-DLWy1v18HDlO-LjH|tP%w}nGH=Y0t{n-pjFYi1_j z?rw^@jwcQ`?()6N%#ydoT%;@~D^X?98oaWuGX$a842L$bDH0AnO*)sQD2_zgN|_R$ z1Bn0w#BJ@b4}G$wXs!<8ahIYaxZNu>)k>7wm=S?mPrMYBcmIFLq_6(=|C&ilkZpZM zCgLfz8Xb5k`U}O4sl@!v-_j)}OqwUXb<9#!a+3=TXly3e-n1i}FVPP)_BtyS^;jHp zF3=|cja8ilH1?cW)BA(Q4jRzd0nwb(Kx6M&WfJyIOkj;~7t%ZJn7{s?gT^kWN`D{F z7&Zu2zxT=7+}+;~Gd#i=Y3btZ+dl4eMp8G(%TVBZunR>6#T zb5@l)>zML<$XNeekR?{>zk!l6_^P{nu*v?8$>eFTC*n|lFTScy0Ao8kM!v1h`5}qJ z0ZDxkaHctZ5O8VD>2r!Iqmqt*GtD_Z0`4wBzzG1X4+5??SI6YbAf)<_$=T$kHD_xI zE_Pif&1vX3V&G!=fX9v{FoS>V0~gcgEZ5O#;_#^+v=~8mQbdMv$ft>|daeYc)0l?c z=|fHZ(PBQ4kqvszD*ZeNDRYv9q1sl6>@-1530JV0RYqjrPD5@p1T40r;{ff&-=1^e ze;~Q-22j+W+%}V!Ha*E?G-ro2x)&<8QlMf@|1+Ut|1l6$?CN8oVxN|K zAUBDPN`P}c#)Ok*4Sp1I%aJK42Cp+2iyN+c z+%H=giVw296y4OQvSMu|6q(UT<(NZmRcpu(S;W}xkz?#Tm}SK-)U(7)w=lRpMq0wc z&ZtX%uu4E-GwMv7esy3@MrF6X9PF`T&`C(udSPLkqlszVoCru}I1v?CnA{iDbQ^cX zquJ&Xt3Wmm_G+y=(B^yXvrSo?z|WZ)OBDV>0Y+li>HEXXc&nJJO;OBcZzy zKfzKk=QuvlWuFl%tsXpwjRz1zt+CQZE7+P9cO!#QR@v$hct?yp*0Qsx8j5PgiL_MT z!gE4pRo8p$DK%bAi9KulChLat0pFL|OU!%d`w~eZWDaLb z1p$yJ=p<2^2Q-n1r6&sO;M)8^#YOts@?@4C0fwp0`nOlpjkO(%6d2ZD5Bh&DrhZ5# z^cPd($vZ|&U7X!fE3mMw9R&s!HeO+25fDRuJX`-f>IS+D2#0rR*zF1*YEviyi!IrZ z&|&Wxn=RqNAUd%T8FN1~f-opxu<0aF zrl|K3_vJ`pOm_K>NMe3=rd9PZWE>`3)G*SF35g3c!)~OYATjh?1YP0~JvZL&PHO|% zBN0Vd1-I@y4Q~QPh8YZ&`%09EWcZHLAYO?pGTnT4O4hL`Etc!$55&1$ezHWC7s|=#!AHvwLui~fmo&`BPNQ7REx(`j6VK(XQ>me(!rjHQp! zu>^RUyb-aGYllE=t(wax#CynUyE-y>BQscqH)APrRq;;FsI|)eAmrecOHFJ!o=Biw zd_ay==kywKfd;R^cOz7geDvkQ3~ySpyNPqwB7x3G;QH1`pexYkPD_TSwOLgT6zINS zNP<%g-A1BfdJHIGps^0L%9PsBy@idQR@KXpXB?+t>X1VvCfHrc$TMVQ;2&Z4r^CYT zWd#boVo~A*6ews1&=H>`l3^^7Wl7J-28$uF`=McWy}TsNIwW3cwEra9|6H{HEmq|g z@*Nj6*|Wgh2rbAts2pFmRSqQLBx(FqXLGJdW$tBe&aJxZsHNmxJK>b&rX>FmJbgDr z%5t&YWG&5<80SUKgYb=ghFE8EkX`Z$Zbj~)HZn7 z4s0gl7NL(=;8D#FG>5&ZYjfSaHK{}AIu;72AKZ7h%mRxJ3ZX(5N`XR*UX8rh@hZ$$ zD&#GozH0QP)!?XXsg$@KfQ-1ELPNzw{U=0-0+JUdr7_<(6C#^ZwUw-d~gv{_|MA z8*~4CtnK}2G-2>2y7SNOvb{f#(CbBKcgDSC!?~X9M$S&gy<3OrwR1LGdEOeffT*Nc zmK$SsXv>lZH_ZIU?d`4nG=`CW|X; zn_PJ1GZ_L7IVXxPNBFeG1LZPD(vQQmLpX@)`efYQ$$qc)iN$$;AVwZm0D_N%CJ>H?U|FBBV$_2$tZM-#%LHrF*MrVTLJUtx+c#wVWM_uj zDU+vH+8G;aL)$a7`7!U3x>J{BBa8(xxOszhtOg+Ksf& z10OHp7YOF=9tK;wCK;ncRaYui&H^3#I^mLRFCiW3A9(AP%Si>CtS~5k-TFE%Yi*9C zku2sCIu-({^)*@vht38&ki$B~(5mWK@eU@KUwC8ix2TYu%#+R0_xYRQPV00Ri|JN| z2_?B=U%-vNPsNg8FBpSq@5d7HE+M5`$DoFOAv15ff64H;`y{fa$n@x-VN@!(4&j~TKkEWU6Hh_yc)nOr=liIa;P zm?ZUg$zP@MK*kgs6HAnIJE3Q8{N^Nic`W$MBpD(Xu14 z;vB0v;vJC=>TU=T!>j5|odUI&{IhAj1r>fDd(%1rDY1X6>gSa5^}TeOqDSfHksLKG z^93V(J1;g6UUz$A#|6sU#8h_Q*#4nlLNVlw7myRP;?mMF2Qn9Yrn}i4L$tKWMVYZ; zl#)pOkU$R9?v*rjXRCwN(WO#UIDZ8LE<+SK&YvftB znlNp7@uhC$(IYzXy&CnRIm}PslBO`rDnq*KbD03($W)UZce?~@EYBeu)O)_%<#1aP zVNhgtjpT507YX`St@+ie$*Km;T-8F7JbarRMJ5j#=8YxRRr8}i`&J~s0CypLF?W!}~830Z(&Smo#^ z2vo*9WP9E zO4N>ztjYxWagm;{5!as3%j~!%?((~0*D44>%!$hh)y0L^HS~sBK&fA?WJNo(2%8wlc zW$~&5IMFN0uTSA-w_a8{<`44GZA|Y`&cq14ThbA8pCbf^m`5985qH$X zFhw}jWmUaB0Efy+FQAy{KvAQlqaLI+G3}@ogQSz!Y409mpDmG_>Gs($x>T1{`9sMU zDCesZ!I;g-qQ;?((p5Q;Ku*dy`@VDuO+1=1$F`IlIC1MS<227Z2d!4>!rPT1FGieM*$~tb7I`NnCs3F*A ziQM~BjnP+fMPI2l`bw_oD-}jx$rXKNsnJ(*Q~C-o#E(8R^$A{F+Bg$zRmuHkAwkep z+FpLJIoc@%$w0Euv9DXDA~Vhb_2eR1MVN{ZwmFnfE@dx-ocd#S?<`0mX*sw>*eJYS zH5G4_OkZp}VS<*Eg15(JAJ%Dv=}X${>BQwTBw!mEB98I>r&#gS@8u&3Z3mx&%qNT6 zWHQ+xNKahl`X%9(Nun2eNL_vojwViK&+5IQU;88uPEF*`AZ|f1zi5%Pi z3>*GW0UIS-XAbQ~sX9Afk2)XRdJAeE(Mx|-u5oxeWh<-fUU=C~S^H&Vk9ObpE5T~C!n?`A0}HDg;wZ7i@Y z<~KT#_0KlQ_r~^995$1)#h+~mrDHa*IuidHlXrs%e2%pp;VXH^$mpeD2pGscx>77HZobm2%p;YCi3^ZmHJd&KeS0 zS7CnDYqF|NGap<-k_=Z!7t4b^ty{>C{;jJ`&bmcgCpS&&YLDN#e@?aT9Mihm-qz{! z$7@|=T&i_-1GKJZd4G*jAd5sqjk=OflPzSXL1QKE+nBrv&^p=O;%NCW_dM9^5;L32FZgx4Vuo6 z{ta4_eDr2%P`TWUaSDaEfURGz`XanI{Fu}QOO+AfU1=h`Gfjji(?odtF(Q0T?3PA- zjsF#-_$^JEfv4iPbimKTsSc<&9Z&%nvQG!JFk*fO)a&5g*-AnOG?-tVnyhNq%3}u-=-&bL$@(QaqH@!WC^~ZA5xtHPl`18#e^N)Zo)MMb@Sr^Pe^`4P z_$Z2`e>}4BjDl`d)To@sbJciJ4+WLS_(Cv&S=j~jP~&r=Q51u(9H8O}7)%y3j*I94 za%wQ1Z_z`=7tSaI!+Y=r0=@-MiSN7OOMHWXXnx6^Rk8?QaW&Ka8Yv1nuEH0yRM0QlNU)d~Fj72sBT8YU5&N3lkHqC{j(; zBoK9U1ggUazd%i?uO{(`Ql%KtCU-=y##qWIl6C5k&%vfSrauLfuI6A8Z_ax2{Y2iJ z72qDhB;K6m^L;F1bH>pm7!N;+HfKu=17rFS#`OMkY!x&M6{P$s$if?Hse*Q9wKfM7 zsGvi9D!?aN=9!qtN0DlT+rcuATSo;cg$kNepHE~JP^C~ov#Wv|Sp{ui2T?U^%Ot2^ z9({rqT5nxTAvM-Q3*QSZG~?dZLKEL-YM~kSP0~RT{6MyECO{YW;~}Gdo|3gPkqzfg z*Or0VdyF4iJiMavWBi)M@SXpM^GULif^o&e@fXnaqG-5`ai{9SICM-|R);5V9&1!B ztL(GRX)W5u%t$0=UKPoqe{$)cJo+b}{wbh;decAs=%4=dk3s(oqkqcipK|)Ag8mtU z&F&bmp6c-qKeH0gEN&#Drs!lTg`e=c?3fmFMb($xFf?nw3pHWK*S&qpYT86126RkA zY8WjvolCKGJ%)alBx`WhRmZgaj=$hSJo4kouj5Z%g`^|~_)oRmhGV&P*6}}0$=Wg~ z8-Hng{LdI9WV$CGp^%+{Giuez{KeoLa>NcWQXbv99P1T!iwl3E4dBa>dVGp*UBSd^ z`j)fk=;}xlh_p?K;}>5j5P$%7tSA+(`uF!ln@`-?eG(@y(EL2=Dsd8Pf8=%(GHJI6 zT2m(Na6zMuy3@Dm2ku*$NxNFm+A?YT2wH!7&1^sSdHh{7_@iu5hc;Z$pk~db+a}XKKH46IY`nDHQwwO%B5!B(Wc> zMG~L-RH!Q51bpxcuY9)1jEdYG`r6ZCk9GlE)Rgj|7x?~a!e+%MiLt`iN{M~7LSYU z{>Ilr79(S@s-K~5P;NPhv;!dadQ$^wfPeiQc5T)cV5&uvBl6EkABksxCTvsEmZg~{Y*W%k3!1P^N!w4*gl$UNOIWmkCu~#F$^=c=rlkG$ z6}J<%DQW)}G+~>PHb~HfZA#iVUvghzo04{)pb6WQw9^Dl*rudy`~vEkvXrJS>Eup| z?L@8G8hpkVA_<-R9c@6%`a=fo5TYe(dxHj*mO=68KJKEJb$dR3gG}_B57mQE;SfeK zVZl5$XW6K`pmk)@=6%LY6#xdPW1qpp$KVMLL+7C$v<8oMO)1?PE@&R}Jyp;==DXoTwv?Tk z?-;c4oA1Fy+lBeQ4Apzg_i841&37L`^O*1R8<;7r`9@LiHLhKm@2vIIBg1^(WI~tB z_X6qy^R+FF%$F@qVZIqA>X>hHt1#bImHD=3m~T^t`JTV7OXmAWJi~9kOFm$l$9%65 zG>`fA5HyeZzVJTx^_cHPg61*bUlH-~n{S<XBi-Z!n=t z=6gPMf%)2&M&`?wrZC?O6LrjY;dDKAeZH`|KuH@dv8qwQvZmZuWPHLwU)3(F=hoE7NcWL>8)*pV>X}97n z?pv2hyI#=feSp*M06`mu?UzGqcoTh-wRNCjQ_v1as@-P|L{tAv-;D4$Xr7rqUC=x; z{Zv8o%=8VbxUXlX-yvw8nH~|e{=A6EEy${7?(3Q9Hws!74~J}bprDm!(i&EB-=<93 z2to7A^lqRj_F1_(8S0z8g4I_B8q`<0H>=OLr#cO7JhS>M*Z`C^598|Wv+fZz&#XR~ zY-P&QOs7?eBtSWYP{1w5Cj2<5KS1uX{${k%C5l4eC5&Z$T@7 zDLb_1m!NNkjnlkl8=taVgnzKBI#TYcGA4&Jua7~0nisiyk^;C!mWebsnlIEVY12Tn z!4Zq(Ddk|#;Ahdh^2hvKCAu@%%aI1=pV7vTCZrb0W}RTO3HfL5Vev?ZtA@QUo<%M2 zbzeH);@&K=IbJhD|j?-|^H+QEXH1$dm zRA@zv(%2AB$cm4i>(o2T&t(P9kd9k~_SR)%9Ktam#H~dQz>_vQ{_jz1Dpqu~n^T7Z z55GTn7GdOnX2y;jUFnSxEfA*Vv8Try#44dWRE7 zar0^+34;B=;5D>8eCGf(@M*!Zt-6Ka8^5QR$=1o# z!5W1Vk0gA$fCx{D*(qsvF>O)i?5s`_N7mF_NQdTa_ymnCN09}OBhKva#)>`-S4}`h z6~0L}f@jKAX)99}@{is+#MvN9yy%o=O1xP_1?Jd!P+BH4iJsJX$_iR4NLv2mXsJrl zMkTFJ$o{I@NbCvsBb5=gM&vuAKK)hVVMK*P7{G*DQielI!6@R^6XN--AhP}hDFUkz zu_&i#wh@ALY(RVpJ!FemGE#}3U&o)CXPi3AL_K${S~`rtLY^r3>+_Zueg>%q-U+$ zGzC8uyyxpE=-S=*+S~snRdg}F_R@>g$s1ogi-ElHwNK}BJKmi8c@0(U;8h^_~L69OQI*f*72O+(i30%mn3@PYiCGeRwzTrjn7hdPw*nV z%lO(=PdSS~bT{H_z3~kHzVE%cO!Msf{vl|>Hswlpq@W4gl(c34;l9E)C2h2z3EPyk z{RBOFhGTbbb93-%H;vA{}37eC2NW$pz%@wLC99t?FMzE=MP^~gBk zeZ+(=o$#)rE||vUut^Gqbv3@W;c;QU8NmzJeC?+Q>OwGT*=88GiG9_c5k< z%=b1y^O)}ug61*brT^x>9`mgbG>`f2D`+0`eeqH5>oMPp1`cX z6f}?dZhmCf<~s##{N{Tc(RN|J%b|LY`QE|=ulXJ>Xdd%zs@=Ky{x9mgX1-57Og%Ep z_d_Oh$$Upr7nrYYXW4;L4d@GT)Q%48Qrl^B~ha z<~u>qJm&jHLGzgJl7DeukNI9BXdd(JA!r`+ePK5D^_cHPg61*bUmxIh9`mgeG>`d~ z3Yy1!zs8wwSF3L&+W5`)SfcI1e3wD>9`n7K310I(Owc^$`}&NXo9`v4@0$5O`A_PR zVZIxg&?WP|lDfcrZAT&29CXLx=j)*UE*%X*Iv1g05f(^?I8T0<7=ZC zt&8!sGiuz~l^I{#gxw`Z2>-ec+Y+?4OxnqU)*qWj$FYBKFZZp>q)ieuPkilYLG#4d zR!u|S-HWeXjHdpXz5}OB&^$B!Q9<*}^nrrrndzJF;l7@kK3&i}GyPOS^UU-O7Wehc z^g9GCiw#3=OCo|+o=IDEH}`GIq}?cJo|%3iXo{KciLX6vvif!!UmJuro>|=i8-UX0 zVO*Wlb*-RzX7vEFm7T=bKD>*^-4kECQ_wu|wE{u&#Mf3&<-VTy+IT_p#McfJG*5i3 zDS^J2*KN=s1=PA4Upo!`$?JIHYadh#Uo~b=0NSrIv1Vdc>^#0Ut%^Ek#Mg#0()>zR zuRPCf=SJT6+9ROZ;9ZKZ^at+eyAfYIg`0OdzV^Z$;JYjFwE@&2GrsoI zWFmOuYqOc=32E(qe9fFhfSK{N9ES77*PceR|8sop80!50J-+tnMB*VMzV=rpc;jo^ zZYO!V5?>pD9y^P#jTZH7!Zft;wO{{1LUt*>HkrHZB)+!C#fY!1-1Ek_VDGqM$!95z z&q&tNA6CYSHph}rl;LY^!d3enNK)TiZm&&=FK#13V?BD=t9W%8TyS)Bq6svL8X<~C z4&4rPuf3T_nK5g;q+^stdDPJkzy3CX+j*SozXi?XR0j!~$EkjEEBEy{)%yg^<5W)* zG>=o=cnkOSIMqr)^ElOG1kK}A-w?8Soa#-2=5eY$LCerkG?ZWsO<6(uqSpa;Zs4>v zk6sfGj3>_Kx3jM0l76P3^<&LR+9%_vU1O!IO-_TDjnC*_fdZjlPr}*>++#9c1IQi2 zl_0=Ysf#a*hq`kXkM{}TL~1O#AL@Z5mcZ#5iP@1HD@OSPjB59H~QP8qN z8F)uAtji(AySwRv<}t)mL34I@AKF=Jb84U?XJh^5bx@c!#}h^SJJFJJ#QU2k>Gcg% z>U*OaMjOwLuZhOOx8u87&^$Z7eL!<|d>>Ml+8j?5?eWpfP-YbE8gjef0xrv&r6ykP zd{;p|E{(WpYJXx3?h~zAR_;!SSt3pC)3Iyt*o;Sn6HgO}YiO9XY-r+7TzJwx$gfk` zJngm95~gR*t0RDci8Ebcz;<{8Q&hy!#CySKu7J{Z-+*tqhIO3Bvrtav!v)P_z)hpL zoyUN$7Br6m?;~g)1AhK$?&~q&;ezHd;B8lNJC6a+5j2khpDSn{15S+;{AC(&QqVjG zdl(ic1KxZ& z^~f~fBN?Mh2K*#}j852w1_Ne83mPz)r^bK}2L=pS#L~Pga65X*6}Snv_6qz|8I-pB z20ZRE*0INc^90Rfz>OogoyUN$6f}eU3jQ(;_-;Y-81P>}+m!(?zl80@W5CxDZ5IZ-H`;g%_%#{}p8;PkXdVO3 z25n~sJm+F&s0#+1x`=vY8gMVh=#l|HMj)dTwxPj*+0cRpOy;RE;5=YpiOuJ6kz0+% z3)!eE-LV=!K5ESrxoYz%w=9ryCbFOR;Eoylrqe-?J(ZbiGwnpRRkVF_pBGO2cR2GP zGI8X@I+mu<=tLXZQG@|(izGFfF)|o~DJPb7nVY2c7a+lR(T>vb;T!+Tw6;vz6hZ3` zSK+ifPSENyX>VV^eLX?6af0Rvq8&=KvdWI*6mP<6(!ZD*oirNaYcivOc zkFa8{(7e#h=!C&jBbWB|_QB)NOlus&G&!5@gYn}`Lwj4yByWc?+%Q4&sP`9il+cJj@QiYD)MnC?=*08{#K>eQF@Yb~D00V`$??|$rA094 zrl<7)cRz%yR+jQZsG8EYqM7d{eiU^gcD6$1ru|51TMREX=g2S-%~2%+Xi`0#88kZK z=BLe1;Yqd^&n`ia(T#SkyY9HzX})Y9EH2N`0|yH_*S8GOh5H9hr~8ugZzP44KK0 z2^Pf8PFu-lC9>040~)hB0Da@h`FzAF`Z-+n6P_vg!rK$rh)ju`JAia~BT~~OVFVMN zn@2p_v~EoEhR!T%V5g=%*M?6JXE};2CpAsvPHyW@PnhJIEheP>NiTHbXXhEc=eHpI$lpuuDk;;f#m*+eF zV}Am&E_YMYmYzd|M@Sh?qtT$nt*68ca#GXo5~*pAv{6$rdz{p?7tbaXZsDe;UFVL$ zdQs0^J*jD#4+$r(qh?c97Qnm3i+&fWX~;>V;DBQUY&lpTX6K--y_{@5i#jf+1T|#+ zi9EH<;X8k%ZxT;FOF=U9Cm0bctH7G2h?QLf6bxHE1hj{37qPOx{txx=#>zIF$uy7e zyhG4DzB3|d9^bjDi2Hhc=Z%8q@tp?>n#XrGoWXrPzH@}2d3|r-U3H-x(7$ zkMI1UA3ww6J7<9g7tsW*4dVrAw_;_7GLkn|w&-+1pWhF|?~Lq7rgbG&_S|WNlCkIe z9E2{$%C2RM`JPx=SkOGNvX@U~jylLgIVh(`;W#}J!) zb6<}k-XLfmLp(sxJcjtnU$8LQ8E2YUSsZO>AN7Zf{!&3bKJ{eXjh?zF(*)u%#+&VOzF}|t&qBOAy&p~r!Q7k zS4c+Pl~~yc$3Q{5A8P3MGwai{lGX~E$AAY2n#X{@I-dJ_4EP>F^BC~Sg61*c_Y1hM z$AE7aG>-x23!2A(mmkM{JqCQOpm_{9ENC7Be)-s48}NB(<2T@TsC8EcJdISJX~5?& z!E3;uN0@n!0h^%h%z%$Zeb)^5hNG!RrU5_7lr9-?0d?s@tW0IVwSQs*?n12W_+C)Z z?i=tgN3lLV2K=C)c?|d*LGu{!=lR^%W5A}Mc?|d@LGu{!J4bR~j{#2*G>-xQQP4aF zyyOV(>oMSK1kGc>Jp|2Tz%Tr9*9JTYZTtrOE!4Uz1GY%@nFf3&6TAle$>Ger$AG7T zwlf3HM}5}}_}as$N2USKVM><__!#Qag;<%&fFC@Rw-x!>fU>v3=P)fZcD0+avZ_1+ z%h)%)3c~*_R@RT9I40n1q<0=G3x_dqidfkThY%0mSlI|cYsHj!S9;{%`>5Ug65mho>C@l~x8!zg15-TIkIWqj7!%yx) ztZXVa+q;OBT@TP`W~}T8CS(S&b{Z?Y7LV9ftn41qrj7<=H)3UnaPwWq%2Z}G1LvLH ziIts1?J{F!n_zTt%Nr}JW}3%ns&_k9b~}8PCsx+M1aGXYmK>UhymdWRb|`iJ|07oR zPdcq<#>z^W;Ek1S?nd%thOsEga%Zu!zUZ;DSlQo1eH+XI8HgEaW|IYgu%;-KHOqHl*a%x%%a52A(dMDZ=V zRxMcue!1`*`mGZ4=K3MYGx2*alV)R;F=#0aKaVeyc(xyI@$J6R#b1Qtg&*O|7M&lB zz%R$F#n1KNn|G6EhU_mk$CqETfHzm->&ETx9jC9>9t=5W4^56=j%|qey5Z1|@z58s zkv%>hYV}w%)a-F|Y-H@?Y<%gQ_#Eq#L%)1QzZeSx&sfw!4 ze~+%bi)!hLn`}Gjw-EP?nctO|sZ1Edx;@8-@xxyT~?1UqvqxL>E7rZGk-6^4*+-sSkwl5-_zSqA_aT}0j5$dU2&6_ymTFY8&Cz)ScyhH zn5P|>1l7_NH+ii~_tL;j^2>6ygHg(|#LY?h={NABf5DNAT8k8e5n+HYNEUlA;wCTY z=~Fc@ll`O7cA_wd=*odS8gcW+iu7mO)J#nFi|}u^w-n*V{PYa&9UP9v6sELKk5@1N z4F~%_sYi18>0+5`}+ZkJD;{CFM^u_3`v_{%K`2Y@Q z-dT%OOBbw>wruGI^ok@nx6k$=tS_|rhw7Pwy!82$f~=TUjb%X&{)PTxS|zBKE^t6Q z+w|-B{W%qkYIa`WzyxOJ01eFK3ZE$ZIT!;g1RuOLPJfF$Y84*=qkj9(wk!jsQBTfK zKg7Mal$iMb+RR0=k(`;2gL@d@OEPMz6-@BfKfSMpiAH++?t>|H_~3W*0*24t=@ye0OdTWi}2JK9pBo6snadbaG0s=C98UqT~lr z#3e`#!I_;$o)1dSYqI^~0=!I$}3Y{a<;_IS=5~Xl{ z@$vGgi$b*$g-)pHQM~a9qSORY{^p`ktwf=-Z@LFif>vu-3);}i$4pPa&?GcgR#7co zF_Y6#(oeK&U=(iU?c*F6+pPd*9?;U~X<%;myA{*HIG5c@%)GrKP2bF~k|nT98SM7v z8HnEb>8JU7{e$}K!12kai0D{3LQ*A5atROhH51Yg}&1J>R_62j`9h0mBIB@6}Z(iiJsa)L1TxG+>JVe$!P2Y&5csp5K^FML9kx-e8L zVJOU)epClj9)$V*Xh$fjl`s^+Ob^t-WCdYfabc)d!q6L#^k)2My;7(;wDJix#)Y9; zx-h32P^6~=MzK{{)Gw&vKLbThaH^#X6PyCQ=_55LtwE7K|C574wGxFw$m!*2H7_+m zlsPU6)k>5)Lb*Kbb5W>PqVy+}{WU1fXynuG0WJ#F(gnS=p-8`yQc5&=f)8TN zQMOVBPLTblQ~!~g{&~Ls_qzS_ME}crrw>5qpoK)O#){xNHv|B3D@nC4*a)KPVU78;v^i(56r@V1<4 z1q^5Kr;h}T%GT*`V0;Qa8z}bS#&u?tSCF3hg%Txjw)yo)8$z6Iq9)#Pr6cOzi^_sL zyygH*rCPdRSCsFNe(-aZLev|Sae&cmQ2OX#Xba-g$O$eC)zW2eP+C7za}(I0q>ivz z$=IMw)%EtDd!KQ8yBn0#(OWg9ievA!=r6~VYUzSL`PlpRr)m^BOZoH=aZ#vNqSVm- zWE@a}6Aq)I*yeonM_UzD{%uZ<4yHahX=b@FR7)2|g||7+exl*V2*M0?VW?KZ@HXcH z9ZV`X_i|hqs+BOj&Dq+f;ie`Cv$&U|8>*Esyv=!72U8G)`G*TbwGxK6ImJ4d=Ahf_ ztO1Gp6@ajhH52D z6M4S(KGq0T9)vl>g`rvr!`qyH=wPyfFfE5Ux}jPL!`qxAbue{k<(rzO3q!SZ+1s3D zAE|_bFQmT-^T7;|Fo+~jEnV=1^jBi(UVu@pHVO~2<4|X{p<24I+OP+?|3f88z=OQ% zKxBH5qtv}s9%O<85bz)mY*Z;k?LkfkjK+iX*1;$|$k%xejNgO2w?WNKz=J&LU}SiZ zDqU~C2dQv-yB?%3daK4%;Xw+}U*kdESg%G=c#uyIaZvmoWDHPt*MmF+7&$6_53;8Y zM&Ut*yD)wa@=U9S8-)ki*M;$WkfA!5RB-OCIM@-2YU#ohW)Jf72O4f_f-rZuFjOmH z*n|8_2U8G)>F2^wt%P9@a<&epIk;y3aF8Pu)k+xlAfLUj5vn2x^Nb5awGxIsNR19A zCkQjrg`rvr!ye>B9gM<*^m1YR9%S8n8le;(gAg>+htP_3@a_>7z zlz<1h)q%+LAV;Wst31eQ4nV+z%vh&Vh}wgEe}FT}ZLAK~YX@%AC+c7n9;Dud@q3VU zYt`HYJjhiJMurEe)b;jzkYnB6t_L|8y;WnX@E~9A?~JMc46?FCjiT@%buNnEgWLd= z-Sr@s07m0My6IpP9^?QQ#_vI%TBG4c;X&TSUq?!A{2nBxgGmMFUbPEDwRG7Y9igaJ!mtM^(!n$b*X-wA7^;;p>_OVz)(BM*gsE_0 zs8+(T2TAB)a)K~NxiC~KVc3KGSqG!=ARG2`bmR9RYu?fbrSKsCbYc7+WV{YW;Xz_9 zjNgMCs)MP6=spj!rwc>1blDzc(VHZcA{dqms(8`9q#F)~Q7v6@bAA>~D1ERFrY;C` zs|!Q55{CYmD!t$h4L4;$nBFc7)k+xpJFRrN4yGe`%uDxhgrZsrlS?pr>R{#tVgBvH zP_2Y%#%=nURVurokY^C)Zw$kMLaG%o{HJm0p&A%}$TQD@a6_JL%^JPt2U%$C?kI$6 z1q=Kad+CdGFs*3iv$^|R7^@n zR>*;wYM)Dx?2|(QvZHk{3a_$oAF(x&XuHk^^)wH9?rK_I8A#S_#8m<(1_cp$dX9buJ9mN*MMkm+D}egVXvF z7lvvjOdHL|J#;V?L6`$v7^;;pl?3zTGL294Nz+ zph$08LP7<-$|S>waUEljODQ!3z|H09ziE0m(x1Tl0RHR%B&b$k@L!InS1%?eb}ysy zvp-|hlPqee#MAGvqXTc|QB&tL#$M&-S)sHIS4RQ{A@3lhkv z>*Xs2rw2QDjse<)ZjAD!0s6^P zQHG`3(8}kWm;7$9Z&PGc9;bs*`1sph7^+_<|Ys zxBX@dV*lL-GAawvTV?Yd!32<3(O=p;)zXDg;f%_~FRCR_r5cQN*a)N=T%?0h9LNe? z82dm5ee!|q*B3P0C=O(w@356pWgo}@!w0fD9ZV{C1gdpmsFp6k@PVvU2U8P-xyXf~ zS_#7kvajc9genNagk2b_l`woDyH^L(96SOw|LW+5Y9$OG$olGFDuOUmTo|gAFnl0e z|GY-1oFL2@E)3O57(S3q*1;$aWIt_pgt8B0WH&esrH|IZ(2>ixD$I3Zs8({r2eRhp zG(ypl%Lj9{3q!RMh7V*n=wRy5$_I0V3q!SZK`7p;9RL{B1gD%yA4=;sXM$5LU6|mU zQTgbzYLwQXNcX!aR4Y+9qjHc2r6!0Hb5W>PqSWCw{q0;eF9kuAKe#AVD^dCr%0D$I z&1mG)OH+rV7pkQTdTB$E{vS0;Afs}U1L4i6{Ng`KStk24D$jEJ=ZWVdqjCm12fY}D z7lSEPJGKh5$2&l(r3*)bO5CPH8W{g>_EiVM4KF62Ar=%HxSSvhw{d@EM&*vDHIg(1 z7q?R!Huwu@r6lw{FX=}Cqq23y+stpaIAiL6n|X*DC2+QR+JVS?oB3qDng`06^x0K~ z0}yzd*$XJap;f=lJPI)KO;sCd0~aQL2a5Fkr!+9M1@UpS;TH#nYUu(DZ&3bM0~6Sw z%yKX?HYho|-u?|rncJI>2>d4>uRf{Pr{dU~hyHSdVjp{H+X!n-57nS3-e#`**+KEY z&HUvFjXD)^XA3Zzx0!eAVCsXDro@GzS~)7b&H0NC#t6dv_LIX6)k+xN=Dhp3MyOP9 z?)}$=p;`&U+nn2UFf~D#n_L*Gl`y=`IYI|h5QHgkVW?KZ@HS`ZV;Z5FgKqDWA06FL zt%TuiPK6GpA_()K3q!RMhPOHU>R@t$Fn@Jns8+)8Hs{5EYlNx~dcGbm4An}QCh~k2 z>tM=*Fw1{%bVIcghPOF89@TJ@6@;1W!ceV*;cd>NI+!}N@-0!PyD(Hsm%YsysDyzp zRAf}Pw+o>Z8I^PD)T@ocgFFKix!U+WNKZ9Nz=K@lKxBH5#~xAhpzt8aIsgF=awt%C z*Mn^O-WlaK)~f44UYw(WQFxHqE{xxUT&#f!c#z=^MurF3Q`g(?K@N6%yB_4fwQ7AT zJjnasIb-VgATbS!!h=kAQT!g{$A>lQRCtgmU^E`&E**@*gLHFY{2t^49gM<*Ecn*p z#_vJaKBN&U6s+BP8LH5zXB9Iu$Q&I^9YptekYB!bgrZuyY!7m-5(XYb zkx}`agi&NvKJ`@r3-sz{;RHo zfwH?Eq!uumGsyEZH82Vfa*+$;_aMVHFaZy8fP<0YLAvRB`#s3JDO-??An8jp)cRC- zkQwN&IfFzsC<+fU#6|IYknjJgQK!O#?Bxg(2(?!0U=$vt=_^|&Rele0ybea;L2h$l z{2pZW{TiWC!8Q977lvx-vOUN+9ZXFSX7iVhP*f{n*n{NhUH6cxl#vH5rjF|g`rvr!yaTW9ZXITX3ZClZm3qmum_ntT_cpjgVeY% zeh+fK4o2ZYid`7L2ibD3h8u+k+5WjBl;49qq=Tu0=spkfk_$t%blD!HKf@@3VX2^s zuV)x#M&;~jB$NWCE(mjs3q!SZA=j<}x9PKVFqAXt6YAs7NH@$4)k+x7sQfgk;ie;a z%zMCvp;`&U8I^bGU=$gZ!(14DM&$_%qsW4&2y(MG!zeQ<*WRPDo2cavd9L_W*i3Y# z8}hu8`znSfKghyV?$3IqTB(qJxJ|cO8ojonm2Y^?abc*IE<2-g62mAILOGK@n2t|u zX%bXRmz`1hCk>1$qw)m@CXiA2#NBGWE>d`vYh4)Is~{_ZBU|U`U=&{EXcxxzDuCh0 z*7v4{n^bTe|FF&0%~Yxtx)B+bGjuRDL715?4An{)_A39QgDD8Y3~^zoR>H7X`M5?S zRC91z@8!Z!t%PaAZMsSaQxSw|+T`elY9&l1!4&9Va)L0oxiC~KVe$#)?YlHWDZI)l zE{yF}$Zlv(jn%=F2dC!dj~$_?R&q0eU=Gp2WCdX!cVVbj!sHRm!l@de>d?wJHAlEG zR7)3xYCw^`f?%AT%|;re0H8CKBB^r5ooX12Y7l1+2M42yYP#a4`04lbz8a*75x+dI zZM4}biLgL%6F(@Qeq{==5;P0dmsQ@%5M&k^UslOKbDus+0~1KC?BihAsg$}lQFUCF&wb3}2#dx;Um9I<1BadU2jUo-8=NI`F`O0T?@fp~c9 zcud?Wf7cx=K;=cW5< zdM}J9QY=4jb@^~}EMJb$u{-_XL^U6(CGQ~zC}YW+-vOr5hiPCYRrtp9Vh5wNLWncJ zk^q+9uI3|<{CuzrAkF*c{PZ~Ptuk-L_g2390qH}SxBJDFb0fK=k4^tj^RX~8FZjyw zZbl+^RL#{wpqC@fXqv7BlEO+G6<=OC0620TcT+8E`O7P}-=;=Uq+0HH-$8LxEo=G9 zE9*2Uid4)0x+rd{Wosh$6oAuFXnD6!DE))UpJ=ymFe`o97{CGTe^dDx2>JW`+zw ze`)hnOBePoxxh;Aui-(JYPpxgMj-z8Tm84n}cOyUm5MPihzz zKB={j*Km^xo{dg%VW^faJN`FQ2U8P-*}TpXifSbcpVZFK!4w2x9(Q4=R>JT}ZPPf7 zP|Y~<_)K<$3q!RMhEHnMI+%(e%)u@U)k+vXsU5F_$qB-&S?lPAY9$Px)K-tx2&Fiw z)wnSBNev^_L}#OMIv6^O`E*n4!ceW`hEHmFIv6^O`CzuUI6_gagyEA~ zO%UaiH4ZOSD^cojn?6f}QV>LW$VH)AiPE1?KD$XRQ8OC(^m3t#LbY^3FKsB&rW$3E z|H~^6a3D%2$o>@VN}sCf?@zT{x7t=mX`bjmqIdf98_7acd#H-w&SyFh>^&4!(?v&w zO4|9vHAw!@<6s9wh8}OsOTT-Aj*FZi7yCE>)e)+;xyUCj&SIosP+?)DDY(Wpy-o6n zog7sQq?aR{bNTW0>cLgK@0)QI3!vNLN1?%FMomT*5ceg3?0HfKaY`<0mLmLqvH=|t`s-+7n32###(ZB?@DaSY% z8QYY&uDAb4|J9qeAQ>T+-$$$UsW=Nih5m9t?V~XC$tU3%8WhFL&MRCL_hn~o4IMbn z0E%){6fZjubA$s9!o1?bP_2aF%}$OEra9>R#<(z4D`9xE z^Xw>%P!&O#<6Ri4l`y>7xj+Y#6NLG++0hNvN*LbkY`t2;O})bZxiC~KVVcPQJ*K@=I6 zlNm>N5UQq&qCNaAmLH8&FE|PhavE?n9^_&*ir<6$yuwCsJxKaWH3JF{GT-T*@OzMQ zpeWa>HVEs}>y3cXc#v&ZXkZi`+Sa-Pq@9^gYIwT zYJDm^$kpht@gV=ypeQ`ZkuHkggZvLrl%t~XAg#-6RRlc9>dQ4S3J-Fh3q!SZ(Xoft z>~T66g$Fs$h4FikJRM9bxMqi37^;=rum@?pOe0iH5N6?0M>kX}Vc3IQse>s9!rbh_ zP_2Yv53-jIra8D~pX9<&t%P9@GIxYVsEQ!WS4$kBs8+(T2RUB{lM{rgb781f!mtO~ za;b(Jg$KFBh4FikhjcIs4|0GD}Z|P%T}y z2f3SJR31c;ad{@=2oK_ZiRH@?16Gv&@PE|{j>3cd+~h1c{xir$Y81Z*dC@^|JxJ;j zH3JF{GS2B9@F151MY&eBL2Ev}o&Xq)2k9u&z$iS(7q2@oeh*TsfeCn!M;(j|4>DNS z+wVa}y1iWwvg2a4J{2D1X!O^3koz?#3J>zpA_v9qLHYqjIVuVdG7B(rRH&9NSbGi~ zW!}C>1EcUDLtPlZ2N|n_QFxFX7sl^F4$;A+f@}8TMn@>Bl|r!xS$LsFsG1v(hKqs0<{kwvjmV@{d}ij^Kf>R|XPQ+en;zxoDV9Iz{&7x>sF2x#^d4 zBh5ffU#>-}2=Y{ufkf3dPnCp}r9tw$+jAWdHx4>&s7{{zAQ#;nfa(ZU+g$V`E`A@P zLuy4k-)J>7xSFAAx@g?nQKlbZB-L()qR&308yQLLW~iDjIuF;QO!wCyH7Xp=F%D3| zb~wlkWrx!gC((ioH7Xp=$FGoN#81L@IDp|J%hfsR@t$FyGF1grZsrlTR?I^E5({OYzz9lP(O^N|+{^ zSxFsCc@XAu7lvvj%mjitMF*1=gvoPZs8+({5zGfsjZk%H6l|39E>Wd0hg1Gd4vWj zn2uTKz6iyIlHa&7ymipI&ptQKbB32{>9RAhXAe+`6HLdP%@Cg>W10N~ zr(>RozKR(VNXNVseZ}<1NXML0tnTbj$2`*QoJ)*zI_5BRR{4KrI_5{ulk{Rk;(pns zOvik-zZxl!j`@ItQc7$!G&4T>Ti^9C2ipN{#$nQC4X>6pj4DE@TJ zi!~^Ubj(lYIuiNQF@Gyk^P)({e8@%dr(-^*K~bb*Ug)Cu(=nqO6h%5_*hTTDV}5@I z*^GZlRHtJ$|3@r|if_KG(ZMJ@{}dO-_WU@&v*$li0~3fbp56jB7HUjULUg@V6MU{?uvI}D$ z)}T*5tX-;uQ5@F3e%e+_;F~Y^(7~jF$D_ww7^7NL$wly4{PnGX}D<)9*JUMZPTe5p%jO;ZBIEu*@rc<8#*3U>tN_O=G!Q}=)zE~O1Z#w2cO@Dtn=DBYFJn?*_WBzh7S%_*6Re@lWPl!E$ zUaT~-9Lw?a)$3;$%i`yLlMLOmXMheF2lq=k(P|XGQl4@U+*hH$o}^|#@hY^!=^l6$Iu3;b6jVf0q5Vv4hH z9{S5|3f0nu*~;mdPn@7eQM?LW_o##7e-%0yD9TY$M5ZmkXkLZ36>4DWgVUzOg`rxy z?9EO>2V(?beyel1p;`&Uk?B9{U{b;D#eZEGs+BOj*;(^vjZif~n44S}s+BOj*%_~c zDG0(8xG+>JVR*B1s1Bw%==?r;#L*4aN*LbkEIM8zR7DWxK^KNCjH3JF{a;(!m;6eTl6y;jg2Cez@y6ItOl&O|3=(PhydLJE(!h_6q zVf-HC`G}gEfCm}wU}SiZ5xU-f4|1^E+w~y(q4#cjkoO;Q2Gs9C9zR-*qVOQoT@=3u zIS(kxQBio1C}1=mWYeECFbWUS&4uxMkZK)_!h4K@T z2U&fTMyQ$~%!w`x)k+xlAmel}1woiE|K$ipwGxIsNS+R+Ik;v&;=)j^gkcZTn6DA4 zA_!CF!ceV*VGnYp4kjlEv%d>NwGxIs$X+@ag$H?Kwxb)r2bp`MMks{`sd8cb9^`x- zjKYJQ>B9Iu$d)5C+|)sI-%9t(1CCHsOPB3I9%2}k2T`PBKFc`5g9Oqszx|_nsZe;3 ztAV5OAlIl-{2t_J2f_6q+j^-PPpi(DAL2YK#rH8%kda)5)8;Xy9d_4a#^cW2syWQ0ohMep78AT!Wka|U_rFg1$8 zgA8#|{2n9<6y>NWJjh;-FoA&U$A@ZQ6dt5$hOLvppM+KEU=$wYHW$Y4K?-y*so`k)Db-JB{Pty+UAMVG1nZZlTMM2 zd2R+$ARTjz7O5i0)3$qE>8RS~sS@|;{WVB_cl)vf;>JNAIY1{*evpfC4uB#ZGpt2w z1-Cv+JU#=7s_AmlG3V`1JgIgwlyB)n+BA(cBX%=XO_!67dAf0ScsJuFX|5 zq)Nve>cWsa66}a{%v*FY3Wt;9!q^VSPRBf42a^ge@r#qTb`n%8x#1&AQ&=NZO%UcE zE)3O57U>tG6kFnwGYs+BP8aQ4x`GzS-rZ|-q~qFM>lhTHV>`)P!#2*Nz!!ceV* zsU(=;I+&aw%w;YN)k>Irg4wpOh8u;$ImCsr9S#P(iRSkl9ZY#}indseZm3pr!$Gfe zbud{$7}JHJS_#8JuT&3>P<3eKo16n&7^7>X;^1{@_S`gy0JTP7=#Xd1OHTa&x&)}!d_)dA7m!Ly`+S~0Af(YnB|vs*Y3-S#^qJhk(;%B(E|v-cQ(W1l9&+&V0H^;u;k z=jU$e?1WxQ`>YyfSO={`r__aqW@Q;umem2((Hm6u9MwguNqqdX$`W1@>;-8|2z`Z7Ger?GVf z&HbBiF}8keRISK07Jt{xNDj=76?II!GG=arB8YHlSBz8$~~i{V`g!CR|mug;Z6F9yOxJVvxuF zkiHJ|nEA=(4dEjzsX`XT!;3F0zNq-(zg}oe`KAV1kD9+l%`L?XhT%<2pKp!i!bpEm z7t!pFnd_q?FU&I%>q@QC9;H^iXQ_2zZn1e$o)I4MUZ1Aog*0lV=D;4M=8&GH=0&;4 zIjsjNf&b&?96B1tP5$1@sQFx-_|$?TYR+onPji}4q#9r?#nvq9S=F{j)u($zlXKYn zwPlCab#K9mZps^3SjP=ZFqitE3bVvoL~RVS!?0#B&r$PxBlLk$w0&IvsJSc}>ReP_ z-;(tj36@H<3_*9dFi&TXC1kq|ktj+B!R zkxBXmV^QpWI1OPbB~&(G<1j5aQ&Kkb|m?s*b#`BaJ6~BrGn9mzyg)2+@K%`#(G73L7LYs`D4W;3s>tjVrP^>NOz9C$F{y`-Fnju*k z@*DIhlD`}<9{DR#Bjq21TgWfW>$wTyQ#}d{{A@1f)S*bdUc>TJPe=X=dj7BTw+-FM2Kvdsc5J+ObbW&94c1s?~r-?|A^H3HuFK{{s-i5I;mqxFfW(!Lq7FT_?NAcp%vT14(cr2NnbFMW! ze}a)5pHog#IrMXAU2*q!ge|B3SjjfbdJ;oPs-a~N+A#{36mKc%HDQl%^%`JBt$TX0 zwB~o`Sqrm>Dx|kL1QskrOko zij+sqw_@fAkr?WY82a>&S@<&t!zw{b>(Yo}Si>X3@W4Im=qXn9VWbPpvY0jZFd~Jg zZ6yNcSa{lgVaSR0Ml5+|5>&LG7#TJs+3Q*HVK@Pgk5mk?VuzFuv8oRtc86Fq4k3NU zU^v#?Q|Q*P9zKPt;^F6)7~$tXiiMva9_bwoKmSe48h=VTP6g4z4x{j==+@R~;nsNJ z>Ud~nybzB1&3NI`=+;f~P;)%=Ydo|jTKH?M@NLX@%xNQeX%Y|l$e!;;;pWmlTVh3T zkZQ^rpt7uz@X&Vn%2?s@I1I382|hQICdx{?{}8VJz6Ur9{WLh4{frUnNX6cyg|j45 z5baz>-l(%gXt}^BDv9KW?|k`p1k0eo3iuA_BsT_Ky{QoX8qi6UrciQ@cc{}N3crOuv&)>{(P8b+J~39AU98s=uK)AX2lqA6}A z=`K8NBR6Oyyr{*`i<)n;(MGp!j9ZPwLDXUMHp zp9xrTdQ+nU`UewZB6K_LCf3;V+hAq)2&BcIhTtdTg`dU>KZu7uHIgUvBeTwlg}$Q6 zggNu8vG~hS-2A{O{4HL%Hdgq1G_*asbwjl92k;jQwZuZd$3h=PL)(mGU)Ffc>=i*v z*d)!mF*G}KX?B+JDkvu&pbe{U#K1u3k)`C*kQb1Z^ro4F2^*tHiU~>6wZf>{-XlEi z7cxtH%qwOarll40emHfW7|HF^8BLa)2)o7fADrybH(Io^I6SnY&lV#Ti!_YgIO8C(AkqNQT%dDtah^!eD*gOn< z?EP$_eZFP87M8lXC)_cOy0LXB^qdt=+_5h{j65iL*6lPvWU{mkD7HrQB2yNts@!BP z#!kw-tQX8Q3(Ii=-Q(uec9<*7G>80)`CNziL6ZLfLGlkXx z7fO#$&G`ph=*WS+V1(gmw8X*e7?d{;Q>i2N5TdB1itw~rR{TnPt&0}IZFNM=?dQo2 zMXd1sSh5#yGhhz!!e8Ub9uF43Mq0qCQ~WB*EbJ)Wh!t%weqDapUfO+4xcWMbMYQlI zqiSU~ZD~`VtQeA2YE8;tkirWN>!9<_ygjR=XgjHnwmik*_y_iW!x*^^2LfzM&B^(s zPN>cRv!puA`F^;C>V~0!>gdFcPh%|!xuqy)YDNNze4g)ZF+oaWPAK3}d88PC8jl^*uTKw{(ohze-)97_Ak6i94zE~Z5hv&=A( zXGUmMBoBybgsEjp$0Ica zj5#)ereJyMwAI@>F*Fexj53IA9rW-SJUY&(yh@^AP)4p3<3fDUxJ(DHa$G7&0Q1S& zC@?NH;!^{EnpMxmoOvixPfzA?p`OmTOu&bLNfRfjH*e)}p$2kXh^!u$`S!TnvP_H% zHFd{@F?KR8NL_?lFf_z84^2c24Sg0vLlD8CS;!qpc{Jz52t6E`Ep^R%0sMJ(9o1nB znkBu3OQcpZy_);R%<2elgwU>y>mQGFaQ)m!ipz&1xe$uRFpu?cPb7ywS4Y}WpSu37 zZJk(`-s|VAOSIvn!Q#m!hY@Tm z=?q*GJ_H7i9+^7e79KcifHNreToLBP+-!ta8buxBPB%ioE^2DDhivH*8Zyx+DrOF* z67{C`QQCH1f-{?PQID(bW|}99|EeNr>2e_&tpvuKk6Q@XgaTtdPkd_QPqSLMnA3_Pbu?ThyaV-g1gyh{fPnPW zROvV#Yiht_{cwbtp|Nf?ik6NWjj=9%wLkbWtUuOo#F&_6{c$escMXmFrF2Gpp*P=; zr!(rS1$;j-2O~cvANQ~V_lzpRs}>s=c77xtQnkb|iryUi0LDDk*BSFlTP3tOcvM2^ zwh0h1=I!7bD#-x_D(MiP3i#8kJTB(sqe$h#1=3yv_l`@+`R5E)Q-(Q*qmCQ5vemvrLRzrWj zpO}TokdnuC2A{Ho(4G992%ZeZuNc89A8V@WIO;d#?O90SbF2;`*1GKp16h1e};Vw zrjrB?)DsUVk6I5Oz*?|o96)e5;BF8{U8C?<99`3s_y|b{0&M#^8$j)k0*zp zihwwV<-q9HCD>wMSboO8VuKk^4(JvwY6;)-3E`R_AP9^Day)tIp6K({9z&8nPN(xy zXnPzAK8&_Iy$4&p77sRiEsb_I#fz4VZKtzqZ$75RLo0?Rvs-Lk|MACj!@1dON1Yo! zxMXe4x#8op--%W&=@u{gVC)y04?H(qkiFJJ{1zMBaaZ7x1w)eArw_Gyb__LpZo~cn zbUdbWX)Kf`9ea-ze4+^7nfH@C_;I;_|q+%{24kb?bEsW!Ce5Y!I%e+C+V?- zpB$PUt@;E89^JZF82Ca`8v@T&i*uuk)7_%U^AVX|629kg(Bqi1$)3Eg$B7Qp0HY8x zLhsZ0&)ggjwZs#vZaH9}HSxjhf#$?VvZI|#<3;Poem5j}>D}4UtxMTp5B+IC_@+vTKgSdadiJdbUV+Qn1#vDu_g{PAQ}54yv!^Wqwo+KVBs*TmSUONjAiDpnAsSG zDxzcK04GxTrhG?WU` z$mSFMVVP0$UBjALhw6q({39kO9ed5%a#Y96#xib&yZOU#7dKbO%x4Xz{Sq@1SwE9r zk~t`1W^K-IT;z%(4~1bS^7+%u0zvF8ihiQ#FA75x!$eUgigFa_UcsMcjuFHOqNo%_ zjVPvzVzwyiL{X0d-RJSAnGJ&2B#LHHw1}cr6m6nNiJ~0^x_9uWnOUrh+8j~jiXu-G z`J!mu#`1Tl*ud|+M_xuVDu zMUyC+MbUx+-COz7OpXkiwJA~8E{YCOWI?+t5@q<1HNMB)-L|yUBr35uY~E`Hmz{_y zN3s!itZ2&0dVR*nkHdG*uZNkYatCzJGM6HP9j-nJd&}agI|{NUPhP~E1iS(400XaO zbyip9!{5I;8y$;Z-En>k!i$L-=nIG4l?iGDs4UzP?JweXI&S;@@OW10yZxhCi|Xi+ z5^rT9qM4Z(CYVT}pPvb$NhaEHTks=bFDE8iJWO<;PBKBaU?K~a%1j)^ zOx)2=uZdP>;(EbE4*L0-Alga7CUS9GMoer7gNZf|6M3jB6gEM(U?Lwy4YhvwFRY23 zFp**=Y6KGn=;vpGXp)KExP6&mFC-?~JxugNon(S;!9;%)%)}wY#Fo2yW8=Tac-;i) zU_Krfd`!o@@bf{m{}IZVjoZ(OkGJ;&A6c6+CrBOYP7}(YTkuhjBL63}zV{^JBe8Qn za)4I+YLnn&9=iJZAe!W(0k>s@TuOZ8diZEUo#caV!ACO+=3_7BV-OaV>IW8J;n-42 zx4Cp{4eDVghG8u#E-LL2PTc((X1WzGH>xI;WreFRe361=uki|#SY<8_<98FPCRJpG zOP6$S=656ie1STQC__xx8k$#Z;q|-qx8Csi=FI*;HNr!e7QJC64cv!gYq7ZFrf7*d zlUBU&v~#dhY1XegR!iT%^3pLIuEehvqMa;;rw+I6zd$V~?F+Tkd(={ox}IWq=oV_3 zha$2Ct=mtCW?9UUT<#Xln2a@ zX4D-eTGK6Bx1cDe)?@hjqzU`^&Eokr{CxU16+@doTVC&VLVcFIxN}+!-f?yg#BR_k zEyH_p%P=^qnq)Y<5jSVn0GKx8)!*Xr8ZEcrfyJ+0FSKmnfqpF$O=@`%uY^rD2^Co^~CK&M-F=vsq)W*Be_IoTPVP zi&ubK*%wpxnVD0h5#&C7wIc&bI+xyXL#zbehx)Ps_ zs$Y>*a|_j&TStX&#C!e0!(xToa7t~C6=LJrGAcY~9S$pB#6sJm=I_XOxFdXI366vi+pYi`Mqr#(p z0MqTG!kgb8`#Mh78^HId@VJdRpuB_6pW?%Z+4%78sPN>qF@yxF7CcKFZi$&I7KI`eeA6&dnrard{-f9#idLbPac z_|Bi8u$U!OnAjMzSc5T(wTFZ(Qe80}rZEg((_q3_4Qp6G+G|_=!qq2&4WY85aR+@R zXrVwh3k?F^`9fK%C@J6q+%%!(mpgD|=2Ka+XFpO*&s@YCrqf;IfLPILQckZ6=-)p> zGmx9L^bItWg7|NbT?TC|hBjJBHO=_279Tc{YTiJn$<2n@f{|Kb6#W#gy6+VVOA8Se z&$%_Q#ddb*^jXTMVOhthEDO`~%~Y4^p5mZ8tsucXMZH1Q%SJgta~&AJ&%@zzV#hq8 zC)N>kPtCvx%{W8=U`@UDLsa0#p1o{qiX0g$dY@HwJN;YORaJS%mlU@OFW6u~??VaW zVn$($FE?#;#BSCOZw z-e2!4+Ibb5EmpA>cs>6rMl|+~D-*4_ZJ<@8+g@06Iy`Gm8|wOsHHU7o=A=-xQ|o2N z(kjN*DYnLovf5}DFtY-?Fr3%$Z>kP$7UeKm?8a9n+FeAt1!4z^f~`Ot%ZNfB+9V7SbPv4MY1jvK8y~7PP?oRBDKK{`ASP`r}PpZ3^`$TB)DK=;5jNkY$fv zGY@>mN3W;C2qg(Q7Wx>F^QbM7j|$&F$9nG19w}xfr*qZ(*(eZxJ0JDUL`n8QSYbUP z2C>5RxBCNp8pXU44g zBn#H7HZGDRAg{x*k!OxYf@yU0reO%GL`U`*S87c>BG(wbo<76z7EL^iHcnU@tVUuW zT)L*D`(iY_H8y%1wK>;{ot+yWdFFV$Hi?h!WKvP=jNEYPrjqW6IlVphA?Sb}2vt%6 z)@ryAim_NR&_)~z#sIKnLtLAdD05*N7Xo%68HkzBWfFj|XGwEGR8L`VBHiNWeuX$zv@{5-V-2aCIzHOX5h& zG|a~7{AuQF6!B!Qze|%u?3?0^&_=v)J>QTqvsIbNT#o)IEtA*Y5;IW;xZ;Mcnr5RA z=viSKVzwP==flE2|H1aTm4+ocve)gf&(rdZ(Ld4WJ{w`5r{pb?_DL)jhf7<#zlnx- z#76(h#%Nu7b{_0=BI1sYeO`J-9vZfHUv1kb>sCy4gdfO0VFIiri?xKnG23T}#ZvBu zePSeOh~lu%XwiCXrs&fxH^FT*N6nuMq-7Mg8lf$)O{1_~1a74YVWmSyW*>?eZWOl3 zY%gJ>9L-9={GkCBOMu0T8@3LEtdeedB}FBt} z%t3)BxhPUKml;{sOzJ3JLm>sc6(4-Bq4$>y_%9+=7_o-7s#3{CC@OCbIc=|`T{+5d*N z7Ju5U&z4mC<9H29-snHjm0?XPqpUp)4%(8RvQ9Uwp$IhJ(a)gN^TdBh&t@y9-WZEh z=NO@-#@Y@fG2U{OVg6_!fy=YtV{3FC!p7&&8!qe>=->B;jO;sbkQI4zka^XMJMdvZ zEVOcvb=8{)yDyFvH8Xka2Dx8B1`wO9y-7P-n4Dq zfJLJc7AobzgOD!93x|Q6G_l2W_HDH^*GMjiFwi=o{~+`F7k3OD*|!8ANW6Fvqy=fL zz1u!7nJvZ2+&CG@VUTXaEk{G1l`LJ)y^TU-#;t+cARlDwZDk`lzU1y57+W$8du+)L z#MplHh%>f5ACqJIh#Xtws#!^D%0qjIVGYU{TAY8dr(G`s>$L3ClD~Evy@I(aYQhWI zJ47ix*4zOxs17e{un)w)@z6Vv`P>pK^5a1BsuxHBBz%c=)sNZOFGh=gV6ro|=zKFx zP&u~I_K9GYKPxdT^%YYPc8Eb^gh=<-F-oZ1C-$3(v zmZf-*b;7xjCtCC~lbpdscPU5aU`CUFCvk2$7K`N?Y_IVim&Mrxi43flVqq+`dK_9} z#-{8L!R1Z_V{(gMrPa)wS&n&31BG;_WMc&#coXYl<|-_BExg9{Y2v?|!Tz)rEyY@r zY{o72RBb4*%(aM56upMww=*%>fg)9Z39Tj6(OFBH@WH>9&|_0?UBGJzb+_$}+6sG1 zJ?z-q<8_o=H>j5o0FIyuz5A?-k8FYfV{ng@K(Nu9{5;7q)GtRr)JQoBXm4uP_7_Dt zcS+16C73gZ@uy@Nid0(}$w3_*Ir8zrF9$t6l`Z6;?zSA%R><)XUXjT)@xw<*j#5{S zh736-IC7*A6H?1TFH@u(^p*v3bciAkkHfIw>*`649R8HdMUl#5IjEx}M=L(~<)Ejh z&OBeN?Zmsiwi7Y9t#g0SPf&Yoa$vl6!i^ z1n%jj5(@GDsI(od=W?ecy;w?(fUB`)QZI*fdPC)Bot~4LGK^WL?l$YxRqVYB_qor#=bU@)x#ymH?zs+h zeVzneWgX}ZH}`=4;_D>+SCDq}&*$6z=|6%uJ`#CqAhvR(dxY$h#<^|? z6x*+ODUZa*3=e(SgGUZO((zF1iL)oF3s&lLv==;dz4a=KT?+N)tR}ST{YlS)#6N%w zmPPISVjlmwW*4tfzr4K0U1(U$7g)7#LgcoUn8*q)JA+?*qCI0ix#QpM6a6ap@+wdr zmTvkt&N!4bH3Lg<*;;;tz4%DB+Rdflz?0Ex{N*38415Kut&I?V?SZ)Sd%jl>pwJLU ztClpKSUvnkcHB3d-&(%BThrpWSoy8p(Z>D3hW|9T*QockBH1vPZqd}|&A~LaKkN+) zHhfmin+@|*q&QH=q=EH`StEN6_NDC@ndY>xx8IF%u)Zam=}MjvR}Rm?pW$A!R36LG zCRvpVzN^1y_$Iidp>m&ZsN7LYwHZxuSmJa#B={@N20lFNlcw2YA1kXLo5%6Jo#nxa zkFxn+He_QYfGY5C?JMA7Yo6fJ4iJiZ6N^zb!rr;ThKp}ZA`~Gd(^`u-F1A}XwbA>{ zz&Ig3G;GGRaD96>N;l5k=o4p~eewA5@!XiqX9dTFOFESpK3<4@bo*j(K28MNQ9#G_f^#Zj`^woe!TMS@WM4S2ldoi8?5h_H*|M5_;-4%N zgI$vccMT^QVcO^HXG_$(h(2abGiej#!O8cjGAzH16P9XAhZiuOvF{Yt*@HvgMKa0; z8$QMBaQ(X&u}>iti9O*MfI}>1gxyF>uk?0)&}gL2zeTBn!I6?JqR#Ly=Op{bBZuqCVAn&zR=EtQXEo;bZb3r)9ku2;X z#=0o*UvQtXbSYy;H#I}e68zJ6{L(7g4McHxZ&j|e$1kkm1g zw8%QLiusC1k$Xr?hrRU@msmF?P@~@U?(t(~f=Wmw-L^$=(bIs)%B@-JvG^EGKp2Cb z(5N?Ar&eXOy(mH86vz6mrw=4ReksiF9oiy{GLrZE@ud8KlaOOv(J z?3eAzVE(k)ye72(JE&=<2|*q48Vyiytw;ld7@?R6`2}q?NBLOc#W$&X?0-e7$NYMn zH+CKUx&|k@d%Jn9mM2xuyB+Ot%x}|Q3J^a0kN(~X3Eur@B+#zcp};Halvc4($lXw!nI9gBcTtV^8?M zM0rV|xnbP;!W-L<2p4kp-3S^j+@0(UpWfbGDvn`PK+(Lhfp@#e7p*S;2i#A$fKD(H z_){d%HL*JTdTJi$jrq;ESY1PR?bE(RHQlB=Wu^vZLm0-CEU!hD?@!LxwQjyXKG@K7 zy#(Ar#I;8%!k*Os>-l;|irChCjo40^uXjjn@Av2H=QNa%*fw9E6KuGDQ4*oMN%hXx zh|q!O>)~#`KDlSUJ}Eh0Pmp;2$eUcuMZNR&mRaZYov+!)(k#s;XnDzSCh8Z`Ch9Gk zsHe>IMXsBrg9s4Np8x$w?104V8|S$b)PaL&96RBgm9~CtJQVc?hnbD%d@d5(;aeRG z_i30%tA}zqSqr+{zjsHfhfZW?BvjIBKWks4fQeM1H6T(u=M2T}vk&<^zB>EZvexo? z6Q}?+_rq}2RQ94BS6xKv{|8)EU!O$iYEr#=!2dL^(v0 z!VV}i$mkYqM8J>k6eRo_mu5$tztFddpRvK;wtRNBP~=kBulu0a)eBOzlebW-C$ zZAW>`3ed^^^Qt3{KBJOOziQ}xG{k2A95l{1_Mn?R#ksA^f(IY2MRDs{j2uk*1?(EZ zyY0vUt4F6mPG=X)+HUd2EUZ5`NLwb1$iP8f*1i_Amrz5t7*V5AGglvKSXb1G8pj!a z>C|}d+Wx8WqVh9RL#?nl%1jLv5H;NMsw3a|>|aL>L(5UawVi<)R?e%)$D)t3nQ*9P zd!PkvPV;4O>F4H?<=Kx=NkwOHS%GC#bfPhdkLs@(!II`H*Qiv*h;px}f*G(;*7^-# zl=LR*^@>`T^Sqpy9-m?^V{_4(kh3W+ugW`1oJp7;k}KY28~(jlLU_{gC3eL;w?)60 zcfMz#l9XP~qfMpPAB7u0Tm~e+_=bG@v}rDu@K{`b6Sq<(jeQDe8VpA>T+_*O6pF?2{sP< zK30m}rfCC3c?EWoNWfIf*7Bt`$AoHZ$I=?BG38h-jrVRkPA9a~g-e%RO`FyG!!=v% z5M*F?r106W_d6ZkVu(k*dX)?=eOWyf>nd|=05*sa2OOQ;+2va~#8-`8x5h7PRo>m z-s#ivF}{J`Z2-7cRhU^9Su*EyI1q)|Upc@oJA0UfOWDNs4>=$un8tfc4AOA*yye|q z-F4k%Y7tH!38#PO7*O!0jOQ(t<#YmcH zUg%w=+v3$sG|RMj9d!(cW~37pgp&)`zP@B1!9=qab(wYet`wE8s8{9NWGi)yIJ?|R z-S-50#>Xn+)uQ+9k9dQF4Oe_GiPbkrX@-^z@K@@+b{ZL>T0ozLy4h(6hj0vqhn|Dl z_iMxH+;GWT!gBcc$p37r1;Y0N+tNqc_vZzMhL&82qlDSA*-0F4O6TZp6RQh?oPjTk zJwhOoS6F>l3?X>aK`pmm^5^EVAuU>6Z<$T+)n8LY-gKP{w%d z;`B`8wRO%e!}!?b=u_0!F7stxJC$q_DPpa-UjKh!m)W1v+x^*P_M3vAw9DA3L~jb% z^zv~1tRyy9lTvR>q();HPcqtNIMP$DugvQBceTenD|?KwLDC*$q5ucUq?so6P`P)z zP)N7OyjxbXxyK&!tn4xNX?ZM>y595cF?W1d$CS32N#-^)Njyq_Vx&wn2m=m1 z?hAXxVefj$ZfwPRV5MOKkuc+w6P5?9%4MvhARjjT|Yuo}2c|tQ8!|n^2v7S*WH>)6e-{_Seh3D^AG4h*r2MRNWG(=~VvcmJ3U+ zI3uTQJ%cfe_4~Ji6DQOb%g9~S&zF^-GOiZFaXojHY5cG^#tm$m7p(VrD`L=*zKI%wvK1y}DjeqS> zwB)fl)wo?4?U{(!E+z<*yjociPO2V`QSZS}O^Z#v#O4qT2cE3(%CmC3>~lvS>Omv0 z)p;(}ys4s6YblCD%^5kt@>cLKJFpRsz>VgjD{T!DT&nGmNDL7vZw?nx#k&M{-NKwL z_f{`1eSv8^>II_SSBvLNVSao-m4pi)^Lv^IKUmnla)Fm!iHSc6Oj&H+b=?s8V*CP< zdEt^rEW7qGU+S_+<6P!&?9dYUbcFb0gr4HNBa$Dn6u!>Xl)Xn@8^GR<8p0nbC2xqm zy=W1`FI;2FlQFe7NY+ozExfJ1Dk~1x*pPAWrVs_F$xM)e2Q&&J-pLwAY|Yr1Wbo-L zPD1d|;IhZsO3Um!08(`nx?3e#KB-YWw+2P&wNTAtt{)oCk$PmiH$T6eM9o{uk9t2n zRti+K@ujGD=dn(MdfqzZ#WJHYXEo15ID`XFhjzXvHyzWRBHsPyIBjXYxH;&cdr9jDANXslfaAXhaBALnJXgUcg5%5tzn6jaE-@>@N4F z{-AqYZ0dh>qoqXxaU*fS5xm4m99;Mt1oD8R#cNssIA#%BgDC=vrxT?73i!d<)V(S`utrz z`(mkfHl~d}cD9|iFXrrQzRuW_7O&Vnjn7e(k zR`$h)pCQDC=J&O;b=khyf7{N6Q;l{$x}pRbVPDJ?>vdY<`7!~E2!}2@Bh{nMik9rH zh`o&B)nWT$4-w0YucUbORmX?4?cap{b=$YpxdWNp+D#t8^?yT?Thrnsk9|=*hVaW^ z%YEgtWS2ZmsxOb(-fKTRcB1jvhuwSqusqh5fyX}3mg{)zd~|w{M5jNt2cc|INi7fU zI@Ok2YCMKz$k*xd2|vboOt#$XZ0|K6%Z~Bb1%HJtcOw(vqv4W+J$tYBIUY04sTlod zUxmA{q~Mr}*j`M!PlXP(mJNA}h?;yQlWq!++1~4f=^w;mZp!;xvKZ1e4@oDBQ$iB2 zkHyLO+bm8$tVVzyW`Ao`Za?<7?^x+f_BXXMpv6fA=i zq2;LI+Ri`?E9X_PSA_ko@f(PgYPX5>>uID*W@B-?gA~TK1n1VpIrZ0+vQ~Zm>y}xX z^iOI1n)#>5YbUtuK7K@N_Dki!#xxhDr##kntFIX_Ue79z{c-fWh3|%{VfpKudC!3o zJwk;CqcvMiZ;IJ|W2okUQ(RW6mNGAL3?bker68A;L`GwAYP^J|a9DKiIFW!U@3^$w z;`TBMo1~D2YxbF1RI^@Rs`{{Z(`aW(!f$5DXlX*kxH-#dM0w~RICDFn<76O*Hs^i3 zDaEve&ZmV$aM6z>zNyoxMP{AD1Ibiyw?Y_=b1daR&48=q1Aaql=9%;&Q%F<)_ zfwtknyH3i|W7!vaSG2hxA&*-o`++eliWaCZ`qy9LLv6FiSA4_f$=o*Q^Pw2~@hwqy z+~r405ERs>UEx5B=pYCQOY0!5F251;)AijK#IQlp?IF7Tk->07Mwi zW+|DUo+b6a*!)DC*Ix6};2x~9NNK9lfcPJ0eoA~4^V9S%GwSNEsibe8t5V<2uFPzH z`Zy)%d98#t!SL7_D*KwB4ty!8oBWy7|0eU(CmHb$n_lzNX+7ASNJ_me;Wn`O$#)C- zA8daT4u7TnseDRi`%}obKUMbFpCq?2A?e}lPm*-b{-o;&oc(FJt#)mx=gVaCO$HzRPdl z{-g!3Z+~j1{S8h#bY4@=Cx@kcC2yD-H1#A`?cREQi5BJ-wJS9dVSf_v2xvov!!yFj zv#THe@7bRO=7+IA320}367hTNPl5^ilMk9Y51WG_=*4aB>9s!@zMNsQG9S+VWVHW4 z`;+zKhqFJacl)zHz3~NDNP_F<2rk*52*%ZGe}Y|m?N8>{n`(b@UKpwNr(ECu)Y@Y< z(maVB=?f|LC+*%`*WK6tbd8xeK7#!zT>XUHE|*Ty81k+`=2kE-nN2C;1?{Yqm!sp3 zif_ffp~hO&yVs4HM*T{vSJ-^93Sy0uysNh#oUtnBSGeY&sa-Yuo%R(krJ#&jO~tY! za+QLw&IGpjK2Ax_cKQtpn7#;C54|o@^CxLrk?Ml$qctxnIl;T_NT+S>nc&@Xq_nIF z-u=U!w)JbxBt%;9ckupn9;QKea*8uGRg)+utz;74>B+DXH*ij{h~}czxjV|d>_;!q z38iRtWJh+HSNU_Zke(xxi8{l{1Z_2WjKDZ9eqL_dJ_jbohc?%Vqk~u#2plr z)>`0?z-|CUs;4jQ_U8RN>d-vdleojAQKShj9E1$$xCI)b^7f(O=tEJRab9oWifT<7 z?1Zg%po2(=&oOz6Za$rpMD{lzecQF8Fgcl3T#s%q?gNAK{)KV$EEDH?bqyz~8NDIO9ttQ);)r3#I6Hkt&qV`{QNjC`;`l0~=#;|naVF}mNMO65b-lgY^wTZui8?U6+tu*--qag# zZ@S_-dSmLH1fRgQb-j_31%SXTF}4jZ+`)9$zjmDTbah9J^ttJTm z*?lDLovM%K@)74X#J_$liD_0t(_9>f{AOc~`jLoIG?OohUo!E|!EuZ|pVl$~hMby>HR?y=srCVfoJuAZy=Ozt@%lhR&MBOK zOY1M2m@GXO*hU79mwyob(Bk#mOr3XKNXB7?-&>U1kE!!oE8U-|^JF$g%X>X8H=4&K zapCc}WRvR1pB{}-6Q80T{P^$rS#ktshny^jjXvbOD}xmW(8bEp;N)EiKM_=}aV8pB zaOpmWrGHEhTU1MhuzbR9u_GY1-C`GP{JC;dZ?e;g|0VxsrFWx^7H;WrFMW{p>YRTh zScIAYS#RtO^@rr*`3^c~IUAEisNc&$WW8o|$KCU)BY%FBGw0r|b7QH_rA)UU>|CmP z6mtDEZ>^GGpS!UBok7Hvk!$IjysG_k%wC17$K|10w!_85Ddlhd`e~eh$(ldUTd73s zsf~a7gz4IW$3|}>K7ovJ&N?yt-fMi z+a9x0@w#IMp+=Y3!SPwcL)H81=dJ0^y7qY1fK+mb2!49TCa>u(^S(6Hvk-!W3n8y8 zFl8uV1qyNrolrn3QjoXbqMZ`M>Au0-#nDs@L}lv~!Q%j-%31;zfrF{An2G}y`ohi= z>-&68geGrK3AehtBpT^_9b7lZm}qQ?T}%cB z$ePQQ075LWc^cQy`QLFRfb#rrx%1^!4(w^{;Z*sfBz8f4{aU{Of?W7W`P4Ycy3 zkR*>)iw?yoKca)sA4yv1mhu$(MgH$;_H_5Ys9Y7l6Wu2{^i@GG`Xl(2j=ow>eEbB^ zPX}!p4Fg&!gy;vf1=N)U%`QX$GzG91XmfcA)YbO9sbGcWFDY2XGw}@{G*!?G+6;cB zgQk`f3y)XN+~i+Uv6H2MvY{XW5lS9Q-mXV%1iM}D)-JoDVCrDqT+nIhy1}}+AYtiw zgLQL3J85n%7~Jk|*Xyahe&aO1db?Ur4Ln?XyF2e@-Q6sb)UOXgG8|V|WrJ;v1uR;_ zj1s>5Ug5i{_ujn+rtur&mmZ;wuM#+%;NeJP-KiNLL1r{yagid`7I7>bctDxqz`Y_y z&t-k_W}0J7Hv+U-jOO!TDVJrBrY=TeIVa$F=#Z0tb}7a^SB~9ce+bvyVS3aY|X-7afA*q*nFVa~1b+>87)U?vkF$qTX$G zHA*z_`!EsFn}HeLj|)Do;i5jl9p!2iHFdt1yDpHsVM2V&@1mDG##qH}i``o}`p|^x z$vOCs@8TK|uKaqoES7twAD^dsTNGE@LZx*r4Pt6w}PK-@H zHAla6?QhojSox`?floDBN$8!R@8x9S_&PiSWGyWK^P*c_!zZ-bM5QS(1Ja>d}4f*kt^g~Lj~ohatFfX zQ>&uh*t4VF^s}qD5#j7gd^2<=_f`J4@XcbLj{>UNj>NF#4nH*%dzO=n;ll3lfv3ZT zZ--)2b`x!9rTQVl4O@YiqlFz2E^Z54vpam?nP{M!!*KHQVV^J--75Bv>XNR%unSL+ z_L6tF*kC#LBSd1Cv^oDrd?>jA^i@hl_4oNm$@6@T6j|yGesI%N}5FI;KI8Y2tIbyss2Dj8}U6yd}m(h zcU)is5p%oYG3H$CMAf-#INCOU8e4G2Js6nhFe;8@GSI}#6&t6N($8!9uo(`~laHk% z%a1K0wvX$bSjB2~_GH&&JCA)zcqzCnVVz45nRjZtbg`40X2SJbrbSBDOAZ8=o=6+z zo{51}he6Er{w^psG)^t(erX@Ez;~QI?<1kg*;MbsK&x?;R>f2R`Np| zx3m|%ywOQIOyYt~qAk|ALZ5Ja90`Yb)1VJ+Y(Fv_SnniVqXrecIg?`4Gef0g>)kkL zoNK@03+%C0z2FNq3(0TZqulrB3$-ZMNP11`fCw{nVPhM3)sI~W4o8U}M4>I3dZCV> zosV76O7}}3`o5Fz#o1h_5ZfKv`8p#%(4uP<{M#510FsA^E)Dql7Z1WU_KCMrakW0+ zOM%G>M-@Pkti*4Um2ld`&!aw7)Nv54DH5B~OuUYEhC~Zy#vI`1xPwUBuV`?6i}{bu z|496*LBU0ewuP0z#D^13#8kUctX9Q%o_s79uH+s&FolKW!b;{P*Y`aD{=C0f`T;accP@iEOD zl;+dlMFSim9{!3h;E+ABJ$qbi?DO_(Tx{M8GAu?)+H0Sl7$0iJM6OD~)K}3StUuEv z)odisC2OKyvk=_fJ?*Uwk;d^O8T&@8O27=f3oH=l`SGCv(_q~db7{)!t|(fNEgw=Ye07*L=ndM_z=ms`5-80oExEj{lT>8%S$qqiR8>#cs3T)EUU?Wl6Q75XvsR`Y&wa{hPI;JF^f zb+7i5YVJ)+_3-7_`{MkTX<(y>R8R{JVOg%@_ zOBet5GB>Rh$UGkmdD)z2X&vv485S;lA6z8Axp^85GhE2Y;YR&tKJmkKydLFhYTZcv zC!%kEQX%AzkVVW|}DRqw*SUYA^t)^tgYB8IPqB1^Z@9?{TbgDeuz zI<6|i0bk3r{n}n86kqw`0iDlqjx`EuRGgVSdSnKHR!rIJ(e%;0+lOm|h0%lS?cO6LyF;<{AGCiub zXi}rso#w3=Nj~PURN2v&$QV?rKUFMDcOVr8naG$Bn>VOeWRPpJVnVELP@a=5vB`rZ zFb0KGvKTS6oR(BirIU1A`f!e>wtg0+U@ZuHWQo2!OqN6k>C!J#$w%)(Gh%VlGXJ}b zN^SiLBZ-t=SrQq|;v~LCFvN4itkaGR#fVXJ0HbP{kT=|G;OvVNy{YFFq5MqrCZ7j0 zbetCsJWQx@&Jf%3MTb?EeSZWa;}FM1+q7EQk~E4Lr>?D}iQv+ajDmhS6~kEl`exq3 zo9Br)JwIa4Zp^pAaBO2Zwkhl_Q!pR2L)lTdB93t6Qr&b99IR>q)Z7dfihp?!K}nAY z2bx^mA2W&ghYh6EYahW|+X77ZgjX^q8Hpi15S!46{eH)zrULpr>N6-eC0vh$)*TZQ zt0N1uS^NbXbm|4BK(Acd?H`L={5j=Wq_u0=tO&W= zj}3qUu2|T{si0Y7ePGKrKvW|xup#%xl}ujAL6+`{V7WV3%ViULi0F{g3I4gWx*_Mc zW?v5xv&s%_w%ZXO3ND;426BYxmydjh*<|>ZJ!tgestp?Z72YlR@DF27JrIuFQ=mJ| zEq=01yLX7tNH#_HYoWY-7hK z{1sr}Va84wp?B@PzT$CMq@5pIyWTR@ElKEpHWcXhoUbKMUB-vo@D-Q&)*K7ayBptP z_$!mZ4GE!9@g~rPEye62%&E;b99gocjKMCL)M(w$OKz0U`62iD#RY z3s)B3<&QWe(57`z-EkAEuV`Ui`yejfKj*00sM|oa6$06doW3u7Dz#F#FufpNo;Aqd z7w`#J9xoNmg!8O24yo49yB?CA(=`9s~z8bles)v^JAR^mX8zjelm$x(*mPGLpwU*U9$kIKxZ^y;VYua zQ;u;#l_~}OX}b6PR{c2$#Vri8NQ~f5bm?2crT6l4LiLitowzkI%Sc<3W&i=`aS?ZX z_5G*V%aZka8EmZ57hc2Qykp_?X0ouKEjcBNU#9Bbbc$Z^u|{Zc=^A?0?ST&aw0W5g zZuJtwBaa-DT(sY8@_A>%mWC z0l=EK5d2rH&C-Fa>Gxw_nYSie>4-}c*71tx^?R!OoeNR9rqyC+PQJgJw@(GPyttU1 zQtsv1^HA+wd%vCDN;yOF6Ab{MlhB!0@3Ef#Gg?lHkGgY`_fuo6vUS#Z7$Bh( z=2fm(XdsM8BT7%pxRSd2x+`MOGO@i`aXL{&HYyZAKfO}6UX|FkN(3<%j&UX~yz#a3 zOu|J1uZDMa`wJ2d`UV$ir7mU^-`mZ>a_%#5HB5{}UF2+E$!1NnA<14z4(!W#1`&JT z$TCeT*bB9)@p%t~9wti45f_%!Z2*}aTs(0^H_Z1Iw+wYvoc?;Wy6$0ZBVSlD@3*{v zlvnRnoc;#qv}-pf8PbncKM-Sv;vx3K-=|{C!n@U&K$BMVy#&=WfSb> zx(ChEQb(f}UW?^bf{$V{qdHGhc1cVG(xq5evcufpE#Xzt8eDiXW)$;tonGn341PGBBcU&lXXqR=fV)TM7}1~35#qDHI!7hHrE`?p zb4h{3yL1jUo!E;jiwtY}s8{DG;#a!PArKR}Z;!L}feH|uM-(DElU=c8A$CP!lenj> zXCaK{ZwO+suv*NnsGPobMHl&Q^tNWb;1o+I3XT@?;ogZV?B=1KHDYp?Gu&sF^C1A# zAxNg)yO}UQEi;qQ*F>k~q5ueA*J|(t4q#>~9K9=1^+gO#wnA}G&F-Av+;7*W0NFF2 zHUnm;dab&feG~PZ_Qq;fCfg0U5EAU;8u~Hw{rx~JGz0rsd~N_NSOwbD2_~%2@TAfN zo>+8I8b%A|-`Oul+?=<+e!cvpp!Yo@PK}+^FnZNAHT$Gvn#lqlB!%tqXarg)R^~G| zS=pt?l$r~(qBA7056)F>fhIi$QWok<&=iiQP&D>?G=*sFwct`I%jMoZ!7z=oDk);3v>O}2s(?4P*jPtWkr0+ z8HwQ=BqgE8ov2l1`??cd%)ItgaLKR8XU*)Yk3A)lL<$M{bbq#_me!xT`p+)4;HE~R zvcz*uX$;55{&>!%C=Hscp^0X0G$&2jwv21ktZib9`B!vB0xvK3#^@I9aV2B!uZX>l zjP0yA9lxn3YG0s3tp>N$Lw{672rkv4*?uF6zCpy*Du8gR&Gv-iy@C7HZML5VA=Hco z+DV>w(gtRAWKA|i+@UwT6})QHy_))+8`Kp~5#=;x zo?pB7D}PP>rd9On4h8qRcJ^#m9O!ie&+8kBi85=d&=&`=)yd4l6(4>F(eJMNS2l}a zYyc5y;v{vQ&FD;BA_{RX{_R39`xYG1FD%LaT^XU!g5?`4PTxx1wJ#(WrOYfgWgId$ zvDPCrvzS?KvlAuXNdy;O%*dgb8q)xBiaRr+&x5wC=p8va@St1Kud`rjp^`^~3!mi6 zen)R|vEZ4fBRYt;ayOtSr<&D_DyAAWtl4D&KYON{HTWo@Mf@7(7;4twA3T9~o zHIJ357*3m|S)`Sh&r^z#8CR4C0~Xs8tA_vEtkoD_O8KpCi|lz@L5OGKPx~BWs`6gO z>|&{z&X|HUG2}HdrmG8xWjwLw@Mp4SynFRvLXrZ_2EU}Q;14eS3ShF*X(vBYxG9Pa zLha)qj^$FRaO`0sRJcxSfeM)0P#^Y_AvLrVor<_Bnrc>3!WMcJQoeT zNzrEnIt@tzhU2+shGSik!Z#zaci7+$74Bfo5ycxWKAguBk-$bQlaauCc-~-iiWa_u zFHg*@1N3@qeF#k8KQXJnz)v+3FqbEI2a@6x;OnxI=E*`mee44=$5I({TeC_MqToUsG>?%a4|QKF!^@p2AAq0VU!Wk4!5L0DB$y=Z>`gj)sjDk<71Ak2u|Vx%C!b! z$pO5JwpR>!GT89+i4dV@IW8cP->MCAsp$#vv2>OB>aiPgCfEtCM9b$Ti+mXEEmMuk zEMQRetU_##NwpBk*9fOuIR-6_ zGwq0tjH|dsg8-k#qlKi_8*dS}9X5$VM?HeSdYc^_VshPNoEItFHF_6LN~kTc7CQdQ zP7#(1919N5@O-lAL!AM zmf8sAtm9(sc6r=tx{bR&Y?Im?Vz_Iu?11zk{2r3S=;8XN-=Iuu_d50p2+ni zT(W!4Cnr`Th%SUMNObln<)HJIKdZk$lztW|dT2B1St8SWAfpF}7pTRWE;_u!y>nu4nxBOdj za(!d8F|@wyvxw8TD(_a$k&;9$F54d)@-yL^l=i&rRU{!M!kh0(zsgW;dXIDsih-%?cw@A zjhKxmhgBB3ZljRxX@#1v+hpitp!+eDIcaq&CoIl2(nv7$!wIwVW9Jvf~65aGap*G*0*doFH%$FP~wY zV8ZOWhm@sFLw)NwK{-iIIPQ*Ad_(jztRM;A55CRxOry{Ft4WI^T6hZIHU95*d)`#g zX8B7BcJoYpa<9Wz74+h}ieKsYs^!E5FF8(70pkR-gNYM%>oi6UoKUu|RG@kvKYG&l zDN|J{cbppW#nc>g$FX!>j=AGldR~sXzjYp1W5tdNBSS{;JCXG#M}zI3?GX=LiESfuz?9~!lAVmOq?@SiFt6;=N^syxEP@wqqI_VLEa|Pp zzGiXy!IjwVO>3j-vP#DFR$^a!D`$LgC3d8&wNZ6hB}epDVqfEb{lS&kiLKT~)n%2e zXA~MuS{wCBdCcxsk?((d;6Y8z!N!lVa;N{zvo@KxL3=QqePY&?5@?URLiSi&X^-_) zJVLS8F2R{;rCigbkis7*nO*i~tr@suw!!49aA>8HYjUq;ZtztbUjxDNVh60uvvyl> z(H+2savt;0q*ytRlJo9FInEY7gyyE!C(8Ldj6<<+ zXUA_A$EaWNb`9-Ez2l>WJ8=T!M$|~5L5-fdIutlafYe{gDL1fXeD#=DCso(AXA{A8 z4FM|Z)@Y;g1;RQ#?>uUsuYH=*=207p&zEi@A_VJCFlyTAB78Q0;=of5^mz8U=Aqv< z(aSwWSJn_8gfAure|5zvm8iyods2M*josjNu3T|B(mx3|+;edlHd^9TGK!nmLWRzy ztHeLtHTGVhThM)etS;CcT)386=nyFqU~ANNlc#UN=-BfN-3H#e{Qc3iOC#P9lk`2i z_$Bu0wg;CyPdEm+lkJ1ldi#vkJ*4B(ClQxuytkMhe_?)>~*?PB3#l{ z``X^2*q{!}Bt72ucT)6@BE=T-UO8y7- z$p=$b1l}c%`nhw(9KqO>j?U3Vvdf&a1Uknw@_iT0r&#kW=4CkW2gO3A=v;n{ug+Z; z%e@5$yiGT=T7pP%baZ)nc*9X90fXEKcl2&MMaDI_pzKGrqMU@%#(pvhXCj-1ig<2O6yP z`sdj;w}S{9pVyfmed0~d&xa!d?%>Z(|KLyO9)y|KC~U#687Sw^jb4uZ3mjH~QwuMA zJB-W*=B^oVI1@`+FA=W{3AzVHjvQZv>tmoaB5p1}9=9qT{@4f?JCB2%UGzw!m2KR1 z?I|>@Z?!W8vuI;R#|S!(f@c_M`6l}ADy9)%pt0Ic6@9*REV7bKBY3d7)o@1;N@HRn zSE`2#)6ugcGb=OR`{wte1)y$a_#t2+)Km$csD+5d^1`aHS9d(ei{>4VPu#B#!s~xw zWNzg72upXh9`%MEA1VAJB9BPH8zS7J;Jii0du(Rtd{7rO|8=C$&bZ-SiByzqLJmd) zk3#VSY(;kxCZ^8ozQBw8jsPNK_FWK*yoo4e9o;EW=x$dI*?r1ug=(-~)IcU(71 zc%x{Exdd>_+cH8N{)YYf$hio>hmEdAJE}MGy2U5r&^pQae0F?J|GI z)Ed-?%lj^f<(|;X_r70skDqmXeIt{NzYPB&af=lCVzkvOc*AQFC&Nm$iW${FR#_yzG-xJgw(aL0?a6{r>NG zTKhtykGu7NF4lrO*zmY;?RByK%IR8)HdXP?`Bxix51AV=($?~c8Kh4a-pR;7VHD*V zb}Q`B-+=h#Rt7{;a>J&{4o9ryjE#nR1hDdPVnlEWBknH!gACg+eH@Jp?atfB~0@x zC!iS}M-aEM`4a+Tjw1ra&E>Id?SRUH*V%Cdb&uY)_ZCx$I61je^(I*n9q1GkF8_!c z^*sg&R$3Es_kXt|#@89h{_zZCKhlw16RIP-r2Gew{o%hi$ro$d_nK_l_uRrKxx3w{ zIUUNMETXeS$w3X}D%0oK!e664f$BL%^^+?n1jgn-^^*^y`lqQLs^8?O&gg6ILv=bq zO+fq;nDS4MN_v7++qXn~H9;s~5x<^7tbRFK$r!>O!3j&ww&L=P-qPokW#ZN+de(^P zCnFEN*?$!}RoSmS|$n5PYnSYL!JRYq7&sWv8lmCE;YG@lf)nwMb(Ge$?jgTXP@zdZ{TtD}6XVk8a zSKH~tmX4e!mA9v(dKaj>TuDgC&qUWP1K{wB zyTReEI~`A4{WBWc-*N5gj3^ZwO3e->#X3z#NqMCXr5q(i^6S3`N~I|%DO#vcatj>V z+Ne;aOWpyc@Ic^p{~B-){vsoMIR@WP9ej$Hnhu}kIrtL1t`iYooihM|ZlFcNbYkzA zS=7;xx#iC16@+e{Yk4LtpWd?a{LY?BGMkpQ_X&$8E(3rKT~y$AB8<4e22G|wQ z(*UTv_A8-c)s`cJ87L@vhS;xvk`a^LhDou*WbuK+F;U*x4wL01Zvqn^g~adbfW18h z_7xNXc0D-qsIFQ?vW<@t*W5%`#aC(O^M_}`K5bgeP>sd)H}Pf4WbCS3@blxqa(`sA zw(XeMc|c1^4O2$DtlFIYvwJMS=|A3JF zWG!H?=mi^faIr&h8bv@*kCBc)XOL_VuFu>kQL?%Zf3C6`nikO6ehtLQ<459die^IB zFPZq-ohDe+ZpR;f0NjT<>h##wvEtT@*v>U%JZ=;Cb>Y^j`=RwE=a+4 zfy1_xB4DeBkF9RkGHl;iE^N2 zX*@x<;%3YW+-z07CtCBOw*I5lSLEgpl{dI_Y?D;2y|O=ZLzf@BH}H%u>2i1C;T7Qv z%HX0E)Qw|luI=y1`R0B6h;nVK%)8BQ$C6%)O!bHSg!u3c*dHu1xqpe56NgwbT)^-3 zCL^oIo^+u%=2`AKy^r9#^G@n!x3cR(ukKkLV2YGHXD@1Z^OXb%h6NpIWL&3S$jW2H`>79e@IX`Q}Hf~4?yyh1nv))WrVNT;45|TwSav(e9H4D z;;kfSh~(M8muWmF?zqELJnZkNc&BA*G=XZ8K$!=Bz)%#fpqx*GDbD%q1|6rH0ICg};(m{Js`^Ti`X?*xKl2Vw|MOs+rPjRKkNxiDb^z3Uvv?#gClodY7WJX<$6vy-{3 zyQ7RsGDxbfcIp4!?l$r@z@N?>%JVgoW|F1G94j4NnncIM*S`&qWTo&(3;FPf9yXR* z8@G})xpmqN1NHw;t^ZXmou@`R{<$F|?41UCiw`@@br|gAnYx5tPBK?Z<6qYd(EeoF zM-3c-8dzjXtA7El-B0c_5nRy;U_IB7+g0V|-Wh$aHt)E)J|ob(4d@jP=&dMm=|C%w zScRGz+DJaG#bx&lNZihs$(0t<2Jb$jV(}&=Dc#QFwkIgPVKJo>eM)m2mSQ=k3QCXQ zW)P`@H&ZU-Pz?Vk^6b>>sF||)3F$~GFKOZ+ zSt{k|L?OAg7i_M1nhV%jPTuI@YeqRFSBorvxL)$68H|$als5akX$HNm&)Li%mAH#? znGjX6#MJ)~-%Xj@aq%@yAv!n@n74I&l1GMtv)WJ$ITYLaK~Z@=in~c>3B@tr0>w2c zD9!}McHXN4dH5(MNE(X!774|cJ}5Rj6sI{9XA+4-C~l|R04UB(T>TS6ac0NI|J9-R z(A9=w$J~r4E-(~FI27}MD7_bzmz+3Aws+aYA&HR~e;JrA?!^==M^FST^)Q`*SoI`_ zt0Qv_%f21C++kS?ZbXO>hKa_^7$$zW$^?g+?$|lYO&k~TL}&OyZAJuF7=pPD!4|kG z9YN*!I>T0y5nyFzGz4od1;JG*2)0o~qn3v+^>&jq)uC`8;Gg|*FYrSFIs?beHE6pg z+ahumBuR%>dA*`kkk0Ni?bD_z5Muq!-^6qE1EBP8KN2mi z>5lkSj?)WyGMFb_nUS<1LvXc2a0YTT9YN*!LU|_19AL$?VhB#F2Eob{1m{u&1obcx z-P*W-9$D5RdzBBar3#Ci`mC}n-O3&n-&s<8X?|2w<{R5>l&eSb8 zjmz45tXF`N772!sN<1-4K?Y-jiE?y#4t45oG(PQ4j>q1CXZVM9~PSXz%SL zaeV5sM?B$v=9q(ezoxcrWX6vw3SEVrQZrBeb@uja(<*A9a4jd9Kqxn zO1hiCMFF3GI;sYN^#hok6b=&?tk`<-VB*R5qZGF^Ux}CGB+MhmRo3JP3|Eg@oc{^c zGyj~_I-2^{VIOa?J5>&~HWmYt%v>>IU3cV6rLK>p@;o7-{wDGtl?PY!eIG*Q*&(66 zFIdmA2BCg0ZKI(P)My_<{cGfn-v3cmp1%T!pB+3Lh$iv`M21m1%|>ai8>J)q(cqQm z3-ysCyEN_|yO?n|BW2tb@y_-_<4sC37>ap}(U@*x1K)*HOxjOo+NVu<=-KQS@;C8a z%48gy1veroKMy}RH+m<>I!2R`0jZE7^^z0qBdI@K^eE3qs)*!bA$4#HNL8jFRm?jd zDJ4Owl*eY3Zeg3=bLW`-&Fd%NKtWw^1e|Qj?a0)Mwt6_@9DQ7w5VI?k)l~ zVQfQRR!w^0?jIoQb3Ix6O{U{~`AM?EHMdBN+XX8%YkQL3vOc1lNG{Wm=Oqp2>M?sL zzh}7LdITFD(y+1Cn0gu>sme&)A|r04;}{LuVCOX5aqgEg_C~(-Mz&-1e7G~cHNJ3h~BZdJY(A+g1IvtvtW&X(T(<_NNAFd+U;vwsSML-SDjR#r7{4-kk`y zbV@7lA06IZB=g>+?Vo)CPF}*7z4~GnaD7h2FglZ@UvhZN{UxO@XX8Gjz&I61JG##0 zi^e@2KSpoV^Cuzq{LgWR4lQTV{&MKL*YX(8q1Ywu5k)P(W_MH}z-AM?;5%D6%N&Va z+7gaE4yUeqpHE}6oA+Osjbz!(;Cf(%T&29(a}#$j7@S2U?S|7Z5R}zlGcs%b{G_N| zevr?4uNS?|e9GokIjT^lQALG7QB2oKp0DNUkmhTL!1LcLp~_FqFKfNkhldGYeAcIm zT7W7%Mr5ILPnk(1*!pY6WCr3+17d{(B9HIVfl!_gL_Wz%Rm)WuSsU(20b&I2d?1tr z2yK=%sB|0K<^WNg8HoE0h(0#3N55;EYMB=47 zEMhObxUdS_d*K{*??>=nFLd~*=e=_)ueeonV@2bxieSag!z(B|eG_#EWA=kp$BaI8_#gNA>U1mQgT;p;h2QvRKj1?_ z)BB-l-lFO&7bfxPntyONad z;!&m22iU3KFf^rf7JW+04x6D#Qd;Nn7pwF(l^&i_I*)fjS6WF*=kr*h(mzz`f|SxD zcqeCn?NqwbBYCV=>F=oYsFc!0yz?PZlDdm|+@sRxsq~nX(xtrf>sFG|As(Am`Z$#y zn^L-xcPBVVl%#YOk2aNlkv;NEdPq6pB`KF!R*yQ;tOItj+r?&E8Wr_*#ATqbC*nZ@ z#R)QTlLXn8#=(9WCr(-$B}}fIo)jh$PFot^g%eee*hFt6NUoeN!K4wOGR>z6?$#EY zp_1}MjUZ2g_pTKHmmx38Z!nn37ncr>#6v>}cVK0bL;o0x3XaRlV&7F+!B(-jOl5~r zR-D`;22@t?B+Cj$E9*qU5a1~jF?vKo%O{;kIP49hQc(DV>sE^O5eY&tO(YyvLD>+A zgg)bJ3U%}yXX*{c*^tz6R+rbTG3KVB4rym}oFH+Xay0}OF>30PouZjVt!QTHzf;^S zAec1^G!Ju~GD44Jrx+2fQ;gECQ$*-KonmE@^7bPW`b(!}CbVi!e4YYGAIBb>xls=8 z1;i{DRZF3x8*UxWPp=}EyCl4+1x18Kb+bTl=`qMA4z(5(V+sm;*#*Id%P8x@rA{TK ztIgF)B=#H|a@#P=+0_sn-wj(xQNlHJ6BOVw3nR**rR;Egs6HA>eDOE_tPrBdMdR57 z0Kanh_(;j4JkPu=_{|si{}%uMa#`@Q*D3h+Wx;p(e;Icu@7+<`Jix6I+#4N^ZR2p+ zqv4YGW=-UrdOOg$`0yBSH8SuZK%m=`#lU)G5dA^7uBXXl(cBUD~STZYWV?EAQH& z$Tsa-67%&8(W00Gl`+xcY%W9*DJJpfvpya6@+3I=oCLW4zLtRH8E@1G&L^_Lb`ICI zMG0E;aW|~E6JqR{SzPk*4xuB4v~mQLmt3P!vQiY7ougIGc6D;~?0j2<+YLbM<^-4i zM%guuZO~*5JkGs6%So~!FG0ZJ4OI}1?Z9zQyd93cjo+TQtRnVwFRA?=-~vyMyniCE z{+-fURldFW0hHG)+Q`nsFLof4%j&xW!DY{p>Ufj)p$EE-&MH-D6+4Ny zgMv%HF*I53OQbrs@ixOGIvufJwr;hXL>DmcrB9;D^C!{8ByAGyJf8{Uij)asIq&?1 ztCCC@D|igeX2Q5z+v;^GrC0Ipp9DMx8&`TYkBCY)4CDZC)-{}1SHS63Z9hay-sVzW zl!BzbL|_$2j2ok9jvJ#5>l7|6<2bBLSXW{P;x?FI!x(T2c^4EZ09#Ac`+89*IEh=` z;a?0jA$47F(px1vf{l}qV2a>@1&&;zRGvcbguDqF{2?z8Z1^V%_;0yq{Uj^C&5iXp zS}gX5eQA8Ikq@&Tc}Hv#0sI$030VJcKK=>Z&nn*p0P$^vMzB7Hn~=|jjzfCn0OMLk z(&RvWSGLK4;3RIvX$hAcN|ysk0^KL1f=iD!Dg}~+atb^bv%!|V#Cn-uqj&Yv3W6H# z*$gNJ1de$_EyRNlsKi4wKK5({RUUe-$p=yeXS4fy8R46e5d7_5L~PD1B78Y^S#bV# zN2INx5`$vah5ZnS(gvC%(&#-G)Q>$oD_H(4`-?*!Lt+x@zP2M(LY5ENYxcho21{u0u4ADt2rZrLOx1HGFN<4bA%j2G*3KHD?)Hn(X8Ess@{uSy=uE|d*J?uy*r`6PL?tmWaUJY zm5=JWaLGzgsPHNZ{N8pm;?ZI6d!VC>ay9=48_qdCiBb`%2x9*bfY@zGEj@i|eY}mZ ztGRQ)vqcQyco9;o8U+vI(O(v1jM-;1Pe|j`XbNav-nd8mYN;?S>ZA_E3{_r z^3?uO&xcUixIr(>98u~+=BA2NSVr$5wDoyq!N`-=--Mdti}d~;vRwfX8keyol-Q}i zCO@k#;8G)cQk6ZaDpoty+L84ts)!EjRY}zdF5L)wC@bW#8ZH%=Ahf8`vB+mg^?5iMV;Z16LNy2j2i8`33IBHeyjU63adJ7$;pQs(}EHlIP?=!7EK}rN| zCECSw>i`X8Vpa$u-N$IV)xl4cBHdfEC&sf+G$DNyrS|LAnF5CJ*gKROJ`LXtRW&ko z)Jm6=K6`LS?frdvf!yU>w_f=ULZ=r5)eUGWv!1}j#iX+#w(oH|so%5Fv*iBj{cFHw8dF&e8;iq&aZstX%#dIQE=d_)` z(~*+3CP^1gM%&qYf>fYBndg0E6{!B2X<2nd!m60&W$EO~i#f=sl8O<*Wlt()(rSh) zF~gNO!IdZoE<2{D#7tLWrYms)woB?58C-U@QinE`)xQgwKSi%(AoExVLVRB%b7Ma1 z&ooL~p09h3;I+}at{765_mUD#bEMv>@8eBMl2gPZD-XhdzKYV3l+wk#v+dn@laiD! z!t5LO`kEFlJw8m2 z&OUp;EoBGQ<#RK4Bu1dP+0EE1%piI9%B-xt1&8O~K*W~4x#X*G;o#sG-)%7>kqUmzFZeaDlG&%Yj2iHEL%|MW0!>!+jbl)wy>Ug%=t%qEq_(pA zZKzhiOCZ7dKL~kT1~IERRQN>LJDLm6!rml)Yz)OJmJ@zI6q~Y`4XL>zXKeNYd_`s| zNwhvMd&sSvw%S*?FE;zN#+G@NMN-NeY0PYmsK}}$529-4C~9UAl1j<*!6~O@_o~`40bc<9KZS|13FuIr>pxp zNI|l+lkKd{pMy)XNXg)+`Y=ZFuF!FblH_#qn6A=`Ol9x>BNgb0lCF`Gf+OEFc)27&W-`3!vR`w^q5P0UGseG)~D+9C!yB z-ORiFHrxl*m9TGB1#1qf`*Ns$bEl15?x(6MqEqeO2PCHxI(6gmOLoA>?|^=`#>N1g89IT7OW8ifpr% zPVl9%^@ohXubc_ZW~RtMb%M{Yefr}O$-vcYwr`l5Qd*tB>QDUIr$2Izru4rKv^D>K zzJrDNNnv1f*=WsWU`vdLnG9)p##eK%?eU#zzm3TseYXOrI;2=l9M?lA0@hRWMO@24o-8hwQjvQG}7AhixZ2@3=1M zDgnF_GRlG9UT#M})c+kPb!CKhxIw$dL7PP*>Ch_Ahc<^~Uugfm2xtpZpv|L*BpDCe zsA15O+$w0Nuu-28+MGVnhVi4wK-*k{_9h2yJDiaYt@32g-#mkFiGyz%!Y>^@<@xZqoOk-Dvui~V;m~e zXfGWVjwO#JOuou zf6fT}W&=Lo0bfc(>A)+`2R=lypME$=I6RVqLnS4_L60&w3s#X_6$FPp69&Lx>191Q za1>CT-SH0$8BkaSuPM6ApE6={k73g72GA;+OUFccJ|?S4_Jhf!LNK{M1(P+D1QR{Z zbC@)foF+_;8wiulmmY@6+i2GrM#E1H_I3w*De@#8cI72|fn;A6`oU)a`py)fD=8xK z^GK4PWR`%Q%0_<1VG!&Ey5m%!74N+NGTPX(5wGaio{oH;8E}|vI81gpjDSe#I4IA@ zVI;|Z=>O=aL1k(RDn*n86+MzOF3FdqMBNx30G0CThtYrKOU6P)Jg}j!Le8P?ed^VW z2$dT`n;k+ew3?2P@_dB0lI+_lM+%cj3MOq70TVsWcbv4FGJndEf2T77Ng01XeK;g0!FWu(tyYjK)$Nt@PBi^?16 zTAV?$MQ)0({S$;)p5h8NlXw0en3BLZmxnoT{&L&^@O|T(z<1jd)|(PdSsf2Rp5(>O z{{B$efN5;eQ?>!TA6s|1v%W9 z#YJBF^zv1!$y^okRx3s{cg2lbEh1|({kBosWeP4`#S6k*w5thk?QT7Szj`*xSr8>- zJK3bz$MK^z{Njp*Fn4$=6?-TW%f-SmxuA%v*|fou6)k*&XynaYXTWZJG|(C?d@o#h zFdBFxQnhN39`;&6`FZ{J!51!!8}yZ^d`#|69bZ zA2ltCOKu@o(d~{DKB+#+j|6~&DEtMbkpNfTPb~;x_CA>a)CD7=frp)o0^8&ZkZ$3^ z_d>zAxH1PXyfbcEb%hstKu4~&KDtR~L%_|6z-c&IJdk*ym8x)qDIN1dw z*@Iui-O$8eJv&jfO$TwnKXm9p1rVm&iXwr|NMKY!B+zA)36)GP$O|qsi$wkAs!P6F z_Vu!_m0eOc^+E876y(z}kA*h22O_Z@;f=5IXjM=gT~l4SF~Tjsg?|hO-lRR<=C<>o zV${c|JoY9Brq%+UWd~Y zFpxyETx?7WDs9oGJ=)SMz0!&;Dquh%_`-m%h*o2L?TC-4RiYyNzrV58&I_^q-}}G+ z`?;UbpO0of_FVHZ=A2`WImVb{=$$sOtBhWPx`+iE_fARYmMqFo2Dw;|&JC?cza{Io zEHAV@#;4LFo81H3r8KtS1o_Ws9`KO+wf!Stgb&ViOYe)KdBVw1=1;$=SAl|AvA3CfFc6G0)8|AIG`{VbZ+gVM=s{5t@y1w zwTQ7#eNL6l@OxeN@p*)}j>KQfUR|TT0dFrDcEej&fGgg1g7fdP*kexc$=?ujedHVs zg=Jcv>CJ_672=9jcI-VLG2M#7F^UGK&Y`duoN%eW4u)N3m8>wo8h0Q~v5$mZwoU*$ zYIm36wz#m}s##lDY$1**qtKzGhnJ{IYYy*c3gvZ;Q2(6zn+ltVAIfa`$Kz;ry_Ike z?9lHXjw%-ui8uU0LiN&(R&BiTAC(ddc5^r!imATL{X0@Q?>1O{aBlJ_g+2YkTy##( z=I5;;*K9&zKNd~yOJdQCHWp1op>U(l#@s^d8r@WmG(ptmb;Nsa8m(?A6Ds6 z{Ytm<3!+{tt++~e5Ekm)!!K02uwUs;ehCjwT(d=`GlX_@&ZqQI3BAw#3$`|@$BHw) zVh1W0UiEju$FId#{P6@7@SAI@+e@rbe+K;RWnM}{DErz zPLZq6J;7@0dE|#V3sl>iM4E=Z&0lJJ&4Tk^4uj_ivb8~7O{sxX zt{mf^0pK3uP2!wYo(_N)^aF4XeMOnTrbBT}M;>8|N`L07l&+0RNBz+(=Tm^Bg3Rj| ze#|8N;-8>jM$-7sVV`73bJ~U--plB}Gw)k%!`>t|uVxOh=ZXDb;kRaGNBlhfxq8^n z$EM{ZZW|5Uwh$}3`usmy@Ri>YB(ENJiv^#&*@6>(POx*>4XV6p*ct*r`eO^uUtz&l zt|Uk{4Xd-@lRvcJgasCy`n@oi9R}YHgPCD)2|?7c{i&;m74ER9Jk5gh3kX2E!#;6Y z1nAFl5i8o#oFvLCfr*V|&fDO#*T7Xufo za^&7}P`3=sU0xQ3IAklAo3hb?BzYf|Wwy7bWe1e&m(ze8?aI}7*bnBr%qU~8)Hi)B01Wt_QM zkdD55ecprC>#?tG;uZw`3C%)pvm;W+w9c}f)(TYz%M|jP)}sC?uPXYj(!!7!$=p77 za*jQfQO&dYrGL$Jq_Z{8jlOPDNX?50vo)`aep_Q zRN6uP-bdmI5LH}h>XitH|d`esLn8g~F2*EPSc=2hkjcuLgPd^61 zP1lsRhGXjZl^;;o7G)BN?vXyHurS0AHAGmU&L znyp%gI0?@TS%k3DZ|(DFMBfDJ1Qrhx7&6lg?W_I z;?Pw)1wlL}O566~n=;E^5qWN39eQprUMT4;CptfdRvWZ>bWI;*wju0orc%<(8pvci zqKY+rf}mH_N-d&(L_})35`J?P1rmPKY=Uxs(<}ln_{#hD|B&w4rVh@3heX2PFoU1U zuKvn?rJ6R)B;{VdBJ}y@Qf;{0Uz0fpvn#sVHco>3(@1|}t{k0e4j{6JX!7)eF4#Oo z^SN}E=ie0e3R}wlgH$$3z2&a8^b4V_iD!|&vDHVZxLp1`%jKBM(dJQ_cQ;l$s!Gjf zX57X8KD-03r-421m~rb-TK2gSigzmS{w{rjU6BBu^C*2d$Ek?Kc;JPiu;%U2HJoA`WXVHKR44ogY7FE!*-qtnc(B~X zU>BX+JJ=b~U~QP@tvnoPGwo&vT4#M&Te!x;^@UAQdXt4XJ|xsYHxOo)b1rG1s-SP6 zi%A_ZP_>=;<-dgkRf%Yz${#$?FJ=e&wLgXfwL*OZ)#pbJwDFwYfmR)5pdEae9q2CW zL+FBC3#~m$OF*s}?Ix{(_7G-%!il4Ss)D|OwvswxplUmF2a-q4s7kp0Ax)O@UH`Sd z8U1i;*#+5w*8CwHs1*w5FZ;O-bVoR&-8Q4^i+Tq-I~r(Wle}{e+*N&E#v2N?>9l;? zEnI&TFXK39=J(8c)1X=X*S(D6%2R`V5J{eTyTK~A!76|7U?(zIb2MIidpKAtv~1@f zPvdx@4?T^CgT4Oj-oei89js`OfrFhpEIYG6nz#nL*h2PXlwM>FHGHb^hP_d7Za-##sbXMTz5ih!dE`he3y>ImSd{mgb`i2{yFM8L6r^#bSLKiC0#cdrBX-Sg6T z;w>B*9nwu%C~YYNaYc(LIt|z4Wue5OKwMC2v2cB1bChni5dIvYaOWn%%%z-eT12X# z4@z~Uj)0Qd&n!WVC@84}WW4A%>sO3dF5BjR+rig_pK*hxjtW7<%K;*5+ATgar`ruS z?6UX*oJ<9qS}k6i)9Kb{MlXcL9o4mLy9U_X3RN%Lp&S_?z0rYUnxQQm`Xtvi4jm|7 z*-aB3FAVuV@!ETFOUMu`5ex>irEO7!Q!uAI`0a#y6_93)W|>Q5p>f}Nz4db`8}oq3%+otj?^^R~y@mXEu`NCDu@ z$I$J5*TsF^OsYjbxRULEV8HJUy}!RKtIrrSi?6tg+Mw2r&_$9YK^HOrBXd)+ zr@g|5#dpx3>khjHx}3*DES+wVkMu88K) zklBHGye5LRB@f@5xY#kY_vXEc*ePDW5tSJv2G$b{rn#{L5ZoIhf_uTJs)=p6D^-ts zcpK$$P+6}J{I31mK8myC8Ox(8;w-iBU4O1ec-aSE7$0XHq47T4`$PI63`4 zO#%QHNV!DbVRg$E6C?9&#N(<&3H|GO4C%P%zn=6n107->xzDdc^6%Eacu1d%e$YP; z6e>i761~GMSlNmC7l)L`UP~-{Xb24_{Z}&6{uQ|b*K3Dg^>J17vEur;k&3$hfqw9K zyTPiB>?@Uljj*Ux2Yt%hUumtoZ96DX#{)8HTaSH;+d=iTQO+_k|LRiJ7mfDf6|8?u87<51r3NTt~I|KeY}OL9p+-9f5Gk0!grm-b%u7M13?D=PIH9KVD5kj8cn9axNKSiAV1Vu|3Q;fY|{ zNIF-LfJHbQU)=B8?c^gzLQ1)TeZ$orW@>UZ3KgZgDsGgFt8Q zQGUmO-OIO%`PAZojn$K2@+>Xz^LJ9(J2$?E)VtBvvYN~MCEt)Xgf zS+46p1+!@Bm*5Co*i6+a-dG2lFKkgO+g|%B_hxs`huI!VKy=NI^g5p#b?KA1eaBKZ z%qX|Cb>8oIU}#MRVN*f2DfJ0G7n-NeoO**IBL08`8VqFn-P`p!Sn@90az>AZ_iXm$bqgyT{lrMrUOC zq8=(C(B{H#kVwebBhD&X3}Qa5BVQ{z1rF2(H!37bYYU66ZzasU%vKcDp%40~4ncnq z)v=_NS8AP%B$GQ+gh!Uk`X1`*{Dg4&0B&gJPvND!=2cFx{N2WE-MuGbw%)Q%7n+5w z+`KD?(Wh)3d>Qgwz0!B*J&4mnRbcukYR^q?Rd+JqeWK^Eh_C`9!j`Oo9q|a-?feuG zVE1KBvkCwu%wY%sNDtx~un>a)Q5>bUj&+5twDbx?1DVIa6#_&R^Z`U`dN4rNWZwU0 zL1JSlT!uXe*`zv`E_8z{^@US^2-TBD8wG<^R($2y)7Tz?Wjg8HH2vqa?%?(7?TVtw z7P{F*!K4YqQnbq}!i>Sgn37J!D>zuUm&d0)kT`x@yy3J{`7#LSr1IDBx%z;!D+Epz z6@CgY%oIKsgKP7|Skvp7m?Qwun2EWN@c(V07{Lg1)^KHzA74+hSz%%6}U3L^T| zVJQUV*lWPmvbMQddYS-)<4+TM`E=Tv)5xv-F@`n6}xp6YKrtA)?_`F_Q9B(p}00Y25= ze3lM#C%t6TRKMXY?P_Bwcn@&DI;1e>3mGBYm`KnbDt)tD%4n2`K3OM{#UGyiyLxXH2lV=>{xk89iN{yOqgZcpRdjNq+4u2lxNoatj0q_1tF7#}thj8o|(0{;;1jjusX zXh~-Kk=-_208%@)s)sh}-Y0+*7yi8CY3pS{*h^JFFZ~+~3;H)`ans&t0k!Ps^LDyO$Qap zR6Hd!VyzL$F)cm(SZEH1Z>OX;A8YOSH;f^PVkK0_3<2AJEF!S&I%?bA_3s7q>9etW zrvxiv1#k^Gyl^-f6FWA(ayiS_LE$sL;y*vF?O|o71RG-+P_el`fq7)^PvVXLM2UVb zP&{0qxYB@4kdF}^5M?U3Qs2os9F760`%X^!zb#R} z@3O_|-&{tmFMH>9d(Zpf8EidjF#E#~wMd5U{K#kkO%=MG*c!7jCFoIftvEqZ8y^*pQR46pY-Fe-Zq0_? z^%mQp^#-Gkle>rC*yR}l8iLHdp+M*Y_vjXcHS>y%-!otPEmy6>_eRT~%UQVQZ`QJo zue`=iC_9v4tT2-rgN~&Bw`>qdLYm$mi#%U2v{V+Nr8TN$5b{)Bggje_8uBcE7v%Zs z0OYxj-y-CxD8t-9Fk8s;*b@gJ&oTNrLgHAGS4!NIqajZX_>R9=FK2|kR0aK!r`9O# zIRu70fBnt?l3Eb`p3#*k-6Kjdk3 z91VH4+U3Z^?2eCnv@L=QSnKH!d1@dL@>De-&t6ox!;5<#xIT2LEyf6cw(@x&{tVer z{sY3Zu-TBNvwc+LD7f;=ve6t(lF~vA_4DqFm%nZhtn*`(j z__BA2#WrY(A*=yA%7hFXyO_rdz3~BKsu|gvLaMhc_kI%Lsig+4_iqM#)lg+pPC%vL;VWv z1v_hlE=8f@(Kt7Tn#v1V6u5nrP#^_9PDSNGhWK1wc8Hxe#4Tl73LrktXXMG@bxZfK zxzHQo5Z9aDhK9J9JPmO+p&bF1&gyL-Z6=*LHX5QT=o{h;QiF%snJKzRL+q!sv9MDZ z8Mo)9JLiAXG&T0S!EH0j={i)%6tAajY zNFQe~Ffy6b%ES5Y)z&FTpLpPWzsh`@rq13U*?ec1@1tw!XugN^4zW8NqQg{w)RNxB z1T{uWdL3~Mv6WEsy&+0>S~{zWvLaMPIVl>VD(D+x3#q|F?9P-Tp45EnSJSgt*xfhZ zmr2Lst}^<73d)e%m>N?-xoypN`)0q{;^FK!5zo$koyGglKKdpfsebZPfbzny?7a6x z`}`eXdK8@PR3y44o3r`(IT+S<;jF93o2rMJJZ2 zRit=EXet%o=lvZXVGJUleE2KUI%!hM4g8LtJ<_qrV@v$5-Qo-K(6P8WH zi36ZKwnUe02`XN;J!2I_%}KxF9_2{C;zwYR=3b==$G;c8mgJ3Gj3hJU99e9^!a9t2 zVNmPUOHpsXq1bS)-3hq-i;IO!(RfP!mXL8~0)wo4?(k0IYI3SzI`>NP#$X8Mi|?EY zZpz=FFn;T!aHw8_19PgS3H3X9_rbl|4NGb?ZKi?+`BkZ+w^IJw73m3^Q!%l~3hamJ zr}D!dp7u^l7yiO4x*=a(jP3D?jG>o;H5f8%Qn3e9)rH$H3Tl7BU2fL4+;V@yPD}A% z;2u2zRAtX#{O*+l#$K_iu{&?VVcX!JuSv zZGiTma;F|t+Bmb_(Kx)K+to=Yme$ZJ(xZM}4kAlE z=3spJ27c=LSNZ|K1?foe11%zMBvQ%<(ww!6u>HB>LO~OamAo(O+dB6*j7goVW zy+f=~u~D}0o^J5K_MxTcz1SZpUTJsy%BR(lsB#xE%Ymod z*i*E!Hfok;oTBXrP96ruzHy8(@*MaJyeiX4BsCuQD+HZ53>GII)LDh{tB<{cn2hL=FN5^vCaEqy3npOOD0es0TcqMI=NdG`7c&tBV=??1VJANC=;>d>6|-_*Y|F)Z^@{rjZy zv;Euf#{ahdIoK=tsQwizU;X>v1h?;?A@foFN-1CciZ)(+xg6-Q9);H6M6pCeZh45= zLVkb53-5Xp;~wI`iuPGS7BG47c}#bPTICerH9wK2e!qjc)_Vr-rI@z_jBv? z#P2G5-dDP9-mClnF8UG8sv~|x5i?%@6*g8>1`FLye(p71)quogIehC-EV2Vx#-(UoubNp|9gBj@YU_wU>J^N(XM$hqYBt zjHDPx>{h#4eAI@0I9}iWCz~#{+<(tL%#d!^PYmRV_~}`D>HX|sEPHh}M6jzD<8LQS zWQCmuJ&)+I#vp%JvO%03=SmyNyC%=)O@F{ejOlaAD}T&i&wmp2DLlG=)j@#~5Ar-n+Vfuakq^w^MdwWnl0!!# zPx6x&jGP!W44p-be!~R{AVXSsP9vAq90$1zbqF}zb3KGq<5>@=+>{_@@%+bSe@~i! z+nt&{)@AMnHP-oZPStynh9~`oV->nJX3*cQx!=n9uh8|S7rQkFBr zqg*ex$^aM?yZ*T2g2j0WzxFshwUiAnZ%Q6FTxKhVS!K(%Sx{>8wRDS9{q;~M1c=ae zt$@L=XIKIy{M2Zmsvkp?C7`<&OQ1MRRavmA(lYC35M&|FxV5IAB9sMXBt zB`kryo^+BI_N0nNBN87y9ePs7Pf<_i5~U|i1oUKan3A~M@mH;}%=#9BOu~Ai4|{tu zo5T@4QLC9*>Pb+q0!Gz`FYvWKV(m`p_W4zJs!I-9saRVH?&t}L_&h|x%eq4%K9B3% zk1`gYF52}cofe76%n+roYIHq-Rubr{wsH=nN;K6_{thx!fM)V z>M!4zeIT~klx1Wz0>M9Ox#+BJp&!(Ce`=$K)!{3QFp7bR?sQH<;jJlC6kcvISh6PM5w>)GN0O||3C zDbAbZ4{y#YePA|(SA#Q)N3%wVc*Xe`t0^v1R=qBw3$&xZRSWr?dkY_YdZeV$oaP&Bibjp7~oUN73 zm~l<{ue$zQ5^}rSUiqq*9w&h0pdjF-|6_>59M0fFH$Ag(h`Z-~Raj|FZH`QMpjx4d zxzb6KT&kXBO4EOJsoa02Jbl@aME%a8oKo?XlW06iH)rX$vF|3Su8L?V<=0xg@+WFM zm^Eew*90%99aF|Dy`fGpatsD+Qt4U4htShmV=7TR3_BA0b1IlqGJ|`>oRZ2^FuY`H zdiv=@pw*|BSRwU3RrFBGf5?m7?-i}L?qZVWPAm~ksb2jTHD4Y~Sgp8vHQAr=rqYxB z+IMo%S4rVJ`U!4EhIJ#|fVbjTeg;E{PB5MBVX)`GzG>APZ<@*1E?^7hsPl+lCyeo8 zHyQZ2l3ecw(@SPhG?n%~sX=&SDxKIPyf+N{nhMS-$#%~xMaoKTs5IQ1GdU>yRJlLv z1gh;>+b#T2o~pXUPDZ628|gX#80{f0<8Fz1bPaf}bxB(&-wBDI0yG zZO;ruc81t}mCBGE^j|XFEMx6Px4s8z=yzWr1OA;Tp+2$a&y!aTggS;9u~gB1ujm%XbC7JEF)-S%88g^ps;JE@`$ujoBD z_BIl2bTI9;M2Ck>D_P;f(Eo6QwHhj*D5z41sfljNj@TGk7MtyWHS5U99!q^VQfi5E zJSJmoSbd%)3q}mU32F;R%Wg!atQyUbd9W&hX)X^zcxZg%8LAz-T_IQ4Y<7Xb3df9n z*G=b+axg7cH6`txn=|&XTiS-QD10lgaJF0eF!Ao=55*fcpQ#x_)zf-~?J%!!2F@Es zV^a~3}8q&NK*-a<1Jld*xSSS*oArS4 z;kh(geZqNf{Rc`3_QZJ?HHc;(W%SXVI`Sj>XwO&_a3+mn3FmNMYvc#kr!kMBB_zjtsiOB$iEtu~UN3eil#O^rJ*o6L zzRuawR}x!P7;|mAL5Jw^z61EmkKY|{*k8nOieQqqQSCu-s`pyx1>2zn(%fnFs6&?^g5b1hg^WtppH6J(wpC+O+J zUg#B*I0AYdw4NFIdAshYfQdrF=OA|7v3Jb&7jH|oO{cg?MrvDIo)2-R9Sb4B{{HPw?bvDNp?#H#=B|}m*9r}?Qj{;s= zvD}wl=GL^D^cq@LJ$2K`SOIq)4NCdb(zPdn3`$&oLOdDF$Se0}#<}v$<;t@l&Xs4U zGt6q^X`(7Eed~%(M4;P$hoBXK3P!bCv^U=LMPXRpc%`Qdfdu1$nRGfq#nv>)QXx&A z!mn?;(w{xN=nK%u$DgB}@7In!ClPEueq)}-C z1B=E>5js7p1SqBaCsM+dSYdcSRr8Gc>ctMHY7QtiG1z=^lCe(oH-AZ?b?}FD0V9{z z!71tK)+1*R?j!bwJ<5xEl&2nbQ;T|}FzS&fvMJjmC;bgBtM4!R5);UlJT^Ol`)mT~ z(Fb9V4!AXk!XB;o@@RU(noz*$ju#96{`gAK9I2Xa%?t;Upyl|FrMQ0>03q?fzoSJ6 zWmq;@#GdjWP1W41Z&I_OocZME}N#KSj8 z(XP<^rCvDr9WrU@6k%;8_jg=bL6wh`AJ0PpYKS*gA(LE` z%GsYkiJqy$@}ZFY934BngU7434ocVC{Kc1-L)NO&(Xs*>k&$+cX=`zVP28>WZ~-y% zVL-8!kzEgi*MaVx(LHEVkQ|R^4ep)y@!BJMLWUQ{tvc`$SVIy>_9gW8H^=EegSPJ6 zSliUCWi)cBQGW zmCy!2M>>?ps_&-G>>ag}ndpXysY3g0Bu_i6oiNWeGt7q7-iO(er z@2gLQ%To7PRhe1w4=hhVQ&F89k44;Vc67hUs8v9Bf@P#{mC zjep=zpfNADzEE|bXg-uX-TDg!@D!e+B*_uLwQM!mslod3`jQVW6bPLIf0`P>BNanz zz21fa7jG)Hj8`pe-SHa;Ay0CV$B@5bylQmWQUaxFNkRI?x*Vi6)$7-4Oc*)+O}U@@ zGntVs-8U~|LOJe*{1jh4*2G5PU~NZ5-DN4Fs9r6p3omhrLwOViHGCO=>;!V4+b>DiBdk z${tKLU74ktmi!>3npCKdYSPz7QcZ;+)ubLqRFk3~Lp7zyW@hbfPsV1=W-$XSDS`pP`01T-n?!>$%(M|_DhU}W7QB9jz@c%2R zroV8GgjCZex~laA)ugWWr<&A>zl~~oXS7jGs%rq%q#FO9QBCX78~rG%srY}IYATL5 zd>aYR$5Bn6`tD$=>BY~m^9E2&n!i4($!w<&qM8Z^QcWl63<>FJQB48~OC!4!#Pg2` zCVP<-QB9Y{8_R)&FuRWRkfNR(%o$%b_T5PVw2<-IQ#IJzp+3!DB7W;bx+<#vRP2e# z!L0GKjIY2C527KFACXS5?(@gcB~jbZQM;fXb0_;V^NT0@Yx8IG!z3)n zncqZqBcDvA$YSEkYbKuoANU0|%akG#McP#4xE4KA)D1VFtg7SkmbZW5nN|fCNAARJs3p zdF)T+k|&J(gqjTvT>BsJiRcPy$X9?gNI_&}(0>E}>Pi27zdgS4UPx4^Vk1*L|Dp2q z^btd#q!a1d5kt$<$rEFV^nw$I##jCm<*4mJs!5NFIn~GyLetn{XfGx=$#R`*;d&EE z8H3x>4Q4u<9^Fe4vfONL)1@^esifHoZMIj|)KO=J!bjEOeV34yy-a}($}|KkE=)-`%HaH z6Afpo38(07xQ|1Ih>ko{wL7>ih;4JKS8Q(OvtU${Kk81N*14sJ=DlJh;Cg#g9$#Jr z*+}Jr6l^j^Z@^**P5LebRuUlD1dyIfb`nX$Y(g#A7E2@OAxs=@OT>1RmmZv$o__X_ z`0`IdM<%Iq48M(iO)g9i-;+4J^YA_8rH{pzKY=_VJ1$)!C`3E?3c|(2m!nA?Zp9t+ z;nvda@#UA!W+cmic&qN7Cl%LE z^$n`n2DP~i7(|15&LkIFH{qcEt4a$6$u|Ln_UtgV#)4H%mib@J1er1pS-65kdj~ax z#1Vrk&Rlk~2346CrFgDMLL<*+6PEYwZFyD?m->kRa_2nR5z4PnYKiodGeGV41CGIKbE zAjFCG&S?vYBj&U$^W&3jPW5Xvr)7O}IzUl*MpK`n^7s2@xY^>7qB8O94A)tFzzmm3 zQ<>?t#+cs7PM#E%OP}logA?u7!C=U$C^K>0*4ta8pbQv#!j#mLCAYB5dQ(pR&Zz=J zpK3C5oB1d(IGNx?1A~4w&14UmQKXve#&#q&b5TF9$s>$1*?sh=hn+QK)V>Zu?~5TxepoF z@8x7=WOLFVdA*c@=t%dJs62|jR}b*9!rRU((4ec|#ZH-GI|A z1%29e>U(-}H1KGekJf6^Zy$?u_V9d)C=WEK`qL7mTEQ<}Wmd(&^Xnw4=qlxh`02?3 zr&KHE<+?8Bhb$58q>(L73Kop73Teto!Rqm|Sw}KtvWbZj6^$mg1hR`s8kr3pd`gwR znWfk)#bzruTd_Hc@n`iZssUQQGUlmBVrn;FRL z`i#{z>D`9$>fewB7iCFqXgL;JNOjlzqHj)K_JZGNN<_k`Yk*F)m!J{9CSWXGSDRXN z$YJ$rTKawJ1a>J9!?Br?sQrCbt-=y-xR{UpokF}X4UM(#dEIO&iW{eb%XZ6L+mvAQ z=(!Znj4-?t{sbT}&u;k?%$Zn!(`Z$Bs4G{!h=_NXk!K2=p8o*5!zfRu@ij3VcaeL= zXzgA^TZdbolre=+U&JN$@7TSK5|_jb!#n`n{rk0&xrQaMS0k%wA=@B3Q8NLs~jL++-l?|Kf@W zB%0B%)r}#+9KW@TTID{>!+(P`7iI{2>WK$Y&*fqrO?a^nz1UvkT|FWF2;^)STfyFA z(ascBapVq-XTU0mj=^lFXnNsd^=^ZDhc&6#UTm2Boc9;f=)_@{2xxwi`T#=y_OY#p zTY0VFrbqhnC$`utx?iddYgAwQoEr#$VnbmaAx_FtMQ^4`A1n8_C-DJ~-?dcfJJQ9d zO2ntN>RwX`_>;$TwFqfs=?AGMtuq@6jjLY^7DyL?zJAEeG|Ayqdelm(=xG?Pe07C- z2bdFc@GcfiFRaRZb7n}q%+)eFjJ|~auu77woYEwY(3U?VZ6nGSvt~nwXwt0^5nIyr zLnGrEGHptqr>KW!uu9{hkxCVdF$c;a<{l7@%OUm%Zcz_=)Yc7mGG_7}{+EVFY&r`kJ$$7uX13z8D-9E#F~Dwi?DsNE=;ZXc ztC7!1%5l|mf>}D5W|rFF1ue&488Ymg1*0^W#cxlHe?Rw1OdDL0TSpH$UfbsF-+zkz zM(&ZnIi(-O>-AbRD>TSn4-pzjLJ+LBMVm!O8UmUm=$2vREgA)?W!it)yB?7c2t=Z- z#0bOH9a|Az6l3dcPdTi-*p6WMCV#lDgY;$ITU}#~-Oox*2E(r`_lGZMQl%Kx-8D=y zh58S2Yrn3koXw7n_Ds03gaL$8fR-H$(!5zL{HPhpZXPyn7Zb44wrsSqx(=}d@Y>o< z%SYhB5dUQlc4_&H&V1_AV)GH>j4+ab3CNjRf0GFr4|P4FHx%{n4~?(*1Zx6o5X0U2 zKgSo0fGFWk#}ayrzoCRPm7X{h!$9#B&ywZ(PuM(J3AS zDys;_ZL9Fd;n%G-Rk~eo56G0@az-k)qavLPoz!Xz;?%b$#q)FbTsA3wVscO3r1)96 zkGS>Qho(xOnD^rT5tHI$a`z0#d=07j{3@CpJuRJkUPUmn2dhKx;VpsudEJQMc|qkI zsS6aT0mYYp`>8$&%wScZu4A4SJ#={g&;EKnr+i#JTlrBI2>#EaD_1=CKSWnv%x6cX zD_MRhiqLO1wXG3e81$%+1g5g{$9 zSV&7MHhZGKdc&g>LV7P;>_6tu_(QFlu`LRJ;c~mUePOpsmLI-Rg73{A?_8u&b{*t zTRM?zS#^Exv|zJA0ackZv`7V@R`s6sOZ~i}RMaSlbh^D9Q>wL=RJb zQV;7T7Ex<^*2RiZ>_a0K*B92QAR4GuA{L>$c~wu2TXY|vLM-0u#h&aV7L9)6@Sls7 zyO3Di2eEjye6-H>il9p)Bbez?zoil;5+V`;46(FV3M>BsD8-IcQMXt6ws|OnQp6Ne z28_x zzZQ~-vu))7B$0`>K4yzdEQv3F!N^3`iydHEGPD3;58>FAHZqZEpg|XAw#dZyz1YJk z8IC6#OX@}@M!XI!AX&kJ*WtqJaN%`0rJ48&*%%Z-sEKp^Om^j@infXV(;|n)Vh$f? zHaXcvCKf{vT-}dM42dVmQpm*p#^ry^i|r7ZH~})zY@A;8X8|moyE3E_uO2`p&NV9W z8lw`M=wNONL&Xu5IM=Ae!M}N>JL2`*j7khiSuMe^uQIv^=fzg*AS$uasKjUx5WJjI zQ=k%U%`%)22E9}wKdrW9JtelnmhRNp#y%=>=fq%m-9)HCdvm!1YVeCjCvrK24|G+z zKeC=#b$MRd-6eh$dpDvJtAsqXU3&Kv+eUr&B5SI`7woNYFJ<=)d-g54^AU~_L_KK54^0(4;uO8f8^S;2!f*L~ z_;96r-s@eLPzZ(2{SO(@@(voAc1N^}%==v(O$aIAu4ggrj) zT}s#dhbS*2-S@|r&*0mx?~zfD#iYjZY|)Q>9~R1!c~9n`V)P|X=w~#o+RHE&mPHES zp2KAs{;TYptoW@D^Jt+;Xd!k0W+w8`UDDnPR*C)sN9!jOXN&76!ISH^^G*zIv#I*E zMeoPNBC|JS4moO8cr|)6rhFJ9_GSzR0|VcS+r z6Q18{lW(U~k8AOeo6GikBQpA~e|b>w`@iCiGwHiib5}d$1HF+$%lL> zDN|Olb&}K!gCr0xfufjGq8E83m7`S+^l%{*$Ah;*Hj#$~?=&M45 zt<_n;N>7ysjkYdr^=6kc2Uc`b=Sd_G9I%|HYbEzSc%%Y+nbsEOXIJnAxqlVD`A5L_ z;txak_5dL!2anvx77ST%fhY@Q;m+O*ZjmfG6-+;Nh7-MhM9hu%^I;BlQBpy2*o^o! z6WHZlm){2hi8c@eM>?V}g@Q~53=7{O9k6XhDSw61gD7R)xm4u%ZgoH(WtpuLax(wT zc3W77)=^XfpEAYFc251Q;(|k6nO$^&U#wx#eOw9csVY+xc4k3g34{bY1vWvI2(!_m z?s$@0%cT*^lm5dz&b;E29+((EEw6Q5ryAK=%$C?ZP|;(=<7?3hV_ylmW}kkFRL{`q ztlo}2^xS*J#U|MQP)_fuCVJWz)*xzXhMJ-uV`xt}+G=E9cTCD2>^LPfvhyYJGC}|XY7+*eL=l}l;jX%vX-__Wr%8<%1 z@}ypzFot5DnkL~_3V|eiBsY+qNgz5GUgdGl&mX{R+4F(t%(oP>Ewl!XebnM zOX3(xG??J(qO^A*O3*7zZZ(l_hw`b^V$uta85#+>mQHm1C-B?3?TxQS?hc^Y_pk~# zh74k?5nc5%t+?USoPRHmWNKOr@#W_;+50~|AnWgK{sjlP-r|f@Wfx3*`9?^%uATgu z8Z7vHnLa!4%(UvwE7nsPn>Yzar3&Li%nr{0nV)^h81q^l`yf@#Clfv|wnqz{sR)vv z=jAOn;m7?EHq6O0D$+Achj`Gq@J63SttR>TN(|Gd{Fm8&wI}QKVhXNuF#P0+!MJ0j z4x;W?q|Ii~xG%?-e^-m`B6_ZsGeeiSlR59kos32GY+F`)San6f*lq-V=YYdt7^kzf0+s6eljmqEe~b}x)-RtvVr)5Gn>P}lhk zG>bAEd@xhKGwPWLU+t7u3-O6&VT2p9*oFzvGUkc%>1A%SHyF|bHa*?u&(?R`bnwM7ZaPqrZ$?=Q@Q^V z?_p>Sn_2D1TU0>@1$Y(%DH&E)e*D{l`eN!`utW{3|BmE4*cc(o4A&vz$o#`3-G?y= zp`Rs&3-8woTa^Vo?WfZ4z8zoQ6iuDrA0hT|ats3x#NA!qcIH{P@17%{Sf4}%1D;r4 z!VTxG_=>|c8_tK1*$GWakvR2zvmz=-VASQ;WhM;vkECKd>A{rfK4-Vi?UF4(nqGB1 zrM3F?6;SrkLqkDe!vF<=-%CNj-fPQcNTeVzC^J>MGhV+N0BGT{jJ$K%==-?*I+&Vo zrE(`0E?91j-no_hoqjqPfH$~qY~<-|`sEY-am$Qrzmq#^12tU~jJ*0Hf8;ghByBgD z)7k#qFZZuv(dO2^V~yB?WmV$FC0ekWGR-J7$+FDg=(Ef)yde(@jZa;135Hh_hwn|6zQ)@To%obf$HS5`JXHEje0hzb#J{om zj=RC1m*3wann*~e9Q4a7?xE%K^a7v-YUm~*9nKP(^U}F_Q-hg9il+w2A!Rz&ipkBY zhw7}&vGn@z#SF_xOTU*KpwlXks98FRs<1r$b&k8$riWObuI5m@sqiMt{~l-JdQ++_ zPcJ2ZbD@r$rDwVRGoeKamq)C6DZ|@Id%7CG>NpCd(s+n)OZWZzQk~;!;_%KSC%f8> zeK=&j@%WL!XcEiQGtZ{=wNX#zoI_&0m5eW!rCKRUj;0)NR}~r>@YiSrAm%{=U;|II zDloFen(F#j{-A!#!GduWK0@Sl9A_WaQr4Q9EyUMxWxP@1Ot@(+zgMIeoHm5BlYRLH zyLZ8H9K;ijOU9l^Rqw?gh&^TM6oRm2z6bGzohk?AoM;(&sb+B0DbCa7DWCf>hCCJeRsE z6?;s0SEU&Lt1X0_iFa{EzN)k)KTOxY!Wp?kuE%BKlO{L5{CJ(Jj^ zpB(?<_DzI!PW3mqex^F`(J+QNbb@OPn+HE{JWV%8y+b_ieF zC-iPgh?&p6dr^+R4I6Sz_0J92_8jkCmuv`{RhyIEpaF+33im`0T_?VwD`9z)47vsv zZ*YQ5Dub;qslg%<<^B4HTdN*vk8E|lU8*ya;#oUg7h~CXhbE!#OT9zR^@hW`&tDEDL`t zaaWarKk@|KW6GML3*T;whc0|GrmPuyg6_08&jddd2jLTJJDy$hBM3?~> z`Gq8gm9PV_;0xFRNS4U<*%yY}_~2VEGoxzQFt9dCSGMx`6~}0J``79(L(|Gpo8NGP z-)mhsJjix~t%{-qg*_(6f76M~RzS&!%@BLo^}9pe1SnAM=un&cq3R{;up6-SRQ6a)=sI#Awu<^(M`m95GR7;$zV^k|rp9g%M9TkjQ)7lm zQ)4H8U0hJozqWD>J*TZ)hX*}-*%V_N^WM}4*f?5JcW23yzhYWm(oj=1xAwv>cB{U; zBac6cO`P{^!X@oYJZ!I-XXaez`B)ZN%Y zf98d}t)F=&(z^?t$wa&)F_??f&#d&PUkGn;`kB*-z*?Ms<_sb;IO5NonF@YknB>6I zsTj6|eLczQf+ES?!;jy_)Tm@#v4<{c~3pBbs5-&OGy zCYH6Br?g>7qme#M@sqKUOfJ%TeLk@0MA1FTU;ZUyc*T(Xl^cIIBZHhlVR*bpk zn4@n?rcrsN>$ievpX6Xj=pebYDZxqNRHxP^>^P}c=P`k)&$<4)IG`F9G0>qWp+7o@ zacR%;9uvoBPnwQQh==9Ip?cw3H&~`2NQ4vHiM>4yBvqYTXK&dz$Dql}o6C9F)R@mc zK5+@*P+d8OlDB2PTAu#K5YF3S()h+JTS)seJt0oLpN-Js?CD8Wi!8{Y z7U%MxsqZaG|Jnkp^ae+{{A@6+lyeD5Zj5@h-kTDPEW%xm#_Xk&cOJxT zPaZ4&r_^10<-z?i2GUlp6Au@$8ZzTMn^ZWs`xu-+m=nM9zo}Ig1*yQM49`TWG*Lfc zch15Re7cr5PYY%iLF}T({xt2+EUFYlv|zAXF}#Qe_6a|CHx&PUxfRtDPC+H*&V#r^ z+MS!T@XLSe_sQM4svxho0uymP9ACbG)f%p)bn+8J08i<)8qWN0K;zNKl?QVcdU%@6 zCoko9CJt{)`l;q=Ma&poO%|b0Fr7Ju!!ae8Py`F3+-DLZz$JbA4&Yxkt$Gw@?eMyU z)orTs%hv#u5@ML@ts?L)zsi=N7i-k|N(EjHyc_&Q*5;JOSN;wly7lkDu$h0Rz!`qx z<4x7efk!hvM?9K6+^rwv^3UD(E!TwoTlfqzMFzS&jCG-+kRG>{Wj&V`(2=zDhR6~p zg0s~Vd=#c9+!cAr9lIC(w#414fdlRl%<2$)fT3R%Eyn>>VAaGMjw@t;7CnLp6V8kL z`C->D^THQ61xs%(rfhuqJ7$Bxb{gEUq`z=2UMKVP)5`JCfI7Hwjl`K5Uigy1cbid$ zfW5i$FwcVJQBB+YQBfnU^%ItZ#@ph_L$D2wf0*Cqz54DpL?7Se zWVS-!+mLr&L#RF=Ub*?1wKtW z`7&D{p7r<*86-K^DoW`(g1@Nrr`J!;iNM^U61`wP>+ebVPoQpV!uK{%F1nc`l#2#+ zeH+5}HxRy0hBXD4Klp3}=4YIuwmvW;6Iyh7$hI~({~kEEUa>7D_l*YF#T|5RF0O1BUc ztMo=na~-M+=H@rPyYvTsw{;P}*%0`#ouSL@Ak_kqx2U*&!k(Ok$BX&kf0u_l=j^Gk z-2-YH-kURL4|trnJni!yP1k))71H0A%Q#Df1mCQKRe@2@Pg)XHKDu5$=7C%-)SW@eoUn$;MWvmS)r121ReJ4K)@ zY4U>a!gg4=E*1RT>TP_=4X#l`si0B8(qg8ZIej-3q*aRxhPPj@R|;N$NPYMfhWf5? z^P#1Ud`kqA3q8NFXXl0=58&BvhGiW7dF3FZD7};B9@VLHcWuWQD zvX*)7tYaxzdb_}mJ1Y23nsHFfx~M;Y&8kaP8NfAT1| z?JB9mHu7D{zb147`|CV%T>s}itl5oJzPzJP!tqX{z0UpQh}s-d7+b+Ifnd^vDg zw){!U@?u+-ZuJjG$vw%+->bJiCIdQU{15B#l2ySs4H{K}t<9?y!;e+VqDnVdZe0nk zRbVVEC>aR~c*=vsh8OSE3+~T_?z`k(UR7F#)#k> zg&udy{fVOmdADu3L!Uz^UtK~p<^Qsh!1aGx7N(@B>-s;gveebH2{NOe9}MLstwFOY z0>skg9SGvDJe_5Np-ysfE37Qj_Z1WD!-xrXXlrW+OfWs~&b&S*%LFqcYWk%2DR}lv zOkBbQ3sQAX`u1X3bg!-)%>lAl(V}K`IRu1PT{9ZDpI*^#lxG)Cu}K?W^QtdhCw$4% z2Pmf&qK}x#`(@TOe~T(*l^Xu=e_Nn>lfr{OQH{34e8Q4>JPSDKyQvXWk1CyccVYdg+M>4j=+$+(b{jc(H@6{&vk^ zTf>QCPzGB0Ya?sv+W!cds7~8e&2&zS4z_H0;1uE;I_XywvQjb3${Gblc>eWu z6w)H~{9mt8)c<*t#^nE64-Xyx`gNANeuGl!CA%_>oG^oUv%7+3HN~=AOfYa+{_4r> zvV4{`wu@z{G6Q(ChqtzNW|!qRK9^mV<^xclWX&)1ewpRXq8G5iI*BWD7AZFFl>%l% zQo--kie1B38UR{_UYL=T|Gbk<<|EX)pKG;fnlEq*{USsQm!+8(a4+5bMVS{xxO0I* zo=t039JFhnz$CL_4mUjs^OUXfrLcEuI(GzELrl0>JJT7+b| z^*hm>ySY;({2SUWNcZSR|K=Rk$N6ok+f@mYgbpimZ9czg?^ux=3M@#Mg_({8jU^WR zb~Hie{;zADr ~*9G*sy2lHCCm6d$hhVpc(Ek1qHhO&J&kW43<95(2x%$s}!H+cu zUa(97dS4e}()Ey(LS&_s`~QiPf)ywJ1wdWouQ*0wWYpCwJuErPaN`C@ zbHposebJY&3!9Px`!hJw#h|ls19p3%ky1VSt9e*3pB$_{r4U$8_E+aAOl;A966La5 zk@!mSRsHf#ujWn-L!UtG8PVs~L>Td>>bUDanJRkN$dQ5U$%}#od1Ery|FeUgsYCE5 zZ#eE_sM5I<8%%_{h;$-WXQnc&2D0R0Oyba!v8_5TO-VIX^N@9~#sD7Lw_4cZ0t5f{ zH5~qK(X%kN*1;}wgWnshnFIgY7JhQ#9tQv3%!;F~ZCCNw+i-+7=~wOo3jD@(1Y~wt zD)hGQo6p_MN$2+SWn2}Tp!8ji~%MQid&VPQDdy-g-_ScSV>IBIPD&vD&DaF3PE{E9Y|Pa9%XX3Q{9kkmR{l@g!xWFSN&TqXQpKAlz1hfe82f zN3#f5!Z0}Ln^a~1!u@b-YbJ|uUm86a;o>Ge+5p)vBZPax(B9#7*zo$?TOtgbJ1l$H zU{Z5k6)A*aiwO{h%??v*EY;j(sddc+@MzE9cf{~If@amm@MaJU9Ns05gu@d)50-Q| zL9@z8Nd+^~rBBTN7UyKje+6oB##|W;Nq(ls4eqS8c$6&~3GO6I|GK+hk z>2&K~F(-cIO(35#aD!DIy14Au2CRUeGtZyBHapLq;XKQ_N>(b^XAeeFK~X~hqTQx; zO>3Cywp4ScrRro720)y{Njd0X?F^b#8-S1@mw|vt?d?C$oy>D+>}7z^v$dOfR_8K@ zPV1d#rCA!C%ySscewm%;vsY(_7kcj8KpG%yZ(-GCJY}!@iJ|nV5-X z%=(%i^v!y+#lu-|BA%V~I*SjS_4=I-Q=SQ}#q_qtd|%Iee|l9GAfcbnO__cG>9Y|d zfOOMK03tIn0Hh~Og=S)!Lo+dTG7|$pCOmNjK)Sg?=|iqiM*!r~_6Q&WZasr$70@#& z9}d*x^XK6jB{nH#!^v=2O|xVP@J5IBZ*I{D4q>AqbTj@G7ao z@@kn1{^+RlD9_2?q;KK}508?;A4`;<&i#;vbKGq_iUGM7JaNon;MM!@>GAppE$Q??t_xN z2ffrU6ov6OH#u9#;q+;o7 z6{U0;K~+Ai#ecePa!%K8c}jnjF63JmW`$kY#i|+H1?5FuXeVl27^yB44Cq1!zx_kl z1x4vXCqYu&&Bw2$3un^>%m*6#u;E5oB&ol*+ujv3qcb36%zQU-X-95thI1M|e@Lh2 z0=xK_VP$`u#>L{|I_N5S5{>+4L#r2)av}cF-XXS0Vq4-4aU}2lwIxL4ye;(E>ZHxV zp-6no-!eB0n!{i=!QHcHJbqTA+Wo(odmH#Ft1I6>c%no}=LAhLRi-jyrj3nlqtKBW zrY4%eIdBf79cbeeTJA)-Flx&UFGFv^Mv{Yhd^j;yW7CebX{!#MR!v)}p$Y_45`3xQ zMT}rI#nzsPFA=LmMY!MJ+Rq6|hz>LNem?(yKA)WZJp0+NYp=cb-fOQHHfH_e)q3kP zEJ32c1tk`&o38*SIf3rFd92{E=IdQNX68@$o2rb|=OrId`$$gj=jk)7)4H!>9Z7v> ztmaz{OX6Qu%Vk^v-(d|JI`B+7-V4KTAC=ZREY`;*0s8z zM?r@*aemPAoK^pvk-BVR(DTdav3mX}C@}Hupkt*QW(r+JCs;kM;LYkno1{&kDBW0e z-c=b73Lx&>5KFGB0HJ7$0>)*&1?x29s9n?qK9z<*vzjNmu+CAOdmQ<=M>LB_-7-O; z>^7~#uFu$ZatYzYUG7X| zEYV@ zRPw^4y6aa=D*vzVC4fM*5=p`y7j(Ix-vw<1%(nTMCL_rT0x~RAkZfvk-x}SwX8V?` zw{OWx7rB_AwC#SIPYKt$M3yx&k>i31E+}%rWEVtSP~n0~f;No`xNFczu4@GM8I_1N z@}Bt?Y*?Z8a0NvWjA}iPOcO=`cnfkkP z2Tg`!DK~~b;lOO3_)DA3twJOJ)X(v@rJi1EHs5Bmxo5@I!)9|U&7pA$sJY#Ob!`q0 zy9k2W+|DC?SLahaf_;51=pi67!ytW676F~_Co(`_wT0B31gWcZVUeEAUkEyI_n!xK z;GbKq0}J7~3~Tw~i~l*p78UbNI6#bgAoMg}0nJ}bJ{nW6fNN9&*XBeEkF;XF3!3$v zlfQdwx3_hz_O?z{ld^^&b-yk~((P@aouWRwUK-TipWJ8d?Ig9WSAw(_&C-opbw+4! zpKGrITF^y4K~zCUqMIOSZwC7YT9M^~eoL0fb8iy}$dqGm>r^!XBtNsNE1+=%qRlQIFh)EE%w}wYrQSX8k z`p%qpZ!Pw=uF>AsscKTrCrHiKrBWKcp9$LgDcT$JKV3je2WXR4bqGc#aRG^%&urW> zNn0NXfhH*IL$j~ew1PJd0B1t}y{3A7dQgqb$mqL_h(<-U1rb|_Xd!|{K;`k)N>J*~ zcV1JQi|cejmkYXG(BpzU>VzUitm@=s_cq@J6D+c6g?n4?f@T-Uj3N1If;Y1;*VL*Y z*|g9__E==nT!1H&ExeJTji9uxh7kh;7F!zvuY*V6*%?OjL!Xc{y z+SE!un%$|OBhf~nVdp~+kDy@61>O42{?ff=xXo0by{%K#q--Zh{kv{1)5v-Q?c^}R zDI_?L3_gTx1KuBS2-%8Rm(4VfaUL!_G67^R-B{yJ01KhR!%qN;3r+xwd9)M2ng7BG zpg_}L;1IHcZx*J}vcbqLwxaRMmlQGdI8S3K{+(|*sLK9WEt285kF{J;$p zB9R5@%31QU0_VYR!y?IsQ^bjs7`j>H54pd_q|xR??GI~%b- z)JIK)@kB_7viH_~t`P+^qV(-)S%@1+Uv6T%vA;K}ML|>6lXr{T(Ine>-t1^XQ#a4- zf7vYc@I=sNK~tZ5%VIAGnVVoivcSFNDPSYzl4RIhGR50=lLt|ETJ^0X(M14rU)y`7 zZvUEXF#Fv{<>(_O6^9#a-Ff8M55)F|Y|-hTYe()1w)(@dU2*5Tsw#Qx$^w7$|0me~ zh~Phf?eqDDIJB@`k2Gu{L9;}qURp!yCx)b6%(viltVdF>ASh7kHd0S~d&~F>*Jm7; z=$eS)Vml0~YkoX6qj!0LAy@AnGB}$x3MY(D4N%T0Dac}+ZEyHMOQ=i_L$}Y0o-jeME$8oJ*k(~Spg27Sh8aFsy?xS+FYH*A(DO~$x z_XiHn9kjc2<8y9sYJkx2!BJc=IQ2Z*;M{mM;J$MRxEuKv42~XYV>3aez#UDH`WHh| zx9}|(96hQ>1U5M5lKKM&=XXCEG&n!mNw2imO;6vH)*?53vsikzG^}eNevnYJl!dtN~vM8Zes%Y|$Px4S^LT4I0pFWgMmY#d=CM zRT8NB{$b>6zCJUT2!iSxT}(Yez++L~5;b97x(R!pb};z)Q@}vm%5)R5xEKnWpi8Or z*)oG?8j+%)kzmm0s_Z8S8X=#CG)p&s)G0EgyhUn6HwP7i!>phY88jlGq3xvIA_95B zG@VRIo9k>uk`+7y34pVZC!3~=d0?7GENH56Z_VzlRY9@|0SF~&b3vm;CRY$_Hx7sm znIbz9^9hh_Qmd7zg_WN1tal&R69jNo<{WkD)O43t?xB?Gqk5!`odkao)&1cOq+T&3br;`)sj5d(cN5rD zT}%#O(JctkEP}yU(npPgZl^x8G!f8# zfwbSn^brIrt@8E(@00|s3`;J6h)X_s<;t`H&fLghGj_J@U!(>tmi2&9_x_b%j(J?G zbw@B{TYCUzJaSggaLv3t+>v>s)p`uoVzwS8dz`kM5!Q}buF?leDlnE<3 zE+f(jxRrJ`iDo6oe~A)IpTqa0A%YREQzKQ`zXX&syp`u<$)1i$lsa*Wb%&P4f6|b5( z9tR8vVOS4bGiXuN+TdG(vy!>!FB~{^dUDb^c%6+F9xC-`pOsg8U{q+=n65y@@`Vjk z5gq+nR=n!VlG#bs|0UrKtbq324eTdXH^=`Ml6he8wV~*<`ss20(TU6)14wU(7CvlBFkA|*s)>dWwc4;k=;$wNM_jWp=Fe-6 zRb`{ull$H@KX&sGBw=npV!AQ$s@Qv6BgwVSG=KK@_%gfUNHxf}s)mibNyBhOq{1Re zsmRRfT7s)%?z)h`qakV#hlDW|u~0iwkr6+8j8&E_yX6QbxN48gsLIVDrjcR3^@z%* zcdZ%Wx)ufuaJ0t!>C)#2H>i^_ZwLB6TYE1H+`0PYtM}bT_MBV#qZc_^@~9du;UPj_e@8;XUFn$0AW`Y zPZ3qQXLgj`enenCc_p*AO8c|Y^N zh#1_smcekhCmgJ9Sj(eJoVo#|>U)CEDtlG6L}?|GQ`S zD>E_NyfhO7L7AKNeIZbO8+$UDl7>p=UVj%j zmGR;iR{g6Dk@tGcHzhXYUn2hHljFz*Vmpl{aXI{JO^Ecgj)X3y{#fYZnT2!5RmKYY zq_#A!B2pEej&-mSj=1rvzmJBFqP#VZuC-n6XCmRveWd_Z>XrFNkZoe$fkbDl_`3dZ z!;?%O-+;{xsvunE8+d`H#(}F%1F^%<+EtwhTV16II-qW~s)ebvolYXR*b-qbAc~HP z5ra^b+j)8IN=ALz)YvsYusMmI6|zTDy=$c@_Kh6$z|KYe3X3dHN&V|w)URfrEAoZ< z)%bJch5OK)dK}fO+%w4XJNffqKp+3iKJk(xHG(ZmU=EdtWqXn@tn>j^Ws(Q z^rCrs)$G+rTrZ}Z*c44y@6`N3ltyc-O;XPLq_y0uD$69 z(qN_1w|7&uU1-Bpl~J+Falg@y7|PazS*0CQ^8ht+ZsCS?gqW(Dc&rpv4yI2TvyU95 zQYK`0&y+-=KYg-oR+mRbXIbWxxzj<>=|Jp)CVaa!}{G=2M?)#s6cuIOlnuHhw5nm!VFx`r-+}_d{l~P)tRwt zY}svzg>3P(JTv^+xpa3Iwmx#9&<_g?weO;9)=RhJ+QuGc*5+1V-Nz_2)P&pkSZ*a# z`0-i(_}pmWd#ncwsYOm|JcdqGREB$Azzh%`YfvX-_cdS9AXOC8EM8M3Z&3!sshi=z z+E}Tj;aND%efPJt0avuMcEhVtxns7WHK_dII-f657OTQdR*i231tchS-Fq>H(B_I6 z_*~T%Zulk}K<@9gK*`Lr$y8)e6ccTN1-7?=bmrKbZHY{#f_vNBxb5Ej2?1n4HOn32 z@4SWW=NDk+SyS+e@RUqG$|1tpk)P>65l;NOvO!4jhk%eQ3R4jb-R=ypy;<=H4@2t< z$?^yGfB@(*iOuFr^~bN7=8cy*9E4#pVxP=hleSww4&$V_Fc7cn1`4IHt<|p_%tbxw zgjlwV;oA4;FrzoCuq;>RLCSI~W`#0yF$&v&QP_Hu+3899X`m~~ zrSTmYa0uYD{BMOW=SGv+wY{T()Mow}k&X!t<=(Y|l ziVIE=ojmFkfe=a$kKj;>AXPtyQ$m^JL@Hw>X)>1Dne%3&!6|{qYbA>?ec6Yc65hXA zDiT&~%(qH?;akT19ZGA9Rw#oIT$$Ar>wKpwh>jW8Gb2eG8 zk|rlYJJmS1t1<-PZbRLrAA$kGN?kDG*|WB%&ikb)%s{9u&bMx{p=VdlrB5rVhxt{r z8U~l}>Hm+PFwLfsNv;~SBd&)ZO-4E}~5BKel5eBK*q zlVF(q3o%@C`iVy3G-;w+-{Cx*EFlBfV|~HxJEswElhzWMu0yF6B`f+I4?WHzsI^5J z4D9k5%nZt5SdlJ7I4_x}Z^_IOa`y{J$?UHPYkA}dF64r~2x~bJ=uk$Eh&2&Fdz^B- zWgH6b(Lk|=spLRPkZoTJ+dmwzJ%Zdf;XTGl^kXyqrFKxl0v0@tc<3)| zCYN%S3*Xl$QNoztCQ(GpP=(BQ%h8#kNn=QeM*h7s{VDIx@}|6O`{CECU(tnFGWT7% zk-J^w%RoZKo~)R-4*1pqCZlWdvh~A&U}Ex8P{6&4yW=m%mL`mr>*CimTBlILZ3SA!3RFJc+UGa8<%gXzBYeA-pGXy69kih`h1_t%K{&J#e{--FXw;+rDrU-s z%Oh1|Fb+e$?*%K2W(oYJw*;z~|L?XM6z&6wv>?FSh!?&T^Ba^n=KshQn6zcgH-++; zzeZVNFhC*QC9H97zRjj8z?4g&o%lbHv3?agSwBxBy3pQB@}J$*Mlq0rST%?=-s@uK{0XyKtJtK{SaIkkCGU&36NW9$z01 z?F8@DB~aK}=xxaQ1^F+~6kf z&m0l|6GZ&?@zB8;AId>? z(`tdhH2u8tRt*1P3w=%-?JXgiuB*LFUf14uGf2>dgpmo-PTX%h$ncscHGEz>lH&zN zxH^uva^sMt2IwqX5AmWDz`BfT;w=k|EqGz+Ddfv5Pj%6L>IcMpJ#Q&K;s@vErwU$XQ&nLgp`6v z8Wzw(Loz@=jc^8wYCu1Gr4*I~=F zFM}m4eDid2_nu2U$dKb2V3_QqcW3zT5Z@^~M6S8rA$F)qQyZ(pV_CGHi-rEox^mT6 zjNp`wWzp_A1yPK#a7|g!@DB5XSyh?mhZ~wjE^0Rmfnkp9Cy3O(lNDaO(`NX*6qcs| zWE%$+x4(iEEbGz*Ow7Mm6C+ytNEYZG^M7M=AoMbIz83R04?(i`z{3tKdvZcQt2_hu za%Y!)j*La3~T43JTYR4jBggfUQ^!rvN|4aEFK!a7X#_Rq7w&%DCmUV51%KH_hBI_ zXLLODva&AAP|ZtErKT&7E|^ANFIi9)uIyM)F7%u>B6=!+?jBO)?xKU24aZc}yB(&! z69AQ9tn!4(GA?^GzgOJ*90a4W1i=V{{Wo71Ae#d5xt=?mIxqHK_&(k)@cPsjk^?=#bL1KOIuqkp1aX-026K zQuw0mPi@)~ zH@*nd_z>c}ewOM*fvWw312I^HUm=1GFO&ww{aU@vs=8`y){LsMvDw^1@o5F0N=?iL z*B}1h<5DXt3!8lK$zxTY($x&E(6b6m!g_}HP?l2;-G-O)tbR>RZ>M5SNi?|Q_v*5w zEIP4$n)i#Wg`_F-?pjPG(=bz8gd?)7w9@G;@3yQyzAKboY3d~qv()1bVn$Y}n1xkW zoAG@Z%<(HgeocD@`bTQ zo6}|C?ixhsW{B~qH`>5q7Jl~42;DYX4V&dZbe2LclRGfK@BnsxmTt?8S1s+pZb$Hn zogWiQfv03ev2QIGnnaV+xM1#CULIMrCS4(S+l*f{^svnQgm$P0DjsKZ8LC}A!mE~g zNAP`$YdIv7xRzb{z>zDwDUEFRMVNFhfla!hh&CVJle#Hl!kg4V z2ma`ytr{^@;012%m9bqAw%TM~JGzEGX(|Wo-;TP`^~5BA7v>gpMNO7FMz<4Z98T~4 z(JOey^XKSBLQ3TOL!(>u-TTGp77HI5-KjL*+R<&ndyn49(?#gIeE;b6Je$yqD(F@M znB)R!d+Pij{FhKzxrD-Mxlnj9;V=~bn_Gp#XGN-(a#F#O0 ze`*m1^qmVwFIh>+(M8_zgil4C>57P7H&&g*dj42-(x7R2igq)|&JdJ~`{Ni?oe?>8 z2YW=J250w_4eGi+dowhJ;Rh;(8*YY;fg^>n2D0#dcZ?NiV6x4p7+6BKv%hVux+rE8 zn>A$Ean?Q7hR9z#)`lWqpl z>bsr>6S8V9WHYh<`q2^piU|Oz)I`x8%)ooi|C4~*#Qg@ZsS+ah@3eliSVp)0k-g^q z4nP6a3jaboY$)-QDtpE6<4eQ<91s18ku;E)UD_E9tDh!Y3t!I^o8n3rkzqy3i8GhYqiwRjRP7^v~W=VN9UpWAA ze7Z+SIm`dWX(^>Dyz?{>dr)>VUEz?`h8yA2G_13dWq0Ae@S<2U|J+F7@9+*3h4U7| zS{;VrLJ#8rC{hSJBdL|ZSPL5j(x~@VbnB~^MZL$6O3CElCe{!8-2Ji8YmpE_UznSQ zAP6I(wJ-KZcfKDBu@73+&N&FnJXg!UEF0*JeE$xJtHN0og&@odp)r{q8M#M9f&SOP zj%tCS;jMC}JE^5TiZL=|viRBwkDWWyF8E44V)C)QhOvZ<9x@jk8e3rQG;>433Lb7a zV0TmxeN3?8n&eD`gP2Vp6WDcAQoCKVQ+8>US~-KN5t0?ZUCAZm{^V9|^+0 zR#^R0*msTbs(;FnT%2wME;F8DIl_nmn(6X67?j{vFOd82?-FW&j>6L53agJ!iN_Oe zc+eIW1F^WPbr&#oqP0h05S?f1JAB=@ITPaSuyHZ~H|{86yN|-cpaA{v4;MUkD4f$B zF4)RW*n1qA9}bfJWZH_6uAD5seUb~3evAo^%fBp={Prn)k{76O!7B^Gb1!_d=U<=Z zq&zp@9!UMKSxUO}vMkbODlNz8S1kQel1+KC&!wLfJXHQ($LvF8;hbq%3#Nw0m08Bq zT*k_0$XFgO=;Q!CH~Yzq6;#DjradXoSF+$xTE5wrWsz{7K97GgCrFsWICM zgMH-={XC3pb5^wYcj47%16^1OSnRFD7;@#aa8nnAKZ-Z^RecOEV0jp|t&3>RGtuI| zESV{5QNUA7Tfbf)6{}fNFxWSLj025e8DVeR5iZzyh&I0^@bHiuJY2aGE5ejS+1sjj z!}1)P`Hb--cZXMhf)N&42lzd&%Ns55%3qS{}t# za%t_ur^NAlf}=AdJ8%Q+nk=6DC$7ofM84LaXC;>H?q41%_nt1pt~M2w-T)^+#A;a$ z^Qyiq9Pj0vQlB|3IrofFQ@!yMquy5TAB!W!c2Ekh{;H0=z#C?)mK+J<>c**i$kkEc zNq9k$)u#4EJPF%j(`acRSKtQH8L?F>q=aKJH%qEaVHi49@ z2~17fyDLwP9deX5Df~o>*zDn%dn7H#1?{jT&S#MSbzBBbOS=qGYBaA!oshBM4CZ~! zJO)i2>M^LH+1hq*s|9zrxHprRO?wP#=p@oMK&jV3lVQfQKFniK&W+l`l-I{(jcz25 zL6OjVo97?Jc$V6k+PYh^dP6)0VHC-_FyLz_ZIx2KcsR?5daI{q8^zi<$YGF-mwC+v z&~i+rl~~YHN9QPLlW7{|M@oU?u@4x6TC=$Xp7nl70(!gKP(v$KR z)XPM?{(lbg7Zh7$jgSOiBxL@AVy@)0zaW3^uSY2ms*eNr>)=txOZ ze>%-l{Z+W`vLMw%$YyS&IfDvJZE>m22-p4FCtO)0rTV^0H9B1P*57?_swFPf>EXJ6 z{E$>}m+H)L-7oV$xU5gQRN-*lm=8%c%B9K)*Ij-72bZ<~RD;A=d@FIy#emkEas_H3 z<0DRYsoal^&vRUwML$Z9L(Ko4#sQviXg6L%x)>Uipw5aYUrbLiJyqzbLQk{xG+R%V zda5k-=Z>F?D1%WJ^B=@+;VcxX=AJco;(j;^XXSCxR>h6YcsvNbc&hkY{`VG&0O3R^ zR`|et;kds=I4y;z68%)-G3WshYd|{+61+l77UuamaW&Ckc%)_LWDRId&G6<9)|%4C z$+Ntr=TxMA%Hm)wRCx^&3sqi&ILi5HuR&JuNq7xPb5MU$BVs&{d%nPH(5==5>C^3v z`?snir~!Q!{g80OMz-;OlYol%-sOJ0(d$CbQgg%WMUWp-P=l%mOx5I<@Ei1J{02RV z9b>2Rfi9N7gc)^6KW>BGfd|dmQ5LMzZi6`X>&-JezesdUV3B9?71>&!F#E!YJJ?%O zfd%VIEVw5^z}XhIhL-%ayCB6vS#|*4A?|`y;D5(mkn%ZqLDrV4|FXLvHAwD)9o5b zz4-|Z5w}1p^#5P(g4D19cR}jTFn2-La=hu49&0aymomL@WntxXe0L6U7nF^=pvTI+ zGPw&fz?ET@MLkYt-hkH5vmdm9AHkaEv)cR_f0%J@&+1$uCHR${^pMO@>R-DHcLliR2dOgL4oY8+{CV*k>eD$9T@ zzr8(hNOJGTSn@_#do1b4Ncwi7nYx11*Pcs@6X-gATh7rYKmg<6nMa&66Qkp-&e^(t z(W#Mx?aU{*o9U>{VWmv~F;0B%3vw~f&mf8~c?4qF$Go3r@fh=dt}}4Vd$7R0*&f*Q zOYF@rvfx%RfKu~T58owPdp^W>$+y2PGO0u4y!yZ?Ou7H%oN|#x-4aLre^Yf>%1@_;ESv(miB;g~I;58WL2@qt|h z(`_fJH*5=u+zQ+6DfD4Jo&^z}<<0#l7Y^zjV0pF9Maj>zh>3eYbuLPNUcg(_yEV@uYbBnOdf_`KV4v#w z5EmuyuQ2SZk5+vR_aw0FbS(j{p@@Zy{be{*gKJt73q6j|J>0z(^hD4Dmwyu6aVn6D zk~L}y#>Oq+&~2w;TZ1B@4s6)YteU$`E=qoYQt!(4Ouaf!b$Vs++T&{pEhyuece_ywTLG!wsWs>iouhs>t)r z+RN}*6ZLO*nVr*xNkN;LUJRJrzr*S?Px zD-`&FNfZ@7XBz+u#PV!0VGCfEfCD;&HJSKQ+K0z7I9~0gV;)oIQYUyUn_W-UTLYJ6 zxFo}68Hqm3Wm%+n_ma;9z?STk04>?WzBbj3s$nMg3mwXim&dheB*t z60pu>gwd2+TdVEY#yd?Hta85Tf-Qu$i!LUV2rPgQCKM+^$m3!jE1$%Ugfq6s@kfs} z#6BV|uchb7$cxhnvs#?5t`a3n4)N7BmehZL8L96dlDe5%OI>O`Qg#c$e5KA(>W7A; zUeC8Yms*dcZY5YahSdAMfW8@aj3w0DPV+Q}^qof_p~p@hHC1_RKy*oe-z1cIB@!Gra!Na2XVJyL`UA$*pG94iKeN zKt0TxS#DTD#L)NwHO@F?J>=CPXjO#=JCmD+kurH% zX&Dsu1cjLv>!94JD@f0sszA#jU##OYG=Bqa1$-zDlG;jr@?WuqQTu1Hj|Eo1$mYee z>Liu+<8J)gG)tJIc73E-T(9pH2+7dCDpGrcQ9n5o9*K95qblG49=4VZq%c z?rkwa)VqDYy)`T(NL74m_;U22zMTG7wPR1ly_eXsv}4=9h*I$3AcGaop*g;sLOTOr zPJg?_u_tAy9d5L;oZ!m|x-DN$^J*f=4U?q~;(R&P=y9+wCpL%^Sl=UszPeHR;0-{G zO$IZQkc}fgJ6&5rtv|wEY0Vmpe_pQZ(yBb|&n~Q9> zU_+|~n`&HSGeK(a_QM=h@Md0h{e-B;4)KTTcdYPn7CZcx?2q*m$04(?wm^4VRgxo$UZKRIho37(4uV`w2rz_1^sCReGz35 zJn4iRlFV*oYgJ{``-`ps@#Ym@RF|(tn#5XYJM?pwf5+sEzXBB#`)BwMP0ryl+;D-& zxGnf!K=EycfB)pJk1&R{FPW>%?GymPK3_U<(Bj(dXnwzj=J!;#b=~2$V~CH#E#4tf zEai(8{*H_F(JGpaLP!ME$xLv6_*l zfK26M_Q(|*@+g*;>n0`Rn(iCh@MYT0?V@ffznT3jnx%cgV`!zZFW4$KoZsZqZppJ* zdgTSl_a*yCa&Q~DuSe4V@g<*2HxsKD>Bd`Yv{Rt1m#Zyh-qvtgCvuTxV|J3M`sGq5 zhZ?Sv#gPvnMqLo2(v2(J9-#<=HGGetxL`LhnMd0VEI1qD);(m!*8T3KnodcR4uUjA zh^fUaO1)TtqV*Vryoo;&nhyi*%|3r(+D7d&JS@lR(#!Hs)?j@+SS+)syQZ2HDB2{oND4~Ebuxukke63JmBH43zC@+^~@1S z3QYpCw9U@HRbR|El4<_O+?vA9GoYQaRkcZZw3mS52m(;gi2wZ+bW{YC8|^%aYC}w2hqG^KoxG5-9OS`-PeD(Bb%^xAjEHACpV9soq0H=333; z0`(=?iHds%Q3kkVl;k0HBJOBD$L9VOdm-Fs&Xv!xJO1h~lu+i~G1%u=9FH&f92;*J z-_hg}%qtz0&#}Gn&~EK}F+zn>xjc|}#}@6iX@b=1BAYPN5G#|fG2EDCC~Q-Y61xUm zj@`q%H>W4&n{+XDq+riVKtI%JyrB4^ohmQp|5_j(cEcfd&ouw4aRsTrdu%kh_vcFcimh=0Ge~ z_-i4Axu64br5kV1AhFQ=#5HMHV#a-kr#Z zi>$D>M2WpQLR->xTnX0 zySgkeD+Z)&<1O|4=EKMQ^4sK-{kGzAb80rPrdMsy<=T*2%!fyr1=0@Z&D`HprhDN&1Q80yf`QrRDFPy;{q+cEl%f5`?7iN6@>P#izOz&0W>c z=Z&lS6&AECbZ^ZB5wEe{g62j7uId-C2n}1aKFpojjSJGf`$Ob|+?mO99`4Mlk2|)i zu;;*?8P8mWJ9lRGJk+t(Nw_onQb8IHJq8DP1xv%BlZ}7EFkT`HItBoTE(=`^)jPfvVW;V*_GRkUPs_0h(qpWw!a>K*! zF`Y9#%5y)N?p?}y7oj)l-nB7k$9uP)H+m;g#+cXA>fU+?=v|iu&D{j_uI8E(dYAeT zXJ$XXD&0Fqc^QX@z`@v|2(p>D?=oj*8%qRc|J19VrM=$eB~kx|<|W5{cQx9x^W9Z% z&(3#O4bP1K5Z_(34@az?+O32GbrnBv&dka_k%mW~o702fkya~lSl{O$kR|b0uchC; znO=rxzRVbH>6`$M#s6{wJo-Mwm)R{<4j!yW2!RE@%y6QLFSFfCsDoi`3*!5DV zVt8pjir6;*t#=>LkPUg6S>AFLwZ||#y?MShqsh*KPy{gA?x|RQTiG(w4&9*;uMfId z;X{}EpoJN%bjri>q%kkEsh(-(KorVeS19%5fZpdVhr@CS;jC14%l7WcpHr=-8jXKbv-2wA8W-0W8KK3jrEk%8NEBK8;(1T;c&hMW35L)ji5xM zceH@f8;b*ppcwCyCLrL)!s5e=!H(rQ_!YPvN9WFq z!A|pH&@j}CK?8^F?_}PD#1-7#&H*n5!=ufM!OjD;8+Co!J>8!@3VRJ~HuiAAJbP5d z^ib}oQa^i*mwnue!H-El#EXH;X_vu+ycl3%h8Zx-i^1oA4@RsQh7lFoi3kxewj$LnlFC-(DqExcXapOckcVb>x1jz!#lVzvA94tS`c={dSARc`sh_hCbNvtMpQie+P4{1<03uaD z0VCC~yK$z`PxW2Qr+z;lp6#E zT)+?nb@#as{q94GAfSROsRvp@t}Y%^6Vvr4UvPb&_bm0#4f-BoTbyjlfLxALdlvDO zGeH5qI0%B;C%X?N?n4m)5Ee~TNnNh?JRVaUSR$?W;h^@7-PB&0hWuJgF-u3wZ~ z!&yN{{Rzffz^1G)Q*ita?R&4^|^HYH$U%sf0pVWz7BMgbfo%w zh^M4}1>D;Z1oh`Yp!krdpd*n*5X^d&)av@*$75;(8C?IV-z-sLOkKAS;iVW;H@2#b zsSjbPMvA*uewpn}j7#J~%qtx?r1|zxW9r+F8&iKk%+E;i8`X!*MCM&MI_Su}*;c9Qc~R86Y;KY94g*j=ARw)9>v8>ewM)+ZP|S8_qB)Ow%Q~g#Nyr? zb9U764KA5KS-wkb0Gv|mLOPB;b+f_!ZKffzllfdM>^F-` z@0M;ocpg0~k=#mIXusMw0o!z?JKsZjtpx|yCMxOw6_P1%=}(PUy;+w0>ZqtcDZk8{ zw;q!rJy8$qm2qb)=QWT{vGdJ0# zwJVdDbpA>_Fiu35TH~QT!FZO@yHYNlJrd!?xc&$Sz!`v)F3$rFI+%CGu5s4&u|U$! zm}FyHo(rq8?2>T9Z6ra}5BtsEB{e42vnyiWYZ&y+u4KFue9e$#6aVkc@N=_~{)>d( zK%`5#nQp>gUHo#YZ) zw9^cds2nRK24@)cj-lJ|`>1w^gN-k8&9*DNR?abE9_ozJBu#I_w`m(b7BQYCIOdtR za+QEF=IYm@$=OK?*~ZOW#?m~w6Dv!~a?N)#{q#=!<%8ph7$H7dye(Y&3EGMQ?d)J~ zGPJX^D`tdpvrGM0A|t&C--e;(BOK}2gzsQ%Ftlvrk{%Bmob;ezQ9HZ$6p9^Wf4GL` zasQuQGo+!5TI;fAs0+j?J3kJ|%Z)DT6Du*k$Zj6;`hjI=I~K#lKW51R}u}S0uhj zly}D%!JklFk(eWB*m$=U$$WdQ;>b6IBurgBM=tkR)jk-O$vWV~%bsT^Cf zI4s%Pd!9k2JoGzpul?No(w*&gV({3D4SODAx%ZQLYWUC68$QtNjs5d`vSezNaZ z>a3GVovGAZ!Nr*;ci=U->xyLAnWJP13xo1y#cwRXa!@N{NXb<}iPlb58C1-zr)HE;i7A+JASXIS4 z*>*hZ?n7)pvZ`JC5GSpp`~HqK^<+)}F=uQe=KXL55hy3DBMz+pjrfktobY{b=th+n z?Z9fhH2N7jJSJA*7Ekt{o6unb2NE>-eN*ij+%<}Iq z&;VdM;tWO23O!^w>k#-<8EAIp>~Xe!8yL)_51Miw8(6ba7+M! zpQj6E(;|jm9d>w8(@)#3sIxxP`TMPj+%})09-2i9AmL1BU^fGc2xd1UUieBZRA;@6 zhtT&>cL4ZxC_Fz;cODwtoz3Q^=Dq4aN4P@^ul`5Y4OYxnTQS*dy5+JFp>C{VqA%vb z9_8vvL&Y*3ad)@@aq0aP%dMPKh1cEyL|BxEo~gb$>`WCa?qB)Um?u9p14pVT)|j}2 z9$VT`mJo2+wqguud-dy*oY7KQwgE1tJ62)r^Qmy{a~$bNoeWar+T*F}*L$}Ui=%}#O!D?LrEZ>t)k9tWnYTM*3IlJz>g4h-jd^DsGuHHT&O;4Ld(LL6g)JQqw* zfZKP18nq6tB##tGX0snkP~wtCTu?!fI*@;QhBMm{QW%sj<@ZDDQ-4<>*}@q`6Wf`87zygsbj>UCv|d>XTlZr5+1Gz7>OGAe8da)Ndgf~Ea-Z^4tC2giY@AD1x#@i;g4;^41?{4#g@yOv{B0+Gw@5$Erw)Qe^0s!13)*-ulVRT8z_UAoDR-#XZ> zs)-|ljUJcLG3=Z;)6mK6r)ft9i?e}2;~n>Yk)J^;6qiRRQW*E{$j{Ff? zg7*r0Uz=ZI@4v_|vT$vFgfO-4i_lB|HY?moa6$(SV8cW>SJkApPKOlIhY55*`Ib!SObLg5~E zd;nB8$Fbs6^&hx7zE0!g^zwHv|7hHM+yo`|#TV@s5uWOmjm^ZShpW}#+CD=0xqw*Z zANhdtqX>e+xmbQC>tj6hSYS%3%qtspp$^0OM$gqxY$V9W`anP7Bp>gm76AGg1(cfi zLY!Uy^?o9xwfv(|Z}&;`^MvwGrk}CmP9Y||>0N<9p7oQ}-OLOf0F~nOz%Ygp6NX3w z1A8}VMBr%)e1HFY5nD$>aVOrRF5e>F|ETy_l3z?r@W@_RmM6L@OV1 zLb^nXc`ulMio&C~VuRzs{CNu?^VzPNB52EQJrI&_9X@0J$=g&ZS`j*A^P+SMFUNGq z4!sj++abIE8^oHx)CZE(l9T(!Q%Ko$afZhZ#^S9=+kMBpP!O6M3OXa{3Ah98cnM@J zZiC9T!T>785rWvv%RxRfg!&&m5V7`C=t)Iuk79%*kEa>QNySFGf#-Ix5h=q_L>oy# zzA!6R+!tQ^I*LjvFYfhyei7* zXD8D3OSOCe%*3aBSIs9IGXac`04;3v4kBjvob2x79p*()CJygK&%0rW}WP&&% zW=61hBC95);R~|g2wyPwa8CGwYY$HdU$F9U5$g?xNBXK8M`pxYK+eLlcpt!{nWOhe&*IsY66 zRLg{u&MGzAyro;_3k#)=xk z2-7Z`9!1eCy!MAc0Kprv!44cj5H&L~;gvfx-sCWTBL`IYw%e+E5%mq%E+D_3*`%*t zrkq_8Tm4$^ETUuHR`R1;uM5KAjF*1a|j{Z*CA!}aXkTsl$Dt5S2Rv>&4 z@ecI{bg$&*5v&n}b6!0T;jISYq@o5x*dhesn;qZiu{4B7_+U8vld}wmt>{5G>=S+R z5LRwMI9IJX2?&3h(ud-3wn`9$&s4=HLioKihd?+zRkKiH8#+~sC}@PK`XKq4s`@&3 zs@_TT$xl_~)>NHDcrsIUsv13Hs$QrP)XhRwd}23qmE$-frMp>R6lE|)nomI^baT&G z>!!XA?&c<eQT*Sld2I=|e%hQY8q)@1mSC0*GHE zdI*S*uWeaIWQMP8hcv@RSljk#LR!a0THAVrX+zgGMGdCBO^O(CZ9DOUt!)J~owd!1 z9<;WNRYy;HZBuR`@gLQilc2o6M(SxOgr8Fhf^ajRMu6}Q%5fZt(R@_ zoU5heXRhk&;JNxK)ppW|q})QJOu~~vq$eaeI%KXMNq6&?d>WyfKQK|#brJ1VrC2p+ zlk}ub{NZ!;0mY6mSAQg0U_@-BCA>&r2oNb)!WA_bk&=oSG$W5M;U|8uCHw^pCTVR` z(Sw%oPNGj9!pbcOPf}}6VygZNr4NPhg(^XaG)onqNDU_|$8kg&4B={<_roDPSFs~N zxXfsfP;Vp%mk10)A*`q&5LU#95I*sPL3kDXE+A}04}$OlqECLRDz~O;nObuaQ#Fgy zheCLYN)Uu!J$*z7?o*R`ehUXR4zoO(m3DI6PaeISCxT8z$LM2**@{AnfyL1RP$f93$iKLq>9j zL-=mRjsW2XQK1i{5{qfZFbFGZ2!s_eB7{%;U=ZF2y9Nkb(SsoT6QWNZ!pbcOFI8(! z0>WjKJ`}>&ssus!0#$q>l{iy5jzc)T++1zMZ18f^NI@fP4R>*;M>q9#Ffn{kSA8dq zNXo5l-bQ#b-JD11L%X?FC8(R1^Jz1Sib;*biy0(IoXy2T>BerP57DR>p9qTPoC~u} z6c0sl=etL7`LeT-4Lw}?{6OxDLR4P z$dTWOv%#kM2kmd$HI_s7w~89Nzg5hj>2Q31d*TP%-~I<&T=utC_MrXktwf(Zo+!8Q zTM+(>T5}Q*{$G?n6vD5l1VQ-As`x}4zDzj=Ls*hpj{o={b~Q2_!nY}Q z1PHGb8TvpR&VbAfgRr88Kv)qYLiofF2H`qd3WTlb;}AZ$Sl~T5=A*I#-lsFwl>cjgui*pxlYYT77moTaBX(dM*smgAI2M}&}N0Ham<*z4fK{_akW21#i;Kh;n zT-C#cHbS7w+L8U`>e{Y+kN};ALBQ%ZP`b zl?2hw_mK3PRD!U>@-HGrHVLu5>;#_~I)r)OLk?l(Bm_05Oo|m^dL!N=&j3|Zc24!D zY?B1%DP9#J1va$7eFe@r;`pT2FT5 zVGEy+6+VNApPAO-5)zRT#1D_^%D)h;-J{6;u127*^tb984*U9?MI)pRchj?2@w=ra z?7{ncW?*nmU%2jB(Hfa_*^b=d>eRe%#WD_F3=9G3^`8QE#XFarZ#`4D(tSbzbCN%$ z(VKD$h(eO;Lo!N&fMW4H9L2@8*!v8o&tUq?+L79jLqLR9&9^FwUQ+WK+0gp?pXI{j z*rQVNLU-0KI%_-Tvr*9figl~_x^A3kzeE+zf7d}gxVUni-ds3gl-0+_g@1Jmbt3?R zAcVZZN$`U$LvKF{OYWwy5-b_vrceU7LvIQ{OU(bxO(Cu4p7Z2y3Z>jxW_{)jAdcTcwABt;x88Y53N?9-#wKd+}aKX-(d28?e z^eY5Adh1`cZwp_u;NjOT_&9oRWcb!03-;hUj<@^&LeSp(H1_a$E9$qvM>~bLmk-&vtFp!BpegC|`Go5tI zHsqA~nf1uQ-o(vL1nHcQb*G2DEztX!ENg~}Co$z73 zi5R`Z{oNfr+00K9B&;VwL%5`O(>`~S>DBG*ov0xgK|#`P9S12$ZoY6pK{7pIf@#wG zvekMtbLCfbVVnDTmcJ}Y#i4Mq5EGjc+?K|??7juzv&;IjVqWY}jvf!?Ia#H{)d#r$ z4c8WibtAhDm-3BiJT<)&Vjcz7yvGCeFZiVK0jTY%XifUe!;+7Ni`-cgQgfl}|wdE6~O zZTHO++snNL*`*I@9l~r^ZnR^~dLFgz#65E>5clqGwYPg)EV#Ri0Fzzq_GWGcQtLh~ z`JdaBGcEq}n?_!SUo|7KXm+Ji4}C)Nkeii8ry73_>nUP~&&Wu@<*cPq@5yNB$mX7( zqQoxpn!09*uIT4rb>>kgSK{(w+2Dpp6cHh$~n+) z?IecxyE*mv->Jh5%FGty`h`*dM%!|*v@+DPwFNj76K=@4i0=3nXY2Iyx`3b?vQ>>l zSDd4w5%nMFBT3Z1dA?G* zZ;0pI@L54Jp_Jwd(9Kpnz)ODr&G1W^w@3hHuf$#UBJOf!rvzHM_%Qnx`30K07rHcV z?p|bIuH46`xm`JYyXqE`mDxK%k}-RcjJfg^zFpfjfp1H1$&&=lUP;ib+$(t*$;hni zD&lTG3xHMMgi{zbXUPSKv50nnC3+9!U@~uzY|nN%1>eTOL-$L6LfrcL3Gm<9zkTF0 z5`qDjOoSRvL>7y8YU2Njfx**qP%Nh;t)E_Ef_6sc6D5ndaKl#tBsDHp0&EmgF?PoG zn`bX}TLBFWz$oj{4w5*DWVSbxiM5L1&@7c)1PLYM1(me1!2XA~p+!Z9@B1C!Ot=f@ z*~AuEg&WjGwqmH+m^rD<5Z+^P@Pg5T;>x~L+`n->Z-{Jd#~hK7PsV}> zwl!IyN1JY9lMG5pW&^uU8LGhB&_@gnTF)B`LWF>mkxgS3w{}aj$r-HT`-VIL+20@t zGmHW`5?mS*B#`PYGO3QEiu9`^>;-D~)3zck( zMCxLNn@Wfy5FBZWnY#iWmAo>_^9k^xeV9qH&|<7DvcF|5vwoN>q%Sb`8b-vd=4STr z`?buMQ)7B&;JN9-cD|{#Y=&bYYaK?Fy|N!1kpNY(Er8em8pD?A3dabn&wbOHVF-k; zMOExuQz*!q@gX1)_l&lM*Zy6h5OQ4(xiLOOnXDIh%EH#^72yThKaJKtLPf7X9xwjW zg7E&W)%*@v!rMRC65f8Zgx3)*es&3#RbMULEF8gf=fANOzEU2JzeF#}&p*QV>fX|a z^ih346X{c6kGB^=ouxTCFea`iLe?$R%jDPCr9B>A`!B@By(jU#Som7B*4(+rL%p*5 z6%T;SR)j7^$W*#fg_rxe|5jF<`=fGiTX{H!FDxoQ5XBP7OT#h5;2D5JLW+;fNRI!t znFGWuhi&#gAqD{@zj+0=0e>x%u(`j+CmnEEfDym9fXlY(7Y|MdQt3OX1ic{DeiY>1 zs{ZqbL++7yaqp5Z4D<#S2CH+6Iy23m^z*63lYU;g(sxi_eL%KO6_~6Ec;uE7P%<*t1`>N_f=(a53oV;`JXw~KWtE3MDE&vGRp$yx0}FBf29*LfF{wlnFsSw$loc{(RbBWQ zM7c3fudSlLN#BCW6HKKU{@gD_BDl0fm0(6_?iaEKCX`_-5Nv8yCO=^W!Z!oOXzTox z4fyZE4Qn~sGRbe!B(Kr)gMuF9m$l#{t6o^aD)m+4s0H)#dz#ykLNilGpt&s(yyTQa zXvaJjt~>ZiKG*iMfc=3d9M{3%VFHR=A;b!C(Y&WouRyV~>@gSR8{9-<70mU`nu#xH ze}mST%fkgz&@8_2Y`HyOh8%V7IPgRs;Ny5h!}58Gg{oif+0S9WzD*w5$DhIx|1+`B z>+(1Eygrp@D89_{WGYWtc=lg6e`KZ{)@^%Xl#-mO6uARA%fpLb%;M|*1N!-sDi568 zTOp@e#pU6-UCMhg1UyUmC#CaG4Hv|Y=J0#%(FqiQ67YxTQK#@F?}|A^X;sm}c`>#c*?x*z7l-Ow=x;ZaO-b~7jUv$=8LcUUs8FxX5X z&-Dk{m}v3HSc-yalg1Ea)c9bHjN$8oEazN!vC-?N&~9ZX!2jF}FAdNBbP0__=VKjN5M9W?+7Y1e2n2h8G!0(0 zg1K$_JAL7XOE~K?GutUrCoSI=zvG+r+D&?B^WffUhV+~K zFX?9Qcd&~Wtg$b7ma#mzb3yoej5BpDxdhm#)lqNfMD{2ZlaWyeZyzgd(-cQbpcD(m z*uJctauGVWGrLR2Jg#ltOZ2+b|H^o$jO#UNnF}|30>U^93Vr7vkMh4X8Q_HLo>QDb zVHZ#IAffD0uU(*sdT#=W9bAuPf5}!0#K?~Xdl57tV}<+V8Wh$5)bAW-!8dX*V!nUZ zpmA}uxL@!Y|7HDt26!9@V1qRG0*JuDC#xR;46LsXCY`(h3TJYbt-1}m@b7VCUzhw- z&=}|q zndJ7XC&OHfVP7u9Vb$&53gQ1+lc`#JH%xPyokDhJN8!z0%Kt_*G&dj72kMa?gncjt z^v4E1S8orx010&kIB-Rh)6pu~y8M!0R%8gH5DsrA^2Q>&e+b$T$h zkpAATsr5Feoe9CzN@(>=Ppu(P`0059mx}@lLZiBy6=zUL@T94w>`@PTps9t%h?`mh zNjvv3L#GzLNI0Din_8<48b#@;HTD0&)Y`78Wexwpsa3($(we`GsbyV2FEfM~cQCcG z2By~b6Q|bhx3@91HlR=eDCN__zi}}$1m411u_|=>%<-sQbo?xXG>gpjwN#h}plK5& z8rtGERCzJzVlbVeRc8hIL=k`OXj3M}4Pxy>qop67aeXve6^c1sc=VrTabFjQDEv!B zZYvzmxc{3JN4RKJ=9&(?FOdfo<%xmyTV*M}T_s&_N+O|sc-XjpZ9p^r4|neaA7yps zeFrDhDA+qLh|#4r>U5iKe74cBD{WYtXkuqz2C&8&pT?Co>I19WvLUc(ix^EpnNEh% zF1YNz&}Mg~OZUNwE^MO$4nau30s$0)_$P|i8RMUb3Q-Z>@9#SIgb<;1-Ou~J&*$Ys z=G^Dp=bZao=g)PnbDirC3uP*U$wJvQmP&DaOzh(eMX8yE@-xe59KV5uGEZqXMe6kQ zf5<{nt3TaB3Hl4AqSagYdE0;-httOuKSD8yakXB_tddzuvo4sy6RV`6_5Zvja)aM$ zh=5aUJ=&-Zo1h)vn%S$}@~9{oca|6Fw~c2@EmT_u`|CJgHo~orUfdWAw52~ zI^c6vtYoJ_PsWzUT`T={;rcJLE~En(iL)+B|36q48?n_KE!j4BUDUgEAtPe+nqp<~ zDI?LG(prd5Wh0TM($gioyyoAU_P}e6<_Cm>%ZGMwu`)1)!~lxMwngK=Fdk35h~5z= zh&>TYK28mAW7>$mA;r%!D(D*(l zs+W1<1f{P}No4;g4e8<$XH)M9*Ko?xr{S^1*X!djSN4Qso5E6aU!rD2WAAciRKMY^ zY7W~KRy>W>6fN8WV@-9zDihfxJ-A7U>Jl*$|2Uc$3!G!d1|}xPevyRYDT&~_Y#d|8 z6^9f5^9)FUZq6X@3`2vS?l=ZLdH{~qfe*-9LuAaYfgDPHnP}mZ#GUVDspw@Yn(Y^T z-HMibGq>B>rBf%Con*gWr7HvYDj(~~pEwN|`S$JCdSkLx`ZHFV^IN-$hv8A`_|pTY z@{lU%(Q)TR6{DJRtA|#csf0hK^ZHcJ*kUrZKciF0%spy%7f%PC^6r&Q75V{P!C40& zsSoUtb{^dW?bcv{jUaUPUiw;HixB~u)6ezTtO}T68X=|{uGJugZu&LaY%Z_q|t(*#MMQYioX+xIHR?`hSv22F<1qQDfTOOg4 z*Gyr1*`u1o{_^k_7H&WTS{v>D60#)%_>r3Bo%*)pMGjdr>O(l0{T4K*EZ^E5izTvv zKSSnbR?yA4Czj7=Gt1|FiTr1l&+F0)5ZQE454L>v+xz9J-CsU^JPukuYK1Kyefgy2 zqc*tZqy8JTe6(oX@=;xKpxET0h^iYO1Xnwthxs*3anEt)CC+uA%Ek9mo1nhhY^Y*Izv9 z*ddEYXvw z#QHX-E^?^$K>x`(h{Hf}2h zemb-D>MXsg+?w5cw*RhfYqnjPch+t!mjlqUMCtJoyAql8XHh=k&Q%j@${UXIx!LD% zla)H&es!#};bvDqK{6R1x zp3PKEIBxLy8#spC^g;N*8Y9EQ-h(*n{kb(tTY7wr(lc89r#DK7#5DlQU5B0WO6FPGqXFfRe#>Vfk zmrtK9(d=jIRs&(RxqFt`DHyLyV3IZ)K_69-kWx!nd; zWA42sybw-|g^#osbo4_um-pathmUvg^xEWjT`}Gt$9;Qp{LaFh$+64+S0wN|IE}Tt z{ExF0-lYu&p`TPJ@k0*zJLh2SD|p|;#N0o|slh4GZ^Bkxpu60b_*rA z$XOJZQ8uJ7XaeXQWAfuS=1@_(iu4z~LXy2-;2gxj1V z0j$;CkeX6c_ax3#>K?{>WZh2q_;pX>J<^ZjJ#r%~(AsDGof<14zJH0UrLsKdOUy+3 z&VaW>V*#Na!&1jw;eF-t@`tE6`)3vLDfwk>x{HjT_q9&-@HTq5n;zbkxnga%EGhcZ*+#VIy5dQMCY)i88w zxGCzyijc>tsc2<3bgPF7D^@ZUWVM2+5Oh;P&@dI~#HpfZhfD=#h<$=>K@}v7rvwd? zIx#sIy``?-S6lEvs|C%SF0qS%36-?K_mi_^rOVRevh-W?Dz)gWZ~%G|UEDFS&w&d})ou zdgW)gq<>bi{DqW0k{RHv$r|8_){JYjINlRAz#YDC80}-*fhd1d2BMXM=&@2ZGy@2G zs0Pr?;SQj1?B~;X1fY5gem&jAmJ$Ha0t=&97*$18-9_0o-HYUo&QWGvOD z)VPR^Ws0#>+%M(EQVE%{ymey+Ao)3Y`mqpgKM9~V`q>9)C69oRwBXmPU95)yfVwRB zc{f370b36MspJ4atwe?b)R+48F#$ARFKsNbS*Wq>4wY=0bsJ+@_DCu13B^A*d$!!Y zRF#I~|G0FvMz%VKk$q^9J=f*n-sF)5_B=O-k-evZXGS@Pkxkpk;z0#BFPTsAfyVYw z2&X3h7h`%;GSdb9)&;4dU63(r%9!@iQo0}qZnDTC7ZW?0E)a{EEV5;qYR7p9hHxjaB+l}7w50V~iMc`@? zZ%7>v3WcVd<`!4JmK2t{NIXHeYrl>;dfnZvMG+5lq+K`$D{Y19fTNa2AZEdG759zR z>YfhQw9)uKsZCthMeq2TYe7xr=OzBhQHw+PBiO9PN!`;ZeB{6ZB(}pS{zPP5XD+(=#JIatWaRJ8X69~7yo9SnG7AU82V2iRxsnOT*gZL0(Dy` z-k@&d3fEDI&1KWDsB_eSbBpw{prj50MtCtW8jNV_QnxQPp?83U;{DH zC?@lB!plt)>Plsgw0_5QQ)luS(@j+-%^0bel7?8D9_x9mlD6qL{{?N+7AZRU^*N73 zUsbk*DAlrhyH8F+?O4t{p=eSThS$}sSg=repBym{5=|~|MqM}R(cj5dj!kB zqU>-QSnf1f>K!aosdgwVO7mf<;?ZFF@jnAg-AS-a#|A znCoC!Ne(AtnJV~wupBs0aZ0(?boHyJg{#uwn(E*x;zL8>QkoCfcpeR|hg*TG`XsnY zdG|FpMtTIU5JB=8;HpakR|T}N&5sSYI-pv49W%MG)b(UItqSpH0E)G!?&TIc7^9+i zZBcp=sw3Qg4r}(^Ql)F$i0VjLRMI{74vce)Z7^UbL{{}MrZ#5a znq)rJaZQ3H;f=L#`)pI>Ba%`QU63)MhL@H-USsnv!DUDBj%?8f?s{bp&RYJOS3uY+ z9!2^y$_L*M|L*Ypj56E^lSsU|0{C*mp=I%LyJF+^;Raw=c6qFPAIw~-7+`8SG0sUuC24WW%PXPXbt60`DmE$~%^*j7^-??jT{0nS5WrTROzLbTQp)gWIwmZM_kOq)Ur zs9n_#$ywv1%B7)X8=gkSo3iN?Ib#()(ggUN(**e17f#j$xT`01Sy_Z_+Bh!M5@oi* zp97>MMnx(%TSmTsu<7Y?W z6S>oVEgV?q^ljnQ(hYP*b@z5IIg4;J7_bA0h z(b&Fdyu27UDL8lye1OklNH39R66ErJ^4W`N+VL&Xl6PzSr3it)))K?6wZGElPVK(K z3wNCj`CuQ8+lSfv8rN&AvgXZ<+n~idxpXi+OYxgu8@O}0OiH+o6Lw|Qomqx+^w`K< zjcDLz)#X?$vMVzQpH0;L(Xhm|+$X5oSr>+Cpjs<>8t1M)npHPakFLP#qh(l#A6b07 zEOsq=XRt@lf>MiegN&ju3q?H)35A}p>;sDkL^(}{b{$z*WFlcPZonT9YJn(QV8H_o z1m65#&^yTg;hMtHY{-sbJKc3XM=WOfpx$RHs1#RllOP3W@|fwd6^d{Uu)5n>SjNKls4SRV=5HEe|H^N&wf~h@!(} z!G_fq{JPb}bY|h$mbBP?odkZbq&f~)Xi;c#a*kC!1BW=FtD)yuaKhSd^^WV*RQFqU zOjlN?+~i_g9WT+HNIZA;RnDHk zNR|=|dal|+$g`p4`@QTR3zZM}GkhI2qgl0Rir<^@iIS{+yZ75BScAA_`fHIGF3HjR z!`1WqoKoie87^Ex$U7vmXI8|={-8WIb{p#a_1JDMk5zAD&0vyrD>jJ}*~XC%;glkR z1f&OzVqGose3I9A1EqQg`(n9!Q55C?kgf4|MDj@v{6@oMg|0v9QRBmRMf>Evq}nVgA_mC2?>nJSwhpYTz?X^$ERM$Y_(H+Wbm25s?A$?zJ1|I zbO9Z1v)uzT2!`9{=j$z6uyKTLzcF6+-z_DB>0-@2)+=DTGp)o|)z6?;me4cg=`@2#eB@k{xp{i(s%D6N$(mJV z$cVr1vFFMQVL$a62kx#;h`?!?F9fhAxn-I()qjQjIUU2zU>>`aVWuxbe1-2=>?n+k z365~=BN$iH3}D?0Yi0~AVw6~#`!$l8Mf`4b#(iD%pV{2@ov%d$_Zb$I6W7g{-j4>% zOWOvxsacb17JqfRP>M0?+Zcd7KJ%p}au1RNxXP=$c>0uB)5Wdi=Jk_$ZsR$FWGBVe zT&!)z7)O(MxtfSmHZ~`E7uRd(CUrDj+(0NM(v(>B#WN?x7GJDZO^UT#tc@l$sgDsu zMIqxcEDa82+QYxdrfg`)&c&@pyltpTMDg3|im}NM3Z)oG2Uqf;|wCk8i%AXuO zk59xM-v|B-*9`rr@=f!1zevdg8e8vP;|rZk$Jr7G!LoRAsY*f>ws;=Np^4(~xm%a* zHY)G{PZF=l$W=t0m<1~=k13#`fw!B(V>Gs5JOOK}z{PAcKBaiY;x}!f<&tk;p`A*+ zqBZsCs}L9XaRwxx-t-o}#t^eKLi$R4zP>_-wu_#&FJh)fufQX4d`%((sq<*uHE!dp z88Hi?)M(+(2&TPvL{rQVW;f&&~nOo-FTDzP9|0+^5;Wr?4%_)$&fB`S}5g@MhQ5LE! z$3XJ$lBVesMfeL_7PsU;XiSRDy+I~zs&nu|Hz_vZo1kSWkH27_PXv9DfJl&|D~^+>i5U57bI-{DUKqmsp7Jrt>_dywM?)ojdb;%&M-^261fKwRqN;W0L2t{u3#b`ID=ArhaO`&P*v{Jf5oF6K z6&>r8bSzS#yYqRsO%j`^OtsGn%6ySCg;O)(9?pCf@yMgJe`~o{v7;ieUoHk-iJ$k& zU+Vh(8L+`huHW~#O9OY!RkJ%1!#NpZFn?uYFoq$r7>Q<}12Z^5m<>6k=*9=^09LS( zI!O?Q>96^lYI)6$4tj=AQauCc;8bEUD>LQpKR8g1eRlvcJVhhQ<2FyqW4kxLc99#b zvH-14;kvX2|8piNBjgv~V6rlI_yjCVT`)-99Zcsg4URk$2^b!b=^0M3(VDtV5|(+0 zK091@CiA!=Htu1iN@nKdRAcV6*P=aWv$#AF$wFMNEOWfY-OX0ql0?zS@R`vJ&E%Tw zhO6V{_a4Pj+z9cN5|x(^!<-}vsZba3C7twBDE2layZBHLh#m&IMY7MN=S)i8(dptO z$vH(4$tRy!S!ycE=^b}x!?Li$YC2s_!*Y4_7S0uBwMFxQgl*Z+y3SF`K~_%q$R?^o z3hZaRqL<7X0Gj{NL``M-BTofzZHxY_D16CtZq~7hSL!~@*D^i*;2F^ zUyBA_l^L(Ev(*W?IW}C(*b4YGiqGzuR5Jk|d|Mh(4aTYatl?4%HfV;ivrn^_ld;`5tx0z>%1Btb+eD{Sk?JlKAZ{bfT(udCD-^d< z;Tg_JVq?-{yXgxR_JnZhjW&9$A2m}W@wKCeXE>)`TIS(^^YsOl@6!{oML6GTMMPqo z2IzXU{tfv^__8MApUU4hNwvTc*Uew0b?#K|SN}XcOm7HPe$O;R^lddfAs%vs*|` zqecQ{gw#y@mYgE7Irxv)3W=>RwZN`WVGM}0zK6c#Q&Zjh=@yuv8i@@qaRCAST5mC5 zP;LD*VyUB77}KEDGCYw%%S$aPw7ilh(CCkaG(pR{RyqY*t|$3pXjw&1hnAZM&~gDa zp9U?TqmP~fEx(8S%BM!lf;5AcSM&S{(6Wl4*~2f>M^Ft#%jIk$7islzsQdpZel7;= zKZu`$@$-VqPl=zq2jk~O%ob551Ngat1gNT|7WjgW8#L9x&nqp_2|9lHMZ?c3KY*V# z^@if-?$iy>7=G4Eho9kip9(*px%&iu9`;4U&nHA*7pnN_@$7F#-0V8? z3Gmz^sx;he{8R9?kCE}5XGnQ~ReBOqUh##~Bjx?zVb$s%Cmn{i9q?LivTYEeh4a-K zIHvY_ZW*0SDFXmno2nC+Ynd-#is(`gGNPLuerDUE`V1OY7lKEvhhio!3UcjqiCq>X zk}l@@)x6?Spx+WrPLu+*tm}@J~l3J?+3|>GD1}@@g!N%_2WrQ&Hf)k z!_Fsc&3XI&F(Z-2K7vr5y7DBUyly(fR#5EcojkI3dMxlIMmG$S7)2tjpLeNup0l;1 zk^^feNo45S=}BF%&#o`@lDkh`Qw^0e^mb>ty>`c?nr-ZMPB@$sh)NBX80|5M(KnZ7 z09tJTm4g0H0%+#&0f46Q2tf4~_!6TVmJ$OQEU>^yj9%gZQpo{;s)!5)Xmu*IR{#x? z7+r05$wMVZ=M0hNsRvS0O+4oVsyhv5~CYVAu;+z+682$bp>w=VZ!D%H%FMa$%L=c6xqwza0tP00RUI?E6#)v+Qfvn6o zya(^R5Yyf?5jlr5B86+!hRKQGKTe9b7@Xpn1a=}G*<#>MswuzhC~jNxRSmqmP|5lN z9;1nI_aQ^@Ba|J>KYP@>cN1yp-@&V*lV@6An;}2cXck!~o4&e^2YM&`eSC{q7sd1~ z#)Pk-ZSpRHng85K6-v^z=6i0^f!28ckzkKjBH5t?g04oXRs-akamy{XQf++ zd_rhDy%q z*;qUo+Innl18u%RdyEKVd^&)Hsz33)d%HhWl@6oC9Y%4wn(+M%qr@FXaZJnf{Suih zdDpx5EZXo1=hQ=p+v&S!zd#X_or}>P2?3ofI5+1Mf^*+Fjo{oUF#|iY=L;~yAtp6f z(IZCZDMaROdPc3SpoH$;PRPrZkq$A_`-~%=(^t||pFQu+qnk1ZQ}3b%l`N|)yP@ox zWj9`bL+GB@b=?!9;=E@$^HCQCp5|pM2*f$cxiLqs09BdVhhlh9_ z%@nRCj1U@$PClaniHkJV`z}8e?WuT=A6EJGP4mO)gsNwz#hZfletLr+F7U%eez?>R zTMg0C9zR@7Xzj6ZSup9Rclu$MA9nj;j~|MAuJ(!LuTac>g;{=kbNn!uQ1$0oxGb3O zrx*BPksprt!%{yC`QcPQtRjrm+&0c@lH1!z%~f1j)(wx;e5p4OjeP_ro;NC5a`f)c zVuo_wS<#Z$y@mISZU!45JA$a4syQKOo;-I2g68?x??y$SDVRgwux)lUSvJNJ`Er+9 zdkagRF*Pu zw}=!|VLQG-A~TXA#=#0(u|NzDA6N9q*%fmK*F-hE;UaBuR@I+S7kiFkC=JkIdRms% z#enE(RaTO`q2c*gsIKq46e-y^$cA4U{{QCMwIFS7*=Ft6b--X_xxH9BoR^Hu*r%4@ zH-6SQ^EHKajp2JNhkVVys7{^ z#Q1OBU(bW^j?$+qk$-jdp_&_VWh+-g8S8?|%<0i7u-j?gP4K0evMk93JgbgHg#6D+ z9o`sZH#F}6gu_4DqSAFVpoebajV%C?-_2?N?qY4K;!m~c2e<4xEqD^Rw`jR&EY#ZsCAQ5oFN?}KTHxag7 z?ZH!4YA!JU7H-w?Ch zW`FbUd035HXOkRp0T_6;YYO#^P~lpg+7YTh9F14^AtR3bab;iWyt&cX^QJ);Mxuw)L*Sk8E>!ha+1F+A zdR#a@w(oJxASAl?U=ou%o0?nqaBjje&t8ioE$oAhy{Q`v3nZ@RxbV!J&qrdr!yL#E zp~G%dd|Y3oru@F67`bdliXS?z24ewlMQ3bP+anm~EZkal zuWp=s_Q*55rs3k_9(g_j%rmT9+2QixIT%U&Az#44G{amD0j2Q|l`u~Uy@i)>b_m6n z`83YyJq=|>Fck-{$lXwgsU&bzSQGR2xhYa%O>0f!D$3|z>gquiSp`&-r%cWYu=1*m z{>`3aUlIA^Ue5lb&^=G|Q`61gD!ZlZugY#Nt4412dG6Ejl*EDy?Rt|_lfFtBB)vxT z-LpdoIJKRHX02E4ywg8H(x$pUS(RBdYH*c57*wU+WvUb`>2jt;xMuP22H54?JqhvD zEE_I2586ReWC3$@0tonMSJ|UZO6))sktc8ReqZOaY`x7v7OC%2AW}1Xq~QY^?XZ(i zYXX#LOTi^l+0mV=f;|FG7>ZD<+tHECDT^--itZGK6P=m*7CR10R~<44a}oO(=2GiZ zb2n<6;h2s?hjqa|lHhY6Dtk$U(3yn8UN6$|vM= zv}kcKmuEpzs&}-o$d6Z9xF#5~a9MD?g{y*72~+>b!~z1`-%4k0zNCHHbKAGB-ZK^{{P?4AzWpTgYzLG;)h}u}79YViaIUc2ICkOspH#%8QAK zHKP_V%&D#anxl$x{XLfLE95WWP+(JNMyFfDwiN^JZ~3goH{NviQfiST{92kN)Xtm7 z?%`G0I`wARdi6?~UCLk?2u!2hLdDfI!52!n)tx&3{=;?#wRcbwdM8;IHW%s`02Y?V zjExS&<%W4{7F&H0_65UAg^L5NLMq;aivvsb5Lg^2B1AYWFwMfnfqDyD0u6+kWcfli zG{{2WD;HKsG7ZFQ=}xqn-%%-BETt@p~wn`ll&pv6(G) z;}v@=JmZjoFvF(tat%A*$vA``C5VvyjT8Q4J^%@NvH-) z_v`CZLx}e)3^Wz5Bt+6x-6FaIW7Zmkq`ua;rC!h7dS_uKpXgCR>_6`W=v5~CL0AFQ`I(z33`~)k%ZfM%C6Tuvt`S~x4~tL%~Ey5_4(AVMI(*(r5G|*t^aM zJ#0V**^ol9;d@0!?ftJfP{cv^`RQ@VaHw@rP zeT8^~2z3mS`$g(S!xT1Mo}-W{etDMi#}{9&6{Nay6^~U0i^?9QW9@OekiDeUBe6(u z8sZn1Hz>0TS>cw;ozMH~;8Y{MEoV!x&swnT@>2f`JxqGFC`A|wG+n+_izUz(iQO8^ z32CO^8O-Nk;_$)TV6I+_kHqSNrTVD~#j1mO>bC}~e{OK5)(+$JWWd!!6Pfp?I*7meO(%{n~i&%^NvUCsv%hUs7UdaQ2!QJjjtfG^Qa zk&@>vE+X9>StcjO-7N6nUBHEXUPStyD6;$r>I9yLkB=x`-9H^I>nLAqM7r(@nD>R9 zLr8OVGNk!KnjC|u^YL^n)VYviYMQ{KlacW@oZ${dnaw@jAm+D;cFv4Gy^#u3e%ve_v=uh11uIQA~GDIt0V*_2Y9cbv3E2(OCeC`FS(&}}bP z=q6`~FiOof?61oXTtzqE*oFZxG~INfdw3u z=W{!j1%6IlxhN;=@f?>}5VJeF)ZZ`6VI%*htXw09pQ#Ym4MHem^=ZJ5Ezwh||0g+F z9LgIp`dfDqT>9MNtIYG;MEnPIQ8J`xr`lU8;MI^Q>T!^&vUENs337alvJotTV!B)h^9;t}k zdW6F{YHoef#T+?XOFfkMTh8Ne&KVUg+{HG9hnBm#uZfR4H-?PAJ1seqS?b|eiC5K; zq+5@(6KBkLUxmO^I6em#!f(p}ac5XOPSb@)nty zJbBG-gqHc6nWRhXij;0JMP(eIojG=&gu<;Qx8b(s6s zKMEb`;GBs#c^#=vhB!^i+tx22pyishT=ho- zznvVfJi9*}K&fqXpJ|pHseK(@qTZ6%1@0!DYwk&jy3v@7I)tq6L`-*o26pe5?9X~% z%I?SM#2M11;@a6jhyLwDqto{-%9GqaDRi8)4>gGldv(1`*81^93Or5$zXHW>ju<8fL5BIhsrq;Mt>nO z@(Ouy8a6R8?wiQEkI6oFFxWjOgFP!qUG956$ooR^31d!%_zf0u9wR)79%7$h70XCe z^nH^;*pQ>%XcjsvWov_DfGG-M&AFKv#vg^w(0C(7(hdZgnTjQ{KcYCjwl?HmPIWD1iV^$0rhf|x#4V|{A5GFKa@~O?u_db+x8h_+^EyJ+cKF_+&u|d;nmz+NI~0F3 z=SzVeyEK@V&=y;WBvJIyk}vRYOQLR_qdcdR25gnK&}>H13^tW3F&Y@twuoHs0Cij zs!IfGB9}< zkMjqOARjp~c+y+E=n*mWFMVDH@m{0f%_m_bes4XUi{L72fiW4cF|o_!u%?3yz1%V$b6t@jb9&*`+%~m*G^9_{o$-@eK4KLejiGin8s}+kd?WPs`+?bCJ6&%1PyE}Q^1#Q6o#Xddq~>y6Zq0ajDr+`hgB5rYc0!TU(rZTL__;hy318=-Ig3F*X{ip(2Y-=5P1?+GRvQKusT0VLnc^7M zw7WwyelyUZ_~U9&C}8@=k$BUUI`2WbG+k*2#(2w>NfJ0jb2PuQfk$@TFh<4$E(2O? z3(8~7PtY>X#8%i%?K7xjv0ukBzYg@spN#|-TQ%1l#{JN+Nj2I36f==xujxh5cBsaP zUii^ig3dLRizlwgmD9Y1m$P_SmOb{RxmQ+k=@0GP2ZHvRnmkCMM^E@x{_InWQMxR%{QA#q4_tG`NRy$4K=C=$#B;Q-!XPvwv ziyEm)t-vE>@Ewe}j}RFVMPqp6`=TQve~F9Bzm|*3xA3p>BCWy`;LO)^K)nZe>P;#8 z4Oz-sX<6mj@-1>vU-dh=@-z8PJ|&+Sri{42BxAW{l=n*2*{3??IYsU&-@zv(&Lh2< zALbyLL{n$tR+>+J=sVE#dOtEJntv%Lln3_6b4sUqPT45`5WV}9cN0Io?cTkA%3{l0 z^>SU@i`^mv_%vNO&$^JIQKw8!j69e2A>ilS*z3R>u$foMEQ#0I6glM2jpsQelKF@~ zzc8u^>-Xg0k7)R<<|tB@5Uw_q{_vY?ztax?J33i2{FX~c&Xb0|>`_fZZ{bmR1p|wx zT8oFv)I`7LNNjl(U-OzSz!jBSLmp48A-x^4hTh{IeaISmi6m-P9Z|#`B?Kw%_VZdk zS~miAd5*zTePsv|qljm;B1jGSsaj9(OM3}JSdE*6II6YQ=CZKRtM6#eC*QzYy3rbE zuA@)0mgd@8(r2QDFR%nuoIzC!Au9xxb>;=pz;;_puMUGaacc>w%HP$#c|+#fRk+eg34l>d-P zE^X5TFEBN`wKzQG9I2eynVgY#bN#F@D(kCcJ*cc_Dr>f~ekPN({M~$I)k31?K4pg- z>U~$)zpU(+U8HZ{`EJoL-fzxv>+C>>`9bd8;@$i8k1rPk?R1?r50APw?yQvyXobxX z=3J?Uq2!raf5XwlrGZ)NxvtQiMB_&Ff-o&;H53X&uFPQ~y4kZ{Jvb>b_c{1@JE_|$ zf@2o9X>3C}g82dw+MfM3L%M|_?I<6yF9PZFB0k6{T{hwa-;;849SZ`VssP0q=IcbD z=X1b%AT~^!LprIIL@a=R;k${6Cx$pL;tKk`B}&_5-feZiDOqzyYe z*~6&#M@Q2aQGj!STl+F87YQ80q#Vn+lg6+Wd-FE}IShm(aV&0I?UBL{FkEYZz73$A zlLAZyI9!%xXSDDby3zB)g<_$tByH$=Zf+$J9_l@ev8n|M%Lb3rV)kvnlW6J=KG7bo zss63{gXd=|E~y-z#n0yu*4e4Ey;T@VjPv{C6kBC9F^?WPGUo~#rEp=#K<`8Yee_PK z@PlaJ*hw9v5iGxC^jFL9`dA11+sF!j=$yvna5K_^R$c{jy*HoF# zPC`?3jm};i;vM}Jnz34HL`l60V4`xVw1sSQDK8Fj3+#;0h!k@>#xhHY6jyPBzFDXm zGO2hPXdR-ex;Te{EuwntifoE%b6~BD6pR)=XVwLv(Kb06t&)12;x&%5q0yf9TFTUE zv8SVjFJVxCJE=1x7)7QsbOaE-i3X6CYc3$Jugac4kd0JvA%u}#LhvJ>0vnhY`>kao z-j9~-sXYiqv=gt!_=Lk=0L&;IbDT_;ijD0S8B&ecVoHyFRtWK6j$TxD;}Qz5ZK7tn z^FW_3DmBubuaro4fns&tMJiVLZ0<0Hk!SN2j;ZS&uV~$~hF@O;zv7MCoB6&Faf*i> zJoF-jW^U;^dHzUN3B2B&-n}z`CVj73=nFFX{OD`E0&D3&6G=GHLe~PCNGdJl*Ke8M zqEFG3+643Egu7z!>rNE$x7e<(bPRZIMqbqtw8XHncu zp>X0F9PM>^Er*d54ac66OzA=J`^0eL%aA6VL|)Q_`JA@EksJAKADJA6fVnlRV#I6V zl11~oX0*+e%I+Mx_cClkw7;gw@}5nWYMU(PF1^|&%iAj9 zhT_)!xs;f@U!?Crn;)7zU)Sp*5wHy|zR!yEeL*zs z0X28#HY0DhC{9BUbdtNbn-{%LdiPdp`plxid~xi4O~SF=Zc39-xj!?b+nG8fyZN%; z=F5JY$+XyJGSf%JKH1cLR#SKAd||k^M@n8oY!bty(k+4m=^f zog@1qy!GN_tYWFL8k@!>$?Yv1Z%5xH?&!O0OdE+tz%Qu+=1A=3Hm~XIT-s?K1haS& zxyviirJaB`JM8*9Ca=4Lh$e0TyTWbXLlUsJA)5#_BA?aK!l$|LJCiHSF)R6wF8*S; zV}XMmi*`l=oO@?4h{V^75t~3z8<)U)@NJO&hmqI~U11Stm1Cwy@%xRD4=lCQ5c28{ zhc9)Z3xbK^a{KP=R``$Fc-W3g4HR<+gCp>F*vY1n5-o)Fd@~=kY9jI5+8~1jT6z4g zrCLwfTj0PO%{L0;ZcMv*?d2mrh?Z>Dndq*iFcnn|y*n9yAUYi^5lMk1HnWG=$+(w>4n7&5 zsr>|;z?p#GKX5L-0%*YV>_M~kyL0iWI**R7SjurIk7;v58w0;6QnKG`{EUt3Dw`eQ z*cQzqO%S^HEi%rgw`^)0W0rBPZZj+@FIzSsnOP9OZ4u*w^`O6L(<~Y?;Lmf_E*z0P zngh)%v;!W0aIxqIk8&{b?6;igzd28>DL7?>|x6I zC*Ipuvo82*v%ZQV>3LaN6C8F&Ka-j2KRj{R6@TX==IvFn#1l7 zPaJmpblCmKr?F0d*zL0&ZSZ0DT~-Q*-D_$2$!h?k6{qVVopf(rjmoFi!rveiv47U> zYycH>!7_&?(GoD*EP{HO4KMrMnCZy7*a~2VtE&(h--8vn_Q@2inn*1=z@pXt;Kqr8>~mS|?f~1seuk3m;~Xvh*~tV{BKLZ2NVa!jGR<^f zuf3%DmmFEE|C1x@(-N9-NFb4YgFYHcOodO-?#&-ZY+}6f+^R_7w#hID&gEvDTikxT z7VelB&pvlzBGPblV$FoJ$}g$ja5NpDKs2_+?Q}YW>*!`@@C9m`7_uw)0RAV>Mabm{ z?k9nyu%Ai%9)Ib{fy>TiC#Y9mMCJ>zj5uxsE1I;Kq-9`=C8i4|w{b-icdlnyuCNU8 zwJHnH`W)xcr$te8V+j8#4yNt&S!cy1V?Y1(OU8Z{?cZ7)F4M_PVV~ffTZyIzSy&Ixv=y~)w_f(KsoJISk zFbOr5Bf2S4a$D-|k<9khv_Jh@4yP;y|Ck6hGMiahI3R?7e#whe(y+ay3Le zz4GmkooWYP()h<&CU4V^nXeQsRjVZnY{?zBxC1R#721wH$&FJ)UnK1%(TjGL3ZTBoKXDyP<+Z% zuX&H=napR-vKza8#1v-eNrtgs_3BQDDO^vgUDrnvUq?_N$+1*@7vq{&=0CaY9S~GV zN>JfXm=`&80%xDm6XRpGW#Rqk?0(TtB`-)s!Cr@BTbT|!y@G5eS>@>dCM-SgPZg2q}SMsY$9R^lj9>r{2-TjKI`HANJ$bggq^%IkX8!(MuGHm zo)9JpH@;}Z;6_Ib%07s@p$;d$kLX2**D~8OwiiQn?SckG@B*PPTpO6nTC92Tl!S|> z+sL=V(gT3vE8M702RdZ*E@O(@uAuxLU0%Z}6WO8Ly-|T^2}b$O&mMv9oU6cf z7bnXuuW=pJGcrDC0#Vr}J{S&kg$wsgj%V+MFA#}kpKrZ~3VQmdWc6nvGmgo`72Fk| z6Ua!-POhb7JCU2i+Nmt^1Ct=*lVhQ zyRnZ}5v!hf6ie%#XbUo_IZXdQn;HeDaL_Kcvd)ox+HekYzj)5 zKW^4-;hXf4gZ5!>eiDE1Uw6>4wMdp&)`^46&4)_fpEDMjE7wLDk=R1VV#6CLJ2h0j z=vH2cUPM;tO1H*cT0K2?9L_E%b1KX5CGyKDMU!qR907KSCk*$(JAPWV!5f~G827Vi zU>lN({Bj`wMp%NB-Nn1%<7Df4@(8Yg+hGPEEoIG(1a^i3=!W(eCrw0g5tasWCMBwo z_5op(K(LGoa7%rD_NY*zdVK#$(V{`oi3uF&=`HYgxdOFo{4T*xKa&*6Pe@;3Z>TGl z`oxa%tbS`YJ|iGZUr&EU?*!o`0}$r%ghebjRy#RVh8c<2Hsqe1#6_s_r3@sd?&kP* zQxaq0rkT5A9=`#Nz;z=DJ&YU)KO0EsCIQ0DdQaDr0c=t_->>o(X893fj9X1UKM6sJ zoM_^*fbdQQdRT{`y3Q{@4{?%Anx8D2CjO zv(*|mxk|7}E9u&+Ebx5*yngd0WIYebHMjX>frhxN)r>e7 z?oEGzeODFTV&bhYr+ce z#tH-k7yFy-9!a-*v{H@JMGYsWI>EgJNlajHB!-!py~9iwahK#Ma}ihToE#gyQ*MjF zcYUnuWcbKN4vSfJpA*|BJ1Jqj@?_4{$fd#3OP&GMQ~OHqD53l0Nr`VTDZIvQHh9@x zpznRm8BLVF^jZ>4>Mk)+{k^;QDfRG0nkY_K?dQti;7)&?WRoksZ7&caNIJKa`G{_n z36cH|{o*+wj=Qse0z)TTPE8MmOWyMuuOv4-jP8!?hcu`r|M?#7m@Xo{_;Bw5SWxNt z%mlDrx`CnaF3QLc53(lFcMj+sse^c7q-NIW_@taL&M4G>(kDhS?Fp7MAK*W7tNei$nNt^Z>0N3T(1s3v(lxH(_Kxi!~}mr7qUQuD2X zkQdolX8L|S-^BH38LSKDs(pz`xgm5ZWK)3s zSXs;fC9jM0F;oQdEnF4s(+QaL9Lu^mSZX19wf4RxC@p)HpXsO9TevJZ-9q$r{Pd}W z*G=#H>bGf#|6#NVR66xI5J69K$|`YG^vDSK$~gpHqe&(Ahaqgpe?cxRUtoJ zsw1Y~;m14eJ(mCc^d3JwWg%J<7On}d^wX1s*G=yk?m)8-1DZ;wUd{uwe}QfNX+Z0i zK8ZhSec}!Hqh|UhZq#!8Cgc(dv@8o(1-q1;Q8ShTqm%FF8*lH?p0fDj;8Z`o%ED#A zkcDf4d475kA)x)yZ8mE5VL(&q)L8(Snq}FN*X*ObL8$uBH zU^%_CWu})FLa(PmRD-~?5b!L-?1B|R|HqH7v^eTYetObR@3c7jK^Cs__1V@ql}nJp z^rBHKvZiN!-;JPsU0{+s^>r-br-uXPry0RKuvlhtnhL)^IrB;PK@HiXbKW2jOI0Mc zDwyl17g&h@EVgtd#RZcIH^iDrtmOoN?HbN+2S%_A# zpFZB=YfPh2YqsC7H&^dJHiGtbz*H@%W{_t38n)U`GlC0rob=I4E6*A9vPjPky|mfm zI@1Z(2%5SsBiP`lFSQWOE-$|BYJ3^cx}?(QPtK&C9cU?gM88y70j!ueyajSu5AJ(Xmn%W7{Oefg+KFz2VsGa_( zmFinQXiinq_PZ*-3DcAn(570rDwyx5kGGI5+mA1>_btJCKfTpYUuhvKxfbHZ&`)n5 z1hk7BX!c=1Q|Z*ZV3YL2Y!9CXw57V-^Fdq9a|X0lJ-bosv_}*kl@-vE7On~|^3zvZ zh;1!D-f!g{y*DetMpTY}tN%y1j1+R{7}-e)<9n*BnSOe`g^mM4A37WBK11!KF|-nGsyAXE!lh?QxkY9c#bqB5rHXLe`#z zki&ky9zQNNi3qWjpPuWFV4gpMITo%nC1l%2Rc>GeXI|mJY*lHkLBiA$kY@V&9P)jN zL(ud=BiNuJ@kel`4Uao1_#7wok6oD}@@9zS2oLQV=6 z(lvg1lJL6etM~aQ1*HO-N~azLX{PHrfp4&*Css`wv_qUQY&Q-%uI!OpeZzK1UKS^% zd9Q5xr)Q-iLu=2SJSSz!E%ytUa+^SDnM$!r$=StQ2zb)iy?IvYZo+3(Vn;b8$_JI8 z3wo4^%nDNvkm0np-=^Jy8+GX}X)gX+-}o<6&(*;kH#&7Foog0WN^8D4I6fq;d6^6- z3dJr9D#n=>^?W@|SGFqQng)H8nYw^bD)#k}*j$VZ@HFkj1k1m;27n?|oG1@grM?Pg zPxnKoe444%ZKRqzU-yZe^QTsip4}?S@uxs8p;k|pg`CtZ3nw)TIjQ;i#@l;NY8D6W z`{`8{a=fsRlbWAiM99?op@2d=-x|S5jnvdFpuF_wJ|$@NT5UewLqB)`v<5vp&{o>x zy5MSM1+-QRR|RMK=?g66MCQl4?R`tI(@*d7)B7!iu(psRji25{c-{2mtqvjBhgmf$ zooWK*rLP79ewtB}J^2i1S^AbgYJH^ppyl~Z$R`wNxfZe-EDN-{g;0ZjzL33d368fo zM;kwVx`ph57DDU$>7|6%P0!#u`!JxXbm~|9r2iM=_h~?@8U)%*wb2J{nzh$(-2!{W zERC`PT7!icGxF1?Tevvb>c`vcJ@z;J^e#WW+d{Sn3)z_c^wosdO?RuTC1@W8G?h;6 z;3wU}6#X=yNeePFYCSw>K6U zqc+_hIr|a{v}qQu3Kse4Aqy7=8~pfEd*2dV;HR(l)7vb>yr6|^g7tp-B0?tQDz`(~ zhXGBcQ+fQP_X@Rs3eZ*x{rI3IdCq{gTF-9Oy6tgYut!+|t;<5}bNK0P7GjsykLS=H zoydf=MQ7v_x6!l^t8Nyq38wt~S;RTEv^vo2!+@sJslVh06C1fc)7IzCo{Djculw_J z8{aSW8lME~xVyo&rDJ_#Q+r+tHMe_BwjI=5U(lwl9BuUBPydBk%Ev5#W(J%hCl32B zLR`3dk|-Y+(!MBP3#rcbS|W;&E4pkyuzY*r`WC*2bⓈ(t{ha<~O|gf6Xhepv$}Q zybEGcp0*uA)O9DqBpbQ3nb%o%X);u@UHX~d?F>0{1PIye&q9dhyPbpVUzB?V?TC+! zPL_EEDgJs8QN8RfWJ23-eM_RF$h{(a`Zj;~z%D=zwY~Z+L`TcL_VTw((B^1PNHS{3 zrah^g@ALJU2w8gvj*)f%=WPe}>tSc8CV4#oBs zzd<{YU4d z6wM;>oXf`56Si+;$mg|R+8(=RB<2bGAo(&D4>yI{ZvReJl39l+0#kjnp}JWGkNZ>o zoY#sq)zMkdK@H|8Q~eman_`QGaJ||1l1=q?a3y-1%H!5h;%cUPpVxAq<$D{_ws0Hf zKA7ql{@=m4&-pVgq^9|5XKv+YSqt|n&l_j)DgbQn(lzD0uChz}p$b zMxv9K-n@O>XwABe77xF{8k&m+D$| z)89rXr+91czd20vU{f?J{qNjqp1A+=?dMDb#Y!hWhAahF_2Zcoy3kx(z=JPh7>(Z~ zyQ!#+NU{i@Mdv9JO-!>GfuNVURK(BKD+rt5f^SI0 z;f*h2p{JtZV->j1IVtC%U!+bhbg4F!Nb~?|)Qdi6y|JQ?7y_Spr2NiZ@wxlF@Wxm4 znMIQNP~UVkXK~F8F-5;D$>Wip%(np9YCKch;{!$R#dr%=6c8ZGr4N$3--1LdL2A_H zhxw{K(~NmjvD(b){h~yFV}}^j`0S;UUN9{DrR*Kvm&$kK>L*`6%;k;D-)*%oW7Kxm zXs%M1hB~r$Y0S9CC9M|!=wI>8;vg^EEzslNAFtZN@#}J;Cdt%4F){KzmEl%ivXi7D zG2Th*5T$v=D%*H4fXI`~M0aM%kWLa&B%3IWuVNu~eHVFU8b=VxG|ptL(#B+oT(y&>+Xa0tSgIhg zq=7)4Vg(Wn1T3nV79^Isz_jOL4>*;(M5oKy<8pSnEd4H!(j+rRau4*2V5I5=`cOx6 zD*+oNBhb9aeY4F4T^20qwBUgr0y;*`I(|bg@~sPe+p8u!5lXDjcMz6>DRxfw7-*vQ8V1Cfh*!^yU)DHKS-a)5;~LQI32w6~v=$lK%iMy&efMHV!VcR_(m47u1;7fdGr>s7f}t_92MEiuvHVk_Od)h=jtiAfjh zB%pYki}kozmy0d1V0oVpSzrzxDV~(9 zigT)`)uRyvZ@55mmzpdDS@ln|y_dK{DkY~+Uo9}{L3w+l~zLBf7{Vu18 zrm+fL&IT9EbOjbENSF+uzTnoCriUWPC1xprLWy@Dv%=cVsUU$fnMFHkWpUYBU zG2gLMVw!t5)q)2W5YSbn1gVPmvDs_>?rv)xx)W^z|9T6>^92WEhiI4>*RmkPGH6Tv z@IPf)sG?KSshH+!`W5q7y%&3)pT^&L64iB$m2N@aL}hiKr|MJ zHhBe4a=thL(MW^E!8P^*ziAw#ta%4$@lDwW^&2^utDy3rG*xe^2Eu_>MqDc^T`Q|k zw2~LrR<)AkfmVLcR-7A;Xvv#iSmvH>}cws?PojLwr-VR6eV+Wf|Uh#C{_CmqPL=IF=K+vU>`P2*wNqi?)@=~BYg}K5uI;s?6%rxQ+Kor>u6{XV@r*y zbH_nbX9k!L?LFjGkJe96KjZkx_4vCbm!I$D^K*C6?cSIv95%UlPfE&;QHlPR8Ne65|57>YnpsS?Zz2Cd{dH{%)Z1EZ^0Z6UR-bL$Z zta?RSYgO5s_&qm!6LQ>StUVy{N4i6#k>?iQxfD$gQ=dCZN2zoF8X-3Ij!@xRk+nGZ zTg2gF#`kq@Ip;eTocApYK3A#W#_T=bjgdXM-i?)e^1U0Y_Y^T1_j+H7?1eO|+zV+| zz1NNzI!LbVW%(Y@5pnm$;$*mF%dC9%U44h1%-+QLyQ^L&qjR&{Ib!j?7XNP*t%zY7 zKGNllYy8XNnVe|q%}dP@p|$vS+Dn@X)TRQpsem?dFwNe}53S;tX7NkAXzCuCO3p7S z=arSLn$7 ze@E9elt^a{><)Z#RWco*;g-GA@SYu+s;me>ZLg7Y=Jid#1J zj#N8($ui*eFAD_) zJ(9i24*tVS_^3K9ZlQf_-qsPj)S3IsOTJKdX+2(MzQd+?c=#9h-z5usUuM2;pnB0C zr6LheT&>+{S8J_ywbq!?#b%xp3GI* z(cI5FtmeS$T%t#EXYt9=%3c4ZYqKIH>vfRvn!YPON4(jNBPSg}wK!-0Emk&lo9 ztc)&(zDG4PfW@E#j_?EKzG6GoD=e%r<$H5jOkJ!Vct87UQ=yWC>OgVRzC~XDkQ5({ zqqEVD)3p=P+TW?Y10U=rCZiusN5m={_;Ok?%#}ByX#%g(*EHEfs+m^BwIN?!Vjuj; zdgYC;RU{NUgmMPPCo)3Adm&(&x60FAv>P>z&xQk7MnP`>cn5k1=!#%j7M&mtzTM%( zgd$)&6LWR*K+$8ezXo_1xBj$?{tX;{+rTeJtT56kWwvWcgeI<;FKx`a7dYC@) zK!^=O4C%%b*5hslY?y09wMig`Xk0Oq`^w`+lKHya>42St-bgR#*KxNi{jch|f$hS(cRTU) zK7K%P*>h)T=qotQf<)d*(x0($V6pSd_n_icr{&9I9@8LONc1JGo?MRMn;2K&9xahR z%4bN&=FP~Oe|$$a(fHzIZxSi%IxUxs4r!H)YI_TpxCtCmr^TnT+kSxV6*gk^84M&c zS63(p-eMY0V)^}q)C|jyf$a8L?y`K(i{*C+(iPcqxZCfD<%cA5#Zs(tvl=J--`u?q zoK;o1|37$!B7qJW7$xf5!W%Ve7~0iFl94lT4xR&a#q@r&;`gP@u37|2T1en9IGfEG zDWvRrElMrQOv=zP0%t%NP}2d^5KAX3JtL{(pJ4pU@BMk!-skLd=FBu>+Vy*R>Fj;h zUVH7ep8xAv&w5rXU6*4|UB3!ju|2R8FFZm8;(>PYK)ZN=omS$32j=DWj?z=KQG2xb z>154w@p{`KX3C}V*`ycvL!W~mlvj(-$Co~lA4>;!)|ui^`5hF8q4Ja5Xl~Iv96NF# zRV~zz<5tNKVp#JnBKk9~;tbIjq4u;l?Cm)5m6`TQ9Jy>Y!NAH~#m?}`R)%++;^dRc z=o)|LTiO1lEl}@b3zYW&M9-1UTjtYP02~10ovg+v){dTrNk+-qH*q3&Y}FWT7xTEW zZ(^MNGIv|j)4qv)oqJ8_?Onq@hOJB=A>wN^4J6YLM7MA7@9#4ax)OQ1iI>ZW(6our z7AHd2@DeJ}`*X1fRk4dsXjsc_w?Yl(S0X}Z6^T&kuRw&FDr;+Kro=?(31cH7^fIHH z-No}Jn+-M83ki9NrrkRQL6&3?OfcD9gou(L744Au6avl}}XM)!9+h1HH zrZmS(qkiO|DL|E3@@Jq~XZ7*;SYLvUkXV61>_>d-^v?jUXj<29C_wZ22hc52QUquJv}I>7k!``lS=$?T<91qaD-C}J>u$55eP4g8<-9?#&l;V$D{ zudu9?cTLXyGCLA4AS6c>g=pp4KdmFUSLym8UGqZld&Il!7-=$ z=_5v;>J4i@)n9Rhg1R|ELy@VRsoc(y44X43w}+Tmio01(PB9yMWio#HmepC~g`jJ1qrJs8FoBGL1|J}M{i8b2G%%V*V>DqGvFdfV zwz^m{nGwm>PNe+DD@kM*U-3(;jXGz0=QC(Rk_5Bw(afchoJhQ~u4d=LSe+*llxF`c z*7FxJ0p^mtq?WwAjoQqF@r*2cnpw#?fwlgu?_mqi|Ht#_0P@=%LRm^{FFi_Q00Zl5P4xs^<5Le#+)PePF^vj@a$6P!!&%2|xd8c&L&~nV!A0 z9flbpnE59R=4sL&{1#ncp0q!B%et?k*oWU?mr+~oa`-m8oX}>MiQBoL3r54(#$)hy zl`%Qqad{%~{>kl!_fOtNmRy`KaQzS}0f!M>Qf&>}A=3t+kn*x}cEgD6Twuf&_p8f( zt?sZ(HpeA5^^?YkdNa?6>-bU1i0!!xW^odaZ!aSkU`e$`6oYCn!W7i;hugK$gJV_z zI42<1{NOZlKRk92OqiL&A`__)JniR;H_hc8A|GaR(Pn)Kmzcb&osN%0MsDN;fZX~vux!?TG8&f zWNh=P{@E)lWnErJk*BTotxp{(a8<;fV^Y2I)#M!5Vc&uo(>P10*}ca0*J-3QK5iX9 zr|VoHu4H*Uh};jy&CXPJrea&C&q=pbPCk&hqH_A2^IL}Ckm1KoFx|F!f1aF8R1C__ zJ-`tzCrsl6AlE8~xI9Fw|81?Z_ih>|3#s90v9phxot$%geeHq7t(ALY^pK2Q@ykvy zHDjYifcS2_z8kOa#_QX75nOC;pPgaz`em(9h9lov|BMk@(m&e?q3o##yw;SryS4Mk z?1cv($Pas5tv_SPJawRn~)V%OXYC@b>ta_f4)N|Cs? zv&E_z;Ju*OCE;iA8N7cLS9T{>FH50z5j7={Qd3KS_nYsMx9 zRfdVDb=MAE$b_7P`wSqUG6YY{MD8_+N8mp}hbaWP7%UG1nMjSPr8mU3;>wN2qs*3C zA3rD=+nI{37rztHf<&66k;l+$Btfucj8tr+xE7Y&&IbTWI~O=}w=TY`@3vH*>O%@L z-yc-QwMo2G=lzx~`bV(7Nms?(0rRr3aF(FtgguhavH3x)qp}7+I#vIFLFBz1q{@>IK=6DSPbISss8!5yC^P5D zDc;B*pXycqWFBcP?L!kD;?M#jJxN zAte1cRUiyQ0EelJn7obWS~o2b4rDajel=LrZI%#X30=w^0)z13X7}NX-G>XGyx4tm zto!6*Jud#_RVwnXX|&cYxjp@8w!((BR@h*Tw%J({_Q~%NI?pGyA%d~Cs4hq4=0~ZZ zdqz3VeR8`V7k{$DTEC{FVOQ26Tf?217FY{#j{yT+#G9Hqi92AZ_O2Aj4A9w~BUQ)plP*Z4spZ1Z2$%3k5C z#o#?l&x*e~*FIoQab_C?hQR+svg`DV2l1v6s^!^2Z(s#rQ9^8{3p3s;q$Zv*=emhwyJgBD z6Ud}9aWO$bzpu4J`kcL$y_C5)sS0;WSq*~7PHRg{Y?M%$;axfLVmds-OHW*>KkL-M zni<}#iEDF1V3=C}6OEz5xkY0y75BN^ai`Uh|9RHLH3)k$8c$re=!4E+nqo{cWgT;C z87HkNzsaD7^v6N7B-ee_X`IzEn{J?}x&qU%w43d&o3kdisC&EB^X+-qdVpQqTTK@b(@{! zr~}gJ{?tL-nm3uP3|!!E4I+rl6NnAzE3(5k3o&L&WX_w?y(SZz(wu5bj2^A=XU_YC zN0>dp!0sq+@-TML@;G5Vhv&Ga_5%N@;|dw&WEiyyjv%WNBn z4JlLea=hsSP)aL8o3tEL5~Fq8s!O)oU10LoG)Na>5%ZTfr3J#d3ikFeENz^G zDep08y+vkr!W+DO^QE|{qLb#@eGQ81X5N1+V5+UZ^h9QlhjHtl@U??4W}4ix=wm6R zbX)OFWMA524);aEWtkA-QF=M)5l{N{N}CqSV~($}eg07I_?70uXrK2t-X~4O79u<) z%gIiYy+&vaYy%|Bgk1{b8#7k%P3*E6qF^1aBOG(uxt01;r7bw)bT?jqPSl@C`jgb3 znfh~<{>;{&bMjRC>MhiT^oa|rvLhVRd8JsT-OFyS^0Y299&z1tC&jVnrP~} zJGgcP*IaPz3a;J3wF0tL{UO11L~xarqjG06vAs9=JwCXe7+hr@sa`U;&J3<+1=rcZ zRd$~0%?+*>2iL{HwUH|pjhG2FAaX%BICE;XnKGOzVTHlu>3UJ08eGYXxeMOeeE>AB zu|}TGJ^WUJ_!RxY>V=^Zaj`wuSZe}ZIx97YQ~#>FYTN3DK-t7*ePR$Pj23-aXX1Gn zn4PC&yg#8*#cynnI&M(fyC*m|?_Y1z8`wYIutU8ShZ@Z<+15^gpt8R_PF^C*c9qJW zhC^-Vf+JX^AaN09D;eE5_gVGZmL4=3fp6`=My@|&=})iykXn0#`(fue1DE4B?BQ~bl-1A|E zp3$lOQo4wM@2Od40QD^#GL_?yshQ4!bUEdOX~Os}O%DzvvO_(LSx}eCHSF4^c{0}YEuzr~LFj*7rO+GP_>&>nw ztv9z8^=2c5t~cJpoxkTi)lDK~%{C;O3ajglqpoM;>d0BUVBvIDg?GH}tGJz{FK+0p>wO38r}f2YeDR#n?O!`9k|E0Jf>-J$9I#a$ zMaYw4gAcF(NNoHL{ggh#Hh7Se-t<#yt&U_f+NI0wV*b~C2Up1$Rgs3%RT@rLX*gX~ zLDwO{RT?bb^xr&9&e=lhd_7B2mh!ghc2ZEy6da!z$8Y|#&sA}=IB0fsP;UfR0ufF` z#Z)A#?_nMD`E+*SarlG}2oq4EzR>{mFQy#Vl5EpXS8qXkN(A*=5uE~LKv~+g}i)@avdxiU(rCYOe&jX zvl1L!@W_8rF*H$+d@Ukydwj(wC{KHA33xF{GR*o81S(0qIIncaf>E{pg)4{D);ue3 z__KjaelNcAFJgrSF8OpLA1d|9oQaZ)d0OZeFOjmZPE4yrozZLQQ z#k5XhdLh~R^eN2(4oBN+Io>I+k7)Y>Nhq_GbL;%GXAY^W*^}@;J9CH@81~fFJX#me z{8n3`NNvgaD!-?msdbmR_s#`}uu4cuzim@$W>s){*L417=HRd+*$mdM1X|IVgF zW=ZQzWp?C{tbnKLi}ve<6gG(hAvJeq0uLSg`1l>V=-6|~uac>d`$+EMiFIz76vl`* z?WF|>x^{z_GHVlpPI=@X&o2?YkY;DJ+9M|5L@``k|(mb}M{9hlejfSc0l?T~k z6FbJoXR=EVk^!!VEj&z8I8#45^n(*)2xG-nb?|Pz=>PKIW?f^yK6tJkXNTGT^kgb~ z;X%V#pdU*-?LkA-vmwd0#8{j7=w<}{wGN-CbKxiH&si!Ty@c}ImLK8AIlxg(uf&@^ zD)H)LN5db!V-If|J|lp&^Ql-%#95>R)-}-FtV#GXfxCX_AB$QBt)<*2ye`P2HFuQ@!vkf^!xV|pzSpYCq>#Q0|VV%#0_JK8+T?7ee( zqv0|`@W~4Sr@us7Y&e6{uN5w`&4x=Q{Ds-uob}`hJ0P#V4P)bJjEytVyDYzbS>@id zVi`^*;9zvQb)bJtz0r04ibge+sM)?Smf#p}?Gn6qUXBSDp&0?YuL!=@R$9{9k#C-#2Lx_=I;Q$RJx#Y7R!5?S&7YaA3Qytmt(q6-JwUj(;&TAy=^S(a z>;mOMe-MxKM-Q9?6VE?nIj3jW*dQMLYM8N>0z{erk{z(CSD>v_?I`rll zXhjOLf&clmeoB*?OyItQdyPirQmOhEDvV1ZqXR_>Ll)m>p_wuYL)%SzC=3kN z6DTKfY>C3y990<4NJ_K$($;WIVHDPI-&lpgA}*${KvU}!M!1qoOqlF_6b8A3Q5a8z z3WNOw_XO1A6bAcID=$W2%tc{5h{Bj_3gf}Lnm-}|?luXqU%rMCg|W*NMjPwtQ)<$t zF!;;jlqhDlD5hZt+v;8@Rv0e|OG1}0CeuWgjml)%n8Ntij~S^5;RS`!!ml0*Lm$aa z{WpAUmg?JN;L}u0&UvVIliG3_Kd%}+mrfG_U0}y_^X4UiGtg%tzHm<8!OuCujDV#uGm&D zD9%c@)eiw34csR^znga{89|AF&us;_`j_^$VE-kz&KYjiHkgp zxj!B+fmE*=aAMg5t2Cgbw>RGO zpS*>{-RaB*=9IV!NiJ*2Z>qbJ`w4(K`VeK8j{PCI{}0I+J|FyZFsUu7r(#c}QDENr z^2A|s$ao-1lf*ebc8AjCV5Z}%lg%+Mei1OG}Go(Oh`JCYoqs=Rq8 zk4@9qSsaCm=g&WX>}U@09XlkIJ^o1S|K^rMuZL1sj}@K<0M9fOd)RgZI*EoMno2kEs9OUCG1@afq3V`rvoFpcJYgCoht zj?;(7s|zP~PN9|CB_yJh&^!cOxZo&TGT5l!o)Lv-1mTDw86k$Whbxs$a8`s8T8$E}{Ft7xFGz7#MhU+uIq&jPn)q-Wnh++UG*K!YL=sLqKs^uD+ zorxeHf?K44HcuWuSiutL(r`SVll}!UB?l|z{A3t(BkH6Pnv(yY0U`-qI$EcZwB#hs8H9v zRYf|}EFrVgl1_1kGSa)jM!IB+vwN^j@0cxHv2%5GUB&H_N^sUJj@_s~Hrk#_{o_TQ zyWzDdb-EZ)>V~kl(i;%wlsdZy0?Te2j1Ej$4EO6bjx^^f2AoPLmg8QOx_p+tpSSE* z@)n3>s<;s22~S=1i){C3U{okij#uR1mphZ*7<@=~iHmJL7lujtW8kLaQFy$@cG7^2 zG3TVx(cfmt{k~wy;rE0uQ=z=h^W`M*Gg>}@UF8kKq*Lxh>?stvnRMh?WWpj%zW=s0 zFlHL{Tg7^Y7<3=}i6@C*mbdCrrsf`~sl9gSo$;lINiCU4cQ}l;UXOD(EeMtP2vgp! z53p@u(S5U&RWD?b@HMe&G3NVW+ZW62URibc2Z~wsK26?wXVnJ`2t}+qV!*7bH%eIb zr|7dyD$kvL5v-b_7q^cW!Stct3R56)%0%m|slpRK_A|uA^(~vV*?qK4O(OQR@v|^5T7`ldy4SZ%ifH}}}GH{sh zC`BlY!NdvMIGpBGfdv`2uta{EL*(3wkLkgLeXs;d?75-a;!B?cEK*{lrNnsXOxtm} z@5~QXm`!w&p~sGi4htbYr#YVif42+7{lj)af4vS9-g1m#*na*fVcQH8#4)u6VYLRK!@p#62_QK zXEv!kH+de6aXh`~AwMki+06(yYNp?d@<>ONM>r$&ZWtj#jJgK;I~$Y{n7fDd!02o+ zP#jsh5gPs*Oapo^h$lFF$XpJ%4?;x}nGK%FTNwUq#FB{?aS7y2zH&Z+(ddc>`U1;p zHW>N^Aa67I;0a9uLX*#V2;iAnGWoEt3LXNuhL9t;M#go?6oBq9-Aj9wV}scs)_*d4 zA)0{c;B3$%j+q(Zn9wnxXHoP2Ql(jkXC|RS^bDRMjQGUd=jMi*1a6cMB9@c+hg#`& zegfHk$$86470UbIhTF{^k4Q>0A&e@F6r9IMluC_9de z6O&O}!boDndqolj<8KMy%`;BK_zM{42N1Zz_Kk7aX!y6<4Re7@s=Bja{Jm0Y{JlHE zI1j@(dZUDKE&M?!CA(#Pjx@XlU17~@p28>ujMW2g)n zHYyRj!GW9vqby)K<<L9jsc9sCewoU-GSvol0a17J+n z`{Ocozf4_ZW2XiCKmvFuMlug|0%b6iS`VAt?KFt*~x6yc91Re!v8Jv!Xet-t%!*1jf8%}ot?97d7wPocOC;aEL2MAXKgJt z2;5RkR}tW+(0kUwu8}zNcBMGDwVJ~*HGhej3u4cNmQ;*`l=dw+#2?mBf#mUq)m!+{ zws}wCmRPT%oL8@jKhq$qtz-movrkcY=bAIJ& z`$%FnK~AKC*u_bpqo~0Fa-4(uV&y^tB)0?;YNpbihYAeF#!9@A&K^&q!6I>|BSXuH zyZ0EWbpy&w^)@J%Y+H!CG4I5Kqa#!q@cX45QISvio8;nTQ^;iR5Fw*~z*t(UaCJ4TVk?F89Lj&Ymy)kR8%+VCNT%!UCN#NkdIaxX(=E zH0JDhxu4n*f(V&Go9fus{ai5 zCL*AO#Lm_?h-F6fWEm9|v5X4JvP{nh#xj)*s)%LmBT<%ll%=}A%QD$NP)kDlO4<`v zlT4dHw5C$v7c)XrDeqo%TsnL92^CI>SJ7GSVDM0fKTal?bg+aqKcn-;VWea0{BNl$ zu?f)cXhSfOs!AGD(9vwuc*4@Hy^jMjOEvTn^e(T>^EF=}rn0o=^UBgvK=Ogk^MquV zmZVtzY1y@h{3CE|jmf|5sp=;bWW~yyV#i{8neSof_M7ER?lQWUfM*HA~>M^ zk?U2K+`l={F%ont0i9SmP6T$Dj_Kuz1%*vu03dWTC$Offcl#q7>_a0ZXvGyzbsjm~~lecQhJt91Pewr4o15^Afo7Cb|Z&nsbY$unJzU~f*zSz@93q%2V-k40pFB?vP zb}5DI;;hzQsy|$Y^sZHPZPdtaFm=15^NU7Ntk~|gl;uPxZFN@SFBz{945`9fpCme| z&S_KyY??+T^~e22a?+^J5rYtD)F(}&&Sg;Euw|xEx0*)1QAJVlU3OHEEK<^rZ7$3^dPmtmlRX;(z_I zCsY^G4k5D%R&GC$@?K5NnNnE!KYB25v6cVDjOX^5fFqT?Wi3vTl9m73wq=bxWSO#p z+Z9|`OR7kjNQ%f;q_rT5i9`UQN0yD3DF0;h5ni6FjRW)s? zCic_~eJ~!fhFEnUf?Kl=m%-z+@{}i421+k8637_V(3&y7T!s z3v^=zl?eO_aTb9rMxunYVOSopELH;{Z7kuFQCWPAdK;zthXUH@>OT}!H44Q9ZFZhs zjy8IXjhf-uq`)K8L5KU+GY+ibxPJWh;&I6yC>mE=Fs`b@uJ5moQPt?U&Zo`Jt&qs= zqt(~GaK^{NaT)Xnj59S5j_o(Yi^tZ9o3&_cUkfOIeE-L$s?o8nq|MGtgfr6{eT_|s z3UrM8y#v8nn{l)n2*>u!u;Q@|FCE+GgR#x*|JYPDI<{Y8Ky-d?pkp&_F<`t!$2O{D zY{$vgkMi1KfsUEo|FNlRbZiO|?R+;dG6#L1G$~{Sc#}mnaJ(6|1Do!op;5do`j4V< znNwRfPyffIs*!OmeLF+S{qjt51bmv6;LU8EW({ACtE?=)=diznO?G$A>txH|{N2n4 z^~CL|q-5Sxd+|tgS1vq>J+x#iv;!}`RJmG;Os{`CO!3L<+vk7BADPt?4|lCLCv4~S z2F`5xlWfuA-A+FPc16MKA7>V@nX`9P?rq~!k!_1zid`R>!0MN(NqBtLg|7b<^ERup zaI$LdIxErSBEN$$aMzW2paXyEA7(=2k6f>YypgxsR>v+TsBIK$@bT=)OdvS(i1BNq z`>(8zr6anomk~){_c5ZCWk#g3;t{E&?1*|kun`S&Bhu68i2jB{h;jVBm=?OI)q@t| z_1mcoJ?LqK9y)(6rxI|u^jA!`2<$C|!)wH>)I=#}RaOiKm6U};&j$vFN{wOUdOeN8 z;Yo8n_lDV5OB~D&vqS`K3w8#7!qKY3thfsQa=2HgU49kOYPJHvF(Stb_soMo3IZjgZjOh>+;~6vYuv+X1Hy za2&m2VWt~L5f)Tdj0KfMx?8|P&j*HupOQxqEa+(z3#%!Pj01PX8z3>}g8EWUQCSgY zvMSMtddR?@4~$dx;C_Zv^fbyTTPSuCV_=B3$Hc&p{G&)m`HJC9O4ht zOXDbK-K>_&IV*eHuhPL>IPhB0?4;!r?^u?0n^u<({yDeA@+6r-EFXS7KPD|d=6hTc z%LjkQF2h&ZWmMKKhhJ`&iA%UlYTU2{)#moUc&i#|f?&%vTx`PDIQf!wRgI^8)g~)# zla=wKqHXepvdFhhzIe){#`C_GXq>z-(RkXWiN@0xB^p2Z^+e-_#XN4Tzs&yD+ux=3 zx554{<1gV3v-yS!h-{dtueQ~n%SCn-w`Xyyf81Wotv<``N^bROURlg7C0B8gk)B&W zs7_H2s^Rv^XbAD9ZgvB(j^OsnsB&blj2d=(Wo*<0VX8oTWj6EH>lP7T)iWZVaF{;! z$}BoU-N0cUY*-;|jNqES_sXmp1I=n3tV~FZo<&1qo*bn)cYd#o9_K!hDGDL$$6lH5 z(u!r)vTbn7ho7`GPlHh3(fqQFGmzlFa9?|CRbu(@(cC4Lk2=IIhY#Zdtr_yY4UY0Q z2yJc)j<-rUHY)Tc&-Er>XzhvW8c(|f!uu+O2l1T-@tqFweG=mPT1b4*ps1RQh>(k@ zkjqkc5!vypln~2Ppl1}wmJHEWKypoqKzBx@(BilF0U@rm%c$jClHP`Z z0!41-c}31?!i${K+|Vd)@+Ant^3v|=#Z*c(UhN3(YDaKaJA%7;*N=fkcmqmg-q~1Z%9fJLqdUtE5%vpC{;ns#q zSv&x-id00bLygGiA}2`Q%gQo;nUN_s3 zCNBw?{4xkF+2U9fuSBrR>O=by70uMBaNXWkuTQ7XX{%q#_1|mT>KE&G?X0>s1X<$W zQ*DT=x{sd`Zp>11*3rV+NKu#jnkYCKMei@B5v(<#lV7GWd(yzNzZnhasgis6Hsgsm z?O;&}G}#6$4bg4D5Mv1a>q`{QlJ7|rUw*Dw zFz9sQJ_N%igHMrQ=mJIq6AXHzL@->5y4$4kT+1m4h7;%o^85Y;`RV>%Aew|%Leb+9BUuBnx-{ca?@9~0dzo+}c-amc1UygTes(wO0_p~Ap629j&R0pk9}c! zP_!@XGbnvo5ZV`}hi+muF1KW2Xg~CCU)WuPjndA$Fi&Y`ahs>KG(VuUDO{kmNp>0j zQM-&f-Y$n9YnO@RxP+7@loeANza)2!r+e`)g{DIJ8P^-+Un&v^MrpI37Nwcgw>@b; zq1$DIedd%Ca&iKmKK8`x5cfeJaB4U9>7cNaBaC= z%s_GTjGq3N#(FbF`tSR5R*2`H%b?KpXK~TLydDn}xY-?n5vM6fZtIgmO~LsRDDWY% zaDstca6%xz5l%wDZGePA2mz6*~oAAH_iXz13e<-_N2V*x@C;91-U)&Mu=)vCH8n z*=6DcE`gxnBKwt#X1!dNx{I5yny=37yDOs75?Nwo&pbPv8H3ln+0nPVx{RIanM1mW zC_|fAR&bOW|7~xvNJ$Uxn0qns$ z^0A(@*5@9)r~cCOh1a|XZ!wtf?;bqW?cW}}+*3WfSbh)QrZP4E$M@iAnqR^)Dk@?b z6_jO}o)60J!LyG_GggQxjtKlk9NYXA1&-CAb*WcfXK*)lc%X?yTAMe|Db;HfMO zCV7wTLRJarEVBo%%#-qa@a#ix>OFXxee|^lPtOYy(e~h}C@K*nd+^FU>ahn;b^5ah z@0(>d)%CFlZ%&!&|GYhTGZ|FL9y}FA#lwv%ka*~^2e0RY@_X>?BmdwYyi@(<8SWu)B8XUGb$~jf4$>DLu{|`GLTB zuw`a69~+6MwBz-xd87`$Hb6IBC^8awZ`M2%G;OL~hM<5|>y^l<8W;c$MvHpW*weG$X? zJkQO0P{iO1!RGBGW5YANM?d^ak2IlS68zoMh7m#n8 zRGw=+3UBX=Ecb;usq@mYd`{}gpYr!=xQe%74zm8<_tQ?nzakFRAo}-DCMj&QCqu~lDw2*j?~I}kd2yb zCP7N_yCNxP$v@_@QAcu;mt>>vOvmntrkw39{}>tf`pib1L^Aam^A_gooAil3Lf&{5 z4S72X`4z@?=)G`d=JEFx7$*pMv*feMST353y0KJzKFK=LK*VPWCE!)>ixQ%$vR~qJ z(gUJ~Rl=}EQdnZykYmj4DOwl@}|&&||NYJQt&h zDcGL$?!`<>@XtYQ$%BkTm(io(t=3o7a@5jO8bHjc&o_0bYC$My^XHr z#cod`5_U_7XvDt^l!)|39zZT{{CBm;rt;jhDgaau>y#ufp8Q#bi9-w}kp zS5*gyu(o<}vfAkjY3f973Vn-m{w!9P`as%aJ&`tPz(~^@B}n_Vkf!q7>LWnfJ&>vG zNA49!toBEMgmL~Ffuwf&0+M7(?q7BmbN+|uULHt24T_%`kcv{8RvC~6lG0RflmKao zfTZ%=+`|FVkBP|HH~6>TFtX~F2{u-P>5Z(kWxF6NjRId2S*e}AAf`^_p1#+}%9$4m z%W~$$KC}^o!n^={;uhkvl-^V!St40Wi0!nO?>jakEUSgL6qaR2oN)S3H3vZ)tr;Up zMDOPmO-qYyNqtN5Vyi5B{IVoRS@b_I_6JbS0}jg~gP>BH?!Rp|=;QpGiDtPnz(5^*0IZ178Ry_BUXTc++4P%Y&sE*o?w5k-@@!(rW|l>a+s&AOf3p zll8tGro^0Vu{`LUBc5vg(?O(09Hjj9)w@Y_lp(uwtSh6*HhJQ*V^$k2kfgZ^<1?61 zKlZZaL)Tdantn6uCa%V&-a)!&jwg7LG(8`LS(PV!NDz+8WP6h3K~M4m`R7P6srk1I zIA+{D%pYblTN<26R~XlGw+<~3%aZb0&oVW4bC?NQn`3QWK?_-AkFwYDEbTpNhnf87 z-NN@)Wtr1sve$Oy4>NJNuVD_}GkfigMEDFu?f1ZZKkUbTs{P8li#5n0bS*C&d#e5A zJvGQmD1TtKquwYHjZjyqXbAt z2}ml>9s4eT^m%#_<`2&ck0Rrd3K69NW?!S4RXcqt4b5+IzuHl(X1C)5%mb;Xnw@L0 zctvWq#eg&rHLEvDfHWE4Z&G>gZHEG+Q|ZM(fW-9kjRex_?ZrU47RBEOkk04{r1k*= zNpF+@X`Fzh^4y|;ndZPqFm4cAUbDQ58 ziQ!43L)cSgSuo|?<>$;oGHs7TG@i6fn3nJK203SK748P5FwN9-&Lb0MTbS=OUf(D| zkv;lYlwf_Gze?3vZY3M$u}a0P=o_kAHcXBWA<>gcM$N$5; zRdZGhD-OOUM+v7LT0Vlil&qvd6H_IqSdz4Co15o#rfPP^>))-{<2U6d?U7R;rMMVHmL0JIwd|&{WO1h3B0N6*O062;o zpmgUOF``L5QL3V%5vic;hWuR8_`UmH^#Mfl`zry^q`JfvuFF)vqAc9xLyX%$NJ^Udu?AW8*{@sleP+yw7l1yLEh`{l@XZlC%=eGWLoBhFP3>>9|Y4!Br4@EP_pa3^8G8b_v>t;tm!#Y6%~zC1!YIt z^MQ@@`oERvGy6z%r1jM3bEGEXr<#cGd6LVAC@*)k!Mjx6|C3zS7^C)al8Y*YVMM`6 zE-I3YFB?T(=2=mAbmSBl_wC*y$lZE(n1TAM9X+F8PIY;`L#;3=tUJ9--9xEMyn#ES zv{hIg`qE2>0up(!E2Y zFHY&MqNpgjQ3VnuJ;KR)J}^=8e^7aO(^x6p?IV$JvXiKw>02Ku-Ag8!V;}0tPS0UU zxP0y<=egInyh0YOBjcApgKTjDWfkuwpe!ldI(u^?HfN83G9_%5vtL326?e1YS7Zp;{;Y!-MxTPS!#g**lVqU4Sx5}MRuNp2Pm0lqO1}@cn zXpt&MLW|VC3oWt_`m5A=3oV+!TmN&RMUV0IK2x()1t)!SrcxLsQSmuRNSub^-5)OE4^M+W^H*rsBF_O%Tig))=z@8 zXX<~ysO&dx0cEGo100f%$GOke&+G)~a>oIV2oHxZ90f?|VPb66Km*v?8R9^xY<3@1 zre{$q`w%dRP?;X*K2z~`sqDviufr7qk$_Q!xhQQ%tWh3x7YL0t)Nm5z2BSOAUn}bA zk2DEs?}k!Ivga4V@zqX}DCWvZk|XI@KIY2dI3IImG;J|g+x7W~BA<1n31%xT~EG`9qJ=Ctqp8L7AkSTnowV|o^ix%xI#9L8MfSr~IQ z|J7;C`tHCW8>YuYf)gK;r7>5Xw*s>8Fx))Gqstq!f#K`G*dfAuFm>m;C{q(c=Ma7@ z{mLgeFridPaNrQG1P2b`ruR&BbVHeMe1d~RjJXDu;GiQwYPb-pb8hY6TRkXBaBxU~ zQYARh!w{uwUM`?iXSbIgeB1d~Y=UqRraUUC@Oq%q^gL!nDeoR}Q(4}f!)FK1yE^vq zO~bnv2q!Fa|6Sf4G1gfE<#<=mqP+W{R%l?(Ng!I!LPX#CVgb>8@oq`HWEe^{pi@W> z0?Os)u1`QI1DLy3K&O4~fL4W)xvPqLo4b~K7MZ)o>-S2s7fvB{-|uby>Wr#zPC5#= zMrVG@bM`ToC$LfXt`REAP0!M04sSiI7qG=t-v258?7s&#RVV?Qih2WExn~iu&7TxG zmDGK^w;j>NAWP!g>dZ1r4OI&ACqKup*2B4)!rH9vHvv2^7d%T&_bcZhKf*xS(?R|g z10@GT_RB%u;vm_(gIpCtNV?NquTW7h4)QXOq7L%fz(MZ5+M9#iU|8%Re^#(cuzC^! zWO0pl)p##895nAVXtwNK((iKtI~Y|TdlEkuITuh>`?n{t5;u0|3Kl~0{mvf**onut z^UFMPC;y#~yLZBYy(|8y*q8L|b9uzXa`Ezrih99*nMdWY@4h+!?5`6Pr{vc|%FsuX zYK*mv?DCN0v7ZNfgzqxA8algqA%5hfiujR>k=PYyB)z{Rm;7}$yp!}kl}pa~3^84o zcBH+FcBj1y+LPJI2h!f>w&O!MC+S_<6~FxH&rs8jhpPe}{+Y>i_KYrnYPwcON3l@y z^_jIBWB{__p2*G{ROdaPop!*>EY6-aC=tKuPuaN#;y2ynU6X@MYqOsjR2#qP_jTE+ z2e@wc8pc5j-e<-nyctyq?=xe)iy9MN!*~_WIJ#}>@$ww->|~xzN_bxy$N%H`|3v;z zc&jg_UheE+gV@{>yJ>}n)<1;uKyuoiha7l$Xc$ED;Qh$fHzIq8gIBJt!PT1fszqZTZ+w5}8Ew1op zyBxKSi+A|X?8o36T-jQc4gaA%DcmQ#V}4}Mk5O5|8+^T0xR$>ue@QoeiZ`tWO&R|i zYxp7a-dkP4pwiwoyXknsyS|EFNpEA9{km~GmyGuZAlS^EmtCj7>)ZAB8fmk%_fW!H zzm~g*W z?z>%FYHyo#ChL#!o9@E*^+?iRuYM-I{mJSVre%jM(P0eUi>c~6Q-mB=-<7Irlp;XKUlrTZeWh{f+jfZ*}8K zfBnshiqov& zH-PyDu!L_APWT42gl`aY)RXX6i%cgRs3TpXcfEjI8&AEMoWrQQldT;bH{BBFY|^e| zbw|?cV4hN2f8d~`SGQ8&1lw-lZFOtp$>67k9A7a7PD=QhMq)VY8g?YIV?GQtW~#Sd zH|@7(FZ}Qzm=QoFylc*)Jmqci)}Ls@Ib$(>Nq9CY;&ox~^^F_i^YU% z7;v?QH@hQ;7PF`u0Kb75@R}1gP@5t2b9~_Oqf%$X=r$ z9F~4rhrG|N$&Q>ETdlsHnyoy}YdDvBDQ};*dM-D0-W|YH{jKxv=V&&L$*II9zx1ly zFTR(ku!(y8MoA*R`QP**<-eu=(#3?UyluuxX;jc?o1$QkB@3?&+0PO@NsPW;u@ z+M1W%%LvSZ%QC*BiF_@7#QV6(T7ss~yRwAI$!H?J${*EJ&w{jB;+ zR1>!B8S9dluN#N}@jJLu7!s)M7 zx$l2B0Sb16hjJ3~v{3{IU}W?ry=#W3O^1L0`WXcpe{M}C59EyZo237#=8S*xm`uZg zc+)b0wEh4Q#w%CQhJVJI@aS4_u+jw^XZ*9rkgRLiN7)6mQC(s;@6TbwRP~lL$E4S{ zyqvCn*ksFQV?M%(w`-w0U9%?lhgQQT}vjm ze{ZFpY;wrIcu4MVKS%_^g=O&z*2XWJ#@Ld+8)9Ez1OCZD*US_oVjGQdW9zH5JAT<)Y`x#OA8BU{;zU-lyecE9r00-92Ng36$2B2nPvQ8&;M7#kj(-v4 zj2CiRpExBH9U)(2BRt8AUrp{rG_Mvx1gfQ=R7^}}yx#`Ap7Kz&7p$D-kE~969mxiQ z(SLTeDByu$c8mamSJ`ur-1(}`=J`m{&x#qR`wOdwpfJ8a)gRV2#Y?xoJk?LPRZj7S zwGyDf;m7kHqC%}GzVv1qOM6jVIOykYeqvgM zQ&|B$qZ_$2%LF)KP| zvRwuz>~d7C9vyy){tln0zk_S+!7(S=W$+2^@?kwXe7yZVR(}T{ZGS(=Uu>TDbIJHW zmxnms6bFbHj@q5zFBw7+0W4@dL1V&0P}^E=QvT&9+5lQo{uN1kO(4WVMJn99U%|sG_S#sNLTMpXD_$A*h9f?f<1NKU7$#H6Kqb%#O@$sMwUrp=xz|8rs7M}^o`Yk zrev%;mHp*dwUB!yXGRHRC}tl5MPig_l<^fKp~j5&LhZgKl2YskzXsr>{O^pA%evvA zl>hT8?w~Z;U-72TU#=gXqPsb#+S!P}u`rPB8iCF&gw9B4@%a6ELt48stlH4Oq{e8m?2cIFxkIURsMxqpi! zQhe!eDeK$=UK0M7+%)Mk>AV@8B-pbgO%=q>(_acb8+Q&D?2!F<-0W z*fz(p*9$c974L#$5xxRY+Uvwj5{$5J1t4rEL5C@XK;s+#P1se}0O8w23v2#? z?LB7;DNdy%I->Sh&ZvE;{v}0)4vDY$p%AsBuHi}E{*BGLlQQ7#OPGsW^7gp;m&}ea zc?k1&t0&&x`aiwwT_fZswd*`9a|~?DECzyWtWGhu_XXI_c=rc5uJvAKWbM=~*upjw zV?LtN+<#x0klCwy$9S6e#8+Gaa#Q}H^=43F9pA7V^W4xoIeTGEEWxxqJLMq8u&sVu zOtvtKwLAE^+uL4h3u|n$g=;Z^70j8q?Bx^@^sTQ?tX4oRUqy zEq0(4gMzAf1P-)P@9Cs(v*}vmIemjgGKP$~*9%Z3SB zZW5975b_RS4*SK(7EAVGepMc#ncxO7wN9Loa!w! zLu+f)(E1BTbl%WPW@k7<%U(=p$G(;EtD#yyu@OTn@dNbf)6UR(=-V>1+62jTjcLfd zp=D!pR!YD&rGN{qszqN&MlGt(p@x#)OCf_NWzIj8@}3DT*?q~HJy=xFrmMx;i2D2L zhCUl#x)f1d49nc5f1Cz+8kGYJK^dtpL4duKSG-$=5&!4TY}%)uAgvLPPVowRN&h=* zz#%rQ{|%Wf0ZL#ahrfW!*4qc1x`oqBE`$O#5T49Ko$$ZxXmF^$ zD-$Dzcw4%fAkxiIUA)cdVtq8e^p{H*VeGlnvX#rFiywT%ba6A!2*5@cYc!!sc49pl z>f)_D%8TF^ipgp3NYGRz>;wwBK|U)m<}9jRX=hQPGdJv&>YUhYm%;0~#G8hLX6%g= zCY8TLR+ckO*YZI#O@-Qm35C%q6DsO0`|?s@>vl7N@>=e48AzOW6Tc}`acZ!Pij#v3 z&=YxG-ZHI1H<@L6h20e_Q?y)>WqLOpk=Jsz6K@7c8fow>j-(?HnA zj~8?2jT-iZkkw?!+JS&DYa)eK-MfO=V`qhFpT)PP@RZQ5`HdRas!+m9}jNyd$`7yQGIt-Mrj5D(r7ynm|r}RYc%#$&F zy)zTJ1<$LCpX!2FKa{(K+YPdBEjVzMlgbll8~3q)^BO(yvI4Po!sn+vLTe~%y}L1N z)XS82KilX7OI4vnyc}=(iJCA=bw3(}SR;LcsfNkXw10C{;v!EU=KsF|O$n^D_d8_e zjO-XcQ;iM!svJ<&&t$3}PQ_jgsAEa7Y>wDO=-tx?9ar03wFU^ z8^9C}YKL~kmwt{J3odS^lP_pGsTXoT+ao;LVDaC{)d%xd3S|xg$r{u5p~u@ajY9)w zs-el>kOXoLl4o%Tg#YlESW4TH44@Ty{`UZi>n8vx{=0f}DK)eJ&`G=;Z~Ac_p#KSH z08o7?0??WIM7W~h0Q&p@06McAKvh@(=>25?`n&oFK-a5&?$ZzUgy&Y^c}FQco#|f| zp3X6Z@3K>)_HTBMAr|Xae1;Duy=U19%Kk4xtPu|E|4ONp)L`|SIf(m-gOb@(+5goY zUvZq(hKrCBn`OokWlOvlj+_ODX0kI`Y1@e(6HW`IG)Uf`Kg~`%m$0cQ;BVcWzEs#K%2|L47Cx@5aAB z=3DfRUhQPxY(vY1?@VStKFDi7(Bk3T@OCC^ez)*RSkl=`2!K^GG$5qw{#-;z&QSV0 zoLNjrf#U~4l1UULq(3Y%LeiHagd~IKA0VXJpMpef%KHLgSw+z>|Q+3!IPUR7G#DHJKPpkqz~MVXWO~kW!zlTFYI$NxF@=0W|E778%CX8@x8AQjx{Ysvmg%0$GgcxKZLCyEavgReAEa zlGRi4G@i0@RYPMmZqRgqsA@9~sJ-&d^x4;hXbcQc%f_ctV> z6o?{m^++aJeFt~(rl0aRRsRwwtJb{DH5VF1AXe&g)9m*XkfGgj@tb}d%u31amaOgu zw~Le2t+rm=nu_6~-HftKRqss2Ug7H^C@d;ldNO+g^?5rDLIjO!Gd|;0rY4$_s4za` zo}n)QYrRE+O|&^0^fJ?+x2SgRg8O9lGF#n>*}Dz17jwz%m-veJGU1oii0qMivZFYq zw@Akm1&q{VdBCia8Z;kVy;FlX(IaOqN|&P=)Lc5S7Wt0UU~O{?{lZp!2I$;P*JZb) zyq8$QvLsB^`^^RRjPl=!dU1s9%*6gsfQ&IlkcFpaPhcBnH>p+S(ZLQelOq5M&eN{M z(1+to?`5`<%(7H3>*5yG&V77W2%8RIQx%2Hk$KoSp)aD5C@z7GBz`Zjkz{wUagx0N zo49&{+N44RHj?bM&5Osq5wKCKeZl6E%c8JR?c51FL)hRY+9tuCr<($7BtjkCNNAP7 zMiR3;Y)l5a99~WaI@m}C-nPVGqvr6O+AIUQkqoSD?&uF}o{iAWt|GcI)^ZbCb?8n^{)WXub9|2fj2#S^7WL{ zA72s*A#j z^>!u}nd%2|bUO~G=EHSE_Xe6TzVyPcF_2gn(oP(mTXv6BQU8`V?Gu!=NlX~{dSm>lpGM|+)P`T(@Y!8 zIT2dG+Cz7$(tu^Dz?x`oqd_@_hk z5}0mUrG1;6(*6dug-AC^1J{eoYB$V1)GOgat zec~>Oux-q#gJs&S1P#dCiLZDkst*V`n*a!z5|1|xF$ggYsu!snTmlGT#fK1*LBIqm zKQERPbdHAW%pmX`HM@0eNZ$;C4J+vp(Af^PZVT+md}y5)39TdGWjnGZA6louhLa&6 zs-Jwj+*Dz@K+)@`xSI(svO&q~w`uGvQO7T&5CbN_ayz@yMQBzzkZ zUaQy+JPNG?JY66X^>1wHmZFz3*qZwvCdUX%3W@@W z;S<}DuI_fakieLX_XtXF4a)5v0szw0ww#nkqmr{yEBsnmh^{JZC6U%d`t8m=mArcCxjUNksnzh;t^M5Z7V=4)kAu zIEey7+_^jqKN3)0--x@47cc>XX>eZs6%cogL)=+>A%eI-{gp#pGc86CXWe~sBJSJ8 zh`V#^Ye3v$Mw>_6!RFvzm0$KTD>EvSWMMj`Ch{nfN!>g`WW$BBAfqyA5&j79ZWe1n zsmVU9-O&C9$RxGdZ<+MaLONGaYI--f;I z-#L%(++GQL)Ozi;^&N6MwJCfxSl(&+8Ez+>O~tD_wKd)IIukXU=Z_$AWs0YDp98Gj zZ=Tl$y}Jb-G{?2F(7aJ!YnRVyxj1PTCV`Q5ip2%Xb}R$a)_2$i^km>}N|6xPt?xKQ zwu4fHkrRx;`m9^*C}Kf`nX@^;_06(5<4q5kn3MrCT_oxIX5(gu*%}jKQWhn~rkjSL zpwU3MN`i&m7t_@{$tSojQ@xXk`_J($ndtFNUgHGoP`C0+J5*^R@o^^hfFh!5f+#`8 zv0DU*e>Ys}0S=mvZDC%KBDGGbv7un^VVJ^tQICN7K!Uy~FCeM_lw)eyP`TEq{@k6IxVjJp6_wI@4LAlbloP zpuj10`5yK94RT8TNcLWNr&I@Q0uo_v(~7O=e%-DW%%EU*8_W z=Fd16#*}d`_>)D67hWjZ`x1y=$#{_9ZG$)NU04x^5EuQ2>@1bq8lRSd5Gb2QTztRD z5?hxI?dCATt@d;lmcffmBt(}<)1FQr zwOWD~y^wbn-n2N17uC*<-4x;lgLj*j%*r^#N}Ywy!~7TLVU}^5@t#KZ=vxM*z{6aB zq8@49WM*vWVU}RdnQAvPv|!wrk-DjhZo$m0Oq=kdno*edFs}?f%v(~}ptxJ)VZP7S zXhRRPN%c|>v)VLfzPG%G`B7{Fd@eFLi62z$+|Z4o)@3TG_(1>@%mfO|{Q7$e-)q*% z&1U9>Dk}68R(!CCXaw$l5sj#;ccM|NB}Aha@rh*>82)=#tSy|mt&SvC{R|N5gst@eeA6-8#5YUi@Q3{f!vv#e-++nHtM z7XDW`vy5|z>XR5~@g`@oDjM=`Gt0`a;jXFf2W$qszO7dKg3U){59Oy4s-64t%^__5 zscX0kY~iXG%Zxo%uRq;X&}v_>>5z9L4;$6ao$-qhHgA5*>|_5+Ewh?p{l0nK!1Ozc zz2_S4&w*9mGJEMTlVH7AW^b9Hr*Eib)_Ji$VLtQ!RhHRf3m8|yrXF(Bz%bY8XPmq2 zif;#wwc$M-Ywsv>tX)LSBFEagvW~T5+XV18$Y^`gY?EMyut2D z&AyDb$1zL_(O#;Z`}&QcR2zWNRul%O6`k@?J6Ai$n!@0mW33PdS0xiEB=bCAOMdj)FxL^q zTm~x78&JPGM1Z@w7XxZ*ou0m-22_K?-2Xb))@8+*YrB46nCqODa0b+(rZm$1j4nJ} z!@tSBnNj?iL23nCqHLR*cnkEM8?{NeDvo`-RtynudV#;u*f&Ls$W34?&KB8)%EuWN ztWb2=OWN_2vgM_$Q~r**Tw)9YbIdB5%M5*>D-@9!c+4#<2&@R!X!9}fYSXPy5O~7Q z&l%e+qDwxW_|oO3`72qTP*4CP{c&KS}vm@|gf89Wqmq|K-BjM|EL^u3^W*>&4X=zEC=i_|UQ zl1(qGS!&hk-IvRTzMs5=9%VU)&*f=R_1qcP3M@ppZOakAH98u^_0qK#fzX3mLdOYo=6S0$f*al+@h+vkNu!mdnBM1XMZU0Px?Gc zE$13M%2JE7EkrGA?WF>>+|tJ~RuyaIftB_;Qj1#ci&`x1xIitco_qiILu!GE?tqC3 zku{>0yr#brDu?z*u-M^(rY(3VjP_HE3;JR^Ah4jZH4s$6M02)Tkj^KJ_KTQkyxGm0 zws*>6l@z{B3-Kn&8n=b2xyVyunjIRn=V9_B9T*)%`!RV_G!yHp##m6gx(oR|sssY| z>3p<%xIePGi=E1;efkRrL<3prL zV21nN&>>NzDJ&_1GzBfa36XYAG1C5g&A^b>`T3KbihpQX;3FB@(?@bhk&mR6nnga6 zsuL^>z9jhQ;9G>zH^@gaCTb0Y^4+iOM%sj32m}r1gqm zU8}5_q&A(IR6dX+wZs4u1ahc$?$oOzLO!sRiUT>!M>14Cl0%ApB=g%ARt!dPl|&xh zzu5UmCiUM(qN-6J$?wq7xwZc#-tkL)Bt=LWf^O&qDJSYt+31>+Z5gL*bj|oT04Zv- zFQjMFl_Y%m%0a|LlDYd{ot$cW}mmp*Nt2H4((DyD|WJ)feGFV_mXr)OSfpVJJiJ$YZ?Qk+Y|#yfa}dfEQr+4xT|lm zYDEPNikk4102LFg8s$}@^H35elcx4Zl__s%)zo_p?dp7VU4 z=RmkfHR%k|c1986(r;%h2UmhpI;7hf*=I9m;OMq9&c|oRcYg5M=)&KUOaA}d&Is`d z6jJFdDcc!qFd}FyL%N-jeF}t*Vmo7vSTzNc_OX1>)Ys* z-mbEAk{n{j-7xakRT%keh#_ZFk>r@H@HJoEC`xj#Eao~M>fMvKh!G|I?#Yz^fP=3? zwtJF&ro~s<3{rPb_JPwU;47bvzHq%O)qS>iPd)-F{8zera^);ci>KG!Jz3Hy42CLI zQdlqzFfeyWdBDk!oPPJ@pAzMQ<)CJ;sSI#dl3=K8exM%IBgLjd%c1*{q1iq8&uZfM zy1%yFlhcwXuA$)=CQgasjxp>R`eN*%-aR>9dQHE3vgJ6?B=&jKG^vU4J8>S$XQSh7 zmnIF}?#a=3&mg-e%VvG*-IL}`pMl+zUnWZaSKK{03#qkIc25>rvYu#-hp+6@?4JBT z-&6+7f2(v1m?sW2V17QyfLV@~wSCfTblZi+UPy%8YZ>AV_gYHp5DiU|+ADY`N1yD| z92x=mB+8f>@_BT`7w?ee^I)H87cc#eae;zd$X7SL27`+)UOpRLu<)n_;CmGhif23_ z8$u8V7!bvmq>LvtXR6KN%AEN)K(96x-XoSX@t7tgtf1Z*e7yHKK!|-FHH1D#c`yzk zJ{z6BU{DB&Y4b#yHb0+i+H8I(t!eW{1h`NjEc9!I18Slj=^_S_yJuw5h+eP6RI|ymoNfuR0+g`%9 z#B%(Eb-$esHswB(!@5-dZAwyboW=5Q6Pb19-#%z!t2a->=u1hKQP^Vm4<_fzkkc?W zsazTCz(9&P&ohQ+o9V}Y?EtSz(2U*UPX|wF1#MFvw5vpD*bArIV(3NDAJqww6VN5* z%HW_~=awt&@idHqxiXd{N_)<{Wsvrqc}tb{j(*;j$L5XRW4I~RVvNt*x6(;_l5H=; zyfr7!Tgzv5-p)*(w>#z^!@MO4dp8{yVegbdguUGF4!r`(KGRaebPDK(3wx4$&H743gu=tRE~_M)Mg;+FLurk@k3y--RQpzFgb)zpB1i+jr8eTqjS)E+)(X&yj=~x1o7$ zpR}dO2Xk#!@*|;>P{c9~XVqYE zajAySMjL-Ks8j>BR(Y}!uauO>jqzJb?!!uPYGCW-gdi$o&`=UUANqgPiGJV-P`!{1m_lWNA1M?JtjE-jZbF2~Z;v4WakugB`nRgV`=mb%I?}a-$wg8oA$N zjSV6jUs!(Zvayp!Zup`6_+1Ry1p^MVGBI&COt(gwmNh%xDRbuQ^(6;dL)ha1Fm9BdF#@8Lc)NZ3Hg zprBy$VzqFGIEO!b9c%;Pcf_veW>{kDXr$7S@HS@JKnPVWHJURCHWY(1z=mRQ`tuEb zE@GCm$wP_3c#nv|%`1-!Y}o5yu;~)n%7qPEM}P5)Bf&-lU=L;AlapoN*KVuEG4KOq z-|2V>W#5`~vacHhkeo`6O-1%~Qpx=@3}?|7DiW-oP7IZb?i`RJ*xA_GL@bmX`3&@Q zZFEPovGd`vc)+a3@vpKOCAMooZS4FQp}C{U1Y+9*B>)|h=|sP+#)~O6CvFd%iXIa- zc9!!6NjdWGCRH%3Hw|kw$%o{~$A*=7j{NtT9oWf{zscP-a0t6;kRV?jrk$80|3GZp z0CVKuGf0m7oh7Hdhck%zQeWM-ML>w<$p7c7k6u7Xj9XN)ofG}`Q&_rUvYj(?8SI|U z%yE4k+m_sim&ayK89tq@1M!*LA*L8Nzk)k+T!x5#OE+`P$urmT8J)SVO5j|4W9N#i zj&0_Ybmz?6KZzV>tGzkgiln5wBw9!TF9R*?ler+DPy$|@Pi&Xv^Dw(h;1i4x4K{Zi z7h1?(2cv~WM2px)bGDBDY^F;K2Soj!2}=N_TH97(oP(Q#KMfk^Ae;o^?5rug%69Fo6BkBLZ45I8c1-^VB zmJD)^M18sJn60C)UE#uakW^JiDXI*BO=eN0nSz14A2mf($zt4U{3xa&f(?5e3^r#$ z1c>7vTSqs|I5KSFL5fputj+>CO0~>A4!Z-Tlf_3bov>-5bg~BQEqWdXLun4LPOzQ=vKhaF z&G`<9hL%#Y*Ax(ON@FYeJ@Vohh}b$h{BjpW!b}EG%KIQXBf@)!M0Mwb9HvHftyXeRV-aCe@j*tJygE z_;dmnvD_O#CV4g~_8L1I_Wu{y5I~2cUhG8+lq)T46y+jp z6y=J;=5J-2i8{O`jyFQN)|4F&*s#+RVoIA4%!N>MJH7VqHAf%uwIREw}tL@N%Prh ziOVJ9nqsF4Hk;C|sdFihyRdnLjidkaPlOG!J@B|E=QKZOYp1L!`_iak{|raVT-9ON zv$_oXH{F``&ZX-Ot8We9lclvrFDTp&-Bj!BgOzvod75oDY4)tenqBl=git@K+f^g7 z?V{(c>dwQaJ#9pG(5`ycYmMpTnc9Jl%AFX{#nMwG2r|$&d!%NUpofbW>vr{sY|S2% z8?vWee;DfRBOx4!&Qmh~rf2#!6v1%w6Wr(??6Ch3M^0mD30d6xr9q7k=XxX&&}-Ddd2DjgiomL9;S8f@wDjnns#vC);CW$rFY)8ELeqb)(H7b z^qjAT;8~G-t@bY;>uvMckpFb+cip({x$7eir|0i0*e~p+F96<$3peAWcfh31F8 ztoMR|)^%EKE1h(esCTOQSObNoip)XLSnRTKgnKPn~iDT&Mwf^hp^l1R8U}V;BP(ufGY-F$)BDN z>8-Y~Xu5%Nm}bBaD3?o`aiB}DZOPSJqbKN*GKF$#Dj$^r6Xj&Wbbkk4v==BRhnFOy z+$(}|>a1P|<(}6)dvOQ@RvA(5cA(rH5HR#W7g27+oxsUb9Pz3jXcd(E+I!=GUJG~t zjdvjiU5QXgB{igsQ9y-F}n|f;fi-qz(rL_C+zf81kbe@3`LKfSVi} zwcWVbMN2H4I;__AzMj8Bmq}>HUfm20rhSvs(ILP<1(+~OM`^l1yJhImU=UxsVQon{ zJA5PHopN@#fwj{>>T6if7s9lL17eifzV=OzpvXR)AP%aLPxyJ8ODyji9zYy8R0)yl ziC(-6OSZ_2j99E6ST8XADwpkI92I^oG6%^y;LlgSvn!A5Hnmg_?DN&Gzm^bONOfKV z7T}Oe-vbM&%;SJ#THb!e7)^jjB9Z|yn_ z1?j7_K(7(;uEsdBe6{nc3A39>kMu~lqkw!5+$1E)Bm6dGUoS81-&A7d#0G?J zu$F^(9x%K&iLyb2mF_{@*$uku!+PG7NYxJYFn)6YRnzP>*}%~Rs^)O|kn)2?FFrK{ z$v8&bLbkZaw6=MCjQ=$2clo&OiToQr%sQmYnfJPT=Kbwx0Un~`%zGVY-s_QnP!s}r z)5(j5l^~hI0$=U-ASRf0J?XDWq2xf9iBt3tj7$niTyji6pIsBe*yLgTJj`-yo6s=GhNMg} z`0d3aEsc1`&dx2dbDBd|PV)d7mUDp_$-4m<=g=@LLy#-bu*L4;Bn?Ybss;A?YD4q! zHl@7_4ch>bpq4VLL&HES=`FSM9#xbK4^{5#`68YIfSy3MB~UVW^;_@+Xss}8=dgMJ z=wrbA{WvAVq31n2(HW5J=QVh(=NX(}u3MXd{lZmSv39{#Ny+pBFJeltW_qw@evwGY z)`5oMY*auCGMjMC4j?)S*&e;WC1fuv=d42N3R!tR5;HTa{-C%yZ)dk8DPk+AVWv+`H-g`c9>-X4B4XwZa^dh41Wr4aGYRRmI;PZkqko? zWq@Itsw5cx+ph(NRNPZwNNqa~LwRdD7@mg?l3>WL5@5(~lJPJRhM9o(W(EX=)Jqj2 zBLcpu5U@A{@EW8d33yVJ9(d`hl7P1xlpQu3ku@VZOGV`Q0Qe_X90+j=|K`a{(@Dkm zD;>e%q`*J+lmI(NGA90gpw_SpyA8lU%EO+68qO!ANc=VJ9<_Fr5(dSg1xi>HN>~|a z{M$+ia|UZzZ@anJL?Z4@R>E=|CCrhCl@f-f^&B>L=$>9GVImRdHDZA)C9K_5!Zt&q zo0p`7Eg&IWh~bd!x=L6|p&oe7SKC%gXi92WtZIrUAcxe$)ItU|?BMFd@)kh_L{dq^ zDo>q9qyl@)Vr$F|!ndCTk*q?Ol!kEtyCRb8)m1$Zr|yU<2dNPVXhj;PQb$g5%P|9) zYd`^6R?%k&$Rp|m$Q&SmOzAfhkms-tKz8T=fr2R@GNb@`b1IP8YXXqj5h%bQK%Q(@ z`?Gu2PKVTE?Fm`YM5Pz2B1P$qhE58>hWf_GTAPHyVa)*8a(;YI`#h1HU<|;K_Q~tw z4U!HZRMNWG;%j(X9^XRV-+`Q+ilynEP9iy2+Fq!&-6P?f>2I50dB3XES{fAkD4RDd zkUB>LRAQ49iP$vX#d=pZPgkV}aA>EiXO9+^CI@!tksJt}(6iqsMN#s=YASxQ0VV0# z=mxTR?_5FndvW4&Tq;P&eJb5xE-)W|QWS+f64{xZP*lIohSh!)klXG;ZhI=^wkJTY zCI-1L4uG80B}0xy0=anuAeW{JvUwbGFF`Ab2?JvQxfEGIL2iK>5FrZ;1| zz!>GQT-N~L93g?laR@B;&xs4z4`M&?fpWW{+2E9AF_Pq)v5Y)C^ z8T&@g_Sr=%gI3XlQ0!@U--``My`0!c_4la4-xODrQ_XsvX^nj-)dTIm+K1{%s3af= z_^EqDQ5G>JX6(D(%3B1l0Gh+tHy`Z_H`CZh6Fk;B1rv~TF;t-=N5Y}8Z$n%~c8z_| zF?!YmzyhLe1MQ(yQIc#46Co6|`Wlpq(n>oY>`Ks)1w5L7hXTc$P>^{>Iy99Dq8}@b zl*VER6swlXdG0Y4MJ#$O65{UIL_0-C&QzrZ+QAk@hxOI|Qj7~rDEI1-F%3c~Um&F% zjuKExigi$t<)t_n-SU1dt|GUCxSz{)yxBGO0fy`eFqG~=)TA4ggY1BUp^}~t_E1IP z*CJ9h!H0n!W&rgQtbNg0AB~4N_d3NnR`H)<{YMRMdme&~B5fZu{U!GC-FP3Ya{9<; zAFJmcpE+z9WDZ%UCC?#?GR$F`s-!tQQ$(93S@@ddIqahpADcsYX}USwNfkYD4%t(} z97;DC=P=n_)B(19b=~!g@ioGrWB#JIk~HIqB2&oTL=5>Rp%2@Dc51gz%re7nl)oq@ zjiDQ$-N}4j{6#<*l1%6mf^rUF$C6F3FDtfjsON`d(aK+RJXUQ5Mw@BXvMy!DS(IVM z(^MtR_&c-@+m3wWtlHBh+%s8+24p<1&9DbY0Bq4Rl>LH7S77a8>q^U|WNwkRsVYevmlb~3Obm@`9?m>&xfKn7| znj{t~P2gBf5>|`h+3Bi>FADd$iHF?__gSL+E218@#MQ$-x;E@3m&z)E8Gh zWG|`eVGGp5$MCd>j8qTVhbvLTV8{-@dk#W9OtPPRn5Z5O{cPvTP}3Wrq%L{3S(IV6 z(^MtR_Fa&cKqM(4fN>|xwvsi(){5Cy14=X7)A77A1~@7SdrB}sIkHBA8AZv9$^fNV z2O%#@NRi`-dVoY5Heh(7GOJ?VIgqe!lAx-c3#NN zxiJ^f#PHS8g{#3b_6}2&u*`Mip2k1}DWQ4#dNEERl&ELd*BEP%rUFqQzPd$_#O%D) z?8wS{RP>wP>ODQbpnwKx#TN-c0s+z4_0rJeK+U%@uXw3T#sL;(z=1SXNjQ)#KA|HT zgw%ji3_@J-?JZmVA~=WC6?15eSz$bi!Dzd~h_ zJ636jv3Eo2fZ^%$3UUM82vU~}ITi`z20CEUR3*6)&VcI;l7kYu5+w&Ebh&b(8c+)4 z=tg)MVwaK}j?Dox)Dm{tATpQKB}0xy8E`I5RT9p%9YN-DTvuv9DUcHh`xDDt?9p}l z4UDN}G*r5n+FK}#F^d~EoZ#%W*Ca#=$sXY-6`3nPE_3Oy;=F^fxq6nlGS}B7Kvs$* z;KB)#Z53-KgJjcHA>i9r_j{4MBJ3;{aR9k%aZK(ySLCi&kB8jVGKi)nb;)?Zq6~PD zrYZ>!#vGm8r3REn?s|VH^2vXX@ONJ1bX4WA(!y&GjjVNpB1W62mVXp~t7dtv0a+g>fKa+7r z(-n}1(j0gyx=aG{e|zC}jRNve3b&W10{Qp|w{O0dQMkPt!Bc6?fvGO7e~Q zgQeE<3z);iIWeSSUir5(i+NI)%%oV9LCi~2l_ci9c-6usTs#`FF+&i;*ZUtR$N{6wA%R+ziHYTPXC{ zOSrNSB9;*QqQZ5Y*cbMaj^)nB(=nFIJ`!SI*a29<;IS__Js0Tf8f2Y#ohGP5gN^w; zaR(kLUWdJ;8}n*B9UC*rcEXsQ5ZS@U>~0=Q-5Qe14^G?~G7iSYc3*>H4HDO@S=fpx z{vh4I4!}tWmF>oU#T*7i0A~=e(}jTFcFNU^SZ#GeWw)o@PckWzx5Dsj!L9;q8c+c{ zYV%mq{*jLK+e%Q(ID^`HakvOf;fE)~VKjnl9#dW|wZ99ogN|3raUQN#vcioVt6enT zDp~-TqeleooI@K;3->HKhCBA^ZXR=vXeNSi^O(FNAzW5%9y>-z3!4x~3l4t9Al;!L zt$5kPHG@FfacwP8OK}iL|0WgE>@@+>>}YUE3n^)MR8+D> zmM5J?a|`7Td~ z?$ML2waaKWzlrV_J@A4X)tyoZ-1pUWo!8$#&dz&soR#;KYy|JC?(JERLY!`~3t73+ z1cXq(-f}@xHGjyf$C# z#A)3vbyAnaO{FNk%9pN6RK78?O~+SzjyTsOa|ehyb`T(}sf}{I$oHOlD(dzcHJ)`= z(dXPCT66-t_4_cnfS2BX6w$uVBnC4c>fz!?gmeNW-wOH-g|7)_i~*Eg5{$jhOh>lR^@>E~MN zlINO58Rj}oRnlA!pDU7+V%%QLHDczTVbp=57GfZ?o7H$Q*Ra>YzmEM%YOY^`_>eT$ z>?gfbCGA|NaidnabDhDBTBaloazh|zf*aL|LQ%-cUQ*|pZqzS{q`@uUaHA@&9Xo5= z;o5_{QI9PQr5tGV*;MW?5;iiV%6%5u$p0w!bO~4PmN1kR3dl-=8=6?3i&KHDq@p~B zaQ!#jMD&pYvJ!}fW)smLQh}@lq8N}JfoKr-U|PjIRh0Prvl*59hZ(1nF4l({e4;qA zaeJ%}R`DOUABl3mn(@NvB34G@+$&+L8A$D2;ygK0#0q;!M`|y})1NA0W$5BAilOzU z#$B+?RjXCp1xwP#T@0*{xQpvxG(g-1YZK!xuAwa=CGH{}^s|lt{TqZcyDD`8qf?yO zRjD&T{~|mcgFe?pLcEZuGe?XUN>-_rAlBhB=L``K8JU(1?FP_SU@zyTVQz5ZKhy))};i~vqkGR3!z|KO}KBN8AD< zFHILrU&)}F#O)K5{}Q%OIOa7;)_9CtU@Eu7EF5u>LT!QB4X;O9D@isGJy9(APP`9R zDY4`~@^RbKD^?POmJIP6t{h|zS(h@0EXpv4X{wUu@E^raa>Ok#^3rs3cshfS6X!4s za7mcMKCo@j;S6&)(ChFJz?&{a;%1b`LL>^2APR}F5+WqZ;?hwpLV{(kbmT-xuqcDm zAx)Jy9nOJe1x^Q6CpsOzPIHY&NMrj20z1-f=c&QWh~vb>3`8l;C=aWdLwR2{?fq17#nRr3~Wz_~eilc}O5F>Owq8;b#KUU%M{0_JI{j zXiE=iN7i!enS(%jLn@>bg*HH%9YF&b1k(SdgtotJAOz$4mc_s?uAl2Gm%WzrI1V(WgwYps**_N+eas~$xG9b%s(7|q3wy5 zj6&Plux1^V(Dti%AE`pyw_uMNNVJbp@F-6sc(5!*@L*8}!6QwT2p(G?SwZk%b)w+$ zFa@?G!Q*(~WA7j=oOLPq$f6ARn5HTT9}Q)ob0i?Ok6w1FM66`*i_%k49 z@G-8TiZpA8WhrZjMH$vmnkrdCHQL#$3*LswA7Nm@e^Uh&BV43UyPv!dMTV$&E> zQLYXAkEXZ(5#`)8)JUt~tDT`BE%N3NiE>||tda=nziv_Pmyu*qE-?j76f6Mwrjt_8 zT!{7{U7sKY4SPux@z zd1*TG{~@)7MAn(v{+5s>lQ2B$6g2xD$tcRrh9G%VqTCbR9I`0G9HyyCn!`6_TU=)QnMp3t#{XX=Xy$sVM5oNA|o@ z!QAnd(ayHL=NGsfk15Z`XfrKa)}>52i!w}knyREJSE(qEn1e=Mnr_M^6=mX-e=@1< z6C}6Ymy%*{pA)f*gr2Y>Bt-1eW|a`J8@E{@66^URCAUSy?y)Afeco65MP&m}_A1#V z8S^g^b26vcTcK)GTwl+__4T;JdiC0m6YW*8kO{|LHAu+BCyB6%16ec|i$E5oLmGEGV5do;032k*}q%k&e7U1{T?QXP-0<9);hpL_G^c)S#Luz@zLW8Gg| zlSTn&S&9PAq6`XnnkrGiKZJu63OK7174X+ltQ7G0mYpHrp}%qve3ZImd}L7ud`wf7 zgpa=#AK#(eIE$Zt)EBE0$mOi(<6B>RwIl2ete_)UXPqfAF}7mOGR`)SMsRIxhPEf zy6GgKD@6ApX1>5UY_7>A?%}K-CB7tN(wB;4#A8tg#7k3^gm@dofs{EN3FT@gGLw~% z2JPzTKuRQb3Uw6LB}DH5tWG94_UJO-p<{ZB(=a`jr7%4fWng+~s)Xs?1*-&@9;*|X zUIfL*m+2`y$jXEVQjv@YEXsffX{wU&;Ja|6#Y0yHGCc`(_CErW8f}|oDaxBUKxinQtklP_KS7Mh>%k&(`$xG8g?iR*eC9a?&GQDKT zA)(LFQD7tRqDs4MSTCle-PS!@oiq0KgY<^%#&W^BO`twGpu%l(MkCX1FO!O-l+99< zo&u+<(gR!LX}3>THcyA^HO4bgDyDa%13P(Xvhf7n0P9|IY@V|1**)D0yS*d_GQu#V z8^yTZSBy)+?vS#1az|tu*bO+Ka3a1Ruv0o`X4t7?y&B6h!0tw=NP?XdrH5U*swCL0 zgVGSo-dPm^rNapblCxacbu8btyfq#0=Ai?yuRp|qm&o-2yacYFl(Sr&9hZsqe@fsL zX9Av7Bm<8{8Gx6jDhYU32)T2%G9&>{3HdJO$y?I_ZzMWM0-mCGG0c;06z2W^1K#LN zz>|t(;ISwJ@X}Nz0WVisxs{lo1Ux0@yTFsTrUTwHBzcLLr$}B5c#fPuAk0)@UT{kA z;@~C0A8EDkXr}c-N#X9`lQ_OU>q!_8aEx?Ofob&?wwU&r!L^WPv-I#q1t4yEcv8OZ zoBSM7pXzP3&8VPYjFP8K>){o=ZL4j;1)?scX4!abTKBHRPZPVSanY?M9qN~Sxn=XP zdpz7F7YUq;)-;XJLf$X?q}o@9wZ7`bVbcZnV!lj^tZc%i_O)T2?Wc6k+rndsqyPT9 z@mZ$*H7!zIkS(JRHuFOYTlDZhjFd4?jE{N#aC}XC%nxN#RBxM~k4y5H|B#C!)B5*f zHn4s>TKyt^>eh8Ugx<6s8Y`FUh^5g#-H|e8jK*Hfw_(scY&?0;yO(p&CvniZPx8%c z+%cDp;+WfN=HMA;pwF4s${F}+T1_=_Sy7>WHQ}OLix2E788X z^G3?$p5b!2Q&WXw)vt0~bnAvP`SoBif3?jc0cY3Iw{IIT$b5S---1EX7?nK8Q)G|= z*^#M`9jhQaCbpF3*WmdC$X4JdAiD?`{Fktl{xAo>0ofI7VEuNv`qd)8uHzZ^K+7h% zT-S_C^m_vbJ{tKi`Afu;)CwS^9h6Qz)uW1iVOZr9CR0c zW6;?&PFlb1Q@_MiX&_X{`<*qoaQJ5UpNh=-*G=o5v8?cwzGGNDruE=xY4%__E=EM9O#lWIZ)>Iv%3+1}*s0;AO!}gVWag z&J5wesWWTvf-ILlUv#lH@0~>`Fs)4?`jIg zq3V&@*{$7PklGGKYBd`@M$f^pb$c>!c(ZO#&~$rl_S|!k#bvm!(eruG-Th2|jaOiA zLa3lzv#JZqG|MQM8a?=`j!bj7V?Sk@joK3Xf|B}vUt=p)m}bu!tHHfw*d*35!j1Ap?(Fm@y0wMfOm!D!aBf@}j_4cF|M1!E2T8EM$l3q}W@B&0O!L$iLz z?6Wm%uMz$(j#3`qA9~1ZgmE-&ZELpt&;vUv{}PH+eSKIkGPyq#*z8;I-ID;=FogdN znr9y(&sR^T!{_(3Iw+YM`qd=alBeb=u&F)Qmayt@W~ z^)~x;nD2h+9rpV?v*Vej8ossGjqQ*E|9nI zS}zi$EQEf-b8`1w?)&+=%Y79sROheGxt^!uA|-j}<-T{@FZW&EVFb2a?%Tni>ndMH z1q!e3xZHQmi`l4UaVx4(@GkDJMn_k_gvu^-ad{UCQLzIB@8W*$OE^gQn%qF%qt|+H zwy-2K-&@%mw7wdwJ$yp-3_;Ie#3<+wTJ44VgRRjsFN_#o%;iBdjL81Yv%d{1hv9Dt z+GW{6&y?Pr5_?K-ZqUMA(6gP_Ty(1AwBlDIQ@%eeQrREaHv3e~`dABZ*ZjSBB^)qRmdR4al*VC%i_s{mVc^QTXD=f~)I#9V6bJD^c(T}OqiTf(|Atlo_GuyoLRV&HRw0GA} za8@(W6o)cjAd3P%X`&UT1oHt(^gI9yNpV6UFn--QYs@(Of1%+4W_4EXo){T(v8<%X z+>`dsIQNe?#yojue2ygeMYVWsOI$5t1jNeE3qlz{#dP+Qpy(l;^` zss28w#xMH=ANv+uf%mb2T~&~a4IoeA%=*&sO#fl@@&S6eAH9tD11NXMGvad~VxhqF zf;s5wX487lH~#`ee(XBAq>vn;zW>@UY4bJ^4=?>mjHmFk@ie%H>5mdP1}4q_Jd*5W z35-n79vu=CthNVU0lYL%FC75AC_qi;LEW=gfVPWdcX;7`!x~j!fUf7qfe1E47_K1< zP3t28;zBS<0|Y+b;Ae5w4L3k>N1LAYe0r?ud5wxabPQ6Gh{;pgm@!5jYr%T!zLYMwZwk z9t%dQ3WsUo{b>16cNGR-#(^Pr|+y>I?Uu*CM%;ZKRRMYlc-w!RH+ z)K%i?40awe!yxk03dZWzvn2AxCgNiK+YLWp`>bxgrytm1czBPDSKn7Z*i6H%@J`dy z6=$C@c4mfO5af-sFkx`yUK%-Tv2Zjp+L7e3qeZn71m8hoFeU`_A8AI4PB9~6vdwVL zWqSWcAX>zW`=4r_SLEIZybJEeJ}!(@eH+Mn8Ccv_-vUw7!uzq!AMo05dfwN=BfhA4 zw)BT?W7@CE-wIm~VHk59E)QlKvcZV~|7?y7*Z@o-!_Dvc!a-QEgPs|a2iuPgZ_Zi3nx~Wd*g&zFZH*LL5A-?|dmKo%lg4@-4m#vvnrrv>_qTa@ zJ_*Chc=*WPo)svADRiepxYEg!O7-3bc~ZAth{=MyTZ+;y@1V3tCg@e{79F0(P(6T<7$~2YzvaFXZad^z;?~P2t4%=j0XW< zz2u_94`0LC*{DiA#XOgViP_sKAgn!))Qpg&7#;(T>dueukrRg#=0}Uo52r`+Xki`f zgLT_iOI9AA9@_Z#?wVy-&lk36t$QvAKF(FCd-iFaAM*>c;VGGYK4^&He~C+axMqzg zfTWM5l5IvtTm<|aXN|aeyfxxVEEg@Xsd6{#hJ$*PuqVwPQJ_c0_ZxwZ**+}Kmo)#O zV4F99s;t8PlKR(uja$fU?90l87>Ddj@l2s+j~}bse`ngu6ubQ?#C0rAkxDh|)`Av1 z4hD=im*RQ}c=L}y(B9QrUpqmE7y|k>L-W53!>QrD35V zJ?3R!x#QbHf1kx~CICk22VMrVB83^PSxXBRaR7K(4eNn<&A3jEjJY>t?SQHf^z7*T zP@^_5LWokn=2zcnVC>y!YFf{O9e^F0{4K!`x6>^1PuaY+zR$V~{%0hT^JFceZfZHhp58kGKgGs9VTIKzQt=K%GpI zZ~mL0ySq+JDtZ=0gn&TKc4k-c7iWqwxF);`^hfL8I=;<|Rf}Jd;4t4JZjm>wKLMJ0 z>pK_7dNVz*mVn}R9tL{Nz63Dc$XT1ACdI*;!p*v;%kYE>Dj;c8fIs5%`mCJuCx(lz zF+3kQzs$fpl{?9-=1h!?xQgGSF?rEu_IDnl(pSHI_TL8WAhgBMi#b7i=8Mo4 zap&2{3zS8C%uAK8MP`0|Sfr#MbM*x+ygO)z?(qhPh3>)ny-y|~_!xPL*7^o?Md%JQ zVL5vobV(`xKhzw+@5oG@1kmkq}y z+6XQOhRCO546z$OQW#=UL3Gu8^20y!VXc0*ZZBhRzD5;t;;NA()Qx=JSO0tb)oMQi zN{rwm);8D#1SK{plpxjNR`%LWK#4s-i3vc7sIOrUpR=M!E8*W1(`ykBFN|6I+}ha-(QPq3zK_JX=$xmCUnrPIXs zKyIPZ`R?q~H9sV1?*D*>^D>MwnrDyg9d3p0ISfsS&`!{lAW!~`@${Q}>L5EJto}TR za!I5}I|PBT0y3xX%w+rANCEAKP?nW#!Lh$75-64hEqqaKu(^g~>tAPBc?Gm3D4mIn z7MyYl4OJoPNruCGSvHz~#_~@w|A1RgDJbKgscc-%#xwX6d}#{wS#UqTgV#lTS6eMD z$x1rArJStPvggQU35~z_wHz1CTCzxf-Le>$=&*(3v+N~&P~oB$5ie#6E~<}<7SzCq zY1guwHF#qU1v9ZcsM8|s$Fm8W`hKkq!{tEQibYD}?=o3ixS1i7hMTEq0Br8TU-(YD zc&Y6N?&h7$QGSp@&OZJ;N)yRh32?X1*YGCGtv=!|D4=5rX~S~i(J|g-p+IZ3Cj=Ri z67zGF@4yHKI~I*#pl5#^NYA1%diDxh9J>wdMJ>>F&8c?Yf#R+FY4WL9oM)i8k+mwQGchn3rGxs)+S~e{ujU-41b&9xkXTt z3|R9lS&2FgvK?tLgH+EFwnC!(w##g!tZ3>_?wLoW@7ZiU)ZCmoHqXVz!c@17X0S`HC) zC#tQUX1)!!qQV`Xr(suvO%3+Is!5TeV!-XhiFWARsX_rZP4qnwI=5`1J>^`~ymrDw zyXah~BpQ-Vho^Lbg;(En7!sj~rlFe-v)A#~l^BlY#w0;lXKJy&B-8iRMa_hBEw8xyIMMgAgVXq(EFO0u@q4V<4b%!Mv z`KL=h~6CFTz^BG81$C(v{Sb6mUeC8o876N5X%VQ!i8Q~F-49eV5T z3v}xp)6=7OeuOEW?FY}89GUircT%|eFNaI4DNh}S$oUr-Ma;k(^0V>{SOtGZ;Fyt% zAXRRe{pHfgl)_FV1jMBY z7gzLD#u#fqq=FMdRMIG7}Bgr6AXkKJQ{Vq)({X*mw6T4A(f+pq;j=JlOtLg#znHuGcx% zYm#fnXF>UMEp6B!%M>_4nlJCr0taLC`cwNXME)Gp5ZDKTz0Z|Dt&2w0esqGbfh19R z3?gQ~wXLwFb-d|s<>p(#+C3oqc~ zd;(|#>L0<_nH?5Kx#0mA5uVnpT?)cjCR$)iiLbOnZy466BA=)AjlxUM@2DdSE_e^gHlZ14F7^4;g$H zWbliyFmQyzLY7;GWQkzW<1k?=MOz_7M2y?eiQ0_yRU9}Rx=pg) z-hp1x+e?-2?8?J38Bi*F^|^(|Hg3#v&oJ(Q8Sx>M$!d;FqEx(n*K?4J--bp?tD3K2 zF2-iS+D`>D4>07H%$hks8tbTrtF?n)5SPT(Q4-5_siS zI$!OF2e8w<%}ZE7cE*xeSJ~V1CJJ$Q$SaW9e-CpfR*=hxd;WJC`J5a}vpxdq1RtA& zeq!?ZVpJFw^f)bi@o*&zbt;4-LvKOTIAd=R?nsHN3*|NVpZDFk0)eHSa8rl7@;UMc zUdb_dB{$~P6&T3LwYK^iNN-BKy0HSchE=~vE|EFv*9u%T>&E5s>&7NrqL%^H>>K%@ zyYN=ez>k3o4{wOhtK!0|X9JK~Qht6m78KkIf%Vs16?~j9(LC!+>m}X3dF)TNXHB%G z<@V|JL!;%sDz{g+9~&w6)wxmAo}Z8V$yO-0+qAD6F84-mmtOn!$XQRi{lifXBbRzB zUR1ko4)OGNTKLl8%ET3XimwemQFbC;UcW=>uoR0Za|PF8v`RR_tQl9_NXcX+^e^Me zdctFo;kl7i#Q^K_uP(uw#^bFGTEA* zl?`29LewT&)mdebxeu}(jU@OuBP$nB$SR&_P01R~yQvdVrtz+V50~@LSUx#}^mPsg z-JFX@3tOU3{c1c+d7HH>SIbzDu8zRRROy}rm?PT$*xtTmxQYmI;wz#rR6@Cj$-lO3 zjy`WA0mF|EtP+r1o8y49XE&E7;E3M@3uq(0yajg(u*MZpK8gT_xihsZ+6gsmo+Pw_ zYq6AJjfL=TczQ^mvP-NN3^>26cc1(M8a%dP@?9zvO$Ap)zp_7+Ro@cym2AMcLZ|dO z!!iON%-u={Nv>|~A{j+Lhq%1NlbSGqs=)>jf*xD~iv-7!IEaqRFof!f!C6_O7hxPfiPEJz2xpRktTFrrf__n+R+RqQos{!?Vsq!$m0#^S|db%xA-q zYuWJNSTtOm(r`2_m+Wyg8;*US4LjIyc}m0L^PGmo!XZc1q2ce@uqmZsnfvN8Hk>+x z4d=4qij;=s?yJk$a7GgwUd)CoQyNwXWH81GHk{MNhNIZ9IjLb?K@EmDQiiGQCWP=J z{LZe&6Nk>l6D=uE5O==mJi&WDu^iVie4?FCw5L4Lgj)55OAC0YDrnexbkixFog)`c(=vy+)Xl5xEp%?M0?fQU3kW@ zS|{3T&yKP?9B!*D#14(spcs~;m&x{hXSbjMVgx4Ix1Qa>TWX&)o>N&|#5YBXd{h`~ za8D((0@sQ5(zE#`)ZZs5{k`v07S~B1kmnC{#a`}N578egS>4&~ctrQ~<9_Yg-MF9V z37tKM`XMZO(dQo5NdaM=H3J`1-ljpj;_GRtfMO+Y2l3?FMQ+&Un}0qj8h9GH2Guiu z5#@y1jbJ$N&+j9#L_MLQ9axWANL)942|wm-pj?n3?*$LEvbySIEL4xL?ne-If=W7c zi$W;EQ0n27t1sh=e3QF^V)ufTlJms3)bmZa=ZBJu@xB{Z(lWxF0A^VhI^g@r^Llah zHSXpw`-yy%>Y_+}<;$!-2(3uu#a56GjJ}_vhmwTYFRir)@?sGF$`)V4TPQ~i90urj zL%(!{azHzW-79Zl3G7au636h=3cFV@(eQOWcljhMQt{xgPh$Uw*S+?e4s$eZLtv$j(G;1Sx2jgT8ML)lWxV!=WL5BWCg*n(I!wa`# zz{}Ag{{d@YK!Yi53QS7)BMwZ?zpv4x&C`B@MlQp?k;X0EIt=&G3)+>ptw4(=16O?X zA~3P32v@y8yCOo=5-G{9@8dwB``N2|ac9^O8oL+`#K1Q*l82bbC;06!8_nStFyhDm zs_EZr`a7|+(6oBs-NlH?O;0zC9rEFxO^{_)vOoV8N2bs`w{htixL`1bN3hobnvX^) zNktRJM01#s3XqWHQZ6jNpbAPNixrV>HWXuqsBOVT}^bI+|86!iKR@ znr2s%=_*hL?P*VWgV=Osp{v&@O!j2+?K25bHpYik0AHFh7W6-oj%m2p*#kz($$(6h zPk{#g!ouFKD6ST6$gKdE2Lj^Z#c0Oprp6z#Zz!7Z!XZ9ll6~LlQC8t?GbY$|fhs&P z(Y`OxE7w(l(Vr7q8PMcSiZJ`(=*9#_zs6jrwk1tdnVay zPw$fcKW5ZGDe9Z}({q3`3BB*sVUv&~<2x%+SZYuIPB|p|&W|yd1bz()bjG5XKF;WVW4Zi#!kqFnrEpzN`sQLhhGJcE|Ljq z5R%MU=KL6**SHWh_KG4w54>=N{H}AT_29^{Ng;PreFhKA*=aAv=L%gl`hH4#^X3Z1@w8%SFao|^iNxBxxn=>u&sZk(|q%pIsUWjUC1oGhpn1v*Dvs2sNj- zv&ODEeU9ddn*IX}YAFVJnMwW`#a#fAql2QD_;DuW;mn4w#UW}EgiY)E+E zL)xKz5A4JdnQt^<)AWT_)mSfo+=U-tD)>DdO#d&HTiuVJ92q56Vt4(TaBDNLq6Q=L z)$SJXO)r>H3Tnd7G_7vXcYN$5f1UGPRcFImjI98sXVV0G)cv>OP4aEsXkHqr`sT1w zyZZDwC|adHH!}TvuSw_1^n$VyYg7$`9kdJWx_lDA1Paq5cD?v4%*9yLt}=>s@mbiw z_t>kPS$M^ng}XA$Le=?+vv4>*EPJLi3-2QGhHX-&+Y8P<1;wQc!|V%8EliR1gFG zHM6Bd_q$9hijbigjzy-A>IVqpVCLXU0oY-&Y4JU9mjmvqQSbu+)|ej{#A@(H3^qN; zcby?EGgTwNN(}ZVp$BL2yNlk1mF7`wfoqSeoZwM}`c{WfE9RU^T;RN^$Lh}k;m&KE zU{^JIL;igwR6SZT-V*BrS_xWrpQ%W9iDyr+^P>{j182Du31$LZ_PHsJk=8+AP7!+8hgo`gO+jb;mW66Vgg$J z`C%^QD2bG!+1}YB5iue({RPnUrABxwy4V7mz69Nvkx|X#+d|(GKZ{r(6*cnB&jnd` zX_aBc2v{n)a`D7~V`ecv#W%l+L88uAx=0B)3svn$)KLH`xNrVdFmh68gr9V?h&&>U zQg8vL#Y7)qK)$Ao5zu+cbsE|bJPmzd{+lq38uq9H2$|?6TY~u4&}tz@(BR|c98BX6 zK@^QEBP6g8DV0L0U2z+Ugd<9pql(@H!xNdoTTn=)YJw9&{Npznp89-L(Gfh-4Qm)x zpod4Tgd+_0UP#ImKT%yyISCOB@F~*}mCsN_*odo~9YLn`3_PC0^WpySHCEsm_!G~X zVOkxN?U`p)fFwpI+Er(jLEf#$YoWVNJ8LRRHvu8un`q~pWkg0~>HepU$f#n&zu)lh zL9{hOSl|~t3v_ocBY9x@GCXuK8U7CpKODO+!_#1TdQFgShJCftrB%!k3gxKb=V8pQ zd=B2gV2c?P-$rtA!_2A3EaLW`pz1t1JfhiGN2jcQ#csme2#3zdclKa$;V~{0=Y~#< zc&YJ0Du3-H(|Qq6rt)oYS;{vtf8<{Nm_Zm+;1_iH>a&U`+IeR&A~oXuyf~`;n>7D6 zi0rW7B7B&bf`H664PI;DN!i43&TrupoAm|UEXFnjU)?<%SpPaR&@uNl5qYsxn|XZl z1E`=JI@LggENoikcpbc{{<_opI7+zg!0Jxx<-G^|4;p;+Iq=}DI;~qi0{bht*J#yg zP53#{Q*@3NHqI!(w|~ytjGnV5`$KTW)^8qXk6Adk3he$2b_;%b75c`udxSeYu=EUe z4`e$L(#sj$xR+0~?>nQ3_x^V^&vTRPnWO3B)jhi)_|6<%R%#ogizy73+Igd?z92d_ zTr@vW^#lxWf8ulW8??@S`*I;Eaxye#(bsss*ao0=IVg*7p8?1i0mR(+8fU_NDqtWP z#iAp!f@w@8gv;oSoY%_9rD+?xKgtmZ>}xz(T&~nt9E(G$D+-p@1P@a5jdCcSbVWfY zY{5wRk3xDEu07_v8~`YM$l8u0t($v(qOpEN;DTK|M7iX%VMO%J;kjK*q4aeu*FU*$c>(SVhB3#QzJ&LNH9tkatlylOZ5H= z#)BoGnE{w(_iQ4l#4q$NI(IEVV*gpCj87iee_lzj{~W;ms^ITibgvWO}HPX0&ZAg{a>2%0fd-Lx8 z{)u*jn5pmrjyKAukiY{bD=1Trk*ZAw+>NS<9s@=yPivdE8Nbj!!ZZ)TOIC)SaJKk8 zLm<4a>hB4B05Dpwz;T)6bW~9}iD>i3%QB_ZUSwcPFi!DlL_9V-gN zv!`dtd*BvU5A+Ng6Jg$fmye{~j7<9;%u(=IVkd)mEN4|CdZ=Bg zhS8wc^lvpIQ~1EE9_&vvJB?7j+^9eXeQf6R1ynW;0>AM+y;Mo@|_nLucuE`zO z=CxECMDsmU*(*CkwrVt=bo=IC2}JLCVh{Il?A`SYwrs2b=n;sQZhr&!=EC1sxTCoS z9m?iH2|?$dIb2>Wrg}qxj}i>OljX~uYm;+b;apcbS57|LwK&&yxjH62^uuM#`flec zScTstYAo+_u33aTerG$^T)8S67stb8%KDMcm68{Kk9Draa>eo!Yf0^I5an&~b_V~H z^AA|+G@4MRk#9{yoE9wMqfg-LaWk?;#xV_&1M29bCd3jfq5H)tIm}mo8yd!FOfH^J z@K1CLjmiIU%s+v?j&T6^H0c~(jSHMHW;ZQ@xw}4V5F#`(fK{Lzw{d&yvkCTCd}+PY z-EbJE^Z}Qdz!)sxS5y`s|;K5gICalOWa1U!Ee`y3L*+qG@W10m1jdU%oRRy^N z%&dGz^uWdB8gTMpg9S8@xn-20iZ$y+YAd;BJ;DL23(Du7hb+Uetu}v+k^rO%n3*&@ zj(Bzi716f3FM9uf(6+kK^t@#RcGI@1ngAPemFt+no%pnJdG1x%>D8uqcaN`YP$qiN z_{fDwRmfd&7TQv!`Zz|)X!lRVxI7$f+)rLrkcD3ZzM8L(4#QWIKgc46ujC9G zX4qW$OeSJOEZrXnczogC5y2Av&1kg;9aiQaYxa%h05r_EQ*i;E?gXY2^zi*=vxMQc zenb>+F+H2HjSTUQRCJ_wPlpa!Htc-}>ex!iE93gT^YFigJ-~CL_Qkmv%8xB4+<{v^ ztyer-R6L(MK5*2(u}|`Z4tNo7avdHw_RCB4b@#QX|rqQ4L zqf9~v+QcV;^m)J}a17Dvi_|0tMRq5F&DA8FpNBg&3IA}X4uSpRTn@hik5a=UJQD+P zRgB1_aNZ64IDEz;^dzJPi00TF>SA1_29^8{#YL1GkVv-z<0w z!9^e#1so$rF@T#DMaL6?7vT=Md&1V1pxMid<5DQP5euRL2L{e8S!Ns?&M78O8!Sujd|BmLl zF(1F_)mo0e;zaMhg0W!E+&tDI^;id}r=6w@KW5alDv_4yK0Usn)iImTTh*MHP=vZn%+e*p@0@y86@^i8sJvUUG6y7i3d{}7*Uc)CjMnc2n2jYo)@{*R!Xn;s;^ zcvZ-*dB{pc`X^Rmse$WW# z-7zUVZOLH?4frl$_(n?Es=xCD7HJ5WyZ?`0c~5PYzez?FA6` zO%BieKVG;P?%_@L1bh13%$;)nVKe+bOW8zzhXOk*TigL)lOc1e%*BTDw%KQivt_^T zLGqjF^;vrOFpLC;FqI1?N4)pI({d6#Ev*K&rq5@XBJFzoVD35Pw9EIn->G1b5ly%o zU3k+L=9;*S5wA6fc0&iz!}=PZD5 zzvBJzSx@#l(JySxmgTsf!IqJwa?i3EC>zZuF3&@}Okc_q6{v-SQl8*FpO}Md8J`$~ zCx{CCC~|bZ=E@tqZPX5CAty~Gg?x@-+@fb-LqVD94Xf~BDz-u12eyN*jG0V@0Z<*&<0WCYn%WC zB^}@lD-7b2U5Q_OdIhc-F^DMM;cI+Ij8uxqxGN@for8rWVt5a+Pbd!!Sww{l)HS%j z4L&!?yn?r{Bpzcl&A5iFZ!f%S4lZZc;Q~WiZn=2RxoVL0K!u>UzI_3Z1y)OJ+Qg2{ zecbF0dpU6 zb$l<2vBKgX>mYCYnGE@BI-cl6}G14nT7V zB!esD)j7X2tdGrzcRW87h7)`i_->>bv-`an`6|l{;Ntr$us7J}w9kRCIPx{KFhU zATni`V2^xV>KCm|(hL(SKnYjnG7OOt!2*uZAy}pdN{NzEgzhTV zLY154~MyCWNdH)tB>_t~1t}jj@M($Spi~2*bTfMdKFb$|M=V039+9dpU^(iuNKAmWn*3g>W2VA?F{T0mmBm=sF9BcZ_lQoii^f3v z(EJ~PP*IbFD?Bu&Sc~L|j&FGSb^qJCf4lBqXZrgz4;&#cAYc+XH*|lL2d1-d7qx_L zjte=3fCgQ1yOWy_xsb{CIjgRggpF_yLnC;owt96|zppOL)}q(XeS_{^KFx(Kk7CN@ zQHMY}+vErfWUdg&OF=|^JP@XZy#ZkemKZquTb8@`R4019U`9{74;j5eLu_wQv55 zp5b-`#I0ZnhbBD@u&o+bv{0)p4NuEpb_@x+JIP=NZhei1(1~uf8Ichi*&o!8 zlaTBXS`|5QpFpZX>3YDu8vI7=*STe25PwEA!Sr*dLP|y`L{J{eOlgig%dI=#5Qd9F*q+B7@xe5woVm0@MGV z@E$ZEiV!v2$u12S-L40onU#l|Tg||`vrZXbTXb`lui?i48t?`N|GD^1%oraAYPt`X zNoVR~*l9Cf~;= z00JT8qSUkMns~j8`zwxV{CiG?V)$P+ zApn}7d$xhBOgX*GM6eFtiqKSh%;^Y8;;D1tG4sX+#ynK@Lx>W3V8h%!@SivL(vGN}7S(YFO2Oq^pIO;O!%qNk7dk(yh zQN#UNUG2IHuq94{wP*cnimLzuIFo)opX4TBW(wuKjBj&mje9R8G#lB%=)K(MtNrON zCjD~rgP{n1$Vn&z(b|QLk7^hn!-Xh2^CZs)hmn%wLx#}-+k0Yy4{XibPbcd2Kqg`D zcxfzM3@>6MIzz;9j$ZqkI1$%D z#L1fVYaLGi+I4UuzI}oosYEo}{_1~0f;M~xsFfMXLHobJhq%K;jy&iF+%fo|8W)1c z_c=bq8_)%Oh|ki8_=@-tm$Qw~nOEpT+=xI;9bQNzHJN`E(7UJWE#REBW7jiyQO|2{ z(uo*?pyA|0mwdZZF+c=c!?>Ze6bp&9u+a=sNcI!xyaqBYyk^KO3^9odnC5NxGuS|F zw5dTW#*E~%2y%~Prjod3y5g`hy3v5wY(5P}!Zl8=&wHv9FvQAz7V5DwrLE97pl?2( z0V&DFRZ$Ba2+LBnX<*UmtXBwt?X6Ctmr9l%RwI0x}~bziW$Oafs^?4GRqRHEzOo4jv+< zVM<{-(?M^_aEq0)88YBrqEjDxiR69WKva*lO-IRCvF%I`f-J6FuGoGdSNMc* zCGctJpuAIt=S};INcd)7GS>8Ofk^z^h4%DQbArvBC#YkbagD9&`zKkqo;pL~7F%^+ z=}vLVKqs|cn$%WzY6U8|ib}1zQ_FE*YTbA09Ot?mS3bN*e%GD47}w}mi;;H;M-5of zAkG@Vq>UB*&Hf@l8kD04)QiX2ONX&@9Nv;W6<67|8H^o4aOQc~w`si{TvN{Rq8ARB zGYfI6!}NSrMrp#4Vj-~~wzD8hdNX?AP)+N)6}UC6KeVv_w)rb@;Xjmgv&6c&L+Y>V z!X^5%3pikW@2((ll>-Libm`83)z(tJ*j{=X-=IZSozjG>GhTO}>D6O_!qy&Iyrlzd z@BIeiEQnjc7e24qkMKFovyCBRwH&E@9Cp&{78Mp~8#|F77zvgP&k{D(?Rm}E2|URP zos6BszgsEy(@sX$YgWj8^~u;dJg*7&rD)Tw*Y@Pk+JgSTRmx=?R0q(pjO9b1HZ3(A zi{V))FF-_o4Z^2n9FooO4>XNo4RvF5)KNzRMJRK1@B?sNF4winiVB2W!OkGouEZ5? z3@XaSctp3bKjJ@8sPS8|>Co0zHfY31=si74MDD8=3 z4xHdQa1Kz59ooT`X)J|`N&{qQ1w@lrb~lI8YAo$Y%QK_%FdemwiUk!6A40$?0TknR z{HUIYN?ZyABb1y!PH=CJ?7Mm<<1>YdM7xBljio4^H4~eR2U#>qb zDvL;>iPfl5Wt}Nd?-ms=oqIEzV31)=O>sF8dofQ<_L7s?Na2+CTlGH0%2SI3P=dCV zOLZSUOU2cIQ6q@oQW>;ITcfP#JWcp9mPGUZ9) zXPIVEGeXu-$i!+&yCyZY+Ryq)dn>NTmJdE#Z7m56vaNe@KYTAu^kkyE+0u0;*xSX^xvRJ@ zC9k7XW8v$2ojzkMJCxi%>7vgE*NE!RdTOAq&U}Wep_Z!uBShaD9ln0X$+_?GXx_=W zQ_ILuKZp4F{$JS5=d#LN{}flxzdAKs@#+A%DCgF!7xVaiez%gnLu~I;O827Dy+!O} zT(?xbHh|)7RI=y!e8WH`dr@V0o1gdJN<>KXK77afPjmfLMz1}q{0?K_I?BrI&HzzQ^VKpQe+p;ue-|D=u^o2+3=Q4i^LOfyRvR-_#^z<9QhF6$n1^y z?p88s%;Q!o7i2$c=RiFt@q*T50y5|`*>ivC7M+G z#+6U>8l?niDK6lh2>T%5i>NNk{1Z1m&N(g2fDAfVwsCYSo*Vg&?CK zy5UVcElkpi4&f|7gmci13kS~dZ4lnFp7N!Af z6IT;T>!Yb_YOE|a-R~hoRY_G>n`>^1bZA~D%KP48`)uM_a-WdRk%PUU@V^p!HB(8` zeQ(vmGD)uolsk!o;qsz~Skhi#NrMco8Cf;&Uk>*SS4X80AkEfKIIp3NKDk`gsLD~* zvD^Z>l_j!6cOllyi&OZqell-Tc!?B&$NIDLCI~O6epxR0s^o_9X<`zodi&^@XUF=v zd8qInMmU9%K=CHTBt2nE&}d5ctz>+&h-iflZPFA;_RKdb6TWWpN%>5W*Kq|kab|uz z@(ht_`Hr%E|JkYG@1yDc{k>Del{kyq`&h*$GGY$du@!r9^=D^TJcqIKUgq%v^u%(% z#*&Rf(0`24X>J;k0DEaSvZDIs;$x9D9Y&F ziZ>5#1PbeflrB{_wtI9a1RRX6T^Jyxlc*W2D~q?1=}&RpJwJ#~AwEM;M9>t~OX~*(;N&t=F<@dYga)0tIEacAvLOK13GOy8DzsVUGhX#~|HU;LZV@9WkebX?igHYxN z1Im2$pI~>2R$T5S2Ol0+e)WT5ci!arpYqBg4KPA0dGf`>6qb=C47{tfv0irEllXy5XD1yCdbI~VQt04(=2(3f#Vd; z)i-dqT1oJHh0`nZdtd^iaLuiHc<4E30DceN!t_~3N`4q#d;|BB-iPRXz-2iHa!7oH zC!?T(%O{((C2KlO+7{{WLnf}(1*X3`r^@H;BrKD31v!5Za$==pjj%1(n0)FIAd$J!c;?}(9AB@5};oiHmqz{sPx(gyX% z1+{#-Uf_P-jND{MBr(wrBOjVAVxY<@%#TPfFx zfWjuyWOB&z7=MFPkF~ncs-hPl$Ed%5qFEs=)Ig%aF+F?pvPrOElRpwC!Nd%Tu%=imb;A1@*P9nn&Rw5YTG|C~)w&o9z zISxJAd>^UJ3nhHi{F(^ArKauW@keIw<)5kvTp z(Jffk7Q%7<;?N`#;;AS!g^*>eSuE}Z%A>G>G@RA+kBk~Tz}^wcBTb_CMe(XDd88$} z(XykiO6teHB&4(jq%ig+@c7AJLM`*Po{8d@V*c>Y{~n(K5{OvJ{4YsPGLQ_lJ0C>o z_iy>#4LNM9du0eEC&{s=s2f@chD1p3up1~O_NWG`wgyAEfF|8(0@E_@eHBk1F)@OL z4ii|PAL9rG^WUnRapB42E zmH8K!Mc(kv{2}R}gxkZht>T|wia__oA6GU)F4;>y|3dUUwv*Shjh!WaSjV+3c&_(G zJ~V_^S7HFvi-OUC$mqGV)V30MSbNa_)*h_>Y7Y%uwT3EZ ztx4t7n%X_7VRVp1Dc$M(A=9XF^(~psv_zk`l>b?_xAga9kl|3j!4&_F5^_R&=5nuZ)!4}7!9#95nSn95 zbT3vWL00s*vTA-4n>h^w^@@7Sh5s`ZZ|+HJ!lpErwx|-0S89F)kcuU%j(P63P4_Y{ zbp#$?A3`(Z*@prA41>O)%fWy(O4#vWzyyYm&GUW?AxHrdV44Kv=hjlBSvty1z?y_` z>gPmcTL7#r(qVuc04O({AI!o%-iMl?`gWqYUVLOCRNoHBk)~pQ5|j*LE zwYyHSK=7JU+N33H44&2N4gcYRdSUUU{q%ZQ^zD4zJr4R7=04~f+-o}w`~MmAjegnp zY3Q5i1OI4_yPYZ$t*^FH>x*ow9W%H7ouO~)p)4PS9ROFyN8cV8;I@)#dpm6|K;P=P zHuUYnLIzA0eftYV+?p(}XPAeV)L~DCkY1CQ-kLy=z~i-aNdvd<2Nu7 zC*W6&P;$5?X9|-FZ31{3YQWnt&Vpel(-NOJTN<+AMtS#Wqg18+`4~0AG8= zK)LbWou`TS)51QD;v9pw{d>`g@irCU1bEvY`yU5yQ@=u&J}ch#uXPl(6W;c(62Eo9 z+deq&#CV%N{ONex(S8hC@2voBYcPascVJkhw_%wj0R(MBN%pS*+zKbR18xNtcYs@- z#U0?5L;SA*+*F*7fE&vOKF66QEeH#p@+GGm*5J_N{;*bUR&n|(;XS2EUeC)3?+J0N zb*fhRHIon&n?Um?q)L*Pf4`(Q@#6a>wLve7nK*(0nyA{+6N!MtoqX&5Kw@*0jm7;A zM!VHXZP0@9t0bq9h|s^aNng<}<6ne5>7WMKxMT>wAE?PORWz1mm;-OCC^$K#T*yl- zJx1&GK2L29vG!&e2+bK>ko`6n|G~G9^zxTC8FDo-4K@Q-QoLRC zrE@b}ZKLZcs!86O2-Q6;3d5-nh8{GG-5qX#a3`a55S1L7E6#PHg?E^CiQX&Fb+A=X zn<%aJL75jyc|c35-^HY8CS-KItK0A`t$s`t-)v)| z7(EA6_QHR>*+xOgl4|V?9l<-bjUMxrt|Y&;!BIXwH&y&|4G>&YYjB9ER3l>SvWUGP z;$s@E5NoF2qcZ;cT%cv#`bhBfkd@Z0M63~#@M+A1tA8&|4Re7|D;J#Qbwb&i#gB@t zBCr-8yNI{RUMSntc=)=5!kWOSu6qotMh@(&YJ=H~;HUF%%8oveIg<8SGy$3q3I*K7 z<(boUNu>V-A_CcFoRTZZZQeOuv9?52-LY8P#{WC44FoO2*Wc&FH?{=-FJNu&IINBO zgRrqXDa#S=rn?5V0c|-TO#mB@uT)ckt_geth2wB(&^J&*5U_UiO(>gyw*Y2iUn9(| zBiu$#AZ>=e5lykQcEH=hm7Ck)wx50~+?JhM6k$PYB64(A1%m|cIy*$N)Fs>HATd>X zrZI!gPSqNQ8H4BfWck%=MIl}R$>wmwqg#>a-irq57cs@+0FW2isAbARkMV_yr?N9U z`|ZRvHydJ<^7i5!u=uxHdLI>Yg;#b-T?~H%cl!+}6}H)8p~K_0q(VQ}V&hDRLEgq} zjpdmr4`1eadAb@%8F2wWJFmc&|8XAJjP7gB;u(En-Xwg#=iv%{UY=>XOd-9V8y+{b zE>p*HCr9&+8lYH{B?xHLB>mD6RJS4NbM`#$L7sysr-~avQPp%f9zw5v*gcd#C%#kL zEpbSykBFLRk~pYAc3o}zP-j^sZok0pI+~j8P3_afe`!~%9u?sb!4Xw3z6-)DLIS$> zJHrQwr;7I>$NxRL*1us@sb*>W5Z!~DF%((N7Ju?tboh(7M%34)zdHdchMMy568spT z5s~sXn*!Nc`UWI-8Q)B%ODfUt?Ij+sko(#}uTfbfuds9vIIA$o_)5F)pc9F%mU4|> z(cxBRE#_BKKqq$k!KvCiR}WW~XmLVh>)19|4_B7s{o97u>(ky&I9vE+X+uJ|>yznz zYY@J(9Ib&Mj!P%cIvjndh4lfYm7zyDmhEgD8=gYvFSbTT1>C7$N5kVk1`L$GC%4S> zqbxkGKHB@kaCK!LMziveNI_kbSvDmR2x5210>p-657&vUrQ&Wcxf zoW)O{&&tV7UgYpo4)goFEcoH)*C-$FNF={T`2d5opu2hA9v$-csu0qeD^c5$U*yQ0 zHg3^6M-5x2ifZ&~YBEYR+T0Y>)LNxdQg9o_jD{6ye56U#J`P+aG7?_0 zTdL{-gO(-ZSwbm3n^w>Slm5m`srJG36vpvjcg_7q9oaRC8sc>8)VR()_UD}n)cyfI zjMV(p3EJjXzbk;ECf!mc+OAT#@(SkZAinj#gp@pFi z*OWkMnw9N34n((sKy-2s2f2>~bC2gIA}qjQ?qkxqi=0fc3+Aq2k{vV0!Q6T8WF{(( zo;J?<8WDs`oFlGcvGW%H2Y(J|0W|us2C^V`?+9b*Jusf$d(d9v#foMF+`mbYy8{De z0|wv^=sR*z#JDHr&^k?-EUcio?w+qXLOf1g$%)biDU)&|@DLg3%vQ}JKPa|BZtY_+t+q%3l zlc!n0U2(lJm(T$BztwM9xr(G_O;k)m6qeaHTh5@2g#_%(^~1V%~many=WOn1czP>EJeR#;wmy4oh~Vlau8ejQH+8f%B6n$ z$Cl4nlN(PD{=;Z5Ih>Q)W;~QfRhxOf1~mRP^bhYV^O9cyjhFDgkxcB!kLo7}c5-49$7Y6SpB4WP z`W5Sc2fR08;R*1b0eGK_O!<%l-s9e(6z(E1Kg@dKJA&eSBy`v2ADETM|75xDqV4^P80bbo1jfX? z=ApZ?_~N<5tHg%CcM3Ox&RdtC56Uj9*ly)!Ff>F?qoX>!%! z0D5<~dfKg{8xfAdhCP{%ovtG<$K!yas0cN zGba~kp;g_D{LKu#&yKsFpVvL^{%3Nce>$(PnGa4D?mk1f`@0Tz&vb*kKi^xpdpqVV z^QkQEJ_3RkUSh^&(885k5>8+yyp%MVMPzwg+&#{~?to*9h13gf1Eg(a7IzoHY{T7^ z1e)t`cegGHcYh+l-OssFxcj@{?$edSXTaU9A}rg=Sbv#kPEmo|+d!_8<(;uhc{!c4 zxk=Wkga<(#X!hp+G^>5bI2#Y`xaKSm?Re)h?=>y2$77$HA3>3ed@hteS7@gy8Mq|D ztFZSG2MS7U{KnkXwsWf5!UAxhq8YWvaMg6sQFe-WEVoS})~IgxI5t#myG6VUdwtj0 zd!}4k@ow|Q0#s24op&)WX7`cVUFTT;0n3QCMPTvAEu4s9`LNGqkJ8 z#vN#OU28rWn9)I|(r05u>j0Umw;W{p^nV936+HLfhD`Ns2bp4ucr0X!S)xIv@xQ1Q zkL=xy^X29RugffPp$0|Pzv-3HZ$Aqb=2>yq!|SOvaP>}=BSHH6Eg-{&F= z&iuLs{Ub`__b;)a*QIvz%eO1w#btVtozn^n@gid(J267BTy+-0)at%}>C6A5yw1$A zyuN(41;fu#UVg8?v8(?5?5a(g8l>SS+7C5Vg)Rq0%iVn!=R-Su&lI?xCPO8 zFS~xAs7W8CkXe~@i(O}rRYc8zYy^Pi5vmmm3B%PNz!b-;Hn+%6VYT$wzxC zbIHY@FzhxLB+5A>i(`x5Sx||gAPB{V=F0+?dJuAsPl1x(vPwcE=~6w|Lag$l`1CDv z(K7&@jrCsKbFuc)M>i?j7ssFRn>H3Gz?tnUs4ibcQ4sTuL}HMsJYD-nEPSVLS;R|a zy^}e)!AVo$>ObX)r>!$q`w|_75qy^cobs3G!{NoAwsF(<>*G*;QVW@cOCp@Ple)f& zp(-HA&~4!Xv9|HT?(B|>nm92nVVu=$h|9EbQ9eosxbw#HSxn#W+iS){w;X zZC1|E24lxKGUOzE1)a25xNMt*S-s^mBuHQJa`aH0nkrl!CI}X(lA;buk*h8iYc}XA z?cicXrCMHci+F?m4wvT!k$6lz(xgAYOs(Msq%K8zJ^>3EE+*m#m#axvE75t|NmLgk zg7_{ZiHe||k>Z)2N>JY+mnrmux{g`U@}d`Q^y+1ZRe7_85Yc3_XE#At5zHD-7}o2DD9|()jciH!}8@`F9Mtg961k z!`FXgND=c!7RJxTA}GzKo{A?OR4 zuN*z5d#>xyEve~NY1KCsGD0%yU~EKgkJ(@4RFM&V$EF_`u?)^)Z2GnlE%edY^x_e% zgyYlIBPKx*lIg|9%w`Tvhu(DRz`L>?$7WZB^|m-q;X0kTgBGI}ZNNy@fux2B|iIry_M8)&U427<%Uc!VB?|3;v9Qk1yZT8gE1!T9f zG&TKM)i)V>X|(^y*>f@KE{n8|Br2l|9i-Qa2dG#$wNACJT+U%5T3f-t8Rd?(R9>l1F)AB+`h(#O;D z3j1P;U8s&{ohj60kEa(Gy2SthQGg2O44NPprAmGRz!Y@ymd zMH}3}wg)qe4ewrN=Da8v!e((8U9dLQ9E7j30WmBwy+H#a5!z`wQwVFY*;j=LY$|1E z)RBtU*dWZejtdy7GYx&g;ejmyXfO7V=%?*)&;Ou!i9=iU#++}ndnzTC-R*5krtiK; z`=3;3AGYL~$G&j{u6ti59d+UGzj5JJ2S2g#xLKnw zV#vL^9MqsT?9jZKUZ0GF1AEiX_vqTb%~MqB;~n>)#_pKQqnfMTbVT!M+7CT%y4T?W zrP=+$m2nS~+_#5BAJXtnde=hhbpU!iJ-^B3h8=tEwucGlLqG0a)q?N@-^f2`O>C`E zFN-jwyxJxUYFaHwXWW(6(}Y*6rIaLENi$m+Fj2o&Z@Nj8NUyfKH06eN^$xrb#QphA znRgD+F8*@8obX8{dZBPe1#$0BISu(U6 zb~v%~qm*x_5J5C6hbO%`4Ws;IVd3Te1BKIi@zPCoD`2frYrePEw#@Y9Jo7a%lLaSY~ zYUkGmd9!Y_ z(@biP%85(veH;fR7OT$OyB#toF4{fR!S`RE{}8#s&0mkf(>@@ZsSO+#H1&VRi3kT3&Wx=Fv~YK0!(Kg%ten-RkqC zKObidSG6SlAD~ZtEgZqyS8bx-6OwrsCJxoPrv9CJ1fB$`Xab>kB0YhoelEON2h5;D zEi2Xf_NInYs^m$mOQgW~wIBVF~Y7g-T;HU7oa zgt?OM`NNY$;{Nb2E0A-0cozTC^SP3J%ZTVByg^i_G5Gy+xD6qAD!Sfihu>?*c%?(P zrOy+J`DZ?9L4V!X(OrX#qUb!;A*^-o*b(PGJn7{Y$#y4CCqs>OoZCcC*hLy(#A(a0RXRxf6kXFG?s%j(RxGrxLI%b&e$D&+Sl zH~hP=B3Mx9-2Hz?BM$vsMhnL-Oo?)sgjw3W8ZS>3VoM=HBo#kxa+257uH@Af_>!Mu zIW0HJC)EPkjG$^SH|ObrdKOx)37iboPUA|_yErG*{Su||*Fakq6yZzzR;)N4)A@Iy z%+616Mp1^>=wJMZ5odlpU#e(T&s5dn7;&dSByzBwmFo%)ZNNLlyvdH#uo`+BIL8qo zbb9tFM|U1^?w~6NMg8%4qe988`Ir02tp%ezV%WtgEI_WDjBKfRS8)s%^d1Io#4vNqRMf zMCrmjQ7CWu2n%Wl>1I0XlWF+`OH)&7!RjFvn1}w%;#T#qzR=dct+e4W{Tt8R2RLa% zm~9^Ao21Wo;`Z328#1EdoG0H~12x7A6f3nemi1sn<{W+T)2#2vJ5#2QkqT!{SR)KB z$_}8p6x0o%eGH%hm)VgKh1yO%JcSlAWu1St(X!6!?B5mV4H)~w@wVZ#T5V(poVe4P zLE%$4{4IVz6?&ah8Z>MZhhE?SXAL`3l}&5p;XPkQ=}FXH;Sr!v(sGgJ2_vz1E9W!2 zkyxYg&Kb?NqPPJmk^0<`e#w#m9Q0n44y4df4wdzEINwao=4p1S3rj6(;0u0)7Q-3R ze1MljAUpdEY1W)ks&A(Jk~5N=z{P%gA$iC$la`u0uDs-SxcF4$>5+c&p~LBK_ZaC- ze&{eL?3#44cMrgtGB1Bg%qv>7;3-L?^{yM^km{q4#UgJmsM4`(Gj+}yr|faU3@bKA zMNMJV4lgNz@CB#t(a$WWV!>eHj>8dWekM|I(`J#wECU#wyh#ixtS+{5fxf*Q)eY?Z?8)+u*lF%!)U_RAE1hmJ~kzwpE@s zYHRE+a-d?;#CfG+pG4<~^KOi#VQzF-T73mJ(i_87=dlb$x5hN_X&ouEY^>PV+()hx zy{5e{SOM>4333Izv`Yb|>?2>{a=C*kv#5Rc%mck*h3;0=w0=6_4b5jL;ajJ<$;f2vf2m2l^ziiNq4UYH4 z&LLjjY6oJ>78Q18L`5uGGm7$3-k(J)3iM&w7BRsO89@|NlB4>*Tmcs@KG2a$_D4PiIxWKl_&hB_x^##!0$nQQ{psN=mmhEE|r-n(u1Tnq0U zJ}tOjMmU!H!t0f8DPiWH7}Ze^j^(Xr)ob_wyIh)07!`!gY1wNyJ>jcZP?$TkMEZeK zCh=C_0c^L^oXlMNHvBgbrGLG&F<(sim&nUv@rw!nR;L@VYe7G^RF(&nZs@^;|FCk( zT=aF8OYg1rD#qKYNM28;LI*fsw)lhSx+&C-A?l<{iLJM+;ceA8<=wlIXv+Itody5C z%3U=PB)r=j?CRb|g3O!)C$4K;byeP~>k7gyb-igXQ~+5QU4*j6mV|#2H`&`ku701-sn4Y*K>2oH4hB1NHVlk zg&q@nV1UA*Y`Q-fyES%!Et0s^xj=q*E*MBZGsdpI0KYrQ3*>j_0#mTm6@GWFz96oo z^1E|^^Sg7wTMQw*@K-&C3JQ$ljrp{!D%boyktD0aBA2>=>t#W>A_!Lop;lNuw}qFmF1W4_ z!iFF;CWhxt!F47GTY|7P2y?{qkS;F>3xZI5lkST(QaC6GhXmn>AS?~Sco0qq!bw3m zB?ujRkKS2uJvRs!2H~P0TuP`BbLGmUcNGKX%0|MbxL3ApWHq0fP zxB?5#Jllf)=UDK?zaij_c@}*6Qr#pUbzFAg-cp6h!Bs)B#%`ccZH|H}k?F2{22 z)5C%<_O#&4kOlp7E%lEfKc)#es};=5?0E)+@C-?4=*!i)JJspPTWU~0l)bwp8 z$_;HF)jN3#MjmyedM`dj5K6+q#tDu@eI0%NGAh6-b~$Hv)K#7ZtCR|TBDUHg$3V^V z5Sf}b+qc1lHJK5NE$*q_4{+o3*d8oM60tgRaw(OU>W#NO!7=RA#$^RL?2I5MLv=$B z1_Nv%g~);4TzAJwf{JAauB*EZ$yMymlMG8H_P|MXqE|O3qP-9|J!Ae#YXh6MGbgRw6OZx(kdF~&`gsaFz_7tjsxU1n&dDkrJD4^oc64Vt~0 zRL6mxpVxEEYLZ%7&3OHV7fZO$s-|)7)vwWWgmbVR4sZ5nFT;zqRs@}x?Lh>q(h9cjZU?N|Vd_BvOg%_2^`K=; zIbiBREp#m~^`KTlVCq4gVCo4Ry#~L>(H^ef-(GN6m;U~YX!SF%!Ku^rS_bqtbeGkl zj%cx)UhFI!r8A~Cz-rTTdPKbg(G7167@eMYW{;uoL_q|~cL@!+0@bZV@wT|5!02Bc zjP;>{;mB=$ge%ig79Onb;}C5<5TLCG3bo(8=`jIP3AVi(B{c&nh_s-9S-wrOztD~( z2d_G8H+rx-M-&?1IvTkxX9A3Gl#DFWam25sJ_~iDi3sDBRq0bk{M{tbh_{6&81c=F z_zZxa+kttWOf;vb9pkMvMiMm}WF_YkJdp#Lxy+0USV(gwZZ*c$X$ z8y;`aZ#mAOU)*aNyZ-Pv7t%08&Brcd-lzx1ZE6aH$36X54gH^@0`u91zP^(AmlxgG zSxIw=th6=qGA=qa@+vN~WMu_${e>6*hF`#w^f!AXyq(83vVoS6m5z-ZwMMQB$O@VS zW&Y$IePh_M(a1(mKwO^1KV51^=azjY-hqtZk4!C!N(*G9E`T&6i+edT;zG6PE;0DD zs8LS;G>43W6^w3EQcH@tJ1G?3OymC7zcH4t?nVv zTz`o}I{Aui9>lRzSqf!}z|;(_eM?_VT}VVcB7aZ(sY23s-M; z;XQYPcMmbVyLk$##h(rBKI+#WU_BmaOhATF?Ve5jRi}rWKzBe(iyX&gv5G~=n zPBsrkak&Hj9sP#{NZ=b6Ib`tOFSzhqA3J1l!5$ZG0oDftihi&8k$?LnyTMvW334`t z2UIJ};_1i_3t^xA@tm;C9=fCm?Ht%|ynF#N#JnBhYE2!<(?yMv{z-9s@R?;zjVO`1 z68Kv^ab7LihMabAV<=p6D)$aOSGBPKhnDG)xp+`o{4wdhBgF^MI8KyrK&UhHAT+(t z(JfJL*dhcP5a;)7-lr?@!Z)U8EPX{Nmi|tzhe@Xi4eF)mxkVxbDQI5zs(x^OD6iEs zUJGy8yoeh&<_7LAk02mvsCb8BmDfd{ne~IC8>1em-%joeMOJ7T((x83Jued z7T8dM!=HpKwE#8QqDPxdNfMb*rZ%~&Dg`TFMT=+`d#&+Yr&s<#Kly$}48Q{L15 zRXOPiCkd6!qa9OzSx!2?(AyqM&*}j;5ZaElgq>)f^5Y{oof!ZF^Nd0rMqIoN{xKoJ zd!qz#{^wG~&l)Xc==_7qHiXOUrrUj8S_gbWOe>%ujG7h zaAfZt$iNVU>5CGM#TZMub51_G5lPM75I@n#miaiYek-2lLFPkb0Dj-1$nN=JyT|Uv zdpGl%#64A;2X&b9>2Ds5Y`hV7Ggl()i`9n z)?TbAPn$_bHI0w?=a2;6>C$t1sN|gF{YB(dxfgI8?}D#+B^QkLVqavxIiIQ?ojoYw z)hGRbkP!JJ{%_<6JM`?6{`r^tea|1|mvFXX-`r7DSK5D^Ux{e*-{L;rzK+6f09L_i zZ%A^Yd0ss7arkB(Kh=C8KT|vU3!}eH?p}iZ&C_N6CDE!QCx;hH;*juDIc4c_c&)5w zfX4lwjNpj0q>m$gOzZc9g{W)Qs)fdF%fK4qtDcqy8Uc{r~^d+y6)C?dxsyw)n50w+smAZPMEv^{+L8 z`&M|d#4K^YcP!m+5W3q?+gRv1$Sp>+=<+80DD+k?3NaM^oEgC(`Q*qEkvgWOfosL} z?6nJ6x~}SxD1T2=RU{X8Z3m#5M-Ge(7vzVhhA*tIz;C{rjE_$p6}~X{6cmUcf@S0V zqEp8CgTv#zqVRZc@F{Ws2BS%9lm3NC|3=8~Au>8jAr2*qk8%VaGx9W7Z(#A7b9bEq$HVLsHi1s5R~q`WNw^*wYTT#)-U zWNsJcUQ!tycb48X2V-W}u=A@CYLWD0F<@Y@m zB7Ev7ukR%|EifYdLd6~A0}*~g$T~LIocifg432sT-z@K*HVM0vH^T`*k2})hz5y+c zrbqYiHZm51{-^H^Uu_9UvGsphdh+LcFihCofiV#7mDU_^-XY)pt=g&Ls^2Szap zdfO;?*NuXs^}!$jo!&El^jN>&DP#S?y~ld}_&@lR>>6B$?p)G8uLEV)SYR1uC@>Dr z;~1KfGOwfr%6#75TZ2)+=b^;8bMp9db`7p-?Xlprwl(-KBD&>$i;N)eXKo(A$bPIP(qn!NCv$LUFe1$;rH**NK3%pN%k~M20>qs-3F_p^+@sY+{v6 ze~RlaP8=;R&7!)??#ju0zY_82B;JmvAFvCmN%w#c!P)1>rvVC3B@zpNYt$ecHS!OU1y;*a8Ns*7_0Bj zcM<7zG26JIAhWAM8=g0gBt24Ns?R4*^b%G@qY6lulc{Zc*}drBpE>dS4@-DJ7Bel2 zE84TryD*ROtyM~)KU8I6-Yj(3X2GorfgBpHmK%kGWkNUKBt_7_okZ`Q`&O-{zRlWk z;lYMG*?tuxZ~gl7*=_wwW;D1szHFZ=u6u=q)~Cta+WOR`mW(&spNcE>2tw=6bCufl zXGswca_B$)SzjuW`Q+A5>C093B5LxlVi$rg%Nsqt#^ZM7{DREMJ4h(KZI8tMa&_ei z-k~SUTu(m!WcFS6p1)kZ@#(KSW$CSDt|Pr{4qI#5y3ey*V%{9Oa1LEKhc29hy4vgE z>fJO>^k8lg{rGl!KjKig`$@_h>PQUnc)?nDAh)tTsSUC9WL-sDPbxdwyHs!L73PlO zx)&$3uDt12ZCx28pTeVTUn;KT(+I6EuTXN=mn7#&9vz4(k7cfSW(X;|otUrP&2(cQ z_Nl#@5YwI+@r3J=1f0U41jxpTI#jRCOwc~AOI!b(ec!#REKby^I@(jcr(9gO-j~gV zs%HB&0cN9|%Cv*jPo94A%e-MlDDh?c*5+s@8oW@=)Ey0;Knpt>tYrFAyX$VYhb7Rl z9)4+NTMu(cQjl_{-dCJXR$On-CA3byV`*C_x4*HJr`dj1TyHERw0{1P-pJBmeS?Pu zbg#*F`Gn$`G7@#$)vbR}SAY7vWn)v28UJ{;qpqT#PdIORhh7fm?HO(F+Izfy;x4v% zOAfAscWw{9-ac;=Zr+wLZ~0H>&Y^ELZ*?FX4HP|i@-fS+TE4rkUC2AZ@=7xOsi}20 z+qH{`Ti1rJ@6fe%LCO_+Uvb)9alO5g(7JZRk`7&)ePb0*vt6sW-dICuUHc2Yk?mT& z!NWqjvsds5#WO!5QMX;&|3B2V-#fu1zOf)Pdt0_^zem^p{=_r*M!NR$0t%9o8PWEx zy~pb(?%GE+MajW+?ZNtN*ZxfR^_TE0moo34>Dqs$YyX+9y+qPdD&1jQ(M299ev3Ww zT#hMba~9C;E#!Bi^%r8@aq;ESbvb@-tiR8=wynRlkj9E8xQ@;mQCkGZFziV3U0cO0 z{pCnX3YjTTM|J24-|Ik=uWrl0y{kObt0%~#D^czrWTUfP+sSeY>{XdXwX4uio__M9 z7)2ntnH#+dZR9}AY5HY1y)E05q<2pqJTmrLkIod!>CIUc_vbLQmk;E2(py((!Ri7_ zvTJ%105(RlHL?>Y_M$GbUtiR6Rm8WExNE6rlm`U?{o7iuC(jSvZLlc}ukSM!fgv452rBw>ophaLo@3 zA*|0^Ex%O?#PBg*rKA2WE2wDXIj?pmUFy|L>+iHz zYwJnj)#x{KwQ{_>Q;tiy&+t`_ijt!&qFz^y7h8^Mr)-W7xEvcu;nnCjb2@3drA3eZ z>qzYXZqK2O588ynlURQ)qF@e7B=%U()XQexq2(XpGtspLKd_c>;rm@%UiX5QZzZah zk9oD4vYB80kScEOP{nj@js(G5YZO>NY^}*7Y8~*+pON~{ol>tP7jL2Sidb>llFizsxC^rferL_tP29Bp% zLn!e2_uEr@%U38xx>iBvbUi)X{**Tdaz7ZOigITV!9X?9>oppq>ZfcAfgSG;zl;QHll6GGrZ)q?prFK4@K9`b}co84|Q!R-3wZ3 z1W{|L*bk^(Un^pEHkb13>#n5~rFL1ap<+1EltiVrAQFu*-1`DZCo}W|oqs+x8mudvq6UNOF{)_bu$xc1xSYyGu9$ zN+mmGhJ_lq*Z*r5b2d`{OZdfru7eSA+yhhWVp#m>FqOhq)v~(G%eS&#Zb_8yNR*Gx zPn7eKs`-Ve626U=r7FXh=oUmFp!!$^{yYx?;50A1ttr1Bi}{<_0mOWv;+IW}&{Q7UUn70Y670{L=kEhSOd)#7IbJPM$?asPYE?DG(Mi;cYAmf4t0vceZg7lRwaew}*q@P;j zm7(BUtD)5a5;sgHcAoKYJ zqoIbCy6??AydW9T0k$0uv7HLX@ev-Gj%=xT2#zD`RQK2e3+qzeCOD2~ zv6Y&2uCp_O;ixK!;DmX+PGJjelu#W@s*L<)L~Jz7?o%~?1#R&=1|gz8xrbqducpo@ zHMmUFL>u;DvC8Qd0EaM5oc{=pDDst4IX&TRmrG?#J~e>6b>`K;xA6sIRgo-jrBFw3 z6Zw;z1spTDu`E4F#|++jcvMx%Pup%G5#^Q+8LaCGqlc!2WrRXOP7g$9$~%g|Yb;V< z`8VkHfmtHYKTuV2YR-b*alb~RIp+0UisOuE_N>kOn6vS!bsF>ViWiEr_G>iQTnbL7aw zhsXIPt>e9U2oB2U?M4rMV~4vXvoYL~)$va9QE4dim1?4x?@HB)LIm9t^h`2634Pe* zYUyy5PCAvTj!Z^dr6P%HKv13(r?TQ)p?qT1VW>!5s+=yzop!>{Z5iX`?r8S)YFm%V z=Lcm`kH!6OOo8e%1*awbZ%l~$(SmSwDLopb&I>R8DpyPZbf`4mI9A|sG?SmUM)!8h zn>15uUmaLe(p%odXu(a-72I?;GVaE&+HSPC8}@#(m;*GQ6_Hpia-0f14&fEG#B)8H zFC&p~CMQ01ZV-y1S;#>t7u$Ao9)o|Q_^>!Win&Nw-HU6SAV z@^f~H?u}G?c%$OM&ZN6@$H=*nz{bdG_06oW&@vlQuSWxbV{sD25Hp(|W74_Wksy*+ zhhq$f-&`GSDz_U`tQTzF#LJ<`Rr6Oek0#Ab`ioYPHt8>{w_s@3 z)yF-Fkp5Lg#Wl*hN$vXYReSrI9wQW%7moln;MxuvU83!sQs%YTcXnEud=ctgr7?zHbcu z+;o_DdZ3Y?bt1;{75WPq60>lj_EBH)E($c^s>#X#7b=<;>39z>|7U0%X-V4O9Oco_ zy1k9b^8VNJJv6=1iiVMaEl!4$ji!bs2Etfxu?FcC7KP#P%j%?>>80n|owTv%EdPP? z8<+qwM#{*mU1q`ZrAp~o?@Z2DF3D+r9iKi7?tzS9vu0+eN^R(fHn#6p3QZplgtc?b z9-LqF5s9DSx0*>|G%Lpv-m}!w!~Hdd!~v#?n_vRP6&e?q3Oxlw7;tpr1yy_IjA}@I>v)-Ot|FjB zYwRlBKw#|Ra>qN>YJKg%AGUFYcd4w5DYXTIOsP#*VYyZa=i@0@!qRgxWqx0rqq|X1 z-s=w+7<(A3ummG`B@s?ycW-UR0$|*t`e_}Xr)_K0VB*PZ9?Zh~Dc zA4rgSV&x?{ep!~0yIV{c&M`!zE7};jU6Gb>lG8p~Z0Ks)?#jkp+s4L~XW2MT77-gK zp%H9c-!?WbQMC~{Q9tQoT$g{2F>s?04;2~%N38EC_<)<#%f(3@AKncIx8_qhxQ*z{ zK%#ewgB#f9PY4$7>pAi$1Pd1p?UoKA6Xp$hJdD(8vSxX>na0E6+H@CAMV9<8D(r1# zUckG#$wLc;T6Z$%YiQ(ilKz+xm6MbBZ!E_4dEE+{71B5cMnkicqoE;ZAHt*E0FQ=0 zhgiB257o1O#p%$-$+=rS?G}ea5K-u=wKv!ZahdQebs8b_e3dFl9;Mtmg3e^5p%8Q=y$>{M_t=Ur{iNHmtWUOhUPwK0_Z96rMAz#Y3 zvp#Vb{_C*grc&vWQ;Bt8zjQQNhs#s!vIG0|Csx`HG%{%VKF&go8m?NTm+rsW8y zm)NY=+hdkxYkAa)L$uIN78pI zq1#F((z&Re*6K~xQIzNMPhvNe^72O{Lny=@NJMrY!<8*^T$xP1;{H;{l@0zm_KwNW zT}`TQ*K$)^I2Nqsd$#px*h&D;IkUUXKe^q-D!N5rHH2|^zi!LA`uw7 zyZy~xz-O(eSTJE-F@xDAkF9fT;zDBJWA#YiGMRlh3LkS+x_k)ZT?#NuHmS7!Sixg) zKNPMWg9tcLbr`1%rNnUOLPF>X@Yt}9@EGp5kD6bGbpFZW4migsUGfXX27gX2wP6X0 z68gO;K#&3t+n*60!^1Y>I&CsON<^NTb*^7_qc@-0Y^x(r2_Jhs>W}MZ zqM7iLjaDNJ5hSoVBV7GsgtV?kKO~0zjgwcw?3mriHaaW!#t!J%wt(w7%|uj%sdWBY z#fk8S7n_ zbrW6_2Gv6hYt_86G!-6yIO^A|pqe<3_G%Y0!rU5tV;JY05nC$V7B)ND>ogYI)gqD% zAP_PqQ=iFVXro<;$WudH_bzhLxkT$F({4#I+9zu0rPo=04%G?}vV|n$#YF@L(A)>0 zE>EE@?fS{~p7B_oiLElfB*FTtJ7u?&mjeJoQL_hm? zT&5gncgk@E_X82VqU5-ez(BIoEJtw_*&OG&93{Q*YV@0VXU3;Y*%dz%q){V~%(ebO zn_B@?)}bS0?6jVVnEgscw9r42?^<3Pko&`J$ zIzmzMC?v3s_!4#K&=I$}O0J>a;1K*~@<_1$j!xMP%3%bvTY16rwq zuD{deD1OCpEtv;N(=DIYAto?SgQ6w=c@5+ltwmHBdV$q7+`kvM_sG-h^yKfQUsvQ^Q2k7xl@iqcp8ja zMagl5a@3T$$8uENvSaMeF2_2{QNJ0FG~G55RbUq#I8_hHQMH!Bfp0S5RG$@JDl!`%40sEULw7@Xo;JPme$HMB;+oSt>t*x z7QgTPQE%cShu!`R8D=@lHf}$+dA(Mg4OB|d)*u>8FPEN7Axq_$0Rbpfy)>L^h=>pM~PN^2Z5 z8!s)HAkd}Ua|@$1xz_Kp!m2v9|Igw}Mv!GnM|a;cf;1`bNe520#J%~e95Tr+aZh5y zyO*(*Hr^qz6B+D1Q^;J>s3D?;a}dC-o<IDACI^R-e>m)=-VaxQT|i{{nWGC46w1*962e`E$l95Hh`mB?K(YFD-TAlcKxtD7u3=l!@ppAEKHPun#i+iJgJr^bCuf3R1nq*L66GMphtGLlZZ#tKLvW+aXjcTtuFyR{<0(V zc)zyWRqIqmcJW2pw4gM?m4hC$KGzJZ{uJzS8Y8F;do-Yuqqq2fR%Ev@(v59EY zFKALk0aHkYxM-3E_vmd}MtLG0`FQ0fbWcvVWgJ6&O zJDP9o)MY=`6%L>E;_hoS9M%K&gEwmEAB#6K3-kaPV1PG< zZTaOm20UIj_l zO~k+s5z&2MdCM#EhIlBoh^Z&YF~z!*S^*x(JOYPAob$M#M^Fd^3Bnp@Qo!tNa3JGK z6D*1*$mydI1k|np7*`^9SP_7Wry97(XTObK+|wMII3$5Ql$t~iOK!Es&_vgU{(T+M#GkjL ziH{{C*EWWi{H9ey+%3Ppt=eVY{MB3ncmiVq9&aF9$Ima1dk8Zi&8L zHHdMDQJHm`(PBY6K#bcZ`q~q&nr)&lOA$|x0b=}h+yl=R#Q1HAzIN?xjF+F8&-aji zh#M5^z@T9x#9Hmuu7GEz#3B;Tw=YC;sWvWNdX)vHh3nRM6Zpdl*yg!?nHSp)43AMAyq>0D z%|-*w*teATIDToxz6oXw__YM4#KI9}PPlpzFBq>T9P!=DWN{l}9JS$yyNz@EL6g`v z)reP?xtfSKLK44HjqjN*7T>Sq3eFDJbrQXCJZ{d06AQ&cz2}!T2|6qv{>xKuVA2Aw zEElO)tB>|4t~i_uC*L#1OWYG}Nwcc6AsMP@be#hYQ_krdOw{|PDb9o)p+8qoyaMR3RXo;`T^byw0fs74Lh`|I^~bbx+*IfH zD<(yApu;z^&>=H4(aBy`k~Eg<9+IC0_@QKlXB!8G5UuZ6q-&mu(-*I6d(!@ib58%UJQfY7N(1RPgpohkRW#Pl5 zgAZ9LH6ht$j!BjugktUIo3k8lSeBj!ZaCwY!VN3hZuPWVi20=Mb*N%nI(c!AboX$f zau49bgPV{m{gnCI&R?xIsL;qAkOT;QpxR|XQPTerNa0A3!k>Z^CO`@kAca>5Db(PG zy?RAc&D%6K9s5N7lnp9O_YIa`gA7A0DIrm-MFzkKjoA{E2!O(@(iBMt7~v+yqozHo zVBYejHu!AxvpO%+m4A&`%K?sIN^k2u{E|!8E-G4EWIDHc$|St@qf5ZfU;@ zC^!>PP}^@_vyURZ70#2xVL0|J_hsL{98b@LO|oSs2|EzrdnrF3pN*(y=Knoa1wsyx zJUF6r`Ml%jk45slem}Q!5Pkqd^i4RG&J0oWTMo$k2fhbOqYXd7Qt=rEDAVrGtmppf9za zQn89UB%)nRT!OqXy0*?C8xu4kx(L*DFA#f9B6^#|w4Wc2kTTX;NXfH4j330rQ;14P zNnki$F8%<9);7cwq&*numkqWz`@9Jg-SxV-Af`PkM(RJ*-c++q(_oHk5Oq z1*;1!5n%s41r~cEuykWM)IQeXOzD+b8Gm zt$mzWc%Zse?W07REkt!Mz&QsIJ*@UQIF$Cu<4xMz^4nT7glA?!nXXlo7bWx_Jd)IF zzDeqW_SC@PtCS>Nt040mJuYm2%&Vo`ALtreQSQVEV#@3qr5@OxI)*ZrlB8=DWRg7Y zRv3KrS}ZE3zmq}VJu$tyXeN!WcnaI{A;hD8Wogu3vVsp|fKZRx(}k!lGv^1X!@b%e z1m5Zq{Kotr;aTckFFlZp8~el}_b3ux^4;#+c@Ra8u5EGcJb|KiZD-vZqB=W)`ZQH` z$ycfDkoL;*YzoN&U`J8zOd~L0XTlYv9?_nfcCJ&BzzFRkJuYp3%&Rkb93T~na%V1q z;cFpMW0OI(f<9g!w^utFp}qVKa-7g9$A!Ef$nq5>$3+B&ul*OP{Tek?HpfXW#|Baa zMrdi$blZKUGun;N#QmI0YnMgd3NJac`(~fQC!%Wy{?PEWReZZ^v+G{a>}!as*)i}^ zDKiBZQN3v$sz*a|pE@b9PT&kLqSpGmg#FL#lv)&mPEe4!UytW@dfdQ$GE)#(pfwUT zP_2g4SfF)mtcCV&?I6|$3aB9SJyLbsTBl#5*18U)=)03*k-gz1Cw1RSi^w~=c7kgq ztv+2_N%w+QswZlLbN_|ZXlaKUQ5Bwza`RSED%VJ0Sla#LNxiH+HSMxg1H>6CW^U8t z7446CwTV}Q!Ko;BGRjQ!XR1=KY)|biU*_^skcsoO+h+NAI;Q9T@*%V|2BpH#JR6h# zKjubQ^?G;TNUQi>bnQadNG%klYa{7i&`7OBt&#rx6-v6My`&s~s)$&LvH^EwyvnNT$M< z-#YqJumvK2A(ARbI`vM}`>sHjx7=ZInPl-gMMTSD0El&Vsn8$Ya?sA^RPig|FDp<= z=4i1{viJ?Iut$3;vEl8@QlVE9I}yRmtkZ&BNIy$V(8O@!bPLdqX?&HB&s0lf1@eJf zaSE>S+ByW6jr5UWJUZVI1j;xcX=Y~4&aSNIJUh19jZPyt?muwKK-vVJ5C>(CoRZO2 zn}c|&<~QYx_WPcU6yWV}b&11*zJ5ggbv!I+3WWs=nyUa~H6$}bT(pVBt&}LiA_Wc> z8ew-+G*-8s)^FQm#VU=#Vpve-_!5Z#3rdxP)S}(1Jt)#dupq-iBs#19-@Ga0HoSPb8jan19Ua^O z3aUg99H>DuGNsRaN*8&=xoz@@SwKSfnLHvM+4|p=M_?u31evX9`I!DLBA_Zd40Yz` zkX#~;h=;Z$IF9E{2MUc~_y`nQiEwv5z0Kw%FiHC_Djf5k1QdEV$VwuaXlVb=BSViO zP4Z1PQ#nm4)KX|(EnXkyv6O&{j$wmf!_Umoq}M#x0YI_zKZ6OO*W8W?aSKd{Tc|Z} z?a6V8_|miN0!Ya6jHWAqgr2PIhcy~IQ%RGNaP%c$mn9!E!p+LPkFh^4j+3*bz zoB3LIod#mh=YVC1miQpbKNlCxQ*NK|;?o-=J69ba71$ z+6lTo4HD8<14syv0X$AK032=`vJUGR#JOF}(K4z?M@XpE-Drn|THK95Ce>z+mczFk zB&4=zH%IF{`e`G3-n{stL|f)WtPr(-h*)0Ygwbd#M$^#*68ao^ zPLok8aRxMFl!?kE)0@$u8cd^kd^jaDk})bB^ExoonSmiH)o^J!z1XIpkQR|Z5yC|| zfg<5z8=$uT?{DqrT-&rb^SONmLq@wC zE#$C45~5Nn32rXY5e~aLTIY1dEY`MiFE&Kj1-bI~MX{&YkllFKLEtRSlh*W(O6-(8Af?DR`p0zFn3n0`0ltrw@m8IT+?`1 zGpuf$xuemXGa`0;!ZV_??8aH`XGbGz+os?%E<3u7h(`aDx^QMPkDUzJXL?{C@yrBe zh8g=>XFOIIf^o3S8PJ~*XXE6z%nBS3jb~1T!~?6ja7L4^Hbv<7FWdKJ2||&zw`-Fn zyl@tt2E8zxJq?oh5nd;o<}~Qb0+7CNmVX-bDQ%$GY0!xWfB)qobChmJLR=~Amte=q z&|O4Zh?-i7CJCJkab;fbWr?vM(X4=bPxcgkyV!DHV;R}yUXlk%scZJ1T{Q6qkjj!@ z0q=$v&RReWEX$(j#5-L$b9M$0?4WE#R(dn(B<7nI?&erx5$8efidXk`L7 z+=qu4$%80JNyxjQop+g>_Y`v8QzW!nf{A+ctePkM9U}B`sBth<>p37XPEwzGN)`1R z=@4;Gat$pQuv(^2!v?OzACnE^>?MSpU#U|6RHd3v(qy2+264s z4x4=T-?(okbLreSi`MR3ewqm&upT-)??bb^iJK|9Zf088JMFlLBkZ(nw#8(#eN3ft zV7>M~>1BhznbV>P2M1Cjn~m&xxreJ;Z)4i7@n2Z=H!)6?tC0I`m4<;d@VSE0$!y|e zvxBteP$-CT1*#$OY0i#5)0;LG;F4xo(xL5K>aBfVvYCNPG@N}LE1f{H{5QCZXGvLj zkK8gM4WADJrcW!}jpFo^uMZNq z9A!76C?aQ|T$Ch{Rj5ek2l$wGlLi(K&`RjgsBmUK7*n10WPMh%sm6d(Z4e>IOxP_J zxUE~1FL=@{#-eQqca*?mv+M)p95?ZFA9v7XA0SNSxan`>#gj4IIHmRZ3 zV2uk$bYiyMPvb?_NJpcPJ{~?HVzuLuugegiv~=V^eWxxZvC^e^p%}u_(BcE~A;9gM>Te!ID-)08t7*zZ^k*94i5}&=k!OM6&lvRf`KNvLrN`VeE`7d>@cvayQ(ukDwj$(am2XrOaAuXrn83d}=W_(a1fz{zTmSztRL zB^{))e**jAp)Y)|iJr&5Ks3A6iDo}csz%^D(d>sRtq)YYglM9f07SXr@9XSwyNPDI zxR_|78K3&$X_I}G=d(Lf%_!4lICKrNV z)3%tQjU->NOs{En?}IXcuEU+GASS>AOyU>Llz08yQsfs;%z$bN=|%)xfDSS*Fd_sHfr)3 zEdQo4p<_PLbq{2-GPvb;{RLEk4muE&iRqUb2Ggu#Iw@g=kVM@G^WljDW|iu zsp)0T=~~H~=KQFvhSGDgrNMKO(%@M^>iG|lJvW;TRy#&`O)7RL>oS?H=7nXh@;dA&yV7inU;J-AN}Lcj~4O@&X3xUdVUn5eONLE zXiuLXjh;;R8gjY^A~pDre17x~XHzSgo1&!X{HV*u`vOW|mo1%tepId8>$ADkETiT$ z=SMRroqv9GqgBm4KYC>TQ84xQOYHpU-+vRHAKgIYfBpGU)w!>qAN?;qKYHbf|4Yx0 z>VNb4`O)j=N3WkB9cIq(_4A|jm7+*q(WpC8!? z)9dF)c4_eS^P|inc7y}E{|C;GzP@|<^P}VYv$ER%mh+?JtfHb}JN7pR8JM40JsQPx zu)lJWtApsfq;SI}n>5Z)bH_`Z(pGkjetvgRBpgQeytoI6WD* z^xNMt)7<>6e2b2~*ZdC6k@}!yp5Jp8uX*OQ`e0EDhaHtXVAs!G-AR4Bnms}*fX+&F z(TdXvyrLCvN9(-0F}S2UD3bEV{T`rdw?(e`IT1><7Oj{|iB=uP26fe_8)Ij0q_H+$ z9_e`lMX;!jBaA0koZc9Gytz@f-cMQN8Y5^QK2OlLM6P*1kwYsxKhIAkUBnlc=Re4{ zwc2}VWd*m~(W!`+r+##i-ny+Ka1HI*Q|~XD9a(e9=_Ch@?H)ka?9&Odznu6*|P#@c1z_U8g!I51a%elIMww+7Z5!k<}geODn0j~M!OScHZLsLo>y?^sbRqj zIZ>eCNCsk;&am^!eh^=G26TuWWXhJYXYGJ?O%;~?2iYrB1NL)AjIuh356jlkr#!e1 za?WmLKl&CcJD4piZ;W|m7t9IE-gJ_cO=ZiD7M8u{O<~#6GAmonWw_VMWyGa<5p3cfbbS?)dEtaoeun6({A6uoU-%-S-?fYx1glDl| zngdnYX{drGs2WAbfT|tWg0`NV1JyQU!?p^VplZAw1FGCl7eGy3ki~$q(`^+rLDk4S z22}5GsGrY)s_ZmWK@(Js;bTDUI~?kq9H`1pLlrbZ)o2f)MtXLV8@+0q)?W>@uYFqs zFSvM&6=ode>QpRPiTccH)JIVu-o$WZSZ*BB!kN9tJ9)O9E?#U0)g4k3(Gjc)>D5G) z_F)(8Bs!||!go)dQ?zM{nrV1gVj-_m#qdi=l#0CsWet>`Jmn~-egFJE?m4fM{>%~P zggfSq9gd>sKbj?{vh^p17HTG*WfGmHrz0OwPpdy^J?)Z}or0b!%??OuJJC6dXnVtc zdOAwYY)|{hdnfPI5i(JFIzVuNN*{l;p5FRidb$>*Ow+z$Yu`NAz5%p_3frf&g?jOh zouYK#uV^vf86s7bKL6O>b$;n5d#9P(AhbS5g2835Hu|dmBEa($v z(G4y^{coL18W<-j=6@VD&c0HyA2<8ZK70swHYv+_H0Ga&e9|>#Pv@~rbQM{-^D2p! zS=5Xp@lu2eup41c^47FiC|86wGoQA!%TWv;}%-)TugO!-R3p>zLE|}>K zn0pwWTpvt#Uy7zyq|bWey5TuwVQneXP-iES(skCz&`xE)nmnPtN+NfHoIb4Exu6E0}~07=ja zvJE6HdY;I(6)FzeBg(~6)$JRyr;kInzF`-IY<(jZ?VmF6eWUiYuH8rwn!W2UqD2tI z+PmI6r^r-%Z@V7`OQ zkMjP(+gd?ls(ipJiUub~ySKG^#n_D6(Hg6LeA%xhuX7ib&rAVE%}-F#nifdZBL#2b zbG+G@?cV?dvkA|b&4NQm9I_1Ck(&)oXf>mN*>C-+eQ4#EGWhNvx56$5HGEgqupV?d z0)@yQFsfii-)LZtSfQ>69*z;i5;m>`0_W!zq=_T^PW%TyA?xWm%X+GL80)Q$OM4}k z^;C?$7EOGX$&Yt?>TzO2C&@5ZD^F?Gb4gvz)>LD?PK#z(uf-nItk-T&#(EttD%R_= zs2P6Xsn?#;thZk8#6_V6j`jZRyaLwivvyhL5n0a~iIG!^rCO62)^lw)F&_RE#b7;k zReH3z9gB3ID`rUZ7o1kWeXyBegnZ}e63|8?y#JKvKjOZ`2K&=|SL$_d#n|xdS7Nn~ zNfq_jjJNH@e8v-&9piObkNXVQFrJWf1jcjN?jNwiX~r{zhByzp9Cs3&waw>TzO2HOVku zIZtWEb4gvLB!zQcwM8?GS7wiC#;dR=W4uZi730-dw7=cJ_tn``n(WQ;fNqGG&Bi<)hDo~G<6&3NTBh2B+K;25vAzJT$HlzEiJ)*9*e zt61vt+cS*k+HNK@vW%y$W*G0~-|6Myih9HuPcV+kc>me=UuV28^ZH!I6P6w0Ne>cK z8LnYGA?XN==dj&hYUoKbo*^{EdC=v^6QX{=Xp*Ktk7-y2UG{zJ#8KDVguUHgS0=a_ z(g?e`jHl-;{L_7}^rry6c&3GR2 zou@lyuX(Ax|CxNo6P6w0t+yWc8LnYGA?XN==dc~RQA#tOAvDB!(B;SzqJF?=lBPg- zp|eZm4re^Wk-H~~j5nf2WJn_-tSEyCX<5-XAaH zRrC7X8BbVtjMr*C?lWA&ctX+<7|&tb?5Knt1e1o)5a&UcBTtC>0i#Kp0zK{ak}i=u zWIWf~guOlV-IpPah>**8dd@PQY97XT6)au(jHhD8cxR=Iuf}dtWkc3T*COo zcift*O%^?8nNc+lW5#c>oaHm4iqXlUiRIW|WRe?Dj}seo#04{I%RkMGE~#sfq>vd$ zESh1)_4b%%#$kIhW=y)Mm~qsi{YAW$r!jj$uA1Gi(>EsKg=+rYkPY6)f3F9t`=^xoc|>7U;7H|US}(CE6`Fu{(5>M{G&HnMxV%My+PnP z)*H1x_ZhZfJ)!9ctmp9EpR&Sf)-#lbSZ4BY zD_v@{pXRvcR?JwrJ-y}*LN@f8I|;>Ty;ib+*x>c`*;AU)hLni&V+-7J`_O^{MjNn- z)6aU=Fy}Bjb>ht#Msw{=Gn$^fprbiY$h-Y9y*)dx9b+HQy~tS1qZg^>HE9<6On?##|-dd@PHY97W^TUo5~nM%dzN72OMadA>zDNI#E z8cbD@W-9kw$8oQis)hZ}3`dn`ISRc5qE9w*{i!YG!SZ$|d^UIF>?r2%CtvinNin5AusciL!W591T8(^&Ji^Y=lPEoL!pk z(pif6k7D)0D(wU4T+ zbN@oW@1lEuls{ArHoAy`eR;Rr;nlvnyaKBc?wxzitzA%xQ&cmTIO}eVWRSn?sac!X z9~bFKq9J1@tLS%AT`bacUxR;NeejJzx?cMrZk}ki>+@G<*V?UzMC&Huq z39@JDYs~lW!_N0_HAm>ilPUx}F{09{U9^ViMe_ao_!uX+S3BRo1`jg?(+)-m3PO z0n6{vZ)$-c-k1lmmHKZ}C$MPlAhr{jspjJiq7a{kc#DHrZV>gGdYlvWX>UpQpCmVx z-_S>b!}~rPYZz@lg`_kIa*gd4kl+s9haXgDw!Mr~(Lxd^EhIrXQ6s^p9-x!k@;X^T zUPuB(L0ct(k>DM4VAIdDrP=f2P#|Y;T{Mv9dn^)lS)Zr*e zQwnjUv=B!lL=8u8yPtl|vBtT10kZ_;eaPWRQTjDTU@lJ|eu>g^v!(rYQw~Q8Qk#@J zFPlrvacYL6PEk@)1ZJ_hkJ9-#I?Jl|7ul%OZ|YLYOpBw_BIiie^w7%YLn{#{&^1MM z_Z8fa9$Hyf?|-UP2G~#xtWNy|HBaf9PMkb8tr|;N8F8l=$r*(x+c zg?jS}4WZzv*9}oL2IXTyLue>alYsgv2d`frlr1loFpy1Fe7P|A1-O}b&{2| zew2~4*8kriX)T?bFKOXh2}#S`&1WR7v5cg3k4ajOWF;*GJ|}5?HI%e|do)RF*d(n; zto9L;w7&G;l(gi5Xgki6@+GY~p`?ZTc_b|)u@}>lRtNGu9N4p`F<4aRMVhwO2iFXW zk?=z;64xeu<0y2U26)D09KQ%%Jqod)nj>^oqid5Rbj6tKGA`(=nG=oCRS586RHcQE zT55=zf9lKbg~Km!6Rg2Q=prvIbP=VZM_?=dd!Ew-D~4y4R`IkK`aWhgzem5RS(Hh8 zp${Q8Q$H&%rXgPHrtATOsNdABlu3J`4dIbhi z*h)jZ(m@W93mC=go(Q6kwp45BRv;b{1|gIHz|^_%*`Ge<$z(D6c6Bgnc&VwvzI zXzY0%3tzu9e1*Q~+i6fCzLXZ?tAnWF>#Doy-NSkK>Lf1|%oL?}T?8hWolDCDYfpL{ zJ?VN^ZoSiQ>NLuvebI;b>ZN`-G8F}4AAyNy&p%yAftMV_3WKQM)GsJAEpv6vG%Z-o zlY#M6z28*IGAVSSEY@T5T%kwwsPA?pZXuUz9OY4L$jaejG&pHxo!gH1C8HP%lB_6f zu^o8v9Q@LM_mXpQq&1-L^my$<%btnV-nV=uzTE#|kw3Q&gQh$$n|!7X_omn`+?@JI z=w7;bD?q$mxO+^ldUw>vp#KB7Kln0^;QtaQ@RN%OabDf%$0p^3&%;^mlNbk;4bq}` z;x7+HYxk^*V8)T1uvdb)r=06w)Q4~Sk$mqTp1+yPEJ6Z%6JMt$CR_F7`7e05sUH?F zulQH`oR_oubtzPX*t3WS>&#jG2hLBFtfL6V?8h+Bxwvh?Xj5Bkv?N$KbWX6K_Z)xW zu5BL~UTEPi8FrGL^*NaLE2)JDIj6!C~%yD~{hcolF@ zDe_bAeKQ3R!ZGt{OOpAS?J!Jin^^sGZM5v3IF}v1^e%<5Xm-+BXoD#9Y*t6T!a=08 za1eP!&9m9U5m>$ngN9C;Annp8GAi<$17%s97OOV~o8^=n- zEiFNP&{A4oyQhI;ex9&UD9+Yqn8N(cFvC(7>y?J}&~e!moh!t;(!!7EBIZhSdvyQL zz*Kb}rb@{R1p!6DdKrNU0^j}(rE9XKIfHXpSCIOWa_h3W)GViFxT+~iN(F&QWQ!@C znfDFpo>lFiGNkJ_b*3OT=RvHbemL(d3dCvxlgM6vQV@kFRuY5Q;vg2;yszKX{gj!O zjJ=2IvzuXpv(H9CW;4u@Aa^sYfCR0)FXP0l8Ad83fzm<}v=B8Cd~_R~Y|ratD|sOa z6s42x1V(~6bRg}$OmFwsm21XI^eag1dxG4~JXjqR3Z*bbfz?T1QrHNk^AXnN5LN*! zzem5R>nSrW!Y({0gk?9wG;id)<|;r?uOTS(U)B!%LIf!-L{JA&L(qG-(y6|@PIZzO z%3q4osV)MOzg~Qt(gWGj@TmAC(XSwNzj6n&xzy~XX2_$8lF}zwlDz(v((bxtnxocR z)&419`91ngbyH?q1fBhddVP(zfERXIC49Nb^$1SP3NSUqi!x5k253+rrj!<9YLKX5 z>Vz%yZaA-Z>&dHi^PZygZiv8~nC*Ow(#dRTRy{YG6{P+{xg*(JY7SE~9D9nAk|Z#h zYc-|wF*Ryc`%7&!>o@fY%1n!?*$0Fvn-E#iwF$;@?p4{W%-$GC)XZsHWZ}LUE4!`f ziL1-yXDjth_H%5n?CEW^O~+o5HIEX#b4)GK;rWoD)bVV9p&nAN{4ooRhs)GTCx)T z3Q{L2H#DOh!b(!}9S)YFz#1ViGs;gsn!C8Ed}vg;e-dD9=nCYW6q=SY%U*#pnZ+$_ zOF7EK@xOC%vz}!aw-QX6W~?e#!gYmMS6XP3wVJ3IuASNhre-@ksv)Lo$O~syMZr`Z zfz7P9JwoX@+0y>HVK;FoNL{Dgx!GK5dejUj4n;|6Ca}fra!O|wH$(b7tJPlep5RrGcDhLdH=B%H$lyr89rkO3XLm| z0{<`sk(NdfQA5xLchIRz^Ex$7Ubwg^Dg+VO;&w6(P8(O&+tET6pCtMfq^3A+Puo_u zw(aPdq-MyYiV8u3rN!+oN@u2QL(m$BprlO<`c3_do!?J$a{q~auX%ARz|_@-snEi5 z5mQwmrj!<9s+6c<>Q8T{ccF#luy6s33N1ZH7*??aRhEi9`vn4&|%l=^j# za<9+BdIdGZv8O1oDhX_H8>DnTrfzhY8Z}JmH+3atre&q~{QkeYxZUIoM^sFl$Tt_d zA>O{aQqI$NK9c?F974X$;l?2jJL+$3b;m+=5Z!RBLLf}*l+xbsq8`y+-EQ7~t9o%% zeT}x4>d|E4y)3a(8F4!Ujm`V&%4kr{^bJ~X4O-zEG<1XpDJ>-WFwqOtp!XlULAzh1 zLARk717>K|VHfTP?Y+J3y~!iIS83tr_XyDny?5jAF%j{Xdha>Yzqiibd*I^TvLDg` z-U|t!w38hHI*H!M)qTGA^eveBFt6X_0U+HS4umKI)fBwTRq9oW&eDp;FyI|n&9MBY zW~*zyz0y|hAL7t`S`JOTKxYmPPm9D#>&&?8Oe+ju*cqjTooOeU+nK-pDV?d#>r4kl z=!^mzb9|H#Js{%+^J(U$n!M6ouC#)1*PxeZxw<~{Xq_59p-D zvi4o)+BeEVU)VmSeZcX=7}14#tU&iEs#nLQ~yWAmx9r)8+v2;tw&$a5O|#=|9K5^p(J`H7 zB7D(2?Q)vN63+epPA7uF?ebHM8J$?r?Ga-Sbt)Px#aKwZ1}{Xh;6Kb?aqztwGGkTG zd7GaoMuXF zXNThc!{}*xf`iK~3vRMQ|DbWS{!X4XyN~m2Kj(OVX)3ZNuAaBe{6>#V&a>(4MPggb zsof^whp(tEy*1G@K)~vh)Yg`Zj`QXgMezkj5Ky?k)t(c*F1gPI?JjZ9Jq=r6E(|!L z$KPFIR4Ivsf%P|xxnibQ>2Daayp<`xaneihA9^dM6>3mw^y_ADelLBJg5j&|c+$u+ zdJ=fmArs6`*4OUD5#G*d+fKRV3>_9PMcI&j{2qGszQ~%}RI^)-@P-tV7cO)NAID=c zZU&!AdWn*+rukp~@bIeX{Na_8`=ri;=jQmsLmMyc4{!H>(O+@W`NP|d-`V9A^|m9= zxqvyu!(lNF@wU_#Z^cKO{L=o`YfE~yJ>mixH5~*IJ{;OOAD@zq>hK0A+2G$Bo-lx) z&Ci`yU;Oeex?V~Lg@TS6ZDACx`Wz0(@E-=ZNkxQVStpLcSvvve5X)k1;~ZE27Ny6( zc20{M6D`Lz_!oUkj`2R7Nt$6vhm!T($r-qU+6e@~3%wQ_(E7wV_{JMq^>(}#<57;m z_Coigg{gSegF623?P_bZIEj*WC1qjfQUb=XjXmFuy#j37%TTKnaI~LQ55>+3 z3pRKJI5bm3Lx;t}JwB3}3F5ESVet!ThsA0Q+-nCg4S@kEoERLb(JbW!c@B%W3rqVS z#T}kkJSFdV94dK1zuJQnS9}&9!C`U9d#D;vMfy(bmV8 z=4_lYzkCP&@fOTtj(_vn z;H>7ftxPdzu4fFjbi{(*At8s`+7|RB2_kF0LveiAN7nQa!EYgMjKA(6bnqgLy43?A z`a;~%m&ur)v=ODT5${DsJ1Q4`JEO&0(vyk#I6fFMbckm-bc7|mPj((J>q80(F78Da zdA)~cP2pCa@Q&wz_OF|Qh5rN8&UC1yx6Mud!jrw)UoHD3vq0Bt;P4oT43@43nGf)P zuN)435W_uN;O}_V7C9%b8e_Y%lRna_$;F8UcVohDeJm)Mfe*r%U-I5)@mJ@qr+W~!Dt>b#fbSdHkpDIhiP*}=}0;j^iL@; zX<$Q<8iC7rOGzXZnAovl%u?XntPG&s)X%?y3HtroEOE!4KL!BY*|U$gbP5<}ECf)7 zb>lR|9mKm(&_m>tpeI##gggYjr8V&?ObuOD!Flm8l?Yk|BKVd>zj$J4Y5hhbMNwSV z`)0?5_0n?^At(O`c4h@azBUmKG07C=WItAQA0zy7m|(YuSJmRpasSsIX_1a3Ksxi1=CLcStlp!2`{_n&;qMD}y;hGnTZLPmk z$lzuJ0urJegvmNhrX=HLxB)2>fmEzTP-pecuOP23xQckLvOjJ>u=^ThoN-s$vcO<&OqJ{Vc^S(D!mBES8W$#2h_{Pq~~8#gJQ zOR}=prKjyse*2)Lw%J?|L4G?I`Aw4CKE>vo%e{)LM6s&>hCk!DzXi71<<;JU{AQ-R zoc#77uJtrM=o}hjY>RwzXzbOR3AD8Q)@1S9CKp_#|?hbM%W(QNWALN zXcb>jHZ6fI9JO{CXSz{>Gjd~4>pB9Oy&$;BY6mw6GE=u}wi}#qK8DFOVK%ibyc-|I zw;yN>ay7}k6XU?u8WJ2~xW*Fa zqc>yodZhb%AQvaK=AjuGRpi(qQIaOakU}*SS;E?`{QCpwjj4%^oy~teKrBlO2SLaeo9=BT-=spZjpwuZ4JS)yJw{#%V3O4$+6?T}QrB4h!a>zfj|yx^Njg2m}h4*D=}v~7cHYz`&lRkg(MUw z)isC5kj?pkd(kF+!#8SY4&9!AAKa)~U}C*0ckh_7Bym=`q^?HU?r3WYR-D1|ch>ua z!$y{d1xw;S0f{Ce=jXJ*nH<9cfG=dr~WNJmtO7EIIY?lD}FT&YXqSQ zHCx!CiIOd(s3!NCr((hERSRTk2i4cMN8U`i%GAZ|cNM zsTp#Q$$;bRc~NNKznZ#i_yrEmwILYXGEbJkQeW6rQdIA6lRND-{~yZb(YE(^J=)qk@7 z;`)oY3DA?GyuaO<1D7>$t{|tafJcLkqvWPueT7!HJu4ac*{I*IG|^x^A&=vFj5OU} zZ%US%U=V$b&rja2_C(oPCg|Zmj>e@@(86(nzI~{#mXar1BdL0nWazP~u&vtt_;Jz1 z2EA_ccuDc@S)*6oB}=$o;NG2T&61QF@I+WasHv(W&rDU$)m&8QuYEd3KZQYAx>11B)n%!F zf4Lq({;7j;e|2R%*w_o)V^!*i?r1EdTv6(>urjh<+_$>;lyCb({jH_sGA2cuLE08? z+s6VNjWj(F@7WjUzA?;TG>Q4o$Ni-p%*jsX@mIEPf~)9yW2GZhyqtKoC`rMJxPNhT z)L&Xh*dF&+w#5Com-_arP|99OJL-d_m1%mdEIW)?YE9}V92Tm{G_Y+C&3VPuMw2w| z_jmCsV<}4NDzLRjw($L3^~37d{3LJfbnTC0cZ;MYiP?W35XFQ*wVY@lfou4>A);Vt z(1LX%7T90{K$54_eJ}*vrrMd-cO2IG^=kc;PWT46&BxfAI0Zs89_Wo55^aBC{BPLM zM=S(rrV_^$cUeau1GvAFqzsPPqcG&ts{&lF4spG@J?h5|*WkQ0b*9>CZ#V|B_2yKR z=BAsM(>5B`Lblhon4^`QnfB$PI7BW|vSW^EkZTkJxxz7Hc#wc6;W+9iG-0K2de1D*|`K)-`ylb zJq=btN{yKc%xjov237hMj^&4nEmW1nlUglL_$~|8ML7$V za;wR8TGZECTxm6=nI84eIA7oNnVcG|mP2G}WmA~CUIi}ADWK|gWH6o%Kv78!0al1-^Vuh(^ zIdh*@AQ{|kD3&T;A&RBbXDI%>w#s^*U2zioYSr_f)y7VwDK+si+d*46uV}@|9^QP& z2%6b|*-hrt6K5+EvQ(rwUt1DEWzVybYu--Qbi(0WI)YPrqXi(7>go_R^~VorBG|a2)m8Jiy|B+@rX(#BR^h-mkxo2z5s#ddVMpW=)QXJS@P_Pc& zRV!Ghg5EDx@K06nrGkRZ>4MEF*fOqy$Eo0ff`Y9Gm5(k;Fxp*N(xZdk%riz zf}ICc@Maa9omUX48-VWm2~sz4Aw;WasgS)|HRcr5=p)xbzjmJDsxd%Vt{RJ}F)eux z-V1r2LKB9Mmo?NVDq8CKzv0WJ%dWMucQC?oEXP-EpDK&@?BNq_R0-U3jZ1}K^Y{$T z43Z?VZD3z>{tZL+lqhA6W}88CH5T?QDrbKF!Y|^4%WlU;Do?!Bo)UGoSj@bfCtzuJe7KMC zi_fmI&pDr6eKZE2T}AeI^-Q%bQrS1zuH0*9cG%;*I}eat-^S$jN<*hD^p<;GUEF{_HZ9!T}K z4%*1*8AUqM*yvFq!va}lEX zi@&I6E9Qm@@DMB=jxx1nKH|2@IgCEvVxJq=#~hz6{?g$UZ(PJ4$ef9DLEqxwmNQxi z`Q&d3)|_F}a}Qc1XOiZ1YZLlMXfrJ)tBVxO5J{Nj`RX$|Re}@M$jzG<2iKlasmJ1% zy{b{K_!SPbzQIXMWW_1ozcE)AMS3m;il*`IWEnREXLyOu5>E3XS6`rXf4>g*s-|?D z(*0DipcWrwGG8^<_E*_!WqkggczVRr=&TLADCt{om+{^#lbEsos0 z#yXbiQPt=$9V=Q~e66L=-`TzJwjvz2aemfNj4Skm%l6g>7uGe@z7QG+;*0}+X3L7- zub$XYyFro2+D`&y(~((q6tdUfI_g+en<<5?sP8?Af#x z4pfvBZT6bV@|qz^k7rA>iPr1bOF`ztH7~+ll0#J) zFDgWp(n3_pu#=(cEoMh5Q=^FOR*N9mrAxso&J6DKss*-ZCO|+07_0wz%zrGs-w9 z24x)d8{Ej+^6635!pqQcb||Z(RfQ;1T8J`_sG;oftLb8EUKg9mGjR^hO`>$Mh2Tcb z2G`$6>Gqt`LE{LlRc8Ggw_n9mSE^h`PC1rDV1&a`QJ}UHm`3>$N^3(rXIyq#-Tra| zso&JQC^RkN9^TH^=^G*Dh~J}Ta22W|uCL9FB7OHp$q5YHQjYVL5cHUcHpwU#A~PCBne?9S2E*$^OiGmD(szyona@Rm|0%NObyx- zDYm^q8BK&&cn*5C|1o_de)`TFm=Ezq7pi|S15^9R?fBU{a_XciRHsF_2=#VdhYQ+% z-)T8@_F*>awzJf(#89u*+*ql(@L%8UAbL3J)}q%i9@ zqBzvwVii}9HTa2EqD=nl;nKMOD?H=&rG<~C;0}{9V!n)j?vMy#U{NcUlvb%%RK4O= zO(GoaXdDF&jX{URUpl^|t>mYSD|BclBR%~yg=D>lCGd-x2kt%W29KMp-eK}`l7U@+ zYoD8>iddMLq{1WQJh53>p)!0a(F@LJ_Bp$kS!E<|Rw*OTzKEHGh%&2`6O^j-)W1@C zG_Q0udF~_BEP!kBCS~qJl)j77fgR|jmxD1k1=WE-F8%YH`WHbQ&x6>iw~2mOBP6O> zji5&F?^Nkjwlu_O28u?CfPF&Qli6&lc2PCrfGJ8!FF}KVRZ+SrXgH%4iT7v5Fjy`U zwC-dCewg&C#yx+0ad5#I9iG2KQ{P%`8Y~WCXSCb-=o{X|CSCUwXQPM8v_rXTep081 za9Ist@P)P*=q+s8A4Ga?3NAXMJX*Y6stbW>Ud9u%x5_34=h*1+9;Z{zVtCg>v^}|G z);W=Pl{|os$cz|DWsj2nK1u7*+R5ebCbCQ5S~z}fqBZ65;zu|aM!5vgv&+2V&78CC z=Tw-|%h*4$UTvBZUeMMN7D5*Cdj{>PUqR~a|6)roX!f*GuY#5u zd$+2Yc`s6yO{d5sME7cOy^t4e>doVbI`TsHRumW>fwA{nZ=iHvUg>7?LiSda(k%qW z-p^cL$le21)wGkaC`$uVJ1DbhFb`sf-X?rt*UmxgBrx{=j!Li3mX@HYZX#$3*q4<( zl+C6weN+wETTxO52#mdBlrCiN4naE-dvDKS?<>XLoWZ{LPtxptreYy`b9n1~STSWg z_U6(+A$wQz9>?BOh3wsF>|HDN{*`0zUB=#Tq~MNd?TE4W14m_Vv>#{RgX$8cjlHc` zX_nqF3<5R{3roIvSOI%OB&8Pqv$41FjlXSLvFA4%5qsX`xPLyM-D#e7N`3d)KJm)Q zc=4fF)#~y3A4)7r#W9SQSg^|5{M(s~wra*pQ(MW97sQTd=MoLFE03>pMhoy(Ie&MQ zix~D{irz$Y*Q+csb<|*wi3O;JSmf*9g*`%j9_erSH%%EAlt}W@m-v$4%2S(Brg~sW z4ygG2XJ^cuQClgz%zn)|?|TSIp$=3{nhC;amWYIU8!!N#>#I2O^z526{3Qkz!0 zd*W5EqBEufXa(IH^`EE8NE6CfT0~D^=J{KjWj??pbFbIEc?RsdY@EZ#GRoZ(tsS*V zX1k!lwU64;97jQ~Y77(Juf~J9$Hj{8iTQIMurG#Dn`G3hO@qPVbcOUbTZd04%P33F5?cK&;7w*g^gD z>h2)w=B*99+f}+QTUuWdKw;o1NL{CFFPlwc`ly;--5sz20vmXjQ@U_OMMe{bM9;T5@68hx0m;(kNPBk^F48+dba2cCMhsabgOHx3I6 znSnQCPyGr~pZuN;JmbZqtnMfLB)hsVWp6!P-S;()q8ueP7L@nP`Sdzj(V(%Mmu0pF zVnJO^EU1oGO)`r#a>K;#Br@w9kCsj9rqlG*z9GrL%6#tMi~LZ(Z&3xy+37^dF4ZTw z+eC=;ydBmfyPfP$A!D-WcCkA1N^Jw!&OkJA%kcw@*i@5)-kw{%g3(aF?;9iJ1K~Wl zju#B&mN=7fO$luYQX&qWDKV8>;@x~=QbHg9l(+zlWLu#Rdi%y#D|#uB+IcE{?A|ts zL#iZ5N1V`CwQ15Iu5=KuPhZy@G1?^b{T}ld&Wk0?)*44<9ma+uz|dW6o@JO1rk+>JDkEa{=_JFKtQSTH1p;gVI7 zAhKpXd}+IS-xq^YnI2wCH0JL=p9@bkWQx~wc4SIXobK?A8!YXO7IRnR;sFmWa)0Td zbgfsfkNFSA{FOtxxyW@(Ew1ez_mdD)O`6v_9OX8Ojre%gi`@-9ocah`~qNxX|0LZ^socqZ`+VWP%-CUG{2(W|!Uvm{pg z#InC<78ui9WH-S^tyx8M*n+4$JvC_cFdO zjTW33RRFY|sOO(oNmK=xOUl3;Po3_m+&$^^le`L^QorT&gwEL{*gbL_`#gVOb_koL z)M)T+!GgKItu{o1pQ`Dpd*135P3VInGh43NE+##Rb8rAz zRRIY>P#~+rKw`bYwDp)yxyBkfVzks|sbwD*Xe@q8hsg;?Yto`dR;AJ$n|vVa zxaAmGHB*M8b&P08RuupPUBKsUDfiUto+jN>A5WxKp6p~ed7zQ~wfUK$jSp@~MChaNFYB23Z zbjmf>$U18I{T){N`|3Yr?X)LrHl)*=!JJUQlTg6Zq`9hj5YHfJ@vV#YMxT7wiyLWiRVx-Y=lywpkVR33tOVW7n@U`nFH-6 z(adt9@tPkB8Z$P7G+mY^ifVd!hHBpw5Op!wnA62L2j$R9mE(arm?*M$E^4Rou2G`Y zg>LfJE>CnV`voorDLz+e^l%>%DtwiiT zkqD@wi5Ffp8p(H`4jyTrf;5fFLK>BaG{T41g%u#}t2KD)6M?uNUximXL_MPF6@qF4c>ALKw%w*CZ3GvUNurh+52>B@P{1z`Rv1EyhKvx9-eIq{Fv z0w^s2@U|QPrD*^a6XybeTO_gC4V{dX$eNcK>+^TsS-JQI>|atWs|kos8UFh|_AjVv z{*pp`S4|veg(vQTM&Vap$(8N;-s)-5u=BUWZTdu_DtZG+>?AyJN#vA<2TEgp!vkd& zEtfq3nQD04tL@PjW2F0c&r_Exi~`{fm{AMfq9%KXuxYb>+2q9C6v3{*&++mp+A>PV zHS~jFk0*^mGCGvuf2EXhgMpG>@dHLJnw1)u_j69SRZC+SN5id_(c9^Yb?FH|t~TN| zm|<$ka?&9sV4#H3TNm7$I`vMCUo#Wzb>D>?`*>Q8)pk2v%*fsq%Z0jh_WsReXfH8u7f7RLcKC|*HO=*Br$BgH1o4i&-Hno>vKXq z$)%p_cX~D!0A`M>?$HNf>Ni{RsHaR2P&5($wNX!V7}RSfnXxy_Q#kg~Nj(*ey)L~19T=;V=(8tBy&v3e)N5B#mU;#}OFhdChSZKU z^}abPhk74>_;BjE?udFVf*tgYt9D2|*PcA;CCP?*R@jM>bXh%vdSj{@^tlcWxDJ}6 z3iS+$j(QFyi4N;!f2Z}*#8B2;*XM+Kl1n|;?=nF)zTj$ADrw7Qp)^smn<iO0DM&2lcUwX zTa8wwO3Kp8AZKZ1xwx!O6Y8-yI!V%P#?isF6X^lhBa=)i-X4xC*ZV}7^{Kzy`eecC{qDtOm+%75zjOqHX}i%mol%ER+rmN9BxTw$x=ys z>&QZ^%qNIsG$=T3MH4A|as>J8un{Dwq%1)UW|kn98+0H#x>c*WG>0JH9?Kz!#C{q; zn?;ZzK~>8`YPe=(r~zYnk~poH6C|lyNnfj}MMqlbh{>ZAtO)7gx|=pg7uhg%-7U9)#6I5ctkF2s`XVoGS=E4-i5$DY3SU_V-o zQ7jJnwN2L${7rc*vSc*g_9PazkfVD^BD-%(_QfJ-ggbfJYiE>k?B z17O+%K6|?xq%RQnx1)nFZdnPFk^K0m)1Y0Q^mIR_?P&z)K?-!y7s=8@Ss@tMH`wN( ze?yUBCs(m5-t#Q)Zzf&S9v^^BKRd$Z7TvsQw0WK(*0j}{S#ZSFxSqQ&OWx(~zVKr1 zzBJoYXuNLbM|sk#$V=aSnY=8#`@*3EcVEWsk-IPU*f(mA+9WON^1vj zol5ITGcyXMn&7i4t$w0I?3_N2x~y5pz)E6^`J|?_I%|?T88yTF%R<^Js(W^tw9Z z)7IH>Zcd#g=cvx8tD}SIBlqX*`kXo&KcYJ2q5;}n)7H7+!#Q=%`g7H3b#?53^N4tx zgZg-eIN$q_>a2HlbZ~a$wsn6nr%q{&>gaTzwt2aAI&+zz9=hX{%P~P2Mt`~Hk3A01 zAa@xYhf>qA)$KDp3`i`g@De?CjvaKA*P|z$VW(H$&($RC$n-QT5-efyw`)|KsO1-I z!ltnm{NDUfBRZP+$$&A%#u}+^{e``0t%)s(o@SB`gVDh~T7&VgXyZ2qb`65}NgM94 zve#CJW$%8Em2EK^+qId)$_~FfEc@J_F-Kjs-SN=IO6C&qVaKDXA04OhwX~dDs@z*S z3j}K=(`ejR1WCcGfO(?JhYs_fUY}!XCd=Qn6t^8GlIJB1z zHOs4O!4-3_;((7!TbDfK)#9@BxiLJ_-@WX&wCgC|>N)CMUJ*9vR^E&u8_dY|6=7Em zEgL-6^Fh9M{yuAtBt3_s!9TU;a3py7Hr}*T4WUIlvAAIv%An$eYf`jmlUmIPuo*h5jW&#G z0vEkMZR)8l@P+Bxs1S9u7%Gi%q-ZPA3z*eYcm5^H9!aO{Vep)BK->OE^tV%t(j5d> ztMpZ0ru0Z&=}z((-5Se^Qo4)aMwR}UN{?nsb01OKDwH&(l?7x^tNr-YwMb{(tE)K~ z=5vhe9gCWK@Z+lKAhM>h(pbB?At-Bv)z`M2sViFjmU+#`dBEyMWbHpvkB!<%HLm+r zE+M{OIsRB<;+)g!yT?xpxqN2qcjEHQ1rR7af_%DO*FS!A*!7Qkcznp+|Cn6%uvfcv z`TJD3zI)4Q4gRiR!PhdkKHgZrqohledZtt{TH*F^wl4csefL3>9R5Nxpc@$InsJKe zv3R3>$)0XGF|Uo*f2x%p3{sW5wRGKYoQkX!3q-9$A2~()X`@kHk}QwzPg08o^IfFM zA{w_Ov9>rPn(#_uwGT$FeiP|2|IzvTqE%Dj4aq1Lrnn*bE>6wIjPj`}-+ z#8t_Lmr>qsoP|+Pxm65SGr%slhG-m!@ppnb%@5~tgYs*o&%!BB3C~~ddz=>_Ef!qAk9_MN20|qGO4b5rx4|=hR;95tkG3eA89zm*4#Vq zWd_2hr9%<3PsfOODhZyhz-+VG4PC{A@GI^TNo!+r>-scXuxwDvC7R2VLHI7X_C+YwD|?pTif_2n-cYTpNi-zhIm* z%=wV`DTZDLjG|V_fv3L}9`U*{$|*i6zOdDJCAdaR81pY1kNWpBHET%moziQ;%0cu; z7{q-%Mg48UMHJaQSf}ZDaoe2R>;2uBx6}<>n>~MT1kv^1AHP#TpW>Tf1=8W3NY4*Q zV1v}aCz@~w`h4W-wWP)U=jZQ>p$E~8iD?Yb7T<#g_^Pw{!qGd7>I@lcPTSlejGejL zHgF9lB;nMpvhE9~T5&Pyh<={~^27R~z)T7{n@Vg~^irz8tdhMW^@D%cC-yq!OCu_< zZ7=NgU}n4a!R76-;<5T$>(r*;#Ba>`Vo}szTo(=eVN4n<_G7c~weX!Gi(iBY5d3hx z#aGNq#e=H`i8uKTv&N&{6BR45&}%PYp7FxBAQ*YPN2Z7eb~H|j9nCmaqYPh9@+ger z8-e1&o@ND&dQ^&9mC1IESJhj2JW*JX-8<$Z3mRv^T?0dbJ8S%J@T%>@r2 z#VC>U5oZ>d%Lsd%v3}6r$J!rloAVur7~RqE(x}7u1ZJ9c%ly@)FY(jx(pcQT;H448 zrlQ1B%9u3DrHY4;3EJXQItgh1rgdKXV& z-@r(bIBO3IT6v7prO!BJ@R>H$1E5MQ>?pa6{7Qa=kb^HW-lE=N+5;f}Nf3YrEmV4Ww0vZftF3XOaPcK}9q3;1CIfWG25kyTZ&{09 z?Gw^g&W=4kBH60W9Yc|x?^wz$p|-LOtVqv?!o;#HAtOC|7=~&^OK#$oB<5->XQqQ6 zvoi9bqB94lx;$meu^o~yb&T7SooO(cPFg8cmr*3?U~WO~J(ag$g;`I`)YhxEeYV>f z58fRQR!JjjU$pr5(W-r^JDy#Hc+)sV()MWa&-gw`f`uqcUV1ZF&EDGifNr?HF_SOA$Eg;V%Fb=0$iQ{+yu~F+Ao>YdOnQ3|cmS<+jzHB33 ztvfAcQSIC{EH`{C+wRi=;5PVi`8}y)(VbcMQvki>1s9ykm0Hw&Vy7Ys{)|H0OSW+v z-8}IT1mGA>QFgt|{f$+ZdO^df&9TH;2}@}m)T?6 zcrBkVI`Ka2v7WzX$P2RlybQbWxu+a|(dYKI?AprRZZB8WP1uQDTBdKd5IYW}1L$!9 zm%FuZpEScJW34N;WEU@cs>Sn9e(IE6)t^3S&7m?EHY#p}jWhD{r}e$E-dlO~(cbao z_C6K8t#jT;HW;;zzMbEP^V<%0-LmTEbUwnGX`G8juiK^9UCdtT&*L$7}g}_IN#i z&mC`EnLcvaIPuAj%#QQvjw8<=Z{Y8_<4w#&+n3#??*p}G@2XXD_FeT#&b_Nq^X$9W z!+Iq({H21wl$U1S*F5$Qu6OG=njiB9ku_?tMh(`efkrD)h&_UK&@{yj8YP<#)7)u?kx55Jha^=PWOkm0ji2uSBX zK(SkQGTCHFf>Yj3QEUDIb_N!+Vfx4+njKf&Ym-ghks9Fw#EjPOb~@adK0L)6O}wGI zD&!;WTwQm`^x6C!dKGH%EvE;EW*Bb?Q}+Wdf;_Ju@kKDn-x{obVMP4Luxsp0`d zO|u?AT;m=eG_7&F@wP95JydAyF zjc9};W;sbKfzE@4W0~OSA7$C9KC;zc$u9e?8lTo=GQGEZS@vIlIrj`J5678?l~3k= z@r#-*{rvanA+EI60HxJK@qXTN$mV~sEI&1SLGY%EY1})E#m`s{FtiBAE9;7%GRMwc zOw4;axXu`8J&`;e>}E5?H<%RjanfYILX^9&jpu%<)<4btbYm~>u+zcwanfR=g44PL zCspg8IB5=1yl6k1=AI6IW0_6)bTF%=;>-8TpmMFX_X{PBl54Hvy>`5KK3yi~&Rs{! zJk~8zwf;#L%~^|Q!-;$6Tx7Kdi+V z5rfigf1$3<(!q%6gJ!`LGdE05^h;PaM73HB|L&1^lAYyCwl-fYz7x-urmWG6J@$>H5)*eQ8!_FdQDK_?*c~=PO0T73@yOGB4A%aX9vQGp>GXP=`dw zFP_NZcofw5!2bAv%$g6B;G&duZ4jujp9XEr819kS(AW+ZGBm^2QKRO|Xz8#qs z1R7N8_bGvYlhFj@>Ww!~NWxF{o0PU3i6LOwN(h*&<k_0*ukJQfcN|2qo>L&nn`cIMQea?bzGR)rBt zu$;_=|Hmw665wMqM09$ZV}q_vMxsvE!T*s2;#+)9?0?r!$^Rmn>;FR1{~|H}FVtHR zr88I?+pL#B3H}*@A{qk5?5Fu(gMKswOxREJ|0F+?{tqob+9!tY(6#(OrBc673H+y( z%LhH`4V03EpS;SX>{PSZ|CX)vzsXuY@7yn8@xN|Q;n@$)@qZnoY-!P3@_)Mt*FR+~ z?ZBX}e~DA+e{p5hna?~H+zbDYLBdn14&&*LOS465df4^vY-RDg@W0H3|GTN@8lSRU z!3+_dzvjh0S0^Lke_03rM-qr{(*LfXlK(|C*Z=F2{uc?1Q^jBN0yZaC?KMB`$Z&+3 zB3q&NS8dGKY3u0xF8=L<71A|GNX}`?)jcZm`;_47e&u)_1p-{% zND^Lsr3qA{HnFQMTj^?v#6T@xux@MTnMYfA{*UK4`Io=K$=V-@-T(|{5)GYPCPLZ0 zSBRsuXKSZYdyCf1Szingq)ai+S@Vr#lUFWn!xR?okVC-TIJ1r#4cPFc!c>jUYx4%6 ztCJb1lm3`1>QWqwi{gvf^-yxAh?346&|v=S&zSA>TXSwmV9d+r%$8Ayg|`b6!@+B+ zaAs}f%(}>#^^r3hB4_djVA+}7Er>QHYjCa`OLg-|*K2}_4mwYYU*3YEhj(9LLTC#s z;Xun)I?x^VvqRQxwRo>4{N@95ymuJV+um37s$ei|LeR+uDmKJx}>f- zwZwI(8;lqej%M?z9sRV?xDCY%<3`lpi0dZoXIm4crlHTtZcc2wQjedZn)0fkCB~?z z4U6dZ>ll|jCZahWTk39Xk;g=09;JR0xkON48d9<>-kJatB|={TC{hY7R8NG{Py_rApXv%G)kW%)xdXSb76!K-#gM8y;Yt?=B%5i}Q&vbE}VzGSz3M%!~I zdpy*(&y1=+cH+Ec{=(Ci`A2iUW!tj+!rjaA=kDepg$0@AofCUD&CdB6G{crUOYv0t z@-N=2#}(Vz0q2Rj9kpHRFFZVd_N9A^mr{kX#GOYjIz3?q_#nmXC@Nol(I@P4-7F)O zjTlIE9zt){cf;+t-}wuk+M=VRmsEeoo%kz#DV!Jn)U4TBr+aI~*$Kfz660v!4!;yl zbvo-Q?kZ|feDoek_So$i|Ee~$;RZa#T|MJ(^2pt!w-h}KlyH@ndU{EU``DgV|4ZFu zHFfyCh%av;*Xm#1Zpl?0mVB<$k}vg;u$B{BZsxj?>n7fS0Jdz5zDAO_gL>hTUb{8V zKwQ2xmzJ-#pw9T;R%g5{rE4^N>Ai1F72n1SL^=;|uk|8^MCbd7(1fPTU=63ls?f)~B(=y||KC`nFHV=vUPsMYQzA zUnz1)e>JE!_E#fW%@^nfb!NaVhN`6yt?DfKT)ibKQX zn!kosRGJHymYWul7JsR;lD{t4j=$FYV79*`y7Si{d=SrMkNl-hEBqxYBveht|D4Q# zHJlQcO9?ngT{M#}_)B_5{*qdp+8c6QM@aD3nC0xlBuu=dA2TQEl=PR=vE(oDnd7e) zemdzdk)S#ojdz>B#$*Rx=cO2bY1x53bz0#sQNdm{_-hPe{NzU+>E${Us7QP8A2gFG0`fz*$AqXxB(m^3I7Dn|Eqd6njT9U_O;*{0mv~xuLJ& zZd`NIosnzS(+^#@JHKf8h*f*kdE^&$m+;F<%qS`tt0v>Wy#tkz`Yqiwluo!q!lOrL z}yLlE9?Sau$UgUq~B#Az6!O>V_1(tSh4UWnKE6eqwlc&QwFzIGVejp_ThhB*u%=c%c!2h%%4M^YE>c5*6puM+M;R0JS@n);p z!3}8t&chq-!ERwxj+y3`PgaTxYDzA+?)$jlFeJ3QkJjY$%aT>Mo?$16UeC4rj`~X2 zzXQ{W1i@5;{p(N@dEe5A{4L1tA$xsfdDnko#PJv>q4|VsZi_vFQdnU@f*0Fk%R5C% zSAqDFEEcl1j_`^;HTc?E2y%XQOYTR@flx%@T-9(20N#k@FQ$?&pzp{S+xRnMe zx3Du1JQ)%nXz}v!wZN-={5f* z-8*x;o|!~%Q#{Rq6`S_t@3b?Sf$`zJXRTs0d5(kd67(-_>cIQqo!j2ZuzUzlAUilO znd!Z?Bg^|aKap6`33?vZh?&m)GNl!Z;uZ8(dTn#v*I|S8WNbTP8q}DW{bq7@D`gv| z%A2_vOAq4PulWSFm#Y{@9C4pBdXJ2b3*;BJAZ2?DXWFxm<=Dzg90S&r%!_3MvU zz)P`bV|c00x$qKA_{yDScsWH1E{RY!Ea5o;&+8g9>D~|DTEHjK3h)a<>n>jk=Q|@=cnm^P+!%vP z`50W{6NBr=cGod*slveZ+s*Lydur8pu(3<6{gE1p=fKsdiWpoeW&QppD-A>rxaves zbQ?V#3u&VCERlC ze!{jU6$Y*kjv2VdSr`GX2DSD_#>hqB3RMw6H+fdM1w8#aR!Q~W*P*rfbVG}+$bXyr<8^2oySSCMr%4O=s1DKm~d6+G1 zA1i^&W4`5aENt=_+!o(LcaT@o*L=$cd%iwZ~L@{1UBbS6P1FPYtGO*^%xlFGZ zRda8Pza1@s>yMdpZT!w$aLLpTT!W~9Y0cn(OO}}jTyhlPa>Op;qTeHv0l#jtBJ~6mDx#2|MQiXx*KSm5( z+J*vLZEEe0gybS{)k>%sTvMX+`|GSU5INwQ5xH;2dH`3A>ioWXBPsMjasY7ks6+1m zmN;-7&*P+7;Oe9@2ABGr3og-w?Y}64%PC^0QdAPL_lHgRV4)p4X3cnrxA=}M$M)Tu z_%_SG>_231TicZvk(`T<7Lld-zSyw>bhG?NHOueD0%88<2ywS|^Cdtg`rX;)sXw%W ztfj}w(M;xdfNM9wT~JE^Cu_|EI5`i%IpV$)hSz3=CFUudB5%Z_S%+gQzeRvE3$fd% z4%m>e#C6Ba%W@m~)rd_;lH!-+Nxt$i;KU~e+-`0{5#Urocd6nFzAfYR45{y6V~tw- zBZK53z>TXS2Hb$Me*c7(1|kP=!y@MOB~?7`GE?+ z)l(S*PJPY=oM^&Fe_95dQ>1jObh+reud_EO9{W~#P@C^=sg{WuSz?3Yuf9_n(Ef-G zina7s39ms6<=|CIXBgK^4!mTWdEg~i0WU|~H=>;Tz6dUmUvPnJAH%E8v6Yu1c$q!& zL4zrmYqZ35$K1gF^WjUg8tOYk=EO1TR(4U8;D=jY3FE2iO|Z6K)Gd zX}fnl5~mC-9VF`Sv!XzR96{-{b3z;tV)W{_8Vj*|05DCf2N&9w4Q+dX_1^bafN2t% z7)SHx6-C#%72Rkx#jGYPNMkrCYvt_!M!YbQm zG~gq%v*kWx$%d2=!eJnC#jWwUquTTLxerhwC8 zJMM1Jm-AYjH^Sv2!36a{rhzkMjT~=c$K68y9sn;xV$5yb5{H))-dBN_ekxYMd3SRnDjX&^$|?W08Dl%<@Pmb ziDT}3!b)#MEjXM>Qk;lkqI?V!@rhy5^uaPrRADf=>EEQ7_JMhk?4M1szA5%IoNjIG zlX5NSL4m2opxR9lGHGzojxSH&1Eb0pRKrjc+7?OAj3s^UiGe*-;1aPAL;k=tb%Ytv zRzc3Kj2iIaQ2z;)4Qg&R6ZiuZF`4fS;JT=`g2@rgA(gIi#9L8!tsy$=_r zk1NG*h~kq@@D3{RN%L!ZGWtaJbzMAn$>fY=U_9CTup3*)IPpD>CtEhN1<;DdF?s8a`>&>gdg3su$8Ex1mj4BfAP|t z`z)KyKca}CD)ji~Re0%N^W`Od;$+UPK#$_QwwpDp~H&`H0Cp2s<>7I)Im`0+_o>W&i`(I@!{bsI@7(uQAN ze1OAaXTN1Bap;I*wA5d=s2*U`ipNO&z4);Fc(eUVUv)Us*ZnBaV+tJY6d2~hu2eu} zkpd(9?2<^wN`byv3XD-lEH^2jpC~X+@~Tsyp86}DkdtJQ{WkSmQ;VccI9`kueixce z1G6}4l&NZfi?lU9Fs6!~G{mHm<0Btc9k@rmuX6aDEoN?=*t6-2TDAJukjWW8eobj zI>blWjEO9Y&Yeyk&eYx+N731#w{3S=6rCLwMP~=^^73WD=E+r4M5s&mZlTqz5ImcS zqVsPQ+KaWT3iN0)cJhlDc%>I#Gx>Wskhl1$GlS}kz5aT1o~Pe4Sr(5~4|-M8?jsi~ z?KNe+Je&zmu3DKs;*bm>Fi#sUAF6W-3IyxJ7C97`E^3>Hnt9Q=@ zN9coiTdV7&FYn}L3H-yi5lZeotT+rt*{9a-7~Cz{l;54t#DSoN7z-3Qx@j+ zkvJag^_<60+{j$#XL+~ZKdTeMsrd*ym<|}>3z+#W^Vbg}0kjReJykND;f%AS4Ol46GIBVww)5>M&{!i<|Eo1lTc{;q;Qb4a~_p^Kg0oVlcDBvqn&WH zo(_0a(*BB2t48bh8m&F)2<&~CIkX?UETTQ^QlstQCXWo0^YMN9l8E**7aQ%6qt!XP zIeb69HllsOMMkU11AIH@quuw(i1u~-!2K3SaNUc`?w??2bMF7f|0%nFQg@I_&5!v+ z#A#KxdNudk+O3lCV;_$QM=xamQ26tL8wV^I?PMw+o?<<%A9t?q(d@pG$7k0>JhrVi z6>XC$$c@iO`|S%N+9y^St!>@~Ic*Hj;rqbHBHF|GVSzD_&0%A-od)4ozy4NtYklV_ z8kGoDqr)HWKFvU4>a?zSGw~*t<=0MUKQNWv0Zq4o%fJVD8j{GGc-(8 za(UvV#--13`P%W;m&eQJvn0CVB}SEcj`j89`ea}I5SROEgd+UjSFNvsN-nn^XI$DG zm#2=kzNRXv_8enW1CHwDz`Q?{q@mCHRY(@#q1R-t&(O@t$49fHEvB}L9c5IhXqYN{0e_lvnnMqbfQ;#h$f~EOgk5w&SvTOO0 zCvH*$uX%Y$_?urwQ?}R95yzNnvE0&cv5yd>_{Cg-uPzLwuX+NZviZAjl5iFRaYv@= zDVBasGBlA8^J|BR&d2AOg$06CwwMD(8%Wset|z(h1FiXoJO!(J$Xom)Zutb~*m^Kw zds&pO9nMz$hPB$@vi$XJn25bl{u0!1kb_MFnH6XMB$Zi_{RwCPw=6&Yy`SI9pR4zJ z%@3~n*)rc6@R;sAiRN2FFL)>K0^E6FGw(X-L&;S$ncgi2Yqx~H&Ku^QGNhRV@h+?G z^{RHB7My+5UcSKV(O2t=>Kos3{ChvWcj>NM4_fp5W%-ZHEX%LiTl^{)>WHkCZzaOb zUcxgg$PN24x*K^!+KA>Qylyd;`Q2^o4)Ev#wpKV zKEqS{!|QHP$a>T^=6KKqSI+Rxr? z0d1`8D9S`|tm=<`ld8|%jjwLEkT%B>f}EnGj($`6vXzE^#XBSL@Ma5XLrh)JhQM5_0I4v?>=T=#cF0sy!!J9a}8d3TgtqX3z;yE z+RX5R4K~~;jN?Co_SWFTi|Sf~Z!OY2uC@7B>E4C7q}3lC!IYWZTjig0?mt+wQKqMk z<+5{KS$DGRAXhe)Ec+@E(rByGN#(YuyRx2S*)+k^pwnJnnXcfuTT@d}EPr<1%YILk(uV;O(vc+WIp8rK0lJ67@1N@J^BWqgslU%RcYQ zW|CzmQ-)v-7#Oar{*Q#xUANr7;&v&ZpKh|Hu!8Fb#e&K5gmL`FqCrxCP2{&n7G$dK z%QpY=g62{^dx~~z4Nh+1JMIfwtN4EF`$_?V(zzv4w)eJ<*5)Ty{erM5?lwGMJQ;Pu z24^zLX6M-^M)P$yE4CI z*ipw#T%GR^$aRVyE6jXQf~%_aPah~1H*wX%JOa%AWEH?Fxc=+kmaMpLk*f7iT*XaX z`~EQ3uDM*#NpMwliL1DY>%<@Cs!3#ptoz;;%W8AXNLFzZ*E$k@2Kt$$)8^@^{Qbn{;O8XhV*y(_^<)%qt+vR?5Hjd}BMnj0u=VVO-iP?$a= zyn4S3Dg%Yxdq&AHN1aHpfHEB;y-INpC=sL+DeOLjEmyI zEsw16zPjSoS{%(|iSOF2wL*?V5_0IytADboZjr^G&xq6Sm*rW`B%_CoPC-?{Xj7|< z@+hL@RI7ij`B6E%xORVR2B@uI^YNICYV{8`@^x-9K>-p|cArqVm9d0xZ?i1Xqc3j-Fr+D~&Id#qD^nnB? zRhKwvR#p6Wt)=JDXmpy%T7^jUWu2|D&HbmBY?D)M#72|D;$!SP z%`1&Jm(6EmHmZ%-Xx>@u-yfTh*=vPTr^jqm8?i}=&58SC(>Iq*b<9S!5gW~xix04U zH?L9+bJ>iZR<@05BQ~0d7cbc#n{jR<6-r$gvr%otW{RK1Mf+pZIhW1f#B5X>vFQ<; zZR~H(t5nTgHesf$lxib3^1XDngc7^QLQ{Od_Y#!7Th7HY zm>uy#jCib%tlGweCnWYYuQ;xmD()bdtF>Hr8&=Nnh@O*9XDK4aS&gW+Y>}s*p8aI^ zXLCBY0Xok=BI8#t%H$U=^88QLWNa(WKb7-8Y{${Qj&IN)8YjH6{^|9t`Rt6x{ai4c_+~@R`*8I7P`0=SGRku*$wZg`790NMNO~q~e;1F7NQF|t@?!>etos-Ky z83~qzPhQPq8~;tkgS5xNX_yS(eV~7PM>qowSd6|;zMSI-Jjq>z7JT}PIf&<1F?kSw z15?&NwMJ^N!*@FRWZ7OsA4y(^ezfRE3qL&l z@c7ZDA8q_Vjb)44Wiq7yRHOcQ;Sp~ZqLxWs_j0y~>WW98N_jKe4tTWsfnetjBGniG z3_`H6Z)UR}ON1DA0?Ad|^}t2o&>uMT7XclvPh$B&r>flr-Of*R>9Qo~wxrNw$p%rQOFs#X21pQDJS#5f(27Q6Tr@|x&4=biDS8(b@A6_p= zJ$yAmQhZZ%VQ@@L`PfNf7dz<{r<#*gXin<;g*mB??s1Ymyh%E#MPm6uy{es)YWazi z8Y~GKEh#ivvO&~1$s?gr8wpMl&k83ETG8kb2~HX&37>2>C-tc)jw0dYvG`|hNpRAD(H6sfUxKo<=>A zq?4ScB`1kp?4+MCs^cUTnv-@Cy^r}zAKl|5d!(9l(y)`fU)9b@J^aK;1C|7XmK268 z*&u2S-6W_xMuL;Xv%*QWCiiF^2^!Xugx58hlV%`JILXPAQz=d|VQ`X!#YvJR4Ek`= z3sHhANixM(lBk@M!nnDdq~4QGa@9HMh}2G_oYN?fDmY21;3RbrIVqBCTJmxb-xSK# zm_h}oULf^wlGMXV(jn<2r)kMaVi!B9=}qP&6`GS?@vu3mh3;|Efc2TUk~$?8PeoPj zoYcfmoYZDX&~8bg!;%f6#z|cyH0mb7N#a@Iq;V@6)ruPpCrQH8>&;2SDvGZpCr?hL zILU;;NfH((Ns=(U94DPNWloYzv6DpQoHQ6Wmy^_c(n+p5CmoU6X_Rvs1yThkNfn%= z4k9N-k`0L$r{77qlEy4oaOwq84<|`IoFpBRPI8)-oFsO!lh&VXPEw&c>D-6RNz<&x zags;ztl_TCNj^h0o=K6DuViy>wc1}`$g4383bmGOh+5QJF4tf!a^jm<33OXGL64Q@ z`bffeooG(#P)+P4Cr?hLILTP!BngX?)O~nr4kx|mL35JCi=8AY=cKl{xtwIZCngTA zIwu`*lG7&Vv?hJcr(GDFWM^84?!(@RyDj;-A=U6&Ee#kJyG@hah!ql$kL8jo zP<=u*EbszD@T$;(}6W;QY4-WVq2<^&4#Lv|bX!d=uq@T$@s&8CjC6Awl$dOM(VV z3XLQP<5;*+rZi}PC1d30S|EatXH9bAie1_*DRhuUArdqlwj>y_q%cMj zKH6w->*04|%yHf4R7yWi>_VhPp_U#Zm`R23)*fKC`hJ6%lmTY<85jal+Tt?TWt@zK zfF|ic&Sw3VP*EooaV%pjo#W86Od~@fb~hB{q%Jw>LQd-9STUwhDq(|!5wVuc1f?tj zC?r}03aLliK1&MyB!I$XA^@@F0!am5*$8*Y5XDry;!!?c@rYfFjT2vI*ifNiBRgr> z7-w4)Y}Bh|a-OE`VAP)=K~|mrOWa+wvx{0&mJ~uuHbgCEESF13Ek+>tmVko$+pL?Q z-AZ#EB;oJ=+C1H)n)vSG5 z%ca(P;_l+AbJ7u2oi;hAP2kihNDU2^B5{-HNU}!B%T^f){_reUPzN~BsaKGC=qw$Q zcNeE==>itJ*h&2-n3Gg!PP+7m=A=%#$4PdEGwGy$iNysxC%{qCcc10=`P@L<76!4VM$lIfF)Ga zN#zABLm~DA)EG+Yl9Mjvq%J-bV+y4bHb@u|G{{U)$|79A5-qxbr5A6}z-qQfMau8~r9jZoraYkOT`3 zSrQCeQWzl#|6;LWqnqCeY`E@oDy1JMb|KQDP(u$mSaS%e5I*`zu<^2c4I5G>#)c>z zHad-yu@E*ST?rc!D(a*X8!{APcR_)nq%Jw>LQd-9UooaoDq(|!5p^q6_uK|Zz=lMN zup#wm+ha+gj|6O(OxzVM7f34j%0{?DhDc&V`FL;_yBHhox?OHH4;nUpx81NY#8W1) zkurt}Y)nutY=la=!Y#?^(H5fXbUA8`SyC7$K^Vtk4mOMtw+D#eGi6P3;tGRlOA0e2 zV58Aw$Te9Kw2+{wXGzdzNuix2{8fWtqmJJRY`E@oDy1JMb|KQDFhma#Hl#v$XE)gR z>4ag!9hEQL_(kckQDdBpg|H#%O4yK4Q74tykf9K}777d{b;(H=a#9!niZO*!X|@q{ z7g6_oYKjDGNVEtWQjfOvmJ}LDz=p}h?Za|`q=K((gga!2BsP?fu_1ObHcr+Jmi=f7 z4I4KT!I?>+r|$XOCJzs1-T1pC9oXnIDT6jkaxEl?-fl_IVM(Er1YsPDIoL2p437|D z&K_%$6IblgZ%JW*1Z+&047o{5f+-R-4J`?#Eh)^9g!jDMurb2#1U6jvIhE3n6T1*; zQSj&?!iH1`Z@3U_e3_We?CwaJc-#=B!^V(tG8V#yq$^=VLPecaVnc>P>|rP{l+-0B zUC2pY{42&3N+oQNFe2EHnV^(Kz=lMNup#wmJ7!5?oCIu`O!*Cw#UvGcWh2}nLnN`G ze2fjTi?LDvD#L~f4I7^zS~S=Qd5{Y>TGTQ*->8*zV57mL4D9F=*8$Xst~XpzD@C1l zA*BHqhq0K04P(Uc==juIlbpE1pwW^-6A9SpG6uPBOM)H}H0`q_=(nUWKoWj?kzu2q z-wABE?sF=|ZBFb$q(#BBboUgg5UyVhHr_-0Xt3d4*C~w~qIB5sjFYhtHY8mM8xkt& zq!Jr46k@kQfuW=>Iq5=9>f&E9rcf%)HX_)NnV^(Kz=lMNup#wm+hIwelLTy-Oa%I| zTp+37D;wbs86t@dP>}eWfD5*P-SROeVhkV7b7VDkmFZMj0ZB4QH;>TvY60Y=o~cY^cz%@n7SHjRtieZ0w9oXnJDT78!a`hyL-egJ8VoAXxK^Vtk4mOMt!y`nPv%{L?#1*@ASyJdG0UN_6 zLvF;9V2lI{j$0B;SW=iI2`{cUYz*)_feqJvPNnqY#4bcy6dLFu!iH1`-_->+c5F3l zNSPQLqIB5kGfu`r*pPH3Y)Gi6lS*vJP>9_R1%{HkuJB9;pz6?|nQ+#y3Gv7vlCZirosjqktAu%SZ3#*IXl zX51Lp79Sf8YMH#JOzR*A*r+ing9&%8V~hmRCoKu4EGdK}2;*4H!Gme>m2#(ZufrHeB~PmC}zByAWwnFfH9Z zMJj}E{wUb^M?y_AZb+FJ8=`dBXfRI3LfDXWC2UBjsFO-;$WVyg2nB|cy5yt_IjM_( z#h5~=gbfl#1RF9Fl(GoekZ2J$q#kWsEGc*-V8dj}Z-^`=so*Oc;SL!hi4EmrY=~Wq zjp3IXHdJWX_!zOM!A6g|4>sC6y-92gQI7h3PS$==#g90;tuz?0q%dg7hN#7`<#Hn= zNGQIEO{f|P$d)$=TGWw*-A9|Jry)#u+R2ksDVtEnnoTGP%Q95mhaDfrz1I-k8uv;( z+#5Z17nR$Dnu?ptz1DkT6UtTRq$8?2ZE{YVz^PG?8n{dyM4M2NWTE8ccn1lZq)e}Z zI>3QWy@J#O^3ox>3FR~`4enwWJL!4Ho0C*%PWmdrtZ`C3-Q%Qgif3KGp2Xq;?oi4k z%aU9j3HWNXBxtgv&_aSg9E&*@urXqh4H10Wtw~N?0dJ=zg)S1b88R7i!R(gDl}}ocg(Oc zMh0xusb%s44k;HlQYK|!?=vv9qZH96ED0tpDNKX8=lFKYqKP1CqdH=OM*^I3SA^&uFkO0$nOL;T=zMZ(vK6n5NS~ulZb9`mkQxO zbb^i3zGv8wGBGwp>9A36oQ#FAA?ZrkkWf)4mDrG>5W4{i3?+5RNf&Zb7ypVeg;EI{ zB#g*NAu~ZKi+~M@7GXo`(YDEwLJJAlFqyb3S}u@O@Rf~lhYXR#hVn5s#4g6hy~h|f zR7j5;%-@7)3flA@E+4%WH^KsDPKb%M1Z}B|G0`o;xiKbouH8>2qw2@596_CVxl!q6HjC=^ zml@Thqx$wDqw1-oTK7_;(yR<#tB*ITsY&OC{A~hZ~h1m%(dCEmUPFj6+sRY~zN{@X3pCor2IJ#Z9kN@S;~a2;dtxHE@|d(l(I1CLr5lBvkq-< zeGgNUmk}_me4&>XCQ`{QOvd8onwo^_Be5`X)z79w+pAt^PLlRE!FWCI)8eE$=Oh~q zlY>%=?DBu((DoY+Gbi=QfU%RDJO?_oef+y|(mM$>fs@>rU2>9Ca!%@YPLeKi(qM&? zT=lc*(Dq$Nn3JTvIqAc^2Z56&?3VRsJhWXn)ST2Z+evn#q^Tf!iq01f{(>>C4PYa8e%{G2Gc4 zC3z(cn>~VlRlD1J4?nrRYu3W;ebACW!J+Nxzc44wXp$6PNlu;v9on9JCr-MR$sSH} zGpUl3q>^(|Xgb=NZ#k*9!bz_B*>q^Tx7M5_?afI)WO|L0TF?k5*>p4Mq)y5i?mSgH zCpGaCC$(Afr#rNL`g6@m!?T^_(4pQ%p?afKr zJ7JpM<(y=TL}pW3MA~b%|DQRu{pAG)f>5hqhEsqyB9;F;hqf;~2V6`{8!p`H`Tsw( zjaB~yhqk|{dtTzu_IXd*2%iqr<;%~F;BCdJst>BihrgNQj=*3 zTRODe_%_^oEJ|>9ar=Fxd77x)-K8OJF88*nkHi$fRX>{!ZSQ!FIZ4`^lNyO-z!ad< zImtFflNWHmv&*yb(DujnwP>evQv0~^^xJ9h3=eIeaV8!QF6yUM71uY;-zo$Pl{v`^lCD_aUpYli`(vy9}j=R!}gw{|`B|{VxX_ zHe^D>#y4CHf+5?G{~vW|`=s9*Hry#>7u!Q&F;GlTbe-Em)Z(r%p@h4FY3ZJ&4pI~z zc{aO zF?$RfBYGMc-&33h&+yRpZ#=Nk=He!}rbzUvX&rL%+wOTkY7rVWYuC zTnKq!2R7{Ca1tBQapz~_q3wfq8#dZ!W5a3i3=eHT_!h8n7~u?|}W5J!P8q+*8`1;GXh7T+|N5cr>!%GHO%gdCH=G8~@X+=ZEnveVc7k>(&?3f$?BTG{0DoCpDu zb-U!djL2B+Z*>!09@yE@r{SrBLtJB~a9@^e^G9GUJ zp?SCw4dV+~_HY+)kMpn$ArB9cEnUE4R%Iu{D=**%$hm;~px^>-cexRl>$Kdn@X+=f zbi3SYhh7aEN8D%F7$d_4T!-|tun|%&Y^2af^B-lOC5N^rerecnr;y7V4Nik+cxe0j zH-L>j_Zl|bq2SV_Q1)=xs5b!ouQ;@QtZtWE?bto)r;6L}DaFYhBKu6@A+?{yOD#`0K1IXZuT{JAX}Bi(biI@|Wv$mcNXOw{wly%z(d~626o`K~vXX zFJ17L^o;!FL<=Tqi@!okf@yK$Z7~$ni@}y`kn~A^IUP&>5}!H#`q^Vie~HBW^-f=Q z@W*5aR+Z|^zj=gQ(qB`mjs2xN4*nW3;@)B9{9fI6@R!DDuCGZ;uAL@9c(JYU*RU0B z7!!}kU;q5G7Wr#HMe+4zBC$+Vsehw7EBWiQC*ZG-UoqQX65aW$&sy|OQBd-i>vWdC zjEXoAMr>w47pH_TCGeN2>#vtC_)B_5{&J!P{j|kjgO&tC;>4R_mMcg4sBAKpdi z@NQJ;H{zW5RCuS&iZ*npUF4nWpPF}?R1|y1WZ)UHO8pCnCGLj4-LJ(p1AUQe)=LVD zm`?2ZpuuQ+dsG;Wd#<~(Usm$YlTopqXT+y>AURT>-ie5~_KH3u>UIQJoq^F1YkzbHTLwid|q` zvw|`SE~qKFVD)Qo!Q+=lF1W(1rO5Ge!IaUS+ElW?>#J=44(x9vgbFj6PbbFwsmOb} z0?M}_w};&Ik>y?gL1-%EW-JL(CU#CLGipf*bdiX~_So`Hk&@-bXO89n`q8B2MPinJ z9(plqh3scweD{Uvo2SSn?C;lT134bGw4aO+gL=cj@14}vj^8_NiLb3_My-@c{A=s1 zp?$cz!YKnZhR2Y2L{549A#+NPiejgjNDO?|*^TO~cuya@2Ab$P$0plJz5&TsuL6@M2rxuQmX~WUkF>Hgt$p-af+_p7>yk`%s4aG6wM$sMNi2re zF`2f+@3drnmnGNsksz+v&JU>?c)+SotRhG~vZDf0(|RkZ3@HfPO&aUgt1HPFz22|+S$`KKu z%o;>WpaMXp%+{_ug5o4CpOX!XTjT`?DCJ{7iO(EBJusC7lt>IvFT6y``L&WF*w`;V z{>?Syl7MPdZ49U;vY=qxhoeQYCSN>6e8dy6UP%^3m)PS^Q zMI_?@D6_#_K*=Ql$`MC)?R9otZyxZ?yfL5#9a}jf0+d;Uk9JT2phhfl-Q^4N9!{K4 zBLZNOBmt#-3@GuL1E@Url6Zs?i2-WhA}QyOv%mvTp7{7TkC96PDpYL@sA;mu(qqKE zBg(NHvBaOWWc`#S*Upe2uGr2GsBWv-&?iElv#t=qErB=E=yc@`GUNM6Z_PNU=}1vKq(&sN_^%3s_Dl` zK#9Zv^_QQNa(<7b;H_@)@o(-Xmju+HYGXhRkwum!BX*ljETL5B`~8-zAF$-wVG_g@ z+xY?2Xf+#J#3};RlmA%(s5&ZRK$(cM0Hylym1i2DoC2j;l*`@NB`JdHv20LH5N~dK zRiBVN^G~7FX3iAK!&c#ii%L@{kNJ~#T5#wi+2*JAd&~P$_iRAPs18sy(w0e*!~#%e zgSmi`O8}H3j_lg&?7H4O;G214K-D_7azq3u)1NpYrc$oK64xDHx3XMh`J8N+1eEeI zpu}empdRH;5|2y9ATmWwQ(lMR!AQa%Qh_{;&+=eU!^fD(xT z>LqKWoUg4i0M#Wv{>>q|B%o>~V+^P|Q+30T5xecW(k8HTst-SXngPlwV6$<)bK!C~PMLDmcafyLTOK~dTRfhv zx<#u@TU0S*&0HV>`5t2F(}-@p7L1BRdA#Bqgd5c)n}3oI{oT|JyYPF*MJT(iJ5zN# zllAUwbGYA?UqAgMK_){xkaf!fZVz1`GrPnst=F%3}jA$(rwV?Zj^+Tn+a<^CXwd96RKGmS+h11K735+PWVhV z6Aq`3B%}tB!$GQ1`nqj?LCUN!7gBNxkaEP4WqZd|=&v^)_-5c3QcaHSFeDMA%mVqq zGmUa>mbmWn1^Ev*cB&D(yd=rZ1m$B$iO(EJJ$O$NQX-+_RPk^=vmWiLPw|B1neD3A zsXM-+IsdM@_{<>!Z0spTjF)NSc4}t?7Soonxn|N_jU}!NcAb-U&dFlM`{MCO`4}wXGY2f+ zHRXBHZ6B5(2i#jyQ??x49gDrnXm9EHFZ!eAMd#9yjW3^Z z7>OQ83`$SFRV#p)>azjze(L!Cap1`GqVpz*o8lh6=}L1XoYP;bdS#Y0K?aP$X1uy5Zco_8qz zT|c*a@21qgb-kL#d}oO7F)#hj@QQnwoaWl8TQbIDbP;``N+I;nwR?rAP1g zuUeW~vg>0kq~9Cqa;e{%%57W97kw8IQjiT~ zjs)=c;=}Ue&GsvO)k~q@kG$e8z#l;oZ<|>YBw-A5=Qtanw&Z z){uPBgX5rav<-YGz@~1;u?`Aeb>eS$5j6WX=HGmyB~^U>`}b=V4|YqxbB(h~=R96i z*&Cfzy7<|M7sD5S3?15L>CjExaZU&QM28-dT2cSF{{Zq`{jbRPk(K-QrH@OckL!U$ z>KrfsbMMl}+lXHW60`a1v`d@G@6Gz}Y;4W#@baw_t?4r!$gJR#*ct!IMOsvNxoz3} zMz@!3-yF)U*y3?2gqA$7(5^g#gZ5oBTW_O_9xg?9J>@!N@%%Z1UVhEEmtQ{Ix`Gc} zr?1)tl|o3`jJ~@+sbs;SZd`d>GKcmfnW8?^!eLYrk@;NnO-@OZQimny+hf}tA0WSh38MKOkZ$+ z4Yex1g=z|(W))h~9&G%oh&|7iBK&JV>F0SI? zjkj+LWvd>?j^5TSvQYY}opVgkai&agOQ!c>Gr=v+1gEKV_x+jPTQETp6MPI4+?~Gi zwUm4LySb<{i=SdN!Uhj|RZq3%wq3aJj1>!evd#Bi%ooD%&FmZF%X!!!{ZW)GnV=7T z6(+d*Phx`f#XGzeJG|znF2EDj!&p{QY{3(ht$IAOBD-iILj#83Pz8t~8F9&&OD0{S z;et916(lwkq|dyCPt8}cl4?}x*4#Kr4`$@&1U~^P7P&5^%HFXw!~C?jc*@K3-|{KO zzFn=kU77TmyF5^yK68u5pw0c{_Sv*cwlN^mqaH&;d>0f?dHLztM4sO|>{MujOzQ(S zeWAUg?GfUwO-gsq`yz{oG2@ z4bT6o<)Rzji9_W0LbmQp>4u)+OYVVk-GXU`h;&2Wpk=RIpeOd}hW>ubUbA4rvI9Mq z{o;Z#%MNx~_A3j9$$GtE+nO6j^r{qGyDoKH2X`6Q4$EG-px?6nZI-=efr3S(8wOe| z`^5!{?T~I5Y_#lG7IctxTv6y>-uMYA)PlQE=sL^UL&0>z3%_Q$LWk8I^L5K@=(60) z{?&5V^;quJ*IVxTe#@PBgXK03lFQ~F-SjvEbJ0IdenK6R3~l;KDjdIp*G>K9BT?s@ zCaqy%hJ8Jbp7A&QDioWhX7QV*^8oEuDA--MaH#t+df$)HLNnS4 z&S*karO{Mo(sMAHpI?#K+dqJk)3cNmK40yW)K8S`BN-F*`aIM#v#9&2<31@9>nGF$ zBu760_4}YsnmBc`W-)~!>fOg9!&9NyuhDk>OWA0r^j_3-=)viAiK;GebpD1sjPLJPuh`hUfPzv`qL`v9n}bvN?-Lo*N77eR#NTxJ<}AW zuY3n&%UrW1+c>ZwdTv)cxQ{J()9<|0%JhZza0A)9Jn)WN+WYWvS$}z-?wH$toj!k2 z-^%no4|8Xjg6gNVdW4!w7WH}DKDZ67`mxt+{4Q8VxLEl1-g2B1IP16eW%)2RWy}2P z;idP6OLvcHgkJp@OSe{kQ{TC(3bKBCQ>OQ~oM>uF=RPksy}zkRU-|D`+g^T;r`zZYyxq4PLQOjN zMM}S;{=Hynjn_PpzVZsA`yoKG`{yBc|J=z?ePOM)wR$V0$TjA1@0>>OvGgmee~^CV zvLDpyPrd#$Vgy*-z3OLP^Uiedy=t(vdbexH?QZ9)>Eb4GTnOoP-#>*~lW#M>GWi)E zIs8PVnfyIV##$F|IWsu)U75vqo*tZVEi3V%Oz$HztySZhs%bV4mu!;+E7QlB!^c>c zElT5uBdQl=nm4aJHGNd|(XGLv=ei=7hvcwip86V>r{nt_&8i!D!atPFPx5-e=4|sl z7aWnv!NY(+#kMpe5P75%m4C`9(*VKiL&r<~NRt~t?r%|(hTb=*0 z`rcn0#Jvc|XLfIv#nZXpyg8NX9aRyTe|Zy@aE($#@N$hh=QiqRUR-X}cyhUs!hTt! zZw|wJZoB6-C)!=Z5-I9Tk)B<J=dNq=dT&}%KBaWs&c!Ta=VUs z+r49PqTSD4S#HXYIT?|C`gLb|VIsTO3$!03W@hDgrFt z%W21erUf)0grWpOJ3+``MolQMV}5LD9+-3cEs23=fcmFPbIJaEa|V$4j`I#kuJv3C`!$CncIG zH?1u}VOG=Eu_i2=>Rrbso3>yVQ|6m`K4)l{)%1j85>4N6w3?bN(Wj55-lew-wKoBi zRG2wL=CwOKljFDe-)$Pea~HE*+;#EdY<`;I<2J8%hIQThxdkuT#Q~y?w9{Kh_i-9d zbL2259=RQHBPP~cT%$abowyO@_tL0cjoN6mb@?=cq?YHn2cE-(Yx$CG(M-N|mz%8n z%cok?*&^I|2%{NvCY{w<(DT=hWzwzO5Fbr@i*uSxd->mF{d0y}bN8@o)=dEox1YvN zXzPd8EgGVq!PcsEi#qw?^*(Y)h803Kf6j0=zkGm2Y!6ezkkyCm$m*B9kbO5}2llhC zZ=%G!IQ;(bHQm;4Nas#P`!hDkX6sb+vtigO2^ z!XMTVpLSFQ58mOo^le#xgYKy`v+YaXh_+@qNkjNL?QoKGDhbY+Mq1m24qBgPk4qA< zo1}RvtA!yW9UUiG`gUwJM30&Vv!d5Ug@%*DQ2si%*El+Dx$9>v*$}#%+p8{!C1#kg zWYq0kZ)j3?`Rf`i8Fd@=*SA}4gJ;S0T_mX1;c|_ZjP_XJh5^f6*XIg{ExCTgB@-kF zIOcNwB;hsrTAX%kt+ztD{&GY+)ZEO|SKV5}k9_N-m*0}f|1j%+1k<*LHq$zD#fLZU zJ!8dtzqvQP?hrZMUpsJmko}0B+bwAMHtsn4q!!P==p-f{z)#n2CckGyer7HHX4c-> zsvl&w@6n?BqgnsF0iNphpW$EhqP8>qvtQKSn!e#j{J-}M|L7OBE`A^zEG*Cxh)iS_ zZ}r&LsME1I} zoP0P8Z{FLo>-K}z9GPKR-n+%iHm{jXU-d9JEPjgV61J&jwEZiyNNcSZjB2p8fj8?P zl=U-Bt&49#vAcA#1;m^goLrOD(N$ZRhcB+uaN%A**nPW%P3NXwsLv0)wVtKX>-kA_ zCoH{E^*MY?g6dAHH}JuT=sKojjjdc1>cxiG(}HguWMk~cgRPVCB$vxxATFPln_zSU z%L@9b1(W4|Zf4F0g+@~-!n9GeCn=sj%qTQyLh%xEu`o6;M#5-dlrS14!v=)O^#1;! z)z96!e1?kDV~6kqnfDnQo1a=k1t4Y4OT}JMcpnO;vG<5qW!L{EnQ2-6x@8&*f`S&s z%ktMN$p*{!F7w~}qDC%xxdEd0s@Q+;^J=-ex})E0f7_B+<@NmTi^?1Lt;Mm*8~Ht8 zzhCvdtbft-YE;9;YS)QN)8Oq0X>#wO#iv6h5w>2qna%pLM&nCO%Y`Oz**uG3{ z&M?Cq-*?W0UDJN+VAg+!_9xRk? zZ*|lE45iDub=^S8Zv zoWF-xf8X18i`V>vRllHboj%&bCMEbut^TA6;{DZ~wA;g@S{D~j4-U;R(U@R~IL6{B?^XT4tJEIZsedKAaWLk;|U1{onTL zF${df@{|@q6lH@~9VxoBNDfVlB0DBm9HEk<4o%biC=r~)1;6kPQJw7=ojoR39dV9v zqD(}`ss3o=a_(3o8_l-rId{$a^c$Hx7k?!GxCscigFsh}wx5_5XqgyIM@kbBz7nSS0!zwh3g`9yp8fV$ zH!*%Olj~*+CY#@U8k;s<{5&&wRV_2H-)a-5k33S|%Siu|O#XM-#gCogf2FBjrMrKU zUHnLE)#I&Ik7as)Zrjzjx$WxvUT@VLs$;wQ3AU@xVV_`U`pQwtz5LGX;zu)!?_0iP zm$!I>O>cT1VdMIN?Ek~wyTC_PUHjvai5eB1sI(0fB-Uw7OHX5NZ<_2K&(;I z`pPZThC#V9_aSbGLU;|rov z_nSgC?Kc9a7|M@`nIs38pUTd$t_u6Z(y^d?I=Gr|YG}^!uWXwe)9|e_; z795?@Fkx+)yW~?4;k0K0MIVVC8@u7^?Iik7Myy6f&|@!x3V+`X?)^I!M4;7xmVV(& z7;F1?;N?ZU>_L|OPu$?XWxH0i8zzHj3lUVfZy{F19ft@&_2rqyYC&>FXhNpudM%K< zf4ci2MGb%M{cQAOY#Xqj6{-p0b62mH7VK%5a93K1yW}Tz%GeM<(fy5{hDQ*p**%&5$5D@F31jIU1$N;B(@}>-^^>y9ywysxXtc|9;-3*y( zW1qx`RTx$h6K{y5r6O1^OM+#zaD?rGGEaO!S%g|9W)JkM0$u{dy&cJUzb3)PY6%{w zm0($w1Y#fy(5))1OoEN=2vEF3-tJ$eB6}owpjQR`2#}>ug5U}jxdwqbYe{CBQQChr zte5r|i6YJ2vJifu{Gt10-3r}9<*UDFue)I`_&H$A_hkDHZRNsIGXeK+N^}U0Zw-Sj zu(tCZSJ-FNc`~p`Xn6XB)A|=bO>g7o$~9ihh<`ca>nibZHN{j1AcRzP3`k`TNZ*cw zRAxh}3K*+BRD9ULN|QBfgNH(r1KzMGyhce@AQd!1rQ~u9sC|Q>u71eIx6#97{sOv! zMyOPp90O_&vN+m$WgJu{+fWIOP$_mD18VhPsA+LfnQTKPG(zn;HdHQUj<){(!59T( zr2|+}fY1n)>X>7+mG>?jP|M?>GTCk`p%E&THOGLe4TgH;fmmCaY(ph9LZvF_7*JaW zLtPaImB}_#LL*cvdMv2;HXdIVKh9$%4z$~rb6N=9FZ!I&J+hN5+Pm;4@ng>&JR-D= zjUjjN4;FQ0Q>KQfJLtC}GZ98BJb>n~6_n|tku8WsE7)IX#ezFAJ9l%EKC}ffX*XVk z#WIcW`r}B+!IR&RlX6Voneryb;W#=W(R07)*uo68l4<&UG2s0 zYVQ%qyG$aTFj2AM{VmDIF&W;$8Q%gBHN!N@=pq#I8}W-!PEQVr!`lI=ALaozBqsAm zNF-lmJ6e?-5~m*rr2mP7#AN;miMczVH&4qRUPeT*th=8w3LizAZ(32XIpSTtzJQ-Ix$&v;A&!C-4jr5lY( z#n2R@(___$4;V|z5WtQr6OWAHwi!9`R;%7>@#Zs@s>y9B`!QfFuaw~4DhZac6(Q5`}OOvy9?H%uzCA$z*vw4*no!ZC*be{S5r5t_DHPHSk9`^sO4;|&v=-% znLqwuYFcCzOlq(zX1!78SxcD9uXh2cCasg=5Di0YI>Jw|8M<)+TCI>1hatd7wR)*) z^>X4DFz&S)UnYPAzqkehg-Rqqdr(El`Z894OW`C6L1 zJ#^CLkPf4&3(L*^66R8!lol(_PGZyJJ4qoYUP6G8YV}gp>gB`_on$pWLjVbWRwpTR zf>}sFCuI||zKj*1lSmYF643+V#38*-31Ad?$q^ zqqqhEMyl0IRjZd1KXj7S_^<#H{H#t==mdL^fKKWqWPKScKqrwX=p>>C#EC>f*{iAp#`U#GZAB_tMv#ti(~2nbcfXP@sls#IxKRxVF&16I>d+-uRrrjX%FN~O zpfmoA4>u^KVq-H>1IDxp)eRM~BJ2h>(e8#D&^llsEq06ZG#DpVC8-YCvjpDf!@FI zXJCpj^Wk>3s+XmFhEAIJj6V{|fU%fJ`i#XyGGN?EBm>4TNC(SLi)wSIOhBxwQ~;|K zKq8Kbzg~iSh*rddPJ(GEPigp$$6>ym5lcuc?tFb%@#5`NV3g=jo4xmfNO1zxvvA06 zi|9tu1l>p^(TzkB-AE+SjYJaNNIF>EsM;LL5aiZnApl=w%bVqrZy6EC3`b<+ zyOHm)ZX_H>H=fCL6J~t&{I>J8_-8Z{e~Avu)FG+C$YPJ z6q`JyjFK>YhOg3R{1oC^aV>g@SfQ7QRlxX8mDNS6g`rAm=(=jw1e*wX3ldFCm_!p@ zL?j}Y#3oF>$GV7c99{I=yFrpJ@kWO_(;~a}03C}8N?xkQUzXxZqW9P|&IscBx#@M?~pDMU8p_DT@cBv3t5f0y)3Hlt!aL$K%>iFNi&hB<#P zdgjneaXqsF7}$+h0vvmWwW7^vJ9-99PwbW-#JVL@Rmc43mMnA&guCK=pHb`$7?)}2 zkZh|%RKrBp!}6HJ3UKF06(@G+5MqZ8VcR2q#a1@BmS`#%unD+)GSdj*a5JO15Lt@m6Belfk zs{^G_n5Old&LmJB^}?NKo)K(kRIH;|3o=S9+Zq)?*a~yY>*%QdUSv^t(EiTGqn*t( zI##e@YWRm46Pv%Ol_k%hjNfRYUKV()kzhp!(=e$^P~XGIL_Eac2s$fiUPvw=Vc5x= zLMH?0h;i-uuh9$|;uR8OR}WdMx^$;xAP8EBF(;oUR}Uo>d@0h_jlf!3sfA*m(u_Y# z^XV|H;|21AoS=zQG&w|5KCXBG2DfQ~A`NKiQZ42)E!Z~|^LG-TX^E$CVs}WZ*vL%O zWSdJi(n?v#ZmiRYjQgQ=qy|VylFJ3?CQ=+0H@xXjTp-Thcr)xHu*nIr49>?4qmZRWevICu*rUZ0&Q&IV_D>gTqJ*a2N@$IE?g8!C@>D<1ls=IE=Ih zhmrQ+Fw!0zM%shJGEe{<#$K{GOo)S>H*43|WfLGoS_z~-Fb%8z2$Hgq2Vxv1JrU(F z!f|j|6W1jOqDT=AdjS60tyzp#%QlB)vN1+S1_F!2@};p+4oj2Qkg{}c%3?mFHCuue zIZQK}3MHubGBPQL^^s9{Swp(d<^R*%FOhq2Z~4r97GDqT2CQXzIT z(;yCGyM@EveTGy`Ift=yY7VP>@w0MRJ*rE_VbyFUIE=IaAxUt>VWf8o4r7@Zhq0@` zVWd4cjI;-bk@ny)(jFXEivr*<_L9Y6LL7)|tX*H%N`UZ!D}nR}IBb=q1xeX>4wIgU zav0$_IP7t(Kj1K?2#5XbY4(F~ST^Ep4y$KljE-6a7KgPtmI5?~ji7^git%)4QbhG0G;V?r`6o-utIykH!ZHsXj zYfa=ZrkhtD<#ox8l8R4?G1H(qjO`ZgdUQvWyDTfl1UXC)ODTt~eD1T(VSZGXY!2&V zE5Tu;1vrcZR~$xqr{FM_iE$Xa3LHk-gTqLBa2RP14kPWsVI~TI!@PV`F0+I<(3rAz zeO($Whqxwz^anUh^+%ADjps1wi71B=j)TL}?(mYsm?9ijx}E(Xb66|lY!0J#3mj%5 zusAGJ8XM)XK4ySdFO&gc2AI!iO+y}VSO&8iO<5AuXEQP>hlNoXFuElO_DG;OZ2fHx z4qJu97>BXeL=I!R`Qc&VFiDMLEh8u~p+WxGj6V|#@EaOIS>D|+yqly}W|{Wf_BU8K zS{qBki7uUTttZ|y+n0A)Z0GdMmTF%6RabJZTS4@|b)*l7%T7>S$395Gbu1I(I(8qp zj{O0yV}F3_*dO3J_6NAG9R^Y0;gi28GvUYu42LVEalR)|iT-PIMK~g*Ni13=4RJQttzu)0j&=kV*L5={CYy;~N)NFN2(yOy zjMfebR)m=q0-FT&y^KuCb+ssr4zHIW*d&4Cx{`Va*Ht1h#&xVUk?WXl-tviXout|; zr|2*wCP9ZG&8H4y{#FuqsKt|o6{{uaFgl;H7f*+)wp2Ve3^gU2*~*9vc#PBlDceCV z#bcy+3Layb7>}{Dz+v1c{l>#7` zk22t>LJ5Li2^2@Yf3t(5vXB_#C{~upQA{`U285#|)#j*>dW)CE7M00TX>KMFhvFp` zP2?pF1Tt@Y%I2lx6~t~vRZ(X8Z}uwbYply49$+RC0>rCOoK%kt4o>>1r43_&C?`#> z^cmBueZ~TqS=`ZtLSUd)0*7e;^7)L(Ftgxy7B&hEaKO*%pe-g42xt-r^}#(}NehyW zk;h^)l+ZoOJ%r=n9`iQg9;Tq`v`DZMbtvxXfPtUQJwxg4neRAs_ZHKb$PK3HmmoMG zfnu7C|LI_w9wf$?hSel84b#m-9|_Y)DlY0WQ`{OTYOX~Y!Z5dmNjEiNB++rPXmpVq zq~r2F@mXc7vr%1?X@0?eRZJ6R6Tvhj1jwe`ylMR4OuYVdp2acD9pe}rDNN4+$G~1> zx;J2a7xp5-ZsY*3WLvx<6o45NYth&Bu{cC6354k2l>tc$l6(;w;9A;JA$OEl2*<%I z8?a7breTWkisvz6NErcFCVwBrFw{yt8qQ5Rs6oTYBh(=3P)kl25>HPS!CMB6VWbRh z@}LL~AWam(0ptJz96<840Y_UrZNSkMPaANK+|MixdpSIsSRb6=OR#PgYlVj;c?*W+ zZCSSj_p~F3{PM3vSP*?sT%Wj zlY`>`_&-x_Te?9br`s0BeVs&u+Z#Og(-F%k&k&ANHeTmVi=2!aamvtv1Mq@_mdlyy z;h>0eIa80vIF~ccgr*yALz+KFHNQ7W^BHG(o$14) zc%8ZWJou5x6n8Mn^-ovOL>gRoz_4){AAxK?fC)7`KfUBlaB3U|3ZM%?3Wj}b}7?J-j0IB$=AfLcDw z?XmH+NZ%Ey~)k<_`b`?FN>7&b_oPz`R5Ih|Uq5&ukm z%F$sN7|}V<88?wk4bPQ$OyfYmFdMwzk>GKu5@|V#_xXt2RS3My{lO&U4##rCsX{xm zgqATdpF?s=#$WPXFn-ZmP8X3%I3Ft56S-;)_IzW#X`o{mqhNGeENr)Uhb*hlv4(8Vz{UdSs6FqOFWg(N@%*@Q)Omd@*XTr(>=H`es>nq zXWx=laG+pUAc)p&@Q9G?p7lbp_$1hbDH~&^vmpE^fTxw}b)E^lD^?j4$hi05)33o@ zG29xf@aZc(l!<((zc!#Zdg}3F?yK{{S!cPY64%fg-Z;S*s`0=tUb<`7X+7#tPlKm2 zR%&K0@?y>Kd$2;{plhu}YWhC734|Tm!XId^9mS7&kx?@){^-keA@@_S&-hcvgS*nE z>op?>0&szi=b3uR$o_y~tdeK{NHbvE)h^HFBl~;}`?GJ{5e425)>MV4qG7Y96>VGa z3!lCZlnCfM-7UOa6EJQkSs$e@3}0v8Fx=h@!(uYvy1kb%Mw_7Q*Ee`52L|*P{5lW} z=ui7W5^q4?>Yw*ghtKtdT$!ISyL@9hyh4%AtB8qv=JN&N>0Kok3O%Rm*IZZzTrRAd zuFt=)V!FQeLef+EV7gv@VeNE%<%RW#d4#PoTOoWE!wKcQW@$qQzn7~OgUrRCFR98Z z{GrhqQ;hP0N-b2A0XHGIoqW)>tJo&K`O6v--NIttj*fuqX(7pUqvVuYc(-!5+zBYk zd~?p{IhT~20`#_E9hZx=Td=gl(A0+{-=RIehAp^AyB`;67sAkVo4ff!#A`6E)!*^u zeu`V}xIX)u<{H4#wg;x*7OwslkP8iZ2>xdVBv`AM$IYk z^Q6Y|(JsU-c+YpV3m<@jD+on*_if8Cf%t(ldqG&$Z=fIixX9?$8tOdNX*FXs(5Jd! z7u}S({X4YTaOwzVE5@Jv{by+CF0B}xoeuz5njxL+V>gBI2G5EZ4wZO{4F_KrT(BTU zjRSQ>kpo~2^W*wWyM!w}JrcGF9FB=@yqmj!#xc<*0PJD0R+>I&WQ3Xj-~ulgu~Bkh z0n_lvcukM^;6kG)yzoDyb>g@mX3P&~J+uprs3{!qV1G>Mk-)}6>kmvG3({J3H zCePOt_Gu08T4O?BHf*l6tAaZ(I1Q`h{own2`hFP}FTt-a<^(ztBx(Vpg~Njuw?0^9 z!u2OjAp))zj*fu-Du()r34=oh#Z#JbjYq?1SSO=Fk8mK!2=V8_5}6J!pAhde1>qU` z+QN3gV#rxS3yl}IBs0273TsLH8G2n|)r_vj!g{=*Wr&zxSUp2;D{PgQ=0bMU3>|KO z5VA|x$otwthMUN~#T_!9ytN!pog7a@t(`a$2E5E+NWCsYie+%Tz#&yw%OO=ML+TKR z)J`>@nc7diQTq6Gn6@i0=&h)kNbbONqwQoi46^~;44zEX+$|Ky{a~IZCg@LS)*Q-N z1QTzqPt7jXKK&iPexIJXK4-`3+S! zZn^s!x+?ueign$$<;oaD56b`~z8HB`*l3iYF&uqW@uQCeZ#;8Urqz6osg(r>jY4>? znR%ob*cR?Tg~PEBt)Vomh0q4D$y2JcWFW$stlsPq6|TMmixkIXKeF3nvJcN3lLHd2 z_L$Z?IhJFQI!bdoRvnH-7L1L>Uc5QRBI-AP^b>Y%o2nDU9^=E5!@P>(3a<5 zI|0Pno{cw0+c$Vvzxm*gRrAY`gS;ZmXLi;6U!DXsO4ABybZ#S^_x%sNa05yQT&));Wz&DD1P@n3jDzAWk~et2e{BRo{VJw>>OXi-?H6H z)duar&2Wf(pj4J}INAlC9A1VR1J&7|yW{H%?Y`<} zw@F`B;3;uUqp5_A0H;&-6^$aerqS|(?}ZY!dBl(ceMLJAbC`ty0mKj(NQMCGH@_qZ zG02&HBwl zKV)Cy`ZRKAT>jU}0>udy4TqT3a2K2D>MUNLO==n!FB5XDQEwBM%3DVc()`AWI^O(x zeLmiJkSr9e$pkgmx5{%}Ca8H^lTfWB6V$w;UY`A#5TEy1qJq$6@n#Yw+A_3daVKNw zw&XT^Rs#N{KIh7d(o*J0vfW13ZP7BK#!Wj=Q?y*|X~i?yY?XuirCFEV?&~*6WS*zx6((--rw^A>(+!>`M>80uaYtgbn z-qw?rpkD7Eg%{5v^?KyF?krNT8_(dyvq-(LJp0dzqn=RWMAZXUQ&9QhPR4K(QV+sy zz934tKDJ24YbBl%na~6tHWT*ZnS|??aJ8q;dZ!l7r?+{ilp_;Tr)Pc}OBtDv0Ahse z!P_9hv3_$w6$uBa4>_#y%J|rL{a*2-m5gw04(Km|Hd%iX+6ZT5%Cq9E3_OE2!dYqZ zoWNNE6jEojE*YB;LZ4o6AIS2XuSUsYvNn)K2=WMNr+6tJ=-IrKEvRG4l5n*r$9k`j zu+5_(BrlaAG$&zsBuNM$MiMG72a$wzo7ewEjWO98c~(re3ePr^waaq?lSz$gyphkOEu6kKs}cCL`?mj7)0gM`DCGt$ z$`x9F2S3EMoq2uZy@gyxg;6!i!oM!i*d8$>Pfq7>Mi`9jK6&#&A_@CY5L_^k;cTcO`1M=P9TkdTii(;NgAn0NW&P8!e3z& zp7@n0SytF&=@^fv#K|cG`zl2itg~n_$&!gU3KO`zC-39hIw;{V{^iSzImFsdZ@ z+V>fEBGc_n8k7)K*zi`v?OqA?P6Q4O$M|XboQtv;!D{$2nlG$tnm+uZDSG)u=~MJ; zF3Omq&%bE+6y1MO<`li=q7lrQJw>m($TLkZxhQ8EQuC(Z3GUlAj}KrM_e*<&R&YRV z#Abgk;IaA(`!QKbHrAt>#3i^4w6=NJi)VILg@mg;n)O~QVVkE4A$hnOp_zdtl`{YV z#5$`GZw?+tlbfj43*TshQ5i{O5rW|@hrq$dv)>k z#n%;ITYL>X`+kyMSEoTi%3H}Jtn1S^{xIR{^i*iHdg`v!^qm^~YUMtS%ihpty$H1= z?@qhB(wBh6loR%C3*NKuAV18@()^eRgo_>S2DIt5>GpX)7cqa8>Bfq~;;_()QxheKad7z_0L`=eyh7>LBcThgxehQS&Jt(P#CU_8A zna$)7l(6R2UmZg6d`1Zr&u4sqBQ?8{$ccFS*O6!L`-91I1>%G}|GH)jgNqqwFTK-t~;G!YfcnHgQ=(EN{84qq^!=P*`;emH6+E-y1+r(<2@No-Ui^}M@9srb3{B%yyp-Krv@)hgv@y-Vrux1Ey2{l=(2Ay z9dkpO5U!G$F8MMt9gfRXd7hQ2l9{SjGSivJWVi@sQ@TNTICTOuR+|GuorwQok{8;D zYbUJ742+%X&06te8lT{7{d?NHAW?>wVNm^TP2UO+*gpLgP5-pm@Q=&VpQgLA*H3^i z!|ia3aoT&zfs)UdFwT7LdMqo@M|P!;0|YFubH-&Ifp${EIqEH7sMq}Ze!mW%)Hhf9 z4t25anu(fmMXja}XrbZIV2ytUUTPP9)u(p_jGORDFUu43$)gCYOS3ci;mY<^LV*YA z5|oW|pvETIZWT+}oQA(1k!yy2{pQN`m8eqdDkZK&7OvP@@pQ{~fpZTY+I_?ssKV>_ zb6~krqhxeeiM|c+i?OEee5ceEMg_%o4M2Ld`5LSX6w;#!7D$gK(vMdX>5VubU4>Z7 zM_kP;T+j^T-7gq_n?A#Ru4nv3A1}NZwSqtW#(x5Dp^ZDZH47yhwp0Rd$x1)9_$JsM z3#d=WB;;@)2N3Zjn2g2&OG?_H6$wRp?R*E=xWe=*7nhl~)@&;7J0K|7gM(C3hd=$= zeEr%9=7+EaAVFc^DiDp0R5T0*oCq`s&B`RgjBh?-{pHU>~%GbBUR_V`C<&vjBNu;d?y_pcv54k+fs<&_Ckt;>y`3NJ?Sp3nqH$AgG~%}s@i1$Q#`#qoX&;Sy z@2tcsR9E^IcUcwsi#}Pf41B|O4b3+jzT*Xw(TP|}tj|YX7*LstZ^$M5b(Ich0KTDa zFv>UGcCA}i)Mpws-yhyeTjIOHAdr3RdFOuH0~j{@J+M|)s^5It3sP^*sh`ZrtvCo0^hKN ztl{9B5sGifCH!@j3YEb(RE^3+oC(RgJte~&$HZZ#vwq4m*4VeE0$JM!O~fYZwI^a9 zCgLCqfE%~Qb3&$ULWn~XX!ezf1Y!w$U}Y%+ksOLZBN%`{ zS!h^vU{&DdpER&`U-1tOtmRhm&pfcMlY)Quz#5CQv9}W`{LE|svATcI zWFJ4TUO=5yg5*^T5;(iR6>-Pt{=*rL?tefc61)G~DlVb>51lOCAFV?5$l&g0yN2%m zyl*FVKTE9dL&suX%~svd&gQSHRCYD!e(IpzEt=|n6EEV$I@Nkyl2O*SU7qSNBt&^ogmZY z?%*y_$@1=oy9ryi$M`gWwLNY>QRWXK7mX`bacpZeZXdM0m}l6mXxvg2*B&1?9&w57 z0Fx03yDf?t)Yid$TQx=oRx6@1G~2D4jXYUE8OOdfar@X$a&!gBe*ATn zW-~CWEMWFtgrL^fqmkg@9L2*d$zNBghXHt)`sgSR*W#sqD4DV(uX0G1sLRvL*Jmmo zUWE#V%)CKt!^p#x!owPyWd65Ry#Lt6dy$1)#hQfuTJgZ2d94M6a``dZkj;Ju5Y{I^ z2$erG3qUL$W+wiakub@_q-+Wv=7~d;hyM%Zz&kvehzUO@TRTzM&QY;b8Rb6S2>?eD zrD)uRDvm9T#_h%n^06^i+>N(dwSYC*Hmh?jDT)uOBSY-xt->8}en3UGPLr%7J_NZIAaY$Kqi>fxiV} zFR|$w&;^sow>WT;fnldO!2B!*#_lqJA(0|`!NW{DDenR z`jUcaM@^1)42ywbDt|U5u1f)C5G6KgNhmQqRcR+B>SLv2l-P*#z+@=gn&oK!B2xCqm_O67Kt^uGFsG${$e3;7IF+!~0|?Jhlp% z9AN%C28OBp0ZbS{YM06Kuba-e&N{1-f=%li9C{9>sYMGiEU3#h;1J2xV>`St(A-Dx?W z0i-bSioEw$@>Wf9Kng?~b+SbdK)PAuNmFDU{G_)gobPF9r0AkQ+7!l#+Ir#<(4PtD z+kE;{IQ24roc7*PIr?kdav73>Z`O<~Hqt%8aEWoncz4U5vb3~f9JMapg$J5ye+lv4 zQhas3@s(Lfg55SR@En=Lvs2 zdL%v;zZfUPKhDeY7wzVQX9~VV_~U{b+~3=e{~zN2M>n`{pv?qMllSjl5XP7AHsecp zz5Fa*4_@$TyoE3Fvv~Me-Yq)=`et0c-i`RA6@(i`@`MxsvxIu){JUc=O6SNpv98`l7`4_=9Au2Kriy!*-SJ9 zH!%I7;fwGPMy|fYyp558I`MJKbbL*sJ;y} zO`!4Ag2#bXr;TDaUgR@?L~#eNTkt!Kw`}*pl*#>2FOJg};@dfheM}*HbXw5}SBcw? zt5f09)1L9WUPYD#f0cs8r)@vjiNoS=`iap7F$M*KZ(5z*k6wjG{%CJMEd*(nY?|>? z5=1lbU4##2*aV62N#AMpHZH%A4t8(9p3vJM!|1F)X!svVhP-q9MLS6V&qDtF`+6Hx z=<(r0jP8ea!dNDGcXyVaw#DxPJM6H#8(fjt-NYLHiGdyXJm1}TMijer!7f>M`;vBd zAT*&M+TDh9_c!hCp7jrR_Y=vxyR>LTL40?=80+rR(>jX}h0(dN3WjT_&5 zO)|b29Y4OmDy2CD#`5XkYJ7W~9j=h`s>ur-&VzR~zKi%Yczk1y;w%;(G`?dUJ}Wf3 zL1wQ)b~t%`+CSLgxJP+B9UgFT3UG|?cG$W=+2C%hOvi{eCgGFw#?_1z|tZ^GlEv@Nbyp(eOT*|C0QK7$ zH*JtoZE`OU#+GYP#$1bBDep)BV2oF$HVTnxHN!PSnYQb_`Y>(Yo(gT=vO*wS0dFrN z4TOfD1N9MC&kU}f`U(3_5-SH;GEd+>GifE@LU5dnS&YFZ1GEBQ$k^ z_Zis2;O0y8;6BLa!oWrD8UmbAo|U78YFwGPV~G3G_WeS$5a`bf5l8wt5FEiFM$JgC z%--cA%iJxK0m_Hfn>TlT#@F4!^{7^TO!u2e((u{$OihPiL|ZWJkYx*Y4wDYOgv&7a zUd%pxFNU^Y{qE+I7_awhamHZVfZn1rry3>qr%lzSNQN z|G@ndyxsugu;qYByRrpu?;nBHZcwaTV+pa1_!fPp;SZ+i!*3JQFc?$rzX@xA^zMC-J3pa4+IW~>X}JSfm!=6)Q;ll^Y1526&F|`-s*nEbRDJ$m@pbyg18Cje znW6OW1C=yisP?EDwm+o;6x^&M3fnVau zn82ZQ?`s%yD;;AlGlzLF<}x|vvQ~Y3AN18nk@3E`jJUI(%{8DY=1jr0@=c_<+ejJjVvBIcnj1WX! z!Dd`H-e0}~^qX}AC2HbIl)&b@kgOhRlhFJca-^hAUzRuJG&FaQz?r*@RFg-1L78;; zY?G1JwU`?_PDC;%Egry=nvNEe==cYITPz_S-HrF2W=~4nWl~Z$?3kB29rKcW;)TUA zHNl|y&TKpb64hC;3F_-bGC{=~&jg8uJx3|%Mq3sesfE_M`T;O;vML(yg_LnW$q<

    NeF zx$#U^L*wzp$!j-K6DF_eutx24H*Z2b@7m%k-a9O#Z67SdY0Fw-jDEO8AH4>92JRO6 zVF$Pz*55EAz@21FUg^s@ceSdyYv+Ok`_IPQ<&5+db-NoLL=n4b#)zf*h$ehJ3n>fU zkKBbMKR>vob()ik#Uvls_O+exI+7B>%#ZE++nF0jsmBq9m95A%}KyW+3R1gf9eur=NPT<2R z>eR{WyJqO+muhA?)=(_HLvS`BV*$?R0-Tk|(?7V-i^hmWSzvB&0#AFu)8*%BSeRxQ zCFfPRTdoBdl9mnEj0NE8Bk6wQRCjO#+ao*9FP}u#DLF4|FiW3`q(Lmb)7||3iDapr zi7btK2)h=!i;W3?)F;>+{hlv0{!W{tKmS27xcANkmgaJtB-Y2v3cp4ZrD4U!2;Jsr z-dJct0;@l&bw(x?i{l2LYe&H@ZRf|>VJ(_M_b0grZGMIXy=azEb6!@lk#||Ko_7S{ zRhnyeu|EF@7#XX=$MK9j{$}=`FLWgsdDo(BKWx`&4YLQLTixlQ;kj7(GQ>FqA9x^ysjV@i9w9+9vKk@SY6R&Bwo@LLr>$t4)pTlJU^Uve5$|PLIt!0|x zvc`-so;iz=OV%K?d954Iiq{%5xXt3v-FO*_@^ThIaQ2ef9wkkrGPj!65YdMhf(l@E zwl)~xx5u%qz!+DXiMEVhWU%?IvEW$z#=5Xlhf#cmsdD1q9jdi!Y!AnaRIf9A-%|1S|#5Fo7rUc@4?P}Dh85_p1s=-^0iA;5F zHM-r+UuHZUK*en}IytdrPBqg1CvKYpdMIQAMlt-Z!2ntmv{*HDN}HAc@&vD1_R>9x>D^M>SW)LwuB0cWLu|+ zr~xy-C*v?h|2exL`Zvaj{!GfefO(=@r}7uDb;^C;Ys)+wvDKi+re-OJ-4nJy+2$$8 zk#di)VK{bBFXQx3grmr-bO9H)bBs#i5WTZWY&IY!g=3%=^drjrC?}4nB1}gn0#qtm z_=Og0hEU$v)W}~+YFxP!)F^jQqtK>?Qr@iG4Qh;e57SIuSdlRyr&lN`(L!QL<|-K2Js8VPt}KT71ql^C>>-23hj#QFKD-c&nD z|J+aWIU~+p)(xV`qp_|Dk63{&{S0a?YnRBiO6?@cS8BDAEhd={c?J;h=WhG~c9K5h zI;=indgKD{b2h-*)2mjg+0R-UF4;4(IMRBslT?eEuruK+Ro9zXTtwa`7Rq`vNGuX} zl9P?LLa8OR_GA-f6BnrdFM~=(kPx)FJp#nIhd?yFQ8og;(D1QXa88vL;IfR-cxnzB z=5DzXe*?yKg}#PQv8B8O*P8%bYdDH6<%1bqlG{#Yb#VFz&$4nivJ;{YH0rHLg-7&@#0cXKV`VPpi__;Nd=_anQo{opz^`u1s9Q}7YwKvCy{eyjp5_B!>2 z4<pUHUG+El_P&K*$voryApLn5K{KnP!atkAQ3MG`*$= z%CXIXqURTIxw?Y=7zk!j z7mL1?52A481KFL+!o}GL9!i7iJoB#(JTA zh8M%J(92#2I3S|6AFP1T^eOg(V6{hqp|9aESn^BQ^i4O)$3j2b1Kx7id_nu2V#f^G z4)$sdVW?+KsAn}W(ChBz{u9B(`s+B5%(e=0y zC<+d>9jvF+bQ?f|vpYpQ%k7{e)>rhTyWuxzA>2Za&4i%dWN!zb#CGrwB(VChYzH@z z+CJBl(d}R<{nzF0k8KBQu7w-P`Gk{KhE3pBa8urun(J9UV?!8bL-xir8+oMyF;t2T zVIMbyTa;$w713}8-m1^3<7Ljn7 zRD}>z-q|1{xk~K@w^InBlq0#~c7v^mBM9L-i_IXNTiiva;%=}BIc(|tt@Dq?UYV$b z>{U(nsz{vo2C~UsGVcY{ya#5p*vmc3xNj7z0*67rGm7nXw^RTcnM`d56_aU3p*#36 zk`0U>0;T*eqi{z~o((iofDCXNmlUBY{ty{58X<0kF|U zioL=%dvWgr*U7`(aC8zZu+2*u5tdT>nvs@gx&a%DO1)SWDFp=My&hcV_ zmFY|{HDsmsyWq2O?KfE&PMP4o@|%5lbho?+(-`uaU}EINHiDa(6WT6!^Yy5b1=<GquVt`@o`2oUz9hQpT+$Iz%OP1oPSvSnS~7=`pkfzJK>k^6A*H+2>B* zh@CsZx44wIj-KFl*3}KIGOo$ac@6W~7GKdzn9o8Js0)Prcs-7uK5*aO4(M|H^ei0j zcfldI=K4f)y=D{2;0e^-$u@)G$Qx=ic!Syuc4B*lOSzFeYctq~T3D0XxUs|di*DR( zj>5)GmMT~GjL=$Xzu7X{n_@G#0uW*_IUf0o!nCJEYwq>CdS--bzExpP1VC%DvSzTz z2DWyt64->jT)nX!p<1fBKzj*4x>8RM)f8o#?|zZcWM#FM+lYIJ9pQM9|7%n32q&Qi z*%5|+4-x*`k3)o?5GTURjxe8jqC3JW%K9VU9K0hek#hEq@X+2NWc}YCnUogcM@6tB zym)xTg{OoaAthE)8p1e-Dt~y)#v`WzjM#6O2+h5tyqG|gFq|j_N2-R{8Kw(Oa)c&0 z!*?F7An<{E&`1WD!3|)IM@x*q9BP@cbo#9(=3_*}z{0#*8 zBAvWo#a_iJ)!o=C@*P}ba+>5uu?7+T*_UVeXTzl9sJrENkc0w7pSYK{QzSBsO3(+F zRfcKCT_hF#@?cIPwCSPo>r0G`(%|+IBmKe>IE?K^6(!iZ=iG97iQZj=2Y1UD6iT(5 zUfE1jh;C~iS%{oYvNg(S;iZ6!mB8agj+}B3?`S88cOOdI8)l|zNR_io>?8TiI0~p$ zEV1!*@D>_m7ud8~O1F73fr*Zz7X;=CWZJaW0hUYtS!@8n@|j>slobSf150d(E5Yq) z7HNyz49ybcNV#`E^ywrKC)Th8d*h1`lnfY_G;l7_j9-#bwa&f6Fo{hMjpzW4dBPXm zZj3(rmeY&i%ocC%&qExp;xgjs8>T1a9?dLc(#vs4q}dvPu<6KW#&sYRI-bK4Z^o4%9mC9JDFw{KuMI)R zhdu!vXJ0$QvVYcQ@4)gc-c+^FloQas`NIIJs8cT;;cj^fU{g`+Z8V|yk(?&#x*BC) zKA0oZKyCYsoSPRpBmdE3K;XkT1c)AG&uj|`J~NIz>fvmc3xqh73fVMU0d`m*zzrC3 zq1g<~VMAfQ?qgt%;jJuo&g2%6kAO>*VYXugGx3g<{Aw2%=|tO5JT%^mJ0K@&p>&94 z+bk2F5gt7gCOl{{#ohxoFyXl(O)sMfkC$^K)Z8-0q319ZCzj~78G6}pU4u=8S56%f zW-AHJTZq;JXKxORx*JbGgW}D4HYiwemOUbCQU2=ka->o30pp%B4exTwSP(Wp!b$}( zY@T3+o8ZA7K#l1-I0L0PTRiP^p!d9Wq((ca!gAEc8}rZ6GAZl5JEMqiZ#gm~0|l zj6=JzSp`SUYtQy35tuN3IOCBwBEuo>q#DMJGK||(3Mdn#MyRYeTz)_HKjoerbM>Pb zz|HXk*cMKd-49KE4kNd@a1UiA6p0SnHYo)er38?&&2J+^${GK}gIJUA$5%XyMfi=} zjYrM`-DF3u0G}7dZB|Ti%em6sG6T9=C~oCtDYdwm?y{h`<;C$h6Cn7f--i6D=u$3p zskNrJFmeu_-WY37ZyZiCy|t_db*_o04!VNs)$g_75U#3DAC5jqYQg|s+WH1V3apDfJuVoDMK+T3p0 za~SsvB`DE=MvxiK(_ow;4WRvblhqB@ z+pa|FAiXW@7#k6f&Amf!i-kq$ZI?LowoC2VPU&rzCfD0Kqs5fb(%VY=jNwacz3sNB z-u8pif&=(eN>p$AD)qQKKjoKEptl_eaMd(@f;r8Ya9O~$dzxNn zLT|e@P_$q4wm$;7EWPb})Z5}qKii!Cu43TXZz>AAk3|XD6FXpW*Pob(A#dGfe?Dz z9|8<#K$A0|Q3k#3C-HjQkHL~($5w>eE9h;VrfFw$mlD79(ll+myZKWH(tdq=ykXjQ zS$eU|wNKUa+AXu%{y@mn>O1s!oZhyTO0}qEnr+78i1ne8hKIl#(yn;D?RMxlevSmc z-d!vjTN%?2 zndY`o)y8zVGeddbCx`k(hucjZ?q;0vV_|+?bh!A8%~sMGI@}S%^zy}rwYgo=9kvb^ zW|IYw@H48FhHVHP?&nBRa9BV42^=Pf#3^#4inUg>hZ0~?mQx~Kq7wJqvyR1TtP8AG zO_Lsn4tG3`KXEEfRtwC1Ua^|E!vU)m!3@&U;f7;6TxC6B>u_;(1vV9aBf~x@pgH7L zKofQ8V1`pl+&DvS%N9~8aXaG~PFX@uF~jAf{SBW>Od-K*%53aCo7Z4AHWOxJqbhJZaM=_+?=6Hd8`}wY$Zy#k7S-Zn z0<$=5s@Ok*!|-`0+CM%m9Cpy>+9q1u$;R+gbU#lCw%Qy<%_Vqcco8In<|97U5E z^z;ED89vHwy?8k$xAh>CH4&PBavzJ^xLRV}5|o_2(Z>uxy1OFb@mPBEM;+_IZk zJ(6|FhN5j`A0FK;XYN!Y9;tylQZYU5CgzmA1@)IWUme-bm_gf%NlcBO<9K%f+l%uV zpJIFQ&oJo0_Tq{jw!KXn7I#R>9mcnilzNAeXwW0&kKdpNn~ayA;U)tHJ{cgd@A5_`{h-+}zbep_D6AIW$mv69ap%ispj|ct$?SS;ePxE1`pV`9A;W(xk7KkcRZVU46%c0F}c&eq~yh#V;e|2N_6H}Z+H>wy;cBd1*tM>ulRVrd0dH;X;OfYoExjbW%cfu)R;@R4Mz!8&-oJBNFJ5+Q7%; z^)}CwC^0&&#GrlRFyu%{opo;=$3C$g$mfGRxVKhGI(*ivBI?4Ly1SO*&YCf3Z%8gp zvNw!gTf@fCd2KE06l-Z>gJorL1=--(mXJVG$lSTZCEtpo(>?B%X#nXnW{MaTFre~!1f8ku=XOt8(tbxfWZCa* zL=w*e8aiPx5rM%(G34$Zck}&-_u~@iE-h-l<8y7M?K!SzsyHE&c>@FBO3}38vfQZL+wwwL>3#hyE-ANrl z3&s+kz>xGI*a{|I=}?=&Vxw+dTI^0oKi1J@fT6A_eSw!ctm~A~?I2Ccl10mY z@Hc3tG!CET4W-$JJlo-cUq=etpbUAedmY=OhCC$!e0VbV;4Gt#h^dQ5u=rY3Y|Os` zU(U?yf`kq`9$xI|N@B+|zLcEd3sFLsJ>WYqp@W2uiyggw*CCP60U0LuU)O7vKth+^ zh`-qJ#m_FG=gEFB;f6;aTEUiZdr0{uUZ4_zJ>?CL9+a{L^s~~B#dM;17)n4Ni<3_r zWGmKtQL)}Ki}lXNrtm!0CwJpEoY#j(cgs)MTr9A%yQTXIoAtVotnSG5f{}3%?Ywrx z4CcP|NFBs|xFh%9h);1x?w`qh*c`4#yX^KQFkm+ra48byvzTH@W-(xQlmVyN47kBU z?;qm9@S^klxk-3X0gtg^)SOHfCk^J65d8oW`QNQg-`ieF~@|LsOGPukul4RdT1&qUI(H;P81LMk+2 z8aIkljl5Yf_JP{C4=Z9H)e^jC?zs7ZjpCm=Q*IPVBx8t;;vbc9Dqm_RSBQ zft0ZiJBz>QrqO1nm|+eqNJgCNQ#uhS$TSb)I1bxHE) z(vi`N{gq_&GNV?`sv{eb@wtSIYFm1$?2bW{H;_CBn$9peNoxna>hI zmUz=qf@9b&A(Ov#@L9_em$Ss%juITBb_q)|5=)SmHv!>uQ6eRCKlehi$s|=Lx1rwR zM+z+;53Rs#@W!37U&Mb>hH`i7W%t8sYlO%A-Ac54WqiwVu-k6sWH`xsUWG9H5?cO) z4PM+oz>dhaU%5|8<3pdow*)3Q49#NXN{QcxyTP}i4qUzqN2W437`gJ{)LdLA2xeLr zu&SNd;VVfBwGvNl6tA7X1YV5}yy`7n7=F`wZbJCxcHp)2Q3qbl7G7Kwh!;b1E^?*B zYc%odUMG0n%wT&Yv^F(fa|AEb`qGqqeJjx`P??QaMHH`(?*?A;6Y#=^=r}$q6-FhV zs#QcMyxxIMjfD;uF`~oJyc@Yvq7!%?=$!N?LFcjmm2P_GkEzk|3p!yz2SPQ#J9|pS zPOvCHfE=rBK0KFrl_%f@0|V}%!LbZ;tWp_xejBCC*B)^oc#VZ%4su9;Av7OBu9OJQ ze+~#1u1Ss3ctPnt3#A@3VK7RJRs9529iF3IHS-rhX@Uc#KI9-u3`bedCc?w;{9_JB zV>gvJO7vT~7>=`^2M}hJqQpxbL!cLWc9M+Li1(q?D2^5s>ueO0_F4~O?OyA}bC%s} z^H!k29!G=wkV8;Jc(K)B6VDawwXdSV3A0C@lmE z3#B!vdT_5Xc9hk)4m>|shQ_U24s=Guql2CbBh|y4m>Bs?)VdM&v&45F9)kX-v!QJd z@S}K*0Dya5<;7R1Z{lf--`0RAk2>^&n^waAP|RQDR!x7xryn*qJw&>6P`0#>dPJaG3f+b(zG zYs3V5U%noPJG-NPmZm$qkNEWOhA| zbk*Bw5OT3${)^Syd`;%BlJW8WD#uB2cK4V0^l#*^lKq|S^k1mZi#e?H`A8k2H;GS! z{TISN>A#=D%Jyl*3SN9vpW7pxuSrHYqvIV`UM;0blgs$@?=`{)d8|~}#XMFnnrip> zd_E2C@qasyl{-s_$GhvRuDU<%5vXO;iaRisV-({!0$pqN%`2wA;>I)aqRsvyZk_vP z|2V_l@_C4fTG1=+rKjV8i%Pc7xV?~T(II@4c8fNzyTWJuoU&P|@gvAld8cx186wjp zoS~eW&b6e8P=eu_@ukKb&uAluhaDe&gX_=R?xp+jkg6tq{;3({+Scpj>9QWhS?YUmL30QtE z?Bnjc1g*BP(BiKFZXh~x4e%~x!M)~l2j6S{84IH`qgPI?JAnVe`2YJmfF@)o! z(|G~#86@BWAnyI~`d{qsU!2d$=|M5)>W_L?Pab z_Pdv!h6fIu^T5vJSQ$85VT@ZyCN+NUMO^&Y89JXed}7>x7eUT_g}?%HA7lk|^%5{P z5w73$=@g@JVg?dZ41*cQhKbxNm~I$V*dqbnwKv%#VTQhTBKHrX@(#dHIelLtj@w%t z4?Zi(bGTxdy{lNh$pZ_@S^7$WiF3kdp-+_RIYMUX%@Z?GjOl3-Hc!k)h_l3r*$B;| zeKJPo3Y~}sh6&M#4U-|=9s2iTtjuk(X#je&u&B}-N3sIUHh!adB?)d)A2Ag47nB1E--f0 zoa@Njt43f8xx_e2hwEFKVXr#g+#}-lM^~bdf9_wBkHUcK@D!tDVt&dYST`}tT>7RO ze*=JomFQ75{@`|A2AE%e(HeVLis1Z3jWrB947VBjH50SA6ye-|V!j$^*G$ZwrTZrq zGA)Ns6|mi&sLjG_nfV;n6f8w4hZ!p6a+J^I$l-l4@*0QOCXN{ypK6FYh6HvSA&Rmb!P}{ZOf{TgUM=#V6sZ{f;SYC5nw!%WgZukRoYA@?j6ZXRh-i6 zK@;*>HDB80rEOv>LeBFm5Sp{W+e0%PjL*xnYsqkxiN~Y0ucTzS=JQ#J@Lcox?Rbo_ zo!Y@AWxJE06vJwNe&ryxd;9Cj+3q>S|Et&z4ix`hwyXSSuw7+5+gUrqsd;g8Tinq9 z73WQ#>*ZpjacmgmPr-RUW5ZaU2AB_E?x2JrJIn*NtX=2HvY0PU*nY|>Y_Ap&;J@eb zwMD5-iQH{t*8p@tUp=-Pp$}n)^-e9RPj4IBEAMS%`w*Hhy?!i4#JFqA4kIs)Rnyt* zM0Ske9C5ISArkr8b6J&g&v7nmcef1BMTCX1W@N?8x;HYX$mO?!xbQl0E~^^Ek>5jN z!bE6^=F=IUL^Ov><@7(mJIC*}qg!GAO_$1f4ceitZU9#9MjLRE{#Gof44-R|1M_2t-hjt zoC)*f=9Dk=BZ%f7xo>~b;h~@`u>KN%+$?dr*o!3%2&j6YZ>HL&y zm2`f-NaxnJ7Ov|yaI8}d`4b*&>AV~KOmbseJGYxcBBXO}Qk~Ly>U@Kw^Lq($?tTJ; zbk2e_@_=+sxPI5)D4kOjPBC^Uos*T!pT3+-I>$myQJmtRQ#_}*JA`;nptg9<`fc%? zI|WYL14!p|PAQ+_c@{!*<*U}{vGIU-PCRV!9L+J>atIElE+?{z#KE%~=ahlDo1&!+ zDXqE8fU$BMYry?GpV2msl`2={_NLYk52v)S@*A-9>t@^Gxy#-BQ;aX4v34A*8f<@h zIY*z<{(aw=GcL^@U)iXPclZYrl~Aw~5-I+SY!~ zXkXD5bs2{kv4O?0?5BU9EjM}e(Hkd88qa|RYc znvU$!9hV@-;dC(tw>6*7N-RN|^~QK^2tnHQ6~%L~Mt1DqB419P`hO<+b*S2vF90Qpm}9R%rd?MOD~VB&}h(ov;# zQbBr<)_SFY;6@IDwA4oa3+Qd*R!O*eTo|EGUpdYatjG1qd)v4kgv{5A(7Y4OKQtqX zAWdv2NVg+Qlm*(K5kWf2$4VBk1Zh@f3DSLdbhm67iwKN05;8%-y_q>hkghvV3DWJ1 zadPDKNKBXoEkSx31aNMX|~O&<~GkExd*Gc6J6X%(a)yoUJAfTHQjBh z9jRR0QJik1IDIl&>ky~cU#7(AcTWT-&psQfU?{ucFX?=a?4oDgOV7arJ8BI$8Uls8 zakmHP&A!HyrOjppO(#te?_5aG;GRm}nm!A`o#-=uC1M4f z@StEH3U-x@%0RoMk`B8P4GC1;5tfnf%WV_yTaa|bYAJY7AMY`Sx9WaR^)18oemEVg zcDI~@yipUmG6INwe{KF!n#lDV>icV!r4{o?%`l!SyOd49Lq*zmVAgThjW7hMK_MEs z2`m~|VUvak%iO9;T#S8pnU^lca7kU|+f*loU_uArz>tA?F*0pxbU>?CezD3?7O-o@ zBi3+aB(aHh6k@Xlag~C|z}(yBO>Ncm^M_zP2ztX4g@=H6X{z1ad&GLn;)=K)X$zS%Mo6aXa?mT_|y1T!|7oRX{3pGcjwI&*9p z?+G{!kkQ(?7bm?FJVtp2Kjm|RrA&Ty@ebazFjsEJ8ZfU#%96Gm-xdsexNAnu3GlrI zw>0G^K&|}fNOTKwQvaNwQ0XEs$U5*FYpEbGmKv;HUd$ZW$T$x?=Q2LYV(?GYs(hNo zMk!439mW%~9IBN)NKd9(De~#P{@gI`{|k{cqwbsd)N8s|=~rx@r_is=iPx`qEa`Z@ zM=4ltX6?3u<#E634d_@nZ7RCI4F!v4_|Jrv<#$QEb8%T{PH_hMn;A*8EbudR#kr`E zS{6SZY%L32A~>}yynOA{vZT&;3@r-_T3Qyu{R~=`)1HV8oY)!YzgWw1$y1hSW#fS% zK|GFE%QAJFXj!7A4JrK(Xjx9BgpyLr^7a^Zr{k6{v@Fjd{{PpqBxqTB)v~J2L$j2Y zwJd!x7;`)pjHc0+mgQDF3=Jc-mc`~5=qAZ+$E9W2)1}7C z|Gk#w+#N#?iqu+`Z)}l$uZ^ZwrEBhJ~GGjq>5bLPyy zGc%6b_UTqxR-n(O&c&~?+|J(II*d^|_g%#Q-_p7N7gt$+hTX2Q#p9l_DvbVt?fw(2 zvK(4xXr63W{{OSek_+Weu82oiWx23NR$0b{U>ZNXCh�RhDaxg+^g?nq-ybgcFmj zvW%W!(@3?-GQ{`<1MC0cRh9>*IIptYj-`Loa;A+(izFVc4`}Mm3yfx#CiY ztr3SsN@M$F-D8Oc(#5`6TFpgSv0Ifj7xCrx#BPN1F7g}w9ze(d5%NCVv;x0IsueomxN5g#0eKzC}?$rJA-cpQ@AyabUiTzr!^Zda>ocX)dYy9SQ*gV9>teR9~i5YzDI<2jIgtexS)CEiYB+YdSsDRCne zJfwW+Gx(sk#X361Gs=cP-@W5+8u8t%+s2=m;R{)}S=?C0-_5ec$}`H%6k8OR0bxJL z`i%1KWw?S$x%268=i9+6sPHN{J`Z=kC&Rg~2ruyI`ysZ2LU8As6-;>s=Nn$Yx}0+7 z8(gw0sNDI2E!={H>W6cm!PS?z2I>P*+~=|BE(M|8xV5_5t?qo$BdT2FqHd7yXld76 z)PZFEsz)tDWQ*b@*ocht997*f=39m>tvmyPJY?cNrR(Ls+PEGCxKcTWmz>-ZB))p zwHU*m@ecAqnh53b$JKTR&7{Yl4mS0_{g-73J+=^?aHBGT#~+I@7NaAl@N3jeY(Sne zBH^l2xJFNpzftu&M}D`RBA!IR^WwLzKXN3^lp!?Br)Kh-u^W{K{*-8xpf)P`DYa3_ zue+C@EE;JJp%Z%iWyvtLOx@tvRIl>WE+oJkG~ z$(4%a{CJY{Ma4i#VIigV)vH0tTni;6(vQ_(A=%IcKY5!BI}@v998N0NOP=%f3$+5l+Dg0XA8-Lst&yIBzsMg zb9%YQy!9$j;qt*-$pEziQx4*#fm0>rYMsnhB5BADS9;r>DMW%HQ`d5M4 zOXh;weKA|~(4u^y7b?#Rs*ooEk0M(KEr=E^dh5m{96hic9DN6@IFY!()}kF( zf|B(XN=z-no?o06)l-XpwgfpgTXJZtVzp=)5FEAW3^LHn8{=VghKHPGKUWy(SBxYz z{JpTEVR)kG8DwUjg*3KHvH3<10G08|`%KS%4~PqFh&gziE=TW1k|XukHgi0i=^MV{ zMb4N%hPzU5e)#0HAl~HD(XS0(j%-fKRxAv6D29*NZ3x4ky8?U!YGa?$%-kkylIL9{gg!ek`x)FelMMV5y#%gstK3bk z*)e?8J4X2O2*bU@H~iC?zn#KgmJINZphbRG$p>Yic2^94ah-@x z8;7s>t22Yy!k{iUks4P}#xvLs@=OLh0FN=4Iui`~Yz%e+gA6h>8SDZqw;!%sWMeQ- zF&I<~GSpW9%aOr35ir<|>l?w~_ZaLSuE$-7PAZxz4E8DpJy>9gXOOYR^cH@%fOAY0 zJuL(VGi(fcfk6ft<|t-!0L$%%uU6R@%v1~(0)r~bQ2!gS92va60SpdXFLb1?TjuI} zy>%@Gqt$UujVv)dS+SH4SZ+T&7R2@(wB;yN zIT)U;a`*wu?T0(RlZ3rHZ&$Y;zGuDQ(Z=F7VX;oJID&%XS!AqPYomZSPoY;55K;`(Z8!Hg7*9B|W<&H||UY25XI>J}DVn-M69ErX*o$y|7fN zSn5s45@SvI_XF+%OZtPCft}4(cEH8}QjLW%yk`iQtPLWR+Yje0Od@|b3B3$APr6TW zxlgHwC}QtF%))Vmp!Uz8HrMCvnfoo=fcP1p@WBpkLrB{k(hlis=8YWQpMnbze|{@) zac@Fa8c^Jk3+k~QK7C`!V|d-^Fm^oUN(CmBx=XiD@14FC_niSdjZr1;(!S~YdFdTu z`sD}&kOJx0(puviP`{rEq)Q=#>i2;_`WB`S@iz+X3#32K-@5w!OlkT+Y5JCu1M46P z5VQ=d#AAkGBo)MtpFL=nb$~h<;=o!RWvUp__(zFKtb)6Mv4+bo$Cjc#+SK%33I%32 zQqLhKS`%UB?nOAl9Ge&TMNBR-UUQWbMJt4&Hbqh4q(l@kcCw<#57_s0lwTJx$``>p zm%mcVU!}?qCM=(^6ej5}2b|CHvsL+0P0r=7lJeK9@+%US&sYkW+20sC40JXOA^k#qTLr2KuV{Mv-&Gj@uizaDUqKE-wJs2@?WDrROO4BJD0y%%J-@A+Y^@0Shu3T18@cDFGl%J zO1TY%qLmuv*K8a5h4&`0Fb~&Z1-hZm=XKRwz*dhJ&C%Mon7lV$D1HL z9MSOxqF*WC(^>B2&;5WN1?${*ZU(?-&~dM7s;{w^81Ch}YE|ls08myA9y^!v!!!-$)CT!HepIL*CJ~v;W)|ajFF$9QDkcZOSnirrxFgSk@G-wZYr#^5 znG1lJQnZ0da2)ge8in~K0K^n6bVs(qLL9Af(oM1GB z>rgkkBl?ZZ&HewE0fn>y*w=;by}iMfRO3p_h3;iHsa;o{&3N{8>hm7zoen~99OCKLaBT9_R!(plJs@q zl#NJS@&2w?(4DV05(C< zMtotRyLux|tf}ii$>(&i_;~8fmf{nEn|T3zXO@#C-vwnwgTm?@#GkF0+l_D!7}UYQ zQ%jxzKj7)cK{5v}Z`fiow+YN`3~Nv0&bkpYmlM|VeA5pHaIaR{Wkq=>mS`WAy2Gys zk59tkhCIF*j^_E&*LFgwulpW(Q2o<*71J&xsA5K2tN3)u%_^P>=-;f0y$PzA3|g!B z;%c*s3jqClR`IIqjVcyf?2f#kS}}j}HrJR|jA^V?vGL9*PiZcc+^phxfUH%V;fIR% zLMYCy_$0LA+eEdq%vL<(ztf7>hP1UwTk$5m`ZCsvrTOA2Ydll8Lz=L`9d8W5>rHq} z)g8I*Ivz`RlydAtsi5i=Fr zl3|RTS~6QDa^AABOnV$2a)UuM=hKYlTw0Vly+r#6EqQP7aBpe)Q)M{!YPRH(^o{%1 zqAkCAtx?e)8MJ+dT>!y`LYKQaTcyc>&K>zP<$-1|<1cq)C4M?}r$ayC!r{=J#u%U% z(~8)hRmP2oHP=3PZrlGb`snrx(MRjZ%?(#`)H#6E6ZmnAIterPAi{DC+x4%0ElD4J z%u@EzYkab4UUL??BN&K!N*lK>P3=0oJMG-wl7XgVjnX zwyWkC?Dcc3zx!wah>#+yndFXS0TWBfsZ8gW>W%1qRT7KXKh`r?omL7sMAr5`s3@Av6rF@){qMyt!JICFGQVsklR|PX-Jh#Q`9M8=I|h_{14=~ zy&_4So_FIV__8tVk@_*&7B0!1G4_f~I~K*xpWzKh|29ZJn!~tNbUWX*Nkc2ZLzLPK zukB4zQMmEB)4_YlaiQY43pOyGW5%APIPM1ARtfsIo)3;we-_IzXT4d(1jmHQF=xN) znWOb;b*&BaB0z z{3$o|LkgwQTi^@6>q}@AMa4dM^9z82(FPq73oq*R9)em&F{}w`&xF>#nHtW0AHk$x z^sY`IL<@YgTQV-3(HBU|292&6T1}caXygi|Z0DENocTH_wOM}lrFzhKUD0#2)t(w; z<8)bu(MR)3-smwL6i+Te;aZI+b$6;3_M~zod`z^=1vpJ&(xz|Z064V-k^BzFt*#o_ zuT=s@m%5NSLr}#pw?fi!_Pklfu+cNL#U76&dmd}2ZsO`zng)I0cP6^<(4!%NkhUQl z{S{dat$iKL>j);zYRNl2l>0WnN>l05uF9%8&NQ4+k9K!0nA$zLuaP1Dh&d|X|JtKN zsBQ6BH?Kl4lK6Q)KmQw#IO{h)l!uqUR)<%*9!Wz?dWhxgw&mbn0l`!MF5f&^)j=#)J zqPSHzz)>^z_30bci_<0DsmRBMghCqq2pa*0wZ?pavszXc=O7GfjX?=o3XNY?#;*zl zK&?ce--%5|%0hKkEoUMdtUrIsNy%njAr)47&iei{YdN^~wbW4V0D?)Omeliux$Csf zY7`ezEdd1%vLZt*8RugoC9R6o5vU;91c)s_B|`KM1^5h=lG!k4fn?-yZoxtqHvoWf zO+aQ5#)VSRQe2DNi*pQXL-PlCklsBTZ}+yP)dNG6XL_&x4Y=X(p;T$9(o9nt$bxxJ z!6+NAG9Fzuv!$l6Jk|}d8oQO@=>0l1d(m!Y4;xK-PD|crXGfdQ;-};apVeoz0(37Y zW0W8n2}bdn0Uk#UM_um5za!bWg0;d&m%qSS;J4C3g_Nw*)Vx7POiVr5aa9wbE_7HHax7pZDFfI}-z;8&Ykt@=Pj+E<%~@8lU0& zkPz0MDV@H{@`CUCc)vF+{#&@*_{y->%a?_*rPKitgtZ!#J3$M#;@Q;4rDmaaLsUD=3_nY4VH-0vFOt>)n3}_QwmJC_V76HPxg+zw$QoNE zMJN>cVz}v5NR6b`O&( zB0s1UkyN{v*O6W*A|(=|h>s)LP{ilIAik$(@pJLI*p1Xgy4ZpE{|maf21LOzR*18! zV+YcbtK(J4)zK*SQ)?s~yAx=nQD_3C)U8T63ffJj)B&4HNkzkdqGKZn`R9%-IgPcq zN~VrVDZM5llyV3#l`;$Ak(JT|EK?~jgHug%rDWMuN)k+^96}hYlviSRF&O2>+O=kQ^Zq$GCvou zlxHF}PAPY|n~y_0ZtIRUkWZpdklQ8yf^C~r(?a5Q$xr{5^poy}O(2XMk-(VOe4oVa zk`E&?ti6n3_u6+Zc?{gbasQv_&$b+b!}_vshqb+-+|d{#i8ZUsgIb+0AGeMwrt4re zqw>FbzWmZ?O&Q29*bcinE0oe7&}z2Bw;PY4KfmN3VmILcE*HfI$L!|SI2H4Px`%Qd zrn`Lt-QGnG(%3XaU;34Zfc^6I`scaKTjCfzJ~Y zoDgOln_~wh6`ARGUD_9zR)`4KV|i`H;M|)AhA;TqL|1UpU2K@rF{a2gWDF+Bd5@brcGZ*x=geRYqN!Iu`}m_({n(z~pT3DJ zCy_Ic1KpTjVlJenm%;g)IK9jY7Ogd=m)u>%qc?0=PI8@hHwWUYlw7;OSiD>rdlt%| zl)3@S9P|1!AlC)RZJky3A~lPckSk&4=tn4X%)F2v`X0da7Y3G7-JZpg9aR7nTsXx* zKMGimI`zo>Z4A!)w@h!}8<}@07JAioaf`!JH6w0)g zd_;w`hq;tcrZpBCzu5bRw7c1D1BHFEz7MV>8jg%dDQKhHiL!DUUdP3BSm#7*!{QJx zQ{!i&ZE1ew!jJ4rhgAAF+>yEtdpKiOWqy66KNy?L(Aby zO4QhL6ZcGTc{%PcxU5X;3y%*jLl{@iiLQ~NW<;|qO0?|lmqxSyBb+i=qRmr7$SpWa ztwxPuHHr+iaP+u!8Rj^>m~~_ClcUFQ$|0;&QqC0HrO{NE7Pv=l6kxrUEjlQb1e+ua zNid~3?#ScQ(6=ctofW-#*a@k${&tKW#N{ zE??uTg$kH^1Ec#KY#xX_mH4A;D~E9Pi{v+*#?+_Nj^ zfVEcED(>*DM~K7QXE!0#H{9}Zn+s{cU5+@SRWm`YPniv6;QMSS(&EY%?O+{*V;jos z79ShRY5cTtnENzR<6h1?Mp+?o>r|X~8x7_3lc|h>(-N#xWgsbT8ir=F?<7M<-wx(( z3O2loH@I-ZAI)UzGB*~garaiIx<#BfoMV~Fcq8KzEmLiBH~btV3Ssspat9K^+SciB z^RXbaiEM?rGhPfTkrwhkE=wU##v)T$OYxkNXtp2kWFWXan6g%zC$~BBuJbo6jYHk) zc)5Au02Tm7&^VrfwUEZqH!E6mTDdX%zhkUrgcc2(En|p!%KC6eet<#!r44n{*fQ4B zvY;ZEOy`NeqdiHdH!!Yx!|D|(UfB|RasJG{$h0nG;EDn-ZJDjDn$`h$w$?nYTf!C7 zI@Rw%gfq3aY5nqh)wBVG`o(b1`FK{F^uTKKYqZ+!2xG1G4D2F8{S2#ZT@EnK|Lm4* z@0@7!$s_;`3D)Ff(&S$L9i@zvLCji}VYS~!cl(Raie)^RpN(G@Xh3S5KH}}FYZ1@2 zsu+F5>s9}Q`iL9%DPUM_q0Oq2xO9KG8ELqcB~~T3jHzV6RLM1pvrn&;{WRGLv~snS z9Iu!%y`??W4aF?>x+8xIHFMZ)$I8ya0ds&t;8cOM- zl!t%=%{-<=3)jn1R4sMU9jTz$%n^V)5~8%wJ##?7jag!a=9jw4=3f#n!g3mh5M}eP z_aCk(~XfZW6dS0EWmTWi-|?g% z!MCqMu}kHcQ41WOV2z2D-cFv}kvlkKj9)n7YRFpDcpCf?xL|^3rIIZit-!h%E~jWy zwGO3BQ0s^_7ml(3%fiulpJg3#RZT4ev4%Ni$pUq(N147LE{Hf;IQr+8{V)>N8R#m> z4zEsR!3>mv{uHnrYrg&p>%!5oV-5;rcOvVTvMGsv)z1~PXj>TK*wE z;55HqErO_0g5cU~ydW5RKG_3XoLbFW2=&i95rSA_6GSCaGl&U65M~a}z;Zr>`oDD^ za;&%I;P_tF4v>Q|bJQYi<2SmIBWB5MvyxmrFd#Vw`dvVBl-yVj3X~3Wy zTpQ>IFy`Da9ed5<-tg!|n2(R)+rasph@xe6UJmu=SKl2Q286V?mBR|Yfo4TKxDaD~ zV*1vw;j=PGD+JkjvC@5j{w!1#8N<_&N(q$K)1|dgpSd8O{$BdK2cEzWn6F3hf2X#% zPugO?YKud_jBksKHQh>dz&YPRJLxzME$g7IWpNmViL|su!faWi2rHT68|NZNs%>@7 z1rl>q4#LclhOmh_@{l9G9!h0`%StG%P&H6m9n{JyQ4_5!N^7Y{fI4d8uQA!zdi}C%U6>?m#%Y(vbgQq)d{s4IPk&t+ADuU6%VoS?(sdwVc+D zvO|5hbs^xuvP`?JgE5-cEx~U)jbDStuYLqT89<=_y6S(5h9MT-cN-X_RD0 z`|XJF%WM4dAOH>QR`gRz1GK2a=-|%aS`(CyKLgRiKoMTCs)5Jl;ak!PV@KpHXNjX=^Ht1Zn zT}Sg6ubhnaqYSD62Li4xsKH}Xpg5~-+o1JGH5G?2b5I1m+y=e*EaX^Y%h8I|FR*N= z8e!&WN7#KT4p7ZP4moUOj_i8YOLja$4ixAb1AQ8>9CdB*a^Km2H&)=* z3tV5qgI04|7QgK(i~e;8FiFXo-4b{keoFAR?dj+b@=J

    $Mp+C)~{<@j8(>&QaOLjVO^Ie6Vw5zxk^f5ZksGvElBeB9Yl#pK)!5PWevF zOCpDX%W! zxx{2Gs~j|QzUz?V+qp^T&H~-z^=C|$d@^Gi{u8dp!Kc$`zww`Iy8QAG#GldiSv+o( z?^!ry0R7X2LqO4sz9oi;-J4o<7`_LMk%bN-eY{W_KmLssN+ZWrme@kclK#dwS*Yye zD?hN|`*5#KF!w#>63XH!1Qt)Y9wGk-Hz8!X@Nm4iT)#iQs7G<7lv7)-kvdD2I!lEo zJ_@wVnNxiQ@)68XM&?88hmJu-)x}g4W<+k{w3yfXd9L~m*1yk4Qa`l;=v5;wiTW6> zr+xLbB>Wq$vtBD@Yajt(W3#yOj$L9hKKDnIv9lTQ1qV1KIggBlZH$!X;xlB#xC+Pj zO&}i3Ny5k!=`{PlNLbgQ;Or@E~Cnh98m~pf$azV{?UqlX{B?sl^S8`*h&jN;{+z#PJ zsNsJeg4|+{GpM5s<}e__bS?;1=uMJhqm&N*3a_$wD0T z+b#)2nO#+tbXC8f1ddi)R@12D)v`{3mT0Ja8yD)9OiRMpG%}X^wxJMB&;ZQQW~#AJ zz45b1#zJevqe(`Jhz`xa%!g&hviaA!%8K^NQln)UgmKpwG(Ew2N7;2@5_A1vDucR9I0PWIS4aH1;U|^(7<5v zWbEM|8wPEY>{y-w3Wh-p^v?s!QCYTJJl2hd;}<0tCm9R<68gchHYL31o^F0gz_%rc z-cgH~aLQ;n_XDg<%Ch7fS(c0}N}^ahMcf{l5+yeAB0gwOP!#LR6v%8>jLdLPl{p47 zO#D6y_oUO32x0R@P^_)E*y&@Af%XWMJ~eUcK#Po53dTwcM}=`TDr2BuO$537V#vj~ z9;rF1iV3rdyAdv+)&1tFN$Ac5-D(VER$k0N=`2KRm2VNF2z-R zPNu&`L{+0iRf)3WMa9@c3IL2(0p7U?jIV}S=&7@bsv49MWr3S1YVjpQI#Xr3pyz(!W2~n zLJ`&Frz8>82Nyt8Z{xnavPGL^9U*0SI<6%!wm9NXV9he!KQO#Lp`5NC6|?C7F-r@d zT{&ya|D*ZrdQd}u5Dv%n6TV8>h%=({;27?E#aT9UMK;AsHXSG-UN(%C`4Bkm1iYBC zx$Y2TGtVX)*0vY_C>z3*O*cZ3P44HD$mZoj$mTa#VsNU&fDr06O#=#zC$t{1XX76~ zOJNj~(DfgI(6EirR-}4~Nz=d(IjCAf=+v?OHtgsc(ehv|aC#>{w0F&~geG~aznvBqYeHny?aP{a6yjV_C!@uFLA;PKVGllYQMfni2 z#8b{#nXG^g9q>My_)Q;z@@yOBBS_80Ct34^N%<(kJo4J~xg;VkBIU#?(IcpoL8E zKbMTqr>9@Swcz66YZK3=-$^nnTxkeat%mVwrg$D0YtE)e03YOH`MsmyVU>-CQKXu) zX~I-M7lzStgZkB3ei`hKA8J@F*|B>I6b$wm=;r{-u}XHGiz>Mpb3Tr9)r^VC#Z_be z#HulNU$HMeeuCkay0Oy>w||3dW3N&7lunfr<0v(7O@{x zVs}AQ@nUDJ9|cp0yclrk4-osQ2O#z~o7j0sKcASeQ-ql#3!z*&K7_sV*s~-nl-Sci zHpI?Ae-v1bV!!Sjh`kpr0X`2NioO-H#@y8uJ%2*eQ%|AOf2Y@#1Ps@ZA@i^)Yez#QK`!7loU68#Wr z2cl=7Uji&g(Z6@L61}tPs`U`_sLk+3>+=Y<0Y^ZX_ufrcl*9uL=|3=zFqY{5ybnBw zV|d1Z!_YNzi9SG9Z_30>VXh6)|5;H=_*rvg609ZS6+m?4HkI5?$6U&(-4qD@8A5-e ze!!$YO(xg>`X{I_wh@Jk7*I`P{Xjii)tcjz5Ou?sKve54E(A+Q62o9y0;|g4K4w0d*kjvouLnwiXlU_- zsdgO2ddbZ@$0gzB7iWQ+tR$oSZ9-qGqOUxjzH+m(t&q;F^*zwHGlo7ajTvpiTpE); z?CNA>O(t32e>vf5@KKls(du*?R_8*VzlGHK6IQ2y2EWoY_|4*{<6eH*=MAKKRt-Fp zD&2QZXVib&nX6vz)>$ALh(%JEAG?H%*t1lv3;;u%xvJiUoSJNR>kJ|_i=YO95&@sIeU)YO`@j(8q#!6w5I>3rm!{&or4d@+lF zyQJ7{90E$gz=kTksJ{umZg}Cf3)-cB!r$3Xuo5PR0! ziq1lcId&n;qP+-LuxKB0IO_KH9Jr_!9nsm#wb79AcfhJhnDz8`{*N`~V#C0;HX32W zNALjqHoB~`=pQKl=^H}_UJApVf{cY0J;w?#k2a!)SP|-YV<5W9!=2}#d(KlqoSH2u zdI}B;Y3|6>BsH{0YG|LTp>}?-m(26i{3Fa*bN0{ySPna$@-}K{pG}ONNS(r5FeHST zn-p&5)bAy1w8uEM98|T_WY`e~dN+6DQ}22RMHpv}SwuIAI8hZ#m~p)b<+S4+%#mTq zK^Nmzltm&K>I;D3Sbv{A{Sr9!ThBT|4N)DzXgSV0ZVg5uz-LatZ#nC@fsm$;opmg@ zQe98TvyQxEH1@3HiDPFSkHcBVRypfFOv z7vlf4ltzV`cM!pGX)V|@PA!~+b*oUcA%~c_)~Vq&cTHCCz&aQu2rm{>@;_JhI>m19{a*gJNyhC7lCtq;y;WRSB)eA~VJ0+@SZ z^OqXoevwg&j1hwj7Z%;a-h?3fH0iLAeUusSgn*8)tfgj>3#Tqh8g9v$=#I>07l#5^ zrgV2e9|5cm3N{`$iMHvj9`-chT%(Af_Abd_sU=)Of$?aTOfy^7csjt+td_RVFw~c= z^}E=gvP87_a4zl?Vy@^N?MN;uYGkl96TjJ+;x_|#gctTW4Rh+y`; zohW0?VGdVpWSH~9>*z!ymcENUTRl?0MB+HB0?fE3gfh%&pX3*Lb2MOfkv+{)0#>jf zX2^QY&B7jiiE+4E1qm@5s}f;WB_x?8fp zl;hB^C8?m*_%tr&{FzZfUBHa5AjX;%)D2iF=z?9Spfxta*|VAzM3{v4Ba{j{km8T8 zp!G^7I@m)6G0>j|V$Wt<(E}(36HAc^VHQ1zFpDx-fgEFP%^c!xQ$>#$MKjQE1Y*xl zThT)(W|}IRFpJg^7P9CPiaNj(!xk?d0<8AT+d%|NdNV$VTa(ae>v zL?R`i=qAKfQY2quj?|bH1vpwF)oc!gNlZIJX$}V`7{m-ok*YalND0R6Iv}Q(_46zc zdopcBcc2)vIS^*iod~5l`~o=~>t}8@nuEu*Y2ya%t1?R@HE`&hR!~xORi?W!h>=%} zSGIn_XOenj%Ye)3jr}?ncjNC=l519s;aMrp_+nDie>A>~*GTr_vd*`s?}z&+A_o{r zk8NCgf`cM`7?$!jH>3tYK)TM@S{1uDkUq@cP3kwEJduykI5XGbK>9mO zr`L>n0%b3Mcc|ZZ0!7N}QopyC8s$}~->;OWzeW5(_501z^xdWDdrA&$KovmW?@!_j zn2(w)d1RZ?_gWadcztK=IVg#>S`T=XD)!qZOe%nR4%8V-^+}Untt6D3TFPFUw&+%s;}6GOCr5@~Hp&+@fl7ly2G&m5$0`m*xKmb(54S?Q`P>*vhzAEk62CLC|v4AAb!~WzB8eVWu&rA z2JTp$w^NBI@qy$nNCk(;XOg~}m{A0F8H^FNxy#T-#CNf`?nu_kOpx_C>ocRY%a%8| z<_cM>)O^B^9>`9au}E_Xr2=ULfid(jKKtVxpl@CbeR!bx zAS)g}L@e%Un&z6Y^i8KG?h`gzm2|y!9t{?h~D}c5M7QN8l1?=6tZ%ZbY0LXJ7pMr>w6+$wQd&?0I@$IGQxY^E!&4D|SGmO2a#O1&6m)y7$Gd%7OLM>65^=?g;$ACugi;BgIzne z=xS~{bJcZt;vVN}-z;JbNVO;0C^vQ$0zSiGYV$V8Zd;7(;OXH7JL4PW(tz%QKY*ji zE^|XZ{W6|}-SkWMHTOz<`b}=Q`)!EjW{F1kl|k|L5HV;&tUOlH zSShX;Swy^>h~+lKYV*_8M69jlrxz2kA_ftYPZVf;9jl9gP3zU!1FkM)j!Ih&S}ddV zSnIWuInt2BvAX}3o@nq0`mn%@{w()rPMGeDl#HZMeS2hMfs5- zzWFltR1`$!f`GH21o8&%q5&{CYJDyWCb=9K#AJAy%2ffln5uL7i19A(*!ajL;%W2c zW9Th!;3Cu~0LxJft0zP2U%uO!r2%1Svtr2$+Z)dkV-0f|k@tvqegnka_YBw>w6X&> zXyc9H5r_m#)@bKtkW{fZ38CpEw5ZLQ&~71gr6RNgv*LI{8GF8xVkh8Q5Gt~N`)Lr{ zYb6%4?*ax1WGD?6a5vyCviEy<0hsR(kDx+&`Xx8sD#8zWH5#Gb2rNh07ajwa!gooB zKN$fg2E*Aub>^@`IIL3~)`OCG4jDVv@dM5zt!{GHY2^-_v?BEk%7Ps~U~&K!I9*tly~+~pYDG0-;w$&tI8j|O)eS`6-PRpEWj z&fHZCcX^7tDlAUKbH`Y-FRTU}0Ii~(b2fv+S}TXBvsz#XR|v(U7#!9Ej*!DCAU;Mr z>lKGO%jMPUOXYwE=P8!zo&-ykHkK-Y zL6#VrEL8%|B1;#7*cg_o6iY+EAWIDO%w#O}O#(|3ld$9$mUgP=cymx-JWGtdNZF8l z!0jeWzug3uf;N^4fkBoS=BQkL!1D6^ciytGRIXSW1O{1RsFwiCQ4#m0f~85Cb1mfy zOZ|!^Kbk;1ON=d1#03Elt%AH?*a&tCt?Yn}a-{l{(I70fg|L_h8QX`G5IT#5&S-Kb zG)oBWP=uy|^LRoTYpRn6u-BCRStQnLB^E6t3m7Djp=tHKfGd$p->utZpCh?3B?bm% z&rsh0EJxYbrhuhOf8@-POIWH^Eb)?>c$OGzvNQs?6R$fbl`evguOM}8v zv0}*!ZH{M&v1SX&0bI`(()|S38M3kiHu8~bwh+Q(tq`HKkY#Tqk^LDYbVbCO&^jTs zQayIw2^qx`%2>lY8siqg9em8*O+q6!Lc5V_5=xka_97f9M~+_nTZgTtmXFT+MEaHn&eeOG9?xk!gqvi`-JSS+yJppY`a5DgmeZ#=z=d8HdP-?+F9sqIs zNl#7Ce86*nKivkYg9dDpS_rRIex5n-Ao&=nU%?u#6gd+BiP74eN|dceTUQK(a_`7jy0AXywJrNf$yQ3hvyc(F7+9hfd&65Qq^sOj27iY0Ox7CA%(+7OGA zjBr-e_}uMcAKttD3y265<@wyrzXwzr{bHcV=d)e2Y}5aO2Pm1$`wji)B2v8mGuBk$ zLcrT@0-x(21E0mnZIz7Q#00N|DVZQbdHL&hIuZmdIp_mDKrCQ0)GLAED4F9wxL98P z+GSj`Tw3(Hx@K9^1~m7)EJB&3+Jf`4 z*`|g>!U^B5WfG5aj3Cr^-z!e>jlYNCNaR5ugWO{vN48)z61;XpLGapV3qmOy@Z@Tr zpUWIrVnI`YugQMi7hU=Ln$By{q(pnU|GbK|ZA&{C=z* zY$(y*31~Osx@A3iTUc-(YkWx6csb-AU*n85+d>6kX$xEbj`~}S+}0YeM5@^q2(!kk z5K3EU#YTHijU@+bJd46bjWg7*2Zm#fe__mvMmHOyz6lo4(}LEOy4SXk6Y2@ zv1NDZyVHANAWPq+=$b@yrEB5OTe_AJ?MB3wlo7b)m2OFS&mDQy!)6rlc}t_`mp1N4 zTXHXVAudo&)z`PTUzu+ zjk~mQ*DaH!9WMU>$WHyxJh4#W6-GOBLD%AIg|TKkOaq*@6z#Bh4P?B)VsBUj9;AK& zU!$A}GcF6^iXR}y2i$yLY|G(A>d7hxVdls|*vlOK$id5+Rrl6YBbi~DfPgh12Kq|i zIM(FV`!D9{--|L0c`dj|TA)!K5otiE9flbAZ8&)NaH7*df@U_#uij%c$^%ffBR0x2 z4CKgE>Sw}68Dhr*5;_bLTH(qU#;5o*G(X_Oxw%waEA?d>-sKOWVT46H?k6<=hv<%^ z8HNt`h30R-4fg@Si+}EK0zk8oQ)p=n#-$$svbNC=94aD?B?k=T$PGDY(0zfa zVr}`gPNPmEpGRH7f{d_pI4~GWc_O%Iz;O3oDaU_G8tO9X*!`!eKma21h39+mY`c5; z05)>N>`U)_0ua0bwFOi2@b2Q&O#TmN6#`Rz!E4dKgX@BD?pv6#P|xu7E`GgcGW&6Y z(c>7|Es^qUJHhBlmulHLyHhXKGDTdyl8jg1;gHGX$(L&3oYdWuF4gAd;Kpl~&@U)b zEJ35#0W)8-%pO?myqq*6Um9}_3Ie7-m~1nb6r2IinH>DGJRQjoC5U#iU11qRtXDls zCpxEiRc5TYGtdRNf{I!HUr@}smJtEfwi~Ik$PVQs%(z~JvR8RAJOLaP_1$-&sOWHq zZ#ra|J9nTFSqA*`gxF3+?D$?J(fG&DG4@Oab1!l|iGB93Aa;R`SnfY!P%bUWx)&*T zI{pOP?2g0+Ok$t<$eGw|A$E@%x8^4_5{xx_g+jn>9G!iU#QJQ+`jIMZL9&F&Y7n7Z z;JE8Kww|N&eD;KUBf^AmoqCF!peYRr5~*@UP%~hPP7I97n7B* z{{@6)S_mWAgGj~kLqqO>88?KmjyXgmKp9T8@Za)ff#@^SP8IB3gJfmB#R$w8PoDiIdm zh;IyWyFJw+YU)6{>L?iMJ-~3(f$zP8_NVEOVuZ_MarV)8e*s3}Q#|MureG*OcM6B% zQ?iGvQ5R0q+9uMfP||A0pgLY!jP;WvaKc5vdP?hye+DNzZM=6PHDB>gm^r!-%0-;J zxJ|#yl7qZgDg9@tuLFi7?@Ql?S`8;@%Ik%dV#P`m>_$8*j4f2Gv;yAA!PnRS1j063 z2qW3;NcAdK2n+KFvqb-s5xRK~2>m<=jjf^KVfe;5RYSATzUDz=tWpod?K=?yCBd4V4eYXQ z^ddIt^G#>1QEeh=dl!6Uj8hNF7Wvc+f2*5 zFS+F{7S3wa46BgS@Lp*)Xxsb~+7N5*ruYH3(JH?12XGd!aTY|X;r0T{3z)gf5oR$* zJGa@xwj32mm9k;02{T6}!f-8eEM$(kmK*_XrEL1qvJb*W=>cFkO6!2mm9rUI;G%5) zFOySJ-*7vcG!;*EYqe! zL1~JaE)09(nPIGqa6uYux7j2g zL@KvlWEcpTk}pRn&wHiQ8)2s{M+H(%#Usodl?df>>K)ue-(|~Dg;aCkNSHaQ5q8yp zs^1`oRaN&$X4pAHRT=0Fz;V=oFYi*V(2z40h=yMuKVjzZBNW4b9doR= zE$QPzv0J_{I*ay#^zY4|h6`WuG-=kRv682(#108z7*PiFX=MRXNPbOUJ2@uFj_ zY4`^T)A0ZLH(;yH!WNkxL8@u^2{UdKp&0%JbO~5t%i%$_n1-J)b7UbD!+$PwthD5y z=qe~+7$Ana2N;f`d;HZn!@taWTe;0v)`%#E%svps$BRNote@?W%mVguDsum?L1vwW zOko?Tva$zKM*%a=h1$+$8~;DprMI@Gh-7Z_^`p7L@H5cQ1CAqW`Vj2tSsyx&@)ig) z>lHH|)ImHmj5Q}CS%8OFuTMV&W)|C+@gh~&1~Y`o41FVd{}VZyHzXnS5)%524-9Rs zHX3@I;jfkWPi^>FEDe9or!)MhoN>c%kTPcY`STMR{$fM&szp_y^mxfjtWu+DU@V~I z=dOh012)OmBGokfgem!Ygkt!QTaO%JTaG5A`dBvViZFAuB5db3h8{O9Geg*!u48R$O-j-#qx^s;J&C=qg|;eQn;Noc+P+avyL5L5EV z9wqA`Xk@&s8EYDT9k3XF{g;q~&n5>K?2c*p2~!Sf2*vRKnl1o&wj5rhnueb+bL1f0 z%wcN{a}-!|(0Wx;zNi_7`jxkEYG=?-Eh0P+Am3@$p*3So54?IpBI)zF&5L%st3$ z9VAyE^-R_N2$Qi&gsBu>Wp8Y2+9#O}&o~(VK@JCsf#b;9-WQHw__ql&^@^EFj8Nm5 zVXWCCc;ssHGLZJ%&%w-28#C2N6}BOF!epivp`YyE1qT5~LN6nsrs1y_10NA_jJNv^ zR5u6iOr`zykJ)eTr($3(XnFj}D$I1Q4EXOyw#Nl6djG%~v9K``28V>An?rUDZt zqh5rfz`yH3juo~XIY>1(1_(1pKEh&tqZT==R&%9fHatyH&jYlYbAjV1zN2?s48OX) zu}gU2+z-pHJzQX}j>!HrG);Oh?$K%(yd^PEk_no&DjQF5jescithsESZ~XbgVZsBs~q_V+nD2Mr6e(j5hU&vs=q41q4d>dJ+9oWp5)SBLUT9w}Dh^P@?`i;uDJ^%K^D zfLAUBq1UefYY`i3J^W%w5B={B3a3k&VL z)W&otdZKvR8Ee|RF2F7}_&?nb+UMG6??$RQ&?QXTdlA-<_Uga!u%5-SV4md0@&PIi z4S|6^3rLRja_BiQxY+v8qK%tk;ig}4(*aWBxnZnX6PnI$LW8Gjd@2xuOguj$f{9=!N2C!&q}Is~WKQ zob=xd+2q+|Q;XCb$^=?Un6jy7$eO<65#%Vak;O_vmFQgKCB#_2 z;E`9iK!F_94^wKnxdR7$bA@LX0XBK7?I!N3!nP0I zfG;Rjd-2_%XS0PKR)4u+qRo3ZQc3uvWMp+eW2ss-?R+0Be;oUKAw~45Hl$VxulrQB z)uZ*;*@Xc`tU1PN0xV;!P#c(D6~i=a7E;aWDPgf$2xWSDG@S=l+j4Xu)o27bMWb?b zB9!UrbKF2*W68maE>~@sq5fxJI9Bw+r#U?}x~DNWDfUm}Zc@YBtdA4fy6rZR&7jf) zuU#|(7-NLxFPxYCakS3at_Y)Aj*g`Nh!DAYG4}WEKQhNWycE2OtzkU*$ za27NnPKjfE{f6C12=@u$m1^uc1lAK&EMm>QbRDqlrB}6rhrAdbP_algtBJ5wEJAUc z_+m0{pBtzfPtM?hQc%TX>#4E0=M%(GxHe=G9m^XnYJsWRIU z%2oOAV?*Du=2vY*&9Aq2eTSY$MczRMWqN zFp1AXDE=ko$p}p$q0^MH8lthPIkIob=NE}@$+6-gi!83;5qJe0(VyhaD#H`^S9tcU zhv&q`MpBQu4o4ciAo!6?kxQMDOE1cfmkVRXD1*y>z}eqJ72nhXxn$eqGJw>vQ3znl zWe}lwjubweqyl&MK`v9kl@p=6+Bp*5rzYn^m}ABh%2;#SqXVw22BBM;LFgXj9^)QF zjUd&W;1VXGqX;{g<4$b)$4qedNp4Jepo^H`GSI&ZBu90eN^X9(WqbyI?OplkeG7)~ z!7JtPM~^?xXPiWEI?^X|5~m}5GOCrtL`V8?8to|_>N~mla!8EF`FMnH@6bZ`2b*z9 zZy4#%;mF<#JjnMJe!Mich>zH3y@=hdj&(`by3l>gFc0q;2lupqFEeFR!_b73{)YE) z8g$=A=L%dS71*p?NvmN5;wzA`rYmVJ;2NG+^F&dB>unWSk5uVeVJZl-0-F%7W{#(^ z-R@X7w{1Y(%t}INn-H3(2u(ww@q{wg)HDx2i^GNbcYX{)SJ(*6LaG=Q5K5SYdJ)P! z57R)XbtPq`WN!2I0|AQ0K%bC|nbqsT%!?bGrCuk@q$+0gv_#A>)?{V`a1EKcPXjX% z8#ALwHJKqyW?UdrZg{BpZ7eg*ikV)683uX*a2#vq&BwvaYwMkvSs={pyw@0W^@D); znqjP|LIZ#c$jnnsU}mw6nL(uH&`6fcIU8&tCl_5E`%%+Kp6m{z909_9B#99ZmqD*7gvV z%vf17q|QKp7d!Kg%&c4sX1wd1rS21EYE7x*!|}{CA=YH374T{@^W!_fOrDLIcBGoj z5EiK;l=~clAk@lCfnui9V1|M2OUBIhUNCd|T4!c5gqd>1Ocg#H&kSSD_D~JDhRpoE z5zJ)Tn5jjoxqe2N%+w>4n;d=!7Xm9Y*@~GCgBb?;)xdGAnaO14OTEs_9Q>KAzMITI zcM~v!ShGD;1D1OnMj~J))y@o3&Gt|WSeQX5?copDm3Jicn~#Ce1&=usxLJ5=5e1vk3!=z+{cK3kLdW@I;&avI_RzM5g zr$q2om+Pva_Bw8Is0YWm@I0)2doZN!3u;%@_hkMMH#(dEl7PO=0bUjzbv9Xb*H6K^KCc*4Qn-?(Q`r`;B102nLN{ z$Ov>J7%_rT1jz0J&0+0sUQvLeJw}ja1YRS^F@k&}C^P~;0%Q-$ue-~Q$O4uxj0p1U=2bdTf|DB_1i`QuT1JuYmnZh>a z!!d{T+(;zkK}AWNH2=QFLL`SFTK!wMqmnz2(=4yA(T}to=4iQ_ATkCKwA~79-!GGB z;`TN0rf#^o-c^$wjF#4yM(cb9#uXWVg?TC|>T}=uFaVAxPb!HX)!0i6zkB%(w0B7z z0DuAt!RAVW(b7V^J(UkOaFTZUZzZa%5Tn7~aI~bb43Dow&v8e7EV({NbvM@&(zf8% zd^|Vk**bvBWL?Wq8QW z{l|^LqD?oRR`NGiQ0er;xTf?RtVDcJ>Yn{<@bKD_^mSz^{Xkjr1~__zwNe_r8As}$ zrnI9=3&YXbU<-Gdp6HJJzL>%wTfYDl(gx5lNZ~WHS~5c5Zvd}04IKoq5w;=J@ObLX zmf{l^f{zPkwiGNUX5Iy5MT6wlHwW?OE3Wn-{1-TT7nDE0G=V%mT?l6+V;Dzg=a*`$M%%ur*$pSHXrF zl{pL0zh`Bx!^kPv_+m{)Un3he|8`F{V45Y=a}(;h1z3HJ5ru$A4+5e{N9e?nOuZ|GS@Gd#da{oYNF@{5?$!-yVw9B4x@J3Be2=gmDZx;H-O z#pk@pbqM$Q+_KhPx=w3sMUi8Z_vJ}?Lhpm@2`hieiC1GiI&gbW$T&1ac8W~^tLxCW zRs0Y=VGeSR_k^uTGseqz69jfUf>p#m8GZu^$c+ zW%KKByRPAVK#z2%PpoNqS%Bgc|pLsZb2lzV30k zc4q|VKM^h(bT{5|2K>nu3E5-|^nijg_v{@#7$X}Ol7~~C4Qnq1TW%f*Ydhv>&7OSl zGrJ|@B_Qzr3J*WBs>&(0pt&?ed-k|`*{;>8J)-?u^mH3c55|Iy7V|<0Ht-g;Rc=U3jyZJgm zW!m~#EtzS-XbX!99oQL8c@2ZPmB&(IcnI)V@?WO?Bh>H@cg^vk1CL`t6`Y=ntR;U# zk}K5mm5Je^t?uSi52VK0YT>ZZEhb9;`S z*^+%DhIJ>Vo9ZOOl$2c=|;KiW!Oj*i~u)$Y2T3H^9 zRus;5|8a$IhSyU+oSm{lxC0J}Ez8{uGG7blK3SHsIhgWcxMdM&dTVyn=PuKHPlmPO zCBq?YOR(r}wg~s_zm%pcq7N=w%ZgUxzi?EHTo^?}jVejOol??wIsN!>Jv#nZ((u9IrKw%GGw$48z!Pdx&)vFv;-3yr9@xJQ zt?wdWPVbdjA>YnouT{FKaU=eRALy-0*YRGSb!xr$wP8@A~7# zaQ2sCOSP*r!qKZL&=TB{!gLf8EiI3_8b%M-r2mO;Vk|xC+}_;~N7vy~*KxGHcrxb` z*JPA5e3)X)869{H2(PIth1Vg>5AD1%4s$7ztpn^8ULO!%&#mDVnF1?rd&0u`-L+O;_1Kn!^LRwS5<_f6GPD}(?Zdio{)Aq{#~6F(&n)L$5axRlabty><`yA+4;a!+F|0tqK@q2>55t0nF*U_BQ(g>)CGUEK_|tpKqCxaH8$*3RYQk^k zh3VfEn!g2oBqHk(AqBfSHO$+Vf25SZ;@E)9j)MAah*rttbp`|sAz@}})ND|E3H-oVii(P5y zs=IO5ZmAUw7UBey1hg2?Vg!H0YV{rCkAN1UQusb!_x+yym=JWk{e1sg9uIQw+#lzC z?z!jQd+xdCo*N!|`gb=?T^@=!Gw!lyY_yK=u!;{=A7tVFk#%GTlVjG>vtEyct_c1J zuZF>9KnAViJ=HJw<+5QNl^QGF9je!uHHh)e=s}J@zlM%NMvs7EWk=|;0 zDsY%tV9zm@`sEk;ttmw#)P-xbxP4ijSr?qknyh57tkfx(JI5|~JL(izR$v#mLf#JI zTq$0BtonHtqPn@s;8lXDS<6aVJpX%ed44>+*RtPa;_PAyw*nnjpwoP2rjvVyy`br6 z%%23c=bf9J7(hFg-2xD?mE!9N#Q}27xRjvBn z$!`HLoaeLKFdl=kcu6)pMG2oJ-S1%}^A0@L%2F>ZwbYBMBRQ>(!@-ks+TG{qdp@%X z;n14zfHTZiGJ@H*k>xSl03ykSPQy9+*l2#+Pwt8MO)pXZzvs8Rz$uMeCd=JK-bq+) zUb>!T|24UeN2gD~bsqIbGoCfbc>Q3TX1pHaX~r8Mo@P9kxc;%ih`LUxMcfwgcA><^*?xH^J>2Il&F3#+XLye3d6TT_gMBOF_AX|$_Lna31MZ86&gF2`KFc0JvV0v+W%0l>vB372 zbBlpB)0uXby|n%)!kiS>){*V18EV`k>N)GB3-{BOt>AYn%YFLyCoKo%yz}+$xbvN! zxU&qmhFA4l_RE)TpSrU*jL=AMBcjmM!@b8;&3@YMhP30^*IRpD4Wuk*>ju)>Ul@N{ z|21e|*lQf$A-(c*$B;&p1rBtf`DovdPE=p|`{DKPAF8h`zrGsLdx2VV0u-df9}c2+ z2!yhH5TZ@*%Yf7XNe>v7BYufL_3ys%v|#x7@mGj=AT`%#dUvu;G;i?1X#P}P4@`=f z{tbdj&;LVUV#&MnG>^L7oFyjMRco7-p09hKM?O8#HqU=1YnY^hlvATmA#3DW!-N&L z?nH3kKlGGf<}t(qBVD?lBrTaSQ@T{zr}U+c##W+PbqK`=79&D0G=ijoC%KUGhZOk~ zQ&8yD=p<^6B5vlu|D@ujbsJ>81!rM=|30;hL#hir0do!l<|X;PKOOQUmf45`(};(? zMs)Gb%tk0}Iv~NWo9G)WXvA4+#FU{%kk>=rhg2-NR#8%1f}*P_-Oai9SPgKUTS5NV z(8GwC_~jb>nmqg}G@eqx9(LBFG|!f^aS_oL@MFg;r5vYNQnk2?7J==gVb~_uR#6f# z3e3~a9gQ_ad(^hSKN+@9{hK6t12*pI|9g+%Xk++Jv8JD~vWKgpQ+H}}+&f>lMm=ds zo5a9CuS?4Pd4^V-G{_9kZ_Xyc$adhR@n#k@JE_w()I((oII$w29MeK$m6xKUH5N2d zk~&^G zJ~LEUu#Z1W_T}(*>Arma*6u4pYjJ78KK&&_0XYhk6)Jy{|JZhw@8*98r*+x!;;!mV z{NPNgyp#V=gbL9WpShin@{#Rn0sZWI^>`DE@6Vad9j#xhn6!osrm!=ew$frbre z4TcEyBYx@BIhp%Abwvz8AekFO9*8F=+OZ=~!~-0Ry|&j1?1=|>C!vzv$r{hT#$b3QemT8f z4v0?K?0BG4wiRfP7r$l5gwCl^!%r-ADD;IC13|OKvJ%Vg4;6OC!Zay&Cs34nXl5uU zH;XPjYe81_H$q?DqlAT7Ifp`D?miSc{fuvf&b|mJr~gw<-#Wd9?R}g%a&c89!vht*c(|W1iRSP z#_WTL!HIAuDnY|l_0JyTz&LVfRwyT^)8ezDd$MPueCvWuQNHZ~gksA7nm<4V!K8NjBrB^KaVT)OD_$r*E&zyCsK#(6OFTzf`W?D)1s z@uStR#O$4k(61hvpUe$G-JJ0W9WzJJGEPuKyFD%Aezc7CPE>@uPyvcESAN{I)x_1- zgcJOxZ{LP-r8LZN2V5jsCXVVcv zFy;i=;0KTR%HDpkGI%Gap(OQmz6c#AjrlUz#Vi@^%4SV@92s)F)W2?Do?jqT80;FJ z^I8lv>OW6&;81V!KwFRsAkkbaMvMinH4K*S@!Z{(ojbJ9o@zRy zDNapz0R7=9zGbv-Gt1O8e}wJp-2;F$mBZ~w!pI*85}~E1TX%T!^gc*r)&+FL9?>4~ zh$gjor%y2}U^v?lE+xX5DV4SI5DVoYL%9BG2xsQfcrv&nb|htVNf6GYiEx-|ofX|7 z!XfpfARHpC2xkgFxE;fDJi^VQog)Z0el+0>(>fW1n?S|kg!72)TyMG{^eg0|P2OnF zWts5W=KRDP>U*r@#6Lj-{9lWBY(T)}3*DtdQ7InFhDOYmBKe-2c!l7F2ou_W&FmbitZ z#x(H1%9hv%Znnf10z7lq8h6;Smhr!wUF$z-HK~7#UF+X7j)yj5TUn~(_A#d1&{C$R z9o{JW4^qv-Y9(h6ZCYYyJk?R*FG(h9lGR{KQEXA zwNIB7QSm(I#`k!F>fX6d!+R>kTb{;`fxixrp*5KBXzU@=t>%L)<4VRd$FPr&sgb*= zD65(aox8KWIdAuT=ay{Ehx46=Y%RcS8R4IYknPN7COOTBut>DVlE%hj#F*~H!z^hB zV&Tq2pc_dK$#y%k9VaJIyE`R~$1&>}TOhO0`;vfZF)~03@lYEy z%%NSh_i=`I7>NW7sH17QE8Wo_xK{LReaDN z?7j%gBU3_8+6M2#{@1)VGOi--lZR<%rVMM4JfRFL61kli+mDiAMYR*lum+lA_Q6Ov zCz4_R#Q^k7@=hp}_I~t9#D-MwMI;n{?Mq++o=hx1nXE9!q@%6?WK3|EY*c%!? zf~9C`DH$xJ}#Xxh_Kd4Zp%Nh#Q_SuEOav|8I@$d~cr zRP`VGKIoT0e;Y)ri|m=sdnH!9EmVIsf}+28%ym{9QE6`ISF4R&G}qtzTj4!(18M2W zAHKurw+;GDm%N$kyHhrKwTIza%}DGN&1^E)*)l=Y;{y}aHNc%|$=|Z4>%2=!Z&K31TondzBuk@>y)v~oXRBy)drJ3jq}pQ+o=Bm$mk zrp{n4?;ewYZ~ROKa<_Rl)u|I0jVUbxZjiN;=!UyFH44t-jOi#f(;b2x9C_v}FS%Ax zN_P{qyop=>9p9mJaOgzJUSFk=!MPNH+d}S`=Vkxg#Ccf@x79Jy%Ey{P#6bSc$M|@L zlhe4@HZ#bIiM|PP@aXc1q|JX%wlXJp+to#;e3#r;qM)Sn#D&=T@I zcaCcnrJ)vqapw5c5=uWmqI4N~pA_|yYZaw*IYEhF|4OA_9x9D}oni5{3fvpW9g{54 zYw7MmRpI~K(i#EVSX%equ-A}QmjXWGk+uoa<_{z77d+C|#{M_o6K~71yZ2na*LLEO zyah_&S;6a{<`ax$rF~wc#9W`~2AR13@Iq+#zz_||+d$smc@$Taloo;>l|KL5lzw=q zw7tGtC6a3uxRc2plj3_DVZ=ApgWhckpISLktKhFqE$N00wO;QUlUlbKYEAOyy?z$v zOm0?MiASvgMKx>_b7}vbL+yt)S+v~ePen<|CRli!VH^4urSBdpjqs-u$+ZgHgB*&F zNv+!&hNz`$BtEtBpjP2un_7sv93-4*hc9Nm0mKUbP0JJV+*#Tl(q;;RQhI>UOJ+58F`#z zn>o}gT~08u0=&Pi(zPQ>SCHq!RutHa2v!UB`6}HoqI4B`*kB8`qLi*7cv7W9lpeFs zwq0YSa7owci7|c2g^h#}$CC>$GS^#rr~K~t@s37aqT)kYz4z?WPt`O(e`J2@GM4%I zU4D+i2iagA**x8!Az{2sK4>Pb7$~%29nopJDRk*<+MF}gX0!w;8oPmfiYYJ*%`8cD zyTCd>pm6DsbQU`XFfxyunLM{yiP{);c{y{#vT{3Ot-3A@vpzqOP9P zIcDqn*Q<3oUhAqrCbM-)^DlSR5FOAp=O31W>i{) zWsPcGnb$f6?pg2Dx(BcJTlc^YuXW!iq;()oXwP#f8D#)jG3jEeBBI;g7jeowJ8t$kXme)E3?sSUyY<=RsdvS%|x)0z3MSZs$ zuN<`QApR^&pMG%2OGjoiQ>K|IubCSdNtw-5nlDYZ5Z&+_kiKUYNOuk)P1`n-=P%-l zlG3W6l+rbolT{T@0y6Mdyk_9h6I=oBF|UFbItAq2Ah7I3=kMs5O00;B>4TZ z7X0$>N3}D#L6ezOg*nPBQjXX!J>yVlAr>V$e}g`bpE`Os znG2sKW1Hn%G95izw&jGDk#qV7`2SVlogT^QJBy<$Vv{EDr{D`HbuJ}sDKhgt1TomU?8&MRZij8D1$^{;FUurlrlYN1CPc=@ODj>YObtVHpj zR{>5W>_Nc*@L0e+)EMUAUolwF4;lmQn3Gf=kP?9s(zBE&iJ^{=&pKisD@zIAm|c54d>E4~{4_Ewk3 zhIjyrkyj04J?1giOecQ+Sd2B-sXd?Zp>G|3U@i}_0|GTh{pIK9ah~&FMWXnREABU} z^(Q(vMP8bes0mR0=Ll~dx*5A*zDp~fl5YgYaCiV=nOS0C`f zot(K^*GUpvZ!`n;(_%p^&wZW}(+y)p2q7&DBosaL4>Bjz1W?rbA>)6u%r=^OA_fV;nZ;$m?a|pPp|UeoH;Zk8zufkzM;A zf-xI)a@Wu(O5ZX0%A$0o#;@oL&d-I~VA?5Onvfby`!6&=lv7^}rhUOn+b}%sh%g$7 zgok_@5x?sLk7H*VT3ICpmfw!d>leeujvHJ%$mFKY7?fv`RDmCQNE0`DllrOtr2c*6g^G01 z#;aMSU@;MDFzusWnlKwodr0UyKNk{%Y2VWi|1%z5={_9#A`Dl(24*w(os8Lj@}og! zGi9CiIdJ+rFx!Ay%|3)c|J;kxK$2TaR2z}l&tfVRJh$%I_W<-Ib1wD?jIT6Zh8l0> zFGuzW;{G*TXJTW1%k5cqyfKSoCS5Xn1$svkJJ8UyJE7I|`M$sY8V4CrwlojoqFnt0ide39?TMjWZDoM?{ve1sW|+q8uT=C#Ph9!_CipU={&|D- zuT`%8fx-r&z1z|0oTwpM;xeGTe*IuWl&VQ2^35SA%GE!hY$WL2Bnzt1U2}C=28e<|5Od1B`d?YpdpVUgb&578nZ86t_qjF9 zR7_KYBxRaXy<@#w24q>Ax!bUu;tUjiAqa?nR)>*W;`R@*sWWmg6N^}`_d2eLsWIGu zhr_X`XG66&=3L+d^36cqasX+GiFN4Y7E-V$V!!6^ntFSAC%er%(U?&%%xhl_+r!A_ zDaIKCFHdME9xM<5Igu}!>PM_1-ICk%8Mfec+D|5dL4Mge%IEQcGW{yQT!rc`!u4f9 zCEA)y(FFw+_!O#eze&cJDuWMxhb{S!xq@ZPpnQLfny)t3@d-9$cw~GWZ;PqYsfTe_ zZx&CyE_TH#FDYTcj8}d)#|q6y{OG~F_Oc%Kpt@`?t8vCU(zC2s?2DVC_IK9dnPobJ zASm$yOVWUyEHl3v%e}-3FIeOS5*VnU6E6ZCjS)x@LSVEycCyO+YOL`RwP=&qTr({3Q?E7xrE zqJtkRex&-AsPo;z(#BUp4Sk=M$FU;1nJ+Ug^f$Do9+Fy4eGTYE?&l9SOSeuJuE|Mk z7N0xSTD(d`QJ*I&ciyM@*>c*{8aYd}+Mh-8cr%7aoA5)XdAr^4V=|~Q$VHu`zDGsN zxk+GrLR^@fLDd&emCA^oCd6{f?u;idYQ>U2;gqv4-EQz}+=&te^Sh77!`mZ=ODgci z@+Hp7TA!-M$TB2O_Ag6QQI`SwD@&QU7d+3&Ka*J+b9w$`Y&DZwwpX+bS_glrd+I$U>xo~quJHFz&G1@!U$q(-7UAZ@(AHZ0# zD^}cn<=KXVoZ!#p2B_USz8y>C;_m8K?Jt!Z&rMb(V{&V@mT^XB$12Tu8haX`z9WOU z-IhhFW&bRXAa382?fsf=f}09WVp|b`8Ov^#bAqvGKH)SAyp`N2k#OX2{16ABK0ns4 zD2L^*R>{gQl^87TwYhKxh)T<9-z34(AZOncRWYu?b*vg7*63qCH3ibHvh1H_v8w~= ze(zU4zbyNv9Fy3lM-M%uFTCzVNb7S>vmk?X55Y*JzrlGVw{5&R?e#Cs=aqIGj8CaJ#ShXcucrl%v{w@>G~NRS<5~Yb8axW zGQ}bmV?Evx-Igt2eHUQ=m0XZD&fcW&C7hep5g6XZ1NcI?L8P5!=l*n5ef+$1MD5GB zW!Kks1hbY+0Nz9cuf&5lJ`-NTxkDHLRSQq4q)xtmBHiN?e(H@%(+IGdfGiLz_JEQ*=0eeQGA0VzO^d0;!1nFNBcf#e>l*+ z=WVO<0NU;4pNToPN9|{+%mt55=L^BWf`i#k?ZJsQVc>E8(ojrrU$1^4x!`l-l5>w2 zw=e%d%(>ZAWEf%k7}y_iCa#N&i?0hF$NQf?3f)v7@>?bf?`rK^BAT#&U15T2nw4SS zP-lMK+(h7B$uc);VKf*x&H5O8T}CjHuh(!WiB+ulnlYEfkXNN`(6FcP;z94Y#^ zmD~dvYY;1rulPPQvk}RdgfEEOhb#=a_q-W%)|ttlN%ym{#dTWSv_x8g?Ij<+dwc^N z$Ps{|K_+t+<}3o-992JyapE%Zr-e+07IyguV@|VK8Fks2Jt%j)+Ivnd`S8*}u;lQL zaZ4veI!c0Y8eZBIqb8G?XT0Stk;|(1T}AK9R_QQxo~F}`KjR}sYR-&AU z&&2K5d#@gVjicuk#&LW>lHE8BiaHCqFDUA>G!v?J+YHH{B(c&_rlvCX;pgn z&%-MX%Q@E>9!^d}(tF`ls}ld8)^RRYA(LEt94W)9OdT(Huo+M+Mf#Lvm_`9LlA=Fo z6JfIiMf}^DH>lC`lao^Oo!b3HxL?)kZ*SFpge{BNk1&==sZvUEYd&zz9Kb1TzLGkO z>xo7~!A<3)u-B+DwbyFL;=T=QImX>P7R`)cF7Sv&+k1jI(d_b^Xu{Eg>rUo0R7x!3 zR^?h@ZhgC{2Lw6TYcjo)oU!+C^vygp!yV!Tr%~U)l^xxokH(#aZ$aR_|<$24_icNknvKXL)e@5naID5fLniaf|fZ!!|)aBp$9 z3lFf!=+wdM-3u!hd@!5-wAY%R@^+a_&5zTw>Q2*-C+fhh>i3L(oQnC*yXZ$Ds87@|z;!5oOdTlzi z=7Vs8->rC0Q@0jD$IzPhLe%-rmiN2LPtGviL^)+9@aq(QJRW9KyETX3SbZnei&ppu zmmd6{PHG)yE??=%4dD(v95ltlyOG0NRhZp;Je(9b?t*SM)tya(7Mj27w04|BOZ4YF zk`z8GVD4vk(6`^B#r{wnqYHDqE^LJi!@E!?Q2!6Qu!_V&3%uJTE zQg}+q%58+jo$5l%xlgzr#-*&+gP%4u7&R(y33)wOE&wA2=5 O%@c4J6l5PK}^HV zkWARexX@s_h%u{jiSR*~GG8%!AHy{fZl_!G^vR*Ysca2SMrI=X1pXH9m0yPR7#$p+ z{@_&Q!NK_h)1s~Vl)Ll+I`9sZ?h}2jKQ0jqDGFv637)=a~J)8f-$Jf;bX9n-zOe}#%$)D#-P9r z8-s%8k3r3uj6oFuJpprny^St>f#K>;m}cF<5wKamjR3&W7!!<_j6y$Q~hu;3_g8=nT+eeyf49zJ*B7Z$D8vRh#x!JqgnCF z^^z>eMvtR*;p3#E@eRHwM-VJC1Id>aWutKK7~z-I|Rm`1$`)>%`h)-zkkKj=1dHO_l_ z#%b%KJePsmx(Q>I!6vRWu2LF0nv?=r@$A5-a5n%M=iEMN(dUx62DEfN$=vHfB1I~< z5K*(Xppo2&N_7J+gH?;mI>Lr4Kq?b=Zf`ZgFNLp8zz7nROP>tRc4{{U=Y(hcrnLAi zC1lqIc%{Uoq9XA#N<#_UEj(5II}WZ?lP)#QcMMtx?k&k^7GAEwzySmJqO^GT^2?FO zOxy9(u*Prk8nxJ}%)O45iahb~6Z0#B>!5|-{(IE^7&rHl(|#R0f+y@r-UJvxHhB}L z7CaPlQ!pBy@e}YBS`bM+oT%JuoZ3jO+KLy{J(1r^Qb_M8^ zi-|QRNG|eztuw*eCKIf0CU8IZeN8;7I4H!G^CLruyQ#q# zNDD!?%7;RlvXlluLGm@J{+Q}r+ebxvhp(1+^#UYBuJ-%xc|Tz}xo^U#k_l%!6SvK= zCvKnZEZ7#DV=vf_Bi>ZJct`aMTuLp4HIQ$r*@*54t$MFy7AL52tC~){`KTSg>1gkt zG=JNN%;=W8OuWqD-@eF#?Rw+I zheE410Q5rVMo+@Rm5=%0N0z{YBTGG^4EqH?VCt?- zF@vh`Q);V5J*JfZvCT z0&+Tm>BD6z{qj)hk@wgxQSKWcBB(BCL6~i@w7u2a3YCrGSA_Dh2FMfvUWxYNJ5AY<-8Vj~TLN;qz{o6t2 z>2+k{@47Cu`V&GnIdQ9?8+VVpV#yc}Q;az1%GNGv_(9kAu&Q}FwA#GJY(Fh;2H}G& z1@aMX1zy)d*GD4vX|kDLdHK!3(y6b+j&Gk;U%TOG7DDVxk<%X3n;o2EeV4PYs#Mw# z-M2@NRYvV#qH=-F$<}MnCn^`(6BCt}+d1Y$jHlg})E&i!R1M{5#G%$8Q$G zR`_wNvi2@;-igLPQeWG8Gz;HbJ0quYEc|-)bG$Xt@Dt>dHd8pcwL)w#G?m5~=aJ1l z-Y{&XJIpXtA=7={4Gn)PO_6P;(gUZ%T?@P!!oc$`5&L)OIw=MVbP+7kbhrM~lwLTZ zbT@e)5_@n-(<|LWuui3~Q0dD@ly=GUhoPdt?k6zAFhc2g2OTc zzFmR)A;DZa0_Fe^{IR1bFtaG>&3{E292yE~khLDj5=z*O`s?nbOw{?M+00-}a7EjR zsoOxs$mZPJ&D$O8_)aEum1d>`)-0lTivm~WfbHrbY#F7xx`|0fQp$1#*qsgNF4dfBK+vtj8?Jj~V zZeO>@_6+zlh zM$if7Q<^`@bWhBTvSsgs+8c*DgJKornJb~(Da8Bo zyn+fQ-meLCr`e=&{y+6_1W&QvIjb=PNI2`JYn|2$sGi!&*;>O8SpMahQ&*#$WUg7I zjgb~-ks8$dr2oJ20so)!V`ZSDc%(gCHC|#SMgC6G5@Vu zWVoR41q6j{q187j-QIy$<6&|_zvP76sMBDaKCtHhM8+I?5ryW33Zr;Cw7p|MbgjzHT%cHaquTbAI1n{c3Lq$>sztIRo-eJ=}+L z>kd>(F{deCWVUfJ)l^6Cy-*7J2i(>v`h+Dv%JcKaaTq0`fKw6>@Nfxt#_GSC_vefpxp@qC z;`eD{Jp8EToELL`B(!iP^dmzYLZO94orvvj_~l7V(R|ypv@Kfil>JD}hwC&|0WqN`sG5p-oSR6y#B6Je<$n}MKOCG#&WYu0H%)usLBMU zzX5Flvn*lHE>9b%Irpe9P@;K)SCGEwIrYNiG(t{&y^i4Nl`w9#&f=8RD>Vb<00w&W znEL3Od4KNxo_GS2fQ0?!yuo4>l;lP29q4Q#DE0QdT59~iM$$F~mNVVG z{%hhCqZj57$b4ypVIYgWXBdd3q~AZ-`5A5uzh!yWze7fa>8?v8gEO!X>|NLmhT&Zh z+}PLIJObL(LwCgOn1-5bqF>NZlS(6QU#g)tV4~lH^sQOYF>ZffLoJ&qaB@7#<`G!- z_Ze!D>2W(!;^RIzl5lD7tno(D9~eoy7)ddIBo)Hf_+-nq!rQ%(WQL68wD#~_7|MLf zef*#Pf)OOpe~l3&Of-VLHs2-Mx!?HDC~NwV^`_TlUSFlj&g|ihZqJC*?*-X%_TIhE zj3v*qvOymhK9;->H7l9#HtVMuI;~1@nuNgM&@qL)p`-ruhmHXILr4AR4;}R%+^M1C zeWGbt|D}fxBZGO*n*!fqWEcX!i;-b`oBc0G#oooHa|7vu63ujt`Hp-($hxego|GUllIec^ofx*#X3VEYr zgVMc)Mg8ZG4)vcuI$BNCjE)ph2HLRx`wK>gA@KiCqvMi=f63@D-1RO;N9P`Ybd>N+ zBMXOx$fQ-HtUPXOP?T4A>qXU~xUJz(Q{|0?ni>W|ok;7{H4*$p1ED_EdZIO=ri>v_ zQ{!%4@IU8&K>iiD|DrNj|00@LZMk2(?SIAeu`UQ4IBJF8K0K!a0V^e99oY}1vpKDd zPpHAugxY&aO`Huw<1du$%(r3=ua@F{Voq7iF3FBN^UD*qg};MKDiU^CUflW0qJ&+Z zA9wzxDq&X@#+|EybA6que82i5frK2hEhMIzQPaL>43``fh&(emQSM!^b!t!?D*ubc zp}I@|0=B-WHFgr7HdFmWyN@3?=e4b@h*=%8%lT`bJsUK__e>5kVdw15vRCEl2rq4Z zziPVotI*{AtVqE%J7hBLJ_0BD+sdgaWB>14Q%3B%63P)oy}%;Ces_SNk&k1vt7F2L z-6XpnYm6MooQlyI_Coh)j~vFhgHrz_-mECQ+AGToufM}9Xa|Wr z_}TXqSFVD!wU+M|d=QgwWnjWJ*IInI>=}UxZ@UVUP)G3EVTc?wh=9kvX*@8E;`!`p za5#KRn6`i@)D{$qyxw_tkbRA za_A)X4$qxhUwh6pRF03KMt7JnqI#@1#Um`|XgUb3*}z|3@%D_VV(onwU|i{Z2ItAK zJ#TaS$}E`j*Kw0o}6aR*JH`q9C@dfhvPObnhzSq%8s}b=Q&^xG?d0rx}1pmvg$v(jD5^;#S#T<)H)uNG#AQ%PY3TYJ(NH z+kXRgVSyXB7Zmi*tBkG*COk{Ygmd>lYOrBUk#KJLN7>S?Sdy^c@C@+VUq&zcN+R$= zY|qg|) z3H!-d;DCAY{kfs~3vNYQ8~@Q!w72q5yz-k!X>kYaxHx4wpjv9rol$Df%(p7|#tpyn+PyopauMy0 z*cVNr*|d22u*>0*j+xU%$dO4il+^p8)*R=IMCII~sI%}KHoe!00TPRMdTm=N1}JSj zP-_2^v`e)W0-DatNotFulvG4L$;cl=AX){ zpdG*KXoP(Yubz(&HU1j)9zmBeWx%clR-`{KcP1h}sBa6l=FD~IW1Q#H9Iy%x?M?uf*0-FgL zEE*A92Ia&tOv^DrQpe$#VXmb#5@1pX+5}k!Zez9y*5;TXndb%hUZ4YIO6qWzKxgFy zC0<~epi##fm~WJOi4|V3$P22xpvDX8yr9VonoZES&ID^Wc!@1uu+a-zy&&ZU%^ub| z5eEsKhU+;B6Wp!?Y7$$$Kz0cH>hyvxFX;9H*%6TE62vgjV)1H(C^3v;wW`^-_n08r zWrDT3?-8@t_Itnb_(hRylem7sB(Bflm%D$SeDtgpIM28=mfWO!AsNP{rYqe)&oMii zPMW1xG1saobaM~Cy_<>IV3eq|a`YrRCen1YS-oHnubsE6EgYGu@xq?IH&jU$_&scV zvB&L13g{j&)~dlW{Urd7sNjASqK&)bizk7uOENq4 zJsvmi^)QDP+#&F;dg@GTb6=A*57s5UDzTWFn=n zyLWShsR6+t(v2_707=!*I3Y4+WctXI5asjbCP-S|uNnf7S!4op-O&vgWK?kwnd$t< zL`I)=Kkgv|g?wZNNF5WIY%+ah227VU=8ytoW|^R|hyY~rO|ZU@z+D~}WmItxnf?=W zmp<$Mv{Wp1ySkIdN}Nq%0?jmE-)Qb6nf_l9)&(R?>Ca?RaIV^@{RSQ`<>lg#d+Cok z#yZYRIY%udvFaB~ozh9A+7q0`EFZN~onUG~CQ%Jho=qDcr0ttxMpthH^0;z9fKNfHsRlg7c-|VTe?G)=lCXOc+=QS$8@agibE8Q_ z5fH<0j8{tn-uCku4o9^MjkP~V!241M5`nEv0vgz)I~9pQQdEU zRvvTXl8Fd+Gf!}`eaaax&*qG0SrZo!MFgz(OGFayl4jg4<=pq{yntzLU8XN%*cY>z zG~HEyRZkY4T6z4GO7kkGwDtuOI9GK_yJtI>%Tl1AC06+)Mn5Y)3fIEgU&mgBmuQl? z<}#M$T-6FL{cdeDH%*)bw%%8{P4SY)^HeOszrHSNFKe2Y%x%Fj&IZ+E zSryW1$K1ZzRN1OVQd3G_dcVd52^S0h)_Ijn>w*dUV8nhSc6{fGe~EFEJF=AzvEuV; zZ~T47V|(6YeqTOgUgeT!g7oc6bDY{UxyDg@CVSo`&t#VdUK~ut*wAEi-xpz7+b@q|e2TVtn;y~@~;7ljC z#lE;DwE8OL;>(cE;r>CB9JTQn*y)G21wxHqCGW_7T(q^nG~VW^!w5R8?$GMFBuDKR zxcutX!wxhWeu2AqmCs}0!FBqk<>4r{Vo~Sf7G|(k{5<|l8IR(0Y&{kt7X;PI&k zLlnmN(-gov$`aX^UR)R2@j%nkQn>K554hsOi(4@!nQ|R2RbG{ODgIP?$b9M>p#y*X zM(7#*tMpOtEuLb(x`5Wp2g@-uat~MU?3*PZSNlMS|0O_5?cLD;`nM}U-*er9G3pg~ zY`JnzK3~Fz%ZiKZ;>FK}>Yu^h%O|Ll5K%N9Ma-G?GyY@T%;bWPLB3y72rn5M@HtDR z>gNGp8hFD_)Fmo+bAu*cd=+cZ8`w)}aK`P2=mjX?rmx}PQNp=hLR)A}Gg6e3Xo`Se zxPR(iSuE{>o)P;IE=NV$Uz+S)crFb*&Y+L%;pP-xz>-G9L%!y2EKpd|B*iT+kJ*pR zOHR6-`kIE1$v;W>SUm7dBK!;tDc+jnOzbdbQE$k!`1rO`d*YAhIB}ec=*tI(63v5> z+o~U#lU$fJt~5D|1*o*?%Fi$`(QRATgHf8BaLCN?7#BdezH z%QV=Hwz*m#4? zE6}gTxzbyFh{vkm(j8xTq4YGk!mMnehQ(r|@I$=qWhHBG4st-|KGh@>A#?o>pBZLH zXY*#GXPXj!Gh!z!yj#Vb_1bo@3KnTyVZOk`;{!aU8av);96I$FN*IpCrxTP|>ro=9 zzGZ3mD6wBK9COuC_7I_8F{vdbZX~d<3Ot%7hfhFp2+cuM_yv5e4~sNB)F+Fq^=ezp z-X0G>ZQ1>a!0Q;`Kr3d|ttjC9yK?4nyhD*TkdtXVws)Pe@J{n2VA9YgH2;X-Go`0J z%^NWY5%KU&JPpK>wVR>OF|ZYW?mgFPmENTN$va$XyK19*$L9wx!(ddO-@U*`eR|{#MBV-u*bblKXLt1~V`;4JL}K0j?x}u!_$525 zc>nSufVbnN4aiTx7v_8TAF?<-$4RmTH8b1N7A$5A_YGxu2YAs@1NmI;h1 zgkH}vzl<8gb0EXp=QKUt2KacFr$puq0y{DQ@6d~(dTsA)>kfFHn_|794wGhmiqkEZ z)2%X2x3JyZLpt=Zl1tly@o={cROHf(5q;!<#yx(`QpeD8>Pn!_#$_5J&{Evj`Mzp*(g;`}h8Pq>4vHl&LJE2-wEEW~A1+0bOMeywCCy;< ze+a~}**n6Vj(e!bc~y0J&P*rxvsrfVX9lnR)%~pKH(7TW%AEcBOxk^uq`%-zz=!;M ztNZ%Sq53~^MGrzigm^NZHxBMF)4HA|4YT?^1aRAQNVDmX$Ey$Z-bEEw zf?z0l3^GjJ+jkESqyIMs%~N;YU$XM{tTtn0J$RwT+(B^P`T)kyj}Mqa)5a?FdlhP- zkk;S`qAWY6%ER6=9Knnru)|-8d%s5^3Pj-X%ER1!{Y~$KrGxezv{f8t(@2w(8e>5s9nw&FR;{|JF}?JpxlT zOR~5DJme*LAG|in&qWd$oy+~FQ2n06v@$)rcrzCLZKf=};kwq$?%_9`;9Yj~UfG@N z*3`k?pHdA|>n%t2A8(hy+B+A&vIwcYUm`s6OazZ2;0F=X>Ag4oGW0&5qO` z&FA)2Pif=xp*59|H7dWN?XOKXJs1fbg${d|4lizP#3z9{b#*T8_Q$n0rA!0=In#-@ z9QAgkW=Ei+J9!W?2R5qBP?Pvvkkpw?xm8p8PFrf7r(1Kzjz)X8VlQdZ8hE})H z6;c&g_1k*}H;86@g;r|^>etYQM9WBHYH3ajTf}F{I?~M&!U}@xxuop>_lH*RA{i&b zN3c}(oteBC2p_?cqw=uXBIaJVd@9>Rwur{tg7hwt`Yl`PU;%{wXz{tBh8olR!TYS^ zyqNrEbx+j3xXx4WsB|5i?C* z0~WAm7s}|R??buNnYHYDu!kjvPR@jJx@*5`+4x4}5hLHS#^SYYR?+uc&a&2y;3@!k z#x>g{YLvF7?OK|>8EsGXt9VTf)z5mx@G>=|wW9`CIUizD3X?u{XCI2k(v2~j9rktzrzf`*l$+$G1$jodj{|1TTld-* z7sTy7>BBI_lkWD{F=!fzqDHJDik`p81j!ojR|^5E^>yag+6@HmhdwLSx+)H;))(<3 zL(lIa;eP&;Mz^j43B9Rwx4~`d&P3piMDYuu`WN}Ob4tk_%d?y_Kd--^ouR+y|092+ z&iR)R*uetKW3ug~1%-BP0XF^%3vw*`&Vm{m>3sG~Q}CQKOmJq%1n-?_f>Yi@;GBP| z{+@Y?{+<$022k=bWyyA?6kwJRb!rO=WAzVCn{C&go2_3(icM53f2KX<+?n>mbAw!A zJU3@Hv0RqebMt1~@pC85wxj1#qW0VZhQPUnGx<41Rg0JarX`ABt-ehbGdY&y;p$m5 zMYftNhn1yt3ECOCbclcZw?)wB;rO@LirmvI>}~Smf!}IJ8@F#PXriI<#n<(dSHrv< zU%XOgA$b}o-@dQs6gkUVd{-8^va+!j|5WD)Ues8hm}uaqHG&o}mq6ozm9iwU0-giJ zz+Kw?T7m0|6xgc^N(}qlQec_z?t#M|llIkW5qQ*vhUyizX4 zBU5r`IZMyan`JMZk~fQIl_t%yYo|<_Lyi17)W}CqbbbLx6;le(-JV~_Y%`@$ADe>r zlqplv#MW1f^wlC>3Nut?vG=&JCysDVD@0aqrJr9Um#c-7_=vQY93f-Gix9K8g%G`!*DCnWDnFKrV^FcBFQ(UPZ z^W!e@6mq$H!=s<)W+}A?fvOg{s98zF%LsAR9w2<6o*MICr$*PX8ul#(6(Fj@3f)ht zK=-f$s-8s-YHd?WaiwJwE@}Ye(L>be8CHX#x=4ipsn9*30`9N^s-8nmfe%t~rR5Pm zCXjciMt??)d~!eR*HBzF3JEu=#=lTw%)8Qm|6cA&Po(P$ix7bBcpp1D=4WPrc=6qa zmwBQ|Tg_`8Xa(LdJ1?VW+{-|#-(r{p-Pu7e7WBL+ju)_suT)uX%X?!3#2JHoZ(}E;my% zpLm`6@815;GckMB)6Cqq&Oo@aKy#O1D|C~TY}+s#HgGI*=vKpXit9UNgtdbG&(y$c z&Ia{}Kls{Oe9%pxtEoX)PZi{i8ITtNFWi=XnQog2M5JU#uya}1|V4Tho}8Jspo zb#WLbt={Z4qPjS3j7s9L6IK$ZH6sa*#c5^GF0#4k-{s+fnl+qsYYE!4U60~ ziz%)eWrT*smQZ8Nsc>>OEOrc~5VOuYdW{)Pj-U9YHH}|W#Icokn#{KM3aiRnOrB*Q zv=+b8#L8kVK41dIR2h{bBC|$T;RfbLnwqE3J*7o1e$q0-4(G=At|Phl#?urmLoIlt zsqHkJ*$)fn{{&W!w}J;c6$7aU=nyg zX)wRh#FbV@+Kg&?^5ZX?IYT5$*J&#=0B$T8pb&G00{3_ykjpb5H<9DLbc-xUT#%ay zAHE#Ozf+Bhj2aTR@ewKN6)3J68wd-&PK|%12DDZO4dSxM$0dvI0v84Dm4aNA0l5Vz z>7`q7LEcCh6yyjs#$=T@PGQxYVD}@nHhzoM!t(q3a5Rw3ur5DIN7aBtWb;P9qhvca zx}%hu?x-%}rlV53XhK~^6I^oB9i_OMAW_+L)QXozcT|&4oNn3)aTK^;qFh^Z2IM?) zCi`SpT#)k#^F*8i5Aq1Iuk#`IQwYck+@rlf-jD&goScvPkQEo?3c~4vyo(xRlKrZn z?!S0L%enKEIux|UcLo%M8cNYQjy09GfI(z)zfW@u`i!QzQqwdqBW`FO-wFO3Gw~-k zP4jZ%27f|B^9kS&h9d??t52C$8VO|-xPNegoXUW_2q;B9WfT|WD#8j;W}|9!X4I%5 zH$6BMSB*MCGdNaIBXe+c`M9J!Tokxp66Ed-$W1^=4-UlzxtY)mjsj|o*-MX)XCA!= zWhOJH1Pf+Pn|aM!uixUf%g;%xe=D$TE>}kkr6MNJTHIykP9{}Vql*^5?#YJ!OzCX# zWW+lsnCWuK=O;!&(NwPvX}K5_YFsVS{f|LvRd+^$>?{4BgV8#l0Y)qQf1|%0i!FN~ zd1UkS|L|7$6f_#mmP$>trA)F6TW;Dxhq)OYrdNKmMFHkX@A+VcH)*bRLsz~qnl1Z% zR+vt&!j=l$3n|w&kO8>|C}{~&aj}9f92p7n10H1c*x(GDW!B^y3ral53fzN#1afx9 zV%-mvkN7w%F31CfW_iC~HF7d)WC82LehtM{Bb(4H?@4Nm$(AKqu;pawawS2YrHIcf zX~tXpCr?luVz(-F>Mb6-E&M!N)n|rYZyU8$%>&iQ<|@BCr?Uo(?oOqqyR(G2>CP7( zprQF04YkNkccKup^JC~=iS_wQ7oWLN=JUqtnEKPs-YDniqbN1mgGl~JRH+z}#)D7S=MBRWD) z#g%3e7Bw(RfAc{-P+d$m(-51+wV^2mKTgXlKo#JZaMncnfr_;tZcUTSjZUY#afkWu__fVjJ zSOHaUrFy#W6jxe`utJ1xQ;mUPHR!t*AEZKey$WPy%+{S$|DfM@iVI{HVY7PT+p3YB zQKOsOv=E`VYV;7^sT$`|W6ZJm@>}Oi!cfl?gE&E`VGBnIV~wR8z8u+{-{P%!g?wXl ze<<~1et#4ZH~q2we(=uAzFe3!n=gfX!EXlh8p?9YS15bAgKOO=vJse;jjX# zUQYG2)T6l4DhQ1>?~|%gG^_^w(d>g%=)PA4rVlHi>P=Li;rEB)N^2$z)P0mga4V zU;UJ2UrQ^|xE^Yh-f7L0JQdU3q3NEP3O&dt~J4Sh{=(kh&UkHs}r z41vhza-VBjSnWr1jZ#16bInHL;+jF7TjN&xrDoVb5)*V&N`0a5G{0sK@d6FKSx=on z6H;d&Ff*~{2)07^1C(rQ8V(zn+2qKOMc+|e-^n3-1FYN^pEQg22#KlL2klab^-6(z zKjqriWk8-zPMVt(7vvH`!%azQj5$_Ij=)WmUy`lCJ85D|U?EhgLp{`c=`mk!dYa=m zE4|QqOQ;suA_(U#rRSYwDRqCLj%@ZjG8=v!-H}R7cVrIn5gobZw~(YCD1%EX1kR(B z$e_?n2gLJ)-y9^h?X1&L2|mGMS2$Y3am?=VUkTFuVOqR>7<_2TG+Y;!0bif-?#7@SqVbb?xD8a+X+zdu1)GsH%h)l~Sy7sj3n zr$ZW!AN*dnAj0TgR%*JJ%ZQKYnI8lARkEXt_SL~fy9Lvht;CLB2TeG{tl9hgaHa48?^mt zbiPxhH4{L1g*;Ha2 zA8AH#tL~;(r)TtPHo0l7gW~Gd973aY_~c`w`K83~)g}tTFAChhpsk6nh(u*RXZm?R@B7b3+0Wi*U)NrH?X}ikdu_#L7`A7)GS2Cjky#;MR_xceV84{m zusvNnP67M-U$tVt;Nw?@^03LmCWE5k+R!NgRYwP6D<3t0$}JuUr`+N!nDPvm>hGt| z3;XpsUR;m`Q-KCoXu$Lhy1H&@pNxR1P2&Mf3Nz;`Lt~!|DqCdb?8@RI#fBLU=7Y+( zY(U20R=lpnVvCHU4CB(?b_(b$-Vbzoc9mAUjoe|k5eueh<)_$5COmU;%CMYH#8&3~ zPCH4wxN0D*NXi0hk^$Ctmecd5em!SjW$;;opl?lZ9ibrzpJ50r+ogTUe6y*5GhH&V zY!zhQ-cHS}18Q#MmjeD5i1n?Smk}DqV53U3^(n!8WP;2JGyka!yZdBN@#Xwd6y(yk z(wYbjV=zS}+6R%J4wT8eO3Ws=A<#>-=PBnM#hD=NR7g*b5UO5%=Wxo!x-j|j z_*VXcAS?{RBEn45zv%XpZ8NsAoia}9TSeGBs^Q^u1XoT)iSYRBi`!eWZWo-Ed6Fn= zX(Z|0IE>GvH&3#q7ieCLhs@F_YM2p143myx(Ad z_SYZ7D;}y*5*f}PVKN*c)>Hg1=P84d$dDdxGL#Bd*&0TEMH!SthJ#;HhI{QG9{lnY zWsGE26;j+uulbVVnOzkcO)$Ow@9by};H8_?)VRWxUp|zqt8`iN}{nr z5jAFzVqE&cFSnV-_N@{Lr?Jl{p1I027JzQ@3Ngw5_tF)wg%@B|LO0=}p&{6~tgd|H&l}&$Ip-QzB6|%|q zaVe5M^n0jI&fQjHVJanO9lzR52qOr-ReB+z*@{|q&Y#z(1U)ZO&mmC?Grv)Wf<75k zyoutP0p-%S(wYg))_t8y6b>lS%CFh2Ti+_tMrgL~F_btd={xiSn^OR~nwb~pfqGrSz-Ol6JEbR2HZWj<5*wyR2et4e}!0w1L z0TqRrtCe9?pA0HKieIuCbA2nVl+f(w7pg?*fD#FQ&1%f`tr8W4W@G;cN}LpStDYC^ z`r&8@qhgDh=NioX(cgrb3A)DdQ~=$jbmBzlDm4q;M!pSnrz~S&6$1vgj9;_R)wc$= zoX|k`%dM1{*rx>09Ts4w!pw)2p{h>?72i$qEN1FkY3+mtGxxSoV$y&T8Gg-TroL68 zlh9!1Zz*w7=wANZ--MY{XgId=sQ`9`G;t#Al$wQI5#I)OBY#7;XAJ1}Fn-O#PT%VG za6$vSH+5t`r%wrBR~W!fVP=Oi)b+`r;u9&J#Y}xGt%}fK=3OeWa6pMk{F=o~eXGP2 zLW7wCL%Y4(<`C9gh{5&caCrXQ8Ro~o1V0*W z3OWWIDS55S22J};!rR965Jk^EAA}Dot3O?DP$PY3{l##@C|H}Ax2G&pJ}QyMz>%DCbec$WsX>e>o?L2Prmt@L zr-g3%fk^z_X)y-AiKt|KMGw&sQ4Lkm-`Z$%5WU<+i-5C!4cn-c zdWvqK3Cgwy(d%rql-ba)!)&xMi0);k$*c+2uMIY;Sy41*qs>9|Eeer2k1F)*Z-_c` zTPlcZNb|k~DEykb;MZ~d>euAZH|6aXPNY{4CkhlMGFpmE9Ub#8Ez-}w=V!hr>HGWU zdx1DGML%PsM}nw$7#fx8f*PvV`8AS>l~KU*S2qzm+`?zhv{b@h+(y*(S4&r-*M!sN zRg=@5&~`U^G+eWZY)St|T+$9$!#79>N^ya=Dw`kg3goZ;OW*1_g;VCa8;u&AX`c5f z*eIR*Nf1fcOQ6?%jJp65ZTj2=fQj|E9{JK~!qOeDgQQ@ngql7Wnkju3jKo2!Fi^kg zPh6R)`-CdJE^tf;-@W5?YN^>aXz<~=+feE-7&G=vr|bq=Y6J&URn0F2sIHC@apvB@ z7kM53lAxMSTTNy;<@E}(V_#}XdOs>m_@=s!M;SJ6!?c?YH1~8MC`ku2+nH-^2lO3u zK=ansQGUwOj{m22vS-dy^DPVXtv{#cH^PUmjyExFKY81fUP`vi!FNn)ed~|XLawfk zyWgku^%a>WQ}ogbTkd<4x{O)U+nQ3!szE{-MQFO|dfKi53lNm=jCQ0A= zOVs>Q%crYjBZluMZ<5keRQkiVw7!GVT8dpAKRRV;V5IFKvmN6EAgpiw0i!%q`qS@M zdYMWuvZeJMlorkC>ez-0p_BKVwi7D-4O?2@L1_`7u8z6yS6Z87=Hs@szJt=>J*7v! zU+FrPegd-r#;xz5v`AxD$IBSApR(t}RQfhsTHirw(b=w!+uyHrD^xA>ueP+lgVG|} zT^-5yD?Lf2KVwVlJ1DIkpsOS2{YvMl^u8lz-1-hm7n#xzz`C4r+{>V?nP1q_`VLBK zZ|dr}>itSrsdUPg)^|`^w7aY0Q}0(gN2UMCmezMrTDxXf$D=Str|fwn*)uP5u+Mz! zTYunr6G2zU^^}hLPLc5=mEsi0cZTZia8r{^I;v=k}fMs%_-5JAjUx|?H~A6 zL<2R4Pww6BvYtr|zkOaKqpej7-kS3k@(mYro+g4O&RZJ9TM4P^ye1Q0b6zu{xzX!- zN8>PaOQ|`KUcN-njGY4;f|PQT6o&76TvCRraCpEW!Y9ct-pj)Gq5d{m*A#0H;rh8a zlTsz&VzNA)`;Z&Lsn#QI``wh`E!C^RZ{I3O3V zvyAV`T2w*ZOOe->QCiEuRLZZ*`89its&AEOBCJ!1wK}X{-lv3yG+f<5pP?}Gzm=n@ zPY#uDrhL|jP2WmuC0wRDCsRU8!%TM2k#)_chFgk9Q76k=L8jDX45Wr$>`R0&k5(55 zg%!YSHdeLo0bB!9ZbVsr+Pjc>Y`eNKaBYY~2v9&G7BD-FCR!O|=G2`*EPRTGMdi zVn}$qT+mTaNXlnGAlrBk4L;3zvPbrcEx>f3cWN$ z_IIFk9QYX|XBhLpDjZko`wi~-2I=BFRe)cbM;*KX*1mB4tw5oUP9jaZey|8xVKbO8 zAbcR~^P>8KozC?Ov z@g&vPtht3AvHEdUVF|o&?+6WB@@|hfL|Af!Lj2arZ~9YOk~@79O;+MSE^&=iq=OCw%&lc{(^#Y$vliq>6O#;c4PaMVIREmkExi)MNndIUs&JugF}`k4OxEa5ar zSnj){c%I9WP`w^9Lj=DB-)sGg@$hqk76y z^`lw|ad9grljBG$_iq`so1}n1275+%=$27SmCAN8htMp@-aW(aCE10PT}9dP;|no6 za5;Zq;PpnclSp0jN8UJjS7PRP|G{t}sDyXv@&5d?sqkej)4T)=B>W_`E&+A6@U^WGIt3{InB# zt=wN@YH?HX`;Oy@xyFFR`dtmr`;MqSYe=IFR;E04w1HAC%TlCo;4;nb(b-uUaY*ph zs_6&aA|=@Erw?@7Y3J_--8SLM|IeWdpVQ7TS%hzCimd)F=52}bl(boK@z56InDwZ< zZ!>kG*DPLffK7Z(|4Blt5JkvZ%A?l671=gkXe??}9Kb3ShC!_1De?BH%iKC(N?x^kX)PLp_>@=6HD}q-` zmS%Zs$PG0!7peVnD301Ue#LQz7^*kzgQ{~4UDmP|Jwz=irHj{!&IQ_NUa;*^2#UBR zJhzyq{{ofZpRg&&qN!RH;1uUDJZ^xdZH=m*Rh^GhBbB z$=xXjh8)P^=iF?)n-jI&(?2#gnt%KCygHtLJ7ma>?yG)XUbWWaWUCpkTi52Vl8Zb( zaB6&@^{VhyJTP?Rs_p4uW$PG3#>|};{mO7Y*C%A7n$LJ4 z8oKxw;w^#Ta60mM0?)YkLXK?o3&@p6uFNLnVXZRBk6Iz6R27Fg6Jtl;CE6t>ds$u~ z%M$kpK|J$DP1>M4YH69{E8Ix;F$@f zMb?}-N@3{1Gmn6Na186RQcXuh_35nwnCJiCT4Hu>oMh9|VtK!fOZ$+(+wlifWZC-q zuCk6L`azd%jaM+k&KRelxCJv#L9hEsKZl@lUDh`9s)W}z0!O{_vT9e&1~~xzxGSar zw_rYKCs$++&+K&?VhCW3%$4Dg7l^;M@c;XW@1I3lF@Ce@$7P=CtBUT>4ZDPaEUpyd}QSkoS%PGT>(Ef_!5WC$xoq6kdiK?qkxKq@_$!7K1aN zWGGo}1S8jPad20-+J|&PGJ9-Y9_jd=kSB#pLb39X&^c^qq-%ppLLM=+DOJS3c@7;< zq%CEN3N|ZKWKNd71L3PrX1 zLDv4m3pYGL+Q4y5_-~BsCM|^2*Ym{nr!7wv{$K1&L3nu9^w8s2|d;JAyPrgn)fs~tVq~i-F%_3RHnM6i3cT7Xq zX=#HG)W`V`8ts;RqtrZW-VI%^4Hn0Sa9lO(*<3r=T=j55+srH2hG85cM+2XM2^@#B z)8G&A28uu%Smx`i-!NnWs?Z>>k_o&9;?(e1xTc*ea^w7Z(_BlgH~@JNWL-&Vb0{L#rp|+MoLT@H^bm^VgQT;&3 zQ>w*<<$nH-xIg4*nKy*>aQV^PGVk(k$?OSEZC_%5Rzy#Kz1xZI4BzlA1WD}+!?Gwh z!7q7I358{T$+rpt>*g&UqS>|4F*sANE#aLz0q#mbgnelb`W zc1$BT$T&QSoh^H}ci1e_A!fasLE&<}XKC(0>M^drC+sO3yldJ8TA#yvdO7y<@4Gbb ze^JOF`}h8izO_I1bM##fU8jHHoBqHrT7#qT)7tCx)(LGDJ%)S4%|3k?>tB9L#iicR zTb=F=@)3W)O;_Ghk@fJ64{w^pVR8JH3Ph#rb8pUi!`;9CO!FI()rr5^9@Lx{Ea2g4 zX;j>=tgm3{`-V~7UVWhBqtX-!uy~NyQv~?WeK?VFh8v~N>s;~D+%|$?iOE~60Y7SZ zqR@^(Ly#2)ErrKQr0NHC!rI5#LnIqXVU|%D%61ZV+^vfI-%C6y_wG4Iq3hQyBpC0_ zKS!bK`%6u<{v3s_zqrvvZ#hRHXX(ob%Dpw`C?vW(h$IbvzsO7YDU3w!M15ROmM;$o#0duWj+|sx*P6wXrRJN4CWskL>F1&RP)9 ze;!0~{ChrZYP8)h58rpsIjVVF_`Wq4m?okJ!nN9&vY__o8&EsmJs(!1KtkmmZ;h#k z8CXg*>COMJLS{gtNP6|gl9?G;W}>%zSRqv|Cs0)iiK<0KP0Rl81!_et$ba7&L>2Y{ zIgV-tv~k}2VRif>;MFv$*>{b-3i}7I3kRmu>?P=g9Dj}JJcciU&C8lSnvcKAEW5nL zLI9ZHgkY!kvYKJE2G)I1A!8nHqV-=?$e2f&=q+DV2)s%Oz`8FgB$^1K3W-((QH4Y& z22q7XtAeOPqLYHCLW5&{aEYJQzA(`iHiqd!!eJx}3BR!O{gKdgvKI+$pBD!eFSZpw zU@G*R6lC7~oRH9B_IsM^ckF2s5~?PcvONa1R;ohar~n*X^F>uWA$;Hb3-lr3uvTU~ z3`uR2`xep(Z>6F^IoF$OYw<@Z(eq5;FIGdYx5)O~K$~(25~;01fw$5G7S_bnB)?VJ z-%Ma3&2N)P>;vOqy$bcz6N`Fk>D`XUku-#Q3GaT>w8gxHZ@S!zcw?UEorCuTSMTix z5YHf(LA(Xq4dS&Eu@mpj)i=l|CY8~fz+c>HVv7_orXvcxl_v04=hzXNz+atbV7y_DsY#)qLI9}% z^fSf1xwaPHg4{EKzgP`{es&;#XOQ(AogMO%e~V=4j!jKRB)o9KGZ zMA!dDmFs=ID&hZhQo{Q&=kPzBLO6wxVeDIpxvzFoGKshfjmMC{B@3crk(^4~*{>`v<*5v8 z)$^S6kMi{+?@FKua?^+;DnkU^Lbnw}K&;B*Dy1wpDfWuA;>|%^3o?-&!W$cIae@8; z`p810q6}>(Xo8c4E5Agh8F~5#F>h$GKA10i_^uPfMB|SiqkSu0D{Q5h5wQuE^IPUg z)=AApi_4~?SG_`eSx&8L7zo8YnaR*vF6 z{HyqM%s2cU> znbCNzH#EdP8D>v~?yO?})$7ItSWWTFV1-GzH(?Uq=0)yOzIZgH(WIxFZD60ROY0dY zo~hhz5^LM-Zy6hO+Te%{%o~4RI)RZGPn}oTKwjV}US(pnlWgJ?8_cl592?Zxz&!Bi zrI*`S69L8b!Z}a9wA#cr8|=10yA3inCj47Lb`|)*h$Mg~}|$oUr(^$#>~w zMj&%0ugKn);yf+1LN}&HaL@HFoz|ciiF+$bO;^|E8L-`3sK7V%`SZ^zr8Z76&x$LI zwukHIu`=S3c8qN7q$a&*%21LID)Zirt$*#TOVih!J1Dl}-DK)D3_Yix$3t1}bd&aOVjaB^Ip}&?y~4Ryvml^olG?+L%Wlc z_p5v?bjt<9>D%aZyl9XfA)4DFF~*5*3D5fmaESYMAif=lZwBJkt`Q7UmvTj`8GzLh z>j66qU^0P10vlUGa#xvHHcIhAW|;`qLTj`K{WiY08ta;DD%HJglFPrhhm|> z0IosE>j7Ag@hj7k=+e~IFU{#bWj-ZJm{A#bvKcNb7q59S3ZH*2Ar`c+uabW;z81RC=6*5(*)LT50sd_1GO6qBCl_ozX9#fyh?xTyh zudn5?dsDFM5#GPv%EL)hhw6d#@#)-O^QPf4Ml|HNPWQvH&`v$7^r}wA=C)YGXbI0- zpsDcfjJ($p0vm?f#WRPT;fB{VzmxCM{SdQwu3piOd0mrPIgNaQ8lk(Y_?6wDXNvn1 zms-^n_wOjQOXtBtO?FxI;LIPCMGhvtKijLJ>2E?*o`~^W;ic(m7Y|B$2Vy(Ac=8gn zzv<`jg7rAOCUM%-6$@2fGTe->@{$=`iW7&TfxbK@J@ZRE9epkIEh1&B0zxn9@A5=@!n@NF`z0dwnZaAIR$Zb}*#o^5+BF88=b5H6U)gXG_DW)e z=*$#4W4b{5uGiy}gDz-)vRw!^F0)nfgZ3{9Bl6U0gQ6#WcCF0ZR`o=MdwQbnZ(vW< zZszXweR?wEq&=yke9#lS1DicpP~wN6Cv|+%lNki;k#h(#hg;MW74GRtg2=$0sNKw` z>B)$_oHnp8h8xPx zKOE1|aXg+;dbyJ&S?+{65pQC-3Y?>eKZ&gqg`j)G=;bM)Fj>z>gm@=O?OrPnW!rrtdys~98X9Xzb)V#|{+@iCXeD>P%bgns4N07sk zjc4Jpz`@M?JefJeWs$&Z*!R*|tTHyoj5(e$KWxrTrsEg#=<605{uLzy6Sf?XpHURa&6C`L%P&?WQ(z$(zlw48x!lwLCIDT_WTH zGqp{#K#Bl?Sw&aWxjf$P-z(6tNDOHFD;t9Wad%!QQl6^3oL`YauvJk_O3lYXJ zn*HbFs?{zMUblW`c1y>jrkT`Gl51uy%b9t;1|obJO#+}8m<4FT6Sj43>Tbid;#VQ` zG)S+A8@+OAxS>Uu~hCQ6`Qb?=% zeIAE5i}yY0P-Z!+UH6~0#ZZyvhy|fKAyIWo2{-I!5ub!aiNyYWNYoS1{J(-kslm)U ztNN0t+1!NbL!ORs=_w#jyYk{NHVb;Cf+bB1MGhb!O*8tECdmb{b>bW#0S3{)j)b@I z1PT@G7y)@2pI$Sf(SYn|dAf4ML<$!Hv-0$`5e1N@9KHk6#9f3DndiZ5Csp~`JSP?Z zY(A^hThc_9aQ#zSYJOT|shlb^rb>fFswy`iQNcUL32&|FA7n{1l+Dair#poY8;nz3A}pmhMuuIvK!gs)NIUk(lhh)5;ewGajyk&_NW_u z5{lFs8+5|`OhI}B-PW|UHZ@<&MzKnZNsl7;zFuBJ3Alx9f4~km{^{B z*H&X1!ex|c#b1$yAZu82#X3xe4uBSlxZDzK_=V}s59(OBnuuT-Q$e3)%>xhlZXeZfz%7J)m7w5h8}8T$$)DbGxy|>#0~Yb zl3}txYZbo$*2?{IA-je$jZ0NtkY%kf5-m-vf9dpbsrUu?P9%Q*L`+NL=T|t9%JWN; z{*d$GyS~hO?Ki`Nod$pQ1m%A1r&DoFlQy7&pgZ8 zpOA7#=1oY&N9K=9=Q^kmPe&{d*H2Qz{#whLJ@|P`16ODfsbaBaT8h*u;s*`1RG_R8 zimauCkQoq(fB+(Y2-(ze|2kIZ-DW8Mtff4$-Fc~Be9zeMeZ}`-!*s^*Wa@aryK-5g zhYM@ws3LwwLbpZwY3o!J4IBKHE`a#%851#QIwN8DWL+Ch$mQP^ZLW72+}>r&;rKF$ zhfT1K&2%ncc}1oi?@{`#Rc`uyT^-k`RXOHJbVnwdm!DA@ZV=1om&7gQ z4ZQ|Lz6Fh?;Bc6Ni6!8A;(#ko8)Ua#^uQ}St#)HFoU!mN*fosGRUET0){2rnY_j`>{u|Q~?uo%B zf3BBJ-UOSxPa9KEjR6w-isiq1fP|hT89K~9R^>*2&=_v`7)bA`XTDh%ApQ}h_+}|l z+>+^z6ZRu5RrVvT-pneNsR-%ZO@?qpuRv`$*sz;-+s)`DyBW2gdNb-zZ!_@~+J#=| z&uf|r;Wg*bF4TA(RNy4kSRMcSP~)o~`m3n18qD0Z{1nvqXL-QMTqDkWuWO9<&USW_ zrsU+`^eEFpwT&d%m(G)+-$;!X`;%oftwdwQ5Tk|&Nb0!s9VMcEI7A(nzNMtmd>TFh zs#*etU7+!zrj#$ z3D;}E^e~l@c0YgzIx&^(`TC7LV_#OlOGLW3`ZV4ja<+r>UDD6Z)XKZ>&SvDgmA-uks;|lXLNkd`d2PtuT64>vEvvblImoC3>by!=Z;I| z@0pOAwueiP*W7e`tUvRi<72&ZcaQaE?zWe~pR9hWJe_|9%K$yh*SnL^=ca#}t;6M_ z{^2K+p*9$iMU-`k$qfZ+h0WO?};t`{5HJo^k zg_bu@$~Pv^@op3eLUr%mD4};Hiv%WKdS>{2yZ^V$lMJk-h>K^jU$}UlV}hF(+SoDz zep_mS8 z1iLGukD7gbFv5h-QR(_;Ps4|^Iu5jx{(q|JL}i?U>uyk@ZRM*<|R2 zWaN=#7O zZJWIvB%R2FxZWxDw#?i=1Y4L$gU#>X-OOlCSq$Zh<{CifWG!vSU`(vZRHGG*ptM|=;JX9?~ zI&`DL1m*xg;k|mrMqS{V`BPRv|4Unw-{aC2#sZIPnQ*`BC9ZXHef7=Y($)ggtpS&| zZn7-cw(2*b<>8u*7^t-5K4f!lCW*^h_mMW@kkrci_X1Xw36~s4yyzinMn#+X9(x`b zBgl;L&@OiTVn3kzKh^JF^Ss@_e&0;mh(r7L{U7Uut`!dK#D3kv`#;%@k%9nqQaG+bFWv)qHLTnJ_k2g3MVIn7B|Aml$6 zuD^j_UGG`$>_%EaTW}E>_fffGDd0l938$kcaFJd zynsrnY<>0q{U0ac#AGM>Xt?H+_@VQM)Oka0GM7Let$wp3mn3!$u7J2A{9E?pzm~gT zGov8xD?Nyt9>y}u`~le|K-`#zBC6wAAjpmSaD62oXus|sFko4Y_Z#pO`uKXdem&_h zT_d{7{gG#LL@?g3JiF9kqy3VG(cVn&I4VAJa$)9&WJS>rtO|e?qV)c?uJ<~tyaZsqIRIF55zqp~D69N) z$2*?W)m|=X*MFT4PVkoxxJvXpfHL4JkvyW--)yksC@f@T>x6XW^4uO2*{*v;KxJqX zH~9=ybZ7JcCk+b|hg$+10T&kP?oj;ZrDGjbj2DW zngERXk`WEaPiCB&mqStkaOY_smoZTVgpQ#{Yi7TM=8rrBgtuA)q;+%I+zEBclTkYN zoarC&^VfO#O$Hl|R=Fi(7s8mKP5}_ecP-4{>uVkJ0TOi%p(L!#t9KfWL1yaUE-Bl-FKG*6Jk)``~ z`Fu@}8FElre?R*M-Tv(Wj951iBdUR8SGfMy1|zzJ5pRx9$A1e(m<`Mc9md&{Rd5S4 zP&}^Wnr4&Mi@^-;v@gnHM&ZF2IIzf|#=-zK9ye>{J=2}&;c(3d)lanVQlYa>ehcfG z`%oNT0kp809ITO-GFdE%2ulv_-#o^5FCOA;t$FU`Nw%X&mk=A#s{Rgs} zC0zfX0SzQib8Qf@Q<`mYuWf|-#Vh`ZohI2@yD{s%8UeE&R z(a3^J-<`pw?>I}z-1^>D{e}~LJ6!V)FN5`TAigxWCB8f;2PoeLxt=5g0Nfc)&*Bc9 zo7#(!QTN7Jh)a5$Pi(}jCQyD`dk5y^WXTkN1ts*1#EPa^9+=%GPk=K7eea{kX%%J(G9a-MFSxDvg2RL1{##7 zXQE&4yKzZBka-(X24wZZU8Dw&8 z)vtu>e?>a=<9965#;ZhkvGkr}zs88;F_xY=_2#fvOK<4?5as1s7B|gm z#LoS#Wg}ke`0103?l$M}k&ZuToS0l6O?VqR?qI%!mmTjug9Lq6X^(wzW$d!pH)G%W z#$~QQ8*MJq_36xt>wjRxYp#D4M$TQjXl^z1p~GmBv4ZlyU&M{`q+ed;`gh5c#q}SO zsZ02VI|M~+t+4^HS_@1B(A~;Rx}BsI{LCsNX`_;MySOflY|@3_Bf80tmUw1yr*&|^ zJ=oops8T-m9m?w(a9c7pWMZQG;qj>8VOAv)#cm`9C!-GSlIflHF!<4&kMu|wR%^b*IfA0m2e zwZ^(Y-8w!s^o>isA-Cb@>kU*1o89PPMXO)dg=x@YCu)W33^>w1X8hgLKj(S}@ULRr z?;Xun=%&8A^7xpR++UcSpmFGFCweeEF9~`Xpps<42_$1)_0X6%I^Xr3;UloN-2#wg zmVx7aOg69tmZX=Me3#^63!BkZ@VltHP?6}c!apzJJEIbzyCjJxL!*l<2BdP&?*+}! zUeFBf1q~;{21lfCNqWyDLr;J0Lkm) zWj@w2T1Q%a9nX_AR7oA1Sdihf`n%9}5Lc1vDotzL|X& z-y+T|wfMf%v-nKP-)ZqN2o#~;9%2?>xZw=x1t#Csca@EJE$hz6KP}<^%P70t?&?`? zeb-w2bV?u5V#Ax%Sr(&S!1=^k!l>ClNqR3@jkmM@wM#~9Nrql^Fd)Zz{HypLIZN17 zCX*i4Q8G1j`=#E<+mflvx8p?vF8R-j2CK|XkCYV>S6;@m#Gcg>+mS@UAkl6c-n~p! zZVE>l;L#!tQ9DKG6|=;?d8#Gmq`qCiq=@poO)+=!ec46j_}{N88}UM7{fqcD!&4-5 z*&pQk|1ru9-KS+`mK5F2b$I*;0AS_yWeb32xVkSJ0L)C{IL#=yVBHM>S{*#6;ml^# zc=A{PK)e8e0{{@m?&Q=X3jvI5iC4cUcbTm?R0%*JC!g!5e-5n-i^zarE0!3hvP5cT z!||5*T0sC1Y`|NlJc7-;tOo=eP!<+KZ2#J&^psgjV&HPJ_d(2YvDb-5<^&sir0pFFoIo}L7tP!+Q-u}i^*tuz=5+qhd zN0VXqG1vdsDHd}`oIxVT(45N}OBYUnr9h-S+g6mri-bn!-7D6G*d!Aet6SH*Q!EpS zr6#y;A^n;||CaNAqZH_w8T-zIWt!E_6%2`!4a*rP_rsS~F<4YBs~pybe3_O<0a&;rd6F?j1u%h5xI7l|h7(1DQ|8YD(&gW^*Sgw@#px zfpT5pA9HV5wI+Wh6#{QD{#`t92xenwL5X6k;kdS4>?#8g$X&{iUo7)>zA z)g1|MlOxv_uz1*wJ|<($o%|g0j>U95;&QEoq+gQ6jkhUrZ`b<$XPNyk7Q(vt^&Rgd zFu3t^i&+JZoLfwn?j~-ed z;++}N4(~x$MpX8;Ceq&qeD8$o&n4M==kT7;Bj`mUdl;~!{h_1%{6F;cz0=vn(e@Gg z4s%-l0u%7V7JN3g$+C6JRpIH)OwZ7t8E);Wc=%dO^1E=qc#FcIUGebdmO8TU-*8n~c<*|?_HB)YhqaMm|BmpyE5LF3gMY}WySYHHA2hm_O9WH* z(AIw8)9fb_(S6~X+gZ|n{?CJPqiad*dM-Zrm^onBSN&qgPx#&S_U~sQztS;Z0!Zp# zwRX9>IRzGt<=0LQv;5L&^XW%fvrltMVojFq!bO(Jn3`7Pn8kOmgnAMS?TRci!JX3m zus)CQTjtfh=jC)<%kgsXer9n0Ocuq6iQb(V`jYStB8#=FSC}W7;NCU@$9p%C8pq|9 zE$GHuO#-Th3G406v~;O@Y?bEy&zm@7=AAW2aIIvUaKp_^Tk`4^ZA@Nc5)(|KoSk6x zCL}*$e=(dMZ0y)Nfl@0N?zD&u0c zb|EbRoECHOf->BPG-;RE&!zmFvjRu&3;!9{@NJaL*4JX}w9ZvF%-Gdmd%UowmfZjH zZF2AKmwP!`ByW*hpX6>LcvZQJmAkz+H&$^u>T=p@=uhY8lfE<7H0>hj7)M)o7EmNS z@6Y^;z$;L4NFg{v37V|28N4=Dlf_*4+F9n84QC{U!~tyQCy&Qh|B&-`PvCH6}NH;0^cajM69j6gRiG$#0DD6 zs}Gs~Sa=cQ2JZdIfZ&A^K*{u14=b&o`tNoCI8(&I67ONmxK9t4x&=I3`o}5eds;y! zkC;v}-!lvJaA_6a6UftUA1)251beHp4N*Ciq)N{4?l!RDdab!WfQ0am7;Yx7UTg5! zp<^1P>pvit*+K1&YzB2N1(SusZs-9!_{T6}IGr6=a}l7i>+y!d2HvMgRsKN^BAt|5 zd@iSrkN-($h^#lqn^ri5gl(4iv07Ti=c zI2cw@?setG{K`TcJWtE3;xLlOKSMiXgLegQcdTsS94`P*7OVn{4sZpE$OatgMQ3o) z{1bE>SI|-QbA)`q=cqaMc9^{!C59UYkpnNvtmr{FsFa{w*JE-1q#Cr zA7rZ04RMOS4apozG*2lJ0d z-N->V`X**v&&LL1?q+`C27n$_2_dHC`xvifR_u{MSM4zMkWoY-_DP3=cmVD$^zcb52{X+^U9|E9~tetIWrEe=befg&LYM7)NI5C>)rxW=YQsaK1;_$!j3SHmW1)>HQ#P}sF^~MFs-H} z7vZ%{iIf!)7bz<+>Gj3BE2VtHOn6Ump$YFO9!{9~!OfP$sexV+*G_C8iR%PUGYvk* zQs02U?DUps3h1)%H<8+D)+O7ZFiILUQ3z3GYi1x45gxxaJEWv{PjQ{;?mflgrQGzn zS^7}Cl(-=r3|ra&dTF}9(B$V$MM4eF?7j?lw~0g1&F{R?PMG=GB0DTq);p{@#0Cya z-OoI9BX`Wu4?SpW;Q}_~KouwPtfvOi*%lYl5tfwnl}YbSCQs@SBiAKEk3(|Nk??S_ zX`h`OWmB=*n;zq88CYl(%PbU3n~+!koba|fktbYCF+)!vGhtqcm5PHs^UU&GH?%E@ z_HsYx7iH7{UP#(|BYeXZpjHBVi*)5_-BP9FR62a$w(|5yTY2PlZl2K74-3PfXgC9< zxQ;yNb|IhWDLLCSnMLOWDb#dr*{*Van2c<--kRYZr#HJ1_O8d=&`#;rYPB6F)7K2{ z^41EgIV-U|4kBKYdG)73t?DqZ{ztm{ozDGOe+}@zlZtMV-7C-lPecQ}KV0wV5EQ$A z4_*0gF3^0GBVaVZd$}KDG{5Kzf0HLR2xC$=+FpGCHun1Xf;=jMvENwT=|rENI)wH< z+7e%CGRj<$E9ad$LkYDx(L>>R-xeF?n?d-d|9vb8aoz4_y z?SI+o4A+Uog}^8j2aW( zG~PIbE`xx70KhY3tg75DBYK*V7_ z#BxI8nizJ@>MH&*rfBD$E_wRk`1HsR(bzJUEhEWrolv?7=5?5<#-o8lW{gWpZyjUQdD zXKp5!ptTwI@yJ@_`n%B|I}kjnD}R^)6YVlJ>t zwmrVb0ruT($W)VY7O{fLL-9jsFNL8j`L>41ILG+bM!^^?kbHfb{^0VnHC>#^X+f7^rZK;g1z0m{ zIVXWXCCRT9=5*suMPbye?eI-UXlb3&*<9y<7k#9@ykAS|TWF=ec77Wu^(ifo`Z9c$ zO6t4)TqLssN(S}CImR@#FHw-W+U4iM-k%Zba!CJ-#*6T#oGrDYswFp2*+t}*UA*nu zx*}7~T!i;(6RK{gsvFj?I*Iq%JgH8fR98rFxvG189M$z1{dE=V_~|`HKAak3D_iZz zJKtmEN;_MPwA3EqbB1bfj9hHM-te@3;Euvr@0zCEj_t%w(o6;cmgm21GZpk?Ab^#2 zk!@xopT{NoUPv?RI{S*g+$%|6wlq_~=++(S{eiw!Q78bdK1rEGU_kp^c|XwR7#LpG z=#@2QTKMUt((_NQM10ZCcx5MM)#Aqd%Z>zV#Ahw|Wta%hnqw4&JHic{jOo51L!w}o z5}Ac>EOz@7qktNSWrm-1qMO1Em-FH%WK6`4B`qo!P}dWvu2HA5ZZ`;ChLU}O1A$=Q zbwYcf=SHKtk=2Vv^+WoR$3tp1!XE5D%}sxUI}cE|HzB)@w-pBwZe-Vl^vFDXT!+l* z5iZ#GP9KUcGFB7qzV07l=D8MN(V}~YoI+N=oJIo!gvA!>yjO_vG}`n0cAEW}{4 z6*$o+IaG=6n0nT@^w7NW^w7ns>jT-Uc%VX6?Jx?~Ci*!Csv2%M*fS)T-UUPAcFU)@ zKFgSRYT1tI%j!F_51X2{EGPYMa4e66>p!7V-Xl5*i#)>(6?hrL@+3l#`9sq`HYS?8 z`1;&2e(qwt7$>8T^LmUW#ylQ_Ymxj1sFCsXz8>R74_=jhJ?3eC5D`ZAH}!9QJtjPR zcOtrH>L>7`kr#{R@`Md9u-tBxGkdCE#~rDQX11)UW^Dx%pX1Faoc-^{u$hr?Z$sN^ z&h(MIq4**0edc}?>{8O`(B*A;_+@U(AMNoK3++{y9}Ml;G1<3ZYE|jf0u-|xbllG9 zKQv}g{6mQGM(kw|205pwKL7GOE-YkX-q1h79EBTx4KWQi;9%#4F(@MEfX(*@sF7DR zlg^nAa(qN`GutY529ZWS!wvaVPBdpA#}y^275U0GI(afQIxZ2wCFMmlH#vuUT74p`6*%gD-%67_bM- zIV>S;k(zQmwAeiQ5@V$QTgy;O^;9Db&qjqV^6YTB9U;zKVXkYhGtPwcnjaCn;D0c$!H|oOkh>czEMD%BMG$4l8)hdB~40l zg15}0LZdI1FzDjzS#5VbT!x#2O|iiozO;)s`{Cnoa64h+t_2JT zP4tjk3*ZUQMTPh8s(y)I^qSP(JVlAfSJ6{q-~Iyo_PD5UO%oGahU<){*Irp#XwLx zuEdg79F}3UPQqmQ=ibv)GYueuFcon-!ZyWa!xVRG9vO}-MXCF-{_h;r* zAjE6Z$^)k`QvOopRrr&nd6@ZqAIZj?ca>+2lwf#3P|c z`ir<<6(aYYx(et$d)Q|Uf*T}5@@K;o?qTqx145R>;U_sb{)os6b`KDykBH=8uelqA zfx%YHX+Khhd79OdL=Iw8gO&ipO-()~%|n0A?S;DxnciL9$xgNqJDX%WcW&07)yHvp zpL@eqIJ{qA#pVswukAmBsUDb!I1sMc$rCAovJiEkUf9WV;^c&(E`; zu-8@t$R%-&j^}wV){wxF`FVD1mtR~pE)>tJ@<%T8MlQA-2^P~Sn!~(meimc47#8Kd zFy=X4UEpZ7V=~hsmSQH{x0$hCC8p77Vn!2!WZe=nUGwhAmW54Y|>d1 zgkXxI+>7HV+I(?FzQRhIcUO?W9Q5(~2R<&PBO^FH$IB7#C;vfm`qe+L1A0wP=-(1? zWN1o>OT&?bsgN7JvzBuyE$LUDHKWYSAl{#){5nKxIL3!DqOET)<;$OWR${=DcCDn# zIH~7Jy9t)YEGIqb?LeF5$InXejEjREhw7CrxzR$Pcakl6?(!t+C*IA&V(QbYL<>0F z?#6usXU$JS1j+_OjJHF5*sUZ*>eV~3UsqvWY+kq(IwvvaWv zZJqiRR1>BTNVjGzMuy}};UNx?8`zQ#gx#Zktd4o(UZ-F+#5z;nJ6hCLR-K;*-sJwJ0wq3oCQB$YWQ+nUrViagy8&4pA_6p zut~W;cFD!~!h0iVdtJhmTOxj_dp-6HgqZ^uQ(;BF3fn1;XAlWX`lP}P!CR_uJ-Hp< zWiEr^cxjQRb!LRULz_r_v6Trsv`#YM0Z&Mxn*dao9V2QE{h0abXHOwpeD;4yw!k%C zOG4iI<~2|v?ptK6MOR>u5lMUbN&`0Uk#NJmuu_s&|E!IK#$@Pc3klJ0rpEF(h$)x! z9t)6I80=s@g8!k0voGdsep~luZ^bf*KMSJC1nEWsmRhNXp#vAgvKg8GBOVyad*#Kp|8xZm7}gtjuyk80tfYQl&!CnV2bLSL2mqrN0#z4CRi4yyt|i!Yvs{+ zWKwwk3VwkXUP}NnuubmM|o7MlXI@4$;f7M)RDkh*CWPz zPS=HE$__&c8#24rjmgryv|-a=}5FpyfNMXFAM5(@!aY~?)`B@)2M+B)F8wvaKMey&tuQp||0NXUuT_t9Q6hd`-ip^L>ZAL5Y2bJA>iw3)lb7WZq{;9gOVD9J=fi zSIc-m8#8W>{M2h^RysfN)bG~GAkG2NP< z>)AL;g=X4Ph8TRgVK*R>q)9U9@IeaT41EAMbntuus1G;vBLK8QMZz~dq2KVFN`!?d zA6JO%i0ZiF(_87?(+i^c%V&rDd@c_oNFJ{4?6V78o8@+{#hjV!Ynm=cDE;em*kl|gu`YU}^ z$$33M$Pwzy2{+`t7kKiO?*#B1g3_N1JWuMk_XE%M?++fv!=SI?unsW&9iBlx323hG z2bx%P{BZjo^hs!Ar=gAc_Zl{F8E_uBT`Db5xG(3kT?+SeKF(%zq~B)Ll+Bi2qEBdR zGeOaRk$eA0a_9WUsOJrn+EUxfZ(kAGrkCiG+-(FEb>v>F+mt|+JlEY{q9_CT(LGf zSFbZtO49$Ch!7`}Qn}DRrXRZ3!eR+)Yr{$h*Kpnjsaz%WIw9lHjms_$x?U$VJAr*n zk-CrHL=&vYGeNq*RF*C@!II%7Fq=lePxfIZjT_%^!vO)qDDl2gto@Ovg`1~+92%gC z;ruQl717?bmab-{L;24k&GGhd=!YsSJ!O!&Ix8Xj5ix#WK=-4TW2+%Dh+&7uM5irb z7eGH2e;zd^h9`PzPW&GyUq9qf%&1#9I^!5p1zEyF7g=6#`X1iDHXDIX%{U)3T03kr z109THA9OIYci?|>>KCO8qr4%;C@sfCNBU*nbDWy(G}L%2nPB}w^w=1mT$;jqjUJ_WaxFI;R)&dMbj_D>}euB z|C1nwd|Uu-!8nhpDY*@a?VWJhKBWD#cO|1wv7h-SE9y4o0)Rk8$BuHo{R=s60~_0t z(HEf+5X8M(tNH5jk-eA9#z*#EvhD5hk$pZ=teq|xEg*-q$`zaK2|9Npo%k)H>T_k` zvR#r7qF3Ak|3L`kqGcb z#=mHxb4*%xM8ab3@D-R~h1L_s6m~meHh#^V7-L1~3TGJ;d9${pi8P+dEfLd*x?`rk3DjU;C(#uFxO1TZk6QT7|)0j5L`O`|OCPZwb+*=<`eM1(=u*!_@0Gyg8 zmY2v|g;G4xiU3l%j?>fI!L5@J(gH|UY~^rENDI48B&14%dzR>3#OG3xul6v+uCO1m z8wVBAr%2CTyHK^ zyw0d#(~3y6cPeffMgn&e#isUpbC|7EFtW#+Ljo-3zW!Av_fhT+;S5Z;>(!$AD^2cW2sg>dj-F%BCvtZ`#c_nx9gOAESg!4YEoEKbF21e#lPB;>XWa@&x>tqty4nk4Yx?|HJsv zJMblj4;hFb*DLis@Z)D^ReV{-@`@75_McIym+ z%Sk2^fQ4nx*`ZYD53%_U<6JCRFQwru7rm5cNs08x#5Gk5aUhK^J6~o>ck&!zm07Q?YV-t;m zzwt1}k=-%04qM9x?+MSJ|0#iSt*H>>WO8SA-h%>Yh~wX+(cyN1#RRkaPoGo9B_hrO zYwgaM_pOnFrUkcwDUe>sfB|zK=r&SI0NsUr0^MaMxM``4wGsf`CKJ20nIKbim4U8G z_CU9e$Ux|-vCNq780e0on?Uzw3r5ujwMhCuuOdC%aFa=Hup7q_p!+A)*8|ovz{(X! z4u9?>qi6#lRi^>AfxHvhlJ)%w5Ji-Y>rX5$mhxhKG6W@i65oM4j04aw8kkyO*8V;K zrUugk%mrr=;W(TA8zhW*6Dnld+_FF#2sO;-5dzq7fU}^0R8k~r>yMP-W>`l*YtTXR z7L$^lgW*KY-AHD^uPDIBEeTo(7>Tzm7)D7`E!_p~0!ik+?;3!s@g9H+T?YbOHD`8S zp=%B|8CcS1-}D8Ds=(|LdrROnK!8>wu(=nU4HlcdJ+layuyln=071V5rNL}Fl%0qm1Po+nEW-GT#yXNH@5Uj04Fv4XuC?o4HIdZOaHOpn)~aQAir>z z*unP#<~P$!F&Mu>O+Y%I(lfV}a`DSWIp*hYL;P7O16O{Hd(Q@y?0OlXC~17Ecn>ax z8_Nd2Jk~4T&CT{bxjpgk2A&9?spe**sh`S>LqaD#0cG!w=@C_FY-${CPwaYL=0oZH zvs~;s{rs-+scH8gzjW}>Y-$+WLw-XZoSki=7QSHZMdHKZYyF0=W>rIt@@duhy5>J z@0k8soRK;q`HfB>9{WSPFrLIMM{1^jyv!TPO<>$iY{CFR-ht5mntgxX1aY($Yhqf5 za{?llHB_@`h07N!1fG=N3^&|B=>R)0p$ZO%9RDFLExd=HhR0A|>8l9v#qr(>Gz4X` zkky%K3kb1*yMnlAz`;r8MwqNvbaOnM>@=ohdamW2*%*#mnbmvaqG$xxt;5^gZsYm`HK?vxcF+Fx;I!)HLcZeVnjFf6F_1q0BOmcYs6!jrfjOlV0Z8A zSpe5M=+I^HLxS)Q97x=-T%&{U`x2HdDr)w~l1?`j?_|zUJibxpxvP#}>bdidb6Y&{ zxsU*A9KOCDo?1 zA3KWp4X$+dPC@3ALEV0S4FWAD9P$IPsk-yF^)J^2PZ)3 z_*Zea&~wV1p28LK*Qb9`?wafxI~2d+_@HSYVN1cI-G>Inyxd#%50))ny7J6H9u{(` zZ*g0xSz9Qm!LhhdC2byX38sgKwSu|1)Ld9hdJ`rwD|5)0^e&ykXCt5NxB>|Cw3Hz8 zRrb=D|E(F>`S?-Qz{$vAVQ0ScP2C9n*8j)dyMRYko%{cR86-k*q7pz&B-VI}h6)y} z)SwbcbVgl)G%QTc`AN`e3#fU+>a;;n3N*@v*}B-?ABSBKpxIw>9A{| z3YIRQNo-u&=_IuAzw}BYRt5C@i^yBqq(nS!%}Hbl4|q=}Em_>C=|>V^iBRpf=uOpn zi7Wquf{6v1kWq+?@d+I~O8-X!wqf3kej|r@Q~F^=KYXjBhKG62_nQSM^Hon-o3CMO z%KDAd{=qA@--Hp~+ zMiKfT4cR-;*}1&ei3kfHChUNGGb|oN6MmPt&{#bY;#cBT6D34#d{jYLiX`#%+DdB_ ze`IYekuw`BgXh!;gr&q?_&IV)sQ&VoTFD!)$1r zO{Jmowdj-1{D@K&@1_0I6#z=cAD|A6arCC;3lUDn;&+ZiG^%MY-B(sH4(k3q0FhmG z)}V&&>&=L{!8{EC8sf&zVV2MkmSCG08wZhwwHIS!H}CPx^T+gn3nQN6XiG1#kcw~^ zvPm*&QSo{wFwzi1+veOgttW@5zK7u)p?~v#VU}oHaU@f}@vS_LORH23CIJ7D4t&VP zLRLnGbWiF?|BK>s$ZO?;hEx4K2Dxn>0-;dl*M!^SPg#R4EUx>~uy~ZNC%XRy;nBU9 zdILRQfYg{e$bhj@JC8G&wBoj>_7nY*&$tcua5kgM^6W08bR^l^3|F0NaKChL)tk8< z$!?HXDo;WvbO;RRA(edUcSD)W@+Wkb#b-^T!GCmctd3?&#S!EptJ_%g} zJdxrEw1Ul9tb}_Yf5_J2pt5FS+NjpHtl;oXd$G6sG-CzF;$;`0K&fF1Um#R4^LvrX zCfuoS$kmL_xBxWxd9>K#7O+@s32KXTdA9j2VKT^-6QL2y(SE^g#)?}Q&gG%1kt~1C zF^y-k`-8?@X|~V%qR&+ByuMz(}ZN8kU)zaT+7FHTDA|A?r0aF}2+xq$}d1 zE)18&gU^;%*YMS4W*5*1Tni3Ttd}Limz)v{D41d6Hw!6w>7pj5a}c{q&(<{CzwxMd zzRp2RZPvX=+Hc;^Auy+vTt16M;`{9Ak%HMIg9UwVPo((sT0!TM$Gl35phuv^MVek9 z3+N1s!1+#!FaAgtfl8CF^|+XA_@IWs?~rwF(E?yuOo{43poS4im5IH-56>yw*Jl-S`jsWMg!i-uaL>@{k z)0!&t2=FwV1D&gh5_<2gfy?8XinPs46DNz}l-`?dOVI^(YV?`E zvcFKbLOAV*#Vcu=4BWFm9QHg-96RH0&-JC6%XW8MG>+yy8&(@7Q18oWsTDz&%i`xh z*liL^XzBv)p@$XMWZs8^GvahcIV#3W_j)sOIz z8W?Y3Pd_Mw_t+4AhzlrltnKjeeP?lRgE@u|7XI?CMl2A+Mbo0xaNrB=5vcJVW+rss zM|>L861s11XDx?U_401rgoi8VcCJvWCukRLop;Phla~Y(j(PPiGStKrcLHd%5OXtl`2Axl*T!qZ1Qx6vSwCZ8ZC=RbExn@D= zXTPF)+qp-grG;$e(nWp#+iXfi6t_i7dgt4eH1cRpoLlySmTFoMO&J%Eh7$@Hw&?zwhPr43ojYk; ztZ(CP_z}n;!`(29yP?ISeTDamNzDHK*tY?MB#?IgRIp3sg>nvLJyTdz1-H>)fsu+N zy8oJEucO?Q#7FTz2OVyPp*y<(l#7i?#V%qHPd*LECtFoQV7cXxk)Kv5gqvuiS=RhF zo10&14O-iV-zc``x8gUf`6nB61GFv?&NAXCpfM~Zz->w6jE*NgWNS^8++|Sn6Hgz0xk_%bGb3Q4|yFEnAlAZNyWccEHX} z2M8A@xz|@2{7CW3@k@h&vK`s+DLZmJ(!gr|=J@W3?<7W@)**2zj?}7WGNBfvMv4@_ z5D)&mL)p*eN2sGq*pHyNLU*zhg*p*=Yi96OEssoQu#{!e7@E6M@4ZIZm$G*1vA4u&X0^I^y05T+F%eZ# z9uE>{JoqdGkEk8?gNewIp#LoG(NmOu=hRAKOMV73cxP~qm_fvD74J8Er8SJ$leREe zriLna62rSSXguehQZEOmVd7%1CKmD{LC9<<(Zvu$15*0~ZIg){j>FY zwGoyrH-q51wAL6gDX%V%=ghv$!=gnti_0n+r7Pn#{P3K}{$(PkrWE+^EXevCF<{Nt zhrHi#nx83dIM^mrBVT!$9EV(`rI>1ZInS8Tw2`hAlV#LE;%s$oU&D*$S#*cEb=fC$ z_ivk+dXuyk&9(_L8GdobcOu-(zAw`*VJ+Okv{1_}7!hJse(| z%H@2Uxa~iqgV<+aJ+PK2<&W`_CDuSNy|t<5<;%8}Ls`CTo1HJ)-n(9uE=U|TW^*=D z$xkjf?=_7YGLp_BAF_s3Ue|ftq159a)2*GUAG59o>`P4pVhJ5h)0Zs-X72jFUQuO_t=K& zoX5Yz4>?~4-6^DG41IY#C(cbVy4gkO6eMh-53bC@tZQ|0V`)jyM zLYOoYgA|f$JvMT~k>A5LLDQ_;Vf7gp^(kF`bhu$V7(aDCH!+bEg40M2bL|4&V2Ni$ zeiQU8DD}A54*kneawpHaM6z5{E0?ahe3Y`|;atxyM^DY6mazAtygJ_L2&2f=bb%T~ z*Jf*wab=d{TavF_s=ADa;lw(`X9TE!5$|Wx@2C3Iw_l;;T5=w4bO_hCJ4ntsqCx@s z6^>Sg_r8AAjWWTI?5n;dq;PT@sYEZ{{R@?WWM!f}0u9cV_L{rgwVh_fCeg*1M*+>D}m7?ae07SdGN}dZfL%Boox$XFJimajl^H zkk{Y!PLDwMCz&hgxj-Macb62>yYIf@diPaJ*QUO@UB5p_{q-fKHL0gJ9<{gI%{`#e zxlYMdvF%*yo!?tI#942X#WdAdYfzoT|=IUtrGX^ z5$IZy?sI_tEzn2p?UlXR2fpcXYTpLeyXQ#@LA}?evzq*n4 zG5qAc6mH0;g^5`OHLTK~dl_kx7$eSh?qb;#UI6q{1lgN1nUr^X8MR_XU z4?kPhl?xCyRWzi1mZ~JzI@*zGt7n4SE2CMkZC8)pouy@gZ84ALi}}KvIx<_WhY93i zm#@{MN1!K>m=E%O9VKx*;0qy^EVOd>C&`w?QEBofK$g_Bs&G2*k#d;;fk!HwMe=}_ z<3)n5Z3R7tyz?Ej9)X@m@`#{AKy$=tq?~ZpODrJIjYo^eavk-RE}HKKVm<)ov3zR|`#zG@LcHo0?wSEL$(!>f%*07+H6F_cL$iM%TGW|x9O+ePf3*4VH0E8uCoeQo5HTl9_0!1R}~r?4en%zJsRiXMs* zw*vOGnCOTvh!1U!2LqwRT_%bI6TvP^GEJoKsK|oq~eu6i=966@h~VPZP}>WG6z zn9lAZc%C#?wB>E2WKF2@r>ms1a1PEg0&DBo3=;^`c{fZa;Ls7nfOq$!<%!O#X;@@3 zmlXt}dLcA>*)k~7&47qadU+{Q_ugg5FGpQq@j z%jAXoJ~+HDfL2mLIrf!feOT@BK0cId<#!Q_zKGZk?}WYgyz(3`mYe*1F_WbmKJ_kn z%YSD6+I4g0uM=@tZh@TK8IrDi5Z?}z4-R`DdgVisBi=uh0rBLchj1X3p}^trT`OnN z2Cg<4yTV_GgNs@g_o5`nUFo6)#+j8B4bc(|7Eu7yz|VaDAv{SsiT`??wbw`ijDU)i zKk_TePmC%Wsb8b#325q}W9*?mr?BK`YI;kwYRYzNN|oP~ajly&F5Q#~)|B3AN_|FC zCaKYC$|N;qdgDl%^4=H6Xv%}VXv%kJN~m`gMYFP2q#ykF@TH^N?Mlq~0 z9fxNf6k^m{74cq9jz)Frttj2snW+|~>W}aYZcAuELf28GbWzPpiDk=*CaGU#MItI} zj3*uEKTL1>?L+v3yhg`v)<+Vm#Us|M@)N(bH0nK7q$4mHqH9a0G=mY*b{?-WA~jGw zhj}-jv}_h5QGf6lBk^xNQFmaRRi%xLWIwmGgqXCUD#Cxt!Kfa zRvil#rTdj_{krv48eG-fVDDxEtutGQ(xw#kN)DlYOXfD`GCqX_OR)JY)M)joAuoCA zv3jwg2Qo4*+lX6?+`l6APYs zubfMTF|IR(BhuDeLH)Qs)ML3avD2T)CH=V6LjyDU^6=CReR3` z3Pfq(&(6}92;;f7^riRAT|^)hBj?t-(w7>n8s0%fyvKD5H*W!2c`Hg3qU6>ly<1Zr zT3x4W8Fto@HEk15dp7a(*$zMsarp{}LQa5bzwaZh-|BFw$ivVAU;meq*m}U$lm=>u z8qq*Bu!c8pNRN-jqp5tK^%;$SOBSstMixZ84crb@M})7)_`RTQUC5%Sv7r$-VRFa1 zhYH0kA5q*qLdXr`rOuCfvHGxgJ(Bgz*aiq+8Ws1v?aS?^i(0`n5EKnMORK6YoH6szWirB{0G1BgPND zmhe^2UGB|zEeoa0xM<+r^lxsJS`j1mm$V4F_srejjU-2xjo}bKt(d+-F5(KeOQfRr zGQNvkOLcNA@D}=q#-Z{21*P8D*$3mNG@QZz1@Tit_kEkDMdMw<@wV-iiAvS+$Fr=> zOY(3wPhMkL;;P=L#(LxXCzhM&?|ei3a7K_5I}J=~(d}V6rp}86>aA~y{5xs#cC8Y8 zwWmR$5Z7&B7yKG;EgBF@bbl6+;H?8MP=4Q;T2jZ|5cH7!72a@p=+^w_RetbOE|aylDDsig;E#c{u<&!BfOpbbrIW%VZ90eAC6zWeZ=_uE?hW-IrIF| zm)g4;{ugS}FW4O=8OF)S9* z@cDPQB9e)1cd{B0EwfnW2u7AewDeLA8x%=R>zr`O*2yO;6FLa%!g)R&gstwrhFc}e z-^^`>mpFqpWcjpg6UyM4Y51QmBYcvsutAFbV=fMTxja7hWo&hqbJ=(ptD^{an1>18 zw;O@d)!Istgq$=Rr#++~16+^8plRD(8Xq<1AlHF)7UhOVXl%9VZ@ug1v3=`X@6-sU zBU~|m1w)IG%K0|5^^j~&ThZe3?e1m_T3NEZEHpwivxeDz5VEN@R8?-uGHltWZcono z$xwFj)%fFJIYn40h3PXajKn*B4a;2ygLe!nk6$*j+=FSlwI&McC|*-q`NlyINfL~# zco-8q^?bWL%e#gR&-!B1)3L^(`+~oO20Ki{WUGn_SUBUdc;9)YrkQ^_C^N)~XT7ky z91B)Fs`u<1fMv0+lAyyL6iP&*?0zPfGW1F5SOeOK3_qcb^T@WS7TBeG<&fK+OK}HM%b69S)e~ zVWJ?TQER;pZMpoJa#|l?)L1+QN_eFs6`9y_BTsaclS9j+>CJM8uI_iDZaK)=G9uBp zt8iS-IfQS0PB=2ZpJrv$9lA^D*6UdpKfrPG2ONq&VDN9Kmu97CfgHtS1U#(4B#SF9 zW?>Yz9ZB!xvs@?>#1{B{ckNIf8u1=#rgE=uQ8chig=EF_29~p|^POh1wudf1%lgYY zygnBHD)-k#;&%>;7Vjzb`0TBm;nRqGKDAEE+?MzN$rL($UA-_Xg&0xkrZ!@{HJ=sU zfy(%{E|=TP<7M&SZ!I>#Vt#0WH@wljzyUkv3TI=j@|XC&W)fwame!gwZ*{9B{$a)v zUz54SSC^NhzWfruzUsg2Y%^R+TU*0?pkre%$n2lnv3f}qQNzrqR5C1@Ptq1kV< z#t9RlRV~D6w%4)1a!86zO)Twsw#sb;>!yV<ts^J&xq>`WeU#s#QyGJ~#7BLl4{>*|E);R&~@fttE%O9;!SOukMy} z?U(6uE!9=;P1AcJy@K|{DKPaOx6wm_LZ`Rozc_BD1mef7hBhrX^T%~bGR`T#< zj8eVin2akw;lpu|GQs~FCivG8WJ3CnoRB{G-Z@BsDt9C2FQ;A!60h&Y#WmP;h*&8P z>@L0Qg$`&Q%Dgv|OHe?@ygRaiEfg$iuWHiN?etwu8WAqpFtvM_U?zlWR+Da~Nhuk^ z{OyKZ+fGBm@;Pd!A?MSOhR;*!c9qRf+xgJ% zPJ2VS$F1N`=N0qX&R@%X!9mYwR+z7Fyi>Q|PvwaKr=yCnG~64GpMR#_B%Uv-XL!P1 zmEEMZ2xBd%==0xQFqI@PX-Pqfgeu-s0w=s3m?c@yJj_g1*{v_pxVw8K%Iz()_@dZl zCzWznZAH0%tJeQYol3C z!K?od54snDOD~>KaW28ACrv(l+t93i+^fSgtMLawA-P$CoFMDjmBSx$-U+4hMnymJ z$i-Q#gzKZ@f0`RfTrOLIZlQb10~8rwbGT^Lg6AL3DvM9<4g)+yt>B1HJxIyY#VTHE z7vrS!%Dwkf&v3Go3j32Mh%&hBA8Aqr({Kx&eN>fSN*)RGFrrAmRhSqYSi%=d8#=x?*m@g zn9=HIYiKYGsNdZ4{pQwCB%`?uoB~9+=GHvt2Cg)5S%=cf)g7^}Yb^8jE_<(cSzs@h zw+$)XbSQNd1EtZmV1H8>sL5ZeqA^mV)HpR*UQOvdxVTn%gDuYuJ#=oX z&d5WI1K7=%o09>%Q(bu5JSVSePP$Oe@8rlox;gQ9mC?yAp?ki{H(V#j(aF-qHjztk z1xb&)hB@^ZL!qXtnWalk(_aVqyk*} zwq(mt#~*u_z248(YAju1LudD2`3vt+vN=YrRkTO~ODDl<5z8fC1aTy)ie$cucy9IP ztN}G?;U_&1ZcvtnP|wmOuly|%x`)04!p#RQ?c4hf(ojZ`T7)dxrk>?{QnNmh~k zehLX!lORlXT2(ZNxBO?2de%3z%U`_*NmqYCXKieO4wIv4RK0o@^hnZduwSyHptF7G zGVl4K>4E@KX>xax+}w=1M)US$zb-wiu5qMAs_U^q*5JY+&^6X!IaKC5An*u%+DKk z2m3xq8O0T=p2>roPz`6xq!!Zh(naqxnUb}(6=%D-DJJ%d#BKxTOpox)Aw9Sp= zqm#dVmvQOeJT7H6VhqZtqHz*XPOxeFv493;08PrXkxNUZ2Wf;y0TdsK^phny#9+Bm zjqb2=lq3hLl5le+RYkL?!|CIl5Lojyhj$}Y+i`*(nE^eIob-I@S@SiYH2JDD{i8D= z7x4BBK`^s=R=tmqUZ;Bh8|b6X?zJ7<$jza>;W(`#E%W-6d6)(IC#)l>r=EmJc0Rco zbQUC!#DFdK73m{1!yY1eC)NQNnI2M`w7K+8J*icCM3qL#sG54RlW$2IO*#G0ztm4L zE;6DDy7}0j&E~VB@G?Ie^&Ya%;?y1Hl1{beNOEsuK1Ol~>qTv-aGgHPKRv6>M*3}l z*5%^(*7wi$XLJx z2MH!Q4*+ku3u>&;2zDt9y7M~D1>9{KOV5OEUnv)~YMq=*NB(3B7)*`AClNFpM?Dt( zH>r5ptoSP;_u}+{zBL*u8XD1LUY_p!DK$ip%;%d>Q^_yODH|}Tl+w{K5!WEY}0YKpBpwpt#%1V zS$U&Qveb!Gz_Th&b#l)dy_6IUd_cV2hdlb<5N)$a+toixzvI4fS@SotZ(rxWG0S~J zgOqxVKYT++aO(H&Swu(be)lYNn-b~Zf21vSvG+mi$f?aAIW=_8wOTQb>Rc@BXM^4L zpkG8mf+wjPjPyCpHeKlLrJu||-My9y zb?2`#?*(}Q=s2zx5M|g%<{5CNdzAM<_l2OTp36aMg_KO!hfBh_f=OIG3-^RMg9P-Z zbmo0pfN*hm0)Qt>-@l}PO9mz8X={)g~k<|)u|w*&tMBjfUr>FG`}FELi55}#Vn9!PrC+Q`X{3?a9c zZ%5=SwFZ)OFhKkc6fwvQjxw5AG?;K0ZZx&Q+m5E*6}i#WmR%sEzqW?1X18>eL9Zuo zkPV5ummA{(-qZ>@UJrC`E9ge@M9E<=qDRWh8zZP;yawo_j#TdFgR@fmWV{gXlwT*L z)akWfOwCFi}Hs~>utNDo@4-3`&*AYUJnFI{TrPT?I&ml_sa zWsio4bOWtb%_rLMayPoVCuh_RA7?J{*7U4&(-W6>r1`LMO=aF^#>RcdjgAdn{eHo^ z9p-wPP}OGomx|c84N+cfk0Se01MJbzWFH=z``Z>dZkccWJvXCGU2gx0j~cb9mWtU* z?PdTvk5?&Oiv zZwU)m>$pZ1M=i9j7#PR6;JvwkMPplBK$I22)H_G=RzJd{5xws`4{_vQLgUvMxBKgT z_NDp>AZ0D61ebS`u;emw%c zoy2&T%LMIs7lXzW&|GNl3mow)+LD-mZ1WnTCk-D#wx4mZ_@ttw!Sr^vkV(D;gj zJAiI#fiClIai`o{%E(%oSxq6;_$I!3q~bm##!x&h=+n^Ad+NUkh!fO zhw$DVpmqf$^@e%#fZ=~Z_iBOW5MIbJx-eO$jKY=-3hC4Db@LJWHAb$v#^tYl{L&MZ0*O7bFMR3O_gR>S|uf2ySStDw! zXGSM;^Rfw(4?io2@700@T+OZT<6L7s9V&K(bk_fPPO;IGwnqEgSf@b^Gjb`*z8vpDT0PPweUxxM0zyw2tHpCv2LWbDa5P%rem!Ep z67wy2(5B6+p1?2U^&PTOADr4=uSZii6^^qn{q0`QG4SenB<=RvuWq5*;Cem5YQDdQ zH$sdg8NIIOXG^cA8))@>mrPPZh;=~xUME!tepMv&I?I7&lQ11k_VPj14@fOZ^4HVp z_5M>h1irpIwTBd6KFzrzxIE`i`XJK?S!8sZ^in3hCK8VfB5KqcH{*<Q(t@C!f>>MrAT{eG9Z}A|C9IeZ9G#swWGBeKT@)PPIUT5}JU6y+~$pmYM3zk67 z^pZmtD8I`KRnD`3{B*g_{n~CxqLze7SDk>&CrPdkcFIZ}-+q@HZG;|dvJpC3mkU*A z^DOtVFD%X?Ia-$=VdeQ-zBbP;T z`)c5`NPwF+G2$D_rcT8GR_}ghiVQc8(fIWK(fDXQxrU5G2*Q;#oc_=x<5&n7&%`jd z=E^^Qpsz#8-DSY$vN;bs{Ar`(4-H%rqZ_*KrmrwGd|5`263a0UBZY5>k5Kg+P9*s| zSN?bq=hLf&Kvo`RI5+boceWb2Yf0#o7}p^jzimRa_(N=oP~iP|Bo++O_-%u*>i8Vn zh<9SeA4UWGwD`SBacNj1@GVh4t<{x@|e*}+guA|p&tJ}~th-b>G_#je( z#m`Tu_l9{8=9&%|THN?%U(UPKoYOV>7$I&$9NH8uK7iNEbYKWO5Glq@WpE@yz{SKs zPuJ@NKK5rHZdb=9@lPiSHZk}V;avB)L7$}}mGd4PXLUU|+LFvAgIjv@(zt@7$L*~l zb_hMFS_g3V!^8SYBr&)%ju2K8+^uQ~Y-g90Y{P6t28#*z<$(dtyjd!_lM4doVb`CH zfm&}3a0hk^Y0u#Cn6#Z{Z<>GRxBhv${lx5Zy@RNDhC|UlfKwlpW1OuyjFluqm3I}g zq@PoNwTTH+e}$KSLOAddnFLJH4qV3$442%m?uTaQY8Q?#)PVc6Tw7*%;k}NQi$at6 z)Emt3_nY{vlbtPx%0{IhU#w%=->1nxbmJ`R550Y4)^{ocS*g5svmPauWa=|QTOC$xsFi%-OJmdt02@XkL0*xaCG$ku^GQU;P9(z zHT-H{Nem7kHnf^REc&3~*PWX(@oOwGr4v0d9Ef@q${;N`_4Q4{w_NlqgU1Yf%dIuV z83>l2eOv!L*M7zlH*b)QBpABluWb?TMiB1d7_MNIk3qeL(Z=bY5bl~Qyn!Kt0+ZPq z;pzYh%|5IX?q`(o<%5UY$Oj|U4&ChGn+x^Wwvegfw+;yA{5% zmQoYR`ez<0ulLZT9zmwB;dSdnO1 zb^$&MgYa$Y&yV4!hY1w0?2SI5zvf-`Kjm5BuFFDy?N*|vWp5Zzxa&IditWvtecZ3p z-LJxOs_f0H$g=uEfUW`?BG{Qz`z23|`}o3_J~1W(+|G${I_lA*ofsW0 zuhoh1cd#Mfhly$T#DEPMBnC$T28|6lQ;>FIoWj$QC&rg$1=<(${2itLA7w)n^!R^+ z4f#Ff9~NMe>Quhlgk%SKjVOHux<}@7bTN;(0@x7o3CChXg!>Vh8@J-*rtPpHPtsX; zV*H6GP7Kv*Y>0iuu_0DdCL1zpRpyCtbT;IFga25HI_^vH9~y|z?BjG`{GKw+0-v_( z`!&;zu%DJz-G}bEjd)Y;uo&0wVe#LMR=y`y`EkNj%@w&dcHW^pO$d(LQPsuidOtYTKU&JSF z5YXsWKnoaf0WFZvc(NRTqbgyWwhm?xu4(iwpOCdqt;g~yX_im_%%dfn{nyUX@)0~w z>!W3txS)UJX!+XmFL|_#77MnBA>toA^s#jY7XfTXOQ@BEYlU=Cz9uL>63xNpw4f_= z-=A9Y+R-3n52!hc24S^HxU%_R`e;d*2Ep{era^c^Yz{XDISs;kez~J%8BdVI7?(ZH_;o6j1(V|AU;z31&(w3B7uX^#1A@<`F135h+h&jg--5_FJ{kR zKS|q>*pvI7ipGlHaWeLIRWufOJDT`WfJa2`?-+zla4s;iJ4z;p0s9e=c9+!|(9ny%eJC+btjdkgr7(6`iSO zKc6J-ZZ>a-#h3Z<(Cm)vyGY5dP~{&m1t99ItSsqHqIaQuG+rhmKdm_! z32bE)EU@h^)COqFoZ8^y(CljVcc}Le_K3{_j)O9eSxbvj!UZ;PH zJ7r4TRFkP|O?~=$>YcZwxBDRV?RTX&F=IW}OBOG%Br(qtqcuf>@GDt~O?2uu z&AV@L((1F10CJ4aK0&ts*;*c@_$A@9^_DD7T9Vjq$%Cql&(@G6ANUTR{S4KLZ}fo0 z6f!HUIl*5Ty*T&Y4BdbHMC>(cbi4uJKKbB0;W}iZmLwh_VeLL)N%aCt?pJlZoI{d~ zybVKh&yk<3XZDWy$s_>&C$p%CPd3_wCwjTs3oWV6wd8(P$0wUelGDcU$?o>atI&Xh zr=7sLiqPD1cmvKR{!18QG%=VGZ=oCCNpuxX z6LjOvQr;2XK<+`|2I%)Hq#G}P&Yg4Hqz~U_y76tM8{dX*d^x)Dm!uot9;(b%Q=Szv zbLU+5ordDJOE+G_l_rtEfe7JLoo@UCjvDK0YM;h#9W654<#(IA7<2=Qw;~!aov6{w z=tNPOMgpHl0v}_sE9AyaDyPH(yBK`KK-dKH67qSLB}d0o)&_L1$Hn%MbE;E2Snhju1H`nn?aSwyhdNVQe|Tj zsa%yEOAH>YGo&*bOFP0syeY9a?kD5W=I6zh3v%7)Afz9)FJT#?&p7?)z8JwHuFRCJ ztVTC_vFS#MDs3}xAQsrf)$Wc|&gSfDAGLkwQ&qY?^;OQDBg@I&v;A_tDJO4;n?%pH zn(-^OOV`=^?~pWGrDn*C=YwWiKd?AOhy^=~VIsZA~83F^eu=M#Wv|H}_6 zsPE>~Kw;esC9viyH2Ws%Y`@rZhPw}^x`Mk~n{RA=^N0rD2e2CaKuQfp!ykK(2EVA7 zwVP8DEn&H*uIDM;;2a>@|MDk_vrPwAq-O1E-DWMJ(Ci!pSnZb_%jb38{81vVRwgI6 zCy!`zKY-QdQ?XjNL0->8DoX5Q+WbMIYs0eCTRf%Pd@m5~e|ZRPPD9=C+R>m+6_keO z$AF|hd%bn<+|nCI1KR(_6GSV<7A|!_;h9_YZasm5+bp3b0Kd9?09an%FdegjLSs>)bmZn_?!o9)9N_iAf+M^-$} zx7vsA!k0AwVNQV7efwy~5q+4BtC!{Ddcx2UFs`9Ccs$CN6R2 zTp`p1#Avp4>XXfKs33>{N6sW(ByUVoq{R&)72f!FeevGE^+j{RdwK|;B5ZwN^Ihu{ zZ6SHp+k-i(9+Q6tA0J0zjl^h}$7-Ha559Q#@Vr*>2p-`zr)zw;%wFTYF?y}7{JcYW z{IXEh!^l1=Kkpc-KARKW4}})G??gD;X#BWveA*zQKPp65yo;{>!2T5>`KS6Km*8@B zK{Wndj_5B4bdepZmctp5sd&1{j*HK*r+P)wcrK8r$DZT^*PNeIe|Ba=00g~ zo8^jJyovLg)0e=O#7kNmx_cjakwjm}g9d^xbUN>;@~pj~(dA9y%2iE!Lt{Gi(Tky> z6N7Kqohffryh3;}cVKd>@&4Dsf!D&`YZO(HWrP^&L2$OpRhW2JiSipFtxMGYXiy=PlSGNAEYdxj7d2JQm=_-x)=H zc=NPd2pMk+dHdHWjI2O+@ndN$(7;WAcXEM%UHrT&8aV8pb&p%%K-3#sG#Y>}Tva=X zC8YoOKo~H!qra{f_pU3#EMiL0q$r-s)0+cD;v+kUf>FY2YG*b4PU%W`t!$ zgTis#^uzI+iM_$k(P1(Q!$c#`&7-+}@GEJ{8GVa{^jWbx&Ax3breyIlW_vV3SJa zUlJ{O$mSJPuBAnXv(@2o>hJ^&$0QBR^e_=VX3=XoFxvnEm>Z4NWL{4o%;hBQ_S2fo+6=5qk{^UIGR2vp$|&b2L|Ey0tt=j_G_2s{oJJm9_i8B zQIQaTQmN}RW5w%-CAyE%@IFi#hG%rJM#K9%{bHtZ!q#|pue!->ArqQ$yl^snJSQrD;kR+H^xh}YpYzH8E}eC}r0346Cx z5zH~~3~b}I83Sz-D$KSBnSG0NkYMF(GM{KsVI)AjNme^ilZAVFA^nQRb6EIn6)_?MzhfS=aqD!gQnsCp26_fdh9}16*|O;>@SFj}%Id0RaE=4- z_H`dz**$Xr&p%NM>SRH87jze(^A0|0mFES0Xl3{8E@*4bX@t4ls}lKY&Iyz#Sm#O< zY*tEh0LeL^Qu!sJ*+#k&*~ib@gsu5B4U#P6EVcNd*U4FVKkXRo6POhgcZ}? zOPS9O;lPWU(ieEADeY)+$3CmrmiiQ#XyxYtoWrCGjei%K0$XcIio@|MAQx)G@e2tZ z7moi36tYfye5m>XR&2QPbB>}9B~kSd!9fq4%=I5`Yj5YRi~Sf$T*<265t_To012ZV zD_(}VcW1lacLlyW({d3D%C!?r!x^}#g7AQQYA$8vZsbqd#$5YbXn#3rmt`x0S-sf& z%6BMq#hTz66}BsqR&Y(wCe*YTXUx~xN7@+cH+q$ z?H60ha{V8E7KZu+Z3MVtv5(C!)G%vw5uXp#kA_M2fF4riS&S4;5VFpbD;c zP-AmhSvAmbn~02WG~A0CXIS;ht~J%fU+NV&=O;>6%Osi&E; z9jON>DX(}pLE%u1Z=SpQ!b4zk}}fpbzb6vk;V(K|9*4A0yHO=)4~~=)8$Ov?I-co^h68 z{NDIZXq^yOlQr^92VGD~8jY)OC1Z;w@nsb|xi>3e9S=S8L!sGc8+vAp)M-dE4G?5% zuQ0_5)%`w3j44+BIMdDO9lHb^az8Bk~(0dqM+Rp%T5W0OMC*vrz! zF52ZAN~e=PoqkMd=*bF8@@}%E;5rhT5+oq+XnMe3dca@n!I(~0TlSc4F_-3*yR_gU z(qp$o^dz@;<-)!)Af3ii0Q?wyNu&B5{b*rx>mVePOrspRs@@=cgM7oPw)5ab(l6@C z+W}#;G*-L~`p`&4) zjtfsX(1^)7C$~lG7l-T(ED{h@q+?0@h=mqLgExIcNNrFg0C5EcX}l_-xWaMvmD|zA zS&8s851?SN(3pZMqG;_A90cq3O@_16!9O@O7W_|##)Qjy28rtxJX-~_1)U@4!9aI= z(Ls0HsubjsE$AFUpCjm8L3c+~6TBGcyaf(A?-3tbJVDRy+)M1BdtH&Z`3pI$^~l!; zN+?oriz`wv)i2TuM6pK2^0ORq+00sksTc<#E(i{KZXD#LJb!DX!jFa?msWQJ68*`2 zG|yA05dDd!`qW5Zn`Zk)UI{&Y6aG-XO4|uG#K!$IGv(&Dp1C)!a2;IXm2J2}1+&fI z3TqH08F)>aE2MzW71oF=6!j>QPt>DWK%*WV+fyd?t4!=ySu^`pu^X?rP^FwSW5w$@ zV6UY7a#tQ6rv?IYw<^<$yaXWE;`6Nu>!BKL!8zZxAreK|LfgesGS;SvwZ=o#TSja5 z?}FODN?E``NjhClB+#IM-Fs@%8@2Z=`#PjhEKy|MV;rT4zVa;V84SWGna>zUki<87 zS=I@xoWFv{laGU9F}UOO%ZV{MSNxCNaqu`YsM^V=rh5rhvL=Y&jlKoAcDAXHN$^hUUJY0$!4J6`FEl_|NVfd4`wffF4ea>=-S1Gc@;M1ABA8PIoh6 z2Qi|7m$g#v-YX^;cFlss-UeN}tSRD6d5tx>0+zp`fkVW{RO`j#26TQ%cv%Ch;Dncr zVtCG`Aa^1!uc%K85nm2fzOHsAg3xY3Sh285QF(NWW0zj8Xh=N|1e^idyJa7`+b6i@ zlV)z>cK3bLCLz|vn1o$h8!P5=@HNnStb4E~D2*;8f+r|kAgFFXj3Y8#92-JQ`JCxa7l%Hw-@}g14|wSezpXD*fiPKH=gf zZh*z}n7C1hoD{sD0Bt*v21SZDhXdO*r+v=VQKW#K++V^?&A6X>C5i;@rR$U`7eJwNA$oWr&EsF=CBqVCi_he8*&I#cAp26H`VoEnVK{`P5Dq4Kc;E71mgd~J4 zmfM>i4p}I(C;m|0OUVCrL`qm||HImE)7dDU1+#j=u4-_}%iKSeux%F%RsWaH?sz#8 z1L(Nhd5g6h5`$NW{>1^lE*!rak-<*mbgCa^@a!O%TLB=sTv=x#17C?hmbazGiAEAX zg0xu`nj2A#-YPImr1(9^Jh)I~|4D`#4Sw3jZ0T?>XBiZ7jBO(g{(t_aJWG3NlLQ8v zOn9)#ga?~o@s>joZee%Hz4ka^_w=kTWgVti-{df%4QeY=kg6@v)vnR&MWuT+pySuH z45TedbpM{%u*BfsmE*Zg-Ce+|cxkud?93(Ww0 zWo@*iX7VZF#cDZAcqzj*%fIZ(UlKvC+gVM}h9)@g zrV(ELCR0ehRDsid(8f6CEsqGr?gd#&RU3QXT{(upnKc~ST#|T&+SZ{Ou%J4+lS?u;Qn7+ioZ$|=qMkLC<#(;rTk#Y&o zBJ&U@oEycw4uslk00JEt6~h06L}w0VN_9{iCejh zVpZtwkah7;3~>%I9T3rAFUSUF`7zutfmXQz`h30)TCZF=A%o*;k3pQiQ4HdgqcDhO zO)Ca*mUzD#Z-e)nMFC?nc|Ed7E2No0d_X`0e-6+bAE<>vEa3G~8N|B(1B2MQtt?>a zHbeKFVJPNmu*wz|G!wEDgacMV>7Ya7|JWKu-Zl5@#x%UrMi80L+q59^MzG3;(A?t< zuofrN3_;{F2_k!hmr@=78ZTke8bAk;l9VBpbARQK%6cJ{^@dc|8&X*hQfZb*E(=wP zQ)%93mt5iXU1377WgwL|m8DbSSFlJXMxC4BDT1kHBFCK)h+PsvPKoV^-G0H^j|SFp zhi5dfnFqp%axzQyO&@m)r~LZgg;OvZ0`05^Nw&f#;mS1-pbe+gB;s4m+)t+b~D;F4dkpk)eIjGSZeWp?o?G{+iHJyA}iab9XGKJguJ z$-2k*kd2-l zJj9?->lYR8G@Mi#>JvPe`R>DTNh(zN7qzpP%aMXZBk}Ic1?uhZTeJkhUf+qxg`)9+6T*QH39IwHm^W~&j0$PS zn?S_etcm{JJnbuCEW;TNC-194H5MsG6NNLysYR;gm)AN+iPuV7!P?#Cd0T-Dw#Z;VXTN zBYf+B&c10)_|9|mZjsTu#veO^7yj5Mc*P()iWmMEl6RR9TQkY)^T#52;g4m`ZzL}^ z8a3Flw&`Wgux5%EPI)sF?{5I&%9k~4sW-&cZcaU5+-%4cHpwk%ekC_yI4WR(Emj z8hk{oc$H-P$f&{uY|o}y+#C3qK*Z`H^9rnq1P+G-%Qy-kB@UoqfO&>)4Qz@8YV{Ej z%wfatxF*jbUvL&Rw!Y*y6)@z#}xFlkDPAJ70@D+3}3R&J=(XG|rjXrl}$l)wkb zwZo{ID&H}=@M?FoY~!uN)`^)A0(;O%8XPLUwQN)lBG?O*&R^IyENUgZvx&HV{xg$a zVzwhnRT8dy^yX4TT(zj`qQuM6f&D3E@PgaK07nCJZ9rmPtd8oug8!^s;H5C z@YVaAd~i3ZFjq$bW@@^ga{%2|IDlx!BQ#yVb`W{LcMzjGn#!ZCrfaf;D)^~`8rxB9 z5Sp(2q1g&OiKIm|D)+zCsm~=}aQ3X8{4Wyiss2`)y?OTH#9)&J6Z@iKhs{CNX`u7e z5K*OEb)ZFv>BXI=YXDJoP1A!-%gsCu;CsuX7=$GTZV(`m%b@lnQbQ%URXCuSM%(b)y>wbq_e($uoL0zJYGIi6V1}yWIdew>*jMkm3Vr)~y-Q_q@ zdZ{%p+K8Z5GG}4Xg&KMU&xNx?hCjN~(1e?qVM>KU_|r3Z!tlhv(*%8jpmWYejVtJG zc@DZ;fe)?ho;k>zp0XVf3w*3XVz_&BSE2JLlvh93K9QGH$|scFv%5ZVs-RDg1zuHw zd=>aQ1qvQ_1qz<=3!KjQy{JO@CqzoHpf%edHluZ(P3AV8>$C*BLnPA;NBJ{Sx~b8o zq?1~T@nd`?8zPe4)LM)hU%h^w@}@f>Y=`#EW!>#y;4nztKk9Y@-@& zM~!WCrb3Ojg`TNkJ6}4I3S7 z)L%NHgpMdtM;M~p1cJTLjV{f*)};kwNRQr_ibNE&Zs?o1-<7X}l|_Umf+Mx<(vxvL zbx0TRndV}g{b<1#7%n)-l$gFYTA zQrYHfap+Ht{eHmR*Z~?*|4e+8nBuJXj*FFSlZqvHE?3u{$=rA9;@PlvI!S2@;sCFh zrd#w1hy&;|v{GK3<0fIZQlQg_gB|ZMhBQ8cE(AL7za4bmUwvpFV+dy%#sF!5sQUBI z1&Mr>5(P6{iGnJ>#OWv(6i*P8;VXQY&4ucvf0&2U_mg<8w-P{1$V48;z#HuSP~{6q z<(Zt5I8Gv15wbQi)GUbt^hc#mKYmCvaF-E_JV-txh2nFfkr<0|1vZGEOqa~lhcp5n}ycyr! zjickS@ZAmMx5js)ti<0YM>^iaxUrjC$dRVIeVn)UA0|g)R3Y4OHL1vvE?QQZd9@=kIPqq?+9j_j_s4;8#m%7?~wX-$sEP6;Lf^j@b~Dft3P-bbOz zNyztoY$KF^n8GZjQs}B>Mv(2Z7cH1(N9tmg(0V!F9-u_JC`^)Jm@J;aFlizr;x!1b z7_Nypio}bU?^QE;IZ|KekilS`4DxS!Nn0xzf(5z2-ngIGia3DgpXXU_`uGlpkgwSB z`*F17H5q=bU|k_;rlmSjUqeaPLQ|FIsY~=^kRGfj=kjDyY2nJ24hdHxVaBg=uy7@` z6}S?Ps|j=oxvLX#9^U|2Mlr~q9x49VAx$u*LzZlPLzW^Pj!t!5Cv%@itt#QpdNrFp z??|r)jB*eOrVW-Ry)Quzr=GX^z3Y=tcoC55PmQz4drvc3rAfx)9cRBPLv;lok zzn~@^%X6RtrwpG6!p~qkJ!h6SM)ub@YVrXMg`dF;1vm01y3x#pHWucQVSvyPXe{{DRm*y>WX~7egj_KrnkLl+B&U?hYFIYed&aQ=utQ8em zD=M-UD$;^Ehi2a<6QQ4Ev`uP6^q(r$r`xwI$s1-#K^X~ckf3ceP3P~ZjUqv;>0>&b zZ`otIea)qLXSuYXfb{51sQ9@=0~#*Q%24I$IwdnG`2G|YWq>{Dm`=s^<3ubi-N_2k z=;-&ZU_mdG)Z(fG{45fD3* za2hKqS5a}3h8tlhg~b-ycs<}#f{!{u2aKfk0{R>@WCG^nA|?ABAqdJ~Vn=uCaHm6K z$1BZ5V^a!raKl0xB?x#3@NS!D8hE!IN?RyFvW?;FA!wrnRe9b+4m$5qAG!sBIo=VY zsRl<0(m+|F7gV?s1wZjifWdOs@}Ue$(C;l2V2yeW_Npb-)p6F_3=Z;d5rHc$^p4vi z!ckZA(G0H92)_vLGLaP4{r;Y^o&AWKV3YboDofK)gRc~6(3)qwoP3{#8V;qG3e7#A zHxVz%5r^(X7U3mlBkx?rn|OvqRl49YnDBaUxju?|4^ zxFc4)95Wr1JGKh7Oi@NUOY=0pCz%D-Gl&CD4#4xH07fBCunYZ8{{XqP{1~7gMra7M zVyUtFj@Z~QCchBk0L_HlEa)L~)Qa->g2>*7SDX9YQzokm-8USwoz$Ip7%(~L{>{YS zMn5gK9IrgPE?#nUBJ*#Fjwd33WR_czF5rFC8L_1ZFVv^S8-^ujd=0JVTD2kVl*U$H zz_3cNsAYg2>O2S`q`7s%0<(C93>u5(QSupc5+W_0`DEw}e!|kUaPcY=E}F2lm2mMU zU${67;o=P1Y{JE=1+Wi}>8J>3VmF8GdliEpckb*|#hT)3^DZ!Lhc2*_d1`C((;d9^ z%}=MIo!AKeqdo(@*T6RqnwhT4?0+Sm21M(S+ zH8xESoK1B(psS<{zZ`C6O{2(lnkilQhcG9eq&Us~U?phmF$N4(?$M{>cc^F+%1wt| z_g1{0lE6OVZGt&kmXcBnRin*nWE0$Wjntx3Bup*-RH8Oi5}?TzFS7?6@s}8Qs|Y+z z!-)9c{xDO+y}=_f6Y3QUtl;t6QDVWA96&_^ikYL9BnI9AHm7f{lqAFR^c(B(uv@8# znW(>5&V1jaC6!J2vslEN2Gb2YmrTv zrs7mI5k=kR)wW?6`|*J^!#DvnvL!S(U*Gh$aG(@p73SNWyeEb+Lq#0%1`}yuwUCAE zPP+csxhyQhHlb`;uKg{vzdq-N-J4I`SLw zF4l{m^Q7J<1|LuNIpJ(+Fw=MeAg7Ne#y*yX>=c#bEu<)pw?@2e%wM#4W3(8cZGh6q z8>WMf?G)5B2AT%!OXC-Dw-|TGV+BvCH9{%HX?&CZVJId2!!Qr?_@TXM#xJ^60sMk9 z(r+cLr@gj#H>$^JlbuV1ZM+<$hMxk7dS$ZPdtjB@wD)YI{f6~nyYSnp#|GiQ7#Gk- zM3i2OuhB1gn^y7P#{9A6?lM3yXr_vvdm}Pc{3yk27eq=vviZB|cBkU673W`ToPVux z{j~t$ON{u$`uwSjVWyc1L@%Ukz!%Mb{X#oI;Vq0kL zN-M&w`T7VD1=yKbPgO;;w46D`@?!CkriB>pjoQFbWXcDb*!aqaTJx%M@FF!#^B@(! z(>xfiIGgT(EB04FSvh9=QCEM-XEgOwaK&yB-ddqS_F~LO899yw{tT3{Qu#uV<}s#) z+N*hvPT0%2o`e^ac`P`e$xP&e_m)mS$2EetBPkJ2hf`%q}huF)KbQge~nAEaXlRG z16X|Rt@sE8$YyB|1MXzigzo-1g~9|l)N;lbh;4^2jfckga$u0w`6x16 z462je)A3T$pjdZk@&DA8iqi6zW_-sEFq2I>F6?0dls z>E#7FZ$4pt%s{XQA2WQcRv!y9Y}S+j&IrzQn4!js2%kGuh>sbB5zdIhtBCFy5zkpZ z+>5Sq1nTMvL_01+_(K30dXFh*rC$n3n5v*hStBMgWuMZ>)qHe+#oG<1rGaEC)7UEW z15sV7G%QSSSWk=VQTNX9M)V7M*^D&MGP%suJ?Yt-X%8R|-EQor@g1H-A0`GG@`!jZ znP6^1I59)Wz~w~*EdVF)@KL`7H%u3YqR zR`QaFj}P7Ll-PL zl)a7AgiKXa@q$S8@?W3851@Y|*M|>M=b7un;ZzsJt`Wgfl~Amma$Zx#A27ILx2D$1 z{%T)px(u%lr#8xpWM8Td_XvId7nqP39-D$miK8D5Xqb%rF?!u7iJ?BeXw7GQjkm4& zjMEGb)FwyY7B&O+qEPBmLjmz10XmxX_l*(++b-ttu=SJ(?(v0LQ@)}TMK9qvf_o&k z+5>_JLJzM3KYUn`Y&azi0eaYznZ;&zMZt=pO5>RPy2A0kY=FLL?xQgcm@?~dZySm{ zGp(zE?s3N8Ew*)|AS*=rI}U{15KH9$s0I5CzJfEI9W#W@Gb|R^Fv1%=)Q77Wn&ol%^RyXoQzcFEf zx8Q=bw9ODwi&fbE_`C&J*?0>C885rf(GDaC5k-vXEuIsMm`+GYVJB{Ww^pBcrT{A>j*X8qzdmcJNtF zgPft928F=8IsnW)Ux1t$i0;aYdKC(4>kp1`ICyv1;m~F@7>7afX9&l?87A^=sCo?~ zpv7Hj#D6F#a}Ot8 zH?dIP+pTZkJh6|SKhX1(iT(AwPtP+Z4$|{sIuqhI}*$qj*(R$vgE}b>+de^0|#r=o#@Ae-qx=RoA z`u|e*?(tPsXZ}BM4kqe>lSl$l6QLS3a)MF`C2hjZ20aJ&k)R-n2Fg@)Xho#~yi8Fk zA^p0$IhJW<#%Z;6W^{f`M@PTkYQIh^op2E%SOqT-KqP<&5if`eQ51gf&$IU7Zrl0i z_j>(!k-gU0d)?Qwp7pHfw(fCZkGox1INOCKKX76HNmDG{zGAC_QaC(}lzh`g z7{e)ouIaZ=Q!wlH84Bjyei!34|Mt1Gn8MDLkj=OyfB# zX9mwXId`du`8jiyg4lu_%T4UT9LrAZ;T+{Z8PhYeE&LrpV;Y6mCfR88c*TWudo-cae&Q@&p?EVl~_!9}O+`PytFY=0qgdkJ!ODcLB|0D#4 zCOMoDJ)DjhvTC8~{?lAl1E;!h$P^b2Yfz{Go=C(??9r?qgIK-97QK1fOYBrAm>ke! zP?)DM5k^Wb3?u!&7DfgZ6Y&xbPkM<@mDvDSPIy?JI2?#+A#*^3U$aZU3$U*Pe2Eof zSLc@Jkc|zldBa{;gl4XFVUL$wSlH^qk`;vb0K#R7N+?BV0k9`lUQP_KAJG5bT*`s} zqL44r%+7e=ZsOJG6FA%yy$#md=6$1SpBBtv#R|Ts=C>$X{C!1VRJ8OKPOw`vL;6)d zT_0Xm6jDraE2R21MYRBtmiQ}a$B+wMJBFRFP$U0k7Cm%k(Zk1C^zcC#>EEFUs*^En zN26yc20@sK8A5P_taruvIFE1^!Edrc$!c9?`0rt)CAywzMfuwu7dITc?ufx zixf=F@26mTewl(<`GXY9$*6f}%0QZRK~KLyjrl_{7tZjgdG zoKQ|W!)Qpa%2baewA~HwlteeHcVYjZ z5+?nFSR&0O>-%Fe(HE2zVF^Ev68z?s0M0Nb2rUMe4kAHq*SLa)T#O_0y^_&K~OPBT$$M|AcGQs}60joSVoU`WeT+XJ$IdIktFTzXgaL%9J@Uk&T z3CH-}X}Nmjjqz(vD;ndEKdql)`q-2AJ@v6CAHAM@^m_8q>shAk99nCJS1QIC)*GJW z!)b%`s8s%uit(RnIXjqk}RdHQfVG<|rT9#fQe+8BTOX|>8xr`Qxdc<1%x z-SnP%*HiC$PV4wNLy-1gy9z_zl>Y+I`ZEm(28Cy({8v!wS)`!=AP~#iHnU6D&ofjA zi@2;L0l~#xE+2T2{dnC?Mpj~z_UQsPm0x_?RenJZ9`lKppUvOb@UirUiY0z=+TTI& zb$B}j-=vuo)RpeMN_TWAGR=*=>_(oObs#Kx_ z=cnS5lws|N^1xD09^Y!@tg+@<7VUCLokHF{l$y{2j!<~fsuJ+ba?Ac+V$tL=AfKvk zZq(uWhg9UXbOMdF*OD0jB|sL$)g>RbT^#j&Dy@nZOZ{%@mbZGRBKTP*6*u&RmM?e; zWt8Qg4?Fs;smPji0zR-a+5;*noDS;q4Etr@7E@sQmP2QUKK@pv63ANcXt6O(Yj7Na z;xKkt50}m*ox04b!Ox&lPt%w@%4^9lb#Re*bfjbzMRH*}D2WFIm{9WQ%Da9Zh6ZI` z;Fadp1f@6;e9&Z`A@`SBSbs2k<=|QeBM^4W=*;xe!+#LNiC?xo5Q=6QfFG&>_;DNX zntp7NFX%AO+gZscDUWb@gc0$m1tM-y6dx)?UsSZrkn9;2Urd z8e_mRJ^m!Ly^dE)^=-8tZ|JcJ{|==g3jpL?YPGzrqRY=y(eEo-VQ;xF3C^5eih>;= zl77HW#X9u(NIy}VqX88Az8?FOw|e-f!z$S#RebzLph!^xJ zW}gJEdbL`w3hdR>;j35ms@Pt&x>xz7r%A_qu72^YoNvsqq7@dsOHtM$RkkS&O>+%c z8~%z7r_K2Vz4a{qhMuLD=vjWAG2j)gI8RS4RHv7&54P__FQJ{xi=GAOW&=i}n!bp{ z=k14++i_2!)^Un0=ricCd{~{(V;}q#^cW-6JvPpf47n~WjJmL-iwpaIQET4^cDiuL zCoUYem(WWXNAMULL9@46j}u8c4tm$9b5VR-Izrt$%TemQ9DkPMLJ@5^t0;uw{HbU4 zBWefB>1XNus!7kEb(Z5q5uI~ZC2tK_y5FQ`0VX}BgptA&h!G( z)(k+b0UG$x)mG4u_gy%wgAiLrNK~v=TiC7sq?EF)=Dr~;rSVs!o69~=Vb6+oB^p`C zNpSz5IJ6)>RgC~_L1#-~1B+s{>m?Lx1Yrb)BB269p*c zwR%>J)3f>-*ihG42h{j;coYoaQG6MX(r+1++f7f*MR=m!dJ3ZTZiE5yGm3Hf4?q{o zm^E~T(R{lD@kB^zL8u;8Rr8~RAgl)E;&N?Jo?=BQzh+QBJ<9Ma!H!uogO4>c^l=6s zy%~HQKSLjtv`8O|_*he9Kb5nHk2Qk^skBPPM(UB|F@twCGk7jaU|4qdrG2i+D@S3?!i?+`0LgWt0I}_6MOEn_R&54PZp>q*pAp<*vDoa`xNw|aWL{Ll8Ui_WQ-v#_7 z_!~@lLn#KXmO}2?@MCxKhk8X+;S9d@0aGq4m2xj1+DO zBPDG_z!$b(uqyfh(q5ljp5yyqKa$_jr$|6Pk;n9jdOd5RUeB3Wq_q;w(bLPxRWLp$ zPeDV@DTd?3o=dwvQ>+1b8^{@{PF|oE(Zs$kEIikRC4F4jzZYS4uyF84^e}gZ!@n{_ z=7tR<2nM8-fgPTeHe{y@hiy}+p?EWl^w>b;DC(24eFSQsv(bl2SNMFGuH^p`L1Q&L zKxfeV7`(as@tktO0UEHI z;R_~}Xu~Kql|bQPgY_D2UnfUqTef!QdoEiq08i275f%nV9JL{KIe*{g-4$xUUjTk# zJ8e=Yf`H~eJD-}&qrfj{7=4w4hEXmo9OlB3Z@RGm5El;ox(kO4bm6dz6>6SK!$^<5 zL|F1nOLQm?Z>RzHPy_Cv0`93p`|&KllgF$(^>NOf2FNvc+SGY>_B*+UCw9ih*zt!L z>yhd~(-_x-`&?M~Ll>6Z>B9aq3Dtk#-}p(yjU#096rIbRC^jO=#LEhG6c||JvJM&P z!eP}4)!Ct8q{n4Mk_nFUAL#xIO>GF%%q~5P_T~}$I*)?EJQ{`wT1z!7<&8Wle!!!8 zra-l3wo1;A-Fb4~PbqOPGl_fMUn6n<#RW**2OTGIM|bxaiF@7ek+@HlT)r}!%5-lK z$HWy;dmWaiprUTMozmwN<-U+qUuopGanhfc*F({>5bws@>d^(k)*SLbSdxFt zE)DjFZk$28aU^c&1`la^w<4G}-TLWK#<{c`oS@j{{JNYJ-sMVhIVl=0C&l#3mE!V2 zCl4^byzs+|v}`vE7HQdQsO)c{kId|DHnm3-O-I;ki+?F^W{EXkqQy(Fui{DPT@T9v zj6C=$2X1f_Aq(F{Hw!l4^U7%KFu%Gib%eX)`K6~N|B&rc+Q*@@U)mK-ph(J})15PR zF@2l^T=~^k@OC6$N0I8=X@9C-7GHjf9)!Cerz0<@2LarD%;`vr91;^#7+YGVsALGUTUWWY|v>p_m`Lu*W=wGy4Q`^?GAwPru%n*|V-UX7-%xEqBfJm8!?P ze&orsam;{pf3n6J*yG;`L!{+tH{inKHFzY`u_1IBtT};V8cAqsDj2Z9%I4Q`7z+rU ztAU>6$}OpPVgCs(95~K}L(+ugbyz;hl_rT}2%S`7bIM6)xrRqK01X)SHRaQU6o-)> zeZolLSz)B42N6uj1r2XwN3Iaxipv%5=j4MY4n?^u^j#eaqB?Z6;M-S@Jt5O$XY*Sc z00a8Be%n;_sA8NuB7Yk%PptF=f(<-0zYC7xvF{;lP*+hvd3&Sd@@0h0Os6pFF)GwucU} zJ#>iep==jWh_j7CoNW~1>{E~;CpPjF+vc2bpzm^F;Vc)H%y41<>4X$xG&A^+Xh;UG zXQyQAqkjWEmv%_fg~MtHZ9hcE0IMbWgQc~n-VC)5mTMoZn8{<#>{Dnzm~NYiACN@U z*Ur8Ppu*?D5&rnmLmaGTXtahR=rgYfBC4T?pW}=A=~2c<`1j-MM7-7MV;vv8IzBek zm7QYNVZ&x(*Wd^eis3BiRao$ggwI($oKJry27F>q=ubiZSRwG%$n&jEIgoi+CE;H! zi}u?&R#lvP#F_C3?0QOIV#oT9wI)}bgN+f*skmW`KWh?v^osBBp^gOCUrl(5)*U(T zpq=}@+S&J=IMw_%a!+vh+$aZ!&$zJgX&06};llolT{!SDLS)jKs{{`(VPKaKcoj>s zI`tO4n0`y%$?Z9@`ePuCPsUZa%+=E45*HQ@aAC=XF6@843kRM@=v;G-L^Pg6D;HCj z2m{RMwo!jgpW@v-tZwO25aW{Faj&c7j^q?5mD#DQb8&J|n~Nabe-p7UtIs zv&A>eMq$`r=ycMjZ3DXB8W#1vu&A2|(Z2y;AS_-0pl%5JBw0V?BJQ>FYr0!K)-6eP zPQlGUbZQHL$xhYI7F*Dek7_(KtTD%G+DLiPvw3)D=bl_pHeZt4RXMuJkuc7*26SIF z!VSQ3Liy^9EKf!@sidwvVrQRR&?#xsT%$>={~DU~w6mcq^Nyt|Po)LAw(`$Vl}*>4 zimH^Da`t7(prAC%-dKx(as$GdZ_VK3)=iHyW}Mt1j}ckg9z{NDc@v01Ud^suN{FoW z{DN<>6ua?v#>v@_`fEQg+~a^tVSJ3;SvxjUo-bip zC+WB;Uh=Ab>BK?K&k_#p)mucS0bY&E=W-Vo(tcmw0?V$>xNG0i354eRlEHnI=?G>7 zh%xwLiU8@vZaBF)dY31y1IgexAHb_czwJw0waXi+$};&@E`mpsQ_ZDHHRyh8&@(2t zO41SOKFg2z6bZm22jP?7v;!1 zbsub|;#+F@qiS3RQ&KhCL`Hl~O5lcUk85CLULkKSYF5@Epw)m)nQD;V$QG5scTGzY zF<-2Q_!$;(9M@)6tgo|fw!|r z!T6nJ3L18Ti3`|f>sRpi5`VArw*$8vb(E!mvJ_C3f~h+PX|e6plH&_cKJesys%ZsF zZdZ8CQ`1*9_U45ef?}Kk6mWCI@_5;rc-d<-rC#+Bs6GPKN1(QURa^LW%C_)6Y)j*V zHjrLbXS`{x%qbBMYBFT&`Y54I#sG-s`sf!t>!JsZj6R4_26-CW<=;ReH zg@b+84XBd~*K}Va=w2#xCV7tRlEk}J4b^?b50|!E6z3z(>l_#8X}Rv!TULfl%!Ci> zY#qQg$S#Xe);vmNE29cK;b3r;w{G7$`Bbxny?Ngt<6)($P)5W@^@ot(KG=Q)VC(xLB$@eMu@a>H^y}N@ws!1Xy~$Sokdq zG3(>LfY>FP(ym;kp;?XQ^X5`}<9?3K#LAEV>C!W6ZwRlEgZpFxEQN$>JzrOaeQ1bc z6QcK9()2^6!XDa&H8z8^StU)^pyTIc zodu=S_?ilGQ^8%e&|0l&EI(Jm2gWINfl>MBQ{b1<~l?^7n-+n`_ z5Q>x-q~F0=TkwAc2|p3+V)u_G4}xvj`x;xJ3n(ER?_=D{WDpOnD9x#+3ga86@MR z1}))~kFRuX42k#CT)qPJ(2t9*gyBV^p!A)_`5}icS|P+5V*4i?)k7s{av|>IYdc@D z!y3pzXeAATGyDyfwF*o+{U(}Ko63}*Cj7md#84V=mK|Z5%tVo!;*SATa8O!o2ijQV zrHisDa~e5*hqVQIWYt>rQ!q1ytw4=J1eK}CdxCubi!>KQa9s$4 zu+Z|a)Gn;4(gj7@fJ+12Zj|SabJPvh1K=Efk{dVeB7w>MCn`_#|9@!k`yDrncyLhjS)>aXPx~@H3Iz{gpu~y6fVChH; zA9njTyI6%|T+F3J3#=V@Fj_4lTAkIdqn^rI z+qLaMtCJ3$r)f~TAfo#w@h-2rIjJD|e!jE|tB1qRIbMX7uW|%cDu+4WYvE(1xmscL zMb~qRcv!4-)T_Z$y$@M9-};vJQ7ofd%9_DzxxbU)Wn+4#v{t3CC5UFKQ%Tym=9eak z;!7c+sT!%c;9x=N6s4ffwJMvow5h-ld{p;y_WK!wQ4XWphT;!=%uCzThRX+&ZkiuL z1jk$)dlPy^0qTTkE6yau$oHxsP{Uy8a=!JR*BqsvH>i)7af9*0rTs{OE~Qq>Ad8|W z$uwA$7C&EFMD*%Rl#TL<(lX-AmF9+6+W%5hrU8H`Xw&#;0ODm_2J)EeY11lv0#?hg zAn(#t)tBs(y~~FJuIAbQB9TL-x^PGK2YDm(wOU^z`Z-izD|9>0=^}GP;Pj616|s+g zi%9AnRc2|z<@Lpr$45$1Jd{zl6n)0%#vW1?pte*0o+vI7K;-ejh`4SGe;cT?PLBWT zmdEE^ZOW5SQSrJ~{x))GxH(?9Tmz;-fYPx(YQ*@YRig1wUo~f_4#^<%MIjcCqlU$)N2LdVGvB-*8s3>{ww@SYP!mHfg7@wC%S#obOBTRjl zh2ffS>cryu6>%+^xc#hIj{em1O46`)x2yNsE7SmOB3eH!mgZqcHF7*G|C$bo1sBB2 zcE-z=5w9=3$c{u8@XRZ|U|+nUeP4X?>-@c`l(CD5y~N*pngWrn)bzPli8e&A1e}ls zwg+hiX?xL}Xz$R7JZHb3u|r3EVqr@;&NwHQ{1<_aUa@cLS@11A8;o~3b%=c^AKo$2 z^%7Uxauln&)yuU1In}eO7T8p%3JtFa%OX2wCGjW>2NtgfxEqspwkKs?rp6k?yo3!@ z+Zs zetktRe(zSSx&RSPeR(gXE$zeEpNDjp?j0}NUK5|#}4o$leC zOI`P}3US%1k;XUd^k`Q<@`0KiAG$D4O_}xouUzLXHY01PYi2GsxHRA&TdVoO}pQrJwX*?vZ2~ga%tG2 z4ocw|qojD*I+fDJCgd4|1(g=-MKK?NBkuDOPW_kPpD9auPml96yd2bLRc=KeJ?XV; zBXK&WLvk&Ykuq?*CxGXG%bjGII8)=rd3;%0*iG^o%e~=a8pxu~uQ*ez;W*VURT3Ib z^J4{kU909Z;V6iw#iDB{t;7S9In{s!N6&IF2{6b56uxdQcZ3Tt!lEs)c)Zy*EBs*R z(Pe1a1#G7}em~G;`|1KaRwsjEP8~S27TrA!47pBQ(4%BXW{Sa1Zu?|EgINWvBek$Ev;Z`!Qmk5wT;}O2nGC#E()r8#wH~`Zxsicjv>l- zbe`U3Xl$M~YmAti85*#;44yD&yM<7;T#|fxwiTQ=^EGe%$dQa})TUi#(GElLWH~xv zZbogk&Y)s9TOtCqIV)E`6nB0 zhu%RjwzUXLQ%v`#FGRcp{t>ojuBE>pa-%@TZXusVLB?fYcN$#5pul-nw#-eY&-J&&Ct!x?nvt1@)VVDMDg z8WPEu(|2JP#QWATVn2FMgiXrdho3(#L`LiaYx@#0uEuO)*q_an|g&N&V@$Zg)a_{eV@7>|fWedhkQEtfQE-IUs zblw5^)?_ed8b@=E%j2eazKmh!hm3tE9kEldJI-7#0bk8aXBr1Hu;Ll;I;=WbQ+f6QSUXS_Q1PD8qyj_?ZuFZi>V z6*tL>RpeY=b8O|ByL99wG#_;wM;n^uLe?5(EvH-y8B_KLIK*NJzzHhSc|w&4JyPH8PC5fkb($^9`0mIu1x@HgcjM7Wps-@I>>3B3Y7o>+ynwwVX* zYTBRFiY!=UC%!|IqqTmU&RTZpVqcCgsIaq^BXC7)yBfH2u0QSJ8ZFiWR&ui0Z()MDB$sp3 zMT0TO3jKE`?SAU&&>v^j3v5AsqB`&#|1Q@Sy6yeM`T0we13OZD{pS7mBIkTR{?pH)6a;ZLpi#Khc ze(jIX@hf+B%Zc@wjQTgaJazVC+UAs5$J`J!*ws`_79g`Q&E#lNX$A=md%|9sqI%SI zQ1Vz++x-50JzG_z4Q~tpD;k?V)ptKX!27dwXPDz}K%;%A_Ri%C z#9)V5p~%u=z|v~DoM%fJuj_*58&JaNe^=!Fqojt<4RMQ5$0R=M)67w1KgI19>tYHm z1gCJ%DqIBOFnK;q;VW9#E<5IhR>mN{2us#l_>5zY0NR!O7A%jn@WGJj5w0j2I7NNb zhzN!>LJ|y(GzM^5w|ig0FmP*Ye13mL4D8QUjDD(NcE)t97`7DAEY<*^UrnW%*@Xai zNh@udz2$}oSE;z^TA8YNFxEwn*;?J80}I9e1l&26^ZxZC!EZo%3fVY*4ey7qC?dP4fuk9$BA^JrOf18;zdNO zkH~bQrM&19t%g0TlTuzm86HDEhr-WGOVb~z&J~ctC5k(-4h<4Fqnf9a>)4AvST(bB zglXdQwrJC5$TY_4-3$wlpIr@MKi(%fy<-0we@b5G5ix=&zUZzIe%MAn6?t9AT!T&5 zu+eb>p08sT3p)ZSa(*{daD+(O$8he#h>~}t4C`<3rw3EtK>7S5$%lZp@X$Qw<|5_wE3usdHhcLo5-%4W3{N_Pc>*E z0!d1eiB*cxw^(shpR^85l!$LlEK$`veO#@fEF9eYOTFxu{~y-ALM3gYzuF-{#pqI z18TfrMD5jbQ+rjA+KW8WF8Vq1)Dlv-a?!r9;joYk*A}3jm5^#_ePe7!5>i&t1$sCU zDY=SuEm471lU_?^2J_FB6x*AA_9-7~>^;6#DGBAWqDWT3RYMe+T~XYP)Y z(%@>?+6a#>rMExKELy)vTld26+VF1BMfVkMwdOX*Pyjo@*Fjwes(qW4e=V$$379U&s~ z-eyq~q3^aRCiNlRN0>_;Clfk1s}}~54b~rb9(9C{%KM9i&i^O$O`|~nucB`*g1*U8 z3XV12LNBtk!cpS&czU?wOXQKKpqBRP5C`JZaQ+WUJBw_RqSjNY5Wr8*Q8`dT7(Gqwp4aZ7D`7XB58{9R6p zS*i;{NvK#u=t=A3Av)A?s~s)(cRYeP*ilmPdH3nV_~XX@)e!FhH%vSag?rlI3k488!O%((52FgtN*7l-Gh6yUne`Jt`TSuoQWyI3K^&I3kd;YWi_{DjCQ|iX$NZmaD$s#3;U%d>X=f)cr;6F4^zWkxt5F9C!1=Gyk=y z_;#YystR-^)}lc!sqrtoAfq|JAdbo_`M^2geO5@9RN_mqALK01Z{BNVMe|S>P6u4x zvn(C_O(l)~WjaV9D1U{CdXywc-MMkQGnIIq!tQs48IvJ}TnN8}{*of4^3l|4&LhSt z;syw}bm9wIwa^M!kxG2wZ-Sp}M~VZwFaE|?VT^ITU^>G2VaY>E7Ge9b*&yH3yrBN) z2pHNr3o=tIcs6O@o}8;+(o#J@$Lx^M{ao!72RRZSJcn2QE*QOBmz)eTDj&Hk1X8nF zq@%DGJgZ9R(_#Xcq)C6$L-0@7wU($_1d9I0apOldEz4#0xyf{rS z+^>}6f5-l;#*t~SoH3bbn@iC6`)uEWNe_9pPp|i?K8`otOH19AM`)8bYrNS-@VN_C z)u#O#i8v)UeSy;HZ+Vw&TB3gE&MN76jGykqFOK;TZ(iVjX|Tw2uYLuYPU}(9&(tdN zs*T%u5O|W`K2T_s-m`gpVp)u|;Msl_JXu75W)hNs%%em(_cLU(*TS+m#0s5Zueh~{ zMSGW}j0xT~qMmY*H&3%ylb!=K)dWUEP4a@rHJi!cS*7isWNkXYScl!b)QGKj0Fqp1F=2^G2@om08gwr5Nsu3`mGpyC7xD8n{k&91xpMuC=%*7T zUj(ISQs)sYn|7tBR<`=7Tco5_KYfdoPwQuGk@9K%oGmyOse6;ZH~4#*zg4<>C0+Ga zW5ACSCB)$v(=S?T18nl)35&x%(v_8IF2m^Sg<}%?NCzw`iWRXK`D8<~lN|_0;!uiR zkpw3r>F1JFh^5Ec^tpKr3=o)1!2qQ_7Xo{Sl$r;>h$sfk92gdjKk)zX&cNmwu2ArgEx)m%LWT_sRYpHH!wOU(1GNhV9 zDw5RMH`lljKpk)@Rpi-`_IdWxWT+FmWQJ*v0FnvshMq%w{!VWCHQe$h5eJg5>hj;< zk-a3-b!x$qHWd>z?hJ#`>z0|SUAgVA&8;{9A`^eAJ%aG(UXnNy7}zTcXz z`g|rgsf>P_L5taO2I*#uYwkCrT_}JhLE{ee4UIbxJR-zm)-V$Qq>qzT>4)O;O5BW1 zv*0UW*A_{$i~|v0>hxn^@TWq70fqq!mJ>U1i_!FlTZ}^=G zHucBvH)OuZ?KizkZNK5grQ+WwPY=UzMK)CSJ}y%rX?crx^Q8#uHb7r7>Unc)=TTmk$%BQ ziGbn{oWs{FaT7Ef0T(P%&Q$PCh^tCAfHbyrTBu%-n+%fpVtFYUT!y3uZs|4rLcY92 zAmRCoI%xxYm=-b{qn2;de^yJEHL5ioZ{E+eJBh)27Gpe`O!n1jM7zKG`_=@u`P9Al{1QXiak(CV>|S0*de3oyy-h+EuA-KhYX$b zqTBQwzs){P-DaO=ZIfL=@0x8U>>j_ZNWZ3TD^oCQTcrYThka|EQO(M@b~-U&?*-ignf%xK${w%Kjc+GNf3Tyw{} z<~HnbZF2Q`uHNyk-UjOZHuBDGdV1TmD^4E2O}pachHZnWF{&nb)`aoagoYzcXnX+a zaJ*?L+yi7i>BJU>`W9=%$2=!;zl?~kf0^Hx zh@1REeZvi)CUY0=N5VaXxw!@tm^2&^|B<_xMnvYf%O(cbeK7EhhBy45;kH}M9^8fo zB3CZ>Cic`0w%9FC{uQuTU!3`VAu?tueGmY5YlZ)e65^ z%MY^ZPfEdsrzyR>=YD8f%ac5?l}lapUlFzDY0{I;7O&rIOWSXLPKEf-&b8q2`z?vv zdHp9B+RJ7EvZJ~zHQT20f)TBxz{+Low0;DSSm%Pr)paj;(%Kl@GdG30yI1w3wn0XB zsP-_4_j||s*dE4D$)vDUU|b-{0Z#aMaq;nDeOOBx?QA|L>DOB$Bf{;okFuLOK-A!x z?0uEJSZaKORi7i>RG;mr7b!!j)B#Wdvki1WyeOPy6@~!lb~m>fmBie( z@s>TL-L-kQ1&j7tVAQ^?xl6P)YuQPMCO=x`Ng#b79od$uYHi%Y#$go(uEM}o7%WkR z+L4U}Yra5-8tuZ(XIo5o`D?`7((H|P0LlY6Y2ezS%TG8te1>$_og7k`Yk?~aFW-^C z*I&vdVTm=cbT3afZOh@_+f<}gr-puPbI}d7b#ioFd}8-_cQp0X@K@2LNL9Vo*v^T0 zWAeZq5g;XG-VV;<>hrcWr5)Et=PjdU_ij zir(l@^u|F9-P;j0tH%}#3fEgu@(Ka1h^kqhHEX;ztKpbt-A1#3j(C&Zn}z?DO!NxP z$}2W2FH-c~lp=DX72pyaZR^-8zz`Cj3dvwd{031LLgLpDagdVKH~$s(1JLhgSs2Ls z-)F?pNJmF3jT>Fxz#3%9MbKLz_<14Z#S7)(9DD^bomA7#PW_6!#b?1kMS_)iu}Ou= zitUlLE*DM+^{d7GQX=Kg=GFRQ%Lq}o@*i7-R>3i78(a<*0eUw4c@*J`{~jXzM;4RC z&O{Eo`cFR13sAXM8RU*z)<^I(Wj&`l0^>w*YE*VswpHM82qc*rsq+VD&hXh$bo_N@ zB#Vwgo`#N@@^`x;4LuGkx2cw@$JH3pSt&=6b1QGbhK52zF8d40Bb%Yz z5LNS01Dq`^#Mr#mKxYdJ5jX9ISu^>)_{4#=VauG{2ZXP44}BQH1iltx?r;+TYgfE{ z9M;xQEsRebcIGk78Ie8)dv72CsMm%(a6_I&%SRA#%6~cSzYbvv3jUP8o&0S{SM8qp zb$Kchq|=;eb?Wd7hBbQv?Ln8(UDA>5e8`VRBvC{YsA_lPdZ_4;EETBe{}8zvH0xI~ zn1M|ax-S2C?7L*8@Mkipj5iBqC7TX)i!XQ^<_hdu@Lzlu_l+-gyq1><{)@cGGe>cq z+}`+t=Plh{*hq<`@L;=2n~3u)clL5Sc6wnth@!a}-C)XQ>##NtCM@(aQ7#{A5t5vB zo?dAEuGUp`t94b~E6Jv%l-; zj#=I^!amW{8@DEL1%SFHSJ%y?I5#{D4I@+u3zXN57@UsIqq_L~9*~}1Fona;+wljw z*pJ#ucbX}RH_KnSar_pHk_NcH@r0R5@HRVBAoTY5g0n5%cDjX5S<`m5wM~+#GgEyz zVQUh)Pd-!w>YN;vcrZV@+{Sci<4zm9Ohs$*z)H8XHQC^gUWolNQ`gF4d}|)hsjb=} zXSKqb>Rr={8bt5$twlViwxZ3@dsb^@ysXDBzN|r|yX5B<3|wHrux0{Q;c;gPE=Z59 z;nA=rkLUC?{dmqu^PZd4uIxb~D~2fR{!J^g$7L22CM+l^brnQagV%~} z>*VpR{dhLC4x-qo>hY|e@m5d6(R!XtRlOc>nrjPYw2e|FWoeYw+9EQNJDvcV+dZGgRs#0-X zds*S1NT81zOg=hg+CEJ0GvNouSJ!ass#fLXf`j-xk>YsipnWarsueRY2=PGo z&19r&lcUQp=seO#k~D5hHr-PMKKsmeb9nvQ)}e4KDajOlMi;SiQ^DYLa0}X$HzK~N zlZ+`Dz3C?Km1dAd}f%DY^zI!Ws z<6U5H2w-iIFb%ZnaoSmEf$g|Q4n&J)SQ0UpXBVY)W8(`{jW)JvRJ5uYP4`yPjU{?* z0t(~hyMvFUwk9Xxun>d(RYh#MsunG7b}(&++(`iuzSv@zLqDReht8ZC%4m!V&^7}f zUK<`f617R#EA79;B-^>=G;L^H=^|S8pofj89F3U0%Dt7wi#WgwFLP&CUP6(-qZvd) zi0O-RYeDrn+KJ+nr((?5c(Qj8)y#V-M~4W6{&!Fghu=fI@G|#Bc!|hom&%D*Ik5^a zQ+l?_LH~(T3d&U+?HPZt-=Aqv_pm`Iz^N?Di|!O=_tvjsRGW(TsJvp?JWp;oILNh1 z#~NC7vuhO=mtpr=Af`DVjYJW6*kL`OAt0w%-P7<(XZ?n45IDbMJ`&$=jn1$`SZ2aUH({WE{9xstD2|q ztz5}6ixef}G=c|}dcxl7uXbpednWgk|7wpLn%)*3?)W)(590`>m{61zU~?!&q_76T*J3zCF!Y}TeP}s`I0bq4Tz;{1 z@3+7mZhc2&`;R|rFBb{$YWzpUs7U%Z-G98i8(%wv*fx-z2iHxZ70cLzYH$$jk6z0! zgx$^JD5P#&<^>aFevaIa-}b4gvulk%p{>SWwD{<>n%NilUZlF7rXiWyav7AS5?&{hUbP7B%GSZiJp=H(<%LtkI=)K~y zJyOIs>1aAJijQutzocEO#9x$a*_L#%z@)`AY_Aj={7k0>H_esE28OFfBY0K~^nyj| z1)GYx?fE-W{>G+z+UWe8ghoaxBN`dc-;fSQqqui%SNsj9f;6rAjK#e=8F|)fjC=;3 zP!l{Kw>1XKw5cC2n2s{Nm-Oe^L6+jyRwoy=N?G7jlq^^@O&^2Dth?W zZ}EjDhSC*en9e$D+5Sw|DMcGL#G#-`!)$`4+3jin!?eGh5jeyjBKiF@fzJte|0vE) zqr?#T61FgJ#j?STy~M@1uSQUeX{pWDp3@m;2AydU2LEQVY7%B!W2nFhx=lprpdc_P z;81NKa7yS4Zf*55g193_*5`}B4AQk`Jhi<{^n<3ljTol9M%!=?F|%y|DLvHH*;#Ma z^1?JLoOoDV?0(wYKf_kv&9WvJzNzihpE0p-^F^W}eRW4@ebx4>ukX9Bx-}&fBkHU6 zQ+?$Yq=QaX6N^n!j7U~}Cg`b#QECFHRq=U0JoW5oT1?vXBJ@BgbmVoisB=@p*k^ zzXTJ3Vd4B0I1CcpG}l9(N^T(q-*k-RxoiIGoD4w(NTQZps5uxr2v0Pch6i?XFiQn^ zH4SESj6Rgh`W8gtKm(^4*!bkcn_IycNog=N%SbZSbYCUW7YvQO%u#dc2P1wjq{7W$ z$#udCNwvHgFAo_ZqdO*0bZrP>Xz{?0u>_fdM!-iY=zg@f2|4q;-nnK8#={#im%#4BQ@?!kQrPcw}kWs^N1IqdQ2b#2+wcvosH5+*56Yuz3 z#H*NQ|GU2;NW>QtvGMse5p@i@_CbqED*6+B^;>nEc375EP3IA0ebZcqSv97En=pFX zoKC!%&W!7d_W6w|%$t~H+<~Mcpx}dEVw2hf*$AIJhFcG5h=X+AN(FaTa`s-YuMvHW z_QL&}4w4L%{PFrorh1_j+$VNfD)WN~RUsDKK^C%3sO3T!bg!>TYoZdbqhOQrW$k{B z5MJ^5aAHWvMNpijK%lRugTJk$-cLwz7L8S+g0pA@)d}JBI+x~mH^T7(Zm48)q^dXR z$97evYeg~@*BMO6bIB*T5~83>47Z-=I6nA-;dTYC8TmLJe5aC}z-!)x*j#aTF2x9{u+|`>*d3RPJ+Bt9fKshp5E1Gp>)JD zT92t22|dOsm{`e+eM)kfm)NeQD#sM>P~#!>t-4faH_0IiX7+G^J-f2wa%S(Cr4ue2 zTOCzP<4vm##FyF1pf)x@L8}eCn|bCHB5E!a6+0ly&Or%``fIs2P$ExPiLOJ9tFj*+7*6@>nIY&8rDmvZN#UP1z)$K~<7K zeReS zi`uRBmu)CkL)b2TcZ9KJIK(B_Vd>{o1)E>JV>0T6T7+t+ZcfX@?nZv1<^l!Lq3~h| z<$hm>WJg3zSsz za;JJ+vj+0zO6q;q)w`DxD=7*z0b4!4W_4#rn=N}7QosG0mOX6r-w?57|Ib9iW&aNr z)v{ke3=tyTXKJ+tZO5E3DZ%5LEU{YJb|wHHJCjQ;nDW)A zd&qsPZCw#QL?gI6)e=v!NK%OvO#N&0|L1#ZuyBe^(J2d4Gw$b!_c~n*|LjzzE}{vO zJ}OtcksPLp*1TKbJE%}Rs^VNJI7qK^9oCQGVt3WTKrACx8bg(6h3i~Oby%g3 zqOLTkBa`fo@ugPEIfenwPqQZ3lU1H9La?=zJ0<^3s^3PLCa@{bqsAm2wPDyCsS#%q zc`&AWm(r%m@2Ns$S1_l4`)&;;JczIoZ>BOMa~Kb2Xw)k~^ZJy7a=;p@a~-!>QYZRF z*kNnGuTuM~d#M)J28M`cw5K93g}oFe;>zCM6=!R`r-HH6iF|9=2v_GA>cm&CSG9^U zRcU>yFAx^Eg6%C`*)dov>gWa|S3!*!KH3l1JRq_aY_jR&DY~`!()36yYU04GBc%%C1)j)t^C|dEEHO$+r>HL%N>1x~qrbB55(R zBCYi+a_HN1XfFo*-O^PbOIKDf7LCv33cIT+_h1UvHuGX}xPu#jA(XhE!hY%=w4K+a zGBc^Ccq@_!&o9o0ZfNYVbI_%Rr)QNqX~);>7e*+e!We#TJiSk2Wz_R;iZ!dW%EHQO;S-foE zmG0YnaLHfk$G2Il2k~vzYS`_=67Jg}c;~N#yz|yZf6sNU0dV5GpYBpPAq!03&vsfP zyw!Q|#9zsS%e%|H8Na$8E>2(RM{C}2ZyHt)QhSb+`@c;z^M4EuC)kk0C|ndN3S#-u ztdQoNj-QgmCaP9y+M+41G<|IyXND;z8vghhxscb#&q#q1`snu}uGwhfnjOrF8TrFB z9|+bFVB_kYA?e;ki_y|IT%aRKeiZ(9eb+P&M5;DQ*I+cOs{5C33$2ery&JALNOBq0 z7)F4u_A+;O$H<-W*+?1&y-Z5S*!8-mR4zh4 zSJE@JMd+3+j#uKGr!fW;x!0+Sg(4eR0B30d6yO$C@(C+QQV){6OhIX|Ta{EsdYx-~ z&ET15q-0^$QO%hpS@qV;AviC$H@cXLK4|4>2gC3_ z;I2Oh`F=C1(?=N{j`?v7?|_%*jJ=-jlDcu9++TaaIdTgx1%4sUIZEV^c!=St_c>%` zsiu2$E||dgRMTCGj!{zcdpXidHY#T@_8K9o$Jo-HaabfND8bB)UDLrmwduqLh5#QB zvn$hy^)eOr#jb#V3peI2jo>aJ{BELNqnD+9QRdN2>7bUJ`}n$!?F992O2pPc<0l?? zAKYeSX6j@>s@F-ijjAYrgHHT7>f;2USTIH9f1>iwQ2DWMVdS8R-o!+!g3nzAH0E=7 z-YQ*^@IJANpuA}@Da2m?$o6R1A?d_+nCendbnNwXFhdm_QUxJ9yny3_0Av#Yq8h}Q zpbIo-yO+5(C*-Av{O^jCztWA7hJ-QVpo4lL$~3;Q;}vsbB=r>xAn8N#g>H;cub_X_ z@CjMBY0s4+xy&*4C95{7D~=yNJU;I>ZN=zeDv*ZIABvb%9dGcP5QN+M=iDg<%wtC~ z8~W^JyySA+pmO+mHh+BMbTox;8t&Ic{R8#rL;?H&_v>Ef_O4#lZXh-)r)!g=hk0@n zr{{mz$lb6InUP(iXPmeQ+es>wCl#TM|qj48)b~7(>{`F z8Tr3*6v#!>K9JX4`{1IvMr)vUY!aUoZseT?W;%eR`#T(TT+cY|N=to|BL}1w$E*N5p0hQJu|F zp)4l#QR!qsj1*?sAogF#Ka}daWswoCvWOSuY7zg?@KM-5yk}6gs3$heyrec2*?tdoPLu zZ4%=!hQQD&zJDqyZekTp^e|VK){<^B&WoMLAlApCSsr7vpa;kh>SmLXE_%M?62Wb7 z1koEnqu{*we59+qnpkO)=&}58D(a(&4SvxK&N4+*4F@o3hYM{HuuC|Bx1|!V2oPxF zG$4T%$>aqf(fmu!L^jR81B!6|kviWM^14%r7w8P!UE~~4J!T4)N~{FQWx<2bU&k}d zD=V=@3S%6Pu*^kLcv$5bq+A9+085=CkYWg?s#%!Dpd~)L@UvgTO44 zgIX4n80m~S&dD2>NFXF98xPzgQVn4T0w(b};`8^Qz@BV6%-LZZF_bGo{_HpO06V{S z4m_++@tfdOOUIr*vZrhlW`x?{7fVqWZs&E?gh#ugsy%-BQ<$8oq>lumr!S;*iiD`;L!(Wszgl{ZbUj1={`|KjywlunHHAN?8pN!SFVm+HQf zx8tKfIV zi|j(OfaJlLL3`;L7v$FSCqWkT+T6}C9vQxWutkNx_h!_bF2hlaro_%s#l*O?00v0P zESp64yqgXhr=h{jkx`>4?3DQ24Ww=_7%aqs=2P)Zj6N7nwv}{*{pCX`{gC}5?9hjF zNk={=*#OuHW6(G}|{X>K?Cru4=aNoHb><Nb;20rRwz`O#FhF;x!ChZ-j2q|m$>Fptl_Q`+V>Pq#|RJoxT36Dnat&zbG} zm71N9@&>vGgM9Pa(6ak3*Ge)ksl*$!mn)F|{{`#c0LrH^fLhCNH^&O@6FN?BOGUoG zQPWq#e4gpp$IIFo2J?Afn_YcI!z(Ak@p^Wxe6v~tS+Rk^PY)e3!!YNQDUuVKc_E>x z*AqVZ93{-U1;K4HxK?~;Xxno+V|&3Z(;$A+3494}WEDWU+Nuj?*5bke6{qPbzY4ok zZb256nAiucq{g6+Jwr;nu=q0-cP5eECidN&jNiK~?GN|-%B0^Lv^uxTtb1Wr&IQuw zk6BA`08>l6;3Bzb5ALM$ZII$%ybp9;76MpU)z7>NuO|M~TJRcr=(9nL)EE1KwE=6a z)n1|<7x|FwuI_!(4-d>HEA1DT0-gC7fnucXpJr6h50GDLJX@%kTO*S2#`tONz|XbO zd4CU+6w%CFQlx{TWN=2Z>F=~<|0WlZ6(#l0L}1|P-9He8RAC!mpqPKiZZ3is^bTZq z!He=I$e!+pN7_YQG+Lpe4Z2V|-{bHSc??UAgHa>f+g8u~19Dvbt`U-OEh2BHxoTeg z4vv(sqflUHYE(1V%IR%Trzu>n)p)5M=L=`!yNPEhydM}2Q)ew zhAXmGR20oRN6jieKR(a=)w;ut!~%hXKBv(k(9bTzc+;<;Yq0Z4iPV}#^S96wE|Ypz zEDy9x#iP<3u?6Zzs?*ILlMw?W&w-a|*UmyEIXxH4e! z4c@S#BM_5ch8sSRTWSuZV=*urvdDVy1Sky;y`@7N@iU)i7Dl#0pJ0W8JhVbnL0&32 zGu8A%t;Vjfu55*NqM;YA(D#YD6}m$)zcXG2e|wFT=vbRvNT+qmNj_vq9kW7BNBBBi z;QSC2CP5+Gt{=ie+64+?7C1TGLbtJ-oi(rvK4*1&jiAu5#r(y7f?GPS?qZyQ42X7y zHU1Q*le`Ngge(P(uF+z>1Sr`G?3IGM#|kfZEeRSh9Eo0QPkG zFs#-j=Tb3MIj5;TBWR&xI$f%EqOr#PPw}Td&@$z3AN`?JT8u|{j^wcY)M1ul=8o?4 z`-oVS^XD2g&qLJq=0c4e!qbqC%#cElZ9t)ZL@EITj@9w52j^3Zbq@;{ce{djwN0#M z)Bh=-F$S{E{NZQ<&HnuTklR;+8}o4UmrB%9a@W0f=r9a;tFB_VoUm5I9R8NebvO` zq49aMSu^a!2A{{R;bhgSc+)>igeEr1E7lMW?(wHkn0i*n9sxuun8}2(gl`ax98`OB z(84 zzr|A-nwK4sPweM(CWEo+_!Xf^66&Sj{vWgsy|RuudkIy-rKrev{D=q3vE%#ilgEFx z<1Buws7v1Cy<>=@M&I?_V}8Mv@7Rm(c=%aAFXwyKOlf&G651<;`sGh+U{QPKD3SCh zJdM_P8#=)dI}A8J;~^+U}ntbbZCa9Y{e zj)mP!W&FrxME7A|<6hiY;DuL=Z=^}{t`j`tl=;>8PjAB&7DC{~K%sxrUjBA-^E1+X zgoKmYlku_3@ebDw3R8e`ygEED>+Iz{?OpI|FXg3R^kOd<UJ~{vp*cn`=)!^ z8I>7CMYyb5Nw&ixMKi@OsF7$laB>-$#92ZnHaB%(BaC|p{M%MyM&)=zSUszu>(yCg|3wvA8)RqN*furYT%*2I@}?_+sK$7f*C zR}R)G5c`z@R6WemH`qgR;#+o$!GX zB+%<+ zO-!XCEjp*^t~Yb+z=09LpLG?000gFx9->a!7z6e0+xw#*cAa$*eU46MJNnHF(x7OF z*0Z~Gf5Cp#b$>&lZgFV*_Wqg=qha#vN&dqyd7YB~Lzw*EvdL#+I*eo&4zySGVdEky zR#TAS+$tuYjXrx+vTEHOw@4L{Z~JS0^hMWMlTy0Ya6kK~44q(e!_a18TJeT_dMfgA zD$xcJh(tV{_(EW$`=ESzNO*q*T5AceSbT-nHq>x`5v}SHwkprU{Aljr&7-7tCGTJ` zAP>iX+{}-({{~=HDn6jh$iCpIH59HI$WQDEBZqK2!8(O)wVS6G`Cxx^Q`cF&1TVj! zYHBl^>HO%``)f8aOojR~S6|@Y)P&v}#tMyzR%buo+PFlc0F5?DElOoZGa75}NOQQ> zXk5O(W--IT`Mv|q6NaLdA$d>dQ5dw`iGX5LL{|i!t9pv42dYB{2YI8a=OTBejBDsm z>aWm05->V*gYGrtKqBWb=FCWaW5u0OGZkYUb=0mF#8+K4Q z>$WmJ|33%v&SCL?C7N2*LIHS1h<(a{0v8)W<#$L)EmQEj)B(h1FQc#RMPTN=jEyZ` z9x#CxTHlHW7f5;o!YlX-uiTu9-`0Xc5n4XQ%WCA?-F*1PxZ$%how$ z%ybahj94cs+*{y@N4Zb$-NlR49|-hx~yWdDOX0@q%7S z&WWh$v9lVcOa^rvVAdv=?jC`vQF5K>2K{(2a|e7we}gu>1e>@+c%dnp?;P3z=?vu6 z5I*-~r8+`ZsF~s$bexpi#se%1=%KlcJTuFSy>J#R@-et|hUVR${Sbg^(I7pSM&B=j zI>Z=P1l8}3IJizsk!^P_(Q=7rl&v(arqkw!D)&_3ox zhJED?Q@zN#_nW}gQ8ywGdi{>SL-;NPaAh$4;V(uVc;ku-rvDS6Za(fZYZ6L4!Wi+V z_HumNDjj3toOV#yxza^R?A8I!ev+4^+ad(D5N>LyN>?p|w%4p*yh=AAk| zS)sO<1UsagYNj7rQ?%2M-=bQq=+s!sVlv)DihxIyc4A%x-IK?)o1tB8V&5ICLFRHZ zt4stDlZ@^?$jxnhp$|jDZ&w6xLJquo#RUZ)jXJQ*I>(VJulw3R+BDQh?`0qCzDd8- zw&_;{Yp3< zE7Sg#a8Eok@W6LFFw9_lLjTqHUR2IF*g1L^?XLfSiF+6LD66aAADD?^37tg4MI}mQ ztkD5Q!HNzl!9izW2B^kLG`3jKLls*Lm|_LR1bmqeL$TGq_SE*!zV(#%)V8$MzSw$6 zKp;p(E=2=)2`V(hHEQLi!2kPO`ryVe`Zv4Zp~)?wyrgE3Mbby;>)a zAAgM5X&r1c^D9}7)|2DU`dIoJ+jFn?HkNBs6CY=` z|NYv26E*8!vWanN6i>vsc_j1^ie2!Vh5(p=!r0V2n2huBtCC1jYttUwvL~n;Fa{JSox(+hP)-WspFGmUb&iALXo~*rQIC&xbBz0-G-&~g? z@69r*$o8AlRP{0Y4OyY&b@(U|ekD*X3shJs=%P2{;kz5BUM4{(hgKm4Dzxp;jf?UQ z{)KJl3)igl{~vNgs_Tl`j*o=p04yHfQ;Aa&HlFVh+sExVY&^FvaMtKLea+S{A^^g? z?N)<2N9)Hnqg#fMb8g__2tx{jv^5FEs>sWY90WGxlQiT5Ij$XpZRG)5ACesIe;dRW zK}c=u=7=O?9@~~4`W2pWdKbB;y~JZRTa1XbC?UiPdluL^%ei1u1CDOlG(b%1VFCicGk9{+capLIwm2^Ms_Q542gk8)LtTehqj`?!_|f< zv)j?rpIqB*@*lJ(UDt2&A9H)s_yn#niQtX#EPpTtE7^wPC<1(kt)WAOne2Wq&8=VJ zbsYx~oFOjHdz%Lg09X{o2Jxa1i;v5DnTKw(D)e6{ocV$f0py6onF|6B@8h1a7Kzc( z2y2k|ZWdcI%8-H|I@*Fo;f0RY zWI<|cue$B{!)Mud|CfP4+={YKun|H_q7kb6_s=>yRkye7SH~HdYY0w`V+lrOj~khn zT- z0$WmAdA6d+H;b8I3x=RX#?EN9?J;%+ZtCv2-T8?Ake*1HUqn7p{uX@|K=YN-DBjD~8bhRTm7 zMblrM`xB3mtJ!oKEGq6fw_I{m+{G;;=0?knTNXRE1wA_G1mg>agR0C87@WB?7-_Y5 zm`H8_8JD)>WhfC{cy{@;8?WoSX|OhA0pC}Bd+q6#@ha%vs5`V98ngUXV|HCP8?d%T zf0`}Im=$z?GFz0@mEUIE+&T2mJ$82=Gj`W?vw?dpJ9eW^Ja(t3fBXLA#*P;Hvh8gd zL)k2A{PH^-zpxv>xo&Z?+B7`J>~0R}%}8tTW_2`pnqJA@+Dvt8k#&gLEV~qEKF(;e z;~lDV z|6XfKk2J$A0>iz>R6P(dxoP<0P*bBe(4IYf!kI9gf!9>_hHRGW-$`rERBWD>&7 zZ$mkZKq>31Yp@KAWPf2{?NoTL&W@nqb%pn!!j{z}BFeon>Dl+FFdjNFK8c*mWcnYJ zHnS~SLFvQp)6x{9vi<}`ybLWdK{+g?wC@v@HqQhE4NW~r*}c3zNFmB{;3WIy4~;B% zK$e-JtgLxjM-nY{g*dEBVlcN=AbYZo4u`MPC z!rO3CMY-5Y|6q|cIB5)T2~45F4Fc7-@GLXRaOoCo2x2lCz#wxo!uxG1 z$`K$GU=uO)fW!M0nzIAueB?u%1NYH6V_XzyUr#}S@6_%3G{+$(wMU}r*kQ8$mt5CZDupY$=hXvK-Vwhn9A#eM12TY zEIO-CjwTs5e?OjBfL34bRzk+pyj!Gd7O&L@7yA#FL-AUTbur;LF_bu!9S^@e^)x0e zVOlxm1tfeg@kn7>SDK+HI=ko9zd-dF{ANa@mPXs!gCv@KQZKUHwvz`PPp;cNr=i2# zX3l%@REZRIf!ROjFq0?S{gEymZ!I&A(Ccv06LF8I5rLt`OQNyR;9VOsv@MAw29ty^ z{wIgV)b8X?bB_Bn0h<$B-;*sq=XWvggdYzP5xD^}zcC>Vj%{n4hK8Xt0uIMRAV?LI z+W;A(ikX(D!=6Rw!Kt6x!l~<)@SaXpxAiw|RCUAQ*ngs|7pY`_WwoI1j)6Z92BcS3 zSNChLq$en*#!f+(-W_HYcnZcl@W_mp*aTH#j8x@+O)f8r_YWK*U5PMD01 z={vG0DLN0v-qY2Evc=#d8bj4 zSbqj(x~Kr6j-#iO0Kn<#{s2Iop6(AexfEd>o!>rBPq)eRbZb$`AxSQ^lYPjOQP+7A zH$YqoTUeLX>GnW}L%2keYl4x@%P#WwT( z)8ijmkMCt@4|bk*DcH(E8Jf^cn;&Z8(!v6x9fZj8qLt?A)JjKlPv1D zFLIFnX3KVAllbgq@f_iLi$TJDuD3b@g(~nwy`?e78Qdt59ZoR5zi2(aL;%M32IEVM zze8`Yn*_3oY5w}wYYO{nWn7S*+{5A_j;JuFvlCi_oUKBg{@hix9_hQ~}dyiQW}J+92hh+btx@dB#8l^9VR z3RGXgaB)HmRD1|;p^a0aN}a0jY{^{bP=%RC{FrPG?fzKHNPcO32Xtu2$y}?=SadCl z9?-7ER0HeEwStFsot@IHizBK0gQfe|Mf&9*DcxVE<)PI!YEmLSNptru=I#w+a}yPu z)K9vg(94>~9Ha_iy6GluBo#l1u!Wl9M@ZXNr8)fBtCGtX+-~b!dUb`Mk?vy)H=4em z$@_X$EH&dNpX`6V-;AGs;z?gYSTh&5ZskpOs$1*M7NWOrIQ+uaLG!ncPWI_H=%|54 za1n}r&X#b8KncfXfta2mgpC#Ps7W^e0L}A)KL0$>Fvki}MgtT)o}oM%lkERMhoH$; zC>;KID{KuQv4iaa^wnbkbhQCU{nJ0%id!;^SI8n_mqnv4e3iNg=`IVVtIVE!$O*A( z-8m*X@m{2}wFW6qariWqXpguym0!o0U)wK#MRv&9n{JT3zGlxA}9A+*8ys!(k(bU-j zc3}25?2MHe^p$ZLOTLXV!_4@wrC~0y51<7K&Wf#E%E%sN9hzvQ8N$J~&}O1UN=3&> zrTuS6HGql^>);$euPKCB{EE3eru5OWVfhp_Q zI5OVG@h2Q^U@0qBDul_Ghy8i|VfJR>Z=WqQ5q)wr5&$ zz&CxL)<02pQ#Y~xgSW&}mzfUe0~Ss^gz!KIT>jaDJVBFJVFgf!?7mFPU#0-Hq|Ou| zTc@V_=c^M$fKC%cfDO$k`VFIOh#;Q64$1x6s;@;-k!L@Nbc?)zsD5pvUt|est!;xK zXh@?RdbdL)oHPK+pCnRI!)l4tzyyJgI2W!Rg_e2~#@CR=X%NpP5oiH0|Z=p;Md zk}7eVrrR6XKE3VdqV_Yb)#~gBSl&u%JJWv3>deh9_9B+1CfsM8X4yL1Ota5aXKR3Y ztFsNjKJ)4vrq$_ICTD>RXalt@ZE~?^{P2XU^HohSCoV#2ws?4I=&Iq}hOXhSe*fzp zg$XveIY<9RaUf*$-}PtF?z$w$d!T zK1ZdkCtIuo#MWw^wg;KpMUR8n45_h3%`2Km_qM@pwcakeszb^Hs6lq*CPbD>INmPW z8l&aVU2R*+1E7iQIHt}vxb2qDLd_hH@`$FtVWP#+sj_E3=~ngve@i@7m!q`BLFgY8 zG4|1%SHS4^2-+!xF@2CAbwvyl54}w2C;6wBH^SAUll}mdwiFho=rU!6JCN4Ep_L_2 zz;JvVK$5Rb7fEDyX0;urTAz7juTHM)%N*gT6V!0#rtOv@8O_AGWav%1au{tuX7@kr zluPEFO=t+VWbWFa+xId>Ym~0aqu08X za`fmDj>~gx5kOo3C~ju)g1nDg^2}N#>1W2;-Sdrh_q^&M%K^K4Y%vL%p-DP7lQeH` zSW}ukA{yxivSOX9lg3!t>Np;E&Kt{bb+flv2~Jxa~`%CI-hk zz+jZhcV9Gsr7R*!7D#sdP*I+eb9z%LNz^6NU9w1D^1O=s%;h&zyQ@v@$A(#!XU1Fd z{5VS2^$IvV**%p0#dp;OUz|AD)!#) zZlEQ<9Y`hQ>}yGStV<@T=H$=x9V#oar6KJx^VX+fGg?BGoT?(>3QX`pPb#oTg~H=oU$p()mACbUGc) z*g$L~6VoEI#iu=CW>fcI_W9UaRg58oB?b?MYKcCOG%pu4s^0Eg$j;=Govev2rgtiF zK$uTu-IO!M{EwM;ggsJU(DnaL=BK8Q{}orvt+`}((-8t6=|b>y&hrHlfe~91>9QbF z*!8%GCM&^#=)hsuwOts^$7;5noJi+Ci%pF@jQDndILAzQ^r0tKuIJqTdsR{Dd(1%R zGnmpeHI}BSDP}@*08@){|Hr6a%}S&vj*S%l8{^v6y#QM`Va2XehzI`;{k1*rdtM;Q zg$O@~ab^NGsq1(;u*Bl=;!4|nbj|`jOg&~}ol0x0IjFG6l4n#kifT1>%!KEx2Q=Qr zC+AxqOSc)>j&rL+T$TIZmDc%WetP*YYoDL^+;N`;1&MF(?G+#fxJu~YW3T*UN)XE% zFHZVI+4d5z1mVI}LMJDC6&+K8xZl|0s6@qfI5=w*k;N6S6#e}NDtUGyyiJ95=KOqm zm(jre_d`e?t~~$&7B!_~$dE4wm~z13+Y}I@}aVxhcXqd>j9^lPx>ZHpas{rdD9IpcTSWwyDpwz~O~W7(%oCb6%;l>0LXmu#A!k>IFScn8xQG5h@IiC-y#ZgxJ$ zmYqALE?iN*&B}zA>i;E{oK|Kgk-m|Ixs(_=6vjIoILBLb`i0lfE9>c&vdQ+JZb}E&U|BATI_*CBlcbAZ-hy=hMkb_$U_Q zD=fr4?HA&iwh%qIT3}k%a=k&>;kJ}{JffmT9RW#^`eIEh%5lIRonXcGT+hW5- z!@-tWb$0tA@eGs6%EU9sU#(1hSAiVBx^ixg9aF9>!_=~JWtkGMT-mO^oND#Txfyp% zxrz)E&B|3|hIr*Fb`9hpjDomR7L>Rt5#FgLySTk)2day-0%ga|p5vz6=K{@eR+&LY z(+DR&7@QvuBxLmm^a538IHo^#PRW^HFvOWv}wx%i@Yf- z!*V}?Ph^@{=+Bog9*+9GV+-pywgJjJ<1e^6W?@m0C@Sp0k6B*#kpD!>i-i^UJ*m>H zvg0hVC2sN?GLYHmr!KL3n?Bq6Vhy>v&HWZD)Gf30TKk}dw{O2#{2UT<>uc|4USE52 z>uYbD^>xsjgvVQ7dvoh+Z=3a%os7p@Uwd=wYj2zNb>MTXug?h@tuKR&Cef#_F9#9w zX4lsVK%w>JAVL1@`Z@s!w7wh!$lrQ>X-#&7T0ZOgD(`T8J!Uh%!!@S4#nQ-bVkcN* zvMf333sldCiAH3I_Y1gnBVh?a@5_?)#0=-u?LU=JgxrQZ$X+6Ye!ed`VyXNfJf$c>=;DD|hDi$wn+PP<;11ZhFYib%@dE-sWrlqFTzdR=L5OTjEKUPi_8Vmj}e&V!3Kt`V%F^I&PSx&)Ng#`H6_s>JuC zT1A-7)NjSGx;{dr=tIul2o`6GHTA~1G=4glxI|q@jLt>g5mqi|k;%}-N^`~O*m}bp zyg1;Ru8{{8&35OpLXY)Ubt{bpRS%#jtyM`QA)0PC!sW)sLAcpT5KAGEIs?a@$e{5n zFP>v|e+)73MTiyZMoI$!DKD>&g+3UQ&i`QyH8|&NefZYrsMF78(Ibd?^-{xX$&=Gb zbT|rb%^q-$1Y_0rr7}&v{NSl5b9MMn^Re=s%nu#2DS%-ddNOso;Sg_kZ?kz4pC|&# zd|2Mh6$a*~iTjyGOzW5E3tnWd;juepA`5MNzSIWhUBolIIYVlps)6evX3WVPLZHwV z^sdnfv!7k)@j$~7SIu!Pb))E;qi%_VBw?>A@EZ>lIgIL2PM3&mCv6~15T3N1C_~(j zMU;NY<9yVg9Ot7GN=T0|>rBt(Ie=MU$up0WFqoPFKZ6|DpwGK_ZNUENZtz8|<=Z1jww;G752v%ri!gYyb=}L28#G+@YfpUl?cB}vwQXF z6{yy_&vf~hfk`Zo2PMHq?J*um7Rzm#E*>ZgopNB}<{*&;LsTm_#YBOjv2k}3CFLfHn`=7Ut^-*LyOhWJ&Q9g*EXF~V zn@GRSPT%adfEQUgtt|BWW$a_5SBfJBGO?`7CnAxLy{is6$kIUdY<>OcO08l}is**b z3Xk8cm5WpsHv&PPX8wMVSKc}gp>xMU!&V{?vd&rUvE;h;tNmA&-)e;WVYNSIb3Zw= z$t`dRFU{KxoK!cFdhx)BCUH^;aZ(F;8=vs#Uu@+P(iqu=7DOV1m$(hFntz-u&l(bs zbmQDPQrap)H%S!qj6Nb`IsXcN%l(Q+Sm+XNLcuBt$ z{&a9R-ls{w@umVLWlepRR5T4VZm6lNl6X^ZC1p((X04)W2ty0KqF*QxB@h@&pc{+~ z-oZ_;$d0bMiSJO3Uhy5hbyv1S8GDuODA8TTj)A(X*a4P?hY9ZuRNtvZGqPT)sBrSu;K5>*TRIXb$c#hBka=EEud(t4_YVD<21pGPn=C5LuuNFB*? zmPmw?x&o3Qih>-%HHrgSf_^GIrf2OBTw{25U3Z8Xfp}IbEX<6nZkOlPbP<;GIJLl| z4_?;z#i{tv>xS?1V#c)i-!`qh5&tzB7At5QkVF zR6Y;cYo_f9jJ*@#WmRF%;CT?y8Sn`TvTNWE8wXfVq&olg3_PrZfw&Wp_gv&kA?Drfb7^}O^Y3v+nNxc>y(t>raxfjQe-Qut$+ykS zh4eAgd77OWU+2Cw4kst-$=7LWhECeMXR`0UXYVTPJUK!x9G~o{{3{jCrKfi@eepHn zdU~bT(@Q(*Ddu2#-=s=f_?6aO9_J5P{a2Xy;FtMX67g}ajP6^1N8meo2d2x~t!fq2 zAI@j@uK#d&;DJ7mIP177yyoxS6bX#oi9Z_=%G07TxmA$>d&eDtZ{oUXaFwJ-fxYjE z!XhW&-kUvSdy+O094!T=zR{IuBG0GES5x7{;!gTZ#Uq;CILbTrJ8^v^eW#D{+* zw_j6%f!q6D))7*k#{J9QR9J3P!KO#>tlUiKxZ+_7Igzf^Od$FsQ;s-UzK>M3edDv% z&*-19evSVBOZ|-a3G3I0|KHW08|C|Lls5zA4I1Ts*QWaa1m7N62z2E<jc=N*;*NfQ=iai8#D7XMw#DdtBobjo=VI4&YAr~dYc zup)~HTY+Pr!~21Ub4fcG65neumyCH+@G@jw$HmKxEhq-JI_+R~YD`aGEx zO}-l?_*a{gJw_|Z-2^hPCJfea-v=ArB{2Io3OQQoCS9$pbF|WOLbTHYQ`8{g3GI!_ zX?D?zGQeJiYV|>FBni2V-H0-E5PQtt+C+M=9jENc^eTj}>{)abk4|l<7o8L?O); zh2$KhUTvp2TgW87Nq9L&D$O-g=_{&f@Kwi>N^^}=a?Vq)21|56D9wdXl7rLLf$DG2 zFGc*YW%b6?^VMJ&l#Bdb%(VJ(b=ypM?5wv~Y;W(X;c(v*hsEEfo`FH`Ax6Rp;dd)9lqOX&W zn=slRn>~$LhuOW(>J2)Y^?ruAR{LIH-ux}~V$zUAs&Dq-L-W-ZJriS7dYL`@mhFW~ zs287B;zYf;)a%87HodsIgI?HyJg*~+M7AfK3tC@wpGvbe)_0zEK9+YmGf*ASjO$>? z4vF*49}zCQ5qLp)SrjHp|iWd^M>&U#Vd4p|l2puTI< z>Rl?6%Wsb6w6(m<7E+&%Tc}lcQlM$CJKwX(H3*B?1)SjWY-@wAS2nZOxn7-}JrCMI zBk-bNJ!&zjr$g>==`kG&X;8ewYdSS~UT&_v=;oR`YH0_D+xIJ5R>ppxR<@;k?r>>a z!`u3*tFZNMV{VI&$q~)18pFZ{jS#~iimEcSkMvd!J-y*;ZSsg4 zP)*1CG<+Yc=UKbPX686P+YmB)6H^D#bi$&Ibz`=;2J$l$&zUqL(wYjU%O0j6(i6k_ za@FOjoGIglrWNrH4XH6B)!T!hKxWt(#Hr#yCx@s&9Xcm;wp^RC10~&d1QVaSeKA&x zOCTR=VU{o!+;uC$=Pj8B@dU55uP0!*#Is_&>U}wcn5Bv0CGGvQmzI^@So*cnn{K!< z`p_<+XUH1PxFkQqAw@JjBUlhizMe>3E3P&k7+qU>v_6uI1PhuX_Z~S~nyigYI8d67 zcGk0^LHp*c!i=+XV15I{DLtjG_3W9%)>s=&-903lEDMeYp$>~CCkLlQlaB^x@jVtP z9mmZQTrRG)DuTnvf>t6P9C*wtj)uGQuyOn`lcOX`{z=i~jNo*&psN+&Ia@p|7Es(A z54}RQcu7>vQ9u;;ZIrH-rofI54#p|lyEOUHh&j7Qq-WCfmuXUI_?1Xtct%DUvu{FA zQCf4jYoIzIjYTRF95y1kCz_fOgsVqxIXM_D#g{@9`^d2g-?GF6+#!A(O->7ri}`jA zS|9Um(Pr4<&q6|3LK<<3>a>#*;q7-I8$Kz<-mZJQ;U$g|ayNt$(;Ztk5d+Cv`9hSq z+v5mKotUtjxkEs_kEZt4=f}h8<9^<-Le#gG=asvo;c3C?51x%X;TarCe!>7gD&7Bd z;v(3;=BuO0qR^oABjy~91V$e!W%RV4zsJkOgrjl3G+llGsaUYM2L3f>G377URkC(O z@*|eW%4q62tGTph8-T!e)gV(5EK%2^sj^^SV4~*wc6yN6g1;I9WW{`lKpKcz&T+G| zXIqOr_!tOexuiZv6;Q1eOdRyufUX1h0Gy49@Sdq>fVQBf4nZm6>EjB0#lW)%@X)p? z5>0p3%*1|NldxVuo8(Caf$Jnt7V4f9lZ8?5Z4n=fnBZcV(>S}+QHgV7MqwC4pE@MYxcHs!Fh#orM@%m+a7lre``f?959F{cH`N3pl- z9ZkoB*bq`zoU7?gT^|<9}#&a26F1%dGzRtrA0%-_>aP=j^-j z@Xo+|#i5NeuZAf=o$o34!U1<0Yn^t2O~3~6FtmADa9|W%FeEVl=P-LV`=TkK3QbI{ zogo^}q9iQ%-rCZ@?`va8B8L`qzhRPibpqAh)O`q-9|SI_<&U`X<-9KMF_>rZ&~kwg zx86w6djN}~^8xaP=>9jOI5JaAl;}e*2}-x#Qu>Y3ub19hTCpsax(rckj3bR_~2bHBp zNb;LXj5Qo9ROLm-AhzuivPkM^q0DY!(W3oi3BPN4&1Fun8R4;`>tgA zMU#ioXF^J+ik%o_u}lSssJwe11iS16K=FWbkQ-cAv(rpej=L-?6eL7jgE0N@Pi3rrX*SUo$Vx3qZme~M!_cR z3(WtiJqjDk@B>{ZU!i^Y;U@bb-E-u>=Kdj_0<+)KU5x^VZ{{kNY;s~}v8m~?glHQz z7Ux*;6esZ0(KHJILU9un z4ZjwsUdO`7l<`D?h*6@+Ll~SUX32whD;u&e(9qq?_m5ayzh%NmbdOl_W#`I=Np9HFti(L^)~ynF2^BA`FxE@|WP3zK=c0-bRRVsvOyS z4*Tksvm&y`qeSJOwU>|AMh*d?P^@_P*&nD`rv4vY!A`*%pzY8k;r+mk^Bzo7q9KMs zlY#29K}ojf$1(07ml?})W>xnhd4V?=-a|RH3O+P&?US8KpDp572z@LB)=G#d`v4bX z#ZKtSxIXKi?9}v=D^3tUXz0D+PGA|~hAftW0<6vKGK5mg}Kb-1M|?r_8n3?&R=WYkIT9mhWm5 zsziT;9-OY(q7XPw2WROrIXfr}rnJ^e>+RdKgKJ4=dDji3)MWV@y|l?oo4xdamv-{% zmB&HVTVN?;piN_XVD`sE(2h?S6sHNzyfT_95}Y(g#Wh0OG<7k>KFGy*9`Izg?Mjp& zCeM#mhx))>96cK^7jdbVgnM~G6Dyj2E;xw?&T0qvLLWSC&--sAu?pvs+UJr_1s8JN zH08(PPEah9Y8pG&ywh2f!q~b-zi)lFwGTnI5|Sn5DsB4rA23Pys(_@H>+}$}wOqRP z&kp8b#`Aif>!0!nPOcZf#|@2o(Zmz47Xp@Ew(i9g9<=U-0XW^#3k^WF7Xo_I|9OmF zJZf#rcI0Ur=41Mzs+(5N4?|nY7s9?+s+WdrE{`=^7Ld+3`GGtlYwqkK5WXd-KF-sl z^<>jUlg<#uCp5yM@Z<@e4B9eh6+wK0kox7?qGv?b7W%Q!Fizgu- zu#$dd5Ogqm9{USNCDz0l_`WJiw%(RL8XQJSa~JFL)Ld(&=LJhFeIhu}vOO0ZV)x7~ zOCJp`v6Q)D>92x|Eqyw8z|!Y}<4L1H-abS3`f^{Id^5-T{GIRRSf71?+5a2;u48?k z;3^Kn9!3ecpE#B1zlA{fHvCzZ!2Ha#$i1mB!qE5N5lc0sgKw4Er+{B*?_zCN_*ZD z1`F{)TV|Z0oJ-WIbp8d=7nQM7r{=3iC5Lt;)R^%>M@OWu>s%`5iP{d05qjEc$nrt} z=OGTrIbP_yx=McNc%ioi8`UmeNWdA#wZUn&%@Bb=%hYCsZzDYbI4y7@b`g?j3{6(U zOX4y_XKM^z1`>}SItE?_%q;Lu053MV!#hzx{`Bf44uFjyH!^qkEnd4TKuoIy0| zTM6N(5P`sPA>9d7uV9DKUamW!X%m%&bb#A9of}UY)mBgHaY=YJgdCWER(HJtS1MX?X>^GE_2?IQ(9O1wZBzv6Ij z;kWKRp9pEug=$ZBX=sP#x-ocxYv8B_-jpTt&GyM^pY1^->LqdJP)ew(ZUK z>QU?XaogTJC&zp-2$Y~Purl*(0@A8%+toVQF!w>@#ME_hV!2+?_H2*ogE|nB{Y+v0 z$;^Zpu2aKr2IhBzTF{1=9Vl;zdCfWt%)di42HonbwljFzljH5C1yB_hjwI22BNqAn zT9Wl*zy5x6q!X;y^CYlcOZnrmW4)f`nO424_Z78MRYxIPVb-x!2>kw)sBb3>SbhnP zE(uV@egUrl|5jMk&Abyv1EcE(ZAmWI96S@WugN=$c7T>9)W&J^IBpWDnLzO4Sn6Jg z0iyW4l}I9oyc>f06`|pUWPwQia~w>qNf=N2v1))#<$6@w-%nj1&vi8I|45^5v9VnkFu0tz+{7#QrejtH&KGr(iNm6cfFOqo}eyTdzX zoR!7r8UyfoAnLge6h80M6)UMZ>mz|NPOh~xP_1$C(76qGXupAGI`oOd<=@s-8(glM zv$$OF_Held+Trpi+^}#!MYw!b4odI~pz=*wRK8`@A;Ie57!ZEqfn*26XjeQ)tbg03eV;`AMfcJ^?bk1$xPlN-Vt z1Jx@HpL-Lj<~gIo;h!HxX{iC2ZvC$15H5DyUyX7K7thcr>^AUR^G@$E;1;^kWz>Aj zW~b#4QD)0zVm<$;l%Pjz&0+NY$|$kM+dMRXqxXqrU!^QHAH%Z0sOJ(xBlnb-=udQ{ z)_I9;il^>_wZ=>IJwsZ1iM~_v{+yTS!{Ye-7Esxb7u0(wEHBZ`t}tGrZ=-OFm*~nC zFVUO;+M~kESGale5`7z`ika+}mn*-HnLJv#+>qK&{l)Amm-3Eh>k+p9=QXJ>XL7wNeC|C~Hm6nfUc$Mrsar z3Ct6J7@@hUXvCa-(~8KXk8lLxKX~QB!bBiD(&NxkuMW&htEkW?HI?pvi(y(w_K5F8 zI?x$>#k0}r$vx!%<0%6Us&U@Zf1I~ZAf9k-)zvB=Rf}kuP+ly=X5bn(GF7$}kt}Mc zqEHOGj&Nh;u46jFN7WJPgbYHWpRLXH8)GS9AXOYFi7e}iJgkdbV6pHDE_y`>wVs}Q zcc;om+vru331r@%I$Tpt1*6d9)a{0sJyScqHv8F*mZtq`z^K&Zf6`b+s=tpA=JD|R zG#1=5dps{4e7~kEu$HDnB0aH_8}vEvO*@U)TTUc8h%D}?M?{ty*8u1Gz`SBT-Twwf z9elwBPdlL3yw_O()R2=Q;%ns4%Y^p`;n`C_f7*b~_KLbgQp$&~W5BX>GAB76P(5SS z8sGkS=xK*TQ}N|pF&!V3j9=ObBM_n;RsutB+Th7U5y5=Vxw#*57#oTn=)MVbmlaKWr>(mhd3Tzk^ri<;3#iccDr zO;|~5DJx1tAk-KlbBp@sIU0{I*g^_BQaDgONT$=$%81>s+1>@+=(;_~5q!0E+q-mY zerSyogv_&z9yGvMxdD`mEV{vxYYI+2H$25Ac9Sq)^>Mh2sg6m?qoLR zknj2m@ad|yWaR_E&G-PZaG^}z;7kcUAUb?_b=X&WZ zrL84qlk5q?;_*@hqsr_b)cauryo}Mfq@X`K_XJ|auZ%~mc%y=pGeI%F-eYbY zUw^Xk|5bmonq}L8{^V&PWwTbw=}&aJ`2Sb^$=?BqDMZdvOH%ib7s;Nw0j3CuO(mGe zNj&E)S(Nyu3gWTbG%Mfbq0wj1YWHPpxJfk}UGAw=N|nW&hFqqrWZfX+17gVy=ux0^ zWIzjfc0Y6uqL8UjSZ{#=A&J;)&Cm(*>}~E)S84-rDvd$pq^w7ssVvkPUT{M@UD-YH z^gW`^L@vo3p$&Cb3@W{a(jSuny5ufOL!If%qRw_JDrCA`)EQwEh~cr32l{d@hR6Ms z^{6vxcc9L)U;fCbv-?Dyp{&^>Yd53L>Q&yO&We$S9A(KTh$S%$7fuN@z;q@ST0<#F z&HJHoUR5uoW`dCXb8k0@eRUZLO%Ycz7iT5qOrlLDT$S zuCV#F#@!S)KjTWBrI6=;UrIeN7{n0^Ip)5)b3G z)z?fhlvl>DP~P$NHH(C)GJQ{gspj3%k-lbCW;Oc*#3(B(Bi~FcI~(arT9o;g8rx3c z^bMv!s}7t^K4Ja$dE8+SCRq=LSr3k{z?q@;pMRqE|LtZl?Q%9M&wi+lz0eT$Ke2aD z+b)w3fef^w$FLlRKVOQ2>*C%8fFWH}OPIo95nc8lrlxTQo$AxjRNfq{^E96CI<-CFO{E zRGJK%oTj7ZaF=Kjw(4tSP40P?-%fRV&K|Vh_tCl|$>zGIE?71_yhlZ$uzK?vX(ZCD zy{pngH!3rd$X6wajHLY=neHa_i2!Y(8%(WbCGz!p@^6Wxi$r4B!%cc4Q(0# z1SCD!PsSC|35Ot|>;7>PXR{upMA)oTE-yg%S#fz^ekWf(kl)DV!vfXkf>_e|kEvTn zSB2Mz4RAtf>u= zSu_Q;Eox(a5CA1JFwk|Gv*YQTy82#;r0+hu?jVRRmh$675bK-xgsnAO4@4)d(vU5r zB{>Qgfx!XY=X5f7b%1}hGqpvXOP2`ZvE=s-*i?!ozkuTEfm>)r!53obkq2}!{J;X5 z{2qT>xV@mU^ytb`SWR8O4e;LKj|gbxTV1~@2)inve!UU++*Y9d{pgB7NnN1iZzFJZ z^b9j6FmEuxawhzJ7>7ao1hKw6li|&CP9U0G$s`^~*L5~9UWj_De}G9ef*MzFI;-c1 zzIJA}5RqO*J(s7Ehoo1$u(wK76qbyFpa)=w1;9VjDiTI~m`m~eXWTz?bC-K}Hd&1bswhk^++^ytD zCduF$VUjr8AzX5rwTrZWR==;o1WdjLNs(%K8&A)Gzb5N2ZirfE9ADQkiT{a*@thAp%n?p~>Hi0!f!Y~xOTDg-MnKjyZxa&Tfmx%))kVG>t zN49d@p|_{=_QocmtVZ5m-^xkHdAzx`fj76V<)dfu_U3^cxgUnR@pn;T+=`NDkC0Er zxv);R3+1@JWC4?%33QnA5z^Su_jUB`Ek$1mH%~2Z`Em8O57`uh^tFbh?4%d*PqpB&=XOckY$ zbZR`8QN)~6lrmh4NaNwzh7tnRKZZP)Xre$*8G@+g@>U}EV|B04L{1DTahFwum}?TR z0@c68WJ=ZAhWKgXuBKmqM--5wr!CCX_AVy)>PRx?HZ4)3V+C6ijy2t(3Lbh%^n4q6 z*1im8{>GfN>vBt1e?v<%a+@hDv^97+XnWqE4Zjeje#|vlcuQvS?NY6H9&CtXy*oaZ zB$y#4&x)%~ItBYdV%DLA z(nc?B^3rB675J6Elg5jBx{|6rHm*GHZTItRD^b1@?|vX@VD{@@pwyf#({AgCTY1U2 zl|?Pw3by+}K4+}Ouz}u%<1zm2)D!R+7bKvT?-n06;Z4!vwG^GB;;;?e3KSw3v*bH1 zv#w-8qb|?D#Qp|jIC5nA5b}96x=@S&r5YMZRa?`0%orweE!QnH`XcU*q0v=SQ{K14 zMOc$Cv$N)jAIdgt76o0yu&fiH7xJKkRt;<0ss-dys~#t{R*hDx%7W9gO~RJ`nD(fS zrh6yl+T%vmHObk(Wm~0D=D&eU7iySBc19kE1NLl74qCRplbdq@17|BgP1B69rv2&L z1~AQ_Z0j&Fr1oPPsLGoD{y!X3qa1CSnz5?EV`{GFI=Ry^H9N)Byt(e{3y% zs|tXW9aA$n%hara5Uz)rU`cvBjobFr~B7aL1+v9UB4!_u7BhNW3O z^%`MK^%xp|RXWGgyzf|=?JX<~9L;4pj^hlL%(K;d{UqnBPQn;ibxk65>sU}A7T=ue2#)3GQ!F)tGf$pb8tf0woxdJS zu86}9QW$d+&Jab?w;vVhwwCJSp%3tg7EkAMW|H&3L85c4N%#mojO6lzQY@%^`%CL~ zoE`CPEM0d0lv8AA1QZj2Z%@T3i()HN3 zCenBkh!^zl8BOK)93-osK13AU7ESd(NrHeuffC5`F#b*#d+XUc{&tC@SH41fQ)syhc@JsRHyU17xd`xdPM02qBGEuk z9Uz9gZmVBIp$}7=|8jovA>=CjFmo08{1ob0VgBjLwU}IkR$&XU+v^r&*kC{LZ?WUB zF?I&HqJF24Rm_5lXo_j7aTM(y)FiGG1i__D%BK3RPSh->*XXJI-DDR+`sDE_P#a z42@jEFDXaJDrCkl3Vw0DfMj{bQFhvtm;T;HEv_X(dm=OBoOI0 zBqppHv=2jxc)EY6DrQBoVeQL7v{^gd=*qnK%sm*B@nJY%68PY*pS=G(|{ z4;QuH1@gNb!>gPYq!$@P?vE6?KeAb`zzbiW4G{fjB*O3Wv{#=~1Jx5n^1Fs-dkkntd#<~^rJqs#`KdTV+H;aR4FX!$Ym{D*O?Bso2dss17ds9k*-ku zbVXStnE$ z0h8l+0Zl!?zI#Atp|F>Vr+iXaDzb85&OZbvX}9KVw<`|I&3h8!Vo5)--Y;jybp-8@8$-^FOa#Jt%2*gO#O8>|eD5G=)#9?sy;{2ErM*Kb+9x%QY?-&c3j>Ibqkdq(QJDk-b)tz=?- ziIQpcLjon;4_tz+Y)SF^mJHZo$(8Stn1E5DLkR^X>kE{3|EoPOFaDED2mHpRSN;cS zY2f_))%;YfF5q|a>c0HWSPi>gN0%{wFK4Z09#V_X=Km}%_-@{Pl%y4vmh`yGlH!RZ zw6FpV+jLD(Dd~xma0f(fKaz@g~F0`(z^1Ghr|GB#%NRlboqpNzH#e5|OAbB+dPf1nGUjhxrS6`C{1 ztOpS&K$HD2?t2xxC5!C}jkQ{KVep>~bBE`NM=QMaNXUvo?p$7Lc@wSa{=?8RVwJG5vjR%_(I{Y>{xQMUls5COb ziNVD>y1GP1S8Jo3S*zEX*0nm*+Q2C68W=&W7#wJ`DJYza1gEFJh-V=;9m=~eArIql zT7EDd{*a4a`9pbqnTiz2KC)*~5#;9iOsStMr%j;p;%cu{pP-8L8A_H*R3vCcf+|u% zsL#7x5$0R@fH7W?{#K+vUzvER&GW%Qye+<_PYqVf_|%ny$Qw;hKCJI)qF#BbS9quu z9y&BoUCi`Tw-2b>jp}xjy4@^zEYd-?#VmNOb}jCB@-?=F5BXab4Zk_{d`*kLP1sC*L~fl-@>BYw$h zvr!f2RS<7598uQLS9cW+4o5T?j)*rHjwov|98u9QD93eQ?b060Tw45B zOUv{A!=>GS>e3!Ra%pjjl*PD-wYaGuaDLgQzTk&V-~`O}@CI8g<#gsg+QyO0h~a~8 zsYFTlZ(7ph7E6lDNSHU{{0;i0^-5^H61AR@_>!`K4^DS!k3yFgpF(>47F4DU7xdQ> z4{ajO&nN*l?;;Pdh7$fk4I1O69!7XGbC^LjjIcG&!w3z!FpRK!SPL zVy0-la}`bZc@U44QJgbrIo30aZN>A75stE$qn;*$-GE}z{ac{7I58ulj$7jED&7z- zZg_Kgb7wDH2eTd|Su)MdZi2d|dZmy8PY0 z@8##cp^DMziQR1?W^n}tFkc_n;~rO_N4Zyk_Y^1^%KI4MU@P4Krn&o3z%E#-&%FHq17@^u5<3C)|T{h9$?fIs;wUpFPf@5K^OHFi*FD`lk><7>EWcttVJ@FW}qt_UDk z6Y3e2rjCx!k*+Fg7U|ztezjx|UPYpzW}V*iF$&NPIQ;hLhTF;Hf+)q(_poB#3e3CS z$~C|%;1v~|5ZjM|EEe&rs(NPiY>iB>p&!_J`u8jU$sT)dDAH*-i{NE`A}`}wmtS1# z@(W#!9a6ZyvQg1{Yd%)-=7jd~>$`)#Zh*M%)y#pI!4=qtSJ z1ewkJjfs*`pe$yj?;ukQuj^c36ebf}X6f5H08XP8TmU)+YieTSwX{}dN}{Y$7Mb$k zBoqUhYQ6kldt3QmHUc&pHU=61IDsAU@P?^p zv~&>l%BbYD?l6cud4mT58zYlW+8FH-@|MkZCK@^%<av(u>)}bUumV7}8{*5FKLZS9)Pu%kY=B$w z9_SZ7!mkm@A=C`azsw=jEEqv8f+0b-w{sys8J%U3WmG*(7#@+fVN>fiDo4Mz(MQY$ zzG!W6_7F>rb4X!jcOiusE*lPZjim;nl!&D!fgyIsQqvLY?TDp12j+~o1qC%Z=Nq}D zwfIcc^-{Z_0soVy&XU}Vp|&|N?_tZi87L=0e+T{`1l-PS07F$>ti9}V#==Mz*(&6n z>F&z?4M;<;I?rAe`rnd%9S?f1;u39pZ2vOHR=iGsn1>BtwheimB|ToYq<9$#Ja~m) z{Ch>bu|P>#V_zi|jkX~#P!=}ixi0N7%caHBUD0wYTJDOLyQ1Y3rCkq`1JUq0mm_|hHW&U8l*FWnK!ELKARv+z5C>I+3}{Lyu* zv#KrWe&}2!JwCLgcozwUPSmYum4$Bo!KFR^)1}3~a79nht>2S_ZY{E;hw{^{|4G6E z_iyKi-tbE=_@(u^W{=iJhFjU1r^Jnry1cUMjzl$-MIq&@@FYs`Jk`ByU! zXjTbx|KW69;74PTE(`(uoGau{>7guhoNNw`#eD~Hs;nD=WpJo>Ki)ZzEXUI`?glUL zl#L3**DYMjucYaeX9NfG9?u?nf7pJ}G*6T7t-*#@R7D9N*$wE)m8<@+edMqlboAx1 z(%vc#4>L|*f?XNU7oy2NxYml}HVH1LKpYPA`D7dfLBsbJ<=$7@e2H9e3=~~IL~`|E z3~q5Sf=ax<5xFDi@k%3b!7M!NndN7i`q_ZiGc?`F9}AmBZ^E{o_yA??C;HzQW3%qw=>~d59m%7sBa00;kLq68uz$&0ImSvKD#`Ls8jruKXw3rDK8~f^R8dwdxr%0o$t$LOUsl1jyysMUDF;>2h+4sM`B-B#;xFrJ~vE<6{len4JB3Qw>QU1I9RJ<#1 zN0Z-`x1$+e+{JLC$0SXoZ3_s8;BQo9ghnt$2`%GS4LkPZ=eUob={{cMKHmLvf4nkn zbm60*kQnYPLa#I3zGol;rsW3L1}e?LHA^qPk-5#V4#;Lu4-frZpbNt~eYuJurNkK= zXM-8PIAZu&bPya7GyHLo4gCSGqQX1iA)SL4mhdnYa2zdh7NDB-BbXl-O$O)_!5!T|s3KOLY))#`-q%J3m57R35i^j!2 zx26?_exQ^abA3txgVL| z0|gy9%QEj$;N zs6{}c*OP==rl^P0Pk>)u1-HnL)ggAOsh1=|yT+s=w;OxtKbaM(DaI&j^;Xic+${6S zX%u_gYf(cc7ip@QtFjC2N(X))#B0v61k|^9nvJ?7geN-vMxI5H%Oo-P`y0py(JfJz ziXMcVhH1ff#vIPx`A@4V5$@Xw1U`T>Y!c#IV>jj8NMP7x$76R@HsE866YK9r_b+#J z)L)s{;&+OL4!S2T=}~P-@%v+ zm6jCOl6*?j)5=2A=eV@TOqUkl>xv$)>7YM?L<*MZ^RLlNQvI(!MJZ5&lS2yPiqstcSMtbmRzh7VFoZw(8DiOAbj>lJYC^Y zM|BoFb(>+QI=LwIZ8K>ORMupV_L+>AR5+>qkXUa>Ohmu&2nsG5B0MNk$X9DLkQ|bV zDxwjRYZl0Iy0@?kD5fmfSM<-B^1Y6&HOs$q4zZj<%%n>YpVVt;cAQ~DWC-RINqtz+ z`R9}4Y87(6!B3$M^y$TGEbllYdH(3i8KM#A)~nC?@0oEjGBG++G87o%m)1VYZhZyfWcJnv&ZLLbW6bLvP7{g>c* zh@zG2?cDFlc;~?-JIo#K5D#@{u3%NHnG;QYA(nhOnz|F_j+3>+5&Lkgxe~9#FnGVp z;ivzwD>O#)wyQ9rAsp`EeU<}W^567UJ71^x#8mLV%9nTV{IWE#>|WN;B=#Uy3Oib*CSD<+vHS#f#Z>%DDC^?22#=dN_= zr7w~)Dd$>J{E#IBzGummQ%TyBMVg+Y?0I?dH7*?xcIlOaNFmrOEGfRxk^!SFx$-&^ zIH>$hVxu;RrJB4+EY*xnEG2Ab<+VV{fXp(7-Of|7k{*36Irnr+Ee9<6ur^Bh`bO;{+mXVFq^Z7GbO*TT<-HrV^6r~@*obuDQ6g;N zkUi0Le`+{OHJD_&XOT)5P`bxIRHCGKF^Q30FocgEbO^zD!TxSNPEC~G-@%(%{S2xwP@59 zGQour9hQ_v&5)&GN$I3ou%t9SGx|DbSPnY)ig-eTnLP`^=E$M#0 zB|WBDQhYawh$Feijhk!Svdu;uZT2wRCXZSCE^V`8za@Dw6)ovL+>#z)ONs}R2$MPN zCVd(=(x;KocD~<58E@+T@u^CB{L_-+-6SXezWBvg12vVxCh4NDnEL89`^C_#An$3b zHE%if7?P^jF676rY@H^J5t;ID`@UUL_j!;lfC>xC?@d361@=SN&G4PdR z13jM6eF=nRY$F+wg&opE-+tL~fu;)BltEJySw>KeAi%!S5a%j}24y&DlB;Q2Ym>zi zP87+4ziuI`5-mc8u?{WVU?Yj}=>D=+xc@AevBAuhyqSeIH|`)2T9Hnqm;XZYhlN$X zsLc6ifrTXy=swmmcfZ`rthc@LFGQ7MlwD6{E~4gXmuedJILC7L=;r0t>t035Z6qD} zhQ6&5eN_F$6exbbKy4}BOkz|T?U7i&SDy<5)n75HOr3=^qq9IoorUWaIF7|G(d1?% z`RlTkXchMW!wfPQK5g3;gZ)YUw8OJ zb{&oz)Nvm-cjj^!N$LX5K82br*83~4cmx)D8D!8};r0zOW)*H+P&1JJuY`?@x`Q{+CZ5HM#FChYDODE@>j7`q5N5q8m=z`0~;<>BjfT4bjNTV zpkgtMo3QnuY~{v`j6kL1oh|bq=0MtAp=LoF>a3c*3=!#0pT-3HKzJwk*ZIrjA{QoK}`Ey+sX=N)PP|EKW{@ z-^S$9e>QBGmUrH%-ECO%Hs{;?$XjYDjxNAB7g6XO3K0~uXTC}pzG<`^*$AB8pje-?W9gw^ z5$5@>D^`59D^`4-D@L_q7JKzU9(9f(AmHFJ#?Uk9sgrW<_&R?pHR88St9Uf?KWL^(ePXVAR%L!{!C3cYh7)K-&$r-{hDnf_+T^Jn zTl9?xDe(FpOK}`d)(81moy0`1(MKpZe4iQ72C|Zj{Wmn!kmJ0oU|?fOVoSEcdL=x~ zVm;X>B3thvPB+Yb?3-|_eyrY5}r=Fe*=XJHHn`F@ts0?0I zzMn{4gOu$6`rvRZbq!{u8`WhSr`2}#F(&^%%eQfoU?5#|4hHzA`TFni@z8w?b7 zx5GHV0ws>d!kelHMhkNxcZ&)}i{%s&mqt8r$C6l7ZUqy&7_GSSIW#6UxZjxMv@1Jl zd;)WtsKpJ8&B_`LOgDI8bsIOts$DA08OswmE()Bfv5rux^9O!k-TM-#F+^Qw*2 z8?1_0-7dxop8Q=89jyBVvR1YPGhn|EV~Q*z;^%7;U4lM2rY&;^J;E3Sab!jC07r9` ziJ()=!&0tn;n~^liXhuiS@6K9RG<5hy5UvzPA>0o*bpXC=Z+@{LaC->Xry zAx)&e%1~~uI$wQ(SPvn^lWMY#0mWJG0eV#x4IxCRkEQw`f$MXMN$Uz_rklEXyu2&i z>G0(3_UHn0AN>J*VLXX*sBcb+nu}V6&AOg&iyZeDqEH1r*JX$DFne|q@~2;o62`jL|?L`db3czT%Po30}B zYdE!vV$TDBV#y3ZWQen#tYqbv`W}T|Rl_K7kOE6BN(gh;WVYE5A*q|m_93~IZ4=pW zY_OluAW#g^@JiL`g$9}0T^&|^nJd_S+>PtGyya4V42!rgE2w0$Np;0SFA)U90)Suv zNsN|{@G-^6I3H6`fvZigd`wZfA)LRGArLKssbC3yGbm~WNL9YYzsG7hT6 z-B?wx=(E-)b|na)HMoS zo}CF$WRt5AyOm-t8$E`%VY{Urue%(T|E2hFno>3uMvj%OGku%-Wk@sn4R`#i z&Ly;f6jC^ue-cU-LEwGd^Tv~So@TVyCX#F2XcIKT1IBO61a=EtPB0dF!-jhq_OJ|h ze}=mawwy&)!(nh`3{Fe~j!94nZ70^0#gL55m_%mC zVq!8OI&Z>^CKA~fQD{JRWEJSbg;iH<3OI5K#M zEy-)%G~DKNiPeNlxz%2%Uu|mUPW+fSVSN&X3Cj4_IDl)HMxc$axmEJDei2gd(aa%oUUBCHI(I!ss0?vHnfy^n9L7` z%%JghLuQh}Y%^pgUD0e?b379;5Q5CxT7<%6Yj;?z)B6xSz5djq%3ASxjzdo{wjBZw z)`EIc|1R-43oMWQAWAs)y!enGK&>SU=puBqHU(@c0rofCYHs9_8@^oIIdzT|1b1JF zan@XD54g*6;L19%FK_?}p^ zt40Ae2da5TEX27idvFFP5R4-R?V!OIEr6Vg0jg`P#GK8ExID*Q= z3C^3sbv*L)GV$uG-(fbCznHW!=(=!S-=DW(WoLN~zOU?4x3B?azd27HuuHO2Vd(we ze*Fn9f5%RhT(T>i`|E1eo}C>;l34N`9zLku>5}XZqT1OSP4RCSVHRPxlI?$4=UO?h z-79mp7sN=d%NN?cz^<1Q4+albAOC>5$H^zQhdIp&57E@r7AB1Kl3aj%IP)TDA5t^> zQ6wUXTDI6sdu=C_uJjfbri8VJ2;uBajX5% z*i6Bl@}$I5nQr#EOoiP|wcM1cX?lq&99VQZx~Op?1$2$?Hs0%gc-)H26#bscJY#oL z<@(H->do=gw8eHg!}TOFrTKz7-cBc`=)lU!KcuOcDdjJ(Qlkj|>@ilL9c+7*T8p_>WgC)6Vhb%R$es^_#yS^msGe;M6` zv$7)~7GnS*8DvwiP>f^b1(;gPghd*ao!cpi@4trX_-{9~@$CN!Pn~Cf0?&T4!QW;T z(IVh?xR~7>F4q|Em&=|1s(5;&I##gq*idKUSf$-{;VSc8!q`zLzuZJsQ~ic`dITh> zY;MlqTDyNel;)Q)$(l6RncnA`HhA1zrwyKK+TfbG&h$Rlw87)%nl^aC(V=K7>Pp7B zvdm;(eAE1&ThW za3Oz^3(c~=Pzs(23sLZ}g;6f*>zLK-FZ@s-huIcrdPT{0EBb7-V&E$jP%@TIe;KBV z(Q{2N%rO5-UADCFCG-Y zPJ}D9&<=Q7KGh05!vP+wkvn;W%}8Pbg0pwmhp;scqBjDep-{EQA$u+H^pkqV@yyn- ziOiX4t4T6gR4BG-UBf_GI3SK3QZ>7N9Y;DpPJN`&Ce)m>Y4rwL_;iM7R&QS*%BUF*ipH=y&l0N4wjdCk0y zu1962HwX8OOd7~=vJxQvw9?Ofr!&L{6)D*DNzmgcV0NsIYvOd8cRXPr*g z6;#WcEUGeBXPTrDZp|N$rX8TcH#lH?t02?pu+d~uV$=;U%HlWJ!F!`fascmB_@W`= z8iN#hZ08(6FGl;pd-ZD_u#bPlBI$-rjG}jdvfocLk;Yj$%KnS~M%m+)vtfyXOJwL9 zAl&(uze&__O0NVl`mw5($fIAk*ES{)`iT6mTpvU9NK~#svn9lhr>!Xqw^<9171%@e z5H=BErU~p(jNWixG>0AOX{rKNJCtx({p&-1l$%BH3rWx7J=E7(OwM}o35V0-Ebt2= z%6)v!8WCBe6ZSQmH?fXo#yXZc*0Id7j%AK@EOV@5nPVNx9P3zStmDRmfD5eS8dvuD zxGM)R)`z!U@xCoGK zZdkuWx|5iJF067L2}WaN$>IDnse3YoLj&PpCLO1DbzvE>iwbeo@{1n$V{ORZPD93H ze(~{u$2`GRCp@N+$AN(2c}zWz09lI(%VRR})KmdKA$tJmy@JI`PO_hNw?GwJ(wrS6 zAr6vc2Cz~b~r3T>GR;)&^A*H=b9?mj;2RWkEiVtXjk*_ z0s9^zp@gHE`~CQj*!U0112dR{VtASIDuUXg7!LNye+8*%il?Wkd-0INB=tG}GCWT+-~`@+mc2u9HXD2eyr(WKV`5R^9OH6xI^lB2#3hS(L6vJ3IW9NH zak)9|xg3pt7%um?uReN_<8pHxmz&cGm!tZ?uTmWo>MQ!fxJ8c3%`u5@!kqS8ZeANM zXK|(fyL0)QxANyw%x+FcW~Vu9prW5cF*~NPEwl4;m-N+`J25+^t^>2voDHN}-kgcq z&1ui zJX%Br94>;#m3WhkoR05lR}K!9{gb229J0%4$MH_Ij$CP!h;0vH%D@sj%`u9R)9-u0 z!c5A*D?D}3tKjI9$5cH_0nPP3XzmbUruqb9G%ot}J$^2B8J6C^qbOpW>>K#?d(@dVL>}jzjV~$&@|Z&R_isehfl+&~8z z1UeIqagi|`Mr-7oH^={|5-gwuz^={|5-gsBddbe|2Z@g>VdU#h|LD!v*C7yoG z%05S2IdCtf8Z6wPzsU`bC2p{0Cv0#maf4%t8yrjA;8@~@PFdn6?Ho7R&T*6N95*47 zDV&EiQpOUU($VO}I6e&=-(y9eyQ~=aB?{w%>utNZ-fb7xyY1q7w_W_pch&eHX9+a8 zt>S*|#wu~6!Yh-7MR;MO_#FY_6uN5*I?pDtRrw(&E+j`--ROYTjrvf)>gu@CBDa&! zZsM_%(2Q?o>M)9v=X2!r$fFZ1`!sV;IY-DqcgPCKCfRJR?FbfYi2T_cQ+SKxF~*g)(9-KcW( zwCY9&{*`CeEp^%!CpWVuJNW(h-CO<4YCpbQdq})1+H*a|Tyi}X8DU+`ax5Da$t9hz zy(^f>i+r`w%WV(2q!YfU8Qi}mZx6Y=pZ1W>4YsqHJNq6|@=#m7DV$Lck=+zHGxkfs znHZ30Njfo6`$!_4#P^J*JSmRkcwgZUJxGeee3X$Gh3SOV;g2@oZx=Bq*tYPuT3NID zjhA6fX9gGZt=YIK7D=*J-ZJl@T0;dVPA4*-hN}^{dZWE_l!Q?DuOTGo+s#(q*DET+ z7k&CE(*}Ung++;bgx%H-pAP*_b|Uc9Yd`;y4UitTv9AlX!z=YSzS7X5W~G69a;3p; z^-8mG#aEh*t7fIyxRNW4i+y&paj)(%SC-u9%JOR{;XL6c{=}OsAiYWKC)ou1nG5?_ zQJ;GKcGnYlPQm-APaMR#R+JonRd?lwCx2kYqDJGB2RGg2u>p;TL$ z@I;X#Z?3B6J2qb~lqxV%y=FNIO@VlQd9Z8)xeB&Hd5d)!kAua!$%!E6^C*@gGshAf z8zp}rd?0in(2LfwvAHiHi6&FV`ftU#1))u3)^FPFGT5>>>0~JrV4$WB+RB!hp6|u_ zZ4yg#;%BDt2YxT2_oYO|s)`PTBx0G~6N&NRoUE59Vz{wz2J0=h~{` zz-YS;%YG_FAow5!V0xBu2WOgMV+05V{y3~(Y?G;+`rC3j4-C<_u%uqX(z{>D@3x35 zl!WrahSoO+!)=%tA)V1Sk zOjUGs$K@Z(2W|OhBNSjA>=FLBCJgCdTYo!<2y6Yn3U6gSC+ZzBBU88l)WJm;J}FTW zUXHT_yIGcVE@$as%a2vAlpP;e8V<{W%@5Lou(yN3;Y-UrI^+MVmjF+iQO*%{mL4M7 znb7HECmVtj6^9e_zIG@Cmw3erx{J^o&c)AR2ubp2pIT|WpipFs1{vOyM^lrAEE_vl;ATa(jSO6&W=o;f~`27njzAjNZ&lj@264MnZ&_rIF*6K`g`^z zc;n#^-Hpn5{n4Wr`IOVK3?U5BhV7APWEiV2ay%#U=mvg{;Z&2+iQp{v=|%7q;~{3+ zVu=-$)P!#;?jhnI>|HJf%_XwX&p<{@-+FiCyH8nLI+&K3n`zizxgSQ4dhhdrO1;po@+mITh> zq-u;jy*yFb0%^Ex-Ow(Ch5|5k;aBKcAwuG(&q3k@_)6nV-Sk^dvcONPuxldKoJc>2 zXZ9jZPAq-vAaq=a8n3L?kmQzKSM!SLD4K8r`&NirG*Oytx=6qJUALt}EbB&FG;lW! zSdU0lOtZ)%kI)w0XKHKoE2hF|>P5c_=$DivW11@TtKXYf#8X*NsAu0n>X$oB*kCJG zxfr2kFl}*~u-Y2;ifK2Rh~NK~4lQnxmZOO%7U>L5aRwJ6;Dy)3s>IQH4n8N+Ak&MW zRGrMu5s-U-f_FQ;FRaO%UZ_Ui>?Rj8x6IoURAIr<&R~8a zMNLKTG`)T{nIz3J6Bx`WB&?~|J58vcKbs9agp@VZ%^{=@vEd9;IJSFk`nDO3Xa(Y` zrbt7#5>Pum0v@&^8gk-Z=x{uJ(;#`-xrDZ_2o{YM8aqx9YZ4Nm7F07+v5-WBy6~Dr z<}2q&L@HdBNNtZ-Z8c2+_|v2Ql{g1Zr#45cj6+5y{mPCWaMT8zPa7p_RV9vZu^2Ap z%uj8OO#X6#0HD+;*RoG=jro&v46%R`fs?3&(GPHS8?F2Cg#oSmK3DD>LeVP|M_qH=dWj)()dn~pQwBZ>4~cPG;1`~U7x+DW8#fuu*^cSaN|Pb8oakUG&h zx?XF2Hqr&xzYV%U2B|i*?tw=*d50cMhdMnTsB(Y)is(VJk+`F=%q?zx5Q1>f&TahZ zVm*uCZH@K~NY`+qnId%Kr^G9b`YI4LH0l z&AAC=ixM_A$lga*ftLi7i1iZ0EaF?ZMx*0FX?#sLM0`cPKm?PE88D}EGf5q(>1G$;^_y6Td>Q`gY=c;8u9tkMcf!jJC&yUjTN zX&vfLP>ty5g;GO7BANbp`es^ep~XdNaop;D$_~$()3CKTVT}Zn(g|y%vm#ziYtHyv z5}BJsHRp4wZ9*J6NyFEx;lUq?G&HaXv<>dwb+=l~rj1~}hgJFhiZ-hvG0PT3E0Dh+ zd8=_duRuM&V8y`U6z_I5B)_p3e}+|%49Ft<8D?K{B$NN{XMJpsHZ%UT(O5U*t!NY# zsr?`_0w~J11bfEFiLub(MEXWJ=9eJ^-yj!?!mwWAf0LuNjuPx*@y8kbbHZ~`!HOoK zbd&s3$*&B>6~T?S5?mRr-e13(*=4g~l2s+vb|A&~nV!5ukK!S15F7`mai>_$Fr z^fuG?(l`XyY-aa(ntMAmcM?q{QacHr`65V2uwEgEaCkveC%Ch>3pa4XLwdFt0rB+uKSUGr#h3vvuZYZ0t$5LEf|v$6iv~y+^ZO zPmst}L7+DksO`~fdeOG|!yrNNgW5(o6)8}|m1?+emEhL+!X}#u>o?uMnYIW1o3*We zZ{geeLgp)7)%LhG{WKZsH}VxfsBHWtB*~ z0AqV-L35M;^A3dAi12L$+k&u;2#+U&{>X_6olm64LWM^`g^%-*&HRT76L{HoG%}B) z#D@|P?8<#42^ArZGS%-yh%c!pvJGmnEGPQD?>!OXlXwvXoAww)S;5jK?KUMU30-G_ z2rq}=rWokhysNgwiwE|Q|bbEkst<6h96=mgzIAf7gN zIa&7^jVLGUs;^ES%#(GsO@`D;DMoXx9DeqEZ1vI|q>4z?0q|I?`)oJGURTsSorF_lOV!Wvv45 zCl|L7t#ShIKLNh)An+bvWLSR4ih*xZ*9-mmcrY-yAg1Ctc*c0t<6y#G%N(MIO|e_DVxGVi;Y_|9csoAjIz zv(L!wcSCtHulWSOli2Hsg2dk6YXL$g_HJ14&eXP}*n0ug)}%t6iR&$T4{U{^Dt9te zZGB|&k1&74()URTstPWxkD4U=djX z)gJl4IQgP-DXA}{TJbiiM1~^*6j-X<3!HnM{@iffsD|^^$amE~_GP0Wg!d~gaOKKG zXsvQGMV>|^y>lz+F?iq&-3WLhVB~E?|6wsPB7o1&2arRjOz=FK0BDE%= zJcCYg={{nTAs;!7*6(<{@)$-p&X^+{0aACG(VWBcQwWLQpQk2IL!y+`4+gIE6FtM9 zA|V4B=DVYn2dKD8G6jk7VkWG0AIUo`-wR}~Q(D~6fmr5mLR3?lfI6}Q@+6)jt$4`* zDq_L7ngXrg2grR>cpZyDt9DG9s*^pCR)){8)SV;nJDzhbogs_3@5$>5FdkleAq(9getum*%$fSpfkwsj5DvCNfO<-#J&SzM_ zXMyM0FucXl)Egt`wbmcYIg=w=)Sv8U?8OmVF|z@N7)w@UZ#2-(-x4;wMo_Nl{ZRE~ zvjowK1(Q!FJ#4EY^+QY1p)br1vRY0L<(_TMu4@rijo1qCt;qg{kF}L?8p^COG>U5Z zBEoXDq2feJ_EXZ5v3+9Sl>ItMsq}*$2hYwS^tbKKwc%!RR^_^xBym-z-JG`1{UCK& z(9N6Pbb-O&Sgdko_IJxv&L&hxn3G+(+HSLpHo0nhx7$GScFhg7ujhUH5GlCSUz(yn zek9no)?{arluN&uuFmFdb9U2iUTtTgxojt&t)m%+n0=cYdXpXZntk5u__E*Hs$1+J z=6aU>=6b8;!;7*Pt+ZdWWlJq!x@rLhDUa|TF|`~fm8c+);Nbo%Ejl>x&9Nbqoav;| zy+sxf1;v2`nre=(-)|6Nq8(pz5xc{X--yIpG;AWqBkG#Lj=CaQ&9&HaEo%3d{N@aI zALJ3qz2d2((MoH=B5O%iz?5ae`xIR3@{M4mTSfftD#h=v>cu8x6$%&9qVfk@IDc!J z(B;%&3&%pfCURwbjpBFLD1LVhUVd{SwJQ|AyPPAVbtWEJ_1y>gOcSdklYf{HOGR6P zUM^~Xxng*g(i?g{`DehjkKu)06cWR`*kX8d&gz#iJs8&@_+830DpD@&wuCZ^kYG8L zdC#R?y1an!LAd=bn7;OrkBKLEFMxIN%0)Tj_Ci926~61-5H5Vd+pC=`PHPmX%bK)Y z-gF7}w#6hr@}Vcvh3g^KzoPI_{jE7_r!0;>+Dmuij>^k4Mg5`C>Jnd!|0CahSji{(97O+P zR`jW`V&DfU=xSZq>|YE`Hw;Y$L;DMMPwDK`c7Luwd=a9U- zHw#MoLfWkpZ$9s#xUAoOe>9IL zoe2^?WeXEPNoQ_PQEF4O=9J(H=n7z|jms}iXP|$dGFNx>DYG*k2lpMswQ>BtO_>`} z*X;cRqM#y=0FYAx5C^URr=7$EPy#y_UhfWEG6yoF_lE&QbTP_2@MoQsJLryl=WJHc z(Hu7vp$FcD1A#+cVAoL1O$X#ov(ec+6uU~y1G*GVL#Gq))^qt2fTHBM;hfO1{m7Go zaRPIqX*X~j5RBU8qK43Otcq7{hK_m!_y%1t1lVG*w=qA~=Uno#QJIXmsj1TiaXJZM zE>1Sik?Yy1q2xz6-P-CC-iT}R`b6ra@Pf3*m6ka| ze*bfJhCvdkI|vw1UffDVA;Xn9Oa^4IuKJ{kqQYZ_DYDzQAZ#dw`zXy ze25w^*cD!`zctIvtqb2f-HmfDiPgjbpzy1~_mN^WK8+OPmK#a^+Ov+Ne#Mo2{??TP zKSyaB`@ekT%XO@+Wkk^UK+m=RZREAdiatxM7&w=LZsVb-zYJ3a!&JdA|4LoG-AL`` zNW;Ad63P>*IM&5+_BNhv&)LoTE+P}_jmGLA#92CS`xtW`FJ!IpI~O6|0z?W3H)KB) zxGDdrI3UDRxKa!4+?2n`<8~l-7mpyr(bN&tXUbXxh zsgrsKf0LQg>7odf(oI*2%AWZMSCQ{NY!oIVq8a5-Pfu$grbbuOPpTHA=SE(=S9MUN zSus<0Z0PiD+*B-uipRzs|K(@Fxho$EB3glOS(Zb45>@+g1!~1^A$u&f8nn*Rl=_PL zQXTalMWMMYhXAbIAGB8}sW{qUj2pw(M3AFW-(9fg42avTN ze98R%iS<_XB)O|QP*UY=c+poM{ZcPAKE`rGmyRLFbqAU{P)y}V)X(K1c**dB5ORHD z!eaFOd5+0AO+sajuM7|dTG9pqvzx47)#a?s%4@mPPug<($+7@pCX4`KW{v>imvx<+ zP#+*nazOGzx`G^m^hiW-5?#1SVybQm?&L^qHvmn;rps5vB+j1f{ z&0C^Xr^XJKYiLSbAYPey3cwLACPFV`RUeLqM0_Wp{R`+vKJ8c1V51W9JSSK*R+4&NLq3%I3 z{7}4dn)S6|CjuRbWpONeOBqgAVsSet`QK%MxzP7G++xfM!5gY3X65o7AFJQsm{l%| zZsg%M%xbMMtF?|zLJA$E?;mX0_Is)vW(?%xb19`^<3Vz$YmU^(^W! zxymqW%qqi}32e!PkE^<=NUm~`G^^yoP%hkXF9#)T{7zPv)N%wtwqB#m=MO^`OP zHIl|NtE>1laQPuC`jlBQu!O>xm68V6)vR^QYOP~dYaO%t%Xjs5V^(iP8mbN&0}D$_+xJ!p%TgX?$}h3`ZpM z5nce;>uLxvqjqw$ps_T$xjn=2+mb%DzW!(;(WpOWv%t1=%;t_9NBe<+S5iGkLpSu( zD-$*wCQsN5!?DywK_txjHVmiauRL=P&B&iQF`3PsGnvm*(a#vQG-2(TjBViheAL%t zrl_ZhYRhFDGaA^HYI!q6RVL_6Gt0ld+jOxjoU>a%^UWC3zOz zfQo#toq+m#eslt=%Mye-=_fq0Z2aq#8;E0WF}NxS+)2zBe`9lAE5J*JfEu*o-_xcD zHgl(uqu>0-qwFT@a9iOyQDxbGl+K_xS%2m`UlJFvIdYv|Ky}978kdu2w9Cme&gJB( zb~$-!Tuz?RE+@}8<>aX=`22r3Hgl^h``qlxf!9%5KNM15gyg0IiA;qTvLyD2&A6jT zB&LbY=qQr5>Lz80Bi8Cl!qWIlw3)KREjQVtHPw#`*c>SdY2L4m%{*^KpP5z+{4Isx zG`!THb*UuDI)EtL; zuGX}FYb~k!8u&{j*bPm9i#WAZy{@3*?bK3VA(U92-MsT=$hIb#zTbHdo1rzo@{@3;%}~7RNN1ZNBugB;oZy_> z4BZW`CNh1o@_U9f#F16xc;hV{65Cu1cCOeIJ%v6g^UtNB&LzfF?QPoZT*F3Pd0aOC#J5=2GT3wo~53jG?m z37`TbK*i6c(QSR4!1*E_FoK{1Hz5c?7CY@Fs&KWUAst+$boozdZOoGKd5NGYq6P{l zLTxypgw(dgS6&be;wuMI!ED=6@{^FmKJw^??3IIxG^*Tyy(+5IBxEL*#+vZTK>i&X zbY~9T=@DLJq2zPxUlSQ4@ElhvpBLbJW)5KCE}zI%5Fe+_kR6Iwg!xA|*nd=D0Ak5X ztDDTW5pOcvMh(t=JWMtj)7k%XV>;clt}NN+%JTJ;7?0LsJX$N`(OMag)_UX7s`||9 zx7#M#ccY@r9gV`4gX5q!*YC;}sj@Z*|CL*?-*6?K-tN%)sXPvjo92W?Td42wj2)@v z34f#i>6qJyvJ2HI8y}NV)m9y*LVTWsp~;NSU`VzN_2u#?CkRx{=co)-FEbKmxmXH6 zr?5Vkl7)OM%G8z#PgF!82PSf#TC4Qc3YX-psg1~3Cp5Ws!W8FBZJYupj{OWj0#1}O z#=DgXyzo2%r>^0mXSfv2%e72?AL{6LombteK&M(2@_09XgdLg>fljiff;&yF6c2*e zf9l@!$2sdq;vaXab&G!_y?o^9SJ{X~8h(X^wd0yhqIE!*L$}S?(j$C+l)N)++_q=$ zHKg-tK5A!01z-;C)zo8?t^O`nh zCpXJrn;p8tRytd>&Xo^g)@9|h1uvsUR2p}mzq$)+DueY5v+AZ!Vu8H_Vxj{9%{>lg zD^qMNop1@REjmXzuA`&Yli@y^vLt!Y$Zf}?C|IK;Q*M)jT5c*GpUv;^EZRvunn(5j ztZ+Dy9yTZ%Nz99-A8;Goo{I9dlWsn4dtM?AFO%?V@q-UzO^u}%TBP=_77?$oSsH4# zIHkrGr_|Wulp0%{Qe%r#YHV>zjV*(Kl^;$QzLx*MimTIB40)KMy~v1U+C6E{>&k0f zd3D^CL#ipIxzNFv7D#%f1(IG#AgS{Q*&LZ<$z!VajqNQtZ0Ju6Op@UvAaFq+-O0n| z0DIy%$ptsLF+OgVU`}l-dsPzzO5AAjR&35LG+Cs-m|4WKaV`T#a7Pl6VW^;IcF~i} zgUDkz5q-fLScqqjJ;t%7VHbKO!f*Cb^&+a0t59vg7;S>FI0&WegWi+HzX!|1w&>#Rs${XfoB7){mMJC{VJ~lHea!#_9HZE0ze}qJr?h z8~D^Z@YzKZ20ltuY2cInFB9THm^T%I(MaU&++5`Cvs@*hwDLnhS>*i?e#%n^U5Sj0 z%=03T{*xJ*=iz*YtGrBUz>MHPq}%~oEQOaB`$~d)Pv18j>8wJ~k^>q69YU7gQLk@R zKO@QTwK0o3Dfp=F1vdxm+@2#+TDlgT2NV%*D8J`GahIdl7MODE%?+^-$CX-AdG7Fu z(w#m;g8K!6S|UZEZ};*<=LojzQbHC?*DV9-Xxf2)YDPa^U|s+539*;HmrH6GCMHs< zLxVGYapuwvvaWj_6<9CqgVY#dHEOKJWl)hgKbkzqF@XJC#pE#)MDDbjqYGHVzSO+> z3VtQ!nsOuCdCKRy+GCEHyfWTuk1GJuhP3?H+C&SB1-_wr}RL?N9h=;R=?ihrJ-j)X}`&pj9RT! zsFnU`X+8ZBEcru{ZsCm^?UbY(B^qFj;KNMt`))|kmUsx)w^<@Ob};QMEw3jV@>L8? zv!)d`Gpm;c?X2`>tgPu-dO#@_k^afo}YZ&PC z3Ebb+1=@}XlDZ1i!d=-taMA{p?c5(3xhUB4Lq{GCs!~Li3cK>o`$hFO^P50&p{v6& z2CCFkm5NpAd@7YZ=PH%_#8u*$146LosN&_SSk{$F<&U{abjzJ*b06~FoM<#ty zJ@>pqVNz!WHS#PtK0@RJglOz1SR>;rnE^((;*5$<*M_yV5b#y%ffni%3l*O-Q~)rUl}s}EUMr90j#7%z?eNkpJam#r_{mKw0h zgY+TS>c3m76YxEr179O+Krswc z%c^fG>De^_kb24!bmw}%{IS#kQZ8`5&#L-EZ84RRp7>X{+M6}9%{I!-HcF?kbXqH5?j(g_p^>w=fsJH5IJb_iB+N}?6XGA|T_lGjiHw1!SKVEYuyeAS z9mr94T%i5x7WNumj#}r;B9dl_m4_swDc`9Te?5^I&x$XMJldCcfIz$n5|x}=`L_6< z7$5A8pj>~-SLUMK$S zb>h!nC;sep;?G_u{_HjJ=hdm2;o9!2U0L$7E6W#HSywQ_mEE6oWyv&GmQSSw!otn` zi8q`0(=0GcHiJwH5Px3x;!i_sH(eg1ih{55uH+vpO1@}Cc@2fhKYLC7+3Vz=y-xmN z9Fl)jMe>g;OM1An{C$*X?~CN0b&-beBGRC|(8{xYTd&nW$-B&Tt#-h51zU6{t%39G zSXaL(`?)|2f<-$qXaY7^M-1xCT)R}Lo@X;l%0_FafaN^#V^(p24w|gwFgzf^Y_op( zaA)8gC1L*H0Q1v!$c;LfRF}kTOFgr#3i^1|7}Ie%6?w+AP)x^Ibx4fRv!NT1v>cxp zU_1yHdc-ZynBw@wI~LTQ_jnn{=ouYV3w%g($J+hkpC#iAwj42@?{IrvAmRK2KTAKp zUbyeM3BR*G#8)GehFiBywrNW$<0Kx4JbjWw+Qxp=6EIEpn>1n6 z;PM#xSOAHa+=CwBteH=ny=?P!9Ug3a=1#6+q6|5X5Hp&vADhl~q6q>Ge{$+I)b&Ti zW*$IU!v5;R_Bw|k9)UkAfqfaIobJU63dqFhLC?E&a>}quvaQ=iBkh|+%0`e(y zK|9%AK=#wXC$zv!xEFvCQ{dUgc~SWxBkN88#U1jq?z(V?Q+6Q2oDF`ERGbu(4@RBB zPi?_xzHeAw(4SIR{g&3-i!Fj7QLB%*I^83#PW-KWvBh*bh%M*3N+o-ySVJ{$^%6X( zwLG!qRel7#$``mw$+ud`mvdOm$t!KaCy`nJqP;G8p+6E!K1umC-xW!z9@s?@fWXir zdXi68FoP(5=R<{JDvMB*!MI1!1FRz^qRe67)pLw_&kJkebgw6@FIZN#s(t15>vU+O#Q_<7|XtSPlFl_rcb2Uy4W4AC252`${HsXrN zZOu606nZ#_Mx}&Ko9KqAR>%=geJm>Wx9FYINws-W_e!m)$N@67WC~v}Z!AKI2rOD24IRP$`z1zvKkd`|iP6-EM-Vgn z*`Qpf{CRBY5o|*UY;oWS&e>cxE{RNjzm#7M543cNJiJD>+=in--%DoIUFx*A05guM z#h1w62qET`MCNM{(3c~R{(@SG)XT=YaLC&r)+G)m&!X(DqkcYn)1sB|#g+FB#-hJd7J`66F^fH0rL;#)^O@A`y!olh2#n<8{d?4p`HE+i39 zcUB>O`slIi+t(++g9ux_5MOhVe}V82z2V%bJG?+lAl zBLukVjpQ0&!#YLaiQ>pH<($x)=!{oW_AI+TGU-azI=fMD@*c-eFl8`&2CWZuK5pve zhF!;Cea%kBOU>MH>lmc3*~vJmnHy#ugQKR6uL{R$Kg3{sF@d&0FUw1Q;Eqs?igkR zUsuuuFi87GXXBJluS1LWL_L-|3FISvY#s}339vzVrgYfB);MvW$`d*QxEt@_PWf-i zEvXO+aG|=SOFXn!uIt+k2maIegZu!0$yFO1!1HKd0zd5B=GLRZgI3X_f#5&b+>Y2s zctk!Pe3EWCJh1aZfm)?SPym^_bT(8FOE?QEobOP}X8GtbV>e%>O6-^{*n$gH+qDX>#! z8|^^iH?!B7!FOXeOv`%yI@twe2!5qS<>~AtL?`QcUo#NvxEA$2JB{#QJ-(_r(CaM; z^m?}#8`Q4kLDTEa;pAt+W!V$ULRW+bG=E3q=Z!KCH*c5%m^^6KkcIpmX+H=;mT$)DuPBL0q9*^9puR`yfO zZLDfVWYU*4t5u7gHFV&^w#7;kL&b)xr|!h_U$hfV7YACrCrl%U`#{bbYAz<0z%fMn zz24``y&)bMwmp#<*V}E4?l#Te+(c-7tnw9>3O^OxPLxtn?hIy%eU{$BaJ~BON4nF; zWlKv`9jf2NW?*;D?c_f|RpZWfrcHdeQ`qh9rDw_APGPs(DeQJTh23tau-k14yS|e& zleOJ@yRxLrmF2}&))k!ij%{eWA97{M8?G#WjZ)j`9sG&!FooR??bMPx`o$XNqp07W zXRkCv<>eFUDT=y+=XjNc{l8X}{D&3gKc|qUF1%ZR8HS3Q-A-S}Fj$3es0#YJue!42 z%dRZ1qda?8>Qk1m<9F~FTy{+FU&Huv=HgH3Mp}&(=)tL4|7!MoVquLasKuDf{4}YD z1Uo_W{alfFLMCo0W4wv!D?D{3rda0lC}ZYE9=(l6%1D_a=jAD!CZwrXiqRumh=V8N zAr_<$g8&7K7(u=n@|U^~;4Og*F6W)iBNiOJ$t&1OZa}Rku?{yUuU=_Vjz=sUUTFfi z_PTxM`O_1n`5JIJA39I`DtsQX>lX*AwK9HX@(K^|bE$qVK99)`UI*UG41lk;o(kv}>AsC!M0SiKB18*F(t;_T~|XN9iF>)(o%(K*}Y zod6HGu${lrlhpM))=XR&O7he1^9(-@B`vHxWam}y>Z+aUk&OTS8SADk*8lF-)B2h9&0N3gjK%5ta@Y-H`^&$Vggl| z6Xw0O4r|)Sq`$?*rQp_(07>0nN(nWyi1lV7FpTJ36i?B^UUXQrdC;*fr2Nd*FsE|VFqGRC1o znzfhs3~kniuOYHXwDv#rK+3Ja^JIN2Jz}`D7Y^v1{ir42Gb3|+rVoK6Xup)_!*nQ8 zeyO+4`>w`$-;H+OcjMZ4-_@*{M;e-gO7$Z7MMopUj>R*#IiT)hxj6A*o~zwFT3^t?8}p{8!qja0mcf4a^{y;g;mYzQlxOdb=SM$*wFJQG?MJittf51b zCjZ}c2P&-1v8BHc*wUQ=TiW>k9NpuJP^fk`f3RUDR$z&x-# z3_{>Y?jwt$>=*%1^ifY_)eP(yVfUa%Sm`~`>|w`9%||dXh6K@sCCGHN6HiL1_~l9& zI@ZdRW`5ILo39YGv{JB-1YGI6{49e{R=>9rrVoLU-{z-)Eq%#VOJ?&8J`gZY`?>mW z_zekcK6TBVrN65?CfiGGwi+1oOsm2c}c6DQ_(6<9VN$1omv z!q&(W7I|Vf&#(YXRkR6psrJZ-)o6-br<{4mykb3+tD9eQ-Kq`0-`j9vdVsV;UI8=W zoTy*N2=i<;h!_(+&mqq42JtH>xIh6*4g5&yxHE%G^VSX=Uk=kKXH}fJM-BO4fmu{$z!fk$plxaW+&E`;<;)qkNbSxRVx32tCZYn zvS*@dhj$WjzFW>FbzHU;yg!Ucp&d7K?XCCQlGTPI-aL1;dywaPB+G&FB0UH#Y3UYE zpBGP)W%uD??6{w{W@0!b6$)Kg@M#;2U4{>cIRHlGPOVyhjb3(5rU3s9~aAzysaxfU>D0L znspxa*kfBw9Y6cNDwGPg+x4bBv_U8dA9zID40DzAN_lbaQcl}Rz^zcqJ7bBnW<-&x zB2VuFKS|AESd>%7UuMd9`PR)GeF;RllH{l=gCh)*-}RRo^wy?uGb*qJ&eU#}{1WUx?4kQ`L8Pqh>)b zmqD(yW zGw9p|1f!2KdUS7(qbo76aA$S_2WaICEF4Jfcc(qU5o4pCFc2Vjkbwj#Z~>cPj|dz{ zm?a&R9j644UIvizp3ccKb3XP%ZCqmwC(*(T*o=6yF*51rIJ<+2l9#-bCJ5qb2U|J7aMp&7;jf}paW0hC^I zrP=kz9K=^!2xQIbUV4~ZZISlXt1SdFzS<(~YgStbWODT&P?KX}^f&&BMJm?3(o1(q z4pLEf)^O7kGn;O(C+Q9wn(nX}=??pt?yw8#4%?Tr2q9U2m2PJnTDwScHYe{1^jE{1 zD(IDf_s$S@vYvT!}7ZjM{pp&W>U$+vl5OCo6UfGFUKOlqV?_IXrwglmLM0k|Z41qwiJ zA9hh2-%~civ%vjtj=oE{A4VSt?8 zj`?Bq69Y*yMO^x50h}^a?n!58D?YdDCgh)NsHjo4l0%1Uh=Qt{Mc*db#9iE~6 ziDEH-_=mXV5Iv*385~?y+&hs@_8!EJ_6`M2MiQrVfIKvQY7;Z{2gbtn%zK#=OLYhj zRCryG@o?5e&2wt%<5tXUQjwWC-0o&=wYynrhbk?0H}x3`bhZi%l}9NB888p?6+Y9r zj;e?!`>dF{)!h|Y)fru^$TVAPjkVUy)H~E@s__xK%S>@?E3%xnr@MzwSusm}qUpOS zc;Q*Qn>yRwHM`&TSuw4P`)oHW8eM-gi|sd`e8$r9G(RxqT%vMD_a5#hCT$_{FW7{+ zFxX&{8hgS&AQ0uU`CYU##vfW#y-fNO|7tE+Hfl}wN^ao>Sy}d-Hd)Tf>hVb zip+3V+^v>V)ASu0tFU6m6f34qbPu0##bOEud#}5Dgra%)Kb;GSma)&}G)jM#bg^IN zKiTB#h9@e?Z5taDCv6Nl)#-z>LIs&@ETIwh>X!v1iOMVp5+mmsI=>YDFq$qTwk~lc zFvqRrNGxoN6yJx_l;K_;v8SMMfD&-P7;%9H5!AbEE-BgcPH$F5}xe~b>@q}EkY&V}dDLrzNy zt%9w7J<0(j!Yu2GYu}|Lg5N%CAD%kfip*jwrmeHW`|`}(${jKY4nvlTkY1^`ie{Yr zFTh>2!2}UJVSZ~Hal%p`{W({_)+5w&;E3$J1#XNy{+hgDwsG2@bd4(`kABm(;;R{e zIqoDX-#`?XPYm?_IZG0PAif9UciX7PzVn93;;-Eol`L*k7qU5}YsLrCQ*&Hh9t(MH zGNt4gNmQMXM4mqi=iXp%!IMxe58j1jt|iDx=2w_xKCM|}PR-nB#jF+zWHR^B#wmK3 zp8B{Indw$o${=JWbqHBaoxN?;^ELuHf12JEh545G#Z>RYGB59yy6}!xIrLNQ>&JH? zewtfMd>4*1_5!L)z2W514sX=#>gC;HYIarlH_&714JVg&cq6$BakPc5lqPrKNMqj! zbefss19~$TeEBKwNTY=VMgPn*gj5nt5YwWrBa(K438`Zm ze9cZ~LK0Ch5p@ioni7qPIwgIpn*@5(vy2&Vt~SCBHvwq}B54DW_P`bZ+Uj`Kp0P=` z;=&M6*+3t#SPo1HV31<|c-yEa9u~aov`vJ02kiz`Ug|LrlGs{juC!eA2w##2p{3a) zmmDlN=84m|G4gOB+h3=6@>dk}L6 zh*|sxbIxINzmAQ;ZKHla$sy*O_gzC*-;P(lO=3DnHl~V}n3#RcdU_&o)Zxt0rRJ#P z=?NphpQ_3Z7I~V4VCJaP1`#hcMD+7IYc`dc-o;ip+Lq4fV>F~sgFMzNI;4c$Mb1W# zF{WDH3fdIcg*mrGnQ8rQ`11Cz#M^o+*gNqz@ZG^=Z|^x6>+qhp+4C*)Rwdp${<9D%9%)*E9?A%I*wq=>YFGEFOaWw-@{T^?!Z=44 z6Oo6X4~X?2#sFm!b*k)kh~+I+iO?Gz(CZt#saTdXp_de8p(iDefn{evv1c9diwnIw z6dT|C?(hp7a&0#{G@I(sEYoBkG|g3eWC`!}o;KBc-!*>ig;+appuKnlwc;1LUuT&L;g_2U>KlE@!^cjhK=|cmfci#PJbno$J0mUc7QgB`#V^z0bdFQ+_r?{|?^A3K|N;dJ@A&CNDlDhA`|IcccOy&38VFo@_P} z-eMeB@p3i?A@!Q*eYU05Y)LZ~$fnF<>?!png!O(xL(VkjE)hvA z>%a0w+kH95R^5_OkO}O3fHbK`fkl^d~@ zulV`z5d(U0*AR~Iu! zY+~0VfeX6|PBt3}&y9|H__=+44|EeM-bU9`w~C=g4NE&n3Yb#@`=S<8LD`q}U!D6~5X1cE$lpxD# zPNi70Vy5Plk6AZIJ@5L?xzN_TZ6e09O>Dz9p)E%p)-orKq00>SjJJCszK!jVy%FDr zal+ofbf!1t-qEwL!y7f**#6iKt7aR<33~%On%pJ4}!EK*8+PF(@-2n>euHEtrP!g$EB#$K&Hd-L5$%AqL z#nAwKX9VCIh+gX@dI@~-U?L%@M6dL)eWa&|Hq0rEHk=B1?U)VGn z1+!sj)K{1*ws9Uccn-F6Oh|id|GCw-7TNuP?Nbf* z(d0M;m-6yizyO)(+bqmQCmyR>P`^v#VkVjy8`-(Y<8ZJ&CWBjc@Rs>{z!k3^i?2Ws6cK2d3%KS zaMP182;JbxtUCf6bcdg^?g(4Z9bU+~BN)Ls6zq*m(%Br@M_PLrD6)OpFiA|!l7*T{ z16e_DCAZMozf_0nCu6CNG$~|>~K3t=?sAUM>9X16_CFu!^8PBB4Os= z=w_!qNuIqYVfAF8Sr<-c55bP_n&RyVP0U9u)gp_6m;`ysQio#csFG1B3l+APQDk!2 zW@ZE_JW0ZJ8y1BF7!l6H2mmJ}BKn@KZH);;M0PL`MCa@ZS+=TuZR>I_Wi-|9*{ve2(A&&kg*d6^?`NM3=I@8P>W~GrdkE4+0Kms=?2s%gWqj%P|wDT}`%+z{#6) z0%Yxu$=sr;XF>Ft&t%HV+zOP9&8@&OGF#F8WA)qGEL(0NF7Y#!NQd2egjafCdoz(* z488F?j=efota4$r@)T07+i#HnyYUXbOFgU+lFczFq!Q2Mjq>Jn@2S(jwOZH|nXF8b ztSr*%>fB#8M%vIBy!UJYK&8A6-%j`gCJI;}fdQ|CRiIjsI`EH+lUPUA?A1hiIaR zGeY>ATxT3?%sS&>6V@3Ai?1^dmRx5XY|J|2U=!BiPgzXU#WY<^)5Q>sx;gw`#s8iB zKOziR&!3w0N;f=uJ$&ZMaW2t8yb8|;MMJ#)jk~7!E-vxi+?ea)OS-ata-gz(i#qnb zjpk^xPJcNOQ3WR*s^GZ7;Inc2Y>j<3nfq-0_hW>hmFb)AJ1`ub4%Q>Qj^qCLt^PGu z>*jRX)Y&XtWb$uwtM--txm6oIgq5_Yi*2zCIV5e}ZsPY~-8RKC@gZIE7w)yzg_~y! zCtepU999z+ZhLOwetm|8lazMVD*f4^KL>5$w%fvOcMG@OE!=juaNFI&ZFdW|-7Vbq zceQZav~b&O;kMbrZR_WPE^vIag}XoJ@6g%$Sx=Ydy1TK{_1kXix81GZcDH`pZT<9h zpLo&tc$vGfG= z5O}{N(s9i8>2Pn%Z_gNw=8U`HNS`8Ck;aD#z)?k`|2G^hLF{g7E=Vs@1=hln3A^Vc z%+v^UAH1Hj2zyZ^5{;)D)dV7<2m`w|Q3|vvA{{Y{WgqY{(cPEhsV%pT>fJbT<&)fP zfuy~G^tuZ53*Kj%$#kiA22X4__FBRiXN@6RmIcbhB<4#@_sn~GWEqYK9 zsW_#paVG~2<01d?JgqH%@>cQk+9A_aRxAINzZjCXU+T&ax^l?t?uWYa?fzoOdM?z3 zLdC`xjp0->dJyNpF^VzdIHn`Yw@fkS6djqP&&N;Ek)664b4neV!++>PZ9$oRrnXP9 zYrVGMe1FmBT=&ZgY8}37SfqA^{v3vutmFR)Zn)sj2}nk=WOYL0Ne+BjWi=1x`-_2p zv|s8tX0Ps)>Tl2=^}I)!;?{d6Pnc9a;Y5+{CY-p4Vf09z=tW=otwMJbPW02=gcC^B zN{vX)xq5^*PQ;2d+MP5s8DS|kGR2P_xHK7Za_d+)YO|AyeadHz{O9AvIN8dpr70#g8jr#5dPK0Em-$Ft=Y(WVuNU2#j2$o%vUr)6W&4eN-M(?+R&}#$! zfPjyD3V#BVRMSp&pLGZ;LY=R-HMjQxMTJPwE+f==h0S?2(aehA_+z;o>Q3YuurJ z(M;KKH8bvz*vct2Gh{LE=;twq`{`3dD*UI$9EKh&>?YR3VQ;G1XPRr?I1HoWiv$1B ze^K1x!t3?L!Q?Rcs+8wxTPmU-j54NQmau{@=;f#mh_dL8$kaN zc#1>O&=z`9|BNZ>PQecn?f8L(Z=Z=D95j9~KaqMdUbzcIay|&D-R$DfM^80~tvnsC zBo2e)kVw6dDSm+y)Dt?!&sYu^Hb_wHFsuV233WbD5ui?(t51(AGzJ3dFrS7xvq77q zOqt0=%%Z-^K5j60q51wyX50{DYV)&3mb(_uA$`*04{AhBU3foqA%rMdTD_n6?%IOq zhXFr8e@Fnzwk}h4p6bQ-OVBKh@4tvj-T&2BI$xCvtH4uRhnoEoLrZJ+6CGY#QtvBW zs7l4E)Kx7d_XC6B7FA5{H~6A*`7mGkQUMzE%c>%ilIpDs9q^D8P3hFx4GITuc=f}Y zl(0>Tmks%CaR5So5@MnGf|T=a7R1zA{IKL*EkCW~@u-x+YpXc$zrOr$_X(E&4X(8O z;t=m{`9&)KXUjip=(||{$9<)0K@V&A#%xU;YKX-STTvI$wTGf?xiw)qkGl z{{ve~wzUOj%Uft{6c-7xQPQvVH6q~nDEUvo`Q9&}yAf78mMZK^gkC)x&cE~_((aRp zLHWA=ooh5WdLO;)RDC)+>TwB?L_6SeB^nTHs4@dC^>~d*yUcIF;$%Z3K^AQBBDko& zek00j97~ELu%y`>Y_R-BRy&ex;Tq9`|y&v=|ExeXTE4aGw0>j>GdFcbZO_(e{ zY$SZ|G56~0++KaZfAtEz+FP%_p;xcct9^O3raSSL72{U);+MCpiRk=-UWRup6uT+7 z#=m~8ULSm|o-GnDIaj;{y2YnqL2(zC%d@&Av{8N`Z;?IiC=ZhB^-lTz8yLZ`NYMqc zswSS67GJB%+P_?Q34eN)T^pHntd%W6F*PTU0ly7EpWcrLW4{2EC03lsHXxnjy&zG z?M}cUGkK+7H)wcYznaiJ^^q-k1=i)JM5wv{Y?<8-Br+2UB-3aW-^aLvRebY$w~F%p zDlNR88n%kg-$LTXc`}?G2v%_!)p^xc@&Ec)KcZKA>s4FDkJ&2f)ex_aJCIw%AL!lO zB98NKUvGtc&|D{mP$$Sq=DwZkIz6eG|gN}^~Z%>;{R zi$+|%Ww$720>dDr zU`83jCMGExM!W5yIaz)1GU4gp^pi_e`ciD`@$}F^(e&86qv>xCk4%<}0n)bHGdfw> zGi5JO8}o0od9-G~dAa0w!UpfCvQJeuMDwQtXzLPv`g7fHuMUjfv^_9^F zB|ThS=bG;G9amocoRzisK7Sj(r$q_!CubfEA>7cRI<_N=^f9H5?n%;R_pxz@duev5 z9SmyRVeMp#CLHVqaagFYO*mKq6xJ5(8EhjOa)CZ0dJ}WsJ4JT~(OoPt2d!Id>_mJ9ehFEnS+uer98`*)jf%bBq11xJPHJ>K7${)62 zP`O}Z*{!3>0>C)P3~oVI6iov-J|RydN&{i%Bc5)fd z+(O`fRQK1`Z>-a@N5)xXk$aO9c*%heMA66;vuMxG&WHyTt+gtBg{uRDKJq%Il|Gn z@}_in#uH}0`Fm}1#e<%`C_ud5a&_yd0ah1=2T-uf_45TnCQ^qu*HkPwUiqZHifI?h zV^XZ;>m&^?$&cLb7Y!&LdCy`TOhM}R&PLL^@Id6M*@9t?tHACC881ASE1AedplS&L!`ItgJhc9d1e&&v@SEzJE_Y_g8S?h~7n9b(nh@l{-#5 z=5e`~Vi@~mZuWO+vXwJA)vQi1NODeHWjPzpKHDp)ww?bLTGDp5FZHv%ShIAd*)Ds> z*}hCQm~GNjoqe|5G|vWs6$l+^I9OuBUfZe0jS}sirg?!4Fj5D~^#Da@D|i|km*-a9 z+98~5SkZJ94p;J!oSX&v^U)-p9yuEpVRpNah)bIwvaM0(@ka zqUp~JidN3yqghR82y7}UxPn=Vhq6-h8~~hp*eOi+og){Jssr_}Ix;JyHDOBDh@6bV zqT8V>k;wy)*4>($+!UB6$x*=4JK-9~HKDx;CKu+GKE|b6`s?*DH5avXbX4I??Lu&E zVCj+5#Z+R1Kc+|Bjjs{Ggc_G1Kx>X9P+Bds>*zbXB&1dR`Z)p+#>+C+7JTRv2x*nO z6CoUb7bZeFVDQ3lZ%to#FiqT@K-rl7J6ap1*5b$5;+4jaT?ChSkVVl{(MtDMKdx3# z^B<;t!3y&AVKwyuwN&`wSZY44(AdtruGJjtMPoI`DsWjIqpr~{0mBq)OkIj+{=tBT zOEp$({VE|9t~jOY*N;krEh3>~crlRDK73FVIKpXKL#!%R#ov)4>#aproVYP?O8;$g&ZLaN`J^6wX zaz?9GMJ9bk&@3q`0@4Jd@MDPEnWKwE*27ESbI93WD44E~$y;Oz&VamGzcu@cXsmpy zHsBiS=A?-$c-LY%sw#b>KTG2|9tU}{hT$~QM6P-sk>|1hN|w+k$-;$Pre)2iTvhu) zMp)|kZdMmFtIQq)t}}HGUFz<}-z6Ga7^_;1qf_MR-5AACEZwKH{F$=<(vh=1cEZwt z!dx~-Lu>S_4x_~aye}4d36HH0#zLFomD|Od*!%FUB^-E4jv>U~kmf-#HKpNCA+Y~{ z%)JkMl+~60kIqD?hEC8BP>G;M1qU>ipx8h~jdjL8qi9DZcC7x|=+ZWJZ3xubs1(F? zI*fJe(z@H)b-%5x+i%%+cZ>Z?%YP7562hN^@E=8nAphmR_V+;h$)5ig&vyWDYP7i)91EF`MtEH_pS&s7k1vtQ4J^QoRSCzDP| zvDL$;6^vf!*K@X>tNCnD?G3=bA~mU`ztzR#HFQ_$fuT@3(QBHlc#Q9)v~W==ZW>VN zm#qEvj=zT0mBA9Mu157GS(qD|1EWSFXEO$~fCeEF!BO0HqpFd@E@b|c8&78*JOeL% zE=wiw-l|mpsZP`R0_IfoUPQ0+dh}A|UTWMpFLmFT(A2-r&6QipA9(W@`&)m!oRk`F*mAxtY|K?BzwQH(N&lJ(v`!1rc%q6A8~;N?(c@E7&?i9 z<_jKnW$8ndSl3YbNO6XxOe+{ACNys>dG#FNMzOjumw)R(LiKL-gKv_`Rx@&mW@KWC zW@KWCW@P;m&B*#CgZO-JZ;AHn`g%*4lXIApOGA^DAlU2yXRy{r^>8zR>A@~*H2f-Q z0=}x9Q*4^R!p6&i?nT-(lV!8I&ues<8@*OqX%@~VK3nYEy64utlKFQ@NX^&_l;qGB z<9)fp()=9T&Go%Gcj6h+qXoFv|CfcVHQkdd=zLn33%Tjwr^{VHCTA4?=mgZ3O4Eii1U&ccPVR#^2Q) z$p#@=*>3X)0Q|S&vX;X?gA&yau(E?{9sbwUErj2Q^-M!7q>#3@z`9j=|5CA+k~h9U z3JNTX`@Pi1yd)g%8^~>rak&m9ZJ(3aKg@BVMx0gDNi{XBjegteE_KIj_-z zO0l5xxPXv?gNy~ed#PhV@3^w`ZOV_#f?CCbT8#y@8VhPQ7Szfh`qsBP7S!rkP%A8G z9*P=AaGe5LtCB#Xa{2f%Sy1_aO5O7Ua3c7z5jbdBDSynO;EF6FZ($TdhT^ z36pv>{91(UdQ9jjGdDTmDfEXd&4ivzi9>M6sI1=>@y!PQ!d&yl}$$h&aX<|0eQNe`@AWGrWj2g zK&?SdeurH~*{7n+Vfyosx|JRYw_;PW;$@xP+`-}^*eZ2u(s7>Jsm{kE7}%6j6r;CA zhDMe7*ybij_c)8eVwNsy70#ybfJ8>u$Zk;KHj%jTGXy78_}ImkHWW>@x?u7pB0Zm- zb;HfRz;h^|J7(6GwrjRQa*mmeP|YgG%=+^M$y1~K0rrU#m>CSUgccgML8y+IZ7q8r zW=8ei>`lepQHEky#?1bMcd(J{j z)Wi{aoDTBYgx)*;4yGxe_;LabZglKa>1v z-0sLE?Y^%t9}Gt*YaA4M2`sZ$ww!3;uAz9OB=%EfQ+6*VtcrdwUx3^YBYdL#k;es z8ri#d)Ab)-z)UmsB&(TRplaDw4b{BeMG!>2U(a9FFb6HyaCTKgz4&geYCON5zpCN0 zR&Rh8P%a`ZYN(pn4XKr0Kviv{>GLdVWY(}n&20kH2`m&yzGEiDzRVKx!jka(x-7qE ze%L}h(8$^XYrm`ma)YW4>KHplxoV&x=rj(TlSy%-Pf3p#YaQdIdfHMZ_3)U?nY;CE z`M0x{=cEutq2AxZOy3AyZ3Fka{mB32nH!ei4tXFmVJY;T^_)FxrCvY5b2d}APMB}W z{D$Yb%1<>z#s9FvJsC}z^L1X-$deF{IVUhPVL9J%9lZ5WwmQ?{ zPV)C)hgNQx3*XNCCk&AG29mHKTmR`|O(?BJ2>vVevjhIblH|%= zy2E2MvqCo&D@!!mvxXl_riz4@6 z=V~6@*J=-rv}EDMK>i6FXCgc$vts7?Ra9upocFpF@mF~O69D@O3BE6FNx9W z3o<3BGu*{~(j&W(<;S;P7r*X~>+ZbnuFu{P`PPobsx~{4x-~*vWt7~DgjP;Dd}?Uw zUfDQPUnSh~?a>gRbT(xk35x>(7cDT!cQx>hUb@{+W4+bI8|O*zOEX>tXeFMw73ybs7tA zBBqaH*xGcGV&EP8Z7@xG6E9?*7My!Nb5p6%TT!MM;Ss1g-|uhA_A?Y(Dm~@O(n*x) zCXM`S*V0M*qzO9{xA2&lV9hbhq}_0ApzW0sB>@NXj)`HF)Eu)jvKx*K;-!-Ku@NU~ z?V-WNM?-^aj}}#h23H-$&tY)lXt_(Ee>^m~g4ve&UfzJ>HlP{?q+xZ8CvM}ZVLTcY z!|Ap7JPoIGjuk_HZ^fwpq@WLr`G?6uIodfKgoB9-b*Nw>LHGwnEpZKKKiIz}O{YhR{ok;->MQ~Dt|@vR_{A%R7=(yxLC0U7Q$!9DuJ)(5BPh#jE$Zpv&o zflR832Zw7bOgSsKaAb40uCVtex6xRHlgJ~!e~6JGHZhhlPLG78V?83WMtkImxi3PHRwP1RRn$-gWpVWoguDJ6 z)6cIo$?Y2eOM-pr4D^v`?2y#DbrH9G?=cMT#kzHsYRECZq(46!hRf>pZQ7(}yB=Mt zM`a|4Pq4M&0H6u-H&l^*;9g3v@)u>37#Dz1?X$0tRey*YzgjKGz)(`rm#11-CKUEi zB<+SGZ#3p|Uw)UV4X(Tw2QPp}>+Kn@aIdkV}C!|ufE#ONY~0kbuQez)GM zd}n-lB>8$Yya!*8TSVtm8M&?d62Xv2{c30k_S8EVj$t*1+}DVEhNiCIYmP-O;R;$O zNW1V8qV)|CoOja2H{oJ#y69ZTDR*6oF6vGfN#A~Iggwz|Yq=FkZr74_In;X-cGy$Q zbiI;EG?78|XIo0{Dw-k(7fKe?m%=RZkHbb?Qq^Sf(W^<>Onmh6x;NX; z#y}KoBA_ssyZLsca%E`Bc6F8f6!@s5D?S}bjcke}N3K$ed`#-QGfOq5B*zTD5uMY1 zt&Zqf=dZ$>jt)DZu-pVP1C*TQg|~Ig711}xa^2WNUh_Jc^B~7>ZnwV~Vza-2a=>B8 z6Jx2WM=?7e;ri=QC6L*oaAn@b=jnclkZ5`W+-K*+VXF1j^|`@BQSR<&a2S*wv6QXVVUn8|EfHX3yv7+#1(G7;u4 z67HeGpPUGL47}_LP5X?!vI`GBBB5j9R%G5O(yI?{Kte|X?_$JY8{sn(i*8MoHQ$mf zQ!urs$bD9!`=STu8is5yJ*Y)OT-PZQAFfj%9<=@*GAq)AGz3PAX z6|Iia!O@XG3ntEJBo#aoNd}J+7)K@0^r~tl-!?S8eXW>i;B6Z~wCP8T=-EkSvyUMEuhrKs5xqnU;PGEbf{(n1RGFA%&M{IIM=4bbGNWX=Ksx zTm~0O6`v7F7M~xRisQ;}E=P2b7s4W;er`X;jPR1HVyS*HB1YL}U;`<}PJ_em?+nxO zzJ8Iq9!K~{z^sdg=hHCzI~c7E$9|%ONmTlS!|@H+lNN`jebruD3_dw~VhS4{2YGD{ zo5dWet;YFp_n)K5!e*Nt&335vE5+_Snl=ulscO^lI8|*r9;d1e={^tjr-cQEqGnFv zQxWq)cdZo9^F!_SXGEeVB0ot7od0;ab!FMj=^?)STKAcB5E0mdt1%J}GuL*-*#wqw zL4Tbs``|hq%LL1=pi^WPi3XNN1MR~w7yI!y+Wo^^aGqFqu#9=Bz{I}6VkW{lx_4s_ zPEOJ-ojIDWEw#m9ungCZW>?Ww@@v%nN{C2}8DW?J4Pf*jaiZhTiTu`p1+*a0o0Gv$ zMFR(TPzUQ;=Ox>{Bu+zk5{hTaA<7N;;1D6L^)u<(p%DCQ(J)?ecnIu>OkpeWtVnh% zv5{)-i1f5}5<%Oa>_tP{0=oL8eAK<2kGe<}bt?^ZA3qz-X>hO|WVNIDRJEh|RJDV) z1)yzP-5Z9sLeS`H56A}tS$l=haC)Rt zp0Xsfg87E+PVVQB&Oa}=pLWoIt5Wy!iI`)rWzYBvBH{Kt#l(oQHF&$5H6-%xMX=Rvj zaMlBBOiR;1VR!yS#ix&{iB$$P?}&1awlKZelCJHizO+>Y7D_MpEu_=2KzlSm5|OpT z4m@KK*XgpWgfHeNo)b1bV`+3}chB8mzDm`~x{wqzr-!-U^urEz2o~4<$B8&z3`vi_ zL_)wMz^X`idyb;7g_?oD;0R2E*t*Nd(T0dw zfbCA4HcZ{loc0`h8*HzG)iSYc&T6g;-LLuRZkt#XSrpVV4$Y;%W{evmezA!@nGq#qf(<*`&>> z_fj+hN3aA0j%ZGrm}I_w1v-EL%5b%z_%2R4Qf-i%xTQc9q5+%dIOyn!-N6(WEQ?`t z3bcc5B()93Ke*Es;?K-xEz2~&9VRuuFR?pr^4^+mxY(#cM|-*He~~>lP1tVLy=-Fl zL;^r*+%x_{P4aZ{nUQcNl8)bDGkj67$bh53i9IBrK{-k~%&&BqU&v!O4Qehm%)`fx zORpu&2E5lqG-o@Zy^@NZ(LUH-_0b*;uxF!5{@20!C7_cX@*1V8mtMx-<`Zx(A#6DR zH35ijI6vpg&1zoVpji#O)vN|@9kY4^6Q;X~O+3eY4*S`Oy@h3DZbmy4kH$_jN#N}| zzm-1_@%vYs-(+!V9Y2uy9ku!WdL)dwd>&Bnk-LEBbsS$K!7FXpLExV*_NQ{b;N>s^ zP`a}V-~L;wcIMmn*vp`l6+}+@Mg#k8Ca?bhjJxNVAAoVsD6@&_<5y0|`CR-fI7f71 z-jAueYz_;#aD)6KS5P&vv^DSqqO_Q%C{sgFrrIzwWVI~19Sh8tsE?xYnvzB4J_5?3 zfo&*Uc&TY+)+p~Gt!QTZ3fB#15DG=O8462y@vzw)`qsjpUOITHrY8zjMZoY~5l9j9IoX7Ewal_`yl{~Zj35--;srM5BsL zvLG4kE%i`ZSLUm{K@z#p)cd*cQnxsb`p}s$*3`Y2{*JOBJ|Aw5RgkUpx7~_(yO+Au zOWlR(Z(G*jH}x&996W!dmRL4+UN=3(U4PwlC(7B9(6otGkCX*(*}4fX`qt@UlD2Sq zoBc`_PW1XNgz?oA*)%FD=nE{(__xChf!pnG#@5^I81TKyops>oII)rk@h>wg=o9BM zuVriq?$_U%{Y5evRP8rYUCn+o)m80xrn>$8WJRdjZ>GAM{g}{7r}l&d2aS4+LWYis zt{nAMN{k^b{8I)NF8FhdF4}p%wH((gVx)JN$zJdI0*oQFWP$M1t+m1CPBh|D6G6^69fa)D&yiSlw02vmh^$s$g zAk*h7rwcMeYbbzBLBf@#aZ38q$iIABsSlYNJIJ`f0VbXYm>K{>XqSUa+~9J8dsU(s z@6<#s5$hO`s)$LaAnKf97Hh1vHr6T|Ya(x~=U}C@$#Ebcy4(!=B0ukPCi3mL5s9p3 z(`Uw>;4mouU^Lb#u<~crB3jdAO-5$}nQQR$3v}^z=!t1uIC`JVm27xDW63vT;qA!e z+fA)IAXP4c{nDBHHp*N%?lb9zJ9?N)_ef4qLE$@UTl7^JDRF5e?oBpD4s~fLyANLQ zpmSe(H-gcG9MQoa@Ywj!(MVvPOpz~vL%CLAL-Gxi+K%LS7_CpqdiX@yY-&W(RWmSj zwnVt42b`DmMA@(GL2w;~du9#3pkIM`nw0e6AvI;KX@H|?Qau~X@=%!w=^TviZT{y% z)yt7@8s#AUiFnChlxel6k3B=_CF3%G#>@Ieuze2nlGDm2+2fqiGtNtxH3!KqhxxOr zY^>~^7(F%mR2&$|5Gu>(Lo(QnV@AFaG)Jon(eCLv%jW>uG$9rxG4uB*b?ZuQncZF- zw4@jV;mEVOm6sOe3Tk~qFFA{+UMko8=POh+YrmFQB}4S&YHq!&%FehsfS))-JEVwP zM0ksG)M!eXM@0vG(%83bpM6JOq3XUl*=(8e{wfI$(Crtftr^|IEB4IUK<(LV|5C*k$8zCRSMal3-0xCVEz{_)RP|%JcZKc^vBrff-N%vIeHfq9 ziuHP4Va?kZh1hKK*J8-p&U3~SnmjINXk|u3=!j82$SV>C`w4>sy_7?}siMdi2^UG0 zXmUMfJOv%>V%m*|g0_-L8%W>jB}bw_V~yts)YQl_&Dt}7D)ZCi!6o+hQ{W;Iyo&gE zE_zq>Vu8F})3-@tEHqWi1>0qqx`-?0E;iW1#2aD`G85X68@i}8YkBCaGPzrS4X?x}gBQ#MOR$2LpheMC1=>c%QsqSDXkMbX3ejNary}-Nr+r6$z}2 zR37&Yu+08PPZ0#ucf1EwCJytGq^ye6-Kt@FtR>}k*}WT#?0ZxHtynUaYJZg7nhim_d-ujvO1g4(9a`nyea9p{ct=UeqO>@mR%yZZX=z%EU{9u z6hFF`wc1d4I7dCNKQ63`Sp>IE+mXgc%rBUY3;zHFU7EB4KC&B4TM+G1^c{fW`4!QWaO+lC1con`7N! z^v48a`dv*IJ{g&^$*?)+biNvz`Xmo6?Pnx?o10_xR-I41iFt=l3!5yuPz!x@rYoM* zwso2)CGC1tVDhinX*kW)?e+q@qUl;Ztn%@S&vgkt*C6qAJgUL#QXj8N@^3l3%DRIO zRV<96P|SjFb2J^C!qI_iSw^^Qn8N64!`27E=vFl&qD&W_C(F7c61f*Il|>70dX92jl~h5E%fxw_G29S|MqB#y@UnP)EIndcaWHQjAN);av1?ko29yh zNF`U9DSr=#A8?dZR7fZ0!$=XeOgYTk z5sL&o-Al>UJyb^9}7Jf_e6nhv-j{M@?I=A{dLC5L#C_=7gT()BYa*L&C}m}&%D z1ztlIF!5xXZHCV36!}qI&aF@B*6C3k zs&(fI+`F!^O6*+ia+R!tds_D!VIT!AgaY8tmRB>0V==7f#)nJ9XOb0{#R4mMP`4+V zoJ*urBnj)=<*@aN#w?LItuGEEV2kY@_UOoYMO+JhV;YE|%ij*!(+6~!xh9$(@6ffL zTWka=9q&G*|7|Sx*b`yvXrK1|N}|8x6a2UP&#`3T5!0fN8p>uKy_U z%U@1{pRh88~95XkKs82P!@KF!(Q~0xsL+D4%V>Q z4?Lqt4A5rl^-jnN=3&QWZxK2jw!r0S_BcYad>?@?cR?WgT>FH;fe=2KtZ(iB9e9Le zbEx-0!=uhzMzm_PGvo01x`uC~zLVfe@C>MK#|_jAFE>;&gSw(}C>6V)@?36#${1Gs z@IHjm2gGFi;SY#O`QeEpXj!E5P?ntpnY*&cJWn06VfEG(n}2Xn1z>cnIyxq#rwIwo zzHJi{9pi1b)Fo&&De;F~$AlbBS7nW{Nx9eyY|~ySOJNjCXHP{UI_z*q$&Rx4qTK<)kKrnCOBYvx`>2_96{vI5GiEPih}sYfLj_Bq>eC~E!)zaU;bmT+ zP22O!^Em6Z{>Z2OV;oG&P%Snl{-qZDN|TQ3&gVv$ln%T&!uDZI_K~^*t*GPd%b2TGqpi86o1xYo4nFx(nCImE!h*ReHRoX zd_3IO`9NSLSoFdf%~^etF>V(3Z9brx3+qMYWNRpEZ;R@T@wC^6W!%}P#40yG0P+T- zpO@%&_6H6w{tpClk$%vX?e>&>4ks|)HHeV$mtb4}m~GGzh_xp-d#^>p!25=2j}BBLvur^65#E2s_#3RksM-bH4{(bqtewIzDWp&knZ!(f zIC3n!6sD|geq2PNi-Hn`S~f*VOt4!vXfPZ+37X}k;JEQ{$Bp4HXTXso&d&?u@j=%b zj$QjuibAR-+elRXu^D`=uEdT<`s{dv+z10W9=yU|JgVKk3H*`8ANfd%KNey5>G%wE zusy=R)LfrDKsj{4ZX*=HBOyKjF{1!Cf@F$!Ed?e9=3o?l-0wcfq}UjJ?YC@fXCxTR3{-Y?Lbs4-@3gi-I3F zn22e&V^C*M?2u`a??8QWe0z;hVBq;Rm7V;>WVGJbm_$#){s|NPNose&{CI8|=82hP zS8=IB{3b*EtA7Q=-;qVU5F=5HZ5-qGVGc6XBCjh2Xs5*};9B*|hB#bTIUdf^fregJ z06D%ULabKyhH(0vB@@Fga~foWa_0RW!}`03Yi)I-XQ&g)B&(g)oFxKL0EFO(;0Yn3 zV}E5qK0UPOF#gw|2b3^QXKWjPnR2EmZ(sn!wXs6PU5v?$Mz$zeq3*;`D$vT1Qe9d9 zQl2`Hy;#Uql0cv)!92`NSq3kNg5EBAbORN;=+R%|RurcM{BqdgVY3-sT513Q3m-+J z7UzG(c2Bc&SK7330;$r=q&_b*ReG7J(k>FPLzO;X7|!k@F%41qc0=^q>BkYyl6!8iqU43c8!U-iv#+Xcp@IWM;~Cj0pQm!uB>sY3)b5{Bvx~0wEVr`LJ*RhT z1t&(o!k_Q?`uDY6_3vFDP-`0lo}Jdl`Qw-)B-ABY&>wR8TUKij_uro}$`H~k)Ja47 zWxDFb{ZY=0`!CnDb{K|-x;b@Ea~d5WD$2nAhok(|<{V|r>Y1esl=wB$ zmBUTAb3hqQtmV2Wea}$2i!6AQTUp}x?~nyIaX&|YOH0Y25#^*(PCkg_*Bsv6v2?5K*n5BX|ZNRO+wKb5V zhghZ4-lYKimH7XDuX4-yG8`z`Ug|B;n68+}%1x0ji-K2)Kj7a%o$fgQiW~{dIZY^J zhZg@E)GWjvnWp=v^*XZm=`QU5S!#D-|C6}&-^u=E^<-$)BV+z269JMgMgt`plF>k+ z>)ZSAex!r7{2?^{E;1nJ&-mZQ|1Tg_n{_f4KB)lcM%C9gn*+m}L9W2DT&+5gTrB ze;MFd{SMtR=w#$JVKi`iB>9e!K?a52!9Z!{tI}*xb*2Me$G0B7>5=^?9;l7l!gEF05MRzx0-~pZ-O9hzh@X+}q7kwsbmtZCHWboGf1Klf?c^ zNtPr|(@<^D$GGLzxMm3Q=ekbEb=n|WArb(t0?T__(38@N#exk7E&o{w;77MC8Xyyy zt~qL*__%2JT}cuN;C61sTBJ z!D$)<{C`j6Tk{t)xO+Z#-M!a+{M4R+RsHYOh4(Vg`8}FV2UYE$`ukpH)+Pl*J|WWS z;h!hj1M0I#N1Y%^EcCAw>gav(Fo*Gxx9hhNLhD(Gg>L0Uzz1JYj*sMom&nKYTqJq_ zGgu=gD$miJjlnKwM9$e9AoJ0-6AqQc$fLs}yLn-&Uf6iT$&%chO#nvdiHFP8PumlO zsI7NXpVCfxa%zzk({<7|y5{4=hd1g@dZv!p=GQZ>810I&6dV@5=yxbwtR5IXjAr^n z+=b?~x7CBV<89ad4u2Ls=%=^R)0O!wYNJX|;*u=B&*?!j{VV%r=X;ZlLI-Sn$@FY1 zUUc72_jET0Qt-kE`!%)PikV~FvxpVb$64|GeH4tV2gSDg7bx2Hz0lLr7ot<%V^89N zE3{pRANk=ZDO!_a^?XUJ_W%mXinv>C&?DJ_O17(>u7(Vgwe| zkstd8sB?Dc>9hL^JD+8rjrjCo(c~VbyTfYeqLn^jj8q4EPaY~py1R>jz(q4BARb0Q zEDBAl<`!ax2}p8kxz{fjRo78R0|h8z^+$SZsuULLDl zT*rQLY&MiP#}8EsJt0elZt4XF#NYTFJL9Tm&OrUDpHq%=Vo8-{Z!L+>u`{k}=GYlm z^>c7nt1g(e>3S@&)qQ5V^5Pk;9R4Du^<%#NCgxkSwezjnhWXa4H(yC%OA_;~+1mNm zY{Ptc!F391Mad~#$e+YQX*#tFrRg**G)>0?IFmo6z}lbsLqT+0#;5UXyU2=*`&%)* z4+UQXZ~DtHRWM8y4D)}etDm<(TaF9fAQ!gOjfS{S(lzL+n)BA7E+UbIIPi9yRcC}V zg4;6xZcc0Xx)u(B4(v?$Q@Il6yR0VL39-noCLeLM)50xiN2GJaNGE9-_eDX;v`as{ ziCEicmpq$LaUZ6uo+L1*Enkg!!FdCC~wA#1J3?TL-9*E(if-Ck?yo?Oqblog+| zZb_@tgaxw>Y;fPC%?OP}1Fz!-(d4_?K41j&h7DHxlH=Vp8SU3#sSF+Gt$nV+IA~>|TGp;(o6ZQBs|6{5eA+7*MSu9YmowzO`+wpWG*4Zn}-785HXU1>zxu)^j}!-^3yjPTlVy>_i{ z7#T@`ti_p^{qF+uXX`ovQkjTWbPvEssp$idT7qAbBxOEG#E2x$SFy$Cp zVH;iD0V*!KaRdrch#X1z(V|3lO7sKc77OvGOiu#xhZD(kk12 z&sbodX6uypa3t}8TPqL^vTY@p>Fh{`S>NRzFEFFwY{G{eDd2wx;`xAHRTI0;snz*p$LNW<4 zYt{7@%-cGmx>e&>GG(G*nsd1roUpiOwq6Q0>uB^A z%vXaGjoR$2ZPaFGL!;3EbEK27xJOg|-8CjG4p?#VE-Qv_qYzOB6%tv^FjX*26%6x# zsH-_)v6>}#G`TmH+=wADhB}2#5(|@K7}_bkIZKrL=yV=Y9x}AzK3RC!mm_O3Pirl& zn2DE(=x}o67rH_RLo%2*m!IEbI=3yqhnK#KtZ{Qg)246-&jhq|j}-e^#~#AQ>~Of4 z^t|UEW)8)q>plOFt~gH)qNK(+&9te~M#XwjLC)o-GL?m%oFb;3v;(p+lNp1~s7P8iP8*HMyp{kzrwE*pbyx zyENyc7C4X~Gd0x{N4m-|7TA{~!Ze-YCWY`a>9!uA*v`^F@ zE!R5@WSHiih9ktKEb0(q(MqK*>6;T`*Zltwy05Luhpw_n9yw94393J#BBK#hsU@Ix z7HmE=AN8vNO{xi)CkQq{@lLAcLy@`w@nq1;lWY)_qZ>&!qpfZPTsCu_75RUVnp{DTvbDXinhk~hz%KKF%tCS`TQarBnCm(!u-rI(w6*C3zB z4qdm(q-@gC^_!fuxy&ZJ6O|9-MCF$Uit{kZg6v?u!k16!!mOfH@RJeUi_SYQH0^48 z1;33gFsoP?XRytubCRiyON)Jdknk|JcN?SW{%x?PiB~e35jLfeaHzL0uJoCR&NDA6 zB$KHxBGV*z)8*rbY(~`_vYAqU$OS1KvLL1SAq&N+ zIW$O9q5hBw$iH3T1mxei^5T14Is7h4dR2IoKcw*CFFAbpOA;SEV!flxp_0T=CTvOV zQRZPu!_gB2BY`!AhxtPqCB@hrRsw^D!$v~5kc1{Homl2a{tyt1Z#0`=TxZ3_tE?El zj6y`s@sJ|zL$=~(c>2Zg{+qk_fbdh<7@Beia?DF^kuf0}#>yCsV&Oh28<672A#}H} z+C* zZibs_PR^a09o{Y*o&x7`RC+dYE>@X2LC)cLh>t@P4O+WyLerh4Ih#P0W4eg0DDE0a zHd|LouDKKjJoqlFEMy&@V4-C~4+k~vVo3DqV3QMsSO7SnQZhb7mXln*O!dcizjU#$ zHFc~Sg39mDc~Hu9!(mWecr46QtFO_#U>e%1MXH@xYG_b0x!p`$z|`z0hQo`z;Gy?&MsktuPUYW(i36F z==uby=);a$0^JGn2@qerZkekF%%~=ib%vD#?eLeWmRoqeT256!but*;0gSS`SJEek z_ZLs5H=>yxCD+RMyP5iUX+7?1X>b7cYLsBZPk+k-j06QsISIy5nq%lI=%F!#rH-&L ziskqL0qRFcGs2q9R%!n%^qH0A;5kn8usxn0nd~BV*6`35J9i;=(2*B&huroUej^;% zoi64L+%<*h7Ri`_W@|&ZjLG(84t?nzWTVMM${S9k6e3bA)F|}C6Ip&dV0701N&1tM zE}oMvaVK38ourHBq)XgMmxPlp7rYKG$w+;UEBo|zW$DK#v5FqSDtbg#(Ic{oI_*O4 z4(ayKt7HCt9P_mGHHn5^%dP0M)QZyi6dj_0zBvhDqJh4>Px~`KDi*QqoGE^qe4HkO z2h%TESy`d>4k`#onRd2jW~!!EF>Cr|@zlswH`cJuuMTPvWys=WV$L@{LJB18xyggrvIEw{6*7^C9#7ZTsp z(}6UmNR&lNag`2o2+3wbbKL>use3kpHa$g#>^3PT z6F7nOM-^Gx!fQ>XO_zPrUz8GpKEmX3y5bt`ick-?47itgO9XFtcMKxOI6lM;EjatH z)!&A-MLL!;v38(}hP5U>ir0(x)UPkv`)RBv>j$c+UvKt=;Cj79CVEw`;t@p+Ip{GD zR;@SFN6q?vQ;wu<$xV%$}%ry@x1-=@Do``ge~MDQv< zYqGybfzQP!@r zQF`lal(p*+!t)TqoS+-3en-7+(w}!|n<)CR8Uz>oInE63t-ayCclXrgBbp?AAL&Q9 zZ11}VQlszPgLM6fQvUaSgl6ZC_6QA}Jd~X+EY(6f7#C&u_6Mz@*eeQ68LYqtXTCtF zf0DA^vGq3p9$R4;*#?YVQ1DEFduBxMp0_QeNc2Xbq{+|2SQK( zBbshBbqAc2K(NnSx6PtL&aub+38E}_{#c}hn6`HRMw_+0$R`_3#YV9C8hWCKlFOPW zzybXJe+xTSR+jz>?~H^<$DH{r?b#K8^hto4rs(AaOBM4|{{ z$)^fHFm=BFFjvvkjpNv+9LHto$$zup0wvNv3?yxShIg}E6Qt!_j?q>b2>ndjZjRy~ zP9hH`d4PRkI~ELeK=@!0tX6X-Bf|{noFs1lt3?Vq*aJCMSG`ME?7ccB68mnH0NBbk zIpzA}b<1hZrwVZnQbuodHq!~);HxEQLaU=LV`J!vyCkk$A0Q(4@fS5ne=r=-Nem|3 zbPk@>NY}3{R3~hKrE?dGNJW>vUMHGzWL}Ba+*8jw?L~yV~jc?=+9Yfdjxu3SAS@91dXBv zu3n%>IPHH_*Q^*wOSR1d>6OkLT|`T@&4ct*nqlbd!5rcO7w9|W8rLa9oY78r4qEjz zn&P||HC4YtE5?TAayq30L=V$cL-PndMYC3-B$^wcbafbodWNQGX`+VI#moZD%?|_!bI!>2LUS0kRKMAJz(A@ZpLo-CXqkVD+Ks zLsyCLeMq8T1J?Hkqz^YAo;rBPhaDPsbNNX?H@;U6Y;PJ%^Jm2U1ce+W>o0NbB)W(s zkHk_F#>sz~nO*|+1XfyM?9#xa-U5V z7TTxQt%xaV5r;|J?+Z=-H~dJl9Bk@=?1qcQRk1@Ddirw(cwlAO)Gz56+5waKaoN1d zUAaIy0R$!$Dm*6=cyya(!@$vUmgXY|W7q`CZfs5$Te&6Of3}yrXA*pYVpFfk51fdn!!DF*o1;Cfb#Zvc-K^u80^yHVUl>-p}USEaapxzh` z{@G(J$wlw1=02^%Uhd_rUYykyo2rP*xNm_csV8PTcLwHz@W)5l0Vpb1Hy8abuuUv2 zcr=>6>lA4qg-4^9*(#kugq;mE=+;YZWgtSw~qh{3;6GVX~4;sql0G*$c1t8^#37WE&F; zlTY-<5&B5txKx0W#PNP&f2?v1hXyH+){5c(PNCj>03^`3aPVITJ`D-> z|8=0#kYN77fjz!=CqVz&>54}6?jTZ&Sik*alKv!NXcP%STSr-M!e+;C{<-FYjMJbz z5{PY#1a6!p)Pn5sAe%GiHG%sBRL&Z*6;)F#eYcyyjS4KNY%@NqJ-!ij&2Vt?`9&(t ztQeX+pj$?JopD-H|A(Hg#IX$dx#c8#C%5qvAKm&U_*os0ar;6kq_{y2p zzca&SaYm+qJ0|5ZSYxgixNo2~!h5F*HlZhaanJGC09Po58%={`hR6@f3*9(7njXVq zeNAZEW;~}kMMLS>W@EAyKgN0NbnF9@jO~;DXaec6iw96H#-00P^Z}o{*->djf^qVG zcpMG|Jraylf+<8cng78^re`b_v@fdJ0$r?8#bEvp&EI=|P z|BzYJQ?WU~aUYxwi^Q_|=x!nGE3<^K16`F!64!5tR<`7n$V=+7%C5g?z7uAn12 zl~Rls?jL?}1a}qo9=LxSDx>4NBRL@!xmZS;srioU{vT#OqCzy47O@x+R*U2(*ki5C{vp_A^%o|AU_tbLjyn#GW$7|;q zQx<2sTwNaWDLzDlw0(fu)@z#KYqULl$M0RQbxN|@J`hbmq%54(_4CS+CkNGb!@P1H zsO^S%tQK`>vh&0Flvg>M@AMt{snC?~7%QFtD|W<~nGA>cuVH8meam4;w%vI-1c4Tw zfD`~fm})@jLMw)!N72ER^U>wwA`fe_1kWov0cpaPFe4laMIK9f&k4V^yGa2ilr*k9G_jcE@1kE_ra7=QN^sx-a&$C&- zgWd?IGDc&%<88lzvH|%jETA`XjUM;Uq}^3DHlfmWQXS!w>zNXl@EB|70KEa(xg?zz z0X&qjV^kxJfKFtVVAdy6_vrBJ-=L4#Vb@>KLEKxo?3hObK%@bO-3O<>a+I@3hYpBK z(U%`f;k1tUM{k=>c{bGDx0u7mPywY=9_4lEl$-&b`}+O<*N>rSdFi`#)HY$NN3|l3 zR5q#;?x^icMdRS#Us7b+q=Qt>8~<4i%#4#};$hP}8eTyoo26t%!_8vQ%pH6$i~lJS zUPUflA?5ck!&L*X8x@mDX6z|4-uCvAEsAp{#_w>Ba390eg!lO~?!>I$BB!1MTQ5Mt zFChhgWhZ8#Mzj#s@!ni?i8C_Vy6r;!ZA2Jk-X(m%m%%L05W&14xr@NfBs!ki6aV(s zLz)Jibe&;3%_>BD{<2AiEM^nSGFvC5%RZj@TLKdD7FBjXuqiW8K@aa`#;vg8X~HfP zo$!6)4~Ryn;e@I#%hz25EM!I!G2z>vl&j!IIz2}QCuqN4=I6U}57h_V#|V|#^fm*< zTqmnt&Sduu&cn(?Xp$h08JwD>VFIp?Wr7xE(UzIMO&vj=YvN?~zoA~Dd1*3aZd$Kj znR{Ir$@Laua^0U$sd^~tAU(6i#Ldi&qKV|xZ4^<$35G4VBwZNSifAMkO0a0^Au7Nc z;5X@hJmHm|6x17JztZI@7EK*U0VhD!cu^mq_HK%84@{>=$Chzp>VeGn2_aE=37~k! zkKY)G`BD2~saqAmLCD4nQ35z3UnHp;bMdvvC{A znUh3x$@>>~8^Y1pO$f&VPC9O3J^FaHLNfI6spNtx{v2eAjdJE#kym>9M)YJa6q}b9 zXK|hF>JhQ4Sic?$r^tp`r0?S;Wcb5+7h8iB>1XWbtmmwl`jizfzT|HH%8K+0R?N^h zF;qT80pzyn)5&xX`!#j96n22`stmMZYLOK$mb;rHtVj>CVtT~g9Am}vqpg@}!%5CM zL}S~Uo~6aqR0CXU3~*l_divr4pg4Q4+(Hw`{goO$0_ReMU_{%VQwy|$*H-AXlDk9^ zs|7q4zU=EY<1p{?6u|TV;f}rYz61|T7%E~_b zU0J$A<@>ygzD0kWh5hs^zEGR^ed7xU=~rT*b|v~I7MfOO(E*a0 z5gc5m+y!-u&Hb2;nBaMrpNWEL`9FIHozwl1x|NwrB`9SSx>_(WXbj~lmfRUjZjT}2 zrgS>zr#H{sUL%V%*5%EiX~*x>!lRiGW;Pp@C7#_z4D*VFTciEP%gwrcJSy+uqJlHk zkx;dEr3(%M6s|1{0B8EeF*Y2@7)7jU;UxI@5mscf8)hBj%QZF9g}!lY)*yZodp(-x zmQe@Ikd#S_buGt@;|dqj8|E87P?eK29@34}^VU*ox>{gGFzJ_4Y=)EwKgy|?DEJh2 z{9i~RKa#G19mFAhp^7p7QzWTS-8=6mwPO;!eZ2xTc{VcnLjN&>liGc@{F`f9KdF6( z)s9^5e!6gSfH zh;rVE?o-bT1ZaLoJr208xHTPTCklLglkRB;6CLGL;pB__wjcVIQDrEKJqCYia@xG8(cZG-j$2tl9cCZbNg8ZRf?;I2Z9X)@=P6HM^L9(uUYbs6H-V?hW$g-eA7m z8_bt`1GrXxxecMoqd;%w`~En5cXrQ>BksnLaO0?Q`-h$zN8F7gVdE(H<1cI+y?*V= zKEH5f=}%M&j<#3ot#K@EjbmwR%IQ{6eeHYxJNoveEZccd`)+dH&fwt{O}0b{ zDvX6+MJK~bc(V|9t{^5&7>1-3#9{vS4jwYE?IU&TGGSUUM)cF$vjp`+u4s|XHRqkl z>9FY$P#_6ry11>?Q8Vkd_BGhjs?fB1xfM;WGPZ=r^{g=>UFDfd&Wh*~!#{_yT5Dvv zoGD(w5*`mW7D1PCW3(Qn?7lm98}e5r1w~?$cg!WrQj#{im}K@=dSryJI40xXNln); zrlmg3chwmIr2z0V$z&APUk=;Us;YMthZY64#gxh$wNYFwH>2G&PP%_DDG(U z%W?+l>m}agwLKD3JqtZN3^t(8jH5NUD305B7LXW~Ed{mjZ#o$FWJ?52ig}p4+)O1B zT9Eq9b%U4OShFL?x!k(snotmwc|_7sV%+)n@4q@4gczzjxX!XQwfp2RJ9XJ z%Gs-)ul5s5H2+Fx_-`a!z94-=JoR-h`sR45%MTy=MlLi&7e%{Mp8Mc)0t`!=?lHe zz2mEtvQXTcxnL+N_g`+OBaMUI23>eNZy$|Xnt$OQJf!zFu_TbrO4()!Gw-q0+7@QnyOos z`Ce8nF7mR{=rpckNp=Q&Y9e;tcs%3;oH}XAZJ)_%$;a0KlalSLgRF*3JV@8}1s2)gVEE20nhuz zIwBuGU&GF++!2h4sTmrPuXRKDy?-Kgd*u0s@7mKmPx1Ba&WtUOeEG-YxxNVPuK1zsO=p*KZZaiLo^%iQy=CX*0k8>a%@V+Pv86C-2;A|fpxBZcyqvyu|IACa`oV~v7 z&ba=xda21Io`+<&o-Q%Yx3q3O)+anbeYUsAS6~ZUM5&1ur-!$g!rai}{NGwkVNSF- zJ-o%~;Vq_zANv>aj_T6=t{l36Th|hKU2`mOZ)nQ5 zP@m8Jsm2_R78Ije-d)}1g zf5$&9dl<=nNFWzJ2EPzVLl1-iJMM(zY7*VggRdF6zw=BlvT&| zi%G0+qvTs>QZ@>~=5JpxqN)z=GYFaTk<-d`9Kp%7@`db`5LRgeU}r^L=gWgAaE)Qf zVW%61p13NjnOC5hqipZi-<)RtwDQH8W^R2(2{9&29pxHQ3Mn*mT!YZe$!6K1nX|}o ztA1ZWPrc|5Qr|~66X<*{%pikDaH<}RD_WHTCaVj6@FSaG!K2cJeHKiO%c+XHJoP+9 zN>=w8@9KF+O)>ZRFUT1}MO^Bs7*~vBb)TDE#rRRv$$j2SMYV|AJ>J-u(NM^bm_pv) z)lRtM+SP{v&gsKAuP5!JPY!BXcmM_mJfzdpIRI9SHaL-tPCzmUIpn7+CfNHwBJ;Vs0fL%#XHN*Ywbe!dplu{|EmHh0apnie`c3L};{z;oFqjC!A`cV?ryS18; z;VeD!VUCVtLq1gBJMynMEpe*OAE;t``CfW7xUE6{p zDw3T_-j3pCXB7SuP=VxJQYh`Un>M2*xZ>R~3a`aQbzV*voi8O$0Sa^VH!;`3muu$^ z)USrQvlj&tSE`&>C{ETx)Ye@I1qfeVXX zVC~kkKSYC73#{Gv0&BNsfwfz|-~?q9oA4r3(M1HR)h;4Xtzl6)JA%Mwc4+c-l7`Rv zW558;w>&q7xEn*ljiJho!E0D)%Le3EABWd0hfW* zb!|vE)IL&eJg--9r4tiD-@^sc*Y}2;;+AB7{Bwt?72VEhfUKltZbhSmsPBfAF(XII zg_0AP0xcZb%(c(Q$lQE_307ZZzWZGc9$};E+z!=l_CGkB1`mV84$CW*&SQX`w7cnk zRqwE=ce%YR>Yh*CP72R^d7V@7uJP+9TsXe^a!-#aCxd5g zu142q{tv)X@W>bPOW2i*AY4zJ6DFM78 zUk)~W`tb|bt+Vm6k}C$M3**E(fdh|=(GRA}?}OZGn6GSSh(D>Zxok9h^(NoKqCqkg6JHj;h6al{S=N){jSen zc1o;fIZ*aIGvcYi&n#t?h`ewOvONcZDXGN&x<;^Kd`v#^{f~W5ezB z16THW)|I6xD-#97T-ht^%03slvh+NaQaM`n*K5@>p*r5`)*!8BvC$Ab8$#TMkjNWC zlp)A^J>^jhEpj>w{SvJPgW&U`3mu}7x}N~aqJk}a2M}T$7kMnm{#wDk-a!c?TESj@ zmDy_!gq|2ZJWI=0afRX0rct1|i-r0e9%lVG>LB2Sp=qaaE0$b1Y=+<*aCH2 z{BEY&!xHa!>S66s=W(-n@=0)@1AG;;h&32nb#hiCGg7YE8iq4fqQ+0+7kZ~XL$s=; zlsU@tq3lFB{4^sK2UfsNL7RT*2kvdgvicDofElT71?^blG+?c|#*=$lF?U6wvq`f1_IT1wb?Tv|$y-%63# z7`ojFT^sztag0xPe9E?Cy$}$R&p%~7n5vFwjl^JCBiSfrs9X(G(Ndy>jTl5q!G&oN zV4`5jG)n12a_qo$6R8*+M%`0k;6?0x=oNNrc%|1aRb{2|eg7406!FfPdZ$qDSo8!t zC3+{m+RQP3aPRc_qW_L|m3ZfDy;D34KhD$j9rjh&uivfr*!|&KrBmE{rD6X)wxP1N z@$+JptMq#RVWG(vFv?8D{}x~on}v#7Mf0&j?4p;rh)!!?_c0$#D;- zWB4-(p;EY+ffNPbl7dtCmW>rR^s$&0s(Z}<=o)6>RggnpLG{hdry>Vb5xI*t7U9dse^8p2c_Bv-(|{;Vt}AYJp??v-AQ= zR^W0BD0e}3i3X@y`jw}|gQ`b;QDqf3?)EQ6-Npryum4W|H0&(82|2!VAb%Tn!Z{W| z6q(TEm%x2S7QquiU2LGPb)c?tpibn2IsvGGUA+Uf=RjR(psoSbJZf;Dj_-2tbYrh! z?DFe!V~;a-e#IR;YaKkR96S@9;F$oP)U0>#^nhomx{*88h3)!V({7T#q1_To#6e-G zx?KQSDB!h{p#k8I-NBu)i@2kl4b^=v|2qTT&`VTOx1iL&C@tm!xD^X{wFbN@170Ez zc&jvVDi?E3>}i^s2(q%X5Wz}!r8z~qH`G8A--J_~+-&Y8y^5SxzrEE8vS;Z6hKHZy)Y7!G(67_#gt?C%A(N}VTblj}&zb)-9u z27?65eV-OW?qkwufW@39t2!7lMwI!KvmGd`v*R?R|j z{ta%5RrhI~!em0Faa&DS)5?`nX=>YyC-^(gHKwSS)UX7hx!N|H+uCu~tfe{SiP3Zo zRS!-2?Oh=qXUNq^i3(-1A<>IESMP6Ko5o+#z*^?hsB~?Ej90MdYaDUyp$#A@uausnFOr*bwvo@mHMB51c^4LQ*p7Lq!4J(Ta z+=OOJH%!Jft0XZrjl;q^wch{g(Bv7wIdc#$`$1@9jF9pnY2!KG`RKHvx1kMv_#@DU z04+LjR6!1G2;~HtSn#dCKoe?3=y$|GDnkbhHXkO-n%+;5rGJ?>vK;3~h3=AoOrU92L1nFpav$`OAlI}D*IDdVsTuY|L;=+oIX-=mXoLph)4VwtgYjUJ*|6^sM*Uhdhz222WKk3R*pP$%~^-Eb3b zxK(bro*Qo54L4!KEm-=f4Y$`kSN8dXD@*^=%0$8ET-ochuI%#}SC-zOQX0@^{q;7R zb{F65>^hre*Qv50cs7K%4Iz;?1ZUV`x{NFk{gE=S_;%#7j5|u0qSH~?@3i#=o`BF% zIan9D9O1*jxjML3%9mgi+>)MNG-&SbDxq^Jg(hy1Zx_HL- z<6(zqycv25xRq7D_H2lh)zZjh`RSr+4KxPO zy$Q&kVV*Iq%0G@^rhO@83p{~hSA!3Vg91g9ej!QCJ4tF(P^O?5$G|rGt7X}e7`)FI zoZ^IE$IRV=h%*H-Dorn^IN>Aj@60HAy*uHkGdb+IM-Hh&i{yAjlqMj;z_N-HI+QBO zv%VYMiLbvTC{QD?+9^#hsf(OS)}3t(p7;!-uvb#k?K3IsJ|na^MISimGr?ujk0h|F zmYD%*(<7qvL_t!e;Ivd)kaOY5X+d%e=M`_6G@V}m=3eP_r~isaUR2(3-aOKDERUa@ z#3fyqnE~k$_fDS+{deLdN$sR<**mz4OO?@kiDhB{rPsUnO1FQ*buZy(Oyym46+7r! zx{4W)zWm|P@z94s$8SG8I_woJEBZ`#=)mk$!>D|GD6#=Goa&GB1TRl~y-BJIs6V1f%0OKMr~z(+19g0-)6?A8YZyE0j|MmPIAiD6|B^}S z2lWQLq0g$+TJ_uhMd`P=0B*$sUabMI%7B;1176M~Rg6NNwL_(c*i>XD*`(qa^}u$Y z703(~<#?Y!Ga5vzJSoDhu`sM-hCpxB_^SSPHcBnY8l_&ROFZsfxYV?08Kr)ZHA|`+eW`qKa407F(yv>dgKwxF*8 zT-Tf2IbUj}Lt7}^U|`hW>Ov*otqzjMfrQ0wbv1Q7fRttGT#~WJD%Z*~*b zSbV_tRWOXyhVBOHoq zw-|d!Y;?=2OL`Eg2}b zIP28LJnPh3dDf}xXjUscHI2r%nXD0K=tT>T zGGw9J1R|Z)GDjB|{q0|%3$-E=a0DR>6-06(J+yuGFVKV9sR#9r5M-f(IC2)Md^&hW zP5mW0FbfqZcLX2{6-1Gq5;&h_9u?8!b|MTgDiTZP3s|^{YZBGVBhcrk!x<|#dlwGY@pO1*$YJH*WXa3i=>-HF)gyDBO zTdSPBMKS;8gVu9%o@Eu2@PFDdtG$Ena8vM2IdK2@XpAL1W!9JZ6-yh9L z)u$HHLv!op%Ap0W9QE#3bU)GSMOT(S@5-UmT{$XEX^8o&7^w=kqUt2JnvH6!*{HU5 z*r?7&JY;5d9_>f8QC(`iukJO#m3{iUvNU96qTn}QcBB5KEBpM+m8JizQlxiM8&yyv z@N5Ke8$lv(1PW3xi|zwC6V-RSF;NMX&O|kWD=pscqF+YxW}><#`>U&oDnzrkKlnsZ zRuy}ME2%0pgwEH+7wH}zcJW2JnOj*+Y;Pw`>^U5dn3f_!X0F0tG=ViDw=vk0%X|}+ zM%Imqs+{*vre)c))GW1xmZi4&pnb^?wFML&C@@f%iRyCw>c&L1_kB%N^0G4ag0@I^ zaFpywr#`oXCRQ)HZxZ^7=rp%iq?v#G0Ls*`6^ANNYHS^g`&XH!?hR431- zO{$B9BB9CVTo0*M(0 ztj=PpTT4miM;{J@qdyD=pZZW3yzx1(q*o-)teDY54Wycna|ArT%K=Agd#Y&rO&7Qhe8dQ+Hk*XHom-z36XPL zO3$J$!GZ7Chh5Tx(tq<`NGyjBTU3KI$;K>-M(0p;jzn57In<4>JZ2mBNPxR#1C(xtHuOY$xc1k|HYBY*%$$wtV|17?u=It=?5k<*%Hi&iE$R%y-X9IG~G6`VMj;C^?GRTg~+OB)DuPVQJG*iq>rfsk+Y zH$SKb=LeN=eozhVW{+|Qo7On*DNGJpfYdnesbcfFs&_tDapwqB?>hqJyAOHJeW-T3 zv$}M0_VJvvPpxzINwnM2t)bnlQ3>aC)!>}2syZBqSoKsn2cjC^fyg;s)jOxFxN{P! zHz%QwXvI3~i(+Thqs~w%E7mFg#i&DH_;8L@T|ix&?{Zes zy$x(NI8euTICyqAoN1Bi#vb<_&Kx{_C$=gF&qOD9CY(c7y@RI*JhP5f+ojypY}Z=2 zx?#I>tOA8v^w@&sICS9N$*^#YYPjdBJo=0uU0@_UO|3yIG}ro4A5 z{V2Ej@?awo6}bBs<6%8rPcabViET-jZcW#}%PM979m z&Dxkw*dbiS!|V>>Z5YBh;cXtbh-Hv7X1Iyag&b?q$q&vmT!)Mj&+rOD^*k&=17X2f z2?k((8N{W_m?aBex^!si?XX6Zdt4YlO+*gQT_xKYpyZZ%+< z%V$vL^DJAMb)SQ$hkHR_XRLBl9b2oNHwE{>-oez1HY<|P_XODR*;jMn6K9yE3V#9X zFx&mx)aP(Uea8HsY^Sq$+P%yOXB%zwpQtDpU+KaP!nOjbyVWCqbm0GS_a^XBSLgme zIupg3IH6|2N|aVmG)Ad_qJb)HtTXjHi0yb~>ey;cTdqz2wINd5#@2%I$8;D=ZN0UN zw|23$3u+gvwxx!}5I~l&gR+Q489@l3tOCFH=Q-b*%!G(~uf6~K`uUQa`EF->p7ZSI zIRwq?2d`L!#9kaD1g9?nbSQM#vsUX@_4YTDL9L0@boCNGt*PNu2~CYJa4|X~p%Ch_ zd2rbwHa$wiQChrMwgM05pbQW5oJp#^%Oo{FYm$28Q!J7KlhhD1NzHR6srFJ`)jP*w zJ&r?JAm%xfRC||6io9KZz|>g3zV1OX^ZKiEP3`?vU$b*6HZOLThlbWBk zN&TMr&TKZx?QLN~`@bF&tciDy3DC}pI-u@wKv~rBPWr~D90vR<@fH}MS`q-;fu34~ z4q4+<7vw+X*Yl>3S3OMtS;nV%gOukSG{_mB@*#ezs(MR^oAn9c%K9{K_(!om0sfrz zDIe0aZ|E7)&$^YR1c4Gg9MoULLF9PsA1l4xVdXLGeC-<0~nvMUY0`306O92kW+o-GnlUhUM0wAR(SNz{HRfC#z=N2+r z|Lq=i{;#Y$<Me_csuDHS#V=1Dc=$yQC*SvEZcgY35 zSrY_?PtNAMzQ3=&O5fj$LV2*6)Vufzr++{Xk}Z?1NIz~jTOP4udb<_rRx75tZlrs= zoBb*HuGEV3aJ$(u*ox_6tVoBgxPP1#58h8V%uvtN?HeM888G6&f*G2<(3y3lH-N(IFPY zQA-CM7aC@%%3UV!l3!eBnH7IxMa}(IjJ%gZ%7y1Lc_&;Z?*^C2yV){%mt3ZI2&B2l zl{M$Na^wfz;#&+UkMRmtk4LN+_%kbp{mB0=I8!ahW}0?WKT{66c+*T~d2BoXh?P|I zIfr?YkE^&9##`yNTEfOet0K566Rno8v7xoUt{Pe`VPkXaU|lu0l8HtKgvx?dEUW@AUw{y($YOK4R>~?#MyR8i=z5GY^5s}zaZPRG}_|V%3hMs2Mq#jg_^ie7A{Z)dY?S+pk z#B8V`O7UFT+J4F%lOdEazJi4D!XZ717Y+S{uohH8u0Mr8mBpve#A$5kDMYx z>l^$!VwPvVBGx9s-aU+$Z`Zp*Mrt`jwe&j$Eps49UGoXQ8nTj5O--3!O}!vJD6U$f5#p5=e8yL>JIoA2O{VtOt*shlNzhv%hW^3}h?a|lV-(l`eHwqgPn$w#-mL|bJO3S0 zwULJNNYzP_>F^M3MTy6_pgow z!TtMuRvKHODoYzySRh~B3bT$TR+wEbw!(D&h81SZtXpA`b%_?qv}WeP?fPGSWAsG*W#&~d^XR{E&3reL=sTU99ZZf#ZqrHY z&=VrbnP9iariA3nF5i9|X0eq_S8`$GaCrkkX4Krc zATyDwO>9{5wd~q!(=WF^x@B_uJx}~hPM>Do?G8=(5qDU3>=gB?H)zqh)rM?7j^(ZV zVC*!~FRXJYFLv)`txDdwi7Qfva$k&<90#@Byp5mEL5zTId{-M8AyWl%2LwxX;gKOf z+JlZEySGzzh3cw`FjT7Xyv07m^CyVR9Rt3 zg+W_e$U46KqjVQX&yqm_60Vn-4AqqrU~Go+r2W_-h005>za7aeTnoSX_BSAt^Xw1RBETqd_ zC0lu1Z^y41zjMYZ)zW|0mFOOa`a?h}>JFLdvFOLHnkJHQVyZfbCvxOIZaE_rYmU=b zeVXI%-V8C852&KVA#9O|GE|m0G+ZB4jaFrKXkP~hb6w#b96nVm`q!$^tW>-dJ1mP; zf(%S^of$GxdypHI{X(IMi$t{U|6dJE^oJ}kJp*P*JZ!SgED9#R7?{R`0-?#G&V!!= zVZwnhVIZtJ)4nX9?7lQeGCjbPQ!)Ynnfzf|3~&a1L!kx$2l!vS%4nzOzHJcr06KqR z5`60e-C)JH%|5I^pJrf%o9!3&{jg&9eKP<`oZ37bI1)GDVwfb~W` z@CO^#=hiT5N3;obH7o2u>~sg2XR&0SMvfRT%Js4wAfi>AFyN>RO8por)&eJ9#y%o3 zh+XC6i6wN|XfQGWBxb*VSuDow=VQ&1m`ia$d$lVYvGLt6dL@Y`nO3zqk*GN*5?wuB zMh3LGO-lF0VW&=gBaL?@PGudJz+oj)U9bgV2$M8>Jf;m#03_oPw0lqW(9wwh>>gS=pivp^=wt=I?k6^qVsdqsLAM2ryw64AH|Cv=mFwRB^O7hsi{!Do7rB(~I2^9{e2`q@(Y zE9z%kFYRG`U>{dYH}-fQ0?$|YjL@rvR+SRrVwM@=SH-!|s;X(WRJyo5j1Oz$VZJfo z@@VaxET=TH%(wpkhSD!D?+&HUa0ipj$?7^I0dx?hAbCoi(X0?UpXKEo01{Pa+qdP5 z^X~GoVC9=+xJuvbuGF`%oppoJA?$CJHsu(ufuR>s; z3c)7NB$E$?Jd+IA?eJNGN{=QPC&shz$PL;y{&ru-k;x;u$!r~x3OFlx7W|y^Ma=-p znQ6Qyi6T!4(mWYKv{Ync{3}cBS8{yrSvGE7x=>b7;b67&ZB&LbN@Dm3`j6T9f1DFi z9=%nhs?|e+O81)zjWe6`Y-e-+E)Vk)o?~=?Pj+X*XtbPtS;twS z85O5rcaSD{za{DnPMt8O%M5Mwu*;}(HIR^OQoL3~@AmA~8r|bClB@v6>Ac7&&ow>^ z;TYaENi;?F9$#x4VSG17M$7C-!3K^LB;c)%BLyjx{Ts<3=8hC>;7CD5qH&}kMZ%60 zEMGf9YcXE4RHcj)^ZXxGt^6?dYMD6`E;DBnnK`N0TjMM{woQ!WH+qkhHF~5JGqmY# z5FO*(6cbUJH#o}<$ER@9Pw1I&2|b%gfg-Hl^f zb`-6(nm-MzwPCYvwKi;W#7gd5#3hnhD&Lj4`_Ec8cmJVMbC>piRNc*wW6a&LCIKGt z1Ye_%K4!(pM<}EQK19jvEa79NFXFGV4vDIgD@cYNCjKo9J8v~Noy?7Se>zNzc_osZ z9mR22jpcG9_+4+Zh1PM|d=k=rj}O;q}2BUhlVa8xJ== zoB2}KzO!^(R)%TkmoFZ5Gps(!ldNG?$H!ve`7yURYyh<(N}4KLnkHW;oXY7$Qk4j) zG6Rn&n5?fTO-@Xa3}Oqng|j32A-EVV3f=Qv6KP1?!clWFTXg5{P>=7iCLQ7OB^l%J zSTP*GcMFm!x#=>)fq3z2nv!qp3ZmQHqJz+F(Px<`2k7`FojfXQtKW$=YoV0ZZqf!y zw~71r#hN)ehRMluiY~*DvjItl(;B(vH&P68N?O#2Z0f#1vziRW;Q;&C5AauK+-Gez zShl(k++O|0TJTT>WIvxb`!WM2u&2Q|oo$T*AM zq#Y_utaO%}@2f&ma(SG#$8B%faIM(w+;xT<-|i~IjYXmpsdPrPcDWgD@I|$WCQbR@ z1jFJS3_XKk$saE^`R8;ENoZ_`?ga(7e5YX+a0v&vgaNK)g|IgG@O5(*K0vk^_+YJheV95w>{EUf%|MAN znq&!2;F5A%13n~x_|CzeojMx@#Pz&A&$#g8JhHeASj|l)r+A-zTDs> zhGo7mfvNl{UtWN)9?YprX(x912ICxAIf+3SA+dubhvQfjcH!bt*oLC zA zF9p_Fh5xhq4gTg7{xbKlyTZSz@gD^`NH^{%VFXUDeiU%WKOe{3nSbNHx1scF*}aL< zpJR~d{XIzsIpfB3w|299Qj^dXnQ_$zedW^8QPx8dcSQI&MjoP72gUUt#fyH#BST;; z%7sd1FFo8CApN{yVd^+NbvD{1mO0o67 z2xi~Aush7I; zDd?t%x-$o~HD=8L#_9;;@XY~V6;3JNFR5d_vh)EKY(tra!Duwvv-D8zY4A}U@-5>W9va(GfSlY5f_m$yAz=bo)|&(;kF zcNSSC<#VkV*lNYFr~E28K#Z?rYwfdoJLfCjgg!5UOCBx>KS(b&?$x|n>8*CmY_-0q zBs-}wv(;*^vSGDjW~LKsMk{4tH!ea_3jK!RW7szgXJKbdXb1 z`sI7`@1cuS9xpa!?{WW1p@G~C?l%DhXdKKbduM04SUdCXAn*@<`2hm*5;dJl-b!bU z`6W-X8;g9m(RaC(9=S6lN!X%9JDb3dx(vd$u#H+vU6K zonA-y{|vD#;v4Cs+M{W54f?9x3`YpzNFQg@lkwPeKU3hO=}E;StNw^FGFYdB#2U(1 z?_vvQnx%R*Htk3N|D7#YOS@}*;4EQZ>J%@-)uv2RJH)o{v3!zMQnlT zbU#1O#;l!c$kG*c3#HT@;-)Ee5R>9Xpl7~Prw})j?iVCQUriD@vDw-Bbsr!OzGNq0#H7`0!sbf@U znNqjFdE=$iEpR$r>$!|jwyuSiw#Hj%I^FwJVQ$OFBIk_H?g=`>t6f~6(^-5Wn>q4< zH^K+rhFrYGe)$|M&|*Jt0z(~?WDW@(C?c;zRxwBJFyN7T?i~QHc!B0#!1D}vC7TBs z?;6brr3evWX3R?v%h%@k>H~sU!a*!y5UYB`J}&R$e=NW;w=n}#H*M}L2XAY-0WhJ> z-D+PCTt=a$8vqtx*8`bCAPe2}b+Zo`I^PUnQ04|%4a2_c*U$`jsG$i^m@>!iEJP(D zJr|4ADbh2Kcd>$m=3u)PQUMF|7iLb8V-47f2t77CT)Te!=e*?B2$rU5j#?|O_f;Sm z*2g(Ci(o`^le42nL3sL1{Oi;7kRilLln;?e>dH;F5eaSK%vaS=7Z>4hH@meCHFRXM zIL0rz*os#miX#ynfHcz%yB{!Nb8ND2!v5zcdiDAnUvWs-)e!cbp(#tb6Xvw4!2WRc z0^-}lWG7^=k+NX5JU8L2uHdYq4d=L?5m4WCn*Hp?f5MfgG88O*?7;NTSZ z+cD~&7Oq_snsnmvnrqf=KY!YFbh9QS93Tl=Y0>YgALWHKH|#!W4 zo`ew*4km)616CaMVGA!YDR9&;P9-@IJVP@BDAo^9CW!NGTS)ME<~n<7V2N&D3Y7lN z8wQc*1(8$zg97dGWvKNJ`j0vIN{_G8yOl9}T#KFI8$2d(O$$5DsaQe@y>??SBpJP# zDCrfN*d$kco}-ElAb!m7Fw-Z3*$MO^8VR%tqHC#J5ItaF!F_@X{#Qisi~g>nbH->p zkur9N?j4R>$&-7_ob8e7ws0ysS=&{x?-0rRI%@>%S&Vy#gOS-8K)NHi@P=rhEsQ<3 zx*b}NZDkWA+z-jSaU-AYWmDZ`FC8QWvAM{Azwgq3jKe-&rn@KEF5S z-7A0tJCQ?KIHgDQW}S=FaTp(1XnJUJ30wB2f+?j5qA}&TS!X_@#5(ieG_Nz)PMLXq zn(+F_r{lanoX4j3@l)|vULPLSIj>K>^ZL|vd41$*a$cW$=k-afGmlX7I+rV9oq2tl z*O^Bs=8kx4!Xw0YG3OC#GLO(&u?et=zx7}Zmee}1gQEUW=kx=2O_a{u||_GMrOXK=rR_K@nx1A zU1#f|?erln+nKBzp*l>tKAQUc7><1OmwNl?bdZxsT5jWMG)Y2Uj*xu#E?uNPuTvgv zDiDH+qC>#?;#9W6u0rIR%p0ugzLC^5<5qAps;#MSy-)BBPF>=Nu=4kHZ9YfSn=gcbvYhhdDQUsR^ z!|9l}32LDHc)#n*~Hc+-3oHEP6%EMg2Dr^)CwIqW(E6o#j)0 z!5Jnp)SRtS{?;o0M^%|UNtFM+N^c};{;U%JP0{cCA5}l+hvdoNO8vz@p`vMJfAiX` zv|LXhKKJTZ*`wxF_9(VWw1X4$Y)gDS2kA)=E)QGT;4YvS%fqG*i&qv|St9Aj#aHAjd9svni_k5-KQ z9fe$Hzo2CDmhf@Bc$NMF7Zt!o)LC%p=Inl_Q>SQYul8VQ(y2;wlH7xs0NrArsZ$Zi zfCRR(QGT-4#P{eAIP04{rt3;;0y#fX^7-sDEFZoB|8RtaEVT!T)q6r_6@-Sn?-OO4 zq!m8dXq+ug2-Ah#;`46hY5oSt4WTL5a|@M)kZq~K$tr_<-rf^!${H<*0+Ndz!3N(d)CgFZm*D%X$Cug|oYTEj`>fB!63ikT4pl){cIU9pm&|Ww`hOeTTi!Xi^~o{8U7Q2AXW%aRMkRw{5u8nldbC)VS_^`DLF^zP zDbB%IA)UZDVKA<`%+*n~sX}#>r~En`s0(8VsimI-te7i+HB2$9%WHfszW5WXW#E;5 zEp9t_VJu-5J*tIoL<%}cQdKjM#QgFbSJlXCt*T)MbjfhsUh<=23I#c890BCy)`6sM z!B}ETEW2Hyhov7$l}1xH4UeS4@(%f%F*moBAi_Z&7SGYG2vvim0&`IwFja} zNQ5t`{YJKIqvPNFu<;G#sMEwdP~9%_s^=npl8G-kwi{VzCvtbPemS>bIB3@##g2gI zllX|vQNCaDWh6;<`}QFSa4($b2z_7ZE<~LSU-ygBOKB%nU`s0k{PE7R-6OGrF6m3K zR{}Dk_*6gN2Xj(drXa1-pq-(`UMrg>vtO+$XVQFmpAfEi`Mq`{(SgyU>@ZWObG2qr z>Cv=1D|rSEF*|d^*^tGptXnkJ0tS;ks3zMpq1}L4MjhwscbN{JEoBQdDCn{0iK3q6 zCBe&G#n{Lmif`l}(I{g#>C1i=N}VvJYv8_9h5PZUo62kryeJCg%`(xmX;yz#4!zP> z4RcFHm|}BH@?+n!o;A1Gn{0sAmDgrBn|M=njyJhk#|~$D)il>BwsQyRs&4LZkw1@B zOwj~=<)(-s9dF=G$&b8A(af7XYi27wZ@R7U6(0N8A)5>7xM{e%L>ym49gK5uVZ2?G zSC;0nuQB8`db6aDhRKg%z5Vg_q70pBw6<=xjjUmIe~mK+d8OStg2X8rX3ND($hb9F zbeUgG%?DjI<>#s-aH(B?&{=Ko?0`1*%X)3vJKNOOpMA86He}LPWYU?TiI<5)&;B0( zH723ddkwe)PgMyS0`j56|EnOrppOsYf%*YTS5YD@7qz&u=1xkO!~{M5C|RiLwB!+ViP`vzbsqR3J z@UxY*V|t)}jeqyaccxhVl;nNVhq4s=$Vds&S@pCVh2F%&?8cZeMEa}^OEN6D! z>=N{Eb`fJ9Rp8bYBE+^MX0-;NobiZ?)cumtq2rnn7{PhGc^f|=&k7yC$vqV1_U{bm zXXqX!>_IXY=kTR-wNt&{&PzN%<-HL-usJ*;;+;%CPLY*PdlF3%M(qO(LR1fYT)S!Y zgf6AR%SV&D zn5B+LfXLmlUn1Ni*`H22%}8=pw3X#iwg8v)57lCyK z-r!(8(*W+jgKx|!I-|FyO&WlWBEq3mZ$0U-LE!{uAJxM&yEJRlH7o$)An~9e!Q==M zz7I;rUWq6VXhnLyNWU<&fd6H3#*`KtBlBQnkm!1nnB=iN99?;A4_f%m5~B(OPgE&d zNWzeWc*d#cz+fr|NW%P}6TQvEA$~_o%`@$)31UI*O^z#gt!B*-rxI_P*|&=uiS>x+ zl&TqVo*xwRL*#}WBR+v4R0(;#SkmYawTK##Wv%ed`k8i>m@QSlA^`)UK*dlYrYJTz za}agKeYPh?N0T)VswMHb0e+JWr%>)Q2H6ou5^>3fHia5 z+eA_2+@Up>jT~#!Id(_|T5V9VG)S>fK(_l*NA>w-PaSe<- z#c!ZV$!-#dh545YHY0L)m~ePlhu|hDkThD7(ZDs~p+mqr5D?5;&8@gMTj(`*jVw~{ zSLNVd)gveIgNHGPd$QcK*WA=o!#yEf7w**~M$%LRsk&&Y0sNvVGH$7;NAjboH&k1L zap$pzXlmFKYJsLkj`W*S@*L3IWzV5GqUD}Zi&CpT1JapVl{5kbSuyhUwkdEoT?_Uo zI!1=8POo-$Xi}T;rcM^}NhCgR6$wQHBW5caSd2fM*Tv2vSd&s|alJyu` zGU!O;br0k;5r6MMj{is>X*GRht`w2jGfp2-*lfvF%!Ua7@Nj+Y z1H!_4*UKXx*c}b5uw=+1PMmOUcA^|l)_~7oc#?vgA^r;g%54zdb)x^QOM%q}VFd7= z4e=Z!>l@-fg=7xc#Q2TTC`_refwaA#X&u>iDH83b(Zomu%L;EGlPkDeM*WqI|F`YX-RoiJ~+8A5|6nP@^W}m9nQ=7fp-Znp|ue zmc_G|*1OH`&1`)qz}W;Vams~DT#>8j2)rC|TMiYBrJ^UNc;uT06X zD$n{9A6Vzgkt1A};^jl!jbqy4l{09uat1Ay-cz^Oat66g;KXkDw)jimmD#N;a6q#NsCtqg$C%w?O%rBF)sOY?EGtI#qY&{cvsRfy zVdH%L1vDxE4O1K!Xx_pc|5mdnb9|VcU6WRsIbQLYH)t8!l3H!+iD-wk(AMHdTkhZ& ztLrA=F^grVhAqmV{FOzg(qUZ%cgf)MO!ir)S$nWR?+qVmqqW9oGUI5@)P!Xp%o2im z{CZP0;rBf3rY8K5TRp1@gL7)aMv>{{jK@{S{V`xz6EEgun$n`>{*{})dvqm^zB_Wn`Tdagy`o;x zz_uuPJKw^JpB3=8ICvdfz^{4}>FEZE@5xmPNg;)N^+8EaOy?CyFfd&c@KHXFA>*TA zOy*_Ykc?0EG&HgK>$%sg^UuDy5nG8?{WcIIAl@KAfF%Frjo7vx_ z9&rsBi-*2sOk&pXsrsbq>we8uA5hJRMjmnwqK`M*%>IAZV?>}eMnsU23e5h#l#?_2 zZ-Tb=r2V}Ka)jRra!md2AcuX7%<(pm!<+<$9KMqveq@vgdC75|799A9WpY!VwVo-^a#^&}Fn80mnnc-EwlVCAli=}+UY8lwy zucZN85WxrVg~()ZrKW)a26E=2AhLFl$nJXyRHU zQTPaw{<^b8S}4vHnxu{vU$tNnU-y~#`t6+f8bN$T2=c{OoQR08yL_3;BQ zriH@IU2LqcAYDvYb{%IwKX`_Hl~o&LPo+xkkhm8wzW$4w@-R7bRJ;Ihw3G=d?`EnQ|cF z)+6j4JZo@nhFF`4#?81HxY>+W&FA&bb>X3wLc8CA@8SLf43kfWP0L{Bml6^`_ViI6{sU^&%S->8^F9paj#DcL z04(r63>Qgn*#n{8LR}P3s>rDong!qca0fqqwPK9DV>9O88O)u~J^N`B??Y}DU3`%2 z=y@K9z7lOXEnBqQKb7Lxs)s&+Q>zIX8>~pHH+0kWcAE9Q8-IXAbn`#JZ-ZOJeZzbG z`49a$Wgib!t^uY7*%=@W! z9_mRe`Iyg@ySX05Fz|P3*L{F*oa><%Gvu@r4ZvIvZVbnmZ5W~u0wqQDFu&>oXsDqe zItc^}S|DJ-I1pGUtglTow*zF~yU5VqkiSeibn))bA*b(#!By0E+CGjtSHyG_M3=)| z^zU_}1OwBrS=n!|$X|EIgA$u|ma35kS2XV|rJ1JPNT(G|yX9f1@H%a$NP{byIc*}x zh_Y^nAF2)Rmh|_3)a~ur?Ld1?otCpT=8Afbv*2c8w=|fF#BPN=RWx!q-tY#psBU~BV%eTt;+GZOb&WzN)4%;@L!-oKCX8b$A&$0gn{CwzL!cWx$ zeyR)a2tWIE!_VTKZr+5Oi7wof)m~N#^b~n+zO>6t;@+KBmI*75aytl0hLrU_Zthgj zeMJMPCjc2b)>Ft#4-*rzj+M{hy{__+KXR2ffrLG{9E5HT`RZKZ?G)Ysaznm^!@4>v z=salcft^{G!=tL3dsV~yADo!NLk3aka)V8w_=6p@C$4~l z2Jc*gheGlDgLtS+v(-A=s)Y)BdD^PeV)v`}$q#FY=%3Ym-9r#kr>x{Fe&!d?hABvd z#Xo`I9h8D#{t4tgE?`i*~mAiGNiPDj`B^PI(Y5$1ZCEdZEHBL**^Ie$R1h#ZuK>)yK&Afhpeq#W`>1pz3 z%eLj5dkF+hR2yk%QhS_+Bj=v-crx5Jpi4cP9Yr&m9r}R0$7nnrgq)%tWsIU3W$dGL z)hT0j7!B#M;y)=AIVK+lkz>9OW3u%rKJYGAj=aNlDPI01cjK5o4DBbFsr>{qZ9lEI1C) zo}C4_GJdQGQ499Ol|itlTp3y_vdW}dCi4rvC?!N|=WMzty`z{71*Jt{|0-y)s|PeC zdPeRA)(%D{MPe#$^_k3lSy#rkzFC!HlYaTzfC7hD=caPZbt=a*Jbc=z9M?OQ<4@el zsvN5dRE|L+6Lu&<i0|3I%>}XLQNgH#1LcZ4!AuFef5z%pijSSy~{s~ zA>p3kx}e5p5_=u(x;W1cV>p21q#X;?n>Zk0DPGk|b*i`O^Qsr|s_R$=(UId+wYe_% z6C+EQTo(nWGFV7RXyR`{*09^Ds71uW7u=48Y2j3*$Iiqs`wqR-r^jSYe`h!~?w#P& z$I`I5k+JwP!e0a`Q`uQza)+Vm$hzUF!S?AQjvX=-c^4 z99fs!159$+(9rXMGMo{Aqos_yK)4cyQzkd>}L_B}rG|q$85}JjmU!0e1)~J~>Rf(C3l; zFcp0q?&FwH)?Ax zwDvI{2i=ony94I~7W>QbMBsz4zlfUiyM^0K;hS#ZHecnI&)IZ(W3pwR=23o*ozd!L z@^ff&orb9Ud)MRM0Cr!C238SqLnQKvxJH)P)Z3;x-3i@uzfD~a+r6NbsvoAKZ$Nf2 zZ^bhE8!7VkQ^eT$27(05wNWNVh7voMmQ4Pq$P?SAK?e>#f~nOmKrC(|iU+YcK@<;Hb?%66k0dnQY$BTsHqZZsW}~a7e6`A>OyKk7)R=Ehjrr!(n2%6C6Q>4&MQ^^L;#~$cro78sF9*)r zNH5XffPB`K@&6u(*KP1Yyj(v3@w1e2WejEXlr`s5!s`cWGL(6u-4aj$c1?}I{*K`I zCa#QFu?Qk2t}+oswx5|BgFO@wul`V*X!UGg+lGLB97=7phiokVt_sCsvc-ZJ%Bdne z7;i;>%yUsDKSfX>JtZeGh8+3XBl7b!gSF5}#qM|d0Z}tBi%d27WQJo1Y3B>SbF#9Q z(BxPVzO>~yL--|GiD@q+u_b>AIWYsdaT4_ut8ryqfN|&wQEF*g zZm%51AxM6IL@+S`(mQBswU;hAV=6yG_jDNXM_U`Az%!II&S8g_yumQbBGtrd9`Kcv zNMP@qc)(j!6TCuo)2{U(HBD_6u#7A6&Z{gtXyCH#cV(!5c2H$$$tTz6feXzqUS7%_ z+pp*tMr@ekuOhYk8~=JNSyKBJwK0t9AQB9lMUU5Hyrb!NE z7J3)e77I>`#t&4zoSo8kio*e{Y-I%6dYs?@2hEc;C1F&*LG`WNq~2em@9L|-E|@OK zGdj7=J8bB_i>_dqBO&oV-7B!{6{>zXHPi&Nr%GYJ>N%3prHn$RcWaiI!VzqPgaGBrg_G%Ja~f`6+x@qY=()!8yqvr zIyPF>40lVe(vOcqZ3waS=}UG$1q9#%wb`NVuDRY68meOZ(Q4h%`?)vdB(2m z<_*`_6dw#TY$hO=D-Q;ZypzA7Vzt_W*50I&X|>o)u?33%7lsCR2xf}-|R3^ank^%p)1p(kj|l?;-<4ZC_qu?&8Tw?jC^*rYoH0# zD|BaMF)!gTug+nf=Tb0wV3#n@pg1*AGZte_A z*x#IoZS`Oq=-sfuLPr|FDB5avXjTuJ(U#jn0Ul<38RPx7Mjlw@+G-*~nYM^J1I^qP zigxhSG_ac;6%l=c-iSCsVfJx#EW(=Ixu#7LClndoj1YmUD1++#7<_IB2j)RAeQqA9 z<|r3S!K003j)jv9jCQ1G5uV_sZseHn&a9&$t4}~y+)gl}{t-FKW&>B>-7uUX8bjxf zju7MgZN{4KZn%t)Sh*YUhg(h}qIYRpY@NP1wtnSg(j+aR@y=*qt9P8GJjAh0LR>os znE*7>9@+V*C~0idi;~jm@bTa53$NeO&4rU0_!rHea*1BavoSY?Tb73I-NEYBjVp(| zdgYLRlH)0y>J_?ojjd^3O}1R2?j-$vf46Uxr35=;=3aMg16_j2ixlKgs7 zHcP~%vy~Fb3thP+lKvR6Z)-wRzM%J#>#t4+&nCK$y@}ETl`X~eKUy0@YnJESol}a1 zC7ilyOz56|I9ULdIzu+qXGA$jpyZLLxVl|xb8<0Gr99id9i;0B@>)n(U(SVX4 zscr-j2}lTBMUz*K>IM4~*n;aL>8~HhuRg(0BzZ7Wd!TV0Gi8IN3iqMqv5F?wceTHh z_F>)&z3R?L`oqV8TeFZ&?^rPk&c9a@Xb|lg7Q52}aj7FmjMPMAQam*mKi zUFwy8(1+{NH|f$`gSGWTmXUa(V=$TQtap41fKQ~R`H?`IQXi4XPbqClVpvPU?NcFW zmHkS`_mRO&;8azaKeDK8j%#<1zY#OqxNwr(K89}5z)O+p*^C$L`Mv zwMZOfBruCvAzi#cIb%7ZS3sLw2+wcACVi(8N)WYK%qV z3n%AZ>*k<1k=H!>1tK0k}wdorzytk|&D-o5i>TjW#el&$(6g?XfS zUwn6xyi0E;Ngjc{P@31O58eBbKf#YrqfXizwOcJ***Rnn%M4RX|IB?hd4uc%5%MHu2m)eJx=`+u!>OcRc zIm)H2b1CblKFSN>Kk&lR%-~46s?(qUsEyaAB2ucOA4o_uV(Zpe;YLk$(Ah? zkx+Ebkfl$V+a@`^luAg`>qMQoE&F%@(h3bs_vHzn^roPKL3WiMtYU6Ue+noivi>wR zz}uY^TmHeC$vpMdBS+W_em9TNykeuS8})CauK&b!k>oBrHRNC<^+}hiZx0r|NUCvo zge0@6_v+ZS)W7+{8?-q)MmlgGB4^;%bw8Px2prT74QqLE6_4a=BYh>>Ea3a zUZ6=&M2MIU943*j7udrOu{G^2U$3_~F@;_YqgNKiRX1QG1P?9%`%{!gWYV18td;Xb z0(*J28;v#(=FYix$6ewsyrA&%Lc1i1|LY>@mBGP{Pk1TnX5I|~Ogxr@c7`+lw8&p` zgJe5kvg}eXuu$U!NM9%I`;p#}R3MW2!kAFYa*f-7HQ#<6JU%q#!qW^`@IFXFMEq5m z*=IR_;d^=LP81>K;PIAn@QD12$@S!@soq7R;0XNoILB<^vJ*F;O46q7_v=WO|C-5!eV=k zmnw#-)GcWaie(wI~D6jhdmw66sJ%T~6qmkccE#0NIPZ>I@(Qg8G|e zI-}{PD6Ex}T+YWHz0M2lu)kYIr-I?gkvZ2Sga39-sxI1#GhO+8y$5HkeX;Qc1I6g{ z`HD>-KW+2~rwdOQ!l6GA7z4Ry`L{ii%y`wCIR!{r3IZ<>zH*W>uqm7~8>=r%x4PNl0M@Jt|`=Kcf+#!LG`cTag z2b)=c$B~o+3%kwA0x+J#%o-+?UXvQIY;v=;Vm; ztm&yIOa$oh*u^I$MPM!q1uLw*A z-SzAN2D;~8lN@@f1Fpq28E{|90e616CTuB=5Ugn5?&hPP#zXVbhtpqiOYX^ zOt>1k>QyZ{FP->eFV>xsMzf70J>c8O(AT76RlNk?q4Vj$vo`6Afp1`IG|gcR{vHX| zq0EH`48{j~j{=}?;HILj!&-*|@_~YzZXNDZ_p3X?)z6T!{@dZSNBj7FSdZak@h;z( z*qM<{Es}g5$VO&v1Hi9(ffus?enWXxTK+kqS%Xg(vmVLQM?$MbHX43*!3O^hrx299_n zbnoe9tp8MR(|bHUPA*dlGY+iS7a@&VBsFfheY%Bbnjw(;?&bPD=>TaV=kqI?Tsx%o zbDy(i?9hMrf(EThz_6;EW2CI3U+7ZZKjizpsD7zi$ z_N8d`b}#TMRzk6lD`n2Ftix)UTog^+fyli<9rDuSPGq2mtybD#BSl0TB-iBXCKKDZ zX!UD+Gn^M+qT(IVYJ7>WMFX!#YG;M{Bb9j^YLb{cIo)D zBgutcvYpHANZ3q!B=C$E*lgryX=H8?O{`b1MzCyeXyQUd%18=yZ&TvSBnMJ%4Np1* zk$g_*XVbPFKcJBt)*V2q8B|P@4GR%^lTCOlmEE>elLPa86#ezj$wElMZW5 z<3_J`erVDMK)CQfG_qb2V(1`k(vtn%_p#(qM-%5GjwlgT<5{TEril+DvDzh%1kRn;r;B(T{d%qOsrW#&hqDn8xXB7X%3pij9#Su8nyEgQIfMsiVUd3NjN5yO`u+^ zp&6)8E)}Se)Q7@6=NYWYy4Md_mjUYnQDq|r?VPCMV7-uAl2SPjlf%kQR#DU=wgCa3 zZRP?tG7BiU)235k-qqNt=M;IIdQ-tLbfC0kl4n-#YlP!6$AGGyw zgq1+LBM1W|cN#2bx1gSEg14ocgcWG&0RQzcJ;bb2`4wug&ih-9U4YYwd%YL_k{Sf@r zl#=y&0q)3A0}g?*SYRjsDmW})-DmYZUq8v>!=@Ypyc_rcF<2`GaGnPVNDuucf)@C2 z5>P;(j$-6FGVAKO!68D7XkZ<0!UT>Y{0nkeaWZZ|sDZMm%Tl+DGq}MJa-w{o#sqa5Yz+I{4@!IM@C5*r@M1X-G6Q`uaPPlsHDfLMF zIGQY02vdY8S{W54Jbg^A?$xdr#ora0bQ54UhD0b6RLMBHI174S9*;|o*lF_cE|~iT z*`@yjb<)O~)~{nyf4cPIKd>m|=s$SHK|b%01(@#BodRSRzVC1NAK?cz@B_RFpMZ9Q zBhX2bk>}6XkvShrjvyPa@rIpthTlAbk|TLC!7{++X75yNWzq=X4G7PU5;#o3?7Y02 zRPYjZjBZlFGH(4VSwmeGML5m@6iE-A;8ibxH5^3^PS0Y-?dp+X#uxM}pDBo*z!buP z^^PfsIY&+;ITz1hhSW+#fg%^J3Vm%XTFl=R3S?wav}EkJh9MHCV*rA*$oM{ z;H>M01eSmyD;oX_*uj~CZF;En=$I^FkMLS7VH}-wNbo6sIhJ6bN8T0rzZ*};*?a$0 z^8fo;k~0L(2mvD1!1wJjgmsz@TMCy2H4CjwA`Ahg5j786Pnk^#@)j^INY8dMuV<~x zO3#L>x6fRIi2rLrwzNq=%xtxExkid(9?3y z>VN+O`oJLQKQNo2Sq2tp8=oL=I%>hk<_1~G-1OA~r~f&7sMh%iTpJDvBKR2$54L8J zAQIT(rM(ByXbKSFBtFR^!oPzED?(HD7@T}W@Hmsplz}`vc-6Taa@u+%Idn^&%VF$a zoOJM(2oX_3dF1+A+*AX3lzvXmo?*%S@?cYS{zO4O%1Bhr~*Bs9OfDvQZ(GSlLLH98r;b=NV9H6cS@B4_8b@K!cb}QDs-~|Xi8QnUO!+`9L zc`YzIxi1?3B&9y|*eTyZdAIy8G3yt6ZA70&l0@AGFimKWhiowPt>{nPN}oGk9B7%Ntwl^0`;s zM<>2&C6pxd27XDi3l8mO7|T@g5;cu@3AfwS>%z&+;cso53f6{``+-xkgLt@3IxY92 z%l42OH5en)?Jw_MICD@Cmt#?(CHiTnSgNQtU@t*H4wR*bxhf}p2% z3#|&d)0K&oDj93{<5go^Src~U$SWu@j2F-551F?3OQtOTlI6;*sI{{~6K~eUgYVTu z9%#VytZ4Y3iQD;bC=q05Y`o}w?y3(bWy$}twDEbL6%5xvQT_U@Gm^OXIg5IU%=~B2 z3)s*JfH_N|jRIhz>08;r2XPz1XFx}KQuQnhf56!JQD@1vH9+k@Nxx}-EE&FO|3|t~ zV9Hk9_|e)|8lNAX#uv1A4mPP?p}T*_U-Q%1*;t-C8!N`ySorP|?rf|&cQ%&i&c=#y zHkP6QIU6f9w&?snYEH+N3~*(6KUY?jSs5>S;}3csFL}+C<=b3Y^-oIK+?MgjTPCI( zTPCKPSO(Lb1=C#;n)q4fGc!@WJTn(h3oUz!PXX~CttkJU6;;2apj%^uI!bCR!%)F6 zRA?AX#FzC7UHNxcmf!5ksyOAbyV95p1M5kT!@LQ!GQ3Wgt<_XV873iG!p?ZnU|kSu z9h_yJ=UI*GGIxsK3&9^iUNIN+h)eikbpIlL5j&#lumGAHb`Hy+SE!{gPe%P6w$Lk* zt{VVTTN0WQ{?C7q8m-n7x*G!E!R3qxS~r zz2gbS-@r2kq4O?BpT}#ScJDU4&|h_4qIZX0LcYSkaG!S$^Ula0yLXyj0B`1CkKY`c zI7VxdW4#!m!j`<+SH?3n1~*O359v+*)O=OfnwnQwAiT`fC{`dfEDNY_=@)@bT`M&_ zb7OXq;))A&1K+j0@4y#L#|E%$mxiW{r`$i*QGgqNybvBcqkk1J{lQx&+fDHIJ|xjaYE%lOW`0c>>G1VIOx z*y6ysWt&9ME5c7g2KaB|hYJ?( za6$JS77t(FVN9c`L(F;K?~FO`w4&w}D@MLZ;YbPL!g{LYmle?cj7 zvz$MP9(exJ_hkl6f44@s+>KA>0V%W_A z^*P6--|IRtHmFQjMXxcO91)7vZf!&`IRC_J(oO3y2K$>g9s&()*4OB-$H~2#d`|8a zt6t+~onv+tl+Q7{6gp;CtXjwHjxGAuZ#BbXOTOyL@-Mrx>ff!57hUVhl87tIN4c`< zQc5P)T%ex0Kx5_tO{`_6*ybqM$Yeo6VR#XKk=*!sP8vUj3D(Jfk z^_?l`_>Iwml6kHypXth~rznrzeq$0m4owP($C9L8P*0bkGCOGhhNhXKvB4KK(J5UC z+FA5}KC>Xpq<@CP!D#;nFXV?Y>2vr+$ge|uaw`xk<>yu?;mIfq+=!&Ffk$_QrX0Ay zC-QC4>K#Mo<adZV53DGgLa42!6n){Ofc>BEd<2hpjU^hd>hE4l>^Jg%w%!|{ z_dWnCFXI`kk<+UjD}U|RR%OF}W91j?-Juu5%C~W!cZ`)Uaql$m2e0OWSBD%cC&u;> zvGaUJ;7?r^#BH=jUlXLuaUAnu-4K)|^opmiF}Pk^lZES5`lZD^!e87Q2n1nS8>FKs z!~oBr{fraIDtX_9nMKprIhG#eRwTL73$S_W^)P-a7l|$pE%8_c1*Qj(nebupTI24o zPPhOPs!M_TRM*3?IZ*Fn^w#AKkRin<0cz^#_k?jjmkFr=@&hKgBiucr&9wbWfG5mN zfPdKsHLF4G$zd%}9%rEbAbNa15ro@*WecuoETtCM4!v`d-YM2Qr;Av4?wyjM?j3K3 z!McxLD$`5v>i*P<{p|Zx2lr ztM7vHZU(&GtKBvJ;vN?B^VCAcV}mDqf%RI?f71;?n#}-hd3crQPpj`n1@kM*(meVv_4~yvyMH97ejgyW zu+;B8>=?OAx;IPgD)7}ZWX5)y{!NxW^luW6p?~i*{o8V>DYYK@_fE0+a(W82IK_&Z z6RjB8i^7qZLKeUJ7lwybOI%sg?#hv^l+wR)LjG>?m5vTvcUP9TqkXTBrf;FS<)JCd2k9Hu zd&1f3&qDpt^c#a}UIjh!Nhoj%mVfN{4(i@xH@k}tWk{PV7?`ZVP+I4f?@(8PMyX674o(Akf{!b|xI5MN|Pd9@W)11N|Q z8_N(>Fa#A0L4}6EG<5#V;9RoBmE{{eWwTnJMx7T@B7l)_or<&n(`j!q-&}>Lp3m7|op6yB4^o4;t-zNBz!Y>o9T%BpX|zcX>R>@${cRB%VIvbdg@dG4!fynY(1bR3U(&3L-!UQ1+*&im>)^_&4uzk+A1iru_x>Un?nZbQa+dY5|M z*VSh{{f(bmv&|Ww+HdQLr?ZD`lZ5meb1V3Ds-UA?41Kw7h|Is}Yb}nU-#jo2%JS7j3tw!DgV zEzUY&7(7Z~2HIK9eyO@DdGk_s5C|(ZAJ+HfW_wv7^_>_Zf9HXMJ(I2upbqc_b;Y>o z@Hzr#jI#rDU!+5vQ+vQ&?E%4)3jzKf2tm<*{HLw7qHj=YWo^?tz7o$TCy7`zx_3%G z>E7|S8N_|eFzY{@J?dU6ALd?)ZR-!uxAX&fO8g-AQdOyYDY5O%IJ*@2mE!C}y079Q z(1bpY%?WV-q%J0rrCi9?|NSh1c?sT&K}D?(Iz=A#5NziU&O7@n9#Pj0kC@5owe2CZ z##dxr4;!D3B#T=MRreCB6qmab25}ggDK05ucwer&mlIY` z(#YbrY?qNCW$lj=7@zv;VAoNOoe@s>{g0-a1`H;=HJUnqKqM6#FvhEXC7P-qFq~bO z?Q$s)X3KVemK(URStKV~{RaN|das)Jy<+X^XKzac%sY36jDQrTJ)b+{0kv}OjHwiO z8w?NKItVAPWk|%Wb~XJ;3ZrX?tn6c& z%tL4_)(Rmu4ht~d-P1WY19duAKY|yIs{o9(>y;yOF?Z_6FXi zLrMc?=F!>D$p@cQ57Hldjo#nI&!>ntCAi}D$Gzm8Pcl22SiC8{Tz8d_fNfl>De5L) zhePIJ^RJ}bI8rS(=aVc?9>UZ{2~(3SQ8)WvU%=1lU*Xrx^zYT{ud?TYOJ)H=s94Gt z8}QSnA@rTOyum2c0qtgWDYO-~Lde7|fBxVbbC*)x%i1D2T_Chbr0JSq{My)w2+8}ZQQ`?ngm~$!q0aW_J$Q*_6B*$dFZNq zI9p}$a#f7UMFln&6&PJq1efV=Y?(c(UuKV*mO1fdnTap4WhTDVFEjC_X_@8m@s``O z#B!HGVYxkPUXExJ7wZyV62Cc&tsq{!RDTmoWj}~FES3Er-n>*<3i=eU(1`Wr9HU`g)A?C)AaAOGC80y>@JU0f%!6rkNj=trW@3)13@g&Udf`^Tm z1s>KiP>u#Grn?c@sx+Kj&tE%$L^Chk7YYPF0D1FjH(+KfSOoM$Lt@HSX+5xCOxtLD z``Zn2*(Y1tHD$^45}Uc~87OKT(xt|sQX+zEC|v>xbDeuowbGP&j6_IoPfhk=X~%Vk zr9yf8_#1B@eaqj^)exa}%0^v$SlgZg+PdQ>$~%*<6Z?!+#|~T4#n|D#e4p6I-}u^Y z-zN^2MqyyCf-^zE%6_V#VV_BC^@sbb1NDaoQ9;8#{>Ha;tDxaQY zVVEHy`1XihIfg_c9cI+UVb~fQKlaTC!JQC-eDcmBa(HS?$ySeuAGC}$6Ax+wp=d&d zVolgcxL$jm?hTx#1$-Ub$uE*^GWGFs;ndg0kOU!|`Z!yM$u4o-)Ufm|dyL_I1Rrf@$O<#~V$s zKm$V}-k!_Kx7RpDi)+M*3tf#A?@&_-EM*i8I~;@D;TYt0-HUB^405|;klP(E+3pzR zcE=#MI|jMkF~}W`LGEx2a))D(JG9=~wd%ESwe~==c<~nfO>8l~)3C+(PV*ME-lte+ z##MS-d+Q>xRc}-#w)WLk!&bdm*|2qxu9~;1OO?%AVURM>p|lx;Y&+Jl?L6^P83;8* zH*Ac2R8&#t`tP~^$6Wst^k2BOU4Omp*5BB6$0uz{I2FVmxuL||P!et^K^sb)8;a+K z;<=&3+)!d}Cad3iAH?R3fbk!1AygzkQ9DzuOAYfmobMXDei;a?OZao*E9U<*dHOb!fX*Eh%oP zy>Q9EzF}J{)KjbTez$;}MV(F1=`wa(`^UVuLhq5Mx2TKhvX8^%(TDGY%d_)=3hq(` z>9Q5z8|-&2q?d8tq?-XeDAPM_Wb&o#Q!l!)Uw`gy2HEwk=ZC=_{tR@ztYO2p@F;vuNY`L>EyVbN!HL=3|4w1&r z_31*@biUQZLRL*p8C!-;8KWjF>uxofWDSv^CM|dkPrIlNN7F-5*T1-0BfVU;j;IVx ze3tpleCOEkn=DXuhu=8ed^_;di@?t+d3*3Pa!>&|5Wxs$3Wg`nRR}a$$0~z1L5_4( zKspM(p%xD~@~L+;r1D_yXiWvQru*kHfXC-ht?uBFg{890M;U_)#Hst|2_VMjP`hKn z#K)P?L<{(X2P0wHlHzC}EsPX~NXL%Fi{bUQT#g|;K=@X(hT-m8#@9!0`Hg5I*IT32 zTYWMT4Q$3!gKiz2iU9%n!56z7i@g&TpW43Jy;%JMLRo^dlMjz&rDMYDa>qpj zq~08Gy)RKP)h0b?McYDtIV&^hLrBDvqAn>@`?Yu&kdSJ%QN-tLFwgrQx}#-=srK!I zqI?+dkQugiml<3m&JfYn$gyMwqfIeKUFscaXfm$mBRuG5w5EQm5sId*w#vPCNoLr_ zlB)E!IhkRbXj^4so0A!~IhkRblNq)Nmn)mM4bQpt@@0mehy7ob8SL;|w|3)h4aOa# zKc>uJL#cB^!QANvW<$ZQsjHY93I?62HO}^F zdFXRZy5A=V)bvuHecUi(wV?%)Z{jGIo^zb9l-oHQAS#!?Wd!N16-h1t}*Io~2 zKl|VwR_3{fJu-$h?qM6hICFqOCXgK5Ll{VI1&^orSyje7&LwgWpfQQ-H@l0?`$rNa zGi#Hm2O=|KNlhxW%Y!{I7p$X`H9su2+;|OmHtIaAvaxS0cVU9y!HB1^ADCPuv+yj@ zZz2jPC43TcvMQcn{tCwwuEBY(!&wfbi?`w*LoA9>bW2YODu@-?ALjIBsJ+z%?_E}p z+yEpR=1$;BASn@JO4c-Yhufjk@g`wqWi%N3*-;n=Z;VSaVHHFzaVbT`kb_RRAvf}9 zh|I)WD`Up>T8`Mp>h^Djigq6i%e z1DXyGUL&<-VTEhzGXaA*j(5Y72J$b5oqyr1nIbq^7HB;@c)1KEgT%(7P6-Z%^ZW~b zeXBWIx?fJ1hVUtgr~?Z5_nF;D;X zg#&rdXdm9;`}=Mn8{?f892_wykJy+#XJh&h1SxNShYjfZl=oEX;HaV539M&qOkY*_ zY4NKzat5+7-aYAqX6rz{HEy69$1+LqR{xhy&tKAd3;Sq-pF$R1(wF${YQ7^Ihqrv+54@G&3g$GSLmYBz%qOV zK?mBva_ICjQ7R$-8Ts~*kA+B&js#sYQXtcLK4zEr7?jHLLJu2Ns{U4E#X9Y}g)2(n z@%L9?O@M-^?}I7QNT91pA{vEsA1H7xItM^7I!q(}ce5-gBSsIvES07XxLW9eD&4gl z&`_wTJK$=e2V5=mfUAWb`0y-?i4D>&HfVCOLF?_eae)9`7 zXty!C`|PUU!=rmSa+idor}u(9k8&0KkMk&F_!W-blc>VSc$-&+PgnbBe}_Vn8H~JM zOV;dU>72=uj}k4qa!=f)pE!KVF40^_>I}~W?5M`e)BsLm6e(_){&N$O$A0ixV|phzEwcTk(d zMF+NKn7y;33L02i+@t9k-D|URuXfNCL66Bk22pbcaWT}#Wgp>z1RL2<_R-_I$a^)) zD^h!%cjy_s8s&M19+o02M$w0@q=CFck5P-py_zT$jeDJU=o!2)<#~r5Rwb1b)I7L9 zENUS0(4%9)(w4nOcv|*4^UyPRk;*d>b)+(ZL-ykYVUCE-x6; zMWR&JhYi7ry)=+v=rPtVHKbq2p0bW>Naef6*gEUvfeb^B@pI`ReL?oLbyh=qV0X~F zeS`aB2*VKWD{Ml9dx61ga$$--&lKI0oX|Dnrck&cRvvd}LCqV8C%<9@@j>X~n}q|? z6Hd}~hEBX6og-=`9Va^tmuuX)2y^jLjzSirc>;WJY2BaS-H!L|t|{-WVpD*{)%}Zc zK)ef??$RlDYO9i66Y(7WCJ3jb}F zzyANWn7Qf$FB)jysi#MKuQB*?@AY^eR_6IH@cQZA&CmPm>kPiuTfdpd@AuwsZh2qs z{k#4Cx}(o?-EGFVJ9?X`q9UEi!^^`zd6|B8>=( zX6jvLiMXF2mOMOmv)hs{g@2QP+78x2l`@u+X_jf(y#{jk8F<1zgtu_+n9n8w%H$S% zxsMrmyxl;q13;3cc4z7{l&KzO-`r02{oh9)g_^2iW82x!>Y;OunYKkLKNp7g#$YG6 zq|j9AAERuk?VFn(rGBAIH0gvawUYNW6|BKx-Ez<9VIX_)a-H<-S z9=Xz32-J}0{aRv<%t1_qrNfJw_Vu~CsVH^gJC;kT)0B=oP3gGPl#V-Do+?tEBe*tp zj^f(VDW&7b{=}4ye{5jPUl^E_1)NOjc)C4rsJz4Bn429=x*mv{muq!=ulb;@5`e?u4|h=WQs_ zn!n98w$R>8U~rJAS^TNNAtdj&}SRBwGjE`FBuX-DK^QavhoG782NH+ zA>-HznfS8qW8n*8G4N&Q@AkdH143VYNu9&;i4H5r8EhyT>9C~CVR^B`$|w-EyiHj5 zZUT+CjR&EdLNsFA`)!8!tKYuoQFP*Z?>Bwo-3H2c7^r+6z;`j{MVT0DUN`0~*z!JZ zuNz7hIxL^>urdcc^=F%Zl$fw4Hs?ung4s|>TQqVveV78TX8eJHP-)S3skv~LJtE#Qg z18TO(_Hvt>w+ET`SZv;rC!#n5hoo+oh`b>E=>(o4BE&f_ z`J)zGL*zz&o{vPtb44d$ym3WdZFnMY(N!$gOgvw&%k=v5XboS%o4nR=g{Ml}RJ}yW zs+9~|-7)9#ip39QU{@M`b%qt#Wb=8fl8&2z9ni}>CW+|`cX*Q4&RXebnI&I};bImd znYU@jbIA$aGl=|`?4N+E_>3mtnQUH#oqy83HZR*uR^Q#c-MXq?ZpW;vZqP4onD z5P=kK%%!K2z|?*47ZE3rwoH#j$JL3SRIN~m$HQ!7qpJBXO;snpXAVM+QOgWrG)Gz| zCZ&xzkxs;cO7T-TEkYyMJMdk2mQEOY6`NE)K1-hS8K?9h{9sf9%nO(@MUONKs|`gD z0GSqRl;m6`DV~6AdN@f+zUfIyZnh)=v8+jRzS5Mb7^NxylBX%Z+|s1hRKYC0t#qGI zx{(t|Q+bJ}sXW)xq}MRj+o71aNYGZx`|db;RnH_QY?(39rXNn$HT|IV(zM0liBR+o z`8EA;Wo;PRp?l51=WU#CVVt}846}C*pC}tVC$rbqCbQ=!v(u;H04|xmV|;)=dK|v` zsW}VzeI$g^x^8&Qb0C)REpkfrlQ^!rh}e?JX)j2Z;Ywc>CP0E_GI9WIf3pnka-F(v*Qx8)LYUsg zwPE{^{OKn9!~+SySO&IH>7~pu3FGIQ)t2dmV(fx--NUNL0i=WjF{dr9~QeRl#bR6I03;? zVtiH9fm0pqb`PmjbO2WK`%D;(U98*{0eB=&&|NwtQ_xk4X5GUlbVh1d71>f?k8G*# zsv+4@LSViJ^4m&vp*Wc|C?i+8yLL#fbQfFvV<%#)u$h!*9mCCrV%CQuhcNcAe?Z$v z-jHAkpYsVw!1dGT`t*tY%(TJc5mPjQHV+uJ3{KKzYj za%$@I0^xp)IvpHJoraNb0Ci$3aIe~*t2XKs5-Y@fb3^Kcv`drF3DPgfY^x=#$2t8R z?U$iK%VYBv@b>!YKmUw~O@N0(6xlU#<28g2B<8@rkFw!;OXdgXU~(Y_cS@cL!Lxu* zs|eA}$z$`po#iu1>>lYVfy}&l#GV4>QLeTT`ULT>=$BIc{8t_3#pZU2K3chLDwpD| zT!_eXbXFP#b|y6X>&(jMYSn#We?H(wL<1gWcSa(*?$7{K-I>T}x(`*>gA@^nkT^)p zk%p#C4EcuEO?*v?>>RnH1CEv+D&QQrqXCYN9tz+w(_xR93VTc%?7lBSgZ&!X(fiX= zwF?bSW}~$WU37j+6`k2^6%DMSDXVDODoW4}=4+=amg-c+(%N_tjY^NLzA*H9Z1qKH zJ$8X~)?>q^vaY(TzEW7{OdWl7wS)Y$qrbl2FucQ#PB<2uBRa)YvcbW~@TruYuf9PhNAC9ZT#d6w!=jD-&oWG*XZ1hplYam@5XH=7hM&B(EvF+FC${ztk%|%(io}Mt%FWWictDs4 zeYG~8!M=C(94YCyhDmvN!fh7@A<}U+!ro2YSU=>n@}KHTmE`1m}tq9Ox2yzG%+7eqZ_#d8<|vTf^2h5s|gK7kK1eZ zzYfdiJFLtB`EpdBC)hMsLNHoY@}F z)Hv0QY?GcODMq-j@-^Em|0K*h(Xvh)9h?10qpTo7t%kV}c4#$63t%U}4iLmtXcBAA z65{grA!Mtu8H^NduTy8Wz8YBV+ATZ{d;1?Ff9=ldic-bDjWGh57zmVZK+} zc7xql$Cq;>rwrMhe3X|1b|*~xH+6nUOfaVXO5#$I!Tj0T)ZgJ!uKhGoTSD8|ud^E$ zd&H>;Qm!(brH3PfBw>qr6 z!C*tt7aW#+&SCjy99Di3$ZXrjWZNbw*EUJHwlURKvi0o>rCi?&9kS2T0B61*{{x%v zhYXazYM}CE05uSgU2j}-y)nV{R`G_SCHA_Zh>4Yu& zeNa*KV=66l+LUj#oBkQ!-FtwZG`EedcG$~|pP_SPi<+hr<#>j(RiYjoWD}W4)O1m7 z1}AfD?ra9fBlu{3q84kSLJR6k;-0>wHcZcZoqQ_& z2&K;x15IqwmyhuD<-@}CyqC(a2*D?nek8McxbksU}G2hqWHGO?Gl4Q-}9FH`Q z33;UC&0U$`%0#xfI+1xg0TIQdXLVd^iDBeF`Rlz# zNi*OZsTtzVc3;~s<>?gL2_$m$OoZof;LRhfS&0HxbIj~m<-Hunq8$fk%QP==aQ0L@ zGkP1^HBzdPt@KM@b6e@P8)1co(zvj{VOU>XpBZ^>7&+sh_l1z>?UH;so>@m! z5f;-KL%L)kFY{e8nJ&Sh<0Htd$w>XrksIcMtwgw-lIutQAo?RX~Ii>qZ4&^!C`y;G#5);o$9 zN2C~<;JstMFeYo&&lS%?mC_s^w+9%;5K%eO9?!hMn3DC#$Uor~>FA?}@04GFS70>= z8G;i906@ zS~B^{I^V?`A8r0QfeTnS-=!@xs?^Zj$Zz+X?W>WQ;)^tzXzM`l#_SrtBL~Lqy#Mxv@AE)pU~he{mYH@Uv8}b^6_wk z_uQc+x$YT3;g|~@P8tq`)&2nPg15{V#qLlt zg`(m#1i9d<=yi&)Qw#SMyhW}E)x;ue;tte_U(_IGz&m+ez6Y`SEuCUoQ5KX^VGkzD zayiNwV&_$wN_}!AQnQM+w&0^;jXaH3>+6sB_d@SE_vuc`XL6;bXnJ@G9*F}K(}0f6 z{YSn`*Y11CwEKdW-2LE7rrno*3E4+|(V4dko%JPeHyA8G zZkL>ACrMT z{R;!-Sp$`G0US2r1W;EhFF@r5RC(6Mo0J4kISGg5Qyf-a4Lp4XF}Wk--O2Yj|osA8;Tg z|5x*V&JzZILXk1>Z~C$<2ho9JgvgE_7edhTnjrh24Yq%vCDb7;=V@@r4MpGA1NHbm z^QzM$KSb}q$vuTK6x_lPT4 zC3>kd0|4D{ZoRoBGXHa;oE6b)&~g2wPppQLowtdBEnXqMNTS?|GQDP_Q@NQpKJ^+Z ze_^T8D@;cJStYAhvXN|~e#$FYrFTebTdAxiZCX*K60cIyao4bIn(L+6mg!zg(z>D+ zsst9zkN4wV&F6|cec;K(cU zJ@_$xalpvR6wX;9pzdb6-pO4QjEZEPTy7Y9qKy>gY|l#v*aF|C41#! zP*nL+JoiFiS+AiwWBDGF^_VEdDFX?1iZxm@qhgR#!R0VlA_(r3Z{9k>Xbtu@op&nO z6Gi15;(|R;-iL6rlls3QkBsjlUFJ~msKyEdg;8>%4`H`BB2*QX{%Xp*u&!VI6$-;qycX?+9hvYnX+!+u^w&H93#N(f|cnj&Bx+2;aK(;R+;Xa#DVsr}x z=v4tyC{_W|owj&S{fZD=Uoy#I`IQbU#~5rVDtA~?;;_8PVdc9w^$)O~M zkNTOL|4~KT$U{eOHc-CKK;1Jtb4 zAU}B>&HWGqsvEzb8OL0^LW7*I9E0>)*&r{^`6+0p+A3ssTMWVwz;DQIn-; zJ6sVR52428ta~Etz0p;QHi^XBaeJBGU&NZ<&8z&HzrvGoJf?J2DyLfMhF@wCyb z{5beJ%`&{6iBmq|b+SJg9+f??Vg|C&qVt!G&UgM#`DH|)z_$DJw;qFOKT}M*1SetK zhwqVofVBiMh-342Q42^Jg)-w%_ zzXu15gnG$;tO*b5ftZ803y}p333RY-C0t7qME~K? z3?c+-bEGm>e4s4U&;Zp|3Mw6TH(%9)1Gqw+*3UGI71Qv1(k64!uYsDpyOpM&Y52T| z(PB?ivcS`@IZ&d0E)uT3zC7!R%4c|@)NYuDaqlVN0H)y{PgHq>CknR~X#eMZ6Au|9 zzh#W<(HQx{N$ADZHyBRqqcD3m|3>(Oyn}g-6XPG|UZ&v@@(+gtMQF091WQ3no?xBS zvp;MEOO3fGR@#1U;zptpgzHeqO^mQ_oN^sf_LHtdJ(sF(gV&+{HK-y{5b6+zeIQ3s zOfybfcZ*7}cgDpaP9GPc9aLC>v2doMJI_?STG;PjWK}z)AXny}c;Xc8KoMtaJ4%Eg zfIWyV$_RBv!OsCoeDD-KL)0#WO$-^gfcV{>+rwl`-vSP zlR3(02)S$!NanaXFChX{JdY#m`!$U2f6H$@AH zTqK2Yf*$p6*5l6xYSyeftrFS`CW#BNlY>1Nh<0Zn{+~Ppv4v`ua?UTn5x;;=_r*YL zaRy?GGZ0&xf!JaUMD)wTX?@9W69&tVIIR4Q!G@ye9hR(jSiZ_(<*$JV8l!TUi5@Ul z)RwuTwp<|N7ANSt#z5$N<;P@U75WPU)xgtNLHt8^Y)*~%0FJN-+JpNGy7+P$4N3`mAOsKhyW!EUaJksoYYvSi%_`Bs ziWZN%K9gTOZsk{!fNFzn|0na*H;PF%ipDjJ;gOsW;Ub}*l9NF4fEB#U z^9KLy>C$f+#SaAnq?174Z+SP6H~6lnZFk{^zb!q|vDWp?T- zl6YAxumj=n7|aob<0E7*&QZUI1A{M}D^}p?sWvZ*{td|Bz;Om?LRNr2N1|I_^0=od z$$6UK$Us(rMDmJUKFbr8-|LA|N2-{u7UN<7D{zM=s=U?{rH}LviS)_X#bY2t%-@XK zK~sO+b>L5881yskp!Iw`5P8kd{*Vc{>r)JmOrJS4exuH12&nljrekR9M$T9^aMxD)q*mMa^t z6$IgNr@J>k7@N1!vh`8-!S0O_9V;f0ETs9@b4?;Mv15RH5LYz}kyFkZ3W#>}7wyHqc>bTe}8$%^S&V{j_+^#$%!BSGP(2PvF-F+CU=Zxb2c;0UMv|ewjpC~QAAp? z*;4saGOMR%esgUu7{lh$347)}1|t4vjH}95Lz*2fy+G5w3e7f^T9=Fd2>j3FCngV< z@b&$CGD+;1tT{zaW}XQmOVpY~Zsr*%eRl8@TNNxCp*b2TKSL#N;loNWXHSf8-N#Q( zpn50KR-jZ`g#48BK!ZGF~6Evm$J}GL2&_f%F-sn_tfDj zn#eqW^zmAeSJSa9O}}kqwB_xpLsQ}T-nNZ(-P_UtuSmZwrS6KBw@2MG6`|4FaCsG} z<2qhzIzHl_I=I2(qXg2&dDGCz->cj%9?XTiW(4qczr@Y;bw3{ln3~G1E+ucaJt@&zqVC_!RZna*=imldajt&Pn=R|3> z_#HAeq~DR$qoL^?2{js8->F3sNh@&HtENEcahh9bgL`$h0TY|EUMEJ`j~*?hFzQD;g73)WFc~$7ZQ}xQ*Cz&3k(PTqP6+bF1HJpraN2<&lMV4DE@!%jV2( zwC(AZ^U0-&h*{L9c=Jo6in*IWwAby2#g^Wt2|AR&m!4Ib&qA=`Q zteQ{g!=SntyP%0 zz?G4rvC*NialX6zy&U1lRitg&pds40u8Opc>omTaHgIJkXc%>97@hCVne~lvq;1_$ z%gXjTzgpHI2B~OSr*Yc4fh%reHR?P*f^uF%L?gCA7fif7Hv2MK)qC7%#s5t#MGZ^T zpw3VOuBbxPaN};6^SB8%2rGf%BLG7r3mhXcRk1jak<1_oN= z`Kjp6cQ!*vpw^~UIXrqEVYuaf2ai2C0LbACmI;j{_q;^rnRxd5_r|lgqHVP$o_zov zEKUILUuv>|wij86+}7gW5!ydeUJ{2@%DT2){la4~u?$R%@811g&I#7`KF-@)YHnoN# zAaDevK>+n=0s(;5fe1)B0&t6>S8{36kATqKO6V&k^m7t80@5IWluaN2&}sSwKJU`0+jbD&!EkW2Iw3PKP zL4U&=mxC$nCa#HN^XBp>nOV)*cy^fvGd@ev8~rGToR6YBE_+UlK4Yv5_iC2szV|kh z8g_oatQ&st*Ypdal>;0I*{1eU3P5FQ1ONuqn8b`TiM~9*Dk}-ZLZ#vA|6%utI;dy0 zf~`}NqZ{nHG4cL#=)mwOyL0qw*2$BQe*zmWeek4wXlBU*s15oEhuIuFW`xI%U1+8+ zb>?XhYgv|6HtC+kLl&_7DsOD=kC=B@TCt;kfZa`iryE_tLfO^u&a>2#T-h&ZI_xK0 zdxt6$#wQB(dF6!pJr;1gqTCHyJeq_86P+4QG;opO$vi-?RnWJz53z@ayaFF%E320M z;vKAe=NJR9OQKq-Z3BWGzN~`K;x4Fo=)CYM5-a3KX?lliBw=$%>J&zYfb@ou5tbp&d<6BiogJF_OF`ndDb>@+LQHW&R4$Qtz zbKC-*44h!Bu=(XxYwJnp8@uRNlDI!c(b5^g+#Na*>_+B>$>mbC>Cgx|#<<>Zh$}3K zQMu{O`wV+SYS$ufWdY)d3H#+Z-AapRk{ui|vZS|LG;p*U(Ija*P*~Xi2HlB-^k4I& zlx^I&?-G9?s5vx5MA$^qyom6t&_EmsHtVug40xz&T5D50K z?LF2I+eJ|4Ldc*lYmam^hMT)1d@c-F+buah1P&E;n7+2p_tJcaNogtbc3awnq*iM? zLRhWsZ~EGPNZ(5z^0obtukD9?X**=gZu*cdUoD4xZ9g=gF0V+v>1+F&zP7*VYx|q0 zTHDPvYNIDP zeJBDX%T_Bv06}T$GudH1ot4wD!&F@3Fl>h%`YSyr3^zm!M=Mz z%ZUD!{_lC~>}!y@djV|50@HBiWFj_iHt!hjItb6+zkm^680Sde%n!IECR(5~56)s; zo5{~4(Q-q-4Y}!R6Jgem#(p5nS(GS~nSE$aiVg561}9zonUUYujLa;#mpa1=I4~Px zm|uMbZeSLwpwu_-iOX1LmW$JI1kb<`;0axOSueQCrsm0{Q_c$DLJ)Dl0$Op9+SFTW z6G!r0F$bK^CvwFYMp~fJkU5CW{WDvAHnLX;o5|ten;-ziVtjHOx2}^NGlM(VUP?QrJSLc#1pSrre1L4p_rp3F~U+ z+>lk8oEu1nBp&Kwt#z5qHr9fQx@}rXD}pX(0@zL!Yr~vhQ%G!T1T6BB*`x?CPU_S) zlOUzLoC(m*Z~H(dfLvyp$0Dy>jl?4-SL3!(0!>}c1dyv~`w%9;>;_rj845?0vxN}m zWNFzpUZAzhnE-OOZby_8G69JRJ9*pB1l;-ox}mJU8;Z+d0B2e^6w?jFH=js1U`Mlo zD1^F4ZXH<d^E8M6?z$T8`{hYo~y&^r4PHP|Uw7=&a zAkDjz@9z(&Esgji*4m3dV(|dxgSR5UA29_r;*VI1DE^2kD1|@blkV?d)nfUo@c^$H z5AZ5HKo}wEe8_(9I*90r?Ju_WtC4&kXT?^Hf$djBDB9o1D?`J;_NTo4jkHnQ3~ztn z?H6tg4bB2s`%h#64v?lHjR#_}0C*qq@PKmQi*&B%X5Ri*X8wbZvQTPuM}`$jt`J*chJFryB_Atr z&>3?OM7gma%(X@SS$0yWF1&%0?_>sc1|h&39JqBcmh-DuVSd{~mM>q@AIpn1!lu%j zDByz5ygckJ3}=|?!=o1lgl(1u%}MtdL_C3*;464ZsJf}Onkw8y6{!CZU%}eE%f2Hw znp(q~Y);~zG&h=^Jm&FCy%({CXE$46miOj9IKNe-$faskZuBomW_$kEZSzmY_sEr0 zoTz1!NkZOmx#xg$Fcv_v3SsqlOl9GV!|p7?TL0cX-}S|NAn~>xkM7fWtwVkW2=@50 z4X%oNAl~_9n|j+uKfTBI?#Q4>okH3MNbm7wn@nl^)sm~QcW*7xVR~uP9^bqpvm$*X z(m6oW9$&Y~*3>g_-Og|MTle&D-jVW=r3HZ=pmmS0+vIHRVP>z=il@!Hya3y}EgwO) zdH>)YvOrkNhxX2RfW7~2hqQZ#Skb?uL!#CpYF!_d>A8&>w(z z5(X|1#1pWR7WVET>Qj4s^A55}n{ugP%JChp;CXzf9p9=$8Vr*>ZNgQ#`OPDl&ATC4 zEBI89%*fKXWYkp&ej4ARH*gVX}y z;>1@|*OYf{&Ypw0ltht8kv8&{z5iI{nbfIXW5R zZZ#XzT(^PsFZ$c-LwM;9-M`#>AKreI`+wojSGlV~ctnnTH}}ro(gKjj!)r?!J6`|3l7kHuwJLUQhi?cjJ2oK$+*5JKxQ{^Ks)VtL0%l#MTq% zwju*cW3h@-{j?D5l}3(v{BJdtXY*jRJw>I z_bi1KLfszbY8c0od6Dk2Y4$<$-P+`scbtX=x;{(M(}QZ25JT!vxC7_-*Eq;|l`^l}&2^M=Yt9gca};iOqW`N4TX*YpeK zjOPV;!)bkiO-p+8}#DZg&!BHZZP^bD--ww{im;Wj&Ki-={c&A*Ma2L3o2*gTq-= zA;9%NkCa;N$nz*A?*f)vSgy2o10{dLYk2(NS$!t&+?539pjP`$-sRP5Z}fEOXHAB3 ziMAHi6G#_Bt@c{pvHTq;t=ZXL;%S?ntx}m|mDU{je!|N$wc7VTVc%_imSui9%=!QK|vo7zy_hpJC3Mm=BwQ=IR3bFQeQ1xk$ zJ@eta*?jowR=sz-*R0=%@6~z$&+k5b-~J#zeEHCOI=5%pSFz~cB_bQ>@RRxQedgmf zHH!Wn$W%}OpP@c{|HYG({Lqp}H^0A|DRsD%U*~w5@^4xiG~Z9+!}n{Rrt(Xc2DNyn zlDO*@l|)Y0g^y`u5q(U%8Ix?v?HV-Y_C-y7xU}d>dR|iwO$Q@p<#yjc>vq5sE!C=& zm(RMsWA@9n@$8vF_V>rfv(3}AQ0MCTGF>FAv+0<*uZHD25~3}rc|CJnJ4oE=jE&8m zs9j{l%+G1`Y6v9q%pGuUlkp5fYiBVT*&q@tCKQIqnmkcDJz0fD8OHOJ)j1nL8hIZB+PxK3=nWO3@JhRqcS! zfyYwdo3^LT;yBZGj6@HOdw=aXtK`Lby`iJx^vA{WIS zv90phav|bsS85K4Bg@oYI!txd;g#1dJV^&DVt9hg)CF)*9sJDXCJPnvx|73b$2^72 znSxf}83@N{h6Z9GY4IwaPwS&J{IY_c<>XX&v1%=;rOqluTARUVp^1o~t%)OPV$yqd7Cnhx z2%SA>xWzNeS-(4yc*UI)lQ4|)50uFsvvIq^#_dYGuEq4i#_e!4%Sf(qo5Xxzm7;nh z`5{gW^Y|SyT&&NtFb%mVXMqEK@;?rfw$#ameDZIP&HGESZJF+| zPX{%91al~d;_Rj8sz;b!|6zGRVM5>8fl|5VRrDDKZ3D+}x^Cn;Jh~pWE;_|{&?h~!bCiCT$tJ_#6&~h$m^Fh?I+@1%^rHff- zPKeUxgs254L?}rI%QbgWD>TEKR=E1~3RjB0h=IWBc z?ZsD%T4<`%G?$O}xAp^iT%whMwKYv!)#6cHTdk!XRI*<=jV>x)Yx8Zb2wFqaTG6P6 z*0r@%x>z+&ud;33D%;i#sQJy*Ty|V@KE_x$y_xAabm&iz6W_Dk zZ}7G5H+VJ^0qM)*CO6sKyZeY1+EdQ)MaS}W2LkynEL638i4d9^-~qE;TTJn0hHUztbO%u)8Jq+1)aGm|M1( z-hx9OZx3_(xnqN7=lJYimfFjGz4a}cq zVBsQwctZn)h*kcu!;(DVRcm|L?iO|#$n_bR-{TL@QX>#98OT-n-6#k9NwR-et|1_TkYUPFPdS3dfV15@sF!PqNn>lZAn?gp1 z9V*b(P;KZf_IIWW9g4Fvomds-Mo#9qL5)wEK_Ov~^E$_iRBsfG*rqH+%ylWJB#Y~E z#ZT8o)+MK7(^K|2u%aC%$`7DJbxF!u{1R11hJx(P)%Ij=3PyWoB9O#o6|1cb7T_sC zb}np)wx*o1oI{(mOXBBwRJO{Vjys3a)oynEXH(e)hR>I1-hSRAa%R8&U>`3z21aQ) zrKjA7re_8A%$dMOL76buUw!5226 z*C?JCy+-lGhib*CqVmX9I-h_RUdgZ!l}8xWI&?k(()k2P=TnA-s64{F@(MnYH!>{b zjSLI*=A@jlIhd2ir#NFYKE)ZM@kyc5_ykDf6VQsrr#R!2X?(&M_rVwUnPFj{85Z`z z7q2mw3xf;`2e-UfEm!l@e&db@wp*&6R7$Fz*8G9(ma3=fM(Y4l^;GNCZec{NH!j&) zeIl29m`tYTDJ~f`PjShIWmrfn(tR>4?2}>PfHugmFbD_GoJ}kb;Xq+g-OsG`X1NL# zBq+O3gUbepZ&BCSFwyVf(RT9@u(G+QH=}Y21N(b^r$LW-;qgxt-Z9Ky)tze)p$%dJ zp-!d>Lwpl&P8{M-@|1m~Y7t~s#A~*gd7;VA%yw20*l>W^PGJn~@n&DB`OMJvrg)rA zj|BpawWf4hBc9hav@g_FV1#@b;n5N0jW#2h+TOxyXme zUU$AI3&nH^MD{>i$Eb=^-)O9Y5s(#zl@;bK7>&+=ZhX>0Ms4SUiKG zLq&sw0XS6qQhg>DGAyJF0SykYN}#;5f^nhafiI`6?P;)~S=irtj0>&x{lT-s>p~p;JRN)FNwY3= zQEB!g>{W>RFxbG5sE{6t$@C9*ur#^I_G4yaxH8E7;Stt-l!ef(DjS6|AsXOX&vhUc z2A$i-NAl)aH`_tayytn8lvi3Z9u6Y3=J7rTw`4QOWthB4-2J!hKu$AJ7KWkvuSM-; zI+kM7F69ija^K4D!b#9`vO=)+G+d78ePs8coOO^DLZP%WS)P?P?Q{jiovwhmv(`Rj zUMNuu)=djuDA5fJw!0C+cGC?^Z#N~omhGk+7;JY1#GUr8X{Re7?sNsjotgrj{0+2q zr(9ywacv~V9H5nm6jDGm0~Ug#SwW4MD@g$n`y(kJTHLoG!WvHSQZMQpujxh8Kzz|O z5MShMO&%+|PiBQsKtQn}09Ti)Koba1Jq9A+L%HEpO#??j8U%3H1OiljLqG=z=$GNp zjm5ioiN%gn>>^2G*eTi>8A3qNyMbXpmbW9E{DmN=G}`7X-PRG#0UU#j?fe zy6m)#w5v%(SktIEqO0rV;M>1=T1Y%7e*@}d`bdesnXypC#%qGP9KCk`r79GEbi?DdqdW<82aH! zR2PWM=-)XVkIK1(_;sDKu}c!~oSn+bw@fP^gd$E|IJU;tum@6Q?+dnu%ILO+LCp$8 zrv0{t$q0@<$|U5NskWGD+cCE_T*`yIdfY%;LsoOMHSA2*tR>%L_FWkGQ)7zODHW`* z$^>uvmM~>^dGtBL+O*J$1u%U@GwJ(4`idww{+IL>LtDcSrLLG)r2KEFD}J0oV(N;g z?vPo+&cF`o5Y|p&YdEAs7Lg2>IKQJql!^{fnRJN0^}9O6^cByRuHdQl74yCDf%Fv} z^&dc8F^}&LtFGv_hPJ{EonRlyFSar_Jn5d$H5j+esLwM!xvwAL*GjnRQqehnzpJPzH;nB-5=TA=9rn4faADO8gXiGD7b-0trJdg76K%+y# zIL)iYY%l>$$~A~oVJvVA{_fh78XXpqG;efxtFQEjQ1`-T5XF;X<1v+w zvZwIn-cRDgJuIc2*67ge0WpZ<8>KC74;Z*TU>&HZgFtLEDla-bV!4Ix!)9<^F5Y(f)54E z1;!&5H(fGS%esm_$Lx$9baWV??9lGsuLd}~$R3WH26G$Zj`@=)Q|;=lp*%A=_!Qm2-K!AJ6b-$-Zk8Xjw6A)XAWPIT4|EGW`_NS*u3*ez_2&t!zK2n zW=mnn6Q*i@DXGb%slYlvUUwOD8D^3^3oD)HXP6qXAN+4dwA}n=wkB)(%mi`aDDs|^ zD`0+J=O&1EDM>*Gd<0*C&eYncU0F3B!*+>JxevlBtbE{Y*sm+Td#47b@dxH{$Ttp@dMW2RW55bRY^7mE}aZod|)Z@}8UUPo0G ztU2<+c83(o1R(4Qi+8a+n3bCuz?nHB!~y0#zZoB5ji`-eKB%-=!kIB5)CERAza1ZH zi)h>NFpjjD#F;4~+_lG%*5-1sC1QRpiIa-z$h#6vtx506y4dW*oA$mu;4WhblyzTK%W`bx~ zl>x&IHoBZ6$XH`(v(4q~5RTx~!eS_gummq~03tTyn+TvfaBP@IV|L(lW?z207H{ww z=Gn>4M6}WDvKMOQH*vvw6Blf->qe9wpq9fq7RR12G2vx(%oj2)Y9#Sh~3T?@Qy{YiFYsyb-V+l zd3SO-fC(EKUD(j-!iJO!8v++LG`g^%)rAcygbgR<3wB8iu*<{%yG#tQD-;9ljLjZs zh&ZJE#nyf`($L^yfPw8#dHWk_zoB7Z`%~WjM%oB>-s0^Ky#2zBp}|;&R%`!>Vu0<& z7C`k_q(#U8*hkZpVzmcqX{|CTz<~C+A>vE1IeqNkSt-z^o@@apePhkmMj~qw`aFx= zHjKezotig96j#v06OZANobVE|>VM3O1Ez@GP(0IlE@zmpGak4CGeqp*H$v%3(&VEx z-0sqVb9j`@tVdIV*{$J>ad5!_!AscbPGA+RXX@qoYRvJfG^Gi$_=7*Q#eOw}XmYZK zX^JT#Qz?4+=8)e7f3Gt(Y&tfT^6ofMA9`*&HPy>i8MqBY{#W{pT#kdtmf+#2zK zR1m{`J{7H}3ZW??9?5-+?|XY#6kbqkcodlXp{9th(xgwq=q#WBwvnt1yJVPXE{AL@ zK=jaM?f&vjkU-(Pc+3AJ2F@I!^C}s^*U?F2A+%dLL57u%INt6&0$z5RBcssy#m}*1 zUueT%tL-PZ+BCM{>!LCv)RgH$~iPlf;6*BS|M$6R}E6l1{GC%JoSlC%im#^ss)mY_-YOvQ-vx zVZiwJY>K$^T;;|Tk-*RcOcB4Xr8~ng8mD1o9r8M>Hg~~E-x4R%TxErtEcJ_<)lZf^xx4VQR@-wi|5oA_^4C^iRnVy`fU*nGel}pLdB*h zA+Fz*QgL4f_L!rdi1tdV0QMxsKfIDEHVjD%rifBowazt!E4@P9lO9j30OIh0o( zY!MC1d0RxzZ!{`TceLxah|fb{+u0JlcD&Sp#nFz44Igv|AiY8TLsx9m#&U_vyVF?KIgGj(7v5 zl+C>*`*aKWBSj=Z4`8f-Td zl$>0y1kEtnq+>QSe?Ms$tX&5D_#cBkD|o&Uo=`)~y*rzBQRr4WGhftR)i4k$L79>O zZPHO5E}^wQlrjxO(kne*Tb%uu$N-4o+S6n*!Vwi!a;p;tkE)k5fiW8w6XWJgs{lS) z{F(vNyNTc0wzEj$ z%{0fAG^NTiEgNCLd^ORqTJF>^>bPGmy6If~HXm(jk|{LNjPZO46wM?x{T3JSCerb^ zq@$+ZXQ;9-&TpX2e>Kjxr}J&Ch^%UoU-PB=thD*!P|;)YvTdJDXHQevYi*~e>XWIS zC%l+tz+IPxD~(HtNi90$-4j}M&cBN%`{!cwLp>$MwjKL?Rn+upvh`^9#K#BOs(5zV zG(O^^Y2i{!aDQiV`o?6Y2R{56G&2_?`mb5>rQFE(Gi{HN0C|CuV}Vk9HesLO2-x!K z3EsVeNOEzq1~u)Muryhn%sk7)HTsI9mg{pP*}3k3m0_#fjWtjr!u2RWEZT6l`EuE* zgFM{1u(!pL;gk%A(DS`kPn_jyPocVu>;0Ib4INf*70-JmJHDhpu?Peaf6Q5vWFUR~_O6o=rg|HftHD%y~aTO@zSM>~4_T z+s>y@#Nk0Oy#tAjO&qu}eP#+xGFuevMyzV_$Xm>hX-b@ZTs21pXla~{L?$r#c{DLS8SvX@gj!(FS*&%4rqMjrmC4#}-*x>*4!d<1=`gCVCBMP^e{s!wjX*^TrR6@! zZY^uRzq8i3IL1!08^}#$6KSfTprVQo!RFNRMCjnju>L2)6Hkr-EDah?dg6@UEPf(F zf)iO&I6b`rGRveCx)>3i227VTYzrKxm#|P}@=bjV{HhkzxyK$_JJrZyBzU1Oh!t9J z>sVg3q_1?L3CmvbivH#N8X9IE8PhAB|61Yv7b@aftXI0&L@PBfv`TZiV5D-LtB*CU zbpC6F^IxcxldEavDE3dzfANA`mn+w3a)oXTT30G=gRF&0TUIy&h8{XuTUWa5gb$+N zon)l1i9(P3T=*0_gvH7>gRl^!YlFq!F^h7$ifJGe`wA1uLCF0x={EKnhhA zpqg&yQov1Wr87uigQO`iK~e#dI)l`YkhCL2bx4B((qqkF3{pQ9E()?iP?(ECIC+_F)soRes$c`Sj8{WF~j>>6Y9RflioEAa(*k|e^K28)$Jz4(W0}7CB+GOG>9XKzAlQ$g zT_z>{Hk!L=Z6{pEV$usS9Q#5=dJ4qCeLb}eED@& zZF z%9-}Kh@~$!$F(^Zs!tK8oy!WXk%B_qd1_9$Ugec6G(r2!Y^Dz(-1}?ek!P@%iC}Tt z8=E~57SboBOi7rR#)&W`LM|fYAT*<5v!$CobfV0aA;~?M$((NLf9_cRD<@9{?GYjZ^urz_kY?h>1gjyV3i)7lA3bM zlv}6VcJnRqKmE`Z*Z zA4+5|jkVniI~+G5?KkX~L|1QoTxI=c2%*@<)4Uc7{<9L8;LlraDLJ^>k*s+>Jh9TD zu_y%6^P=y(I9XfewA|L=hvIg>mEZ2zZAGm+?WKn?N>13>{4BHvnh?f_-$siF!B#;k z+!DkLl%Hjw@(cjOI?Y+HK=6vzuXO4atxaj%y|YpmJ-dT6cq~}$uzZ=r$|ZuVMV`08 z^EPR`R5Q@}C>1d;&mQ5c`q)0;r5`~g;gU#q z>7McOOhg#G*zD1)E4@GWhD}njqe{MDp!{+Jm7@S;I&H&_Z1;x!#$ox(4l8#Gp1xtd zB%xuu4V3RNQ29JSLFsz9&>pU|gKOwg$toUbQw85T=P^c!diEcvD2+_(oD^iw@>{9C zg1`SsiNZkC)x9@0Kig~L4EN}B_m5z}$v68h{V-AK3;arC5H?M`Bd9sdww^sqW?hhJ zt*+u3VVK@SM-T<4*6I=5n^i)P7G#>L<3Tn>O19-N$XH+n2p%TKc{U=> zZ52J)v~BXR8*)vb)&f{MmA1LAQhaN~ESo}7H&h<(vLd#}ZmS%j$FN>^TK=@<|CI9IZTTB5|8RV6 zY_vS?Z{vS^{@=uI8`Gtq?- zF7S&zl04=~fT(mLc%Np(m-=*Qr`{zGs$z7yDp&j*kvQdf1n=jBs3;sQ{VSxvvZ1p= z?i5iQ0F6X#(0UFX6Z=m11we}M3xGz#FK9it@C)sXhRyuF%->N);DIe7DV2K+jM-^m z(hC3|eEk8U7ahXv8RJCReJ-m0EID zC1VXkEAn-($n9Q{o4q2zhptHTyg-)i4?%MhnH4yUmVao&7hEP^6`Cuy4nXq?tOv-_ zyrcJet!5%K_m$}fgy$RjVf5xs{UR22W@92lV26FsjbB%*i9room#ONzpcZ#xsksRU8yIZNoi!*C5qHdR{f5=C($Mj zB=}fdZ^*?t6uDCn7B00xrltB`k)!)WduE=DCT0K5>+BS%MHDGjJy|oWUNdWy$kGT+ zz$%-743Blsi$F0sHNgq>x?20tis(hK;#J;>kSJ~WI0^;2d;MA^*3Pb?>>@V!7n5)^ zW9%WyVpN%?Lg-47Voa;yvr1g8#GfMZ%MhQhcw)sE8W8=!T=HJUDQ&khj8io}O9lq= zq>IVGtUO|rhD_Ix!jufYpmoTJiux%lEP;Ug)Wn&mp)9+gD$nuvjws6&$(rBXn5(DN5X@2XJw zjZ5Ws5zpe8b>=R9=7YYCQ4_qdyca2q}UYf_yJmCYVJ8i49 zrzJXX^A7;9NYG9+4UH&0ryoX( zp5|8~v!C5HybmIqYGZG3CuBZaAq69x^2w+(sM(W@ypV)$OV^aqUG-vNI(W>zbB~h8AB2uz0Yb_NM zBq~xG&yqhbQeq4by)&zGGQxyll1-sA5+SP-y%14~;-hLaSrU*2Xe8zANXl?c`Z8rW7jjZ-Y3q%>Df4_rS}s(kk;*h)nJ!kQYGo>hth}>PAE-AUV!Q0O zSsI;xsWOfJJgF?x=OM$plyMvxgAxYUq~)YWR);B6y>T-C=($zJ^RHI!iJyDQOk}^y-tGO^Be!#t$R^mk9j6Pg@e}7D}TRE%+kmTk)23^z@5t@9XS;JjMv^j4JFh04esXwlIFST z{BuP^ifc%Gf%2a(>Qkn?M4@gdpP}@lDkpjoM)Rtyh{}W>L4!V_{3DhBW6FPt@>idW zqH;0$KRwp+kNNF0Rs|z}J^W@ncXpV+M)^nA+?Y$38-*SV@`j+)-dUBte{El0Meg7K?O~$@!gzl*aDnt7|z(&+2(g*H3Ul3$w*UXJp@rl zoOnlDJ0m%8|DaKI9~G1>>n|784+47)f9gS`nLI}t5(od2TxvyAc*LhWz{+M=k zE5HOf!d=~3(L!^k`YWo#R&(9cRx9(Hm=A=yxw#v2q%HBhvf#fka7Esn==Sg1RBroM8FYP3+o=?y_CDR<1#~oHq22z7d4U~M!K=~&ORF(n6!)y`{v&ndv zO~%7)Vs&4^h7PBTe<%j)`_wIV5e4~v4o0!JgS$~ByA71@Fi`nCK-9@87ERC%ULFN# zg5*0&cw5O&43z(sfyx}<^wnt2(T%Y=UlxUs-Su-A3*D|!al197=$n*aB*zbId^5MU z`NiH5d76@ydjrvw+2-d!-91yjf-^_in~9L%3IlNwdJ{$nc$hI^lFlNRjssTx`<4bi!D>-j{!(Rv|G%JpvEBj`K)nH5}eUuh((ix zKoARI0RlUOVmuAC=n&Nq#i&izu%#)xS;OL5ngX$)`8V+$qZywMB2V*!XlSezA_`lb z5d5A-$Q%)ZN%l)4fUm%PDXLekJ)h7B~Ee^hN-zZ1Sj z75$P7&1IZ`|salY*6U0uAMI@GM#u$+MmcENqo@M ze=>K{-+Ry^>q%yBsKwm^4(+;Dr2e`ESQkM=K>e9h6mkz6O>BxlAD#{q=FA8q=7scQ57v&H6i-F(v7lVJ`FNRIg zMdZG`8DF|XX~8U)7SD5O`4X27e8HuIUvcTMLoOY8QfU|N!>;5a^2mT*J$l4jZem66c<*@2yCahyR&Nr!G4k+&K|I2wJZZb!(#T+dua-l;V2#>j(< z5mBxXEBc0(@QLe_yz~0}c;&IieK@||pZa(5Xh*;U-xwEE>JD8c=ToT&mAZxRHkDN$ zu_#Wo1QmD#8E|#f6W;DY<#ZWuy^pFaV>>U8X;fwlpFOQOL4iF1Kyf?aSZ!78`uk4-RJ6(!bjd;zITXn`vsuk(;ac{o~{ZtYz=|J;M(A>Y2{Vm^af{#HM zJx2mzt)HSi(A_t1{714{rbj+=rb$6Ry^?N3%Y-rFAt-YfFGME)65=~P`u6)pa*mG# zUT%Yxd@C$pobYftnTlrpT{dIM+rOmhlrh%v(=yiE(Qmw|S`hg*&Z$uJ62*O!o1!0_ zb_z~A-htCr1)SFV3qiF{-6Bq7+v+wr&GxDor-^8e)7F!L%Ik*XG|Lok{ifrzKk}Gn z8y`J(8=3IxP~Ny5RtvK+n|Hh!;($sQy21sUq1r(MDvrSayr}oB4QcAhIe0=MmW)4Y z9B7>A&zC1ojzz% zE}Iz%vM(ujypfZUaVJ;_EAYl$WaU(3N}9kr+6^s3pT9mibcL;%u4vqs`endw|M0nh z-R{>_a;axG^|!H`E*!gko(xn}H$1!PGRvm9Sn4BP<(#MbQCP}FmFZl((@8Lxj-s{JR2~~ood2L_oKP4sfjjmTA8Ypt z;^Ez#^M-^_Xng6SS0tptvN(MiRF1P1O~~fnnepUayb|?3K2SIXi^@#*sufm(BLI^( z0*Y>&Zo59lwndXC{D3E?sERwfhFp61I*!IwSOtE(W$27e-*`dLB=X37IviQb6!24t z9zA}q?!TcmT%^fgEHZj-y!AGWB1<9<59KL5pxvSsM{%Pk$9Bx%(rTLR4Kkt=o%>6X zy>0s=m$)!>DQ0ke!ne>8zo_{a%?}&8UT>jL|)ts(=uI6-2bBAb77smuMQB$T}_o#+h_8?zbu$@(S zt*_@p1A`vdkiXoXR%eoCY9+5G=3jO8IL7kY=*Wn zIGr%s2C9ZA9}Cs5qwc|}=#e?;PQCN9zEfFiDDBdzpW$h`Q*ojvN3Kp?uGU%$sdqSc zr!LRgsrII)(f__qWrTi}8p>_sFVUYFvbz4nej7gF1%vwY6D=cVJYoI$t8{-(snuYy zF>Yg(rAM7d%TV1FZM_pC#L~#acaw*6JT5yNub7AKl{}#58LX?BcXQ}09o=^VlT!Nh z>c}PYHRs0%yifRmt&|^Xe3>Xysq`|rhNq`aW@y@b{CQC&Y}cP7GS=jaHwqIeGubqx z%w*G?GLua#WhR?M%1ky5DKptLr_O40?$WT>WutSKjn3e>)E$wDU(o2h@p@r_LSLSQqB&Oa(0-M4M}}9W?!wbuO`x8ZTt?WLX0oZP*4TUw(;oJ_GUM- zqwpD`H!O%wI#mS1Sd4{h5#a(jiRqhi>;(ql2O4X+39H}rL#kV@v_M5TUE%k=fNj;w z)0l~A4QI{K$jIa#7~dtczkTKTnBsmuf<*DQp^%O63zX@$a3kaMJqe)CDyH6gh41yLSmQEQuwzT|X{7W#98p@=J~(JJ720 z!FkuW4#gGF4)~3obVB*06Urx@P(C@t;Tip{Ic1OPPuZiUQzoxL+>+Ndr%YbgpE7yf zbjp0sV<(*~Kj~!oNhixs!Y#E0ANjTBwzYX5bZPl}Tw452mk#dZ(t#JabYxGL4m&no z@3F+56(x_#^~paRUEKn%`s6!jl~)^qb932k z5spm!TfRWw8R*mLMSgl0a7lb>7N@*vo@hHgPdxn2Y@XQkzlbNwf8}_h*rnwKE-lV; z>EM&UwC4j4xpd?!E*i5iM0?os+@MTzLSp&2-(|#8pbm`#TE*9CcS{+Sr!XmMId zh*r57qLCVlA#PXtXJClb*b4$qKvkUbTEovZB>%m_2`!lF6JthcWR#3o zAkHW=n`Xw6hcA2XS~$PQ$|rlU18pCsXg0D=)BFQxqRWXw6m2czB*ugBKz%xDt+zXYky&MC=yN|TwvWor~#hNk?_Bir=(kWxPy1gh~ZX}Si#f9+%0&A zd%BgUTC5-VA^Tmo8w<$l$c?c`o9XgQK7{+Yj*zY9rUzRCY8 z;#u8led({&)Vq$62oZt?xK? zJjau(@DiC2t2hieJj$wW9Pc(iG52n^u?lV;N%y|DIX)?{$Q;tTDGNmS{x$Y+3}LQ$ zOX4uJO&;fRb^W*j1{AcDj~HK+blF-c_$-LQjtKat@ZlJ%*QU)%ot8N?S z<?G`a{A3CH034 zi!=~G5GH-ny*_Y?dp+A}m)GB^*P9RO3^NP<*L28$Ptzg8IL!ya5iDdzYDa#~6*KH6 zSB$yV5pzTlwat_FpluI`W70LNUUl*SLuzBR@>pcj@K}!?Vp$voGH%i2Z>1Y3N5Y8KhC-j2ljzI*nq{*$PaPy5`{KCmqs5YozTZ=VaH#T6+d`g zz={`hC03NqJttOdJ4aT0{AZ38AGP!ivtpflz4)))>)GDoXTypYxz`6?=w3fpR($?R zYs9d{mRekSg}*r)R{Va{v7!jyJu9|}6O|r~OW&|a{H}X_;6J$6&y^3abHxn1#ualK zkqF_lAzoXg;Brt0IYK_*0iR)xR!3%MwnW;NE-=lIa`b zPia`6?map(D7IpVj!))Z-9pMJKaaP}eSLH!u}1Hd-=cCjoThJe<%?u1DY{IV+xdep zDMfLp@x+TWHA|kb9M4nqNhOJMQlf5-n;--3a`MU359Ah?mzSy z?PP_7t^@%U#lMXkYp%F@DkHSedqg@zRTy(zDL;x z#34&&%cs*K0f-BwtYh7ZD{(7X4zu2*bC;_}IgGgse-rD`-T$2F(J@b)u19&PL_JD8 zPuHWrcCT8G7W-Fo_o%tlsz(X&>3g(EFQ9l~3- zwKCnKkEk5iqZ`R~+8$-a)6lJ74|Ls$>wvm>0=;?w|262&0bq-b24Q@ttx5KprqNnj+t%7N&Y`mxB;%O%!{ zMC#!QmfAs_zc4ix+Iv~sHFV(t0;uFM6s->j{Zpn7ALd$=6!b00znmO4Dt#C>5H#+l zgNVNE`|y=1_Nw*aU;9_xRy4iZNoI$5m5ALuutE82y_@dBzW#0PIx87*d3sRx(ntym zgZKO-U3h@?6tHg4gn3TvnfFIQ$8loxYF#J^xr+W3Q~AF9UF zj1wLpdt}m0qa^n8P1y#cMjc56qn7y8&O`GZsG=N=Qj!QSVrVO}Ju9*lci|-Y!4#kE41p zfm^EQu_e7@p<|Ijo1?AKp3GSW{+x%TYoPWbG7r4{C(x7m9(Bio+vWZ*Ml0xxQp5>b<;b)f&LRuZ* zUhS}lb#HW})()f@cD<@c^XeD(=W}E9Igyoj>KE&sm3pVR*1xk`71+K^qd_XI6F$A_5J9VJ`pJ$dWG6wv&d$cHH(JpSJjdski2+^%7qkFONK`V zt%elkdw#^7NbPcU@>4uj=GfvPj&#cc(!~}Jhup_hw~>EvZ%C-rv5=A|{slLpEn^_v zA`WVXbiE**xQ6q<@avk*Qq;09Mf&1jSz6X-e1V#+?5V%UB@nqfQzIm}DStfTEk`S# zj!bGAA$~41em2t#yWDxW#ygv^P);})EGvCy4uctZH?6AuXeFuDs1)NUWD9Y z6k_!u)CoLY$l$DL zKjrG$aU;x-hL3g2SYqKZ=7c;9S`uJIWyV{Hoe&Kj$4>R`XlP?Rxt%5s;C#!WxUrVh zKi?a1dxtlz?fsz|URb1q4+cN=xOkzYM#eKUt*ziG%;8LHsFX5=2`x!DlNkoKD5!}6 z_;Z&nZDU(xzn$**kOuXoAB#-XvW1I#b}tg=2+aE$u{tA@{;|@bbh8fTvRbeghnAFR z6k5Mh-SS#$s(u@zRQ9$l{3`gk`&C<}n8UT4WC3%2%-dkZw+Uy1^ivad2fizU-dVlct;VMM8&q1d9pr^vg)8 zCoJCRE2)?D644*UUXx!U7M)W@UDP28?~fXEkw-on&eCzC7ZBP@Fea_oI%qxgl1c_p zt5|V~>A1fcP7#Vh@I@}1j;rOWdR)HA1g)BWbvhCug>ux`VpWx6=FMV=!;Smgt&c|K zF#gpxRz?}kh57CApiC57Jc7_ z!5Vn>1UU!(135KlIEL-0#!Gwec*O}nWd6zJZD&l%wPcf&+&|d8I?k0nN_atnmhl<1 z9Sev9E>@kI>=c5MruKeOOE!}a{W>WZVT9<_td_pfECyaV5pMyW-k5S!s>b?Y@D8aP)PWdXmX zP9jn#`4`8N2UM{H@xrN4qJ5BlHLN$4SH7N7bh}}_)E7aLMp-?FJ?8Fvwf7l5AFEic zV@T`U(R_D}q5P8ic2jvw*RIjVekojOzt8$tv$WqQt*&M(RdVDE_gY2`{u?)F{cxCqXcw{8o23TPv2}##KA~Alv{Hd# zyiK{+_&!eWjT)mqNZo=mWK{*Hs5`wvbPw zB0(-?#ed`x9jNKmz)yY0Wy@d0*;2|DTf{~cvemAM3}O$=S0run61+j$&RctU%Ops( z-K!&x!OLQy0Rv2U3?&e}o$tF?;JBn}u}KPXXF;hx+j7fos#WvCLIM)%d(8`3>8Kld ziAn>m7R=^CIhqy~a;8(gvNSE~hY?BxG*)p$MLlCukBj+{LDZ*q@E^WyZzuA8<1Xr! z#9MA-U@{PoRJYzOA#zd!bAf&*%`Ec{jm`WIsjdx+B{oVL4D24#2ZsF(&@ z^t_5M&iC~l9MT09+Yez7dan`cH`e;~Jl;5{+lTng3wj;vLShAWP6%WYKjBn2&ZJW;y> z(IQb>JMvb0IZ-@Tsh~BjqLzduJ_%>^^4tKVK3NTA3F?BPs#?NR*5P~`dF1bUYBG=D8vWrw zUR83%WZv>>GS9K^+NbO0J1FEh@c=6LYQA( zCdcHY#l_~ewy>g3{57H$%+V+x7`m>Kree(xsGRIYE zewcD9RYciMP(}&zZ*_|VWdoG0jBNET*2$&1QF5s=@fkNYuzRJKs;nzj7W-RU zN6c5g5z41(n5}<=6*dA7s4Jkiw}(hqGDP89c9gs}epqZ=zR?OoEo6%!r_PIyqu3v4 zHJ+4eMH{Tu3ycrMKgvsucvimDGGfXIbF92G=!5?=IOv04an-dCa7@3AqC55h3^c^| zfdb9Y2l3F305EHJ^R17v+s$_ZLg74oXjP}v_kr9M#ww-)jO!5}OAiG0y-1BS z;L*K%+h}9tTxo8Br(t@^cw0d8xgt|;rYGCmmF)~9e@8&_{Mn}?`BjkIG5cHz>3HSt z$fTW@h%DiN;R)I>n}ffiA<(91O&A^XEab1|oyM0jTvxMmDl+jK3bUH_Elq+vE!*jMafwNy%Yj$nsx|0~!u%ubaFABP;R6(HrmI6t z&py{v`+j0a%FI4IaBl?an z&}2u2r|vOpM|^tF|GLQzZ9cxpta3N9Uy~g~nun+-8IlL+O^~#~XH+X;;!epL44Ic1N;{|~bfve5;jgZV>CO?Q2RlhocgLAp`Rrk0w9hdGvlR9FI=m3NFM2t$JLMwanH_+r7y=8d{^{ zS#4?Dio zfbKBz;(nU0GZ9w-lw0r_%8gbWk7^=W7lQZzKUfcj2Jz*?&~qr{Hdszb-B?aowZCE2 zK`5io67`X(A-!E&{C3r`;ziE9q>46g=2Eq~P_-($LK|JFm{1by7dAQ=90q(7i(x6v zdyi8ww0mv&A1A4>6KsRyN`=eZOjjaDvEnHQ_fvWo*q>Y1v|m}+zfrivwBg;a~; zl?Nk}whc7u2c)OwBBOSXnoJ;&4V80brY@KQ#Y>+SjbJOyLJuJ7!hK->p7A6nZNEmi zdNawwLT_{5J}nDf0}DCi=Gmx&c?#Wv2kdCaJC{*alW&)B;drON)qXbisEl}H`Q^^X zqoF09fAA)B`~$?f55Dj+&hts@%{|q{G%CDCk_+})W9&6%qD=+@{;_Tc)K|Rdy1jO| z+e`N%y$!vN!4KBU_h=HPu#B-ah3acKY)wD0BAj*dTdv5rsiX2Q5*xvHuIKNfyt13& zG+2)ct${lIA zJ^fzKRKMrKG1afRiX~Invm|QG2|&hvR-$b>!Az_=`J$5;YXid8rrBt=qiYp-9VvCe z{nkxV4M?GA@;R}OlMwVgtCgN_?n?8`?0|1(O9>V%xUU1#Py(+>;~^H-QW!?B7j@8O zYi%BPB=l=$_m|RxQ)UxFk&D{mNxqN^krNU-RtH)A#C_DE-7I@|^@4Yq1QsS{50PmP z=9mq0fWcsnQNDN%uAWYS;1$EaC7E^MUaqYHQj z=&&VZo7O@_R{AX}#xXv_0jefhn5z;3LvvatqfBSBB+J!jAz9|0cY5U%EDAY3_-TL7 z2S4V*@xi0Im3$R#gkBOGKw!>68vFQlip-;_cr>}5xvm5y%pw(~X~jY)7+wJNsupO< zRuaP^JfLzE{jqoA;8XK&L==c|*0wP@P7$K9X2isGeR>n5Dd6MRoduequnr zn^@RS8cdxx$$hB!9#RPaAt_^1Z^tMVsPClJ_)5dV{(Pl=0al;1T0;WzmHGvPoF*%2 zSV+XXyYu+U;BxnsfyJbB@#{iVUf%_9iq)r1`i{>uFVr!!O$#`jF0Js8(tM_A!Ekh( z8q>URxU?Rh8Ts30quQ`vlF}F$T(Bxz6J8|-9no16*1}~xk(FifD?ApN z^w7Jl*8_f~&y8QbLcC7#IO%Eiezsba#j0S08V>WKAwR-pj75w9ZL!W(8`feMSPS*g zC;z<0C27fa&sj*eGwR8ZI3`Vr829*67JW_c;0Fan@U* zCtvtR2azYnJa;|$kP3Ti_2e*Dlf{IU*u(s#$1_2hcK`xfcRQ1i8DO zY5KNr!l*yX^zCuV4M5qOoxa6X$G2+w_WGSF?5&=@Jn1<)aHGY)PtWcMk?m?-AwKTlJzC_(*wHo zshX4_beXJD{i3b+I+GP!>H%68xo;I;NQ#OD!_#SKRtXYKg0CrvFJ~!-g_c>umR>(M>U?=MJDt&Q8=LzE{97?xU^~}^D zV|$oUgw$iEC>F5j@v>y%TF1W=ezJx0ZSQKP*r6BPl+jSP86gUmQW0@6Xlt(O)cUue zt=%-GHvd(dKVX>vQz!QbZuMz=HVwCKKMS~Z9#wOu)(-XvlYJZd20Xlyt6-{2IF?VT z;#l5rApUMVG@o4nFZAHQXvG{H1g;<|CmZkjTAbF^IHX{run5xg;uU-GDI;d5;zX}j zXnZqZD4-rLG;4w#0&LA|xfRY$5da+nJU+de2?%$UgiGm-yw`RuWkg@nev-{%kJ95^eh_)_IBQvTu(`TR92`xAY2jL)wOrA4LY z60H|5rq#>!l6kq8AG^cVDY23;yyfrWCEFJub5*obmRZaUk%=EROl}iG^TbGM(MI<1OK7Ze>fL-B{+QeFB#G5m#~*-Y3MQK(Yto6$fB; zTl-BOiL-!N;eupU*kTt0;G?Xp*heu4*%Bjx4jrvR`&l%VX?jPqRk`U`r0Ul*nqy!C~t=P#1hiwsvuqOV3Y$|zxQGvw^6>^)R_k6-zJXElMFtH!kI&v*ZJ;13I>+@2$U1geJjZds9T$a_i^ z!QFvSyR8FC@Iq)mv`qdt^IeYmlmKdKO= z4Je9C{J9A-qqN_8;@I>#IPyiNc;i1S&p34{Hx@@L7PEWSxCQs%77NG3q>x2jWV=P3 zg2-+BE3SYnnmC3mwOuOoNZo~S?S(M9tf_N7L-~cefT6C91PnEbtAP28p?1Y9cEM0? zm40tLxuXk1T@tIXX>hd|3UwQTp|oPh0UE|vI?NhLlRO|!dbSfMUH(;Z(g@?Ezfr%O zj+3q>Lz@kyh0A<;vEw@Ie14g*8<+zOFhIp^DWK6I|q$-0y{=a(PZcG zup;DT((CyF3mxK0GRaJxYrRa;O7A}NbubwR%lK7g$sl6oe#A>96jEA4z3Ro01d%w3 ztvh0&wOK4Qhv9tib`wUd3fJWgQm15C2#04I;3m9G81+*75JvI~*N9K^P(~QN^fxZc zmTX~!4CpOkv^K*;e;^-BbSIxbdtp>xATEfl&G6AMz2B9OPA84tAx2sYBe@+^CXM!d zMU0d$nUor<_5M^G#l~2nVFAW4y7fDWM3tgtDG~u zB>ETHByPIf(lj^qK@#;r7kWvAO=|+zq8QI zuWp0t3YPpVs{J|lBMaTwu@zb9=6;_&_N>s&zxw(?xA)*IV8i%A}9Zqr(Ug z#_*@{hrXPiPSGoG>%_<1>Q!WKjLiGX#ajgiH8Qq(@ zjP4JreF486+{W8y!8sABbQ_pL@=Zs zxX4xzOR0y3^v^6!59tiJa0)`Kp$V8!tJ4r#)i=~S@BDy=e$SOOgfga4t3YR0z>4FS z(-0hj(x#EQ8&P>MAb7xJ> zRx=^9Y1tgC1b6#sa%c`4??W4z7k-$zHvaZ**32Ps_ud~55nKM&N8=&Fw>m`I)^hJd z(km^u8o#ZiooygSO^@)dF8<;dO=jUdTbK6($ezV-+q=lDJINrKWnP3iW!9&C4g;ha zP#Y2+S((8jmy!)`d-)4pxvg87Wng4w28>MA%UyY`dzqDIpmrr##O=>FEb>K4v59*c zi)eO!R-jhB+hJ0ap1Y3=xGa`jBu0}RhpAC(**98le8}zBpUSeYXE}#SvISTHog$VK zeQ;aW9)8V^So!Qz=;!pzj=&^Z&2X%BkgLFmP6#Hx%5k}Si9CRZ&s=d>ER^ybhRdR} z&dB7l(Q%lT5zPq01>Dsd%j=U5 zi_E)ku^(BOrL#rmS)bimWcIjUfhQdkn$8xPpZNUFBJ)R|KZ9AE|7jSv%I&yp!kc~ z5}2CK@f#}nJ*4R;OSC`mk2~CxYe~~jey;t2^*q+sk7%D@P}-GSc%totDs2(_|I$zD zHu7Z6W;^EN29orH;p=&@e}gM*GHLqB!giiK%ce&ab|Y!}$@tYgspqkt>|=Xm`pJwJ zc+!i<91k*)ZIo%x)wbn4xSFR}>QlQ{Wx&=P?x-H#gWqiA&jozvIE)Kgr^i`W6ZMD1Qe( z_L#t~yCCL@#qGduZ&5o^znYbmYhib}k}lVTr!pBVbPL6pr7!i}-|L%vZo-W2vV4s! z>0O{r|4l`2`ait%dTR5`tOw8k7Y}Cs)*f6#l78dEPw}9Lr@ZmczX={dz&jv7_O{V3 zTR-JMoVw%JqT@@ci=I~6mfA4YQM~WJyR`C2r8s4qze;N6zuM2#O;6ZkADAxnhbeaW z%LAgRq8v2kr5+r4Qq;bWBnZ6c_n-LlVfvp>5FFMBZ{Q?QT%)GkCO7BE^$V)Ut>GMN zY^YOpgY(lOH$2aG?%)@-xXY4h_gnJhL&_qH?Ceb(7c=8={Y*ajsFF!-k?KjCFpF-g zPHw8U<76g3Vb7O$dX}6#-Cmfb5B7*W@Z%p*v4t=f)rcn7vX*4eTW8cF3vk@AQd%F| z#5p;!NPO|tGkeqMtN(-!5%^p$5=3Wj&Aa+{0G1wC&kE^&a`G*_Oq~9^NC3*L613i? z;*ygewPe=gmb5-($&*vv&FPjr_5_Lccw6r=RZ$C=e`B*1@vp9Cwj%e{;aUc;&f8y07IyvbbZPMxmzK9H?fz9}!F|{!!CF&Q zTW|e{wJBzFX{@cEe$})obaZJ=+aUc)v?=CwX`+oKES(HS6!~jW5!IE)Ba=qcbL=Kj zOQfV)s4@0{y6{nOM&6xSzxsra5|@v6I2Bn3YuTY&SNt%b%Mh-JWutQ9Nw#}(s&LlM8bc!)Q)_PXq_9kSI9nwjunEyfX)*i3zedHbLU z`jbVDMBX}g4G`*+e|~l7)p+IpM&eH_Wwsqf4QnxAkOqK1t+ZNacnwVo-EasghmbHc z<20_&tNsp;*?gRQtRL^#Ie@MG^>%0<)?<}J|9;~$qZkVL)`J`sr>?u4Tk0bH#L&@` zKc(RdIES(nM!42LjJ*KLO%%L6>nC|HP~LpyEdg`C+dr&%p+9+xH{RsR)lc&FQQo2p z_&9mX_wx{hvB+5H1+h^1uYCT*3q-X6%JR-TyWAmD+8Dd!+!ET{MUOm6NY2Yuv!R9B0A3)ko&DV1RI3D%s^<#u}KvmoZbA*z2Ok@9nQ&&3j$c z_`NP_{9YF|ey@ufzjrwEr-Hk0)IhE)|GG;Df5oLEzd*|O3&Xqgm$>mt>UZ^5(zMIs zqg3s(5TZ4^EEH({E(__|v`fV<;GY(lbyDmpj_Aza$)ChdofO)zQzwNs@1)b`5&nBm zWa5?dbZSb+)`YD!G1rwE-n5?mzIA|sc5=O ze~Cx0gn;zMj=P3Xp|ENgvl`Y|4HH>4yqy}xIHP*fw=@Sv)+RT`DwcZrQ$2foI9~BI z48>;0uY2(-EXrL$+6IAi-6$AS%Hzxt1k1;6Q7uuf%3&f_?4C-+Doa2y3{d$=w+YqZ6R zW9f*3HLRF?v*DWs0ru_A8l_Avc0cl9i~1xvWv1@oqEf-WuxWaO04%rIJtuhxouZqq zBgXR;lV2_F9Vdlw+0>``ZZ(Mr^YW)XVO}%B=%^}2XP>I#9?b4Iw!N{PckDwg?n7?i zYk!kFk4PW!?TCk7!&Cl9G#C{hm&#+GZE}i;)~Tkx`mH1GV8UxPMZ6+q0WML*DuxRE z;8;a=t8$&3VKmD~<7jBUvMDDAKs~9a%8FaLS|*eHemn%UwYa2eKTa2Qc^7@kGoEb& z^=GNNvsRTqwqNS6B(@*tle&Ue{@P`Z?JJZt^arWh5vXO#U9(^6v7~1IAaWP~$>*-w zXY%$&N%PVgEBoEbo!E~*ZrNhJk=U<6S>Ed3NbFIVgsP`iaja!fC+gpcJ}k0=Yb; z>L8lQgzhL*m#vi?i#b-!(n@fK4G+h)IO;3|evFT@svFh0VFp^Fv$siT#6!;z-j7ab znHDI41=L2ms*3X<4ACg8uvFGN*#{;Z!|6q>#(Bv(oI;G|a%wA{R$D6{mK0fg_5YD% zNPlmuzQ-u%c{oop8}I@;O`-ZygNxDf6}m3nojg96=qc=V_6QS201@c_pWHDSXUAFh66b{@WcdI**5;oHtibf&%KC}icEQ<|_r1uu@B4>B zG$8RCvwo7dROJ>a@B5KC0%nM?bb6C0Ne47fklpB{I$tQSDQRjzVK>p0-nZ%d4aU~xH-qK^l7D(jH;-{{~ z-;yNkN+gy{<(x(~_0ElI8z3lsffILQ)8g)xzZZ8ol%D@obkb&nNV6S8TFyf!2&1ic zJBT#P@;`69Y*IH~vBoBTTYIUlZX(CLi_Lr|f$Ug}h?&A3>eiyCCcICze!r@zLDONfur7Lmw!U;%%njq{h8PG08V`7#I3mpOR8%)#?z4xTS_@O+uU z^Y*9&M_u`IE*-qcr6cE%iu3uDlA0wBpD*dJUrj_TWQn_KiNohh96n#-@cELQ_?O-x9V#1cd1s$0zJR%3NbWYz5})Qx#uWYQgm%+ZL% zIP_Mc5jP8#SFF+$EFM}wfQF+W^rzH?;~e?w*wMpx!mH_>;pu(jf>}i6TokZX~@^+dUKE*90AJ813QL9%fPI5IySL}_0?}XA# z$`C}!kTOCMWP2sQgf1fw{xdz$35}aL1nQbN>-Hw zGUr?7d}TJA&2-UF`A$RSAM}}Zm&`?$xhS8{J5ate1Il+AC_g&d)x^&?^^zjP>{X4* z^8M($@PD3cD6Fwm&C{(eyi+5Rzn#d1ruvv#AS@1j$diLisHi?ZljuUG9OOYa?XJo~ z;yWD@chm4LWEq>Sl(IQ8ODS~&#QiXq^{(O|J3yneUk<~3HxsT11Jd{4*Han^S5aeF zKMllB1wb6Fw7`HkmVjt-A4fM4bHZt*QR*jyOP~K%8hc{`lO$s7Gscg`TFZV5puV9s ze*rOIVinJTv7z;fYYbT~vZQ#fCFOr0F|w~P!V(T%q$9FBNn(Y8;;$$R_}~jJEv|EE z`Cp&@RR(t-bMr2(T5h^Fwp@jm#+EB)aG#px`bKHZ@m_A7xr)5r`tRp9ALS0a$+T|5;`O90oZrZP4*Xu+)P6ET zYKDZwgnJZYz)lumFDi1~LCg*^6|v$)p5B0qoIJIPKqextc$4qRkJDH`GfKH@1%>L9 zUla>%X1?9Hq9bQ2CI}`AcNDJ5M)3XC(CE-5vECM@Mignq0v|<7RILppphiH^Z%KbiyV6o0Hq3t<5KU$X;w9M1yJy z)Iwd=g*U=}b>R&ftKoJ~OuTY+BLUcUV_TR9_sn&=R|aD=qJ48C)A=3GVNUN{1&MzP3(!s-BI&ui9MuC~F3poZ@KR5?i2?qfqKuW4` zo+YW7>j3Fo2T14U1f+8WNaq+JonwG>4uDi=3D3?l7-zKxFfPUIT2td%lW?u6a;=HE z*3`JxB&;=g-?-9RQ_$$r;@e$X{zauC>RkQhOkpK8bDiX!Yp_%`j9Cq9tcHoK8m1@a zp8!e1Gp=(DmufWuSW56b0a7^dvwrbHJ-V3BLa@59EGcysAT%>A-;g>Qg2Onw^nse@ zfa$K~Dqx%B9x1er%M_RJyb~5J)yv*SOhiO84x4O9&uGD&@Av3UiV<6}l%iIi;T>@4 zgu7)dvROLo(H@05Am~=3JObmbZ_+v^C!ch}(&B6ud$oHF86+#P7GmmmT8!2 z<~XsR!AwPTDXDTW^Iao68>J-6vS6kSx{fe&Z>7r{;~3qJVzoqNcZ8X9eC8Ss+wCY= zEi+(}`RXDY#13YD$G?zZm!LKT@={lrS@M@59olIB6$Uj$y8vo-AsKpTG1-(QfSO%N zg$DYW&lEt-t|UVDe2Yw;M0HS0!@E1ubby+Up#noxTI+OF=%{inIgh_C7?~9-5a_Zg z0F0viyVj3+vn*&ZJV$l1!RGM*Y!c;mZeaDTX7o8rNP30;{AFP&O>49EOW*2JhD-~1EJ#t z6-Tp0CR~!Ghl*8sjbV3Q{TvNr%p$gMIk$1WTet+J_=U@5RL^T=F?Rk&{Y`9idT685 zLmQnQ+UWGqMyH21Iz6<}^ibPySOLq(OqULx?$VJ{NvS|#*h0M3v^zc2?(|T*(?jh} z54Afz)b8|9doDc`ThEa%A55$_MYP@&(Rv2ZTolnpKR5fQj?F6sS~bq~G1ih0T1XbCof}h>cXb1E+YBcLGEc$?X79y!AHB#V_wy6W_lGIn_qnzfamD5NkVKbxjFnTH~ z03UircIB+KMy*8d<5Mg{ns#=^5Zy3yiA@8Dj%srf1YJ^v z&jl-#cMbClrcj#rw#pDr@wJRlJPKaO5(U^p{9uh&?AMl$mR2boLOEvv)Jv#19f*#$ zzdB>rB*MkoHBz~=5jVZg{xr9wRn!;nkYvEs{}i^quI4EB9+!m^C1U03iJ2qZ(@(>j)py^JDT^H?uhL%-I3U1x}#x_>5k?-rjiDK z6ds0`2fB1{xl2bDld8bC$d_iXG}2zvNPA5q?KMcpijAKd{lGUPY|V(dX4JT5BwRD9 zTr*;>88xmM32R2)mp)?6DEOR9i*Isi`SnUg#qOPGR5hG-_>0euRWnmHHz%4Cne;=O z6S1Jv9;?`p>D=h-Ei6$#YaJX~LDyicCjvxa-f#IX)k(m_Z5Hqb%oN%>3MiY8yY?DaV3KmdWjKY$5Y+V4Y_SQPq%t<@eIJGtV zL!KF*kp%AQScBqX8s-((_kHHrGp4w@I@X}N$n90vmwfJ;XH0c^QeQQ`$%ZrEh;oin9XgvnK!n_75WLD@?_E&ai zL`ufB24DA94OW|E0ld5$^~AIWoB9=r1x>QBC$n16b$0b2IXca*#&gT7P}zav6)TY} z7D;N4L<{ciPP$+Z!Y6N|1R!u((t^nrH?OeCmVT=ZQ!n-7e5px88H)O7!TI&sEY>!z zCs+|Gtv#*MmZ1v}P4@P=Pqsc?VJe~gI+qT<#-$@GNvS{~E2#XfS?wlUt4(1xtu}>O zwc1U#R=dg8YB$+h{pKcHL37S=vh~0v)|`T7mlijCR?lD zz+~$hbW*SmEr$r~efc+A$F>$RDbHV!HQO@3oagwm^=IyB)`7tAS9M#UNp{9>Y}grDxm^9C`L>+T`1pu?m_;k2!TJ_dZ)pF_&}ms_$gj^z$m$6leO= z2uP*pRf<|xm)C!g=Oy{kWX-E={v#Wo=2Z$hR#$N711@W9N2ht!du>!Q9P%^K$ z$<%Xrdg@&A$yI6f^O12j=52|Sy%EzX5Y!B~eHK*PN2oRy89hJVTFn4o5qbDLvSa8c z{D+pU*kE0;%6pk;5gMyLs>iG+MW4m7Q`$kHkMpinz5Md!CGOg^O#UKMG7B14(xy4l zBeNsumdFF%tFv&REnr_@N%47>l%E*jx{i6WthU$?d4W{J2ZY zA3go6kPM$I21Y4%4E=D^?NSh*emP)L3Zm05%nizksiDJ8qQI;3Mm`0fU2jS8CoL%- zb^7mX#q^c;xvIbH(&F_lEq_5NE$pV%%!|U^EFRe=Cry+v`9>z)s*cA^Q9A;xvk_>& zWmkYYJcW57XRAw(aUh_vn-B& zu+!{l5&1eTS^l>Q(F)R9xGGMheuFWDz{5!r3vt_oD;-Gst%0P5I}Ib`uhEtq@%{TU z{I$qkJN~*P7FwaDOI(o&6i~+7tMEhiOW^BqE@FEC|J&J9LqE$hPqAOtqbqyVODR+Wjeb3{N-SFGUa0R^ZasNat z3v-6De-fpZT~NwdiR9_$ABn43@LuyCSET*qm64E8%YW{( z2WBr$M$xtan2!^#kAWlkr^FAq3%D&$0ZV`?C?t?|Syo^&RXtJREuCN*;KV zKTH#^I4Iaq&F0Ejak_XiY2j%xfYUd1Ww2NYkxRXnuPdN#iwi+Q&YI0-ci%MnJ92oaOp zl(#kiogTM?vXo7_raJj5B3JEz9v4?n+RPMpveXV=sHGU*cw8^H^o+M$%^Av3PVa~g zXD&a+@@!;6d>h%Q-X=RVZOR??lDX2Qx4}3ov@^UiXNbeL$;F(O%9+E+?PpAGpJMmr z{bM!MRz``13D<67<5z!?0VbW)VQHq8e8J@5W|n3SL>?Y(ukMe9HW9rv&KBAhtBHqd z?B?bGC#DGmWvHC+k*qbDZ}q3Q#ptM-MBX_4l0?#Ou0G-2nC;?~yBhJ+ogs3gyKW)5 zp|yEf54^5{kL);{=fwM7dd2HD-YsN7LNi&Cp3eK!|wz2ijHn!f`#@3r{ ztk1=a3v6Q-xO8w&mySI4Zrx85{EJJ=f8^4^-*M^4B&k$W*uuruthH65`n9%7)U?)C ziK^DxDpAc^TP3PrYpX;}Yje#o^4G~Iwa#p3>&$kx4p^ksoc74Xa)w*#j~$!K;)-jv zHJ9ZT*LZ7gm1}OyHMhn!H(|}qd#_c$uHYh<7GLPn^0!%<$a|{XHT&l-E&f-Rmj76( zI%=){#@0H8N$fIyCDv*N5>^vp)`S{sLL#dPQJN5|Tosx0_hF5t=P~!LRsam=^%1S$ z>PZbk$%oHV6(Ni@N1<(5Vwb86aFvAXYEj-2%HBe z(-E2{Bjxe7#|+2AF*XKgEw>>$W3?rZZBjz~O+9Owq4$~ZT7j9JmE$3+P5GCptvBiy z4PRRQI@@ylgiA4AM=O^$zQBuCc8e>!#mbK1bfg5;{iw8a9i0 zEL4ZgtWK^#Mmep8S3KLv$P$fKuu2t1J+TgoZdx7ZlOcfNY%bg#JxaRoquY~K1tOQQ z_dzX$2FRiv*4A0BB9FPYI(Hxqk;6F14Tn=ost(%}WXijY$?`@k6;tgO{6CMOilQU$ zUuj^)4m(TPVVjEF?p`Ul(7&SnRlMWkvcHW5^Wl1@=CByDq~@?qNj~P@Dc*3A`;2y5 z@s2wpN$*^xcM^w(;JCL;?4dtidP;|HKhgLqhUGpFGW~z z!%fuBQ?@S5(Ta(@gYWEypdg1qzBQsNa&4i{+Le%Chu8c=(G%=2CHUEefPjbPJoE&t zgO(!PSAG6&2&a7;UIzjeJnM+RJ1e~o><+K5k5%p&UmZ=ZV(_sN#QKj#TF@~w4s=L- z^rxLBK6YwIofrJt6RZfmD;ioyIgLb&h;IVW#gk9tDT{t|%CSrW%B0EP+@yiN$}7ix zD90gEj;%%PGr#n@PG*cN$sDW_jddEbf?Lef4KfgmmnG8`(F#KSOp%&rDT_Kw-c++q zpV&Y|*r=vO>_*WtQPC9>uJ;2B5mKvh=7k1YEnhD1h2iaRZ=GG&g|~7Fh{6~Zycg2* zv`_vv9OUH}zm)fFoVLtz8r2qFC~ZF4WizHO2Q zw);p;yM5aY?As<@Zj61~Bn|A_=2-&2C6Z=5-?^EHpMD;MJ7(A$5X>|lDf!9 z-QY-FG-e?e(->q;qYrq3!&tarA6( z^sI99Omv`U0(z3O$umLIvwAaIyFSU>nJ$df?Gizr5%JbQIEY)j zTL&TQz-W=OuK1_LM!doQs8r#ezw0l`lUzWzA`!2_h*xFAV_h&!yj2=5l^Y_HUOQhy z6AR&h3lIg%{g{e{xH9b@J+dxd!M?uD9(ZaJ!s)j0*2G8w1o1dpw=jRL{^Fm?R7Chu ze&C#K>_*aRD#V>W`R&!O?EEnW-)=`>D{XUx~Oxvd_CZ9Y?5~y>h%QJFDIe{uF7sR12 zArM?mrdhqHkV^5Q2<7P(qzQ^3w%8+q6y7UA>uLD?B2UAjxO^vfH7gI$$LfZw)L##F}XgMB!v@F)qM!O{7GXa%0otmq#zo9V3D zlbS_@qpZfKF_4946O|0>SU(8#n8;qu*O&87G_;JZO+8eP5T{01-K#m7^)z%OqS)h* zO>awdlh6dU1cc@&J4KX*&Y~q0m`)-fQiS8fh>z+DjudS-3X{Z~Z&nS52MR!K5P(|F zWu1Z_YlzhqUw_OHn^$DMuSuJ-eql#%}Ej)`q`+ZxOyPH zhHIp5@Toqoybm+jOD|Pp08v!3cZ@A*) z1Uc0avz>V2io!GSgi2BOlQgX9M=A9%h$MJNUf3Tw123omb-QB%$`NCj7U;|a|E{9W z!~;QhyUzbaWRMub^hxKwucf$LeZR!SmRVS0$*(?+T|&dR6SO=FF+_~<$HAOyV^TOR zCS-LO@H%Wfs1pw19?T8~e(k0Uh2vPNl4{Y=b~7Vl6+Vus=}Mk!q}#daF5I9S@=`$0 zn*w@KnkRpi>7SK^#tX#fjWm&w+=l}yLhGw5S2Yr9+fV)CZ12LZgAMjsg`+gP&Ze|o z=fAHL>%ZWk>khWl42o531-c>tw?rqsWNx=l_o7je$t~o)`VWj1c77xVIOzI!+#?XB zOqCo&k9uPPQ{c0x2lz9(A;p@T7pCyUj3+Vr!e?W-eGcITR*_y-wb}WOP^x7 zK%wf?Md)Q#9=fPM1VSiW#$20Vn%k>`tsye<@L2RSk+@ZV6I)H9HEeZ)XzLL1U~H=i z$i!C1(pya)HE$JYDHvP;=OHczx^!^4OGg%4nkbl+ujh&K87>_>&7~usBo(X*8{n?l zVi>D_OMl&K+Tv_2TMS>;Y%#1_Qw&C?ip zwq_Z5vYHF5r@1lL+#1*1glle)&!5V4G9Q!nOS)yc7sT0mi&oXN(j zIcjoNZxWd>0Rfxf`N)GmGC{zp%VklIwwSwtwuns{<4Mzdb4h1>WzSlyB-Fo^ z-QvE~VtcPei!Z$04;?6z$h$_rAj}CF%ppce6dzkGi8L z=IO#v(&T;8Z#ws8nQVN?8NF4T3Zhfxu#gdA@=-vLy~2dpsYF-(R*~G}Bn^b{Dgh)7 z_NrB8N4oI>W8}P(y-86w;T3{GE-bPz#$`5qRvGY#trFBJc&~e8J1D?600=+%YWue3a-&mg3`b_dp{)xB(uT>ViOUIl&fCU7Tb zH(-7GxqlX;H?Tfk7yRr(eymU5^bgewkp1G|XBV<#efks+1tIladVu`pd(U^(=!V>~ zJ|QxuB70)V(T~zRW6xYOk?NLEtmV4lv6gFYt8TfDD3)U%WwC1)lfm(yW9+agyPomJ z{Eg$a*t5-Y-WKISRmNIw#9!`73Aik^IGM_tk~g*Z<>1#k^daJ}PgOZ9@H;itWFK(+ zXjj|RyVAC)4c8d9?P{B9MLw~XcWFx}`_wdE=wzSzF}HHsr*31|Is25MnKRp`##l3* z2tzfV&OSAf&QV))*r%Sf@3xK@!QNhW%{?8VC6NcbS*p_~{=ZqOvso${mXN9&d9_l_ zjfVS+kssy);BnSwsZON+f59x3A2Q+%4lC7s^~8Ceiu<`ZYqL~7u)~?9+%R;eDY3OP zO*z<{F-_UDprdI@#79J&-ZV9mY6?ncnWnyTzBf%JM+MmEKCUoLZ9@5WHBEhyhn-AQ zH*hPrY3hDwn$ogAP@tcZmKoM8aEpY6Gfh3@F0Vr4Pv{MOWuNL2>eezNn|IOUXE0A4>gnm2ZJx4Mb=<-R#SI3r$qLRpgn>6S7pj zF%#9VPhFMMOkpOf6QI6aCaPTg@z6Q&N5414A9@@9(1*`~KLmtjt|aN+O!d8!XW$FH zeimk`>wG!g@`K7bJ2O=e6?G;)ID0eIuV2gE{~gU#_k&0^gu9xl&Loa7Q{CUanF`C# zG=y*uxqiCU1ZSp_@Xna2?)PRYjrPDybrg|i!~V=>s$bGXP1SRmsoJ`lsaB=UR2To1 z*guDvD%sUcbzpc`Gu1}!oz6_9R^~EOnUZC$edq)g*P@T%@fU+%oy}DAjY>j|RbmU@ zmR>R43t@R?rAgVGn{n#VDU)$7Jaa$1vAH{J2X8|jWAZ@fF~m6pf!nVj8$Noq8$f+Mm_QdQ6lEWRgnw{N0edqe*Hi%`^7QHT&pllA7AdB=v7O zOj1*wNvaLdFR{i4jDeAE`>9z*1+EN!wTme=sP&oj-|oR!#;r zw6k(Ds96z428B29r)Gn0*Kg46rVUz@sbfKuzeH|P(!hEoNwbAI@&2p0>uPY~uB$}u zx;QNGPwqY}ft#aG!IAwM%5~*?T{?KXOGj=bH51l4$}Nqpvt1te?&?=!o$c~ySf_86 zHmtK<9?k1itJ3Cm?DCk48xStNgCx5BS{_GDOzMT@z*bDyD8Pyd9@yp``&fWrTAmc~ zYzc)OJLXx*@w>pbD_DCQLAP3e%JydNRbjbi$svQkL`3l380R0L;=*aWaM6$p+|tyy z1G7Qpkf0ww!WCu%eXpz8pooW^%mzKVmD_AE-I)#UaN0^urs}4`oTsff8?=cnoJY&! zTt*&Tjzo861Fyzj?dsIhPhx-|w@78I2E!$syRjN5CkjnPBh>XV$mJ?C&8n8R8i)&J z{dX=^7NnrgPA|b(JAHE`Mw3&~7!A|*1eEbr@J zDI=-@#{3^yaIh@`;{7*045Kok)^RZfVFddDH1Q6$;C$5XP>mk2-Wzog%7ctOWrbi-^cH;u2BRZHLX@ zpjlYV&k3D#yh0BJ&I{gWtgiUpy^Orf3Jak7Ln?(6x0U#aO!XUVU8mmrFgPds1nwWZmP1SX9;(=3mS{!d z3Qy=PVqeRnWuxt7Y?73QF2$}MW1^KX&zvvqx(wh3p8JLM7l zvvWIVR|}>1W}jj4Yw|9S9J+VTo=IulJ7;(L*8g7x>%0nfO^UI|Dp;jbt%7~jUyS@9 z7jI-0tP`pKUswe@e}@ro@Tu*NczK8XMfq+n&UzK>!(iC}KxTHy;_jmX=61@;8JnXD znI`~s`JbpG>;N-Z8?RuCgvAh&_{d*pLZpL-c6)$lKSq6d+$Vo++C%#{0iON*zyQzQ z$Q6jMO~W*_y_56Xa2`76H#Uq7a4y;dxEBE0gB@J7pTO4*9CeEWw1p1PTB|w$+L^S| z1KPW|j6Aq94QQRQ0yk}QH)b^qA8q%SD7LfuOL4L>Rp>1F*cd^qZa}Sa0=QH>pjID* zzOF)3ta>f(q=SrialWE33y5iAApc^bGuysr=k308o2TW4aqV?pCr@ox5q7W{*6SA3 z9t6#{smeJ#wYR4|wcmdlcMW)kqN6T44~kdy3+& z@dVXZq2L!4LhIEgAg-hF6ww%pODsU~G{oHu#JxzUG`vlJ^S28(#J0O-kIj};ZOcI1 ztw2)q+5YiMjIj<7*N$Om*z6$gHcRTaJBYj8!I{mLB(`NB?$$KKz1EkP!882~;%+t{ z$);_VG;enhce{f%o6SeEX~izP^`QjRWxo;TLOe@3t~OrS}qxsn@b*jQ(U4#;Sv>c4qPJs5J!;I zY&Mj;J&khH+|j({4BVmD#Rwz~n+@f{DgnyPaK%txPPbg40>l79xtk5;!Xjyuo6QZW z&1b<426E|mf!xi*1#)4HG|0{7f*(^{E-vV>EOz4)fLsmaE+F@eqKQfC6M$TH`fZC$ znu7dgc$-Oscq!^X=b}x}10q8B?Sy+!54bq9<9|K*aqi|2T{a2M8bn9OL+y0AT~+LI z(qilaip)j{8vf6jkbTjFtc&cp(&G0!Av>8y8|JNuhVU!z;Lp9hE9QM~8uJ#sTPo>A z@9uS!Dh`iT;9u)(1h{)G>V$aLm3KkB3%O;8_oyLWHcw_F-dYjGJXtL;5s3HH84#~I zwX3<_-AnSX%XY-?ZSsg$=k;{lj_5b|Kj{$fHrtLkll_iU#hYv* z-lVo85^qx55%<{6y8r3zh%UTk6X7k{hp6zD+Ky=9Emt#s&tW^_UvFSsf_S4!g?LB# zi; z%WX$2T5rS~oUat(<%Rr3`SEoQ@rrm2M!YH`9%ub_-Hur55U<8i5EsV7T?-_TLQvFd zUguD+;I0F{px!qCcRxwpI>Ft43gB-2MFHIXELYva-H|-(40k`sz1(p3AqRJB9o!w# z0q&};-hTUpySxe*xSGpsx34tZ?P|a+l=@6gxkWH7`Pgm3THRn>=0}rmX{3 zn<-Yev=|nV4TYT^>z-Ph1M6BvT3khPExb4buCVR`RXK;-R|e~Lbo=UPr}I`_dDoi> zm%W+>d1a-=?cOZB!mSm@Fy!u_={ZpDZQOQ-+&fekL%FKIL%H43620{h6<47sGZlgk zP-{TBj=EDs-3-bN=vj2GDEGhCFs|N0lw0r1>lV+b_um-G?V}>!dX)RS)w%Ia4!5s2 z!5^D)^GEfY;tv%Hf2fdi;140nGveEyym$t_I7@t6Z>f5(?y*=R<>U_x_Q6h)5Lzmr_K8fpN0?W zQT;)CRCUlE)gQD+HHXaqtLcz~wTB$6J>+2R0ln66z#hd8*rSF6T81u(9k3mX4F?Q@ z#ts++Z8%^sEWzRMWNGHucW`Nf^V~_AIi#JNRR`@^{Xu(Hb;%N-N0TFV%n>{0h+Pk{dDiTRU317$)V02z){A(q z^)T)T=V;C940AJ%7RhTa60)tv+ng9yTRIumY`TLGq(6v;%{m`QjY zNj`^Zdvw6GYNp4uQ{AO7?fqP4N7-2DUF$GbX4`Ie2#F=9+-1pQ_X|~ZgJ+c!jHPnH zv-%Qrbv2n{^-AMe6Gk#CoF319XhjD+yWVWKRuP>0?PJ~AZWXgwU!k4L$%#Wk=Df0T z9c*ztN;+qRg+NcYLsa(Kieo~ukaQ}_B;$_9@sF5uH|7klAq-7s

    cvvkixYhg40) z)i@&oQBO0WmkL1W>Z2$t)g2J)NIFF%&4Ac|h(!v7?80j(Pzhch0tbqbLsCO*WC0hZ z=Ycl@2cbJt?cSw~p$;I{_Ioy@oT-+nE~VA)b*5Tk?NCkw@smk(7)M}~(`o6>8{waQ zc^T01Q8U%1%tqV9oLL}tuQSyWv`4l%Vk}c$6LV%8_~<0X-ARYnh^fd9;Kha4NM*un zVD8Y~1tJ4co`L|$Mn@=Sk{EOFw2_WDK50|!p(O$_9LnZQwY$&;>F^rqmFTfE0Ws>o zt{~=2Jeaz&1B-P8!p3Gge<+wLu`a+=Nl{(g8Ue?vFiFznXL1{CkYk=S#&MbFFE>w8 zo!mUB+c63XqD`|@D7>XYfEA9#9&;?#>R8M|h{9=U7UMMM5oX8dC=#&~0j)@gwWKH= zd(y0x3Rvs=&vsxf81!OwzG6U;B;Xlw5%I7{2-T!09eXl%USf57mWuguGA!k+{{)eu zoF-U>0-6Y@C0^QTcHTW=A7V9$l?ddWW~H7gssk%ItN+f7)gKlS*ASRXJhap7yqI{> zER@P(p{EviV43w6Z7=gvZGWts^NR%AF1aB(>JHWR7SZjl(sVdurvxEHrWcJFH2 zE|O~qJ?sp;c155J7yvn=B}s?WoC7qZ>-t_fwh+$@}EL&s%sGd1UA!bd-hy zjTY@K4VAU^p@;|_Sai#h2-Rx11PLgz3YVJieDh8_5KN*KE}Rt4!$h+)O; zz%>jtwWnj4j{nQuxxmL+mHEGr1S=#=3Q1b9p;a0Urdg^bT5Th(1f0l3P~*~B2gNli zN_4eEMK>&!8YG6nh;{+pDvR3{U0G4AqEJbj()0o)O`#XiUMQDFPHD{_O$W@Ppc0uV;ExJ{>ouGQo}vUlMpx4 zZH8O$4Nr@|=4t6QmL~Gv;Az1)Pm4!;S{hL*$IibjOvjZUFo)A31rfyrzZ!>AwnI8f zhX&^dA*Kgt>7rexIYjCBQR-K}gAf5q@brluH&35NbN2HzMNh}go8-xDO6Kg#iQM?1 zAHt}AIdyiTH7~V4uF(@VSgT-DbPnN&xlTLW6#35-+C`DEO~_r|7foz+u^(~_bF;bThQ4dD4qJO7CMN{d zaCgyX?EK%Op(kut?O67$_A(Ex&(aHUK`Y-+rzhB5(HY9CGFZ&n^qYv`FF(|ry#&Op z%X!+Oae&x}Otia>s6ozz;?NZ$w}K4%gkDw3DAhN}m<9{oGq9GcfcT}4LohapDazaS zfWS48*KR2|Lp)K4wE@|i%rtSiB=74QNx=FZf4|@|e?NvB9v?)2Tmo(I!8v@uHI#gy z3nvL<_BH>Y_-y~6e&hHou8R=Re8G*C%;GA(^7|=E-|JtM?p=2f3r9Oow~j>ZrD^&w_d2d)8@Zf(%4IIVKoBM6N} zdzKL|`1#c4bO!N3nr^ZF*iTyoYj9)m?kOzu5&B_RrrYA*=oc(X?rJlmj>^p;;EXJ% zj}Q!AJInA)i{qI+(c?Ul`f+}x{BbQQJaf%!z$JHBSF<8|^lrLc-EV1EQR@<3x|}EW z?)8@3Iopy2S6Q;~vn0{h=PvD>{Bm!E%MiGkruW}IqjY)i$)8vHc<;zBzx*=AU%JM# z+rO&x<=#`;ly>xf` z_Vzq%**8CC$+b^eQor3_dgDGD$>GmQzSMP0)s#8Q$x}*0a52dna_g?Zq$Zqfb)o)VSxAfln zb3OmD_qBIW{BrMI-`CHc-WlJupTGFFmu^Yg&*@+D(tBsy&!x@!+0px&FWAq2_?&(| z-g_xJY5v;9ZA zTGsOu>0|`b#UB4=n_g(0KT^QZ+ES=$yIMw&K)tZ6C%uK1ZeH8=Ker!vxp&LQUw--H zk#RL6MnGzxihkv}N%U%RN3`uCt}a-PRPx!q>cxAOF^=d*H>kU<3$7=JVuj6cAadrmAfeCN0l?DBNCmnd3%(A{H^?Jxr@wq zC-Wbmi}Z2Xfb!Y;h|l|fca>mckoT_|;{AIpe_;LXL%iQH==RMZ_w`5_vCCS;A%)iYu z@33Uh?E~ zvCaFO&3h)l7|mG$Z0!TTYhFLz4&lw+Ap*anP*i)zcv0dVP>GV79WVzau^o{7lKLIc z@sh+2DKK+)^Cz|&ejr}I8zLV^zo_h;$|iO@*#r|Od*`GX+#Rr;Ke6qF{H@u&?t`3KqI2>w8=zS%rv4aj+8W@Dn@2UQ`|3- zAhVON=}OpiHQIDFr>84&?Iqd?Oj*>1xG^L4E_3+W6r!{0Ws>L9h`XFQOJSE9pgECA}EXh4WQ}D08M=x(B{P^1W;;QXd|$` zXTp;0J==x-Heg$e2weL1o`1Lk+|-uzyyI#?>}~HQ&RXph&VJOkuJC)t-VMTaJHSU? zr=81Lj1JU~j`E*jug(<~K;#olBXOxqaI~X;eJ+<9RTq-f@N=Z6)gwqHK960bzs=mE zMELT=BD1bE+tpvCcitmLIZ-`dX$`FKe}sqXZ|Py^k749rYps@@?ycpW;%V85p;f=0 zyJ4}lTEq3OG~U21V3C>Y`LDS1Jn-iLeEwP*id!`0UK4*16Ei416Ehl1FEZE1bivC z#&)1J9G&2@CVn(`NJ%-mxkGBgQHhT6C zHq(-kX4cXdaIP=lJX=8VO_6b5h1QOcg{UxpFS|eQ?ev&m@!UQ9otY0tNaUU2c{B6( zhZ3aEcPr17a-;Hfohoh4`gQMZn3n9ev1S31-SRMtrvOX@(j`tx?VK$ZLv#@xBs}i> zD4+3bH-rUQ~R!r`-B5b2UV+ z==i7{_jk;?Tdn~Tchqw03S=>Yt}d``+B$bUnaJL&(i(_4>@EDS3dv8olS=uJoQ9%d z6FdNyC8It;LBcVp)jTLy7npHbWy=_Sl*3(T3%bR`aLbpEmqS$=J^ND4(G`szLgS-1 zoX38=YJnu)31-|(Jf!_rT1A%TAa|wo)io<+RE}F&Ja2g@%U7t!lGrM6e!SopWCEjh z$!pOv-Y%(Mrh?+{dVw~=W6}kToxtDGWAjm_j0Pth_=Rud=7$Qk&lmDj?KZ4*BhE@0 zWaCyCFS|H2+_=gL8&^SR;+1dr26R7YVbd}VqNHh=N~*?t$xAeSP)$#>rl;jI)>DLs zW~*(XoQI@!Pn1qq65QfC}zaCBhZv(Yj3gm7!Z% z@%KZSZGPQbq0yfoMqfe~s$aVMTw+8Ptx!YF4^2`xs(($My3w%GwEGP!r}UM^%PtJv zXk2BbjjN{cQM~e;(A0r;bE#c6N&RSA#&%ycQZH1U8eTALq>D6|j@Zsly zv^OZ|JsJwLLGOOmU=*V27ojpipiur0AXlK*(m<6ceduSt)`NrGht;aiFK2^XRFw$i zfS}^3p~iYZFGXht1+|-Ksz0c`Cp14esBI3V{XlIw*=p(l%~##09}K7oh$GLT%Yd#w zgq4WiID-K`GBnp_h%4I0jj7ISfSQEBGVmrE+)Yr7E3XWc0j9z+c)(!+gHMM*&4w}< zeTuyV#xBgeRoxeX+G_*~#y637wdc*uS7=AO4>MlyBl0Y$Ge-jy4>d;?D2UWA?2hlA z+Exz1a(|`n>#IuhKbN0&9Qw3QU9Vh0Xm)hfMnEB1d$?~kSNA!4PbV`P>uX)kVy6H7 zFh|Z-mcI5b!)$?3u*-B{h4baV=@sGluv1Rj#CA&lI>8Z?7`6R}k8(wD#m3L~G2PlE#;;(b!AY zXyZ$8AAS*!7$V)$lK`D3wAMWEM|@4^Pc@pV`$zdEXeuIV!PFouaHW-VU6_rml+2$%AbmObU`itfD8Z4-CJrjq?FHU96IbVQq5S`vjF@_#Kc^ z@B~%KUm3Zi;G_QwGyzo?G9bVtp1Xp-i5LL}^uum^x?Dx#bYymXn456v#;o7=UY%lf zT7em7b*|A8k+xmMab&zJ<~A&hBC z=3dNe<$5i}Klw*(^DL846qJQ|1F&zgU&dQy@>BV{n7=dc^!YnU^QbA4^H(DOc_xc1 z)8McQ&Z5LPD`rqljfwdQM_Ash zealEwp*+l}V?2}?tc$}8a5ZXel&BoeYjGCT}a=r zH+1b*WscQfb%2*ue-n5|TU=Wc*6C_%pxGLD-Oic_Dg^ONXbgFatN8Mx*bBaNWcV8P>@t*1{?eVY6KZy3VBBb84uo(hKv9UR9X4@P^H}_ z2egn^bxO!P42byGOx7jrb3;iPtPAMRWvu=j42EqHg2Xpj&y|KhA2$5Sou%=DUP>T3MuEh~ z6xMM8G8E`Ol-h=kIMl*@uPI&5ZE0TSzY4|6WNo!=Pzb0vn?Nj$rMZfZ z>Qts-}$Gu7aEFXMD3@Cx1Wd{1s*JqaLOsGII+o z(7%M7v0U#r^9lZM)$WctpVI`NLn{gR99Wu|GdN9q%4bB%d)07a&y@2c}5NNj-Wgz&)>t zBjZ;M_ymuwReU*f7d=M$sJ_ELEW6D|?zhSa}Lm?M{J07QJ5~ zM(K3=Zh$JTdS?DgvEK*hTi(npw&^Ur*q?3sRqs307u_oSZot#ors)Q#8v#S-be@LO zdG4ZQtP0=AELG8HUUXGaU2+C&)b_{?x%TaL?s>1PSfop5=4{3x1vitW@;ehSw=CyL zL_BicgKSl~Hzv<{U#wyuvBW9S?uH2%LlQWEY{gR8{muolGIPmT4k_Nu8MNa6ly2aMwzaO4-Pe1 zVS3aJm?WR2xdJSPV6#+S`o!(#hcR9vdeBOJpDc;}xhD44pm|D_#q%crz(A`oe+8K( zu@z#R3eF%?o04fPELy38dQ@2;g*-1vYo*3%ON`a6Gp}O?a zDODIRyH|x&-?+k5PmL?YQB}@Y4T#7pX+oDJr4+g>^e}B+lGYHMtCpv!ggx{uhpAZ%`W`2iHlV&5}-PWqG^d!xKYc zpHga^aK%`80==FtRDY5tjp3r9luoKFbfdwwP7P?C(xvgTU#V2L$F4B7Q{xKPN!>=a zx^ci%QfRZJl3LlPlA0aL`&3fr)=d>wV?H9+?v+Mr*54giUU=I8upCL&P+<8VDiaOQ z1k10H>9nG_S&u*y(3zpB$_B^v-}iR{INr)nH8&_YP7Lj3gJX#|h$*A$q|l(CGDA_- z4-7x1CewhHC@oW)QjMm;u)VK1p7%=?4}`<-s}{i_U{!omsIne-ByULY`@{DJg5Q6W zr{)I-zbT>he&F}o(7NfVibCs6fFZ4C>!~uq?zBu^&rw+ls~$p41$OO@OjncKzi6#QWAqNku#52h7C4+Y&&Z4Pglq!=(W_I+R__5c*1FmHnf4QOCK7XdYs z!$QxSnco#k#P^X``*MeoP|3}27h5)U>0tV+vNX?k&k5rB9>8==4@6C46@QTHa_bIk z$hj~8*hCiy6N~TTirkz|2C}9uSwC0De}u5bj1|fDQ`nfLh!TSaJ67+CsKzWs6g--+ z?;GX;7huV8O5xG+O2R{FfgWIS5O4Y0h#(^F$CY1+{gdF3KFAy3$$Cqw>PP^tg7d?7 zHSm&rn1ItFX>tXYIIT#coBukkmC&uoi4A;IXmymm+LG$yy{h7U|KVN8H;q*ToEJ4U z9~96U=M_m18zQ0GloPs5IblB9MaF&AyTZyv?9qtW;>Bv5`>Jt;mAEeuTp~kZb$5#U zdLBg)Iz=&Hu8KmnSXV(D-&}kwp2=n2Z9#JOAt0bj%>5Qirtl5B`;~MF!?*1;& z0~CFi;RG2WLth1lhF_?P#CSRSd` zJ7BSbMhdkR3Mt?SwUu#NrnWLp3#FFyRk55^&SOmx2Y?FQG?Ns0GL=_amF+*3805tveQ(wH*=H`(4sZQPj z%il+$4RZwgsnfjnVf0fUwfd_Pq5dP(Pc68G5ge9&YCms^Tdr~c*;bNLkjlt2Hw)tafFig~pMRFmtc z-X7{bLJ0Ym>K>q<`Xjl50yBIB{nUn#cU1bRiJ=)F0}3KtCBRmBU8pisKQ$}l9R@@k zJN;D9Oi4{uaR5z~R8&I9v7FryofN@&cXAro!Z0XE((NPX&9$}3tIz<&wX8DynW3Mm zrDRb3RBbC~345Zg4`XU`J6ltlPZ@Ji=Z($7NK6S_RBh|_KnYP(-2{!94bnoIhfAT0 ztEntjv7#y^qypfo&G7ajUz7?s<3BT`=WT@qT&`va?#_?C6A>Uq-0INy-{Om*s@S?UIOAi-^p-OCh? zPV99{9gc$hYToOXIvfVY>g+8S8-(Mael_n6Y9~DXK4OdyOmmM^J?`Ne!=Ft$(PR-z zYxIc4)(XETng6h>plWkcx+gkp@P}txVcw4!fdQVg%bn6U-ROBU#Zfya4ITfrGE@4d zE;wf~%fITaOX-_dyhLxzBdLQYdSUEwaw5R@JDA{S(QAmI;B23HCxw$x-{##^JpLM6T;G{zm$yo6`CwQ;`JM9(NZS zRPChK(wt64KFy{Nd= z(|+ov&RM@eML5RW8&5(f`q}QW%OMx-3QaTYDZB<>w<)c4y4A&d)J->`Ys%0ofpdm) zd*VEmO;OIC-~fgG2}Vg>k+v$hLIpo4cY;#;nC3FHPJyXqB$^$NLt}ezM1chy`?zqx z8_AKl&G{d>LT%JRVk?U0-5-j$9pRIP9#eMKZYb-M`ulrA?Yc3zr_fOI<06iU>YtKlV*f_>gxaWc&Y?73HY0SSag%#OZE~&C z8$(mU6KcJyoz|mv;xHP*X4R|13w>&*X%p(E{$AKgo>04`cl!L_9bm3W_6N*wk~0Kg zzFrdt@MHnzC^7|@Ft;b@QCcU_nxO#lBh;S(kgp5P4GNG8LSZ&QeqS{}%uqXhTaUEZ z1YBmQo%#dfA8+8bG^iy?@8owjAh!1vqyJR1a*)b~#5bt1l-}ud{Xmr^h|JPE^@qUE z(Uv(#rC}^lT^ZVM7!(5U52gJe@D8%olqsIR%Ma6)H35larZi6gqj^YWKwgH26nM#y z+W-$KkoyqGHuBS#?C5<9v?NWm&Joe7t5^|mFbvX7bvgVp(+$K7 zQ&X7tPa2$vrtYzs$qhD;gm-w}OuLswC6Lokk(auYMUF3#S}-zK+AJ98K6OHxt*d?B zR2`_BQgq)q&Y*V^E+)#&`=ooq!yI;V9X-DyH7eIX0mhrYE*7hDJ&9PXZcj^>kqU5& zy7afPt56_Q(oE>=PjxFqgPq*l&WMhYTP|LfqS-q z+1;~a4~SXp=6|++=`O3I>_?VV-|kfvezAsg{`w`94MmH2 zd362ak*vk2Mts)!)wp;Jn0A!Au8*!+T&`aUJlKg1l2~kx-gQ$KMXp_w(l6!0;m9G% z<JVuScG0n0o`4g;r_Lg~@6Elu|&Y6ij{obt!)T{jGopU^12A7??B%{ie)^>TODZ#4zTc1kFnFp_vsFwoKz#68^e8CsdH&TXuFaHtw zKV9$hb&}={u*_Yf`QkbbZLu}lNM})!3Q??$^cKu|v8n5hg?{NRX>#_ylme~4D-@G) zu^IbbX&)$UZUATO{*(`t`8buH`Zb%MT>1ZH`#|Yv5&}3g^kLp%+s`DC;5Lko3DGK2 z(rg}1)eEk(+R^5k!Wvl*6?O1|GA}9ffqI#@pjCTFRR6FV1XM%F@Cn?T;44bst2U%T zI5?OO)WLG_J;UJ5f}430gjM_vHAL=VXcG4K`9R^`L?zWvw0Lt32M6ml+Cigrm8u=I`@lm=7Bjs-0GK)Qt2dzx|Lt&eNX10UO z#H9o^lniBSLf;W4&!vwjo~DpU@ifWP>T*&+&N27!_Vy}6dj+ArN^38uUWe8d4eQ~( zhZK{1*z??erlt3!SgHY;XPR@8*^96Tr8Z`bgom3&7fXO#xuB5DcFBx zFPk&l;pqy7V=y$(zx#R>4diF;Oxer60_-?H^F^Kj1ChFZYNAUi>8B=ow}IRX*uqc~ znS=LJa`2w6k5L!}pBwZ>X$Nn{mf_%yA}Mm+dVtkEmV7Gk)T-F&Mm19g4X;QFS`o21 zK)v%fbJYpln0(4oZcG|hmb|c*`8)3#pT7#tqxRq&qZec>Q^hh;MsX!!Q^gB&~gl|_Lnm)11!dd5b;v z84^helGE+Xg?W1;xXN3}j?k%+=8dKWYThVaPxXqcy@3Y5qcKAwr-_Eg^^P$+r&tqJ zCxs?VFz<8t&J@fgVJ9}4t|x&eNW9L+)QA*BT-=x~f1?oMmOi6pk#W<_ykGD`-WJOE zK53sQp5gPIDT=GU=8dpBoQk8eW|Tf+cXl;HfiM;u^uNJ>q8Ak{^H-?IV z9n}o9!20x(X+R@kdXrqh*C~gpj|^tsq{^cN06XMWjS8&{4PB+Mvv&E2rR15R}B>v}1j1&3$UX54y_78?{ z|7_2unAt$dV2YXh1}bLi()>@y6QU#L7gX^FVzva^8xh^)7bNo=0a*y*3~F}IpoAY$BgzAa3rB4`qSox5K?y&i)@+_Zr3H)%SgX!c zDnxVODu1Zn#e*ug(|m;ud;RR&UO)SWZHbC&_WIeky<-3s80#zGm?_6LL7zR0z6Ow+SAGUs&D^l&c=$ZwzCOqx45n5KzG9F1k8Tn4t5lTYht@&b6%OpTz4KE1&?kW<=Z8M5 zr$POP&Zi_>zcZN}`Db&cvel2RRXiNruXP44FhSDxq)xgWbcZ65V|OUZGl!z=190Oh z<>N6Vk?U5llMe3y94F}y=K!4A4l@Y5q>Yg&uh{vwFZg_(qsf1?eQ9I^gq*#=4O=5GY|1HU6{iSazGJ0TwueX&e&8tw^MrXZYzogqF_r(AV& zbYHG@xxBQ7?xFgrCSkXiR(V=oNh%I~teK{o-87YO(^PZUBnDDw?%stBi~OFEMRs9G z1JRIhB&Z>l2T8*szxZR3U;MF1434)~8QLod?NwTPVsMxtoM4nRdT61T+pZdAyBb#Y z^Yp(MgR_Z5xNDuKRS%P@$|5smHDSs!8`gNYcbYA$|KWbjS7T*+8=dGhTUIkcllax# zX|}9{S>h-&TUIk6l(1zrcLrP5;?&`OIGl2+e%$_p4|}aVhHxArG9j9~9+p81C6^(L zk;Jl!RV>DX9RlqDl^M@S{IvL;IiGQOx`HtoJf-;^DHqp?-??5z;&`*QIuxQp!7ed<3C+Tpl0cRvT(}KeneWn zVAspi|Cs)^0?TGm&(Zi1+02+9k^13&L}S#{5Pn2~#nBW6*Q>zXGLqS3N+~ly@$=?J zCT3X0Pcv_^!#+=9JL?D(KdZ0s28L7ooMuf_of4WjG9kWEjU2Y(=YM%y2;;v=k5-`H z_bG32c*W0jZ>?%dXl;1G-V{GY$Fpt!&VlEJPo{vUPvi4mCdN1(c9>~=rYl3}_y~aJ zKSIS>8lT-{8dacX*Z4f89I8GtU^!Qn577ABs=AElxgf3aX;I!$YJ4_ao(7N%jnCxJ zN~XqVTxex@z{uA47=Cahm96m+k{HDAG3AOg2P~WtSf$;69^wR%l5JuIj82cc;s~kX zibKeFg)kBRkm59x-}wXhb?YY>CHkI~8m;iF+;S4Z5eMfS&Vf-fsJ@5u|H4?N_Th5l z5X-Ue{QvK|MJxuyGJ?;!DOkM%=Oas(6h4cCH%>dX29`&vnf?I)#?xi=)_L1LE}T~I zP5YS<0ARK<;H3Kk0DLCo9E$(|x6`U*v*KIBLv_0z2mmnCGZMuYg@@`3!YkPU05+2= z=50MGo-X;1-g0eR&uG02=+%$_D$i_)-$>mA_U1fFHSw zkd6fsGYS9t6psaGB__)mE0`+o_>q&4Lx8bW9$y=vn&!#9t=a)cOC98SvWq zfAIwtx8f|lm}09^$IyP&dxkhXo&P@t@N~9nqycJ1_zd-lkT-9IGcsT72l$3ak((ce z$y%sLk#)&BkD~MtSvuU9bFi-BAv^x>?m{{E3E9zpzl}^AI&$58#y!bD2zPA!gXS4q zFo0Py|De?2&;^bpOotsBLJO<*ZHg^k?zM9YnKlUU^v)u5y8wA{2!GE7O+Hrdvye(WWK z`C6YYY;vN?p?nGM6_c;^ijOcb5lQZbl3B#=h6<(eyo6e(H1;PejrqM}1?Q_0dAORd z^|tZQPKIu}sN%Ci*`U7GXV8V}uhC>(a_mZVqxsM7YkgkmM#Ho2Yi)N*h0=K0qoK5s z+okAaBlnbnS}T7`wz?5~t+z>DV;+##xT=g7s^*0kvVE<4`KHg;`trXASZuniKPnH;?KzxEW+;oP>*87wvjOu3?8qS`e3m0!`|GWF!+z5!E6|u?k&o_x+=6N zP#oO7+F8ercm4u_?D>_0iRg=d-X${8$d|j&_H(zFZKtz zRUh*92M4;#Li7EAt~NAp?$y)y;pzr}kM>jU)qYi;th{Mp%W$s_=DRckJ@mv%igziQSmI1W|Y3PZO%&C~q~n&+gluuJrA5!x#h04t#6m*CcW zT0iI7XP2gpFYodwIUC5~fSr!dRdjI!NMDp3j%0t~Oons|qf_s%@SeIK>nOVwM$W2F z!W8HgR(fCU?oMw1WLpu;!%l8Y6yFWC6B;GO6rLpCxanz z-Jk$7E(OxybKmA^@tZs?J&TkW^0|BY6WePy7wom03-(%2`P!*_X0<;1q0l~j+}?z- zqdP4re%6xGCrQMjgd^%y=Uk{u{z^eHDAACo`5C$dQKK|v!5kOF*ld8YP%vgY_nC{ zWe3fEAMTvvwmAs@7%heFS+&TIU-+PVJp&Rux&7)A1u#PD=<{(FF^754S1=E1T>YNS z+*rS#k@`km7YkB1^{H7~G9tAq3M0_QiLVzza}uhZX{t>YU2+tP8H=1vTx$!oL{Mvw zUn#9j>TGA;#1Ec3g1bT{36sJ#5UMcOykm0n31RbAq>ht#L4`4BJEi$nnxD@%Zw7n) z@t?f39^y-Bk(Czd+qXcfAEq>_JFfUX@ho>5gH?EIELcTN;er#n_9|j$q>1)G2~uViia zulROXe!KSeQSSHm#(lrndRjcg)6%z*4znM9zpDf6_gC{ifN;De#rtRKSLyR4Ea6|Y z-#?Mw?>6zi=fBCGSHoe?*U+lXTmL=(#?+oalU4COe;QALe)JP)US^&8?fK_y=?-Jh zf7thY$}x_8fAcW=UftK4U(Xy_-w$KoTlGWj{hN>R-VX~q>5^ggeuNi>-upZL@lbnz z4W-9$?-P+{p+aY$N9gz?F|GxD8 zuev|A{{yKXZ0{HHQuf|I_}k(3{#5}EW-}GmuYr4CuVn3gKYcb=`4*PuFWLVe2>ajD z;u)TnzK!&-_P=$4{m=W_|CSW*ulM~=@|W)a0rXybUyX*nAEm`X_kJI}XH^2d=ZU>< zU-zT;tW#?5pYL4SHeWiU_Yd^3Xv5L_;r6{6*S>FOZVq?f4@vKj^_~xlIqm(!?D^O5 z!q9vErS~0b&u^l1h&{jUNa;PdeQ*qN>6KM=6>FgPk6)Bb%p2jS15)!`PFHQ7J8L;{ zFTQGYtwLTeh2C4Z`DN)n9=}(cm00v0ipz>QQ|h^jo(q%th0!^LzT`&Ma7)VBy!mUs zV<6#@lu~lIst2`gv|_I=W8;#PD3^!i9E9f-Pd`^$A}##QjNdvW-}h0uu8UhPo<6Bp z;AofE?q2LX{S8LsEk7&%l<56(?fTeq=kJ$0f4_VZGgwly-1++ z-8|jfqjeO2{{}6Eg_h8wq_yf#oAPq0D=%{>nekh#U~Tf>{FN{rO_Ty?Xg7WPj2YH?W7 z+MEt8=^W}bDg6&-TN#!6Dop_Ao1X}m9NzIu!`wO|Azu+9(neeH;+=OJ&GVA@XN98Rn?Ii8Pj(yU#yC6Ca0Rp=LV7oY-+P@r&pIlF3cLE(Z`K7wN?(EW#F z^bv4`)bDrjKLy~I<8Tj0LNMfyZ zv+I)oIuhmg7%IV!psr$nEr@{=5;39@w$7bID@)D%e_ZUW`I2%#6l#SbsCUegng=y# zKzK>sVb%KiSodCF971)3#xJylVEMWQu_srXK(`=%ovCAR(vsM9rdAbZr_m`La`K!K zW>OP}XgP|OHDN5FI!DVk=cxl4i&>>`-+9BV4 z>9MI#M6SKso#Y3Bjj-jWc1GqTMVLa67A}AinA+k_WSx_?s>!je^IWZSu$-cZ5CEj? zp->h=Ve+@AGg7Y0?TQxjE1tVVe=Tz6OgSg#TW*n}p|2LkD@xrw`P+VgYk+vZFnfPM ztV>QT%mzg5!T^Zcgogsev0GW7lEhXyImtn$d@D;|5;O3LPcTUFl^?rBplXX;QnN+I zi_QF(k5OU0tz=34Q_9utZ(B@P3vdI~jQ}?v3b;+(opzHk6;imW|{pk`&t`bP@ zqFZL(X@1HE(eRWFA_hFu?dGR!5Dib+AYxAejZ4h%AaIU9NA0Us$uj*(M@m0a0R7RC z0^$n`DH(mC0r!;#+*g(hS^#d|$pG%Nh5_zpM@DY!@;ikE=GXOsIjW?>A;DZw)CcAQ zFIqpg@GXp6NzWYPj{6x;Q!Pq(ZpP|ZR%z;t@RHPF#H=6NZ_8e7x|Io87x z)Ji3h>u&2CTNqbbe`t&(SXx-0&EcanoXsZI?&iED@KGe!g~G8qs!}-NSp$C}j>Mnf zf2Z>DpJUf<=GO*(#V7Rg^cXo?`88_7pCH4rslBs)IXE41T!SQKB&Y4_*-$2@T6O~} zzb4VSx|~1PCW++{{gIei2Ci2kU!7_Up3^nQOnpPsXEZt6ho*@FWBCa0bZliK)cQ?W zqraSovBi7@P%4Q%VtjAI8cPz7YDaGsr01{G-?8iTYVK;iTC=(j2{2b+=#qNNG7O+y z3gi~X*4P1v6 zqT_QVu{D<2w8k+oQOj(6)H3TIRc3sdI^DERyCIuQhRv-U9$HD21d zZhX65u3u-JXfX-7Xp4AOh%EVBo>KFqG zDQQ?;&X1T^cqp7OVJ)2;-LTfMLTs&}h1god3r%YcF*L0;%#c`Xs3EbIQ#Xs@&eue) zeKokDxA542&R7GTW?$R{i_20sv$(8dy~9(JuW>zVOj(n!F^6q=qrq3YhLxtM!B@H_ zK%Osn4GXSAQ7kx6kZ^Ep_H|FN?wWqqow9mhRDj~kU(fPW*2MA$Je_NR+u*BQ0}Qa{ z4ZuJouDiS(2JA$5k-ZpzrQTm`;zfbI06uPDA7>Huqk)9a6RWMl8czf#s$NUmKRhB! zp3kkDg@P=AAO;YSG#V7dv~NlTUcf>OSRiQx7(^BV;Sqfh&<+~g(10QVP(Tuz0SZ8* z*?}VAK#>3_6x$G>fQ~e00L9tE5De~xj?DQ6$Orz`5wMsIM?J}N(u|RFyf{gm8ZfAE zFdU2!Pg=i5FmP5sn;!zXkr`Li@WJ_^CE+ISLHVKMhv$dj(L-;IF;|D`5D2*iho>l4 z#yETa&Pe&#t>;C`C%^*f0*3em<9G9o13Dt!=YmLi&DKKx!ufFL%XVsp`GLpzy>Ozc zZgS2g;jDKblk%=edF*M7dB=jz!f@(5sHOUuGDM+&K9=+P0r=mk=Gq>bkbikEm?>zE47ib844m*B>+mRHf) zdjODkC(n6x?e53koy-Q*q&Q%X6A2{v%~gkviJdW7tdYKpMo>=QtEub`smA@QN>qh zO>d!Y^|UT$3ov+~cJ~t3LY@ht3e5`gCg_}2Ny7ngP-TmzNuQV~`y?qn;L=R`vRC{7 z=Y-+2IEL)PR>5w6gF7mrdlqi0_(}U1i3>(`AK3{U6FBGhkZ1SZO?ANdnWh8ATqO>O z4wS?W7(df=!1<^H#?BPHS)a-$>MW}xUiwIpAqFa_Y6_yyfcK2IJ+9vUdUUCZe1X&p0m{?I$KS{54AIbs*^%D zN{{z$LHI0JJR-_7C1%LUfc%Y^=>$gmQRIZO+iXJ$7nr&8&NR zccJaaGbi%Zmv2wu_!so#7@5FVBl}_Xb(Cgf^#{m7DQm>6b$wJ0TTe#0)-1YvJqqy? zDYEf#@U3-Wp=drg!J;YVDHLlmC>xo|X2J2w5WUx60G6C-|!)X3Xy&$V(k7)4{w^bvX~kram)k0aNKhyZ5Ut z1T*q}K~m~k|G>4e>%a|~LB@E`K8BT?cAze2Z|&|bCooHnPmlPbWW%RN_^@|gl&rsV zL|w%$Sd2e1CnIWiKVG~0chE}?f!5_bRhRQ951vC2OhP+N)a5*l`u-MsV&be@MEn>y zWAFp&3p3^ummF;3ETV%EJ^YELoos~9NLtylDnk`zpCx4`WsNG#=e&GLY(GTIeCz_@ zJLqp@Vzp=OW5a5j?J-V>_kh)CM-hvHDL^YZhuj-@&>Pgk7)DuXK91TfyYy)EBK^x7(PzcUYOzEG)s}MWA zBl<>H%hszZu+A=_rA;E^`*dfq>)GbxJeM7H2PR)zT(pJ$Kpda(fRV{EtC zvO?pcQ}<|*#-1Iy_IILy-~0a%hI5%DF>gP4v(3UGVEFC43B8zXALyQO^yJtA&-C9% z0=(_C#VRBU-s+7W8h97;62A2J>Lc9fi6bD^Nl<%-*K;^ftG$zg*irsjqUxSE9R|b- zGE3jVC$w1hme8UAHwCD#3wcKlsMpiJ0CiI6$1s5UYhJ@_`*Zs$ZXDvw_3bRlZJsj> zh`waB;p%qe6Cp|YLy|xrra)ytfksVSKypFgt+BR$nG$RJ@a3_#Yc2+ZyOjC^BTXhG zq-bK>LeW2z)Do_c93Xz>hJ06x9~4o?k{kKy6SX;9&F02LGwACj-VoVu7wSYvEzEnr zCPVUzoz=m-1UWiec~GO21quY1APY%0EyRrEf>EUCS-(olcz1qQ#I^Os7-y_n_r+R! zUDW%)2`M(<>$i#xNUDPp^6P%KGHNQs>52GcKRpYzeiGQ zGTs{aQ&>Ghe-?q zp~mC_;gYmKSOu;NB56iP)c!;kr7%~1wYvI3-C8V~8Cz_6&c+TSjYMUa?h_+YB)*OR zvX5e$C>*;KB%Q#WfI}~z{0H0drK?Frd=ec-;|OHHUhXu}FVQhZE!1?3XCKMp8sDhj zO&yc;LCq2u8ke}xxWv@E&5JFwaj|9AFP%GmRY~pGHW{QS5t?{Rb8SlOQ^v#^*b1kwDl-eIeNwzXYO)J*iva@ z%)8pts?U?slL?FIK?5@eRqU~%#B=IrY^h0gL^0>3hNafs*isStlIErAb;D9?yBh$4!NM7CG+R^mN9H{C>P&=ut`KqxqvouFLYb7sRnl!O!lUWU=#d4}dZVVGS}gy+jdDhAuap zrM(z0SoB7viK2r-m(SS`bg7`rz0sGu==iL=d&kpr6Ebi5HbXF1hwJs!woth9J;|a7 z8b5PBTkN#tQFHLAz122aO?a#!0~l>NkK_@lIv-xOTJ-k^Nrr- zbk?=>Aize@cW!2Tp{LB}v7JX=F{0z5C7Qfx)O4{InEo+2Z5pqRASZI&>w@CO=-{+- zk-WAdK|zt~Dz>8Zj8#0t$CvGghPB%1E2OO1yo-o+Jqg6D-IA7DEHhIawT}=-X$C^8 z_K`}}KbBQJW=t9$3##$f%{<(uu3ob2m2A2^)@|wMM43;bibbt$zj}xe?1I zpULY$a%9RMfw_sMq}W&G*rFTH6Zz?WLM>gGY(|)^*hS!hb8-EuYkj`1;u(BY?}Vt& zzl%xbq-;vEH7~#4NuZ^N5^gs!{X9srWi@gTm^X5;I@Wq=cU=Xii85DX$YsFprDg;X zChE5MYRvW3Ncw8b^VL}3d&O8Z=C5!foY1s0^_07oNykX8=lmY|y~KLV&8xB7lA5*V zujK~xZJ+=r=)8^XQ4Tt0S+D%}*Bj<4JxB@?*{z=}TVG363T!C&C{ziPq`9=U#}@?>P8Tr@SGlFYc0Z6V)Z2bs_!wsy!xIgHc8!< z#Ma7}j&+ez+1V2oqH&F+++F%gMqq~1uo_<<58;Q}{U)*o$Ne9F76x(_D2P%^|HY6?tEOop*%IAfSIX z{Ok|(obxVwm@;608ObXL`|kCyORHnsAYQfYwe&E+xov`euE8yUchNn^5Ktx@h*-Z)u7^`5E@t&)Tfbe!Mq-KF zJ4#~6$cjgSj4YCZj4Zc%e2!J)FZiy!n){cO7JgxtMSs$ zS*!89PbwYC>PAz|2-`H=fUwQ47}7RPH6v|PaRbsezha2nh)v@{)nz4Kb-~G=kzsjL zO*LJG?MfTFtj78-cPZ|&8XLQ;#`-Rsy}SoYefBCld5}z1{2S$?|oM7`B` z>ABWwJnyYaj|s&5k^XC_Wl!pX-SRun$bcA#V%}16Nh^O#3bFo`Ub+C+sV?!d+_-0_ z69h*`1Q*Xs^b+N{9rB8#1)hAKfPpsa97zyUo2Zr#k2Wul^Bfw4J2^m|$wM1uL zGUY9!N4R5(VkTgRBGWyzF1&^OAZO3iD}%||BPobn_mWX{Q-AZpHG@mlpM@-A*}cn% zz586@!X%-zHMy*h0|?e#d%G>E`jMm6K1-q=F(KCBwib;EIa-4Z1bYM5bW99;lnT!tA})VLvTJ7p%i=-r>OnW=$(| zx@-`E`Gi9W%-10JN?^|63OfX51ZOf3n>(1bl-P{4oD!RnmL)dxj*HE@ruVuQ^(LiFI%&FtBi=$ed!ny22gEqwBmKKb)}@)!8zn?~NK^J-*QJGj(f zVsF{^M{AQO%HBmP44T`czxgH^%Xd~J3~@Rbi&uxYiq@#09^YZG|9w`4;n|<*QFwN3 z3eQRi3-)52?GuHTxGU1^;%-5yzLCjoNr`u%vB%`-CSIeFCSD_HM4SdG8M(YL^a3Ag z70GuQN>}Cexc#kMKfpsZxaAm4i$p<39I8h6K{ukN8er7YiSwHAdqj?PvYBN5=_?Fd(%447H z6M#!!D&|W}aq~&lpXMIpJ!)JCu0cws&1NKMFqT=3C#pMQ3y_$Zo*2&D?3ogE04+bb z`XoKFO7-|G2g7knhTxo}$;&bvKgjm&-Fhf_d8l2m>_~RO?8~+mwT3F`FWCjR z7TFw^%^)3q7p&whrg4crVj9^DZg0LjWE=_fkJC4T{-vjS)5Ai4owZ(lL1;{yAZ2xa zv+{<4`u0J<{yVg7Fh7F_6RQsk?mKx~^6|a;oMr|8DR}>3$UAa)FVL63`+`#r6W*us z0cwOQeaCVL>>bX}3^~KV`5%l-Nme!tjDA%#WN6|sKvwQBS$VC?%0^L~3kbH+AS9b& zymkH*z#YA8hUAR>c{KuXv|@EMng508ZY0q87X#DW{VLV8o+=O*7wAg}=oHumSf6sy zV3(Ow7qMm1Q^exJyxTQ}qNfs=XX+q8BJbanr(ZhjDj^!&@MH2^N;WR15brlh$-fM? zR%HH}YIK0Xx*;tdKl5erK7$#o-;>N;$jpquX#JaPqxIcTE8et30HxTe4-nzi!zMXrgO+JT7ON;lx4Kmw~W+JaGA^;CNedjvd0WzzeZ#> z?L)MXS!E_CjZ&JBT{~XkTI-<4P#OvKAE-4+Z#%YsY*Hv(um2S693iy)R9^~O{@bf4`<~JP&;l7P z{wgIRr_H1Y)}Pmld|AKL?bl1)ehm~Ih5h;uCQciE1`!)VMpBjy+YoF&8@3Q^e;c;& z=wLSN3~0;5mxs1rpLUY=V!Yru#+bHWPqZKX?bnm&xe3~fKc5n`@6pqcg7$YP?I&n| zjjXi&x*c@y_Unsz3ifN8g~9FD%U}8M;an35RJJ% ziJK0mH(Qih4DYb^>rcGeSL~t_Nz?Z0FYzlwy`E{mwxP5oZ76L%lr|qqn-66$aXhFp zx(5-*Pa0Aj#{t`Cw!aO#n@LRx<8G+N9s6)>*xTHAm$4d1=YuZ;f`^&`D%5FsM_-M( zz8Xnijd{KrerV3!<232V+=kurD#Ko-Zy#w`Ych#A;#b;;C#kfb4LhoyfV>KR%7c*G z50!z8FqAQ`T@!K)EO{m&XW6h9p5R@np5R?68ymXP-<-D%q&tGLSI&;tcqkioG5r+j zFKbqZgKck68}_q9%H%_Ch4n|f74{s_R!}p4ldXUq`}{mjTfFk2TvDLk?AVi(`B&Hi zfOx?YH4My`UZ@9PJ=n2-5`GQ^`p4LgT}^Y5ahi&}#W~)QV8=c)bfiDv?}6!fmA(T0 zNnSblA85xOuO0?iPwAjCeKs=e*ck)`N!_sVKuR(|Hg`KV*Q@K$l988`Y<`$_?71S5 zI9~I4pCQ{h0Q2=jST8iFPbzUkws;~pWY3h`+;*qz6kLuG&clk{c1YQGD0}vc$2q~> zczhtZX3rkUd}R>aq3zkz)$jm&_8Zdzd-WBXk*veSczK@?tLVm_eSa)R*V|=!1s3pr zimQ63+q3t5%FGwH!5DHp7(;fn6$^H!S+KclO}_Tq#dj#2nz5O7FpYCf65q{`W7DWh z+02~HwK8%VJm+N2;l0|-*_Q@$wpG(MU(*U?BTMD)m3pI7QzSdh0hw&@flTDxX0tXk ze?Q!%4vfSLR(X!wvlWl8cIrO2XTu&@-;)#G27mWR+EZ?Zqt}c^wN?`zF}pUQG(gdx z9ARKvHi}e)>(E;B?}oRE)`E&k>hVWIIdGj-5$xLQRFGJwg3?cWL7$b9kRGyY6VgL= zZ9;lTc}^@3>8*+7A-guQJVb1JUVevRpsMA1psq!pktn!4JXC$yN)n})kgDfWH})y} zf^HeryE0LE8&!5qvlQ`Ynxz1zv(h`0pq5XWE~OHuT$*V5Vv73Py;bb%)@nTOn@SI5 zrNonthULUY-|!Vv8^qgC#d2HYm%PIer`{E+E_;VpUGNsq$gonXCPL7-U3;C?NC+BL zRkP0R+Uwk|z0U30&mZ*Jt9+IRQR3n!lrzA7*)6+vx7oG3&92>zU3)Qh?e1XLK7Duq zDp$>zUAkZLWjHhd{S$9%Lb3qpe5=CDE^pVPNZvX$pGN~Yx6%!*T2;Fq0G#VRBT;a6 zc&K{4l_W~fAU$HhNx{ef;L&Of0yv-aR^z3YS*!89nM#id;G7()F3a<(3tl>4W6uB_ zhlS;vD$#2Xwm6zKupWkvCgeruaZ(E1k zTCBru-eL6a>hNF!wdS6=TTi)YT&6?#A?@4u4`JWl&a9S68MGqrFT_U+mHcKfyl zG30bJd-f&VoiSGP)O%PypZugx{yd-j1wQ$vyf-S{-@bkS9wD?u*(XS~5CPGe{W^yI zTBNMczP%&7m4#@3XH^)YU9CqUTKSM0q8;A8U9E3q;d^qocOhlrbL({z)@vuEX|j1m z=!N1<1^NfY`+(Qu_U)*C2p?f2KLY#q&**|=1KGDfpzidMej<$t87l%P{bf;0!^*TdW$hZ&&D1=vfiK{9trSwm35T_E5WE&ynnci;sF2*q3cBY7I5hU$P5+ z{esPL*+)o+-v!U|7BufkeZ(}f8Qi|TCS)85^q;G51pQAx?@bR2{hzkht3MtZ(~Vcgvx5H=ymy7XBZv1&eF?ljy6Z6E zJ;4X47e1ixSPpT;Zr?sH$&dEZl>?Awd1 z#O&KE$UC%s`!X9&{{z`gC!~0v;)HmgATAf_Kz3(sGN0I6D>x#3O)Q!F7A_6=Tyzd$ z+;MylVca)=aKs3U;vP-@BO)`WvR9DGkKMse1$7A^FH+hRs#iFj|OPVnphi`Y~~*_2zljm^(7nz3tH1lGyf< zN*Z@sQu93Ga!LIz3C-L1@5j1u66eTJNn(exD;I6oUW=EWrS8kly|Yl&H9fCDjwMac z`$_Gceo}kqc(!H6N$s6>{<>zDok4EeHJ;uOQC{CSZ})@R+sEry{dPOj-SE8qiajrx zprqk>J8~U+Ub1CL&8{&@ns$||Z@c`Y_I5w1z1?1{-|i>1ciOL}ohFhFds3T9RxZ6Y>U$V#>?$y>SktjRC}lDY}{#e*6*}B8yJ&T&FU=vUZ}HduGd+a40UE( zy0`13_I91r-p)zwrEH(wk!v@@aQB*Y{a1mWIe)T=Eq#{s|19);?~gXfyniP(;7RfT z(RMcMx-9RM{@*5YqcA`06|im-jHUgXRAouc`1fC-dyY;WtccynOqep$OYjE#2@f}0^$(?A*~)@kh)VOTq@9nNhN^~+*l;YrT9 z?Tka)8MrFkcMN`VbGI%vjOW{-Z9lJ#PSV_i&U#K8GF~u>0SbLeGg&;%ehh8z{>K#Y zxkpb!3f|wLw4dPpHL}w7?yEqtZtos1%Hrp>H3N_zaITT<%=6k&W--Xw*Yn6LMtrjD z-Q8Z0ab9~56=vDHslp_0b9nB5WV>DDpQ{Na*l~x2q}SG#a{D!Rk|ixuEHl&GZ66U2 ziH?HQU1UYoX{JacWGyx1K?z=;JTC5_kU%bQ59#A%(y+l-*ouAe558g_ewI}B zZVqzCi(C1Xp?=S_ciUL-B2%|HbD%+RKEVw60oW5=}>0-a1(mTv+w_D%oP#UHAzH1S5n_?dinZpGXXU9*l}$|SZBeAicS|`!3ZkDLRb*) zaBABH`i3>>Q`=|KPm!FmudBn6L!8?FKuo78^RKW80P=!vH7xMIL=P7rovyL7+xLW@Ljix<=KYt$Ki#OVrMY19 zUiGARqvFpLnY}0QS&F#|X75pC1-=P`cP*#% zIJ^}ObHiN0RbfFV+Rfa{;6j*1-t7iO)K=_g3Gd=b(tb`S_kd33nBsD5-U!G=Xil~n z*J5Hl;&M^sx;Cv~maDqI(xRH-Z^raV&Hc|erUYp5qdS<$++B!eMLgMDe`kx&^|eos zLJ*3!Yp#EyUm+6B?&!-)Yp3paxQ(XHukSl7E8r!f-Dy&L?hUt@1J5L-o55W0uay#cyR8!^Zq zziI|p;-#{ODG&vR9*c=Vhuy9Rk#Z7IOmODmN%sdg*+BDNBsKZ$k36Vv6V{qlmHN1| zL{zlKrUYS)>A>|!364K{Rem>ORaRTC6x&5#L9oTI6zDS^s&jox%MPf;EOG6f1Y}#M z`s%an^NnaCskT1LKHmrfKyAgpR4qJ|-Khs?)cjCwpPYXIXTsMNQaN{r@V9AQpB>%K zp8dn$0oxtV zi$3{Z=fw;C0y-TekLUXRbR7ZVp7lGSR^)$1Df!=gxu)3%?SLoGyxf5+io!(z})E)B3oOcBx6%4lCwVf14ZwXL80 zuU>%r3KsGp1h+sL!f2WDKcUi=f$eUkOd?00Ho!v4L8_0H3w)MB;5X~MZ`H5$zLlL8 z`j#aXNmX*J1GkAh9a;%+hWZAZaGj-x&;k5mNFBh@YzV?O4YeW09NmV{XMd9ofgYfC ztxaO(>PJbLanl2wqfC+VS8yW$=mig|Q6Rtc{dxf6gAU*q;b;F1(7{L5H&Y1pZ?~kf zmE;xK5A+5_0FbT7#__zLJ>pEqX`yScIQ%pH0~G)j^x{wofM<-J*@1MUj!sqJUyLjc zBqswD0B*29!Gouog5QJYWCw2xM1DMQTbHAF=;D?ForhYPMD0R+EJtxxr1pTpt+U?PAjp=yI*h_-(FZK#-pA)R-`bftLWzT7D5Ebn2vVf#sS&^)eYyP zdiyw^No4jr&yL{znDMKraP07_3J{l$#{T8iKG*-OIhTGwH**!=U@HK>O30leMTXPO zT-ov1TjUmka$sa#GM5{=I{X5axAnI!g>EQ1HM&YD zW$fn_?%_~W_Wsv3@n*B%w#5|+{NNq~z1P5XTvQy}Y&=PpLl;O|0`75rvTu_F4l;uSq}cP3cA3AyGtV1J_Qc! zE&eM3&UaSPRRHIBdiZ}3aPED`hL?A@r&a$$3hgcOQ44;K5MmxvMS_^sJQ%<%Q_etu z5g&XfMWki(Nnw4zr#JZ)I8xHUT|97zz)_Z*e+bCP1-+R%QgZ%I_oEm798}I15_LIW zmpJ)FOzcSc~4Ef%N0&!KZ@i5RB z+I%R44YJI%qI`gSzn${_^8F#tv%BV`|9SS!OlqH9Un2ftTKBiRET6F&IA09D3`q8B z2B=V{k?egn=K5+ReKqF!YNRB4Bjd=f$NW6|@yiWym41p84DwO^lt8n_Xg633x;wzS ze~hGir1lG3We%1qy=s|bt%6NF2&=7A#s#1;v;cfn_dnv9e_M_)Iq>}5Np=J8pgpZ`; zvVH7IE^TGE^bffe^x5BJD||sm;Ewj4z&f2k#Y<0F4&_+1^CzK z0XPq5**AxuSzwP+>mEL;?xc`D-e*bW0+LrurZ-0xm+61M#QBT!L)Wslfe^&8)@ezm z$Dqc+7p;WFbck17LN8K4KA2IzPo~eLBtw&sA!PdFk?8}gfDJ+#`D~dU@(@9^obGTN z1bSlu{1AFw&J!xucOD-WSA7Vn-mlAfguEcr>q0b~+oQ>%7i22uX3TQ!AdBMePx7Pm zdgfjXC&j0d=2LzhZtw3e&qE{9JX1-h6X1hN)As&yrZIy6kJKspLF2Vwt~LjpZ~s%+%r$I+x!P%elr}25RA+6 zZuVcsmv$f?KC?4c(WUT7T`iaMrsfph6WhPb@?Wtz&ftaS=`9vo)%Gzuay|8U?uVA& zf3wKv_V&d}6Ge*dUi^^#2;#dg)~=oUSU>yz;OF7r*C&P9C^514f~z|+FHf|Xv0Q@N zXV}k-A1lMYjNcq@AHuM2=i(D)#jZS=zJvBkzo0P$`zviUtt(U|O@4Aa(KAL3ACY0- zE#jQl(U%;VQRNMOEIh_JUWk2zp9ha|9(+i{zMIe+-Gp9`3H_)Iuw@-K(7aMo(aEYJ z9@Mu9Tr)gfSe{6-Ce>eIZw70uTi~1hgnWZr;A3uqZ}t=N4Q_!iI7gp>!>cRo`*_)z zO0$GCqOwoy)1sCO?0#j~X|jd(FoTk-Gj_iD=?(E|kPL8V#J8wcdM z8i&fUX7INu}YyB*pKtKOKfT*Jes7DssIP)I#v}y?{x-x4;NOlEczq+Ec%>v z0ykz@^9|9OH9tuChOBmrG8Pm_3p zjOqS0jT_GfsIZ0}%UNSLf|$I&os1ywPeGREmB1E=dkFIWRbHTZ4D$Xx~m!;<7(mYG4{lKKegUd@Q6TC#A8bt9=BBZq2u z8jvMH)?BFdOa(eftrs|x`@$hU+!HQ;{-?pB@!Y449Bm0J_QT)!ihbi=Qpx+zh$jA; zUw(18Yqd|}Oncqb&AK1P$J6HHY4h=LhpNT{=xIFt4f=cNtifOF!abBT=Swor+n+e3 zK_4IHw8>sV4yO5(oMSRRLE{hVuzl;*ccdj8oc|S49%DYh@c+0w8~8elD*w0K1ga+9 zAW4dtO4UY-X|>o^3#D2##e3mi=xUH$xVWf6D@GSeP}Ja7O1r(@Ubd^&Mc697)CE_x zxLdaB7Sk5mw3VhW&=>la0(}W0wgvhIwEyq#%slrcxk*}Gcl|FPntATbJoC()IdkUB zZ_b&~?#wg}1K|SZKYVPOCmvEl59=U6lDLuJN2_xU| zD?|o!|5peRBsc4)B-fH6>wS~tT)RpcEgZ8ddp>Ss;TN~4sz_ag${fZutoqf$sjHgP zxtj%P*4>hydt0^EUuKCzW-sEiB9=gx$IxF%F0ToU`86#inz`a8 zxP)z)z1Or1bADZ%n;6@mx`FrqmxTrE{iT$ayMwLwoqRtMiruVmA6y!MUp6ZGImwZ$ z2=6_`kuYE1U_ktdBcVpzhvApB;8Pq4Eca(VWYin^dWDd>W*H;kCjX=82(bGUq#^(L zqW~^1FV(kT`ysOz@^A@D{$*y${|EoGfcsGa0zZ~u$;VB{e=fgMjR{}lbKaCceoO> zjQzxasM8#)+b{rbz?47B?wuw+Z6{yy81ZVtxYv24$Eu&z?}qU7vbCEJ$8@-+4#08GQx__7Lpf*=i^Wg_5Av9t)Gyq|J_Z<#}#Tq-lz$AI0TKJ z(4N0ti0bz9H*~+R&0Ws+snY|6YDZ0W^IoSZp{8tL+nhGa;*A;7{vMMwDBQpQ3GWr| z-+!AJ=65%Z%XI%fbz9#4{Qz3a*>taAhHXSK!TZ0A{HAZ3L+M)b$LlaGH8)afbBVU@ zL)yB}9&7g*f2^I#0;5nlNPebq9~kFO|w`j?P~8NseiZ{!GijyL$N;yB%a{d#|4 z+aFv^?!q>0%m2pRk3K^cV?Tai!G8StEWZlBtKIBjy1BEu$#&RlXFX_)T|0`9s^}=a ziZX4r$F$X6UC*w(zY^wQ<&bWCM6WlnPfs`AZ?AK>9TWUf@+XffddN3jv^$}Uee_uO z{dUAkb*#q*y5{1;3!HQs`@9|~YmbXamS_CK*gGsGIi!`44>z;>ul?#{Llv~L!_O@2 z_QaF6CtlBMKecs*O<%+AMbJG+4`dUmy2-5$LiXt&OND>0yw zKktuWGUV*RFt^(4cE-}@?J*&~@n_kc8mBx)4K$C9eMAp%%73|tWcjE3!`Q1WB{}3H zgnt1}G5CfG{K$PTG30LhUZV7y3Qvk#M4-MnCE|;&{eUaF{CzGWk5ia3OW#5);m9`< zqR76%WlF$6q7XJM&uu>-5aD)(2|X8G9*EX$GS9KOPW0ukzcIr`{ykuvVwaTYz7oV=o1*M+7s5+^_k+%^8RB!W$EW+H}!kMV} zieVLYc(XtDWdW)J(>2$8y4gg>qR!Q9GFp>^su-EEp1FLV&&T6X9=Q(mt?X*;=P^9< zA;HS-78ZKJ&OC^7l55@Sc-<3MWa`Hbh}Ly57kQsD?m`XDSLJQ>l?55qgm3FZ*=cDS zC1?8w-jq{WMd=5B<~!&`__eX@pnB-dF0QdmK4o${OO#(m6#itI_;rb1n3Zb;-?INK zSV4D1!oR@d!W|Tw$_$X+k-2DN{tEgDCx+BV5KYrOGwUr$LyrW2MtY%D zh?TITkt5YyN2+;wq|(40_Bg8f`8J!H7hCOxKXt>u9d2t606Dc*L;@&pDh1`t3Weo zFP~^x?+oK`b{D*Bt6!Vuo>ew7=x!;^RU|PxJ?=_z2hgq14@6mS2hc%*_o*fvTdSJr zpjye~QLc>S*iHBG{v4a2!JNsM#7U2gNnGS)Q3mFmJ%8>RRfjBs5H)9#Mp?D>t_tq_ zx%c_{^l=`S9o@tExmRSyJg;Wy)Lf>AdDLVMQ`eAs9!yoh>5s0gb0H^nfklrVgC81UV$#z8`Hk-BTj{x|L_wE5i@_A2hHC7F!K=m_JnHxDe-i0 zp4@4QJ0&KbBhDLpgRjEaGgSpCnf>zcKa*37*niZkeA4l<S7oo5_UMLTglrElr1!yoJmZ`ZgI{oQzEIesTJoBMJT;?5~ zy_(c$>dDb7StN6G9U0g|z~7twgU|-PF6}5jV=GT0H;RTlz~kvjQ=;kkiE9 z{Qd#4(0<^8ME$D+qM5%P$m5wMuaBm7M#pcRy3H+QKR?H-Dk=+JvyY}aVwo{C;s~Ew z9;-XbiF}vGLPz5%zI!AdIzod7iW5Dwj) znA65_jF3$~eE$F(0Z!t{VIWiygG7{0T{_DsOf;KuX^!gmf7hX=#s5sX=T8yE9s zWlJ+P$nLmHM#84N-^r677nK#V0AXCLi)Osr?2V*GQ(HAIo<#Q~!_#hDY>kC98r-;8 z@5cpS7c)lH%Qi0R?e*gfi^tResB|dc)XYWy7^~}u)iGYKpA`>v#OY9=JB=LeQrgB? z43)HSXuR$RV%mKg8YM8d8yV8#H8h^=e`vUB)SW=HwvNh_-RXvhh74Y!nXe3_pSk^` zwCnroJY)6}>75J@0Q-_N)VLU%NEA>wJQndn;20ye#N~@2@#c`60cj1FHAi16&ofzswf@! zz&KG=BXu3Bs*RHk!8j2cT%H+YMZvWX>w?L;_DHCMnw_Ec>k;iNK7NCZ6-J!~OVF=+ zz3XS$!Ll_xeGJY&k<@`Ww_Vs^SxX@u@${7igXI|S^VzZ|JS(i=)Bj`xhWU(xzbi^d z8qHVOfO#^Wxy%iiLGjdTKVY894w&^wKjZbt-#RqEpDW|H+*NcCYFJ= zAE^n0{XY#AKXwr58i}x=fKCcxGI=I^$9T$!rdx+Go16&WF)|CUzKtgvHStWWbU<|a zE)AQN(acTkPVWfMF41dlI$#!kn^3~P zILK1eB#w<51pAU$`dUWK3iyHrsT(!SD>f~~LZGw-6Ur0w#LKo5Tyi8BH6>$g&}^By z-OVT0+kE0b#0IBLQK=Q0Phxe)VWNX>K5+wvIpRk6B5Dj^Oj-HZ|&rYYqP-T{+#Q_5gxs%!HK900d!V$opHpkl~mZaPD4*W>gh43<^F#B#ySl~$Vd zrLj-fFSEmi&5N~?;i+}8)FyplN;LGS8!z;H{_Jv8h49^ym3)S?aL3T&NG)1mqvgas zXmO$AHd@xkGanoXl28(kr_4N%Gk-Qm#?N)L%lQlzDP}fjm?lLxJ9cLrq(@zB(@Q+{ zQuxmOtiAlm02v5Ih3QvuhQ!M79RsL*G<_2z;t=|kvfDh;#gkoK3;1xJpGVe4Gaq3< zaLVs$Qn}{lD#G9 z$2Pas9f{N(L!IHiTlz8z5uuL816{724L1onv;y9?DTxUsPtlUBS#r0rtIZ_4qM76{ zCu}|tO>N7YNl-)WTvhurgF=OQ zk`1xCJ(|iwov{2rkpQ26!-65x3B=4L!}vS6WK1M=oVHI!enpmamc-MafVE$Y0F7a0 zTDLTw{_?m86A2EcDwr82iguRyV2JMn2t9lwPl(jX7Cg{s!NTh-SUiOwl6vmiWelcS zlSa3}$5^Ed@47@&M&5W^LcXrF@JZGLlQ@w2#8Orr1G`SxF5#qE@l4Htt~+HglgiC# zR~_P|^YjIKX)DW*7{^3+-E%}0it`dbhA~HtKGAjc&f_O0jb7RH&V4St@_-9hA5+-Y z^${d+Yl(+HXR)97s{OkE8}{oxciXSb{r2mQUs-VdN(&-e)V4ntg#N=-LWmAniK%@e zVNQ#Fh3Kw@FWP4u-9^H2U3Elx5?;`?{NR5>HU4n~pDMQ2y`1Vnve)f*w2JL=1igHn z3#Tq|;b$Lo;e$VL;q~8i;gZ{3n7P@C8PlY%+%^j?dw17VxM$MnKXiSJUQwqlppzzz z-rDsa)@fV27FZ{)?7Hr~E?;_t!j)bB^fvc9b&mU;I@A5`#5r2&XP$6ObNM01M4x!> zxOnWYrwQ7+zW<~J)3#Xfq0JV&W|M-8|BJnV0d7*MUt51Y4Z-;u3 zPi>*%cnZuSE}D8N7QTXM=t|bHi|-;vNVo;_rxCEFJu#A+e=CoH`M)Ie^tLct7W*T0 zNK5{op{lchebm~PYVVP*suz3DwY+Ek`-N^+z+A+i2S!BNWVH6TLW9~Rtz+@LpaY2QG%-ka| zM|8>4rLfekidivZ4uLoimYT*R3HMo$xz~dEZ5GU3L_jNUv|lp@Sg`PHi_8pik)tfg z47Xr@#DcjKEtq$m1q&N3Sgcy?8+G%`>|1RO-+2fX-|0^8eEmRHDszogsV&huP_E69 zCA&&kabJU`W@Mk<$>E4H+s#xSL#a_-Y=Q!NPrznvKgBr49_ZChu}>ZV$gHkEpv@E= zWzP=6f#Lj39uPKPa+p7{!xj8(I6RcU$-`t%lyJ6rB6iTC?WpnO!BOmom+a?HY`^@{ z8}`dDJsBK9zklj$X|5=rgMmTKe>VV3MIWz1n$YQn`)B&4Ite9^WGmozdo8yQ-S3^5}^(#X(k zWN0-ql!**UBSW*1q4ltgB1+h|tKi6W{<`D)TMimA4~m#N!=EjegCeGGB?u?l`3I_$ zc#eO^p-!2|l{9iS8@XDui7q|&M!MG_m0F5q25LgNCezm~r zp3h4*_G}au8-QPXO&(E-^AZaxo6dT&R4@=vg{9cBD3h^Ng6>y9|0{q2{&L)QRNQvd zxb3KM+tD1iUF50yv3|G>4lybe@P$G&2ZvTHpoh+@XUJj%(O-A12RmMEoEgoKoR_? zT*f|F7l6wj^%4;^oEO#jEE{%T^AW?qzA3wr(boQ%EeaG&?b*i4E@yhE=gc0Tm?-@c+3C`XGPA;rnH6UFCy9jXI+Xwg$X(s=D)URCD&kUh zDW&Fw5|SsdMOtwhi9=TNAzs7GGWj$Z#9O)X7#L#MYs0s*!aC8l^3Q11WQs0q)$99e z)en@|y;ZYa^@_A=s!Q3$I6Om-P>06(mbljCx2D;KS-@u9de=mZqzy6#JO!L^eR%pj zW7R_boM#foDQ{WnlHZvcpK7pUrVd6@9SBJ$7Jq`?&d?nco_+2B4MY}hJ7aY_ z7?EB$G9HgGiI>FdKroFMCO983<_vWpDaD_-b=^$soMZ}k^oKK?up72aW3Xfif)5v& zK?uqtN(m=AB?>vO9Z9*z=dDCACe=eP`G^_>W714|v2Q59f>^?_A0{NzL}mIgW#D2% z(1J4yB_@}d1%5LQJGjO);2J~Fib*}+Z^lIjXP5?@VF+56fSixL!4*2>lU8WyH7XQ4 zjK@?~%cE9u@=+_f{!tk-CJu^qcFIa*4L_4FP{Ymm7QEG!Q+tk;Q+}4pp@`Py6?0U( zrsY-!{sDTkLvOywn_Fm4=^5_TktgmjMDqxNUa4PUUvFMvZ#JyxW=aVUoXNz&RME6z z5Z)1I#>jt3cyMgR+4|MOYy4_iF?VSCeI>;)1>%$7WEhJIy?Q!4G7N})5WC~r3;lL-jzSM z%<{NW{7LFDZKhQOjirGvv6ee}-TFn#Rm!Q{{QOjA;!%N(;d9UFA zezD(Bx(Snnjp5l{L`72@nPlR12cpyWaE$(rScv2N7mm~WI@N#iL<#HE;_DOyP2U6C zW6XD)_#24_vnROd-=+yi9xNE3uO4>E0w^=Tl>OcyzE40|!=ayW!?{#D+ zyHyf2Aj_V@#R$a)9Tal2UuH}y!by*rlBnE6@O{v+k4vJV!+K6FoFXdaPJ}c}{D9@8 zE3ewzb<=81i?!>f87(VH zRw=oxLrJj?=YqIOIXd}Q{-&>6XH-s@JuWBN5GQ9{ulZJH(yF1^1#q;Zcg}!Q{&)o-R8d8F9$zKMyAsZ1p2HPSyQbz zcc=rVj?5rmc z0mQeCQ9FH1zl?eYdw_lcqIujz-$}{ye7%-E&Ev802gB2Uj$Vt=QZ%(CJ2URm%;;ro zT;>3#MPR=5Q7=`yFR1-=HPPm)DWZfXr57|VD-SYXUH?_0&=2M+iAI+l=5LbwS$VF1 z$>ysYl!Su7R-vuIP--f%_CG=$r`}(v=z>H`-bYhQqp1VY)M}^f&dFi`7jo_pnr=?b zWl!;oftnlYh@^C5E~+mxf1b{(i8rdtasAS4;UXif>APIka0g@>V3KBp>AKC*bxT{n zLN9upU?R_SY?q62I025hRhtz-LmM6?s{sYeeM}Z8xY9>-0}4$0YhGbM0Xp5(uLsLc z>2q%qDvmy%Df^;_4O|l+iLr-lO{6KVQ97on-CC31DDx^qzgWP>ty9+W*RJiYDE+aI z%U_>Nb8(GMtt(qAE#qg33-AMV*(R^n{iN%w;2EaYjX%VLfivgpi7Gpk!&eujLAnTC z-3?9%k=w%wUjj}*(>p-NI!zD5GBmw`rs+A>H-*nMvKd)T&nYb7na|O47$abz^F?;^ zoyr#xJyIEc+N&i+R_kfgkKjJ1_++j#BF=ZTd_crSVb0@|Iig@0utG)Y)n686z$1vM z`5iG;lNAFWRCe&UG5MGXS6b&H8*A2(+3<)2F$|ga+$uZ*_%Vk^oD~UeiH+}=dN%#*g5*T$Z+&vi!4olqC(7?9mT_WB{L16xu5Pd+ znycoxgyOixSuQb)TVTK7af?q1w|M$5(B5fZ?B3q@6Vpd~JA86sdw)f2(e~c!60}|( ztH+{ z^qo;*@26)>v2oxfOp#F`LE~Xdt!E~R49o#LMXE|29$u>U@hefHxWS|)-QJ>(^TjdSx{Z{@TwG~*!|p;}#7+u~oui(YRwJz;OwKVfe+Jz**bBUHDDBsc5NE6iLU zu(C#ub7ho|a^c9~zO1s1Dyo@FmiT&%OO^<9$&xA6$yZg%7X5jZIj_=+8e8s)s48{g z*jI0+wk$a)r*f12>S#8KY1m|?af_GKbN(HtARhQ5v%NEGHnB7qoZK`>KU#T*U#*)A z2TAfOI7o8SaI`PdM(J1UCU6il%MIWDshqYH!@_R**9-?ib-Kc0OVGa1l>L+hFv39D3H? z2khEU(6i_OH8o=~UBf0cPcLIb&!}&4pNF2Xbc!y1xbfHzck9iZI1M}d;R;koN zRTw&~$j+M!-SQAk!VKh1|G?b#fF3dzEkKu%reMehP=?1jLQAqR2UvzDASi~XA^t9T zWGo~hWKtd2fXJgHeA`YWjdHZhVH(R=+P_1q=q5W9srJ>sGg4MyJs?a&`eb!%g~K%P zDfF1ehi@d8Sl1L=chFMRdx&IcYxYsP25ZeyA`Go%E-Jt@3@s2&%i`Q0g;f4^|Lx|b z4$}a=6sEDlVH%vUWGE~iaqY^;=UX`<2}#)sh>I}%C9&C+;iLM2oT%q~rs9|ez{=aT z`~oEoFbz&UlEdB6FHpQNjinCLFx<2{xx!%@9Hx}@75#uJB20txkc4RfBU3=_aD5!P zW=q8Jz9u@1iMSUfq6#q$y5Q}iHb6C&h`&>#lgmub|DCT%>r#hl7-m~tzrtY}9HL~v zGm6ne$_Pbb4%Uv@QA*|a5=#dFMprG=BR$f<0Zds;gOijzrm>8NJWS&s|Nmmz$meOj z;EO()_M7B_5@`Za0^W7Zdbf`_HD-Oh*?qHLW_^==c0#59ig-4FFNP}aWSP|93(uif z@o^7d^vk37kXP`NbT_mD zZ-H;{T_;HAN{|NY;rm1inr4$W3M%u@{2Pd3K7S%e(oCMLd{Wu!rL88aeySwHFPv(s z#qb#s@C4@cp7@0-W1BHAL{qD};}_p}hIv2jbdyZUH7F;7GMqLFl!3Xbn{a4QzOf zc*8AT?_+A#5FrDHc`Al1!#ap?1`f=-BZQ3)Zf*y+SaKTP9#d2KxJ8w4i-OjndeNqN zZZgZa&A>~{LmB4LYn|0o|JqL_tiST`i)VaXK7P^W;tKGK=M+~QzxaHBUwm%2sbLtG zd_qqJRYy6bh6Z4CLoddX*P|C72EAAtp8YmrqN%l$Mjz67&eJUAv4A$XFa z9_Y}eyYJ35Vfu`$WjEDMxG4v`Xg8h2EHgMx;hKP#>+mxMlBl6O^SM*g4T?(w#l>0Ubf4dm)8+d<>G{r*wY7sE7@;ZK-3rfqfng3<#}XR=zjp`%_3mqh>t~sz zn&kIbWyZecOz?A4Vc+BbE)h@Tf0d2@-$Bp0*ExDVswB}MgD{EfRS#hj%ZgzVEDN)k z#J?$LPfX(5L}%B1|EeF<A~D6(PBRx~=34I6HRktA zv-7(dz~`;sHNOuMNoXPm{YpS;zoGPMqL|;u21#2;N@^dCd~U#tuRCD30dv!8|&%QZy7+-#L`bqZQ6yv#Xup7j13O%b*o$2*+1hEi+KiUkggO=sFH z&HH1`U%)SE1jANvWU1ZCfvG++s&+<$kx{AwBrY=@Hipe9dqMR%9k)ZdB*K?5GNucIfX? zAK(EI&oqNAXupjuHFVn(A8{3tZVN5y-ELa_l5ulXlh!=tc9JSWmKe7*K#Z8}*Ok9p zpLWV^y&ma`hDSWOAR}V8;dZX>Y@kbO!r|NhC==rE{oml>C4U1=oVp8TdgI~OL1Wb2 z5(3djzL2(Oe3p+m72dtVf3aWQ{SFyHt^Scf9~BD+JbRDgPMv2TpX^vg3$ng>_8dMS zMfVNyH4 zM@5`u>><4Kci%9N;7mp^D*>;#)*u4xgc6TPMmgw_6EHv}xpG%mUOKgx!=`dt?~P7` z_BvM;-Uq^bb+$-DQ=L5sMjy;ql~)jl!doAt^-u`TQHsr1&K^Yb)djH-2js2qz8}}q zaqck`Oj&Zh=*2rjb1l~W-bE#GE-5> z8Sdmk%rx1RR<(_nTl?7WR%HEB`Oy6bafQn64;7;k7WmLT=p%BV z8VS~z^NZ6ZQG7u+Goh-Mcg87EXv8KxATK)z^_DilDM|(t1ndawt!5w;ifUkONYJ`e zzICss3Q~ekCqxN8;R`%v-@4_zs4?|0A&vh}m7{UJ+=H=wIoJKvy*u)U_HNZZdiO7^ z1uqNV{=VEOvd!o&gK(FML9iy1DZQz|-ozP;!cym4x5yZSLkUeS!>sHe3?**K+iw_7 z6HEt_(U@D`)yBlk6{S}yNkc)VW(D?SbxH~JUu`nv?8)MR{`(CEt>fxxJh8@<{?g6A z?$e}n^RN3TQ5+tJ<{Rh4*6DjeZFj~(#{g$1>V2B*6gjUG=hR@l2vCDDB3mpa%9)y# zI=xszz&YGW&Egdm6`pBV6rZfa9m?G)I^3xm8o(9=PUY$n)IHGxumgE>-({Z2M~wdR zx0`>dqyH01l6u_J-|nYMGI^8pw{!aOpW$ye&gy2?XubH`Ii0qMVww?evg0>X9Dl*NrLP-wtl| z29<~w&ig%zjA6$@>o;+@Uj)WN9Jq_as8)W3%RU$FJ#@7$bmpo3SxT@Q>^OP;DRDB! zhC{W^@Sdapd|IL0m_y+sz zgiraeYVSy- zH3v~|Oz9j%-^#n9OTP^JSu&zjd{WHiP{jZ4 zS-oZR*U9+bnZy@9d@$>OcYjuAes;06i+R%Uv9jl!7;jroi#GXn06-4_cr#(_OO6q(L! zg6hNKPkJ=M!A)o89}Dd#8;R#PT2RE=$@JYt6Co80QMOBb-mqKi>;L$GBk(gylftVz zvXhm%7dydC*%0{GN-=qXaUed5IXt*C-@d`B-2+l!=#QdK82EXA3*!anr&xdoFV13V zQL|xyJW@@$Zv=yeF)1Ou;JhA!&pBnF4k(`>U~=zQ?$lyY$S&Y;wjlkJ)RS!@?|I6C zm`pKRn!zwK&g#t-Yebro+Z_mQeZSE!0D^6W@2|Jc1A><;mz3OmAoxKdz4TJLhU}?; zX{Y%w2Vfe85D2UmR`K0{;Hdw2ArL%TpA1yoOY}nmfM5QOeP z@T1Bp?Y0mI{yEWE?RJTNP>DYQTsw4;t4IK@IYgs=X-^>dB2`4%Z2=Jcc757ux8wCF z=~)yAUQz%A|8tgkQ$?6J`WIwgOq&Xr*Ot7w71|=l!;X39Wtn$bb{E68B5Hp-9%4wZ z?b8wCH4v96_cQ_#rczEqGWa~xM{rAf(cKH%I?yI8%n$0`d!6|Ssf~@nbDnp;&&|&$0Nj*I!{VEt=n`MyZ%DQBmKJxoy`ZN(N_2m zH91!xa}TQVam@}D&bbG5->r~yP_SEJyA4DB##aEmO>M95)jQ}eGNSeT6M@>O-s)a)Fz`5CP{mbJjG z4Ez?N07ecdz`gLK4FA1=IN`ra)BLoWv}ENP z<#YCT=P1SICue`B`DuI{D?|JddirB%w3w^#{;a)2?mUUN{JS*v9*3tfSw9q5JOr-7 zoGIb7TEl@&x4|01o8GqBurs}}~dp}Izy^M>!Q>-f0!iL*cD zIK_(62F0mw6z9*o8|C8UkD(qkFV3Xm0)Gs_n1LDUPr9=H7!S}LsBQRT{Kz_HN3hng zori4@dvrHnjIWZ<`(pe(z8IUrvp;KZawO#ru4e($#1|tE({u`*lqd7bFwG%6bFb-W zGD5{G10&R4R5BT%W_LThzp1xA^~ZVIsqgTKlfT9!S$@!ghg(IlbLf5atR>QUYn~*g zszNa+xRvH4U$af_7tg)d;u@3Ygk=5~Zxq{HRdsMIhW*}6UdlZ-5jF3L;I_{V-``~@ zy1{p{o)^kp;CXQXVz>h&oaaT+(<5{!TH5a_*=T28a{N+kv=6U+m+D+_?&Wi1tbIjJ zkl=WSMCon3AOaOSUwnqxqV5QnyM*G-7wh;GZ)Ke?awjX;2@?2Z{r5L`0^clb@XMq7 zZ18MPkHQ9j(N(=uq$oHt<64)X>G&W8%b2t0p_sXb79Jtt^xp0ql0O$9A(ROxoeo>^ zt%63_$k;ZSE&q}A)0~Lh7T9Hn*e)>TpKrL8(cAh5w7@8byT6iJrk1^RD zGlWzA8y=9rY>Q?H&up?j$g&ze<0T;L8NU$_RkH6mWqQe;dFC37SCZ2wGNa`qyz@oTQNC zsP*J=gzlMTLeK}t+6U=J($0??oNPZ^znbyvFpoW3+B*l2!L9A)vA}^d;oIL2lw&=7 z7fx~3<}%i)%j20!9TTa>#&KlxU_V`yq2}tA2Na6-TDm86>^VmbL-Mj51Rrk-<3$n|K*Db-Tjup4}suOE!kI5+-;hEFnALm3s z-4AhC@0a8=hAI-UrsGR^Qqm4lWxVa&Y5azr*zdvfUE9_vgxs;+Zf4sXJ;6$t_91D@ zoTdM+sa#yy{mfvu=;h`<=fv-7$E3k&ivDn(&xyr2ZxS%T@8Cpb-wzm;Tj4Sbu_6W| zx1$tU=7O2KRj*>Pm(sHM`h7yoooF^t+yQvo!oB*22#`Zburr(*zwv3xCS?X4To~D8t-)Lw@&e_ntUZ{Adp9S|oAeo`K6~ zy5eZ9NmmU=ss6oQ2q#8<%fBd|78CR0=k1Hlc7CCG*fRzK4|`4o1bX|qdwIgg{L5}6 zaMYJO?(a5^`%~Qqx9Ye*Zu~jXb;o0up@Qr1&L$SIOS%TM~3Bxv|bpQIcKDLtgaZeSmW zDdW7&fo@B0Zs7JvFj)%-=}Z3pRmkk0Wo5Rvsg&G)5PEB}EtK0&&@$2cC53&T!zl{7=J@V!E`mFq3FZum1?=*2*UawH{dqeN?d%ct2>m|RN+???BEOf~ z(I%4L>k8%frT=^6MutB>JS)RT`zn{M?}N<9@ZazX^eyq(lScGJZ{$UWf5Tp=-9Vs{ zn~m6Z1$;5GBApWC^fLT={v`;lcl#vgsmO5T?W&s_<8=UrmD?GejQT*1!ZprXPe6YI= zkG#WV_{A2CywHLPqb(?HwV>)23u?b$!Pw6b{FTY@9(uRrw;Ee0zpJRZ=sZ?o-|{=F zcVF_uKz?7uQ*p0|w~`X2ciEkHxR6lYdb=F~tOo$?cpMsj~xpuX}mI zj<>nmwip17+;$f7lG|n?-;dt?mnStc`$FpI_3pp-)h%1v2Z@o{XOIutPWIW8M({*$ zq(x?Le5+olJ=eb=zeoD8H+0XK*+%mhB%I z1K#P~tI@l~m6F$wQ3=VBKPZ&E)=_+kl8tt_o|o6|aOU+UuLYGl_&lq3U!B#vPuwF( zfuTs7T}UgaWFz1Kf1T-vEj~?X3qrV$qUfe?y~Tv~Yzs!tuwcU1EGS)JK~@Nxa%7pe~rg(EgH4Wdz9mq6!jsAByNt|ox)8;KNieE$ZMe(mH>|1hwG0?p4_?JL( ze}yNyPirY`(M|JS<}~l?NV)ho^acENnbW-EL`73h^Ilz`c^f0>vQKZ0JJ&StL%PSA z%i}Oi5bhngtx0^^p*w}pZ+G-WWfmHHsJYEUU2|tE6oWl)4ED$9iAS>-QB5qgD?a}B zQ@MtwIEL~9vxC^h&os#LomoBnOEj5l;ek+PU?vWTwg+ zj?(jnkGXo0HL$3HT(@fF>;lTR23xDKtrG90=fbSODi6HbF>T4VK)i>g-G%BhFmd3qW&Ui zQ2K2iB~Ht>N=6hVH-i4n>@hZi<1{2-$r)Z^o6b^ z{v9Z;clsdfm{Y)3OfSDWo>~S7&n2!{6=HU^83`}>?2r}5m}V}harg{%lGsswY#f?m z&JjKNnmGsysLiUW{<6J?vyy$pck(5>lj)ab$|@q$xwGdDk>JjrQnJ~VJ(0|px#gbi zw-=Bs;4dhzk-DRZekOu5BH)&xV;E+A@oip0s$w^*g6cAzuySUJj#G(^Upe&|M5m-3 zNXE+O;ic|S^I5hMvH1M`w33ww)QZ^33Iz=-hbl;})a7c`^()23)v=XlD`;3bTtRZB zya!8fdXpQYpLJo?CtNrrLCB4WCGGr)wcAav?RL{^JJ%vEp?w`wQ@{VXuOF;;9{FL$ zw^~s3CJTmC67a1=$x8jDZVITI0_xUJ`S%+Ze?Ar$Rf&Jz$e)8 zDB(W9GfM)zeNWd?y(Mqx_tPs5Zy&>xU%_#xzRe!X-RyA=DHp51xf}j#uItVqDw=vi z^L5?x>~cq^??(0C9t%AipK<7m7uXGCOc%O&p6P;%=C$vyu2P-mpA+<^_=}Bzl5ut= z(VD5dBB{e@5OSE2V!*qZvd8%D0Gy{d;R>vK3+E_sZ4e?Je1By`R^m%|ko~DelEXvY zd=s-WE{wGa5hlYGD>ycg`*Gg*er~|I=p2cIk{2NOS!eKPaEXNHxpdT*Nmp9z1$D|< zULf;^L~zn4HoTy&I%}}rtd#tGBjV!&B>HP?63G`vMY(cInXtWhN%?BRQ>Rg<&6**& zq%Hi5S7YO!y?Jbud!jWXU z^=fJdm&2AutO{%!%)6CHneBSNp7h)!_C{&UaUQ(KN}wNa~hO zHX*YLjP96TDWz)q%WUg?9GcP%jbxlO`Wf#)9?Oilkb0avYx(4P)s^ z)1ZX)gx_#U+5IPFod~XqrcQImZtXPd;f790{pwifAO%gGaMn6KwRSRBJtrf%hR$)A z7}6r(~CslDjGtwCu8^*e**dv!o`M)asHNNP-b5Q0!=bRV+V}1eaiKMd|!% zA>fxjLJ)J`0%g@#ns(dAT6f#W8g`>eG_K{}?=jtKTrM*$UCy+Qf6pmqg<|lseq@jY z#aS9bAGOENXG18hnUh{I=J2C% z{0rgf-$2G>J9${HlSk0W@o5a_To0ScFFL2XKJeFLE-5>t8Kv@t@NiugTzQyZiINxf zH>Rs?8g)?$2KW4~)z`6y}|k5&g{ziu)1NlVs%3QF4=3= z!`1}Nu(eFHU~71{zSE52n>&ZYxY~3UH}m+C^0dIiype>5`Bm?DxCQ2wWhl%`?s}Lv z-1xMZHRf1XTxD!(jGTle`Be`~%FGWwC1~C?lu@F1&){&Z8UvS_3F_XV3R+=EK^}Y0 zhCQnr_L?PX>t6GR)wy3f$(sux`J=5$Zh_>_3NfRuf^2+&YS|h8t-GxeO}niTF*uoO zx9+w^H0`!V#CF4nj|}2n3ZOjQc)m`Bd6EL_K%b&;c-_75WwQr$vPSzex z^EBQpgu=6*<3}w0`OVm#U5Eg_kxEDaPq#JR0K_hJw;BD4Omh{#YsQ6V{wS|;PCN(O z-EQ({bV=ef9k~`}oUFcWS}=ZL!b+3SHG9R7!(``PQL=|2`xO7&NncMhYCHL*LzNQ4 zcJYMGNuzR}*|Zx?`H|T8y;B$Rjaz$8L&0^yw%;C0-`2^*q-l-@x~a(d0EG6kMf76C zSpblxEa5xeCpqB#3A(rLI+{i67P!`lSWG{zk@JH_!afzl%t}VqVijdOKh3b;X)15i zRtu8bG@hRppOebp8oQOHM60^$`YkyTAPKiakqtYt5nk@}qty6F_y#PMup)o!mK`AN4!OF$St*ThCU|vel{M zTP?DFn?*Knv&e>RicGYt%9N^SO4TnF%P%}y5>L+2Q@u-WcF7GpM~N!UTdZ~sTZXEx zty?t4s++giCmOcs{JrYdEvF8`!4C*rwI> zY?7W8ndn*Z!8ZMEasAss|Elk;e|6GWMU(5~dODfDZn9pkhv`ssTwmAI*K~OkovqcD zW5ib1=Slipw5QL-Yj7t)i|hIZx?XHS*L(R~Vl2xCT|bL93Hx9|_s1Z^`J)@8Fqza} z&nOLW0tqeDjK~_Xdcqh!(YmEVKbi>0klbSV>RlinA+m{pS%7~!sFnx*ydrvV8XJF` z9Sg)@0jSdKSRlrb5qmjKh`|XoqZv-nl;9^F%?)DO9=G2x17O_A`-78k1ixD02!6FX zjz~I=NWu}!A+2x(lSpeGN4&eA*}~?C8CqziuSN8ZxF8TXnK4;qC~ac%ip;RHkYLj! zd67JlHFK=x(rvowKf2TpN}?L|qW`?um;Q5l|N75`sNnk%dIkE=3@7-yY2hCV53lLu z&oDF}GnX4?3T~MxKBuJed^kKDjfcM|JQs(D@26079#os{5{0IsIE5wYbnTpO!aK1& z72)Aac|d>X#U!eaG#sbCNCTJd;xzDjr#Ju4s4#OhGkwNHAegq071cguaSB{{Mzsms7!Z-ohvH~_*LxdT-$on*QL*_FhJ~O z4AM8=K|RxUteLGH<8!)=sKC@v3&+%zvs|@p+K!|S0uG3QBN}7w{19od!%Q(jDVJ)z zcMz;|(bH05o9r3gKAd=kf6K(&;l%IwXPj8Jhr1reJk3uIu}^SlOyWhAR=G>>HtfqrPS+F2LPPRVaJC11jb99+PKo^z3g%;45tTV0a)%40)ku;4g zP<;Z7L(1pRtm8z6VL8Dv0`<OE`6Ox%gom$^ zY{@OL_))2z+DtN?Yilqv9@djqTw9dAWg5F_5`+igJX3#t!lq0|2p;$kl7jJMl*kN8b;LN*&~Qz45&$w z)RS163V4cgtKjsf2F3yN4nG;ml${Qcv;Y}^)>{HI2-t~)HpJ_m7%k*x0K7%Y09o&5 zh7F9R<_{$=`EDhF5{2wsnkjorp#R%3h>*k->(sSJfWO=eb5)XXKod81K4Jg_o=Y{I zJ^7+iP&Q3gub{nD9^p^vd_}=x$KjbuSuK}Ox0uGtm&Id1s)?!xEr!j|KtvpioLCX% zcJ+V522$t|wQ!pLwMRI&ot=nbnD{>8pz5`JyI6(ixe71NtFXlLh~H`SH~&tfcI5C9 z0LpN3m!)Bd^OMT%|YtReYj6dvb!8hJ_oc z83(4i{>_XTNS?_Wrns<&fALr})Dgp@z=`l^-D7a8sfyz{C71dVxjeO8|Q* zol(h10DTgvq`IKHs&xmpf+V#A)%+M%@baBPya*JT{w5o^99mhCmbk`>KQz*i;b+QR0EL6>G~ZbnRuoPA<~$)+)c(5YmjvSJg- z@+Y<)K~i16QQ~AD|H|8xhvdo)N^aPogsOkD0+383)I6?)G48YdJ=Y;xr1nu}kNP6)@EQFgb2J?#NL~*dI9_RG#kS_!ld{ zF5mhmJxY;zoK}krLw!V_WDqw;(pO^kW=uxs+JNc7U9mK(^i(kK8>Yn4S5Jo1@DyAf zp8hg|Js9v_`lX!nUTR^R*fqpf%KSNu)l=tF-9bW?&3`R_*EM4R_ zi%^y>`I1c#lX=mUB@_RdG2uwv!7DPAZ@M%y=Hrp+Y^fr7{g!GaZ`h7%B=a$+Fr8*) z%r!MBgo^MaQwE#$It8e175dL<5cnUGG_YV@cX zhgh*!@^YsWx3`KFGL@%MvC8nwU#nw%AEwNOE06|GfznIJP5W9pqwk~CPNOpm<)au@ zhp$wiE5V$V=un9g=}%f|cV-+jfps4A+E(^_hzMRAZGWBUu1l)LEs zD4JAc{PC$j;B&@g&c`fI7)qgnG>5Ya)rMSidTj^twp%+?@i7Oj`r5Fm&@!T;Y(H`; zw%WB&*Ac z5$qyVH@~3hksLJD7La zV?r(CLe%bU`5bKL`!TNrV-ha=PuJ+NLug^uH)%_pqhh0nw?*q-jfb9wn~ksKeD0W? zH37_S%9mR-1RNZC3O-*XkzrEESREBCnBQhtl0Tn4^td?L?{A>zA|ZtN+t~q#4$bOv z;;X1x={fjck2ntA1T`c^{y`zf4bq0tEbK@Yth&i8_TV0IkNjc}MWMaZI zC)&hnO7CTvF>gX!Lu7SeC>O6o{e3}Jj%a8oC}?k+k0>zVirUu6FT5J}S>)XP7RC&W&Aif)yVsTz7s;zWKA$E!Zk!*iiM8H>o`B|RZmTh zTJD9Qc^cl_abl5lX1LLHo}=qR-@T%%#+3#099<>rowA3Bd>K_QY+~{i*4;Phso_-# zxiY||>ez9lS#`_HPE@|)MCGfJa5+)Q8#TvFojaz4v7dU$NtV@wDsI@zN^GJG#N|Vl zm;~_|sdQ;QBaQ~bB{F@5biGm7KuOmdgRYmLZCykDk5cM_7agU3K#10Nw|+|bG#Kglw!b3G2kWm(6}i4i;cExaK2G|u~a_K#N9@FX3QB# zjD5z|h&RW^EREsf7b79AxcePq{|(6dc<6Cbov`QB?75OaEch1irkC(ulp`iV(B|H1 z%sj)=F*xQIL%%&5!ZUBKKF2n4psIAkdn6C+-kcJ<+d^05NFLZx%Q|Mm>SM!4Nt&Cit?otk*uT;}N8ex71tl z8S5PmcMrM>yfxsc`YnGIZr|h(K)r_LnaOIKd_BGkmB)$NaCDh&nRVA|)>;Q7ICu(e zp7SV^6!#sM{tbBsb}eArH9(hq|p*0w*v^5KeFjS=5cbUkd8B-lJ~6I^|Y8_ea-?Zxi<4 ziZ>T)#cO(N#eOT>mZmfG$haD|HdvtxGtAY#7}nNc%An~fbk#Mn^p(IG+q__rHt6}P z7q~4dc9xK_lUWfhQU>N|6mM2r#b1DE9&me9Q4IS$!0m@FmjE}ig3TqWIxJToc-s#G zUG6tGz)psqKgd%NyzOqH4R4DvMx%nsXDMUqNw$d?*$iovIY!$C;F_TlZZq(Iov#=;sidqv|C($L=U*G8Tl&pPtVBxo2aN| zzT5lez-}NN^PDkD_!q})x5CrcEsqfw1wbA1_h}3@&Gka+Qu7=2*d`A^yq})f{rZFf|Zj!~S3^I99u?207ID_oo;vPS224~LOa7#V?B~YAl?yM-x>_!06b0p0sN85 z4DTU+^#XEN+{4Up)e(^g4 zC(y8Ms0g5lhQMXP@LtNt@LqH*txeP`H#6RBGz5DH(lPFn;4t*g)*t!koh2biw7zmY zoaJ9hkpA$yz0Wuf9&A)dRIPw2h?D@o({4Bg*2zBOjGgscz(b5-Ju;$9=si@N@dx&vp^mges@f92>bxgKLz}5 zK~MZ{V-~-=EFt-7YryX2bKrOP$YXVSfeGC?ywJ^r?hK+JW}6goSb7t)p!`e+qUe12*ob4`GfxTHN zk+v-6^#c33=dA2Thvb<>UK191AbB^tge;QRul?M~x94o%p0=$g)1FIxs|(sQ*43`3 z{alSp&@%r)iZ@KJJy_=#+5r~B^lmJ`^zPAo4^JDc7vFp;nBKS}ye3S~W;G5P599&- zcSP+L|K;$#-HIy2_m;X``S{)+Emt4--h%LnazZAH?|B2e zxf5w)cZlz;M$rJ`6Ggj2eENoi_zH-Zr^;oF15kR6h6^1H7rQ>3D;lB@`!07hw8>CP zR&kVX@Mb5_e!EGu=o{s`jJztT0OfnH6;K4_8{!f){C`Q|2(tcBzN)`M3ca+^QD`1v ze-t`TRP0WnN^89VeXr3Y;wB69-DQRMO_@BP&vky^tk@Iiv$q1E&)Lap8SR8d-$37W zh};~|CrN5pAlnPlFM0v`IBA2EAm$Fxy9V^>$pL+Ojlr&B8Q!WG%G&~VIi<1%3-dhr z+$f@V!~5zL*A4F*>f#FVzRMJOs(9aBJ@LM17VmrT3Mp4b@ji~EzlP)7KY(WRwQgp6 zU*)Yrv%Sw+Ic`EL2Kk*P#mR_Y686PR~tm}it?_< z6(*{_t1yfAku@>oVN2?c_Z8UdS>$O z$gkOq{6>y<(E;Sw&17%YUq!3V@U8kgLdcchs-z{^!u%$eYXptUqJFvN^nv=lma~EU zVnQn#RwaV=v`TUIdNM8`U8sjvEFKW7d&z5mk-7sc4HqynI6bD)^S9u$fU`qu1CB_~ zuxwe>4;gcv$(V^*{ZIJNN~!oIzmtr?8dy?AhIth=a?Ozi>fW`EqX!#3!2j0qyF31; zxRb&E%1~*|$6{VA&&yBc^TT+wWD_h|fZRXPYWvPE))h2=GQ?!ZSZ)Gjw3QCmlvMdp+&4#=H*E-`&Drmr-r+jt@&hSq*CV83^dMgv}SAb{9z+O9Bbd!wlX0gI6}Pjj4WjDq8eQForB z?n2+suJ`9U>dtf2^&nu@kneb4$XEX=yIRhYPd3{XWtfvy$7Ft2-GVuv_DrzglK{n@ zFJFK%cN7@%-Tjyop{K2Z<|G#2fPb(=6E{kyypzBIWs&fInq;5(og-NXA)0l&enOcn z7`VwtoGcjVnc}2)wg(t!F9%@YyN&dLMW19*Q9N*v3Gd=~AlsGSjEA0*(L2D8_+hx1`$T; zj&WpNH|y^=@SdMNu5wm=1BgMEx*6ihNFB!~b_n`ow^^2YILeaR4y~~4L#v#ET=nok z1?05jA5E7;yVdluNK;IR3#H?8;yCv??3PI=vSP*@lF($hnyT!41lkyK@29lz%t!O} zo4NP)kotNNsjtlFq53T4>O;tR)dvAT#k$td<5Ev5mzp-WoWF@mjC2wunDJcYXy>YY*rt^%WX|C+3lNLQT((c5= z0z#9hW;fkrcGI=@SfbmBmdI{4i|LU+cG0Gma(EDKs9on5DwXq$-4KNj!4eiijAj_z2YqL@9mDFh6iBNxBEiJd++UOmB z1OF&*q}DYt&`l3s%-}WgvyUgO@w*ufuOm8pAqzGOH~>FPR5Z2C4)%O1I{g{s%C=bO zX(Y*H=!T^)?Q=6ircon0l^H+)5d(){VvabnVw0E|Zo@qzNYYE8X{PU8KZhBjj8ezh zPrte?BPO$!nDER=1J!+oS+Z$r9U$CN`ch~wx|7)@@^=?y+-K8Cp@zEnJ`+oG7g&&4 zWWmC=9-r8P??)EAwOT8yyyI;z-( zO6hA*)X{gLqwiwJ1D-kNIr{o3!Re^bbIb-)Ql;}hZaOMY4OoAXRA%PXF|2Rcq-nuy zM`xm7+e6UsM4?ROr5Za_Gig@YV-GHMa_8!0(4NF$8}wF_nf}yHB2tTe98Q$3ZH^I` z|2V-Tn`=3oV0TS|IhlXU;N#F6e?NQl0AwkXM33<^4uy+aZG zk?dMXhJA}XP#lAt91o{2h^KEF7f*kd15Of?MQ+MLAg?nA!YiDtkf`^Pyii{?>BNz> zIUzJoS!HE({TvFDbnoq(sV?Hf zr&a^Nuv2@gJIbI?iO3hL1^WU`+N&l2ZJ@r|;?aL;VuU{yxFWlb-1{%x(5rMd7Hr>)q zo4t&;3bok_teoqycXF!iCa217L6rp;3g#4cy;&dMsELL{CS;DjZuB9g6FV6p?WdM~ zWH9{X`Z*9;y-I>6nR{&(^3J1WW#O62@-?Bk?LB4%y}+zs1#%LFy>8#9za0Z~w`b*u zAZn&0gtDfHJH9(H|o_itTaU8+#}>jAQs;X|Al@^_Y$r@tPw1Bwpk z>#tVRoNRacYZ>~hm*ZRW+m)}sx(3a24O&>dK~i3IL#IQ9z4CfQ$}4Isf)*84fWXNp zuj$23R=hx{5{Dhtt4&gZ6SX@mv4`@y*F|TwJeETF%4^48Nz)emmuuSD#hMoKO=AX8 zdJoMt*QP!+*NWaW*G@RvYp(Yib4zo*a`Q>3t@);y-q;(}H9bScpt=@tb-kU3)Q`S; z_ir3OuYwvdZ`D^6il6iJ)$dta|N83CKwlmGzCd3+kEbH~>KlmermvoOZ*ThQM5YMS zSLLXYiAZ}(Whx{?a)O1J0qA;uf*9q-xfdKD(ew9_s7b;rtM}SZZ+&gbY9le>nUUhk zs(H|W@8Ln?HPtyx28DAII@MYeKXW%*km;3IBxCR4Ra zXp8D$IPKuBv4gwL&VI%&i{*B31MrVN<^LLuI(n^zFn=LDhDQB``DkcVeLpF|WoXoo z{69Wo1MaaSwtx`QbhchQlctLl@jggXyD03&JlS$RhBQ^?cG5J_nKYF#PG>GP06Wtx zp(1!QoX3;Ur3S1Sy0pI%TbCH^bm@$FCn8D#cRRJvG2-!S?32h*6$B75mE(TO6#Lb+ zo%M6x6Fqw48VfJ}@)rv)rYP)2kKSayb-;`FL62gsbj0-zx*i${fxAL;d!eC6TmGe; z3(M@B7*ZSYX_JZR zM1JNCsj;UD1Z=i}9iUpr`G^ZT%y;&7?oMa&^Q0XRFx@3!hXoJ6IK(3c6CN0R+3<+Z zhk@_J=Nr?T4jUd)4=_@J3FgDar_o=iuk$L^Z$6^1L>Yk{&qVVP0+bJfjOq4NBLMj1 zWc$I8pr|zt=`dCP5)<+6^3(t8-HYC3yLT($G2NSEJ{lCE?*{ORNk2}vBo=O;UOQoV z`KiwLp(Sb!Y?zIbk({JjbN@^q&KPDa$XG~Sw<)tj}0W!_efxx+cvI{z?5r6=F%e+rO zpb7(4B5^9mckcymYAc zt(R#K5HKXDp>T%hU%gDBCEq&HpN@%Xr$3k2*M(3-l9V>`8oBYx4&syeJ(7|hOL#65 z*hex8gu$6?0dHMVk>H$3vaZ+!oj0$^3%N#Z03o#jWTBQpaRyCRCnTLT!AjH7yrjh3 zi_={njE#qRwzj+68ecum*mPSf?qaTBuv7f$KiVmtvf57ZISPeOtYPue0+XER5xLl=FhpY2?%1|KAam zZu`B3Fc<#840=~V=>Q@Fsh_?Z2y;?F>Bs(`AG4*uvt#xSA!O)by>=!;dudGH2N`Nt zhFMC%QfA|sZF=mgJ%$WbW}xpjBO(2)8GGPOURCrsWa#w#WD?KG$%NxG1sFClW|q#Bj5!;nUTfm-aLX11Mq;;J|NEKm**#ng?ZvMqIIb_Ab+M0A?LC}tuTs+11Q%{dC*vVZe#RGO*NU#?6n z6cqzzRxOYS*Rq_ZPp1U3Qq|moyHA5m3^E!bMM=aNMr2-71D7|e_nx& zewo5bB`lpRVd>Q$@l0jb69z}|gF24ljaSD9{(*jcD(J^!zd2byCab5KozDFjV_TM^ z!JYdt)J99m|3M0-59-eGIv}OcP6*SSw$J@%vx>K}ib05Z6CWPGCTnJ+7WuA@d(czi zC^EW(G99BWs#BF?)?0tum(KP*y%c3m(%T(o@6(uAhuJJmfGp3A!uT=c}~2<%A2?lYK%T z)H;9&o;gf2TYw||NrbT<37{C4W{Hp7_^cM6?Xf0HG_r?!snCn~NR_|du4m%yOpJsCpg$0c8AOi% zz&XH^hd^xY`ab=@i@`|Xz|xF_6FSUDB%`>^H6!8TrrSzwk|Dfy1P&}a5pc^@Fx6;4 z7zsNd%k6-yv;$%e4MpxweGqM`@VR1Sr#{&3E_>pyEMV$IC{$;hkQNu|mYQ>1T=m1b zCXD}m1DtMFD)GqXHh^*FHh{k0GerbW#U56Uz?J`3><4Y@!~aP&qDQvp_qDwD%V9Pi z{K;Y*W?#kT&YkxEi(wh5_5!aD{PMjF%k`u_W?0gu2xG8Qp+|@>3^lFe?3XC^q{DFy z!||?5Eakm{Tbz9c0EW)jN;2y1Db#wU?jC(pa4#7>gm?R&q(a>AVa!BQ(Psn`acj@Y zGg}=`sYvSqFox!`C(Jm$2yN|*Z~Lo%;9KJXC-9dOR$NyA_^bxY0ze_>N3?-XH_5bt zthXG5^nHe~foOQ;ul`Z+H@ClaEZ)U&c@x&P$c$l^ncqAnWYc)xkqR&9WR`8grsU=c~0KhOw5x!e`ZPK4rIyQ3S z3m>8(-h*86BIijjL)=*JO2g)+qOZA8h~M&T3T3kBAqPq(6*>S;F*ql*1-PoxfTXI0 zoTdsc+u{wddHRrFe6}DJk{_C0pW`u^8PkKMkLh(XCZEMuhu=J|wEu(F7%D5H=FlqJ9P1_uQEX;N zTPpe%z1!|abuu}}4Yj4b1A<{i+&=!c;E=nq5Z0I*u=}l`(HW;(=7JnBd|U2q3_?e3@H^iY_pNtFfa#WgJ&moYGLIqRkrep{jPm#$t9` zn<}2Lu|JRBXPi>re#Sc$dX4HsRDa$u3Z@hw!GtG?RvqW_({BKG=*%j;HWl5=SNWB_ zdU9Qfs-=!6Qht@KW9r5d*5@|WF?HiWxYG_e$3i9cnqVfI%aJg%Hy0QP$l{{Oa+}dl?p!l z9b3T;Drgn2QC(Y@ifsU#Uq-HeTw-0lgK6wok*4fiIjH#`m|7;4%dw9x*ZR|>j!+{s zsq}*>KXyvb+euok%s!Wd%NOOl*^LbR?Dy>BF|(^#Wkw?d zFJ4886HF|VsG7RZuVzb=d%RhtcdaL$NoGxjcArqqkY@9kY1DWfZ|bJ^={{{=*R*xo z#L{q`*iSHPSIT=NBt`&&{9f; z9u!o0=BJuf)ZmMIy{*U0H+l$|6g}?7_Uj@1SjvOV37|@Epo+)k#pd$u$ozSR2(r{y zO>O>qt2_qyYIZ$<1(@=BWbqrFVg8ws#m)VN0}Lh%Kt6=3KxF{ufh$D;0uU|$^opRf z*I3O4b8tiIKlK$iJ_eA_jrM(bu^|66p7J37%sj|XWyW$zCayPM>0>0fWwohjBcvs0 z%7Xmo0r^h>^3O!=H30eCuX0uZ=mGhVg9Z*-knj3myw>rr0O0?D0#n{&0Q}ABEK3o7 zK5(fw><6jn%WgEw-CzKHKt;|1{WpWX=!TvQfIbrzK-q3U|FWNGdc?N%n!uw0`kJ1$ z;{kmxX|F_^za8px$(W$N$PK(AcZT{ew?qBC?-}Zw{-vTv=;C8;v;{@Y8{JS#C&>R6 z+rUEpBLIo>?$Bx)YaoB!?L4Enr+t!#{G{po7V*G`*G+Koeu54#!9DU{1Srezrp|Z- z9$bH};64MN2m7dShJpodvC&_5NmTv&~M`wn#_rwDK^~undWV9|B+CVo9@c*8zfvax>{5M$O zzX{+!l(zR9Rv4-N8?%{Tn<_jPf6tKrU8fgh5A<*Su@<5xHlbE%Vzmwh{ku==dAmu= z?0$%Z%x)iocc0b{;NNL>HBW&4nJg0GOK|9J4x~GliLCPJIygw zy^^0`!eeHZ{sI3_Fq<9Vztf~@hVnBC6z)2e8nWX}-}E!POx;(zL;vR@)%}Y#zeZw` z@?KygT&qgSHWZOVanfsYLc17_TB>;2X>Q0j!3i19$fhOHdb6%JxS?7D|8LX0N|4p- zZ61@EM5!e!pLJro0{iOlzN9Cio*^sUUImrgTuA1ay{3A8<$J~eTe@L@SI-g#kk=`D zDdPJD{|C;{Pz2!rSzavof1Iax2mkl-m4mzgIq?5|3bf$AmT~_d1^tPoni&K7zry2x z2lV49>fPY}!|xgHgDT%E%>Ve00?+`p|KP1W9}67%_96{Xp_R|<*k*!v2M))D`G9~9 zQvXLQ|In6x0yzIb zcR2sK_YCKcJDnEBe^B)r7(Yo*Cxr0_ZZRIHi*9`u5;rfi@!1bcj-WOa~^(TPor!hz2SNX|1?(n^72~M!@FccXM#hx#>XY6>$-0-q5ZJUt zavP)bkJu*K1dTUoF^!D2FakIRzWVeYyt41EPHd*>&2DCR4KfBY9Wuy(@MESZ9qL`8 zB#}!-5~HiJKUo?SJb818>73JxDv_2W!HKG8Ne?-d5f^>Rkn`u*emrKEhS&%6=_I=$ zIduTk>55s&hIs);T>aVFMYi!(n+K;tTUfoP8q^4tn2Odp65@pFQ&9A=P3p@~)gyBL zp#aQlWvay7rx7x~V|E!J`c9Yate)44c8Liteu6-?z3b#M zjmJ!=$b9Pg2c}c=-hB#1=2PnXnm|j?w@+T$0{;AFc4H9qd*wVdPtfmU-2;WLV+C8l zlL;3)9#H2^juz^Z&3k!rLk1W@=Nqk~R=d#N(sD|Mv=C1(V$itQlE+>j*JEaCK+!km zMLPSq)6!7%oCy^5tmJ^JgP@;gfd6<4(k;xkYEp=hv#x)ZT+buY*$%Mp*$(Vep-t_O zU8yD_l}8SLkQ7P(`$LVmW*;vWq&M(nAUcQq#aJ6lDBqaORFxu?=cc=RmCM5tEX+oK zl+#%WV+_an!*k|iy{qDCbnK|boe|0zK6q0`T#G&8FzAa|G9IE-`bk?9lEXV*h_s781#$+>P+nEJJpekb0<|!#}yZpVQWB#%e%jo9z z$oxytgrSn_%@Wy!oNk3#7c1wP;P(qnux5z~)-5A&yjLb})cH<%*=|-X!o=d-D4isB z+FfTgbI`inXi+NN^AbU31{CM)`SHXo^h54LDza0aGhQRlRN7?AZqKvvO|4U#=gil; z=GpTyc_udi*6-c9M|$Y?@7=kd^ftGE=XRWB-!C6v!_^3Ch3OYQ5jpPSda?zFFS|7>3SuQ$PtttJ@ti2C=B>T$d>hoKtzoGJ06Piq=G z6gS7BjGYmj1hXs{8 zyCMH7yO7-M2lKBoU(P+Ufjo!N0vW8gzH3zime&LI_J`jG-zxO>%6|smO7wQ;?ZLO9 zdh5M}w{5wDHHyqdXKCG}vJjhR=FUW(TweBS?jq(>Q#a>p3U}vzh^I@vKlUYswYk$! zE5P@(w@wf>w_}X`dQVc};oM7?D%_o0S*CDL?j9PbTm#Ox?~(pNZqe(xQKu{Ra4vqT z!ri&A9BpkQ@vLSOTyWR~1#g;Q;~^7xuPcZ@06mXm#XZQyC($t{vt}oo5W9>901~b@THI%@u_3{Pv8=#i4@=@IGdVczL2Lt3A~jhCa4*x$oiW81gHw?4As_9 zlO<#JtCNqkiH}#{5IzKQlf)e$`b;@12xCW1#$v zRlnFXfq-w&p=) z78GO?9XY3^aM@#edcx|~tso8gD+mg*;UIrmZL+>*g`)VE!pRUp+$+~#n7_iSg)IbKWI9yfg!YV(oBUlaG@-_=N7$NwHg?@i0}NN=6GmqOUrC+nW= zDRol6VyLdb^)X6Ff@10%pFx^X$^qA1E0iPjy<#^ss-g^E%i~JH&WTb?+b5TDjx)6s z*?m0-XcU+ggQtC`jlAooEiRv6B@@T#3qzBMdq`WfRO6CudZ`o zxYgxAd#B5ZVZ+2PF&XID=9gW3oK{@?i(eS;rssrH9I-9F#_}ISlhsEGUH>zY8r}7n ztZqZI;!X%x*L%~ce!<*uz8S-jf=JD+#I7R~3Qws*H}+O!(G4cuTV;Ek=z~u6v!~)K z64MZ;=GB?S$@;KdFBQ;oC-!tDc0C7c(V7e&;3sjQ*!-55-@#7xW{AUFWn(h-aHP7P zOk`&9D{~!jl})+3c+nDCa1J%vHWu-OW8TA<-BK8-X;B__2hhImxt{XZ zTlYf9)dj(`N+Egw9{1f_3fs1o`;%`8$76qsEYgU@qkk*gV~BAUd*!*3$&}lA)}-eDso=8@2EM{?6Bo4HQ zR3>oKQ=bT%S(dxD3fF!hsJuUu_)rg!S}Zs7W7OlMYu!*I1)oB?s}uWLu1veXk+<54 z#6$A1btZvuaP<~Wb9YAOe_WWVNF#9EekV#>=(p)V3O8|o0{!0+_Y=2-V-1l-8|i+u zp=?`R!qkGy_j`Enu)Q-AqCLu9-SxJU-UHH@d7YXB@Mr?_{Q!PtLkIjyr4tWI!p*j` z1Ho2Id_=l@SGyl6R7b;uH2`6)-eRR@4C<7@iS5wmBJ;UuaOE18J=&DWO#VQRc*ZSl zi@i1TaWrw+*Z6#$>`0U#3_YPfBkW60y4N|s^$%`x=$gWEHKhWMu`s-9J!Y5&pp2_Bh zq<@cMq_poZRT7J3=oeR+hpwoQ_I+sG3O=}A`PPJ&T9pjlqt|3;e1+r9UI7JAVTNgq z=q{)e223PIIS!pYqtF*Oun@ut*jv8LpS8FU7}WM~x%axCSR9VAF&ZO_zR2>6wzSnd zUW(D1xYnD!)A44k=4@<*KXDZ{cUwoL!@o}WQ*Q{z+aC0X+>nSJh%EX!4M{`~So~Dh z7SEJ}pz7o7-YYV*KHDR{t1Xp=OKzL#I_bmkB6p?IRqqsBUOnqiM+;^|fJAK@FZU+= z>F5<+)iMxS)jQ#L`R26MCu41uwTVpCWh~D*ZL#{9AE8X}Q8IMcNhj_)8n2#pLwl)l zZ^8{nFZUA5j>g+IV4;!cVP|Zk=Wfp{xnabOk!gvcSl!(`R;6xi`8nZbTjB-jr}M zGJ4l~QGoFWMBusJv(S|WXvV$sll3>QC9;OUl=tgZCb+TI1dFw|Qr?Y?1T6cV=Iz%F z1lhTF4k?KHw<#y&oIE*Z{<4A>IQh`--aBu=n{=2(ZQ7IlfD{P898fF%8u;#aL@?q7|!JtQJ9J$Y?76?-GH=!n`AeFNpV zeL&uZWZM>XUli~7)q+p#FF-5x`4g$HeCOzNcm=9sqte5wNBW6spvl%0*ezB+Yp#nf zN~X_xQf@_)3HJc0rX+qexoSv&^~!Xgo7m_-KFW5SF#yz69NsUze2~$pUe%9}dVT&Z z((|?beeE~%0h(0aJkJc*ahqPUx*k2nt(9x&e*+WRt!2r!%|MD2aBcnxmTiMfKjgW09ECDJ1Z9o{>J7bCzNE=9^^eXBn4yVCWq_rzqchJ;g`OUh zo^boo5%q~X0tf?0dOI?|0tk}_D==xkMWDvh*tZtyB2*-bLZ(JY1Of|l3p52&Q>|0| zT%@Xx)4UOCwP3~!r+E*QXR%Yazo(P=LfDP%oAnhzoZSw_GSyn4Y=pmwHaVO5sjUy+ zMm8Yb1}S#GrjfB!?A-7jloNJhPgK61gxss%*CJ+MJUMQ%IUt<>R{2_PJMm@P_V4MS z|Dg&B={DTB>yL8KuXEC8q#~nPEnGV_u5_B=)Otek>jrBMQy}jBf3ZBmm&ZnG@RJoo4habkLSb zD9=kM>g{z=h^^T+vlwc+NqsSs_nPG(M!-RAyr?ekG19p3I};|Dll=*OKMX z*?<_pMDx?EKqvHv73SN>Vi)-0hOVh_;JK!8>|1!tByHqWQOLzUxL(pG0 z6w3i|r2SJ-WcvS%!%^33OorZcU{woI9&`N955-#L^A4id=sqV3+kAKFJc=OlFS0ra zA>t(UkWwOkNGg&5+d|5JJubuEBxwPMO`NsQ#LgupYZu&+bUD2vZ5Lq zRG>8~VJp>zwn(V7pj5C?4IS)yzbai}UVd6CjN*7dDqUsX$CZ|d%|=XHRXR|J-g8SQ zi3~4>idkOhdQA{Asr0K(dfajr_{)(+&4S(juu>O&Nq-z2ZrkjjfjtKZi5MbNZZuSlpN$LCX4yvf5M8Q^sVf`kE#UGkHHl-ZteOavAwrUoVG^nQ{d!J7r2DQc*vp zT*nz#z$2^959o8BP3W+_rKdCa+GjUE=M-Ja@723BWSU4i)lUg7z)Wj{N*i!0-z%Qv z=j;nq+JI9d^ItHa*p8+$YN#}XwS@UuHgoHG8y)X0W@|5h4?CfsnneSgpC02t;cmN_ zLwB1M?=TlyLU3aof+ySR#pc0$g|N7&K=<%W2!sZ*Rz4&D(*ni|%&Lsczt5Z_u;9cX zu%?G=aXAiPajcd@h4|u7Rq3@7*-VPef6^QduvOsToEtU?4tHYYlHP$7R5FAIC+DFi zX2tGY55G6z&!e6ImyS^51rEHnaN@yczep!btoIU$zz~s5Egfujq9BC>FfTMRlMhji zW5Dy7dSVX@6!4!~TEc~A=V}KI#u<2jZ5Os8A_X>dDpPeHi~3bA+!4lEqGRk)nL(dG z0#aV!#B_AjFVPoa$e>S|sE+r4>HLl~#(p1@nfiAlRv}a6T^gYNf&r6UR0cRF14d6z zG4M`(cpwu27q&rQ`&GbpGPEDC?Z()zk@VHPx_+bsb3VWagE{q(^0qR%c2@okM1(cxx!wF3T~2h~HA$t#nS+TkI1_FE zBZ#NS(t$E}cSD)4cc9FjLX$fU%G_yC=1x%N22keX24zk!?v5^5D8LYH;Rn8|jtn-?dD=G&mEfu5c!%ap%MQfi8!-h_{l_ z&8|P9*zqgDo|P3&=(j7#!4Vyr*-$aA|22}qBmT%hN$KRkH6kFzc$T=VD)EjaqmOEZ z0NM)y7L(l&m#Gg(D$_g?5cMmf+z{%g<4UjR)sq>X*QXR?(HBTi0KJ|J?dI)4y&)P1 zQNA190Y6{CTK&Oria}US^PnoYB1s^(4WDG_w!&e z;-7eO$sjydwhf^dUb22yI*&Jv9Q4rjS7s)hPLjLLgdv&IpsnCL;#jqKm3e&41s9s} z4dAabn8pLxYe}NY|bbU$4fm|zxP zWKbX&km~!Kna6_R(me7ChucwMxYXc6be4W)=E&efA;~_wUr*4MROmTH6_rBqyiN2u zMZ@^Lde@YZG_WU+;J`%W><{wZZvf8!7X`>Cj|*4ORN+F6s+z7L>xK*K9Pe#WF8tw0 z=Z)!?fde0~I}D$Kxhji0(iou1}hF|$BJk1q)jkThC+7fr?g~xI59aW?-xFkn13-b_7#jhsOzguZ;_+PQTZ3w zF9NMmo9pdnx-ivxYx! z&p(2wFX+I6bs8+84Lt<>V}rm(^*hko)gU;maeH@TAEycx8m8T{kBCUGHmLAmo_!3H zB|wGm`~%$MJKa#>I~|-Or#x_uc~tmn+&~joMc!5TW>sAt$;SM-XnN>RYP7 z4ZUuZXy8y57#J`r6W*+(+B69EHVazM;~jQlcrsd>ielZ?EQ_Yl0hE{w4|&jBn$aBW zs{={yehWP&W-yO2*?C$3FlQ?$NvL^=2{FbMIxP{RG60J@2O6R^;ZL|7_OUVEwj;&) zOnThyu#Z^v9RU*sNR#mr(nJwws&FMHaoVT-E!JFM`6msOLaGoF72=w zbeYGT$XURg!huaBOm=XM0n)S}+91t^YBo^YG@lHO=G}78nu1#1|Gz+*8ukALq}ihG zh>84%kfuiUeKC;Tk!HdmP0gYkdY}vA7+}twYUg{#oLXy<`S*5kkcit@bb^UsPOZG- zaFCCmgoAvhGv>_W#iaKtsHZCj`H z9OOVa$ie_u4*7t#3LGSA^I%bs<>{7#wv1Ke@4kfBf(9ld4#_yPcnW zXZk41Pxfb+*-h}1?*#nh9^Gtd`N{JGq*?6vd1mtC24_B=J7}26!?`z@Aj3>{%Jxz_ zGufW)b(0*8J4!qrzvy^}5D}%p4VN3P5sncwXgJ3GG|-4+zdTe@gnm{{;A;q5H}b_G zmhE7>l((y$Wt^n<%z%qfafno%oowD{H8hgKllL=4e4K7s#!nkOiI^3Z@oiW}vUISF zd%CfVhdNls2C<9{hGlFpEMo&KBNhbcHCQR@M<^J!@hvKo$V4=Wjur3{mkhn(#x_Uh ze~zKZ6_d)*Fb#ne3y=F|D@Q<4MwyxNB?4gc-s(_#NmC-y(K<%NW8r=!bOQJ53 zj6RL`j#PAip1U;ny~7ql!G9?k`a7gMAm8$kM9p(x8bdpc9EI1PkV4PMTl*MnX$$7f zsFEe4kDzF*^O@fn(4eWZTWV2&`2qnadxTYrxJG#9+JI*iFD=IL3V*`g;J~cKfhb7a z4G!cEr$a(7;669{gdy+TOc)O!(0w37ZNFkitl$De#v^DuON^u7ofCRpMDSQA^l}FV zG)$vVhosE4gu=yJO=zWL>LwU)oG{=7gswESBF|80^Op!6TM?@G4S_wwHx9WeviRIQ zBHRqtGkoI%JXpT*E}oQOAsLJ$^|21|DSRX1Q?!TsvKk%;_{MD#@~&3PLQm#dNC&(6 zP(WpX0&Dpy=GC+x25YTS2P~#Rft!GWCzGL?p+bhLrE^jl>X|C`|FR7AG=u(5EJJNE zjej39)D;@4cD^wfXohr&iAN}4WT;1ALL@_dTryOx8p%*UZDgpL$2{|x3cU&H>m)wC z$O&;D+Hu6EoZ2raZ6s@C{(6J_4BLprOzVwB;D{F+D_mFs2P%!XYu#9t#HY`kgl)u| z#j~mC8!0(EdkvcSCrPo5MeOZ>ZG1>u5^2k@GS@R~quIIu#?EXbBGmkL)bcOv#5Q8~ zU@kE=!c@aRvKugyF;%QfdK-F8Op*U9&Fpg&hjNt1A33ko@szHLs&uO8)|K?eEgW;}yi zTz~#Dja_p?Dm~<<2;4cD|0(Cle}j)Q#`&XIoE&3~&vNj;EEO5U9TjV&g$>JpgS4VG zxZWD0abgvRc$3~0XZH(f6$`t?no7dVvnjsfaiucu~t^yUw>3B@NkD-jamNc6I=vtRq@Yw+Bkuj96q=<5Xgb%4I|%!dhEpg80Ksjl*dRP4d& zAEv3a6RU_uC(~!wmFZzVc<4yWXfON_S_mYm+)w|CB8$h-TTBu;;D3|xViNa&FD-`~ zdIp63LLsq039xA@y45&u#b2IP2}(r9;PhkIMhPurM|j&?-g`&Y<#-QzEg5aeKDy%) zKwf#1<83lJj}x3<3@Jzs)qI?%z0)(2`B$FG+V(%lk!Nl)Fu=ew>3ehheJL$9YH<=BFTO*q&nvnb zC08d<%F&5B8s1XM(WyGR-sU8|zw3`3>IRxX=-7zzXwrFfHkq!v6BRLZWQN?Cj2)hJ z=9u)bKSR=2K>=-XV~6J)bn2ll7{IkOPeQIFbVBUl9J~Oj4B%Tf;q^oTqmE?F3nF7S3K#)YmL+iuEAVU+wOuZ zy{f(~N&mjV=6P1%rj$Q_AkSmGMBi-6zp2DLyL}sz)h|nn(!UDH%QmCNvB8uwM>cvX z|CGpryW}CG`Uv_dt9at4DO&V=K* ze@f)rrTv^3#M5(yqgVczOd8`u$sZ!QH|1 zClRji-%e3;pzB)DbKjDTy*~Z?`2Cu(vfU$N!wTXN_Ystj61}%OAr{{2m09``|0~@< zIb)sa%}jc8IO$&+S@6{9`QGg2DdpkikKXLY=4vK=*p4Rm%vyXz(GPq!*M_0?FH=7T zoX!5eho%oYCmAEhw@WMeL7s2=z?BOB{wDpv+V>zz>-!(7+<4-?JdCLxXqP>>p`$O= z!-mqA(T}h<6TOchl;dk<7H^VLyA#T}1||?4R%y85@D^3Fhv0okp*uQ zse^AbT`%**H7RAg&2&Y+T_?PzIWn_`IsR}nYg)SBnun^A@9YB5Ou%f8*`U)a?1 zpcuXl-w}IE4-?8oX?*)z4AXHY5OeK!n?OJuRm@=I=3r*Ifq8r^89NlIo?zNIqtpnZfJq(&MgXH*UU~6Og!O5XG$OX^z z&JV|)NVMhXfynQg}`GA4QMi**W27O$E!6-~lnZcN$!O%)R zb``9DPXn@D@ZK!!L(_37IRi~nW&)JnJ}VlH>S2Qm$|IxgaQxi~p{sSM^2PkPmiK-* zq5s?C&2@|ih8G`4@DCK4GYk`3l%v1%0f5wDaL96v8hWIHFHi*{FL2Nx;vnm8xrBvf zp0Rq>7XuJHG9V&>#6l6*AU<>4xeaaHr2lC&08{?Rp))Ucyx0CpmbN7JwR8dwDvpJf zsu`UgG8zqt5gw|>W70#$q(WPr*iQ3W`J84F`eD3U?PSKFw7YBO2iY4f$fkq*PI|~^ z>Jxv0kT(bK^eVDg{02Q^ncoItcDyIbuqeN-*S(`LjAcIu9Yj5j)jkt5j_XSA!AJmL zvZs;ndx(6F@KyeBYlMCK5#Uhk-z#x$a2?Coz@S#V#axHk|MXoYe3MeloX1ffo(|1x zM$aE|GwQ_EFZM_vKE_z|Ab@)g_8QVf|0c2(5r;bO-G|0xW4EDxc2oDEF59hT9U1*( z*`9KBP)d9WZ!fs9?%)MwhvVp2_)E3tjU5IGVZdjU@rK@~ftxv;YVZ|}oyjN>V###4 zs(RM^qXlzMY1`;cn19qshySBX1VARq#iZPe{>bH-aRogxquLU&CuV-w9GgE2r?&md z^pJl-Ewj-mh|fJu#j32kj;f`*Y3c5At`x6%wioy_wkJ~4pa)|)5nn4(IpwXaC2%sc z*YeoNqfre`rC)MAK+!(P#Xd)Y(4>C`SXZUVULa|i z0A2hF)=&8(&;vFGXl}ID#j@P!2~32*o4qsP&2BKeobAGloyK9tjp*RolZ;_Ey7EYS z3DfIF_ad^fK)nHiC7Btp*6|uJvxwBxRu!)bMQZAZZf>ZqEw0P#*| zx%YIrcOVgMidVlFDvuuEP)}w6pESM`(JY1pZ5)*@`ZG%Vi;fn|={2G)aTEG>pr2-G zzM2GCB^LB^Zvs0X1W10h(OKrEhg7@iS=C|ThN*WSRWR;>qi(vY8Wr4G)kRYxQ(so( zWczKx1MJ4B&qcPpvQSt*5gGetdClP}cIA-=LALSO=E~o)=ki2AYn}+$tqq8_hiSqb znt-ZcDz<+*x=7)*+Fhg416Ebf`gy0;Z{~YtR?H$~z8f0fl0xHk{%w$+34eA&!fUNN zaDk$IVINh>*LXaHQ{UC>r7M6c24vSj1*> zV_Pbpy&~flU=fjIE4?+dD3#te!Y{gML=X3-aNMZKLv62QnJ}TS3fnp~<&E?e^T~l) z?j!thr-s=zwQbwu-uObD{nhMFdE@&_)jsJ>M1ww6LWlT$F{|F}n|H{@D6?;DdD>Y1t&PNrq-W=)(6E=C z4GQ)t_LVgAr33V5)$Zb&!11S7IR5vMUEaEasIomARrXAUCRU)rDvmZ4Dlf*v0Xq#g zs=UDxH>1;odXMyH{g%!3Fh(%&rN2#jtdO^7O+=1^y5Y}I$VU)eFGYDcz`bT`pdhb% zRZ+@s9Fs2n!xjGIUmPt5#A7S7VWd~OWQsg#)M7IV?;SLssSj$A}!}pK{g>Xpcrb=)f zCXFK^bHhKN03^kA=!nO*N2>c_#9bf0*(OEawjE9I5OHXN?_Dp{>txm$((1l~wguHC zz@>W&A6p6Y`PAQ6!UGt3l*LtFqeP~ZdK33C)m?A+nZcyb{<{Cg1?!7>%9oc}DpG?a z3NEs#MUO00>T8Ey4BhhA0fSZ*IPDb!gv)BnYO^2u!jOX8LWDvfT_^!9O*G&ep>d7= z{1!7*=+8d`>PLV60Q&Qz>G8ADpMQ>%l_(#cLw}xAny1+J(x0E**m(>dlKy;36hrM4 zM(j@_Aspx~^yi<7R3}?#HlORmx10U~qj3Q8TJA#P%l7Qw1F!ox*^(PFWvOYLAsozQ zFzELi=5xke*mLeUrhNx#-x%rV&-$hV-A?56QeozNlB{mg!l{UWI1^`UJE6$6@o)Ldv3bHFjd=V ziGK=`-l2|vW22fSp52e&Gt(Xu%^7R#&Hd4Uo*P#vK@=|TvEaOBa%nNHMx;1^K_5nw zLrPP+pb`Nos+W=omvELR8Sy~Z+dRVW^WmD^b1sY_#GV@!fR_Xq679z*F#H%VDLd!% zW#1P;yVvatp-@y`b~yXT`!HohdKh{dtC-3MB=0WPv2UTvaiT;Okfo}IsDV!PCTF98 z94W_p9Ac*WrK8*y0)u@JNDLVg1`6~`yjIAW(rd-$vAWfa$rR^@;|pk+VjPCGdB4Oy+W!au?rUL5dk;tML@#p}{U1wAxUXD3Y z>TG6p%slJz*s$B@hA;Pr-LB)ZSVQFj7=8&nYQ^8GT8&a_MtK1KYy4Z;<%FoSS~AMO|g z7++xF|BX?A-)g8jizYA(G@*SMob-r3(6G#sSJR?1hREnG_s!E7q(}D&r2K4N*2o|; zRvFzxlducV%<*=hk(<7z z#ID8qnuUBJ3MGa{1O4FcXDZ3p*Gn^AgW-nOmx%TBmQOM;@DT9xTAotgqZp1)Gfz)r zj(urS!JI;c;ex9E3X7>uKw8g*Ksv$0^#I=E5NpL*A@d2_cSEd|ukD7(%hwLp5Y(5~ zJ}*4nGXmD`Plh~=R$spLQYFZY-%6sL!yhNngP$T%NtZ+o=h;LJBx;r^xgF6x>ysx78IKCzO4L-ap^>0jkI-b>!nKCF=>9t!;1nm`i%XaK|msRpIL*V*tAU!Y=>kK5x+YVh0!tep}TSa&mE#z1Q z1hgIQx_N^zRMmO$do^i5waa5gx0XlT*G76nmcTx^vE8$BPTHV8qttT~U3L7WTGbeW zP~~4oqCSV@>);n~A?G2kx^Am#72*N09F$ZHY%>!{7qWEPVzJJ3ANeEciQ5yVN!Ja7 zAKxQM8NMkGz5`#rH{QIFnhL5;;q#pEO}y&lqv}+>il1%XNZ*6^aW@t6UfBLV;ijT| z4}Xa`Z+gEGhr>&HR27b>5C2fzHT~LEnX?@@Ty8sX{_#6N!%YXC@7jT&;X`Qn-XE;AeW`s)Fmscb9OJ{_`MTe!=iHZRV*Vj0#Jqj+EGamV~fS*j3lX$J6fZtqBji@-a z0|ib51EBDr>orTpcqDr>MavoqW|lo5LAhD~!K$ZHAwyfKXa`eiB423*l?o22QrA}M zkLXsZ?tjw;N_tPD!jPu?{}OOb`9Bf3O?i76OSZ<$ZBlNldx>j$uIu%SvG{cKmbNekAXKq693+UP z0VIo2>2fL$Wg%7-idD>53dw8TzHkcjpt^m%Qc)Z}xqXqxTuA*jV~Vv{HYL2qRP061 zV1hXhxtWzhLQZCR3#t;v>t_qAN`5&}OTN4G+Frb1`dPXlF1T*9_h;wAQVUhsOkeQgY051(!l4`+8O@tyW{MevGQj*2Q^ z^z=1iUp1I|-M|qJUu%Qc8TPf1KIrQ}UXwR$9vgJYD3HW`RLFzx^_W z#z0nUsm$+6E5PEZ*qhTw#Ql*aN>E}ljJ#IQdpYBX`!}v;nDqKX`zm~>*K%G#4g)o` zu{SH%tD0#Pr*Bz~L*l40t>wMBo)iUDc$Y*iP1T{!w1NUk=Ym#nP|IFNa&~YkoN->}!5G zG&6N1&M$}G+SmMYm}p<~%c0o5=9h!8#)+20zw^EGayXOs6D|iCn6Wg>a`>KkZeI?c zw6FQ)pw7M9a;WB8*Qt6>%VD#YR_EpLCK2yvIV@26Zp#63MFc(WANa@;JC8u_BRa=z z;R|sCJK|Mf4M!sJ_Y&Ja^nm2ctuon zE8^~sBJ?RJLIaY++anfDO|=qN&;f+94|xfK-QwW21&IE31E9UvQSwtF|{ zT`4|bfI;?OC?Q$Dz`Q7XvKqZnc2R3CrakN(mMg|iLx~T@f}p6tD`WPRYbXMbj7a)b z0;mW`0#FjL$!(@B-WHu<(Tv*mX0&^Be87Oh>?)N(GXxj)Pt6ceYt0QiNdfB{NuIsd z{2SnN@>gWTd(^SCl zpa8w(3lPp~%}qQ>0qdH8S=j=UzedkC`$~bp)?6DH|3uZVTcz9^CTOr~^c>_CJZ;V0 zb+X)!axbvC^&I3DaBj_g^<=rTK+Nn&n_JI8?gEor>X|2O`9kF`w7K;h>`_6&p~d%{MOusC(C`Ua*wvT^&I3Dc5KZ( zk2L>;EiY8=Vw+pfLGBWh`^P8Cy$bN2-TiNNz6J65m#khXyxp1`b+X)(l>0|Ex1NLC zA_7`-?{N5V!j=~(_fTN3G-Jt3uN;%OG1W@(!K{Jkps*iKRaH0Y%R6Wb&zp+t6z`u5=I{Rd~ z4OD%!LW6MQF;I2zNpb^KZ#P*xL)BL}3pr7P=M-iq+f1FH>VKUiQvg+?Cgbs-YVxE7 z7^wR47wvQ(3sqYneNWVE3srw>@*fLT?>Jd*168Nm+{ZxG)X8!isQM|J`xvNNaI)N4 zLAIu=)bkoW+ZD3XLe)QWR&~ODFI4WkY;HXVxh+(karho`c*LsxCWOZb8y)fz7SwAh(68SDq~Q3X*3xj5DLAXZ>r3 zs;zkI$3i;pCrirq$as8wRE*2#22>wGDl*~YC_x?R8CkGppdLbz1%u5)II`f5k13{C zWI<&q8U8BD0D09w*v{(K9!NYS$cQYsoR1V=w#O*DRJS7JOsv!=Cz5!AN=s|D%^4o| zzdNA1jp{1Sr_460+m6(?x{d0FnFngADIunnG-oKLwdah}oODfpHi{c+LPJ(xXa8-?5UZ6&a~cg9zpsn)Oezzb5wv2Gsio$60zO?cesl)1eX#k_QHg(}UCrWMSMG}klhnuy_q=82BE!5eDcr6<*j{|nl) zlSgJEOTY)6rv>dPq$XHJdy2NMK<&AMb?q-z=Jxg&ezV)$sP^po6pW*l@wsU$+xMR3 zj4JGW{Z`SlMqU}^dJlm%YAUx8qdM2ER z9hzld(J)A%Veri5a(mT`Lk(~bIe#8b*s>Gengvv`U-9KV zrv5yPN7c4X@z}P={Ot?DTzuxM-c#t3;}A=BvI&x6?5c ztikmf`~+8xu@Y7h8?Vb=fX2sa9v%OF&E`nvieW#({RYV6*YZI+=r`U*KG*+A*YmfZ zm}&Q`?P}SEN}P+^eh&0VEN3X@eyF7?90R)_pgU!X!$(GNAGw`bG}3om-j=uv9fPVJ zSnJi{QrEo8J?%b({PuD^(+fsal7FM;8H`?ehIxsZ-c08hrP?-8%6U2>tX319^fq)s z9seh4Xfm`-4qerXpP7d8;;%6ykU@iWq~GUM=2*4piigmXXyg7YoJkb-1e*{UOx99O z7SORogiyn(9#zATf&o(n-Vo#MIsh~)r)zaJ4?#!a=4v zV~M2ffu?6(Ba1{eN$aS(jRVdFh}b!AHwiO+7CP1YB31o^gVRXO6n$-e5>pLSdtOF? zZbTT5;E_e674NlDJ$LQ})#P>QQ1IcVrwKQOXPzIwk1;hQRrRduqdm$a<@<0`Ro;7( zBikEUc?8NXk(t;GT-W!zpXSsQ^&j`vqp}X+6luGxK_UltVD?j2$swime$e^RD=$(2 zGA2wL$Tg?di8W9EXnSYIEex+!^<~?tXWezQN2GkKF=Ilfueox6yt$T9K>qtV_%!G1 z=Ilx+4_!YYRyVXmK7S01!4%F3Wd!xni{KY!fRC3Hc=0f*K?0CgX%J#b+e}(Bztiyh z8OKh&a8_jTFSQ)}8m$c0V+m zYG&^>5M+P!Lm5k$XLYRW=M49~XTm;I%vS0%nzkJA2plo~K54pX+oD1mSu~yal=mDb zJ|ct)QqcxEUqYXh9gdEGTueVD(2vHS0kgmhm0s=-`cu3ajr>7>2{dxCVmAqrY}`!v z2Io#Fmx3xS6Q!5#K==k$7$^5ftp30}fD8Hq8!MmNUlOF^do7CgM@T8v-u4tPafi(G zbDikplzi*uexKW$pB&-!S!NK6-r@MR#c z;_O5uB3vXvF)`USA0?^_;TI5hxr>qJfKYQEW0g6XD=?kxtmXHNit5nvb24KA1(vh9 zd4s-LYb35JM8gs=f?_RRA$E!6t)1B)AfYu^?uTzmc!`_CMz?lrybP|0|`gcf9?tXoDmSOU09O63Q1bUaeM;8Cl458t;fDFTxrX4brn)*y6 z5Z5<3(EWsDQ#GUfs*(K%`byGKJ>%{>%eO`(bJYvN5JC%RN| zq%sZ7ggJAAZta4-UeuU&#$KbOkRMs}kXnP4RHl!e;plc~8L9P)LDMBy6Jo`3s~CC& zR5tVMEBsPF-ux6s2@7TIf@aaHIB~&0?_Eyw76VPrKLpYW-`WmF&_Y@w1cu!}<@5Ww zV-fHX2YirXE)5O7WRtP2(?5lGhZx5H%hhuyy1Z+rmiYs2YTn}wSjc`Mb!8Knnqdx^ zF|$x5w~`2~2xv_EwEfR*UbDEggU?L(;l*9IZl>r)r@77yz&YBiH+I{P`}=5@c8_h} zrE*ZoVm3?NUN`}oHIvER&h%-NpE#R=Sz{6eo406*=N`Lxr&AJ}cV(x|>)S09?224t zuzRIHI0Il!|Y!RsIzBtgA~*)$=bl~3gI1`*v2`} z09rdIJT1vd<2e*xw(YO4pn11mr-&VP6>K$Whg+<>{-307Z=ShTk1U6CpC#yMPTbgn z<{K4R{9{C0?YQpulLVuE!>QvTcb$5|N>7F!#hAw;h(|E1L)raF8J0fR3+P|V7;qkX z{#I=wG9LfgnKc0q}RSmdkFF=}}=X zBRVsQ&xT0q_hTtMvgj2x1FH$6I`<6}L{gb?Yk)%9l}W3N7peKY6h~+)G-VQ+lB;Cc zCtK0(BOY7bGK$=QBf&MoKOm6?jB#O7ASMkp2ZF+q?p{MoHbBM3dq0vyeLjm)AS&Nd zoDOKoPY!~X1iQPp92JcuTGEY4JN)FdWMmG=p>Fy=aRuv|@OnmCnqAeiesHu$B2vBu z3O3$*CkZNZaO{zqiO|9{>HHGb)^4Cbvub2B5G0IGy`dQyKpb-q%h-8hpSCK;Fw`pN zh9fomi3Xo!4RKgA5V^7D2P6OcJ@HFxTVR>+ez-?#2UZiWH5Q8*hMt)5s&! zSZQr3JGxMski|oUjhf|P!>V0si5$WU5U#Pvr8IEo^9Wc(i*;>_7<@;o(X>xgU4MO$VIm$4Ywo$J+gQk<#7?M?OEN+m&pgfN{yb@_bxngEuBVt zWK98YNc7C_L)&QJkmvFNJNsl5E_zLWN<(>1I})01l0NxslmhPtKazr=V$!pYzyS|i zpYUe2%6RigVg9Ws@aORqxl|NJu{Dl%dg?7Lo9IbnKarkwtG% zf6{E?4~fIcxHp1>xeW!+cJPMg;*>~Dfj+@rw_l#}eX#4pkwsaWz?I4Pe6VW{H9)0$ z3GBKX9OZ_L%3l(ngxsm}L3*tQfn#s8IQAB!{rQM+>?4fet?;4-#o$nBsZt8l+|e1+ z-fpj5*^3*M^Mf=7;eu~TH#gk=J(t99FUq5)ekU{T#;{*>fAbSw(S2qLaF!Pj1?*dH z31b)c$DKb6@kq_*G?2h*MvC#%fQcnzS?JInPY?GR->^vcH0eYC3 z+d-XY$D1*WO)!pW6jM)yaZ7o)qSzsND6;5TvlJh-*8lk%boM289hFp$I*{mVIq(#@ zQ82{u_BuG9@zxca1v5+2v#!vr!+Oj!Me&Om!)Zmw+60p-1@=z&(>i4wou1l^tZdMK z!7z>VrXCI}0{h$c2y3SNM&)Dbjxcg&*bIgO(##g@+eM%G8hYW6&b+{h;vIJ{M)Ie+ zOl~G|YL7ALKKCQFyHzC2jcme1XgiAF+J5^l;!I`6Cxi7T2G+0(OEqeYu}0D#a2olr z*%sEdJhib@3iv0EJQh-r6P+(E$?@u#6Y$+u0=T3*3=+&daISDzw(eZ*gmpsQn4u;R zJ@e$o48EU>S)x&O4aDHNm8Js_JmacB}6$34893DSZQD@5bUY z!_Cv8tF{Tah;sVAT4>Rl!|m>fGen>ZYeZW*@LXriW+elbQ%WzNrTOx2lGct9s_byS z{=`BwSczM$IDf&pO^9RgV}I^okg7-y+^wzUB7kK2thhfS9Ni$wiwhnylR$whJE6ep z79=PSYE1pR&%Iumy|?gWcFl+nJeLjdQZt8x|Q-&NNc+4R;i4l(@Y2-y#c!u=s=s zolF%}D`f$G$Prny*)7->NE4OcPP|J)s{0Ai z1k<60hF-_hq^TYpch?Btogc=&{|8iveSdA`f!vF%FDR}3xM8i0-24Hu=N=*I1k`l) zJLh1dJV$o6wK<0%emD;5t9eEDd#7s>fa+9ca=1tC1#{tdM)DU69W%>tXxL)VnYjGLzcFB@#-IZDEk42pDGgivdhIAA1BzrGjRatwN#ecbL?23e zOMY__TG2`8YG=r5{K(Gx1WD& z5p_S0S2MHgKcyvVEuf({h;qKU-n1ACb+s6ZYA3NsuD42Z&Etr}iBtPSSC_B`A^sG_ zQdA;FTJ6Au47-+vL?F8;9!?rHGP3wFz&=Urg3ioShU#@n#)7`U6!v=+Mpb6n0+v)L ztd=F9{WZ#hTSUrGt}*_AXwu{My1h6~2K5?Z6c3bqf;*-K(|Af|5;X^9N>8r$Rq4i#ju4o7GRUr^wtTmh#8p zN8Gr<;cQ1bOK7G%LcKb=)OrN87xPFf2dY}I1c4evjQDu?;i2aHy5R)bz87f|Ds%fL z6f56-6RM5be~q@|3HO^zOhf+ekv^Xl`_o|$=O&fLz-oH=vm3|l@P*yyyv zdRQ@kLs4UsgGXtp%aX&h>E-ysyQhsb-%P3hdvBMkQY=f*vNqI@e z1{qAhzH!|yFFMEI%=vKS$*M!KDwuMfX`Es58k$uq3`&b(9;MOHV(!M?&>Gg0$wSM8 z3D_S(%*@c*Z$nFm>yW5&W5O{!ewXlM&;LqcXd#RdCz2YDRbA(pk-d%?x!ahL2_E8x zeL~~TmGgI4eqcEmk^RwlE(1@(yW5Q>Nk8sF%_p|^RY|-NfTpdjT&d%J@l=1-kT>f- zfB8_cxBNcFky)^LmT{D{0gl`Nxp;V;b_`4$E^(hVus`EXJ}*?Wkvp0T>+@;ulNf)m4YyZMuf@!SM(>AYsH8aDB%0-BAEETjN|))ts@phB`O^;L8*VO z*fkC--d>)pS`BXm-#6~~zFTx=nZ5p&0^jF`(jQek6(;-e|5;%i6PhoKF`=*fZx`m% z|A&Qf%xJza#*BWo|G(QZzkG=9%5$aaMqVVJ%$RCgGD16LS`zU}6eb+jV~xm3jA^GBQ%GOQ*nx2L!tGR+?(l|BYHT`{54L2i+JCLNi1jGb zrwA~fd6pA9H0)p;ujv?1M)ZL|Wv6yOjOX_H>BGw}$iDN+KYi?P{uOz7zduP1_hV7~ zWI5c&byn&O6>}yg*}?;b^Vnet-QMKilu@}oGqEV+ipUh!TV3-9I&T+OX(8e&|J{k$ z_QO@aP3+`pK45Y(++M}__SbhA?it^)GuC04$C(=T+RA4B9v2dY`{Sudr8apRD%Fr~ zI3|{k=$J6J^cEc&+KFM+0k&Z}JT*1iv@QN!g+UFMD}G@lgykJ4gPI|JBybk+qM%1~>Upp!Sh9-!S1+`gJ`ky3Zj*=T5 zQeSdvIBFo%O5qJA!F9Z=mo}k_*Vn9)`5Owdm7&C{-Xz2XhTm0z8-uL|I71q`}zXw zyDsG%k(J3dEVP#p#-=X3;RQ7aDkOZgBV7O15kkW2XKRd|Lc?!W=!rDUHZ8pVn9zAU z65j4a)dO?x=Ol?ILtZo*j@Hil&NanRf0m=O2e2T7J`t9I?F{HkGmK^-Rv89DY3OoJ zY#zTnZ$Svx2^NH~Deziq1UFj=Zg#3BtDcMcH16}ItMj{2Or6*I(={qhax6y+^Glx63S9~RY>6W6TlH~sYW7mDLPWGu4+ztzn7i2s>fm6&oTY1 zBab9Q2PDfVl|>RTIeQ)t=^>+Qiht^4hZy3Ix}FD?qJ$RG3W$q zlM1U=nf9bRahfHgn%&&3C?RDY-=1_g-;iY!(j_OcdjVxKMD*%!FjjgdYm-}wkmSDk z=PKvn+~UTR6 zOMA34D`z%h*Qrec#|C_xX0ICa5RWiqJ~c~^7B*APICC_}h6qN-VU^r13eH?umZ;ia z?_ax~A}h3sQ09;GzBXM}QZ`l;StYNpC^2|@MJX^rykRi$Jk*$#>IV1Hpy!?))=NxT zwTSmiy|g6F=NOpAf%e2orj+8c`;_`L8vQTCQx73+dOZi;w!z`hUq^7ss$Fb-u?4R; zpi~{0VQqP${*QXWR6qTTu|%r4G;&0i8PHv5Ukl)Z627SawQ@GfW`*`qrR2!L|B;Fm z=jCZMRW@6S^%bqERAxpjsuB}1UUhGj66@kwoF_M_W{p*wdhu27^Qt-Y1fzN_%Cl0| zi>a@2o^q3GqVSDJIJ88gbFDR1eWrejUtAsac1LOlSG_Lb&#Ctp&WN<%Id#r&74mj0 zIM-K=M~?3~erMEsE^_?N2=--P;!{LNCs5HAek0zU_1=B;RoMtv7`UE5w5S(kPRmwX zq1Ibrd2xL;6<=N(quKNU)$)a@B|Jk}OWjgSu0B6tldLZ5yTi)C1m?E#Ca)QEz^$_qA0A-*dSA2C6@0`P*YYC!=dbO4!zp`9Ix?3w8N* z#l~IN>wcW}fP3286rX>`BC3^?O~iCrW8U*I?=hC7bI|xBPQw4X1`+2^aQ%a%(t#cd z)~OZEi4ZSKA#2^u+SH~m+?&BlJsP9BEfe#@WV{3@_P$?dI>! z*-^E_t6!xu9h4eTDsAM;=>oD;a3wNpD;j{5t&Os=+o>o~7BoSN{NV&DC)eAsO=NDc zIC@RHiEkQDr9we-Rw@lWR%ZU&E9!#qn1w^S=HFjfSupaq~ z;f#CFib@)A#ynnWx~ZZOCqusu!0~aND*bGV2YZ% zmD_0>kG79bsrQyG39lXCsIGlHv|?f0|N4kpfOBeTlhMt}En0Px6@bWBa3zITRyv6| zs3Kwenb$%5o7?cj{hPZ<%n)2x4Dr9AII<_&bCeKS<>Fi!)BGD2Xg&3wPk6s#2C^y` z>3g4OaU){RBgY4MUrmD|yy15eC3pu_@6>!&8^-$+aIF~;w-lCW7j>(2y`%omw5mmY z->nqa+gifFyZRFDo2j>$S6dDI%!aAouCC@HPr0f=d-m!hjlS97O}5BsitSf4=y(vQ z4Fcu5hCR1lp3^6_k&@)+=!qfD-8HlT4e{xm~|3lNC|B+_3Qjh zpl1$83DWb6ZnlegJL9Rv|6ZI-C3+a+d*Q6FKHr&h`z*VCtwon)R&6+nVcxfbR6dpPBqDhrTI@?tBW$?y3PAT zg(g$Ks?RK`VA4Oz?A?mVv8eaOP1t6U@CRhFAhW!m>nbOl0bUo-XTdP` zrEZ_`FN7z&hmjAMfO#f+hiA}nJP;2dcs;zbD&Ih`YhvUt)T0vIT-nDFd2~9jU+rG@ zY`zgD?{?konc9$S4t^=|Q%a+^ICOdD2&|7&c>Imq@?Lp{%QNgNUcIs$cF}YJ`zc}j zs%@t5xC8B|`spLmvdjhM|HA37G4t2g9tyAje?)5jo9EmG?W+-EsoT~WW`&XC5Y8^6k)+l*| zmvE#U#B0~P>b+I}%98uLWy28c~ZPCnjLcJ6If2!WnGf7rGny(Am8lB0| zvrMi|={Fcr$*KqQ6;F7NX)q{9_z~A9cQJRpmEpGJ7m)X5ztB{+sW_Ucc)f)m-wx<0 zhU#a9A{;f}m#49l2Upbl^pa@ive!?k&wTMX?@6q@oXOo?$$K>3zDxDkq|?|zY$bN&md)&hv;~S*G~j2~<34;SaBJFpnN5wR(P7+L+cYm^ z|NIuVM2l@pL>{q>d-_|+2Z{D!{^cG5UNOR+=;@Ky*b{yCr8(5gAr?=rjB<-58M*6@ zC8R!`f_Z*CWG^Feo^Epu5)2&Ay-ll+&0N=lYEdS-0p;k?NiQF)gfoku^zy;~&>b$1 z2jz#*b=+{`^9QASqBkD}6?3$`f50B!y??-QDR^|>0t5Pb0O2F3m7x&4VGnt_1a^ir zmU|~3VqWgxzKLZfH;=H$;frTXSzf8dnGV;QeNBQTdW^)ph!^+2vlSNv^V8zo=Q$!J zK%Yco+6joyh*j-i{Z=%P9FLwODkH(qi*p|)LB#vm>FHozKnI;9jNG#RR65XyJRNl7 zc64CR@&-gueltW6olFG1#8bx$=7~UiqS+#XUqAF3L~#8JlZk*_a)(*g;4X5TxG-=E ztIOu9Lj0`O7)DZy+9A){7FgO<7`EpjzjE2mFO?zv8hPtt?s?={74ns3KXqwkQEoM3 z3~svwZoAZR+qulk$B$p$8Ce|pMC8)QCwXUZ^`XsVV>``{!-mf1L6brB0NM@uhc5ARb?OeZ?4aR4Y0sT!*OGid)Z0 z!vwgTZc~>kiv}ylTDRfORGe#;D@(L2!Sy_E%DUW=sAwWcB~SrPsp68<%*~uGY(`zt z`}kaLgwC%HZx}vLJjxdN{jw&r7C1*wzUIyKZ@i%@))aRucG_6wF!h^P7!>Q=6(ByGiSym6e#db66+!%Qqqhcl6hb`=c}0iC;99rfP+WNK}N zWats^g{b#&y}}pX@Npt~Uz@Ewx~&+Fk<%pHYk9ch1l1?jW-Gz<#-ggXJJ>sFMpf)M zrEZZweB&@rqOGmy#3TEXtw0%1k28K`5H-eIX;m*;Un>S1i9}}B)w+_Jneq2bi`*lR z^BPR5_(!qS%pZ8e-uy<>Yns0}oEAm2-)@bCsN^y>B~kB^d0Ky(PF{baIk)~4ktA}< zXkp%IqD^e>&b~|>*J+FTLnVSnMg@8E zl-Nb0Lg;FoAZ>*-#YH?`*Gqiy8=DF1jrm_MQ}kdr8v6POW!w|J&i0fj82z00z2w>OoYDCtON`nm(Sham6h?#3Rt5n>lXN{O6m}M5+UAxjDzWI8cE)EF8tU` zxX{0>q;a9YxTJw9+|BvZew$fzOmCYZB>K)tj1QmhIh6-GTG7DAlQK?&WcOyCF9vNbq4 z5JyXf%eglh((u|pFhUfsT=7CL#Hx_G7?xF=i?g|p>(G3yo2VJ6SvAbkj{J14E*i78 za>9j#ChgF3QSV3EKqFYFn8A5xgC=~Cv?_;SWduonp%Ri7KJm=jxpU3R_5Wrg6JNU9 zou;~FLELx~k?4bH!e3iz(}=&mR5J&RTB&9dT6;*!*9b&-roETg=;|@oY%J9zL<5v+ zZb^m)+5e&3$E;M^M1b8T$;|yhBJ_AX^!p@tDqxkX_9s#wNv3Kk4_PMQieng^rmAiZ z(Xf~}eZFNEj7Q{_hI{lDf#X^oBilqP*f;~~H@BbyyADkS0m``ux-^P(3C`8>GHR6u_!bY(g&5hzmE$Q_YZPWsi63Ff& z(zd52;~XVDjbb?E7S1ftW`-X+oD(y{p#W!x!zqwW3+Ky|agLEbKQqWJoZ~>787@`y zqxtB}3~FW7NHAN&*E61A9DHVu5tbH62H;i^S);l=eB++>Ri&CSE(6J)XsHc$zG`4| zyTv)Y`4y7G5!|9IgGnUny%_Npvr) z`slP+=sUt5_0YXqkShK;+J)Zyrugx@lKy3-Od0COxVOU?7Or7_6t(FDm&z~=g96wU zaesMfW0D`u8;7CfBgxQQT{7n>w-*vvEkfgkA!~yaR-lQTF3HUJw*{G1KQXzy0xt6B z-W56WI8QCyhe4iS@~8oBl*eQPhC9@w=+_0xV_!xIbN9*%l2xlp8+k*P>{gZXOx@#& z&_1p!F3cp}Hzn@RELB}C#|-v7F7k^%%AKl^5 z_*nUiCcW1P-nl`B?d ziPrvE#G;1%YFAB2+h$pc#TAY0DjKtYxC>P13g)Cs zjh9*ACrTPvME8j$TM(L2g4)4tCK}u;E=E_T8B3Zan2Tk;#(i5jSYFF1x+VuU6poVlGB`O$NZg7XKui}#(Qxf_VS zXZ~#H^fc3fww!E(FN-Z5I(f^fnL=C6c<7-->POv5?j?TDV#n|Hz6M_%J+DsE zkdpBFgG%kUt4lDMRffsDK{>tRitvUQrzVQqh$zD3vC!vv4cgd;Z`^Jq>MuTz{G6~h zK~H0^Xn93-!sk`N%#3rPT-`SdJ(LXXUbL6B)tzIbfR5cpGK);-3OhN6*M8UbG{qHITVa0p z!N-!$J^58UZ-^38){F7V%_R9qLRa>nPMrMU=TiQ9nRlgWZML#gt^cTNI8gG6ywscUVV}ZZETBN_gzp2_98U2I>{_WMG`QSV!#5RrEi5XZ?&X8r$yDwpJ`(#C<~k@Mrgxa06n zVqGyg)=5j|heT+&oTB6xHyQ`iD|v;eeo>}kC5;mg z9fX=ng8{Y3RDi-$~oyB=|o|kbGp&fCoG5X(959n5& zlRK^aQrurPyMfo{d#p8}n;J;_2&BDgc4OS1F&pDvaZXhwL?Zk(@r9%k^sMc%6CxckZLzS(8EHU2-znTbNo;6p3_j&*A` z%;0`8w)A<3jKvOyZ(KgRA&zAL8D&e5k3V~MB6L?Gb6MBXh(B-6kpuI+dDp7DL&HH= zp2Dn&n!R@G=2O0@<(fo^9a=*C>#I9O-{Bh{GAgyO+pD#4jeCc6?BCa~9;D|N}m5qAZ6sFbXj$nj)B$IL#{PUdEbECybJxg`;I(5-&=k_215^Me{wM%ND@`V zM{R%dnaLy>fg~#-$-5^=vJTP{NmfFVdl3s;aU|dNXICO3P9V}eTJO)OjvU!{u{Yy~ zuT7RLK>e1V-NwO4i*DmE=a=b9&i_P+b6(>De#HIo!uX9SXHs zc-`}_7*lj!BXt&EbRK*W8OEV>pJRs1yfyGeuRBV*)lsi_Ywix>=k@g_&IjVDHRIGQ zp88%EkW8&9(*R0cTcWX*zi=;sSZ21HW*Arze_5rT82b$r67ha#EMa8(Z{G!lL_^PU zs;Woo{c9zDN~Uq$ItJ?Sx>ZESVqVf?TlH`fxh-o|mOBAjJjdYqc7)$m6nAFdDmBC_`tnX>V}S7bHE zb?YcKU-^ZEH=aaSvFgr5)pjz=%pJ*hL{Q%ashNkF$@Ws;BTSMPC8@+Fn6zujrJ+KT0(#RLx1-Yp?_;4*oi_XN_=C zv7&3}9ve|)>G4nM$Fa)p%PPr7Q3n_6PVdfoFGMIB$ zf173A6W9W3p-ak zWe$`(Q0YLmfpiUkg92j??NU|B~XCPe)AbFV!EO(&Nfocb89H?_3=0JmibR&S| zO)jw6ffff^9cXi)!+}l*x(%dz0VLn-0=GKQ@4%n~LkfhGr<9cVF-ZUvCM%>{Ni z(CI+81HBGxc3`Um{RYy50Fn>6z+neQ92j*V>%f=;;|>(rxqZ3>K=M-aWn>YFYRYI4 zpwfYA2WlLsb0B6Q-2fnYqYIRYBhocH(BeRA5a>ouivz6&(ro~eceub#2f7{Tbzrjt zF&poh1_v4qq???t#er4_+8pR`pwoeF2YMaY?7&tB`VFK9op0EI5eG&c$T~3Qz_e*@1KkevI5@2ihFyaG=wHZU=fD*zCYo2l@@92c2)&fe{Br9mqN`=D@fEMO^01 z{?|wJK>0y?puFg=`~&6xN@&cVRxv8whjca5ME@x3cet{x<)!km-F4>OI87!~!j-+%=DlHBk$E?loA<}l#<;~9uH0H`-kYY4 z;*GUuTUK1xU(WHO@_gCl*^6F^@-*-IX`SZnY%uTj)7s42U1#2n(^|~iTW#JOrZwRO zYr~2g!VM+7+FQ$uR>;6wg9bQSopeg>eQ)C6qLL$n zTkW)v$DE0o?b-a)aSPSM@WBV6AeDVT@211Y?^rK!KGxXirakGVWA0LTcG>pB$GOyt z@Hihqa@FjoEqHWNaIb=+7Cbg7*bW5VZ^1GY&@UO0+nwQsQyje6pH@D zqplY25%X3;{t@51|85GZuY=+Azs#GWh|NSSLW3;kpA@m7Hi&rm0!3`!sw!vFvD3xv zuLCRJvQ)CA>kc4UEJ85Anv{oSlkX5w;Uz7Q_B0V)j{0Z ze`9fnUEJo=#eMGmLELLNGN26F0aJ#pr;8h@3gX`XK8xGr;*Os#?)8X9t#SYSFDx6#EdJsk~~QFCkNMQ^8Uvt8L7Z45M$Ap86Ww3gVM z$1NDtzpwP7-zlMijgH$Hd-xLTs%JHfLqJ zZSFY{d*#vQ4adT zotzi9UsYPPe8wJ|LDew_&vkBV^!BUDQ2%=t!}fd9bLm?B*{Z>Fau%p5JP2gfS^J+B zI4=m~>PAMzn}eN#N6!2B-g&ywihJdtZh7Fwz`>WEn%fU))`rg(i(vWkXwv_Cy18rmH(wTHW? z#Tm$Ll(ymw(UBV#U``=7g}uj-+aS)U2ngFFMcc9`^w1FBE_CE3Cp|O_7=4b|+kZgp zu@hpC@U7g%mXp|{fW_+1ZxQ>9U3Jke9qk+a=tfZ0PM#?N4T2+$)&y@_A>n0xM+h6~ zXN(mk{cn~_=YvOrroa^J9cS>ajB~$5@#DVfjX7(kaSzLpqZp9Hj^yaHWN61l(=VG^ z!-4Zf(>G4F34iqtyA*@v%%?bXvh(M7rjGOHp_Q1zHH?W6HxcdF%uaKLV;G3#A|(2! zfNAy9H-4~@@sE8bh;n*b90zNydmnE3d4=maU0A$gqG_hA%ZvS@gVT&IV*V#u5GH%+ zc~IK&bNx5DdFkME;{=??+dch7_h6x0zfa-bzR04_i%3^S4%h2w`Ia|L!Qga#G0rzQ zX9>>K8dJQ5#@3YO{~V-$M?QV2*VRBv$PDk=PZg^`oZM23M?;f}5v?e;0{kU`htrBb zWkp3Cp)G6M{a2sQK^Fq>_E%?MMru* zDY~QoS>s8?tz@%57bj}whj^vSSep-q_5<>!!$+(j;SJC-D>3VkB@vrYI>CzEYFRbQJ-J zQUb_!pvZzbF1|x0jBV^fNPu;+F*fC${V~Ui^qDd}AOEZiHp)e4#!Xe3Hdw7nF~ zh6aO9f-_g9u1+gOdb5E{xAP4FSpNFW*CkO}_T?v4CM7JCsRPf+Wm1OOGFK*5Nu7l8 z?g5qGT^0P`F`AI;9(2>#U#Xicn|wUsbn({yp%8D#;ssli288VA=^JlM&{ewp-A0w# zaH~o*0-6vjjMsAuCE1`05?Qge7Y4 zTE^oJmWo3iJEmc_!t(aMmG4UUb`_gL(L`t{zI40Hl|^b77nPuh%P+;R=%eJx@!!fd$9ke!hTy;#jvZlvMIK7n>HP;uzf|SJ8?-dC^q-YE^uWYi~6@; zkT3ICw01laPVV8hVr=zxl^Q!9%Q%O!F><9H3~67>1k_g=nXcxViVAfn3XH2LJ{3}LVLf0*nXIv zLnyC0Q5Yk5|AvpMLiM#z)cZGm)K!QFuj*@GtPdw2qC)Z2dt5hIg$%_+h4QG>rIYKW z-1GGsQN1p%UHtZvi|LfNmqd85(Z49l$ghLaqv7N*^kX9|swcdX_Xkg<@~|VswmG0X zJ`C$bi78`Gx|cwarv@s6Ok&UMw?{R)M8k#A)r{xl(WN}Ix9+nMuX&1-BX|H~cb4E~ zENQC_A8Op@H(Kd99tmh+MrP$xJPuX164CF|jyb;6o~qJyTdsm@YmId^exuXxn%*~x zLw8D;lLkrQTs61|h$#~D7yw^Cfuz@VS&_jO;m+pt7nC|4>My6R@Fcp}Bz7u_X)K~( zY{9caY!mwgG9}kL9T96lbkny#_pV6$lT)J8)7q{_LNDUd!nyaD?$B<>G#n|kWewhJ zOC2UZvx3Cj+MvQ@x|)#YV7?|@3Kz|jP2@`hG^^vhw4RLR)f7Dl%8`^kA9n(c#XY@t zYQx=oIPUF3^#~^69%&$PA?^+B$Nm=U zr+r-2rbV|*W}kRO?C6un*iu+ZOkJKGfz6ljT*QQ=in2WuNG!GABceJ>DMV_TCG$uc zg(M&t704|w#85hc4_*1mxc4wjMLDl2 zrVlkT(ZT1){UdXywLO&gv(Bp>puBH%-p0VY>yr$d)pu$c1Lv|EX=k#KP(vBABTm-- zCfxowJ7mi(T0wTp=e*W~++3;4E=3FCx z$=UHBl|cR$;E_jv!lUGdN1Nxf<7p9|HwSp+$>ULS!!!Ix;ZZ+l?-_CJBTpWWk{cfJ z=VvdE4&Afu0Umksc$D1mNLX`rJTc*^4e-d5$D`ziM}nNQi|K+?T)IpJ#;Ek`|-4Il1&HGt{A{c}XKEKXlr;AV%RqR_A zQu9n-HD21G5r%+vxbnh?e^I$UU(RRTHkdfEHFMC~g)36jv)ukc3KZl&O6 z8v#M8c>A8Fe0WEx&GQ_G{9>LDztU_cP#Lw_g4n*mBIgNWx%1`;;xC;yPZ0a#7CBE48RyLtM4j{I3F4)g zMa~n%_nkLS5dY}Bd4iaM_caLO#*2lkKoI`}?`sgm8!WaXh+kY}rN|RRoAc%gVh-Lj z5XAm^C7je@e*{7NIcZKHh>sEQ#}mZU(K8c-ze#6!@gut&r7a~YMkJahhlL2^*(Voa z(|n7d6U{=RqzkK@9QL~lEuKzc3-NkfSl#5XdKad1(6Dm@#?zuqqeUD7G;l_TW5ATRJ)HDiDumrvYiVmHhqbyeDLob9z1xME{*-U(RTz_!l2`Cd7~8c*d@=9PXLkCR z7IRp}RO2r!@iOz|`0NbSpK!3TDupqR;^bA{53mM>*Z$QZb`P&kUGauk>f6g{UDhP+ zF#OM!Yg7E6IWC1=I?H0-@{Gmg!DMrUc%}Vmg%o3h-W=1yYm1*Gx`bX% zAg|A90+&pXdjtMuZ>>-*Voy+u=v!x*$hLKqB95b?|88?ojk^yhgwmh?m_~De9-CO9 zJtsasfQDl5kWOsBCXdKG+4vT4*tVLjbg6STJ;g=s~55sP~2AM>ot(+w7{-51Dm=5*=vVYTwyE}H-_ir;;Jm! zpWG!YBVB6!IgfA$lx(C764(9g+e&CHD=m%QObpsO=Iuk>G%uv2m_=ZA1@AFs63p=v z5)`}=CnYX3kf{TJzuJ5~NLb z)0ItaTPR!WnaieSEht+VPKmP&WXhed0U&9O`MP3&Z0|4CZc11vTPdEC%ce}TyY|fC zyoNbM2diy_1kLko!nBOLb{zyLM4$6(r6b6GfXWan`yQw9ZynE@>{(bN$ZebQQZs%-1yv z$gcT?4O^UrGHu3la+#E2_WQf7Ood^4q7=OI^kvez84 z;cUUFSp;VXPE89qTXCvjIHiUto`(}}P5nsKpMd#g8IjKnP<3?^g_wgu%>0BTxlp8E z$Pou96jM+l=Sr+6rm*dpaxR#RnL2L3S~mK{Yhosm4(_bFGH>Ts3Nl0@kJ=X1*GoCsw0@&y%WAhc~E3BhKuNtS*@F z##yLF37(UyA*9&{cFrj}7~|-~@fc3P=-+I-h0F$w@oJhoxZJISODvR#!{D{6q8R(h zxwOCB3EY*q+Xp1?r2CKFql(#C3QrO_#>I(-{rveQPq-%ht-==L3L1sOBA3jX@UrST z_Oj|t=fGaHuR5okhWa!O<#)|ux5&%8+C~#zS#-^x3+naB>xfIU!Bwb%_oQoxqgKzg z3d!vXw3m9CU{E8bVTGu_P26f`Aj{b>?{*3;>;wi<65)kU+PtS1xu2jr#Ok`ila473 z+86*Zv=~UY0@#N zC)t(>uy_JgJ3?x3Qjkgm>1sfBE9(m{o#8ALL|XMH7ev`+AKb2WGA$+*(fORiQNN+A zo@Z@09H7ad3JHE5Hs6(gTzen?+~|!#G7EG_^kSl~6?X_>t`2tDj%#=V|>MxIBCXx)N7B8Qy(w2eSMG_fza)@MA-< z+P%E5S9{NuZ*duB{$Yx@7^Aw_y{mly`*l{2FSF_7mgVYr`%~0|{hF)CrwGQ7ZoGXL z&zT?MIdjgLts)UVs5K}}ylNLOkMaH{M}kL2F3BWT7so<7p~RIlyye#&4W3?onK#UT z$+^Q_MVDVl@%{q?db=>7H!1^qJFk5EC7H#md3|XO(e?WLvX>8HpMOs=c85YcBegGv z*IdQu%%4%fL0gZUetd2%jQy8R9Q(m&ozIY)&5(O1RV>hO?7=h8uy%g|4fkt<7hD2i zrp8BKi-vXe11iyd5Y{E#2gx2{E#VbCoCO-z#gdb0SlMPv@0jD>sC0Y_&zlpIan-;_ z_6(cx<%gFkJ8AQ&BC#H{C?-n{KxLs2-3swCy@2fJtq_V{C`2=!lMA7Ivi`P71L^*# zU&k;S3~yKyAs^pP!?<@#21?f&2BY@psUwFUx~g!$oSd^v`jJj9@%Lq zl`*G=v88=FAJvWd$@l7)rgaP}D$`|sMeEXpt^hk{^q%3Uk;zo2jpSNmd)qFZaB+Z{ zR=hLP{#C8&=Y3Qs#{*inCzkAkZ;Q15e#(kBy5(HSh*ATFi~U(2(5LX)>juRc z{2uYeZ|;Dzyy|82g??38z#mR8hxrQf7zV+FM8e5mRvbbcVZD*bNJxY#WE~)T>ANJH zunU2h&UC_wZ@cM`Tjr=+J>VXL!%*6jutMv^ytJ<>tDq`hpel!>Wi?Zle_$dvC-_*w z-O?`W*o;Y{$W6khY~y>U6y*je=^vZmW)xU+>s{5*1Kco`JcGqMk0RBhmWpLEs-4$! zNW_&%tB%lxCZ94sL#dj85}Ax@9SgZ0PxYxElK#fGj?!c@P8Q;!ft%jii!YY>#38N^ zKN7E6zPm2&&)V(J`x(-#O1j*$=OvkLl~?xVzdEG_tJYZydM7@l_ifj9=W8YTYlM-= z@Wh1lQ@rC|eU=)i#XKXO_|kO~MYq)=o;qR$d>mP)rbrCEi+Gd%&sDJnsagN(^*l9b zwK->^HoT**#Q<8>1dB6n?)3CEB$OfcoGstwbl0ZBQarm=Y;! z_Ae$%#D(s~&C+&@ES3(2cSI05T%Sf!WHAlO!IIr@%ocgPS!37CtAA;V%;i+d*7iw?%nGX_J?p#9Gn)>e z{kiF%&=sv9CC#s>e5>Z$yA&jfh+TGGt?wlUw@eT(WS_*9>C&RZ zXI8oGC~|ROr1~l0zG@si_bR5}x0y7Gg0lI?fRB>O?caJj71!^PFb=M5t9+RrtzWDb zy@tQ9i9pr|Nf0?b2DEsFacFwdoP@+(KCi3XQ1rw=fv?Sy zbV>Ol@(<$XEJg7rx5D+68PdL1L)s@L)KAh8nz@3Jsojo6-7@OH zxPeWjmT*g*1C0hYwK!j|1O0%=rN=*kqUkPdS=chvesv=gWM@S5Vf;h;fb@%?nTuI{ zk;#rQOES=?K^7OX*{fG!YB}L$W7`jYl-+AQv_H02Te2FYZgeT7ZN;_ngP3I)plUEz z$lZ4)Qx(J9#2>~47MjU3dZW{4bZC3?jJ8^t;!ltnBSa6m-oNr47#`&j3~`sTrbIgN zdZF?9=`(JN9NDg@;q<+YB;YcZ74H#>*Ncm149H&-`_(*o^wLBrW1+{bl$oHERLqqU zZN{!bDYwT`GagQ)mOQLdMyJo}xM=#U-qV#bR{P?lQu0!O7Vp$$-@zE*0~b%9bzMOf zx`LxDZdbT69X8cx*o&#}w5H99B-(e4k=}&d48fNZA=6ldn0W0We&lfp!&92OGudZs zFg_?dH*C8ynT~OiS9M7YipduS%n<#{Fnd{JwaU6nntF)R33o$ww;IUn8U_`Ml=wu# zUuMW@OeVaF3i{CzYFDq~aGOHF>nnpzW3C-ELQ1PB469)Zzz7->SvgHz^ycu~wpyLZ zi=}P?8zo4xDkyi@(r+pHjS}{h8rV{1psxf#VMi=V*JfqmZ5cGMX{&**5f?ZLAZEV{ z9CLvsl#m?8U0}KSwp6Ov3{gOKe4GsX&X)w^&;sRR%G+mAJHGq)TtuwHt#d7J1IbXN?*5Q2p?pr4y`}y@D zn3GSuOj{+rCuwUe&~l>V4$&OtLXZ@sLz!hVB{?frKfa{*1aTh{DbvseS{qVv9Ovw^J0NS(7`AR_u zg%=svQZ4jcV{pDk_bujpt?pX`Ae;7VQfXEb*rYO~kEs=7uF2c}geG@0$7v^(i6$>q z?Kx{Zp~;7+!K5bdu<~{F1A->s>OzJcD1u?2$+b#OGoCDSL2G`UqK(`A9) zz_`A-fk4X+D+<>_06~+F;N(LQMPyi%80Z1`Jd3_Hg}wU9-nCP7L^%MAqN~2R9;Eo zq$V%3@^!@kL6g_HkR}H@1$Y4QgeEU@O=86VR^M0WWr^@nT%0)ZPh8#j*CmFrsT-Kp5pNI)-Kw-YDhQ zi|kBKu-P($04M{5J66FO!h?&0!PM0dy(YdU?mZCS{&WcQmdPp%mOhTPOPG%_F(+PM zi!$OxY6F>80K%YdHUsJ|kTRz#3o2-NvWHT-_5oF*DBLk5P6s*c+Bbd?ha^VpUx&+? zl*`Qfpk4ruh3j8QWIjJNUi)ZxeeMe;R;-_MJW&Pjdl<3elz3*w2N5iqO!4^2cP`A# zKK~Mb)?X(=V+*`luf*AC)gI@Bz~xQ5tLSm>POA8PGW61-%)GyTF%m9)9Y+)Ox={Jn z;@5@WSNsa%d9pmZ>;O@*G{#}YlUL4)Qzp#MosV^GEQ5x!3%$9|1OiERf7|2jJ4+I^ z8TH(P%-r4KHE+^3$hYPRxH@aGylBoE3=Tf(yEdyDu!RGjmhGV%A5|GQlxXFyq7hoM zuzDjn-ELQvyQ&H2a}2=nx!0+D5YVdd!m1#efLfZ7hT9tMrMu;Hya8RgRpNM-3kA~i z8fysPg#tO0%fUdVYy4q-8>lq&!RYE~QF7K0Kzd21B!b~wrSYpWsUt^TXridG5b#k%)1%x~P-9}lL z*icB2#}v}WG1!zwA^>uty2_V* zsTG8~QYr{q00wrEDZFGTi}**7dYyCo593D>^87v$Uu-wPp=Ccb5TZ} zuT;h2rV_qv|22hyXah_G(Kas$@7G%7BwPzGx*G$v*h?9s6VOjXhB@zd8cHz~+c9By z;)2C428F`}>Ib%1#b~&z-wBm#^I>*w`?4?r49d-53xDH#9Iqs*(#DoZE^wSjfmv~j z3cLJ4(u#>-Q@Sg%4VIs4Ted+8cA^ZrPE{zs1?p>bT~R5(WN5xj6HySBDKH=cx-h1| zd>3{p3LBv^0dJsH>GJ*4RV^QE2q4df2or3Gfi2Arv^h{`ps(EW+)`s;Q>B5v1{c_9 zpvPs_Q|-PryKij%FNdl6UcN8SzuqC`TB%|K5&5pR{TO&Y}Ge(N&!Jv^y8!}Mh$Gq z8t54@&^PV^iwu3wU=Rf#BWA?FmJ%yScN=Q&rcbVB?bXM^ zzNc5=|6et0gUX8_WujS22+22VH^H=LlNGM3(?DN`^KEuuL?F}E=)Mh`uTMB=Ru?#6 z#V<5#slFlA2L#PphLdKkGq5FQpr^(_U!x0b0zj1I&euvVG+ncSE!~!NPmA*nx^G*Z zZ`6J32V_6Y%cgEyKaL0=A*?B~r0Sui9gt9yPL--Kusu+YE0MWy3X{myABwk+V>jRz z|AY$CVXVyl%BBo&piB~JIAlOJdFTRh#&VNdUyv;_M`u-rkPc$1A61v_rYl=<#i~rb z(&UN*7RgNwPP{k>%UhT^`pSq;;hd1lxGAWAmz%kqsR3GU%vH8TagoxQudCdATPl?y zQabbX)VRO~1DonxV6zKs0Z^qT^Yy97q>Guar_I2YZUdV-T;Nt0*bgAxX7ly6ny;r5 zkbRlmWL}Lh-`eA@waW^vEqkdawf4E6J*l-TU29jXwGTXNtt~gLtuL;%2bI6IcFAM; z)^5N>YirJTt!5(5skMg`$=fn&VAHUHu5lMwqzn-_nXji5A2BNpY$`L* zQ|AI>0C9ch>r;_M-{$LSG_a+`z@{b_*x>>@0iuJW9UH5h9JAeM|PJOEE z{2PPtP6=>_Qv%$k)7y*u#Oq?w>6y`^@H>Irf9+Qok!&Ylj(e{_(1Xn13EnVZC&9#v z2kgxX^V3qeY#*p0EvE&qhaHS_%eLx%PNkBWWmCc%iWG!FWZBwaOB9TnOyeKaATOXL zf`-?VESgOO#0aRmn-{WUp}XywcrL8>mD_T2H&Gfa%1+3<)lz4g4W!#FysyQ;Kqc`5 zMweTTdZ%0n+6R=TsP!E@p~fg4{*<`#;|yd}{rHgmR`!A-_(SR?Y>CiwiO?}lGZM9% zl*zI?;F9Gq-cWoZ?gDS9jEy&RdAm*8LB0Ecf$s#ZAd1U$bw8#mr~5U5Wiq4qY?zCA ztQyenjW*+is#`N#fiUl7hsW;T?Zh%$?VCH2;A*;IG7wA*%m_y(&j?!3$OlmRIG`}| zwkRc=FhDT#whA+Q2?JX;J1_`<7Te6%(`)75(r;kXW&=ILE^x#^pQ=cLt?paaeJdhs zCZjPISZ2O0^+f?6aLRd$ny_J&xuW0 zF+&hd*0ulcXn5SwaMNTOjyW1GaWpJ#+y4d)Z$74qO`_qg1e}(JH%roiQF-)}EsAKk z+frvb45WK4ysy*1Kriu6pkYJMKAv5}{lSDNOAq zWnwfeN1lcisX)WZ*wL`%eI^L3v`M+j(Rys@}R6%V#rI(J$Fjky_U1<^RB;^boy57tblQ}Gva>KT6(t34(Ji7`Vk zF>Y0xuT{xzlX+Wq8FTD%8IZew(N37$6=?+LGYfGlzY*g;VA+Wp}*I~4F^ z0uoDY)hSo=_!+6)BttLK-z5a_u(7FMRtca-Xvd%QW+~rJq$%E#cteDzR# z_I#_*7Wx#RsK%LlYWwLcBI)5|6l*6?=u?2ARVXrNK%o_GGK$Cq3VjMt3<|}E&wxUE z+sP=7eX~#zeF{+M-eK;*;OQ$O#iPk6Zks@%PXUSsq38ew^2R8}mropLvRgD6$5+6? z0g}d_FgafWh8!ZjJk^Vb#1p-%x086e1g z{Y*H-;ZDZ!qX``P6yVSuv)tdD2}kouI6gmtL!Sa1ZNl;JwlmbF?WBHr?*tBg3UG9* zU#>Y5j-iuq9Ox{xhdu>3Mup=q&xqrsy8P=T920dJRbB2II73~e7BIO@KRJOzpMrA8 zAVuygXTs5O5{@@d;LxW4N3U?a>r6Q8_V1(#?7nXl+C!fL9J(-^+jILF>LRtz$#wB3 zaOhKjqeVEr1P&~fB4s~uxMWYP3Jah(k!%D^tb)dsv_GN2qliLC4Bh_DoqMK2>7Z*; zq4F4?-w@O093h(QsXgz-nWouQhWPmi(Z6pV@(U>p?2dN6v&+Mk(1okPd>K1Z?I ze>r9P5w`@#owc3pCxmBDT9$Y87jNGr(>cd-kKU^C@SHc-%O;lcxc|`rO@1YRih;4Fy-bekZ%)zYQqc1btMWYe)+)7etDDD^UzTJ9iq2hL-;H=iZ- zHa%RQoolJr$?Z~qzr<4i{N~rL?zYWJeb`rx*U25E9>jSpxAbhOV@locQp+8rZnD&~ z&XzjM)vfGTU23_5)Ucl9ec#W|QgS4|McH{SwcJ5!*87*PyGW_8b*beJQkPlk z&z~)IFVV9Jms)Q9F&Fd$j^)l*>a$LxZ?M#-PNQpo_Qy@5zwDsq?Wdha-wcYgPoo(j z;GX!&(`e^UUpuv%Mi*J?b)%{|e}!rEBWFu()94#r>QkoCXaDQ9^JW@-=<6!>I){STLD(lq+Hvm|oU=u%5}>NHw%w$wI_R=L!tOry7LeeGJhY4o@2jI>XgMn8MD z)HaRY=u)3DjlS`0scjnlvP*r+G`j1?vy?omsceo*Eq6d0ZW{f{*;02X_3zSFZ@Gii zZW{fov!$+7>YH6^xr5Yh8hs2l?X||lwjoVr|Kd{19i(>CXy@5dH!F3mOD%Vh+D)VL z&z8DGssFIn>MeJW+D)T}x16QqHjUolQlB!7{@`q>Z5mzeQlB!7UUs(BHjU1AsZW_k z!)Hs~OGUHOTxz-XSC~e3{P?x&eS1YO(X+eT)og3c+?20f4EK5!NUytJF`u+%*N z?UF93XgQY4{phtb#;ks}AxKx6Pgi*?cf(oI-Ci-Gett_(V0m2X8!BYf^jPlwXF)Jf z$Lf^*)f!beEw@X)sSzjK^m)KeZc;H4)(YFY>7&;xz(y`eK2o-uKZZ;!1vjh1a5&5V4u11X*Mo$udpGUb64(@0G&nIz5QGTA{GMIBAt*9BvO|XEztz` z^>ddJ&zY0CdM;vccbCuZ$;Ya`t$W9brFUn^5>xcr0$l7bE-8*WD>S(k6f$puW-0E8 z^tz5udaXF5*TsC&Z^d`9e|PWfGw;*&d{!|-^`abELyeIPA9 z_&OW}Ad=pqdd8Rb1h^Fn{^d&}`B zt9B}B6V5ocaPTJFeQ)lSck}9ejb}IG6~=-&|J^c&YOi!!q|Lg(?&OS-UYmE^thb3D6`FA_YehPQK|@Y;cA@D$8Y>XJT# zQ5W}P-09~mHc+XnVU(gXR0qiZ%|Vf$83jTRqc%$TZECUD(l)iBs5#D!%Btb^ug;JS zNf-pO)euXhOl>6L-4F3=yBPQOy0ebE-C4)Kl@oYj`>N@4>9Y@MYVh;N^YIWj22QlF zV8`>Z)be-E)$!8?+3iYH4aS!4RuSl+BK4TMrbs=u(7&n3wejN&b&Z8Y=p~x;rXqFR zf~tJ1^+oEfh5q$L>OjghHKF&w_hN2Nw8rt;AZa-g{N{Xr?i{aACIHZ{;Fo^0EGPAw z<*cFPwEx-8hof(0HGyJsWkyaj@*7J)}%r_zW zZIp+eI{6i^M|IKumf>I6<@W~mNGD%@SJ-=KEoRh4oc65J=5nsHKSjzsK4x3KRVx|> zDsU3J88BPd*}qUn>_aESZsFV8Tx>as-3r*akJ$5wEqx!_Ex^9*WlP&NC^=MGzuC75 z<xY%Z|DF)$7YoabJ8xVWnF?Nq5Gec!hnQnp zEDn8B$kAE^jp&Zc-fI$}k%(XX4o951EB>IuyR-1Xj>+oXby_Pj1HEctZ*TU0jvqUI zYpJ#RK!fxKGJX1#{oRfW$SvJUQ2fZCCh>6kj<;irB0a=sjK=-8OvOnLPLA+2GswUA!s%x=YP2UG}tbux7 zox-_wr4HXdO3Y0S($YwoC1H+{YWTh|6Meo!3U0UwYPO)jxGn1B7MiXGFbZOT)#{-W zu58IxNBVx0;OWd(V#LFVVLH$H5dCN+MfVh7<|w2!s30%X4PasIFkgDB3+%VRjPMYp z)A^bxb@u&t9b*m2$ZdD8l4*>4tW{}HiKD*p_Tw|Cx|$}up^bLrDw)(qs`e&BzfM$* zLhFAZc2UF(_;NqPe4LIyo2(j6W|kZskGJnYm*akW45+9+yy$^M?GusPl?Km~_0u0* z{{JMrU-BwXHeNL@<&W$wcU<5uf>8!FEvo4{#YaJc_f=RQ!y7I*CXEQYI)xgFI7^I* z(NEdu?mVW2S0|j%rdH709e3zX*32xo*^*Twx~LULKV~^v4?86k3a2;m8~5%>WoP0fh+@pI7kberN=$X-$z{*OPV8d@gh{si zou)UjPghx@`${ehzc0F<>~?~9|FWkJ&YT~vEZ%ow=%Hlo!{K(jF1Gy{^eKz8v8p|n z_%rt|@D>k~#}2+Pdp`F9HRfrmgL~d zs>jGTyy!()nD920JxIfZ7wu#v?S}nePWc_h=KN-lX>?*W!W-z+hZAT~X)^;Q2)!T` zm#$9-HPGav&W5LSK^ZcQM1d?Fk*3GdpMn%i6^K$eK$}5^Lzyr!kPK{z8OYQ)UlRbG zhXw;_%M(+z__90pS>HN~$xossV|Th_4xp!+Y5^(%;SDmv&S=&(D+tJ1#_MZUrQqqD zT>+_KbN^Z~P{0u%=4~oc)1YDffN)$R9N`-?mdtyIYhS-oJ3%H`e-jynUP8G|6-;_B zB&vRytQw;FMPMT8L!7C_s}2*v+KT&fgcs(YbQ!+?m%Vq7ue+-9{tuie87ZEq2vMs< ztQrjCMBC9gsgghn=fF8_go1TM%}gAgqNtrxFf&tXYM>@lnO!A z9ch27cxuql45enAPmc|d?D@)!$EZ)@nMnok%J#t!%Epf4L~HvSA`3R-5HFk-Zup0b zEI80`)^Nv!DhJ3DKFD+Q~+-jP0LiX_A+Tm?$GglZ8N>Xue77v?9#l!1FY0ijk z!b7RiivBFpL{|O_QXKSWH<4DCrZQt|{$5J*%gj*odj4-TQ_idBcT%Ta{ZMfU zW=V6d(>X-v*YQIH{UM`S3hyYpAX%$M)aHFmUP*p_>RmoM6FrHHEgQ(__f`|cBZ-YU z6^y()*CTj4upD-^9Aa+}U=~e^+>&f02!y^)F&yV6;N18U3zALltKHI)R!M4ol&|dF z4@og6)fC#s0X1ETw;NQQqwIVGDNB%Z2b!^K=$w33%efsxvrXFlN+SiMS8}mS8YKxa z@1QV2maoX_%aL}5!A=!JpT;=X>h-E2@v5ga#MyD%UePj|+8nPMj8#1s5ARG=ZH1Yy zgc4P^bC+w3;V^;YSW5VFtg|G-4>8ybT78{EHs&OUEy#>n@6Ln_iS(dF`U3>{laEO& z$1GFDJ%=s}VHM!Ugaw^OYJ2+eWp!7)VGytJjley^NQdG#dh-l_*#}udXN1NX{@gdm zYWE@N+vNx=+^dRXwY)yI;I?^3ZpY~pl7gahXzfQ)IG#F`n0tW|Fy7BAU?0yOb%TUH zW3(B+1%@frDu?811C%swgz;CnUQ!ni|1lm;j*^r>3D5;ZlgP@?ja$=1nP7{+jc@dX zIL2n4^$rd=CXZuVVdO}LHoBO#*s~TRBEmD_A3cK+E3)hzv3(oe0H@hgeQ-K->EY4Z zosrALAkNay-kYe}zrdd{JBB@+E6y`w`*z2}`#BzY@v#YS<}>ls%zeCs8moPF>1Y6- zR=2F&!0+BEzh&Q=^I0_C(djcoid@f>gcrxXe8@dm0T)L89vD7X3Vbw3Q>XT)bx3^RQcUdg( zg%hKvVaTwpoTvucjNov0q)twhxr0J{@I)#Dgn{eqvy$rs+|f5>jR-n59?#7q|k3E=>h zTqAmo15zUy30FM)bTsUX^a+3NKGcXf>D0(HBdJ7I)9B`mTh1`~Kn{%ijG4Pk7S;`r zsc7!VdfPAGV*4KAS1AQzse3doqw3isd<#9UkKC*((5fOuqG}I= zCmjK~6za_8vgA$p=iZ@to?s!rLXr6;SGIgr&4v|IQRuH7iX4`_fI`7|iVG>7rD_r$ zMgZvMg@-|8L~t?jJ+x3lzr^yaQ&wKqj`_>pt8r2=kj}%9aE8SpJ&GId6-G!n5rgxN zyg#z)ay1mW7Alf(YYFzj z0Jm_B`4=)UZpO_BQL)smv*F0234h@`HMomG=59o;MsU6I0OQ}AFMc1dgBq(C#uBNy z`#JU=t9?o1q(w7^S-J2S6J#s}TY}M2ht+rCDg2m*T|AY`EeW?gd{Cq1$&8k}CPXq? z4qy1i91i$3@#a3xnE9|dK9GxXFH`AgiG5%q)u8GGitX1B$7)}qz+m|#znEL>x#D$z z_>DkZDi90{Mp~yPdDaRfAlKhR;R#a@83S@tkAH{4_eL($JUo`VTNHkTsYk6SoA4Vb zD)K&}xd)_m5WSf%CQ>uUjI_)U5HVGRP#p(R?=28jmlbkT5YcbYO+oI?PeCR`Lexhz z1({nr-z)heH(Z8|oR5f{y@3u!FI0%I;l4oMCc@c*zSR@E6^MOgjSg@_Hftt02`2l3NBMzP51latk+GZTcn0#M*{Ui2K~^ZjVT89Vg~5aY8&~B;H7W zW)o(j3<$NX+%j=24r-{m7A?%;)A)`Ae??u59!hP{zElht5t2ywMGjD>MMWoyGk z7{6b+<>3pV{JQX?Scyg+<&Tru14i8)dwz<{zFts|jsmI!P^q2l=jiO`j{MorXLDyi zZ|;I}+0TE)&M4@&{^f1;7cw0@ROuCqvhTB^r!I2k&cn|B(N`-}mK|wUeWz-dmdeh< z$o}LLCI(UVNtqOm0wS7PQOZ;2CEAtfU822I_QovmwcUyuZnB_rv4Yg8W%1Pf@_6c; zig@Zvm7=#rCo5$J;1vkVn+f2w^2Ly=YM5A6kOd`PO_06%Ts!frJ>F>B*2C~*{|ZBf zeR{oy76YkD^M;dv!54wf{^(bq3XOzlL~b*9)h}tAMqR6FCn$`mQLH&t9iib8t=$z# zwpz|k*SL%t2UOR%q#6eTR+dStVVbcW=(fkfEK_DN$#Mmr@0ypkrn7!FNQSj`UMy!? z^g!9Du{2$fMyeTE=wdwn?Dn?Xh7XTz&(bN?-unLG!|T5@AVxH#HfR6tpP>&kb5g*X zCTq8n?yIW&Ot+d?%(qJ7;YFzhewhX7atk^u6inq?wM8d~1qz~RnvTl1BFP#8_@-(= ze#nAkmLR(ia|qPd=6w<0>=RcViuKZlBzzMvC@j#~-M@ryAI1=!+vU&k%`&INw+$){ z-&CFWX2py6<{Fn#00~V7URKNs_+z7Na9s9IFGOXd7 zYh_yWfNyGS0I8U74swofYVRbzeXGg%rWE7bhtWpxtw$>YKhs3?1ilR$*^_-1_%e`y z-k=4YLkgzyEo;%q4uOJbmNyf?8RZMUsTz=9V?nZuAbZm1jc+X~Rp@W_$)>hqy|f_- z-vkT_3v~9wzkqM^*$m8?Z*qLI%*MCHDh=OMo%m+Oi}>ammr>(@>Kd0+O?57z zC){MkeTdKcF-o7zAS$K&utEBRL#Add!?DadMJiPY6qq-XwXM3 z>~d(H97ztE=_|xBWilMV%tZ#%gSiYZzf%UOsLSvXJ}`Z$I$T+|5E-u>HPe@V=S^RC z7Ms2%)v}wZz(o?Y3D1yCHgcU?q22W2lB?R`-#l0lJO?kka{t4_3e65$aaLV z_aOMCvXrLMeZ6p2UI(#6IO7 z2oipL083bAP*MJ@V0Gkospytu55adJ@Wic>ob789tjv;QqV22vW{ToqnFO4^Te&#>=jE!$y{%t6tMmpP9 zQpAa@PC`a}#F_1DQzHBrUI=q*E{8zQ_Qm>SfU_ppzHY_#rF+a9>t)ZBxvRg}_Vw_* zBX3>yxp?X+c2Bp(Fd)nJ)qACcGbuW{!8QC!-t3S=(DQo+{@b$tkZM)bk zUhlgSvL|;e{|#Fx+v0ef^pCa`Y^-VrPbYD?nko9*d8yaUAAb#MCJH!eVOlp9xlH?? z3Aw}D8n4nMlF<+Y*ia&j-wIxG;`;AHp#`ah_hFs7C5~b1DQ5onFn!->6UO7@Q?cP5 zy9eHIPiZ|iu zM(XJ!!_ucl9)SWffJOZGlNT}Bqf666OzmvH{&DPIMH?8-_{C10j9;jm8fp2+g6G)6 ztGHW+3%73S5q*)kXfq}2g!V8e}A(W+c`?bW(UZ>GJt;q8bP5Nf}GVW zDFh+Om;!plUHVEIf!H2b`?clZXO*1nqj$F&w(H7(L5D3hP%Vf$<^Y%9^92N}0G&cj zqYp%@wju1+lZg~%;wh{FPeiM*^*oiR+Qc3-9%FX${`iYA6CzZ86WOpev7M1hH}V@R zfwN+9W!@lU789_nyRERJ619ZnA_bly$K*$-qI`uFOKmk?N7*ds6oRzgm}Q2ro6HcF z%#zvdEigeP56?1T|4Iu!&w82ti*0c>Hu_}x@>OB9_Rh$HF*AK#aFo=&FRYop1$77v z*nW&{jmqp1|E*r@>ZMPFd({@JkY!D)%7ruS1lUXN(dwp&-;tHyM24sIXV#r+V8I(( za$&L6YsO@&S77oQe40YCg{~XAP9iFw=$$pJV5eBVsulTKEMJS*I;I1Z5wN9KZ23}; z;e3Rpn-}X~kFT>_QM}wi5D0yRVsJG@z)o1B1<5-1wb+7;Re&cYzOuVE+IF5=W76&q z^UHSKJIk&&NTmdk)wdy{$lj1r*&tPr>TOiZY;&*OO0l_@9&kxfl92BW(1xInFQ?HF zb6>^W7B#zX>qWCz)t%AQy$RgkR_#wz-4_eLWCt2jqqsX7;ZT5l4`BSN>W2y&en);e zX1Oh=X6fVAMCQiaRJz=1_3MZP%Nh$ZQ3al_;s}*6Lc|R}Z@t=xY+H*>jE{htD6j!? z(W@5$&q*^(5Nzhz1Vv^pRmJ|s5wY66wp(W#)Ius&dw>YHLH*yTd1*Fbka||MGVl&1 ztn+*ULuRgj$bRSwn=_d}nVCzeL65QmFvG|n-iDb=BIe9oqI{GX!;DBf3k5M&Dkr? zQ3d-%ImEvOoNdS-eJVYk!#WGxQXBbUCQ>t!fXTJ~4Vs-$Y*_vwutQpZW z9o9!XTP?`66QENotMB5=5s{;^g{?DUgm+_77gHEu zUkJr(GirZiyJl6KWERWY!-mOPG@ZofkI>ZNs#mv%^_YN)p44XUz44@kt8QOGceX)p$zwFcWnfGM$VwWSZMoO7w`^sdbC2pl)0R z_AtcM9i`z(7}9jiuc|+xH~7-sVov{~7<=!V@6UXI*CDY_vCe9;#%;$^#e0Pqzt(q= z(Trc~)$Ul;9f|NgGFf@+9mws4!Lv~?@iR}L(Kl9AFm*BH;ysH5rk539%PO-;xv`fi z(({EoFs&tCuShV#3|2##+&EgN)_Us%rpOE?;EaJ2&0xZ48Z(&Mrl3ba=HoYKn zB-K#*f!g?In8A!y^14683?|CPr<%cx;Ov`PEB-QOFb8WoGgv@N%wQ9#=FDIPiXFlX z_F6#{nZZmyvKn!!(bOl?K#tQ)u!22NG&wnw$;sBpW%t_TWZUc=?f_1e4&b2kXWIds z7jp-2wsQbSFDS)ocbN5S2vV|$dT)sJ7jF`~1@{{`f%D>pUuFqZ#k6F9{shj8ve2a0 zh*@$)b|@8lPeH|QlhsO2Ud)5MKW_7qaam|yH>gztl@KV#*}D`3i@f4x9b*59Nd~Zo zMP2JMF+U1*`y-d(O^d1D#@V-_otXMTU5@bjb3ajJ|B87>vxUV*1CKY<4p`f@Y-Bko z>dxqo?(08@{fifEr`o^rk!JrohYnu_luuv-yB8bS_Ph-YYn#@9!4h%e>M*}Bta}DZ zJi;G0*()8l0e8!K0LQkn zF^b}t4sMKsF;`Fmr*x;EW}EJcq+5kXj?vyEnQU`=s*$VQwPTEASQavr{8EQmnbM}R zENgi?RT7p}C=(Mk%bS#q29^z3kQpYR^;v@K+v|*FwoPAPnSJJsT!thpb4X=WQFj0L zVA-e5$R+G>85tNSEwiy~gQ|gLs+G_%D`uH%T&IeIsTv2%T;l>GSF(qq;4O3lmJJ9P z8{taeY%_(BWi=L-Sz{g6u*@~qS7UV$$O3~@%re*R9Lq$e0?U3h&se5NW7)}QHdxl} zSk^@J1pC&Y;;~X08erpWm%V{cB&*S8&W2(bJ+4G1)rv`u^`i7wVBB$ z`{mCV%UTpwV3~d9?OTQ8)L2+%jm_D&tXgJxYAh`4vcMn} zv&^+S$1;(rz_LG_Vk}dnvFsa|w(x9Sviv-1Ze-1_Q-+?o#GcJdm+2;=cpu}u$kUuq zxh1LxSB}1ub4ABC+*x`?YT-Z`CpM047%1mml#)0D+;D<(zioRk4VNrjcf(jHYfRk*w_GLk{=1V@xlRRXH_9 z+~xN)vO20AMpjH@)U{i>h&jaN5@a~Y=r?J9#d{CA8f7k&<6Gwxw}u2=m*fpPWifBK zYxo8B&Ks^F%=)m%DK21Du~1Y_W{VaW1n4D@kg(YEEgjPkel;(;@#b@{aV~Os#U0Bh zCysG(JRZ4pBf>)8TmlsC`98x=h5_UOJTBMFBd@k^cF098E8Wp4E^?L0*5qVj%jThj zxX2xw>LPbul87OYy4x<|KDBhxQZRX^lD_>Yav@+-L2S{!q?IuKf89MOJR7l07rr z0sqKK+g)U({bvhY-X2{hq2i)tBK0sL7g_yPzLBgfLZ*w?+=$iA99<(8W}BdMkrM$k zMr#*gAFte3$-y#5SV7!JJ2v{uKFI8R;ute?FK)`Uqyv6y8M!vXqFurHDY5lE{mAC5agYolM%lm-b zFY^M}M2E{*S>8JGv!59&|9mk-^62}LycOR?>bj;#T{OHK32HP3ciQFO$x^2qut--c zS)9}@QD)3p1jLt{NF74Sy%wnxETqn%k+uprtY(p~N9xK7QYW;Ky3xO+)S(aY6h6W8 z_aW8VL8MMt9$M-+x7Rlkn;c|*pG7g!ylIaFqNo=r{Jo2ai zL6K>OgRIX-y#G42eyga~e`Z`B>4U_P<5odN&5d+-E3(p@O;;eyg#_mn{a4JHMt+E~ zE!x&QOlf@NABV}DF z)jNBhA3tJzd;ov^+vfXo{{_aV=>CTAwnX!78Ut7ukn?RNvm3m`^YuKrx4>KW>Bdw1 zxqrjQ%N&8%Gn6O$a~Dv_r@0=#i}OCs9K0FU6AY?j#`~VdoBw9#&HsJQmK*iv4WHtl zI}3kDw7|P$P$X>do5$;Ge;>K@5U4f<$gWvBWZ z%Q`46N$?!$r*Lv)f#oxC$W5vb-noO0JyAW-CzwAoaS0~XX`58D+BIGWbLF&~R3D}h zG~YWql*3K23%x^A>508#4Rh2McKlv@2dSIXL8|$-{_w?)pm)$Ux~J_L!R($1mN2F> zs4S~Xfn;tbJZON!{Gv7V2Q}06hso2e3B77kU-=5IqbBr~U%0-q0cb&A={EXVRa5%P zOp4Q2I_gtwea-8mv-HqeHpKjy;b_$tyS+=8!52Eq>0ZN;)>-Cz=N>t+vmof3-au~| zQ*W8?Evucbw@^#%Yw0cLKudZ{U#_?G&|5YHG|qRJy`0IL(qTAsSlnScUSEe|zKZVsJr~la!|qbHlX^Bl{w&pL-KsV~2*3&57E53?o0IYcO^U zQQ{1L2Io@JgMz^=SORy{6pracqkj(L$j>RSyLnVspLzjHX|?)nDqSgY<2DCDf?HPc zDqpShF40;fH?DBRa@pH*{HZfKHIBd`cSjPgA62zQP&l^jlb(Q5JXl# z_^ev!W>nnZK%#XvjlqDf@Bl-cmLznA2V+(DCz>B#D%xo?to2=zTzo<(-~dX>Mg8*_(1* zLs-!^;Yrs}d+8c#ebEeyuCeeMH^Vv}t>8wDpliIB2xeFVlwj0&j$YCy7`$LkFlE%Z zS7S^#Db#J?NR~->I3G?xKM4`I5u{U%^e$n&^#A1`GWwSrM64yjIO3Yaog>#XMB@Bt z@)P88%4jk=VKiAU^1QAA#TWaEI!0j<_U|Mhp<<64Q;a*)@q6S1vNFAk*BZ3Q%9CDu z(We-)0=AC4T|6|!8CiL=;){FaUw(ymL@wPX`Y;&~WcO~G&K9|iZsp+2QCc))ZNwmFCWm&jN-MqJhN&o8}4-Ibyf-j zHywpeIBm6I3nr31GJ(x8Dz{?ESe4uWP%VER&jcdRGkqMAXQJwb^XZ~$pW~Uic$7;A zwI$I!^K!>JwS_j4Rn38`(7BWx@UE=nc6hg_M330Lt>pInTzRMFuU_Iw*UP%FxJOoZ z8Ou7=qv%eW62sIEk^pDhBkVL|g(o+vTuJSzEapzn!1k1F2!9)z1=Nx8m9@{C7weNQ0reALGw`6#kncp7-C zeZ_qbeu+8@nrC)6KDvgfTS9RmZzxV+AUqp&JR2ZAvihz31$4kO&A;GFpGBr^a~V6k z29Z>{N0BLi13?kb1Z4`(x{1v5ER^Tjut8WiND#SH+E2p=AE-sA3z<&xsopkGd%9h3 zEtJ>?5FT(3-8;rFPAJngRUyC>0l!oM{Icr2^{U_TOHLRbWrs-Yl0GW1OM6F3$#F}X z(zvx5O(_6*Zt3HY+%mGZ{f6@lkkvJ(pe?~ssG>Cg%W+K2&nr!}Y%0f!W(iYve$5_n z%xYSlTlw7{OpaqI?$_9kM?#KW%(BT`Ru4?YQwQ`kR0H>(7Kf9~KVaXiA%6RMa z;ODCqm7{%{EC}L9wj+Q-T<+;mO-e`xtrJ0O9l1C;q4!AfXeg1VH!r%IuW7rio-oax z0#GQeXHes=48q;y%GA@(=UGRuFZ6T=kV6cr#WAJu7OK^qefl^%4`onXj>3bht|kbu zMMJ=F_hHNCLI)}mx?y!th&Hy_&Jg7)&0Yb(fXhm9(rF+Nq|mkiQe@R>rx;ZyLCfAb z5n5vbnvw!&0yFYv06;-KXIP+M&%Fnupf2QP4+9(&tmAiqf*V|!=_zOc@uZ_#9DM{x zc)%~!on8MvgQ@2o3ou6y1=A|zf;S}sm;xWb6mHqi2QUlT1x{xV1=A{Ym&OB_0w2H> zZrL|Em^vw4z;pOeFs;JC>9lLRCV4rS{LEhSUXvb!;&Nz85#&%!BVVKY!uVFB&f`wC zPp3hUB)$8Y{W1_GKJ*qV!-a^~P_&dhbTvUx<=J-yP>55K;s7W}BX^*N5u2KQ1o@6P z;K(q|Sg99`vs-5xi}ea}fpmR`BAo$ruPX=aC_II1b!RUICU_VWN4mm$%Sn50Ipi?y zV{%`>bm*X%c9Sn#;V^CDcLCGELt$zFz22y5ad-%jD29Nm?(Fa1W0)EgmqVF@9I9y~ z2B)KKmy~0>eJe^^Q)$f;+HP&da#nw%41v71Q19;O;`fDhi%$6C(OTF1F49vIO>>jmAgPJe=YhtVrYKfgZk4-x zxxmA1_eP*Fd+M?5nJ$<8Zu7z0JEX|wOGcyNeLyVV&6hob-XZj@mKw!jn$6Wx)w@`T zaVAzp$G4EyYM2t2sU|bHyetQtxaV_KbGl2|+o~qL#(`6R2S$`Hj`ne>@h(@}kV~#n z^;}HMC+~zHr78npT1MxiQ5 zC0jtg=R4vtCkrfJvQF(mrMV#F@-?}j&jl3%<(m^&mJ3mG5_Buzy?CJTRZ32R#V#1I za_Mdb{@Fa_m#!3uRLLyBl=72ROu0i-U-;#}U|i`7XO(gx^DA0rrZS5RqfCuu$P6Mo z(bT!K$`G<{BU5jOf$!a*4WrbuS)9aA4hkthS!qR=&#KT;)S_IFYM50?at)P%(;^|_ z8$;u%_^fK4XP9d#oz*IX;{X?|aY3I8MqN-rTkB!59leb|La8rP6S7*0uK|M z-RM>KrXSN^cdI{zUy@E}PK?60o_kEz@1_?bN9v&*vLrrBJQ3YUygDOxC+qam5B+$} z#Nt6m86*>(q>oI1|GjAsz>`X?CRtXibzxw(>@=7?4yHOYksU5lqmKFqbAuED7B{=97cnRJ^q4sM_y`uHMp)CCoWO{UQW ztuEN$f?*ewSw)#Tfy6_FLGD~U4iqlEP+#N3UPq7WFxcw{Trh0Gx-s`vX+YQ4S+H)A z`)YSVmy7IiUs)G~ton837Oan2kXhuunh4GsKf8jVvuWg==YpUuVpg5Rx(Jb0=b>vY z0ataOo7}*9m+MDJvm019+Q7PlaV47>0OPl&cOxJvfY@@Fngbk zYe`e-;oHrpM>0w(VALJesiOOa=uOe^E$U4 zk+|R>&_K>jaY5I3j+DE!F$K-@#zY4;;?)GE8h5z@II`udj4#r%hHH921=yd}mrxiC zCK9+0Qi`9EtQrc8U9O}JqQS%fWu-`a|3J#ZCI-DNqLP0}mU0gkpjIW-ziomvXO@A4 z7Mu^GwdAMYs~Zx3E6o|Ss;oywQ_E*@H6mS3rurK-k6?gZVmkS165VC4A)h=iv23z@Rcb8gQFMDMgco>8BK$I^?DlOZc6eQnc_pm{N=xt=3l>?(6F;ShvW1wY#9p zMfSL_tP4U$opt3FtdF{&$wjufuWlFgxyT{+RVrF>rrv^eHSTM%3tC-dhx-~JfXzeh zYuLV4&1yv?$Iq@rSFYjL$nEElsqGS;0$g>rotki7G<;vpLl+=l6}|jo{t*ptMA3#s z&hb9&LaWzi+F9iw&wamjy&)dnp?M0Y0;OYmyGWI8bqYDq#yn%dboVC8aR@vXeimI8 z3-3pdeU|?8yfiFZ;3P}EI{)Czf`So$4e{i9nFL#xvG=Q-!LkZ3VcdSwO28C;0i>;T z+*GPwwcMQ_W7AnHpYC?rr^|gwnVT-qQYBvHbhfl|X3!yUx9(>tB3(_()kNA9tZ`6^bSse?T%+Ewe6_g;M)dj;Ys1tsEXB}BIhsoY(P;CmwC0Z+( ziMpW01>G(fazUwq$<(-Du?sp}FyMkQ7gQQ0GK;Lj%rF(zp9K*b9Z94q;I;IA{W<8M zGQb;`l4BBMal3Pg%UVhvG3!jSRg(=WXwIcEl&s{lPU9AB0;Q_lsuJIaY99l!iZM*O zpd1AGYH`7k3u;suQ@gWZ@M6O`tpRT8ENm2zQVPJ5dE0_@jqa<}1syJOgZmnG!I+CI zGwQ6bbHO4D)-7>gT`uTxk%R6lBxJZ^VZpj;_toTr7J~XS$Iq^2rnY3{YiH7gwo7Wz zFHQVpqMa3izH@7n&D0)n>l`*Z65(BecEJx5{l$*)n)`p~{Ge@=B*HskhnyY4ieO#D zLO)P3(5UV=)S!zcVa;@+d}-f0>c*zRlBGTTk_vNv|6sK;*|N)R;RO3Ps4F#z zjho&OML>_Oo?8OkP@w>%6ez2rCUQtwGT+oBNV+mvu8Q0Q6iE59%wIcbu9cPZxn#G? zCpF~INH4Z&RdPT;H9PF>I?dY<;@-xSndQ5EB{ z3;J9z>VgV!B9&=$L8}WkxM0`?WojGaqYIX}pvwh=E(oa+RO^B!7pzg>UzCNcT^2KQ z7PH=V>J4VSkY4&vJ4#G-{ccN{W_H_INlI?zoGzux>1VEG0)T3D!JrGOX#|mLTrlc_ zM!`sRZg4>v*r}WXzf*lUH-TNO?0!bQSGz}=P%g4oSs$D*p|sA!e4VU}Xe}-nazPDX zi0p8|mC!zeC^rhFTP$$X(iY|8wJ#%41G`p!a>$ChX=#lWbo0@U;J0R=WA?kZ zJ%FUCr{T;nYpCa^tD1;TKV8+d)J<32JWn8AQWI9qYG<;?XE13kHNvc~aY3U6>lVAO z4i{{2kpu2)%mrn%gGGO(1?v~NV2O)tcV9g&7<7?Y_f<~Y7%!?VSQm9)EiPE&BD>w! zkPAj#WGOAzfaZcm3)U@mUmY&kK%fR{HamWH4I@jJ=C#kAf#|jUyUd)Wm^l$y?G^^F z(8ilHH4HyYb549&!9`ET&u`B?=^gbt>`8CmTvl@jLoa(X+|(RU`D7iz{HkR~HtGUH z*(qMhb*ZGFWE;P(YTRyQbJAu5RhQ~EWi)jQ7ivqQc-!iK^i4e6Tp{c2@^{PD`PEgx zJ_v5N-fXyyPK%o?$lzAPCD;8A&Yg^#pk%MV0FtCmGm_}l?<7B^8q|7DWoqW) zUj2@qe?{)O@3?oBJzniz8jpFueQyhdOnAICPRPCH-7)X__bwK3F?T1tE8knG-#j!| z^{D(yy63!k3i_w1jNZ={1eKI>Y};};Pg>?6UTIKb{eR%F*@KC&1LRJfXm7*N)Z^X3 z!=&EKTF%W?8t!&KD6%TTVm#n2OnptSb${oZpb}6XmqrhZ5*?FX>*mpHo~bX_W8ELs z>1M~>S9z>E?p-PdpVGFxRF8GHuN35>$GT&w!C3!r3ErCt5C?m#`}F2zZ+4G${{ZQY zpTAQtbxUF$!`1>h)Bs<|< z?~3f(731l2&f;Hhpx~z!503gJ!ap?#oV{LqvUl`swv1ujo;SOfwv&B4Jq&(`6pfnl zy!LN-qq_cv(4F?Y_UMMG&uc60c*@K4&rf?^JGO3i=;m7|ylx%3CjY#)e#%lwV9#qG zxryArpOCwZw6_T;+r}<;IYGN#u72p&*}R1vboC9KUb^{iE1F(H4i3NYH+utl4*GKS z1-n0vtN65a5Wn{|yakEP7HB)N~(%Uuw_fDE^=#J8u_=A zI8f&O<6O?gMv{7U7>$iVWOWlVJf2xZ_2ZdFLsYE*dq%J(z6(uYpC{h}lyg}>4Y~LB zzj{M9d`7DEC63+vOuvliqI4e!i>Hl-yAj=RKl^#n-qF4CuaE9whVH*>B-s0DV~3OQ zP7!w^;Te2#148}6c(~m(q{N89$CRcMC2Q*0&!3fR)LC2q>O43xXbIy&EcH;V|1nhT zp6K~&a&k)yLi;Q(2S=X1SL|B;=8DjYx8dvwp+OnY@{#Yv;q`YZ%?^+R3<&Vylf0N2I zr{nY=$q3JjN9J!24hHzWt)P4}c0#t3c_V#jcAqxknoAe9~1`|%KXN2kYo%|Y?51K=dQtBC^dC_#XC4L`N{p#-+{-B+sx>z7#2 z*<``G7J}@PFAHx$&f{Il$7H;PRJIJf%`su%{}_EmRz|fBQqf)&d>O@~DefbV;AY96 z;e4xZNe(l&H{99#*ED}iGD{$w`8mW-elhRs9OEbR*D^q{gbG>UmlI@9HcSO4kLds( zlQ9)8+4Ej73QIEFIT0LiH6rG-Z!`R5qwssX9M;+Wpo8FW`C^ElHychg?IpG8J`@tj z6EEb!Z&0~8O<_T&PSs?8@sdcWJO#w~n2eaJ%ii&Pp7jSutlJ^hr8*p9YxtQ%tWVJa zVmcKSAl7ct=?xZi_7G&t3^C=&Bi72tWW-cmb`FS*TvttJzCm_$$g`Met23T@BA&X9 z{^Mx3#f}^~Uiy{$j8An0(5ae0e1vmNmax9j0)G)f_B;DUC!LkbqoZ?7lhIMV*>%r- zoQY9@NeeMS>yfKsOmwspZ5NC@|^@3=^m(nxQScY_&C`kDvKwXt!>1GXyug@Y%fJ zxfV2$GiX60KZ6!5=4a4?Mf{{PwV<7!t_7`%V9`$m@!BOUZbAD&Td>9zXe9_*(815_ zH^#&Wp^|Swl#j_R5Zvq!o`Df>KT(~Ss)d2D<0a1m9wQerBw6xMadM8(BR@bNFlW@- zZ}tOdO+vw7`!2Hj3L4VDHqC7eCd}GbkA6_6OE;R#_djvmyxDu}!-L!LM$$eS%ZqeYO#;U819PV z(!%@gtUkqQrSr$bV^!KFTmuZI!n0Zh(sp0jNN6Pz^}fUczeQP^8hvB~C1xw6iBnK@tPi__ z7;*7ALZd}g_vhM0JFUvK)|O4I*Gh#m${ufCxTPfCe8HAdHe*lq&i!G@sZ}$7c&fMT zsuHdqomw^Ls`~J*SZ&|Zo&K`WVg9M(wF4LbJy*ib9JZ6GyI`?+ag|X)^U-Uf+L87J zy}@g^p`@Xz|>n1q~@7(*UW6c}{+`+zI_7wFDQ6aLzNr8%xYXG64VU%d7S9`#DOyGM-6H9X zBv%T>>9dbli1a&5#YFp`IBE86vG9&4I)-PdPB_CWDGdJqNm$v}5VV##LRBD^Or z>h#WNRY#@p^VVdgtyv-|YqHOq@e?k{-7EKMNP68zYzfr&Wn}@o3duI4#9dp`8;-K5+5dz3UD6)ST~`)ZM<6 z$K5XLG;{-h;_rGc^37Eib6(`zCI1C*fZo4!WY4kZO`i~z!&5eU#=XnZ0+gEZBOOV? z<>^x+e=AAFg=)nA48QQ;ic@&3b6aAmel}28oepRprD)&|4~#@<>mhVy&yBB7S88b+ z=t|vG33O$MpXkbR3)YpouNneWMx}kNuO`S|@w9ZM3g&gCU1^!5D}_{cV>T~9@j#i! zy;dpnVqLip=AbK8iPM#;HPDqm6XUR-ZU$wiD+lTKk<~LKSX^x6DH zPFF@&br>$asuO)FK?BokgcRV4cyEd4P zbp%1#z(m?d;;YdHEiAH(glSn0RC8a@1<<-i+DQhK?~16==4J1yh*fO}>G$~uq)21o zo<6B9KV$oVCw=R&0?60Os{eS`8^ps64>>$EJmm2B&Bbp3kLSwYARcaD$>E`aC5Ok~ zy%9XV1|GSQM_ipW@<_o1Bahf91;dac1;fZA1;fZA1!Ka1ncgL+|C6nnAe;I_UU5t} z@>tejm)#-mdN-RTc}n-%pu~w&KHl$* zT&B@Fp6X}wr0Vu)+rv!x*oYY5(9p#*8p46_-?jAl^Xent=sz!VAUChOZ|Sql>ITk> zTzFq8(IkBnkNp?!sNiEGnOErTnG4^6@mA;n>AS&mG|%I+lU=Jm#B8LD9@VxV!_N`? zh&KPw_Ck29S!vI|UHdnCZZP9WW-+XuJ#N$Xdef+GrL-m4N`jl2`AZ~>oVAfua2U{i zb-S+)3;ZsE>_Y64Bk4Dhxov;R^5uH^xNSJHjMo!20ERC5Du?87^zKq2 zF6S8H;OxDzsy^;ALLz3O9ANFcII^YWHxzN+Xh)YmBPahn7Vzzo|E;$I;_L&knA{j? zd)MJea>@U8S^J1u`pn3ih~t^x-G4nSzINDDEIvn^VbOeMU6JMFM!E)LU+)mp(_rU! zd(pP9Zm>J5r=$GTCa(p4qx)(lU_QLWzS1oO+0_hHoa^Cdem<;Q?UVQSRAKhohiq7D z*$)&iy;uP|Y#bK7YJ7Y}IV-0cMKRA^u~f$3*?Y6CRrzr!@E_uRw^H+GT_agp!>`Ed zqj|z9?yVf7X}oVO^h3O6&7n$xl?k8OssP8Tp2NdUtIqW4b>{6SZz;I~%|E_kWMumR z-k|%dNlg`%PL>*mPUF|j!UzV*Fdw}!G`^~>f_`>GH@52f8-9C-og!%EFsT_Wl*wd| z{zBaG;w@Xb{IpX9;Uwn*Hc&DLk7xQwJ3-m}w0@GigCMkwJH?$?ZgIH=u1JI|fg%V{kHhF{v_#d2}`v_?eWX~N-Z-JoD@xmd7=sg2`Z0AD+-NR!yD+YMTl^yx*xGGfb7k-FIkbeA5A_Rt~ z)Gj={q#-hIH#hR?kL2xd+ymaW^zm-SYrQG5H`z#LKED2YNzVsD#Fj5b()jY^}oREjlOo%uh-^S<8Fox7bYTN1F!m2ui z=X5V#)wtq#wC;=*=bY{>t7>GCq7XS`gUX+KC+hz@AN&+g@Ng04LD?*BWxK#?!{-)Y z*<@5b97|Ru7(!IT$Zv2DIeYJjoCBLi|JV6m1F#X0eM7UyMl1^Lj)N$S z7E>7KI)zbz4w|em6!%F1+>)&1XGjWT?zd5BtrHYlHECta=BM?O+%*I>%6;Gpa<@;& zT}PS$<_aM0sdeE!w29(jCAS4rrk)IPDq*Y6-RZ-Wf7C=vKmEu0-TGh(W zTOXq4^Hv<9=D$(R%UCNUcm`+H%M9}|?{n3&_nO*CcnhM^e-cLB%{B#CAW^xSXI@ikp)>s8^RzW+6PccQ4| z>VG7HP6`&d$;${FU6lLHCYmTp9)_Z)=lh2fRo5Tb>=ShS%Bq+(@i3spyahG7B#ZfL z)d+aS+Fn6#@8%cXi>d}<-f47_A)47A<&F0gHzIgUV7KWO)J-fJmhL#WyhM`AuM6IV z{36%i_{tgjys!ilk{2kH=Luf`V|4S=%=q`*x%5`_2<0z)KuYCyJ|5=dK`E8rOQ|Gk zAB(g_HOJyr=+vVL?^}&LI**=tCgy#+CR(+PqkOxAZq5s^^}nMha4ljtR#hDJ*DgG= zWL{+6zWO6^jQiNqKL)+kUY=mI8z0$+;zeB=K~n4iXHVkgt^`Iudq$ZdKopxj9>WHh zQ#novIAs%P8U_tc55!V0YZ9M`rk+W7-)w|lci=%b9?r(RFV|ojiiPi(@1JNcr8%*? z=j7uTo=`g9pJNXY5b+%N68EuE9uio(lQ%IfXVm{ZHki92muiR*AYRO-$+suG|J4W; z@ZQYR0K;(|^L_Y~;}@P-8moOSvhr&p!XdQQ$hYZMiPVE5oe+T#{+kI~%J{z|n>l4X z{2bG#W)pRW6I(6cK~$iIiOEp~e{aQvDb~U}S^Z%Jrz0l3zoU`C1cHmmi4?Rs4e8rV zlLldEBd2Ad+W|Hl;^B=kZ()secFc>{G_LrNbT%$jfrI1vBM`{}bnFpjv-e7K^JwWn z_O|0NT+}|d^vd(r(5ck>cmb|FP!hiK_s=4 zlb>kwFdg{umpO}m1giY$K8{J>u2pqv#x2ZDj%~Q5G?9wmQs#c6=KJU-o0kq_9*ne| zN}ah@o$f6^0ySSEH9tygwH(xoZlfa=S_k@LN31yj5}kpo+I7 zm+&*H8Z#}2sBw{M{H+#QlKP8mH}c?P^+<}G*7wJ?;5$_Rcn(kp8Fr%9itb?8nWhyj z#2xQi(aKL-6FvPcsN6V#%I&08J1XlZZC*ogwAy^lj}Fo1uUt!;qoar**UVHt*|+Q{ zFO;$_J2Le20XDfbl_DuLavPuIYYp-p;e|$)5H-7R<)mMG})PYrT zfgIKF)2)Bh!nz49tjlF%0>DpN7$vw{tEFu}JVXmuUPB9eo;oOgm4;u|;n)4^srV`G z{c192sQ6i-8oz!q_*GB9uZOe`Dx06yPjdGWT%g>4cPRWG*#Lg8{OO?hl^cF{JN()K zIeB8DxB$O3{51UTxCs0zCg9gW+J_u|`U!qr1P#LPd+9^a?_}Y3=E3nRGyM7-el38U zjGy8@?daFa&*2BC@o&NJpi{QNtEusxCl5-Iu@UVfT1$}0apVnt?S_VZz z6DTr7+TS^f=qD5zCTJ0Um;5KWODE*clJ@s5w|D;4^G&k3g zK0l&Qt!Drj8u@$soRj-}8=t|5W8U={;u@86a9tnzjm$#@4r+a|SSF08E>-5E4 zYE_uBrFizJ0ow$tR8-+bS^LBtreeM83{MVH(yZ(&$MTZwGmo+OVpn+8gCZjbYb;-z zS^)9^7HQQ6HUq(&I9j_slKj6`AXvmFtz6{lHY?$+RjZjXR}|N}Rx|*pqd}X|AV4hT zD2G8@1==3rZ5zLupUkjp6gW)c-ddxDBZB7PmL+YJ$s40ymzlVy9#pe z&MGg*SlsK*+~m-NBKt3Qd|apb^c#Uv788h@|6rURQ?vcdz_X-!H-%_Yj?<<5hSOyh zc;yzXtssDEmVJ6oS1O0&bhXNGP{x{kd5snI$EbcR6$X9!Q@0wYI}}ymw0&|RK(XF+hG)R(6OM+{n;xFX>2}N4rWU}IVFjFN zS8a#pw3UO?R>E7`r-Hc1D6Vy_XaG=0gEpfVCpS~#LQNK-lOD#&qKd8cst`?nQyT3Nt5H1dOCarzYQHDxM@i+caDDB$rK zO>ys(#c}V9C2{Yp7WiuE)AO}eG;n-v=O-*&WDUH0jS^CRqrO;1sfK{B|FqHgTBE1} zU+t5pQWfi6h~o*Ts29E+rv7Soz*Me-K=E{?WjbXM#BWuMZYd~gl9qM{UvgU73c*n; z;hoh4JFD}RowYb>%{`@s&gz=$sKU;$GC3C3@e>wC6}YNlp*7pH_QFEf-n0=R-)sla zK?+znv!Iq;1vwTf?-Ul^xuuwe%0jb4Bi=4!VJR#edPa2nkFp#K%VA*!EUbiuxHL*y z`m`)OqsH;?3w7|R%$oLvD4Z+RPaeY}$Z_uHea5*_)m7k}ed6rXFu0Iol#X*hDT8yj zJrr>6Ch>{e9+v5pGN`R;)2d`L+e~tDJLE|#5xM%5ny7ac$6C|bd^KlP0EPCQ!bL(? zd&-f4ga3x14W(oJgl8dZ*cm*3bXHy5`$7~}xdx`K$@z9VIynFVt7KUUMo!rn}+$y=~bB$(5vnVG;hql)`r*?fq9mFTIPAB z%HjH789!lIAF!D#m0MB2M_;^^qzZ%n_b}!VrgL42Dsa(0y}0(^0t|#D(|KlwvTn=$M#^2$Q z>#R9}sIh;jBA7d(x-A_ZjMnatwEf_I_JiE!4|`L=E_^J-+b+Q_ynOd-k38-h(0FQJ zJoVI#O)x#%aTFWv-m%<*Zi&L?;xaWu7+=0$~F z`vYvNU!Cjpt6j3NV!?fV4)vwnv$L zrkgCmU#tYLP4%Gdj62?1V@nXpRYoi88_RGbXXOGi7(l>lx;@gtav|tKs)wJ4JICe1 zVM-SoW`HPkA!V^HbYRFtFsiornXwnt+?yKt%5|YdhG|=qLwKS)85wtodh@jH5+yCA~&^6#XYYvA| ztvRMSv4J3aFGkv)xHm6*dBJ;rI>A$6q)MbV`Fs4vQpsQWk&?e7kiXJc+pQe@KRPP` zeDIJ0coCHr3!n(>1TdtQBY+}=1kmVKB!HIg1r2I*%(z_4Kmf%I1kjj)yLvS?3< z5x_4q&J_euSxf*wyVC?Pq_+5(4QhmUQz>6L0W32V+sZBQDlAxANdOv_eR=_`Rt_hC zH7b+p%mNz$th1sy0UTB&j@MLgpaYM=q%%PW4v<(7K&x|t04hD(INJo!HQ+jH4v$(3 ztkd{;0sQnmuTcP1cp3rxQRy2Hz=69b3ZMw=1h7XaB7h=<1kmVKB!HIg1r2I*%(z_4 zKmf%I1kjk_^;%A5wzXrg{)SHZoecx|c&0W{utYmF&E zB-gyGtZxj%fs>Up@BzSS1W@%91W>3<5x_4pvK2I-vX}tw8#Do2qPDPX6ddoS7QS)< z*lL)zwL65@Sg^K(05mN7^a9wW98LhcRfg#Zup!Sa;Js*kJKJzL=@HeQiSO7&}CxDe|IRYp`NC1s)MFME)UeKU6$BfIx3YN~eO3&U=Wdi6LaGf=W z*PE<46X$@RxFauohn@qf@H86m=)>NC2JHX+L;)0mod6CCMFdcUkN_IpiUiQoy`VvD zjv1HNskpaR%s>DeE$FqzvS1fL+z1JK<~9U@1{|{lKV)o}&V&%y6_`I7Q+#6>cg-Ac zj2sT&Gyc4FlxX!EeW&GeH2mNh}DU)j2@` zm7a~CU;^kGaNRK2=Eh#nw@AO_9wOyG>Ihws2ybO!s0D_p#ARD0mF|dGZgKodv3%y1 z!~(@xGPg2$nun`yYyoI?#eo{PGTGD;3vXs|(h{%DzRJotM4iQ2QABq_*&%8mlp>CV z(r8&El$P!Vjcjuax?BuGD8(Rz(ir6RTFdc+DL|=Ymyl<^Ll6k%221dJlrXKeBZy>9 zX=Qz5A`e|yIRhU6%n9YCg@uXgDF~%-m?D&$IT270N@bxHp^*m%Oej0lB%GTIj(1ZR zUpb-d<~Im$u)yoFAlTDRTK4IMa)6A1P!6gLQxsq$ltW6$YsD5traIeIZ!j!h@~cTg z*+gPND6P&3LaFrZZ$4x~=^AjIH77qTTjZq8nf@(#<@l;2v&t85&b;)JMDX=(&U}{o zibb%?$e_)cMztLg6e%QvM!6ypv~(|MQk!GP{%Jsokl%3 zFfUdOY=|jgS~E-#$*j`K`o=OmYgjo053d9;CxS(rGZvlSoDnKhMDP^GyMhQR3wVb{ z{&urO(5wj|!9IjF!P2J}xK`1?X~A}Wf@lrE5V$o;$O~MxB5`x8iUNU~@ykg9S59I< z;H=IG0;lxssk2Pr9L6#_IAZ~B8w9#|68Mo#uU*tsxOft{=Ea<-y^cxX4Yvle=624{ zSmbnFsSrcZL;?w#QA~p7Zln8_ZuXN?n%L*YtZ~*7w#jAIur{HzRTBHVA=znUa*|bH z34Wy#JTsFpgEBTSc@+JFNKD06);HeZ3){*Wc$gx9Im!A}LAhCUUb2M46v-O7s#vm= zg-SysKflE!OGb_!*?|vXT1n(5=E@#wXdx-*xN4KmtOfbd?ynqW@ThvHNYKw2 zbqcykSxkcF_6IEw&UviS4xraI?6!mg3rf02v6C!_6VG{AIV^})0^6<1W8yVvfyHF) zr~^7?TSjeWzX^;gDQES;SBh;wnsKU|pHO3i0wy6c;CO4zj^hkCkVt6ZLZQ!soE@i~ zFRC_3!4~`c$BjG(Sk$=+a$D@mJB3o0{NG|qDT`5R3zWJUbJsMNrPkOXrwVt-Y3SOi z$Ep-}JWzCOiJx}JY3BltEpV*I*Yk5}Pa=-gRjaqlOs$b;T~=h>TV zBD|ZYU+F@aCX z=H+80r+Le6#?RBT-cT&HyP@`(MDqn>rOU$&sb}g_GiKpeetz?uD|CoFQFQ=6l(Bug z6XE@*dCRY+(A=vUYG166B(`x0L%Em!P!(qz{Dzb8SS5@+FanLixCd7C{-W{PTP{A2 zdx2^`C%&WJjcR$&(x~?XH7#DXpRTjz^yWD?N2{{@JfQZ=qg0Bzv+*k4CD|PhzY@iV zQ26Nu%`>h#&0F|A+(F^$s-bo}_-qw2U;IM-m+QY&|Hb-qZ%Ov8cqX;c9aP7S*z5K+uT+3*wdGVL!bBiBw|L9(E$+@k)-#piH`>6$#1?l&rJYVhOlIjr9Q>^R!-(uMR8Zstb! z?T&?CM8~U6?zzUA=l0-r#ano3N!8Jpa!zbYt0KpRBFD7~wPN{wG1~kV9Vu`A(hNI> zep~$(07{0d2zj0&viexn;9WJqrHy&B{}lBu?c*18&PKf}%)tQh=qsn)*Sd?`>pw4lfd$>Uwl?}wk{@dK7GXs zya1ceGDpt)Pr4v&TR#_%OtbvulJ z3(=|<8t4aOTsez!v8nm&61|<#wh6gD_xt7|tUmk_*R7ZSp+SA3q4wT}Nc`T|_$J-V zsJ(y=va$&V#66IlmwH=~&_Jpcqck>8rXL1m!e`i}j!gS?9~qk_WV%#j@>YuwI7Ney zj#O8PRQL^&gEXDKf9!DFq$TJTrO~Q~*AGv|ibsBm6bM)!OW!#5|d*5I#J&h)P1p@t5HECV0zy1IE z^icZrRJevRT>;nrx|;MK->4?#a_W{Nq$H&=z0#=HSQ>4PmFu3@YVC&UzFG5|O@lE9 z=#~2X+O=8oci|&M>u(#1qbNGG-B&aaUofjjqj8@bjp?U@QR1W^tF`(;?eg+Kbr(N% zjd=At)vwzQaGC7${KA!Gwbt>B@o|(Y+OJxx`$YKM>L&J%a3>baxfA<{3YwpFoF?qS zX~J3fK6o~AncSM;9n!$Wxdw%635}MVXL&5lt)a^tKyP_NuV!!}01SjurfOL-@pBM#oib>GShy@0n-nrXRNsO%17IZfI-Gcu7o9A)wWORs&iazv`LdNBqKQmAuch_Bol8$xM>=^8ViP zR(?OS&N;L8+H0@%oOSluXRp1#eKVVj$Lqq1vHW$ts|L=(Q_97cSAXyYcch1=s(l~M zN)u;Y>%yD(Fs~dVhtn%xg`u8zZ+#5cefo=t=f+wTnsW?Gj*47y3!bKQ20B>bdAq!6 z*jnlxF@I^=1$Q8_dkddZi-A12auLjb$N0_v@|tY8SXG1-77QvJp7|Tt`IlnnmlN!) ziJcF)Z~g#Q9^Jq(&V|T-<=DSVKhu3)9a@OT7JAa!=9gtSRPXldSUV2*e_hl6?9+c| zNJpBh<6!%fesH(p&{ZtS0KRa&T+;B9+*jd^xjy~&oKA3P;pN%d{<<9A3jBwazR1SW zL$dT)l-}{_^*PPfId7!Fby?RGUo*JQqZu1BeBrGk&-~nMS?oQ#)VQn^Nvx4&=zD60 zzX~0dcaGc#oFJX=H+-NYn_M%n_n>=8KM%v#em~tE*#^0q+_HX|9ESw`=VYNjD{X&1 zuR7EAuS5>p>+Y@R3HR&ToP*YyFB&>A$kd-QYeB7*q>QZ3@9vl6)Rpe1(to6q^bZYN z_9Zb%-+j}5t?-dG5Msz8fsd?y`yJ``xq}-4Qq3quL|c)g87*qXqTg$2$22{rVL?A_ z&Tm1mVo{VnF-j&+$BRyIAxd?K4Z<6+EoFS2i>6m)w~WV_@sys!bQtUp1Y6)$Ej{Oa zp(QyP^1}AXg?M3W2EQgU!04GphVZf+4~u2J&s8m6`#QKg39sW^v__tDyNwaQ&2AZ8jHB5fz?#p=OZ3cG|zPRM8ohj3S0PmlkQ>Q6JY1TKySJ?P8a{&&0j!(Y{MT8tU9n4%dgwl{ zXk@&>3f`KIrDWsr<}>4qH~KR};bvH`9iVa&+${#U^@X5@K-Tqz?@8-E=$ z^8AoosUy!C{Ok{J ztJKKJDP>3YDLkgIcu_`i*q3vjw{jy+F3-g>zuKI8^Y9aPi|MCg#?@6`to2o5q<8q| z94vm!EPjUrG_JLii}x3&vyX5rgGadJ^3K_d0g?3MF078QL1d^^PmLd{e#cRN<#%(u z7~9mJPz%n!!3AfHWpk%hoVv%7(9y6}`7wbRl1d3b!xTmRp_46ZS6 z{bl4D^VYwJTtl~hiGJ7cUWc1Mk9qIM%E9Hh_kT9L*KrU(r@Z$!t{J-btpQIg?YDNC z1#Ih5QoB~*nXK%}-baF6hxa_n3!vcG_dlC4_WgeixW>N!$u)HUkFe`K{CUg(@B?x= z0ziUYSL5g5cET;mWoz_jdGDDEr{Mm6XvF;;f4}kR;C+R z!{2bm_j-da2VQsac7sqNuRjP|nx2j>hwOC9E(iJ@SqNjer`Ki3Zlh-Ti=V>#%L94# z+s{hrfUI-fC!PLEtRK0eN}JP|#aj}C!NwN8XyNrJSF4;C1ybZi=(cq0rRc-=p>ezq zoqY+gIA&=2!!mG<8Jc#JYs}E}BXSLero_(sI{rFlWLiotM`TKPAIiheDI?SK-yMof z|7YHZ_U1#mF{9GfFM(^!sI-z?V@9PSat%eLM3bJ+U&jne?_UKjM^H*I>F@D#ie3qZ zQI6te-s1}|N3!Aybx&JgDdi1=1CDs#SjO9(xB9g?+2#$;e##Z|ND!;zL)!7Z2z`_m z8IX9}ukR~v3*bjYG_06qZDFE6Tw-j@_UgZ7jA~(s&>!PrD-Q7?f`@H#6)R5ReFuja zO5yNJHxBu0k41Ye+GkOI@8<9P#7!#SxIy`mo1*0NHRPx~#M^V2fk?h=i{@H1&!Pnu zEwZR4v@WMiXnjt(b-lu(RTizbXbq^l?u-o9@@PkP-<_^|XNfVU=9p({&tn)2A4B!m z;yPi27`*#;nTO;6wP%Zr9Z#t)!Jaj;PR>JDBwRTUO@ zuJw_bhxvy~;3*0yzLyX{!15VIdH75UA)3#xX@nr5ZLWIb8hTDDCP1 zlH^v*z=4mu16ph2;U4LQu5urvsX?$YmKEXH2Sbz#t z1SB+_fxvEhtNdJNJ;v&COgZ10(+tX{_sV&FP9Lawp)Rgr`FPV?a5kdptkqm{^TiDC z`fFunRlb++bd{BrVJ zSr{Z*tr)ED69IcE;JFEDhbiC)%_2?`S!;AurQ`A>sj-XWyq<_97dRX$p$ zD&Pqc`A<-5)@+OAtw~`@h^2_NBV>Y8g;(s5JQ0t0uQ3TT$}paVrB3(yjdOiz zuhISDW!$m!ysxre`e;<88RwALBxq3;`2cj*;L}e84==9VaA&%vzwM5^ARc+ht9N>h zC0uCa2$mr2;)iStMBcQA7-|JuX@BAhr^bfU$}mYM4d0|s^QbSnC*D}(_N32$!(E;} z1yiMPmYF`^iwydQv6v{||iqmu}_k@wn=KmM?J zY@o@P6s3o(>-pXZ4C+N~``;9ya$*@!8s3kQP|YYW&}#pT*%EnPIQ~ zKPE@w5t-JTe|T{3p+9r}1l9q6YW-L6fuAu}It}6USJWXkb$HU7*0rSa+QaEfDz87B zfgJ$eSO|0V(p++1cB!pqK@5MDTl=*ZgLwOIE8 zA8!w1MkUrp#YgoemDm>|&3vO6GGh=?^27j+Gt*s}Jh5xsqL9`l7~ir!dHR%U3tb(nH{<-739U$~3IfnJUZGprZ2<6m7+?wxT?yqHUm2D!RXT6h;5-S}6J%WO<}gbfzfUWGR}5){j(_S8YWL za4d>ed;*H*Bq&;hUoWPDxD9wrMK#cCsp!W?Q}obRsVI^OijSA_HF6nB6&t1L@&^Di!3)ZNzJdG@V|fueyzWT7oNPo-4J+}>;`>;5KVx43_WQsuazA0e4|L-(qr|b_ z2d0pmQ?egpKqdQSz5M;wLdsoSFaMys_KPgMKmAcuiglA^KhyqLE-qs8AA7%#5#c0V z?3gQd#Kez8BjVCU6oT*IjmWGs{2mRh3 z_S%fTIDW)9fZ%|~!~tiCG-dzXWzHB)(F0$GqG?c6dOL5R*I{iVBJZWW^dSw$K$gy6{!nF@UHN4TxNF#4^6Er zh8;wTF%_vKC&PW~R{mn(P(!bB&LK=;!tNp5coaqn9^mdF%QoX_hOHC2)b1hJI0I|u zV_oj2N_0MjA?V;(yN6)m12kpL8mR~pf56>8xYy{L$1unKT1+h0k3cWkH{_uSy820Ibe` zfYb22;k9RR{r;JGOT*K@59@sQg1P>}UQCnxZq5>1|6GzK{V{9u*b}R{*9vT^_6h01 z3AP7WbA(I!W5bY}dbq+qmV5WnTWc_TYi&-(eSBnafVR+gmbFJnCq^~=Y1mC<-)h+- zBp+>7VdN{X@@a>D9KnNDUx{;m-LiKG@#SDn<%XPcOwr@~)G|$fP{WXMmXEuId?&}_ z*MG-ptXPfx5ucuugXQnBImj$VC9J?c%ibKM3_FF)!Xoosq}C$y*dCnCiC;qUD@NFzv52-p5Vlc`6 z+4p^Eoj#o#e9V$1s3bJANrXcT1kXy5v{7`KlR*Ij64`lQ9BjRx@w|K<+ zD(vag-#yloDr7t@A)~?ydD)5aq9iBV4tco}DK7dbBE<{CB1K6~o;|>(W~;r=*!cDr z!1!_kW07>k5F3ja@-*24jNKS0q35)|#nue0!<&uSi1(E-psRCM*{N3rZDspvV!fJeO6^y3cV z`tg&oetddP>^f}hWsRi7uEH@{OpAp}$4|vI_~SH?RL!iHWIl^5@R&{O0hQ(FTj!6W zXysK<^lCG;qH9Ib9hRa^5IRy(UbPi%#<3{srJ@@W6m7w;>ORLH8jh)GE2ykPfBI;O z-usVG^rtVSR`hyNw8>Jm20}+F%B!}b0UV2>%`>3rcM=p0;n$fKSa?iDqo95KKycmX zMzLrn741iQs5Rj`04c8Jn*JibBvxZoojWys6Z>1erRmH2J1X8ij4`7!}rE>hR$em7nb-XklqE{&xTTw{ho|_8%`|UwqdQh{9Ph zo=#IsjNIbF-@EJHgZvIYbJ2i)suh1rtCGI(ydJ(<2m2w9E(wweWvCyoN$A1W(m4DX zUy?m%!ynbs&sFmF2VIb^raU+B5Ct?rX2C|WpEs@t;@45egEF&O zZ@7VnxRM28Qp#3xhvM8N`VCDG(`2r}4=L~RPc6lmY3;^rbf3bI>%Qkq^TIEx+4}B# zKGu7AA-({=sO|6cu+lkwn%;+P#ERPx1YvIs*lx_mC+LEe#rm|}=un~4s9!hH{KRYd z=s)e7D3`#d_{ogjvcYb;z@T?YFPIxcneNhq$XP5sI_n`#e*mB4+`${4q?>}oh_@2o zw|$kl_*Qn)89t<5!mZ{{a6P3@ukzEU?Yzz4Ru_7~L!VIF^8itP zLB+6F?M4rddZru{gMS`*D@fGI;m1CBL|b(<8?0E^Hr>l4(7w}{_sP$ESjDG|w+PlY z$E}VVum!}I*1xcJL;eEXU}=Z3AyH*XK0fnx-gF^1y`voC2Wp#OzISM=-cVZvZ{`-k z$4m0kQS8h^F4w}^1^E-*b!VfiabMLd7?i?%C$p~jZEUXC#7b7ldN|Z;kx@5)El{w? zsGrY>Sh#nQar=BeFWmkfY!Btf*UG0B)h?J1$uFZTh~@^L(!v`%nFCLK+)E!*JKb8} z#|}8QUuE#&I3OZc6AqbfuSgF|stt7U8{>~T<3{eg$`bZhp`B5jBzzRw*lB*T>SAb{ zKA(9PXlg3_R-@V2Vf2uMn{0q6zY|+`?JsRZ5s5bOz{6kViHS|>aM=1Hu=!&T@KQt5 zS%GYSFb}`wvM@HO!y&L)0MbkDFXw?fFpRqhzu_Y_xp@d~4J7@K;GRS7P@Ee`ZUz{e z&9m^su^C8%aM#^D4I}yk@ZlsJ_$t@6A=DBGYmqLU=QF;U#pJ5GPry%nLHSM&zUIDy zFS(|-@^?&Wi=2*MI#6MfKpYjzysRuk7$@G@yk_0mgq#H8TinpODXufxQ-t3>VYLv4 zY$3=@w$S@oa5u-fOZ2XXf=vnpoH-dS870tDC~WHf^Us;m*_kD z$P#WKF@KMrQ{KT*FNgDQV90aVvD-##ZG^D~VXOgf<&$F>s}1!Q@1A*BU{r?s5{<=c zb{NE=80#z3pmAqhW3;9Mzgf>49^y(BNHyCxlkMw{bC>Aty<`bDkeDA_h@X4nKci>> z*DYi55LZGVVys8W-5ckIu}reS@*rj_eokquO6_8ox9}PF);IXs9!qkeguv_@Fq~vw zGT#!h1ly&0@zgJnmt)NIk?$Hy@Qq`A8TJC~K{0ob4?(~FCYOT1VgSc3^QS%IJ@jX$ z=q_71TEwe;C=@q7Zkx3(pjV@EMAqE7XEyzBI&Te6`5A79TA3r!O_;y}4AM zSIiSpQJt6g((dQRv6x&T%a}ow=;#eEqK@m&Q~LSS9`nt42p`3s8d7um>x=d2Qv{=x zXqA}yD>(2PrTAzxknT17FuP^ghuBg{rQ43qgZh9h<5&A|it#J?Mu$ypYxiON>Q#(i zU5<3he)rY@e)jAA*fY^;>psj>#o$aD49~qpJF$)i=BcjFEHQkw=_UHq%`%j=Z}n?h zxa2qK+AsKAUOVGW_l-DPiM_-B3st0hv8V0J$EIT}X2ey0;XZfmk5Gsc4rHM0$%RJA z&FKsE^vzgy06(vO?bv$1{yIjAycp3E=lIhe0jj)*-o;SU`Y&qwLl}h+eX&ubY}NY? z8nEbcNH@T9z_*k?z2wA>a++>CUcQGZMII|ME3y9oD9TYf38m1L*eO{ z)oG`7I#r!!Km>oi4>G))_m$z4O}hC)JXDJD{vNV^zYf3ioRh%FeJev&nKxG_P@p!!)Z)vsc^J#U;0SEs2G%SItb3q_sbqA}dhB*GV2^Wj; ziMI{sDtU8l6}w$MtPVY_W>6pDjt_`P*u)l|SpC&qdp|_`jqf5S{6Pr7?eZr6+U3yI zuCNOr@0!cSJ~q4#ckpKNZ+?I;X3SE)IfF1#XtHFk`vhi#n|MZd`yT=3RrY($6u z|podvjKcjzZDD-Ole1`oZ8GPRFPnDUOA z&)|hk*mm=57RQ?^Px#MU`!g}tiP#t6K_EXt1FvzZCCQq9Vm|f_rGR%oTnV%3FdIBT zfw2Q%6Pxy~Y(1RypMPmr)=mWc1Cgr#AnE$-BKPNU$ z#QunG#AwxbG=a@LOO@s^|DiO2b|QA$7^QD2GoSoA6~DYpm0MYLBDQ?2LK)`&QiU?C zLfI!`)5j>ZC&$EXWUi8e7!$*ZD*Q9KpH9Sn4YZ8bP|R_lfLu!ePiz6aK~KcKK8An} zzD}5C1)IBt$Ex_xGo*CdSfyK7`u|s@d2E$tEIAR|h0QreQ@%rE>F=o0JhnH(k_<1RF&qjRhm!J6R{lw zW3;;&?50bV<}v>vBD8^=i2V~vcO-vZ>U)K606z5w(2RaS;u`?3NpBpZZ8&UVpT2w| zy5S~D#$O-#u74&fLswj0`}fP3OgFjD#pnH$z4G5Kz!>6pA^5nwyH8kq2}ccI!gR>* zKz>;no+)^FY?F-dFgqytUbK_LJ?3vdqh>?K_FyX{tB_SHb)lQ=Lbsq07V4UxU5a<7 z$n}_jy~rq;KU3aL|8tM^cKYr{9;CVJ))ey~-Cg$(a8x^R+S-!Abp?a#n1TK+*Wk`P z=mn*RD>}GSUJ8}A7!+hD%RKREOX<^5zYnW|q9kT{`72-PV1U3Hd!4vHU{(%f_`eE!h-Z=*`x9o0m_`?gfwDE58&v|c2c;;>X zIlUMt@fE&T;$GU1U8d(8@f99*FYPXw^7`6Ud@F=Fv+1XpPjN1tYTQjL*xjkRN#f|l zz6BSpq(33@k_726B&`t(1EQW{>?@((ZvR=uu$0pMnHElXO> z(~R_fV_tW$KJP$@QPQ1Ws+SzV`d%_i1E5Ryvwd2)4DSPfa&P$tzH%pozJib-8@hOyrsIs(jSw^;Z z)f>`bOuMZU4+yNj25_-@v;Ti_y0(-Dq)pW@)^cw%r70zSl_eS3{#88`u{gXoGt1n~ zV&Py&R%qAIneAc&-N73c3;_TJ5^XDeo@{N^>ny9KiRq4S!LT4xjvxL4jS@7uY`dXl zX||NI&tougOCCgmsRv(J!K887OD9tVvr>+4;b#yqU3rNxsntClk{-z?Q?FuLf;m8t z)SoEna2}Zo5H}#{s?Q2j8K!& zJ{TtHnb~A2haVv6x=#sHbt2PqIb`DKJea;QOPG2Rnf~|*GG)QhU|N|iOnG>S4Xf@? zA170dV)_<7TtKI2B2z9tFTqZV>4kHJsW*|S>L19IjW~zuOiZNFHt(y#8GuuO+eU3X z^^;~nMiDOfj4~iYP3Z`}bv77PXc&%+E`zHPDQE7cUFVXX9QYs<}*UALZamK z8BLu+TDn2Fs5m+G%Q3r$doo{*IVIO+`}FVT`ixe-(fW+GUNRbiKH(3xikcFMVBuYEK3wn||Dv7`5X=L-sNNqXeK=(7V7$ z7Q+i)U2vG+qZwWG^6 zuw}SA*&EP|ZA$E&6zenE*(R^C-p22`D>01_58mJ-4m>(}L? zRGwGA3F0>vfEIujffj*kpc-fyXc=fZDE^~{%kh>T*9M9hmwJtLF0<}-h6XWM>;yX$ z*qYj_!#a3{$M6@}@O)N-2xc#)0$8v8c9BjLfv$K;V@c6TiLHRBsM(d-630u-!5!XxknWn?$K8G9(S3# zIYa8^jCRXK1zlYbh+CE7@hK}Hq@57=*1m)-IKol6($GX=G_hKr(c-vm`Op`ZyX6kW z*DyH~@#tn!QtT-H&@t%6^4#)`bw|bhQ-FyD3E>>yP*4C(L&lvv^PQ1B_Em{}p>imN zxReV{w7Ei53{?qL1Tq8d0Yw!V_TGrMxaUfgH=>|*mDMPshrj6?G^lO zl(s4Q=+oUX`KGTv}pGldB zR++Sb`LDOJ+vSX&$!zu!JVfotUuR(}kM$cNip6Mhh*Cit*g_|^#LgC*(OLyAKtUNe zpbQ)m1KSN!j~z_xkml_y06}ktlH1xqSyJtG~XkcYMi@01-`jX;*D7|IqB%~cBL z327++0k(uQIkt*~u}veR5hxS>U^a9Zt{AZ8p+)reEdDkMwy2I^i;~SRUm@5U;7t+7 zmh=zwpj;gfwk(Sb%D|xl7ByriAiOK8c7;VeUXD=<5W!Yj*m8*p!x-R|mjqj6NrkNy^0pA_mR{!0ChBekdT@sRRIiXIJ9$vp z6w=ZU0&EFqa%>FIk+d+5DhHu+_>!acof^ zR3lf%gDp#DeI{iRTeN`LRX-kVW#Wa-?)%!H?N+q_~LMOJw&K8@|+6yjV zOBpzz3>*>z8||t=4T^+CyuPyq;(#r-(!y4oTnTrQ7*SRWS2;`%Y$+>m6DwPe&_%o@ z$%!pxRU2EZJdUlLE0bW0EUB>dG`F=dLIK($yt7PH41`3*P*g~?Nh#bcq@@J}*b>g< z*lHEVwl*>vfllEMMj?3wwgRjU4}JbN3bv?@V2hH?|6C~8s$!uywx|!VC0ECTElXy7 zCS?*^w1D}|AC3oGQDnT>FJCsc%2~e=qF7>!Qi(0L(1|Uvv&Ck#M!^MaDFX+TfkR?o zqg^#fz4_^35wGv8fH)w6t+cRJEmy)dBu13g0$UE#16#_<+r-M)1P+{-U`g?oBqz3% zRc&mMDUPjfd0-6dFzgSKB^9>5iqT8hq=2>v@62G0MxaPk3~555WlG_4AuSakz?N_( z$5xdvwpEkS2-FCFP=n+V*eYOkdV3Ln8wFcbN3cc7W@(XNE1QMl*rGnbmRubVwk(_fX8zv$*ToiN%`_@V&l7f5eNs)@)b;bXQBX&9 z1a*{bKKeyL9mjngsG~kWom?Fc>MWV{nUqP?(E{d=!s9{R=aETck7?NvO+GOgA&O;0 zqf|yTw$K^T#LkKhc2)*%RR#_z14qTcYV;dDG1aax#iLK(Eo3KK>8<@E-ynPCN<$xs z(WFe@;xIklAeEKx7AvE#3Qj~c%0*w8lAIAu?5E!Dfgdu(BieC!lq5tnvJgn(KkJ6m z(qxn-mi{uTGD6j~NqDCkU<}mY4A=??iH3wUMTN99fdE^=nH*dEW`lR`7BV7$^Gx4a zEp2J90fEH=Bu1!BI0KzRLftH&heN^{j0y=ikr>e)VQK0m3r5R?GuSFpoQ=h^p;^jp zYvFGx@VeBf&tTOYHLD@zs2R0h>i$)I2CKpd#e3%DLIH6(CB;K08x9c5)dUc$2;>;n zUutYUS5;Jhu2oU}xmHD6&$TK#1Z1CEjY`ek-yaXMzaW`5^2G@OQoaUQA5SWmO|VDY zj@Qkl+YnFH~aTB5K~sDM$i*c?P4F4Ws9&#LuP<7KoyF%W=7?DeP$D{>k4stu#AN*t71q1 zH%$euz@1ej#_g(NTi)U;Z`B4aZ1hD35<1mYo9|zZy*?Oh=~3t+>x|E zF($_qZ$79Z`V;2YE|ZAPUw9+NG?QkJWU$I`klzHbv5rM#=}w8!4VQ1+B(&*1~gIL56(yNwF>BHly8Yh7dyuQQp%G`JMxpD(^+| zC$p+=gZS*AYPEW$;RM2O1&~2Kr zi*AF@mCxGgGxl4A*t*i>v5*WHVeuer7f4lVpT$5iyCQ4}dLpVLf_}&^Fh^l{e*nD_ zG7-bp!(^C^=e-DVMx>LUQ`Gk`*q|F{fOU_MMt%)LQY@iJse~dMDo|9T z-CM-e7MpG3?aIbml#L@|V|?IO4N{~*#OvW^Tm+ohO6%>bRj!2FNDQeK-ct77MSCOK zDPwO_#@^WjPV`kM*OFxQRRmzlsy4vL@r?)fRODW5CBX#lLBm4R2Vy&$Y?Y+^9*mL(wg=v5a6jABzfFyk-}SAg+$sY zL*izQln(}kghL=H;wE*Ma7i`ffFjLXFBVK{DCoc>TLDbU)$w4`5?-Ha39rwjaDtNt zG_SmQJm8%5EWt^uqBCK|%>pW7G*UjnN$~_Ht;TcK!gE@|88^jkM!VGvA(jy3J;Y7r zy)DXnkq`x8mvm`&xJZax4bL>Qsl z5I5;I_?+6}SxKKEZqjFfwWTXf?u?t_f}yxcCMT@_S)O{%ektN6nNq>}*MC4|M#M#Z zFkuPikxY0MIGN4AjdxgdbGa3+U!o-lS4kkM!?;u&@-h7M?A1_;dR0Z9&P zO$u)*6A~$>41sl)ln-VL3Fm^OfHid&G*b;Zph&arvjS_AUl!t_R%T!z?Nz=vs7W)U ze*Ce7*JoP7>oX~wu%-dcHJio*>)Fo`*0gFI*1e)ZBjppu6i*n_YCLBxJf{_$uokx& z?N&2{7)ppC-UF@uvVUIP@ddI zPXgBTB%Y2`5U{4(0BgDpK36_#r_TUu`V6pknA{0#x+K#}IN7YM9FDCmGSTLHhy z)$v4YOL%>zCA>b9!U<~{(7b)acwjx}DZ*OKaI&Ly4HYpODW5Q=c*2-g<2h^LIj!J? zwYUv)K2$S=SVENd0BhyFEy{b5ZVJ*Hq&htuQ00_S_(m6u;tF8hL}G{<@H{;U&nr(h zC{J!{5zf0?g>x4b1gz;cz?yD@hZPM-nR-9l_#S*H`$N(UR(Y>5-r_s>lNYci#R z^}R=E&qxvVQ8UpHtu;|HQYNIaT*w_2Lbg|d0M;JJOy0}gRV|DiHDojz13bg4vGBKR zATVngNOD+*r0|xgkVq3{2&~Jce6T`DxC$f%tf{-8nQF)ZMVga8Be2dzK?kha3cy;f zjtAD3@cK+kIKJ7l7QmVYG#~ue@xc1Cy@WNb8jsdlR0MCjxJVdNJYh_$@tn2roK|qc zTHI!|Tg?z+2{FWbfVJ}87UjK26$RntnR4((EJQV5Me96V0jvv13{eBHrY8Yw<;e!+ z$!+u`qIH>Y?xKQ#HQfeS({1oMwFRu{Gr*cYL$tPZrOBPJ78eY4LdfKV^~)C}fi;;@ z!MfuKRAxk&tpHea7A9bA;ta8p%fg~@oP&wRxm4pasJR{%&g9YBBa9tcWHcJHd4?=s zO4i#=5SXIv5RIuLr7%DR&0opShETbaEmJrSW>!^^%CLwn;3)$WR0*eS|a#*(tV@Deq zjmA!%VeFBTF~$f2vqnLZ!@64vZ|M;d>7@*Tb(542HVX;2fTVymbr&>K4LP7l^V%GN zbrlLaV9iz_TFce(z}gaykH|`ReI|ty)-<4b&f4+7dj4U;npTZR>vAe$G*UicO!0&< zt;TcK!gE@|32Sj1J{_xO2(g4H?*Z1zds~$EA}thz5m_k^u2AKaQKS=6jVpk44T&LY z0M_&*V68mapgg%PB%F6gg>x4b1gz;cz?yD@hZPM-nREkbNvS*H`$N(UR(Y>5-r zmwq})v?fz3SnunhJtNuFN6o$mtaC-lNS=_!0wH%43E8fJ0M?wRpP~~|CX5~BWHcHp zc!tqL=zu2Xg21eKAjx4}C55+C3yIWFhQPW&$_I;tgf);9u%_;UW~w0v6ln%OA+XLs zK?kfQ+dvP>)$zdE5{`jmB^)2Jc>q|`fM(G@j|bL;j}q3jY8=)BGLfl~@(E*#CyZ$| zp0gI7(+W;li`$HLs~IYHLJ2X%dw{j_-WKJ(h(T6wZTd2$;)iD*qv;+2sK0@idJU`@Bd=gMd8^ci4HpCMX1OzwoWa*PdYGC5)W zPoGKxYci#R^}*kwGK?T&DmP#qC0H?nj59=QE?l3ow1OcptGkLV`7sieO zGGfeFHL;VDkpl(-v-W@_hjoV7XNyNjBnw2rx>w2v`-Fr|kQA_{?t*5jAqNy`ZvVKz zx&;Ltux2aZSGhVKSX;s|=&Xd-XHqy}O#_;%zB?XRU-mFzt+ILSPDm3K!LTx<5XKZw z7}IJzXDvLZ6`ZgZw_&JRHA9FcM0pReR^Hp9ycbd4Ymn+N8m-DHqe!%F#TCH1jRd37 zPy?Q)Cjo2a$p+=gZQa6ocaL!HQf}*@+W>324X~!R@Hu@3Sers@U0J6S)=CE()@+Fr z*3nr>U`?h}uzutq?HQ?|9aYv9U>%TlL_$IuqeAXz60*G+1hCd1GkLU5_%PBU#X4G9 z%xG+r()=(|BLdn3Ai#MDL~x$s!w5AZM$e@!<-nkcPl&jtaWazT>E%?c^JrAkPonlhw2kSFDX1wz6_ASvP| zb(e5SHROOI&Gr8vm~^3_1Cx^Ls0Zchcra-R$H1`?j)Vdp0Gu?SId|1~z}dc!;G|XK z-GP2dx@@F;f|KG2PFjuUtcB;af-`Q4+l+Rr87gyA2{FWbh?~lLTa@=AMHGaWXI6)S zVj-&esymQ@3J^CvBpBTQH^53yB5o>AHYiVSqbC7RdJ^3MDv0ht6~!C7=r;IV`K+Bj zL)@g#0BeWIopDn+#)dVSoUksJr(OcA$&?D#z6Vj65n(yP{VBLu`bO*YHG&1WI zjq4S%y$=Ky5zge@0aF+|`pJk94W3~%k&-c*2m-TqgCvKwOYE~HLrBC!GYPDFqBs9XrriPjvuOjB@rQAfC^g1(O|hp@H<23oU?I#Q znnQsGQ8-qO=Dx{1o~TPODMI^M{{ zWMO5q9?V>OpoW`m%np=9*u3c#5p8U0(xKevNt z@O_nM&ga{(BO#O*W7a{-Lesv3WBIz8G z_;x+4It}^f_OL~eN#|f{O=S88^3UxdyWm^1g-OO|omuo7K1HT-SRIN_`=l^cbI{Al z)HsVw^ca|O&ljeiM5fkkGO5p$!G-4u6Tc)6lXMXI=k_Q1;I&9Pr=1d+KK@ZM_2Q!- zs(Tqp=V0nhWLld=rfkgf0Mn!t$>?W&Lr_s9bC4W);GY^b8Qq(3|P`mLQiKlQj#R}ZW!85MGW31pKXUHp?@9d7|Mg)d@mI_nMvqv zJygty_6o6*&>LEqnWoZMhg%adubICkPOHV7s!1&n!ROf|iZmZ}r_Me{qz^#~v(NEX zVWplUNqQ*t{31)%j*FCf!_v-Q)R}g!E~yY`rJZ{n`R0D3ZW_z_jk~5bgDwqEE%IWy zIA5CNN&5@mb=T(aW-CX{H&=<~|B@=vd=?VT_g82t(Hv`|&0v)y63qujB%1GTOGq@o z0=d-j)b1;W63wqjOf)~ot6!#4w6Cxd&6j#qqWKk$MDuH`MDwp%iRPOmRokm?vJ%ZV zS&8PGtVHuoWh&8p6B5l)!xbYE%`cNg^N(J~yDl-&9M-WD%`b~jL%$JG*}EU+AnsL> zc%nJd(@#%qg-SHP#!58*nw4mNMM9$aHFl!;CM23)k&tM<6p7~7AkqA5iHYV5&t#%G zER>jNe#QSd(cDI&l|?=*?Hu=28!Ui%^qoSY-5_{W*8u$JmjvW4Yv8SbEoV66IVwN= z#fj$D?IDt4ridFe(frY~*xwxX08gH1j-VO)o&>;?nPlD;qA84MREU*i-cTVHNt$ck z&MfGpai;6Jx)^XWyAX66}!q5EOWMFIYn3`HS`5EN0Q8B7-xRgpW6qB12|t_~j= zNBauG=MPx~aqQ_2pGI(1R zyaNHhb0v!qNspCNQR;!`kPNQiZm~qC@9J%cN|3-JWZMfo`51tSp75#BZ>+r zbn;bWq3E`eso&JqNf-s7R)Ms?jcT8eMSjrN;Ee~}=axNQ)Y|O3F4$0Ep z240NxkpU}wPogSbW9uXh)NkA_5-F-&&g&*sP^3x+$6%dmayScxkv&Lzcx#_Wn)l9J zxf09+@k1IL>W6fC0;^+BssTk8o!a0-PZ0Z*3n&{!FX> z;;ud<1!4q~Y2N$HD^G`09BJOguR-cbP4jNclEz1~g;;6c4gHc5mNeVD-Q;h{@YIi? z3c(Xany(Gcg;7-|cN|Y`N^lR!s8PuhRzHoxh$j=$&3l)Qg{N0eZc=xf3)SQOEJMgR zlDga3G;3L~UK|1neI$Q*QnyHoIiivnEk#oICr;ztn-G;~>|{}C&q+_{Zfk~j5S3bl zgjzw+3#vx_xS?u$}nK!5MttD`RE|l!-5$a zm39A0^5{WT;>BRT&EfZ=3Zg0pV23h#TKYv5Q6*rRvtxopW&Xn3EA|;|@rX~58K}w{F~=uJ4=es_Q?)w^C<{qh zLLwSvAt_7LZtw^RXMtc~lOvE=*+i{>xus0iS}vrqg2kErD*4H1e=f^ljvmO;$_;a{ zJn@qzUTQcpNqqr}Ju_If98i{g<1}ZzCpSkw-_PSWhkP1Hnxmc2H=tiYqy5dno`2LQg9WE-Vs-~j0GQBI_>N9b!Nb|&A4#SMrs*cY z)M4k?k7U?o9EsT;dHfEGA;}Z7@hL8L0TSN<;7)#CI5|n#@&OSaAQdcSs|kKem+u!5 z7u!r&ws+Er_?iwPNJ9we!Lclz?O%12*hJj^csI&1ZhyQV2WG=Ng2on>jiXV%W+lzW zPC%n2tbQ7W5rk~ES#iZ!Abjlwf>3=Ovu7GLQ3vDHOu<$?i*cl2KlncFod6}8+tIfe zx>ffeQ5{gKfK36VJa7TzRX9T|tQPW@reAkNDa&YV5)x^q5Tw7*@>u&rNVr<+Nr;6l zQeC7~NMjp|ODwD*GqTTwG=xABV!A zPNQfEffOwV6ipb?Wag2Qv0%6e`R(?XTssyPNVTVIvULYd0GQBIh=ueNJgnR#3G#@A zbQ5Bs!_LlFsJvm%DI$||PEoo%z7haTrepwqqK_^-nTggNdD5=N0wIwi)jXFps3Aj0 z*aI@+VXl!ADQ7|&%UN6ioJD5jnF(pg1xW;O26zRxtXd8zO9A-mHw3^Y=Mluir%WqI znqi#~J}FvoOVM&b(FCvy)XZ8q7JyeElii-LU<0^UCN-S0Y1Oiw5dch20l@SW0Ib|3 zsqh>ZlQzq6N1UEe8}$0MlgVHJ6PA;D33V09LbdYyj7= z_ER^3x`QSFOz0^9n4W@%m765#9RQ}A0APomod8zeumMaaCxCB$D@hlEOvwN|`6=4+ zWF}8{R7<-WYlK7ss(D4ypaxAyxC~@O1P+lCX=Fkgn^;@`Tux>zKqjQ23M3K08h8b_ ztXd8zO9A-tmj%GNDCPjLho?!irV}DCMGI~zS`H|h04@SG8yAcP;2#_zfXl%gpO&1( z+E3k7=?;N!51pq5I zNg_J{Og90*4m&#mth`|Zm`qLpyX2vn(1jpVG5}xtJKFMOCPa6%ik%zVghV<)(7XVh zft({D;V8%m0C$rUsbNAIds$on+(c%~r54iA0+I;e5O@W*tXd8zO9A+*mju97DCPig z8BddDLMH&2q6N1UEe8}$00%(L>GQ_|@Po)Wx91VtU5Ikle(I(_chCfg!1NRVOi#hX z%1x584gk|l0I)!*Z?Mz6Tp|rLo)%uWJ(6$a-^37z}eL0K@GV=!g(Mg09-{*jC}}ctYL8hZ~>VyVlJdX14#sME_emEtXd8zO9A)?F9?7$ zP|N{fnbe*%=Q#nu6fL-=XgQ#00+=QO* z77F=Glbk#H{!^(+OZ%P zBrq0=!SMPdHo`e;;Oi6{?tGmRC;bhiDR)poz=WPcETpI4VdW-CEk`V*n-B{fc6P=> zj;2VzG|5Hs+_R|k_g~VR3*4&)p9^t3czVc1;9*XbpSZT)1Jx8Z{M;HSp|aJ%Gy5A#OCB*GpDLX15fayj#_6Q^ntVU$W@5+QAeR&AXm zmc<2HL@rPlnN^6T`cb%k5|zS`fofiZB0DLEa}2vJCRWIrdOOz0oYKVVumc4N zQhNAKghNcwXa(V{LRQaNh4d`vDk|5iY-#0MOpxgo=DQ|QH9zJx(Vd)vNPlAD3{~fo z9|ZQNGXZl;UDh1CAwC6>=kY0sWJ;KVxc?dW){%TX`vHjiYxl;k#;^uQ8WZ-$&ckKL z-q?@Nro-iV|Cj8Iy^Y1}RAfie>4$q`BVl&{y+LHP{(bI^UHeHv1}AL&-`gAeM2;xI z>BWCSVVQ=iYkIlu8@7!(!M(AoKEb;(F=aXV-q?Gdocp)4H}joxIS+;jJ`&--_J25U*a1JB}Dl$SiFmHQAdfMa8URJ@xr#jp+TRrvO*egDcTVc5Q z9KC4UW`C!9V|U_#kYJosZ*S~GY}q-@8Isfd#fJr3158sXvsnX_C5HwxHonpwtASi#ke(q1M}Gfg00r! z*lJSPlB>gqxRS>$OJ>5}*mwTJc(C<%x;J*lqe-wuyQjj|-{RibiP#F+*lH!Vg8Kzq zRl~7Wrm!Vf$Ac|PX2Ras-gCx-t-sT~vG0-xMnZp!c29+^zs0?=6S2koVu@SK?=?UD zpkRwxz>a4k-{CQ`CRfLUElXy?-q^299}l+1xi_|*COzuj*b}LU&suDe?Hhe>Yz%g$ z6@UxlmuZ^NyVA-)G0vG*E_6p)1tF(Q3~#1YOYyq28c=>Xfk83u zT%_!(3Hht{#yE75!_rnN8~eF~?vLI^}9Y z=yY!E+skpUzi@BtZSL_Pdz^b?PYdCW#22H#bZ_j*H7KX{#-7~9JV&f+JGlo3NU+{I zxmg{Iy*KvcYH}KNlLM3iN_Bk3*2z(!^^==;ecXFvtBQ@gCbvlO9g|y0Q|yhc^fq=( z?iA*_$=$-7d~a;kHlu!WFPN}5_T)ZcKDm2iFM2>C`cT64DZe-N2ZXmz?a7Y8=Tv)R z|8kGqLj6n~ia!T>C6g%W-q=Z>10Hw;&z4ksW3QZ=;(tE_FNjZ4_b(u zHTMW6wc(h|Q<#*i30;q*anll>YH#d|P9G0AKinG|VSpxg#!clIJ8sf1&bYZ;o_Yze zCQ~X{pYnTSC&D_zMzfV;z2{Pmu)ckVz}jRQP(0N3NLEnNy|I(R+7g~>Z|rN*#{=sR z_r?aS=?EvRm1AsJ(=Sd~-?TePcYsW(V13H(jhzVV7EJTvAjhRW_JN55^TGcTSciz? zIIOFAnlzs~c@M%8o@#IGz=ZL@`oq1kEt5N8tsG;+ntpM@`v2RN1lD9q1?y9OZ|p=^ zYc`rWyHW5RBCKECF0jrW4r`BswOk!fC&Ut-YH#dcoS2{Zj-kHU4|}oraBpnDnkIL` zS~k<{`0_iVEy6V*p|tiuvU(-VNJg{VST z$&?D#r~Ka7iLlPK(QIXO@42*!uwM0Zfpx}kSocfjQ_{V$lSXSxc&fdzbB>P()*tST z4Or6=PFO3)*s!KwoUmT}%Oug7OsQaf%I}Sx2ks$F2CQjvC#;oYY*^DTPFSyPNdjv!rGoX}=-$|gA4UQe zM%CWfuQm%tD+tOsMm3%$-y1t==(S`f?2Y~F{_#Nb?{;tOkH}Lmp*uj!rvlh1zc+Sb z+|0JarDh*g;K2OK9fC=f+dQ=SnJF2f$uiB8_i`=asrJS``_=J)^TWNd5eDc8XWSe; z>3o4a^%7uB=cR)6DZe*%BCI>nQt1v@nc{mcbrIIJ{~@qeS=B?ZRvFJp_r^{dYAxZZ z_Qt;S*mz()&b_f`SPAK)?v3rCM%HvqkCm4`v^TbgEgy4lY>y3CQ@ zrWbjbo{nino<3e5dv9#f0()b7n4XTku{|n1J^9|)qM^^&<6(L__Qv+8^z@UvH+C+c zvX1n0?v1@0AIp%`w^L1+eDvOlSedvDI=HX`J`y*1gd&_>8RQ`rqE(a9dP(*NyFqXr zKd23G@S#V35BGzZ_b99tAcfvv`3kaHIVz^TbHtnWTWo-0qIZf#T%tUAF0V zM_yV8*+#plR6CI6j+~Gh-i4Y`ZZ$UN5iLBO>R|F%f3f78mgYaD6&@^gFFoR$v%fU| zu&;10P7ak$Il6YT=`rWKVn3u%{avm0S@&9OLE8mQu=VzKN`B{vR@>##x?&Tx@IR(= ziH@y}ysq!dKdjAp9Xqn7Y41FvrS)sU1M8=k7T+JAV{ePf+mS?S)Cek;U7>?5mV$Ie-q{09x&iPXMUJUD37OB?m+_h^IraCP;o zv0hx(Y6sHY;RS<(gZamg9bQzsVSb*=9XTT(zc|+yXs4-t`b*X(7g~6En=h>wIh#>l zSMzI1^E>^*xx`M%V*@Npm-*OG^%tM*Mo#qE{ zUfQj#;K#lx9Zre8cbNL?1dk{NRc2NxT4^SM9_%ogl)M_On^D!%n@ z9ASpy{9OF#*SoQZ0-S*T&y^Ey#joCXdcC!s9&eX9(Hquat*#B{XwR>HIb+vq$ z@77+q(^b5?=+I%8537ygxBO1r2xLMtc(d?YwmNLW;er?LbeT64U+n5ALrGiS{$MkH z!)EKa(!fI$YysKuBDg>Mb#Rvt<8H-o*kzmCJOp=9p8 zKwP4)cr9D0Uxh>QRo7)uC@ZcIl&!{ZUsTrTA+FSbq_eTLUjujcFzx_;vl`1oaECyo zvCGMw8|Ox2d&v@RATd9OpHuoO_OEEH=fae}a!F$!R*mgV;wxUW8rz3MY3$>dLZOVf zLQs~Q9v7&_%KpayH?DLO#*NpFqMw)g&AtGwscmQMaJlQA!VROrKOiv$$a-Gp z9aXJB)`q$gy~Jyl;+;4Y#Xm~Ldr>leM|HEPQk;iqN)Jc{761K;Q528XFg?6Jrvfp~ zr<>ZUgV|7D>*`DQ&Up~zG{3PUCtH5pSw?T^@&MqwJe~u-wEl&)3+7IA2Y1a$>6<=j z;#SqfEXYV~BClCZ%*LTKvEYknqB*RIx%kZr8azZ3^FZp^#P_ZRcmFW%0{mtHk%!EtLumg>6 z6c%`hE8QSfN5OsQtE057Zav!e`s|eYRfvAsO21B+Dp5aP`@GVx8;4cY@5aJWYCMZI z_I`43(0yJBx+Le-p|H!fT+?6FHox478;IQ*{hI-={ub<44rKcDjZK=qqFK`)^H%zD z7NA?=uiTK6?R76X2uDoR^lqQNF6z^72>JB~kup?7IP2}2kUMMmSgY-HYqfp-+MGU3 z@AC&a&Qgu*>;hxOs-^n@`-#JuG`+MHl80aH=>6lJu6sX+cPcWr_^CR5R(fnQm zZpvD0n!TT$1l*TvvQV}{mCYYf_IsMM@TEhA7im`Miu?K*<&1S%X7j4I2KCZT`$D#P zt6XT43qJi-a}&;s^?eq@PMXjBw(ywuy``k&nqLv72NCS(6GXUQqw9zMEYCDU%L6bh z%Lfm*BYjW<%aw@xj0u|IEr8eDb?aHCww*Pgn^c7}_GH89-j(jx4y<&q@AMhsJz!v^ zyZR6;^6dNG+WXTNho?_O-)E-BAD;ew99)p;FFXR8b0z*0XI0 z(QExH-N&9-{Q&wy=mxFnMd#=kIz~4hWKSs_Cx_5E>hbCiVUxQfzCx*U&20FTnib#6 zo>2brMYRjkT>2Zu?j?u4gI!bh`qIGq=xWnyfUDT>Cu(NX!phb!iQEaghj5#^^4H(=PV<<3G;BQy&LwnI7RE##-i+e$PT1}Nd140+OZTJ-zezA5 z6U~R1#cLO-!)hG9g`3She?Eep>s5L1i9B>h@LM+7!VNq`!2n3kOW=OtYH()^;|}3B z>9U0zcnIz&3AuNH8_R0)R4Loxk)jPvxTFX9*Zd)PQa&0=|9P$p(d4F?-r7ODxVX*7c{$@();e(b9UfL+=&eivZ|? zS%QcCMuy)gDp>z{zkbj^rw4a(>(cPdg$kVh$_2%EC%9Z+*6}`$7kLp<3J=QZ>gRpo z>3)jwh8JQ1MyYMhIq-Fle@?e%l(sIeoIZJfNfdnr!fmj)_QeS$`o``KmMQ-4K9JgW z+5`%>$UCbH8}LAsi&)!c8k1= zrTv(1PrkHU@<{YBURtoBr|4OtuN%NJc?F_HxJXEYCL~w}0`78<68(l=ul_cg+UM8* zV8Pw5KTfP``k#F;@S@`-+usLVjO_uLH$xh&b?^1+WzFZdG_5Ksyuh z%xj-Sd0@^32?1j6s(C6 zz4FH|fjckGjVAZwrMTbxEq;jIgF>|%2V85DoI-wX{QAyP7@>r~d#p&M3URWK%}%#!lC|jAL1~8{43s;qTKb z4`{~n7Crs@gI&76&pY^_ck_Ni(^q)R9a#pumKYoRN`oLb^fLIYD@);|0+^$Ccb{^S zmc&WCR!Dp9mq_pc&3^aA7rXqG4A1NcCwA3_gpSJioJ8hL5!U zi?TRGDdf;rNf|7 zgSlSkVCCXGJS%Tnf)0XK`!1r&VcvxL00x1=r~wa{(iZQWPCOzVV?iAL;aHFi1T8sO zI^~GF?)NYk!bXcZ_`CV8(%>uWW+C>}&{g^aFj=$D_-4Ro+zCo5LTvV;8W~05t*RN{(=d{fb<-6b!m(=J{ z0mB)^?xp=DQyy9SQ9zQc<|H&cb~+2mu#Ajwju;dBHFZuhCid^rmisv-h5@tZF(&qu zhQTF_iOoRFru<@KUR0lFkBV{MaZxZl@B7+2`_Q*>t(|FI!}wS_`Yl6aV-Kx<<=DB_ zZ+J2%{-zc7x@(uhH0VN6q%r+Aefm$d!Ta&U>NjGS;FtWTjvXN=IJ9(*_6yul7?e^? z=|!Iv!+YjLEnJ3?rGxIRswoH2x6tq;seKM@kvkE?OVfS0&8{$}-h8<}^%n17r?0Sc zbw45I4^Itv-|3QOoXZPu7DLeh8*vLN;JD%Hmye;7TH1mh$%tRLENbm7cq1S~v5_8) z4Ym}kJZ-f|X5P*DX2q7x+<7tIkOhu{VSB9tR5{CROC5G?j^pe7* zC7Vt!4R)?O{g}HnczEq(f8|rK#%;y0_aL6D`&K_$qOa(~8wDlAs-X&lWWWlN8>}En zY6ZzCp<@L}ccd9(!-f0Yw>EL8_aST;L5c-S5J4&vYd1@`dS?xfY zyDn1>(${^AW14DJMEG5UR$PAy(KwigW9e9-C&puRY^Fjwxad%f;?C}-@AwL6{Fgkh z-s$xjI?;tE*dv;u6H<6!eU7i2zByfxS%G^H9Sc*)-3()k)9Pl2C%&yZ0Bj2vmu#989K`eV9C@B*`YR6???7``v@F!8 z{-}6xFCGSKXBHoSV8YrNhQFIn*lu~?N`Tdu8Sl$Le*)ks>n$d7BK zvs#35W*ccl=qMj!QPa%Oq=ooM0_vd&4|>gV^!3W8lJnfZP?b7<-^qEw{<5#AI!!Yw z84r?@LWXOOr(5MtsHu05jTqP(cX1X0iCE*%tru+Y_w)xv<+0R2KP+PbaqP(8vSt zKpbO@=oP;b$NpwdXYySn6{L?&aZIHh)5La6`0h-uQkMUY(u2DD6=&cf>eTq&nar^l zS+G#>O6kGy-H4yKY2QxFufr#OBs0zM_=A|2VzzP_k*(AO17ZslFxQ;l4ml3^O1LZd z^G>#5qnbw}usx<1^IlPw!q2Hc&x+b#&t;&3H{SKK7fpk77~L&CBD< z_&Um&6k>B(90?HJ@>Gt?K}cVlsg-R&X@H+=^We-J=ox z*h;-@H=+(mGOEn5k1?@Tqr>cEPP<^@rlak~*dvE;!i9F2`L^pt*X3emszU^_@#r$Z zFwWe`&k0sMDychRrRzr8H?)p-VF#q<6KCfmZn?zmEEI%UR#`ZdkigJp6=X~w&{8R~;5^B3LVh22UN^29>@W{{%=^h5~E zdcvurI^Z`OL}o+l(ai=9Eq-$a#~NqtbQGf-TQ%bqXf3qvY~b8U3%oywN&Aap1mYs5 zWAn#XIOmSP3kIGpN&={7P{Vxg&eHca_owr|1x3iyiW)+*5_M?1?%3ul8owG71;6_x z%n!P~Mp~a+1ov zgeopfHW9?Yom6%_gFZ7EVNk;k&oWaGPKk!+nB%#qth+arKJ0gQ&HHzZ-7IKIe{#*3 zvXm*E$p$rGnCbAfG^{G~ZmOzG$>K}U(oz{E=~QJ<37W*_zbBOuOB`zxSBojmxsyX{=J*=Vp{<@n z9YUcL3;_4gCla@-6sl*BhB=$jhhLBR)&6z7edYwzw`f|bngoKoo5`ST&Kt;|=0nRs zULD;6oL9jHKD1Ns*nOOS=uN-lq1pK6cQoW69%FeEa@ySJGp_1E2H{WV%I#ogaxKPm za*W+|^Z8I?QW2FcWz5;ij(W!U5cbuN}nQlH^jKniT7o4H17XtOHPxP#p{8_JI zs@a_%n($-Ye5jE{XRY&_&-cRTGp<|a58dKQ_8a?rS?|K?>C6wMwV?!j5^IRxcoR7L zj9t39cp2*vSeJ_0R-kBf5eK^Lc)erqap<-XJJcrp#!JYmx@#LPFsNaYAo@hBgxaWj z;6gG&F#JuLQQqh?@@kBRD*0RvWo!X#3gxi51xcEjMU#H7AH@Sg<(AhtZ)Q>1?~|t& zO=_HKRyHPkvyS+S4nQC;{J9?ZJ0|O^z_ifqhzRU(Evh2z(?e<86Og2%;?!iWfkZ4H36=Z7wM7Jyr4geJpX z(3Kx@tpzh#KAXa@<}_=je;M>b=+?J(>qTWNVEo^dXHI?^_^AuT#iKZ;QANmn z`OVS>Qeq-Z`0GZlqR)L*m9y@2;Sj|Q&})S-rVvIyy20muv>7CF*6oI-XDU7c65tOG zPUw`G@)-H)9&_mciX@s3 z!u15!4#EMZ_4u{BoWit+4E8U>v@Qw716kStB7FNccue_APwNS#W+%sXdUWJ^nI0`)Mz`(cj zm@L#lFEUb)r*r$yao8m=>UvDeHCS8@Vr66P$oMT6{Hhgx92AD)$2c25%2>g#aRTsr zBmqAT+TT$4(F^=Inyg}Neu~BUQSm#4`1QbmgkCw#tTYEbfum!}&cH8ZSvi?TWSMi( z1f&UPF`>DZyo`7*Ea``Kd5(H7hs|n>bI|}zJI5mp1UYBskd3Vv0ooyIyUdUbZ!nYj zi$0xZmaRcaN1!$Q21vu_DD&7-vzI~}BSX7pT-9Z$Tr_r>0y17|L)x*f6yD+AqG+G_ z6h(qywg;HK4a~ko%t~v&5KKQ{1~-+Rj^TE-?%uKRqzEl8L8;-Zr0Az8E@LHLan$=Q zMT@WU^B1Yf>o5cXARwKsApMSZrzi1a&xAN`$OthofDdno-Kc?V0uy=JDX=J!Ga>L_ zAUl{!?+8tSj)yV%NyKr}NGKVD_U4IDSY)oRWd+Gx+!h+#Mr-m_-Con%nw)2NS0{^t z{#ogVTBx!R`7CZUw94DKzo5X_G>^3R)ZJ(Mz2TN`!Q~|>&DV{)-KeR zL9{WGuvb7fO>FlX?|O_MrQ&}YWJo%a;T?>{w6q8D-*3p%W{BxVh_V`9wjsTkAF;aw zdM`pqYQeG2#%>$Pc|uUj272h}W(0<=91s;NuLM(c3<~%TQeqiaX{TD?GpJ%ef^MKe z<(=4Xow-&vXtOxAxZyQ})DXG2;aSajhtvo)%mi4Uu@&na#)BLf^NhtD5IvoX1!s6s zgJz(ws<*TeUc|J*VVzKmCKbcJ!5CDJ)T3f1-8GSdV~9+`Z`CLdHwsWFqw znCdgup^hB4_=g&C`d~L<4ZMhHgv0OfQY6s}h&(IJW`<+kST2=g)@bFb5ExoH;$s=N zN#&S7QaPqom6K|!w)@F*SiMq{{ZLyDa-z}Rh-);vDK!I=1hg9(jKeM*4!5XNHyr)} z?J5kpcDr%888Ot^R7L8z>Wml;#!^e;!DaBG-5TLoW|>rt5TaG%2tKrGM9})vtx`4S zXVucdmQ2g4Eu3t#v|g)hsb$Z}iN^J=Ka}Ez(zEP5J(> z#+pNtrxUDAiLc$Yp^A+>XZ>0Uh9I&A!m%InHycU3C^8uI6=sfyR7$wcLlGdht1 z416z8U38YKfT7vaJ=a}$jP6-J9o_T(*!(F0mH5e%*HxH^N?`<*VnO8=qN3(Z3Y8Ky zU7F=8Au1IzRl4|CsO;5&${=K%tWVhM5rt@OTFQ(S1*DwuF%}|3B`~lM(WW5|YZSR~ zuts5CaRJvA9(y;ou27x}-JzZ4FxU!3DKbKZNNrqH$yCOpvk5g}4S|YBKjueWSY ze(Xpz`d~`MmJ#f!U3VOGDy%PT$Mm7y?|2p4NIPYzK^7UXSH)grxJMbRyST`(ao%@0 z0eu#wV!qIM9I_wwI|gCgZTAHowXapC7So6`G}vh z_A+3ENz2#`w_O5}{}H@cXxKfH1(`b;s3xp4?D8C1k7Bsa zKm&a(f>Z#p&OifwE!G*0*muWOxZj{jx+ z@&anYmWb2@CIIv(EH89%d7=MH7<>1DM82YHQ$5cyojFbC;{aj`*I;4uByTgB-I-i)EIeK zCh%j2TsbVvd9a}S`>?7|fqnqncO&N3+*pfEbhpC5ex6z!DC6QlzrUy-uVp_9Qg`C) z;iJiZ?BTdp4;;btl==-U;#DyFtA1{DVVOXAvpUttkF`7Ov*OwvXFyq>VsQY0uDo$u zVJ;H7$r_9nDtju~O8?WvNq+YMXYFQ?3IdLj4eJ&VmO@)I59cF+UZ3T zTE(CYw48M(6CifRhSGkeXASy7<9`i{$^huYe62{|n4fKBgO+Vsl4Wq8Ls=0Ih}= zbJo3rnOFEaCO5CD!L(M4U&Vk6jxCi z%5L)Y$HnHw;wVOf+h8b3XW2N<;#q@qNnTT_8=LVAu>hGUmt%*nZLpdXt@3#nY;cMmZnl*Fx0;CBgFkvjXYn4Y#oZkafth; zBGC-tI24KHi2J7^kvD?5>)W=u3$iSHHZHcI`vaVDo!B1!DK;UlMQib-Mk5FoH+@d9 zclDB(T##fU$fwAHq;2owf~45HRwl*lT>|fz3z9#}IL3t9<;E=bWLR#8+Pm!Cjj($4 ziloHE@OUUrbz`A8^-seTv3d_gG`uO8Ef&D57hRJ+aX-X3CZex-)^g6Gg`RUY!nGy$ zK^XJfMDBJ@%TZ?T+cW*f++5w5n+>;6H?AqbHpto5S_~l`^O~H9CHwY_A!cj^*V=P6 zIx@;-sVJ+7WukN$Jfu*~z;K~=-d%++EKxUpT;exY)`)j*1-#6o8xJfK=b=V8R<4x( zKo$H^1d4|tz>L-ng1`eDO>7**&<7l(_-9j)ND#g&CLHTg3`(F0b4D@g8wnE@X?4yLn#5t!m4Hc(9RH$fX>_yyl*Q$-bBN`ifkMgYCvN7DgG2Gagf$TKiX}w$&xaaVUy z(F_&{Iu#2}KP66GQJlQ4ku0I#JQgawlYq+mvLhikx?U0)KaB0G`vBZ;Z1Ee|lKC=r z%Ug4a0Op9P*Z__F<*PqI0_%qox!;cbaPU%@FVaPzk7`}{Dg_#t4dKoS_&l0 z#xW1#oDMU;Bs7xOZ0Hqd1t&mW^9hP_e^YEjnI~`slAbAW^@)-9^9^*HX$9P=C zf9DmVap2mDOdNU5#gW%+xP>?iT7bCOmJfrL`F&gA&_eSvMiyA*SRT}hP%_Tl#4MhM7#lh1xWB|>$pWWPNJl+V$+JfQ1yuS)wB{YG+ zaD}6nDL?TG0+{+g=duuigHR-6{1}hI$pxzL$H_k^lnswVuk9+-2L~whO6YOIv1SMg z%osu8DYD=&GDzav1dIDgZkrN>7(*llA)!JBQYb{8N`)7QWQy}}x(aDG7S(fX^8?qz8dvh_FO!C6+EhkvK#$6A+0uO+@p9oTBCjM5y^ej!6vQ-u=jrYTWH*NF3Qg$gyn0V2yJ^mrp2 z>yDYE2s1`0QjEYbim*^?h4$^F{vf5_n6e7Z4D_-e2ivh+L@~4Q=bE{O(vWBVu^ozD zXWhrZS~m{jxHd79Bl`AD0P2>MyovjLS+8KxF+Y@im(S7Z%i5@}!QAVUO99@@8@JC{ zoeU_}ktG)=?ZZj;$BBV{=mnqzqxJH!&_sgG2q>hwNFG6|2R=b+8KV?Z^g8RliYor^ zkvgA9-4sEJ7(|ic;$(l29IudShEE~I?jcCA2iQo_>#Y0k{|Qpl0n2*zew$LnAd1vp z6wn`JTSHB&Wn*BS4A&AJ~+M@Tj7-iH-Lc!YZ& z$ZfjOPJ?Pz2M+Q&u#D+*v~%BDDh_Hb^%~ia3s8E z{Qr;lr6b`jcM5(Uy_b!`CsmBcElycmqc>`F3zJMSCpaWnIS680EC*IK zr5nbdBc3n~LsH~Y+kjo$ryr7#uYX;nT5nAjo3_x$0j?1O*V1P5p3T6@-eWv&joDm=o?^w8uB`)t__bSf&{4b^WQ*wD59R7;Yq?HiiE@yjZI3c4w<*_I;3 zcJqW}nO{=LL|JhLe+YFdLK|wF#D=bwp|I&0nx9vRu{PAIflUx{3B_c&DC!zcDSnho3*)wCC@{ElgO_b!M8a^SZso9VIc>-V z71VtkVcu^=>@on;ZkkL1U+u~kw^o{*#pc?@YH&ws8bT`IXC$93Zmp|Ol21d^T$7`k z#h97PreQhKG|XWYes|QSu@f$_L9Y^It(gX{6|2BN9Ais4SVx*NM_i)_N^BH*RHN8c z76uS5Bg)yt2w!rq-U;u=LzVx!O#Z4@P+R4-t^St2!N6$p)O zt7=?r*LdVcAxKh()n%iwx?iMGZoV|uD6d12As$u0!)}xsc-biR;-Z6!iw-I-Iw;&@ zG)gl+1It!%YhCS!wlyxMx$`)f{j8PF{JYd zsz@IM;~GWsu~F!WHVUC6_LO>wQP2oR)wtTO@yLxrkZcrImyN>eevwAmfz|wo_&N@? zVx!~$mfa}10v?@K+*((GxagqbqJzRcMxzw-Gq5ZXx7Jl5$wz1umLrYA9M*5KJTyw9 z*a?@o6zElgtW{r)M#&mbjY1sb8ihIH8b$K4QRs;_3agyhD4N7T0*hN~*BJMrGmJ51 zB=JR%Y!p_Pjl$}Fkw)=wWVOeXsXWQb9t$PGZj=G)3y4aRVrpF}cCo2;vFUJ+(I^@G z3@kInt#xHf@(~(^zXmPBhBf*iywtDF%qRMq!S)Mv;7M6ndhK!YU^= zN}!8s%)D z&qm2WOkATdM_i*wJ~j$H(MBPZ#70S%7zK@ul8G=IMb&uZoe2hlv9gAPPoLyglrTdYyG|wjpCZi6ijYfGwWp`*47qbGoBMcmPEAE)n_P4WR zl<&mhZQ_<;Qy%sKuPfV+w=i=2<}6pPA9q`7qY~WfD$tQ?wvP0LBhon&6s&X=Sew5- zDv_B4)>j<|!ZWOOKL>@+1X9Y}S9S+MXU0f7wLqmNQGXWABIa{I>?TZ>;6ZX8#65FfmxRJNtMU1c7hQ3FWtZ}b?d-UB! zfBFi{sxR#2MU3__d;9!sAMB4f)>g$Qg3N|iumcXz@(d3yV6DOl+6s7ag0@5)Iempw zO&X4+)*uJ&sY%7jAgs_{mxBXOxwvPo7{{zAByc9nqEj>zck?yyB}L7Apa8-b3-KsH zo+QF`fs8j=DhLaAV~P`6CQd`6I4k&G5)Q2K)gzo>%+t|f9|7@?hq80X@JTvXCJoolWN1m}Aho*Qr?+0E(KJi5tCXq9=IBJTEI(a=O zmj7_a;aS; zdk~2aJ8=s30Q?K3P-pdY;B2h2hQ zj;x_<#3CmjiNs~^uvNfzZZTFKaKQV7VZ2ZH1Dp)o?yT*W)HrXs!=KeLai=VeX7%v` z1?*2tTbAeELBi}n@w)qs(hqLLO{RE*22a@VobLD<9wbJM;>fXO6mo#%|1)yn2GO_6 zPBterd)#kVIy}bP>bj81{aVqTX%n}hE%Azjb7tq-DpXKzUDP^y9eg56SgIivrbzH@ zx^gnaX~`64MYf8}QBJOMH02a1r%5?Hng=MY;BUCtW!i;q%Q^l1{uWKr0eCp)N{p z)C}B}JafH<)SwSvZX1%C*BlJL-XNF_y?%Ina1*d-0>G_2(nZ*b*CLn=s&@r@S*y_a z22ca!2=!s+>C7Da>)+m#tR}PX4dpduy$;f1navcxMXaJ z1edi-aQWCm2{txM@R6|v2xnyd?-nR%P-|HrkT$Se1&;eT`GfO;6P^i%C$)caY;4S`~X@8N$aiM?;Mp_-W_3o z;IN57y9AEq|L|jAv>-DHCydR!Ol+jV<0$f7 z-&%6`V_bb}p$TwvT{~iMhfe-j793;KEO-FfAz79>l86P#rdR*6=DN{r5@jT7MVQ4Kh z3?A3wbB=L4y=z1Rsum3>ScPv8-RjLpL8-Wq(q9)z=!Uc@?dy{tnkce(>SNHZNoco9(QW{JZYb>-cdDXY5>QViH8yNQMVk{Unu2fNR28Kc6-|ZH zo{!Xvx#HiNkUAaTunbK~(~Hy@a3=8K$=OIfgwpMjw;@R=&0lLG5{*i`Jq|vvwjXQz za<_8XCD`_i_gmCm%IGT;OqS<1EOy_7S+vcGy5o)MMb++QkiOWT2HqPnI~fPa{qBw_o!_Vo&(cNVR(3(7AqSY?*g85bgTY(`q3)p$D^lTwLYxlA3xyaYmfJ4P2C|Jj zrBgeA34-5z)~lG0pDGCB zitVf(zhk@Ku>%*eh&s4Vse_Gxi)&+e?=~;m#;bBr2fLiLHHgQZA^xnlaI5vioxZF` zi7yr@@tg%9{Y7(h_(QIz;ln$K^D{hc?DBbdyD2dFH@KeflRT&Quh13q#=WHDdbu#w zMO^cOrw^$;r`?b8pf1jb)(o|G-)1DRUocEjFBs0n`;WM*9f22-bs=7Y>Tm`Q=fu-s zJ!>Z|d1xm{@E4MVmBk~HIlALbf7U)wV!2So#@@4rNctTg zyMb-%yXl??8*4=l?WP_|QlI%d3R1rVFJJ`82;jDHv%y8UmnGk<9#;&nv+hd#>Vdqi!TdGHuwe;CK&_dmig_P;}uA``R9^V zpC@6lWj8SSE}Ss=(CIw{VtU6N!L+<|A10ZtY=7QB)P?JG@YD%d;67e*N*2)FcnuUR zuotnIAdUEJgJxM*3NEzeU3}R6&6v{NxUuic>c+l-`P1VHSY?;EL`uO`eqe5x z)}$OA?{H>q)E(85#vUE;&Km%C0w^%y$s0AO7%d{f@k#(F))}wE8FR;-i&WJkjG={P$^fZAfWE=B) zTzM9J&l&7}lt;9RilNG-V3{)^(Vj=_M9)3UL=P*QOiRJgbj`oB)6M;@q#GdOX3Mgn z>53Zdbg8%k6!3D1xY^P>G+i?8j2GlyST5;mRJu$qF2`5m+27dd?)bH&>sIMXhNipi zS9ZD!mq|Jo%on$ksa=A^oY2C8AkF z!5l1<4okQuWG6fxp4I7Wu+USW4xF|sWUxA}XGsrJy$6hCBf;2f+AzKb57Nqt3@&IN zDeZ)N?6lvxv z4ZR4rVn|DJK6B!Z9ygpbUp)9-(C|?aTCl{hZ+Et*GPyk2ts5KUH0o|oE5{`81e4t8 zF~+-|MO!7oH^+6HHTKuv!63K+*LOib+AUvH1_Q?gB#X8CSKmo8I#zRZz(fgmngfnA zZ!@}Q-kayVh#S!QJ1|E{TP%~IW*|DTec~ob&MR182SgOov*GjBjq5_{vXcO&0?~nr zZ1ntb7;ur)Sbm!h^smFs|J;;otoj$LPBt9S?_aD0N-I z---6C(2=LHanYVUjlHFmBkVE8(k{*Y`n+#rQm@_{rl~y#<2+3Ve6icHG0%7d`f*@# zN>Uysn|b3pkO6lD!p>%jf!FgaDw|}^&vweS-qC9B3dC1?D?+N;o%FHVc<_i%f!{{c z;U=6zPh-tr*)p^$U3@XU7m3m6mU;U$#eStk~i)} z62Jl>JcruRWnf30wFp(B*x!#Z7{P~^U1gH-Ha=_S$?`1|iF`O23mw^6eFg%00PkYf zp2TQg$oD$AfbWCHaX~M*pdAnH_;8~spMVNYxJn>LR`(S)j`D+NMDxV6U4{u-%;Q-8sSa)*3`>6MOzN|NOV;ed-T7UBCtan-t6#8FE z>tEt?zt0*^xQ4$Mj@b4aMsIuA)w^`OrF9`VQB4Ij^IBB-MO1k^%GMm)F%y95@1Ar5 zT7A1`+&UyLwY=lnqpjY2r$`POd!(OJse#y_eDIpTD1cqXS-o~47{YY9IONn_&Vc)U z=e_>{kFO|bVVVvLI1X`er5oP`fV_ObcdY=61~q4G5|ZO~QFM%WU48EY#LAPXak_fD zvvwQeF)KuW!s-W-WUW(IfjWGS9hk4dG=Vq7Jt3d#EUIPSm}*X_^K6IytM1Y~0WWNs zGKj|-DTbdp1_8)yv94`*t+?i}#vjqQ+%7_+z9Vcnzuln2>rI zzI|7vrWdIj;rx-XHzReT*>ja-Z5TibL*Cc19z&W@Cxt)g%T5X$hHg}O93|WW5ND^Y z_~e{@lvmGLpwyWZ4L9RWycoT(HrO+cU&)W*Zx5HWG_NglTAYlIxDa<1jm6b<#FFbwI5d-R$sU*_qF?aPUf= zd-9*X#wMrt6)Zq{$GxGu`zj+c)EV4QA`~5p7>UaM&7NHbDxVyLc-ex_+RasspjfMh zS!gJ^Uk$rH)4L9eL%XxC58o6SdHKF(j$emIBY71rjWwOf53S>``~oXwpc4bY0T^p; z2Pro?YhOk@o^+hpk3-X-K2Ej1;dgYQX7ewyX$adK38)Npfyqz8>h&?m_!jDtcg}Xr zeTZaCAR*MKID5^rDATsrdOIo6JcFlLC%HM8IRoIi@b|d zJNPq#z%%e%D7RnTa0d4MOdh^CPhFl3CEn|v z5Xgga>GXC$ta!!^h*i->2O{njawql+#EUdjiM06;X^J_;Ack>e6y}6UtnA-aiFonA zJ>e;j(XI;Ihyr!@-zxXo_O0Nzp=9VqhoOa%En8??2~^@KIA`^#_@ZEdBcTa zeBN`Q7!H(vU_a6641RVSDvd`W-Q|7GMIErH!5YvvM9QG2_kc!}klEHp4<4 z&DHhduRN*GZ!W5VKi}}4Wckf|s>JU*saFr|%_s+GRY+i+W|xAsWlhT2QM%05TjWLe z&LDfMRKKVqU1r(eq+GbEg=Dmdj3M)W&-1i5V9N(phls40xRa7&1fft<2#_;Fv-WdT z0=;LW%6`YoisWWf2EN+&w<+4s==ARBCgo=o%?e@Cw{50TxuYG+u-j)E-W@$Nj5#~H z=o^?}%-VtTW0gDltnZG;z;GHpcwLKm0K+Bgh@#Z|<8JX45Jv~&`(Hhu2 z#<9&aZtGo}dB)Jvu(IeYdV&N%e_*T33|+rJX@)s#j|CJKo{mjWxM%$Ef1%!TS?&z8 za!;#u()Ve%RjS`j%{;`J4(Y3zt=3p1bcjLMck}YgdQlzR`n}|`MtE><`tF&g_hk0{ znWpb#ush_ThHMH@1T0Iw~fScKfy+K*15>IBXm3(_3*yqC*; zWv(+=bvE(^+UgO8xS7q68Dz+0@j+hlZkGe~4D*t0vgS-Yz$D`}vm(P;_wv_}sAIPS z@1^Z85FU~5X8kh28IlE?04s`}b*HE-d}3{NLY5pBh*Hjplq#jPrXbo`cTYyNpz4HN zGFMK_g@RhSkr4NfLk(7ZY~?59;+d5Z%IcF`UX_cLN>9jDJUkc6%0Viw0APlpG)BNv$4lSO|V;f!6{bu z8`xvA&PLy8urS9CRLo9V_+`$Sf=^uyxJ3nCHL79c)6~dD@htKc;+FTEt4H`EBU=f! zcG)9aA-ovbD#QsDtI#qy7};th)KCw{dIO^smRaGAj%>3L7&@}CEbH&s+5v<>HdPth)$SjU zyafT#C1!!5Z0)9vvXkeghUlWSqZ^M5$ZB*^<*8|;7hV?!$2sesf%#v|7Er_G$#_x4 z?hLk5H!?!4;>Z>?j=8$=7pUa^n?e!DKF5oALf~p8P1ifPO5-s zrdfSbF>fQOFnQj2mk&E=Apubv0iA2$>0{E~wC2!ii_ zIJV4mEEg!y8$9NC(+FLUp69GfMgpJtYneBQP5#v^&YiFYB4K01TEr%7jF_IRxj%(= z%XkA1XMBox&cRh`qih#A6)|Hg_Q_uqyvwR zYwlMn_j2T*z+=aNp_1dD9vFni-}VhL!)%0NYRax>tVckf4zaEI$hJbugZZ=(nX=$I zq!?PG;nvNWtRwJr2Sy!u-5{YB5rrdM;AjwNXZ0wZ|yr|pVy{PPjG@rY_9GNPRiGR#QKLMbLyXlr?+tYoY zaR3ygYNv&y%i^(VwwW&!;=20L1}1MBQ?4Or4|6)JuRa5C%uoR}Kxp(uDz}4^7%I-b zB7uXej5qnRd`EKeq|K2l`jcxwmI;zmgdFC3e)l2gy+6N<@g zC=RAytlV^>6iPiT$~-|Nz>;K8>G~}ktRu4!%{Z(?;)d8vguC9(P`lpJCo}IZZdH>p z-YS@OF{hrmHSKYqTUdH#$n{68hO8{@8lv9P_|R5C%odjGMLV$7N1F+4nKw|$_E`$IsUMgXx#8`KG^ zK6@$6xOhJr_xK5RzM>Sa_4sevD!ZQ?cykGl`JjCvRyvY=U(ajA|1Oks1h#HI##G*e z32zPx(C{1&-e>B@jF*+h6HU1iioTsraa9v}5=z_YRBPYpHn6PCZttw6I_^KN)R3 z;>a`eR?lEI6hKbHq6$|N0z(z9Ow`dD{987xT+~5Pb~a*c>k8C9JaQd1u&|j_foiNX zg2E!FcWdO^E6NaDeG9ArH`GBd|2Mvv4BgQ}Hp_;ND%lRLA>_lH5WsGsfL zHKVBV@xkex-kfwOgD}dJ<)q{r*XQ6Cy-?THeaO>|SvlDg z+pUtrP*!hlk+M-g)Jk)-5Q7utDkR4tP6ihAS_22OAunFQ%YmBDz0XR1Ek-vUw3?@XT6Ahr5FJkHOCeW@2%;Mzu}tn{Gto$K<>TyMQKKUXhQwWqFGsk z=tK_;s=o2SAS^6+vS{bbtU2AeP*>-4=gc(Ix~CcAPlq<>cfYjoIS`2~guBpqwUQSv zL~i{M^md>#9F4ycFZ&Sa9C#0R{fTY{LXcgUwKG_PK@($lk{Hi~wY~>-vRMlYIylqU zgT9QH&~CLnrg!OJp7Ev;q*@G0Q_;sOybXg&$M%`1qX;u+-EJ0Q)~IzJs)(*hRGIOp zV=oNC(2bA~y3tn(I5J-zn<%xF=ekMZYr;6qiGa1H1GXUX z%CeoLfPPm&Hdm$5Il zq(H+Y{Kz$Yd$Ivj890$=10)ku>scH6bEymWUWm_TO9664v%K&vsGGUegJ1Y2zK)Gk zgEeEL(uB8MDy20KDXpAS&=E_kvK8SeSyJFYe1T3(X8NmaCHP>bB*=vt8O3NVH1_@~ zTLE4HHC-DUr~eWu?tHVpD@chrA_dC7e0@nf+IWE*hCmw5n&hy2t;F9 z)>#B4ca=)(5Soa-31D-t@sU_PxG}liQ1K zwCY8ZI{Zc6j%4ukAsj5|)QiT0w-3S&y&)MlQKNTaTYH`{=g)&sdln6rZV8nojS1x+ z^|}wvKc8Ea&AcA$ov^f`%H}}~EepCe$AU&*5jGg(gvi~r>L$tP4N(ZIfgZ!5>wkfR z4>;hRM?7DC9^d~K9IgTmWi`a195~<^)1u0I20Oi2`NJPx0>pEruvA{vL$OwF8RHil z;}=Qw)|Y;S5kZtp)D~w|KxoY^hiaU4OEFMzEe!m{F@q<-(N=*wU<5o7=OADZ1RFh& zK?Yn=LVFc9&!QELo{<}orZ4M<*nXe|-aP`HU9y-fXiEE>oMH^?3=#kvfZb1#EiO-&8@8D^MCpLRr%8*(zQH%||Q&A(&TJm@N8dNUUpxPJy6x_~^)ry*n zS=RBcZoF`XIqST1V+VPD_ZaZ}HnQqR>Sn|l=H&CN+Yi_*p9~=*9Dg1;exqh@r@%9u z3s-~jm8DnK8T3ONIGmSV&c;BAI(FoR(y+~I(stebHXq}V)P8d=24VZ&^IA;ksf796 zM@siZz!`g}P^kWhR&bzAcg1xjYv+eirGhmleo!hh;q@8sqFvCSb733sg<3cT_bDR^ zN|=WyIU*=zL{az>k^-mVXv8xU7_pLKIvO`e#ZfXxlth&~ELT4aYnd^iS?U-<`!1O_~$M$G*nk8T7mtZWz%(H?+nt}JD)gGWF zpb!SMY*{nKLO_~*KCXP>u>H1H<$tMnitzGr(N1>m7lbSBrReAuk=a_PZvGCtt};~qSMIk*w2j&^Ep`%vQh zl1m*NHPyk<*ygS9jQTnB^~Q5d>(Zh;$qpZ*_n((IcyaiX4q1CFwz{)a3hiC?t{kTUgr#4yPNHY123`m3r|Db#P)r=1c@2g zUCTM_JA)H(tqXUhO~P#ORBvaBW|VcNiWdfrcEIc?#SY!g&cN1pNT6gIEmZNF@lN$~ zh(zN;HTo>M@)w%%kJXGtS9T4r*&4(Fi7#BUJmeqNX4wkpKd;S}G0c%8v?eESb3!%YM5B6S9wzx)NMKWsXN!1(QY2#j6`j8X6#6nXcm!mk)0 zhvLUL8^02GD~Mlh%`r;6kR?tVy~IzX#CBEU>=8<2++;~VB%Ev72DWkz4r(f{KiK@JHRQX zEVbD&rdno$`2swGC0Z!vM(7j%wv5Nn4Ljrj0@gxqpf#VU$6yeh;P2(!kQ?BjYDH#E znBZ3+jdj^>rNBYAmptYZR6ss2Yc|rLzJ!39V?X^nQ7Dq#e1a;==RvWcng9xc36wv_ zph$M}2`V|C2c=O#Auxe*iwy;k`H69;93k0r>hRom>938Qn2v64IF&L2JNHE!WxO6SVegtl5XEFOA8cD0CcEwGu}9R*Ba_um0ZV%0LFRutmm zE+D?FIb^Y2&w3ec&3Uh8-e&{8PtY`2hDkR1QEvm{YN1fz1LZmdH6|k;G8z~KH zlG2eHp>jTRv7&ZR!*{exF}`DIh}8BeYNJ7f%;wWVUn3|}eANV4#T44Z=uYrBzb}pu zEWGsy=oIKZ0-?xgpMi}Cf!^cvtrqCT7*9vT*XRPz9y_Bc|#2f#6QeR zHn{r;PBWimy{(LMM`NYpzl?%d|02=>%QK3G2KPmwlv*Fdut1G|cECWC6wuVSyWaMiDVg zivmT&baL`<=3{alQhV{Hrg9eshJT-#pANoAVo~PR89*;Zyg!0jd_^j};EQZDbGq{8 zz?-4Gx$tHxuLgD?T*PEEW)yZvMHAkkUKz5STZI=Sm)aosKi~xdx-y5o+8ki1%6@shwtCPxx)w>KgT`9+9huM47$N8;ql0V8S5`!gR?38>8oT8by(xt zzmg?n9mQVY(T%s%a>`^Zr|g>dRliw|brgAHu3YC@q~Co2+Yml)@#H}aDfW(xA&V#B zpW!ZOpV9B-wVSaQ9CdTSP?Pcx1qPnh>da%!A+yWV!#~H28&iv6&o#Dj-Io)k$l}EW z$<6m4qf4NePjFQ(ya)G0566J&HgxcK7(K7D7JCSTpNIr@xY6VqZWs+l*AN&>Vlep0 zhCx$q_|nl}aHTFDkAfJC$RZx_pouvA*YGHHnLPx?_!ta+vhkqlIUE`d1}9?icyvMJ z+w_Rd(d6>l@I|A+-~=xoMs*BEWbTK$aN-z#%NnIFoNC6y$c@2>%t8T!Q`m5DG#H%p z#={ug7OhKUJ`5Q3gz-&*F_g!!BE>^5fDyk&)*@j33MO65ul&Pm4;K@{Yu+D;Rdw_E zTqvhQz}yxEb2q;#Fe_)n8$S8HQNRo!)etb}$H4F_|NO>Es?gz9%$|pL9AMLoL_@&z zLY#B^fZlmGzw!@YsGx`lRWe^sUC_8RW58pbX0K*OaL-NkC^V(PF z`;EEj;T%ls?c;Xg+u?`IrXcy8Eddle)`d111d5Z~xvZJFP@ICZ5o@iv zPR3tK5Gp_1-O(M{-GNG@c_U*JYCw?#$TWIbrCX>xi67~3b{;!E8Uze3lpYCMA}C5g z@M%PdAup8!Yl4ERHsD8~3OKWY(sme*iBKt<0hPd23#-#58($V&xraT5tANAf3d}OJ z=7~^;82x}NjaF8PK#guBv+vPXgb=7Po1nd~3rZ=uCVcCgDATN=%!JlTlMWh*4sYi` zq|ca|f?b*g;>}OR#T=BWKI3Za@u@FlF5~J904Nr3er8PBeN}Tb^nnNUtXFYxu|&SN z(O?G16$~ZX`!utv3b8UZ0zWDHRj?T8t&d(H&4Rh`3(dMY2+A%)tmh)+nuHm9^RMQ4mBjB7X zmBG`!)frqa$?AoU5yWg$p~|ETf2g}6Wl$OZgqmnY)(wmc!=IcZ=hPH2pf>5s*{Ou2 zSbS4dtWi`HvLP~#V(gj(sNjZs(F*8J=oKxh9C>BcrXTpr-mQ}LBFL;Z^(nGMHeZ5` z365+`@|?q&gjvJ!5iHZo8BWCHSCu5_3d^L3S6C)hyuvc+@Y*bsA>PqhCR4t*i3!TA z%4W!1%>vM#V#fo^kk?o)nez8avv&M#1Be1|Ptc(`NFG57y2&oKukxY261R%gKijKiP z0a#B`qFq@rn_oy#PFVpN{6eB~)+!+>7T**JYZM8EW{8X<7x+cdMc{_tjq!^rC&DjG z6yuk}U8D00Q%3k@8|F)>6%`@y%Q9jfvFlZ}BGMKy?cx=Fp`v7qm~MD&e(4eK=={OY3cxHm#5ZER%Z2fdl0_@@8Dx_JnC&Q23SepC7^J~q zH#&DzNuAq@rA}2f44E;D97IVyq9UwOBIO1v;8pU4^txgbA`!Wsp%($!1J zW=VlH-FXbA$lD4b!cFYee-hjpatYVe2%<(npyi3Zw7fbqh-(>4+f-)T^pM;LF(=eA zkSVAMkb+{gw%{qPt-;6{nk|V6D$tgN;*~=1K~bniQAntQ$T)(aomI^RVt5QxNqcZn zB}CepiDK=%Wy9#gf+8eJY=>1M2j-?4WUX5F>_E!GLZ&lYh~h;9kaI zE7a>U;{Yn#CIyr3d}om3YT`oZ{$Au2qQPgxbqM>;^<)U*5jA zY#Msnpuxz#%en_(-sAmjJc)}p%*6LowYU;A-spg!=dCx7@o75?@ zZT8h{&boI26DwEhuo>TZ%Rh;HgH3Me zxlisKb&ViSrRKRO;H(udW58Qtc&A{!=H7@$AAlv#nsxCf{&F^6bs!DLs{`e}vDjfV z+)Fvyiv?X}XFLmui!F>O?^&ZyE`#gDZL+%ivr61G)=uh`oryz}KKHGCxFHPPjOQvM ztoaA_K6Pa4Yg84@1(_hNh5m_?gmQg>-@Mpw-pL0*cKID|`?GfWjJK_OQy|RLVXf#P zr&FCER`l#tr|!Uwi=FC}*8gMfZQ$#ws=WV{n@Y49Z_o~gu>&26S_wMUb}&qe`Iw+G^E;(Ew9NkQ&Z!|@p`F}po!-rw`83Q+>;3q4Ixnpc z7xVS7URo1eGaJ;W`SZcM-*dQT^6pu;;u}p%eS=H<-WpNR_bIN4nz5m9RPNH zVP)a>naqga6Hh*f3;qH`>|%+}%qZ9D&RCJiFD*K&* zTHFCN+X#54T87!CvY#BN#T`JiEs1xkWtc50yZ5I44S`{s8+jU?kAZ6#4RhUM3Ia{N zvqf#N$?vc?+U8SvnvF!BWof+ zSO1|u2EI&wgU3sJ#bj7^80GVwvcm?222t+!bi&XUBL;ZCIML%qlJoAHd#$&jfrwW2E3^FJ_l;WbP@`o@cF1Bx5 zY9*{gXNw!zn8<=i_A<2lc_i7jzcuaN=7Yu~TN0xwZ3HXgl2QHoJto91Ki2C9_&0au z)JKTix|D=_$O|ZijL(GHiW-~mJmGH#@ws0iNuK-1{ffe8b zHynm7lts#lhRf&NC^jS3-)0_!Eu7uT*g~q*NCG2k-?sFq6GLZ58`(4nTXZWUky=Qy z3$8P^Fr9ROE!tcTdwUqR*rW!B*#xJ*bvU*-T@?+l;s0erV4D%snNs@=fzi=Dqu4M* z;9~=P;%J!X6OnL$PpFwgbxVv=nAHO2uodNsfS6)uOp9o~O{G1T-o^UcHc{eJu={;%5n+8W?fhQ5); znLs&lCESl_^DF-AY<>@KILy!&*=W>;{tI?G-}@_#ee^MgE9+y7eTUTy7FWT16Vx#w z2D7&r`smm3uGc1#WPkEM)~`i+HPEll$~DZ&*RKlH46^Y3=j(^-)IuROoFV@2n)T*X z4KeFQN9xSlIn1p0o`IfqWXTWKp=P}TO_c*?z1(XrVUakL`#Q)l^~G!iksoR|H~@LWQ-k8i+!L z4GzTKhThES4%A<})*TD&YThsmTP$hnkY3H6jXkw)BFUb__zGK9keE(5I-ylH@Gv|^ zm>SH^aJ+7{5JQn{z{M1&6_nz2*wH=uu5{_Qqln4l_QTySg3}*S5cs`eg6tqoL~d)S z;8%RbzpVp8w+idOAX686vpEd1TA$Gl5#mzi_s*y*z6@Vu?2%sOL9CPCgV7Ex&E?9d zBF{3f<8@(H+)nHT1@gn?`h-sI0myL=KqBvl`=Gp4Uq&It50|jsc1Z#(Gr$O#8}oj+ zS1EjwJah3@eI?%baoX%EyphVWq2A6bSmrq1P1?72_bmb_?>cx>!J%c1(lh^X!BKKW zTsPV-WmyL$hr9ae9p3614jcGsS9Sip23N!dl+4#hSS`MNOxZH6`bq8%l7ihh&DG66 zg45iwAx?8WzlwA8k2rr5J)dua6F&KD(PnS3W(GTtPcxeH^k0 zD@GvQiw}2)MSLmV|8}25yio%vYV5=%KcZGP8G7pfvbUa#Q-!q8{SBSZo$dk+rebm$ zC-M;y3M#k>+b{3*GsOysTR_aZ?Nd)&Qp73ovDF};7dwEFcO^x-yZ1rNe3mms#7P1G zsq%}9$<@iYPMo-8Vp0AI-GhezMhP(FsG}qo1XjgY?4#avc(irX4sxZTyDrLGwoOI) zY5sej6k?5Ya4BTMcEu#J{_q1`M6-je&mM5m*6d!aZ_On}J4^4+65;?AAM zr6Av`FXS5W?+v{jagnx*An@J?>#6S|{yDpS4-Z6_yLcA`_wL~CDlVt8b}vRj>2vqQ z5kS4d=N@4$2((LxCcS_tHSW?yfjNZb8I=nP3ajJQcP7RV<@gOn-nnp--8K0c2))l_ zH$ilM_zM|jy5T{QpU}+UFTO-T{|BGaVca%QbkR+4C-zbWo>Yrz-DR^@ISIm@&MX|2 z3csTp8?k2W^TJu5tkMh-F8O55(hnh_i?^&e z6eJpN!{B+HphyR=r7QnZ|Lb9aWd(dL`*XVT-rSY4pejbe#Xfb_q=FufD6(-A1U7L$Cxn}+1`he*EheET#F zBkuJRIb@g5Nb)WC_an%mk2WEPKE#R%ZE8D28Uf5H2Igc3W(^Gt2UG7pq4tSn#n15) zfMWo2L;?7lWi)I?Se*5>^x{@7_J1iGU-l8UOXPX0cJ{H+MPp$CaoFL9DGyoL_gm!U zc5Nh+BaLiiEOWJwUAe{wR7_DV8Q5LNQZ}q!xKyN}=92hTKM+GJK=-?BtHrLXpsfxv zsnUWl#i0L|#x{rRcrj4;1MwAKaHG7FZ>o_Ewe807jO~csZHU`dPw+igieqh8PCsl{ z?K%-mVs|fU45h-kTwRJ()!xOQ^`h}00{l_^3K-hodQg{})@YwLz8=xHHASrd*zIhR z($2l~`Q)$ov8|FEbKg~%(w%brydcI_;ytkLx6YkYsAPU2H?X#iC{GCMa?!(xkVlFT zAzagU(UUwpDtU50^5nsE<%99Y3#4TQ_oV|u>@O*+NwHTKU*DGweO*1eiygeqRBX4q zoQn<0bgZ*FIKWlqiAujza^;!Cn7>euvR_8k`Xnk>zz}Pfu}H zJl5spKcdP}&bY$c(U;$+9k^djA_gtXCuV=}49v19?FFx<@m52=JWlLpA5ZJ>KM;ZY zQ!xTLPreZHYOdIS#)te#MKdx}E~H!aLie)puCmCl%+?c-dYt9-GM8{o%kKCUXELv< zq7=I>+OrJ5Q3K|$rS?DO$DZ@cU-Dynr+&!)m!cFJ;N{;mDe<;zmvRk^wRG@YZY`*j z()qcc@H4+**aK|+^0urU{;RVaXDlYFRD1&Nwv$I}Czanet@{OSL|)zM>k&zm)xhhv zSC|O;stNs8m=33K@cz#DiqBGo3y$b#zC8-vC6eiW-Ajxf6C`esp?PRXaqgb$Ah}>m zea~e{N!_^H2YqjcY+Jop-?VVn(Gug+LjUNz7_TQ^1!BCLautyn=kCq!Z28_(3R0Di z)&Eb@UHT_PLL1YGOck#8)+AoT!OM-e9!2o=_~j=Zo|+DYz`)P#Tcyz|QO}jQw95sw z`yZC5N16Ha0eH0{67|J9n7Y!z*iIAgorwBbolewunyA-y`W{o`zeuxrBp|AS4j0~o zj@t{rtZKbCqm@mqE+vr8K8onHUn%( zG6PH=G6PictwQi*TJ;k_?2$A-h9Is#_XvXc!{3!49$EC48GPqD_?oG5IDC5d&uW-^ zANkpTH7v_;h1snB%X5Sp&z+eAlG{RG1eBx6O>24pe1`Lb-knB` zP^*`p+Z21N;0$Q{C?y9LsC|5!tZbQ9{Umn**2y---n#W`7?V~Tkl1UrpX9`a zRS+Q`g%z_vVo?>e&`XS{F`>&}CP3#YmZc>k!^x`3CHWb5#jIKXAfg+ErLxbNpLPkuqy=`QuS z6F4lsk}$2dj3h?u-hbzcXxi#u>v4rOGl5&{eTrLZ;Bj5Ig7z{$85Ym14##rO-rdzG z>D9rktz68eP`33?4_)Q$T=af!Ze(ie6+~g-XU+(cml5@U$bG_IDF#}4Hh0aHMzSy4 z{9;)+(t<`=%Exd{Y0$1*ULAK1Uq((HXwScGWSFV;hPX+tUdEGn= zH|MG8>~~wmbauI$yG<{&ssICERd*`E0(K7cD02o1bEjQU!;$+t*WXW*ZrFYT1(7{ie7m}wj>VG&OjTqeBd^=rGW?J== zH$5Z`V}4bTeb?C|kKpVdzJqW&Z<%`EBGpgYz8Q|=>M?HePTm=$n{%J#;|RbnFyQ|Z zGs|GDOcWh7tVm`?Fpf#^E&_fYKMnXRrvUttA;8b)8?kK#yna&0VkHvOsk!7{HY9fg z-)wfzwCX3hn@LKm$^Aick0h+JcP|3fx<(sTFI_$&Qu7R{oerrsY95Z1-kl_9yP8(> zbDY5ZUF8uPo~?%GTsC5hHP+(IuEmLmX;JSYGFI@@$XG>-x6Bzrm@2;ggCnDU0-r~6 zAPIa&eTCe$Lvq*fEh3|Sl6ww`k@5a79|4;y7lO@#h7qx;GHg~y^n(fCMnB%=H64B$ zHue7seBKcF*741Pt7TgC6ZkfeWM2WB$wz|k*#*G2;k&eZD0iNcj@&nwjtK2UgLavN zb}`kfldr8#Q8+3_QO!{1N3$*15NG} zm^0v4b}p=Ei_LOH=flEAp#^phpGJpI=CBps7a9y2Dg# zDO*3TmAp}~iy!p#Lhk?)}i0y=QP!GiuCDl%{z zODqXXEm=9zQHek|e_Jv1IT@;&rTc4eS!-_Y&y!RMpG>kZDRhraSK zJ@mrDp*VJ4y0Aw7uDS zXoFr29B62>9L|L?yx!o9dgu>3>7f%A4DBI-?s{moS_s2EyvX;E+8)+JmMc0k6*hK| znI3ZZG&+1jhtEpkLk|h%sD~oZ*11|YsXfd_mSh}$7KsgPh11|3ayaIDNc9Z#(AQU3 z59uXM733ygtR9-$f0QV^WKOyH|}8t4z#nDZM9FGdZwU7zg9578Mj>Z8tBX-!VW z%7AZg7FTp36`v#NRl4}+t@;ZWJP*4Ky=rPdmCPi z-<%`*jSoQd4McC}EPs5NyrO8INlQeR8y%47>LQyz)Z`$F*Fr4I5*;cE39)E!PX+Gj z!2Nj-_{T@Ij@mDX>L8(bsU;bQgvAPj)&e{?XMolYkvy$c&j76#b2!s29v5Q3O z&3m*_lG(Tz^RXXpF2X==6d&O5FiQ@kkHYN09(|UqEYJ>h*r+f(5~MuA^me7~u!)>* zv$}&V>(m6J(~`BDNb=oq8XHOwu|=;2x^ayOHyl%wa&AoeLhL{KN}~yJ9Tt_TG-?Xj{lHB5`0nt&Tv}<8ukW4h1%Ebrnf!` zLiQS?ziOtOp%HEtQrxo{VVPW-wQXTg15M@6tBjcYU$PN z`|rapAHIv&VYQTFxm~M`kjJ<-$#!zJt-6GIjDxQ;4sJ9uah+(GsSt#SW#LZ1T471b zc8zVjv%$Ua(uiz%xRHjgj8SzMEmt{Ou5q-?h$Ps)3{m8dp3s3T$;`2&)zP)x(RHop z>NT!axwmq=uw+CkkzVlgC>&-YI0l$}rDio&)?_gzzv2R85>F^)HfA|hj-sL@&m=W` zf$tY98DNq*_9!N)weOAdED7gZva-RFRm~(LGf62hAQi`3(msJCJNvRBOj5wRVN4>> zA|}z-?8-Mk33yxVb=c$*cfulEBcw2#b*IH0OWCcG5oUlxlo~C60OdXR!7x#N7c2WDlDRMZ{;2tU=h6-U=dMbfJNqCVJxDT z#v+yfu141s2qo_Hu}0S_$+Jk2=p1gIsAPaeO6*ZAQfl8D$6FFkuw-S0C9A4PMrM&7 zYpivrCGC4ivY%p0$K9-Ha%7X>7%E2uTErsynw|f;v5389%R*nHLpTnpeioVZ4H0rM zizxG9Smf@z-TZX7SW3V77-i+ERxoIgwcwZ#v;A{rbgFn z(uyLpaSpGMB1-Zs(qZd~%~>S_EYfX{Vv!#E-ni3}aE~P`do5YjM=~;tG+Se>Eta&m zk!0iSPz_>{`GR98iwLxcMf5eB-ft{oueqB>U;9}^NcFQw_I#l>m_?NNFf4M-pWc~8 zR#DktDPlx27O6D|8bvO#h;Td%i#VcfF$mB#T^XY(dWX?2qU0(^$u*9W8KFGDBJ=cw z4q{2B!ID--)pkeKwQanFMO1DGi|EAwiwKSZ7CGs1V-dYH7Fm0q8eKDAC}lR5@ER6T zl4p^{2Jz|8#v-MH4{c4D!y>}*Ff1aXp#wMwnxZmB({LyyS2;?q zag@vmcT`d2du!xd8i%jGT6U`hY11wTuk7AK3`|b=^dBfVuT6?)_9?8fo(r1me766J? z4J6s^i-)kt9>Fn`MFd*JBKn#=`c;!6_Bw2GNnRHbQvFiob6;08gQbWvA4ZCt*Zs~? zWHglxW)UNju}F{LbCyN1h;Td%i#VcfF$jo3$dZ+%maH02GBS&7u*O<9S<>D?lKmCiF@q+W zHo-BJMFd*JBKn$ry4P65Ugu|+CO!2dRd^Q=a?AD;M{}ykk99_iWYb|^`Ks_8%r~y+ zU>$ZbrL!NuJ>Iku`4x2yW*Z}%u}!mJ4$a&twh`WkVH-!tEe1f) z6qRvCsiD+e<*2*HQ8yzp46sd$p774FB(u(vR!8Y}N9na4yo7C3?yX$cfC{S@18gHW z2H560juF5%dMRq=Hk@M=ZWCn*gvD#vMoFG+R`Uh6=~gnpHtXzBY_q|>H*T^d?672I zk0q;il8nqY^Q^Jf`IfXVCdppJPR$^;sSzAQ*+!s6Y@@H)>t3|U#{lo2eB9G!AvJs{ z{PVL1&p(!N$ox}FnQYOv{QNWGQus^MGnh$MQ_eRgsS<>tSzN^=!tyXoBC;|4H~^ZW zGDg*KC@ohxTCQ=l%n0cLCh_z{TvJOjwU)Fxy0$yIu3gMam_+40wx=}bJb{_EStS%&|a$~;*h#Iutx*g2H0b2Emx*vrNX#5731b~Y=bMCl_Ol$ zLNYQ-jHg8wz7s5IpGcCO%LdXQmMG%gFqRN35liT6_9xF9OBkg6Ea9FmsTrb-T=12_ z%wSoDFoOrM**81$%rLStav~KOH~iGFls&ZzJ-JVig^dlu8CDQ>!&u?lq7r=I+HP_M zAYVV-h8l%4LU5q_3-pAE#ga^^C9RHz?T&_PMMJt@<=)D@Fd!rJVxarg{6O~yoL4|b z=p~RB*`20v7J_F z>mEzmvn1K`=MU-i4z)K_5D0{**Y!2~%jazVu-9ReOClAc4j+-o)-n4_f`9Nlp`3@& zFGhFd=ZTSR9Ys`Ty{>Rs&Y-Ja-yq1ssfwhQ5o*J_{NL!YD9a#AuA@=j2PUk;p!+mo zTDKS?L`+mY?0yJXR1r(8az@J_y3sWvM(&M)j@I))N2|Jlj$X|%13FqSt)o9NCqn2~ zh7i{^ftMMn8?cHnh-Kr&PJIU`HLa7OByv<@7i|$-yjZz7;ixZRV^+)fFzi(&VPl^q zp&5Uf6uX63r6w7xajp2$VG3W+ex3m!GqyD>3SFK zq)+6h?W7+pWhcF0$WD3%-zwB77o_kL$f`)Tz06K}2m9_L?(|>$`H4hKdOnXu;tPg_ z!Mz|p=)(j)jDSMcP#7B>2Hfx7-zTPv3V1p zaN*g>aq--g&ymeM)i~Qfg8}yQStAm8z7cuuQFdUf2DTbbWW768EpZx%pA$s32akow zi-!=oR^J?v^^@H5NUCO#yX_QmHw@%vXXGt%WLlME|C6sHa?!^>%Xy5RX(K{E*PyR* z(C>jUheNM-5sPH`X)IDI=+7O12UvUg7M=6ePu}#AY|}ZZhyUdW@MUU%@2M2+?#tbl zBzYwF`>B*~x;J+Z>G>^Ok^78y+4BW*;0ey|@PqsO;L=TguuumH*ZIMDtG#gakH339 zU#nX-?SX*t2@O3Z_Z7rHwruoj;a)dsU$&K!er9tYp!=EY|3b3&LMAb}U&WV=|FGV!RKdjO{LCsrnfSb) zStCnrVwRuz=HkR`FLQkn9$a7W*!RrWgu{}n3~vrEv$>aQzsU6qex|XItbQgeCOOpO zHEx^8KLWE|vsl1|Q>(~wu3!m2Ujt(352#cxql3=J{mBaoab%fQR^$hB%SybiWLYVs zrdXx59h_S>K0Eu?GU{J5(N*VBUG3YdQ$6Y637VTfa&=yiq`G%eouCX2s>;UsR2FZV zcOpUEtm4YX3+&Aocq1Shm(Jl(?4>N5_cbo&3+yo8meSX+10uYn=!Z@GO3S5(2zM~T zE1SqbcRY9cr0s;D;v_V)rjbLZZC93vVBxA7l0~0Zzfa2)wj0`#fVZaV#&xIb{BF)g zcP7V7X*+YwlxDf*qKci}jpIt%D$ms5%=F5l52grZ8tcM4Dz*O+B1%oKOKv#e$9A4I zX39@!s@6b+aaYYZ5buqzP`Exn*pVv$WaXo(B1wFudYxS7P|8>@w$^Roc{VaZ)%0AoR1m;xcv%q@q zq7SBnhtsh;@#gXN6De}Xw7O)=0ep@qyeWC&_2Q#M-hb--2&P2j)!Q`x-6Foek6OU_ z^QoM0?^uu+7>!um2YM=5{FzDDu+sD)qkGix_UP-M<-^DCda_>@GL zESsHdWqT zzmf2z7mwp=kzUv4?L*t#U!O%jj5qhnLMZ0ft&#*uH$AfS#QaENZ7rn3Ym5rv$^!Lb z-O9P-OZ)-!8M8O3kGY!E+>VKh8%{3sV;v@F%b%NGx1_mn(mo`3e8tzL&<3wg&-iz- zZ$3*taSx+^>x?~fCT=-6C5B5%Yb2`u@Z8dp)c)PLKBY5d2VR*PFDd-!EAcsrB7PoI z_)*N`yXx;u9pYL|s~}x@XZ_0DZpH%I_I{K6M93`f(arF&o^s#E=KhyQ*Z+PPcZ_2-b!}gg%N<2lEKH|l8E70r-so=I(67iBW z^9UXKrEVUM;i2(1{37qJe>y&)+s~Z*p7;p`@e>-1ViRyj9h-Cgdp>>JOE30D9X^l&D-uzTAX^xnjx*@L z4s8vtpF_tagH;Deg3a^zo4XrUq8DI>_~n;N!6P$SyBd{MojNr8&&b}@sPg)jYvIug zFPVTGi!U1ov*LH_gSh+&G>7P17OMrj63{crtm?!GpN``r&tL z(&hW{I%VFus3KkdS~|ABI@nD^ZzO~Cp6b}^eo)=x2eaEaA0%Zs8JxW{6>JSQZW8@8 zTEa^a6HS7N#kOEdhO>K7m{OUkqpIWUAD$jAm|RoMVCejFYIr@r&T6$1!j{ zP+2lqV=NOI%dFBmIJkq>5k689uXlQN{+op&?;S{-ImvewiMDry{+q~wF0XDo zpNj31|E`i$zFDDY_poQFH>pG577H*T;cTj4#1?IFCt?x^q0YsF3_&b`Nu<#q18XQ)s+ zSWCBUeM(SL;-&Zo*nz% zbY@&}Iw*XES@r|TM+EZ22J*vzj2~U)&iW@(m4_}qIn`D8x&yb1=lWh-NZgf*-IXSS z(XT}1-0xWCW7-tREHd)nzGvTl#5bwFmNKE@ z%9Q=-wOV#;?0{8M;UdD-*bSDbKrDLpHD$?y{ib;v^Ow+=OCFjC3O$oab(U%DAMri3^OLQQ!T#%^Hf6?nN5yC-Mv?G!3g%eC9*Q*jVCb9uOg|6QxMjwcema5mc_1uuj+Q z)0sQHi_avK&&$#sykM<_0L{s%4+GtJl4+SG`{0GO75tu&DSJ&l&nH{Q23rbL10E|R zm#MkNjyUYq>y_{Ef<34X_#ppZBFL*&% z($wHyHd}I?>LE)lN%oH4y-9F{H=+nYhwg|kZx#q)C_mS3a4zSr66m znNK9f9EdM#{Ckn&MGC!4A?440;eUud;}&S4IX-&9wq$5?Ho`d>&EAzJTM2_KY(nc? z8_AC6vzM)Z^HA;^3=@zzD!zP&0XXGlPpf1Hb*lV6{AN*io{TSG;<*)sQOVcwmq zX4+9{&QL6G<2fC?4s3q;9hj%MDq$2ea5{Dm{j%tNGsC$L6wC|-khjmLxv;r0#>f&k zLDQE}MR6m)t6*A?yn|LyQSPaKG4}*$Gwtu~@#?mSEdfm{U9F=UWdiZzGl_nJuwSdG z8QtO5{`nxdU8@T22BlbvkXKFnP)=UK%zXP$){`}Z`mixeyUDDyWmr7jl_G8xdUnKd zTRQCP7TuakrFJ!)W6*>-&SFnC2Ip*#a^Ocs!qA18n%41CM~yA9XxBV-+f%FR zd+r@?;!g%wI^zyY^i`5BEQ_dJ93NltEG!r;CT;!rK)((GT$%n zN|(QyCTvV>D-12tRoIu_ba`j0T()!R1B}ZFs?SLz%_%c8g}7jMrDHqUJh34~G#i0J zn+8GHu7YB70LF$Ijq)O^roF_HEfY!7!9!ZEq=E-Hge`Er#y*TsPl`IO^=M>qU{j!= zvXBYZ_@oyzQ8qm@`J=ibr?QJ7ianM|+|Xk^$cygkF}vKEdJaJgw}>b-rh33kkb(O| z>Nz#Le67VB6kxa#M{wtd_C~`jM!dg_r{McF%I-Qx)w)w3YM^^OAXjykYt2!OcIbxxb?AKhOXiaxMOS(U5 zS2f%+Pn;1jT$dKvE-7+sON((!(|k)>rH>F6O7VbD(VI!qY>%e7Xe>?W*>td!tz+vvrQR;>Sj2q*2*-kCP9!$-{C_`b~4*Tsqjp6Iu~s|g-0Zy=sWx&h=8J1Rl=OA zBm1E>xI(YJ+K18Ib1hD=q;;Yt?G=`6sUkTH-K_|6Qlt%=YLpkn$Ozd~Y9*WI zkU)K@qO?*IctePCtj zgKt52;S=?N!>P&P)GC}t=mWzGs*?k}3ps6!dH=UtsvSU}%8Ct{SmmT@eu*?IU zAwbj_RyOJk;S+U+!>P&P)GC}t=nO}SErw8pLb%1D&~C^ETZCnV&=ERAWd=IquG!WZ zdTE_;qc-2%QVeyyM>BTtBnwQGH}#HFUoenZvBeo?}|u z*Hi`8Wcm;fhg*>)v1;sVYId2LSn6=EmI0PA-6vIf`^9IOsV3Np`6_SD|0o&5OXlYv zpTbb+{9p5LR`SNXY^$bJT_eu@(`R=_tF(p3M9a?X!8NGhyPj3IUoXu|YK7^VuS&D5 zJIMS>%rz;mD63t3LRpon$g%*w|CZ-NCOJkhfs(CrGaSd4{G2Kxd?o=6V%~EG7 z?!S^k)g7d%)>1jZl_&`|&ao%c1f8Y|TbJq`en})!QE6J{VH8+5-=_CxV+F z-_fZSThYvXEBYI!tYRW*U&o6yd$Q%bz2J2&_DZp0NXszZ-eF(1richv{&0#N9rlkn z(PH&rw##hbSE~GOv^S#|YfxSg1FDE5(o4}vDU2RlOsr?@(1mW*8l&Nt%_5H8ia-$z zRHF(BKBHn6mbXWjd6<^6mujE0bgHiAPe!@CHVKgFsR>QAePEor)oU zRQ9Q#NKtJSF;a)%W`|E~mmjlX;$!QKT_;rY%B%IGU%A%c&lL8=FaHXnFzGCSgO{TW z41{NcwYe?#g!nTwB$0)No`Wlu8GE{|MA;mQR-!M#fEJ9<&zylG*&AQ}n1)-x=;1!W zhv|_~IHF2lJ>5)jk844Cd_=D4VR6s±~LDn+X_^oieFl+KL3H@`l0YHN?Ftv#l; z62ec*)BEyjYmd~{{+Fn&k6(NahOSYltq-HNK4N$7{qWb;w3(?T*FgE;VB@p4C2^>KOJcvf37ZYN z)le_{56o3wSEGLGKd*6(Q(ONTh>ukIk~!JkGgWk|sjXgP9crt>KOM19N%q&Skg2T{ zLT&veg$#ZT2Crww@`q)rvT^b)7OfwROJBzkvi! z?^jzd^$t5xM{27e(nPH)#hfJBZ?-W}Z)cH}pF{F$t7Yz=sGZts1tYapI7G9w!=cIH z&?+1bKT9{|5ddLB3qCSXOs{sT>))WZPMl$rbHCcUk2MB#pGcL%={`sASkIC~bg!~E z?VkHkV;_dl-HP<9t+mS6ueMHbrRI@9eW&v|we`T6hwT7mf$IgDIzV;P0jehZ+>hvh z69GLx)8{oM%iP}q{c5X~jWi|U6ZL_^r^(^dDtt!hgF%?k4TdGx?ioNswO2#v2%6GR zwRMeeozbthCf(XC%cvXP86`AEXY}$Z>Wn_+Vs3FCibw|5ZZ-(4NWa=zs(k%w>mDoI zG@h4qhST|++Ims-VLL-v=nR3T&QRTShN{V)-AZSC+ZJ(xiE}2=8p1LUbVgonwX#uX z2%o4k96n7BpH|^BLT3!Z1pFhy7$(ECS3~FsogthC)YfCCTW9E{WMJ+GtctYDo_T~b zp1EfJ+yX;NQ|ge;K5%iu5{vnHvy1uJLUGhMBHEJ4WGSXS-i_xsZ`=6U@Y>pf?7WvI z67bB${IvSInpX4epOh`rs-NUuNAgSMJ}G{L^JY?+_=%3>X7;^>r}s`5F-RKj^EXB51k ztdxUPwi_EPC>!riOby#k+DyA_%SY$q8o&i@FSxLq`0HrXdpH@#x!a%TZ`Q9xmOfpd1rU<*7_S# zmG@u#572DgzQUGK3yQd&`bUQMpaAC`8$Q~YE#j6#S4*x1RN69nvLw5G#q z9UzG>JAnl|_e)QDBo!{^R0>nu42~CQzbL-qRUP2sU_>e`5XJv(`l$u!Z+_n>&bl!b z{+B2o%r=7i;jA$e)7qfFu$iqeM{sspe@Y!3!b(|~<$#A&(3KAEN{90!g6~86jBx~q zVtIl;$P_zkOpO;CJEouDzxbO7p00f2uO#?$@y6XO>IK*^s5r6U2tEWHBlxd}5d69N z=c{9nvK8V89zqjnT^+PvAj!xn9oZr7)gh&UirTk0>8BZUAR@qW`l4&80Ny1*XSJ~5A zSroF*pxGoagYw&jolRjr;$c|W*-IO;V@{vQHg-m=0_;pxbA?Fe(q<&~4p0#e78Cam z6bEv*`~|q3*qa14;CAyfO|&{oT6^460r>${ha$<+N0OcCpi;?xs5HwChpIWd@H1#; zb;iJ2;JY}yo8e%A)?)B*y~!YGTBs(1rh%V8(`HGg**$F{0U8|#2AT~d+0LZVNG1EB zS4#(@55pm8%bpD+NYYIvP|-5%4)_bP!Yu4zlG|y=QuF+&6MDI?pqg>q zDR)RptZv7Gai{6S8GJ}|H3=vEm#dPZ7glpN>Jg4earB^hHLv}!s+QYewsSQ`A3}rU zVaF(+-JH?JcQ1IA!Z_UfND%>T%7;xr@e{3kaXyNp5zW-q>MHZrO2^KzimW zu}V3O5><(N#oU{q2OS6(p8EpJN0MK#=JE$?hy?kOHX132ery*i(Tvb9t%|SsJVpHADKkHL zoqJE0a6s_wcr(pjhUQj88XHXfO4n^MwJ}(mB(@xurGCwD%$6 zU!4|?E#<~I^kO6?dBXGBY|74z`;@MG%Z%Lu5p_~673-N%ck+X0hA02}tl;DaXVhJA zU!i-r;6aqZThk~(k5jyXlM!}&T>{w4e3{+Qr{Y&!4T@@aj+DUtk8o2;I=F{99Y{Ez z=Ev?x$6lWn7M9M)_?r%->LwrO#SSLIDVq|(k{=z&okQtK+yB`8+S-C!J}7YdS3cOQ zCv{}c`A3!?SFqu7e*A=Gg0~>?g~S&>Kig}3eggaM+!I#CiG=vFjgl1m#6n-1$T3jq zBS%B%ba+-#s_u`r7zmF^g$-G?!O6TB6H>!EJ!Ga-VXq#o8#GXhw#Qf8!&^V-_JguA zsW*ObK^aH%m}Xx`uc@XT&T0}C{Z>Ex2J`G|ko!fBM_0^Ap>jdYVDHSj3;qQ?`vK%R zH+7_9V=JW86#pc}X*AfZ(?_|MZp%=!+r$ns_%7KFV$FnDKNGRiVJX4R`-#QfD1jr^IEeKW#F}*+#6kyo$cWYB2TO2N zF>29dKgD$aLm6$QgWU=wKS&2ih5m6+>^2>n44#ivF9_xz2f>PuGlKox>3<^Fo_8P^ z2Xs(1u3_q?sX@)8!*gk7|D$RkjrtZ}f9`S6tL(U`vEpk{=_n?8A)&m=xkqXv3 z<>E%CT>RK67dO_DJr!K#l#8EL@stj(GUcL~NhlHiSXJkzs~ZoaTudp;{^k@-oL8#1 zz08s_`t!$9FKohuyqvGNSKvpg1>o*v){DUH=4U#%aSsU~_PD141M0`U_VQQ}&QA0)g!I;Ry+rTKz9s?LyP9~iFmBd#Q=WI2;yI-n7BU5}T zcp-O+((tQA%B--(qC=+A zdE-q&L52@b6MLO6a{1>u+?{pjl5eL8x)|&oxMPJItVd~S z9`WVJSc!4i)lR-imw06gH>YD+KbA`)_T@xVn#%LZ<65HOD+iyX;FEM_23?+uFTdTE zZaMA{TMN+((%fmtiSx!M@XX{8)-FGGmwXd@?Hl~VruLGuJs#43=N6$VpTjJMsj}X5 z-K;IL4NPsE^5annjtp@`IG%hUaUuqmgY`HlQbZY1uPMT9j<8<`{K-9V-35M3^W*5U zDW~F+Q&oU3-$tG7{MN}=%B|1tfE#N+QC}~3PG8FGu^4;`)0Hpl&A2Q1_Eh}#=bN#> zWU(IHRevLu=C$5On2P)DH;-UCSlaDZ-gWUQ#27uw2v`0nvi~MbY3>#{K$>1Rr5RHO zXG0T>Q#RvSk$fg`;x?@DpUDf+h^t9t;kzv$$Fp27MjgT`5vg_{$9jC$j(>J#@X2-#EC8zS1> zu+Dq+ql3HO=!)&EGv;^D2~H7<{G=xIK3g_U=?Tu2jE|x8K8ulfH86ppB*6DP$49 z{k7v4ojzqoU+G4gX2T1PW8mHfc~ikdb_gtiOK5^@MrS@o#cOp4floc1|0Pr%(xH6uXrJ3u|tgV7S5asIjz& zs^rHoAWk`MT4uq2W4$eY*VGe};Q{b5K8df;8Z;H$m)N2zQ?^Wb+K)Y)+VN&8{GCJS zk#ybVhEN3tX{leF-0r4+bUPp2Zf4!dPt2@a@C2Z4J7dg}-yGo2?*a9x`e$ZjPCifd zrZZ`7QQNWT6Bw|Lo8!k`aH|xi5!tQ;CQw6>V!)is^+$Clzh4z4!XGSvko)gF@u4xd z4q^eIx0vVVuQ|}4c-a@x8ooJxu)M6r5aXc6va)7=GIYGU_j=*Smz{b(L-(>?lyNhC zGx1zdHX-$mY_t59gBOmjCYvAr{h5~h<5?tL@WZkOYLbI>iDY4^_CLmZ;oqOC zui@x_bww&&ktz1_w9`n^bvK;cz;Ps;r#;F|G=ZsVDpXCCsv+78H&tpAWw9UJP?n_~ zKe)C`y`ywBX?(>lO$OXzx!4bXSym-faT09clNT=gShIZN~Z|T(^ zTTBYWJ?@1!7$yAhS|bihzgqmEc@yfP!mB&o1D5%I_%1Izhu&UVlP>Qf$2!{3eV$zJ z>7~PBRs=sR)5c3WoXx-UDpKKWuKnal`L!RbRcqz<1If(}q;UDi%x%BCo7;v@vG5mL z)8&uzBOTnG>U`!XFUGm0qxHyv+JY%d+5?W!(Y;)U9bm zI8gKmirAgxoSvEWaazW+;(qyibCidhG!ZR+aC4a)487p$vOZP7hE%NwS4f7VN9=e# zj1YvFtCaydwOPiwW%I;I8|>kSWgVnqmN|a7+)DeDRFz(MwKXxV?t(uS&aCtQP{`=e za*-+ZzO%xzqZD+fNrCJb&0cJoA&?ASp=0-`c+%1hvOiv-34^&CzHO zuEG0-n0`5Prr5+&x3Y%A!nz}IlgBqx{qg%BFe6r%Ht{|k%q~g?)#KAannTOgRjFV$ z7Wml}*@OQqZGU#DQ}uD88K&m51S@C9)T?{{fECqUc&6n>(eU=9KTS}Bk$gy&P4ol5 z3_@`ism6YlK6u$HX_gT;!8OayT3N}khPB%I?F6-q2bKC_v+&b~?Ft=glJuBo%&1#? zZ!l?~-fHF>J46NUG#)2PD;%_`@C!BRVD51Yy1B>oNvVjhXKVGnkneq7`5n5w8gFg% zlh_@TI&_10`B^p7>L#Bst!~P3&=X$%t^)pl2Z3-_g&*q@_O+?56=fHD3|Y+x8oCYk@`jU~fIQ9*6NtLcg4x3nZ32&Vwsfk!U zNn#aRy(rOol0<8|?%g~ucOSwVPLja$C}2V^GZqQ=uvebNT;!L(sA-Nf10J@c@)uI& z52ngr#DA1(oq&(s#s2s7x|4qnWwTKG7pd4@e!fDyiGN{;F1Y5v%*>J(3UJsuGvEPV zxf$gPUhkU`U%%k>-WlPN*Ecb8J`Kq*s4TsaTfWOCc%0VM8T4Q`A>-k$SO@Ko>2(LV zvb86{P?v4fEID{OmB;83EFWCa8DB6qwZB7}>B4_!dQ3HTu!P7S#g+7It@bSWf*16# zm@V(XHl$ESgbiQ;z9`;R7*d2KK_{NP^)K6&>KWWB*hmGeQ9B50q|3={UM(Fozc)VbrGf)#Hu8hJG?+>;8Jl@^lg37>?&LCC zV0~ukx6|KTT7`*!T$vwZ*@E=LG$p}b!nM#i8BGoS(@KN8ArziyJ6?=!7m;3eL}HD4 zT0!;{4f;b{r*|b!6Icb)8_zwh^dM0MJg@SxrGI2!oJnxM309w3u_Vn+l~`>>`y@WD zhoSw`4CYkhvj>qQsV*jRsMYiWjuSBQC+H8=Qp#2%V~Hv7g9N0j;QR%%DoYMcuDep< zvFY+RQsFr@Uip0**cz}%0R&7>I$Y?fH<-LpDe$P;d%8lbgqK##%$)p1?va*D@s2lj zz5=--(v_I*qOA(V(*)T@XVeifhNw3ZOEBU6F!{M<6Iog4=^mbzpdiF%A5lVD^jO!C2>*R7*_o~9 zQCzBnr<9lsSvrpY5i~Vq^}|!WFh#eWQQgP_1d3DR8 z8kd_qNQcKEk<(Pca!;9RRRhO9R9mkKFd)Mj7*w&}E~29m`{YQ6zf)KvJxZnFQHdVc zQHIBL(POiFRMV-j#>#it?}^f+REJmo3i(^?O9S`tmYsuaVzEpxRsfRDWN zXPRjsKa!4;9>4UakG$1keQ_#w(>&D@yL>!JD)s}zf~{S2vBhc+B)e4_1RHoxQg)9$ z-%zGl_#V2O)Fz*NBD5r@RUs8Z&n&kA-J$*K4oYA$QN`)7zSfV#tdwL?!t`HDY0T0{ zd+U4(q|igz?7%*NZAE9mSveWDj4DZRA^Zf%<1Wm~F2p+W?_pV4Vn1o4wsh>*!XO>{ zg#h=s!V&AJFJG3aWQuX7#;M%e|WI~}4?$S7WNE@FSB{B(3 zsj&0OVPxW&0xstbWfOQ52}E%Z>NVT5Ls(SP1n5&ui&gW>GBv6NMX6HeLgPcInN>M@ zS%4r&kMSz6HTH{N^+zUnk#Ze5s>2J`6(%XZiHAhy(nHl@;ksndnX2naRQ3su4SZN~ zicgJ#M9R960}Vy|#dgt3?SU>kgGm$4-gib&{1Ha?p<65OS^A_(3Ec!UUm>`x=65o4 zK8=jKCK>EX)!kQJ`IH(Fy_aB}a$rmSX|Tp_c4&fz2uOsfA8F%g+3lR}qOpf*tkN1w zRQ_oxMyh;q*HzBoFO^>XC>>%kDMS0Ch@{{-_0o7=Bw2@)SbB9?kupY509GlFfIUG8 zYYxk_tgH`EJbI#6Akw#@I8CbqQ5&pZlaOg1*+qaJQVu&Tn4Jn^DT0Z4<;Zd70yted zwCg7jCL0SU@wWI(9VBoSwhUY1zQUqW3*OISL(^aE!E|Ns(r0oL7=nqg@ShWv+u~O> zs`CY){arwLAVQ2>m+0(){(7x z^I`r;&T8;H{n}d4`(fE0erLaUJNol7qqwTQrI^aRj9ZlEsR+$?D(?sX%;CwgmSGA@ zAxC0m-o#hcuCzS*-9g&2Z!PCPo|!meP{MpA*_HxbH|%N@=j@?$?q?8zb1c$0C+H_| zs_zvlM4>$96dt8WAv<#4v3xy7aPg}ObdyE|{}=uIp>Y!(q_MEzv_#O8DCZy;B9CWI zdx`iq^dY{+Kt%l8A^w$#Lmf$IAa=}+;oIRl;rVx~6Pm3Pl4Xkr_W+N1@;89i5c2Qb zHkAB-p&C)Nhm3i8(6k=2S3eE;4_Jnw z4|($MJu#xaBg^4wZzCfbIWafj{mL6`1jSb@MFZ7{v{6py7HJSfR(mVV(HB$qRPJQD_@|WTaLKO= z!^yu+;B;SidqOd~Zq3X*RC)K3DlM)Zyf?cUgA#&!W?k8p7O(6N0uRLv{qJNVJh3^H ztlYJ9k0z=jYF4L|kXDDuYYMBwDc4j7x25V{st(@7qFtS-Jyc!!?2@Hqo~X=`P|Qox zys(sj&f{8OmAZ-1t1Db@2bV_!gw!Jx(Nci$IMG-6=+Zr^N9E`rR$^JRKP6Bx?sl<^-s$dTMtg%lBVp4FLr{spR`AUXj zs)f3$&zte`JS@4-hS2*F_{jYosqkXtzRuIVDmm{&KF0?zXc{jqk3{~T$?@{O!cUpV z-i7535EjCiC;c zrI)I+mvkUpmOGBkAln~}giE(NhED6DEy%0K?CE9muxHMbU&h(oXE-k#PkZ^f7 zrQT7v-0;Rw;Ud^_vS#bVfFv-rNv7XnftfyF(Vud*=Od!_C?i;OlZK9{@8zdvP_f5? zPee0kR&YX8v0b_AnuxYcpkr+UeVHtWqwUQ`+no_@tA^6HDo^fszuE>>^VIC>IOu2{spnauA<%zu0R?Zn*s!HANg!Ej2-4is|( z(~mjc_bY!HNoeh{s|#u%8mnK4ehotjZ5y7@Q^OPTYYf7=^Ocduoura))^N1Mh&Xyc zG@txq7Uq~iu*sm9b|wD>@aUw<9ZOL@9s5gsRYl^tg*qkY)q@%)>iKDPvs#^eXM{b- zj#gJ8Iw&Hu@_to;BBVfKzOZP6xzi-jDN; z9G`FzHV2;IQfw9HDXwd)+JGvzdc(Xkh|W~_zz82*6hNFRIySi+GpMdro>;cs)^m>4t7Mpo20wg*i<0U zUYuVq{$QdjnUP~YM;(cUc6a?td$~T)l~Efj&Q)z(`yw1U5Kj|DUU*Er>C+IO7+M&4 zI$t`$ju0hc2l29fMy>6@R~wR;{~V_vAlC%SlgJ+_e#J(zaKU9d*n>G1(+sElIwtL7 zFoST|dHRn(}{BTN1Ix{&o zBbf3@%!zjuB!bDi(>RufO9)wseQ##45(4{esa?rq4u~+h|DveCT*{d-EBLpi5-MyBtTK70%$nR z2U`g)9CQsmN4Y$C-A-sKfKOlYnK#R^b3eh(e4%KEM|LgUNxYeQ(bXtwI1r*2XYVR% zosk&_Q4P&WZzHSq5l+dDtnGq=BaBILfzX^>IU}6%^%Ms5#;qlgdLpF0jTKEIC}gZ` zQS~#!DgWlj{%qu)nVBr5DG?;^F2v_rkolG7JXycqk$g!(p5!#D?}w#)GIJKXRPUnG z#8{>(?DxX4$IgJ^io{K_+yyU2z3`BFgiw5R#u;77V~z6DgIPs=jazDg4?n0;GI)iv zdl)@9lqnnz{eoQm^4R!_XZ}tylwg(NB%cLoy8Pu-*tS89gwETN%eDZMmu+H$pk2eq zt26)4RQRt55}YI2IuK~-@N*TZ@;5kmc$7jFSetYm7pS1dn0jLk z0Fp(jx}6*ii`bX2qZ)AdcB(y(pe2^H zsu0GN60dTjT8dxwe%mT;RgZX?;@`nzf;#+cVKRJo0vmYU_G%(|GK_eeIpa{GvQt)@ z>jVwa1`KEy?j~J#Zbs5HzHFk4>;CLn!PvkM9bYXoETOU$D8*g+#!vCvo)7yG2~o`AqN7Q%yohb+1a3G zgN;2T>G0F(@VjvKegM^Jegs8Nuu*Yp@LqMjuu&q{D}NP#0c6O+J;~s@#S{%PeX1uj z`4&1#vVm!`m$oE})8VhBGN;3vq@+}bUoTFD)5a$npB}|Ps8zIOScnK{*Y(m+y8I=2 zrH#r`?8*fT8wjm%kZ;`rf@?$gK(&255p%W~I9IFPAk(Z5p=&yffHzFJ)JHi88e=)G z6a4hB0CV2H$sm*EQ_$M23`2Vb=bXg8j~4`TZJ)+#yp#r_rF8C@lV@))U8)KUvwX78ZP*X;Wy(!-q&xYLu8GB%CfN z?wiKsG&LAYWXY|$Wz=^ImB@=$<9`I>k;Sf&_S>XP3|iI{_RgumO?|v|O0dx-iRgfQ z*|9gE3TLcyUG$wDp#83ifI?zykubmSl)PNX`bt4WE|gDu35nT&o%?vXU%?0GN# zGlJBbMqrA&as*pmshw;SbY-$QNCUP(mz zo%}R=(JAB}k@mUghtqyTC>PS5Bne4p_!HruBv zGm@V1<)4!@*Rpe?!`;`$#$_pR8M@_N67oOx?aW-^mlv+Hr7(oE4Nt!w(xig zXZ^M?EdFf*y{T?{LWid;40Xf0ALBDshn*nzIHIbjBMVh8$jza5A&Mz__?ZYV#vW9j2wqOtJyR`R_o-xN5h~1UOX`Qo9ycT4f=My7TA>Q- z3RQ?)!prG(V^>4D__CjkHo5aqGMMrY2|SYyZL6+4C_9i93ay5r9YcK^s9|7|An!c2 z<0gu;nJAbV##@$+>y)5t+tb-SNc;)>OoyM)CS1DwMUWj2(;)bz<)y=GwBwf!*X%@m zv9E+=-%`N`vTbnL){&&kpMjP(r-TCiXspknx?!&S1m5y|n7sm`Yq zBD2J*$z-iO{e+upuy(bcGUvX<)Ye{Lpl+!Uk%F~*_(Es)CuwB7uuMj+(9CnF{@N1RORqw5ky%hhsH4XyagN$ax-{9qJ-Eb%d$Fsu2~ZhpF{z%VDQ@dTRBzWX;4M>aB| zsleHsT1)vFWb`-tz+L^8ro1@XLv4s7C6PGF^3yC#|4r@@#nG3u5=Yi_)CGg40(CCq zTx5x+0(I&ziS##21?uR^%qITkrvgXuXewCEhiE+Ii9Tp5P~js@1%pjc7Mx}{?OPy7 zMEf>=9)|XrYlqX`*`#cBkGt;w$J_hB$5~bR|ADj^Y;~e^B`Pivx*82Dfr3VZOF|Qv zp))jyU=Yw~0ONj9WB*`wSJ>DvB;)WjVId|cS>j4DDtw7zBp@j%1)2iVlq!aTG%A0d zp(vqf8=#io`*ZFynaLz=alfzEudi2go_puqbI(2JJonz`{yB$I{`rqguScb2-$y>O z7YJnE&!a6!m4dxr*+2bUuI$r8f!@lQg4gSsBX}DMUWw*^r86@WOj0p=RR6#?nmUc@ zq;(NVdx@B1kTtXap<_MG#s%kGIz8dGnG@Z*y#fu3zMbA7*qT|?4_Ay{`3w_5^~vfr zD{OJrbG@T|xiC5ez2gm5o_PW*P#dRLpq^HFS3u)hyctU2is5=dXzfqUCwk3jSndWc z8nQcv$*=S=+wJFe>_9m2;zb*mY)-F)q_+Nfx@9$Zc~5_iSm&DhH&&)<65CQwil*y} zYZ9*>pgT@o#$r@3bkroar-r$Hnf|s<)e$LeJv`ckM5@Z{Bwk}KRmKCCD*WcGkcVJ0 z*vaFE+`O=d$9uGF`42xnfRzkAb3Bn||Aa)``4Mg>a=C442^~|rZCf#^UAq;Ekz`Y2 z*lz8F7&F3&NzO%uRvj7s5kmkMc3#s*C?^P5WeIbND$Ht#ob6xp2jwSlg-uM8G42EC zC;^WC+10rGeN}g>l`Q|9)_TfXe0*1L*SgGt*P|S)B67)Bapcb>3OivH`r4waq0M>x z%f~ohb!lklLn~g$I(NS_`x?YfU4z)d3fIc_4!IgOx1RDH-P;&tnX_uat6KbeA(rfE zq5D?I7_MACMk`{;c74h^HxTcK@hB6@RzmP(F6u0>W(TZ^b@o4x;Y?rIG zt-8Lz=XxxE8%J6%KPq7187^B~D;_3{2d?gIwMM#|BGyRVfKEW#S{bRJ6|@pTOkehx z-O5K}728(6+p1Xd7IPUBn~ZF~#)Y9nJfe$6v&d<;zvJ2|V7-;ySu<#tllf=A?|M4IHb zN?Ma@wF6@@iDke7^O$6TEIop?JH6X_APjI!Ibl= zx%%*M>-}|hPbBCpW}G>=-g=4`t*5A7oV#V>VjNa;JXamWU)CLPz(Xg8xoG1MnCd(gzuXW%giwU8^Y+th&1e)eIqDI)sauvofu_f<>RzW1Nm> zb$v9F_?tW-MG}8ue%x$}{pWJ9yH}$)K+^@lq=Bv}04tbo8rZ90gx@q80Bru6=+*c{ zs>A`!@<`bT6)ct|;$fFr>p-0Y^$s*T(Bwd~11$!++5yzw=`wp9=yRaofdL1G92jw6 z)Iir5fa2pWbHV}Nfk_9Z9LVFng6jeY3JnD7Y4Kv0S>k|wF3~=hvX6&EZ{L&^?{{Fp zK-Um}3B?G2H(HbFQTO|p1LF=%IN&=l>A)0#`yY?JoogU?sUS5p0S(1*e20tUSkJY1 z#c{OcHS-nAI#kj*V9D#}S6Z^C&yqLJR|w=#NnfWWZ=SFC$f1({7E9hbU%`_V$I+5M zpPxt4#c>?clBeo?r>k>7TRYTg$!q5KS+aA$lGo4gv}8}8C2ySHV#&TvOWr)ci6m5O zSKl5gng7r`FD1T0+?9CSBbM?+jy69^iZ-jRA+3~B|KvZo`XwCdpRnXL^CdajJZ8!3 z=S!@ilAaMu-Z)=!r_BSFym|frNmoB>`Rf<&S(kUWyb1WByC%^5^Oi%T77m^cS$^C7 zyZE-OIjTBYQ4?ojYm7O^m2a!A7}i5*t@h^DV*{Ez)Qfax@^GVd33-QE^ixfvZ1Nx^ z>eEV+^8Up=>U+HsUi|UzGawagw{*!c9 z$ynH2D_n6A9S%h4r$%&)H&ioHee5CCiJD2aGAfyateRh)EZljRn}}2==*;h{PMrIf z{zF!C?yJ}On54yBkzZQ9k$k%uSXTs977X+*rT&GzgsMFw>e*I(v}*TZc=~I-kgVOO z&*Sl-3+%Cg$9L#4dHSNN{HwJkQB^_D9Eu=A!ra}9( z&{r3qPX0$P4SkUdmS6k}|G9a6sm{aW*KFtGE108wjsNDFWhX8ozQ%OMoTKf;N6VFC zoWNn}=CLS~w12GnrF67pH`Bnk=2eBxdPNhM2l4H}uS80XWBN3NW$mY|J+b0Q@@yRX z;X&nu&{Z#=mu}DVJi(HQBa&dqeQ7h}6OG!e8_J*JVT5_lA8Fa<2rc6h;t6WdqH>(e zT}#2mpI|znwtj{`$J3xc1dV%+D=dV^UBi-+0jH{juVOv=vdYBtVE0?f}F+^YC zYzw==nz=z)RdLD*HS#shb)*FxT6{>ik%+MAa2JeNK%;X_&*kX(hEJPP%aeJ!4)bnO zGMd^@$J_PT`pv~9c~>rEZGxjJp{qW74k0U6<@2s4SJ(Pa|7zD8xO$b9)X7Skk@1yp z-CfhdD#mBeHnK%_xX8Iuevnsf1b*+BLVJP!-hNMaQo)M9X&n3 z{ZNhJR`OCn*W7F7GW-0}0QbVv47c6kmN9FY#qWEn0^E*M4R_4pHqV6{qr)^I+;@uM z7HRVAIX~ICJhW564Gu(cMTRRu-b0-J5=bvP_lMYuO zfV1eHm{!`CmzW6@nhCgAe=>nQzC@h~{CB09Kq0LuAahO=IFhq`*7}Q2P|aonwII)` zmKz}s@v`G_Q(a_A9q2JItPt~lS*A9{lSewE`ZZT9Z~SvW=Oa9TROnPQHCLU#W4Xkb zTgU^rbq==@d!9x2mwYrE?h7UGcbwzT*~oA^1^mua3E$lC>BZGLDI%wBOrGWLtSZYP z2#(OA=4i|UTrr8Y5sX!QhKx8QnQ6Ispyy_O!9JARwn}tmO#uC~r;g7{+B}h)O?v5Y zzz>z2n{!vR`^_(Fyz6qkOWOHa`r2OL{VeO2Afv3tF~^Ms1cS{^4QXySgwy~j_GsN~ zwyU3%zj2SaQNd|$nn>hw)9Jr3Y22tK2uUHWhsCzL#CG@xQ7Bu;++e%!U(A8J>PX{> zpu@Z11Jiil1uv5Hbe=oLw!Z=uZiyu0z6@LgVHj5iiQx+wghN-o#_AhgRx$G!z8w%Z zsW6vca2DiMk`r2c2xK_ip@c4vZQZwIb2NETap0tV!=G^#KN;g#k(LEw$s=N%D6&_7 z!#=jXhs#w==YYBt8lD5|<;YCo-&Ld%j$*+v%NU2W#*M@^?&?NjP~qWWL*eB^S8wDu zs7x>*aB88;BFN)Tn%^Keu1ODja->)g^3)9KmU@?a3%@Pb72dp|SpI0N^ga$Zusqf4 zTIz`@Ex?pM6yeTdB3|O?6&i>a=~r*w+5BMVtr!n=rk;3n?uTo!%{)WBZBl$C)=e3( zVTs)n@xydS*g6?vU|2-uY1lwlEr3-)37>;M1qOP3H3!eoN^!ghKjA#FZl^}G+kG9E zF256Nn0Mo{h6}s2y~6#9lWyb(79H`da>_l-5nkp0%iM6d5%|Oz$!Pw(GfEe}h4Z!* z^J?;6t|^^&YE|-^OL(5FDm~?6+^Bf(yz2ZtRi!5#U7f$19ot5#3a$ADqaPa`;tmOV zsDPP~$rWxSbQU8`BY2Jm2g6khXtIeTY2u(EYELj&N8VuVa15qK5Tg{tv6f2J)p~=7 z&(!Rh-btoQwl{R5Lu6v?gt#dJ#}Gi{cN#lIVsl@`6Mdh!>fwA{-~Y zl?4bVsXJNxd_B3Ud|v5EAE({1ij6CF1nr&4cC=wwLZBni+*KWc0vX~{nUscp9`%KS zJ?l|lCp_tKf=7uhwD#-AIHM$k0Py^zuR@b(;#KEe3ZI8nL!!n+ludUb2F|3w9w({a zu=YtF{Yzd^?;>uddzU^ExxGt|e+`?P@~Ma=U(rVwrO#nb;QhABd_n~mlsBg@L{n1{ z2(GL13V5V*bKlG^Vo<_K*PYaWnQ~D4@m*p@1*e(GBazEYpZ~_r7qe9#w`=dCKk zD{FbQA+GK)qGS6IkCk!^AJtSP4{zOY^l8a?E!+G(V~~7fbm#mb8uo@JocD8N6RTDQ z7>n8)eA;lL%H8wy=eXy|J0d;#e`UX)PC+u`7^1_UNaJ%omrG@l)@S#nujbNp6?09u z4=Dc*C{VF|ZzXX0^xUENCJQc>a`)5-Jd;g8EII;Kt-r!paNlOLuBPH{a-VL!23Lb& z+r}g;I?w5$bZhSpEKUe>$GejOX^zPGPv8 zjA-j{v-nO=!guo$XgC6iIhH0~d?oc0A@Yc7KSWln;@K77 zLA$Cwj8@PR9AO?}LK9u_>vfswD7fw?G{(MJwpT6Le>@DlN8uOX2449HC$ZIEAk~W( z7vq6(x|IhjU+bSAl&?*fZ>0P^i}eNK8oTP01F>+AUD@%EFe>i;jw5ulkuX~NLV0tv zCcyMJ@xCg^xf1%PAm<`swDbk@=4h3G>HkMSO9}lGEs-!cdOM~gaSd3;J$CIc&CUhn!Hy5ldbii_@7<2oB zzgc3FOW0mXIxO@rK@R^&Kdk;@c#r0|d8^;e&guj^t0TBwo#}TtoOqhfL|zFd4xxw5 zAE8&a@h#I&`@I|x8HY5%%b(tn*F9Y~c8ipI1h@}!v|Dnb@ZuMD2R`QYGy|>dDLJr2gRQ~ zFN)9aOY=EvR7qWL6rZb3{2_;;%}!>wy51;0lSMIS%uJnZ6gjv0LJmcne9fl#cBA-g z7R8)lJoPw(=z)9FKBVqHz`+FdfJ*3}daWVgzSPABA@I$`b$*+bW=+c#y?8N^m5L5p zuFzi|lq*b^Be>EQUd015JkHzVFA5k|!j-;xvEJ}~sl^8+pzhe;_N;5M5@`Z;Jnu_= zhu8eT9B6Ft|0^J%g#Jlng+`$2paeA5`DX_Nl+ZsB7zOT2y-0s^AP(@=^H-`&%vjae=U^KFUQ<3 z@m-pawBA1v_Trk8=wbx%Vvr7V(x~T-=yN{W!(Dk|9x+{N*k$}Qj-=eoOFlvh-{@-A zmr?8e#caH=;-ZPPmd}IkSkr4}JnD=5?_Y?|kA}E<=}5(#SF; zLtspqG_mIZ1U~k8Fb~hI(m{efQCWoZMfay@{*(Bk<8xFsuwlz6MNOn!}#P$Ja zgz^;sws*{aK{_U4n1#y;@)%9@O&99;Fz*MFoDAlM%;FKK)Db2cglCgxMDM21?k2o{ z(R&Y3k;2_Ie}R|F^yQnZDS?;ZnVpy5@)EL=z9Pj#v6JUEf=9brH#*WT8l+8dnoJp|LA;{sxXB z!_WvJ>Dh(|m23!=unVw=r{9E1eitfv_R`S#i`Zs3|H6k0`Fruh#r(bO;j++&7CjvL z5SgJ5kr(<9Ssdzs%A+fW@khJzC>CN~an(GSU5$Lz`ka_WNO2s@+2>ej?FyoVRwcF) ztzGwpoWWG*bD#$M_=@jt4dF}&H#M7M$*Sk3-mn^Io%~*!cy3cg%ZD`FO0^q@NbrPtp8B9D*0>=Y_8k z_I}0vXLz4J^^hu^qa6!fJ;M1VopaP`-9z{oG5PL_G%Q?;3sr`K(R7Fa+!TF9n#O-0 zo{>63C7fMZlydr(vY$Y;PdLS2xWjb5!*sp_os)sScSzqm(Dz34JuZE3Tv^5X4z&~> z&Y75?GR|&nDB!mhJ|~_c`G1M!<3(~bwB|_7MBH9bYCU7ilHI9?=nQ5e?V>kGBi#TJ zt57?;nbK9xN1^UhOyA+&@PvA^#8&^L&t>Aty6NShe)8`rVHMWvZLuDCB?o{WRKF35 zuY8-Lz!vbGNAK_xPH%uTnv1kyfskq)(yJ^WfK;gWJDEi(ME>r0k3%}+a6?knQE%NS znURX8R+c4~mS_#)FMQ%9mp19~=Xz|_lt8IQQq#d>pIR}du4?srt&@m<4^C;Q8s)G5 zXX3}6Wcx&2u6xpfAlB%|*vZ5kajDketx_{W%eULI@VXwc5?anWXs=c;c`JTLrF0?> z+Oi%la1w*<`eDWePBxQOJQ?rcl;jb=vC$Z=eTOf2}ob zPu;aT&P2S=mC}-5XzfktS4*1w8cV#W@suar|18;Uy{sE9T}MvKE3N2YxfQ*bqO8y2 zjO@2uJLINjKFg9DYa^&mzn{xTgF_WL^T z$RMop1ZYkM>hn}NO)KNx(&7HtV(nIiyPuw~6==<=D^}G2o3F=q+UKiWE%2Ts|g~Th^HIGip9tab%>; z*s4Gfq7(6|-^WG7xQG$pTo#==LyLuu zf^>|zQ;XT$5Sq8wQ{ zgo%y%o%l%1i+(bX<`iFkBu@QzEKAILg7X%N49LMBtB{L2^ElD6F|uc42x_a|x9c?K zC7U?c@~-Ml1xpEHydly$a%hb6tIzH{;yLK$@E6ZO3c+yQ;UFG&yLy5otapX)Z;Y+a=BE zOr$xn@?5rvLcC`uE>AA{{qn@33FqyTN^p4NEo4ZsJ~gK|b=_!a%{)viWsB#nQ-p^; z9Q)&y+yye%pCtSw#yc{-XdV+w*iCb$CE|+<*k| znWSkKFM6MWu73TNScW&urA5)iGCpz7DZyx3?AKnEq*og97bTC}k4m`y! zEuaZ;RR;8|Y{iDvUxi24o^@)EhCu+WbL}|?7oSUMQ$rEf3L9$IQa(_vJYT1-LA}-> z#~%ZeYfzVKP_G&!0;vc#!}s96aDo{uM!>2>&?eR;0=Ke<|5`dU$zTn6siTdj;YxuV zWi&c=!;alr174khu6q48TN&l{Yp+V8j3xuOH5+bR6L6Fw+OuC}xCV8( z2K8ElxSDG%@mzztT!VVmpaUpFWirb6=3}M|WtuX+Vgt(Xlsdp1WfVJh^8naRfdQ}3 zKv$7|o2`sV$S}iDNt97y;I=Zujq8&MWegZtH)P%n34P`iX233Xs z(f6W^@A8$O{^Uw4!?j~t8LCXmu(E+NTzl53Jt)JqC+^y_UuC!kb-4!hT7#0qu0ft_ zP?u{^uNrg!WvEO>883~QGL&h`_$8n9=_#yzh$Wuk!|OhM<K`Sn$TcQ;Yk=S0d zVCSkMFfxC<=%akNO)y_it<*wB;#Iq7!u%yzf4T{RLHJJZZ00ZAiMqzB8|5fNDYJ|T z<}KsVd}i^RFE5NH7vX_u5x(t+FN233rgaY!KP799^03WO9xgbI0dxyDOc+&1({q%E zXJo=Sk&Ql2D~YGK@yx^`?hB8Qw_-A-5NkA@fpQs7Xkh2I^*kWy+(YBd94Ezh`6esurImp0Oz@j z{xA2_{)ZsrEZ1?8j_v^>iU5~6b&_iT9fIe;Lpjss2#205%QL7-nrxdKQ68xpUp)JdB#PuU3(I|Zthg%P?(fW zC!)!gTAriHc5PHdIjm}+rxC!5X6T743!;hB8GX-UMsXe^@8=kK+nc~(`GiQ`?NS7U zS_Js4*X%#xH3N8KTP$UZC;kx+s?+r9l-0VK8O87a#?o&g$d<)jc>R(bFkX{gT5$2- z_y>KY)D))9dK?SZ<#=~GJRUaOcC{qnhL6FxDhKK?po%N#SNtbvhS5N27*aVfTEu@) z7v&`cS~7zP{56P0AUT7q=NjkK=H53F^Slh#!tsEhIv0@UUZ zLcmqRL`U-qR4;x!1f153M3LKP0s$vZ3ZzUlfiRNofrJ8?IN=(lIkfI7NNZiVv$Xz| z&5~!f)`ezT|LbEW9qs<1bsew{Cx^7an%4RV&+w-$LEiN-13lva+Ggl;YkdNYKOj^om{e$b-uqN8~usyE@eM%cSPCW?vPae;snCk0X_ znm`!I_CP{`Osutz(i~cM6{NK;+*w-x#-?1Y3yqfKrM8VpI^kMWUQ1p$*<2UsyRtr- z3^zuTwN24v9Y;(&`+aU5w?Hb;aXXLn=bZwa7Z*+ZF#%w`(^5{yOGiw{jmny-W6NTp zSidBjYWY~S&iur}K*7J?5-9i~t14b+h~YY<*rFV?t7>z#d!xe+dU6$#c2z>P(AIk7 zkZEtgK*GdAOX^h%>y`rUC2kUlL~pY|P_=6?DU(9b?qqu)jG+0}Fh?n^&Z11$?J7vC zQ@FF#+5bSUI)z3<@>2IaDxrl7P-g*osIxGw&LWyvj5-;A>&j?}{XVBU!-{Rg*c`4T zNOhRDmx~kwIslHtmU3FWV!dgxSXnc*Xjz<))-TDXg0vPddwZb8UB3#ns6#=Fu!V*g zW_BAcmkL#9t_n?#(}S@}fKgd4`V?bzA*+Ew)d`aWZ733bJR}M@{gtSEqPI*ymAZEF zSjnTcH5pdxgZ5fW9D%gjKA2IPqnlQnaA&FQ<&C*&6Pl^*sYfKGb{!r;b3H8B(f3Y} zO831!&zO}?l+gE18R*GlQ=TRn`kabvF90KWFAI6(y_7c|+BB*v0%tf(A1viG`jdN1 zqXWvyXtW4q%OXU#aW`PR2CruKLOxHoJ#200gg132hBeefD&2-Y3FOPTI`gh0q&S1f(ksl+8 z(TLi``>hnFz<7x1*iti8h2y{LqbF#X)OwX`$bdDAV;8EEEgaPnL`3AXOwr$4fB2AY z510_6_{{->W4M#x+nsg09Kf}8J~`b69{UTns}NyVjB_Z7=kBh@6#VD{-DWwG&^qR5QNu}|Nq*o(xkaJbBy#W5=bl9u{ClWN6i zDEdR3G}huY)@~XL*lAWptHD_rK z@`lY=YI^K4mJ+?~RxYi;fUe}7y2_TnZDQ-{Nxx=7n)RA}+Xj}JqRhlrXtXjf_4=rq z)gD%}=pf1FHLE3+Hqkocw!Pj!XQP3hCICzu`rIbk3`St0Emo$bU0~Wo%T*J73PAm* zrJRX=@~#{cE#}9JiK@=oCMq0%<&tR=bqyJ?W+jbJOjMG?@hP_XYN&O`Ce>^flQB^h z%b4i2VdD6H+Ax#r+)IWR#;4tlzgr8^_KCOLjd%fG_=jjkYQCHk!%B%@STAc z!i@}6vXX(COtTEsRO6iCA<80QCxa#j`f73dYBzn+{R@Te-+(8X1qNEeBf2RQNOr0o z3^Yq`kT+~Tz)Xu>#u97XRxYi+fUX(n)foeI^`s3{NV5zyHEiQRmVpY*4D=%ps#)!M z)Qf?R=-@_jsDM=3KnsoA_96qF#Rhsx05EOna~o(G7=eM7TbY(hfoTJk(;5V*tv*NIMyynpfx3Fq1}dak z1{!AE)aaM#L4{@p`h|^ZR{M~?eZ9eEvN6yRQfUJn<(YwJ%z$|WhW81fGb9LoZUgnf z2n=-6indG%OdF`&nL%LyKnsT~Mvs%YeYNf!3=gW;Or}w8>J=KtKD_90LvWW5z(m;%oyIj^9~2ZJ@3p15MP) zWX=X<&bX=;Z{cP(;74tkUv+Qx6jVQFtTX6c4?G18BSU|4UfMvz%s<1dkZ+Gw_-}fM ze~Dd!>>*ylcLrK6elbwVN(O2&%`#9^4PRkGW40ua44T~T^wr|@)!t)raFGKNPRj{% zju;qdt!iL4E0F9|Js4<~-XJdtV<`5Ui~e zv`Fn`W&^-LODyFK^e(nf?DSUpGbxWBGX|C46U~lM*imDp|=uO{Q4}YO3KzvT4Da5=aJ3 z4)oRH^c8Fg44YIEPRj{TG7Ai}Ks7L%6>wfBFwiW$p((=-b`?11X$35rMMiy&{Hz|- z)syZ)g*3}RFJaW2X`n(g1AXmoHOm%CF;M4JWk}1DX#=&zNw+-!?|EiyJp}-mHuSj- zv=EHIK#QzQOR>PTfsQ$;jss}ngr%H;7Tua-phNtaF;LYx+dzfmpY?%h19c43;U zD)m>q9$4-D&4fedRyrmy&x++S9``Mq5WV!+syBw9)qS%)E5KK&RUb z=ouje(}q5`(T;)<810x9Z5bDsHrjU8#B2wE)$~}(8EwOla*Vc#A2UX)I%gZLaQqvN zoih4FWe{Pi@;-!hf%SpPSRPb=Ud+eG^y=}fd9eq^GO zmQ2*7nq{J<99Er##vDo@88kZ3Sc}tGu>CS@B4C@-6_C^d6K&=Z?X(Cu_du9vmgXRD z*ugedqRUuH^mbagv;qUV_HCcF_~hzIo2ZaxndsXXOK0}0LPHRFsWS)FEZb=*B=0~w zE%y7|2H66sz#!Xs%fLEm{9jE%@4h3jMYp>Uu5*T11UE87NlAui z(v%@yPn{^I9@{Y-CQ3rJ?I&#tRk8^dZq`vhW#fC^fG6<;mRH6jrOO49og$3oWvK|I z7-=st&4&w}!HvO+3{FzQ z;3~@_vNo9o3Q>Cvf%P2W**2NBuqxT3!z~r(AC;XLbiia2Seq|;%tQqgygXS~sl7TB zApt_0?W``V6rW8qRFkHqh4mk1EX;~cf7A$RmW7?bh&Hot6Pj7ry9a{S2j^@0w1UVS z(w44l7mCKmN67^q;CzkB>Alpx6+^(dEAIoKHfgCDn_t0hRKm8*kVn7j4R)$*&eAm` ziuhC$;LJv5_luNmi3OWr$@XApY}`n=T`ot7epGueskc81aXb4vI3T2HY4wnrC9VAa zTxki-q}7MC;2lyxcSYC=$Q0LXnJ)Euz=XeLQ3jOnbAZD#N44F?hyH?!#T2W~2_hqfl zC)-C}J{cEgL{Xm4&>kPrLAr7tLuhb$JPMHKyGSCv88o;hWpJo6N0??Zkfj>0bWawRgp{+)lbkgrYeW!E zv!Qy;USbk{i;p4{a~?nceP`vyaPL_Fg7G z9OA=Od8l40Pj zkJVEgd0cZQ2P7|>aX_++-^_Er*QH0W%K>>iz^?w+100ata}@_954$xJGN68n(i#3P zH2xMj{zf@-naiK@@JA{B#&|qMM>78qIY5nZ)!6bA?j+%Vv=#$d#q)loQ*E`Ex!Nmf zP;TwY3#1d~(WG-RwXcuPkWMYX;c1f(fG$14YaL*(Wch(FgZ=3l*!BE&n#0y3*o}aR zg}3DSQ;i2`*-u(&*)2cbZ);An)=W7M%0;_pw?=tEYl?Za)_f-nf2YjguY})@cl_xQ z{>lK4s5Ny5;%|ZY`@@gukMYCaY4EYs&-(Yv?_%TkDaUU!Rpd%vc>%vIJQ}~xodLhc z&EU6(->MwHdW7FTK#Szr|D^-S^MW<-+xWx%^0(0V8*%(KLNb>>E>}TqEr5mmZ)s-nVGYH*eW*Yvx&N zZgs6Gz~FLQqr9c6mQ5<{6;eKFQ-%_p*6TVmA|`1 zW`?&!=34IVB8d_bkp`T%;MIYoHvR!&2WlOtbD-XVMhBW4Xm+5}0Zrp5uBj@(%{b!& zE;ZzUW}Eyr?!bftz5|mEOgWIp!~x6#2Z|lAsh5j6#&6{=v)zGC2khH0?T6PqrGPo& zej5!inH-VX<3OJSLk^5MFzUdV1LF=%IN&>=`6E=q4%9l(=zw`j7Z`k*dxaUK$9Y-9yxdf}dR?o6$62Xo8YNZ5TMx zMQv!pvWeQzXUS{ktM?*mL#HLLpRcZus0}Taym5Y|CHtBzdGq`-OZL}W^49sqmK>r&bfk*BUtFR{ z6|ThF4z-j!#haWzkCfUBemYXc*n3_5eaM0OM=W{G{7y@D4p{Q~`7M_0>9gdG^P4Q$ z*J;U{=SzmJ{`GzD+s0IEc;ZEzh5Ovo_P74=WR&v!`g@o?-u(~A*-jfaST%&WGZw++ zcdyame%etUdu? zot6vf=pXVueJ~4W`h&TWMD7Q(>i7TYdVMg*>d<-Uswqxe+BdD@gzXO1OdfkeV)Zyn zCAE02m=QiCG3la*JSC?!A3qFElIvRN*>DtNeU&$;*Cp!RrYnuHiob?h|AMhFxQ%nW zE#_TW6!HFB4UAU29%@ynuBv34R>no{24(>ywI8Eo)FqpPq$U>pIuay*=8`&)B;-q6 zvL#3sxulkF^y|Zmt!yRoSMo}i>f3KOHxf*^Uu8BRmrQ{gP;5OnPeVKxwc4zP!ix3O(F8RWe7IOd{(Fez?v016`a&f6oiVe&^?j;O z7eE(&ii?Bu@iHIP(aQHwAd>t%o{`L-Whj1zWmu_5>!$iNewckl++h7WLp&6J`e^a- zpcy#IUh^Kz4O5V^v4H_Pu&6iKNEaQe`18uMiRfePTuCXOt(_;@b9^*t*t2}$RB@J` zhN&?j5p&KybzF)X@ZS>gZ(5BrDWZ2Q&aJDkaD&D3%oj%s}0J@*>2qFY1PLMRON6FCHz~hbX?E+7inFmvZCRX zdk`8EAp4DuhMx5g8Y(Lql_sf!(2&{qiyaL;>mM{!Ry5k*42>qyn7B@oi0e6^p|YYe z_GV~EkN%C0hMof&Dk~Z~BZ@i>EYm!Y{5nTN&jAgU6^;5gLnAC2iyRF-2Q*YxH2U8R zjZV=R`!AD+o&y>xD;iq*l|e6iFQWd|1I2VbGS@X{YgXvp*1}v$ZwfDr-jpR+qWKGZ z{yk>R<}mCQdyWr5S(MHv2_>JT-i2RHzrKHC2EaRLlgaceeT&QM)9abeTki5SA)U^f zDzdVgvQFoHpS)?;xSI*S0&&fErx7BSXATSH(TS0OPLOdyUp5@}*PI!zL7GI%dltaL zjygYVt4?;Iq;@|@LtQATPrAnf+#~+%0X07>lvE7?qF%b6%pj7~KQU@+3hshQHSkN2 zVezD5VBfxxyw)qqn1J1es6uzX?LU`)BG1O?(48lLt+AZJX`Rh(HjNa55H6hv>!$mC zRYT|qa#wKGC_ci>;L=2a+$`o@nrJ#SoLt@L|Ey4(JYD+Dejt+6p;@IsaT6#%0b*5R z%zegp34FiA`+z}M6fBj*ZR7@V zR#U?2d$LlFEJJH)CRwZ5cR4If9BUj$g|7Of&|0VFg|1n`6W-fcQB%Mudi2Y)!eITL zU{QD;+(;O#MTaUh)H`C{qMz|_+`D2GPXHIM;LnLcoT%ABusf zN)W8OB?AlMnXe#NkKy!h!9&sfr}I7Es{l`=C9&iovE=#0^m>x1j+RJj^fE!L&Uw4)^n~x*k(+o!Gl%GlIelE`O}X z3m;w8`un5t{%V5Q{7UF+i`QNndhGX?hMt@NhH|~-|E-F^5uiAA834EaN6~HXOUGMnS z<0sSbWyN7Hu6vDaNfOWN_nCNJ-@Q{YkT!?n=l((xT1Gst_{dy{#|;LEPv0R#PQp`} z7ca2g$sD46KMQaxermWHjlr#*3-@og2e?=NU&Ga?3vSO`xM8|1WA<5Y@xy~gS8&}9 zX$}uR{BeL={UgKGCB~FJhMCX zYoh7Y|LCu$)i3`pvnaK5iPk9nj?eKx{qo8)3vu0d1H_ka;0zW+Ak5v-V_;Z5mHdmX zrsSwowe3gcvV9HsR@ugGYhs~ON&j5+UH+W__qHy>)sz=;OwNT{&tVUv+kG9p9p`v+ zwlS<*r~c?Rjsi5COBk-&q zrEC}1@3=-^oGLi|#i@0{+%Ha5>faGRp2biYdXg8mfE>J*;(vzksyz33o7g@xhL>g` z0Y5`L!jD@+^Rzli$}L0&k#oDWI_bZW6hA6B&CdXdTz*u$e=PjaKdU+EEo1TS!gCE> zi}>A^@#~MBEIeBT4Yrm=)8Q@1;B5oX)_fW-q%&@KOQL2XQhJrG0))Rju1_TGHfs$4 zmt9TN%9b)8#?~WyJ8knyk@GUX`=R!QfE_N^p39a3Gfi!eU3l2Sb8AP;W zoC5gJ!El%hCVx0Vk~0XukMXt4V=UP*DiFGzYm~hjn+R7EF5QQkCrID~?{H`|ff6o# zHIlzKO1!7i*CKfB$$vHQ=~Ftz41s}d9Q;^fQ?ztnr1USu5ew(Pj4!*JBKdo8AH-Vr zm`1tK@~z?0S8xznv5O+3WZ|3U3D=f6B1>a~%6ln?)(vMFRyn;OHO6CxRiBG>eAKXd9M*f68P-TH)&mj4nsQh_4I5VRWKNA2 zoMBjX7$h~Gak^o(BS7LKTdHQ}&sVAEYAM=sVCA2F;FIwIKr z!9N>TIm>i2bkxRh0xhj3fpuFcSjj>87@KyS-SuI^&;k<}Lmvb~GdhCQen4GYtb~&@ z$$u-OtEV@-@-k+ZB|$$%AEp;QlEj~(r;aGXF)tpi3rspc`Eu~y)xx_Hqpt!)xS?-g zP!k%$B35G65q!A;7_-y|py9kw$0jr#Yj~ABefh@8qk2->J~AW7Y^;#0-6WOcQJY7Q zrpx`pKdEcAYmF}Cn;-lXoeudnT*%Oo74^-woV=rc6VMt>SC;72E|mW@#+amC9-AJI zv{IEj9*L-b9oveC4yJMH#_&MUw;feBtD%!C0%Pt`Qs4AyE!}x1kBp0MHz__!O5=-V zc8vi12@bX3nU=?CcG^kgvZKoUd9X8msH=Ft)oUdnsJ?_ps@EnMVl4wmD&*8F2k+zd zdsiL6KhHQ(;b~5aN#t^(di{UDA~=R=YeeCO-WS#5Gw;`z&-ahjbjhNNM!ez5`PinW z`-$OZTTe<5U3EB&Fiq&B*QmOKcdEBV{fG8z&*k$xg(M=0 z9YG|FmpESbSTz6j$W|?os5_F{8S!}Hfas6`uiwDBK7qs)qnBS2Nx=Mlkv%&irCT{d z{cBcd59KBXBl}b||21%iXxl(yb$=q($1Hh>^?=c6@`|1_8y0Olvmv^TlWO(dAwxxUAs^)>Hzw%^Olq zr=yXrIG*WJHTXJ2r;WmAIS!!cCN7kzodVo+R>M(`oz-yhW75mg1t<0Jzb}SEM53F_ zGmXT&FuK@q`Fp~NQM`2MsNbF^Bl#oYhEK0S>f0BbbW=K{+e;VsN2MF>lNX= zRW;${x#1<$Za1+B&cM1=m-Sf8V_7M(i|q3Ki1%6aVEkHls3{s5p$^5-3Id#{MZ{S^ zs=`H*nk+{>=Tv2ri*7=5_4@eDe6P76Cr`nU?Etl2QHd~LF<}ywo;5HmfK@8EBEHF! zmOm`3z)dtEFdkkAg~Y2I7Pbf&ft$%ea;L+bgexXP*ZjcnUQw8nCkU58@QWwI`Sc7H z=41-u`wMe&Y5F|IT=7n}DBj5yi+!=hVqa`gypt`&zu2Pq7h4qnVoMP3zWQ%c)ive!hE92`YbZzAqVH2)9L{NEDyWO>6k|1!_Ql1#@vQDBnSluz7~2ldm; zxF`IqxF?e z;_Z5dMIVAjRMd=xI^KAzjA9CdxQVrn)KBtws(fsjfVkDaX#F8f? zt*>GSkE37w)R*A+*gSjR&#Z&s9ru!5b&oo&h!-WkQN`xaHHzU8O>Cx@jg&sZs$U7l zgFO(Rg^9>Bm%lHP*sbU;Z&#ETMMEL5%iANZ4;I8K_O5u2a45^YlS)HJb9N#-9?EG1 zM0pN}ql>_J7FXZrU-(?1z{SrM3taYG89u(r<1bnKC5Jo5aP<2XgOQ5OvWt_5yi)jf zA_E6;QQjV=R(@l_^Nmdr&hFw}zT&menzv#AskOXZoVS0R)56hGLQwdpDw?id{teF` z8c}$o9Wi=doLlJYCx4S0xop&mY@M<(EIFuI5g%M`US$i^EXQl=g`@DQVTo-CZ~I8- z>Rm@MP0HVso`Z409i+3oqfU&K?ua#%p4D(%KVOo6#)f1<)`G#tImJLSjpiak{N^y$gVj-GdV>2XKbQ|;-HsQ!tZatK20=_fd%i|N&3LF%aI=O&>(E}O(lZ1V>s z^ix1W>mR8Ho|~J5Uf66Bw`NG_r+|d!WT~(2hlEWTvl{Z{3<>=dkkGU@b>x0XROWE; zfeZ=#6p*MB7bDyfIN&yBAK3o0->|JNJ?kIaheLpUsV^U-^c8jfkF97;ohx?8s8&pdMwKF1ln{7*VQ_3VnS(?a9E)He=RTI;etL$)?J^&FJ0!XKEzm+#qT(4AQlM#p{K3^0`8nx6npl~2dT(1)p{spdnJqPvc<8@zZ z&(jAkeeVS5{`;(So1XPA()vTGYhUWW4_3MdG=Ik`wY^Qx`bTN0YhUW@gOvWyTK{G% zdPc1)_a%Z2zU^Rz3jD9RLV=FHRJ99(l>PqW5C|z%*OAl7s=cC0x#Ff@_P&&^_KmFuEIB!?!jVsJH^cz(0B>p3VrVZGj-?FZq!QKb)erS%+?)@sYX)Q=BV zx36u&dJak#S?S9UR=N*#e_NBaThIDOUoZsNm--N;xykZd*5mjB)~6r?wU#fqewT>= zpEX6`D@wzg`)^lYOKck*Tju zbD||1+Mt=jLE4~s1?xbfWkl|P2-8qamK3><)>m`Tf}p4qhww!^D}24?R}{~go%mmY z3LgXPUN}n3YeAe%aHc#p--B3s&gOqGph8}HDhNSQN{6pMJlJwxy)Zc8m@59Qrk-}% z@nF?8Ldf6vRmUlHC@mRKM+=Xs-#jkqJ&}6S)@TQ{RK;4z^cVK<1n1}chCjXb#@&UK zV);+!gS4KZ{GE4d_hYbMS?RC;_q zH%(#1;X>$f2z?ANEXJrh)@rm;Mx4i$A5%a>o`YD1r-Ky4GCWL=)3FTiX84^M%W&Lc z8L}1-|2&Ka?eTZr^V%D!Fq;>A{ElF+S}^_-!QE1khTmE2Ga?!eUPUX2UbvH`0uJhw z=;&-{`J-I0{F4OAau^>=ER1Z|S$s8k#_@RVHtvojMyOF=9^p{*W#nwa#J9O}+-gR6 z!yogr!Wpt;85S*fdRBJM#Agn|ArTW7_u{ZlZOO#BXDzQyhXx zMN2n@y;B~LJmI&J-(rarE2t$VgTW%ea_^Lvz~)nt71CldxWZ6wKYO|)fC49ANUbt3 ztR~SIlcL2c{4zs6VjE{o)fPWcmmLztgOJGZB?sXA5#b8EL?53vrHYwS@pyG;`3P%R z`JR|2yliOsRP};Qp{oiQijk+dOShBFTq}CY2}CO_@{jqsUX(6XpeS4U!}UB_?S$77 z_tE@8wKnV>wJln)P7MjI`8pq%kW~U5n7t+Lk2b_*hf5yg2oK-Q7^33K#9&1l44w5* zxZ!0PXy~k6=_q(CZEVUlMk_j4XK&STp#WYQEH&5yc^v5mE25E5%!Svq;AQyrL9Ov3 zVY03caJCo^8;Rap170OSi|sD6(Ncr1mfjLl{)vyjrZ%|+z!79_CJ05^BIP?9L}FU| zQv_qTK*$n`wk3$TX`>3db~e~Mj;=#%Ka2744zky~=`3%ty_FU+@Hw`USxNYtDAUdY z8o1m$ZfC6YMZE|dF_45g>my4+?^s?PIWf1k%(`=;tI^W;#Y!KKY+|V9Y6Jn*mq1TAy?;-^7uT(1}Cdt>^0$@FfAUHbWET;t&b(X-E6wlDD zr8ca3TqWo{0j!IcVvZ_IY~2s!n4|cZHpf+$Vl(0&A&C$|w5r+AXCKDgDY^`Y_&wZd8c6Gli?q+;GDPWJuGd_+jS`+@OBjttA|k24-#l^*9w2< zI|zWcD?95YmbO=N{(n&sz4r&tOfDQdGqI2ZfcI(1dlIp*&i7Ox8s5w-sZ2|xoVi0P z#UGSOSf95dAjJ~AMOJO609>cyIv!+Ih;(A!JmLb*h_?6~oCnMHUYKY_8$#D?BP){F z$PiRI9`R0j50L~9p%Wo2;FGLL^5RM^MlYIN$epl-kFuVpTlUDsvJvJH{AVcIV1k($ zYf&MK9(1u5H>TqlZJLou9Ha4-=ThZ+pmO4w$y1&_GjWOnI+8Ex+)tFxhl4(BX7@GS zb^R9xl9E#vR#}lwzDeiFowvNH!sn`RK85%H!5vQivJWx&FI>WGaE|DJ3Tt+t(nJTm z-HK*M2Yi4@$N>u#`v2|ThO z55SAruTKIc zqFRB*nJhKlVwiEY5KdhSJ+)9@76P2mQW>sa0_X$99j`fY1HDT7p*JkRDzTA>yT*Ff z*nn%UBw1PWKS0yf*nm>1OudqGBI4SecIu<{GV2av2tLptBQe>*a9*lUy%^Di#GyAh zt}YKRJyKbt@!l0S;ME%FtplL4dZqTGvT{T5R2)Gx8R%`c0(Peuz6%`Rg$8^{tz+ZhUD%-?Rk)B1TRc6ShvI&(&WvW#wv*KAQ zQw!nLwa`-wQJHIDmz8B&2?-5bfIwwaBFfZKG?Rm_v2oW}&l($Wjh}F9rCqwG>1u31 zDO+W(-D#Dny&09g^NXf3Wtz$!v9FWiDNQJtCmSP9WyQvOSDpc{z_p|hfXa%L+K85-=hY4#{mBJ&zj2m#Xv@7mgGxWxydeLQZWZbjNx1J zo%?=_%3fjjJpE;qR+%B2%6e29m8n*#%!+5JOf7^{*FsM%L}jjpT~;;`@1rOTi=9Aa z10u%33xVXIYi!&#*0aV2T;n<0%Enz|JvBCCs_ zQ3#*VQHjz`EG{Roq&|;f(Oapu&BRerI7H&z8>PwNFHGcPqz+KBlI$!n7;gaJ&;!{_g3(&oQkiytL|`%N;rV} z_#Wc26)(1Q&7<;4+~W|Bqpx$7^=V zLw(zl;X)khGsJ%GVU2IDjXW)kWUc4;U%m*dXTeD0OR%z{&uFczta=y{>CM8o{}DUP z*(`j5)i^$5Q08U;ai)`x**g<>lj5)p-lXV0w4!C+qz21rbu1Zg23&qBlj68UV*Z>SJhS1H zC##dup?TG%3y1JB_2j&od~S_woX#VO)2S7|&2}{vsd()2V&3f*x79TNa1OA1a(u^|KAh*fs4D&s5p zUX}27e;O$#?^K>0@Zg6#^#iZC4j-SJn`7Z7 z*R+L|y6ejFft9IvIn;XAZ>9OKv_}$u4UT(p^G?4;lB?6_gjauj_tGMkt8~SH))++v zv}xT~&*dp28OeXU;)Xnwy%YV);|w+`c-0*;0Pbvslgl*8Syo1aYQlO7>#4w|a%(|~ zCi5f77;Z*ucwANxOT-GI$#ZbNcW$9#Pe&5O@S&yA_-@XpdQAP1e6 zmILvhx3m&i2@C_nz*=A}5YLe{b&*62gH${qLgt2UKc`H8!W=X~ZcF^0A23obQYXa3 zE|NeD&NZBV&kQ!Z&PPX^YGkB&si$P>$^2;I&yaOSqqb5H{4a(78v4^^MYM;oUFX32 zx$u4gykEq0d#U7NJX5%gGHL_7FN5!M;Q0c0j?s>DX~RWz;pBga=l>AT{}J{d{*+8b zVsXWVhZ1-VOIQSg2mcdA$w18zV-- z3^1USvNd)$#g_30$_VT}qmM7v+2AkJHI;nn*W$OWj>>qY%gKiOdQ$0Ey3yFMv%T=v zY^m-Rq2r`Q70vxhw}S!QP6Hi10N8Fc{CJZAuh}ZQSCt{&dsV_e_H3KB)e0j$ZA%Wj zdg98BB)fwG-L8r|#k#-X`xs-}Hq&Pl85w;F+v&4XMA4_XkUmx3Ua3HzCWGn9T%Elt zghU#_r8y#vKAjZWoD{sU=;C!&!1|ZoIv%yE20&)22YpHu=+lY96BFoDqChYb12vjC;wl{wI>LP(?-T$&@& z=+jA|%}K$_6SH_HGM+VF^cM1nK8pb8Q}v)vi2{8(QFvkkeM%GvMxsEUS?$c$r=y&n zoC_(V&-)nDm^CQV^!cA-;ByGU-z#{MMN1b3_;!eY$$$%0-_+fo@mDonqbp zKfUPlds|GO?#e;BzZJIA=YWW!PjMlAs(iLSO$N!~pfU$~RS1cUgG+Nn8htt`v^gnw zL!!%dYytOvj`D~;#{kGo^`K9Q0)0ABSSV!lDN!I8Uu6^NszoVVpN?``pJFVd&s_{W z=u?@d&jg_=VYEeU^9Jk5hWmC>X?=DYH+Fji-ufJG{X(Zh0ewIH?Eo0i9Wu}{0)XvK z!;kkE@cOK>dsUhAsS^Gj%S@lm!pP{;)e~1P`V0zmyDIJ!>;Ct?hd$T+%JkVoM&|t# zw$o>$h@ww%A$_WRwmwY;$>E?f2YOWqiFATXb3___Iw`a{DR@nyi=!I>r_UB1(PujV znW-N1DN&$LCkjtYpihYc!Sn&pXHc~$W$V*XPU}-h8GRn30SbqHWSTy&dqn)Ul~Wn| zEFv53D@mpG88$ZT&JMiQS*p8U=yWKc??<1FU_iIYKu0qGw!?-WuQlM+S!MUCGU-z# z{69uapJl?x=+o5`S1$St3Us?F?iB0(!#AMM+xZS+K2%FaMxVlV`YaYv^eHZ+PnFNs zr^z5W98~5&uL>cNFt{{Fq|v97LYtF9d#5GZ@vOC-kZ7TyQ^0Dy`2cp6PG% zjGK-E$6FzQCfMz-x%=B9FrZs(prZr;+f$IISe|k36#(dORhjgu68;fk)8~W`Gx~J( z#FdLag96>IiaW)+|9Ut2{IAWXPqCWOr?8zq$3zr;iVNve<+Jr^GQbYVBk2;J@)k2#59(&JQNv=bvp+!)5jtch@{+BmPx zZrFGzu6s_jO@u&It=LqHfj}>9oun|G9spBd*AUNv-g;GtGjIX=55(HUBg?|g0K{r7 zV_2Xp@|2D+J1LGiPA92=J@gkSP7Nb-#Gyz>q()t;-=)+JiVwKdxJwPW)Pze(RoJj& z(zweGr{%a!+pv%_HoX2!vtebL4S(kWanM#Ex&+VCs%5gHkW|`+i+IMwiVbv>80ano zAQrm>J9nQ{4hD294RnM7$e_sBju#v7N&qOMmfxtL&Ok>!02?mjH-ueoz^gROd&QPa z(r5!!(vK}QbIb!J%N!kNaplsB1qHi0J zHmOx?%uoEQHxnJD#ii1sXT96KR?Y>lJ zwpj00z$0=f1Yn}7S6eBT>UOd<`C)s-mU)vT9mo&zbylEPk|tBqBr_0krDdj>RGq1< zT0?Q)`HqLQ4XFtk8~S$*9Ggu0W<&Egif)_E!D2(YKP{UkmA0WVo>8%GP}7PD1KmD= z#@co3xot=%bfG(Cpd-(mEEh#WEpn8x1!1{Vn`U74$9RNS1uM26zFzU z+$q-mW3R;$-cM9YdLwt)JN+FYY-b7mB8uk4g*317+2fkYAUPaV=0L9sA(1gL>7;-b zoD|xe6ube^WkFKF%~M8rMDwEnWTtxPZX^mi7$*u(OrUv*f|qLoK%Wp)ElSzrnxmZ7 zr;sxG{PF3gPi2}uLj=Tx(R#Jb8>}Q7?i)#^_1R=>v^5*(Xfe>;4xkA_-_N+#2?lg~ z40QAXV7tli8x_Kk=Y{`aPBR-)rrA)%J)+yDTMF1v3)!@@pH$k0 z26#rr@&!UGMhtY10%)wz_tOuJfdSod1053pY-qsn<3k3#5v%MbpWmop(m=-)faZ?! z8#Xj%z#BKrd&QP)$Y=vq(*Nlv%!YbE$+98GSzNi;P*AWtDA=un*pM3SU;Axr=zYI5 z8*&a$(sL7)ayHa1;@FJ%m(7Td(&AES(aW|WlO{V>DwdW~uZSSq0dNtFszRSmo^7Kd zz--nPaBZ=EsE-`v&<{ZRsuvp)8`zMOt;r7?8nVorByy^=JUk|vpfh{r86 z&7|tgwjswu+J@AUj14`lu78th-)v~>U837osj4}dWwmsKNu_P5mS@TyCwr(vtiyVwq!#_ z8>o{0SIW(X%0bDpA;(!EV zR4+CpHn1TlTazC)RA-qtNz#G*Am3>PdL?NxB~3B|5jR_Ann~4}Z9|TSv<;~x85{a8 z=M1nRWtt6r=}ysY(~Tu;NZyTTr%x(vL%P9=ziPadU<=_gGd426T%I zbQA-yp-DMUqOUgK<-r3@D&aROC^OJe4xqUO{D$lb4R}R{d9T=#4H<2qO8OuAsM*lC zXl7=_jT8`k?_ZpgUxsV+4Q=bsB!W$AH&o zmEAPTZ&Wa5pko|BbNl%X*$o)*h79vwu_YTa+CY``pIu@$)C@|N4LQ!@%Eg9)g55#E zZWY9a)M)>KR%~d;9cDvnWTqcdDQ82CB96_7f7y)aC@n6P7QJj6GHJ5PuVQH_^@<3x z?F1LWs4Dd7*HaBuNMIgZ!8k z=#`|&lr+fmdoZga| z5Xnrb-UzBI5egW&Fer6%a6_a>0<)07K5UWLWv-c zq@E)Tx<(k%sb;u%%*YMnMs5lqRMw6XoVzWXgaf%#Ms6r_bs5#sgKV-gk{h?eZYkj& z1(X`OVLpWF2HeATlSXn=#(AIA5{67RR5^nSK4KUefTaLKPO}cBf}t?uO<~5Hlo1RK zAussU)nMq@+YLjiWFAAxQy6=A58-?+HT z$PK+lZt8rg5P2s7RkX1qxmi3#(S|CH~5gdhEfAwiYQ#{}haNGOtU zkRbhq1j*60wA8ia6~+V!CMJYRII>Pcux$nRFpP?#^3I;u)hYv9L{tvFdJ%_=`TWEV zWe|{|a)}921AsW&n*BgVl_lOHONaJDe2ZmRCrgtkYmyk6xWN)5B~@l&OmI3x7*ZAT z7`md$Fr-Ao&{uvax%TNCFx2ZXG{mh4LnHjg#iK@U7&CIyIE2cI{V*{hfCIUcMsApb zfT0oN?-(_b8?(Z0DWaYfP-5hUQfGs4?qR#YNN&H znsq1@422nQ3NzlMj9^H|Dg@8307G^Ch9Ollk0Ir980wR7FeCki8OhPLwA8ia6=Fz& z!BD7#BkLpt42^IP!>B0y>FjykI9Fh(U**uN7jYOG;3sw%f`B2F3x=cy7;?5X`+=cR zOT0yv1}>%U_pLzI=Xi|0Z6}*f;ubGBhWrWj2*2H%%Ow%+(e1p@R78>rJnntT}f_Pgic` zj5WSM`~(x&W6T#NW7}}sxaP#-xBnc=*v9zW!qYL}kna1pjJTUm0G(F-%(?@gD_^14 zq~oQf8Mf4}d3~TERe8V1f_C<5#P%k2Dzu#)&2Ho?J`^q9W+O1n_)QgAf%m) zFCta5ZP}hZCx&-PKlCo^?&F#BZmdtXw}3c$0TO$OC;LE?q}Ac zo;!7%O5l;3Tx%^jDM3#l`^ zUd;dL>@Y>DUY@?D$k}bV@(%H^O*~!6j))Bg1kMy^hePF5GWJ@XJ0`V~?cVF;+f;T} zvho+{%4gECU+JvG*b9_+T`Kk*+izfzXE}BJ$yDVt3$~_ep4Fp95~q%D!=Mt7IF?1= zri`|O#M>XLLg|=0LNB-QT238T297ZgQ55{@GIkenMoQtSlb3U@`&P(w9j7nv%XB%W|2)N* z`qZoxGJT;!OkcQ!UGV{98k)`Y z{`ZS%$}zp8%$PKqH$&20e<`L$a7b}K_zPodo6YnYjs)D75m;gR^q(8k_-v+$_le0( z@^m~t-cZUZ#L8C-Xo?l$MlcK8B;Ku>4WbUQyDl%(!1UT z(?Jk;n$!2~12o}5&EY}gXD%}wXxYaMtv+8WS)EQ+EN%sk%w`JSE+)6st0T@uzQ9r~ zrkYh?6^pNe$N%06v{iG3{(D&GzGNC;LHXb5+?SkNdRoZzgwB4+^g5;@E@0}nk_rwi zf1c2>FEj3#<|&TMamM(|)NEg-g1Zzqp9`35C46CVujAf*nO4VC&IMa{dbP?rI?d+o zAPE#0L;EfNt}18xtVFj>!uR{RvYt+gz{PK3lGq7CLq^t)KxjtVZ1MIvC2Ue+qtZFV zv(J~MvR|%9`5Q;Y;b+E-_~Xi!9b9kxg&URF^sd5a&n!ofE>pi{gVNkdwDH?FI8lGh zMy0F&_25P&%2qx!aaB8XqtdN>HP~%bdMa$|yzDFCUM0`JEZVCS?-=}BwmI%QbN&&R ze}n_lO`FW-rtsT+(PkyD=80vT;gLT!^9;l%{i7A;vazt+crIJI*o5StiM80o+XkJZ@37QE-U#*vAGf$SyJXtm%`R97@Ho(_NK94*N@HZy? zt4nC*ZJ9aE43=9Nz(F_QoDE^^u8|rC-GF zcCK41^x#26IanA&|+%%twy?67+Ko};SsRMj~B){9)V7A_?a#vey_4+2U|?-!i_yV z0xC?8fN}(9(VAiU1~KLb09-jP)$a~7bh{!pNcG^JmNt_WqCQ#q8W!E1C4r zO$pp-*$dohCYZ6W2hUh0-*1tQzQq+}IwSbb2($O~kg1W9aA%Wwe z-L8lYQaxz?2JSqOV?&~VAGuS^&Ye?I7I&HwxYM#1xYJB9V_OfNu}r>SCLMiiOK_(% zg71tlds`2gO3@y7&KL1bP24F<;7(_W9w~u4D~t?QL2ze5H4EM8j1j#?i7Eed?okU+ zu&rm_t4Q)QBeaaT)3uxaC|8j?$M~&Ivytw=$l6H=?lktf-8m%=KT~9O@Jr07gJb6Y z!fidcQ-#T$$`Rc5K6B@g81wFQ<+zPAL@$@2+ZC}vss}fI4R=;>giF-ONA47}bLaZd zou<wCn}$G!x9&)q`g&lkbnINZ<#ZIixkR}W8TCs&a>yJQdF?={lh zXJl8gmBQ_2QtlG2#y?TXwL^_zQRS;7%1LcPdBl)O*dHE5w+0rz^+pn<09+ z4Bf7X4N^UL@T<6UA!j*69lOY#Vs`FqkxZUWQv!Ed_5ydB31)2S!84Z0_q$Z2Z+%AG z>5SkzBh22^L#8%L!kwKWzNv{jWeMErEYTw+aA&WP!9ED?EU0FoJDo8icZw(w-n0Kcu$8DP-dbteUu80j%J=k|K?yMzdMV0!(y z%+T$M*dWz|zrF}}evn+zdtT&DF*|pTN+#|!C2*%@FL0-sV8)gnJY$)BUq+xd&IlQ2 z1m789_Ld$p1(bw4Cq-!LRd;`_EP*?nC3>U;?ksZdEOG8EsAi!%oiQSJiYf2T+toM~ zZ0UKAy=-S%rLWu4gF9Dn6}hub_8|Tm>FzSJwikjs?d^JQclL>c_XH#UdS%NFwxJ5y zI*r(N5wJd>d%izp#D=i2NUv2l*Jq@sU&LQKYAhSaAc!8<6>ATSWpDt3=phj&6Qrmf zLW(I9zda)XTu%jWdzYc6McjGRxazpQFOiJyP)7GG8KdE-S@87V0i>TWAQO!$6z=F@ zAg@vSfg-Cr)bx$tK7^JM&G&0C_<&Q)w;BR96-K75X~C^vM-Qy6x<%`#9KH=?V7x9% z?C!P1!W})BvdLM-)m1xsa;;K{#nK}FTB{iEViMtYU4c6Do7>S7s)zeRzsWZw4yiEC zA97bC?n<8Gp6bCp)s?F;cV#YeLzmn$PtDxXb6x)B%xN1zSdPg<_(etVVFRD_=Kt0P z-!dgC#qH>!%u=o*2+!v?Mk+JXU14Nx6$HT8VAI?Xt`>)%sWswz%0>iLm5AC#Y)22y zXwW_1Z#2@~WSq8F24h#liLq;y!QUvggh-PORnFi$aYJK~Sn_Cenz_9(es`F$JIvUv zj6hJ84!-miAQ*76Pc%qoi`CFenOrQJ)MF0%Onm?riZLZg_f4F@ruTa)ZN{9jp$8y)jwA%;+y(dLuvp$nKm*X2OwDDMrUYeK3YPn!eE6- zaoeMKUA4pxvuSq5hMq_A5OU^>AS7$%A@oDF8U-7AzPCr-$qX?L3547zr9Z+|1ffxW z<6#X{Qj2jTYXb;aF!s42G${_B4}gpKMXoNR@&$`TjM#=AfT6+!4CM&E{&oYzfH?Ai zaOJoyGmQ1S4Bf7X4N^V$>;(Yf?q3TCZb&t1)Wqz7&@Y()!IZ%9mc5`+GZW0%&w~#w z6Hm2@WWY|sh`&aBXN1}NdB`+GN#K7(gf`f?*UA!v7iWncDM8GUC3v*PA@orSs#(~m zIb%fb6jR=vPb!=bn(F(pa& zOp2HQ-E+Z;t>ZHXOb)9j4xJOvTKnKOcrteJ<3c+U;8Y2> zod*b&a1}wQR3#D&jdYh8Sz7@CLN;MCH-xIh!P}4#zgF3@gQb*8w)sYEI}bMSbkFx2 zjC3~|r)`u0LRD~Lv}$GGeVluOkjaKBXYf~VGYCy-?j{c*rEO@40EEiJAoDy|+ z=JYF+c*t%ZG8I|RRp01l}OLiNOzNwwJi_|Hukw8)G7{MK#cfp%0^dQ;u)7W zVw-ueL8tEVf?=e)*EnsP3=nFC69}y^wKhsELC9o7l{4roHV9RVB@ZE|nQi6)LSe@4 zFk`ne0wGm8Xj=k=mhiQ%XyQ78kTN+4RY*1vGWCH>D8`f&giKrkgv^*T_VR!R6GE`H zqHT_xx;u0FElNCOFAte&t^PSr#5eV^hSUH;GHql&j#RP4jn2@{e9Zb-6$YD3irX1Q z-@+0*%%;p8a1WQre1#Bl=8PaDraXkUEAAKUa#%T#is=!w?HC- zkTN+4jYu{SGWCH>D8`f&giKrkgv^*Tw(@`m6GE_69S8*yPXECw?UzWOL$>meX`GTV zLmh8?x_bc&`ojhb}v-;;cMHt#Qje4X8QAnnZ%*W8aC2n+vcIIOV zgk>1)GbwIg6nzUz>@b@$3BWx(Df1OZA!p7ALSo88$UDj)q(p->){(U29~m2cckNpF0XQh=abH5x+^h8?x zdrCZHBM+I%EN`wt#5eV^hSUH;GHql&PE@hPjn2@{d`!Vu6$WcfirW@N-@+0*%%<5H z8+i(%kQwga8Vpq-522%C1|cOHgdX9%WL!POnmQolR^0g`TtyHXk}AT%JBd=zq;xh*k_>bQ*EVa9G{1VXBGu>5QwbO&cAM+*xh2q}|;P`_jYAyXg7 zgko$Tk04~?3Ls?0oUxAwG?);AtyCctNI3lmBfc}|?0r0B8nXK5Mno9xF^zhp1`v{I zBl9uZV~HD`p-nUHnN4}?GAV9X6nzV4VY4aYLfpfXGGAd7a^{SpkeKoix?gdB*qm<= z`Z}jWQ>7K?1B4nS(D&Q8iXhZ!n)+Qvx_gbR?SoLTvCj>mesM4|VZxzFkIa z9}mrw3KKAtBgnjJfM^v*9uTe^w^PRN4l{JSA~s0%;2TMRaP7|o1ZhfhbRX5jieh#^ zXp&5TU`pV4%Pz-j8&70{8QXa9p=F|FM+z*?2pMMt-x*={HXbsqpd|3$Cc^8WH1OBT z5)AV>OY}$yhWTU(?9vNin6IFkg~NQ#7?C^0ly~PVZ(y%sbA-9`ipS)@%zWwVw(;Q3 zGOi+bR+t)om67ghBWr6RxYHK@&h1W59E=he@f($mZ?T!$h1+;Ac$4liv}mNe)i`Z~ z3>NXMx;+ib=Wmo+a=gigDra!begidHnz;=zes`F$JIvUvj6?)gI=JvmfYA7; zfS@|&`z6ZcfKVja0KwD;2%#8Ll62q16+{Fx=8RoD_}GNdUR%*t6m@sz^lO!P$Sxi- z&A0mJ%0zg{GmUzr2KbO^BlEHI))F^5Lp$@)UR#F2YLnvjMA6b%Vu#t3*ME#RC_qU2PV_#Y46M_TFrZ_y zp~@MY{(FOv+jVlVU*a@#`(YSaav8hBjNQrzga$|sPO1k&lcR!=TO1!XD$3*_r2RL7 zkf{%3LNT_9M-Vb`1rUu_x29Kk$LKo09v7;?!mNUohn@Q@p}1o$p>!#~z+8>QB9QE_-p$ zpNBUund4@vW@|ii%y#*9qg66@Vu!55tC=dxs^p*JQZveaeOV)2`G+K1c#^T7Gf|!~ zvoQuE&Rp>|d@;!U5xbu~MvML8&c)f{>yy))D1`67eE(r8o_RIg#KSjL_FQ9&x8v>q zYy~dX+G;I^K35++SnTPSz8tYwAC0*D@6#;V_K!_vW30AjQLk2OpU-OT&$0LCOulHQ zW!2-avjV$}mDjA;K9d#Od@_O++t4bgR%+YIZMS0kOjc?0$q4^UR%-Lf2>(o0ZZB^1 zvd2o)#Kj6wc0wV`&7+=jO&*QA)r1TSZ$%UTxKq5Z6|ek`$A=m-&&8J?=k4FDdzXLB z+rNu%XMn>!M|!!%#e4{7<#~Kza={Rv{0X;^d9iI?$F3{l!^PK0oHsq>)ofn&@+I+? zhAzR6w~(KFPb}N()ohDry1&I&Wr}ZboSR5m_VUElq+!k7|Gz2m!Z#09;t|qJ3Eq1Y z=vd&(no1rmH9;2E=_P~>kTp51)*`i%0!A~o#klUP5EbZ8f+;)i8k{^c-~AQXN#!&*%KPUEW^oj%FD>08P!R0>P{S! z|0shiAd0u*J&5oGBRsOpzTbVgDB-)!U#$IwMbMkL;_EVGMu8ts_nV!pWsE#+jX)Uo znXWU1U8jmS9aCyfPglsH&eK)O!#Y=(@pQFr(0c2NouMYddHRmun5T!7l=rkXg{Ql}Hq+DVjW6sKWI`=mX>aOj%ZH~e2Q!sU%YnjD{ZduL^_OWv%ES^X zmUWh6RgNido*v<++7%JMTXLzr*&^)wF?nPx&N4Kx%F7C1BTmwxo^}O9o)+&Ro}Twg zp{K=So^EO}Pp@~LZc-_{VQ>|BdWhdtPhE_eJvJT$W1st(9)~~lwCiE4>qRzowayz; zN4nyadleWy)7$o#r&lN`?`gYaNKdK$2GcY2^xZXh`pU1)^mL2yS=Unyo72LT_NJb; ze0bV&unbEX85b-p)w)>-9pxUT7!ymVSoTh5ikws4Jl#fKJl!e6z=>sAYqoGbSb89# z5zI1l=2RHtf<~OALp|*Zh&(OcLp=R~mkT{D7RoM~IO`HwaB%|F%3#VRmap=@-66)tljA?Nr#&1&!Uo^CGW_k2xrOm)v*feT%AomB|Jrl+~EjGwr$LWDsB#8XkLHZStJVm!}SoDrD2QeMX8 zj5tZ53s204WmiDtLh&Br!mrT0<-@XAD6ME>@kKHg9j4r!1Gb$1JK;xP`63ndDWg7Y z0pufC6sr4ky7263=f5x2;-^X2_%4-)aRU8hM#M6@*jpW#=SG#3_nck&gHD6XN+Qoy zR^z!<&7tQuqA#8sQdYj3g?1{|6*9|hh8#a~o8_QaSk0%j==bGDOoECzoBA!LerNNQ zEmu1GyiMDj)6jf2MhZR~7x6#G$GE5`9}mM-VFj(qG~$*sl;Z@1uByzt%E^sfrNRzz zmD;DgtHffi`u2sYxDEN^EzfqkZ5(IlEsCpwhT(_=MhfQ%ah|cy={z^*kHT*$d{yCMD&)XqWz=(`>^SYDA8_@Z&i0TYqQzcPX8Kp}cG$ z<0{g>&lJz}8?lKQ9+3gD6F;o@`JlVrpC(@TO8AgGOkOY`v${cn5>xI-V6GG~uf))&&MTSAh*y9bhN1zLmu&#YnPdDxUez3sfSzmko2j3pYg10GqO<{2%MdFwDJR zd-8*grwVgNgSnDq=7AEvb{`0Izc>u&>M6)xenQYSm>IO!ct~miI#phvGh1ooDFmIF zoVf_yX8c3M537`s9{^p8gt;jz#b)Dl-eX`+R}OSz`~-C4BJ78-Ox@;>$Ptd4$pq6b z=ls!QzB=d@C*InNi67)a=gNsdC#FL{S3-MM5UXJ^(7k`Ds+1{GU2=D}l1!{C;VJ@M zscGtFPUzy>m7AC3>@Bg+4Z11`bfBwN9?r>x8PL`0Mm7RnpAy+}VS*g!?i-&4x=wE9 zL1$&o0G;j!uYS=$=PIzls^dHTW`XYQUs8#03OWgy19WFp{Yjwv{ugJ0PDXW+ZUyoM zI#phvGg}pa&P>ich;B0*FTxT^+0D&h0XpZ0Oob&5TCKCrdn{g41_!z>ege8)5jTZP z#4vwEj&R(p`!MZt&L2JfmM?OP6MqQkTsaZw#B>Pgx@ouapc9LMuI&q|Qf5H!i@7^1 zNCtF6Tt%Q8v3JAFsFA|?SL|WzbAv9BKnJ=>WzDW@QbpW+VIFjiO5^}(mCHIuVoPw= z)3ZQV%gsFKtjrmp)BT{m(Lm=au)(V1JN;&X?$Sn;_@oXGi!6t5rbXM!E^B%o_WpJSL_zCD5 zM0_g;(3w9XM>uX)lbUup=Z_xq)j_v7@rQuUl@ozZOoxE(FKM;%pc9LMZujR^B{y)z z`fE111G*Jx5P_~u+OR&+Na2hv_AvIjLDvU=2)ce{WreWS+@>t^pet1(TT&nq=zg|q z7U-r>Di1mN!M}daK<6s3 zp+bfDPQO`^?r%P)65lk^Nyr?L?pGCmQl#7T*_oh|Q61>|R9ir&$_sR6s{+uO$r*Ce zZANTG{IE)He4ho;5*E$Z4_d9W&U?)4DT4#u06&RzLn17hwoEpie$Ww)o8@GtUC#NV z$9#3rEl&I)pmXI!pcB&}pj$|*l?R9?L>6bL+z@no9-jre7H;N2XJyU+o$d!8 z{EUIlRbaz7+D2~>oKz#}xngzbi})J+(O%_9Dz+&Mw-)-AH%JXTD)8V7hQ1KboI~^~ zD&PjPlk3tY?O`wQ3eqZ z&3*+yG&iseNVgeK7GaWB6$+;xBH!4&Gfl2lnh#F946;!O#8!R+#1$g!e35h5^=%|{ zPKR+vlhrxrqn=L77r82wD|1ZzbN=PRl@kF`OossRN3>*lAc}=ru!Hm*RVmY}D&_7h zAsHa{aTNivpWgs+y%B%Fh+AC1i@wGiw#V&Wz3oif%J5BI1XYGEdOxI!|PVWKMt3s+e{D zV`--{xcFDWPheLi;#Oh+JM&273dbEzp|Ew?GW3|Y4m!q(ck!=aAjOpv!A?wvz-}RJ zSsr#`LE)l_`jo0F-4wu*c!cqv<9r|!Dy*^DByhCtvNkurcw)fTwSN&?r7GMB%&2|O4NgCAnC>5auLj9@e4uvjw= zR-Npfj&!K%A)3bdN$x;|MU+--x0ybgVR77UB7|{nXZjv<%Rvu>axI7r(aurEyV!zOcJ z$1D(aaWfAhD{2OabU)aeG!QvOHF414ep=gnaNupsQ*m$FNmI5tI%$he`ja|o-=-i7 zQn#5mnF}!xwW*$fNY#d793e=q#?bS@fH5$Vq5Hn7vA7HbG5^8Ag#MsaDSM|Q9jbST zpk98GyHCXD{6hb8wQhpPF);=wb*P%dBN`OnliHN=yMgPL=TFW6-e{rYi^MWo1Q&# z!M@-pC+bni>9h(?TTc4xs`(XPb85XF)2(#_(w399Pp@C_NGi59x${*XMhW7e>!g3@ z6ji+9l)3@t+osQHKJoE0vWeaU=QJ;Uyf`_1f4XL;T`zn7oLupF5|qw)tj5_IzxL6D zYWzehwpmAXGjY?rbj^Wb@=DOeox1xct=Ae|u+^*N=<0Ef{2udS_lN7X@~f~OI%K`p znAU6EAJ0tloD{C?x}Wu0dq`U_v}gCdQU?#VYNqk-qUrXG-VyHVE&f4K-Cc>dJ<9pg z9Sv9;pAUD4i8{)+N-J|e8~NG!+O3?gb;U=D?(HLIB#)!OxOa-!ay|M<#uiA?Zn#H# zK2o$`-+d>3sJ|#*@Pe(NYr#;ES^wdpiN9N{awq-_au_wcOwD;t%|?zvnXRU!IW?QO zed8Y}_^X${Nx{dc;14e11nbO|4WQ&9ejcXq6;^nKE4+eqy6u$bl(Tz3oQ0J7;kBac`01)=#+mA>;FYP!wDR_hBvi(c7um>ve~% zO^elLvcx<-!l5X$YooNVHlzHs+MKA`w9e3PjC&t(`spY7jYEE_+C1I;Ci?x;f1=;2 zT7vO{M4(*~!SsF1>02>}>y;MjTg6Y)_tMMIw{eEP)!YlMub=2!3t1wd zd>DQ2ZJNRDaql!&JN<;a0kV8A+(mCzyA404c3VDm*xJ-uZ3bLzS~X!d(VgEp!b1)0^mb*=^|eUp0rdUxn${>GbPI!Q1Jl~38 z$_fmV>zRTDYlzgiOhu?!BE$Tjt~XKhi$79ZZDJ>yKY3XDl$y4UPTSr&?4z`VE4YuJ zwFTOK0&Nd#rYHX+U;g(0b=dNYto(#4f5jZ-E3M3x-^NejJF?bKzKyj?W>~8e7GWFm zL6@nEpSQ`W|8T>bX#1f8ZQpZvZKq;t{i>X{El8g2Tcw3=YUO9DK-;&W?P0BT+Yj^B zy1rUnjD5@BIb1)cM%Y@JiQ-dftLrs9f|QAUAEln|D-#E3mOXuCqB&Jw9u1u|S9u-# zI00Fxy6QOkEw-wp#$HI{Yu-(k!?a!fR>QHQE!t1gCz)MCrG3(wc8Z^my^3i+{4E@@ zo}Bsiy@-AiUj$J5uAlg%1Tt?i+><$W;Ds8w{>8lmmba&cZUj4?`5Qb0)4fA8M3y4p z15TuVB62?DW)G3;oJe~Y3q_8EBI(W}lE1+Um=5cJ%Ki`2i?*f21M0h`!_RXp*q8p= z69H%3ru`e;M?7+alW$Nu>zs@*VtHo+zg&0m?B*L!XtDm}BXFz`NBo?}7Ytb+7>yfA z=|DVv-6nqOMM*rIbp#0>-=|{q<&I|05TxA|MluOG3b*&K))*Vi=RaJs9REZ zUft*G&i~wb-l`Y-c_CQv8_!<^NQXTC3suSN?=jPZ$?P9GhT`q-eFw1V*yY8~-P7@# zczcO1n}_QBFC7Pa_U7_lvU}O~@)ptI_VN+X%>VSso_aee{`)*X$@;rR)n0aWxyHnk ztns#2s#BG%RoN;h^|POwUUPdWadmlsl%$`=*Y8gwgKwLNtCI|D_rTGs%ZHR>{}@aS z$=CyF|C_vz-d4T>4$<}8P5VD`Gx4{TPYFlfZRJ`Nz-7O=|F-fz$2%gUE^ zM}>QpcbJOx{x{~OW0@97jCJeO2rqkMc_U&xz%5I8l}}2tYMG+84ctmdyjZgLls7?B zSfs)3-&iiQdt7^V|K@VNF-Z+o&GXyMo*o~+ks&<)9AWNhPl6(6$+%5==OfnXk)BOUuj znb-Uq4-@o}(T^a;V-?eIN=vx zSD)RTpp-Jzx;d!JeTPtUTX_|ibv08f8D6>3e3kOQ?|e%MjoeH(&-)Kva^vmy@@*2f zlx;sVTm1ey_Wn#in5Y@PYFxfkb?g1as^WUTd{rX*V1imySl-9#dDWE#WbFEypRR1t zlVdd@v0pU+W2#At@?`Zh}Z_Lmdc^5g5KAK=BhzUG;$ z#t&y1*}0bdb@w6+YqQPn9`hWrVI6Q+J%w%9rXUG?5$LkLyo6k-*fVlP5kKXcN#j^u zK4!GNd|aIOl#fCVU!R+;d=I1yC>!PVN*}+tvaaTV_znM{%*~T%rAMl0`8&LtJFKAi z>ibk|{C4L6IkJfaf8nPwL&ph{RdbIiyZj@1!lY!nnc*MY&rLZ*4_(qf?bNfgr%kc7 z?XJ4%;fb%qcCY#nUhcH={LA!R#mA^|XgXG{JYf)3)H)QG^TR@_Qa%{|*3+H9&p za!*XbF_*<(e48xZX%)lnj`6< zB><-$B1~=%50~q?)I;BI)CB|ZT}GajwO%vhtS(B)=EAl7-Na2jzzR^w=Hh-j1Iv%2 zU4DS5v}m}v6vg;%;7eCMm#A57ktn|UHezDBneV9GX0b?4?=opL`Jq$;Lv!)%NQ<|x zgdd6bJBboll&qP!YWGAlH?VY*)U9+8H-)f9uIv5f#9B4Sy2za~UGJZET_VeX=u7oA zI}~nPxUur|!YY)KA}FgW>E`0w(klFVDI33i^WyAjrPITxP*?NnRTh!NF5MfT34e(T z?TPHq(#_-b+0Ci!cwO!vrwQos)vM50L9j$Q4hCIkU$ym-yN}YTtUS*;9 zW(&m$wDP!}Ahgzs4KtTPQ?Vx$Xy)@Xo!!ID3S(+7uQIy2yc(LX;_P{ja*|EfYzE%oPG2vk#9=p|KBMWZOt$M0%Ifv>`S*eGzqS{DUWc4Wti zZ>ew>2xI~Ug83vJ47Z7+_^o(bFGg9`1=~BqU~85=ihDJ;nb((pJTffZEFLVmMfMF4 zF8db2YW5}21_at4PCq#DYwpcu-h0fvW1)F#XPURxnKx1H&1u_jer2X@A21UxDR0Uq z%A11Iug0oBJ!sV>Qn0v}YORBPmwImN;nt&SH zldAcC7*jv4mtTye$0VJ73T)f6L5e*an5~*S3DRq!hwCd5oK_|Yj`D2_e1&~L!P?>* z?l`;oL-fUdv-~{-#+T@TEgDY9mK0sH^D4gT==!YcPSz2)<-A_Y?VKm+f-_ULyPa>;`4xH{__#4o{?&GYnpdEc;r*0C|}BHBs{iy_tXCp6S0V}uN+Ngf4+bh{tHG@ipQ6aC9~U^ogL@B_TJwy;JJXwq`xE= zQ~p6Rdm#Aq)h|!qcaH|HvQG#9wfbd7DEi;f9NN-yCea>AH(ykqSTJoHCHTZ9qXUcx zF_3UBpWf_Y$Lq9x<1X3UW6xm6BRVI5S+_@Y0)k#juP*hnxAq~B(IA#KY3aewq%`w_ z44?A_*VHf@*>kPBmA#TT;X$?yQRDO!6LM8b9qwS-cX}0h_#|qaxur?3a@@=E|9SmM zj@98tGCRy@&kEQEO2n7zQBL>uy=;A(mreJ2!}aQYP|N!DTo15pOZ@!o3chjlYYcMz zGQMUtCQSNglqNF=N|OFL4e`~VRP&QN&Mge%0F2mZDt8vUMEDr)yZIO{V=uiP?DP7L2)V31-F5Nbtzn5;S;P1+9)tAJVj_~hE{=LY*Hx|WDF}_ob?-b)Z1wOuO zOGS1pYuj^P7daCqD`m2ln5?D9QU!MCZ)!)W$dVmpB1?BvA=a`WoZ?ThEEI82>}|=K z1DCy@m3A?&auX3dF;zkjd1>)95u4xM^e_y|USMR-LFa*e2FfEYXFLU9`xgg%r*J&w zUp|)duN?KVFJ7?O5XxB@z*6`Po!_J3B+xm+lS+TW^RJu)ojX&0{gjuzcnIVT!2s0O z3!))5Nwwjn?4ZV_v;;smhdTx!hvG1~>Oqs98`NMF#m@&<>}NAj_9&}?GE}Hz(wK53 z0v|)^Tsc^Flo=dz6_z`cl`G;Zc&PX_om%2PG|Cxrwt!fa$owbjZQ<>oB^J!DPlc$T2&dV|K_fJ8%pO!AF+8z-N(%!_Oke+gC?09X6N_JD3hTm<~Ib4m+3*JD3hT zm<}6EhYhB~2Ge1K>F}H|72hdK#dpf3;yY#KFnAgQrdxpNm*XcDh4D~$HK8dJy2OMo zMX2yPYdWeER)VG`(>6%%(4Xr z;k6z}Juq=Tt>S`xd$ui@o_IGu=Z@E{K$7@Oynfu`^|;5kJG1oz_a1kEzHc_YUXePE zZ3*gQMDUSx_F;ndkb-vh9|+n*1Z{8@9Ju!7>ALK2UFKIuEI(%7;(15JJHDzx;^s?< z;2qNz!Q&mT($TdbH_8tb9U#cf^ZXTTD6VaYuSt{2=v9o(Z_f)td}n#VJ})y|68y!1 zg#^WOO4I&ToB(sHV9MaM2+@rvM-R|Bx#M0}u2i!>4x|Wk>G(M#_wlpHwH$=b?8QX) zo?e6hpdPpI!NR02ymEAsiCX$jT7>Y?Th}FirjH@3kT$ys=&=Viw?UX{)U$G_SJiykv)k+rQRQ3Nobb<00u60&hc#jx-sx0mveKfa&{cf6qngw? zs<&#hB8vhEgYuT2FR@b*+e`U->Gm@IuH3HYy>XtJg~p}UEHqwf%|heK9aV}Ci4nDYrAtQU zi(E8PA+mf#Pv`N85j~g3FB#EudHh8q7CV-Y)Xr|T)M%z?`4+|BOVgvPr8IzCEv0ef z>QdT4t}dlSu2$}-*44@#wXRj$8o!1W1}uPi__B{{6c@-p%lIx$(I{Aa&a2!)TU1)S z-NtMPd`oG{^qh~l@b~btacl>c8IZYvHt6CZ+9KMd%SUO87!0Q^;&`9`&Er+PvN@G~ z2AO6<9&*OYGtV6GV#7MKNXE>jMoTVF-eghNF)N!#`d2(!@oY6x+Jz@d2f#vd?<))M)gqf*B!X;#_zH=8j*cv%gBm zQ&ZLw*<%St!~&@T{d&NKWqS~EwGfFqC%4cZZH;wDJ-MC|ZUXI6W9_MioRwSoQ9ZUr zN^1U2sn?;$c0O0aHID*VDmFofJi-milDn)Fh1=|Bj|riJW>To|U?d{NYHi#WX|X@zuZPDxIa3IL$h_Y1Tr~ z@5_uIos7Lfk60n)fi!1WeT-#hT~g6sC*kb0SG{Ohinj=F!-lub;B6?$5m�P26YY z61z*hAF54=xBrB{^p6U&)32QOG>9)<`m`R3(o3J#(@?tdX*~v|=$E=MWvo?Cn z+UPOb(9I?3nz8sbONB=DX=ke4B|VBw@08PfiPL-O)22qkm7j9uFLC8BrTj%$YPWP- zn%XVhmM+;X-IgxhO~2xlgz1tpU6z>|DLvyF~;hk9A4h`zx{Kdh`?S08%aPg<5j(*bMGT z?w#zo^%L$XNRzn#?9Hb9@5(Yk`Ve#7@snz!_sQ{N1@AUVYd(|bnYRAUR&2!k=#LwAOcQ;QB3mM0cOl5zpCzH9QyY*avay`+h>_d9pvR}9A$xIVFX(I_tOjw62 zLHq0~*YC)Bh?X!L=^1i~BaVzZGUmv*BY`7Y5kL&nY5?`(nQDgwj!Z(rb@zlCx5Pf@ zwhQFk_Jy2nUmyh9^7~wcBifLF6t~;J_J)w%bBPU(G&<7cNQ)z_j;wH`4MORicGc76 z5_=u#bEMyq^^Vw51-d6PG6(KJ$gWieygHY;#0p2M9I1As))CK<21gnlX>z2+kyZ#Y zSJ;)UXQiM{cdyHlUPt;I8E~2nIWhtv`>0*@jJd>dM*>GC9hq{Z-$_{?3WJb+$gX-u zT;ixBV~&hF5*WF)5#-EnJUS-1H=ya`ctu;+2OlkppVEF*D<8FuS9G@7nmLO>-h>R<@ed;>ZAJXva8E3Z#=5YE_>VT^5&!3?6R-bF28?NE0?bP zd)s+z@BVW=Mts%^KnJl4cTZcY-VDMU_VoBYcK@<(zRZD{yW;J8(TCSMqEZ{`SyLZ8 z{?bCm;W*hSm+K@k>Hq!wI#zag`?u&xjdv`#kSPPk{ySoSrvW=ovC8E}=VILVm5_1Z z%VKoft#Y~fM2|y+{__PP@28d;uLf(7+cX#Nd%qO&Zv2Ar)}j}@{d4j5G={uqo^QOJ zj#mc~9iqegKOgdLUt+wYj<=cseh6>>=R)2ue%5&B6WGw9Z7$x0p9y(iIM;Y>PAHcf znTvPmoRD`}+ITf^h}=>l(jhveQX%jDv&8E@*pcgKR1ou9aoRI^r!B=-+7Z!lJiO}S zw4bcnWnaMcLm;9FLhn+Zfp>s(Um>O(1Q36Ad`8cIKI05(_C;in1*q) zdwBul&Fhh5Y}m^@d*G6I>$ai=(;W7DRQCUT0&^GF(uXjDM7w++DUL)zk$Mk25 z{_N17pIuTPzi@a}Zqp_4%f@(3+{4K2w|8>!Bx>y0c1irI z5%yqxmY2h$y_&}_OR*bP^{m@y@YHxSt~u>$Zxf@>u~&KBtjnydE;*t;o_L6%zUljQ zIj^XW%jBw|HtLW#d28LV9F_a{vPb%lSbl7{rn8=<w+ek42Y$u)y zcho$wU?_Y?qiaiZ-vNhOcYg9Zrp^IFEw0Dlj!xhdIZIrpK0?s)Z(41rjI>E^ON}}k zvsW9cz+g4Afo!Rt)pmdV?rv{@eID{_RS3G>gHl_d$xLVhn_s-vfh}aN|?v9;YwOw1Q0)HIyg?{D|HSXEUu__HfE<)`d14H^*>A3>}TzEt4!wq*t)=+-v$55|A*l)_e#U9h7Ck>??%Q`zRCZ>{S2* zV1%3DEpQh&0A zte@BI9}?5@W9yg@FHzP#Z?m5QMv70%5e!nfTUXE(pe4WT!en+gUas>$U$*alhRh$X zAawelZ?OyCF1|ZLPP_h;yVhK^UBC3#V*ajrB6j`1xlXRyq9-5O%l-qerm}yaQ1!nl zR4u!@51B1={ALuqyej)R@eZuV9@+U@P@dU-#IbuF(3AdECBgUp^}|KU;WJ89i)7}K zvNu8{-y&l}aIwqS5N2#4<9FA)3N8O%Z&v8N>dpm!W!bOQZ~d3d{6Lu{WC}{H-$KYZ zT){J}HAoI$tKa$$A<8Tvwa#>JA*2GX;ASU8zx5wNlvzTAinrFJRYJ~pLi9TnqRbMa z_kp(-BG(4*azZS?J57{XLiD2W)|e|Ir_ zGVJ>wbQf1}L2R3^ED^&=F0E4`K1v(;fbrE9rv1H3n^F%u;yb~m4XBlf(l)hbH=GD6Hg zf$8!G$2C6Z-p|8sQ*(y|v$VqP!(iQldd8L4sHG3PQ2zCOTzI(?*=3sYQ%_W-vQH$N zchb7iO5R9rt*}t{8q;>*1==DFs?a)V7=`hn0e9sFPI|`dYMn+?f@ys2_bB7Rj#fVx zvpZVSDLDC`)zRwE*aFS1v`&4aS85KVV!hIk$)HCT?@K&7pD+9Ti}djCR9U<&;dd2| z3ncw)Kk;a7e9gaFBlHFvpKk^R>FkTlS4;h(v;BpSdfAs#l`kYKnPDonz890&%*@=W z`+Oy&-5$C$iz#yR{v}yCQorDrshZak@pH$Ml@HT1v#v+{+>ykw&&1n5h4@tVrC`z1 z3;9MgrJ|0i9Kojj4=6ve%dluDsJokn4UdJc*&4Z~(Yc0BN93BXjcEgp=U+b*vxUmd zOWs$4U$Q-NODells|#j$re}s{a&vjcMs|aXZ~CJ=Bb9<|mvw>VnN;&SdB*dvk(SyI z65E_|TBiJemX?e6wV$9C8z=Qq%fmaV{e%kG;%oLID4CI;KFcFF!%ugd5Ma9hNngFh z6D(hS_ZRqTg{m;iSLc#8@ezCW-_%!X*m;ZwsB!oh9rV?T|7l;{)$>RBN-70Ut(n7D z(sH)1q~)LNt24;teAR>@|1bOM^)lzHUq6YjetP7gzWR64CNgkEA@4BH)qqB!Dz9lp z`PsgzB8`EQ|GDSt?Kl2WzLHA8M{{%dN?OkLm9+emef6(LM7}x!6a8QI)lW`xzWVeN z_^OPOXFpf_i3JlsXDOib5g#W}gkujZcaR`Y52tTsr3iW zxPD37fx3M=>-IfT|AEKqJAYdLfoJu>p`S5~kT!$mKF=H9-YZV<*aj4PMc>?tJIuGm{O?+USFy4uI7d+ydnVBRW?r0}LCXKK89q%8E&9CW2T3vR?1~BS21t%@o zmx$3r$f9bJs?{UP(f;ZMWjp#H@oS$$VA9XFaVu(Rb@qqa zjfc{)2jT07FX`VkgqU!entcIl*bcBty^QHTX&-7RJ7oSmi+K&=7ucb&RSs6=YU$az( z^THc-@$}C<4i9}etd@@ObHX)2j$c(&F7>t}a(_Qvv*n75lm05JY2}#5-V44l6?@{` z<`ch%ZLAXU+yBdI5WoFj?Ap(&)+};PHm_V)barmx8iqE`%AJ@~<&v?z>B`4bm5(O; z#J$D!mBn`_YVJp&(QJ=A#kL%G)C{lX8i!y69$n}UjD|yG1&7Y8;L%XehcU4hdsx=B zL9l(RyXrI2(`AXdUPy4p4GLq*c(CKv#Kr86o5~En-f3a%Ejz7#;(hZnQ`46h|G(3F zjz0B~%+wLfi%%WebL9HzWA0}Ja9-F)4nE2Bg<;NtGrL(>{LEkJ>FrU}sB8P>5tkpI z=)6@cjBoEt)B)yIwa=&I|`MlwdmE4kf_Z;JXiV1_OBz|xATP9ikmxt9`Q9de2|H0R{Z8JZwF~+fLu=--m#6; z9#c%cKVg)4l zZtP?YN~tV)-)#t&kNH_bp?ZOrNPhC@>1QcF`K6z=`~-MB>9?1YfD$B--WaCeOQh6* zYlCc)-C1WVN`YDK#Gjc2=A&JPYKWDTUDv?Rpp*v9@0rifgQzLuVm4|dH&}SBHU_x) zc=xK4{MvW*s?$dO(*A#jgIc`qyuf;vpZSU7OF&G#R+~FpdE>M8WusKKMus};-O%jD%(Pw!87UND`UK)? z>&`(PwnJCVn4AaC&0tx_hYt#`AR*s)$;Kpva;x|$pNg>f4id_3aVd?EP;L`HgANJGX+C)(jM|gzQ7TYLGcF8+8VDIL&V?w6w!AH9GAq8+seOP zD&V{#)oIDcNc;jye)%ER3m(gAzOzf{O=$ZXpL0C&vcF|Bcse$6cCHwnm$sU;z40&1 z<0Fx1^yLvU&3j054KOcziswie#+RHH=*QycANB6sCwM@Atk|H5OMjih2F}qFt(bvx z5OJiJT~rcZa}3}Eo{9o2_ngO|(%bnK_8 z?2h2x?F%D4LLH<|d`*=Yvn+ueH$D72rGBzR|8m)%`B zwNPbGdbr4E))YiC^ZXkHygVEdPXG~sWCT_}sgPh#dp?kAe!?9n3#0rg#weJ&!Lf-8 zk0F3g#o`@j^W#4JL#WRO$GheZj=4W3I9jv8A%)WFyf%VkC|rtIaGW7LA0cypOoR-D zTZEjtIxl>jLAyhRYbei!-*7!vM-fV36fMh=Q3%LoE~OL_3ZKu0efTKWe0 z@VidoSDi@+XrB~m?s4H)Q}qhJoE>l*Pj)ghMfm-)esO??!tc4cg>Pe7D*@FW0ODeb z`Ks8fq@`l}i3FqR*zf86SsTmhw<*FR%VAw-5T5K7_zBGL6N$+Jwx-CU@C*AS>=cnr z$6mHbye=TY%l<(tX)Eb&Zy^d>_l8L!7jk0(YyCSl=4Y9Cv{mG+c>B0QO?f;DurA)} z(gLiDw_LJ+SdmEqcfBYz$2LmiJ-mMb|T!dw@>2ZWoh1KJBg`xEw zgw}Hit=lO4=gIxM_{=ZWd}4M`-5CYdH`q|*Wu{{~b=%&R!j3I1b*u2hF+IHfTc^s_ z^QJ3T*${6oSBw4A{{ObF4`=9T*n*Y25JF{bQsch#OSlXH-0v9Hi_krR2*+pVmYmG$ z=A5nVVhJG0!F7|iRkcS2gxXN=4p08h4OYN{4ec&VU7ASc((c0b;|8wn$&FV$?B0F3 zn^P+09zED_G-80yFhOqlz$sa8Re5S4E{Pw1A%D!I&ta!u6D<|TXh1%IbuZKkaeUwEfjTYH!S87`Vx@Xn zHg>JEPH)GqgDqOFLe9z7v9A0xsB&i+m+>_hE5LJlxf;F9AK1bYHf%LY&%Ua~Piolw z4zZ`R&#-qvhp=$UPVPAOob#pW7z4=rT$AS2>{Vk{zu-3>akH1Xi>wHng=V!p<*K@K)u^GElwnbf-y9=`0IRRc=pbpVQ{7{kwQSj`T^# zo~RpC@1NP!x&c`ieI8`fIV#fFaq;{5W4FZHYgjJKNjk~c@4W1O+$E{OR|-@rw8o#I zgm#2ce@=u2_GZi6!mAl!Pgnlbi*1jJXD}Vb3e2HV6PW`e6`JEQdhJ;8VDSiI#;f%vynk*(rhM)X|l!j4f&=C^;xisE>0u$OJ{$<*0o;3gC^QR($B+^=!ORNQfxaL z^TkPx^P9UdAlLxF6iRneB7a4-%$y>BZJfiLl%zcB|ROw;ZXOAIn7XYhL8< z#K)1ZJe+dm_#@_sYm2x_O^ccHt4|UmLM-ih$4pT9cea7rj(x)&mqM{n(N$-q{d+Z^ zhjIc2m2gP1Q4%6(pMY( zI(dfD{`a&j2{Bq-#d5b!hA{qGfs+@o`0BsVFaLXPffI|db|-VE@e_Bmv^4!FL_%@ zGPXULUGn>A@97>G`goX>VLeQ}W;U25^q|1_?XOq?ei}jF9FVYNF7=)gnuD`)3$LJq za0EMOjxYXb9UEw#ppu(8)ob@Mnq&!|DHzY~Pu9G8*}}+1TI(eBIyUD{R5`ULHuTK>LQ7RSGx=qjedS0`>NPO|GRRrBbwi9PS7yFAwoEyJ9r zRZ9;hYo565NG$|hR!{S>5 zH@&IGPHBkWa1VzdUf#}9~;uCe`H$=`|7Im|cn>JiJ|v4 z@!&9VAIE|oQU#imKB`t&jh@THz5^X=ZiR{u@N?p|r{)%+w!BcpXY(SWW}dpM;h*^T z!-&wEa-oQLUW9IiTBsi~kvfbBbzBNX{B-%jibQ=Hv`~L&;`hIpyCU*bp@?i=#4IOH zd=C)}b7+X8020`zXgHFPU9#;9ttZ z{rOwu*222rzg=$q)_>$4fxI!%@fNwSY6!k#SKBlw8#GX*t*O`-z%f8W~Y%p;STr1$oBYui6R&EDtC-fOS5_P5u5oW0jB zJmJq8ER(~WtTJ(N358)_q5s5wet-1OL4Z}uCMqH98z^k*nNy8~XN~b~E`8pUIGd8) zmXM=oKM8w>g}}Y=f8a~7zIW#Gd#7_r!|UAqGx}M>v-p@x_f#J9--0*MsGmL6sF3|7 ze@6+ErGy%lEl^52-VS6_Z1mYXiCw=|O_9BZbrda#Jd98~074jPla1n~*Z#4bF9W@) zMt{y1{DVt5bHGv(r4&ED960AC!I1}N?#{{$ta0o-FW-@O^zo(Evr{_SGmbj1tB^P7Ja5eQ zVWhPK2i)6=-#K(TPBaYslRI;_vwTh`dY>A($=IdOtV9Vo552qius;_+U`mkS^nDjS z4z7r3cl$<9z(^n4qMh?TkCN4>tQDNAlc>Il7?YXKWgA5n6B8gUZ6_Cr(P?rj#P8pa z;ltg6FQVGHt~=Ej`N|Z1j>l{aa324gZ-u2Fx5xiu&VGfReZ_AdI^9a*f?C@{f5P{x$DQR%-(v&A zu&*T^1MyZ&O<9Ip!1I)*k8Ts2{5VuQ8!6!?OQ$V?YU? z&1@kbx}}Be0aAHQjA|ikxh8`a@;F*ZKu!Rdud%5UEkw!57Q%PoEkvZm+OX9^n80cw zfnVPDWbVQNeGDJ4SBC8g3%%Bo7vM9+7`YoI@03$3yU;dq=ym!0ccBq1fjL(ss2HYj z2>=imKd|n_wE=%3=FPG_}l zG%Wiqa4?Atj=)a<$5Chb)x4)c{}@VRlhfi~0G5~>s&gA7yU_BEST2jY{NG1f_$tEs zIFy0u=|{-b<{t*dVLZkmE{14QL(50w5&?UeN3DMPmqA}4Yy1B1psn-kO2{V_`}+x3 zlXUq6f^Rs^r908!G0n%X_(Z_ZuxcGR{#E}6_ytK8d@YQK@)`$T)Q5(T{AEZMk`u0$ z4&x0Lm-4{6SAULkV9u1RIhOx8ngJGTMgz{FPO*NEVUAitcl&Z-%8odfEypVyypdHV z3{~s}CfEpI=tZgrwqh9O%hpHx16X9@HZkQA2uGh}{RxXtFwCPhEIq~V!v^hSvW2f# z*cgHs5QBA^wW)|MaABiVClqO|7@_}R3hY;BmMKQUk*Rt@5B=F@b`dYuvY9L=ArW(8 zEo_g*ucRY)+bu5zEsy!dWbYJ{y;Dp!J%bJR!mG$zhrVQ`q2=C5%N_XbU2o-G#dJSO=a~ zFmF%7WMko9xYh74*lNfZYOA5VMW=23z^#T}j8dPR6xdJbTrvvG1a=a-jdCdpW4MAV z*W%b6PLs`BoZw0uzZiDJyWjr?reXF4YA2v|=e*JIx4^;n{5f2iF5iuT_Ins;PsVt- zeIXoq?t`+@p2E-qmkMB9v6sUcXXv$PyMq^~Z9;zJ`=A&XsO@!@r?&C}wG|??nvZ?p zAB}hD`(L%0z+NG^Fai_1Y$gt3jSoy50uz&LCjJ+Q*WWHKPkva)M77y8vNJZ+ru++);4QIodno*=qMKF`JU-~9e=ZB?E$8Q&^)Qlo^ z27(%QL7FWk!g624UC6b$r`C0>n zc^ElY!e!#!8(%)e>o>lPC@;DC_4qP62?Lm^Ngf@ZJ@l!m%)_rE=&5?;mKer$lyti| zk46_m2PgPUks-m_ECl9lS8(xVQj%8QHVktD>^MUlTfgudzNU!hUYu_=YyO0t1{ zf;aLt6+%u*r2;6VEnrZ(Nl83lEDFGvYsnreDZfYYrE~o!{R6(Sa@P+WPS%Mcy~rx8_1Az6hKkX5LpQ&lJm zfafO39x5rSP-sT4LjD|4g?T>-twJUN`*HreA5m4vRX0_I^j8w7LQeT8V~d2#T+8unNf#tB@?R3P0C? zDs0;_Kou%(m!)*F2vi}&Y)E9^v0Rv`ss z6)Nde74kQH`HhqmRVXy0S0R6nsKVOWp;gEvC?L+iVKb|6A^f0A6HLT=tNs?I3|hR4&27Plw8(U z{vT0W&ox=K#WfjaGljQhDW!aYsv`A3Rk3hkT-6gO@u`qvK!WU)64VU~LESKjRyU;0 zx*<8%jS@uF4Sz%3L<)tv5t^)<2?JV4{v1&^AE5^cT1X~A0df9kHmSNnH%0T>E$j0IC2vmtaTtT_stxz zN?0(f1Y5>FHlMs3Rq{n}Cfyj<#Ox{oOP-Vr)(1&j^)Y{;FlyI@gHOp!2#&K;(oq+r zj=Eqla9x0?*8uNcLl|cjTnUljrcSbiN&x)}9qNDjfcodp5&Hk_k3#j&B%=S+zkns< z5q=H9w;0qw9!6DC19;oXx9SdPT=&e+B)BKNSAtda_u$b>P;XkIN6*6WLQD4Oxv5A` z?-8htkL+unbqKwdH(TRH5`M$BfGR%eYwHl07tLUeNWs_?!}2vlLszf|BaPS4qa$v} z&C{%!Z{LNg`OZeBDX%6cI+n63=_Ly<>V&mN>Jfkqo>T|hjS{SCLg2119Z^kh1*2^etIY*vr4D!_L>x?OEX?Zn%P+AmO~*8aOn8lp zleQFbV5kNI?()63b!#`TQAdkJ0(bfA$5CvOx%mlRD=6=*ypWO-xs74d;gbhfiJe3* zM7SrV{PYbhcw;Im&8?rn_6F{_^XgAvwIl;Ejb5R9(15n&qfSldALxxaA;n$3J74@5 z?aId*eep|}-H`(3lFW{IEc5!C|7^khA%VF;9b%J)+rXYWnjH%3T)&Ds;w8+LHz67H z=diei)~Rl2k?PirRa7^WPjy@3(Fjp;-IWOCC%MbtIqudkP6iPuA1e*ay^89F)~SCc z;^si)LEELap>);*Ef1emjrpI&?2p4UxBlyp;TcmzfPdj-0r1<(#%us7Aq?(geVFPf z*T{mvi4NNEB3F2NBo6^3%9p3|LJ3wCA&3H}68@y%RE4O5Q>nyi9VpX=Q!h$^WN~<9 z!)bhO5Kd$wCY+cc0HMV-jz}0dqMm^xD&E48QgbcU3~jRlXhEqb;}K@^9~clvOc8;j z@v}m4Buv3y8Bz+4E^HLo#E}KT5uE};Fo*E;NFoAAlq65($r7weMGyr?>HJCIC<{@A zqYR1Fwt%vYqejFbSrZGh%+g_R5JzMpCXSdOfTORq36A&;C< zz!4R1;Yg{umTHE!TgZnl^iUQvMZpn^ionrfbQ{)S$ksA8i6f=pXwN!oy}SvN9)+U} z76wzv7sexP2q00rJe7Ayu&NV56dalSN#Up$QH7%}iPe^XvW=rc#35M`3$t)^_tYSc z$V5yWF+l)F2Obj~@f{>&031=GP#iTs@b}>8g4_Nc9Q_ouL+ufj7lI=SOB_)-{c%J# zp>FCK>ZYE7BkCDir=Ec$5ePoNDDuEKB4OZ&dIpZDcne2L&9ziBv|U0zbfJf`m?;X5 zSX2a#?nZwR#E~$Cbtj}09L@R@wO(FC7Q`OW`6*tM2v3icB7j6y@>E_e!Kyk0QE*hx zpA?Q75mh*9kXUUx%CvEmj5s7qMPTFTN_P-PWFjVx#6_z;OuBiO;E3;lBPGC}DG_jl zVG=jxs=h7f{s5L@kC8O?ZHMXtV+dYFC0wNUDq zh0dvLR4|ndFj3i1J(UeGiBvcY1R0}%iG%?rDjQ&;_AM|eUDs0AP&sP>U=n2+k1&(} z`2jmOricL3Wz#~zBuwGx6;cYAUTP5Rq>=>z6TR+2uyo<+kqiWoC`+EoH3?SbB8UQ} zJpQD>REVeoQ@+G%O;EPM)PXo8>ttb;QF8t;2qrQS6HMY8*alP14gnM20Za^FlqeCv z6aZ5Dy#XK%VUYBPTmBxSG!L{xjS`g?f+Gq`98o#_aYQzuZt590qMm^x>KR(6o`E9~ zNZ%+T4{Vf37&xMyfg>v3!jV#QE!7Ndo8&_mdMJyTq8KF>6@eqCClp7*6n0D@rQoRW zkJNg3Cms}z=;;|ROum47QUs8QONW>o#3_Cq2%_L9kv}OMB_pbElq9j*dQi4;RE;YBRc! zU{}W^_{72hJjeOpzKeBGUPn2^Iwdgy=B9jsxhVoj)F@BoO%kkXK@bI1ZTv~0ssmAl zs&?evEh`D{O0kM0XPj|Mc_A}9crZNK_UcBl$mg%j{3ui+(PSAH?&T515Q*ol;0vj zGsVM-fJifeHs(snJi4W;J^A)$w|m?_GN0E>!%(=X781mPr1;cFmL zf=-nlZrgXjFKqeDFp=!Jk^LQ@Ki~xHW4M* z;E6*VaySs!;2ED41P@D%2_7a0fae!m1U!5P@F(F&<$i|Dgd54pT%RM9T?9h%g1e)kq0CasIJ)3MQ~z zOoUY7H6+2-$m_9KiBFKmB&==CNFNv>*Jmhr%)k;gmKv|f!oHw3P_Ti~ggDr5AyLb! zobiJoFj!bjU@$=d7#BAQF!&C@U;vN!SfUONc)oo{02D(Q@I2)Edj>rF*IJlZ2BkqW z_y!hOTBMl3#Ec9A;yMcuSXZ2s1T`iD5UI$()pKE5-zZ`Y2#84;P<9qHsaZHs8my%T zp~yBCqzf5P&hYmQ2m+Fi0Kue5p&$@O;C==v1qAQkPU+x0fLn&KXzhR@>Xe0pa;||x zI9ce%)?FNHYQr%lNoJTx!ew)q_YOwY1r8YQ^h#cXOY0C@R>Jj-46KEAEOWjFhxS>? zSZoKrR>?xUaa$tS+l_Lyw9eIXDIII4Rcg(vT7pV0wnGg<4#!3~ecmn#SwH2^ zA!_i+=j{pT)UvT#jO)hM52bEh^b^gl`3|nXXx`OI?@EzYwjI~ zE`mdUI zUfD5se79CG`eEI(`j}QwF}4MHvH8fQPaMM=+L!l`F=IGxjULPHj603obDHQaFo{z& z?l@|qpFp>9GiA`?H;h$X#+4~1j{tW~E684+;GNS>kD^{@Uiaubi}#n z8n6DLx?gO^;fv%z_S^1#xI^~M1!>sk@O^sXoK`U55JcW`Y+Av>L+YH{VR-O6pw#s7`3P9A)%>Vi*p4d1EE z9DT}!9DQPvRzI=bN))fJ;sKUEWvRN{YfJDFQW^tAx((j+xrQ={aB>nV?zbE^G_+b z=B{JJipc$xb8#W$cIlUlhS-oeBjj3VSL?(KDl+`l1itdW18V~XcnhYC&o-_cJHeB7 z69M3zvq#Ccm;lJBJeZ^ZD8+D0Em-Jqxb)x6TzDN*XJzXh*w%vIlFNIC&Bx)I3J2xq zOpCkR!hXC!p0r*ZCb7~#EO;xJutoQ5JLbO$ z$y_*@S#T5{sL;f-FX)?hnO1MBv(%A2)PLSWj1K1vYRw=$}G(s)} z+?9x+1pz)RwaHUuyL#E7f=(5fD(F%{uL`(B6xkgrNK}EG%EX>s^^~dtZgE7)3~^RFJ5GBo!p9faewT#_Z9Ra2RBUMY?yUDSn3rl9~aFUr+5l}INm*{OPcSTY8EX~ql#qc zSR`$4cNu#`_y)Y`atd=#9>x~jE|G-0&8Z+~Wl|o}(zBh)#VqOg1zA?(zAj{GipcVl zS@DXG9kN zq=+oEu*gz4QLLaqmV;^n5s-z!pWLZ2xvczF55MIiZ zOlAqI$_|y~r0+`>Eh5XRjEGW_(I!yJ=P$r73iW6m4IF!=9g(lxTG{SGq%jYa3aT49 zCJ96J1>ZqdLA5gs)hmOjE>o!9jpKsdrB$lL%f<B)dmQ$x+Lrngs1d%C+U zSC#mc^MuKk2zrOlftAo-@Thj=N$YcUFRfE~{+K3t960t9&cocZBlC2sJm;Pzd2%E2 zeEiMGJgKly(8h){B~M*Mp0aO5<|$HnGEuH3D|0?_uAADCJ65Y_U`2-DZ37*Uw7FqUuKtsz6K|{+7 z%FzB0xzNlb4eiT!u>1iGEh$;GO)~uq?L|240D6&z_DL+*sMaaDLJY0vR>=}+Xh*MM z7Pd~6C1_}$#%AsT4ejh(B1*9g?MpS1CDPFTVpT*I%h38)N|s1N`y0%k`pIG$+HTCg z!C0iBt?)%;u?%fIRxOYv($KENE~tK`k(@Ma&Xbm6oC1a)V@vG_=~nh*B&=+xk2F65lAG z7}(JM`uZq__HYTZ4rFMlCWY!Up^J0nA%=G3Z-mK6L;Ku(ORmk5E5y*Qm`5fbvX~sm z&_3}yVKUOtes?aJ9Kg^9nXFPwh8f!Del1K!8rt6%*_Mg9!VK*d*GZm8Lz{YSWFE`V zzJ875i8Qq9e;Jv_GPHAkA$cMV?RV!y=CKTI7Yyn^hIaSWky$K5>nRXJixCVBE!AZi zS`ob9s&CWKew&6CF0wTYE^#ClE`myNd-Ss|>8i1+!Oj~4WRG*&8{+TUtGB~_9WK$c zzPKnqobJ|~l1h~0)n^sDG2}*+#k%#`MPBSSmuM~Q1QPg~B)F$Rg4#L>);1zAd%tyF z9NgApKn>4KJKjk!a!WK{QNA4ZJN1RKy}V}*t90bY9FulloLZd11Q`=jj`9(3Fz<$& zTj%s1<&PWuH{zY;?fr;H-ytWNI5!}}m?nfx8a8rnfR~&bn1$d6-rW(!X=`u+2eA2g z=v?s4y7;7Y%NYW2c_ej?oG;RTYETJJptIStc%qvfMF z)|^Z5nunNu&Fv@?Ep^v64BNr)$5;k`0dgu7!hzN@unn-dI3vM3hwt#B?GG*4riU^-6G$DS>qZ*t#w} zna9r|m!ultvK|lpxg<~KSHWe_)R=fBrbe2w&2V@Ft^z(SZc7jax77$Nqf&|}IBk?* zW4(H6Lx4jAP4ZORAi=s81m+CkloSJ;7U7{kr)10g%{Oq6y5OEdE?oGsQ}FGhcdT=% zj@niCu$5xlKD=7MZKf)y6>b6-@c=xzpe2O^0>*GR8iE_Y0*K4Ab={1wmXI{Rb=T28 zzjGvrV$XkhXD>Xp!>4p1X8CS?ryJ|*`q8Vak4|*HU2$*e$$yN42ZvGd@b2-&Ne;eT zc5jvSa%v*qPEF$5ntQ9Qw=R`%4z?-H&jWsG|x8S)? z$9*i#=}4;aw1OOtrIE%9Zt~~*@{i%a^I9khA3byN!qr5xL!Swf%a_Lh{wEQ@-2mNg zG_^nh=!1nUd@mTa8Tb+3hBBXlJI)sP1n~HleUFK};#hYAMfp-cdb^A6c z5|R<#B+|`q6=ALh=X_L&A$;J5065naPUE{QrZU%(W#{5+peVQo8W0J;`ND^N{*y+q z;$MV!jV5I9>U&{{7L5gzs5SVCfrkgBHC%3VPYd2f!_{v;Inw9f^cl8exI5v+)g@Cv z+LwS!nBlHsly)B`v{*I!8Qve15*C$%joskOL6 z%RDjnt6*u1&~u($D&#=zWAU!dR40nxz~>ZrQXEZBBk@n*_`GxRIm8_O6m7%*`23(M zG9vZZf+QyM z$z>c!-GJ0Djm8=65r0MMj$mr|TNl`&Riha5kpH~sN4W1uz!B~-=&z*7i1m;rv&Xr- zo23~(RxH1K>+t4&0I*`^^KviCqVQAU6G(|uJZLhHAx3AHXed^b32!g3TWBcv62-V} z29)fE;v*)}c*rpZcy=R+J7oxsgo#2M$=5Y9F3kd-q|QS_VG8pLzp`6L2HHfha8LX? zDLiv+778yei`FLod^_622Pgl7+Qj@y*xI{5O|=Qw+3jFEvQ6BFw|1LwNSjzq@%pui zQ-W>c{LnU03c(}Wg!3!eXl`G@6dnIm17X6D22!OS(Lnff&EjhHJhL^K&$lnGQ_okn zrlSFYt=8hEhz2BO58QxKLK+ZvG>B)Se~77h>SCzXb5e*}i+(teT7QJM;cC_JCWcy5 zL)BV@#ulm8t3|I$pG*;=&l2?*&}XT74(PK=J;&6i6gsdz6GQZQG7ZwJ9LvDVmE8%p zVn*s*{x#_Yo7tk>`bTyrDCXR&|1Ho7;>&k0fZ=AN?}Gbbk8g}js?gc7)wp%se6m)$ zAo{YzRpR2kddp-gT^g_`7Cj_;G?)Q4D{Pyi&BI7YHT2qiKEca30$fCPKHP$A=>(|I zBeD#9WWiX5WuPO3*H~VLf(!6GzKS0(6?%KTY0o+JfU}}5hpk-*p`|Mt($S(z{FeFU zId-GRmnd}|LHz4z@njAADij1V#dUw|9`PGLKk={Q9rl&j$nBD_wf!5yuF(O<4 z&3GFQ(^85Xz4d=96sFZcRU}O9hHrhpR(NI75WLo@#{gdI)pG!^4eB{2UZwPb@j5aD zugBT`_v6n$M6pk`VyNK(&I5|Q47M&(u`av~SM2$C6GO3K?Y|M?M=Cb7{WC>~KAY5I zK%Xt@IiOD&B{jyX)fUml!<2L7t^%&|6JQBQc%MrBGoKg(` zHKVivb^!ygMPG)yY`nrKd$TM?VdcoUk4sO^6)7NbV>*VUHLBk1uaL35 zg}(U@YnFQ`0-Og4qwqO5Zw8M>TzRm2)}1Aix^U zF2$USUg_|43Ib6sb@heExT{`L%+1HlTSPPNqTZkgCGT!nKz_+X?Ikg{(JaS44LNJe zo7hkk#$GZVwyq7-o2fBi7fQ<$ZCN+zt<~`4TrmNo4Dk5~ih=d&@aj7keFpqFS6pxs zna!z|yTx;=`dajy2QqW&oy%*e9d)C)N2hBi+$q&dhgzM(;#;s0>{QFcEO@0N&5kc& zB5jDvDvTqU9(|9M9A~BnzE_Gl$r2V*N=RfCh(I!~W(B->b=g#Gmt(<#S+^Jkr=vbe z1)CByL`|*P8$@QoebLP`M|I%EpZ=qJU1Dm&lv42rf_| zF(r|dZ|*o<)WRi`0o3wlKUM^pSXKiqMMR1>7YY$s(a>~wkc4jAZB8P!LU@1^(z3Lo zO0P`<6wGv?W$n4yEwpx!)@#G!_fRjm140ri2SM-ycmg$Cq*O%8iloI$WwM}7QQn_K zQRNky6?Z|Qot!{JOJ#0F)swjctdX3eBYZf^&qp_?>5qH$N4-Am$?*CfNa0etH}h}K z@@J9KWh~)JcLTmq^`i5`V-jo$AOEBtORUEqt4D6Z;IE_9BM;H?@ln`!#jtmc7C`AM63=?^G(3k+Ms6o3BD7)qUO23v-^zAC-cTm)e0#l~14^T;t)(5Bc1Pc+zz78LZ3Se-^|t}$*YYtKe!5|#iP$|)ASq@ouew)$2_n(84TpE zlgl8w$Cz!(h|hyv!tfL5aprV*eFg9e{DgDacc~jA$Hd&moAw58rZR5mbeF$5jQfdw z=fJ1Ouev<(ui>L!FUFD=V8gc8cg=-y3oh{JIgP9!kC6lCr8jg;Ef~2;oRW57*)k8e zXv;7Wjzi(!^k^{%AUP@s+7b4FYA^}FKy<3q8;{rtT&stxQg=I{+j-fF`ur|r>%e~K zHKabWgDy`!9S%@W%s!5N(hJul;9if@5a*SmlbmObe1*=dy_qi+?>%%u1dRc*O?2iZ zbRc6wAmj7GY36Ir@|Uwje~>QWE*6>a8l_9v30_7eyzcIM)RXyIF+z;FM(>3l+dQ~j z%b4Aw#dqG)4PnK`&uX3XQx#lJ**_x}a-K)lpl-iI5`ew*)H{wUty*kL@TlZSAQ z!duGMxI7j$0na%lSK{DC-=nyE5H_Q@)4ziJ=m)IDBe{5XdNv5yD~e8gMe%!h>(Rj$ zoc(Y;@hm*cAphmydg3VnzP;3Itt+O`G3l*H~XAIW|>Gu)Pie8ebbWDDgXt1kD`?G=m#G;e1=Rm3iju729se&N4X` zG}YMZAWKu7>$f^c)O3u116FRBw0$zV!37R~G?Ois-hV6SKGO86J($=CKFT6jGm7M< z8XHDYcyr(7+^Zxz95ifM*XBsJkga6?TMvMKyzB_o(q8CZOx?hNEd9QCjK!pi@7m-{ z90*ZX9E7=vg^0699qFhrAapTH)Qp=7na8-Fgg}8x_82#bk}YY1x`vvs!5-1_x8Owy zUbd+8RF82pse6oDsb)+$l$vXmn%7dzm@$c(b?^*yI3(M#3;^EAI5QN z_-0OYa!dwwU}YI}z&jp?N72mBUlb4}k{JO}5@KFsX|e<>QYBcOF2S7{2mm74t1$?O zvLweQO@i&Y2>6K|>;Obn5;Rv+$f1CUED4B6)ZBGS6cCZEp@7IDS2K#_2qFq^F1u_n z5Ph`+^g}>I-2_2Is-YmFtOOAYi2xBx1c;KE$GD$_03s?GAQB~GIgI&(x{d-OQU{2r zW`IbkxmKxJ?%n~2M9sR;iwPnY7zEMrkpU3#hu9!Gyk9`nhM}thQ9B2*#?lT6R&b{e zERiX}om~hZm;+SZgMg@4a$p&s`L{bLtG+G+83Cd!37RzoLjn<55)hH7x#*-QAR=2s z0g*+nW)#U0L=@iq;jFN*ODNF5-engJrE=31p@>n6)uQ8R8`2fdgeVuB!unqcoOOT-^ygJ|w^ z0-{nfBbKNNF@UIAf)#ZVtge^f&ISY!Om?RY0-{FAv8hRd?JWoZqAppX+1M*Va~#z) z6iY;w1VkiielI=>h{)DZKxC1t8AWmg5rsF0&ln6u=RXVjAt0h|f|iI>LqSAY2_hB} z0V0+N5LGjeaX$$GL{u_BBuX}#MVg?lqkxFi0V1jyAW~|sRcf|wGOZOg>q0Lkh*)3{ zL~|Vh5b=lDAo_S8HD8uNX7sl`Mp>4yrE3zb%#~nGo&@*hBLIlFWm0-~_RNrOCdWiq zvZKC6jfp(QLxqxKa}jeGdI_K4wFDV4?P)~7tsV@90wS^`AR0UzJSk{Q=r$I#H33_XAO<4h$TUdzr;^5#~ zw5AzLSR#%@DbI0u5shASP~AdNdr)U(_N3TT&YjC^h?( znroGs*NU34XaRnL*2s<3OVR-NaBb^86N76eaN)eDtE`RtXS4O)W+x24=mg8Q_?3VW z^^`z8J^j_Q^9icIstBTqNh&R2%&01rpqlG}9;2>Wf`&Q-uqFHw5Y;4kjK+FN-PFL; zMs*{fu)PnNV2(@#81{8BFshm)NmGktC~e~tJoHME<~Z<<&lC;@Mpe5csqT;rrJa&e zzGMh?bnz97g_$Iz9u%F^acGw%a|&3(kW)Z1JsnrAI9L+gNqlVfei8+;lz$+|zDVU- zNBgE5%f6(_sQHprM$MP3GM0VGDq|mT{G}q4XFf1>FdWA{&O*5aF-j|N!5}VH2C+?Q z)VP_aoVqJUu)+ZE3$f6KB}=N3r=?`#m`F{+1Fh5qZf3&m)g#Cnww`Im))C~EwsM51 z+PQw&2(pU|PjeevC3m24LhOK@9YLO9C`Xhs51tiFYDQGc``bs<$$Rz5NUv0QLGPs| z)Hr?}oYli%s&e#o!k4jO1aZSc$Pj=-#CX78qdba8{Ix|Mn+YVKM8JZ#giru96-pH4 z&6s&Q@T+FjjObLU1T1=OGBJaW5|o5NfAYX4nF)d>`FH3U`Aq{a*~0v1;f@yc?G7Q$ zzCDpKLr;=mWwHcoQYE-A9RW@Xdq#nY`2$`2=K^7!J>gHR$QJMrL8K_D0Um~&S){L^~ z){G)unsX}7yhmd*AjpSl1-}lO^T3H$|I$_zWF0)DIj3HMciA6lEGPL;b532+oU=59 zm7)zivrsYbe-`7ogoVSHiWI6^ESrBzlKdjYz}TzmTau2KxClA~&|&7CrFo27SZy%x zs@i<2+GLgWD@nvDucn4D$|8Eh0a=_bAXP3y!Yz} zUO0ZP(k9Lw;8(&_6#Ls?M-Wu(=-sTrrTku`h7@g#8B5zGSiuua9%FT<1b3PUfZsS! z6-BW(KwlTJUWXwCJ(PHiO}!Fqk5eM1i)`ZU6C!5eX;7n0V@;L>j3jF2bw>ds*%}HM zEpj!ZNRAk!@a9)14~D^ZT&@#}L3O%IX34+^sfJ>ZvJ!(VBw|Rx5;3G`M*ujG5GW`m zFA*i<>kjkVx{f-eAa!6)sre42W}i}XZ3ZX+bE0OPmB3TXAq5lkLy`|&p|neUl*X^I zk+gaj)nArRj%1coD7@)K609tdU`?q6_f;W)baL=6h9#_))SK&=+9<2%6PA0$D^+uc zc%`cBWFSMql?{??bE5=$69ZkGV8Rl1NorrOq#lALB=dqfvLF#sHxC|-0zOJI6!2Me zYerdgYetbSQAov^w@n%hg(NT@i&Wjh4`~o>^$9C1l~Sgd&Bi z7TXdQ$uCP-3^1yyZ%GxNVpu|!22`@zU}VXFMo}V--nu6 zgJs+%qU>)2V}{-+!AhPK^%!efB)G2)0l+86t7F*Tc1gXtgQ<rCx*hCHYYNQdh(;OCx?o8+c}+q4;Itz^_Q5s>Q}{qx`aj z#Q?vm`j)ieDF%L78t}_%1AbMt`Bb&lvf6-ORvYk3K7ijY3AVAyfL}6+dS;aYzfxtm zHWdnviC-q@hhHyxOAEjJH8y^?ZD9?TWeE?oznUA>fzH3v9`P zL`dDd?NAi_Qj($I*P>f9%A$*}&MW}qHq5d2cFLHv?@D1NCc;+Lfn zzirkt3k}6D3kQBh3RNvOeskrQB`gN`Rn@no5Kl4i%hG_~5((~5)#g*xR;yf6ic?SE zmwW)f)e>xDl>xtG67|d~Lp@8C;f4u3#l$ZY^uw>OD}Z1A8XLclZ(;{f!e&?{gra@dVXa_)V15o0FK@C`;y(zA+b>AXgp&kjQ7C>~E?hQ~q!a zJ%dkrZJ{JRaLfxfu9W)piT34fa=6n@?3+EvpUom(>RRk`LfFU4m__GT@g?qMli0sAs7%U092W zU-I4$zfZm!z%PG|jo*$9tiiHU2&(W~#h9U2OR%y|f;IIL+}D5r;1j^8#D4AQ4hG z&v-iueksXN@N3b<*HJ~cW)$fXzf_!g@H>OyH}B6VC@>5x=4h zJhRYH`^&d=%)du{s+JIm3 z0sOX0u#Hs){E|u3Gph{sELDaNtjHG=zf8~%zn?{KX^kKFYi#_!g^ROjB!vf#A5w)W zJzav884|3?lHfiK0gWf9#IG~WSfg5&`TJo zdq;uaMoI1Cb*MvH^CI&CTe2V#Qa7)7BMN>g$x!fX(ZvF+qKhxIi~zq>oO#B$!SMU@ zMidl+U+Oi8Uy={SFLg!yvNYnCx3Kb=g@)png#*7Lg{l@Czv=SJ5*7pes_I*!;VA}w zSsL)mY6E^%wfR)F)w0@vUsfCNOFn?#A_=y!%79;WRqRGq8R}W84CjIH6cfKp&=0>} z^p+NW`D<+a9>IlOG?Ms)qwH@RV}{-?!O9K^)^tj6pNW9R6I5g2w@XrQ?qzB$ZHRaq z(~${sWgq~FECvd{4*ZVsZ=wWx5(6BNl4Q-f68Q2Y^$_eYnHSiS1&NTld0S@`{8Eyk z;Mbyy#al(UW)$fXzf_!gMfza)E#{?QA^4?UgZL%+Q2bI?#4Af9enlI27FC6eA6Pi> zD^jRxvGLn3zbs)fz^|&lC9J*}_+@FpFRKmsRn_KG)mF=D1AbX;z%Tg#epzK6V;ids z_$8CDQ>-%7vs4+@fAJI(zf8~%zrMEu_~oy$@!Kc2WGyWr)3Q0CRM=lyCBcen30Buh zaA!RNfR7IGL{S8BlrISll4Db&1lyY!V2KbJIh2r~xfj8ZtSVU&Fp{YGxmTiqk!%eG zj21bp;gT*eNa4*F&K(SckKm52Pz+Kxz#w=20wbgvib2Xs46+chnW38#SR%e8R3QKy zNC*^^l9z~*aX&co+q#bWC4tm|Ii==1l$w1?&9zF+Yemg4h@cnqO9B)0L((MlTb3o{ zud$J|7`KGMTqThs`I3+YDtW1|+O@;*bWg&ocdBRlmZ>pN4-ki(SMp+)8u;&+< z&_b#afJ7YwWeM{o+2%qC^dbg&ZM`IGZjiv&D5-~F3CX-*jx0!o)XkL#qkxZ+3L6IzF2R}( z3GVAe0PxW}X{?^yl+>HMnA#}gp*qNws^m&X01_Dt6n^6%K6-M81bQL^y*5jdHER<1 zawYW;@Y{m21h!;BBBXBa>xhD1N-`AuT6D1htLWB@B3J@EHiIO#Fbvr%NF4&tTNB9!B0fP;MS%y>cs}s@S!vV%M=^QO&GaY=seqxKB}4YegdK z6|g45I0dKbwNmO8vukiCW%`Q--qykd!EG&fy$pP}3JSqVoPQzi0mET^f8Pe`Sll<^ z5SuzbE3Po6_{M(=`xl+_J`ca;*#CsnmnVT8IV`C877f=jUvMrviuZ2)SsZ%zq`d-{ z893@T%SKn(l@^W??sRxEpDKO} z2ltrB?c3TTZl-!#e6h_RX%9Q@7f48 zm47_k>3b8}hMSN>cgD<=$4n!cNq^Pz^ZVYm zH2epp;r^-5Wa`J58mj$}YqAI@V9^^c5U5m~`lP=Vv}01oN!WA=lq(oRT*2UmoN+BU ziTXKWr?nGe0cfKVcG59i_D%;JF92LEI6#^C3LG{n@qPpYON>tSCA^B=kIdxm+ci}m z{WUrzQb>M9B=kZwRgNeA9Z!4@Jfx+|8CMsW^nZq5LCQ}+&ILG5M94@w0Zw7TKLQS7#kW9Gp1?<2w>>488(&0g$K58}$cCSQAoLG% z?Ac$1T^#7Nvh~h>H0TN-l*X??1BX&cqo0=m{{`F$qVLvs3JG{v1sl(R4W70qi6hpL zek`;?M)RBGMjh9ebNUg-^8GJz&x5{S-zNlL6M}Ff*i1J7B=|uXLDWPN={}7f3YunI zc@I!d0$Rn_xfe zS(0^fuF7|H;R%1!V3{1|htE^m$qp-1@(KTM2FbKF#l#*w^AX8dArC6^-Qw)wg#W(= zB~U~Hzq1JN!6s0J_zC}`*nbeKqPBHmcZB(U$-jhgmHm$n$$j-;xf_`K*mIP73FB7o z7DP|@PaiBd_i32hRBpzt-1(CG37E~8oSXPAW0tDij9ayO6o7RBpzt+@+Fx z>R`DY%soZrX57l1EV)mhpNq+P14cULNR^v$D|ZW`C;Sf$mOG!hpL#~*X57kMBDt>` zEH_8~X0^)AxRskz+Y|mT4wkzf$<0etZpQf!7NH5j3IASp+3e7tfNKkSyFk}ZhZoMp ztAGUm#~8Q_$#p>^5brU5j@~^7=Rsz*`|m~0oN;gZJJ62D9rT}!!6lqTW5#g|jtvqP zULhXzUgTMRjKF_@;rj(s^f6Dtb;B34pK?squWU<%&xS8%x8ab<4tOiwQ{3szd|~cr zN!XgOUxet}iFd_tAfdb;bQa(3zXKy#OcV}1gG2xIu(vStIP~9u7*0txO0c3yg4Hb& z+}VZzv(?UznbC_q@Htrc^Wt>dEF6@XZJqbOw_Or%>X2Z2Cj$7WN<@E*`B0Js&B+Lc zwCYE0Wa3JqX42ksG1c;ximQ9Kk(0FLWjH|K;eR(SDKt*U805IO;NtNZUyw&{+NvV7 zHSe4wJaOSQ?&7yvx1N)Pnd*3p@`mw3`Mm7&L3tx{abD^*Zh)WUpMelAD}0W*wK;Nq zR1)^mYKB}`sKtMb>Erj9-DBMSJ!){eZ)BEx$7?6S^N2U|184akZ)NJ)rEX(^eG|+4 zOI_VK4g}9R8X&0^%os1;Zst5Ag&6VhWt<Et3fxA3!>mH^-BW$tC`ogf+u4#_-(_~s1xVMCMWqvaRiHD{?)J$ zp(kwFuCTIkKWafUwh)UNJZTy^>evrk2M*X0T5`a)oRy{DKz9*@nP%M7h=8YK zCyv>+NuWR+Xr<7>Y#4?&z|RekJ_o1SgfKitu!Z7mt!kk@)k168LNN?y3q^aCW&{HM zw~yhq)CevWQZ-_=G7JQ*S~>kmj@rdh1oMGuJVtXAaouVV#0{#)RYJG^DxOO5M5FD$ zzn)wiz^gbEER-;X2woQ8-*+c#{hw>MnqW?Xeo9L46!25R8V%a5{Kx)YyG7DLyG7Ci z+pPr`4Q{tc%d%S}Gz7bK*=^AN|Hy7dFKYn1)%EXUx9YzzM7!0q=hJ7mcI}L2x8kb> zFLZG8FK4gb8-l%>(>A!hBB0qd`%~-0;N;Q9{!_gpk)tS9C*QU@Rfw2>ZDGX@$vcvw zX&?P#tw;Bc^yfsb?hoJ{DWIyiZh`p-0Z$RQvA&U_mm-s%e;@BiDZ2w8is~IHpqa*6 z0a2o;fG)O@5c_9%M^Y7TyVzod2f8k@Bwbe)BIZ5YqJT*J3E`7f(8ZRb*&jp}xqjY} zuKnC#AiAa|97L($CI})@4Fypt#v2?mk>?1XBvd!XOv%ji>GY2D>aGBYqIyRPfaro% z0-`nyf0ZR_N9>>B9VrHg$dZ7l7ZEdmYZMUCi%<9m$ALj)k?ZFj>8z21f#~SUa1eEZ zn;?itH55eu;@**N-4Os$RPRUu5N)d#5S5AwXo;#2`)7DZiUA_BBp_-;#5`k56cDw1 zG&B%ddh;`bf#`QD!a-CAZh{~p)ld-8MG-9#d5*9|R5vV9HS>Hry(7)q9sm*b zI^Y~G0HU1b)cmKwJ5me~WkJ^hqC!N>{hOkIsAPyBvdH!Gj&$cKgMnz6kE#mwjzpe= z-jPc1^q=D$>3wtvn9Wn^M40~pgWCBNct?r>q%M5y5FpVPkm=hP1xR$@Gn6jPBG=D5 z(xoR6NCS9BB4aWSnS2xITQ|4D=O4G5~b7T*xr#?=>PYQ)CQyTf8!nLO7x5{ z$;5(~pMNRuNKu*x{m>-Z#+#mg#ER!4Vz#c2(j>&M&=6*~7Tsvxk(Tz2gXtQ; zI}%wHbN);@&AGZQ{QrAL3UQM+fOn+L8`u#*n=!m21r+;}#l-KYz&lb5RJLIkf`C!& zuUHoajC9~Llp%#huAg_L_~V0N@Qku>40eDmYl4H_-lQ73oBZFwJJNON3N0i>^^O!k z((5-;{r^(lkz!!3(8gS~9ce(sY`#AV`0C+GVkqFV=tlF7bi>Dkq3~ym!ckZPwtzy* zPaMgIqOhH8;S2+%K=>c#9cexKEepS_A2myd1HMo{aRL0kzfkbYEl=u9gM%^S)9f87 z27bxB*vxc0q9I})zc&hgvxbOYi*7XUNXjo)Lx75sA3ox*PeW1nj8NHOqB<^{j)cEm)) zyzrhV`0ebb^pTUZ{@+{BmoZM5+)mZ}>wL{FV+8zZTtS-jOam zG8lgK`QiA@16x7-l6)wB8_5>%ODTxoHtU(fgxX)$8tkt~@$cgu={oe57JeyNZ2X=! zPw>l)#|pnDW1nj8NHOqB<^{His9A}mB4Re*83n(|L&UE|H=1{(8{Qubzqb^J?U@JcC&-$Lt|!i3_NwFdl(6#qWnk=EZGz%M0>jo+{TTJX!Q?+U+FjD4!T zBgMcknHShL+L1Oy%;UF5!EejoDE;8$2a9er??}yu2gC1O*M;M^4r~SSOY))k?IK&S zzm$Ub{m=4_^#1Py_+|aX#&7zyf?poKQ20${%=k2WM~Z=8GB5bewIhXym>1p}1;6=2 z#IHp+ns=n*{=x9ucuhEdGr(35za$@u-)alLl!ExB<00ai!i3si)*9@uNb&FE9qD}Z zme%-zlEudFg})U1wqRqo!fzX6pK9+&G4M;~1;1T(#DOX{Z&)1#zi~svuSGYScccs7 z84SP8bHef40seycCHYYN(j^h`N-2on|19rF*P*wx@XPv%jo&GS#P6rTJ5mf(mfB!! zK*a2-i2}x^4=Kvvg8_?NKkrDJ-y95sC;xXi2CKmhF!*om9qAkBw=5)4xv`P-djjaM*=kj{|h4&ekxKVQN zICRmt7Ps+jZ+wS)-zRQkOCzA=tvm>SeL>SkGFuj;d2sYO{sXP2!yUid zV|d1Dnj)?Byy7jGS9Z)D->nslepvUcKBg5^jBP<)cpP%+6US(kEzadVWDKV?jSXW7 zD2)uwY2vb|oEhwS#T_rlo!!RGltGK%Ft(cMaHFZ|!Hrs7(+aYeCwSF0pI&3b_qjdN zTiNY3ZvTENqKmHa>K{HL9Pc=MQO>w`z433m_Z{%X9HtQ+#87#mpXGL7zAC!v$aV>MyzD54w9^^2EOp%s=z4W5{sxF?dJv zWVSgMV;q7r_TbLdhpY0yYK}f-LXJK$Nh{be)&YW|g5pH@SaL3Z4fNf{=W&{QERDPy zmosW}7SnQ21@4{>Eq-wcD@#?QC%$5A2eM2pm|2ye&G{?$@xTGtNtWQaSo9=n0 z3mp!Z{=1nAuVd=0Y`p`=o$*_8dGE0KXHGRL9F$+98hbjX##cBfs*Rt5q6FRZ@G%#B z7`e(n8Sbon2q*OddD41u@XSj8u;8s=!WP}L?U?^2By;r~bQc_jkEK4%mwiFsyvwwL zb}h4g{`57jo=-dly;~@aw-U|?_B)s7LlptK;kU8}7Q)C_GN<4I$mbMqM zF(dFNE18RaYMjPxmS44Dw-I zT-`rRK(q-GBI-aiQAI}%n}4~czwh?_Ceb`T_9GmyMtoB*D4Or#v3u9B`6IQmM_B|> zvP=EmiOl9x_}yLB+6MA?3y($SRuTwFybXFowMvgDWDFEjK?oq5$%B!_r#gEk2^1J+h}AE8u&f;>-^m}GbNX)^PXU$|DJ(F zV?q+;+llg-s4)K+5=}&+aoyX;oYN2&fAVg5AZ$^zsI0a*XAPO z7tWASekjZ8O)|NHtE2{m8RY4WZ-b|V08bSujriqErt;NDoT)ivs$lASE{VZh9+{gF zg}KAR+)RtPQV6n&osqJBz_9Y-k-e=CLxX0ep-qZD+@$1w=X)heG^ zbh>8Tkc`$d(z*O>_Q*S4j~~}<-oKv%sakSxCn`juB z=3fzuSLsM>wn|qTk}g-J1HDTLdqwX%DxECrS@gOB^j>64G51-OPL>0$bX-tW{GFrH zk-xW|7a<(v#7ftp(m~ku6iv}8s(P=4pqfXFr`NQFxKq0b)-TzpiB-ah503dbB3=D2luBuDHv8DqfE3 zKJj5t6-zm;a}dX(+J2WaG)i|3b1Sc*eeeoo&L)|5M4ni~{>h zHiAt2FC@E%PEh(wR*jdG>}oZCz}!JAJ4{RK)-hP3vrr-qb}!-Cu0mj9dewC(M~p|Qfj;vn4Og!mT!dmCtkSz z)t_?f&tv@49Y1W|i0(;L^|>&nma4a=#L;#J2Oy#9u1MkFh&@wSmnEv#5BQig%(2bE1liioc7v zrQaOPT;6q7T!kbqQ8H|aX!#7hu>cP5T2axRjAT?ZM%Lg}B;qSu!up2wvI^h|P; z4?o$8W}NRdgrevVe;81-mAnW)*_vjY$x9H5rXOQ+rD-d9J$|xP%{Y@cAQV;K!sJTT zNX~MhUv};spE7RFLyD+y{^rkUcA)F`_R;JpUB9m4ohZZHui~QXy@=aphsy4DR?I`1 zFuNUQOiIZ|G-HyBtjd@$8UIl*zO^-;hq!2b$C&|*Z%rw+QkLRZTj`85cNIcW`i+wV zN)P5}#ILsA8E1|rgravZbJ)hjE~6d4+Nx)qIXV!E>d#;f+n6v1*@wn4z!vQ@Zg%Iy z(Efe-meDV24;uZeR9v*5r{bc058}4=PsSYGR{kl{X>ytxZpmB7Ml|JDLkOjOCgVSf z#<#Ze>kt>^XMZC^`7Kt;7W`@}pK<1HLnz804w9gYwwQXPh}qgrfZR>=5PK zIlAzxt$fCrqZgql{|@G`mCqdbF%JsILWwA!ar3uG6czgC{DjKCG0{Bw6qUbS%*;C~ zP6o|`DlW=@8gX0sr=Z7e1bKTQXqPpf39g5hA5PWuqgY}u*H} z=C*}kN+rafpl(Zuovq{I+y%3seE4RB6av4#oyHmcWpL?tz6k=5fylIE;NZcMp$buO z%~1km;OGKREfTCIB3M-j%wb9f<_ySCiiZdp63sJ}49soIz?4dcd`hD#;>7Nt3`vlI zs1)@h{sc295LuN03EJ_}lAsjzX-U9UN$^~S020WWtiHZMUaqc_m-p5qFfY1MYJoWe z5)|SgLV_gosuHOM=B5O2PPv^aDZ!$zTHI%WdspizvcgsVXsX?Eu&Rn=2@4m%cO#~o zGBe$Qym9ld;$*sf2WF;z%uHP}GtJfXb}elOTti~2jV0xsTIHSvi4$8BHi?{lyFHkO zcCnRmuDwD{kJ~sg-8px0=!|@4@dtiv34?pau0yX20}D0%6F7wz26hPpztDOPYUR7Y zz#%X&Nf@{kQ)A@O(jE_;8y^gx8}ACvjqd~jWPH(@8()ZdaQ}JMS$OBsKd@%#V58p* z9c)C*&;xAz&!*@{2AJ->f_MMNZ2S?E!T#E~8SjJ*=U1}gFqx?k1l#i&erYN{TqKLP zFQCHI;BFbxcnYRwjeEvhxhLD0G?J~nP=iNZw{!YF*A@qUmxkiux`up5$<}k?vUP8Q z)|!*bcHz-yC29KXbo>vD&C0^FW?s1P+&E)aszSf!o1Yi~{X%oj{Bz@4a~u||i)78$ z8fbI<{V92uxbX@b|!^wUmkKFAPpK+#w8 z^{9YJRt3yR^5|33@johH1}b2NW^P3nWy}avz})^7ph_~|nu|J^r0Rgf|C_biHT#FhW=wniH^o1!2Zp>0d zb-Z8)ZicUc7hU|xW%ew-)69kFSzP#nXKB#wo0k%)LY8d)p%^JaP?RWhs9NDvCQqjz zMS#(yP)4PNy%2@Z*>O40qT6a=aGMJze+3?Y1r}$4!yL^#h>pV*P@_AtiET|`d1kz@ zXX_D@jvC=kmWggdG{9YQD0i2}(&CqM^hIE9vZcbwVD4HlcP*H^6wFQ5%pVAImj;x# zAX0ZM&b<29)ZJu-zp_W!jzW4j%NSUr;NW09)F7z2bmU;1oxd^-YGy6gVbkdW>ku4T z7a^rG5?EG2oCD<&gkmb@e-Am7jZiu8V+Vdb37X>^k#RE@iK1GK_?fU8t6?<)(v&i9 zG-*U?P!5sp}Kqb*BYC0QSN?A{6XTS`BN4*fcoSo!X}M0xq% zmI}W75z|+`DKD{IY)chi=EzHx5*H3^S;m*?^0IH4N>Z{zleS9h*3EO$Z^;@%zCPbIjG(J9W#dzcotDma%VaF2rT zceoSk9p^l_=Wiv1ot5vxvS>Z{+S7``^ZOV){}5Ly^g5S4kM|zEcU-rY)~cy7ygR;C ztL$4a@>I{m4h{PVGJA?YyxMu~j;ozTEpb;n4`puwactqq?B$^Py0)vGb6<4eJrZ2k zj)wyYc-VQhbI}fWX6xLapXyl*GT83ZTKwUm%e;Co_Ncgbm>0R!wuboDaeeN6z1VcL z;2Ze9rloahzVVY!_599(%^#R#%1a2ieZ|-zbYj6sk8?d{9__AE zJ)d`U@4$WlUOYBX>#Kp@U7O>^4Ls001G!|N*Tym2;V%Gux3i+;%W`%~?)Uh6V4(LV z6K�{kuaF<$u{qlut^9$zMXEo0;f=kVHkvRwDIvB8!QBg+wmQ+vW4b21y+LdBTGP zQE}eqWnVpcq@ZFosMFs+_hSGRBY}!Fd?lzD4pXe@Pxk}GVPGQ+6qf-MA3K*lhxZ=+ zV}jxZT$F%`-2r#}3k1cfdcs2%CjJIYU`{8PxG`a~g2czgN8Gri1Ibo$?u)xQ{s!i9 zjQ>a5yTI2~m3jZ6Cuor3iBL6Sg&)Drjc{Oc_yXda?74 zU?Dw_?Pk}E^~`jvea$;#|C13JqfjZ-)U>5EMS-;30u=}sWgp5V+)BB%|L^Zvd*_^l zq|E#IfByYIp1s$8*0Y}5x<6~3vl^3Yz5`Y9WlZk>M$r>2wk%uX2&bmJJ5sgJ;|O2E z3B2-u^vW;ies{USv;6#rxdA`vhZ`JTaRNcD&r7u0S5=Hx{x|!}^&l-Ib3Yi>z}qEj z@SSqoYt_$I@J_uLp)naZo3nZ`M7rw5-c;?arS;;#isPES=6@!DZF{QW-u4&x1-7CV zntu&>ZM=@OKPTV+dr+?c)tvu@{R{cIJDi{TcgAM(fbswjuiR9n9r%v7wlE;+I49RAeJ_m-Vlt*6#=yagvV>O(5*`Zn(AZI{iPwCtr{q)62c z!1)e;K}Ag}Sawt;=}p@nWg)ET*uC*em@6#&KY!1T!{HsNhM$@Q#49kRBSg#vc=(R} zVypNX4C+TQ>eC&s;Q!_Lf6@BZT?R{NxY%hgT3@NAk8OTdHdbh5qq!H_GX3*1{e4T9>}u|c@T?k)?Eku1zhBn3mM>jm{l8A3 zrrJGogQ;_G*1VM;-0>DHsqhwjry`wrE<@A#^xR-ti<~AE%*6p-S&`)TIrgM$x9w`4 z5)X6LVT=aG&Fn8+Mt`3C;ltVv?=S2V*jxCzwvhV^Uw3a`psZ*jAJ6AU*GtFumlx1p zY36x6r9}PZ;kwcO@^`ddZ|X1ml{mh?yhVxQ`^y0(j_)u3NaFvrzho66?lE7sz0}vJ zY5c%v*8gsbJ(0A3Y2D>hv+M&i8~x#n^pQ<3Z<9JF?==P~z3Ha9NqP+%z0lUDR;n5Q z?QyjALt;1XH7qu0wAWZCq$^GbX}APwky}S+k-&P5yM=U~kirtAC8wCt7tC%?z1(8r_&%tbRWdkAN$|0S77g_Q}h;D|LoRe?s^rAves14 zaM09mpUF}?jeV-)4MrJXwNb{@I$Iy4KH2(UGB-!b#WliA@cHs|!;{HtYDrIfPo}-s zGPQd$!D)4AdX@Cc4`dSeXu0sXIo^T|`gO_-%W`T`zuz2C&^9vP);^MHxF^}MlxWmc zFtzSXZ`wbn4{s-}{Y4tebfQ1oK!E5)ICA0Z!jXM1q_-=y^49Esk&b5`Pc!$W3034r zH2tLOALk>ZR`5+mJ*Xw$p7HK5DQEJlFp~3sF+7?ZEU2Jef7BX|?XKJSI~z_tkm}gZ zaO%k^ncz%#4U^Z*B|YthCg}ETaN1F6##DsbW)eGDhFx*o*$7G`FoHf137UuWb}|o2 z(4G2ut7%tJ{hPfn*ayGi(RZCEEmo(o13M8*OP?{nHB*a!o?V}*9f0~y zm5@mcG;MpVJjG8fs#`kKUvNwfD=EjQH&IV=m+MKwZ~QGkP}A^plOuWM=g?cqccP#f z8ixG|6p+DgSKfU{_l93uXO&_InuJwSwpEJvrsz! z3Vu5`)9_mR{#4Xy&kJT;W)x^3537N=>SI(Zh8vG$h@wB-&$3s!iS7hwzoyV4+j-BV zy!(iXJAYqF(es|E*F%%Yph)V`8U9Gn+S|13W}oDF7w zIg>bu6H^brSLyI&=Lp9oF2s$_8(L8>mHC?-d zdi{XfOGc#B=1eesxl|)*_#l6*qj0^%v%K;X?N%`g4{&>TNpIP~=r0~f z)8dVy-Hz_f5|4sVcz`QNN-`z%F?XQQ1GLU32hoE5jEQek{9wmZD{Y(ofD6>m?L>}= zCgv4Prkif+o@58+L`kn9R@M6%^L(+Kfl(zHMu%9R()ZCJ)+`~NGy|ln5~OiMtV@LS z%BdPXz0IcF)rQO9ipBXQ;lq5HblCKxzd4=x#dmA?K|UJlDa~v-?sO(3)yvcC0x=}ez&H{dwY|2b~*nuQ@CZNMFy6xPceR7Xm!*@1m2$Z z?p8#g1p{hsGrBU@Pn{}RnJZP|>KWCLa4T~{(?6}PDb=ZSwe19%MvqF2YLqo-5e2gj zOsCi%yKNcLw0v&r{rv|=)mzNb$k#X^M9-p<0-CM^<#0-NIr!MhNAae0RXvA`L7G(U z@Bf^BWNzt^)t>T+{rk@OPVE_QX^m#SyXKhg@zrK;X0x}H3H8#7+iB6( zcFWKj|Ct8$5PlehNi}$X1M_H~-!b*rwEoK!evAFhe#=RO%CL?`$o&X=i_;uGe%kCU zXXkA>x?5gh+hucLD&8)8s;I!R3-;rDk}T5TxCQ%Ig*ALO6)q_oRbjMX-^iy}hk7>O z0-6p#UOlSA2z?QsVkPQX=!=1-#3@2|N_6Y{+6~lbUVdmhgTp5uL5piYtAGlAVe?38 zwBH#G!>>9$YCF&rNw+bhrp24ZF5$8n<@$pz*%dtp-lAy8F*SUZxGJu_kJV-?nOqGQ zn*K>lrN#l}{F*@xRKa=Tn6`7(|6Eyvkj7p7l+R3x&^bc>8=(In=?B;8%Q#~tp572b#DR#hh zN^Y-DUwio)>r~H5+YB_FepxwUovI8zR-s2Gm!?xaho1mxQl0+!)6(fT-ojbwt7a2? zpgJG-RB7)U==9Sq-gi;ycPp4Ks8cGLE{u==u(QUj6}_? z!F{WF#ng&FA(oy;f=@WFa1&!E1~=cVvw7NaQmsFSHSvQC!cK4-C2qR*k7#p(jS@Gr zAG1-Cif8srwCPtyH%d~P)U#1?>ckr*`zF~a*;l$zvd=b3IFGdS!c*NwiOwdmQNk+1 zn2i!v5GL9vIn`~HoI1%yNvh$Q;zr4-(MHLn$2g{<@TQvGn+VLv& zV45rxFL}+<_tEiKkC4`!h$BxgK^nJFGAyKvg*2lCX`+piW{~1z9H$xX*cGoCe4n&7 z+&AlVRqx!>spR~f7V?s5>u1L)xn_fS_Pj?ksEnp%^Xq6BjKv zq-eRFOF2S!rNeSZ=o}B96IHEhjAi1(lQ8klNts~D;|JJ?CDgLY!-Nuypn zxU2aDryv5f5kP&(4z?gFn9BlgVC4<)AqW1IiDxvOjN12N|1yheKS}>m&!@5d%WS2L z>0cU^GNylNCgm;rm(l$YdYR2~O^=@(f7y0v7*waII~jj@U2@G7tS*!L%j?;8;5I5q zAEM8>jAg?I$!Gl%o!#h8`u9InvU&dIKB52A!NPx&FU@btLMVC7hZ(D;gUl3MkeJ-! zn)^FRFIjWf9%rWEK=PUcR5RwPTEnY-ZeDO&WwgAgi!*G^{nP~;*kd1EbKln-K-wK% z9Z5GFSb9P_n5wnKQ$KI%B(b%1xIdG)Gn2S4)376XWt$dkKE)s8O8)RsG;m-$QFJ4) zJ<+@>g}$3^>YAi`8QoDSn~tF_c#-aWWPbhXTiw*b3)+|RW-{DTaPujh#{HVGYbig|Mt+uzvQoOCh|1&C~ zeUXn`#vwOb6~EX(M^sfc35k?Tj`Hjm)P^nxRnXQ?8EFlhI@y16lW$K z7tE+Rlui6O)$riuIIknBlGxv7tz1+oG`WUbd=D3X!CTsUA%#oQp4Q&U+Mw-pJe2jG zODF!2-c~pxo46yr2f>^OtQ@{G<1xbxrhZ4Ov$omHT`BnAhvo;fPrxnT)pY8DOYy^7 zfZw7mc_!QNh*o1yyAUbqIQ!GVx7hG}DS1^$1I6OuGnqs<=hOx7u5e!1{-0VYTLo^0 zBNT;yq5+wCpfEdH;flLbsW!&L9LY5oQ#-7lW&zw^v%EFse~V!vn?AW~L6%3a(F6PP z3SM`0P;KPAVCwtQRt3}Xw%3cQnlIm)8~KnrTs1nN?BZ4RZ+nXSa1sw? z8t!t}!R$ZAD&PIcGjlKPk4d0BCV?IZjwni?llGb5yo&O)b&~0L#87V{>`N0|&n-Vw zvIN&>8%C1XRFjT%Y1y*1e_&ys4XsDm(7GQxbMMcJcg=~rVl0(y*wOy1grL8M5CraT zA7OiLX%)i%kfp??U5(bsq&xcgct`tF@-loaL68yRd=(#y#JLpXV;5P-1k!$s3G{0d zsKg{!BX~Aweh2#^!?x?v561*{TuM3{Zxn?b8Cm`}4HKkZ~WnU2$p|6bex0C23##bmVlju*eq5Sg0nZ$Od!Lf?_ z2;9vJX1@=`ootGmaklivn-9 zkvCZ3fhGaz1tU`6-g$3Zq^qT&O)+XE$Egggbi4GqOnkoZG8+*vi0#K18hR@sz@nNHgZN@hW50VMy2w4lgPQ=G*LSKP{EiWs>urWNgA537H>r;MdmjGq`52yXFvp4@3>VHrp2E$G~mh!7I z{>u7v?ZfOPzTp;(=LV-WBv)UH@7ZNbk!ODPhcgMWIIp2HsJ<^-V6kh#esY`Zci&YY`n}d~KWye|gQ!G8-q4cV2Q=F-vMGbzX5*>bxu+ zoAYY%xjrg_V$Ox_^K0nE-ylOBhooSg1$KEb&P(k>vPL9JAz5q6yNn8beocWZ7>R88 z%b}FF9JbAQMY8C;r!^zfF1Nl~_@|=tevcrf;_7Ls_qstMBM+8_7GVLhyCmnt?n){1 z<1VIOllt+@Q}N@+X$~iDFGQzV2jS ztu;-c0xMsMFsq*b6}<5_YV1py#4Fk)n;*>hbaM4x8c zRd$48546yioLf?1lWYD#E*CWnQeDJv%%?76+MZmaQ>Yo%z`9KarwFRFwC;vYJE$x8 z@BwahrDdVg`czt%~tzsHT$=ZAE9P{ zr7-jyXD%Kw?wC-2-rCL>;M1kKHFn{_<{d)^N6 z#;pHdov7xuOm^^cRSwwYUtX@pz10~Qq@|{u%Qk1cZ}r%`|H5t}cWA7KX~$XV>#GMZ zUz9w?b66!L*9oV*l_{v+A^2I&qQHjg@kuoRG*PS(H}g9vAc2Ez5o9 zQOx^uGq0n!E4PGi9}rrQ*CQEM0tO!2SQgHl^3gIsC$^&ExBk+yp4;WMbcOHc>((1e zX|=5Sh!Nuc;ax4Ap-7CdW$&9XF^S(f66?H{b>UvVPU=Xx>2#AFmsJu!{5&?%!b@GQ z-!p!at9MT`-BI0J>yTUx{Vfzujjzo56 zks#DPMBT1n-Qm&KwLrn5z&XLJV_7|%UN=9O-l1q!!e|?AV}kna8E29Hsf&_-x1awx ztMhl9&A3SS+p&PY|K4`Cm@ei2r9(QU!wH>BZ_|+-ozmIEDV;&0)o8G8%QWm=dQ#IC z^veRunH{r_DQim3dx5FXvA3oZ1AJ`{k)%m=zAU-sIg^JGwEvE@KewL#D&qytFSeWz zi}h=s;LNm=_U@8!w&v0&M20S}Bj#>RBhwaitNkv`rGr_Yk$BVUvcXi3{4+kDZ6Ncv zr_bZhM-lJQNYtkgGenHr+jk)q+iFfkRtGLcGItQ^Hb`AQkoI=dtNnqn+ohk)c-M8~ ziA~WO?j|wg_sNrp8*FNr{qdG$hRCrUEywO;#;Zu(Co;ava%_JO>zkh?1Rmp8Vf-6V zLv!-RqtmZ^x@@y1uDl#qfBdJYq#H#ywX0tZZd^^b-$Xk@wW7oEmp5M2>`^_nTtS`e z1)GG_l<*&K{;2A!5*&KR_9+osl+pQF*a~8kx6R~e(J^~dbaS%hwiXRe%(Hph-f}97 z4Y$Mr@40<&1pC!x%ea8DrP?pU7q3}BVp9XhosvIH>${&*1C;RtYc_&ujkIt_XZdk;rrX1!b-7 zTyP|{?6L0zo&Ixl)MCzm%Nm`^$^c{U%4o`?;sRk zgZ!(UAer6e0>SsTUrP+$(odwfJ;Ju)u9GvaFk-Cdww14K_Fif7r*+)*rc0PO? z;h|jiyPX{E!%>6ur(^HBOp}|!*vdDtz zgd3>iiF(a=8`mk-Z$7FnsxJzv_519j<47YREpD@oIwY@P^^0BhCR=y)9JTD@8UG^2JRi;0K1F@yChP^DS;+bh z9qwuA#Jx0A3qI4D^@+v}W?X|FrV;nPw`a<-SsDM^WcyUM_9e3I&-xd9W+8WJ&u_cr zlVvP!lXijfokqS(g7UNdOFmS#KY>6!<;y;i@mG-bJ=xlOL3^Q?b=G^h(mT#Mi=4~W zRGjV4_^>iQ-cvC?BdQXsL$LZDt}NFOP(`|oQ=9zqw<$&+?|EL{@Sy(Ce0_Tuk9a}y z1D{eWpS<;@PIh1~NkU=)Bi$$UuGc-MQm?Fqp^|~2p@d~ zTGNYP$vH^Q(;O{5k}?En6s;SCJ)?--?De%eVgg~F&yx-wQq#0lSZyZUtv3`uM-afgmPNUqWn;v(%>V>88x>8!CtIa%`u8zMSj%O7)Mw))UxlvJG zkE9F$mPo$44}v|rh~4aMN;&xi!cF?zT>MPdVX{Wb(jzG$z?5~huroz$l(oll)bv8Gc<%Sit{dU-txEn?)FAs4hjjbQ; zIyL)Kf7a|x{fV|_X>~`WxnSxV&ebt?DqHs67tTyxT7I?mqROvyTT%V(`}e<_gf}Pa z;PGYt)T_OzS4Jm~pWpwj;$dssQr2PX1JSAbk1Bkqc8GYCIcNFP?>x)D;7(4caRhmK zd$Tt~fhjt7{W!5B(E;S8SpCq76Lo4N@dt)(nEats?I0)A{N@{9_sUO5`5RQFjua>x z-eMK%u|rf?xj9l&H(WNqMZ;AZNLs}UyEFc`dZ<*)%P-rU@}4@MamD_^`#E($(8#+e zWh?(r(48!xwQ0I(+9z!WT1^S#n@FXdqEdI+NVn=FW}wgBMLTs~v7O>u9caf1EwF(u zDfOiEyh0QC>lcpDY+dk9RvPMAX;4$4XmnP3?Z<`AueKH=YAuKfR+B*8bvK{UWn_^$xp7kp{v2mu8YHl=^ z@$(X%ja-dz_b?Ka^Eu=^)dH7H|f!vyr(LmKBi%L7xk(s9lX8|S1O?k|pW zmSIQui6^S#2075V{66g^e~598*k^|NgEGh0nSObv_>$M^vIs6;&$b;dT*z;^Go{?G zIcMR&^z&D4!hWA>rGIWETflyMohGEY1DF4OTKfuov2`6cD`8oa}vu7h0w_;{)YOw&5{y~%k|}wm4nK_@Ulw-p z0p|B#JBsvyHzWN!NO+=6MLqGsw9aBZIiPz6&XKq`wdd6|rm2@{v}Et%-dCJKM27|p zt`ppyX`8-dj=${RkbTy_!Tb(nCmg1Kj{iNS&HlIM1d(~$+wU9O<&3O&FI~Xgwr2lz z_MthFdPVt}wbQO>=GqE;@qW3V$K{D*Lbvu&=$O#0C~jm2=>(6KEo8mhX3RuzX^yOJ z5h+>VO=$K!&!0y2hcdPI5z~dIvj~HMPUQAQfA$Z~^k(~1h)lz7VlWbSv6S)y;#I6W zdG`x+8$Zx>jD8&O_4NJ|sC(lR3HeHP{Cec@VKJe3SSpbh19O>&m9@@IOe^!tf8&*3 zPmq|R!=5kXz_nHK0 zI)v`0kHFs-#b553N%{Me@wdqFHwek`8c|xr-w=;({v-Y#AH&};-##YA1$jNfUkLc) zLHH{>5`Wjf9sWN2wCd2l!tGB9?kzmBe^P#LF@BpJzatbeo?oR!{2t`d_+9fy`2FJ; ze#`Kuk2-$!2)`A8-;gyeW>lxA%1%B6T*BL4dSaD)=uRN|IUt3<0{IKKZs+HV+U-3djr;lR@50rmp= z)10RE&h61embPMRf74xMH|uArHY>MVF=Ojsh?`s3Jz(;2;b!&>df77=&UhQ7Ie;_= zFwL+FVQjIzAc+924lD#Phgf89`Nb}Ai32MgSmi*c16>ZRbD$eQ z_8xo7_qxQ*4)i-P;J_dtT>tHvWxu~bV=nKZaO-Q&9(FIREoItr@r@TVj& zajK>P=a;dTeS~Qc^XT2nPV$fMc=f1d(>h+Avi#^&+xzw(*YRp%c}1q}Gy4;nwo_uF zjp5fI;N?_y?=YvbBNEec8-Bd-45p z->jckKwc`itcy|0LQ0LV^gO5S$0sg6T58@4Bl0$N!mJj#3#?OK&`KKf_Qei#0#N=+ z1A#m+{Md&zeOK1e>3fQo@zeLN@Jrf)To3uJ6WeJqqBh<1qO+6cf#dC@v_`SV_@BqJ zkD{_|yHN0wF$&f~(#M4s*qRd9DN+_l!5vQ=L4%)~BJH2sbKp#Ey`^u40&h+Jys0cy zU=sfm4RT*?%R=1b!4!^+HNnP&fqij8(!mmXxZw+7Vw(S>vd-L`S0XWNB+0x}>xCcbR|Z*CT#M*RF~V!YPe8WpZr@hxmHYley>wIhP!0| zjuvG6v$S29^54l_MQn_?9m6N|IaV~(a~GozifH*XrUR6RNun_$y0>uqNUdN21~Ev;^{vki1-EIGe}9h!Of zGazg_c1JeB&lo=6{ujh4-8Pg^NR#ougj{T?TceX)ecY&Q37(iTnwHZZJ9*kRL;=>` zx@jxhhUWxRzu@lbIbcg7!Suh8sMFrZMC4yg!V|L%+w?H~ixRbV!i~dQ5c5bIhZ#@1 z4qU-?+ft@`n+9nZOpA6M&{zBsSD;qB4iP{$+X zx)v~B4Q1{`JT+6x>L}OQ{GgY{G`Z%0xs7(=UZWTrtl;U2GflPe+lxURPsufdX*JDP z4v~e3ShqUm-#pAKyKfsHQHIn9)BcqMB&Gcy^aGfIY|Hw;Si&R0p{d%Jx$lHEn;Hn7 z6HF)Lth2O8$t#}0&yxl!R9C+cVN}a?GK5=~cb*fR7jPLJ6`+jRKmt}XwFlFzJ~ceB zMWwQ(_aL#&KO_=~8!rL$bLa#+_j8dfC>0Aou0@)?Gu#RF)~;SyC! zTrwW(X-2;ArRx~Ly1&7&2FGJ{FrENwox{465E*FIu@*9>#P`)3)t`9($at)lnTDmEY_LB53BzhVIIhHfb%s^N00FFB%uy(@cRbd27-Yl! zN{7Xb4#KKrxo-^jO>8uPHRQ1Vo{1t@3&&%<>#q%~8i%FCH)_ht?B4lwaKm&Pcm#c$ z$r9dlfw@8d`0VrOwkV|2Wqo#c+OXC+tivZ8R+X&7Jl50G z4XcLc1%^-H4XmE=STCPwSW6t%2YAZ_8%MxWP47V{Go?4 zNB!LyEITMxj}fB(4_a|!SL5=pvTH&=;F>f2gmhkGx2&JY`d=fKb&ZzYvi|>LYjXZp zx30EE%W7%=DlNsO{jFMbW8Px5o|&M^<)0SWo-F7dT-u>m(%wE6p6n>Yw#TPr65MFT zLfgxK;+Q}-@kbWa)U0p>L+2Y@`_4j|wOsynM)>fpzo$@UYX@j%lUIG=ov_9ANl~%h zCgGkF%&t$@zL9DB$h@{0-4y!>DW}YBoBlk(EI;+n`x$FN)89F_ZQ1iICf&u4^QMF8 zH~7nLBze}c&HAC<7uwm!HAy&>;_guLjdUjXd+ww9Q}U`uScWFZ;AYm+X4SLNoepN- zlx_QPTp-JGAJMYhM_86iHEgoR^2#$9Y85tFMjJS*8?{(~LAQN|ch-PX+(mN-&fKgz zhtzD8RbUlK3(#JgduudcOX8r^^A`U5i5iSo@i;mdFXLt0VBE?JZ)H<2Hodn|T?WH7 zGel5sz0cTKHh#0%4sAUvj-o!T<2AxK)>uS`zebI4@|ybyH){6t@;^@KSf{2vh?gIr zk3a6z(+SG4pYCi4zIrlu%blD~XlS7e-1cgG;C`kr+cs@gw(Y!C<=M6iR^dpOteUD( z#q1yH?~I@5@2r2<-_w4}c_SHziq2*iKf01fw(?$L8Lk+O>EPb38yP{7sr@mw*z3?D6^1oY=`*>;MdLo>4jOKI z<_wIQ<~FoFhxDu8S1B@v8X}G8r>fKbzeq>y&+yCYt#rz&WDE%EP3M~$0n`EcFuyS| z>eP2dRe>KSoO7W3*`tM6*@D>};oT2Cdw7ml{?wcU&Ciw}wd}-m+M1u? zv}+OJdP8V_ioGPR*t<>zwO^n0LIhH2qt}@_r;kQTso+dDm%s#ZlkVn&*!b4>U>~(`}OIDdzPL^9LT@EJV>BR1&9BB zjA7j2zk3)Yv#SHwOc;1_HR6`2`RuL)jTj3eK(w4c8qjl3s*PXUA^he(v-!WcHgc=l zNXBaSsSQ;-iMM6_f3aN*_GbMxYEc<9$_rTn@%!WvT+5kFtWmQXS)O&3Iu`udB_yyk zx9{=`@e*qe-B|K$f7a?2woN{f@d)B-s;4|Q0N;h1&2KyH>Qvj5blbEm#6&u=_e{U} z7c_L`zu@Q054nAsejOR#(S8%oAfh@i9Suaak`@E;}>pxAdy0g-oy%mhwQVjflX)*szo?8KD@-x{?`b z(@n!}N-ejd1>Kbsl9l0lol|7TT{($jQ|kY`k!kR%G1Fk#*3g2ynVFqMQYy+@c+|N1!& z?YSfE#jun%wi6#GEM+*|c6WyJLSw>G#_6h?a+_|d{Io4U)WgzvT`4WnRU?n4tAF|} z9QPDCMw&ssG4^6ylGh_CLjVg)`5Xdl?JZ(AdmAgAd;;M~`ng=(gQ-&qpstTuC&*I zK>!5$?JXDpgkQ#+{k(FFcBNgsjO$7XOSydN>1BtPxBdfv8d=Ot1)H>Ze0VtlZJY@T zvP_fC9VP@@xx;PiEX<^usgvGmTvRbEM!~mGC&ikqNz*!ztC#I0e|ZlR#+0&-rjaFZ7~!*CSgB^;jS<`IRLSfD{VNYfV-;_#Af7G83{-5fbU7{?C@ zFG0L%&l6rU5QmpM8#D7P%)F7_qi`98mu!m}$r52|;U$s^mRJ_~4&f!RW#J_Y2`@3$ zis2;>r8$eO@RCxd6kZ~R2ruEdZp2i&_SRCq2roHGqn6cCc!}(68lEJ)L><*$CNysj zFVSxmzA3zf+gyH5dd3Tn6kf9P|A+9BonyjFcD7r1NqkvR6kf9P|66#;Ge-(9q0>;+ z&>93M*qTwmoA0v=FF4Ldn2Y4-r|b1S?sYhN-OYT5yp2r4_4Rx1wL5zKn0wXg zyuLmPdmt~0Ui0p?KYC5M*9w4;Un4nv#m-hpde;p%gZ}l z+8cbKdmSREX){4h{RA})5Y)thAcC4`tqR9KkBh}Kx7>50YRiX((|L|&OBRH^sZ;Js z)3W9#qUk;0ZasE!4ynXl#5u$ReT6x!sfPi^%JMP=J50}!iw0$1HgSKZZN|2<{qOxp z`PsFz|0C0O!M5@if1v|K_gVMnqm>gQcPjrlMYMm%HwM+>Dgcn@Fn0)&j zKXV095>p9$C}i87E?ma)6p>oDYJI_bh`T4<pM1 z>8j)B=4OWq2?!9Bq03)On264Qi_}PT2>fxj`*jCwd=Na#X>kP+iDV(5^WmD7VPm6z zl#M8_*ifAbyF~*w^b)fn?>|&1e+vSA!{CRDEPqbV`j_t5sCsp%@C(Ayj#PZ#I?%!o zy4-r!KXUg14i(OSi`Laok8rmmWx5}+6@50qC zx1OWi>Ie@NUSUD`h@3B0?z3EOJx96Ks~#%+@~v`LD0hX+t>-9rwdMZCTjkcNsqnUP zlUvVGZuR$v3dg@y?nTOdjmxd)D7TvRLxr6z${$hgGUcAw0D+Bkb?YsxfOiu43% zqZp9pjG$1Gzv@$t@b6wf4g5_?voJ$GY|;na-B5M&PE9L229DCzHAM2O`_m;SDm+}b zLOaYG+-iC*DqeE2YH8=}(urv^*bz&1{EGOYl4~)R*KxCL6=R=c(J#CzD;E+jN_XsH z*fJ(>`#_EK7a06%4wv_DkA5wQpGWaeNO{Nd zBQP9Yn8RV!`NSlj!%6?M2}_>CjVHrzWc@E!^JB2p{8#|@W_*q7DdyLu_@P++UQho!S zb=0|Dt=)h7VY{-zlXw+BL83vvm!O0SN`ULL;d&0?yYs8yo=a@Tb9}aR5pl|84&E2* z&6UX9NamD&?t@GVA;JY3=d>d3Lhg2#^1ffEKdJEVUe$7mG~zC>kw^utrn3bjKO~Uj z*QzDXQKPE?Do}S$z6FiEnNONmxT=o)S494u=JY2NvVNZkLBTn6&K%k~&Zu86kW1@Y z9lOTH+?wkOvVP$FDlfOj$(>sV&aLxuYn)te&7?+-Xfz7n(p=x}w$Ua}ta)?aqV|s| zllHAz!FO5V^*>w1Tu4DIKxiikju-J3SI))8LT-tHV5NclDgZ**#*;S>t9>1dorSgL z;aguqfDN67xUtJX-#P#+YfL~q^ss@x&WF~R1GQ$=2?AY@zw zBT9u6Myt^#r;Vs48B)=npE-oW2(u-p+4JbfO^8a$#GZ>thWjesVtZB_H@OaA{VR0FW5h@lb5jXh27 zQGOg-`6c8-IOEQ4=m}P-ByU3}0DGz&?CDgIcd9TZu%}Z+UaG*JA{bFBwWrfYY)>H- z?RhaB6ZTZ1*)#d52{FKQ9D7!g4EKY)#r7Q1M4g_`KoAp2`va^-E^YIuS0~)0LA`Dw>Wm{T*#ivUusW%$DX1`DMJ7?jrL}8V^5Qt9bi$4#n0F9hH%E6vuC}1 z-_Qs^bt(sYI#uMIDvSy2=~R)IDzK;MMwCkJ>9i5sQ%FU7{+l`)HX2AYd%kbjgjhwH z*i*3r*t3(j*q&X+O>UiIs@p)m2Y^5pS}<|_>@~!Vn+^2!17Nhw_}y4xpsy0ZI7o%b zp2`t^^#!wM2p=W(bmiofil(Csd1b(!Vm&-_4)*-y!)8yhTCAVKcJ>?+QS2!$WKZQU zwWq#gPtl{4E&%ovF*G8%v8T!H_eK0TkRK)=!WnnYo+B#B+i(zoJyj0&bgIZZRTvZ4 z)2SjaRbWpMj3|}b(`h5Nr;v*F+^r6ZT@Dh>o~J%!Lex_x_Ut4X?i+cF?U^!ea;=W3 zg$DAA0N7LLlhn_}hPZKwfxeXh7~Kp$^|RkV-+&d?r@~}U=IGzDK2DBDHcD!jyHr8&r$!`W8XLQ04{3w5PD0JsU+7dx{m=Q~68nsqgSDdX(aX?-MaJ;)Ktc@SKhl zrC0~~6mLjq+%c|YWVO&za*F^MQsod?E`6v&24F}r!Np0^2Nsk*u&3xoluGUCv=Q4= zNJV@8l{zTmyh${Bp7ekTu|!e_n-nGn_bYkBo~sN5od)t<1~#k%Ad3Z*O>EC@Fwjen zfqX9j9!H=|wu1)pWfULTGuR9Qg((OV;RgU{qyhv5f)8;lq;-=^}PNtkvM``3E8u@WF25A|VKrUSP zIXtO<$UI4!!jnFu1p+@O8Ca?wP$9`*1*QR*5W~C=P=wL;`tcrP7#}kcK~iZ%T5(P9 zKr&arQs_>EKvk*OXq5pA;6r;|yrI2y0A}P)kh}xIpco(|M}P?~Y8~bgp9%q})ynen z;tzj|%qE6#G}((P+AF$VUJ}7UzkTbI5lNJdNOXqF%T&Bc4!%iN-iF+pY{c8Jdy}c~ z;S!}6u420DrpB8bx3Lcksp!KOK5ss(MDyWU_la(^L!x{edrWI9B2oXXg>7oyCqpptJC;UCCTtJz#C>AG!Q5t7XgM1YzP6! zDa=WHNK59BJZK?78le>%C|6icsaPS(kay*5 z66@h@^?1VVcbO-+0OEKaA#CRfRU(Sz#fmJi{H6VxzDKH{ltI3tei1_>PWYS&k28x> ztb=?tZ@^`4Q5g1ABsSbHwxV-O3~U1{DC>1hFN{TLD1j42S<>9xx!nMGtW7 z<&=tTqKx?{V_q3)6C`xl|0z6S!yfYlNm^_Zl*@U-W)a5|B!oOcbo4GR^)7m)ZGvf& z-ay%6RRtmfFH68hJ1PoIJEi72MS$=hm%+(mZNeZa=wS$eOGu?Sfs}}!hzlG<3Widz zeG9}Q4k87kM(Gcybn=>RF@?D1o0N(Vm1wH8O>jKKJ|v`~4;}ZE`H&LLhdw_j$#P|I zfDg5j3_lgdU9QqVP-P%rZD2zU0L2J%k~X0Z3`o`+$TtFDe3jwnIt}Ez0I?6HK){Du z4Fn4T2)GUebk}Vl=mFqEVoN?`1pt*Z{ORN7LyJKv@gc`vPN~=}%9xKb=9Lj2lF;Gz zX5m9K?=&Bhq(vW6F6ToFMI4`z5b_z((Yv_RyXckrkZF_VT-jn(1tJ13mEfWs6@{jq zQgbyT;N=&&3{DpFp(UiChm`<)NGipLI_)hG7x<7A45e247KlZBND4-c(jPwLh{JnYbMq1Ot*o2J*uI7_T;tb2SF?b%5B1LJ%ly#6WNmfPnQNpu0u`K?;Bm zi7ok%6#!JuaN(ooLlvNu_>f~Sr&R0~Wz0tz^U8=1N$9Zt6Zp{XKbj9o(xMM3m-C^6 zs6{>_A>=cnqjzzschM{LA=4%sPs$dnDi9HP=>-?^ zK@U{`OdyrwLsBB`khs8yq+lqG*tb9|;zLp}YLx!)At$ft7E_38zDcRHLnWFj^&zLv z*oTBv^r74n=0i#}AG+)hlFXu?@S!e~Ge{YCxmE+gLIe3l1~x1PAg3@VX@{180m+pH z@~Z$a-f#H10R#C#KTdWMk!m1ob^#X2u+sh+**bKmjq*8onz}^CJfe%T+ zQ0lU8fmpCfgvN;DrjVYej9 zDUJXisv{YGLf+Ig7zlJ+4gty>%M}3R6y_v8RB1xxstn|-0WiME@NhDS zdr!xQUfN|o6>*&xnrR#iiawuhfT3n_L^JY_X~W5rG#e6@{xP zH0_j{s}KP%-{>+pS*$N>B?Ub!1YiQG6dzh_Z-KbLhooRA)!DZ|EaF2_Flvh}8oVYLR1p|_s4dnX)FkWUH=PC^3D*>?&4S+ylg9d^j00LHlfbOad z1T_GBNNmZ6tN@^LhS%&f9}0D7C}Un3@gWHvUQ&w>`8&;rBx$i7 zQZDC1Ln4mPNC^3i=;&Qs>Rt3oeaN)Q627v_b8-`p`{k`q>X4(R}EPTO?Vo8V>NGB_zX7jd7Q&GZ54p$Tu3;kOH6>VNTKx zwSoc3g$DAA05INd__-bf`CdTmLyJMchn5%!Rss-kGYIIe-#{<`z=y<^e8>s_DrcCw z-+ZVOloB6u?B$e--J*>7C}Un3@gWHv*8CMdbjl9%AxT>FA?0#Dv{J`U?@p{tV4@Me5e(G z8l^vc$jNKE#fQW--xeE)nN*pjKIC|aeMlk{edyzVG9OZ+`Or6iFUfK%;Rhem%?9wZ z%DBsQ8VI@!wTf6_$WAgD8t zuQ#xv5r8bhoTN=ifq`CH4dfRB;BlSd=eiB#djN5pum}Vipv4A)B>)_@7X<3UW&=S# zfHpyF$?{eJP&vbqz2*U{Kq>J6$6ijU*e1%Dk22hl3x)6TbXA^8`s+Y!j5r zdBPGA#}g!kJVA8yE-v*hdZlfGX_Mw$*97GC+(qj7-h(#Pk3Pz36A5Q7yHQizgam}}W12K~-v$Rcc zJj6aENs2!7fg$rDC7KT%yG4@OaVC7If@JvV=M!cfFc1tH$PXFVFbqI3!kom1LNFjX zVjzDI0OR$BpKCObPXS^dDl=8&Dhvdb00e9W0o^S$5G(@VL;a$N?^ppqh8~!)vPXp{H*$ACja+A5t#oLzNL1!u`f5(dVMi+l@ z8Fz1sH&s_Kq#H)sM^cGB;9Qw{d3zG}mz@;dFJO0aui`3*=uYk|KM%Wq|Mci9>6ey| z|C(*spX@mIMj7@;PJ{=zVo73gv8q_sajN96epDiq36xHl2*@R+!Ty>4w4O7)Y5&FD z3eapHDU^vQS7IascMa~-``6k5u_|5JbMd}Vv5FVxH#0HTW7gleQgdX&7_=40CbY=9 ztDLgIwCQ%G6xS*Qa|GsptS#!A*bt{OpT>Xxa6;1i>{L5 z2ch4O@FpO8_oLTI6?B(W?VX$wkc7GeAn|P0E{)6Y8Cb9f%(CCx#$k5 ztnQGylRKoakX`tZsolq~R5aOTQv6noE|a=CQ+sG8_X@n`E|Yqx`Phe&tAETjeW_Z- z=Bq%ik-8$4cp-e}^qFOu+Kr|TcM&H+3OcWEw@GmYdNpz8VJBEodUTc4&D}^lH&|9( z6@F76C%9DVFCXLA@j6_Sk-LjqjzC(hI#qh})a9oO$@NXSZ*puMq=E5Bt+hhxqE2uU z;Je&$1d;}AV<>&_uY@$@kdifqv}8Qe%^wz$n_}hu^FxL-I3DQ>GlaB`aVW)|ajGF{ zy<<#qPo5&AgAVDwYD4N8k96h9LRyIDLFrO=J<-T`q!YP#@IZ$=6{NSj+ljPQFs8WQ zoG2u>-;(V8B z=%~iCp|nrG{uEu-;ck$!3!ml&H&ibMBm9RGC%#VV!(2jgprg|fxr?R*o)u#>rlif> zE_9&7gxCKLk6}C3wRsdnTYG$nTS3+6X9=BVYD?{lq3A^fCdfME6tAj@ZoxWPy`b)Omf&q z!ydkd|8?d^VbU(oLMF$;7AKlJvP0u9o-+-PCOi6W;32q9@1-|wjh_5Dg&G}ENq5{b z?&Qz8oJfAOeOF;6M52>F+pQVq*Xc@6+vw*nb@qop`t1Q7LHUW{CDZ=28EJ3o3?2W` zNvR5*|IulwN*w^Q<4YQ9=sb;%PgUy(kbaEP&H&l3R&oS~-{Z{acb4Zj>Y^kK`MnIb-Wi=@&~IDDXHtYv9AK=xos(F* zboCmei@WL3I1j{cEu{Gw7E0pS7bk0UB1i(+kst|VXM)DdP&^eRuIls~q3&FeXf&1{ z3=*xB=(LK)__IN0-Kw);$Q6$}qjE$d^Hn8x7=(jD8euRB0)>Dgobj9=X<4iuJBi zOmI+$nqpq+C>1_VuNVcQiE=TBNJvH7{OJ!i_*0^pM+brN--Tk^9TtN7MZCo|d$Eb& zFEOxorGfRU08}SyRVJ?4orZXAmw_$o1iXzyl#1lT2JEm<%HN{GRI`;M+;EFc2l~N? zO~sJFmE(>O`D>#LYn6dkK&*$kX?W&m$Q8F~wx$q?;>_7AnwV2e$efnF#GLj$(uBWu zF;r=wBsNr>*c~SJC_9d;=&aC2v7GLBT;?3$kx~DkfbXju+C-;`^-dFk(?s5BVnZmF z;j9W^k+JdS zfM@j3Xo%OQ3~Xr?@HTcyK<~PB2JEa5=2T%ar*edMY&UbR6yf3;kt@f}3Z?wDQHHh3 zfH}o__}k+#XA9ka+>gcPG-NyawOBMUr8k8+B|Y zM}Ms1W8B_N_LYOnkuvQr`r&tfGl9=;+ra|#|H8!Uqn>mL>6LX3QnbWeDnA5)dP7}0^P{o`Q z8-+NrJ520}4+?D*%aJ)pc*L9s1$H%l>Cl*vF#2D!F?ldu{l%5jo<2+T4-SXA^_&JS;EBTTx^KfE-|oW zrGU3_v&nf~zX3ZaggI51%&8pV-}ad~yTK?irz^)DAM)2m8P+NT<`nB;`Z&ya@e4Ai zIE~ihBT-!6*(I8oQ%uO5mc7KB_C3-BZ6j1Lr-(ttiQQphPkc^jqgam2*~25|>=p2R zm4i8*Ce}Mm1Wprqr-=;%Vktf+WRyzH>68(hQ@SXcbB{Wwl5;{|(S1LDM`$x9J0}G9 zBfQ1tJjgRll{uy=46Lt|l<`5CiTciKs|;~VwGe&3MsMDAi%rhHCB}WQQo!G$!emb6 z2!FK2%-O0>#oAeK8SI=8wKK}FRv9p-SP%c#v6%B*t|*G&Bs-n4f%Q%kM>-~CluFI% zlo6X#x+t1+$~H5n60Naq;kF9QxkNg3$AsX1rJ1l}l>uLqfB5M#uzno?OZIEEVZw@e zZMPwA=@BAxUcGtOjeyUx>_N+xE2DS}v)NF5t*bFR9?+XRi(h${_#KYM z+K9$l(STNmXaEOsq$NCtA3p|1dVn!pA=9EyzUoSghUMtd_3u1!St3-Enh%)=_?K)X4<8Lv=xZ^>5 zlhrV61>dx|FTn7IL@m&|w;}f?6Y*`>y~$FvNF_QiTwOfj;Vcuou#k!_e8yIDVI`Ui zpU=-fq0I`>b*F^TPbF_Crpka{ZD4JUf%SC&T-X-OCU)U^L)_9RM86}YH}ASm3PjQ_ zISr8%0{+@oL-7|{hK@ygWB-e9u?zQDu3WF7ZxLJaNEINc?BN~1HE&!Zl%h8}_S|_J ze{Ga;ZIm%8_j(B({`cE(!IQaYCSL8c0JumAu4`H(+O%bo0T`39Lqd8tG1RvG9+k$* zoam4cB3Frb-xd}r!|Al6PKj@ENC*!V`#75vi|aYXM#qBel&%0OEr*29hEIKp!UIf7dojyp9&woa`|G;stmA;Vktl1|OON1C7>Lls+y z82mf2J520}&j?*7mZMIsjz`+=dI3fVMro}yf#IDdj&w%ID3x|A7hBOCOAPoc4Xj;dV0|Y5OWI=m#Fp$b#4YQD$ZD3}SfXL# zi93dxf3k38)6lg&hT`{HhK|j8^YRDz7PkmxPB9e#Ml)hdhF1ZC${zmiH|78XqF8hQ z$DW-L!U3X;Yom-&xz|hR@TXI7gdI=F5hQ4|-5V*vwFsL<8%K}~a)gMC9TC#IiBZxb zm@+3iA_OZ-#5?_&0pIDgqf>8haYP8mP`OkoDHg|Yij58h*|{NF1Su9T6i2iOy`sw^ zy579&q*zQKozfzhPRAY*Drpg%I%5}-Hj6Iwg&AV=udniq z<6G=P-IgoYW9VDNmRv^#2r7H{kGI{Zo*F7!1n z7K(SQ;!edfSzEGDv~eNHAeV{A*a;!Mi;vNWfmoRnoe+YRO5xI98}OY@J8Jay7AJ&o zA(e{@NwK()Q*3l5$c_!+LQ*U)B#v;QR?%h7r8idQ^o_t$NipFGp%NEz>Wp1T+AO-z ze{M1tQlh!gySR}Ek-D{Q4}cpdoG<5~ANR ztT%4|cKp{E|G7E=7P$-iSDP^0C_r3`(G*pln006}FBKlR_{LKQ+O zx{zbfowf1TMj6*e8KZKqm(byR4t=7m@B;Vv#5<$03t1*}p@WhY7m^HenTU)X5YoH& zD0LxI=0pdC5V=>ljN1+PPNy9MdV7llLb#C1#Sl^~F60y&9SO2iL%5I>iwlV(Txdje zSs2rscbycA3rVNAkm+>n0ihBXa_Wp-NZKsA&;{3<3n|fD=)br)2$339m^&aunJMF- zqt$@F(7@V72G%bI;6h!KyU-Ft+_F-LEG_BHyRIL6_#d!rxj_LIwG74YvJ4&T^ycM< z_!hg+u;t2yhQ38?$#qnKpt6TATx%}WBb1^GIriL98(KS;VQrK#D))K`9p3dCF647{ zP`m>lyO3ov7g{IUxR7L!%S2@Ce30J7N2v>$GABA8gvhPJWp~4X?{wO+SZ{A}J_r|5 zxww!Niwil$Mkj*o&=4*p#o|KZ2p8%ST_$aM^RAO(F@bc73z<%tYuKA9s!-xWPMxs} z390Bpr~KMnNQve`P25$4NW*MY<3e>J$XYOOv_c~Wd<8(jd70z9LTtr{UM5_ssWikb zRYGJQpf~TjMNo$S#VUZPek*5fjiLB;mZ76wZv+wYEq0+*mMhn3=v%~=Tt@{6Dtp-b zU*}NkYtd{L}cuE zklsyWp1T+AO-zLu&U+jtAZUCkWD3NF;YWh%!5Q z)5?PZUx7Ao-fdug4*(~ypqz<2vR*^nvRR1CHuUCQ_y3aj{_$~EW!`^aQq9`pM5u07 ztBqJS8jvihY&2C9NZ_7!rp+qs_SwZ}yJoHB5izEv_F16@($EZdr;QK9M1>`~Vxy1U zMuBYr+fG_&(gGzdzfy`2ekc>lk5I4)P@C`jbDeuKlaPSl@5}vTU*Eo(Irn|ebI7(f!GRF=DdTbv&b-L zEU~~Zv*5Z43x4Dg$c~7uQ>##o0p7V(fPUjLy)i)mJfA?PWoznEz(~nJ{5s3fxJGaB z)^5_$DwMQbO??J_r_hq>r~-w`p8Dj?rb5jE$*7P+&-vN-*994`3o-`v-Xfw?@A?BO z^rb^mArYEUADkR3DLXNS4JCJz{p+aITDkO|hp*oeztg+tWTf|sIAfBQ^#?$x&=b$VVa_mg2 zkhqyqp{2ht6;hIyAsaTp zJ4Xe`SkK{K0X+D7maVBq0V5?xV!l8arRXi*x|FoE3N5o-O)CuiPN5~$Q3VQ>J@xEQ zOofUBl2IXto^!Lo+PMtZ1sQ{SZxPX{-lM3{k%y&1Zii&LA+t=TLIo-t6%q|nnV=Z+ z4br=jk=2kHGpF(mg5-Xo;#*ZP+VQl}@${{IgHR#Wiy*{URLC(l@CGu6Ayi0=MTLYB zDkR2Iix`UviLr=4JVk|!r<@&QZ^o$XzK~;QT7?9ZQK9#CnhGh>ROrVKQ6TdaqRjaQ zQD*~hCPf6>YzX@;7F^eE!H+r!&?DQ?I<+b4G{8H%1jx*U-k6zS=@%k$91(d6{5w^d z6hb*t4|kYC3<8*?5Uw8c4MGY*hU=7pX+EKz+A)kGY=2OSAWSn$kp^sv(62I41R){8 zTlTDJK1&ZcLEA?u$U=pIzazWR$e!9YXp2w|rukAlGR-%vfZ?r`be%YX;2kI4$~DMJ z%AV$P%t(t_nVHq0h^cHXJA}wtZx-C~z(!lQ&S`xe} zP^j#whyKkJpg|xRi{Q{R*C6T%GF}&C4C=i_M5k_h5k=U4QXi=T57qPmKpe+NtKA|r~-w`p87vGmbL8S*H{;&IZh>Sdevq@4y&=c*XbNbK*5V8PWy6+?5&HixbVF#QgR62fc6g zT<%_1{@@1F^ZnfR3*uEb=5S4BwES@WOJ3+GmoWTW+D|C$3G@n%K<&%%68a(Na~>3=UE*VR)B@YK7o3G{(Z@#3Bgxz)S9ND7PKokq|W1-$?@h;>qFPWGw zm}>5Vx#5j7OiAP>^m>+?ki2Ky&GWi)FTC-i<|fo2c`QzxVLm%Czg-gKFi$+Xy6f~9 ze=Smc5100_i@M!JIr0P!11c*TIuQ%K5i33puPY;dgG64bJGt~F@7BFn1~kgsJz%VR zCUx(;ZYE94*%T}OEnYm@P>r9@A;ji9h46inWN{+87N?=dyyAy(`tr&jz&FvIZQ~#UD4QI_s2W-9`S6 zj~P@M-B4;gI?tf`Cqv!v5rb-XP|c?sl%`N7;C1$g4QkXueW=i&S|&sF+3n}+m!h}S zcq?v1U_U$=>VMkp=j*#2)WQ!KlolE$)cC4hYrbA5AE`>d!k?3|5)DjRHviD{|%9C?Xb^GX0rZE#gK zTY46i_u^(mVKuI>qc|7Ai~h+_594P9RJ(&Z4lzJ!yXpj93}S(R8gx+a;0>r{lcAo| zhktB+5y_yR&l^yklc8Qk&_LBWsQ2?W+41OP)C!1hgIM>ut1y%P`VOnqJdYy&rcU0h zClT>)>f$-(8+gp$l(e_DK7pqlE~dK7pYKcE|MQce2cqeXs0S; zYt>HWNd56TIg)HsT>6rsZA$plJde(L_qgW~G$|hhIMUwid30U_SiITuDBN__nRsTM zS8&qhA59m6T?&5oNuB&*9Xag zDC+;Cb0E_7M4tbpGBV*d^k(N9%J9fuL(Zj>oNqk;JGxirJG#~AJ6>w<|C!49hO!0p zB>{cOJd8ZQG`0OHI&B}t_aUPJJNd!_nY;DE@iMu18WR3_rLb;0GB zf0NXSQlua7T>3GMU(SurFX!pBUk*)?{Blq+)q{#Tm1%P-V@R-9qSREE8}!(f0q zsidLPGW&M)KAm4qRlD`QloNV$hF%92B9>AoBS3vdV84vFwBD~UZ0th56!NSvz|EcoTWbiAXA6~~hV2$?>9DGIsxrw_IZ~hAWb#}?QkFc;rgJ>0 zWoQdBv?&Af6zZuDK7l;v(TpI^A|iqr8ssTxC(jis6nP2@$y52W<*9V!sq&C#Ap!DK zVU!}ek*Co;wP((>m-wt#J+RKPqRp}5&vuE=Pp>z5ibE#PQ)%NNqK`Hac@`K+oBDZ6 z%X5HdjD{LbkV;w5HcWs#1+HnDDdah7fSYrSmaTaN$kPKJdDd94WvNxRQPg{_oO&O4mGRT%OV-N@7Ep4v5M+Dm-as~%YASkdNK@n^fl=Rq1JRszK#ljj^drV!CU zoyb!iC9rSiEiKO$!^XNwAk|@SZJh$oxaLeD&n^Sp+-O`LE9)o=aZ)tgYhK+TQL29YJwJj5P#y4jQd9E~ zXO-<#Ws;|Ir0$NJJUd9rlBdw3I>o~2AVZrnAWxy5+Hweao{OIm@~j~uBTqp)dA6t& zV+@@>F4PM06uhqkC%SoM|udS+9Cvonu9tW5u8C5})~Mpt78E zO7KsDh?EU0f=hfh4fB?k=P1wE+Z=~fo&|0B1TeTv9GcqR78u~>LJPJQ5g^YMz$4E( z3%0B={_Rv{lBaT{{;=NUS)+n8->0i5xWuO|$k3(?$Wy4Ne)|aW{3wn_$Wy3hS)`C_zM>sCM2tV82Ez zrZ-0bJ{m5gUo952wG$vp8(U8;$_@kE+-bqqE&^~IrkzHVqZXK-2eo#S2J37h%iq+; z8ztv~FB4Sx1g29=r55lEKK)kW`T+|z4I223g`}}MRAfP-gdpa(xq^4D0Ys`|7$HFw z!29c|9ZjY-1DYVnsEwm3xWp%oTu?@v${_E0m4Q}piO;q=9#hvngeKkgl4+7Sg(m%} zm-wt#*_rGzH2VY5kVAMbaZu!Xa|N zfk;NY4Z1gpYLa`-pLmH+$F-)z5|{NEK7nr(+LWhq)0g;c%I6Kn6cE6eLJKw(SH=pgzgp#wzL~F*4K~*QA;h@w2Xj~J4l24PJ*-!cNzFj zLkpEu1yW6APo33h>R6{-8Fh5%1(*1=1sU6djBT#oZ6Z1qegGYO2KOASnJ7gE-6cN8 z1!v8csc@{Bh@fICNAE&a?<&u%+fI0z=H^uXIS^X_EFh{1O%zk%bcqU>&OZmGYoH<| zA^cG~$JsW=SwjllbDXv7k<>IA5w4!#5}&ppLz^;Sjf8q?#sM_pR(y@n z1UIvq9!Ch;X+nVtMe@Qzl2`uhc1`I>SLGq=egcG{!r+MLM%G66)DAi~3g@6*D^X1> zArQbi)dTAsE7}|@3<)IfSYekMAy3hXtW{EWyXLr&mZyL+^4xHZ$y1Rg&!6C<1QE-q z6M1Ti8thj%?CT5>o1X@s277C37G%ajXNoRoivezKw_s}r0XPm)GNMdbuw~flS>H(- ztn0F1Q#S!6kCMjskpqTln~=wI#NTOXA$e6G4N&&f2fk|>(5GA(4Y0X(c8XX%Z9&Gi zAY+@WcbkY#y|EunSZ7zA2Q%?$o1k1y6S`G6njj*i2`WeLLRIf7FWV*dK@f!I1= zVfY#gjH&2JvkI8bLkGnLki7soVDwbP(xu9^EY={uvMHz20|AZ zh_l!PF%=!k;#9UxaQsZ`kbp8eis2V%Q`g>*3$9THRFbe{^C&PN9wDxe}Hp?Z;o<7}JbtRaOCInLVkNa&C- zLWhPe*ecE<1EGr!iL>aCn2HW%aVlGf96!@KB%q8AC1v`1O$AJc{>3gTUtd8j=unHz zkZtmKgR&aKz*cv`e3`wqtq^3!M`sEJbvZt1;F&*kuu8aYya0hbzJ(V?Xl7*pZ& z3KcM&lMXu6O-1OC>O~Tcvu%#Eh7>yFIBVAA*XJjd{9%OgNK zf}Eynn{R-d3oO`LNC5uJfCv8-7Hp}rde#?_23t!k*i=S9$!o0S)&_#K4mBJ2PD2ab zQ3cW=WlzmqZ93#BS4M{%dch?=Z9&GiAY+@WcbkY#9l0AFdJHEW+A_CeBCSKp<#eb_ zg`+bfLOP>z^e$BOuJW>V$hbL`mkz{=sW4ns!D%rSPUoqB=`Qg>hn7+il2E-!!g03E zan_JRha6|^dL(p67@y$>@+nFSx{~ zEy&mwWNdTwZWGa|&AZW|`o~O%L}{i!q+Cvi22?mYBO;_TDo5`^RqrYF%=!^Q~}eu>7YZSAb=!PFFNEn+vYfHNTEZHvvxfaIwXwHp?(XtinGW- z=%Pd7EIK5nqC;7n%GM#r&$JE+D5FEK%JgSl;`6b?Ce1=>L5J#qg|Z^vpsd6&SYKwr zrV0z%JOU&w$Z70QjR9_6YQffJ1mNERJotB7u%*lDS-*lb*ji`7rZohV+-)VdCJE9y z)Mwy34J~v>6-bAaJ=ORv)1hYN%IJ_oFSx{~Ey&mwWNdTwZWGa|+8%T$?@`ksQJT>q z<#IZ-Munp@B0@T&a`Y}#^{(==b;!6mm7fm8mH>+msVX=vrow4Y1x)9sgATP*5jv!L z(ILm#Hpf{*3LSEswd;}4Az_3L)mgAroJ9sg7a54N=#ZF-4rOsFTZbG!(>f%ej1G0l z^!J(ym>v4ffay?@op$I@KCn>M#~YOO6M(sP;eq*}1#Kw;BrV8kbZFQBH;-DdHOJv! z0X+D77Hp}pde-NW23zwj*i=A3$xE%|)@1}~9a>@FI}I&#M-@nils)x@Z<-DjDOW~^ z9D2beK5aq9wjg7ht9P4-PR-qk4*lCBrbBMOVY)3-E~i5UDjb~=5z-lzqj#aIca@i| zL&nXi9CaYJU&uSA!f7!TPCKSfm^p+n+q z%-<@`qC-L#8Hls!keG@NWpOH7ha5lCIwYWs4qdv+bV!k=LtlK@bZCvZlD@=eQv+`% zKgeq~ylvAb=(pQjTZh0ijyh9xtUC>GbC(5My9pp-ltoa8$f0tG$Rl9ZN0mtWk5w;VRYcg#OwJpfdrVPyY3H8)_x1$M{J!G2DLIl=iC-fmDK|4+8SD{E= zSV;29Z;}u8^(Y6$@5~Il^~*kI+5oJqQSn3PEN(b*2!dXMme)EZDk~036#X8Bumvu%*-LS-*@lShvE0O?3p6+(jBT zwwoYr6OsnL)6hclsz4f`?5Sd|HDLE*gK}jwK!i}1VyPg=*cN1LbM)V6<%xRmTTuu|}R2rHfBBTi_NAE&a?3pFv2FRuwbh=iwuM=G7x9^oWxXgD2r3sHo@^T ztwRFJ=+M$S(;-Eg4jsi+2a?RYBz=j`rlfsNH}w&Kx%QKTx!g*as~IFfI(de{l-r0> z2Do|Hg00S@4&9h)rJ^>}ySjnwR3DP>W%)oahDN(wk3KS}P z>e&^hLxswf(IJOkaEVV_kg+Yu*yifpCZbcl-RRJRxau%Q5~Z2GiE=p|%2(m&jEIoV zs2sfuRlTdcY#lOgPUWiuv3=x)bXCRIDyE`Cg9PYMf$DkFB|hj-2?{iwwkBbVy7^hq5@8twWBVX&n+!Mu%o!W;&!u zP{~U!BEb%*dl&<1T!4p2Jt?TzqxqygCPMY3M-2 z@9N`;YhThH9*uX)S?3j;bvg$~!A8iF181F$MDLFI9d(K=-WMx=+PUaFZ!S9fw8{^l zu=1J?E=sIQU>WDUWA%r|-F0pjmgoDkesn>6)(z&Z^Qdn18OE#U``*vl9iOubXC1re zMb0|c$yuib{BhPf;GA_VZTXwiBIWzSji=zY6!BX`4s_#^A`-dNLFl^+eOi)=akmti z=Sw8iV$}FI8UrUd>+Hi>=MHn$c^zk+_P|+38?eLcI>A-<3TUUa+s%wBauER>Vo!7C zHirf=!=IVH&4Ins?luQDP`le4*lnG;&0(s|*o(OQAgX#6x!WAvwrnmz;KAMIz=ONZ zfrm-AIhZG|F%nhM#NRGLKK0)j;KmKDb(M|v#cv8?cCIjN85pP5s7Z0DRaI&(5bmF}%BO_nB8 z`xc&&Gjv^a+8UQxjh(K>GPV*=u2FFxb~RS;c4iRzXunMja8TK9lDaR^w`kGh0~&2V(8X6beB@YWONl5pu3Dm zL-!p*w`>BsD@gmOLsyTWTSt&DcJ_S==!yx@Ye-w*p!EoJ1Hr1J5cfl%r)7RDaz@TH zlJ<;{4UUjzN}EiG;sQcicr-#j_ij+DnSfe5X}Cd&?|KBa4uao&5JJYz1bXQN=uXlC zLi7l97l9FS0O)B6S?3|8h2FGcDKu&>bkvkgp|^?)s43&osQKn8;8!#OzY5aMan$G$ z{5*mI>D*tx6@JfL0Dg%Jrp0eKU*A=}!>^9dX)?DJ_cyAzw`mQJSE$DOXT1eS>Q!TP zHMX$!qIooI`Y_j?;+5a1hw#Q(C*@2h`3}S7ici}&-VOUFt@2!OKE^M8i0kKy6Wz3$x3e~v6T9S4%64J5 zt|5w&8-!u}wxwzTl9k=?FK1Eh_3vMywxsDG7%d~ENjQcVKfHrsB;AQb4RLf3R=A*< zK>bt;5)A~YH|RV0t;*Uscv9n2Cozifcf7QMm7B1OZrOH!tzk*2rDL6M-q>B5DP-gvy#|nwG?p=tXe}WiBNyE!dBGn_% zIUsh%xrpKHPXaxVfv#foERH2w6{Jp6@?a*Jta-#2y2A8GOg=%C3j5tB-XznM;lP1%;H_KEr*T}S4_5Rsq`th&*NitRCsYT0>X-nnU*z)k) zs+^pQy!h|DtDbMbF%J>NFKVv5qd_dH{kz#xG8SmXc6N2RK-}l8zy*aaC~`rG3sR;b!b^5l-YMPodInGS;$QCa;%`LbS9V6@mv=8nr51M`K(#xYhdbpAyZ#fjkTb>pD)dqT7VQ#7#_KL~I|0j0T(Ujf6 z^=dibu?DEruRiqKvC@MUU%IzaH?N`iSN5kq@yVCy+EzCotH`6vmHUs1uI7~Ti<+za z6|<`Rv#ZNr46l1+WA>~A^i25$L>1C_#hIb%ZR+H)OO5QxcS@a| z?YHu1iAckZRm!hNGIkU6J&nG8`s32>40Kg|OTRdsXjPDUpORCVWU?m7`f*p79*OBA zNU5;Y$ABKrKv%_Y8*qgwNbMzgTD8BTl5s)fl><4eio_*2R8rmaLU`TSQe)eIpVO2K zZ#Z$ zwBhC9BM;Xn84K)M9$q<+$7???`*=B&%gX^Wu0=!l(PJ+(=@<%;n+BW|zehb8g{b-sidgl5ozq`8f-Uo(iaY z9?DW+eqVhbg!H7T(#ru}9u-xPx3(`5e+3u)M@7_!cRHH(R+rD8SslN>DjXeyrplSU z(a_^YQ`O951E{z6IB^G^=1 zYa_1{YJ#W#UPATHD`ZNGSx}R1c;mxHTf&j}9?y@6%J8}^Urdwu?>r$L%M*=1EFo8y z9!rZ@N-Poo-ide*3cTPnsjbP_*VDYuM9Ys!FXk-K@6=+x>+QsR4`N1&M^_eA(GdXu zjI7-hRm}X23zx9II)2~*Gc}ikPP}f5h6JtG%boV2n?nmmpzt*GaFfw4Oumlh&vn}VGvOVXuU3XO~4FLJt)nYDNx64 zWWWpc#>)S|&D34-i&9t4Jh%M9uH5jtFj%U!ekY+C{yARlL1dn+^k>a$?3wG&X?ftt zvEB5uelOmuBN1NrGhjXc%L7j8es!M_U3!oipaPR{VgT0A*`_Bw%o8J%K?@RjmV8^j z3sOW@`5%C>g)XAZg4QAhiPj5^AR94xiA2AZV52RH^<0J$gS@cO4a1CTaEB7|)wW*Rkx6OscFPXSzJ*ZUD0mZK73=K(8TKC+OGb zoSEZSrvlg=b(XKS1a#O1#c%2m06W%9D6WCb9Ppu@s2(YX{3v$>jV0Hvj>LQ1pd->V^o3G-8kaYF{@VN{iD=$Qkpr)J{_2`o z)85sk(M0YaR1}xe(~Y_*ii+1>c+c@g@!9>c+S&KG!09SV|(~e!W*}1)ZpKkBX-3f*Fg>7e&9uh<)I`K?=y$5 z+ONTQ>IZ+PF80$W;8Y4u2_KdRESrC0p44_^w`#t;5Z*O-@w@nTx}yG9TcSS0C!b-I ze`Ti^fBwt6sYdMi{mIlpO`#+h4TD8?ZN-_|loZsaYL0Y7okrVmZKzek!}fTI%TqM% z!3U+UGLbMBZax&VfWhz%D~tm$L$nG4Xp!%@E4@h`<|Hgr0y8uAwq0cqSw@gLXMbVN z(2e3(<8~P-WP874+qm6zt=73~k)4f7+?FFqR!IoV{Cc(MdvTN5GyleAVz{4>A%lJu zfRP)7nn)sdH;CntEst1Dc&H$z2?$gxF%^p8_$CXQtRlR+dAo}Au~xI7zLkc?#qfC> z+a2B*qVQ;Zz~R!9%F?(Q9Up2Fs&_{x~8DL0!_ zfw$UZo1-}UVwrs8arVdfRPP$a<_u5xuxm&=OI%`BjYs&ll%Pt`*A%?PXZx8_W+Vp1 z(8lda@*~`N)&ex?tt!5!^kDHTV|zT`E1|y}zpYD(7hb%Ny*WIUzZ~B51iE1C-W3_! z72bF~Wzi}&m(tQ$8OW`hxQPE9u7B1MGE2)Mjc;%q!uC#8>z4u0#Z$Ox8#U7HbbX7S z=e`h2ROMq4Mq|k4GOdSGM=5Jpu+Yyaip<57Q3+2Z(| zC!@9V9%ghD^)D{VV_qUZQr@rV`bPu2z|!*gRy>2bYJJXLq6U#33}17%K8w%*4K`Zq zs;cT8jnrOv(`YobZ(%%l@6b=|Tj?KHuyM7bXLXIQ!s4%SxS65N!D=X1K#L=wRi$!1 zjd(zRM#w{=UjI23dOBL3RAl{Qd_l@J zPKjj9g*TUpi9F_FZ4h_9wxI5%KBKnDqk3%y?5v?0C!BS zyGhgCi=FN!!C!Ap!dC(_OeN; zmTs2%Eo*BtpA^3P{HA^e%#MKxB}$>`Dyl@&ZHzZDx%wK`Sc#^_t^=@R(3RL?CF(bI zAu!W6bnh(Ti}?@rIvcn5Q3qelO6xvt?{{x^qd>ujbGwM!QR| zbP@<;7bj1~wWbVwd$$6%8BuDwkw_#hE-`En36&eat;Xz@3;b5m7+7qo8W14DB?u}X zRSfz_KzcvHSgW{%X3NTBD8d_BgcWmqsB(lG2BN-~@A+$L!W*t30ke&={!ztgL03($ zf18kG-Y9e+l9+W<7n;dt8A6Ge77QI9jt#ORz9%u<6h6R zA=;LkXzW!=wD|sowbAzD3;o%LX&wNHpyl;PWUNT00UtWZK2+v$jwE+Xt@d5$OXckw zoZ4&nFucc$=nSF>F#MSjmKsD1YYC0zzsiNKgNmpaj@B-kM62Tpwp1-#}=6!1)t zoCd#k!>`lfS4WYP@l)LA9e!(g>{svaTSvjKV*-8+q}jp`{Z1aGQUv+JuN3@tbWVV7 zAuagi^ayl2K~&H)-in&;Goa?5v}w)1O&y(R{FpjPRq^2|x?@3?DHV#**<^{ET88_flhtbu75;~8Vtm04S>-Nus{qqtydSo_g!YIy0(Fs5b#sb!>n!U;}~AW=au zM{Iomdtl7c3^cR3=7f`IRgik)t=7i>qZm$X8m2(My1<6zBMi%{{I3^k9v5Q=lfoP4 zDXx5ry=?ePUVtt%=+_u?I7m$!g*SeZcOdO$!v~dUMU;+}+ZQ0Iu?RjplTISM&be(FG>N%Z5>!D;dZ=<3RGFw4D<58cR;)J3AUzstQW-H? z+e>zfD&)>W6j zfDsX(cS) z(7Ta(d!a^2qKb|(k&*b_RUE;L#s%Gos^;64@fL~GawJm9hSCvHh5h9%zJ0*rZuFGJ zzgei!IS^V=zq)8q?G2x@!$6vnt7cXEdDYB{Ha$s$cCB66vW_{@Q`NjR9S(1N1g3k9 zZ!pP!Arl*m60_Ra3>0qKyXrm1dP3o*FAzC$sIe!%XXxbkJ}*(v9-ha;8;XdIKQVGB zbU&La7Wub+N~eu*&acPFr}#BG%PMG5=+;lA0Q73d5b5eqh?O9^xc1_Wx#u=6XwSL) z9p}gA#E;~i+nXCloE-ey6D{9Y|M(LB1}o4M=+Pzq1}lcaV63WKx9 zY~3w9cb$sJVZ%|?_j8v=!fSUkEz45EHyByo6X|)Q&=w?YSz=bZ(jQnJzH}%nZJwpg z;b`GYpAPSNzM0jH7ng?*GnN0{Grs3`FFjJWy(E^nY4M=#7H##`&nqBL6og3^gEfjg>uUEx;IRf~#NFsU*+O&`Ln?7l6 z<;>UITu+9;1x8?60iwlw`Nq|QrkDMz)UP+4jU}^pWgj{PL|GG%KF1#y8GJgUkm!x= zzv6SKI23%C#L{Dn5)0ZOKZkE8jeAgTYHiDSnN_~KoQ9$+uC=eRV%@PwE#J-;Fr{AO zYh^G*1UZU#48~*V8O|?hEiD^oV!h zb-oRTnJ_RwVhNuPdlCCUU6f1I!TjQqaWS_lmHwBcy`*-*OeEc%bNP%5;#Zt@oK-O9 zR{RV61v6u{V-r%wsPbhtSt`B07rUwa(ZnnpM__?uTg1z8wwg(ajO~q-zqYzUvKKZU zG7p`Ql=O9v>)fo{VX8_P*SvQ}LPvdzs*Fds9e0oD+L5mY?E5R&xAJot_I-_K$G&91 zr>0~ye*fA}k833MMb;&4S^QQ>_%6$M@^5e9g2+I6%9QQxoVHB zHk&MDK*JlK&=}e`V;hSDr!p*E!Qs~Hj}!|T4nDG*hDNoC`S-0=EENRGZsD=C`&f`iQdOwk+V?$N4_>{Zh5|mf!=QTcS zTReMd16a^|hF@{Dv6n5LFR{gQ2_MFx@P>PdA2){aLy?}RPo}fG$X{oik6>^k#k)1$ z3*Ez{TN6cJ*p|z%p=0jJ#Moc_t(EPF0aI#+an{p&5FKH+cUc{a8-94 zr}A9HT>t!$+1Ru<#YQ<$sPPxHgz2x-D}Fg`3>GD#s&@XibNvMy&y8OZKW>)%p8A)D z)~M}N^OBeW=`lB$LTKImHD#TxxhseuTc+#%JltRb={R zbPkr1_CfJ8(W*yc)RG<-bPZbqrX2%@PN%E(-ZZ)!t`+MObJ`fKgjdamVUpD4-^QG= z)SVyU(0nE)C8aBBJ?%WAn}ofC4Qd6MSqR<38p7)Q-l}b;2`ukL%3rBxwfm(c4bgY2 zZaS_d^C+j+V>w`LJHsmW+P3BPR&5M&FgtZm{qWFQQsCR6aH5!w1v@VyiF!=5vkczY z{g}BV9|1jt4h!sxsqltF;(=McXF+{QpfhQMrwQ0lFP#<3>Th>h%_|Gz+HCWWx!Wls zXJO)s@8|N(dBwvR^@O6BWC(_r*mP&my+m|lE>`^wXV3?nL4PB>?u%IEG_t1oG!9Z} zGabd6fpHjE)qz#cSb0BnZ+t3?oaxBiU?1n+kwfuByU4HIn`N3mjJ~8z^Lu&r4dw@C zpIuYc1m6-Z%E(ZNfChp_WEU)Fh9@9WQ`*P8(ET10+4Q8Y(N~F$lXmD+G?U1Z4ZYC@ z6*MwHCr&*wCWwq(0Xd68?z5%8rV6o}st_ZtTv*%`L9BK`2#bA3&Z@sSueT~>iV!V+ zG*5&q z@=c_Bt-9bst9V${Kk}>3ke;hY*VRjWi*J>V>+gskZ^u|9=y~>J3|U$s8Ks7z#ZO4v zISh>oywEEsMz^X`#zYk#INM_qv+rEZk=y2|h|T*UHm@C<$F&uQWN6b}q&b@=7}{%P zXqz##J>arGZD=RQdgZT#8|UatcPLn;i;7*-J1&>R?A!fWzm7+{u5ASo~bUJmhN{SZ$Z3z%HH1%Q#S>x?+Cy z3P0aD))cyvXzNNCsoGptL%AU?gfcU zi%(*ntn$DgW3?}^D$e>zZL2ER4IY;qbh7~c)uHQ8)A*95KRs$5Aad1i%>zWr@2-C` zabeC$ET5G3tv+3g(|k<9P(QRw3wM|7S21MF(?me5R@=(hu|CCP-E(9AEjIT5AD{b^#{Q~3btOxlzEPYt_74X9tuoZ%P3J!W zJGjRZ*3s!2dDMpbX$t!TE@8kl4WQvaT~@XFto12B?1&cA4ZlsZ0L+$pA$KpYTMCK9 z9}0&4H0Ne{VXFi8-J)972j)r;SQSyy*7Ge%ilduy?z6JGaj+TK{xvGB%U z^AJ&AcEb~DjuZ2*$I^wHj;)$Kvd7uWUgAd{Z`_mL^Ww?zqh8`)>6(m$H*^tQ6(1RS zJTyX=0PBdUy}tOwLjTrc*X&t$d|~L;;_QJwmQlDbu8m%k8;n8EkI%Zw2KrYaSqA#a zX!)-C#~1q>tQ_mY?py4yvtpJcE^cPr=(?!iqED^D+(5q~Ykbeny7c(IC(`qp8{ao* zWZ$o${wxOY8s85@dPXg6Ub~{_H2ewU`%HydU$_ZYSRqiCHKb?7dN0qkA@eYn0f!II!RY`(h0miLU&2BS4FX6?L7`g^;e}H z`|fyuFEZ8}3q9;zWfOYP#{;&@T>S{l|uGm0@Yxd&PED_I6{fZ-eA9 zH`Yq)V=O+bA$PR6cd>tiVHx2{`xx^W>NfA8H)vz6>)8}Kt5IXES-+}^M}O_w;*t87 z(oAG%y(2wiWn-<|v&UMa=`O(J*jV|VaN`MRNUMTZyl0{R8$$%nU(Z-;!Fv4f)}J4b zUPHelNe0GR_macD@?fl$oOY}=e44FLf5v9bb>`RP7E^ISi>bq@ti?S2QCiGVa;C>_ z%#oAE9Zu>2=#dsvhgZ#4i}}oJK<7+sG1W<+#Ux1GP4cuofHkveF+U90gdV^gB6dtY zb{sHz3LHJlXtXEOqqu;c6+9X}UpxecgA?efBQ2mukI=J*!04GRdQur^dH^dlN=URS zNd1B3`)TRvJPmrz5QF?`wx}|{@C1ra4adq`4l%Vau-&`q1=c0i zSOTTyF%n+#kQ?YYmzN3C>uz4%Hs_J60PxgIYaulS|CTf9syTJmS=tlmCeU3YO0TAf zmg!vD6);&_7-{??hUa@2kJ4k<8QCau*w7^P@)f$qtGdYJNFrIXJPq!G(HhfltjV9k zc;fHrvU#=r9xLEYi+Hxt-Eh3GvUpFZNvtBGGLEBSbyKo397}3>LmTWS_%p<6k1?%p z9i3Xs6e(t1w^i+cN3W&vbt*bJtD}3`8YxZvAdSPul<#+2T-hX~#&R^p#as1rG zg1@Rt-ZN=a;ho{jw)q<8)VZFgjd*9rf z8?aPK=H$MAJi;!4@;z&{R%*Qy)=HN@tncT@j}Q$VhU-lr?ts-s{E}yL9iO@km#?Mk zGtnnGb;bXR#)tUyiuVPxAgmZ^=Kp>4hE#KJ?lt68w-EyBUk+x=Y)T~CLzr#;_k|lz zmWl>bZMn@ZA6M_)$4KW{bc-300o%5@?IBq`p{mhmkOSU_SN)~;bJw|fS_y2ZWUGkR zlVUJfgUNp`yx|_=qw(ixwTk=M>Ce2)qmj@Or=fLP(-;2Lo ze(pOfUq0>Nbm65l=vK|Y#OmAK$!#>2{2mH4L+^J%0$Y_itR)4bh}d|8vY^hvo+ zg!ep1AEoX-^)ZMzfdjz_6y(Gpjl?`Hd^1ekRsU3^{Go8;fd|D6<04y=PNJV(nTWn) zEI#Y|UVK;m^FzNPz4YLb2c|KQNi&cw&OokVK5VjqR9s*n8+bGW`PUC(^7=9+4|CW| zT9LS!Xw@SzEd+To_^)U+ygvhtf$WmW!`Fr&^&rX98p!qU#z3Bh9c67*pX|^_c%Fuo zP9tT7Bc-3BCzGPMfRq6qjg;jNfLvDwIS?NtEg(gY#H0uwI~`JrL`ruC8d4h69I$9k zkot?aBIP%yK+0zY%@-w3$=v_D26z6~S&hjo`u5Wo8XwE;=7kJWbIb4(-m}+zA5eRd zUiaO@OM0;PLVB>bk*w|;F5O#fhQSsfSnBNnoXbh&L|>JtIH@YW>&=V3XR$gdV-hK* z??3+-Q-H5jg)Tk2gvn!tYgp#B9UkR<_0J|&{l!U%^T(>n`AodpV-d_idh~<;LjR(~ z?1R;zOCLxvf@CnN_9n5tgTW3XyXV|`NP087?&?PG^}MWvn~E;A$Wk>d}3S z#Q)&21n!1<6W4ZWZ`8c72-89E79+cBZ325;a&hgd;*#*XqqLPasM|mr>IQXMqFbcV z0#=VD-~3J%Zhu1D$N&}(gBS0OCN9X0u|T!KC%QU5JTg!jN@^Uq(7&*_g1)WS^VG>z zj7vuzEln;A%`Rs7o<8nsR)TCO7p;w6ogT`uoOq3v6En8FxBiL6ezds4hH>{V^mB_B zXAj}DVwxUNwP=0zjz9bQ><+hjF&eDTrfUn&wej13WqlLIZ}h`gUa-)wDz31Bhq@Uf z0}DgB#Q_`7r|HcaxG^YRZ-Zj>A2cXdKYo1RX8n+Ob!zC}NsPr`(UPW>&3tWmgT8k+ zYU@NH7WxZ{S(0s1Io`+Y&!co}E0Fcuj}x|UlWUW~cu0I}qfV##F<*fB4mG3H|b;^GPhv>KCw6}!KR-HO-) zkQoc@FQwEZ*6eCl#jek_6|o(xh_TY85%Q=;X$w%)IqTC?4F#{9%fi<+wmfq+%QHzn znV$ORj=YbUDdJ=0`@@az#2PL1uPCnYG*-+l#!Ik)8Qbe~xy^Xf`EjOuSqcM^;n`!* z>4s;gkx5Ho+ox&bTC9m1bWL0y4eaD5PH{mKr&BJiiEF%gR#($UxJ?<){@*v?@q_jO1xs>qGCLiTe({9M=d16SV(}h-v6qWAt=8dh#iM zGChh5=+Pb;qvw`;z_1~Mp|B?{phu6y6cMZvJ(nK=x;X<4Jr&k}YgLf?JCdiR=PyLh zS{2xMWetOqe_$Bp`4@R^Ny3?Fy0NR~d9^3gI;RbH?bjK(d=ov5mT!^432*ocFAP|g zI;SFQ$jdFt1`^R)PJd|}Kyy9+mI6N7XyOdbz2K;AlRRExRtv)$b;GgmjLy^`hc^~s zu^Eb3@7yumtDTh})i!PIc%Z%-+N@=iCmZh7=3&F5q5rGHUV_qCv0(6~($*HJlflEn z+Sx^3xtq{T{3W2%NUp{tx74}M48x+yl2cqDxltZXaVC;O;-*p6LL)NI5!nG=lZjMZKx8M6 zM&#mNh%A~wWEW|{PEb8UWH-UUhaoawyA4V*&={E&va8GiiKLf*{}v?u^dv}nLNi8w zb)A_8?-Wb`M#QUCpC7BD>cSiAXPHH@mknR#g$!#fL$zMgz>-sVt>aB|RGw&nZS!@`l zjvM(ja#(R-A|^5W4zKtCi^hl)4<%r7R{u@Vn`ZgLiga5Tn2Ei*D!g^pdRv+rij?0~ z|2%+#0MKpmF?niJCS&sZI1oW~vMWdkLP?kCmKqD!OvMuwrw&|G}{%iMKscd zopUX@zjf2fhewx(4>OQo`3f&bo@Tw5f&IPpcO6+c zu`KeAm&G&LUsYKu!U|LwuQJb~S}4oPIRcc*0-iMqJ2T-#A1^vxKuDa}2Xbrglf(Jv z;I3pwr6NVk8>W<9wo1m}*{znDFOYsX&x7mVPx zfA~)t!KwDtlkb;}F{OLc;v9{c6g<4CbGN9yMHUrp8F^f*b9gI}7HGY##reK#hn)t8 zj(WZ?Jy&NL&4?vtUk7h&0WUGzK0qH+2wdk8w;Jo2r>+e#m+@w#{#GBKPMk zye_O=u&pxAzLv4?o`Or2SN?GQ=+J)v##bYaVGF)0Hl{i6B{~&0!-Zd#aA+K3=Isa> zmL$$-k2L-+%mE~;3MxnLR@)qIIzUS0$Zsnf@6Km|`Q+;O^RdLLd2BR05#DecX)*u8 zxl5^-Sp>kMA*K$7II-};xiyuIzYB3#1E=%NtsqGQZPFtCthpX5Mxg_&M7G-^^)qZ$ zcPHRu{KVBowHN<7*X=JpH$LZAHp2Rqtcf{_zFPkToBoyphnM(I7!vK#Hy&PhIltrO z+^BMFU-2vFg})j7N$zrw13UP}*vkElLs52n28)XGbri_#MkNn0uXi*n=?o>!Yb5sh z@SZ;~)3=)4Ux#1T@M8XtBaL@4y7--qSJTK_rOf#Lm)2K>!>S{{GK2+Ld1#i5#lC3y zOX0>BQJ07xMIhS1wvY1i zdB4wA;|t=me|aSDyx!bjI)2|xxf;FPqK|rjjod4 z#cY3vDOUD*LlOUqxl0)=%EOREy?W?uc;mHvTFf#r`C?t^Sp1OMBOB*F?#1^69(R0T z8Zv3x$bv+^1;Hg1+ih@!dn=K2l#49Qv_BSqF!%r>xUe|Ir^Rq6M8Q`_TcO4Mx^B(8VBeX{F7}quD+D-52xc%#E^1nazakstes{H5VVnO@d6e zSfI7WMDFde&|?e~A)Iwo<`9H^H3vLJLyt#817tL+${%G5^?~Y{yTa=}Z*9G!Bs9z< zL}AMRidIp!i>e4qL%!n#*3BZ49NM#kvo*z#SYqC9px<%I(xc@zh74c*ZbqzpUBVON zV}`+5B)FlaTiO>Hg=qX)HY8s0wMgS}IPveuCKB&sGU8@w1KS>0+3(DC^A54ZqT|qC zdW_kI%G;H$`3JWrQuOpN{SaQKP5@$Dm{{=hfc>dE|5@}{bzo$w62D7dcIbJI=~)&n zH)9;W`VpFpaa(2EeJAeq9a_6xCf9UwWuEl0#3rDFwqklBkNh9CK4ZIvRkN#;zac4Y#M!*#fK*%q2pREc@O)U8!m`n ze3h1VwNK(DrgqTjq;*FAQhRn=_-Mad^*#2I=}^^2>W>_GFUIN3(UJ1w;l_tf2tB@2 z`rqAEaqach49IcjB<>&yVX-}T0W_439odh9NXqOGpKV)TnTxTlui+*wuT0qf`X#E~ z7vAs;@zU`cFOG{T=3IM{x#$!{zdI&#&GcflcwaR59D)j%7}Lygs3#UW5DWET=tB=` z$Lt3K8(itn`Bi+5dL!C5%UY3{Y^GPbX=j-!`eBA2Sj^lX$gC1+duj)aA5%qhkN{>* z)3Mg>*m@7R(%eKsv*-E?uC9zPxW?9}dRS+=TLNx;4etCNKCvd2NmQ9Ef+q#$(z$t)(BY1T?GZXs--8})ipR}~6w1XZXSo$!~9fD3yfF2}`p_o)dkCdGvxbTad zI#(~~z6sF7qy=T`5$I8ZONDopp!+94=U_1zkg04v0-Z;&Ol7}M&;t{o^GORZ(Ie0W z1eXdr^$5^|6QBz-(0T;Ah+vJN?+|oq0(40RT8}`N5j?g7o@@YmT7CG!(PG+$?EMBq z?c2y-`=xy6S15Q(lv(6$mYzAZxIfXNPqsxwu%N8F{HaydMq{k zk7sL_ggYBC!a03Fhc~_sZV~@-x;=+u9M{K|!AQ>wUkDsLLt31&^`--V?Y9BvqNe3?!G#Akcm#5kCNGwxQ;Q}-ysRD!mQ z&n}?{%1kHc$QTv9Or=}a^g&qbqP#M%A`5YEc3Sq^friBZkXrz@JB@Lg zIFlZUv7f}RDf6;iH`6|uuD9U$5HP{3{j2CD_h{qlV*i(U&bjghHizYDOIvuOI-k+_ zkx2Z6*K_0x)uqowLcjG6yn%=1>MurXKNGveJV#^xt?#sLcO#F-La)U9-@H>B;Fcs9 zg4ts2qS^(|R>fECIKHU%if41>zEu9Sz1RQF2w0q$|5foIlK7vT_;6(P>CyOM3i9Yi zhP0P5&-T;RUi^dOcp&|ov5OuAe2kUv3Sa#hTKFpG$rgxXq8ON3>7a0iLfyBho7bwh zsX5yQ0Gt)TTXI%=WHq6Wx2rZB2Ls$d!~Xxn*`crf8XhpmcExu*G=#0U+D2nLZ!f=u zISTeqvN7dFre)5jOVxh`XUHB<=WzeHGtoYV@2kVTxwcSf{gXZQIz2PVR*~Fo8XQGQqe#E0$NS%cqVFAnqSODwD0*azQ8e_+X(?K26wPuJb%4ZV ziWC=6)XAe!bXgY^Et^157ij@SdW52Gf=*FX0=7F=WT4rN(+w3!Q$gxIZ$->q&q2)B z{;yH-5f@zWi)o3eFk+r@C;H|{IVbg$6&Dbb$DLJ=ocCKeGdIPcrzJ&#RcfE;nC24>OVlJ zB!dvhwvhIIr(Jp^rk&t;73lwTKhR|ppgTwlI?;Lrx|5(l#I6Q<3m=)w#%!f0{AP>|Y2 z^0esxuN3GPOppF32Q63LzRsav14kyKuebpHr92w?7i|HdoD4!ByNt9?IrQ~N%nAa# z=io1ee%=J=2GVTgz@{(<-ArKj91O7%KP@#kJPS3YKbuwwozcHGWbxUi(uh`hkb%W4w3hpL>Frq3`d?ihgd-_{*-LOIc3ze!wiaMxc=q z&LrA1v{{=FC&cXnztRO!F<{DP~iKOL?MOtqXxHU##1UU)iNudMqWq=T6cI zhAr#OYZOe_O-$cjko4BQcy&WJF)9FmQ%JTceO*=TLy7E}HPLHqTk!>1<^isD{LU`LLb9bMUW5*&^g}2Rk z_ha*+>*f|~*pm6GzIf2it7ob6%0kYitXUq<<#&MX7~9HmD<+nMdUxrNZQBwXuHIMmksdF8*Z85`&;BhN zG|!t=>0gvnz6*sWN4!;thS$9Z3G7f=OqiH4$sB!O_+A;eGZvVq#wg-4b08q_)|8Us zKI9&AP{d}~n_AO}xhf)Ox;#emq`jcl~KAm<(WBu&062pJe*O&v0+-TIiH`&=hPpiB-U<@?4Pja zdL+H(I)0-2-bj2mW7q+>gW4V4 z0Rk-GRhG{#uMS5=e&x(#0sYSgWz5`vtcSC!Kd@LW!k220c?B~6bc}%~QyuGSq9*AI zKfmc<@Ud*%w+PsB_vLKZ&I<-)0G2Td*LlorqZwA9y{q)Co5$W&pelce2($bT zqtp4e(c>ZMe4Kp`+lS%v9hyr_{Y%80Ve;asm)7a6Y&z;^J!|Gbg#MK?3`+UaiN#6vu{1Wt^i%k$o3IBrgntinH^hur7c};IKtHY9l7L=#`#t+OEPP6oUi-6 zKR#7oH@1<;eWeF^JVbGqH}EZEK)=a1J??TtzVFWazFSQ@Q2!K{;xt6c@8$4(9RQv9 zTl{SvOsvWutBlWYW^P7%imDsrOZUv$wGM}6;1G>JRhq;|P}6Ec8Xa99;`uRZ{N@~U z=;3ORM{()_h{oo~J@vmQCB27dl9ja^LdqXp`9a}uyDWyaB`rDO#V@n^IFog;2kW2b zdZeaj!W*xKdWT5=M+^~JuwJU+G?b@c1}#M?G{XzWfN##;==KyX$8nC!NRI5Qf9@?& z*-vdNv5hf@3e$qsYzk?o}3ObgwB%G>XCy_r7b zKDjreI6hT%Z2Eb;a1mqMU))6BqkTf(V}LYt2<>UrBhZ5cvp-JX=hB@(cT9jzk%plV zv>t&TCitbw{=A?&GtkUXmdLttq6Go>Wxquy<=~-Wj(<8%^X2i$W4s$mvHL&r=uxte ziN{R=PhM?FCEvRLrDbd}>HvwV_~paljnDAJiODoio9GC~;{B8Mz5j1wC+vH#VCi@u zyy2e>`UzC8cr?PIab)C)Sm+HMru<3W?Nn)c601Gq>PYz?DsA^cb+~GX2Bvc6A0v1U zKBFVd`5f+-ez?1COe?hOWcJnC@{aEI$I4M1RAT5YRpR~_r_p_=TasQE#=zZPKO)@9TTJbu?FE)-lV(@y+|_&~eeis(tLBP$$T-WYwuW zv9Dj}TJ4Yex%*h|ZH~ovMQnLJ;`|T8O)-J#IN4qJ20V9iEU}OsH5{7tY2st?C%`9G z{CYN%SYZ&8b_!#b@Y%A`oCCfuu|vP|BX`G`C>;veqpugoOwF%~F)h>)Fy;|D0}~l@ zIJ+Bom~UxqpBVE=7FLj8G_=Qk3;yhVY!SG+bT20#-of1+`{B|@@CBjL$suYX&LQPm$MdK%8OeAv}J{u%$_BeFjGMhp6uao|< z&$5V4HtSYp7JRii5`U1pz>;2kw^$H~v+?nwhDEire^D8KK-VsaTdMbElL8w8HhgQY z49SUD)7YwfwOdWgh+qjt1$&9LZYx8SxLAA;#V_823Zsws$KR#N>XK;uB4;b;a~T%3 zv%6X4sl0<4#P$O^v2Er)kFyHU%8MGT&!wN;X08HbwOv_J!`U{;E#*|-_3i8xJDT>! z%I{jqtyos~4vCztZVl{}*s1!%RVV0=R?S3*@2dZOFfE#eg zqPfAvg$%Vkf7SyYCvZ$W!tJw4$v(nO#|rEZZ#bQJ>$b}qEX|=F`Bt6H=A;s+tK2T^ z#4bASjSGI2!zcR?`yMJk!gjoo`sdhUBQWC;t(*H^t(E!atlQ=H1XuRq(1K>-tpcx5 z$d!lk^vVm~rgr7jVH%yaI2iS;WSl+!fjd-Z=@`m*4a|5QW_*O(MtYnw{$LLDjPd$;zKRSuY`)9;`Yj#sy*u{x z>$I7(!~6Q3l0!$7t(vHKG)~j@WH{#AwYHpy5^+ut`rut(T(YYgbmhni%Tg|2?-CqdNRD>2gK3eDdl9IzF?V%EqMrqRYBjdxD#;fT(Yu!{_T8k zyZPQKXVTn{N=YumP-Qm&OnV4(eQ8(A^H^URn`PeiOJnPxI!Yg6yr=x#sOfj)2akKivUgAb|0$BN6`OTPr z>Ab?o$lZt^F06VtUlK7Z#$!HgF~6MGCmyE3cAX-yU(Qpnbv&{*h*bAl~gmSq~~AGl*G)2D`|xY)POCZWmWZ5X#HlMI{uT&yJ5V% zb(ZXkbfu}((YG&k@Xe*3pH-@o^)D88rKwa61>XkOB0whLIy{`Fece1Ir%P37DpdoB zw<)#m&87Y@t5hYYOI2wqwg2r)mC8)QwJNJrC8tYOX)0AC(zn4i2arjnzW7px14>Sp zs?t=dhOci^sye5WN^Q?7Rmtg6RhmlGSodv8ZFzI4=Vq0vLM;vgm2d_F|Eqhg*r2@wx)owU21POiI2@) z!JE6GCzxFhuloqa0B1A$Zs^UWq3j{Oa8t+iJUGn@Cv zXy^^PJtZI*EB@p7Y|GiRH79*RA$_+?=(_>2#z+VzW4=Nsl;jm8U;7@B+M6{9r(0!1 z^VFs{Rij%nva2~aU*)Wqg`=ow*lMzkL+NRsGckfd!S@L__|5^HVA^$#dFEVRKtGu=n!lR8H9Dq7nQAW@X8*04M7je7^pw6x zi#o&OUNArUt`gTXVjn9Lwfhh*1lr?{QlT;($w-`u2FCzZ zGp1?+N&D`0?>3GFGBbb~gG@VeiKXp{4wPV;lFiF5K}j1O3Y}5sbVeP53Iw!mS}sXJ zAT5`s6d{1X-jqwY*rr(Q|NDE^yD!;E3i_XOK66e#pJwfMt@S?Zx%}4kUF%sr=%mKo z55mC?DJZeYBTJ;|*S61$?LZ7$*rGI~>`yQe-AJZ(Y|E#nZhkV1*r3-qie*oU0fOXr zUoB^AnX+cKmUZ%wzqL#yB{%W0uO_(NZ&N)nuHZQL(`?V#<2J(kLAk^Hq})*g7)lbT z;u151x8bCS0QQPSJ#3ul@79gK3m|9J_*vGY2K9!Xrr6xKpU`5{o(xMw<#xgG&3s8m*bH`VZc>;a0rvtvJ_lwcRt!B3&?q z(l{m>+y|GSzQzkny+n+UxaXD@MH6*zMdOP~i=&BH(&OtKOG15z&gz9iNl^RcJc7qT zPw(nWi{ACmE8*3bnTJ$I6A9UmVLF?>A#G$u(qp_cL+XwaRgxy2ykmBW=vCDEUwyf@ z>Z=3c_6=%D92n}D12{Z{*X-cc+V~56yxIEdNj0IjD7+ixH|^s?^q_##&aZ@!8TIRn zquelKeJyt^Zd`F`ZTzbn<|PW>QTg(_keHTmKX)_pzSsRkquXR7{4+D5*@#;Y+-mGD zWMnqIh?|#2^i-rvWQZu{kPZi}pHlqNA$Z?#W}@~_rlf($uEpA_XIK0gOOm!!F`xyT z{ZB_jeVnfLqoKFw`P2I6$EUp=Z8~d|vzDAS7>!n)HGE~5PZbuJVid)2?gd$ zx^hM4bV)`q^(Cs;W>p}Xu)IaQ0b9f?{hYgUh4-iXBaM&a$(`3QZ^psg7d`Bau?qD(Bsn8RL!d{EO`a`>{kxYDvi@mouJKr^Wl~BSWam+8%%P;@G$oBJQa@!I{=__KN|8tD z_#8?~)<5y20Y>UelTy-@Cy&yvev_3>$@(Ws8Zo8b!fEhCJY8OzKh0{-kf|-LcQlx3 zrf!;)K>m!cHitk_nm|cvevaGXyn57Q_2{5m4A%$M{CcFgFF*=B)$_CQFR2;pJE%v! zW9pIiG?geD4)6I%?nZ*jD9hVl)<%H7Y;HF6>FXpp6(p-kp7b01o7<>n$59<(@fT8? zfJw0JbToCWNYLNfA>6JKYa|L8Bre)USIP$Umz3GO;oTy(e7hf*MJKjHyve)YW27 z*GWx`JEa)(C#iTr+S2g_B1w~mym+qssUw6&-69rub0F7n2TG#p2(Ex#J4_SnZiGgd zg4C~Rau7*P5mqlUy7s{n3l&giVD%z?Vs*vH>Se}_S-sePn$>66PqTW7{WPmr@RJhs z3N$MTuzEEGrLA6Rh1zY`$#eL$G|uWJ%8<2sz@%cay3xhz#+rYJ1WBIyu`!canfw`= zqs(M6ZSvwA5`nmw-1x~ex#`E>G?9K1qJqh#B26BQrp-z*xntc-?zEFAv)t>Pg1Rc~ z$u8Q)tkMc5mq?ggs>0-Ahcu4>ljjJZ(#0Zy$z3_tS7UNz%9{N9PnpRTX(k^SF_Wv$ zz~uHJoDFeIzcEj*B3(uA<0mFpj7&aE7*uriFhNBhw4Y}3A^T}2Px2F!4_k2E2mvP7 zd7`w*N3>$VMMSWaykOS^Cf8~}j>!Wi6^qG@E+#kD{5vE_^7DT&&g8#(%}g$Cv$b4D zSJNZ{aWT2^lV@^~MVAxlCm|}BypJrHe9&mxQUxY=teeRPEj=-8xz{-bbtUcTI_U_r zN-LOrm?um=Vv*~`4rx*kCeIN**W|98w8@nzYx15a&E$%NVnOO>^kxx%ZawyHBn~bW zMEr#f&e(GsBmR{QGIOhOpqjmKv9s|x&C$3F{NvlsgZQV{Q zBC&xWx%#mQtlOdt*$N%7q*zR2bi=ot(-86hXMOU*kB+nJzcWI0D@?0yRpE3CId4iP zENVQYEqaZyiunGfapEWRa?GFGh#{Me&fLZ5$FV3YE=2xBt7SR|6?Apj&+DWG5+pbF z6VupF%Am@saMGjz?3W{6>f~&dbtR{o>SW*AZ1EQ9@u z1N*Uq?#g29cV(rkqYFy{2g!hSkJMTwq+uqlb}HCb5zjBjw1G`efEf zj&RyY%9J(IeEKT7Qbn4PUVMo`)b`X1&r4Apd7AGIGqESfwl4O0@mcIHIH9(m3E8s# zV*5G6IlJA;&KsRz+W8#s_7^@ZdchH{j7baOEm`J zna?1fmK+~Plc^3+!%?Rzp0r@^9#d{30jpiDZZExG5I-VyiABZO4a*I62T&Zd3IB^4 zkh6_?FxvF2ectyh*VijOE`x~rQluFGQD?+!uQ`~ylmygtF4!k(fID!r)^rc z!Q;{+FMoL!8$AL!nNBdd*tYc5jI1X>$KJ&0vSei!3OfdztiRi>GBsUTQxBK4O7(PA z5r4DCQ_!L;pgCBh!K)WvSwtN_5c6+p;gOoxVVPG~^Az(}H(0Qy(So&$Ex4(bfO;*m zG-%ZJ1vF@9moa8&wW#%-1XNq0IQfx>sfdT49NezLScg4FUMz$eK3D{6)f zu^x?Y)pD(4&v<909NxQBC}rEi1Z%8IX?>In4wVw|*Gdh@>x5V>AtL^2i5v6RNS2tt zR&uhDCp&NHYIIba2_V?w2ue9LOOlV~YcWCUbJ_Mt&%v4u&7;(lX^*(}!s_17A1$Yb z+V9+f{^h&G=$az9z+OeXiMtx6Rs1SrEM-wL#w9{WX2kgBzt|uU?*V?KP~_ti9Zr(oXIpP7jFy zd%%J0<_Ub-<4;t5sO-103T_4ZF|7%HAG5|z4R_56pOu7SlV7c{S)l9 ziQ`eZ^-HWfdkxqdtB3VQU@sM#XD{V~yi%}NADPjH6JoW5KtPF$y(A0vlAM9P9BW;J zj_NQ0_DVW}qxNKDYwRWNbM571OxsIz#@TDpj$C^w3k4UX?s-IvE@;G9jl@O#l?}O; zY9&vOr8;<|W_4T6Ik=jd!_I~U%`yM%7TU>9%WPxxJnMAw0`F}gNL#1$ezQ)CqO!F~ zJfJ?sM*J0wd|lIb!ikvXshxpozC$?_-Qeu9*z&G!RpEhMR9uc-E<}yW1!1K`{IeSo z8LsEFU=GQIImA42EDmhp80l(ulv)WO(&30meCm#*!4~2*wJ_V(If>G?5S?+h7@+0P z)*WS`a8^Hem@W8vW5Z=^QJiCo1(jJtoL`ML>v=EY&tY|IP6<{hgZqk@e?CKG8{FlY zz#}&=H4vmt@Gk>qf(k`tO)$f9*w_>kFr0NJxM2n+I1LW1c4%rsxy8-|CA=PF{Pk?#{J@VP6cmO!@CFXC4uH$`CVm>MkN8SSG(6GaxnNs^I|;Jkkz~s zB&~VT8K?OL59MlJSxoa^9E7glnq-9?<-4;1y~8}AM7~;lxh7kN|(;< zd2RQzWN2NlV~OJ?ahKxvI3ApBMvuof^$(j28^l}UHg^!Bw_Dse8Tyovl|ef`kYT`L z6UvSZ+WLVEJr;ELT9%GM%hJ_LmWgDjVDTDJdYmYI7HqOEy@n4zc5CNdkFli9cff8E zaWEEX+dhS1fXc)HI3o+>@@=6T+bU1;e^!42<`iwYSpQWisKtrZW6UR}MdZ-YZVzUm z_%9yfNMCwuntRPQ&~jANZJ>3Bt=Odyjqm5i>AM;+eR9(WPoqsfI?{GuV%&K=B(bNJ#(Cm6fRG zeFR$GAV_WI3skV)rswQ9Oms3e#2wd4e!@D7zSABo#4 zMal227po3mElSAZ%hRLZ*=n%~Wd~o4%I%7zHrv5%c(P(=Od`+YcX5$>;TD!DZ4Is@@3> z(aGJQzur}a*K|0hNZ@KbE&$iPMF5Otkm*C*W5X%5$ii?|#Kv#=iVj+eg zrHwBEy7Zhym+0i9>tXA0a?qtrhOWx{4PC`B2fEzBu-+oE>d;l8gePDQoAp{s3c9=eK1%%V$Wjz^dBB=4-spvwu; z<$^T2#C!%_AKtE#bJ1neya#k0@%}#;UAGR5L6`LF&?UzYpi5d7x}=T?&?W1Dt{}71 zbF1`>)@2INC3R=fRUm!(oia>-F4F|NlT-lX6blko9F9EgX}vQ-msFXHE=a%bic`?c*sxS5gUCboJ`d?;Nq%gtCLKL1p(lhb-tG zwk#c^mZeJ$Hx7fYA(BCtd~wjtTi^K6EqUnbBQc9El{p?=%9H%NzsjJ?3DV_)G`hrm z23_mqB4P}>l-c!&hi|)n@V-A7T_2~goVH8)b?EA$Owc7Q3tdvj1n81=Kv$62>A6*U zM(Z*K=#sj#=;}4Hoia>-F4IIjF<>&<{lJVUtT@I^7P&sDm*QPgWiGn(oJE)DT*v##(ZMh_6)+N z-IF`)vRsEBc6sU<=S)ivyFA8R9{atLQ9PI*u4nu{j>2=$CH*>dEtcSZhqNqoNgWfQ zOV$BhL1w4tR_Ph7%M_qX>dvC8*~oUvFaf%paEVqG;O@BqT~-_;EsI>gK`${UB*;aV zp0nr@oqTlNMsG8w?NTN~*Y|Px!nmtad@wN-CBL^qtU7cxC?SikGCgum+F}#R4!Ww9 z-S6})=&rXc9g8hXS3Ow{gDy`6G90kLp=-%qdFZMjF^evhIUZfgle~FW23<~&E*GTR zE-{}$R$N|h#1-hKmfZile0lJFCU>04&%14K8u?b}dU8BnGcNUm{-9<|CJ4!4| zR}lpr23-YWo#B854qa1w^Ux)SsabTX%<83|88SN~-7g81sqg55g|z z+@3j_doQCQHaS@~8|uHp$EsjNpB?Sn+t#N2&Vlc@+DWeYX#8n5tKHQCx#aSr4RSPQ zEs+pMEAMUbs)i0bkGzVqau6q-JH*MIEDDt7g*d5b0>sH;ATG%4bl)o7V+olD#K{C% z#F_h9)+Z#qTU2m@B}OQZ_Dr5;Y0s=UoQkW|_>Xh zhe1=bO5p3B1rAN~f0l=)1`@MqQc>g4q&&&1K9NC_<2;Qf_teZjn4E#vYj@`2$g&(B zM;;O-A3P$BqxU@UT1`P}sJ_ShD5$}q$b)0l)T&5OBt_(*=wjUUHUc4+(?hY$9m9dEp#V3{933fiYgjkl zp<;7a8I1k+u*z^_!5=)9`Xq%3FxQ)j>x&&=3M8`cRSGTALLOTF0kyI;?yj5jJycp< zfoiK!t(V0~krAmc32uugLLV6*ua61HJxpZk(HBih?XJ~x zR$$S|7x*-~!7&v>nM~kU5SWWUxBPt4GbSCjH~t2%rv zGLEM=g$Hh#l;2|Gx7hL9 zO%eJ0DlXtxJ}8afAD<1sGsf^M@6Px!llJu!etQTOKLNj&tT>E5|4jUT14q-7=(EW9 zJ6L50yB1@jeEt-Ne>7ErW`1r|rJDwSlUneWPD+gB__S{2H81Pka&)@735$ zOc?XRZh~0+A&%qeyjU!LugGa^t37ULw#OeF+03IWfAcbq5Z=Z4dwL&J zWpc(p%KNOv%k^xKB=sf}%U{(68O#1u*K2@2wo7tVqBv#OWYrgEgxj~rAk=n68Gb2m zMC*K((~JI@_3eG^BLL6gRYOt5*Ok@!#nu9QJmaF$60fULVpF@BvAqxXlv)c4yB&l6 zFGj>>+h`#ltYwk#wS{Dt^DBJY=pO8?blG@Acoip>95Us^JHD<`+=Kl$oOrrBeC^|k zkN0`$>(9!$!DCMZH$z_NX^x|Ej+W!7HHmpA;cs+BC6H5d&5f})*F5rSjq@O|?ASB< z3vZ%qJW}cx<>98~Zd_?CeVl~}y$}iQz%eGLt3LRbcWbw#oM*1s&gaMPc>A}7$-k_e zU6osPeRk<}c+4Ee_t3Lsk;lwubTL!u8lBaTRShiNv-e}lO60p|jaKztc1lg#wv%e( zJI?T@U;W5S_>nPoS7+E=?bzj-tiGi~TZ)dy=dHiIBKhg7UOlvBntQ5bgO^PG5#r)^ zw>`%m2(xBl9v&R`gxkM2m+_VyGyXv98|Ij?88Ev~uCM&|RNC407NHwoiy5B^eRcAw zFo(_D?bp^~!bE#tewKeb)3V3~L<8NQEUaazwBLpcYLsl-)5!6=FIbMnxjBv|jvS+i zNRH0WSux$pk;_Rp&N9hW4fEvsOqJyt&d>FQ&sweym+SFL%T=Z^TrRDr@Vy7EL6_@_ zPg}0${9NsHKIGC@I7%#~;YIx3{9LD;Zn+v=t_K*bp#j^Blh(kl3d^z4<+y|{7&_X~ zGlr)>F-@=5pq0|D{!1B)I_JD-{+@wcA8$BgRljvA{wf!iKxQByGscVNH$D+KpnUuk zIjdYKFPgR?GT)0P=SG~T$_jo2UNrCM#tszMz?Q(|<8P{@>jo^Uy;-{i^Jz@`ctB(R z$5hyLw(^OdCd&JTvLNqDxyW>92;r?j?NC15rGFmez4fD1)T{bsQrPmyE59O0R*?J* z?0K5VwfBWr72%qa&C)Y;HgnYzCuh89o)#@1!NtYOZ`!5w*WO7=;6;<0MY3Kr|89$_ zJf0(o%zDwhP5p~n0a^vB`(%zZBUKMwb|THN^+x7L^KtpnjL*7GZZx@9Yr+q!%96?Pa|qv>o#E&Kx%u25;Y!w5#(UOO_nR}4s-&&M zv!*+gub$FIQp$t~8Z;;_@T}R*PxGu{aBtIq{j#B}K=FK#4wQit+C za1pt^F}Zt43p{J;C%JnG%(LcizDDl)Y;M-STLkAsmxAQIBu_eQY*{VOn!l&IUr4QI zo0fXq)7cSYI*R&t$)_8w0GDCc#Bl{Qudz1%!vXSy*X)P)sQ*39bR%{(?Z4ohCmMe` z&s(2QY>v0SXksqC(`fkG%ZQJ~M`Q7~an~o0mUN}D@tC^RkJ5wY_p9IrX=4M)Mp0yd*9hl#5F9kU(<}RcL!qk2qT~{TG4bKHM3;ZBEwA z*CviUao0D5@4oTQU>{oc;VlrP+`{jeugyLReHgzIHB(=YRqeX`#dNd!17!EU_U#R5 z0)LzL;~~6nvtC@_U%nfEhJ?}G_&Rx;bf=;f42Yuf`?;!;jvjX-T%kI<(~G~&qDby_ zmJ7)?<~qwW@I;5sK0`b@*S1AUg#oKxG==$raT*_UFDAVx%m)2OE06m0UUosLR)dYffR*T zx%#vdH;1jbIou&Phi{N`>C0(l{i2wKx}~7(blmb$SjY$uZ>G}}&sDKpY+JscGx0e5{ zfL}YcKU(#`<*CeV2S?E>8Gm4DC)eQ~be=R{gh}T~^OQg3mp|qWV$0a%^BeU4xI z{e!jKoW&C#BMp&4@NS6mB|^B=DX;Lg!z@5~@j;vggqNM*{kwzP1B&G8^0q$aq)8kv zv;epL;cI_Jd;~WQ@%_rrkw*}Ild&FOJS?UIQ^XjVfbxb_9uoLnz-7k!n;89fH|(*j-%MiUoy`}P3B1Q zo@mt%rJnGb6dFLY8q5DXvk}yrBnEGe8X4lvQ5{a;PjZ?3Nd_+3W|KGOFOxsXASPx0 zB!3?GlMEuS2_iLq%j7H%A{%lefAv4eG1i}?CK7O<&Ns)OWR?qgf!tTi6^!rVPx6JE z<>lmsTz`@f$>n}BO8JgXZp@)n4^*g9sDPUZ1AmexwfsqrXKO-#lF5Vq@i^Ci=DwTK@~$dXvi`;5j+&@yw(~Aj%gB;PbwdtSC8w#1ny6|h{Vr6S z$5Wk`LsiLXs-h;UgYQnYcRba%)@L=K%QPphi zU8s8Fsd_n7m7Jz3YNDzc-n&rk98dL)8?zcva+<2BiK>0ZNLSsXj-`k^f07wzlRw1E zAcIF+EYo<=UEt)qwLRY!-{=>*)lB%dT4$~!?dH{wO5II;w9INuV*VACHr2%UTYro@ zSYx64V&(nO_PBg5C7&=zCQ$Akgc`3Bfrv^ zbAMxl%0bV+TAN3_rov8olK%F4D2r#7!DeZpB3?JbC14FS=D{dx@6o~19UcOSJ+$|I z{E+>FXs@Zuy1jC9v6G=btutD+efhNh_EYo{|Mnj1e%q^Z0Jv-(lB)ltQ#A^Sgm{Uv ze4{2hVIPGLomDND>?@ASIM^GF8_A&bXp_AZEF-;+AknX_+eok>067~+())oUG;rk}-k^Ns^_U0MaS6 z%_N9-Rgya2UvylNy|v0RJCZ=+8PXnwb65NMh#g(ZsB&Y($Ec@ApEx89`Kt zUilD{D7_2J6#>kv72j0&NTexhXRhl$QrmuzKZ%18?vsC>GVSEGm#C-bdN#cJE6nqv zIMj~6F~9uW<8V^=#Qg9r;sKzC2Iu>Q$9aipCr%1yeQ54SYHvG;us_AV|7nswSF=gx z*4?<=)EjzISK|ggm~iXVu+YEgIQ}dX5;Bt==ZVm-?A*e z7?$y^ct@mZc7LqtBJMmr)OYNnI}e_5?4o}^$a3h?7ch`AMH8n4-WBU~Y+T+IVSFTD ze8@2#4ZX??Xi6|`}%O#a2W%RUg#c**9Ayu zyCTVY@ShT&XZpL8EigVhOgot@<{&;!CYKds{EPUs07E#FEUu@i*npn3qg;`bqk+I$p|hCbU9v5p9ziTyZ;F<4k;R}zgO)w%`pFbiJdc!M!Ggkimf~M&= zF|%dGocknhn8L95)tZwZ<3;LFsBSP4-^P2<@<)PpC+go+K~;z~{bM2R!Vw}BE8iRS z|7`?yfe}1e4$Spuo#HM9;IfdR@S2-=!MV%*;E~)votVWn3r|HuBhip7zah`^uWNKX zf#r8AKK?)~{vwtStR5}DVjvpY?e*7fl)11sX763m6hEtj8*Vx$u{jsgY{VMeOA*_E z%T+G?zKUtj8CBD_WUXFz@@p}ioj&J7i3_y?22IMdq)W${y^ zp}PZ1m$Rtx)d5_l)gtJ;row+_I*+OAs-~~P()ZP!%r^7gTp)4sV|ndv&HQzK=TkQtO(d+(;`5(;j=By;^XjUb;p@(0>c-@m2I;9$He;mt zvze+yU*=Ztvfou3Sa++r^PpP|EMN|jzZ$5x&kJ#EX5eRG8S8szRI*~%m|d|Wt(deD zWn)7FKZ()S7;`OHs9gbzv$GS5?2O%&CRS>DwTb34&Hy zV6UDab^U9=+MRh|C!c+jVOulEW7n~VUD(rC#2(^$`?-MLxl?xMRQ3$EB{tg6^GjHf zSn*6}-F*6o*C|p@o-k&PQ_iuXeANUAN6d9L} zPKH_I3#Q*@wb8kSOzSBqI8RS@3u#7GiDIK^MW=7LsiV`evVOSz{{J zZyFh85pYv`aT1AusO)$Ltyd z1f4ek1u5Ey^c*pbf<9x>5y^0BOy#4%l;m%kNJ)0lHJDvavoHT|4r!l+W z4HQUe+J-0v_{IU2Hg))&QXo%KAZbz+Ptp-62sjYkR49uAS56uQ$}|oIORvpEfwCA1 z?xDHCE^1RjL9>-&9!#-PFOflW&}Tml1!{7G=3vl%8VZK^nTvv?J#X45f_|?k2?fIn z{SF1tAJG#>^T-1VdI*xIv>TTldM%3rdz=6T#;)Hfa!|Je4>SjoB^i2bA{1<+@k=iy zq*2gfEIJ|?PK~L26qu6yO%o}}96f=8KFVf8Ypc<;Lj(xuq%jmYjdgXB4hp0+P|$5p z#sQW#b@-i9AWu>tD3Gdnl8!(@z=7!IqQI4tMu9SoL%~JYw2k*Cb zS_booioxs2m#k_thRXC#*5LLyfx(SAT1L?c-%{Vec7pokj7KIiwa);|mY)KDl8G6{ zmV4K6XN+Wwe2uZHa}S%w>A)PoIyEFpjE=V$!#b{ISPn+eij$)A5ty{nep+E9RJ$kX zhbQR=lS&ypNed_~C{h$tf0nJ-u7tEnl_}Sxo|^aXc9;hBTVq_ZK$wF>FUtz-$H!v} zLkYN5fJuu3ld_%MOj;6{6pt%r(uy3Dwp7DffjIPAnSRV89VFVb)4wN8QhAeo7U@di<2wC?_aM zgi@c#+RYJ8+fA9q+3gv&1!xa|vzxM*-F_s8lZR6G;c#*@^!|&cL-=r1{}12#$dvqO zdEVqGGb75(k#Z(SFU~XfkT!sDle1u|WRoLE+Z<^txh9<>E&Hn6Lt5dfJ8^xfJ;qmC zxIOhvJVoN{@a|t*aEgNMsq3GVrMon8O<%ER8yV#tvey5`jMVomL#%{VhVZKWsE$ct zu7}7s>;w1`%Tf%_3=egKwtW)UjoDm~U3iUrC)!=I9=rQqiQu=g z?az&bW%H+fD?V*C>vSY6eIqrE6ujl=oA}n(GVURN&(@9|EPArXf?Yw}XU8~PVsJdE zrq-XfwAP>bbuTnBH$Ls2x$$%DN|h+z@PD%)F)di;i?Gc1dU*9u_V7~qAd6~S8PW&J zaQ-2`O%fVBS7hC$BNiyN?QAlwy+bkQk)1Y1!%F-I*E3qN z83AjxiXwwYl*d6KQk!iov!aNjA0v1fZm`Gw_*`z}7oK((TVO8b<$jkZJmFGh=g>wi zC}TY9W)5zE45BF@`S#^jjmAtM(&KfTN3iQE5;%^3^;f4Bq}J^Qege%u0|Lqxe=#n_ z@NHI*<`NERSZqqbt}k;AX_E%W1I$a(v7Ga2ixWVcBY@-!PNql~v^Sa~&}5cakkA|e zp(^dk#`!cn5`-&mNqN@+KFcXKz+d+*bK8|a!2jWp>3cn9$nQ+okRD3g zwaCsuVlx?IV`b|8U1JR-{+xmOpn(j=Wndr`m^P4-(WgcE*GbZ`ob#&Ve4RMQK$0&o zkaVFwk^ln@S&$fZ1f4WC1jj%UB-cPruyj)|I+>Rvxdu`ege^!7;r$Z*_c#MJ z6Ag!bJf#h!C^FdS+0~$7QgaM6V2?7;Aipq>MwDFDpur>ZjS%D+XagiM&_)Z^_Yfp| zzhMUI;CGIJR5r>~tTT|iBKI^4N`$=11TAr7Uf^p zN3OA)^Qz-~oj6AT$rl*N@e_E8ZSOR;65WoVlg38J7)UJV8psKjHjwCyGtgOA<{C&@ zD7YXs6+vS-EDwgo_^)nEo2HmNB;jh^TDDfQXYC>{>lkG&P81j7`f*(csYugFkY|o+ z$Y2i7g7x(T$&a;|Im-B*V-A&v>J)3{z>9jx0Jiu<+9T(+R>oY;pQaUtpOIF+21_L2?@!8~%OEY?WXVOkG>`kl zg}8e>ry3y`tB&bJY&;i?<+u=z@{+f$FrB+mTjnMb6@!)(>vUd}{PBJ0yff`;v(2tSSR_&zRgi%#$e`^`Yf8 zMXcBBpf8nLZlCQCCU=)u=G9t|j`_B&9dDtd_Ow>VHOXmvx14iJx^lYnjN9iHURH%A zNS?ObOwh>h9N3E&1Xrva{6di7&|0yEds-EmJn>#E(mQAZY#>5o5zD=~o2Og>`jna# zV1P#oue8jowIu@q+-{6DJ@&M=*Mge{38Z~;<_S&2g;ERIJ=F?_0VW2V&-(m6LRLXI@w_|%p{0LTD7&)t~GlGn;G zK**_ewNvXF82}f*(k>`b0YMco-Nd_!MJsNX15gvn?8zLjGKZ7Zs0mU$Hk5u-ztU(b z7&9qv=B^x(%QQO4e^hVBGANOT{RoaRVXcAUHA?!Oo;KI>lnb2}rDmbi$|J?QU~RJnH+2vI9g)q0jys*aew38tr}=_}xm9WgI#wjkSxC==j-5@>T}d=6 zdVBH91|9dpCQD_HIVq47Zy<5YiNCTUqh+ju| z4^8s4!D!WirH@VwnP-1xkdZ>Nkdbf>GJVF{YU3BkND;Y^ami~NRHh%ObG1|F8Yv#g zNUK0b1q6^WspDNblMQ5sOpJCr)J+>|PYGEI$c$RBUYbiinuUy>vyc(FEMz|OKMgX9 zG|0S#7fM(wrg$LJOf--w;wcw06-v!Qrjkb>v(YlIF5n5s%&=fhi3MxREV!wf0Mm+W z9%MFH)cPKRWT@F7qf#@Fu_B$P)jY_ESkT&Z=vBAK zSjad&vyi!Fi$O-D{{YCuDJOFXE8WUSI0u;)n5L!~zd%Nc$c2ncUR$g({Xm_oojTV@ z@jymeRbQkmZcJlR$DPky9F;+mR;F8&8KK%!Le>H@Jr=B&=5isU=PYDIE(@7L^=6za zCek4D&-k%~wE-p^K&FgnAk)WFE@YBQ%|d2`M*TvXGH*4l)~Hni^;P0vRbH7cwq+ZKcXgt8;ZdPbgQ42Qtzs%2fdYWK3$7YD9}K z^8~auefHGuG@X#OfXt8u>!rEe)<(}+$cS7PGEJ8lWE5$T>A;UBtZCf^$kY=JWRg7P zLZ%qzav(ERB8q? zR;1s)nDjizh*$s_r6&LW8H0>_VUv^Kb}>b3b1wn=b%$|kxQ&UFy{ZxMH}PwE_(n%r zgAs8HG?G8M-O!^_Ku-$|P77Fk%+Y@q`h)5D)b@!7$465nK$4oWK$6G~NDY(+kW31I zB=zJ1$tACqnXr~q@@l8#yvuu3Kma5YmoGn}#b#HNsJ+FW+MWIrvLQg~v|zpTnd@*) z&siXeToyfJ1W47Ed385W0IA1< zHN6(B?X%#fAp(FTvUxzNw5atSLGpzQ3`iTuoB@&*$t889=K)E?0w5_hIpb*ql6zs3 zli+qSg`sT+GzhYHgrMWMyc>d)H9$}!M3PH>Zrzs1gP_JgU@HC}n+-ZrOcpvDcyiDw zrXZkWd;=XRBo{g^dF@7(>j!FG-NzHPRR*B8O1rc{DjxO=Ee0;g@>h}B$L_O>Bz8mi`|Ar_<0FA1u@3B`3R zdXvj%2zYOUJ+(XiC8Tt$-D|;mX(jdBthM!=wYJD*tv$@10IaP@v-UsTY0cXRQ}k@} zHq4VXZ|(K0*ad6ANa5~sb+?P!N~23&ozw(By#l@3tw68QS~XDCLNv{r3JBy2mX{kK zjeLs1x`LintVrMBwBD@7`MZ{ z*mk(z;C8szv-+C9!(DM4B$vJ#_}L*37LCWSiDO1~&pK(1qfm9JZv2<4DFmcc-8%GN3oTj z{Kc1T<4CUv`U%_k%CQo^U8H0FH5D3I(qbT`3JR~$v7dRK%K^DhVRxEyBH2xx+ zM?@p}V)?6wB8MpCp29QYg+Id!O|0sjl~0-5j0u+1IkhG?RBVTlR5fkitjA$O1SgW4 zk!b>Olo&XA95_^ZJ~$K?fJ6KkILd zafEX6MO0jcxan^n<>yB5kGslhekT9ssKan`uv#CyEMuxJ$CG4U`APE?c&;nIbAs{} z7pSO^nJ3MVNmK2lX@+FJHWe30)51@a<^z&ucnp87q|I{D=qLPj5SSmr zM@tXG-_>7$zje1#P1=8xx|emGasCJgX^HXZ#2!lXIvDlOYw()pRCAh^HdeK?<`UHKdaI6&ud|olS)D>bT=(^139_dc9=75_44~_kLyPi__1bMiB=J5 z`f{#+M2n{>g51&L7$y0qtqEJZFTcEJo6xE(<2>m8K_7ieo994@w?tJy`iSa4n| zN9ky$&cl<W|;S?2xP zQZG%QaZ9t>EPr`%^0?D*krzD8;G3$LKXfW_%Phxj8qLPrrz<*1bo_44J9`{@{VClW zNc3o+*dFTKx@;$};%uj>TqqWWS0!=! zFU9G|rQ6aTML0`(>HRv{i946QJ9u#=hcI`tr-Pk%TQ56l3j*nwP)*zHV>zF?;Au7| z)=j-T8rn(n(iiZPNN*!BYZ{F&wo7J&*YulsXCdCPp8wZev5h0OBQoNReq7=`3{8nA zPVcpYj7)wdXdhO55g~DQoA;FdXy^%&m%dm# zwJ+_XXVq(nwOQ(5;8Lw&S+;v=vF@e%^X3Xx13GIEl}TEmT~i!>?ew#QpAEo0Ii-LG zu~p~^=sB-rCn;N^tCMWx?j~5J+;^Wu?v63JH;{Ik%dMZ}-bnBR;JLOYD8p4<)kh!E&;|Gr2*LzgK-Nm#*s__;}Y=e$w|As=N*TX&P~=a z{EEikW}p|qxH<>M&pH_67T(W>SIsI*%k^=7nOs&q#bO4( zkpRDv4qs?iN&m|5JA>=n2JN)(lqI~=+F2HXuKZk^|ns>?zHgCvc4E*(x7T{Mui5Va;{D%G% zL~b0DdziEUzxqk;BthZFp#9iPa`$9&gWn2=Uj@nANuCtHOFomque>DU>3+dztm(DD z|AZVm0pzj?fL!MJ?1Bz}JR84}4#=nRD;hsAF_53h0dlbnJaY_?t$q8i0rK`p)x%?e z{QdyQ_%Cxne%OFq!+pfeCn`}Ty)l0SR1d19@XtcXY^z-V(X^0r_{GlcVEc<)xNWx% z2=7#R4RadU$7Fzgy#brvXO{undY?ZM*y?!je{krskK%a)-ZSv7shV}HgLl8d8}uI< z3-7m(Z}Y^>b1y)uxpRYq_aJ2R;jOp;-b4JX6a>HWHt_DtLJ)Y4kQTsOKZzM7FnE`q z2w(@s7x`E0S zS@N@HGRzp|XZ&|KZitreX0S0o+EhB1BlfW+ze(a)V@{~{&x>MBrDuAfF;TSLOCMtm zNt6~OX2!%tBylDO4n|j$W8B@Wdx<5l{D8+fTXBLP#inUhx<`1)+ag^Ts{Jga`(mLa zb+&@eXQQjL6%*9iirhN;&5xwv+{~~4yXtJ|Vd^YGX6x*lKT8X_ieLZF*4ZJevxBbA zYR_(domCuzN)4&B+qhfx>Oc2UXNSks!V=PgI;)@LE+eoy+k8BAHaRAD1!=*IR6ohB zP006%_8H_JTW3dHovjAy!C~_clV{R8y94jYnQ_(j%m@mYA{t(eT$N=~>8k9*o_|FJ z?&){18Md>{j6uao~g1?tFmA6Lc4OKJO=XV zDvS5i;EYhV%03-bSzNqQWmS;888ywuY5Fd2$^EX%MvtY+ZjXghRM|?Z?BC-)g>JTT zf-1{mcD9?n6Mvnqo4ti!@1@Glblt3`J#M@>120zUcuLRI-~T_;9*q~rbhDcFSU1bG zhi;Z(730NBH;XgE@!jkL*6f~zkl8BxAZsB`$h-M9uF5hIny{O_yD*ZNbqv|3S1^3M zo*$*BY4*b)<81!?<%DC$f%iD~IdoYm>sA#s#jcM%eIH(0rq+a`uQLOhdY?^z4lPaP zPJj;6!;V^QE%<^>fU2o7`L$JXO#D<^J$@ckjVgGP+FEcz?gXfww4k=?C%GF4thR3Z z0JXJfOzuX~g4(K|MR9m$(yn2M9VoiJGvJ7jU>DP82^!#f?mv_DWyS>l=iwN6eO|=K0kWBSC z)=u9ETaLdBYaB6F-wcNr1RT?>4Fz2`DONOFWni84G`f2X%SYO3j4G!Y-q>NnMrYmUwE{*59Amp z1e@hG5tom;@Tz8s>ep3I(AHGvwl!a1<X8o1mE%TEZPC6*c=Gt=a#0-PAYg;?LGieH{PBOF3F>l$Zi87c)WS^~}rR+bhcW zPP#Q(zLl@0;(=iSKEDd^Z>V7b*=zjS$L!x#J9Ssh{%v~Qoui(_u$5-mMrYU!XgA-m ziVF<8k)LMRO)q2E>M^G3AuTYheqz{O0yFHD(=er<{62hx#7TZd&PTFc_QXL%ivA^1-Avig&%_ zy`H}4Dr4r0u0Cz#ebK#QAo((12f4E*-2O{E#==T?)$>qhDBVh>39tDP^GiPS>Rt8N z;cH97L~vkgjJNNwB6Gcc*W>N`?eMkx@dJyafBG4=;ovh1`6sDXCG0QI6qV)|LLS`)gN0Bd``cf!Vw=! z^K!;_56<|mEWC;jD6Guu*!;GouX{iMmIz!q1l>q@-PD9ZpnG**1b*}<3ZBJ>qw zF)ZePM_V4Syp*=$tXTZvSovtg|5=$P0(?Qi_k4QgAoRw<#O%4uIwG_w|5g_-eVpG5 zBcTEJc!7CNMTVtM1`P>bSOXlMgLC|CEB-82K7fm{{)qn_BftL%u5T!cga&K;Y2Q9G z9^HHp5p}gx6MSni3mDP|N=Cleab?&JeQa2xDGXjeS?Y3kQ#sya{!wi3sf;eUHNCzO z4c)4>5G2N1Dxzy|1_59C8VTfKK90-Ci%0Zb-Yt$WJW-BF)8!v5h%R|ibD#N5(ODc= zYMHXozhRcu9?t%+`JU9=c7U%Tr8p;^@Be(3Ds?mwZ7cM)zIX%`u!|g6BDm&bdP0x5 zj$e={T#FXK*uuo3>kkI?q-tj*{zhGRA+7Br(ehof@<+71%u;gAT}FoOL9j)J9V`Zh zS3PH_b_*?u*=@<&eY~HziKVg2W&&D=Xy_*fn{qGqSLNV$sbwZ5=*hUZQZlK#JKrjE=*4w7ie)FgL}@chEB~ zOq~0@gTaULswcQn0Vv-eD}OpxKE%Ze`V<(gdcu9PM{bcJ!xME=9|*6SJ(YTsn0<3{ zN5`pDMtB1@CTECQJ1gV2Nd*XPaaC5e!{7P|dD*ozf%Yd-J@*8K+m}E&n&=Y7laB)`bnIrU{p~X`o)9Is%)$MCrnHe@XAQlQc-`BdYo|6B^Xv`HQk34A1-M%KT&6x364Wl@JG4HnOgP=whnQ zukB#{!L9`2x|KqrYO88$ubjHi_DoD!K6USD`)r@Ylw}|DH_4PxUy0%a*rO?-B1V65<( z_e%x7t=Jjp>>EY2$%v$iZ&Mw;3KY2sZ0P`fE#PX#5+CFDfmH#cR2#Bpxlr=|gR4bu4~) zX@wFhlUqN>HDCUs(iv_D%y!=V;qPGbl}~G*acwChqP~@1WZ6bq#Wxi@VP=Z& zmCFB({2nVw<$NXwu}s?#iQib-!5g|!rX?1?wzQRpI|GpOUGgr7cv>n7_(M(Wpt*m6tKtv&uo29P!!d6kf9w)v7m+#1AmMjF#UW z)3V?!hlBl30SOy{dZ9Pvo<06X@HK+5W`btPp`>AwlaonYg+x~VTOJ4Y8mCC|P} z*f8Z{8;6bIG&a2W)46J$S2>wo0(7PJA_8pY-RY`{%a}V|zsRKQ{_wTmC*F&5Z(E_s zqOG->x;-1hEjgnYdgjm$UFZ7#I)715VQqZ+9V~=Is$O6E+Wf?_jzaG6V6a@UY{r{s zhA*w{kca#$3$N4ttNN7r(%$1QoG_lX%y8Q=z(BkHtO2^)U)EU|pS6xLhZZ_tPwk~G zFhBH(Pm=HSoqHb`FVw%}3l%}At>J5JJQd#x#vne!frmm%?>g%;v9$nYoxBRHRA8Fsd?8C99Lv$C}e&o#ftY6j~>gPJenPfNH z3@+WA`Z3#s`5sS{TAaPtoW6ZaHO=9@F_3!I`;`yX`}m!_s{jG zUo|Jb=<0)5k_xu;H9l!wpS2`c&K2^}=gQi36uJ#uJZ_epDB8oFU)%L~bD!s5UR4aA zs|vB{9kub=pB@D5Brkm}^>xxu-?#S>Ve)bo7+*Xh^>Gw1Ke6cOe5rmuRw^&Cl;R%> zUwfmIDi-QDsqA_^CzS;H=0bnb^96JLnb+WVumh>KstO_1v~P1Wb5P5~{ilUvwee_rz;DS2-f;{D2rr>4&NIZZ68$`|j} zvEpTn_FX5Q7y4bk(H8pG+MM!#huxl}Ud{J^>F6gGwM}5UJIR7l0BwVb)zP_b@kEbk(*_+yc#E{zJX#>$xye^aY|x4q3m(g(QEQM;;7-R0?F?xoVVq4|kv z)vQgXcNjl=@bp6wuFKI5=KjKHV%q6+9+%8KW?o`u8-3v=rxdXksvo5_TCqI!kJ_IZ zUdi``$1XdCvo9RV(uC>CN{-R+J>hAtVpn^4Xj|LtkaoCnOY8`Fm%fN}xDUgJHJlg9GVtv zSA2yJ3ATvJ(JC54PC9C+J%r!7%2;R{!wNnt+eaN1Tz4;Mn)#uHO*6aCh@abiPzmaw z(+Spt?9U`Gy^lMV>`gB*pJm(Bin0hq`R;`Ic1QgGbW69t_L`<2=Y?L1G|l{ve!fXN zxtEv7ZSJbB0JG=R!6u>iFz1Ju6egf|AJUDT`q+jvfS=gpG8UG)L?E|^6oiiS`r(|LKz!=yLebBy1 zaC9WR@b1kTXL(IY!|^(qd&$k|W%x+wW-Y_V9Ev0U=Q$)?=`|f4T{56G-+BHGQ?-g_ zljV7BznnUQhk}*!qD|r0lI_Y74LuO^uear3Tqm<~8KOdMi}`V_xPja2&rAa_+Vq*& zl81tKB2`z3)XKXB@X!IT>bEQ7v@m66m+y~7XetMxqtkN`x|auMvS;+`-4Pl-sTEoU zLGa%nuPhtvGT|Lw-{QMk2Cpyj;DrCRe*NE#*ROD&BpuJ>cujxC0I&Lt@!tin9LAtU zy=ij1ev24N_=SmS zI~OFTKS=HZehNVc$A7~C>jXXjWCK>aEn&09dtTy~rS|nB zyPDo-tLfF%+9|rKR9{KJFjvYcoBrvyVm})EuH<*OR@8S6u+?Y4w&Mgu$tiDE70Q{o z!G7y)kGMX)(V66p!Mr!>No6Q$Z|Jw)Xds;3|AT_$`Fdk0=M9!P2N<<;S%Q72^!7jPHBEb;2185s zii;4YBH-1n^i9gtlCJ<@m5vrENDvOi~0SQY;^EGG@i`SxKf)* zJxMuHyM8OKh0r!}-Sq-*jO4x1O6uo=H}qR?bP(D`t`5C1n)gO0shLdQe)xzVdWsFxM{(0itKZ|B}Cz}dbT)k{sP1WP!_FFWDZn~^kn-KSf*UTmJ z7OTGfoUNx8`)$<{Bi}@81*I|D;vGXCv`tE|6DBtBFRF9Z0f7qjmFcXAtdB%fA zFVWok?8Sdv+QaLff1{E0cv(e7+WLy-CoY;@^hUV&JcyUR#p=rO=YFbSe&Upm5x1Ou z6BoUM9*b_AQEU%fEA?ae8X&}(S-_eB?m_l)xYZ8CpVM`w?}fGsA8Q;y;J zVrtB^1H5~Yy;~T(`?9@T8*YBE=)&6Yo&o)NnCxfS>x=C554}+vF0SMKnZG0X_*x@y zlo6;6Z`&pc?7}FzurAy@T*P9vXbkhT=NY{Sr8(i_p@bCgSHyXUG5u{(I`?x0WZU+{ z6c$jL9})LDqrT_S@V8$7{UOd7Uit)w&-bv!Z4Y<;I<0zsphk2j)q1|uCGV|##H->a z=h9OzyNFF$e5Q)}ZH9#KElF%X9NGVCupzTYLq9e<+ugr!X!p7QOJ_bm#w7Ltxpyo~ zT=3h17zfV|-SRl?Jfg7wQ;a&iD z74AkurYfLZF-PO$DqefK;%(B8bj9mY=A4SRL5WuJ*7EB;RXp*Lu6U#3DX4fO?sul* ziSMx$&p3A#uUDB}#j}PbsCa5zf{LeltcoYH0+ou&t$52b6>nLl;t8>?;(^$At9Tb% z&ABL3@xGd_co)2fil>TZ^`$nbdDI_Q@u)(7SiL*X=$xCacV}hl9h4@icW+Eo@1#`K zJJTYnlV(-#q{<2E-RqwJ3)MS@C9m=S#j*8HX3o^RC{)dQ9GKy5Z|dDZQ16&cSiPgh zMME#Xab|ei^!KZon55qIKy_@r6MVzpI@9W%1F?72Jz7RT@9%29TyuWSd3T?_FLfpr zb+Td0j2Svi&=U+>RB^`-TNL|I{%e4ss&9kQy3GtJN_aan!X;Hb!e^C}VT*q24Rr_S z-p|l7gj>G#i7wj&e?>X`iTh4c(-P^o4Uz~;B+;qxySX^$4M{YtTu7ua89tmu+x8>T zYCfyh^w-s6+Je*q9{8lv_9ns3RN{@Cq&_}?O(yb28+*<$k=bdHFE3F}*xJ&?CTaYa z@ZB?JI9OZS`~_otQE9Wsc8!+SClIjyNiz24WTa0YvTO_+B;O~=FzGPy*?q`&?udzW z{Qt+^+rY6CyBM4=d8*o}%yWQhiBN=jQAaKZ4}018ogxkCYiKpS36pYQKF_nn!fNvOM@ z=lTCX&;Q>KpJIpJ?Gr#?H1sh-7Iy@Bt^SPF>1Sv*!Q!)6qSJ#5tCxuuVAht zhdJ?G8%R;BUv>SG;#-e_*qMWf6obALg5J3x%qYb?N%8b^CPk;f{UiEl;!ILBn-l}S z6eashQ4&Z|YEt~=HkfP4VNQIPeZtsV&Mqc?l|OkGQfz+|#I_tnq!{p}5cGZs!i-X! z{t8kwajPEgb)3NcBMZHmrKmS4I!%g#@KhlR!hsBhCc`HrLt_qW;<_l1p-8`qyCg%N zWN6AkWa!xM%OL1I@yIMPT=_CGyuw!-k>MtR`$ukllEHcFYXxgAiX>m>@}tnoxskow z7(V2!IybWSu}JGSHYMynIFepcz*qOyoW|z@5oZ3cCpMJa&1~oD(9VKyLXyY3Mx(|kP??DgUBP;%_eKxHd{>YYzg3BEy`$X<$i%T<)P%d;gYJGf$6lNF}wd zxH>t;#Z4cHCC9aIBYSbvr*gLgRm|0Ppl7(ZiP1Yl`sBJ|XzLv<`!J`_uA6je)A&0B z;u9l2b^T}6^luB^pR1M!E3BuZqj>U88#X=|Nxl+GT{HuSkyJ%4hu`rliR_eS882N_ z4DAdYMp73|;_%D~;w8o*)b$JqSAK)dZSG>Lg;Q>(V!Wl#+)rF=btEO|Vyno`8dc92 z=d5Cg-L+QJ5KpT9ckh@Ww(23S=hC#$`W8w$@XNKX_KW%NUaoce1by!1TI}6j`3>Gm zr`JPtiXPrEQHIk)6g@yZy&fQ*q=$$8Cb%7}#`FL&df2nFIhy*stNtTX%)l~Kt`)AD zD8Sq_n*2PKe}1OQCwpn#1g-N@i0eNa3{k4i#8;~))`R4)r$t(ytLJ`5oV03BHLoMw zwMz%dNkHD**=*lrKWemO7)>o_qiE_&obzXCJhc7`der(VFT*-l6HUIz<&#fgYLfRv z(hGJdsaIiUefB=VI&WoUzQ-WECB`1aI(BQ0#n^9J8_9ny&hfzf`QL!G zEX`ckj~l%6B>3eZpN(CftvK`-*V)OfC0tzuZXrydB2T;&R5i zUwJD`d~xSF@zA=Re(CXw9mdRF>XQpg%(S0q>Z?cfdf`B=rsg-1uXKA9h# z|6rtH%|GPXrge|($j*Y-q_P#%i^JK?Vz-vPTZ73bPu0w( z--ElW=+pyLTF*=(()l5#y$-o$mX^Nj1zP&Ik86WS9{WNxgrwO{oe|92uwggSK+`Q( zV6YoYon978y(PkpzHD2MaRGhn(_<0FVqFkw8m80Wm%{b2PtozJ2XQTSu^m&Swfpt2$kAF~ z!{v69im($^^|GJzcL11U1{JvQF1>%YkRr}vblz=BrWb!MmfUQ^O!jYHt5?zv<jnA)Z31xLv(=FFEH$~8{I$+t3>@WuPs!uq&;Vl(6*wZ~^YM=;(7!!V~{QjZc_2E>tnc2HyDe($sm!)JC^H1@-UnHV!zNBST&N z7rluVi#*0;LAqebJhVde9}hfq@6yyt(LW9ShB&wtUJTeZIc`$t;s<0$1(Q7@h^ zcdf~r@YfwC=YHHrxd_b!aLk7;eIBRK`&0``(o}<#7-L>TWAhkO6Q;c6<2IvPamR%p zI$2^x5G$g25#JN??_ra#CKfC1IJsfLTWHg@xSh9RBwq2S(4~K|w<$SG3TIKQ)GAgQ zBV47}6d|vfcPzQ&wuSw>zx_XqgTN=eSGs43hmPIHA)S+YQV=%W9)y?3?;Ohq3kyJrEo+c zQtMhn7augldlesCCHiZ{Me>S&E>2J3y^f z5a|@${9$5gn>9E2!$C-W91?9_+V~`)bMiz;y_;+}KR&@x5(jhI5rl*y{OU68qR z{}7XgBMPwxEW~yaVh7WWOoZ68p-Z2@h1=Cowt&kdUd2%8(tq>AE~2m_;`}bEUSUV< z;dg|cJe{x`S(Ba8n5745(u+&B2Xb$?^gzw(fhPRLcP8(`pUo11M|g@r=XQ!jdD@8P zUD|o4c#1x1kPOC_LyWPx=ysTM+n!Ecu_1hn4@kCNRGPQ$&^=4ki~Jj&-g;48UdX-) z5o!3gmKJo+Bv*eYpWzhmLy_QfCzGy@ja;%#nErZ8^0a<-1BZ*~OgLZD9!=hPYoW0a z?}#O9x~aR9dwT~+55h}3u**BBZV&t8V&O`^49+i|tiusS44CGGHjW$p>qOZ-r1GNk zACD(rbVm|7_7JIflp_y+pj~0=k!{WV;P~MmSAHOt+~b{5%khUKeXfqI3~^*-j3XHFAXevq9k=QQ(UtBaPU z=tGhPf1*K&RqS3dN}xR+>=K`+dFz75>5Pu3e!MXB!Gb4vX`{SHS3JG@9aW*yg2!|7 zI6uy*1sz_Arsh2yNzT(Xm^!R5I`T;}(Zj)^v>wNj&+dM}Z`=FI^eDT4TV^v%LpI%# zXyTdN%&z^F+DIzz11{N2a=`+|JMa1_ufF9rSLDjuS<~`C;iOM%;l-vc?+GpmAHI7Q z7yR~942rhla+CK@`TjSmvL^g*kTyHl=RQm;>U{2>@IE$)mT|b2z9O`Ar+>^P`ADQ; zG@`|?axh}fD{0ju$yKA=AGyo-KB~a4xvu?eu8lswAJ-Z~c|&rqaQ8cCmgFqd|PHnfss2c;tO?`Bd0uYV+(uZyHt z7e!NxwnvhScG|4O9V4FC%Kej^z&gmaCr+-jRzl-w`IQ@Nr(?6J-_d=AKT2Fx0 zXsVWC7ynlzx%h52+>(#ue~<@EVLXbe4qn5il;)xl;ReoML^{X$E6w?zbIxBYQaQhn zq%V@nD|N{_lFQ}%#a%dm#5uo}$9EKX=KMdSB!oH^XHoFz&RL=${Rg7pBNhd2e}M1* zd1m51IS`-e#Zg+gx}d7{V%puqs`i|uhWA>6fE=~FZjyhAZkMwtxWoBEq=5!=(B3Pq zr@Uyx?P_s#*-Y{VaT!himXLWZddW`Z)6NeO3z6hnntA_NU{8~TNiT8>IdlS1Ix?OEKSumK z9L;~7ldPkJ5uJ~242gGfEaGpOcB@efOAE8MjR*ZaPHYcB7Cr2MQ>Rd? zo#Q#}nJ<<)UsOvsweeS8&dBFM z`Qm$ifG;-ZHvTm&<#JtrUc?ktuA|8(VW7TeZ`$rMzQZw8-gi zRE_Ju4_l47Y|Yjuoj4nRuRaEU@3uavGS82XB5UA-_kpS7u}3Ci;=eI6Q`G#wePniQ z{Qu<0Y-q{k-efei@&5xOvr&4+oQ|U1qM&X{6bQ-hC=>-bBeVLyCkobGPZV^xD6sO} z$jrrO?#Rrdw30>t8J8Ge8uCYGL6lD6uf_PQcKnqEQJTY_^8Ci5oMgH9dwdi8wN2u0 zqQ6ULl%yk5w`Uz$CrkJ<@^`BE`)0Nyo7|t35U+f=N~4LH#*Zhm`o&OEJ=uR}D5Np28- zo4*5pU6c4zL*fs0m4rXFC)Pr&yLA@+J|g~(v=$<}9yzg)?zb1&^>lw_ig|Fh4fCeP zWe3TZw+u74s1G@DoPjsIzj$Z<>UlmK$$khfHk!*`VcplXK0#BW)z=1J6KldHIW2kr z=~_oy{x5DF&Gz$fC62QZn|bV$3QS`*Hhx(0cg!Nu7all{gTgg=S_b$jV~&cN1)V@(&&sSIm`isAuh4mlZFV^28&Xcsw7286WUjj_k%t3=y$%1fb{U`YyZQwvO zt9gZX1lm(oT=R#7+^$t7z`PLmB@KfbVa=CYVaTjX9Ub9B@Sbf4tqestD#=}z`P>g# z@ble=X46$%QBzRG!p9spOOW2|FCHupbM5Q0!M;K&vvc_zR>`^PrYu2zl!cNK-E_mW z*O|KMW_dWGyjt%KcCqLZqq6MvHpNq}w{aDDf5$3l6}m0LdH4BiPC1L_)5*C>(gotO z{{@NjxpL!f6~n0-o;4JF#{?Vs0ENm0k3mr_qT2gtyy0Wf{D&#GQokD(wVPr`en0~e zZ9v5%x+7~^FBvv3xzYEMBDE_yUQ*=lJ!cnCsmy-p)w7uWXM@Dx-_BIefYr0c>T&y$ zCaNh2yOx3N0@ukGf0UV}mXlP=7?G|xuy2@5D^{;n*J#zbwZlo0xvUDQ6}RpJE>O+K z%~tb0zd24mEC+Tvt>(R9+RD4F@=CvQEjUc6Tv^r(Q+WsJQLU^0?5bJBuBGyki`YY% zvwk?KJ!?}$aqT1vg4&U2yM=afW`K`5G3&(gB1hFj!r_K3ZhRjrh^FR-Lx~%x-JL4@ zIxSoz{S8(Wo(Ziij_kD^L!rbMmCezb)}8Ff`V;%HPGVoxP-w%+%1;h)jGwCyT8CMs zw*D&xsBDj-5^}Rr`#@l zRG)EUeQzB*w62V^MWj>>WjWw$ixY zc?cF_>Xy^qOCNEw>XC+D+hpRWY3?}#qh=|V{9QbiR?8Gm-p%wK=bGn{geAImj4VbRbL)UmB!~khtyAb$y=V^w`5QC z0(EJhwJwcQDO-^-(z@CFCU4~m-=#N)JLMbMDTLg*pT4Viw2#+J7C#7XY{hgH`A*X^1lk3W?C=-{sc?TcP!b`&^bGEK5*7;_pnH=JtH< zbl(1)YSqPcf$PI#q^%b`4o>}E&=(*1@~ANA2$h!1g+S{Fz1bH3ul@CLH0kS2v5|%% z9bLkz5okjjm#QS5=~tw}**J8$EWac$7M9NACwb@^Kiy^IPXXJO|6HW1ceml8` ztDWi!>^u%SxjO6Qj=6jmcOAHkcKDxWsV%pko7fB8iQ)9mc2fnNT|}K-jNwJSck{+s zsyvMl#C|v3Tm4so&!VD_QvXO9y`wMoq@4xrQH{y- zmb)=|qw34BAS6sS#7^lCZb8WG= z^=V2@KN`sWbKCMmK^-w{vs(EKkk&@bL^-}2K8n$w7mrtIhgGuZo<%oAR znx5F7j>{I?cyQ7#^*u}EyRSnx(HfPg6VDDQCj0Lo4_#{@H2srrDL3%pA=2i(ERxLA4B2%I7>0g(?GpSi((9D>OEW(&W9ZZ4-1h}-lZy( z_B__dXY}W5x5-N{!k@>TKaU0Xiso$3X4ieO_u?OAgJUi9ygRFtcAh#XXRj1#>7)Z_uKw!3L*ZOKOVPoZn|Dx_Ro{pVMYOMK92TAR`JF1X+rHo(7guT3ihP%~B1bZ~@>b zc!+0DSW0Q{Qy}?0;6JzLVIV_J;MWn-=GQ;I3`ug^=33Fgha666$z2CDpZ@Z{ft}knH}NFU zlG4I%2AY;WDQxG@i^DvqM}0iAqLudMfiR;l|E6DK*|W;DYmMVDd_sM?>yv4kkNv%z zer>az`$(QuR?YDqziDRHCba&uSx=tSO;7e>*>1AFloNPxA!+mAuP2Zx+di*nt}g4n zN=pM8Lzwqg+yHjAp>~7rz;nxdY;_yvxrYlo+hU_Io&;X2w90M-n%6#|b^F|=yOSq@ zEtD2^7tn0+b74D=HCyE6*g|Qq9RwX9`lCC1^jNmxKI|pG-R@&~-??hgZm-?1-L~^G zzrxDFJmzy4+;5H7gezxkit8bf`sp7bFy56F_-i9+^Ve5fk;D0`ibKQ}QHlhIRa$v% zKy%pJeh9jASRcKUM-y7|(e)Z=T1pAsc`WGCHmc!2D_m*sTrg&I*?C(~kWGHf;Q=d2?74JZwT;^iEcV z(%v;7&FIl5|4ME;dn3&8v10H0>}%lu2H%~}GH-UnV{_(Jm~vuFCQfoxIN6_T!Q5Yk z$_-q)jUK`N7`lsK6A{b2=8$9jjY2esOi(&w1j{S8} zILFS`G0M}xx0M#f7|?wCBvClu&QcWRm`Q0-6bEK{mnfWjI|?2a<(NrnZ~hyGXkW0`CqeMtK@|x6-C)pn12g_XplB3W{q+ zRfqUhDDB)Q(7gLxQ3T!{P?YgBFq6`vCSWhXm-e1AHPt3kH;@xlIwNdYdITL;M;yB%UtVbETOxPWTVy^NItskn{ zPaVNjh(5=v4ZG+ZL}pR-I?6^V*dl4$j9h7&9j{g-oN=v~L6DAL9)jfAm-VH`z4yA?N3p8_dfz7O@Ni)-&$$D^R z44RMk9GAC@6MVd6?r|@fqtlGcPvIiId^4qXic(Gf$lSR2u-Y<8j6TE;J@hoLnX(7Zk3f=_XG8Sx7DpgycH> zKM(%S;1F9bVR=`I{5&z*$8vAL6H{J9f8WBP*B=q6A0`h)OtHXcZ&(qcX3=SjEC zOZZi!Up9(a61uqh7$*6-O^dA1r8RB}Tpphj8Rz)(fBuc?iW_Zqo`?qy@7}MFh!UXs zyf87rGIyax#iDRT%hXyUl8`zbH~^eEJ|>N!^3-x=o5;yAGDvlatNxjMqdYK{8 z*2_HiHH;ASGFB*gY<|1mJ7*3fOS#9P9jeF_Qf?9ui;32b%Jp>03GUwnne#l6Gnfjl0(59$QSwYZDyzRWN2?1Tu z`1^rGWVm#NAKoQ5H?B+y%%U<^PfU@VdJCs^C*ZLrOh}%i<|XA zcX8vR5AtZjI6nFi&;sW)p}W8Voq8iV#!=c^2*v?K&Y5=~c;s9cZo&MaOW$L`pFDya#(QOR7nER{c9k1M zjYry|=D4q*x?lung+etddQlNLN~@$XpaqVn1@mA87f>h^0`n*>ib9~7=NF=Iv9mcW z3Lf_JkYRv}P14>Kv#s`5cO7{6bg(nv0K#X|2u@7pXmj!iZWuS4Mw{dYLFAFPp69pc zA*l-@C#m!>%F`f@ls0VwEsnmcrTJjWz}SEy4_ybLq_k-hXra_73KvS*I*NE2M3d5@ zCOck=*;Xp@l?uNP0 zrF$8~1%X6N*$1H%HPKY1VksD~9Z42}6ie<QQbGK*gjjfJXimRRsam?_-vTUTFeIX;UuH0_fkr1w{}*0Yw>419K=XigKWtW0fd^ z01^cc2Y7ghUxm_MEl4x=KlwKtcmSQTs0_E-Uz^Ge0;rs{1<P&~CwmGGJb)AhE`au*ifgx- zhSuk5b-zdQ72B<`ewTPp{)s8r+cYWU4b9<*PI@gD#(j-F!FSS7vG=kFq&-W@m}k3~ z3?A1{dVCW|dzLgGwCZi#JXWhIj%|_Dl6oz^r%q{%q`uq~OD$>U{^u4DW2tZJg)EwU zYc#p6Fq*u8ZwH@L98WGQi6_q}jis(_=P9?icNq9~Cm^2uLRmD)SIClQRNkhJgO&S6 zP7C}>sNP#PqoCAD#gWzlW^RW65=|WsGS?2CDx7b-;x4TB#t-9b-vNJOm$MyK2Q0F` zH+51W=m|p)$SUqwb+)*aG?a%JpKIpw_!cAksfnS=kmL-c_(E~C^^fe~T2_KoNYbjZ zkXn);bteE(`9LxsHA9kU@_5mVoT?)O%qT^ZXq=UHrkxOhl{0_F>CUalxAUz~=Z#!F zuA%ypVyD^?)Ji?4u!H1OHvN8%B2B5(0z1o4>KQ2Y3#Cx-B7ABs*5G)Nc zR-(%i1ivWa_1!j;B86}&MO;|y^&a|>yph)!^vEApHc@0rR(mxOhlt)z7n^1ZV~Og; zMj7~Ux&%(o;6ef!4TG8OPm&}NB&kIbE`D2vqRv23Uy!1NI&$HgC~6Zs76L^rg~RFI zD9hP3Rdwsw%IWXDb60sIRoK-p5s4e_>}j_r<#@ z-*KV-d?5jmu6{3}(v*$$FB0oeDcJ9YuSojL_u~5(W)VDi0)cQ}6y3KyR`DY@%enDf z%%l6=Z1~IlOa0*KGN?vcqG8dvtz-mRJ*^F2;cMhGkWGADusNQ(yaj}K>KfNFoLC=C zF6FMjuQbJzCpO2E8|`WGYCVmozNfH?roO4Lil(mVRA%ye%S>KonaQh_={!7jaU*)T zU5~xr{!$KpBFjiYOREo_?ZmFEd=9 zCW60z%~(b@3PY$fDAa`F>nSD_*Thm4|DTRfr?Zdo54eX37ENC7Fm6(raVHom=~Si3 z|FBFa7@BaI>*`g;NcBWOtVSlk<*-#7zv)QzDI!j+r=+}*2yF*K6!TR=lwQKO6-(i> zES~y8IXqXwKMlr-G#E=uDV^y1JPq#YuEB*a0#PkQv>;0(Al8Cd$7Mk!Xyf9D*YXR~ zZCQ?PixIetqJ?orL_LQ0jkloK9}}DAVJj~bBeCSxXzFw!ogU%OvIv*stokf&Qq1>d zREDudIefX1wo9LcOq~R~r`(}2eliQrQJJmJP;f8LJX-Low489}N zOWGQiTk2E6iNCcuqRN7`ELtr$I;{@Zj;Z-tN-bNuC$=nC zhwDBfrr3a5Cl>3AJ_^#iTV`S9zrG7ApR+SaEs##!mp}`_wXDgt1F_WY#k3LJVi{}r zn|S_fvDEj5R7dhGu2p(q;r+`R7XONq4UuF*XUC(VWxMoESbmPFA4}TRD1c&_h0otQ zpyQ(avi<+bK{lsS)%je7b9Oh|qjhBtH{%R*OAc4)^y#o@ESV`)aqbh@Vw9u~Ay})L zJiBws{Z`!W!^J_9?!1a6pV?B4I;wgP6?rP7a_tIR_fcN&giD^M!(*Xw{S90)lgh85 zU7J%~;UO5#9LoKOR9~%_$+}3tnQXb4%&x7F(Go(UDzREmUGH+qMv`k}mMcGx?FP(t zt~_^B*?WbS&NPX;orz|^z#nhO^OkG1e=v((ojkuil0L27tI&g?>;v}YwS=tX~4J@lwbZQWN8XOW}~2|^n#7E1E9s&viKt;0tzO&6p=A-;#`uioI)-XV7#x=3rB zk1?*vXIJ>@`#JA7fObj{tv%W>=W0$$UR@AvSaY@AxxBb7+7P>X4wo@~CETsQi+c5U zLEAZ@^C<7US3-A=lfIwt0O>(J zbj;NhpZ~}y4Fy+MCr7GMb6X#HcJKY%Lb&hlCCRz%QNE>Gv1`R}{LAi36`e3AlW=!Y zG~cb-t8tN$QfD5_$c$r>ZOG0SZ3?5Uuk*p_3k#)#Cl>a@3*TT~-OnLi;j{Jf4Vnf? zs?Wmk|Kdw|4C{Xy3)Sv(i|H$mj;GE$v`#nk=D!dR-E`ie^hO1T@>%(olTrmA+?~&b z)_Zr-faa}yANP$NTE`dZqxpO2_f`sX4w&a%!gu5OD6nwv+PhQ1w6bKsQn_;O&`5ga zWrZiC7JXn3CiS0V-A4w}c(eVpk`BR_h8A@V?CB85`rHzHLWj zO6=rd2|AIo)}gF@C~GX*uQ=>@T@_$=J^I(Ly0L|(3uwkQc!?!# zhyf^5mC1|-FKXgd^Y&XfIG!ma=`Ie4qaJcwV7tC=-a{a9MEtP`*9A7r+Zk(E!x`^=+|e9XR8RCQ*%zzuLYMu5AF<>B-wo6$^1Y8n^S8zts=xV0G=DIXntLC6 zTOJ=9xdNnk@;RTE=iue3=zVYSD!uv??u+Dm0LDjj{*Z1ibVD{SFg!UuZ%M3S@y=zb z#jh_-EPYgv1tAdoqsQ?PR;pVb#l&kneC2N3~}KoU%O4u*%;Zo zmEmdL%D;W-gwO>A-{gksiwiEL7E145v3vKs$k;y{2fA==YR)&4b1ub-{95tn-RH-X zo`3q@^dHaP!AEf2;rkEi^8NW-!8&iriK)52IWcwSZwfepU!9!0qB=S6!btw8PT@a^ zA?y@>Bz+-9e_{2Jd^0qH!A-%B+ua>6rmBDWMzY|Yk<=yy%WT^~y?%BbxG#&?y981) zv~*;tnob6IoK+cQb6_`{1AFNz`Zp%=^>WWepKB$?=(#a*(hde zqgO&q9i`fK+7Pg0Aw%YuK10iMX13+wSs7?{k4)M|faH{u)AcHiUeAhI8luKD?^sp5 z?$s>ZH*(vU;Qb?od|Zlt+6HU8$z#gKzolU73&+!4;tlul)tU|A7955fOXDe)xaCu1 zX<0PNZ!MX|8kQ7Bl0EHk61wbqgy6$>k>oBmPO|IerZKewJmOoc8K+NO0?PFcd`|;! zi{@{O&41h8kV;ZwTLcLTb&w6)c&*_=oX^FWp&C zo&P7CY9dcR`E1XwSjzATV%IRFtmvq<4`ZRr_98!yqDvPBqr5TN1^D;r9#Fe;H$MOF zQyQwTe{kMIo!?z0%-K8sHi z4X=eZ+)4h)sWlpgkJ~UjGN0S{Z{i)+iP`#ezVx&-H5c;7W8CzRzt_&!-*rlQ?vbmD zPDm~O){^AnjkrG719Jyy{sWBiz7_RD@Q9ZPwQn&ly0~B?b#n>Ey(^yEJ(p3_e!0<# zy`k2BdKp9THo!3H(MZ0%(ViT-iMNB3^XKNJ3U1~Wl3#Gg2Dp66=Am|6-gByM?Q~tb-iM}oxAID*p`G?d^|D?F-&H${zxI9$e|?_Moy}0AXEm;O zHRjoyBto)QHRi+Lj6;ckOH$(qUrP(_m+w5x?c{W`Aa3G<@8fXiZ@RA? z%WWxXd?4>Oj~V^m7F6%Q{%JbJpX-Px?_rLki#d+rSaOpT29UARCU=#+2~ORQmRT!AIgJzfyuZr@PhAH^jK%Dw!7P zy2E1?eOAWCgLt&XZxNc%M$Q{ioAq}Oy8dnmBbomT35}>3P~OK~a#%K0f0rL4KHFV? zXXUw3xF$y#x_h8OI11Q)6xchy40cBryE?hHh3Tjk??yf7%sx<~1JV0jF-nr7k@&ER zSqC<+-ewQ(nU_(!jP|s)WW3G$0*_~m$#-1FB{Rua7w(DA-(Z_hZ`ZIse(ocRI_oXz z9Bio1Bw{TUqlIKo9SJw!Kc(TSBO6&?w;Npg6cM~9v~yd~!|oO_X6?vx?*oZOlDr7C z2`iat26%U{Vn4fAc<&{f; z?&iFeGS~8x(R0frJ?oY9V@}UXf~^;>Zebtsud^ufuJy;Uw5y5Fex|Pp&Y@IA(!4D7 z)j1V=lg@$HA2PGU6`mpqDxCziR611x<@p0Fy|*nFPgh2fpa@EuOyA+^dFIc5Dv1P* z05|{1wt-Yyq2!})DK=7OFykHG$9TG>WKvm8P==j0l%%X?fX#*$T3NYHSL({@)IIFa zHqN4}O|8<^92U-A<^_j_raW)udr(<<>TP`fYQy=;Ra9TXK3Tg62oR0$5_Wp$jfMI zbYEJe;ZRzJBJe{SPoS1)>b4{p3YRmvA@;`x86>cb!M;`3kEj=21> zlhXxle3$C-_41$m4)-R#LbfRl2)`w0oEX|UFb!3%c74Df**7)&;)$Xvu z{Gu%GGoM`Jy`MBJ4b&;?w#A0kJr(Oq>|lW}?TrDe_8$$aNCV?s?q4JJ!Rl~WPt$Ny zW7AZuc0wPlF^9!R}=u|9^nH|b%c32P2H>_H&#+g(jrv!yHKvPD$Ug$XfDr-xws`*oe779-k$iRLPEGjJ(Z}e>H5CG*87k?fr(8_ZF+< zqQA?jq>Ma#tsfHa+f))u-!MR0AC)Mc*hq8Q`;5NU(XT5}(A`kP3fp9~uO4k^9S-fg zw2q+F?T418Jw)VThxQA$BZ1brAKH)KV`!x`CurvWBMr^l4{Zk z5pU7d>Z}CMvd9Qlufuu|Bl*_8ZUT|}+q5OwZ?E_W5nq5%kEqRi8*fFcTu|uVVWajA z8)ITCo|SDT(>rWDb){ZyBMql;^r@$qszR6j2f@l` zbM#ff&`nHl-t;1Eo?4=%>3Q}l8%r`P^h9+2ow5Aa>{WIrjZr+GkyS#i2DeA6DdSTh z)=)Bl<`=D}ihyr>mfB?POKOv^M9uoTzKSqw#aa5ZVEm9;;c*7&oY-~)P%rCpZ?#8ThVic}*4D*oNO&cz;d$pN_6-{o~PmjE5DB$81rGC5>(8v~ykDHL->>uPKN% zth}aB-)mcZMXX`@HFJ~7r7B^a{H9J*z*wT?3FOBw_7ch|~tFL$?+B(is-uXpxc{X9;7%bFQCaUkTNY`zw5haA9e| z75*aLTlf*XqQGCK)34=M6#7eX`gP_NbL2OXiicPHBwDfO!uN2Wa8KUe`}f>&(8{;& zEcm&c+NO2(ta!?AfOz|hC0QolP9wSyFW9$kZ6sAQ6l>6GK#x2ll4?@}NfXkh7LxX_ zT`-brx0X^9W~mmnq zhzKL-s$099fGD z%VM(@WK+s%TZZvIs>k)&$Bg)gAq^ImNRs0LY+f{Z@dQC`Y1iYutoaH5; z<7;XP&#%XE{ci zL7p)PlCqQ}X9!@caA5@4(vrny$+F1FC*U2T$8Fiikd8v?D@#do#sH?QU7rKHJ&TR9 zN?c(AUN4Vld`=k-9eImtlNP>00s2huk--G z`xKp0DkF-C4y>IYQ#vqK;m*ENt8fvm!jy1EdlOH(k7@t4H?@H?tiAmqXYK95oV7RCY|gy)w#Z+5 zTQuw1+wfnt_V%>T%L}Z%z063BZfp9rH082jfs0qX5NdsZ;;K>! zrlRt?c$c|}w-A07gR7rkbU&N@pYL)%)hFud0Ix|PmoV(o&x_p87XRmm+|ObE=kKWz zJRUKdN?gZM>^qkM|>A*vx z`SkiDq1Jb)EH=_bgQFr^&kN|-zgN%5-3TK20}!luU~(Oy#Dnk_y=1%1bz%2Q3+0Q> zC8O?Q*Huk;p587$)T^zh@4jg#3N?y#QJ3y$2oUUm+4j z%hIOz{N>u6z21JP{%GruO#R~{yQzzDYjtuomkBQV%JYjF^*4C`L`CTA$j%y-!21NI zz^W>LWEG_(?^NffTQ4Wr@M*<{e91e%j*ANf5~iL-L9!-L)&N3FC^t=?vQDU(}ipSr}TPkJ+I zZASLm9ktRvwfe#Fk=K}mot5)?QGdo!EA3OOQym}q*_%=4iF&T1R@$dl4?R9o|7O&k zpnDIqf=`Q}wEoc|^a935-U;;j zM;lT953DhL=)=6YbY@>%cvi?We-n?A9uQcrL4WV=qzfo{=L)wRfj~ z%c+L+W;TUKO)9Kw$@ii zRB3jid)0?I-&4$}qJ-+;)GBM;ULS4U$$%i2cE!NRW{4g7`a8rNCvS9Ws1PpCDB}+Y zTa?rvuD{}}RVeXY!wcz)HqqpqFsG0>NV7trE2)I6)NCm!VW0h30angH4O!;N#x) z_m$<1=v$Wb*{pL(8+5#OnsafOe%tS|_kL6E?N05CJVX~AO}&+kpHY2fD5V3ju^c&I z9s9=^1#^r_tRur0kl{?ppu7|R%iO+)Rwf% z(XAaVat~9Me=bf!jvRp~6Epqme_|>(Cw8ac?6jF6AXmpdcnx0jNYZqRKu|cptrZI+GxV zTeivg$QdCM+2Y$f>Nogb^l3AicxBCA(~G_^W;DeQXPi~PtR`x+TGFhBhmF ze-%UtPUwUQ?UtPnR0Vlo{Am4nP1~Dx1Z4m4@9H z0ic*#0LB}nTAJG-07VP~FrI3Z@kHURT04XB+|pdeN6rWt!&jz-GN{BFC1V9nBDk9aV8f83Dc&~qb2IE@D5i-UT-`+EKVZ2Sl zW<2qljXYuJ8c+4hc%t6Vcq$9ywF5Ao3c`3!=!6N)RvE{*lYK_xsdS7d(J`JAJ?%u# zNObMxw1TX>S&gTfvc_9SpP~^hnP$9epD^QOXCkpRV%`+I!ZKKHe$QdDHJn`)vH-PbO zecX&EUbDs%cCPVMzlGd3m%lUPX)=N}3hh&Y<57MwW*Re)&U3sJI$nwZ z@Gr~=?dFU^`VN+lkD(l!Y9Y zFWZI2yM#vFbla{n%SF3BLB`e7Bi6lty;Ju4t=UifV!zvw&zA-JQD}<_Wz-^8WI@rJ z1+~+Im0&%GZvk7Fy-2A%o>k+(j><+|w(%Sm(s=yg;Nwv;}w zrPD`ROfcq@KCq?qfh|>_U((1s{Sl0gUFhk=08~g>d%j3FgFTgL_Wbw9ObE>lVb46W z;l7z)*t5kzy3IhQ-N2>}0QMB-4EF2<1HE(^$aDkXvCQxj9t?my}r z0HBeG;q}!5SZk{TpqN2J$qX6TGz{S2TfL!V8Vzh}0#LVKW-};q72^m?ssJoH=AE+A z+@=`p9Jg^YC6qf+M#e8AGo_3{T7o8u^GdekNzq5mlcXs;=@Yzs;y)$>uAoXnH>FJj zFd>HdJwO#IJHl6?X?01-$HZa4F-WgPDt;46jF`VAR1m1D6&tk}NI2sp+WCcsIso{; z6C~q6x=0nWb6kF;Ix`5s(IgqJCI0X?-)v$CM=Q6?zHXJ9%t#_Q=(lHmmHZ;J z)@3@wW$N57$-%RF_iM=gYIMJb-LEEo;lqwe<8I_K-b(cbrQIZYI^n}Y%KGr%)7#?1 z$}}JD8#03xs@!ysHt3iC6tTO zeZq`Sm~mD1NNDf6t@z+&yUYhADL(irn(?*ZTC+|Sj{8Xnd78@6Z*i&LD$iOs*ACjU z5w7Gj;Xqo2z)LZ>Xh&61hf`{zOa&w}U8;xWaRIf)$#gGC6wnXA+oV#wZP0$D#RX0$ z1yfR;Jxhy4d~XN^-X3)2{Pu3u}ioJ2E##!2;{ zKj{OLJAI_Z1nwYxU~=h$HbLe3CFS;OP8)$eg_O1DyH}Y#m1*{@e$a%dr!wrR4Zv{U zXjLbg45XV4WLgYtY6BpPZ55urO=t%Ly>uAJbOPY9#5hir8pxCZf;OSc@cOy|_)sqZ zhb=d}zDfWg5dqL9h%H&(DgcVo>pI^&pil%^4{+=yl#6YA!i-OtaaHz6Xs@jgPdN4g z^8`tnZ4*T0JYfvA$P*-lJVE8?x46`Am6zKlm^K-Ki7Zf6T7|$%6S!zcRiSC8)I^&K z;Ou~eNE+9En@~g!3MdBP5>hEnASL1_;sOVef+?xno~6Yi4k87kM(Gcybn>R9TTJ0} zo0d}Xp&U)+wh2z3fe#5O>q8H%FdtH;`Ou^HNwP#9#p6TmCTF^kU)ZzAK)TpKro_Oe zQUG!abA~pd3=E1aH;}0Wz<9smCk6~;1_6N&MGUX67C@bK0E8bhyuM)oD)a#Okl2zB zSp`5*dSCjo`B0Y#vOeV4ODGq+`GgstFypH1k`YkT?Tjk~YkZF@$OCk$Yl~y6}QUosAQB_#pDK$~50@$ME2%Id|uXK}x0(t@X zkW`8f4cM==xWI>`U`ndBXKAsB4@tqOQToG&oV;o27E_38o_PiWCRJyy4>=wJACe?l zAG)H+d`Ow*LruStWC^Vt;zMO*!%r8#uxGb{v`#c2K)-=a0{|2w%o%)W5DbbOGLRVt zz<9mkCmIc8ngD?hd4|_F3ZTw000K4}USA6U6}AEJA+aSNvI>Br^h#J_(qL8uSs!xj zSuS?-2{S%n##PxPp}o9Y@uAP$Yd+-8ZUkc!Q8^zfSK;`Kgpkju9Q_uT`mOSEeaN)Q znvuu?Ri#x3ymW($c2pIbc1leQsDNaq(h)dW%!g{pK>>9DOdyrwLsFt%H~57QNx_sf zYR}SQ5g(F*QKR&S4>@_$(k-SC*F2L_X@_z&mFq)}hrow~l=Y$bSImc$X+HFpdnB3d z3BreTduU$#LmdDFEH=Ep5&$YJ1>i$sOFm>307dEj_8jvePX~XpKIGU-C>Oi=gc+YO!Iac)&(dNMACiJmqx6Rl zIeF94Ev9g~O-rfxP>!Z@eaP_;_>hpYKJ>Qp%!ia|K6KsPk}RQJ1o%)B+3@4>3ww?l zNb8gq0^~WC3jxR}%o*CDA}}bj*g&QP0OOs8pXf4>=>`NoRBCvAWdQ0d2OxZ};q~8=h1?8 zNL0>;npHSHBO&B7Do4M?rGBftTpu!Rruuv)97wAWc#%@kj;cb_PN|7PlRDF)dT4e9 zoDa2=L;)QDOdyrwLtXYOEiUjODVUPV>{(hY;zQj4)F}PoLr&hbbc-p(HO~eN1Wc;V zTpw~g1U@7YvOcs!O+Oa^l4(Bl(E&-8Xpz3sJw;^0PaD6mXS;!Phk;C|flXZi`YkT?Tjk~YkP4xCoLW#lG`j+>9U3Hw0)_zikW`8fNs07j;sPI%f+?xVo~6Yi zJ~RqIjnW@JyUxWuz^h;06B#@LpwAI21Sk;$mBW3TMR$ZW+2lJ2z;o}bkJ7> zpw40d0(KZ)Unc++b^-7qu_Yg}3V@>Y{_8CBp+*s8eaNwwP%d`!2{S%n##PxPp}iY_ zh7VQVVLl{Dvpys$=RPIeCXwVNtS4aAAG2gZ1`z0?h2*s5Fp?0DK?nQ)TiDk$Ja$&OD+-XjzYNl_ivm z6?}q>tEWe-dq4Ooo=}7=Y?udd9fnPi{32nuVd-CuL^2u<0wBHeWb+%?jU_&a_NIMLFM`- z<<9pxZ3OldQr4ay{AaVLGR>ajTTF;zD#M<-Mgi_itm;ImfpnRHOu2zgl>lV13m2yE zS0Z4bms$gvIsiNl>4FBf-x$bvfS^sNH@v<^0Bu4O0EZnlyuL92A(02Svs&GR=ps+APWJkPki-Asc@Bd4xR&45SAQWQGiE8U~;kVb0JdcwkWEsDaEF0LGgQ zKha_!(*_89D9?1zR|ufaA^-xm8(v=r02Ouu@S%Q{i0@bhKv8-t&oCdV7eUsC9D51n zVmF^K;}d3Fl|9<(>@ELyd}#Hr%!edt)`vvpe5h81<1-RMKBIE1%X6jTA7lsMAu}LFI6wm~~hon+`sKtJz#RWbj1yhpr zN53K#@u4;VYLx!)At!HIy2TXYnrEE`0wz^wt`9jL0w0nHSs(iTndU>vq;58J-bR7$ zBs$BNb|2uKypC}^uu6*2t(tdoAK(kz2Y8}x#|&-wAo*N`GtBx>Jh_d_Zw5$lF9Y}F z^effce=zqs>uVdA4(T`DCL2w;A(5PWxVfTDF@b}J0#rTRpMYv-$J@@9w-aG6D&w2h?cHJV_&4t(n zH^VU354^PE`Q1nQ&p5I^^;x`PDAfAVzHOAbVsvDK3gwJtD18Gfd)(`@``dPlK`&R!#Ls=$(>6P< zFX~0fO6$m2v%UXjw3D7==gnFW^zSdqe~8PB;)%QBsY|<2TWI6cm`3Mqqph#ba*NTY zsLQ{_h+BvfGITuk16hnC@Xt)T#mGq*y6KLITZ~?f&i^m&1o53BmOmcPf5UxwW#XP9 z&Z>Q#7?Ga1yrPA0dX4*uzG>GM-OIH_STU_iC$2C0EsrmY%^zR5XX4(Xr)v)TZD@Tt zSLsCN4{&eMB{}yN{q_gCx9Dd&fxsCCI|IqNKz`ZvMN8A+QZ{0Fr~i-}YFs{8y1VGM zPAWY)y|T2}`-C1&bBob8KFaaEJ?_IX?7ROAm-K+vrFhD{F6eo?mS?@)_72((cQ226 z?@4Ia|Gg`%otOZvhoj$=ra{{zH13JCN{1X;Dfje%);$$%Td6}UXADVc*M7jz^eQ^3 zw2vL@&^jF2+mA7{rm1K@e!oK-b7+_RouLg*MVt3NhgOFZQt8V_8=B^FCslemC+Vd( z`7LPw!i_qJ&^{IIVD8otnp=HIJbI*|jZQ^dWmo9%Auv`kC@o%WXj%-NROzvHhYnxt zacG}B!q7UVq7BV;m6qV(l-A8XhFQND1KTb*IyrqyX(JfkQQx2bW}|2R#ud}%iup#7 z)z++y9l5S?D(#L$blb2J|N8da+WNtssI810QC@ea)iyA-nD-yhvrpVheJD#FBYJ8Z7iLHmj5<~Htf)jEHt#vsc0|pSf!QH@=)oa{G>E*D%u~> zx6qm#+H2UH<{+XLFF3xc&!GvW*HG4%{8CM+J5R}2#GQoM5bolsjTPcN>*j~<;uVQq zEokt%@BomWQ#8|$N^bNI*YcSsBiS4t269^3op0!I=NtN(C_slbRVnTDW~1_omT9-- zEtVS`>bb=pX_W|)84mVnoWxVF@-Ch2`I(c5cEjhO6BwM(q07)?T^rx}x4$3}C}34^ z9n`8a|D4a?Sm)`A(W&444*ERHL7xYDG@{YDp!NSrgT|?S9blO_=TkFr%%{ek^4Vxe zobox1BPDV0b;@ULp*!SLQ{>M0)Z`rTiI=z&KBsXwMqdfi0iU>kzUM5ZE6L|{PdozT za8JAz$g!R{|ErFg{Z97iBU>N$wr^rQ_TGu335XvY?6Cv6{=uH3mSYkB9PY@I^mcZz z=LL$T5FPA^Pq6Ne^~C*CJ*UC84)vS`+qq|YP*3u-;6#sj&pptymh(I{9Or>|=_Pxb zXKzf7A+-dDd1{JB!Z4rX)_0j^ogcg5WI2Y`@KLTuVeZ_wjUP9G%g{^+K_uvWxAXez z%Hvx%=YCvXZEkp#9|+SP^f8z9 z3md6YSL$}EsqpMhH92l}blCbC8yzYWY4S#nBq3qy%-eg^P)LS)eolmSqp`BV8ViMW zv;Dp<+#(ux@Mos5ZZp(d!tDk(hdY3TbuqQF6WX19=_@rJHe00@)}r!0af-b<zy7ZSaTd^#vn#gW3=@t8M=^qcv~m}sF74{(xy|*b-rq5J{IH` zHgZUITdmVg@EV|svxfd|tr=RGX6U!mJxQ1%37PIu#~~St`8i?e5@TtDbsl1^%zj@N zE*DMGPO8jg=t@JqB^)uhIa~{b<3ZCx&yaz>VXJhrRceM7l~)@zL-+D9$I#ZZv6sR~ zt_n!53X4RBmK@$cdYiJ<^x{;wvcrHV$ zL@CMXf$z|YZqm6ShVk7HBdIa!4Bc-zi2;BNt=gnbr<&`0)y#Z^$S*9{&`vjjp{1Iv zp?|*A46RHv^f==`2{T|_e@`9xl3|da6NVn*hgj2KLaccP`3w>eLyKl6LysBiE#W+q zYIC>{2*+)Z5Yg=h`Z}yq`e%^M(4zAGt7lStqLpMT< zq{gT-bhG6oS^(0fYLhmdYOeEDGxKpHzpz|GJKY3^mTIzw9-up8!dRJR=ofgUkuWV{ zmeo)4B|{rOCk)+gEN!sCrC95<-`9n^L_=Ey%}j>wHq=|fy#_aj`+;y=2?>Ud80f3D zN;g}jW@u4)>uSuzM+ zXfZQUMy{cS5a>pgIX&EHB}z$74}1hmMNT@8grQ3yMp9$c8M@4J66F9H+Np+De5m#H zFsGWCk0$wr=QCNQ*AlQr}cC!3*_X@-8B^r9gdD)~8K=!mhhAzW+l zs&Jjb>%#Rw3~etb(@rYi7;ZGwTf$8SH;0>na6Cpe7&^~H?<)joP@_uC(4z7(OU%&2 zdiBW~+EtcNu5|B{(0_^+LrV_t8{fvz&+&Bv8CqQD7+Mt0(1R)&LyH+Rw93dev=9Q_ zsImyp711hDN^*Kw@ANR~>=K3^f*47SQD#L%LdKB8|4 z7aQv4a0yW5mIASG7bHwPb{l27*DBp?m71YN<=t3ihHe*5*3hmp|5Vde0STS8Rd9=4 z5aV5O1%}?tRS+_?xXv-OBy)ytQOOuu%$T87My{cSAVW(xGPKhJ{gBnQA?)ooHHMG-BU}&i(Yv{w(^W~gzx}I-j zNSG$c9~^RGKxwvJA8s*7Q*Myf%OFEUAU4jU?3rxbX{fv+164ye5F3}7xP9eDnWzLv zhrNcx8;e2SSb&5@gvaJ@dOII4H@L^1c(~zdCc^7qk&A5A@f4SL$w*r zf_hyy=0Z1J7anvuuY1dnH@_-|BFC?sfc~*3W+1E_-a8x>y_iezvP1%};ph|17ilki zInGx4f^#;h4`(}tH*(DcsE*kVKQURQ;&l4SSB<^>kvG9Sb-4pjdx=*pQAnA>R^5uI z7K82vGpVbc-%?ix5T|r<9pEV_I%%VJ;_{j&ay(U^ZWd1YrhQQ>ISb1dq6xzG&8lVqlUUUJO)&`c}|-D#ooKX$5oYk|A9$0KyiXr%u$4h z;aCi6q^QwUNgyeE=u8@=U{t`o25LPhg!E$05lUzp%&$Vs9WjGU+$|HNgV zR#t1RE&`6^E#NqL2c}hKeMNU7c?+v5n!1yoAT!Au<*4X%Cr;GU*;-|FCr-p6$|T_o z%0BmDLzyBCWgoG-beOV|4Jhj%URBJqQZUanmzkrv%pA>S=7m(2WWZ9k4qARJXpD%3ow;)!l20tWNuidUBxRaoMLG7Tb5w31yPEQ0C+v7+;xv7ATXvg)$XQ zD67F$W|B9`QPEM36ZLe~SXn4@A`Vd|31?6iDKnHQ(opsj?#i*AMsMIkb1Ys*5Y)Kb zV=iyh%w@7?E^pLu)fK^JCX@{t=`BS=xXNJ|mx|Q6iY&F1tqnNp%hEcsN{iPxJd~W2p%m{# z%|5CU?bA|=4OZxcGRa#gbMg+%v&@1Elu6z~nTjTqjp8aZ$s6UU=%CDrdOCZpER;DB zhbU8JGALWG5rs?Lh%}THajB2$R!%mcOh*Kit7oNP`^8+aZZ2kC8V^@FG~-f{99NM%92n%|2xVQ$FSq zkMvvLYbZ-ok1UkAat7vG^jt0pqg3c|`Co5hNWahw%ASA7p-eT;nt&^*L)nnB092}w zflAC2p+Z}Pm`*~O33+-uF4h20OHRsADsZA+6Nq|Wwp_e}Bb`ttc?)Gu-YF+9&R4C-645b1m zY8K#56wS(RW@|4NpwJ0rlDAOio-x_xsQW^qATEssN#)me%SODzTONJOa-Q~8)j zJklRM#!xm_#2J*iat0<~^qejUqg3c|`SaF9Jl=HyD7*iDhceYXt1nYhhq3}?0jN|V z1C^L5LWQ;nF`a}m6Y})7V5~%-mYkHKQ07FWjPdC77IAqY*h&jT*}8h;*s8Yw4rQ3>@z5H5Q#B>tMOvuw)i?I@cT5?i` zQh^gSTYciPPm3`YPS6QulDAOiz*T0FH_B1bQH~S!barD| zD03nXQ6>pzP&Vs5hB8GO%0_=9rP0%9i#jwMW6O%5`m#ZD!MeHZR+-Cg6)qsDfz3=K z=BSY}k;hdIIj$njt|D!gvb6(8eOX>m+kA5wW^oa1CyzsvbyDG4`%9e^agECjnz>JKZ(Fvo_iKr~dNf}DMZSDSK6neuSdJtD4GmjTxNlh8T)rG3Cl)#5TELi{?H0wa{hJ)6P23IC_MV36b>f&;tVQO z7(<147%GCpd?E;CV@njCOGV;s+a}bMdkou+6-T6c1aT@S=Yi3%IqoUvbGxwBtlE)!#O z*$*+7{SaJqY)9m07_>YiWmg1O;;O|($3q-J0kOk4Fi6{h6qb)h#D=W7bf&m;C!;(L zyOS|Xu_1?&3l%D%p+fnXM?BK+f4jk>PsAB`xN-&-Xl%T>B&_#BkISF;-Qw~3W#HsU zyD=y{>_5?+D5=9qkFo$Ks*vGC%oL$QTZEWS>P}3^)0?6(l0q#xNz{Uo6EzEPaoMLi z8Y^??)SXD)>Q0=z0~<6mQ=>bPyoFU2P2I^-TxBMCqZ}0-QGjrEC7`%WS|l= zMX1mgA*Pd1WCD!$Q07D&qD&IbpzH|^1$_C8NJ^74^1)vrt7*;F;*!x+ zv$cWf+T*N%KON@1+`R1=N9omfZ1+PLL-onmvUz_*J%;7lPlpI2AAM_+&m?~tBQi5! zOKyQ+5Id>{JulvxD1Ovyc_hLY|M=1_-_*r=jqj{pg7w;)RvsRApF`%;4PzYWUEt?- zo|MeJ8Y8iI*+Y$^9v@py&H4G>ZP>iBXJ@owvuClgEzy?W*gZM_GaEMh{wy|Z{+zbt zoOW+~BODu_8(A%uEiYif_H|yh&fBu{%0%mUwEe@aX!>*ar8&_l12)_7w^N?i+GZ$c z4*nbiwgaV}y%?~~Me5P^uf9)^y;PdW7_i+W-C@A?LZAb_K^QCUkL`Yt?_f)Z@zh}l zFbGTF@yO!|{-dGP9Bdd?OWBy>p}@@?@=zY}$S|R;fu2uJ;la1V-f0vQj z{3_ev=~q~_iCYJ%!)WMHjM?C(N#!JNtFUUzOv+nNJKD&4rjkAT4o6nXtQKxt{?*8A zLnAxWvyO6PosMjNk&!iMHJeR#-;s`N%#r>0ZALaYmF(m~M^?+`6PX@)gpp|jd=j?} zZ*^q7j%*#qY}B-4Dp`qrCq8_|)tdKaBO9Gc_U!`4t%-L;WcnqH*(5h!NKVRhF;;CR zH%E5P8;z`UD%oo$8@WBiH^290P)$0_lP%Yav1(JH+=;x_ z&V#da>w|i-k=vc0o8HLnqgb_xjm}#l0{a4N%AG6D&aDEgHj#BYvf2ZzP&&#ysZj6D zb7aGgOef|kd)HL5xA9oq=JK3OOKJO%rKge|g1kl6;K*zXb&8SOEKntqUL#pk)~vb3 zU!##*al!wdk=v)fDkHbRY>ycO_0=)iF5Eqg+@6cJ9D5NRXv)5U74!LcP-ql5VjW6V z!G0@_vWW-D8CWrL)8{S2uUWk*UiKVDZcne0Fsqm(?208{6Y~=oe(^0YzlyKq@I5ad zqc45a%g5+T-}Um(!0_u#48LRxcPh4O*m)%vVEA=fX!uoK&UYU@7}Ss$L$y^Hel5W8 zs~W?v3uX9qp+4hup_hL3Pzh^6mf_a|?AcBg$*Ceal@a43F@Hr)`j1PPw;lWc*d)xf zz*Ja9SPW0)8qWR?nS>eZfZ50!GUurFW)jwLn9aN^sDp`nGRuMyFe-21btLp2=np3Pm{1O zzu6Qmd1>-9GE6ToMdz#je^n-7AAW-=x>xGREXiyfNbbWV?8tf){WN21W`LMbbist8 zy8}fJ;u=`W^++Go3-*OX5XwfY%|f34&6tE;!(hQ$O7b#A4>EC4Wd;~GQM86#Ef)s~ zPHX@U5zw+-L$B6^X>+gszibk=_z+Wc10~8*w9N~6BW&elZL=zImasn>Ksk1hR5Nj>tQ=w{q>&8JcHR+ctWbSE)cJH1Nb6kQ-z zD7sv{LLS+Q7J(Eko>FuNu3EG>sx@?3_^;F?>{oM4(UO-bx(5q6Ri>0e)1n8gC;zK3 z30r-zDOzJomZDWa6zxWwnM}eydj^WW6=OFkx`vu%DY{%0wT~bTiWQ0;Q=O&grFxXr zb&DXBjTG(i{BOo2?9tboq9rd=bQczKs!ZC}IDbthVOJewitdm)GA-KHnH+yL9k8=V zu}w(@C_yb+^+>P!6pC)g*iDMg;YpUFmBJ~yS)5UHw|Gg>;*qUr5rndlqQ^*TJC&B# zU%5%xi}|K#$;%YofQ6hYV|$PP$R=SG2NTiC>K1MLi-_ScLQJin{D(6M`>w{MER(PwJ>fdl zK6V0`CTV9@Q@sI#6APa~0$TVCnfw3BBvyEY~|FQ zxK|VtCm)p5;bcrNHNZ(>h!ZhWL}?fyrjxo86Y@WTN!V$xHIzy0HfZHzUni91NFsj+ zCSmuEAFWqR-GV@-6Y5Zq<3Kp-7xJjAp{ykIc=FI2Net|^#_`G1;(P5y*e7RsE6LzGFv8I)bB5hcqcY}enJN!Woe z8OqW+7?44kofF_>BC$f57lNxH^t1&iD;LWCa55{(rxA0Q_w4j#4W@^`VUw`$j2X(>1c407R4w{4#R_F< zDrnW_cK6f2aqg(&L@Jp=MEVoD6@ zH!lEXKYYNU%$>2CK$(&{log04peh$rp-jvaQ5!~x=_HhykpB@(!fG|5WSN95y5FI! zP!jn&FbNxa-cUB6^LrVT*>OHD474|i`!or={zOoA_>evlz4ybJM*JWqmqE`*&ax*7&TUY^flS zL7AN`Wur^_r!O0zvIdON(31xsY{!d;bae$NyX-d(WkbYdp-f2~%4(GbplTLVp-jva z(HTaF=_HhykpB@(!q#d;$ubFhANF;cmo-U5e^n-7Cp=?#DU>oZc*#>Rxet@DcN`B) zPP7lqhi925Hb$E#V3IFZprSNHMYkShy+0N~C>tASdHy$J687ysnxZ8y>rRfsLQa(_ zaEjImaqWN?TAls|O~T&(l)$7%FInrb`nj{$)E<;3%Gnre>e^I@7~H6N$Zd4JCNC&^(!!N_~)ymb$4 zEQxJG_ywAeWRSC-Q6kpQF(6JkC+M4Q<%GXJG}a*T+>|rErbPqbjpYl!ms4@$+SBgA zvaGd^BX#roz?+Da60hR0w32rz-ecbPy`1!ZUwvoJyj{OI?3nJH46Auts^<00>q~#< zS4ZcJygN2yjwP03gUfM<6YEoRR9vacaTxEwapd@w%ifuDYbhzi8uYiOdG-#GrPj$y z`9^VaRlbk@WH05*Rrx;e%~-x1E8j7$d^HGSYWWlwNTe3;6)N8|9ec^~t9O#))&*dz zK3-IWk)33^>fm_U4e~_W4@MC)sHf*-si*T)Q%@81n_3vf1;T2^Td2Z(hQi$1OUjI} z+IYt2$RsRz5mpDz>=VDsebGHo_hqOnxhk7#K`AFaOOFRKk4f4|(jy%+d5P)5x!Qx- zeLrUN)3*u+ncq5SY1fs)46}c+{3%2;!sqNej^>k#&(7PGD0X-L{eo9)d{pp$*<|We zb`yJkH!6;CyGG5l597pIJQcmjF=t`@6>nau(;uzdA!sI^g4C%((dv6|W%XmACb|_b z_Y^F}i_<1TZu`SYzn-S!udBn`GQ3~Q@AhML;1Sq3oEzDG(BQ?a&vU7yF-^b!59l^s z>2zC|rQ09vQ@2A1rsBraoo>64;8fizj*lFwz&&_Rmu@d~!&Kdt{10@yR2BNOb^HFEf0k~=H2ulP(CzFKXY47KQu~S< z%bfxnXv$L+s5m|;C4o=Zu;& z=q1+|;)^G5!-PNIeBaH%i6#H2`$>#hqKiJHgF0gPJ<3u6v$7u5xWBa*N1X{VwU%~$ zmvhoMUh=zRB5Uc3@|oOGuXxx?4r3iH7S=CSb@ZD2ql-3q8;AFwLYTCJ-MzYTE;_e4 zzu}&o=+SFt^|2ito!gdU!L_q`EZ8x6o}OMYOYcacb32DEc=fCf3w8}!@H?}b33@H* zniW5e&Ye~N@j8-NClQ@{@Yxnhsg-;Ftj`icU>bLOWeQFHCCgm?g&e#m|3V9{ouza5 z(YYP@7QA9sjs-h&EO_;-Q4Tpq=XQ-YD(!b>4eRKt<$r4%1N2Q;+NuYYWYcGLJ%C&v zw+HjKRP?%M>+IRk51%C61}P(F`B9wHkZ<1hxZkSBp6``-t=w2peMd!^R}gLW&y^`_ zRX#Je*U5|JWtG3YXm(}UXtK4OiFI_%?5wf2L{iC2h5FpY8td3 zDD#-4wZs=WX7UnKhjWGchI63yty+w5%KO$~OS-NN3Pv=3(#pdU`#&c{Rn_=8t$oq< zPY|jo+Z_E$jXb-mX79Ir)vd}WkW`k|OXBLp|LC;dgA}J~U2!(N(&+Kdem|nm`7(+s zC1uEuF_&i_kc?96+KWyNXb)R#v~`Zw4%AOA@BXI*wBP)w(RMr9 zI(1o7Xp7ZO{W_MNRXawIbEj< zbKo&N9gkaM0gpd<%Ivy)r;fQcHVBhh1sgpnpnV4(Xlos9!*sMqE(mBpQAOq#-{v5( z!Dg$;hi>BPjhyrs=IRcRszQ(UyXMvtp<{u}U>RL=2?0OHtMBvb-|Q6+dE>XOTH&?4 zlp9@pHcxI+cjYDTUlKjHkE?24<~!(btT=XF&XQgEG`(d}DV@Y)77M>3; ziN5+f{_f%L5k9A0bfwp_Dc398*7!TG?9OF;mA$INOMP@duk4=G^8E3NaE`Rrh_)}u<^-xT+Xv2+J3RbVbb}aE69?H=((H8W{ZkIS+?ZNLkI}RN#r~( z#cA27;tYCaWVQ2-#wYe#lr1U>cmE_hDtgtW&f8U0cHCtZ(fFv!ven9R(8g}Y;50>< zq1P?9UiX+<8*9^GW@@jiIO|T`vVQSGM$bzxrq}f*^}1t_6{^Omb@I~d=Afa|)$7K; z1$E6N>O7u(&{4|^bw19u;(fTNYctf0%u7X*S|=wx-nEx;^rtr;ox@dROzv7<;x3M> z)G7Fd2~Gah3*@rs6_oSKaZ9DreXt}7~m^Myz$Ld2i+Abd%p3pxc`N28jH;)1Q;P? z3(ZGu=)~xGbG}KAU}WWBqD*kTqj6*}7^#S^+7d78Uv_xK&B}LS{p>H#+eP!Lh*mxy z8}F+;Xe&<}(-pfn(q~Yq<7vX)IelI6$e@=x?qlA@Kg_DI5})i>9?A@_?_@uIXnC~# z-H^xXPtEgM#t_i$@6O3N*}vdWcEs-Vc0Y_%xN#~Tx&P$ok1sg1rrOUvl$(w^V-Y6w zZ0bF3QtWq9Op-K4l9qm?_{{!^)JeIqvcBlr^A(@$;}WF=cP@ou>|^1y@?G)d*}W2F z#Rk=>YTjcfw9NlzPF1w>_gr{Y_4Z#S${ubUiTe;ql!%bV+%SL$pXpn20uuZMxdjp& zTN2$dS%N#V8~lztNG=KXEjzy2Kb;Eh-Vu*Hz#HD`=#Ni7w8q>0fEU?zvOoJ!q;;7I zDjs=g-u4q)=C|ZTE4N9+Z@+`&jXNhqd=Gu>h(2dNZ@cvpzrve1$6W*0CDV@rB$G%E zQ0b_O98YeHCpUBF7h8)F`iFdPB7FM*%}FHecnoWT7~ZwlI!1`~Q(9eP z@`eT+=8InPj7~3k58~-a)X%=UDtSjGaA&_zQ=;}~;1z3m6`fx6VKp6hUtjC^@;5T~ zAB6)LIomz4yi$vD<7LlA*M5{Zrc!hr#k;MX+;kS%MO#}rmpv$zz~+|m`ok_xl-*fz zGua6D4|wB!RR`VXfx*Y5r~&=Z5r=>e(gN@~H+q56ys}sK*)^iHfmqqDWpC$RG-YnR zW2}Dmb-F=oOSE!~_EvdNKO~JK6BF8ZfN3LKlsYUH+xY0LMSi@jB*DC)J=fsQtuES; zUVHj{_O^IdE2Tv4UKssxysTznWOkXC+)CwvH`7H2@ApEQ^(r8qT9BJ4<94`zAs!vG zek$G^pgR%S$nO2hxs#CHGXF9IHvM_U+i&;E?rnTRnhW{}jb|EJHMpHO`zKz@X2JT7 zSlKAB-e`jdXkK=Io`R4J2IJTcM7*jmQMPf}yR+)?3$><9W#;XoSzQc@cZ1@$Z-%<@ zNrsZv%RWSv#?jdsozc}d(j!;;hAq!Oqf?CzC|N^bSx}0Ot2VL~y`4aLj{LjudHA+f z9@OU+4pq-q9<-_Qpv|Ek)?B6=seBvJD|*36GlN49`Dm9AZx>#hX!sp9s6~tT%pL&V zZk`KX(e~$*z%lY#Ud;9UX6>^_*RFi0`j$46asj$T-k)uX^!!Qog9mJ9J*=$MUO`m_CHu0pMi4EFL z0#i3=Rgm<$LA}RJbN~Y8XveS%qmrONHW8F4?ypk`P?=cAeakxfl>^>@8U?24n!7YS z`BkN0EbceZHtDjqP#VVgQqMoRR9g`K{?Rq9bHi@zOZZszG66tnTj-@@w3%(RnU%or zcQ3;z#*{0Onv=uOaPDD;CQ`X=@*Q(XoGBREEIL`g$1aI}W+#7tm@`J6 z<#FTVR416%1`}Gp<}fvYU{(@s-!@UzMyd+&fxHjn#f$5)lla1k165Xi0fKd=ToSp` z`U+QPK)i`MA9jFhI;S9!n*9^`iVlyLZC7m%Tc+P)>iWB&-cM5JG|ZPW^_oppSjR$9s>%*Kpeh=_Po3F8o8pnJR%<$fiKhP)6`Wz3+GNwz zHEx>fF~OTUO|>`)$Q>-YMHA0QY3jE&XQq-o)48nUMV4A;N3__*A*TG}P=EJIsM{t{ zFXb7x8H!q7(l_9YiuV_xp1kMNVM*8NNUS>;n?41a8TWi%^OK`_D5bld9d=6DiDIfMhB1|0 zl*+9=!JqG)ket8mMBGH=&J&UsY|D*}Z%UNi*Z5d|m7-9xd+rt12`wp7<&uqAhae_ZDR|FGT#$>Z)=kUaek%112+8Xw}y&4hJx zsq%3K$dyOZ=_n7cp0XwUHair*`~G-j%Sry6ODmI$SHJ9fz?AKOS{F%=>SkDWxis@F zJF~*F2tHH-t+f^iCEVR<&J8-e#df$$l+t`GUC2HQwNS%gH_eTUYfhnare7ulY5F({*UnG1H-4e`Hw4AK?4@?a(@{L%ZH}XiWfRYKLZVLRG&V zA}#s=ozCkU>7u$Oby0034LUS=q3*zGR)_X$y{hk?MBT}=phJ@v>MopG@%|pvlRLB? z*P%67ho;~3YG`Kc(B5|~9oiPUsd%*d*_+hZV)a`Yl2?6E*w(^B%amC1*KxnZ^UF(P z$$m|CV8X{e^iZmt=&E^nIFh-5*t+cc@2S%T>X>O= z-VtFPKZ5V?w{`Ve>w3(!u5KVcwRI_uMVMMw58kzE0oR{Pd+D3hUV3@Pf=3eod7iz$~BdCEZ(6z26YhC(H7eO;)>$sAEZV`y(uThI#lXWWQs2 zdQnk_+bX`d@j@!EKY!9UVarY`zmv^&Lfs0lo!TKcTe|agr8tWEYpCnV-Qqhi$?ZmM3;B7H^ zvcgK^=(W2&|C&~v4Eb6}>5~N7-|^}XiMH>Qlx#=g8{F`mNU{^4&4XCDdC*F%u8eQl z%!>4BR;1Nzwrq*6{Q~jv>)pvFDqHA?y`-Ree5sZi4d0^RbkWiSpEDSuk5~GNW5$@zG~Yn z4@=6w-?@KsTgC3%G%7?}J8=^J&+BkBUETdqJo4P4`s02|9r~*tGn)40I85#m{#Wcs zd}LEhv$H#NSl;Gs+{TZT7o}#iSM$g$lp<}|Ndw;$%6{GJ%Hzc^#v=X6l%`wN{^Hk_ za3lJ9l@47AADlPHq2-0GN5c_&PGSs0!S6cez}utk-zP~td0)i_mCa+K%&ucB@?tDi zzMr>^CG7ah#nt}j4`8qJf&*%q_P)X*C|&IzcR+%R+lzOx{dr9y^2(yr=hx>XB7b5V z_VGpapZ^1s)7y_c{nD3DIP&x#yc{okyzvh~=GCcV&Q?yb)P-zV-M8{R)&5!VjqK$1 zd2W(t^YN?$YEJg&AK(?g3hj><)h|CvTz>lU&Rmsg*KPYP&-Z-$kkkqNl`Y!8(srs> z)~f18S06=7@J%Y?ec2;svg)y9VtC{-AZn}hX!|ABC~RP6RxS+d#J&(8^Dj1Jb2X+U zAFSGSQuUmxq_QqVsMaHE1;czYWs~~kv(geTh@wHeiWhHUM>SErDVDs09T?WA5$(bx zB3G%oX)^{j6;f`SEx0Xu8d;vjtk-deiI$ggEziv~;{J~;LtZz<>T`bv(h{vtxsCl; z%PVw9?TH7^mG(H}#tXsd0Bq^4k_IAl30AWAXZ;o9B_v8egLIv1t4GmSThTXsO(C06iAlI7~w`iN_=MjW?}$s7Jz& z7nCIY#RcVY#JO?j@v+GL^ndw0Vn0a>yc}=aOB{pJVU&3CyLqOwR1VLzUG18iDbjWN zKcUsJ?b=B?*W?V0@ziJcTX{;t|9n1IZZFSQJNpxVPbU2N`Futpk$jalmMDInX0}ev zELJ~fccT9DyK?Dh%J(?7ktgVp_|68r zm*;cZ_c+$F&(qBQdr|!b?-Q3^nwbi-YvX>)qcmC7s=x9^Yh|3DiI-UgqpROXE2CXV zLKWk;lc@v(z3Lr+GZ+s!lh9F_Jo_=*#9P6}>OvaM@xh)Z41L~PRb|zoeK4)}oiXGH={UM3uR>%i=b(M$=K7S%R0bkd<2DlNsvH|x4|-XCt(t4Im!+L4QN3E0mlPE{>$fR^X_`8)TYx80rP zm|b=3cxBs$xvw&^7DG`didmJHmhOyH{9H+vD&oLPbJ|*s=Czy69cN6Aw)P`@&T)IR zy;c9hNo`I~zc@SEek{eOi-^qImHy0uB{>z%kMjoe`>g-TvI+0Q6m*7NqA})F6*tcL zguTp^TBc6>6lbSz`)zjdD^1NdoW(>gCy{-GMCjm^hNgW6%l=kDcJ6zjzGw~9d6TGh z0ISSV%geM+*Sjti^+!dWKZ&}KXLB62yin`L*|bXXcBn^Mc*eW6Ts7#{?XhU}whB9- z!0v{;DSJ*d~&vE=?p`o6VbOz}tm4#y5y8W}O;Sdeg?EIg52_ zliREX_jOZuYL!KL=S`eg_bsLR#rAiaqAsj+`uVUnWSxFClc=v1_2?vOwb?^dgw#5Dp;m9(E9zBH&p1ne?|SWVuhT)qie}De z_$eJmw7o5wx}8XD-9gt_N-X6}zR1`I2p->L%YkOJF;416coFTeHWisbW^$uoFS{;b4g z#~jWr)F6`*clvL8XQ+&s@GW*vRGL`o-|1H#j;<{yE|wfpN47C|2NsXqMnb*ey|C>j zXvs6t9Iu~$W2|gs2>-iUI@AJGlU(xoy zX0vPp{yBpyFKcgG#@^r=&6fYd`uQz3u6UQ_s7dF z?2NYGFQFx!?2=A)Nt0dWr6y=?O6;-@kZx=l@Y~>8K%8=L6Q^W z3qi6>dgQfUWH+xbS>{CUV1sq#o1Tm2=MFs=Ju~;==c0$?>S#}_Y^ZT05g9l+b=X#K z_ia&SvF2iapF08Ce*G@)&zEynf1#Y^{Uyl!(8~TiIg9%X{rPeh_ZP}Jy}ty0N^!KMINDN>!35L)=Dba`B?r+<3gy$z%XAkqq55_?blw4RB^VfGtEbW{0IC+Pre;c1T-uAxYk!>I+ zw(Uhe?ZJWX?JG~$ApKlLG=KI7mqgz^@E`jxf4zm?%kP=9KgjPPv*pi^e=si~c%ud1 znCw@J+p-hRo=}p zhj(uz!^1gZ9ph++4rn}}Cl8HLSDsT@{A@_a{4<(#Fb*>&x|(fIGf+hOFl9Pu^x~~D zwnz{5>ZIzUuQKe^kuSAAqsf4K9Y~|!(5t|B>bp8t=cU%`>`=Vy(Pif`vnncNWvjAA zTNgm9n57dj&jT+l6b8gHB)cMr)Zw>@$oB=2wb_yPz7C3uZ&yD{c8!-&f{2YB&w+)?q{})i{x) zD%quo6o!xIXik}LvWlCyw(Xm1!=7AE%;KuY zAy;t|*TH>r6=bHA^{E>&60ngwD66=MtB$+wL#{cHOyT;qEUtPSmQ~!uRR?4D!PVQ7 zYeg1UJr22wo49uGn`_6OTz6idk$@hDT*XaXb=Y>ILFOMs;Nsh5BSG7XuKt=%|LwM6 z4}sCzyAEUw+TE(Dgo`M55t?GSh~Wdo@0Tv{6#}f9#!77TH07Y>JdpEm-y;r=f>aO6l*JHeBUdbGO7U%hnmE}fwxL^e@ zOK8D{I21nEzsgBG(mXk|1^I)s853Qr(oqTwW?PLaNwkp$X zRW>lk+ZtVa5AmFU&{m~7T5VNw+CdYJ*;SFE8=1+)%ElW1s43j-oNj#8y{nFwZEoa* zg-*xV;iXsEp0r~!+Y31-yb0=6xARHLWpCrq;jx^;(gudk8XjA7a%BFom64*K+dBH$ z#y`5<1HJf3{-_(^RNSa8oWKA9#8VDP67^5onu^UK%(6KZlNR|CO!+l+*V2kpFdaf& zvbEEkAN87(>cdH&M_cjNiFD!wOdElz>ni1xzWhflzpM!4jooXwn0tbZ!}T2b){;KR z*TYM`bvQhz!J#}9sI}Q1{HVd4R1;46_t&W;N<2}LaspFJqI}Z_SV`<0Rcb@cj3r5v zJ}Ai$Uh*Bqp(MjNK}qsSjYMVog`o1p{Zm#FC7vkBAc3hRQNHPmcxy;=*PA~#cNIc) zjKp83(#MP2>VPtPy!(58M&I2g$rN&oDwk%K|DlDU(!L1GHp zX*)Bvvze8W(kf?GKPtzi>y>lJDyC1)-4`#u!FEq~Kg^!X4SIvXNv%X=j78Lw{Eb$p z=J#@L^aD974zA$XXxYY9{UbkMUSG+cY#<*B>+#MMlTj*O@i7);z46p~NulDDc-9Q$5#vm z)?Y>r#~?{Mo=Qo~>EqiEXTo=TNu|FcU0JqbAlmvd+7K00A+U!C^nd_F9&JAt6C0GTdm_Sy>_(1%tj@Ki$*a$u$RztE{I!)E z^W?<)m^Am{J0$njMA>GZA2R!;#=Ax~!M`&3+`KItpE$ySuOf2qyuNKOdiAVxx3Byh zuY*(~Am>U{B(n3q4>rj!J{%&dBA>xTLs5bu#HtNq>>Y~yP(af`7J2RJ#fYB{;E-QGd{8m9{5E%@>%@1DwbZYMAPn!C10KG z^_=eB!_J*%uSaoa2*7Qyc$;;!>X?tRAG37QeoQIP3dxK87)k9xtj;&ZW-C~0Q*zBlG{e!_KD@Z_Rn+L35rRGUuiHfO7KHkxRM#pM(qVrS$C5Ua*j5 zIU8SW+Ro!W+cUK6qDle=3J_gc_vW8)S`fWZ_;q~Xdbt&m{;S&x=1tZk?&!9 zK0PNbo2GF3Ko%!G4moL7I5KQX+;h2mi!BnTaC(Z924R`B>I*q(0y=W>jGVNHoxs+^;B-OJ)P?iu6KpDrY8(&t4n}_U%=F^fa}EENECvi-Dg`OLe|1QG~vD z@(;?m3aj*OPje(&Jqg5dT+E~kDuOjscddjMNX*D6tdEcgt z(ucx`RwIlCFvsLKo6+y5GSZADtNGEIRSMqu3H|BK-`iJ9cuZZ3o7x2<3+cicUDn7l z@~szU96$8;CLp0S?M03t8c zB{O6Vi>*v=gLyY}X?f@OHn~u@3pKk? zj|(XSPD5CV^i|iOjLb?_OW0tI$X*tpc?DdUL1@yg9Q_WIZyB zB0@Hsdb}aAg|r)y0vXYq+-4_8*TIqWgWoo!+nHTXfWw@s<&0da4$N;>7YPLBDo@UR zGAx1kj=UzLf0M<8{#DF9_5ZDG{for(|2aP6M&&iIq5okPT@+hRsQ+G`1YJO% zc}@Qs`~v+C;tljag=jB`djb`auzc@4^MR?*p%!3mV_)jG}B)VZF&cB#{OQ-f1@ z6R%lTN!!h^;%b{7k`iijpp>g1u!Qpa0PsLcF8nFWC|3j<}&4U}2pl-X2@ zCYO@V^P9@?HaM?`x5;_)kz-S7`iU#2QDBWoG741wD9~d4no?AU{0hxY3E z0Gn-7ulX*OL3`zvT}>%fQkGVz3DsRJQL3)~hOD}xI;xpcN>oQp*LmhGr?RaoMW8w? zRM*$qliCuzb&Lj&7{#zbNo zJDZibR_Z6S_`Vf}|A%%TD%}CY^!LlBY(h-zJWT9GWNkux4)f7Ub}Y4&bekZzX6-`2 z)3zZ_glfiZh+Y4|O!Gf)ca{1yF0;%J+=jD#WDfPiS-k;g%gFC;Aro#jxS8P%!PwbM zKPS2W#BCUM&a%=!zhLAkBTd*2|C$lVnLYa-CAgidng+f42h0Thzm2M*RMz~Sf5?iH z-Ej_`2=h3gflcKK4qFeu%vtQ*OSz>Zw>{iKc#0#3(Ux;9{fZ8M_Uh#9OR(uCw(+@< zj}y%S54{D)tjighMsAz8%h`0TJeCa*ub6Y*Fi*{{sPyMFR{DpX??pyWO3vAOQu6ez zq4CyZC#Pnc@s^i5f7~m3D0<1uHzR`LL6E)C&!ttI+L5fh^yQJ?6AdChD=@fq2NrD1 z;?(eUJ4melp;f2ExYXf-PuOK8@#L6}d8=-m&)j6zlDa71yjjVoj>Www_c9$a=cNP3 z00tYMj+ON zrnr8Co^mZI6?nn(TgnN>{gzsD{5o?kUuw=bn#{Sb8HbvPUz|%v>5piZr_ukUx-81g zd6PHvD8u9io42m{sx_Q8MP;t1wj#OtwdY@_tl4li`sKfSPtM5WSZ~`sPXCGeDU^!N z9R$!ciI3l6W#f4Pal531CnD#5{3$yb%){^hDQ zw%C~!iY)}-+5vO*@s>wxw}n!wA6=8`H1gq0H{$9TcKoX1L^qOtt47PLdHc(~s)wJa z!nk=m8p%frebsY%&ek9IIGsp5@V6V4;-i zhlW(AYz?_Oh8hx|jE3&N!Zf5vvdS5$yFv9>SciI=tx8|2&DKpbG#TBTSQGb8TpITm zHpKl?n&SR9+ISrIuj?=>n}bc!M-M!iI`o=zL!WX8`m~;u>7!FonHFPZaMMB0Use+; zB-!PRTyveu zzOVr4mlEgsU&_yt{z7J<;m~p-`%fnpBKo-$vLx<*syyy5V?JtEoJ|q>Qdoskx8w~? zVjKv)Y^@31&DAD80Bc#hsUbpVHt9x@cRz^GAN*+`bhk`6k(s52ka8>SiJHvX_@OMb zBwmNGjD#WEC{HP%niT!S63;)8qA&EQMqwapm%q(Y;ZaKhlGho>)&>iuR0(9Qf{(Z@ zd)xDI6$xc6J{eg*bD7CnktXW{s7cIkPqQJ9xOKl=%)fP*(1gT!n#arHQ0NK&ntXyt zQg>~}{7ba2pYSiymVUx-A2a9597v#ahB2*TJ4G8q7PUT&gBonrAPTY31yeRPfr8TP^tlfl)ux6FVP7g%I^;U zwD(x(%3gD>8N?xTv7J(WO?XjDhdo)}g%hIbspQc)HXFR@C~eXDtxd`&Ibe0-GG~#p z@Yg9A<6+O!@5n8N);;y@tsd2M)%lr9$Q>8uycwS5alWza#b`_V$10Kuj#uKYfU-X3 zO4%=T$C9t`M&Im~bm{Cf?84tvhq}|}-~XPRnE$3&%P;G^$UU)^+w0+Lo<+r5#yA9=cd?jSLbe*4N^Mkox+Ur$DMi`Ak4c zye30R&(pu&&md(_G1CzdchVqf+L21gvIH!>5N&Drk;PYkj_VE!P!G-ksMnHFHlQR_2dF|a1W+bb03{hr1E_#XngLLf zD}ZuxZI=cBl*F3>lr#_k%IeSjRh%(UFeg=x1E8G9Q_>!Qsx@c5WH@qL22cuT03~*N z0P3p@BpE=7!~pf$YgM`Sd*eCpbE@sFEr=M zx#nC`jsu{?c6vbNzyntKI3b{7y!M&YN2OJ$2|(FZr<3|9Jx{lc>t6N^?jqFSKGYCU zD&Yj6p8tVz%m$Pz-Q=EWIzSEn`Y!_1rDT*1C<)a8YRIH~iAfbeNe0sZDxi{P0F>m4 zo}66Ur2zmX@n!%e4FrHPF|Z>}MgVHmoYWW&fN~;FNqYcFl1BlOVK$%?&Hzg6_5f4` zLt+L{A~8T+`d;Dmr0TRjC(UCL(yP~tVYhtl)(v9B1Q?5S@VW_l=1Fd1b7NQIIJOH8T&N-~%RPyv-R1E3^V0OjP`E)4)Ei8li% zX&?ZUiGf+ZI49S2o0ICn0Z>llDQOQt4VbfDGRy{)!Wlq`-5!7%WhBV}N+brTgTHTp zYNjv%s+?#5)kG*8P+fYO0aQ0Z0M%r~moyLpP;KV4cbIc!r#aX3-~cGGogPpP_GEoC zP6(*)H%|dnt@4=wlz2@Bl%A&_dC>r6PbX$k3NhrVgv_G)0M#ZN_Wtx;l_wnXL?wvr zWeVjXtMt1E!zq-<{KZOLRMHH9l3W3l zlWV&)0H7q^44|Ze08l0dRxsksu?=%lOK|{{6M0J715nN8td|V40i|#TP-3?SpuWjS zk^z)R3{V~4F+i147yzZ~y8%=Qp=?0a>S+d0bp!!a2|Q?Ma|r>ca&y`}bFQp0=bEKB z07`792h?16z^W7{1k`D(rT{8m`Ah)HZWy05>j z|EbEgYeNV?>F#&{l_r!8sC$0BcQUN)_J<)9`sq415f-YF{F|qoQo2fspnR*lK(qFtYK-uk0G6iY5ttnnM zJmbo5HTh(NOoDbG>$Rd@Vv+`AlFKw83#g&TBY6Lp0%AQQViKsLhYlIgWXLjE};tG{U=>&6er zmJ$ufx(H>1Y(P&lz1AQ>K-Oi%mvj;WWIg7z_nLEMpE=hI;Q%tRogQSJ_GEoGP6)ED zf1d)fX5}*hGVz)WGCfZ}@VtS{o=yyd3IQ^eaO!5lXRlF_!jVvf`xpu9V3ID{5{`s_ z&SpY{JhCCx1q%nM1}oSlCRZRODNF;YfJ(XnQj#o?>ce5vNjd;h5^x4m(m?{X=A=4sfRqz@O8Ns*-R7*96tg!I6wW|O?Dl}vm5eVLNQs2}b4DWTCH3k$@Ki`# z%wLt+Nu~nL&}4zBjUZsEHOd9t1F`@E%Ib!Me_9jUBOOL;ALN)GKsBTzc^ys&pih5s z3V=$*djdcz(_{eYdHSkn4M6sE0zj_(D>)F7HHpf(T3LqB5y?KF<57w9$mS3_f7T@G z8{Y`9^K}v zfD>Y*Y{e9ej4Ja9jEL7{jOclK#WRKxd+G-Kp>@EHLDrJ{FFLFiO_q^zr zxBo@+qG~d-{^c@L?t)-TepprU7iddx74YAt;8r7VW$Us9R28|`1 zLG}LAs&~n-wk48!>CnUO0O*&;@(?#TiSKKj_Uvp3mBTSbd98=dHXx3eTHl8Qsh^qnjc3A*Dg;IQ7i5;)>zIJJ%t+!}@&I&)>S2 zvnijf%n=s zl2h8R{jkn-PonPS*?SzdyioVy6jVWd|NOnwX6?tR%_r6gFWf);B%T=rImTDKDsIeo z)=SMGZK@y@7gVbauT|^Z!zgIZq=I(v>?5wA@>0-FoR`NaXbAbVXIJMGt6&vas4!at>!bNZWN{#z3M zLWa06d2yYl`o<{h1};^UjpD|~u~WoA@nO&ZKq7Lt=U-GBk9?y?3yWmDXf&QYy=X9= zTwFBdB`+u%#zd@Wz~ezWo;<6lC!YL#5pO(}7g3Nn54f*`6Jzu9;`Os{_2akZRupeh zc|Is^^?YyT@-ckwVm-G${S_AP4?a0wvFoHf4g-&I zxdS(P<>PIY*FU{zc7^|*vfoD6yavWWzj;AXdDie#Y9>3~X0o%Us2PrGR+UBN_!x3r z)LR3;W}4T_X6FNMqFI%j&5qbXrrD>FrLHi);yQ`5?>COUA961wPhM@GZ}Ol_Ly>+! zPiw-bO4vvAJNOfc{E8dEP3vQjKNNXwNS?gbtl~sDCW;hKXY69iKdKwmzL2w5iPXWm z;>MvsB3&?@A`wM}66wZo5;^KnO0_gBl?tpCTPP9v71xVv68XdXAa4lCk;tehsD#|~ zfSxvmPnB?x=(z!j{E8dG{k61lmB^bzawMWH3Ne$L{t{1Tl*qelm@I2zqK|7e&>kwd zF2cXIs2MN!AjRs>$cwh`AR}F!tCvSHyR`5KuKkE>O3js4Z}R?&ITrUy9H_fMu=AGP zH1|q)+$+H+RHAF2%MSbFP}lwCH8nL?pEKR;|9*~D{w1^yfS^BjStxExTo>=90LtM?4j?mOnlfwpKn>U zEye|k|H8GRKT#RVxOcOPJF_-dyq)WCpKE-an<1mE8?oL`)K?aj+=|SodfzH$&ugs8 z%>I8w96iKFuYNXn=H3}y<3kRMSlQ^Rop!lmbj`=Ppdki_d@3gOXiLbFCD#;bvxw0^ ziO}_2LNWj9qI^;$a0_rb@4ds@`1}2(2YX3Z{2Pys8vDy(n8b+H?H#dV?mW2KqI9#B z?w!Mc4e6phn8s75zAAsG`RBYvM(^JEU7igsLv(tHNL4{RvOVU1v4;CJKN&mc@@`1G zm@d~TN%1puhmnN;Gwo_I0w{ZVt2hT7`C@)t*WBsJ#$g+-Wc054RqY^RB670;8H?Ci z*u*)mk#`9%*1B(*g z390zo#<#toaW%QNsDzj}lwz#ry-g5a)P(Wm~R3;n5du@4@aq zR)4`)a^uOMM(9X#7IQ1c_~v;}aZ_-#{c9ri*B+{tYZrBGWprG7Xb-_f{(1%1GS01{;dDv3QI1i=I$!OITtLiumkIMh2Z$ga)Hh=NX_n!qml-QxM1}+ zxs>^(lOoGMn5z)?Ht?aMAcCuq8z1CC+2BJX3%T)Z+e$vgxHd>U=PDr2SfT7AgH@5` zKgf-Pa;pwRQk}krRKNHKxlF1S)zAJ`f{)OQ-x*!IRx(ZAQ#J1?zU6m(g=?^p2XxEx zwwLtnKGwR|8#by_7i`X3lsc|`Vg2%_IW2$O^9z&5%~yb;a)Xe<%jf6u=8Fs3b~fH0 z%A-1U+!rKpX`_1>gttUYr2ZA z{%;Nb0Ln@J`l1?D5lu*QbQmGDRY)mI%IPr@r!)^KEF~OWy%M9>k;l~O)-SML1*S?7 zZQr0s(yLDp@bidOSUrlu`9WBngTe(C{$h=qx6SNaV-}fx#SStQcenbJA&a}(UB`to zf%^_MJL{WhV&ohz{u8$w)_SSWafdfO4Cot1TI%~ZK6Si$us-Fdz9wkCiQ*A;VNFEq zdJx^L-fSd8YWQ>U##76W9*-CIV?AIkgsVg1^tT{EWnY;3{Dm-d=&eo_eT|Do_FtHq zf4o=xf(P%&E3x7Svpe0`HWutbS3)ByR}S>NCFVMnsB5ueQ)#IRJbAiuTDx-YD_a^Z zXc09$%vo70bjlk`&1Oco)|J}-j`8G9@B7sj{#fN-@VdOJ;tO6!gIIolURC6oiCBH_ zP!ANxZGiLzv+Xv(SSrQY~@#IA7cvP)r+sld8$5z$|c%{lG zHJ>kDxyq}N&?9c8k<5Q}Ve*0x=P9JSP{IfJs)<4mOLW;2oM2q#jC&o2-`YB8fap@N(bLG{jK_A;UR?E+Sb*RchF zK~O8sv_&ehB3)rqOr{)@%0zg6P^i-7n%&)b&|b1TSJ}ORt0$(-XRhVb9OP3tC7;5w zAfLIV%BOyB`MgH?bYVu{QIWk~$)h*$lE2Y<Z)8i}(WhL(w&_1uE0lsoUzb)YR!#1(T}f zqTXUPbJON->FkmN(QHpfvu^erPR})QQSUK~Yt!?S-U)ecNFGetG^1AgOdqYMec@9j z%p*Enu*k1Cb*{ExdGTn-2SV~nIy|*Lag&?g!Q&a{=k1k8^Fi_t>|G>-@UFPAGZ0Cd zN=y-nqC%03;x~~jJAh&hg~d{d$9NQqM1IBPP(%~SajL~|NFMa1s)YK~^r3p14xcKa zy6teqBERC)&Dx6P@wt$XhU5~7dJJ)sn;zitj3W8ciF+W|3 zRxMdhnoYB7Vsg7{*0Y;G%~gbJc0oUFi_5DPydDeS)ePAbcq!^c{-okI+~(TvaZ{ID zx~FHq7FFlN!b@qZ02OP15~qm6o=mrDi?M^` z`73z6=~l?Lgeu;uIeDKLaRr!ij0k>fZKlU6E>VAn=8_@^7ja%>MZT9h<}F&SB~s_V z>J>i|8|SjT>x+8THu%tizo?cmH*3|_s?x^!iZ9o$CHx;*GvoS4a<1iphWyAP=3uv2 z@Go1ntqE3btn~P1<3dqx^8SxMSt;p=VIs9D?+I>(luqG|(ma>2#Us0!hh6_hfnt&Wowqu7&0F=D2i&B*=8awW-Lh@% zTjl2y8E>qM7Y{O}VWyNKhNO$%S{KKTw78E?EVfN7+g?sY?n`jIgmYRtXbFrrzh z_-G~9x+774Rx)?Gh1?J%@zm@#P0oAp|K$t0XWc^1B@PyH#?=;bm)b(kDoBBZ2e**B zbm~IxYm)Nb7IGicRJBh{U^MCEekRQm4OWzeI$qE7uy}xbyFUu|@UA{Dd{#Q|c&fO}Ew*8D0IY zSDCY-h7MS0;b7`4!?eR`T%v5VM^5u<+g%n8HSRPSUHu8I>2~g~PN!<}n(lT*QW&=@ z#JWctJJBC+(PBx$RWCA#OJmZek!=Uj^=R2=i!xp>us8jHmO1K#`QDVsv;s_|8d;EX zzp$b=K7G7MI`DIIehpju+|Rf}dtDNAJaPsm&s4@ZuxPu*E!s%kMbyI7@?%-^(Lq7e z4887i-S%oM@>^lPMiHswS|Q9y6!T)@mZE07@#3dreEPhUr-@Wivqx6S9m)edT7uf5 zmx?Fcwi3%Y>e;Ng;?abEQ7u;Ic9kTT0FxKPMkmkoFCO`i0(CrU!^*u+E@@Ru^){lj z{R_T{A^!&QC!#O2r2B-{`zmxSRhc5qwMAW!2oNe$b^Tet)SB**Dt~z{>#yaxxr$;< zcke_j?*r@sak>ZhS0|^AsZusxs){w;;L5kFvSRAhAJdI?XmA8#k*ECSsl4LlsocuQ zy_J5Y&x)?nXGOQ2Yewnuc)1dJ!mD3Sl(wt>Kla`RysGNT{}0@>O-uCBn%dN+nA)_` zhPGH3O`EjMg?sT_xEE3j(@cx=%S>7aN2*MC8QKAiB+(pCE~eFJ>J*!4b()TSiB@V* zp%+jRKrw(~0AJ!u^~R_Kv?L(H|MT7F+$1+4slRFG|2*^j|2z-b`|h*PK5OllwbxpE z?X`?cPMg@=;Vs=?3p}I`NGv1@?4IKa!GLIbr`HWG+R@nbU(wZl;qu6KR?GYgGQxJ& zF8xBHi>m->j?meKTU0KI&h55HEYAhs>puD=5792Z;=HgAA5(u6HgUc_yL?I$p?3Ph z_VgaZQq*~(U7eQ6bq`A{7$(}40(J8B;d_A*?H(x$7q3c*?m-s^Wf56MC)uE}}MAcBln+4XK5jd%@%ZoM$tSObgU%OG-oxGV6-XtaICIt7+ny zD`hn(%ZtqrE=AmIRCpWkemR~zII(>6Xd6Ti|Ke@RMtY?5y%!4^+9))zjoC|OG#}Vl>h@9`FoyS% z%Di4`Cu@2sae`i2l!8+S&%9nz7MwasOfUTxXZoqVw8X`!*x;nUiR*RlzcQu8F5Y)# z^af>VF+p;lda2a3IJB24-4-p=qW&hPQ)kqr`pR_m(k!Ob{JhMnu5nxsVNzGUFb>;s zGX83X8>=!N%sD6<8g5CWJYGGbuJ^CuoO9_xoZs~9s2qZ|D;J;f9Mz8qzdr>{x0*)e;nKwsT)$s~#zm!Uo|@=>C_)&J;QG1WU-uQt=Q=+zO@;0Lxz4Xl6OsJwFrv>e(7!fKJJkjb zJb(G-`W6?K8DHmZ3~3~mWq9&%EWJu+w!TM@k(reB1jV%P64{&OJE}kX^yiQI z^XwJ=#jJp9unt)KBAt}(-~Lvu4gn^g0-!foAIC8Uc!&HcsvqhHtmhPr;&FcUz*@?G zhr4XdYSGfU0$YK@)RE1=VV02W2CgBx)zSkjr7N&4I84DIr3Yzb&9f1FO3j>2N4ukn zPx~5gRIA-l&3EU*Y+sPkrH5xYS(OA#d|#k&f6yN}io8G*72N^iZLE6>ls9W_dRz05 zZJ^a`195j7u&6S88&H|I4U~{I+rZD>WE+U5km^#NeTmP&87K>>E+eTGss7G65cc+z z+KYH*RAw;~pn=*;D5;d<>|)jKNU6P&XWo9Qtko8(d{_-npz5f5z~;~4m6`CGRon2@ z@ZDzr+6$RpEL*euoy)sevu5oR{Zu4?rAxvB7vo4ovvh33xQ(x0h6an{L`Z}UJstMX zYYP^3_-l$`0ril>`yE2vX;Afn*zsTVSAT>WaxCVrJBwVzKEWDch()KvL+JDigLFDe z@yf2wnFyV(HFWxekwO#3E^oGG<`@6_bb1HN7drgZAf4U|oxVtPx&!JIn6NeC+abSY zhE8wdoMhS#;`&vsZsr(x9t$aaRgFuN?Nbm9g1PpEeKjJ#QR2cNn`5`!1pZLkW|M4c zA#tMzLTvY?65H?qu?=X3i`uGs+M0jE!H2q$o(h1Wyo76BJe6EE_`ier!-jB@A z2&x!zItwcBgHT}yyX~4)zL4D!D(npTquU@Z#DIxnQuplKSeAE$SOL-9pl>amNRM=I zSu9kT{vmoH{X?RnXCk+#`SJ|8J;g}=1cSHPPMxgc8g1H zujCb(bP%4++R_cVRjk84f8Ez9Pm){9?n{zej+&F?)->&rTSXZ*U2IqRC zY62UXQ6;#MH>w`Fo$F(CqZrbJoUDx@(c4hre)h4W=G^&IMIuzV-M?-OwmWy8*zT-_ zMz$+q2!_*Jm3j2Gl&qn*Uwi|4JDE3=^c(8RGb7>08kB{CE+WbODrE7kv!I|;Q)(~a znK^@vH7HB%l_c}OLhbFUU64|{l4ny~TCOa$Yf0)=yOG+XlH56yhmqV*KynFJJPNH9 zgWhiFrU{^g6Vn2#>Qs8fNn0Lv`Sb_OfyhC+$ceTP0Q}^e*yW{H$^+wdZVZgA6|Z5^ z=dY?X?L=DwPI|qKd&bjP$?U5*(sPw%>vf_px`q~b?}70ok_%y62w1fx!tsf-x`h$_ z7e>?yIXPj=w>xBKwT0}3ZLsSm@&&X(TPpJjFXD|+Ht38fBkEg~mmPHO zlHwxjYY>$U*?;7wO(`l4Utr7Y=PTk3{g5@xmhC0*B|oroQZOKWMv8#^1+GEO*~orRo=?A2IB z1bO*ln?sRUujYmAMGc5`@hf7p6LNG?KrI&1M?}>jlOGWa3Z30C*SYT_P2>qM+hi|j zv@fs69_^m6eT;`k=*wNReUXop&Gjw&NLe_4M>PM4Wh*f4a_n}#*Urr#X>#E6)gky< zGVnT~S_U8#kX-8;M?^@aODp$RWi?eHiDSI5KE9SJ*BYc@)(T7E=tcmF3F^1vK>oe8Ib z3t=Z~CYfdAsr8))p&k<2pTJ~uEuIN=iZ6?>Gc|au7 zxL$C@EDPg&-F-8lKWF6=!*p4m3ABc>SJ-zvlD`X~0%^}N3b(LtSzdO)egc~^U9}@d zQWrD#weyh{yqO#DJrQ}D6MUJWBj6Sb1Kw%KJZJVNSOqXT-{lBx zK|K?_ky(P0fCyhssD)FNE|w_ILEgDMf!h80^pJy6Ka@YEE?PdlE=2IU@>Nx=fHlAa zr@H3*SZ=LZX3p_h03w4dfYt5cSkCb|vCN~h%ZuKaSDur=7VG$IyXer|@`Z1t&naJ( z&;r0k)m$fsk;!>m3t%-dfHTbk5Fl3U?@-_$T9Iv)FI>k0coS%9PZEl2o-_Su)SkYB z1rYW@Jwu)TwX@6=THTJ>o0;_nYr;c-W!zoDX7Ue=q!~j0+AB2kU(|>b=0{DGujFJ4 z_PbPb0s{poTqhHIgC;hC!ZiPxks^I4k@0tJ%Dq((bsEgv#!4{EO%{S^9pwfi)A?C* z$eoWeSy~6eixFvz2-L(Q(^s%8#)j4x$;(C;AvHw))~IhT=R=zknm)!A+=3R2=Wdnp z+^rgq`t(rEA)j7KQ{Pv)xGjpU8G>N+w>b65^m<0~$MG;0;i zi%mJM^%&7Gm1n&*r#$BsFuK3Z=M`FH?WO$cX(Jlf=Le5W zhU?ZR8vd)_m3O6afNrMf)>Y>5U()ax{_EbC;J>m{cqA!lKBsYuH5i=}I$lb8#Um|C zAA?7_@O+Lye$EjHy|ZZW#AP^`X$H)vT`+rTc{rFV^T3n_%78gRU}mI%DV@RRT`-je zRms0`f%%wk3@|Gv0cI`{UYM6_zUgvfABB@K{;@?F4MR4W`F znl5`B-dgbt52O-Br?d2clsqaPs^sCOh*9!%O3Bm7LuwvE>vNd=ngdqh@~)-XP(Ubo zsH-sZ{%d_srh=48Mcg~bd8lYm7@gzXQq&~4MeYW5e=E%9bYGFXIZ5}YiNOYSUy-() zIlg5@2%{;wznQ!;ME4g#_ovlUmrwaT=O?Bqbbst^rimfCKhv~RZQzjZZ=P>)(Yw+8 zeTpMJEs_~dPA$_371gt-sNVEcf8CH3Jsn#X{r{NiFF3~;eNgk=so)N7Z2GOUoXqRF z!Y^5LH?rsvPxqHFy1!4cX>Eo=o@;6U0Jjqfh3YIpF=lU$Xhb|;CET%YAsepJczhacs@==8QQj$N(7%TX3ShM(V2CD-l` zLAa5Wx-X+~PUxqLdc?aw%sVO#5Hn=+nR~n$XagJXbjkWeDDm(fSDDx2*<{t@Fv6nQ ziO)R?x-CP{jWy&_4vtC;*7!;%TdIy9^Su9O*$N(Kn(e;kWfupMQGlLmfX;G(F6INn zfmYci8qu~Ii)?|;{;qvyjPAaG?{~l0HR=~9n=huhUz~b|FRJWf_lpH&)AYr&#`l`7Nz&ftHD3im9)QZ@I&tP+8WTBq zkcHlC*f_6IYHBxksitSgMwvGK4!toRtAg;m`Jz{XSdy0+ zbP7V~qpQyw+$%<)(`wME_t25C-$-;+n(d*JL4L8+k;@N&PJ9?TGCiE6npkO@t7M=f zGsJ}6m?kTO_91V`Y`=r2s;xBfLDlFOQbV1Y%ah4oo64(fGHI}wHlOR~jm{x&1hEpZKxjzwv)=uACxxR;gGD9AOyzPZd|jKik^L6u{p2)g zCvT>~S2}@s32$4m!D-OJ)8sTzUO0A=RtLcG?Y=QE_|1phX&?;TY4G{aNG0&PzxwqH zX^8otMI~^L`@$c10(1H4?t9;IqsYZ3QYe+e2ZObXff+Oy)UjAw7qw4n8U8S6T zgqIKsIM2x}Mz+yKbeV5F&#~ZM`J&*?-1sYIax8ceO3Jn7Sa2%$;B+9EH%osn9(F8v zgw}d7(b#XyHnV%B;59KwbqOYH4LSN-W(chkzM4wCL{|nK-{F5&F-sqpuC=d2V z&yYcvIvopFb$~Z1B2IWJep`C6rj6phB~W<8U%inxMk61+%+bKc#NWH*ql5W7l6jr>pnq!mW3Ycw9+Y&6{mmQZnfu?Th7#hWwC(z zu2s_@!H{6ZKUVQD zi+l`&t*E^n%#O)m>jKPD0}o142~9g4D9kz=;qh&`tC-Lh#m-6|D}oc+1ASWKXnx45JI3Z-WI*n){3R<6lW{}?|tx~g`jQCGR;SWrTAd{h0^FEMr9Q9noy+pob< zmyJY{7DdO^Qgzos52|Jo@vyDSOoio`&-5UFf z)JNUjtKRRjNHf!Lf535_2|M^~NHofwa*DGmo z8Y6o}rO95AdqUGIpWh9REyHk>>%nBNC@&o4hp;3Fj<3DW8?D3M$mMCWSCrQqlSxgl zJir^H_R9A%++GptZm(o#dA;IS2Ew0(Qv#0s3fqGIC>F7J4LH3l3(`ROa*DT8+{+EE z9$(a!`HG@2!rQhWma!Ke4;bb0W;Pe70Ox&sro{uTbg+R@GG2{&!uXSyH15iKb$OBl z^;`0tt^&DoAJ;$mop|}PpGo7=iQdOt8bfI-c3)m8zqWLx`}R)gxNfH+v+Kr{;7GhL zk898Z4YNfiJwOWG(O_Tg7}{5o&s~7HEJ+;g{mEV8H^q1Ng1WKBK5kLuo#8Vdx1*&}zD0(Rcs79KoF(0nWt0gZ0nn(pyJ*obw zEN-6Nm)BxaE?to(KH&nTHU@#J@MCQ^1v|DM6j6cR)(zUlPQpGgY zeKt8})3vv$r2e|EeUKXVn_MvAu&^_l|E9J$7vwo^SEj zrJGl`MDuxVx30NWJ@1S74scuu4L$nZ1{;zV_K(K}Or8%69_J(ndmA`vNVU~SuI!2?mQNy=ayrBhL zT)5RA?O^3{q|Qy2iR!Qo>czljw;MSRmy!T$0k;=V(Tg#4Vwe+I(}z76PT~VMYVTw# zjdNEO=>dPJn8StpwnAuNB-&M_@1VIDw&hj&@LTlZoBp~M^J-rtpVv-cB@o8oE$Z9C zZ9G_li0>4P)`|~ZS~$J&+Vo4E>5aHKk$aOjwC8(ALh8hN+8x%3PyJOo(KX9GwKNA? z?RJHz&EEkq8x1fU!>8LKg{Rbuq2fVG2PIKZT_{Nh^Af&)PYNYTp>QQk=NhvJZpkYq zuf&W{NdL51v3h@SaTM@t#NrSTiBFwBl)`mV^k*qt294Et zpt(v;))r;DW}aqJR**^W%gZ$>{wqimSANQXruPRy>xG1k08MZtZsgQ4=!7Ot+W}Fq z*k?rj%@z>SE_^f1Y;x(J;tE3GsiF&+O}reWyQcD+74?V}yNuH~_lyvsho|baW|QI- zj9R)7-OF#?VDC5OTwqme?Clw(=y(of@{?^r)wE{_9^I1`b1yAH#QcUpncsDJ?Lv6b z?H^C0j_RtZiKH}@rl$C*FY)t!nS;`@`S6gI#Xzd%5>nj_)lO^0>Wn@&adv9Ujc&`e zA5c^HVdE!r&G{CJheHH$K46uaV-o)IN$02_7!1UclMYLF}72o?J08 z=%oKLXs6$eyDF>jFzzg4Q#M+CkFdJamVH>!qBqKd??IZRsS_2i_nZUG8(wG??q9mp znesz>%FV_iVSmNZp7OBWD=7fO40Fde;@dv$w0HSts%1ZB<-cmh7B659WqltDjMZtD z@5C(3xMtZ4cO|1nzsSwmsOFUwTa7hJ--@%X{GF`mC!MSh*z@l`sc~v@J2#Y}zCvF< zvU7JCr>lSCb*?JtQtw35x#tab?meb+kE7_RVs?b>1jnX^62{%m{hmri=;G`qiSglB z2|cpYU$=mA%ialc-1Sd(?jGGS`e4w>d@yK7HpvA6=e8AxaU#lH3**alS+@L`rdJ^p zT^p=Hs*2+macjk^J?Bz#hH{)-FJ0yo-E6OFpgBw?_h2$fCnJ{b)eYc3sGqP3M~&fK z0R95zQy6|(v7&Fza&l&3UVLf9x0U{VGHsUqohRvJ_O(3~baK%G^K$G`Y%|)`$p`7= zr<|t@E5H_n%{);*`-5H(Y^p4c_D)FIc{V`lhG`|p&#RZcgRgKwn&+1ke1@QsS~f>0lx8C&?dae_kNLKy@F{URuW*z*Jm zA6xMatNf4?S$~pmIE(K%dF{+V;cM4^RRFPg%U_2Pv9QqdJ*KWzKj=ofnnvDtiXMa! zxKWf;B>{WYy#PJG<>cu&sEU>qy0q25?rCmHOQU7pq@^?->Q1;uNGrgM5GyEyawy$* znC3(1U=19CSvW1~ZF{G&?+;^~t9=rDL@pz~J@RRw2EthVImHv%_EDadgq@iaqt3TW zR?M?vS$}c|=^*3vjGM(Ykf<-6m|Z@WHm|(s(Yem_9{ot4YfnFci?l~Y0OmSVdZL9p z=h{<_Ry>I_V2==d3qr7K#U$7^8Ag;x8n9nGfR*Ge*smR(?WA{x?et!C+!9SNn|o6) zkH-dP&l_xNzBsNCCiGs1?#C4)H2D(ok4ZE3B6lLZmw0*dyLj2mU^YKBqJN2h9nz3# zfQGs>?f(oET0LT|)u3tU^Ftak4bV{IyJ$#jO%16*)6gH!OQJ?RORo*u68kYGP_&`8 zOdJ2{@ad{FB8rJmFKQ(3=x$faoCeRSi0GM0-7j|VN@6*vf zQ?%ZlqMtg&Pm!V=W$fLq#L4{@SWYIoYFYB#;U1uI%_ZvmUA8QXof4*FaY@t(m#&z{ zeb2`X0DYZIt4G}I!LV;z*ta)QzW5mor;DCuO1`Qenv(rkCO?gR`8KBHt5)H&Ov&Dg zC#_ie7BEH#j}1945HKaoRH!r$iDbyzdO) zlyGrknT^2dcbH3v{l^U0#R=!X1}FSQWbOl}E#38088SxK>8DUxsmw4`yb&^}5c^sq zQ<}}_loB6$5S1(s6(~l!H#``}?+g33{3WO)m`i4O4h|ch4p7+wD*L)0(R3@vYmjqNV!?++)MV?{Xv~8F3+qc!ih#??DGsL0&7vDybI)x{%!xe9sKw2~V0Y3JB#@RU!h!em^ z`jPH0P&Vy!54+5LX2&&r=LQV=gr(s(%~6-OSgwIV6%Cf#Tr7WKCK%o?w}E93Sk3{< zBmTOZOzl6hFXZ>oF<|+O<$Hs9zQWJ-sd07@+tqQa@a>8t0sBB879JOfeIFzPASrvj ztHJ1MUB|rID25TJN5S!SzU<-njBtFzUv)yh`eV^?cIJPHr{v`8NcYQ>O?w?2&ma)A zXk&@Tm zP3VO7Zs^4PQ5up^HL9GGriRYpO->HFU+HBP*!#QB#$J@2y!(fT2P}I=m=VN{{xhvi zTH#>clHtlvit;t`I89lZCne@38^=&d9(;518T5|jr@L!=faG0iscQ{9IR+jSQB2C= zAi1SUeQYB&j6U{`R;2^c#o0(ZbU&cyB1LH(E(e zxRTHE#;E$(XO2#W-$d}nVi=BPl?gz zT&ek1srgngZ{l#ADRM_Qn3rvacH8e6sIruS!q3fAGfMOGay2<8PZn4=?jNIDz9O); zy4H28mBhP$^2gDEv<#3%9+1XU>(Cwv=1olkSzv&iBp^$M0a@%G2F%YZ7Le9L0r|%# z#{jai7a-@pB&P*@!8^BICN`a!CBnvf9&v7K2;Ptryst?ACuKt2G;#wcczYwMx19g` zCwTA98wL8g9e>FQ9?rNxIN~5^g>^dVuNE)nBK8e(>?kA7ZDDS7NEwIOA2_$gg`7{v zl34|~sBo0a`;yLW*^F}L>FWgwI_38cp4&!zM~0uu@-nZfTN6*HXhkd*WW8otgqI)SRcuGc)ByaT`e=mPJGB z-Z8+w>UF?=5f*ebK(h^?xgMaoXQZzxO#(WZyaDv<0yK9Rpi_D3_N?prR)7{z_Lczk zj|J$~*8ueESi91{nM!ta=RY?(*ck@wbPwz}pBUM{DoujjPTqih`#pd?aTwSgJWckm z@&db))bwxZo-z7&g23MO%;0aa-d&DUKIMw<^E2HqAA-YzEDNO)D6gf~Inz#9;} zox|Ym+RlGfp^Y91MdWqq^>2!_;bpE(GjUMh_rgver50{ zBN0()5|KsZ4I(Rl3nI0{5Lv?0wfmNK(|u=kj@~^hX*#fRnb$qN z%%PFpqtZ)~qeeb1GsM69%^06Onc%bE-k%~mTq>a1n(NuAjup$t+-4y=P=c@J8sCr- zj`D&svf0WPL(b~VP~oYu&3vaCRI4I0kWCy0Sr<=}L#VtUOOTqyYVYEW>>+Px2;+jE!BLv{C)LOuQbX_e@_up% zl~-9msTsn*(HoP8yrCg%_u5pNIENae4&nAcvT6!Wjov-|7=Z^io=jRUpK-A^QJUq(QdwDw7JaLq_NSymJgdKQ2J$kHJm!8bA{spgM&gIgTow z?#-}l@{Rhe4?sulpZ|P`&+bAgHQMy)GM~N0n?A*7{H#io{bP|g{Zsc#`X|BLLpRwH zo?e(-t>o1|rKC#)=>I`=|c<9HkS?S z!zP|4m!R_M!)8*m1mD}v8;gd#q2`_v1CXMGjDm4T!JmCt$9nDA=}}5 z^~TB}Z)jO3REsv1ChDm%>J*##!ely4ThYI3#i|ATcywHCgNygRct<6SP89%GiWdBSiZ~Es-KD*f()<3cvN|FfW z)ju*RsuiFYJ~9TN2cHAb?>?$qeZc{L!d=WY`4j$bJwC>)a$GZDXl&P1no|(tK$Ktg z?yqJyX>pTQH;KDRFa1uB93%t?TncK5iNs`69k;noQDQ+$j*H+msOlJU+N7!jZhMDRt((p z84>|!lW}G+c!{mUh=$9I#?W}N)%-FZD)~GkWy;QVv%P@dDn)12&l%-TBNn>twbk_V z?Bl8yYfzRK)96>@WH+>p+FgUSgZ2hp+NGwF#HaN*G5DBQGbqn<8&j5&i6pmtkx%z; zrFQRN?V!D>OI7gFK$1AX<55>z-7`|CslA~sfnTm;Y!p!5|(jNZK)K;|xhdjklaQr5lFDNXrm1mi%oNqPUOznA=XZvf%v zs258;0?+PRdO_e1OeYRWx#=J~06d$`?K77h_G4;84Vk?kY6Tz6DwgK>*FEf^7I6Zu z+51KQ>Ur~$sD;RZ+B8m>4lAUlvC>Pq>md9%i`beTjunA{x$01KgTbl*YZT#`b1CI# z)|g@RH}*}3HV`{5#LhQ(q00;vPQN5*@AOBW0<8&nZs`|R-N6YRfj-GdSSNNw&1kM< zH1|@1Z=02jCYA>&qq%bEXx_>z?r7GL``~Y|B}p3G1)^ zO(como#Yq~^Fq{?M+=OD@O8=+7F3~{x^a3!n%-k!%)7#|tg|(&xU-!8dop?FMhp8% zb1L}r*)v{WX&-w~aTtbeZf_KqA{ROhf;&01<^qfTIG!a=;{bs>ED_%^s_72P;Na%Y z(co^XWTYA2LuP!}>(|gBew^Qy6I1cfQGRB2vKRJ|``OI~H8PG4DbnBnIjn^oNeKeO0YyX@_t<Bq#l#ATepG5&j#5dhQ#hfClZI2fI31hPsdqMB&2{Q`kx1{^4H-Vz=1#TeKmYXAoZceBj zBf7k*E$2Hq_4|5`ZDZHG#q`DH9ae04Z`6LCU46d!#A-l}<+8!!M<*dECe3x(Krc^L zDgF(`1hkpB20T^wm%0zi^uS(UVt#EhZQx0tUx|XYbK3l&&DHX< zVH0Bw%FBPaOyxGW`Q(VxLrKE|ZNo_5nHbWUt z!j^4bY_Mp_uF>DbENYC(k{#bS89TvF)~co-Bk^6$Qm4jD#{6xTGZD9wIF?(p!m_s{ z8Sn0|;cSyh9dW*y9gamZ##w}OR(u}<*i3`LdPhxRwZrM$PouuA(elWfC+FB%?a}hg zH?fAq{6xPhUWs^K)55W(7-MZ;@u9E}`@rWgR{Ci_ZiVp=dBR(m_+4XK``7u!+S{<=`%e|5qD-AcAc0I6b%!k@)FiAaq9nViU2)KyrA}*4@O@RYW zZ}YEPOyd!|(}e{q@u3qTm`2a^yAvV4;$n9@_m0NM zxx5xP;cgp@n>+wToo{4^ojF+Gl@`DkXE2Th6i1wiR469rueqNuM(mwZm9p);`n6~* zIB}e3%6~Pn0-E*h*!0JE%wG5`^1)AWZl+fFl$yY`p*}@G@uyDWm2%=-JLly{c^-WI z*168Yi5ZB^gq`Y8aRr`oO=Vs+?>Jub=^=MaOBhp(EkCch=IfNtM<=+o9|K@5^qs6` z^IbcASN8;AY_|_gFydCZ(+Yv`ddJ|jpSfbd4(GqA*wQX8E&^UR+$982_O| zhnMDRyZ`#XMcW(2pCwLJ3EPGXWDg@K*=-<*DQVU@7S|-YKR2ir9=?rPX6`=f&fO9q z7(RDZ_C*a=TTLn1BF)Ah+|1l9NtwH4JbS;Y;kTMBwHJ}}e~Q{g*cLc7EoR`|ovhTn z+R#A_!UFL(kuCd!vXmB=P!2n$7L}#Nl_cp}JFjxA?ilxC$^B=M+hQj*2*h+w8pATpb=KgQt<*ftLKaSdV~q&Eu77Ul$D?Mwju6=Ic{(R#{@SJ6Qape zzMz-cn60VipZ64`tw5#uZqx+FL`@)4Rl9n@-Z0TjxAl`ruv>-cs>#rcv2#yXO7+OzP-|*zD1lGv;g##aJ} zl3l=j;jqY^_Dh%u!>7HH#+?5i$(jbuB-l)ZQp@J&vEuZd>`s)h?cvcT7@ z+Tum;(h>gDl-eyk^Ol^l)NUn-2={-b_Ndr=R@k&-8I04|MiyVh#w+^EWZM;W*d!*;Lw2h%ZSjPme~QJJT>TtwC=E_bd2 z)y@>QdkN1z<93X)0I`xJN8MP*;r-^W!P+P;OJv&}YfzH--dJb*xjX2I2jpLs>yE}J z&?|l^)vn5wDJNnJAMvltQd!}z&5yeG@q^l^v*Z5iZbSjMrc@wY%H=mT%?}f6#4$}w zBaoUYyQvu*aO6v6rn|F2P3CX6%8z;Ez`1#h-{<#E0a@8p;Y;ru^YR~}2CZ|9nf@1cvbu^48ZkxK&{>$)u+fDE@(@gm`QKZb?& zjMG6vJbs?&li|K+BEANFB}%yAD<4rKzK6z7W!3hajhH3)AT6q3l|L1DP%<4V8grR; zQ(SA?KXa386VS$N0?vuLZk%V+4u)A z!uGHms^+7KZVm_C&Xe!N6-$MY!qx+#ILcG>CG<@@>Ugt=md$VO4s#ZyS>>ZP^bP6}3eNAM>AI zt+$i@9=UlMye<6-%fE)p0rJ`Vy^cuv0c*?gT%%8KMBSBHtH-)6&^_c)o*w0JH)8RN z{_U@kuHfGOp#)bXrrc_j*M)m4e%5n!%9n#upZ!mMPa)Yd@giKK$q*^rw{$KpV@>bO zi4`?#jxoRH`0g`Z&mM*`VeaY8c`5re$A$QZ|2i zJU-)Zn;lz)BYy5Q;VL2jIQM|%+lQ;bLHqH5f8N`(W6OTXggVOU!vW3Sz=XH`)opxD zBd!T03<)PZUKs0}aN3-z5p-|*t%*;6?h6Qp?zHdLd8dEfF3o5AIU&FrY6dOq^y8~8 zVTuF$xjdY9Of9moTJ+3=S}i8}z1D(oLp&2SgG(k{zSCb_3U z*HfM-D8&)0aI2nIv_UTQK4FE701>o*y~MN{&2@X!2pi$kM3FkNqIduzWE|iA#c-eaP{&Z$A>+fUP$pB?u7$=ReQ+%Ro9>1KfJ;3W<@Ufy65DP~H^IOnzMk-PZKBkX!n<0j z>R#KDO4HnuPLX#%4f6%n@{Rd_tz<51M9v_JTp6Z-S^mV%t}qYZvO(6wR8rq+y5&o z;aPtjUTRokF8K@Fhoq^E!A6u49t z;LnK>PlK!9x6N|0emcvZf5%Bfxerww?q0(iW>1N|55&cC|9&$Wmd$XMHf}h#w_MIm zV=|m`Q`yDpCYWflWnxk%*1(Ik5AtF>tLK?_NVt2SUL>hzPE%EzuCI`VKlc4m0z6iT6%a5p8;0CidZm zfm{25w%~(iBA7T)+}aldz&Yo&!74gDP6ONVlYkSHs`bd=b7HHS)7yggdvBnPdb6Up zyNV~%j`bYy$1Z|dU=oC5tH&irA$%II#2dm**er0x}9Pp;D>m1C}% zU?5>1sxk9EN`AeMkXoW7R&+me$BHwJ#0dsNG ziY>c8J?NhYK}RJvcUN!%H%Own{%VFD>r+092h|Zg;7jdCY z!k)msv6Bvu*w1=8DsBXy4l|qty5mgr`p1NQ`CchN8EcZE~ z%qq682}mgoS0yg7}9;h6q|!~<@N0oU1}D&iongUALD@XL>SqcVw6`83+13p}kjxwuN=S9a#F3gm!o-ms|Z+*H3PH~8G?;?pW>83&dwy2A__S_;ZMeBxvcKKs`IVdEf# zywT1x4ZedcGF;O@X3|r=KA7Ke4odo;xk3~e7Tp}_=qxWg*Xvp{=A_w z|A$qUl=(CG!5O55rtviiQkz65piH^^7^rlP7ONAooDADg5Kr{qn-u;31MGv&dJ> z@nHUXwP9#J$HXhy5;!DoB?-iqjtkg-Qf#?PV~g|0u}25?yaT1-_% z${m6`?Asae-7-N^rB)|d3H{;gwn^v@bNl@HSR`#6@$w3LS6qM_5_8?(mFu~4?~8}8 z>{TFYE? zeYw%8SibGnl^sG1UOX-gVAQnNN6L+{3cUco6!95V77~}`bB6$P0FjWStiKzszgPwK z`T~=9;{D^EcyGd~8fCv2^FfIuT7KswjflVcEH+!t(*5gxMJ8Nz5=*m#F3yQuvB1-i7SvCCuZWnz-W+O-d2wcWZ+{m=F6Nnqw zqviX;Ti$l%cN5k;v+)X^?~?#OnUU#zG`&9QB=z1*cNq0YScnOmM8k9c@J zoc@0?N(UqPd#wCEcCwSOzJ*8aQ^@ZKoAcM=cxrFZKlky#gd@uqN1eI>ya=Z@J~`G= zg5I;PQ1q`&T>WvE!NZYW)c0EWy6t8W6`JkezxJanrBTJS?zf(nNU@{)eh3K$imM(Z zv}7|L7>%nfF9vTyXmGMuwFOsO-MHHN7eIX3U)P~>uivBg3lb>-OLJ3wf#*VBB>!13 zjryJ-SZ2)*BUAx#m0WS*Wi7z17H%VeXk4N1k-*+#YegzON8iWw&dwJ&Jqbw!;BnF?K>j-|yU~TZ}7hixaGfASF$D`tN$vxonB~~Ll zG`{&z-D_I0>Ek7Ds)_!muxcT!M{bfwMQUMkNv%Fa5SJ~`QueQ#%x`vl^P}!#`r()# zxMmCGzu|73*zMwR&((D!SGTifLVhb@)a2~rSS+%Y6TSRN6z1*;_MoNOfWo}NQ;y%Od~#Fb;Tk0U_(tN&xjhZ+Vx)GHBi zU9EsNzHJ^+&hEW5mNOMS!O5Aitn68_tQuh@V`lcFt6vECI+WkaUW%D)yLo^G^J4tJ zUQI|i?Mx42vt-yayun_ZezWVy^wgG1W7DsX6n0c}qa|2+F2~B^;6nEFwJ=^Gf>5G6 zIAY{jbJL-BO}lXG5r)P=SCak)5}raq6u&icw)}wD1vJ@Gyl`g#&;}y~^n^;9bOGZ=k5m!^=uj%3SVcMDqCY*KqD3920C_)1cab0Z<(yO#J zAGd%yN~}UU{nFUNb5ElvUmLYMI5`G%49$#*p$60Vp6v+6zCMm2J%}&9zZ)-xEcSJu zybw`gul~TUT>S$72{5>rV~54hE4+t)`xBfbEO|_91_h_6aEf_ys*5+S&8ti*g`PJX zB;=vW52ET$D>iE!{BsRorY7nNR`9*&C2JXHG08dP3e0&oR`zyWv~B;G?s zSxPcUp1uH7eq#>t2Wx{$noIPRByQsIsHn`i8&ob*gHEW-kaOMFhUga!mGm|Z72;Z4 zA#RbW{Ud%1J>A{*9z*;^5dC$(=f`jn??()WyO5_H%Qr%n>p30!;U=m_oPY096HMu# zy=UZs?nRtKil#*Kx6O;C$LGa@kEG4;%^x=vow3rDoaGur4i@Pv!C3HO&T@-6%k5Z^ z19g_$MECu$FHTSl;s_rK_~t*B7%9_DW$FI)WV#7h=e&#kNFPmnVf)xJ-9211MG#gu zN!W3Px}-AEh;|X*cKT7>3C)yfC;H{-`qXQdE7XDgHt$$he-Ot*e%M7N3| zqT3bbexBsF2U5>pC9L5eamXQTwESRr%ZXg5C1fKE;^#FFWdt7n6 z;y;FoZ^cG_`yc$?2=Q$eR)dp@jfCx5yN7-0le|56hO??R-NHDms^~#;yj`@;$ZhM? zo7hqsxy{}ry5|^H#18d#YYUFp&qrem5Zh?lI=#bRSECn<%qE?8*qJ^Fi9m&Cl-G1z zh#j-!wY!nm4n=Xpdj@%p19bHFNqOxbqfSJK=#W*yTFxZY{GOmzm3YLTBB)huw<3j` zG{gOCWtlj-ls5NqS4xv<7M#ke&1aC(o)C6tkkTGfxwC9iF=DJMqG6+%HOW2q+AqX> zPaE-!Q?0cF=U$ub$bfKmB<1K#f=`;kr^UsmlzPMQQJIHN8CiqRyeok)V-P~1U&J#HA7v?7Lb6Qwd{FpI9IOpK zW!i2rDkVuAtsMiOyM7KnKU4=fp%Sy*eiU1_NcmOSRymsexGWlZir-W&)5x%!c;yu?%vPB4|tkGf0v0r}IL)Am}0HKz2YaS&mGrt3!}-!#j9lB-3G z)aF!mYKp^pBZ+C;cvdEc7JFaw>*j2Jahmr5)3nMkcW^B&oS43ZRcI~Kk{2{z!~`cd zh5z84f*^~$E!+o8;Hrg^reC!Ew_+}c+=S0v=kpH)tbsT#HFxo6^uXt_X_}m3d$DkX86I6XC?CyImJNJvIl-gN6>yjtX zsIOycP7cg-Dxvq+WL+o!eZ;jI_R>{AAD=};Fx-sDFQw$W|y&5u?*+%wZ_ zM6V|sp#k1|OO5DV(~@3(3wu*FPa~#*9%`u(>SG?Xv@?UB?fk$P$h>n3$k$-`@XpdA zzM}s3M%Y+n==g{jWLTUcdkIy{P}g#TJ4@(eL&leAuFY%}~f{re70#GB;;1qPw-pfugK8A`5{Y3dpt$ZY~6 z5X*T`v)FPRGj)xwF!Np+`oyyChr7}g#+|%$;;>1Vu{RnOIal52Kl$(8^89sp1;4Mzk4Uo`KG!QBh^JD>LILj^fhgbT=kQwzhl<8RdpIk`@OJ~^I}te z9LE1|ND*iQeVz;8*Jv%!_e=m6z#Pkr57~(*#s*<-V$|&sAkM-IOZDl#L)79nO33#r zq2Cu?SQ5ZvE?02pIKc~x^@tAFGbi&x;+9yx1N8on&B;!D#U(6f5oFC~lDXyI`JGt4 zCSxC#caPyx?qN`&Qe1NCt$3Ejt@?9g%Vc$D>_`07%c$Tr#B()tMZK1Cq{=XST1W>l zxH}L*XS1b0S266S-zV8Pt6CO!ov?OChdi5Np5;|j{F;CJpWp;n^s?rUu&}S4Zs>y4 z0eAGQN&Tk({7OOUC87fVv)>QeonCJQd~xW+0U6}&iWDC9R~={K%yA-&53}F5lVOQm zSfT+dwwUYlob(I1M}rx(x(ZT=0P*7)&O)r>$`8RK-a+rrv~!w!GG?}=Hw!2B2-=ly zA0GY@`*O5C`~6iv*OpS=+5I~fi3Z!!NY8QRUpSRu3tQ2l89J4s^qS+Wy3j&dKF3)G za9ki=cN+`J+ci+_n=K`3@6$STEdk*l>$yI{TpyUn#twips&+H0V;v-zophR{#&8yP zLznsGEd^dRtAXp=LskK+P&8j4p&KQQTv$v@2+(C^pdUQQvE)1oOQ0Vy^};-GEOm94 z+ydXi|K0PPoC`7109*naK`+eL^N&V-+zHLvq?cr)5=*zSi~?=+J#e~E9)TY6&)XXD z5#O|v7aJ+y5k`l5LKC+7tLK>Q+Qo)2P_d%y#LjdnCpQT*Rs)tQ<{hU-_)A3T?8(*Lq;L- zrcY>@54ztrEQe)3EXKsQi;Mha@Igz!!M}DV{FUAf+mD^mWUhPBHf%o3^jw;ushN$o z#N}xI9I`$2+J#PU?S7EWNz}HkLhN=dtCkQbMhEG|kCL_+krmThY&u?LA@!XXqASJFTF+d7*3AeMo(m)Z+ChB>{38($TNF=MI^_iZr(>qle*S1;{b@JHBY zY{fR?sfwPS4@0^}78~P?eT+~v7O73gBBnKD&)=A|!8qLAs=+fh7)9WK4aRQWSJQ~c zrk^uRrFzPsGsHyYZ~62If8EQJyR+Z!*P1Ss&_S$Tch+ZJ2#d$rl)UVkwUPXQq6J_c z%_$o0Efhjk7rxNNPV#8wrB2@Mv+TUvjcMMq6}=t>V@IL?8k9w*C?IM61Tw{@Rn+butc^_3q$=EqAxYf9<56X#uiu7D@d3GYce#GZ zsg_H3-xwEE3`S`#M$J?nj*-edj9SPVj6NfbItO6{{#KrO7%59hoMfdi>iIWncMaAC zqjoa|8rE+l-jjCLuORl z%2K;CN~UM~N}MAraE5{Y}N$l{qugJ-yGqbpp}JOzHwmax8-U-0EkCTXa5e~G_m8*DMZ z*0+)*7ThlhMeh#Ww-Jv&{JxF8nfQK-U^K5oz}Muk`Km6F%is=9!W~F~Iqg{D>!&^s z%V0b(ohNPv4@}%Ngr^|h#``HC))0hHk%sh0M&XXRaYKY5&+yX(8Ty^;Y~w-WfCJwG z_&7J_h+rq8;=kS~!R-!6uHh`g`2;8Igs$q^t@OiKgHg}Z?0T{XqO--$t_Iw#+PO=l zhx@(%3<)MwQR_^5;X^0+y(sGICZgd$5!@d5QkN#&urMjs=`^aZMNq{n#8w`A!Q@EsJ*3wOu2Ud;BL6yV+Y$TK zFuaZl1@%(c_oRChV#Q^V@~=j(Jgrxw&VBDweS&XBxzFG{^gbP=<7@qX*ZIku@|;&f z_Oiy4bIKRKLae8UBZV)R-xYr}AkB?U|E_u<9Q#|?yjNFT!0mGyahaFE_g&nIF zSc)cWH7aWCN6*92j#L0O1< zF-iO&#Qm&gy4)@b;ITKGE6uA732NYHgTIOHrDJRWKUv2X-}!rUnBE;D#e(YR8%AZp zN)1X=T$D0seK<-g^H7>d)}XZV8=zE{f>JimzT~2$EGXrYytD(9z6`jjC@peP>Y|2S zqrZuB$3kgG43u*2b5Yv!JA=}z_l}BEu|X-_MJYi~4o6949!kAr4N7-i21-^6O8q?Z zP*N6@(g3wtDE(6fwMzzT%ex`Z7*8b$i^rq#U~kuf&A;4Zu=s+T%xf7HnaKv3r(IW# zotmD*te;ipA=5?HAk+DEz?(V<9-t?9=G}N!mXcnQ-XPq^?J@=^7_1F4leHbk8k8jd zjmM)R^LZh&|2Lz8Khc06cfoI@Z-#@fG7tPFvIhK*3jFLrfB?3cXXm-oOIb=$U2K#E8;d0EThu;F*kq*CF5%h7-P+1hyOg9uL-*V@V_@^6 z8^OjuIyUVFn=%)hY-Yo7Y*c3E42zj;oxZqw-WXrZ)fboC4U9jw`i@(6Tlc~3-jD8y z?QZT=*xuH?5bv(4LnOtm-Cd8FAD)Sp%C>aB|Dejyx{KopbJ^0~-u?HKT~QCw|D$!? zYZIlCl^up1YIZIS`hRAr4~{ zu{T-N2>gM5RRm`)Np2{n09LnNT%WT5?(Xsu%Z}pFb$y9>vI{lJA}&2G!SrgSRXz_j z1=scL1@*3n*ob|3qpP;D?A4WMQ(Ew-)`~S&+>ZA1J=w#P6u3#TNg6DZBpsENy3fko zWRaUJag#1LNw`U`NgDc1vfjN0ze(qqd|{%SWV?wj#iKHutRzKcC>tsH&<%Bge>+P0 z@s{15T16h)2-C@_b*uUb*CtzyX#{?p_;707%}uzyc;F+d=6a1wjQ`F7z&UIl$bYSQ z<}9d8eE*srdU*9jc^jsoWk5m!EHL$=}PJr7%}BZ~CP&PD7=R3KRr+AFN+p$%E`G*#H&p_e;<;15~^>F{S&3GHEz5$Lj@SsrP(q`4_?6iPC^rks%ki8^7 zwoThH4Yg%lI<2bJ#M$zPP{i&rz(qk0isQ_H&$tq7h^BCr<9%@)lVCWIH`I^X zOLrlZ;;SaymYxT`2$#I6*UQZ77ms*-Rh~>1k}+ZvcMiNyh^}M z8{=2ZpnP#EoywIV=0L9Q}`&Y zaSYS5yMn`xfm70+&+C^>(IgpdrS=XyD=9R|%>~vunXK1=kLe@K= zJA72;LD5*=*+MVt)1Z8-a(NeU8B{3d%-7#3d1rJ*OT(jKiPBUb;JAk?Ir}+m=@qV@ z^S&D}YbZ4BrC?#s*#zf$8H@wEhksNUzv8_dobY&{Z;M%YHP?Sma-vHE{MB-^#^`2i zz?T@xvu>N)C)wVBM;s=`Y+ec*`{QDA5yeI~1I|hG@B!bU0mn26J5@8@nLi}s4!0TY zu?BnSk@)bz9y-?Bmre?7bZHrvLVeJqxko_U8|m#82}mddoMT3MV3fgVqU993R_{xu zBr&>zT-5G8!zdSCZe8)V&4 zK9^B`o+BVL%BnRm$`c+xwgtbk_kUJL=!$3VpW7?LbJrmL97I+|I#HbHIv}9LKc;0Ui$6dHP)L+IU1w)?qP5un`6+XDG$C&Xn zx2Anyu5TL{>(f<5XKSdBGt|KeZDx*d(^wx0I5Tq1SaVR=iN2p>F#h`2y?qA!ZiH;R z_*IevMpG9&wa5n?OrL3mC&&K%17rWg|FIRmZRreH$0f{hccOdCovRqa%*=!-TJO&f zS?@TYMromU29|wWpfBz&`%M>W+3zq~xA7ElkjXtNf=|1*pq-fdP3HQ}f?N~e_&PZV zLUmy|_?@_{fJ0Z)r`P|`^l6Q%dk}iCSyxsjT@YcN3&Yh)6|rymThS-gLc@SgWr9wR zV(BHQBL4x46;JVYsW0-C42sGkz88iT>7MzMD8tkSZ@Kr(Q!vFd0;;xWSLEw38fBQE zv$(_V{JTKn#MUZL&*1PieC0lA_(HzO#0)G@rIiz}%eqe<;!J<5J9%&!genpT z#-f8uKAoIASCAW69GsIXHsjEJkIAwfGFW8D;FopeB{KLWZ*9yQb8U=G26qyc+T8|* zEDh`^-kV$-6Q07;3J&X%OCxVHm;kKNlqZ+Q*@o~(!7dqu(i<^w_c{5zO-=4Cj$ORzjlc}83xfkGR+yXS|;p2wiVCMr|B!RsV0x| z23h``1roK3zw3H>gWns@n3hq-ZX(8X5!t6<2T|w?ki>yvc*r~&NH#m*Lvjf`oe)TWhE7a{0JOPuVygHhFX)CxC#DYNm%e;K zatTc(H-t`%WS550i7)-%?V)4S3B+iRT^x;0Jf6CR7A5IKoL)(#6AQo&kD6=)61@#& z_gByTL=wp$xpzY+T()@(I$>^4i)D7{#9z!ZLnrq9C3FHS%#n0rx7e()=tPmB6H8n= zp(!?;PN)p#N{d*hlP6ikNjh;)5i38Kvhtg#LQN$eooFU&=)_W;(nnHix45;Hcyywb z?BvfvCqmRtr4#dAIw3cQc8&ffK0%#P>BJK&Qs{)Z%tLUQogw-1`<2;ILQ_3=1ZLZ; zI-VYOT6B{|+h@&>!8vFjFf0dmgP=13-!5FH>n_NS71-38+b-5smAV|$%FW0*RtW=C^a=wna*ySP{jm`YG;<6z-^aVrDG({&6vj%R&d>1JI~BF-_!v zGr#gAWJ*o)nod!DTe%Mq$8EswsZrmX_Ja2AUIW-c0NV2E`3AgzZyzVNe8z4tgtcZb z7N4Tz{_Ay+(gzGy&mgh5KN_Ku@cZdxZ)zvjpT2ED`@8oTUgWDIGVDY8x7vF4163G ze#hMM$adO2Vy{N6wz>d{_9ad_kqZhSUkU||w;gd=@``iF;JJV&vt0&gyubPzD1A}t zs1DM9=>OsFec+?4uKfSN#2SSK@bjeXD?xG=T_zDo&#J zDTHNNN$5Nr;9wagGx;;L_J4d1*WvEq#tqHdT=Wq{6ZLEm-EjK|JbWLQpH(L4K9?(f zesa`oh;E9*tBajX1i+^z{V#FN5V4vpUOaF^dHvw#SC-$w&7?WZNRRpo-t1}~1DX?& zhzsCEq(F}(_*VLY&ropG`NSstp@g8438_e%grl)n@&1#88V8Pd`H)m4PFtfe5*Eu^ zUz7^a(TpKkTy!0ZImsIwvVI&} zR($D`isl-(Tj#i)aBm>D(>tsN;&vT8R>F!9MolW(aS{CM>OB6{NfvS{3Ao)p9*x^I zTtV&ydAawy+)4=HrzSEyHi_F^LGFBRSL3){2Xo|ET;|LK@(juC{`8OHcGgiLxx;$A z2nq~M4AbJ?;dq<71p+z=J;ePF#ywL0P1@wwwJ5`7&}QWfuhh}W#QYoNS|B@kBGkrG zD(0e_B}%sk)0WkhoFvUuIk~Q|B3U(QDW@b;^IyzRQA)o;Z%QKK*Jb|IAK}lk&*H@W zaP-h)6Q%sB?~~Po>)v{!Qv7+t<^p3h^@~63=cm zQ|=d@8a>omK4M?gT^A9qKY_s*0x^~uVstvhIKZ?FL=3$P5Tl33{)q953z_Qrys0i= z+L&J@0b&&KXo#`ka&oWA%U$epEBP!vr{EYKJA@dQDEF;-xyQNON&++*&tp+3xr@m? zB#P{~HisfIsTodyA&ztQ#}N1-5_3L^{AeJGELog~9ys?Qgv!sV}P_YrHUsOP z$4GWyv|?PT8J5652|;|T%@)4qB8^RhYQg`Db?)DYHz7>``ob0yituQH~zKwcDMv7PQ6E zS70t6U_&hZx5Lxl3Sny0`|bLpzz%=n|1%s^*zS&}?rh}4^_-Sc1c2}n+(kO7Um;*! zxb9(W9Ly>~wno;<0)rpPfv#=5gaWnqgT2Fe71SNRMwJ&SKi8qCj9T2cN>0l=K8cd zD_eMP_Q_1a`jlmQ{sxtoyhLVWd`_GQOh)K@*G}^%-8Iddv-?ae@Jd@4!HGgZd~p=BkmONru`k^GB|TDc((BHC@d( zDW)U=8U4@Uy|#yOdMsIWKjC@8tN+nHUS4Z9GdBW>`8Q>aU}F97{Y2;{S<>X|=ryl% zgS6g~^coUxt&lLuE{11{b1)JK@1cOw-PW0J!F0$E-s^ld_ zpcip+FL91;KNd#U9cG84=Y2XIa_1%DHF%IW6e>P8QG@L81xCG%s<`y6nd!psr#P^a zJ^hf5eYZE^y`Cz4#6@FDMz%XyiGvJn$5zdcn1V5pEt zFKZ~s^zOxJ5)U*oSzqy)i?jNL*4lVPZr4DBZ#WAI_1$oAs{-p{FqQdJ7#Qq=i5dS+ z6N7=vP?L$tS{?c(My8AZuO_Ch`2YOGObHK|n5sShuTG3CBvJ!m6J_Ea{^vz9Y~>UF zd=GxF;ni;1uB^rOOrGrAeBC#NFX>FpiIBfe%379O(vDp0b`=E2KB|d(I|fos*4EUY zYB-6vNmX#Y7le*Vc@b3$VP~e3p<&7N1$$;xEqkLZnVw42@wsnI<|ePt=-7C8wU;BK z!|&B>UGN5HJ=PW`@UdVGUCURN1$U83Ksd?LR>G416LGy@|AgoLQLj5ggtn9L{sM&% zSM?96QbP0XlUl@U7s{69rV{ig!xQBr9thXpgAX^fv$i19+WAS&0n$Hce>0tqho0f& zN;1?U+5r%I7qL+Z-|#-_AfJFEj`}+j6S{Ap2Ci|8ZsMTy^qoFNhjNsqr>r2`M^9oh z??g{V*$MARj?o>;F*+_RHi0B1ADJAZOH~z)O3dFU;bwYOvQ&(YLAUwyXO~uRsw_84 z-@-e6x?fYuGMl_{Ag9wn9govJ_U<^Hs>yM>OHb}cP?K)Voc2(To~*AryQLVEw>w6+ zX$^%PqYGx~T}@GftA88rI0gz2U$#v+gt=pJZ^jLPXU2Niz-8{r09OKm4mC4D7ermEvA`l!{ z3h_;MTSD3eXZyNY+#Nj$Iaq|Q?YN}>Rg~x#lKwfwB15Kf!qn4}uDmBr;<3gle18H% zil-otSH~fXndwQNGNt$u!YKSN?IN5zDUQDY4<-Mgf&=yybz~D?fn%%%90XnTB(hQW z18koY>GDPN@D1|qazL_LcQdve%86FEFO(;ov7PY znc{-0)n_u$UD_gGlni1ULvF>=dgUTxAtFsrk4=+@8!Fz8`!~1~%7g@y7mklac3_-|JgF)>}*# zs*GrEu}J3nlVHlVU2adre9jCyZj_$fe+=G0SIgq9(@Cl>e+urt_^PdRXb=m*ZKepm z>=eOHnj5GH>Rq6B?c?!Wwm@L?8q&=F{Mb3*kv+pvb#@}%GLKeL9G-NiMuOua*ynQB zvn1MMC1a#Gq;QxiN_nx8aValZQmiN9ddw~<(}#(f3-HFlK3FowX%0#6PXo0EHI=z? zxtw-lB|5#Zd?umF_Q&gb@WYu@5?(z_dNNjkAO;(b-`sKy83aKrBljDxU|X@Y9T|!r z9Qk}AT>oJ>W#*6fe-hX>^Z+vP!Q=%L^D=|qPqd#rnMYRWexg6>ej@z_z5?v8gb3tE zxM2;{jhr0kN8-@EBJHp_hb0c}bU$7dS`k`9bEFF%oeLpnM0i0rCR*Y=4t?`PwEG^T zh6Ctr;ng2f)g1Vs9%fL^dA@VHlX28-r3L$c;bbS8Q6iLU7gECM6w=3dXPajhw38sc0%s&4w%!SDY5@uTa9Eq<@Ubw-XXzrSmg;Ha|9#AV|S zS7+sk`l$ll;W}#b-j{4AZ@=2+w$g)y^G4;{%}=Mxq&HdRPL$w2*QM4wTS=2?M^z56 zl#cJO6%LqU3n13*^yR-p6X19Pfdla}^ZxSaZR_@`s1je3A^}=4wFQA|3&!Y&crOxbquz$Th1x-l#2Z zP{ON!r8b>9-}Mbfc|vQ~>x8dnC}SSjns-~L>gn$#w)}db)eAx^eG(Kb#KNPl-$Ux4 zrqD9K4&h(_Ixe<4@=!BC%&ukB0iu|A1KK!w&}qHUvhhtYmnQF<&}!#rM7@=cdXps; z@_Cyl!kv@wZYyadX95CVn(|ha)bb;<5TXzbS2`L_q-*ej+g}*kGoo|F{RP~V%t#t1 z`2m}p2|rn~lyxlS*IQK(fk0lqh*4k2gLI~Zj~88dbv0NfK`-GQMlsS=lom!r{X*-1 zI;$yh?E+_sQI&$z(Wpl0*a{X9(Rw$I8o86vv#`g#Tyur?`!e0TMEN$x!gizl{aMOq zA?!c2&)}di`1Az4qwBp)INcl&hW2hcnit^cbC@UY53l-}0PyZ-H^5-w9GBEzMV}23 zhW-iG@6c}4+a;%#``nov^G5v^t78H?;;V#q;-K>(cag`Kzf28Z8*40NoxZ;CW<{IT zIp>$UPiK`Lq|7Vbry-CGe95ht;W~M`bEEXiDc-0XF*ooIvr2@QEC=*@CcQ@M>E4_2 zp6I%noAf5!w{0>e#H}Axr*j5#vP@{rcwfOS{alVAC(^So#oCZ}?EGI1%G|MYtQP88 zc-1X>?>(3Zv1!e<7Wg^GEIExei(ne2wimTzBz*peOmU(qj5~V_`WrykH&)u6O|@x<0^n zB0=tjatfE>DDdL&u8%Vg1jagHAXL8^2-S3;BF>n01%XO|JOve=Gg+tv(9&7{s5b!W zCXUlL=8n^|jr6_jar!X^)c0fzi#6q-5+(|&W8NEBcf78PjtbuZs^E=!cfi*A$~(fgmMnw7mRobQ^~8#lzw|geHfx|3K5<6m?1?-gpjU`7aUPC@_k3_` zh1XnZ-_!F*G8vW^0x$5GGec`>8MqYLw%5oSi2u4Sv5Wh@jaT}3V#@#v5+ zzKrXAbjyL@KmhFw)E~z2E`V`7kFB`)bDx1A$37&eGhhB7puW-1g`cPlya!Yz0jLvs zTp&=#0tWY3r~*Wk{Ulp^t!(ppo~c?%=HSK00rp=m7qHg2jOJZmd)O9-t}{uQ=JWOr z3GKrMZHI%lfQAM_t9JpkMLbqIXve8bi#`CDPvwDG%zMC85`Z~|#|s4Jg#e)II+P;- z^92XyI$i;$l1%t`U~Zo+FoEx1b{kw@a>+HFLxQ*7z^ixQHPOI8@boV5Tv@~8tvZ46 zfEv7Lva8cFP)Tah_{&;UF#QUBqGgQXbD$i|5ed)^+_x64yJv zA*$K* zI)3x!8OLdN?dKVQuhL@nn#}0s(Jw}?_`>BnGbfvr_ei4Za^&(o%io{yuUqJXF1(7^ z6a-y(>Yh(>D*w7-JCpTuN=!JI@UKN3Cn~p@P5cw>(0DW}RS`r<1U})S2a}h!8nud5X&Nbl!lI zDz8zctWS^HNfmbHES_I?r;J*P(PI2zV){`&zzQ+t|8vFiPRb$so@#e1S)d#7c*$?jS!rbTTU4+-N zlJWEmcFDVzj89N08<@-;fnop6S|#pX)u_|r+%H@;_809ju`L0;c#O;@^*;^}_9_q- zKe-od65nH=CXW%qPICx5fgcvhY1KJ;@}77HguRzw$I^RLN|>9xupo=N3mOXkD%{-) zx*ivI_b&QG+C_P9S_gi;S9o6 z8N+7V6QBQ+?DlXX^b_q1r@-Zee@VihIWb;!Vsd_m&L>RwZyllC74s#UUU!e(eO0i0 zda^2y8&+&$ztB1zV1$Z3f_~_rt{Xh}% zR$Z>A|6kzeq%hijpiwk3f(9d zfrNi0%=6QZdA`St`v`EY#3${TJfm(|M_Ix0RI=)HyuJ6#Opp4#mP(#GQhtI6_uDa! zCb8)rZNkrPeo^L$b=T-vSba&bJJw!r*@QN6p7r*_ z!Sh6(uhuEAdry}Ah0^hKP$@Yl^R-Ml)3@5QO2>KEDreNXk5gjQfD#paMPRfNdRB=! zq?6i-3iLUZ7~8J|n<(p)iRzVR%E&OJf9vzH@dZfh62>2-g@o5-A`REtU5enB4E;W_ z`*6ZPh3$fb{}YKGOTLww|AVY!2u9tcVpIsP4%x*VLA+%A&&pxu1su(J1`p#ilg_}s7 z!#_OPbWq;kW)cz`XjLOmk-RhikgD>>PB^r8#9rGZETXZ%Zg9-Rme|C01QT0HPO0Ge z6RWouP^aE2UicfDrk9Ht^mF?Sy1p*tt2r(+@_N?0rKIM;{EP9FxL`nuTE3d|G9~n^ z5{;zh#k^D{CJiXj#Mg_|8%pR|CDxFdC-XE)3^~(>r!dpV1+O5t-W%9L1I9ZZ&y&Rb zpJZnh!9X)DMZJ&rN^qs!>Hh2y6`N_WV0zuM5t9p+N0U{jNMz-WiL9TifZz6$R};k& zR$;t9$ueFEt1fpU5}mvpzlByFXJ%*2 zUoeg(1uD!G#8; zxt+lB6=XpD;QF+9_?rY=tS=E@N%kE(EWNd))zaHa)~mnXohAG2_b*G<+3%m1tmn6j zxngd$D?xed`U!N7t!?1IX{QHyJn8>BPHQIRWaLm#*HaW;^)yd9;gTM8J=!VJ(0?{j zeJ1?$p{I=co=bRdCquVce^B5!hjeSnKJ_6zYMY)r-LtJ-asN*1KkM4_Den!{>#uSU zls*;*sEz7$DKRE)E3xqp-|=jmIyUnf-)wR&AWZYKof;ie{u2Oe%Uk zTzn;qYsnj^pr_Bhkn4iZJ%@LTaXMY_Hsg4D&1Z3F`}%Nf0DrzFy!|i35+QD;UwEYG zn(&i7{C|_oe=kGC=~rJ^lt`a@62HFz9*;as*#%a%Fev-7m5p(uSM++V~tnd;cjuP2{XL28;7 zKAoC?;#9r35->)+shZ|~wt#HgpBRQ|WZ_=*UU%(1`EdA#*Rb|83!G{)pQ9)DYK%0h zaX%PF#!f>U_uW`hZuwr0IwsR4=Pg=5m}_>Cxw^nGA$&)MIp3c+^apT5)1D0d(&m|< zl$?X(-qN^#kDER}g?f6J+`DI`ul|n$A~B=fy&er0kGhz@+h>;)4NHY|*W2<(%Fq4- z?NvV&oZeU*7FGy*+Y7&MWI=@g$gPIQ;TxuC@1L%&<9pI~*bMbeHWaQrF7vD@8vQ(!Vt@=~lI(;;% z`#w+ait5ylEYPXW~(aL+laQ@``6&U)^sZnH8wsxz(b_xQvmi%xf1jngtKS9HiOP&vVgcDfJdWz1pTCaiuC#jQ z_7UCXIijPcA&Bnv!H7AbR#Uq9wx{cJDPjo`x@C{Rq=o}KqSL~E^ z{K~IH|2BG6^vWF*4t7n2N{5nG=9;uJ@*kWSDyltJTG87N^Ivj-=-$N8OA3%At{xys zh;d!4oJbPJ#3-S)VD9}0mAz+CVnM$WG3d`&8@ZKco*>7NvPSx1_5+@Jiye)FUA?$Z z3X7mis&f&8*<=Posn z@q!u%FRvW1v66WP=?zDK^bOmG&8iTwl7*LA$7h!;jN?kRv{o@(6K4WoZ@-Kz==&@i zGK1h7Plh39?8%A1_xExcxUcIhC40KYzdAG&4;vH}0Th#ug<^6Rinu{>&)Y!pRKL!t z-xXOXD)eiPMWU_y5Kz3(FC$QN22d!?{2dvFgkrRyIQp_du|>(AuI=4JLvfEmF+PA| z+_6xM%R({Upg7nI6g&HMPW>+XjCBu}Q~jD~!Dm~v@BX`f8G)iBfI?~JHZlwe#jJ~f z;)gg7Fc)7?vZrfqW@spWZcr2$6on-Nfha7=!cb%|oG%!D*{^Hrb#WGkV*MIp(Pj^8 zL;cQv8Ic=X0~nNM_K{&o82nEI!MYn6M~Pvlk}k33%O;w;~Rv&FzT%RiO_ z262|dXB9+eM=$@vW4>nM7=N1gAcvtewO=FlI3#x4r@K}zg8JdFC3Pr`u5x?zGG2; zdPR8EYvhinXLGTOhg(kHrD~7!K6|NJdQM?1vLn3eUfz{^Z3+Zc+97viqD?2N_9aRm zkEIjCxI68A(W5)3c_VfAMwH{-k^R+wcK$E1^n#*cMC?mnIjlVW_rqDDzS-u~9G>pw z0;rH)?bV+b?5rUVf5;s;WGHVS#wNR(I&ZjxO1;P9ReQ@L9aGZDlZGuC9Z$zv3TV+A z*@TJhXd7Ru4@AA{IaAVwCq}&~bF4yYJ!E95KxSL&ih|_5$q|e~~jIDS!Ex znAbz(#PgEg5&UfAIf(i*%YyWb}Ka68yv1X)wub0gvX;W$xV{qGFX!?+*m-@}uFM&j*4aRk@z zjG^ohJ&gO`$?M_o*vJ=n@%E|KLrPa7`pnvl>QG+5&#@ox) zJScbN7z(?%l7ke^Yd+Oi*qWzsB~IMo`dVsw_t7oi6IAn`jc&OMw*nU(vww6;xrBck z!@%IH|SkzsdV6n-~ z!^z2+o(e26T711L6(O;dR{m3trumc}jSX;3GbfrxZ8c5ilK@1_%F)B`uu@ zbvhkn-s3Hb-@q@$XuvIA@fmQE*V%tw>fAp`0b)E!kxPnQGR7t2Tr%Dz@~I=I^UQ0J zOCEK~>yA3*r?-iso0X1F)kVB zlJPDnbIC-POm<1!lI99aHqCJ_D_t_rB@11$)FrhpX>>`GCCzIr*|g5RT*K(taHhFmu$48d9x*(THVVImvp*hpG)?;B;%3; zF6ptPxd6Xz=%>h%mSUHTamhHBjCV5_RaS?H3bE~#}% zqb1EvmTX$%UaoV=dY5c;$!3?#b9B1UB}*-7uC-)SqkGxpk~J<_=aTioH&i&Lag9rK zbC8a`Sh8uOd%4*qtuE%z}=RTi8zpbKZ;XI(g#L|wSRQa1|MyHRjSg-a&8 zq|7DbTvAMu--XFnW=Fw3^>tw#qbzah;AMpz=sF1@c-w82@@M{Y=Du+XcFyg_4O)Dn zb#D)gdGkgtF8tNe?xOSW&b1LD!X>8**()O2bk7=KBMcX zHoE14#TM#O*E&pS#m!QgXdcsnUG-qQIoylJ=R4=3WB)b|iMYqgj?9|1j_g_UV z8zw=}YOmi2lC6TukSI3un7Lxv$GE?Q7gVQPUAU+z?!A_2z4IJ|6uqDB*N@iCFVnsH z(dy`Qf7NK+elp!#HTo(0ea~oJiZb21XY|ATo=JY)r81NJzq8+~M(diDndINe??l~8 z;}`!T7XD58WqyT!)9?xjKS%%Yr=Kba|K_u|kVM;_EpFRi6m5I1I5wiA?Zu+lh{wos z!cxAKkLaZApH*nYedQdjs=tF?4uMen8Jp;q8i!D|^m-sd=^ehCnv_N!$1(VspT7)3 zWrQ&Sf^wT1-|&y*O|u@!t=mc_DfcxaQOOVFwb2&}}WXQFEQNaAZe#!0tC`whh>aFUeVym=_${iuMSyd6VgvVD5wBYZ>~ zzN?5=DevEHKhgW%c=t;io(b@xGQC<=-zlJbb4{=C1mctR^%o~v(S*bx2Uby06ucI4{+ zjXoZW7%?|;3LGbFOx@{U_|aVqn|HgZ9DO4P`YBVU>{B13SyMsc{tpBUn}`OtA|d77 zHj?yz;$Xg)kqoc?p^eSHxc^%Llk|Te*yH{-jS`lAt{HhTq#!2s>Dzf<_vY~Msyd$V zGgg$*&<@UD9^sg`bSGWV_b9uKe@TQ6uroQ$wpe1P7vZh&#i`+QVsE3qw+|=wK=rd6 zMU?HM=FC*+aawsIMMeI?BHWf|cs0N0HfG%)yX@tyNd_Xz2E23ypuz%_z(3~*@PA0< z08jci3vk>rlKzbXG3o6}dE3LQ<?g?Dr zLny9s-YTR387eGav+gs3Fe^z!fSIDChBr`jcXlb3#HiS6PVAciMt7sbRwY{Pg{_HwIlu?O*0$qe>kC`5 z*!l!dN$)|0j0>>!PXV^#-4I~w;|^ON%wg+81F9wlz$H|{Kt z{5f2IArvx%Trrm_qFb7rTrrQ49Vl1m-53xUXcY8r*e~8>QeYu&MCNN#{iV(g{pO^K0 zrsx`q;y9?L^~jrbBu(n*Ey`Wrmm7(CjjK#ariRZ$?lFAqOc}^_6cP9&7TKiLCVa!q z2q?~?6^NuT>uu|3DZ8LcSk8O`w8}0^4X6B;o*g5vtfEhdA7ySqPp{ockNpc*ZOao~ zSj?3n^WM9e*s5mbk)IL)Otgx#YDZgOzXd@6lP;UN&A`>bOX$R@rdeflBOg$VrG65J zqSJnDkWQNU=472bRl(fJQz^FtPoApL%=g%+%T8jGUptN@bGr3awdcmQ zlOF@eRlUkwOkcAoQ-2D2016i?2bD5lB;ym~pP$oeMCDfiw$mWN;x-n}vJ$)h_0xx=%p{kmTDp4V(pr3Qj)=`xw`egwg`YH^P_<|V?ZM=j8iHoRKHYiv)#K=xGj+5rmSEX=T(bIi@Nt7?ApeV@obosLpiZ zrSZ~-khgBedvJQ1D4C&-DSqsWy;D7;FP=Wvn+!dsA4HBMu*_T4&mt9ErxxPrf8;We zgG)vs%;83Qn5a~Z{<4dDqu#PKAYI-X49C{-Hqe*1CcSTTWHM7l72#%kn0XQJQ-b=?k_*z1bHL27Qy}cY4+A^Lmq27c?)! z$`nk*tm98aokl)45#|J(gNBI^T^JN;QO=SGAe@AtNc1i|?YQ}v5EX|Q^DA>X-bDNp{I&c<=%I3d z*?$yF^Oi+>^;F36&5tQ`eMdZU2+=(~DmWTAoi4w&ghAJ3WKYz#dH_haLbVY0Kz4cSMqBGEpJJ_#^>u*^O&nta%P()@dCf1i&X%(6Kh@U&ySBC_-QaHK zw#dvW@(GxoSHn6E>Zyix)Udu)HFUj&|M0CF5kLDCM&f#6)su zUtU31HioAtIoth40t5MH&;azAdcGCskz)DH}Vb)$nd zc3fCDJ6M+hD~`GE2G$4q!`f)D#(=d=us+~mZMf?DShh792wnxXn3Gsi4f2<4mhGBS z2l=_=%-+LIBxbvZ8*`=J!er`pG0T5umZ!N{K7yoz_KI~Ktx+M4+^w0qkb6|jFT61p zXo^_hmT!HrqGjz8YAD+ZF_*I^la}mMbMW_0OKcM~LY95@}Tm5Rh>hZ4c0Ws^S z_m&%lgJvEcRt|AGb;n&Q=Xy~5i9XI{a$Zw=Pzf{e>B zrzE`B21MpMPj3m2N8oTy(hN^n;P9UCs`v9g?)A|3M8Ck{?Fz;PQ+nYpQ3w}(t%OjY zBV6Skx)~jDzmCCl^}}44(iG5lwL)?c;^6*d1nh-U$#Wd8gf~z7qW-K;t-$)k4rqlK z;_cNh+5Lhue?~7^^5Mi$8FOpxa6>ImoLA=}MGb$_I~oriaKo>qO%yjVSvB%-vMP3% zb+lbWzl`0T^2o!}{K5u3E(?`=50^)FmWNaOb>kbs@!VB!2`+boJeQo#$gk+-&I-%U zX><1wt?T6&#f3km{r);uBM2fLt3Qf@k=ohK>Q}Z|o89DfJHMN>ttw21p+rL9q|T~!YyN;^Os{Jz5YUg7t(65NR4 zdi7d#v#2vhF!)%yVtBg3yt`UeSI+6HO}<{NWZ!%)>+c1RTJU^$*Um<-RlAWZwGHSz zzS`vR)j^>680bPCEQN8?^M?}dBan#a8+@-5(AdSsd>lT?a(eeN&hzAZ2J9KLZ1TD(q=gE&j>joIu;Y3cbi9H`>-eL4=*lnix-yS%7rL(Kk*+KxX;fF%yiV>r z^KvicThMVmlDn3~I{r0s>ri*PrODy_GkJK=8E8y2@WBA}Yk5TfU1Ld0qx-d)1chK*p!QF*_Ek97zMOpqwy)+g7xim@^T76t`r3CsPUh7_`vraNm+=Vv<473)@g$jB zJ|Xy3IM=>Br3SXI<}$ziXdnEo1KVFi6#@K>R=@c*(S8%Z0{B~br2UQdeZyvw%xTuX z3g_Cd<;TGG)m-MHe(iS*Y`=n1LHm<=Wd7%n(0-gGXn(2Rcx&g`_YDh4GPh_sF-NXk z`xALTuzfX``Rzyg;O`vRzC6)__MMBGIi=CQJk^5s<%&l8&OdE~{L?b0S^FxSYhR9T z1KU?~nTu$D0-HjIbvDsM^V@^YhGTLscU)-O9UkO%1HHA{mG_#pm+v(fNK*9D+PLRR z!5^`-)e)_?{*=-7G(6leo$Z&TTiMxtYoA==y4yUD5{zS91y`S%mNjKVha0;x-XUtY z@|aJ24^c$#deATMtv_6Bb%Rh{<-;x&h8KTeDKb%+=D7Sq}sRo?c> zaJsSI=&rd!or3R>;9aRJQz)8H81TC7#q3nY+g=(@ujcSQ=H0%KmXe|7b?U0W)&X?8 z#=`U$>KQ{mr$N*4Vt%me-%9_v|KO+Pe$6et(Yhmy_-3e^ zLe1x>p8*tb*uHBj5LWP0}#fN|zL^m;@0SL>kW%h63e}`Dt~E@zKPUM@IfQ<~qiuGZN!}Xq z5>-@pD~K?CjJkl|LHAw1-L?^<=^}W?+cK9bQZe_g?Cyc@FfjbP9^swMAATURVYFVz zljtkFawC6(fyH_qbTb%yH|*GJl$}fO^mnal%pdWoeqndCwC#rzwwG>??6~ekZ$~tp zEE$FYv%B!v_rnuMIexH{UGZ0|@8t?8s^cDjZ>V3MRsPOXl}KNPA+BS|M}ujirIy~( z1|fm#gn@nCiQGM*>XTI)lz_@&57Qzw>wClXKLNS5>Fy?)$o~2U<02#W%5?8#Ud_$D z-CQ-;AQFy6{^ApKcJatagP2;lUI%0GZq_I7FUZGTvv?uYd62<(vkZxy3GO@#0xkK- z?%MN6yZ3`452I~yCVJ5m!Wm@oYo7{^5_dn3&0v3QL?)Q#aQ&OmS6z#k4&?YGKLTef@0RvdjRx>BU{qcG zXb(Mi?0OigkzO)_-3`){o_ie9d(0wHx2+U*J5JJ~UgrSU%MIKhGk-31gF;=Il)Mtw!V#6L%Ullh?rLwo9Z!YQ;(rGCCp+OnT^_NF2oQBrKvQOruTk>%11?M&}a{D}d0b@qv3|AyT*6i7ROpwmk}O=@>{N=1m^wEgajmv)E*cP`F{OBGU9( z3)sBWa>@-{R_A$0N_0n(7AsFH@0>8v;)IEo^}OM`6DF+JY^*q8!gg_}$kxWvLkyyc zBnTN++1iaNia0_tD}BLoa_;Aml|D=r5(My8KqfE|gj2_X=)px;k~gAtFAhtF%wT{Z z&|w9i55vsX@R;&mWuafklf)7#*5GqUNYY1>vJy(bTia+kpH>hFJvU_0J>C< z-eV?t;AbPLgW?iW*nC6u*szccRIGugs!Ecm(T*e&Z_{LcJ1T-gTcNI&IlK`^@|r93 zttHOi0KEfYBoJhFD*<(9tyA8%DWVow3YVQART%p6*>&aTBs>4 z!I~$?xnRk3#!7&&>l;us^Xuf%mUXm|L=8JZv+7#Vw`v(`u!!3cePhRD=7ac21*u8-AYc;%xj#2Ry5cEU%{fchHq z4u}!b*Abm5PE;a;SXbG#05CxsuD<|&rc?OZ!SEWitRROt3B>L_l>{QeFUJEV6FMIF zQ%VKnl<;t)vl^q`UVp9f!0=QKo?%1hvzJ@iZrmmsX}gXChHcUGSH$w(E#xBgDD8W0Z{~1oC}z7&s*}TV0@Sky^i{X*ALo{ z7@*g^Hz?sXs9AWAC0NoKuSl{9!Q(e4n&3e`fksXGG{sxi*gM5b-qhP&%9s7ho!-aa ze5vExl=bYrlRYGOT*Et%1w{-pk-*W#&uc$2Zm9&0C4U6p-p&dh#}hhwqK9mK3)e43 zlF5Q`a({&S3hML=yZ$>c9JX(Nc3G-{kRvx&zSM)Kb?n&$2iC$YrQh2KSZh z%9Koh8&$w+4c}bja;XU&IP+VSBUMW17BnOHS?DFWQU&jVc|)w_hp3Jaxl69-hsAEG zXAYGCG_|JumJVtLr*DpNe@8g>2y)+u?J2gUx+&_i3{Hgz`T11Xpk8D_aP=B7{$QYD za2)9b)KV?TdY#l{6-Jr`d${hZ<#{xjgGQNvMqn^H$_q4pJ~R&r8vC{$0v!aNaQ$Z? zJ(^VcIIb9`DPX|g4)uysCFSQRRT8r(6&9zJ+7a#lG@><9#dRYqSb2|fO%!<`T2&Er z6e;DcV`%d#(d=8t((F}^W_LleZ=)4hb^T~o)xIm5Rac=OOQ2b93>UDAM7J6|fH$!t zk8V}D(XBqQrKKvWngfktBc&YO9)S{q!H2)lNKm121OpEhZx$8b)t`zpe9uy`Od;X= zJE@5?l)U#E^d@?Ad)GSNL9UJFa;%}TlaJv94xkr**AgjA1+h!KRlk%E`M zG-A7a?W-tUXVL*`!W4cO#rDtu6ni4SAxQm#VoR183N-P{QLIb~MzKpRdqc=&Sf~ux zZXCKR2`E@0*bW?Bh5Atb?x6CoMM#;XaojGqr8JttRqxWtWj04`f$e|1Q!%c za*=M^OP8Xcg&vcbwfoKX28mIQRQF(8=SM)Q@!&DMQd^Y)V##l#3ai zY7zI4UQJMqdylf9{k|Ytx+_>|(dDDu4~%l559sp8d>D>kAH~Hz9(k~uoBcYx$5~<3 z0FGIZ|th-D(?Cdp36tHSz(6Hwpx(%MwSz8a*RnjV4p6Px(u)nlKX9Cw#wE zMOCvU=nRw+3D;a245%aDpfY`heAPxj@;xPzmcg=Sq-W{ThB)65g_4oAQX#^tQ^@eX z$-+(@;U+b5IBkU9OHVP46zCFWI>WYv@pv12!3k5@5NH<`Doi_12mdmxK z^K<>M^QObziNav2dqQ^-H;6pY7Wi!137Udkip7}+bb_26vccIQZ?{%_v+z-iu}ZJG z!t>HC==kMtr{_jUm?lfaEzijE-*#WDYv~HzSruM&4eyfP z{fbLpiX)=Ai6jW4#&&8|)-GT$Ir|MN%t8an%m-}4g2Bb~Wm@FiTVmdQ@Z^WMNHR8p zpoN{)oME$%pqSkqKlnJfwTHAmu1L59bdDg-xTyU%i3!_L*Ts~`8w822W&mT+Iw}2Hf zVsT3OX;l;q@f2i-Xz9JqywG;tdx(I-h3a?~z6BE+@Y+cZZ6@uvL&>Tv;2)l=GjC?N z2iOG?9b|?Q1Q(TE@hr+~U}$h-Z>~XOy4T^o@Or8WA2l--PK(Tiv3v}HGAIIFiXf+X z3mSX5o(p-tC>D9L<^=iIV$k4n$irL>piPB$FlJ!L@JE+E_~nAg>+$wlnc}st!^ZD^ z3gb`fwqUFF*xoBkdD2^dKy-mCMAF+>ME<0=xknV_ZFE;AG>x&B>&KCBGuc`18|<)` zYWJJe9EZJh=R*EruZu_M9+7k#E%{-GC68yW4-W?QLW5d$0(BEfKGZ)d8UVHO z1GRDv0`(f8R$ntyF7FSuUNQ4lcEt|&D_g}tsM}Xegi!|boq>8Z00ANVi{qgHJXzwL zx24RIUsaL-unS@GFN%p|RGe9L%3vU?Qol*90J08==Y#yeP87&?)Krq9*W5#X)H?|^ z$R2V37PX@Z;&85Ba4Hy4g`|UD%ehwdZaaBi_vV=J>JLczXD@QX!OSd%#I|^emWB8> zp_O&hB2e`Xi+h_6&`7xcYq%h@kIU}u$s7|RvZo+J*fbuTv%4n!TQtRdUMS?l7Df9A zHCilK$Xe+JWe$*V&+bBH%x>_`BV+ysuPh0C&u;Ll25dyOv%6u9eKS{kUb^kxv=o_C z>F<;Nj|C;$ux{74c`5G`NJ-4Ic72HfKR?*+4K{Xb$&kO*yUyz0Am9>he;l4F{X=s8 z2K9a;3?mu(S0NdOit)-ee}mu|qsP#{mH~EPp4A;lZmU>UIQ?>4#j=i&+1Yf{jXb(t zzX`OAKZ7h*M7x;_i1}tV2XZOGMtnqnmdL@2zC%KFP2WSwqjz z+qn8}23d(;YGTQfxM!PsE;KXFs*>m#9D(emC82|S>uFU2p)))BCVC zZe*qh*hn6+8;A1hZrn^Mh%>4zyLiZ|PLN8~qg30hj-lhI!aj4ZX`pp~ zodH)Bp@Hs+M{GAQyz-wo8Rg&@48s1fnKg_<5Z09dwy}*duM^m~BBo6q@0gDqY{=n* z!o{Aa_=xwWy8+j!q~fX4M>8Y5OdX{_?1lPnOC$3@tSzU9TvGLH3nE5B5 ziV6fWi+jZ)%h*UhBR+q7AYe4{@@TAhWYVSIuBItEf`+b zbs9BDC3$GV9*0Dbc;BY=vcK!wv<6l7O8ppo(|Uwc-*y@Y5a)ygMEY}pg8>JSG8b@w z(~Sch!6KGhA75>*afGTnvV3QuhD>u&*Q4PuD`m+EVoM zSO9xG@yOF?gpRQd%>%v)4)yK$*g7v)aQU1(84v9`-mdqyp;$m3PbS2ICA#5`I;nRe5J_1?VG-9 ziVqZE2-83|yVUDTCIr(eHc#Dfo?Bo8n)-kZ6!CUQyVN`o!Z8Dc5Zf$2TG-UJLZfta zSNGYmNQ)NV#ivob$!)nj-Gq;{Z!|9%E|HZ{on_y5V&2hK2>-NV)N8Q@2t-)}8E{tB zf;)QQ1RDZQa2i1&o6E@7UU-8>CvkLFGO}qSFT$&j*m`FoMc`-V`%+V!6(BHe$u5bh z3^}Ol1WuhH6SDjMA>t19$%F^g3*R?M5N>blrd5ROr-E?F;N*0lpg4xT-(ZV7Cn4UB zYjmH4xS3i52{9`Zs!UEMoM-LW$)cQ0*iuZERO#C&vfBGcLY7iQ10B}IwD#~h8F(!c zbdf7=HZktJP8@nB8ETO{l`ku`J-qFQMAWae2)JqF5@kt=qiMa@H*2-K22s~?!ihrhTxg;|k=hES#9#FIwQ@dS+& zkziB&>1BS+_j}75SW~dR;3m)=J9~q<2?Vx9c?TS0TAV4Ib^deV`bV&AAob~Z#=Sf` zLG+)iY#C})pMzycaIy@oa$n;7a?8+L4vg@sYQ7}AqkaAX$q;bcHk@0G%2WgYmQ(}+ zkByIk7_e@cWK}V?LXyiO7vMs5l;!p<&UTD=Ot;Tx*>X-Uv*KD_w01w(x2iDvzEJ8wl;rxPQwC06i5%n0Xso-~Hxl^gh*6&0Nb?z#p_3TYDB;4nGY zPpdelMgG#;^}xcS(UaZ6hy>!|3@sZ3W)5~Xa<83HQ7#0BGGBJO*``n=Vyt%{2qsoYJW@W~i zRkLqlxo`)`V_pq{V-e*+zz5i?e5=ptV8k5fbRbl~guNe|^}|C7jnBEw%Uk=?<#PdD za>9F$(WS)0k5?L9Hfh`fx)ghXE{ok4ahX6o%+lq-zZG2`>Q9$Ppi2pojxJ5W1e=aa zm&ycPW~l$aN|z?W`Yo#JKSP%)9>{)r46i&900*N>*G|7K_ovHUgVN=^e7ckvtn+C` zmrkPVQ}3Y54!%3O>{IXF6KyBUA`bh^zHGrBB+NKKGAv=5((ICq^n19A@;j>bMPvg={f?{;-p zXeoodBIeEM=(H?iPCttwy}n8s%#?R*MLrd|a|=Xdrgm0H<%GAWeS|mUlvLK@7);S~rvX9k+h5A#Nl z!4R{LDTQ?{`UPcweXc0mbXPM_nzxjBBP^uH5cqVLVIIE_BgPmfv?Q7SGMjp9RZl?j zH=pV9>Xr61-9}uh^qHKUhy&v0Uf>Gg*iuY=umJNSx+++WS(|c}3CGC&7Uct3)jZsw zmClq$F4z*o6oOI=+a0kz5$TcpjdS`MU>veq;FY>SDu1yyRRQ>2#m)m&u6=){H<8md z&6`M%IK5~L!gU2-VRW5(I2csQ3seFJs8j@~Hs?ciI466o@3RUSK;im@FabL6#{01Z zaX3sdOorY}>^|zY0=1UoqUDYuh-aXGEQESCYt)?=gPy`Gf5YFPtNEj!UF@~47g5q} z79w0onF}TZJJ5aEMKl^|mD56NH2ob}g6_*L?fpJDr-dEE6BxaA;I!cIA=o+0`7Kxr z$6w$D3iN7;b5+n_EYc#cQDt!SX#g`($BmijTj1_cW%?skbx_Qh$?5#4RUM^v$UvH* z!ZF28!cwE!WTAmf6a;8@%d(7Hw!hEG(IL)?6Mt=P;;mCF{>>` zy}75OKG?z!uTa)NTMU+e7qJAT@^op7ODUYw7UiccT`j!29NmdSLQ5%~)fS!VXnxv# z+G5w!Vunr~jQhWqLdiyi+aECH5M!Y+Q?Esa^sYNB`>&n$_*%TG!Rd;v>@7I6#vpWnef=!GbEKF#!GEWu*HCDwe&4BQRn+)m}D0+)i0|9dCt+_ zc~ijhI@L?hWXOOpa=z4N&!8ER1uK9i48+s?C#wqm%lu>=2K&HY+D?4oFrDvhajJ1@ z^#XI9yDIH=4Vet$4M#8Yudc`2Lf3^m{pb&0)Y!T%1!ugp6vC!=xG!2KP<+lgz+f={X#*p0!|+>F0PS6DvOIEi3v$nEa9)mg zwZ~+Zf3vzP@LdSZSNWqMwtK(+>_k!GB$s)uJEkj1Y}EGx-%TuFI@EPszY7X1CnidJ zxNhs^G8qio{SH{c;z+>!(#3SiBlnk%_HM|y_(D)Eu{VL;_@a{`_ zZ|Uk?;#+Y~q&5#z-V>>G^1NYO!>cGEpP1?|8(ucWo3wALf6wqSsA5?DJHrJ8DOt9U zs3tq)um2=bxy;m=OkZ&{f%E#u;1%i@mD$a#h=_Yr^Y=(fz0AM0I1Z38Z}#S1TBl_- zNmFH0d|L7D89t9a@hQHmUcW2en`>3A?dxl87OmZ<)@(~R*QnL<{lnwgE^d%Z8=A&R_sagofViiG@+` z)`>4uTVh44;7{Sz^a2WjA!IT=nVxhk`7lC`gS$=kvQR6xfv23xJH@;8jIqF-@M!XI z&}1qdD;q|*(Zuea6s}<(Mnm>yUvjQ@>m{S4Wv|%fTI#6&6D_5TTrG0RgG)ZlTBDW{ z-T~sTVh&G+T2tJZO9yEw9HXUp)ptsS6alrAn#4|&W6@?Zec3QtOoV5(4uT&9UD3T# zAE3dMx5K*IeQAm-Tm8Dgd?|qM`UI;HNtOFZ_|v?x50?A4 z^~W8&l^z6l+Bo)7{UkWelo@cT^z@^|o-y>%ik#x&`9qIuB0~@8%3pw+=C3Le`Vds- z`=HO8M375iJ>=LS?G-G!IB0pAKlagb@3vt=rD^`$M`>-lemhiZbHn;r^*(EStj%F6 zJtNzAvuk`ejZg7w{s~mtn+n|@^k9m2r^6;E7=lqYSkHh?gqS5HRss)N(24b2gT*La zJdA5t87PfV2?qD6-t3bLr+T-Z?9j=`DG~WgH35+dgXnJyaSq#MlWb}h#W}65N$yO{ ze_i7MHl8PR%4;%}o_#SM6NeJJ-{f4owKc_?9X?kW;Sj1_kS8Lq58W2U<3#*oeMYZ&}Lc*6jNxiv($4UW?kFCP-5&+ zn5-k&XlQ%J@dIzh<*hZU;0Mfjid)^@NX~DNyyjeMe%(s1VL9H^QM9!DqjC4qq_R+* z4C63+$h}|`WNt+wN0z^=*hBElo43qS;e*>W0ic`~A@t0X7!lSY{ff`8lXy8s)Q6oh zu=ZEQhL2CwwZ6?TeK34uJB_5OTBjT>xpy76Qm}M%N+z7YCRfsLGAc{QJ}@S_D>iZD z0(Mj<7S;TH^;h*!SUrCM4}}x|aq(BLX2nqH?!~d2PIzhRrwU??vElFM`PtxkEYFVy z&mZFXf#CT}o?G>N(|hlCfNj&xiHr zZ2b`~#{=iJ$ZKrhAcV3KjbVJZ*w`t0;-ea!`E`<}-6*qze2eWsFf7H1qaBROnc*96 z6I!`ZslDo-3w9L_pBMerxW8}%$XRskn((8s;lq;i&ACU_5XTz`M)GM|W9)q=O>0cP z?_~WMp+6(LW>Onf)I|T?s>n>qR*~Nms(6G?48lW70O=$_eX^h)p+6(L3T<+o%Tpf| zNrx-UPLa({QFeBUva?gvZ+5!20X%Ibf<}h%JUMtS| zWb}K3FDGh(fK5Feu1<#3@uHyjG4(#C-m?kcoq$$OIQ5G2)cUsbthOzdjQ%x=jcTEC zGPJoFqV5HKbtgidyJ9Dg90ys%SF{Bb5nlaqo9Y?kSQMgLj2t9Wd|89#JYkdG-avcc zHZRsHVQF+TiyFwVQlgA#BoW#f_qS@%jaS`zqIk7TGgZkGvlkF>q3Vf^yl$Wz&TbDS zy{_O2c=a*s5>gJ6=nA_ncVEGnY7@xKZ!CTTfgU{O+*dt4`b; z{NAtM)YnOh{y~{vp19uf+C=hjra3^9AdnciSZU}!FU_je8=&A?&)_q z-qFpKLaTJkQngg|1$mz0R-1FW#ManeR}0EF7}nIuNR{+{-Dt_(OWm*aBysPSHTJ7+ z9ZBX?APU@G34uf48<0m$_}^7!@$|1`BzKONodJ$~Qhm-kULFqeqZ24+JVbzc?jSw1 z=o;7I&};ZJB>W%Esoz^L9ZO43!oRD+o|m0|Am!f>=Xs_VJ3W)~Z<=h+$Yq3k|Jq#|oy`@Z5b=4PB0?L{Dwy)R1KKwYk-)SM=qk(k zo3o2R^6QNnmvxEI+o=%T!MtlB7-#=zGN`I%UowWP4#g1CEt46Z8SSx?$7rZE0rAp} zmDDhyb(S~x)Hni@ z)NQRz{@reV3M(;{H}XBHD_acr8s<#v(4zqKu)?qz#7GA{8bGyv;XlbMejj zNZ9u7taM?VYNhgH9^Pj&&|;c91dZ*?-uQP5$0;xUo@}yHGN$sLAj0A>YBVFD_d5#c zTSD5Y`E4XQEP!@Lu>^PaChA@YOCt9+*$ICI#C#svoV>E1A#H~OYo;VvjQJetJM$uoZSqz*ug5z7}4=J^jk^~`Qy)Fs z>`zo(@FRcOuX^j4|N0SA;f8@Tu)Hmf@df@A)LPe~A;h%UOE)o!xkGUWqjxeuwgXg9 z?l0JciSfI94_=|N+&o3O*Qy6-6c(UCgNB)LvHK!(ATF4g8O<0TzWGYtgKCcIwkJ?n zvN3==C$vhztH8V}kex*lZt{o?G_lhFZ(w7#XYTTfz6%s;#JEzF5{<;t9hSFSraN^}~t zS{-ln75^!i{6%MhDjE*_IPUIuR!jC2oz*&$s!~K?k^7X$vW>mA!7Aoae*Oz^Gcl=Y zcFOB$>okwkUZ^{e{(cF@2X}I``lkXJuNt_R?QSu~@IB)`Rc{8nF~M3uFq@`ccMXxN z0cukH-Cv~x;&zc1Ee|n&F5MU%i>%d(uy`acGeL{p6UnHSg1d}}R$T@Au~+V%3FeIn zXjZM9?oeeM?4$ra6z7QEV;K%Tk@6mlhb&v%8ThDJ+%)OmRxFVlnn?P;EZ)dtcy$YZ zSxeUQ9fOv3^11S4(r>XFZ?qzIaz5eTd4>t;IEMN6oFVy~JFj3!Tp4xe8Lg^&}sNrjP;1!55ao0EDvBkdIjtG#3jahWMs~= z9&v71&uQ*UhY;Se9u*1S{MKhRcn$gyN5K25SdW|9G~^L@j4FcDPo}ccl|rF9_57fsLlTZ>rpNJSdVHO zbo2w(qy8J~QN{tRM^*J>J@O&yV?7cV9P82Ye_Yl>=rXaM0-EZ_dQ?H&SdSY+`#u=! zQT^TJkrv6Bd0a-v3smUFgZq;%0Nz zke>8!c)_ssh)g(<7wk{mfp2D_^au_L@zNgH+Z6}ML$%;NQv)FgOqOMfQ>=wNCSweL;6{ur$pqR0t_W~4k<~OV%WxX@gS8t;WV@F}A zKy&G&h4AVxqF!`;{S1@halx+PDNl;8WR{r;?T?X}uh6m!Y1U7Qw@{U-(%&ISYU>dB z+_XOzc?c*Z%qP4DKu+f>J@Tulk_fOS6$c`Jh)XxtYD^J!B?R+JGpk?9sQ3a3Hf9H- zIGiVo0ZeC}$=n12wJ-}w?uGGxEaMFWYVO@`uLJ4W%s51tB|nI;pPI=jk(m&(TD?I` zYHwJm`b@I!QBEArq*>w7LqfR&luLMTl2LQ2V=i6p0LEr+m`_UPIKzQZ8ZPYh5B!c*I_-x0W%Y!PTBZkUOqNl%2 z-L%81Tn@)Mqk#6V17HAR9c_Fkt2!yGi zQc~Ttkjv}VvzQ6agA~?}-`9Fu0bB#Fw|K~OP=s+bo!K4xap5oNyFg%-Kbi|G8w7{= zx)h9~C>TK$+U)B-KkhfH6&ym^E$E`edD;w^wj9GA1oS+ugGyXqVw=%Af>zzJKeUdw zQ&q2!Lrh^xWG*N8(IP8b>vU#Sz)WTG<*_ZdUJ~fgT+^ru?6qrjcFH6NjEk z__vwHkqYgPA9|9DVt*cJ9Qg2s@3?KC#*qv?M;BFBBJ>pIDfI)zV-$)<8;ZxjLbb`z zv#H2~C>}4K6!@|4ab(ipn|byfvgZI|B5d{vYbzJuu4Z&i@ZgTvMSA zTcf2GE4H!FjaFK8rA=BHo#2ej2yH>>F1FODg%zs?$kG-O2tghn2C;%tD=piKrLC@L zr6yEkxJcp+gBJv^@&2SJjh6yqgzxM9InQJ!A$VEa{r&cj$AmT z*nBTUUZO@qUaN(?#H?}Fde9*+{o=Us*{=!}t)9-h!WOwey`({2z1*AO{30lcBpv!B zdR5z3Y-2dquO(T!vGYzVg1Aw~`{6F(`gmF2>pFd!i33A`-Ytf^^zx(PE+$!@*{S39 zWX;A<;L-lU0uT2clLqQ?Bdd9DNKdG%LAV2sL+t?m8aG40LFP#oWQz%F_Sls*Y&Vs8 zf7B%nq?jpcNggax>#nWY*HWSL{oV$oK5ORY*L%eCY4)WoX8XY z)_BM`EU@q*7k7NXQso~}Ftu8(@*Ghb^6->uvVgrN4y-iu5HP_iN}Bbl&{ZQphz}2) zF9MR{@+Pr+V0h*WNfb3cL{|ysHSeUN3P4wGubP;=hhvIWo`75- zqYDCGe&?TC%(R}UpJa1F;6K}R0wZuegAFs;h{n_@8(Ahc5%eQ*C0Ob(CnCY|Y{6kp zM6y<*j8255(jmgy%^33#R)$T2K=yxzuvC{rSn5Zfq{Nrmg(M{}gRuV9Bqi0y4?I?; z`A%BW%|0LaYcokney~7*?e$ond&O0~l`kN97mUQ_-)O%2!c;?;GBDL|9H!DQFx8dE z8`CsP!wo}>~Xz!ALH)xXEN+mrOR~vS3sUnmX-0 z11bZ|uW+HnvGXJjJ~CNCiSvzK_Q;xa3P$qSD|(>vhN3=71aUTleHRKwY)Cazj>|() z0ETrx+iCN-0Y#}OeTTaWax&QjDmrmjsxudD%P@#zu%mN_f@avMZoW(~B9xTJO2M4w z$Nd9SNyh1rllEOWiAfsc5;JT&#RyE!oR%th)CUEt1?3tV2H{%kg^6LI<#k@K&4 zve}E&pfg?r6&-LbLL8*gOaTYoqJlJYcODKhF^NL-YZ#b&+Jg}Nlr$Wq(EH8&a66OB zXM03I+_|M$m^zWt1+=zC{bR#$4%5frA2*{;;^AQc8cJyGl(_vXWy_>=>w;vC;v-e% z3g%D?VO7XY_+wkcwh|ZqOxmR7@IPDC7V?k;@{p82^{^q(;*_5{40%W`Mbh3bmao%A zLcTfNQ;NC=8iIcWETP0Y(RqhbmeaYU)d-`ss)C^wDhH3x*TaQ?;an=2H>S7C$&t8n zWTx;YH9R`amAcVecW^)H)WeV}m`6&w^u2^%co+vrlOwp;!Qn0ekiHh27h&`M3YpXMbE7g-S3t?n zJ8T@vZ163kZG$<~6(Z4F&pT{%3RN5fKFuFBnXlXAU$x>fy9Nr?W<5U!|FKK zcC+ZTaE*3R333fem^M&qLZ^C6t|cT;s65<7RG?RJdU!4su^2#Eg`o*vGQ({V?Wg3x&%_bZFx6uN}ZnO7OX97-2A2aF*ZpmY>livT0TQnUy8;iP`vT z{1D#b=-&iMAe9$F=)LY93ICN(nzo4qvHe*A0#OaWvr`DbS#LRN!yh>krSq(0_k&d0 z#qABf6U637cJJQU*l-&|R;Evo-G5O;&3>e~rMC3Rgp{>Nry|(DqVam9I>!Fjcwplh zpeDc=($mTcudndl;cmuFD6lH}U=*nQl{)elFUt8I5MAZ{ zeGkGV;JcYz)9A)fbF9XY*U3z0C&Q7&$_jsuPnU7a+=hdv+EemWvvRRrjY5~~BHQ_M zkKz|osM$$)k0!W^n|V(}o(v=YY<}0Acyd&TY2h-uYOXhMtL|+=ASS#nGYy+A2+p4H zbes*`UXd9minFJ1|9p2^Z|t4onr?0+cU3iq^P2G92&b0YzAww`cOr9E*5_>sM8jPC zpca4Z;M&Bv*ZA}J&~@?Bb@8$=eq#*d>nV<&5iZM_hY#a3lw1hFhmeZS+iE*uauF2dEhxw{VA9D&<2auS;6aWCl#};|Fx+3K>Cd}uFx|TqL9lh0b$LYupVMz@b(y@*`B#M?aB2si_rsOvek}q_m zGRS&P^NI(X6?8@jFuL$lTydT7&uMk;A#SAw7L_u?%xzAR)rY>u!w`%q|Hk~|)wKLiRhmdslr2u@7;S+GRM`j6j>JfaLgQu=Rs3Px{TaAc#sn|q{m;ps?_j{FUP633d3Y$B}QuTJ+* z{M`ue#9u;2QrJMe#sy9oeVt>3=`O1&mFZh+4MuMT5^lB{M`Z?_0*F3N6Sr7jol~O1 zieeM34SlCeG;*(eE8(YZe>(GIZq z!pX=(P!-jILTq-hrI$rnwdL|Q=qfM_6NOzB0ETbzB^A>Zol^pP#qJ5c|7`gQxy>tj zWXliS$@)y6daqz~MMW zPSQMPs6|Z1B7$7#@?$Poa!8zO|Ma22S*-=XyH((9RJl8GzCPRYgny-a4mf|NpNMnC zP%UN{F<6G{MxRS9crSiHGWbqZ7GK$oET`=>RwGLQBg@Vp7c*8NWbYQC><^^Q7hV|( zOx&^BpV4PXB2#RaiOLYMn?o#kS>XmDyp9`^K?wvp71@=}OfJF8ac|0x_Zcp=$5|ltP+6+aXgE|=uf|4Ia@T4yvNN3- zaOdfM-#++4F6zK<9&XM_O8tAE8t%T?QGqqI=*ZTu0Q_{2U4iI_)`Nk~e%6qdLx zUAhM*BOUpxIFCqsI)Y#2qv_IZ;(u8EQJKlLQZbRwt%#@{>5uZ`(NR0nrEjLn@I60s zSG>;-7;4oUof{=!b2_pu;cXn5DX$4e?m50-`&Vr?XO^PvE_-51iRN@1xF#LBmqErE zWTdc<-*-{W>$?c+M~O0__dNi7+IuZkX3qW5IR`t^?Iy?VjsF?xzHe0)*hhmtxy)_? zAeTqJ#T7&sj{N}g{hfYnX4q#;x5LD1VVM3_l5FGM_P9H6zxwN-#p#|0 zMf&jwp1)l%st-FE=&k(d&Oocd;GmlYqmCKQn1Ohg_A6cQnrc^4fx4j{(#}%X_$qtc zz1;n3;Xzj#?bj{MJc6^VEBd&zD~tHiy(|6Hm7n~<(1k|AjF=CBy6t=j`ms+#UxRPI zBdl&+CMaO+F5{ajPaB99f98lJ!V->9lPp|^_?%?K+2gp=K{C=2{0t)tqg=!`56u1Q#d9jZ-Yn6lUa=M-VpF|e|KNHNF4}rI-=OHiTZH;9G`s)hSTe~& zMGn}KlbL-C;X7(=4k9kp2RhY=`6&P-9FE0krYcjj3yGqiJEheda;|cjba7~`dDT36o0uSETwhc!_HH#znEm{bUXwCvGW|E98sOP3tg)tG-`pC}p!&Pcy{RBpzqR^Nc7Q26 z5P(>kR*k2%q@y-8@DJ|5cD*G=B4YRT&mpsMH$7SJRe=~ zUGh1x=w61>UFIx;RdwWTEz0N2sDhQLDPO8JLB_b2ofC@?o#Z)N6Q=gB_*q}vw~l`Z z4XYn;%d&?^D0}5?UG+lVvh44PjRf%RDMwl}+!$ECs=#|U8sEmcvu(@Xu6kWJc7Q3F zPcTFe$Z~mhLcAr5NHQ-=d1$tR2X7Hl)I4@#q6z%yj)_!v(0)@VQpC}m9j}tmDQ)z) ze_Fo^1v{8Ut#NPd&_~v`9c}vCSfqLA&dn5GA{Zw=MI0r9^EBnEA}Chnlc&}|$P1?R zK}v(Z{WNdJf(~UBWwUx)*1mNd;E5KoDHH!xuS^1!-P-EI6P1lv(BaR2S`8Abf@#D9 zC|q!W&G{f(3`os{0{)EV!i4X+9g0}AnW4h`iTDOPR10joUe-pl$|SPgtfK7) zhf~aii+FXOo1f2B{MWpSgCsTTV9X$_yuU((X8+IfzJZ|>{h@KKr5X<+)RL$?y!?k; z6=Q_hdI*_w0{Fbkpu6Kt@ikHi~Ge9AK<&D-G0^V z<`JA~bk1%uVJor$>6F^^uU2Kab2jqm>dyK78?_;wm`j(&ge+>EN+u!?C%ukD**jCd zq1#dh{xW-8${}yq=|_Yu>nrT87))euO9{Uxj_V5;c2pid@Ph0djMk1}4*onG{NfG( zO|v8@G9=`|q%EDmFYfP|ZjZW&?$=Tt+z~V19!nSTzytbQzgO?O4pP0U{Bes#7)#F3vfHOHTyotkmkshQtbW8Ic$n%B%C z*Rq#nbNI_Tex$rVwb-Mf(fw-Yk?^ih(Y5V`1Vha3g*p~O zL)HX%OIPxXy8z-qw1S~W7@Y_T*S_}t=-a7i`tWZ zePHPsMeK~(t)y{qE@Ef2mJ2YV=J6j~o$kptLch1dDkyH$tB2Y$lju4Ru zW!4m+v8^RD<<+#)VGu+SIVtbYyWOwB`~pGrx6GP>Jc46>yZ;=i1^;SQ#vBEF+I5b; zxxDierpg&_%vP~PWGf~viL&)mrY9p!vAR~9pief8(FD!cucSY}?sm;ls(?9Ky2{ey z3z(x-D=j^>AV~Uk%Pl>lfH?|mjtrg?-0EO8TAR9*$$oV>=_ovXyY_Ll`R%y|EvNOMmms>>?5 zBv*-j&2Z!z@cxx3@;jBNE~}(8SBZV?FI)7%vnl@o4Trj{l2-(KZcglLe_6o?S7Lq) z@T}R1{jXdl_O-uk@COe^UJ&#|by-iw=PI$UIhDxS{Qc*oU8s>*s@Y0DovXyY_LnXF z;7a62LM5updh&>1&CQ8@jqRP9dHY?eP`B z3K&o@ej}TArpuEeptIbrA}g2B`ee&3cX^j+F0*+_m)ELMW%J%V*uEW|pZ5!wCl;@> zT-@c2gTIAI8)lDNhTCIx!X9^z=8^DTJBQ$<&Y?RDBZ|EvJPyYNvx1WA^CQ(~CH%$T zT*WAnpntPY&*-i9^GAT(so$J{mC>(LrG#dALrz+y57~#w$iwN%aw1|C*QF|Ftd&<& zvTU7xR=tY2&dgB>^N6BmYjoaf8>*{18F?&$fGqL=^)Cn;jem1Ovh?0$**3mhl&YM1 zNC$!TR@t=A`L>v0C!v$h6xETskM9(Zw#V9$oZfdvrubzoX4|9xE;Ee#=&=1x zBiVTX8^@3C2QW1lT>Nu8E9i4Vhs_)Z85VLR@)O}*@78AsPiK)s5DJzHH!0Ra{ULnL z79ksA6v7P|I^5{3bqFvZ+4jPZ=)a{;v-_(1#r@)Waj*Ca z+xly(+L7F18n-UWCsRND79ReE3$ZD^oQP;OYdO>3SG9fn;W9GaFB^OAXw5s!qF=bs zE4+%}lCtoAv+Wf()rC<4+}XC+{&@CsirOL7jAg=qYL~YCc^ZnCT}=*6UGrmJ-1ZY* zJkoX)>3tj9w(8e?UZOuY278GCZO#6^eey!6J%1);7hi5$-Pvcf^&$(AOYJ+edG!_I zILN=r48Yo^kfm2%Ew3J*7rxT5we1kH_L(_X+q-(<8q*EMYHu9vg%+*R+J`*Kw_mBR z+b$q&9l8G+GLKzCW+Uc^2~b_z*T}MWw_nGvLw_E=>!)`|lZBYBPN%N$Mwvg}92UQ4 z83hjiRajhhFKuJUvZ~7di(kL|b@)yUWn0T~H>k5$@MGOgywZ4!)XL@?)$Mg|T5Eq# z&dq<&r)>jCcaCRk125jbM<2GGOS<#L*VpsntPS>J!#Z`?;<$jp%os=4!&^I;F%-co z_)}MPcqguD`_4wy5iVxk{nYWv2d$1W(w#5-~gkX>_Cg?32_o^eJk2s%`Z)St3|4N1{4* z1)JAj1(4tG2hzr#ge2{oedY4cQHW=PKnCJRt^>0tMHf%}#eRpiipw z$#m(HZ3_2=sI%=eud9#G!q0+VKrG;wNF$3RX-FPx8(g?FWHWMt5;z2rrxB6(e`8VpikSMO?g`h zXGQGVBsMvbdv*6VQHZ8~I`KP4c8ha)>7Zcp2y)-k|RAP88gx&WiNo%mGrc1VFWH(zXhm$ zk>8Ma3tVNK=4v~b6WE(YB78qID&_x1u9IxrpHG)QkdC~V zDs9d(qoO1(XgcoNsj~ZHW}-%b-$LCC_BfW=711->D*8O`OuMEYDs4&d?Wc|}Xggbd z%Zw@%;lo*dYX4Z4WxN@%iS61JgJq1tGRD38Q<-l&uJLMKVO7lAc%&JR{|H`wC@@eR zAla_|XDHyp5#E@q6iJ!hRQ;7*crC1`kw62ZYk~dvb%iqgCj3JdjJoG0%NnCKe}dMB z#{8irKf*`9e4aOBwmXzH0vlITNI2plIQPOCf9qcUowmpBx$0gmHLun{wfvNxkON!n~GypwGMUf)O-YjzTO@G0PR z=SrQNWEZy*jolg3{&5K1Nkz6?dH64%`Z9?YLd7m2Mc~=1cz|~gYAN_iL2A--0n&og zHWHM0GRX3@`D2d!%<1#vM;>|l{M3=3h1J>;KWqRIdb2jMR7qu^Xnj&Lu&Tk>Vj_08 zeINEX%XYi4_96F;J(HZh+rA8coh63va9T2AXeTTY!)*!OJqV~IGM6%ITV|ZaF4Dx6 z+WATwiTUGX#V*Q`xV5=mbQKlw;if9hZFFu8r;{#|Hsg)9i^iTf+xKcHk_hDiqII?2Fb7{Bh40p%U3wL^ADa-bvwZ+{iZ zz}zm9fnmJ+oQh?ZC`swzJjO^e@TYGNE@(@fqYmFQoQ#HkD%Yv}a}t6dT!e%mGu}YC zZCvplqOh2o8VBu%_=f(FsQ%OLvm4j&y2 zLP-WOkjGXH`3=t>^tQxYSm%$%Cfe4_|!n0+CGKAxSax~mX74)|srO?r6 z1WKNnNzLw%cZxo4_`;xqhMQF`v^2;p87M(oCQaPNjFQ1GD3YqYXtzuPUQb5TkINip zKg+bFLh-*IT`05iv=)nfU%2&DeUDi9t|eTlBE!g-`j?%>?z68 zhezTek%+v30((&+(u_~jnH@2&a4(4@-VG1qEWH;j-=wRhUSJoP%M0Lz*lkDk;oNHl z;Ke zwPfU7QUs^7B{bGM zpOW(Kb5no6oBGWJy1Jf@;1hE%e94SUJCstN`BBB}LzSD<_w4MSLEqod{*i-%W`7B@ z-}mRt{vjO=8*(?CcF*6wM>@Mm9K>hG_o@O-yJpOwYonT5!-7Fr2#f0 zyY+G)Uf)cWvHBv1V0VK~y5lD0g}AAJ1GC|#YmNsuwd6VjWEb%cvl&6Ql7e*}Hw!n7 zO%E<$%l&spcH?h#vtC4(aa+`+f0ZH)tz9YSV-vuBD*_(IH;iJ zvfaIBoD$o&A@p2`ml<}8E*!`yGem;jJc8Ovz>is&YAa?t9$>-(o3J5n!Un=qcb_oj zg%dWIq)phl$1%S4F5?@*yAYWx$%GB#VaU8B^*-Z!;sTKQF|6f1ibhZ20Y zlim3;1q#}37;zvW|I~{8J9K=H9UAO9wAFRU>9p;r-lbD|9d@eKbt>QyJUN_BT}Vvn z11wJS1nuTAj?#{HO?0VOdH=#t8231mFO6qA-TN=v&3qZo8I~;*c*jn*2Vv6q62XClUL2$v|>RxYurR?kK4vFZe>;7m4qG zdNHhFtq^^K-m1z8isRzF5zJ{HT(HJ6iSvU~c)S<~@Ko{Wq?anjoiJXUNRt;}cwIa^ zO(qk!GOXq6^I-C7h$&98#LzF_ha9S zof8|sKHMOTDi7I>V|=mtI~W(zlM<~#=co!xj#Zz@C>k!y!&QUX6cZ?KGo$=|>Ovwj zrleoWn_SXAn3;H=<@rh_%k#Iroj|cO3#I*+^(tt4niv1L^~w}}(0Wbz(+8~ABRf9s zdSRup-+E2%{f}F(f-9|U4_dGFcYMHleg5^2 zyIzEo-*3I{D)`5(*XU#STQ7AXZ@oTO@jmOd`TGZ0uezV-*6XZ9<-v$Uxm{`ZQPC^T zm4i%WBUcEu>Qv>Qi6b^{MK!S43IChUv-4bz>j<(MS}Sidour2rdn1~09VH6P!WDr@ zOgOIqCyqwEUDBDWRoK+3qqbJ`Ss$%EjvCv(Y}JNs9G&0BL`hm{W7T;dp$!$zZ=;#P zv<;@F&T;(N{C~o6RMVi^82(Y(P~rSG&Qlu-@z~kM+4*hM@gdJ$S?b)G9$Pwq3||cRv^(`%zM;4-f#xkSdlrc7Y+f<1r?c*y(==`iNqA-o&Xn( z`nOsCUeG_R(9|_LPTdM7f#(icm0p_2jPB(X&(_&m4n^B1gnMA- z*_~@Mm|klAM}L%gQ{lXMoBJ=!L~!1{#}|ATW10J*$Tcr?NNrIopn6NvI;YQA#~q?& zo2P8!Mo7K!3a>L?r_EJ6w%==7hp%=0T>EVQ&#&imy~+Q4-q1(3zu5I-ZJ_-=j@En^ zHiHWEHm`!VQ^kFt__%BhHEmHUxRLJ-kS8?^w+OSP;K( zwd(P>Cr*;jH>!5DO(T2g&h1ZUMbT{5@J_m0tn=6*a{I;F9c)&GJ*4xp?swBy%HTtF z^JYn;t@8qu&dzVN&aYNpe&;Pioi|yvM6hA!dw9Vvh}JyJ@r;#FJ^3q9N4Cv><{PXD ztMQ0ijWyOq$Uv7%_HI1DfEHNkW{eR){aNT+n;p=SRc)#_)XWIXjtg+MnZ>0lG`&TsbAbuzR_ca1!d-gTPyo!E^r-*JM zOfGkqC+S!c%Mtyy+Z*FFjv(EX6c{v_k|J9BW#yVGHB?lL15(yU7aT!8j(J0OCQCWh zSSTY*lclTpti@rE`+aXm&lQhW5K?brEOKA6tleCS2$)yhC?kvkbELa){$785iQFes zW$XF5^@8Z07eU|;R&4|3@${Oq6_>BQ_@S~QA zNqbkxxI5|nO2*x3?+O`r^Gn9vyc@_P82Mu^it?}1C(ZyanYlBdST_T>%Yxw2D*Re- zb7HEKnbq16!RLPd(!Qi$fg=u!a-CJ{uhu5;hxb$P;<1=(FDu}8bm4V0KtNBE`Nr1% z1y8!hc%&u94WE^dB(Vje5PO7L)OeDRXw+Z*(}bVKB4)s9ez1N|u?1U+#*@mF823jQ zGo-vGaz&q#B8F{b6MjhR3k#+e$GDcY@;+jztt~v=OReW$`2xKw>hi8g@Ay}~AQV|P zru@rVPs^kVdc`xbeX+8}>fy{jMmeqvrMqj&uPT^&9JO;?4TZgovb4RzOZSyIU*&z+ z4EQH5jC*~rI@LSzXWI+)#RUvinisZcCLm!ib>5y}zQ*w&>h@q33e6 z^D0&anY-n1QL!qlk03ZM`X7>PiGjJqjO&v9Ortu3>S-7~vw@35Mz)Nq9IzH`EdiK| zuOC%8er@3he@vqUr>U~F%By;|tI+g$ZhplPBl0AxljdUL$OFKjf)XYx$9sghTYsuo zIFIhEL|&S#yu2^l$oRB>qQ^=9PT>s(30_!53T&VBuM)mU`?WS1{&hkdN&kvGw2}0G zCA5+9#;%H9B`uICl^?F!&5E%Q{iwn~MaPUAO!t91$)}a8;Q+(v-m^}UZL$+ z{Z+bgMz{@S#u9mw`{H-wedlxi_u&P&kr$;a&qVRRvB+i02%xDb$yM^G z2-2%kVT7?{W+vm_6`gma@Wj5gTq1GXnU#|Vbs%;BVjs;eT@~7XDT8) zFpEt_ww~?{s7J*=XCj}ly32)K+D=3{%*?pS=$wO#Ve?r0m7T@TfOU#BRrI5Qg0?t6 zxcaRdS^Figx{$TeXwhGYE|^C?us!sVWNCA!neKxkYnbWwy%yZ0xCBX#7VQjvUY1XC zX1enrYnKK&a%+E+2_lkPcxB0|5omtGpYdf{M#nWmS9bu^sEmx;{S zMZ8=T{Ku6@EhbxzwGj8tr{LJ7!MAvU{&+gIG?<>boBsHiQOGN*QFSoM!Y2hhaY|#d z$B>Ds=ea01w4C8uY8{ue44n%!88uAj0-etf+P78=?hNbT!wg8W%?jfxnGqaM%EPd2eyNaYbN*U)!RNLr^ z>XKD5TX+Ot|Cg<(?Ou=0{SzVM)BZU_qzrs2x^NvIru~Xx?1H49=ANgkc%Q6!m!nZF zDa^b;axgAZmJR33x*0~Zn!{gfhp0QJQNq)Gf-~)auM+fhwhpbw4M~-?uvvaoGJ^bn zy&!t-cK*2O`rN-=5WPUw9g1tdrHX^?#rzoqw7rEN@I6zu!82`#6Po#muKotkae>^F z&&BGQa!xz3n({*knnjqbeT{v#q`BOM>*WH*5%<5-zk!j!Q9RpyKzAYyb_2SF6ayNn zD;DolS81MDl5|`nYlKy7MaR8*5v$3G9_uEs*P+;c{HXXVs4V9xRWc+|wp)n-BUHhc z8PyBn2w!7#0lj~yYC|4tw>`_+nK%FaX#G?@1KgB?_(pHttpOe%w(7=-9bvqzI9d@+ zX`Hb>JBgpCfxa4k?4sk>7Q&>m28ukGxvV8ESAjLK0M6+#S@~#+i{s7jeDlyo7qKwh zHX?8Y(9wRvnOVCB#lE%`zqD7-ylMkcL>nj=ez9C3wBI^iAr|qYJ15u@{BR;#PW+2_ zXuW1ZwV6ve{GE}xQToy zmrmbVd+8*kLv98Ye&HOBN%QRFjlFa-Q+Q=~L^|Rv;)51msq@i7XB%_B*^2d$n=E^D zN>$7+{FzsHtzp7P5vcqi?QLVL!wZ>M5oI9WN9OY2g57;JK5YP+8I8{P$?9mjRP?*?G{3l?H)dYPJqy57m;wYVPWg*q zyOmjDitOT+--=DkQ~unom-VakL8dm)PDSri@!C0jzgj=#Ue1GBcJqL{7KSL`n{nu4 zNfwbb@hxg!k`r8Rf077PRbU{=e$_V>1jBxREUftkOi-e=L)lo^GI%fjN8wNuB<797 z-kZ3n=JA5y)+Yu7Ivb!NpX|H+`=DSmbI2(;*G!Z$r*6W$M|qbSC`fLkp&>M+QL0Vy z4tL4HBv(-@K}&~_4A%V!Ta!ynyW^@w9Z0^L&Lv9n{RAH6>hqWy_Ub3+{H3!O4b$z@ zC0l8Xn85rGhES$qR+kz@hr=3`q{d6KHTJd|kISoZzI{4&rI%hAyflZp7Imp>I$w%y zKq;xDDA&Ly)Kv8p^*{MmTdr$MT}7*4uYzBwqUHG&Rm^ui8atmV7Cn8%ih`ips<x>T_=tYRruEVn9#S{2jss;F~SG6)2`7bX1%j{(^XDeI2cY|j-Lp3 zV|^pTgsEs2xE#@Tj(VEifK3(6ny28^Uu8!x-!sfMcFxJxK1;P9szNW2=S(>g-gCHO zEn-Z;QC}!1*#4va!E})W(_!obwfoD!z*Ij0Q}H(RBEcgBz0o8M^zObX2YL(WTd=^+ zcAf2AB>4nhmb8s4fLt>UUO1+eByCK8 z`vhZJ*=0;ydB>Ra2sVD{ee`NSjx(kgDRzJkO|=dcxDKtNT=xzs?;CEC>qxf1hH^E^ zB9cVF)wBm^se3bW-J@TPDOM$s}+TqK-UG60&SG zN%&dz!WV3Q+LKRcRlB#viT%WYu8n8Ta;l_w=6k*4nIA=TdyuiV{CiZXm*K*n?V?DM z_sODsP15To*`CIXOPhql$ShMQZN}hyf-S@LXG6hn_%O?r;b5kr`?_%i182h#EPL2- z1pYyOtLR;Mi5D*!oyQTh+Qvwg43E{#VuxyL7M3stY^Zq2a7RAkC5hpxtdUh|2<(IM z61^YisM?s4ar!mE2>-wTl%+f9Ghu5D?N)qoNq>rZbL|lfqe#QzSx}F0pzJ zvw9wS&h@&X-~!>B#U%q>J$eM~KcSu?d*S*s-I4n-CDUbcGmB9e!EdIVf6&jeRrL$2 z8tkglBUquT`gc|}w`4va^TOIxS`{whX|(%4t-^|Ig#*J1hqwy$2*#+w!Fd%f&8tvp zRk%D`;TNsK-Oq-D9THYJ%vGpI5TQui|HeztLl9WTIML5K2}k`fK9CX8N-B)iH+Ne| zmv5#xp(T=-ilEm)pb4s>w!Er_Q&p_~F~e4K%~UCWPq-Y%Ys@Waq&cx5!Ji7jPl>$I zHuJ_d4@;)BM%%*E_R;i`o*Eu)4Y!63Z>4b8hLt1sLshl%6h9JtgNFAX!#JzzwXmvy z!d2@8;K2C~>Cj8c1sU!xyBZGatO5 zB6`t%>B^4e+Kz!2jEMf|#s(=Km705#rNTm!Tf;&e*7f#=&T@-gxr*pye5f|QIG?(! zU!*JBAB)a84Ss?V9as{A50NhGeKb|})ReNsq=z*-+yi4G5rRFOQF-Da6@=89w0AVe z<5;(i)=S%3Y)rT~ScV#M;S)wE#io3W&rFRab^sFwW8+kX#l~yw3 zC)!oIS*7Q9DcwSmPr1@cQhFnV-qqn6F`QX)D^@%b-d@1Y1TndB%*?y5*4_h4ynik(w~IF0wT_)N}nUF?N14ldurS(f0O5F zsYnwB=5Hb_Ae7@9RWETF^fbT)Wtubv&tgbY`h>*Yr}`&;`c!Y~^%%x?A4-j#tdM=( z$ahF!G;o9#>PKk4A9e$f6XYSf00sqo)n_Cpy{QeAi0nGEa=^Ouq<6K8Mi7rvyXefy z8S4s1cmo>Klb&<=cYRLz+(Bdt9{D5SKj^IaF?d0`VF$!1pVR%hm1Ay4mj6h4(mH*6 zs(;tP`qrDViXmiLwSM8I@l256_GNBEE@J5=2(GoFxvd!dbu8ih%$ojyjO6&Q4Jz2) zj~$F~jF=i6aWp6XNduk|9dlbX*V0m2iq)69t=~?^hBk6_6kx&z)2^o10sy@U1uDBq zP8Rwex)&dW%FFugU+HqIG~p^8PAwd)x>u?@yLc14{vOO^XMe)F>Q_<&+b32(o=UP` zYkTK<75tGeDZ|xQ(S`p6aHsuc!W#TM@24^vqj5i~j^)Sjq!*Uce*mJqW_r;h*5%P=I0f z3S@taIB}wVLm!4%YD?T}3kTD1GlKyo6bbpPB@PLX;FSSd$lYB56XoX2YHrU{ix7uf zaaBNX&^x+d1u5b(3?zRjp39*;oPcgmyczA+3zUCEVK3YQV$m-Z;$XP3x4`seSael{ zp!I$QQ9X*#1^S(gY)bf-7U2Y%@J?(oQQu=#uQ%LbowV)25a;W|%o2MzDSU7uJ#M%w zR|+A)F=P>B)SQwcmw$_CDB?TjsvnP-_h8(=r9Y{L#@tsdppN>stujlL44(Sz-~zlL zD#~82dYoWI`j+^Ts)^vg7~L01!=|9nNG5CaTzg$LWiroN#$*BD)#N#&u; zV!uuHASHn@Eo`iQM&3rt+hrv6-m!8fK|D?<_vClA_wZ#oe}HME-(x^*F6WWlQHVW; zypN*`UjAnmE{u3%8sjGtnKN+PRcx6~nQx;C<;#38MdnM`-Ie4MB-0K?$cfEw)FQmz zSAC3=YNOaAEa{bn=-Z&Kqgv3RRd5*xg4aOQz6s(w=1Q7di)sO}zr}pLfDo^nFvWNh z+l%#8&rk$0y+z;c9_E!hqHr90d&(EM6sWgOXS?f!ooi;?Syx=!qBl2 z83Kd~B3a1Hregq6oi+_xCKRd2cO&gKICQ5XTLhrBe$m5>qR6OUYhAzARYYzmP`@C3 zN~&MU*^TNKYVWG&F?)oMlkLebq!9j;&Fd-pX2O*~azM;CsAfnXP)mCnlA z6##4VJ4yctj@Tm7*e4966q^1CJkVOq(wFmAXeYDdm~ag$}c&IaFnM zDnwF%kLsYm(<$6vN#{Wi^ywEaNa`IPbpOV_8WAa3m9Cr$4T(Ibv^LpG2%=PkmQBbX zLT`_7nIJxHqHJ6BG2o*n!bqc}O;i^4OGO%)Yw9>PQaq1)07&gm4IXoVYFMRy{s941 z??XWCPjWd#3ek&ZAx;1h9>J_#I?`DdaKbI&%B_gJ8;=-L-=C5_P0O+R#g38tF<>_@L(vJS0u9nx$KZ6t0&jw%v(Mt!+%Cx_wJC>z$$WMXQzs0fiw#ra2o&fm^2 zv6K%Xqbi|faGFYV123DEwh(D{(HCB%jxM1ig73^AFCF!M;{-$tqqs z)m!lV;e&zhdo>T~ve%*ug(}#5dDwhtqhh+%+^sh-dBXw4^rRJ8PxN$Th0sShhn?Gc zwMvhyTrfybiY12$sa|4e-nxD3yd{HqD_>oEI3U@NG!)ZUNW%om#Ohn}b{v!Ktr((D z^XFXUf-n4S5FUhc2Q4Vl3>hVD7~sY{k@sG${s*rYGiN2aIdl4!aNaLbi3e2Txcm~+ z$qwgT$>4XCfWnZ>wsWEtA3Mvdm=*ZE9p&FKXlvhs0#1Lc?Mu)=w=+N!{-Y!5Za}e_ z=O%0RVn;QYGx|tAT}d9yxSDXt-jbyah$ z&wbIk$D=!kZ5pPYp0HHbRhB+rSIm!f7d2uKrQMM8gWd>**t}at8r7rx8wRby41(T_ z^cM_jCYg>r16m!$-R*-`@)Ii8dn6$P2Q~6z6lIpGIOZ{<{KbRDseI|?bVRm7smi{) zQkCO(VXRf`jqv+&wPA64+)K5)gGhVTvmBl5AmTiwcUFI2b*N2vdldh@X>@VePG`61 zPG?_6F|XFVklc)`I0`grTGb24);#Rtu=qJL?oFNFu{|O#$6L}bZ#B!^uCXjIvnKLS zpF%3ZO~@+cZGaon_KnUtRYwVjwNWt_=q+&;iS8=;RJJiX=WiIU?hjHg0aA6qAs{6_ zB|YhG5joMfG?=g_kWy(tsyrX0bPv4)Dc7x#)E@w(;tUEc)cjce?(XoUt&$H<=gbeb zykWppo)1hZx5*cI6^nwK{uv+{V;Kf%O%+QW3}NPSrQVItf4AIVATxG(@FU)Z(-?y2 zd9K!#Ud75_G;aZ&@(%|(<@uoVC1#v8F8^4d^JUIhfX;B{BY1nUfsWE28+6KZpi|xz zbjtHVr#u9m@;uNf|2u$=wV4MxVLLZuyA^_t^##yz&36GE>&1aUN1%{Jgp+MGmspl( zC^GnI)Ii5JnSo9L<)d@{tqbUAe;ep*=meclQlKm7aE0$BltVHiW65s_axToQ1Q{-e zC`qOuaRR)fI5hFP#C=FdG86d)@1OL)nM4klj4UxeF0w-62>3WHaJq89Fic<0tSr7B zv%~1ZN7>8iN!ukmz;1IZRyzLd4U}{i#QC?dmJgsp2D{vB}8&$TgeJ ztQ_A|NCeT_5Ptm}L)u0JV4Z>|tctT?B+f+e^bUrq$T+MKQ>sIB?(CqYqP&)hMvwBx z7Y&!qc;q?SDpJsgnBO<*rB)dg;>fVX5P66gZ?H9SSzfKcCm7P#mMt(6G;M2i&aVtc z+*ai7Zf!RXa`tdr(RW*ss~wfOZzKG^JbUIGBIw(1XWmGYuw5z}t54)@&b)0&Qt#nV zB$(1hAEp!eitSQLI+?t0vUgy20&lS#n`jRc)H@aZzP4f8X&+TgO&4#Q->Xurk@MV# zQf0fN3w}mE(wcm48-ldMh}ce(Ni7yYg;!&RmG!u3=hS~&){69SIX~T&=cUqK_4@Y1 zIC*!^OqMkf!;h&M=`Xgb{l0U&zAk`l6PBb^yke*0rJ}{g=VsG~97B6{4DDUVu#qts z$@+VaVPmxB3=Dc1gH@e3hK-Ej1lju5?EU+W!8q2x^B6{=cV`S%b+<7L;Z@f$4Bgqb zc?V1KNL%e|W^mmWBi?BA=;2xW*M3k7>5o>^({&H*NAcuqD>ShI`T>D;k9nyb` zu1L|OLee2wq5XA8u3V2gBsn&IC>>I|?AZhBklyP-hty^|B*J92@Tt=wy#{@0ph2-4 z%e8u)7_9zgP*<#e0yqlYP=}-> zA4=n7I;7kG34(f8m(r_vH%Pmoi^j=xNOM(sLzmKxln!-BN>aBhSWJg>7NuQ`B=2Pl zlZ1%dy1WZB+)EfPPaMdF6sd@T|; z9Oo$Mmp{4|DOCn){xDi34K}Am(yt!1NI;!{&*E5JBl!CVXpz+ThtMLmXa&P<=$SIG z!FFbDOFqcrn-s$0$mQQDt1(gp=B|As|i zYVaO z_OB`b7g^;I2v*7?f24FrDc=uuM=X7w?r0(%?OAs;fj30i=RfTDEFNI;;XF(`boV8s z&>eyOM_b+&2tYq(Hs#4=pg$>eOip*C8Et4a0AA8gTDl`WgEOvCNUa0tj?^Mlp%GgU zr#t!+DRf8bu<4Fez%B#&0Ns(5%hMg{_W^WAfpyZh090%ueFPub!<|clr9Wdu+jFH* z%+!)4-H|3La`{LmDM5-k7{|lujwX<5csutMmb~-XF*-ra4=VUR)EYg7+*x12@Trcj zS|d$(bk6VT6R(F`DVutDMVoiuCcU8}*9@HtuGS0-K-`WGjbfiaJ8KjxC6Kcbeuz9o zVU<5c5d^h*KBFOwlk#eF4`k53#+vV_>+_x@PiXbfIqzAg4 z*07K3q6gabq4Yq}nb`903)Mh7@uf6PNvvi@9eSWQO%K!*LC3hSYI~~k!hvXzYqcB} z8_=+&$8EuQ5d^1%!tuzx3JyqcrE4U4DaTdLRVrl!;93-51ris;&Hv!YZK} z5GB`nd$z5b{Z8Z7Ku_s#I@B}gai(e_!0PeqRS?v-xtO3!Ltz&a{DRi$g|1K?}E9e z({WzV0d!f0MtBH9(tdGC(jNl__Wvl!0vO9_h?WWD5x(ln=)4>Ct@kL-hZ#}@cul%^ zh1B8z?`{JQhnJF>^6zvaCIb+nAF3Eoqc%Cxs&bB20)rT$M6An zL!zOlA8QIGih?b26l^!Ix>GRag%qrS4@9Jb=r?ktOP%Q?T{r!qJL%Hv;3{rKLGT0W zhjPBDZ&IXcyMNN9b!Mv4jl(WtL5!Ul%{<|{n@7$uD$v|9bHP!# zY&G_Y>p0#)kn{)+UBK)9xz|m#6UcTlt0hVXulW!b7l>5|Jqk#LSX@fHl>bMq zOscdUiq%Saj1y4egF%btraOoA3^T)l^8YLH!tCA&zr4~kxUIVdqT>5oF*LWQY_1)c6h9S?N! zG_RfRFFrXG<}X)`IW~28b_#ZrkGt>b{>_H+yG+Fry$psE;J6`?8z{Xj5Dw2Q(IfZ@ z18EqYdyUH%+2P_U8AK^DveJ&N(?>vK4l z_2Xy@N$MggVd*)l!NKZIZVkP276txfdNm=hR~1X$;-RXz+`~}XG(6emnP>&aF83;y z2S4ELDF4QjLv@67{qVs(NkU&j5_)o09ifN_H#$w;$sbD{@jIu_HoE)knPR>(DocyuW5wDmg&)UpWM}+O% zknL8ejY4RlH&93GpwwfmRBPDd_oh9m4x3?%=MRp^Bfn2P*C z>`Mrl!cV9B3r@%bNMWZOOis6rU8{Z!#aHu&6U5!*?Q2{V^)9$|5_@}AZf|p#vC*44 zGx)E0yq%wW+hjXEgvb7xjLRtjJX-Y_>4+Cw!uz<_PT=QI+i41W7zxb=HYq(r;v(yC z#VTwD_ib>XD2a8KE}y?D*oU8P!_vGSRn&#BSQoriD_GP9&#vBbD>$~%t7r@!=Pjzi z6F!`3@PsTZN~=DGxkD>)!pDNe@8+onw@v?OszD+518LPy$id z5W?aKd9ZlG$AU$tRkt?tU@>gxhHSU!j@6KN-4UdDwRM~0)TXas{e$Yr@ z`GkN5^4J(%xIiFxVU4K>lm3bD>8X-osY$<)FK z8y%j^bZxqZ;Vp6f3@uky+fH@LVzhzkIn+9D`_gs$AP3c}m;t1d{psMDmB*EG-k9{B zbc~>aL6XE8@jdasy8w;Z!Ujz^1~$~$1llnlu1dp%@ahrN$^W)7_u6?hhJdd53$CRE zSWg{---U-?X}~^$G9gYHnTcP-Otc?J1fjddKI)O?zHZht z6qEMxJ>YyLgOQoX$I?FDq8&hdn&9oJrhVLfz)lzgrpOP(-tVe?d?+U~{cg%1JB#C* zcF;dU_1IQ@YRa#mg^XJGkb1}C&^x9+S&*-IoT#rIcihlw%dy0=5Fqg;ID3}1PlbG= zQ)SayqjTB-(N1zHK@OX1xaxq9i!2j#LT@dj%s?YL=Q&`ti!|r35m{-D6o_l2Pz?5A zQVMw;Ooh{Ng7i2YXL01jjy)tLgj`@3PukMZ3+{*-+ z_KK?Wv{(0{f%`qL*s*_K4V+Q8zvmdxA|CCuh*ovp7^Fok{GVzOTeIuX+I1Z^unxv8 z|2@aBfhdsNz{fgR)p=vsz!>h}m5U3cjVf&}TEs2wq8@ENT11qIQ~%W6M%mbL3QXcB2jqGYM%i#NF8x%DEib;tudS{JZ|WRTLl|Gf!eY!-U15BUur8t4kf<8AZ3^RSeAg+IC{smYd<|Do5AijQuqwvnRT0M5XjE{F-QT2&Fuq1u#Zot@vAOsfk5b70 zxT1nzs)9=HhEyJ-jo%#;dGMBkL8$*Jvi`d|oXqPZ(cgE4gkJ_lvKg zZ@b3V7;{ti_!^(5Iq6NZQvFUwM;h6TqHcw$s#hORt@PyfZvp7{z)(0 zXd_a#MieYKP606#p6?=pUs&LaR-=avbU`#+C37{_mrzx#zR@YhMX61WnyrpySKb$? znWQ+=39{ySqKOT69AAd@dCNqLfgwGD-@S_N=s?$GkMB)zh}#Hw(a>{$I+(v$eXHxw zK&tEBALWJp5g%avIbHoJ%58SC zuA04Ni+EJ{GyA10{|cwaG5!)V(8b;>F(i_vr7G6VrrVe$O3xhVIMQ)w`|V~F$HpRs zXHJ4O7aos5aKwOGj@Uxb(S^TY`n|Q@18cV*eUJ8Q1XoV94wX+O{c9!ely9j&PnxXi z)A5{9Em#KBQqrW&k^5o%-YCS4XX+G_eSw^i- zIVMrb#q}0Eys~%>$AYO*8IjRO6M->R75+QP%I^)d=!N*LZY3){>DsK&F&(*9Y9yv| zf~JIvSostK@M8IPqp64b7WX6R!ds@jW^)YHftXWTWNj#yIu*{{in+`A;O&cBI1VQ= zC$2Je7j7_nPxa!raii4K?3G&f8%Mh^&?C{N(OER(;=*|$@}~2{QR`Mw<9Vvoys$IXY()9frYF_c@bQUQi-S3>-+>RCLn9tSBcLStuC}YH~qAINoqMQvMx> zxbf~x_;(%R#w%?pnj|O9mNp4JmQyI9MH1t_zzU*NN#PAh4eBUI>4i2!qbkccpXN=i z>ljrzV>4kO*Ad;(epkIrnXxtwyGd-Pf|~AC6}z5I5-*hYRT05J@9a3ODL&tA2N?6& zc0pmXY(sQTiXq3{rC{O6>03qZzL}TCz1=2#UmF}f^pRMk2|ZyY&a92qCxlB|Q@*)i z>cO#n>oD8jTtn9irWV<+F`F^qU#IZ!PiIn}>P58Lc-ijifkdkf_fyS``5gtFyUTqu zzr#PN*K*T06ws$U#8qyHtKcVQ(W4nhu{n*1RA%kS%nD&CJ7j=_31k_8N^&^Kpm@Fc z8YvAD>sEK%>hA06UQQ8Ed6&AWMcKiob+S{?%z)L&P`gB@Q?1d37Xz9xzq)VQZ*WEm z_>0Yx83PW6dqESC%*OxnPXF7L@E;=0==AOgW!$uOX+3%3T{s>(% z-=U-TEplX%P%{294P#_x#$fzlbxGZK@uNN1{AiEP`q0WF{TZApR1)nYx~V6o9LpA5 z$#1Gsb~5r%!k=+y5zd1NuiW|4K7oI{Z_(Dmu{Mk`vSD!rnb}5F=hZgz2%c|+s*JbS zwn4Bw*hH4hA~fld%SUD9EKqhbJQPc|C=C;GA2DMIHm+7!;uw;FMdjKxzIUQ>Ysaykbt$)PIS)K_|E}&HxJc7r6H8=zm$`ylBHBDvHIcJrOaDL zl6o0>=4peN3+>zYu%?wpfF!?mE@9?4`p;~cknpfmMRizRO$dQGr*p7iLuWKxTnJN< zb;%6ZRM)&}4z*2`<;sfhP)OSCnkH@m_-pS(=5zuVShUCJRVVA6pHX#+CQ#ZW3$^g} z3StiJt3E0;sCWbehgF3HlNhxbyJg%3@b>Gw|E8PjHr;3@ELNZDdDH1- zxar1`4BbHmx54zg!K#t>_Q%UJs5e$W&f#T2Ix*RuT{|0~JBGen1%l&L*U;CUX-kb+ zKf!8zn>`F#*5*yFeYJN|ccnL&=Gd_*@N))Sj%7C#x?0PREyb@y`{%X`p7Z%~QIPt% zZrmyvtDl@5x6>P|fWQK!sNM(H+y!=7zz5+liAF-Ul;q$En}#1eO^L<%CALx`JYgys zoT3sp+v6$; z7Aku-x^Net_K1Bj=Tn@M=)zf=*GUVrEFhebV*zbavz$@o4TosonXZ~|O8F+`FFr)7 z87%N%ccjZndv7P#zIF<{ra$)(>BHb{mS}+K$SZhRtX49)nXnzxTD;4eX9E99&D zsg~E7MbejqkoPsYz%Ej4ycC`1QEMpml>iuixo8#i7N!?Qx=5NNJS1QUadMekREhzLfkPD-0?JaJGX8YE0%V*)M-Em; z&h!@_tme+}7aZ*R&t(Biw7%SjN~r}0tM6y>*1Aj7{>m|PxYhOkGl=P;UPFwog8ut` z4?WdOU2l#wP5aLz(>U|r?P#T_#V=KV6>lH|ipmr3PgTb6FXaB++qrc$HK)TXXP2d# z86#GA55j_E%FTEz!HG$?t`;XMQ)@clYV^H7^~w&h=!DeApwI!>)3&Y_TZ4@`no?}a zaXf-cx3bDkz)*HsU3AVl2!f%7ZnoIF%odOr5`0P09mB4BLFW87;`0zDvqu$T;c6=^ zJkNm9@V+BBMhsGwH}vWO{CXMqJpuUj68NROw-Ovo4E%cKgI_WtCnp2H1V>SC+HPF3 z0KWk6Q!m8?GbZ`MF+2x;X~55nc(T}aKk$2rxdHs@V)b|R41UIRUQ`#Hb*ErO8X}?9 zhSwadm@usL2|(;^%dnTkPz}MaIf&|ANB+B<*6FP+suIT_S7qUU2s5K}N^cFe@`_E< z&7>C-=bpe%2=M=N@FND)hXOyX(MJY9t?$PJziu;`4}MJFhXlVw*#jRQ{B~#8wXdzK zp%B1Nm_#&zNATujS#~>Bb{RS>2Yw;4V(;QOnn(CJ$%xF#R9U(wvBBSI6k44 zc$wQ@O@p*xv1)cA7mI3B97eU7HnWQvqN11wGya3%$4J}qBA7oe3&bPnfRI^JVGXsx z1>hpMwhB3d34yR!Zj|fX{A>VoPGXNoYsy|1rgCDULMh7mj{6%PuX>|xAg{Pri~EL- zj(6%yW&xunZ?nxM<%mTNgHTV`Fg^1Xl)Noj`5apW3^I;Q(0_%brIG2K{ zhbXDCw|6+LNvD^PSF270H)7ZBTM|s!%B*7FrH#~SiM?ikVNUZDj@7jrHUnv?C~GAA zHIU?JmmEy8Q5M(BqEKARL>ogpYm_Tzp%Z6zx45=$97Q*5CR_kTtC=X^;)J*Yf=6`W zOi;!DM64F~55Ln#l33aj3fMp*gTZSc7l~!U%>;`g%W-H!I}dkrfp>Qi<3Y&Q-yWHM zJdgku@Bl##Q>Jerzh#fhSBQbOst)$$sWs&*5wrbQcQKo$t-i$3hdR{$r1!x~F{26UL02@FFJn{3XzfMB=}yMBjTA`FU!uX7j7@_x8QT&SM#eTUl(BuQ zQ^xk`?lLx&%$KpL4rFY~)(u=e%h;@^ZYwn$=ZNk~)#I6nj@4Ynui&Wfu|H0<*S6~r zdmTcSWNeyq!qzbXnoNm8dBnVjnB9O>!?4^}%$GQ5+bvjo#sK~ShFyzmQIMP$zF=xp*5 zmCKe>frMu|63gy3OGAh#8%oZi3x>EuN=AJ@pv0^Xh4zz}aqY-kI*D;@441q%b&AQ> z|8I)P)=xR6Q$*IIY;3(`V|dQIF6q>cP&(xtcOrkwN~fG`4C$1K3?!Y}+$o)!o0Cq> z?Lj(K9G)=0&FSkel1^>o^vCy3Iu-BN*G@q*r>4Er+lELQ=$)R7h-HCozPw$R?^*Z<^7LIPmQo~kiIPk{31nct;6!ngjiF$WYFB^BL znXdo;edGEk&8s!lldyG;y{}KPBIfEcpM2-)q7njOcgu*mx_q^qxgV3mHO%ND)sr#j zj^GR5<@Na7>n7v(-BHy=c5ywq?FJ~rYny_ zbjdYazoDDC!Gyc4{yciZSw$$z(IWHU$qox7tT(~;%INgu{7yHLt${NvC4JMAh80}W!aJmmE0H!T862!)k~TgaT^I-NiUyG1BQnO_g-cuI z?ee7Hc#?_Ng*}kyI;o>$5*@L(5V3~K}*~y&b>z6LUy>$N(P^ygrUgj!Z*oB z)>S6i3%8@5>EBQ$flLK4g}E{@#?dRX8Htloi^S$VI9A$ehSSn?YD#+eD_^!8G0alr zFA^FXA#A? z;l{i{oz+89{yDP}mE~`u z?|-wf!jJzMIp!F@gJ3ww>&ApZ^>$W0ol`SiYUJ#&Gb(3XiR5zHthgU<=osN)DZoi< zd3IUvuw^wt3Y>AiASF2_>z z?VX|$e1WJ4&-ZtodonY5p|sEQeE$D@KACgwbD#UXUgw2dmu%IF9WTFEd{*eTYn(jO@m@B7S(Y@;p^~53IRBLvYd6k+ zr4>Aw`rNQyUe@ohe#ofXR1P()?lJAbV@ge607jjF^T*D|9UAm#$+&y$RX|#rJTijEV zKX!6@hm_IeA5R#QW;My6P>FE`r62AgZKba_`(#|7@zrQ6Vtf5 z7j#ION>Z;}G3WdqVouJ_7yWBA_o7B!Ym1okqnhfP3q+tUosZvVogO{L&B>Cq2YEve>Wm(KSOpCYCRygfAk>phskvGa zms(|C)^+j}PF__EhtP!=4xvQ(aESm;H6_N|g_pq#3&Pd3xk`-5l)j?DC{i)eoPl2G zvdyOVm=iZ%`7#8p>hXoeqr}_#i02({Tqfms0M*H|)~DEh>4VQwwqy1p?!AF5tX{AE zyB|hDzUG!<#2mjEP4t>uitzsVlNsbEqm~RCm-h|n43w~Mg1wzgNlc+skw{LJRoF!5 zjpDsq3a*FlW=0&umy8!nkLjIvBNPo>e7t-(9p?qbu78M`zCVT6Z#+9vb7aw>$%9bl z-}MPn;3<-vQT@9ww<~?hmu;H!-v+zz> zNSVf|22*otFq?O0xEjby4d&vsyv+TLhki%w>6zH@uxmvwKt<#D&+7H8%xgYf$fxJH z#N;KU8pl^+zaVz9R@DmX(m2~bwOdz^`zXa);`G~O6P_8#MrsC)K?dsLF?8{gQfs*} z@cZ%PY%tj1_;>1cGBJi56DFYD5>3*=UnHJ8{D|UXh1{I%}q8GUBFe2<{iN^jQhSn$;Pz9*Q2kA82*0iAyjH=uKw>YiBnV>g$C z>(#ls>bqv*fIQHc+c-gv41Sb5(0O0=3iYue5?ayJU8&DRlQHTAX!HD!rz`ahd~&Z%H*K|>f`N&T*-gP*xJ}KTh}CT6{^OzN0WUL@Yubi#$?Q#~A4!yR>T=WYi~0E^ zwd#F8u&x9Kj>g@5tOqVUzS-Rm%*DVhG4D|>Ja0>sKXUUK;f<;gI-upl$A&}kC%6Y- z@D}cN=Vet##o(6k;mw*tLbdOGOqc)M8mA8jlt|LDPx{ZYf}hHGGX3X!iAYCovXQ^> zpU)){y<0M8t1`pSVvnL93uIE{;JI%8#=ycB+bbxB`KHC9!O zCGW_~r+B)C`nN^+7Jnz^ZFYMU$&+a9I4Mh%^u1OXJw!YxZ!Ze4wSf z2UhyW;-`N}InqL;L~6>hSa}obuwEx%-hn8oa^4a+aI1@SlT{i9nkH%~ccW~>Zj^@t zH54;#*2E2L7cU4$Xt07`Gh|xc#_-oQ>muBNKfl%h2!YPoprW#H9^nFQuA!JydOMRo zx^sKmp)u%;8=*o6UgQ4{ocy6f$9>XApRRg_nCZKrj;3$P-c!OmyCoa#h?`Fd(oS-} z@v+TZ(yV*2cU5(Aq=8V7Qw=7F+04Y;n%HXQAq}dEO>bJ@+!9o0D<6gkgy^*&dwV38 zA*vO+uYGRgp~tn)mau>0>mx}|0@&qz8rGfRJHqHLJAJT<{H+Z7(=f@q;5L%_~49dP!=^NnT{%{tq@s_F4UEHffn=aExXOhxGK698|l*ORc0x zp%wpedS2ecD>Z>8=a=|rZ13P?Msd<%qx^rcu&%7IsQ>mO9mvWbfz_TGOv0$NXz6!r zOlEPpi{*vpAvP$#gGdu(#D$E)2@KxG;0+AkCg7F9oB#Hw&(7=kFN%EJ(%s`qx0bJD%(L*D zRxUl#ChKv?x*jJeR})^9i_jLlstn#%yegZ&M0t+wtC^$(cHDyOa|Kz3-HZxyV6GKJ zj}&C3u8&20h{G0IS+2n=3qHJS@dgE1k2h$Ndb~lCG~u--`QxX~&hu~lxVltLep0CR z4iyVNHMK#b!{77EW5@O{IBq$ga^)PuP*piEa^=(`<(z;+i6-L&<&5GrOT+7wcX;`+ zV?o~YLs|Krx)N&d(uO5Df3p9(Z5`dTKjDqgMy>B1|}Bq{5D~BAr+-kEF$Q{BK6kc%q$%27}B7cLV<2!4SA*_zpw#m$TPCC zkRMBnsz0NaZYxL}#n@Q+mIWbQAXHhg;z%^VHIiSr5)6*%jGFx)%A8Fdn?F5Ve}pEA zr7kR*N(qc5Pi>l^p_jV6J(^0aiKpx{|5`ZO4sir5FRH~NWMobe89|_K%mJc~vtd^Y zX40S*9HF>cP&_9kOxNP~75PI|i{Dd=t@3lC9dEQcX0#a)ulx4Du;o;VTN}KVb zp?Isw|B!xY0oH*mQFI`S<88=;USUty(9ImjwG+m6)W^|5=+a>%s@6%(e+yc$4^x+S zMUtmPQ>l7B5%=isl+s3nfbb@*DexYaS1Kals3yWW*lkl5$gj;=*XaVg>}iA2B1$U` zO{9+ov5pZ^f}?rK96LxPaI$+h#vHq`iojx?{2Q-59bQ>8eR-rSv_i8(_|P_H&SHFr z1`hkhm-BcS%tIqYl4hv0CeVF1XnT{l$hJ3mq|px{Z>xw65f5@#g>=Yqi~ih_J1q(k(}6Lc!v~QY0FFO z2{@hqM(kUN&3p9ul&{l}2(36m^CW9$kT2L~ zsukQ3sz|e#7DKhup`eQ7+5hu(JI_)Jedw1yUNnP!KHsif9a2Q=}Wv5ZWz}``g&tD;vnBzl>S`OM>NzaDmeaS@|w#1CBAsQ zG$lFVifS3$zL4R0CQ=wPpABx3R|fu<4t~5lGk25x{41eMN zjt;3_$G0Jt?x#R-b0Md{;O{K`XWUrjg5kCoU_~f^h*-ePq!kGIMDhm?opn`_z+Qsu zQnj8@@GoHB^GCBP+9K{NRC_a#v;@~|!K&yl1EQ%5uqpyr|0{&Ygs~2$CU^4Y+YJl9 zmqyhmgB8XUzd2s0S+v9qiiA=UK|8*DOH~JJixvjS0kmnFb|=|x$uTQpOWAE!^jEIy zYl;JMepZZoM{FfelX)#`KVf6ZUbS#rzzVnaL zhI$jpUw*#MS}2#iDj0xGGBk>pw_)bwS{ek@pnMmxF>jT%6L<4H-hDS;`~!s*`CCjy zE|S056iKwZyIv|!*Z;JY;)*ZFDrhC$MyGSN1s+rHFwQ6*inoLTdW~Y(Mben281t9^ zQ&&@qjiQD~J>W88-qYxYX?=@$&jht%%b#2=P7~6Fg$%8DN9~lX(@>3>JX$8U3GdmM znZCsi2c~Zu3B}lmE7gi(n7+kQx1xFbQfT?l36Fa(p_mmbV<#R!2)_qQv*0t5=Te&R zLkxQ^c^dj%)Mz)7U0yg;@sxmf2V?sCIAE^KP{c#p1+lj1=MfVPnOF!3*PNjnb(I_2 zd2U?>lz;!ust!oHKXDHNEW{=6-F#NKK^Z41CvHrXzaM^BIY&Yj@92KT!Pt4cSG6yE zxQUU=7WP7R8Zif2#pPYUh}1q&k(@E2xH;n6`xPU3A7Kyf9jpl5--NVV2$U+cH-BF+ z#O5~Tp-ybG4&9)s21Z(31IO(X%vqg>lb)q){zAh+{Y3*5^NNuiPu=)x_{!ONa3SH# z!&io{q-#V5FxdN;?9`W-8TfF|8r-nlQ|Zbu)BWYe^@G&1#(=VLOeY+|o@#wmkI;$R#v~)Jme;E6q0|>>fJU`rdU?uPja15p3dg~%XR7YW z!6^(OfRHnnA{w!!a?vC%>y-Z_c04C`EAIkhGkLYl z;H+2dj(a%)s=RSunzNZ^ADTS}Lt-+O@V67CaYjyp?R*|EdGeB=k7G>UDq{D+-d%Rc<;MDco?68%9w&NLOVS(RU~h>Cr!{re|-?bGpxd-J}uNedh@iPHwPI7j7zz;>~UsG$DQV@*LCTb=4IN|Nf#v?W-iL#5nMG@8BgAQ zn);X$+4_>KQ^!S;QN>&AR_DD}5QM<`D>VLA7rTHRF#iQz{KUHo z%*O7Wsx9fcFO^n={5D3yk1rS(_cnu&ZYx}iil}_CVq113f0Hr=)Z>jXxgAluO>bTh z`Uqei48{^#Aw8vJrl>{Mwymyhi;2P%W_T_Om7v1yRmSnh?eYN6+;)d!h7AW9sNGcM9+N<>qSQiN5F~7OS7a3 ztnyseORy$#wj~wGfsf3biDc)u)eufB`LLF$Sn_9W=6p{WFVV^`4hk)ug4o`0zITLf z-+}Q=^f2<3=TUinE{b(hz-PJ5u> zf@H-5gUYsekuI<C?+q`czW^x5wh8!`9%~_Ws?U5&OQJ*lT(BITu@AVz0-Urajp%#eOg+c0KQcnO|OF zH{saK|5IZ3G4ns9??G8mY%~Mqp!tX6-^d5S_J02ezQl?_LUgyYj}}MErXnhscu-sV zXCvO*y-D>clGbz{S)1HoJDtpI5=kWx;wRQ>doF>Izw#g5URw|88U6*U+U4ts6j|>t z{xtK!vF+iSM-cVj_!h{b>gUjHBbcu^;uJBvy>`dgRas>(9j{k&6NE!bhlF*w! z_enhl5@q_$iyR>tnY#0P6WZ)@#MCCCO`CrwNAi6U)39E|6wzH}O&!CS z`F_L|?F@{=@30$Ndg|fy0ZuO^fdVV^JU3B@FndlE3JbVMHHC4JApAenRY_Ik7bw5L9bgk(c%vgi|Cg@;?-Ncuwph-hI}^mY3MYI1?3n zzG9c=#4h1oxr;3?u}9&|Q|yZrdvs3hF}w@-S$T;)0mt~+Q;D6;&yKSX>solvTrI~x z^yA|&oWIyGGOy$3m{vx;XFEDr9)hF0j-P`9$ML8A?*)0yy|o} zq!Q7qTL?2rD*Q6uyVTGNzkQt2oUYRBf0u52{~O_11%o~_)qw-5`LhmfoqB{zxQQP!sVgYSV3eAeJh4Ao>f@^St6WfwL)i zfbH?E6&nx`Jy?=k5H2d z-CnL#%i2(M0g1k_IPAr1k93SA5Q3b;nCNF<%(a2B%?*rM^g+*op|JCn5r)xt*Hkkw zuKpI|ej#6`*L@au-hIZ(QztL67vfBa68mF6BzAQsHlTfqf&B%JpU>NV_n80lYX;dx zFKT!HIxj1(fwzoR{!l6;Cg+sS!vxyp zZ_|0W{HYTnW+m+Z+hZf)GVhQWm96n|6)?F$qz$cwRwQ4-lXRMg+$tX^t-y`hWD%&N zt@ssR1>-;NHNm1gb*`Zf@u6(9Q!$rVuzZVdw9-zptOXlXG@Eut20u6N+sIigMb7A$ zMEq^1o}1SZB5#J2nlN_w5w%xn>3hG|kbS*^`@D`X5&t=3G*7C>Zc3};x1>v!WqrR}AyG%p3z;pKTEmiyXe>^vmjpLq? zbUS=aJA{`TmkWWb!(QPM+u<`8cWe@EHtlaU04OMHs+u-**;6O3P4nKK6QV37?2mYK zWDYHzPwp97Du9U8Afe@dv|ey3fHm!*d8b5wq17i;yTdwxvyUc(^!@-Q5iK2|<-fL0 zIB1>F5-dZ}{M|^GwG3G&BvR3nX#Lwjh?ESZ6YUnv;rNdByQxXMJ%Y}bJlHgD0kW(k zshRn3?gfglSwAKjeOW#P^*5lqbi>P`?b}?_S38xbqnib8@LIHdcc|uHU+8ZBXexYC z*aPIib(amnFm~MK`ZVEHzhK(5B>00)eR2^qVDqY8nwB>2F zccl2x5~4E+xZ$tWn#l)m1y!w)yeUbdOardnom3Vv{V#;6woEsg>%<=w8>0j=jxJ9 zuutnokrvk~D8+vwPQNqxtN$&MjT9%NgkpR+zA@7~6_U zwAs9~^{h88_ILL&VGOLlq`MGljBUGe{s!KrF}8!W7G~0tmwO_sC!(C>hb^IRWF-^; zY}<`4A6G&Fz_v>$vWyjt+F^9j99db?j7rtfmsOStSxE%Y+ASWZ=Y^KU#;ha)Xl=W);$L{{ zj%zc}+MoSXUS9pDNGHbmG&rR+O8~8{6+D2}mZUv^)|LR%^;$1zZGCIAJ?JeBO45Jl z;-1jj&HKc9>UsuOkPNi;I^MXj47B!-y2CQi+O>pbwlyp?YK%0rcDpnfzH%{AS;lfe zYR!>$wUa*@eC3?O>hkW?Gtk=S5S9k4wj=e>h`a!gIXo?VMfl1uT^?QXY7^-tyvL*7 zqfzf^?&v=BK_)@Fj|lwxm}J5eOLI*)OXf?uTv0k1gzI1|6qJ$*1tqX3@I;SDu$9l{ zW%`;#G8JtYMGE1DU3?r*EiJ9)3r(0Vk!BZQ)qI3o#Cm@{#=dU1uPaKYWF--r}u8msU)CA&_O90M|ZfnC1_9YZVUG} z@pbRKr(51b`9uk<>Y29!#2@&#^0gp3dUfQiAn!HALO&%ZZ?aafe?gyF&$g^523fBq zVotRcVAU?*>u~ae%Gz66x}IQFBO?NzYw1i4($V`&I)3xlX|pBUnh2fwmGIT!tHLud z$QvKMsIR)TFhvJMd2LQbj41zsG~|iCDx$cFgnKtc> zPUsX-xIxiSY~Q{Wd@Djs7ID;dm(gs7VAGS7U#2vA&}L}F0!(hyR@9HrQJTYLnK_4CuzjRchY)l4W)?`dr>=XxRcy zR*X!um7MCl;$|kpK+$N`{sY_L6zoN6lQP}t-W>EV9^VscL$Cd@lptutTkj1TYy@H9 zPe!-#0>dtD{oy)@YOZ(`~91`}g%PLF`{l5R1o`o^`edW2n=yzE+ z{jTaG$3E%zwJn)e$f4h*y)riXy-^us&)I9lGHxK;`^eX(=gV6*u2gBVr;r;WyfpwQhR(Dx#d4!^&T2C}SjN+In^J}*rN0_nZ$0Lo{ohkE+=aB-W&t-w7$X1q7)#RA+-CUW2 zFSJzG1oTsnRaTF=t{zgcv!x}g9tsPDP_ytJQ9UZJrXFi@>M@&lXSjOEOFib|m=Nl0 z>XEEfnSyFJuC-6=ifJte-lVd_l zClZ~j78D0b_osN0>8Tn1>L_l3te^Cfq@2!Y=zuOyI1)o+87t?{$jZ4;R?eQRoQI!^ zdaY!kLod)ykG$b6RyUXc+cHI>&S)`6;hc$Uy>R+AZ`Bq8<{_!951Ja zHw~})`^}%to;zA@nd-U`>x_-AqI)kYA2*;P6n~xrxA5St7=&C!L$_^1zTcs4E(71g7J%i$e-;wKx>ONsH`aWeUZ-a(A2{&dTJsc6ZNfnGP`K**ra4!mXz*M z*+w4(+z;|nGMGr8oUx65u+$kx1Kzi^)U2bw4ZNpQfYUt~3~l8295E)Bm&!U?=PFzk zWYx2VOH>ZsoT!|!nG;3<3t!+(`{5COenw&9si9VwnDn*FI~SC26qUg4O*ng7Xb6=i zCL8H2<7h1eI-WD*Xf0<2stt2@W^ur~iWh{_rfc|xrU%}2&KO$yJ=CLbtzAR9q2+fJ z@gdiFi2heANGIMwQ#wLhATuQFqURLe&d<}=h4wz`P7xM7W`@!Sc3~NSG4#KhY9cx|l=34RSx#t#jcoP{ z;rv5m_X3WbOeq1*vBMmcsZSD>ty2yaJef9=z67nSxS38r*=;&~3HnrofoN8h&Z3B_WH>pqklCb(oEcZb ze}Gc;#FSdOH=3L~M%WN;U1HhZ9k1j-ye(9_>f_>x((_Pg1I8ov<$O4uy)b)sda z-5ESFscG^NJ@60gL@)`tY1h%loYyZCumlrrVX-D)n{v-IhzZTPHwO?CJ*Qnv>-Rr$ z+$lG-xGClxWX9c*o`*)#?A25^n1`O2QZo_TA0QcQA_9|PcMLjug}X#+N1sJqWUsK( z>T0c&QEnJCKjy%6{?`zqiS$($JH%WfRgc=D+n%N=nmDuDT;)TYp_<#Q{R=#=AZ0I) zF}Xil_1gX$9V{ugxCK)ImiAml)1?!=@dFgIZ}{8#7XQVl9O!YV z^3iQ{omDR~37Eoxn*`bxd^Azk0tm&HDanFC7kCAAg~W|{&tbQUdUXEcQL&nLfR?zY zBxgFsE+{o|wJZLXLjTGmqx0SjEuJ*zGgotiH+@LYEno?mv$+A9VxTW*j(Y9ag`Tk` zjc^HIvRG4MygHzwr9(Pw~Jjju&5gHB`ZBv;W0ITTk*8XX}RE$p28TQH;rE}mQX&oib8w@c^VgJ#?%qP!G+Rpn! zn;BrqArIj7hHThDt6R#p+=1c(LWxK+$` zqZ%TM_k4?lO-)`#1C) z>F;Y^ChVs)MeibH5V>w^LfO_Hjs8NCJ`y;guD8027c0e@n<9 zoB$@E$b}T+1UB&{cmtdGQFzTJe)oaWypI2*#K$dNfh*l04lQ*O@eJyNbB9I}?C zTTm`(vjs2#qwumbGu|Dq!36w^@;tAPR+60XxaFvD<3R+|kUTcwuUN1%e4t=vj#$9)#1RMY*K+Ayt-(Sx{ z3CJR-tlk_K^d`|&&X2irw)3cd#G!DVI6*nP@ES_MWaWK2cM}GA3nidC-#59Y@!_Z= z|H*#cQcwbd!C)u>^?nsWUgQN>0j`H5$!?fQ}7T1(<s@(u-G62q}RhbpP7*HD$MrPKv&?MyNK=gzRTDw59iB_7(ud>z^1^&DrgN5 zVm1Z;IfvM#IkD&R&JDL?JJ+m*JRA!NtU8Yb?kB zs~EQh(z%V}^gRL^#YV+X4w!d1{;7PRMRmz1w5S?jRtugv@Z<;J;ICtuUhtGa!uCHu z_7JP9F;j%SmK<^gpOinEUig2fu3<^GB|CK4leJo}-y)T_LltjE&V$EnX9s;~@H3&y z$5-&>p)DtQby{vipBO)m=Xryp%>zG&M}LlKJiJHC_{XD_L*5+43Z9(F1t*J^ABmQI z2Yis5i{eR;X}y7md6!HrC8bRK=HtYFoOg$xAp6kLvmlCS<*?NjJ3;F6?jrSXlKPj6 zqREMGM!iYD;9bYN6p4BcoWX+wOrvhJ$$~UX^o+^As3NgeYp~G}!M13@b2XF7_)aVf zje5=AP{p3m*E}6P3C;qnM#NWj` zYXUXyu%BAYzN`OBy~D^qGX#<|!G*|U(B#dl%#53W-WuW%8Z*ZP)=8~im7kcI$0ZOv z`IFlb9#6}mW1U_VQ&mXP4zis5cQQPyf7bh`2HmN5-9s~-#YD>@(jIQOmQku)-XBFS zGu!={akDfS_@|K++6@3~VTSzP9u4xD$6?R%*jPa#vOMq zF?}E#Xu&09uW}B4Y^yi(t@72HUPCMHhZjmlmM3kVWy=Vp#MSH|Y8OCQ01RA9!GeP1 zB1&BAnn}$VZkTXuaDJo_tF9+!y%9VD-a&ZVID+vPUjm}UOeMeDB|osgn-_; zK9biPtC+KlH9(0GB+s@|o8P|zC}FJ3nE%xFH>e$Rivk^>gsPG0wuT!hOoZDH*)M_E z;8_O#fcrnL%uEjL03|}TTCURt2tX#TVJ=%Q`b#41PMTmIY5q#2`GDktN^4g;?dW*^ z0OYo#;||OZ+^I`&{e-k)T!0#IqZ-t2BaE)uF%s;DArN3+coV8iHr_Zd((#pkl32s!nw`W+nI!ZoNJ91R(CKbYvBy(H7m$Ih_!wan`yW;8D`;R^G-^0L ztJABugrup|LdF^rBrVfv$ck!$SXWo+4NC=%%e{8Jdr_|!-s-jXbgvR1_DUT8)!{%^ z)N~n*L){%`kSgSkHvp^nIb6HIDt?TcsGK?6fCoWpCxZl9zO247_>UzwIIM~nVOx;N zs-tzEhptLZO$Ia~TMM>4+#?z zD3+$7`0Bf9{bVmIIWFmvJjiZO+;%FDr~5Iehg0cZ(a;em|N${Ww$3Bkyi0We`J!46nm zfrP6BZ@3b?8OeWWj4MI2ysiXIt_1H`32sqC#}R+Vgg!wJ2%+=(H&lX1{-Uvk7)9hi z9=7fbig3O^;1Wj;lvFmGFNo74#C+(pfLyRLOBM0NbWBIi!m5aB|5vG03 z8J7rGJPeL!M%@8-8*sqMbz-oB?F&Oe2L-0qo~+ZDjbfn^S}qI*43&D^xjaUp*%xtK zU7&j-mls=XP!OYKFERWv|H1OLO*hC4ceoFzoFp!RCTTp&9v?8B)*((vK)Di)9e4TX)!pzz~xP5|I@+5f4Jc^yeU8Qa6h|v9a zmA1-LdD$QykV^9);dM1`ylhJ>`Cw_2f;`RvUl|a72tVORqh$vxl0)Wyj6HSP_Ml(# z-=Wjm$N`KB%~9+TT5;$|ewomV5vJ&Mz}1VH2YmmR1s9bKy}zP-Sl5|XBU8P+3yR_C z6`lYm!PjQK94`N|ZZ2Q)lS2cK%rGwhR2~}De(6Q3o0VwT#TGK$@RsB9HCIBN85T$D zFJS?fKM1e5e72*K82N{%z>q&h0_kJ{1rvce5KiOyk!TQN%zi^9v0uoEUE*TPF*{;x z_wcS1v!7J#eL1nmxY%-n6?+0+WAf*r*#EZ!v~x-**mQgJjnZfDdR|2slE zw0eo#zljH(7N!ND3pQ^QHPIL*8Vd;#hLH=% zy`jLE%Loiza)ZWoh4>jry&Yd+1*^%`1O(I5a^cW*}7T6_LbL?_2&VO)> zz)L7l$%kQRI@TUuXiSW*M);fm(vVarRD-zl5joxwCAYNG}Ud| z^XBVOx5qlP-A)es+R3gPP|ECC({)-?{(4PC&Y7ChoNCi_RfnJ2v!+*)YF167y))^z zrY@&+O)E~-%#yC^&{O-b={{GtxmnrnA*e^)dS|ParGa~9i;_TJ+4ktu$M(++NP5B7 zf}FUt-Uw6ICvtdsY5wwnEH{ZP8Jx-xOGahLt@fUX^s?lP)~>iW{4{9inJ()1EKf5| z8x;4Z^&AtsxcrhCG%arl7Q4{W-%#A-_+OpeEw#z4PYn+;q1YK;6L|(0MWEsG;C~gH z;-pD~gJr4lAtJLTwJ2(>e*G`}Wh8UIS>&ge$P7EWEuD6hs1C1<1K=27i1}H?gn`z3 zw(3)r;(=W(q77E!Bg6VC@!g~vZg|i!xkb!10)1M=rx+dT(La}q%5uwnk1KaEZ`}M^q<6XRvmDx84zo#lY!e6jUyN;jIUoFHl{M4IOpA&^>F473zn&nFR`8E( zas&cN^L}W>=WPOYbGm19IwsMYvOz%7`VcHPtfE@I;uwfw7hS;&xaW12GQdK;m$IcU z$^Rv@=zTJa)|4x9j z7ROLTW-9igoY?Dm7odp9OKh=dh9dH5#a@~dyNP$@E^T>a+^UDZAg2l1pG&%-t1@`PF z1x}3%6ck^$5>!+$ zKVQ1u={`8{h}UA}J3=)wypL{vc|h~hWacw8V|G-%*6|YWvdx=&$UA+GS;GyZ9huCf z<~_+oVN+BN2ggvd1Ty(KNO}D>PGl~PbIps&wc`w&e(1B!GA?u(uj(UXg&A=$8t@Jm zeSU(B8{2g<>^N$)fHg`}b#naoxUH_=V*P3k#cJCNC-YwZ{Es&e{CvpiZ8Q%YhmUnR zuX*67@a5y{_$B48d2c|d_TTX|5BzX<+(F%O2jJ6R$6}&5U7I={ne9cD1|-riREzGe z`i9fW>F#@OA5-58sznL(0o9^lqk3$mBpj_qUnf$Efdh|y zn*Fs?_v<+QIcn*(AYVnFDgbWTEZ~-|1ft<{!RL*ZZAT+*F2F4p1KfhfW!M|K7u=S; zXjO8JYMT^0Gq}I;@*N9)94~tYfV<8Ml7%NL!@G`t8labW4f?Y|uJ^XtX#6rWUO%I; z$wuQor^h|DkI|^G^VKu%vaI%MM&nOD!)R>Dj7HwgBHCvZjUkDbkl8qf;WG0J#BR;R zW)Ib=C?Eyk`2Wo7eh2TtZ!maMPgyO(a+*4(Vt!BZY2w5y;gCE6Cq&>%*njYjksRwUEe%jy?ojh^m?YYk{$3lN7(z=^sjYbr z;m#(bdln+bYiPxE(X`hE0;nw{fr=ssCxMnQqSq}I=t9B;N6Q`uwNylmiij$~2dozIYeaDbLR(|V7hDdHEiBhFSt^3OTN+ED?-V;ilNiQ))K71mF zYk&4eS`&Smr20N&>mGHVCIfW}YD%EFsF%4aETi4)?kC%U+Y{%zvlAvc>`kD1s+N?Lj&3auV+mrcG zn6aG5*lEuuS+CqX`ZyC+^lMC1zuu(+rmZ#S-)ZN+=g6|V%s?pZvA1#j;PKuLBu~c*s z+~|R{ln{e?SzsxO)&d@_ahXd|^BhMkqSY@Fr{B4L;B_Ko2lJ9x-tiL}v!CvpMZ)2R zHLiV@_0fF_o1kK{IN-fj?eoefkCV6eRl4u8qZ%^0jI#E*o$S3%r35mw2EXF+ZUl>Z zk~OpHtx@kWEUK}sHiK%3k-!Tm{$O8t0VVS#Ek-~|9SmgEj^%(p5 z#6T<>KcVBAT#t?hAfncJS?5 z`&NJ!8rTkg1GE7J`{!HEe8m|Y6vpEE zKEM83U@Xodg&eZ%31cC$eB(mM@~^>IJVvD6WO<@67C#%Qa`Z)($H%b<$Z{5+_s%@e z#>8L8u{evb`zFglIb_)b$RZ%ieP{PgmPI*aDM*XnWVx1a)%=~1*53tJ&E~nTg*Ew;H-qVTi96%E<$t{rrT`$B(ts4J<7mW-20PsSjNWwPQs$e zM6rQZaPfy>Q+PeGE8?kt1K9!_eS@&zGZHasDz-o!7^CzCv z4FSOARU0g9kQJmqD2u=RSo#ZvX`}lri~GL^%OdV2s{KFLWUSz|HSdOxSo{XPP}yXy zN4Ysvvz`0bC_>Pp-B=c1BCIcff;A%7`V&U7n2}W!oiTM6<;{aVi=x;53qN9NHMo|Z z$R2AgVVIS9phq)98{J!plbidqXGO^ z+&dKa-t{M00s1555xni2l>Z)B3nS&>OETSFApEb6Zk+n?GE&SrFjB`l& z{?~i9fsyj6ABal+uYg*tzBN$-)b{8Sn<=rd_N0y zy!vVlUB+tEdyi>;72Gt_Z&Mdr9+`V~viC|}QV|Z_pWqe&uJWYsAq2PYT!YCVmyo_L5sLTuVQqh;+nM|b8D)*5zqZ9O06QK-$mQ7__^8w7Y8g*Qj0X|#oqI~Q7=j+k+Va+_*XW} zjm(?c|Ftr$WpV7)sN94bW}zyBPQz5Th&FXAl9e14cETpQ>QBd8Oey^FXTZ!YbILlF z9#Tf$jZieCjCg6R**J!Jad_f!ws*h0(zcdG4)x-~&yxaUBa-}TVRBGK`5#c#pk+c! z3u*R#YS3aeSm|m|PiOV4fx?En8Z_a(OEtK8I5lX^sX+_xZ08=_nZez{gxHpRJT+)+ z%fznm?rj&brRwDPC+l^4<~5aXAq0@3Rw*;+gVT6Y_sd~vxDiro+6UT(TCnKTwi>SYZ2R|CiM>~95 z6#zpPxnl61@Zl|*WJ0y~pT`nabBpjSemjP>yY|rH;W1FfLo0^!8264{oN|!iV-NX% zY#dF5eTx@zq|E@>{CZ#-9)|>C`ENz{9Fw=^MCI@p$1PI? z4S`>#;y^LmW7W&qND=Y!_60++5O2j${F2Io4~3g6?tro-FW(SgRm74hgQ~bG=5?m; zYVyyAq~iJ8IaP@zYb96L;mRl6wR@LV4sE%#az=}cI}_zC7kStI@CZKwskk&XG@-^w z08$YHqyjCa-SPZA9Nfn8-{30c^+&o3Af2W|474JKq?Fz8YS9ReAG)V*>|qGyJ;Zby zzceUk#M{7j1?SG-C6??drEkRVL3!!zWe5na3CcKxU>yg38*>%;DpJfkAq#WrOhoo2F*;> zwC1U5{*UHMAgxMwtKxOhAw3Z%CeTIxrkiAP1DFGpNcC6pebN@8Fg>-|A3+~gdXP0orn+)f*M|qqg$YZ}pWxqqVF!8} z-w_Oj)@z2turj)f{TokX4>`@WN(B4dHh$fhu%qkbf++OB#!@q_t*VvWxcGP^6nUO; zLcm+`%I%5rW&#AMA5I^*dj%%2>n)2fL9bB3|S+`4Gk{Vvd7lo%f+Pg{f^6(l>VN(+2@8I?gc(DztT z@F3=}G(gJpnvJ1WK!(bXglalRX$Sy+@qRqHcq)@vGk0lXc@j@vH6c;<9%FugEWa7^ zkVO9e3hyXaq;YjX2KSsa{7CS#w#nCp-D$rq{6ZP(W@!4O z^bW_=>M#eG6FdC-ME+sRBT?2#|8Gy^cSe#0Cs%k&e|;aRaH~Nf z7Dl1lE@$*6hc&)_6@u&`Tg^GU1qWR-dl>eBIpgci8MxYiCtXRM^95LxK-hcmtyrtO92T4;gR4Ds*=6u(K>!1e&Mn&`Rlf82`?zJeZ9$Pm>Pt#9XEJjsjLP+D)G&{zc)AV_~m39WcuOtOaaO2Tb+P zwt#KGU&!uT96cI)>q)0kD|^;%VGL=S4x{WpS%uR31aL}xc2f$KzKJ=jTX6h;`Jix0 zd~BsPZ-!k>LQBu#A?y2a%|2oTKqWoOkd^&3vS*tj;>iG&Onz+!^HxfMM@wP)Uh1y(j(<+$Dv$4PEanXSOh>NU3f7SGnR!dv;md;`j_M>Y?ofmq{E2g7Npu0L~4>M z$Ou;uJyMW`I3!t(!!BQ`FT)!km8`@Y6l4|Nph?!?4Vq*vUTcznqP*ElyC*^>_`bj`&we;f=aY5oV3XfMkQaG1qUAg#2|{S;78=5C7hHU6 z!h6)2A8L)zm4k-<7VtqV5z%B#i4j80ESv?OhCvmxi8U&wjIEbePCPgzf854PD;FJv zo82zI)`34?nwn_qKq7S|>%h(hAZni3pfBx`99n813Q?<|Uw=S*I< zL33BYkco|3+6?eJTt?Iko@wH-Mz4acgiT z>$->t!&k&>q(gb;tQ%$D1W+cMlonBBagXUC!X`s55trybin@>Hx{nq*XSO*(?yINr z%6SJ* z|L&f4;{Cq!zJa&KdEdo54=-EMEqK4`yo!5;^FALL{Agq_Xp3Eg4-eiw__@Jbt>p)| z3i_gU4?ROJ;d&Jg2J`Io&uZ5soXlH_%6=W$7b=!uKeVok1fQ<#q8{?uGyd=J zOZxPJ&_{=-|0(xVhl5l}d^~tQM6=`0x|K_Ih4Pyz-#L5(}@otp_EhZ%eMy)vp4#W6ZrRbh%%}Z3OCuhl z85h{Q+Lg30k7r-PBks9haqjps=T0h@TM;T6c(Da!a6K>r+{^zy{$Jz&5dX*Ci0D>l zt|wKhxT(9GTer%&tM7L1y=$Di?jGlESnJ$P_sOjwf%SN37TFP+?hd_!*MEc)bu3JD zDQ-piI&qY{g%Yx!vk~AyZd?UK$QsT@*4o*KJLwBRL7rWd zKE%p^f@~#>rh4#?Gx9plv=Q=qs+D`?o{mhiYUqFZUm3Cv6hyDAPgpysV8;#pB%#`8 zC-Lg6?j-aoNJ3TbIF%%Fie1uO>G785G z;Ok3?eM3&{F}&lXK(XZ|_5_@}mG*ZPdtOfL$-FZv%mL&!1Na%lrtfE^3j#hV^>19H z@4ecoN;_3&j+dIwlV8RM+pUqfP>fY?(#BR+Jw(Tkz-|^b(B{Xkiy%bjN22E@mc7DF zS^+COBrP`$-=sA#BL6kd*-|*Sm4$8&!o=&OY`H+7mOMOTyXJ~y;U+DGk@Cl6Ew7Co zYvke3WqTrkV-Z_7b&r1Emd7xH_X?1qt_z(!`h8m_2P4|Q=8&zDZ!>$_#~&T%Vuwx{ zXOZR=qU7{`W{tGdmhfRj(3=_idGkINuPof;7Rf7EBxih&rR*w}vcl)%UZEvbkxbn~ z(mlU%t7ISFWLC+KMJtDHa?9kUERz5e$IGrD?csZ{!Lu@HL>_C7)*NGrd;sd~&{9vM zijC6-HO@XndGp3Jr*B%0_pT=0fKfjIu%J90EFr5;))*xSnJh zxW-C=K}RHi>4zO~%@%oG3ASfJ=M)CeIp3rN&jippJ7Vb)RD8HFoWC_}Efvns2-yEc z_%F!~>!C?IePQ=|WrsET(4@DU8%Iz5|nk zUk)KPM@Gi()BZvM$#qRQh=8=Kt?>RJk@JdYNsJwomInu6)2J;~F9@5p3he{JW~IeG z4unlb`MBRiy!L(|Y&b3B?9JrZklWt{VRP!knpMf>$E^F=7&fn(M7bUs2p`)XDStb( z;v^!%BUL1=Wnh&sXwh*(#}0;ayz(nWzfNOd+D?Y;d}zh5^oqMK03QtyZ0a0<%>n_~ zY;gEBscNRfc-c1mfLbhBa|5 zOKEL&x(4iCZ8x&fs^+b0=S^hnYm$sdl8b&;fLOe2;!g$JGpVD^ZThqo)Z}M7yGf4| zTH)Q&#deU*+oXqFBsOo8);TX5y-7dC%kJ)Zyx()7?D-~DyHI`hP3P5T*EsKAB7+}u zd%lXnFNFuc$-Zy%U>ej)X#2j^Onwx@N=}!a-LNCQ?VDe$CGh}~eP*CLwCIIBdB4}k zzOR!CYu_igd*AnP?!NDl?tR}QS~XbRI77Z>Z?HD8_X8KGOW$krmyUeOaEol4zeh3) zn`IO}{3LkzKMjt0=A9X@d{}Fn&N#{zPv@MYnAPXKOFfrZMRN69q|Qg#A829g;{#i9 zGwUWve@{yrGj_b}Qj)$xN$*tBDwFO1ngr*>z2_`$yP#24s5ECT=DVN0UmVVay)i~=~a{_gbXVW*!oYZV{>gJlWdZ9V%s?AB;Os(XJ+S%t! zM*bcD&ED^1hEeam-$Ylvb}$WXJJDUqc7OA`BeioIc>U8kd%r4stXoLgcsuMnJT_L4 z3J+&oXzyyJS<2(tm+^>u?$yp6|7qt=I$y5#ewSLn3GV%rs`h?Eom*Gz+||RKdvA$z z*OfYV!zkx&8ZB3QKPfWOEGoI%`$ek#U8lm29@`rBUew+%T5c0ZXvJgjB)}?nF_RrT z$Xc?u<7FoL%u#8_YlJc}bX-J~9z6V*fBb7a{7{-J+%S{|hlkht(vyc*Sir-t#A`hK zdGDZlHk>chtTRUF`c$h;s!m?&wg$&|__vDT%1d)%ujSq6Tx@xXt%dGd@$lOfdvs3h zdfo**yu8HLQfEB;Dq{D+!;jPVsQoH78a;BDm2v#9@j;r0hew_>>CiUE!#78PGV8&^ zn+&V4&dp{pPd5#(({vV=MC*iD_<}me!Z&BL@NjH9IC1Od;h*ls!#}MVg$rH8!*|bk zZ!_bi8F}{!jJ(A(M*iu{d{?K<0>Z9DWdZY@>66SG5w9Fx=O(;1BvQ;uS28ONg_R#_ zi6QTDtbDhK%)W3lUav2D%y>jCtaDRdOT6qd62C}^wF$?Wk_(~f zV0jkG5m&=*8bnay`lG^oVS~PmzDlDU<-xr)NN~il&qg?7t}|FP0+b`xA}mK=ayMqk zst@fBqSlJ8fDnec?;=fRt0F>KmB*MT85+jidj32j0EAjn@lf%xFuk0{-lg}mxevF53*|W(Z zC3uqK&(!av;rv!42cBxqkdw_B_E8+ZY3BcN{`LJa5=499epDLnf0o0*JVhyM2IoR7 zPq^%H8Z}&Yn8WZQS~6UA%p3NnR%PBCDSJFp_Ux48&JoB*5e1B+7$5AyWMw&Rwo~C)t&ts1ZFqr? zvDTUvp2qIYhH=WYKG?QRw-}Z@46{Zn#~Uqd@WRugfF~KGQh=qzF*V^ZRlYg*3PXZ{ zo~LgRpWwg`ciFo-r9faij$eJ3gHuXcE;U`;buxj-p{1`tZ%I=-ahfllUD$;pe)Rel z(IUr0jwp6UH~-~)DR`lPRMXxS-SaL}%35WZTrCRVlt@HNVOE(_w+08S6g38FS?4uT zu&MaDD(K0m_r?V^4}JeWMmd^Z>u6H5v`^8v$b<)>kpykicS_0Fs-{?K_?U$ELTE$< zUyNAF7m#I5Ga4Nqozit(=#(jw@zpFNl!qGaG4w1!j-GW|rDxr*t>;eM=#s6vnN+$P z|8q%d;@;@yKj$aPp9|G|keA9Xc5EvaWFxwQtfIWE+TYQkj5&UxWR&^h%DcZ`$R&~S zbnzvvM)p4!0sh$7^=Sn4!yl=1&qtIkQQ8A^cSh2ix zS>?3%1vvC<*Ja+c;az&t1OA+-5*vVI0yKTBeDD!W62pWVRSO%bL)@7 zrfn|<3#)JKe*~TMw9#}V z56v)^+=uSJvveez%Rj`t$7^h`=7qlZuk=)7QD(gz`-K1UzbjTJjB1AtN14K&dn~Ky z**1SqxuUP9G~tG)Ok__5^ym*c$V{12ffrl_>a7C$^`9#W%&vNBChsFE72q;#V+C~y zXr?CqZ#si&?C!3{3{|7kGO)C$#v&3o^Pz1?8|+-mWuw2`F7pem_%bC32B@a5d~sgvP(d@DVLi4KZ;Q;Xu>^kT}WP|F#$9lZWKKco1^9znf~;r(jp zwy(mE0&%1gT9er9)$t-z_lecu%&Z!m+33?9)Zol?4bDv0;LLOl&P>k4|s=CbxUW* z3TUyPekdjBa6>%k2bS_){Xp0h71TjnH3<*t`>%3tbm(Cn*<_|!(>Wa5gAOJxgI%YSS?@hv{;tM}4jiBa%ar`Wid_DdP zc!~E}bH!Zm z17G4Ru{?o2nz zY^F9>G6d{2ht?TM_gQfEHV^zFAFJ#zF|@%no~Z1X%^C8~IL!km^Q-8DN8IaAI_J~Q z8Hdxcj105$F|$<5NzG_E`P;g4Y99D!9@Io6`YPV$fxG!tF3kg5@wv7?`)Rzy*yx;x zowE(6qnP}V0sL@}6q2RXzL;;_@)erb4SaP&)@cLxPy)u(xd^paRNu2f&vxsep$NpQ zJ4ho9c!p(%13UvNhJ%G@`N67#Xt0NBY96PNn+v|@;-XHxyQ;I}CISKa_&st7RHvCI zidY>%x%z{nINRFAD#4@OgIoZ1Z0RaFHGj(-~U+7v6G}AbR9wJA?BZjygD@SWr}v9KIyt z4X;M|813Gw&Wlq8cXs1jT@ad6a3`0^-deEIOmNEg7`|0s!Ev?y)2+vjU63sBrg#O* zIFliawr?U3J!hy-YHV(MjKZ^>#k?m)=TF7F9dWMuOBIGMOpg1)MahX@(2Y~xxb};@ zMeT6f+Y;q3SM9qrRrpnnghc8Km|wgRy8UY;jAA;H@y*;2IK``2cBJD=gh}{xBdcgX z^JORcc;SWuH($=}W4=__`D8@jFT`7|Dg5zQm@m8dGQBjTwaB{w%Sv8iFT*h`t2@yv zaMlFrB`MG5QUkq0T&X$qM&k54hn9SdIWz^Z2t%}EJT6tb;!(>aO^)Oza@0t~E0R>> z;1yZo3#@fkoXs$fRn}?nl9<%iKpUcUpmK-l)}SP8851R2B959#OVq5_{=-vFh@zFS z|MJ9<09w@=p4Gf>Wz+VC-Q?>`Zoq64l$9L?p_!xQeZ?Aba!^(q@G&av2pA|UdejX^ zhz2;TNa(Uwhh>Fz7N%LP^KK>=rQu)Xjn3=1lx$#Z)l#v;+f<{_($6c*dqwD)xtb6v zLADyh*^|3bHuXvcfdy4s9fuyH2WTRgaAnSWVDppG@EKOH+E*QsN&umIRp~Ngq8-$CXk0FPs|G|;*MU045jAgg-StgR>Sv#R zet&$_sTdG~HP35wcEe4@z_~iuv7Inl_N9I%q9&V&7CB?lh0F=o#_8=kjjJ$Yk(q4p zJ}AcR!ap8|m+TnMv=Mzot(k_GlBTh=1}Yd&q~(^BQhe!(T? z;~1vYS;Te&COzHO+oyF=(n5l!6p!W|XS)6M=~{yWOsUq6^Ju|-`fMc$hZ~v#17GI* zo=sD)HNZ7Z6W;0Sv+uVbr_aWdcgMdRrS1+>>N{JRY1VH$b}X=eUx_L*8U=tILjp06 zOXAi^zJy?Jx|)I21Se5>6AA~f@gzYEPPKEEIcKGFR^ec5_DH<)ilJuL4OAyd$u7;D zdzYD$s()L7c6ByF#i)H;x1K;W04DI1sJw1?tn#XoMCIaQSf2INlMb58n`&3{g?QaU za_@STHP1re4~Mkq9W;&7rgb zr8ViLUz1+$ZER^xS}+M7VhotZh;P)Ws8M$`Dr!uyjmh`_ui5)NHjpRDef;=wX78EV zGqWBuvu4ejH6wB1BksN{@rgR(KD01$K)i@t9kC4D04<8AyGHGA)c~c!Kg@(0*`F9U zS3Nf1G4(d^&y_EtYi(9KF)0uJ%8+&*v%&2$9`Rut0y*NIeBcn=)|VojZXI!dXaP!q zHVUA?S4fgkndmhpd2)y05ges?fdB;Vx~ZV0-5(tA#4jd1oeG{*Oj%BN825PvPdXm= zP%m-Y3xFpPUs4nyejsQd%^E8Bh?pD%GE{hRd!A9x23gsAlI7FZ8sq?{wdBM7&A|mvIpx6DZacSkQGzcTkFtqL;C+U^j^UmVJ(-z*Um+*2;csdNErX zt?XUlEuIp*I1kmbQnNe@- zr+>zu`!r|Gv_k$mPvv8)QcmS>ms9yT{;5vo!wCO}uot{Z&Vgd1acRF#--=U+PiwhS z?@brMZio%A@2Ywpcb`wjKGuR~<+7>=c@R7I{l##hEUc!%b_8DLZvP0mXUF93K$^8Y;v;f*BB<1m zdogo+Be^m8m$Hk(T?f0~RY)GU>z$f>A$F&BE=|SJWjG(Ghw?RRFRb!b6FFE=aMCsZ z&(i5OH-iP5Bt_WBI&VwY6a}g3)U80RS86qK_9u1G^b-?4oj|?|;`Gikt8b z*+bs|nB(+Nzw}VQ>Y-ieCeB%uaaIov;jxr`ZuZmYMa7X`gdWz9G^>a55itV@q=z2( z5V;q{5Cem4nIQ2p~uQ{h$^9rSzi z*g+%SsW(!lGebX(?w~)5bWm(Xb7LFC#;MYD&Gj@kwq@=luR}FwoF2fG#U6^T1#boG zSloi(G_8yM3O)2|SVHUG9`?|y0xqojHt}uoYtU;I$Q&H3jOn4hz6@O2ln5o8NSjeT zl+J9P_ec-LX7D(ZDAaV3N%VKj9qyrRc>7<{L#;^^z(#uLpYx-EU4=Jm5``a$|E^us zm;3P{yXYY%(HqbiJl#uF7d6pOoL!W0)5*x#dd1@ocB5ZDj&8Ih(v6Tdf;6j(@)0p{ z`>ZZ{&HKn*9g{l&X_grqACWr=K_k2W7n!>*k{dgsm8y?2Fh7Olar2k$|6P3)z()G$Z|TA;3~VdjtUij{T>ty_(Syg@M;oP&u26k6g;ves0UybY zUDhhqM;VykNAkFR^xV_AQkS)PZ57;Z)o(@LgcgIH_8>ZK-z8S3-Dq`MQC9r(P0^ip z1T&tsaEq3FbB;#xWwA#m`MPUsP;adC%TnxqyNfnHQILEKo6{o0$3U`jaWo|3i3mAI zF#NFY2^xN)!LW$qH)^=I0!6mpXrQk#chfRZ1R7~&!KdNcYVe`D@r!!t$3CJ*JAyig>FuT?H}YDD8zlPOz>`0QpunxuBkJMne6=IBt!+?xz2XXb4&PmJWo6*pMSiSG5+5 z3oGmdNLW1HeO(8Pt|HwDIt!*i|CfXS2`LCp+bP-g?E~*eeP&t0(|Y^<>XB_A%&EkPWLy32?18-po_q zLWg}a(gjg&1L8p^u4DO#m}UffSp49dC|)V?o&qde>f6vy>1_*{h#fF4=zBks0>)jm z$Ar1C(WK!4E~y?XFus}yrP(09@$4J))P`IE;(W&K zBiM@oB1=)f50_NX<}m}OG@j95I}3Yp6ogY79@uwcl0rl$BCv5nr6>5!XZ(eS`|y1i zEZOJ!3%Bn4 zWwQSO#dAI|40~+029}CM1Bz(p8!j+M0IhIH0$2d55IcK}7h?@%Ws{+J z1MxZd23t3wTpw^9{!s$f6`Ap~e2TZ1ee2+YzI=TN7Ka&zn1VB8f5?CceG z3!iwN{BlVgUT8ow&bo02_}bIGQ%!gY5GS1z9^+)w1cDpa+ZaX3oL~s!zgh_}vhE=+w7^h;LSyG-G?+!Ztvn9x#HmMrWEDF@L=Ek zKI8{RVDlNu9a;Pi+Au5~KiZA4Pv0ES-=w%u3M3`En?5b>F^8ZJ$iQYU2NeLwAqShT z9-c=>3TDOJ5X=M~^Gtc%UH1&uWqz3KDz_^b2ReWrb6N!i4BVqj#2U&55o(L?LT!Oc zelDL3@uI3;jGr>H;(Ly)&?F4_gZU$<1lk3q*+;$Dtqvu?I6=0T@E)2n?5=Cc073Qb zg~944N374yRpnAIhhx8TVWKW+4sIM&1I3UUC`R}Ot4IXI5qd-tKhf_^K>#2U-hj4$E}3dQCF0x%oNN5oXs^nrjg6H zJ}AfDq|aHMCbraMRVp{DJ>99!QrYvEWZs5y_@TA?6WJY`hVMPyGw>ls?;=#|9M2eM zwW1@>ul!g=M{#?0P(cSc)NPxX`KWc)vM@~Jk>og@&rZTk^Bb$)TK%u<4o1VXz zD3)WfzKSNE3g>}tYnI0}Zq4ye_>8-FcpQh8J;u$6S_ZCjkm=MAsS2LLQPI8^Yqz+9 zzJs^|5fyZkdT!r#cqR`RzoR%1Fm9(D;OiZNfY3x40JA=v-{O++5qyrL1F!KLycV(b z!P$>kuNq$UeGmz1-x$Fy6@(CcAc2BcO|@uJK69>%lcbfy1YTdAgE!9xH4BTUA~@@| zrgvB#8XMVIbR{+c$4rPD_6vEFnHZi(V6t;<(!9OiJ2_Y14WmZu*!f&z$)wD=hJR8b z&I92rAoz{-aJT74$OXkM4_}Ak^!imuk}J?qye^gK>)3g*=|vjx%DcMB>A(nv%etRm z1T55U?nFa91}?h^vS7@l_{DroHdpq0;1+I)`Slr?_Jgd#uP;eU@CR2iE1zL;z9bEX z-`=!T-b0k0|J-T}2}{y4`IEyao<8B=OKHcF)*;)r6MS51c^ z0{RPD#bfF#A(xym(=yahg(8=2>g3lj;RcZXEB_q;sVhrx)LXz_J%9k|g9xUhs~~+y zVnRv$Fk=W_KX93Y*n(nn8~u?bY5IF+`wE<64EIZWf=pB0yYv9NcfK`2239yHNTzdw z1aHxun7RA`OpfqC0}mQytt1YPerOe23E5nuWmX5WW<6a0xI3^FT?BL7>G1rDy?Ho{ zh@J-^KWCwBTm1Tv+{@^0`ZlFhNN0+B%E8^}F(ndMzVyW(8zAJMiFjNafaCb=6!*u$ zgtaiZ+iIvIK{;>|nGxR44Vj61a(*-zd>9nLi(^tSMd=Wj^jh5kyf^jEVL)Q0m0na|a7UL})Uxc;S; z?JLY^Ij@u{{Hg>G3p47@b(gM+`JX1^{EV^m5}~wi+(~Zj1Nz zzA@RK@sZz!*V%asgR}n;FlJ-g-@H(t{TL1o1#+KS{4_>LmSmv?d`~P0b}%)vC>Ym5 zvf9Xzr%?BQIAVVH(-*?>nY~*HFq3axQfO3vnB=M556NKg^N zus|>F8^ONm+3|gROyHxpFNx17>N%Cq>FPOC$qbJze#ir->}MS8g{aVHiwcOMywaM_ z=HXPBYG|Qe{9yvlUBHw2>`!Qu6eHxWBwM&|O9UTcXd|omb;uc#YK?`;wW{U35BMM@ zFney*oEUJ00Fz&T1u`1!)gZSm1v-4Vu@x7+VVWLBEx7y5Vn+0WE{S;B z=E7iN1C#*j4vP^oud%WdL7_3@5)>+L;!vvlVo(Q5!D-ox6@wV^z;Mc|P8iHXQ z1VC=#Ywo2eZadtxsKyo=i!Mok0l@%d&A<6|Z$Ik8EsSt6?hmF-#gT>{c0uzSXUgP_ z6F*6qz=;j_Z6APGSSJ!EHi?v6XdTT|ZWbMs(l-up22cW(9LvS1)y}aT{)S|3SRLXU z*6|30sBqV(5{8%nBUJU)g~0ro2${nivqlYr)73CoiDu#`h&2p;^={`d$aIWQ9H8l3 zQ6#8_`!N)%K~UqQ@Hoek1xDRvN-q#!KbqS#y-$oJ??jTaj$D+=5#SwYnC54!y^I3} zox{&}|8ebQ95m*;)?UWJ0^A9k16inlK#T1rc-rYj_qsLyXILu0*8bteZ@_esR|C9b z7c{C6xKtVd9gO5AkLxi#na<+z&Ej_<1V1#ot!U^{n&NUYX3sz;ZNsCx@&BF2CWBv< zB+Z2x^bYJruI&rTX51}Hv-cL1Ex9`$h7@PTzsD8L01QkfnDP>!4g(EF@Fp$RTh)>4)#*sU{E@!Z2w`uQ1++okO7F zc1kGZ=mO*0iGHX$;V=lG1#f~VO5xJ0zqs$ktmh#dLyFEvp>E%cS{WSW-&IACIyhS` zvmga?2-XKcoI!ksvLWVj20|9moMC8}ObjC);xJ^jA)*mZ#N}fJqRj2kU?Iv2 z=UbApnj(5w4mKt3O)pkW_#A$3BBF0PlZ^{JW0l2a3L z3VtL?@`XsZK}o*YYoX*DY(Y6;$#-2dYQva?U+`WzY69P8A`rRvOc>XSuh`#wmYo{{ za4<+g++&=ItF0t7PaX8Tbau zz&9L91{S{3MQ-9k6YT)9WtLP&GttL5;ag|h@y4ms{N$Tq8JO*ik%37m$iO6Sv<$o; zS_WQ6q{PU;{K}Sr<x*hC$c3_OfSU~@#EUmb_uhwh(%z>2MPbYEw6f8WoY-Jj`72Hr?VoaWEgM#;d$2agbkW#BI#vkd%m zj4|jYUBXALN$3>l8z~Zq`#|;wq~V$-kZu4NRWdL;ge?PqOc|Ix4&5~YUz)WElz~Gc z1G9TT2L2ob9Ib348}6@ohHSskXuLFpE{xf1Ey02Md!hS}jhFT#jv8is2SNB!3cAcX z#Ax`3C^XhyN}<;uoOZb{<2~O#SmcQ(6i5UMGa4`DY$oM!CMz`jXq+A#l)@S>rRZCj zvEfpVM+;qzmvWW^Sfxnz1rrUfH}D9MOBld5M1od+4l!AiKzcu92Lcu-tL_#tSuU42 zfM37s07PcU%a_H<%bTE~3gkYt80V#}!lhQ!!5Sew6QP*+h(B9;W(}6~%)tuM^T#9R zMW;oi=Nx2E((}ib^!)p?DLoe<{=`eq!)%^N&ul29=Z_&h_u103uu$$wGL-wa$4Pce zi73)DQ*F^qu^IF&U^C#AJO;7vh{WdGM~TfA^IBXh7bq*Pb;`^ZtpobgVd*&$((~&y zW^MY`SsXR#xWdOLC6KB$%lu$5#phStK6e4Mc;ABf{5N;w`OK!{S`sY-duf*VJOuH1 zP;>Q0iO-Ka#pmag_&fmd`56(P2Pi&2BjWP_#ph>4d>)|q{0zkBP0$bygvDoAiN=c0 zy%eA2fU_k&C*!V=_y-|AZ-V&D-9QnaGsEI@$|pvP&+l`18(VxP-6#u0NM&&_@J^RA z4)K{DYA}%IFhyTYzatn(>4nCUqj;DH36)IHunbhb4n~ilUNwTY%LrO& zji9GBI!92ZTLM%E9z}fi{ZYhc4nq;~c|L|2iqGJ>jiW_U-0h`N^WK0Yc<+R9^B0rZ zwp~8`qxsf=gFP^c&yANV@mUQlwEeZDX9&-K65-hc;kgriIv&0&aZ47I>kyuI*~N@1 z!Vt~YTq9X`Jv~oPR!1Tqg`RuN{()vvcn+3;NN8z9c>eJj+{DJe92*VsCEnyfUG^K1M z6H^ronHYP?k3cTQg_r#hxhW_^2q%mCdUv|C-d9~n3F#lyzB+`y4#_u2$?gm>*I4h8>na+KpHDX)*8S545n;4iSuQA6u>?- zZhnH*0u7uW!zNK+Ab{=ym#-Py;B6>yeG~omv+2UiY!Im0f-eJ5E7&MpHk);Gk#gWHzJ0+n`)84qyGbbsh-p8y)0c1!B-Ux^&b?$ zoFaJ<=z|SM{G!Q8Y}vXF@Rq)j5`-mySSt(I0=VmLbpvo~d)i%hs=RFudDeq`oNi>r z5Dac+v*E;7f>-cFK?OQ#avIzUbBCIulh;V%HitJYL6p)#H2^?Uo#YR0?3AI-8WQO`!_3M$;e zB9N*F^>Hy>#D;|Xb9WnR_jEU)2LlQU5CkE5|A=wt6CE&z#A7CRYVQ0G><+iH-QjaT zBS^zy8!@eXL~hDTp`ReP|6%0rh{;Xy3dm+|J|Z^-6!8M`Psr^r+bHN!rT28ox2;9U z0>di?<_Pz`yJE`ZoS3M}spF2b+Q}^(pe*_EZ6SEe2$XW}%2`aH9 z?gup2jkOl)2O>cJ5HfkXO=~otQ|BDbnXcAC_x9t_to?V83g@t8KY(Bn1_hMS@)-_V zN3k6c&_Co>Ikpd)M$i+m7K%fO7_^|fyBc-yLg8S7M6Dh{?LPS5(r;<77C$p~YsM{I z8ZMAGga5byefpLTtaknizDJ?rLK&_xuwhS{@gd0O!j<4|?GMRU)9a!N0je=q5 z|7UWJp#Fa*hkfY(XJ#_O)iQG!gNvpYwDbOBUKk9<{V^75v%eE?y|_THJ|jV^eGnSi z{>9y>ryVDq0>BACP{oDSQXZtMqvF$<7ouapRx8d0_`_uPgxjTln{@rJ@3;p zyi@YA$h$);n+EMMFT_)>U|lkkXvXa4e0uf!*ku2)X)VACI@IdxmQbPY-92Ki`RIZ; zakX5#k+ag|TPv}?+?`Z=OD7fzOR34JFG0LodFi-ZFa&WOqW80OXczx1pWxr_Z11yB zr+A-Dk;ha%rpsd{FqV+}%;K%N1)VpYX5q$6(Q99_0q7Ijj+*M6X&u2@{D?~ma+C6c5iM? zptG($hh1EAtv!cb9PG%&RT1hw+}6Z_a6!&Our-kcavbm0#CI_@jlVT9?d}D*jwxQ2 zSkKDV#IC5-)zNQFB$1xMjS1}EVJ8|Xc(cf!uM#u~>T?i)`d02#yqSBk7#xrKgNph? zLjAZpWx#fCwUhcxx2SL8QC3&)iswDt*|3q~hP%n&s>+hJor@@n#_pyM_MmNs=;kbe z-6^RnO?=r(nc@#V=+y@Uxi7h!JowNO#f=NxY@L$VVoiyL6fBhx3O(J40t-3_rBJ~X zPEsSqf}#qK0>#CE0)tg0B{Thy_xW&{G3+VX95=NCn1-1gWtq}3y-qmfQF_uR3 z)dSG2umUsDCHMJAW%hkO+`zyr*GW+p;*Ih#iXou^5m1gbOCX*cpoVFeT)VG*5O!_Q zOSHj)Q4S4Vltx^CQ5GPluY~wtiZ5-N_lcVw$rcnxJjmUF z+~N@NZyS)iJSKN1(&PY1jQhkSE>~7EcV$fO5OQC{CInmgh_b19E9O$@hs<3SlY0PZ z;#4Ilx5FVfH#w@A+r!*7F}b-Jg2PKJn~%tCA`th9XE1j|OzvT%SqmpVBKHUaSvbA6 ze$>LLS-usMQ!JdgU1mOjT;r~67C(JK+^(4)pxoNc*fxL>1138zB(dAX&W|+$1!!(i z!90s>6JGApA}fhMDSo{;E%k6KTl0#)jvU-|C0vLiBM5OeQk$`kXhNhqsNGz64%ca`Fcti8J)*ezRZyOI!s zL%;c^u!I{0= z0rekuqAHrl{U;tgS4aQBKF(?YsOd^$1{nV9=uQ z{djtljwHN~7g--7gJl+h=KhXUy*UItJ>Z=wjPOWfLjK=jA)s$b#P zubVKbne59QbT^8<1*R<5Hh)G4_XffF2JT7q!|MWtRLz+2m``8w7}WCc*)Xv9U7T=+ z-fR;)*^+6v*&!az9?tUiVkdw`(J-7rsiDQMzjcN?J-#PcASL zdl%^b(1`c~dvNi)yB_S(H932wp^9Nc-KzAorV z@aK-W8{d}q5&Hh?1rVnJh=2WLxbck0X-QPTVb^C72ki`E#H6Fe6N}JUB++c zuYY?IgW~O}3>IzAgcZqI-tDyEI?KPE=38eKZ>QzfS&O#k%!B2|HvIUvCE>StTPl7R zZG%BqZ$bd;$^Uq3=3Jm)JAP0seo-oZQRrbld^o_V>dMDqA8W*KDb(X}Z6)^P`ru)3 z4k9s!Cb)xdW1b3PI1!m?hc?`JKum9D;MNU7E zr^FAZaB(h@$k$nq?|L0Bw=moeZ)WDmp~ohwAfaEk4?X@G7#V$3aPeidsF$z&#;DVH zAD|Wp_$Tr-p8Jj)QOPbHKgWjdk3jy6?N}>8mV4IcdekAy)d1|U<5NIN5zm(8WIu}T zPa(@a>aN{`9$@8&$bd+JEcYyu=;)6oCQUE&skT;s)vvR5xc5P!T&>aD4~4|rF=#JwD@XwLNf^nKWBFCmnafg;;P0F!mtQ`B04Lb`MLyl#%4STd4 z`;fbKK`)yaWR7T7dk9U;LXyR5&paTk_A+{=*gCC463@Xe{j6}-y@G4&417us+)1{m z3}Miu0$@r+^j>NK^O z?dw8B7oTW0XbrrPm-dn%>xb^zBmqrw^u>3o@3tTXpnVu3JTg0kn<#EE4!w$i?PvA% z*r$uezQ);2ts=zSD8fN(30Dz}wwoBizQze``Ub&1b40L@6f|)vk}T~1<$l3_Z#OdY z%CqJC3Z6oUeW#a@UwsAGU#v2OL6asN8v7P#FGgcubA4cA-vZ5v{bNI?_d|4SJAcdZlbx34Ad?{qiagsROh!dR9QrD@r~{*@|27&NKi z(Af9q3TUrKW8df6V`JX}&58YJ&?4CPc}(hs&RJz1<)@Bi8pMr1mI4u2OD0HuGVqwg+k*%a9`QiQo0$9eH1zXLTWQo;a%^E ztdRKE8^g7pINY@j@Orw36xrIx z;4a2pPLQBfz+(-$>-NS&pyc8{)Y!?TvhoFb%)YAM~bap6(RUl?9A11@tG4>_3)M`xj3d!ieBntZ){kY33v}qGv=_`Lok- zHOb4rhi!%Nb@~Yeirou0c?7lClc3x6G^*LKdr)2K*Q?X=1Ns{teRI!#>vJyIDW!qy ziqnetRV%)kiS*Au^ld|I4VN+Z-#^G8U-J((y!p+KKmkh^CotWr>PPom_L zHU*Fe`h-f)w>{T-7CrdA<_GPIhOGT9g%8g+uDV)Vwwu~6Uj2%TjGxkUUi50r^yv?2 zSZD)XFS6Ql{R5!HufKrTU^UjH_qz_($u+02x0Z2t*z#85JuD-go8bl1? zVj=U6fizybTmK;sY7TzFUH3CY$SK4RZ$0gbhUzaJe5=i38>uSJuBro7 z!2u|KS)H}>pNfyALR=A}9#V!W@PG48(5Vwo(qO<+Do8ZH{GW$lqMe(;L_dLi<|n|f z_;hStnY6gaP!>Xxe1d8nyxBjkBhLK!Ea9zku#^{Tf3;ugj;$tKE z^J#JVgOH`_&%t2hF&3pIvNqg1wjU*hmDt9)xu{QnvD>R!!BpZ+)o`RyE)o+RnTDxDh>YJ0-WL%OewhARAikxEZOI+xLCDo!u6n6r^B zP_`s(nq<39W#j$_uHR!|?wzU1NtFyYs0`fsKsn7)4qwbit!!zMZHda3uCg^qHoll0 zRR;{vSs%$lqjW6ahE87goR;RLAn=h4;jW6c6tZX@wtx;vmSEW@+HollyR<_xa ztwm+iRJL--#uqaY+32W3a;;Fgijbh(9;-bF^Np`CQ(amn_fLu0RVrhNWGt1^_-yuA z8B4$(l5vg7SSlIYBqN{AR%9fh@+H?=m8%>nKyasIKrMqPD`Ur8C+*_z5dgH4xc3tbE{d|$hqLT!1vgQ&uB@bg$GUw z-8|j!o{jq_TFx%z*5I{d zzF_q!yv5uPJ(ju_59dff5yG-hFJ87EGKDk`*n;T?SG5@M!`+~J10d#DuMS;U><{y` za%42iQ!p?X>VP};Zxq~xxK|Y(M(@}3fmoP*6_0R}6egw*aH1gG`M!!5I#H6(wL;+3 zTz}Jy&-nBd<3|Y|y)wajr!Ns^5{bM^ep#=4T^stOFZbZmLF3$C@fd-14q94YKTLu| zw|=wTdXp5eT946S1h1b&8_eIG9RmSu8kkW565D!B-*jk7HAYj)odQa^%VQ|D6_na~ z)RbyGy`MDk-xf=$)*2_Jw%M>!pJl@eO7Yd~IqN9l{K>c+84G7J;k@oB;7kQa!gwLw z!H|uoa|dKJn9WWwpR~bjhy|0c<}+tTgXs}IgXLith#I%F%2)A}FdGI4b}CF$gGjKn zn*QLLq&C1oaR*%?(gSwb6>|UG#w%wOyrxJo_m<$%yasjSnnT~RhsdXa-2F?}qG;Bj ziVUDHi#2DY=$$AUU8@aEhr-!tl-bt@+f%z5kdKKxSx@jr;LTV0@bElPimGkU+)b3H z0@tre6I)YEvSj0cYfTz$PAxbC`ZicS5fuxK;!83KrLXsu$@+^pKvH~(hD)w5iGq5! zYFa5Ei%ffH2P0scSx$&6&>UPhgL4q2f!x=ZcA$9HYe5b3;y}jQH2PdZhhl;+xL^|2 zwSM=)UB2GeCPU7O?P54~gJWD(U-KDj)96zPhZ5kq?K*hr05f7pSr<=qXKcaUJW4%@ z6M*n30>>q=*m*vX@hFUs@$y{3ln>l>%f3R$51QAdO&?9uJvL1{fYu1I@8v5b6>^Db z;A}evH#Qub(;Tqr=7PSEH*#hTWPA)MM5V6oU_|hTlb|7k?|q2W$`e9x26w5^jNw>7 zsZwmHmy~z81=aiR<#N514=g};8G)ep@<}oQaNxhh8cEpGiZE(n>>qG*>`(5;h|+J5 zD9-{z*4Y13jQ#K43?JYd1?~DrkZ0j3;B1&E2b7P5xklsE8qRh8W(aAP%O*%c(SzrH z#R6SGMl=h^#(?<)oNEVm2sp4K_e}~G#sKuTBL#H2QS6Qy^X%Q%g$AU6hL1{XnWQ4iiePW=bOy(Y$Kq%8AP{xUB$HB4F6qF-QC>dcs z^{EpBrOfmDClJc%5h#Xak1^xSbigBmv}B5iqDjaoqUdL1 zU{WKhfEBxN;M8$cBWfo3GX+Y)i5gM02<1}8qTCEcxfCbm7-43^mvUsuFmX_(6Uw9s zgfc$@W#(8=&Q?(JJVOkBGQwOq<-|Zaolqtp50sb1$^hO7l=)*p=~Ylt>l_0mBg_gM zr;N~2+4g!is;(h25)KDk0s&NubUdz+*}-htJ7WaWBE=~sBS#6Ke!IU^Le#WHw1q+c zoKnc%j8n3Au!@rCOQ&B5bNrS$CKn>k8NOJ-P=kzFA)KzBlLGC4L&|0%q}v7-_6sSj zaZZ<27!O#_8Ndr`Xh*2ONWnSMRys3XXsno1iL~xTcDtKVmfda?%~uG{ZLA>^H9-4` zr2>%^z^+ZxekQBs0>tPBV1&L>*QD_bOCaOJh^WaSArQPVO4KC!{K46ls7d3QXhj3e z&&Lxr=|%#gX5L8^HH*e#v+ERzGzXh)WP~{x2kawkCg)^D!7>J*;|z?W0X@;8rrMKn zOx!mpC`+7BGQym8+KGYkM2eb~X!xk^wnRZ$?u3#N=2uQVF;JdJQL|<&D618eRZb`w zVHTZoVxT;cqGt10P}V6Z8=O!w!u)>xiGlJ&ikj_XLD{IFY;!`%2(!)=4JAZP4!5?3 z@HjypaUw;{&{$BeQc!j|p=5-)Gw#Gdc_Ky4 zfw7=mqoC|}Ldggmh`4|1G7<7%7Yn;c3OiO&bF-5*D@85PuH4;kS#_z?hl45H@Yp^VaM4vz)plL|`H z2_+-UKjDyOq%%z%lt(FQ9v;dlt!5l|=bbCN9SX`3CzOmZ|Hc#Q;UQzO-f5+i<<0UF`_23juJJep=RkX15qNIEow5(5;X@YyPb}f zj4NuUDHw*3aa>W8i4Zj*Js&hT>|tTYDr!!*+dYi3qC`!;Lev~#4c|fyYB z2!_-F)6&A1@u*M7OR;iL1KZ)a=~TAK12EtyK>-Vb z#ZxE2Y6{Lb>L0&31D@k1ebrboDW59mWxX|%p{Y$C@#>34a5q?=FZb_o?iNhGg|lOKR)_tYzlx+KcbUfnCZ)H zY7$C?=V#xtEks)&celIgEi#&|AHTO!IO!nGc5`1GKKv~w8gxe0C))x-DgfYe_%le`LWzhPf8VA5F zyM&st_^Vjqsmj4$8yR7~J1k?Ag4j}R$jfm;DH4411VUL8fwFllC>JRx8=O!w!aV&1 zK`9b^%LGDM7lE>UEGVy2P_{XtWQ6(ocTWs0MS^deKqwm`P~C>ddXh05zsbYt)yi&Mz5ZKDO%uh&8M& z3L9(jg-G6QG~TyXstbdSm$b8G@Op!2+TpdSoRmy9q|#%lOByW#zghKq?Toa7+dS~U!?;ZK;V;cLgL{z+B6=B%C(<}dLj z88Dp&CNaX?oP0!)Kg7;0BFybj#SNm~2mygXMt~cJ*q(VPmE4d3Za5o^L!{Q=u7^?F zuu~P5?ra+)%#YttPz{Xr9Ah9znkbs$Q(o=Fj?_Nd}IoKP_W zP<0ZjA4sXNI2o%w`&9v5QUL2t!C4K~Yx5mY#6%PpVqvK$Os$+`{GdGuw@55`*B*2< za3=3?=A=Jf11T9nSAqS2wk?RVK5@P2a({=MDldK@=kAbA$eEc=Cihm}Y^E*b3Y3hT4m=6Zb z-&h|cjQSu=eJ~jF!Jt`*4}hzga=I%9xziP{N&yImO8?A!2dB9{Pc6KD#mpf@b}e+R znAwhpQT5JN@D9&2yr0k13x*?bo7JeI@cKGcK%uK{>;k;1fT0D(qSQ>A+u?yG6~0)_ ztdOtwRjlx@9WuX!(zwE_-K@b+Bq{7}x|RSLVp0!|VVtZ1`^YcIM1FxEJ$4(#PkZZ2 z5rt7Dk(*0p8`5T2r@mq+;#a8DWb(3G1V3GjF#jD+hIuX{XRI%a)t4oxM4iqkA8j|r zL=b@uF~4OMRx?&%i&SCkma4E$Rao?pz(f>AQNjGARapO6gqHo(k>wHZ_{aH1+Zc(}vCu`I?eU=ht@=^wZjX!q&7AC}(DF%w@+nssEmKm#3|_ss3#Sv58l1Dab*3@;kirc> zg-q)W0MsV0`RL1G{fpT7dNvNRczSYqi4PTfSw4pvLSc=X=p^XW*+uLXJQI^$zR*~d zokIl)e8`8V2PjCMD>S^>3EfLjH`+8zmV{ex1d;v%1qma}0<;8EOt!6m2_Ly>$?iu> zU^bXtgD_HjceNt!h@&{`f}WLeoYUSNV)xk$1HvJE9LRkGej=s!$ay1Nj16REDV zMaNh~nmPx=I#o}RvtuyAY(fR>7^P!<*{Hr`C5o4uk;^eUF%j(7j==O-g>{ToSc@vG zBV5>^DlEEVFcF1u1Tgo!q*^vSR$(htVO`s#A*4Bid0c zdW3aaXY1mZ&?A(SXz3CCH=idxB2o2--i5)$8ela33b=#rwE977KblN3g69VC7&FYR z0_4&UB$FlHntd-i`#}-f!E=n2f$R5nvIDTi(H&q>_ULJFjY4aJ$XDzmIbr~7)dFNP z1stD5-nyiNcB8CEUmNR4Uvh$5r$E{CX2uvXP*I@V-C zMxef7F3sM2;R4(NKLkunT5?6eDCW6$$ArH@6*GuDr8l;`(eB@8h04FYlr*c!v$V|al^{b zaB7(M8V>Jz9+5b07w?8%Ty*qrJ<)>)#cdH}%)p5-I7+@xt}%!cq}oF+R#1$<1#DbQ zCE&62F8D9lqQSqwY9F%8Z-cx?z_})$y)WWsFcS2!jA~7^ck!B33W+b7k z2z5|5BgE+_Jp1Eu2Agp?nlY|tl~-;m_hQla3}pJE4+r#*Y;VbxpT{0nlk?Jxt*S=!Mvx}Q|s*fqiy8`;klV|%r) zo=L0_q8d|BR0shQ`Vm+@4F>RN`7{{BBUuRG9hyN2<@?)|zt1LOl!bkHFX3=7@ zw5cq!k%f=ue=Zy=iAoN(c1Uuqcr(!J`DT8Xxk_Vlb*fzA$^cFY znCo)pDv!z4CAsG1qcwaqry+}0b`@^XTLjlrY{f4+wy({=3oCG{0A-Phwukl`^qFOcwaMKa9g$O z@hJn#w(?S2&5#Ps=kKAWZ9UU{`p2*tU^5D`c53j|oI7&USA4GhJ?&jj#7Qg7pqYW( zlE*r6ZGDUEzGa&U3B1ZJ-l`e*g`~utH~_m2PiSx`R_fIZgH5OZoBF*=Z}QRq|MTI^ zM!)N6&h~1L@k<_~cvez@v36D|D)24qr4xpEdhrW!SLjP#fVBHyAosb&&tZhVR!O__ zA??0*^Lg+Vqq(-yF}3SGtztV{XKZkXAZdB@>el`6x>Sy#%I6%+2V5TYZEF*Hk=a-9>_uTK9YPmQN9? zo~j7%!C_M8zo!B1L)Z>Q<3fUK%33(47k_6gEqrj5M9gUw>q!$LDu53mcFpxy+{36& z6z_N4BM=ygxdA<)z$ngzW2B;lf;*Sw!d*lq&ggAH^Z7BR#7}Cu!U9Wsh{?n|M-PzI zXe0M;vnby$<^Ol!64Lr9BTTHseHsoaDg`Scm5d*HeW&Mm4>M|-_#Xs`ElGoV1@b=nI^$Tw=X(4Y{5p&jz65;Izo41*4WN!;N@V>eR@n*s8WAXM+ zkASzoc!iO?4XnM*X6+QRHbIMG?dOk>wOfR>2~eA~OqyJG{4}A54Uev9 z(l91XT5Osy*~rfEJ89BPn*6D5!f29Anh>;OrU`-SSrJ1M&u?v-_{(levDA(mWGuk| zzr9`9vUYQE3q1)gXZmQsJ8Zz)Kxw~WuoA#Of04Do zj}ljdlEqr%ue=RB;SeWE0Rw7CA6uNLLCF@Bm3Rb{+R7khDNwl#oAPFHXqhQ^|bYpP(^&&H}_0WrfW5+knaI?~|r!uKS2lpx@`(2fRag zV?D;#Qy|?%WIFRxzu-6P}Rf6#F@7ood^r~Tx=}7G8xPC zT#Z&pQ60@^#OK<)3gI8wF_%M&jtBGeHSBTNap)@z3x4Z}T-+G1=)bECP4pUt)6|uN z#+d_GmBe{-x1z*hbO?_-KrN^AMXl^{zy7R3?c-6hZyc6fidpX&2Ij!535Y@OQ@5zq zDla$7QzY`9R0QVwyUDElFwCsnv2!vjTVTG_j4oMr(=^-{S6^^T=8U9F*$U-}4*4XY+g+k5I(ZvGDQ07%l`0OKR6gTUf&F5{)cx4(OY*_J-Fz zvBs5`7%j6XI(dy1vy=~_Uiu*N=*jyE^hNt%Umc2KB&ab}% z1IsU{rH{X23mZGv*l-%14?zgNd;e$#+pHL@%VMzm<~bNF$P_SGhzxc?HHp5S0OOdv zGV0@&1zb(}^nT@4310QkGl;N-LI0_ftSt;|U1ZKPlAnQy_zXnEO&+}^lOPu8D>4Zp zl(qzs+ZTi2QfvESE*5l9)`D|2*Wc;J97A)(M}!K}^WFRPmOMh%vn_@*JAY-bfBa?F zgG9T~$rXvV35nh~Jc+iDL~s)rO(Kg6Vkre<#aVEov|^TWqGXe4FUYjlCew~F$n-kM zbp9wZ@thIJbk`VU8c<~Fx5$(@*GVR(;4s+$$+YyRQDoX(b*qplFb;`Mi6YS#L87NY zqNf#!iZkO$AHo(zA1+Fcgg$qXJ_M;}For%!za)KdK6LZRp%2U~SIm+PjAh43AD)mJ zhdw(LeFiQ1+>r024^u#&A=2l?s)?cxR^lr%3EQ#KhamOrjG<5E-6xkmFc4iaOF6DO zPWtd{*EsYs6@5&LKHKt~^kE909;;;ZUfBoZ$qE8a(L)ea$J_M;}e++#xTTU*0 zV3fOJmU0$$ob=&&x^d_erz@=;&`&wEG1p0-1f+mINuQCw<$l4f)q zM_e&0g?oj^JEQX);y4_iqEJt-9_096q!U5*H3qu9&6V!yV^{ls`Uw(iDBtE&BZZD^B__1@y@zeQx;SMA0Xm^dW4= zN*{vMGd+er2ZAS;J~#rpVwQ4jcbxR0N4s(QPo|KOZwRb75xsTGu;gRW<+FOjge|-bmQ?cBxAmDl$g_lEN zVO1r{wQjb=R;odVIW+-VtHQpzsc|r0q_zd>%BL3UtELWP8NN`jo0@?5h5DMQBi1`@ zgbVeSsdV7Se5nY{tLk93)2mg~+LdcAnd@p_o&*CbC@9$skI`}}YndNhn`xpnrLBBS z?LeEQw?O??agSX9p$)6OpeZM=y1h1POhL`LSwM}^cn+Hqg_=TR!#OM;9-3$tXkl2X zU4s15Tyj0^3o>%kY5Y;PC%1-SB+wPaB#L5*aYKP!`nyeZ;2lU3QPUc5iyY=2L?~Peq z*833OQQiPTXzuXMs;mx4Ysnf!D0*e{DHzWj68i!Tu+Qca`;`b|vH!}yLKzkzpU<_W z+fQa!IxeUhX$pz^KfVlIvC(oG+vhhLPh-2NCiWXEP9qGoEv9W|6g4ztXMHxK>#cFn z1V?B~CGtv^ZoXJSB{D1rL_vjnz1el#P5n^LLXnteD-v&=V=EGKNTefB95;g$^`wS= zPYoWSNNkf}d4qcELI6c#hrHd>iNL&V85N2AFsw+d!i!Up$QGEt`>7}rnXVLxjCCp! zx7dorl0H!+GEYR2$Ztn064R6-k4lDNrO9alGI0&obT< z;KL{qiLjHVNL<98p!Uw8;{IpshATq~h)p076^V*O$E!#rQ2#}W#8O435{pa^e$h!L zreInwC7H6n7e%IV6^Ry!PJ$w_Jcd5F`wH~26p1H+J|{(yc!Q!(xkaDPPj}LXDWFd! z>C<}MMA2tr6p2e>=yMTv=T9bmPKqM2O3|mvqEGD?ob+J|=u<=beE5GSiarygNUVvW z&mGH7E`3glBC$@1PKqM2S<$D> zqR+gGob+J|=+jR6tozPH(Pv^5iET0TxdPkm*0Ru8Pr*PGi7-1nZbc#svlNMHay@QE z;tGZK99xmd2P6BT3mn*Aov##$nypC8`Zg#~VX#4?6p3~#p-5yak4cfZDh8t;Vt+ZT zNIVHM`bkkFb|}<$SRDVgGzZRuOaaGtlH(s-G*KKsF^a^_82ViOuQtb@9Etd(C=%By z`gB?J`P2DM`Y;9b36VaZzhL8`i&1n8MWQ{CoKc{0$* ze)qib6p2i?6p39z`S#>KV@F`w*o1S-TqfMBT*`w5L+J0!vK0rf_|-B2M8%iBF82+YfWKoufC z466`BcyX!_*#fidd!j;Qx>6xB)~Q0=ZmST_yiZh!%o9-|^4rlW#B`-XWb^*Vst|XA zi@-jE)<}QRXPqNGQ=mc|;z<9?t7N1nz=u&G5@9Dzg}9qNA*@17!#;dig$NQ+g{Vk$ zyedQj^q82Z#z+7mJa+LJ(^ zlcGZ0ujn&k(P!vvCw-U#`oz(3`;|o#MW2aLA;#Ys-G6r8cyj4;QdEcu01?Anf;iGQ zvh&Y!(uXOaPZH_#=LHi*pNUZ+CdJUli+%gBiuWY+pOd0OOjh(svFOvD?4%Dm#0rM3!j*ar$! z7;Mle6{6irs1Vu8V^Sf`h{5Qe%ZX9T7V#vENGC;wn4?giV{!bak{mb>G6fu;PmZtA zCW_-HMunIkL!VD$=l^7mNGC;w=vDO5Ec)E|DJOlH0{Rq@K0{xfDEdr{3eg`!pT*xj zx%4?HD#Rj1pAw5c+Y_DiVG8I|O8Vp%OcZ@4Muk`sL!ZaXZ2G_!F@2N@aW<6$mM!8& zjJU8x+zAbzJKfT=ri`aTWV)q7%%>ve(_XYEQh}%tZ)vdV zIb!|clQcXWhVfX$5OLKwhKOsFA>!6+EG3o=8uW(*&DI~@(r{?y;d8~JJhZ=dDi2vy z_jNW>G(pPUpE#WIun75Lm52P&d}l6a!29gFqLqh=8n-kbLV5V)XcI*E7hQ9NCWxz! z!vt~77$%5Ue(NxJZ$7m0@c&*V%EJgQwshY>28WLopd8Dh62W!G=@XzlEG0R@YI3nZ zWa;L&J!2{lpH#}j9MAfEoT@d>d@0#h9%@IZJf!)fr93RfBb0}<6UD*xa`o1R0LnvJ zXTn6W8G$+Zn^Ye1!?5zO1TRkIAzNTxcqMq&FqrPw;SwRpSeUK49)@GNo4%{s?RWKy zmxVh^);$6HUH?>gS@?62JTI9#437(%JXcSJmxbH%@w`y?P7QlmkRr8Zn}`9cDip7s z!gmdabAJOpNsiKE5g1F|_yI_{J?T`F59cgo<*^Z18pwcL+*sZ7*iS}i#HFIw*#rxqBEvqB&>jnb@PWL_@w0l^JqjH|&SQJ`du)?mR`YxHT_WD%zb8%)!A zUykLgHTE!VYV=`eoN~rt;NWbXFyS;ULF%bycL{44H(eW<53b6w=L5kY{mRb39Dr+D zXkZJgbk7FV&Y_6FurN5zNQAXB%%RzS+BlkhA`|(#lkf~e_j$8Y>+uM4 z=cf?BOxd566wtj{=>h$QEF2-aE=%+2#aTIgDrG_uv*ZU5SK`;Vm}h+58a~1;aMiME zd)SuR0QRY=^Mgw=6Jl+bFI>p6W4-;U&vhWuyDbp9Yk(aidw0CJx~PJ+FpRL~y!f>8F!o!UQBH)QGF-E0^N+bP zbkNGK9vPQsDe|Di5%Mf)MV_t88o`srw&Ih87WpRP0(xCm9J&Oj(_wjEm6gg43Zy4V z{HiRv`C-0v2^+IgBy7pbL`aVIU_v`2df67DmyMuJ{t&`g3@`8>p0AsQuahSWU$+4* z@Z*}xHYzVJjk(f3rz4lTT-FvwaeX^J6b5Gr=GQN?=RuAaVLSXC81-O>Kf|-04)TpN z4}Q{~2aAqy9_$Ah1mF5SbfJTJa6p3PA@w$l0Q2CGyxn6WF#rBF&V&3gJP&r_#W@eM z1?E2$0$;{@rmIaf#yU6Ap2j8`+iwosEt_b}gH1F>S>LKnG)CACJ!Ys)G&b*OH_>j2 z^%gPC){MH-s+U*FU}lT)<}sF=h*)nPY$?5Y@G>hLx*E%yM;o{VJ+cZE2r4WMA1jK zW(eD{(uW}Rbj8r;Kd?W3GU+2*GwKGkp=+kA<=er*{>BAJzCq()@ z^W}-6k8I5lwqvCaLFyTZp-%-i#wVix+!8AoSh7d#{6mLdAqZ+bm#uD{8*D2HF8yh)8Q4bkCOlsBoCOoGVc*#t3) zQipZ;Wl0J$6A`kW9Wj)809)iIlTrf^mPsjfZQgNGiudJ>L#ZJ}sX>cUDSMriVhSiV zL`vQHrHP~zK_sOJ;;~YSkoA}`lsXfe<%&{JJj}3_6(lbfbnd3};Q=nJtk|hs$wIe0 z40){z9Td7{<&l%_K4k@Hkn12a#!iPPnrjQD>?Pjp}o%aJ;<}nJm%RvP$J=X6tkiz2ZK*qOjHm z8VXi|FA~twfR0PMd}YO1$v_$pwkHu+qE+^0WfDVphf3L>l}ZIq4pj*e1F;;eF|Ww^|H7@V;sRP1CDVU`0^+a*9?jx2y9aKtKh1YvuCFeCen z53b8L&mbs>|?go`n_MMf)V&#gY#PAy@08=^ZA16cf=h-t`ot|f!aAneb)-t;>#RD+ zQn7WQU}iDjzv##spJo@FDFtU(1@l_ZQ3W%L`O70Lc)DG10^l^VAAd(-h5m743kFu0 zB}HK+iCD=#!a8Qyb>vIqZ?x**rJ%8O04vO5?znLD2n2SeYT05M4cV-LyCqA!S90ub z%pz-shwr*9dLoJ*hvM+gaflwIkTcvTsXk6X9LJp;=0P9j&7*uTlJ~}}e0fJ7m#`&E zL#W1~YcZjTj&m4|leOy8nq^HT(r=T5 z$olRv1_CCT2h&hxxW8LpcKcBZMv)ZcU@5^ij0#5fJd_gC<%7&%ZeS6yqqe>EVDU#f zvT0>fN|;ULqF1m9=--Zp+v7H7dJf&qh~h-gYqI*85A4x}knAxe z@0jA`y)i2!A>7g+RP2#A`!MXm#*#hQDzZld!dUhw%%;dBWD1LVAUryRJ&NX_j41i8 ztYvBqN`XWpK8cZ}u zT^DxWJol4Cu-#)l0bXCEmBA%5OTo=JW&S){(DawpR^)-2wOhcYh>%BqV8}q8H_jU>E z@|q=V$t#y|MP3_109QnA;)rW5n{^oKGb^dj7L)p!2xF<=bg7g2$Ag&=${!0eBZ#*# z(}`zdu^*w0nJ%USGbYo3nL+D44%eD#dSl+O^`3%vzh0M@AYn`1ki@UZOJcs@#*#2* z{yFC`m|<38hAk#$IuOQUX33XFVMYW_i)U=Bml(Ebv{{8q6atxphFP6^n;(Frv!RI3 zM<~EszPJ2fk4(fx*lA5(Df0puMT`e>s`!p?%Mr@_h`46S)0kHyc^dOdBy7p6lyF5} z1Ji>WONkiPXD+~8cE|yPS&107oQO$97>k%|GKrXIu^iVYup8A@XHsJQ)ijI?;v$Qy z-GXbz_q&^V5UDs2+r;^v zji&Ho*Sj_^mX5`XyGHY(?TOH@|9%(^1uxPEA@BK6Z}dP2UZmGQWD);^Ph^o7`C*tB zO=NcRB3oeYn@(O_&UD@}Ypi1|F5q*$ujM{{QzdRw^V~nAcySS}*!4g2jqLb}u;ZtB zKTWedSAUxK(=^~2?D%QkPg5h${!b5u@26qu+9||^T`4MB)+-UYTNXEKWrg`&;6hA} z;K%0$w)zrYIHCumeMjz9j0=Clgg*tP`dx+qVTrim8NPdoMcIN5Bm1M5DUUu9MO42Y z=r9+bBkQklQN}n$Rog{%g8xwzFJOufxL$}U@7hlDe3TbqF}wHFsov8ik}W%ekzIj8 zVm=OZnXi3@jS0iW<_2#G!Cf-J6ZVhvqj|UxCjmX_X_+vn(eoyx*8_bE_3IK+7V6ar znG5wL38{Q4Dn#adCTQlLFy+YLY=aEt9gDY>cejL~g*qi2TB!7-*fF{93!=8Oza#Kr zR703zA>EC3U#b!y>xL*y`OnFZf|NQtT+g|&206l=i8p}+`HlH<${0B4534k#tpr=p z5e0jt4SOjet|IK^3-t{NZ9oY`+Jpu{&8h_IB+WILUJi+bej=fgNGOR#!lsK4kAxN* z2@QgTTVGNVC0pRYLkaNEJPHr|%zXCj7{&~^V0xypgs^g#2nT-*g|QLV>~=Ib_~gHV zi8NiqM0n?jOn!cKGgj0@XhuzhL(Yk?R+@vsIjWl4O_&y?S$?Bn$Zu8V%N=&#_CteciR)$ycaOZnBdHMvUw`UU2qs({!Chs!EFp zalrMEy31a*g$o2R-qPF)286c@uU|W92pH-rbgi94eBin)HD8WOS)gB+moO@JzFwV| zI!3HFFKLX}YRtL8TZRj-ud{2dlUk*-;aaYo%uz|GHYW!cbA9uR7rRnq|2)B6f1>S5pYYfl+Mwyp)&H>%nexEiH4pKI+Y?MT6`Uh{B)j8cYs zraW#r$i4hRFj>WNdmI9Xb*}>IA?A?H{K0|&BYVmYEF-UPOd3KlU4B<%63fHLGb?&l zht=q0O}}M8yMBYpsJS*s#>lvq6`F6%z8skbEh?LyWKQ~5NilV5w~9$j3{JRPgSy|pFK2jOJ_nXK%pBuY<8 zGWD!aU?H&By5Z0(rRt%!cZxvY^4vf1wXZnL_vP9JSYLkEjc79k;$Keq%DF~D> zzdQktxYaI)3AoTty%ouukuPueWJ>T`4S`vgL2-g5{(sWG1um}Q-hbnwaw~P$7L{65 zs%uM4v{*u=5|uSeJZsJxtVv7TXlaT0lO|P49+z9AqOg&34@=W)u(VAqwXx;asI)#V zsM#)g7!sqB#0T+-kJiCNB|Z|=nEb!rnK}DnA@*KA$DbAad%=A zPI$UILFPo451P@oNmJJqN5_e(#Mn$_Vc$j?z4@(r+%4pE?DwBf>n#z!hl@3WKs^2h zpKHH+($eY#J)KGK6wr~EqT3}Wg2tBVS?E~&+CS%&Q4cP0+IjMl^Z{_m``=|CFU!Uy z=|aZjMcVR`ba=*I+(c-(n-Z@<>uFJd>4oB`%Fudu`)}wb$oV(@F@HY0qr1OU~W>LrjXi zdQ?&wVLfHK)!qRxvHAp`Yj_6@OPr8XT|#Q9a1nB)qO#{g^z4!s2GeVw0Ae=iKp=B) zF_aQWT^%4+igc+KQmUh=0pwJT+*XT6R7j%?>^c?eL;%TKDPy;FAP}d2okB)Lr;_fk zMkKwSn4y?{2Ks&)L%N5^563GpPrfKR22z@#Zajjaei_(3D#kOHU}#XrZW}@%+F-?S zgE1cC40R!r&JZ&cfBVX~3{_^XAx<-EhDK$kO`H`*r{vr;*yHpv7%Gsl+c>=|KK&XQ zB4V5&PI;#@#0! ziH^X$CAVAGz$rBO{DcYjvuJduyl6szR%l;2`d z&Qjp6W*nP%5ZR(!qe%4_O+zEb02e;qqmCS7VTnN-OO znn7&3m3l$*E2$SW?^||S%H`vc9GpgZHLJo7WOr9sfmH|L4iBIe$BIL?BMwZqOQt-X zrmpT9WaHnJgT}XIJ3(FPg4~EhHRIkr&NkuQ<6lp`pE>vZfHn90O5OvEQt{gHSJLlh zMoALaj^n;@FdxbJFBS(kmml99^@3wv4ty)S3`^?jwrsQJ5elcij#V~&C=4GW3o_xC zM-t72zheV*<9c6+FuEO?1gUOEc=f19O`*)J$vp*ywdDK?{DK`A2%b_vX`W>*I>n3A zOQ#e75(I5ifjBds&+*Ll`Br3D~mX zSNCT!XzP?g^8!s8w5b?;*d?Dso=MrkJ`zAQfo{6}fHT7C<<|f*7_>@|b94h9sT*Wq z8!Fa-fVx4(ZmUBeE{BnVZop$gHz1O(8Xd=KQpI8j zz)-i0-PVIZtcOjoZzE!yp+-c~8DfUw)l;b3`HdvqF^Ci3ra%ZdLM9XPbK<4yiYcRUGn*XOa@JYSnc%1 z#r4_J_OKSl5`EMmTCIq(D(#YR4@jb4RYX~mu|zjHMC%k$R)<|ulaZ(d z!6_>e-EpimXq4(?gEpjuR%C9HLR7MDk~}=3Ns44(7pPbz0yIgvjNN7+5Wj(uvTq|| zyh*%>q&EpO6zlV(L1VfyXnY$tXgFv|?xaD(b=Ln`^*_>}anSy^O8LCRD-T-A=jHM` z>vB9pOC_$ej*uh{T1rZG6SJZnJDPEM&=Qu6>>t6Bv7kXqTC!hEWXX6I5td91wqeX- z7*wSjvlr8iSz($n`w+ajjLA>J2pnBuH)j`M9O9U@MzrNvq1f&S1(WTPIZvc1t-D$% z0#6<-%^HiV%owsWi)M5#+tU(=MRz7o42r-v~Dk^TQ?MKtaVc(%*oqW zzJRsrc$P2vG>V`L20M2p7Uq?mgA+!Xbv7}|3^|eF*@ud-+E=1r$tNyZB+^UXqsJ1E zG$jE;-w93;>SLEMfAR>Sm;3Yz_1c%@S{<;&;&G;PnB1_3y?XPC8;DoSF+}`SW}RBn zx*jG^PK-Hx!d{ZSxVG)kjLRr>z9jK*Qg7htj&LD6!06B$xU1 zl6QD37W<31*bm~PAcl6(YyL&uSO#TnW2->gvVW04l3v^{>clhFXp4FfN*TA-7IiV* zT30m4G~6BCuj3;!-dZ%IRzcYQwDlf@~Ov0QW*jr}bZ2*DeH4tPa)?*R}Hy=h}1;LfyC9k&N=Jy{G{1 zlGn8>35#{@a=ynJb}i$;twPBD&3BCwruCva3DbI!Awz7Lkm2f!8kmmF)0nPPN?;kx zo|IUpTx0e<1C$j*&RH>DgsBzNbi!G#;pwkZMC2ZA(63TL@U+^yEj>_hI;j(?S#~|E zdD2QegX2kEGF&^UL&y6OqLh=kY=%~yM0G9~0mS1cAAwcoN>-T-S#3d>%IcsOM*awU zXAU~Mw1=eqYJW_vbdaAU=bL+HNFVOL0G#es+TACn*n8+qYAUB*lZ`+(gb*0j;CF(J z+Reoy$iR^nZs!_8oLjj@5y}>iAIV=^Ebxw7xAKs{tz6j%884FY*5U#g$IfFJVkaO% zB?602IzqjYPu45hVZ9C_Os&^O5Bo++S$jYqs$cGHOxqX~w%Cv%K7WERdB-u$8q2s+hRwx|GHflbli{l37KBvGzk;!vP{_#=OGrjo!cv5( zCA{N!lu+*}RQuD0@7M)RXN?A%hCEC1f(K&kzn<{#@ry-)U{lN+>=Q=?Bb8Z3*#=MR zt$2^^5yd-$lQDIHNn~Da-%n@8TVdz?I$-7e+Bm!+ST;~UGBc8Ut8rihPDZ$voc#WD z&vjY1&cDQSQ`W5@nuY0=`aOG2oS*5nQP%Hiy7WetCHI$B?k|nQeRx&BZ@3umjHb~n zPh=+ik>ag;o(WkW1)E-#jQ1(VJ0;`0gH3&4d>D*h0mip^T4@`DI8LxLG`SCDb)#^m zyAQL;%W(WJ_x1`aS24b$egw{BTY~XRz<3+@yeaFKAeu#=jErY`jY4^v-dle7Fg^#e z0zT@k!NV~YbY%D?yfm6V0_T^}^DK_-*%ifu)8P^>La(^>PcDCN;RCzqeT<+7awA53 z!W@r$cNPkR$5A}4yZuitaqEL;xuPS$)E(Hg?r}jDj7U2J)4D4gfwR7DlM{dO{1=)3xsmxkHADvW|eUkbC_~!dkO^ zSQ}gG>p~=Cy=b6zi;!$u&lqTp5l}I$$Km1lMgS1BHV3pI1nt@RMGl_^wp<0Q{cw1E zjlk#~0^315H=n}87ffhjm^2hh?jd4E;4If=_UsGODPHEeZ}x=-(N~hL09}Hin>Wih zOzD`2@Y~bTqK7vJn>HCn)8=ZkY>}_l({?d*oN22s}om|A3IV&o*f|@m5n^x*ATSBQqb@j zD#Hr+aD1-S*NB|N`PGnKyIo3w#!9f&>xwuXm8}g{SR>=I(&{4=HYxkq{$l$jl5}?x zLrJ8wiONfU~sJ4yQIAnlhIxchsn@WN<%RH_0@klYF~kV-lzU6904L>(b? zWX%!OaU>G0*8r>lT8a90hMiyLRA|6@C#eWt6oKMW2`Jjqgh>cM!1-46`_IDXNdjeY zEf~!Mk`YyV*=X8W6)fB9X?y3;XP0lMg-Sul zfWd1!4g7@`tfv>+4?1WbI^xI6y;Jjr4G4d z=qe}?Q$$JmS+41J;KD?cl;VLg82b$ZM#W1% zB&TyPjGMfq#%ckcYAkApVBZ^=b=z7WlPQZm2*vd{aWxYyR~=_`rOrQwWTWpN&~58{ z@)=C@6Qv4F%(R;?qz#H=b!e;siS;_LR{P{Lum*{BhQw;UP%3Gs_Bu7z5V34kRzvF3 zW}kcql`4q+2EGQ#%|bVCrr?`pkZOe30)&~O@l1oMO@i9k^GFf%2*2%V`#bsvdQ3lp z0o7yFkWCvH$KqN~Iz7hGahKRr;#w=I;=AG%A43~u>LsW^ww?#4k5d&_w=RD_l3Bfk z`sn-VimS(|TLm>hs9hQ=(Mw_)YEVHj5cdG;a(hvddh6FvLr4ywWf_VU5^QZ5O-;N- z2Q;LRkZXMm#auvMX0Iz7NQNBLkRyNqNd}@=0ydZBvDTgD9@2oLfJhQ;M&DE;Kzm2(=`i$xAjuaYGeR zn#($qi#MvVyoA&pLOug4k64#VtkyD-jOA)mHmQJEX`(IPL9`2r{cpgAXd5?gq=Ztm z>Ct)G+A@f?Bhu>ui4}orW(YG~$Ec_69t6RKYrLq=&Y*kE0LUclfKv93nP#6MmSd1H z8*sW)O{umm8|9!u=7&_%4RWh|E6%@wqmsbs3GMIIh0g{O>lT6d%J&phLi^`wD6fKI zAU?r&8%Zl6*996XPeCyd&uFN)utWqV*VvnmH0E(Rh^_s9XUt5Em(+MB7zqAVUE$5MKh2f&9uHd5czSs7fSDwSWph zzKn`Jv$;b0z^N&!sa7LY0fNoQQ1nU2b*HANraBE-Eg{$W7>Zv@$hD`Y=%xk@St}ve z`WT9zNyyo!#^o%jf*XOLog=g#zC`J30N=Wz>CdP7fUUB>Q8_gLT)25m8MTm5PA!^& zayCC)NOn~|vqlVrVu)Wfwwq7wWUqHr>Pn4ODY5DE`T4F5$7LJ7(H*Z!-2|5O^Css;n(%cP%gfw?1q`CTkA$kC#1Ps12rlj2BJ;@C8W7W1GOk124W_F#>i((1Fi%F<&&ZK ziiAv)&wdTrAtBfK7>WZ|kY<{E4rs_u2?>{!kWT(xr;WhVM!bX22s5)3AmWp%tq`3`J$5%o_%O_gQ}=Vy{;dZD54eoxzR zM@y|tFQ`Ci<*xsQ9J_w$RC704BtsQbD>F&F_RTao&IT$6xjjf_!xHETe5g1@j=dTv zrhpiTE(Mg3<2()2uYeecCIu8%bkPD0G@yVOh^rM)Vl-8#fd&;21MzJIl$dBM(m+EB zh=IseKm~Cg7Y8cWKqCr>f!L;i3gbYA1{zgB48&auXi6NYQUkfr zs;Eo`qEP`A#eu3cP__bMAbzNT60^e98px}F7>I8vpwc*{S`Cz^fEb7q6wtIdP@M)U zP(TdC-jJ+ z47XCll`A*~;yVhC#w<>+L&F&gj)6EEa8!_u$yTdV16Bfp3X-94Nyv4l_9sJjX~-%G zxz5K>JZmZi=}peOTSHb$NKDZZavdOPGpmvzdo*M%AgEqOp$rf(Dz2BL%~LC#LM7?Q z81R&ir23dZM>3f@k_t(D=^Kg#PPREjqy3tNm?WfhB%jGnKe67IpB`>LbtoBYKw}L^ zETtp)Osqj-t(RD>rxqp`cTi&u5fW;W#dXxAd62T%Ltu@*br;Bt z9bE9Oc>WyO0}|e;(8Z}kbD`V}#OBK+P{N*%XrM*~#6WZ^poAVA)j%s15Cd_&0!rvX z*Gi>!I}{KD@m&R!(1Y0;s7nDc5a%hN_^2Z4)j&N8h=IsaKnZ1;r-Awv5CidMP?oMB zEe zS(a;{JO#u+oC_chZJRbv4V8W1X?qVtT6xOKA8n+BV(3~9L4hUiM-W`l-T?98aaK&N zm*SB#>g6D0My8-a0$!YU#c%{KFkyLays?vdr~xKa59Ksd2J?zpDW=HtSeURpHz8J) zn*Rn>6AZ+)hMbB#Hz6`r8mdJ>F%Slz*ssV~yostc;0QY#CW9H~A?M2?IYlfMJE1sU z(@(TVtw!rq^ce_&g-G(6XplM$)vcfyhz%Ml(IO2RDyEOP(uoefvD6_2@AGTLyagX2I6cDRUWUJ4h`i(eW5)Wh%7+OvX`IR5Qpm2P+lYl ztVewe#YwFA^4ZvCU+H)(D z0eduH5g<7I%TWASLYn6qPR2=c7XyNlI~N5R$00Mwo{3U0nU*0Np*W1=QJ6?QcV%*E z`gPu%#WDKSM5=s7RdF6b?52_S{+& znhX>mj1GbXCmD)J0)D0p+24ph59pNfa@0id=Er33<$+A~#wbGwFi%?zP5~zB#mTI9 z2(;DF!m;bpqJQ)&*h0I>0O_lK=>L)bYX4RKxf`QuV}n}RO_1!Z!t$HHw^HtG$nvEc z4P#4|&&SHdR)OpfxTPU~6}DPb%N09C30n%#LuUJm#J>9{*zK_PN$hrb;Fb9PiZN_V zm26CtYy^DXbUyG3A6Ai!sm55Xnz+gmX~97_9+}9HX^w@%}Cac zAUE$EHxry%`M#j_9B>VLVV-edGqF73vzgSi(YP!!Wz;Bpss6PjnueY4^Ms$g3?6_T zrLA`Ix;kjL#Td75m!eIw131(Z-ixlOp9B}KC`7yp z?2iK0Ap1MO_ED1UKVRxp))wq?L1h)jD{DKGny{!Bnc~rv6-}b7>g)dj2wYSpa`ZIc z#o{bjQHOW36!z`qcx1+roTIQw-_x|GA}!aVc&@u=Ajw|X5PxCI7k9G-;_uE=@1#0( z+V(ln4BAnd)y*4a#*v(hjk4YKzfWaQF1m87s_XfH zWV|lUWUG8}cTY0o-&F5hYzT+(LC^%_GAlJ}9!z39i9yBq0)T^Yy0}goF94@h#Sqj1 z$*}Gd-@(=hO6Uo)U;Ota4)3~OBr5$$CN*uWMpGZ_G<8x2I%5DKV=7Wd2%V-j@J`nl zm3nehzg_O+I!3@=@FU4yn5eOce34pX#p+#3jqL_a)R@d_Y>g!`s2Kk#z`=M!2F6z= z7_Uxa{GE%&W&Fj9(-?1)FH#wws@|nA{yb=cahcUv#*-LSj4uQ@7>^}0{usmw?K~*C z?Z?0;%b47U;AqG|mnuTMbKgEKtq8Soq1$yKi*R>0sKwv?hk7@f{O)x1t~^;_H00{;?vRZC4vrCR0lPlJ?0V8hQai%Mp3oM5O{U+s?HTz6f4jd%L zMe_(C^V1-QkiuM~?+MS9aq$B}`qCf;Qq0IY-)zw23_s(dh>%m#AV(zRqrNH$i4i;@ zj{&67v}we&-ZbGKaHkBL$Qm>vt-iT<4B^%rYno4l7QTUvubaFXDrYJ(;!vH!j%BdO z)me7QJHJkE4!w8sngOsjEsZr7^Nh^MW~K01T=y=Z0%=e*QGm)J6rV+qP-YsGS3$`E zA)m#WgqocOm8YO`NsG_o({}(hHw~&lK@|{+&*C{k%}awSR8V<@;^%QNwH9r=+y z`Sm#|DAp69g?F?7peN+MS`JrMB9ds+-e%;4@890eqdd)WFXJqG_L=yi3%2P2l7BPp ztTUN$Ei&e+CqL4*N^N^=dGbt5^{f~GRHtdZ<;XsIJdt}_CGlPDig+FHO?$4l2&b=( z!l5j$q3&i& z$ppRAuiD@aLD9YUOc};wj00iA}ChGu%<7Wyq1AI_)!YoiE~WoJLITXROHHr%_6~ zWZ{3Qe%6Rr>}Tc44S}UW%$X$&9m?JUIQD0BMzj*KM9(%@2X4CETxFE)@wAO%mhKTG zP-1c@F@G;bOiE1SF|* z>HZZZ=ecBtNt=nn2cCip+8m+~o^sH4x>@uMEdz9;weW1A@Gvg&h9|_`t8uF|F62kz zGA>>e6XJfLacebhj>ctNbWV(WP~$deT(8DuT+EvoH|xLDBy^+3&DFS!i$dT=b0kDU z=39_rK;~VT6QIm9E)Km3$lNr@l^QZjLozO&CS-mZWQT^#){u;gzYx-w2HB}0ogT-y zXarxurPG+!F8>vBTk$8{UGM)?6<>zA?{R z$fqiNi^FR$p;F`z$?lfO1wERQljw2G4?V852tDrDwCh36-R;Z3VYlW`R?vhTHaHyC z&a_s08zsB*ymgFpB7(03dTDy_!EkQ}LUHXYN8*-wliLPzTb+73tZ^_Cw>_F$*+>&` z+w6^j1;y|>Z#SOFW*536m$)GSt~)!E_t+7eiPSiBx}8(9dJv(vI8&)XNwr( z%bQaaQYevCNJ(~ds_c8%#1C+6pqx~V4UCg0X3AY@)_c!aslDf)ynZBl(=@$qNpIC8 zwjD`Q1RRn~qpt2Di(N+~8PFtSnj~wKB-tMfaW37@2-jr49N4wi4r`Q>-5)(z+Mp=0d zQCOvxWUDk=7jpox$ySMRam#BH;?C8$gBsVdN{ovc6XVX)xI-G(u}X}K&jB~ONJ1p6 zgFs5Mbzoc!y$Z-BX^<%PXGz) z;MA?Q4xI0p*gCKUXdR?GMkA0%n}ARD&Qo@RpX~LPGrFhA;B z`eVnY`D5N)Qe~xa=+zvKZyg*C>m2J)O%Cy4-FaSVCpyp@sAF3YQpd9IiYt%EDl;al zb!0W|fh0>?EloJG0EQAxTzSD?^k&T_|03?-ZC?W_<1Jyo0hx4&C z4Y_iNTMa7GG_)aY>=4%r)zpb0uAKWHYZBIhCuI@}(cYN<3)3Ww8R9ZgT)!Tbwy;f7 zggr>67=1vOtrURCLtMs1{fpxxKB^H7jpz(<85iH40CAH>tkQ_E1aeT#xNuE?xLqUG zYD5f9BqHNt%L`EAPfLh|328t|vJz)ptN|nj)v`8{2h~osv=C{cLACVpId+yq=~51= z3puFft$=Ra3OLVQi9z+Zo|YYT;R;plZdvUKCC*%+84Ky+AD!mn&wN4-sx^nnlUL-i z_eGS_E;*@54XV9(#X)t7w`O2aotNmv99-oAE-|PkmZ*8e8B|xxLG_BHL3Lhc_oW(m zY3@rE1Xa5)dD6V<`i~Fkd*1-VN>+&_l0pW6S&c=+ft|4>yVP{zA!GnLdcvn z$VLt6xG#*01A~CfO@myiAszRHaq$Ep^V1+ZG^FFcFfRTGNVqRmPJ^kzZ6`q|9Ngvs z;j_9g7w^#a$;k!o3-J?@&-})7U#{3D&8maz48JvpqEbw`%(bCWtY5m!$j^&q1KRU8G#tW|4@oXNp)YCRdkB% zc-V;q@Qm&Y6X+OlZdH8cnIqAgs_B(WdYRo9rjevUl21N;B$CrK$x2N!ll#InlB^=h z>p?QreW}Llxcicy*)((lCe1W-qK33-sAjv2bz=hHO__!m+TAWGU!Ku4Fi|}4fGnv) z6s94WXw=lj><4VJX<%G*?V1pGw#FUMxQ=OHTr8Rxcdo`A)VPjmU|bXdH#$#3B;1lA zq$HaL#>Fv&T$BbWG^Ar17#A<@1mu!5$Po?cm=A2B&Vd z;&mN;B-6kaplSG*6z`WG*BZ>p4vLqA5;lSvk2h{SXOq-j4z4o@*Q}0jBNVIu2gN%N z#!1=>C+jh6XG^vx8aLK$%*4D`Ge5r7aG3vJE8ahEJreU|Vq(R6|AtJ==V|80w;GE1 z&o=#W7|MO(N@jlJ`41;Z4)1UpDAhEOjU?01jD8`PmZ7)ok}dyE)3C}dN1jRRgdE&f z$wg*>B?h-th~mud6s3}C9hh6RRrbAA@<7^ngV8#WqUvoRN!L?HBDqSFYy|jtgHfiD zBnQ~y9xhEUXmjc$1DC5c$(54i>`7jnNS{>hjBNRq#5zc<8pKjf1J!=qG!#hFz!AF~ z*}jYWPKY`Lm^9PC**u<6!`ev~+hwe2SPQO{X(&L8+a+f$%V-*yD1LLVETcmdrXiVV zbe%3>Az+hD1LGpXRrLjJvrV;UG2S4@oisKzbTxQ=OHT%0&D?k0^}u5q2E zIL5_pE?SSz^LCAEXk2G0j&ZSOV%(=SZl%V}*UNZ}iyu#n`=Z9J(zpd0mvM2{#JF#0 z+-i;M)3}U_;m0Q|?_P~tt8oi8F5}{!iE%&BxOEzLipFJJ{Cr~EgBrI%;}&UL#zo1* zxLK?8a;e6hs&N~M`;l5&9#1B7G;WK=E!DV;i}e%Z=4#xP8h4t;WnA1mF>b!b?a;X8 z8kccVF)^-B<92G?fW~E9{M*F1Q#5Xu#BI*5qk>T@;(R5xZJkg&rfT$Vjm~p}8lA6% zJu&(;jozct8xrVzB}|}40}?3V}-IQ;Jd0)4#NFlH>dNP)%dx!yXi4ODa9 znri`^r*4$V>*N}NIKNNZaVI-COC*%=@t85~crDikDpRM|gAYqj!@<=)p3tn0@8c;} zo8|n!;&z>0)m|;v3pl;rCD~mq*8<3Pzh;{g#G)~FB(})}-K1`Sb9$XCBdN@{_GV&! zL^D6WkLNJY`G1Fbj@4Ml^!v#Ch>jN^PUgMx{W`fuAU6K}NX(N7GS4i?{1C!a=AY`x z#QdmcetaL#VZIy;Im~nNo6H-M$+g~69j}$)DsPp1zs_5YP#kka=E($^XBK3h>m#Ym ze?c;Tha)zr?jJc!a{uO`%h3I!|6-T)|4g}mji`|HW$#M5e_a4exPL?vzCWdCom9t) zxkVSrZn?_W4RHEuloc)x_^3v#)rfEk zWsZysa{|Oo8nHnm7HCAq#TO?)+^!K@G$PzVnIq%k`M&Wh=V^`Dp%LK=N<_xRA0|M2 zQ6qL~L^y&Hk#SKw0pc4Pu}34q3zUeAi*FE-8-sbg7}rI=hr@^19a1O@X<539{?|4bwO3eKOSX|KNfI!2#pq#pr}}K1Jg;YFuY< zz_{p~7g_KC&ZA+VLDD=!8BpdklT# zYUTT2o99e8%D9ty9=&Dd6LXUfcGRqsjU=dBH&@m4t)LT;J)Oe) zq?_j8YCeZFpW{2oiqB^01UqgTy%O?BkCr}Wr;gJhrjHpzNVe&VXy(UvkR9gf1Ut+R;hD_Sqb2h~$Mc|C$$U0KGEe_V-1)$fm?slt zo>`FjL4>Ky-+K=h=MxfQT8Dz}hsYTPM9LB_BgBO*bau%kpXpIS!^>xSuh3fZnGQ1l z2vdz`MsYr!3J=%1R3gfh2A#rpwRkr5)B-u z;5L46CulD(!y)fS)n{I`p>fXd5Kr{~Hbuv!I>M~&=ptmqQ(`WZl)g2^j9zPu1=pWv zWg5+DHbQY%?~zC@(ImO?f+X4aBuN=^NHUEix%el(b3~HMHOT^ilay@Jz9BchLf$-y zjmdmi(;QGp*N>C2jau*a;Hjzi)@DYJcEo{7v8$1k4X69;_}d`n>eWB9a>btu5Q zOaFOP)6gVi$2;yAzW&zq`Io zk&KS}xLECJRCb_q8%_T>gnP7^%0I)pTlNTBo>w&^)5`JbjAMr%+N_AaC5htFbMS;q zNFSlhXrk|F)|MxTGL?TIN)0nScN{9L&onCEN>GW{wk1!&4j+}7%JoJXiTBZeRq3W1 zii?HS!++hBsdjNLm&2;G>iHW8=t^cP|4_-<=#ImA8OfyK*C+5fKGyg#JPvQ#sOocA z*5|9TKDVMiTM~`5PuJ&^crluo%0JX+Cmx4qjYFkyER}!W?Nmk+Q#F-xQu%O0W?qH> zq)X)R(wU&bRQ`dNQ3S)k8;42<64R*sAVGzx`~#J41jGK!RIaZ~BXM$^#Pmvqzp!?A zq%Tw3rZvh-e~CA0b)r!k*eG*=&z_UsC;~a8<^O9?(LIN${6i63tj?iWW-6V4NuzQ_ zf(ldl2P!=XhF4^!a(z`AiR0rWrdKKag>}Ov;~;y}kazsIQ;O+cja)eV=HEXB2jP;CN=fWqKZQ zDUcY>l9XZLOBD-?hW9-B8Q9qN=QtZJ2{t+<8^F)h3>msaGpLNyC0=_ZGnGy-oz|Ea zC8#i!e@IDZ`E^u~-PkQ0qL{P1U}#b#jY#w<_NVijw#3iz37 zaRjAHFMmA$CZ_Ta<lXD8$h}eoZi(9Qkom4@(lIP$){gVXkVO0;rpN;*d68C3Y0w!MtWkaD4X*+P{mqu)+7I}RuX0!XZZ%e3 z5Z}(^MNjYh_aB3M)!s*2B!4hvxv#u;HHIpjv}^=8CoRp{9Ipg?<%px8>wJweTrEEf z;0znpXH)Q*Wu&Pur(o#@&#W)Pu(stjYxll-hQ4O)BfPTDdFM({k04)s6|6Mn8lM>W z;F3cCx41dk2dw43Qt`RxArST*jigP~XulrD4d4xqq%#m7?#F1@zC2q(q!1p^1?&bG z*Noo8XV!J`_Ik6%GRX@iv9ppk}k#7ef+0w}(r~IZb9Z5qshY-eXXOcQ7XSZXJk3Qi$F{6ln$2(@G0 z1l%;=1a5A^NY?ofo#*sMkZ|dn07pp9`b2(E?!*1=NuF>alxn)Lj(~+^Vg3CTNy5t3 zY?NfyeI{XLmvV$ve(Yz`D`&`${S?Y>;)-8Ch>GjY#V7fgGlh*``oSt2p6rrSlR02_ zA%OU`g(=Q_peRAo-}o^xxAF#($tZJ8yp)AI+VqL^w%Ke4wKi z<0z~6`ckP~@~27^oHvUkgl}D{DCdF&P}8EESfrQ|rxugc?rubY`wtbtWNF47G)Q9K zU@s6GTh4TCapNm0xEp>Gn~SoYS+cW`hrf5bmaPKRSDa0X&N)Elo5H=6n!9m}STx6} zD-&J5NPccnUg#)pz$JL&-f3BM17zwu<4O3Cl<=O+{mc2*V)i=n@HO%vlI7cb8kyw8 z2szE$PN;o9o`9FN%fX8|R=zi;%X{+um)VqYetB_!G{56du7{6Dro}Jt8&yV-cVf=< z;oBew8CH>v>PB62(oFMp9e;3-96rp!B!n#p#j#b-9OlhM%{Oz;pM677@%~U4*JM9N zAiJW}2*(V2j?2^heWVAQ4rh5=&^-8tChaK7$mzsEyfHnOf1>Utmfw>xt*ybD=g_G*wGE+=^V*)v zcc~B3=r0rne6><+_>B{a1n+@tU|()TM0{mZiZ}&ld0=|Y2zJk_9#c0|gB>$|`X!hl`7ve$_CaXoO%(|Qr!o7M&cUlp6Y1MPszhMy0*2hfVkJbru1 z&DN9^20j^!3wHMfBUzU5-}0*Aliv4xuFFF6+?3S@lDz%5e(#=K)b^OS`26PLfA`y2 zzp}D!*S8k$+cRHh+4t7P>S{b@iEEd4e2fZRc5cYpW=?(v%eFtQu=9fz_O#0k_Y(mt z|1mftk7Y@IHq^giMsh3IR>8<6hf$VgCzz9;2zu^&3zv0$-gSu;xcy+V=~8p8yg_7EmEL`C1F03a2>*eE%^N3-+^Ht{rzOZ1Dfy%U_h9G=pf<2G{Ox?!9Piu z&m`Q4@Wos4&EENva8@$mAx(G`Fd)o8Tuj0ujc^N6@J|xvGYPLmC<%XF6231lsg6f9 zVHOjF8Hj&k#nL{f5l26r)=TknM}b0brvqgDy|s{$v9iH5=>#JCPCU25fQgrJu@@*g z(w1;LTzAnWSOQ9<+XeWs6#4c`EEp(unpDZ=seX#Q{8bu~gaM0bfFtdQ$ujexqS8@>Roa+8mK>8@G~H|lH@X*@<&N=6DKBhJ^n6MSU(@R3x>M)nl25rEYz5JB?Nk;F^f zuk)U#q4P=&Fzp3r0ocU?hv{gi#KOnFNvTM@iyP_2W&O^2uwH?S*bTHwmJD|fpM?d& zU=4f~T5FD84QZ*Nwq4qo_Z7$F<$Q5lZsKZS>~h3K#?pdwP?2Q8p+tZyu7PMxY{8M2 z_+=Yf9kSXWud!T!Z{grRBnTR8x2IJ)gVr_}UTLg1a6IG*cjFg!*l5}SWBnG4^(C;d z!qdv3z5!XcUN$CgFq(#7tOpJEX4*`z8JRIDU}gQ)v>r3dHq?*!tzA);5MI+`6_M$a z;Ar)`Dk3wFs)$_a_QTVnmlfmB4*tBxANXgB;F>LZ-SgO{78>_ofd%+chx&}Nf%>!!a*~yMGrtdB_Duc0;Z?Gt2lu?J$CGmm>mRsTen|ChYt0CT2bcgct@U0= zwrM?>ErWYp4D9QR;AffEU88`4r|oI02cBt9FNMEj+Q;DxlI)B@_(KD%p5~vP;CPnR zcrq3o=*Cwh;PxH8_M7LTyzjmcvOXz>t6R4VvBd)gNc#M5kTf%rQyy%3{b11jUh&TP z0lZy|x0gqze2z}E@9RcWENlLB&$UwvFN@^f!ly+QF4oHppd-EMPZ1sh<_AxK@N*#i z!6;%cY(?xq0iO0eH9zFJ@rn5ro}X+#J3eL~2P}wVsON<3iu}Vz$ z4ot=#K73it)X!BEziliyR0*}}Z(4rAB3Hl@7!DrZ=s#{VTrVKiKi`GPsn?;}bf;fm z2h1epGa&nXqwMoxo>QXw2@?oyg5ECQova=Uk=#uUbmdg^`a#)$6}>ItBBbGa#n4IZ zd<0@Cf(K}3PMi(sp%mzHqCy>JSd&vzp=mk&1iyuT6Um*Z?Np};-!9j>ciI5hYjp@EIVAkZ_m7t z^-=NuVBhe?e)XwF_fxPz!5tsrE3ou>cbSu42}Sa+zto<3Nx+)=9>VFSdrQDt@*ce2 z$AV@1==J6=r6~$V7Q^d3gpNP?IW+tym)KKJzQkJcTZ~lGi_)~7Ma39x4e(5R4PzW` zfsZIjh1`!THrU0e$H5MJ9edldKybl(6eh!c;PRUM4WR|^Q;25RbHBCd@|q%dBJ%vw4Ku}TtqzE%!XxB-t@zk#sLJrDP8 zB>5bYZm;Y2bm+p3fb#ctfhfiw>C~90h8p1(JQk4J@t_u}S;9Rcl29}ogdpMq00HYk z2I6_#l^6BO_o@(E!YlFq7_=ZD`3SB%5EPQ)I$p{*hQB6E4jx^KSMyWFJ2qTA?@b(zEi2Qug zf!&uyvYr5cuBJYBDDs1BE7F4$>%juHwza+xfoa{-iFY9jyN4g_mru{ahz#K=Xkpvw zT?6vncEegTh$qu}fd?E?`Z2D#x^bD&B+0>a6k^sq*mUqHPwQ!TGHl6B@qW_|Ge5)H zjc@wD=kZR0K{zRE60ZI6d%m7Ef?kaa9S+q0!>}U~PR=Ggz4%namV|@uCk^}O*@hbz z5=_NB$%bIr)Aesh^Aqg>uB(_qq+JG9xEe9x!+m;DUjnLlr#JzxinlhcXDzsIx&k%O zB};Z!Hv+%4Jz(F%YKj&nu+T)cfM!*KJ|D&7xTVg2cvD5$KkA<`ZHa5zl2TCKV4odq zdMw*4yN7k^xn&D;uw_-7wya&?uxbrk)@!sVkr`OL7Q|II8!JOo0SOUFmu&Hi@L4XH z2+gL{tk=TUgse}CcLsNSs?=ey@9m2qUha2cH;+o_qPHna)J4$0hCQ=1h+BFJr1+`f zr)S0A8MAg>9+?_uEd&p|Y);;7y7xO$vtXYxhX?S2;unfcory;S?3j_M!I1lXXk8m` zD*48`hi$Co43bC@G^__zJFF>^X<;^psYDh^t5m*hFPDL;IxUj6%n-H9st(w)T~V!s zgq%R0n5AJqD9P6Nnvh1eLJMA`Vl-=VnnDY9@X@H5cC)!)i+apiVJz6q$4l*bceyV0 z+&AyE+DmOS!bkI@TED$~y=%JXzU9Z@5pSp4OHP~TN78AvhaU@g?)&GZ_S}=^Rk#oO z4{yBGo_)-`3eSCy`wwpb$j23S;4~zCxDVq^zu^wEd;#}IMp-+n#&gRBj9aoW zut)7QBIpXTqHI-BwyGgpc4`z;){w1gD3go@4?hmW1w*zG&WNY!mr#Pi1v}VmL2g}i ze;lx-W(ZCmxvVDF3)jU|wj*Fqx!rL0&G6i}=-ApBwt4J4|KUEAXSl-sA^n;iP?3~7 z$ece)>F~5&0e&$b3FFQAC+YYH@kQeuA5)>x{=uPk>>t(wDRUuPO#@LBtAP%Apdfix zP%c9Y-XfzR_a3OU2=jnn9(2cGUD#I*=%mSg5Gy4!?Mj}s##%$MG9p=qmN%``OuJn| ztKJTwU~Xp3v>(9@2rYP1$wq#a;of~I+ZxTj{EXVrg4dNy%w6NEa38?Sxo6Z?xZgL* z-mBjTip&_7vPt&=Zh#c%jBOFAfVCc7HU+b$!^Y%~V6cM+b_Z($7rIRMKyblMnZ3Jz zx}DQPsrq7Vz`bv*E+~aAfW2d`{@y{yrX(2@JTg%lsV!l$Q$*`@+S$;G z+Zc#OeL+t)C(3N2LA9-YAjYK~3H zmu}MHow(@esF1r^em$RarEL1er9pSAR5wASP&iDhVgM|u#!T+(Mos<&m@hYL@_!Qw zzu;;66%?Gg;Bi(~s3tI}7OLilxPJ0z*g*Cos13>`B#CT7&kTWcNC8C#!a{`*JiMX! z1v%^c6PQ+L#7Tt+L-yK9c?{vn_Pu>EdibPySSwgh!3(+fV(fAkAE8zaYtE<@8bKCP z%UCybgLz?Ep?=ev(_>m|*eeaIA{MacjEr@EDp9Zg-t1w{H&hJ4QMKMobyxz{oFQ=? z?nA?j|5&^0k>Bvgj@^f;AGrGQwr52n9u513m|@T9H|>f6!*0Ex9ED+hyB{|^_qAS7 z%BZ{b0)ZBr3GGzHp|E>S&rHvKvyZ8qWt+!f!|AI>&9ZZk2~FM+#3s|4Y5U9?b6-}# z&U$!;o%^5u!~Ool+b|j)!IZ&>a-Bb{$GsW3Qud9=WsvVzmtAMrOTkE}9}IPy_UiM< zNbtZ5W+dkV)BOUZfAx7}#rbdHM0>LHE?-!A%sL1gyZygL~Yl2jJtA!^(%NQZg&;fE7_en3`XBaH$^M7;BSJ zc9rnlQcZcV(OkA{u29)7)SJK(0NAdGd2V?Q>s@eUq)6FHq--TpPTy7{WowbzVz{3T z;Wma_xKIYIs`N~8V^s(!K2^)5h%~kHLZ5R6wD=ngj6wG!sU2mBN)~- zU1P=s;A99GJxF&U%T4kyL(0Ixtl0xG1KdCo+~y2$*5POX()+Mi<`wP$xH#^DXTa_O znLtlttG|cIqN(Cd+|+YJ9!4T27Ps-}#bXl|!lP&{Nc#Flv{R!0^){oW{k@%11&513 zTF$x;#&%hZ0ac6<9QaHx z2H$}=OEikd?JUMgEXLC*#c-ibPbFBSosWRdM$rE{R&xgZbPLFnuEpq!616=B2rJBA z@c>|=Z=_K4;{DeYMLvRJ9wA9_g`~)`ITZIQiv56qqd~Zz0A}3EJ8`bhwWXpT)Y;NS zXz4GUBrC88y418QG4F}{T;vq6T~TD%hFUx?!aN)nR)S3*V}f`$o=j^1osetidd1w? z5-@ZSOO0yPJoh|KROWm2s`-=?%(6jD{rWD$&-nWRHcl|7h?Vn!p!GPc;9#(9!{XEZ zaxPKs2Pk&=J(usmI&9#$4W@fHlI!0@S!8eWv^~S}+DlQO;|+Tm%7nWuBT7WF;^q1{ zm*v`_%LOLE3bq8m6JDmb1iX3>LkglL%J^--<+6x>WzkMD%dk)4+WdO_oSkuF0QUln zw=uwTV}B4+(w_Uk{tc9~&~sND-ejwT)~KtDk)hG9#cb9v3wtHJFI zE6{xq&p!yccN=9-$!PuSCI(LchxmlZeh?0aSvIij6x{067o5CLlL*%26m1E#0FVyO zLoT{J;r$_7ez5n(Utm*#GQZeBa4|YCCOt57sqbRM1ST51on`euOah^rd@wWnw+BNt zbFo1{?jexz`hO%Z+#6*h%L+^jqy7OoXyTBVM1nO-Za%mr@K?zUdLiZ*s)+*!(0%!?&v#Dkt+l^m-HZW;jS9&uEG5M zb-opH`rq@y5LXcJ@^yr7hXousC&z4|7Nyg0uqFZw;ac`TNA_s`Ucyjm7)@J4Vsyq)-u#ExQEs z6ReI<&F<;@124HIEy)4vfyj5UqBOhZAm3%h-yJ32VUUeUv5K<(`fZm+X8+qHf296! z*~`mLf}z*tzhpmlU`$$)6|iz!u>NFK4DC5~OU00EsiyUv$d0D(^VAh##_a6yRx32% zY5O$C<@$SWC+0Zqr3GSO=9_SoHajm0#ozJ53XcK^tEM*Zzv_Fm~*ketmgqGZ+8HW|w5B3y~8C zyI_LbO8$aFp2_(+9!z@|0Fcm)0Nsl)J$U5SM?A*xs7J&7c^F#o=u%ul z+)lX>e}*m(*yqH4EN9MHvw@WT3#Q_PLri~f<6CO`Lc9f#H&e1z9dP{9`CHihGft6% z$#TaNvP0d`*&qZzjDsWOEdxtVn~68R4SPP9$=Y#3hjEDNnbs|Grga@@KLlv9IL67E z2MYe)RL&c9&keXQOZ>~ZiW<`ql4wJ5Eb?E9r1e|4WE`yBF3PhIfMK2+u z5t;Krg?*9{i43sw7Q-b7=dmrVunU2IJ+%dmnS`wv!N6t^fEas>$Y9No4DQJWFkX6P za2IJICJArRB|=D9GaFRS>#)Am)=#Qu%w zNGI~)=y!|0=RzbKktpgA1xfdH2W2yKsAlK@|LM)ZcWTdQxD$^#ze6+ZI~gJ{lp+FM zL}e{R+WCk^>qb!U3qaq0KA=SkbPv+_We`B~5zsLNt%ME}dL#w9A8Alegytil2M~<> z2cW+PXgJ5^PQfU;qeRBAg`kmk8Ca1a#KhMD{Z0CGu{~#EUcigy%_EfkAC<;|SFl^5 z`5-1ev8v$3azxgl_dGwqB+WTjUOi4{bNzwpr()3G`)GPkd*5?H#h}=F65Qj8y@z8~ z#on?o#m&?98#FgYh%_qPQowyQgBkbHtd|}Bv7f`N#GK+`_$;O69h8rqKS>v6gBdwn zAUC^UmI;8O;}_gYqcYQ*X$nwXU7Y8zG1jv&*0V9zvzM;KX4wuoEX}Z`MzWH;sip{A zsZBMKA+!x@TxPSUllB%}2gadLwg9>gJS}t`^e^28lz!skZ%?{^=IADt_tiR?Y zh2b&#i!sUl+EMV5nTXlefOQWUF>9_FfMw>(ko(sK00tw{@G0$qRV%s)#arbR;ck{3 zejeVaji7(PR0MoRtZ93eoNW9z&5bAA%9q$R(iFqi5`nEHmDmTm!PB|~@41BlhgBvI zB<}-_Ez9>m!VZgx)EQ+t4^?;qp9Bv-=0EN!vuvdPE%@GYM=x9?xbM<+hl`Y}ovCHm zAc8#$d$tj90#_WnZwD5CxkqL5LZB??cI;0W!~%)`xW|!H|JMFK)MqnSjB2)Ssd$5R zI^CZ7pU{zQTt^C6p&_hMdf6ji z-qR(6^+W~aN(92Z|077prlLUEQsHTv0q)09fpuWf-#egGU<`tkt^)Z^ZTOQD-2=2l z?|cDjsv$*94FF7PN;P!`i5|q8y@c-mCZHQrpofsgZM{%Yd<3*W&`qUw3!v?aA>HYt zEfTN20S#q^`73@*aw}8FjR0BeNIrtxC<3V?ivgXkBRhx;>ji3HKn7MMo3xJx^tglT z9@FP~Z@R}Dc$0IgjmUvI(mu85`#*F+nI(L{PSE%Fy7tIf>{v>LQZ>fJy(h4YZ%{S9 zQ5L2UdD@;pvti#7o^i*jEkz1zp;DwmL-2hAWsiH>mP1&u9!n?+;IN!~toeUl|KA)( zK-qja0iL$outJ2Q;}qNNgAf2r7~jsljYf@;jpsH#^MDm!O@1C@t{7ifFU!@hnu>wY z0I1iVXzOo)qX(q@Ay1 zkB`Wv9Kmdw-(v_JOMy0!rbUa7fUZO!MQiXIV@0c<$X2+DpzsG7V1o$)@fSc>e3Qew z*q+nbEEt`k`%`sb9wyJ2Tv=sArtPEc#eRSv#1itPg{^l0w4o__{Jo{9GWgmLQVzfo zMG*yZQMh`<6&_B`Vhhg=d*#>8u0X1mnc>D!GW7BAVTgtv84WMOyC{S|gMXBR9R0nE zlyWFQX6X&Yci(1RVuXyxdF<{xj-Q|pEeT?`}h)G9b~B>wq$Ym1-w2Er1uSP zKvMD6Jsj3@QaK`LSVEYQ@;^drE(g`Ynw=(gbI98$cVJVCoR3Gvl%ivE9s%0B5RaHs zE|)>1NX4oVz$>R+1xOVFapS_zH1uW>#hvqbRzsr8`JFGICLvx$Fyl1Lrd?i2<80b_ zo^UVNP?LP8pz=+*lUeQpl{M@MXW{LbS|0GU?v?DLP{}pDjWvBjg`L$@VFkiY9lwh+ z8~5uo8+me@+WnX&yeaS?TqbT*+gJbAo|EwAx~wtpG2`WFx^e`~W@p)cD-cojzpeh= z;S2FLWbIHp*<{6r+}kh_srRv&)?jdQ3`^nVemi%jJ1$5{6n=Ehkb0A z>C=mG2Iiu6cvig0HHOK9n30QN0VU6Gnc;)OJMj_%c^x{$IKAQn%*pzD1FBb4q7Bk} z1>aqSDnsK};n9a);mpQ8a2zzu!KC@%NP9Iv0LkDyg;a}2xifj$WI$&n>7z({Bhsuj z{1sJ59oJYLH$#d=0RV>|+arr~6NA|BZ{L#nIbzAK3ptTaX~vl?HRss&6F5D=n%g-= z7oSurLL~+NrAei=wVz3{Nm%s%*aw5MLLg%pl~&e`{UEyu1kclUw(6~vaii%Fk7}z= zOsENYJ^d>;Q$iU~Ibq5V&M+$ktFjM*8q8jwa+W#ZE!$AxnYA0M>A}hUI9!Ctj*8=+ zU-AohYs99fhCqDr-m_i9_rA@Jbq}jB=*-vrmhY^00@w|hvLk=Y@L?Z1Y*2pRC_a3^ z=$EvHzY7{D45koAWNGDsN7}KfXPJ_EtO_%lo>uNOf$z<>ncNrOsr?v_RhHhNLOW8S_7rbdk3B>5sV1l#r+A(L131wLE3Ph_g~Wt*^0O74xa% znypMo9@iLDZ=Tk_^1ZcBHU##?O1s3FYs`AWE~$z5h%pH*a0`xCnwZbT&iT!LIV?mS zUK^{3gq*$ebB@yWRuQ=hTj)2-E%bea+Q}d8)xP$nlr8jZqeeBa%supd^=}(xPkNdT zqSI?qIEXjNZ)LUc^c#)h@DS2q+@2dp-EETU?oqXp)`B`oS9g3T=QFSa6pw-{Y1@yP zKsR0IhZFEs%|hzS~P4rcYLSU`Rec}*ZIx`chR*; zT6jyi0cm=jkB`ubjR@pA-w4*(Q`h;{N!0dQNFp{2<5z44O!R>iiY>tRQ5GWYd<4an z2v&U)wR4B0NcqyfUGz~!u})ItulNOE#?|iUl*>iZJln{@)|z22>T;acTLr=xi>Ugk z%g}m!C*5Jx0UlSe^^QM!g1rBFFOddL36dej=pkw0OS4B8&PK0m2-@y zy;V5cFTX&s6RlhPb}`)0>3Nv__q3gl7pDC?&PHG>?@@Hf473_Og?;P*tn2O;_xpjv(62@sen*rsO*uES~1 zejG`d8Oi@n5T3}a$nwv-cnBlEY*u7ZyNhQprd(i_?c;;*d+b=}>tnzAQ1h~Vm{xeU z9+L~|40AT3Sc16@M}-%^z@xvrfOO-tA?q196armqvF{O>G0tL4FPr^&o`3iR`mW-* z10nZY?0Ns(;|AM)b^Le9=ZqRSJ{VE$IjT737S?nAvH{O6CxU>9qdZ>IM!|8sEZaUc zb{VJSrukCFoWA%B7(OGx77+jO100BZnShC*L~kL${Jo|eas_?{hL=a9-j2RwOH ztdtX-*>1>m5fEf%i*Py#2e~T6t5_r-rh9Ck^DT#ycapO3j^X6p@2jJEDV*d=PUeln ziQ1@xLu*sW$&E*$2TsRs^l83mzGMiD@Vu0m4Q4RUQFYZ1H^Q~yKxn=c!#Ow%(Hqs)jCPXC+Xbl&~eVY(p>-@ z24WKFsPnFhP6He$$&dX0XCor=ldB9wlI74j&DsTWiPNl(w5zYxsEI9{I|Yn9$(rlRAgZaSSbG4QED$)C ziZ|*&hWb8?Ji)pR%3q&gRYmOwl$0EtUga~3I)G3LQS0d$@=ZOtItbX*eE9~GsFKnU zLV0TSJIEIYJSqHFVTZ%%%}8)L`=^Qk&izwMv483iHacPd)Q9kN1nrX*9zjrHf0z5G z<|Ot{jjBX1j1pk-R3P0Xwc{#j|5O)tW_4n{sft?5iqyiMV7S|fz_3C+807Zg(QjW3 z;x}*$RTopXgk7N72qy8EjYn_}2kIJ(&XbQvVK+6h?*;~|n_H;1WY`*2^E%hREIImj z;4*Es;!Y`O7H11p9>|LRTyCLyS0z<6KcR{L8As6 z4JZm!+CZDdjqa9R!3qL4Ks0KxRg8d?R>erNny1SmwP2~Q*u1Y|`6()`&=Q51gh0YQ zTn!f?T*O_25>ZIJ!T0~4ncaQ%hV=Ws{9tFEGc#vq&YU@OX6DRHcF2UPB^O0gTX5;H z;R%kpRU8e&>wkkqw3VrKt!6B>u-U}$m?ejouzclhfp;ur+>76VUkXIHDYJI$2_Q_H zP|=HoemG)6Rn+?|BeXGCv;%EI^?4uUDJE2Im{4^BgEFCNhcD8EDykY~QjMjm8Y{pB z(bXVKt5&t}Ze%sKe~W5VMpUB-VOq7Km-UAus@42nRIOMhC_>D>X09ZiUkN@iJ^b}Q zia0e3A~3cfy*8nu7Z_XNhzZp#f{}F#Vysda=L$yt`maEogsRoHpTLC5^8`3p8cSJG z{UMwB3an(jHds=v1A}Fdb*ai6WjjV0Q{95-I03{sn9B{q7p=7A?h&p$P5%@V3I+m| z-oH4GV|}gPI&t#1E`{X`6_U*1{Jk1#39OLrJ%s(#oN4_3#mwpiD!SE?FPTp5gE>5Ne;17kn(w_Ozt?$o z!?g#?d$z8tUCFy(wlw8qd)FpgM;(Qa;aLTKwUs|fTdUW>;gBgavvG(EwpN`OGQ`$u z5h9}DSBdE8{rBsF_1Bg_y23DLbJn%}g2s35{xn?M`i&fb1V6xH-|6ixhE_ktE#b~Q z++wqw*lq`-=u@;qeubtmT{YhhFBvk@oxBxiclm{5VfvUO7DCSi+w(H4>VNLUohsPa z1sX?5de5+J)$)*Sl_vvBI5Yo1+b%Ja$EMsbz|zTU9a}ryUZ1R@V6J+DuA30eU6P5@ z#YO9|mIj_^8fK3A>$mv%J4yo6DsAC43?+#*tzuE4O{*yIJs_W$R&mrx!3PDmWdKlS znIy6?rwYGd=hVAS_QTT2w@|j95+e&^b_3StUFJbCwOUw==2cS(p`&85=|=#87$wwzwC!{st!z1o-9_G&{M+biOVvAxTyyGrWZ`K^ZMHJGkq$Wd|> zT(B3o(5;x#Dtl(o!Zjppe~T}4E@jn8VGGF`ls!t=Dz`OR+0c!OO+a zlah8S7Kq~sTiE2atvRcpHD=<}%I6S2>w@Cv8mzln#Lu={%7=8pY|yn$7Bf0C1IR5H3S<=QZP?$uL}o^eApY z+QhW*PjM#Wd`quQDGC)N!ITfJ{oj?}I{jjIUK5Nw>u>R348fp@k>im%k&F1i zIqKF2j9s2mFazMy^^sz^{>EKodp|?8K>5(W0S7we@lO!kXFfgE)NP8U}QVJT>lsVU^k9}Xv05hL|8Ih0Z0wU zE{l%24_L&`uoZD2HyIVB#RlQ{*-*U+g@Vmpb!;keQ`~O`u7sW8Y>d|P$rK$8GSpe^ z3@zDNayo{bXr+ci(7tcj&oI}r9C9ag2v*|l-aez5iPB8%=21&wGE`w`Gyqe>W7^a(*a*m;A!&*X z8SuXJ5_IGLd@g!NOKWOsHhI?0K$zD zIbc5=vGvU4AwH(}EptcO zPB{J>8?s;}djGKjr&fSCXYBcX{<^U!$#As~ST|rBzC7~P1mEw)*W7h|*U$AGd=+-A zl~_y&m!!qmFtCj+j4%%k1WQhE0EkeG3PUJ|dk4IPX&Z(~@HUVU-a3v+(n}FdTgs#) zn{Ph7NH_zI*f5l0L%-(Lh}dNalO=a-2&&kXaGIU~?qQ6*BqH`)gh5XtZhC=x0UWVm z$V6<+ULsg>853jL&Zxfm;+Ve0`0^jc);?w5&o@AfVwh}z4&MX`$u-d9(6b)EykzB3q3SyF3)ESZO_e(y*Vt3CqB( znBJV~`hhWeQ2TmF()upy#FcUFpjLcO>*{DsJq!>3ygnlA*h+DGwWFll+kivDX5b90 z?^{XkiAiH75b8+q{ldk?apwPJTd=U zM;@#vVKV9RreHlKbu_{PU!zEa;H9a_b?eerEe^e2%#Nr2Z(8}xd-Q`0+ zUZ+MZ5cS@@hJC9sy7#952?;up(73kuhxir}v@))cfGEQxSORz=5>z3~>-#bye%V># z&p?=vfW+-_x5SKJ{ks@uHo%4@HJ@H3xbWF+AU<8b!dm!y^k-0LwS=}V_`eSSw?X0_ z9`I|})*Y>02`02vFBQq^@{Mk$Z3}ew3rj1Uer>n&=3V-y7$gbajB4U@1S{QCvGbIE6)g#5| zR5H^>r#GU5;rt+tP8UP-mc=pe!*gMGx&U^kRq8n8y1>FO&`;I{3h{tvJS$X|&1!}E zIyU&V6)J_`0}r-ffcIQm?32Y)%Fh(&hNXc?wS2GJOE0#G}j@e8) zcxC%o*`y9Y<__4H(v}F9lWI$s-h^81iSANHsi~q_*W+prN8T>0QR=DbJ+YB9EIU6V0iw3?&-hvqI2X)s4U0daVCb5tzOh&^iNfK&PDf3+F* zQ!qrecg4J*dCIZiqC~~tp;kF)jM~aU-R>PyS;+gMDgid#`@o-UUUMN^6t<_i!kx4| zJrZeqN^e9W1TFm!wYjQD1S%)8^>_DUpD^Oz*CWA3-^WX)?7sC-N)eF-wZVrivJqcmj zN|j#3E`=jjs{1a$!e!w;jk(4y>E?GL7zc&$>wgasYFrWMW&o~-VS0hC42}%LKE#e5 zhDR|m)<78*TgY@w-&{EUiHMzW{ql!b<;dvs;%baOa)c9Hh*4;Iot`qW({SLS8#(Yy zMiPwX$7SFF7w*T%GZiqjj=7K$0wYfezGdWjfRXWsYeNvC#)peBKHLPj)9c!S>jb*} z1b*-QWf9>$E#a5L-?1I&r!i%cB_thwJ(7H0&yi$&8HbTi#V;$x97&Gi6KaZQOY=?RB%M8M01eoSS5Igl5OQrKFR^5l>Sllzqjemb=3GxYE1DTJJuD zq2Xb^G+*23&Zk|Zw$b&`k2Se6iom?}Zm*}70CN*k0kyb(=U*we<&9dNWY6#ML|qYv+tJ6+K{w*_L43ly1Kzup zx1lTaW3h#I1Xbg!QHE2gfBx<+nq~FGM-B4{cCygGUVWbsJMB|Zja!+2lxj?v^hRuK zz)RKGZpwj9|Lh~^yAN5qk55k9p=H{MNHtO?yrLoBo`TLcEh08W8)DPZ)(spA=Tbw? zX6z>-VpCB-Y&z0ImFcl`%@f!KkM5ckl6ZbLQ^8J19A7RRe*8l@>fxSj$M|>W8+4?3sBKL)qWCG@PQI<1d!q~wlP@_@4)pAbI?x!4ID>VP`T8v zYNFNS?-fv+ki;sWc0fRF158w7EuiZ0E%jc*$Wm_+P^h;nqTVLLRlUEm)Vmx|?{X1Y z)_NDmjXVKRCHX+e9t9F-4C=hq=^ep3Z$+Jl0jee0kLeBT#M$_S^csxLLt%C)LqomC zD$lBCgWqh`ebJM+9J9F+hsTZ9>NP#Ut_hULHEAS@7Z zEtd%uF<%rbW6o}1(=sct1&_+O%x!@Oaf_{9!wtL#7?$p^`1m|%idz=-YTZ!-+ZD1G z0-{?LDjH}vJuwN_)}z~747Ar_v3Gi=t+Aqv%YFRA76;8?u(XQxTG+2uEL97E%3SzU zXZ|{){4-eRIqQy`hjg>U>9Cl&ZpyL1RgX1^#VgObo{puZ6Y`cEN<2Ktz0ur+0SZ5`}K*DC{k z&~hxm&XTQSPYNS_nCfFk2E$>tRMUJ6kT!-X`_ZRdBYuUt`aWv2#FvZ?9r z%0H)F8fNYPdY~9&bFLyIznFlCo&F-u-@>c>u+y(YF_fKtKMb!fOgyF0x175KqX)H0#He!uwk`k7zCT>ndKG0L^G*y4;Z*Ps5P#Z;deI*}nv z_A9WFtajW2fBA?^5Eut>m!L;3mL8d-dL)emqD28=+H{{*2|4VMN&CML4#(uz)etEja#H5t^|3j_HZ+>p3Wu_$i&*fU{Mw2YC}2 zkvC<1HSS)i+O(Dviq4Yx5ytvF=l0)iLUzE8(Z>4EY8k;ULo3a_ z@Ho95*;|IOzMh~%cM>C%IpfLCxPUBZm+$q70SCdH6a<-WD;>zrC)o zYxA^ULJ~2q|M8jEaUn8wzy}sKoCT{?EEAA=PQBmZVIN_{3#}2yAtDP9ad34jD-p-Q zo2O{bV&Ki<(8T^$GyPdHv9A>qdxEjOSQa#~?+p=1m~_4}Zr?o{+`2o~_9GoAT`($8 z?79CWB0~_MGgg`@&&kgG<|){ZdL;GwT^1rd3Hw~JiuGNFhJui+fk3h2zUjzg3KT-t z^`&1zUJ=)!o!oOjf+qyTObm60h!K*8`rVI^gDmXeh|Q{{zyrbCYBk(HB;AYx6b;Sf zl!8D=Au8M5J{aAc1E&$U|DQK-7iGDiAa6az?&VcBY&bg+WUARG*-VPYk?p#V0dd;3 zf$+qJ`>Fw>4fh)&4EJ3*T}0C_g!Ly)_nD^9SCj+W{f2n9`}@wtcK>A{(YT^*_t`+U z9hSzP3wePiZcHHmW{CWINttvxK)7i6N0@9Z;G848ewuV8eQ*|;^-6chtcAPT1VLMV z8+)_Z^3&jq25!pWtQo$u8k~)k(tW8)*B@;iT{^=3$w%dR0>_N$2+mE2_KV{7HyYGbsY&NTkmpd*GUPg>ft#vE|=( zk{DUHAjVRKaj;ff*!b;l}}#aT&rBXw}OF4>`Adq zZ?z|d@tdTQqE;cHn76So@ytr!WJc0$|n)`CeeW z@^3KVo=qRG)RMhKWkwo$qfcMR7q%Pi6|x)c8?+nE5xda=SStGO-{`~E#MY4A=<2Cg z2aQEB#iX&Q`E``N=xW%DdiH8l(QQ&M7(RM!d|Jifz0s)n&o#k%y$K&SPCV>dxCfsb zrD8RTZIt0S%8P-t78E#$8wa=1Ow{cgaucnzG6%ylN#07y8O;0mU@P0}Htxd2f2t3A z)MvQ{q{(g8D^t-8Q-6$$^H3Dq`;fu7iqw`r6^P`2<@<7<8_NU>g8|o1B1}RkvH76OwWW3 zRx=idhnJ*WXlt}T1AYb~+$qjE0ouX|uNZ<(cA2ZyDOd*$RZlsSaU;(+PFzu~EJ629 zzgD$5ZidI5$D=;y1kI8E#cgKMoNw{-g4lqj%gJh|ZyZimubzIH!-QFFlcQs=6L$iZ z*#Guzs0g%seUKtu1^B)C$qJGAPE%k++8Sc4Ia9R8QR7???iRa}u_?Wl(uYv#AYi|Y7w z&HQiXQNLxKL*|@I@eys#NyPrGIS?t^%7qtE`%2Uv7Zidq%?)*JR}46nyj#tRwtj=j z5H7t39?#zCgIy(?Z#k8+S&TXB?KtCU=Pl5c|TZF${!`Cm-gWcS&B zf@|~~XYvLARKs0Tiv-W8JM>cKVsiu8^5v!Zc5qMIg^eD%Qb+Zi=(LnSWwf35FY4bM z%V37dks2%DrRhe+LWpPV)e?f8hg!}MN=~sed&l=zw_duv4?DmP*xj9rNHU(5;OfF% zg+}34bQBE68yqE{JM&Kg!0Dc?qn?=?p67c(55eVzxQzi9tq%qeC16HK#hVW1^a03e z?x`l%W4=)g!aDKfCnla!9CS0NqCW)|hxfL@P8c=Al)qvizeVI;2cO&A4C#d1A;*k# zo48Ny?Gt>c((G_1Z+BudKM%(B5Kyk<6PUIZILjMh$3Ac%Ql#Gmu7qjJ_ow9*GB~4GEvGxu?L)8|Vb%o}7GxfkfiXiE?o2h%?F;iRQcbEL`kl$_c+bqAE z<#!`~!3}Iy@NhS@24*lqdh#s65D}Qg5#;t}I88j!?f-=<8BY^+;=vG^_Tv#%2&(C0 zaT%@4J7J_VZ#8Q9p~HKZ+`gT>`gUJ0u{=l9?77uDB#Yl%;#A+gvTie1Zk~%Z=G)Ad zHqV2LW_H73wF&n`NIKj^1&j4P)AQVBo6CFqNMPR$GgaIy!91|vhP&aLUCHZj^A5SR z&|LYJo8! z{}T?{352$-B71sjVNq~$z!}dr?B{%k8!1<{fGB7~`P^%+;zTU?c?#-B_!Gw5=Bi@r zH&Rcses42Zm0G{|@`iJv{vtL4a{dl?!!U|Ihl=ajiGUWcnJ6f`+bNkZbs;D<1Y)5C zbZSvB77Hezk3%4qO+YOg6gutNn7S?mTEkq3{#^~~XbeJ@gd&AN3pEIum{e8qwXNd= zn@WZ!PoxIto2hpps+#R}G%xNl?R>L`Lm(`?hIIRxKv;GS>D^Z#EV_max*QN&$F5-E zFR+`bhJbeJ>pG_a)GZ01jt_L%0qF6?t4tOw7vuCk0#K*}G`v5JiY0AmLpP22t;01zP3B%61c4tcEOOnGDPT2C)O?DjbF!YR8}^HkRfuV=p(CGXPVlG;!wB z7}Y;>6-;K-^44vNwW zhZ_wX2;tS1!0qsg4J)P_@QNky%zI!7yqZ?P++2dK7Hb-t|4YIA+o5`U2d(H9oj>8& z{O_cLMOxJF0+oLnykY^IiJbfgRwG8?3=YkHCIK!~RL?IV8*U1UC9n;#^(3+j^3_ALZ7H_$#2VP^$e=-R z7pPo%4h-!DdX3>~)_2ay#8{7-rjL_qd!>g{WQ-Y$#aXpfoaHOv$hD#UL1-@1!s^WC zJwI%5R?MdGt||sWL8Qg_QX4WZ-@`BqUN}iLSQ#AHE|iKRSKXl%tK@6ZTya(jB6Hyk ze3`T;UbqxK#A=e@`76Yct40CztFRUU%Jp~v*5b>bxq!yO48ls(Wn@O4mqt%rA;@}7Wqweo%q?=pBXbEt=R zk@7O`3(C8vu~ZI;2f5Pb%@yw9>hHRy9sE%jWU8GI}Q zWr1>m5t{RzvX?L*nS5}3awW$(**?D)2biWqaoOc#6N#MGgyD0%3wFv6XTXH+uVZZ}nqNU|(8$;L!USTwcIp6x7| z+al5Kf_ZNdF;4*IzI$#r`$~bZ)sAuAi9;~htxh&(Z3pLJcRh8(%d+>*en~^39r$$l z3Y)p{-pZhmlmn#qYk*Xb#cRm;=<`o}V8H@C8(;n2!`A>9tY!={;e(XTMl<1a==1nI zVMk8?OOM5<75=^We+2(O#s5?If96CXB0#E~Ory2yXWYgo9&Y33C|6$O!1uzw>RX=J z!1tR2)%S94>f?LW5W03CD1ZlYAS`(bo4I5Ov)C5@&^pXNLT0h-(Z(D*n_EsKccYX1IIEEB0EwjAXZz|DUn$i;na1& ztu11(#A^d;K&m+7OMjFcmt&x%A*-k(pbl1o3Jfy?j%ZXE?xQF_^ge|1V5AI^MqTBl zZTYE1AT|{eu~d4MyZZ$Zu}cvqOYSi2P_bvgd1)qaPiJgLMC>wziHVZB3Jka_0TD|j z2V!FtDPm9=$;77I%Y#8>F7cak+r9rX#9k{D!p-fFGef_64{`>wWR1i7WQI@(55rEc z#ShnIAa^FG`zUejCajqz_wrHX6w-e$o-l01WT+Wpk11gBru!Cm7io@hj&&nIu4YC-O31? zi{vah##Kh_z|$W%|5~k=WRhoPBQ`3iwFrzo>#!8SsI-n_3h#0*lGx2HvO%oOwimK{ zs~dbKi`n*WEbfTeb{!Q-!!uUQwgIifHIM;Z19?XZ?5mC01rqy&oAdIm+H4z-PVw@y zp10=rdZp0ZqRh4%Y+d;fm)s(}h1`x4>Q=LDFRwR4X|d9Wn}fc`Y}=TLt>|4-d)V`P z{l#vs!+dQs?6$k&(ZXF*+SEM2sQ4Uumb+xHw%W#WxErALL05^j;--uMuP`Y{sr0LmA$J;79Wmqvz6?=<7UhbwFbfWV1q$d8 zNA8|OLoyZGD;thK{nz^bVDI=Nn5fQNQQGwRNh!lzu0EZP|m*_}f1}K1lu2ay> z@V=|OjQfW2o`&}&c%d7uh1aLNj5||#cftFJ@}4g2`axmW^%hNOYu9?d8SP9g!ka)Z zTXlsJ;XE7`Ey4-YhT>W9Iw-=gco$-}IYPhAMwm!?4DgJGvv+XBQ2gL-#BPa*-5+7v zP@G=G9t=ke#os|}uPmGC@u8+wlFna&80xh~|8vCXkHA=fP%Y-^1x5!P5%c#TcC?sp zXJS)K-y!BlGKJ|I3&%eIu@i1k9R1>I+>j*Vzt7jpm6|E%ZLu0P`5CQV8k6Uoqjp(d z6IL#vTYe|HB~;7rC@RrAAkw3BOQ@DQ)+N0p7M=lVO!+RXS$dRaiIqQEJ||7fbd@|q zDSo@xwYn3MTT*1^=PesBGW!J(N$z91aG0<%Qy3t>r<`Yq4(kiZsJ3uZ8)0 zj5$4#2J1^Ik%RZ5EHalE46tk~?{K zH69AbhZ~RXmBDr8wR5|I4B|4s;FFq;yxk5g-z8&gmlNWyywB~GKI&q6I8!Tcc*?dW z1=97_yqxza;rjIai%7UNO2Xm3y8J$8o)^$gR52*w`g{zS-MpVh^P3Q5hl+9%-Zjem z9lZaB7gBBwy#G*M#$BMiJK;5z_rt=j+v7<&PdU~yk>voH1Qz{E^-gRRWkvN+t}Msv zq0|&P|Dzk6|5DE3CeeUz%@InDo=2j+jjEJ=SaI0wAkRr0dvTgkiKd1J@A zy(6nA7E%iS6&22buM&gcIBn`uvH(^UHM&nsjgfJAG&g} z%46uC@hM%oik@@n%4(^V-IzGojqg*gyp@CRg%7FkMWxDpbDDCO&rt5FC+M;pm%$U! zjiqwBCztt$zC(-eM%)Pwi*H#GHs+kB`lb42;7eQ@jkg#A{b=zW+T;m*2=FPnnK(3y zdU3<|&7zV(Hd}R*8iJ|KL=VA)=~)ytL77Fp^e+s7X%RCWYCw7xMK5Yc2_&eMkQq*Ke8?JICq(Q=N-I4$DH!=VxH81(A&^%&o!L^3+B#k>F`^S{C9fos9KHR!x? z=I{?;{KZiT#eMxznrQALY#4?*wE19o%V_L>`O>o}Np+uGofO!A1Ph(qI$I4((LgP} zoMt;jO<^Mat>?f*7x$ve?C-uG!rY)jc7hH5+z8GO(KRW)R zEeO6ZB6z6^rsE%q;DlOVdjJ)xfz76k6qQTgWxov*>}ij@#~n0VHK$v)cVX?7WbSE9 z-Q!hzJT;iLB$>VU;uG^7YI(caGQg`;=>I9_AIez*CvXb9 zWXa)OCO{^vpJY;kNF)t1X-vHrA0!Mg{s!L0R40C!qA_(ie2U=RM#762gOu|#<@^Fp zz(i&+j=$mncf$Ef;Y_4;nYee(`pCjVF~vPUQLmqWIzX`(AiX1{f@ae`GR8 z0C_YE3kb%X43JD&XQ}lGZ-xWrISxFkV0hkPo#a?lCR)mgcL-=gp5^SQWz!g*)A)6E z09u=Y4es;s3?>#VnvB^;nag{_g_T_Iidu_kfd}w4ZVGVKA(yx1*h?lNcaK6t!hun%U&WNVq2d>M1*33Gl0 zyB7AcB=mgtQu7PTX$-!P(Co-N0Q(6T0LoE}-}yUScpKr+USd_-3Tma_sMt)HxgT%6 zMV>j}a-VfIe;0dR+|~SmmnhifX8)g*?i<9DmBH1jqs=B1*N2y{#>!wDRtE1xN2`AV zrgnAMmdwMQfBGW+CWsq$vXmF>X3Af&UgyZ)j+bG4nJ+s!>bZzBt;ZMWWH0kX#@~Ss zXm;bmw2PtKMFZKB%TItYyqR;%OmzaI2|et9@Jd_jfW5SJ^R1eJYPyWu+rsu@!M6-3 zsiYH`Z%VUROve70dQOc@-2RtOU(K~!)v|ctc>)T6mL_=}@}~0|p&3-Dh)Xcu7MfWe z)wvy&-D=GKtHj=pHqS%gVF;(am`n5AUWQ8y%Tg*`W*ub@UM~2ennMp1+PXr#xr)`) zrldmO@be0NcjC~)YB}`4Q=OCLIz8?TOva@I4`JKjp~J@7hDwroDaQ-kvWTlCznJnF zSjs4W3H{9B8{WlCU*Iq|U@;bF{3_Y^_O=~JAWG6jloTmZvI4z2T9go`&o-e)e|KGI+Lu=kfSu^PZcv^AWMtUZx7=Kzl?NiZE^MJQ7~9c7ARVOgjFf4QHX&-wu!o3)MLWT2KTo1nCkq);^(2m7+^QoW>$dpJQ;q zJCKd_`&ZAB{bk5La1XLowhx}Wx1t1<+w?hx)xnFfjVsDfb=;7BtP{=(-k5IWmd!o0 zJ;}J%p3-jQR+fq1mC|bD&Mg)HsFY?ScR{iEi&AQh+^Uh{zmJ^jANg1fw=gQMhakdh z2agREqz>=26kLHZ?Sf91cT@@t7Dipr?(!C;_+4hv1u({&meR`5R))4P6tdBui??n) z+oq*@&oggxK=**Ji+S55s0Gu`w|SGy+a7WQ2rr-)vFe1Cm&)sIH{~%$$ zzBvxxOF2yB$ZvD`mgJ1ZMA9g~>|#zkUX=hCEfj~2m3}h>0p8_oK40lRA83@dO+zKY344aIb8U^e(6 z1pEwxo~)HyfzN4Rs}tm7tuDW=r0mlRC#q=wlPOtGYf9mQM?_{yYi8s=3n#gH1-U%?bVYS_;H zl2);!hW$~&6gO(v6$+-9QNtQ=zz+E;UevG$6-=?BhFt`h^XWBYJkn&=F)*InyCkPl z_*Lwc4bR`NC$c3uTyY9M1Lr9q5aOagfFvu$22f1B%k6zK+o_ELJp0fB089!2d;(at zRJd3d;wA;_w8B2T{6DY?+_9Jo%ncy1gn zUL5A)85SLuD z07uK>5egQ;#a~`7@glhRZweN{#XncD2rfR1xhwLB;NnUJi{RpZ3Kqe|+jQwaQCF0MigL~!vP0*K_|Qoi-SA|E*74P=fi0RD2u?Ru+a$n~Fv91^A}=M2G5A<|d3* zNl>9KfB{BOi<)%_>toTPRsf(AV`!NXl}syBo2X2Mvok#TNQJzb1hy6KG=y)H>!2^SObbG5Oi?k$XF0h1vqcyPA3Ov+A&Bxx3nZ+nKMEw;jDC|Io( z)?2|M`a2h4# zB-X$j05x{!(+%uhLF|s?`OFMCO!+_5!CEHIKhWNQtq7NMS~2Eh&8m!5ba1ngFMXTS zH*ljX|EN*UF*g{)H*lL9Z)ifv)ouSn@>F?)1Bdk6ncu-k+=l0Mq(79`4(EA~tOMn%C(hy)B61lx^tq`h- zkeD{n>3yM@-`NXD~O0i*mQfORCa|MSkek5X`OCQOfXq;{0A8R_(mO2rb^ zCsPiB2`pI{o>zz=SidigS+_{jtHII%iNnf(6&A3IsD^y(2FKHDxFiPgtXIa2S*PT2 zZ?z(Zg}wd=9{+3GMB4=0_|TN2i^Q&oGpKZc}O;=*gOyr|rDp4H>s~acuo8xfTXmX;C=t z0uD!Gp%lSc{xM#307bomFYq?E7R=8gpLa)5$Z%0;45Gmc?$Y7vCJG9 zg<|8;Ac|W@s`Qg51y*w_CbkGOqpR^;II*gVIXOG<7)OK{BE+ZV?Lff#N6=DwN8l5z zy2eAZGN%mXjH<=?Av_flj2LJX)ky;-2{7S}<0v%me-tc^Jx40!#tYEdfo_5z`YOBl zP4a}GIAU!Qw+nE! zVAt32^2Vk-MRODtsx<=a;4zec=p-DO0+R*JXZ9H8tU{zHG*bkPFegL#hkmjGP9X4A zytZ|C^P^DQ02Gc!$X4*R^b(9c-e;f~! z$%(>o9dYQ#vq=T=WEKWhA`C2s9c|pgP_c_-Ig^4o%HRq7G$D>?UcbnKLo+*+ z#K2*g^~d%!aC;|ofv93^IHWXtf{DRFOq^5%-oa}!@rKToIg6p{N0n)U1rvjVm^f1ij7o^9e=Md<3nm5! zF>y*1IC&ybnf%ZiqRO-$`}sjSF*t}RiI`qUh^aCbQ<()5gM*kjp$ptBm}2{TJQd?+ zK@@jb+#&|_anQt358C&$W`ZWD9=J`JlLn?GKoc_-EeYWWjzu#k1+GezI=X*O4yV@L zb7pp6dwZhR>BMv;s&)Db2Gt)J9Hc2H>46f#6ibX%?Xey7@P|QSco?eitV&})?~sT3 z;-Fa^i{_;;8ir~#Tx$rtln9L@7R~4|8ir~#T*e645~1-Y$57{@FdBwxG|+UD0!Ke1 zmE%;ZG8Rqaz7TB~s?k)z8}KGVlN*bsER2Ss8chMw^iPDQ3G z&;kvd*u-n8;#f4j!)O?)(QtV#@L(b|TtXT0kuxI-O-oCVNcNl=K^$|5<2MO$WJTeaXTg!BaA4Ux&|MHjPnDo~O^TI)cL)lZ zj5Cyf(7ehhyk_EQiC6{B>HT?BDK63|oQ;^BkQNV6GbXk`YFrd3Nm^`48b2UGq$CXG zA4-x?AFlEl#gYvag2K_faKLlv6kEtG#f1x-91klW-@wHhpV6caO;e{5!MwFlWGJ-{DZXUgcG!u6R$K+Mz4D8+DYQDD21}> z;WnR~6nHdI>S(QIK{&P6YM#svTqUXFwQ!s%_FaNOwQz8b%@&qP_P=m|CSD7#%;8)u ziW=z_Obq59F;!Brxl=I3(E;M6I5zaEShcGLbPG1MkD&sZxf+Oi$&uN zqhY88h$$Cb&6 z(8L*6KHL;)^l@%=sDpeVaW<(ebLp2&1SH>qolN*aB zEsTbt8jXxA=OseZ6f4Q=Hil@!P>n{$m4AGYpi+}!(fl!thM^jbj4Q50XwqWQ3<#rP zs752>%ICWhlqSx&a%@AWQqkke3yILg8CMpC(L|3c`H9fP8CNER(L|3ctveG`stQ$) zl6aSd(J+*M!EwbSXyS}3{bTv2c|B<(;|fFhhjGOLZ(z?3mL{Imi8HQL3Z4Yx%C8b& ziXK;P2_cCcS3bn~uK1;iGp>BSje)%HX1?-9bAr~1Gp=lG4ARCEJ+6#QgeK0o z;t8XP9#>9oNl+SpY>)hT7!5=D7aUh!OoXN~7EQ<6P^B2E(a5;+i$rL0W6>-PqhY8< zBjd`E%?T>i6f4Oe45MMFMkC{jnF!6KSTt9K(J)k_k#XhvL}=1t(d=Clq76ee8W~r% zZ%R<9IOEE^Fq-IbWkw=2amE#Q7)|uJ(mN5FIOEFsVKmX>O8v$Jm8wG3qa@z@4I$bv zlz+i-8ir~#8AS8O`UI6)8jGeVjE12aO%uF>J?q0)=r6{JT3~Xoo2_D#H-O@|D2(^B!h|OR8zc? z08I;GMX{bejE157Lu0qY3H*r&gimS z(qb{)Z^6XiAf{|$ zYHCPSI}R;T9R4EG4QY@xtEtnV_#FRx$ zZ>&yKyDG$ss@+fvCI<75oVfySz$KVs2ahKmQCK=wv1Szcg$`oCJCenL#`-g7-Yxd* zglX=3RRC5Oi2og;_MhxaRi3!p$e*`j=b1ns3~N!G9LJqgb-3g@ z#bvJQ4+xHqLt^E^hZE#3^UZAW?SwGQ5+7c}T$BNyBl3|+Q=b389WcD%u?FGRoAR3% z$&IM)_uEcQOT{}IZRZWB#r=#3?K15# zJaF@9_!di@Wp%5{qZQVl18Tj4Hoko~Z@#l+!4PEOhl7B2IPB%{cEYRQY)L{fIQ;{Z zFR93zE$hFzGO6vJ*bKi^8P*~mGyHW-h73W5O>ls(84h<6{C@;K|Dda+F);yhnP2;{ z-v%3J+(QBBj<(?msKM~^PR`jS{qU~TD>$jeYm3MTxEv^r*T9ZM48C*cfNRYD17nyQ zoaRZq?$qMWYjY?2F$*=OU5vvNoP`>myAZ{;irvHQbEi4;>x|jANUAzKIPT8d zaMU-&wvU4PQtTn1VY-@Dx~&h7*YA%5R$bV_bCG zA5T#+)fUopx5*I2hyX zwCRH=QMCD?q&i31Y%p?L6m52sHoJqg*^BCvHWOFFQ$*TKY=KW`GjW5!G;Jm#jnD=c zwf9(!y0s*rjmnC&QCV4N(__LtLYrTwfwsTSHRjlGJdQjPL&AS8wLX5LecT{@QgY| z=4pn{b&AZhUSJ^5S~3sPd_m>`2ll8(1)E*@EmQNrt4=)ghqutyxs#iOS9b@q11WWO zh#F*|Zq8yM(w*5L@|^|7oC{EovlHn<9>_ZfA}vR}C?fqIK<7-PfRWpzh_s1B+7u+x zI!&aBbwV0)Q4@R*kw_B*0@FmAh%`bZ@JEk2R1nuSBqWl`jzm(~36YH4FVMS&XPq#L zz66nn4>ocG=yu8Y{=|EW3n)*XFea?U;R2&#Ek+e*i7Tg3unEV-@Aar>bIv6*v-HpfbI`+$1Fi2=#Dp>c?d1zZV z6kIa0%Xf>zm3P|N@u53;iQM<*^i2hWJoRQ3WUM>61K#D?^yYna!suSuf**G~en$K8 zGrko+_v6N*g)NBUGPgU-#)<-2T;b$QC2_V{rI({Qv9$qy7-?468rh}?rbU(N(rxcu;)k&r6I9|lm zZ2gJTJmJDK9m(s+%w%0>#~uvLj*i`S?=2(U$vbU4ql4=(lb7Xi1soT_Il#OR&voU2 zW1f1f46J%q_J#TehHYm(%+XbLQ!c}X0#%Bl#$(}I%AdG74X248hHdd}-dAs)gqqpS zMfV{(E^2Qoy(`Ih?nWGu9bRI;IbA*5fl=3(vjqEr=rJP^&tVoW1|iv39VH&7M2z9y z**7nx9x|t%UDm9Hu8C_vgO_gNa~s~fbmP{~hlYEX-Q0wz7%+x=SKi!8+9rSL=r}Ok zczfB+wG1h5JP#i$Z*IZI@Z@DTbDh?ad>Ze9Ro!0FYs>B4Ui;lCuKdO+AE2&<(yx4~u6K_>Tac=5))g-nZQ<|; z`Xam8lHG`4U6VIU5rpQ+U$G5^(x|4(XRk&zn?{uM>OS1-`Vfupx*UhfI@65Vew;`~ zjpY__cbTL7V+eF{FNR~L+BmZkYIZc zBElX0@$}3=fSd*Ra*l-W55sz_)lwmaR^lxI~>lz)hc1a@t1QR)FM?42{N|t1zBd^Xq;7 zAdT@%JC1)#-HqHj+;fa^p+4o(E~s<{$=3BWksMJ}TZ5>eP$8(cAA|#mn9xt^p@fQC zCZrj;pQFkX$kb#Pd|24!u3XmOAR^o~7)7NhzZFul=dEMmn>h(_g;F* zt$W^)1y=b4mHC8>bCQg6h*8D~O}=E5aU{y;1UelE{+cl7SiHNJ;UsMiBVqklUC{nL zoim)eFM)Tq3hy+4ceau|2ZVPTkhpZc@XlKD&OUta-ALYPfv;_YF>6%3{*sF_&oy8>A>z>x5&w+g zSOgCn0m4WLo)!om0J?l9Ea}J^A2!l&wEDV=h0Fy86-y$ z-T*235dS~I|C4}qK46T)yO84!;6GHiai{V8TK5NxOPKWHaoO+@)5Z4`z(-6MQ(9dT zl2MRM#w-rKLHUBG?jd5XVR>8d17*?3=mIeVoe2||anR4ZcabN)AZB!jS%i@}R7srh z3s({>vW{#*=2)j|cLzCw)xRef9_s0jk_o<|?69Hvd)@=?02i^+W0A0@Z3e2k2mkRT zchPCIY*AB?*~aZb8;|>hKVKtY+*Z~ZedUsINPh8yx$r#*Y#0B*!8#M$#dl1??A^9-&TynnGV=V2Togl0k|rF_*`qB1Hf$UPzTR;!us_80uVD(FqN6|GQq zF?xqJT6h_vRoKPwY87@VyfW0{7HoKTP=#Ij7F5{5Ru#5@1n|wLh%wq6=RSn0!<&%KQmDfs5f=ZUN?$CK? z={|qHgY(#oZghwH(p|WSX1FiY;YvQ_gs)_tXm>{L4%{bj9{QgvZ;!(_y4js~7|Mz} z?~vA~OKd5kVY|GetAK5MySt=U4#dg0%z8|w$EEC{|GqUz{D2~WxnVQ@W6&-lI~VOk znupP}<96ad-Yj25WfXippM{1yzS;i+i~-QmoliH)6&3jl*+q;wr6>R2sp`;2E4olc zFBz4Squx`p)hL}EH$s1m<-4HH?r5wo8@9nkxFb%a{yxpxu#I2Q?j( z!X41NLyG}??CAHSL*z2q~UA<7HkH@<}-=@OF35aoqn7{4K$rkAt4HqD)1r;;LU_msJ! z&2T+yysT#p3l>=30XPvXrc2MseChxEWywI($lUDn=vRut8SUxYTukEdR{y z{nW^si$%;W7m%rHHa7xb98HC$_yUZa>Ddb zUeIIW!EhQYJ<_2EPTWX(K(6-Kie;4bZM|5P_uSHpd%pn}z0{a<2^tuB5?BAum0AZi zwK731yymDDO>rxXqE-(FP|H}lFT^`d=SDML!$RI6bE^G>AiY$Dg@2Tn{BwwPSL73V zDKGhF2SfUX>7~5npHISRtn{MZJbowXbqMr21pe94b}8xg7njhh$5gn+oD0u|SkkpZ zto4Z|Rt|`@1H}4-thG~!B}Do`h)DlAHzL(qh!pBy@#r(Lm32)KDhPd)m;BU_h&~hj z;WSqIq>!K1kUp)TPb>JTp{*O})1zc~zoeNC%|H%zFv<_S7RoL{k${_FUcgJ5BnqA} z`;(FDCqcl?Sa-*|{0(bJk2R!6Ya2DF)GL9}$i06q#6DCFivMxF`v3;FM{l^0tLWd| zM~h}sk1tt%fEwb5+HrpwL|;#L6|_*yW1x68QSp3avZoxgUk;ntdWdCbk#Qv9m+Uwc82`K{^I`DX`S9brf_>~0!9<0q4N4EW3 zUfBnfm#K;DOkh(x2!yxT11E5X9Gn%n3Dru;zp>kDclFrpD zKxe!{mjQZ2D_Vr%(r1#3>v*zMMkV4nmL7_@yfc9ae#=>UdQ1F=lyAp)W4TmAoTr8;~>gc)fFE~O3 zEsV4v90^ZCqEF$q_4g4l;0*S8T;>U6!3V;PKeD$ct*HrPn4oV-7t1|^t4rl)9DbG8wN~)>Ab<7BoR#%~hw(3d{9j#C$oEoI5|D$0! zXrESe9i~xq47W!0VoADGC0!bk6jWS_6;(FJill#mnlAzso`T173HRfngopij3Lbdz z47_!}p8Qe0lq5ID`%#>wXzo^9buDu6_HLhhH)brjvkB`5WSa8kj7z^R$RKZNNYQn|7k|a4;*f>#Svlm%U`U^GCW+>dCP#Ta zIiv|3g7>BnhggYO-Hhtls{L^pq@jQef~8={RA<8gc%0~bs+433~wY)Z&u@?h^DYN;K`252Wn@sV>FetT%#p$U* zp`v-C$Dbr%UJkpEVv0&YYBG?4k{f;N%?b(ipP8U=O|;;;$cpRd8W)#C6|Nz~l@*DL zq5gM(t0o%(ER@TJee7)JfDDG3P(-aiTH z5PBa5ufu@Z7C^&;a$r04EV~J~><%rYzB>b5!nUFegOS5GJEx2|YQr3-x_1vi**z-Z zR+&4ooitkwJ(YjMe5lOQsicgIji#cXsjA=(nT}3%8CF=msWUEBWvHo?bTE)Z4bkj$ z{2gxs;am$sG6MnxA^k*19uS1<5Zjx2br9hKjj%u=q~m{$2&*gzS0FLg_yi&SL|6-V z3A_CaL3k)jmvFI0=uimh_(v1rQVYT+Bu0QBq@M_z;qH5OQIh}1f^dEi;R=m#q(Vr? zpF)JS7KAMpg!B_(YY^eCC9JX|h_Fc`9IFu0@xOy8=sKyt%V*blBB#I@le*<+6g;re z1|IYQ#ViR0(70zr0I6rU3cbIF2!cw2q*4~*5HX8#wZktO%AA|Q{z?)dM}!okC_!ON zzrSb5ir`_s^rc{Ddi~XiWqWY#3oHxch`3_J83+Z7 z((%tjBub_)f2zqFqql665U2x)u0%>RAklgYL;bgDWd8^uGsex9rS>LzGKBCc zB8-wz4E3MF8zWjqX}V+qEFBp2pr4e_hRcrZZ)9{OwRH4c1O@dO`Wd}HT+wG1AUcM{ z1^DKDxoV=L$4AiQ2K>Jbdi*$e#?h0}`?J9!l>H3JfKeO*Mr7dQ$B@+6<+=l#4R?Hs z(Gm+X6JS%=^EX(1%*1nxUZdee7!y+^%J#(5J%B?l%o2~G-AaGpjn+nOG zp(wC1rr*mqv)nYC%joeuf>5*`OpnrG{gh^46R^KH;kYrT_f$l+qmTVgl63F=ieQ?s z8)zrgIlQTN;@e@SJ|W=lKg6EfuRxmacY_SwujO7`8e(?0Wvnjm#M{?u`DKo2g$2Mb3pOZh~n%>vOm_cpyjp=;^4lwsQ)?G^7r$JmP zH4GOfU^jF^hmhk=DQ`x&Es2PIZU54vLV%RSMJ_+QVAx($FwsV=a@Ni{u0{6Ekw4*(`?HvR{pgQYN zoyH8QPOeIM87go$t8;H;b(|UC=-_%r#QZK7IyL6zPV*ELzna<~SYBvznVVd&oi(@k zU*B~t2KA1br5H-y#eQazKi9bfk95!EyKUJ+(U-~_@T}s;d|<8=2yya9?Ehichlzi{ z0qZ{hUBe_AUMW{wAm2( zp|qxgm04leD_E-)w*9A)mgjRqX=f-HPyd8qy%mh&DFmxm^(eN&exqQuR#>`%rGXTo zwEw&r9~K%pla&UopK>6bW^rvenz)|pk&p!C=oe~+EqG^*z`;TmxfI>-lxiS_y^g6~ z1)>Ng-brxdylwURAO>6BQ#lL(PZKa*qPMLqnHZi)f?XX64MV`!2daYe zAY%wPTmyMXG6Xy(Z>r&PDQOj5MV|ndkeYni}?ge@UxYQ^W34FvXf0_5%e|tf^sd-5_ZdYiih?3Z__7!#b~*c#1VO zY$0H{xt=|jG?CZboZdGp@$CrS)IR`m0OKS!1ltX|I(=`dr`(oPVj%g{yCUw{|2^UW z5Po7LR{)W(2W`SJCJ?++I9wNM3ScM{wE|$B@;Wl-RS2QX(-98XiZE>2{Z8-vW_&}` z@VbXMoIWCti6&=-uv7>@QpI8P9g!Ir9)r;>oW@Qpoc8n@GM;qe7jZ6#oz23c!RG=D zPsMerC(ez>zl$yWOVfZL|DK?EnVlZ!IHe`THG?MEy7XyCqx58Nt8P z6fA;&FIBJz{;jz}(nj!aiGoG&Z<>Nd@b8;=nGIqnf`5OdU=jS=@&9o4E$~rPXZw*P zHA-+p36LVxsPStsSfgN@8q`D*oP}LT1=>VzsqqrL(h!i!#b{W~I4ttDrqWh4{i-eB z*V@un6h$xzLIQ{c5DgbKAnLBDL_~;)@PD57%+Bm(M(uxpkeNA`XU=)gd(L~#nVI*& zV+^E=(ci~aSd9J_tFRdTeIJ}_$Qz@-2Ex8cf6qsnc>QfV7h&Hp{@#o&t-mz@ z;Jhh21wawo*3S&Avjc1I;U^o*5Fqm=9Np>LMq^(sX8Lp=0wUSn`P*J)Iihaq34A5| zYR~4hOF0w|)S~}lM?#gm5J>te=32=FX6JgXPgLhJ?##DLTMf{lF-u`ot+4N_u&(H^ zSNco3B3KJ6-EAtYDLO1eg>^@VJ(nqY%P;}6@=jq`@R=rrVWQOyv*Jf4I{J52Sdz4dIWKuW zL-JNehfPso&Cy|JsIZuh{$~&5lsM6%Q+P{!BasGjD@PclNZvMI0&m-%bEpSVylsXA z#PYV~tFRulwKWUa1!XZgjeshXDth_1Zhkl8G0Vf&mKD}tg^{7a3R?q3M7rkauwSS! zvMX5W&QxLKZm`0h!3FY?8Nv#iz_2JKXTKIDzkdUDUglNjne(cs-eLFac9euYBLj0* zt6$HMKzwB-fo6aDE#-kVF=w~TK~9kfvzj*#R>PQ+zU6T`4b0~=u!p#j^<|IYP+blHwmSsSbBag5DBQLX>22jd_vx~z-Bq?PYtTyU~;#8NS3o0d{5wik)0yoq&_0FMXBiDY>Eg$ z8*_zNDwDtM2T1InfyES#A;`lr?9l{n-<5(z5xBj=TPOlIv(dka!0jx_Arx;~Jb~MA z#PJH|*E=n+-b4@AXr5N~QNU{GW z0c)2LATq80DXl|WxcMxMkui8&UA+J9q+rBtV40?Q_oqC8%GdseOj33spf;xJf(C9tt8n;cinDZrBa; zJa7Ws0@#S=wp`SMb!RVh>ydpg-Fhf5bd2VYp8bTsZE2!gDQC{HJ-<@UL1H+^ zq`qN!883l}K}+Os`zxNYfmA z`PCsd4(2)wCcs$!;CGDuGhFQglR&ALY+*z>IUFFl6Wv%kHAd?_5$&=X1AJvGS%~|; zq(~BB5?W)Sg%M%PxvM&Ssax)NKaE9pZqY11o1+WwdOF?vB^i_B1bJ#sqz-DxR+2RR z%GUzPK`YiZAypjCbHFhbld=4PSa3BC;ZN}9YodB2a<|PQL>op`WR2r)dzdfJ>TiQ+ zG>SmYfx9hVN)gB1cDlzob3Aw3XR}!a$&3jk%RenQ{7+NQvsbARgs*qO_GtZVCdQm50&%u{@mrgwtG* z)^;IP98hO%q+$Wa^5@rANw00dE5%L%T2LK_@u-DST5ST<;TRt71`x086Knue*=J{m z_v2M&XJzNt`*B6+D+tOQFq%J_15RDTenE2b(Z=a;98%k?h(OeASs|(QWB8M!j@@Rh z19{thz){^M5aDj~>M}tO-|B+mK-~5d8zsWq1{9%f>*IprK-%_Mja8NiXB$u~$~K3A zU@aNh;w1Bojlx*|fWqZUxB_%-PACp!ZMWJe5w13%a3K^vjaS;8P(qj^#FgcI8-=lE zS-8XsKkb6jkchJPmzG=@YoZ86+gP9^4sFh}h(`hAV)+ibu%kH{9ls4jbH`tVqD^;! zNiaHRSr`$c1B$jEyXB7Whg)VwDiWa!1w~t^+qqSGupEhN6$ANAoo6h6Xj`tt!wZ3u zC{KQ)nAinN%wq7n4YM!9Eg2X6;eKu~D-vP8x?9x-FpT97Fx*cFuRiQj8Z8m#IU9zt zCJeVK!c*N~La=plvbo!aVXO(0M3`P~Fb#+c1nZ zVYs^&zSs?>38~^L)qRImDaP`L&LFe6ZHJsYctN6s{|_i;2WKpQ=-}L`3{P`G=}fHB zO*RT+O%(2dhErTn8WK^yZ=*2QL}?<*|A9!&$&lnGqIBMF)rhesN)b`YTu|DPC{DV+ zwow?%ALP=7L--h2&>YILAfAYAyaiD@*UZ0^`Txfye>@4B$IhRn^52;s{wXp$&!MUl z2fD4dQAN}oiqZUW4pql7>IHm+<%AUPy1&5!!7dN;E2=T#g|BkKcqu0>u{76MK#L?g zQkrZc{Rv-xIZaJpk_Q)Yjq~{o)=SOZo6W(FbLCEsb|pY^Xr8qW)CSK0$5ejC@`py| zvzqW)e0b)75-*(FEd&t`me`p72M8ASIU}qsM`T=mF0xPpj5W(4lm^ZC*3EIy?Lw+J zn76B~5rMJ%(fKD1;R-jHWr&S~dCZ1kEPsHJrShqR&ZSA9G?-vvC`to-PE{TLn_KSq zSxbLAx2ztJJ3BlTxgA=>iQ|0Ntya5oYm+~;EB9~1pMf;Z35Cn7I5|9GqcGM)Y2c*g zcaGF+&T}6PFq}&|%zb|72D2iu_ncwFFqXf_+-IjFXBtYQCBnRTi&YxNnlLi=nd=4< zLbr;O%`6*+u_lbneTKNfG$g_dvtbx(!pPjG)sZs|mC8+odGBVcQj9fWWbSjT8%%qm zEqua;VXO%wbDwlKnCe8BpW85uHDP4#^Up5l{Qtri76UC5Yr-_)H2gxRi->a*VIH?(7;C~55oVejOnc(cJ;{b) ztO+BAB-st7IuYg^8-}qaj2My?j$CVKskB6xwrQ4Z7;D0aA@RGxI2e*T8z$b69C0K` zLunig$xm#Ucti4-8;pY?IWpC%RJ=?2q;s>gNkzuGX29PoQzbac zkT9A*8WN4Fb2*Tl1{?=NaxQRO49Q<#cSMOdB)g|X5E2Z@mCguGhU7OEO2Ufd?~WvE z&W6MX7#Blwog0jUAxX7i;tk11JDhuWf+1;{94ShaA^E*q?s!8|Z|AmGBx8}=sa+im z$tdJ^F(mszi{^ylU`W2Y!9s~QBo6`Q+ZvMR0OPVE8SDn*U`Xz^Vd4!*ONUEoXe#2m zV6F`lZ%A%&g9#<}!2K0gr5MW}da@Xj-fl1ri7>ynVHj(|h#^_I&81Sgi7*pv7{;0~ zVn`;r!L%n1-RU+AV@((_BqtnM(a;U66Ja)#Te4xS2_uH&NjI3ZM3{v(3}a0gF(f5! zFb;;~$2Ls7Aqj7F5wU|I>HfJ@sdz)O#0|#5ko>O=6K_a{yTLS}>Tz0pqYcAY{vw8? z^Ho+V@%;ik<4=_FAi*)Y7)>E_%Pt986dvk|)Rc(S@iWRtAu*aiBJt~?@a8RUWhzfZ zdN2x!(GetmoD{y@6{#n2`8P5OiO~_H3?ikwBCSkBIx@+w9it;i?KlrVBV21v60c4~ zS`mfB=m=6Bk;b_o#arDf3q-80wMj~h-NLu#RGRF>(hRbI)EB{#(i9MBv@234(#2_H z$3$B~jOLH+-;HDVgLbyR(<+%;)Nx1;3X+=KFq%J3ZdTwJZg4?zdJK4#1!S#Y@M=OD zchu6{U>pq3u?egh%VRwT1WYqbOZb^K=XyD9h5f^Zi5MQhR1)TTH<(c3P+x7sFqS{S zh~YWD(WNvEi7@BeFpM=}#PB@s29uizv*&tCHjFi4#PAfm!L%oK`QO+uj5T4p*iGNx z;8LmTL>Qk9!&nohjxdHBOj;sLstvYEpd9h?x&V)7;C~bvuEvk#ide} zi7@xrFpM=}<`U*!H<+YEn0yr{sNZTF!mkLUTH?Sn zKSzrLc}hTNE8r(bLEvlV@Ra~~G5f(?c*XvuoF;_7kR%t1u`Tq(%M{viIOxm?U4HZH z@M1_mCZWeZd+YSe%(afG>8gS6?}VC>-(U5!5vy6*;&t+oMqtOnN)5iJze9!)RFS&6vMQM)9KE_u>xz!8ztg_Aknye-J0C2!V}JA8VF zH+e7Iynz~O3v)I3==rV7<4p$hPD#!RM)71BzRU4}pQh8NPszdA9XTPNK0gNlzMOXY z(^{$pK&=AjflC_EJ{tT9E-GWW>%Rgi#b})QjQKe${DIT8-_`2p!;g$7kdIL1A=)1t z57MfzXYmjO;j8)5;RpSB+u-4mjAx+9@Fj0W&N&zP;5w-T6j*1HNGiP_xX{G!^?UR( z?l1fR?k8Gm4*HCVIV-(7{30BNKmWsUy097k4B&|Vj+|zEfu9Ty-|zTPrPaRRur!T` z7* z7WjjMKV#6yd^lUKxaq4T9`5)mgNNF$vU!;QRsJoW@_qOZH}~bQ;eVUAz777Fzo>Z_ z7jOb!-j4qu%YtjM{_A}P3XJ-7vcSyci|KS_D`~ZAmpg~@ZG{}ClLEt7Zwm}jF zk!d%`=9>3>2KpnIW8kqO@+$m#_gg>%DUJ)mMWUHq5BbOq?tG@~U$YpXy{z$sg2P+}?Bk4)s zufIZiq7&RuczPuQ;+;T>XMH$eT*;S~4S&YE)A&WX94d#WS8_-OdQf~kuw*)pLB3#P zGvENu2(GK;HS)$Z976ZJmn~G1y+I|Z2P$#*Lua?iky*V}r6b^a63*AF5#w2O2;ax~ ztKdkZek}`{RGSXRxjge#+d7+!gGCvPc!*_--Tz>g?)U5t0eQ11}Ly9v#LW> z(W_DP;uo^J#To8Wl#4F2tP0?iVfiQ!PM6^{I}@&;?)U_Lo@OfdwyZ1Snh=NY=wP=R zd5Vw~I5g7})ep~sW1hJ&saGNn-)1s3Pmy{x4l{|J#ME_mYPimw$tDRl@(|kJ2hk07 zG_p1$E50Hl7*7$>j>BSt{hO(m+Nn$QRdW>>51~gHz08hA)(&JnUxD!yA)PopPOw{$ z8bYT?OmBzYU_0Hz1{H&l#7uC9HL{@}u-V*#oJoS)r~yMR6vXlK;UrB<1sQH`?# z@S;~tWn2*~6!*!NcIiQeL#?DpZK4jaBy6g=h%o6x>u}1|6+#y z>Lf^9L=bG`DN?85AdVvco2j*!)ERbao+5P?4&pJgim8>y$Vf@D5y#0jO2Sj5&c#7I zMqa_x_jFh_)ab`()iqzFOh{wnUNPVpSQB(?QdM_Y3!$FHKh5D2j6EwS3F@RqT z2T9XX|Ml@OI9JN((~2X;!EQ7t+!p2FN?gRkD^fc~8F=P{Q%Gs`61|aH3o{@}jN20( zw`9vRyVL~Dic|5*))R&jD6ec%5DYL8tqC^rG_>(7R8o0mlN10-f@b35Pc{xu5t4?3 zIAvRg)K+Kay-g2ojTulRJ;1-AS|TdXY!So^lx+K@5} zVDQ$~JUW^cWO+ zJ570Q`_V_k04}*z12yI%8XhH^ZBLSY&PO6lh2XGiSc@KDg3uFY{!@pn{AeF(2I53q zQobqCjrqu;JionxfLKRu0Y-+#0WZ2H*{afI6b~pwaKKPejzcI1DNPq`5qZu;IL8ju zm#2{DTpYwh+p#mLhJ11XHM|drSi0fRzlPpSKvP&qN`vP>7l!@^9!oA}X(u zkup{yzgcUZqKwrzh}XzZ@tDF$ogRg_S|OGRBL9ZAB8}-bGJ;rVBk~l84H3jA1+i}w zV!J{t7exLI%|jXtN2$ZZqT(57EqJwS49VcM6i85bWyoy<73;Y6{1M_eQtUJCPK1a; zAiFs@EyJk{PLtn54a~ubN!tRID26#0^E5Ox)gGLf0+>z6Z4OR6MaT*qWN`Wt?z7GD zXf0ENoS_;h&?+86`xtGGOD5P#WHrYno&sz&4l*wNovAqzVF=>PMRK6K0cmtFWi^Hs zo`xPmvf>$S{DR#~WcrM3oQr6%crwwANF?L@2bN$V%HGlA#*-4&Scl|l+;{>3u^uA> zj0_DhvF5~JC5%Jk6<&jdH;#B&s1L?9c-)8Q>;NM}8JcSH9aged-Hl)TIs<~KkVE2Nm)$sl>P`z9SnZqv>cWOwg z=LIVblK72)hJ$BuHls=M{U!;v{CQvclY8(8Q8=vI_{u8Wa$p)0z1{?O(1!>DXOIw} zZ?g!{_h3f=s~sUgKdlJR(?NjVfhD{m`R*V`N~^!{P2sR^9_7hR{}OyP?KmmL{J*mUO0D(wQD3o#}DXnXaUR61Reb%bV9uDxCC9(b7@3 zik1!>G)^6rOX-9t9p6DpXFn7GBC(~jTuCRWr1K)9^*uhl75Cci&D-G%rk{nc`NwGW z2RztLI^L=j=+`*B$kEpqycgR^ZJxz-2=VG|{=DtJyc5Fj`oWq0+T>+xdjcls&3^R5n$ph(hY7kbe9wh4dH9QNKn=b&UQN zLMlhPSRsu@$bT**)wJtPtG`%%eNYtWlA*6^Vf$$X~@l$#F9jjl2 z#)cEw@=;lE>*_~;n>wn1V(Y;rWjDPY6C;d_eJ8co=5ZevL_TBB=3yZxgBg=k#ornN&dp4p2e?VT=UM5r%v2a_A2f=HQLW?#)dN( z=mOkh1~GJL6Is*SK_Xp?EB{j1m3FKsK=uJA1YUg~=zUh>+E?Z4m1%Zq@>!2XZtN=c zs>Uv7ubCJoLz*$aSGmuq?UhAN4u2lDY5dLOgRtFshkbc%;7D2RPyPg~DJ%WSsG7e4 zWa)FUAwwM-e2Q{{NHT5?-7?BEUmSB%_Lf6zsSlX_^Tg#^2ZZ zcQ4%b-aWgCXS?v{&_@1w1Dj%Z_mJ)hEM~Lb5w<7r(;}vgY){+qXJISoW#w% zot~i+GCaB1SM9$8Sv&C`iczr_|8d8ft@iaxu;xK1Shqa^J*Z0tK^?evDI3yoJFv_X7-39J)G{U_M76QqVB_hFC*cbx={bW753%r?%WX`?l{>(R@z(DdNS0t5J6PhCD2CJHBy zUrtwCIJx8UTr_hL=JvOEZae_GW*iRTKNy7PfJFJwhMF}P$`LwiHx%7n>)#2?YuWJ2<}7X2qYGd zh%=WhQG0U*|3>Ql$M7y=aKv%}1hrEvT~%Q3!nyFk4VCh?gsxE&p5*nzPkXobU>?pE z@CTab3^OKzE8KY0Q%MQj-_`_~UaM!ekJcx)r{L+CAM^TsV}hA}8ZIq(?`f^@ojKX? z_B|#z_yXaV!&knhMq7q427wT`zgUd?-~nTyjGDp`~Ow24pc{AvZ^2d^>`aPY;vVUPdzRVy%= zXz;_=FOGgASb$h8D?pTRp!6^`fh&!yufQ%DZMd?`lS0o`MZh+6djNWy;T#Fve_D# zI^lu;OmuTRfyUHL_xJepNqDkb+BL=~8D2fcm^geUID|XK7{1}<{$NT9=z_Imf6o}t zKYYW>#uy`pYk5b;<&_LC0u{t%Dc9DIddxFphWOwxJSZenxJIzM#Wj1rk3r_M2`F^@&?jz}BV}zE<-V##OWDl%4h!o|tn7%o9pC2?T7abh!Q5EFG4t{^VD& zLRx$_OQjjlo-M^RUOHQqZX!#!M@yc>(oGyx#`jOOyi;S7GY9#CDG#C6E5=r(r;W|? z4JtB5JgnC~bkdmAp}*1c$$7&!B_9!4Z9l~)q{l>5=U_b!@vM}(RHbb3SCvSyy~fDa z@kV;<7=7f$<8emGYKNVXrp8nxzB2?s#e`cGe&+o zMxUSC0|QMn<*h%R29t@`EOsHEPyYg&6PW%sYoMFPXx~_dG%zXPZw+#a0q=%LovoIv z11hneZSBHBVCF{zDd&q0dto;Ql;^`he2Ad3B3zY~;cRXt(spvu(1AY#=FZeo>u^V0 z_YmN-G_8M3cCdZs`FW^^$063LL~T*2b7mlx}5cuQ)HhrYwH&N9Z((-8n|}f705Rr zwl@JbGb}{ATx8AM$5TiIxA=sDdz+UZQgCm19^jk=rN%N&S#d0B7Vaitqe$oUtih-q z7&RfI*38^9C?O=+(R;JE@N~^VNM@O-Fd3f3uR}y44zvOlCSDveGgS&xon~rGbrz}= zVuOE9jj80T7<(b10hI-4#m^`QjWQ@_{fnxRnCeBnLG_E~nmPl4G!x^b)E<)EB1&_D zweO_XoMPoS6MGNkyN#9K?RlU^RUYreD6Q#4-S!;n$7;Q3Hh9Lu;b6Xi`JUyb1^xoL)nnsQX5}kGcLci z+DuDO8%O}Qvke10dR5!3^F(i&sW%fZO@rdJWl%`lOM8QRv#n--?@xOlDem2EdLs{P z#he~uuTz~A_1)=N^13CoO<35A(6BL!UP_r|?%+H(vl;KsS@T=e{{jqsRHWOo@u#K; zf9^%68E_lMp8+>QbqCax;m^G@Z}Cj&!v7HdcjG?*E6~>}fK>tQt3Y4vcL5n~kfq;k z**GIYznUVP5uqPZ2i`jqlVu7L6Xlu*Fob7d2(QCEd*OdyO~$5&8f|q>P$eaucCxuVrg* z;@S1pI0H@ifSLkIfVItH7rC~af3Kg5I${n#h5cYkJO7}cS72se@g?Fbw(t+$pXzrT zat^#Lixtde1*up4#%TCEa14?9-B8W*8=ygvihCZo5xNkmY+;)>II(})taDifsqNXQ zEylRMXGd!LUI~mTrnAkQqS*8Nm4D?tpQN|gqT#Lp9%;|U9@Nd)@#=r%Z+IAo=MKmM zar2ZZ%>5ItXNA{x*cMFUjR1!<6W`>vZLCI+q0Q8TJP95BkPpUizep+Y{2JkK{Em=D zo^pACLpB!@8wqJAoJ>NPa~hi6ssBkxRNUW7y~|JWhV(#w?UJA_F`H=at;yy3By59MMN9=-~Hux9^1EYpWKhj-zD5)S*Z$$-OFY!Kkk z4)bmHdn9C0)?(>RZ5kj5kTS>+0_g zU3VubmJY8g!?Ny0xaCd?ZFpxV<|!XY2s+a6O~tDv{HjCm;gz%nSs)C17Xu82pDdZH z&&(GB>y1fJT?a;%f;c{VJc)0%5Ncjb)6a{EW-^7<%_pWouS1+$#P7>*9TQPUEc z%%DSZG9#O$*dFD^D2CCUczl6r_jYgLYqP#zEDP=7$LdG+N-Fk@JA#=^N$eR6H2Y6o$K!bt|dj^Xg|rs2m>y-kpP ziWeu%kimhInE%#qOc@g#*$as?3-Aa9ubSSK^Am3&vfMRzJpNpYdSO_NY$4ndLixAW zw4*wx-z>4ryuh1~YVv`d;DuPOz2^1&_XmJLh)}{P~qmbg>o=S*x36Mx&H>vFk5Sh1?u2{yx6d(~60a+YLj`{H#wP#$5 z*BDd4#g(^kOqyrWtGKIAhZ@E*Znue2KgUR9*XqAW@fw%UzDjBHAh`cWQ)7Pv4f~nr z?vy21ZKphfF$2bYbIr$WjD^=4>A$^JPk#*Zr|7#6-2p0i$g$x01h2qT@wcDg zqp%-(^&>uP2;j-uXd``EiJsneosoWnFL^gOxZ5xaHEV^fc!4*VS<2S)2X8p-FZ^sy zmX?Rt*Z;BENWbh_-S^nZLuaxNYQ|4M*1b9+wM->7Yyp(64E+~g62Pc0ZTU4@Alpt~ zfSS+FFRouevbE<&CMBJoU2t1c@y|}r&OJRl8#7lt%<<_5y!!6bvuVk}*k0Nb`rsNg zV*M-mzTh()ceLPgHk_~UkT3W&UyAV5zXGxXIG(Sx9M2B{Hg-!^pjr{1--~2nIwR1G zFs|&ucEl}?h=2C83K+DG-7}ISuoOF52+QIuDB?N%3KcdtI&9CClCC*A>^>F7Z&Iwh zIVy~wyI5hHej<6hqQmY|Vf;wPO4mN zv~_8agq6;RFgz5CNXXm-f-7*!OT57Ef%%V)6K3wu9Ni&#u6C`Y{7S%M1{>)4>0+k3;)IO{Dbwotj zI)|~cH+Or3)4;0s=V~@W;XY4&CWTxClssNpXu!e*~zLlFWXY^5~M+Z z&8qe}8^Tz#GP>9QUWN5Uhh2j(6e^bjFWg50kS7$YntAixc~YR&xT{%6an!F^)&5Ms z4nDmLAM0GNwd_yzVr#5$zo-6tl4(i~Xw^&@zl8jj*}V0yR7Nsr$?eEcvlDlXx`QXs zc`?%2N{0R_N(SNv-jJ*ff57mFE1+|P3*U5w`bUWLVI?lmebMspATK=Q_DuCBsjH1~%pEJky8{+Hy9 z(cHNzEJkyOsIVB#ZM{hH#%S)X2>T|@{VGQkB}Q}q#ISGB++w7O(cB|!h&auCOohd0 z?ns1vo#wuAffOi8ufB!m4vZRJGCzMUsdj}{A--wEIs28vTlMZD}1ACfj z!KMKQW@;&nrxkX#3hRmvTZv^A(iOp=TIqhK!kVJPPGVVvbbKMeO7}l1tPE2uD@^`wN`g+2!KrFw8-0p|t(_@hYP!DYzoGef$C^`EBqx~%wrc9IHT@l|*L{UYFcpNv zvCOe&s&7ibx;o~J%+?-IVKK7(0h>xeW1S}5$%1a=od93+G&*~9fdc=>cE%HLDWr@+ zH2RGlQoyzR`jnrI2h+isHe#Ev@RX`Fk{WI1^V$IPe*J{DRQmQDvwAYA@S+YIU z)K-HFs{_~I(Q3j$&BIwSOv2yy)MrQzN#WD)M5PDs@Z*zgEI2oyXn2kN3MQz3g`{bn zzQO}F`(yEa#+^N$z-AWO2uRr@ylHry3o~%O@nu%pNrlExo zP5S`)7ekt+3_~nw+EtQB*qAKo8bC8?&iuyTyKseCY``H&%jCEZb`8Nz89d z2Va`mqtBFpCs(pEk+5gbWPal>s)ty7X^&-4$&4qvm=rWb!Sr8a8J42KLqg$hPyI&- z_8O81?gUJ}wA;}YO$F$O++fW!`O@}Ky`%5o3H+4+_qTCz=to}>zBC_}Syp?qIaevR zH0f-!3qW$n-E)&P4O>~B2S$RwKr^tLZrt1s!E|7!tP{L#UGfeIUWN;wfa8287d>ko zxYG`%TTVc1>NF|Bp+!#2X)jYYaXvtr1mhrlfIP%l{`|VsJbVuK-x54nX~w*GH+fTl zp|y=d>!PyoJ>}COSmU8CT!#7bi~}#!%gYcMSCsyQ5q77C7|Wkmm!=Q*aYnf>-f!%V z-VuoF%2fX8)!~;gzB?4*zW8c1+L={V^y%5*yO252!=5vL%tQdt!(I#vo%Gf42Y3?W z1hcjd#f+0f9}6bHSpFi+X;m&T3CwAm&W;o%iaD*XP@hnnRe=_Tn8kM>%p(j+5htvm!E(A={KA4O94T zz&NPHx+WxwL%9zqN-G~^EPq~IY)`lw58IpsF)}9(qmU(O!}ns$j1J<5R}(M>2w*q> z6o;}bERO>@mKG_<=yFwxX*0v0_c&*cXHI*;&Ws5qs{rP-zaX>YSi`wN+}-B_!1TVw zSpMj62&dt5oXc=c9Kw%?AYY9sdFs=JG=T_D;o+rYt8#7=2XpvLt5q4R3L+Dqu*U^v zT^CZt!K|=g9%L+k5thSW^9AMv#z^RQbsWY`7RKmm6QB;q@KtUA@hX0y4PdG`c$yC3 zVVPsA@U76e5*+xB)hdkT53RzfYIv%^#QWOz8f!WIjf44vz;NJ_$+3c2%L%bOWp>cc zbq-8vlYnCO6q_mS2~Nht^MvCpfgNz&GEC0n%Hpw67|S2}n=qxF?}FmMl(s3=DvQmO z_5>FY;Wm5; ztQs-aEDM)Y;TMiL*Qg;8<)1bRV@(ucN}CRpM77t9HC;#*SD4!XLrbT%)iahqpT4FC zhj0(xGH`@(u=p3+FcFIn7*6)W%UxjR#T%J-k|RYKB_`je&#MlPb;}*!1OI5}mL7=Q z+2NDj&hqTRLL^QQzd(Ld=NZc%v{jhWehm~yL3Af}z(H0q>KV%)1d+ym`~x?b6^SrA zdqreX&sYI|z=j5T4nnG#;}iHnGH6JegWVHj(|6cMJ<4W=EdkGM+Bv|$))!f*>HoazQsod`43 zhGDD;!`-Fu|6z&Xs5fbeFb9$>*)Z0G$tKKrH<%Sz!NgVS4>k;AO&IQpg^zyZQku#{ zn29zFV@()tw}pS_2E(m^xYG2oVHj(|a3?Q(wHr(mQpLe+#ES^#7{yrr(5F`85Plbn zEGH9CkSO6gpqL$;vHYQfb5}B4}kJ=KZh+*1Hh>$L!5`NKl1jsw)2At$x> z8u1>0e_=sjS;6esqK6M1LQE5gL}$Be(-KQENMOXbEn^jwJUs|+7K${73NiMc*a-|=AsAwCuPAykXmPu zb>)bR)3RO`&V!8Q4_d~D^5G9$xXqlVD{H>AhJr2uv8O9_ZZMpX#FeJjhG8s!k?G1s zE-(qxm3#{$YPz!Xpp&*a?6e#?5vhpUZIS89BII@&%^a4*|3ZGVX&K8OgmlQ8L-`)@?1E)B3}g8Nj7)k;++Z3KVa~E)7;C~b;WQj}AthUrn+Vg|W66fG zCQK1wmbk&RCmO+dHVk7;7@718cY~=;gc)JOFxG^TNl#~&a}QXPmI(9lajQ~{HDP4Z zv%n2zMWP-2vkk*o6Q-GV@B%lO%0!syHVk7;7@736z2j1;q(qo38-}qaj7)m&aD!<= zs<^JX{g@>i#_|`L^z?Ov!G-`|%7}w`*o47`0Au-sW#nrb;XB@T9&H>9NeNI~49RX(LWy1QOdE!= zW@*Hb6uZGRB*HWwv1G$o6GjZl`<*V8%1wm%l?}sK6GjY);Re&5ICNib!!Xu_5kr#i z22-5~bLdm6Qj9fW#E|TI)1^{ri7-#uFpM=}#E{(U2IF8zrrI#^hU7dq7zaZ#z=nx8 zB(J>TQYi;RvaQ>aO}rtQ;Re%$s>f+@gAK!2{vw9t97h-!lKe!yDK=qXNEpi>42g!* z@Qhu~qm6?h`SP$e+Ax+sOj~6|azNP4zIjEm+JbN}BzHN3I2n?e7EZ#7WdBZ=R_a1| zoaX|QU`U>@Fro~}R*;-IZ9*j&l1e+bZAca(_qQ}8 z*~sr=NHSee91O{xk1dpVL-OKw=bAVflHUNvY?b(J*zs;K4u-^M!^9hsqa7}#aWEvQ zHcY%B`JEd~D6tE!`^c&kWBH4$NUnB+X-I^*$A)372_uH&T^DXMrxi)Q4U=obh#_fk zgK1A3y2FR8N-@?fjTn+k++eB`VgAR4VXO%whGfTUE-jUo2s7D+VXO%whU6YM7zaa= zX~V=DlEH2;4u)jwhn8&O4N1#Zmr6Mpk_T;=ctdiF8%z_b9yiimW5Y0(zlb5}Eieu{ zWT8Y6_k>v~*&$;rf8<+&3WaZZm6dXUX-b6orwzkc6J|9|!@b>L$`fI3vtbx(!ptPh z$}KLX=}BDlU1-BF)`ZC*%p^CMm5DI>LY8b8Yr?eSG<;&SQ-i}+S0}M5hhA?%#B7JMB$o(;Ln~z`mZY~`A;zkb$aiMpCLu#}fayf4IMsXQ14}N9 ztT;xdR;svp`@(E{x?5bC?x4ggAk z7+IxEaf6}xh=Unq!!Xu_5#w@(8%%B@%+B{L*)Z0G5##b_p+R$~RC{9YUTniK)`aO| zw;byRQ=JG?YQr$rgsCG;xA2!alqM|^=F~x}Qj9fWvI*1Z21D}^C*tRA7{;0~%{UET z=>}7o2s6`$VXO%w+g_3%FTr=!#V;g%Dn2+?;zb?t+Mj{6 z$ivU$8Fr02U5(SOm+?jVa}VLObzk&n>w#v(;d@)W@7u^zWNgP_%Cks4_b+gkaqQ*6 z!&W5OpXU$XBt9cUd94>D6@$;qm$Y!9OA#kZ5pz`$%TTiTA~LK%6|o$rkMgGdSi~tY zMXY32RYabmh}AfBF!ioK)1Tg9Ex1ZP_{P`rp&Q=?-y6lej`BsddhnuNX#TH}Wp+XJ zO)L{XBfky#AXdqj_$B#U^VkNj!2gu#!vc=Bjhj2K_)cc=C>X9+2yAg*kU0GY6 zB6SZA!ziJDBeiQI-qL(QQh3`b*V+u0+8i{gkpLNAo23XdYeVM`Qk$O!P`;d)@-;E5 zDj!c#z7;sMvo`&{u6!F`M)~Nkp071OvKAnl!q2<}FIY<_Y5IHG{U3EEM% zDC~Si>grZOd7A74aDjqyXe#{Y626uc2VVU+!pl_nbqJ@kQeNqSazsY;2TUINFWNO7)U3d@97Z}xe{uP-%zo&jePen4cx(<#XhK)cn2D#5L3 zC6GWkqsgKF&jfLKwp8vXO+Fl3kB;aL)GC{SF z1dhW~f-FSr&E*3D_<4m?=%_BHU|xL#2J&1C;p%O6hN zwPaXQ@xQVk?z0sq4-aX_-;#$@TjkK_B^)-U&Ih+wZbRxlI5hOB;ol*5;%`Yq>aB9< z^9wojpR5j(a4;?PWmTxJxFXu28RhwqkY~w8+?ioM1BW8`>uL5Z>cw>8_qXRpoarF3 zAOqqi&>6)0BH97QfRwSp%wFP)s4rZyJOJlB!!mq@@ECSi&b9b+xvM84ILA|N6`eg1 z?eOaBNk*U*Zkcsn@e4Fy!*`6TADK*7MBBv`5x6xv5nb~E>QZc6mjzcu&>ZPco+W4n zj0~lC2_wyqs-eGm7M;fmN!9w}45gC{@XI2uh~RMvu8774Q&`PrEWV@NErBxSu1rv8 zDsM|U`CjF1X)wJl{m{`H5&Y+Uoi`#lT7o;8?LJiR0%I);Uc5#sd8}~c*~K2;XK*Fk zdn24JAqBk=b(oInJ%Pqbx{)?jd?^PwQE@)OQ7T>qFHYOxDhJ`wnqGvYrlyN|Fh_iN zkwyfD>}nj~yQ^HT8aaT6F5E{=XGTlYX=ma!orMTpw~LxC#8Kk-H;*$z(XHjo<3l5O z>w8jsMusQwcj{gJX}G(ZFq&NtPOaYc)biUqu3|ias}QOkN9g(tt>sWJEjTJgE9~(s zzKG%a7Z_>sw!j@$vN+D&hUTA>QEH?-0N1Yd;{RuT4V;jq{9gNCd;pqMJMc3w0;K#N zN_t<)AAkw0-8F{}^+!Nrum;bavx<$Bhl}+TLtMmegGZuYcyZUg-j=X(XzNSf2A4+L zzwie(&AEi^w0X^Apf|-vCcO7*-sJXTJ#%ldUb`3Wh}L^?xA!m}Pn8iTsKGt+7jrWF zc^y#i=21p^MzQXz7tdaF;YLr&@MKPrQ9}5vh-+}a@mL2Xv-rQKQ3AVBd68F(lGi+j z!ig|kv1u*gUcO*4+$%v|Rg(GywIy#mct{|yJ>D5d%CH94lHY{Im@|&{SYMmV8A;wo z5Nzh-toS8r;<&1j2K^b&IL-8<>gN~ag4+e9NGkP|oGk7Aj<0Z2%^rAGm&}IbaXhbw)DV1?PjJZ zc_NpQ^N|pdZKa-#?F~4aLuZ|I(K!z_#J$BuCr6-8Tx>xB#24CbBwDx^9#3ao?wzrj zex|kL78!$lRVly0{LZi3kzZRsKTTYaV?b&x?Y##%YTmNkhH;S?nR&+nPWBUEZBh)VF!@_&L`eqFHUi#h=6X{FdKKz(>`w4tYD2fOVT$hv> zB?B@>>nWWj#-ah0RHpkkHsQtm(RxWI9Fnj17w)OqJI>U2KU@UE*B2de&mD zN5&O73n-1_PI8aS$oMWKuMGeiCQ^Yq=e_LinS3*8i+EfpOW946Y-N$C2DI%!J=&V&_c3r3%*!V0t{ zA0rh8iK(r0vK>vGq!o70`T@$@>d(W!c42Ay6dr2nPBw<6sar8`f#PL!22xEQoe$Tg zr7I|%Q@^5gJgCXnNGCk$8>O=mNn)k*EJFTs=|nh_Vx^-vlPDdh?TSbQ?4D4;qqC>vI zmN*@1C;iqQ3<$lTO51(OZ-^e53~rc%M5(OF;6^>l7CkDWq?VymQ&RuFhmv}H0wwiW zL{bo1jHKo;T0f%c+j%#ytE9#uU7Vx}5d=y3MN%j-CFM)r5iKdz-C{(gTA8B4@Run> zcMz4La-*mel^aE+sN7mjQB7}+6%`e#eb&Y3+;9-u3(fqgmVAT_^ID`~D5;1}wbvX( zT#!_Q6z2dev=(6$IRh8vqrs9h#lHflQ%4uDBd)}?DMg!&Yjy2NbM18b^{6+9xiIQs z!xw%vSA&>q1qN55`+`BrUkjG56nd_6evb>#bIB4K<2_t6qlGX)@<=uX&!V?Vlaks3 zM={6aXjZ)Pbp2W`@6mS8BL<6ot`5Dy#W@|lC~#qj!RACeLctEh&v0Q98#r6ggG+HJ zX^@o+=8fDhC^4QP8a}m$&E>YCOeTYkykDs9Upr5)zy|N&Q5?z{bh=rWV{zezh1&q3 z=pWS040SUj$W;NvDfNJbyY#_k6nst=CHr7IPASA@NM9;=PZosD8O0g3Q)5%W?7Cy2}Dh>XW8$(Gjt>NAfU1EtQ8e)q$ z-(>4k+}4e(TYzBzffsiGyhSECi19b$&IHEITCuN;jJP2_)x{qoEK#*o5>PjZ;6?HQ z0}_yX&MC0Uu_;o>Vi}ylCrs=TltHS*g4ne@RKSv(WxBYLva+gSN?*##lE)U*SJk2h ze?1sNEx6uYa{muFCI)7r?O<)QATSDEJh~q5^v-ymO~lEqKl!0foFeH8D6;?dhxovx z$!|Q#p%o(uhYxhOo!;cr@x`)edYsgBD|#Nfe^sP2UE_)=}JQ6 zb+A~-2=14Ms&NEG3X`F{Cd(aYPv#;M*%q<-fXigE+u_z2{{bFY$&|Q4#f`-|Sy(q= zJkCJ>DMuMN&j15YFQlu)rB`n^b7iY5KeA}davc7kgBc7&=2Bxx1H@5WzyAzo*4K9M z{`#sO9DtNYV7+lQZmb7-&}Xsr$ELs{nXs5UvHB=B@h~T4vyqFYSsfcYa71I5wnJsQ zkWc9k_Nh7`5KK0$abbBU0%C`U$dXR2=dhImek)(z@@l!gT3iNpj5bF6p+sLb7!BiD z@*!%X)t|sL_r%qxsJ;brr&?@Vo%RI62*CW5_3;KLWA(ffBp#AzmtTL~pLYnK_$Pah zzvWB*(2u2fo)4R2NV^8ODCef@3P=18Semwg5vH{F7yiO`Yd%y};e;8J@1TUexRt^w(X>#hpcY;f!I;j9Zl0Txw&y(qxnP=LMO z(;G^Ae~A<*K*amd)j60~RULz~?{QUwpF{B#fgO|=gYo%@^y$l+(SlHvZWIc`E}IFh z%a+7_sNW#Tq2~Fj)>4%Aq9X~`5)Gjt!`NW@eTo_+6-Z@-P%DIShA%t6==sy*jFRjk zY$te@ti-MT`fJMZamy#yln(#cpZuwJ`zbu0n=@^kk(oUvI3j>VN#GC4E+1#i&n`pf z+=hL)2fX?o*z`BO`kP*KkGwC&1k>-w%HNlF3RZe-Rpy6dt9*yCLfcS$!TjHx#2@3N zzwncq_dp(XC#$Rl$G`*era706F>15ReR>OREy;;K!$uV7iE6XUwB*fWPzGPH;vDblR8%0nkGV?6?J}$y5E&woycBRrH4O3wB8VbGVm@}?w#A?(J z{7B~)d6xWJdgrMukRDx;lr+wmczzi+=}@!H&v|{_>HKEsuq9i&pC)-=)3!KDI zK`5;B2qjNAjFinF^GWL-zDe$mTSG~%#yvR(ef>R4u1w=i;jvrY6dr`4xr3r^D&raK znR!#q7_oVbUYpbd%j91HKi^=iX}X-ME?(>JmVt{4ATtXIe!xG{$Z-u>vOT#yppmF# zZ80Ct#6{}|XQ1atQTu={Bazw%Y!pS6Nc;{Gx4x-}S|U6(AZlqNhQ;o)S%_MWU}%}y z!R;NP_YtBNats}M4H1X7dmgw03W^a0)6odM4+fDAi^S)(SvgPuRvZOS$>(-pG?hod`{%pe^5*jMv1=Bv*ah3wY|tt z>21jFd9Y19HH%Dy%cGT4F6n21$)yErfrah8yNSrTyG+QHOn;9|kZF)IHT8-<;x|#T z#9+egQyJ%>*v^eqe}ZZlh*>1VJj|D3<2X25MHj=YhMG$Sir0 zf&dTb;Gc}_P;boo0j#7b7D#`586f>>HC3x!NPjjJ_ufP~bfI9SD`7>&%YHuRR?^`P zL#FVai3o_r>~Ww`6G)+Wfnc7Ys*%3M3t0f?hBWFI$y{#8f# zoX3Nylrwgtu@gCr0LyTlQF}QQ;va8tN9|$QEIcE_Bh|Oj=O6;6R+Evcl3tavHTrD- zB=BzjW0jik3U2}Cks&0+e79Q;fi515v-xrRwaNjQr`4U$k2 zOa?KpIBMyC%%T$g=`=||Zi#=6G19>xv5IqXJoqh1wY)F1fSiz*eh0`%c%0QeRz$u(fBAM4nISTQzukmK;}QoWacSzu#gmgf5B}yl(U{bCcm>+zwe0+ienX<~H>2BeRlJs)3$Vqj zp=FZhMTFwULv93eiRZcy@@<&|TISt~;TM-X=bQyXt>TxM6Dd<0kORT%k-BSqu=XOX z72k%V;_r~uE&cPXhFwV2*WZbxr9i{>hbQCCW}JZ9J7ab`PB_I7J}DV0aB(vdPuYO~ zyC^HH_BY}`$eyRYueiL`_Q=IZbul_Xd7o2NY>x6F$JFtvPt+08Cuey1Nf0-Y+-umE z{L`j3VhX?T_`kp!Z``Sp!Y}l-*^q7tLP`TTFsubvEv12GTx~4TOS_5-d*=5mDU^iw zon2D6pv$x5Rfu36GGa7T?{wJjh@}7h&wS%480g_p7xnM~?|dO753*w@8nxhgJgYkT z+=b}0!V7LAp=xhGH`km>ynF-pb<;4Qjr@eRJ$f4R82Ib zkEsc?B*4JX2dfkS=H&`tq^e9ABAJNC(2cK4BIzKJbR{ZXxtWf~(3MEH&beN`NWHR< zFt%O{Iak#y8>jPGuQF9E+2@PgQGo5LO;lB@M3#iAF));FVl2Z&1Y?RSbv1%mJ03%e zb}A7xM-ttn63sLd@fez}63OOaB;6e<-CQ#rkD(u%V6YiVp0z4botcQo(07r@RPWk8 z$7D!>B_zwDC%6C2S7DS2E?DZxO}$M{XFr7&9x{&SI=WcKB~>^bzNxMBDb5%?Lq}zJ zhEBkPo{XDUURymS)z4 zz)pI8@GF?}h>!x^xG2%Tz)04dCtI92!#I60%<;vavK*qMSU6K2&6sg^qU;@TT#V~G z+p&s<+2&}s4{4{oj*HI`;fI~bSkQ@0(kXnnHl@e&^C1hTaZLVs|2a5fT!tx z$cd+7StQ`MDxiEPl9q2S!3cwC^^*)V+Zx-5kPdb6|F=Bk))Cb+G__g+Q~!wr<*)*Z_c%`aX+hDt$=OgjH2H*# z7dU66dgT`fuR9Nw!ir!DmK{@eBYEj+{F#-8P}rJ^4*bVlzF$A6(gZ5iC@R$`YUrIS zDX>w{qRfv0HVaIdUqKWDMqwcUc1MVwEpaoI71~>YwQ0qB0GJ2pflxb7zba%MSXH2x zJ{}qZ#Q}w~-d>#7Rv4tN%}%#9=#Y7i9+GsrT@iep4p4mDvi=#itV{5SAD3{LTvv?u zj^H%80W;jW2rAXl&`Oc;kb`-!8A35)CytVb%55qR&gK!z0%+F7ui-x)B*509#jxQI zTU%1t4ede%j4D(O*0q8uCWR=0QX1V3hBteDeo?C1_()n8Ey)ENrexw^LG6N;6@|~jXhlI#2z|M&wf-i z`(lV<_C=N$hW07^F?-OE5*(1Ck54Z9%*KJ$X5V=fC%rwnXzUDh9rPh6`B+Sz*@q_Q z3mNK;>w;6RMhBXLh3FIx=L=SQaz8K?9vdtbczW3n?*R@R%dS(!u2UuB@trF%lD$PC z-mXyyql6xJ0$FsS0_;RtNI)*s0TT)kXcDC|>Fm{rc^~(hRm9ZT^_cQGG^m2xRTZ!D z4+vc=P9bZ*u`*VVm9ZL~4dZlG0W9UbBH;9$rIqMYQAZd~bOSue%EdtsD1!7Q9ZA-j-`rmp-Q_C6RK)j`pfGlqni1bO?vBWaap z?)0|2m*Qtd6>at*{rvUBzalj;jo1U}sXI|%l_+8igeg{a+zA}| ztI#g8k(=?hjO4O_Jen_{%OvoJ&tsKQ`9U{(Qegtu43Diefe z);a{es%VQeUBBBoyx%S=H_DnGjNz%jgq3_c${I1>SW{ZoB*w_j(E;7Dw0iww@FGzKh89ZHO+nHl=@Fp^7aSGq7^W?E<|u4xA}n)%7#cgDI~dWD5Hk=Ok08MX8q{3df5s zQc21;08GYuthg}FA3(y4Ax(_r41_9%$y?@WstUQS(GKjo6yMs&Q2t=#fHukV9GqbfbIrCG~45grwRW==c9JJ&vn*^yC(LhTaY>nuQ^LUQzf6q{;dh z2Yop#$Kg$=W-~fb7-hYf#LcK@lrZ*-Aby@YY7%Rz1hNh1On4A~P-XB{^NQVQ+D1xa zAmhynLmHMK9z(b&mdF8>e!;9_j4&{ACCVVur%V~3BzdR~M|SiMRIo_IkY$Qtwg+KD zmR`o8{i@&LfTF31&@wb=9%S<=j`Jd;`R(RtK2MG2*!Z3D3I5B#F_ptCC%-78rRC@> zc~tKVj;@#qaVE@uGkYZph8e+>Su&be$!LzggWQ}nqXz-(FwfA9AOvmz<2K4(9A+UW z6hS~AQ&G@YW%RE2nD;%5po%>hZrN*iSM)F36&(zxxub&FJA^il;9-L*JY6>P7*uFvfF~4z2$Y$N0A5)30Ld5&@^dxgaqp-ObPs z)rFYf>RF|o6uM{0GxnHoNME$?VGj0(&Qg7sy>^o)FcDo^T4W{0uO1*yf}NGQY3koD zot*SyCG-}deO|`JaBg=D*@ZJ4FKSfBE1uyI;!1r5CloJ6xB;p6;R00kX)-~A!)IWYB*9Q*b8OkMZ+Qe6*8mRk=T(p!%GE?J}E zFIlhRuiB!nuiD8Y+PnWAbuzI3ew=_=I@Fh2&T5fmiWv)oZY)Ll9y>O9c~&T!sh%az z($A=|stzq>2(h@)n1nVqf;~*7%U&zCTxpnNpG@nc)AXOE=;z>dSmebVG9#F$M-VE8Y9xi8ospZ@y3+2^6|#Rv@(!7KR4E>O`D00)lae4y9W=hcZ@gY zrxp3k@0Iw5Me;`c9Un|zgNL|yczZ4Rrxy;u3!YluDKEA{tJ1IJdwYx0Q7T{6)Ti*& z-m~OAY~A_wPI(6gZ)4!GIo>v2@7>A7$`B#_Y z-4!kQOFZ13e{~sley=XVKidCv|khwh{3&kii( ziLrPfzv=ZGFAXf>HQtNy=4}I!^q4B&Ybhnh$VYgRcAY+dYm$-v$S56;fB9lP-r#); zPw34jy}!hh_qXTVrOjwoyX4Xmc*x}ip^cXJXg=?$887AY77*W~`MkH!0HLWw$R0Ld z$?@fF^BT3iP_MW7+#V0@dzE>UNA&UsN9x|HkpsPX^LrH;gVz=7Q-UXlZ(4)gNyD2( zN;9#Eg)L`3WX89BTa&z1^W{Oc*BG(KZ=|0XqmRfQr~9(;=(aiAi{kGFv5;B(Q7C@r zobTa5^>RF@miKq?T2Bfd7PsSJ@r8IoZQp6mk8u}1Rd%^cZFU-OgJ*c^HrN7-xsB&R zK7okbia;1v{HyV2(h5F!j=FD;xBg2!pI(6U_{;g(U_QF{(BsvjapdA27P)6W0L z-kZQzU7Y*>ktEl&f+t)cq*ZFLp+y?{S@BbrE}=jaK>7BnbmY?R`^E-@^{TNgA$ z`Fc3WuS!c>X!E<(mR7B_)fQA}!WwW3ZjIs+*PaM!+yIx#|NVL9dy;dq0oJzKdwG#F z%lG-tcV?cMXJ($6c|MtyMcOgMQ(cLasbIpDRm6NMtFoM*>S_segvti~IEXTZweJ*w z)fo_&F7fvqe=HS{^?^Z>7>huR0I;DlKqkk#_g)m#=)fipjJvt5VawtfC72md~M_oq|--^eH9zf@J0n z{d_3F=@u%KZo1}+(>0vUVXirJ&RB>CvBSzB7gU0SDyPd|>2IxC`A?_(@uC-Q3q?!P zGG?%@z2B9cj8AT&>>2U0zx<~wOm8>q7A``M+8nDKEm3AWT%kQ1!-aQCNL}6Emu_um z+b)?evJy}0bU&XYLFy#GHMP9)yMUq{^xU026X*taCJ&TL* z#3#7(=nyHRwv|LH4=c3um4O=%W_4H`Stx|6Vs8`KsneTGEAU43Zs5qea&zpcoflQ5 z#>s5juUUWKC^nOhVvlKZj6d2)rd_$f^>diH*yXSSHEYGA{5=rJTdi~<8T0i#t-3APEZHEL>=@T`d8Lf);}kxf1;K^7BP2sDqlL^GV~t`4QE?7 zJjuG@N!AU|ux@z99PaJRC5L5^&syC`Z6T(V1g10<~AsWXUL_6>{icig_?c zRk+`|xu&glwb+s}>)+chWeD*@fqCuh22sdSJIkWsF_e8{j;i8w$cn5`=81tL`){aZ zFN{+6(`~?-Cqt20Mbv4~8}oy&FwB1CvzFAx$-!Nv{BF^g%wroL$m%)hFtps8mgg7Xk|3e0 zsL!lv9i8Hm3W8VBCkDSsg|neDHk{~|4Hb_Ygy(*D4 zUYFi5BbzTC?7D*3(a{xRVeeHomD-tyFu`CA#7O}KpfSl78+oKH%l51*-ovuoi92?g zQY7OR<}*S??9e)TutFONxFE~a7Ro!E49;98nH$JMJZGA4r5X`_6-*8?Z_VHlf`lAp zMiT@c;R=0hwG-Q!W4`@mf38W4pv!~!E;lI` zGAS2=r;T%!yTWG!*Vfo<<4rS!P{<|W@PLdNv`yXCLc%cu4YY%3++3<@W8~Ht#mIdo z5^fZ;N2KBaT54ksIsP{?cM=G%k#X<(!mNeZvsImES0Livl`Ny*^752co>WceNfnj5&Qltz9Lqxjq+4Z`80*6W9T-J@D5Sad!sX(tWsUO{QyOH77Y=$tcR zXtAcM11*|+6Hboasx>Lir>p^zCLUV?frZj57e{`oZd&^yXBppUD2-leyI#yICnuf> z2(HQ4Gp{xW`g`WFfEb0|B5Kq3&XXJ*ERkx1GZ1>fx=M#r=HR{Cqvdla2ycdqZN|Ic zTaS^^ic+#P&`het-dTEhisq+vI@Dv!Xq8#2_Ys#BaWhXsda|_C%<(4QA;HZflkK>5 zPI$9H5vVXTF1XCaXJH0ALiW2Yk9-2 z=JQEyYS~p1l4W0M3I|3lQI1}{cc={tQJ31lTa~^tr7&aLZWpwdxlpFqRaPq)ZNbmP zsd$y()yQkbb()vpnX<4|o{o$Uw6|j?eDD#R-%wh(Be3vPwSt}3-3J{~b~GxSm2~@* zd!tls!cmkE=94znX&_s|5fr={7Ijn$rI#k5BBe49RLrIZrmWl!Y7Kg=A#Xi-*L!9d zg9YO%B_BI9J2$1XJ^1HA?pa{#%Ba|4XO6FcGq*G$O}pQV}UJI7garkWuIlg@qvpgrjDu->ID zy!J&MXt4vLr0h4C{b~x#0QRLRjDGK!ps@LCB5Q%`RnyeO{O2^?6-^*XMO5-dh~6^@?~+8*ITF z+qJ~;dJ%0p&g)wouiJSp9?6Z}c!zjR^AxYsFF#IaC;k34*{RKX>0ef<$OhLn2bvpu zbJs^YW?Mnkc`eHi;Kr)=EN3Q|di6_f2yT5Hg@%qHV*>D?_G=!JWun+mZ^BRuu*0g! zc#UHW051s@Srg!b?JNCIM{Rwbv{D-q-X^^~NMe&oL^9NlQlY3;WT))`BE-y9w^M#C z1~ES{_d3iE=&PQ6BbK-HFw~judvT!aI@W%EVK4=wSx=zus}@(+VEJ0l)8+V3La#8# z84in>oiFse^+vU0>N-rXjk?E4uq9-q?O|*rDh3iG#Z>-nMKuT%Gm}minyJ=-2&{s8b@x4cE=-XxjDErBVrF<0tir(n#(-rQZ3g zQ-XUo1q(!$*2=!_DP$JCa7!?C9r|uEeoAWE@Dn40myGu&F2kq4H+P<{IoI|%8Lpt@eZIx_j zNO^z#MnKHkp5jNL>%NUgTKcy37-}J>W(d^%@(pOx-qfczw|$d<+{te__eMYdH|@q1 z88~^RpZdYp*Xah``@oME_0|X4Zgh<8mV{b(LPv<5*_nhMiQRtNZX2sQ+1a)fSX`WS zvM0E??K!|)30?iR)xxb3Vl3OV_PIlHEs!U9aJK}QJEpQs!U#G2I>MPb!IUSoII=+y zx^YJivDMtb^gKLF2%mxVgLjK$z?WRiS{7|nncr4C$4YLn7Izg*M3u6+cI4C?C`)R#(*i@Z^F3&41{rI@H*~59 z2VJa}hF(0D(SKlBFg^?g=KY$=+1K?GrCU~DwSY~I!Kg{or;<(Px{X>{g(6ckP#I;j zyqc!y;=rI%-NzYP%6ewVct^RlEK-_R7AYI6$CGraW$2`_q&s31&&wi{7#63z81kl~ zGntiH=9T7@d1VD<-lQVs`vT2YGkq|?eblz>}6e?t=}t|vg^i@ zzj4je3ySnw85w56W_y{+VUg0k*otj04zfgsUO5&L>fPNoj(z1Y9m3K4sO<{v9475D zwiQ3UXU~s{cYTChnwN!4TtoMck6WFBeARs%E-YS^@xEF4tJVsjA$g=$+?Uk$nJVKQ zjm;rlmEo(gcfZD=+FM2aP7?KeqzA{)<-~r+W9`6+X>%Eydg024Bv8C+ zhch3QN7`MvqPRodrwj1zNZ`u31>_*jCMIt1=6pOPRF@pTo{RAIXPy%qPKJ85$okm- z$5h78?IR2tTsms7-I7T;LH~M_yCB8NDx2mN_6BoD%H50NDpUru&sLMRCAtLD(G( zg#A0pGD1K^*!v5U@Nzwh-Yq*F5YDmqy1CA&z$uM654;@40m*Y z`&`~WF)+1%Vj5;|qwW8YM!0I&R|6b2X|U^ROeLrbnWu6!ITv3?O)i$@)p#AzB1Pqj z91etAw49A!`jaIU3NE`U$hA4zxH!ESE*FV~tSNEAmEEG^Wzz#DP^fYlNyD|&T>lKm)!|5RLddU z=n`C}(@HdQw~FJ8UUI>U-Jih1*GQPNrkY8y6Mz+p(@-abnQ12*hWxs;Xq|>3!_g|H zz7GTz3@1M1JA6b^z<3j^^c6rGZbs`c%_fS;nbaFbuY~x?HArMf;?289kuzy!n8ZhAjgIh8RXc}Lmg1a#5!QzrB`K>BlqW_ z+VxfyWrb|7?7b?m6S;H7m$CVv6gq39}%TVoKH3-gSv)7+n&oyY2RCGz zCcy;WEQsuk6XQtqa&B6`5m+#hIN6oYZ`Vc9+P@q~4-cjOm41csyFg~i6X=$=y1Vw= zP~7re?lEqO8^2?IUGfl3_}s=oUicxD$LBU-w(OxiJiHQqXsq%;fEOOF!H8aC(0iZR ze`BbS(+1Giu3;GK?IWSW$7^1s%sfxe$VUOXpd9L+%6^{W_g40!A?jLoI|J5x*(a*( zEo`AX!+$L*`?`498&pyXH>v+)Fn@|F;DtcmqpkuTQw2O0uYgBX zTygg))r6Q2htD_W^UB0{1)R$ZRsm1B3V6yf|ItA08Lk3){75JB&(+@KkOPlY19-{Q zIo6$$8vnbB-&+G{gs5u+s3&gU%l|@;<)0ca|I~Q-rzVzvYLDfIwsrs?r)*uy?>=JX z=gRZih|PUvWi6Z0ps-G2DzI?w2Z$jzuIeBWaZC^;u-qWYy?7H_+|VE{X~^`a3K1JK z_B0f33M~8sG+iZ=RAm~UBZ-HRlCAZ+VW%zkcO2L0utwKmif-gCeVB!Gbg9{)3s;#+ zxMSQ$(7L3fMOczCLvdwZhY8{N?=X|@Zhr27^PTy*>lyr#&CeB@h5M@>=q2B_hv65! zt>(83t1?Yh?`9Y2zx&F_l(w4)l-0d9`*kE?+xg5Su+vNMIRz(m1Z9DPD;LOEqK_xq z5;_BRI7u~Nw$ch&__f*FMRh0vm)6q?4(JFzn3&d1CT5n_fi6=+hAE-IPTaM`U z;+^XcaII=WRruGeMS_vCywd-8DHu6D8*@-w!jVvg>@kE`i=bUe8`yPL-gXIfub1f6 zNo$dwQ#h9tup!w$F&(!a`3mVc#F@a2Ywut+|2jWt0sj++w9^OX!p|u#?t|N0+-qMZ zZusrc?QCoOwTo+0+=~Q=yYW{pZiC`}OF$aXHNWgtOR&ha1k0V4U^*4oRZF0_FKV*M zjwjx1v;;ELM@7cIo`aTPNs^vo4kS>@Inuo}S23lxro=ut!7lFWO<&iurrzFN+zJV4 z%85M=Rj;~)`DcNia>XxtEzBG%%mP=Kc0Sa#FpBdFvm0+>VJVm29q=pG2MMsO9)-t8Bd4Dtby^h5G&E!@13BHQILFt?Jbrra!s&LRMNK zn_VI2Q)gWZsW?Bsi}0$Dv4vkEzta=)yQyvo&rAmvT`VsJt;hLrH~B3;9_s2O>g7B; zQ5=mfmKSQRFrLJW&zJINuzAaOE$;ij15Bly>Xa*aH7Y*++Sp`E^daxtJ81nOlW#7%I8&- zU;fl}sq=8@S>Ibm7ml2nU2K{f)GD+pGy}mZX5On;s-o&1!CEya3(dCWII6);xRWn! zqScX8q*no6M$8}%>yoi9G~FB@X(3ukD7Naq_6cc0pN%~;gUyQsq=m+x@eS^9Dpeo@ z&{n7;1{OS{%JR*n%Lww&;IEjkvA4Be57-8h0Za^62BSe1lJ5l;+^%>59oX8V6JDWV z_E2Q55)DVk9{|e2kHQ%0E^Mf2FZR~m%cPWr@+Ip^d1i`*(&(xE7{x_j8vSN!u~yDf zJm^R2@k?}k{1R?2Uc`N!i(U+DTt6SXmq0hvHn6Vz2rIvhHLo+}4AlMwPWUMWqs0dZ zkpY{8g_~;LYu&S*)ZS#0>W`9z`hAFvw90txgae{@H^>D2@t72iHLQ z0-af04VjcqII$&j_6c-GAC2928CkuKtoBklIaWCZevj;-a&n0Kx~rT#yd|ofBfi*2 z1Nee zsP}Rj1oN4Wwh;DaHJ5s?lz3xuJ^&48li6J$X}qN?P_xNhdApR|C13b5r-=^q(^zw# zDaj`_c%==oFMJ(&wBBjW^#R^lbco)KPFjS2$x6Nd&RB>Z=p-ufW?^k)Qd4Xj4`jma zB~+0i?-g{t@5#IqmaAy<0qnK0a&P6pO3>S)RpP?$k+PJAo#%H4q#VlWjS~Zt`ya&` zzKL2K_WB_%X39|+1c&^Y;0*IUgAbw>HjQ*lWW?(DlM(Cm3f6x(6vTcKo(D?2G}H`h zGfTX1QyNF~(5BTa3VK)8`;`#%N|z^A=BmdiUh%5wwjoqnZ@o(OL55ReY1sm}Yv*VK zzyvYwjJI-U9AlcZn!}MRiDqLya9Bx7N&0xC2q~B=7CE*m3iTMf&sVyO46gtK!2MpR>KQic0**p-Z>QGOY37Su6HlsI zH8;PhF0rQiqpV(=>Ltf^YpV5rQ>`bR<EB7Vuzyn(ADb;+iUqO=z#>U+CIi zkN0Ez_Id6LwIuUta4j!%1C*?W6kkyNR%i9-_FE7lM$pv_)P zo1I0Qy%KFt5AAi;irc!%qlTT5NA*?vFOO#K>?V&;<(fPi{5#~yU4xUDyi%WzI(g)c zhJOtf;mS<|;TnC1Jj&7g=ZmPRlc+-;oyvp#VR8@hsCsBu{+{E<`20PYpyO{DzC`{W z9e*-nlwR2<{`M-5nkioKsu(<=>vWMvGY2K`cklA3-s*3)j0-TJ#9V*$X0?(qMhA{w zbKYdWq|pZ%wL9oN8m>CF#CyGSpwV!2L3^q9PKh_-?str}N{dv*(gwf(Hd+6D^50>N z8({2%n@XE=?DLbFV|V-q&-}4Q3Gj0F4m@8(eg_s&iFX0lBqz1RF6F@}4Y#^G%DK8g z_|L&cke}G(=`z*;U&U_2m3-E9;G)F-yJ!fkVYvAMoU`HPY8Nr(3pU1FNXT*bQhbTr zJuUuZ#3a4ZmAj01jT&usGumtl6@FCn{h&8Vz1K=g?@g-GrnJo>Y8B@tNP81O{g_64NgS8EXStxajjAIpWHvw141Rr4VaN9W}>L07zLiDf)8 z=EZY_4HVD5dx~n4xOutFxOXYbU&*A!E%HC--JZLMPv}!}WA7cq!zKPhy%ys&s{|LYeP)Us1>%?9On&xVr14}dLU`dBP@#$Cps;^>JvFvplt$0zz^M!kJGoIAaE zNqpRT+7j1T;s>rFQqP*`}rrUx?HV)DxmzamRbl_bP{O8HD1~B$NmUG z0>f4s>CL(N)UK9vk-|5HVo@l&u%!WNu|=njidVhlvn4z=nJs!6XG<%7W6O;PQ}a!J z#$d~GKA~L8jeYB@JZ$zKiUk?O#@Qmj;xciKEu*3C#+L7Qumx5aXIAoQwx}2Inz!NP z=#+oY>7$#p*vA*-&gY%tmDz74_mp`S@Axw>SG&uOMe}l(;O7ID!FpWd(oGj1p3>PT zS}p0DbE}n+dFI5vb}ej*`30tI^LZ9$ll-wv5wv#_)axVsQMS;-T9OKxo4NS(UM&QeME9{-0TLgo?kz<{w*n2Q8%%1Kd z%rY$x3v!pMge%YQ#wEqaxuj)ToJ(p7e8}?IfNNZO?K@O)wqGg=Fc*qA59E(6n48GP z9HYEBcL|R=dx}D_DhSu)b*8j}Nc~d<${#xsf-YUD0CF)ao9D%=uJD<4z*))6($hGz za_}3oN)Cb@WBt#Sc(>#>@I>E|8_UY)X_5a_j2TO8oLTZKt_atd6+0@4S?fy+{~B0$ z9n1B1rKL3|_Oo8Q;{ii_a}Sr&!CRxhiM!dboj)X^s)cj~+n-Bvc?R zK_vYI7m{j$(AQn4(uGF3&~z6%+J#KJ(D9zMN1g9UZAHj`PiiYd{(I7H5jw(BxwW29 z5`Oehi(kFS;uG+r4+j3523c*7ARG!5Rc>g{K#P*RG8s^a+3+n^v)db6JK zqnBH%(H08GiHEtQgwlDsIYY86MN>zWc*FV=V#{Lq;gdK>G2qq7h9AA%oMAi6Ir=r6 zAh+z;)S7Q!1V8%0SI+`J`p@?JIKQa&#;P_^mz%RJXwDtwmIFJTo;=+W>JFN@B}Uee z{49(uNb<@F4=CpHNp-8<@uQ_!bF_2t^+8K&)lityvQD+Z4HS;ciiwH`k?cEu z^h&ZQjD(~lI`N}R&ZjRp`|5{Qb=n4Q*ION0nN^vlg!1vD+sT}*%|xWaqoz^ZIOml@ z-|(aV`#}0&w&`~5zAa=@;U6Zl=wf+^ktW~pqt8ErsqoG}9XfJ(f{+-cJNTm-Vna_v zbadcHAMh;f~M8Cr_`2}41^X3dlGiS(0 z4T>DH8z)ggzS8Q>SCDH9;geL5FR9um1-U*OyKjmrtrLp)4eB6SL0(B#0}IkCEnWe1 za0v?X9q00(2L<_KitklHu5|WCK`#2gNkKj%3+1@wK3O>qYE$vOl$lA|Uf_g3JVyoU z3Mc%EVtarSe#of*$#B9q{+rgD4o>(c^LK?4zSv^_rQw9T$kL$6QXfvZoi2bZ^=`G6 zfgDW`sXQ93&Vc=Oyap$HT0cZ;d9q05fP-CwL!{!BNX0QY;em&L*5HJ#s=Q^HDoAv( zIh@2H6e}J6Wr+o=ras_=UoY&06V?O+P4w$$aV$|cCq9RVBoyu7g!91{HaOwK@o>`n zM=vnlkYVF`sy!J_cz1=4ZFYkbemK?I_dgL%ST)9e-&~2s&hdIVO@w2S71W&W^R1Ym z33X@V>J?7-;UDLu#BONh(r-67;qzao+LGaf^-*R?%#&mPw(cWNIQIZ2yt*HH{e`#p z4JUlv-rd^#~)(*LZ&3D>hbl78m_s-6Gp8%}tl9`_Bl{543DYv(Xx z_P=)Gc&z_)IN>>TQdQ7ZDXO5-N%X$n;e-$4@xH(b@0zFuv*ubD=x}htFA>Ey^=BAP zc)nj#=Y!A@Sa=}i=>tyq`EN>$y|q_3;Z@Lesi|KOMNNH{;DoIaadfN)IN^Hs{-!!O z;pJQ~G!Qh0esd1numdNpn0cZ*5q8yo?zHLq0kgiwiE(y2eNbVv;AQoQSbc-LN#a5< zT8c5~wA|RL;RL#Z3i}7q&CEq$-WN|2sPIeissC@eI;%Aw9DJu#hb^^YC_^#QjNT(y z6>Wx4H)OqKIz-7?&IXBnV4PSzf!iwK@A+r&>Q)dcnICOXWW;X2V18eTcf%Og=VOQd zr#s|XJYL^blup0OjbjYkCnN5Y;1y}z)`>B!VsS#`nClwoR$VZLSF+V$mfSU<~^oFpOcDGJ*A(mR%hvv`_Si zG0f(MUC88PU<@k{l&}YkVSUeiB%WUUy@6$_0keK0jNy)g`ZsOd;Yk2vm3DWGVJl@9 zjA12#ShOT@0UzzRPaP6fBhj4Sw0sW4Rm<9Uhwt~I;>+|q5T3K24Pv+@;LS|$RjH$5_!xZ zDURK);LDf~rV*oDnxicCf;uclCZZ0v5~k6y1X7OUs(gNfaCV zgE~AIz9pg#4>&=?NCN8cha6z!6uipQfjS%`juRoDan#|N18S{tv5+WX$FK|ha3&R_ z`9xsh5j+GfaHZNA_VL9;&N5OTuvsjX6%6sfnPLX*Pj$+f?G|1j?FY;C`u{NaVbvb+ z!>ThMe)u3l-)!%E5&0`d;fFsuumgVBCL~pcNYM#Dtchx5u~q_+I^`h=e)wj_EC)XvqtDUTL~X|! z7`uG<;d_QS_+c#+SiWXZ1>F8_g^-DF%$&LwIgw?yrmea|`RIfnwwW>z1(0Zh$+LZi zAJ)RGXZYdyJPCEc5C87^MaAKVoB2Qo{P1!DKK$@xsC@Y0bMX4`!&P`A#t9#O z_&9hiR2*t%lkwT`F-kcl~_BZA*e zVY4mQqKyQ*Ph*K^V@gi!COx)qx)c)1GBRG46wxP@MKM{fEE#wWe)w11b~9$j^U|dx zqg_dgpie4^^i7J4P4^RMjwf)OD@>4wB9a?>@of8w;oZgQN*rCePbW8aFLY~qE>}2S zu1pA%%cYn@T)DFG8vO9q{-8fTCN`6d8;9X)H=eV~WdlB~dD!+*rCR z9mp*Hht79I(|sbjvDUL(hUOB8(_Q4~s(m`Sv6YUlv>{G3(-F<_iR8v^f(XO#YJq|u z&LNI#W!`Hn;iUbkPsMp z$?(J0xCB4!KOJ!JT5){HP&pm&!)=XFSu&B7PseWNKxt4>2?{({#OIH0RILA;#F(ZUxuy4 zp~nr_V!;7#im6fjCb@hCpm$$U$OKLk>DOjzFyCELP#v@#tUbj@8~=zu z7%<@~G}Ah95MnoM);SR3Y+j;M0z&K$3YzE|`m9<@8K$3}7l&4oMSrva4XzV}xB;pz zAjGYJqrU%KzCbDkA3N-I{ItndUh55nxT@7P&LL;XBaC}&x&GZih~1D-S3${p0wHcO z5aO}-SxX&Kgi8eogm?+=H*+#>%Xu# zb7})W7qH2Et6rvM?GFg?+0R-#=m~^)`7I5PFPXZ2vxEvpJBQl*kCQmLS zLHY@Jw6MXDcUJoQe?TpRb$0v%4(0)V10g^c`d`dAk}`gj)}cajT_n;;i{ z51HgVLx)Vk%ueGp>lX1jtAuT+W#LcFva2yqN`4Jn&uH)8k?y@3$7 zLivvZAzmuvg1vwcFCVI{r`0Pc+}{F1tjhU^fe`Cs`vF3%vi*%9#4}N4$*4Guq!)PL zPY{H75ly6*uk0O!cqRJ~aS&o9gjgwCVKPYD&)q?YuYvwk4nn*lj>Nl?`qfB^SXKFr1)FJU5el2~H~}fe_#SXg(msI`Wtd zLi{N4Ng%`p>{POL@j-}h;W6!f+)}xTAjA4un|64BYqy9wdVh zYZulBAr9gNggDb2gXHw0s#FSVAFye^&X@K8LacY8^K+QF*yS(@gjnf9GUl#3wFb+x z57->!_e3zQ1=+7p5aOlW)dYtn0fe}Q7pac)|H4g%=1c-1K4qZJ&wbWFh_9u|_6kBQ zwg`myzc`yvyV^p5c^`1ZS+_j*AB1?|Z88!^Bb18Vl3Lqd% zdc~HmuoYSd9Ye4uV;1S=-i^)PS36D7QfANT^vYe{5zl4e>f;ehfF8o#$d^cVm~$N-vFnHqk63T=i8vmyJJgqc;Vm{OL|tkF zZ*^3eb~%U|jM+<>c8Lw^@}i345sQ+!Utf5{exmkv?9OZV8IQP~q{SGAN34O&$Eek? zDAUU5zcd4dO&UwhHc)pwV!fA)N4(%?Ttx4{r}i629FI5!cGw{%T@oT?h5fdWf!A*f znRs>T1A=V4J|3}Nk=a4^vK#QmzIk{OMy<*d$0Kg#xf+h#*!E+EQ5(l2F0x0N10LKU zPEPg#g{QbR8B56yJYv^M93HV>$IHZyI1r@6BX&op4#4$Tb?&{xpT&@rV->jom{3Ou!?Kvzt22p$dFntL^%{R*&JKrcd2??eK{8 zUNRnW{j#2Tz0?i^MOD+r>n4}7!alE6w?41cF@0WF;Pvr{^@^F8^p-W_jeR@E@p^uz z%vp1bJ98A{xp*x%wr8|>-Rk2Jx2@A*O22wHSowxI)vSfHCaRe$}@z$v`h@17w-wZ^oRC)&@ zmRk3d0wO*Y#KwIDBF-_=eFP#_^%@XymIER-wVFFF*0$9F5r1(9B-`4ux2wS>=xW=h zu&H4{#B1B&#S{D(5OEbA10voLLp9_p7wUd4AmW33z~R$;AmU0Ni1-J7{N3%w6%Ql( zNkGJE;falZV0LefzwHN(vE7nT(@sp{p`jf~=#k%l)N$HQP@U{-`?&)m-r|6WUwOwO zuk(S3C0JOm84$7LjSoaD$>jqPOWq)$lYxl+W!$*>rM8S4nEo?7O!O0gh!?wMLUV(^z&GY>OB3>$`t*o4Xrhtew z8;UIh@Wd&l+vaHZ&>iaZcN*KqJ>3aJ+&=+`*aUfp1n&iiSVY#~nIkjv|B}XzBp_ln z)7V9;FeB*$5nHl-0ug`pNvM4wVxM{uX_Ky;queK!;58uP6jA#?#6ESsqn5*cWo2kN zUIQY2qy=gph}frI;i%;lI_i~p4T$&_QTsr|K6Qhmmcvm+rQL+rfQV;{+6N-`shb_O z9F&csZoz9n#6eN}K*T<^0Ao3jE+=**kJ*J&^|j4rY+A!6MaR;mlPgI;#5uf}bmE%t zDb5EX&co{i5gS*Y_#-(;vl)rA8Uvi&{?CyOFk=Tg4A`)Njh%{N{m9B`y@BZ+t{X->fD#7~S7aLL~OnFjE?BpCb(riI@I>lP8IY#B<4pLnN-p$Kuu1 zq(KXF55(#y8m$yn#0;8tMI@Hp6@+KCrDLc>7ztQpk!B1qHg$ehG9vLW@8OLe5s4E^ z?GTB7jz+=k8TkfT;*D(Kd=?jR3mzB#uo-c(f~FLQAogu{hy%{ZPXc(cGF%q9(QJbV z2S^q%Ft-@?HUUZ5!Mm)@H5%CO|q2=o0%K$9q2Tj%<9qyW3(>TD@gH0DABru z6rUm0S`Q$_#}nTNNO1$%{}b|oS!|CW#d;pG{4m-02ZI!sau~_8&1?fH2F2_hjVHD5 z15$i0EvC#{k2RQ?SR&mSsGC3pDL=0t8jD}*vSDI z{Jnq_C)dGq-9U=<>c<5se#=0Lm4ao&V4F*lL5kn%04bjNxl#`N%sZN0&JEVK z8C%^b))QQ@EqCH0OH{*&MwYll!!=yO*m>m+u2>zPQL-T3{FC8|zw`Ti!4(6a9awOi ziWspJeZJS95%`Cj3Q=R?#LvGv=;^?}&>_k}CoisFPa_xKS*Y^BUR zPoMld^rH)^pzf*cGZnwLvKK+rwd{ux*GJiVL=ujp^)~#iaK#HyTT!+iKavbr{GH#T z1rqbe_fi29_oV`IdZ+-Y&ibf;E=ancFkJD4t^#`eNGJ0hTyez;HGo~F?djh5Ge~K# z4d5|e?%Du;Pu#wj{}YBQ&f()UfG*|l23IUmB7<#m3+p7NI^c>m#QGy7CRt2wIYXhW z73P@0GP%WEY&sz~TKN-+hz%bOulP0|b`?#i(rm0wvI^G~uh@=LwE!d6Y3Q!Q%H6?+ zS6r4C@@?F4l~+@SVk~Tjt4t3ajD|9pe^#mxZf1a%)}I`d3a!{I(Up16qA%AJy?FjR zNeIT8sl`s%uGx2>&LJ2pDsJ4a&}^(5f^knJNkT9lOc@O0SNIJQIPG`jr?jDeM)Tw& z7@tnk31Gn|b_5M9*u*Yi#Q8*9LgPQ6R3^Lz+@-XRC9Jdz!T56o5)h2vr*JN4V8QXU zUL@MmdIt$lriPrYg#JRHBU7shBxLG09l@kb{g7x&=r(faGBxBdrS((79hthUqeO;a z{H=~)Ql?HNS_sBx!!;oo2Mxhk4MBrz+x>TH?1Y~}Fg6DLw9S@B4A8Fy=AC8Z++LPO zg%E|S(%-#-sXCC+4NNJuvSQ-B*04Wm&T8BpbM>eu3C=JY&8gKMnW;oxTy7zo#xta= z^WenHscUhe29d;}jLrP8KhuwW`8`|5=wlAbSOuC;Rr0%JDB}sy{%gaLVxWv$fiiA+ zYdm|}8R}1o)A_awU_#J`GIkH#B1TZg-BUQ16vhK(oS2SV$P5#YH@7`}yKAUt-Uc7v zBtYDv+g#iz#r=T*d^+RTF76n`%^^Ts?yp?jL5e$x04J;3zL|hrY#NA8wZbB^XYC^w zSE{i#pcW7jESDNXaXt?2bi6*;uR3<@>R+N(@R5ss#YQzGyd>vH_x>Ek2)?&?lOgn) zNbqlY*PAWu#VwF_gaU`7J}-f z?T|Qf@zZ$L(D8au1XUWxeB|P})LGX;D$dXEe7uHS{MfDJcX~p8QL*vNlxESz@>0+x zIEGyOgAGtuCsEh)>_inSx>#PQm*W_6@pPzrE!`oMuI*rlTzmn@#k9sd>U%9)o|VnV zk}ao3x|U6GK9+0+Uc-{zeM=wT|H*TFKe~(@cg2!bQaxbFHp8@Duw;XD&pPS=n?Pgn zvYaS4CmDcZaiv8%0E%$GeFC7+M`P6=kk$WM)@$V?VaXQtP&tb8v1EgI4NG?0&-`(8pz>p7W3H*UTGJa0+!~_Jm zCh96AShv3hy|+ib#=+`Q4WY=HAZ$ERRy8X#7&vWhu&OEOg>&;ZjqlHl2~@8cnck_{ zfrXcI5H;xi*{Mew-#8)YwFOh(4}m|o6$MA#98C)A@GV=3FBJJdWs%dyDxvJzb3zxc z%ck_9R0bE6j6ttGl;0TkE<*R{Ej8e)uyLCiZ-S!N`={>~Pg_=K#rCcHy2F z+sh}XP8`>tsESbPlZjCPCD%Nz7c+vcoux;Ydkto(+7jh61NG7q2SU;x2k$ZavBQXB9S&!X)T72M0IR zE+^8pxX2Q`VejWFaDv`#^)4jcP|zEk8}x2!u$YMIJodz%;VF@u^l}{bQtq^`1ymie6MT84qso7k7pXzDUYsD*BqEOH)a>oWEgLD0oHmZNuj)laPvQ|i3 zl(Gni2eN{uf5b?oMJdbed2Izwto(a zejcjv@EDY$%lODV z%SuQ!y)jtWKBLmI7)k}dmr2JBON9LEg|on0{Qe^IPs{>$@yGMcKP3zN#T(}OG_Aqf zS94}<2}c~T7|4&6{+DEPsKwSjU8E(%W2=dHz%`-?-qK@5GOFQ}O(n<9F|I`qT}({MDVydUI~P~7WP*3|vGus8 z;Hq&eEW3rLcngkI6HqcMaMvI~Qer>6O7KxsN`WNb!X}$#Rold&6bpuw3OH#@512=Z)zsR6&fWYwfZvHiow*0)Ds+U zARLT@sV_PxUjV2sQ{@llM=A-1Be&(?oEVvzp6A__S;>=4^D@uJQISrKrhTK-J3pE> zA#zK46Om;=K#MQ=4L-L~5*Jweu6raDSx}(z1{P-UZrGcWTPeO(h-GucvgtvAt?bFSa#GIL19ha3smCv!N3PBR7w0A)RpK_HnIp19!fP zh#l9Uw4pdF?YR^vyz2t)xYPHN^#({hr;=< zg?2p?PJNw$qc-TVP;3e3Z!gPl3m3jx8kq1_m^wAugC0^f&*iniyw!A%Q2y>vw7(b3 z|7#GjkosOMzes|&B)2lOXT9!>?kUNgBi2<03qd{&TpQK`DCcIm`DuetAS{!VGz=Q{_LzQ_=CfhS%PaTgZLj0BHKt5WU9y9&ZOtU#v=at_DUu`cdDWxrQ}hokoJ0L+TH;$Yr*L_rm{X=56HKL% z(iOkNvC&ZB`qIE@jltBJH0Hv0=qB%#9JDDgFIRIr`p#U-+6($>`6i*o1GER47K_zYzGV1%n$LTJ|pDxdRS*<^DR zE3DtgXovUoLx8U&CS}ujZKJD+rjV67dA-_pNNA#_jr4BY?Lv9Vs&`wqIkh=BvD@Al z?$RtEWN8+!);PCme2$-JkOxXM?AIXU6FVcGs0L$8bkq1; zKe|3r_6( zc$zUnjx{k$vxr|~4claO^1>QO#2R8qbGHlSxlpz_wK+Jk%y^nBD1%FLet+e2w4Y`Z z@qU_W2&CEUO55N<0OS6c^wQ2lVTfA?ottQ@2vl1_9&cPv{ z(_LtZ3(YsDb`ef&I%x*I=SJ<^G(JtK#C~}5(|dp|Z6cd-*wW%D>w4;wn%0&@a}NyF zz7&`_D70%mEsuu&7Qe0=ltsh2{X&IX0}GxdF62ETgTwicF~*z_VmgDl^lS;eRCIGM z&HiFgtEN*UBkw=O8@V~e`l#@M8UzoK8bZs%srNJHJ|EiEs3R{khnaTl#cAUMStT!K zoESJV?fFpc`hI1FFVwueebD$oUfPREk*|ddADMCPgy^9sltuezpBBm8dYYH}XlTz` z;`z*;4dK*}!ri*K_3ps6H%SNUk7@B9-gXSb6%wdlAi9fTkWqj8(!C@T?kSlVkzw!k z5+>$JM+)!V4a*bH1FoSXg=$~^h&HZA`bV$Mgo$mpkcI~D)c3Tgs(n5%GdsAek?sOJ z&ZC7Sfc^!e#cAQfmcW9L;{B--x7W44YT$)nKB$2&rZSxF+7^!7HAbB$l*;3q$EfEp zs~ppW3u*@wmW}+q6Rcg^56&zCX7lDTEk<+u7`4PxqoaRdqrv0CAdQavkJ$rDA|-Xq zLes9-Y@)ES=8a(L6U2>!~Ln)P@k3tcyR;;uG+IbuyK=cfC-7K#Ai42Z_WGgC>XRFS{o>to^)Ul`{+v zxZIw{@qq7#f|6D!(rX9@PFq(RIWsfNgqtJ=v!kGTPQ2mG6F?;9R)1DVrIJyGYcI3EvK+bV_!{QVoz2`A$LH}mW; z_1oxTc}b%M$MAqB-r0xR@xU$8gOuj%EXrV3e$zDT*w#uIjo8EDR)nvG{iN}LSMOlu zuy;IQQ^!94vgNW94_FtC1oyD)HPf>}-C)1D<5gfYWd` zrUycX2mE=Q`2*7RJ1m7?@POYB${FyEIYVA|P7DV=XR}KDU6th|+ssx}kXwx7Y;?J! zhm*;ov9!IwyjsyA33vtw<6+aH!x6rsKs*ay0lZHgZt_9 z)1d>)qJyvH_|M49aN(1hK9AACu_+d z*i2xH9WEoVmE^8^B*Z>&;Lax*M`j#Wyh`(%QICwTJua1X@`SA{N=puU1eK|VnZHn$ z;>gL_Ufm*^m36kjLi8+%jneE;B%_R?(HR5t>c15)+7IxNJ9{DIk=r*mkK$fp^=7F~ zRLlm(YZY-DLu48&ii4mYTyPpFF)C|r0aGImHC=M(NyLAZvc2G!a|dONQHBR=Hc}+6 z*}C#!`18`O1fELc83nznDeSF9GqE*H@eb!!3K=iH*9y6_@VL(x2f}YNjXG#!D76`i znpaB>YA)Wj)~!ae&XcCdZ~t>8Zvzu(|C(30drei3hP|yU9<@8ct-FGXm>Fzr z>lbFK7*dVBpm=W|@S$@wVaeafF$-O=D85f^aYEH`5zXc=+*8gRYJBY#WAjpq|3qfE z8B+3L=|RthDcDmS2(gzV_NKbWI@AgDp%$iH^z}>AFI^zhfDRvehWWeVLzh|X|5$wJ z7*$TA=7@_M9^2_Ks%Cnv9%SKd)DwX0@WxCIvUhoT33=sP`Y-(B&cHBozeeBjdDMbiS0JU=b4t(BqkMLNO@ zEPb!ey(z@dQdYRNW?Q(hX~wb0Nxe|J?lAAklOu!Y7eD%{FY;%8e*C7ih&tr<4Ee}T z3f+>oY90$lrjGS%j1w#6YCfH3Hhg^OAT=j^=tYk)X-=5GaifzbOq0u1(VGlMTBAtp z&YYZ-*#CEO2R^iJ@OyQ3kH2K5&hyI)Mk?lLIeDg!`uNbVuqx^iA9~q*!PYhi06KD` zmcY~}{!Dz0_$J<;gRj}*3XrT!RHpLILp4}ZV?ZAQj>c5RhxQpqur6F%me2ntT?y;| zrWspn4DMkLa7_GD?KLmbs$_!eq)dL#J&A+9154|5(Co(RRXYp8a_*ycrt5LvwNna7 za_x*FX8&vFQ-=?I&ULDw$&+aJz2ifV;_<%VLmvcP7u4h36ID(B3i!|^b*iaDC{G{w z(C>azVr=jD&<{e_rKav7>VFbG^l|>`>6UL$?tMju{@E|Nao;yG^iXE9od;%%g$%9L zKfHUhR0z#lJMIHAbSq@;vI07lIV6AzW-boM(2H=GMoPN?EP@j6M25DxrGGZFUxPb5 zd;Iu)Lx$ETIX|p(#&Icupj-a zgfNEqXC@YRv+fhT@J7N3qG_hoa7GYFRQT6yVYmiBPT^h|Ac!{ zI@+Cx4E^~NG=L-^L%+uXQ6{h|PX{ve%f$7846RzdSCd+F87CKx{_m1N$^D#FC_U)C zvceZ@UUfUS=$N#id{{qBrqIurZU(ug*LAII@K2YaM?^W@FV(DRy zQp`A<%Ww%9*hU6!Cj;9;dp49F^Z^uPVAm#1G=&UpioE?ohOSgCf=+G~Y%Jx2E9}U{ z9cqK!kfA3ruELQbUeK9Jsct#1gHR7D3AZ$u5DDiL6#a3}gh)wF5t@g=qg|8o1v{Aar9#LITIp-bGS!P2N7t1;hc&Ikt=e_>BA4Bv%5CrX&Z<`mwyiB zzZK4Z@04i&Yl8V(!};u`J#uQ*;8#zr3ctZxZbR|mSKRa=Kamg13SX~znL{rZyBYW? zdszR^KIW9j%$$m_*T|yZ^f7Ovv^phl=gge)VCt4r$U`_IvZRs9RbE0Lm|n+}+D zNOv>4U!p0r`N+_&&{i8jX%GC* zjM$G4?GqXLC%glnW3Klv;lux`$k4w`M22pldG~+}Edj^uA}5fy8=L->nP_2IeGMkC z_Adt@0(NjGBC{d~v9Rq`2r3Hb`L7aHUPP$8T$X!_Dj|Lj;wp-f|-brmdtCsPiD!4pPMSC8C^09DRkVL^CpQ5(A6CoSp(<-s)Ml|{gQ~14aP6h8$~x*x8w8t!Xq8d4 zQ)M%b;3}UrtWN?N+V!|5CKXB&6`(_gR>fd*=*bXz4hncy1{oa8#z@v#*)*uPDe2oP z*+*(#+adUtRnK1`_?D{YeWJb*G&Ge!);B8D0l%R-+F`A0t+lRi%;ET8ymdWgt?R)I zv{+P1b*r_m2dR+iNA>CL538zPR#iQ&*7dxq>aoDJlU-FM?-gy`K6sVioJ#+G$k3}9 zU(hEOP*H5Bjkk~?LpMu(hEkFTZX1T}6B%_0N0-gD#^JUoMo*2PL9V=qPDp$)7ricd)P3mN+VGG;ks=$Ajs z$k0n>vd{WYM~1$kd~e9m7eUbl8G5Qk?F||F1gLyu=n}j>GIR)U5;AlS5k4~X2)w~a zTHwU!amNR%Xj;yEftP-$J=k|-=yy(&(a>|#Z?BP|%Be$c#{Junp?^(^SfISk65fAg z=s{#40U3HC$po&8oor)K`bi2UB14a}$4~f=k0I0@8G1OeNWWp5FB6E?$uV@k_s>SX z{G>Y`MDWqsp9|zYReWDRH{_+iF+oPl{+Y#}%oAJQk|5$@Jara{|cC4^llt0$?iVXEHo;GzPh{xL&pYd* z0)vcysKiRQxST|knB3U^gKkaF<=RhV=s&LQZtv6*?%bl9=!#ashm)A3+$b_O!%suk zrQ^Bo2^o5OtEpbk0;g>GW1XV#2Vs6GhIE+;XUO{ZtQZ1dPRnQ;1r~k zLx$dJUWW{QxBLzndJEpa6&dHVAVbfi;e1?V=&471%8;SId!cJ> zm*UdedO(JLO;6O?UNVyXheVDeB9{gx|KHZ@A7>g-@ignBiY;+mrB4AeboF#s4byRZ zu7+3iMAh(&k?emp{B6k4KPyou8nzrq$j~b+IN(Vf=5ZIR`}{95^g*Yvn*G;6hHkx} z6B+t3{ItndBzj09WHXLXJqID^!{fZ8TyuQsiY1Wy1%R0L>C?~#f68R@4~|_a^a&7b>X9PU3lC`7aliSu8^S%ooDEf6Y&Tcy5_`= zr52i9fjXmmj%h*5$#>9@+*o&^lq5j10Ys_#|X#9b4)|hQ5KvjHTnQm79nReVHPS zprJX-vsinlaSg`2 z%t6Q(9~oN34BQyt>|ru8bS5wO$k2KhWauJud}L@BSSxekpo&mR2%I*AVa78lkuRHt^LD; zeyZ!w;qxQJm@vJh`jyB zgI>&w$)YX^4|?bT-749r+t#n_4ts5!2qb?^+|{*XNNh`Ip00yOPvSW*Pis9qmj&@? zmpZeUlSWzRaSSQz^lW}EtI#U1cn-K=Pw~f<>?t3ySe(){Eih(xA|EeusuQsAR|Bf`!ipuC37$3p0!|tWe0k;_!fs8AEkuanDAyg9lJA z2iUdS!gio2c3!uGPK33BGZAs4wsB`TI&%PrWEykG@xPI|lQOY)^GxOZ$BA6mPdB1# zo(@IIintpV^ahMLMiT8Gfd{?pAZsoLqxmVqgEm3-G4Y_+$%0^VD@w#q{>oj4yhF?Rl9f8! zhxv0HyMVpPj{ENe9<`!w6o%m`lnE`)whG7{4uK;MMhN z2sE1ec+h%9U*I0jO1!c0%ZG~>cCRje`s8MJ`lN;DG;_Ov6x((m_TJm|5cWV~*`11lBw zd0m9p=XDUT&+Br$J|47Q5wB^3O?YEx{=)HkzI3)e)WI!|*R4DkujR(xxJSHhb-Yf0 zGW56ML7$$!-+0g;)nnVGH$3P9YXW`ZLF>M0Y!!)c#>+n}=hfLI)Q*#2sIJ?gO2mV1 zy$O2-4i8%2h|T}impGKV%)S@Ley(HjN1QC~2jg*HwYdGog9dOQuUVKd7` z^cUi=(EknUX4`6hX!tAi#U5dyTVUD01T6G~`}Y|Z`pZVTzp&6>po+Ud&pzg0p@;3D zmu+i1WVQ&HP??yI`Wx-D@127sX3p5(`1p{L<7Sm-wl7TReR>VEMCG-*Ek^EU`^ z)v#@{4-0*xAO9Py_W@PY4b!;*1}EBZe1BPQeW2||wS^v%Pzz5?;*Xt4=n;}YqCoAr zZ7fNE%CgkKLa%eM(9gYNkyrb$&=O)SiwqW8a?OW@mf-VYp(Tu%4Iz<3=92pN7*YZ^i4ef zp8yN3E)%3Zl9oR=$=t`{s8Z_IAH+ZJX#C=I^pQ$q5(SP8a zHaBLJfk`KD_Ba_9x*8HFuc(t@q3a#BoI*#v9IwGbM@5|s3%$Zo%i)}&(q4(zV4=?ybuuh; zgQJ!sbE;4`;Wb$3uZcPt7J3eq$!T;sv47_=TX3qrw#ylt*4PQ_Zb#CSV4<@~yDL`| zCwta>ItQ;03vFEa(>QXFW)qV*EOZ_uP|ES^xd5-hLSHkr50j3g=NK%s<@SCC4elQO zJz$|F4gC91u>&Rp3!QD>GFa%t@S&M<%FAts(S74D)SZ|>_l1PI4d1zshn_dE)HY2$#TNMO47NO)6}!! ziP=6 zf|E^xbdB>U93HG#xy?cgbcKQof&~RvZyaL}TD;*cdc{dev(R1|bL@}zli~xKh5k)( z(k!$RHy9L2mJe@ZjuDu8TN{me6;e|j3bzp)C^R^N09YvhNh8r!R8dgSF)q@Ny$$3` zEI~gWz}AG9X_Rb01HTaQHnf1}Yan|u+5l>o?2uqJx{zz3tp&d3y(bs|Phi1a>(E_P zxU55qd#-h8l^Q8i&h;jf3tK3?-lydwmtpaeH=;0j<~}fKb+__p@q!BRFw0_vo7W9umxd#$WNy z%ugey8pFPTE$VfkRqXSzXWHWxf`nG#*eY09{jvOJp(i3S0sB#)BW9K8_(m{*2f!4n zm84ndp?Ds{EVK$|G6G16>M@U5=yV=X$W$IMV^h+9&n&bkBso%j9JA2pv4xyw7W!7q zLI>)uza-5p^v8%*ZSN0+uRChpyIidT^pj;c-n!kioXI=^?^0`=rWzCMA}purO27tU{|}NpvOVs;(dHp{YYItI${NJeZX9yjG#dUTUmD1HylNtI)tv?D}71 z6`C@m3A&FM$|~t`twJBO?3Jw47}z}e*YNkbk^Z{1_|(u$7Dch z4hH=9whC=3-?0ik{PPlk<5`71X8HejScR6FN?3)K8sfN-QCJ~IVTFvsa(m5c2N{lq ztf9noIx82|E!8UYp9$15q|@&@2J2DYrmId^g*IJv8VIm$3`@uMU{N^-*tfPa#@8|p>tS;c1mJS1G&tI z4WJBZR-vCBg27x}AWaxxKDJe8BYBxtp&jMb>rT=75LTh%w6d&1dqn6%ScQ%gO0x>> zWUB9pqV*xHLdR*vtwN87x3UWDOScOB_`T{o8T}=!LO0%MW=F@f3Y{`Da;-u?SCX^} zt#L-GRcJ5oiJ^K}V+8kT9FR_nPHX&dyY0Y2A$>g!>KG$aSTzHmQ zNcp*iT)?BT8NH&M{HEKCZY0dCsD+#KNYl}WjI5<#14-HOTt)_h>KsPN!k=4h8@&zbSiQ37GMb9yiC{{T13JbnSpDWAWZ@T1qV%Lop0f*RB+!g4=;q$IL^U*}xnUF-P;sm$npw z-QIEzezPhkVb8W3) z=tssyrtQ@aR!y!4%MT1qd3ld4GEzp-Zz+UP?|fg-(7ld?zvD(O4+IrtBCZ^3FF9k@uDfU8==*=Bdl$;@PzSN z8L)YM^XPD&N*Y0`nVz@}n?gzbz>DHWY|g`Yt1)6T=n7iT=UoFf*@k+W#X4YfJWSbBWPpi6LOH@M+HVivKc6tsNJ3Y?=2ukRTC}pV%c?MxDfc;I^PEU&w zVHK^LH{`U@@oS;~_%Cy@#2&H*6}x_$Nz{ z)B0c#q0bL_7<8!*=t7D-nx6}E8tG}JIFv7+kshzT6}Z#`0WkPJ!!oL}?G*6n6%{={ zX8GU62w{&FZ{ZunkddDDD)$V+!c#ee5Ep*4d5}2haG!Uj`q;<;(;ZD0yCPWrSPE@a zf#SjuX$1wjZD1~suOLLxO9s&^)j$BzGh|yl3phK=>(~X}7Efc**+eR+CQ@x$q@||M z4v$?*q-DSJGGf|2LOqsBCUDdX~1q(fx3|c?q1r88+Sc=A8 z$ybjCD&Cwkz+3(X)xRaw^K-*(|IZHZ|F}04z_9J5UVENkhExITraN3)MWbI8T{PU7 zCoy$-4D%!xPS7UU?7>wH^LiFq3;#(saCG+2Zx>Wub98pu(b=U;lQ1jkxA%f%dvrE- znFE+}_jE;H0(M!uPX6#c(mUR;xsK$o*zXVDRm(!6)vyt55(v$n>^rncC9#61LK}O; zD|zubfX3FsTCLkp4My;D>~E}Is^G#+{)$ek;l!azu};l1o+7xE{Z9M_D4|Owc!}dT zH`VXyFPeCfRKJ@Yzfu}RBJCi@Z$YZxW@Mdjbfo%CbNnh%iHWqm9lsT+erudO7qE_% zh&RFUo1E%*g5wuS_51x7%y)}f`AwwtZsj>vxLrTe~31rCHbcfaBzyQ+D;{0i9gN%-A;K7Qdl2jd4zYhgMpoq3Hv^n=oPtpuxygGYVB z<84($=z&$Kt^OB|UstN%<@k}QGKo>eo*94SrX_DIp5D;n8BzLysmnONNa{SUH_aRO@kv2_ozlq=RB=_AVJoHWUOT@{fbxj%LM(j@m%{Ej8LJ5Dhf`f!rl+ayYr+$)XG2iCdU2k_OY!MKni zxkkvcC0C-EOL9j-fZ;%?8H~9jh}S{g(8$I3nSsu%nLZ|7ylZHLV}?e39-~jf0QB=8 z_m*#okC4tWX;Vf>lkjj8GeVlntS~j1J5YKo{c~1uZ$FcT)?^l}g{5jfQ-dA&HTE=F zS*2jNLEYC&*`g~5O&px)!6rfmDOsv~#t)`{!tv`!^;^ZXig=ZDsEK&jIDRWq{SGrN zB3@^z-)|hh8irVjv|jmz?_7Z&y}#^{=N(Y(2{r8hi+O)XP2>#abo1E(Bb^Ic!ey>_4ZCc~L z9lsonyQDaUePzUfeYN<(z6C7oWDlM;apO3xA%D+!qz|43I(}&lxfwypXvi!0LZa@z zMz}N!i%to@ZjPTf)$jMnAn_upegVgCDAzg@Y2W09c&k$Ve(v~{5j_#_a``32o2G2U z`<6`-b~AiB!x=uQQRHgM|0E~0&k_ya<1^3k#&7L(o}lygeH~m$dJeO{O^|NH^(Ake_iE zjXgC(!9S{=L#x-AOd1`ePQR(mWN_^YC9}I2eQw7DG=_tYSPieMML9A2;fuHXLX(oC z)=xpr*U;j{noOs^;@ug0UD7Vg60G?XG{}j@KJhXwETCai2LtenQdUw%l_^)noQHQ{ z>e_gyt8K~>H8{}ZYU1>S$5zp1lng1?Z&tkq)Q0rkD{!1~xC+J~{6(vw#H27WSn8zE z1Gfi4*AHUC>6|PJUZMyM8@*InyT4-ZjOWwo`$IQ$S-~yJG)Ktg&=v38x8@d9aX$XUxg_n>&Jean)9!|&bmsR>s-0w0IXXX%QF`7OQn#U*IY4%@@$J%8?P551- z?!ckuyXD~yQOTrshkRv6>Tj%Rq-G_!9nB1DG=mCI&|5zZU&OnB{SxJ0Ac0hM>`;0- z71aeoR+^~Uu}UABRG;wpxbgV4c#!bB#}xGU&WAVhQXskhnab}A{klU@x$qM1dAqsQ zUib(Wv8{$z@OC5l!-H=3HNQ~g4}B-e{obVJ++vL{+=uO&rzPI0U$BCI5`kM`Tv|p>{ zB4!F1Z|Dcb88jZ8%9dHn2$Kb0!@rLBZ5SK6tpi%Il}zljt`GS_4=p1wgUoD^;Yu7? zQKVw?b7nE#u8)8JN~b9Hq|(?l68r5V z)o98TCiqy(gMP->{|*6P!%GxkkwWzsuuTJry=1m1v&pPoK%@*ZHzdde6{^30Z5nB; zE)SV`nPoXALBnIp60ql$#!fb=Gb@y`0 z2$dXpnO~bh!kA?XKL3OEMCll1yCUCN7Kpp2RtIjm8EU1lrldcXf?I z^@py}*dlgP?mS$cLE#QjXrV8cqNSDFlVCwm#A3hWG*!-8)z~J3%xIGlQ>zNqAFV?J zpP0_x(S98D!q8ixz}BM5=PG%R8~X9(cg;{sy|wa2IH|GaM?2#m1PXhGpO8{q@qxliiY{IGxAU=&8Bir zl8QoIDw;sVTDWnVD=#Y<(`V#mAEy%B5-HTBqNz#jhCEaTXH!|8q@qxliY7g=-g&4* z882ky<=P|_g}PKUor>MZt>0WFYRsl`a*~QdT`HQW#U?=|TkO3oUJ)xJGh4py2#mL- zL81Ed+YfZ%#Jae8oRdtBPNpGACf>JLT~ zOR1fmkIc$!GDDJN6zY=E+Cl75Ziwg1jW?UjE0YqrQK(Bs%M!8g<|7kj+K|DUyOLxS z>XKpL%JGzZWE!){OiYqds7pqRDX|A$%TuVbY%=|mWEAR>(K=0Ray~Mx%sw&-)iyD~ z8-==Lv;-9Eo{vm@HW@ofMxibltuDp>$P^)GO%-R88J;AgP?t=p$c)ZMW+gM7j6%J~ zp1mu63U$duc#OUEN}k+I&L;EsBpHReWVGBC`*}Vx1=(b7NRm;gOGYbsu`lH#vw~O| zg*q!qMxpwnO|8L+?PHRaOJNSp=5WXOL<3i-{%GJ@m5j~EL!~{tNWVx@QK(Br>z%Oy zd8jmIQyG(_qEMI03Q<|78|^u|>9TApCnc#U)TL4>D&NdQrIkn-+-?0@f-efyAAIS+ ziG3nBmHBfsNCXoku9)klU#j%~0PiA4S>_MONbgCeAK;{)I5>8lz%p{o*Vfi&>$xHb zIODgVLiNW`a)A`oQ$TIxBJ-t;JT!kbPJ(HLlCwmQnRAhtXh`Ik$roqm?OcdvTG>!aOKmGarIk= zLnSd>S&)y61|%7bd7?H!MxpwP4_D62LndpuvNS;>Ww^5Ah1_MyT50)8GIesevXIod zsy4@z_>-h}2eb;+A609n#GlGTMKh}mK0JDDf{H?2DvcVgME2z_$pbkCJweFi8T5?J zM`mSq+xb$Gj6(HCt(Za2yLe0RGM`D3QK(DC40@L2Bh#AQ3GN=7;Eh6EGG@>-Bp;dj zY%)Jhl2NEj#teGeJMt8&IGao$Nk*YA88hgamygWK?0)cLNiqs`$wbr-ekLE8$=PHc z8k69SLR~U*MW*GsJcTOACNnolMxid50U~pKJ~AtamC-ammn5T5{ly18C+8%?%CZh+ zWRQ9JYNt>vohej*^o%;D5xf4`+}b8bNAf$UxY{POBl*`eIjLlIBwtUE$kCB}H#d=7 z9my#PI$0gb3w!d^QU|5Z;LG-}Br02>`h&e)II(&8$mHlqLP;{29m!|%kjd&uu1wHK z=}6jk=PpZDM{;5^b+RM5h14IgBia1rMAc??B>nSH$DY}I{xl8i!KGNvOLoR3U>HkqrE zWEAR>F&)X1Pvt38aW%|~VhMbFT5QO@4EZAzi~i+3a^g}P)+N3!qnJcTODCbKk2Mxibl z(~&ghBh#9#x_wD93U$etj^zA&Wa_iYoRB1=P?wD9NVadyQ>fx>G7oqYyiur2#&jg# z%SUEq_8eeVl8i!KG7-%I2IeE9t|CLXoS!74P?wCEku*P+r%>uDGRVAmWuj0Db;+0+ z$&`F#RuC(L%&(JV6so^?N7BQP$+1Ef&1P|}A!Am^6skY=p9>J7*px?As2pTgWRp2L zNk*YA8D0K~^~gu2Hk-_rE5sX<8-==LbgwA3>XAIT>B?qtLz0X_T{0yiGd3TYRoP^Q zCCMn%CDY1d?AH2@+|`p~}hmhD459 zD$UNxcMKWBUWGb2Sv^!_R&370-gaVTh~A(i8HMT(nd!udc?_8xyW?7c&LHzlb%HMn z)gNP+l{m4NTXVB_U5@3hI}&6T#rOC)9aOAUvm5e}$2K8&YMLF)gNTcEMfjYUyIH|yu>1a1i=O2C{6i~C9+{7-!<`pUiU#{mw0LkYk-C>0zoLF+g| z8NY+>P2Q4U!M*CL`%2$5x8zrG!p1;Eln|FRx*jjT3g>YRkF(ZrBfa0h&L~*7GWFVe zFhba6iWY9tBMDn^Rw;IS(J=reLZ_cm;D9O3pPwg-t4tQXP8Ms(S!NdH=Vq~%$4-58 z<_lzTO0Us5c*NMLrtBZqr(LJwo z2y^z(`iSzRYvkW19c(q}vTu^F{i^C<7@^ecgs034*zwV_p z3)1qpLP?$c>5=@c#A#J&W}a}2{GFxz$(o9eHUDTWL^j9nc@SXKr7r$RDcg8h8^JaP zmFy374_;DBy#~9eY~Ft6ybYj$y#3gDD|OyN&Rd!D=B69$yxr`C4NXf|=FoK0370ha zJy|E<%}rP7ynWxHA}ATcW}3HqR`6y}Qi3&(f1MLc@C3w~VBXfQGO?b*=FKws+rh~= zfx7FefuJMSO7%$Uh*}!eRp9tJpYwpISc- z4lNfLSG9fWW4w9mdTn~=>ViPs_W&8`b=AdiFx1y?oKpih-sTPM zAV>g$Qj7&YYxE{^fF-z80>I6w1j2g3PzoiB#|7ddGcGX%U}cb@g5m6l5X?I540{v9z0nuceG9cc)f=49VxTAbaarWTzuOqfYZ$SsA2 zz1`5qU2qkFE8O0r?UpUNq5#04z8?L>B_@|8)ZVO5gbM6nJ2CfvqQ$uC{|`1S;J4eX z+8=hm{FQSHs{U5`!@ghO;fK90;lud{GAb$@MHZ9!RM_ZUuN-xu`T>p6a_ z8@ul^POlxt>HC=DwBT^jVt|lY7B-AB2EId6Kp%R+TGGO2!B_{IhwDx!SqsM#>}xm- z^3Yd!3fLWJFCp_FOd zcSv6Bp~x|?hphSFF>Mc6_qGKpHqQJ^)qTh%&_h)X!#+_^WxwgMM(y$)ja2p6;4j=x zj2SOdm@0bED$|zirdou@TC$761t?q~$aSaFtcBkT#0z%=PXGr66)#{vuM*OL4EWGh z;XW#91U5X6MRXsyVI#vApF-?D7mZXIRkVu&70ssD*WiCaPWYis$ABLK^}7`T1b}99 zpyJV)7Xyagj-1@DQgU~WObt0YyyD_hs%(tH2#KiK)1$>#xP{0wUcz#{B3Jc@tYl>N z+*Pu$>x%kP#L5wMZQ&bH_tibYmsGu=g{7c`NzuC!KbS}Kv{CkUc&PIx1r3sBt$Ayb z4v#LpR1&X*35hS`B~#*+iRj9UB=KvN+#94S%8>Fv=!&7fhOVMOsGmQyTuH6qU&yBy zTsdp;B!Ec#_Aa2|tXW*UYt{tD3i|N%9>TX7G`SdPa#dVU>arGpPX6}0Xq)nF-iEz} zUXbYvpF#u9De;7gZUsiJ!9f2s&j5d<=!f1vaQCxdR{u8vXfOI9Rd_RKZw<}R+A?GR z{=Rr*dwVOMnmMZ~RCIflUGx+0(e=CoM)VCI7k&)q|N>6CeS3LHhN2)`EYCy>H*x!5vD57Rx#pW5Pq@sY5dc!qGy%q1yDG8Lf zp|m0+LVZfA>@f{At=)!aj}Z%~S}{s2;$W5L-vKTt;();C6AQLbdc&~w4#QgH3o{zl z!?2f6@P~&N`NXh$@%Pzkw*K~*Pmp4nE)%b*{Vd9eC!yrj4BeGAyKnNJY% zR>u@;_Zz&t#moM;rueM+yxjoOd$X_kozf{+SkwHA%H-Xtwt4-MG7P?6|5%`|-Phbz z>Z^D{F{klX|-`)@h4r}KH%R@7F39o+_k>>CA zSG+XyV&By5tKg5faQ*#a(U60q>Wcoe%03X7+A7uzZ@8(rtN^}j_Z{8n>G3paW;~NX z5SvTQu2V80O{I6JeeP9o(!A7bJcYKoZ9o=rH2Q^t@WfPD%12e;4v4-_(z z=@Sf>EBf1q9Q18_HxRnZ$R#3l{uQC>vr4Y8i`uUUEj(*7eDL0~X$5EWudu7zi+o2n z1h`tbdsMh+f*L@82H>mMKBv@gZwVB(BDKE4ZT_iS#J?*;KkX?oy22i_;PARZDP^+5 z?J7vP$vAefgSTkxpwx}QQ1u=Ioa^?J&nWPOuC2jLiw2mCa+*D;Pk>Vw?x`lTp`g60 zL!}rXwU!(nL0H9J>ql?$fOVGIH4Hd0t+3=b%6#ayPH_f(W-We15$yGz@R&iT19g2m zZSpX3(|yJ+BjUShbr^)$u2!%Gdp;VXy*UC&2byv_ozHFrdk#h+Uf(-qgmv?vANtTt zYD>Gl6>T$zx(TWpHlAK>Kko_kTw1jwR&}UZES&X;s+OYLB}w~>^@LY}QB`d-cKAbq zp{^i6LL=$q@aeu;a1_K;frSoGz5Jp3;P1Jhc)TKnHPd~jNS`M^y zXv9qr?}@)1)Nk}-8;@XL%JGO&a{}qR^6dzR(RH8n9$L@TiO!*tDEEsE{_t0eeH9z5 z#TVd%S=|7gLiqt%D`|M~?>OVW;%msRu?_B|V?E%GxmWj7(0kE^PZ=p;flt zk8n~8eInSN?ulBO(8@#g_7a|&c^b1FwKJj3_zgxy0hu^~PGRQ^=zulY7faR?zz^-5 zdA9m>Upb1lS@t=5b~>NJrgY*{M4Pb>Mqp`kM9Beb(ulzzv3nZDvx!fg3&wM8)iIfK z5y8h{jzyGo=Dc6|k(jeSCvzqxm@_HCoJncSnUuktNylf7^Qlzk6vNaJWrC^q(lW)L z3wDY>gD8tHv^p+4NR1;rK}UFwTn_u}N4)4`>)v)>`3|5n3mCl(H^U1gsM(RAoy5CO z666hkxfq~8Yw<>WXv%@|rx{uJWItx_$Nh!RqMU}H?AtWLIMvkZd+}OrNvYL$k^)4h z;Rw(p2?2T}AwZ8HK+UcIZOIUzwwdL=L%YxcCy@76f8kd1xoz>!0c-2ZE7~C;M5Pj< zO7W@QI5**-elGZ&wJLA-Q6HR5CVL`#EDv^4Q) zXEvYSjb~hZidS$7pSDb~99h}|pB!1*0-qdN+T!v_vXsgv$&%sIZXcG`Rmaqk;nR-z z=ftP@=in2f6Lv+Y_rZpRR5{k&Yex*gq+)<}H(|t3F|WojZ@kOINv#L0iQDiWyL8rN zX7+R|%Z;q9b$adRxcLfV=2CAs(1;=xX-vL|`IyQQ8LwS5DEi$)S{mJ0LVS!f7#$oM zJ2d)>pO_WX(gJioI^g8sWb@sVgSEKU!v3EtC};_eL90qM|BCe|P5r6O1B3Z|otZWI z!ar*}K_lktR=I;Vrte-UdAq3wr!lN)1cNcHA5@3#5(OrK^tD=XG-JwelRgoB#&T>a z)Ll>jYN))9Mr`9&RcxI9I9K&oxnnx|M-Av)TBZHC#cF^xmAK5&lGd4?P$R?zKR%y)=r zNQsD2@BeE2bMc(a8Kk7~PbE@^9frH9OdN;2XC)Nkw9{hw>srmQ2R5&y|7O5%E$KK- zCWU5WFl+T>3ZqZ?SYG!XdNxqFx)dK4wAN7U>d@+T80VY1T3ktKfu8UjmajlaY!nFk&3Y8!6+N-rvEJ)jCjqIQG zmA?gglE3gE8JJFmj1FI1;49y$PVqZU+Ba+T6*kqY=e3(Ul(J>L1`%d>PLft-Hgwwn zrW8}W*0lBDP-{_3-LG=c@M0m68u8H^Uu)Qegd5X>tdm*3=GRV8IC=BY7l(f4g^rV` zNn>Vx0LO$i4Nw6gfr&AZL6cO6e%VNI1BFfPI5I9Kg5a`7DCS%~O8S+iv`x#DDLc?s z9hxnJ)uPITNgSuOnc+Dwo@4`*+2C}_gu8qx?=-n^8)Ycxl8 z9#D;4SuyMv9=n-|#v=@6JUwCokQ-lia;l{pMx2l72jvT}vRT(4drHnM=*B+31@wi9 z%^a3lUSxi=#n>v#2b#>>=P`f9!I_^Sx2YNUyT{%@26p?7Zu0clPmH9=vfxiXO-_;8j_j>w7=#dA&I~qC_=a!W5tR9yiK9Y& zN?FI~8UF$x=mr(fi&pbjY@T!B$k43PT0hY8hZsfd@)o|y zg1|`Y-dUwJ-oh;-$%8*!{lmk7x}Jkah)CtZmTt2@?LE4|UM@~~D-3_EC8zNc>&u1( z67Ce*a6>q<=w-?5sJipkV7O*vsQQdbYspil(Y-&wTJnuSD&LqhYA6y54cqznm@{fw zhE|&f=*Td@Z*TI4d*13RKR5&i4m`tGPCnm2J**@WWx7XPf)n0~12zaJt5@OesMRWK zG;;bZ3MmjSS`;X6cBC&*$bfo1Us23zYt-W`2Z>fyk2e6f|BN))dH{+Vyyb^{=rRyq z2#nU;AXxR+nDkOzX2jtud>aVxZAZMUUM{+pbcp|SqOyc!@((C4ZO&KMb3>r6dIPI0 z5npK7meHY}>qpwdE*fR~FDhZMUh1vbG~;PdaXe1lR8cq4IcLK;5kYr2B*UWRt-Go5 zuolYwp`v$3+0`d@4%u$9LavaTYBFHdP-X^pkbxa!V0|(JHw`W(2ZO=Ej*x?$Gj@@K zv3YXf&@>wh-nv;%4!ogZ2S(aAb?c&63N-o}-Y>QmbDj+r#k4MaW0SNQ(-_KOa^CQK z7mFD;Hch7(Bq_DZx~5qDCW`}%Hv90h{-thcfmezNtt~|}?0%UDwS#H=FXL5H$y-g$ zfoiLyax#&hBl7yExsv(QO$N-{c$>bZSac5XGrf(k?0=uTF*w@}GMnI&L zjP==TSi^jdx%&FUD&+K*VqV`OLVc+U!Gx_}{a_Vh1AeuY9;@t8vCA;1Rt$Pu$<{w& zI8+1nYE zi<=#|^LGU*9-eVQ?DErDI#OGVv%-GET2jGC@IHAu>))id7X6@9s={!T`6;XA@UrL7 zZsID`w)9{z`QaJ=5|w&dfWy$yq=92$NtK%xzOpcmOohcx@s=c$imkFv7y&+7LqviF zZvXmcB^3L_-D}HKu;+E?Rk?j-K|t^D-6d9L@CmIY)Tk0YY+ zGCb1k1f$&~2?dq$ zD?_s`8Bk^2yHo26LeBLzyvJtcJK)x`bs2d`nfBF<={{M*!6gEPthVkoa{}a|sSOIa zVU1I9@2Pd%)su1QT{Tok#M^MZ_Skkzm2`OPCNMYX@=krz$<5dZvbhzh8voeH(Bggu zv(>t{nPI@kknq!ft$2(K{k>l!u0K4`EDQU~+x_8TcLeOi{_^MP z!G0Vl-$&Tje9im1Gcu|QQ7MerszUyc7gdGEe7yLo(D={Rjt*V_S&gRH5%6^2KJ2aA zJUTSyvz4Pm=Y7^&chFn6eN=eZPXggF;R1hQTcG?YhQF)X9cT}PuWw?k@tnUf8Yq7~ zQ1>Zz`zwAk4m-sA3jKBT6BAbX%XbIr#=`0wm?b?^ZJ*iSguhVeFW*;f_dS`nK;gfb zRp7B>bZA(Q03d+&W%Boghkc$Q=~bbkGZ+d>e7tt|=zoqYz~>XALjwy(hX!$Ip!?f+ zA(=zPXZzIWcpDWS_#S$N$wV{Q`BY zb)UD-Ummr}o+JFf2xpz<)E{g(7k9#Cb#gsciH9YZf!IZAM?FLWp|Ogzfm)f+LWO_U zD%%6a2_1O0Q;|Eop+eOq+j@P!4MB4H9UR*Egd@F$J#2?p=dRb!b|(DqhzXnZvx}eF?$gME z9{OIV2W#THyiDAppQn}h1%qSnF_0TeoDSj`UY z;bOQ}vBO&OOVnG7XQAO@_-icY8{|Zfy`#FEY0&_xOU(BKcN5Z%)LBcWk|JR5L+*>1 zCzTPyXK!%cCM*ls@0Cwz)!R|*XU@Yy(Oo)QR&C!i-8iegIDUJ=3bdKdo^g(*7Kh^t z`V9}&?`jU5A^vN1n#~`&M_*vANaw<;Lu-{Ie`s|v4l5h4hG!lXBR5ko8(D~X4ZfXg zvzs)t){-JBN1GAW;;{fs z(*bgbuHmIFEHIH^lU4S<@^vE5FX`dSr3iMXp2k&Tq^MX=Qzz2__xrL2js1Kj`W;uJ z->K92?eh}382_k#p3u)8{b*p*r<0#?TlKS3KN=K{dz%!!Pvob+A=LZJ8nyN}q2G+ zumWkyHQgGg?YA<0_cpvH>3W!v2$r zXP&B(IE*+4*+YP>lh28BVjmWV*xkB`boZGtLwNSWYWps|6D=5pMYwl$I_~l=$922v zlTBA0UBq%~)zOxt8>)`dToV0vygzpnmAFJo4AJU}wNArd%m~Bl3@Vsws|7+LqwAli z36B~!%Q5vh)ghggd`S_RRV(Mhn$>9B$5=A1 zgR-@cG|Y(btV`66kEdfgTphFT0i$Dfz?;i%d@z@eX+ydk9rI7(=F%}=Af42T(J@jc z4-Rs*Nt%{H@D{{%$_h8axL;=}mm5$n0V$U!$d-9VJQ8Ei4*woV>_ec)(xLY;?<)%tUiMdSx8? z<>W7+AW8^J(=B4b`zNQfAg69|NAEpv=+nPYUzM59|KO1I3HZkdm6Nisva#bpEK^oD0$x?5pPd zCvC?Yp0^-Hxp)?QP|f0Y=Pb>sbwy8OrC3U4>(Q_w>ohu7HGELTQ?Xn_16E{>-f`zw zhJL2r`LKG$(}9xpR?KU+mV8rakKl)E#2uQ@p(z7pPScupO|k7QvIjS;)p|TL#gjCj zVkOvFYV=KQ(Uitp7%b2VMS0Nddel{x(u-S5_M(emP6Xzn61Av^mEeD-uEH$fAd4Onf$YBPqt;8CG5 zXIElbjz_i|uL=+QvA_Je;SIw+RWQGwteTd;!D6PjuIM5^&1B&a4c^=gGtKkW-BeJ< zxh{L<kzUjG%q?yH!Td>PU^wWfeZ9(=^Nh7oEy!HGgQr8fU3{D{ZVh(@qtICF;{^ z88MUd)5waZBPXzie43!n`N$~i-kVOV3D|G?3*QZt|Ei#t5hVrqRY468zR=&bLS&Az z1;STxlINW{$=?%?ZGupcM!D8jcAFBQwC1K-s z1B=qtpQ{;J$Fg5}_2(#7(dU?%DJxZ>o(r(g_e&098dhnU2L8Ox9GUgs>87UFDx$A$ z;NvX6KF;zhb_y@v&HC?#k@m%9tiG19`WfN)*A}h+I{Ed6N3gKoHK#Noj$zSa*>xEU zzYMlRMQ^b1Ti%)a**TZ-$+^e-W)uGr`odlO@1>jSqa&ay+vNBf+VnC;aPO(ltklxkBYLVq zKlhu?l3KsX14z`b(&+n|xfJyk{*P!lsj1}nr$thhg2%n0pTqc#)3AIT=YM+F7gNCc z0V-;lifVcRujvK6BG`Mfx|IHt=Q<1Gh6P`S1#amno-bV8y?ExQ$(2)lGCr=A;upt@ z|F4JI&5^d*0M%nDHhSVOkHp7&?4tQAR!fQ9e4;d8>`SORxAjY9X73Db7j&7k`^mZ; zqNSZQceB#j4P_@VeM8jfeR%Ly|>pY9v+WZD@;al@8Ga{ zv&?!H3a~oO(IR$kfQ(?B1c9fCw-if4H$&zc2|R75WQqhn#={&h4_f{xxkB=~3~ajVyNGI>X4cdLPb7 zbDw0^km8yB%?dCx{_!Wlx05ueA#6sBO-UWs)Wne-+S<9d7B{f+kzTrH>-0)hO+TwF ziZij)3~eb}rOJh3={FH&)9)H|ProTBn|^bq!`vtweUg9FRxN6)7PZy8A6Zwl-V;kz zu)#b{spLtiG-|c_CkCw)W(Kysoq`m;Nq%Pz;Bz0Nt3dwvKlx+vaxkSzD@TVZ$KR3s zta4OS!qXQJuJT+{>=vjjULdauRIdWTX{UOo)T%&podS)gK&g7T_cg^T(EydGOeG>& z?X~83OBAn~WSPcil!@_9c5jqcNCaag|H@|X10a6|zPzQ@8 z?3)nwV4J$au-WhNt}8yeut6tT?%#vLVgWvErj03QMR}YKwLUO{$GJRiW(|+WRvr-m zJ!*COr{8!2PSpmTb?lRa3-F76uE!Z-Us&yzY^YK5+V^jN;p|!&r5LxK!%A97=aGY0 z=CEY#)dTJ`p9nW;kci5wx{qcAos-SUC|nbOeUSH$RS^l_%(QdbrCNVnWvf{K)| z@}+`UUyXR3BkKnn9)t{uN zT{cSrxop-32Kr8!(UA97PQH{xU!ddAIh<(giH6bU+?M;9b+4GuH0i*FcqcbH`83QI zV|>Nl$Uq%(l8=T6_b%MJIX5B+=_DjkF(qL$3U_J)o_^ZY4i8PzzovQ^@lZYE=>lti zBGtgNMgwM#gy&y&7{8OvA)IKq{{5qd`#$?$6e`Yo9+e@N@5+J8ck}fYGb702yVu@8 z)|Jliosqx8cRQGi?{7JL*I5$7ce4%JVs6yAd@mu$<-5*cxO^|=@plg2l|+1}%UQ-_ zw5HhMd#!0xrk$-j?C@Q^wD>MJ8XYLUN8vk+>%RR@EPTdUKF*mjIqe`z@*URJ2GtZq zO>T7Lw>V$O(LX+Fx3BCrYZzUNZ0TUar7(g;9oB%f@4->EgfX2%CvbuuyA-flK@>q{ z5CsTT;sXh#XN0%yHE0z^Qc^>&OyB(*L>Pg%mm2J#Jd=mcnVYFH?<-n$H&>R}U<_Td z>+Nfuud@9n0=M)yjj^%wy|`t)CF(7m!X#`UeZlwzBPL%P30=bzlfGrfF*j9Nxn61B z%#BoIV2F#jXM=JAhs~aMtQ7FhAqTmaJLfqa=zG<=?UiRZWOLH9qGb-3G258cmwn4d z_`rel&zN~jlUkH7{1wjVzicf&2|s3!XVh@UlX+qnQ?TkYY6JHEA=`C`*gan3YuH!F z4Y>tO9oerklbF@8cvR@(Gj!OOgEQoJ0blWBH?Sp0K}Hs8XDlqb!$W1Y(W}oUZ&XGgLxd0~%m@7wP zc=>2)p2iScgiPfkAyH3h5z*f#Nhru|PZILjh5Y=y>d+BpvJ2ls1lPem^?qs`$<}gT zBWj}RzE0!%cc5_A;E(`-#0!u~($UUO^b^+={J7Vz0#csc2uL*elawuOiG~ zCWM>xNbEH@v%XL4GR0n%7CS=N*$!=qiDaop4e;BVz&{dJAULukHl`rStZ(! zDt06pyV_pcNEHxMPV^pvV>1!ZJoV5@%BuVR?9@Y)rk`04@?%$D_0Y-VWbvy0H+-`# z`Ax#Q2s_uwp&s!mAcsBaH=^f~g}hgspV?Dd5Zi%<(uoN(lN(!#)is?gFoz_Z;}Cwk z4<{p>(-53@D5mMJQ4CHyaJzmC_P4Z7Yg_G%i9#vsZ7GfRy@;>R*VW6RupMC+;!D$|2w?a!iL?VYi8PZCcD z(9Own66&OSbo}$%j&hZC;mzArM(1YMtWP^f(YX&rGrh8I*N2OhMa#e5y|Bg+Wn~oX47;gBLE+Up?oPy^#y?o;I0JAz zp-i#EFIdV1Lh+W)hQzzdtj-K5dq~#DV zywF_+hm(~&B{ zZ$a!;vWqC!N^dSCD+Zik)~l%fvZ}wC(P?I>4^{$Lv+y^XdOGQxMb?J3x(~sj&cSPaL#ye8n*y>x-_G{}p&#i0yf5@4onPmkH~0IdBgU;9g0ncy)yjZv zJ-c2ialq!NAcv|rrOm0btvbmrriAMXeIZBqCnLC2-U;St`=MR-YL%RG z=3-`bqhW`yFsz9e`+tUu$%`J0>D$P;d-ObHG60heLqluzk!tn;aX9X57RI}qR&tm6 zAtvbDR~*fJDPX_IxpJ-!W3N#oX)AaszV2y$Wy=?y$h@CRb!V7G3d}Pe^_4RQ+=s+* zm#$rBs4t}k)rKEB${)Jv%8G#xR@-e>b&Kz4OLdQEpyJ4k{pbo)@{oz@=8a{yY0v0q z2dvx;d#7(N&^Tq#-(jAPr0?}taByz_9&;p}NHd>ig1nz~jT>2`o4H3vBlnPg{xjZ+ z_L*l@t#fj4)Kf9=S04Lak5#>sl`>C{mkFNnvis30*N*5y5BO{xm0?g(ZBO8Meos}0 zxrTl|fML1JvQ(pT^#vO=g4#7$Z(eqD-W!WU7Ho_5P zVj$Zs9AgSh-LH+8D?%6l+!H*=o6#{x4Wu?o6rLVOce0xRea~U1)hs^f5KWko02fT?V>s8j3;VhDDBi*yh#2W?_$ip z%WJcj)2cP+j2nYrA(C?#e7iUNeNJG$4j2J`>ee{MUj7c}MLzE3NK@ha&Rs#Pq@m0g`xaArQ~AB}FyOQg!ho0gUM2%JADaQ=#els!wr48;2{GV_ zI0Lq;xT;-lBabnaPYr+5R6a?@#2GM&1cm`z)Kuj^?Nt5_t6_-4fSeymR{kU|$CdPb z`xg=bt!?EJ0GTd6t^nLgq|EZq!|xaZkdd{$Im>GW*%O)HoNFToIIVvX(S32Cr^3I*2isQBxtKrkoBH9!Xi{>{s1^1?L4j ztLS4Yp0<|!n0aQVYGTs9ilvE&`sy?^4D~s&e*mSJyyTg<;wdAZ8r}H9|1|eI>&)_} zZl-w}pKv!a{Nc)CxA*tjZwBlZGp0_v)LFdKjH!cjVNm*|&I*GgHUH7H+!;if_&94I zIb-9+3T|+QFWomRI~TK5ys$^4TNtZ(r8oL)8kbY3yI?J7{bzmB&d^nG~k zsG(lBiPrVz{na`9mH2XAoWy(dIymwASSqbk@HVv0bu!iW0ueejHB)b*&{Hz?LgFK^?hx&M%^3>XHcO59dnsB)Bfm6>-C2GjOhZUb}kY}i(W9(kpXyB z9o*Q>5u;Ic{=YF7;aFyw=b{(9p)U{M5CEVSzFHr15tfC7u26JJ=BPY254I~2tu<{f zlAFRLD2!k}l1j&!k6Z$ss)n2W1=f#da%VO68-7^VdlgtiNOv#0gPJUH{Qeqo{EFoF z6fZ*##=ifM<5wWRU-E*Vcb((6rwPAr^8&qFAI!TRFy5>O)H~||Ws=s6bs71cDvksC z&*L7}WjOa%02`xUzMW-(Z>B5@gqwyEg_v^AaS~O^$8#6>hkrYR4N;TQT^?F@y-C}& zf+*0G6Mgls$5=dA@hFQ2l@H`COtmSD-zm&0vY1&I`MHHz!((b;7XFyR_|pm#Aqs_& z!%anTpq0nN)fDCmvbk`L1@X(#JkIjux}GL!(^C30JE-62G~(nf z%NZ)mg#S`mHpf0;+(_&*f1?Qttj#P1IACpra~}jLpDR`cxqJ;e+Nf=2*XG|tE!+A^ z=?6hA(|4l>{#DB0D2ZA&jg4G+ zFS>>NFke0bXvX>(uYqG`H7uhpTuR>X@NRa|j{)=WRzUwJiOX z5xYGO;$x?Jz6|vzzspr#1c}EEAwG@^A45nEw;&{*zbHeVvV)Z+Oxu1=dd{uAg;+4D zCKJmLHIVJzNCR;^@KHb{q!+($M)Pd4)~ z<`u)3PKPlp>sbG~_5p(W;MBf3~ISP{dihXwu;K)Y-e( zV+@-^?~KNhDAcR|BnT|eQs7Gu?$9u+C8&e(lp4|XEMM55FFh(?VV5AzMutT25^cm z*}OVcaz0N)YKNyBsVF(KS3Km*-bzw!owuH#eR_Db+Ad-dWPM4s?QbS7l;6Bn zE+@RUXH6PY+bCnzeNh++YgeT)H9E$QpDp0{ueLO!T;J>9wq!fErkLBmGGT)$mWz+v z$r>Ho@aSArGswZ$?YS2DjpHMK&v_d_>mcmA&RePT_8sTVH1tF|wRd7pa>BIYlT0_1 zHqV=zPMdVRx!?0TZ*IC8=WU!rrPg`7+PsX zjr?tMdd62bvDzElO`6l4G;;|9kI`?9-r!*cp9{@_x(VPTyP(S92>EA3Uqes8IB=+O z`u=mO!ACAJZ>QeF8~Dg~uMj@+bpyahF5e9YLw(OP&Z+0)c+qssBv+ZQ9kqLXmo!|a zoP%SZI?Mdd;P*qLBTpB5xrCi2!w4`vsJ7A#N-OBd8~J`VIuC>Ty$g|L&}0elhu#Zz83PQ{w2zeFNm# zy4N5=X}rZgj&mjnhU`k|SUDy0;X793IkjW0rL+719qUSUtT*j3xg1RG%_<5F*na|> zjv)`=I4)Rn2h}04WVur8RR?cdfMd{-PyUIEmV6=)KkQY+FKEd}ZkN-m3ujaJ$mIqt z`2n29zW>l~ufOsOTJoQa)9Wtd^!>Ht{2Zq$bWLJ(x&VeJMyCsoIXabc2$C~K7e8uv9H`(AbzmFx$SrlEsXjP?XH zZVQu$@J51QPhuDdFKaPzHPJy8jG6Yx@ zRB8>`GqG_`3965FuyIc{&zab`hZZWvv9NL3Jrg$WBfjSM9BkYr1{?Pc!QWmF3a*2V z`@EoYeV~*G8~1Jp8<&V59UHeLCpK=+TdM500#mnX7YS_K5`&Gqmpf9P9((*uJ3c%% zZiFU*I<@aIl9F~XMnNt%ZYz%l8~3RNXw`vf6W=z%`XVn(=k+M9ies>Gf4)N4xOYTM zXkKhwBW=isuyJ=FKECGt32fY_g^l}OAau78%;4@MHg0P+Hg2nPvE~tjjqBd1@p7YP zo3L@W8vs+VakqZ}Y}^hNgrk^pfceLXKK5%)_Jx9mO~=5-opXOF*tlbBSew+~f(gJ; zk8Y!LNa<5NKtbMdY}_w0{506OpW}g*%3)t;u%Ts`-@r0}UOUCPhIiR(E+&G{ZcAX} z(!dNh?lrd>5zoZNRR{eh&}4&{x#q*h4RGQd6z25?8&?TjY}_ljEtHClJEEoNR!w5} z7wd@}6(De=%f!a5k)}*e3|ws7dM)m9M)8uz7$+s=3w5p#bo_K20<`#D1nuaUQ^3Zx z(EL@QD+P|Lvn39YVl;NWz;PXqPTD-Th6X3Xu65zP2tR)W*mpWS%$2awb zmZ;?fLQ5Qc(_a&O9Q@ath?0)~`fYsvM}gyVZU4#=rg)RCWLNiO&r)&i@&(K?m)u@; zO!iz)@NwAVBT71ZzJSk1V2^__nu#6!{{=j**i#I9CR|yj<#sR4Qyl7bvp6)qGJ`|^ zNE4vX6YS%fpg~vO-v$m57kQ*p$&jx<|e-R+}Tw&=o zY&wDSwr}_fJ1KR~o#x6|v$M7`2Uf>5O^^9~cFYo@^8-!+SqYW>Xm@G=`o>;yLFQ zUIMZ9of$81PlOHfo?D$G0o7YsY0)8pFwA6u+b=`^_YDnUo70mq`5?UN1zQbu(;Zp=LZMaV2C!#k(5AyKI2mWwR=)8s_;6 z=3jbnL$}!%bLx*}C6pvdgc?7+G5Tk=Kuu zl)Bjx_8v7zJGlXL6CW`MxVNL*Dt?%0gu#kZQ{pJcfZq*%~-Dw2{z`Q!OqmTKf-l^iNA^Jk=mh#B-vY7Zl z)s)C7e=lS%i?|&k?bkF~P^}oX>13lm@T}so@ZJhkl5yI zU*R1(V#gwA#1F7eXo>n;Upc3L40^53x!De?tbIVpx&qh*j+KK!Ac6yiORnZ3%~zok z{N)>fu?&1?kwMoD6fP3Fu9mCl?R_n5KI$%wj9=Kx+sGDHJj|&=AFKDEcr`+WfssWn z%mF(G6jg6RAm6}d!hR5N&6N_by+ctLf9PNVp6$ljf#Moq3Wte?y)3G15SFed^y@~r z7bv_#*KUNR>rk54O2RcHv^{NPa)p|t9pIv*xr4x1&kzlnD@aT^og)mU#ssCifC30g zcNJBEQV6$`9M|0B=SXXmVD12@!I8_A1XejcEv6ex(B}AD%9%*Hv#5Z*(PMA*m)|v) zNVGuH*n(U^xcImB>@I7`%Mt@~Mh}F1I;5OkL}lJ^HxDl>5@L|0AsxFEW#h?E0FcMaYj3`AEkT@YQ-G9bDOKSRsT z0MS)$qCNT@6GZn*q)TGhn*4_hO87?y(G?L+QO(6+KU1r}9{@ymfr-65Jp&&VMAyxM zLo?{)AQy-(*P{fY`?)jJ4qOmj=`jt9LQc9kh_2KeomuJsG!R`Co_v2m5Z&Jn)xhIM zqs#$&b(uhC)WssujRuDDe;tVKSuCcnLv=EOa`1%nf#`mtRH|aFILh$aK>8dPMECQg z5s0p&%1sMj*~=7&u4GEQ<-`BOKy-~%{T~6*b(&kN%bNs_)kN?#mx~?RB2oT+2 zNf2EQQ7{5BMjsdtoMPS#h;Apd4jOI&5|_AN(mBsd1Jor+60g7OlQ5fuP$3X6=F`d~R#V z%-V9m=Psn>I`FwKvdPXiQR_n*10~^e-v%Z}@VOfM)5x0I9c36tH_5=zGspz=SQ?iC zpWDGqAWBv^N0|bjD@cyx!RHR1_V2>yMveiW8)fa`--FLRJTetNcTEyLx7~ryZ8za@ z_}uNh<$}+Ze@^(^KM;@spZgEIkjbI&ANbrAyrsbB-eL%4z~?T;^H}h?vj`V_?y&21 z0%XEvgXI1@@VVs>^xECe!vXsz9X?kOFwA0-@VWo^j^K0Ut$BL)mwcR&Su~AR2&An0 zF1@9~=eC*P@ow;X-g3a_{ukal)6(nP(EgzCx${Y+#e)w6pDVQaweWq;-W)Wn20piw7XzPrI}_>_&tevJ3aY~fK6iks z$c4`>O_OmrY@y$9rG6biO?z!EFU;xm1=fs|EiO4JM_jrp!C_6~L&E14PnASC@VP(b znX1VPpS!1?@Eq{D<4MPn>lJbM+?A{-{`>H`%YZamOx6s1?oy`TIpK4M|1W{hUG~x8 zbBF$44xc-3VI1CaakYKjLaiQmn$Gy-ySf~Ac>!%h3r9{T?Z9wF15YsyNdeAnGm#TL zxtplOB~oID0-WnK`P((>VJyKOy&4|6IittNs8GnXXKqwZCkCjwroD$u>kgUL9Wt%k zfy)KUwuWd7R-HzkK4O>aK7Yumbt;ytS;kRwHK8)ZGnLMVRVtpS1DV@lEt&qN6oO;h zDKvreve!j2^<@$=SL^P~3wy9@qD9|K$lMaGN0b{hD{mY!_c;_1oN0x#=)*2%atvd{ zAU5Ove}K##tN~jBGPgAenY;M7kh%Q;e*rSrfB`wkc!JDTQH~9n+xl-q=61sN4+fcQ za&t_`T&&tHTZG4KY4t} z+*8PWq8S)qD%x0pULzeccWDM>?(YBokhzR6KO$uAp&n|wNjzY)wf}zuWbR@IGI!?) zLFP_a;Nay-gBiTsuGs&>-n+m@U7h*=fdq|$oglZUsL@i5Mr#z?VuLlo1ZQ*x;suQ@ z2yK*N>xBkHx>XE@V7?ARsWn^LEtTD^mTk8!c1w#FFbN0&6$1zc@DlMhBVK|RNR`6> z{W<45_ZdX%{{Fk$=Jm>)^F5d6d!FY!=RD{7`Bu=+xlLdFWy%iFTLvuG>~HE+Z_sR) z+1)-=x}6?SUkXp!@-&CW8W%v;Gyf_VEZ2@$?bn%t?4jB{ezxtkS`*B%FXB5ohv(w)Lb7aqFk7c7*ekKde8jx=x}LD_ba_F?YJAW z70#MCSgtmIAq=>tJSp3~Fs@z=Rt;D#fWB87;9iIt_(#BUP5yMS+zlgG6Y-q(72&z6 z2%@fGAfrEC@`Yd7=v#ryy+P+V8uZnG>kJaj1|9fsc#V}!Ey^=&T&E>tme&nl?p0B| z+;2zma&L{{ z7R=Ar?!0H-9V~TVyAs(0Fjo}>>~0umVv)Nz{_S#}Zk+@V6G6Tmd=+Pd27kL+EKRlW zvT1m^LnykE4VYLY#!B&hyBwc#4G^UvxAKvPC^N##HH`Rj0ZQL(@Ny651NK}D0+qG@ z;ZZ)=E=uB~%kZ%jiKq!7@BDrO2f;&N)@DP z957K8q-+DetqM}M0U|Zz)`aR2UT$*LaI~qw@?`LG<2?DD4>`RV!^@rLEHZGpU;3z5 z4tm}~TmiF8+M|WbRaXF9uC_1YP_74q%T-DjPqYcIizliDYwBM|O*`;L;d1Tlw}0aT z!ot1(SR`#oh0ATYN;mJQm}I!z=<&&#s}2z`cfbG_F!xCfjfI!1{zZ7Xp$^mb3wlM4 z)&hR4w{rn=SJ6TZWa}eoc)5ab)d2<nUOo|Or=^%Zlh+mzAZwl>k5NsMH7<*d%dm9us&==CIL?OeEcxyo`Rp{xR`qYp3q zgORj3s^wOA6falXSF{0(+gi%qRlmV)ji1j-$II>EMI0Z~E`zF1y|oT$>k;d4Vhk`> z-7u}c;vvR6R5XCO)ZtImIq(oi%w?_bzAh8!Lgs$Ge+)AB75I{R5-k?Hd9y2e6~Yz0 zDS!pGO%uI^%vC-k`WR&Hm0!#xdKWTRa|XJFs$_cuQ8S+?H%uxyqFtD_61Ev2uU?Tz0Hnjk-IHc z?rkns?gket_c4o=yUJqau4H|HD&iA)`qUdXAktea2Exj{0+`&$&HU(T?mHGMw>=|P z?)Qb2yC<@v$2h&MbB=(BoEMm$fcnh&Szw>Rj!p-TUb!S&D~N<_8%QG|#ZSb_{Xv|B zqDDXCqoTzM(UavXz|d%995W97CGS7vF; zOX_wUgO$7QyQEIW%IzTTRGV5}Qg`AQtlSMsos5;+MI6f|D!06(4&xZC+{H?rjFnrX zBp{yPgl7{SnTvw1WYAA&DrRvKR&F;U#XzLWsz|8mK?$5>gc(J%PmB*E?n*un@9$qEG}HGo(x>>-6ctIxrG|0 zB*NvE5+H0b;9eCKT4vtCeO43RSZ$qR91E8_$p*~CA5`Wr_yt0hs*7;aJgrno&uMvD`r-bQ}M+lX|R5y zG76bXuP)1}aJlAsyS?wuiJmEj+@eXMB? zutGY=(c*cG%mUZX)oJ{t$lTf1@KP_}l8Fq4G=2>PLpsME2>wE+?m70Z^^cH`4RY~m zF2u0K&c~5M(psV42SYk}&jDrKumDY005>}N9?1QL&fuXSD7l(_)t}(s^aD)?=XU};G?{7CRu^fwW3P7`{7>UWtk`}Wn-(4#Ee!{rb_M= z z`w{n-UoZf%yS!!F1rTfG5ku1bY79x&sp61+U*uyC=~tpsaUk7wp2pz>a2}$Rg2#Y# zPn6ze1=2N4#(;EHpU7oYS>9vF1t8rmMld_0K)RU)^IWoE*yRwNzYRxM6k<5KhzT5B ziRpPGrk7nDT~|y7M|b)WRqSb+j~S|mzP?kpRVst$&IL^O;@a^83S&q4cQHSzaGvvr zzROw2-`}rB#1`>F96mEnFIt0-wo|R};0m>WaCE2OXbutRNy5>U-Lb~ToY8Yp*=2e( zhqBGb1<`%zF@qHewVx?uCm(-bfzgpoR$NLvZl*)UaGG^yJBff2vckT#&DiB@6yFhfm zM|TWwSzZF~F%aEVl>*VF@{6+wK+DM=D}X*31n>%FIEVmJ@LfL}5M5jOfXI%q0?6`` zXyscF-K7^w0iH8+>2&3POW_}<01uHURRI<%V|E2dDcWZPqH7fZ{`>H96d=n>;NO7g zR@HOAv8ukTQJoP31ICcR=c?6kabf_?hZ5T!0a!N zW5|TByTp!Q`qWkkjFbl;c`Ux}4e&(Y$fG*M$b{IVfwDDyE5V})HiWLBGHefZ)TyF% zDbLDm@O6jT(LRp`%63rf(LmWoY3;{Y7+M}%s6iXbA=EpuP@PCCp-}5$k4c641Hp#S z8cJsiHRvAEdWh#(q4a@sOUo4M_Sj=mp(ZPMM`VsxBz8n57<}Cx)pcZ}19L=*Lac>8wDzsT3yWgL^>8|_Y_mT zkq2F1-KW1s6+XiQ;JDv!F(dCjzfssPcwq790>-VfkiSycH+dke-%1z>b<0UYN;#+5OkRZu zUiP7{8)RMOjIQpx$hu2N0-~Cn@Q+EA720(4Ei5(kek3b1NyxfgyeO3!g}Kax@g_2J zx|m5u*6mhNSDeuCE^>#ihqR;Io;y-3Kq zl1t>sht-go^E{1*%8Q9A0V*X4S+^RQr8227m&qEu23gmC9_39&)}2Hga0yzGl9!@S z!7<3XpA&b<$huRB8)Z|=OX`_823fbO<{;etcp6pKOKhQsmw~K{F3($*mANFO(;`HY z%ACS3u$onj*C3tVJmMe)I9dhxKJd3PPjRGEzJL8PhY^I27h18HiUR5Mr364Ww!c0( zAR9Yb#p>W(q|>#{hXlx`w}*Glr$4^EJ@^=cGI7n|J_2cO&4t7K}e_9>1hd1o)hO#896yFeq<3_ zTLwR}2cAGy{KDOd_>o_+PlXauu+Q1{smMN+*e4^tSiVvlccP6Ok(95Pz7i^KzEb<- zzE4X9!gaLy%I(uJ_Q`9X2AC%o8S(>7?`(LkO;ux`{_3dwF3RLq-QQQZ1)KEMPH^!f zUo@#2rw|vzj~r+5BdnK$DeC{&*2wam?MGlCga%eN;>zqP|9SCNNgKG2j(8` zr^b&|`7M5=lyA9I0<6gv%9?^TsogbF=)6U(`6>dp89oL-vVe}}v%rtcy@Jlp;zz!C z*`eV_E}*EXJ&?l6;g2qGAzp(Y`POhc%w+t?#l)FacQz{Ul6nb_!H@j?a`mOW2>eLNS7)aTexy2#{|5ZX!XF)acQx{EQ_50m?-S!kZe(Oy@rR^eopA${;V9%OMEYilO}wu zIqx#o^fq$rWJU`MqWgp~*U**+1W_-c_zf-OlcM_S=S^oE>n}3^;KMH0YT)q6o^S2q z|9$@XSoY-IQ0oSsVryLsH z{_s5)HjM1en$&w$poH?t?25jt{JEP*QTG}Q3CG=Oo`g0%3}Y-9KX3R8z~9v)_)?rd z*xxf}TOi8c)A(4BGoN4yI4_AwTAzW|xFj_28+clf#7q0cXGSo{zbUk>2mreT!!J|sXBl(lP%`i4?yFM2NtFzYooo!sETo-`D zFS)D070bnF(0sIN_<>Pn=k~8~_E&lQ-9B-<)tCDOsq0>M=bwGs_*P-#C_h)tq9%I* z-Iz7mEN$eNV-vpGXE52+E^TAu-v(fR6xKLs07YXEp|Urr5TPnW`0TsX6ygB(XKFb% zSVe6tQXX&6JAxx;dH!I5r}1~HDTAkS>$%dpZ3g+#I66I$!}MC~8~(u0AhpLR<{Fz=oUC-28VdhuM>y{p#e{AKtiUu)!o<(dQPGr7ZC zd>j7~V2SXHey77*(n^c*UKAWQif`v`9vvK3?$2$la<1JBbT!}6-3S_3C~utdGXLjX z+lMm>{P5uUeLH*iRQeSSw6GlpTh#>^H9|v1AR2081Js@l$!1>J#gaiPz~~ngngL++ zD8dg3V6;Ue6#_!fjMjZ!4B&ZHG@N9B(W@(oE8FS$VKp8AMtAgMG^*L?zacX4e!C?( z12B3j2{HkUesE?+fKiR$J`upEGW?AIqear7*rBe6T!2xXs1U&DGc!{GMis+g*=%+* z73N8XCH&s%6LP}8+qEwWFxrm@r%}J*CMGgL;|2AVzC%kfc?ci?gdH0zq3T|AVTk~v zuP}iQ1RLW3qalN!#&#~rJ@Zx){V@od|3Z>v1WkvKPl2Fm(Hc_`G$*ukAiZ)^0UrZw z#dpP~B7G>(gn@h5#`t9dc42EBfQDH4LG3J3^L>-bLk0$C zMS&r^>t1HGsMD2c0HZII2o>_dii3(LNc6{uX9`J@#d9SgpF%wU;{Zng^K?n*2jwXe zT9%|hKfYCEaXLdupQGn6o2>HJOF#6-uB&e^kM3m6d7(*lps*vbI0T}IOeJoi} zFA(x~1TcDmJFD7oK5R$vMc?**EWYSlmn7ngnyy&*qJuf}W@g|z)1SJE?wNBM&>iv5 zGa7tRt&&imxx@%xbbcm$(IpzeIR-G%{bZkGHxb-#bu^i&kIv>oj0-%XY4Jt*Dtgiv z97kVk_nEH#qV|~t9j$#Pxe559=5_Y661x>zD5B&4wD_X38%7w3prD@|U(_`}pB7)# z&HiceMVmA}G5DfO@%75loHT|nDshQJ-}Q?$j#oSM1y^VQ#d2DXayl#W<;3wtjXk9K znl@|jMVocfDHO*SU6gis1 z`qvFh8SzE`S?97Qe=>a0B}N2Me9`5QMlK!30bjJaP`vETh%ef#OA0CYqUOL@7JN}d zG=?v#H?b$C8WXJYWqvArQ8Nv)^C)))6~h#&zDEn%+q;y3)%6@8C%VO#Ap~NZY<%1WjG58@}(8U`i3V zW;>YI4W3d;#I99@)s$Cxik~E?rdqp$HIvBpfwHwdq2IwZQ@wrau~p=3d)biNny=5_ zRC%UG@*`SIpEpOLG7|YAs0%eca zeKB$-n=OZgFM53u7WEV2i=Iy&ULTTHxq0LGq7vudJHDuGZfW?U5)In*4}8(xec!F< z+img1J&g(YqW98iacWBY<%|c4%#*d~$rzAT8J8i@wFN6}C?Phv18L z9P>XLU-ajDYI3;fk?XJhJRkQ=#}}Px;-mPYbv$Ll7gcyhd{G|}DfpsS5`<2ggBZ^7 z5Od_WPMK2PFcKRyOu^h(~A zfG>I%nLKmiAyHmkg9fSbWiQ2brqLiZ6N_X;~^C-$P@ld5NEE zc1o*`-$(fWU-+WFf8dK=@DF^^IR^OSmQRK+`WD{={0F}1e;>YRpulu3248d=e)@`( zt|g8ydXnNZbS?i%`2TBs(LMvT>i2hzFZ$s>@I^l(e9@*^*y_J8d{Mh`Vm?BV1z)tA zncV+Ye9_}QTGadpzGyal(RYBX`d^DLT14TQOLl8vA$aKcqC5XD}7vJCj530s~PU$jY^1P8$v)rRJw5_-9A8v@eH>p@=~=WFzNq0N5noiIVvN|oQTvdo z+r63aMMavG{$?#lf-h?Fr{jy>^a^Vt3HYL-o`5fUk&RBq7rnv2b0h(9{_n*Xm7tUH zMduo{jU@K|7vPH~^3lc44Ywq?+4X-9Uv$d@2gMiF_Qj#$iz?+n1jTvdnRs3B#df^Z zzd}3krs9jLn+pHi#3Fi)GqiGr$-9uaz8KJ@9zNff&B1`WJ&Qs!Ha~F?>E^UMdS$sav3z|dUbj!9bZ&EBFD!%sY6wtI!4ZDcj+++UsT;NcP2hDzUYUK?mJ-c zU42dpzNjkD6}<}Kiry4}>&Lt~ZyAVAx?Q=oS z--a*x=SMhhXdyYB&LzF3j|93vsEU9q0;{<3ZFX{dsINp=#A~lAVlOHSzGyj#KL%e^ z2b{tuLWF}FF?>;T>M3>6;G!2ab36#ls2a=v4Vck?f9?~)jMkY9 zpBQHJb_+AwU|~jYabZT+x-g^5EzIbn7H0I%X)vQ7xxk`#1@J_sxKDG#yU|KEO*6ub z))5IR#4}tU#rX&{51f)igc-f+ifoM`GS@bRG?-DTdSZJT7$>19x&-wJQtZfC{6t|! z4?jeh(Wx{XT2>N3g~Hf2SLZ(yuYnnz&{LEOGg?pFSxOdamY38`I0k0)#6qqSCBuv^ zAdWN7N-Zy`7vdP0(cMExoeVR&m^h9ME493&UV>v_Mpr3yGR){w;#` zD|Ir=XbW+tTH5lGx*f;BjDB0GlVL_Xh-1}6C6SlZoj3+&^gN|bh8b<53P>p@d@RwC zI}QU>b10#K8U4xNgWQY0_-x<` zUZjWm%wa|~dT`G?gohms%xIZ;i-8#(iT5Bdqb93`8P&ie6=rm6vkNo&7JaE;MmHIl zQI4HA>rgo_t>!Fx_~|c2VMc3sIh^fluvjP%xIB{3pziaPf}E9nRy2=lP28YfpXxqkS7Z>T5ZFp zD6!LABPZ0HFD9H&y?F}d*d$HXnQ5I#azc$>91LHnoKRym`Qk96$_LD-0!gBj;oI8> zV(iQ*e#`wHbA~?|W^|H-l@1hIkk?D&i6nrYFMS3uqq{B4==v=+7qq>ivL4i{6g*xLHSWS9LWeeZDc3@8AEe)OQeS=8w zlf#VG(8kRb-UfqU$O(N5Guo&_`AdKa*GrmTv00L?qwrzG?hq!8SRw58%%49&lj?|h?!tUFZJQ6_q3dU&2D@OKR}s?I0|GpeqKZoqU) zLDMZAf-!YRD2D1W8G;%84+Ar*F)0HFU`F#P3}cown9)Ba!HkMz8qBDy zk~=mqFr%i&ta4ruG<@>)&x=k^gc;S#qt`#n3{+JVW;Chf?pbMb5j65{D$MA$89v{k8~wMlho#qV<`=jQ-BRjPe157u;!5`1i$8n9)7yFryjgMlQ_g$?F-b zyD*~~a3sQv7D~Ni(;kg5VlboiCd!O58Q*)&lbP!<^i&hUX);dZO#3uRN$f`_xKe2p z&V?C0cf=q~Wb`r%GpgeLPkyriCrWAH~Okvc1P z1K=*QQ*5D!!@(a#C1VPZfDg0pcMs%LJe0R@Gb;*>UC1JpD}|L?Jq+V5YJDIlyys=O z$}{^I_NzP=EEcdXan(&S%GrZ+!$YKAo_i9g0+SSKw+2@Bvs)kwFk4Qee#7^YCMz!& zod7Q%f)UCohsdvRaaKM^&jKKvy(45{;dBV17L@-LGbO3UO`xI)63y)W{B5{sACw;w zE}GsOKIW@MbbWDLv_XHQFaYA1X~ls&Ry=YLg=gOLl9mf)#5YN%5Apto1w&h{h`oFZ zs|7H$Fkooa0GNH~nfIRx2MleUx1=Kx46S9x5LQ@3)E}zo1tyxqii5wbrLMceS!LG3 z0I+MV3SHO>%)53jy<7quph;g9x;(d{VO5@{+b#MrxPCk3o46pK zH=FWs?QlQ9H*IxqgOcWHDElvQW+-_>qk1`cKLR4eTeh}tcch4@;hT1KX3@GNxZ7?m z(x)tLE9?UCiyq-MaJTg@vAwkCv7u)y$%!lQaDn;_ZwY^XC_1wKw<=IpxZ8zj+J6Jw zZRghx2|rSA5AXX5#e9TfW)Vyh+^xVbQw5_i7w$HU*TCI=yXzo=Ir2E(m;iUX@IUGA z&Z7hd?sfxKPH?wRGl0XSoqtc7KQ=V*PWjF#@Rw~9LgcVfG_Z4AbjWlZ zOb{Zo;$T*IW^H0I5FpHLzOoI|PIQ4VH&rx@%;iYYn2n%dR`%T#$n7M$?sd4S2v!ao z<}}Vkzy@yCGk;x-yI$U)513Cr|1$l;D0kn%NAXOCfFpFybwd1{x{hkf^Tkjw1x5(m z=Ov+Yb4fk0G!PmZ#53${uncjBj^QUW2&Ql^vx8u^16>G8*2VzbeLlEC#jbcnrfB${ zQDq~0S9tvI0e#tbjW<_G>LQhWJ1X|JY4YQlGmLHCSUZvRitQyo^vn{Ot(NzU*_tYH ztoGkO73%aD1w2DQorj{%vEG?@TTr<0i083h&p|-uh(Ir2#NkjTkK^j`H|3p5qTIid z=#`{I3(R07G;RTj7XH%9(CUSKw0t93m( zl7;`p+nPz_M?r=1xhLRs`#ob?ebl8OihX6ie9xSxC}0{&u@Jtb-+xvl*@d_13--U| ze5=^s;Mf9HE`ZaQ_Pys3_9Y$pd?8}`%GTArr8>D|RIuOOqnv*8sRdO)_pTfLPPeq7 zHGF}c8TfM7(3rd%dw?;U@kO7r(O?GA7h-f+{f(y7WMx?A;lK0C);4E!eOBD91m4->$>e9=*Y{z0NJmqr%%~q%>|R z{lwDnogWp^W*beF9t7#HWUwT6OKC;Jfn3j=9=b;M$)NC#dJ4bu8m}qhyR!aZ)d(b1 z>~->nc^&_-e7{pUjClVrI)!oNerNiyBJbMDVa45Zx1cwb!%90`&j`3c@>dKihg29k z-O%X?|5v$rQ?)?RvlPWKwiJHUo5P7GUa%bb&!kZytvo0J&V z+lI9yhW+X*=DqpCN^&LC=qD^eLO#16YQ=-dJEn?iTJ^8#XmD>-m8xs)VxV zJPiXSgy17dO87haRKk*!@NyfLq=Y@-mys?>2^ZP0BqbbW!;+Nn^-_~JNeSoKup}is z+lD16;Z|mXyf;Y+e_+Fsl(5K#B`M+KoM<3#k`jK0Fz@VDQaQ=w&NopxU+@=AJbR-D zm2yZ!SPmbli-kRKCSjpploEzWYY;lwr(Nj}{-7vYD~*+;Az(@@-~&}e@R6m7t^Q{= ztS2$-0>UU%vDB#Sxw>ET@~ONb_VR5dra;T%Vbdr3g8$rMs{Vn+I686`)9okyWiNRe zjxm|W4+EQd6@+Ov0TW`f`5IOyEB8xvn|W)(8$6Aj9CAodGTN(Ave|2-a;Clh3o{{_ zgj6%yZ3a=hXoIhY0MQFFXzr4@=FUve+%2CMD~G1JzhQX<;U;NrwGB(s+z*OPx+Km0 znGH+Q+zV`2lIFg0s>z$AxsDA>(%diFuq4ghe2U4Nq`5O~Sd!)*Z^M!_x9tliZ<6MI zo3M}5+`kSpijt(c|E{o)(cB8sBx&xus)!WL{fP}r(%g}R9ZYk#p8P2^cd*HnsJR!L zkVDqoEhibxjVc+MYm_WqbETS@G&cYNG`ExJs5VFY+-}0$KDR~DZlAm9SOj*6n!BXP z2scS{12!y4bKgDDq)XD=pV+V@%^hjOk~H_F6HMMD&7Et*k~Fu(h9zlk$MGg_lIGrG z!;&=jSR0n4xsMGsd6P8vTEad~b3Z)JC`yv%E>_sbXztfYlcc%ts3KA{_g)*8q`Bu2 zb}-G|e2ghjLXUU|eeM90DN%DTG9iboxtj`k>-CLMB|~$KlBH{|R5O$2UJL<-14U*q z=8hoV8Dg}#-h`Rq>hx*8U}z!FB(;!`42=eAX2Qo=UOL=cvOYROI?d!w7$Hq0z|G7E zX=X|`ccAo?21@bQc^Y>PHbrPp2%A%+=5u{x7hz5POi`99+HFt|9YsB=K?ScVjajg3 zAcL7&pmIj7+L1P_D=};-^D@$vWA|d|uC!r`6T|i~uOeM{V%Wdguxf@_vAkY|g?_P^ zFsy$!_Al#zYAYAQQ_a#3Y*)ru=70 zLi;SxP&GR99B;x_Of_Nd%=1TRJ~-_f!jilOhelcNZQXg8FL$fI>|KU}$b)H4e5CrU z30PULoYB$Roi;2wdy&zY`H0<>4VgDHg}i; zu2`&WP7lM?O}@~%Py5UEdm7$Ri?S*Fp>sF+f)nGT)?=aOYgp^OI5e=^U-n_$PM5SR zvY2Ro0}VsLf$-QK1+R)a%LsjitC3)mpq zjFKVchE1QMakwGfEKIpfXHuby$q@)GGqaYm_dN}7 znIhiU9SGipGPp%}9sMJKX^R_R4a4u2>OIl0^G%|aiP|wIs06{e1#l7w{;rEBxOf~V zNBbJBJDFy0@t3{fX*idjJ`lW}S6Y>Ae9#1}SV+=X*p)H|mYQ$&<6WYXO6{K&3dOoV zux^rAl*Uc;%!o!ar~r)Kc^q<)>;lf~@Lw;5RCR1tevFFh0wpVo)$BOs4^EsC3pm^a z+$R~t!hUNQ{gr*OJv)b9|3v)zg7>LxUak{_`rU&K&GY6y;Vs+dX?T-hH<3Ry>>eSg z_=De#OMd{ly$!3XS(RpUXuH%q@eQ8F--y8MwU)L0o;xcIYuANi^{wh$wot9a_7b;@ zKz>@W_sw2y7VgV-dF~v^)eLWNLYD#G4c^$!N?QjI;+j&RQBi%{Cv_WRa0Dpr31zBi6{*Bn;rDw&KX z(Ri$j6e%VEQ8JB+)nC9djWkl5h0N`#yu4ZzrBP*g2{^YGMf#iE zsTB$@87kwKhQO=hC0ZE)$Mi*!+t`#%*9%{8R%&fbiqRNtY9rv>G$nF+w%n;KoE*>X zvT##TWCweG8Re)>IYo{yv14zm!*toM9A%gyH$x_aN~~N=q7*9s0u`&3a}}#UpJQxK zMEmlY1Tk`03XQ8&lC^omOlBHLz>)0<8iJ8V?c=Ab=d79(B1gvxGP=f=;+mZO0a)utX33j3t@(; zkqL%OddIaw!`~D#e>P-{OciU%tk8fs(p!5m>DsxnfYEabmG42tZ7GV?A1y_L@yHLj zikOMYLI&q4R7&Dh6zfvaFh6oq7Ai&QR9-zURu;v&R5XEztmQsrrm`$yOrKJg`{Gm- z>r&CwBywXGDy8XEu8vbttV>0cp2&bKRKg4!Qpz$QPDQaU6-}oi59tPHhB|6Wr}EUX zF}Wz#rJ{*iWFl13)!rL?q>EH3g_#Q(wI1)<2F2>n?>y3j6Y1fiXht#_jLZdbGEpM~ znWZALC<~b%q#Buzj)@lKLStn7&JU(UF3FZVwFRz-=Qb^n+(nUn-I?XtL+6zuh}+5U z>bzq0ht6x(9k~Z883oau-T=QGD@KE2^@kwx)v2ADjm(mCGVc^dWznEmmyFg9B2T`P zr8M4jGE3rQ6zh`FvP9&2*~o-*(`56_I2pydWEi;SLyptrO=MCwGVRPhQYw62oQz^!GFk$P^vOnMN;;XUI2pydWVE^z z`8897j7;UHli5Ew#*|`RGDRXYHXE5Gz0#QabDWG~T{2n|i@g74meNd0Co?rpMzJm# zEw@E}nvIN>22wXi4wm-Z?tPkYX(vvwar1 z88R7!x>CE=DLnlLRH8GUxJ}azOeFkTMk;9&p2;y1?xe?IGe#305t*Ku$jX}ZqMQ(; zGgq3y5C{};b;mQ}XkVzY^_+vB@ zhAW$2$;?aIO3UZsx#Po?Ipoe%wHclLC?5sWR|42oew=RGK$q7wPFT6AMVUj8gDw8|B91QtV_lW zdhW|cCY;^`Z-|potV_lWdMdM#X-X&ag*X|-x@63tCj!b&dJl)<7pIeX;d3$BDApxo z20in$k!epifgP#5w$zU0EC?kc;11=dXqhj@kWz;c^$PF)K?rky{l1Wg> zVn|+nJ|mShLvnnKL18Imo1V?{|dB(FS|rIxzjIz=w?A(Lg^dwVuA84Srq zaWbifDZB(mo!82_>oaY?6SR?_s%BwAsUiK^1D@=YDk7;p_0Ln zTo9*{YDiXW&&)|CL(+3Zl$o^I^JUq{WH2NT#>u1_lD*rqlqQ2A`A(cnsv-G#HZtM# zCiwX{8O7?4mTU}3MK&@`>13YEkI6={E*WD;UhB-lRB<|)<~SL}x@3$Y31%bHp5Aqj ziIY*ROU4+I(rjd=q?0*3PDZgV8DmJcJe!57{B$xchsR{2SeJ}3B>$9+Oa?>p{WzIa zLvms^G8qiXIdL+nhGg~DEKFrEB)blaF_mgauFpnhF|4Qbbia&~QLO%=hU9Y@$zVuI z)AeS8O9n%tSp8v0ym%wmZ^_)-WH2N{ppwOq?0hC8l{7>0OrI!;42I;U%tSI7l6f&Y zX)}_SHfO1&F1St+Zxv*+7?OX=Mka$H*`F69lWIs#%t9v3kUSitkzh!k+LW1>G(&P* zJa@io*BFvnu`yE+IlfjUj6ep8vNPe1)OgOy>ZtopqO0l+*tReYYHZo1=WPThcqga=WF(fa8 zB9?K~U7SwFA19+&my9taP1(q__fBg+ed1&k>yj~s&WNwXpL0;5$mA!*R0cAO)5$yq zvSf4{J5ENIe6Ip%3*uxH>yjxDnQ__3EKMiV zvp>d^VqG%rcq1RK&s5=B4oxTXpdn*+ffZ}Xn2T1C`?8QpT@Jk|Mj~lBR3$mnkjPL= zMd>9uHO`P?ZAq4m5Shj6vWT~nR4J<0_1BnO6stdUrW+?xWyoaM9bZ6f3Yni8GDa?n z)gNP+B{-2c+B1uHWrpRh%VK2aMwh!d9hBb(GB;);lfk(3jgyHQ7s#09uA{S&$zWVo z?~`oI`G=@+fs9%1`t#Z>OoeG}DYCgePDZi%gN&J_jL$}15vdD8`gxT{6bFJOB<yk0Xr5kjB zjHSs>Cv$9^jAC6f#<(H z@BLhI#%|d+E++1LB?B%RFBzBMEL~3OdsiF;!s4RN6LT7V;Ln*gD@y@KngV)l0jnuj zY5`4{Enp4Nb`pN zHT0o=Rp9FC;d>CXN;Z6xK|~2(`0mC7k%^#tWD(gwBeJPhWJ{H?1$GNy7yebJ3L9X( z%kjQ1=OZl2`+QrSg4oMd0;GkLWT!~IK7n7f-diylO zKHX`by!Pof`=oY6${F@aO^K(e_DL;Nngx#N3|jtAH95|pHhw{(B1s2H zghUk_bhIVdNkGNJRBaB>RD>Vj`|T^aJ-4$rpx61x#p`qcv$q&xVB&TgXHlu-<@{Dk z;d7qy)*kh>2QSO12(m{Vs2w{nP4k8X~yYu z3XY%85SaJeUnHlY#p7-0>h_j^<6ELM(~!keYG2@Yy#C5^ajiVKluKMIl*QXgKH8E zJ9`O)lZV!>yxdKFJ7%xf9SLy5^pfzFw@wuJiShxuf^6E6jc5LqGS|X237R$w3epHc zzW9TMp2jD|MZ*du1k5jZRsX*?ewAJm}HHd)pU~idy zXTx18vVCVoFz?3|PToD<0|1C^1cl}%03}tJfYa)0ja-1H<+d-EoP8VrVl`^U7yVq* zC}~9_ycY(~y%0E>a(`}Xg>&wv3g@;>d5{9TsO}Zw$C)Y)RUdF)J*~iBvd!!Hefy~3 zz+)<$EAHHfu=Tcv9zbNiSSCr{UWyV7u-;<4O<&E4jgPvxWs%UG4_&J6eB^#JJ}O5C zO?R$Dlvk>yu=A`}Ac3nj{P@GYvX11G;TFBMjY17PQOQEh@)9C|z~^oy_4Gd;#QL22 zw6sOAXZZkI-N>8PG&aFal#5|ZE{HGPQ_k3M&S0Kw{DH3;-Zwzg`YQTE#Md}mQT0bqNz@S&*=<6Y4sC-~bIUjhN^;Zg| z|M1K^;VU_AR%bm8PxS}F;65eaO28bq*n5X0mSn)zhU4n4NjJ#S@W zL?Zc2RxmQ!fsEe4FATJsw4f!0iv- z_SUut_Km(Uw4z8R&NHUPbjuGJ)|{%vKo6?fRhcCv0c$BDJn|hn-EmE^9#;dA)E-y# z!nI-Akew7YGnJvafFQTdAFQUE2N!gWL`9f4Sl|togR$1)nKPMmzJ?DG-*|k0O}Yqj ze3~N_K@J2iA;_KEUph4uaJ7E3k?k3!0+0h_Z8Se$&Waz$ry>r9AGgsL#gAJLe%x{x z1X~UKxBo)jt8~nnLTQB^$P0|qR{xQSQI7SYDL0$$!n>=&oGxW6#&A|sl!}m}- z>nI#Wuz+!w8D;Q-CuRWS)&Lkc(g4Pd05I;y;^nK}vfa2tuj1z{c-ram^(K`bp6uE6 zR2`agaKN~&w3*$MciQnTRNR44WkU}GD()k=>ATjO`>vP)Dz3d^Z>v<=(|Gtf>S-8g z2>!E+3dJ0EfNM&mQ4^m=W7x4xC{D-lmPc$uXw=Y8Ek#2vyc*@;F!HkZ02gVrhW$1J zJtw5WT=&BYcER_lJeG-QO1o_0oYgw1Ns60Tr|YBirMdca*|G1#JOgEfE!T-Hd{Y z;LzC>&d@u(2U@&kt+Lp8j`u$j47P(h-ho925YCH4qXs)Q7_iT2(`k)AidpDqvC!Z0 zIXytj0TXBJvOjn2@J+srJ&XutncKZ3tFXK^Rl%W`Ryjl0R|bbxdviBeIpf!3nOl8~ zAY_>XrXq}G{%{6X`3b7N6RX_USY^S^Np6oCxrL0(5Ror9XP8V&AUJPW2d-ycPN{^j z9{!EUT#NArQ%&#Q?cf?BvNsUf*J1M`&%8~9`<#!^7k>%%F| zcyo#Uvs!%{=77f2nd8mvrUCT%w;!GcF5^2uG2VRC1I9nCqi6w7!+sxcI_QbdiLWq&s3mp~HGZ|27*7gdf2#b#+jpn<4-6U@|yzL_?hM z9l#>CY51@Mn{URV{?H`{7@W>1@;hz*+*K&4kI~QdZBnU=g7b1^fGZvU!hI{RP2kE2 z)rb{vqvbf}Q%~Wq|GJ1irO^oLAUKJ+kDr)R6}+mNDZ*liGobyT1eH~{Uw{V+3Jw-F z?(ob%=k%PMin8sVAD)JXZ)&~#U8b{Gy!rPbkU;RRZpo#ghpwuZ5;$#@q03LKXxMq8 z9W&hA=e2o8w|AfxlRYywN&OjCG;0p`-i2s*(`3)4mr!ODddAB%f}MQ4=8j=^`{;-K z^g}zmWgXML>}F_Kb)vJaD%fv9#pa0H-A_NVVr||%Qlnk@@=+W!a4PGldxqQU)vj`_ zREmUQ`X3RcKh#){@brDp&>50qf^IROC4|P_WSr0fobWg9&?hOYir{~GUNC1@@8Ka$B3!oQ% z!ncpOz1$0Cc`|(CCHug&n=@>L^w&aj>#!RBYSb_W0k_$=5sbNs9zT-*$6_Y8PE@4Kz}%|_cZ>VB=&3NfzYUYUs;Q1-p@_0 zRRS2LXWqMw&iQa!8~w97>)cL_(T{)kLQg@zR!?yU-wCECp6ofR9 zyf0WA9@nCKQ?%$?r0_W%0cIth-?s+92MG;5f|2IMD28V`sXQpXSg(a(p z?vku78TN6qI*AmABCEfAK227y5#)0|v8xrw&0@ zQN2P|$R*H@oC*e4?3p`<-lP`~HKPmP^^6a68eJP9`E~FtAx=c;uGvV)xUT76c4v7z zwcypTy4!SquYvvCzujg2TuC+HB_(_-h;6={U{j{}|$W=HGY} zGQ0j!Gf1#qpBs8*gtW>Fk%N7vg%YAg1jx|JkR!FueHZ<}B^3yrLz%oT3_@Ab`1zGt6{-4)? zSdGbF^0e34>nr(dAonfr-WPqj+kClyLGvNfE+T8$q-Kf~ysr?;!vNQp`vJ?s1&U&j z>h;|8v@bMk3aN7lQd2YKhj0@UrKt+b-5qeY1svXZ?=Wqws;_1d8w*aoPi-*^HR6Cg zG`w7(Y`nZGkbCd2B2q)SSX7wDfJkjVfsGqltO7X8I*hYOA5+lkQpHMgFhfgRW8#C* z3#kouy&5+K#|QU06ZU!L_ZDR{A3spUyPOwk;?w)-({7D#n*g}FgBifHo_R0u>~)^4 z8vcr}gq4ohbCHra_rpNrff*O_Vb3D->c&DGJE8UisKvwZbr+TmeW1cq+3q{Ay6^5l z+3R(0vVf`NZYhH%6C>;m{9`YeHQO1pCBV4+=7B50rD8}uqr+bYu>LM)vJA9YD6yk% zOp(@Crft`#dp#>78~FIcw9}YSs00;{s^(Zzt0)`#7!!{7y$9A-^xZ>}x;JbQqL^R5 zXY9#(e!zL(d;NP-(BN%{75i$3{)`oV=k}hpRqsozp80o?j=@1EI>&y62A_&DZmR`E_sm_! zGy~RKRNT4VmFZk$?a$Kbf;Md^;Rx4RkXo7ek_vx{_&lho2Gg^KkFZIWA(((LQ5__xe40GizD6O` z^A6Li#{};^Os}P15{ufrVKf&oqBnd|*vjG6f!w^|fzZf@1GW8z1WNqF%So>?UKAYK zROyUg$$C+XX~@I1qv4tRJ*gc_BP2moN_lbZxou-=uV|y-ErDRay<>wzpB>}$J8O(H z{;UFT!`dQ!(q#L^p>wM!4fDELtmZ#GqsWy7+=!OH*8k^y9GS=)8ywg^#<}8)K-nj} zcgFd=)ATO~d#C@be7zJnef!dF2YIQ8rMdWrX?z)#KU=>qpN#GI&_0U=*-o4HSVe`W^Z@YQfVuFZzf{CKn>0w}0 z=_%fc5fRI$l42mMhlr%YQ_Na)+deTjb!|S6?~~x>B9(m&DQ+%R*;f%ZvAoJt{G`NW z1T#^B`9Rs)o-mS`7?Vtur|o4!Z!4nN0Hvvse9_wq8&jW?cUOm=-{yJ83wnG5->&C9 zcWPITLT~ozYZ|tnrU|`-m}b2w-p`2CGb*hx3#~>BmCjnv{Nmm$eNZJiX03?4p1C2C zG50`*OljKsoz}~kPo%iMqVI>Iv{TuEGm{jrBQb9^8svAvK4%@Pv&hg`P4+sZb2a&% z;%=C)L3P(iiCDjFdqMU8vLsqvEM8tBLG=jgRCVO_^5m_-H**SUw@QaL@H2SkOm82f zL7uk#BJc*I>fI85t5G0K*3_q^KW|D#t)jb5b?~@k)b6?SW-Fs)L&h+kK>}0!b<>J8 ziSwVH&*q0VbkLu6qd!kn^nH)`x-Lpo)nV5E=zvSq{}?IkMu2q1L?DZ1+nU-XhTlq+ z*zW8JI1!YHnPZzK9R*kC6FX3=SA(xEL~-7O!S}?_eyPzeCHbZi%U_k`o07|i3cS>d zBCS%`r8VzX@htJYX*3Bm_`v_#+g7o+MSZ2Gu|LWOJwDjexDIz*r>FP{&-_|@p6&4XvWm)zF+6$-CR-JO>tb}}Bg3`S;tBb#L?H&x zKwkz=E+o_7(KY(Lawbf()iHiQ{Ectd&vub~Svd{F1yGFuT(;rM7n=U1{AtI*gXMcLd~2>VILh~{kA=-5 z;w{wd8^hOy^S}95OxAS_9ankF7Io2X?l?l@w1|+z7+Kd7l67Rq3e5B)s^&1JUQvJ? z53H_qu6tkmu=DfD&3DK&bc_y$-LIRPaU{!m8eFo_Xht1DJDjwGXN-5Dny=Xx@XS8} z;H>n$PUdaehkqV>y0)rYdfl*M2^1N_YF$#xQDz<%8UwoO95XLs+6`RgZ_RwFRkM(v zo9U6S8+K3_6v;3EdS3R#iF^x~s}wn6-s<$tI_h6~ptGy0LR4ct+m7 z@omO0W>fOD-Z7xeXSJUXvLuUjih?=%ya`QIjkcXM^&>N9A2z-Xq1+Y@h(@zQOr;4o zM=3ZqOVB;@bI_bRjlwHMK(7o}Lxe?m_jrQSXyRiF_Q*x6@()dY@B!_-Y31?OHdY>0 zZhOQid}8NNhK;raQ4HlW^*P8Q29NrNxO2-FP4r_E)@TkWIjf1ym&OOpnJwzGn-VfX z=rN8x1SdRFzTo+<&ofEe6uIP8+e3sSTYAhF5cxo7IcR$t&ENF|C;B3<>2x1YbFagr zVSD5?luo@$c=#ShBav!g4q+>DFRQO|o28$rpk;{L9N~#qK=`-~vAR=~1nG(+a=PT3 zfkbNccRm#(ky!nat?-*EzbY(22f_>E`J;775u`eiJ0&tH?YM5n=hEx&#ee8Pt0#1$ zxN|O{LIbs%nFdcEKtnB{z@zq5F4#v@DN)8|Z^=!V;>!oBznboL^y zZQ$l!GEL*R+25_OQ%R>$Lve5D7Ctc-T7oy={DqC&7E^C# zq(Hd39s!3^38&CHIdVdcVUyhq z=>4JQQsuMze@>$wm{%)B_`b@4Vo1zl(kuBUB#|sqc;-KA6y6-_^06W8nK#Z%IaAJW zl`Amu!;oIaQrkT9iV62S+n8CEFy!Xc3yU$}2(uA;+)CcX%hpwvK@o!+cfK53z zj_Wjo;R()kpOgm<|UNn3U@44IKx2F!a z5>fYNZ0}D8)b{kb=k%*`P^agqK~uJ9_Y&(@9;%^3sd#A00dtya5^~eAj>H{6g&iw_ zarh4JlaI0kcD@-e7 zdNAo^>#uD6m8Jhph2g&*!_|Qw(N)n})!hUO8aHuVfz-3k;zZC3V`(wAxlqbtf9?3Y z_XSF7ssq7lj1LH@;wbwZFDM!y?nu)%x-{gPS|HcKm{UzFL3N zzA>SJ+x^-M8K{$*ny&OlWa!e>N3#01oPe6%`r%y_p8lh>L8VvL@k&gaU!7L%@q=JT zCuVfscL4(Od;FabYgk1OsKJfxO6{O66slK#UkEK=!zZ@7?u#evUX@-xH15#ys^zsRw_n2dhjHp)fkUHr5 zHDS>~Um!G^LEq1#gTBp_R4hqqS|hh>;$a;w=2S}V4&=_)L3XGw&E4$FW#i)w`gFr$ z=+b7NmC23H}zpIb*k7 z?{XV~S;il!(x#p2(flppRF9uiJ?!Fo=6#NEjy$s`P{J9?F05duFSkvnd5()7BdaXy z_n)=kJUx>zqO=pMq+5l003@m8>%O~+}+J&dq1w>x;zY|QO; zPF_{@+HIOqU((zDss+!^sJDu$MZq+5mR& zL+oGxJ2-FyOT$lL1p5b^3hba(9*F&n?4X(`-DjE|{NQNp;8gmxs2$92TsP}1e{G-V zyr#dGGE=_NF}36G!~$Mj69`_)SBoTiHa;QRMu3q3P*Y z(Q}WWXT7>S&G;$*cMd(jYb~JH!Z(c(qb#T>voJ?5euTPj**^H`XZQ&v@H0DspFrI9 z9bqjxr99!#e*f+NJiXZROsK87> z)*FjA%5!zUO;Bh0Vc&omHm{j4Th|hqY;>a8H8l6g&;-zh$X`zkKSm~}{PLRIfGS2EpOD5MElcyHbZurRKa?PEqsoV~uj-E8GB zqf$r5(h3LMdtvYvlD{%I{_H}}oY86rW~Nf50skt%cLTLM{G3fy;fhUnS{B-rSGuV7B%3T%U88 zHp+r|&-$Fv`J95%d6$A~8R>>b?j?qoYFJ|yDSWxBy}3Pfq=Sb&%NUo%Qr1MZVyd;W zvwXGxlqc#uTpi&Rtf7sw>#sywQ5UQRph*9$v8^~18Vvi?|LHp-&D|7 zW2gRO3iq`2x@EeRr?UrlLKg)c|Au~cs>r+a^Rmr@x8TMO`A=af@Kv-#Movjhrie{S zOL|^uCYur1HH8d z1`RnU%SfzkEXMohOsvDE+2qKH+Y&d2)(uD|=X9H61m1%0lVh=Rjh(L&PO5 zykX7qZc>hdv>eqohaB$fs8lt0r|TUfm7_2%$0VCW4x3YECW&|TpU82faulWIm}+y# z@z@+Q@h;UnI_rxVx0uH6&OTQboBYikB#|6go4^%hl z!{3Vh@HrXLf<9AfPs@q?fd>VS*v|a-<^OBe;Ckf2RaoeF6@4iZyX_!Uody`UE+thN-vaHwOEfnkHNS&3be3)|O z5*Y||m=68Ue+EyMf#(f|$$_@tSb)q@YfND-lMC^x#=zm0LAmaa z7e<%h?CYVt_uo$H+mcc*C2o{WEib8;<8<|d_N}DO%H8P;sj|bw7P>he*sCmDjWk@< z+p1fD;L^AvY^0UzLcG)Aim8jy!^6Z}WkPY`h$NIz&e=B861*e46u130Qu~uqcM<0- z(r@_J#Aan?0v~F{Hk(#_CU8T{*53l>2WJQl#(z1@Li2BXk;PtcLD^dnmAU7_C6~YH zc1yp959xM`-WM+YujJb;V*q_({-!l&dy!?e1fzrXiI-4+ufW7b%xd;DKlIG|iAnq+ zV=@*t8g?=+VC46#7BLI_+)QU+&0x+|PjW@4%%R#n6?b8FA33SH8>Ds*{n z1vjlUpKH;NHdJrgsh=H_JvVT^^M;o_YgRXL*eq|hz00Igw}7xO zS?@x;IeP!lgT4Q;dwKuAg1%z6;u@RqMt-DcWuY&BZ2TNY zPsmY{BNiYf)__<_I%2WBt#4o8=Yr|R{bNESe@g)TwRnEmq;elv&1Ps_44cWauRs`o$c9%s-j-+G;weEK+hp1qxteA(Sy74^)2RU&ZbQn9Pw zJ1GWzh*k&CR?gh-dyi9x{qE+(VLRs!@95V=p;$8EI-uX)#Gb}lrn&h&s$t|kIky}+ zYHi*EDu&w?@`*q9{>qE*d1mD^I6uD6H*~>+n;o7V+z^_<+Q~Z|#PzxHyc)uFsq;mx zn&56d{%XQ1gVp)&M!@tV*Y>%XAWBIvp&MhjIx2%l3ah}R_vR(U^sNkDoJZ8rL{;qF z6s2@T@UnboP%i=nI>1IDeT}m^Qr^a>%U#oSm+}s*wr9`4E7&um#uxnK5leYJhgXl# zDILz1Z)JA!J}VbTOd1m!`ny0$TR<0c)&xqPH5miBn*+66?Qy2xw=YmT-o0GD)jZd| z>J6Ri-Y~zCGihy}xdUMiO*X_im|)NUaZYZId95#a#SxQyC0rDHnVf&%%-do6My;*< ziMd(rxpOR%XW?N1^=Gx0qiUuuS++Fl8o7@)%<^62eACnF0_xA;g05H1DdpN=y<$?Y z4R+ji11H6G{f*N%U0i>o`LI&9ZpIK4K}5J!Gn76o zkqH_FI^M6MQwk%UH#$cF(S`Et zmceV!rcpnJ^IMm3gC7UL!?*;Hg#GbO$Cw}R=Nin$jK+qZ(Z>43b#R~RNh!pUgbj|_ zWsu)2{fg)Qg!O#ipp-1_Na)njl5!yCczjtYnLw}s;0~FN7hwS$t{#5}-`=?)82}~O zlDf7+Aa)*4DMl8xQhE5FnSyGVCjo;}NFe7dgt~kqQgZl~n^+4f47^@O;LY1&9UM1v!T(A;yjY_BhaZ~~y{<9~e67u3#!h0Noetj=S zRS*DhB~-R01xV#wV*8Sdw8%b%Agnalq62BqN+~!@3XRuEHFoYj^2Z_&kh;!A;(k13 z9%AAh{HrYlNeE%7`1wolSq@TnjtC_hVkD{xC7Na?qMv`5N_54GNaXR&NhyYB`!e$o zVn)f#{qSsGW=5(QF=Qq~g+$6s3cMp^MzsWr&EqMh$Y_YW+ME;~5?NA=!eybd=HP{F zE~NZS!;}u#ZsmAk5~BFWjXhf^U4bPXCruG%q?;C=PSBt37ZQU0RHU30h<>kf68&kS za#q24mvR#Q$)Hy*`ozpfg?dwTOgJc&ej(4~yEPnjF@d3O5n?7VRIYmCMj24QUfve@ zCCz51K9Yz}i&fZ_2vf`KTF;f~M0{$(uR?sPLll_1ppdNSHNwM!_>}YvTC_rZYGY(U ze5ylNj~+h>>I8FzspOHipc%oK55xq%=NCkL8VkUuVE}x(hJa67{>;i;+A49NA*Q;t zZkIAMeSeN$SWB14qw~dhfaE}s#DVH0KCI@X3Hp?XAeuwrpij-nmNhyI51fDE?k@xZ zW#Jg0Pn<$Wthk_0G82k*Sxc6(5Du#Oh%dEuu(28yT%1T#8dPWG5H1- z?L7sDYVnlvDX^z978Ns?_y|TSbW-?fm%_OvB_{)IfvEgK&yj%196aiWdD0G^heN z1r6$%p-{ys$}AOnYX8#NOkvr-Bxq3M?`+2`J-v+5l5Lr-| zs2+Gz;RYJi>}q_|tIzf0@hbjf1_y)fEm%ReqCvHSq%lPH3K~=uJUrU;#Q>q>b^&x> z99v^GiyehWKNcF)Bz)mG(4aCAJr){ND*R0VrvD-|DE7l98Wb6Q6sv_`HTJ>^a}~#R z;kY*T3n+{MKM8?B6-!SiU{Hlfs!a84PFGMIsgGIDj=9g!L-3%s{WOFJg>@;`pu%d)KI{@NLa5#WLVa`Xeppwv~ zLqjaLU_s3@v7o9|5wojUWPkbsVnG!L`&$|*k^L>{`A7YMElA*8W6ZVoMzZL+)+!_< zn{jxuf_c*BSK|SVF4Ljfd|Cn6U?T>E=A)6|uX=_mfC+eT^<#&BN1%SB0SVNPv>|oOc3A!;3hGDBOJbwi06_iJA{T`E z`69c^W&`Rcy!COeITGsUA452vP*6Xwi5pNq<7NDg1`@*ic~rvwoA7?_M_txJeq*S~ z5uzpyyq{FaG1R2CfPEYKq%dvCAXyiJO$Mjn{oFSg+H#CVTMk4R4&qW<(g_-wcnIFl z!2D#)Cs)=tUk&yn27u;su^a|`ktXm({(EjqM%xgm z9?W#cT}J9PonSvV=3uK~9T*CGC8fUs_H$JlN~sY36xh$LSe6&CpIkVw%l_bboURAJ z!P6|PKD(7{5wM?hMu-Oc`6^4KI}+^2hFU)^upcJ)ZeTy;SFK1{Xcze_kPeTptPngD zu%A9;W|&}U^BDvqWtu#E#d!E9{yYZQ4^zeh`{7q3!G5MbilLq5D>X3SX$o=T?s&j{ zrflmQ3HBo&G{AmxktrUzNr?I&L-4^oJn+E+JUI05p9gyW4^AN15B_~bu%BW(!G6jN zte+YP3f{t?e$odMc;tdq^q_iW2%}}boU+n=3g_oU2DcAlvlCk^B0y}K;6>QN|0JBB zA)G@UHzXZ%RC4sNbMn>XPaE-g;`3*N!1c6?gY+VzMDXYLlIpnmV*;{RaghE^AU{L6 z)oJXIRPv{eQ+KVIR=vJQ*!Pgr6aT@G~TnjA|jH-o1*9DobgX zQMVwtBaHeP;zcm(JV|=oj54L^yTJQ|Gm7v&9bl9R?*m4GDPGxYc$)LzBcQhf6WvGpSgadv$Li!3!w`1ac_g(Qv|VW{ftJHne01pUw9mcvReXmscjD3fR?&G#E5>TH*SlcbEgFUb)M>6mMkA(1ZB_H9OZLLE4sg$Ms`amZ&m?G9s z6XFo-r%qBWXk!v>ewDm&?m!J_)f57Tf8}5sPKd5$+0IcDp9^W(Y-g9rx{6R}}67oIpAU5p2EOY!8s#c&)T;1Gr309BAk zEF7RjT1pr_GaMFzuH;LSl{dr4v_It z5{vq18x+|{OuG}mWi}Q?fqo-n{j~Z6bE$JYnbnt&$3700Fea< z`ftMlDnAK^gDj~*5VB!A#Kr-tM6_e$0JSJC-h;?sl}L~U2Z%iU@5BKj+>dm?@o<1t zYih(Hk4XzvYx*z40c!jw;{Y{-ozgc&-~gQqYr%?*^B;f%gkeAukUNhT2k1f=xYn}% zU%>$a<|%Q2Y^Mtj&?gE9h<2CY0DWQN0MP`CYuSZxfLfBkN5KL5Bpe6G#$MhyH>Zmo ziA|}pkfe(_sfGkG4Qdky=zYIh$S8uF)YYL?&IPnU;$UJ2jEKuG9m=sm8K-}-(PplAFAjyG=_;U&B z5wJkTL0F)jES-@*GZObfp|+Ahgu8uFO~@05TFvs1?L8PT_~lLZ#kdSupm`t4k)`aG zz}hw$Mgb3Kpos^xoOnPVn0P>AO+26v3_PF~g$LvUG68J2z#KFaK7ADL7+^l+RyY_> zm)XHeV-Pur(GB?!xEMdNNJQ3qBNz0e>pk#33K}atYbrbo<)QRuC347(SOJZ^0v;p8 z)M%^z%kLCqgKj|0Kp>V5+?eO4*kaTS^a23};#9o}40Iua1-W2T2p5RcevbdGYW4wE}Vo45Lh5@7g?}C?~=$miGl@crLS+Q zA4AqgI29~V3q65!A`hP!?`o8bad$I36)aE^DjOcDGCZp6&4;hDH`v1Aue=%a7-cRM zbD(-8^WiIFmx_TkEfNpTPBI;iJm3wDMi^ho82<9Z-B}U4!ik{)Cyap`L`SAZwfdzVS$BmJ&KAhrPuWW=sQ*Z>uqPQ<2G6j-3`*ANcj zjqNwGO-sja!UFjXSfCmloyLU}@lb(yg8L3JUNBpHEL5Oo?2?T{1+pP4m7h;!YF6(3#VL^cD;qD=N@+9ZnuX6Id)8 zw+&RFnv$g~iw%BZs6hKqY`0V)WCR22$bcD>6201iw3ZTu&=GphlC)*g_jDK)$SjYb z0znQUQGu|tCxi+l&EJ9wBp*9YRG=Eno41Dw-$85-sQ@(Yb;al&}dM$=Db= z7a&1BHXRRE&?s=eWT~NbTd7v^d+xW#!3uJ*KcrsO1u!g#6*Q3kxT;7Vm8|)Y(oB~( zffK?+op4k4v3wARWQ0LDQspr}2M_;e_X<{!(u{S$3R0RegcYPTBTqnOh-Qr37SvBv zWAFyBAXZQ}QH}p8SV6aJ6Xm!F3b7V71b#;DIkjK~`N7Xfj)?|T(BEvLK-eoCCsfdbNC|OP zDZc|$&{Z8zAA$;6EKotz9dV$7wjUh@HSY^6Plup_UX*0gq}e|nA5_rPjwg<%+)BTzv@@SOk~0?!!x%2HsLM?(dDAy7fB z6dPYQRtVK@K%bApIR9I(e*tLsT6z|P(e9x3RKXkOkqF;g{8<F z0RU}Ux-3b@0^k5wWY0|=0F z$4TbPQeDc46)-D z>XRJ71`=7={WdC**gy;77xHeYF#{W@96XCGB>jv+R=~+Z`Wt#8zeQpB#heSmu4G1i zm2{$@Rd@(Ckaj6zKV*qrjj*d#Y&sFU1`ojox*4(KmhJ~AUEp073$mGxSrLfijP>$( z3b-x=bIAp+j&Y1B@Fv`G4D3s!+y{_=eT%%uiBe&qM*hofHXH5bDvU@pVk`~Lo6`2G$++8AIitKbZ5IFma-t23oR%AnM;CTE`7YPuraTXjceRQhEX{;#$i#0 z`{craTy_YNC?FTPpG<&UD4hn7OXLtUxkN5bVKsvJ0nQ7}FXoI0kFr-VE|?3WVH;MSu)9*MT{XjnVeLoA3NSes1rsb- z-dA8Qvw~nQ#kejCU@r9pbCGBSbCCn00CV}30&^(`PZXF7cQT@A^4-Wx!>3>l>UGj%+bcv^-_cS&S7fpPlD~gV_TsBG**(DEd$~(x)Oqp`#!WRwL z=09URA>3r%9SxT;^v?IKx)I1OMf~kH8NW^q|8f$XxG4ZriEP{fZFvYsrk$^037H=b ze(i-jcrMV#6!@t6T3aK(b`ZZNj*NWae0%|&5~Bui4n%Ndrfh?aN*o!-*`=Utvl)01 z6|%?o_ zeSt|yE|wzAg+k24i%3;(H7e{}d0W~hY2J0}BT~WuBf23_LFQ{cD?bCkPtT|E8wnV( z?>1p~BS=^PBR;$}2pC}lGZbJ%1*8U@Vv9Tsz=(x@`TAO%|2?xG0VBqw05M`X5F>^V zG2%JU!48I2iF8CEM%bB~zMb(4#E4Gv=zR3kQHW^=S3(e=l)3VS^=tf!caXi|EVY-jW{|$%{QXCU8f-f-jp-lN}TY-SKcI0Z3caw7De6)_?cVP`X% zuaZv0cHtq25tpR4qxbe)O=&R^BmDT%%Cc!FjaiEGX`ss}r7N!PIUR2*+(3+Yq#ED! z>W}*IcoqM#Lji~pl^|n9j3@_53t~heJb=xJQy&ZJ#3}2#nABuPacsnhG<@MW5F-v_ zcoqvWVi)}X3lSsO51WV)WVFJa#KN-TH4Z8WlNYj9I9$o^X7i7-u{SSvHDq@bGU7Q_ zw?IZb@$(R51WXZDVI*XP6POXj?O{f|k6GsLi5YRa@oi^DLdC-g=oTsr)QHc38o@Q{ zAZ!HCcn;i!>;;Y*_2pf?+2F<8sdT%uLZZJR5VtT`<_vkt4*evOoyOLjl zpG(KxOPLBU^#d%nx#g~tO>lX%4Hy)_vR>u!C1m1!)dq~e?yJK90JkRt$#Z#v+jq&S zJZ{t{-RtW*6K9V4r{e}NJX5a0&(Fp?Zrh9hU*P|jxWNn8)9!1$+ z#(~H&$$I7J2A;*`5wncdQ_fa5p5un`l0n^VPRB5Hnb$gxy&1ui_n<7I@&VK!1saJ0 z4Mk~C&`yrh6N3dhjBPWxO97YEqCCOVQ5Xcf)xj~~l5zx8vNGXX-yl08^caZCxpkK1 zGTh99XP@Etxd>&!CBRZH+^ad>kMgXYOd$d2Xq+3Wn@o zs=Hs7;p!Lr=Lnn}$O^kC=V4%;KtNDFPR&B`!w6|o2+JZS?);5FSH|QA1P9oeuNh+i znucZI1PpoFlC*&EfMqsMz0sQE#t89Lz#q@$bqM%_dGN0p&AvGV{Lvqur4(ViTRAD~ zu7PZS9zD@f#_g}_WL)W)B25uP$BFQb!UAn`%(;>NfCH&>rELg@US4%yl2h+9)2a2D zWdeb^eF>WDFPzpcI_&`3bAkqOd^q7(1O#0hnuAJ>`izs=o1Ry~oK;ZNx0d7>*9W^jRf*3j(GPU$_FL@B&}B z2~WqIX;?vszHI0=`o_Q&84CZ7;EG5uE4U)k(K?sX0vMJ*Na2bc|S zV;fZ?WHKQVUxbMBMYZN#GoFE z@$h#!z|HU3$tZtOf^OT}X+Yh<@Ijr?G)lxJZc9w1$Shs=D{JpqW32bX?>%pBrz zdq9lzed8PK#w$%RFh+_Y5_}B<8Ci1#gQK~>NJV#wCKN)6cuHO7jP6(}u*!n)5Y0h&h-(CA*%YPbpeQv5MX4F0wA>J-_aj8f9}{ilWAk%w20!P?@Q1`n&_=GwB(GY? zs|nwbSO1f8EMCn)jE?Z?cEpR|)pe5exOrvDl$BRXrpT*t((K5qankHeUX4Su3+EL9 zM>@bO6L18)0$&v1NH6EX*`??w1#kp-=_cUFH3P{%Y}OwW2{`gIW5}1u39ynCI9rF# z?;}?{tdTW+<6w^{0slmd0*Mr~zun||~ZK3v#yyZ+>$-Ca(4RCKedLAH3*}1xO(F2y+65%l@?q zJ|ZJW%;6w*GKhP%_c5|6;AcvZ6a60wb>wk%gNVS6a2ABHBUOk**pUi6QT|4G%rC?v zdIAdj!8x?Tb=qYIgQz1(96yvC!PMyRbI@`O)Ddslr;f5K#RI4#zX0mU7mhg>;vLHd zf;zItT>_|=L+^R)9}#uLjd5Y3d|P%2){-~aE1krA;8-LcChEvKppJC;il8H(8e0l6 zyK2NE1q_YX<3Ci0d21;~i6nq4J|^{eBZN6}_?Va@jv4Dc86OGc2q_04M@S6=VnB{O zryxgGIJ>kVra+D`=Ai~K#fmuMn(z&UEla=sq|_kR$Q`W;d?W&KWMLyJ2a78;@=zO9 zwfUSzT&KH^9oiNr!2X=Z>nf0{gq zIFc;1{=bhn(x4DW7BjmR#1S&@UxqkR1LEHsafCTM4#W`_@puqNn8$dCBPFMx1H(aG z<^b0mod;4FM*j^4up6T&8ogfM zH8^kjxJ+0n%#np0&KbisI^Eh@Puj-{bA-dHAm+&X9Hq&$g#kM9h&ot`oY?o`k{2!n zD9{mQGs{^s7{AN~Y#C0qdbB;^pd(XK73j$C(Eh#;=*YE$xv07G2q*e5SV3`NQydrQ z$jK&!?*lrr0$UWYKGkv1k-e8%K}UXbZ8Yde28J&d(2x(Lvb--w@Ff9Dd=5pKbP ze6*lGA#Hwn$et=xL>t~r(2Guh&}p|Ei2(M<@-`Vy0ej>^6MJL{u}3zU*dsTX z*dv>)*dtdO*dwzrbBh64pajAk3-}`$ISU8=c+?rJI|iw`Q`jRv!FwzctmAMJo)C%f z>JMy|f_|Vi6LSV{D{yB_6X(LU)#^b9${<2 zn!?psr-{HG;T*n+J#s#RIpyZTHSd^NO~5T}F%Lptjf2o{%R%Td@7OwkKC&K+4xWP! zaPp*NX$vxl9OdE-r?U7a=p*Y_%320`nr3)KqmOWC;8N%#^WaqIBQ;Wil{6wStQA9E zjd(FVPz_IoKGFggJla%bKOaH#ktF2M<&)_QMCpw;&Mc@$E7SP|#ss5lS|^?$`UpFc zAo>V9VE-wLJB&UulCv?9o5C{b83TPJ75@Jz=p*0Gmjl+Dz?@o$SBx!M7W9!E@GWwS z7X6HKI=OJl0qgZUu#9L$AIU=)wn%V`7M<)>@sI=7zwU$$T~_pwLWCLUBXlD6G&}@- zBpTo)kJK@JI<_fw>p*%7ScesUWaF}9e_kbzcS5;jDa!(@HXMFrO8aDEz>ly% zHYrg?2hv(f6b3(Hm$YTl`TV=!N91GwWcU#e`>y=H#r310=dqT8DZpYdC>(x-R*vdQ zl~w2S71BqS!gFhvy6o5JB*WoH*z2JyoTeVt@{se7_zG$GJHHJ0k%Mr78aFkY@FOb$ z(h)dHQC9FH%kX|s_C^AJWD#B>?ZH37FJuo6v)F^kD72aYkkDZPAYoa<0Z3j@)*ul` z_6h>Yn+5`jlp!sEZ))OhyBKBum8w{D^4Y zaQG3jUBQnSsy70D1f5JAwF~@_5zx2L(98O47PX5#TQgQ;E6WV*L7TB9tIO)FF7?@A zd$2}=_d&(`IWMPy(J^2|DFpv3_vnSlw%|S$&W-kMgx%iK(yn3 z3INIbPl$ee8Rk|T{b&IoSqu(F>PPw+`jH)<=*O3~K|fjnNN5Hc`jJj(ye2$EKi>Nd zVp{=7nh}PLSk$I;B6bTN0zfhtu^T#{gNz6DV;gOzC;*bIwHTA1>eZZyj#5rm0G`BN zbO#Pcd~XDjLgXcuess-7r=rj%6g-!SKyuORqM9ho$B97l)oVDhq3#9ZBFOOktn$O& zw5xNy`c1uQASYm1BYPkg%|~Y@?!}dD`|3hU@nTPYx1}9Ve;f!T<3JUwR$=Ao5CTbm zNhW8tk?Z3`AUW`A7!TV|98bS@1c8KQLa+DFMIaeZ0o5xF1tbV0S@@3NVsWo*`v@d; z6dQ#=BKpoiAQ?I>9s)@ddbltIl5(VvjX+WnjzB^SR3VViB*h4r1}x@GVk3|&Mj+bK zKMR4Rg5>ghEOzH#j>YP4T=s7OUjieyevjR)orncxAnv{E)~-p!7OQ_J0!bC}^`C)2 zLM7J$1d=vH^FKY4H9Mc~7ziX31cg9CO&h%u8yNka5l9Hz5UD`uXDE46iz`PIq(HiL?e)-s}y{Q zBEkV3I0b>Eo++XcNHSFlJ~GrdTyP2k$)ijWjX;v4Qt*KtUd&Z4oPt0ymMNkUNb*z) zJ`4ns0yqVMBn>HGSi@0_#Z4(#1g_dESTx z1QJ%Bfk3h=@XHT5Rr;_8ld3K6(aNSFisMGrcnPe-4`E7D@I<%UdEw?%TVROcxpS-X zET`wm+Zc0O;8`G&FlGro8}UNViOtIM7J63T1@m()@5D7~Ebt^PhofbZe#UuZKb!`l zhsfmH8^Jy+JV`5}pz`?mv8qS0NC;0-xnE#7n9{737vxB@1)gLQV#UR}IJX-PFFze0 zxx)fal8ih=HZb}bg-L}oyf7!SFmuArSo6`KzO zp2P*Gz?1wAvEvrX+cn6Sz+X&wk_qt(dADr(HsDE$A()Ycq@Pj9aySK^By|JwTNIXG zfW#uqfG4371tm&}z>|F3ir7|ok}8B<%^LMp(uvsBcnCbn>xdni2*Z(low`O_(E{qoVkA^@qNX-(y0Rp9A0;E7s%;V4}lpiu{F zAnY|@m7K4^;hOJts^+>2I&`Xr-}6uXk@Zx~W}v~qQsor2IzY36jKK*M%lX%r=ovoM z$@8yYJLWtok^dL3({+^eWC46vpP(iD8vEy684Z&^51atM0UP&zh?>~Z$PRE-;Hie- z5zN3T@QX8=yF>)eK)WeK)kg{({cvoOvNMfNqTOs?+m3XUCPLJo#a=)dW(L~LJiNvE zet-GCfp$|2>mu^|^fSx(yrDPeK4Ku=WS|!_=YAU!_{9+7&DjWpC^DrL@ur>feHX-= z9DFCTqobc;ujIlhh&R(3p`?3+DQSfgXCU6>AsV{n0z3rq=5l{K-SVfM&@FaH4{Dg( z-wE+1_3UWGo6=dtpqa(rZpHYuBHpmE23Dc-eC#5F($vQ^d~M4QH`!iIlHHnPTRhqtY)J>Y=pBA9`vY&A|G7K+ zA@#o6)Y@lluOgbw-|zkPxFKSfqjU>Yl2 zgK6rPo$LPtmq+`2z(yX)9`5VGli1-$%yAlf8IPFTdDyhiPlxk3HeCHLc4ch9w(^N7 z!?5E#{vmTr?zeZy9H*yOV_VDycgDIYXBnrm50(t-#53jxumLBl%VxKop_6fz=Acv0 zPN_v%Y+Bi3@W?TDbyUGxoMyo`!-cF#OcapC?GgIP8Yo@ZqwbW#V;>$@B>N{EB!o1KT2 zQHeN8dqTubLns}x8iou~{g-EL&Lw$YisfI3F!T@Ff*Mdq6K7m<2u=nW^AFSDyaa;c zzitJ(i5d`qm)+)!sztSPFU7b zCWBOMoun99r)Agqw;;5((L$oCr}|D6NL0^z8Q*yYkp`?ny?V9JJ&s`zO^7IWbh|S= zDVTX*g#J>_sZ9RAjV?SXLb{sz7n3OP=z51g(hfbJ+ zPrVtNr#yJI-t~#AwXRRPkK%;TW*j)5;6ai)SN+FVsrK%+Z>Cb(@HMQw`z~~A`#otJ zyuKbouhA23$)0Or)CL>qt zT`#^`^E`QYZ-QGNl;YB+FE+W=q_|b%(Y!VO=dmdOnnvodo%6Lfe0vs_BBpo6^*7I8 zXeYO}f9A%18y)?I?rp;YL6ZM7j8Q$lh3rIJzWK5vDPyn4w;&Z`97oBDAF?Z$n&&>W zQUtB6F9><{rPXAoI=g}WEC_N>D64~?>|xUvRWR7T(v#8ZC^;EMzE`j1hGH{CSp}x8 z;Mbc84Ju`qD!*yrep@e>cy-}^4=cZ9NPIADit;NC_gh8q7`?V7+;5`t%S4YCOxs=g zRfYR4R(ZCeR}aP;tNdti2K_oIzq)Y0=Kx}Y?KO?0@t-?8j|3%7gpm4wup{2yak+79niI3a?)OZkM0pof}&}5n>xhKZ16cCfZ&Q4l3N{;+-YHw`_6eRO2;JkubBIdl-wNU zXOY}5adstAa(}1%ERuVb^0P?puJa|WMRGOeXOY|sm7hg&-^O|HNXeb1{4A2&SNT~a zcUeD4YmwYv!0%X+`)!H{ibZn&Ouu7Dt`l)AlDnT35h1xxDnE!CHI|kL~>0bgXD^kMN2M4GnV9fK>(85j9^om%|5pkeny{L$6%w+-3Vi^ zqmo;lEX=j^xnAXGkzA}&L`m+G%FiOXgOr~|a<`u)X)TgFTlrZeH%<9jB)6%rq_u@B z^r_0vBDrTMKa1qPfyFEcjzw~Bhu^Uz_va%DHK*Z*wZY&57P7-C6-(r-x*YOq^C z25PE;`7|#xJw^Gog!|QC+=O_UP^iIpH!8oXaKFPC{2*RyxZj_YUk*&HU|JXbe1E8d zAGCif^j}zjCUiwKVS0 z%Foick0ePvTUbq${aN|th5NabUtPH0rw&PLY21&&FGk}|N(^IPD&l~Bx$pz~icc2y zMHo*jG3R4x$oGqf)p+Wo{45Q*9)c3lkgM>8VBOt}aMZC4Ge<$c6O^AT-0wNaAmY`9 z`+1e$K%5T`ragcc#H$JS`>pazMf702tLPUJZ!~2Q@0lwp>|#Ehqs%8ZidaqgAIJ&X zXA(_SbL2Tj{FWAqpP&XfN`DQ>$JGEdVG*6@D$pp4vA%L5M&+K2{V)Z=4-9icmg>9W zQCrNErnNRp`B`{-KKu;Q?wKp4IR!~q$_b8){gW4Z7^3iVu}oi2}c|y``DsX43F=Ujc$Eh$Z91U>lE~Y=cy%Uz2p+;|$8mz%SlB-(^gC6Th8+JHI z8Gc3BnEXVOkbbrb4`qk5U@*cza+D-V3WsutF79eVrd@5PI zr_HNRgfJLc*aP{42Zk+%hf)kL*6=%~-xU(6He5PNbw z$RCE;?|3pkc9dL#p5CiZ$0wD@mi4%Wt{~`fl6X8# z9t8asN}y;ZTO1{yz}txA@ufWGuHOZW z$-6?_?~c^2lI1yWUk|LtY^8XIf5B1qR}z@npo(_HF)K@ob_eD%)I=3ai35ymC90R0 zIuQKhEVz5-3O+m;dmXa|eab0(%!=!G_`w)l*@>xfeR{JTvcsHrpa(XY;U=yuOp=71 zL~}!rgECH{m8?6VOY6*aHYg7N!`PzWF8Sz)yP=Gs{PSv(g}tS~?8)NVWau=TTYsYk zF(PPW2#sB!@d!it=hdX-fgiAh+GkmsKb(w9e=sqE#-Woj1=uiHvH;|oBOVQm)gNgA ztw1#f_E87(kd=7|j384(GB}!vtT2>+ZcVB_&@DEVhjSuG+!G`*BuAwmR}gp|{d~4XHa z;?%%%NF1}Tp=}UBpgW78`WlAv4}A@7i@*f z`4Cesa78=f9gSXAc0IFF$6e25A| z4JtJA1Lwq{k{nIt_7D|@8dNxd2s9jsotJ9Z^bvVED@28%1{DrX0{6tBk{(T^8JiM} z9)zI=6%Kj=-Q!U4!(NEU%VQxb3^k~5I2Bm3KX!@Aqp5g8R2XVd;Xo}g4pgGW-lf0R zf>;rm=?pS#gsz4XhVsv&z1D_DpzZTGWMU|p+7p6gOeF&{H1-1Xk5sWx&3)U?|`3ITjs5|f&sKn%FYjgu# z1TqFc8OlE}B9Wci`SHk9N0XTtBEwLF4Cf94Z|#ed8&@=$^Fw49YLMZyMBv_dWc(O5 zMDV8N=vii=7;2D#;c5%?ibtkAn#^xQWEg6Y;bcnSH5}xL$>P*#GS`R5Fw`K!d7408 zJTi?KeMA(hONb0Z4Kkbp3UrP~rXZTkiX%bZFw`K!*`>hq7$U?hRAMxl=^-)eE zb%+c@4Kkd`3tSnGOci29khwKPhN1jJn_7%VVCUZ04SZlUhtC8Rqw{7c|IolWD;by^ zhe~sFk={8Rq{2{x3g&d7tM|mt$})L*_~; zQpc*=7(-$&(i>IFQ2wE6Wk`HR94Z`HMeyOI5EX_RRLW_s)a{I2lGkDwJ#~jnR+K~< zJtO0hsg7j5WBaDp-4VF5bSLt70K@RV^WDyBu@oN#84#n#wHR=k&Fn^ ziBcrH-iuR9Ehu#aU%G)z97Qrc9+?=5Waa)KnMg%)ZX7aEiey%hMwlXL+7`PkQHmrh zlscqHW+HV56-ffp$5AAw#i0^Ik<@-3q!Ot}mTrw*l30r5evmP0B~p=GACF87MUoyO z6RAiJ;lOpYRS9Dwh9U{H26GdsNS=yE#vk1T{}dv_Q2wDMiz0ExBU2tt=H?I?h8ko< zk$lt~r%I8-^NWM3JP&BU2DfW_E}SLk%*bNZxrj zPN5Q`$y^m8!%%~aD3S-_k%^&5+CB>wDpHZ09gj>5Me?^0nMg&lVso5A#ZV-7hR8%J zk_qw1RH5h*J>7XBG7ROPsYrehlMEC|dbHfU_o?Cy6bVE52Swt7Gce(u*u6~*Me+ow z#2Jz7z~T8AeO8nrxgkg*h9a35n@B80(j`bIN|9{G$@iF@L<>qC!QK_01Z9Sy`~!R2 z@CZB*k4y|jGCf2lQjwe;hfI_rxhzN{Op&bJ7`rS{isYNUWG>PriQ3QDw0<>#4brJMRH-VFi|6t;ql1CP$YXkHhEGKsYt$Pij$id ziliz;CQ_07HXa#&bQ2sMBEwMrnTq7fcx1|>$^0-xhM@)-Q6xLp$0<~5G?_JlAa59I zkP$^v9*<08bk|)PBEwLFj3|-|;*lwcCUZrI3_}evqDVHbi&Ln?Xfg-=!9p?AAR~(8 z{&-|!D3X^#WFi$wpLk?qD3XE@nMg%azcx;xVknYxLS!Np$@q9=s!;TZo^I=&Aa5AT zKU0x(5i&7m$o$bP{*92488U|Q59`l1h)`hsTP#!zGF8!JJRvd+HOTPrPoPUYGP%)Y zI)}(G)F8uiMS&WigT%~DTlAo>_9OB}E#Df0J`^g6WJbm#Qxi?*{ty|48o6nNGw}85 zSQXCc&}cI0LPqvWFjSF|gI0m3*ijQ>x@*HOlQ*-?Q3`ekC34p6o_J(pD3@P_$e79nWMsPQhw;e7P%eW*WK87( zGBVxu4}hw~ER;XGJ3qWLSSW__4`gJNGA16G@@O)PLSz_fkP+o_LOe35(PSou$S~9( zBg*C3m2nEy7~Q(h50PQ0L8gVx^4fT03Zluh>yA*+`d4UDX0pO4c zU<9}CjVkyqNf!4%NZSANoNp9bK?1VwD%<8L{XM*Ev0ajAXX$*rYCBq5l8oRbw&!`| zeX%<7&QsC?iNQ!n!?W)6!$D>`dCWfj4ID4OqYP)z6Oq!ShZ}F1l+k>ZbRu>m9!;+x z_W29ifyCJQ##vCf`v6M8W7QsQhkxGo!$;p>*=kuR&}+nQIRD>)MM)fD6)*B+_6QVZ zz(M4OL_J62eYb zvFSwY-gvYyb`xW_Sz;$6>|zz0PQ*^d<1l0Y39&DQ8vLf5H3728QxIl!lRg_Xei5p6IILD zxhhVcdK9QfAs#?zsOH0pWx&1FT6VF3ido>0w6bYr4V%TU`hl{3Lpl-AH#+9l@|*g# zz^7W}(E$XIk6?Gn*8oWx4VPEjppZOJf)J7i0h0)603?rViR1xLi*zr6Jc#4r29C!u zVLVo}1LFbUZkM(iXa^g-8LLAm9spiaFdpus^<7rF>@o_+4e&qd=Mx9!0Hz4-shc*l4@F2P(oxv?D#4`7l5mgRG=7tb6Zn(Pj6tVnIXnUP(dF4)-t^elA?oBkK)_;DXP3Hapu+Du zm!b)%i;Zag(;x?4$FL0wn_OV--1z`P*`iSJHVmk9E~YpcLRKb{HD5`e$Qp3oDTKg+ zQj%4v#BDys%|Gsgvut`Lr4yj?B|A<)UqlhEZ%MFk?9w!IH8;HjAdH#tm%NL41HFvN zhcRQ`Vb& zg>FJH$N-eXR|6ji5d+ZEB+J8>iibaODy||bS<0TvR@4QRLYH|JJd>SJG`0GKqI*N% zF+RM+h0oz*d5AxtPQUb|wIf9#njh5`G6Y|vxFR>C%UXkzAg#t#@WpU)v;p68IOQt% z&ZkFR1<#@^8KXXEL#Ft_C*F$uAVcuML_9z*2@kFX`xo`bRq%yZ8CSu7+ z;2%ltj4zkfdG(hD!bODERmHrIx(bJZ-TI^4l?(Ap#L<%+gnRWzTzEL<{F1@i2Dip) zY4oPyp5kU+DqPeZg2bH;j@A@?yEmAZ zXvev;dy9Ez_ZDiYLB$#BU%)LX*t?0zre&hC~e=cBu9a^qxC+G@G}eY^Q7bhN?i z-&;cWb%(BhFUy0_kwyRWFj-W ztZndUTRo1KR=LwQczg*b=w zNv^d0kR%*#!R_yBT!%i$9FjU9zkbGQYuVe;aWANnQ6VX>uK18I&eO z4M|hz_ICk^qBIo{0dwx>IDy^{tJW~M1FZTp;#pbsYxsNzR+-goW!1PKtH#xvtQyx8 z&Z==hI}K;mxQ?+(eNI>fp7=zJz|ZLW-+j^uosO|`1$LL;J-24o5L!o#IEti&%;{Ttgzk#{9BFU3Kp9)%GQ$cf6 zC8LjW%q_!VaqnG^ass2=JK?z|ba*uwgrIw5FG*xV-hK`zL}R7b{%8Rr0&S|r>l=1A zOo&#{aW?={5)aWz*qutY=V`uc1#@64=t_mW01Zt06P%2 z;H3A*JEm+yJKGBbanf$QyoXCM_QFz};fD=ZdJ*>bLof4N&ZQ`jZD@Yi*I+zF`gYjw|+IUFK6Ui#`<$4j0obFbBluFOP#Rfa6t zhU*De8upInYnCsSweaEV@i$M}au2j6_1-d9+Irj$zKBVHj&>M>tc=w#bbTWRCO93# zS9vlvW;uqf1288OJG-m`xFV@JN;pOrbU5P==hyGq?^do=h=ho^6 z9E2r!mAaV6-bnL&!&k8T9JBvG0{X~uSAN$6p8PQf0HLIf$|$;WCn@6e`@ z0(rE}qisiua~!E{;~l+jO@e$wu6p2Q*&axC;U|d*9i0rA!EGNS!sv9!SpZ({OuV^s za1}$6GY^qJMC4`bPrxM-y_|)vnf1ls1YVXkkjMcjp;o*Vu1X}K{rD+tr1*Y0KHIU4 z7b@W=%dvMITzgkJX5EFnA;0wy>}CpfBm8Hq@@Vxes3)Ut%2{$<;yLc4bwpL&?^w1B zpP8{Ts|(OG>L%|%{-mo?EV!pPyO>Gyl~C7vc}#YD8@@Mb5t)D>+@cN9UkO!|kj@e;r*Cd%wj=c|dgkWr z&&E3$^d*xnTXO;u^vW%C&#V&;WjmJb6q=h8Js8|(I|>7dB)J)>3*V!2Zxi1?!~3=m z`1&zid*64=x?W}dZMU`>Y}!gTZFSf0NI>w6W>-ez;^zv$c5VVyzQ#%xhH@L=yhhS!*$3cwv!YJ@kzzfDnvI03MY?UT0J<3 z@=fxQqhv4Q-;(G^ZH1KF0uiQB&;v5K>;uZfP72kHsVviWM7VJvGEXTS=EB>sT)1Ww zATI9Qax7bipI$Sjxn`~uhB=lUA%%~HU8swCktpc}B2|!nNY(Yz+%uO6lOR=FMXJ_Jm?1awsB&hT?@4$6y8 zN%d-D_KbIo*@yp!;5(*)Rj~?X98Cs{4)Eu5@MCo2ct`hh#yd_Uh3*rQ;UdBA_h!N+ z1iQQQkoGjU+1H_ibIiH}%t2NRBP+?rq8YuG+YV%kx+#5_b97t#9b?c-jYhLN^&EC# z?6!6(f$|cyg*|q##4&E!MoAq>w<>`_*;64o-$>ahBx~rp4&u@4UPw=`TYC!wa`}7R zG!z|n!k8l{<(NkPY$XqNvgDue=P--^7JqiK=x9`@P3R5RFH_L4?snn#G&c!$ zzqNqwThTtH%NI7}go=%FxqY6liBrx*=c>wmD#}fh^Hj6kyGxeR^05`2f!S)z0nwZQ zjB(3~JH;_~vK$AVUWaz53>aLZjQ~I|G<$S0VsIId zvS4JY6!E%w3UQN4GmeQ4*0cJhmepxu%s5J42I9@o{2s5V*)2|HzKlq)1c&;%e#^Fi zRR!QReSWR4D@>>Doee7~WIK6*gFdyjmZA>e6h%%4!|sP%smUl z0hR2BRoI4`0h5J+_cYNQbLES{h5?#m?%8Y>+Pf-K_4}@ZEoA@NwE@Q0QO9iJ(cl6A zz)NJKykh}1aYx-yeU2@ci7?``uNj87OuP+syfnv_1IIA^ahna#YxS)2a(Od^J-ZE- zTGn|v!}Yt*%M^Uu`rVx{BQ{(gbe`M3+MD(*AyD$OK2PxEkN7+hb6LgL=zS`(wXO%V zwJ`^2A-OURO@1G9x`r|2f-$t=z5?dRjd3e71^Cw{m_^O}My~tN`<}GNFJ>lT`#*j$ zv*oeh(>C1k(%t9fxb)XAW{z<|Rws{MdNDKWNoyEx?|+`x*R^HI)4nugR zCvD46Jpm(%Wh}GD-i#R#l$LJ>kRRK0u3Q6suo~_7*$^kx) zZ{K${?lBv-xy z;uWZh?djIu4f11;@FUFr{M4&$4ceb?ilJ~GvZw6N{CM`~T_OAPu8{qCbI|_0S(tS* znH6q--W=psnEmO^*oR*Kxb062jZLcx_UCS~KerJu>f*p}u+`l8Ix0mh2Wo|EZKq@I zy|h2ypttii{(^#IwhwX9OH*24NVtzS&<^!nYJ(y1W)iDnb#|AnB)c6DI>i(@GP;n_ z=Zr>LFj|)m3GP^#mK#lB6O3Oq>!SUAovXwyl|To5w16kQbf6)me+Qs z8tS6p4b7$dfdcT-G)&?9K+xz4TBhENZz*>jvrNaM1jxI^GWAw_wU23<0&{7~;e9Ca~KY#hz3eYbW-jMw8aw zfr6?chmemb0~Tp9;IC2!tQr@M3mLHE;ux^M2pO=yAREPi9ThZSM~MMDimVJbU`K(M z4aJZM$YIcc^=8mO{eA}Q#=U2#+iSA4k<}(wW?YN1VNuMh?Q_@fNdOaS$nQ(ZZ{7!K z@JFQaO_9bcY1XcUMM!qPO?K}vS)JWwXI7Uxs36~J;?h+fT5)BpbIhW=njFMaOk5YhtFUP20^Tb^T^aku z%uR+Z5N75kV?8+uVKj3^UvLIb!_ESu;8=4*!DE=ZD6k_b&op%lgQjj~(A3R=AoVJQ zob}4K33oIIW;JI4~_0u4w~7q`ON@T^9*<&l6KOZ<^u;Q2HIS zu48$_ERJwvQ%URBN z5eN{ucd{$3p4XD{cV)?-#kLvGnv~B9Pe|L`q(b}Dm~&hk4tOuX#%=fvYtQyN>=6pWto2@c78XU# z#ZpZcmc!OEHCZKH@(`95F^R`z#j9$ttO$rB82Kdb-}B~~u*B7eOt{pu+2ZxGYWesI zgjT_YY1CqQ$es?UzY2MiT^~V&xCWfKWQ(J&3q1B2yL0Zw3497{1kSoX@;DF$0t@hi znNJ%9vTRjRPsl?e+!$y3*>u&NLYSJwbjM1^oK5f>j_KK4EOc-+DD88veJwa*huMuu z+u`~M%+q4RoAc!M*5P`eD>+}8wv|gpn6*50h(2Ow!Zlit5)A1)8TFI*d40HU!hNXD zSQB?TCgGhoTIlGp@Xd9yCLYThOBjxl`%pWaF2*2ai`%|dW{Z)FtSd1FY3Vdv?|LOx zuH5!jS$fvr5Q4jX+sNb4_#(WucVK9N?^s3` z99jfU0Y=+^gMlSj4T(BIVXUBp%jQF`s^b$_tWHOHnKMJ`0)N1QcP*+s#xnoikX7fB z)Pr&jOBLclyhDrqaEc#ksjDAfz@9X7D2ts!ZAf8^T>Y=zayEh{b?bg>DrUN6KLLl% zNwr1z1~+UWu2#lhfANgqHZ`W$o`)2{eR3kh*i)AFTWnVg4$Ju^vvo7gLZk^4q0Ydf z-8it0O6hzrz8py0Eq>49+&KNb^m_|0sLsHhICo7?7d_|Tg`PiEt*G;P^c;bgIIKz* zR@oG*GLfA~R?+Wr#VQw^g9N>AmMVNu8!dd5Iq(Nl`H+2N>h4>)tMb1qEoVeF-wmwPL$)^KDaf}oL!N6BIjEVjs&_`M$y$~Fq(SJ-`B=Keoqe@XFQ(PFf*eq4H9gPEQdT$BW{)BCpm zWh6J{XwzHObz8V~>m5)2k5F}-U54fgHX>fMl}+H!OX~*V7QP12iXaVVb`1tad@gSO z8+I!u+=JI+2g2=ium3%CjhN`a< zkEIMm+6wGLp?t^{TggoSI3qQNA_e8+K?HnH`KY=%Qa!4HxUeIm^TL~uTQrTOczS$UDVdH@-OhnKBy$)BG%jgIj`VQ= zu^yD-T#|g~ZFC#@rGHy65@}EMq!jY9KM+T4g96Bl!9whX{Tn0tw_`iWr_B+U|1w5NM3k$23A+(wbEd6e)RHvYVv}@@#P3`{iw zU8ss;BvGpRadFeH9DZZSul|Vbnz^D5?_+Ovj#+N#6XqEz#1H)kO#!vg47Gs1qZL}D zNokQ5Xb~ui-~VhBuIyWe_~6o|*}2FvWEgX9*nhR}Q;aZ2XJa9F9UWfG3taRj*OEH- zL_A08M_6Uz-lb+$-XwS;##+X`1Ko3O6J1k#?|1ZHEiw9jHcDdbM%WglYZKoqn&Asu z97(@K)NKenJmqBhOf5p-)qt1Wl_1u?DPvidBWvY=qZw-)Sx2(YYj7T_!_*Zx5dZa4un&DIK!eRM~wQs&SrleSsU|c73%|P&d}Dugd89s@S1R z*Y{gSiq-WMBj9+tzG4(isYY}ZVfwM^MsUTVALklAX8(s*RVCBm0$+prajY5AFP}*| z)c@6l`oF~%rds;H8VghX&s-nY|FuH5LBHJt{WcZ)ZF-aFHtGMu>>rD~wkUaR4#_Kw zAIj^V0papmIkIE&dI#b~$!i`w+n3iXRg4IEO@(i4dHn%GIw-GOL|%JViM&SIabgNW zUW=6pD6BP256D@uA+P0P%3XGyDX)xTG39=6FGR6Ix?IzgtLP1>GF7#ha)Clbie<_* zA>f}OudO#k%IgP)k0GxOcvbSc7Orr4U1)~%dznc(B(GJbJr=32E%uz%D)WCa+?3a2 z+H*?M!>Xgku;&(wJ@-5)LFYrxMdl&!Z)_OpM{VP%Dd{H`^^`5XWwh-N?v)>A$)Mk=_bL3Yw-Z2>55nyY0G2 zdH*a&`55y4E?$+qzYkZqye~CF`YmUY4#|7m{&^G1=v-0&hH^w{?Vl68ro2N|+v%U3 zqi%qCN~;B16JR)qO%@z)E@^_Df)jqQG{q`~32|-GfI2(|_tq~R_v{n7LdCssRrEwasDXe^pueQ*7`s^;T>iP~Fu8c$Or*iDW(#&X>k|R>` z;J6v902gt8QNME#skRjqv6s)|Q+A=$Vz<)}f>>Kw0`ckB89rzj_3*)#p8jtcW+Y75 zSC~ndyLn`W2bXad_zP4nx-||{xxiN=Y|CdQL|MX0aGrrrZ5uL!FJR;=hH4ck`p-0o zJs6kRXoFZaqAOyfNX)j-LX4sQb$1GXuDDQ=ypmE3Pe*D4cyy3Fa-_bC#|`ArO2}$b z=ObQrJ9}W-H3rSXZePI@F*YM=KGw%s$)g{nQCKfu@4H2Xe}tf|NabgZOUMOpsE{Lw z`!+&9F|5LBc*AQgKAGDI@_(`Zfs8qHjm(3WvP-mttchW zr9G6A>(ZY}$&*OUM_);q2AA>h=yT-N|N7a;0(Qo`^wN|g+0@_R1qKMGwkS8*|wxA8T~lFRo{ z%0QXNb7@;}4o{sNYv^2i%8j-%hHHJFgVUpRTP%;Be^hU)@o;H9UzSJTSMcz^`z+@1 zdTMa0b9l9x6E@i*PT}EW{-aN0@;Se!E0`JPA(J_hd@NzM!g8|dZMplP%1ND{f9cP7LPcZ8(vWUGnI; zR=pj>13CFn9(`Nz@GoCLo-BgX$VqXmoVfgZ|G?wcI3c!wN%53T)SE6HlHp%|>-wYr zkGc1Ole((+|B;!|%~)qi2GAJYo6B`=+1x^kT1c=_XYeyXwd$^JO0pT%X1HufwJPpH zISqqU*0r?a-mJ8|X=PnA)8+53kbn{j2(p6ato-#KEPwa=e7(R_xQr;f5WGopYe|s&iq@yY|TfvqDlx2Kl3VH zK?NEuA&1;B&KO$*8pHE{#jlqhyZt?S;zgc)gIsbhZ$*Ad&Pzx3kc8(q@?4^+b3l0h zE#~911$V6j@kK~P<+9Zh53Gp?Uho*QlhJYqywpQBJMbTllU=~eaTx&A6qTWS^wN*o z*W;<(Blmi#1KIo?MKZBV1a>6Lch$kuySL+{deuwwo|mR>FP(puwFPT|=(*%f$h#_} zXF^v4C}8)a7>lcoS_P+5ygCBWB;c6=}^WVb3%c5YOy4d80?)BFL@zR(g7Yub|%0F%SWp<+({S= zIdL#FE3UA`9zTU1^d+kn`uNHr%P=K0J)jDhJ+2MQX`-^7l8(?#xr48T(;Iu?}f!Dm${Y4#?-7PTM z$WF?Pp)a2(+Cx50`iO3`;593yA7-gXiap>F@SHb~2~teo&y2w{>oxNcvm;r;b4w|H ziq!>5J_+;ur^EB!O9|el*v)uyxfoG~>+EUfP=gMkbLRLs)!K(?w%~$D2G7*SG`Ju0 zh|1XEek21)u-@^?JL|Ue#*fF$C`^Ka%$QCu;GpLmGU*J%bN(n$XuJUDfsWo^Q={6r z$5)F`f)@n$qwkOHhZqgQ;;d>ZgrUGYAm_t^iUaZ*E2utDhWLK4cVMWJiUYDq8C-n; zI|1xl!&QIdzsz0*`1tSz{KjPxM8PB(993Q|8??&LmvL_r_E#5NUC7VpK}yTGMEU-3 z;|#db_V4|JQ0K@DfDbzpkY9xLz{~>>Xa`agAlKIbB3!&y1++m4Z8$z`*B=er^*Pw; ze%LhvdW}$zes0>uQKA@DT3>4H<@&Om?yHJDqh72Gu2f$JSK<)QJ9TYwEdra8fyK!H zK2vYTIbN>u$LMu(J*N6>F#1zN0N5}FfM#&i-ie+Q+VRTp+=|_Ukiqfw=b5AF*xo?b zn!SZAYxW*XA{*RQ|DaZc$abzEbvsD1;e}eW7m+Tt zJSy}d8Q{JhwIp(?ySk7BNQPPxJ&PoJ2=bJU>^h|jl0L~;LAD4;+ArEqAEmVf9(SE@ z8e0Xhuqh?@6?w2fVrmkZhSGZch>{tvbb2ziCz<}U)`>*=-UUje4qCJghx#pv^d~0E z?~X-(C|uFPWWWx88UN=si`djLWY$xgm#G*!E|I>Rg?Lbrm>!>x|hO*XBPESMg-AG8&v3jBy5MGiml;Ka(%6Y)U*$g-prFttM~3 zt|Bm0?Vko)7M|OZr#BqSw^vQR8Z(!4Xu^3{_e-@vv@yMyAEQXM&KBJ1&>3eiFw)T$ zC6FhxR!(0w*@G9&A>6xRGCF{MCy~)5^ki|FNt(PKONg&{WU7VoWS}D%IH(6_K^y4(`yAOSIRY8Iohp+7mf`3q zRW9?>;pu*ql^pPVTAE;64u!?mS=6RLo!RtC*eiJhZ*MQ~hRp7#HYZB>&YSocpQgS* zZe3ASDWX{{dRe9y*8`9`g{IzJG?ZF=Hl{cEOiX*RN3mY7IjE$njqk+{mZ_53jxtqJ+X1m3 z96LB#wJhUy(Gjj|jtIK9Rh>8ml6p7=>Jf`TQV)xO`-?pPs<2=z7$HuhR-8uFJF2|; zP@$5BL-vj8L&f@3!y$Xg{AgPA=0%;Vq^7fQfv#emm{wM<;=eq&D*q~0Bf$~8jZa_@ z(H{TrAl|TH*sXWitp~e?4JB3VuL~MLFQ9>43SKjK47-5E&b(m6F&$TH9k-pwE8Bz^ zuP=0a4&549KDsL$x+{93TQZa$=-#2~Vh-J6%m6gz&@GM(OtlJ4?8>V^H<#Wa<9}ix zneq{aOs~_G87}3^R=HF^Pj?|R3o?&4B|v>^xOfrq2qdK;yTL1eW5#v433)|k&;YIE zZmd7i_oTdpS-DSKQgDy)y>Hs@UMty$r6D!iynJ5MS@V%;yAie@5m$8xxALqPm}e_r zvV3j0@!o@-oiU$38sE7{fG^}7%{VP#qKCF%0hJakh?o|vSou7+L%i#kT#Zj1Ags@# z*Ux2-7z@1M96`oEdjONC0e6>ws?czOV&d%)S9tGmE%?10PY&0vT^Ph%3O2gFfiYl?I+#|ke=SCke& zff15Chmhm|q%y!OM=*Q+F&a z1`p_XuOENi_|Kr}@|`vC0HugJ4QO-DaVhMHl!en}1vYBJR$hiKn>Wxw!UohJ-k3?Cl4_f5HeR zksgML78Rb`kAm^Wkt8yg4Lac)7R+V?frwc^PEzaKVk2!IK>J zc@iiTK2O4@V*AVVTrFgeJGIa|J-6TIN_e2?ph{|t z_`a=2E1Z3J5MQ*2Bki^Ci3nuJm5*VaJ*PX!YSj!P{`SOz>78E>_ZTxF>4@ z>=zxPx~du|tTy~m*q)q;{Gz<_j&S4e#F>2hztaVV6GL*nLvlSxHk|mJiO>(0fxQ7N z8*g$M0D)zL%U&IEY$rM%%;!${h}Re5J%{*K^|6om3WxZLqY%GX5A;O*4q-gz5MS*O zA9IMWc8K>m6mTZQ1F(0vkT7pmF|bYH2*WCT%YtsS_Fz)F@VXhi_BBI}Wl)IZHsflW zl?mppKQmcaG@+Q8wVIg?{>)V1iK?KaU{$eY;yd)Kq82 zP6RgKej0AP2cD!iackW#nR-wbKB zX2V$+5430zo@Rmp9ALPfkO{7dKj;>uhqdVR_=Y{%^Ft%Xz!4V2*2!L{z*|$Gqokj(@&6hA6W|AT{7Zm$t$w|=1xl*dYQR<2 zt}VMHd_iz6KiuG#a(*esB`^;GbGY#<5>BR01g_J6*(4Yv8EUwADT>Z;@g}}dMGKVB z0wuISiEBZh5Y_Yz5yd`4bwB9Fv{$}z#tp(S?%nLW8Knim5ddPcM>V+>d<_iZ1d8l& zW!)AS>jYlH$v`%Nw4;1qxN)U;8Y+Ok9IcROe-|zqxOpr_+IZ}1cOUn)=gbr2>Gscp zHb!Hx;fi=_mh~k#Dp+4parL}SPLwY*TT|I770I z``I3SEhga~qHyGMn1rL>I3!L8xI^c|L=qiUXPc%Y8xM*p>db>PSuOr9J!&YoHCu*; z=UvQr7a_%4l>l$V3iJcKo!>PzFm`7nc`!V0kWGy(@zj1~Dn}Ab(9EC@CsQ48KQ=#^ zi>G-da>80>5aMXF@5O|C{#PfN{DDPcV+u8mE_F%{sf;|33?;9DVL`hfQCVoh_XjV78HgQ4N#{7sihgB)FF zN$Dy}#g%{xQSM; ziKeI?RU2()g{zKyB7DJswfs;&zf{jJwQIlHpgAT?b{DjdkwYc=zc$e&l=11mRjYe>7~jzBFNcP zEV=ES_JL~HbM|}jJ*jo}#uPoG4W1q`5do%Rgr=0Mk0f<%R_a@jKVqM}-^3SR zEFAwSZ4}qg78wf_co~lk;;%ESv>h!#0n_?!d=dyVJT?D}0p!9H*Ez!m!eD2faEjIN z#Alui@BuW$ti~;&e|h^#(|~xH0qZCRfM|b;xDzIE=ql}aOY7%wJ&QKvbP}#g>?(hd zCDFt7Nd6gIWjD-~iex1vzOqJI`(D-$4xH?f+e}|`ZWrKJDhIG_f`taaypTAU$3Mm< z*KChN@8>(d;^s`UUC_6LhH~kHeTwd+hU;0tw&zmAFS4urs3p-;?UDQ;B-!^F*njH= zdt7}VU<{K@AI^7^1)5>DGcFCes}I;!WQZlvp(NRR z=LmZ{-|50$8|DqiU{Bx6Hs5O4d-+|tZtqkMXf#z%fW3Kdc0u)3vOTc(buNAEP1T*$ za6Jq5?77tNAJ|p??UqER*(3R1BgwwfB(OhBHm9NMtJ4Ko_FWF__jiFE_raDh-3Qy7 z8k(R|^}S{=8*(o^aoKp^B*x1Ovf+x-uzWXg68{uzzrCxgU7N{L@;ZrzdpuRTmMrZ# zq#LQotM2MlUXG{oce|?sRh0_uw@0EYtT6HxN%mB0-92Re*2xCtm`)M=*^&n96fdu9 zY)B2EX7w5ymod`(v2mfzp5fz2fb;@)^(niGlv@%VLz2C{QAi$0HU~yuV?*D|-v12) zW7%oBv2jp2#zvkGO>Sn{`skxoGMAQ6=}re&4--=`a? z$h-AuYWN7d%8$6K54)>#Es5^27b0hIm3`p9$yZPLc=$22J*AT(}L(MPyTlm0^DH|ZB-X~b&XNJSoVR~zgqf3dsT=C1x~ zN%Y577+Fq|-7s5C`V!e(FZILR9K9rMUiVbESfwYQ3Xi<*H>oA` z1+xC&`V?7OcRh*Uy11T84Zm48Qju%i)i>-azs6n7wIpSb4!T}QF6J(mr)X3%Kap-e&ohWN`SSfdlL$}RVbs!5 zo_MN#WHZC%4!xd={>o|@=E!DC=oT&w<1L|jvThZP+-lF3&bK6b7fJSUh(|i&kgMK+;{R~4=Hz3 z$0@Rd>`yT3W9~`5c{8TrJQJQX2;ypHlAlJr2{VxnTrCMI>_m9t+P{eMO4QAr{2y{h zt4AvI6*UV)#<|1gEM0~tt~8u^nV`Q!hbk#gq_QB7b%VScn5FxfA(Wg-iNjWOw@Olx zJk^uRKg*KR{v_GC(2R8Ch3+{eql9CY3Bi&5)lBQ|mHm$g{|4>=KP2Wg<$!;(;0JK1 z49(b(WeEEG5LPl9bs3&0&AQsWmP;c^O=~WIFN*vVPn8Bt3#W zdsV$5`<8xvwQZVf+mE>E+BWUg6SOVO&7N)h9@nmIqsaMfJ4ZFNgi1*Kw#8JEij-Os zooGq^N8DAVyBcpv>3c}BS3)b(k=I`7YMV@DkC`umJp1(-*0y^)Q3Lfk-yh_Tn=k*R z9KAVRE$*5x7x0xHo%eoScF&jdxXjI$3(4DjIfsmEbn~{ZMn6cFM*oq-Z}d-90{yil z|7jBD%SO8@{WVGUCMZlgGMj9!3;QBQ0yq1;I&0>mM`&iB^W}YzG&OFP8kfosaG9Gg z=j)cFq=2`(JqK`fJz2opZ%On3Np>@|CLLK#)(5ChvZPOB`#XTn>j_ZLbvByd4*ED? z8KO}OXtNEp&}dzTCtmG%Q%`ujV#+`i0U@W<2&4Ud-43nV^qYEwxn{|!q@ zHFS!}w)E6Q8Q&nGt2t)o>1K(}Y+4pkgrP`5MK57I66{@WK z#YA^5xKoe1U2Xrv&ZIjRbwi{`E)Faw=W~mZnM|$0#P4Zq_{e5AxiVdZ`3Q{>3fL>W zrk1i#AQ1{!SvIRA6+KlLO+|LQs{*^q-_I2n2*Zsn0M|%s!WB}9Js1qD)Kx1 z=0Bm|(2C7hQqrp5{Kxst{$V3kO^y73yL~T$de5!yw*D{~M+=NpXq%R!KA4^*l;@b9 zZ;#ZdM=l|I{L$v%$o}EWHsYSA@qMpu z_cLa-gp4z&^XGDzTiqViEq`^pnY@EEdW{uFzF|qUfh5}rsYpjYN%r_d&V3?V1VFu6 z*99B$allbbvZLj6#UJIcFpH*Rfy(fBF+rV)?0tz`eNmZ7O_f>2W$^P{w271%0 zh`vj|pjXnR@3Xd?@XgosWJ_omiT<+R>aOG!SIMngPx|>w^hitS-*S~)(p|~Lx|J>+ zt-4O!hQlveC2zj$LvmR2)-~sVZly~{ZaQft9WPoX|H%v1oX5H=c}KU>rMpg!li%x+ zme2#dV3o}1uH+HjN|#=sx=!4jT^p^Esk~s7e4x9M?YfmNtxC%s#94DRXz?RUUTqW0cS8~XWlkcCrcdpSR zEun{VyiD;5^3d!xCwAAWauP_Dioz!$>j4#OtD@`mo7T_u=}QK z*o*%6v)}Blq{%g`K~SH#pT_Hvme7ZD4IAHG$;WjoU3!Z!ed0>S=#iGt8@XY3=!;#= z`Kars4{08pxRQNpcuQ!#pAwAL(`Xw*uFI(4L$%VR=E`8vI zlUDL&J<<}|N@A6ic31L6-Ab2kd;X-AJfKHfLeX3$*)L#jc(Li$OXr+?{v>!L`zY_& zuxJU5@+T6b>@u?LKcyy&6XqC%NBQHd!g4vSP#42LXdT}W9+N9`ymbDD$x`wO z66$6|l#WnIDte_Qk&nBp>n+KTlRzpzXi4M}l59R>JRRv=(M=UUcg#K-(6XayK>yUp zReSmbeVWhkKi$pnPg~Um+cs1zsxQr`hKR5x&D@x zk+W0M{!M+Jj&?A={-thdhWMP_)6jF`}0RB6pLV6?}eNte{ za5m?iQ}PnW55@y8NlA^NZGI^aVEA&X5~iK;tbvVsT+DAgwH<2*oLt7fv(BFTjgr(V z3oux+FJ5vGL)-(D#RL1y2sa*hi;~gQCZiYAdeaJNy~l~&U1N0`GtQF0g(1l>V`!1p zzCg(N_hM$8dWOTV_tHDE%Gdkh`Ts>=2_&!b=Utu%5Mpu<{=A1#;>e(Qp}qc)&$~Mx zNHs^?c`{RUu9>9C-<&`2_zP1dbsv(ajv~v3iU|!7P*BC_O{3%cW}iP z=i0kPHazHz&kP| zYy1)PSHn{i#OSJZR?eL_=lSl2W_yQo>&<_?kHy<$Uhn13N!RWPOS{(Ykz`rB$C3DJ z_XR3RML%Upq}*LqTate%32XNUEQwr9l06;LmW~`+(zSNaK6dR!<~8y&Ms+IM`vAOK zsjt(hSt=~${#Gk@ffEPbFj#J>~A<5OD5CpPwb0n%!=8pr+WJn>w&m{D+Zks;Fw== z_NBsnxY(srys7zDyhi6W6ZHaJLhJa)^8hJcvfUk49B*1ys1Nc3uK?wvO{x*$&wiCp zre!LxlZFz{oo zu3a#vzm#`Hruys})efs$T~zSr^>VuAJLXcYqCx{oKYh4V>jCFd-NuB^~{mNYIQ#V3`*<3|L7{b_hJ546KsR4KDEe zUQCw!Em`tcFR%xvZh>#lCrjSu`9xrQGO*MOtn~sb6D9a$J5GYBFF4fgpzBVW6~3!M z2845)Z+ovu@fzJ>EiXSf?O#o634_x0PXPoNu?R+d5kIj7YwCXd#c z9PxBsc&_oFW{*EMpE@ydYEJkEnVtsT8M)Iw z?{6%9dYx!mgmLAd3!uwAF3OTED%1aRaono6SNY39q`CwPvd!PAk4$Z^hsMw^z81VIM0 zxk#;HGEUaa;aKI8WnRf{%{J4D5GF3rEIt%piDU`qua)LKqvzHoQkySjP_UZJO2VvD z<9cdjw)~4ezEHI{y-GxZc}26y6Lm&aK0sC*@tgvtz*?GfH=N`1$_MeRKLs7Y6`2vI zim?}UFc*{ieYW1k<55MnA~2mrDzwFT%u**dm#OhWU9+UxhtbxwaV=4}V8x@3A;ZB* zx5C}Wn~uPEPsRSkORd99-j4wADGF>p5OWVh{5|1$<0wHSLEF8OcQ~bPP*(^5;sWiQ z`9-ZfZYDo!(CKT1G*k0f%@zx;W*ZBxW3a05S<&wzN^)lREq3q*F71_T>YkUDsVCg3 zNneol{wy2x76o9%#LSrf>e-?86}L3#Yppz+r1vsoa8T~WzJG^jwH#_RbVKemVfwD{ zs}`sW#Fh5h5_!vKovZqGalwP@w-3dYZE!=@yuS$eru%YLcLkm1EWX>t2H34ft2*@4 zu-hsbk<}hx(00{Sv0a?~;M%ObXI_`%dWZSwXKkMl+b$-1aBREz=vQaWCvUypj%6)S zK+Se@;;-2*XS~6&toh_wETLgK40Lcc$MJ@%wwo_JRpP^5n>FWk&+6j4=38fB3M|0D zE?QBuOD~znd&O=SU|_ckFtFPN7}#wuZR7)0Iy<;(#BQ~&dbjNeVmuqJG|w>w5~y6M zx80XJE6up zL5J?)7)hVU`s#$3>xAYWo#44n@Q&()MS7rTClFYXQDW$=yN*ABkc{F(r;->$KG)cHG8bc#StLhA~PFLT7RwJh@=29KL!puB~Azd zExd{H7sHL$n7f`^?N~u^&CtiS)@e@Oqm<)1S?1gnhn%<-koW@jcRM8{buZwRy{DX#jurIOkqr&`g3&OUoIn1oKZ@*}&>w#+k7OVC zG}|9LJ}G*sUP(uf{OP1`F3}?`p^iWJlI*G7l{D*CI$Cw|&!3}5T0%2;L4VnEa+S1% zI{k{-GZpBmJC@D@6Fn>yb5fmdqQW+YO2lmn+af+Tki@k-V+2Ie*p`r!OBQ`Hg$nU} zf%v$^6`7lJA<>epe$<-UOTM5(q`ge-kvuQ3GnuLHAce*>>?hT6(cRogGE;j%4|TCE zr+Vd*LktNH)^n#>cF0k$)cpqx3{1xkul(h3)4>33$P7D@=v)dT6U_q_F*4kPkr9u- zjR!vEX@MScBwAKj(9g-B&MF1Tqb*-_NFj};kr$`Y#z$4}bi01Y40hBp z13V`nHB;08M}HmHApUsHPHnr?gRdxK@$@#56LIHt>p=n~&NGrKFQ&U~#*3*b<5L1b zq+A44b5?k%wDeJHg8DwL`*gfO(*RI&wDfsJd35Z@)Uk<7a3mt7r}1$j&O*UtsLSAr z0y`sA{Wv&yE=yf2D-)+ko~gS-xSPntKAsm3EK^-IMHCKtMIZ}9)G?GQh7IMJvD~TJ z#&c{&^ypU{IUPcArOtys(+Y;v4gs1mAJh{_N2q`Wco1ru!50mUXM!K3jw4#}FVBl- zE_xm+F*rsIiq}g1%**rm9YTo!P?zY@3Shc4Jm@*m)Jiq=Vl|b{-mEiR2Uiy$z?@?k z*3)6tIpAD=tDfbjQioQbS*cG9;mL603UjJ<*cKLt8a7>T5!&|aIaaI$g9DbLn|{j*a^jV6B#&f&G7)LY8!X2P+;Kl~QgCJcB~={r z0UbA`CA&@Ix08^W{*W%mhJ&JTQ~x*hfRj7t7JZGjX6|Yx+6u*Jw3UbF^j7;~J0z{M zeY@x&Q~a)|q_neO zFDJ|1Vh{U=@H|OSIQOxaL+g7e?e_JyBc3|dh1%Z*El7yA&(a+%x*{{?z1me2BJQED zmT*?OMbRi}(TR0B28vKNi&(RYifI&}5kam&PU?s?X1+h}R2t+N#GzXUIOj>7Pg)i1 zkoV*P+eaU$Ym1j48bQFXHwxv?mPDK9!pB!ZOPamiQGL0 zJg494=j5hXRr{RzQ8zsIKjp%T)AxYqS`w`w5r{#9*K_bzIC!g{E3;c`^m~l|DxVAr2HxS9SNP=(ABMX5iSjqX zO+lSixNkF@R)4x|dz@JX_B&5^*nd;r`7l9X|4k0|)cgMa zPl%|m3n^{CoNr+CmPj37XHB$N?Q~!AO4hK;^#W@cRS*?~amfJw zs-{TlFlCVP7IUVUkm=nIU`2P-xW%DMb8g|GRct~sqE~?9L zQQcM7h6ZKEm>w>w(x}KqH6B2Lw<3wp`_KE5q_*DzPnJv_+5S||XTyzOMPJe9^Oy5{ zFaF^ueY$9Yi5xXIrnz`Dh$9K`XR&ZG;I*McSSlVwdWKH@F>-!l%LDcLA3iZ>Q@bn0wO#f;qd)hfV4Gqg($qQK3+-I?K zQ|z0`*;#of)Tf@+hW&0jx)CN$YOZu?oA^IM4oxA3&_m=g=}d=yPlk9m2>HH14zbGb zNNyYJA}7CXk(0HWER(n+S<>bq=LjHfCSr1+jib$6IOHSWm9BI-i@mxmi!ie2ans`R zrT3F#tqIRxV|>x@_i&v^ZAYfb$?c2X_$(*wY7 zKE{netGE`&rHtJ}2{#^8l8bE|{HVn?KFIC>3C+i;EP?DztD}j#M-a`)$y)S{JdNH0 z2}~Byu^QS)pq-te`c9vLk5h~y1Zh%vII32sQEVb}eZmnSCeLUMym4Zf?i4JLAcKidiWlQVPk80=d^VXG zl-G+^yq{u6E0UQB?2H$M=MAAKky=Fm6BvYP$SZ#6;#Ng8xH!kG=NM8kA_90z z=rp!`#CBvY9UNP0Y#Gdxq9_!2FIeE4iWe-LQ1uICtQ&*97c4$e#S6u{s(#^U6{leS zn<5DOP3tY}TIESqoE9F$Vi*759|gO|`GvG#*l9h~n<5!5LsYYh`d1zXOA-7^m(knYx<*{Sdi(KBQZ)J7Y+r}vE3g#PwBA=>p|Ke?{a7uQ^!4efiZL=y z8my7cB02sH?pE5MRMKoO)=!^G8(BN>cvl?UHg$TAU4#J^}A^8}03YLw-sw_=y2ScL@f9s0Dd&MM$D z@l3U1898L-@WffL+5z>zQ;p|TS;Es4X}drRc<2KeJ^&y?pXHNB2L;v=*sa0pVxLcj zjQvBpG+qC?Qu6wpan|H!HAdTD?Pp+jm;9XNIz4u&lJLX(Ar1dd7P@ea-6&o1ukH zX(PM!6yx8C^eMc{&e*n+^}Ow61|^^ldwz4Jmf@?DCHoT!!W+F_5OS`vbZw|h(SNBR z(3&jS=4Gl&p%C}GRXH>0KdAEMRnn}`wAHro5mLro*vr+UI@%BfR+fD9~Q6n-CZwGye_=tb(o z7Et-`6!eT=hzZkLiZEf~@a&S7L}tLSZVM*GFT7Q}D-IDJnsL52o9{^$tFfdGR2#*p z3J$H&_gL!o#oE{tM@TzA7h0J^XL8x+L^&+V@|rrrX4`=k`UF+X_N&k*#GuA|Xjr89 z1d4_Jt;vbNvlLCp3_1|sx0rTt&cP3@V~z*2^!0lCq_7jKj-bk78|wFq@)F_DV(clz zGUD$ex^r}ly-r02RKVrS;5-P(hbW~(@%9LWsE0>%=y%Y5)m1^XM3PzsbIvJM_+WL1 z3v{?&q@4hU7L~BtVlWfCnYUvd7U-~MzlANVA;O`aBPuXBHWp`?1v;#@K!@8EZ%+Y+ zNorlZJw+B)ghUr_&sVC*E^NQpr5cOjxI@iQ+-4HRZKgGf+f3reZT8hF3;1@`hy!Y2 zwMAyEit+SOij}UAe7})mW$OP}$5gwHsdXJw>pG^|b7w875F_m19%nfk_+J!JQo?BT?9-Y&pi|@U3lJNQo7?!rejqrn6=HQ%}wh>X3((Q z)Ycm9rnVm!30mQ%wv!)=ua^R;D!ABwCA#yoF7#is=~veGp3mW{Bi9@_ACjZj1`hhT z7uai&5n&rYjaKe3GpF&5jX5M!~8h-j7&EO0{| z@`%P4S*-h&_}j!_M!fhe^bE0Hm5f0w|&>yI>9H1h#VA2qf&`{)W`hfc9V zMS28PQ;t;>jRSnMp#KP&_9}Zi`tVOhWlpFls^^jH?H}z@6gB9TbTo3`N#ERfFOLvk znHThz{aAM;FX&b}TJV#TR`+{!76!YbQdJg=~g;=#mU=HphsFlb9uokd8E6N zeAk>`2%r-q;!CbM&A@Dxd?{B+OUUz~LuK_DJ$1)Y33z&_tPs1(l@T)?ET54xzfr7boqdI*fXrn>+7TDh@)iUw|T` zKL*UGGJHA=-IFFWvWbes3T}v_h&pDRiS(YCQ2;D3 zxJxLi+i3%Q9RoaGUSAXsHhvIJ&& zV>)U!Hc5{fBQz0fnMs+8b|v;LcRa`+sH*1|a{N+-IGjg|>`Rc{nutDC5Zob=g}2?J znO1DKXr|Su>>W&?_~h$DC~VU*1@{X2{igN54oL(+!^-B~sJowygM|Gajca-pmj8;(u&kQhtxay{p07=ohFr^q zsJgFBZX-L1cXGhzq(SUqcdHS?frho@l-jtlUSVGQglSYKWQJ{5bqlThqFquZYY#wx z@tq8Pw-NA_$Yc*1_NkIjsE?#O)CRqk`-0IiAh{zX za&szY1;A>#9?7tE+G=I2)0UC571Krak(ha&X`!7mxxhZKt&O4qmSr}qTI+-##%vx}iGC6!AW%7quG`f|^tJtRu zj!{D|WpbE3r|Xh`M46mt%H+uc_aw^XydKJAVOx_Z&(gb1l`m}X(SQK^9oF$VTR7KC zZqWBqCLahl-Ao-PQ6|6Pl^^hx$(Rh|l5x08ncRLkuS0*@Kgk&ea2vP&;G~SgB|MT% zmUZzd6ZA?ty6w9see(f5(h@rSeV@h1>#pSIx|NQ;boWUs`I#PR303lf{<2FhM78}i z(4#zSzrjUmjKExD2eC1kzw zhfLHIZu*a%!mq#nGLf_#NjdR|rT+TMz|-236Hv9^z)NaJzntEDBzpxDTlv*Cev%fp zUuKWJ*#3&yTSW%`2N*&*&3RvNf8qH*R~+5+s1@Qy%^EvDY+T{k$NpV<^X-g)c&Y=I zBV0c){-CqQexAa|_|MK^9E=60JuKxak=h|KV))^gk?z6My(^j8s%=8DWG(j0j^|VO z=gkP`ya4BX?LsWaDg?7K^L@|2wiNQ)&{C%5$+l(%6^qTV zux4?g%IX)(bZ>CX)Ea{;7MrJ6&EjGe)-RSCq?P|&(VWqQx1e}#!K|FBQG>Ujo^3Ym zP~(l-ynMyzo%G)ZQvMB=M6R_YTHyc;3P6kRT~%QKR=1b|VQ?{@t@0Mjc(tlxvDpz; zFD_$W#YcG_rbQp+Y5$|}2b>1h^epj`eZ4naB_~|$5_(VLW5ye-)~`-n6n8 z=JtDe3tM)@Z9Z0g@iIzXaRdw0>rf*{b^2CcBzcyK+Mht#-KDw_!n83 zkgyL*x~rLX6}jH7#!ey0ZY!08(91C;M9<1C$!E`K%7f1`>S2}v*}K1l%6Hfi9MGZHP^24Z?b!1 zueKzA8cBAf!8@F+4{slCZ9tX1_FoO)hTl1WfwZ6tX@1yL5O&sGT@dys3mj*X0M()S zb~W6tB4^mWv0;+z??wn=uW;W7p!xHCxRw`WHx4%d4*s?afT4W=Fmyo|0H=@zfcKC9 zz(M=us3NEz7Ig3r&JHkRyhE^?f{_XS@WnFL==*rqdYz5O&#?^ z9!So`5i5E=g#^!h$)eJ@ezX8XUTSQRTO_4QGGlVxcp&Yd2b25Ax*m=6Q{AcPK=;af zNV2z<2x+T%CO68Cbw&iR?9YotrbrXL5nfYwD)8s(L>s;OeLB)e0l0kz^;l zUntweeII3oeI2}An5{dnuY};fuq_i^zxP zo9AzOY@I#9&M7pD9I6J?9UmZvTIUv$+h#h`kx#uxv-!A(ZkM@3w`=i_RoeiP)#)CC&@g4)RWYIGz7%V+$j9TM`mqnaGU!h#r`2kZqy9 z{X&j*Snv{V3Zz5l@uVu9j*F02(wUG%sZ-~2g}z{S5b}`!PgTo~rj?iRu0kVOkDeU~ z5Q?~JX|wM$4oic$K=vr34Mmcz&{`+FkW^9MmS#lA>V3%e1C-&EU%(T+57}-oOC01h zxqZ33@2BNv`V`uyJ&}8XG~NbY_&o!UEl<1q+p80Ww`(F;sgkwaHloe@Guc z_Jr;CQhf9Y+wY>}WG8H|QMI&LaKS8`{DkeE$Wa3edYrJmfJ(Z|RQ||?8t*#8ov_{W zYid-p`|AIp6Slwe4?^vqXMuq+}!`#`P$b1y#}Y9ul-WKde99ajl5h>{}Y z0THjpii0yM%T6IyhN6~*T7R$sfNxfLZ$lB0Q;H{x_6YS_WV9`OgfyGoIzT{AaVicq z<10o?=a_N5myVYq`VG&&#tLVl2h!m_xX#|o%d&_L&pQw0hnHH!@hIk6yU1gK1L;h^IX^Eid$&^2fd+l#j)7;MR939N)V4QE?UIep$Sl_`C8;gsQ)$vU5 zcCX}xcxKpB*vEG0H0A)#&MT1FnQ+nMiNmx{Ix~P=TbUujawO1aswh~5wZK3t8-r5d zfXYsdmp^YMAJ>(WBwk$iN9}bnjlmdr#+iufQBMgB`7_Br7~=z&A5+Cm0DIVX{*pkM z9LwD-4ckX3Qg=%eOl{Mr%z+Q^kLBjP$KJH&*s_we3H59FRA)k<7%8&xfq*^Y>USz~GeY39ObZ@P(WV(J?I zC~n>MQY(=c9CZ|Tv7Nn%`Lm%~;_fNkM{!q=l3@#-57C|+N23DyT%&qQP%+(CG@ER< z`G+$x73w?mh-RdqEf8mLCnYg}TSyAIeLxRjf;U;q1}tsPB*!&EEUr+A?uo&Mt?dWI z_n0^M3oxh&7L2)jeM^$%6pYu}0Yig1Q2B=Nyx-e1FO7UUS+WN&f_Ha0=DvmccII_j zY}5vQrOi?&W0s&%9U*GW0ZUaF8S=AQKP!+_kmbOoL^%gA;j)Lx^KoFNRmeeeM{;AO zI_6zsG(;VAyk~)EH~t2znIVK1XmLW7+iel?qj^GXP6!_s5e-XBOH*&>A`PxzJ``R3 z;D#l>O$cg<24onhY8sHIpw;iRGY^-@^k8s|r@CxHTCAE8OOQ+y3|g)?Dwf-^TD3&d z>9PsogVjq4^-OHJR4RjG%gqv_dWk$Uu?f+gC1o7m{nZZrn}v;fhyHqp z{+A3AL%+mgdZ6f7l-C%_eajCJ6YC4*F^BTz9w_%5%DtmdE+_J%P`*tC4G!fMpd6$& zIFwg_@}n(3771QHZBe~DBBe`399mzc{9zeSr?{OZt4{+mKb{=<*NfV}}RZ?e3 zMv&e3fO>9@6&`gG_vuXs+MZ2g7TaS~bS1MK8m$m2KsO>pNwXGvtGCDElMg8P5zJjFZZmwEJgih2HdieKc*BJF*h zr}#-;JKlMUZ|wdjc57Ghumtme#g!5z6@H`UmQhG?`*OK%GLuexo+6e51eG><(i$f( zk@&>Uy9md_-6{M~Xx(YWk`XPChJ%^&p%OZ-?^8mQ6-# z%_P85N0NPKkYKr-Y)%f{mrymHjXGF9-Zw0hkA-EyEnTpDjV!Qy+mg~5?&>~EB6CTA z<(nkgFBmM>lJ#Mk-4`sAv){>=fER;^1KqxXjFIdY)|^nld-?roKhXlNA+e)7$ zXB+Zg+5!~)A=d;ON{1GbG4uP#Rpi(p{*)vSc{*@fcd{S@C%f zVzxqHHbcW4{A{ao0_vS?V*vlR0-y7^0sIHb;(twI&K&*@EK%|z^4>(?Mf?yE^)}C@ zl`fv@_sL4S>9!M*ALueYc9NC){)WUH&?grP8*Ihx(C@_wG|1`DxAa_qxN2DPCfNI> zL(3>JheKbV?xVwSp~uQ3X_=+Fv-ruQ=w`|9UQq= zUPySEKV&<=@cg|Io^(Em%aVbYlEe>tzWw)RMdYB?wr#em0UK^R?5dlTk+bFf#!pVl z1kV-1rwjG7M4iiWAy;G(r2W|*t0ETw$=`>X$zv@Lc$wgkgjDjJ&D`w7I9F2aHlE4M zWE9Yg!}BhoD3Mx>jX<(wjh7k0D_gPlL;1c&JI{o+#%>>&i;e1-OYJyMH4b6_F;-+r zY#6t6qsmpFwiF`&1$bP7oYP^~UUHF-j4UZOUdzBt-=7r<+IWc17wPlZQbUUebKI^1}(j58IRPQCdLHvoG;Han;GkOzyUP-Ch*c3m>eTL$mp z92VWShISkuzUz;M@A@2kb@${(%`qKJ$wO zawPF$%zo%v9a;P~0Rc6C18WoIPlp@lm_*niKwq?B?a!LrY{^OS+h1{^S?liZgRXQ5 zgrDx#)qU>fuBCh;S(ftaEh&w=tD7x}TtmWAel1D%Cy)!ye=3pNgRTEVf@_*M@de z0Y46X7d2=a`^tAsTz=6Rta(jK7vc&zVw#r1N8n?K=*KbdIZ3&f{=SBpVq)3?^L?$L z@$}pUN)+HA{h7&s$tv<^$$G+7jzC;~%~9fVHWR(Y<+WO{Pb4mvsII5DT;oz3$Y#>) zpH_B@%guRW?w){dJLbu{z(Ouofr*DJz}pZ1+8@Mk=a4m@Vd{rMkiNVqNcC(;$e3qTUA>~pZP z2ViA6CcGcp?(m#XkjVwx`t_GJHczi9i2ISIIAOmHakWNlWNMei@VN6ME_xNq|}EqP$)mCn#zFKZT3l z5g-ZTQf7wDL}pLN5&3?Dc#Y8$GsDi1?0cw}8TQ9yU;}}9wB=wME-NXd0fi#}#&G5M z6z$Cs9f#*6)gLyFKB1{4hJbyVg*iZ9L4o*`%rN4FXvPNGBzmvJn;``IgEzwg6Y$Eg zx<`CbqEyO%;Zn>DSKy=&8-*qG2stqjIy84V;^<3xHC&3aq4pjB5%eKiBjntG>fsGc zwpL>;I%AgeYq&tj@MtCmr1&*3)^;=2;^kgZVYsn~(bjuyX}=Rnf_|-iqSS`z=$F5A z((d~Zk7N&rSh4=1cY1x~Df8^gv9WFeGiM6fMP2~}EL+WTDP`6Rv9@OA9CxSTxce%O zyLcN-WAPb=G2Po1&FLnWq_j4&0G@ib7^n^_Cbh)`t zBZ>zc|7~ot6dOsK>oNscW$d%x<$+37Hbo1)@xnbPgOm{n5VYPi+D5a;I$g^s)3s=c zJqt!RnQDP`m4geX^5#*{?X?@19qK!5vk4oE4oM!xMA4P648Gy)8|1cogFhoHG$XY& z;8QT+045pTG|9B47>l$O=CUgIvi({<_NtSaZ9|fqEPu_UyTnOkejB)Y9Uh)4%}}F< z!UgXI&HLGm7TqdL241F!-N2#5zNJpv(r81|mWpn`?)G2t1R&E-l>=Z60HSVa*zcTh zao>dDt;eqxtwRGYpGeOC87JIB&Iwn1egS$>@z4jH6Rvr^`jJifVD*0Ex1Fygj=atZ z7hhacxbSvtzjMOHGZRp14mc-V+&@uO{kNTPski2^Byxjm4m*ttiim%}3zyCtacF_m z2Gxh0+ThSJ3YQj?-5tKdW#T{I1J$kvYF!W1x*n)@J#aE_TZi?cW3ldhjeB_8_JwtM zK!f#W^_h=#&tcs=3hV!EZ(Fb@tY3!G$4-r7 zH7;?uma9b@%ZQ%y0h^K_s)UBFx9b6$LxOiq#T4Nd8^&tQSB-Zk8K% zY+^ldX$`|W5SKhcJ81E2+8RcsE?+u5iqyd(k@P0^^;#hsSTIa;+-O|jI@UR9j&;U3 z1qKG>%9V>xXBA_legX&t*E{+iIy-eo(@&+=#3>{1b1Y1 zcZF)hCSKyLq$5Or69On zOQuI)Uy=$!<&snrDi@WWM;u?03PR?RR1-2c>^tfaKe@M~o&xE#^IWCZE@g3LMZ1){ zl{M{U3ij5nU~laf?5$nF-Y9lXaXZ3|)3r^P#a2&@90hH!cw`z-!_MyBpy%B6w)4R% zTB3xOC~+<66SC^QA*0xbtnS~s5$=_5oAFuSra}EA#JQ7hUISs3!8U#e2HT`4EZXO^}49{NFQ-qp(*up0Eer^77Uwg`wT(7j>V0_ZS zV8az0%rvr@(R^s+)1qMUlsqSf#9H8v%sYWBTBznA)0VNMsQDL3GuGP==3K#p9}G;x z&%OdHpqO5v2Wute`~#W?#H7_KHb?cbpQId~;YTDQ&O;GfG3rHGG3m!piLI1xsPukK z5VKTDWD<1G~b3UA;oEq0zEA)#~O{tD94; zl6D0J3h(gCEBx|?4@%v98(rT*G1b$LMQawD40XuI__Fk6Yxt2Ui@CD~XAd3Q(AGYQ z_ZWbG?n{{UU$0AH_74iPhVU@r{Pu?kB#CF06ZnQ3U&d#u{YklirFO9ygx7w{gd8dC zxGG%V=jI*nR*-fil!kE zV#i|WJK$pzQ)6U(G6ad}#8iXX+6;*;XPPtzu^p*H2C!|$C0MMr(SyhUY$3t(1wG#q z!jUP&+5NrOj&9k1dncYb$<(3kf9m;0xbY^�lPdnzwFTaFo7nJSlYJ^L>8sez6}E|oR;YO16rEtwR_2IBGC40eJQ9(1| zIMCz{L+lC7BF)^c8 zl0)b86O!=!`8?*F8_q7|1q>a-4|Ap<4q_$iQGj`Y^Xr|8_ zwaB2xz;-zMZnoqPa_u`k%qL3&FDJ=4J&fyedPt^-JC^_F&+&*U!9okjYPhZuWa-Fv zbeRrKu+oO2$?}6RDx__DjtiCg>rPc6W)xZ?L(g<*xk^||3Z&O+6Tn(!%qvHsVx1mJ z)D1C44pn|jyYQ83soZ(G4E^plwDop*n9UbBx`(K#$GAM~K+37T={U2WG%im`Q}wQFdXn*&PWE*)3S$3akIVc8+Ec+XF%MQS;p{6FO5Ajc{h>Yfa0 zr_cKT$-hCs^d5=k-|+Bzb>j)&5bvR`F8pWx8-4*poNKj$Y_rc~@cY|N#-R(wGBxtZ z*ZQIpT`H`e3-fr^*SUtw==*K)%`dkkQsl0ZBrMDywyWqzNU|GQ{?m~GWRFiK&|w93 z8kH#O6P9izR!?B=zPbyTTggHt=35fE#a%5V0hp9sMZZmwO&T!QlRXiY$jg3pN3>u2 zIy2nUs&kU%vuW)8vrK<<69x^vqnCc{2O=Br*`|p(TVgvnfJZ=LdR&=|>1P)(IH%^n zpDM;bnMXNGre>|#R-0kP7OpfPjBUu#h19YfEpW#prJvHueiTs%oihatWSoxO&Y8-{ z4=f#7e!UFh*RWg%d4l89Sf2aqSvCtp1%kxy=D1PF1y|U=t7x)Vym4Ca%-f^*4sMR` zBrgizee+D!FL?kkzv zAdxR(OZol_N0kEK(Vtx3jd3MVB(%2W*F?b#iN8Q)oR*{-jbt*l z8Eu(_Cr^jxUO_=lc=A=JW*bdWJf#2w2_1-4)ZawX`(EPs1W8XmFUmPf0O=cD)RJ#z zb&Y^uSd=wK8>zPI1I%7>fCVQQu#{e`@|MxNYyov3)}lH>Z>mNg>MlDF2KjUoWfyN` z`G<*V7DucGhKo5j2Y-@qaceT5O~WLFFBo(bMDkFbD=v7H67sjuGY;wJ7i)B4y>a}TKA>B1-OwCZau za??9{zg0im^m9ae%Zsv-I!Y)*QiD*2q(LV!RlX$Sjc4_brM1%%FxQ|Mk;3FuExG_;lzwr zk|%4F*(`DsGSwvm6w@%(PV9(e`uCy~33OVCeK;Qf{t;cJn-&NJHWbP9rzdmV!efW9 zM@Xh`!!&zwo|hU_B(@t-SG8NleWyL!x7TXF?yvp5o%R%zPF4uoS!vN7%D9t$u+UOC zN9|@ye(kIg*oRCF-F7oe`itnX!t)=<(>%@}cBR(jdA=uK{_v}8W&c+aUym0c%iij3 zJ;yi7sFOSB=OP2E_3GXJkzbL;Tqe_BnXDo~l1vXtrf(meEMa5BZb&61yOV)+P>WkC zMC8ovcsAvU6d^ZWL!X!b6NBanvx{&-?I+BWU)zj@YL!Anr^jB+V=5|85t4Il$x2p0 z7Otb>M9K5o3rVLqwe)k-ud=gKf#3liW*>)vG90 zDv04AK}TL;@96w1c=r~aUcYZsyyO6<5Cn#g=Rq&f4zj;x&CsC)j0=dEMgY1}c1&sm z6zv{Mp587UK=(oZJ(l|Y1l$X`PPD|H$pZ$&60d~k|Ckaf2q+V8G3PZl{E4PRXrMPM zmwG*!VyWB>wqFPrZwwbR`3AMPZJovLfii4n29XipQwVYd$Wo^qT-8G{ERDhfy}}Xh`|F? zuU}mGg2IrUrsANATkUC4T$P`z@?k1pp>o37tri)1TK9$|%h%}kps>i4+}bLagd0af zS9}uEO1c5Mq0??7nC3DM4Iz~v#NnKqq9Hn>T4P|SLEs33$I4L5HA5z+%v`Sa_{vPQc9pGlTbXG3YAo>Dx-e~ z*Q}DA?BM!Ua?czbTUD&2Vio+};9ArTa588cI5Evb+n|HfOxw_#lc7Z;G>WPkR@)(- z-s(aPpz76PSC;XAi-wZ1aGW1|IO|2?25NiQZw*b)q7KlU=HLmJ;($zkIb&XuG z0O;7e%Ej>RjCeWWE+U&K-#p_Y^_hA?`x*6}W`p0?!S&KvY_OhwDc-q+=dGt-xiKET zt(Com2J`6?QbCS2hGo*r0XPU%7Vt?79)Huh4mbYNLLK-^GXva~c&$FdT<3C)Fss+HpTyoh- z-@H?gw1j@l3;N5pZt*K2{uQ_MhoRrs_0%0p*VD!xE`RaV_V#fs9C$3W--va<$i3|c z6cQEOJ;HlUv*JiT3nch$66aZ6;^~$+&+$)nz(ryPDt;7cfcQ@@y}*WVOR#8<0!*+6 zhQIuO)V&LMl-0HW4@^dA&2)ki#7ZR9ps68>1u8Ytf(>>?XB0KGP_c3fZE1^2Lqv~_ z774Mw4nsLrtgUiNFSMK<71~P03mUFTKqOq`raQ3y83PY`d*g2Dh!8I^{Uq%1v{9kn6bM z7k?njS2dF7k5YLNRTv*iRD-?D!K>7a!9xV%6|hO$cD446W5lw3*k=?BslJA^MCe&^ zv9r8Y0dz>6L@a`6q6GX{JaOG%aR_)cpShWm`sgVx5%vh(V7!8tDBb53j1X4fMdB2fNCLe}&@BYQ z4e`Jmq_#nXou^N*4H;B>jJTBJGqkWy4m_l@XACrv4*7@NA^(s&q&g7TVRy(s><;;d z-68d`JBS{3hy26tkbl@6@(;N~{vmhBKjaSihmLi~$3v=)_oYCgbjk;;L{Nd{|I1i0 zfI<m%*pPQ56ng|qXXe- zpXikTA*1}nE!FRk_7#<`rDCq7#O>(+q4|@1wbwQF$CwVb=h0&cN1$<_C^z;Z?^r`%kC?a zM#w5-T6T@#DpgDLG*0d5;Z1Ia6qixBdE4TTXp`72k{CMJEVWlZOh-B9-L(vEhQm^6k(FB~;H(X}wTF zrS(DymDc-^f_3GM5e7}wLO}{@vp#VTgRD7#9h!%f$Z>qS`ADb|*i=GG8NEwhvQk;2 z-bO@fMNP3}_Rv_-es-%#NFw$f(w`*ll;O{Ap%V=IVoH$odn&24=)MOUyx?|764Z zo%C+f!6%%?rvT#l^9&61;r6WLbpJ)IwWh3oK~&<^pW=v;NnPt}#3`$9i4aYM^0{ri z>+p;SJ*gvSPCM6kVmGu?R?j0T?(M^fCSuJ`qS#+CCh(2_U=eFa6r69-u4poA zd3*d#zA%M3;BOiqF#OFn3yL>bFk}q@-}C=Vh4l^X@HdX&X8g?;jnL3p7UZ5`L0%7^ z?ElO9>KlZ=*%Ge$h77pk-L`5~7kc@9$!l`rf%nxXPtDHYZiP~g zbNZ|q+ZW>ls^m(qpap<4z6}5;RaUMt8jP_Wfu}d!83W;Bl&UyZ!u<)_c1_Z@UPo?c zhI2kKfHevPs8N`je-)FQ0cto9kZ_d0R1N{WI>Q-j?KSl@cJkrrUj=S&XqrJp(%;am zKQ8y)F_MzjI5bVel5Q#?$>!F;G;D`k6#aS+b#lpwR~#hDUc4tk%nKg*nq3uIVs3W} ziccX(E!r$0>6_d?wvd!}rFN_{De2+sGPH<ShZjZ zh5y8$y_Ty<9tNYR|6?S(=mqSbaY(DT(uQ2B(wGl$fCHZz!yIt5If(hDyI`5lwGQ+7 z(M%VdQJucKj#>M;DQMKv0X6WNgwu5oB5M`eqWXw@?=pKo4{pAEbNV+y%_kW%^)T~A zJA4LL2WS3`^+EjGCT_)Hqr)k#BbtHybkdB(i@RCqdpv~N8Y{_Xa&ySJO{Y>(r@cye z#<@@fqr0%(o-v2y)`;K(;TfNPUY&5jbl%r`OA#Oc1TlkU6t1nqXiJR{Zhb zu3D?*paR^nK)>ra9P}(*2g42Ed`1O+jcM(atud9HF>CBt7hBUy2a>Wig$l;3(V6Xe z{x|XeDoLX-_zuRFUtw(7V~)D/OcQ%wc_kN;#nGV2-j=?zCN;~hr_9%`l|^qL%> zwv0af8pAwOsbdp+41M_3P9NSzP5VyLZf15bjn)~~-Qr4HcdL!N=`df)Sx7ki_560v zTFw4AbRy`vQDf2$lXbeaXl zod{B2H_Bh+zE63FD`!sX$AAsl{XBl{u^RE)7g9Ej*ozl@m3XERzpHe=5ziy;H{z+5 zoIB8hyg>x1#cS1wpC#&((%}l)E7iCPP}Y;UHW7<#Xw{Glpo!huv{R1;U9FtNirMVM zHpRfp=)(RBPHZ*m#S+$HAeQ%BLJ3$NBuoVozHaQe;M{ApJ9|x1MSUPTZ_gYDD~>~H z?nPReL;u-NLEbM2STfh>l#maNWav!>md=p!g%_|e=6>*HrR2S;AiMy4?2y6s^q{2| zXhHmxwetzxt9tzqNZE-*V=yN9SaT>5)2mM5buWu`4$no*Nb0I0F)fiRKkO>u;Z@b4 z9pqjIU182bB40CfwCJ69Q5tIoGKf{QEEaelci$#S#w_g`ll<&~SrH4=U!KhRlm~EU z9Yv4}dp3d-TT#+TqF!LjkT|h?1FR2fH!a{b7G^BKIAi9zZ?g@Xf27WC=`u`MJww}} zrzgN6aMpiV%=c4B>e*9JIIf9QJ!8!YFW}E)&OowctJqnn5ly|+-kij3eWo*w2qsf4 zWa?ylIpvB-b@E(7{ByK3day%itfwgoBdFIJvu?&}l42enpjSqV)}XHw5jbq$Hu^b* z@lp7-;kzFaV2cG%G+@K`eC;&UTjEq8_hi~7F4Hq3 zWqRg&aI01hjbSx*8tM;6(sDl6(j=|u%q*H4-bU7w+;{MTyhhiwo=OV)*}Y7JqxjH7simOb^G>5M>wT-|kt@ODU&hT{#+V=p-%=S0yQhk;^Xc2gK5kNnb59RPV&bqyN1D+h^R_RxR*W zq_e-Fg{eTahGvQ>^?o-{1KVRIZW#_w+o^RIsSP_q9q+XSh**7e+5|LO*xGo>RmqBe z*|C6GFp8k|$L2mhePlLWQu%Jsp4xqPi(QiuhKO3paXd0ESQz&OKu%^AsdW!h zCSUyTlqZq*cz?~Xxy9#>wC}&hUYK_dmvkaFgmbIdJuqL6A)n@;xn$7cWL)U?F-os` z1>c%|Z(vChhK3ot($=dP&H)_xx2ix%Qxc(1{304jiWWW3?ENh=^LT$flgPbLrC_9h z|4q!oS_`8^n=}{oXB^2LsPHxuzy!^v1Rlh`v2N_!!CbHPAQr&YUfwn5@Ek6s%rM$B z{vuR-s4q)M;;Yf3J@Lep!LfkNw`yLHL8sUhu}5zjN`cG^zcd_)=)@d#U@seWrjNH! zJ5f%QfO%!$BdJ{QM*8wL4l_~Vr?k=p(C!!%KhKDWfPms%T3TRLYdVea0s)pH`*yMn zFiCx2K0OD${6!uJz&_p!KmdFXxGBz(45G+@8cobL%z0kRpXU5RLUDg=+GTp)uNDy( zNQ~RDl7CDx46>n-wH0kt28ND0MBi*?-qz64@UJ1%#4=bfV18e0*Ur+sodm-(m)n=3 zsg-@jBs=CvtTi+iXj0W|g#fAKuZJ<=mwcs%0MbF{SWu0uDO`1MuK*~gc^SR#3=raB zS38JO$LshHOE6Y2Hdi z;D`^-fdtJ=c3Afp6vOGb1Axil{^%N<_Rxq>d#U5ltLp|DCM7hCUfqJzNq36}4k+nd z=JTEf7lFLlV_2G_a60cOCqfw?r$g?67g1&=w>cd2aXJ+8uAke-=>WLMQrT}e<8j(! zb?CVfP^wj>o{aD5c?`yUfHfe4?Fh5c<03&WGMJrnSyrG&uup&shS_n59oI^%uUj)+ zV~Cyhz2k-qTJmvkwOAbdzX*(dav}ThR3v#xT5D&l3jm&#G|*@R@SsC~SOO*Tl{b>w zolaEimA>mRJa(l-@S%~CJ>hAc4a4Ime$D!Bvi_fr>da7cqZzP{iC<^l&UkhMWfa3I z?yWRKA{s;0-yk7_9*?tM*&UuSkffOR`ha>idTb)utL%sd-WG6th^FYdj7zoCd<)&C zO{@dqX=JHgzs^4UT54Wb{;D2YNM`Mj^$;|*0`xFPq+0`ew)i>c5+3y$b{_rG+J980 zP3{^?o7@$(bG3beA(ty0a=FwYm&@LDl3xcwu5b|KQU^gU1A+{TVPe`;h%3`3wT-2n zLG`ruG9Ab>`@N^bI~a06VWVU3ISeuw@}odK4ukwoc-m#!&iwua)he)RO{7}Xu7YY= zC2f<1A6Q4G?X@bP527of4>}6o)$hc2#Yz}mVeWlL19rDtM(9Kc)h!4ms5C;`Kzo|W zoZ>!@W5Rphp8VyOGfsv9=76c{{a=AhBa=F2 zWt_aX*e07oa%P+E`+3)a%>2B+`Twb(_mMQa@8|ti>Z=v$K@0iP2vg6;biAG6Cpv9B zL*P*3qrJWVDc}n#<`7Buu!8b_XM3LGVvoL0mehYd&B@+jk8aWK!2%NOCg`ptwi3myb~7k4P~hfKJx{?kghF-lV1PWXTz9P)MborGLH+ZN+S!MU(LRI?n@+exVI_yB&t<}Oy<~ACikXQ zT24(jXe;LSkPd3~uOIR=2fy^yRNHi@Ic_<}ATb@n{L{)Y4q=A`)tSPRfE2z;gJOL+ z{W>^1#`I?jPB^AtIGgYClP8+L%gtQ#B;IDcY#2+#Zhwj?++jMn7B?95Tj54UmBw24$7ZT#MGf2iiFsaf*34x^J8G&IB}jfpai| z5FuuRAKl`F_y=vj@`?B=2N_Qhv>B~S-tbNTc5A1iu(Qx@}8yjhBYp$ciwjE z3zb+=ugwRW)HdFB*I*`OjlAuyk+~p55Zo^ClzL|g^-CyxCb}+J8#jjW)k}NDY5!c4X5@C^X`h$l-JRGh`G4IQwfUUDjl5pVWw7A%@%!IB9I64&Pl5phf5kz4X(iFmKn@6RU{ z6htiXz5JsM_y;;)k<98B@v6u2a0bWh&<|H;Y>5n)Es-1bm5$4uQIbI%2y8ISfCiD| zlC6+s4F8x{-vWR*qmN_vBhSww$}*fw0QlgrO=NlJT4HXFC5E~aq#j=+8NeIduX65! zI}qvE+fv&fV|pByd+_2`qLhqnlO>I6rg5P&p_Xr-Ny4NjZ1q@N_Z=MSFG zR?N(*<_;ug`gixKYKb9-*mG%59SqnFA*P=siAAOh33pC%ob_M!RXeOl-mu1?M}|9s z9b(Q_CH9_un+?l(bp&y5Ma+A&#$qU@?Q<4L1{^$Fz#!O0It-^Uo2*9+Gj31C67~qJ zwPCzijs)@|MiR;>*9JvvUVpA(n!$=4atk!_q0G`-6GNVGSDk1O5Zf@QE>l8y0bfCI zkJV<-A1%wA`8*KCE=k6?%5t%w5}}W^EA*1xD1Zjoud77puLR)f&WL$)#@b_Rq*oco zp=;4T*+Y^|mShum_-Y;`7*NyP4s-Tf@|>v_EShVZza*X{aQEo-&nL>HaW{GiQw6;bPBlG=9FWS5?IF@51@tX(rQ6z$QpFuk$m#8dfmc#}SYe6wL z;zf1L#y?gp@B)X1A1ZTgbrY0zvv2CrZahbdCS4L}Q5(n1v6>5**EJU~SKFYht=5RW zi)=?WQrJXx7})e~u~Tve2{tSFc1jL~XI{tW8*9^YSfBp;mo$KxsKLKI!bA+QvqV^8 z(0>rHOd*90-ela1+#is_x{|N^Zmo#nIn#M~k>TmY^@HW!B@sMK{%8^FY4t4Xf|+&F z?j?;i?(e#l?9n-rz&YPf2a`n;K4%_`vHF`rZ0;@5HzpHUHiJ4-)YkKouvcq3ZMy)` zqnc{@IMvZ~nhxdRnSW!LItIp0z!YsvPp>5*qgHek2ePH%8BdXf8a(ItXwf>5XJ`5% z?nt0cYDME|dcB0zQ7>URov$E~R0Y@vSXC2q9^^`F+-$Qt?X-=gXT)mJUeCxC=V)e` zbj8iPjRGKl1JV!XuC1}atJHNNiDqqNo+@wlMzBKtY8#y+DPSCnMm-OWj?_7h)Oi_F z2Ocyvq=QZk>7Y|XI_Q|ut@UoooZihu>;@xQAKylSrpzhOOhkc(dld(r8qz_hhIG)W zAsy5r)RCx;nsUdyht08s$XB)5ILG^Z}Ydo}ntOl(cufi!UVRc!z%Gxwuh0{JNb&Xf%8gC+v zM;lhU#*4Ye8)J>v0ViLYN#cp4nIu*|nn?uGOd_$L41!aAcgr=#7;B89ERFbW;WU#v z7??ERF)fYMO^*3r0~$(aGLqded(;iHB{s~oPg!eh_3U*l!K1SUCV+@l1?$E@G4@ab8pF|UrM_|D&JDzxG zmU4JWsiuc#o({?ZqtOnx%De|p^h)0~06O>EksM#1EZx31T2d>CX{TX&cU5f!Cf{(P z!%jv`>E&$RQuG0*ib&O}2>u^ZPrq|^r#(I8J<=zF=}@m@`;Wzc7sXr4KKM$lt1#eW ztPBp=pt>@Fzsl?4-Uo5-lX%gVcoFU^Y@Or)?avDlZ)5ZHg+UHGs(|RBS@o`{_wiyr z1DLh@v$3LJ;E<#`(XXm!UCETKDGH*d5?qPxPBfNSLa2M^Sin}=Xvra}x-DL^f?)md zledSbUlF2z5=o5(3?%l!P9-`Sr>9oDt>YBj6KrDJcyX_al`PUb%74RwK#{in&az+> z01AmE?#Oo-4>uiOl^hTDBQZzS8MdScD3563S5v7JEyO}K>?tj^=rj#`)+!qKmE^^o zDQb90Bx&yw93+ys99T$9kPx&#BN<4D_~ZG4eH7}a14xK6_>d6J!jVMgs5=RAsJ%|S z>{h4R)yP7+LQTk$uV#V84kgxp+*qhudy5uZFsII4X|$85E=ir2$iPT!J&dp^85er} zJll>+COY%CoOx)T{%krP%higVTxjnNjqS-5`w#YD@x%{CaAQ6F`@GW|iXX0U2@4)jB@A?KnUz}}ANq{lh*Mh!13HbE3^Yy&V4x$gGaNfXqzwZN$6d!I<}^&h|`8_eH$nv!X@xLU2Mr zyOVu7we*Lox4;`8+&^OQ^?2+U&)uyl;Ox=8c?7yd)lYMZgkoo_Z1oTYN(5 z%viGDH2`C}^6*v3-aj_`G#slF#f!SA9c!UG9@rSin_ktMpe&XQwg%lrS4N1zpM3)J zzO3c9a&IUpfLx};17h6Xim4r$79R4nwceaw+>Ll67c#`vkZgF=IS`a@!J~y1%pS`K z;rODjfWbY%f}{o^E!ALG!xx*EjScMZYB<^`k$N{VNG)69Q9b0(3w(q&WRn9sb0SsM zW#mU7ks3U6!~Y6PpqXyC84UokTrx`~1`fvpcKVHA@W)HewYy8H_XMMJ$s_^@ zyv?qvALO%6vjF+pY*s$(Q^%T$<{3jvVq1nD8JJqQ%m z`T|*P*`_3&iNP;&;{x62ryJWdH{>5YJnCisUsR43voV%~p|?hlSFAEdfNyI?DV2Ei z4v%_)|5_>xyS*knP4tj(G>+ts#lnz)9f?3GU-P-uU=?DaxsB87|kxi*+pf&Z|ohp1;?<9KPs&%49vtL zJqcN@AR(}GcD9Cu2*K6b_FBGcJ- z*(x$7ZZ+9W#a3erRa#9)7Z`;Tp^zLEP-ygu!ZsiffjObCe3~W;x`zA5z=5C$Bpk?` zHr?(zL*1?|{phUy_IsFPHQ8OatG_)a@?A`uTICLWKN`OC1x9=J>4o)^B`pn4yTkAzcc8a=OMdE6Ed255aABN@nWe$@`IsoJH_B?|BsvKv z-$^)WPr_tB5%2Bmmpjh;hXN3YhfXc$rrv$^Z1M4j)0$OxG$2y_g*C<^t$j=lTEv(; zZAnYawwXMcg)@ppw)!Qrw?(}8R!u~#gpG*cx3ln!(ldN<5$~2JP@t^#ARFh5a3u{U zKwiYEc_TZGWW-YMXwc?=y8OFCBk1LeiHX0kIp)P{2CypL*u?$`7Js~vhwVH3E+B@= zET+EwQs-h!!{Wpg7m1zu;6|GjODGNOhjE&W0;L$2Nwh9(#p#_tqQlwX4{<40rK4OYWAL}zMwM+3yO z$k#=ay+39e#}nbcaMigiW_T0OoN_5>Jxn={9!hm&t}4JV4!BQfU-?dyo8y5^aSW{o zR>r`JPg_T4)8}eYR%SJ~zu=}f>}RF-YSVw_fQB@FC49QL_kKG~zjqls&6<8)q8R#` z@e)Zl zrY34G1t%+AJp!e(tQSy_>k=XRZU!e(x>?g2ad0Bb@XWHgywSkw#{8o50|yJ8impV>-P%5<+3$*)7fcvVS7;U73a{lFP&j8tYz4EcMM}~+ zp6uO6%`eZw^;6FD4|(xK7N^Oqy%KPjykE}u;Ld)@fhAbScp#?4}nKInw@i6?q*hylBV#qn+53bxt1Ol=Et}4akx1e}F>bLYQqYZiG91c*udL014@*LVMsZe?eIyQo?ae$% zA(!M4&dk&C4}7WDzv&;^#)U4<^CbuDWCj@F!9L8ofctX@SYKeI=6w{@#69FO1x5Q= zD&(opz7{s#7$1;lP>w%|K{LAXs5=>Qb*8THXFx!H_MtFkt{lvLjgx5A8`ucV{Y_U+ zI-IS%IpSt=;==Wno#-WC^_J)a!EEgr%a9$k4x*e+HNv#bx4^oBk!Yt4&Irnq;lP^z zq43N<7zg$fX4ewifbGLmmMlKM6s|sxgbWAv8*pHe#+|1Ak~B`v|2R}#($o{;qTZvQaxwaz0%*^vq2B2`=X9l1IbNk=5TE7Eo zAlRC&@f^#wb*ugFS+34!Vx?=fm}|8$)@toH%+xev3<|#LWw2b~s}hK>%DsO3^;_v$ zA?8|PjI~0C#-L~fv0OVGkhI(}O+qad%he6rWWhzv<152*weiIok9~8N`q7v?*ROfo z%dTM+Mc!fOHCV1z2)k6wyO61SR(JWyEva722n|mg$a0hZxxi70;e%tCh{D5ic;<9J z0Rtq1Wf3Zt=oYSiNQ(>?;TZy@f}3dvfV-5`R^~Qw^(k!;?AWsjWaW1j+@gUEY|6}m z@>0rU-4m(KfwHz#_55HR%6=uB#yXTU>bP2q=7w-pS|F*~to80;6bv_D9cmMavTZee zWiyRW6BCZJS@(Fe$T$G=^_p1GvPiP`FA+NJH#WyE^n6&ewRDI3Wc>5$7|nURGb{J0 z0l@!?oR)PennwX8orJT$u9nm@p3G`cQrAeyDoZ&{SIR~H@+ah9$~I>ogsb|A&LgX^ zKO-(Bs(8@<0XCv~kdAw}lh{;XDyoMTypQ+bE+F?Lv6tlYI+%T=jBWH0fwK~M&vho5 zu7LCR_~9~Eg1k=&nCZu=Q)d*h&t)H@3vkkgkMMn6cjt~Bn0}(b1YmWy`6n+ za6lZ49bb$)YL|Ybi|$$b+*!LERWZk-=2d~^5o}Q>vsPscL(Nkg`5O|4u>jb(JZ8Yg zXDldQWWkWf2$%q~ck(laQzV}-he(}y`$L0ldghdI!Vc$*=YXx#whpSL9Ir9Q!0DPp zD~D^QK%K3R0yORfPq%xf@VX>`S?5(M3@bN2rh+~~~!fF#4W5;x<_HH}VkMS(~fj$2?7EU7hGK1)NIEgSB z7`r#@)X;8)`w35b@g2MC znLLDT;C_we3?7?C(3lg@tFC+=dj&UgTO$wBx!W1c-g|qVZJpTxWjcP~wQYQX@JD>S z5gwRVKeE~YGyC*Iie9Sx6y*U-2|!WGlU8G2hro;UG#?3 zU#bo7vZg!aApP1Pb4Shi&B3B!TWXF({}U47YI^&#NdCY}WVb2?Y4M-r;n zv!omc>msUC8>U;m_U5$0@z^oXnVh0ly_##)Q}0VI8EP#a%-2=Mss?RR8(hu%tRl&5 zzplamb`@GoK!2(iey0>K_bCfPYY0FjJ#Im0B|)m`UeP{{s84$bCN+$PR8L3y4Whk6 z6Dh%Wjo^q89D4JemLYPo?)XDwBkBGSd4?#&?XVzkCqe4pjGVs{^~veLti}?(A@%dB zHn7uKdTU~leKd*L^Oa-dWygh`ew-)R>5wP(mBFqOx^xLKP9k^S#476%2NRmeokfI2 z4gt_*#E|;@g5b_8oa^|%pQT1#%Ib*$idTSLz7i{1j~FQ;edoY#&J_(>5WP2b*xH`j z)L`;Z)Kuan`{dxx-A)wmrA%gG-unqLF}Y{nY38bGc<-4?3NKi}O23gPFXM<4nn09I z!ux!DQ27`822GYC2&|!YR!58A5)Bf)5f<*mkl~7X2h8zCfSGr5tOx~XNw^WvJ!mBu zmz1lg>}tt=QJ)<6dA}meC51FBN6i#Bm|(VAFsIRiMNP`>&Ff`Z9?iE7S+bZw;M(=r zu)?W^Hp40-JoAPx&~})x>S4^N<*|~ao+#g#z9Y!TnV4tqPCTkN!GU*W8!Rd=8@=-y z$s7-)*m^V&L#Bp2e9=~-EHm9KNaiR=7(LET)ob~P36j~LZ^yk_OLB&LH4Gl}e$YZB zA?{)Ei5J0I>CGdJ2o=EV;NZSq$k8QrR=Rs-Vu{Exp@NQgqqF41XB3{7wcXjn@)|Em zmp8I8@*h%zvH4N+Az;I#!P-v9xjIosv(fm!@%{R5LCK!(TVj<yjQ;_}&R!;T_vXdT_NLTgs=;VTCK!c22l!F0pKb)U;CUEV zVzo~D?^a_yVZ%~FTk9GdcjgQf- zyPz&3vq)r7{BJ#18(d7_FR1I4!un%D-b)sQR=BIz-PH>OJo{Sr|!DL>h=529CJaf<(8|}O3GtFt+5sluG3YU1@+%av5K@TsNYtm+Tafe`~`J{ zQoP(BS`fOOfCY7&1)&Op)Nfgru%AKnI18$1NUf|i+CL}SJ6up7f5Ql_GlD}8aFrP% zPw9@opiU$150M{Ra_$TZ@{$Cp93$tuM31we>J6zcLr(fHu>1XWscJ}7H$&cDeEQMI z+tbex@^*M3o6nj78~$ZGRsQzYZFT`&+J{sl^XF*qB62Y5K{VHGm( zVPcp#ImAMEwMz7CF^hU1nH`hFphJ8Cag3J~ZPQW+DOjum1p7K$v^YlS62XUvMZM)w z)8K#$yTmPDptiQgi?H`5uLtW(2IbVHSj2_psk$VoKBWl-OYm8HuZUKY4m1m9TFyD z=3Yj(ljRKtC#&6%=_asP>w(l6b!TfIUS;SUSP?If9WwUwxcJG7n#km@$?%-)Rf$Df ze&Iyu{mi+dhEmlKQSSo;LFPN&SKU}}3M;VbZbXyUIEz#dlLT}Q&<574(KzvWNOUW% zq%an_A$<2;mSssdx)_ek0C?3#M`B5eS4s$$WzGPzUS&!jm9^U@cIOP>6qVbYsg(jesk*-r22MZzdJStao;+);qgZ>&=$JnDs}m)SI;^ZkE3yj=!T~I5LoU zvB2~^#urG4NE*K+@k>gyY6aG-uw*?EYSZ`qPbd$IpP{zwUE6NKHhWc2ZVUG2jQy(h z&VJQ;TdDrb*5wH=#hW@8j5Vo^^8obsGEltf!p; zvJJ#XVTMes&P^t9+M*@A#w=N#r7}zwyp@5Io}vNikLWwU&YV|A$4hlOF}p!SK)TXy zVV4568`ON6ooCy)?mWAfGL_6*Oc0*-1gumxbhfrxek&M-WNqzoFrGZIZ!=|2r5s8;<0;IWo*vWO_=~Jjb#<*i1)fO!El~loUV5z72 zuW$WMmKJb6N8?fX5LXUB#tE{@_Et;<%XneTI~?~?QT%vfAD3M?Ez4VAXy_w~dRv$w z^oa?Po3ImxlWbNUref>p3(ggq9)`JOH(T-@>1j}M=OAm<;Ru8MAck#TEZIw~8X_eJ z3F?NQygoerA=*b1fIU(Vi=9Mxp(v)yz8j3moGn{BoR=Lm?( zlx)O1tq|KzB(8%^gIv-KqCeG3V#*8}RZ01hS0bD&>qt1M3~kV;vuq4?u!KeuhDNm+ zEps?pqEXD0ZL_myif_$FH`4)3{dugDW=abLs26%tJYi_;To^{cGr!qM8><@DDt)iu zTs7@#{IQ&HcxBZczg>&x$Qq*Wvt)9X-EKkN9t(sPb$!o~@pcVdE&RK#y036#7I;1Y<-7ys-V$4LL57<`-^hw?ZmFm^Uiw?z$ zUY7VH7C0!7DE#-W(B=bh&8eO(kSs&h@QG^>-V7-uHC}WW zX~nPES!m(}Lu2~}b|yd8_6U?KMmnyGdEc8K_YS$e$!__6NcOloj`5_xhcN+Qmuf{f zRIt8>Ay@+aCWWka`yJ4tILtgV~XhMs5!|yTXf*n>lAF0pa zoT^KKvOK6=fn{56j{PK`VDh&oIq+Mi3}#T>6Ei6A1dCw>w0f+?!0SFL9418FMnK(b zc#`hWbPoOYhQu8U*{sfuqQ>5CCU%g}TtqU?5>-uj<^_DKAeUwV37sz_zxfvYPhv+y zLZ>=Ns3_q~izwdEp$-x%qL}VPR4fsnh5awXacZ?{L4_Jnlx6!URA@6?v}06g1~>YD z3l+K$fuWBIo#jxWhbEs#byPEe3A2s`3_WCmMgc?biFv7Zz|aT7)9zMZAd{dNH!>2| zJvJ(=hu9L@hjpyM!A4Iq`|!+L868dndGg5`Cx*!s-k>{c(R^Nm2JrhbHs^gDO@45OMe0 zC$386KBqaf&nXq{Lk86z6N+*$0Namz`(VF4UY!c8P7|pURjZ&*RzqhT%n>&c;(&2g zK%9(&K^#OBH0gI@leUqgE1H}IFstwA0;6&wRO%K~5>y(MZE&H@G|D&_-E%x#=v$LH zCHS3UtYYRHO>iRCxOJnmWS76vW}N=uy6N2mu&=M_3qhU0bv&jBs=jotc1a~ z)an5N< zI^|RGrOiaxOqSdj7LHgN!WCe@R&dRLzm*{Fy&X@Y%pwix8Q&*?eKH8WIMzDNrkHPE zALQ3-Q*y4T&052gs!P1&c_(_;DdJUrN?*;f-+cSkhMd0FNeMVt4r1$#?m-N%1LKk% z8Z-d{FNj?_?OQZ~Zy@YvnmrRf^7Zeu5{=M{DPSti%!G0q!O0{Yj3aTnQ&jOgOP&!U+)( zj?<>cnF{v22S6?^$&QbQ{#d4h+SfXoxSA$8}`KPWsEz`z$dgR##r9WSdNsKc6WH%sf_3JmpKVIp2!@Z(gk4`2Qcid2vfE4d1-5J-)dRrt-gpZ&r&kIMv*o=|&NxgE9l=n-|*& zQj?+HjUmG^Hb;T8Zz2Jd#%{vIPU&?*bb71P-zF4J2tzCBMeiv0k{Wx+@#UPg4~9gY zB^q0S&cf83tphbUs?IRY0LnT@Ll585+%h(WSeKKfxup)#uoOgtEX~!3cjd%iCA%hT zM&GG90{3%qv?I*WoMY47dD%bDqT^%M0+)XNUA}=MD~uVE?4%|TGsFzRM2^V}(T9+J zmnVVZrnNM{xIlhp48Iz;aEWW?j{DJM1SoMjJmb$K#k@3}JY#G`!G`R6iE|cer#s<9 za5~31JSJzRbiX1|x-oKvm$gMkv{;PZ1NXZ;65Y4V;L2xe168^_!gir&>2iaN*D|5- zlBI%-gIDIJ*1YD_x1%L%!&TkrO!K3PX@f-R3lWgfzKK{M<9pN&RiAbVC;L+$Ff-4i ziJN|9zxq7y^%GC>e<4fi#R<*J!{2N=&r7U6;qov-S!#pd;{pApW>HA`8na<{Bz-oU z4ou~y&k{r(+kJA1%ebt^hMh@OTSNSxw++gi4nBb{dwKff^h|hI8lL|oqCJh4$5Dv( zO(gn=b}?TZgU4}!eO3?*tn-Z<%&x}g2Ct%?+QcL;MU|i_JmVi+n@89hSiuNmzbZ&O z7;m^dzFXK0Q*y6JWG!b*NN@)XzP!m^1w8MoVA=rj*0h4MOSC8!tOmh)A*bMpW}xgF z+a$gNV1M%IfbK84Dp@+HQ#{dQecbEO0B2E1ez5E?max>YHzpgg{g?sLk7ydGI?O;h zTLWdoo+TW=FM$uj$mNuO=@udR7T|!7WBo^)b*z_-!Muw}hu!chJc00xL&hv>53ziM zR3Bn_HOCu}{<1nK{chun?vWHBS#XBwp}qoq?_~t{cK#ReU+_J=oi`w7;B(?z5)kt& zjyu6weSL`DdfWJJ#YoLNti+!kGCY5 z8Z>W7b)03;XLRQo_{Z6Ti&8$n6wfcE`*2a;RpYH9)5qg^1!iw>ngzK(wIHv8K(rpi zu%O*CrArwjB%iDi5@2AE*BM+DV}wMpMaVCv2s3cinW#X7tLiZ92a=y@y9;M(4h<;e z1-S_wn0{e zr`^J>bRQ9gx`?+sgIdwSBW2suM^+i3pW~B@sh2u-Agu3E(CU$LF;mD+8@l~QS9{tfSH#* zU;x7d^0tVTfJ}Na{R-(}fONk7L2M6hr7xdki{k?|2Gk5&EDmZcd4IFdMYyP_A;)lT zIM(z%N(*wHDzjJ&r@Gu2D&x1Pd1MvL{q82#npi7M2#= zCYEfZ$$QbB7#rc1^h%UvAz=gy`*SUHK46|4!7FvM!7@4T7xMNXzWzdc?+mk3`lI|| z*Tj+#3BMR`dh;i)J%Y{O6uFi!Z?_+Ae?6>h*vMhu9QLhiN76F$nFY{&mA&OgqA)vf zjEj|hn29=wR^Jb2+(45ka(|HV<(K-(7mkaK+P=T>$a7OCZ|d}HBR@~&^OO41yNySx zhTQztNck^1jQxoA)|i6bb{`q`aaZm-E78-}yL8KIiYyxt<8r#XCW5h#WEPoU@fwnrn}pWVd^k{~Z-ZW|Jn6^OH|iU2C(> zw`#L7V~6w3#{t^EhwP;!hOF4g-l3XpYw%vS57riF ze%LT*gBkw}sXk`>>$DoksC_U(0g>Uy(3(3^w9&*wI2GaiB)vXd2@4dCRkoaLX&|Dd zU|q7@ScU0W0IglKe+0XXJa8SCBFtKv!F^AnG9(vBzjC7KP@)n{9PG8A+B*@P_MEu0 zmjK&43;C_wDJIwW9aL}h#2o@pSM12=w{nO0S*A@-=xfL04hFx>bN5`6F+|&Es@g7G zSb#D&ZwnXlvT&ij>wj0~GrXj|wmlU#o@&XK$<`XU;T;`&(T%b#t~IDw-zjIFiz!L0 zbp_wVreysG;qNq>!LF-dO0y?e2PZ-EiD}X#Li5+qaf#r65io%-rT^|Gidf)Qm-225 z>+Axn#Kr|@yfKnTrx)C#c_9%T$yQP}L6juF6!An?83lzRTH%IV?P{Y@0h26fiUNR>cKiuQ^RR@}op88V5YPoqWenoY3ckF|5fUl@TL zjXY>i$ZyOe&PA8EBUY5cF2+Uiz^4(+e*`4Fh~N<_QnXXWYAU=cSsCvXL$DY)q(Ys0 zm&zmsK3*`D`#fgo1V)%#A zRIhGO4P<^gLOvPIpUSnQj98|2StiPT%NPnvW_6XfY}Xs;35nyftZ1$svfwn<1LQ=GH@&xm8w#EUKBz zu^TZgSt>UY*rle;(bIwVG}a3(%4&YU^E#uEINe$Erg`)2HJRqU-$s+jvA)5ydktlZ z92;@9pdz_;pxV26QoBvkfN_SWpT#X_@}n0q>KFF_LcS-F1H65ko>U(-3};!DskUau zvMwYlP8G74HL~HMf-ln1VxY`=tji>|So&D2B&Md1Ac^C7OAWpyLG;848e^~rrk0v%killWSGC`z`TbsCMl_q9q?oNRJepo^%n~;oWWc`{&73iBF9ZG>8!Dci6469d>K{4y~vkabt9?2FQ9hO3(q_skBlQmk6Y} zM1YwB4P7=TI4t5ve5+BLoaF+vq%P+Woc{H3s^suREcMijQy|r%4z5)TKn3YAb^$q?>kCrK7RbXq1MgZ39GMgHK`kbW)F@hY43` z^1zm^c-Zf7=av~Vv)8Drv2HgS+jpkJFK0q9nZ6$h-&q51N<%#WPlE9efNZ+0q!D}& zkJ893x!)%1@U)F)9mAh>8D5LkTDZ6M*AEe3Gd2_4Tx&=-nMMORt@e)~WL24wBlVHM zBmQf4;T8)8@(AzIS`(i3Q+P%yEJaQZ2DhBfX=6U|Rvt#sKYUXxq(ol%a@OwS%U&)b zORCE^n^{_4(<6zz#mi3kXV8~lJkf2k!Sn+v&Jx4?0p`1OmGr8ZccDde`6LKZnn z&OdP>dmSYc$Z3=eXep%0QS!r;C#=r-%7Xuv3?=WDHCLxdx3HtO>V$=SMp?XgiM)o|6BaUCS!#nn;sLA9?3O})sauJ>H79P^S*~G+^MDmH zB2!3h@F(2TAL6xX%60VjP@moh*A%>4x(8nmpGSW_4-_76!-5E#;qiK^8ca^;M~tBG z%sow#5#;7+;8h*g+3FPKNQA~IB{8H-xn@Y~7C*@CIO1tiGaPY@wutY!*)pz;cun8{ z--{O2z~B2C%8#;}5G~ro-dCqrn4t26Xspmx@xTXYS+iFWqr8AgDwuPM(*Z4If|a+6 z?fiD8%U_1W7smu{(MMM$vtPidh=VWug>t2D+uiBgT2Q>mf+3F)!1&R@PQjR! za$!1p;z~n)R<7)C!t`bOEn8-2fbq)=4N$Sn&;STE$ltSUnV|v3FEcbi#WJlqZCHFb zW#tY0@&bM-pI?f%EthPZjnUe23xv+XpUCM(Tj&%Ea!C@pi8j#(*k zMrSRvTe$P#qHLK}V$3qRU*#!&WA=8QAA zp~;;~5y}^6fTDc1#IE!zo*7WH=Q*dys=aU%{hUg%&xwr7-L}=7Ai#XUWyN~)wjD`c zQsCqM*^{_2!e^1-+p1Rgd&Lz*(L$)UAas+v`V|3+3R5j8zKbB0#n?~eev@cM7huX! zJ{@pDUL50N9hZA$Gb!?v-A(iu8RkZ#6(N^0s(nI=h(gFE7KHk`t1Ag0MC%2#4kk$b z^coQoBI*;8e>5SyGWCZmjFJ^wGL0fia*j#KsHdAL8AcRJuCX9g;;zOMKuO$!;wuSK z?_VuS&L-+p(t!&PUYR=GQF5_S0{47_DCq?y8_dl)ikmlZ3qBV~tDQ0@P2~9XwZX5| zIKtQ=``n}Ae3IzJVgh4idbvG`q6eeA5LxK1qIMPfk_E+QSYlp3g49Jud78=5r+jF| zQJo2isT(f0Hk`UyZJ41vzcuAaZXJvAzLc-dZAJM>n!wScCGaUf^sG^?yioo*0_t&r zU4?pCP~6!P^G+d1-7!LKzK(}7!w~l3(#EX7hLaoaTHUEr7IS4~L4Imp)F}VQi>)ay zY)$zdZXJvAlPSL))B%0D6SDSw41v??!@f9S4q?J9IwxxL~yEirFDL2CI`qI?li zpK`HCkD|OVwI^bfXSboee{0GwJPzgWKXVl28%UzfcMlqP^f51a!^YB=Wvou2O|ps%xGiB~!tlbWp*;sS)3>uKCHv)`M!O zb&bRe)b9aqx%$1f*ebT#Q4gYC&Ul*ZbrSFL@%T=&{7JI=_4qweYPNvDuScCyyxhMM zP^%4g6?)oTz3i@5T2TCeCFVXykh&(WT8$^_*J|#h4r(*ciYrz90`7{VnnIcXac`hxfCRcuW5YUaQ)I+QmiQGrIpXs)nJLt9%spX}4NKtM=%%aKrsYX`8)CGUd?(|&K zjm>G3H+6b4|0moyr?~M*`b&t8XB}4_^dKb1(U;<=*I-dRF0hB(81+6idC;s}eOK@4 z6yUwpED!o(*W=2AR_{Do9`wK_$%AfaFnLfn)W+J&gFbqv5qVHn0RoBN1^Kj~s1b_9 z4%}~Hi@l1#h;E6?`&ZY)``gL{7oK^sq*mjGtX?lEZu`UIn}OVr|X)$6A14j?~xa!&%nF{j?@%@5CaE-<4Mr= zJ1akG;L7*HGp}Y7D;AsTfSN!T>T5$CoxB^Fk0OZy`1?+LeK3ceouZp{lK{^Db`%dD z7uAW-5Q@bx!AS(-&(1ZP($uev`+ygA81+@V!w74nVu%~{MBm#qcLr9YIdHz7!$O=` zzY%-(j|KBBbYzJkJJhc4FQ~B)FVhx2Qn1iMTsjkqhuffQal9>rV?hX)%`xGw;cOA* zToj&hp<>watgf#J!&eJe=abOl>o$gl^^6cnaSvNTHSwZ@1Eiectok07aOCcdh~r`b zJf-VJ$$o|E9KAG->3RC6j;Mx+>Ol*frERv+N+?>ze$2+}_2}&VL`P?10d}-+>-eBC zadxUxM7>H;!79O(iok>GSm1tZ6{;p@9zM4iOW*MG5Rv1S-rz{#=|$}BTS&quwH5Y^ zPY(PZuEjAOxZMn%ZFkn7TYr@_ahsJ?y3Kj( z*k&bFY*R@ei91;5ScJq5>lig~7gUUn?J^5$<9C?_HM0-w7=`i_HOj1|0>Q$Ws*DaF zfa{z7$iA{nJ0H8L`fXQ(fjMw3=1j!3ZYtP+YNJxuRAp_Ns=_r@scWh-*HjZ}D(YG3 znkwd+YK%2iNBH?|WFB3)&Ee;_Is7~=Mb-Q5(r=}!ddyXQ%r5aro1Jo)tvoE}`ZdQm zFuVj;X|f$dh!`(9Jb9?t-x@wRV>nAJa5thKZXQC}X4;s+3<=pXK{z`5fEhSuq{Ene zStrp!%wO-sN?05y2-C8FzB2RAu#Zn-s{Rz=duDbWaHKRb=%&>pNth)rq8Szu=4!-< z0X4&`KjyUi-EQHTt9gWpHMBs}QSRpmn4lUW;|86~qi9B4%IuYTOtTYWH=Fqf{kvU0 zTrgFaatMH2XN2Mytt?`03oRrA8dgkr|49rP!)g;Xl7#}N=?>FPH!hL+(J;l4N6ToJ z9=8Ka6a*@fyXA4nsCqTb3^#^*%HE&sOnukuGI@z@31rP5%Vs!Xgp2n=E9lBh=EP64cmQFKp&O*g95} z@Qn2!>HF>eBi56W^l4fvrM1-C>UC9A>*ipq0UTlFKT?ZrtdiQ&j}mG!E9F%YJ<20&#_>!0up>9&8Ye=i4nkAyj93v^%zN0(nKimL2^>(@XUYbrE#xG)>V2_hEf zS(zq##47HK1l1>USEsEJ?Gdtb| zg)H%9f`CW#`rfCxsho6Vf&#mCFehbNnpwqUf>Wus$pqc#k;X4xHligTP40UIwreg= zW*Ooyc7YkCX1zrwh&CS?Y+ibm#aE(2$pwL|nL+CBu^#9(HX`UvjR?(38UYfEsS70{ z>2KHW!;m~=s9n3R&5S}ejcx<-D~5za%U4Up=g*+1m{sJ;JGVYklxlv+J$EDkfy(Lx z=;fOv;de&@;vz6|yV;3siwD;6B*qUJfr~ZP*!I*}=ssU9Q5faaB)nX|Ff$!C)#|)E zL!3mMgYB`0Gy92*bdc|^3j^z_WY()@h}JNy;py9;Qct;;KJ35LZH4sGfg5cd-)O62 z*+yF($8R+4vVIN9P}$%X&IY$|Hn=6e!L5J|w#3I8Y>6M!;5HJND?nacy3y{HZM1vi zH@f9t!%<_#7ZXy`ft$!Zx^$B*k7b)|c^to~BRQdfQE^~c(@Mq5{lf_=)=%KnoC+$Y zO1O%ZZgkW`p>{k_sAb$ySPF%Z)2~6l6%9EGDjSTPQmgdnew*wTli2K|QxCY{tLJ%jy}P zR*7t}lwqzpKeLR8z6ZJ1T<_L|hEjxt^GOO%o9_z=xAGZDNO%fDkq3#l5)!hOm;G5Q z-f=avPA5z1wXbk~cbZvW&?AYw-~8!>Pu`#`wZTmU`b+(`rI0bYmB@SX#IOI2veX8{ znL@tZQpm3yB{?T9WLB&ko%5Fy z7P7|`QZwJDB+*hx$`x{#g5!6|Wv-Bi2&_7nwG{GoSIEnhe}Y1Or!2L>k292XZYktH zbt{p#e40}n6oY49`->++l@_tR!(3C z%(yAIPRm-V8k=kjoeNuK(WyXowqA(a^+MdP2XVU$f#$~Y*CHi5!c`AIGY@JN<3St< z?ZAlhT}ssE>lvjQeScHTdm+*+GD*n@h#_qO+-^rI<^yh5fwskL(twxj^}_q(o&Z!< zkJH)RoZ1D25h)X#mURl^(>_WH&{Sty(y5d#N5w+mmI%LcT2>ET4%fy=$lLPA;hZ7b z+ZriZ8LoOsVqb&Yf8Lv8u{a>vTg&0&a(xTcApMF*%#&nzHySwz zj00S_t|;E`rlDaw>|v6&0#?L?0?2F+8>gb^_wBu4f$ebSfXAkIpgqUob$;VE|hIQ*_1>0GKEcCiyv7-Saa`- zmbTUM+;2EbxR{o%3^aGmiG*o6bW6g~P6PfQPsKODus z3PGtCyp&Q)6Q!Md3`70AG%==gFA`@f(aZZPK}9#GXR_zB=mZw@|3;#;>lkwU*ncd) zG!g4uNJ1BTBorWsC3-7Bz|vc=j?le=M#&lq+y9z*DNped3zvu zGRcS#9)C#Bgo1k13q7W*dvgyexF`3I1i}h4@>Vq68=Cn>UneC<1UD}p=?{@a?q^@` z+v%yHi5ENF6Pm#T1L{lf4UQ*k>Aj)v5O~3VQ!!rd_X)n9nBM1Mnqk=A^Gojueuoss zV(C4hkrw00+^qxE=67+MyIRw(HK?u+(b^b|>)p0fi&N1p0*WO|hb)RT3L;$csYy>XL`g$GGuwPDmur8xa5uGBm~ zK9_hY-$d%`oANq6+n^63Qz$v-bN6E9L^nurJ-v`{yq@U%Ax~^=_rzlE4)UK+Tu;;x z&eap^_VPqyyC>?nJKTRlaXryMIJK51=J3RTkDu$^Z+@qiN}5Bg0X3-+pJQ{N5l}Ux zHw_aSmYCjkE+u)vH~yh^T5YNu+3E8Phu$!*dm@Jd9V?Zr4L#s4>PFIZ`h-LCwM zZ-UhKAHV?AxZpSR4nFZls#i5+0#_lJgm6ZT$)a{Js5e5l^~0Vc*@<09H?T;|`=k|A zWXtcIa4qHysUgacUvEL^DR=cM0pi5x?P|zcg4Brq5~cl~s4q&BkgT2H8Zi&=OWpEC zns!|71B)a>F@u_n3Xv_^I)tvgIk%af2BOfj+k(()ceR%QdS14xAv*|CH5Z7UzY+E6 zk!zr%=+RqKuNN9UC$*s`bv%0Z{kEB&MxxO3z6GJ}?keEudE2gryhD)cZ}co9>eJH! zlm@80=o#tgneuq+_GvmEJzXDcrl;vwMo(u_fE~Q$u1@8O_Bmu%Lp~))%{^c3vw^5j zPX~Y+=6%t#@?2}5H~ubq95UsZg8h!3W>`%(sAcy;7ak3(Nik7YGvZ?Y9+6>HuL-s` zxS4=$G^FM}M-+;c7gE=|s}Jld^paf-Sz$rmiv+30V$uIgqCWi{z-kCi~c&M&35$vm(8TXe-QZe|CT89D=+l_)m?3{tI*SSHN@5iFK-c7seGfq zoTyKKh(f>eLjQlb ztH0S*=pnlrGTnl_*#xPv{nY-~5cTQr0Ad5p{L+-F3_fG_=C(lzguOOPKCJ=?Ara@I9 zwexJN=8*-hyD6VL_L=ygn=dri^5)rAy<>oG{)4-1;3=gf__Zk}N^LGC@N09eQoP(t z2&mijb``qJUH!majj*dBU$7wea)Q(j){#W+d-pfjtpm`_GX<(as*9`J*=_1p*sgBF zx$AoHRLZoO%*Rl+1r!b9ZkxKL?rW~wdZN^ACxKtLeM-T<1_5>J%(D^ZWp{P5yZX?s zhOD$8_g#WiXRF(NL^J(1se^t~4N~WvW&QSz$JB2%hQ5K{?&{VIz`2^cR<|JweknqR zY$c$IEdU%npOLn4zk&M>fOEHEtpGTjUO%CVlSx*G5}icU)i&27N^Q#t_!923t5Bu8 znqxswN7S$8+?zY7rYe*A+82(-;QV*;7#N)2e+CTBv(j3}{^g@o z9YLzr`tbC3u_JS={cSfkal@W`(Dt|N>}X83i&Lqi{?I-yV2|S>gKb+ov7Rkwj&^>{ z+uG8Cp@WqtSynJqPel5!WT!bGO~zjBGL9(pGmcQkQ4^K%v&xv?F5_6Y=PfH3tBeyK zRL0#YG8VSWIH`|c;v{9ftw9+Vlku3F+#d%pQu6XgM~+nON1|Lz_Z%-;s{49G|)sZf@L=9;|*_iL;$Uy|nexyPcyH-*vi*exP zaMCtgsxyNJuHalfbi;Cr3;avPUD~&Gaekv;QqXb?d2%7<35Gp6cj6{KN(Pl$Jgb1W zcT$@SJ>8E)n$$S2t)dkd%Y;IbGPpnD0^Mf}x}lZ5icAaMAXAN>sT3{TvC1$u^()ek zIY2J&%-mA7ViI-6?V9f|X%=e%W;$~)TO<=g5qXYUl0(dy5bj0{vt+VMgawTKhZR&$ z1;2o?&q=UQg>IXE7Il%!sN@`(Z~9U0vzI{QfDOo)?WQ+}SzgZj1rWE~AitGYY ziVWXCx3h{o+l(lAi)3Spd;47}A|}U`(nys3>z_yZ`wwSl8khI>fEl8v=!koKgbRie zK#OXe?@B2oni_fDT8!^R1Y9`446ZX#;uglf>+jTM_tD&9q>RfQ2hldcFPY1OOy4g$ zxSfB5+pSR&{5*?_TWR|Sh{n7@JuE2x)Yg|l=WxXo9k#^2IRvTuSV9uHueYo=9UR{5 zm8mDsu*GIO^>&2J_X%lzZi9$Hl;sm~rhDxL78Lh#SHlP(;yk^`iEbN$wrvGRrVjEFf;w=k`H@d4s1Q7AMUG;r~Amy>jByyi7>Jw3O z%TWu`61^_9;PciJ4S#YiF)nnH$Vr+RJ@t&+%&s-HgN&j94fAlanWk!@G2e#;ckbnq zg$^={C+m(kNO_^p@_B>)WLKeI*uB2DSrGCFQk(Kc^kqbSqC1rzP4r?Bec*H>`V60F zoNRR5a$o*MGnIXaLR~)sqpsOmV{wQis8n94R6eeTy5Nfz^gYFb;MoMJ^Nq^Jnaxyo zaAGrhQe}?HTjph&_CCdu=9T9-P5T9k{y*%!3w%`7)&Gr7MyY0;Sc#xAn$}>^kct9I zjkLrDJEJp-5)^Dy6jW^S7NZYs(IO$1<6$VZ(%M#9YHe#DwbE9e;=k+PFSfrEg^1AJHqCJLK<_D)pv!Z9dZTY-D$6GA2->!Ab7>Rra$-I2BnEo$<*)Qq9 zwWaZuS>M^1K007JZO)6tZL81u{w6MOBM2{JjTGPPVh=*#>_-;sHU^UUmN9V|!GMWr z2cCPe$7ODCOx*v6tmIx$C~dx)4k5Wpzfp4ECD`nB4kaqU!2g$^q&Z3nP%a- zLec2cukfu+Bk1PS#hy~VK7WV6|8HFE1&c-g=wkC6dD=*~u|^_)fn;9js@hyaFk72D z4(t~)>K9h$TWvy(wfTmt&E}wcI7nx9rq@`TE(Ei+p$ajg!7DgISG+#TOBF1i*XJ7+ zi+t6tbvxQfq$?zIq%r+&6Vt=m=*+}drWmGMqw;@s-$7OcllQLB9uA{y>EP$2t3cz) zNLxA>`*xa@WNzE&_A9_4R{f;BgIQJ5hD3Ts0Yg3T%;&@iZ>V32%epU?OW;`z5MaE! zC~>AbUZ9Z25uxy8sNb{qD=+h)?rsLrAL8WlR8N9j7-D3`FkSbi4z$>m+g;*lBU48j zc~N{Yedr6hk8vXN$?Hym-`W7wA0HFo|JG>+_`jOTble|Y5ce;_>*OlDPQDxWufhh` z)B>BknH^NW>V)%acK8)1^!H{|knBwz!f$lasq)q^JhJh3EDb$;(0@!jh)((!50B#y z!;DvPfZ;dVtD)8r-Wgwj3XqpQBsYZDB>X$#NEupmt3sg_fKWFRqB6tC(a{FI8KVi3 zG7>@p53HH2+wqrfBt5~%RFz4#+aZ#|{w3_!ZhL^mtPuQ|>F0=TsL!J$XcsT%n~CZ= zpi3L0lfDaEZnng{(+~HzI&G3E=cky@!qLgF&&xjr!k+#vgw_{)>%-PG)3-B!P5MX4 zh(9lW4a`%oM^p!IN?%G&dheMd1d#hhE8>FqP(b7)*hm#IuS*Z%{)G36JlY|t;o>*l zRWs;;Di|OvPFD%ZKp3+|Wj63?dL%(AcsMsOogA&q!xwr3#>(cqU9yrn-0YBZf2G^d zk>=>c>kO8UAx@zCI*m~?P|*DsS;p|>0q)>(Kax1LY@XidrqaESYxMMvx&2S>9?mNe z-`H5SXL&D9ut&}i8`w~FGN}=Z$T}}~opw)iKQ_?RI{RH|{@$HMk@qp-Zlz%e+1;HT~vb1)WlKP;NS{2IsUAG4hH z-Xzp{a+872M{F{j{+LaMyerJWc;1+d1Lb85c{eI!*tHQEhrG);bX~^Kb)zz7*S%^} zM*;ein+)DRVw1u9$80(%gulUH?+wO4MT7JA-r)SbH#mRq4OT=|g8}?l(BE?+woDJEB7tJvJIV(8(g{ zWKm(V5K8b(kOM1RozIuM00{cSc&@*e~{$a(TRFUEP78ZQ>&j%#dWPq{`m!x|Z1 zgL!+Gu^F9PaZcZzxfzVD3FOa>DkFMjc>Chhgz5m^k#jV*KjR_u;E^cV9UXTnIs5@* z8~d&7@u?|exv=AK7SjFf7(m)Ob6j>(q3SV5b>hM>+n`j(-*0U-{gnTJI~l+kD;oj^ z0{Z4$K-md-Y?+^s7oGG|x(2$MpD1(ne!7t3RRTEwYD~@L#diko$vcpmBsD#VPGmP= zm@g?8uEy6lnc<`X`{@Ib683C?oiE{-!Pm!eZ~FWbP-5K91(5j+`#Ga6x+YE+~gHYSbLCt*&Ze0A6hbgVA~vuF<-4 zXe%C?#rUf63n$y?KGbU_i{A6@nUD(Mj^m#BHe90QNs-hhd|taC8AE zs%mE!;qb@okV&SY9NftpvlUR)@ng1H!hRw7%Sa(l8A$-Icj;%$b}OXE4ppnuPL))? z)8JL3cBqeEPiaGT>E?iXAfjG}MGrwxg%=jlk6gS4QmYYx#DF z0Mo}4+!olW*rHN5n60U;W@~EH)}9n`d~&N9ks7tNuh@E5H_hcHoO!4$-Lz4qmva-O ziko;yIX6M7+)eN4rg{1qwY`H%sn{-Fhhn^w{_}N$L+bQ{aW0wi+!h@-gGpPx`RzG~ zj4PasExPhAyWb0o9*jWYX4)81xH8_~{ZW^`jTA7&I>lqmV&&TrzrV?J)94o7vEq4l~?hc9P^ zeK{-i<-Dh#clGn3`O86|d^b3uzh|awz+nXoL{un6r#E18s$@-cTvv@gcTL`pJ2?6P zpFY4J{J4M5gp#|)Mt}M&!$qn0xzFdOX1!Zz3!L!qca!u=p>3D==MMyVf2nu=_b>I&zaklWhv3L$ zs6h@RhJ(q&&d3~ox({r8vby1Pe;&Xm#9AE4fEHvi4Z6E1<{`rboR28#H(EPZlM z-2bNPFm8s~^cv7b5c=-;5a?nYI-RxeG}!)(j+ST&?zr4`F!DTqFa7_aQQTw6lJSpX zS?z%J6LgCo`%3$FuDgevb>R|n>MwI)Qz2_~$&YmvIrQUKjj=+0K~5{=u%<#j)FnUG z`3LP5^8RQm=uzjSLbY3 z$WI_v$k|PWoaqXg-+pz{%2F3z4Y5K#>DXAE2Xx7g{h@tMMmkRVWea({sgN5SCm%{Q zhpx^aoM5|fgK;vvsgP+-u)n&y-9oNWmb&nutYA-WD&)JmCoPnRT zHw;j6aWXxn1CP#bb-hx0Io(|W+g;K=J&y_k^;vo*Vf+cD2X{d8Lfxj0Hfhh8Y~-o2 z5E37EiPIgKrbHAXke+T=X#&Bz@Kuxo)4HM7ausre8RH@n1Lj%1WrS0e`cyHXYs ztP2-Xiiru2lqSa+1xB9AgHTFem)PHto=U8%QAG#3Qo0b#+!=McwU=IF|M9u`+JvO; zncOa~?=SV}P{Yqv>Fuva-%?A+9BfUpsaRx!UD-ry{;geMZ>&!lA?z-YfvN9;l=o_a zX14RaGSA+z=GA5j{2qkLwC^k|ETT;@e_VCUJvll!TvxoEsq~eA(_f8F97G)7#j?j% z^f9Ln&>F4f>>$=4SD`z(`^++bhFVX`Tdx@n`KvfI+SS(*;rZAC0#MWhrvw5r7`_` zmG3r3YZbfY!Iw0CN#d6jr}O%}@~6p?Rnh8enVbh4vFKUpYM|lXco^DL19Dfcl1WR( z&rNrk#}-T%c`Ty>|b>Y1U?^jI>z4eRm4jEHln8 znTF2~KS_!mT44#5A)G9#!5k;Vp zDbpdGRkgDdJbW5aG)D79(uE(u10T+mg_fG0452|j4!KVkTDXHa-v0l2PNZLIEPv9>5W|8!iA^P;PqS$Z;RmmP; z9bc-Yi*v z?SpJ~o6Uowoynrr$pGk#$BQB})vNgVcNnq3L3)^1 zuHmUdDD&Gf&0koXVx!Q4$Zm_h!bjm0yg$}us!+`#B)k{f zA*8!*NqSr2>C0GcZ5?x+3{pxfGpk9h%ZGb+ZrnS6i7lKLHP^~4pc`4h$(iH=X=N7J z$(eY`d}(E{ptv9d*WUSa0`rKU);~uAu0%I*hClzYN|?gbo*zEycJ<5?KUNhZ5h6N8 zMX#=O#`7m`6Ui?le{|xB?1LmZwN>3hy_93AsF&`f5^qN*eyXpZL zQ1R|RGpD${=j!V~?avviL}(kWu!KghaT67kbUK9Y=Ctn&B{3~g9QlTy{uify=udOD z+V4(&kImVNgOg;*w#p9!MOz3J$((q)_q_Pdc__>IKL4bLxh*5kEuBFj9JM;tNO4yq z{qiAN;pN%_xdN9fL`J=5i@!0LKQZT}G7uvp$|KBcLKUV@Smc}6gmUwmFaosy;E_V!9ya#8j82L$>v1S>RW~u+7`PLC5sk{{&DVVGo9BC%c3${|QzdPQckr*~6&`I#1X*M`aoou9Lrc11KWV#X^8flo# zkDhv%6!4Ed$s zgiuO>k(#(m9Oy`YB|0?HSXWASQZjX6&`69YSoN171=ja1&`2|HrF@4*dW*+3fq>%C zOP09T)B=q(kxxFrH{7MK-z&Z!!kXeX7kk)Z`S)3@+c-!jyssje?wyoPjBRwu& zi*|O^Ns?qEBhytU7-x^Y=)%xs&9M@Ka>;S+?3M<6g!<6?icSpF|9*6m?PX3yth;ueAd6CLh4 za06eD%Y4N#aY4Yu@W^O|9KJ^aq2q@vXpKfX=H^D8c8-LnCN$FLL|t2oeWWX1vGT^f ze9Pw*cd=OHFbI&D^_C^F2a>tan4U>6%XH;|Obd6E8MWOcm%cA6x%q+QN}tuElinN8 z=0SVavO<0AdySl?2?Ch-tw?~UM~XkT)Z)h>aQQPA`@50IZ;W&sZzO*TBr|P~M0+{G zfXlYfNa80m?^EOQ@iI$C&O;Fko8fi&jSv91y5tn@RefA3I4q z1dzCG^*QgNtbof^_Mqae5Zb_U7t29FaQ2DCx-~#DfBQ_5n?o>QqAfJiN=fdWt;WQz zd$X_m>te?Ndk!JFwKq2M^g6+2l3PqPklgdS;uR||{8>J)xWQtPckEiXS|gD~kj&@1 z#PlSB0n=@vkuqZXtB&b!H!^*lLg^PbbMZi?8$YTuM>I0sg%>AgA3`;=-CJY*E+yR>O1jY2P-GpgJFwdVkKZ5|RP3ut z^@=ZsP_f=FHrQg3Z@SpEiq(b7AVI|j5X=l=2=epS4{NH?Z3nh)F`c=0bJqjlO6w~Q z0#{nKYz2!8M&UsQR>CtY12LHB8Je+V=F~ZT${+{*k=fDb3V80b8Xp`AN!c^Mncp@- zsCq2vDC%(Y1}JDXpdfYu;%LSV4a5Rhdt-jpQ33@ekII6A(pu9-C-p=%Rr)WcB$yLt4y+uhTJFi_AjM0eOI8j z8cpKm-%o-m_s*6}`eezT=%lOQtJiWrTtq!sQ)$cj37b^rdt?r@36!Pw&${h%k?7M~ zlYR<_knxLRa*`^5%lM=>bta2Gyar2|DfMO1+Zb!WBu2vjMzUxg7^9Gtiec9m=aUn) zXB_<$hSW|>4qusIFWv8R9p8@(SfMF7$1=~TwVYEPH!^j)kw5l@akhhz#4<~mkumb( z5DCPeYWMh4#123kJ&X18LXjG0g=5kqd;oZkWVhd}e!87o07I`tYf1$evaQ>M`Sn{C zo%nSF3@u|qo+z4!uAxig%5o0YL+`FYQhF9|L{DZBF0RmyiYuNhu53NNp5LLl^_u+W z3QsaLcLVy@R7nF%e1k@~Vgg=$D-9)p>W*F`ixf(QHc)ZZ%8)`&NhTnLaDvR0OVeyh zCIW{&AQFN80f?RXj>B67bl2i(!PeIE>I1hY{N1%zSQBCB|&COXb^~na^#` z%;z?TW!dJ;d~S1QKDRlH5L>YqvhljbVT86gjL?>YVuW@YMrfGzuiN-GPMIa3nUyHfhZvPz#WdzKG4yai1ZEdMSSY zJ*oBBVxn@5gpY*;X!i*53&|} zX}U)j8o$~X>Ic`p?8{^coI49u84jrQn*|BgnR3N>qXHgeWdIL)`>%or%|fup=A4!Y zZB5FYO?vX-i+%7Gj| zg}1V^fCMGa0uuByb++JP$t(xR(TOpG1nq0(0Q5*wn_)a~dAuD^P*Qjty1h40Q90jS z^9Aq#;FJ4~!)-KIKkY=3uv6-%ol-yTM2#TKz?RAnupT2&P_A?GJ--PQbhUwk?&?Xu z+zSS&RIY|-Z}7^5e+AAH2cRomn(~iG`FHnC7R^o-trLdO@AvjK${aZt!m!g_F(x`- zLu%>KdP`%3#AMMJ6i{d%UJC&oR*^iAWRwadV-r!>Acyb)Kk{W%TMMt&K(>$J;C_Yh zgy$EZPuUSjCxc?C@NSGjDgKE*MOD7Fd z*hUv&$v!a9PXkKu02lNc35{*WfMn09*?N0g8d2gL>P z0qILYK`3#20bGz{0zk?Cj|=)=!v!_U`2WWRMTfMF3u>B3-bj|r9qU-$I%LqTy2Xzj+5Vlc4JBt?_$%bpU#3S>A+P9?AG=^kyN^Fo zS?a=LxWNkf_@hQna&*a$?JaM&klD&o7yjp!K_QPe74k1#@?*QMXt$6Tm8C9R$qmNI z)lG#wr%QfpQ2T{+afRFhu|m2u6_W1?`Rm|zIk{6=>caCOR>+dIjWW4im;9L5J|~wr zPEO4hGO4MMiybE~w=Y=F33gw$kVI1<_dCJ<`0{qEQ>HBFH?o4wX)2^tm;Bgy1KTZR z|D{&Qr;^LnF^b1`#n>H`Kb#(NGZGpWKdJ!a`shDZ)$fVhP0xTA?{jS ziFGw%W11_aC&9XK1*NcDq)iweiyOu&r)L}JBtA@x#A%L9)-{L4n(j&&O-knC4X>dJ zc{%T;rNRj<%;JRBZhH-!P%V@82d&+rtO`F&NNS2n!)=kubUStrNzA{mfB*>C!{q)X z%fv+Vn`FXgG|4!0Si391u5@(bw^8xnZ71oi!@+sNV*|OKX=^R0itTD4O!PI2O@?+s z)-qV0QLCSY`dR5N?f_aO2#=CB^OKhwWgqqUWK{TRt?-V`Q9|dkXh(D%c>*azMr|(; z(F&Y(d&PFMg*|F}cg4nRM;~BdpS4gvB^*0~r980_ z+q)}PW#x6Q+TK@styIaU(Q(DR)=>Wl?_PC4Mf>QjUM2*n zOA{LC&x8=hFi3R#BV0{Xe@prhE0jBpJ)3(edXnZ$y1u zGu_}i(y;ft(8_Azm&K0m;_kfP-cDO%n@(K3r-4Chl9t=?s@o*Z{l zt*-LZ`j1J7d&@SgVnF*oxSjyeI2N`$l$MtcF1@1k%0YwU_ibFpu1Fm49{zQD;2(?=1nXy8>Rr*Rg*Wf@BaGr{mr&8WWVd#0)9$o7Tmp*{jWP#?r-g^EPkJD zY1B&Pg&!~!3|4GI(p!bI-lQLoC-CJ0%{V^ML?r_=D+F@36RW)r2T*Zh1GI7j>HqhJx(Sa}qnqPm1 zptmOLZ3d-3iBFNpoaMI=8YFuh`PBraPZNng{SK~dzC;;(?TeET9IMPUAvU0;svST| z^}5d)>iSqYkp^WY&t&o>QPeXR!Q)oS0|1LFoY z!r;M01WI_8zu4{%oL0?2%40+T@z-ab1_q^A{DU-kTep^e0V!cF26{Sf%;y zA(_;vr)uvXk00|%23PhAUFDGjp<>E8@Q_2A>7>YU!bs(y9AgT%Bw|{Q6vRx*+nuP! zi28B3{6f_P4EQ5nr<+S9(wFlQa5!x-NtpHq>76J71c)Vd(_QkKH^)Pqrd}Mq{}0N7 z*{E8|#Dw>`@(?nUuzE(Bkk+bt34Mxwj?EF$E>W_$lJ7?u`--8WCrv6g^gijl7KQ3n z?Ve&Y)Q|`*N`&6NG+p%;laK&+_Bb48pNf`lY4fL!;HgX~a+c7g;{AikM<+%X4uP>v zkz8!Poy!*&C|0r9wkeW}&8c(w;_lL|S1i^Z#B2Ot%KtSa!8>l0b2uoA6KGB&T_OnE zkSl~>8*-z7UzZ5-b%mg3H-a{v*FULg!X1op0rJdAr#YX3ZAn5E_;?1%OotuqzCc3& zT(bcLo9?;M?iPn%CByGQ8M&qOHEBbB;ZJ*m!G+>_{o7#);}Ue%M2L*Hx##gZ{QyJM zU+;(}Jum5X{ZTx$D@8xQ@}hK)6q5<^UcDc4|95wev;P`>dM^Fb#VW$DSkHLUwWHWE z4@~|L*x?+*k2MAH2ljQA@jFIq3=3(ShbNne(e$q~i}>^0_tlZqK*xI_pBEd5JE$z9 z3BD4G<~8jdO22zNw$JQu^S9z&r+U1r#7i2qK@eUy1<2y*Ia@%(Z(-aj+rqe2wk6mg z*eq`abE4I2RH5c2%yOG4j9~M1Nj?k8=w{qr=XnarXF-p*^h`Js%q{D)V7+`6@Zei` zFidhJ&ABev-s_W=_Ui-x1*h{_nEwJ9#&`Y;&Qy~87ku54@Lw?MEkP^~?!e$5aqn&3 z!e(l7=Lzu_#a4$7$O1P8UXNqq^w}kIDmfv?J3)pvrpj10HtCiTZ|?Vn6?mA|N!N5t zD)eFf{k9f-x4vF2%r)k5y|}J{S}jsO$JAY_uO6Z}pU6PP>8;eo={uPYt?!~HPv82m zWx_+8T^#RxY|{5mvvk+^`BHMC6SW}36%#;!Y!{u*J;g0WI-Shen(}(jmV9tEpYp0^ zsgvnkHj7Q=+MGm5ZRN`BqmvwPJoe%`RF?YV_yq}-o0<&`_g<@77-Q7R7{O5f<6`K) zJzQkFkoqGKoM6HFo+mba&rW&=`=0l(WU4RXPA1>==hHEARA`V1F!qv0_Cu=(tI3kN zWO1Vs%GWJ^tnh+%@2uAsTo?W(H|Q_(rKUpG*~cB*-+m!4D@$GYSKMHQyu7H9lUcgt z$F6F>kW*YCRS+xW$4!NFb%ks{zuoFQrz~~hH?y3a*Hp+qb;*xS|8~2D+@&ma;qP&S zak713V|6NZ$&VF%tKC92f71%-#tl};^rk{S(Ir22qsXD(YmqBt8pI0uep4acT_L~k z*KQ#Im8M%t*MaVy5z^+Z(p##cY-}WTga+68?}4m0y&}G`?+!*(8JJ_FQrql zGiz@8)C=VTy@vWDzBhHafiDc)`w=sMA6jclp@#~WDUG~& zL7wjR2HUNBctHE=I!0SNLKg;Q6ex|nLxMcFTip4=Q2K-*eR4p@>N;hpIxB-R zMiRys1^_G!3NxxD8+~C^UD4VXMkOiws|$}N#El&?cP?{!t(5=LLgLz49^SPug?i=Y zcjWv+-MT#JaeXq^EYe zdr$ucmaF`V&T@y*P2mT|bj~fC&@V=~v8Wu1>PS)OEk5hZs>92F6jJ8LwuyMLM?@az zS1&T5--8e)BF-a*AAXaEfo${hj~ExY#=z;t$m(vc$#~(L$ZoDNC{|%G=ok7goFoqz z4}`x(J{(@0XC&5JWJ2U(%k@f`*Y8Y1rT;9L7w$vgrU~Jm5PV@28Hsf>((e>UPH^Nn zNTW-Plm4(m%fCE7{1vz?39l*tUvr7k^A60h{#!0F8YXkczvU9+1>Ny)xx{#YI}U0L zw%-%<5zZyXmk>Yr*#x=^~ z#X1lK4|}YU{N41I#7u*k}4a>%vEHMc+N&&L&b|Re53cFbJ`) zS}bz3k=Un}B^D-@nf#jgpG``@e{E$O{EN%XjJd}Dyvv&NpJ~PaO0FJ^|Is{9;?4Sl zK+HqMQC;{(NWlN41mReD;r}`p8)vb|_l?BLEirZjB(rdV_*eY`{@Z}Y2mUp-zij*; z(SrZYt@!VI2>yp4rB?iZgCzLB5EAfzCPDaDUidF{vFj}sx!6dow!0u4ShvRrQn$ZBT;1}2O^_UJ%`pl;G<9?%7-2ARs)R=4U)n%AvktGdnL>KCZnpL#Xc?OKAtdy5mK zZi68~-M*=OUhF1a@bU+`*c}#&T;*avap6?K(L3ZF)s#))1 zM_DYg&BZzq!(GN+Vst%kSYp4Okjw*hs^%jEv#;<#G=Ja~`ze3PE}i<)t>uUF>sS(=$((2W2^V3sN{%^izDMsswKBw;dSsir9%=`0- z{q@t?itxjOF4ipVE`FoqJMTKU_kw@dvBS@AV&e2g96Ma~6Ec1g#|~#H;}>!4&`}w` zh+~Hp_a9=a_TcZkcBl{U)TR`MNNxmj@e(=+_AF7c^Jbg*8Tj`cJN)oQxcefG9ZKQu z3psY^a;R!7m_{`o2S#zDZ96sXH-S$s9G3Dgi=&ZG_&4{APLelxbfx|e`m(LzpQYWi zlwUe9S~FYq)qaBoysbFdG{2<_m>8mHQ?Fr0vI?HDuSu?3uqqN)*o%nl_5;D=c zCsp(TCMLLL4c0-}Lis>uQu7jZIq&lj0Yosx<=m@ch$CksKV=(bnWJo@EOV4?L`6N9 zo%s!@w&Y^<2@1ZbF6TYn9B8#R%R)hDVIqXq`PJyS%cN5O1=&=CpKcC!=%D>Vops8n zN(CD9IdUScCY7f4RCqiYNz74shqi)44ym$jdo7RkH9Ruk6H*m21A8F8}gj=?nH_LG=E=h=t)y zJ1*^r%JS8C(axqq;$GP?yXt>J4sU(0S7xn0#n}W4z16FB(Qe&@L)rleZyRPUPD&Q7 z;0Qk(*fJNE?)oEKW+xiCK@iy2Jp2+b=d@J1(^WXiJ~fW%ig?MZm21mn`pfKoW$r$O zDp8M9q~34INfFy#ImgHSQH3Kp>=b7QFX>-RQ_&3Kc#tQ&W-`!RFG}wIs z`TzdC=9u)@oLwAXN|x-eT+5FBQCK+ONPS?i@CQ7Ik3;XA9Vokz-{fAI7AW6az;DG~ zGcB-}U7_QXd%N&kzPCHS6?^;gh+pxD=#`NNjpX}AV&g?l&)LQP@Gdm&<-5?hSL{OL zUdIQqukzsym%Hx~9r;jY?H;+@NdCn}Vr3#%S{>jddL@iRuY`|7l=)1eWZRu5X@e+d zGim|$H=B%i!aAx$U z_vjU|5FO2#Hg+z+2o1B8?9N4(tb66pz*Q_^q>g(Z#MKM%=7L^81}$y7C2qEo=SL?# zVfp3@oj$j5=VBJ0rMXvLBJtayhPT}JPgOVY#c$At#RhFyY(RW-5no0d7PHt-(hYSv zbKH%!q~Ts!jo)om=xJue=sbJwhfP}**yL=rRncmXLJD^GeuDjpB5gbz&Ik5C+@E-h zk39pUcXraQL|s`-ykix0y_nzFYzx8}2FFrOvZy{;v`#R-(8gp4!!->8VRU6CC*pVN12DaC3YS$gMGj z9K#qI{2jolEdg+t9hs1s5qK$xf8B@6V zBFvCtJn?M0U5-}l1h(~RV(sVz7*H% zQ4dXb`Wc(-ZzfCj-gzs%9b@WQs%J8!q{>fhSlrC}iI*e`v2t=I^07$(ud_bG)Gy)f zssA$+2kn1DIgO5b3cD|mGVQw1eYTeH$E4T4rOh#oxXp@QN}tkLbebaRt?RGW?5V}j z{9nwj^ziSKBiI&fnxBA&i6h^H_c`{g;@-ki^q;xadk&A*EalWv-2cTe)~`BsJDl%_ zhPwoHZ;qf!v(|*;{-gq~3br8Cv_I;E0+0>@z&a?+akySK1s02T@8f|Wxf<+@ux$0> zkhzwOywc3?e9j2_#gCr`3U5bz=Lhx$u&t_W(Wi?ikgm^Uh~aNc5AJS6E!SJu{Kx&ulW2Yt)SApC)yVru zy5fp>nqo5DZZSwtL3O|9zGXfOw&I^SKD;Qe#%4cbF7H2Ayp zP(OBccLUn6N!sr!1+i}|80heDIR(+#a3X6xl>or=2MBN-S!~AOn;<@UNLsTyzt54} znk;HS3@?67#m^HGITiXKQABsPGZESmF9KRh4Y@;8C_ggg3`9(m$sct(#e%1y${o4N zm)R@3!9g2J`d`Kg15=F42PTWaMLuIr#*#&g^nCUFNnZ0bRRy_rQR$RZYw<@4HPef8 z-8Qq?krls5Zx1`?vH|728lCjWmoNNXiw zZT@DAj<Wt|Tety-(L-cK3RB4(#sfNE}n4@;EiM$H7L2 zfDK7jXqVg#{ALdkH_)dJ&26wl#G4GyhpEVxtg9@O8vEMQs0#cpj&{c;ZXPqx^{QB3 zN{)7)t&Q);$$-J~RH&Y793|e%p3Pim0ID~+RF-n<8_n`(;y_G}&nK+~h|ela`hCYu z$si+`lR?Jpb>0T{D94yR&fCBq=WSq*!GcHZaoz^@IBx@coVS5JcGS0u$=r9`Yz{Jl z=^SLtUZHqCmEGYtWo>x1e)g*T9{cPh@jiEwc%M5-yw9B^-sesd?{g=K_qmhA`vhNZ z>m+gSU3PZ%Gk1{qGk1{qGhsLFAn_t58be;z&zpe>!r&nBKE(O&$P9U#V3@|5=u9w7 zAeC5XGOKbjD|0d{Zy~cPC$lmqvvMc1QOHdAYG%MDI+Gc5U~1adIpTdnAC1}P&Jpi( z=ZFy*Ew0Bd{f==mNIDr*m<)7`_#M^WybLU86oHNrtEIH{L1kMdx60}rW}Sy%gl`Vk zoplaaK`b%fnNT)sXz3oEg^F;E4F9?`LJ6h0*Nx;ynxYKNU1!cWFj38sdccyd^(R8} zwM-2yikEz-DNN3>(Q)5mpcH?bc}rTE&#8x~WoFfr~z$+9dJ znjM&yc%gBGS{OW5@)1mD8q~f5XHjB3;jCSWP0j5}v}RQ;z1GSYRTzh9P9@|NM!RDo zJ#X11>71e@Z)h3UQ)$*Z*qGoz|K_BxEDIZl139752&-~bp7QHCj>m_b@DP>b)eSx3 zwfCpiwS8(m+=x%zsPL)va3i+6-jCBF^nT@>7J-a%r$t6=cik9=M(D=MIWz(p#i0@U zwyICvu<)r}8}X?d7Ct@bu;2_#>~zDzPB$!I^d6HEWfqwm+t93+48M7@SCz%)axotPq*}oz&EQgT=PS_(IbMGS5DZI{nJ( zgocSaO&UuukLrdA*OC*VjZ(ZYmo3=|in%OIS1(^Q`sl5DV97R2J;7L>AUiB9rRf>y zQIf2zM<+{06b^}wtJL7IERQXAMnII$Egak~<8)W)v-3wSrSCk@!R=QmH_mD!J_KY}>jQW5e$`wVY(8)5!^2blNzs~RmiCalR{g`iU}Wc#M5kr|+L!Gz z^L{9uI76}ual5Ws==k>zWJQ6!ih-#jj04T1?{aw63t10><&1}RGFy&wT&sGmnX`V` z=^0PaWfUva7Y);U(TT@sb?Ln)S2jgU(dE+Zuf_xiCt;SzC&Nj+_`ICY&_Mj~duSkJ z_;e3z?o`R=l^-Q#)t8at<3<(Z{k#gNPqN!q={LE`p~_bkC|0q`P~~N-%v4Kql>?Wr za^Uh+QZt^-b5JuD8Obj+5{p5kCtt%)a*bKAUSk%l*PthV8HMTU%Jhb71RT%8Zo7x; zZ#I47Y9sl}jl`BhE{I;4vx*-$)nCN*;I-yM9}d4(vU5#Un&imA6s_<6Wc@MSDzqD=D+?(pXp2&{6n|+v58&Uz4J0< z0pG(7`pewWRLCW|+<(gPeAHcB=slcj^jsL}slS@gQ z$$w@X{V|rEiB6nNjKjw|IT(HV<781Sy6LZK5{ z#B!5W<=tOp=m_61oDYtv6i0`cS8*@tMg2Qo}4>9r-4{c5rZA_%Awxjb6&T~zJ z4K~i|uh)1MTWzFxxsiTLA?PJ?Q3DLEn3Kovs5u4vj+xWbzVg}nEuU>3uSU!+P^@aU zoJt+fNeYqj*V_E{N;$hr14j7{8h{m6GL-!sAFhyw$5`5EuU?6&nsqY_m5|i zpB+U#lia~GD}RwJnH#PC(t6%3la%V&hqDNOCmzDpTVD7`9%j;=W52Uax^v7{_}t15 z>z8t3mbuf07s2grMq7Z7+O*SUI;DUVADV9o8Hx3VWd8Z6AVFUu7(j5^u%>-}VP@rT_~eJ@ z9|ljFiV9RXhI6x2uDS7DH&>|(|AL+(VBp8 zz=s?sw?fD9#LShBkngdEsBW#IX>>c(cVKKZImz0MGdO=MoG!ZNoJ5n8LiwQ@=Kmy>XgEMt5MWc0pu| zvLN2&TypR)8d*n}=~bJRU{%yH&aPV)!#kKHs&qX>jMD}#R*F}wyfA*Xi`{D^a+8tR zKnOUo>mZrefXn##Clk!RYWmRwMBF9w>936Oa0|u@nlpah!5RPVF$XYyK1nd1fCP-6 ztrV|Vd11WF#cnVXxx`59TnLQEA(`Wh@i4)F@ixG(V+sp0C64imZp|g$y*cAUxpWYT z&*s}vn{6g>`(Eq9)438b{wsZ8Ua|7R_!BPnnvuv1BeCB?VEk!F=BnRG;-d%#j8D6x z4T*QpjC2bYG#>ycagtw1-?moJ=;;&BwFD9V zD2SEi6%W=$FLJLgaE8LgCRi+Thl@Sv$d4>Bmb6&@U69O#->OC@5)5i2P3r+|sAp#S zFRez4PHp}w`Zj+RJGgX^SFw}gTfK^9BvFlzAi=A6Ln&Ud@=}eJE_Rr`gUEV|#g;&j z##%_`&8cGi_XGpRhgG)0c;C#uf}%G8Ffg66v+lULZNwqvY-K?)_$s%KDcg=R8TTkVE7!8UsAUk~i~xsp2hDi0 z*3rB9!5tO9xTE41cT|9l%67A*bbNAm7kxi%neud$Uj;QAJcZE6F4OdCfB z&jR02M}a+pn@M%s^yv$DM`#1Cw0s}*LL0DN`?u`l$62_7q03{YG7F(QZNThCZNMTb zxk%c8MbZW=LSVBg>MdylHbkrIbVFTEy}OYk)*H|U{9TFC2At8T4G;jKodeQsXaoMA zTmQ?xbA2xi5@o-XxVJ(|I@7f6h|k)@`d@HR{F5OUb z?E1ekSL6EsiqqIn``Fh1owfewVNHvFJ+#e*KOi_3{@W8J>+O+R_&-HSYOy&i{AKy6 z{(3F!an)GpC|v{n0)0gNaU}Hmq`qG1e(aMksfRtJ&BDKvCG+AGx_r0re@?gfu_Z^g zd*{Q-QWw638}yeM-BidFUGigZ9MNteKUbEzaGV>gkX}uNOx7hoc6$4TG=!~?Z+0$kl#YAkiRq)a-l2a+EBZN6e>$y__Lg#kP%IVd_|Z1*sl+7 zw~%XdXYm$-tpF&uuO*Yc!4hVvs zL}PR7q~iau78;uXVZC;Ti~ZV2ezlR}@sP}sv~53sD8XPJ)5dyD>!dR$*#vChiJE}b z2CI)eYS&`H1`lV@%mN;cBS<9*A@Cn@v2%>%pJJrA0FtSuE&2J|X^R05ZTKD13h0Tn z@$lLSSswIw=e$Q^?b5=7&uSW3z{diD*=aZuR2zn$7a?%B&Pe{7F1FdOMc%bo@obCb zFM(t}q^ZwpM5bnad}dV25{UKD%zQ(0Q0k z2lD(9Uuw&Vb@A`qC;lWP;CYHtyqNOB^PgR8zLCh^j1>PG0?$uCGIu{HIgcb5@Z9F& ztb69SzVZC8&dqu5*?dLt0+$Zt`3%0-Ry-d~5_0YW33xtCDPBx@;rTch>un?wGg5p6 z1fDxXGP8dso|p0w20XX9F6)_Dul>K_`A4_lxy34`OLLyt%A_}dvmKwe ztoSvqlIdNDmSnW>*-G(Z8;s;Hb+PS6A|JZgev!KHT8QdQr!|8h1?zfd%VbrknqW|& zHkW06GbgwTop*fmm(aiYOSqOxyac$pdbcrkD})SaC{#Vt?^1fYYgR3BAyF#L)&=bC z{mfMy_SO+3Wg8@@<@-wU^0ym_9HCQ=)X2=(^$tjFx8(^ znDTGLhTPi2@&B9fZ|x{ldB;+Jd=G7=d*PX#IK)2ZdY)r4=VVY@CvKi{JL0vVKcgqX0sg2S7;`9|1Sd=^kC5G>qQ#~DRXOM-NxR4| zI|9RY;cIpd>TrRdJfZ-*4+JlKAbCU~N9qR=F7?Nax3VOokVy-Y%XD^Y4yWl?)ZCw7oI_yy$(j$v-)Gm;Yrl01N?`2 z$Yuj$Q`rNtpOkhZ^h((S#rG1zHpFPi1K~UQosd6?`zPdk_B)o0w_!!1i0lUT}8h`#ahg<}cnFKd+Kt3h}^bUszgj5-siQ=CE(9_ z%843UVcoq9I^t#SIO9_8$eGjfj+I95LZthAG8Q)_XcYERbV+Uhf;ixa0 zZ3W>O)OvbwZu6zSJn^~S{CMHl$dozr5gB^;3qfFSi$7JX3O@ny^IzweafjarB6Inj z5c!?b!&AuX%sk{*5;QXpe&jz0df^(or&_;}yZFuAzU62bxsQtx&h6ayvOec#5Dq_l zE|*HeL;0;*d9XKsKJ23Rw>OXBiq@~4B=^qC3j5j%|4}ibEo&iKpeub%uH}XO4Y1O4 zE)u;UMaE>Sj03v|84UtIWRxS$6L+yhn%Td|tw zzKQZe6c=TMU6$!<=&CyPXqB-*U$LM&18zFEr2kvf{xE7yu5GR;- zz0Qg#K2d}#Ghq*p$B9`Vhp1_9Qd32B$)f#uy~ zgeTr*G&nKA?cJ%3&ReWhy8l=Jk!?DFqOM$cbgOkutwR&P!WZLwP#p~y36HJ8PlP7M zQQdBA3pX9vPGSyn;>Tugm~+KD5=9@tVkh)gC{LFsLe%GzyDQWr3V4jbl6`~6xi|Gl z6Q+K%w)1nh+3!wmKIiU4|D7t??hcsf-sY@I->5Q$>zhW^1Sk%`#7Vq%A<_O^HCJ_P zNt3~R)$QaO`0R#8L$BXf5xkb3Mw{5w&60{^7bD9S&z?7VrjhO58w^;y!2ydmIAHMx zcXXnGy5x;%aJb?IhbwLnZ1wmN4G#a>;Bdta4p-dZaK#%Ou6TpP6>o63;tdDI6>qZR zCYv0tc$32wZ*sWeO%7MQ$>EAOIb883_6FKMZjvz&ZN0-4*E?KsecQO=x!?siM91xB z6swQ?4@KBRM~m{tI1whD2rHV4u*!+B%!#nPg$S#h2+N!Z%bf^EAwt26od}aogcT;j zw&2B^?DWYd2QS{_;KfLg=GY@+@M0&Dq!USniR1uyaUhW*CcV;%t34g8$sQbDj7#}D zFUx){z>7PnmAfX`>J$nfl-v(dKM&1aq2HwQFO<97tRgIP@Z#(zA_QaT9Yb;)gE{I1 zpX|6Vqe4_~px&a_a>fZUtDZ(UK6NDt4*rI+XAQEwhwE{YC68Hm6&-i64s-@xw!W6> z)EeL)hyV8{{M&)?Mi_9D{t!<6?*Tj1og?A{6MkOGkM~XZ{W<%;NH^%@bxoZ@9ImUu zPU)*DZ%K5LuBrczNWv^S z>d91517~%)<)b4nN{`9sd>MzG8+6pcp>y}6(0~7%DD(v;a_HQBl^k(0&ZgZ$ZQ6m0vVpkyZXej+`sY=O zHtim#NjdI*tC06*Jl#7`-N3+Zvud1sx$V}aa~{-rY9%#-=NpifAsB zScEMBOso;qtff}mGNVx!q!YO-jk<$9*-juk)Mt;3_S!#_sxWO`+iSVZtX!`xe!G$C zTEX;bnj&Fv;EapX<$dVX=4LGpa7bNSd9paLoOZtAJo_YX)*1ch{HD&%Ti@?$&d+b!gI zWvL72af5O4{OHE&%+w`6c3Jy{9PbMGKEw*SyQz@lTp>L^ZkLlS>x`3mnV^ufnhI&q zB|mnP$e~|J4_C8_CL+vntK%2F48|D&LgKW7W63wPv_{?Of>pj-!h z(rQ6#7@=ip=%6i6AYxkH2<;{wtY;t3_91!tlLvAorWkCOv1x+PI3YL>?_2fj$>Z@mmirHYmUCHO@0!j_bESMQ}5 zy+W)A-m!T{053k`Tr3qfVF&?6S+@47HXuy7rJEZ<7r7{fr=V&yJ zjW<$!kCA?NLzr;qa@Kfg1xD9F7tbn7TkxBQFai+{j~N>G@DX)f6o4#cCTZdNY!{xlPk_6OtUT3J<&^+1UuQ0Zz#?Z z9Na1)?O4aoA<&35PEZ(ItnYm&eM4lqk^J`|Y*~L`q|ZwbKJ4W*@EZ55mkF|0{gzrj z`-Lv{vBmNi8Yx}`$&}x%&8a^T4EA!`*s=yOT%1f0*3Z;u=*7CYSgFPG&oEM41j)Q{m$>LaFyP`K0OK9E8XKLP*buz9Z8pBX zwvmm_1YxWY!t4$mVs3VWEKCv%Dla=H%15lPBVVz^;-f4UISG#a7mBJT)<@UuGPkVm@8r*Nj8u|TTouu z?f@b76^liVGE%(FvgGFw%iLBa@y;S8`;yz*y6%$sYd7;5Gb!AZ#lymGE8cNsC3M7%9Hj67zow$^7sRv7ICs zuze6v@uS~6aF_a+cMh^k9Uj!yF7>9%*`@wZysbq~$)0y@v0tra1IDEO9sRvjgr&ap z_vM8HO?f{M-L|Rho6JTvv#>F$v|S4ui3_q8HX;q%Ik$oEAPu)tU6GkE>M=@7I@FaLnttq@UucV}wIvp`+96>`e5Rg)E?-Zc!v8!0p&TLzfhn zInZ~blRh#%^N7OHn1(nt>8(eT`&EH@G5IB>*;qXT4S+Nc69`K~KG|rn>_RC#UwNPp zD;;}m9HZBs1`9^1nWX$uWgD$(%$7RC+?QU@v(2gQV(G#0Id~ZfSv~k&s6*e5PW-0v z_qOT5rK-=By-Bk*xz+UGTFBN?eB96K+MG=iJ3C9dv@W?$5585i&)hcj;H_CzSt?Ve z_xiU`f@9I|8CwpU61=J~js`px+KffVHZ|Z2#aJ^2S6ZQNMJ|n|Bqv6v8Fe~!G2DB- zX~5Sz4fuMe0bl<=(txjb8u0Z_1HRsAz}Nr3PXpf2N(27i6=4tAP{|wPM3{6UtY|L6 ze_sQR2&DmcB1}3FR+tF?S2f^BB&z|JFb>vO52XR$dgs7wGeiTP+w`qG6Er=ycV^0) z9i{=_X&P|Mxaf;93#MC}_Ka#_1GG7on55CkIU03Oykt{!+zC>#uy>@6K%EdrE$9wL zi{r^8rKH?U77mdPeJpXceDx{ulB&YnqvJ-H;ydVzDP^GgWdA~E_4XPR-|vw?Cl{Ez z#Vqb61LOYP^t%FRT#e@YPr9ReADVA@oki)x?kjzzS-qXAYxIio=2ma-Lf_bi)!S=G zZfW&4Ny-4fmQjXHG_|K2`$5w+e0FCT_n%`sgP@R$&W32v)w|bDob7X%iLg`T-{X2uXPFg7q7Ql$Pi_z3#Yij3h9z9 zq%QmoF6oc8>qW|S!1qZ5I$ndWvku&%t-V8f{hy^?-ci3>mVN<#1Osp|;BJ#*S#~Q9 zc8tYVMOmu@_bvHCTESnRvm$$p<;n%wV=T91++x@(K8`fR(i;L|yYU!{;!+^8&N+)< z_7qF8lI;{r5g|Lpa)FA%zs;*nr&#I;vm%~vB>xo%D#2Hc^mzh;aOcyww6bPJ{WrBU zFE$&3X7C9YTWTc#MI*&8K{BN@O+WwV1cQZh+bY5Deb<)z{>SF$P1;VD`UhAYfQ1_t zHL`FCL0GsJf}SnzVs{wHzsgAQcOjXVXbFCPPl5ppZ60Fjm|1s~@o;1#4~VweA(p%r zhgf1X)<6_T5X>sr5MWeMFTBgzee5g5P%s>2BvxeCBAqN&yq7E}TaF=?Il-7*KuW;m zL6m`|j>+rSNl@8CEG=ve+{Psq;SR~)k+&t7W;jC0t&}1SZ`e!S17U!NlgL`7croRL z=N&HA* zE1utTU-`$7fairu@nXsg&#PT5WUNOvTCDgj2t2QYWd3%oc>V*yfaim#0pA^BJnvrH zoaYt?Z+3F&K%Q^l3v0#mh5G#J!h;|I&*v+}izzQWU*cl78Ho%rQd|mw=gT3Pz1N86 zD8Yc|gXjReIi4?U!E=j)H-nn(eNT06srb8_E5#@t$hgkX&QN>~JE6P?E{yHS6WoM;$`8|z9 zO5OEKAVGyru?w*{B=g;?^@cu~*Hodl4zcvjR9|tRdT`V1gQy4BeX}j~;6hUCOF7}( z%pTt0xc3p3<`=@5lzMkfOL+T|-Yt*Ey{jiDy?Y+U{$FbNt+{A=lHLu|6VXfO0`Ltb zz4YzOq~hL;kw$Kq$u?OOHPz-gUIsk=)r{ss!oPpBCgOlshMye|%>zw60pw-MpEO;| zx#5SU{725xyf=vr0so=1#u60rAVqj2;Z$gOV%BQxB0hGO^pFYAsYR<(Meij-uVLO> zcN8dB%_kT5UGMX*p8st>XS_GywdkaO@n#Z~-G$3K4Kseb0H4)+506gVV9-yFjMmdg zdD3HNbyTM6RTv_89~U6pHJ`f~sr4X0KmLoV3YiyQn(n&h(sbc*TBUQw2ahs9RgTZ; z%DS(P`X4SI7ApW%97P+!jnC_MmJqPY=n-J06aF(n;R}VS@l8mWO?W%*_s)xl<|Mq{ zm{y*}t(BjA@3^G5KbfAolI5Ct!Zi=L&(_ZQ6C*~=KvGKwnfu&iI{mO>HX-j-TNm!O zvb+QK{b_+yhj1b3O}QPyD;Z{F>I9cK*^#kItg`~0$J{9+NvR8OTHy`_Q_3`#bEa~7 zHIEyay3i#qb7Z~}>uSV^^O-wkI>EZ|vy?*J#Y@KJ>|hP1X0vYargo8Ny(tBbd+!2XWpVBQ13Oz&P252UP$ilw*l56FftEI;h8lEl z*;}cGnzYe!3R>GkTN(oTYr!HREw3*d{hdndQEBO^Sgf_u3#~UW;g$%>RRM1hZ?GeZ z0lA96|MOk*?u0;)p3C$5KmSXfCwu0dnRniqHEY(aS+mxfPQARr|4zP_eFeX|?)ImI znw~q(B)fN|mt94IO6Kdef@o+-tgzn8&d^JPPvbZ0=P<{IE`izcOStPc{3W7ym1NBb z4TzvVvP} z{qQ?m$~xVZn(&TJKDLs;4uIk?P zX-d1RY}2L7$s6uUD@y6n1XE?uw3N~(wSk#5$PAi#&*fb&-0OAhT8qELFPFvIvv>ZY-|UC@P5tJXGoh+|=aXAg{0P6a=Ut`%t}*%j3KNO_`c{^jce}_q^J+P*0g*44yulzCSSCz|O3bZrROy*S;J+ zWI^`Z?kSsmCfYupXwH6u)JLP#j^~L69K+}norX=Bk-Cs}=mx0wp-KlpQfH0m%_$I} zN-k^>a(i=1c(Qv0qyC)RL6vwUo|5-Bqj3$jIb^HZkjYL&<6i9m7v#GjYQbYe2&hbT zQY4e7)SxeJMRHqft7^@%x`8ZE`9D2hF4_dXKKWXgyo zr{%7f_+S}l`uybUr$9dgqW;%1qsc^L)VEbS)w$aTn!zP;KY_CHcL&hd$SgSs)s1)V zvO8>Z9-#TGlz0P5!p+3JdbxYowN~}c0pe|>y4xI+!#E&9Q}t#mm(sOX6gFK|R1#sW z>{>ffY-H7Vja}z-RdJz{(I`JUjq=J<+9)T7_rSk)AhzUpeVq9LQsz05^+ z(pP;_HR%ST2w!w<47)b6hdQjHSP>zQDnx%ZgL{oO;THc{POA9FX$PZ1_tB-LTULjX| zZAf@K@H(6Do{!bPbaztj`K@$fabvo$-Umdtlvi+akK@;NsL=G&CrHOlw>1%O+coX2m z&CHY*ygi)}_rIT#ynV?5>8VOz>I<+^<)t?|CrJc|;g=jxPW&sG=vc`+WqDS)q}o~K zcoL5l9jaO!uuUkwneuAfw{OLgH*ss$j!Avu9xA+pcEd)>2S4B9?F#M_q}K9`3;FGu zaiQ4`B+&A%izGiQi26Z~^ZFW1KDiVy_3<^3D<}Rt2+2i~Qe}g9@>in%6c)blM7OW4~JuZ>j>#Rd0l^ys{*SDqXk%R|K}MW&yI=xH%o9jwjAUS?W5n)i-ho0S%<&9@S@wYh#b zYqPu2G`)U~CvS)vpPa2I>*wtRX1-c;Hmj|>)-+vuDtQI2w4#)rL0~qlqg2}6ZJI89 z4|%~#t|+DNBQQhO&#JV$;51!&E_u$9b+)3Eo=;%btOvV(!b<+fepr6Kb|ARr^a>&; z0ok#aoYoGY?&CqGv;bs7h#JUd?E+-(uG4fwOUMh@8AWMml)!9RN7B&X!qar=k>vGq zAXAjm!m^&v?6pI_+0b%kTRkyIh|@cbqe--InYh*_ZEpeim}n~7M2TB zygA~Un7`tK5@T*-XX1WM-LS9;@uGe{LHHnNeRpX&b0@ zY&pciZ3MaHwfh;WJ65#XZ3JWfbhp>szd5}T)Ma$K2PR_$i?oAPcMdH!u)wdjjo@l+ z1dVrRD>#?Q-nI)Ic0FWEL%?=We8;e-wBWECEa$=e3u!ahYrWeHvdQX2Is+_@1pdTv zB(uelkT}u>B?=rHqs<^01*9~D-(2T5gVZwGmAu`8+FJ=oyvHTp=Ykmuz*GWl2B~E{ z(T4CJsfE>pReJV(SF+B6+64q8Zgz=HE?BFep>{5THiOji1ku#LUZ36!-kshI#{GGQ zien(E={+I0v7q>a1CG}doPcLu;osZW?Fx%%M9lxyNq2=cwDA`&Or6{Z+aBcmz=l(j2VT0llyh#DEa>b67jXM_<&N5uV<6E);b8>&BjtN8 z<9dR)*SCxywSAcF;RaAWcw=z>4H zV7&#oPZRLHhg`6bAeA50&aR4Ru(Ru6hiUCdUFjNl!wbi3GN&GUijXAdM2Y-g7Y22QuMII@d6_5;d6xiKZg5W@Taf#XCHCD$kZQhCEf73EaYKBz zYr!|I1@5?L%00)ztb&{qVRrssPJme_l7Lw@0c;12%iaf0(o~ft$aKNQ7UZ7oo(5Ww z-J5{Ez0V5-M=Z#VkeIr_x}mucbfbflfGPK+MqF-y{Nt))hW@^`Zg}g`n(wsmtp%;X ze4c3fWR9G5JO*uliYSd%Spt-c6CO+|`s6;e5>KW*3>ei#r2c~F3`KN?C zPv-M8>G_?`w z(qf(@%$RBI9T8BjDCCgiU3SYL1LTn9z6EA0%Ru z0|G=$gGf(!A0lExMKp&oN5nV;)?=uZUqe-wD8?m}k;l2tw*MYp#(P54n^LDSE5y!u zVk5#GGd=`;H8)UTPw9>mE^X&>AZ)7ZcV3Rq)|j_}i`!+OSa=||j$^i0DPKbQgtswX zh%NS3B^6?LiSX)Z0!u`hFg74Dx`vtH_L{?+;@+sud=nAVjVTT&HQj9E>AMpCY}FV{ zQbaBb4Ew$U!9Z6neJc~{sMu7mpY#*NDlIe~^h>JYY+`L@Ai+w=c5+G+GE)3a0q!EaZ7kyLFxpp5trGr8Ya(xt4MBwfn7DIR(`!M$U3ao;LOlo;H? zWFJW+Z{nhx4<`*yczf9%?&cqpyBkd~w)FsZ@>~?XjrP^qS2OIZrGxE;H3E$Oz^iL4T=zMXi;5 zs4VVpQt-*DXJ2!bJWODf{JE`?Yg{Ftg)o0|C5&rBI3r!d58G;ZPo41d<~?$%8j8QC zA`Ri+@PaktlD0~|qbxtKY5plInWrKR;d6MwDtYJ2tpNECW%+sMp1P8z-&-Z4C~1|< z4Jy$D^YUI%uAg_kf=>c$L-<~bSOwow1?fWslP(^7*kw`Q8CDU}MJM9%O{jxdW3-`> ziGSk0$%CA*aeebz1c=8X+#^zGyNi{H<)e8#%Hn=FcZqg=U*tD3{So9$i>XZVM%ziX z?fTlu8?{$Ie%Gh8VAoeb)OLMe+tMa)40dJ%$P46+in7*9)MoO=Zbv8`$Qy&wCFBM2 zMnx$tQJcvd-#JX_K;9UX9!XxXM^u#361ADU@gFK3$Qy&wqsa^8jfztGRsxeZdXzrt z9&uLeg*CvR*4^2dWrX#vO%5H*mU_c{#?#q+~K++>84CA4N zA|?%!AIdr&B(ZY(5#(+rLDlDIx#PKjP!&rfMCm0#dNc@!C_iv$=`fnyg$^_-$mV{dV^gIc= zuJEffrR#v$Dzldt9!`zk;NR;v`)mA4wv{9lo4Vr+zcdf8g?I9dfGRWp3coC~zzcs` zrE|~acZ8qCnPc|I-%5g2otfzkP7uB7uF}jbq(;MuQ-l1!QWnmkfCRR}>*h+Xbs-P< zefYCCs+}#6b1y0LSbo;R15y>RbmB;_jR z7r~NDcEAL-1|PJ^xx8>Ea#Lfjlz{8?r-dQm(|#ii32*(i1YDhY@N!=zepmKEerIHF zPdguWOxE7L`U7drPb`woWn^7$F!`~;P zD10}+)o-3`43Ax;I`-u1Mh{P}Hgtd91X$g9SQ@Mydvd*fKLy>=)K;(~Pp;Rhpj(yN z3XXQ;ih+Yp`<*A(i&W4pNNoi>^5lAW-zN;@g08R&$AQY0r6EUJm!+Wkwx#^ob*Upi zu6c&-rF}9DM#+sd)GbJD4eiK}YZ(m<)}pq89rOvxxFkH{22?1FCZwzj@W|ip-+Oy(6t8)k^gQ%?msLTTxUUX zJppQAODxF#of2!7^;+8gzFQvM!Ca7h{PVCI=)w3>|EF2QYL0f97?X+3d_X)hZC*R< zI$856Y1s8~>~1V}LkGoDoimx`cP^W&qTgCdb)o-Ob>GIsudTXZQsIH54OJS^qZ;;P z$!*eMVP=RTx(gJA$R)Y7Ly>5CBkERTUu68(@`8*IlsxiMn=F7&@XY9NF2jSUu(*GztFSxABDd5>;@VxaT@HDnf@SH19 zb>9G}Qm26DR-Nd#oCwbb(oYJ{A7{6NXPLv#?|`2lcbPa|h}X!-8Gb6_@Y7=8=R=k` ztn9yDEcMYW1ACq7t^|!g4*j3_>h!B@bb_yTgzX1xbnZFH=%mSF^cjuLq;&wk6R}Ui z_F+;U$P5aVVw4wP`^BW6baY-jGZ>vpu)P!z{U0Bn`+xU;$M}pbKh^l;0LfubK5>%q z`3&e})aW&h&&D-?zSk+n=eHkFDF4Lq@kl@E_zXRx{rFt3>EnMZtL9Lbi74SMYtqb^ ztHuOWU37kdp1D>+R+yQRyXK_sea)aOj{loWYYv6}Q!jt#J_D9}xg%UIFjzI61XiC` zb3|!6JqN7*uo^H7I0dXG?xfI=pb)(XQ28d3PYSB8pK_r3CYao+ulHYt*Rn(Z4S4v(=5(Eq7JFp6+h zM-Xv5%Xy1*{NVI}S}e8^9iWuOUO>{?L=0uZqZ12`PRvKGF9-Q(uhi5FLRwi7_75j< z6p1A$T{NL|u{rKXK~&RALB^^h4i3gM?*(y&?d#IHI-|C(`V3gj>Tu10E)&D46}M<7 zO;b=ddiTku-@K@eUTW&L=a0t641laE%0;1$@R^{I8CJSoUT99mUi3cp0ld`~?K^0H%WG$`x%hsbc#RnH4Y=}%h@@-r$ z2#$*d#HaH4NuB>ZT=AIfMoM_A{oMJ4=#9=DwlAX(nx`3`3e<>_L#v`=Xv(4z#yL_u z@IoxwLsa?u8)zrEffTcUy%_7_Tj~_tBf=A{e-m})SE8Yjc*dBs83dz(Mgm0Z-$wa! z%3KaBzBHOq@cVD)HI#f*hy#mvkO1_3PUm{gZp6>M4JjvvLLpr4KmR!DJzTQxP2^B( z@Ofk;LU^;!d(93;ij%6z8#O;Tu}CDVGUYIz8kbT4wOZ=mfX?ka9iW5`qYk?O5J%}3 ziE~lm#3eJu4J1)hdh)|75VUj1F(c+J2P&JXIKkzee(_nfAXeBAH6Qu;EN^ItA>fC5(YurPcHm6Pv#<{sT|iN z3isnx@^waql!fJd4i(x$j*adkCsz1kf-CF2g(F@1H@Gq~&SiYcS%!Zkaz>M*qpcXn zJObLn@k&5wUAQY6`Y0CK8^u9)vO82EyAnjWHd#7{elNO}Qi%}v0?eL44A6Z}SdtvN zg_aH_Dji;mO;sjNwEf~WLLcvlP{-7qx$c6&${VTV&~AM5tCuxPyNpO?-4E>ZK4+sn z=KvL;>5#>0I7sT0ug=;Nv3ZY)@6ZZbi*yZW$j)Njo_p|dmXV~R0 zaz(yB1047am5!&DUYpGNEJ!Taa}=PFL-o+c%O77x2OY8kq=v3_eSL>RQyyF(o{J z^7&_h+3o6Na_Hwds1W$jW~W~3GJ~Sth0H!87Fre$%@*oXQ#>?JfQyD!$3r*H1-^~E z>Ckmi6H#mv>!KI{LaJ}2df+So^ZhytW@qYUFFC-T78O{quonUFdBTF^0t@Dp+v~G+ zC<1u&8IDNSTCi}l1ydHp{hOb_p5~78V>KUVMP?2BCel72Fl8!T*GQ%|eeVK@``cUy z#b0Dr4+u8bc%>c355G^x@0bWuJVljg*jqDwYYGFeui_M^OVpdv#F=nsCgNH~uv0u_ zrg1Vf0LJdk7HiXu^J(k>rJ%#l!C_A6s!X$cy!#vAV9ilZ+iMlW_nWr~3kW=d9*GpZ z5-C^-mC?~7ivPn~%%#@%*K+vCOue}Y(p|^0et^?Sywo;eCNcSW&N`2vP@nTTPNsYG zJ0D;2E7M7zRZ^exDYaTj_+5QZB`;UpyrSx&%v3{vt7LFpsAhevWEw+xT; z$WpS^i%X?VNaX>AlqqOOGZ8$ugt-Ipy_?79CV}cNMD8!FoBq zV+S%m)cOkljdIu&Dd2_=j6!mkI_re;&2$?`@OUHI_inIb-WF!X-bB#{6Z$eRjSR+0 zbpk5|9LN)^h<|~0eMkZG(e#!Mi5UVM>?Vqyk4*cXja3KOWH-Wek}Ti!4Zi+a5#XKJ zSyXq6)+`b=>J+IhA$4(QFe#e65{sLb$jnPgiTb1NLwgxAw;@`%8edO=xrV!dI~H2a z0XS=P&ZI%ic1=S_g%+B)Z)S9id4`!r*l#&^Zp(GhK@2mZMMtXMU_K9_a5Q8VC-Gzk zw*}NWzrcsp5`U4a($=ovpqnbYx2RtE#I5A^fJja?mj{#rr~LzX7`Hn|52d>;t#Y?6 z^&Ypo*Da-7E3msjLFI1Tq4g+h(M8|7X+T#C=(_J}?inCEzF*$b*7CoD$BGpi*OxU8 zS-bQ*c9-l$awhM}*YKC^lB3@q@m-k;#_sB+VDhd4p+wm(Dk@*c|9eza-auOUD=3Y0 zZ{cTLOU`igM_Tgvt!zPaWCfZdyCT!_fJgI^Pv|^O?t;#jS?9;nd4WKEucYsSfKnz~ z&nxM<`d`5BWb1eQn0}X8zsJ&V^ z!-|!W)=Pg|C<`fhE;94JK0@2nacDb@R2@Ztwj)7XRC&f*IaB3X8>sTcLa6f8O}dQF z=DW`p5P-32gucF7UthzxR%FOD8VfO6(#Wj_eo`fAz^hEwNWlgQ*E9d?p=r_mD;%nt zw9~ERf#k^zIl|z0L%xE_2C6S#&i_^o;yV4T z!j1sETN0Tzl5RHphIbwJq>p+sj-JqLI-*`#bFES1XcUd6O=_T;)Mo`h<5uMGTfM@Z zcB^+4eblaTw2Ne#r8bgWzKnle3$u~`H9?!I?&4u7|C&KdA_a|*PYnyOZ;YXv^aW^< zgSm}SfKoIpW35JWoqjfA5=dDa%y)KV2$4X@8A3?1lO=STA-T6o7hOZZPH-Kfl+i>HxqOWPwwWDzxW_-Vaj(^mi>LXj!w-MPiVgmT zl>Yp@-`z{;!o3n^sO}I7*Tv6rvX6!Ha>fp^#fK(4DZZM5Ba*#86)Sv&&5`9HM@kf~ zjG;do+Q3CUb}^4BXG?|1?|T4K2i>cMAae+H%ONQWN6D;i?6tMY=E|Q2TBkiIdsVHb zwlCMcT4UA&hOQkAPe zPB}d8*(RMT)k(2j3UItUOZR_8xhy0yGsYy>?!If5iyf^?6fLdV z7PJ7_nu@c>4`e{*DhBxhcH_>(&o`|xv{MDd@#>I2PoPV%OZRPWPU$9`o)S@H+MBf34>b^BJUp*E<#L6)?_Q_^I5I!*BJL{HxdnY~h-+rCh}FN@Uu810 ztYZVLp{`kFG>g_%(ky~fYkftAxUj3mkX@(PHwMtG4D8I8ln{w;$x+vcm2JuAx3aaR zRWk$hiWjk!H>q7P%oF+r;-W+{BNF%LwBp8ES|q+qxUoSO>lCd8H^4^NGO+FO-onUT zZ5a7$5{8)*hy+d`3?qG#VqP74X&mju@B*PjfDlsq=O*#hIYS)Eq`#Q8LD-nJUf<1n zkuN5S;0nv@tKQ@`@|9u+WBZpF{uIcHe>0K^{Cr2IuMzm!z*=ps?PoK76}*ivaVzV$Rem*X;;~eTWL5ld8OSa8DDAlNmj0O*Hw~t6$3#YK^b`j zW69GclR_44J=f{yEe5P&&?;RrS-Q$DnJimnmrRabCHC3G5shN#m+0q3xtC28HAbeD z3Y%mLabkC9vrwKk6HIp9DW%O|hT1GFrdWfY)xhk|x<}75!GJ zmDRM5V6tmpskKk6{c8Rj)Vj5;t(&NI0_h0W)El8Dl3zmEP`u|G zq9uUHkq9H63CyFR#fi|WfHKF6-i%C}DqUsYXgK?ZsOt1{e}&33XDuziva=QznTwBU-*~zY2_OHD+Q6qTew%4s-2Aj zwdYuFxPpMI11NU`F;>79ma^^~2XM?Lkq%F{xF<1#Jk3v9tGeoSC+;S3AX?!%ms1D39b8F68#^v1DSDDJ@(9B znJw|QQnq4RVlFRfQNt55Fr8tAXPX4xTUcjLiy8@pQ5Lwv7|)5wxdEc~Ij*QkcrRjR z6q&WWRD0ApdJmE7*R#)Kn+_W&f5jMjd*o72J5d_#cQ0m8RS$S}aHk$!LjD`&n}Ej;vox%_yMwmOI-dy(39 zMMSh{b!2AP3a-W(OyORbh_lrk@RQRJ7??@Jwfv}Me$pYl%>u}}iS2YB1kxRC1S_(3 zLm%*#V^o7vAUlNNHJb$fq8!i|(d*fCL$V*XU7`-OdOfmiw@gSHf$*6u%>rz!_Jchm zl7l{Il?h#nND8RB3exQ|!10a%=ey>yYz*3Is|FYKvTBUwqF#c@JKZG^9~g1wf?`&l zGA<}47-!e(_87}u#3IhzQ>?Xvdx{ChaZfQfrB-uA@|CbB-0w>;miv7PCUd`Uq+*ZO zl{H#Y-qg=w)!#3rPnM?KHOMJ<4RXp|gPd~LAg8Q~>Xa>8<5H~HCtichdNAl+EeCP# z{3RI6oxcQ=+pa-2k<&7*0c&D4%UPk)mp~j~X8)7W>bKLDS_iGTgI49S(5iOODs|8* zYX_}r2dz>EtuhC#aX<^8O?J?VJ7`rJw2qgnvE=ki*}|7{Hy)?ljmH2>OXIti<$A9h zkLi8ejmMkR?|S{LYVEx4d!XMZP7_u`ogHwk+=;8=t_fcWWbMLI&W(=6Cx$c5Z4O!+ z-32K7EZ$=KtX+oj*x;ENPL0VZJ2Nf1mJZ5{O!vRUAf%_~q}J&3M|}d_mK5C(|=W1kUaXZic1%&ri>NCz+mFW$1Vg)3eFwiXC?TQ`2+*@zc{) zaEj@<&!*=-H$C^c>ABBM&;2$%5yNYGB8S)X+Ci(-L947Cw5lDnN*%Py9JIy( zElp1ct+<0$r9rEs>Dgj)u*FT!7B>e0mZs-!%W}PsyWUq?@5P?Bo1Q`E|4Y-ec|vj9 z^vr?nIc|Dp>1z9mtPg-wMG#Nf{m{*Z@UOwRUd53f2AFor%SN|ER3c<2W$_S~=(2hg z-H6C!!2zu!cAN`ez^t}a7lBI1c~A8dbE8FefF7B)A16)Cx3Je?xy!U^V_H-G3~4!aVWzNZ#fnyZMM*c%bhh@k`{|CDFnUQD}KZPx$`j^gW-F zD3epm!XY;4hi-$>C?HBoxvGJ0vS3j!1r6pf>rOSMy_;ZNO}P{WsnL{*MdF*BFNVd9 z$(N|xEb5}kq^h9asTP=JA$j+?#JL1C{T>C$*#Z{*RBgO)JHgS}Vj2)ORnCD=tgVBG z|2DD6tY4}5es02&*TYB-Bu1a#L%lyTec(_?E2?RcnHMW26KJmiX%pQ%culgmF}%^j zwXwpbSg#+6hStWsRgr>>RaYl7&cTsk7qm^Tza`R*i*?q3+C4LJs@{lu>k!7R;o{{9 z=SeF>wZ#h8;raKF4qd%LUGYz-YnkCAQ&A5Q&9ZpWJdJ2%)>Z1)m~e^D$fP$nfqKaB zxm-YYIT>iz2LmllgGpg^FZ;;vtW(?R8!$*Ia9R*B!7IqWhTg&lUrPYD-prP%H&Fmu zz!%}1drZ~)xu+BG#+yJdt{T1CA(lV*4g*^Fiv%&R!LChX!%)}~FXXBN82mcEdOwB_ ziNfW4X02k$L0<&!H~&5X0}H*^$dpVQ9Va@*yte#=^cgW^K!0o;TZ&nvMx0 zE2z+jUNi!c6VRI7NDAyZOHVn80oxv+JPWaq00oV?1NZ5=65uoN%fjA3qv0!y?nh`JbDlG;YFYjsdGFU+l% zuT`;ryUW*pZ_Dx;R(4&!wmwq(OD)}Y?NK869hk5eBQtAAVs`))Nfd4ecD-UXZ?ks4 zmI%FxM#-cRoYRhW-x^?n30k!FW$E^E6xnU1~E%(D7@Cbb%G6G5?qg2uj8Q| z>~6+WF_!(G<|$Gj{u-s9!)!l;Yl1&#{PZG~Vw)H==2q7j*CyLvsZE0pX&sIqa+j(d zvQ>HVAzQG=at9M7CLeYy_F=bTA9gGDVYgx*b}RN_w_+c5f|^5_TEF9mEN|=~%bR@Y zq$~CjTd|M275k`Lv5&eH`>0#7kGd86s9Ujh#C_t54P*x$J#<;2HAum0c+q2`NRere+LdX+ za_dNP&7yo-#uD=aCFXz?yBHbtQGE1^S0`3pksshJ=?@CoiW(OR8GX z0@@UPMAFpibJ-;9U^3d>Zhk9?cB0Ac=3U}NNvr+t>qrIOdf=Xv zXkiONnA^8}yI1cTFAL>SbP;y5^7`{i)QZA+t}#u~qm7Z7 z12$;!7(OJ<0E%+Q{enpC<8&MKKhA4@Zo_N?5=&O&0McVf+6|=Kf20QzO_-+0%SG%{Y~)r@H=aJ+=$TOF;*5sz4Wd zX7nIQj*+{aj;j+(>B(!Itq=!AYh58L;Bu?}!MY2d#f|B&MQRqWQ+I5Xr1zZsac8pd z55o$!^y-F;0$PqU8V(I!t9rlre^VImx7RWs2Oe#HpYg-X%Z>#kg^1&+;=8XC-~fGJ z5ASPN; zLGDf#%pL#{WC~`lUevdfds6Nhn4GV64FQ}0S2nN0t>VWdfYX@Mh`$F;x|_5M=|c@??4p6T0()v$lFLWEV} zrXZ5HiHLe~5n zL|};~V5H)0wMJS^M*SR zH0)wBr24npRR4A}#{$*ARY1A<+*3oplp;4Bp;&pA!G|8`0c}MEs4D`REWw8igOceK9s{4wpfyaoa2?e`a8)=LsX3R4 z2ZhmmksbnyhBi;w=Ta~b(Spk9N%7=UZc?C1=Jfuu(D@3c1Wl9nVb+?!D=zjHR!j3g zUJEAoZL^ynwRrP&1W=~tQST^RujBQfhu&fYFX0EWqIH~R&9}fU-MV=CS6Z?BDFfJ@ ze0G+W>%7qfasTwFf7=jr2DFohT*UorM?Nb8#NOpv3Ph&o8!=y+@K(nPUyc`I0$V*7O*Q?4K76m{Aj|(d#2}BC#A>!js=LMZH@NkGHOX!}5KCUgg2qzx zG)XaUHESZ~7X#NLXYb4&>5{ap{ph5=!PWAxE6W%5&Lp{Ph6>`;(N%c9@3N#Ob zy`i6t*xz#!a0gMBOZIYI7#c z)GIPQ;ckGc)Q+w|b@Q=FAD}`!p_iIrP4IiSM7`cR?I0Zv?Pvq{86`r^tw1{-P3MRq zi56lGW4p=d(N)AoYL?BcH@v-Zz(A1wZT8z|aHu7;_a~qZA$&cTt@m)9bonDjMy7v} z(MW)&$scKb=Q`~VqlH`GjT45oHgbwRX4_wPPQ_N+CW~f?4h9WkkE;_)0oyc0kTS3O_ zGNnobZ%z()1Fl=8jyyuPjQlu=vgOt%kN`wx89Qbu{c4R$t27;wgC+SAql73}UN>JaS+yVpS-gi^7h!;xuc zYQ1Prhy{WyhteJdCUMKf& zjfeJYP11;l_KNM4%#)qxm*a&8qJhWPbNHYm1G2E_jw zlAVHFEO|W?cx7Z}k>2sR@8u|tI<*GWyxEx!pJ^7S>!c%hUOd_FD=d+hCPKSMcv&CE zput=(q9xKW%E=iL-b-|22S@>MFBO+{I^wTU+U4}f=qZIPbPATTmwlyb3uOV_yIgcL zp|`#jPxk)GwSG0OK11&&yg@Gpm*Bhy6lG3zJS0y)c2c-yy2b>aogy>0bfG)GW(L=( z*D(W@PuI+d`UB(szaBF)@(z=Z+;$s5WcrsGmW20SKSX#YIcyiL!p=$>*1G=Bm5VUoF@D?02(Ym@EAo)_Q?Ha z;r4;gA;j#gDP@ApZ4zXjk2w4^fb}{QA9M6UU8A8@iK4Al?*$Va`%er=C5c}H$6^$} z_Zg05$*K^`5<_GY)(n_X;&y67q+$KLEdHtB;z(R&kmsTpd*)&8J&ul5Eto4onGDvr48 z6Cp6ptUS#iE^;ESYXSJyIil#p2XL%gX>sRT}>o^3Skc9=4K2^=3&`0GnO8_ z5Yn^l@H_@9uP#=It@9pHeB9TDmZC>Ro|swIIyoIc=uxYImo^T@*jgD>PFFM`q6i(L zvDQ|8%-kA;StSqb~)4k z)=N`ULa9FxV==!>YR}qI1bFldlGDlovL!?mHB}{rNGNXZ)YL>bAldygU7QhmPx=9$ zWv`^}a*>rzkTcdJg^Sz}{_v05t#!@l91ArjkRZOrSO{VX+(}?OsOAQHEXM#b5kJo& zpw$XP;L9mv9ZYs-e-+%4W_u>a0?i*=Az54jjut(>jSxk#NI|%QFGG#b`D)~b4DDCD zoenkbnQ=M;@##oG_Ls>fE51*g*lrQ!Wht*$q#*Y^mshq=JKJvNin%)kUGL>}v1)rS zmX(%h#&9(nyW4| z1+HzZC6c{)<4put{k~+2@>;myNxdb|FWuV- z!2RM608R?YA36=0D)u%;w;0MV(tfo{x>^<(bv4(``=MZ~0}2+Iu8Bz@m1QG3iO=njy64jYs;@u= zL^80~tCvXq8c9gLE&<6+!l4qlkt%=3585?is>ns!4O~IkQ%wcg(=5pSi3NGpR__fo zbr`t3hFWi+q5RU$Q+@BzXwljU7YM>kx-V&yx{l_5l^W?i8s5f;NW=Rm)NC2pC^Uo{ zh^8^|ES|wIVM;5TejGKz_?SF1|0@JDPZ#z5f5mv2hNKIvEF@(q9%A}b=rks8@hZ<3Tygd zxL3CPNahovcc`(E_k!iU6*_Jn1?L8Cm1k!@UM=QwWDAbn9<FYt>=(zw|Zq2Q6`gAnEVjs958HUfDGF82=rF!xo$n<)6fpB zZ03io)y%3O{O=FeQQ-uc~Bjqek15ZZE6Cv(#9J;NQ zlzTuZprXv(H`4fIA9+*DMtr*&Oq6YR_BGq3TGpfVO*`<8Z||iYTiNyk1(n-H&d;V* zkn=Mw$jz`I@9^)$JY1ad2Abj>k#kt4s+q0i{Md%H(eo#%13dnV1-Xw}koS;Pd_%^Y zLhbEX7~Mcag{s>Joa%dj;SL-E4h$Vza4gun&KiZ~nQ-A6IxHC*Wtm$}~V*gDO< zFM|uBFi44wd)^3jmpCRl^jy9`^+v6s{D#laSBL9{{cKMh0!e_b8K(V!&ATF5KV(zSD7^n$ zL!xa2hT)^dvSfWHjx@JuMb-1HWs;4sr5kS|mVO-B)A`-*IK*`$Wafod`)X=@AYD~2 z+n<^+g`;v!-N>{r*}lp3+i}g!-!_6{%V`uTSm6PU1mG9glRwmGq*%#dnr71uM(!~i z0CRNpE*`F8g)aeXh5+dw=ykT7Udeq{KvIVO8~XFHkjlu&lJcP!iL=5|o^(bQ$g9fM z;V^!YG173b6ly@*4~L06e`3oY2hyXsjLexEj37ok&p%F_Fi5wRnN}3XAaIf#gM5Z0 zQ6$1~c6I3(_Ve$ew!Ec6QPxr)~fJ>5yiF0EqqG4x=d7B)}P z`1LOuNJpCihz*@XGp5YI^$46y{+jpmA4$rTy_Uc^{f3@v^^=1RGy1U=F_D}k^us`D z6U+CRPC)yb2_ttSn~fKuXlL_X(pzqe!OSPL5ruZQ?Q7KdA+$w2Rd^70HVJ5jZ$6u% z+_$5X3;Z%sM$35pJGhd2SxaQ$PFOXx)h?6m3Hw*BQt{@^w_?GGMw(~{JzG`#Oj4i5 zQb#SQek5IDKVD8CL)@8cwgUalu#u z6h?AwtZ=17?Dg9mxM50Qj@L*q?l$(~!$X^pgc;M#(BX*9i-n$}^Dx^`4a6ufi*W2m z%JRIWd}t|$jLlwUBldAX-{T>4W`oAqph1+}pgB3X7YtfE3KPgFTLq_&8<~O2-Uct@ zv^`!UmZtGZ4xeh?F=l7EV|Er3q^+BV!|UK}=~0ppUdns|j@uM4W#c3zOk|hub71zbj#tZe*e>~e<@b(2k~WY>dgTsC(sD@Bd*ZL% zt{{CTvx-ib6t-VLnc!iDV3K(DF<|;5)fnP8nabWaktP$5ACJ1W#&k@Y_Sw<=AuMI4 zGTiVOLgpBX<>*zTiyV1;E7Rpr%zKT#oEI`ce3}nSSoYy{eXPvagi3= zmcs2!KbAW(80B<2!eZuwEyUdL6fInd&p^(9*o$&w6x<0`k|uqGsM%z4+SqAL0LPG+ z0R23+&dw*B?iUL{16^V5(Tk|_TuL8Ad=cyvG8@F^z*Hlg3%w+LEW8@D`nQjv2gYc9 zO0ufcAsK`{GtL(lSc-cD3yym{!*Usqmt6_;uN-V!JMjuI+Y~E0I-w`K=6(WYLk6UR z24i4ZbX4MV>>11vL_*q>pOM_WN%^iDpnD0uk@6Nb9pFtX2(?pZ($tATXx#eooiybUZfZ%hW@42f^D6Fsev^ju-8#n$>(8Wz|P@&|4OC zF6Ob~ESF~s-;Sl?h3w4UIe=uHt!DyF%l6%T)pgTsJUi-~SkLKh-zy1bJ&onA5_BMh zAlHr=^ovMAiZ<-}FmgxM{qa!CEwRWQYi@~rKb07>CRUFI^c9hfrK=Ap7jQHQI(u|CbG>#N@W<`Dgld25@8pwg{Mryf+e zuX)QJDywULy2Ug;-+9-jt&ycd6Q;xRIU-eZv^jr=YrtiwjiDZTDe9rraKTm!icP2N z{pP^^24uWdX&YwPw#%qiybVO-Rx;S0eIeK% zAWz4(dN*Y_Lbe0L$n@T}{06>dXSlFR-?4eY&9zDOsX@k&TKVG>&#Z8vd)Y*%kXyxb5hE=4M8Pt`Ut9V(_Ok+LQBk+Dm9Y5z5OiG8GOiG3t4AArYuj$|R} zF848b&y&xX26>Lbr=K=hiK69!7Tk6w4{L^?2>AaQ*km08n=%KRvB1VaWU#3OHZ*%2 zuuv&?<_jz}CKAVJl<@hSQi#2+=284K4`5Wrz&wI-IpR0Ok)N1D$_$CqqU{ zH)S-_-*Wg?odh`prk!Z?JC^`ZbJ6X{tZ%Q-tUSmZ`~fpEc7n@-a#GVw{Y2&;Hqpba zV56A&<*f`vz1aEd8J>3T3KnM4r=W4#xk>f5B5R-h;_CExuLWN4_OVlpKC5fA_PIy_ zK4)=ulf%LBpq*G$1^QNz>CQ7j`rG*i$iPOmT@wJ#CwV526)SEEoFNrv_%eOo=?tl` zr)R)rPcPGF?CE9tj6FSw@}Kog@PXZif&Gg9qLpZ_UneUfJagI2YJR;hzlSvzP|J7|?UXq7o={U<#W zd;r)hCVybIV(|~mR;&_W$@KXXJrk@^zs>l2X=~@r^f|yWFK`HYEUH1CDnW1SoF3!WFN zKH%V?x%MF~;5%NyTJ`Ir#dZg3=ivc7HNW!@J`Fbt{|Vn2nRfPGo802eJLWN-frk)J zQN_|PjTT+?>`cPaMqm#wr)&Gj<_e4E?#rmC#&&{m2z!35YKLPx6tx3U?plu2E>weE z5lGhmGA4BWaW+F^NNu$l!uU&UO5|>7p|XhRq1E^cvcL^x;`)=+6XxeRTxqSf>Zxb9s|OY37A%M^Ay2!S>1*4yULQjtGHn#C z^PqavixDNq;DuBzWD@B=AjUn1xzaNu z3*s2uehtr|rMzcpHqz1Ft5oo`SW$}=J4;Va{UcKKH}rmxIDn=OS~a)L5%6cL5nwNd zLmXPMJTQQm#l7ELPBt9g5weBE^(gfJ`WDQRYw^Poe*0UlXB1tx_{}i)Ivsu=YAz?=n__&ek0WlD0->ZYCw+A)tSSUDNV-;l^u|)%{7S zN3a@LPe>!8a5X0$%dM&0kAWJIWM&&AU0}cP_PNX2nCZ6DB14+h7AggMw=gN*_D`CiEM8$Y@=o&1jcxgX}3TWc6?9zKGvG- z>nz9}VL@K0Ya0qck&3vrt<2hnH4ivZk+Dm^aa>9el$mqv3S3Gs5%?bE5oqaqln%aE z^~*%jhDgmv_k$~d9AgOWY&o40czg0OQNavzSeLQMz$-l{-l^KsyquSi-|SeV`{i`o zEq6MVu>HW9LUM$2rZ6V^0b;SpH5-RLD}n{=;36&ysVwYV$Or zHBFsShFv^&+KZj)n=(S{&s=*a@)A_p{GokPdC#0HM-xB0+BG{lxlg7Vy;vW$OKG6j z4dGX*#v14qFC$7bULv4Ti`~<93v$<5V(~hHRJDEoVWPqJ>uOH;J|9ax__Q@3+}41c z4jS;$<*f~Pizp4)LqG#wcTegkQ2D?Ti(3d%AJz*1%ZUaJ7~N3=a#H8I2D}(^5NHTr z`VIFj`rVDFjb1}IpQwOBYM7}0h+aaJNe<<>k5Q!s*(4m3Zetw6P6utzPyOym zYkOrh4flOFw6^_Kq5<4fM1!`!Ks0FkZlbR3Zxhh=mq?)P>GamN7j)eA#jg182m-kO zjcDrGXVvx}5e?d2(ox$BQrn-fw$HdKJ=uS$7{fe3xXWB`o#*K>r)_`#dMgh9hG;7m zG=v}GQGEoTlSIL8m8DlI$5WjJ*^dw~%m2-S?B5Zj&awuNCK@!j>A?oZ>Qxi9G4pb#SlPj|EGWL4AoY#K0&<*a(B`QfwRuQt+CKnt&9ahj4*S-yo0js0 z_jyHsam0WP;nQigP@p-7^_=I=@!XahOXq%pg^=7IwafL>xs~v+X+@6nr|R`lQT&#C zSzzDE`rZZCEbDgC&QM+bwk~J3+=+KvQO@Go6iGE{`qjL1B|MsClAS2 zT_wLFu$Fwat&+=KC7Z81WhHY|1Uf=sl^oW@QFj``cLZsS_T5BpboXth@7EIv<(|B# zcjHuKXSZv+g=~$$Znd{titIL?d7~}u#XxH}>fe~ZPp1h_bk!B&$TmlEA{5ijn& z0h@{i$jH>`Gu^fDxEP%|T-rMDEL)ycA$B&=r1|qiFg^G?WDdK5qlJrzJeB`T-7(ky z^TeNQnx}Z)r7G}5-F-ZS2CpksRnHB(;R(^ez|T~$d1^3oA4im&a(7yhc%CF$9Hg5d z$D4DzJWWjWU5#kvvCF2GBDu2dJ&-TGC#kZ$T( z0^t>0ao@xh_nV{s^_e)u8tTV$N?@MGl;)IrQ)YOHnUPs9qr$}1Z|jEP9n0?a8}^KP zAdCN5(yWX7Pv1un9n-sZC^s-l=nEAvc`S;n9|;+fQ)Y5=VF=i{opJUZ(fbd!CYDqjL~ z*i=G6mJ(xQu9hLW-^BlZ{twZBel5><_iP`{67V^%8ZY{B|(K3(*+pze%xBqv>Jz#gBYV=`V1UwT2j8UYP`q zSX(VuOwq|0tEogCXv)IQoxsTU;TYmrM^4@!)5rfvdaPa=!>`5-sFbvQbay zoV4&2_wc%F1`Uc~#|P`3v-QE`4Q2#J!2=mvEDnH&5yrxJ}i@&U-mB>*t@+ znlXGX+s=ZxhsWtbpVQ`BzDGQ4L~d@8E+c*9lE6_5s3sNnzJE{Dn{preqjjpvzj-ZI zDxA6{8rcy$5oC$vi6(;l4AsZj4c4xgTc^56Z4L=({ax(@*F27lrn{xjakD3Qb3 zGg_U19F$H;N!+`!iBB*#i6^*-s!k%kEQvzX9-ZWVv?5FH>1^x~%HYw-HHq@P`4pCn99upPD_c-rOdn|AA z9*GJ&bced%gpN3oK=xRP6A6N9oJdI8h!Y8dN}Na#R0sYRb%j*N-kWw&tRnuQ^WOBK z^WOAftM?`oI+{DwP0}Nd>wMe1H|+$2KM6+t_GqLgI~c_sj4Io~sM^7()WN8%9gM0S zj7lAh${dWw0V4@*9gN}*MwJGmj$AhFr!Y<;oTw2sX}XCvv=aO6vMkrz55I9LR6G3hviq9Bm&;G9y2pgbo_x5iau9o26f zwKzSF%bF(PW4K2 zbNE~|UX9RAi|~@9Zc#rvKu5l_ZUeWYKIaW3Lu9)G>3Mqqk{k2l!@&WDcfU{xZp*B} zh8?#8feQwmW}E6^H0^=mU#%SH2G{~aCpv3o3f1FNPJWj%u%payR{i_scL~>i#~M=~ zk}VyY4i{(O^apPXIQw(9bcc>j!c_orS`kZp17g=RXo`X#CEAU~G;5g+2fqeidDA3|NMaF;as0@QR&8!{c6IV8J#%v_ZnCtj>y45H-SL1 zUoS(|$hQIZv}TTEOwDE56#K(_@h}mcAXp>c_#epCty(F$h|&V%m+Zut!&`auVZcUc zDPpY<6TZ1)COn5Csc$|m4(%_CT^7FLr zo#ONBSna6fVP3FG*8QoqC99R?=lvcI>lBrYQ;~-7oxEU`%xtUVyUOzOzIy2?D>+?7 z8p6GK!790`t&$97`FV#=4U;7*(h&Yf|DcjCZIwK$EI+UO)Ri!7s-%j*TC(V|R+yaQ zD*3D6`^n>ayBnPs(ty3at&)k#^7GC*btM~O){=sBB?H?kS*t8RulY--Y{{Qgq#<0x z3)Y>Te{Ai}qssF0`k3VD6VbF;GOC8~O}t>0Jd&=YA-s|-{eir%5^dJq&Wo86s8N}Z z)aX;4j!v)1hXy@a4ktV8$+%rPZaj}9bG4&c^{s*iOT!ADPuT>_U&-C$M@Dk3_-OIK zL46Iz8V*&lq_b1verW0#tI~DjDSd0Z(&B$U?Mf?3-6Fsbsr0{5`lNT05BJaQ)ZCfg zAaGxWY6lt~&!eMp0x54L;qiT(sSM##2YKs!i4Mod^lurQc7H2%+*#*vauf9*n5*Xa z#aBeJKa(TZOBAV-i&ZCm_ZHPbK}>jwtJLma5Kj!L$z5`ln9uDvxNYE)0T|+gB*=>a ze7lqtIOLj7z?s9F@b&k(ltuz^s1~@pe1J4hcd8XNbrIHtmS|y9)NA4^F&y-9Gq+xi zBsKx_wTg0Ow*?DZ+>?%%adSJvCFbY}O)*OxHG@{9$Ov5GE>s0aH_*$OSHfho5Ap~9 z8?nf&U-JDp_nTWXW*oU=hyj+~%AI~Uxp1efa}vow);~;m++x}tTYNN(O~?#?jj|*M zHMq0gIB?%E$Uf%~85n8ScR?ZbCb_eX6*Y2b*)yXT+H$Np_}*iskUQHq<<53{tZ@AZ ze~?ZJojY4B_*qBfYS`S_CW_vP%({*aG>_(*DIK{ywV2*?fZI{S?EwzAOF*#Waa(Bt zZbyk4ZeMT>*gCQuwvHt40u4;kIXC8(c2Y`&t#5z-6R`DHGr-oTcWXt;D~t=!vT$6- zW;rtJyLKH`?u$GGM?y*m(p3Zu%qqxQWaeIBthe&GL%pq}wjS!mi%@2KffOtm;+~lv z7A}GJ>Z0uj+c4RQbM|GsCLKwjm>L3VZ?m!BnCy#_F4W1ylpk_30dvQZ55J}F=%Fjt zOL89kW)&vfN8+I+sF60bUf(Jub`E?pc##92!#_~af1d@#9}wukBui(`6_xAk^km#R z=Xh+L9r~2MB<3xr>?Knd9{ZAM1y{f1Y-e9G+u5?0%yxF{OJ+M;{gT-EcBeiZKW44t zhY#>e{rpZ|7o10~jZC`{q-dU`cAih;!WGuI?CUJZ9brLUY0%URYiiszwahiOa-E$4 z(NuLK{*pTcdda#``I4E>>hrwBFYoZnE6$_h+Nxx%XlbNo+6N%!{+EUQ;Q30Y+Z{fO zuZnl&HZA*+Iju9mT3WTW`5N8rC653 zG0XXvl}X~lh$3%YH|!~sDnKPbQaf?MXY{~2r#QxfF`T7K(>LzrUP?6Xg)g@tTWcCm zUn4+B{AGK}Eh0!AnJ?LD4$(liI``odE^1EnQx}A9s6Q$*UC2+E%+y{xqz3k=6@N)m;p4Qk? z_7nD$_gf2!|3Z)|whsJ|XwZSW6Hh+Oc~5H0Z>f>X;0b1?J4h43yLo%NWJ^8I`Hv@tsUs#Byf>h zm&$P+_+OWHh!ZWY153$0bq5}S*>Ql*`!~l!{e~duzzm{v;LpnNa_@IfPuo-WL-v%H zw4nIc1gVRy1K%W?#tGz?$B%$om%8>hHUdxdR|o1GQm<{DW(O#8%rtYF=ndg5aBu-m zG!Vr?z^#uB;pcgDO%5+qj+d>nG}+2|*(sN(^G@dIQx@c{B1lb|Cz#J5nx2QqJdba( z+LLBQ>EJp3ZLr-u1LILH9zzjiF=qXYrW?KF3yS|hkXrbVI`AE$K?fwXJ-!2KUFy|2)`3C&Iz*aG*MV8&p1K3~excJg5vWx7Iy9Y){#D+f&}{78H8~sXf0_2d*TVp0-HKkMDq5mpaFFpr)|H z4&=BFyg=@$J20WRwF8wz>A-ghf(~3qln(qv8D8#K_f%_7**~zSyc;YizLg*~&^pkU zXwZSF9dtmgOI18*Be3KWb)a=|Nt5zkt^<3>ZSBBwX;N;?Nt%>%rgs*bKMoQO((;CW zt$kTQl$1pTZ0OaAhlzsnYn0*TKH;8Twx{eR?&&QTJa0kX91Dt95Tq(tdi>mfC7PZb zcb_;kYIf?U4_MDq7k4-``L1W5KelHlU8HXRd~0|9g(%(m0YNY{HxQ*)Q?yC(g5vKJr0!$s@pCUB8gxJ>Eyv@QT9;aU|GAx>?R3YBofgm4p@&xE)Fr2% z+3DE@Q_^XgSWnIc0;$i`Y&qI|0B!VR?M;W34I5=TCZnQvzE>V_kNz)5Bi)I6_z!p` z<{gfX>B2>za#Kema9>0aj{CpPmjuY4+2=mq8s?XU^8HVH_x7n{1Z&>v>^<1$31X4j z-*W6C-*Z~|ufHC$X$BJe>5-){sQK%09Qp zY3zJ^nBGUnIdN)Jla*d);e&l7Ad7qB`rN9wr}A(o|JPq1#l_w2sm|AL)u~f{P4Q_3 zcEa>i&W)n}^gc3aM?BiC%GT|aR|+`n>2%`^7VPSyQY zc)kkZxZVGX)T;a$_wYHLW{7hPT|F}D|7bwW8#H9cr!n@yQ4dOW6zJ4x$ERvO;u7fT zSiJmS%)JYIRMpk@4`fEEW}GMlP?<_?u+R{TVwATb75YRwgC~kK3aQcR1GQSQwINz< zqap$8bQnad)wbGNFRiV#(x+;*MGc@PfO3_qa#xrkfGA+ND7@d_+Gi$#1oD60=ly*C zZ}>3loPGA$XYKpi>-yc<`Lb9czE(EkamABaZt+X! zP>6gqMYeGj!)JGVX2D8If(TYPk67UWlme0clu}*{KLJGJ!-Y$t^l=I%kY6-Dr6A7` zSQVSKB_}$jc-&d2OHnp;6}!WWPcMi9O=kK+!FnMXuPqpXt2b2QEQH?T@YH-HEm3mr zg0?q56rd3k!2zERJ#M3k3sJ5OFj-kR0q6p0W}r73?+mP=Ry_gjH8PXE>}U z-Al|gWTJ`b4%@_IuDK>}cS4{mSq`I^cEN4!s@M0y1E@I(oz(E;Y7!iULB!OkTxeWN zN-Vye309a!UGk)?#m9Em<=bLW5bY-<_?QsZm{cEe>LbJ^XEXw7R_5Z~r4n^r$00UO z`nneEG6j?si~zq(kUaDsHG+n!%w&MDHM4zPzBCm27 zELf=DTHGn&)m!eA0OJ-8{G<$3;>J9Iv5kEMY8wY)e$m5g>?JU^v7bO~BL_r6n%dcM z>_P*zxL?8bV zLy??E`Prl&OergC-Z6*f-hw<{svNtZk3j8$tUSn6uw8gOxp|6}yc3=%wbAsaHd-?6 z++lMO*)`i-HLkhJTys^>TxuVyiRW6Yiq=x|SQR|iSXI_o3ImIiD!;L6Tw|5F#;UN! zI#M)*_-8&9ttA93Rr3e|3#d|4RgRRx4aKO&Szw(93{K5si0Tq{WJod4~{ z$J>ra;>1HXnz1Q8NqdovBMcgHQ>JB}w%;cEl>;8HWV;RO_wfozya6#c%DP}__mC|H zUdh_<#Jf#EG`&C*nBYE?sVR#m0xxH}EkT+OS`f6x+Uy1eo82XDCks#fCk#nVua|9_ z{V*C8ckyn!3C`@HRkDX!YS!H~xNCUwKUG%7j*!_7Q%!b+F%0wT4imyWM`~*!%#QGs zM=hgVrVu4L8b1iTt+NG6#$ygr7%$O%ugo>$-FrlFNrlNKQkVs-=^saPXp??{MhRiy z#2r@-Ck{s3NywNkt;RQ%GVSy*HmYj?J^Z!S8y9Yf${`tTX9cVp4Kag$eIf}eDg_VX$X$u z1^uO-Y$@dTdX$LVE;8uYpD#5^DL9fBtdOf)3i-MoB_iF}@jEDFrFL)h>H7PH^lB+& znI0t~KNL7NCWBld_W=x(rN7L!$v{`gTtu!N6f#v=8iJbuR>;(rLK1qEh?Mo|u#hh( zOGEG*nL=VMg&e0xiOAh&by!H5vNQx=Im5>!&{D`SJxWA=^R*5O`L41w1b6rK3wiy) zY@1Z+Q6h5dDIFH_b!BM?hIzr-qEU7^lN1@d)pD3!_Ua{K z3E0|qF$;4K5qB(~D_hSh-)6$YpI;4mT2Z_%V>B_t(Y$gAf*DHn2rtoDYg^*3!FY`B zobGKxnhaT;N5ngbV07D!c%l7-&OG?kiuz}2sDAdps0IT zUqINR5cH$GKRYS5_^|)Be2B zY%YvI2q-p21yq6~sZf708lkKaMVB5GPzn$Q5DJh}q7x41y2Er|2%~!;wht5u$9*9z z?^)2I^THE<$a>fGgYX$c#cxkvDZD}(4dlOPAo4DN5(B~uca;1>=J4 zxzUmvWoyCr$P15M-y^60z3Sh@N|uD{?m@t!K_j=qY;kzwP=h|lhs0c8p`Yb)WV6DI zyOvaMNMEKm;;WnLImQ`>{iA5|Av+8CJod~cp5e9sZa|jT{*P1f%fMm5PIK;f%f?jT zGXOWV;nO6|euo z_!s>^MTnqp-Bo8x!@;+%7$zb_^ZgMPO~<|KJAq5EctFc&Jn~a__mth`PqDkcNkA&k zu=r0deJt8xP0Pk&utVbyy&M{2LWgt(HhIE^@eP>YO3^#R;|Hq^u#F9?WOv^*rSEK# zc(M@S&gzkuxrBY9ys%H^xw|I23%zT1eP1<@zW|V`oTkQ0aOtBhebgh^C*YR4CvL5` zwP&{VdL6a(PK7Puw_X=6wSEGGUslgP9@)tbNxLd9cq$)vUv@xz4KLnzk7WrR$6f00 z_Y2QCq+~j|Ee{mSj?^lohloEk&jbf2zh-aZ{RZx;$bqIoy5D}(+{fZx2UxTJZN z7qpw)U9R1Q_SjwDwFdG(0;Kj&724Ce^wDmIbqj8(GacGL>ya51XemMC zw@Cu+RRACD*<6CQ@`Coe?rx9Wh1S|#-v$HuD*>thFti`$GBcRl@;kvTb<@wSwcpLp zpnaN;_P`F&-re&^wDZv!631jQT|bYf)L;cbM55+Dm((Dw2l4zR?rxXeh2D2}pF6PG zK;M5F$X^dgjZdl@CUcn?J#D$17>uNTd#}|ekgd;u>WXd{++ls5jvQH^zLQC!5)T6W zZul9OR6=>FMAF^;&F(^v*j?WV2J#;Oq-IVL+LvJ*J(Zw+Ng1E(7MvTBR!{-;*i(f3x9&Fy!h^sJLNEEH= zF1P;C<~2?g;?SFt&A}{wg>+F^HyBYEg(EFONj&F7@Oyfe2;F8N@)LoaqCNsXqt~@} zO~EbVWjR*N=$LCES^kKp< zNIAm88F|bYJyMtVGTd2E&5WPBeFF0Ih<5>Gp>5$!LOJva!~ev_9t z?ybT=>U0sF(i23ayM-4YRQL~tCm%=(o9-Q@x}?{Wd0cbSF3xQi@IC zQyNK&#ov^_qiuK*{kkf$NEi?{$h^*{5L4kF^9!w z5K;MZIiq@=hmUx(5&2|%?-(X%MDXnIC2IB{r@>eRZ@2h%Cjd90(J<}tg{wJ}-2THn zR8xf~9+G|s4WhObE3%IokcngsnOOs9xJJ^`Cw5WqEoD&dAv**NhJZ7zEk#4v9L)BC zYy0vfPAfBXN%AT=JYJXS5BB$23ffReug=FIEDm4G@odjW_o{F?;D#E}d@7G`C@;i! zW=8z&=iupjo@RzZ%Q$fTuc4$xNKVPHo$kV4{uXZQ581K{GKX0sg@_J zCiA~uNHG7`3o`$OG#yUt$UU@CCh(4n9XSs^WZ68KJ2k@i1A&FUxzoJXNtinw7=P;U zWJQP(hojjM3sObk|SJA@w73a$ttm#ShYi?7YvxKFQH?G292!z}Cy!H*65e#;dQiQ@}1f z<#etF&1KFYhIH!zbF-TWa=k_P5J+z~`oOP;j7sCgzQ!>g=RL7pagtl88AU$a}t#y4F=_b$~higMKlH3)^JhlgcCJSy1G7j0iug>&X9 zx==#^ly$d~r+%cpha44-_`yx*lT5~zna&wv*`K~|^R`-_&afj<&JGvgQAb6!lKeNj z#_1N)QdN`BEm3pwFt~Fja0iGH;32X~-UW-hAv~ptdrlCaeCZr&@e zO7a`rY)G>t;gEKxS`f|fKr=sO&E`3)**s@8!^c)&@aAefXYC!I@4ns;IH*gc;3qydowil5WiqK5q_Q(ahaF=4vUdH zxt7Owl^3q&Nap3Ni6#e}AB*pXiTR>^t$B@?9P*ORk7)X1c9KITX5qS6oRAIgbH;X$ zk@D;&8dns`fqPR5X1N9W+0;y^8m?|V)c_?D zLPLPSgKCH63fJXgStGI{DOxhqCpUsNT>asxrlP+HvGtY{mE)u}`Jebl`yhOu8=5*s z-hzG?Yg&#DupA`+>;~p{57+MydGMxJ;-NhleQ0HB;f5^C86V2JmP`7cp zL)e)*M5=lxC*z#V*nCT4^GzF@Z`#;=ld)M(xo>K0ZXMsU2(WYm! z?D|7fw5Y~k;vzI37?)QM3{Txmf`ooDX%~G9Z5vHoL7rQY0+vJPKCd?jFCCuz3|Dk2 zt1A2eZA?=Yk5D_DS|3YzPRSy$QD~`wyD9SFn1l5GCUdJ zjm<L@6w^#(_y>qzf?-)=@=D7_y;X*&23jUDU2KS_f${tg4w1gw6@ga=49w;R#q zMO2>tyW8@ul&gj}WzA$p(sNL&xh;>aVKL<~7#V@f+$u|*(~RRZ?O2wk9m~?R)Z@%xl^!!#xw2k4vuA5ZF>=oA0?~PHOz}_;G9?4w!D3A# zJNLUTdd9cK2u-K(R;^@C-ICYNsXan^XA!!Hq=ee>|c->(k-XA5|IRQ*w0=>+! z{a&lrEL#cZ+j(sRk&_F)ZVJYY%-7q_7L%dgzV0dt!|$?0K=G_EiwDjovXiH<)?#m{ z88V&4xMDYKVz|iC^L2svs7~hlbf?}5!Z%AK*nKg#?zh%n6m`d->Otxc9 z({J0PIbza1waup2Zk|Cxq)U+{w&tK_Ii*FLHDfcJ8J||Zo|lcVxLOy9{2w%_(Tblk zP&8eDjm2#!K9`g;x7MokulUfB8e%8zT}vs&51m9)P5zYD|2jhi7x09UKtrrt$&jV8 zZ;+raQ8b9hNDd2>YswZaC9vs4ke{3($d{048<&?Hif%U%pXy10HS10c8wgb9C3}AX z&Q8qS^WqII*IEs`4e`Tc@lfK%(Hz1 zI$vcBPhzc9#{R;pD-{Oju-1Fjh@LhOO1it30FwV3h&%yEjk!sp{#&`si2B=_W)CSy zO&QB-GbVq}CmB?voFJdPi`&&2yN*@bM`SpcAaa#~P?@{C82}FA?uU934=FEL zS-yDa4=(W+mKYgtclnb5sjnHT!??_}S$i5-d8tujtkLQ}R-?&?R*lvRRF{}m8y2*C zcmy+@qXX`Zonh`BhIzl%n8$c@v^MYGxeewg zkObyE0Y2uPxCC?M1@lwf-5|RQ^)?U*T4JOJAl2D0U&_AiV}5O0-vPB~ko9+%KloAW zDJIXoi!-C8fkzJWx!KX;lvf&p&wo79*Isg?#fwK)k_2(Riq&8;msH|G0EDx!|Ct`f z^PkoO^sn6A-|Q~*h`W2)fj?Mcq}uKxzXhbu{=Pb6D3_TD(7qDcmDgHlyuPFLFdE#t zGjg+4YC8d{nh&oM^(ZBYdJG5noiT_@s-wKr<05x=z1@W_GY}bUiIEr}Rdc;CKaNWu z^P}jIJ@#G0JaQQ3LtA71bsimU7@fJP4dyu{fq5Rl$9&&L!(4g6{6qlt7+`myd;^h# zmL(GAF7>bP3G=r}$+UTUI$1+g8?Q0UFWKI@&7-X`f0Rc@!#s-o(J8@Y7oGkRNkSh2 ze9X__5?qxR%+GOmBke9!Vjv$m>+4C{Ls9kXp^oZ%5=Su3!UaN6)y&)n1OSnN(R)Th5bha^#jBBRe^h-5%?FowKn`c(V>q`io3~A*iR3S4^Tw zcj#pj76HA)=z+#>9czh>V`l+IenYX2<(hUMmrq~5ai zRF*)2U3VA1ZV~JwG)v};?*^eh+_!#-qS6JsZu_uLkE07t7YAfa(Qnge>!H3OTfwd* zF=U?QV2aM)uK^T;4GdyE>zdH{c4W=}k%7C=k6d6Oy6H&EQ1}VL1Olg^j^K4+jUZ}p ze5;)NCL*=k*9sdMiD&BN_@eRz9qOdTSjf;4xVOBSvFJ3{ZVZA+azN)JShOQa_F1%7 z)8!}v3?-%96al=#J<(+E&M{c*#zI63V7p?BOfOhZ1B<&P>4DV0#5mVcMxoI8HE#Ro z=-@O~6ByNHhwI)1PVZ$n@BQY4`z?iJpB3&mFFZ+n+-$+gAv>~#b8s2AUEJ)v+U;gV z>}@wI;;QX-v?*xPqZ&fgVp&{9BwE=SH`&orYMRVoxU9(xhAWx|)1^JeZMSE& z+wGaR-JVr#*RiJ^``9L4sk}Q+Ho=$m(eHN=3XFb}|Lb_-!Z6JjUz*?`Lt`a7!V@nN zm+<$;sMA&kCv8;f7X#_AYz7wZ-HM{H>w@sE@R{t-Zbsj`+rhUrlva+;A> z$Nc=domR;1&;3FUeJ6{_`+Ag!yto%|Y);lsm8BtgKQ9<2|7t1ZCwi2Ku_zsm5`u4^ge;2y(d#qJIZc}!Uv zf`8`)!=!hnkcQx$JklTJ?^NY#GnV1Ur)MK1K<6wy3l80ptg3526sszfKETUz)tG-j zUkOhwgiXiF{-lx-ufoi_z|bwd4}dE69m+N3%dF}6wSeWs&K+x>?S#i6t@NZOzlnIP z5l7<8u2_5@A|iBF-oYgYnhkP$fuZ;Z*fKUC`LbiT#j#$A98PjUiNA16>1I2d$ZcQO zjviqWF^K8e)dWo`N zWBvY%#>RToK+yvRN`C=B>!dPwseY@L<_U~js@S@fwM#9qWnhukpNd5m-g4}sKDw(} zWKlVZ_a?2vibWRXa_l0Da#^#e4J%7=Dwirw`^ARRtOJSjfc@A;^8!6sXRw^$btARXt9 z8;Co#5vd0xNYks1%_a60ysc{)5T=(w^GURYQ$VxB5BN17)o+EYQiYQ7M znA?UgU3O7?#V}%(O*)asuhB+$=NwYd%I)ke=9=>cbIn;+Fcf~LUpT_ef}#CrLS01b zojozkASDl92&Ix`d$mI!^q@v*CET!AC7h~E)BH?jP~P|XMF^%2oXXQjTNQE3K);AvRK)Gw=TpRTG9A@-ZTvht z*j2C7=?zxWOlMa@W4YsqZ$i4SC4kp&S*GnU7cZS;YkTBj14VbayFVGop9a9m)&qc4 z#VDOJujevz%52LHbRSOLF~acKxHgN=qpA`3v}VMys8z72`)JttJs!DK%Y3}(0t1n2 z4dm;54jMY!r{1|zXq>^Nk48Jpz?o*3lltT`L*ptRjWMBDbVcht;bWsUFMR1chZ&NB z)$h_-tbWcVs!SQi;1q6I--O|(U{X>g&*+`d+5B-_;dp*B=}0zpu%n{TnVbXv3sgs@w4M2pED7amfi0WQ*?P z5}f~NApd@MH^V^a*Y56L4m<^*J~akHj{{NzzpZZgCYPDf)0X?^Fiu_JSvS14I#ZwC zetjB`U7zdVc=_EhoXbposKjO5`rR;?ODdtfj2`9V?j{4F3IJ%A8VFqqNZm0~Xp7J0 zqumbcZ>9!OK7mURRbJ3mKJH2lgw6thcGy6u45E9%?XJoB35*$1{!tWJl4JVsGTaW3J0N)2l-r67@1hCZam;spC~{#&z6;NIB7)m|T^^%Kc7aM6@y ze60+Nbbf}WPVKuxT+0#gsFu$kiGDD8^^y0v;w<>8z?k5@)Gs{sF20NI4lJ^llrP@M z0gAeCFuIp}={O}qo?cK1ea~dw4o@Anwe?(fV?-_Z%sK3gz&`8WHn}qHb%|)P!Y;oXQov zzPrB1ocNGUMUFW0w{d~}Du>c1xuP4I0C#;eR(FtE_BHd7Rl_rf%JB1VM-{ZIQQpdC zZO*~`fFNC{U=flrwFFdU%$oBVUfilvls$TjKFvWmbPZRGlkn6p8z*`lr`|fgqoWU> z9L!TL-)3Nx&ebpqUTL^Q!T@VqFTNV5rsj^4Gj5{vQ*j=MFP$i!uB-S?^CAgjil=Bs z<}}DkuXrehVO+iMePwyfci#DsbrS62t{UZZz2m zrQ)d0Ak;Uyo#m73@6JQ@KbG@ZIhy3l(Mya>Yn6DN4jQLu%&zP^?KI6Jp>@%)w)jqKg-sb1M@tZyMoIGVea`aY2=5P1{IR$Sf3P9* z->*klddO4;o#Sx#_rhYG&*yVEmC`Tu(6>Pej=B=4kpMM1I;P(}9MkV+Fs&wDmXF{O z9VFwby0>MLz!v4Y+KoVU^j2tZy0k@5YExnDc(LWDjno z;0J50+X(f0Qv+TjSLNG?W&}sMS8r|QC4Le(TSp2E43UHjU)$) z&LGR^Z1baWkM%ndT=%BF6vM0RpifzT_wYWdTI+~)^0{4NImGZ#k+*uf#o2fZ zmI)7q`XB|Zfz0p{6wQW~*1|D?hz;v`1+n=2C{NJl zj+Ga(`R$M&UQCXXoyv3OV4rm>Haok@bJ+3TE-!o|R=B&It&g_0woMj1D1GH*?!$aZ zsG~P5yCC*JSqW@vl>*P{9WUoY_lOQen_FFBZRIbPEDn2RGo!(8*0o`?&!H>T&MTx!hJG$CtFWt z>wckLTdh2E!V|y3vI9PHyoyw3^eWa4x)1rz91ltbkqtDK8>2kQ^n_g4-9j|lSo~wg z;~wK5mo$yJ*$APONeH`o z$LW59R7cjt%u?!|@RYxkg!u_G@f}7`r&wW1<5$*FjOXSxBBj#oz_*>QwQ8sQ$Kg?~ zGN6EbsCAm;>O;bmN9#F5}+IsUe;nka`iK=>IPZ!M5 zqnbJPsBDfss+eQ!>9KQ+JzX=$d{LCmF<%rFa|VlNJ+9uK)z;fHuil~=(wF^ywYgMZ(Foec|5IJf<$k1yeeaxbBn;VozkvK+6(%3T5Pbqa# zlYX|Efm+)2lLoAgW!eD-+aiK~L!v7R0iWh{X5{6baO){ZWM1Y`Yw2Pl@@4o89SDw6 z=<=inUC5c;Nfmc;4?Wyp;Mj7j9UI8f5PXW9`b+KjMz)Y9JxWBLHsbP_QpFpU1wJS* zSRsFIDdc)RA}+4&MaL}U4P|Kvp2`bW$k>)bX6aEP@|}(gIl~oF1F%BQXeq?@P2>af zDC^j5@*8Er{~xDnD`a(PwoM+yAGFS#~3pBJojf!dqO;`^}yGkU6S<7X_~ z&8s*Ok69A6)wv$m{vSic_bmGuPDJg;z3j3NR@VV}iP#V;SrM-LEfTX#8NM}CL)qf4 zhRY$ejaF2Dl>P~MPy=7s9&Ne=U!woVwCSn5jAn6q0e)$-$Gz~xO;{tPqb8MG$u6}_ z$gr=z!4~VqcjBlEpImG}m>+x=jW-Wkf>+qZoU8-2--!`yHNKRcslGhf9Relyq)X!6 zS0QlhS+=U{CGm>Yl9Ki;Tiq*GHz$D3R`vSwl7r*(hBpK(+#|;=?qzlUCPz;wa2>gy zN#7@nkNAqFrCDZ0A{WMmm=iud00DB+5pK)3fON+H_Z?WFtq4z%-VW#uIz$i$@Z*h5 zSfK@anTRa)K20jVhtC6P z;eUL42c2_(A9Iy-YsZ+S2i>JIZnd@|`7e;kPKF*G?ON;Uooh9;Z6Y z!S5U@fZDDsgP>!RT`8&!gOfvZq9v=U*EvoWui=>4%bDdB?q^K41Pgqc;=KelMVP<{Kz_!$9e)0Ep1a+(!LY;Q<&h4i~@xqCIGX{~x$4=3txK$PeZ6OR@Y?s`LzF za$9`8D4yH1IGP=AzhHkuEp(=V{L>9Yy8DPS``#Eh7orFSzbO)AmeR5!tZ>O?0y(jJL zR9=RCYW|F|PubccyEpnLBfDR^)R*0l$xqd1RE(uv>{#e#7UD~yKW=52lE=0@SuGSV z-pBbEn~M{~{zm@c?s{{FSRrVM#m50sa|cWC@gC1JVy3pDXt@#o_#AeDG5O!gVj~=6 z5VEAT9NOoIHU!^dd+;%No=Y&PH<15lcjxw@{D0eB@k~JKLc`<%E`3bekw(ii@b?`i zi(Xf|)SHmr*?Syrnvzl3|BSue$K*pUv#j8T;8t##q(W|~p2YK&m-exI@%-Z;BS`$n zo)xb&5J>}44_%-}`y-c`Mr$kCm2=>k1Fg~e8mi`wnnvqGqbf!?0=(&@yHxKi04mtckkF;=p}cz!hw1N#Sa)L{TCor zUaZdeE|-~M)Ksa1o7`H5Wmn75-mB45Fs z!Q2~@zvSPp&Bx@=;7UUYBai3(P>t>Ta@X0#UvMgH1qpu7K;%+)_Y(k^UTb&7*8x&x zhSd37`bbF**TyM&G&OF3TTgtXoT=N0*3EgQusq6o^2zgUnsX^hH0OGN-<)%~q&bxr zB;Rv)pV?jLL%SYtSG?P@lm@v=En*uXE;uQfHg6lpueM-x zYVTJK^Xpz|y`EeP=Iw8Mf2Aq>-v5=gQ}9m)@~64GR{)^*q}>%i1xQ_NnB2}~W=P@# zrA_Z&oBE-{WW~#^+wg|gZCC)3M{C1(Ic*=Y47}(L^Roed8$QP+t){#n`Kr5HYj>dr zyDOeypmY`>HHBRwk$)GLnKo>1O}-)ZLjSh92Yr5Z6y1ZKr=Vr9VjWD*X@}_-G#dHr zeB_D|eTx`HNXWzpmhjHx3^1z22zELLO#`x?s!i8m#E1;JHPgKX+gNfcG2w3qrXK5L zKCAow3;AekpVfA1fM_qu;fbV)QU&lu|J+HI1VJ~-j`d#ktvldg}!o;KfRDI$X(w>gN|Cn*}M~=Kfa{rO~;|O^w zddp5gq_gD{dWR;P0hA!;Szzk#_w3ZShr;On;d5$)(oq7Fk?KS)($$#I4_{(*A}&yq z;~$M*6HOPNugCE{a(IFiAG<;BO+O&`_Fq(l^aCcotz+3W_C=07z*xMVT^ScQ1RRXd zj-d~MFV4dG<%LV}$jQmdagCc-Avp1+1{%n--k`s~_iO z)hp`j3(?Ib8M28HWp9A>VBHhuygH`hV zH=vF*Xo>8_k=W^DeC=y})ULr%d`DjdB{d?Sd{`-o;xF2_N`G!3bi4c3bp}Es4HREx zpNw?3PX@0RV5+JE^cTMWMbv?)ajVbX^&O3SRWP*nPx?&oD^}0GGyZNLJ=J~Y1OV0D zMI!b5z(8m_^cUUqM-gU;qK^bvS~Q5l_xC}oL?^>1o_e>_h!HlMN9a!zSM`;=ZkoX( zCw9dNd2MF*(mOM=yC`MNBbAaJT;0_Nte#O)-RBJVi_zGoI?3+aRo~RiAAd>J1>@l$ zCl{Qd%eg=q?E~v-qp3M56fH)&@lb8W~sj|5VN#k1(BY>=mvlFPv9ixE|ix z@m}&g8}H>gw$R8W7Y<|*rQsuKHDj5&-*%d@!xZ?iDv;*-Uq%WWo3gZ2dk!Pb{M+R(gfY$_rPP;{aMq^b%{U zdDd2Qt*z$4gXOjA&FXEUEcQ}YzC|Qt3XotkMOS*su|>#~@y@%vyzm{ow<13$@K<+K zo3OBH>C~%u`G`)9T6rIrOSVp@Hn~n6;&p#WC1>S%)xFNcbOg_HuRhatu%UjazP=y}aGd zCR=~Y*59)AuU(F&h%9B)+1G@fgS-i#V*RZ`Ju9@r3az404cw#mx5~FS`r8|PD_g$x z_xYxXuu|qP_iIzT{0}@JQ7PIycw;Op){s{W>qv^7pa!^8)ck-Gq?W%6g|t z5Tz`q<923u)fxxnN0>UFKzb`v=Q-gid!=w2f6IL6?ZMrWUfGO^JMFVmw$5iuaZ~%7 z8qx-vl-Vi+2f04n%o)#rxdrI1?T`vVMsMwK6X*Gqq4H!1oh=h>0>s*RwP_dLH*JB6 ztJ2Q4d55$}YIZo=<{i$qdB;Hb(mlrRkm^~FnjOxzd55!Y-hskEk8x?_V?AoqE;ex5 z!W&nm+fyY#liN1YHfHqZ8y;xLwj5U#Og@vXpoZ?GoKH9D(Q!d zY2Z{rHsOL4KkizFb92kllFGqz^WyNtX}%HjP^OCMsbAHDF1_cCM($gy8Zg^LS7|nO z;*kbxSDRfQgeUz2bzo~@@2GE0vFXX);EyObtV%Nx~CdGSpw zt*cN?4cC1v9phv!!U)3PmYvv@s-Q{szSLH6YJeZuRb-GZk}4LOJa4(iy)}hAq-x!JLYb4jm#R2xGkf6AIFKN;&rBoTB!{LQr&&Qm zR+!SBUFR+q9Xmtia1`hRRJkwP{S?zv)Ise&yLYZNGV7-hk19RUoh5I&JJZSoMG9(4 z4x1;f@!rabVS=(U6o6|t$PG|GD{%MWV7GR9`~#` zt7|M-^Tn>woSn*coeE$H#{5dfhx5M3#OvLIED@em;$&_o`;T(|sH=pnHMm0S{HH{_%iwHQ=qv|XKpVMuZRbHnhCylns#r&YbRu=Ad zO;>XEBxiWyJ1CW@Y-?(o_FBH7CRL|oI#x}6i{1NO<9D(bU(aA~h$X#FNNeTT0~z`L zaNQXSfsyl;Dm)D3wg%RPp|qxg$w;xNGtzVNAsR)duBan>VklS2S@v5j4Czlpd^!9) z{yWygWOy5&>+;)?gR0_ADX?iZ&>6&w*J~hab|CF1R#hgd)sS35tC%*bCV~caC##dc z+1Gsz{hHz%<#9rSTllH^@Z=RF46{wGJo!Bi8r#BC-XJL!|A>=fIkZKx;D5#NW)B(a z<$R7ylG`rRKouex{)OhJeUX8vFVfS2ui7@Zo8QraPqYpOJ~1Z`d*siqBE7fgPWd{#Odu%s=3bq@-*d2E4 z*da1>hnZpTfEw;ka*U~0Uh+|R;w{?p$_CBRWVOz@CA|AGZY$f#( zpgsbs&r$HJY9Bw6ef+8)Y11PmpNH$-!Yh(AUR}>l&o*k{Oh>z@Yta~2-vXS&mTH|j zqEPp;jzJY4_sJ6{X=vY1Va$@9{NG=WXJ&azbp430=2Hlq;1v>MpqVfj(LyrdK)V@_ z)Y`;uXGrkY9!<>&Tyv}%1x2ru6(oHQr2O6(%tbH0NW)Q+B378@*c6pRp9PvA+>4Y| zLCUh8ELwb3nAj3Fl5>a>cOHbAD?tkEmW^-PYv5sfi_gu_l+ze1hG+qX2O2OCOLeAFJxPNoxR z7Kh!3mElIC?sC7e_Yci<@Y?*_(WfpP9_h-=y)&MPEb2WX; zzM7pqOdiKK*r4g+ZE%xkgPS}X+~nEdCeH>pc{V^H`jclv`;%w0hN!pMO`gqe@@%%r zvssg8vrV4OHhDHPINxCMZ1L?L#FuE@Lha!!`my(EZKsPuMO9J*n=TvNbfE^CF704c z)jmcf`xsR}+NRBkGE=Onq9J8{n{7tgj`^bAGb0x0el3LuZMGc1nU$L@Yy=*IWa4y9 zl^0P4DvzVr#gKG|F2?vi4u%^ttB05DPDpWgDkT7dSNKtR;Tz?J8(?~R^3tBtT+z6d zzbhSg**G+OGb(Ksy^-0$9>h#}p8y_V^FKbIfXm|g!%u$#$jF8m^9XO3& zG;{bJ9azZk$pMu4W)a5*gOki`N)Gv&Os4$vSTyOCvJL(9u))~2WPj#}t&r!lmc%$e(E&RjQh=C;fn1zT@t+gWHcXQ7)p#71ZAj$LRoXQ5`!LYp}YZRRXwoX%qA zEbzCTX~#e|!)WvUlc-hNn?Q{=f#$jiG}lcaDxwM04r0V&2dBW1h>`3gR{cn}c?qLe zcRVIAT5#3zv1D$cjx*Lr+Pb^gUh^@tW;E-c=FZ2E5njnI83oN2ABk8qF*#jn)ZBS6 zs6pfwPO<3dM$H3=s@43*aMf9jFpk+RGU2hd$T}v&*dTV2NT^I`t*3oL$Hmtqs>~Ug zse#8qY(~oq_h{A?!pdC)wNjq5wH%_DUB%5B@p@O37p`DfhGT`FC|)K*+%_rL1e(K{ zsiYcb=qbIg))4wOEodF1_87gkTV=N+cP`4TM;XDBjy8{~Jex)X;b&uqXA~dSm*L50 zkkFb7$u!C($#$phli^GMTenN7E4HrRG) z;RIUgU;ckUJ2UNUzMbB7!xFEv(($${9dEl*bzu&)i(A!Ea3kHvt@`0M9l@ca?tsla z*P|M9)}(686KTH6z#*G;`)$_k&+J&ZYD7(#SqJx&KqIrl6Mx0T(}t6$5l4UbvJP@0 zP|a(N@XUzT!rxW-knY_zz@}mII;M`8v+%#Q(cy>@fzBG55z$U6J?cxH(zE4%z3xCD zJY_Pe6OwDKJw_NXcMACwIS+NnoLcYEu!vybU@X>846TO zf@Xp>Bn_$$rKgigpE$wPKIf)S+2Sxe$F#_gq{(-JuZqyBk`8~!P2J~#+Dp(7Ma5BC z^K;d3@EUQs-m^?*h~{^lOB$}8hMTR1TNbWMs%shoE7V<9Z^G`RZ&w2?X;O@(^m^3f zg}ht8GNggO-BVRJYWxV5twu+9>Jr$otXt4Q^bF$NG=XZw1jj8t{f}o!mJH-q!`1Ob ztU>BByd1~({@5um+~y^Re4)HB?I>}{1xvOXQRQg+OOk;vTok_S{qn+(Vujl;O%6EO z%h^L5sFS@y7QsDU;ZCpQlVPu^Vmeimb@xRl;+o8{jce|d8bdQ7&*sN+W@B1l66oFq zW-YLw9D%=F1}sc{p+fTU;*k%Dab5av1EJ{vIMNRr2;B>irvja6>Jd>e6Eu{i0*EKI zj66FBYyQ-Gl$I`(+jBz*r%G843Q zLY8Wb9mWY#J#|yvY!m)yB)NrR4dP*ns{4?I0vmNXJ7uBho?R$#5Z8L4Sf=sb6t4T* zdg)^yrL$u2q8b7pX~>wlSrc>NPF@(ay@^kJkUkzZ0QhyOMJfLP=&9zyNJBB*U&tR$ z((GaGreDXvg;QgCktULOr-hWrkUI2$4XGO*6bMxU7*gLf5E=wXzhpMfksnDMb!=mx z^T?9AyDN%k&Sq_hUP(l5HAR_YT8e#LSsH>L0rZ#pdP^Y}=n?i=zw7Yx%O1BvwxWGw zh3q*#i^&o_N<^M}ro%#RQ5Nj8c)<#p(Nf6GdX$J9*Kr~9pSD8!kkbmesilxcJxWBb z6F7Ejp5+Sp8NdoTtEG@HyFz9@)nOs`C`&_dIlv0pa9p-c?$V<~f?+bMrI3g8C=t0?iX_KwlXI1&A^0s`utH90DdcOW zh7xJ~V~2$#m8BuL5nzS96U?^BFZ2le%*h=VlA2_Nlx7OKuceR=^(Ya!=H3nq`LeP! z1Rv!E!{k3&3hARqiOBy_S;uaZgLPKOQgF6H4hFK-IiN?0$azycEM#BO3i%r^SRt=u z3TX(g=8^ueo@-LBwo;}xq}+Uh`lJW4&}ipgg{_$_IREjU80DdUYxsFZ5LV={$3h(1D9*3DZN6;rs|ZxRjYZTsD#ICIs=qz%13;v zP28i^B)-gl*kOL$qekxj$8nFgHu^SC|DCu;&wvItWO1|ly2K=S`~{G-d?rF+}PKjLF{{5wkgqtkf{dMOkCD5K)c z(1TvjC?|>Hzd_@IxpzA-_2b8-8G(1$G5PoYLJH;eDB7Y+zQ~V!gw2;3c3J2nN4Pcw zXRvYU#K#KuYc6qd_!j{7Q@?a~ZXeBm#_l421f*{4A{FtUaap&%bKSdsDT;`_PG z^mTh?aeY$H>@!SH0#m8YJ5*&{mTlty;L%Z<`0d}cY2v?1vBZ(Hj58xyIW2MB4lo!P7+}+a#LP-OW+W;W`b3kh3 zLA7`pmpi)J>hLD%ovZ<6CMsFy`wmB(kAIaU zNFa1jA}fAwb@%{aWyOo$;gb3JsUF1h*SWh+yb+Cu((djAy&n(lvMiA|EHQsOAT{B0 z)#yPkGlRc9W4@uOXFs(XolK2d20un+EnRU9kB-t6&qLN7F@~m*r1b^hcg4L*VSO=> z|ERlr#X#su1Ca!P)_4q%YWPfuS90ki-mWcQH1*LQL;U4Q4)MC#IIyZM7~zcxK1`Br z77&=YlCuDMuXLq<2GwU4M$J8c!FKbnXpzmokmeuAZZwcT-#|q3HuW{b>knM|c*%OD zjak%))F_8np5ayRuO>1rYj@|^&Rp>kSz`j`)G&pPkgRCkB@ofCz5rU_+P z)@~EdyFH8HKez;+Hvlx@U)|ku1NpBTh|~j8V+@gpx%3gKZ_mW-hE!sgHR0}iS~uY> zt($NdI38tkjJ(a^m2FJ?=#oSW4h8rv*k38}BIRX{m$wA1&uq?UYQh?jtPcJsa6)+u~mYMqMn1iWpX^5=%{-ZtKd`m0e37!sc_ zfp5zLYC~|&-PvZI&Lt_Y0Q{xuNiM;0z8=K$UvPKJ>@M`0yIbe(8Vy8#ZHbZDfYdT} zgGB!Kx%7LZ4^BVY4CvcapMQK>8<)X1UUL+)y=zymIh6ioqnrZ|&BRx@A{zfNde62# zw0$&j5$;{CzR#0~;5#S8;`n2E@pkxcG5L`Ds}yn+r8@r14O}5@H)YIIPj%{ehemku zPtAnSYjGF+QR94$QE%j7pi?tZ)+H!JF?x}UWZeZc|$j{?CntXA+DVY_Y z#+{1}mWcG=T1#>K;hj8uSqm2)gJ;|`(pSS8=^NrrPKhJfFu4;LYBWXTlY4Oq_I(UI zoM+(ifi7{dffxH3cvau!-MxT&csF(3U(8l7??{Ivr{1&nP$Ky4yT9G3Zg1!K?xgeac zsqUem6rVhl>R~zJ#b1qbCHt&+@&+=&grT!%D0}>wmksPk$b`OOcxr*^otIC;c;_6d z{^(`Nf^!+~Pk3>JV7ERSjo&%Li+>LfhBvQg;EzxP#vdLnkg)H0iKIRjO*}4iqKOxU zUNmthtMRAdsn@ZJICGchVeZG^V@-ZfIvD6S{f-3ZO}adJC8|xIgr_7d4+fQlYT1EA zhHzgWqAs`wsV?&7+rH|>uYTD}T)mR+m#dPzz*2rI1Miw(QGs>Kk;82!2f1EVJ#hon z*^6J1@)8fL_T@PU*k4tPpzMkIS2IRZd=f>Bnf$7B5GV5$eBtW#nXlwZ>o6}M4aB^v zU3mgEyZU_cEwr|G4Kyinvk8mGHJh-ww%LTm70srZF|OG(GisX$BX#ZJePZgZWxEYj z?dqk(nqB=&Wpx+wWU0~OFfm-Y2OZPO24uv!&HPj~OHf?X+~-?}j++t2zJ;I|*QHm} z^63YTf_tm=%qn2j@LUBdsDM>R!r&gBL!<&kxT^vYK$+oM8Q5(yw5~|p>iTUPAIFs*zb6NFVC_jxXBH(+ z9ug)~8-2fJto(q4j2>Kt^xzmQS6Ze|WSUm^E=qjz2rSP-sKD{TThaf%vr%=-{YXp* ze)(jsK2~0`P2M4^HzKOr!UyMOGzI#tVnJGoo6c~*Md3;F)U1h{Dd$!z=e*6<<(u;a zDmL2y7`xd9z<@0p2DMw97sf5l3*#0W2IIDLmFht47UxcJi*u*A#ag&#vow=?lx^-M zP_fyD!Pw0j2Cn-v8pnA11^Jo}JCU!l?87{PiVyn;jQwyRn$l~Lmf=*BpV|7MIi&Ko zF+A}1q-?W|gmIvxAqh%=T8B~@DA9y87QZ!HY$VifF<*~m z)DqOjftq2MCs6B9D>Kv-@NEJA8-&=REMhevM(Qg5&*nd^j=4ns96Cmqcq|%U#HgY1 zZ??wwmKiH4cZK!hyUsU}_2P!6fCdc$FVv!kb(PbjXwF4D72I*+9fWZ65*Izn`o~uC z1n#8R1GI!i6SqDqqoV|iTh3%H>#Pu3)S@NpyhQo5@Wj=Gs;_%hyBNU~8?=fgLchCN zyEVknUHw?LZ|9D|$5!zTuF%a5}{KH(~BTV|Vtt=JqCeXWU0WC+qzwv=)C}YkMel$UY=rF&a2*z<5f24*}`!7rODhJNnuga z8^M_B*4Zmr1ne0&xq2P>*pU?ibbL22k^2^HP#(`!F^UQbb7}4{#rEXuo4oL4bG0Q$ zOGb4KPdbBcAs!hj3Frc^M|F68G`^nfM9tKb#PRB^TQ6}H{hi3d_yQS2Z$43w`m<5`ER@vc%y)_9j&nQu{IxaJhxygK)? zC8S!wg=q3F3SH=XZHq5N+7T^0$VQ3tblMKvxqa-nw{^QLQP2h3(@Wz8&g`*eU~H8ZjP4h!+~9*`*DQ#WEAa1$%Lfp?M*mc zI35y1yJ|G~>MelRm@kJ~1>Jg?@Ks)NvNl@!v|+OHsIk3xQfaACn-NPXZt5H99un{* z9yf9f6Ih)a&~iuyK3D!|A=E~FR2D_O4-$KUmJd(4kZyo9>4#>4jjlIb1N9@>Z46ja z6}X_G-K{T|#^NY}zkf+`NI!(p7}60_0VjZL4&i>N#2yTf3ND`^7CCmB4Rm7VN&K9Q z(?D&lpH*)m7y7G(PJce!FNJbdD%|g#aKB|*1#`EAM}=;)_t!9Ga<^#Rt1yM+$|_Sx zt{k^{V0cviNaYz7xx_$G8GwzFjM^?uL78k?6j5WS{&fuRfqnUKG&y7?_?>U%H?nMD z{Sjt)lb$-8-|FhL^MxKpM+gCd0VGX6Zr{iWC-+C!&BN zMV=ZdtWgO4tRYOnj+FhYmiTBQY2Qse?5g~@J{ooOtroedGqeHNI9$k8#_C0ur;}gP z;%wX^XZ7-Kc*=9OIIloa1FIMG=FiFMKtgqIzwH}7rS9m>$wJRdJT7#!9|tzGNM93J z&-KXxMbRT>DQiiF*cNH~jH6&TQwiZqf>o*T8C4K9Y%k{-)r#q|E!O;oBXAovvD^v4 z|E_!Warb#^4Sha$hau6V-wHz60>%-_7C>lMZ68%BBX(<2M&*>HjLNA>8L?ZFGV-P@ zW#o;AVW{XxV&4KPhqIRw^Vt1S7#Wo{$w;8d!joIPb zz8JA9TBf6VTtCg~utVs24&4gSHRKIl&!JlZx-!;r=$09}*94lt?;4M&wtxzv+5)PY zjNTP;o*`GU&FI}Ma-w(LX{cnsk-QKue^twJh&jinISi-I_`Sxrb@7$=_g8)$exh4>V$NjJ0aO%;s~VarqAYzKCR5% z#5KP*rZzhgSjb+QEZF79U^i9{CxaK#;EXVvEiEOU*KEWv2Okl`9DD#{n;kK%NSt}K zoHH(_`8j6*s&+YIc$XuFIc{KO=W*PSv7I|^)HFL{m}8TOVUA6Ju^gM)Cx*}4E$X*y zx1)u3J6d>m`?RosSSq76(!XxEIs=;3Of^(T1Km}JbCyQxIPe10fS1Ot!>bIuL=o@O zZ_O@85$|#oF;%6R2kh2w4fp|S9e!no-;o5dkDWpwAB!N~I{w^jH@ukbSdH<@T+PLpU2oS(m&=0vLgLc zG{#I>@6+(lOYtL|zJ?z(Nq(S({@Cg$Un5KEryJobIwi0R^a^qAZGk_g5?Haa;NKFU zzf^HcA?NB*BGP0`!DALOLs^g$W>ji+ZpdQtS3OEZF7CLH6I~(K0t}PqS_1yJSjdKJt&kp>LcY{e$XY#0ME-eahlSKCOGEGh zUNB7FU!QH0JM<_Kc~A$EV^?RCvNQw-@PZZcNJ}9VdX$K~1DmUZLLO9>hT!qMV1tSk+|Z}Nf_5^5>r2YQr>2G@E zp?gV=VG9f;csl7YFvkJlj9#r=Q^M?13Wip<#f~%$j$+>jb?%3E`WBRSDm-NiDX}=` zy(Z3h3%tU0@I}urM=2Sy9g7z)6UPe*9{pQ|eS#tQmUM1iyQ%jS2dWs_PEE?eLd{7f zf`Mnut8`$M2>ifmS~sxDoJz0bz>~1tgoY+I{E?xdpQB8)XC`5tiKfq;28wPoQ2HYP zyHc)Vu2d242=)g-j#%aQnX8PzejN!b_SY>S(mR!*cPQ!*KIMy?cmlN5yBe=`tVp@lo1 zUvGE$vjC|{Yb8+n6_@{;y>o%Ds=D$&coRiUyg|5tN(2>K+8Zqvv}iz4gS}VpMbxNZ z?0abNdS323?KwW)?*x5V8|CIOwPV#>b?}=^lm9n5o2J!2?m##^Jck;2>sJN91^9~4Zh2bf$1y%#Jv1*WIEaKPO-cE@s@=Cfh2W>HQ+`r(Z1-M!vWS~E6%c&l^U zmQL>99;Inm-{DNyN9hVK(WSBd z^J!eBK|WFar&{o&{%xIsoNFMTfb#(k=hyKx6V7WnmuUjWK70EGuSoY2RzNx zfS+-i+|q!V+;nKb6J*hV1c~2(e^ZVZN|MlkU)x>o5A800q9vj4kfe@oR0BqEnI82g zssmLEy41z40f`4QHei@*z&f60YQSVp)LI%)!A*w-+)EY>_%ey#fGXv9p;8hWkhHtp z33iu%za^nZNm7N@fXle_8<0UQs9MmazPQGEV96KN0O^n!X-iMrh-<)6p3(q5xp$0? z6GtqzsmnBG_WBxcJPeJcJ?1YS37=v(*HPNdj{N7iB@K3+mhVnB&jcMP}hv(GCes?R1c~a*r{)?ww5(Lkg;n_p}VUg0nC55yU;I4QgMUmNiKbeGHAtA>vO4bD^JwKXc%%5O^o%=qlrOWljGBT z{flW}%IROs)Ce;b44Xw!Zv}_ZA_!5B(ZV?9Yhmm` zM9RDynflVtofZc7rpoZhtbbVB>4jMg?mzZTuI==PzIZaH;3Iv>P7RrpS?QtQ15$dp z@4h>n(!=w7JUFS_AcMMZ2c?HZq($kW=&WHdO#gP4={`(4$O(KTap!TEXM(yw;-q&tn9#w0l_IR( za}n9eeqB2V&2J<-Ei^}6I#O60obnm+B3^Br^P4bUMS6FIZAWO%!9ufy=6Sc&X072P zcxT~6W^GxM1V)I%a<)k(woL-N*fz<;V%vOi_I5bz!sc;#@O8)Zq8%hOD+mtZH=Ck? zmGQ!5!OCKBvuCOePe067XyAcFsMEcuA}yBG_3z;KIDH*}?Dq>sYiB>I-c8&$GM;#N za6EB&%$xa?a>6^~;n(B1B1;TieY4Eqw{u4lVrjOo){speu; z81nSGS3S`(hkk*(5y{?f8wwX}$H~m}0W=*6HL)svb&Ak|dx4z@w;nnuGauzK2FhqZ z#KT*#N<}Y(7V?-DY*nRr07&G%1YU4;@I*9>@5H4%8p$IvUO;bS7RLxr@&F0+6Ug2l z(-Y!pCUU<9gz@k}O7~So-W#YwUh@UW8onlDUVKJ8fOTr_V3qP{-{eOO((OcpN;d0- zMD`$_fx9b7z*G+s&T#73zU={r&)%Vy51$s5ZS8_+7&WQt$Ebn>N;+s2Pw@$Pro}#X zK1ltvN38knq_`MAeeFf^R`dAXf;&^ch@Y-$~?6$J~2%a)4IS13aLPIuh_0 z3(Qx``KE?E4OQ>4*R|0J%{1gx>kKIF)k1E9Q_nRjYY@?k`y+w*`V`}Oo+|L>H(63W z%QBO5EU{w~hW3V-CS}x zB&F&owCX&r2G&pj=hg(iR3KGQD?z8mQDV9PhiKN*FaeL225pPzo9;+ImWa<9kt{z( zz|!}%<^F`kwf)W^>yWav!yWsIxtX|JPYU$paQaER^4B#D8Z=l_X=WBwMe+Nuta<0)5=G4VF9Y4|6ZioOX<6=d$ z@aVWO?XkX2jGskEAEt@1u4phU2aeG(B0DQW*-?|}zC}?xr}J!UU4-@k&V7#8#tN&| z$9!2Gm9UP|z)!foN?1R#I@H)>8z=2Y2d7W<>Qy%l{IP=ajc9yu>Ld*h^Z)U+0tsqf zgJ<>KQ{79(^(M@TCjX9gWJ_?$%~oa$o=lmQZGGq*pKv2JPqgpY(J-HTj62~QzizbF z4~A-SP!+$mu56nR60J!?m6-o1F9BJb;HX4KJ*MH3c1yKZ%Z>XMgG1%fRkLp)-7jc1 z8Go~#T*R8~Y%mug=5F&8oQn2VTt%uX)G9M=XHC_ZNAT&0Ba zW<*pp+sQ?&*-kD>nkCgSX^ymb>h!bG&J2#|x8jJ4n0mxTOg*Au^a}qCj4IqH@`GkZ zE%LEre#F#&{;)Rnvo@8|CY@r?CY@q5+wsL%2V5z@0b@D98K`!A(eIc*DLrP#7v;xH zwX4F~JG!4iSqhYtCuSv)$4^HcoojJt|XX*Uk4 z(|wbrV;GGCzLs^sx#zKg@TL)Rj(!_Np`@?*a5VVDawv7q=Q#Da)f;p*T3x})PuXd< zqlhS5I4U1GzBp1i{}F~kuyO=yJxnp5&gU7OPdKWca8x~ERDIy$v+=~uupsx0#ECKN!v%4zgrV=>r6ONN>0}w}j^=e7M+vM=gx=wQ zhgS0daUL4ufxU7K;TEhj`vC7zUWx|R z8>1A!IjXHgI*R8~WG1et;NYqY<KLz)OnCxr z+=-H~$_;;m{ICTUMC8TtkbIWlP$b+O4J>m{BjGyvI1C(*gz@u%!!@T-;5{@)TO{h_ zOIk6R4eIX4>jv_V|v{7(vs3Pg&x(3)b!3=0{C_w2^gQ{0wI!JC-2lfht%PAJ?w4MTZ{}*C zR>IW-Yy80TsLLZ*0TQ*#XO`4b$1E9I;ML%iR*p!P9_tbdq_p}zB;Cy(V{_S{lpa#1 zI2+bN9(~mwmD;1j=|@^H+AvGwtxS0?>RF{$28BbZqK;-oQ5}!l^NQR~%G2`F!Z1mf zso6P~BlARt3Dr-h4hq90&$vrtg`38Gl3tjI{^rW|+>#E!n;Y>_lIoM!u(WJkRv@X}(7HU%d) zUkF=dV!3$o9@_YRaLU_cMZNdq-m7?_(ZQCvnBO9O$3d`W^E4_F^JiIN1W8MH)^=MC zrLBwBFI#VPf!?(B5YM->Rk%GL1kqRvACy*So+R5G3cAYYy2|H^+Ntt__4=(?@A#ng zjt^QtK$&Avwk0WFXU~e(*|Xwxj-OcP)FIXxvs1Lrn4RKvjuBe#7@_r!5nAsUq4k*< zAzD++P8o1?bT71rR<{S3@fz|g<*JR*>Ai;LT>^PuERkg%Poc7)=>T^;Vl+h;1pmZT1Z0C%E zDypfHL2VHsOAbPw)K0UtmTc2(jV146iVy%{J~@Q8iF-sC-V)=DmT6Ki)z*Tzx8GOR z#Feu43vun{y2e>{UqOBHSlJuFK56?c3QC8+Kf2^8bSGcse=Yy7^AAhj9iL>~@zd0u z9ZvUmMV4|7=(qTQ9fXz~u!GRj0|SVon{z-Rbq^@8F8TbDjn1rQb=fn7xE|Msb*jMt zla{8wbPh}GIVz(F*l(M>i`5!=*Q>!wk$+#_bs^{BGI_eP#pLNvSTwL`L?{Cy`&(k7 zO-RFFyEEZu+VH8*buc1hLaFE-rhPspe-T&kNPQ_9oLZNs%7*Tx5X(*%@?c}K;L^z4 zFK&hnC`{i*F5#P&k}#ke;N%{CP)yGeIJuvZDK?IEw3oeqWwCPL^1^RK1N(d?jDoXo zP_@|;lt}Y4nR9IvDNbVO_sOAJ*82SOxQvDCqX=!Vhq{&<*to=80n4j*=xJhTkt^Q_ zv8Pz}LnvRs{h@bogcpcR1aqTBIv!}?Y3)!xhww}p;a6}r7gPYX#Fe`(e5hBv1*abB#S5P0B1ncic#IG5VR36P?3yC9 zT*I7Iy_13OSP|GD-O21}bCy1;C_e+tq-jm-p1BVh*IU%qc=ASu5%INitPGYcHH2|O zy&ZkgR%@0`6Rwgt$iCx1K`O$XwyIe#8KGFfZ&%`BqwHSzl5|C_xX(8sL^BtNwBP|= zBXD*DmydAC$|r2VfnxY&yc4eoE6Cx{bD2mH1Z^l|pmbs3(1Vj!3Yjg?s6Ozgy5IpH zbyXU+T0zVS09+m_0r=ThERG2lRpchyZx=V@sTHLSrkh#OU_0&N22&+1Z7|);iU#de zd&B}=B2_O9gZB0y(ma0u@9V|S1Pdr~6TM=rK-PKY~5!y$`8f;fx z+~91f8cerTpz?rU@(t`XsAb;;$C|$w#fa55Y+DbH!+Oxfy7Vzxrp9I)wpZD(SZTvz zjUUI`qE5jtU|#k898ua;tz)u^40m=FPZDiFWAafe(*zlJ7A7z(^=RG5!i2Bdrx-20 z07hTLE{BHs);anjF`0}F!^W!n3NcJ+OS??Ur8b4BG+o=ErKViE)G3!Pb;_knZO9a? z5b7&dIOWn6PPuf24V=;yPPuf2Q!ZWMluK6_XHveji_}SrmOACqrN)_zT`JBblcm+5 zC8k`u#3`39amuAj#G0IFXeAHHb-~Iu%B3BfQ?OJhDyKQ(MqG1>mKsx13S8nwfJ@wn zgR2O*z-GY;{g&gZnWO?&%{RdX(o`6Pf+hMb2R<<)4!$CTucLCQ58bJhOBYGG)E9}{ zPRTlTp>?V`NXl7Yj0Ji=GMsbDr3hZM02g78Cj*9n6YAjGu(BEM!Y8aySiCGJe9GmB zXu^o75o@EPM$V0t%CN8UQQmGm)7)`ma*Z4jKa=cl;R(8%eF#C*V#$IhV^R(4_aZXJ zW*v+Kwy_ZR!Cxj6+mY(oBF-H2*xYdh-QT~WEf$<~vyR=2MHwa&*u-p=W4yB{*^9~E zJ)opkm0KfXMBnj}BAGE9W%`1YUIo$pH|B%eSsAkhO{vG&O9 z9yu_XFPQ{h<_{sRsn<@A73u-9FxusE_9%Ng2p8Mqo1z})Uc*xn?@kznQgXJ*y9yoz;ae!!VA@B5YYRJfXri5hVtE>-iaa{;HnG4&=E4Tu_2AIX$|o zM7Bz-Rf*yQeJO$EQ@yd7T1fg(sy9CveNteoaiRQ*p_E0LEnEOPFWo%J7p#fscqyzA zc5+cU)V;bptqr`Sw%mZ`H|CKRK}IH)r_-UQt3nDY&<3GlUW2=e2iRb)2v)98hX(a} z)iFBs&s@d4-RjWkk|v~na;$G_pU$99FMdZzpRWxHUEl;K&Z$6Jlw*CGqF%pG=crHV zvU#pUt2F>5#-~GTT!%i-T-A8sqs_cWy&4iU8WHE?h+#P1C*R87>3IGhX9O6k=A67wgYEj1J(%k=ZN~gwRf#sex;fpen_GHSB~EYc)y;md)~Q!F zxAdw46}evBti8q9&GafBu*HttYmJLPm2RLrRHKm|bfsj!*!4xx!UMso<4n*t-KsgN zz(5P=Rv4150o6#s4Bh&wx^`t6(c4en#isJ(12`Xrs}N2O95a0A}xC z<9Vc<(l_oks+J!^rhN*v^R5(0l{|;0k+Y6CPp_bV&$0L^-n?5yYO`PEv|WFxo~@M> z>k<0*BTiY#cU1)adtR_gR?lmJyCGT?DK_xd((ke-|RRirk%A1_#QcK^DiIlt1QME<3xu4Km*R>}R8v`T)_TFG`jO5{&Gb?*#!z4Iep zuu2|ES5lk(2_M;*SbUDl#w>i-!z465YF0_8)?#;bp`6GL=cme?c_4uuAj|PYZs_v1 zhWNWLOB>?P=L(T35{{i*A!pb}5`0=N%n`B-jwB*7#1BsWM|sarQ{Az$)J{0YtRro+cAFLX2BHH* z5(I|yvi7!Ek-w}=ByW>)1%z3V2e>-Xf55x6-)--r$-m`8%Y#$oRW<6>4Lr{7PA1lE zJqTbq-~9-B2bh2NATXai(Y_loEA2fpz+Z}5(P!m00IA+hP}wus|3HJY&LD)8mBQUU zUIRV>bT=o4$YTJ3P*f4wW$!kgV@>gomp+o|_f^1}!SuV2TJ>jsP=HFCexJ>445g`4 zntpF8leNT$n|`!`K_TMUl{kJ8T6_IF*{}JuKt^SW-|Gic#`}r)R*nPiB zViQSB6BggUWNgaSk68i*r@nw8I9t8GJXL5j^xwidxTH6I(N^NppMPHSJ9h>N=Wn_5 zK5Z!{bXUeBJTZIkLat)on{Xuuk={K{5xLnnt8aP9=Xm#1T1Eod7wc`$9V!Mm61?m? z5J(>XLbc826K=M1bKicWp5uUmDsFJ6F z6tcTk3vZ5dUL&J}h4;&3p$XGs;mv&TL$H~Jcae|o7Ezfgc(E-JDB4=L7$RWallY*`gY&6rQcUo3ry)quSYdFBJ)Mo!$C%*XEhF5l+}Kr|s{}Ksrl- zcFfdUqBu;wC13eVOuZ%Q!ql5Yrrsnn^(Og?O}%BR`w^O=X=*tA3+%mRX}=R7&EA_t z_TD5P&EDIj1cirvajX2*n5Y4hZ-goHTe|vGCg0j zWOI9*Y;KQ}&Fyirxr0tN_kYIlyF+vSQp4{(43p92dz@@;kCV;ORLSQ4YYe{~+;$Gr zGIvMkG;)1X!*8Sqviz2a&P=}}oU&C0W%~UG+^@*=`(M+h-`7J%8o$I3%ms2e1ac;c zdxw2}j9(c>qEL-j5%x!cMSjQ99`}|u_S`0-$}z|@V%KbQK7%XNMOx3u zzfDG(sNTtj6^CBsWI^L5ijsQ=I5yfE5AVkg6zQR+T8lE_0Td+A6S-u<9T4zGc*1(- z#B|m3()3jl@VuNgHuP7rMXuS4w+Zq_nT)z?j&l~bu52{~MpYo9aw;9npQo%!r!^cf zsbD@Z~~p_l3kL0BX=ClS?K7U{J({KaP%TBj!R^?K|dUk-bYC1`*!i@ zK7~@oSqCWWzFWVgyCoeTRkT~u@lhqab&An_H$Oa(m%80La3R~d?;u+HcF@|G^${>< ze&O3 zdPe7@Xmbtuqrtk8(nfd2uW<1~0hkGnM&jDyt%MWg`;Jj^RE{B{1Vk7<^xCKjLqv`c z!2?5wj&sOvL4@R3{;=abQKP4I^hv_=%w`Sg>6!;j0%;Su5jN9}_1SK$o6d;P;2aa0 zlfuzC@3$T6F@nl-GDu>oln2UIA{$pFjaTsrQU1o+Ccjv|^B+*UZk+x)9OUZ8-(u~4 zf=uvFW(jUGSmvnYuUbS%8t>Yqxk=Ek5$J~{?wo@Jj;b-TK?@RJV|eB&THYn@6)o4{ zI@i5$(MH^_<-{zNn6iN|W6|2I^(^)%J4=Y7=-;YWGU~4a*wm4?;Ev!%;P0GrC`s z%R3bFmP=VG8r~1lx&R?JI{=)8inK+g&U^YTu{hYHODzue=!*C3tPeUM&J;R8B04|<9S~2cc`Zhh zc}=2uO`>_-dJ1f+*UY>eh0~^fO+^c*P3=x&1e$c8#>lq>W}ivczpeK4-dI7MTWLw? zo0jC4lL%gm-aXny?;h=Tz&%BDu;EN;)p0b9<@A3{Y1Yg9Xa1+{WvK^8p z0VD+_xxOt{_19d}VpV_ZCo`G{K1v^EFb^C*ti?R=J}xm2{JJH%qukxMNFrY7%XSy~ z3Q6knf0n`GFfM)bz)V*4`dq4b2BN7kq3Ta$gy^x%5RE|>#EdJwP)vFxUiQ6~N$PxSKmnKOF_FQ>UeKk6{lI$Q-}_~3z%;+xw$?4XB`b#o4V1{eJXHU|A8?I{8fUCLb(17#Fq5+>I@f$EqIbP^fBsAb= zyUQJDclo_730+2#n(X_h8n88kjlG~tz3_c&z$Y^|V3upZ-|{q54_w3tTI`^E zanqpzhXz>#PUnf=fIeK(fG#97;8S*&d#>H(AE7iOGKag=Yd=y07L()mKqeb|L6`dA zd)9!5FIEq1LcW6q{Tio{YhKcs!aw2};8S-^KR%zVp2LgWE#Z#R9FT=x<1#%BxShkT zoc&2CwhD{MN2vj~HPPc(0c78(O1$h+l6Y{$ORTuH*@fJw@mvn(lHCnW$-l@-hOV(B z_ZAWeScxT}dr4AF�NFahaYe84T_PZK{WB=93ql*i2S}G1<#`fG0U%FS*Fj_*If< z@YXu#D&7l?S9XijkI+qeY|Yu%*KjgVUF~J}AYZLg!wmy8+giARVtxzPbLqG6MZN5W z>MhA_B%y_eEeRbVNu6UYoW-TzLK$3lq{jMoYS4GBBWLzKNeg%Jz_sx3dDgq$<;%k57>^RBiebPY)=&Ki>l zHBc}Hnf#&lW{x6A)* zG+C@r&(l@$ANztylyM*6+EM(ukLg3+%!!sHAGKuqG?zKUlKD@O@X{y}@#m?H{kLeV zbO&D|R0bQDWc4hSOyqYW>jiZgRQ=`Nj;iDDgWNxAfnZa0IoA=|<(8#elNIlS#kq6b z7ivfZ7F(ows?eKTZ%J~io_ooab~m}nWj0$fJ!OeO0FcjfXF!H7+;aRy4V)K*vOo6a zC-tq*;W}bW?xzKrhuyE2e2RWksARr4%r3h}K~;pyC;)9jNs&Z zKV!<`!AXfqKxJfbK=Wh)%}V4y&rwMSR};k7;I!tSFV!?L0R!8J2kDQQP0Ro)u2*6P z*i*mDzK8RcFmj47$ZbGkf7vtcD2`8$)vP@ zxa+DS_|>MfdUWMdW{mUeRj)L{ulxrW%o~obO!jZN0}S-Jr`uwc$o>{ND2!Jsk@UoS97hBw z^$l&#<168n@;e~&z(oGf$%qGzfWmyCkRvE_61_Q|yp{3s_?(EGB@BIo6(sH*rBqLS z3tL2N<7jG}prKyU(PIeg@EJJG@D;7UIuT2p36U^iwIKpY2_0@t<`fW?K8{{JLyBgT z@d+}x6IH^ePv>ahRib}W=T>ESd-T4`N?iHlpt{nO;$%m`0SDJQ`lZ zli%TWf%+ey7W!?5eK8AH-jhdhc}uc)Is5*zxgBY@S@WWSm!lXug%^SXvLAKXk689X zj24#mf_VzRRD{!UCz7I$(yDik#&BXW<^W1!CZJ$Y2yWDxW}7OQ=hXYsW{t^CfKBaP zESa8XjrSS3J5l_)cLwfE7#(E_k!p?g#vXi3cknxJNz$4 z_A!UruxQ)QU@{3Yr)(IY`bvm7__>(xkT#?br-|xA^yqs@kKU$%dB4GA@j{v>eK^$J z&SQ)|!X*+aA&rs8Aj2Tk^q;6h;70?SkWvYWd{sz`;srfXtp>_r~-$1lg)iL);eAP)&X@N-~Bg?$E1}x68Vs~l;&a%t- z(=0KGHmgpv6*cDzj9Q8QXi1GS6TTa280OCZBgrFjU(dU45uNZ^J|Fr7sCnQkCCj|QM-o+w<&?TkVpW`RRGVZGoQ4SLNj3+PQ5P!G)k=oxl-=RD@ZR!LBcUhQJ~q4@ymyv=vh zmDcD6M46ls;9fuuDPrDNF(<+Yg*P09Uu;b*Ita`1LtCNAHLTXnjJi5GOJtRK6`g3a zqWlap#vTQIMkFhiq_aM$tbTncwOm=qt#(O4@j7J>QT9@oJ!-SEKd0vy@$DrIF;zfLsot-MkMN9iPpNG`*%)lUF`(3dYev8%~&;cb&6 z8L>NpQ);Zp4t7l8l^C`$M3K?2L)mM>6)k$!#+or$d%3Zcg*S}Rd{bi-l_5+$fdn5a zc#SddNqoDF%M>O*QI1+&rYP7E1;xYhfjmp9{hABVEzYZ0V52d%z>UTQ>ZN`tALo@X za>I0yJt$tJVLEn^24ndmH&_?hXe?etxAZ7opeGdz>`82a8^#ONVXmV@s~iR5B)yjG zirPF4-dJs4B_*{~-_cQuJnuvb7X~Y}CN=)>WGxByDUzIjBF{Ssc(tmOR?!3+r4}0K z24E=w(g5HSumZ22jz&ut1`M;@HSESOU- zxkWM8Repcb4e6d;sh-82YIN3mcS2?z`?gu(AmtxEQR9-wNn?_nS0t$9!;#<<48*Rn z&anQ)8@dFi9z}fRsOICBcc7Z3WVEN6_mGo;YKp(fOf`+c_{*rKD#g$92~^Wn`Tr@^ z%-HzXiqP%Cnp2FeBh+?Qu{(wmqg`J_wZT5kH%%H(oFQy zRr&uZz0BD7|GD&1ea!Y%t@=yogsANl)<&9M^LQ zuWvx&iL`g16MQ~`OaP4-EKrAbRnbItr9BUgvE42KGg9G>9!g;A`@iJ5g=q5JF0v~dl{rP+rgq(MaKf~_ToETyR06T?<3Va|`K zPi>{LQ6x0iNje?e-pqNH>A;uQq5y&<=LO)IizM?~?|a2q9Gv_V8EHLy-$&7SEAt9M zFalJA41L-VrWn;JcJwI!51K#_bCXa?ip=LEV#KABbi?XRbFRT+qHM9Keg>q|8pc2L ze)TB_3^lxlit|BgaILeT-xRo(hbz?tbfSedCmWXZ7l|1ebY_FS7_h#L9(>73p=vc& z5+)S}L3Pvsy8Ma^C9R<5?31EhRxkY`E-|e;r_5ipN4x&pwPpUYcFf;ktJ~vt?UcW) zjq*1zrdv1+^|&4};#*5guU8lLzQc4`fQDV2dc#+2EAyJ{pS%e9Y4> zV{xBc%K1?y??qi6e_3ysOSzYAEWVBFNj$U=`EjdsH?IK}(I)2UEKA%tbXB_?@B|etgvbPV~_s`6JWEW4M!VM<3rMqXT{1Xl4FNAA_TH zU^9A^ezu9$4Eig5O#CP4<1pxp(Z}|+O_ z^D*h;RtSJkAN2`{Vm&$WWbe;$nd0&ri>`l!mFkA6iRK>Z&;A5Ybc|7P?NYhrV^ z&3?n-+I;xp5KXLz&q?mmh|GG=A^^AJB;S=Ar?#Br>tuAGl#8v*Un%8ZDdi{}=Hfzo z>$qzeb2E%kd<;t2%0|jrVA=`WY;E+T_-+l@IW&%A*@<;6>Vpo51$Bu8swMo06%I#C z^hlE7iMa6~i(8QZfu`cT`z$VG(0ZS<7jent8l+0so+hbK zsE;MND?95h|2a#py!hyC+zkzoAg9p0La6Y7CDSG1Xb~5g5Cy@;NPAW-Sw(Q_S1!;# zbm(R8--b3Sl@@S;kgNeI(wST$xH`P|HdM2pMSc@%;1Y?@fPhJaE+Rn=gpg|J0RTgk z^`xFVHLV!ha*5ojX8~!l_mh$E7L>|N{Dj70G*GYbKF&Wq;5AwIT(-cq?i(Z{l7k8n z>PU!!I-NA@#KK0rrO^d%qmP-psFUPW#FN@3A(>~##ZlrbByw{QoS}P$?v|Q~h9?j< zvR1eu;78RB-6gn)fh0^MLiN;!bj)-f$?dC8B|>F~sVTfR8eYc-OsExD1!n6Uu=|b+ z6}fR7m1Nauq3$A)w$BniCM^^(K)qj&T;ukn= zw^`8Hq%3;B6)+(Tc|r&H25ph@P;5({lCfJ%m8fEi#X;`ZVCqHq_?3DQK7L6`@$oD5 zq6X74s=(E+)QfQSOHzufU!Ik3>7u*X7JD{!i#@B@qRsw3ser5yAN!_$KA<@T8%#&4 z-gHn(>P-iwynX-$dlc21l1WLuDVdblQ$vqZIS)o?z}u!~vQ1aV`0VIGuj?|lIZw&h z&3%E=WL7ip;O|PhT>NNFEod!(N_JY^-TjAOsb8RoN zwo4N68V^S;(9hDAreEd;!-=zl@`~fIfPXC|QWa#N>XN|GWSkD;#(k9Cj_bn#IGYORVrttr{rcGn_S%Ass$>K*)-& zmM9osonwi=hCDPYR%oG$f|Y-kJB&BaHnK6m%9wRUB9=FJ@?tOfJXyFby^H5#LOpk3 z;vaY7feJsXWYzX##N)w}r96_M ze11M&1x{nna|a&DIz-tbwmF_(=ehjkyFY09x61gB15AINdf zT3d{VKF)H=8qzF;B=Vo;j+HBAciCTRP=klwL&9MaPOU|=u`hV`1#}<<3#t?X0#ypZ3lR{)*dSWS}Gr%x|(335myA3x9v+|+ZG)#kzm=~ENCUqZs#H8*OM@%3; z_5%ro^C~`Y!uk*FS?LER)*g$#s^r-pIH~&wCUr0Uz)9qfm_$By#GZ{kV$Uj$WL%`F zzu?&3o6uxFZl0k^j+dqru8UAhPk0h@c;-^AzYRIASPq=!!XXm9#@wxkFcxLsxM-bd@`F z6*+VjJ9L$TE}_z)E9THuV(99)PSeH$3(Hq=+(igH?ji(&Ej>D<-wN0Km}`ECHNV43 z-O~C`+e)2bW@zkv*lN9P+ztLHk0%Q-l9}IRbF4Z&s&XtWQI3Tu(z$|`>+KezXqydn z3|a7AjF*Z4Y-d+o6q}ar!C>W=WINZ6M2O~cVruoW2a*KIOmqoOuCqnZO0v3q-t07&KxTsF=SB`L zbRJc%AlITcMUpq*C3A9wffIcC0+mhJ4e^m9SbbG($IYh#BeMh$zbOw#pNnwxxxo1H zh34pUeOpJLxWnmDv|f%rS8q;e6nz%@vo<|st zB`7f-x{XM5U!+~U*B#f3hvRbHi9b{pr9<)ox}4PpXZG>|I^=Fx!)~2$Ktrk}w?TeW zgU>em7#w##gjuK*nm`elQjJm7$PzJ8Pr|dU0G!G3y5N-Vwd&mAgRyoU?A+q?3QnF& z!(E`*?^rimhu{(#>#~mh_$UR^{mAZXYjDbaNt`2;%?4y@%=Q&sm zPTJK1^_%*Jdj*FZcwL3IM~Un>aIs=QN0N_q7H;)*n3-Gg#)B@#(*(+9Pyh93vio2n zu_)M^Z-xxB(}fra*9i5)S^5WwZ1yb5<#Nci$~>J(Yk67cz$UIx))~=4g^lQ$6?AX; zZg$t!kcTeda0RF9K;a<{N2W{P#Dil zH!@H0{`Mw4N%(}F_|tDZq^#AAm*RbC;9@aI->zN`6>jE->}%JzWWT~~!({0h{YnBN~791rgXlZ#^E6h_xX^G-Z8i$z`_Xvg9N^zEe_ zhzm@#u@UJ;aO(9Dji32?!HG5wI?={mc%-MsFUd4@HuB1>SF!62%H@x9GKgx zs&?Xo7SYC+jaia))k~k}v)&g+`(cqR>dRvBHTqh(e<+IZok*k!WMN6KyPaqK)NFw6Q!R*96nF#6%l)PP9?yL>qNZv{C0o8+A^!QD>r!B^h}p zi8fx9Fe8S0Gl@2qInl9FEZyuI(|` z_7ZD*2ZpJo>Aq;=#MyCjW+{qj1C<+7)wKbdJ{xmmon3*;6QGmIH6n#(?i#Fo5eA8Mca}{#XCR%K z(pj+9Ncb3(ps%Jupq8yD!847|V@}g5qkF!1*6r()y-h=r(88=zr^Umsl3<>{jNmzr zGK%tgP_kFZXiv$0OU{Q=G6V0!g|r`&lC4w|-IDYdQ8K*`8|4Egg#DG05tzJX zI=2=CDxPJVawXwo6ua>8+N8Mp<&>$l#=qb_`xK(Hx^; z4q)EI3x$8)M5u6>E~9XX`A_jZ+gl}vYOisOjbas79FUxedw1Jd)w+#UDcRRsAc$!4 z{?mwQADl8;CB1zXFK;^=Dg;KI;la;DDKj2;M?#}MxP$0(YodG|9;g<^y+OTV0eJ4$ z%62hf_35aG?}FZPLs5HUuz%499IkZ_D0X=~nKhDCtlMev!lR@;v(6>BkGGnFYvYCQ zjJts6XS%uzwrT_J6`UUntmYA0He#;@OcgE?FmD+OAynBDLf`l)A;mesCrZ3F0Fc*C zLIIlW$owF*>_pxc!_Nb;%n19$BtvZs+^VA>=rNkjQ6<9VZMKzu$sy>AWTy|nzz;?RsstH*#8W8jGyI*{*M!wHvL^alHhFK)5;4 zJ9V?ydxr_?cCmq%6Ko8w>$KUc>}I?s12Ey-^@JzeK=B=B$X%LQF$AZ~)wpCQ6iM7T zm~jwEoGpc34tOtoOXD*CZ!Ecm0qKNy79BkrRtO~3$kOSST2thXB_Hfe4t2)QzZwtz#qG=Ne|RFxk8kh*I}S8CA-5weV!~r>6+T`ZhUg7AMkCGXZ`S= z2I_@$=oPmn2E8sdb#Kslu|QqCutB?Zf1EC$z-Iw&1>-d9D0`l>-7w9$Uc)qiQ&=0O zfwBh0^9??`IbQhQxC`)jljmyg*CO z6W$GM&mET8h&I|g<++oM=wEHJ5xw7%HY0i%)%~YN^u>eIBf1w?8AfzxvOA3E_dfSO zV?@sYIsS+)b|YHoawB@)M;OtMs&vbUR&5+S__XMhqxwaVlwnlQA-nyk{()ihfAXkq zVHD)oO^gD&7#M|`SmF{V56(?;Ud9>RdL5f3z5+p>LVqA*o@4#7Cc0qfb#d<<)_{0; zKiLk)b2*Wrbjr#g~2L!x6;&YS5v*{rEpp|ur4 zgftJBrL4{!lyR2b%~V6QLQMG~WDQd9j;*2gT9=T@jAFZI?Tfk=<(MxpSbF0@q%Xky#$*Is5mSAO6)PA`2h1mi|IT1vw%Ez_P#(q@2 z5f86o^9fl~A0_*(C0i}0pju8ZJ!XkR4&w4DIvTa8uk!|pz#M|k|BNfnK(mm)8gJ*H z0z6H&a}^s+-UIKlG&rS#teCfyvweJ;LGD=@STcKOnUre-0mmj>h%mPEt%;n=vBbO8 z%Q<4M(GP3MbO5=&C&)Of;SO}xAZ(XQVsb`2S^BtK(D%r?P9DP75a^I^t`URx0Zrct zD#!KKxA5)B2g*a7{qAN_-edxV4Q0E)qE1%ucx3}2jmb08B)+Ozi0KrZQpaRqD#-H@ zlL00L?!>s}zK)iUwj}hRC1aQqgN#NQvlI8Wnb$w3cF4I0HamOEcBIyE$&9`|Uor;+X1g!uc8szV0*C z-LG(U7rg11YPgk+##Ae!S-@G5I;JIFxX5R!?{AAUyvWUM5{&>u5Ryo8q=e~fnYyAJ zc-~tOD&cZd+>Lw@O-zKp~`TxR}ppijEbB4zEz83XN&=_zkiCrP?uyNpULB@gafdhXZ4m@7yIB>N9 z4&1_MBnc?Tz6>B zYEkzq_gEq#{{`1Mw&;doBaM=PXjL!KlXXf&eYA|ItC3_`XO6KBM#8n6#>4^(A`oUp z_d5uAHf)4tvFZq}+r5h5u1OP`M?M3^F+y`6SGObwoi9B^9XBp=d!)~k?R${8i^I7k z!6{ej6{9m~e)@Cw@~ts&Mg+ek-hx}6azeBT)K>%^cNnTd$Z2u42FHKnKF1(@>>bTJ4kQym`BnSB_J?z3)X&PXM z9jJ|lKZpb{=QZU9-r@w*>7=;HfMC&9lZ20Z+bN)96r3U+p3aB1{}JCs$RvApK>1Hw zog9q-<%fb(zC#W;FdqIr_@ndPwlwErqhY&+b8So0lOjf7UACns<>BLjqww&!FiqS2sip_xn52J#Djg#|n3ghwn`nAF-XKi{^2?eW`ZYq? z&f9oRqd(9(C4_dwBTdHjh|b@LbR_0>p=c5{uh4wRzJ8^WJD3ko&}nRq)QuwWFg+2E z&`+<&aeSDV?WV~N8avO1)OtBijT3k;Ikulzo~>FDv!Yh0g0EUmMhUJy&lN`PVN zYWh>PVAtw0x8?6jUyW8Fu5D@)yn4N#E{EGz1Y35 zIXSnY6BYGx?u%%Lx<+h{eG4|{POxSXC)uPfop4bM%;B*>2#Gl7o6Hk8K6BoWdpSe2 zKnF}MHuH>8&jwMAVt4exSsv^8?X+BIIsqvsGTwnKt0QAL4%3NDCp3@ z3=o^6sW9m`xI%Jl&K$1d$?iisusPo$y91l^1X&%~9BhV$v}be95}N~m*n!Ov2(Y*Y zviFLXyjVcWU5?E`cWJl+r}W4=qdl9W0g+~N^exyNJ^P9N+UVbAiAMhn8~yX$Fh_~bq>E8c7O>V9Z)0S^j_dHX8c*J* z@xCFl>To>yq<9`2|C-DY)dRfavJPGy3-4w7eIDdZ;|v8mJXAB#Vf)SN@%%@?4z3}1 z7wR#04rSsTsiT!2XU2u!)~@d0hIrs@e@;N<2e1`DE{5!|WeUvIM1;4^v&78=&txGC z0nz=Id0{PRnHNO%Fs)VQhd8PB?7z(fH^-S5Hd#2G4&caO2%DRJM`8I((2aoozfDln5!P5Q-m~y35_Sq`>7N5M#D?NQzLB`cH`bIGVAcQf!+dG zqXXE1!H>#OLjW>mrC9BSsFn$o6dh@qK=@{SJw1WG)IU9e?&r$aHG z>kDqXa5-7Hu3)P zm`w-azK~rQfw4O2c41GQCQ|;V7b^)3w4}{;!RAwXyWl30Q_}pH+l2x6CUP?PPjHoC zyAUM1!*=25r9%8)x?K>k|8?614PRfzdBS$V;Y{0wdP>pf9kvVh?y0s5di7-61#6mZ z7yc0xW!Nr^BRf5c{q4d7hRlz>T@V=mm$wT-SG>b^LF5G9=;3~>4y#*vBlZdk|9$13 zm)dB~w$(xM%#|=vtO*e#4|6Aypuhw5&=t#Evs#%ZDW=gIPu?rq+@xWGp)fO{~NAQ^Mv>IZR8cpuUo(Lj#CCqsJB?`?=d=y!m!Kqw=mx$+nGN^llP$wv@JMgB3ZV} zTn*uM#|vkmEO<_OlX+l5e~77?90@c?(Kc%(v?+LZcJ$CCigMO9%bho@FT-ilbiv0N z0zL7(-oTHF61NXPBmFG;ppG0|CS8|i?vma6P)-Q)Hwqws3+$W9p*QbK)A+cr`sLih z_Rs!9^CglupMPWU?yM$B2F|cO(i!BPM;y2x@%V<|-MEv{GpW$^%sB%g-UY$_p(ork ze9Y)sPd)3dXBQIn?m?bGkYD26l0EFw@r+BEKJmi+D%SgqvPr<^7H`|u5UmA(muX{M z;3G=tOCu}AjsRr!rq(vd+EwAh@k^*n9bCtpy>M~=tCugAlPL|>12Y~4&aA!aE(uAE@Pvr`RL z<$qwvGu6w^78F4gM@Hv`m#MUR)D4CKE%{{l3=3d=ObI*fTX?`H8 z>7sH*bKRypKtNJEUXTncVOP@_uTj4JA@ugsJQlq@kb&NwxLvmt_Bt4rznKfd_=O~Z5yCr&VY_;CzyOxn;V@1*$!q;)T@byb$Dds9P+Gz z%(9=Bi#VMK%$8{jgm+My@Ft8^X{ES}7+}s?`3|#Pw-;i`eh94Os@?<*siP@3Xi zadL_)Spl0iKfrb+NNFW@Tc=s=Z|XO;-I3evj@)i{P%BayyI~+L7C>j4I~4#4Q47d89CV-JvA+k!HB%Z6>J3Lwq2Oz8nV-2 zmhWXcpz1Z3tho2SWQ<|X$!p+Qm<|0Pw;cLzLG`o^i|eS!tH^KZ%ZK0d`x4c!nm9or zU~$dt32R(`w8IJs4Ukcv+~$G)8ggK9MQ+tZf)#b8T%O7~dWxil6F1RW5pP;+Nq~qQ z>9BSEvp2je!Z@TCBQtB4cu=3eB~SeAA9*Z#i#xhj{+4Iw!{7eIJ(DZFR{oY};%_T? zhOoi-TNmS8W#DgjlKT9uwZ-oPM{k$L3%9i8Z(HbXJ;!)pY6!Kqp|@Ma--_NEp$$ye zU}M;8TN|wW1iu~VtsAyh%%`^+*&mPI+CXomw=N$0smN~Y2y^uIFazuLkjam193~5( zx9!H)3p{N*zSab%{F1DgXObhFb)cH%$Sq2CvZ~mq0p`f<`(WzaT|T*W4DSAqL2i*b z`sB8%9l1^U{*TP#Ap=5Wm%dk0f`3A>x6b2XY`3GgyB)pVEqYtF)9CG2ED4RZB>!F# z(c4`Lcb$Q~WtC}9Z&NJ;x6eeakI>umR8{}nb1ey-ZApHXReX2WPSM-lMsIf;z1?l} z_QSphz1?W+E%dgxqqm!Yf8h>)>JzATa7wLZ{5IaLvNdS1bf>%&(7GTWRXDp z%=Co8Rb2P{FBqxK{WlWM-(hg)upawtZPddoh;7#jtP11a=12gG6=a+oKJI14H&Zo( zfY5Av5X-VPVa|(tKtn#V;Jxc~9+@zsXo$cecSf^27Dm3jn;Ckw6BmeT#Jv?_R@ngu zc4M`7rkOAvGXKFxVH)O81eRB$G_r~lH#_2l3>hWy?7#%!wAz`bunGSdZmytVPzI;| zjGh{J+z#H_$ z;6@usSCEk1HER?Duxrl!*rG)^@_ZFPz>kANh|frT2kn?p5b+j*0$KaB7ct2Jf@ihI zYF|i=@1*>y@?_ZsCfFauIJ4_Ji6#IG;q(1#cmZ zHd)V(Xkb4(%B03BV!Q_^t&Idubm#!2Ji39o3mnm2Bk%#|J7@aD8n(xa)8hwUSD651 zK1g40iwE}GD`X;jvc93GRC)Rc+8Mwj5K#}G&_AwYP#Ap-M43Heq-%P)yOt{;?$JRB zsgjdh9I|Ac#uNe9-`MWvQPDC? zD~W)#0ut`TH%PM(d1$;bGBgf&-`a$xlw2qUR_OFMP}??M51hpXVu?-{^~pMi+w=Iw z>3jpSf~vHhoug+tdUihh>mBddvlyn@JnNxn-SwSnlqOp~92fh*P z^y-LWw1qi`w{V5gz%g3SCu}prA@_MU{KLCqVaDk$!r0n~*l&)$2>7g%?aW5 zKy1N@9Az5!h=`9MKrN;Xv|zBQp>o zh`x0WbHd0L1=5d>SmF1LR&A$P9u>m*2(}i&lRk`e{nw8EBy1xLE2M7p<;g~U7Ura> z&+}X{`UNRGH&d-0PxK?6rg@^_jtG65ED<3T!QPh6I^M36S)WZ4p?4>If>Gf5{WTFG zoVsW>?tjzuNWC++vsh?uTyo&+)L49#0N=7qmJCkVgC<5F2K+iW^m?E~$^AM|FBG7v z^x4+gLPu#3cHmc7dX4U!Ve~4fB=m8HkAnC*{9wjTMFk*()QGLWrds;Gr*iJ^+0l5BMmB$>#T z+S@|5qU^ySTY)3c2Ql$J+0vfiBakf(B7Y9GCtGgZn97RJ0j1a57DhlC6uk8riyl&nWjLOG}$_YjO^rOYZFg9kgYnhPDQp1 zlt5dub?ugqK(<`#oE_b%$d*v>p=2vFz53balhUh%dz6u0eVu0~qgQvh_cGHfO`Hz& z%8+v+z3NRhHvCUTuP#&PpN!2Ki0=iMvqN2ilPZm^vQvhLw;qLG^l~8_`&fM6hCGj+=1JpLm2oGO&Swox5mr!POg=0o=uLKfP3oNRKGVa+ncYHszhblnLhdHA zB`n+N_^}D%*6ZJ$F#CFP@oo}Jj$~=%?C=Wiu}Q@c!+p{8GuCA1;3$Xdit(JMNaD|$r-b49OUl3K%=c#y z3Q)IMW42dVc}5G51S^ZJq0d$#Urf}!rZdl>p03HqJ=Ey=%#Z2~Xu;4V1nE$TP^(c2`e6jVH; zjN(sCw=R>vSL?iJct47l?AI}RVW2&cjp^ExZjXF8R#;n>Y7B|s`!Y#S>Teok*wAVK zUTtyRC%}S5O!d6%(;vO4A0ib#=xBhpZ#Ej*YBFxn2KghKco_2_u!_i0glAq z%YOs8UPJI7?xdq4V~VF8<M;okw=`3YMR@`yvpE{rtAk^2Z--`Xbj`dRD$u@hezS~y-KnQG+TIYg@Ys{@ z)#$i&%%JZD`=@Bpp7(=Kjl4b z@icaZR{XV76)l;T=ND}_Rnf82kT6@V+okR07bnPUdpLrX*E1+ZKp3FrcIuWf-M^J>?h@0+>@bCF0Q&Q04P zexP&b#H76MQ?NX1a!vVJRn48tvvKe^K0D>*>g}2RsR^E`izRdOEScZSlIp%B5pUPM zFUi@@SudHZoW_60=@2I5jpOQ+zSa17`4rmJI1pDuy8WAt?(y%oxU~0MN;fr5YINy6 zIL1h~!ZEXMEc-GHcgo+m-G=wU#%(}=5mMs?IO0(4_Z@QS&-S@Ah0AFwe{QEG*Sw?L z)r~K0wM9qND-yOdK<2F7A*=EUdgFEqsU7|CdZd@G!Q~NE?Zg+7vfs7#yxX|ZHSgV} zE<0tdez)-~JWQ$BAh5z)MKye?)tWwSJ74u@y6HupQRMDFsYr|KkhG(aAN&VJR`X0q z8ubeyC+#-1#YyT9e@2<=-!qH6&5ik$l&LzNRdKiM>YN8}bifni=g2?R?wW{Kq3F*& zix%bSvX@=Db>YW=QVAucL zsM^Jr}^WRc$6==^nK~<0}f8;;lc28@K*cty?4t0_7lF zG(*9sfHcG?TKiFO_^{COR^#q@dhunn1=3#W(thYJnG0sdJttatyzx7~1b`}A%272N z@eS_qV%E+L-E(TME5f2BRo4^Um&t~x#eErW5HxUtPe)bOY3?{Vr1?dWJxY^S4BXIt zTu){kpjg#a|MvHS)D6(utUazz7DWo1@MQLsp2>Vm%UUbs3w4LUIyq>aiZg!Y7%#jx zmdv@`uL`ZD@3I;<#{w&GDiaAD8+bs&gCnUTaWM;}RdR*c31q1KbkQ@b8x9i&C@ZTU z=YXHHyzYEsz4CB#R=84GMUHDZ-5&QS`yDI+!mp+@rmEIGrsh~TXiC&(og)w%2xDmY@@^)G6qvSuJS z??=Y67tk_?lfVO@GoG!@9^u{AX)>8$z)%wNhJJ>uNNx5I5|&T!b=jrL@$ywR;)Oov z?nYUXdp!v+ecF=TLXy-wXP@5*yN#!A>x6ecl!#xLRk^m)f~{GB)n~8#7M=jJ7!gDI zrGnY#%RTX9-*aFmEBbX2&@bqte-PjdklO5J)Mx;DLx0aDVANW2**tf*!IIEI62N$g zB=xX;e+HNS_iL(7_&y&?P0ca@4t}=OQ6Sdg~|MfNyL#Nbc z_a>Lg#gtutx_T*eoM&zFt*;|swO7Pjb-j5?#+KOcW{Rg=@nt0XPRz^Q!e#1H2Kzs8 z>BHXXCmE2}D|K7Ikat!K>{+}bJOM%@1kQ*30GB@Oo4C{;1v*jI!G1K`VBf~GHu){E z_stCZtFHKSBtGm5xlDcaOyT`WF4F^VW(L^%rly}}u#fnT>-gI2)T|cRmvQOCzL85G z_7}PIVSkHD2m8ei_F6K4J)PeId;iR^&vV76llZXzjLXz>T?G3WE`8XCWrDqbYC~s( z{kzlBu7x5xOA{b#Ho6rrDOnmI==<>0hwX{oh$wfi4XfP zxJ>OoL$Lo1m+3JxBLm(Cr1Bl?>z_`;zVewC*ynTU!@iJ9ANHSf>BIgimk#!?LB)Xm zSu%hgNh~8;^NUsfPIst6uGhO>2YWH&4LOE))ALQ2B=v{UT zmrz8NrBy1&-4mAN{tXE)kF+HBizKO6A^C~Wgp4Y5h*n!vB;auz25jrCt?i+$wYJr2TYHN4 z073$a0&*7wL}Ws^BXSe@eZFhI?<9~w{GI3jf1Y2SC$q2b-fLghzO212S2x(uyKaxC z>RF*vrJEl&IJ%Mp3cPL0jK?R$`s?c&yskY38}L%vKKIENIN2YvtE3BF!5eh)6D@S| z;Oyl6baM6ELvQ-dpj#k!gjI&k*VG0=1=Ox7TR&9i)7o$;;l|V(g4Bnk>aRBZz(J|M z3{s!xs7mVZe%&`v`pXV(ETveVr%T`a3IP0^Je0CNDCPLZQVjldX-^v7S~IlPQ_7&Aly^aFzeV*V z0n0c!t#rm^u9RQnSc@KNEaehc$_kdl)=HT|9$?vtW2FpiEaf-)JYD+j$67DtB=S(o z)j=tHK_tILUG;go^rc_4UP={tC}lQ|!SZrrDR=7gbZLjLP|ABhw^GgsO1ZtUly^v? zl;JG3t@TS!@&LG5!Eafr;86=q za)Got(T8z9ZwE!OE%N6a`%|mRF@p5!>i=HY2L6rIYIqjQvvad)b&R=OcE#I31r;u$dUu26?D-R^nm&OrSZim=@ zB7J@PbY-UjSWOwo9yqM5Q(5Y!hf~RkkxA>1@%0ON!_Hjt5Q};WeJP(rCLPV5l~ z4sWulGNA{_c6>->`s0Q5Z#gzldg7%Tm0FG$62V{`IyP?3Z&avErQkeBwm}CL_g!Fm zL6cBA)1}KafzshQHd!))i`(XI2#$69&x2ToCW+!oOASA+ycyG;;Dz4f%@|VmVs7Zt zRTKLF1MZ2E6}XseWmZq=r8vZVLCycL9w_*y9Bk9mXMH#o0Pxq8HI=L(=C?mle<5F3v`{`I+mSq` zY0t8~BvH?jj=qa85u_>rrgc|3|1t{YDTDMcC@hisD2@gm9xlAtwm5c2urLL* zaHF1`KqxJ=jgjg1Tk4K2_EOhRHJSioI-9&<(ITcLS7*$v{H6z=@c4WIZEb@WAz3eV z*SvV@uBC7o7%?!l5AredBr@s0z9vMubPDWJJ<)>)r^2~X+3#V$B!!N`?{9^^a5Qav zj{07r7{uIedo-T9?bRgcBCgy6(e>s629q= zLU6~gcQ^G?_f5zeexLepv-m$&H?`$Jy%uZ+TW2dwCvD273 zhwn5d`Y}75y^o#F-p9`V;x(wkHaa%9z0aJzkI$UFkI&FM-P|Y_<@erYCcw8^EtOlX zma46NR7BZUE246%6;ZX-iXXA7Mcvi(V!v&CG{oEC?0xKT_C9vxbXU)Y2sGHtaxKx5 z77tmzy$?O(9I20be`fvQ`p9#ARC!PzRk=PYbA42CP#;yfJ}Ps4RN?w)1bswTjd6YC zxjw42J~~umwJdq;BJ+?jTdiTDO zCX-z=i>w&@8VrH!P)l5il0BnK)j5#cI*^qKbQhE7z8bNmbo`RvAsuCWZir`$bwfJJ zQW76IvmPp2>@=Y|c%3e5k4h6~4ei$)V3~oB3Zv7YWcvD-L}w3WjF=yKLAcFp!Bb!h z=C>ZVg>GC#r(PqH4(`LFQ)JSQncMMnr+9i`|G0_f=C8SnhpY)NY5_O(jK5G0EKEov zE6Q|yjjVb;dW(OSnak1af_BCqS-zz_Zp3O?C!BSQ8N98T!H#X1q1Y~-@{(OL*wGJ0 z*d{7lu*1-$j3uI1-d=e3C~vo~vSm-xC@gl&h*WE_#G2GJOi4`_y|H8lWYd=vIRW{C z{}Fk>;C>z-FUg0P=y-zIz(mKLRP+%#XZ1-6{XaFl)rkr4Q(%YAyMran>~c(lzYMz^ z@XYV_?Q+!WWlZXocq`4j$hXUJITJ;8Io>luX&YYIFkd2VIwdh+N=HAvALq!;`Kz+jhR5=O z^-06FT%SCrq;&MOF|8KzDF-hK`3@ggAFPiph#!+aT( zS8GSZ0m_!K#gp7xS%=Rd_Z$Br_oD~p*7@f|ms?(PYXN>nxhIpm@8@rI@BLhxcn(ad zhOFsZll|7b6Wi3cr8T^fyaUw%`!4T7B51ah=az8qbDqHZLxIrpy@3Wh=|QMY>wh9E zuWR*uG^y)O%1BR`0z`w}aA$PKiWi`UsG`qr+QeS zTGJl(pnB*K+laG~$Kcb|%9VLzo}5T>zHc1yg{2nl%0S%%Au4WftKe@snPX-k;+g9o z<`!pPJCo}Nj6apr_&sS(-CUE>#rNZjOp@v( z$cre1sDry|ec##eyEvLwY%xas64k4}gh!(9=Y!Y>-h)@>e01QqLkZf=vWS?#Jd-RU zb{nxpl6fYmK!HU>jZ$P%1?{cBa)-|C zH4XpsX3GiUO0Duzo4wQ;VCGiKgJ2#>y-LqL+$#c)e8qP39C_=0bPiKocEo zq395tZ1=4vLP|UbuTM&x@@z9wqE(muRy_;Vu!6t-xJ8Ki0};5elT>g4LsGyy$0(lx zd`$?QAM$SI!}&H|RoNRk*z)5(6Inn%e*A&oX&v6ZS@~#%UwA?jd4XLd+pcaa!-_b8Q zO6nUpegmGxO9S3lLaJb@3oWxy{&WjP|7uR@>p0oVH)#a!#T(3t=C4(62)gWTpV|m4 zu2KVLJ2ac`2xBa<79unQ9wU~H|TY!T8B;>L6n`k&VWA6fNr)n40XMJ9jUGN z`uvA-z5Xg*rcEu5-|H{orMb(LkSdt<fFQ|E`6i|1zg^7EX44gBnnc*KdHxa)&lR z&}DahVht!C-Qu*l)ivNRq_*CGmnP&I@JqZj;8`5M0h964fT>DI75vVHrdufguNI0v zW=`oJak8DP0pG*xH$X(lLmMFIvKP1p{P(C98!*x}pq|v$8!&l%t^xPpr2!Lg{07{P zmj*nkgjB&;7y6xr@*lBKbhJ68<8iWAZ_o$~!s|CcG|@vFAn3Apt+f&O=+0o?Gu!VW zfmM6Hd#W6kf1HD#sM&+2`Y2!?*+Iq6hG+N9UR|8!s`7aU5Ye|1G>8 zd`?H0=a(1pHGs5ZO?$Mr$~AHuo=V^X3#$zqM^=Prd4E zZQgq6z93Hc_lij9*)DTd9H@UNd*HyMgDM7HKj_=WRrKJ-EbE$Bj?+&J(WJ z)c*Lec3ucF<~&ZXc?r}&Pg@=K(!cGY>wkJ;VNV^U(-ol}W$DvW6@`NbVNfPA;Wp^$ z9H&xS$|3A;_6hqQS{H9+Va+~1bq-*s6$J-Yv;6F#XbQqKNLN1!kri^n#{(+@vN6Ga?G=W9H4MR`0u z1jdK%=QN-eCKN|ca%~>0HEr57e64y<+sOFyJJ7Vxk7|3@87ixf10gbDjHD|bd|Tb6 zr_@0=54vekPuMo)6whXOHC|X4G_?vrEn5Glj7Nj zhabXry6Db(l^0@q{-5xn5I&x&DjdmR=#2u3O%lu5>7sq?iU~;KTu~&T9X^>2CmDlG zTYL?*##7H1K1U5ul@aWNVir%0FBHuv!BKu#xC`wSS8nR{!l^`hsS$X}|vTGX`xuJ)&?ZuQ!g4{vD9fDTliR5aOvF z2zyr@3+X;G;d~-|qY~Fall?d{u?I0|DB`In)_{KFqu|Ac?>;d6bA_5;BQTf_byoc| z)*TYpoNx5Vg_zFs79n0aq~knsv6g&b)JR0J1K5HRDhlHOxFFIKv%{U1BK;7jO-ogH zreY-;1W>m=oyReJb-p21lO4ZKg{$;C2EAXh{)pZ$S$|yB zN7fp>rDm;h_)@dhIA*C?YxI_ywZ`E~&06D_rBKbgR4p^}hQn7mD~IR_leI|ngvnau zsut<$RD#AaDk)p(OhT@7CLvcs4ev4ng=1yXJLU{Su5^YWSE`_$lsTkMKWp{#B~ksB z%jd0d79m$Si;ydFRQ35HF&kC=eQYQ}-d!0PCw|HLUFycK-d(+$bXS$@t}@qM6?7L} z=z7a@y;VtXK|Xh#<+;wPw9XoFP-j)S&MI@ARbicVD1kjPguaqZ$d%3}*49t+F9frx-xk>G%hjQfcZ+8xGg=}0@2 zj-x6(#7d-E9@aQfv!OK8StuPZ8Nuo~?oDVqWoecXeHXW7{-(H*-p5;@;Le*_pVCSG zFD;K(-`Br=WWuZZT-5A$mBpyp)A3=j45EW6kE(IT z>Zsjt*9Nw;dE=|OyR(<>C?dR<^72_zvk6#^H^x&lAx~uEp?VRtrzfgw+Cjh&_iwFO z$;03=x}?!2fF-ENi_qW^U6^g{?YCF*3aKh9i}+C+8|m;T<{*!>2)XRT9|HNOD)fH= zxq;1-LN9@CzykkK4*a~MMy+lHd~|0X4w?bobSL(A;H&3X?`89UZ#TDphI24YU@MNN zwbS0%zv|R@`uO-%z~yi2Tk#kg+23J1!*KWs^}n)j+QnnjEOHuKu})EK>K`Nl;@-c& zYn&g7bd`=yWZPLsM?TPB_J+nn9#c{} zTGTp;dHbDK$mM)sg&f~l$QC7~qjlP#j|@phS!%<-=L0Kb?uWVNJffs@^o-UE$=+jy zl#eU{0TE?9bd?wTXUoJ}ERvY8=IC-k?_ng?gu(ms%Xqs{*pH$3wN>FU5EfZ?Q4uqWVn* zQ{l7C$uGwNs&BZ^jph_wVv*6_7K)bQWV6cz>RvAWL8mn*^Z-e=lLPhM?*(!~nVS z0(lsR&{-DBkC+qPZCRpUBb2RLsy?4Zj1PGWw5c(LJ+n{GH^{>Vd4Mu~Y@%v+1=}wo z=}@XiK+HV-dj~@f74u4>xS}qj`*(lWx<5>e$^zca#4wGz51@B-oAaQtRHsl-%4jS^A?e|Dic7Rvvp3oTTrHv9^X->gS0A*%H3ti@{9 zV7z{_S|H<$DeRx!{Ju5oPd7K6X9Jtgvu8+Z8ADRhTdxy*(Vxi)kOaCvLBn?5hw=K; ztqd;%cAN613cl?^KekZ*P;;W+#mROw$WOr=3`ld@|Cqvo*?vHNDEVnh$zjM(PyQS7 z)2dCz&)t;%w3}JfNPj}ltmsciCO(P2W5g%!&SUu;Io`;GTHcezSHJ#X+S7QuW{CXM z<=MlMpWMb-p55_mKzjmr=%ir<%PQ6N3qYBpZ^8$S=bp%juw-}OOGkM2WCgq zxs-0YjZe}=AIU*}oP*6jwcVw|FUv7YuLbAXLiCuUoTLkWe~kz)OCa1l#a9UW!$o-& zJ`c)=E@o!=NZgR&Ta_ML>BY9hF+kD<8cB^@vNsscPV0dc){BM){F22EfcCTO3NyP|+)N zWD$QfD+FL8D2Qj7z0yTv=^XTa5eUeJI?_iHOFp!uqS!}5r@jBSV7Mh zt~U2&BZPROqj~Ad!oi}Rs1rO6RI1k4$}W8*eoxD9JH;|cAUy>J>*nv>+^%lAOvme zCZ}>+PdQcFz8ah5cE@J9-LYA2&k=+UVY5u47I54i5rmHVU-sSq3+$JWT*hF{;W7v? z7;eD9K0_1sOV<~k>x)Y3ix$`~tt%Y+Wy`1(%unb;hhfJ|mP{XgO)vpr$vn9cJzn-F zouk7VddxD!sMW7G)6tE@4@e=7ZWPo9StWrEbI3;pm{;2vm%#g(MmYlcjYrch4rW=d ztZ=9YO=zU&(~g9YPigv>I2ux9+#PlSa|@GhOCmvd>7jAR!SVFSK9Nbn7IA(K?BDmp zc)Di-=1nghFON)klLSb^kxB9-Qd#s2#7*JyyHH`hOhuFh<{$&CFB9+HzLJ^$g!s5K zGVymr$zn=sCF<_H%ou(1DJu(lcRrW-RVi-SLh(}Ek}TOUYO7W+DV)XVXRop)=!NAM zy|DbECk=%dX!u)=Ex*zFaI5=pmf7}`W)hh(U1o-|uY)Sm@HIg{`E9AIKnc&JNwhq; z29Bh$Ub=_c!?twcmD-C6M&htn-D{y+>4EEnBw~V+N9!)c{LSoEu%*!FaJ9R;A8Y@u zhzNKP`UiXVL?M#Dm#WnM@O+L;?-siXt>B{eRqw^zVG0rVM5bSNQT>}(m>fm4Z(;H> zsBx^&LzOZ0fp(*h5}DrJHIxsl->_(FR%4daSon(C-;IXp0d-z#%v`DOjF-GOYD+xr z0ZGh56ffif82j>2jQ*iQ60Xw$s68@e!c`|j*u{W~IK5$@#R`WrdbnfM`iA2n=xseH zZnKA4p6b<|Adsf>mS365`v~WC>L0XbiQP4|e^NE<+d; zTIs~)bZZ6aK9A{3-&;ZRk(&n zcEr3;87l@;VQ{?Ub$@W$85z;v<)!D5}eAgDy;sGhZ;0yhAts+sFKCY4MO8dpxo4k+7MXJ_h;T; zm8s0vL~m*)w+Hco-K$F+isT!LEVQ0qdu0ZFwmiHt&yPXbq!;>Fs*Pk3bSq|ZxA`_@ zV4$x8h?vk75Jc=5}TRFU25iWmzsIpWzIbAioiVXQmKc`MbgzDkM72M z8Ekxc$6y|J4d!vB@r-z1x6~{Rz{th{$UFQ1OswaU0+*W>U_%g0;lREx1SuMGnGmG- zUpOpXZ<;e01knS57kdY797%jSV#9v86?8Y!`EQDzsSlwE!(X#CK(;@=UOV!GWjWw_!Ykc>fvEADh4Ho78;0 zjmF;L>7#lLNKwXzdUl?}E5_Yt2UtPBp9og4j?B6u)fqL}`_bJmCifgtT$vdVQiH$= z>~IXYkf*Ljl)&h%j}ohSZ0EAE2MfJ2kqekiiW9Ms%c6q;=YB_1G-;zY8H+5<_Cmv% z2PKdBC}H+-e?af)`Sc#}X{RQ>R*Z7)1JB6IyZr+1B$Gs ztxkw~Y?0;pRJ0qzk3l;;p&s6&7q+yhW7>-L6| zv^Ol(-mp}{70cA+iISzhaK+N5QP{(sKKjHfGhS4B-Ojoq-F?~>sqQt}7SOoHup(N* zOdC$yb6st0xWSUc^OoacxSsVGQ$siDkfQ0Fj-yRYO4&Qb(}SS~U&_eb1?f1+R;>pt zJDp7UJwDc5wh=S{=~a8uAC$(vT+TI!TaME^cNPy{S7ZkCI7A#JLbNZAasw~msGi#o z0|ZQNy79$!!E(zNpB{ZB0yxNapcPPZDc!m4bV8Xmnqmh`^z|Fc(6d)^VALnf=MHow zYQ=q>{r579P+l`$vq^8$(t^zcH2SW2lt!yHH-h~f;JcLVN4Bbqx4#>|75jVgTe)9~ z`e&z2k?3@D3SKiO`m!9PULw7`y`4}uySGQASLNP5QeZ8m>rXXY>-6Qw{)w_;|HPbv zpPCb`l5>N#0Z1@5wZ8|pruO$aLYXfokVi4)-kc3?2!D$b^y-=SxlXXmt#wkyC(TRm zNW?I-#^YI_JTmS+t{)92*mlq87{Wv*KdvES0*o}*9?v3^Zn8i*@rLml5-UmLdf$Ri#mY^%0;FH5}ix%i0c?&Dj+e}i@&U(&8UCIQ;S%kvOvj$ z<$;=bEo*{79@-$tIcSV897une*N6V;%8zpL{Z0CkG>_Xp3aIQ2j;AZgMSFB`(v!am zW$kMRndN-Uz+ z0F+mYX(f@4`odhklk zWQd8Dk==n7$<|6Qb1U5)w1!F8&AJrNSlQ&{Lc&yHdgda)#=e-$S@@#7eBbwLZ&H8ZMX{`7$o0qEaXik zrK2~rUPyOW$elP=NcYA1gKiRtvdSS!%;a z^MOI~^TtB1RucRdWvv#HQI^_pJ3g>Nl8uEtqNH>*bWy8?)P2JWDdhtzq?UJKoamQ%xlUiz#O~a#vBNz;su00IDl}X3w_I+f|xl)y>YU4 z7zl0g`XIC*StM?SC;w?Mw8_Ds-Wc?XJyh}p-w8bxK92x!oO68+j;?rF`Rz!@V_^>k zQ{k`S0NwfK6rAir11v57ObZnqYoUTuak6t>Q9rGy$N?$-^h0<%#K^Gy9|q)i1~q-s z?bh^3_feAE+b04D?ZFyGwl;hUB~Ks_0E%v`1A4%Oe~T3N+?l`AJ!vX0&z(n`6YXhE z{&D6M?IjD3yvGpAb}^Xi8ectI%GnoHP6fnPyi z4+RVjjglEhk)MHN5r^E-!nSIJVa?R8`O>WR)KAhP-qMJ#RBxAre#AZBHx%rCVt{AGVznjMSVmGDV(R@s(B_8Q#Q|JVk+iInRl1r z^GwF2YM#lsl+804mx_6argRyxNVLf@i%e+6TVz5jm5U^_(p;dUH$V^hsflx3Y0@0u zfx0<(CjYCbWw6PtyrX#rQF&loMhdRbo&UEqG3cg)+7r>dY(hUBZjBp3<7fwMQ$s~R z9d0m=07m#I08#Mvr^X?L(ndaH#5~RAAyxBw$QeVEEhRGKN1gDE?jfKB=-d2@e_%2H zNY&)P95p@|7ZPUhkI~-2(-BVkL8Jf;OM@AexbZhWQh&4a`dT1CHx>DpuaGco8qz9~pNy)S@PYy1PzlekqElme+5vOGb1&XNOj9 z*a@999($hs$=%Jb(I@HXoU2;>amE)UpUhh@)H~@WaeLU%{ko_@>;yrLdGgfZFmum6*9K5ko%OBj$Y8e z)k5}NXod6%3MpwUWVe#i(L0M?4-Ase|B`D?UnL>m(fS4d8h63}w4Yzd z-x~|L%3bi!*7M+zJ9gux21(oCfX5>5uc%N6OXwZa%yI7)@5lNu6}5wyUbP zXYQxkll}WCJovUE2lvz=m;3irf7LEa7yq^&3TV>T#jzU53sB^$4=znDxfB&~<2$mH zzsc%=f)`lxb2@NddCD}G>^99MWrYKE5pv2xpm`S#{JNmV6YnPtJwvWSVaXIzSV9>@ zm+SNu&xrI#Xz)hqDJi_2Owak5%6u`+c;>OfvE4g$i!4Q1M`#?8(gMbU_i` z;PBY|TJLJk4t&M{`t$iYfSyv50O*jb{dZU;?7EjKF2f5L*W0=g{iX~3&_V^}7An35 zC;J%lFkNsK-r(Hboc;fGV|~iL@&^Os^hPkI_+Sj0>Q2tH8gKXI%w!*wZ{X!Re}$Z! zk$`B-VoNJ)`nvQ)j|fevrTlfC6PXP95KG-iE8SJwt+y^^?w+Yyt3Ho5~ z|CWKRynt=_Ql)(?lz*bWN)@*=C;tST?ETNFx99PZ-`g$R@tq8C_7A@^usi0!zE(bZ zduoed=Wdwia&7X#?uIu2o6GSv3PxT;FH!h-yqsIr@%zrR78DXg3-XmGReFwv^1HfF ze}!tpQ5-iPi#OXxmY)5~pVX$;i3w&<^DDE1I{W?Zsxd(SW4u1}LoIJ<3J2&%xzH~xlt0Eo#rNT4Z~dcsTXYZ~>=vj< z4zO(Ix6QBodpaEE%D?p?uKZ&Uz49+7wth6vM|Lhh=)SKZlPc^$e+HJOx$mO~>xlX@ z+Ot^&A`CT@VE6rd8R)*7oCZ20QeS_)uKqCGI3?MfEj*4H>g{a&t~okP*%0_S&FFxZk41InK3lEcL61DY%jic+SET9Z#-t4(WLCAhFr$7easF!MY92 z)dT!^X+jMS`d)f4vjqJr@yGT~Qz>o`~*u`4Fj1fGC9#drBnzlvd@;8_O>gqC?I5ZHX2AqqrZA>(iYtDZNk=%lY-%jDfCe#A*y2%$8bT>_S- z^Sj|t4g`glP1y^yiGN+hEJ=qq<9KQG1>6tk?|X5S8=~J&21%hlgy6L*p37FHhNm`2 z$4EMQlftOPP8a+^pK{LBcI2cuAUxd0By&<6{}Bd)Oz*abaJ*bgw9oN!6XX3sWa2<# zlBvaF6p!tUXS%ob8LpFDCt;MhP_y$T>hK^cs4nrQivtO^^t^qrFz{=fOZ)9oid|rr z9S)`j(H;UWrh{n@3sqoHaAv^fT;Y%wMxZ1CXUry}FnF7c!ce)%5g!_i_|V{p4-Jm^ z(BOy<4UYKG;D`?mj`+}^3w)Omn=Eb2CQI`+Sz6_$!;l{u_+-cfrZMAcQQ{*s%r-(N;XHvT`Ky+e;=Vu!(E$3&?XU2Xp^!$Kq_dLJ(c8{$wUG0b1^sqBZCD|r8VfmBN$KcwXSG_$ZOT#` z{usv!DQYa_Kb4e@u06BWLY`9=&c{I^*6pO)<~X1;57YAMaXF zNyX7BU-y?l|hqAvSqD9>f%yK-W;$*YP$vMW0L19eIkn z;RR6TO^d7HH zJPg2nDAot~M7&J^K82tU@X>eyQF#Ga`3PNPPW~A<0Nl}>{3uSgrvbbiI+_n~3zuQN z(3k(hdic+$1ps&T0q%ALfKR1ZAK>p9A;;`RL&uM*vuNQy<_Zx~2xCk=pPIf|&V?hPXLZOAqb0IRF-)8VqrFfdU+T z{2ud$g-=tI%*S!k=IB-fy>jLtU-w49gu(Oi>8De@PL1%Tot6XmZM?+H$8neKqE{7@ zimo-M;9VEmWKRBK7utmbrE0Y~MSnM^U^!0qwkOrG58(CNb(r_|#~-zh{qmHcU6pDf z?dsojCa6I{OA@I%;QU<=AMzX*Ou-zY)GoUA$9Ty!9>;IYZHh@npD?H30T-HLPJYUT z{^CNvz@doY<`iUbvQwT=W6sCxH%6DXX3PWqvvrfLG3VtPGg&?wGw{fbsW`P+W9}o$ zZ_L;6(wGZz{KoW9Oe&f%r{H`Sy3U;Z0WNft3tfgoW4fACFc2sE!Q*Pox>ItE(QUI? zV+LmTO|r%ej|L<27x`#RV5yK9_oAX&pK*Pt%%5@f(cFw%fR}cy!tvWxrhu` zU1*;<`JcE@SVg76n+egbx6CQX;$-)+YNKBoZ!kzLwJV-IgLWON5MlD(_ATqUvEGk`BjDzSfs}^&gJKZ4H+(%)!1eI=s~nlNEs^aVXz| zsz(tArVzzpz#~<3f2k|8FgxQvHtJkc&ed~lC*Hm#X%l@2AIGa7 z${7~!L%SlA9-*P)XHMr2RlXFG44)%V#C5n2VKp_K|9ONDRKl6>Lez{*`ZnJn3%D#U zyWt>0u++liO@V-B!d44EW-n0jbniml+O59oy&WTy zQpc&3j)lIGBsyD{<2VB;GL-m1RW2|1=fp$ftuCJbPo>c%(*{MZ-VH;2$Z1~S;hKo8 z$9x$Xe`Y6rIo^M>N4S>{c`um5XRka#Fl3(fYBY3dL&R7h@2iYoxbAKt8-)Zgv zWF%oifqF4B!9+^NR(r9UWN0;FYN*9n&0`&9r1oa-T8b#jfmzAWIz-0W=Y-^^hzH)r!2AE}ook4O)s5XQbV%dD=u+AP2Qq z>FQPqlDJXKD->t{ZX3}6Po6LAW_kP>lz!bHQnN7?VA3QSFO?IS^t#E8A9$b>9J$HR z+euh&7T5P@+4Pu1sv;nCNaCbM;nXuW?8uLbnA4L|lA)}oVU|<`72X$cQk*MtNq=+Q zv=W|gwGv-8fW^3?21=oY02cF6Wa1eBl+5HwKSxvbjU9=0GbouUNAiAeWa1u^L*5I1 zCS&uYoB**11n-w4YQY)h?rQ{-l?xm_R6axkgNynEmpB!A8kt}Zzk?l#=r|mxLrKgk z!H44)z=tZpOAjbS%7!)~VC<;k0kLSj>l&9Iexd2Y+oqMq=|1ZW%2c0Gd0|hHD)MR( zf#_0J3%5yU)YlGq8(2Dd(>lqinASs1yZkTYe=Sji z%VxHb9)Xz<)M`XN8ho{gErV|mv1RZN`#|!%S`^P4MDY9}$_8o&qM9Kx?oQEy#ETMi z*jIrcLy|uIl9nLD73ut;aqGN8YlhG!>42El$%hIi9!1a`IW*_+VBT^tn70IAj(SQx zXqa{AsFW;;R6m8Ry~l#&#@Ed|>s_M*mBByrt;pcK`6Bz|&6j{?$&yj4Ob-PL6&5B! z?a6T<3 zKcB79sVjZvbj$dd!K78dR)lo;M;%nzamXY0MPI^zofLsA)G8#sj5$s=wW@1bO56sJ z9q~cqaxIG_ZY7UbyWXZG$z})YaM<$dwRi}wt21Ru4rwngm&PFo-N$P$QU4^+s-5mv zm_W#$6y%Z;=q^G;I5F*$(3P303=75#gn#Zr3$?_R60vuav9}Yk&ysA8G{d?$Q}}Zv z+M#zpPJsentYy1a#Mvb!ZMn8d%>H<2t`}P8k{CyXA~Yh_W$c<73<*qW2i2%*UDZ<6 zbltRNNfu4rmZla83XP?6yEBxF`6n(U!^OSp~awjt#w@F=dozhNKTK5aJQK-);ckpa7uG04mwK|3leXi*Ga}>8W(5KsDJzDzZ16Hx5(W`2vl$-88R)j`z^>Ow2?j&;XvQaC zlT2-6V(#RBZnC6dbT2QHw;bU?*bTLowr$TTgr*Mhjs=wWywEO6gzDQcYPEFGFp!uG zELnvP8sv6C!|xmoHp-e){zI)kH?)xMuIJl{#$IYx8oNO2k07LqF0) zj0R$(V6RJt=%g)fxeb^jk==jaHxn2c{}v@{@#|fq-!V0&gUPEg9ZZ!qeH2+ZL%&rs zEU9dUB~{GmqpfK8jP`P>W|)?yvKgkOsbWTdMUG%!!5LFyXFDo8j6O0w{D)-8 z{-c_Uw0m8+L!YFh+19DXFDOfG_;fzdU-q`fLjIy8^b6ZD_J~Fjv)ZX@!#4$_=bnv) ztg}rldcT|_x8V|3$Wu55$=Y$b<_vU&EVB*nh>-kNS%CQEL)9Z+?K(a8L%H^CeV>`RxrBaSJRNwWa<=Nfs|?c)z7%W+#M?|JTRN zYfOT9L47+UKy%l&$hebn2i+PtDd4)E#_6Q5>x&!X zDTE>Rv7gjZOiA>bPyVQbl$yplxdQ-93UMRU)0YJCVXJu9*Zz3z1(@A~T>n zJ1!ffQ}q(nu^_LGhIJ{cYtLOIZ;tHJCQIItuA@tk_^&%CQfj3}ce^T+cb-bRD&29_ z)v1n48?}K!;@BL}HH@C&(>5CE8lw=Ttv^G8vr=x5k;FeD=na2@JY`k@A)0M#0;;(QH@ z>IB9RNG`$)Bv+bK(9eY&J-I;iWU^e2lYQg?LDC(s4@rwcuAQ>~xW^zl*&vbBiGElAzm=nFoBBN(msI(tW zcGdj?b=!$KP+Jsr?Up^-fjaW2rky6S(VQaeKa#|$lc?s3u!|^Peb`7Gj2=rA<9sp> zM^hj#$iqtmlo!amxX^_b%I{%L^lKIwJqag!ra``>TMqITp8$JglRvgjem2|`@`Ds% zhmHXG36y^buzOn`qay#@8jzJ8ZA>&%0i zb&w$GD3T7>tm&a<&1xXZZ`MW?dC(I?p6dn!}J^lXN%?NptEtWS)&63b5|Q z@#oq1@G?@$OIxa3=y40>-)~OzhZY&V2PYdc$cyp%khfr>U`*k_Yz)Y~VFh2b6XYMV zG%m+y?^#fZ{nh#)`GDNo_&7_5zc$`)i%R}vbE5aS(C=`7^bvESX`JlsKT&rM#p?s5 z7nNp@Z1L<9qpdryHlPHA04i_Vot~gP%!1Q>SNWmcx&QNWb!P`s{O;UA4Be@`02#(1 zbe4tkBj!YRTbAh82xVVp-#~voF~R(9Nw0W$cEu=z{L;2fC&J*SkpG;d!$JNnh+l_H zgfoZ&@;*2|tBtj9);*dp+GzCFzHDUJ# z`TdLa25Hv+%FB(LNQ7I<&x?W{9YjVIAuc;E{#BkND-({3cq*UtT`*{Bn`aifXPSp^ zCB`iKrJoW>UFYx|h)-LU*Is+89tN-F@4(BxNvVnxA>TL>l}@L+ev5FamSzXe*{mnS zp}asB9AI*!!=LY95YnZqe&dc`|m zx_A;{_kvhqMewK+-j3}WZuIV{ZTA|vbB#OtidrMV>vo7W+Tbc}xs>%T$_HX)j zV&Pc6O!yCqkD9;PgQ6;L@}PJ;*5h?tHy9|PM#xw}kc=k}TS}=2~$_*b&MZ7yc z>1t_X1r}{1L@mqBIrAM$%U@{4muAcfFUHYiQad7(KkcE~KGF8qSX;DTV{JFM+NPLO z+{@MWb1T27+MMDM<`mpyY56~JwVi5C{;dbqc41Vt%?8C9E9=`w*c9EOhg0=i@tO8z z(K-4uoxfy@T3gVA`g!U7^B(Kd;6TVL^pk7UK z{Y57KvY=V#-hT~k3Q+^Yn=ZP-Rj&7>-8OLFu<{GOZsnJr;Ht^9$Z)>OPZ!UE!bC4c z2t_7$J6>z{ps7>-u&_;exh|Y}2`r4!0(|%PU?#sSXsh?Ln&h8NwV#7Go7B+k+Nq~f7h_j&C%_2}^6$X| z-^Tst(8Z#!87syyc&yA~(bZ_gPbiVbUuP5lcD?_n!$(<9gtu_=fSxX_8%rIaZdl3r zeegS3c77c?~Ro*l--R4vGl6uzN2~?3!r`6UI-Xl_Hdv ztuv=$ol(z+uQTd-)jFe|m#s4@e#JVYo)2GV)bpx!{h@qxT+2`8TC~#l9I+Oy^gYL{ zg{wMm^Xt)Xous{sIcgQ>mVnT4AMD zQmUG>PWt~Uy>%kUS5~YOLB6tbot}sFNiX}PmwiHQxf)(bmeh^zpGZxY1=+}pOZaEQ zT;j#pA3rb#fce&CbF9nex-Od|N?A$WsC63l$i#26KH8Xm?vLsAL~4$g>3wlBRiBJ~ zkc_>@9(sH-G@l;6mghsGQu(?tPU73Z3cwX^Y>y_2vE`jpGa~kx8`}Z?*fOe&?W$mG z_cOME^tQN?U|VW`_o-gGu+YF>YhW{e8tJvjDd+Nr-u32ulCkMlA zFWj9fP!Yl44@XCY-b_#u!MjKqS|V^NP!oYO96b>@Rf}x6KVV=gKd|Bcz=r#S7KfW` zy)0X=5z5wU%m)mHY!%FBxWDT&0{D)`Tg7@-Y=sqDNwFGl)VXTB7rF6XlEjkl_> zPkPxWRF|v5#=Dfk){yVww6k2Q$pN69jl5<+XcYxufU4uRgmN`D$#sA0RrOR}G zAelnv=4PQKqm6!0v{YaQ*v8yfyn70t4l+5UWG3mx{1~Ea%y%SXXzgSP5IzTE{#h{Q zC_e?C8S`z8V~*}jf6P0(F<)$B&LC>c7t6pZ3VYYdxB&V(+oKj`d7u(y{KR0$Sqm8C z3M6ziTU7REHyQ+j^D~M&|6F$bpd+A)z@K%whyiOcJxEf=_Khg z=WJB7-uB07IFQHRWvh8sF)7Sz7k#25SM{3RYzYa=RyyiSVmKHN)K163oi1KYoB6z(H>SgM>Brh!WBabmbpMgSTuKTG z`TuIia7=Cx=`=E!DX1NZ5X!uH{pN{zRXp^*EJM*lSw6BgNay_MR!WRa?gQ-y(aig? z_TrzOO@Z|2W5^hpd_1WQn~=6RX1jH>^hbTzPP=O9cR$r-2kwiaTkwHj80IJ%fR{eq zxlUb&km+NEQ#2U9l?A)HtfKLc>%yJs-9HhUkxX|;rmyW!FK^`|x_wW3rFGAW<+Od@ z8a8zIDxaWQx14Y0NSMg*x_*fC;9}yNNDt14OnjRdFEvYdve-_v?&ymY$@>!j!D53S$9d5}WN@>d;sY+QgGC1GG*T2M!9rIcPx8DCcN$ag zv=r4lEk*TCP;j%jF{(B@LBY*VP!KeNJ7f4}Cn&ht2?}m@f`XfQb?-8wo|mdFW9prj zqI##LsJ^B5c%I|`ufzo75)(8vMZY|>9S5)XG^kLm8bPaQ0F6=$SyQ?UH{eD99E%UI z2~Z~_xS3`R8L`<332ruFK-L#HRh;3s*zAlOAv0ng zyepU;sak})1Kys+xclfvN&o7F?o2Rb#1dt?BGX+qQ)Jh9nv(L)Qs`*&iZ`h7i&1~@ zQfnbnE`#keQvJ$FG%V9`9xEx2na8xJdN{OJh$R#mVI;MGM+R}-JVk=+DZOkU!fbIow{J}!^1lMJOs2zZ7A9b{muSOTd_V`4M5&cHBZ#94ePC=jbmD&W2 zc$U8D3?#%UaW_zaUx7{9oR(s`=j=3&*T|p7f;!?zQ zf+csYIE$%WbxM1Lua)h)Du4y}b)#!h$SGi5_bz0Kk}_niWV9WZ*d6Wl{yE}oq6cr( ztgwi#M9|e8RMx!$;sVNpFxaIZvgiFG6k*(9m$&Efd(96n=Ws~@Ws$+PuydVod3$2I z5~KPx7-ILjraeiW7i=$!bh=qBJyk7@GiPM{t@13`qMoits;g~i=wcfhe~@_*XQtOCGF}@fVv>@F$#-w0 zdIN?5b)ulbgJ2Y^WnCCZZ^~qum~`608%n-WFpHwQ>^)w%Ig}+Z>^^Q53q$=hzGj~@ zL3l2OUTk$DHVrm&q%On^rr9_aAiY$LCbCci_4HUlgrdeVpre->U~Ha`TAr7E^4HUa zV=d!;?kR7Y-NKn{d9rO-6PfS=5y3(9`!GUpj70(IDVFS9my}T+TSh(EY+TT# zSN#OUB2ksy_&%TO-MrJ?5k>=i5U0CWvLDl0=wjqPC%Kf+mq~2GjJsd6`xXl0WIKn0 zx7i!e{KeYDwW9ow#qVL3KvWSlZy<;in}+!qR9_@w2S6yyqaoFx1y4&RvpxdKed$Cp zxM9!pV&D@Sha;gQZo@uz6sR;aSY;ETy)ul!axpCqnmD`(IH7%MBc_kw$kn2qUVDw! zR_zw*1<1MJ(dV6oBlVo{d^}o5gnNifqDTZwKaq(GEYB*DU1EFK*1F{IXdj9)?~V(F zd#Ewgpru87ifYi>k#`I|I|Noh@tKQO6A)?YN39MZQht3erdD)xN+k;`V(*La!wx+c z0>4khd0AlRD$}OOm%(Bd)L7`~Lb?TY@@Cs5uwu4d0xM@be3@;xzlzy*`>UMIsnExl zx)$+;tCS(kT!%1o9m34jJS0gIac(DmE9UAtID9S`GmY!u`%Y@7-n#loFb8O&-s*mG zbNr|?{Fv?VW46N&8lw5y5@3~w0gQMbuu+dU>-ds=qc0FEyY(dltP_Csr&b;}g1cM5 zkbT0Cw;?)Uu5z(gvL-U_PePB`8^px55<^f$ZJ6AfG;>v2BE{nPjGg6}(Cc+rn4%HQ z40r%ut7Pm8PwepZf=;-R4DI9VI*AL(q%XK7JoBVh1)eQT(a2ES9Wt&}y*?sVBhd~t zHI;QNSreJOW8*0#fqZ1LYjaH)taapTSwZm^>o~_DJBWZBeQYW^IE6t1UAyNLa~%{q zla3{9XXvI3Tmgn@^>!HcUE75k48xGlicBciPGwpE5}BW}&##J1EVVo@g&7y86@p1Y7D5Y^g)Ar4GT^ zsmfNhh+ugu48K-5{957gYlW@zD}-Jv482wudaYm<&j7tv`Wuo6eMf}2(cYHu>%@cc zOC7h$@N22VucZ#ZXovQn7T~IE87`uIxJEtMtkX*xBGs1^xJjhW)Bxu?R2ZfX9g??2 z7{)%YL&io3*`7G@A$bXHk%;p!20HG~!mleBER<(+^Vb=RGZp6MUbpEf9KtYDY^~<2 z;Slr}6GQQ_C%8)`Vw{N}eSEIBD#J}#i;C^XZssW_TpF@_jMf7Y-{JA3rtQKKP3$W( z@ZQC+XFcF@F9hLueZ&kcV(SSE)EzNEK#);23U7r;W6kyVqNx_}MJWAw>QRB6gE(Tm zM7l89rXS0Ork}&88|X{SCN*NzWkdvo=Wn?^tFPt3b{iNa+glxS)@OG>t-1U1#yN8c zMll>m*_O4MK^dIa6rnyIwWitFLY($^=+MCx9oeVi2cZ_`5bE!0LCnpg)s)G*^zpoSTzQfip}4GT5REgkR{8a^#___WaB(?Y|ig~F$W zhEEF(pB6H2&A6^F@1}Q>BLdurPoNXGs6f6gIL^&8bV9>2Q<`STQ8P5PTL7!FWw3}2 zZ2ltOcE}o5vLjMG0Eup$^K5c3x;b>x%GAZiZ!5op^K^1QF7GqW>@s=?I!%Le3Odb| zuI_Qq3!U~HrzX2~UiT9$WOBHhu5*%`>`)kG_{!fZFgA~QR@s|plQbN|oIK)R$=GyE zqj@2za@J%w+^Jp{L6Aj4)77PA z7T~FD86Kh?0xi;hbVz4wKf0$00%>4HCa{syQshQ1YY4R25NLDbe&nC`W@FGcGVbp} zpf;Tv5eO3lLLmM>6Yq@XDkST83NTE9)Y+S90`HcPMvUt-6ETO1q6E8N1$ii(}^L_BXl9_LL&m* zOGHx=#EQtoA6On`(;S`Bf39k?8Q% z5a=W-3@8m790F}{2(-Z=&<2M<8yo^{Xhfj@?p*f@tNaK1C{y3u1yM{mS8UDP-#^WJJ!3H!#h?$VZ zKFA6G5dM_<_%nqjCsOPyjy3>Je8H)UdyV7!!arA>Q8sN;CS9C}E%su&xO~M^onbTc z?jOXBRJy0d?hkiFwJZ*wLZ0D zLDbWuFj~)$$K~xYy`}qD77x@o>_UCaLKL+`#{C)u)1;iDcIOUF!P|$=9T`kw7##2K zZD@u?bk1aKImm~x<$ReCZQk)Q!o+yZFHUV!|36D4wzMxVGI0WBCuQPiH{ULT%HYKo z@iyNMh77(1=a%(d08P&cnN5dPPA^$rs`ETa(D8nis^GXRZ#RgI2-D3U^>Ms}HKu|Z z4hv0f-uqOG4&G_xMF;QMWbQk=VHOGuPx-_d7CbGBgdY!7lW$oEsCuh*>V}|VlB52b zHOe--zLTXMLd9?Msrt>=dBCR(g!b}W5!EN~wL11u#nOQe`+bTI3!_e_^=ntVDlS>& z+$&c)_qq?|9;p8=l%nP|){}r+sHBCYKE8}V_5QpuSE6UMZ%tg1i89Vp!*RG)y(X0n zUafUtEge`x2ToT9E{asoTFSSzc}plq%8Jd{bN%0mMEp=@z3W4mVAR#2Mj8CZG@cBC z#<-(4V-0WKP4LO_WCD4Mp_M6Mc=#T(hZPZgV@n`!{GjNv2|TcRs1 zwu?%(4|-EgBj2`5kD2AA^9nH)3>$*41cEuM^AsEvHHp|JBE1kId0!@CTeEje78`Ey z)c3_laOP?A#EMXQJPynb`z*3(qa1Yn!21SYTn$&E|^2h-=M5EUJ1gNoEJM| zVyg44Ws$3ACZ!7lQ9$;iFWJxTp$90FtCLr<*Dl{=nyU-hSU$h>7vflaCd)7N4I)dK$%tFzX<`lh$V?0+Y zp!Q3_cnoCZ19-0=xe=-CV z`;*pKXuw)y=>TU`J)Y|AFR|EZZh47){R75CtaB|5V=}ZBdER%ax^bCJ^8w4OR`L3M z0xtzsYFs1EZhgb?k)EV9jl<;mJEN~c`q>SomNmGtrU%2w67Yb!9fNV9I`JxL8DRuz z!a*Zg2Q*?Q)j`)E!Plf0x_V!`$i#Q_Mx9!x6$Sn$t0B|zVymM5Q?r0OyIz{Dm3z!~ zgJmVt%9dD{>t~d32s!ju>=gASSRCSQs{S!H6L`%dlh)72lP>;nj-hYaJBGf+I4o|b zm{SzNssFm!{|yePfslneE9m5*Elflv+xT=g=wp*_6_c->=s7eZOJh)CzahYQblh=1 zI4=#l*Uz)Ya6U*=P9n8Os^5i`aA{6s@*0*1W5;(d`^GF!l0=vpi&0ePOEIvT?zJf3M ze%>(c5IWd1bY1;6`j?Ap{jX(gSp9f5nPCO|#cb=qFU$#VGN))U4vc8EIQ6TA2hDa* zpXTJBxpejl`VnsPc0z$|Eb;)0B|o==azz$1D}9vOja2!6kjASguMq4gi`0yyFtGn85jdQNd*lNLbY!vEO7+lwm7f1Q`aX(> zbe$cP*7VI+f|cS!TPc>>N&#nkz)GQI;h>e`9)jp)Af1E*We#CV3Bf-sxH418QJnD4 zYF=T|aXryiL*^Bx;8(a}U~9w`e*UT}y!PJ_`#-}Pj0%fiB@BU@%M43Mgq!zA)= zU9(BHlv>VAoeb@E4Zde>3jC<)mfYa$L5WOaUFKW2x)(sV8fu_yfPvT*fTq8jZMEDf zWlpFS$g5y&-6R$mL9-1GE%7p4krAL-1GWm}_Nh`qN2C`Hy`Nrq>7pE&$J+2f_@KFE zlXb66kQr;F?-0Nkh04kQ`^9(NOYBcR51E50Jd?!Q-y9@B`7!ir+G{h{!lqmGF1u!~ zaU@1RcGZhUyi4X8@p>4DoMPb22%u@B&0O*18q$5S?U-Xok{wXa6; z=IpN|*uPobPoo@r60L^5rA&)9aW4HqutdLE;TB`GiqWt(JvkqIxkxJ4St|o&O^1rQx zM*SnSCYo?R=#SO#9IqFNl||M+Bt_U zq)174fAYzokd@yIXwn$o-QdEo7IBnP9jbYJh%D&Ajm#CFu;tg*e=^YKijU`Mt_VLy zdF=AKs4TziNC5ZjHd|onyMU(E%D}2Ka#YG&!0w!xuK@=24cW0Rc_S%Z5-m2`n`jS$ zY~qs!c=azK=h^h4&4UMCo8`LfA*;+>5;6zEFa-yBFitvwl(KiiA1 zBr|uj0ofTHFJ1~p>j2Y1Y}JbF&cSM_be-hxO87mo8`QIn-5@@Z$XrS3K# z%2j?o27~h7W=2nyua;S&z;L0njXVo1rK=JO7;>&Kw_aLC&veWSwB}`V)hPS19n^tU z7ZzsYRPL!`JE+xa&{Pp9uo|RKY^L0ticxmOvJf-+i-lOH*z~;aA~!g5IZJ|vJFwsr zSP^P!eYv9xqf0VBUTbe&Nq6z$g@j-veYf+Sfe!-(M;jvRlD0;K7!t>=Xu;t#&6r-ifDmx_)cH=u2M$LXDD4EuUTHYI zLwtZkyXJ$6vcnt>Z$IbEK06Z`#o*BLfc@7&uf>o`Cny2g8pEft-x666RvEVrdGZJ% zCIW!t2ffG+Z6Cb2(t=(m1M#mLh#Y62^fPTOyjTIg?61!k-4+rO;M}gQk>c$0=NjF* z8P2&jtawTv6$QI-EcsMn4$U@JNE|NB1>G|f1 zT@J`@EfbRYICG8L-ZLlNvL`tt>t?qlZ1=W=oki54guRRf`yj&pm*WR|0s_Lu72?H} z7Q&wEeEkeWE-+Af1^~kL0Aw#RoHrxd3UF@M%u)C3ZRZ$apMSP3&b`{=d`i1Ge}j?_ z!ufc~(Hg_WfB@&OD8!2^EjXX-d>0ysoN1u+7yvk*2FO0pQ*?eC$yfXhI=A$Ti=I0WXTJMAf|%sFc~ROKC+MFJK*S1Ck)ssi#d{cto#K4G z4Me`?e3uLGJ`=$DqF1_awpB>+*{6D_LW>B=b)5E08}-S)d$v{Rif7t3LZWSjeofS& z75eDuLn_qenU)I8B^KP40D=lVr4TQ^&OmID^KCK^dBgd32=I;xAgIuzIH8o{v)ON` zLO;P7RH(Q;qeh8rAr-=w$ik|LJ`w_QyPfY0d?0tUfzkp%_Hou6 z)<@z4Vl}j9z-MrF#n%moK88cicG*yM3wtY>+m{)lT1G+(N`HRTp_H5JA;DOJpyAH} z!F2Q!g?MqL1- zcLa~PEU{;UK>1B#K$%YuhS3GwEfBqGL4}P60!AyKO4nCP@Q6IOdir-M`ZhVJJg0! z!$Y5AL+L+-*iZ`p2OCNg53rw91j*AJw!p~tGbfkN5&pf7#KbNW9*4Y%Ivw<4%UVRE z{jxR93*qz{p4aR@c8!RJF=2P?TWKP+2pxsqUC z$3XAt0QM=oMW+`!;-0*+rL>d#m8IqQxY^11-;eoLqU1x)q-2Ud$yu9+rH1#SI`u%~8#NC@q93(|83gioXHCx61*Dbyo3FjFR{6sn3Am0xM_( zvOuTONYrlnoxS(L(WI12NRbMC234jKfqpXLS*ch|Cj5#_<#k#zE_;GU0zxmQsJRpZ zq#M%<$X)O9bO@6IYfwtQN`>&1Vj`}}jGP34_g>BQ9ECN|*jHqRT$k6^dx4}ADmYK( zZh4YD-%p_e>dfhyWmjg-zDn9Ng%rR6o^0!L^n|K1enijnD1$GL?Yaa%JyGQr;pAEz zr{p+t*C1v0hlZa{km}LLqJlRP2wy2bTeztfj`S7NF77my7jdE!x*e@(mmC8ZxC1>P zFq>sr9__jrNHy|>!dl!qTm#VrPF=f$I$29Ow(DAOR%gu`bdTexj=RjCyDRvpy8`07 z<`O!pBRV^0~%FRhrXhQzS7OY zp_uu{I}IZg33}m2QKYc)WgaJZD>}BCHz1gBqhqhdf$d}NK_zje^lH>=?Au{CcIF-@ z;MSylb(e@C1er2cN=HCQ*aHO*8ReyMZ?vYx)GAUl=1^h*xk%k}?$nv8sh6d{y}&`AW<=w?0Uq*9*S*K?2lS^dNyF6xTzcj%xyYl;FUg zltgdBdzIN?Bh%7n>GCzhx?P#+xq#7)y$Y_Ae3PrDbD_oA9aSvel0Y`C+h-D^-GP;oF& z{c$Kz4T}j5G?ZS|&nu>&gTHD)?RyeCC@n~}d8U9K&r=vLwLDX>SQtou!AgI^&G3B1 zO2 z=cByYWk{o9Mm9P#360K7LL)H)uxK=3zx5c`{+LPNf$jk#dAp{P)|pc*pa*!`c~7~4 zOHI6=(+`PE)5Bj-nM3U*sA@x~8ug%Ns;1#@SPlV8Y5|hMSU7f_&(Dzg9E}bbKEGJl zsk#HY3eh1TN-%f|X@aW`c*=m&3n5wi01=;SBjJrzvr&j{wPb}o!{)C;A`hVyHb-OvVze(tM%Q=`fm4^9FN9A%tpW~l# zav2iE1<~1=Xv($GcL*_ zRkflBuie!25D};?oWU^Z(Yz6r_xK#0SAFq8(ETLIE-hvky!--% zH-;<7pug<+)gwUg*?()$Zd-9TANO&oUbP(SfJ!Ac1oOc^rXb{VJB+Z zQjSC;y0Z3lDX%TB{RDoq$=4WKwsE->Tn?NHTc*B0ZD$$ELl5aW2AUY5u8F7fn#a}^ zQ|40(7X6jekzRN6`evrGYadX}ofPnRW}nklR~(6fFaNcbyU!l?!ijm$Eg`2Bmg(QM zpAz-MRI8<~8uZd%^Rn-}OQMx+5)D+MftXIQM1%jLM6*cLW5@HSoIO3S6)719Zs^gF z{o&ps@kDM*(KK)i$hSU=@GfcC=-PUuIX(9*!Vyom9B7>UzY^30hPIcrJc}?iIM8VO zEJ7s*Tu!_dFU5&u=pqBL|8l;50AvUk7>IuhkljbO@MBS&Iq_C|?@dku8B?f zYYrKS*hV0+Y5!S-Z!wDmn0yr{nDjIdi#y+C05Cb%K)gF3JIpW%g!X)I_c#)`^b}eQw~?-{pizxwlB;&A$bm#&7{Kv;yeHJ|zUKl@>gY z1W3+izR0l#;(IJf{AhgHC*vaH0zz_RJXHARu*|;I#qh73CQ3^7C9zlTSqFFRBIO43P30c(_TrZkg!TUZ24c4>ofo^_`R;OY11&I~G+*QfKsIa$pMW!m z@S%qt4w>v(4&h(^rM2muo=RJS&m;Ep2%big;E--1_&Jg>G@6VdAb3|osHf6`|M|}M zZSzI?7>Iw}0^{ETWc!{Xg6~AY5a8d=!H2^#`-7MfeD0sy;xB1YTm0i+fPX1pIS7A~ zzwtf=F#-PhIKf|O!M}_1ebaoAVgvE7SYZ4lK(_v5;lH9)OxMmKh%-f%{aa_l|9HdS z2}|8ssya?iUfP#fNB=|LdMKTCApZ20>j^@xg^FH0gp;Ny1ZeP3huwcsRbpo-0{O0z zda<+37l}FF`SMYJfa*^%n=DgY@!9Dosd7&flIvWD9*DRqWEUTAl{^1WxzUiwI1}A% zD>s_h&#T;$KOR!K-2?@d`zucH{5K$|+{23WV)GQ?#s1-ZubMA1%lTHx*BE{d5LE6# zi-;>eyXZt!?k1c;<=QzMaaG7}KF%sP;E!!9H^cS3mX`Z7v7cADVN57(dmb(Kux1_C za!H)vc|9Pg+{KFYVuKao#jbI_TJuG2biR@DHHNe`!UnJAIrm;YdHk7 z2T70J@qYGrSGkc>+YYN)xnZTU4}K9~-mhG3=q>-iNl$y;Ky146Ed_w~(+1+t0J1k5 zJ`-^U__TAN@T?iJ&ek1!s6hLZQJ*8w{$Tf8%}uv9H8)S3n={-JY-10QZ;N3`d5dK! znhFIV?Y)@fF-`cHVgi#MLR4;S>NGcirkh^E+y zRd+3{Fy#ibK!Vt38~VklyNWvzTA)3I*TPBHN4mG&+5W)a;H~1GQrCpEWRi zdWY!P4aib=^p#7ycd?YcC_m-*>CRR!I^jkO9KklY88kXY>wiOeN%q9i@wZ3{ixEPu zAP+A@yWVYqlZ2x0lfXn$s=OgO{sK$&0{ml%E&w<|(Go`Ioq7^%4y7RuU;{j-cC+|i z9vaSH$WP@$Jv>~wP%jTxF6@qWH&Th0xFw3MkGlE7p)r4{%j_;}H2qU0>4DW__@cuw z-(kqn);=Z0h$l>6$*XL%@8v=g%KOi=f9ERD9Jb`i5SMK1{@Fw{&=F9caxCJ%<3q@o zWn1!u{PL?Z>`@ig7uorRianvSH&DU$kDD*-$Y$!5r@W2;Lcuj(=71+DzAuW?#GzdmFA@W=Wvyy^UQzdNg9f@&8Kz zZ_ji6JXx|Giz%oFn^jZn<;sS5;gyZ~i$paOE57VnN7r0rX1h|Bx%t%v|4L_OJ5~Nc z?b<~7mSM-z(c0+NZ>jwxN&BL5kNpR|*m*sBjg4Os>JKglHBJ#~O5gmQEVWbX=!D-9 z#+gsm6PmbkqNRw=;nMyYY5$U5Y5#_PY1wg!6)2F`+R;L&^vnK18GXH-6>~m0t#4?5 z#nR?<4c98%%e_hORjk`_V)Pv=_Mt#F8mrYQpCA4^AX&1k5&^oTpG-xVR_d54;YJd} zfsm^*`4>plJk$9ou8eW>Oc8lRq%!$e=uD%JB|7CBip5?9A)6tcu4Iw0Pzn9`8=NCE zs+R*0^Ul?=$u1I6=vSB+eyvy)Jl=$^Nly0t(qAahYalwIT->D8@mR@RsnwNaQyeyx zEWnI43jI{HlRiVCOH?SutOV-pV6FLst9*nnF#p4L?4%i^$k1c+Nx0jQS`H+|R+9f0 zOM#8YbJ8BF&;|d>nb6TiX!TlsIB9p*n6<6m*aTrBvD$?;=)$5%kj|X)Z&}G;#QaO& zt+KF!f9im%pSkmAh+GZ06Qorgrs7teCL4U%j#hLuvP5Z!9}4WTP_>r~(B?gZ!5wPC zyP5xqz>HdOPDI_Zq5@lPQKOPNjwYQdHp1XT*6gZ;T9&J#nwz2%2EY`!C!2qax`4Kr zLR@wZOj@oQAtk(yxIhYcGn3$3(ealOg83l?mnBf}?4yvUF%hmwa(;#+Fs1JZe-U%A z!Dp?9N@8B{riA_lYY?95d1AR&N`6|tTJrzex0R=t<#D*`>_ROG!t|hrtz1rQ*es!pq<8#+dJ+L|_6ulfAeI(w^;!BHsX zC{*2+Lc<+}DjkLTA3&kujzX1=Lj4_uhCm?*HPTTis}oJWWz+eh@YIHFMtl1zho zqN>9r3>TBAss3616*VJ!bGrS8#Ob6Jo3RbZF&wX=1N930a{0A;<$96sj1wK&>yzktTP?#d|oAG28FG+G{_Ums*~9Im$@*+ z!!h1g&Ff|uAya^b$>Te4UsNX*yxUrEiu{2m71udN&R1}nJoIvoXh>W8oQZMyf|^>z zC%CK^eSCEacIdw`u!Rf~Yc~Xk6jb|>F+?0sHKu3}P1eydrw5}=9H8w#n%3K6z)eRZ z$4z-Vn*JznbJIgyYHBC@Iy>`q45Z8c7t-s_;*Tj9FkHp>rRPbhMz8C{?n0ChozM{x zFx=LMQmNq-7+sIk2!|yaD%pcy_8p}fA5w#(lY}`tar%vpqx?t>!JaI0IaUX=(edx# zPx7LPw~^uV3Xj&HesMlL3;e5=bY-(!nf z^x{sH-X`Mv~VrppIOo!6i2^au$yNwb{9s!PSHGyv75b2BbNBk)4xre z@Q~XkM!SVqEfsc=Wd>r448&gqP)@$EOBr_k4ZG^yHlycj-!UMyr%<5(9z0@E3&4*~A;rXZ>l+^8FGc=9;e%-E)(XkI} z>fp+|LlC@%oq8wf%pv;82KR}yWfmlRs3P#?jp1FC6=3(SeW+}!fzr2}FJH=PUhE@$RN!Mk_Q!_AT$}+CYo{NIgg%%3 zb#sx3xH;pHsEOPRI!4G&A_z*Dnb}1SFGoH|X;|GlH78IjutCkIFC_?k`vC&lU4RqX zDJ>XY>3l=X7rD+r{2~jCTn)%R9Tx2haOTiPI&zTA%&^I>-EU|oThRVrxiYhh0}`su za}8cGOI0zXZ>Q*hl-KLKIoUt&VB-ytu2hUyrnDe!>AbSL%oiDGAfB`&ksAQnupxZ{ z&H(ADhsysAuWX4!`l0c;2Jd!2gSTMWh~ziGat2OtnPZ^zZ_f7`0L-2>5T6amj?Ne5 zet|QG#G!{zv-P>`U-ud1q5%>$k?Z8j%EjT@kvkm3u;0-AEH^q2mN-O-F z?;Z0+<{OAVZh?^oKz30`NRPr9Al=T%gW;9k!pR@K^aelIOQ*_}ncb@uX;dNqOrW*8 zh7Mw^bo8ou6@loK?Y4DOWV(OJfTgZ5G=^`&8BqE%oP=BpV7Es#N-tD8uk5>u@M2dv z-;c}}sdB!%4TNvCz<3Yy#i{|>Pdch@9dPCvXxr`URkLkI6rj0Z<;Ss?0gjl!e?1v{Ij1aL#!*l>^E5t zxnD;}uCdywo6yhRw9D!?|NdOvy1KdzZmnB;GS!Yey{ry+f83(`N5D>HlO7a{G% zzha+`e?uU5>!LB-%m=L%8pC^W2DrbE6Wot+xC=jgMGp54uAGj5>|z!oKlVKF0n$1O zIk*=Iuk5xRMS0KX-J^RAEUiyZWj@H>Qu8_IQP;0|tNHoSqjHHggY{UL?L(*^8B>2v zp0~&^yA{}@ft^~yTZj5{dTyeoL84#uY%r_37JK?@6W&@xBw|T@{ zSy8uk?`_flX_Us!&;_vSKMJ2d|BSr4#(eC6+*>(rFXn9WZ;S4qQ&GOFwyCmw?y$m& z=7!5W#Wc^sU%MG8w)BNe!98*zu9WxK2&x*Lu*^2M;bO&l=r6{Pz-2=0-kVq`)7~aT z%KyTpN2a|gd1QjSUJ#w|8#1y1Tafam$@~n~f{#x5(-fbm+2Lif+9`UgVA{v=?9()6 z#JohwqGSp7P!@6T1ObRX;-zOG>7A)qgxCngIbGv^!yn=5r>DKu5{)B*_eRZ1dX4Fl z&*%%Ym6njHYy~DGV|+3#i|ZRx-jtPm5#wecxx{v%VM^3P6$ z`i@RyI-kh?6a7k=jN=8j&~;NesKN5h?#iPZqhq&g59{}xk@ADA*G;DGXkA}e%-c#u z+3!@ygiYTD%qR-S;B)>YecPUnzI{43u@j;6I7m>JDjzkmcC>Fac6$rou-C4{cNOrK zB)k{>*wQiTcrg3khUnEVwA<@=#I}Fk9*iUpv$dPmwO@C<%nsXk6)L`1?fH{OEcMC?Zy_eW(JAHn%*smb{dtiOLtMvS=ASaXZ)nwJ z-YI{x=Vw2x{phO9DHD@B=d!cQ8-6Am*Z)D5IJ6;e+a=K-6-;ET$cE;<1;5}^`DyI1 zZP@tL)jzL61VC}~`e)C>zdXn91+RJWSPG4yHKyBw+ z_euD!=c;!>~Yugu=r3N`U{>anTN?bFk|QAqDh zht{fd(n)_A9rGkIq^9d-{JXo8oN<_J_bS_IWD^n3L4GKEv;`co+OB;* zyB6EEpP&Q0n%IBtrH8+z{cQBA*CdMNtX&%$_Trm}(uUFt|LYfYJjbWudse>aRf~e% zIg9yiglJ*OEsorjyj+PI!~FqTXIKDxD}?=-fynm&Bl`;>NZCqUhGW+k&OWAw%0&pv4PkQK-Obr^kcun8B|dh z{|;V5jT3wP6RTp;p;gQ^PZ?3Jd3rp^*Bz5a-FnM+K=W*va7gnkAc!iw0SKDsIfZz! z6$T<%099COAhHgSUHqwV{{zkd_x3g$#%XQ)*l@2NMe~@}7TQ{-y=nam6fZ%m1%$=n zaFw$wzCfijoKOsANE$${5Vx@_UVQf?L+&Jtjh_t2US#NOCL-5c+Szs(4>ic4vv{QD za@W(Bxa|cvh+(0x7lErI=AHNODXy+s2jDQ@ThOMX{Dw%A+Xnm5G=A&&UgUh`YYbls z2s%ZzLcCaC1M%AoM6Pzeq0Tn|fHKfo24dF&vbSv)nRkt9saJcu4`Z{&e`I9-^r!9B z%hu?cNFOTg>UAn5er~-gh-_Q0Pe-=YYc)>lwGj~1D_sJP zYZ-ws>Yo9!6Sk>dQ*q|Hemji1u+BcQ$?6qXy$+n2a-;jdiK14F?tyY;MvZPA+8_Ls zZ?+EY4f3`Q?X`GwLwgf$>u5j25wzk^oYZy{AgJwa3h`q18i-5;FfRURAW~}}_B%lK zA6r$wJ~)H=6(3r^QKPdfHd^KS{N#|z<;Hb}DA#1qu*Icv;}|guz1{*=XjaWrXFa52C;*y@4^3&7%HBZ!mpeef5#O@xEQvqb_xU3>jQFqKrO=K>yv}D?Z*)QdU z*-vSa<)qC?VH?99)o?V3t4*Q7y#Ucb`iwXkNIzGE7yF6x{my)mvF3}5hV0nx0c5|< z!sy4!apneDJF-pj;MuF2tRK$0tKABSZ?-9!EeP^=Lm9+YPi#T85hsYPG!UEPd>;Zp z^ELCuUk7A=%{u1C9>JNzsGVtApUck9g3%XK-p*E0F>Jb&i(e`Kx+3mr%rdz<&p_3? zEz>8sikL=H-n&VE%r1y6U2~pbv-yn!mFttCI`!RDW{S2U*I%D-dzXr9)y^ru@6?3f zkMj`Qs{x9&LNwMF0<2>;8b3JNe}k${*(J<-6m(LDDE7nN@N3-8*N=_C`P{(F8+n)d z-n=(c`@Y}9Y$9e%UBuBE7&*y+R`H23AEhyNkUO%Ia$ zu!8jweqPw*J_pPY-HAVFhB#JP8pEdof*ImSg?O=I1CjFpjJ1;tL`neJ<*YJ(EQ_oq z*MRMGDdCXa`+;?-@7~d7k~m=5|2w<`2qz5TNCsbS+5e|vf@S}1+(MhR%((igI~gU-QHh*kgHDX-}WJF0CtmMVkYh2;Bbuhz>Z6}fY%ZbG&u zvWwW(q1?q{}Nf$k(}XDD9_lEJKVAx>~e8;G6ne769= zFJZoT5|DkFMF9RBXMjdHzfTnARuWSPAc%IBD~ln=X=t8kw2I(J`RvQ+A44p&RhlBkzn;w1ysEDTL1QLNtZ<3~*1I1BhGn?f1R8`dNMn3RNn7x&C ztG?b#vf7{>^IW#2Eg}N{-)H1iNJfBEYT{nhTTMjJxBSi8roQD%B_epC((6x5^9%U3 zf9ySVJatC0_(vVJS<_#o21-s5%)66%Yvi434f+g#8Po@G)U@I016JL zX!R+dk9Gfr5^GHws+8r+O|bQ9bnMME5{usGl%H{BST&Jrbwk2&V%9rHa;*MvPbzhz9*mQNH)d6x=>Z=9Yy#T5X{$1C>eL76V(^`%zIka)YH;G>9=I+gqKoa(s z8S3VAZb@H%izrMzem{cNCAHa#@;SqJTG9k}%?+1&if^7vXzdod>C>FaAhC*0$mdgZ z;Gf`6n(*x?byjaFwxJOTC3nsd^B%3=&M$VNk?$f9YwDQHROIUs%JFX#4(otT=aN-D z7NYGUgEG;_jc-VY-jo5!qCoUi;a@l|w9C8j0n8vI%NJs#-p{D^G?9mjjS0v~kS;fv ze2lhIq>0JKwTQ_ckbpUjP5BKQzkYC16PC4?l*gKf6-OVRsfmT&p<*xf^M4bXe~Fj> zThsS=6So&*p-KOL zI{DRwMPB@*A9Aqh-<(LyS>G|S^Q}rhRoI!irDLTRxr-=2RZ`>+FFB>sA6qh+j9$e1 z0bF$1Px-B6Ukeys&=~GRQl{0sjYpB8n)|nwwXoP9Uf9ix{NA!m=a=VZ*ye@rxUnDl zovFf3eC5ZuAE+!W7#IE_F2AxQA0C~g%r#dL0C%zC2ErprJYM8A+>w~AyxUz-# zsOx6Nhaa9rCfj;G5Zg5A^gL_c2O{fmvK~}E(EANsUii0UVOqQKq0_BVmZ%nuLZ_j}{Q0~I!|ceMl8 zJJ1iH+to2j&rY8CmNiJ-vnAv3Ge>@l_VdGe;9DO4?f0+Ai;nF^$a9Pku9}bR+P(E! z_fvyu<%*}K{zP}pommjr2(Bx2S4rv@lgW8n;GT+mGMzd*t&V%-L&@rjBiVGKE>*Hj zpk+(g48n?EC;4rECi#fA$!8Ju%^7A5( zT-)R;i8?t*F1M1e1#VX9tN!!_*W1U>hDod}>4bcIuyv7=0oFyvR;i184UZQYjhikK z$3qvnQ!(MON=-+3AhPlAXXM%0rx(73sLBUoZxB-XK>Ss}1L2qS8=J>3MKl1$MUo_= z12F(Jo+=-RjQ=HlXI!jQ*~i8I3otHxhJIslexII9x8cLbesscy%5jlA zLajT-E>|fJ#47*~gfFxrd#@!OooS5&s~mVu!0-J&prW~Pe)!)wYUhWa0DKQL9#{0Z z_#=RE;lIe^_09lV`d`t%UH_v3Q>lO#zW96B9&^5_(Ghv8TTWv z;Pk@7El;g}BZK(O-douTJXCyS_%SF-XFZFYB>!A{ z4?lgHZQlW;vm>Xo;5*u-+C)BE@zk?MwfwFJ5G}uJj%J;VW&`g9&B?83R(37?mT=4T z?^>uSsA%PjV0V@(Gqr81;-Vl`u~K#GtUBa>Q62vCR8d~j2u{zi_jp~xzl^mAJp*i_ zhc4^npTO%>{^%Ax*b}UJ@3YX`iQ3yZnqKDz1@4t5(f^nuN*1qdV(G{1I71C{KInM# z=KEgB%j5NNzxTru_cyL8f{l8g3uvW(Q69f^_PyGReR0Qby!z^wri<))GZ2 zzZrJ;Qf?v*xcq_~hRZuETIh0vviqeyetP&)cK*alDIkZH^6S=8wi87ui)#*F%Fjsy zE`KG5m2ypMDHD|4FFo>0l(OhnE2R%ft(2o%OIbh^rBnzUrtgMbDL(;NDf5=M(50g* z<#)A*FXa}}P@^Zl6O?jqYbn*r?w7{CL>sMgr5pn=TrLPoq2#B7Fb3u#oE10CW#d`@ zT^LKsUiBr)oz_KlXxO;aAf^!IlkzH+yc1{A(c4nyltt)<+e?0)GkP&yo;pCt{Y z97_%>rMk70rZ z#o&HQ11lycDQj7Cbv4DCy%JZ_laOzTxt2?&XRgJF^|H9q-pkE*bZfq&nA4iVl%Foj z7A|JHqK&5Cm%!@??86P0wcK#wN=l*=^1(c~kd&9%MRsH*owSHo?C99RF0{CX{LSKE zAzzB4NzWc~Eb!}U$*^_i$qC=mil;k~k28#7iV39ZOWEveTOu;N^WQnCdTc&Uc9$y* zL>ip03BV?DnfYR`0kU_}`~28+oPkif9XlWPx$MJ>O{yMlAER#VW3=&_7K~oU2}bW5 zh`i!_I{{#{)_k#d0onKH2!8BIoB>7y4>e^zTc67w1x6{g6mNun*kbPEy$3P(Q4@RY zM#&Qq*Fml-njW#?V0G+hY6%>C^X=?NbQlY7WhOpSe(%2%<}7`1rR@WG?7$x(_Pg@f zZBv?XAf<4RUC-uDQo&{|1kv{h+}ih(WTHOgJvQ0Eq;UqOOm~4Z49uJgAk$F5ePqgh ze48wRlzopcq4gmnC9`KKrC-{aAhQL6zQM{Hu0aCX07{n;>a2nIkxOt>uLeW6!abJh zWg5tid6G}DOj5rRw{U|93veP}-mJn=mo!kHHIV59RS7IKFeT4`p+ON#NMe|Ft(IMo zo4|xySm*aZ(N%POPIgkBmeN7C?vA&coyCg!4($4Ogh+SPxqO_#!8vyKLoJCX{JRr& zj8Gvvte13(PWV8``Zsmwr6GF1e|*9p)-U1Th=GyMurBhvVr6&49Nudc&uRcjf6`2j zJasCqpu>T>_1r{6kI>yj{1d@xZ+$v*DHrRoIr0nqlKy*5X>286v;p13BQ;_}bep%# zw1s4j&a?$Da&ifDA(ku(-sC6src7I;-jr#J)SKNAB6GWOWi9G+4Z{jC-!a!^M7^*< z0z#fCUCk4Lsd7Z*lFZApMMLz#zw$&k)@M2n&>(-0#xZfYDt0YqqARiESS2}8?B`c$ zD?7!VFi+}60rY_CA8W3S%@kn%viaq@>4cnYD}7u%8yddY7as-5!{4P0zTkwh=cfF- z`lYco>fhTdRl-^19n4c@FV(83+t;SOcX)reW5OG?#M1QsF%d~#Q4W2g^Ol^SUj1(um;7`BsXH%6?e~g@;zDHk{s1Rr(Sntdn%aVFvQONxk?Sd4A32o;9Vr zKJKmHRY{&)PNE0OAXC~*=N`!r22)pGk?C2H4DC#od& z$^s?|DBOtzG+#f}+?(CUO)y3JE?Nu%e!WPQ_CBCnzR0QAE__UN_}=F9$_V05QYoB~ zsgg+TReP{Gf)k_e=Iq%KZCsVc!zM?PPF3V^N!@|BuK&ydgT9E)`e~p!5obC?R~$8! zLg=0KqR-WtA=BuSvj>^BKG3#P?N(HQ9gTYXIYC!tzD=_CzLU@%Lu}Rvu%4|ROY-uR3?XE;%5v! zzg{Gvt(E}jLyYk|MswE5CEH0OD4AoWyi}-O)s#-OKgsa-ZAj2y*0lbV=@va|93&9_ zW*L5wvkX7`Eapoy6#j3yWI}(1*%rS;&Ud+i~mkUoLv+TVSe6SgK zS%+8ZHfG?J+R7#ML1y3=Sn2~!zzYov=M35`f-E$<@0cgXgh-dp2bg~ELA@wdhB3JM zU4=yz4&MXQ?;=SR^P5P*?P#O(fjuJWX_#zJm%l&kOd5%+2R&a>B~uq+(EUYR15)RM z;5HJNnT+*j?R}B6_Wml1j+)H3W^dE$WC9iQ89SmAo)s7DPntzC?rH=L8}t(}SxY#d z{1ZubDM|G4*Xfeos1gTa$8)aidNxNU)3U^;+=T`@RRcZ-;sOJAET|imMZ&L>bv=o2 zhkFuX3i59X?oMe=)r*Nj)2Gy7f&=lAoqXp69!V`jAC(7V`;_F%c5f^pQPOG z+}wB5uIH|h^J8fMQ6A`U{&+HNmpJxVjD(9I&o&NL88qSs-n++g@TGj1@F zDq_T5s9_49UrgZ}nnLVF{$eXCtn1zWIX0jd= z_Pk55KH*NPCc6KLv( zV|pGQ0Ty!xfcfYJstIoyKk;gX#?Sg5q5gSk|8988ooWC3z0!K(d*(R40N3;x+#Dp> zhAvRC@|P@tG0=L()9vI=5ys;>tnZP38sE1_e51?5MKrfQdXxGXB4_>s$p!r1s|I2X z0Py*ciAz%zPx7299%{~e?7-hnh0a_ew7qE~TwF&h{sWX?Pln0tjN&72<-m8HrSQ;p zNYlwGZ5OV&q;?7uVSeldPLu4IV} z*{@FVtV||Z-$R7kuw^JAgDSJD))O?o%oo2iu=t_AwWPQMh+EK{(X zl-8=53-^+AAPLe~%=05ZM}7klslw&BlHT6LoOeU1l6SeXmkROA_diH*|IROa9^~CE zrHi91*cZwneEM?#y;q~WW(3^*+?ufC5;_A>npOsW#_r@7^22df{F zmFNWTbUx)jrf=}ztYewrB*$4|W9+W38S=OMw6~5<_6B`8n}$ygHIYUw2md^oK;D|N zHgU@UmlIi*L?@WK!2sGaN{Wd%Aw3T)89Rv0z+(dT94zwOL<8L>q4+3FtYl6_ij*{4Ojt)jl-bji#qCp*1?RwUF(XwtU0@PN_q_w%-1&O-Tqp}?T`iv>o$-(4(h z*A4m|xxu3PZ?LE#8@k_iDGShsP68u06y0`tv`haD-2{eg=%v8n?{|_f^}fXodf(zk zzOM!I5ZiQ=fA+eqmtmW3eW5`0`eK3M>$~4}8Mf)x7YS6a?Q z-!ZH=Q$P`k*+rhnWN}a*D%cKb1{Ca+0i=R$=H4pp$nqW5qu*vC8fYK9ZZw0?#;>0l zN(dd-#;Kp_W4>S}bPA>|6QZUje`a@n)7VdHo|~?z&F7UlCZ3O(V>U;>9S)5nrBH9p))(~et6n7WJ1 z_m~z6&0zw1Pi)62nula9coQyBpLA06^QRQz;*x9uGpCBu?7*fMO zp>vR9<;j#@dkaEjJmT)hjwi@6t4#y2%R219k14CnHDvZ`$q)U1mxCMp0M@-3+1Q@4+h{|e}=?CC-KbVi1eJo_k zU>7kIK+|=XudzM>xKCIdsEjMK0$9bKIZmmfY4&NeN66_-8f_pm+4*J&WG1QB43JqC zICDDSxdrG55j4>fWbA8nQG6B6uTz8G*TLJM_3oEliVG$c9AFI3vEaAhMLXkyG>iKa zJN9VyW+++m^il`8;5OmH5paCcW8oEnIk^Plx021sdiT>{J$CRC5!MFtzkvd1N4B^( z(+Tp}W-`Z|kY7~$E;o=UWkDLn;8T;leW|iA0(^zvbFK{Rc|DI!Vi5raVT|kQ61m-A z{}>CE*5cNDFx|Z_%`x5T&rnl+nTk-Km(fIok-bg4q#ye>z!+IS-HT>kiEbYwxr)?j zzeCcmKw8VFh;*m2)Oi5W@NH+|14)L%?0)vy-V==`k)I1-xDtB(qnd(Ccro+L_v8v8 zihZwRx&*_pXTEkVscOnbUILEH8dgI19tC}()OV*IYCSsy|WpwQ&{k^twNvJD&*W7tp|P*tVQi18O)y`x-2mHn+~ya zdTb(PWBFG^h0<93Mcz*g;?jMnvCosnbad>wHZ_@KwH2#z4l5x?ZuLPS*Rxs7O{&>g zok7jU>WpkQUTe@k$6xGo%+@}~Z0&Q*);`B5>~qZ4KF4hB>&1xdGQ7Eyc%xLaaY}=l zjZ+%g{JG55eq*+FJ7#OQW417hC}wN7W43lXW^1=&w)TH6v-O$StJHqSZ0&c<*8Ub| ztBob#Bm&D+`L2N3+HIrdOOfkrBicwuu9PEJ^#SA>?#NZ?$kqPZxOzNh^^ZlE=sK3`^@y|z=1UM$(5PSJWZF|S+Uo!^GmNoo zGHX&v)>P!9qt67$)fJfFIr*{&+A&pbvqf~w)oyVwHWY2xn`v8HzJr-18QRBPnqHP7 z*d^PHk(+VK?bISVW}Ml{b+bKo^>jSM!LuKkj4L`}&pOefZ!h-5epz3FQa)3tdo=Kl zA0)8X;ui5a*^8Mg6H9kVNcc78u~bdL{!~r>{rP(Pu6)Fwb&vDzq%QbdLJDh~9sief6c3zWOF>6DvTX zCiSbm5Pc5Ep!#%P)1G%httPgpyj@*}1kKQnF2k|kXwe+lbDmbg@X>^D&u+W(#qpsz zaD)ZMjs#@?_HStpyiNQU=rZVY*(HyfF2e=wW7MyGj83EAdg_Drdnbp(i3TDaov#D{ zMxD(UivhAlhS7)JTQF)*mqDM)UIa!>=dKagpKW>)f^q!QAzD9*``}LM{HRtGZ;u2s z!;iyktrI){icojppSgl*XA4g<5|Z*ZOYHnYu#6-_^XZOvUeEf`Kv!m0VoNFe5WdV7 zJ96SkGn-o=d30g^LK|Irg0*35^kzN1TEJ7R#}+sV^-HyjS-Y(q$8$5vwLnvNkqXb` zp9jCbgiBCv!MM>a7|KAB1qXb8hWU)k293_V1zI>{xqE+gxf5kCXNv7IWVw5Jb-5Ep zFK4>%(toL@>ez;#nDN`vHG)`Y4=)cK@x?e)oq}ch9kk4>^Nw8Rq~Ob(;oc>Rs$ObQ z!Z%6uqi?1qOOMufQ7cio!}B z&sb5+FM)bZYtQ%pgA*{&Tjo*<*)|8PoGVyLBYkZu8 zrK26}Jwi}(?-Kn&Ie{Tdo!ot?BdXE6zoYjc=naX7FEgT6I{Ni@^cw{IWDObm(bM>c zIuI>7fCHDC7w`{lpj7l`9o-d(M%BhCUKL!QEM}^IWeB zc8E^wmMotittn)0@l5Lrya!tpBw({Mr)|t9JOml7 zTm7DmO(&HoKslixINjiN*cXUn0_qseoC_}4e_Cu4)7S>WTh7MzLP+kXy$VQr%bR9# z2M|S_4#Thh|4|BY`9>8wyBi&!CG~H{Uz-medlZu)Y(gP%;G|bJOhtghyc%MhjkR>< zf0!UmQ6TzY$}*S-m63GG{v=OrAaz77L@S}wX`!e)Z)W$eIg6=l2>@x3O>#~cAtpCJ z3-5h%{wCa2`5&7ohL>#SrOQ9AWqaZBqDg2)=6MNnV?PX~Z0s@yR?haT!8Mo|z!9{|@8LD|s;kSzh(0MJ56L)L8V? zrwrtqnE`L!sOfFKrngo4m=N`*-r$w@`Do7UHrHfq^H zAGBG{;UZBxMG7V1V!%pK$NGZJa@W1;jwAQFz4BhSSKjOP%6o16jNI$?%6r{jdGG(r zUYSk44nr#49<$o*F^9W7<`A~zoN-jTJ!ZArV-9DJ`8g*OyKD#fd7I^hEc;cj>!(rM z#dP`p12)TFidt)ZRABL7($x2L0sox*qeQ&Muf}tKLK}q|NI(+&8x& zQuo3J^|Txz6-I}1{q8Z>@7(H;o16!vY<0*TYUoCL?l=RJT0uF74uYl|_ztg!Y`otV zO`Bhu9&%gZm3-75pfUqS(J>R)D2kyWn6qIHDf<~#xdYkB=4*QljOqf)OwlnPY4hlt z{(K-ouY0!eVJ3QZM^8xKttR|tsckGJU7PSnsq^^PacW++@pA3QW@6ULzDy@eR6%xQbDFgpF0XuLm%xzyyObeF-QP#o&62M; zT+(X4Fi5)Qa7hRGMM2UH90qg>k|)bwJ`j)Sm*JNS+c9sIF{50TKWhaAH_ z&*5Lu9nbm)EOUH!v3fSPW-RyK6Hj{Yf;Bi5CNQZ-ym(r8ZQ0gvFLt)!%kluA?}i0W-n^ z0-GM=C+%%+dISo!oi(af6FE=kk0uTI(Mn_RqYpN*!)WS_k14_CNpHD`AyTaC5L%{- zu3Ozj*X;YhhXyVc^0&Hm`>9*+(_Gycnl5+jazdJpQ1RaDO%E=&59W`&iA%x$B%K>4 zyrpmx{cy>Q_a_YrZ{&P7{3ldm?H6Z}Ig8nFVf1%SEw6j67^X&525$Z?(X|~O&f*Qy z6}6whqBK>!ZkwqUOq@-BTF>Vgu8dDx3pd*gYGaOVTOg{j86%+9Z%Kf8mDfHLvF5jt zQRc*vyV-~}4S~(#47KT7Y(^!0O!@tItQBpSAHI?c=)p5>qm(a5~F~Fr5kjRn8FTxvK3>}q8Kl<<}cMVtxN66 z)}{7j>(W4?v9y*aTVIOSE#V#&Pqr>}^T6&Ya}~(@tt%|q5%L{r&LeA|;Pp)=03NB^6Rj)IU9jdxq@UL6$q-!f zp4yL^w!ciPEo|y+eQ4ui&g5RYn6og9R{G(>3nVB0Hz`<}>Il~Jk*rIzdTEvF{S~4) zBiw^8I=;Zx6!mu#1kQJYz#X(k@S5a3w9lI8`1c4&d%L)G!ICi#j!ZadM?CVo%v| z9q`K5RyI{zB{145fzejF-+V3uZ4F-8y0h*5K;GN>J}80itp;K@8i@CIc;*XF9=YVV zzu~EO5|M`GZ_#gRi;2eiZ!ytW^%jIxoIZS=^t`vFZ<9Lsw%*%%En4^FOLTq6&ovL) zYag$0iqv=UF(dUdBlQa0$L24?f;V}1Z|goXaoE}Ry{&%Y0K6&ML(y{D)Nzlh8_M+< zn=xH5&NhuB^d1wB1~W30W<^k=3tsL_RJXyH8rK?_sk>u39R*x#cOJR#So{!S!F@-} zRbr)J9aak7OmNqcj0^NpCw%kA9;J26u7lZPc9a&gFpJq8;p|bpF*X#u(#^(5Utp58 z&-#;uM7F3(Pj~me=6rW64t{60^aMDL-d`46;NwEe3t!c(IP^kFyOS_@y*qX`?l!M? zr+6(JUUn+kE1uQJbOyw*m$sk#nbRf{&bj;y0ON}pWttWyj<=T>2spM$Yh9qNcMuRC zWeO$oP6yma-s~CY>V{l7SfPw_{RM~Kko(R>Z;O0r--GnE2{T$I<${10^l$8BhVmv= zso>0%%>XdzXFj`olkiUIn&M$`dv&~U33ip_!(MEvYq5U1>8HCN&Yq4cFV}Twkcy{9 zPm>8JQ$nG+3$2mtPzzso>k96e8%0X{peZS|wu|)xKcnVh*;eyh>GwaW6IWZA(Xtm+ zZB&)|Fs)r#BD*fUWe~pxmnOKHveVAMw9f>cSfS+b4F!8kVWF68nB_WJ2HL)NCtR{F z>c^ftOZ-LnKQ=M;B_G`En~6CaLP-z%e2r+crb3O(T%SU46cN_&Xf>U*msP3}f2w3% zlBXpwXdjv@9i5W(*yyrLO$?54)DP89Z^{f+hWX91&2BJX{XnaIX0U-tBMeL#E#Oa6 z2A-AVV$P4S2}IlXBdcpRNNcfZw5^LN1RW=zF|Rbl@AZ1Lb&(Qor@+XX1A_BRVh?HtW_#BP1O$iPH48_ z9hxb;sq$RpCc-^BMo&DVit<>oHcK!t^-9P|V|2m|_DXTtm0ySC-pqma#qeS{BKAVh z0g~QMRySV#j7-JH;QP4(^@4*R|Jvz<(T+Wp8wFEg$YWV)TB3GFM#T$5tK}~B}!JNu-zD1lPr0W zM@Z-_KNSnA3)ZpoaIsfm&T(zGR2>Bc6s$8+PitLX7V*PRohnSGSzFRSLNBA?ihhaO z%PyP5XOJKfdWpTy-rTB)V#F*_q@H&`r>Ft3+y}l#@X6?e(|f8D1X{S$rYoJhKS=-A zjZRVb@9Lm+yXZ3i{)Q$NQFx(N~c?! z@;0ys@wR3|bO*86p$)0>jkQ_6;8MBLxlLqwT-V3k>nWrvpYq_8BrG zEt1fVn!wS5y2FJ#SMpN_0qXF%$lY=va<}A=tNl&TVGe8~EKNr1HkWFmH%()DX-h*N z2Vw*4YFJhN%eartf7y(GE@F?wdo`igxJ<&jmf&7%x!ul*j=6)D3>3I%!Vz>#Eg1&f zwN!4;ibhLl+<-<5YgX|p>(~d*5H_q4(DhRP)(71Z7;;Nsxh)&R&ay$+%trK!=8~pQ zWpNQkCzUZJ8u%UKb^P$Bo~BJdhgwo-tQSq7q{A@NOVfulso)~X?CW(I&InFYEmQz}N_Wf%m_py`rz zgk4~%VzmPB2(0Xhl08YTJBIe~R`(HbcihrGIqAJ2<)F|jNhF%gseB}jRxK-cNmHt1 zq1kB0u)yv#ccMZcrb92V13!b+LLFFZKXw3407FkE`&gLaLv~7I zlbiaKAKIVhWpd9Z&2)*rHCQ-sA0B`b!2jXwZNQ_duKj;-CKWB|1SNn90A7d@% zD4EyU(aBa!tKV#iny|4UqjoxIqF$XW-bOTP42jT~`LvX0Q(e!F7q5;>PuJ+Aw9vnX zr!GGSo3I21N1-&TvfreakDxFvD^M6i$Mzes;zjhbP!o#xS2E)mIb?fhgBeaFnd<)l zE3BAz-a-JLGpD;4E*4;8P+1&ozL2K{-vUT7k*M=9Nwm@qlw@2JHgq=E%r@rH8#*P1 zNkP!4G4G!F3GZ$C=H0xA@b|%cRjiHCXY6f%j=ha-B8f=H_+?EodirKGq3H$(6RVOT zREX&cI})XfW2t!O$h1*KnjKtebU{PHm4+QYcW~k=&1=d$!sagFjeLxWZa$dP`>l!i zkWgWR=}@V6s2H0c#VSoDqAhD+wmK1EuewC0{^1Lq5dI88-fRRyPrz3AAh@~5)2uG< zjcDc&?`u3s=zY*;T~X$R?)_pY^Ck%@FV7-}2rT^>??;N7BSo!IOsuqGcmK%niHvFnwqjm9YL(Xdv4lC7t^i@qr7J*~^GNrX zw3wGmcb4T}$Kr%LM`s{PxO1rvDBO8>DM59YhR<^TcS=OkN=n6RDzmrgDbyaP`C5I< zv=Azt25aqc8m!gQV6A+a|F^Z`Iux~)=#hNn_vkM^;uwO1-(J*eY=jg>Y=>RJmm z*W1R0jb=Zlzf3Z;CkF38_or*n9kU(IRGgrqDb;pEoz^sI8*8@W?mw0)>m09I6ARfG zjfI}koR7$x%^g4_HBR5dpFYEeU<4XV*_n~qz=oY0v)Zt@jkV7J^=*I# zGmI=~y+f=A@nbI~yd?2^W=z*72&|%>ZG-XmpF3`7w>4zFA;TWRIS$Y+lUOP&T&wt( z*)^6g$$6+I_F#VOoD6MagJ;9|MJGJHj&hw3p?E4Pdq+F#j6Cv1eGl7irZLq#iSKMb zrRgfhERWHu(n70Pf;RJ=4`maYy1bOR=gGJUUDxxTCVeL4Q2;iym`+MtfwdtSdQWQ` zo=M`~Rxm`|I!DtcCs3#X$#KdOAP5k`yeF9%@}!FayDXhF{=0>j zm^Q|XvPHLd_@>rMtcLNOQg0Fo_O*y~y;L8UekSQ!50H=BMl97!IHtO?0GR1mj4eax zC>7SG7kg!9u6Sq(+ic_z&4KUv$mF*eQ0-G}uuX8E@b8}m@t(9@z|Kz0D@__SUCqq0 z8uLLWnObK)7~SPmZJM2`O|w(AX|^pxId+4Lql7cTtj4sE$)?ts7Dh2GF@b^zaXDn!vp_a+TC9lTd;)6W4-KTQm#jnIl zR}LlWhL51lRc*2W-rJC6+~@sf`K zh^@BTT|pYaw6%lg|#l4qhBUZefEy2(APDlo0=j7@G<}ipO zq*f-pW*ExeO7%-}4dfs0YCDIed<9oA1BUZ5Tc?;lB(GVEh}?jaJAd%uvq%XYWMA|Y zZy?r{9oY@3-e0imvp+sl{mHo{})CWg=PMSxw8(hnPp=N8@ZFs?ov_PYPwisw&b`b#P zOfAMjtm0uu?*$N*M!{gc7bA~+3)vN-pvbgu;yaH|&@N(FsgV}$U{RL?7>I4GJ3BAB znPX~ga3@n^IS=q>ivsK@&{LVI+7tK!k*jfr3{*nV8n($)A?;%ho^Y@5TEZJT5A!@M zg_CJ^DBORa1H7)Xv=!Dwk6_7~t|cxZ|8Cx`vmk+EBLhK3;Lpii*@26)h&|{y1t=>E%N=XP{#_zjhKjpEFECGsQV`-LPug= z^0AnA6Ppj)g+W9Sm@#Jrmez@hw4vhUZ&0i>eXUWP1A)S$HixBb{p1(Gk-C@GMdO6 zDOXiJyCg%3I@6L85^(h-Ps0EHe&xH(_-9?+MKNRZ zDQ1se9ebq}bCVSBdsGhY#HT+^L0a7O{M@^&Aaa3MTCYE#f{w`()zEf)@JAJO_*|)S z`d_V04aIzvRk1yHXcsz*R>huV1c7sf0NvvQmGrGHJm|hgmp6COZ?Y2!JraWjSXH^M zyi$3v>KYn3_hw!8Bqdflv^g?qx%FI8abyz|q#Ht2HiOo-`>|?a9+JA!`ef;ck-7nx z4bepSC5z@+)vv>i75erS(X-k5tcUG^iTnok(52o|$44Zy^j`%>*z)Md4D=4MB{bm@IE<4mdyh zs6HykYm<9PKx0ZypWzC1u$cEo&^Z$xJd`a_rZ<8yo3OfQ2)(kg%dk}C=h<3rR6B-X z2zrK#N$PV#((qK}#V03yR!QvrGl|moJG@`>hhR?8TF5byRUyL)yaOSprU-mt z?i0VbrK?zov7sbLOLaON%?^j;W0%qAt^xfC|1#TOXm7KT0i;W7)Qnp*z zY3T2P1Mz2C4g5Jmlp*>haMtEu^Q>X%en-buT6?91@F zg_nr|4DS%%o51A1KlMIL2Zvv9%)WR*QwiXCdJf3mP$Uw9o`X`RwR%QObg~ zEOQ-&aD0=wRt%uDuYwh991aj0GTrnEx58_PmCg{8Hm*dSdfJdyJ+sx^#%8dfcjN;y zhlng%XC4&b_(n56#j)0zc03H;Ab0~fu`3RXrOW-Cft)Y^E{mzDpfi^+c{LZnH~E80 z0Zgj6S`4(@0x?1U505C@;O_}A>B7;?dsivBe+9q-UBLq+#oy5#A~*34#cw3N<&2M= znlWJ3uBPln@oQ!>1CwByahTY<19pEvCzXIC&(HZ^VHbLjEM1^1TVSz&I0@lsH&%QQ zQEm*?z2YNM9ytOVSGX&NS0_&PL#z1OwaD}AWupjF$`B?IQ52CH9@_( zh`PvXAK@GOW5vxe`44DBTOsnuG~?OcicI^y6cy?|U`l&GhtbByn-bzw=Qv-1TX~kX z0z)>nJu>xGQV90TPD01x^+oz1%2{R%_Bx$scq%+_{P}FW!bflbbH+6&1!*U>Uk1yi z`)l4tEdZs5Wm2-Lt$|lvhW``gX4T9~G|KF+ys;0zmGaKlBihL1(j(E>i{J9bB7Q3y z2U6~HWvDydnEQ7F`A-=rm<`~#E!-eRCvxd96qvq+{?cfvFAb4(*)LkYsV`1PU+O-+ zQj}X`Apd&?3aSNe3^zt@1e3^(AQHI|JU+3^zsE~oANM)vCrUs+)nz>xcA+duJ64%4 zB|l5Iua|5@`TRF=CslVkxBinEr$+7U8%1*{Te5UsNW@Ph|Tah z`(MK`JNb*|$-4J&AyOo!!CP^HrrkND2AX!)VP1zOB=JAi+1;!%;B?rs-p!n^GpQUq9i10Z<P%qAR9j*zxryerY0{j7H(UdzEs>B4O1+z5Gy&Rng^h$aa!QO%q6C;I9=UBO zlc+JC-W=_r;2Sl|Xpc8pD)FGoe9?_7*keMYYF{!1&DLdX3??$WH859c0mny=G+gfG zlBtohjkl8;lVf>J17ieFsnsZe7SsNV8Jg!uik3x+)^T4E#((JBy6C=0zxdnaw?6{J zyw9-kH;4)8`W0Te0LEhxcca29kuQZY|IWLR3~Q93w=(o5!)wY=zEXlSe#!Dh<6g*e zxw2eDmYvE{y;4Fdewm{Wk?m__JFJoheT6JXl%;lMU$XFvmj-6UrpTnPSw*tjyW8!~ z`Brvqmh=vC#JG=zZ*8J96RGhB9 zO`)CL2QxKmb<|yIZeSym#;BP*YbH9}bZa!%gl=C-=~^0K64juY&YW_?5!^_Zq4_fJ z1F?p^3I?HLp`ZT075bF%8SiAyRn-X_Ibpcm;W`1Uhgtc)2Kp;g3x?4>qwBjQyr`_B zx$LFLz2fM%qh=PV`@H&WW4ICeIMF`gFf-k>9yYXWkv!==m<96(Y71gVf1nd#Mp(iR zMWoNi)!<8!jlg)+yu+HVK*Y9Oaw0m>h;hj;NryN1k%9cl0CcY>k0 z8JCa!PMDnky=`(%rebV&jz*>qv&s2A2%jv57wYv~kwobGf3nBq`t4T7xT@YgVuP?)+Py$C2xf>o~ADsD&F*3>X! zjco?W1Kh!)s?P>#DedX1>(q~+!3lUV^Vp!YUCt6SUo4k@--=aWYR-RkyomQ-9WUa^ zn9P++++o2IXSBS;&IKx$xRZb-&iHtVodn27@O7-HI0*(+n%iPoBjbkwF~vrGp=+b2 zo`hJS(W{kE4Sxif0E5IQ%i)lCUJY{um;iS~LFJ8X%#QQg06EK-cG6~RDGVPHASRT% z@+AMbzK?!QALy>Up^;0k@57JN2TGPMj!Y6alIiq+BpSX4P9$2wh-ODBm3T}x+PQNR zN3?QBv}%aPtF?}3<&J385KX5jj%bw-jk=D7XsWUi4c`lazh}CSk!*A&&XlVI4_V;DA}S_PQP=H_Yq}0Vu;KFss=hS3h_f3vD+&3HT2?U5resV>-?}b5L{h znwHZ)VGD zH05Q>mYOk!Y~;QjFhsd?zW50t9OuXIf^()>ujV|ZlL76UcVW%MvJ(D~^~B7TN)CLW zg(m-(1}-_&MT<#pLizoI`W#!M))^>h1VpCZ#awzaBVR#kz{r0KLFHmZ#H1v=l>~)> zg;xZ5j4_z0&xGrJpUH3obU>G!g+Q_)7b&LS8jeFh6m^o`5vE99q?ez;$q_4*PI;M2 z?EsbCK$%udmEoHvI3=o_4hQk8U`a-IUC(c2*VozSAa9fqVO@-(h;=f*-UQOq*jbH(c18x!`9X)z2&ZmxRnwd`1AO@fiWA#b*Sf>uP*PNSck$ z2tYMHBLKDX8BzHP&nwg1bH&eI&Poq(JbFMrbP@;TLuc%P!0ZN>5gRlUhfYnpHcglg zlxv21fg%hGl_Ol#5l*&0S;CEVgo`@DRkjfh&Df9Ef(htW>*$tnbgS+_w^~QHgri$^ z8{MP~MwxSXGdVigjV&KQuG zud_zEnhgz|4@;K};luja_`KnM;ep{^p)A>x?5Pn5xCjwC&3zZesE-20sM-SRkrzH{ z+{n=`tYzU=jbAi|YIe4qdo5etqsJxc{CM0Lw%42yo)6=>8l0A(Z~{O}@}7ALyb~J9 zDbjv)_t^atKqtI7P^m#&6PzBGY}PDb3N9T^k4@7qvr-1{*^J>&$oP9QV&C~aHJ@iE z=FBzPDQ0(s9jIS-?2HL)PVv{dPDt~AfRl7-#DMtr%vgp3dtYstx<(#(tXUJTH0ag^ zt;d_J(^~Fy{vH&dH(53Hk_yUv!Pd0Hnfte@`7wStHvZugKe1{tUS|+MlhQ$nq3@={Tn2`Ed++}?G34} zSaXK^J)=#%n2a!tUS89Tux;FTFb{4g?J5OV!}8^QQx$Eg z`E7Pvc52o3k2ikFR@q5ZAHz}8kSH(o()_!ML#u)|AIL+^I!X|PTM9oV0?mYwTmdMoCN#fuR zPLoX}$Gg0;y)&#sFWX42)<*I|MxzSEqw&@oy#5Y zW5;a|#URksxJY6^xO&Z(5)C#Um-tSiboIDiYsWTv{Soz;`L@^K!5ZfR$I8qDt!%M*w?tFi^ z3zrzH%Kc+TEF|iLvs-!S!Xll4z97j zlTgA!Qg5MEV|TNMxWt%&)IbAsgaPk%;qJ%0n|^OM(dPZZJ30#saLc)rFGQy8U22Fv zu4L32L1XoM5|s?Nn8#G=T;-ao2=EEK4%BTkGw(%Cio1qX=PWc;2G80Wnc6@~++)nW z$Lxuf+-kI3F2Dh#&JW_nOA!?=1sC*a(0GA6#i#K4Wawx-gv(E+=$FP{47-+-cNubZ z?Xb4fycOYQZLPx2qI+A-mL!_widXUx#}I7%8=Nh-e6S$wA9|@|{smt%P;#Y#!F>U6 zAQfGg>$h^b*pZ5{%e5=4n6SJrpA5r`=9M=|Y*^i-qlwxku~5+_F^T0(z4)zeD&n`c z3C`|#J8t%pU6=Dix%^TrzmzJc9WlHJOuCI8(sC!~5q~VQ^N8OW$p4jrf}aC~N7!&n zINZt|Zk5YHq9WYHPlEY}1J5RzpjS58afQA~etyZ$FS&zn*8EJ~Q0uzCNC!Zz3C@Wv z!yy#Ms94V5`5-)PMR*N53}MM0G2wRm%$lv4<|Vc=yfD4&#(x_btJ^bz1HY>L-@L6p zvxYvrQ&*8;Ys+5HX}x-LRZd1}sX>LLzseX+dPftHVM`Zs48gvw`&s~9C%uXacJVyGL}uD2P>wIB3&4bqvF@#G z$9PLuAl2&=NH-O6YtZ2LNb=fFx*u{IkgkeLa8q7Lr+nN!Y9RMP0GQrxAoo5%I%)`i zh083$kDdbIUg@zT4dJCbvIzGJ5bo0vVfEQEqa*V;0kax&TDJ!{xA)}F?f?t=F_^62 zDVa6_f`0p=QoMq94CJqKcSj85HoLpdydU#&cXLM(|1^;Q79jnD?}+*ym)U;Hnt2lS z`=ozUZj~7lR0gsasTS4|0_?$R@Xi&^J93NA~o;Pqia3@DvDaqMQJM7r6w1wFXKSy1QKl@>c;sU^O89FBDz< z{NHmKATZ=q6d0K9?GUKn7WAi_9lC-LLtKAqU=EwV)xNn+ATm5{Ga@)-ESU%w1xIw1 z>g^^Fub_$BI0t8F@Mk+A%{ZRapb|GLe`C&Afa`Ag_bA0HdB}lZ0I10Ac31FIK)TTC z^A#?$E$W|wphMD$Z$i+z7f0OmowA#ka9%$$=9hGOU4`$JFC(xzrDLb1uknpMO$K#4 zaqLv`D)+p3+uGB(u`g?vtr z{F2@oz$e#XTiOa)N1IzAW$lG*(IdYEU69ii^1QM%=KPcwtdI{hLR@v8)g!;;Zz!;w z29qBs3+>AbR>(iv3#rv3zhn+d0jDXXMp+tjzQ7AsNKJbocj*y+4o+W4$`x`kzzQj8 zFXSh#kR5NH7LzBHg?T7jNLph?G-=H7c%(nN%rCjTX-Qdm*~qeQiR(!CiNY~S{~Iyf zL&g0&`bMVxCyQ^tm*W0?1DTcmFN;l0`eh>`^@~*k8jsWLg6Nho_26^2!d*wb0$(j4Gx1j(XGZJhmiW zy4m@T(vCuw579l+Z;S4cep_@8#|caE9@$dUoG9HKsrxep<8Xzi8Kz-lWz3_#} z(p6vgqUU$1*>P>E{G86IYmSwsBM<$NFThL0Qo~__5F()r)mBK%i+-jx^DsHQ-Thu# zwEH5rSqZ^n;DV5s@U}IS;44T~F2HS{iKG=)7FF&a;Rq|u&=9*$E5fWdM7<%{@B9XF_a)&djp!h zbd_ePmh`(pxDiP|K9Jx$sML(4)8B)tO%e(|MF!K2t^XZY=(BM~E{jxoarhrS^P+_; z{p*t6D(6n&VHyUZ`o*Zy*w!bowY-~T3!4&4U5}0cVN*tvl8{CyA!?2g-iJ5dKJx}N zv*E$xm|7x$>aFc6C!XjIz0w;tTz(T;IsPOPd(B%&AkRkA7nx_^T=_l-eOopxDXhCr zOi`f1B`SLrJfb4e#>FSQ6#SubhKM^<_9}QoMV|ek6sYdw6DUyC7|8#gfr4rQ#ER@4 zTIKzzRoZ#lOg zyKA~N+H%pt`J9cZiTr5cy*PJ5af(Q|V=QF^x>uzB7wW;Zdt~ZsERr!qwVDM8 zQV`4n3rJnSORT&@sdH0g>YpuN6B-S~$IQmMS;Vj$pNHt|HL}X?HCDRTjen}z!iaBy ze9;!j7j1!jODQT{^Oh+&Nbisrm$(-j*bI)La6>-rsd=69Cmy{G@ z`un0Kog0$@hSG3mP}*c^-E})ui9MtFoofCb!zNyq>x7l+E@8_lPMd z8(nr&StY{dwbLw~@}HmyhCPGPD=HLX=1ur3t^ba6V(#WG%~)yI9XNXu{t{ zGgrN_>&;ku&>_ptQ zMgof<9Qwb}!lqcLywJ1;!hI=pPp_b~GZH*(PK0W~x^#j%wxn>GD-p{mhMkA5NOP=s zy-tc#z3u2O4!e@-{vb0bjran3<>>Uj4wca)`hp~jZA1~RniCKOa~-Tqj@A#$pf2C?fj_;8p@Xt6hM*PDc@9D!1 zk#mhcloR*Xv#j)rr2u-B10N(P9W zW~AkKsm#AQJk%dv7>^8l#RM5FYyBF$nUbZN7$)lFE`FUO>QwI;Y7+5{`?A}O{5&p6 zDFA45p71XDlv2EcFB!=1mAc0x=4G*2*@FJ4mxCc4lc=at)UqL^9WN8z9}6OORGxkXAnKstn{N z03bcUK<;&b^k2U&q(fY0iT#_Ck(MGxdi}MA^z=5Qf32&OI|KT7qze(0xeid0D=AvL z9O)cx1Ek;IXlN=gNGl&mf6+j0PXI`FGLYL1kp3Vpq*w4#fb^IdCnJ5kkiOUnbEZSLQnjD)n}(ld$M zC;3Mk5;~(e1rqnM{S8QUi|vF9#sNU0(%sb?$iLGPOYQ=s52E$r=SR8BHs8r2KvTg> z_i{-5cvZH~ZPiuE)bu`~&n?~5hSOiT?9hCF=Qe1*$GL=L%1iSpA9pJa3ArWjaE+fROh|V%Og19^f`W z`nz0$rt*Tc@^SY|1G#kokREFw_kKWn%Jri3SGf$39&(D&Exgiy8DdEHY(x4UT{-uo zpFrt0MfrOkozPc{n~Xx`c^Ijr2CvK za5cB6>7!R0(zmS0QhK_sQVSmYWJ+I$tSX@Nm$>YJbboFGqzkwNP2~k?<>PLIf!wPA zAbqic+{B!Cyefi%*g?kcW}wqe+Xb; zRk^#V2J-K*#FFuV^nbIo`1v<*nQiVMFHh{%I@p_$wz>XemiSg=)B@LJtCh z3f-<0&XEk{|Ipq2%0TX9cQ@PJO#@J&n+@bo0i-Xm3YBmfRA|<;lUqnQr^^Oe3;k(% zwnF=Lm0HlyULktlArjjf>f?J~?aQu0)TD&Vp!fCQl9bN@g1U88idQheK>mg9?rH5n6ikGr=dqP(!i?aC%6KTzc zHq^hvWrsOw47b6Y6z7sEC@*u8@^Lr8K<=#o8f2J(+?xUEpRf@5`MtT!_OQoKZjdG+ zJ@2cA^m%Pa?`txoR~^?NxA3^FLE^`nK4v=Dv8=5@9_KP>ka{j@ke>m92KkXvyn-hT z+7xP*P(c|5pH8ul)QWTxRQb@~OiDp`U*JDy!RI)yNqC4MC+& zm~W>qY{T_FF2U?40H&>R?(T5|`Sq4q@(>_>DT}6`{~ay^BpT{YCa^x29`2Bs-#nH4On?4)-!EoF%N5rb!)w)6x zCZJ{P*eQ1)|6mFaI^itM=IxBtY;J?0HH}MEoq`nYXV9xJ8o^=?_(hV%_wW|1Zy>}1`ltr~NN zav2P!FLDXSHyX$v;_m+4KO4Rf8O)N5g{=OI6YSbrna$gqG z>AJ62jrP2ltT%>1Gzf@ zG{Y+fayJ9gPqL7p7tdwT3=>bW5fonO6$8kbI|ZD*mHvRofc+XGb2(7lj$kX<7~>dV zQS%wcn>*vxtp3;oqw0>K!S~^HI=7dkpv-G6!yFsY=AGyip(S~D69TEbat7sKIE?BZ z8hsB&r=#b)IDA{=qeVj%7%5uXI4-a3Si^Omo*Y}uea(JUpGIuKvdqKVP|mk>r6Ypt zpae=(U*sN5sVf16F-@;BU*p~kMPNaV3QuwG4oh{PNhLeQv4F?@1%89@|AW6+-ryYB zybGb5jJf8oa43YCJVK}uR+?pSLb&m_v>ADpX6R#XV)=={BiWmuQbjRFQ?*eWoTxig*9@el z05HS1n+2`Z7@=hH~Z+PS4Jk+U8@$W7m0A1;L6F?NBD8JQ-omi%jwG|njd@B5g}!OeSkoK zJQn?-nIlvZf^j^1afS1uhZ3a=267ph^lc=Gz7eL(q(uZSB;Dyd5xIwJ#MKyDsJfCM zdoSWQevvwRJ@?xq!%yGSpStFBJ^hL31qFLEERdykRTpYJ8T zLmZ1nYSGhNq6sZhe<7)ylEyhsj4x_ABcA$E7^|nq)K6LNRb}2wNgVfjyU+;@aSRy6 zJ3pRu8A0QFM16$zp>0FG!iAEcm%d*k-}JP?V}Sul?IkvN8MzIe4qX$utLtM7)F!lV zAME;TK8W(|hMHY1pKH&=kUn)L)Ii7O^XY5+{u4t7uJ!sqgkrIDL-#u3(CYCp;KGkcd^)O9q?tZ!Ajs zKN!QTv3-rr6?9sS8U{}v0MiJztGjrFZP0W8V@u1RN>zN)zqv^MzIbNFTFDgqjxry(MmlrS8QVfp|WT za*v-dJQEXVJ?VWE^Pj(>=xi0y+}Q$SpxddF9<1P=zamWqz<2!l!>bB=aQZXMFWfcE zD?DmPpRF|+9l&yIgf%}_vps0)JHwylxM-N#xNG5Ukz1M+jO~?V)d%rKAM~M9Jb>*A z)`8u3;V=;=EDe}uG}Lg^{FdycB6C}lrAx+rG3HM;l;khSnsc%t^7X3jJ@M}x^ZRrD z-CuSh0nHodIpreiNmY74}|*ZwFjDxy`UTmRlWs>=@1nrJ^m$1){}+W zojs>*OnUK#O~;;7Tp9{hSIeFcq=*&6(z)cEmq^N~W*46Ha3PfYA6%KGnrCBq@D=uC z2c2u6uGEL~zs40EWfvUM1Gf^*49ABb3{tDFh!J`(GWTE{nkBtgld?U=&)j~U?a4W{ zJfx)DqHsj+Q{PLUJ0Xbo@Gpz^z`Uu)xM6ftpiO=>3<|~n&Q=XK6nyu)ws)JY2@(5g z>-o8V1{X28^wmzn&YNk&$1l)+&y#L&C=e>L!ooB7`%=pu_13K6ERFjF6o zOlx9%G0q?Cj&V>dWJf3V3~*9`EcjQk_Q$xyPwLeyE2=xa zL-P$wu@DN@Y*Y*IJF{Snr99KiK>Y}S0qWt~B$##7c|ORlZW^=RGP{O1rx~1Ozy*;Ito~E0{N9Q$0+YJDjL!`(Ub!^Xmz4NSskNjZEONM++I zzldIdCfRMKtbu-1YKSN=Z}P9<)kd8uGD(3GGm9vZseC<=Y4B|!T`I>$CUKOBZI0gZ zW~vX8t|8FYtLxRP>83WW{Mk0H9J3iPZY)_u@Fap2hPSL!7wC%6B)kRtaPA2TIv);f zQ_#5?^OGf!sV$^Xb$ycnqa3f}gUNsDiY68(*qhGs$G||z0|WI(A?_PrhmTDn*GZen zfBK3kMwo1G8Wtu<&Y*gH(R*|#He_mSvcb(?}zZGi&)-WmQfmLd2&WO>9>id!95B&$A( zFZ!s@p=((kTgla<`+inOTmWJJ3zxMx_<&m>-7Li?7-2 z#~y9+eH8CF8HJ++$XMRg*SqnQ?JOgz!y(nktPB5 z$WivGE1uMC@m``k5C}@V66V<_bRyw{ua^`05)KE4`GbxQ_Xh3J&_oF-6STBhsk$;y z?m6MjRPBIHuuyk~`=PU8-aJpymBeTrHAd?IQ(X5Kvz!)zEY zHeehnG`5Ud@-4m@Qnb+l=i)YbMCLwa z8u#(;aD!*&y<*!4lupNX{UU@44j#5_pB0&OfVl{KG?^UFiDYK{i>@n`vyYj@cA@n_ zKh#&Vd+Y3iZYw#Jw;qK(99c3^X{Iz}{({?`Qetz@w;?MD`l>0VUFuD%|9w;=ne!!oV#IDTG|0`Fi?zeww# z=@*%6?t8!#rP#g+|8_#`qDov%Lc))kHf+N08>#;#RdH^JAMB%!aoC*7<>9jr29M3& z9i%FvbLu)&Tho!L6_#sv0w06;rp~$o#6k+6a%gic<0a?K37>M(B4e@$ALb`|So~4+ zuo$H1VYDQdp(S~+hUmI$BXuiyiI>;8mkCCUdS&KW?rfP~U6Mtykt_Ub!EQ>g5^U4> zCQQn*uy;IOd;lvzPg;_&7l;_-jMG~u9I}dR9pdZ8QA9*b?My6pnbdlQBP8@wLfakc zv>ooQ&>i13GvIKf=AQ~gtS}CxOUIoHKZJhw6+#KydXj1gVKuXln%>X(OOx$Mc4?pP z4;Zpot(kKkBNAEQ-)0Ns-vD6u^2AF3Zz!wGNaR7!IMd}I0A>>1M+<3Db~wb4TZLC| z+O-#lZ=>mt#Id|fz@I)H94y=s4x&OMMzBj+#WKsLBIe!GipJwDT_V%&$W$NjG){b2)>{^$|$V*JhxolgrTyyPrC{X>d@k#jY?>B*$`vTZVp zHzd)z^>bRD)mJuf)SE2cE$)CRxCm+@2RNTjfB9VS!%4b7_%g2KG(9pGWziX94E_9> zyiH~1sopHa?B|FHB`f35>oG6cjOrMUg0-eF->HeTY|jwCW})cv7yd=K&FQPcJZr?H z*WyaSyZd@r!oIwPCuQ32Ipr-TpG6HMIxz$FFQh@AqY#|f1<$ln4s1g&n|F{j4F2eU zXyv-MBQ6r;ayZ{1Rvr@WXEZ&r8qlbH@F-E0KkX?xp84h|LmxQw z3Sptj>UMshTzc1_{%l+$x~nALuwcABS~2TKVWizQn}bEI`mBA;Vf{ zU?_ca=G}IgoI=Y^=Tc&XASxPLM+gY-Dmv1u<|!u)$fp>Eu2U>nMIwG{W;Xz#t5w#; zB#O)0|845~)0lVvW4H&*<9U(c*_BHdt-!;^V8$qW*L{sxGWMAT*5mzKTM?!_aIq7g zJXhqLJ1*Fu7yKEjQ~Jn%TquD{*>fU(WZGbsVVjWqbHR))LQ5`gAZ6$wGuK_Je=iUk zA%uv2?LwhJ!t<#9ES}5Vqc;?X_s=}(inv#a1hUc#firRQBYaPTHsR6N@dgZI{26d$ z&W=pZ;lj=T?|%Wb*$%zNl(`0RRix;RND=*W<`{~?a@02m$%B-0opQ3n z-K=Ei4qmxm3vz!XXFCx*$Moo`+-rl}>y><_lEW7za5c{rX4&jlUn0|by^BwR{mOKa zGWEWaOh^}b#MdAt%GmGeX-_@vt~^BM=Jh3!NnfCH;Dgh#QJ7wj+DJgg+ameIp);c3 zb_ZG*sd>=W=d4dCgqydYiQo|bI4;;cu85uKYQ~)6XXPaZ;yQi_R~3m*fd-o&98iv0 zM7|ocai^VNXOjrhCk?fBb&c&?D?{#9lO7>{S%VwCdK~djs{gPN2YR4NyZg&@xWnQW?}pxTG`CEK!Ydw-LN z6W%1kgx}X3&;@Qe zw)sGt)zlzN3>J(ccbi~otau~OLO()Dy~c-P4n2pZg%@RtX+xF~)m#4C^TK+ckp^dTKmiuVeLM1MVQ!U_|)#} zb=&nA1no1AgthySY>nDTNu%U^aMX77^<~1Vdq%$#S`53&7Q=2ri(xmR#Sp1%G3+L^ zm{Y^@jOzJ@aB37zJ1D6_UN(AXu7}IZ99E1|6X2Rh1@Ls^=toHhztjAylu&I#xY)vKX1ZXfwS zq`IwC-L|)rdaNUL)RDUKI8u*wq>egLR~o5TL+*D)=_dV{*ZS@mFsi6+$>VbsiIzSB z)h%+D-#x=mt&uK~>0<6)Z>)ZMzIu%AZ${;~| zbq+=Ea-CiwM(Fv}r2m`bu86*wCs6)oAA#yO*+-1pq9JBW(qdh`&e57W?2OZhB1Kw~1N9?Ed1gs_Kiv@cFmSN>q)ttM5OV z2;Djl+o^dwKHCWoY7L2y+*jW}A6j$^U!EvU5;w8hLK+;uFa~U28(U^#n3-t?0kOx# z1mZpkC%tGch<{UmmC(poyMS4=pgYDdvihE2WlGx zRz`hJI}w!-ndV)nZu|YBgon(uApHw%Qf7)ZO!_x*3Y%o7bkB%nF`=jOTTrn|!maxy z8L3~f* zO>Uz^j!_g2yXpk?1wZ*M=-_u5z)|1N4dm1dMCO{f5bi^~Zc_f==BPyy2o-FT#_U$o zkDLmhMv!PL_6^D9wFxO+n=Ec&sn$G~kT<(zlQt%G+ajDwlD>iLIFcga%sAf0hz6sg zu zPLxQxK?TjzFnsJH>N^Qj4@VDyv#l9!vl9639*TKmGn@1{CV<}R$h4tyDDQ&26LR>^ z&{ew`_9l^FPli3{*);5QLoVP6jpspOfG|v-i76&VZ*tGj{v^f}PQ)9B^nAVJr5X&l zkr8aPd>6IVx4k3ssAl$5q9p5#`l;+$C;ubI31z0;!G%n!@nK5%x1_fe^idIDOHn_X z1jh;{v8_+q`e1ohn7c2wt%Vl_A#ynV5Fa>%FWDGHV@8C^u2pX`+$+MG-YdczZRl@> zYc?kNc-$Df>T+;=7tjP+6-g1tN7Gpc3vJ~*M;xE%-p28rXX3GE+$w55`YCq5tFl96 zrmeLBKHc|-xgb=J*pI!AhuiDekG;0gi2cxH4f`Qp4EBTRS?q^qY1j`jVFCLArwHE> zg+UYhvDfi_dma0+_v6@)j7lF1f2NfV{tQqFe@5wJ;m@>G!Jh#t;m=4+7=H%)!E(hS zCHA9Yhj@&A;xYD#JxlB}9%ElSk0H12nVl?2$OQgh3DdO$VJabv(Z>iAb%ZH*gc%EA zj6Q~Qxg*S22xIhdI3GutN(f{0F~UTRFl@x&Iop(ZC+}ADvrgJZ?1@Z@s-OPi6qUKWZ9gQ$9g|M83#+kUWyrY^>6r8=SV7Lq_v)8nEihrP z>qJ)3ipyK>Rjx8qsGg?dtIckiUIR|B! zOd(BYYQ9@7Lr#q4e9Gb!h0-3gab_!QWYQVDoEg+bow8){-;Gfy{iE21f~Wol;OId< zhc=wT=TQ28a?x+D+wqY_!YjC6+5Lh?DdUsgLXG)Ka_TRAOHcr+%Qx#azo6HjPxH1v zc=Mmg(wK7&FIXW3?S;IdNBBt;_yoj}0&h?i8*@_Rv_dv?byWeAwXXKVeskJF&Q+Gi zoGH9uh5T20A$fY_7sNSd_+(7(-#`h=ejSwXjrI~gqgVZc>k+Y^ri4|L@FLj^he%LD z!h`K7I7@G%2MHthiG?)gEJ18;1+4gV8zug%*ZhJ)5#$rexnQ7rRAbI)Ua&&E_Cnr% z(h7NjDt>YygC{FXW6po`f)x@C3Q2gx^(=TmPyK>_{QflMH0BJB71F=GkpI*pzhL)_(-tyUSsHT+vxV$CtF1au>5*S>$!QB&(APEZ&Ezyp{?uN` zuAf^W&A&S>CbN~LG3S@OV1?Y;UdZqC$S?TSPfuIO7-eb98OaM)NT2pXZqg&a;IMbP zLO9B4%sH3bR>GDpZ3OwJUiAygPg{b8-J_5@$!UfBcY7f{Tp{}&J{=l^pH`N}oR_8q zg_O4!@>f0b3oiTBX$#r+ODm+B7Yvg~dm(%D$S)ZBv(pxGwz4$l{Dv2-kmYB#(d0}$ z@(adrzId8Ge~Gd*<~)}rY<+tn7weJlymI)?35V}oa-hFK-(pSbMO@p&PS<#27Xq`b^6Z1a?6PQ}@aAR2M8Z@eM!8H;$~z+k?<@tx z1g?^HuwqA@Rv9{V5S^9ot((wKI z@PM~$&Ui*UVeWdcb|5zCDL~YCz0lP{o`!X1Kx zCza@%90@i`S&;gwAT}u@4A{v9o7IWR=>;)^?fdNcXIbJiw*U3!7-3M?P+Y7fk!i1* z(%BrLir?+&fp7$CqKkObcDwGdl>@Q@cKEv@$P+F^t6w|zwj-_9U`VBgt z@TR5q8;~FrIkyh78u?XtH+~k`h0SD(wBL8kp)6Yd}wuG(#iFB3tAw$8T2O zHo=Akt_mcRgrMZv1_T?bY@1+Xf(bV2oggHOo!h_8c1X@~f{j2X&*|rct)>%=yqOuo zM9Z9pPS~oTC>8RRHDLoYLXQa>EWv_!M>i?1RFCK;#XG5J)sIB%)cf+S`t7d0TaR*N z)qt^Ebyl>S(g;<;=PI|F?sasFRG1O57pbVqtqQ)v$r*1)xAs*&MEH6lsk`!R6{vuq zdA-?P^{CvaQd<mm+#3Hdq*!u^R>oErqeJSgKMBb+X%|`VGCdN9C7q zav@wc*=Nc(86LHp>^0>jKo>s<&MBr6VLCSwrbkA-%B2&RzpUvnj@sy?r)h)Cb^mwT zS325{b+jLgSl@_Yq-KAgS8KGdb+q4Ns2J_R$mm^oGQF#f-rGg*4XS7KRP>HIdN*{S zcf!#-aU8uBhp_{_IjW&M7`e+Kw|a$9yBuoUu?R%cK}QADhHTMIj%<)vX-3LuM^Y*} z&Zs5&X=)?oP8&*}Jkn`}CZrpj$b+CRSF^5+i!oPfJjRJ;$D;4LyF$CWvnOIkvcV6( zY{y`VQdSXu$$k|Nl=p2=5?moVj(6X(dAC}T6*@OIsnwu#TpqCrT%>{4L!?J1W6d=nB| z<92FKgy&U&$Rx#pl#(_}pv`K0Tr0xyrxlz?jE6_E$ypY@=$3I%feBI8nPT6BKV(E? zvOI$&h~QehKei}+HU0_XSaq#NdTnc!qRn93CdZ@6ssz@fk-1HY(2C(z6V_@?eUG>| zSLp_#F3#RF!Paacir`2_4XfifjwMUq7+)})*FPZ3@?=$ciUXh(6t(Jx#xR@{$iYRF zzFhOuV1>*K=hcMQkn}djy@R&s+CdDnbQUodZKAv)p^i-clTG}J?LJG!3B-=~nl;fT zt0ts4Urh6%)^FQcp*+)+vBi_Op^2_Ui#X&i{n+%lq{$k;-SUy zs>&IV45iA~aOSw7RTQk*?PwU8q=6E2g`jr?>TTO%b@#WTs8p)}aj5!n0@YvJaa6Rd zw|^?;4;vBl#}ACvebfcM>1sXn^ZNoKlaKHXT93mFIHkq$MZ4)Li%^e~2E1ooF-8nC zr_`6=Fl#mHdjYp&M@I-@v545E<#^fz)0EouU>?IWfmUbf%9^(_<4NQ&$Bvn>R^XU} zF3lRRo?T{!O0;ZJXDVyP_m5Sb%Me~oLwW8b}wttEm#o`RZmRd z0~hPk$U`f+gH@SUGROavMh*Vp3Mm>~p!>aEl zg*0*1i%A30@nzT`xcakQXk~7~u_LizO%IWcff?Ygqc}!nw&qEzxvlKS)mJR?WO=Z4 zPHG?1m4{B_c6ICFRfFcytHJ81_39b)>ejYiov7Mnz4}^u^{#BM)+^ckC%h41o??bgrKzpDv?Qp=+bcgIz+0|Ir$A$-RHT+T*pj8 zC)b?)^4A-q?*$#(Wbg+glis$D?fQjp{X#^}{FP+2q!|x?6q&SE{l>9d90R*kKFh5x znDKbp*6kvb?y$_R{~mYPn;FLDB>QCxS#?}l_T?-2GV0rzFKdumSEfNDlOiMs)AR9D za^^h?(YQTx84BZQdu94a%8KO`3koN3lb+JvXSt=FH0S5)*_mdAuoM%NyY*>YTu*wG z_-C0_2ld60Zy}}PP-0-3>;U=tAvA5#A7?EDsM}c%dV@PA( zgk>;KJ)_Gw)|{}cmtFQ@ULw#G=lgNOWTJ*uuNRnZRw38bgw5=;zGff#kD2$^QPP?g zv{jok^A*j>AN+yj1hPdf_#LvD$h2(=Ipycikz~h(p^?l6T(31y@;Lb;Q!mrJ;H9y$ ziPYw`1rzU1szQvXhOj{;2#tm(@tk7pUzh?|w=mc|OGcsE%@iNSH}hu0P%5<>6o)2s zB#ypnh#6sa48pT!Fm^T1$fVJdSax&|50q20#H8yL(VY^qSA?b3(v2IF-Z$60NzWzj z4XVrp^yO0veclethv~S$PU(7$})$VDQ5LojPFSB2c;1&Lze!?W4O1 zOHGd~+@O=T@&-F_t8OqAv)TsJ*NPJPm4mbL20K5iZZQ3^+6JA!H1XdSMU{gw7b%qw za83FAQaquP*!wJtOsb?IGY@pY_abo3$t)7ex!Vn(A8r+R9U$zY4&{VHx!j>#xm0*n zgcZuWBGHg1P~M=3tre9GQheeqLq=%u4!^t-piwiG`16svCWXS%vHoJk|AVgU)ClkJ zSr}M5h698Ta?_17Ib2FBYWoRx5|kW(y?izQsZ5y>B58r91>*bHS} zT&x*nXA5@f?KvZp?$b~^IrpQMyE*f2gB#nCCbE5;E#91E8gi$ykb30>O;;adSoIiX zp8B;xyvB|{vy5kNloE>tT)jR!J2C;BR82!48WSXe_zECv#(s^ zhabJx3;)z~Yl+bod>pCFr-))dDSl*eghFe3%GpHtAv*Je;UDu|98D~#X=%x)x1OAg z4}@_y>MPgz;a^|xg&#M|$E_Bq>~^8Va+7rxg3}Ol6@p5B;3))kn*WVV`piEWWv}wX zgcpva_A&7?AGbWAsrUb}h?k$Eh@Vh|$Ufj%i4Ow*%`TP#5u9$1(NFLAhkRPxdx(~+ z`fB`+t#WFS2>nA&Ey@l@FAQT{@?X&48h>)X`AnW(PHFkp70~g z;Zo7UAuL;s;X=NIB$(UJ2N$u)3h>+i(O#VvHuHj&!SfNtdY&pT9HHE!o>Hb`&yXn{ zWQyW>e2g-TN$(=P-{BW}U;bpL_Rq_LzoB14`j@MEcFHWL(aemyJ$?mVqPswtg#YU? zkXQY(>KwCu-V|H3BP>S10glO>~ zNO@Av7fz%$=728Y9Y6x;U2-1}%AO}xrwwmS&HBn3@G6(2ya51Js8h0pOJ3OHz*+|m z0~iNe?QTGm0~-P9$p?DMzZ#c;k1Tm0IU(Yb!zca6-91%-gZCn3#!9d%_wM_+0^2Fz zrCP8l0Gt%D>>j@j-O*fjaP3vaZGd({PrOT%7epf;6ZDJeRU*NI>+Lv=1pq;NL-X+Ql+Lq6| zBxZNHU$$oh&Nq--3`qAdw9^l^p?wN3&knJ4DQH`eyM?oG)B4;Qox*D9%=9*-)^N$E zcK~?M1kfKT2i$`<3=G%=NbgN&3zHFVwy-xJX)A0gm%O?TKw(=WD-y<);^5I9AJ7{poJ?n0FxgXlyfE5mGHITa>kgnS!!pz_@ zAj~N|2Rm%jPwuq3+*jMyvF2wRP6#=NnCxA}5ahgYPg@0^hufexouwzmiW!!H!zSC#u?T|w&&Sz4Pz)svR{Wp}orJD1B2w0@e~fYvkh#Jfa! z0hZ6ZWEFRy{j5uT!|rmI*xi7iJ22Zo?*9VPFEP*KUzf{lT~2oL>#$Al-DY)p;ci!h zW@->Swp={R2}{Bs?`=c=XIw(--v9zyPvH`5|LVXm9rz~zq@S?60VxN54M<<=@Z&PT zPu|*2>es?0JEk?@lj;^zy~0g)YkC_CV!5p3?bs|~+za!Ja~05>R|g)_6t5R$-C zc>&4?7zY5)N_Tg^?izD$0l3Ny=w}ZGL=EJO1f*|gq4M+J>poxVCu)2U_=*liCI zcdT+dhupg+>39b}f0Hkhw?e|Boden_u2}CEF{32?$1gLVFa&i% zv@(_$o8<1x8MrGg)qTnMQ3;=y6!eHwD{>_K{)I^2&R23#GPEOJ{9>$_-Jij* z^2ToP!@co$aDx}#EA`dVOwBuv&1Z|?HU(BL$BGJv*O(}#G%La^hAOEZIPpdM*aj;X zs~UY6DHTUsy??|>X?P&&Hs(bPM^r0nwz+~Slc1?{ae;YY+;C*?jqJ)CRnR%Y@sd$Y zsz@PMdv#OEsuVv5_p2GfL#Q{aNoMzojAYF7Yi5Xn#OYCHe(@0BFj*#EKHH zd%j2xvN#{QoUa_6FZY+V%IQp%9T`nfFq~MH_##=?}7$$94 zSQBlR#Z+jU2AINjbqThRc+*mpvM!0@6>398%IXvM!{;DG`Z_TdyTn2SpYcl#| z5yL8QVwns*UzD~MDEZ-JwZJ=)28RcJ-S0mzGVKu&(J$z$Cv_GG6BC@6hjAxi+uH~7 zGo-qKjJ!O}c(+_>5xtlbu4eSoFgIJu$Q$1^=JkKgg5RyK`4@UAXo@uv@BC#X$Sv)v#o-W)#&cN@|(}i6?n=={a&j)!7ou@08Kj5dj z3zd9Tpphwo?V2PTj5IWg|~;-9#nJMy8klE%@AAimGq8XVs}har5zFgedO5Q;Xs*<4sA~VjCo7 z`{N{}Yz=aIBypZZaX7T$CM${yuOUMLBQHgr;A7%P_WvT!dWJtXe&na@agUm3V%g}COR~`;)np*4=#fim_NXxiLT==3 zk81z!m#k!)&iIM_f84zbe3aFl|Bp;YLz_5J62Qt-+M;4dR}`q!fPe-%BQt;+TF}_q zHD0zwe>Oy_Eh-YQJPxDwLYMAJm$qwbyR~(@b*r{&xJUvbg!@e(fWQnt>kKzOBP;75=-7UDpvDAf2P%=5_B~KX4oo^ zHF$|y91pCD&IG(^OWsXgIw4~D`n@(kH05EzSGh^K-%gXiSP|C6o!qKjY6t=ICII$P z?)i~xO{(BOF=GWKiJ2oRG)$iEd7mrj#l7i0AF%6!H#IPE5B8T@*9roS(q;0u){ZERR@*hQp-NSLF&~Y^hEOjIkj6G@EV}m$^?DzGzr0NP zR%p<5FTj&W07>EsitIuEZfvcVPjOGVdC+Po?mN=z;pIySHk#(;xAo$sda)xfZddu9 zJyo`+%ARL~J^&Zb#RpVy00mhLlsu@CeXV3)mAoQf3T*{FQD0q%ei^FGXv-B8;4iwP z)XnDbLx5BHeBr8VUfhOO3=-!Iv4c8Glc1*kTb_$Um~x!3eU~HGT}-*z$8wpjarea4{MW#JEMrBqQka zH!j4#%KeHK;s@r3CASc_bKATSi~WV@8U?w>LfqsQA`V#Jh_f`@;w!d==oV%B3vqqx zh1k$~A+mFF3vqS(3lZJtkGc@u0(5QrzrPUA`4|>r;A3Bi<41hFix3TvOO5gKp6u(& zIJ%a-2W=dvowK9kC-*$Mq=T5;$$@*sNhw|373_UGIuVy05`!gq*%iiTIrXdi;k-cC z{)VFZm)^fBSIb_qsO6hTW8y@(JyioPrwq0HD{ojWzt7dOljdBa8j_d&{e!2gi1;_) zWLCpH)WG?3udxSqxQ{nxdmr_7GXUyrZV>8%J1MGv>c6-N5o+M*nywDI<~I)?2E4~w z4`ITM!&VL>SILF@xJ>U@NhN%Tu=m%gMDnuk>T28iTGzG35X<0!Z~1-sS+0`J)U!dk z$;*oGJ54=x!5P`XxJ?x#!*g_Cwl%R+>so()vWnFO{}GOa{_)9Y#hf_bTCt6;gdb3e zWO&(a?bO%0t{Q^#% zd2UROf72>Cbn|H|c|}E#Pw;}Z?JP zG45CN{GZ;Ja!FIB!t8mBA@p9B6O?(@)O+;M=M81{^28@xCic9qS&H9EiC{|4=V_K0 zd}TfFvlc>w>5VwSFQD!RSlA)~FYf z)7@9!M`-~K3sm_wi?-CuD2~1)2`(gI`pPHk(eJtJoA-?D&trf>uOt z4{p9$e9~HQ?*vaRiUs_h7}qU=Swur|SSJ-di-!C~#Hnc-k4#lJNja)#zJ|I7v(Kk1 zd-hkk!Q!)E@Ddl3uA=7{v6iB7udk7c-5#ZA`YU&Ckdj~nJEl)9sC+bqss>+vga@xm zAc;`?I&0fPReSf#ljxJM-?vZFjlvNIrU#=) zxsFUyfbvo%ft1}r}b=T2fX#2r)OnB=Bv9bMLM4uEnQ>9M0?_>S8tqE^~bnZ z>lmp=Ut9mrd@_+^!o)#!rN~Y091phiFgD?*|KPaQo;G0yC`-glHGg81Mk8ERrxq7 z-^r2~SqYfTEN2H2z~vc(g-pD@j0$~d`p>x_@*)#i51^vLWVv@%%^CdvVwXg{G zgr+~JS5QXTfPM~R%nMs!)8U|X3G4yXRQW_L<+bSreMGty9@@v%4x^ZdP978Z2*OgXP5=oNZWx zlvm&3@0gJ5di_X^_0k4@zFQ>2qv1XDdkYpxV_xTPGb>}vGW}qoH8&rfZ-R0x3r+qK z)L`c6Q+27Qb!i-3QuFDObg8tjG?DI- zqegzSh@bJYsQs>*IG;cH55YzCn5C^6D2>kS#E^;0HM)TZHeh+Ew~^N_%I%LGlqKf zLn7TBy>AX=oh&U5U?vj{ERekb8{xB34sMv?G_>=!!5kl(*QgQ5bKX_9 zR>4BqFO}QKG1T7b&^NWEKjpW!0Sbe>idy!uA1S%)pd|zMkN|7O7RXXzY{d$vmA%4g zWv_5r*$v{um$P_CDp@=v)eTN7o5droY!(kmC5uPSjcj4J)yghdAr0sirj)(Hl(JW# z4UMS;fO+y)wSvE`W?oRH%^DnQtt-6Il9J(;gvevlV9lJs5*m?Rs@9@hj)|Tw|tDXS%hH5T8%n|_X)XeFKXk;PaM+5#fK5A=Fj3M)N zdrqE{8my_>oY@B^hxY$#uHC+V>gXuE)JNYb0xCznTPLA!{{a1q5vj>Jz>aw+T|Xy_ z0@Jg8<~F7c-5IcB7pC4ktGnTw5%GoI1 zO)Bv`Yeo_20ylvinujlph0Rvhdk-V%Uet=RA1cG$xFX&Qxr6PQdC#Flf4eh3oI_rk zWU&~`k8RxR-qS>a!Uc*NrmvzyWk@9W>7gIC>y7!k=$-!6_jU>M8jQ#AmBS>O)xKHJ z6{z)}N#eJcOraN{CvIgM$c`Xc@<-)*4boUt0Gh%n++zt3B6B@g2zS|#Jvg^QPh7$~ zaIw~-UK+sPx#%A(mm~X_BXmBE+sN1|Zh?YJB6%gtyZ>1$$5z72_a-qRC3-pt;wKl= zvlO==7T8Bo&Uv4AdH;)XPj2F@Dipz0248@q7#`}I7WEQOMZKXjqu%J*h?9vdb`_Gt zsP|C)i!_iEWvY82(WemwBdv+jd|`)9@j_sk|-7J-WH zXsmh?%bZ3^^+0X^ue69IblH->*C^jHEuO3b1KkA%fb+Zt#E&7wVSA#H#;DgA^XALn zcMpulAI9OFY)kfYh||FWn#9uTb0B?YNDb)sk5oq&nA};aSQc%6C-fs(IMs5N1Kg0_ z7OpANXBjX2FREa&utW(=T-Ge+BeBQ|d3sC^{HhfkiecF-4IA&w#%PT-HkxsMh&i<3 zXL>cZgf;TEprX8-=7yfQ1+FzsmO)u9{@AhafEoD%unAm@&1CmH8}|~mac?M?+W;KK z-alK&7B0wGY(t-ld$;aM1op;>Bfxi%5RQJ4Ic|7WGwB?Ne*mh5CVjEsdOS3Abs|+| z9)G8AP=?n8u0^cUR9^~g!+w4P4m8X@PiqJh!#y&S(itYyVQijac#X+B#_u_K$1FVL z5qXDwsL{TN@ql_yydh?MjXZ<;AtOUmUbCguTqTxVX{s$ScV>A)8oQLO$%oBML|D)W z{NNU>2EG-@n54Tw@bWc+hh56oVBKWiFxIP7#cBaVekpgUm8)DMfZ3&TO)tv5OKtC{ z+_=>Om;6$0fR(FWBVgO5dJPy1(F%pZP;TOC!C8I<))R<*CV!a)oDqG}azxa8-?4|E zP;VXx1blCfAnVYWJoO+?Jt$DlLOwS(PA~XO+?vfVnZ?RnuFP_pPG-5am0vQuD|3S~ zD`+p771lt0{RUP&mK%OtFotSY8t-{D^G0Y1iJs;BaBSWtuE*f6@meO%cTrc>DA(P> z!8a3JF2j1=6`EWpYdTMhYxIjOGPa0z@%;^%uNqR~mT}USG5c#HLipC35c#FtNwBVk zsj#j?Pb}4iJYW{T%N5wfTB6~2%W>O~h|HJr_Eg(4g8nH%3wA2&_$jutzhBU?;M|FM z2Mk`Ytl82FkU?p8x%hY9L$lcltk)T;3cTTB+Wr(I4Q41T#g6g7RMi|SJq*ZNmnfY> zvTW!l*N3J&Eeb6;l-)X@6qxfAbW#6wZ6}3HT;NPr19!~COXco(>HUpWKLx642b&G- zx7cLZRrH7^i=xTF{i6!iH}&`GVa+jgCkpN4BpS;OBOLt5EeF}yZm*<D71xTId2qCKelos4Rlvm33<+IB661xTE zl|5DIrgK8Q^7gfSv^$2)Sj}ACLYV=QzhJH`7J)N+GSBIuMD8hC>)KtTD~$DI!q+)x z!gmi(U98<$O5wQhm~%6aq<()KsuG_tHCt%-$(x<1xXLEt6CC4A0^UQW{!+a%S?rU_@<8Nw+9cFD>g_?EzQ!Na+n1o;5Eh%X znT1K*M9ffq1&etg(G$ABlCpn$21T6$kL=e_wFoYH931qLyu;Azhf%dCJ1n8`VW{;w z>O3T&F;TY^J*QO-b4=zuuj+%$pOq!i@h4aTuDN1zsJT8m!0u8o%E%FfMmIVM@(=j% z4SbkJ9*X1RH-H(_u|5axe9F+!RQD^OaykbHfTjzC!+0_hg#-zYL{q^Vy5<#A{c1fM z+5tO%Jt`~dp!=-A_>WOcG0_;K1LMz&zMAVk!g8-~h>#w+vJ$0~ zlVDC3#DwkqSfEp~Y(c)xvN_tbGRfcG)LHv@L92)FCQ4V0AEYmiNaYP0o-Ak}5Zp4e z>LYX%05u-K$a0^cX=rjk*v6UXWDQ;O*N&mog)A1nq{q$>&Mevc>rcuWYgS z1zdN7l)|zR?i&bisOB}e+_3Ie+N@!LS-Ki1`Wqh7cD#f?1P9aM&%~o(`Zz{who|B} z)-M`f=jK#3k>uqo9bzu2U`!Fd>2H#}7x1R8HU1AWX33@2MBo?$nRMGoZRxpA*} zfq@bDhWbL3HNjuKvt)Kh!y+9Gi*z(BF=7zk9PVgX)bi2p1m5CfFt~cDj_Z>JYp?eT z)|)%$b(*sI;NUBSs>gjST^M?3@_Y;xGouj%m_BOiQ#N@Un*MOo7k;Q0dh$Y_+E*tv zpkYJ^EMURQm9puBq+`Lqbep@D53Fd)T!ww4WE4YM6i-d9rLfVC@l-0G0xr_Qke4}v zcz;$s*`VHyB-|ZxcO57PS-3|J>#T;`WRd92TI-4xS-$z7U+vSf)8ujDIA9uLn~GA*1SkzX!>x0?BThmwgDm|%H>3Z@8xzf6%bOXsG)%~bSPis|rEqUj=(z>K{Bgr1seG{cm zDl zMs+AmP6^DWEne_x?m|-*L)Q4?{OWI+xtE{S^Z`qg6@gw}_z?=F|7k(paW7cGC1R2= zABuXx1AHl2(oJ72*~|6g;Ucc5g?H(BFiP3iIy}6RA{TP`>TL`T{z$p>f(?}LN|xw1 zT+45I!}(`*s2Qm03qw<6fq|9V&VkzK2*8$OTC)7la3ENn=Heg0;I$Oxm=o<08nNhA zf%ZPNzTco!cjJ$NMok;(3_L)YzQrX^9wrfN15Vt$vnACT46KyB_;?`rFUhu=ciwsTnk?10b~JutwC@c8Apq?*=rm z5V{FuXGgX!xSgjOY+ApSOMi6V;F8vVV6T*Hba%(>u5hO%;WSD5hyS5reTGZF^|L3R z*m^ZG{nBq4Rxv9MysU+j&J>{y|2+E7uj=+?O-G-F>Ceqre>`&_%`q7~bhVC)YfH65 z-{bUqwf*DbdG_j%m)5%D;yzA^w#S8@`NzcrT-tH*PB}pO#a2Li5_$bK4yhTs1V~RK z>HRuD`ghfou5DHNDe`)`(z>MdOpn?4;)bjPb+;WdJ@bbw zpGzCEmu{k=Gg~#Zh`g&^w{%HEyOFG&PeZ>up3<{hmF_`aH&4a03theG+YmDsq1lF`AXeg1P>jAOk|WVZ z*&!8PV*1DvERh}qBM~OOBD^OV{KQoZgK4>VLuW&0VZRhljh-#ZPktM~4-R%BA@5fB`Qcl*!+~7<_6xsAgF;XI z0=yArgt#7i%TRQn=?rvtd#M&-#b>#KM~4hz?I5m@*N%`l>6^S4C1e-O8rW(`m39Oa zP(E@jDv{DLL`vHkO_}gX9fB}XTA`RFNQ87W7TJ%5mSjnhCZ;YeRNPk-fymKf=A59% zJZItc=AKojtw2SFw|mCvXY{qP=)X1<{nw^}5oGTrpR;Of4#BRSG*;`gg(pBh>H>97 zwL;01zKOj2V*D`c12Lp0h?Yv{3<-@q3|lTRLybUFfcy79c`P)g`xtfKv5u3zbGR9* z1b%Xq1cq*Z7+vS3_wB=(ankm&cne9(^^dotYd3y>0?%lC;(;Tuiq$1XV;;fD)SuAg zTbXLKs(#i_=O;!9?yFK!c?tTBDH?Q*cEAhzE>kzBucoQrA4pH6%r?6IhPDoP05lGRz>(Mz2uFqM*{CO++hYbVA1qiKb|W< zaLFrN5d(xO5y#%z5cB3qxtw^{a<_yo3KFSCB5NX=k0LNk4!oc8Ca4TXxPtr7tXR(x zNY2@bOlxT@@*zF6(GD!7H~#_o#~QGiCGfNNj7<-!3UFWpm{HtcE05sG@GmHbo-Gn! zH>FukfMiK0z62g_W|aHA$^RztRV!4;G+NQABJK_BMYPH(zc9)5yOxZpaX>lsheJu+@om z#TAU)13ZZZkkq|0hAVU>pyXc}Wp5N@yBPIg@3>}VJL~pX@>ZC^wHQQzK*zif*c>vG zy7?waSvEX!uJ}O#SV5&jU#wb_sRiJ|iB;WjV)Zoy!BG;X_HNy=HC|t>@Hexb6+WntJEVa`TORGgUp1=|;AJjKG&|)bV_X6FsKB zj84RQSdl!6d+P+%Fr`ctU*oGqA-zV1GNCVP7AIl22T$IbMyObXS+1m2M@?FF#H3Y6 zeMPL@nlTC4Y)5Iwp_$kkG_x@X?6)bfh?oW4eUUFbY*fCFvnc{wb#th1*SmO9h05n4W<_MhD3zOgBU#;>As4xnC@w<5?XuGW_+!6 zGrpE>M%7O=^VxyNzi+7KUq=bzjb=9PcQbY_V>UK#3BP0V7V~>f-eTh_zk$Bu@mj_A z3)II0jnTj%=a>0KO`7K~E4S8?w$=dBTAED7q0HY|A+7j#PqkP5&1s%HZN~z=HS6(G zfr2IrK%cm9who?br5=9dA&)$O&%d%oT%^G76qAWY9d>PD0IA&5eU;98YP-r56;dm#SL$wCd}KP>5-NZyVf z>4*8i;4AE%k{?(S9It$L1Op-jYeG}+6&7gvhtFK7jr@!jHo(<(+k9UIksN2PjPf7) zx~2O<)4$EL1UCBK8z`DA=j2&S#A|dnO)~^l;W*Z5f!#509}^(Cuy4zA0b8swso%pG0-4$IYE9;>+HZ3u0hOe09rnI6Jh{J zw@Y78mjJOgFAlEyJJlqZwr=Dda!lR zmu<0-WEER%XIF2rAZqa~{RI-rx0$-wxNR04uxy(J!K>KDt{>CDUlZDnE`+mUBNi1{ zh~mnv_K}HOT?oRh4sL9pNY7LG=sz{a71aj@Yq{kMrN$D!PfLnY%t zv#VQ;L%AD=O2$Ef+T1wA-8fV*4vfk;#(`v_jRR_P7M&fv&@rY}QLvR4$5d=BQZjC< zX*o>XDoqOl4f9*EU0NLDwo6B2VvBxRFu>AHp_+6LwgFC@S<>}!j~FmW%kg4OfKfDT z8{mw`rN_KE7E$Q<8|7>vRqz$g;B5C%waw~3j3JP@v>+tqh?j1vYRn|5oXD_Rrx50) zpUv*QE4WJNV~eD=#a{zd83Y(E0uyYRz($UB+gVY3$=0-rFLU5CzCwLG^-ZD>><>+U znDQ$Fy^848`ER&`p!- zc39}K*RCZ@B=tfz6zoZto2EyXO5oGSzniMSAl} z0&0Lj>s;mbZc5MDhrLLEwf6ZOvgG!)ow-^vD7t8fm)Y-Xq<%a+C+~~0aKuu2BS){k zPA&F@+}^fYD1$~)(ss3pfY zfKrU9*XduNSQec_{B$iCMA5zgz@mx`QVJ?psGlz7>rA1!f?yunQM^*IUf4tD3-nHR z-T^r4rEvtzK(AGifx1+#Gxg_jM9mNs;iYlwg=}=bTrXX!4_%>mCT{4B-j||?RIfwJ zs7v)a)AOE4m~6RQUwm_I$%&}@@E8X{{Da7bmZA|&~d%jZ!vr%FWyEB zfZ}q0v*h2KGuQJi;X@F;GcFW9K`O0mhuQZjMtiI9%C`N4#O|RmS zeDJ5f{#ORZP^tt0v{PerYpf1}Q=9?R*biU@03(JU&|UUb0;K?$U1+{Qdr5zyD}Y8H z9g*z2W~A45P1bX9BJvJVxCw(DOI7cO&R$@uTKJDKgo;rk_>hjtvbucX;tQNQ#T?Wr zKINB@Rz+Q_ym#Y5yLX;PpHZimYIkh_iGF~i&_;*UV4NwU+CW7E_17o!7GCe=EfQvo z9TSupxid%>&FHBppvIsV?wT%?-Z9{JX1TkMgudEUH79wv)D@->pydt|h| zQ+TH(CA&ZK(f3G_nQwoOe2bhmdj!uj{vJ8T(EbnGBlEhnnXHa~+a9UW`?)=W_}$+l zH`vsjdXIo>opy^5m9p&?InedLdW&@YuihdF6eU`1k&}%2>9JIHCdHx7oT-^imFddsPA>cCjW-*Z-bWEt$ZM5GbLH+OQ>ynP0z z2T;v8A3M<3|2&9zAAr+Z9Ud2QsH-796&y?Ug{bI@f*YRZ4w-{`E# zfd_U1`Xmzs4KQpQC&*TrYLxEa1i3@+)fjx^1hH8+J?HCe)@-0--bzXDy*Z4{7XIqM zI{_eV@o_j)JPp0K3s#n1oAETKRh|W z9UBAs;HSqwHZT?0Ol#KZAjc_RO`U=f&||kaaOdM=5D;MQsPO4#Sn_jpVl0JxkUrj= zj%b$OrXwSeJu*I5h0>pm2}j0}xHJR@;&t&<R-wE0Mf`eQ<<*(C_p1PPo*P!eUEGUO8V} zCZkMzbSgBpzwLuV?1S$yx9#tPd&p_I59-kS=8=^1Q(x8@v5b}PZwcEDaH-D7?SzAG zxy8?BfI@GK3vpO)*1g&VhPUN*K_0sxuf;B~T-HC%?%4|;>n>;v)%;@-W6UZ*8m1i} z<@xLuK>IujTg%N4BC_j~#XGL|inrKKXk;hcqIYvU;U>*@jYcu1E8=G`!Qhz?`!R0? zBeayiOoD~y@ThnyuM?asd7(-b4>xm5Sm?gF<(X9BY~vECo57;yg{JRg))DK78xR4P zdRuy-Hk<&HgfguelT? zSmVrSYnV0M8shA5BZ6?OfoOoeWV@IV-vD<8efz7Tfx}e7rr04Lh;CC{abAl}vBaMH zn<9LTvV6H^%S};IV(;|3$dd5!ZmOa1S(1})ipflK`|p``b2!B0zlHM+2K;a-n8wy={uQ%#>}470i@lo$ILq=R+j8O>s+`O>qWQwAmEzG3$TprpTOf zQ!FF+bE{1u#OaOZO|kIf-4tC5PCwM{q+ol@($U6lbS!F&Y=11j02BxNE9B{<|HDk zIk@NgrsUN)OEH?!n3jtTiCS#d4Tv}AVBPShkSM>5kf_BlrSo!mAW^$QHDhGts`UXi z8o`kPmQ0buJV4SvOU;47qo>}fG29FUYJe6%jYjrLt_W)G(55EF z3d;=6LIg4!-IidFe1WrKe4A}?gh_6>Emnl4@8l7O&WUHmdOIs%Jj3zGo)r!$4(#?v za%7V5T$~jny}SYNI{mX^vEv17Q_#f7Hes2XBZcCIY3&Y~L}0#uK7fR&^WaU3G;j?} z>Dlg-DEJ4VP5A%wkBLjGHu*C}Vc78NLp4F{U{5xrTK{6|yZU9Oz)pyH1-;_|z0C1Y zhkBF06VC12Vki8b=eeCQFl1T59we=HLg7!(wViO>l75XOC*KK=Gmq`>g!{;8vlDLR z5!1;|5Ye!SKU8iuoqQ)OYq=A)e4IOBwe5rzANNiefi#k7J7zoKm@%g!OL;Iaw-e@^ zuoFI|cXB)7T1~v|g#KKy4Pu_gN~gqoVq2#2Zb1s8t-ywmIC*uOjc^99wb=;oG3}?^ z2=AS^5jYgK6D#lhi!x%;y<~KFfSg!0NVD_$FvbX44!;M-A0&mijDB9-gZYq zr=k`c;g>vb-Uw$}Ry0oYWEZroO~mEpJ{A=BYc~jHXEUmM{XnNNcewn zBMg+`LO!px*$DfY_W$CI;GYN||3=t{ z64S{>^z<9y1-)$>p|C??i;Xag=NQfP5Jw4i(uW1w0#y*t$HYXM!7Y@*F-yX`E$P=_ zWw83ODDnoXo?+&|TiZaQCwbat0w(eZ&botX+XT}%N8=G7+v=>#jsy|A@i9ys1~^2B zGZD~TYVzB?ag@dCj1YFn5W2g@+!jt`s2DhrMuJ`FP$SC)Ct3 z&6%HWclRT9y8C~}Dg=&Brjnr2NES2yPQYs2-~6u94VgdS8&mgR+vD#4glkO}cjiH? zX_fyH2DQ2$@7p{70fT7WkHf}U`TvHA0klBoRzL)1EXPr6EOBe6<8*<4A!tK?@UA~@wh+^HhO`^&au!NlB{+^(!-xI&oJ zsmJ6qDpD8h!VA`tN1H48wBcdltIj-aB_9T@l4W3IR>^?oN)9V48QzrC7*Yd z{NnUua<_`q1vipdCB3qh)CFVyv#1xonafP6+X5X)v@`CIM}e9{XNJD_gsx1hv-g`h ztX|V`4pktc|yoH=gRCpGJzRAECTZ3S9S0xE$R}hgaAm=p!}U)EL%)Dd6D9biADU!>Xzs@rbFS z5VV{H5Tkvy%oEig5qwcpt##9YBmWiDQ_|z z%E~6EpxERTHJeO_vb@Q3C@Y(sf?|^?YQ}e)qGrWzr=YmoDJbric2hlnxT!=t3QZ?a znS%HDsd&$n5Z^N;#P@nDW&)Ui@7M3ileIk?&)G)B`Ve=0D0h9R*llj6%3NdOt}*4V zF%>jM!`P(Xc#~;ImN%JpWJQy-BlFa*xV5X?+EtNjSJe|)!mRWejcDkxb4B5a1qJ)X zUpA3rD8;cvq#cPnMp*5EL$OFL+%dfZH&>&N;?I3K9iKIOQQDJ=PpouhRVMSQ4sEWiq1^`{&yeO8Al*rjeZz1Hbx*|%UmA=+>`hS!}H52RVlSQWVCZVGs*?qA>;N`9<= zu@6BO&gDToFiWaaeBO3}%->927kbQ1sbS38PQEQrWI6uSSiu*tRbWs0csAPvy}@3p zDA3^9+J(R2_J(hsVdhcUEh2r$MYctjfQ7R*&dDo9T`Ez!81JsmlFG-*!75a3Za=91 zQYDZVLxJfab#-TMwF9Y4{7|Sj20>_rN}q^$=H=(CIb6SDH5wD;zVQq zh0JA(mYsYXty zJ~t$Z!0OzP*i<-0Nc8!w8YeQQZ+W2%kl+`XZXO6RUps*PX#A3CV5{C5t4N^=7YfH`4g$<@FDbxs&jvNWJ5F`h7z zWL5YBd6E&V!f@5h2b)dvv})R0>tY5uU1HYy`b6o<@#R_QCBm8&O}L)Ou0#M6g*og* zX;PuMXwXZm>;&i~UC!lFPLvJGC(#-c2zy&b98H{o=qXgEr_MQg8>IRCP$@$ zF|QuRrP%j0XD+Wpx)xxrFt@NX)tzx?=)Pra!3_;4C$293A(<6;pAF3o?;q%L(e)2) zXjE?H58(^+8i!Zf(A>*b``P=Iy+_&AKjaYYH4)Fcp}7P9WZ7k*`|9#BX4p`B=djS~ zvLALcQVwUelfO;#qNT^i_wzm0>f}-v>v<0)#yjcZ;R&7U^8T!TG@ZqTP0#T zuURq0u*yYrjd^DP)4CT%*(!TsFbRaCs)2?307)!0VC1z2@|w=5&L5c^a3)5{Ro5OU zYsx#Ly3@$y#541G@NGB~^3h(ipoox7Rm-SA)q$(s6AVmSfDxv_uh_Rd>n{4@_GAu0d5|fqCGLm>yu8jc%AYd-FPi zEktP~R1y8OwMS~}Nz!&+4d558@^goDSmn*k3FUC?(H_Qytiv zpIHj4z-@%^rw(bw`l{D|vge~AS`gaz>uOm8ds*@cUu!7F(vH>~7VYvc2WvloPqO}O0GVPo!mo~UqL8`ow0RzS4qfLP<>xI3Z|<7$FQa@B!3!VxOE zF>@V)r31kiCUf9eP2hF~EltP9Ig_c0TgS%mlgCrnW4pC3G`-mB#)|oE zY$!yGc+V86N@`~EV zQskumZx0zxmn_bk=H)-=um+K-|*=D7`_D1CS}fH%$zRD37s~|2a(M?J+k9>)E~d~3Gc7D@k=vsZv3`GOv5Qse>8@X3}Z;>%FPgW z*)d8D@DhQ)^4txhvkSCye**zda^u&STTyFs`r=5l5Z(f=5&dApRS{p=a@2T1d2XC4%2&1=u0(3$zz!lI7@gFBrK-1LWjg~^ zHHGGwwzylUv`XtAeIiB-<0hnLV&VoKD;K@v8TV@g!`*`IWds-Z)ck?`_f?iT@S;2KAtyItle#J8Sy=Y0{Pe`)- zgRJiP2&Ugz-mF1a$DiOftiV^uajd{ZYA8ye_$U4ik7C|i@l;fNz$G$~Ox>uF|)A0^u?Efxv0Q3<}`7)AxT_@V5M2vJ0y*t(*D6XhXl>!5`YV zY?R_JfU{$x1to@aEZ7$-J2{C%vxP59qPMD|NiYxoG}vW9?Y zRIf@zwwk08W)*7bGaLv zAM779&iKF~+=7Ju#*&hMwj?~!l1`ziif%)IEoQBgDRsWtW;*ssz0jYI1l^kxn%-#Y zh5O>EQQ87JwV+&pqx0DpS>1D=U8e0}AQ2&QBZDrMp4?`yX@xw#JK;j+Qm~H$R8u!H znRjG_mv`8FkNnlt3LPYVL-04^8&Vfwd^|_TVs+Tit6jGGcbP>-rg`;u)=cdJI|768 zw*;<|(YHMp`5=pYujx+V!ChK}$9OQ$)CY5GowBU;?OQkr#ERV|eL)+rM$;VJhp0R| z3@meuFyI(!IR@Tgm7fm;QjZ8Ad@HZDav?FB_Z|A4NX2`)v7OGdg!eie2pKb)jwWYw zI?ME%`u2p&aKd2ATijmsH#YzzZ0G`;As*il`@t(d8=OYmP8K-rlR=1L*D^~Y_4E!x z@q`CsdNWITB}U>JBVq&qy&zdx)!)%-#?E59t>)4y?A#A))h9~R!2iZm4qO^Uk#)-k zUrKS-?XOkdt=kWFwE*ki=Xo<&f8Vl#9h=&M^+}e|Z;K^`b4i-Px<(?aCo9lXc~Y=` z{fS`xDg*1w{DmyTc358M9e_5mkbR(TD;S85IT7F-^gs|E@cyv^_PGYw=X~6Nz4vCD zD2$EJlf~FbEBuJT^(;_FPd2yEISW|mA8z8EoKjTx98f>kfG}#GD;Xz|(OX&qbyoa* zty2skT7&Zq(hh75&g)Ij5OB^K-!G?1IfyP$j$!H+lVmth?gUlRcJ*O+@nV+vNUykm zA}~+d!afYAK@j_B$#Nu1OIBdX2jRB=0s`T-ZyfsjQ9-!9oCV>H8&5u-D%es<_C)ag zbG_}h!Mi(KfbYk7-VDA6X2@#>-@(b;0=}CpDS6A1@GF)8zAwsw@9&t-Wn1uF$zR46K0ggu)0XxI6AAwzy zh(J1F;IW0h-UeRx;FY%Ux`1b=hS$hqag~B1d@ESJ7FfMcXkHdhexQZ?zMB+@_Lvm> z1t3rpoMtivry2Rb2~JQq6&==hWxQB5!1jevg0OEVud zH`=0`&B><<3HfC`=ot)jU5dcIbUBVVS03+*8*Pd9Q?`G}>rLKODwc9i1?#5v=Si7L z|M-Gaxb2KxjoZ$-rn~cQ=F_{SNw6?;2f8@anQcYp9@F`GJJXYx0MfnrHo7@*OrL|N z7IhRbiHNQ1Q+dx>yW2<`OyUL{0*{&|M%)uWpzmG zu!Dy|5-C~;OcrR2RuNBrMIpxxPkjyLf~L^)8TMKe$`H{A{8gzC5L0ZULY`bj2urcy zhg>8!{1Vt-q7dNvT%Nbi1P=dX{CEi*{z*N6!w@gsj7Gn=JX$wLdBWv|%*tg>VD+8R z(7mWE8=LLUth^lg!x70Jet2Ok`2*sImmm?3nDpV>ex5IVK=|-dKC*`+CVRNq&-7&v zh#p=lLh^9LBo6~EvxVfL49UYw-QXj`q&!+RIaa!H{6OQ68*d!<7Dd4uc?ae4YMpF&BN`AV8^Fo_?Tl*Y{&Dk{we))@A0ic1EXqWz!D`tO? z5~r3CTXqDw(Zec%EIN5h|ENcpH)CeNLN^pVIq(s(ebr9KiAr8VSlQ5HPcYhqKO^iI zIG6Yz&>_eL#5*@SEgmqQC#b{CL}>J90pK)4%QF^O?Gt-L4&)s;qq?)$8)XTY%VY9% zeGb<{4wM~0_8^~bMR`$j$~xy8i5$f%7p8kfIPQy~#Q6%o{O)I6vWKq6+uD{1_xtmE zpzQldAMT3d@xxnfOKO>nDPiF|4`9a0hgA2{S|B3CeB(bFX$P2Zg~-y`2a#Tscjon} z_$LTcE0fo5U}kFVW@Bib*>o1q@_5F87Lv%vWU}8kKk$dP-&n5DM(Rj{r?!6<_U1(1 zHl}bz1TW&=0#JW((n61ISBH`h%~XUrBs&Cm^W_dU)QW0W%(%YdCdoK=zHEZl9)qkl zcojH`kkHO~Utu6?LTTQce7PvXirN;Ui1Vzg7dc@Cx*%oucaS`S1ffN3OQD68EW0Qx zw2;T8DjSU|3v{wiq6-CRQKTw0hb9lTc}luAIc#Y>DL5H`UyjCvT}Bxb6s9Lbzj;?l}+G-&`=@qobYklq+W4%}x%D&FZ3L$bhD z(fiRQFjf zFH#;;e})HIKJ$@0rm~wgtC=@{qhV^UBs6&p$HM%I#s4Ff4Df>+Iehd z90l4wd)O3Rvrd6+SGwh&NELL2Yv0mu%^te#OjTm3Z{a9tL1?-p1Q?gf;CdZ)cf6rU zJOj=%stc>@g%du_X4kC5lYI{+yuN$QW#RkAF4JTA9cJwDwYC_vM@yfA^Qn$2GsARYE&chZ!3V{idho6ahGwyuT>j_`i zKvIS7nMQMmWMlU<=*AF{y5O+&BRjyz(ZTo>j}dD;Ysrk6mdvVk59?j>A_*`+wbdpS zk>{1!T-F7Ps6_ydTGqOfdn}pJXvwU68bskDmvkVZ7B!>6)sl9_dbs@lmdxm7$*fWC z;TV@hUDBH*{kxl8Odnz?blzZ6aTced77WP-wa905ET97JZ(9U{$m|>80zr7; zGO!CtddQ9HzzR-izXR=s*--1!cMZ1=)UIo{1KnH)I)0=MOybK^t-0ZU;F1nZAn`l! zH7@DEG-Y@t-*R_9u)D(V+FiKPl7aV=q$k~=4qVA)b_NLT&~^sYy7Vuvw+Vl(5{0>~hB^|g+8D7aKclRy3E4X}xny+zk;EU}NnA3zzgC7<@&kAGA9h#xwB3cLS~Bp*B0{bwi=R8v2dW(Ao3Az!_ z*iJ600exs%mF?BQm0a><3kgID-3cGj6R%_&33qwC9rX&|b$4gGyMuN&u-=lA_es)I zMyPW?=F;!n?CB?VPAyOW=1bPOfOT#I&<9}iWp1=g{Ix_h?9?lRDIC8&c$3R|!*xyy zMB!d*LEXjX9f5qtMf~CEjXbq}u5-$A^eVt3f0ezn#`<}f#Pze}Tr%nBQJyeL-R-V0 zNW$GkmIOnV3~aO_;ZEG8pH8TszvD@^pHH6HPc=O~cbN6_{8jBvV$@CI{p7O8`Q(aI zPU8L(C-Ij&@;mpWrll_UG>JcnFX)L^@>3Fq<~6%3eAeA9ba#KSyMZ;9l>C+?{Tc^D zvg8IX{m%7hr*mp~dizl8+%+rP?c6BWxtZj;&P`xloP34OB)829jqxZ8AGoA*gGl_& zjnNaYWC#hJ`+K`99PaMMxx3MJH}E1$N=A~Tw{mDCOFmec>)h-oPMkTlJe}`4_w^O( zoWDZ<$W7Z7I)=im(0_MXEm!E7eC5Oy+MB0sR_K-$xqdFF-@iY@+!;fw}WktN1gsY!xd6joYnYyVUEV&zW{X(!DOWG$U?etlD-ca|Ij2giKs1JSxj-~Rwtx;oAfeV%Z;v3_4sC?cDtSlFZ z=28me0@2*X4SbioNg(lWqg*x+jgYo%AQ~Ze4#L0UP`X)n^MpR$XUPnG8stz2-lKrb zw6~FAQyX5@ih8*RKj~HPtfzS`0?|y;OD+)2^SV4`Aesj#kqkcCz%aN#G=@F1bSxIl zjN2H-j~V&4VUp{J#G<^=5c#ZES9IZauI2U=_*+`C@n_iy}XCAh5?EH`k*xV)AO;8%;`i=P8g3=T$6);=qTWXk}xS2tg%NQBe3@`c8C7P*z zVUp&cG{@hxeY1xI>`p;xrY_})1*I9!6+C|hrFmX8B}-nS82q#V zul@}|X&TiwL}$t1kJY@B2BoplwxBehwl+Lhq@g`kP@1#Vvvz~hRP!Y<3>8G>^HD8? zY*3oSY2Lx|TRJnqQxN!)6j$-hxFFJw-&CNz=m+ z^lc;3Saq;52n(V)4AG^1zx&2-^t?wILf(L6vm z{8%*iaS10X+c_7D#v1fdV$qDIG3~^nc@~(9qLb=|DXFg^O0`w#4V@-mbtel%lbA%; zo{A^$nTgO6#n5d0nH^<(r=9pSOL*QU{>-0w^j{W#CPCX?(X0_*#@8E(|34IbMrUBW zoftWYa2QqbcK>h0pZU|Z0&f4u@n^KASYOG}PqDV9v9=Cnh8djB#+*6nZuGaGF@YU3 zw!N4$55mHx_Es@xp0SuSql==+$xjKa%xMfnlh;SZJ)g6M@XlzqUpp!qxE|(y(ct`K z@REhZpgeR&^!6M2hMp*k7#}V)Wp17ZpoNQw@pkN@#y=Q!{zLhpsm(4TrYj3>zTz~Y zA?e3yl1~W>(-ch&LmY;BVWpMZ49^Jtqpa1@QOuqubcq`0uS17DgK%dp!%(?={~**W z_(msl5%GTLlCt-U^wUE>=yNWh&VyBNBWDZMh^ySHhQqkIl?3jCjI4nLVyEl^D|Utk zjk+=y5wDZUCH^jH(jnBC21n7BPUTJF!#DC_RJIS99#bOlnwJM-b%CA@?GP_ru196T4!S?nvd^sgqa+^ES1(;L{=Dd`YKrw=9=-eG zru7gRRqu1ocVqA4BI15b4h&Vh43 z!76#9G}n?|hV_N#oW3QGxt46mR`OVLB{j-QhP!V%ZA-Rnw3d7!Tgi~-N;WAg8D1j< z;?&)FT1D!D-{%GE&W8x|{ek_7vXbFH%s*`<-&T>jV4N4Ml0P+9Qmw3H_@27cR&u3^ z)CDi*1*@d0xsuD3l?*?-;Ix(8qawt&C9z5_Yp&!Q%EFHA_0v}JtcuhH!`VvGU(Aik zGs;SaKYjX2wz)AGLrH7NFS3=?1?T%+Wbv-zGP4Sxh?|pHf{n));p!?F`rZ`+inq@t zs@4NJ{|mv9^YnG!rY~e*GtonS5R$0cS0zfmz+F7q3G7z{KrDH!fk0H7o&Na1 zPrK5WE6K*#GAo|Y)SjRvF2>dmF67GBN2@_N1f=wX8azPGOTb3N+(UqBdqUIiR9SCt zJavnF1DSF!if!@KS9I$n*fm?v0>N?+?BIIH2P{6{GW6EWxlxEn1h&TlQn7@IGU0Q+ z5_qUrJ+f_SrjISCmy9(2rc62Gr3AG%c6_rgfCOIbY@ z48;o-SdPDU`8!S=yG8uH#ov2?$gzirR98^XPer{V*Nv-J=(>r{pgLN*C^Y$Az+Th0 zvQ4{SlGcT_u)!MHX#FHy7O5K8=znmz|51h8E5Pb$Y&qge0@q=O92#3$uNZaqSsvTR z^;sSxi)L;XRn6jL3e{{m#Cnpb8gIjO0pHuO>GT59-FyXn>jG2S!S*gY@_cm#mUaaV z{wcRJ^CMNJGb;AE>|ztuQ(A^t9>s8n6<8F* zWUcl3+WXnu`nrKW;QYLiC#)|SuqtN8+Z=Rg<{)xkt+mo$dWrJj=^Sd?D$fqHzkG=F zXFf-@f(r6vdqeDut+K}RFbI`}5~9ZdO15(P>|B5n=s~+D9#Q9b(&>`)n?MG|?y~&CA|(!7p>Cqlh0N?g z?V+h5Lzc{b45PQ>J+v6jNT`k0>vnRS+GQ*?nx$op3q84n$FL-N=9lOSaD*H=9@623T#=xC)ms%q0np>p{(!-FJe2UsKU7Bl*wk_K`{lP zT^J4Ei|uWeFFt=SK-&syKSI+=$M!;MRllV7Vj=Rz@EaN{=yy)RHaxAP_+7OX$L7Gv zMC6TFDsN8o*UkWKHNeE@u`oX^>gm3#EYwTk$BM@7GV9BUyDZ#ae3yBVDc;4FD5@lj zq?)WR0R?xN7n$;1E)w4^^CDBd%OdfW?J_Si733keA4eX^MDm7Vtw~-B4>AhUR}b(k zmZ{fR#giJlOFu`*7`qI`|L#rvjBApeOps#fo#Zis#L78~5F7O3krNde~tD})8I!UxdX zGyBjGLRVaS18*p>Ranf~&GE4AoH>WM)JdmY=e&=@*lLVLHp(SGigJ(!Zf!?aq7#hH z?5|J%zhrHG|SN!VL##E*p4038UYO` z9t`)z&I50S&oxq(XMSxsJO-I*%KKP3;_?Ev)P(Wz$nFHH=z(`=6gb32_7?oSe37X{ zpz~a$Q+AmPZp~;Jr!i^TrF`7>7gTz|`_SrR;``C=S&-Xf{bPaogbbCpeyfp6jG5;2 zckoCFoPQ&sNaFM0@9UfF!3Ehp7&UrvkAMeLTnpVJg*SD_8C|pG8Q~A`FXf_AX?}nb z*zDsiv1bAsDq?M5;F>CM!b}IkRDxlHpNHmgs^^Vx!K|~X?mv*n^8jPBJrTefh0Zr{ z25T@41Q^#=42j}RY!-H2m-0>du(Zx)lNN8zEqD%y=98sZy;5erQ>jM=es0|~%rJ$|y}WcW@tZe(lNPC8!X zkMoD?l;d;{?{PnG(@vds0mMr{$3|6EoY)xXn_Q>jF&nnvNKnWuienMBmpg%z2Ji%o)(IG`MG-g)kFEyBVWwHN zHFLYQLw-pLlmDqB-*?9_+<%U(AL5eUmNoGEmJ}s$?`ff1TzpOrR#Svc_WQc!7go8_ z!=B7lT9)mL6jX>38BlrFcz{*tlFEWlm449> z)N&M$Ew7c+gs~O1a+)xotc$*U*JI0n&x;+%DIqv^mvpjR*L~`5C0sPQWgvX zVmGh`HggmUE5(jFj%6zT<09B268Nw9JFE;l5&d8_rPSh7sZ-awg>{L(;3;Z1F{O-p zX@q*wE<;)|VUYAG6@k(WQ36Jc(F(P$d5~?|TM;peTtm zRl)5F3?7C+s=5~FptzJ{#?dgVeHwc^h9Zj=HH_ z4ISgW20+I&s8o)QaV8iJxUmikR(bXrkn=G_2Q1S+->x$B$28ib6SInAzg;g2T>*$6<);(zB5 zv}_#Th_VirWtldBUNFBhhF(tSle56KlOc;>$s5dipxu~)O?DiJ?B0yFZld(9s;wB~ z$bnJBb|9+wOLKl@R;x8hN7RXmao8G_b>C`K3|HguAw%K^4Uca%_cF!iUPkf60f*JN zml*~XA0eLKckMX;jQk zqhfXfEER$r$1^Rcn09(qyj4^Ty&(p;5;?}PE;{h8X~LT&!`RVGG(-{%OV(?8@QQF5C+om&_QslE{%JpH}QPoGpc>7h60pmhFJS zzCkErR@U+!t!boh{nY0RG^`V+R>0x*|0_!<*J`;)Wm3yz$~?iCRu8$^s0Y|3I!qW8ZTgNVU14JVI( zCb+5{hR?@EKFIx(>?9*5^k;Ybvh3Cvh2jVSJI6Sg{WUBl*0H4o4JmmLU+_mI$qEX<;(RqCYM{551 zkUw{)tuMeU>SSe>I$0^|qz}k(@tWL1&SBR%?=%(WTBS?HN~2EJfNQs;PE_nlRa4Xf5GSjQIKflR2oWb2|92frQ7AT) z+3|CO*^)xBF%*Tu5CT2g9XnAd3>{FV-7yn^;tv@R=j3B`uMsG=3jFo!^L+v8w(1-e z%i)YbaapKlFb1N&gAgD1tQPP=)5=bDfv~eDYB0!XV?UG? z8%v0C!TOf_>MUfV(b9EQTQZ9=n3A7^ms4Ncu+hr79_0@4k^l|=j8$&2N9BIoQnT54~E zo-E>V%mWC1z|Iv1LXmaU(uCrOuEMpg;2J)LItj4J{lv0_wy~`U zc6(Kv$)4!0QV-R?xE!|j~tw5wQ6 zgo(*7JWPJ8TQt#5^ej5+$Yy^n)vVjZns#v}*W*zYsRka(a6$ne336tkRG%W8^@P^N z_o6UBurZ^%wYQ8CU^i>+iQ>mAb_@2S(}Gx0wLMdywE-03A&|4rs(f{2H5 zRguwxMy&w0RwtG$jQ2!j3EoZ|+Y#edxb3Yiwu^b)x!6pNgdDYP5PI?$CK=6pA}+^> zxR+#4C~yqg5;}eoUWT*YBs%!TvYoOJ7tOiTopaw=j=7_I!Z)bUXs`%m(mS|D;G8Ey z44cNhUYnUFn}${3AddOIV_$2uTJ9G)7aUWt1Ll2h%itp8bzIq-D`cKJT%`Cm!9_Pro9`Ffq_m;SdMP#x(0c>05ALnw(mXZsT~80o0Lh<9CvQ)0v(dw^I$+H{7AF6~URS-2pVvO5sqqW#X78tW30--04+w z*Lt#L9u3q%>c^SXNheNZk&a~R}$$dAbJ#UaCC{wxbkpUe~C*Iq5u z%wqmtkII|LVz!>e$i!J@s_%Y>UW0`La~Hvx0hQJsL+dmjc19m`DHloj@fjeCHO3cf z!*G!^+;a*PAzBJ#I}!|LfT#m|VyV6dd`nxLdkcGa{74`FV&67%7D2+ry_I@IGh-1H zdR-BtUA@k!Myz8WbtzwGsuAnJy}MMebE*;RI9*Sp8UcH6Gw0Q2G~&i>Mk8+GW|%tj z7@$p|$yF?>rU|WE*TNqL&HSkRMMh&CxO@3JL6M4ef)SPLdb@9z>)RFjc4h9{RX+ph zX_yfND+xXJ@){r`Q^YjA6%%ZH3%A8S2@}UVtAm{)Tr^tZcbWLxMR=Nv3)Tmz08?nR zPz>kOV);H-DBI#NothW(hojUraSso>tb7*yu~^`*ZBDtb@`~@5d^GKs`FM$ zH9K+;#YOmstQ3}s?Lw^JaZu6+(OoREI115aM5h)C2y(Wy;=azq{$C8Pvt#mlTBoQB z8_))zQE&10W{mzu-lPIFqot>z8aOwMNd(V7;ejK98t}>s+M<;5SZ_kYotrpwi(vRd z3@T4hz;WoZEOO`Ez?Poo6mW(DO#8e<8hcb=&ao0jxJa`BU6`@u2I`PmiIXUYq{=`m zXKaPRIHXi!Bq{?3?!_I}cI!gCPoQY!M6J=SS#kGn~yq8V||{4d4sY4MHQ zM8~x7#dEd*c8mOTGzK+C2nevr*fB)kopRWawj+ViR0~yR9MFDCpB8M4;@l7p=#wjX z%bwrS1Cr?t^3YA|FWoV~Xr4|3Z>T_Usv&`d1yg#`hV)C$$+`>*Dt3 zX-*e6URocTevy?!WKHaP<{kuE?r{IA=Zh5AuO2{B_Ze@TX!Ds^f&m=2t@| z6<*{s#$9Z=J>-hxoPrN=Zy3jw{`P3Zc?Ss`P`o~zdu9c_Kc)^_#VvHp_O=H=_Zk4* z>j3Cp1E6~ifbKN_y4L~Fy{8ADQu6vh>Rlh0ZrKN>TlN7s4&x`DtnP;AP z&di*dIdkUBIoHl;9b1PSR~kd6#AfqDm!i7js9+!=X&l&8v|1gU z_SSM_c>;^CG1Rgm#;jC+T3!k!!Ob=t!F@NOQ@w792i&3F-lOyK=0jR2CRVUJSRR>{ zB?YTHvJ(MKpVE#l8f)-)@DU zL-?2~Z9$Ta&Z8+)q4?vt7TFhK{(aFMQJJx)=R~Cx#X67tbXCfGEfHVAcKs2~?o*uL zJA2YOE`V)_+jejj%~mB%rOsGoZb#z89qgqw3Agq*Q)KZWd!2>K&8D!vg=dqsdu}#e z*iN@h54z=M(}lsY3~%&2o7q$k-ryi#Br|Fuq{jgx6Ew5wBH(c)XS>-n*y4k$Iu5TB zFn-vEf@VfEYTL11WFw1*7!fjhK_Mos0lGWa)U@I+@T5S>Qe%Z-U=u20z_2Q$hBaK+ zg`)8O4ZR@a`k(_@icT-YWyysN1yh-caap2}>S21WORA9kv?QGcF`7?p2Re%=Kt4>C z($K1&HVbuF4vP+_a2CEXFEY=(B)y8YJ#W_rfFsw)!jnsbr|;-#v!0H=y(^D7JLYl! zp26dNdb~%EC){2%DAHSJ%H@%Tp^w(9@IjF=XvpHaWGTV5soQ&q77{ue9b5>xiL%{wx z{s#HwW$6Am#UYb`!vE-ltT@(HI}27~XDmnVnj#Bq;kf}jV=J*U#xQPWFjECxZ6Mr` zz<{i*cs^Z}EL~CcI3KVtXNuD{;RVOu*d0rh){n1*dDEwy-LcDb2%%Aj!wp6qb$N+8 zVVVnLimx*{t>Sx^W-8fw$+#qyd{%3jG#BGr*+wDdl{}z2;4`Y-~ON< zPW#jx^;E1YfUVO5e-wy)l`J&74?uTAx8(qKRne)U!u_pl1^caz0qZ~zj!W;SJ^H!XRO%Wfb{Rv=V*KTxKmW&6h!SZ z$UpDH_J+pVHF#k$eQ{-BAM25-LH>jf+Z!4?pLEJJP<1CG!A?SU;?!SbgOTBAnaa=a)?qhdp4@I($8~I_myt#OB``F%=dw)sXXQg>cmdr1l?5M) zq6&`To4srpJWWXAIjoK~&tC>Kwl3E6Gj(gQeV%RUrnt)l`3jHV^4_x?{WPYujx)cG zwg;i->_ORI1U#etNKHfQj_7(;Yo;v?i4JC`F5^kg?9_0kl+}@Gr6ghSi{m)xR{VEU z%KH#AQm@daoJhUOx_JSv08p=GhCy?3BOf%D!DBDHnJf9}c(Xid1a<~>@}18Kpjt19 z>jaq$ep@dh;cDZdWzDLc@LQPDW<`ZN`K>5qN<-sPtfCWsZ$&59S%l}nD;?jFircOd zJwSZr1r8!s8VT6(pGb(pdah_y%w1vU))Q7Z#oQH60KQzAMlE+o+RL2)e7RHYS?*MO zmb)YEvl+{%=ea|;2DcJX1>BzraU-3{Fhk=Efa63l;bO%LGj*wC=YU0Xgmgljx(34U zG*+J-|BMhh;FRsm*Dzy|YaK4z7$g;iJH$5UMocL~BvraovTvtW=T3yu-m@uuRLU(u z+%1{$+ybk?e4w+HZ!(`AI3<{~5VUR?&2gM#;SqvK0iD=*lL@)^AtM)3?AKX5x~gh% zG+f?dgeJ+B6LIiNQ?#V$@vS`bat8+aO{_ke%*h-y5xRafow75WX#^DtLuWj1Ku0>; z-jS1s?~ptk7P>^hJ|PcR#w1-oYlbVzl<4I^16DgyHNRB?&nTNr-9Q%EzO% ztUN?$vgH6)Zdhp9m#t+vSy0QqiRM_)rsm+Z8EU5`H_8n_&OMH~VQFhxJ6y?~I&3|t zWhF{+#7E0A64joxY|zH7Eo&;};&r#XhOH>xq2{D*kD+3LV7#?S$ym8vEn1<5ZPgR7 zwp4eBFW#=EtQbX$wyH0;H6j^CZ_l-1#poS}Y`yQWE(iQP$lJP~Bkbigv@I9h#Bitlwy0v2M2nGZH%wNxkhTyH!O*Qr}NY!2%VL z*P4%@XiS7=Bq4gKd3cKnimC!f=x-wsBK7;?t(+t$fV6)T`v0-kRsD-L3pRJS%hiq4;I3e>pznv3N0R8= zGc?c^Yf|wB4v)Dg!2JRf-f(WEiCNqAd?vk@pnFWmZh2s?|;{Zwd^3DW3 zEYnEJS*3M}P-|EBp)ArU$FoKwDQAh+B|?_y!%4~!yr2s#NzZd8>3Pm1JOIc{y$S;??$9-|AeX-KMII8uFFtQSU&aPu(j6D1_ z#Jn;Yf7;Z;>$!cNYhlSpUKLN23aoOzi1y@-yo5dH$dqGSspKd^DP*g-4^>GLJhQvS zrc%7#%&IR+=Re&+ReLRyl2g@ABi2cZDO_aplvYJ1BGHLvetF(C#!KqgXCcehP|69z zO~jMWMF>X_LRWU)S?0SHo&pPymN+MkQ2=idRoo@SQr;?5CkQQ}EJ*NYh@Oy1T^_6j zS`)oyOx`BBm*FNoW;=It1MMm9iUc;1LBVrM#i-J^QmM8f@ZDNLnB+8L7@ zcul_M@2BFjxcXqHCW%jZoWi|M%u)RFG3K(R&7WF8>$NvSTuplOP*OWLL;M@%ml@)- zA62v4R+5u2HGA#_XNI`SWyB0|n4BzAVt)=cLtMcqWTB+rwYd~`_J7z6u@Hie%qq>H z%;d1=61g?6pRZaU!VK}hQ_!6h)ZPqnxAx|Ont#aC0}`gtRJ6Um5YQ6?K(qD#P6NcQ z1r9PmY%+lVn+y=&`44*H@_97HAq@~;b=o5-dz@2_tO@gSRh`aVKFj19DHGD4r77%zkl9}XDvbO zRLlghsDg6z#{|Lrk9y!mXSmp3Ef)T@#bVV4%I*SWpW34ee2rkvbYds=Z-rg<&23hJ z^EkjU98Ar;XM|My>6gvJ0QDn zw<<7~V6F!`u|O>BvL&tp6DM`r1M6J{*75Z46_D&JsK8>$w;DpL0YL?xAV>w?)B`WN z!o}XVSa`j~V)X{fo(E*htO9ou3@Xr>1!7^B9l5o89=0OS0>xGf#1X4aI}5~3qzUrdx`z(ZLep3l<`_Fcb2lB1cj%L!7e zs{m|-s6gyirFhYA1BgwwSolU4o91HUELL`rf#~-D*)CSOVuC^CI#0hJJ@%_aeD&rXc=3ia%O_pF}3n$T${=85YV z8Q#uQ*NI>I@h5fS%{=YUi6tZjl?xN3a>oOLPVA=?>?#B3#4?M8zu;mQyI5a~l^tOq zdMY4WwnLR$+181jSs)hX*^%#B<(~LarX{%&J%<4T3jMB9yyz7GDD+l~ zg}?1$lMRG!G*EV)f!H;G?5(UVe)PWx2KAIl+>Uneg?jehE!4A}1>zNh4`G2gv}VKp z=H+;&2<#8fWdcNE+*jRf_J_@&8m@XsaQ26LSV;DV^(AM2_#8sc{%})2y}vQ#z1QCU z@cxGyWPf<{-Pi2Y$>y!>!@+QIgRyON{T{_ul{iCXOszh#o7SXQDV zI8*ZF><{-QoU=dNgRq<57o0;7A#B3Hf*}TG>eH}>MZ|7r!pt63bFls4VRv<~KYTU0 z1N*}>6#PW{!xiK}?saRM{ox_B9E9WS4=eJo+aJEwK38)+fU3-Lpw_@leTc*{0B3(V z{g-B;Ie_!h8*b0pA0EK>be>Iuvp@VrFpK2u51*^#cJ_z=%igO)QddNX!*UGjES^Nj z4?lHhJNv^bHSsUnAD(Rp;;023Lk@vI;65lyr78R#c{3~29f68IBq<)8MFp$L1auB7 za>Ef^!|PJp8t>)YZhfsK0~y6p#5QGLWp9SIN2r^ z*dNvhl9}Qj{d9~vFfw=#JMsLPHXW9(BEI$0`yx~7PnR&SMp(3MKUD~phOP$RR{O)R zo@Mrjg*>t$H0AZQ)&8*IjbYaO`_w+E{Jr>IqJeiITF{ZC~jqh(Yw!qx}Jsi*qi18B29d>b(cV2l!-{o&9pq?rBT?c?cwXMeb_ zO7f#$u_9vI#%j_UR>$RlME&deTzEwPB!#_WUU2q@=jhc|`@;xeG4dcmv&qizcgNXC zQ!;-edX0(vd1Aa~^1a*!Ax{ju3~7us{pmqqfVMhol@ z&tfnL&A|Tf3}=6M3>lEqbzz@-z2)s-e^@ovDT)xvRcJ&bZI|?x%G!>%gE1j9&PRhx zJNv`)6QzUZR;_FPGjlFSI4T>tk-o;sol&JXXp*x(+?0}r@rV{&+c%`ViO|QmEF<$) z@>086&I@L6p1|qXh`OX1P`LY4KGlf{;whweFhTr%k`7~nxRHXPz7b7287nv*;qq`( zU8uliniLrJnj7kURZZkk-a2p_LUVAI0dDO~5R1k*z7#R0@)w9Yk>>8gJTVpxQ9Ok1 z?7hg8KN3lKBN};(GRh$C>yA+2Ss_r;g^v~$Y)4+&y?i^eeax&yhCdBfMXBv}foyXYi3`mu3b;|P1KRyJS*n1VG|1 z;RP%Bttfbw-);rZqQOMos-}YlzAcf-kE?S$5tO4Ze^@O&Fo_;$X}-{&iMZeWqyZU> zK$GX%uw;I=si-ugssHAf4Tte2cRyh0Hvi6SX$~qX_oK_lus`r;I7`H@=bQ50kRbz6 zkLG~qt6d}0ukRtbn{=dqj|dJNd$sDw+=8IXCBzD@(cH}WSEfyuR1~*6-Q=;y zgC<03GzxibHA@&69?ov*hAZ*y?UUY@zGC%48vq3#V#nB7A>NC#>4%gk3y=TQqGf15 zL@0@OtOL#H{F2n18J#iU%~gddmT?uA?&3@E{aO7Qp60nTw@jxp$EN(^57CoK;R>De z%_MqK%#e#&F$29pjHe%awT992$%c!6 zPnPUuud|*B_g-mdm zM5pkXPi}}8s|}OWbA_DSR>(R%@?(u~TZbuRrm{4Irt*Se@ywx>ctCI$c=4<^wuLk_S?~iE#z8dX$ZXputL7j zR>(*_@?$UGc-TUIt1Jzn?zuu<+t}JB_v(=!JMQp>yzJWKYveRc?rtk&gKLv*R~{CV ze=18uXj-mKuE-VA5Sqm!{Y!YU2M9KMtZrNp`Wk@kNAqG`1%iM7jy4qG|0V~jYq0EM zg(A~0*kezNcxvjKxeZqM{_9o0XoLq;GtWT(*DSH@R3YPsegt4=FdD$^G%n|$&yn=@ zNwtNe?=*9}rdaGV2G;dYA&X-H)0rz#B;;;JcYAA18skK8YhaX)zsG^{CjR!NFzp;i zZOaaKWUdG{Sc^CcGP2`>Aw_hd>o?^~y(|AC(+yddLbHt9qzyG<$<-)nX}v8FS3dr1 zcx3U0@CbU!2bG-D29RN`l~P_PT*kVRM!y>WE|#BrUMTJw=NP|72*4VC0oAY%TNOKh z%ZI=-D6UOY1ir8sMbQqIDoGvXxW%z>i?X%qxW%Dxl-L3o<(S5?FpU>$2|v8P2x^dp zV15e9V*HNYX4cxa!7whSkv|BmwT%f7{5S6hsad2SHhd^bRDeo!r2wP0_sxBkt3&o} zeRWjpSF3)NE^WR!g>5YDG5!0D|K<)19lIF_oP19cZae8=UAe6;9n5e7L_jG3A^FOO~CS36kB`Um-(rL1&jXbBC0Euh(?L2Axf zo|(bg$bL>e8(72QM$QSMD)fxJhunTF(B^Q`393T{M4_wA6ad@*t*VJPPko<8w1%xM z)KI*6q7&7~9hE|m;zErerFo3T@_AoQ$MH{#Ch7}TdF})m!z#O4+~y~@X&>t~C{+Zj zZAPI}r))F5AqAFn=?>FA77pkg4{@(Jf;B`K9;kWjV<2j)6Pe-^k?nJ8Z_527+ghUH z&B`=tv+Z%lZgy0=+1az$?5K9Lvk<)5QSD~g+3o)S-nJGr)pHX+qc@4jCTucA`r*@)rJ@qaL4 zFiXc2!H7Y<_f2bu*IEb7^Pe{K*G&Ww=H@K&=9rsrxaH;~Gf87I zC&mz*4bCduu)*#M8t26yyMbbik6Q#7N(l69($8EjyR$Ngt;s)~xlPf1srs7=H>Yn=L}F((TvP)pTpO!Zl`scCFYPCx?$aH{otUOvR0zfz>$^ z^>J98g>LC^td4zxA`fJB4!-^@`se;LU@RA)#pMB{*gHPsh^}+%pv-(n^bl6}L*WnPh&YT@JFBN$%IaeK+u>?-X^Yy>!Iy9r5Z$iCfpV$6r2^caYE8Gt|;8t zdaLARGcEdxCUqlSDA<-rS7~Az4e5OOb!g+<9VcXjpW}qyYn{~JGs>Oto}1L)>nl1g zR`(Q*+Tw_MizDhSj;OadqTb?&dW$3KEt(;_SH9;a_4n-Ag!kN}{vN#jzhjf^9nt(d zHmSd3llnVQzHE}ceZZvNzB~ z)o@Q<1R;Jr4uN2HYm>Ns?G!NKxhN#M(l&zm5+5x28&#>oHT+hf-rq_St8I>3RrQ+V zgQ^jy9x$I{bAJH$icZsnenW=|{TpQNFri;aQZR`AqX}J}klIb?igujPMY3%Zx=rA2 z7}|vH2s*dXw4J3Utb-S@DN+*SnUbf%_;1LpHaa{OOCpBsYz)AMpwQ2$%P{f(r}69rq)-vLNFWbqF>!)8n;6mvgHZ<@11}ay%8T&dui1et%oXRE62x zY~H-`ElFkG-SS(`=bEMWOr*IUA&g-DE(aHHcks~`31^}orcB&2^a_AC(+=kS=vpP> zN#32kMy4mQ)`BqRVr8;hJ2A`e_a8(Gf}bzwfnT=r8;YHFJ#TZo{HTGG{{)Ck`)_u~ zDUTDrX6pBJBEE!M*Bx&1OdyNh>z zKZHpa1#&aO7#^jghmy}i5NrY#YalS3*-P)!-FheIVJT1xYc!Bkq|YK_TL4apY#l&} zOT%KGvIU#uT-$3{?6S6R(J_AMR`EFtL`9qeI=*OLSIMB`fiAQ4rt>|W&h$K*34xuC zCAMyx?P$=qy0m?*jRoS^t(a@_9i%;^j#^oyGr6%Vdu9FD&2;O9=m|Mnw=_# z$;e>%#Iq11+94&arRVfTu07Cn$GyB1nC?h$=!2=YX`~p1C%ttb;YegREQ_&q<_-$d z#V<}zXAw(=un;*S=&@Bd?Ja_iH&B-q0TpA19b##rj-qTwZ4fbx2pN>j8V4Iip_l^W zB^wfuzSufP`fdZ^#6~t~ns@|#9+l=cFj^Yenvs`XHyv@nHn7}n0brg~2o0zg0wicU z`3z#6EW{&1aD{yx%VY{~6t9;%#+g^v>y>zp)?G6gYS@D3+ikL>S3xrPAbrF)gTdAQ zo5+{yjjMw3sMjsI3H5eME>&*^8;cifc#K-?M#*9~N*23OVh7{hM=f@vWU(71iy0-| zE9-T+ZghPQekau1<+@b;zrj#(sNS=IpV19EWS`K`YY^1jU^Z=%vSV_Q#?l}DrP>wO zi^*c+Y?T{D}i7Aqw+M#srZYeFg#I)0tJy~ zvTa;?3k;b+n}~6h%nX3X(u!e(nfZ}zqpkAp3?#`MgRusEm>Eem#e~NPj6e+mjX+iz zFw@d8{_KF#`K}ERf2NXibCc%Eh0=2c$7(Uc5BVT@TZYrFhC*c98H zvnlpxeGPRZ$|PS<^#Aw*19=s$5WTI?z!<&4ZlA8OMJ9n6Hgo=B`X>jX`k&crRGW3a zzU0stYG_m%8lzg#z#mL-R8?v_?(vtJSt&N$bzBpE3BszExfHev#+VUDY)Z$z5+I$- z$8MXu2MPv@tk)JMo)b7!wSTsH+90QPUE7p^iJ zQ$L3SosFrVi@<}~AFgaqvVn`>3@FON0uSgcrvTZQTE@&Sisd$ZalLFzeK7qX8&i{Y zm%hG8Hm24EPutm;nrt?v>dnT~{NQmr8&i|b#uSsLY)s9v=N)WJP43}rOw~IZQ_0dL zvN5$$=8TxfK2(h#;62%tbu*J}Os$lSsamTqHl}J-UDH8Yf;x%R^uCKG4!6#e^;<5G zr$#?~??8HK)ra)q-Goq@|LP9%|=!RXt0Dq7S1(9y`o&&elxQaQldo#a`S@=Dw}fh zO%Q_F8szXTyn@`@`ekSNb9qOMJ*FK|_b@i82L`2{Yj030GCbA8tQ7%h3fdHFQqNXB zi3+PTBbB)jMcT&59iok(C3lw3`Uu;Qx03>Cm>ntXGdVj_au9-Xe5V5Hu@YiOYU~lR zBPHiX`8LMr6WN>wUDkv`R*nVQ#mJ?H45PvO$a1E&kyXBc{zqPzV|-kVg~6$%s)P4*a9p5M z1b^NDBY6oR5T_JqkyJ;}G7({KYkmGAUh^EY#c)pdgHu`wyNyfc$h z+Kik5{#O>BWVJX2lTypuo0RIA>o#(x&TuBBP7>&rIz^qtV8o!*vZ{Oeo~;f+UnMh_ z(pRe@cW7(EGf~1<{nW3W0jbCosj#K+p+ZO4CKlUe^miBfLRDt3Qb$X(ysuAW%KPp% z&8x`63j^jGB~r};naUo!VKeEt0vrJ?g{ZD9Sc1~4>%kprK@-p9NLWJ8MFlx}rK{EL zoWYjvR(%Ryhg39)VrYtxn^iG6wH}>?rOmyix=ZbY-I8>(wpxkHFpoZz0P2y`c386#ql4nCV&Zi zq3;_%k$b^i9Dl-PA2|HiC=eqHa9f^h4jgLgZ!_#}kCy#qpeSa;qNiusJAK zGO_P2z{8Vu$Q>h>n_U_d=cYUCtc>9wE`v5VF9V_N6u+Afyf{9@y1+Q4|D6}d)gLMUpo`;5M*r?Jv^p0e>=1oyOq_1P zN>c@1*%jeu!7?qGXth+mx#d`CGOj!z@!eGE`kSLxihtg#mwFQd8yV}X-e)k0I@r%b zRc?|;Ga$HOu)pnw!S>c025VP9u)kUfR)@Se{)G)6bD<^gqQQAJb&e645Uw^^#}Sd~ zS%gI{(q&xt24hoDWX)>`<&_W4Q)o+}AKHE4;JjdWj)p4}Y`GsBFlcaIxo^b`V$Drq z8V=(gmc&h(7CL z9{{+R^{T~U8v)ra3v}!19|VJ2SDoFy*5|UlA3RbheQ@z9Yz*V$YP=N$NDliNX zRN#DqRNy*2@S;Op?E4lAf74>I3k{SF1!SLkOcm%xFsMLhx37g=_RYWB?dwOVKyz08 z$U)ynbl$p+u5~{g_^-6?Z!gK=8JkLw*8L?QXx&K!!TbR|@S;C+vA5C?SvP8*Ts%@v0WA`TVf!(6_A}WUzPg>!Ju-T z-M$v)*+2c&Dwl7S3vOS3gGk4_txaU+ZtK_GqxN@Odw-R^$U(QSFDJFb-PU}P+}J34 zN4pmElL5iq)?;``JwGIcHtcD!a0o!`3kE_F17%H?C3Y0C?A`xVJ^w;VuAZITz831) zg>$W*CtT2JCuUtIj^im~oKLR)#7_L+;7+`sq@Z$ls#_XDcLRb>oTn5odM|)Ze9B_s zIWD%;#r|fovT6g-2LaiqSQxN>K`^LXXSc6~dG^hRt#ap|-)ZGqT;*o*)KzXgba7}3 zoyF4*6q+O{sN9(ZsoVvCpmG&T@uC9(RPKLSEPSbpjdrnN7AyOLf#_gB_H`Bw?$e#$ zTDjSs+)5Va*{-f~-!4<-0t)>Hk&YC)o6Jz?U)`hj6nZ3IIhaEGlG=enUn^^^=Q4uS za~&X{&=#e5(G36yWUs}-n_R4bvQl2?U5k}HX(09%AiI~f#g9%SnCrw&>M7K-z5ZgI z_=EEf=){~|m^|@$Bi#kE!}0-NIU`q(*yjjRkJACcJlTUF^W;E1@S>->*rgT=pJlOF z%s|-=lM$yC2iL|M~&;E^p?_Yp9vav(uF=VhIeb^YqHU1oI8YhLt$Gxk(KASgi=)hqEzcKKNuMbPy{?05K*!E7-N`_c) zZPLS&*hlV;`#<1aQ~q5g>v{Az0g=xXdQ(cSCY{@n{^f~8=0S_uJz0;v{oN%+ zJY<`k@}`yaCdftk1h4e4;8tZAKrrob7&NUUVX4zf&H*O82TQsJ@m`8oKV6s1zr1TI zbGPLi_^6icl-HBvsPdAoiH7o$qDJ;~iuKS>Fa7jR_?LH8pl`NxjJpw@@b4~ZQo;U> zaM|xhrjMYL68_iEaR!6>V933I`^~cHwNcH-X~{j=^Ev=}JN|@T@Oc z(y@um=oj*oR#1{EU1Dj)iXLgf?p5;=-U|pkvS4|0u_OQu;f(3kg3T548#Z=5x|s7TMvMdNuL-f`I?X1ai{9xJy9}7xiaT%NkNv^6Xw|cgjD_$t`z?X zD>damXr_3 z0?E=nk&OAI@u!qzDJkJs-~@o1%-^>mFeDfPT_ZL3tJ-!^Zk!$+bg%C!QV+b>Clonv zmM3;hs<*je-#NZJQBbb}FL&fz)9d1yThR}(;V1+DuAgE45=u#f(AD6Kzm8-MH zs->}LvnNcv*?c`0k8Q1Ts`vfs7Kj(pdb0$mMPvw+l43q+BL3v0M%ne7QqoA|u~91( zxw~XHkw>p4qHMCYr!}dC#6-iCk~-kkKhg@s!l*P}C<=<~ZFyPc46?)p=?RNJSaOaa zWpoAhV$D(+ViiZW-A*voG(wJkWl;|=_S-XIzx@%3 zMExe*M{sm=Q&&G#RE&v4FZ?mj%KcQlN4Y;V-m~1lJ3fo|%e`=+9(d7@&k%^c3K(11 z5L!qoPXdpf-9Tfcm$<82O-0Zk|>2|izaTcZmNDFZf9$ensez{ zKXfatSQ6X>&>IwTA4k-az(S+h?E8qqBqT3M+dZaK1`^ zSlK7F&%T657X;ZAR`y2VB$Yl%*=yTpU(cfxg6s+_dlRrlrGJg=hva?>YS_h;$Gdu= zQ~Mg3{Jxiw$ww!uH^cW3gG_cRHZ}Tl#cHGPSS)tk&Ap6T%4=gvk*N0WxQ5MBlb{+p z_*qhI>L{NYI|&MctjOEo-tI<%ADVYM^j{nMhowb}DUrOpzA3VrO4`(DfhC3aRrP|X zcJj;jCn|SsY!aY0dNaR|&2qGLJzkQ}_{{M@FI2#9D*@j5Lq~xAl=y7w>xCZq(%`)6viDwE44o=MDYF*7BR(`spJ0aABpVwM}MCOT-7I0HV3{@)d3!bV1U_Wp^iat5?LGmp=BD7m;;>DJb#FG~Q0s2oW z#XC)TnIaoqY^#Criw0tg0HCirXZQa>=>L>pZtH)r1l=K-Epg~i?2~JMp})HW`cLun z5a=f^I0*eyNCN#Y0|N9|r_1F{1Q{cUaN4>(wU?vTu0 zbC0$Dkq4l!&syv2^N$|b-0LrFrILDrVD&rz3VGbc-Y^h-&OmGhAp6(ft2KX5FlfzA z1kO*C=%d-ScOwq>@B*^)F&$cDk30fFgl3y36@5%p)Ng5aKn+re8&G5RL(#aFgsb?C zO!PkFK{Rp}b_w0qX&Aw-}U{+-fVqv4fa==eM7HC(#P$@TZkPVNJeT zm-;@#iE z)IB&`3=swQuLAppy_m}o1$q-_B|Xka#?450BW80_Uz;9zOQGFgyJk`{GI(*Kz9~QD zrO6p+2Ag3jRIhH8%&McxmE`M5|0gX>^imrhd8YhieW#@s4}59=&bcI~Mjny$?>^&J z4RrsmGbRDq@vKhz)6TeF;riFQq)G3saC`$c)6hn_*zY;H+#9h3F4Mh0(NZjnJUqn; zO8bAXmy`8xps&LXr$5;H)Pfr&QwI9wp*(NUv-(^wij7RKrxk@n4}FAf?38WCkWjr3 zQ$SgTyysKiR#YZdtKhE6RQ(z%wlDXqOY_ze-bMuoZ}1p)LvclQCiC;$WZJ~dcXJ0* zP=Z^=Z?diHUeFWGx$ggB7K13%PsPgPB8Iw(AYlRJg=R zE>U|b-n~_^h8lfY+ZEou+8)fDr3cW(Gjp6mriYn0@8G zU?=jOUp7()Z9Wnsv3T~KB?_kfpJ?Vl!#06$NdFE z*gj<&^#I$3EFknlohd`_E?AMy*|e>!WChTH+W5SuW)P!Uhwlk43Bbof`fvzqR2XDLu4-yul{q5rS?L5`LVZ7y7onbCrI>U*k7B zdVh#T@U%C1T3xo8UvT>Nf8}ZPAx%zXCeA@|2UV1=pdRSuaIg3^4S>+lvjU#iJGqP? zDVG2=6LAvPPbtW`92n%lwSbg&+F%1GpW{FhkRAFfF_%XY44BJKc-@I}vJ-zMJ&Vwn zK~&qMkc^~>hx$JEq` z%sidxVbr;$AII(5ip$;I7(6gMY$KHKXL1Xo6a-h*Awz$}Ci z!+x-VQAd^UMJTDJzSpYP%M*1Il50t zDl_QWlsC4dt2;Ck(`jdAO6#GYUi#?`&(K8O`1Ec7S5mSDW)^9pgI{orxcT$046Ri-dV8q@?Y_JJOwFUeh#4W|3K zI#Io^Ff#ovon3nAmigkCQr@85n2jA{6-n1|;(JM^uoT>`GA!l0cQ1dd5}4b{l$XK# zzG^oC#x*75A0W0*#Rs9Z3$AG_EiFuzZY_@t#?;c&7*-_IIOx+aMyB)-C$noK+S(^` z05)-VA|EyGVe7LmztofJrt5TRCx2XkPwB*LI#cp&WU@TS8B>??M--*~n>m@>8JRu` zq|^ST=jfhw+CMf@^D8O=gUiX}PsM|KtKeuOV~eo1`YE17YJMb!-P@4J4CGw0B{J==HF8N%P=IY*!+G zcfUG!G@0Aqa3$BJBWc$@+s5K4d?L@9ZVkksbp!R zWsA7i+$&XoPvI4h+r{b9#Wx>|e)A;_1w}$XnU6`b#j4!AOjd4s$tw`3tEw87TK}mWqCs*xN75wl?ymCpV_>u%<2&Fb*s8hZ8 zE@e}X;*k}hLh zzYK-OE+fv>jPes1T`Azhh$|o!=h{c?A;sd1x1Nj8_ua(DQ|H^q3op{g3ooKClBLf_ zChyX`;*YBfMuRm{KQ=)Sxke$%zGDgz2JU4-f?KXA82DwUw4n@QFZB`1L!+R) z2F#)-=qVSNgkkw{!tndTN$1Vc!Gv@clE3DXOzJDVv7E!{y+>P>!e8Yf<_s3?=KOax zZx1hsa9CT=m&4kEzRCS4+=u?DZ9{I5$s=+58xIF5Iu<&N~37t_iRXe zJr~-2Hzq|H(Z-Nn>l}Y0_6VAfv*XDve`R&*G6COqjEDlQK(7?i4{rHsY<`P2>-hF* zdV7QHN{$TmIu0E&^hBoIiB`{(EFIE1vaM2^)=_(zpNV`rZoP)UUIbgO3WB!vI_?ZM zJWlr4y5Zs3IcoUK%&Q4%!viqU--aRNcA~#r?lC;;?Q$zf?ppyS`TMhSJIP-z_avS< z(Vw|6BX=z+Cit7E+)nV9%RPf7d)#QFlxZ-k% zCTlPGtC3sFj!mYtpvh!p!kX-j(?Qh90CR}S0i}}z&NN??4K?zHXtKcj2b0^$0&}_Z zsDzUT&Qy?Ubp@DA@K$mkvRd&QsMcP&rCr+my>}%V)SL(x;Or3u^1;42`Cx6Ed~g!- z!C7tc!P#x{!HhPuaG(Q(NZ?9AJ_0(*2PNV;tb9;HHpvIEACMCfGXElsyUV0}>HL?H z^{*o(bW%R~`i#FWXi4`Iso}+bpDE?uP0w~B_j}@KV>*!g{Y{~N zPwuC>{C_F;b8Ynra=%F+&_V8}_DAm50%(={okO;ca=+cyPxln@h>b>`YU0i8Z7~!0 z!Ke39tig&3I=25TzEj%;1p9%aVFmsZ= z@EzSu3*i<6u?m3Xe&>;0o3mEA-{~Ys?$=J@*Z=2a_CojY>*Rhnc0p3%U@0=g3rbIH6Ay;&<*nN24|o~~{JuvpC-56Z*h!kb zXo@gm&@#Z{&_(hmbpv`zc7-6#$d_J)iu9S-NIatK9ET z5s^~#^La)g6ZWT}kk1nF!nYEp*P}$Bkna)`g_x`_CxY`sH}d+_@Y>5w^0(YT>=^+s zRL&b-=v;oMM*l$)Wjze24WC1j)CI!T=bGH^Ho(--482twJ&uQn-ns#5qhWqc8VCaU zgq>^{ZI*p$35*an4zwa-r2@5~H!U3z-)aKVJy;3M{VuccGyM9Y_54cU_eWsW;?Nv` zhn7_`~bhT;cBIaUL$WH_j{6HAop8D5Zxks=Q{m{hx3~qyCnoN zDjsC|B3(e1wuBfX(}~dq^9iWmEd17jTc zse$MZ0Z6SzIxrTHy-G?g(K84JQmanX3y`zba%>2Cr?jF6Qj)VZc98THoZO1qyCsIm zJ^*OF5`;=|QGNw-pby!%_HuF{b`Z#c zro!K$Fn}8qlLIxl&C^&?*;^zsSD;kBEi!GC#kWZ}d>#HQ&`-xez*?knCI`~tlI%Am zN>@7lbjg7}lI-UrlLLKZa-ffp12s_G-YV`uuZ>hU@Dg&MHST4U+t(ro`WrF!VUa23 zi^VW3;M-~MH3TECC@U)4{gz@%gIn9*O2$_Y&J_FxgUN{1Fpg7?Gn0PLOAd7Hj0F1W z=}aHfG?%RBtm9196O$IU%=;XBBu~4UfakN6{bC^gS!O9GDuzC;?rz7>$4z-J!g@ZR zDqSo2&qCxspEF$YSCb_9PxRfBAb3A?^a*U`BnIkVOelfZFO=8+db~tII^sq=w1Y_6 zdmokc50G`9gZuzh^OYpZC_Bx{iL>7|jV)=#_$HZ_+N)XZ^C@f>yljJ<;|#S)gBxuWf5_5RpJ^ zOB;8yi9+ADNYQxIBA(lQNyU{Ptx_urPPOlxn%KW6m7i`(p#Yva)oSJ% z!H=Ey8THGdm7%jgpV%r(DNgIAE;*8^+^-#mca!45viJ%(q&4qicW-wLoD{Nu_U?BIjklXzwbXWH-g zZ3mwr_aV2s1HQ#p_paT+4u0RRLpIp~JNQO=qGOXOEoid!1g*(F*9%009ejYOIx*P6 zTYq9WjuhL$zi|P%gB^U3Tbuk~2j6bLZ#(!$$bHCaedn80t1q=-2Y=tz4)?Qy{re=F z-yagQiJ4*+63qoHfMP-!;jFDA$4SqJX+)#CZ7XlS?XY`M3v%q}=K|Q#PcqQC($5T@ zCH4$c^FE1vy(Xcwgx8Z;fsTJDF}uG&bs_f#77OHb#V0b+ zbYWus7N+6~j%RgiaC$t8F`kwwI0M1kqGah#)8kpLs^|k)3>r)|RI-dUbK>M@R4fM= zNb3u_VuvT~;RbB~VqUF!H|4#b$PAmsWT&Rie*6m=iddH~LlF}Skv!e@srg!)w-i0f zA#olCCgub3BIWh{o=;^=!{&x#pM06ieEpVsgJ!e&7jGj~{sk%zy`R2JB#s*~DL_N$ zkt5(iDT7;RvsrCgH2z>M$Oe5#GC*Q4VkGuk{WXFvmd6tu8hLkX?PdlL)x$ z|4+);1YFr;UF1`$A#@7MaE+l>c8smavCj)Mgt`Ls53czP_uzOy$}2kokezHC>a$0cb!i*gz5l}DL?rErC>M1fyW(q*+BFe03Z8{15W|6 z%YGo1cmlzICGO-T-tfq_R2gFWpvNOxwbL3m|LK^hH$ zLWgP(lGs{o&SSr%FEa@QY6NTAGzcDKMGX+1Nf1Qt2e6m9)5Yc+i2l|R%YFyQ)}SZj zM{gl`=zYZkeLVZ;?^`2|0t45GRSIPm^!nsR>~T~pPDc=I*N8_F4I1(Nu7<7h(um3j z?w>Od{xpC_+(8y}AwtBmjkgHtg{0(=?!+L2@XGESV@Nmbr$nR6-T}7l`a0pQ(y|qr z&UQ0sy;}&9G6leT(26uId5xZUG35nVJ})-QV$s`O;_qBc`(E&_bl@ff;U5FC-3O9WNXI>{o@G+ z=yzr|L5ODm@?As!wvTBgqoVt=odS1vVriI0okQvh5kz)x1!&fVFV$Xeg7syf6hk^{gL5E6v`|}1hqKC1o+WM ztu=X*U^_Z`n`l5ss|ivCIq;H!@H>F)ewGjJKM>4y zL?@;XglzU?Y63fBLR`*G#ULQr=*{YD+Ch)bh5*x%)DA4A_SFK7E+W89Gxwcii?p*B zz&23Noy{k5i;pHImRYI-7OPRYBn|*%ONSxh5YsVk)}xxV;Xdw02$iiq9pCeQ>L&e*uriRI<+Pm!-Hp`732T!17j?}EYtBPo zWCXcKwX+ML7`jfQN_y!BU8hl|vt$gh6WA}_NCFl%-t?AkG`gwEtcqXnw<(% z_Knk>z=qa3BA*8J!@tuJfZzW&XoIkS=X5;0o)ozU92t6q`fx-&KjDp=6Pf-C@xopc zB8DgR4q8WEgIvS=;puwA!@OhkELK)0;O(P3SF{51Zh> z>EKZg2CCSUt#t5>E$;jm(%zehE7W)rV|X(~_d&-Yb#sl15j^bbtJLZ}XktwpE@myG zXMy8)uf{q$$5t17F_B-R{4nfaI?(OBP{AT&&h7k{D^qxAxk;ymH$HrQ-uS$&U|M}f&c$}(- zw(ex|@WVIk)*LcVnG@b1HvH*Hk?AK&zs!%Fzl*8FFFPH8WN0IO{*En6X|w{uN0G|= zdntxJiOy{{T8aIyw-Qk%LuJdG*Nc&njAO>r(%bcMt*m}x!kiCl6Xc&ZL$Am2?eY@p zNFX?iIMxtoUDw~uY*?hOh7<_}F+9l+T7tyoT``Nuxb}ihG9QBrp(YDKKBw&?l=845 zS@yJr7N~6*1x*GXvVQV1yDgScA5mr<+e&qeIDZ54vIg#%W6#|l%%3Tg=na*W@H1Af zf724=OigU4>gsny-w%QAN|wG-h4Bb`SN+NT3wx(ibXrj{`<1JbSOT7WE!2Q? zt(LcpC@{pSdV%w70OFxK#9XR=Znx=ME1+vqi-zJVI=V(3Dito23|C>A9|TRY$VM7e zvL)pYo0Rr&MYk)BcZm3Iq@q{@Psg7@hY>%YX*@gUZ^w*oBHx-#j_bU6HqyL|zRU;| zdYVCM>e3jAoxb+#>fwjb%kK2r^5{*4~mZK1tP)@ogb&Iy#=1BB7g z`YeOrD(PiZWqLsE-P-!9`7k>0nkH0mygewPdM`=FkKNxgzK^TL+oEPfG@}Mcl@6+_ zTHE|5)(bGx$CxMd^^`x6Y0!jTY5C{6i3;PSVjPC>&%=%NL`0pLA{Bry4gs7T0}^z1 zvic(=-%Bs&TbZ#Tqyz`}L;Wl1IS(@z;l-yZGVNYv^C$~wO}To5*(9rhL(pH~+7)*J6DQ$}K%K%2 z(+Hq0yVCh9le_Arbp-L~y~vc`5uqkobny@u4{PD$*mW-|IiIf<706Q-e!DQlU;G9> z?IngSO6@S;NJDp+qoK+j=4dFj!yF$C-C-VvDtBO~fB3Wft>JGIg;W%@$XaHLe3l{+ zuNZ80@vktm_}BGCz&}{>{VOEizpihxx?w=NbgP>Oo2xs)@BsTkpxg6&FnlS}dr_qK za=td)5FZYv?$eRptCb4M0-$_IT&_A0m#cEPRQ+1roojWuPOSdb5H;f8UfktdLRG2sz z_BIrJHxzs~6x?j0Nq}#p@@+v)<Sg7Xmq9;5^L_k(xd*%+7<;m%ga7 zOjOuGp}1I2atg&uu&Pcx?Y)rlWD7ov+-xIfAxz!r_-;*Oa#yy*G)C(a{;*oP^zatw zYw65{nCV)ggiI>4`8ljEGkAg)?+4Ht53$(2K9$cLiE?o9Ex5xN&pa+&V#m} zF_+tmzMBMn8*kF;EZ8Z%%xwfK3byjwtzZ|@xddKnUgI4r!41H4Je$DzXZ%fcWpQYj z%=Fxm*tJL_lskk*_{RM3l7_O1E?%ME(JP9~*USoYrct>970{xBW&BhwE8=(TGUtC| z84f49moJkejml*`_#L~fG{@zg$4JzVAyj-l1yMdx| zj`LRZ;uo}awq{NTPGXU3e!SBf7g~++R^Te$OJG7zgk2ur-M9gafK1JH$|8?-! zYF+))lb}oIymDj8!|~nfWSpx2sA;m4V1PaiEw0kxC(QA#m!Pi!LFeLIDw+R0GTpCI zk%EOHpnCl*l6J2gPEdT+8_j1>KGx1f%FxJ>j6FAUKKi`I!>bw+@ZlO0y0e%mbR>-> zBxeXr`l)b?LT284%0P29GB%QU;8P;GntxJ=T=irs(Avj+_aBL;Jaa)4Uk|Q)8SjCa zvrsvIDUqM9O~T!I_h<~*_U*nUgcwblc37)5*YKG+fXE#Wy1vyn<--S4Tk)1uoTCJ8 z*TQwY&uXRo$^2LFET~ub1b&TCygx?+Shm}DZR9pAjznn7ZMlJ{aqX7C{7o=f_GRB~ zD}0+>m{W5@r{HBsr=nn^{k{r!W_GFmOXtrh+u}K*{m7&+wQ(Z9g}J3M6@N(B1^i1g z{#+vNn9KNbDyjiZQ{x}Y7T3s>AJ}$kjhmdB+~o9TO8$Lc)*NON5`GK~L7M_rCN&S` zH?tSQFCP9H&$E6@VYe((I2K$~2Q=>4RdHWod^*05rg#MI$XZGawrlNt4r;AAlKJbX zxq61rxCzJV!zyCU!FXN-OVCfWhQEjI<>tsHwTQ7?p$iNZsb|d6T7(tzxWeN==*wiS z}P*f1a@?T9to2-{v;WgKTR8 zT4gD=-itc#1DM5xG11cwjLDsPBF1Dm zI{T|5({8hz!)n`!HDqcM7piz1bFvJkR8A>gg^=cqox402*;*LxF;&qpL#d80fDqU3tM{k*! zu++lIIF}HDnXNt%Uo8WMnSzDRL($li=u=gZ!H4O4D0F34xb`Ki(p{3M2r|h0 zefuZxr%U%ns%IWA?g>8|c$ayGtxbKtHkbUZNaf#D%Xd|FI{&##{enH0cm;cHH?tRI zol0J0QB!4D)CR?JtzJq9(~I15qL4+j*G_a%Xs8Cr1Dze5kiboI_{#4@7PUPcl#f0V z0Z94iD%Umdh%|95LY)5Zq9|qRTKjSf513}$`p1-kEsh1 zt#4i%IrfNT>HcfER`wYVf*svc5Su-k_59C#aG1AIT;8@v;ST``zi%7w9$jh=VlV1JZiviN?IJbR zHbizaM1Fx*YOapj2y+>5v12PH=n0xKnTzO$y2!NA#FNMry=8RkHtM;$Z5W)uda7v! z?j;xrOmdee<7?914h%ZtEmoIpxP|A$fZV8pvDx*C^vL`XFeG)U{4MzCq?9>oY&O;X zg5gZ_%vQmEjh+O;!K7cjKIs*|3^$M{eO03+5Cs|%cr#AKO{9l+?-XWCG4z>9J;ya4 zTj3)cwj!de_Q(u?MM?;mAHfiMO8Ow z^vE8`URr3mQMdaffTuTN!X#@}NVq||=rq7j08JR6g=8ViP7WsLvBr_xEy+x5}j}T9Jiy1{p z?xI$2K7v;nH%QLL_s7$k&ExSU_6^>X92N zX>EhQX)2Q}O?TKk{ckZ)RtsQ_)lh<&Q`1FizQu?_P)!F8WpoCTzYcwJE>D6!Nr+KD zRpS`{$tb6|35$!!GP<%=+BH5io&T&v?{aC5 zGw_LQQP_*DLtLaz?Zb9mn9=GsFx@uyQor!EOTEIkm=)EDtSXi%DUHGg78bc3j5qRu zZHeHbTS+h@N{Cd@4BOVdyxH!%y{*1Wmu}&{+wno33+dKoU3+VNhJTd}k?MZMYJ4Z( zgjkqLMJ(D*Y1Wl4DGP5f-R3W3DO`VvSNsy5!+D#Lvg24at%)L8XFl$pYv}ESf`*e6 zLv0p$_&x3dj!)xq6i>MlgFdImfl4$4t998KS(=;QuW*zegyiw^dBo~g49bQt9$-Ifh+ zAvmp*qLDOb7jhl;MJml93(^gD+y@^8dmnU_NDA7n*8o|@eM8({)pvovsDR@;mVqoe z*>MHOS8b#@^$KOJPN<0+j{$iNMA}u2+PZ2n72+T=SRAblx$4+DU!Jv|DfANWtS*WC zb(F(E`H2cLdC{$m5cW=?s#nF9eb3U<$crG>@OMcI_ADvCTiU;of%0)zM$ia7@I&_8 z4_{^3Y(+)bEQB3*mZ;v(Kq<8`X~U=kcXpDVIPNS_`e9^RH;q!qbD{qmOeD^$>l&JC z1IrTY4Vs~Au=JG7$&7GOj!pLX)^z-1WV}bD^WVyGcg%5gF8exp&tzX`yVKW=J42*w z4U0208$HI}FnPn*6{DEhkSN`wVPlza-EBiO{t5$#Ra@$6nSw28k6Ls;8{Ab zd-=2N7_${so40%>$byT$f@c{w0nfIg>b+Fyu1NKV+%kvYG*hczS(ro{^slibqQhX| zF_FXT?7YM)*k=BBcQI<7Kh(Vod{ouB{~ef#Morv762O)ywrXPo77J7~prXOf$P8c` zG^v4l3Tpp7Xf+`A0!jl>rkg=}p`}$?PFq^qqm`bPR;|pmM(p%z&2&m5U1e zzrSbgNy0@qJ@0!ypZDcMX6?(`Yd>r4wVwO)ELv$sWqhGW?EFK>3#dv+3e1GoRG5gx zgO;o@9>U<1AuVpY+r)sa44Aa`Eu;lf2}{?CNfT9FO3w}2fV|juGDfXcbJS}lFBi2Y zFQBRx@}dW*34+<`P53dIyR!|mLzD2C4o!ihwt$}kZjDx0IdPhCB*xe@R!;AYS~gRnUf(`kW1Yk)V*bUgxV2B(mAtMhu-j|$Icu#~`|r)%S|?kDrxR$7wQF87M(^Lz zxu$k2J8j|s6P<;ECCn)(+31kX47GxqSJx(1k47i1J!ki@oX$IW5t&j4{ZA9h)! zat%@mmW+UhpIwMR(;!O@DzIi2%?UJ25~i*ek2viTv~6oz2{c+cYU3;`M^#Q;IdO3e z^Konx)pmbGJShyQVG836<*vt_n+0Q-N&mYuL}^ln;O5HDTlO{mH}^B_CSj-=-#9M;U% zmNi2QteK0|#0g4(@H(xTHg-K&Gre-S#?rZ%;)FGmw`Z+Uo5LzjS~E)b;FJLWB&PTD zN`MWz(@F`jjB_@wkWJMwUuC zShV!OcsNsNl_X4kr^Rv!gAwp!n!XU0O%Rr?Cdk0+ps~~toA?<>FwhnhnH!=f5|;l5 z%VWPc;aB(&^BLjZw@4n>50+^AIbU;Yrrx221_GlodpokgBc|3t=*@}?FQNxIkpnPUq-G4zw zL5R|#^`297R#ZFkl6?_9hp6cPL`3n84J?HV zwLPCLg>G4|YrY%*+fR<1eH}T#VN!Gt@y)HgN+dk+*ff*`Y#n zDI=PQ_8+-GZ5j7qR&SW$K-k~P9qe$?|F==n;{HHR_hzpc3~y*?sRh-8-^GM%*s zkX#_hl2r&+azaM(@+cfN${Kk9m8^)P4TBXh12&5SK71JZ8#b$i6glq%tS-!!Ee#Qi)qu4(Fu9GEgksA<63Tlfp}c1j%6{z`8!tT&NGPf! z3FSRWD9!hfP+$RmfJh*|S!_VbV&k@8^lh3Llci^4p*naKM3e9a6HT_VAS(4-Gr7>R za;)uij*Q7#Y{P>J47`HB;VGOIt_vqoh@o1WjzZX%h}-$caaIT8C97IEt3Ydr--ZAl zPLwu8MI=OXOS9AxGkdc{lD%x} z*;z~#rhOIM`tf6GOM)>CmV}1Zs6+S@5ngW`)rZ-% zU`ryyQSDwO>af$UXQ;zou0b6>q&R^(6fU(Zc^g!mL>(%cIVvr$(^H2{x|5*}Xi#3| zoY@a!)Jz@z3A$U)-wt>ru}ZC}1Gy+n?8q=+jygE8!%+t^(HM1bO5qF-)rvZN91rDW zKX@osg7HuI?VT)n=(GLL`KRxN4V|F{*cv4RtrVV+3h%iiXJMbBJlASHusR(3G+pb2 zjm#4VX=EuQwjUfX8WAg5kE9R}VJAdh7>e&x*8wLjh$^+xie-v%{xK{Q6k`9sN+HB9 z0n{?15X=6TC{xo+l8GhSjjEY~8$B$C+A zBG(p7?384@QB)c&h`?)1P*YlMb41|PjNYn6X%)gbXB_I^R!Xa288|MhnahPNgj*@C ztdhB4G-i}mkc1PJR<;1nqO?+-(<-g_UXN-_2uKFA}ezq3+o}(%a z*&i+q8o9Nlk&tfrMPpw*Ya{(sh4@4YgQQJMBRA-lU-Y+E&f3UWRcXk6kHQ*x>Bi;( z`L=HPMf=Y_AmeG_bD0*tqZUp`ZTDkZ&_AZhENhI^b{0mvvGVRt@=FmhdQOZq*v-y6h; zC*e8X6OZV~JPGqxWIPEAzq&*t7?@Dr6>XQsIMIM+xQbgi6y9$&y0;kYi%RWAub6H) zFL*3`jkNC760FIxJ%Us2&@O7r`N*GWjl4y7%o=H~XOnx_`4ag#l`O_5_jSGljcmg& z7lkSQQm7D}J}S`&3fFGXXvJkD!LnlXgWX(^WSkBPYa)>o1THMVNhgBdQl1a%P?hzt z`u35qO7f&g2JX(^HP_5BpAVGyfl3-|TgQF#18y*vQaRtY3p*{?;_BVz5o)dyQCUUV zs@*_|E2#s1U*XRq=GQs>u{ZHA>QP3iW-rdPj~~z>%$8M$T za~@BKM;PH1-sE+5zQTmmLrl(3V#g&H3-HT15JuLV0|EF8;FUS*1zTp4QktW{CPEeU z$$Na3eWyT>01TVAu5~1omd>);ent zUlNl+G3kYP4C7uMi(F$wJ3V-ZCIch-MdpRU0ds4wa)WAS0lvg|o~G7K470`^r?^GD zKMS{Jxgt8>2oe|sW7aZY&r=zXKRv@psZF>iy}g<7G61xu%Z?I1*GG$>L)lT5Yeo12 zj`2OyzN?q=#w%4Tc2ujSL+mI^xgz#~PTG5_l6xsnUuMYRs5Mf4lyzQF{((-~cT|-E zwPF~f>S%XdI5%;zL)B3sf~pT#Uk&EHcPSPy)$V+$S2IH1dt!Ry|NkH3lk#6;Sjdd{ zX@;7+8tKywF}KPY;nNK*w=yI9F+*BSSeON2*(wNpL2VT{V~JZL!RmleYDzLmHH}yu zY#2I!)bP{bI=o8z2e?jBhDaRb4qRuhw{pL6ZID!{l9#I0fQD(Ql5@PymTHHn^3l$( z-f7_m6JNr8A$=!_QTx}v?M)nn2Oac(^qM$0YgU$GZAc?QOQbMLYB3;Mdk|=ZscjKL zj{Lkzsv^6<=6m)~vWeO*`4DpIm$@b^-6ap+CnZEj^C(li1Tdh1t6<^2VWmJgj| zJpKpu(A&h4w-ddy%$xj2du|!*POM}VxuW0@*zR|gwDCRSC3x;^1ifd6+jhx{hc=_k z`ds+HnDcLL2+v`1AK#awBY|&*)%U8mL>m_9#=TMR0VJ^nJZ_190g1=?!tz0{&l}mM zOIDkEy$4sZQa3i<>%CDhNnc;C>Gef}f}1;aa~n5DOv>S|xvbZByC%5%zV0@0cl0C( zT`{igJlnUu-7WJTWHpv~8|(Oaqij+qx#UObZOwOpEnd0`y)YVY)ZL8LV)gHGp2L5^ z`qyavo2qVD|E6Z~&$1n_lK2+SSG?{&#K-k>4rhyC&~QY7774c( z;uAg05mQ$oR#E?a`B1Dv^*&dDF?`~vZN|I?x6Qt)N8W9q+0~1{Y;w(!RMcY~HM<_+?Dt{9l;c_ZWU_TqTfzH>QvlLPo?owJ&5ZPYlqxVr?t=S6+( zf(0DKmA-$TdY|Pz{(A-w7K1^7cu$p%Nv2QCo>JYFYyk?(7tCz1U^CKnJ&z0HD27K3 zL_?$ovM%51ciqkyaLe% zqJbxuHmSiQ?AI;thsB&3dWa{M(FYeP8q5o1kLOM4@yeiN6;Y6(Rite{N1Ip^kU__{ z0N}9j8U`wE`d=YieX2PT~fds6CtW}%GRCCd~OLC_~s(xLU#y-2>5 z5v>$sQ)Hb}#72{1NlQM!0CaAY8OiV}bc)$|AVxF>)obg<^a&K^%#Z27+U%fY8XGYY zVUT83cs+;h!p?fRu6hsE##1{ge~-PflHKq!qD&Sj)ku^SUY|jfl&$r^g{dXBf$*99 zDs5$+KeFCrn)>b>E1*Wv3;d3lZ}CDFVc=pPTs(t|QE)K_v3l@khpKv$W$KG1%hbcd zR4w6;SfMIpnW|%mG7FFz7APoaK^Nqh1@Jd@V9>>0O|{TsHLy?BS8~wZJ5_)PzL>#R zZtzvrgOWRx*$ZR#!g70ImAz0A8dVAa@T$rcNl}I4KB5cnB|-qfMeoJ8KX`BTFR)a3 z6LKWT%PAjSJI=KF;?a_NK5-m(`_Ni8z=(4iswe5aq+Av`u}RKcY?CT<#OA$X8>^7F zv>4?QBrDkN^nbpkX=mamyz#9#pt@Pvha+A_f-qiN&+F4TplYIMi;DO84ID!CF~Jja zG%gAA$Azc71D9+slI*!0d_gPbJR;wS(VZfPYBhwY2MAJHXWn&A;K<~;P`uJcZ}L3( z@iF&7rOpv9QnEmjJdK}cqWr^1BhdX>VvMy>-{X^LlDguTQAzWu1X2`{j%i%77yn!DeGN8~IbZz> zW;<`!lNr#Z^>hq9vG|BRf-xc=v=1Ov8o+4DA+0kPe?-24-8fu3Va2rYGB7RVGniQk zHpbR5E1Wg!n-He$C_>8+HqMiIv}6Z;Cd5d4DZstIua5v)8@h3IJsPWZVB zL88IGBI4NCA$d8&7^-bpK>M(vH+Ydo8p*DC-3LCTW-eebSpI{OV|!)U_6HktU@EG@ z>m*0GNSMz6$u+7L+nBE^v5kr|u8OS-#1RaJxvKMd)hXZDMRm$IDhRo%d|e=qP^Un3 zzMwi)8x>u&TlK0o_Ex>Bbp-hmiNiZDWzz*Nb?p2ZuSR;dbT?_?|Gz(uL8ASjkX}6) z)YFY7w>6lj9YyYG5KlXL+{+B!$BkO`L_WQyL-T~Tz*s2fk|>_z6COtAD0C#W#6C25 z!Ca)}B|5z{N?yJIC9N@(M0g}92^T9ZFk4az^>7nXD6~OjLt9*k9ACp4j8yH>kx+lx?@U3d}|3$F6G=p81~X(MXs;|sOkQQ^tmWNKwza$MiUEBJO(-y z+~lGJ3CZKZ6h?9#Heb`+qqZ95qK%Pr6JeJ^LL}OVhj!DL)~IxfzTveo{osf76>vb+ z>I-DQ6U{gS{5~rNB>Jo*LOoWx!u(K!y7r{gjSzK#4OGJpN01C33EWYOGkizjEy2e? zxR6#*?hxh!1d*_)2gjeddQ8iv))k0)z}@)Y&_{z;O~zORlUXOv)V=(XF6I77phSHG zxl3c!kKizYWrydmkQGajO^Vrx>*NS$pJxR}u>|2l^BHgvKIQf$;K3+Kq(pj^i%e5? z#C{1G%4D(WdFM&ra{^7-_Z%i)X>al_#@Y73 z*#aKlC#k4zON4JkKNl(#=)y&dqMYQ>Ff_i}8bN7HmPiHOO zsWoDCv6yB;9QL^o2ONm%fi-J%3G>w!qvJk|zO~-j#{_&iY3yPveHJms=8YX#;xP=kHFwEeV z5UD`$gv2Ptzsm+}fDZD*&V*c+$47c64kz>$x2%umQnZqeVedC_m^Bi(6iKjithDm0 zGTm*=NO1$!SfJ2`2Svl%zzB+lvn;l18JX>Pi#OrOb~l3Z+tbhm@53yQNj_Mxfiu1_ z!MSd6ZxoQ6lD87?|P-{@H8< z!-*Vti`__{3DqYC6&@4W7{Bz} zTh%ji!_PA}J8jebXY-9ia9M81#RY%j2BEbfkJDtqjdHLHf*69qNtTa;^6W4iR_}z9 zf46qoK^SM~YD|@L_sX=g&!!axo(TqWfvR*8aeeu#AwnVJM zwnUcN5?R`^MApjdE}lRW>-_9&iPUQV*+)E==%4!L=pUAd^5H1flqI4lA|ihn)i<^< zTp~!eL}azH_sLhQq?uxxHOmIpZ?#0!088Y@YQcG)KK=*I^T4n>mg_B^rxWZ}-yc)7 z@;rqr`*)!{G4rPj2nWRa9rL%tcjyQNRnC`Wv^V^Y z+l(?#BwmdZpr%AIyG1Y{6d9V)LNMgGC>HBff?)*oV+ckr1S5!vGlF4tNdO`TNyWrL zFjn!d|1E++_Dkn5;I?n9yqFmaA5e7+S` zfLYp!=fua4mg5_J3vG)edOA{|(6(os!^KQqm)>Gzq1WOUMG~BOKj6rN+=t2VTtmhu z8Z9!^BYOr9!f)MS&l{VAVr4cha<*@H#UBOh;gLMu6$+Zh&k_-?${&P^Wt>sKq=GqL>h{eAL0) ziS@$Vfe=xjH!gK)Yja0G>>YEEJTcv4?zlU+8JIh`Ibu!@<_;|SUVXQlgS&ybgS(^W zB=y7GrPuY%~&` zY0&z=>SK%`+R)VNi;gH@!x-T8{{lwBybe!K8j$V`9|K0g}T7%M$q{nAPHk%7t1>DVe2H;BbOQ%G>gB*cBM_ zi18LgP^k+cKy4D*R=pTlF zlD4)YEgPFea763(LgTl|H=H#02-~GYpN1ae^k>)5DeF)J)RkQkQe$80koAwja$yVF zYcPL~YgH}jGVe9iuA_FDYTvMleWwn-+_~%Qtd@M$BYl+pJ9OSzTeF@n;o!h$ zRpAT?2OFQ!Rvt^!ouA`l5p5Z2&YS7g{G5B~2e|R^c?OUECslrARqCWISMt)||AA{a za07v&i7{c5=nlx-8Xk7RAbiv^sA@-0f7)T)XNPhe{lnhmHH>GBZK@O7wG9)hn;v8@ zy>?*Y@}<&xlr6>DI%0*C!X3+2bOKq2G0|&d@VZguYzEc9(h!{41)E&I@23q;-K);}25E)4{XB45!SXn~jAmQi(q|GlTL(bH@BkyGpZpW{Z6ak~ljtLY+|o0zM#*|O*O4|ig9DrG%J zmmK?i^Rg(Idj0%!SQaj$_N)~3F>1KP;pSG5u+1A&bFVo{&09Nzw1dX_@OYwDzp3KO zjveps-`l0%JVcMI=_zio1io3M=!8RMQM7JiX*c!5rQeY9LpI7YGl|+&1 zMiPaG-Py%H@k`1x}I(1~snIBb<6e-ftw&<}A4 z(5eg2s>j)HtjJ4J0Q49u@}8hb?Jp3}WgG@TpKgl~!IkRdfL`@<2I#FiO3oX6W}xr+ zO*7B~Icx>=mpKi9?!zHqsxCmQ9%tXQBCmo1p!->o_a%x{Ujy3XFaY}QX{U~~;7Se8 zvyp!FDF<|NUPS=yNn6Dn$7)e)U%gvO28=|}5t%a*SL|?S7tA%t{%IGxy-$&PzP(0n z8HbtA&E_^Ie{Q`lwI$bp_+m2XT_B}IRc=_GN*40pEJio)mYVz)UI zsU8MIEr*%UH|ta&^tx1~1ET)tna|fn;3VgLJ%Ht7=G-~IZHDPxvC1vm()^Rt;PY+f zkRelDKA-AwmTzZyNAy&p+YT%84p5{Xy+|WBhrnJ(z z!7~HB>X~MsU*xbA&@Xcu06m*Sz*Jp;Rz1!(T9LPq0-&F@BJUp*sio}%^mjQ7fIi&@ zK!Pjv?)e6E#m_P${Z}0&=Y8wUK!5Zf%|P$suocjIISqhb!y#a*EJ}w%1 zM8-yntBZRB7xoMGB|@oau?De3;n#o8aG>V~r(eclu&~bOkSiT2AZA)zS-O%ay2^^e zi`-ccEAl$Kv%VCuMD~?dbUXAjofUTBEcItkeOttppl{mq;$$Qs@Kft^tZz5}G&3t^ z>L@vHYD?dmJC*4T3<4_RqDV@IiO>11s{r#t&=4yMAEijOvkrZl!^{^t z&2BG(Id$#1_Jw9n%XDbBj*|0cwseTum*!&ghx+*0_l=*p4$+fOa~RCNTn@Q%F-6d~ zwz`riDzT!lz@7E7BJUD+b|VF|uh@!iN2ckl@Kc%I~~XI^lv$BC zgd#N_LgW`-#9;>Lr%zonf-CjgYy;YB271?z4Cpy6K=VN=xZV6gqQ}wKofaLe{{fIV zbnrtCgAeju4*4LHD1s02kgmW#Sy4E_o&Cm&yret(BLyGir&e_Px)p^#pfGyn7k+`m zOyB%d`zG*H%fi;T9_kT$JPptLf$Q7znZ6xAEerU_Q_Y~?&0(t#au27$2N}pAT~J*< zi0X0nJuC9QLBR+4vK4tFD2!hDg_m&{09|()Zc1>a3LVgo{xAddCLOsQeE0+>@vWHm z9pCz?A2tJh0f!l&;hW2JiaCf+kj-K63EpA+fVd-9fIrKMqRXtvJKvp^sA$N}r*NI_ zw%tC1-A@%k%>2UVT78D(sh^=vJ-Q`ipW&GwWO{VI>(P?TXE;44K8M*G%%GoXYPWDj zzu+|Z3{P-KH&mBys2*o8T9Nl_3O>VREAnPgq`nUE^9#SiVelEov+vW%q(pF~rnEJn zzt{})5FI7wHJ%yhzt=Vc{TmKj0sVVU1E7D%Az-R5K&u{Si>%1|BLzVJ)QY^>6sbQ$ z1pLB#I1GTkspeFm1y^c)8w2|0shN?Uq@(1#buB=%n0+obFXoTOu9GJKiCfJ5ISf9< z)f_S@N-2Vwbh)l1isDuje!-pHX+_>m?(E+vSj@Ls(e0B~6qZq>)bogLwfkG0H-!UGhkbF4$tIm}?E$)|QmFsHiGp{V~;w_EIn$Z(U$ zBcaCF|5@gCjD12o#wxD|tR-=5gZ!s+vM`%J8i@>_D*-(w4X^R1?CDjEcB(s$>?q#< zZ1oSK=aGLmRjPF%QER)uVAk;OxZ8X34cQv~UN0NL+cC)han3fS->E(LXwRts=-p`T zCvyu=XxxyT+9~fTF2wy|xKZ`J$sV&97w^f3l;*_G?(;jV&!$5teRxT6)E{#<4WdEY zhK39{_9Cr#6Ysp9>XuS0&XGbXPPD~c%T@E#_%d3fdT;V)R6kKq^a?rBVu|+#_%G!Y z%RG$n}Bsoo* z80}^^w{G$Amvzl{u(Pe}Y^OT6MP2HS>FZC~MDAC=)5dseP}A&1w>MtW6h^<>&R(;A zcH|dkV89_{AV-#iL&|odW;)oNo!E&w>xl46zwlEWVS#vMMm+1$d!iGLvoTcywR1!{ ze&u7hKRSO~D4tkuTPrNq#!ZRWqI}s{h{FU#=Iw1;YncO&A1d7y~!cgsfewWq7GEX2E&Xf z9H1M1-_aDz;hSu6^}SVRe&O+_^^k4-g!x9(5JxWD4HWM}go|JJ4@nQ9BaFjnj+mg- z?oAVHP#2xQgKXT(aEQjPV`VTrRnkKjnzm?|oU%_5BG8r8VqSm%i+l`M4|8eV2dw3-KkmlXG z8g*J_Z{nW>M#B08B9Ki{ouLK2i1%p}WFx%%VzU%30aJ7+TSC-Du-z25Vk<2Gy?mt$ zCtcZHbz&N7@l|ZiqR-!d|Ir~j<3d}01Rw`KIw9pJY z5t?BcXsVwIWKd)cRVMTZ$zwN>c1G5JXM2px$5i3qa zqaE6bwJuirtR|3G^8&x=r`4ic3KZQ{i+#7Pm{Cl@JnUqJO+Kb#%GSUBfq5niIr^Z zv2>9COwJN$5wxvMbpEaoe*7H(M2lEXD8Au>7};oETKl@|4MZG(Qn8PdJE-RK8p65yD58dk)~kye5HjEsM7x|0PIeufzdOYK^VWT0 zGw7KBA}s5+;XQkhha%>8eGkgL$^0_bRi{NFefzwz&~|M}R64B-4|p}b;i=Nayq3A( zkfhB8&U8QEVosh5GgK4V(3=<+z~<JPU zi z<|jP8yN#YrLK_M#9E}#V6R$;vqIn!*p=Z0(7tWut;TQmCrQwLcS!s+l77-GPg!aTk z_~jbCA27W0m9n4uV>f3JHsD;x-hgjlZTK^?G&CVnoU@05EeEfr$wtc%hJ9w{qp(IZ zYnNVv_4-T*s*|kPj(!IS85|RQ5kpG8qlmsy#Pq|YpXpJTUh{!kZAFp2n(Mi9B2(jM zuc~2RZqjMh%1sv5B{4pp^|IJAa0=X-O}*m_UX%hF>89vw+{Qu}p-(St!)C$pw>a+i zylese%HiX3r~#7zztTZ<{casqgo^4Oi>pFI?cLOOQtPb29MYxnRyayXMss&@It43j zk`=bQGS60U_B{YiwS9Iy#?poIKyLVvu}{+L!W85~yI`&ErkK!o-}eS)wecnvkt%=R zfC+~~4}Z2_xpnRz;&NZ?f_lMv;lKy#e&wlez0%zB{jTN3;!W{u(uM{qky8Ud27%Y^VnX%6NRl{k$sRGB>6HlMVLYFgA&#&<*eD z;(E}D;?WB2|B7>opZzDQSep1=f8z*#3x0GFM-0Fl6!4$V*;!wWGc4vcw9Me&Y(-%Y z6>KNW@Oe-E0G#R9>TPo9Nvuo`KCXR2x0uY8_jNU+-CXcX$sTSea>L2ib!GsQyw^P( z;tq*GLK=>FU1$hTmof+tM`Xf8m}^gs_;A~3HI^7Mr+@NJ5XKC3i9lMB4fZ7*zFJPj ziD}*S6d{=)Qo(1tC9IAn4&i+lQ{*vu{c%`mROkX|Skoa{!0aS=ll+~wt+fS!&j*JQ z1|AQQ6#bChUPBJyfpLNylbs1O#61VhUv!lZWXYblVh>NzmV&hXUY)rJ6}i>8bYz8+ zMQjE{k|K5&iYb|9ubtm#P(YAmxGH{B<1-_ouaqqKqMSKs2N!I8wVayg`%Fy%0!q>| z@nqHYTuKT|2Dt+)mur9MBz!A60#?4=>BHo&6#yibgax@j#Xfi!_gETFcI^a6gY_cf z{$cX1c9@IFVh(%MF&AcnF_!3+iFp+UpLHylMmPo{e@!#M{ka-qD2M<@>hh+1AFKgA zh2OvKO3}Wq=R}oF5&w`y&OhW+T<$l|`G*W8yAMGD9+x1Uw#%$M@p*(?70Et1%n&Aw zoccez%pp+MD0eZ`Iy>6(jd{Q89LJcZne7Y1?LY zMB28Q9i8qjLKu5DM@88?R#ffnq_dHGi&c!>t8mT^~%&$Gki9KA3lDmUm~-0V}$_Wkugz6oeY&D%5}+8drT)Lc%vCBs>ONt{rLjdNut3 zKmE+vIv2Li#ay?_UALhGRY=i)A*+Mt7Z7l%b55T9LTyPDeu7UB@cVTLr!!(hHU_R*$czfCF z3{ZCcOTlbd8w3=wQ^CS0PO9u(8LE$!-ZROoxsyr2!q`TEtPH+er+MxVnaMZTQXp!r zJ4}Su9U(f}-$ly_2j%w487b)jv)HRnBRX1tW7ZN%G!>&rtd(;>d?b;v}+1UGw?x;mEO+? ze#JhK!w7D4f}smKMu=txA%^A}mN?E&)4@I0~Mh2Q!1 zK#1pRC}a2Uh(PxG{YWK0e&HgGN8wwXKO?0kR=u9~23@r?_ zI5>V!Tf!m402U-j_BcaBXn{&`y=ua7sK6~8k>63F5B@Yg98Y`zXlffj$)(<ey|R=+KkLvEjzHMMM9DsnOSphF;|Z>7$bZomOUZWRb-4G*`qr;2_8m z)%8sRk;Xve8|$5XG&RJWX;eXWJc{N?meiMWYP;{yZ-T%}agJPP7vD5$zR*$gD(?1s z$x-vF%hBJFtT)0n0{7t5K@56*yyTx?I>BS9SCm_$DN4>8`m9~1-W+qeFu68tu3QQ_ zDE!9Xz~f%kDz3IGSYfmE)#^=zg#kp+)ucungd?ae3?b-L(v1m-Ybo`&2iwPc6aUP| zWy-oP2X$=%+naZaf>&)f3O;hXQShR zkirpvg-RD+G1Q7)cTkjh#n}TX$$-M<(p5Y8d!MXTRSnSXg54MqM(oJvcl3@fU-Ygj z+X2~LNaC*DUd??>tn|-54&;pEXiNTt+?}|*0zbci&#$0A6~g+t2I1eW==B#0LHG>i zzX)Nq50k2~v@K`uW}8Yp;QNXb%g=4fe8u0;Zu3_>V5wM|s@b@Z3@)UcGR_t^{8$KP zY%AIvOL62Ixs(;&$I&y$5Qd%X%T4{q)MxDaRdCDlT)&l*byhPD+ruULiOt?g*5 z`N^-_bEEGSZmrcKMIv}qkCX6V!tS;tTv_!FR=QB#{M~IYX!_m?=RVr^7OJGCqzb`Y zJIPB~G{D|iG!X;rS)PolN<;QB3jIq(TN=4lxBQ})p*Ck}WTL7xWFMIrG!kxU?Y7c8&ai!W!AMt9eW=c8&b-p|dt}r>Zn$ze-_^{4{99rT)HMcm1Me51yr+ zhU^P64cyTJ#gFuuUo_cd@H4Ks+f}6@`&J$>DB86&GEletqA%Wm77+ZtxvJ8T-G&FO zkyqbr9*^^M%P;zsaam`CXygkmjf~RM=t}6QBrP$$ zz6)o7U9dBYbYLXA1)sxZ4)=St10$0j0)|`qHE+tr3O(`*>!s>)`EaCP^Co`^B?N5> zkD2y?-F^b?Lk@Q=A3=Y3l_qcUVOW<~f@C*`;O*F7=P0}{Np2e1nfcsU$znp>H8PmR#BRVn{u46&Lk3xR>mw{|McajcujW(&fZg%JjQD zQc_RTOEUSc|EO2^wQ9jD&U@uqk?Ep^R&<+ZMc=9;DSNTSM-DP@qV9Gfx~ zL^x%Nh?G-Aq?{rm)m{8cS<2X$@|06Hq@1!Lb&9e<3WXFuw9hZi^GoYeF~myW^=gIz zVR~FEXfM49P_r*K81pW&qVNJMioyZJVS_m4ATD!=?ThbtKi-KFcG%P5% z!7tbO<#GT;^^|DoF>gZAUOuji-Gd!pgUoF!$Bm-CLjmuXtx=h)E5jcs?UK@0^Duj` zZzYX9$#M4m1$J1RhjGZTt736wi*l3F1TxYe+r>cCa%v>+xep`rw}+6c?}9}~LjS6a zTgmV*rGO+n7HwjjENF>YVo)(PKNbni)si3;2ton*Faxm;#@oqr#@E8Gi1E&-D>EWr zAQ+w?@@2#?$G2mM1L7X5du+sLt_a@oY=X!NaNS8dw%4`o7=Cu>d!Guk)OQ$V!hC0l zb4KMs%%f>92$UiV+Pv9z^>P?^lbzZ0?*QWTY=o`-C>FLkn}2*Jv$+YjEJx#(7&jhm z23q5x(_@KyxE#PZ&s2>V?->VRGwIY%O2|fFK~;@b1C_ZqcBY%t6yKo-~@|iy7C%hScXX;qvduAuokI16J#7Xbzg=OOaAPLOktI)l0#}`N~e+ zA@@d1#OJ}RBOz35knlQGP5>RL6Z7v+son!>=4~B4LNg z#j7u%A*HN;UkyEC4N(iYw(all<=>ifZ-1|#PKWUpfcm4SbO7C`hWgydH&uq+$_8qa z2*1DAKAyw&SMPDuk(z+;34wrJ^CLAi%v#;3!~1gdi+zwb%loQ8kIC_fYgMOWCqM1) z(_u%hL`wUw^J1Gsr@y!5Cy;dAU$$coj+zAagn zZ~Y&bgYK7w9y>pWJdxz8Cw{mchopWyO48!vio30_+0jU3-(Wjh7b~5mY3SAL(Rx!D zG}$vCO2u46XW%B!i4)dlDlgYcOaB{>F%Px6&Cz78pTj41U(JMQxyF66CNEQ4klo>tZD&u_M|Nm4h;XDXN~-ntrcb zo&`an_R-P=Ih-4)1<<5&`+i*u0SV zbHhYj7=zZuP+PL|e}QU+rcu}3Ol_s<3-C6s1Wq@Doe13wo@c;1vqIn`5A#IETmy8% zb@WGwkS+@~qA_$R%|0mx>_9!orWs&6k%zdla5`g*ZweCLt8pf`MsF1-WzlF*cB?0! z=9{AT@TM$;{fJKZ2qg4gwm!3|OGvnK15S?SdlCfIuHml5)JBrkP~zR*F z?wO~!v5Mo|wO(T1#)(SPHI4WP;iQlTV#r%#~E52emf3Nem zStto3MlZep&cds$DEf>Q-MUa<3dn`uswW%Y9b|_cMsnB(x)bV;n^R-;_rpn_v0M zXz9XHSMx12rkR&BfFpPil~pi?V4QZji_LXuVKoLLGu0})GAZf;`b1{Ykl8DsP(%@n z`gt{*HLDzh5nu>oD5SFUZ9;*Jy2sey%t+xamVr6an~>w2h~M3-6{m<^jto$9gcmSF zYNF(m(9P-Ner{JcM3Oh-n~E>p_c_Oxj!DAoXp?cGTRkR!fSeb-Z5{lpAr4fp02FU0yipkB(9ps zMX@6jF8~Y&b{hlegOkAC2WcnWS2NffMe4~9Mmm?1A#abbrAv0l-yom}ekm%!0 zJ}61XkI%+5GwR(D_-mszkyN@e?6~Qo0n7;EY|Pk_S;iVeEGPG71T+@$i13p&S&kB{JA2$ zl^L>C_b=i8YTfUw`{Ga5aKC)3@<4AjSIMiX@uq5YRSl0CyQnc@D|mn(Yz=9(a|5*w zs#YKBS019q=&krE@`IZZyacSo&2*O4Gv1N%AyctUOphnhxbp2mLU>i0)d@df{Vq6Gep2Xhi_jM zc3EGvd0v<+2VY?w7t^`8`Y4&g3b6>34{{L?peHebwQlvwf34NO;&ue?NEZMS^B_ES zP!Gi8T2WRq`X&{@ z{6sJyV*DKtFoEP~hu(8TWrI9Fo{*?iW~D%6jQ} zfrS$*TZU}JRSsr_<sG?w-!a%mkXajwzxX-+{AL$}N=Zo@_zE2Jrk96tp zUG>GlA!Dakqri&v?6dVOcf0k8&S+?N3i5K-ohrIxoioVG9gtN3X&?*oVdXoe8yZ%% zQ@WvHBj}^PjDXE;2KG(^_N(&uuDDOY-YH!d?N8Qit&@>es zx$F2Hmb;$cirg*yw#!B0T0r(XQrqAM5R%ibO?xHrXAj-?*uy+lYBq7NW`IqF(@9I| z6x;Wq57;;5?5$*fd@H}Am9q(eyN$*Amj%GPd5jg4zLP9Rt@RXM&F8q2-o|AytF48@ zp>RX#Emps^b@`QTS`e)*_$+I~9gZtV$EkoLK)N4^m&_Q-W;a)GEqxQL3W|&I2 zfht~BK~%-xm}1UXB$~V()@_3~`8QmOCN?Mw55m#I%mti}{UIrHvRb3PYLY#>BR`!# zCO_tPW~p{QX6mvdO2ad5Dh_%c>aJH>QtsV#;89k?Wzyp{ zUnB+38gIgnH^cGx1+U$fC}=b%oi)&z$G8acBB{>R%s2?vzBT-$&)cMvgXy0tr|_B0 zhPN{`#!ibCE+Vso4VF|R}atXA$FmYho8Z4y~gM;qAR@b_?!(tAb zNQspZ5K}!KB9YeJE|He`k0+;frw&i4xY0e;o5Q--NTl`t)H5W~n*E=JAld%K8Sx_K zS441}5Z~`jdFXW}1TLligYf;w;QM=%m~?O?(dgCwotKzk5T_11pg0qK7zB=Y-?=C4 zZ2z`|%fyy=av;nL;R>5MhbbV(SRC4w>`MLZ;CJ>vS%OqLrrm%B+^F=A4-+RB;Jb3r z0BywH&$3_Hs$=hCUgj4hv6xohtKJ$fT{0>k)?tNvaz5wEsD$S3JrWZ~`RFxw@Ga6$ zy~Zq-dhdriP=d^*(jkyi6Omgqjf|OWQw3b_t0nSmLaWE%s7cTMO0*P?4$w}c9tk6b zWOM2ujySODCrp89s=Z51s#eTVp)tj?L^;I=IZ}$7Bop5>2kIfxm|hE+s+4$f|0 zYNy0g9dK2u{|ZgF_pu29uf^2{T@G6mH;uYMKH&}FQoT;esY{#WlERRJK?&|K4TV=D zW}|u1_gUkR#QkCfPN}+!tIbv0QI&PIZwi5Uq@3oZ7KmqQN*70Q%|-8qn{EOdxCP;1 zGyjO_z3|v?u#+>)p14Yw>Q4}$c1bL8`4RDxM_?^Sd}yrYhp?6n;RtGWSj%@uT|b~9 zoU(Bve6RFfB+cXKzw6^T$1ziW2Yt|5GT>YcU;5f5>dLNtD7E&EBe&h=TV#0 zl74KldbKhAz;ZVLrwtal;8o$;Gr0M8U8JXRU^`uqz$-L;#;1S1(B@hCqLruS_sW-K zZkxr<$e|~2LRl2b0hvkqg&OaG-oSW@8tw%QwBYN6)ORGC%L-FAdDX z6aM(pes`87%u6+rbXrb)vJ>xE>?W)`%Iv|Z0Z$RTi5q^8I&-TZ90Y`(;#WU7b=lL- ztsXvp*a$@kz#r$0;0TWX(FZX6b>~-QCeeOkL+X?56x&Js=dO6^A&c#F0b6-L*W2oN+kbEX zf%2v-kscwj9527cdad`|yT~A)6fB8p>ooKI!l9fYZ`^A|_LBzP6%iH5o#UeITNjBwq~ODVgnLjfwLn>G#hdbrYZx~9P`_d<{0u#TtrEspA{U*- z=ggQTIg}ymFn01WD|tQ2cJqPqC^4fuGlkLUqSqyA=co-3r6A_erMXKyTdYcGBvi?? z2cP8KXc}_S5_zNBMSkzJN!eU|9u!J!=3r!n{p4@&u1|}r_S=z?Mm9v@fgQwV;$Qm) z(xG^_ECNTIV)$BtN45#A?G5l3J}Af>9eX-(Nf&kAau)o^OdB7bha zE`*xQT!j%=>M3vH9Dair;b1O(n|s+@y^O}xQz+}@*Gh2^UJSbJP_|f_$~RFRDCjUh z*5INv8(frTLwD7QHMl6vhGLynHAsv3Du1u>2kT!EUI0I{z|1)^vcl$K8QZ1Ca;8PFFX?|d!5ZuE*5c*U;(3;GxR0jc=(J{yB~t}Li)7_y463|Z~M zE>``GYI0uJ#n@0JWJx9n$iw3sVx0Nve$Vl)oEVEqdZ6Ez@3e zR9Nu$U+qHSN)-L*8zxEL@8_+zvu?{w`#(bv!MtgT@lLdM-xPN7o?EUsp%~j@mwccU z{g@3(z&J%erbT!T<4!;@_j4L!BLV-4Q5=c6DEyKRma=C!IG~YMqjHMF`p{i3B1a3PK<-92Uq4owa+@9LkubQG*!Frf~We^i%>9x!Nt)w?1oXEWLz}rRouEl`?}9 zzN(6>NZ$}p1WOK^MqnOSciA@Md_J-oMhbuolZw-$Q=Jr`QRfzYg0}nFs*fgbV%6g% zF@{T##36|Oe%nzCP09>GEH4RZP;{uxez4Vo3D{#5zw|fRxeR{K`F4i4F^}q)*?Civ z<`uZaWW}8bXYtZ))th1^(`*Eim!D6#%0JPWX?Wo7IQujsq0V#BMZMa%h+2epa(iJj zT9~C}=Fd`H!#H*34zbXAbuM&XoeNEFF2gd5DzSW_^Xgn^?hs=aYQfj>x0=7et21xP zWEN&|(Gynm8c!jg$!}5OGr5F6?X1`A)tS2h?wF1I_#ItuUY+$Ux;ofIR)%?XPG|wL z#eXwghtFpDLi68T2!mZb7C29ZrLBYILth~E`X_~8d5iL2gr(YtJ@Y1fzu1<1BLg-t z$xcY#b8fw|{Oya1%FHkt5whiL`C4o3!)ps^*8dFq^r88NXg|z+<39iqo}bv7+U2?( z!;e*Oj6Y{4%+`-vc&KEc@^|?4Da9 z!Z2(Z=+1b1~6s%m$NoY3;J-1E+>VFSP^!q2d zg&M57XyPNl*9bUu_{v#(FgqLX$OD4QlgAzg91bB`Zbs@;Quz2$|bO=3K%x zW(a?D>R+<`>ojpOl6S`*R$E)TZkSc4Z0@uvl0Yu>(s`7r?P-W4_lwCjD)fkr$D~PA;wkW@ez%v{k zi;vJ`o$PrdyS{K{_GRU=u&$!jpBZWBKVILA32`kW@F1fzW&r)Q*@!}fvDP)lRL}CD zMiT5}l&li-)t%WtnZz6wL3=~e5~i(f@LBHpp_2$~w4G;2)PZOIF~VOM(M%YbzJP$h zWgp<~cJDEE&>uIQ+88lVF3%OVk7lf@*)UNc``%QBg59KNg6PBy(9_gsD5Kf~{I6T# zA~^gRt`|W}nq#TZy*1dX(;mlFwnykl+aq-B{O-D5?l_zgj>8!Zha(0@(x~HwI#kW? z#HEq*Ww9MQzqf9bI|gWkV}M2*0|bgYAr|d{CqO=T7Tsq>x4W(ATS)=mbK0FnjSY&^ zo%CybvH!ORLEGx(v(+fS<<@<+8l^*J^pyTu7t5`SRo2B;oD{56c?$=1XZEzm)v>%O zRun#AMbUT)IwsEVl&wpxVw-ypQBWl~`RRyFVOxt}t$>v&csvu2l@ zqIhMnw;9t`6^({98P|M>3A?M72`jewkm(c;V9m5Bv1`>D!WNrKf&sKKDoga96f2U= zbMM(kegF_cBhr`9P_k=V1=DI5z9CD9!e!;*gSMiN{q9Wn|&7;`Zma=Y+?8I{T2dz%uByqmPVV>seWNAGn-Ws|fGQ4leEd#R>M|iqB0QFccx%7#4YPwSl zzBO8c5h~J~UDqPRdv&5JKqnkJO2o%A?vvc3H+Zp;okSXDgXfoCb5@JDQ7@KQo zGh$sZdlO=;AyvQcW4%E5nCtw!MPG@-M!X9p{w}RTW?vJTRajv5XYUf7I3A`ShQa)z zPI@fi+%o*a+j!KQ+(*FpdG~Wm`U48+#Y+B;(!`CNqH2Vychh~sn=sgM?|r;|h%UO0 zjUi96RK1O?m$6ipU5-BKus3-<*ZBH)C&f!%!{UYlF@#ueF1k>!YC)|1^S0nX1kdmd z&I#7W9;!j>QO7$E@XiG+5TmVf!Fl{~8#L#7fkj?JiRTmbB~n{q%es|(26io5gh65AAu_OX#8sJAkVZE&Tou-B)I=hxxaWCu6mS%OKq(Y6ukt~WVZmD#KpDn%4= zT_w;^OW}@T5vp^O-PtOo8@KR2L7d02MB7a)%TRykx8Y4ZaB5#NMDtm-!+dVlC9%gn zcVpMvW&QXfD0DZTBr@jY7wjNCnGVM8$j1>wTK@7KIpkx~(bygAaJ*g|^yu9=ct_s* zMego~oK)_Y-{4yARQBA?)yi^Ws%WHh@BOr1wkuyX%XXP%t*SRDy7B<#vdTu)>3W^) zbg@18vbV+dutmbcuwFLuI`qstsQSLD%1d$uw5kHxx(_`{ul<+1-1USmmsyw9myx@1 z8eCxz?(XFJT-kL8&{US~FbCzX)}^xT`3!@GiQyZ)i=AO!v5}xx^j)42`2}V{EVmBs zwfDdPQwp@Ly^J>0qUn_73vRTQ^C0;Qm{X%vH*C8>CYrP5o zrT+VQTd%S8#Y%gdBYBvU8p3-n?`2&Nkyl9$GTBQxW2xVEyDlQSW=A-J9lhJ$Wk*5E@OJM#n0{tDO}A4Yr*&g8aCG8Np6JjcUNi*kwTM z=06I&xP)*?j7ND#-)lKzCB4R~-E^m5GUq@Rf{+=2p38mIb!}0flQ<7Ee(vLJ2*XZg za$fYosV-zWHvFz|eE98QINkAdK_am-2=MlH1)l)Nis)pLf}{_j@w{f+L; z-_sVq)*AE~U?kF7u*Ge>WNmb~Fp&0W9sVViYos49eO5RWF`}TYSMw(*4{Tc(7B%=D z3n=Pmj@hOZ?4v#apsIT{H&HX)^#Y;TAzdPVbp$!4t&&gpU&@*A(&sm6Eqasvj{2-a z(23NcPp|~sG^yrMv&H?N_lBV)?PZ!T8^R?+HKxA7{{2`JFe!U+##=cUPtraM2j=-d4z=9 z=)KKxIk*=6J*JoCl~aeA)lDsxyei$a^ubKPySUG8dl8~B9x(g!2DtU@|iX+A?FkUmDpg{0aR0-1e+f-z*o`i|g` z-i=eimdxY>KjLNW{Cu0qCw_2=hs2j zbDJ7~bdI4MVrzJWXmQ!IoxVY$6>4x~Ee$_L!E;H6!@e<$^n(INI;cdg)4;nF4vB!t znI^Ugny0a38j6H^QwB=OXFBgCa1(51jbUN*g^CTR{Tmm81$7H58x&u&tja<9S#p3N zk9APa9~*3Cp!u^LA~i`-LYRqYmAMf8%G`SW%r{-=0+8VRYCe&T zNPz2@SEzU2U5#+R)hphBGQKTKXq{JFFPfjpQ21FBBu{#)hJkLL^zuIDf7f-3B)gGY zO!6DM)g1KYc!!_<$gN!gFJAmGE!~QY|`nr4-Bi40MF?L;dC|!rxIuXkbBi0qG z7`qO|TZhpb#19-(6RY&25Qj=k(3O4G>$H4RzKW5XOzAyx6H;EqR;pC2*3Tl5PUi@? z#j82SXHN?Sp7MQ8KTgl*Gmap%t#17#1pfZqT)|b@?jF*L6`bf|25m^}WpXy_~)? z1S72P`m7a=`l;8?tIeG+ag#xF{=^B!5TUEAkb5SxY5|Od=AjOwr3Xh{kEEnY%)HBo zkexJ_a2aRz9?*~CyL0#BJI+%!kGFDRAx=LGR6C;T2yh}=EMB^aU~X0}B;1y!qm8^o zYtn>0r(+A%3P(U4O^7L-)*TqUnl}*o(zPOziCSTeW+i$?UoI>Gnz4smpaL?DEq5$* zJiu#(s{;Q{2Ez2o@cR?50_(WApG!Hy1P7UY-Xu$7wPV_Q$<~+91tXzB3C#Z!g*AD2 zeoibo8Yh5IQ!F_a&(P3eK0*6)U;{gbujH1c@oaxC_wCYWsMVla(1&g8Uf-&+4$pO! zs(**KGsKS^7O#5~?g8=OjfhWbeWao60-{8CacC3ws^3zEjVWo{S}iY5HCkLd9m^*GY}G9;0X)WEUi8nyP79BA`ywP>MM9XaYy;PG3zLAUSD zk>oO>i{9x1t?Wuiu0%?QKJV46(2DWhVB#dr08VON9SpPkHaJo+1=mKBRrxtM%j?+U zu6{_O7(7GN{hNbutDBLQhz@ZM(l#~8zGWU8qzkfaKg7z$OJDJ7F0ch|vqt34cQd5a zvnipNMCXv+LG#u|B6U2bB-YOvtQ?y0#p6I3#?M%Gb%`C!{18N znylly*;*r|k@sBTMDC*^B;xaY9DyzAOOOfoFR-xvj8Tdvzl&yOtvC5UxP;4A#y*Pl z7fGy*hh9~9mqHpQkSN>FTXi!)E5o0mC@ib6t|Vw1HMS^E;MkveONUI>CerQImMv8*$GLu8)>(WXd;I{~h{bFZ3O!>om3!00ootM~Gv} zK)q^Qr{b>im!V@N>0uCPb-Cl@3|pQE{fRxJAM|G?FLZP*h)pz(6Y~k?tIZlCoT#BN zn7ueK&BSI@U&o|&Dc@`s(1J}`y`9g|&9N{PAjB$iE+tkNHrs6IqkOX&M9ViBiW|GB z6Z7Cb&|fRH&IZs-W%&kJ)ye~EuG&nf9Nf) z=&nnlS7lu(Sq_YMb1sW7DxD~M#h2_JIK1lOaCCSK>$Bo?<+VlJNvZK|ppz_gV4(V2C|WU3eu?t?8#44W8XsIND;iub4`bNZtZS0+P^n0$lWco zz>8eKBn+n+ou9fee z)6HYj&o#1v;W|qrzf_fm?0;qk_LnV< zJgr-PQLnQ%@B(!@RUm~4m2(8wJ;VBKkxX`~^$o?H4CNffQ&Fdf@r{5Xj|Pm(rfD8MH0 zV?0&bI3hGKj?^)V-MJ8qAz}K-KR59Vl`}HQ8r8bfYOPM+qnm~SE5Lw=-p>EB~}tnZw4Ip&_VLT*Abh_mjDGh`iHpgz`LPjCAs#o9!_zJcSKA4 zgR*tQp0p2PEYU&7aC>|Uq!w!*z8uPbtz9eN9dGDb|E!n`!Y(Vcpa}6-9m5@}{}Msl zq6Fonjhygr+W?ggH-u3H03wMkOBWE39pyUcy%V^bSX3FdP`E3a6K4Wm)f*oj3w*(Y zak2AYRQyN3fAGT=k=X#4ZRQ7 z-ejqs$kuZx7Fr;$4E%ryk?F*(!?*dJkKLB&{D0Yd8~Cb=EB`;`=4#YjFVtM1N;GXR zEi_PR5oH_F5*zeJ?*(k*7S`C(CAGLqm4-;Ei;4u?e7U(uEn2&)E$!MaZQbf_wM9iu zcuK$r0?6|-6ucpdAj*>pzxU_N_a-5L=>GQi`u+d^*Pj=;XJ)?ho$r~MGc#w-oO4FX zn7A92aTK1n3-_YxAWxlvAMC$ARr+q0bL~`}&m!M7`;gB4N)MTp)L|@Vu#(!Jv64C@ zE2*|btfXj)*S8vl)yqI5nUF4r^sY7lC9T>YOHJ-V1yDcQF07sT>+5PT)Kv?Y#tV1q zNJ2cxqD0{?%&it6(wXAd?O!0QJsj3X20d zBM3jSFII@7`skGjuazMJv%fjR<(hXec-l=|QY4jwz(x%!&Imrk#xLmoJ-R#MbXVH1 zTvm6>UWu>(o46`;72k*j-b)m|i}a0KVeE$c@bsr4Uz~xx@Lef;=KsY&|0fL;{|>+q z8lAgAzZDy_n;SiTgNeqcY%sxf_9pS+<(s++RBkdo_v%d=q1{V2*^zT4qiX{{l+Q24^GoSY(u}?Rw;7QwQ-!9R7&4$w@H|5^)WtyLy)jmW zcL2gO+mMbsq{|)B6&r-v=C0ly9>7RBVzKd$tha9e#O*U*7N$kw38daLuzT z>2Jgi*dRj07-KJ2%ZEY1wj3OqqnJUk8|oQ&_bsZg+SYO(?=TQvJd-Z__E)Ll<;t|G zWnDAn+Zv&>&+xRX^z2LesMmybrUr?OU6@a>FE@La<;*AVa|B_!f$XC2)}kSlJ>~DX zf1%8KPqR9jR$oG)NHQMA5ld#q^n#6C=o%``Vm zIvR@@PNE3Leuo)Lb~C?eS%h&D4wG7OXxt$^)$#|WCvPrzasP_nW(`Z;k~{EF$%&Us zJ(G#YlVf9?ly)&~)SGfjlBK4}>m_x2FEoN!`p#R|pRmHP z-;uJrU00T_B-Ne6`OnhdP|89~T&l0AF?sMOsz2=lUGBJ`BzdmO-P*&Y1xmuDJzCE% z8>{2IEbUWj>^?Ha@-*%SiQj4_S!t&DvRh|O;1o~6MDn2l1aYEqF~)V>uv{`$<)i=(x{bp(_5jYERv1>fqWikJ4H zkT`ELf&2$gV_xJ+WeUyX*9(1_-_n`EUkcO)`{+sVQsu5$ykGmAYc9TKfAahN+Th~=$R&C)-$)<({(2g7ao1#U0@W)D zp3iT1dT-{s7Z}1albx#Oem3jG^qK-vpLqvDDS0OApSU_EWzLqE-y3Hr6U9-krA1v( zwv_{@S32)X%wyl@%}jZX=CF=i97!UBW~`a_0aBD|ejS0}s8}tKYn= z_9oB;diC6*c;fbm(L;_Gj9y~&@aP3b4~NbdJv>ar3%yO4F1()zJ(bpz;Gv5hJ$S** z#9y4s{f#q&Bfou_BZAVIk*f)p&deVIm>C(Y-_Sry3ib!o2A|@!CkvJa=K-rqYa_n~ zme%G!0;r8V%7HF@B`m8AUQM7jSZu$8`Ar6|=l4YY(%@%+-v^ssK(Of!@Pb|VZ6mhS z_Z+d6B&YY93kF{BPoLuUqT=`Y4TYy~=iEvItltZR>7Zw?P%kC#Vz4~O^YoLyT5`e* zRuM#`Gf>5P!CXKx@s6FZ)h#Q=>vzdk;exwR{2iDp{BT!2zZ?j(}`$Eb2W_!%ZzqSbIAf7yg|={A(j{5 z7+@K84D^+58iSwva>BnJw|AHzTay9+6U})p_GJT+ODwT>FF< zPH?LlSF@K!^Dcg*44Y)xp&Oor&^P;N0qz20GhYCoyF(0(rVWdo5*EU|YlK>C;W zTl=BQ;^U$FtvchO&!v~t8Xk8W9)A0c?9_fg=HaRBH-fpdQ~M3D=`>gj@Z0ZmO7ZfQ zm-ZX%VxtX&t_IM4g$5!+0O{9f3GbuK5Se~I&0WqyFCB7tPwL*G-$!-AyMc$N;{BIT zpMv+pB+>7`0r+^&Qi_+ayx=|8#TpEReh&cepBjif21s9Scz>5*rr)_jtaEz{z4VR$ zZ0-F*qyye#I^lgDcsoLs)^=lXH*yQLvKkM$$Wwsyi*>^LhXj4Rhn@y+p_kr0!|?uUUWfLc z&pFlFyiN0q$Intv5AMg8=!u(($^013NV<7Zv0C*=2L>>X8&o#V96ZG+x zVqxd@7JBLa4)2F9>VWs;PI&L&;i-843;|UqyeE@Hd(Qy)c;BWJ{A3%5Om(qe83@e; zfcHcLk?DZ+h@{%PgrJZ2)YITC^wM`sxAxxpN#V`bPV?GShxe)%vfX^#&Ed^m>z5IN zs+YSP$#wLb>Sf}VxR+lT(Lu)Wg-|@3deGmR=U2?@-AIs>*8rO1VH}@VikH8~KxBoB z?KcqG;9|!B%$mCl^nS`f{uV%b0*gp8GL2wn7~Fqqx2P8Bhia^PC%Sd0Uaem}bY#W` z6I7i2by;{slU4V0HCx%OQ_ZH6U|r_*{sBR1b|=8E*;u7``E>>&cevO?2156^*jxZL z^9=OHwGs#FFf_}|(Phe+)Qw7osrdiE;cdXg$P8~OahmPR<9>Z9`>)2;M z$_5eFTLTFCb@~)R>hw8)U#GBA@RM#J@@W^l+CZq##o{hD2mmpjV<7)>Kzbole=_n~ zpsh}Gr=D6Tp`K3PYjwJzYllJfu&YxWbMOccI}IXzFKC~=Tp$&762Qjb`+Qz?qB2Jb z`eSJ)K`L_rd6~Q3aj}TSLdS_w+zCMXe8YPILBB7Co@Q|qdg%cU@0M@|Z^p>Vl4ouB zq@JHk7Py*SJO%ND*Q|BHc%6auV73nK!;Sx54}vS7kIW~DCrbc6&VN*jm#@6wT<>B# z41|^gcp9X3eTtftddtw?y-+IA@>S>UL3Ny99j?0rYATtpRw?n8 zm(=W(*XY~oVW(~hPiVqQ=l0-VMqrr6@!c)qdrBXEUq^PggpW52Ls;BWTC{Rv*OC(p zOTBWQoLEG>O50Mciq8h zrCf%Du4j0b6dC;QIIk19_OaK^^0xI{P=Aq?5uc9Nr^{SMCW;o8hDWR~xnOm8`Wx(d5%MDI z#s$`8>;mTT)pX@cmuN>I4CHP!U|uNa4msaUDQ54sorz&UGvYXIw25kuKIO z>RQ&&ijBfIv#CM2PWr%-O=1gGxJc_#4cDNl5|WbFbGR`H7d_9{^X+SrLms-;8}bvR zjtL2mKu^gisu!We{x4;R7qT{>hSH^zd-(UPxjBHm%+8pRjsWNgj1&`BSqsf z2X#kvZ__OR4L(k7Lbr%H2&^bg=G`~U%e&VXxgoNmCGh~)p#ihN;-fU+O>FN^^Lm3e z{~w|Kdyx-+n`IJsWG=yWZ)vq3Jmg5(|tcv!iID|f|7xhL@KGM8IHa!&>{ zD|Z38&nPQd{q0Cr%Y07DYL0M;ZVv)4oL;=ti_euj)5|qk7G-OC@7QEY^P4P(pf%ak zp9RtANr-mknJ->akTQA#)=Rwfqpy>@-$}U(c-GTZOF?q?0pzJ#W#m3%wcfv(YL#&! zSYuOF*4_8S#+puZ{MII48abaq>ZFnPO(w{A%0U`glKe(?&9MNozw?G?Ri7)VM@4IJ zzAaRR4PNkI&hV`3lchO55prC6G@kYKWO+`37b#V6W;`ca8!9GPlAPv5ljUS@8Pj^g zyd{hRGEK*C-RPr`#cJUTMC(BTV+AJ=U75TZS>|lsZ4BPcufCpHCrgK)58^RJ*(CK_}X=gU;rLj%&(;NTQj$HwMA zN(mf<;CV0>9C#XYn(hc&0KzCjY{{q(Yq{tk~EIdb5tXT;!_%pb!tk1^8& zuVsy7^3ZqEl?^K-B`rYPsf7KmX@>W|mXOpBlf}IWp|Wxz;O=W!ilyj+KOw9#laXZw zEJMlSPx8!G=u) zcoKK-O{mv>IJftE*pvsuw-;yIqjx?a?;7&Hv-g(pCeBzUzDuO_gImhNcjKw<2PewL zqPTQamK3*@&(t}~ZPfsKS{fd|)_t)@1U=-mw$iaU{=L_xHFt@t>v1jtZ>bBW3PCYRVRMy zt7@rhi%Ku(S{fdPZ_LJ$3zqX<)z*@lyL*1(?(+^cV8Z?^WW{m?MZ>N-(yqS5ju>7L zEk8SkpJxhcVNL(`+v`uXcJK6P;Ii~rNoP0LBO6JK-NIaAyScJPT-S-lu#jp25jcrd zu2U@aUgDUC@r|ZB$FMf?!ij@1_$714G(er7%DpKT<|f%x-oM5RH5F)4=S~=|xv?{0 zxQunMhC?-8J-fYyquXuhP7fvpt!QybA}MJ46|{;>mdSuxMp!~blu9Y+VKSAxs1ZY? zNpB>BBcy{=*a)*aL!pKpU7)}m6^bJyFhc_YbKL_d`;O#r9J?)8LE%=00cY~&=2$8< z+X}L)zF88UB&I2n;9PPLc2v1*s5nsj4f4J^dLJ4m*>i%y*GaGS6f_I)* zgbG>-49P?Q7Xf&0I3m}S&o^thrG|Wx;VHEZE?n27L=5#`@(5ALg&fAIlTMC~PuIKm zAHeFs9&Y2-Q3kV(Vi^MdM-v(3^Y3ZPnY0^V8M^we>3ixJ7Q2N(I^4bJT(m8KJ+gaX z95T>S+M-vU9My?0`JIXgFI4@RZ`fy(_RTikkcNr*@Wt3PqZPyKLNkA_@*Lq&NHKFlkC0Tcz8=YSX>Vxy=b@5=!v*Tn1t zl^5YSAlM^FjQFAsv>75|u4p&m2cJq*Ujp)YzOKc=wqckKgxl*4m3N^(`AV{Fw$ynl0+;(TbXy}@xXXQym#;hL^s%8 zOf|XKlP)%tY*cx&0b^yMkIAkyLmLAZV(A~8zkzMj610x8%TBzE)p}P_@xp5c>&&<{ z&x>t?>bGm!uYYFhPvMEgDV5C6GA1d@F-ev!!z&G*?|3E1@aY~lN2C1w93hNn(3Ji; zA$X-}0P#v(O4i0Jg^KN2>vF7+UGc&dap(G=MxIVF z+r`-V%|u``v(coO7PyiZS(Koc46`IGM~uDVcl1yjvsB)JSvp*D0iFh0#4P!*+zcyu z+j8d4+ZNJjkqf`dtu$C*oWv!aM`AmdR05aep%()?a(nUCVmpn_}LLb76k|H5QKJE!py56jfeR^Y}L z7SeMar*o}wIyg}@gWj?LmJ-J4q%~DILo22kt!_T2bA$)90h7CPFYB3uT&5GpojpC2 ztXe`0xb@$ATC;O{AQc-b4hmdr*HyoG4z98*_xe_ zaENCTw4?G3#0%mYxb$?9_AM`AbK<)qK}YS9b>lRId%tca5DHMi})M!gn(8j9PL3krHT1w zcebW1mDh}<7RIK#J}lSiNZnv;LWkdv!vS;u#4-s5=R?516#u55W_f$DsH7uiTubp%|Z=4XS9g$oD%-yV@?XI~H+;dn!qP`oR{$H}4G|HQ2R+M+mHiPLKYwgmche3Ta z8ot}%2)4!Xq)4S1y2Iwfts&UHYo6?qDb(2tK`^o-;!|^_VtGFNt|?yPRUi9r43XJd zcF)H4dkD^aM`J_v1C)bXm6iJuc~lO=?3*H6LJtzqp}s^pKBJ$@D8%kX>ZL-yOd-3J z`~!P?yuB?S2^U#H4-#;l-%~lhq91t>KB4bi@p;}nE)(HlSuzpkdKaeZQM%j_y=+o? zkix5GWc*3xV`0Y1c$G58dn-H|Q>VMu#{zfkj~6AjQ_;(m?K0T$gUW=rVr-6e(c?vz zsk~lSg{QSxFWfbcspm-)f#+v>go}CNUJIh`ZTzi>1#ZT`?MS$0A9FAwD>G5-!roWP zn#);%+wF_Dl23PvEXo+E7Tr8GJna%b)3St@ArLJUvKe>lB=f5zBjLItdYYZ+g=~(( z)jeXra|?NI^*{7iQ_n)4#;s6{fwCi97a|=UAG2F(V(fkiq7Sg*W8@|O*7;7@f$=~| z&5&Op%_#kVaXajSMvd1NdgJ!I`zVu@c2YBY6Uln2TFQ!E4%f_L-I@=*;F+!0mtYEN zh9vRcTAIe${ICm_kfmxbm19(x!Cwg(TmFGpnE6-Xg+^mbvle?ncs`>$Z?%RVBQVzR zdH_dA@xXidq-lW#!9k1d^%x>HQrH|aSE_lKD<81&#^!Lj4MO&OOs(8(%*bSCh!9JhUxh+Z=H4=@NN+sW(--IkD1rwJ2uYz1 zZOIvsf2GGbK@U&gq=0RDS1N>+Hyw(WERGEb=%mJ7tj7%}7z3JL6^zN){<=jnbp?Vx zJ99ygwqApi<&mO)n*v%ca^C- zz1lsmduFUE+9R*~@YEHb($i>EzwJX+g`ATas$bNr{q(90R7HFA)2lX2huEv_q8p>RUnHm@YBx~F1Grc$vX-KnZlH4E#cGw= zOHKna1C=s+^$1VfOH*mScP-{v5C0U)?==s}%|1penrBZO#^1MfaM96lO$+P;)NI$l zWk>x{dk}SGMlF8ByPb=Hcf9Cm)i(C*@qqJngM|%W3Qyb5V$|{?1<+e#{DJGFfec)K z47>3=1j1nac0YOieoo|an(=!f=^e-Kmp|J0U2)d&Tg$vLA41aj{c`8=`-(q)>tlh# z2@E)|iV#XDE}g6pgkalH5dFOj1WlXLro`9FsieuC%f8kbv>5 zP}x!sDoAc^wdN`JXTIhJJW5IiNHdQEuV+4n>6>@Pf@<2$J#kp-Bm+*E{owSh6~r z6CaySmyzO?MswUZl2=62SCJya2=1A!i<-qCUdTROlI&4)>=V`9YmRlfBPZF-E05;1 z=5mC1$GOQ*v2zyzuLIkM<0 zTs18D580(&e~-lLlBMV9#Bt5$c-Ga)_&Eh$XcfV0X2#Enmez)r6K*?l+|imKPib#X z5WmW+Y(Rd=YFvp9MqdIYj)|(;$9ZQ_92e|JIO~Qmr|KWddo_pw6_1IP2lx(0qQ$VgfMq_ z2Cy`^kYDuC2R*OE+Tyk}k^YZ6@LLDw0@{?+(^qCJBEC%(i-Je?N(3((O`rA` zM5prI4%2H#lZffjdLC+&PLEC{q<;$61EYSp325imAF!wM%_96l$th8lJGq`?VZFVc zG&7BOF3KCuG@|{D?L2kH5p$vn>y0$f%p*L#;mjl2-`LMnXCN^rs<7TT0yGneZ|MzZ zBGLXv7WH>V5_6&o>kYZ!Ff)nXym7`e^7UVh7@_2N!4F!DP$q3OLRqmvgz`foUg#yl z5Xv|r5K03v5sH~cT%D}ztu{#pU*L5N6QccP7V%krz0fboIdB(3Ld%^qCsG=3G;1{C=T@SAD*DvO6Yqyv1g17QGJ$-^~ zC9WZe1m;{m&!FB;;mFB}c#+M7XNHdPTN`>!>A^3P*SD1j6ZCB*@(6mtXUTy+oqj{V z=Qq8CZB6OoJ+}2z5Pt1rlWF9X>>s6 zAw!ZIFQw7JHdvZJ0a-e|m<(B#Mu!fjWn!uF=uljtMPsHC^RrKr(W%6=XB^qb&p1*U zN0~OvZOZ7hVcIi}8RTaiqm1KB5oVY&Iz^cFj1w;NGfq&($)*F-i;QO+2rG&rS*JFZ zDZ~ss-nO#(A80qY>ZlQu9qrsq+0jfZsdRG}_a&V18IY zMyCbSp0S{(U#9|P>|+WrF*2U9PVaq%b@vV!_L?ct9He{G^gbSObKL4Ck$uaqw$8sU8DFld??_=b?5jnERv!(-=(pAHl65Dmj>qFDy+? zU@07QHxI5)#-)4{TE0fgH`OTL3~D5J?acBVmcq!3gp*Uv$*G?jNz>_!zJn%9Y6Ubey5gE zobXuN^k^-S zd-+RGerx@Sn&O}AN^oV~^dyC^ zAgoL%fg|LM$uNG7Ezg|i=$re=oba}*Ufb=xIkrsdQCD6QwB-|+<~e;-p9qY`Y2+Mx z4xwPQ#HHNPn3zJ1!miDAkPb1(u{2tspFX%&hV5jEOh4N*eS$)UBKFl{!kNU~1&De7 zq_EuqF^hG+{oo?K{8yLIaeqZTJo%tjH*^h(?j%#4Jefnp_%e)QfyzZv0@LIjxbdq+QD}|-Q zTqK1s_$7ozlP)z^3cA~QbhdNHhL#K#^s5jzG*#`42XGSqmb)}b3TubgexoUyDo0?v-m15_PX$Yd&jB z*P74T^0k=DcOSn}Po}K2C-If`q++EE>EDnrM{*fCb~Kave$6CJX*M6P@n-Y!TG34L z=DXHB*-D>i6dnl{(l9H-(?+t*Z&T#R zFG5zlrEKJo>H(?U#BgIDcsCYk#X+R`ht2yGy?N33nEhOags@xgC$YA;R7n@$AU0n< z3A*K8M5(KlmK)_RR7=WJ^g;`EuXqSoEzdCVMkcgwcGWUN5{mO!us$k0=BPct{I17k*31| z>MNQ!&J-52ew*W7G7mRB)H*o$V9OdtDjuG34hbcu8ef(ghfA6*Tof5po-I1NDomGg zyiiuNo6Cl`!~?BR!=xMH-cvprk3oA%>oh^v?2AQ8_-e#o#;EMA<~2jt zi_0UzHf6MWBwYdVWJPowbB53#N`Z=xNpMv_U@HfTi_oN(etUTO3;dq$0m zDkOB_hX9uV36w9gTi7cW*==(1MRuV@`69c8y4dVDGR0G+WnR7lV_3 zp=6lrBh{=+q(3>D8VOJ%0oCXX7*?DfLy~)SL(mhqxi9rG+MW8#T%i;Ltud&1LdU_awYM~ud%Fzj2#!u}yzyIew~Wd0-X zu=aeof2r@1CH?qFSoE4*oY&{ys#lWvUC#byqt?d8U@vm&U;6v)g)FvZGrxG{SwG)J zSsH^s;sq<@Gwp?(Xf{mdzj4+=?oyV<;D7Og6|!YSTXpW#qh$V1-#lv}qm-pF*q;}y zkcZm~xlxaj`TNd}$)6l1IlN$ne6zifCmkls_MR1!S<2EF9Gk)9!uCRvdX&u1K07AM zTCI?;@`7QqY!Vg`8E!$hyQzjAPU=fQ}=SYbO)+&UWI` zCR{U>1_`GxU5nH!TB59Js0#9iL!h3;0UYB=ia)#DsrT0;`y0sNq>Vd5`5e8Tn_D z#oiVVw-?}m^XCx4Z?o!Mb1XMJ>svWm2wr9Bvz49GEtHzM^#jAPBf0_BE_7O89DdB> znt3Nh)6yZPK0)iV(yS+l8>zVWm~A0+@1wtD%4rmgv+(k7y55`q(nFWv0dtA2mfMzOpDVF_gJ;+so)HS{AFBwAZ=XqFFb3q_@`u~ zf($scHYMt0XjYnLlW*l@a2G+nIfgfgPWPi(F1kh;lld3=#djsu?S|^yW`_-xrJ?&# zxQ*8%t!}0MpHYi8wkj5BbnH`S*1ZD~sN0%~bgb~JN{M_A1 zvbnj7rLKWRZVJ~)SP}Q|U4ygKSFcZH^TrPNWYib%fN=9h za8&jYe!FEK;V?IjZ@cXoG%`&TPfih&^#N7DGu{G2z3pz2Kd68G50HUdTir+0?y9#w z7S*05`!HLR(!(%E9d6`4V4lj#4-_a{#R2nF7C&Gv%E}Lzi?WIX+RU7EBlmuIru{gN zl|!>pBjh%0)VJg{Y}EJVG;D<2g?&rj!oCla(l|6$bRax!lGv!av!H5paSw!c7W7T+55#%5e0PtP(Kq=-#Hnn?_`jwdZe8+UAJf2y9~F#HM+4TmYnW) z+*9ox$98sf_N%nlsM1%|y4?Wilkk!}@h^-A_`eH=J094iyTYbDAq_C5r@=;G8Nze? zcIQFSBK78YlCkJdN&fWb&r_oG?be8=pQ4yK7PA_oksqEl)jabDrxP!en1Fr880Mv? zb}>yPi$4H_>u#~pq>*2P!YzBi1}7~Tu5_;@mMVe3@#FYa;!I|lX@!}rk!@g{$vA*; z4=rAIjuJ~{e@%NEiFM>#6VLzhlqjRvgEWigNzJzUCqn`4e3X4V@kt1PGMgTkOVh5N z#FHQn`3Cp)^qtDp)97NP)%Mx-GEKl9f%C%l_f4)8z%iM=Kp)z4uA8Frn%e{uk5jh# z*L{Os8E*f6#3yk3H^D&vTMZQdJwPOuEA`*e70b;{-uUH4c2ky1hLJ5l^W{w%WR*=4 z3{*FB?^owu6lrXE|>kkT85mU#Y(L{ZN!}+R)#eQ{7_5rrcOc1)P z=3v$KmP1%g4m{NQ-022~Da3!&!EsPKk7X@4i_^)h3E^qak=i0H{Wt;xc`taPl}+^f zW!@2^`8J}37z??QkJax;Jg~%OCP0gW5ra>NnT0O13d-&$!x4-ZT~$+k2Ba1- zcpH@7enK}Tymv6V6yL=SCxbXZ>37w2Ud0;i`g)YE!OdU=q93^#Y{t#tLiE_zvZ*fG zIq~M}8ng9vIF-f3ad66%f)~`l!Lp(iRlm$IE&jCNV|n}PM7M?a7 zn)>e*c!V26OjNxw#*|b~&C`p0Z3mqO#ULiL=e8cX6GkfIF0|VA<=Y<^H5Ov z&zDb!3a2RTxPZnzyW7whM-ViA3;>P4cd?{_NVO$K?f|48E)^Qr5%kfJWWAI36F!r! zFE%{-o&k@pC*kp86@AqXBn1c1lixmb;X$aqVP`~Z;dYIs~t(8r^`<}`S8O%HZ> z{OYCCw?|Jj^55hcbMYx&KYq2v$Er;N7nw#9?RGza0*B{5Sjx( zZQw2g`Lh7&(P+FRBi9r3(LRmWpDEFv>3fG*^X*-JdbA5b`^qz*eg4){&~D{>pnU}3 zqrF2ZUVr5U?Sn3sXR*)+#6WwGfqVpKS?OP+0K>XTFhhK&I)|DPEl4ldA>`P|z%!uT z2eiM>v(vTqLG(0cs7>2j`!#8FGzND7e6*z_0@}(8+M8YM0|TKw0MK4xAb&d`-C82F zA0?O}*3+TgCw-Aad&;uYxAp+gewb&cL%V{lawoKlwcTzEUI*~e9;g(rzw(0iFc-VU zKxhO2vHI0@;?bk-!)XNy`mj$9pjxcH4IMw=5Gw`3k_}a zXEio-0}&?8RVB~aqzPw~ni3s~x$sE$V7b`}BfsUFy_aiSxj~Ms;%$!GA|pse1((|~ zX!~=BSoOSoj*QeB?*jswkG=j89#WsO3?TB78QO>m|dPP*D*Ya-WAdA__q z@;*=7s`Mu!ew7{}NR@sE@T;^?DPH6c2Kv8jAoR40t#z>%0k{C0Z6NXtApJ6HMKbbj zf_{~B26{?|#nSIwWmUR)>FKL9k}CaB-1uQt`W;W(sx*d(U!^jFROxR4ewA)l ziWeDWp#P5zg#O;eYFunQfGQOmh};55A7#2vMlK+j=_QVVPpQ(#^ru~w7A`sc&>3~o z^7JtCp2IV8FF}ar0RWT#Ke^ar1|lg-jMzN?L&IY%DLx)Lcs&J=QR$ywd8%)x;J=;0 zx6}KVqTVNeuFmO`W(DlZ_K@0Aza4%M!Sr%2Cpf*nVJ(BY46p7wGlyp>^VXDk@5Hb$qm!H#=xx1GtaJFfm+wf6pKy~XgElHl-o)l@4^1F` zaA3Vml(04tQlpeZr}xwCJS*YhMP!aiB?QN*JgT6LaprV>j?Ydnt}hGR#M%7gwqnLRw~J9A zF&031!@_x&A-gJSC<%`^LSqExIAn@elCb}R4OJtE`u zDc6+ALG>@{N&glBzS2|qQ`y#Caqp0%xRReDyv<*#MUiveWdGa-zApLc0@o2Z=14}a zB@uB4DjUP>@nJ^tX9?jP2BIn z`$-e#nzAGm7Bbo|Tl0Ev$*k|~^n-UpGqS*Xs|J%YX;&E6W9LNnvZ&``6P+6Hlh9+6LIv#A(Ooj(PP&5 zu_Suoy7fd?mV20N9ZnR!ROY=IFXWQ!bzDV)v1?i3`)DuexSd;ENO)QLKy;Z6GR$Y` z8huNWZoij0bR-_#SjD(yJ3K2#Iu{_Q%or|xTFs_1XyO71=ZDe`m`Q$4eXr(91Xhc1 z)l4$frN^z&X?$yRCKpvXLp8 z6n6BU2-+rGHySUhv!<(B+mZ(ZBSD<&>&N`QUtmK}4KYB)23S@fk50DW>zer{5X5Y1 zg^A}0t8w}m%LMgA&&iDAJ?Khk54TJrYX}iH4{DCqqjT zOJTuW!CjVhhKatT786EMyG=6t0Ai%>r3a8P`tp1<4&n#x*2(gN1=2sLI4He>?(u`} ze#wJ<6stIRvOHhadN+&faQMYt#YdCr$92P<%p6-%XF)ilMkU01VWZb3&sU?W3Zuap z;h2z+NS_3-7XbS+V|7}gK3G-#Os&_EdNVy!CX3fEd|D&@alexh>Z?iV<1d=rQWp)6 z%06atsK?wK9YE|)DX}7C?7;9enQCdytTzNg>;9<4!cFM0 zjh(5&WCTXyaxM5YVWO{Wu zlq>*w#w-(RncQjKLYl_-lO*G=G*S3Ihnx66Lvu-n>db()X6iOej(1rpi)L_P*$sEa&FESwHSX|BGHI|TKTV~QUQp3I9T3fE-NOcbugGPEBj3K-Oz56|%QU-Q`xC5HQO%X>Q9 z=ZJ=4-cI`fH@^eZ{8?({P8+V(I}7Zx)}1z7%Xiv6u$4P))K>58BWv%{os3$n+ZjLn zy~!V2ozb|o8@-voeUkVeL31g07e5udq{=jYmsFXi?BcjggWC&m)oaqa1@tJVDN=6ce2p+dOK+fB!7oT=aGx~=qHrf>AkV^Ubkeb3HGkI*-! z##j)cYrVx~*tmzEcs&98oyy}FYL1OEER_GLtOiwB)&*Y`c0bqJxJ^wW^>+~9BCea# zO*aftM}SM>g>H!IezC)wr9u}E?12imh_H+bVe0Xj!NUKPQI?~`clo}Z5g4D5ie8dH z)BEt|c;N>L4g@`00eBvba$}jcW+E&7!@D0;9#2*F&q@@&gA;~?bZ~K(iw5)p;{l}j z&9tF%Cw)=8l%q)ZP~??+kl#_chdG03vNn2$+lUfHZ=;|~Zd-H;uVAO(?;Z-PVPyix zpy1s<+v^?FSt{+bAV%4-GJa%S}!guW0$UlX1-R14F?w5%%Mp+0%5!+j12 z*$P*kN~%L_{A!1@!>hvKRS8}oJ084f*}S#-tw5O

    D7#V7%0M^K?MHcs|4y>}ib z_at!t;SUw_Q^_##^?)15?i{e;_SntSe8!6JF?OM6jjg+l!q-=Fmx7CdlE~VB;+3H5hRyR^Mx{HA3aGH@K5@G1ek~BGna8Y+E3kioN+I%=7Tt!iA3N7RYe2+s1^;)<%Y)$c9w2eIH@qR zrf2qv9oNitbX>PwZl}Wm`D<0X<8B+<#>m7A^YF|ur8f*y9&SlGu`*g`j5GLu5-WpZ zvavD~Rc*uYvY`&k|HJ&t9`P^xCl0rJJ72OX7`uaoT{Kh}PYhKCcrmeB8Js6ItwoD18nGW~73}CU8`22vlYa zL~00Q4(^QMbUf}=z&&fP3rT8)HIfYA`)iX{F<2LtsWu^IszT#&6H*Fpqi10d3s2XH zoe@udxmYh1k|AGBHMyEHN9AtItY+~o?76W)*j%+k*&R!R;IxgU0U;Jjj1JywGdfra zR?6&Cv5M`rr){F%<0k4oZld1fChA?vRJqGd)Vth7y~|B{yWB**%T3g~+(f<0P1Jkb zM7_sN)O*}Sz31ai)D^q4G*j=knR>U))VqD=9e2lH6HjAy2q#x4Z%<~XcJ-;GKANfb zIHVn76%MgV5YtQzVw$OU*-X8wt3c&0H&avB)6dl9hFyhWSGn7!>JHdd8B^0d@kekp zc<_V9cJa3*o*Lhuo(En5?cjr~l{H%gk_haJr>aF2+{601@w;1Kk~QOs^@rzP6hxXw z8BBdUnEh0z+}HRW6<;GwBgf@xR^yIiHtELU9Af9!Y0~a@4;#V$Om6+g!^hh;V2Rs^ zE+ez^#hgfek4bxRxbDv+iDh*B&0+?jP1=8TllErD$Gf6)je^t#Jxrnw|^8+=q9}k zq6w}}E@TQon#9=hud)5mttcEKd)>}k(Y=o5_d1&2>&R!Xqxrp#=Jz_9-}}+FqODrm zTSd*|TSYHZTA}78@Evb-oWC`Y!~dQ6doN@=x_qywcXY*GxBuKbfbZn$!{zqj3j1(n z+lMuOZ=X0!?*DXW?Lt_G^_=IdL8UE#J*p}Q9$fz%yc_ofT8~(8i zIgH3J(m4S_U}-g^>r`Z*GHgyAJo@SQ{DJ!q_`X<~032dY=W&FLmfQJEfm2_YsKtOs}LhJb*Xe&y!sx^lGTi;jn<{YGla z2)pJ%qu8e3A@38lP*?~1MyNFL0^+_8H-Y&iS<=s6jM{`V_qtfGB=f)d{8``ZsVt4b zR{;8#p4?tYM30jBum0t%h5S@m8iP#>{6Yq{7cyIqlKFklUdX;bTOnU3r(v@1Q*G60 z)uUwo^#1^ScteyaOJndCykLd=uDy_J^eCDCoqs!PAyH-Fez3>=LMqz}`LrG-^DqAG zSqs_r8!P0sU;Bkz)?UbFJxb=^DDdIcx!4tQKftQ9v1ePG^l*jDe(bD;+^8&#!Q}ue ze!+608xi?ctWAHOP(m!m*1}fJnLlSl9 zE}Sp0=(K#=Y{yo$RHLJdN<+&H2c2QqGy5Ic9QD$h2@ajEGnWqp1tR`?ccHd~6a zz?v8y9BgyL>FeRGatofyE95CV9o&Ul2Dl--d`-d;ZbsJc_RV&Ln_1FL)X#$6V3PjE zs@F4;{uumNtZ=msgvAKPxGf~ruZXYg#hZe&X8xtRL>p-eYZvpgZsr|3g|{NL@|f8# zS05{Q`x<8EV`jfxek_M$ukMw{%#6AESf5+2VUas_cHW9ZvD~BlR2=Qf@A#ty{7yLv zZ`BBI#YAp<;~zQn#8^51B!=ln-5;~+=N<#Q(dEa?PPyWk*(p~Z(}|pYyxcxsVIQw- z`?%X5qYZ>F?$z|>N;+>F1X2c*1A)Xi)hT=_7Fexbg9o$j%Jhf6`8NDUx7-6K?~K21 zJPYa(yIdI?a9Mka6bp2UhBw@sSZ9pu@dcMxk^ea!p~HbI4-s5%l>p0S-RUif75d6F zg{?wF7V?3Y*`j3RmY@$)Ef;h?k1l7~c;U1Pak{2`>-G4*MsCUbaa@DTV=_EF)igaD zC*IetK>utTy)Bl?{aU>6fW$e0wN`nI8=d@yQ-5hGs8}c6xBUbgTkTuLjnOXJ3p<%* zdkcM-%rY*&v>jxYjY0(0EwdG7C+tL)66%SgnSz9`lmlc0mhfYFTlFh}rI<4WmSWD3 z;=zuUBd`QiBCr&5hQLzH83Icj zj6c1!60ttWRS3CCIku>7!>y_&hCKfkQ3*nPM<^ShdUj;zi9o!!v7?bZ-_bAPp!doo z&mZzNCOezdn8r5BDYp%XvcMJ)&uwKU@rC(}iIx}&RYmEHv}lA_e~&S-+m*>(fO$8? z0yqmlX#*f73V#D|Ged!suI{8{c8<7cj}>l-6)tB0$y^Z(PTJy5;3gaVYhdT)%hnN1 z;+XsZRm2FS;}#dhHDdfNE;|XmVj>!^I+`=-vzk(6FQfU=CP+BpTpYh-+=r~G+N1F) zx{no}yuFQ6E=ej3VUnawS9%-$9fFJ*5FNwBqr7}(iD#B6M# z)zXi!v1R&efeKong7Ga-!ITz^q?XXOt>I}Bg0$XZNXb6yW1Oeb8r+*@yIHrH4Uewe zi$SBlRjzMU=v$R-->Ui*o^!)BKbAjL?Pa+vY#}}~x6(7~*vF#QvNS+XH9#B(6M;2l zIw+C(H{bEMDiEACu zF>{JwWvJ&uG*Spc84dHRg(3;&Zm&t^S2*v!>bg{XP}XoSw}G{+M`=UOa8Ld}6kdw; zRXxtf>v4Ngw0h$8W$o7Q#ASW8hyzlIE0H+P)%HuMNVjCah?MVU@m)>Z+SA*99@z3D zkni|vc-nU%ijVyIU|z?0Ov|nIlGEeVxAg5;5)Dp`A-r;PPbv1AoYndEn)|4E$und^ z3h?7DF_d%aHYwsAS3L<$vd2xGB$4cQB;oaQ8ZSq6 zN2yE4e5)tQohy6=rRscEA#5EHxX82-Axrjh*#ahtUaH#NdePUzeX^TQN_;b3v~^;h zN*SKa-ZsL^-YoaaMO$fI7B{t zmwu?wwa$HkX2K`)6rAt1JN3(2qiZhf?V8Kd=*WTfQVHowYrta@cb;9tQr zvR=p`f(FV*V4vG|Do^uTumFP zdq`ULQfs}KkkneicLH_~>rBnQB=vWnC`A#%6wilozk|1-q@m?9tl|(}7ZhbIg^B|lj%a+4%_Px{R0^SDExvU96hY083gu+j74j%j!L4Rz|BuL870IqJ4smkZ&|4t9Q$OA6+CyRw1ak1xJ?6(H; ze`JZpa{=i;<*07M2>Nw9jbYdVbG?~f{|T#G$?T4Gd$LpAl05wgb*uYHTiu2c^y~IT zg4C@D;MXmxd|rM+54^~gF7_>pg@(G=cU|l{1NoO&VsR-Ty^e`J8EKi_RySGybh6As zMT{Dx-_NqTeeZtNEkmC3UESKq^JhGDKB_FF8p!Nral2=21P{HH8dyakZn&#IA(Oe2`-!qZh#l}SfjHD8_8u?y>6 zHCMeLWEh1_Jk4}r=UIF*qQ6eF$Y>{7yanLTA|nVgZzwOd`L2sivslRFkY0YdCFXw* zkRD+8e}ECJ#a^>m=y@00>SB!s@*lRu;s!vvoMk5&xrJb6>Zm(S-Bg40 zkB?j3cGh8Sha(-EAe&XA@bHz^HDbHP6rmo83*X=0t0T7&ofg`*)u}Ol#soz>GbiaZ8$(ES!0n&3=c9M~62>SRBopu`hg=YGh5AvMjZ)dV7 zp9SgO|8NHT#$J2YooJcasQu7XUOxH0geH)b`GoBQfL)1e8xVTJ1;I_zf#=)7qV65b|TwVAotz;DD5*g z@|&cF0?my+J6H<#Q89QV#wh9pnc}I^<2eYv-_r{$Y5Of3I`L#P2gO3XfQVT}N?Scf z#7rY?m#4Zrm&K@-bmb9P@tx_>EW-NUP=mfd9rEN5zn47eqYuf#@snVPg=0z4sTPid ze=FzESf@b9=7SjjS!y5(V3Na{v(C4FxiKaSzj*Ry+2`@;0&8dAo)Hu#@P_(h3{cgn zHRzOBGV*NIY^0w)&hq2S#~}8fO2-V&G`jyn?w#9R6D!tJKLz^fqn`oJ zP*U9|6BBjcP=n3{M;p|U#M2+V*k%TKKFhQ-gX~JknL%##I+#Houtl)l46=bZTNW(V z8ui4?An#Hr8JzU1|Knzm4_li(?)KHR^<2O0<{7N>g}4jM*i;15r2HqFL0K1&g z(h}`vkOS0CXEKA-SGW(bvl*lz({2X2>?(cB*&%B0uMcQ{-pt!=W{|(W#+gA1G2aYQ zpZ3ilts2e@ay}W_%^>TE#oEmvlfi%ZX9m;Q(Dk(mCOAy6TvfxfzGBBGgTxasP~+s1 zq-3tu4&KsGD!y6C$w9*f!cQEh>z-p3Rw1J-LojL?`bS&_GuE`0^n4>k?}J$3KJ*VB zyN}lnZ;`B9Mz84YaQ7LRROOh5Y;IkwFwG5uoF4s-tavG7>|a%@5SM3$1}VgGK(hZp zLUKw7Sq)Z@uAQxB;har4Fj~eD9f*_b-un%={7>1t&Q=Q9-x5Zt<+GLo1+|~{#p(s= znyIrS({L2Czzqy3s>P_bx_}9dN%Bd{_Lv=XI}6Ci9Wim>vtG~q4wV?hTGLy^1u$j- z`IjrS*kCFn4j$_>EFkBTq$waq`RImz!G=9y^@&EPNOYb-XE-h4t46F8*Tz`->&_A~ zIm|2}6IjgP=?+UsS0+4tC%i;>BY9I}-@c$jdn?g5&E~8>uuneB>_V&<9(kFMT?=UT zQ?qIQuy)`p)_i=!nh)J+qfqi$Gor)6HhUvnw{J8hwZ3g-4Sx+Fm@Si`4wenv@Q&8u z)-voEbcyfVvA|I-3C8mmF6#mZvB0L)RhkS59nNO<_>_Gr=2QtgcjL*ern;(cgtsV9 zI^LolY$nkl#GWKP>)kKw@golX)D?Zyz*dD+uggtZttOJuvri1M05W>tcn|ekP*fMH z`)opmj?_TvS~ZxuZJeI_jV**k9MG$`g}IX3PLW06=>0~a;oC-{oi5u*AzHPzr8}#R zXi9x2{Pj5@IZ6;rCIAzGy`tcH3!?jp-50@(ZRC@d6JfYP-1`YqVy(f)+RWbO5_gJ0 zFMdf>Ssj5`PqK~tcha40WFj>j-P|v=~w1nQ%=~VVne!FEK^$jC;WEx1+D}3a5Un9$Kr`AJBlT`yjBfLWC#9XJn)gtBeA>*Pm}t3OY&o&-RoR1_1#75@HP98blYSeX(*gx9eGBaPHP+~YoLGW zOulWsQ`8);NpL-wtR-D9yH>S^3|lwL`~Rry)%b>pdJ4cZGDlJn>~<5K+b2U*+rYn!-y?Kyh;bQ6KR&?8A6EP@F5 z3vxjJ(tg-dBZZ6?7Aw1^3^>4x{Fn zG$lSD$nv(&K>i8?k;w-7ce8Sf|K7l$Zvw(~FZI^wdaulTgQ*mqS1cpJ_Dia(iJF!my2JEQWs`X(d&or5G1)^llzEHk zt!4b}f=sx@htO6nu7zk#zidj;bQq2WPEtv=IoIqVDW__;Xfs?l>a!v>{2$7OWKTl& zkhxc?r!}6qlyqVzL$5yM&lq}L@5nAfl3K%&-5S|L+RKHlZH8XEv4?y`~qqFa4!v&j=W1M_i3A`Q_-h7F)=TZH^an?7ZbB4T=y5!+PDLZo@EQU;S9Er z>Od&(K|ldA^FYgmj1-5`}O07a{o@Y_SelTl&QHlD0wOb>fA- z@t15A-$mxMMdYR7lj?<0BlfXo4rvU8jXKOB8BrK~A!EsyLu!T9KW;%%epWHYS)vf- z5MP*y$|?_V7nQ(Ym7GQGRp%K>8EZ(Dks)9WQLG6>nSeo6ArP=LRn%y6hrP%}9JbsT^L+&wa z$UVL_E?a}NNhfR zTSzJE$CFG7r%c|gc&9OhY_Wk*-QsqhEsk(njG`-BjH0Vs+|IM*qwPH35UIRjhLCTV zA>+^BLe|s=IPl}RU=g~JfmltW>>(TM_#l9Eg-)*TIBl<&Bq*0FFR;qqShYJDY`87q zj@A4Fwfc;tm2TWL$$~gBi=}+sL=VT8 zTp-c$u#9^=l~kY~4$HX1Q&NlqzATb44A}9RhzP=#0Fv{!ZaF2-%>B355ax6`L3{48 z%n4fm{gnuNX2_A~AwqTw=zl1w<^v7@sxLwcd?@DItfUwB_iq8suRPxj2vh!Ka3l>{bEHdn#y=yl;;bkA z_j>01AwH!|VhFrLbDOQ4yFLM1HmNQ76!0!W)y4l{p%lkBR#?0U$d zBD=xFgY{)6>Jvqas`d;|WnY4037jGLmNPRLjAZGWy+Oa_Y&>Nj!^RVUM!iXF*?1zj zEob8?`xrK!fa(o{uMYRgUC&R&dhA~Mj9-u4OP?w0(dDi{-?swSK^3?TsyHqS6|(iU zY<(?TU$ViIFtKf@n%4TQu;e?uoUPL0R$950RzYd1#0LGwH%L>sqI`o)Un(j#$n-^T z^tCto+8cbNt>8b#i&jkJ_@`Not^2GPQGq2^*Cu`|vUN{qH~)st6)3#Zargp_>-}kMvi#CK{yu zF}}bSoPJvy3#_poTi&6^mb38Cx2VYO`xU5_ruG>ip z=UWg|yl^FKs6QNc+C8k&{fCiUX~S`wPN0@e>Y;;~=C>iZb-IS7+3sguS;b{Od7nc1 zx4O+c#+~$Wm>XnV`|7O~{FJYdsYK-p8P8O&kflWF3Ry~&ujnazi4}chFR@}UV-fp? zil(lN#HIoUqHer7c_1<>8mV#$)fvY%8Hg(JsXdDobCoK=zofH2eKQ z0dW;jt^z8ofb4bZk9F1`>#RT4sXr)3Ir}OnCAO9GEGLN*S$Y?`A(fpOQq*OkD6&x$ zxzG$Q8>(7dZ@kS?r#Ea=ti>9MHkovND*KbT(7vIQ>%OJrb?U8UTx1>Rh`a7jBqg}S zxUd;t9kEolKR#s8q`|=~%odGd9SbxLT!x~U8y{R+1g#01QNyA0VSYP&@|#YYJ68X{>;FPM@L~QhRzreh=qyG!;k6Rm__H*C=MH=G4|3!Glev#U}i<>rdNi&`5k64Ls79tP=R zYyC)zZLwDC(pD zbJlx1>_%M?=YkZ4SW)n-_c;W(%Xl&)t<5dbacv1g-3`6Gbm@Tv&v-f(Ft(8naEHFT zzer0v?56bBK&tbvf$8nX4Fzo`?%`*%6B;s#TWFV2+;%&IT9zFaZX?Cm4IBgKYDp0- zkS+AI%y*TD4WzYxku07Ph=rp7h?vEq8DV11o@m7+3)e-KINlXd6F7=;pgkcW#26@uBU3 z-RejF3*@C{ETmg`&pWh*)wYt>2+$er8kNQ$_H{65;FTC@(g)IG{74jq*tdQ%P3R$cuKYoqMI(8ch9VQQw!3rsCD&!Q0 z$sfLZ+(N#qBz58cfU^}+w>;k`LluRcjGK;I$W=;G7e12=R>+v9LatDhAMeTa;W*7X zpo>ObcxP2mNUx?sKDIkZe1yQU`=qBUw`Y23*SYQ{!nHd zqf{;SPZpf(c-$PFqJ|&qf$`}LbInf8vW9Lur6qpklC_e=66@T+zSPjb3#6Rm8nRMO zuQ_0Eoo_~}_fx-h{zkOsTaITk^4!2J;K#>WZW!I&h2=XNhNWhUrc62VyNrp*! z(1`Vc>6^Sc0WNp#3f;Y~j!P{Ee(_`yeh5Q4Je%VLi4vu=u-0-}^GlYqqeC@^k>=TH z+c&l#%@aDb(b>^ybar$a?a(l=(QaWw8=W1UMrTK-@%W^9-M>E8{p(|{Y3C06*zR8+ zvk^D9qw_<1CqQJ9|AwE+A)v6)P6Um1FsN#D_H!C_DYHs3tYcNHQq1ZEl{$WELNC;M zC=EX^y2fG#MzVA|zU7J1#YqekL0*u#5MEW*XUdV}Rp$;)DbBKNGft|rpMzZS+pdiH zT&}U7~R=99#c&soxu|-cs-T5_%%&@ zjU}(q?B~EMMM#=~;4IJXu?7Y5)YvN_82dS^Q@q4dP#@UOnVyh!CvM_!_n*>W=g;`A z*w1NyNvae9N9^Z_wo1!&z_xLQb_7FiD(Rg#m~!U1r;Ho=g#%JE`#H|`?uX9iw~go{ z#lbMz)2jWP9IuhX;9O&!!dtY5pR0NJS@v`0I{P_#AG~PjVrM^Rv9q7E*xAon?Cj?( zcJ^}?JNr3{8Lu6x?7`?^_F!~14@S#=j$VxZw1QyR&za9io)2ZFdcN7u$vxrBng?w*CuCEKGFLMv zu%81D>@ZVOUAX)hcO;SN%Tz!hH)lUbYc7fp2~h#-9YKL9`DQb=Xex8hK^v`H3Inml z%#UP0X9rEhfO0T3j4cY{WtLyT@=xydg3IdgK0E{1(zCrB{? zq!OjMHQMoRQw6&eqz?{qJMvsnche84#3pfE7G6F0Av-aGS^imwi-xY!fEc;Tna>f+ zrNh8gB0>&b)luZ&RnC0Qs^hP@tbVH*1gjYY!&Zw1xfG1uAHWbu-9`aN*k{xkocLD=D`os{EFtGF5 z97cqP^6{rJuv26PcHTOgft_NF5p)d(*UNOysPAE5r{nPq>|Eg;!@$nYKVo3#!r34P z_rB2v$FBmNWe9B$ma|vBvmaAC;m`MXO7KHs&-Y8Sh~`c0II}gqGlOMnXO@}TslW`N z_vVbPSlX#5c+J^l>AkcuJ!HD15=3gO@WPj;DW)zwg`2tf*4$}+hZFVi=MBUjb-oz@ zRL7q-5Pt@cy<<*$w8Tf_%xSr|ZfWP&uX1x55<5giFw+B+Wof6rxkVdC&#ntEyfu%= z6r8-pI|qP?j^~|km4Vm{1M!)F?0c^Xk>B9VsjIh!$i3N!L*(vei2SE`G>twQF4Mo7 z$K@|L!R227aQUP2Ei@3DVj%ucK(^9w@o@&YwDN4dt2Fz-E7mWYQtFqS?*Bs$9jE(` zS%VApdCa)Zyqs~JTu+?{#YCSBUeX%?eY%Z~xUmDk*VR{iQz2fN((?JXIA5XpBD>8O zUkAVp#dbjUvDxa%zv9e&)7EU$2+8cL(+vGChoL`#7t*X4^RQzt^{U@0-eN zGxTeSJqr32P@#@Mzl0#rzX%YZe~v=DGNlFmGUw}OAabdJcxM3UUkJ!{GW557BaeP7 z@4_QWCiHv%$9n&4@I{h}ff`ABJFb1p4m_A?)V>0`%Wfh*zexpuf%eqUMV< znlJt~0Q5zZ%ic6oz5hJUp!Zuf3?wA8WBzUEZ%GP$8Mu-ag{K_)d5bx5hdzdZN^vo) z<~K78)XBy?COR%n!G+_gcry(2W^Qu4*Vna=NwF9w?OFq1Ar-c>72=g`H4t0je0vQ< zHaOo2l*&ZkY`*xv0aW!aAbZaYwbH|xnQ zJDG3V1vrDIb;L>2N&rFAPE$HBcBvw~SZC+!ZNA8P&ezxZE;bMkTVVWrKz0UezaLwk z$TzK3t3YZ&_Wh~WwEovLADh#OVFc#K=7Yr2Hpb?|xQ;e9&!N7SV{_g$`BwfNC#`%H z5RA>I6ylXFH4yuk^Q|!uneBY<0T`Q$%@_Z@`Qmc{*)?n_e(ZLfxewTyQ6RM?+s3u> z<*S=7Aah+S^UL=?h&{>zG8CfT5erBkf@sY3fM5YBSBO`pw0yF(^W9+}a-)Ixl>ol# zb%1OqL;p0K0s5`l1QL?j-Y?lldb&@u@mEho^QpC)$WJl;_EhA@-}5+w@%JcB8Z#LX zjKA?p=fz%9gcqCSd^5}!dD{6FINyr~;nW=`Mgi5MSnh72?H4 z7%2Odfyn&^;&I*7`7Wfb}`NX{Z=gk3CrxCr?khUNBCaQ*Rf_u>}$BRyl)_u z%Vs?bp&b!~LSU&Ww`wEdk;Ao-T@VCMvHc~o)A`(f8VeD~>K6uNv+N{(Y<1I~IeKy{ zwu)4DHUehg^W0a3+4NvN&Kg#&pG7BC=F#zRg3eC%ygn%0sV?zW;U13vs0RmktKq=VccV+7Nl^5P~C; z_v}5e_n_Wi>wV)5gAxyZkl+@P_Ld~PMZ80r^bRdG@*`_V z92hwA<16qaqA8vO#nz}kdjHJO)z~ZH`Xma`Lxkvg_MHKl~45YIL2Rpf+PR(2uoaK%Py$3dl@J!hQ$RIDO332H^Ysf^RAA(MBgI$Ghl(|r zw{r)-!T)0Z>!1PArUk+1S%%bP;sdf0R>|7hIueoJhY z2y8f$<*PvjxaaEP!H` zS^&i?wE*(m42qgNd~Jef4QpPZer2463?Bi*cQyP~7{LV_+ncSxp?0ZUFhnzj!QCsX z#jbQ`DigY1*2XiJ{{mbZd0`2;ghauI-RIHY*87?Er$SFY<3!|C+d@EZ7doByL8A&P zKzZgg3p#^x^(yQcSj*x`8>MP5Z=W`DSH#*3e-RQDjFY(_IHCwdh45L}=oi8}dha>; zgi&X~m(&{2Os)q;HEJgAD$rXTO_hxS;sS6{<}J9{0ske8GM`?a}3_Wmv3oEH`4$1~#I9=kc$D@k4WyJRp-{+=tO zF5I0c{jot;C{=5t@Csyfpd-I+HcP^3lG&}! z?XpYtPIlMFXG7?ol`Pnv#B_Jo%m7&u?1Z~}soO3Q2)&t#CB7N?E)Eu%==daZOYAs5 z1hvhn?O=+5PxmECDtflmI!n zQVM+BObJRk$&de5$-K4n$`YmIl?7VYeND3T1F5bRd?2#6P8ULBhe3>CsVw+2MWEF$ zGc-cvpNj27>0yS+5+QqFi4N}~sT2tjQLNP_MDx4_Jj2s{E1yf0N|hKL|AO|*+GRh{ zI+TE~Sw3U<8x1iQNGU|C9(AHCA5lH^4alintTx3#20bML)0wWHQ$lr(EbH{Ngku8} zjN^*iSenc0^!>WwR^e)?qyyAak+?e(?wDUO;gq@f+#_s49pqcNPnpbI?HIpX^!YsW zd=4dHJ!eAaI!+giw)wINl@P78i*OMM-Rd1{xUmu!h1#2JS|gkE;E;aXg&G6nP#bdi z$XucFt8LT46MmU&KZ#DQzQ{AHWc(>t7hJ5pN7kp0png)l#j3X`v;!_ghl(9=shSyo z+G(nN19zHEXw^=M>2*l$G@ZVIJ53q1Y9~yr%7y&D&i_VE41+^E;L(S6d}`xQsqzmU zGpj+f^wXei@`a$@sXf@{3_wY+PmQQd?bN{qG;#)@cA9b@=pPlYRt-Rb7w_`~!}Z87 zVEnM>If06g=sqQ?azU4dLUe2;^78O{LkswAXD`Z0Y#swp@MGU$vZV^vBnq}9%XdV_ zJR&heiKJTln}(u|ZxGPM&Ijz16C zAy$Sb@w-!NWDWEL7U*Iq8qslYgLwiIhLR2EbQHXYxPZ_UHVZR-7~a#P4ap(j;+Xw9Xl{9cI?n>7cphC8pxdLDmi<) zR}negZHE=QUCh_*V!m$Ybf>pVHb=+Y!P#faUCrbHqFut@GlU}FF%bKPf%rg&UP$Pr z484JdUe$K+s0?KloE6psv%wWLKBSJjd-sCM{cN!cCyCIVpSMI!;LSCqH# z?yLHBe>MF|i7PesD)i`UyU!@^ z=$J1O+HfnwSuZ;@?V&u=(2({vCXlfzMKg9T+IpYl_E38a$_-dFj1VAWBMw#HiPc0N z0@AgM1+3k*vdIT;f5oj)u}#z7NVGS4<6hYjS%;9GAbC4k{>g~1AgQKV!VX-A-`J+8 z7jbRk>M(qAZZi%ptie2KxC@!Nl(%=wG~2g>)XpH?QF2^iIk@lI`<|nj7uhXy_UqM( zq1|&70SFWIc0J|*Uu^6t?jKNOUm>*)JmVn?*UIU|?=cE7wm-EYhwpN}#{ke%Y7E53 z04@7b3At+C8 z0;PNVIF#~KCof(}5HYs`bmfN=)gNcd>!Gxu_ig7JW4_1_48#XoVC)t^w#ab)0?u5w zwPfXhT(+mf`H2f1xydm^J2uC81yL<=9ttT=-PjE0J_LdD^?(59a-86-wBVd}zB|kp zxzRxUN(+o#2gp|aMg4pl&RjpYhI7a4*gsf5ukF?x=g!S>{&K504}h(B1kM+V_gEMH z3LwDwOE|$#xO2At3B&m^!`X3c zs*AgTbDkuA2T}Ahw7+Ux#I(w;dFUc`w>-NB)XND7#&a=FLM{Yoyg__C8z+tVsv^8t zSLaKcFLH_V-Dn_ur3J>@nJ@ljKz7le)wJ~&=9@ODC8vfqWOq-prhW4QeU4nyx;1aw zGeo%|6toG_m^T;2NW1*Q8M=r{0`|<7Zu$1Sj+6Gh4G7vZA1CeEr3f$fmh&AjU*vt~ zJDH-e^uEIa<1;KUz8R1`@TA)FFwS6jwZfjMF7B2saqSs@e)IP9Y~G$VL>;p|?_7{? z&;Q{JzRy^kwCCr5pgs2~o!8@!itu9NobOrlMSkskFFD^N1M#~oF#Z@ITW0OK0%vZD zx8zn-7x&B#`n`RhSIU}Cmn&&co=66elfET3Yb5 z^DQu6QRWhp`Sso~yeK;)6*&K99YhLyn$1snF!2GgZY1hlJ>%ly~URTxhzGS1bOdx!ijY z#BL6AH)JP{dJS3hR~0zGtknOjbLRCnFL#Du?vf11-gh_F<7;MjuIcrBS0k|g54R)E zpciSC!@joGX;V|=c={-NBA4||T2stGLs=Ek(QyrojfA%=QFEA>;c`L)F~hHN9K#61 z3`^IDbna_3joa=lX%~xtSFnhKC^NC34kYjwCBwpNGBk!y9htX`|bW$`+G zhVgbHR8^i%S2|8YWW|SVi)?jKz801bd)wYIX zQUveUelb^*(NP3zmBo)A?5(MD%$&27q%Pc(4EoE~G!-&kQGWca%a2>gx^gRI1R1Q5 zuQV01Mp1tJqvIFyvXXF)BZC#Pk9it2=bwu5%JAc_&4BWiGgZ$7B18| zLF`+K{zlU5%bX1b4+YaiU~ZM2bXKbL{bcD5SrDG_UO~EGLxP7P2Bf@^#R(Z+^~|9B z=Ioa@iExLVmW|2sZ6e%RBB*wxgYxzds~5@nvX`x16j?gig4SckW#B=L5TA4zNAiA= zwbSoWM+^we0oiIYLAd(>Y}?_4{PuMs#rC=_^fU7bWc8dI-#iumRC+GA;W zETF8b@)xX93ut|kyLahUd%SsA@y${O7_1xI3)a2Aa<~6XR|Hdy7xto~AVBOIZ3%L% zH|zF<$SC`|?%WUQbCJMQOmzITFm0*b`ja9Vk}8;ufi8@)pUpy>@+nm$sL`Yoy=IcZ zKNmMRP}18B1 ztbHL_L9cXbp+}l$-;nDngHzTw@HNM$#1VJ0TrnM++KGbtx`2|18Jz-nP9Kj z-3HQChl<^7AkD~dI~*BqhaPe|gJ~keNuBopi4AsHVr$Tc`ESs- zeUUaCX^&m45j}245deI0^tc_49=F33k6Seo-zq&$Dmu{Pf^iX0zVhD#!)yPc*ai9(p~jyXcso83Dspq><}J zWiZY$r2LRNNGxK5ZX`FXFnXLOqAeU+HJHGCwEW5h)o1pK09O{4-}^t9e&VRLP*-%FO4VDPn*S^^OCgqnj20|%N9tnTYF@o47+n!@~DH{ zh*3!v4IO}r`A*^b?>iD)1-re-re=f+4_2sPQV)O2h;R#x2v@ieUa4a(KTT^P!qt!& zB3!kBvQY+l-2q?#Vs??=sfBSfXr9%B6bDltMp7Z z=BxBfHs-7JOt$PfA4!d)bf{q*fX=0C$Z>0-i%Az^Rdmcyk>lj;gPF-_^&uU zMQhH5!m2l`QHS8u97GFCU40AHaoSW*t8f`~!R?M$!`GQEdH3mCUTJL~!&+mfX=lV(^gBEWk}6%1l+F7U2rodFV|z#!EVuoU z!@p7FP#qnT@>r^kB8LT@6M4`*1VIjQ1aucfkX!Bua?1mP+)@$b4ve@6g4{uU4<#zYU0R^A1ZfwpogMNP&Sk54t0xxwn5!;i0))O|ImU!3()B zIx>95Hn*IxuY)0OCk|2(G z{{RGc-^Uf=l_@RgJ?DH&3`C|Hh(7^<4)b?F_Wob1+kS}iSa;u|?Bs{7-%dLW=fg;H z-yq6~vnLMC1E))&c?erR^*oM=O#bfwniQ)yU;-FZ09RC5Gghgj{v~= zvw-ZpM}+g5CY&Wcb%Z=tb#ce+hvN+J$$fBH)`?NOXT(^@4XcFR6D&YE`S zVNEl#8)x+);qMYIwz(IdcD5>xzYjogbFN8()4D{{8_64qQtNUO;Yj*O@_Pco`fxZi zID^LBjg!Xx-azaj=lhF+$S<7l9{?KnxcTA}0ofORp;ldmGia4)K`kam&+IC{B_XS# zv7pVXFXV+0^{HQ0r)0}VLdd#(Yfc_aPIrfqJK;Wn3Yw1H`N z0tkH61x|8cf&%MmZwB1#O1T$j_REjXw(WGUZKpIjp-%FzE=>5Nir86e<(Gk`?46|) z;I`6Q@Hc7KX-`oGGis%=xSH5ojHf9qmNvA||FY$?VMZ)FE+ifW(l<3b``VrUtmUb#jS4x|&n9qGSH^g*;A^ai($t ze|6!f@w&yb*Dn?0l_;(7bG|v|i#%^2{-^~;{sPEeY)IdVGeCO!qb=s1;g$XRL)LS% zI=G%268XGCdU_7&L*m7?Kzh@;d8F%cHbeRiyaCd$D8?&MT9CGMUde~%i>x*fpJhoR zuLH6_VYl&PKgXH-+$~r5X~HWz`Dcdo!B`IIVM0GMZEg-}V<5IbdN>58;Ol<_XEUTl z!wQg2D#j~OT9CGMUP-n2BDWZb_p>CCZvnFN*>3z;C!7J&t!$-+S9Zrw4e81}(l5!C znO1*nq;L9C9_g!bHbc5E-T>)~72}mCEl68BujIStiwrOjzs!Z>UpW5eodb3=aX{(Nn^lcO!^z?PAw`oj&4R3(-6^ijnloq5d9sO>;$Ttkc zD=bN55FmRqyPqFB9cO@aD+d6>EBn)0>*?)hHoHkP0Tn8a#VvICyqp;EZ z@bB8C+i>ETqVtKiT&2qP{yI-ev)%T-(fDgeu-AG|)e2AU-Zy5?{D!gEifVeLCPZs6}?OAv%5=0|wgsXXrENy?#qnh3$B4_-MaR_2Ltuq6 zUC@Ym`@1jayy_}>RtOlOauc*7zDSiQa+RU?MV+g7k0lH0`$o8N^~2vx`9Y@1LLRgv z|Hya3Mknu|P8PcTGR5nXduKbUoro{_iY%HEtUkTO_7>d4eYakNROeeAZ|xJUoCn?c z5O#E`B%D_yUZs>o)^#MPa*^ajN4_QEZHJL>!PczYLr!RZQ2VO(l49@zWh!2;JVVz* z!mfN*0afri38`AAEW1d%NmOBYm@2R8Eu&^vy(N0z8YSngG*S;-r~L1bdc9JM)p|8X zN@18@4asnwjOkRaf}c5Cu_E0?2hSmFFmL9_ZvFb`m`?OWL)}qZPu;`RdObtfVHmBC zR&I4fcg*6``D!~w4}-faq^wZ`tx?OUYYT|I?(nz%sIvZ8qm1Amt$Is&2SQ^cK<$qX zp6L*kb5_fSTNX>J?ofl&4$`i*w)CSd!G~A=XqS4FV(J+XGjXQN8%JE2@@*7rlnLL^ zp~D8!L29fF?Kg2^4Ad}=R%7V`C8V~Af?CZ8(JWJ@u zA1uLz0U5YjE6!Br*u#Lt5KOYApVI5d@VHXmO<5jCCiNf5mnz+kA)p0VDnj`T*@2%B zrZM3-TDGD#pAPM%2EIDb_S%hdihu!386^NApIg0OUNv@I6_OHs^vv&yIgBGYg z(b|g$$Qi`@7F6>E(Q%(MOV3E*Z%vl+WYfji@sS;H`ri-DDe+Zb=WreaT^Z8wR5w@CW}X_ap}!&XhV^|Q-r7OGVk00#dJ z(Js7lZfhCJRH@QuwVd_O47;Tb@xTMX+b1RWzUG#(u59`YB&1RDC~ZhNv{q3SsNHU; zUHpl?F!@Q5z|c?ZO`7UYx(Vx{X7IJB`hdj^JYaFd4%qrL^nkrrQ+=SL7Q=xD?7f;{ z2lUWUhmoJOwH5LciyQih#Z`Zz1?wZNi%Ya{zN4Q5s;28fTdDRH2~_Pf(|aTLxpiw_ zM=f7f`^@Iv$bDA)u!CCZb}Ro}{cP0FL9GH8Yh|uX?Jp7-y1%nP^?ogN>$KEKsf+cG zpCvMfmnz3F%|7n3X^g>C^LEhrffuAKeWwrH4tI+84WQ=Xz-xr2`CsYnsfHpOjbhH}L zc=Es66Ps73CrdwJdA&Ya!1GogB}-pV_@_c>yb`hQlz$C%_G_E+zuz|Hh4?S*4e99A zw0{T0w2N76yFQrkui{*KeaEC1It{ahl?lJL3*XFahp%IL7dSzAA8ZLYk6Sd#OS!IEW>;blm~4q)gbLqaj>nlN3dHC zd(Yku#=2e2eEKrsBTD8K)|;sPQf#A6Q6Mbeu_sWFD{`-bc(bAAu(vYaCNy{}<5~*k zafT&?V97G=anJ>Uw@)x5eUhHO`;4^T>7rD@%6?uasRap#tx4}=?yJlCWjb}xuq{Yu z+TX{d=nyIg)p{8LOq4H$#Z7TsYm?>kMs(tF_=^%eBk#4JYu4E24d1%uWc6agKaqp7 z7GZ9bHw$>R+V)lflp# z)>Oz}6y?XSiXOL+la++~CK;@dFEtesQj{NGYuEf^w&4#-QWt*dw4ji8?#(yn_lol4 ztBfpg%t9tA3G(A)Fia*k74n#({CM}{7t+|?3Q3dF3K`r~$ZkdX@#l_T$Ot8=3qM5$ zE98u(Lhe+QAD3(22(_WFE&m3i%2d3=^-ZkU5I- z<5%ou!8|r5Atk8`|A-7$NJXxYy6}5@`dS#Ylsz~be!wb?X6e#>I-VVB_!V~FImd1} zLr2>ETysCf#X|A`vQRyyS?EEIv^5sGhm-5e3iC^50v;HctT~8!X*->n_4?-$7Ttx( z85;}IrCaQ+*)7Q#?-!uT!?e?s;s7ai(w*5qO*eJYbioJ7^7WERv*@&YpTqAJ=d*~X z@Avp0eNjo8yu=w0Jo-{CmAnQ9orQ=udAiE=OLn@5kJwUHLasrpl}mhtz{HHVS?c3o zQ0meTrL5ykyi<8Ntzze1DG)UAV^1hS!4BQbwM?;H@QSn_`?7+)XYV!aADIeZ9pi}o z0y)m1+;*GkV=mHsp#VY`bHP1?&jVsL1uP7@&++fA469=;*v2bpX=rir&v z1g{e7QHfN+6k(lzTjK9v7F5C(y_t@56=hTr{h{V__(sf(BVR~wA9kqVjmBs*DYNZP z%51y4m!qCWn$&hDWwzZ(nQhmh_i!n*&3ZjzvtDD+ajc(&Kn8!!?AqSit#|a?entFz ztusHj(kFASO!GX)m=Pe;@bgcBaWnlokUvbmjMJet!<6dOd7E?MWvJH?iPqdvG5hA> zn0+&c+3?4L0hsG~M2l*qgb7v1b*Bv;`)+5_k&+_9GdLu|MZ3@%MrH~%v-Kv;^LnCS znkGTA;H_lAM{K^)F;ChMaKp{FvB|YvqpqO~Kddosvkms&raiYadv5QS8-M&dz3 z22pSGJ1{k+cRR+*Az9?>)-wFc!R(qy+@atw=- zldi*}0qE6xX?b%o6-%mdK&(Ws1!0rTNau!U@rQnx#)+8X8&l|;r0sf zz*q2LU!zJl+~45#ic?GhW3*}u#P|dL^#m3x);uE@c<39_D;}q@BUsoh*4>C=LhFRg ziYcyR!kZ$Vt7BuA@VPN)5OA@-@XF;$Nv9X`sp`qYS z++ZMJV?SF&O)TbZRIg)W-)XGlXR{$5wUOYa9|UG`ijx5;;xiIG&$61-cSo!I6CI zj|%cQt;N}l=LfCcF>Sz4F?$kWeZE-e3I)c|YO`Q8aV@NA4NLxCu>|FCj zPFF6kWWObe6ynRi^g|&%kC5EwZiSC+%)GU?8Pb>Jk^Ylh0q^eUJ^l14d8B`dvl-Hl z;th~~P%&Pa(t@<5^U7W{Uu2@imHgB|3ufbUeGhIYWmPDT68 zYT{$(6-e*miUVChQeNlb3|e)DyZCela99QZ_$f-~m0hF=FLsXeU2eWeiSu1;Abf#= zk~Rk7=K`|-8K$-^=AM)r`VY61JJBAIediWyTi=iDgV2n>$i+>95hOl##tx^=rPq$q zuCqSMw``E;!6S9cYmOE z-HkJ7S8IH1ou;#&aqXJ5%i2XVj4DN=j#$B;WTpk*;9;AFWs?B(zvp~^H(%`k%vbU_ zAp0#t;x3%I&i!M{&Q*2U+M(9D+ji!V=t!t~_6Q_;H{?6)Je+h-IRGSzoiA;^*d^vG zxfGCH&F0|83ULNVv|@gGnySmTaY!r;kU%bYldFyI@+i)Lqdys^O(g8j;?y4rp2w*} zKy-Zfvo$PZzaXGlc#fmrSq<~@9R2(R^N8#xIv9CD#oV=>Y+WW>MIr>XcrEd3jf$E=yNx(VJl4Pz8&^(F;Sx9f2-E{W!K?P!14Bb+-Naq#g#;GL2~#S;DJ$25pM69 z>dqNlr8!zJNQk^p`hKF6X9-OYPL^4`+J`vKas1SsH|?$CN<7+JNcsm_am6p34ga|= zUGP2(2BSYHOVWerY`J7r%Q8{>1Ve{_$ggp6j(duv(ebmHmyit}GYXF};PDL;!kDXq zaPR~Xpa?stGxhbp1> zb#F^}Ml0btaa84|scDAhlsl;_VSGxf&+I&T)9zKMKSkID&jH8Uw7E9ZzTFYDvbNEFy$fhS51y}^v$(+tsDXib-)T4ZTDOe3@Sr=?V7vGuDN;! zGleeJ2Bafgj%n7P{uFg2^a-AQU6Cr7rpDz};-0gKY3WhqgJT-hk{(T?)l^jmbpkSW zNQ|uxD3#=?69n>Fui|*ESAf@gl_teY!hnIiBn+rpc{p`~d--x`6U+6cBk{+lP4KdF zbj(O_X&8GvY;T<)d=Dc?z$7xvEA9Db)!k(|)mG|(VE`x}4VhNS5qf6&|DZ#-A!i-O zW6{x?*Ur#ndc=LBQKKP?gwCW(DnoPl9UPj?Z@bWJ6pTpCy;u6I>!3tvPB8J&@kwLn za*W20W{QCChM{l6Fc{qpy@)w-hS&6Z{{t>;(XmgQuCaVm$5dvr(7WM=+v>THrTu4a z6RpJCD+Ye=sgu~VZh$>+qDtw4XSxvCd*BUz_%D>A74j)?f+ObJ?KbHTD&nS3NcQJ1 zHRzspCF{YH@APFlz576CCi(YqJ0pDy+sS?$qy9a z!si1Qh)#P@JKcJyoPWkeaV#8Lak0>JpiCC7?NEcG4{!Jk7r+$MkbfmaHbD+NJ7>h~ zL%n(W0(-?AdPG|GBVU%QcG&|ksd}A+JE^5OTxg;6S$HOAB9_2Y35Y)2Ni6mu;eT#n zWs<;tA4DO-(>D+`eo9!q7~f?J+)b>fy%bK!-vEd^h{XKl+p4wC3poExv9NLIuU_{a zP`Z-u0a!Obp*iPU&K_TaG@fL&^JBfpm_*OY8&wZI@HO>Q!W*<9Sqfpg>}HBeV$Ro( zbr7zsjUI9e-U@xUWa-Le>F!i1?|bhyVT;&KxPUCZH0deh2SW9g$U&y?BnT6ly5d-s zE=r<(=-<8}MSjSoSiFOTE!JnvrjzNRlz021DesnS!n2`BPJR6pvJebIZIvnSrl(kf zY!UV+Te1G_qv6UvB(5y`O}|Xx=_zjx9Ln}&o8C85y_;`6>Y)VYTO~{3-840jrC>#M z(_^xYdVkcT@P#MAMSUuPU;T8@1|dm ztiD5n3Sb&+!m$ANT?ai;R zKV))&1EXV*@R&-uVre^E5QV5-YSi74D~d$c9l63}8LF3>V3)ButLshHtGeET4w(!C zbTmm@EjQ7yMiW0^8J3L0QvJ4Hp|S?9Xe%&G>viR3iGejr_M&R3(UB`wn0!>l3X__s zTB?_?Dpx6Y#nNsjqp_kJ1$P*_!h|6zmYQUj*y=@{maE*V4P5SIFqT`kfyIkS^w{sUIq55?)!nO!!tTH_Ol!^eY`!Y`s^}y!RHW<7VjxgKt6at=CjP zVn))@ys3teMr;O?0_W0H`IZq^X-XwC?N3ShgBZ$MAemN-i_m6%EA3hAO5EUskw1lO z*KSw7#U>Ua41JzLpIOpuUqQ-kN1`B|O_le-+Twoc)v~T&>6C*^PN<3%gjW?=YSQI< zQ*HsuZ?m_Lj*hv{a@qRC9kqKIUFKNfGF@vu(-P@dxfiO=G3)dzz7lYOmH-Gr1EvHAjgytR=wk=V{#u9hWCBAV3NTaGj7@}$4whbXijkU28Z}{%Hn;@p04LR^SDcB z_KcKYEWG=B#V4c+<|WJ5499l-0=B_57#t6+N@ogrNNv`MG^sBm?~D^t<(lJXhE9Pk z<1OIJU{iMG2#PU@jecGs_I%$I$`r%x0Ab}Osg#G z(8W*dl|{r1=O#VwO^fYbmC;tDTa!0Y>vphnvKwl}54J!(jyv`yuCSOd=QH1c%RVTF zb%HiV6VX0zCNd-FqZQF{J(NzSX0gMG1m8SKi(mez!nT@gmo2;4LmK(uJBucfbr!yf=+3j#O z{FZ#&q0-(gI`8d-M4L)iNxZv&Zkiq(5z+;3Rd~;8=aZODblihvLifDrh|&Ljf~~Vs znQz0A{UkbWu$4}quS=EkHYv6TbrRXTK2?BFHL#{HkP{Awovre-H zzG-{OS0g{%-V&r1IU@s$+y!BgxRQkNJ8+RWrd5kDF))MHEE)duRQaK3O@;|w;ZGLc zSh{L-h}Wrt*&HuqlIa9xAnovtdNsfdUna_Ta^5FP!_8VZqR+2TPjmd^+$W>02%~#h z7;RBH+|EmGOmdb|J$*BwGr6eR81bevdi4!;a}=i^C$s|_&;CRk;5DDo6<(PBy2Z*9=0_R{1VPD!A_=qU384lYVcWECCxz-kwZKJ+x+-c zUv)Z9Lk+>lXqN>6cRXZ*m$ZQzD`|s(lffSxY6YjN)^Q>@z-jnzf=*ADe-y3x41{TR zRM&eGH9qWH0h-vlWFN3w-0_6!IM&Wk3i+0z{P?5Wk6Xx1 zN>Ud-Jz!I3Z)z&!>x$yux$U@xOjVM)aD)toNynx_rYOpf-*J3Qx;sp6BZC#P9ASds z>vVINcI_h4>6HG-Xr0v23apY*6uvQY!%tjgyV(V{2IQ4eH)hRhMN(C zOM2@YzOPAn*e3H0iiMh^#kQgCc2&{Z++IaK=JqeQskl82vpH9r#pi2fOxbLSf1-^o z;dQE$Kt~;~`&88xnG@48(?f~!nZw^nmcNc<4n-i-vC>*9L)Wi!?%ajN0GhgG?JKM# zl4TW9vYGs9Pe?nxUv6K0xGaqlSuswQ=3Moilcl*?vNY>=wQuvvl_ClS_(3>nk^wf_-}4!gJk%xu1aKe>f{ZG+BBCK0>Jahe;ULQ+J4d0^6PJ4{}Fmt@Cz9Y@kO0nu2j2kILQ zXqdW*O1*VkUTL1#(PUfC@G~+n2fnc=H{Ms{8-RGWqw@7Yl6_x_U~4+e~DL{%4AmIHB(-7;rmxO5gd+K#t!f%zCa{jU=n~paSXt*-T|Z0 z*43)GNl;k>u1a0_8cG2ViDqP`+S z7nkx%1GU`%1P*qAH#;yupw2{orn^#l5|Z69C=kJ6fCaXht}aYv(vQOb>I2yi*_*P4 zgQDpcRrqC3Q>88}Lt;H~aSvuv)l&?5%}b4I*(Y<$34Jh?=tOe*cv%E;de6x6^l+bo zZ11H9(nGdt-DC5pHOxzT+Ab7N0#aV&BIo;tfmnqFmh=H++x8Pj^K6_sj$kX&IYK3S z{xvMfLt?*q!)#4D99KCUkF=qF&DJ~~-Egwx_6DH*eV+5(U?6t61(x&zWJjlk$LTl& zJY+Wa2zx0`zx~Op4Ueed;jE~eoQw69vAc&vzD^`J8iJY|EFJ(w*t#b$fQ01Ag#^)Y zUjc{>OILkKAzoZ*VZ2`Ed|x*Z`6_@+T@A!~0kU&b!u#X(dAwVb(b=H>+t$bMzVUVU zsqGtQbKf|?`wv7q{cLBr=>a&k!dMN_)N(HogF+<{;C(9~z`MUfy!gEaV&8VYF$N+( z0FY^*f!HkoM5u)K7jWjjdn;l(LN9xX!~5ao&G6oF1m2s8Y}wy!-fz+0Z@*`FZvzB) zuT+Q^S6ceJ!TCO8zQ`_o;Qf|?*j7Mxa9`p5G|m9;)+BX=UiN_s>+em=n&I7e1l||5 zig)(i7I@Dii2hyy2=IPYAzoZ*!F#Fm?KBWs0|4*Y24ZgjvXibA-oL;Z;N6D^?gpBhqWwDK+v+2 zaMH3f071(>Sz;|KQG^#e%|QGD1Cfr-cNu_|eZfG3ljQpGYAP<)|$|c z8ju~-+gf&-wG8~9f5R>A9bM~=T->kC&1$ctyG_%01pp+r0wkRSc=vFeb;c9Y3US`7SE1QGKdAQSdepG4Pigh`kHQZfBc84g+Uy;2%v?CgyN{U~w~?y978pNu42) zc|^9HuNP#uz@<4?Js0N%GJu330a zM5!A!wJxHx!etQds)?=F@V|%chWEb-4e)Qx=!iP7$5Ub^W38ps z9xi8d{Qq#lgnt*H#{&#mo&*XHb$|21(dlt$9!2Tj~cS<>DPgfWzho077C)Bk`YMg#oVd4?>npDyG} zK{_}cKV)8HY)Y;HIk1@x?>;4Tz08%CIWis}ty!r+^SR^U7ILQN~1&iTz zz4MkneCA#{7ukb%~G=aUtCb z9ePQn)8T^+OuQMu3xTpsKII|GMypHGR@NH`m#JykVX&Mg4rUAsZ`uSRAWlHj#$--w zVpbocMc7QtYD08fmXMUUp%pQ!+3YmZ1gjlQsR%%+aBxuNMkPH7%IMK0tz4!l)_49i z^<=u>prKhXO^wV;0{qR^7gq@{1LrH6tcs{l%~yTJC&4%<3cU`iqC>^&P^kk|FarPI z6}I}>r$9K6w>qhbo^2c!A^-nhc`F-v^qIOlSw1^jv*ub&sz>y(UezkF4L79xF_N-MWYUwwZbaJ3gs-rH!qRm^s$h(XS>1Tu4M~4M z+ul=k`0&G*QjR39Zle_@aix{g>oY0)#b4w^ts)!$tu<~dYs8%-V#SzAfD|x?^w=;5 z@u=}*sTSd-e-MlUmIk;iHbrVI9~t5vF6}?a>C5GZ8(AcxurcSyI#n_AtkD zM`;r;L`rXBXX{{79fEFguTmk+3Sh=*%+oM8<0dO5Y;_jw{t0>#F-)R+Pt^|3DqyiF zUMZ2&xPqpsT405J5py}}I>Zt_hYiv48NH+Z8|erv=MajrJ^mf19*mBC|7v})TEoK0 zxAB=(2<+5u7~noD`_~%udi~m`RGNhJCacX331oW=Z^n>H&2&Pm@LAy=9dj3-263|Q zzQ#_El`aII>S3=zi=wx6u4DPvxeoR(&6-Y@2L`ZaPf$?J{z5j3-8lKS?;8j&QH0-P zIv_g!_3kXJ*a=|on3FDDni31Up2sZK+NUY~xci>$nPY`?kEts)RHjqs?{Jx1TOd6< zhidNy$LRP$l*UM?wFF>eqD@FV3{`+1jvI({cv-&Kw*VlQ)hWsEb)6v>zsf*asewo* z0Hi1NlJJQ>d;kt2<5k;ojWOzI!V?!-PZX(C>jHgQD&4-qTK$xPk`E2^dTgp{>oLMr z`j&x+&Z3~Fb0{PF&+^sTM{<>pWQ*-SuX&Zv7h07QRhU(&Pe&uFt&(^T1F;8O&0iuF zTX!2*$@i?1@Yl`P3#NKs!o<31C2Qh`k9Q&pivM6M$n~*g( zOKcw{N|%_tG-hSqKbf6Bmx-n??m z;PLd~VO`T4+ve{fAlB3A?56EA5Kg8U)Llt41Zai;Hh_dsYiL!qjuycITEl;1-CjOx zL>VVG_q8T#AV{p}%f<(mXqp6-#Rr~^h?bt5cw0gv@PU&BGn1I-D$m#=GUgS&R6`nR zprqtMFxzGJRT;SZSg2;P%xnBYDLjQys!C)$OmB>?Li>((=wm(`aI+WQ|B=$63FCWWzfx= zsV(Nsleu}r_Q<@s{Di~jO*c09M4LVZZ_1`YrqlkU6Bvt*o!o2)3VYvGmJ^f-^q=|M!PJp$x+1Jv@jGyT zXMWADQ-{?4j!2yi+~0-Ys{KuK=1|Ky1Lpe>8cbn03h4>#Mj<@0PvZ6am@WJCLdQN{ z=pZOJD91GX_-IJx^s|LuD-(oC!1TZj6|(~?R7?&tLe-*v%vK#)KS8~qM*@vRFhv>H6Cf}9LT*vZOqI-fqS483K;zsYPvS~6{J!?5AsFVpoboz^Y08~FaS znh@y%M84ld5^O=&SKSBgg6-Wrxut!$$<+x%U89)i=mL`-S|I761tvYTz@AgMD0nXCE1hLJgPBA6Il z&_m7bZGc{<^AF!J)N>0#u~Jn7R5d`YI0{xofl%m3tOyRU%Iz1+qcxv&(U>-65Y(yi zAMCSqlwP$~4U&m&7g}m>H!YX&&~(l+2oHTM3pC~KVLO^~@vkVMV>^%y*h7+EB| zz>a(I7xM?T>3l3Z9^a)PcRXHU2ee3?f$$58@OwM~h>jok<>MZY8}B`v7DRr#&~8#3 zBY%R6<1stPR4T)0E^|x`i;j;_nyyf_Xv_5)Kr(Jtrx=J|uS|ZA{m%-7E1naGEqY0y z*CmEniO!K+y^72iJ3+u{QA8iU>T~%Ms%ir9zL%-0cde?j_e81V+-{)9CIH9d2~-6d zZyJbw$5pieKx6)6AU@eZ_}2n%rbZwB=Q&oe37^^)M`gdilMC}1-EOVxvFD%GtZz{)SPd``xy)dZ|1+csog2 zKT<$Fbl-pG3;lT5YAt*2ukyuy=BnEPpugWX&||)V$iEfW{DSd+?Sl)(yG@mDa2Jf{ zDcmZx69r#lyw%p@8io7eE2)id<{9X5x(fDt{n)CB4KolPWFT_2;$ZIUOYs+d_++Uz ziS(7L^MUIq@B+$(KIq5ZpGSIiZn&#e6?x+stLn4XzQ~`as9|MAR(P)y4D{G+fhB7I z(T9H*VO|W0z4Ff#;tTYyEz-yxkH6Y(_hq9f55nQy0Ctr3xKDQ1g@g+`wZC8`_4v7g z_*F_O1=U{lGe}bNc4MM+Kf8?`ubshD;>MDgy$4Ipv2Wv~P(<@%uRJaCVW;7Yx{b>0 zr7;|bffxI@$x;j^_EzoH1ahg-hZjP=mqOav9N?_)Sc1yuj5yUIpC@t)+PLBM;I7q&3DG~SRV^MT zgj>jK`pPt}173P%7rnA;p|CTJB|2sr5d=Qx;vw&r)YK`YY~f!h((iRYJ~Cokx5s^i zq)JhPyLhWBHS(y^>|I9-)k&y-F*4h$Bwgs{b6@;ys$dVAS&XQ-l^R(whaBoCKfYy= zQFOPZJ&f!g)E%;vr{l70_c}sqmt8E9?z8&5W(wH0bkwj)_SpTIYQ|U8s?92T zuK;?q2HZKvw^nmU)PR5vC5ffzc-`2YMciMoC2;N4B@`{MHPPA!32@IxCNo!~(t%9dcwvL~sK6@jc5`p$@Rly$ zX68cQBG*%vt2u^jxf+pRIWO7;yP`6TyIp4vkx#nJAX+_*eP>k6Ok#Q1ZU|(}%;8e1 zT|uxCW`&yswk!^lHHX>7drWa^j~SyKy2lius`qr$d1UBr-I|N4cRO>qyPY}Q-P+1K z4CMhzK=p2C4tKXRhr7F{jwd7cv_<=;Lu!xNvK_j|)TyfXaAs-U9PVCWP_fgQ!`e+d4tJ;1$lB@5;qKLur-eCO`uE}wrFE3rC8e~=p}WjlZ1pawX_-0PdAhTj zIb0MF=O6@+s!!e=?x*Riu6y(?t6g8ETwhfk)>k84Usbri8hBV=jdXog;reQz>#Je( zmGr1wU!`1MRasxPW)63+PE*x8t%0eX&KxdXMPSztEy}e$<=S3lZI?ORC2G2v!^L7& z&~%x@J=O#v+nfB)vWAeqMhYsFJZV5c`a?h=kyTAgY(neJ8H$;3o!I}>W;tVHHU z^ka5L$DKw96br=MAV%agm{y3ACGD%ZXkW?xY68^`w66*qgGV-<_En>_uNqDJs*xL{ zbfN<7t47g;@?mIStw15%c9dq?S1XW$eL;cJz8d_69OnISCB2#4l1%$*ro+4^p?OVL zhkA*!csn`PB}|A} z-k(t^{i|ibK>tdY(vQKqx&D=kAxOo@cr2siN`|gk1+I^S33Lbi5b_cRoP4G~Ww7~7 zg7Z`9U){;Tfo9F!)3y#TV*|~d3fN@qek=W}^FOZ+lm1mPuA}Q;ouqWf)xUCe8F%2Q z`d1p#+LxkbcALc4DRUI3B)Fidizscj0W^D zSLqOHdYub9$rhcd5+Cnauq?sZ2GVf`b|mC$X`d89JY+I$32n10(l) zEa(EP<4;#A4m8_R2j`&i#5wKg)_C-)K#3y@e7;_cr#)7 z@DHTOJ^r7Xu1;~9a|g6=JMiho;@c-@T~mXT7H3Dxgg1&AdGQRAY7K(8I4fu}7CP!k zukPX;qAyF47$S7S!I{DtoMPu9B0ZfVrb3A$YSf0LlnMjl-u-C5-$d;FFL2D6M1Gb# zef3~Lq(&pTIeNX#-uHQ|&OXLk9PVQ*$HhYo{{5@4yyB%F(z^k-Nc$b_d0V4XULTh0 zQRs}{G94<@)RdooL4?0+(ZZ|lP6u-k3w7jTkIG=P}z(vY}RNL(x=4oW$^q6;dp_h+T}T!*sv8CNRvrOFI@ zYCb8>Bn1QeER}G5Tl6KjkgWYOd84>G6zaEfsr-Y@n15B5wuE3Dp3*GjOhOXn_rs{I z*N1i69ZjJt(+|;=BG^3zd)6r0o{UwlOk}ExP)?XHcN*jSHMg={@r1M*bX8ky=D;Jq z3gX04_Qe8p^B_4hGWQQ(&+?fT(b9Gq=-8RO!kNhMc z!E);vn)VhZy! zL5ih!9rq#Hm1cFs)msep4Ckq8wPUW5kaM^dKsg%cQ2K)V6NDL!SZcFX%iRWYYltlt zFL%-@dv}v9g{KH`)^d}XLC%)KBLtz`D_aVSl9|GbxDLSTfv~)Q!G3o+tB}sGOi}A? zH|5l;A(WFbvVwCk1R=5Aoh^ko;2*ftI41|2Lp+1Rba01-N9;oC_&r!pNEEE#BDOit z@3Fl-SEJ+Owy3!H932fqI_4LpHaiO5W=Fx>>?nAf9R+W*qu_0J6g-Z8W@NV&{lD$Z zg2Acnj)G?vYX=W?7HhYQg16l$c-xJFw;fv9Yf$hSn(6=LyQmd}Q30&r-E;b@(>aIJ z?>I^$!CVn5he?!^Y(h8-0uEPP@ONrvq!yO?sfPhs$dJZX{xA0mjx=a<6b%>ss zpDK>h9ZXJZnj@L#Yc1}i8GE_AIrg<_)n@3AM**cpi z=zlRl2i7@Ccb(Cc>oia5Y@XEFJgH+$a)99FEyo(I;V_WzoFlQFVDqC>%lR?K=EqDo zKW4i50q&X~t>9ACIxYkUxa8+YLOaBd?La#S+JV`;u@BXr-^vh=#Sac0WS0mXWLl6| zl0>k7(48+>nuh6CZUm6%nAv=@hAK1d=J+}u_J8c;l7#aDlZSD?A(#&^@@+m$(eNYu z!$A0qHTQ~OJ|Iy5(=?bT5Z(|dNSAKl#AEvhas@IFh9JQ75KJZ;)XYQ;4`$*isnWe} zcD(Oq2mGJcU;!n)McO|!hA@(2=aGQ9!?sFjAYR3hUTN4%G_&&)$W3V5Oa876)thg# zL&u=nCkXie@%Aq8QB_y_e_%37l{i=vKqX4s*wO}D6tL7l1r2ouXAm{mq>V}?T57Sy z5Ye{LVgfCvhe2vzD!uS4z3`S^sPsasZP5@e30NWA5h|cooe?hqltfVYf1kC_wM=X3w!S&kjD8C|ox-nSDjaxn$Exdj}1) zukpNvnGIB# z@osjOyA1YqG_P3U>UiO+vCwL%PyZ!)G!=73t8Geoy4>FQ6zQ}sFSh=u+HGSRhip8rH8m~lK~5vW&Ooi7oJie-%VNWP>O6-??AXY|()dQT+0v4Y8q!NEHV%?I zpN;(RfM4SIC0Y$Lj$XyhA>TYLsr}CH+(9Ji2z{z7Zs<;BB~5PrFuG4lNBPO=AUdF< z!~AhDQhOnSGr&ev&3I=$0Op5GhAHF$Rm}koWJik*R=$W0losGIWQ5R>c+sLpT1=#7 zoBGE0*-2wTv6z^IhpV;)fgrWpCJxU`t7x3>utuG(7KzHpVBy&K-xmwvTHUt8c`8Ah zZeU}$+el*999d$CY8{w1jMGTH6Jvo`;T9$pj0Lb1h=*`a;S3i-Df$go1JZFBW?bYk zmKrZGu9Asbymc4)2rFEQY?MK-D5sZ-IK)8LGZqCi$x=lIhMt}o3pzRLDqEFc7=XJ@ zn@K*dRf(O)mAg)xNyJ>ON|;HWW+tHq+E*pJrVVZH8LS5Z$7FDlC0JSZiPOlD|9l#O z4-Kw&{JLY4%Sm0k<=a3yIpF>Up`q32- z$+N*6^3W+Mja+Q=$CaJCheq-p);)H)`D2&s9#F2~{Unrh1wZm^=lSDG4f{Urg)XA{ z5wlJ?d6>PKL1G@l-pqB74eB5{=WB#C7=xIHYp+a?c$Z!QsG*I_2@hkNmUtm5Ql^D> z*)YToCeyBg=3>IZgi@X+ogt?Dctsvt8Iyq}rZNcxGd*Tojs=d1O0r;Z+gi@*60L*V zos>-%D|5{bEKJ<21zKaKI|LI&FhiJ_i(sXGKo^~FFPYpDOjxcv%%X_s8r2<~UD>+)7M zg?h(Z`|?}TI)LBuR@V=hBMzU~4NM9|f zcrhu1c797*&AbfSPeIS=Z7-px@<*8&8Rwq0GqpxIVXj!OxniB>igmXC@U-R%))|^B z4oZ)dS!ZmfKH3_YwLZpNYfpZlyR;rcd+Pb%K=llb<#JlbensI%BIp!S&piisuw6*~ zbNmHa>50#gY3-5h$ZW}<$YN2i)x7(8h?3ULkGZ9Z!WS|O0$-IK6Vwg+u+zS9)Ze>7CYJ5-qF4FE=*ab3%;fGp zCfIJ~0BU$BQHTxR+X>*jiw=x>QpF-?^)6E5+RKcbN1u(Yg;T4{n64Bsm;a!nagWOn|g-_zdOh!qy({K10oj|ebmn5{cRS*cAhfYlT( zPDpS-q7CXDZ3$KXJh`RUG>Ii|qc5ebu|jsWUrmJY=hMlv);!AHrYmGO3hhS?Q6R%W zH_gg0^>)Wt5d%@1>S;t6HPi)f({t&=M%A?IR{%B`H+}ntRqHV0uHpCOU#wN=)J6%BDGg<;47!BvrsD?WCNe4gV+kIIejiK(D(My0S~1^(#h5y z>0W(+($n}=dbNHPJ^cZ-_>$L&Cnc<7qokHWI=rS?4?bj@UEYu;4LwaL{{`c! zOGcr3kcl={z97fSwH18el*9x~4u;?6^e0ISkJp^snsFZ-OCN^2RCIdFwt#&h-eKSR zFAp30`ol#ScCH1N9wrj2r+ozJe+BKT`T;Fr*|XEx9^p1}xTlbjfT4>Ls!do48&p1w z&*B33u_DI3@{2cg{ zB}wX6Va_}|9Jf35il4vdmtDU33ngg?pU(^Wm#S#b5-qmLY?{a_4+L(0iP^G z$(m3bPipnZ&wn@BWhN_>q#=9-FBl~cwP*6A9{Kr?{-VoF%9W%cd=D>JCd1n^DbpiA z|B;$5Gx@BNfDgb6mPt$Zw&IlNk)QwiLtSR_2PJ6;pUDfB$sgJ?c}$P|{7GF?a;c-_ zc3!Yd?rzWIV~&!a`(08pNl6;Q&t)%3#4b){^2ouNiM@m6TBid zlgU24h_O#&;Jfy%lkA|b(_8LDrCtui)F6-AJ9(WsLo@~A9m29^5a^P4m%h^SUz;8b zXc$tH$$A;ZTcB(R4)8cNxXFRZurzLnt1U=hdL?0JjqEfA6x1nySpb;Kr_Cz>Xi<&C z0$B~)g{{U_i45-m#R^vcM>t&YA>^Bk43#K6>WmZIbgd32gEXKswybB(9+3xf z5`nu}L@aN6Dm!MPV8T;N9PwuY=ABXe_;9egg)J%0L&gfX@ullnQnPZsDO!kL7kTU-SX({e+OX|lz?Q~fZOG>yXY z&m73I+GM9k0QM6-WUkdO{_Pl zY}x2iTb%{zpLP(WM046f7ue6OgVyCUZ0IwvEmE1S{nrk!rLD&KUs+GEzvw{-td)+SBMLM+`W z(xhpi`M@AvO_A#*G(lAil4#L@n{(8rADw0w&EzO`X+4+6!>~u6|sBV5e2^Z83eHv-D5@TD_`Ds9RtOo({o()9iaM-TNf?D>Qifu$m|WqsCP8Zplnd3X$0X5 z?@zyBi;F|)`#LO8-h&tty~^M7`hNOR-aq+{Y9;eV`YhbKG6mht6lCj@``!BF<{8#; zpCX{+F0~;10}FD#Ly&&kpou$gYX;MV?Yg3&HsyiVCxfgm=w55IURJ}?5NTS%wr+lu z_44nF>E<;^_^#o4G~Bp`IIKkJtBC4)-*%Anew{Vk|G^@qKVLW{MJVAAwO#{*8Cw+&Q(z$NLC49x=&+p*L8Nb2UMFm#Wv9FEAm`vOC)m z%P`PwjKLAKFD<5h!HS~=9`0mjSW0@iv60%<&AKtBA6A0NA=d;lY3Skj`(O%(nkUc`=IM*XrT zD9GpzbMADTKaH{xoO-@=0} z$mvG_LvwV8PDJV#{4+T9%Q|BKpgnEsmv?ARw_i zz$?y#yvWQ)HEY;F6HCg61nL)oeh5Netnna!4;m+oViKYEFdze&!|7faX!hB35eziU zTsF|?Am+J=4g*b00}Y+FZJ@cx)Gv*uereQ%!Ki{Z68+2i%75+4mHwr%bL?w@0tOoc ziCM2wX2!7;7$Qt>nkNu6>f@oEO#93eiO@=>jgAT!ltIlXgN~ag)Ph`ha|#&daTGAj z6DVMCdEgW0hv? zlK!Qceh@1}BZe4c`WGx}|7ZG_JNdvVi8)?D@hK8Z|00crHh<+Mt$j=A?{F;8zpPDv zUuy%Yufn_oi$3|Fv2P)P&Y4+||8)z(UnVg9%gOcYQvoGT|0tzTr{e^c?KNvuD|ve# zuxw+N(Irj1DOu5p&kY&95m-RjN>#m>1K zi@)Az@NI~xb3@E43^W=0w)+`kHbg*&(-5paB3TUv4VQH%&QQn)ITZ3KJY%1&!O-Dg25az{iu-`O6uj9|p^%q73JQ6t zLm{{P8fH%C*`-RBoTp1(oJFvZG^q>!lFPo!Q~d@m&T9X#p)(JzORe8{URL^7%QR## zKAr@w>Wn|q4o(MG_23^wbb801_^OWjWPsQrHN`whUryeF!t-{~u?-C`ZfJOBJh_`A z^oBxiC6>U=Ca9VZ%Q3B~PzD(E_}$=e#65F}#+-2;>x}aNlWvt}vXw2M>cggdJ=~Yk z2IcEJl`otcc>JwIXp4Zye@S~4@35({54w%V^lz6kV0cFZ;PD`Fq-L5b@1!q$gBLhO z&=B4`#VJORsvE*bxM9M~O24{c9>@S2o@33AK${h zQXK+{;w5QWFi)?hKKj@yqVmUZ7)nReIgf4Uq;@^{6^`ll?XNE(*As{{zV{y+8NL-5H7qk-=H;1!xnNR}fvWHU*pAy<3lFv(8 zvI(`w9{WRI*4H?3lJ~lOjWb!lH^z+E%01%~uy&XJn$Od?Rx|S6rdU6`*n&&Gpdi>h z_ntSWO!CNt(9%djCh{6HUq8Jqs{H(oTq4k&iymS=eBj6if}ZWqH^f7A;#S^8B;oM{ zO@lDn$}n%f1q%jPNf#WdWVrVYZEIVpLka39-P`C}$!@iM3aw1Sb^)G&=N?yy&f3hW^}G8t`@V(2H+je66+ z*2{zJszm6Sc*vdNmcH=0c+rcInuThicuTPSt%WkESQGTE38pV3!K4Yl+miK^2AwDO zF5Qy#*S*|6vG;FV5CJCqMI+JLyRuR@)@`SGjPE~cxz2CJCk}mQn!pJ-K|=o4nmw}y zi$~(k3IDHiN#r)j6aHP}@F}p=x^Z%WKF%9zW^9hrMbz$|+{?_F@c%GO>lgu>dW$9y z&0>WsF(;P1rANZQJ&L>O?(`+KP8Ml=r`4*}a*g?)>v5frA3?N11yQf0fFnln5A}!8Pt3pnUZHyf+E=1-loSk#N5^R#m{N7t39y7 zrav&+z2(h(f7Da(j@O5NlLSmYeR-D`H~v_Izw-g^CRFa+;BW0EGG_&?i&<$8f9n|O z+zf1E8_Rj>N7F0D546cadnB&_x6$+v?f#w zJGhd?7WT(7qkNNmaqD6#0~8jyhZBV;pAW|h*+kgGizy{f4tz$R;kJoeM$-XKco?L> zH=<~O8i5%h+{C*m7^Ec~P!P3B3_fi(!r)mc4L9>X96+lf(OH}@uTh({2qDS<=|dSX z&gjEn0OeR)8o(XDg zHL}cV#MP@d?H9S4ooSVr9P;Ue_m%{34*n&)7Z4VPNreMSmZ}??5*`PnmWjKxXH^gF z%qrenVwGu*l7Y|wlA9hWN6FvqFCF?TY|_b$c2i{LbRtHX;b1KJO=m`XH&Gl{f^D%v zHT82ko>w|H?Pl7IYANcCXZbc$U#E(#8Bj;uX$PUFxpfTyHQpem41*m3YP^a0n!^|{ zVHeTd-XGsgdseAY*>8#r*oj=QgMJkBpvZuFHFq9I1~l4sN&5QaUH# z_hjzcy8fELv4I67pDxD) zlAsDZLf$RL2$G;2D@cMW%pm#ZzSC60qU_FBBcLpJk7{rE713QQf zP6Rc`&tw3xarXa)fdh}I%Bvj%pJJ;o6exW?Dc7t(13gq{S;I0o^zxRIJmY5z1^^=x@QUY(IWLMC+RTw~Fzk(wv9 z;nHca)I296fN$Ro|^leYZ~a-KrHZb`8PaYqzY7 zPrUTtWCuNEqm*p%=Ui(eYyQ{2ZMhfl01UuY5-3B>{3ckP`6K?Dm)$x|!vqO_ z9|#a&BXShUCS7#u_pss3DR$GTb8dB+1~n3Yo)j7w8M1$v2))bvUdb9dA#veFbY0VU ztcJm&u1p)b$>GZx#wab9J)Z)w3N^iK5p`6x(OuhK2V-9=#57sljz z&QY23AE#3?V1GTsDKJAEaKHf#^O%FosDBTdL znWwMIm%9)l01aXu#anwLwW6xh*h96bZ}1>!CY;`mN&MJNUw)Rq=lR`dJvQq_hu+V1G|S$HIhl?HX7TxG&ZwT zO%8&*NX=bj3O4%RCdms*9j#mhv9eHWRsV?0i5Z5_y~F6B3pC1j#tZIllTEW*10?)U zCw$J0P7L3!jQqT(u@GbA`MUydSr6I}C220gQx47)op>PD^&gLqiX!0+cBMYv_}idB{>h+Qhg%5~VwVKWqGTSiA1H_38Z z@DZEQLnR7VX+6afPCNrt0};L#9}^rmm@ta;oK)`o1i}e19aRycsag-RYOw0*D;oV} zHjK2n0yc>h+zK4Q2{ACpYF%Vb2o!f3gtA~lvcb}~`lMxu7EToN1ojK^0@5;l{Aicw~$UG0aGbj5t%(gNj$I=JMlk|@h%5+E zNhoit5wb|FM8hU0zokHHnqxO4G*TpiovC`p{+# zqZy6bfJO$-b&(mnO+H)DpU<&@-PA^vEsDrVTx}MuK2!Z&D{&L=@?f>Wx%HazkTyr!S?-Cn zqx7%-x3w$r+tqHBtKBMUSMoEp3j~kot)}`Qw3_Mzh3A-}ie2>;Q+?3d%Hy(Xs*me$ z+QGzAw+Cg>sv3<`qXd&X)o4Yh8m(|O8mC67*vYO&8}*gf)aV9UjZU^2-PfT;%RAL* z`AKT@HSz!g50x?$&`>7<>R8gB#$l8IKxdR%T~18eG?LFcs*Di~K7%iOrK z%=KBDQ*B&X4@=6j^;>F(=*zM-$D(Pr-*rr%)f-&1hlBo6tS8+}(_c9JQ%G|NY z(0C#>>#&sKgBpG{{QGYBWm&9=<`_tRPWuvCqWJ)ojLEdYL{PNAgoK*?SWTt>c2GI2 zO@El-=9DjH-gruHc)VfztFzCb$tRMzR~$D)zsWS8Iq&{;x4ZmLNygsO8liWhRN;*m zyRp+d4C4-VAvH)}#1tYT6aGNV5C^^!AVEl_U=yDczG5NipteWdFD<{(>f9Uz z(Qfias+uk4&6#6EO`RgyVt#gNDIdOqT!yj5yoW939a^h_JgzNfRszwJYO^wGtQz@s z?zA#Xk9l1j+_mrL|IYhYpZNY+yw8T8hy89BcKc&Vk~)9Od5G{Y9>oUyX1(I)Kc@31 z-tK7a%iRI*+xP|^-$HdOUhaN&^F!;iva(4sqDn~`!tdh+{Y!1x+?L5bdgSM?>-zH# zD@jARfEO&2hubrm?I@WkTdC7iGDb-n!dGP|8PlH0wPtCRzZX;7E;3o9Bn{!i(*sJv z?V0>ckNo^2GS@ggC3Q;D5FXD9R-C#`Z9G}7M}GdFyEfMUhBMZm!V8wkH`+6~UyuC! z{om@6l0Pd+L%5I^ER!qRGx?()an7%6N^WqJ+{p`;$$pFrf_5_2QPR*gC9@qR-7=K? zwmlQiQBps%%i?@nNgBe#Gn9O>J(C%F1P*i8nY=K=GWjGatvDZS&t#7t`T6%NIDHk5 zaG5+pV3|DE)W(x5T_%IOZn3SjGK%v$29lP^{Ps-V)+0ZE&g?EJxk*VH!izI4_NMks z#_19LU$%s&FV0vcX$XgS!6-SWJ(KJ7$j_hgjV?2ZDM>^4CXzUTJKR*mmlxX2fwkWj64jieYfTd?f zS+Zal^Iowt6kuC`Rqkl8z#`Z0EJlgV42a+I`q3dk!?K@Kd06zVOiZkcdW&pn<1Mh& zKqqM07>0(pf<$vh&K%Lxw4?Qjhv$_=x-!-K%v&VnX&+*#cDUSXE1vv%Ms<&>pLLR0 zgM6T+8QVRktqIIR+-6Fk8vt8=2T8Ibv+KljLpz;|GAF>p7=DJ}ZKILVN21C5m_@fm zW>@kw=51t?f!&K__8C-z$Yr(D%`{Ex(E6}FbJ4WEPOqQ4n*#zn5F$Xaj zXcxv*N1}nH7Jz;%e(q!vJ=%_U8^e_6m3{BWOzUVH-mT(51zk7w-0S@EXR@yI`u)S| zeO=|7I@KHEc=aAs9T?)`PClEhc`fc(Xo({N8g{EwmY=@kj_*?a*^d{=G=n~GN||+2bI16@ zac*}o=2c_rFJR(zm9N1oHCKVF`pIUlu;7v9R?((J5-@W348(S;;!nwE*^I&{gYtVW z;k_D}bB$OHiOJh_PQMOPZ2{ZXqKBV>b`D5Db_~_RP;=NOjBC^Z-*rfA_Ua7F-(V5$ zSpF}r%%lZt9y2_QM@FxRC8xMHyhiD~?J_Qt4~Uhum8ElB)@9 zd=5{&5a7Pv=xYbW{hmh=Fu{LDqebsHtekD5)AaUBjLk(zs<}99$+cyTDh4gZ80c1LEvI9 zIu3>dHddJg!H%#Mc zu06a`6-$`VaK`bWB~Y#rX3?0V*8V9j)J@a-c(*K!dv`DP7KnXr6BP5l$n1LSUv-fg-_nF*mSojtT#;C+Epgy*u{%Et zR?i=s>=#kb0a9Wx?j?Yg*SVIJm#g?t^GGY+kst>zlVaaqxU%GZVU5lW=uMWgpd zY6^@;_s;dLteK66I*kRIS#LDP&Kp3gc;PmNMuyZy)-+^EvRrM4;|^@qn^rNA{2UF< zX%;aV_wH@PfWvW-vk$Oz2UymuhE>~QKQ+;m*<)rHXR?@8mtpaRd^u(;KG$ftdj}-> z8yS-#aWC<>?P-s$Lx*=3;JIG2ZJ9VTQyH$Y{d1n!*DY4mXzc1nOmB;E zw~1stFRRmi&pvjG%2(Q@KH1$W{|w^s;~*&2IXlkv3CG~^v>zNViNWVO1~>AgBZHX? zw3P42T-DRD6`@o!45M{*=VPW9cV3dldKHDE3lXin0o2Ey@(adDVNb%j&QmP2Ifu zJQ)2FXPd&0@<{*U-ldDVOuzS>I?(6=*dEa$HjR2>?~_~TXY)tW=;Qt*48(9+DkplPtS`@?-ZHgW4h0hTcOJ8wk*w7A1SgW6!x`Xph+Ie{yAIz~z`h22yOq@JK0KCB&>Uto9a2MyhMk6tz#A_5b9IU)r?QGiOt zObnR{cQPvJD2p>&#y>EJM=%*yEJtrNlWb#D)~JT=#GC|^RI>zPv-+(wezCm^H%JC% zN}fp-=&#J~NRtd%FqCVUB!^+#L6iw`uv2Vz!#r|`rT~O!S7U*)&Powzy)aCS%z2rL zkJTQ<QQAqnKyRY0kcenZm{f*8>9im|0## zG5=_KN3fC>4d*$>DY{$Hae58&ogh(#sW9fOOB(Wz`%nIM$rK}24=nJdO>QG zQWK~~1z;pfM;+hj0Pi+Bz`Ko|&3e&$7H`ec0kW-BSG}3`#tY=^w3HsIprSyIR*B=6 zD1M0ncNhKoX7&^*Q+jS!bQ@kO9PGEIgFP?SBLNsB$dir^ne-CvFeu9?!08ApKY=h} z0>Uc4o2d}%#)+cck=p-vmYP^SLUmIxZAG>1w6oW38Re8+Hz%e8veV7XT!in~ z&27A|K4r>{w7UT6AYf7jfF5l!yLoK zAR8{0D0|hvBK>=jCD}S5RGVzYR}m0-H%sbXO#FA zt{7{b2?gr#OdE@Nh-!gcY*Kizie-qk>h+V#Dl%a2*ksik?D6I9Wfc<{@Q=uVEes5J zIO6xbb0P!&N$>5`^Bhv8HGY(pH1r~&9`@FgTs?W!o|HHA51w44C;iU3KJ%oaVGvI! zAihiMII3peO+Ktd1?M;zLB|Rsi8*)!2;fsOv9fMPfdbn@8>?x$uiALc!7KTg5GZf) zxj33wFW7L#<-N8lT+P`ub)rbk58-s@4o55a*JL~8L%V#HD?8AWKaz%kp{p>u{G6vP z0fK(s2h=|N@L#`bE%tksypD!vLx59^(Fbjv6H>Q5W(LmY8L)7TbaraX0#XLUt{zNH zL<<@;U~H?cU%B=O0k$O-=x#8sr6Jle7jIikP#nPKEP5~>8a(X^ zdbu$NLj~eUuQzRvOLjP=*)Q6B;e4wd(gG;_h9iH{bhnaJn+S1H6i1`TlyV5(O zV&CM1Hizr~$k-^%kj)Asthj*&4-{0(nznD!S!Su*WT!e7(7i&yd@@VG!@K|GX}ORy03MIZ~YvuSJJNX^AG zk@VM_w0f4ne3q6i9!e^zSZy)2qT2-+1g_P Bj!W)Kn{2UOau;wSI7DZ};wga<*l zW6peo=V~H!m2}ig%-6VxXsuq2wuj3_YQrp@f%m(2DT|D#H+pf@8@~|3O|R}RXcE=_ z9n%q$ra+0-X$qvsy#+=%N$4i7Al9R0Cg#d2@$RJz){9vtFXY|%;@0gw@PmonTBudW z(5SvMsjuvdiR?zr;nqT|Y~eA@M{wPECBi9@o}Z!T|IqVzOD~sz3sUqUMXpkWl|nO8 zX-P|eQXp^aARBH-bup>>@#9PaD_T_h{G#H;7=M4H<~E80p>sPF(oHn3pd1HC4%yCp zQy-Hnxxrf0gjT9Vpv4~p^1W;%g<6S$z!^+3sItNL!d2UD=^Ul)0y=6{qUf1O%~}|V zXyEv1Rls;4_6HMv`pQ$LW8iIVH?p>bY_pM#OUQN$*;5MHXX(xF^Cp5&I>rrWv_C|D`JeUNJ5aB5 zmK@UC1Ojs`eM5_@l!vH@6I#RHY+gJ~YZ!QlOg5#f>8h%t>Kiyc?bf4A;i?+Of`o@h z301{*s-+kw7j{jx2xxO#P0j>1pM;BjOMW;C3(ZvZQ zfNxI=jlo+1);EhPcb*xbDiq{8(!358Fb0WE6u?ce_q-0RAIq-(T%1LicSNN?i+>rX zpN5R_h70$+Pw|c(*Ll@DwH)kIyt6OJB7n2*P*Ju|9e`p@yGVj#;$Ai(YtX_YlIUpk zqV(Q+5p#Io=1%d+bfe-k`lWepyu7!6>K3#TclDupCYKF@%YS9e&3c0Ft@Y1hswbYD zDM%3RcGz7qWp~LY0^0`UNwZ7PpZ96aeJz+b%mtGOs5CD*K^JRpesbInPC3dCr?;Ta z-kZ79f(3gOG}zbr|3=3I7d-AB^st;}wz|6kx@(vzGMbWGl`PAiFBs>NjdXWYTr!nu zkjpK~W$G(`TPYn{FIJM@8_xLx&RcJaM#gS_oHYZ7O=YMaotU$bM_@55R369B9fkjL zC*r9WZd4E%`}C8H^o$fJP2JkCA$%84wEYqH!Z#^VLwEv#<70kIF<##77UWDNAX&Ku zId>DJ=Kt}$EI;pKT%wW$)Z)qhoB&<1H#@ZH?52m-IRhD^CiUcR*$SVSx4j73rHqD} zjeir>Rscv$NS;nEUo6tSoKJAaF-g^C_$EC8C#4SJF63I|vW=c?(Rr6xkpE$V)ccH_ zBdm-Aa;Bra$X=vCH^2*{)Eebb{(cYo_5iYn)(}K zLtMCKlJi=*mF*n@wI*uf1;u!IM=Z$csqDOPz6CjN5Xm?CaF@F4_bTGwiOCd^Bh$wh zQKY8k{@RN8gHN4M#7s;7Gml*L45{Gj$>nvfdOoeYPSul|ctZ88C5r0VMi5lbQ;PBO zc36;;CZGtLEXaA0AoaVYqJ1HknWlA;>Jbg8Ex$6_Umtcn?b_=LA0?WdSa|!-GMUU@ z-#E%@&DG3a;yTpKTHUtS%ua48X(L~;3bLB{5|Kg8+^FXb;oAs;nu#jL%lm=_Ih6zy ztJZ>?5)1MkAV@VmrqX?o%S_F1j{W$W(RWja7F+2eD&0x@@k_K|h-|Xz$Z6m%(~tM* zNzjk~$aT<+n zd$Xhc|*WL`CAPU;o5CpV8rWh};(Sn?3381~+f}G6+sRx;0{Jgnb2DA%7 z;CR|aL+TfcjP~V2PD%SZ9y!|Wd&%Xkj`mID-kJ7lVvcLVwp6 z00Fe$X+h3?1gUx^7(Z_amjUfUayXuL(U400!f5YyYTD0fqdl(aA-O!u7DeHkb=QgS zS;QPi`}3bS+TS1uXy2|FFR$5xoNl}V?XPkd_i~O9q|PwfALlaD-cQ1J(U2PGXdgZJ zlzhLDM~?4vOO5s(j`knwt`qIW#2iQaB}&u~zMLSS{X)ffc|$D78BGA~AGaXqDuUD) zW<5Xe-Osku{>KyfE*er(er|mK>E+OV(oy&}CMuZS%LvXH#a(9TxI<5ZQTS4>gQ26h zMdy9eg8X3wslPFify2mUz)I~GAKwi0h1ByuGja}Jc1l*B38m1}SM-=*dJ%ICli(*5 zw6n5xp*L^^zM-oUVUQT!-oUhq`T_u7ATVW$w>c+NbL)iFC!v`H-GB zga;7>)Ajj^@$xRWAm6E&sZsK6}%6@Ve?u#ycq8mACb- zi-a`d?Rjz%i=n?Z1FiDJYy6p0r^S|As7r^_RcsF}4tK(m4)UmRJ|7~qD zUh7x)$i2od>Cv~?8*%Ux@hmTI8Nb*0J$oSZe|_wAS=abgJ$iUU@8j~?@09fDSv)K6 zt6azZZ(yJB3f^<}MEx)K808m#BHIi9ig!`pUrhqowl8sAmY*|%8!zV-u19`n=n!s3 z&Kmk0ccYf}|4z>rcNM-4T&nNKnium>N^7#Eu&R~9L<>V+n{AJQwTk!LuTt3;0V)!`;F1_%< zxZc^X-<%iuO^rP}1R>Y*FsG_#^r2OC5PQq#N8Ps451&V5QTP&mt6qK*1&koe3)&I* zp2&sBQBRbxc#S8E3#Ld)%`V_|3eD|+;Nt#SG@;ZNuLbe1A1_!Q4KoU+^B4pt?*GfK zqr}bPe$Z-CfAou_F6fY2ZOSqvwXT(VKH+4gK5{3i2X;ukkS9ZxiqyJR>cxcfmHHW_ z9?~K8Ql4C_RHW9mQfq_1NvVHA>QiD5-uMv1VF#Agwt_A&Si`_cxb+tOXVeqJ0&b1$ z%&n0bZbgk-pZW|mzAHc@aafjWvd|BZ3QVVn9w&!G(m|b<%<42 zcbta)N2Y_FsGae^z1Ixh&&mq$`#AJMi!=Pb9TX|*VRIMk3@vLU0=-k61&bah;Lt9n zDSIs`=6yQ^mUp?dHjvQxYW3>)9{An`n%rKCGv>C$_!sH*wJiloHvCS}^G_YSpl0v{F%$ z`+2z7g5`lWY$9Dt6 zr&Qj|M$2J|$cojzi~Yuun{`4i`?BNkSHDkm27h%VhC_QJvulZB(-`BrSfQybgDpfs zRAUr9oQ=*_%YA`;(l@b57C897)LFt7+aNq(8-zktPT-7fueOBjCF2`q3s?;CYvLi( zxU_8m{!y*feFVH94A_DXEwXa6bxBF}y#jr&SN1B@r@f0;u`Lpq1`&xPa6Kz&uyee) z-&UG<@{t}7Rv5mAo{5I$S;q=J zr(JQJm)HD4^$C_30h@rkjwXSmGIs)ESHJl-+x#O6gsp! ztAd?-ED{I*{3tnO@Bl$xKxzVjdZv{N?|A-0t>m6a-iCGN4cK%p&{q)*i|l=xvIg9HW&s01BB z0Rz~d3~Ufar1LaFpdJ_3AA&sS)tHl-_Eo_0e7i<_R(FX`JZ+-aCL&|&N0|bd0yOgy zC&nRRL4RuBA-pqY*m8rJ#do$F5bv9%Ma(Zg13OmJU&Ngn1K8aHj9L1Eepp=4JTNLy|irwmptr0-QPJQbu z4jeF`IoOQ8y0$t?P=TpYf(rZ;;v6?0wV^fVUBoqD=$T-;6Axs^=LsTnF6Jpy$jdy% zqMr$3IMFc=N8RCi;)F|+^D8~XP|BKz5rx9rA9_2{OuI)2Nc|@T4kC}hO%e+<*m2i` zATsAq-Ds?l$2Rfz3T?5Jvf#OZAyHYiG}u%B3^hj#`bLC5sZxvCJLX^8I8ijSYPm! z>7?ZlmSKf(JITmcG*YphrfVi96$DCEENntlKkRZ&uon!Ol6s8lJwpZj_El{Svkeu{ zF(fHYAk-LN{G`5!>k_k|iTRzKa&Ez$Fh3BN=*(n4*o`H=lhpGUE>;R9iFe zHxdIMPUc{z4Hod0z2~!Yw$go<0~6vh^Nf)ia-h5+D@L?vfhdmDR56Zg>g8r%E(aKY zK8A{HSxIGq2RMkL_<2)4$N(}iJc_`fRz@eX`AFx58U*6Vk2y_wxs)jRZ!dNaGNz?K&4+sXB2eOp!U z@HXm)$-cFqPQR1u%*k_AojG}~t`myIKl$6rpU^BCH0{QV)>O{hHx_@j|Et`m1fuV>)cuX(LZZ?nU`yGeUs{NoY zLsn@sf3FxnZ#T8bwjA|Y%$nKN=Ogwg{5?Iwe2ZF7X=s`Kx?y0iIquxwc4C8bf45Sd zn>oN{>9%9n?s_6UR?b~sIWsOx%{{8l!#e$E)%k3uI-^Cq9kKC{cFH?fC+9`*tl>cL zA3RR}Kz^c_y(aIMbxGBJGnU#1_8#4_j^VtCf`>Dp#kK`RVHM@Kj^VJ7P;K z5(_8k99s@VZeWnkU#{L$1is3$|($W;I~8DDAg08jU9l?07GOVX1BdWF~*a8GM!;t|f;UZo#pz)9B!B zC&eUP3H{9vXF&i)@Kbp{SL2k|ptBJEhykK6^olLK3ITOO%)gfdW9D~&^nYaZc>6PY zb;z`+H-0Wd`_yRd3-9s@||ml45vIDts9yYfN;Th)#rF))a+F^!x4n3ov(k1mayNpV3T^Zgpbw zcXG%hWMUIXvOsb&MLHnAH^Ro_U|r6bV&!*~sbd)51=5aLii5;QIs2^R170#qC8>Q8 zo9UcG#*w{HKAWppVS_+a1E{{+RS3+voTc@Gk-Ww2EGV9?xBR^G3Gi}C$Gn)NAmox^ zz=z(B0qbD^*4>Heq}fL?4TsBHqkO zYnDFQeJc^1?w!x#{Xi60Ir5nLF;>Ac$wI!LPj-rnCVM`c@UypL>VoKdP7h4lV?~=P zU$cWr94?sImqaHo3Em;Q_0}{6R^Xf~ZMe2lygGzQ)E2&bxf)!jp%D`(uwV@{(E6D( z2p1_bS$r|nuTjHI|jDmk(w#c zdy}qaR0-7f8N|)cgivkGHMi269p$9x_ynrE3}RV}ts)A3jI-wL*9N++Yow4UBYl z>b=38dM_r{V1lE`&ocYf2PDTsHHLmlWxdv)o%%Ktpvc`DyV2RyI0v)@_=9B`6U|PAiR3Gay2dvruK^^dp5be zF>dUbcayYMIei$K5ZhEQqen*O}PWu4hPRwMGc55#4SXtg1U&u#BIX72R zo1hQ&aI7|#?1y(Ho7^KaR={^&iVS!@GGKo(jo7_jwwJK^0H9}erf^ti0vr~_$Z^$} z6bo|;n_?ul@^wyt!>CwDUsx4?MkdBg{JA(3mu4mR5C~bh^rTxi^Y;>eEkxW3AXQo3 zMbJlhNpBYpJx3v54TrhFUwUpMKNXFLav!Z~?Ee|gUp1mZ;e;w&sVSy?rTt6+5YZ?@ zI-nm})yj|x=)ei1(egS}-kQ5kznFU~s8}b#^47@|2ZE9ljG+9PF1+Lc7hZZVVTPV^ zqo<+~(ek5{JJ4eQ;YItWcB};nhk28DS+x)diIsb_%QI7>b-QRW+ev{BFrn~Fa|7KY zqUpuY>*Zz{mX~>NGnd4W1N=+R`xIBm0mvKkEfR^~l8cCx+cJOXyTkNqPFNAn!8)+< zcIbtP=4#sL&owJy1}p^J!grz^?sO|M9@h|091%8$B!`bg61s^Dv4{RTCnJE|yc7t? z6>_ZPW)>g{5`~)T$@nf3V$aJ&bU&rQNOlQTWK-hx$%-Ycjh^K!5eNTb%x&@zyI!+3 zXPpYyf`-ew_%4-(UJQ_~FhMvE6+)Mne;(0sPNEeeBs?ACm(%iE4I)ju6*8ZW@af3I zBRO(L?|X1KssNi3eH)4x2VzABr+%0>9z4iQYf?t$K&PGLq%fLE(;rj@4qVYt+;3#? ziBHV=K`tAwXhm3qeMDFre$IVGVsdyA0j8ae)XGc*LF!=|0c;2QB3#5n<}wcNj%bpU z2t26B_D8&MrIL;)RHQLm>|#n=Eq2BIPwSMGTaa@CEABry4gj?%kfJ)x>JQDg19+>C~R^$@Qd$bw8gk^g$5y|0JwQ<+Sh3x z6ZEaXTQClV?8|{`iUs5B&bo(&L=fir%}()K*7HsMX1{?RxvZx!=S#C+We{itTg~Cl zZ>;q*=%xRD&!mYGhb=D{`AC@*^Sw$yS0@08Uc!t( z=cO129z9aFU6X>IYi>9y4D{adqXzD&=in@E)RSUEM>jlq1c@d<5KBvNzs2K-6Tp>U_NXT0d0NR1kNTBo)CZ);ktaa9Q>zE~5$-wWv;Mmk3TN30Ty4g9{W_^6xwsXrs% z(j8M-i>W`TZxvU;;ODn<^AU)Cr0i7()~VV(tePqBRI?S-EcI00UZv9i92G6HcrPvJ zSg94RQY$)D>ZWt}VV`tG{uX?i}5{y3mc z;aq<)7=!5h0Luq`Iq1a8T<>+`5W*&h*%*e_nT)=HL5G82&=-FO=>tzt8ifp#Nl2X= zE7!M;r#Ad>6otg+<_^c9H+cVAx5bNYnZ>bBJ3Fy*iXTPy680byc{9smUY_4|lLbf6J`xF#Lmg?;fPAM@cB{1hN#~N`c|W zNdPl^e?@z)l7Q}ar%MkYFfT6 zQyI*E!2WfV+wlI)vG99<)02%ZBNNBYz#*$QF>!s-22Bef5G04kIHaHhCA)==EHhpjL|bvy%|PwSa4 zk$_IAHjHkz1uE4+tT^-3s*vc_VcEMA+ZmfwJ!mGus&M;$$({#!N&O31{{X|oAeg{q zbD+bek)Q*1JAdpX!roq%AQwnXn>!K$?^!0*BZFH@u%ux`ajGQ;oyPVxA7DOIFM?c+ zzZHXy{+5o;csm1S(RXs+d*oUgn&x^H*$ z7V6Fq6ncwHd&=G>R5F@~7>xl54IgKt%jA%7F8e*XYXuR*kaHulM(>jDJ(TE7>IEks zh#JU>@_uoip7!A>+m_g6hPEr!9mM6*h78}I95D3g-S2WTq{l)RJ}bltaIO*3+P*i^o2d-H6L4pgPdY@7lv(>?k>z1xLyENTFJ>2mR?vR^IrJy3INTRD zY(Z*6S@Tw;c2d6Tx$P)9np`_dj+(MGgi4KN`$~?Iztw(}918{3*=PrKlsx@uy(7u0wHLyL=K6)NsKoRudzwLflB_7Rc1MrZ-h5!_EY|9KI(Q){(%d ziU&AQuSy4!kC4iqPAb(q?I0ENRz|(idxOf>A$lr&5DBQ_349x6iby~+6`4_Ewfr8n ze7|a$O~_kjNjWnb1f5%&u!W?yQ2^ZwTEZR7ETi|Tw(sc?OI8o+5gD+C8jTFt78&p| z(dE|X%WqWAFTdS>D>W`rJJQGY?%9X8hA=|lEP{T6TUgf|Ht^h(x0&ixx+|1!v(lAp z2$}^Kq&!5bPmtR{r5dVKFDX^UhM;LQsR7_ZH-cv&91GEk%3745YJ-{vztYObFifbq z93HSg)I_Ovh)JEfW4lvc6RP(;G!N_%o{Q9eu)TSV0%<_)M1^*Z1l4?Lw~X4KrzGH4^Md}R-mYrPw zSVBJ@WHE-E}4*mq{ss73Z4vOtM@iKe(hzN^Vt>hVUN=ER&=6v=!&` zdgSN7b!nHGJfS2F;d3&XJkg%XpY_PkfAd3KX7VQ`X$XIb7mSjs_Dp`SM}GdR{kqKL zF(qjTSMY*m@`?6Leyc}*{-O)J%;YX5;e0VKSSGJdY2(Qk^~lf9>bk|QcJ1T>Ua(9S zwP#ZA+R5h?oW8O3cbVKvV3|y4&m`Yvaz)qU$&n9OahfviPx^Kxd(~M(y&&jLOW)d%^HW$5LpGDyJU-`VlM&F8!L-%h0a9aB4$#vfaLiSYh~eWdeLo}@OhII{ow@(zoI}M+!h|z+j-x$ zw0UC`u&<%X%3CDanXm7a%VnJ2Q#;>*Co$WDtK%vm6hDJ2O?Vq@e+KaH!u8ssDSQLP zO-weG>nY72RSb+e{1G1GtG494}&fY#;dHj`z<^IO7iPsnlL#5C&o&X{h+{5 z#?O0+VU-n?Q?led#T^De`^bJ3mlPeC?))!t$(Dy%i^-Y>hc=5DJq4kJ1PPYPRgULu3{3F->=$Tan2IUgFkos&P z>G2M$K>2VpamrhV7$%ld;lo*<%7oaKb><76<)`vzsiNg)B7`t)NKvtnxYTTMn1Gn& zi(zL6#xI8X4ml~k99UqvT`t5p6$lZ|EjDbojE^oP65|2WBh9%?yL`3B5XFAV70ccC zgWGId^#KU~cZeQk)_95JXOLl9BeU-#3Ih>y<+g?eFt6-o$zJe2cI@Lg$m68Sw|;4D ze!*gW%UiZofkQiH`5;o;_SS3%6&j}#87!8xm(Ww5ZsopJ`xuAyn`>^~`YFB?=dNr$ z<;tY(S*}Xa#&fyTe7_wi#nUoE8#WjrYKx`C zb}GtSY`dvqe_t_a-~s&>$ku?R2zwS4EzVK_eTtlZ!L{N8&Y|)_^GQ~6&~~$m5A@ak zL{HoA>L+~0vU=MCIAq_dZnk%-_S-vgGSjZYLAN<{$Ox!zHebwDSVFRY@w5myss*um z3j3yQcC8j|Lk{Xg*>8!I;ro?OH71l$T19s3h7`XArKN8x6Rph4*4u8&+h*Zo8%B*h zHpzXXva7%rQ_R>uNO$Ee{qLNs`;r!Cr_o}&StTtpt;JT;?#j(T^F>j(Q?wKxuAl-M0K;>RW+NZ zJsFGgk;zzalDkYqDdgn+!%&8arpbqlriw#GVRf_JRW-9uwnls~?!8FWiI?n^LDFhf zj)9(iv%eU8-yp{;V%KYh(Zp+w&c_{~;!kVMKk5J1_F3-QXNhZ{C9Zvz(=LqR?JY3w zT421b1*%{xRC^V!)yaJJGq8x3MNmOIqqr}^zcMUim3WmRzG_=^Z4Li~Hm`)Mt<7Z` zchGj#*l5YH6f5V_6+z=vvwX{%B@HoXmTHfTE;LsXui>(^`t2+cTJ2h270nI`t6B!k zRai|WTk|KiZM&AA(85FlEsVj+s!ZRGAF}P>i?G2QMA~LZ+R!~ffB-iRg);FqYaw6I_x#H$wVl1syL9y(OOOMVK zfAOQpuly*MZ4fWz%-qy@n_WW#)y^C$(%6pD*qGZi4l=;m80c_f|NWttJh98F$Lw4S z*(Q0PXRTWMW1Bo|;AUERKU0Q=PiC6;Nh4|#g>A|(U)*nZ!Ftw&35EoU-E$3nxvXcs zdUQWs_bLIVk*I#Eqtc%0>SehYySoV_ca@tz(5InibMwbZCXQhCWUkgkFMIfqS>~d? z!Er3#JvTdqYdQ%`(V}IV>mxPaZPmnP^EP5cpit>7Dwt0?X9pZ|>b8)>t}9v+wLF#r zA(#G}!Ti^ypQXrMzVV>m@OT5{|M}>A%=JlfoaHu&HGld(AOg`1IS~|V*4=g*H!-N# z)269Diw9q(MUi}N)c@MJsGK;kXXs&$6&of~L^c2cb4DO^C#o=1jk$D9x$g*ODsz{eOhE{a5;T) z8*bPeMrM8<0|K*K`kf7bwtJgMevLeB>lmj`5SNm?l{tarB*;LJb7m@t0#l3tdk6Ey zCnbf}z5{<=Lt-;X*^Hy2Xk;`N%eQuq>%7T&o&vXv6)+&Xa!BNxw1{AY)2AK6lb(5q z10)wt>np>exZjhV08mopJqQ>+w})){H^E9Ld+v|6tcdXGstZslWgongvFl)uj6n>r#oyL{S$BUCm>n<6zAP`^kX;)j_qk95@q z*(T58!-yv|^FhR$%O_*4Ts{R{3|Ko(@5$wp+bz%RC^_MnEo&abMS=C1dRH=~W9Q#> zmFx#j=8IZ;Ox4{?C%j1_tu%qr_Hjb0vyh&Kt2yPfnUHrad4hr7k?>?3K{h_pjpES&r0@ShDon@CVK$aGs^YOj=)ZI zUn}u}w6k(=6cp6RV>@F-8|Ct8$cLhsm3mcM9q8ajxqPz5YA&DLXe6V8ov;}5<>%Oo z%HH8zKAoD+0fXrz3D3EFy4pD0m`HvBl(oki_;U?1upCPc@2*XYPy=QNuE@3>9W?1+ zQDQEiR%KWo2l&{r{A#ZLO8!~bC5QKx(J?Lfa5Q;bj)!$W^mJN_nYBYOs8QvNR)jTv*PaT1%;wT z*gW;gKAT;->ndM%6>$`^czJy4hsUSf0dYV3AcHC=Mf-q`%OiPwvYmG4@kxC%QS>Y- z=S`8CJZr+%?$m^xtz+gyr0seewl^dC%1F&U;9UAM7xVt$wS#vRG?DHeL~1Yb|P%?Xsu3h?*T9A~8}e^0o7 zQjD!PX>I%T$iF&@_BrZTGRUq2IKZW4v1y&n!SOO&xj|~VMoVh68JgVz+O`eD@zWV7 zH3s6`sg=jY96nUZHYFw=WrouG43c{Pnq<|`EFP=i%sl!IOIwZY#??`{JtF?@>8zUH zWQE`A4o~39sgN%(Cy=uPy=t#`F2b1Tj^5BKa?wlOqjeCY&_z@X#doF=u@fKZ50%5M<+(= zkc_FJ(bJ?3pX>OvG1{HDLhQbRa9Uc zYp$ZKK{;1ZYDV$Ui}Z~N%0G0_@itCJ@(h1E&hf3#f>M$(`03-++avBY?8IQqO$E#xNi0UGH1krfSm$?VPu*)#biApKbo5m>2^8QCadIWgnso=__q@aKP$7r8-F+ z;7F>i4j#Y=Etg~+Ij_m?SbfOk&!p>R9H0Kq6Zl-iWu)k?57U9>|FkEMq`PYI~-hacU|1r4WY znG-kv@*G*t-KbQrr(--k>2~$NJ-p?N+4Zt-vO^}1+8cPiZH#xaF`Y<_#7*lAd-_;9 zL^>!e+h7z9d4}Lv`b^<4A4<=_^Hm0axor#eTcR3=m1M z_T3Ed@*uwQp8zlaBU1b5UUKLNy!;PAn~cTJ!h+aGu7F??U~;Q`*)@1(j+*p)IE}Xl%fjcTH`o4%# zTsy53!!Nx6rq;a0YM-2~ZwPne1^r`d;r(2)3R4&8eA+&pgh7BT4FCi zE{pW`(qdaI?XCaXQmvMjYOw)?LKIdkUBnKS2XJuP6{oqoVJT}B~b8-^rzVjJ^51Gc%?Y@h4t%d&~aelA2? zEd3VX^`Y@h^a@R?lfXT81p81fhe|*Z{J3!DrVyY9XVyW)n5Ta6Jh~IhDN}+7j+yF* z(rGJ}`C%n?3niyDO?5`?BjHUWOPQL$BKDP@DkwNtKhA%dGmU#xC6@kY5}j1U3jU-Q zP7aF3zr)Jm+)KoVn==Vmeoq_qdQib?dA_gtSD+LpeL%vJxETnfVRw}!|4r77EFAsY zjh|O_KO{H(1Nw|__mlfofrT|$)Z57wqa`74KgOP?||^+A3_-KV#%Zol-_QMuPE`|Q>2Wlg?q_H5B-{rE6hji zPK&+24Ms}sZZ0H{WyyuqQeY#&s>C5k3;wsD zWrC~==EbGuQTu2P+h8QBt4t8w#$Uu$8GL(>3VLpyo$R%vAH(N4MU970+u?kDD(AyLgD^^ZU$c=LjBD zBu?J+xbsC6EpDR2j74TqeWl3wLbq0~DTuhN3shCxwXIONK+}ssqQ6f}plppimotQ9>%1uqV zm{mK_u6G@?YO5>`JB?Yj%}P3pS>;OJPs}PG8}9zJT|qu+VXN*0O8R7mslGhSUU-{0 zWg2VXsbQ=#Go);s9k7`N$7G|Hc8Gq#nV+NyX2Jos3NPAC0J+gQqO)F| zQsP&xiMx6GBKdU?hEWx}UPm_sV7nShlKf!-s+-ku?5h z`=@77Q?N%mAEyU)O6lv3e!=T8rZ|emuj7=mAvnY16)Fkj)@c4xWm9+xMVZ!cO7yVrKoq*V=$X)wjRd4H!%;Wo}T}8;e3t(Rye+kWOzV~Si&8fnLs*!OO zKg?8(l{S#|h#{&XKYz5Mn8tnks7{9Jyk?_}gR{UsG?c1W?3^oHqIv_aqDr%>z|kn< zuX8=LI9UC82XBAFM5;@|3th^x#397PIuw5u1WJe!cD`tIx zsue`oTw(@`C%BjsCCF0sFGU-R}(@hWN^J5mVN};&E z8DsBl!5JUqRn%+dd?K2^IqWt1fn*UFSjXRr*8U^-;4V}6n7udZ)GOGFh^(d7U&@Rr zP19}AlC&c>dybd^!-DmW z7ClPd(QaA&j@e~nQ38%QG+lS;oU@21jF6egN-rZxJ60`D+C9#)q#YSXlIHKAIBB;z z%aU?*w9-h(SsRq3?Z!Jm+HR?%Af8irQ>Q*5qlLSDpOE*T4c1u#c0fJw;ge)3uBZUG z)W9wUP9FGhDm-jbr>La>{GO1!2bbJk@o)zuyP))iZv|^^k`&@CfqdC1*adCGqz*`A z;t3iT8FmYtuU8tulZXuaRz;I}gyR!HR_XXr0&Cednjh&k7lF48;kd#!H&En zGTI>tWDySmt$}k%E;ohkd}Jh=(D{J9Qkj^$N#P zWk$R~8->7);Ie#+;c^SOTuOwoO~PgClu_VP{y@Pcj#ye1mJ5DPWUlqZhpu>xq0)C5 zWfS<^0Y$RUk9IQ4!Bc1-B`7w2{G2*drB6!!lUkM$N_=0(~{q+Ga{0U#+ zxD_5a8g<=}8upW|R0RJ$b}X`Vkd)*;ynY z_zHW!QJUpC zu#i%1`X;5T9yMOJh!O;if@N?o(x@Wh70lU>2E#?5*v|;qxiS41%WK!OAs-{l8{C>% z(20nbGl(pa3Zg3TvafPapSP#X(eCM1OVV$!WXQ#q6cmvpemYkDOzvy%XD1=O)QQBR zYpkEkS9Lm2{artsDD8Tn`nIIHlhbP&2f^khsA4Gvdg%I(B>Wb{u`53+Xk50$v zSG@Me=!aw(qo0x>sRDn_G_s7*lPd7C|I0l+YfqWKa8HXYNq@|eA>Xm2U>-^0;C1Ta zSh6Wv>?~S{y7)oY#Vc28jLw+ec~t3SdM6-qe|n4FncmynTzT0&y-Nbno9!uk3rXTu zgXmeZDTq3W@1@TrelXIIKJVpDsb(lunBKpov}>xVdp8AV&XZ(8@SjP1s`({Z=%hgf zUiKf|(>i;~eBPdNeq+gy1tf`i*9xT-Wc?0w7UWCNC6*Uj2O3v&iqa9Cqx7FprjODs zMzZPeSdzKXJ#}{|-DOYNyGark8bozueTX`X^QF%vhC7I&2GKglaM~B4(GI1br?hL7 zt~!{4Gw07_LFrNwAEm!13rb&CftUS)dup_&%m#bP`J*L6mXIW(V}#QC$od`VEZCQz zOHBEMp>)Peozg_eb>JtIcHMzJ@GytyoY%?Hfo&vy2VN#i2i{cy^y{8Z+EeCEd&*g3 z$&jrii5aX!vFu04`W@&j;+LRHJo9nuz{?Gtc3`~g!0VKD-GLaN^E*&UmJZxc;&A>!m$2+P1-pk|7J33t+ zd+^$IYRK;G)~OZ}e|g+WmgVt$>d>i!?x~MGWu9r20ol ziqnII3FgE_u7AT`>~vO4qe>^U;ymV|KPwK{Tucwx%*@>5p0aJaW}mdDY@4TFHi%wp zpQqiPI};*(E-`($VfK@>EI&R9KXQ3ZkIJW9Lf-47*GaOO-U%aGTS`1AA*vdq(; zs=&*h=AM3KPnkcor<^I440(Vg5ws4BA?tUb?oVfSK+q)$=)ma_;ePeY9-T*on{zP{ z;U@mXPMwoqW7Dr|48DIDKOWRXXw;7f)gZNz#e=FdrO|?gmbg2)nxq~4-@c|uR-fU=w5(V69f zeZ1pPPtl`VRP4gaV0f|6emY-ZIUVmU`sA6>qdvv!R8R^(dekspbrC%(VXdd)K?xkw z*`Ganl>3q4jlKzs_?riKMUPV7+72fD=uxWA5dp*Qf9O%`Hz$@9=zIS^iXQa?+qTZ_ z66F6o@uEa`I#?7^6)$SgcSKdSMj^4;ZNt@dyr_+8p*>!djtH0sA}Z9R8Z*wmpSHvZ zE;+`9gq2aGKv!GbR|>7mYosI8hc0YVmdq$+%>_KzJd5 zl$638@T*xNk6*xZ#cY{X(@1WL6&IjYP8)>3{N99zDjtLjrbutD%2XPID8ps;}$ ztuDtSSp(Z5LXBBCo-U}nELHEPYuXTU;Bi{l!0}MpriTLsjc=P%Uz^91b#zLa3kfBI zKvuFbpBeL+NNmpSj2pePpcUR$OaRCHbu>bY%AUxhOx4DG=G4#K7%R?aeC8Uddd5~0 z+ovQrVtR3C5pkcMQ?OFA|BX)K0@;wu5Q@3vHAiDHY1A-^If6HHJB}${ms5e7x*);y z_J#7BLLUFy?E{GI-a(wA-g_w~@T^&@u%X9B;QA>p@PgS2CH^q=gUrFqMkG{7pCxEJ zIkP;kHi05@70;}4M_9O@An*WST*H6x9WTFW1XC1mEVI!O;elY zkprsP3xyJ|R#P9^C~+;@d3wqY(T)mC0Sm(20&S;X*u~tg>M_F=2TZf<$qp^yA_g74 z;bvaI(ibw9k_W!689IpT#%~8B!Li$-aU!vWxgRrQBPE2wV!tKFn(@I@*@=}*BUe;d zPVX+HJ;B7hRWEdU9cVuX#jHdJp(OrEXrupm0~!O1^UcU2FxP~Ylw1DaiRqluEX+Zt z-n2eQt!JfelU+=t*;&anJ1d!HXC>3@tYn&OiS1dkh1fn&Ru9{;dU&yCv~Xvz`da{$)E=NyPzeE5WD$}E z$S0nETplhoL&aORWz09L`ZNt4j@QCVIb#*>JJ zB;C&})7(V3`3FPB{PP1Ia++zdi*ceUJ zg!Oj$B0m-<5${!IDlG1TJG5llP`J}2Scxwe+q`zegK-nr5=}zj;QeZ`zrw|1gEuW! zvJ9u7|Sl@H4cm+6#Y=!3*t8MPKJ${15}7r z?BUH|ZH|V)f)T#HQOrO06;W0!{Rc{1#7Yvaq$C>J;LP8PIAy=&I6Y){B(-Po=4)6X zLStn(Ys8=ODNzU$L?KjYiGX$vLZ1Z~L5r zhx@=tlM2(cq0EqD8_x=yy}o;DYKj$P9)f)%i|NaFK!C zj*9u9`R%XZT!Db*0-x55aWv;nT)o*2FL4L5?G7Oweb|plC<+M2i*rtkNoX*&$0WS< zCZjx|gP%{e#N5{?CLu=gA56UTEp2S;+hP*h4s%@~P;B1IGi}q;&5+e;*sQ;0;kq z$7Ud(p&Q(mzu;;zxL}16hq!uqeD2;msB#z2My;8<^+jmVcQh0masx$>VnDx$<-BDy zUNGB|^jD}1Yy5#F*=sCGe~B^(MwlmYL+23j&?{HdgBo)KL{LRtQD+L2ZnZB0)!(<= zK=>I2RlL>2q3jD)ge@%)PNFP0Yu0Xc&f4uic$?b4`au=5c=aAZ6V|c=lus&tb}EocMEMnEhrCx5w)HX7*UA=Bg)|iA&5yP*O_@*Wu2L)Rn^I* zO6i~_`b%I$B}7J4qR@z4##5|QJjFVTr&veOn>_cef3>~$8&8oiQl)7J?2_DR@f1a+ z$P$c~A5SrJW@Bn7--Ttlp>**Sv#(Q;8_GFaC1>pCMi6$`+$^$7^}Y+IH+kD3o+9oF zIMSjXK|#)pr&#C5Q#^vs$i-7^8_9nso+3TY!ov%H<(`DGRDi_3<@=D<%;k%7O@cQS zJd-et2lzAj09Hn&l?Mj$x9Y$dV|dnhiu)MNeTt{JPw^D>t$(S_v&K_A;^HZ`Xbg{H z>l7-)50#>ZDxM;{i*ITk*Vv6t)~pM$2u2Gx{WZ<%Asz`EnRn2!{b8lvWY&|gpf%`; z2(d5^Y}HdcBP&EWnseXZPX%L*U}$b$D4cwQnZZ*VRL<3W*12D zFRw}?SAGxUZf;U6lHv&%%@ztQl43KC{hP6shr!$l7;J~Mitw9709eqE5291LkE%Dt zC*Q+e7h>)Opw&*jpwqu+ zXWPQHp{fw@6TX1ox!?lavGLbd3!P0zw4wGlh~UTx8w*T^#5*q7)(XG~&Ld%bwOxX0 zrrFbM$s{cL`Y>XukjkDwLkTqsFycmC{4p&Ler&|%Q#akRVyCg0YN^g zA6Kq-PIxICdAVLxtrz3)gXk_{Pq(IG8ZSBzdJE|%A&-V|VLdUla99Jpb{B_TXfHmq z3d`iujOAv~DmOtcGN7hg$lJ&Y)vIV*&$gR65<7y`_d9ghC~K#|5HV#x@j5gGu4n!o z0%7JHg)KNQd^e00XFhnETa@9v_1&UiL@ytFAGUfe*w*APg}R9Av{7zBaEHQ8F(R^M z^}xA|AGfbZ2w&~8*G+tdkbqnGQ!E3{PnT_hwSKyM%TW0}Ve`8si(r6T2C@O(GSvC9 z-dM3J1TF@k{=hA@+N?XZ&3eTG^nKiArl}W%1Po@49^DoZ@KWoVi5q`{(*$SS%8vQW z7|u8H_B3&01g~(yf{bWJY2kcA`Za-=jNcry7vj|eEyXhNBZMia_SG@3A3 zqETt~_XR+(G-rxSbHCxzA(J}5Q)cj#OE|i0atC-^M8Hi`I*tONG)uET$B#7%3al*~ z;YN0+?)apAar7eseq$Ac(-sl%ggAIC`=pZKQ;G=KOx8sN?EVrt7ZLD5d)a~*oxw{N z5pY+7ewulZ1XjP5e~J>9$4tcA&$Te~AMqo$XYV^A;22tZUl9RI^vQoCB4CMnb7n-q z?z}!NBA~GliwJ1DvRLMcdZyJwQ$EaW@goA-vJsnW8=uZ20?xC|pRG15Bic_SZ&m}b z*)7JZZAu^Nfot)s(V^f2*L#i?K`kdF0Hs0&0{=j2N*g@i?RsrX%_2LUPqS^FXo>IkGRd}Rphw~G?khe@aQ@Ub1!s%CRmtzQ$8NP|s)%&QZ>sn#U$3MEM5)SFbH-`G`xMsz z*Q1P5-&1lGkJ zEGDrCEsQWuC`;Gs&qnH%^l4G{jamAoBHw|B^5asd(>L?5ssMQ0K-;ZOy=KKOHe%Uv zbK+Wd+?=?U6CV%Yn+0)|3!pdIMMaFX8vK>5=K8gW-iSo$jl71^8@^ObZ|GYUU(&G9 zl$QKf=fSm=o|d#Zz{OuCaH!*@8}z~L>Ouhs&Xh)Ohx>K#0SStF}*E#l%6R*X!GdJL9C`iJ=uL zQzMMiQ7C{hT_e}gq7qARiK+MSgD26j4%vBHTdWK3XP0U@@2=3R?8fHi`qe| zg(lpk1}D2foe;KuFB&G9Of4LoDi&gCC4J%-s|16HnY=a%EAPOheMfgij_!(1p*v%9l~5W#FNV?pvG|zvtr%*uX=bXdVyH=58Sp_O zDg@xQfq@g{*yj8elT?MO6 zk`3X8vE~tNR2n#vKUI+CJY^O z!q5+?EfEN5=p7_4c9qTyi`dDC99k+R5E(iU0i0GMb%0>l^&ZtYv&cDOvqJ-u>dhNv*?LQKD8#S zcz(39&igCj5|KxZ1C;B%JFjq2#*uY2Snwk!^4JVEHr>=F>ol1+`60)*YCGCN=oz_F zYfRNnWS-JdTPPK4mR*44o*ho^*`bF4@?Fq3f^h(=P5BNd_u%}6r?O^~n8Y|c$Ud|I z(kpj5zxUg0rKsBGWFJ})Q{LIB>_gR*?9=3ApC%{!G&$L)35lSz;7av`1u^$B>rw|{ z2&)5i9!ZzK8QZipMKE2^BDuY%o{9ncJ*1%~t(@k}9 zYsz*wVQ7aFhOn6c7tQG7gn}ws(wa$ClE_Xc5AC$4qHS)?+GdMY(KfeAZFBMvAJei* zYwE&IClBp>AM(&PClApmy;&<*I?6*tjBE>H_oe@9c~8WB3jcVWlIxV#qEf5&2`DvBOa1$~D?H%%4Ie+9p&uk*G<-P}Sr_ zB4~;>M!mg-ZyB;AAlW!UbV57SMup6!s$eo@o229>N!bo3DY+S;`2o6Lb^~st&kRsQ zB6b^1CnV`Gj_1-!sGT3IQWOKpO75{;Ryu%8cebhav~`iocrXJM|LiAfFkdbAb6mI4lIF7cNGmX8bIjXqOsu@Cv%V_OnZf>COJ%=$2J zGh7a^yO5Ju9gvBfn55v>PE0~_Vw1d(PuiN~R%I^O(_pWR5lA^&{}GcU-b9?R(-ymO z=~?6>L@HCQoGu?}?GIL`+b=tbgkAL?ER(U?jr3b)`49ZGO@>07biZ@&<;+{!f?QWh zvWgA4Xpw}OQ5TS)3dE;LLDSzP*Z4AK?ic=|@`4*lDBr<3+pNEn^}W!??!hQ3^Abs4 zo*!l=bEuk%F|$-gd+VbdnqGc`wr4aip>5c#3j@6&rG=-gB;H-$~-2 z5D|-0Aq+mkftAtxcXal{!mMD`vGjvhnNzLI{p55qL0dDG&ELe!7nPfoy?vIh!aHBd z_~zme$wV^WLJG?h1Ta~o;4l|0hHnKj-&t-xT0*}Ox$sJEDu znZRP?6$#*J*YuE)Km!0tvar)NKQuxMa-S%UVctiB2r4FYILVO?O0Z$0N{F5(sDs@Qde^Os=;b&(EVFu%LP z4q%p;%by>?1dx^`?(k)UF(m`}7Ms3PMzbhG9%TLPbF@tzW?CKM97!Ffm`A8TlpmmI zM^ciN3?Rgj)M53}!V@;rUx05p;p)A6&558!vV$}zgCyr)P^X0e%kl0zZFdE3H6?^y zfI;d_GT55Gh=cI7grPmvK_}bJRX>sZoE*5QMO9pI5XM5SGvs$#V!gJtXK$P2x3_=0 zzy~%)?iPoy+HE2mUCxT^a>CvoC+zJpVQ-fSd%K*lx5o*4dz`R`dn1^qFX$l{RwkUF z=bEX)jS!Mn6%LL_Dico7qailh9hF=xrQd0n^Y)rdRKC~Ad3&9lw--q#CDyTGr@bS{ z`s~(UP9$kPk~DFy=p6&Bm@d7CRJT`4yOZj6IjL@slj`<3sczTlQr)hhv-Fv=Jx;9K z;s~th6asVN84ZKxVpp#?VYE~X*+@L2eUf76 z5$08iqb?GW8}LcmSEM2Se*V3Lvt<@&$jIdi<1EICU@&4sY;=tWbIZs*17f zIqs9P3X(5U2_@nD%_b8rkccD^P)3}SGVlF?iCNQy1KqUtY^_BMJE1S+uRsp%t)}s^ zl`l1m2{tIt3`@4H;3p;a!iFZ!=u@A+}!WiOqB9ZB&u$VvwzyyCG=Ahx47D5|6)em_kKImLs3#shQ z`IoZ*ox^LV71KSD9#P#Bd4P9OZ>c#|eG3I2ziIBy+4>bORHsgZA6#U6AY1cO22F11 zZ?pY1NApMrPUtgzq95R58oxy`oRyQeM%DvanORDu1lzB_E@I(ej0wvW_px*^){_%9 zidUJ&3>!acl?*WLSvlIXVCioD?J-}j(wMzo@jn3Jq!Bk34n>G*CJ#Hc9U(y3Exz-T zuMY!^6~PBKTd%BIFb|^y6K3E;Q$-JLr+U8LO=Kj_I2>idE@cL76EiH|*3(#{X%-4{ zS4*={ntS3ErDg9T0dW{K;h!c!=o~a_fN2uSd`$xGiCKr`p(z)m`sac1Wt zu5&N9cP?$Gb&HPp-BN#8YUwUmSgj7}QV&uF;SXJhUa}6|s;z-DQfGK3YQmi|x)}a& zxUm*$SV0zlw!xbD?cEnm`-96(Dcp7X1MF<<2qwzNA}*UEH??gSy-r=_=yjq}(QBjr zX2?%u*5EB|^xD`)uWwOOI!NUu11yGVIk%|V=oN>OnB9tAJMD_ucJ=Dhn-D1CM=Td} zEO9r%3XL-bt9uzMFpi-8ibd79)5z7|4ZGMo?l43lcAfWJ#hztB67vhJWc6@6G{>b< z%SN%ngsj#YlnVJ3*ALjYxqYS6!TZNFTta&w?GpG{%~4$B9?g*jA)z*GqbS|JQ&Y$d zVa#p?F!${ z+xuGmKB(Vg+;f;W{isC8x*r%D%(|J&%V~8mratTR7$ny><7zRgwfe>v#KrrT_2|hP z%us2~-t^-QIylK@!Ri%8PW~$CB0j|YI1+w*8XE%oJI{uo9)XFgrA38UpB}b+;n85t z!>B5-a8eh?_C#9%cex%Up5%q^dD-auXvOAE1M<8H$t3Sk8#S%m4r(Ds03==GGozKn zRiosX8w;m84$_2ojNNB`0y1*$6&QR+duE%>%oZt_H}04jG0R7H$cs*seQn6Qc{)~h za>=c=8Cy+!cHcFJa5f=t>?|gNxE9|vUYBy+{Ah><;m`WCCg=k>4pvx9Z*n?IT+hUr zN-;zn`{o>^$5|1J1bEvtA?3@ERaF`oX%Rs|N#{aIX+d6gha$K`3Z94u7-+!_dKxU8 zp=2agE}BBQKzU?Kma9O98vUrzM>Wz_<2BVN-ZD@@-{NTvG{Xb6E)~Vn7@oGNfUzwl zZ6>#G1gpOU$V^>94kPZ+P3Z7;d+DsYy#}n%4GZ2c1uUo zJ2omM0rn6?omk3c-@_I7D_$H8yeQ_9@T}h~WEob=xPA1xZ^jUj`xSHr1x9WQs z_YMbMj}*QH_pUKk26^@%IuzVk?5n*qG~#4G(~Rn-G8C-7aZ8r0NvCQW`V+%PI7H8E zT@{@|*y6P2ao%0;5L&deCsGNO3xD))+HJ!^7AH_7GK_h4Ko?q*svA%qc|L|8URTh zb<@Z3;d_wA9ZBmaVC!@+%9gtiiNL2BA)Nma5`VJge z&6)L3(dBU9dz#>tj{RP*A782;TP(Ft!F~nW$e!Z2pMepZI;JE0J-3bhe#vwg@Ae$jcoCwf!DCbz>Ry`mcBn;qJIX%(&Qa*ARRs zHl9%~9?0L2oAQA-SMmj)Q8|~qfTrmehbqRnW{wc(h5Y`Tn z8qw-#c=Pua4nC$rhRqyZ-AAW%RBOs)tPxQt9v#Zx;v;%fenf97%?hk<Wk} z=o&1G$i}p+7`wM%S=kXSl*Ghw;GQ0t1aK>6`vN-XHJrOq#nr)-{(L@dAN#PhgK(T) zY5UyeORlf9qL?yCIz)g4Ut9$*voWtEhV9SkiknnNF+Dn3VwJw z$xF%CH%ib*&fP5y-g_wDQroAu-{$AD_J|I0uKFcPBeXq4gCi!~+P%143)C&%(c^-B z_rKDuTN-m{)Uii!%(guF0ajKb!Ff3W{e<{vk9PUX52*_NX=yGKgZ{*_+k}H4OB_xM`VvX!cL2@|J)}41%6w8TI)CD3wqbl|3kMjfT z&NJeHW{<2Uk1dm}$rQ7q@b=XKdgsjAeckK+dhNoji{ zpHopR=ki~4*~q&;w?@w62i8cR_D1%rD30xe)H$-hIn_wF_C^*t zvj1Gyja=*+xs$}Y^ZfQUob-2%{P9;^LUOmN)Th5Z+i&FV_C}_tD3_q^Y|>1v*Tp4s??`{h#y!Zd){vA&ev2F%lYy{T{iL&RjE%Ozz?jE z$J-kjq@q~PqOOUpT2<=PH_Y@K`Eq+B_o*nB)4%IRHalXwl9~odPJ1J7IAS{p&bz?L zLRG=PZi-?zHv2fKPk-1SF&O`E$tG{xq3z3?$uVxFL0#u7=}^~6ib*+xXdPic{jSs~u(Cn~@s0+ouID#V=T`who z7Y@2SGwS8~vNH{qKFDoUoKXlKx5D1BFeYBEzDN!t#&aPrQCCNh-@3PX#BfU zN}1T@y$f)resGtz+l1MaSYRTrFGg}zA5?HN^+my`Xs|N^m>^z63GQsRlF9+-0mb z8}?T!_93O{wZFO4rS^En{?OsYx_4B05t2&AK?y|%dm^13W{cKCw^$Rqdj<0{4t9L? z4qln2^tv$?S=Q}FFN27Hb-bu}$3m&F3ur`x{aUneEy{;AE>5)0TtKH>=s29oG0p-f zDf>D?!%*_eDFm02@p0)RSlivG_fO^)KMj6Y1ZVt)HxX}zj@|OPlZJk2TX!1>MY>#zuIKK21T~@D z$1hs0XiSD}OUHQ`C(Y5-k&1u#SXQ46&_?!C_=#GIus%Y&&LGOWFG&W?xD=$mLR_F8 z+%TwU3VEBTxguP+c1oWcV#7a#c~;n~e4Vg1OL&JqAr=?;fMu{aRkMiTqJcL+G|>cC zv7t$82v#4^`?Fx%(9DF1dYhx(uHeiNc;*s$G=3`{t)HsngwZCKk7c=yL#-JOa5C&X zkh*(mr($2HZ!=b;5dV3sn;hb!>_0i16I&WMo?f%(F9v~Uv|@pZxKps7lX21U+35&QGoUE}axbQ2DZ8pjne3y+M4zSbhtMdqXL zs~a>(V~29OJMU`*S2itsI5v7jG}b@jy%CL#ACE__aQ-?@g{H|vYUKY(lMmt*5;mry#MQj`|j!xwpW zo!5oR9UG5aL&06s(J&llz*>qtQ)Z#28qVo~6v{Wniwf9^+m0A5)-dLOLZ}bC10l?@ z+)gH!ph0)XzSvZOk@y%b3H|vlVK>Vl4zoAz5!$@+)JIo}d#&ZJM#W!HoM?EM zqWW0KTMDZ||FnNf4)95j&i8dpSf7UV2S8&ls!7PY5(z}7M+(PI3s(2F2JE!Qo!dDD zC}YBC*g;vXA>P?{=C5a#v)(;w1cYZItPmL^ZUS-IINxX~{sqX)ua>044mFcv_E#Bbfx-?0 zQmb*q@|wRL2g4uW)+GTuhby$R7u5VrSa%}{-4=YIbve!qNnNeh)rAWrmj$cm>2UYP zbvDtG4-<6|bC2YgsIPQ6RY*oE@ZY-Rnii6mlHE|Ovw$SOy`5fg7W2@n+sHskg$vZN zV0Ft@ntbH%s`Za#Erp#PIo;mOuY6^UomNZMNVQS(C4SEAk+>o5V@b+vL*0Pe>0`-W z)I&V}>LQZ5#Ht01FKLxe9#|-HZA}GE)S#Ra zIB~s(yJ&sSs8@u88q4>`-wI*z)>kxzIbEsQfU<|scqnt2Qmu=5N8rRIyj0*sVeJn| z0abUVM);hBKIR_>boA?!9063!x8yE~_pQmVE)c*@K*#S6$bba27=TR)d@Pw)$>%^N z);&v{*d^aSE^b6P{yhYr)xjAVnlIkV!&;;HZ*X$XFPfq1wEo!kV6q;qU3WJZ8mzr= zY=s<4s=1Mu`A;5h17`8o2}TddYvGQ(Xk6d;<=C zih*n7&-yB+FgEOBpMw|1qAEb(m?5QSkA zCk?*wmv|b=R}+A6o+inhnZ?raPkoA=r*R}Folz*(#gR{~L-?BGLM zAQ2F_Z55yu3mHWR+@$Q-1ctj-kuA;>(!JT@ql~xu5S;mO3qTHEWW7h#^B04s z{s4-E`~lqqg5}K?C2&8O?bClTL2*|V4yk-Bro0zIw{6&{;{6}0W^>6)*nG4ndMsJo;$fD4#04TcrHia7seyg1X{PGk@B z{f0T&e9fO=wb5)W`_XB>tJvR@VHJgqeHmH`&RjsOU*<=Y2gCq4&?KwyHsj||mib{` zF!jD@NqV^@Lo%rk6)qS5^d1$7K*B9BFWS0-m$2DSSeXfTFedQ<|L`(6b2J}in(ot0 zx2VUJv*u|2mS}(&=EvA6*@i3{*b(+#p=~3y_(W!W<`M6Z70o66ifLv zc31P9DTM8wy!oO~oLfip_eAq|Mgx1`(uNwhAr)U1VLFG#(RleXbxWH|&bZ;Xj&u4P z(78!;yM3Rqp*rhe>O|EsMe}z*9Z`p|)yKGvdD&_9&0nXq!>#{_ZvB7G{lZNj9DpB3 zrg%r&A#;N`jXUJ#>i!NW*8R-4WoZM!+1jS< z6gXwu>=M*ucb&Ux+fWH+#Z7jls+?QwJXN||>@vrdxQ6vDX3J$W@td+@ zE(nG=O%^Ra1>5Q8$iP++M>28~%akBt zJTBH;E6(WrScL;}a+rn(*b>gQb)0<6B;gkSIN4c2pa=F1dx#((Fq2!PjYt4tdN&8j zw?jd}>d!LR$%|>)S=rr6E@fpWqD!pF?qFr7brHT%#@-9Is@VxZnq3UPBNx*hv2^aG zTm&Io80L`n_F`YGlaA1oH3=H|WiN|ihze$IS38;d00!%!$b6dPiPqoFv;iK8& z9Rm4gi>LAqws?n9ws?nRC1JLBs?os~?~recw-K5wKGbH5he4iii+9Lu@ebksayeEh z``c{s)EOTS{+dCLI^u!w+VSC1cAz8P5UiP`%N6amc-;CiTRiRom7K$}few5*i_!+O z#WMqg%`z}3Tp6tXEu)^4$Q7cq7$rWsnOzF~iNE*$pw{1-MLsbc`X{5{Y;~kc z^u+qPBOJF?OL@|9s!#9T(|F`)07>yk!tz844+Lin=3Ue~81|M$ z^WO>+I0l!T+9C#@N=5@)>)w)X!;}(78kN) z^<&pBbVmY9PX_x%y^L%%c38aCF0qwuHD(goYP_y^Yo2kwt*|vLJ!Q)&5)stRFt#*f z9*7eqQSJFlZnnE@w~2V7vZA?JRy4O^MYC+Q-ASmRU&$F~gY}gAFTg#Z9#H*&B79cY z9{3B$4hDCxu@u<#8ra_xs9R12>XsBx6%Tj7x7+j-ZVA?WUSglO1VUa5g$tRepcoJ_ zBNKjvPaL~zVI$xRNn6~PEfrhLGcIwla->P9If=Nqn@%Tx11CaDu|RxFrzZabe;n3g zyheZ|Yv)-r;|`ImOL~$jS{I)>dnTj0@+FBj@xW;cocNm@$aLwT&Jp4Ki|U*^=*1c8 zoKjv&okJ+T)pfpPHUZlhE+F{N7L?P3^ylJTS0$Ln${k6W1@X3 zn1gNplII=}{3p|bGhQ%qvVEp>ns&$~6)ZRJ?W6n5HW!69$249BOLM=X1{4F46a-H;7r@}Wvo=DC_CjC8VOv>Gbm75w|lQ3 zry0=g-jBdWZL1Z0%H&E;*x=GTI71VQwrli>0T(JF)u#=;D|vpSHk@IU7Wpf}2oSz;W~`t;m4Hf10ITyvkx)DX70;tn$;Rf6 z7vo%qw}qFqce~Dx^vuT@M}BOdEjk284&CXkxc`l;`pDfTGNycvFVI}DFaflx`R4EP zkr_bItIFIhB1tt<4yTgw?^=5EJ zT+)w%0KJJ94DQ2F#g9F8jKxH;r`)bKW>;3Vi1arew51as^j1Zqzt~t$*z}z*i*Al^ zL`30JV^4K#7OGR9X?>7d&q~`Narj@1J;g=6|Ml2Yo+jlf81O;G&^~n^ndJie$<%V; zuMKIsJovvJf6BH(j!M`m4`Wt~Y`8;>GSM`5hCJ;hI*mVt?K3L?0_wg{;Ra5EH(_wi z!0=nqn1T+u+h{&Jhz8KrnMpykkeCTZyP`7tiRm*O>Elwsq+n;toC<=Px%=DfycG)I z02w=*TBYSJmi>mFy$vqz6uOoD zoQG&s#8lAc(^<6eU7}G@sJ20gu`GAeF4>=7ApYQ}COOXcn2fQi@g83*=_`xu@Fc}l zq%Jk~fx?T6z_799>a1gnr$(J(4-M!HTR!#&j)9yJZc1z+)D~{4@-CJn^_SJ&SgC(3 zkqR}n@mvcvCCE7n;&8u?x^1DRG{ETgwUD_`Q;$APHds9cHpgVRlV3r3Q}sn>V}a%+ zId`_+`iCH<59{!4{USaffUIhVAWPjLNF$TW1!oM$zmGXYeQ?G~UPZknIs|!@vr~St ztvg8Ng7X{PRpEf~?tbA|pCci!kJLb6G(Vhv`0LBaD^LP9o_g-FiCNgUXj4xKXj{TH zOF8#=BX#bv>6DlMAUMI4n_=q&;~IIzxY&RVH+cg%k6ogm1)O`l2rAb5n2H1(IXWCg z3Vr+((9PtV{9!yf#5f;xLF2n0dtX0p0maEj__5BUE`iRNj!Zyi9!G*)^-TUk?`n>u zRoxQt8aSBnX%!DR$0cjPzyWv({q0w@q~}eZT+Lg)f4HVDEmByg^RUIinyrX*jFXXh zeOev(M(RK`TFkN7GRlV4?cQ+4IEu@F=Oz-)%TFK29kkItj)W`-&UlqqVSgOiApBdy8PRZZj&}NR@?OI!??DWwJJvfTx>{RgwS7MV>%aOhdTzrR zXdlk^@#AOp<8pqi;avTYh7;={uEQ=4Ru{)98#n8W;WRA&i^Dl>hMRVv3?Z@(w6_mu zIb|A7&6L0@%oI05V;$n&KKCHMJzLz{0xEEb`_Oa)Kg@DaXyIvt)hBA{LX!6(!j^bR zWT``8?#V0zlL(Ntc{Z7h5N$X@OT{CuUPu|XTuzQEy%xV@1vxn~$ju&Oa z1qW@En7k2*xm>|A`W0<3r!13UlQ7K+_9F!4+up(7Gs5CV^1|IiDsZF~$L z{1_s}YZo#($9#@kO9LbEcsGj2JcsJQcV9K;c?3^7HM>sBhc|yC37BcHr`h}5%N9%K zCRA2$?alh#Yy4>b8dt3+jq)^*gx_Y_)9exMTA`rr`>NSl1==5$r8x_#jM1q=)vjX=CAzFdxV?6Z0_r=$?nxG zAGNK?%O7U#P@qm9`j{7Vi7?dq5{J-( zc(LjQp%8Nr!YiArSgduw^UWK&)$$ge{W=M_Dk$LP_C)t| zzddDs-JS|QYe{A~N#ddBKF}?e{UNfPHnaA;FmT~(-4-{c1=d}#=KdA#LdeKLiG|PV zyg7UAwGQrh6_Pbjzo3u)Rgkl>s!zXaiVvVya4A{97;4Fo54xvoNdPL}o(cw&B!c$+ z?qvP%PvfxowD0q=#MKUf@jd{PGAAep99e<`VXF;iV-~i-a}M1ygn0$;Oa>kwZ$SDk zk3PaStHjGyU0}0%UT&5>WgfAzf^C*$9wbRj_^S~1G+7_urZW)+REY+eSq0C{+3q;x28_G6Q(fak5 z(W!oISB`!SJj+1je4`EQbI5iWhzof12jbnY8~CaV_*T!${fIqfX6aX6!4a#Hc|K2x z*Z(4b>v@x+oX!SfVB*Bns&}~$WnS>9>|x}MaxpV7Z0j((K79nO3b*QqG|2@Q+edQ; zTQVfuJzYZrc!G;6c_fJ&4U!Y>kSLz@88n=im;xkBq8Xn|q3*ZJfx4k*LEVzu+EDj9 zvK>(OG><;&9#)B$tGd8u^}O7b_LRB6$_gH_B=aef#LxaLluRb;qi*7#IstfSV#!km z@SE4906wA|0FO8ez<-3Ad=mYc=&OCw{gOu?;OQ#ya#a_At)7?rygg<9#>xufmSjFc zl1MHPz+WWm1Kh1MfJY>HIe`YPEJBl$xo zgD^TV>JK&upBv={fi8s9ozqyaXw}DhnvrI%qt_uP-K=u+DBGV$y+pSE{U;%HM?2Xz zJ>Llcp~T<$z=SS*YL}UulDtn3$FP#89K5>Bqcu*U_*ZKgLoCRRfppU>BQC>UQidKDq zzpWB4S9Jl{>Up`M*N~U#=(XT(tCINxlEjq;a1mJ_;CX-U1mKdy7k+OTo>G{?@Q;)O z!xPT}aF}L&fUndy+X23sM<3vUD)Dkv7l5svm-|_J%G5dm3v=s4=2bi;?q|`8Wgl!` z1iE#G;faYSe`f$M`9uofCglM5_Ok%I@yl%hFDBao;N?8}06(P?FIRN|*y?$?+w3Xx zWh*QAlO>tUND^yUjbho=WPJ>e?hM1XCt7}M0QYJG_;MfMJI?~}4`2g6hVK+dXvgqf zJo*4nP>GkTx&UnTyxbqzQ|9-qtYDHQnUy4oOAX*F$fii**-l8}&cyW&;E5kkVfbF< z!0^Gd8w@(}x`U{AF(cxmE=|MLj=J-B z^ig-f@RF;#Kxp;6++2IgyimXL3JyEe_2elr%)nmOj=F&hIssdNB}$$!?0x%c!yXIQ zL*zOxTz?xh%R12I+V#rkfy1p`KOmc;U$U%S_mKE&*H=`}%Y8@%UiMV?^sqf;R=cPF zu_S$lB?Y%wlKmh_qLei$mYq-5ACQS>u3Zk|#J!JO&whGUs%Hzx`8`AA)zHlGdnWPM zR_0D*;KMh!b?a%eezzVbOSc{)@w@eq>Up^fRp4d+$~`Tyr_A5ErtBzmowIxQWLfvu@QDw2}Kf>%|!h^RI7hgEmGM*nVNjkXrZj2NEFt zsXZ0UAxRu#IUuetSs#pU&vgQZzLyy2!1#DO7*BK##`6=~!1xVWz*u0(kVo88Jqchu zZBGS%BuP{n7!Q*5!I*cZSo^m@`d;GUM-3a#40nU<<<9vc%`vo3Q_8n~#iRHZ(Q6)~ z4(BZFREv1Y?ae*5({)o3x-iN6LliNYZcq{*Zu=mHxgU=jc(Q%SYElAnj@2FVF-r&_Gx9c+ol-vIgjFV@l4m(mRix>=SucWS71M%YX92!t;CcBxjlOC{xkH#=d;f+kBAZ6q;gr;!3S&C}Se z$l5w)?>Tm~%J}c5R^sDdU5d_f)E92?kMz9M=vPc67sIrCDz0V-31Cj43El3W;QjT10vnlsz=%9Y}20-=7`mGW@@y zfVC*ArlyG%9HLD-=PfwyJ{O$%ESTYx<87X4{vcMmf93mRu?)_+gSQ-c{DlOF?$i_J zyJ+hoUULW&@{j@@ug4~pbC3!HJ3C*Aw@&&rd0ov1DWk4eivg|yFIvcNIl39f%O$+z zdK)jLJ?=#=Ys> zJ-n}v-PXYL-)uZ8HYDqzGGF)4iHp9%fspCgJhNAiT1>x-BVzLAyoik(5c z(r*2tqs`T3_gB2y?EcDD4^^GWYBTC9UTsEwWvfrMei6_w>#D}fVQxUZPwN-%!s^r} z8Gj!TcR0`F%c=8B04udFlmask0O3Nklmfg80scLqdJprLhKis0l$Sy~X9hK27%JL| zJ5G_XtG=?Nn6a{UTKSUC9bf(qDkfwf!8<`dm4lj!GY;2Uu@OC6)fuz`h_OcJI^(d`>VEn%7_sZDi{Iwv@$=GjbHx(Qv5@j`?2A3avCpF$?=vXm zVHb8oJn|m{LSAH0);MzgaltmIzxIM5uX519kZzyo&rrP|Q37zvjFz5G6+(I%uZ>MR z?==n`i;D$w6lB~xb~BAQKg#vy=k$JHO3eFCcMJ?(oH(YYYCs;bMe1>1c_@AH=WbA- zks{+2>4QFNT$?l9kCL;~-JB+B1ZQ4N1$g5HybkMf;wb$v?7@Q4cYcPPBFbm3vRoq{ zw-upQ!N~T3g)s`=&Cd&}r~voBi{J9YkC9MAJs{B7*h?(V~a`t*2_!!kyWcyX8D zUy|=iwy=OUz0-M~lwFp8qa7#I;$8b)6j~6&r;R2?eMSj)t#M;F6f(@Ww*_w_*G6O4 zk4H=q>|{qMYom{S{#K?cc0j9fC=reYp-M!JPfMuEr=6U~OAtDEmHmoZA*3FrJ;G)< zAD3^2YmR$FNvwEoL~NDx$JIW z(Q(?=P$MwWnYBOP2DA1}ouCD0{#Ig|nf&bQuLF~v2$z*X?mYx+8+nn6JbWMawT&FN z^9q@Vr8Jx`QoqnQv**4HqQKpsgKjiRxJ%@iz1AobU;TX6Hv`bBnjsh4r5RdJOEdOb zK4GisJDA%pu6WDu0Kd1UVmEW!Yrc97!0Uo}L@Uq2YX|p!Z3YGNusN~CH<;JJJ$*{J zNpwP^?`%%TKm?Gk&4g2+b986~2sw&^`Lf~OxwR9l!;e`Q2p5`^AfkGzB4{Wpayd@l zNUBa)sFUIoE_lZYTbRpn@5cIEb;2T+6rXSbI!?Gq3j|&L6l*t;O-U4yl%$G~qQTO4 z@tKIPY<$mJXt5J&f3St&Eo!lN5@jteC`gNir6_8#Cdyi@iOLo;^q)-7)?n#B)kuT> zH0#evnVk+l%9l#zqKyQnbV{o5N*65IBH_TIJeU{N)h@m*1{_B~O7en#2Z4i+35`__ zff0wmvQrRP=@3}t5LkQ)0xKN?iyQ)r9ReqVKrRqeIRr)=0?Q16++?7ysjj~vX=AYU zy{g4}9ci&%mw`VJGWe+eRyl+y;4cWlYaIyL%s<5fE?KNU$WMy*3qC%|6ogicmfSS! zK&AW!M}7PxSh6vgw-m4CvL9Dgx0J?eP9XeU=<__JO-E}ci_2CwL#}>HGi0}08j(jq zg6?u!&5u*_;$}{*@vPB6jb3Rz2@GZ{K_Nb9hlnY}Y-VF_-O5J7ZHof7CS!;%r`gpn z$lNy8ky&aT9?H@ixIp}`cA{gEcX6f44=mw{SGt?pEFiX7iU)jlHgac?q zI*k1kFP?An-n@85;y7h3Yzod;$D63P70WfPT=AlGTG-0oXp?-&!_dcp?|trDf)iUt zH#laYD)y9dkiVrF3gO_wJ(OlZr1H|~h?ZaYzc*Tq8P<@ZrqY_v&x3iy#LHry;O3ZU zvm;Nk;@?Se+vTZY62N>o;=@nUZyy#R3S@KyiFrg!bsWn^2(V64ete*ks^deMG+Bep zD87o=>AWi@wlm4(R`YCG-l{E9-ztlp-nY0l4>rBi44y|)N$6;PR0Pu^DT8T|RKm1qe)7>ySvG87cnj4^$7Sj7R}`tK z^xjkXwRyF!my1og01X!&@p-mH(0>7CgO3Y4RSsnlhcbe(x1&tq=G7;MGQwdCZXabX z+qwmH&~{Cp1GK)UHv4$WPjDc4B265VO$z}`BNl_>ocqw&@Dx531g z)zWqpuJqY6z9Is|{_T}^5r$7lzv2jC9FSFi!I-nDSl}G|2JS2Zhmfc0dx4`EPnvAz zOLsBj4=7Q@cY@W=%E8Ci?G{(4JzmHPD0@B?dP(SNr=@|=U@*=xJ(!&FtNPyc2LlBw;D z+@+#e&V^k=@@m)`$>RqG$*}fD)~G0!bJ=K;vwJ_>`$=o0h96iXdw<;4o!u%zj~D5( zktbE9KK&7XV2wQ4-pFGrisjrF>avj{RjE%eeJu(l;6l3|J8<*t5p=s8A?$Xi2dhSYh+hybY{0VazI6~ zoY=T78yT-E_34lD1MANC_C}&Aisd|5)MX<#s!Dx&H-2D^T+rS~NJX)n`$u)z$fs1L zKK&T|w?>x#$j3>2`bQ|ze|Ur(K{ok&ZbTt$nfwrQTkDwHTEldh@twGT`65f;Y3^U- zg6?$pFL+@Y(ZT%-(uD~cvB51-Z*ZIY7wwm9OJ-5ou!U#;{qMPd`K;W((8`E2-M=iu z{R`~Pgn(0b@~JKSgYTR!l_tmSgDrBqpsSzWc;-)g^HU_y;k~a0A{a!$mv}iq;2bd{<&9 z=LBz>Y?+4RO{W#F*^1-MO_9I~Buvykm)zao=?nUBAFt2GP%HbTMw#hLhcH(i3^|TiGEJXIH*tz=yxF?dA^!9gq@lh$Kn`NtTx;bDa zB*BYQoo=p-6s~h_Ap4u-U>MQ$61RDh3kZjun8OYs2SHh~EQQ?9lJW5vamZZ*(B^d0 zwcwD8#>b|ei{1ww*9wnzBU^3^457D?OF1#E{6OgNa(D4z9EoX@L-BFoc5QIRNd3ga z-DYbjA7_w6h5)G=1U!`pv4?O2=``8GEp9Y#jP>b`W0M=aK1_@H2;SH6Z70==-E?=} zAhE)J8Mg)9CHLX5F0BOFs&5+ZHq*?lDL1T9p|e~no*r1m-R8*u{D0Vc7dR`cvhROj z&sMbA?m^f<$|&WKV*`Z(i47F!PR9@^}Nsj|9?OK=JT1o?t9(qUiY=u zy4JO>b**dt7JKAlUd>Cm-YyUvCvcljh+PeC(_tbCBV_|s4BY11ENbTN2Vaa7kSES- zr=Fon71aW6^BPq(fR(AQG{J2eOJ+HG@L5f8o8lMPyPm*jYQNsK(|N{o*(!fq^IEI& zJzN=}sU~==3~9UDf>>&-!_AVCz)O?P2JAIo*``>K&}dDGi^pw>MX~*X-X5)<^~~cCcHJV;$`vT z3_Asy@HU%(Hht(#!`lQsvk}9bA#JjQimmgYKw$&lBQPM4HaUXPA#E;m37G*qA@r!! zUw>lm8=q-QGlROt!?<@7y93O+4bG;D=A|{-khOy3}a@2 zU@jsOn3=dq^%LSLA8T{cTm#x1Kg*$P*83=%>S9>Pr^mgUXUDy}9(LoDXUhT@gTphP zvd#v$<`j)ShU_@OR&Ww?ZL{0W4?9@R@eevoP0U+?=d*yCb*!r2=AS3mjHh`vb}WQa z_uM8tO`Sr$dLepuR3f!(E&# zL>X5&xXkfO5lmoZCgz#Je0W_;l*~GR{kA1OW(OZ1Gq(vJvxC(yhlcw2m`(Q%AG1Ri zA2ZkRF%$C;8+9#^F{$92;2R&Ov>jMXRWKvMhp3E}m8*6-xgc=!loA6!4cA^sSMmF` zv%H>M0LJMlR0$f1pfE^kYzSA&<%oPSm!tSb{+V1~`E7&B* z-IsPt$h=wV(I;DB29|xSHD=&j)6T~_w&Mg^{y-k-4=wmImhmws4B z#l<~q(RE@+;)M!{CMR@?CP#G2^!Sv61WXja4Xok)`795oZTUr1MsX8Ec_qCD_D>B8 z&wLKe77Oe7!?gDKka!Yf?JusBJ+>f4fU#C~)vxH%JC2dIUw@@Uzco>)Eri%{uOSjt zDIQ<0D~{yF2z!G1V9o4GUge{17`D~17^Ed5`>r5MTPNd-yLH31d4T0uxLs^_i?9QK zo2!I(L@;eYurbW|zCePy53ruQz>w}=7D5|c7x@`@nXz7j2BYQMR%8b{%X?CWb=fc+{my`lKBNiQa7E zn6uUj2XN+YHMar9ObGc91o|LL0?Imb|4Tg_Sjq`VB8Whz`WA5emBqh+4w1p6`)I|+}n>zq_&`8fVW86x8=9d67@ha0of;l`|VxG^goZp=#AC7W?$a9Sx{lY^5AzdHC55m=71go3g{ z!;TqUD4Z7J_$7*8VnELVKW25f_D+av`0<(OZaR;aTI{)`g#(T1QzfZ@bUDyKMHWD2 zr2~*zDG!>{5?6T&am4t3nTm&RnqXpB7h8Wc}y7w`qFZe4^^ zFgln6SeyxZ76o%RpqFA`0(A@aNlR#jYqbrMIiKr|t=6wt#-H>)bDCsn=NM9m9&hew^d3>DS%M%#Pe0SRM)Zbfa0wqJ z?C?#l%zIQLl#h!kVefD;^?5keh6X01Vo8>3#gfUCS^*txmVsi9c}KFQp2e6w(6hUj*|UT8tTNrpe|EDys|@Af$l#uhPWR(k z8)(d1E!pT$PPkT_$dqLk^3j+Cp2;F(ifa0f@84iN1kWBc(GA9tj+s3TGA4_7hPoQA zm5HqNx-o1psju9$S8JtL6cGo*+Ck1PSyU zYe7PP5$I8kl^g{_j7@r^j_FXC;)78!b6^SBQa~thm?3^xa5Q^JpR*3)_!0u#jMUk2 z+?p&_Pml@LqTR@Si`l)mh6$hJW}l4>Ldn-V=(K#rclfboV(P(34d)Y@<#y+h>r`E> z^wKXF*B$R?vEbIL{;(h`u<4bK4nfvR0-_1Q>aC7$(a|CP(JjMp=UEY+Q9ulnW2I+x zI$FGdP4-9)fHT))2V!@=`;x)BSf9X~F8PqiWu5kuJQh88)b^k7F}k^<(Ruf}6<&r4 z2h9Txn++Sg7y{xYTMbpyC7+|JVp{T{teW7a@Wfn7{!XizW2ymm3dRA=vID>o4Sum{ zeOQig5*Hgg`iEnVsCYtRL59%M~+vxt-j& z+*Ui|IOJjuD}8|;->q_44}QliE8@3i8QMd)vgL{yy<9QX%ZX_XuZf1hfkOD6(5_}T+BR{etjHwn_xg3Z647B=d%X^_o2&2k_=R zO+h}OdJ_6A&B$|+Cr(%0x26$+#-wo24EmYJ>EBcnLfg>n0QbE zQNt8p!`+fgb2Vh@44%*Ux$a!+hnaiNhHx{kCm#}h@#L*jr~!SK+1W$|vgUr-{4kEA z34NX`VFJODiRp3#zH1gzdM+B+!<^7OoA)17jr~JtnumQfP5dgF(KOGZb^VjA4`hFxp8YM2-=C(4$h@9 zJMFRwQp0r8(R2;xD}Ac#Cxq|!jYC{J6BjJtRIjW*su;@GPSImQ>}#Ya_Gcmw9-rk1 ztk6g0X>(nw>qn5239oP=JxSm>32*cQ%?`SkF6hA^4Nf26Imk0H2}<&~{LiFwU)4b3 zE6onBPYjbY`HK|7M5~+U`J(|w9H+=KqS++!AD;Eesep_d#=hnBZ7JFgwNQ$-8T;db z(<$15tZBHPH?<&kH8+5{Tuh(&*Lv?A7+6}X4GrU8F`G*nr z>U8n^=bmW<8b@e2G<+{hVu&@|4b`2)sHp>IhL|4q{GmHsvT}Df-6azl`%`O_Y@~ZI z*8)2Po5&R|*(`z;F1Lrd%$!r>P-~b@e&jfg+OG=HB7EKIdCVSih8Z9VhmMu-D4Lp| zBWVTDj2Haur9^naQ3}G>yByzEKujue;`|gr-_ztP1^FrH)1^Q93x5z^}>*#dwh_ z3qn%~NH)fT&?JIPrb@JboJ*f}?Ph7S1KMcFoabo2^ijjS&@bzZ!nG?DVU$=-k$4Z_a=GOM;avivc`cb|Al1RrUq3?4^%#R6B9@G+( z6yrsHVnOKl1e9%_1tHIZ$YTVVpcV1+TxN@SDgcd^H5AHHw8>`aICnno6r|$N) z?`H1%s+I1Kjg+q4emn&ZhRA-_9HFmpm+i;j(-XfRU&pnmhI_8G=t#K*1?nf6*X|ZM zAK@}f&Z)R1_JvGGN6v*Jr+txF#3RQjJ3nBQ4RVaKUw5q-L~EeJh8km+T#f0j$1_I4ml=8J~Rr|z(-{LrSqnm= z2%tS~LFi_J%)<;Y*m1b@X>SME#AwJYzs+dh_4a9Le~U+s_A3y8&_2S^K3I3HXy1u2 zYeRdQC}@9$z^8q_V!X&&3qrdHpnZh}p{)d&y-4(AL^3v8@26s%7!8^89qreM_IA5p z2X&*A9Y73X&Gz2S-S2GcU~U+FnRt;+_nXHh#BH#kU?V~1W+Ug%T>9j+1IA%r$V|P} zs`3|aowh3fz$54xsR}fWr0zm}FSt@cb5*v`NXGHRs?-ZsDp5N4RRX^%KdTro@-+)W zH3U@UtrmnP5M+ME$icpOE`8eDLF6!MGU?Gqd;Oudw40nhK(v$7*LOWtPTxpe3pqVl zx6N`o!7XLJgEBYE>DRhsixql~ONzCMz?akir5G>riUpw^1QhEX3qolNBKrw4ix^vy zkq5Z+OVc)wg$HliH5!3I?fZ)p_xTyxHEi&z!zlI8{ex1MuMItl9Qtt z?K^VnZNk=#&Buc&ZzB({NtRyOhhu>FOy*c`p(g};BB|uykPLp1E1D}j)7G?-eRsnE z0%J~w_H%{79T(Z(am7ZPeFT%oI&;m>%hd;#F#CB+OSv4Mg|8ae2|AD{8raP2X9ZI| z3@^R-YJzjbeLotH)m(#B*qxa&R~te>BL!CBguyE473NXcUGx@ftVI^|o(YYt^Cm+N z7_qO1XRfmfE||nU$`_~F6^Or~W)XJfzjG-&t>&7^AxCtV9C)>oCL_n(vsqLNyK-&K zzW4-7D>~;Z8G3^uor%kXdYbIJPj|`C!vu1*zzn(6T4T8i87qF<9HidH(k1hc9ivN< z>AcIwUFlQntr8y4)Pz-$iS|`jxa?sphI+u1Jm%pZL&dA>BPa+ois0$s+A4P=+rFYi5zOlCO%nTPdfuHk*a2!gWHe}jQiPIt~N>@ooD3PN*o!8 zAk3{eDb1hDrQ2cjtIy?7-maZF>)Q?o_fM((0nv7Jbu@J~>&t8~nn(;sZLv@gEe1%u zCvTW}ITl#VJVn?GwmBTrwlaqXecaY^&(cN=be2md; z7=V{x0Orj1YFN49{(perR_EKQwtAk`V*Qwfrd&Io4Z^YPLP^nTK3_or6i|TEk#Os{H{KXe&botIaOZdUXOt58U=fiw-gqN&=Ct3_;T}EslA4T? zOT=V;IA<4YQH%S5RP^p14YYIAH%pVfPjFZ2-CD=--^k0Q-6TZkI9X|HmPnHw(1+Th zdGd$@rmR-r6d@)C?lG3eq8fw9$8#LH3Y-Hkp>>-gniBD*Z8gj3`#VN-# z?`A+iypPd?I>rG2`a{?2VRB$6f*6M+!3K%q4f0pVW!ZUUG7^4)_>-uvx5<=S?YF`*3>ZX~vN)0#*cbe%4E1mBlnTz42=3q2~5bc7`!TViW6l8MN zB?dwbC+uD1AMOEq0H7f9;+SzEPhwtLV@&b8>{cd;f4D~@4KP9bf~U}}rnAJ58!)Gk zRfuVMsAzdl9x1}Ve+9P?_hF-xHI)whZ;Jyc4o#eC>~`kQQFHql`etkLEmXc70Y!#( zfE+K66&exB#)zNliZ``?%ya+oiqdRp=ikw zR%{oAYj>HXHFmONo*Z{NnX4U)&dZhE2Jo3_2HDeN%%xl$9l} zUU6fr7|8o$Z2WHO*r2fB2I=Z0>riMgJ#?O3@#3w(Y8kc~M}e~--XlV5U%|Owe2^4YjvEgoMc}-b-rd49mDsQT%D71&D5GJ1^V-PKY{+d zNSkw0WNK>Uqwmv1kqN}dxL{O7Ti;89@XVe(ha=MG@*L@xa#AgHHpy&jeQ>_<&PMoY zHEASdRr`n8h~@lurs1Lznyy62$S?xr`BN_83MKUBJ5ue~8t$w;U<>29|8P9F6}~gE zFNie_PEO-wM@XW0vCoD6K~Ra}7w~9Ba-Pk}sW?FKRBeP;NW7Q>UoxDkN|dUSDBB*f z4_1Zhi9`X0#(IzMz-pS1c*;iCmV*m?B^E#>v+*SPsOz1k5unjpc>rG#W0|k%l8eMq z#za{_pOhLHYdd zSFqH{Mec)u_o%Yt=;js}Oaf3oMn#EDN1XQCE<44G4e4dig-kQob&{l5M7sd&bHhgv z3GN{*Hx^Elf<8QIC_lf(4KW$~=JwCz4D%R^H3HsY?lF;Z#s$4c6QBjW!WMvj^4dub zyn+}tP%`u&MgYEcAYUBikE`Dp0aI=~e zB8QZ=_*IAdw83`EtctPn=N;s98W!Q=fwgEo7bXHIJid$ZM%q?Yjrrqab^tZ!!L4Ss zFgmI(hEFEjic&pUF*a2}LWMS#Mxv$$q{#wXQiD9zZQQ$cx^vm~XW9M~J35L3(IIit zbUdPA?nZQ}^~eUXRTKw8FCkYlYaQFVWseYoUa|y2U1sZiis`@p^O-lQQbHs z2i@g!eWaKJJosw$d4^InoCvq%n7W2JXI*$ke@l{PFeyI9UabM_wb4<)xHRIQF(F2S zy0v}-+TcsBAty}{^K`A_x1y`u;=1C&QqgsZd9Vn{Wf=!1Chb+9I(SaK1qwO&aXYHZ zR&+XayZQYfJzRvv!Acq~!f)9;w_*V-8B5rz0#sYt=|E`X6z5S>(z0|-)BAi%HOZ$` zarBFpRMu>gk4=7`EzIY-joD(3Ni~}~38JBFlOZ*X*@RP1#c`z?v#Fn9H*9fu6k8k~ z#TJK0vBlw0Y;kxLTLyu=(5-BfMUL5IQ`<3{6j`xCKXP5Hc$1P2*l@5E^=y5Rct4jUWxH^ivI;y0O zTGX$rs<^AFN~(%y)tfp|fNrI(#>%KM?nYB%f?xv7DXrpJkvXuYV!#H)l~P)QGD=G@ zTBWTRVD+FURvm_OVNc3;stVTYXPJIpX{rc^a^X0q6KLC}jiK}4!V^l#!SG+|lx^h->1*c}|tQ;MiysT;qegi!2oY$EH@8f~- z)8i$$z}9{dk>kKD0V-m9topIrnF!18=dKj>iJ-*hFyS9ALT(TDmav_2*n&4NMrj%z z*zfd=VJlA{ixQ*WVWY%^ui+Oqk=KwlZiq8U=Zl8GtG?`sb6Tbw?zAg}37ZaXe&M=g z?wu$x*L%66u21HEH4Y@Fm-`iMEWm=e%@O^A!_QlX1Hlw<#aGTQz{XuX)BRadAkBwvdvsDJ?Np{rH&f)w{aK*v!ElcrB>=Z=| za~50!UO&KSNs32>)bct!*Ir{b#LV;1w0Fm@Xh&9cmql`NP{2EyAv8aF*f)fpPjnpQ zr&JYEYjb!;NAB4<&1R}-@j+Z`NxzdZX*0X0Wd^-C;TZx?UZJ{~XjE4#)WnYsk5#Wz z<;~|uQs2YEMP1kNQ@Jjm-_h&XfKpVAU9zdlRk^ChTi(XjsHB%!(#tIAWh9khl1=(m zk3~xkjq7D4kXLv(|6Kf@{8~EKB|4;I(!plJwoDZT;q-?7498j3ep+8{vJCzKT_;b+ z;KF14e~`f+=#pjdBv=0`gP)eYD6z19=k2q3MZs$yRI1andqwZ3T#EN*`-*`- za><(6-<@}U+Ae^3piLJDO(YBJ1{Iy!bcL;Ly24YZ>k6N+vA3PB@c0MY?FtVO-LfmB zxPOnXaH+aNI6t)f1EN%8PDNhfsa@hV>k?BKPS|G=`4)+3r*Kih-FDUc4hsf;nSfEV zqN{uXF?`DkUqK&G@UQik`_*5HTJ)DtZ@yuDrsCYT{ieP}ztJd&Xw_MJnud)}3g97awg(k*>ZCd*!~GSREcihOO=ClUvY_`b2-qR?A|l$UijjlI zVoJ810Og)Ra>&xNG?8&Q9?407@D1sft2_#>w>(e^1_pKIRuP#jXe5s(zc~o|OnlU& zy4Zs40VdAF$WdD(lA&*MB}=KBFeg~Dlj#)9QQNP{MsWiriA;GH5^!%!h9>KZ$q*pA z>`<*=qnQ@7V^eamHA3fpCg?*gJ(_dhck}^ok08$th!50rM)!?2i)vuhW4a*Ig7!t) z#8>NUw%A46bkWpEGCgbFdB{za+~R^ipYv?m*<_=!jfk>zS-~Gw-WWAB=3$k>l#5=% zGN)Mq!ZSaE@{WpPQ>;|sx%4xA&e!)fYAO?1kljYmfVP6!I;FPv+h!z&cGL3R#GlEV z&HC8Hzz303`Sy8d$Z^i{{=N$g*=|PkH%24?Y?u-K?L1ZhQ=Y_7(jz8!j5>g4x09JD3>U2+cdOgv13s;)Sn5!dN^+MLdhpXsjJD^4 zGby6~{#fs~*OL1d%bwG#~M2o4eR$db>8n8{|Hn)vh zqjmfILv2H*G!4IMng6%i;vZ`XYq9@cQ#@uJprtHnwZRyz6R{1Kh6A%0kIX69X^%A`CEow)r3>I_HH2 zYYtLYiOKSC?M3+BGa_p0C#}ZlH<5@mi3glzD`0!vu~eF|D(M7g(h2MmGiZiuV@%5S zoa1Y#)mpXcVV*I?AbcRi%S}L>3C*_k;5+##EP7WR)xbLN!vqXiYZ<0K`8JoyfkO!x zgWqOEov$Ix^F`dvgYZf{wA_a4*N>1US&~S8aS$W&Pq>SF!)NY-7cXSSymTnlEBOWN=qAvyP*YgE3!Y1tk%O_;z&7OzoNR3q!sJ18jUY zye4f3^#}6)&y%&Yr(t}YI%zf<)ob7|Fi2Q_Sy)})XJ(p)w|`i<1_~cg2P*k_!@b5Wu(zFX%>YTtD5uomS@NMId1Us2igZz|8x{l zk9pIL^<|h1Vz$AvH{=4$H9$C3I`pK@4fW>{?JVuF)I_F?>%udRVg3fAiIJXF2av&d zWe32%pfBx~E7$jCq9ahxYD-M_qLD3Wv*O8{9`w5@Ma(DmwpnQ71<`Ij0i@24^i!zu z{UGCD1rtU_!@@%c!G}+AZt3D(@*xV7pQl9yU#2KO*48s>gkWf-f2qC0iEP zU$W-AVmC_8w0AEbZ2%S+g#ZCyVy8(Vh|93z-OK{$fVwCf?7~G_^J!5aM2MOzn!K5E z`M?oYyopv?U*oe<9t78Y%mNgI)f#6;FS3Do^diGoAG1IP&5FK-5hfE{^gh;=O5lau zg)07F9iiT>20x!qp(zlMB-lt2%z8ssC>$QH+)HdFFkf9)b8*XV{n*R##imJArtO23 zY11U)i%pYwL8Mf(v5Wzu8X6di-&R!D#ro`kv_4y%Hf5lU;hN8`)%d(zq~$FVHSt9@ ziZ4~P0})<{uzykGKNfB>sab5A#ptw_r@M_#n@Ul$7?q;pT@CHKX?+&sM=vlnp=MDp ztPrM2EHd1T(F>Ha_xn^xK0jnz7gsT53;K!B_@aJF9A7j@#FQbjp$qCPe7@Splan`{+41!FSaa8)0Smv+OY0NFE)jy9wJWYgOv;HY2^YG zm^v%E49FFeO<9pmbf0dW!xeX16D7}uYdg?O8!q`D;UyIt?kNoy^-iDfO5Jy}ET?yqT(K{Rwbu*&ZUtcnz)a+kUur%Mv-?<7Ue|OU9uWPJI{ z2^zlq%{0m1eOOWWw3EM0q}l+3dBRMio%6cHaLdIOS(2C?uDzFio4%&VSm35nZZLBb zV(kVEm}Lo%9-H_E+*~?f+pXEXElYB^c19yTYYLk+G50ro8JMl8ccNj2VRM~qD0@RY z02}VpF5S~8cTE|6dp{XnDb(DlCqNw)swsOT&uW8i^eLiSV&ooXC6FlGy853?plPJ? zcw>79oIyTr7`Z|>ngDjgLsFDt$)1fduV)iRE?T0~pG-CQ?_=a{9`|KF%qcg6Ki&!> zcQZhzI@94myG!KJ?Amz$dNqmjKx^$_lH}U@FOg?H_WWn?^e?Flk z>EJdrRm&vNoXKY#CD-gcBPE@bBpp1SrKD4HCP6()7W|S&XDH4nB}oV8?eHmCbY)YW zjMSrK!TZl#oXswiE(BJb$<3L(>N0sNb4E&@RFZUXW;T^oy7cPdFb_$6L2O73jV<9_Zc(EQId4<2?EQceqd9b9B;5pKBnNk+5VWT z*tw*%On%;+Nu#US1F+B;GWna5q=SFTw$A68Gx@6?B@5yQ&X`GOB}oTw%W`bz=1k7h zqh!ISX}B{`lBXo;;DY^rab6tIR43=?QL^Cb`ZH#7wvwcSPt)0~PQIVbBpu9badB*? zI>Kc`38Mkym@K7e_~xXNb)z$0kM)g<7^IVPo=@G?o( zG~0K2V-oM`(ua!jVTCLuVAaovxT%d)%i(VA|cYH`kv69YN~Rm)n4 zc4kf8)`6O2)fsQH6|4+Q0G}~yFIg&b0-Pk7dpYo!*Lk_e>z$9LNeW2Q&dn8J-z6{q1Oic|2As zU=9B4xYAWT7*XAT4-}MMz`7W%utHyGRrd+-;ASk#R(l6CrHG9W2mQTDuratG#>NMQ zuO2U15T3Dtr#S9fU2nF!-cDV2?GZivYAk>=hw#-st4BP{uE6I+Zq^Ae_Z%wQz}5X) zj(JC*e7SGUj0KhhHVnTWj80u5@b7b2PQ;TT?M#^(Z`m8AsjE*8m-P6`cJW98`BxY9hS$e%bBragih1wGlCcqhx5Sb+MDc-6 zByZ@)x*pQ17vE;5>CY1Zd{ug0h${|Wj1N)qoW=L5JRXJl|0+&9JZTZL1@spIxPq6+ zi`fKz$01uW3r12+DKPw*)OU+%*nBd`E(tw31d+^lbxBUD?_UQXwuEbR6joaE-HD~H zhcgmWhT#z?=XG{AGifvnjV=Xp@fXcr?|hs&sU{5=q=J$5Tj2Xa8q{~( zlf`h3daA=bFZCXkSOoW5Q!a0zvuKs33cInThBZn+RN+&m5wa)BWAu3z^ujaabRi$> z8}LSdQOve{Qf&JygD3fBvA!QRtnb8hhxNVR$NDxhlar>ft+YPwF;VsIn(f9Xw}9zA zF_t_G_4{$_YT#h~km1K6f=<&wlpOvr?8WAh*+TthWSu3{Z=6H}xC-qfSQ+!)312*v zcMR`44-wQQoG5vduzTLcNT>H%jJw5&QeKZ;!cDj5+AaNPgNrh}ZzEV^HrD!B$veXP z9*((|J!wk-%z-Qj19hzAovJrEoT(I$fyAMo2?VWLH^FmqnWbE-*X-E_dJAUC!tyGH_@z`CmN)XF|t7cexd5_5?K-5bsa1Y8|p*vTbe_^U?* zo=`_0cJigt5|ek~+M@`zhF@bIfkl4mp&VrpC-?#ssXNvhXBr2yP>dLJXy{@Y}^{~sW7pKOf2sd56sdw{Alx@L0|&4 zd$5Oodg-S~KmF*o88Jw!t$(p(6-PYZ*eMg<{W?~X#Y2<9)Z?r=IqQHoyiRc7lw6di zMmRV5K{^;_JG_I2KKoTE>I3gnV21+qe&=sAScrgyq zk;ppU8O0Zpp^kdpz{Z_=xinV%Le#ryI*O9xX{TCxruOn`N4=U19a?K&WuH+fha9w4 zM4dlJtRaQJ0DX13G0)5`xS{+^FW|wKjEv9~c#jZ-O0Ml0vEu#l;)Sum{+Px)e^BtJL{`=C*M`P_~kbSdi4w zeJKt#>g$MhjaaN$X&j&etk)+W)i8yED~{EA2X~UvKO86sW?;Kju|i68%Og0fcd#$A z#>SP^A<9RG2kZ+SY%sz|rpm6Ghkk72v}+~;9O|aWZ~@Zps^Dt)6#5*Qw%8h;DX2nf zcIhe}B@6zb6v;^K1|_@+4)hp~@P@$8N+wILzxw=BKcW3vd zJ5&Wzw>26HfG_Zvu&{wjAjxy~^EjR=EJs^ZT(&yrSgWQAA0(dRf4&HNY+cW{Qn}@V zJuXIq4xeSv#~h_nk7JF$o+3?Ck;wG*l{{y^ zQ25U$SQTB$s_3_gVUIzycuTDKNR+*r(ZCko`wh_?=rM)X>_KS}wCo!O&|jFzn+-7e zfR2)YO<^*S4vJZ_0;FDu%FKm8JaF*HVgY>`(<>fS6xXRXt=Vpl#^fxA(dEP`Fq7#V zPW#pT&^XKnb6*)n11>VwGDh>KUW^8_XfttOtX;t5cfvnhhrVkr%9ltWOf~y6fXPe6 zm*(jD3|H)^aBHC$2(#?w0F#Z$-SiE?q=sWAV(scSoEcbh^_!ho0juZy7u*fPMYcsf z&%lz;^Rbfi&buyE-JpTpK_ws35YvsNknUaeWVbyrpk#Y;k)HHC4{v1m#9)#S$q5+* zMs%+i^!kUCsPMdSt?P5D3bzNY1xT_er9f^4+3ll6+25_%P%dWG_W((LE?)AeI#Rgy zXX4`aOtkd48(x9Mrq#iWpXUk=%NI`qC#;G}TgMhhgl7&kIKEH=f>BVs$>7B%A|s8f zm4N{BoH%g`V=^>X@yUV)0vP_F-3|P?y)&dt0bBIOu(nRk;dGodI zFh1WuWOG`#giHa{Ur^9gK-BxO7Pt+9&eIPrT}q^Lq?^M08qq6Z&b0b`%-M!*v508g z>AphX?=!j)XS!wK86z|wcfNYsideiFH3KmxcRIA`2=#1+3|#Aw`09OhFw(1JtY>p9 zi`4}n-@%*-S5kPR#F-s@8;F+Ba^GQ*r@ZuSxutc^)oOaYhGkUXPsyAx|kDWp4zigI440Nm9fD>M~F&kLn z?N+lvn}o_XD`xa&#Z+%5=2QgbE!zEpGy5&Ly^rE}hM)b@MVV#2 zd_82wtq^5ah{_E{GLV~46E|ARjMhqMWo4XVLtuP!KEGv~d+}SjS>PGDSrVH8KC&np z8>=2rC5qizGau)6s z4D0}014xZ%iD^UO+9DdQ;Z2N~%)!`Jd^I1)Vke6iGrhms0y|l<5%F_W>M&h`S4E?S z7w1Aw9}@2{YQD*H@dM_G1|})9B`49D#2ZYJxtyb3Mt6Rbfpeb2PM(Vr@h};RJ)vKG z&IFrP)JL7xz)=MPPX3A`7MIp?uCzZ;z{wA4OUhmI7{r)cBp&9)*=n)>uY)GDmfKW9 zHvm)0mWat~!&4`sbZG&W;#}Q{)@IFiC|gss+3+kl;4F+pjAU!uA|}5Su6>azY`9LZ zPkooh?M{8gy?sfP~ zie~F(_kc1$Rh-e80g!s;V4QvSxO+kD~dYlmsC{eO0 zTw4V-4boCoQSB2edx;3{nTAGop)O+EDI{=Ki+-UM<%f^^m=qALXox;7HSHn*K~2?9 zv-N)S^hC*C&U=xbm_0PcX5iZ9+gydYs=|s~`6-m=zG-9Eo92nI7fZ6BycdP1UQQkk zPf7}L!)*AAIr&}zxc^HcZ(yU?wVhS+hD{4>e&4|%M_0oatzoC>Qs0vADch!v*Zp~# z$ueJyZrCJ5Z9z2OAVZ5y0XQ!La|#9_3@f>3z?)tko|>X$t?;IogEu`%k%bsOC!naVmLhTs~zuOoq($ zmvCQYaONgyuHu8x_kTpvV6>dxuvske&K|FSodYNuF=7N_$uvoKrsIeaP4*C{Jhn26 zjQC8ltV^%V(MktOlnhP$&1Z5v*7MlvIV$o+ZhUPL9eUt$smpUr15I^($;zkAGr&DK z3oe?fDXpy*C3*nj7h(~7A3-q84^&8u9@V9!H4Bbo+^OnihktkjvFJabxl0$w+ zG*d!jUw;FNvt)3r>A9_~8M1!kaZCF%k282814eK_EAiBT4kVW(L`S4XOq*o$=@!bb zhNU(%!lNWk6ytf$zucSeE9|B_Fg2y&91E(MxF{n`t1Y$QlRJ8^yg2w&;WugZ2grI?}DrY3^M|xBMDc zTC1J8hj9u+(T&`r|HxVWFe}BuODrX`^hm>ErR1H^#l(eYij}Z{AIREhQaw$c#PAd- zUd^;vi(pKFDG6&r5)P=%&I)8ig0gc3G3sCRfK3ub32&=gLIbwwMJr2!Bqpsk&SVTPpQ1;l)Ls|I1Qgp?s~9|AW-Lsw3#JU zYqHJ(2p}2M2EM%%S94~YMHD3gy3*7}l+xv|b+ zBNG-SD~E-z2g0bjhGtf6NTga|#s<6#idd_Df9B&~H25M@`~+WQGwCdR(Htv5z?KRy zBXYQm(fuBHGknZO0dH|b?C<)hGc5WQ)T$B^smcf{Oe=-Bo(jz>#NT1*9H$7iJ_m!! z4{>!ORjOCE>4epbXw!IL1sd^$?y+Rvk(ig)XrK$nbpE*;HaK63f^ssOA%;{JNV?>1 zK(Fgox}lTwxbyka!UGMeeIM#*4 z>y(Hzb@GB=Wh@@HsH~=n>PwY3tWv$p|HI(r=mUFx_Yb|iA0}^jfS2V2+9(~1PD?js zSA6X^nQk^n8N>dPTT{UbwKOX?LU25WR4dH_2dtJ7vbqy6imOc@S&crTb39g5Z3Ac^ zJoQQRKC~NSjdbopDjU^=bB7k7UOmLK{&joSwQWUTdonc+BUYe|GwBvJqKyc#R27ZL zarQ4-Bd*qlijDD9E^o-0H1AS#Cfz7!Qnld$+7Opc6r+RIhLUm2hA-uRE$6vwH1XST zrM2NoYr_>BGf5k+&bA?Y-Y&~+ilhxUj=Kqd5n9)!*Co4dzTWG)LH;bXy4nzd0h*AZ zcF~m9Qyg9wZK$3UuATi?s`~oJRnR39RvSztt+x4en4uH?V3Nnl1h;(C z8Z-3Ghm}FYjejy?n}Kn|wU6_p;ZenNQZJAULV&Wp%X^|g{IcUJaDbN8{$ev%$iK^$ zf&ka|B^(iC`$Zt+dTCg28^#-Y{$6tR#GYqbCJxt5AW8c#?D?IZ z_zQ(*5@5l-SLOo@fp_*|a7#TgQ3@JngPbQ(HKhjc*I1F7mQi=anL}e!%Fc6PNa(?x zvwgY)Ur2BVQ9K!G!2?rVFqeQX?4=&o1;@Jd+R${YOD9V*t*AT0uxLUgSd-gsvn2 zZM>HSq00#}mFEd&{LQ*p7G}J?V_if|ruJ->nMXx_{u5|#7mvPkns24%XGFReIg}9|$LR^Cd1-l6{FNH+Tvt0V9=j|QqqAz3)on_?YiJbPU@*EyH zX#c|$56bo%Wx)=rjOMDO!v4f_tHS1EU1sQ&bnvGHepS{g#*6&ig3u!bROJH}gnmbm z>1?!vjh3aoy<=TOL*`0H`-lflp*?%7OM*wx&VJ1sb(NamDB2;~9Uk(bd3?S3SeHw6 z+YCzIi`(q6E`7MBi{aP)_bi))=5k5Qd;-_q3Vx>;FY>Gfp%ny_ZL0;L$1I4vN|5wG=%LYELwtN|8;f)+$RLXf$qlS;Rm)Y;D3 z&PhM|ZszwLtaNp=C|$dvUHu3mi>x_96S>Qt^yB)QJ8DFIOH{+;3BBM&zHULm-2|C~ zj33EJDVJGt+BxY*U&!=u-<1>t!N)WOdHxGN|X+Mkie(?eTwlSg%*Sc5{yPGn_8%(7i#%*W z=t%--|Fs37zY=7gVH8P5#&YS``_Ohy%NZ)#Uq4~AA5Wc@_H&zPkN(wYkMbV%{#o6% zqWxWZPn&w*L=?2|Ch%!rtr#z|*MiV-0%+f9LFh0+rlZmRIG0)4+c{xLG-Qe#?G>WE z-R{?2-6(rBQRvA0=I&Qu9n5vV9mMj1W0L zJ#JO`*o@Ow<+D73o^n;7DXD8!hhA`3>#AgqXxm7rIFBb*rCzW~iPFLE68Kelhhn_Q zJr;!SC!i|7V?k&JLFVs_9LY$GOP}`kPWllwnN9B+?e8Sp(r$A4Z0L4!`qoEImD67( zu7#ZbtZtj-^eApA^GLqZET<3tDO;@2t6Wm741q7FS1QJf?6x3ujDTY0DOWGF$?hU& zahKV^*piI=i5S0h?Va?a?`BRO>wL;dKVQ4!G$;Lh<@HxiHq<`Ie7mK8?Xa?8Hx2vT zu+QIkQ}mv_8H6<}qH%9V;dHxPgGc=^11EX5t5*7U#l1J<-ofnIJ(;gR!yG2r_lJ+m zD#=yB16)O?y)k(t{&ipGTB|q%@8AMQLI6oF;tC9q+X*HQajU}{g@eb^bNJ6o+==IJ zMsbo1yeae$L+@bWIPPuBbcxwvJA&~jIbM~);(65*zAZHPNv;gLJ(oEnA3U4g96IMp@z5s24As z81)`6T)|_NX(iBI3}<+q|JYug9K_W2-F!o!c{hQ5Xk)_wSSOw&mw0ka;ly~drf_WB z`)%PYeLySAj~6br%YACH*<7-eoQ``>7p_;d_efzqVU+tRgmLfQ!Uq*5A9o}sM;DHa zCubNzG4rDvem)G48hinu#O7U;cHTuFA^KSirj+W_oIbEVJfkNu32!}(9xukg)8_)5 z90BlH59SC)=?OQ)sRmotgN8a@j3ys(G$nswG|8K!NOtwyWBitv9(T(g$1yyx59nmo zmN*IBx}eJ-o*Z204$(Oo54iF)c?ek@Pywn~T<_WRaJrAru#YQmy#o=2MYaNS#9V)l zG_R$zY8^l34%Ru=OGzq^IWM7OLci!%cC1K2<+0Xl>2kd}o`a(ezt~l5HU0X0t*L)r zC=cbg%L(Utxd(k-?m@TX9+Vymh^<4bZ!o_37s}yx=qVIQW$IbfynMn}D{@u33W_5V zpiE0D@?kt?$P*Oo^aOvYHNjuX5?qA?iC^Ds+9{!>^S@w7j3#|9q~+@!VY!3U;#%U8 z=fnbjIe^F3xfWHi?7oC!m$cDBUaA|SC2xmoZ)fHx&bEey*;PTxcM4%V>Gy+VmaAP4 zXm}bMj(-Brh-Wk(eX1Tk_sM#+%VG0IqU*4aDfQfi0t^KF6C95?0cgwi{Hfa;ry8VIS$$H+gzwys-FS< z@&ExFj81v14$PbPCjy|YH$O$*lqy?}A4>*Tp{OH_1#6^j8c3xn|A{QZT{qeHZ(Jc^ z(-s8hS`hk+1qDypbfCt`8nJma5d0Kz>J_uO6?y7eac_*INgUyVU~s%Af#3};R2_@N zD3U@YLB*3DF+8(3LO{6Y_ohR{8o=LtuBcHqRjnlrE|-Pt!bKawNt2kd@1**$PW|J; zDP$B+)vQ4t%`kb#Iu_izK3uebAtk%tBQ|wGCw!OB=E;}w*I6c)mC>CQ6(H)Xope9O z?sK{ShTT`|o*f`We5(`dqbroCrZc^{;&uMt;2(Q$1-8)g*Z2qYw;a!i@^sbx{BGnQ zmxA&Q_@{t}!J3^T6*s5#QJ8!#Wb-KDt-$>h@5Te;E{Uh&YiPdGPMstfK<-^aSkXyG zdXxYyRKB2U7YO8UH<7!KBgL&?{{L~P2M5%SuQX0EdTvQ_0+{?1fy#i=54Y2p7xo}YT^SR=jql5?I z>pqMhFZiwQ^jyaMcT` zPw;3R$=o+UU=Is@B~NeG**AzfTT!|C29U>rWBA{`0QODAQUSJKtY(i z{@0_@o$Ao1?m$@QP zM;-i#n7GICL!OoxbE0f>VZVWn*b6L2j0D$ueDh)V)ud$38-!*Btf^!Z4 z3)*6^`C#)49Z1;x;qvGB*BJ;7qmr%4IwXK2<*ujw8@>b8<{uZ%A8nM6fpW-%aGaDk z8F@y;7>IyKXh5bJ35A>a;21ggR#eNmx1vU+sVEd3W1xd*$Pi6LmviD&Ie6RUNaymG zeHyAfZjg3R7A{{1STW28@_0FQyA&suan>N>r;1$QwkvYe=HgZ78bqQ2(H$QZS~{6o zm3&M-%wZI_ER7>M`ynx6$&QKSX9vZK7a}smba@@w!eg3wB=WHMXy92297f@u-zz5c zTLr~x*%1u68sFG}X?i&;n0yT$3AEzG2n|G)7TzgyK!|Je{Kc}rBVwh>WiPY`* z^z04KSZHbXvO_dcybH~~18zTPyRXFqJJ?k^f$U4s&XJ~5Xw^8<)XA_?>Fsgoq+%q^ zv^buZkq(sCV88M_tjODKo`;|#F>nBxpsW~oEGu4gSy2WEUlsQX3z4(1$a;J)id3xG zWDLM=kUYj^r^)mW6^P6|WwMP(+4Z(k{>iQh9 z`f*hkcU4!}vg)c`)s?!cD{EDC)voGFUDcJjsvASqsajpt#a-1^TGh3cN0hgZmAanB)x_(_D7ea!kDj0aqN!> z3YIOtP%d%WdeEKik!-MJh8(Uf)`Bfc!*qH9c8c-mNAFpj;riw;4*SxuTZY{{tP+K; z;Nss(VruWGiDN367YZK_?f)8x2aBIdXy~q^_erd-DUFbY(JCl zH)k^1WpeYGo7mbh9qi5vR-CJwGco>57R)r8U3vx>knIljj)PC9stAIECT-AZ*z zM?lGJ__9ro8@l6n#2$!-|77!pwx3^gNS51EC*V85!TYBt;3d3-g3xdPz#=Sr2``g1 z?#WuT#LRmfr@a&Hk7snscjX3N!^vR>V;&0pzB;U~o!HYK%DL7XEN8OrIFnuL)ohga zXZO;LJ@6^ZjhAe$s*jbtVh-QZTR8Atcv)QI_Vw-o7K z2=>fl!%qOf5qWjIJ4k%ms#y5CmGe6(qf`xu^rJ!<9zBDiK+ey{REq1K?_XysZq_Ue zXFdBLSu16z4 zl+G;wzPm!y>)Vegh#f-U*V~5_;}s|^7V|;wuEK)Q)fV(ECZOI16J&l*FGxm?{IZGW zc04U0F7xv1MssGIJ0afHTQ3M)<=i7ig?8`=npwl$!xc}K4YS(B%>oODtzN`w&z~@7 z3SYMny)^vi4UqnABK&$D#U(Lg3B)>(SfLoNpw@!O*WBF<3qs@F-A@Q;mG9bJ-w}3K z@GXMOi@Q~{i@5Zgqa6j-_ zQZZhE($X9;cXy`+p&KpeJD7m7CI~V;jOKH>%(75>Y+RHX>S(SonpgR3+)vG6t219E zo|&nZ&#igdYl$I0YSR+??{8{}4O~)=odkYMysQ|npwWWJR(IEtELb<+gfqb1(9 zyS_^ZXzzUlnX4Pr5^R=yLj<%$^oJXh9yqTQa2$W}~W2A#G68JPfp%||~X`wmo?lKmHR$9>aDFSGI zfgtm_U8?8lT>3P(v%b&4=b6d%R?q+I?v`ymqMf$B3hm8r>kpbDSJ0mTM(gSBhFcK% zhy{H=N|0HFkWWT(xy;h=R6F%HB6D<$(a@z84dw07a1$z>Ps1mq4kBL(pka`^`?3X* z&sfm+T7t}VMnf+yvu)QN4ds~$(D3YBoEx8!yWmqAGBVq)JO^E$Tn4YWt+2U<`bPgn`Vs8rdbo7@dx5! z-U?X&7Bdp?imi9W0~k48pP)@=d-w#J!gE**s`g8Zk(cy#eoD9N1n<)AI>EbiJ4+}! z!Mnby9@xBb`8eDz(2LA%xR>&R^D+w{Y$;h0uDuCU(VlZe_zxGb6vsT}-urCPlU2tb zaAg}n?t?UJDplMw9I>+`^7~m_CP%Rwt#4eZl6`}Em@J_(24OYP+-xaz9rJd}j2tV* zdHCtVvBV^b*RU&=ol9)i#?pyl=6&Ra!P6{wBxKd%0<9oOg~Hr$l@=N6?0P`Vpz!;6 ziNHQy1;vK-f$D@T!HpD9wh93h>Pr(Xe57!Sg^w3bxA4b>`&EOOtjl$e4OA4#RIHCR z{N6J8=Q5M-8f_;tx4{g)QG!lN0F^m};h7JqHdWyXnTVQ*arw|nf{S3+#MBGX6jj3U z=Vw2nd8jDg^DE7Ab%kop3A31u*n+98I_uSjWLeKMzM*EwaH%?6Vd3M2>j@`6C`)|4 zVp25)JZ=Q|peKgYFh@5pV59ks&v$|=utfzG3due3}p~8G760(H1mI01+cCYeKc~a46oC z@yy?u@ELl}%J7U=iHfq={RXFFfg%Y21$Mk;+L3To)NfHfP@6h$jcv^?-sa7EF28dW{QVoxv`!E4?X zE)f8{03(CF_ekMv3t96bGy=NN00S|Kcde7z1nV?Zg}G#X0JFzZEG1yPF(=8x{y(_C zo_6g*>Qzczw#L?vFIMuNN-q0<7u|N(a>3v$mAp{NUsv+cYiynQqe|XK$#o2E7u|O6 z!(znXeo8)|3wtbByXyLmUa4MVk)LFHhS`Te?I@8&_k`Zm0!a74;c#t#WQf+{+G|u5 zUe&^q0_Ip2U6+N~4xol`%oPi~rnYIS501#J$XyOHdy57U{N^@o^9byS2Uu7qyF}pa zc!}!*;o3zk;x^o;Oq-axT1?IAppvEr_tXMW53a@C&FtESO<~))M(NXq4-;x7sh{p? z?i}62I-M+h#EB8uLSjctcp^zPFjCKrd*=rA=Pl<2JBua@9vW6d<;V%|D! ztO4@153l&!Igd*4-w^dBM3%uM1VpE5R^?Nx<#tfD9puuGQnU>7HY0^?PsZECNsVk% zL{robt-LcDc-&-wzb_|z@3SqW8EtZ)G=r3K(Fg0|waXfB|+oV1S(t7+|LZ z2H1%y_J45W=R^Ml`OW8vsvtev-47}Vft~q+3@F>_kOL@{d`Wi5##tWUA!|W-*$(X$ zE$6f`jlMf__~i+|Jm8o3n2pD~s@MPU;C|=Ky zIzP8=js)dLy4-iUiFoU&Zv9LA=IRN+^#@6UMtP~-hnPwf0l=MK^b zu@Vt2Kt>cJK=M$Ger$tlxHb>T*4${W4jR^jq9E(jFA3j6D)lum8Gn?e;U$0CsvMFX zMXG1oU$RD0agc>>=xlfc^hV%58s-Z+p-DBU4PsprT`Eb|DBZ|=t&P$j{=RhZ_cSf< z`yM*@1?$o8ol*KQ_gE}PocYa&lB9!wOcihjLRpL}q3tT%>2_zV=xS@!lMP?ReA%L+2NK?5v=~ht z*@nm_I=Sw3dghh&Y!_oSv6nWH#R~`NdT1QizJBm(VZLqc8dC@&X1s8OtwJit@@UGr zG-zO(LXOhEv|6DTCq~nyh0$LAnvoGE!(woYk|b%fEh%ee@?~ceIJqpEavoYX#a3aT%;yI%i)YOU znhxH3uRpW)hTO#^ljF%2gl;FmZa2$Ce#_nc%!0^NiySgWcj=&>Dc4LcT1; z_GEVc-tYeZ|IObQ-;Xl@{tTVrPlajE%bb>#Bk2GiUS(izYM`!r_ z2qj4egS?=>%!;&6NjiABpE2|ItCi~i!uh++Cz!u)%Va)qf>}MwDP{fye%Ldb!OyeV zQq%OCDLhko?aAxqPvx1z>#gd-p_-}NEPf~xA;q{^ylvo9w&mH`yG(D>$y+bD+4~6p zjgi^eyOPW$iRS3DEopZ4t|u!j=H6Db_mP%`+un5N2ZptrzK2#U@V6;NzHr0oC+<;l zZ833wp}J`<{5Y5Jzybm{c?|uL%eXgiwRlI!1V`d-gdrteVliE&2I^#pCE?|ZBC zWJp8_ny2sEi1nxMTex(^iY(<4>bF`DI!M5qhX^v8mx%JYT%K|I9uVcpP**+(ZQ+@l zWcN)5pXS||w}`!2oFeuCtXZIOvOS9x!xLCVuLgnbrLpUN$I9h`j_gm%iQQ8-i-ysH z(OC(0TXCAvr=nGCduBlc3Q5|k&)O5=KPGVB_A705#`4I;@v#;5k?rZs{e(hPB?$ol)ZuK?o4CQMh+kEZA?S0MObYE+#$>y@f+Wp$x zR$tTRO}=(Vo3A}Rwwzu50gW_NMz<(Wzg% zx!td=X!SL1wdHFQ+kCD5?sm#%Z@RCsl;e1^xh8i>>YP%x`c_{PWPbO1bEYV%>keYe zwXo&g?S0T*b{`zn^g;Evnu(`=X@9FP4Rv3d-sVd!yP5H#y>)V7!i(n&ZTiG1M!L+b z-(rcIvsWhVRePS|r$Jkb6t2Z4u23ie3U_1gR#@$af*95PbU*Au=?^sQeBsSv75jrfYqX9*Z=rk<(g|33i-^Qb<$2yGvxa|E8b919S`E@buvsz=Z zs~g$p<2EfeUt~UUEsh@RN%#x}0c@JBs88jbymx9ZnC8h5z_kIi{466h_U)lq>@mBO zmhp|-_xl&o5gUJ(lbJK>{G4aXh3}?3cs`;?&r@ZX=D8~$qeNq;l4zu#hz&&}^?YQe zg6RJ5JlnI+!#T}g7aVaNK1X@Kln%9c>=#i1|H;C276tb#o=xz@rfO|vKYfsX&r-Z< zD`S_>sgCMR8emdg8}m*klE0qLeIog@sGBmq%?46Ds zs&n!DICpAehw31>o8yC-OK1wyuRu1~{bb!T=c1LUS$LA2Vke^io4I!ntg5*B{?T)e zq9mT61W<{lHYgg>qJUxpN;KGWa37#t6k2F$@q$%bj6i8cL_%yfn}gKWmbTi`KHA#n zvFg)mi&kv7NC0mEM7bzL@N$l*1XOM+{660``y@dSp7(iwf4peUT=wkQYi8E0S+i!X zHCT$F1G7S$fG|f#m+A;F?k#7cUBPkEGi{dR9B=o!C)?CB!a={CNaHIO%zs{q-enZ1 zFy(C2o4P6C^sqS((TPbiJ-nW_IdhSxrc;4VMjqn{tpcovoz*El)nI97_bLvp(bD&s z$X@)JkWcRlNAKh>bLFtL^6~Hh(DdXQ!;NY|lV0L}FY=x#evXfg%kM%9jYoLc4mO_} zO9$w?c78}Bv9G+r8bm+xZrL>?xEg3fTYXGtVggjX;tqN_JS0ynrBGiL^|x@QQ)eQ- zkEI`X$_~__Q{FoT@J|wJ4^;R2?bipkIVL`{yqF`%2pV+fVXnJtfU@$?#}RS}Nm4;Y zLMpaF1=@3O@OIB#x=Is%A!wh#BSbQ|0p&SUJkYJ1P6J_0g&mODeKLEnpt};L43)SO zF}jOSENH%Zp%>XHe_Jwr8;TUTnJpom^p|@6?o=svaCV@4Xhhd27qe2K+Xnxsw<$?~T7jFAu$ zsnFHM@BWswm&Wz`?iFJ8@VtRW)&V#q#Ou3E;9j^}LHyCR$>97{@ZCQ2j#TJY*u(r8 z3jF0xVeZ*f>AT6uvtH?1_H*-il0vyD$UlQog|6ZpWFj$5Jult8n;|B{V><*3?+aDm zW}4nq&y8r+wZ{nFF6QBq9xk55vpWRG%~@0pHOY07Y5NZgpLW_xV8&QWKj0L3n90+X zhB%EUM9s=h@aHs$T{5+R_u6V4UPb?GVqD!)vyqGzgU3|)%kkOE$x8VzJA+4n%NabT zxH1=m$7`g0GlA-*J1|8dC*-vjGQA1)`FVu$Jf64REW5VZ?+4_J%5!%uG+R76P*sQ3 ziEe=E%qgA$|LV}@F%`*ZDm=tftQ}=7jisX(d7pgL3veEiGkUC~#NlAno6dVeqDH4 zC^PKCiLMVTT^|lVs1GN)KCEl$YwX?=2JGsuG{*XJ?Tbo>r$5t%CAax1E04zbbkIi>{(o#vwy za&pM$EF$yX(S(s*q-KolBB{jLMe1eE5M8_+K{v8}^n6|3SH2mQ7#KNCzL7kZ3uX*2 z(SUZefeW`iw0couF^Zw$GvxA`+Saias5N3WGJol-#OyHBsj-Puc#JwZ%?)N2hzT$T zpc4#0eCAMSi=1!IOcKe4mv-JbO$6|W;;|kS$&^1KhHC46BvF0z3igG!9rewtR0R9N z+mj;vZ8EzaZ?0sR9tB0u-*MDRex@SW7xIEt^4~3$%+aHusQ&1X%yy7e@PbuxQ%fbj zgXFBESMttJ43fT-v`WrtspL&P3W~-^NO$DkJWECDW541Bt7OaHoBQNUJ;G1b(JSfa zDp@@#tmOV&CH1j0c%**})K^vN&ZS~kTj?|8Xf$3K;@siLeW6wZe_JaHdn()Q;jB;U~)c@!8)bmP2qY zkYKaDoz9DE4(Uy9bI(io9ZKXd0CpEk!io8;%4oCgaoTLt1y;DfVS9!1m=5QnqQ>3o zb-2flo<{mSrE>}CwlycD%yw)ljk^hZT=h&M=zzlQPWseRN0?4wBDu z=-;iSk^v5qO_F&Z8U6o5Me1XFa*%9&tbLp8KW%^eW_GHS&kpVT`BDQ5S>fy!vxPm7 z?aiLKXWf%x;JMI;&FOunAI}Z+t1A}Ny?_^~C)@BW8BFccHk11JImu^>*~82Le5s4! z51AN@7mfe64Pdln+7&Va&=rfqK=uNKJV5zI&##M5Sl%Xn_h%=`9nB9hr@wU_o(#6( zljDadbKkllN@C@8@oCE|+pVkEy#&NU&;Cz%&GSG!stvENV4BRS7pgG}>L>(6ZT0ma ze=j3EIGEVCEh^rNQa3!KEzo18jaT@hu!RkLD)P)+a&f@HUhBtXdidb;A8@Q>WQV+M zup8vMoQuMKoQXPo_}IQsuGj((N zZI|G3Y3ST;%8b-%D<+n`*4~`$n8UC$ntLE9{Ns-`-gxhe%_qhs+H3?-VudZm*9foT zSCRkNT%60}L}{jC#Q4YNtRi)9GG&a*fAnHDr?luH zs*2B9&98ZZ>i2sdb44z#V8@RM(GN*$TNmW_CWcQm>eM+?e9rH9C*eN}25lGhRYj&0 zDV_eYmSE>fzu`KIe3j>AQZN9>qgIPdjd~hApIl@aS zT>fHw@Se(c_3@b}GmFJL2_{KmTwTAgx>)eeO{RNw%XIs=6NS)X)(4mblovo=WN!ik z3iXH=$$F^&t04xaR}KqDB9XpnZJYRvZ!?j^k+o44J)jW)t7?&=vz3Ot%pn$^W49#- zg+C@CYoj3c9b(`|XFZ)cmYM6kK3+vE<-dq^!v=Q07{`2obD3w=>By6krMpsShNt`9 zYZ>s6>Av@<+oq_y@P5bj(p)LcxFsXIPM(B+K$zon`Pw z)jtycE1>I+WchQq7D=ELS%Nw}q-POg!>`zk5wV-T@1^w={ApgXhRitbfLHzCqp?|tVhQXPq{;95uCJ^day!<{R zLWog}>vnW5F)nt(g%TarNm_tF;so9b`mN`p7Z^=HM`P9*6>=t85TN*+C5R@(D+=ck zpyeCG*kFmid0Ml^6Zdo-%G1v92RfpeErKBIbJl6<*y)yw?-+%_P1-0u?pV-}f@9!g z4C9=eOnCAs>}Nj-M$(mK%$!COcGV$MVmL-`)t|CvdaddD?IEQe!! z0d_^a8;%TD$w3se0-LP82uhkArS`B7x(_p@xQ^`c&^Rh53c)R(fRG4ev57zyI}ylY zCjwdQ96&8qfvHQK1Z1g`fGl+qkfm;izSK!TmO2T@QYQhyN=*)+7CQ;ZVkZGvd{_ri z$c?%$k<6oVnUjDla}tncP6D#bNkEo43COZO?CCq+#Ox=b! zN3-~21>|C+E_)wYudRR_vdV?2a{wiIWNx62)?eLqe_z2=*I%CNuhFghYohC~O4nb* z59+UpuD>c>e+_s2b(6E|o9g<@bNw~i`s?%34v93DNU$+=nUi)bbJ7mFOOJGo{ir*v z{e!Lj-%Uc>lU!|WV2Q}Y$eF_;Fv**lB$)2#VBiHlSz#o1-TRVP2CVT7Uxeha| z*Ba>1+YvJL5m$2~*~r^$h`rH%HzTXyWryC70d5qH;0myP1wITv;CfFa$apNg$%Gqj z8q2_;OrC6ayRM$v#y4o#LZv|o0@xeN?q?_>*A>E|k)G^v0S#f$nP>Ar0?+|_MtnvWT z*1}(y!IOx2fu$W^lB#(>K69CRoU21;E+pcZj=vKV=c9MUMPq-h82d5Av&61UN4JP( zXZR)?@;Af}?jephN#f3Y7c)sSjuV_BgZCLkf>kyOvb)>6-Sw{7@>;r6cfEVDp7+tuMZ7CvWXE25_YB_MFVCUT5_I;riCji|;T&(I zDA*~{5;8hPRYAE56~IyMRwT|-jE*Ut_f?U%Rm$w5(jB|>A_LQ7Ubl=+U3$f5yvr6> z{k)ETYZ>3r7`=JiU4MH%7e&6yRC$TNSH<%7Q2&&F5=Z2xA>{aqa9}#xsP;(eA#2xT zlaaMdXDnaaAA>6<%F8ZtsTY~)RvZ{w&9C^3*Vuz+>#0HW#HKMe-Qd&^jp+&wp|~LU zX1JCmMiC1QDIaS&2bsko|hZDzSq$wHMlPZ5VKBJOSpWo7E zi!hqOLuGa?n{Ts^+blX|bmGhQRc2dz^oe%1 z&f1<3V*DKE9*H2j50-W>$9d#&*Wol}vi+a=cr)1lNerhN#!GQ$d&o=K5%U5dWy~k= zp-u7GcUr;qx}tJ9N0ilX90QrdGptytQ;>t~<13!u;Uvf#?$nX9;RHGUXp_{P7PECZ zpS2DA=ye6MyW{a2D9PRNRd2Xb7?eI2uWsDJO^89?mE2*M@cXJFva8%lDR&|z`8z!-Z+_p%@3Qw`hDNph{mT+wyh+X8@c+CE=RHbI0 zAXH-melS7$5S$MQ(lqu-yW_LpAcuP-QvOaDGLF+&fvWn&eK8G%k*f*2QQ3T3st~e!N@$rBo2_R@BFWvhywIcOC)DbRGn8 z)aacB{NA*)nBS>8ayV z{_vtY${70ixp@#%>WrUDmGN__5mJi_;+@U}W7`x5m@~(psSW|W*smuD%KUpQC=4tp znn^&tBHN=pgL1e*IeI7HjEXiXyGg(gZxZmMn|d(!`8s9sji9enGW>egZ&G-|sDAu) z@Mrf%yU-Wk;~cNhyx6z+ka+m$YH{_^HN@MaHH!9H`72eMvUl(jf{bko!}AvDJB>hx ztiRLd2@2bFMK$RC_@jj<5@DQ666038%f#d$C(BJtYtd|e8a!e4#oB{wHAFqXY~Odm zH@|B;axkp@$fb%bRd}3G(l0xnAT#T?(y4uo=b=um1htzY)B%iH7j@N96rEc!4T&tONMAFFSyZ@BwMX0)5u=mxW#+ zE6k)FSpPw1xUS3py}Bpe;a&<-GWHNj;QX0#{jN`0s_;KtYN-XWzgm$0OA8ABOpv+2 z;Jk)t2&c|Q4uP{E^Ua@I$F4am*RkgdV!-WugpN(p{BWEvP~Wt4>_sHQjxE*`zpKj9 zu~yFSI?Ph}eeGFUR}1nlB*@(PYjy00W10chfx;mGch3Cf9s~HSW`HLs2EfHf0Jsm; zh5&zwXe)rvCK&=8*Au_1$^x*J^SfSVsr*uVR@T9S{H_Fju!_N;8H1^FKl zWX?2z|C?xt62;FRriZ&_zU~0->;UEi$EivH?m_%y#X)3mT-WWz@&NfJxcLNi;t2A+ zRueGcXQd!jc8>v2_AdqL?rVk9V0$e|jR(;hqOLuKbBI#g?^V_>n@^Cr@mK2PF+@X{ zrymaH9+{udrIV|d_8((TrJLo|2kCD<#0R;5Lo7@qQJmO$zQ-cwf26~bv6#bq!4xzs z-$BE2b0Qeoc0h1a1g zPk@3EN20zDP^+7BUDNtx3z4{oWC-tVM1fajL1C36^@s)ezajwM=@#Vwj36`mUcozv zXbv3?T`fd?XU;KzKPz$o18IRe`}6*HnY$r`HxlK`Q!OaF)}`iHQ1~MP;Fv;?*$7z= z3R6Tw0NNa$tVSFFQ$qm8<^M)8;5ZUlJ^7o>@O(1rpdM?(ld#9KJONUbrN>l`R2NI- z#|VJ*1HJ6$A0Wt_X8=Df;`*!jJXi06nZ-oI9zKC6IUNZkAYh&!7-6t?(*wV-y#+-VSdf3Z zOZ6pS3G8Y?*Im3o{b!QO3}xL43YU_T8wm814{29%<|nhQT_2vFYu7PhyN*PClYAir zTky0(-HS+u1EIFj^(qVa4(_61mdbZ*Ur1)=53F0PZ!G{f9uDAcnH7Nnd|3!E zBhce8sCzvF8bUaPC~$n&g0g`wb*lx1qX|HWF$9@n1K%kx4iJ7M+&s zu`>k(uL#27pROFg=r0x&-s4h# zw;=yMms;pje3`(L zTtD=X#>^!vY)n6*G-e<{*qENm@ry=VP&mM)uCpM2uuDyFsZj(p<~$1uhY@7%V(|(J z_k5$dG19R=q%r+7kNDP@bHc`OZ?9$$jY;t7QHpDT#ufd*3UFLk_UUkC4&HX?!rXN| zkAUM?Uh~o=xy9ura)np4?s=jP)eG0E8o%sq_sTm2nbj-_LE!^L!vPq3=*j_LnSHhR zo^6nV$aDzLQzDm{>pn(lqdqap5OdHGX!mtuakS|8an{9x|&~b z9%~EoH**WJ9r2DUjC5v=&D}<9mI)@ZVvTLj6Ctr5Q(M)0-2E8asCe#LS%fwrEsOn& ze4NWm1Q5HGxb=-+Hd@8&V>b}EE-D(T9KY~J3-YI0P06IQ&2n3tRR*qU8LLz@c{0Nags2w^)!rg8+*Bb4!(7Ly)Ow=?DrhCK@(SV|fVr zPRVS)%NjVo;}417uyxxulXh*plURr|-&YOwu^$nHZJVnczwpNv6#d46{A!naz@^d_ zlzp2Zvxt=@DC|izHwz9W;%JcrdFJhEYuk5DX@y9wX;jf)dBWKOy;nXMAV8`4hElQ7 zO2!AH>KD6#Xe&ZBl%!Gl+}ve=BwfZb8C?; zv9seU(88~roHJRMsd~jzt#(eg@d#Al9!MUou#RZnIk}4==zx>ME`f(sUy#$59CZm8 zze72G(P`Etg%JyiN-W6FC*Y-B6yd&s<4I*!v#!B^wse=4x6cthc21w%X+u4+{ox>I zr(*QME*mxs1*G?>UE{|0Ua_wiy<=a`Z*Zx-78Gu=%)+e%nJWyI1w?bGceqVS+sqFD z=6~AlbHi@WK8m|co!x49QvRj|V*I3LhwgUgoVE^b5*f#2z)~#0-`1_Dk`C_X3Sy`U zJ{Wb!S+Qbf;Mw2MP_q91=v*qhTQYK&R%kChv8144i2Zj}A{c_!&&-nPd@}RK1BM61 zL2P$?pkpb5!X~26OpxAYF#F8;6!T-J77T2|`0~Kdk0~Cz@vQkSD&5`DnK)!U;WB zInZwcruT0wm0xYCqMIxzyqzG^)*AdZqG5yU4#&xk%=DOskIYaMl>I5{=(s^XNWQdO zQ^sFY@sy^BY2_dq|CfWt8CWO%k97iA$MdBBQUYC#$1IAUlwX9Gf^S!WMslBN;B-l9 z6%8bwY}5f0$6NDB6u=;>)B@sqQL-ha+uHXzoeuMhE&U5Ka#cm0m8K5O<^MyH-am82#AHyn*Pz{syK#dBff60F_7u zch4n?m1m-K5y#73>59r=YUd8Y@Xnnp{eDw;$1fbpF9xCszxUirP|^%4+E)6pw4$@V zkylw;co)%%pt5_^^xb>zDv#aQk0Y_lojq5S$I?Xo*g5)m<;r$Db}yqv9QNKNANfJ- zQeK4&JVYV*c@lo%1H@dkhLD5=HIDm>=G)7)6r=KqQkwfXnh zuRhgtg&+Gqp;^ilj_-9Eu@#lGik|CzTARvQ{hlS56|3X7w(wgNduq86%ficv<0FV) z{aY6M8nNpuYm0gjR@V0W3PEk`Tz+MNufxjB6C+rGSwjZ|!@JWTg}nhU75q}YnF{`) z{!QJmNnKnS^gEwt96_IwEL~DrKBYsv=55e9dBZZrczz3VOuhi*sCCG3BXK4j$niakG3ok^BId{1QIjFZ zNkr;npI)3pju>en#{qIcj=dK2{?LMc?-SI=p~Rq1(AFi}BGK{@w}= zkZyfVR!AIFZ{whP8XBO}vhCLIT7qAJ`{@4)CVe;0-!1|>pY$`8jFMltDR{ll&*5H^;2m9gz6zjz;e3faBL}DN25X1D;Shk));8baTvzu=mE$r0eX6u4v}obb?_=%1Ye0X{5*8G~@X zK^QGL2*7Ab4!*Y5Tipd!lXwZ^X~lu(dJByjIQl$6wX5F|p!&;5dg}u=1qUx6tQ@?z{nMCgHE^=52iPtra24c#Vj9on)W1-?BDpoF6%G- zg@ULTb1Q7-@VCPLfFhY+Pk|+_ehUlbvdMZSDEn%~QQ!PXCF^7766jxMcuOTaTqWOU zqi~eZe^o{5V-MsiiMLeJU61e!t-6lfh7(n!KDHT{4U&~VYHrT)4w6Q#d`GV2K^5VC z+DpSqYFaA!qaFoiw}~A%awYwZV~CC51%sr2OC|mE2tOQ0Z_dA5bDDCMd@{MYISX8K zex_yf$dFuRD{JgVUNA`h(Nf7UJqpU67r{SrB|lRU?8kY*D!HYlk~w-5l)ZEGK6%*n zNd+%hCEatC)Elp;Jn-&!lp3>yTd8VfyhqJ{HBRw}xLZY$%&5B`EulAv{XM z7N|<c({7rg<%uJfTNH*^5VS*w0y!SF{yBJu?a|AbB6l6}7#$UB;oWp9ULrh#E7!T!r3(EVt z^A?3_IN9?P`)3*;rLaNT~L8(_KW#k~f1^ruw> zFou`(G51gyFP=_I%|#TtfT4RR=~zh7qCb|8PuqwVenx;!;(n!gdx-N1C5e(4MO#Kk z4o;6=h5MySGZvtj$(Y~+w8mO~@tqXS3_Jk`P~!^A4LAptK;(N91gD3+!+gpK((wRr z8=o|%P-rNd7bsOc#lEU-??Wm|Sf?3+YkWSzKGM=CQ@L5uBo?zw}isNC?E9#&d?Sr0)>H}?4!R2^e!z=p4nOOa zZ*z{HD$qvU#82g>0{bntUlbCTQ0L|<96#;5RWI&!FY4wXIeuD%LOmA-CAr6}+3^!s z`Ms`&kBg1}R6F7KInIjDIfcC_7LcD^h-57&r#JBSbSvJTiasQVLs+g+?AoAcknbyy zMDU zOqwH`$aQ+o?6hy>B&vt;041r1znRX@d4MA0^B$ncYW4ty5yiQox2_fsP@x+%aCwiK z5?_N0dP zq2|^epgth~a2}uzg;8&c@L3nqRmCB!4(5k#m<03xGajH0IQz!~&i?U$vwu9`>>m#} z`^N)E@&JWWZm&I90{yQ&K>hFg@c$JLPzRh%JC9nfQ!pp*gxJks9=nh0YyC z=DwZcPMqrqF#uZOS>S`2vF7#NZL!v~VA&R{fk<|g)lqa^FA>8dI)N&sNan&D#gds5 zsGfQyD4Ko#QQ!QAig3So&yXeC@%`pX2I)~y^yi~ja+9m%7y|vvJls;r4X%C@_H)r*`RdZS5p!0N6pVA;xp_>9xB9MVLoQyXcIW|3U z{@^OPkU;-3Z(Psrq6d2dJX>U^YLXw?ay;iB+VWN5ZF`UK(7E0*%_?c1qbzlrhpZ7w zuz*g&vZG>X1x|hE^=H^$U9II=+f>qX{?$E_IZ zyy6T^2DjpF^y;>mcmFHr&nAEOxwIX9B<2q>nEy=*#^rC`DNCfk7yy_K7rv@;a+tYG zQlOyspGjk=hr5iM^`vGOeleDORqssFm*bCaz-uwq+n=UNw{VUCPctapK}Uy}QE!zq zV{p z#v}4lGt(9&77`itHBzmC;zh!Bk80HtERvUcm`XKe`u`{1y*2u>EN|$(!`9oah8aZ=9!@+wVUuh;1bh zKQ9I}>3?Dh47dg36Xk-jQ80TVB%;tjHDLEM4Mvaf_#v8pzRRi0(h*2?m#)m z45?-{B)4ObETTVY=kMoX zymXXTw%~DPgZvy|ADGl?m$2{5cJR<>fs4UfLG&asT$Se9we@wrsq+0*n{xnZrE?YF zA%QMPMLwl{yEPZuQcts&m4B*x!jBC~PyN_tk@WyA(-(8DDKMWaIZpgubO+36$I2aY zOn}RoQRZL8`?x^QhJReFVD!i4U&Z^lvx*M?xSN8}AIpaDdH!DJZ!1|NqfM8yb#6*l zFVj^EBXN4d@7202VC3~Z*hCN3e)?){r?2nfoSk4?s0o{$_df+Y-rD|Tx1TAh`p>y__=^)2%DfLb!RdC zgTntNfV$yFy6}p#l~XiW4@&W3>C`9WEi;G>^s@b2y{a;Yl#Isan zKLqM*)roMDr(Wq|uXIAUJiwM27Wo~;}K z&e0LA6UA1dL3)XFuc|VSPsd7nLvi&#l88PcBpT~f`kH<=P&TJv&G>$!A+cKkHI`bO za<1ZY1S=;W!EXt*$mx?n5*g~FT60dHCP4L))pGjuW5(@pPM^N3d>{8tq0^^tSb7Vx zF8siRPM?efr6MoOQvpt&aQenK)L3=6uuC`~Y|WFqNpO!es zPfPx<96#Zi30EZE66g47iF5q4}?EjGtb03g@b03g@bOPt_?Dz1R;Q3b(7s*vL+ z{3QMVo3ps*XY*$^?&a8iT;ARPj&s}x&9h${bhFIa`CcU zKO4-ulP+N&#rNrwQG8zk-~Zn@exms~$4{CH4%KoqvnQV9zu589%X0kWI;`38lf$g1 zn=vb|!BG5FL-E!2`>Gj=zZ^P#T5XP>UPPY3nl8sr%W(XJGp_MQWZnGLmJZ%S=q>Ek z1m|A(oYd1uWH|ky$VRfu-EtkDG5;VzM+-Z&+-AoVoUPzLbah6|>kvGx?8CVM|MyvZ&$*3MR5!9hUfD{{87Dp9@oSOhzvvz1p`XR)8Hk5_*Q zfYF3nHW246aBbw_Y$Z>vKyW|vNq|G157>{Yr~I98MaD>lV9VWsQ?gCw;1*Y&kXO(Z z$x_&1j$}CzK*`T3r9?u3;0J5cQQV+M9FGPRx|9CY&&U^r`&OV^Me~tr=&uHM<_-se1 zDf^AMs%YMV_;@T`W4n+wcyIZ%c}>I97i*7gd;F%J2iU(vr;hTpG5JJVImvW~3sUJW z7bg9_8`U+H8{6XSVgue7I#q7y%o#^CS-!sNjb!=uTf3p+qs^T5E~M>@LkAr4bMr#g zpR&E=UB>@x+ZyYFT>hMF7xOw3ZY51X60UyXE>HYRXW?f$?~+6{j%PsR(DBSWe9i4Q z)87D*cgAPSR7rkkR>O-V)7>wT+nK@X4#m#x3>);xUlPNw`cgrjj>gskFXOqY3W0!o zfD5nUM7qOD=8O3hDw4CPs4g7qSh*5JuY3VCT?D3^>) zzF!P4!~tNC-{TC46nKwP}EQ)7OVG{D8@eUWR;$MJ2H=EY1P3L z~;PUkI8?p~yEkIxht5<9O?3pw-=yqCOO zYOYpZu%K+21^xa_0EUdplkc@rqgQD&GwP;Q+Rcoby2{+GGyvf626MO4VD45LdWd#5 zz!G#E-eB%l8oCjm*l>uu74|@RtN5W_eyNsUYK7pk>a2>-xK6vGS%(AHZGfipNd8w& zHDL2kwxF<`1x3*i^r(UEInakY&_}NV#!=A*e!K=|{ixv$#r%$L(EcYXkSNbD#rdUl z2vXHOI@qi}8<$k_>?bc=@ke*7Gu4U7$cGxN=gxCZZFt5_fB5`hb%oRo@q-hLE%p}OAhiT9$BUkJH#W)4z%W9M(undvt2UFJ6IiS zh;lpPc%ryf_^}0Dzvof`0a~{cE!BGxL1xbg82}6<%F2Se)-#QV+9F`t@}+wy%wJUmyl#W0b$p3^u#YySwORL ze%UuIm4CTC>)qXg{C)(Pgu%P7b2GgC59f!YZDztC133G74&aMIfD4WQ@Byj~`!7SZ z6~OP43;}*cPq1ev0AMTUm!04M-f7QzZ?qu)J%Y@yhO2}BLNx4PiEckh+u|-bT6~V1%U>W)OZl}h^jrbV1$+JdYuKmuP4Y{U@(^u4Pid4_VfXCeA*X zit1p@H0R}PEx{?i&pFN;DL)fl#)q^Wkr!r7ejZ9Zp3`J0kmq@&I_rnd@=Chtrw8}x zVWXdvANi_+H>Kv&-}rs%_JSLG(1-Ck*8oZa1qsIyw~N>OiatqJf7UiW`v>fJC2*~N z%Q%Q<9V3p7&{Gis#)ddjf-RtpvFE zMND@O&8;))ywaVB2Zts~--Wo{12}uU2-kA#PeeX;&dB4f=sVu<@EywiAh5FVv|a2X z%;?Epy2Lz?N5Gt~@T?P-2%+7%Pp^i-a5{r9jl&5_-mop8GyaDgBH*FN+j@t zIr6R=@E$zEbsdD*>_75vA{L+X6S^Kb(A6YT{$}`2bWO@GCT0F(IAgclD{lasdV3MlGi*&oI7Su z7h7hvz*<_&S9JoTR6qetG?+OiC?(2vaf zI;&dV*X6pce7Vm5+-Dhy6t&V{?$gQi6$e1R$z46a2{1mS@0W#N(>Ap73{^WaTEK7n zDDrL$e!?Co-y2W2XYto8lOtI?^*BeIw@`npy&>0dsM*|;7oV+zr9(Y%euvzg2Tsrz z51axq;iKD=C|wrLgaj-a0_u*KYuLZ0OS!!!3&Wo%|Dft47>vwW@J9IEWFqX)l-Qvu zv4bh0?Qv7po7y8+3&9Vn!EG*=RDG0Hy*4p4Iu6`NLU6;00YryP3_korKK!})arF7n z{V4NcfO+VzENoNtcjuzN3HWb4HLwJ1#hP@}LSo_0DDl8aU}xj=n`CTOEC~ zRs2+2z@X^Y1x$b=pU{4rBAFEfMUc1Z#;NP{N>KFgqrW**Me4Er3=dalwp4Pbt7L=b z-;qE6dljjV^~zOpX|59P!RC?v0o2b_>TvCRfp*f|eW>XZ{1s`2vjoh|#hfYNa1;@- z=r(qq89be8&DKwvh!f0yPQvGTWSiBWX8C*)q5yLVAxtG>Wdf+{&!?#9WA^lMV>3ky z7FgOT3FvL(<-;AXb{h}zT=su@Ru`7tV`1*hDtFIi&UWx|Q!Eh##lp;R$0EBw)zOx` z?{}=YT2sAPOH-PL$nZ~qWU@n@;hz@-4W!Y#Opep-Pb*V5te44|NqB8R3)H++FfHeT zE5#iuUk`?#ig91zmtRimg42uCEq?4;Qq}$L;`dltpbb=n2iw|R9#me01zJBct_-55 zV#4y1SMInl4r@=nDJF#m^^U3n4qXKg8r#Qq!Pz)JikhJ8 z%_^)=s1@zu6`ryGR5yZ^v+_?Nj(o(AeUGwiM}Pk5sj^1f``M|O z@_oc_ZQ*x#;;hta^M?~>YGdDe39*X56=Rb?ME{n>E+BS2wnp6vYh&l|3k+X&L6HkO z5j2|_y;S7Pj4rQ!`l4D@k+VTN16a#rjjLI+4z@un{z4nHK8&e2_R5lC)ubU;mJ*8h zCvFBM8@IJ@u|X@=BT3qFHfV|~Pr_`oLA$RV_9r!ib#Z`PPq1m9_tl~Kv zG%G%yNBso^7H*2G_yj_;LAyl7yM;D4R(uMNayDp+tN3(6vq6hf{0nW+7I$qA-c(+M z4ce=#3_*HC4MEmN7>6MLJW?RY8l`3x7AsX-xPnv;LH@v7W`{Pb@Uu@^5M(EDLy$jE z76hr{+oj{MHu!jwjAitv3JX#2td%PRtNwJQ4j{7Q2O*5adR}+Sqmc0>k%Q zFxmxI5i}#nBd6!=&^iEIP`JNA_gi6y7A-*wI|}_NAnbqvT9*>DLSy&K?N_ow+j_dQ zLfdBHQLWG_;?p+3SWU|gXt%0j_hNb+WL(W0)f}Er%8byy9(WgZGaEFK4*4nfV?%+7 zejP@T`S#T^N$WwBqp<%zR^1<)MGzD|%&%W~7r)H8|4>kyKUGg+r%^gIO56Psy54dQ zz;Jy++>d?NUi*&9`}so%GQWKoq!?GYl*hWz1(j=Aq}yKGJh=#G#^o0Y1bLTe;&IL> z-EnGOy4k(N-%n`Xdfi8qrQ|OJB22PhCyE*Rzw`jRVV8Q=Qu&Wqs`sxfD0+w>bL$n_ za$QR_w|zO(r;fWQH8by0+a?~<+yntW7r@mN+gQ%_d~j{dNnffXf(PJZ8|I+6m&1D5LDhE(Ru2G3e@LU^>X z`rMw|eKnI1JpN{kAfB2|r)Q@8vDv8!$*0s1^sN4NHn+Ryp?>)ctf)D*ZcR*En=s}~ z@`?f8=At5^tj;9w*Kb2Xa|VpX%Kw~6o*6KXJMIXys^gbXCHo_%FmszPF8_l2;VXu- zkJU0;8Jshq=FNCbjruuA!a%P;Jat?m=op{VA)>rvQbDp$vU+b@x1&rbHant6ejVo} zc1jVtgnyqws#u`G!6iIQ?~C!-8^}udFX0Uy|IO9!u%*P6{azij>hecj0?qZ$VxO0z zov{2eWPNq~cy$H#TWr557}T*rt*=_2fak9^*{t7z%?K{*_rf^e#5eG&9-lc;A2ayA zPYf*+F32*GY|?)YTAM0eb!ED5k_$l4obqKglR!p}vL$z7?d0%R;Uj0vXI9{&( z4#y=UIJaM4wIll<ddCMfg|3yy?YGk}Z8(#`gai*$!H^+I zt{g}Ooh!s=p=L0c>zi2Kh|4+m6gf4WV69F02rVX-jK_V89CD9MalbTHG$V0Vk)St* zcw8M9$PZe&mu(Rpc1qqTp48za31*m_0Fu>Tul4ZIAyumL0aWeYMgck*48TX=qfN;m z)h1E8TtfcodaeALk|`2(oyH3nSCJv zWXWr?1}=UPUK75uznGF}31tn){^n|(Ig_}LVwu!d=2CZJCKn}pNRbMrbGE?Gt5D|% zTtcs~P^EtjP*7lOrVaUD$PWCy2%>Q3QcazT(Mz~x;0Dv&+?Xwf>&MVFoNpr%{#(p2 zaU=+_f)PVxb>fd{^8DK~$>5s|9GYR18X2pNsd1m+>caDHUYGRW!g+4JbDDE)1Gihm z+152BN*fb?jXW=%UPogph8~!ds2DnsYa2ZO z{zh^<|A{>o+?%oB{sO8av$F*c>LpT51exdW%xQ;?U~GTl&TO^KP6Q*ydcij#D4(?T zf(zm`ztzBC$rPWxfW~l*$>+|w{zz`_oC}h&FFt!NISGHiq*N4s8$`0-d;vS!#D+B>( zp`!r=E+>gH9G@&-jp9J3=$WW{yBwFKfV9C*Ilei0f+hLddY4u8PtV@~30duxzk2H_ z9Lf)@k6vJapygWrDmQBAB9bBCg6roLPP8uYf}wQxKGb$kNCg!`68@xlo`0_nZWDew zVPjX*g8+KdCth=l(a`-+`|F9p3&C|lJB{q@mS{6b&C?L+XgzpBuXDnFd?IjF_-JuH z*x%~>Yd3qQk$sEzAi)fgESWHmeVGiWwvbAXLoe{t`0Pbi<}+w;s&pILF_@pdg$fuolfRzu7dnvd@1uHyG4m3^LVXDtR6+D&$%>-yn5by0iHf$GA;wn5H*hZo_98_2 zIR0Ks?q2E+y8cY}CH&?}y}-byx`L7~>6Z%$B;DHVwEQ+ZEx*mC zQ})};36@h2OF^;z^wbpEL52f#BjDoe8V(QPts;Y=LM81yTcbllkzLH}V*e8whd zXZE)Ue|xSF&y8Bgy(GNAkTdD;_kx8&FqBHU-OCUxRl3J3U3O(UdXGMw;u@dQ4M>S6 zbJD6?vit$_6Y1zbl977!8!k!sHR?OgWka!YdOS&vIftS#fwcHz%^WVXNO41r>}@!* zT{wgi%_ux(uIJZ`w4C%<3ntZizC&z>G9iTYfFY--^O-au1xq!vBN0b6@?5L*b+bOS zIwi>q?iYZvw+L$N%aPSyFsas5iAPLNM7SNvkk^ZF>CY2W3nmvB^l*SeB7nUsYTFRdP5g0~0Pc$Vr=WCcL%lg3sIyE5qTQRc*}ge^;pv-j}e87gEi;Rsg? z3)B~8rQ*qiu|PE%e=$Kd!aQLzQRQ`YQ6bxVVsk1szzbCxo8#)Mw^`vBqI-pZyeQN% zrYN$H(q2pHN`KPwM0&*X%)5Kre=%2de+M=m>-AxlcTOGtO&eGz_auUEN+b^hyWSgz zgIbjJ|8AwmaIR(Z2-N7zsTB+n7jfUpa&=`NFZlAmC?x-uDAL|MmQ`vVgPQQ4n6I(* z({q&yYLrT(CrwWTw--BwjQRn!tk0115%UxE1H_{dAFzOQ9n9Bbo`3Ch;`1sFyyE$L z(Nqfg)aA)w1bk|P7kN-0^2!(L3u07Hoc1d(aB$*##9zvoqH%j|17NKK@A5TWILb)Ox4VHQ^eD)Bj%$^^;eIR=d5FSd% z3u#1lwO$FX9SaT=q=IWo;6>krDje$tr^V+y%|jtaA{fXCgYIyChEEw*}20^4`TzkB|f{om3u?H-*eKTkpd0ZFv1|@q3MQVBI-H>m2VyCI z75gIFPI51Uw5(Qej+Yb@n(phf6Nc>r7;Zay5d$aV_j+9*{_Qx}yq?h0_R*8Pbgzq) z1q;|7IK&#R1`^nx=|!MUm6yKs~X3;2G#rVpP>R9gc6@jUzZ zB0iDwSH|Z&AZ~$+c9}@k@4!Cp_ft(`-@&;yylqS7uPNiM%DY=J2uRI=i6^nkjn_;g z!{$IDoj~7heSG#!R%E>_$V!*XsEjK*bV+;!Mzd}*7kd7+E%o9)qL7+K)G?9u9j3!) zGB~`_?{G$nYqGhA?mZryy$0kSrsg9%zOV5t2p02U1rmm;O!DdRL43|tCYzeV zx`F?x2}4prF-W~9g&;&|<=?*C^9MA5$Ziz<5sjWdCgb_31q{_XmQDZOK77I*`i>jX zq~*u2(f5;ht&I=nz&^EH8*$b~p@v&lo=`jKto|0HT^~QF9twN#b6a-JFXmi*GVZN% z($<`#+N$Mc3?6HST`l0P!zpEK+_fKA}n7=_&Wy^k+X|Q_tmFcPP!p7`1J+<@`P$+{YVcpIL=rQ&43{SJ9s!rT@ls;Kb5Tg~AYn|cWa%1dR7M(- zrK^%b^d+sbezYSXNW%a%qIbDaoPw+PTdp#Z)t77HLQhX*(j6PN?Knh<*1R*Sz={nt z?^Uk8y!C9)&!Q*HyDKo#_aLzPN*-%@{XjqOWXz9rK_*`Ty_RZE6M+vXzqu}c_e#Th z_>5p=B6}YMStyt`!to3PcA%9IYdD;hmo`qb;>igxa-d>;jRu=K#K8%*oGhzGgWchE zIJi3+;K@cip3IP~-Vi3_;0$-_ZA)PsTtyS5uW2b==|4DDK%@sj{4sm@&?|_%EB%J}%uWR%g_(Ig zA~R?WlC%RRJsCjhItm~ppdKel3x21GCV?6%)$Y^;q1m`L>>LrI1^+PNng0Q{)BeH* zfNlPa;k1~?VxR~d^S00tjQ?uF}(MSx1%zZ$o%*RIg#3c zv59eG;H`%wtW`k@=_1Pgjck2QDwS|@d>Wbso6+PtNRG&IS+jB4&2Tu=#>0tWvRjXW zleW%DmLNYh52Y#Na-d7%0wHbdEV#EDof=x|ZpoZ?YbPzEES4X5%!_yE>iLolv5&I1 z0{2#6Z)vYvy-*YvZK;kJuSz89jSHoU_Y2cg!Pip3_l9V>LtaIroA_v|6x(k^^ZQwI zhhk~V*Y1JQMT*}ErbBZ9J80Y7CrjDDgMJcpO{B-4$nZLgndXz)Muozp<~G^J`*Tgp zEp~qupxJkrkO$Wj*1;Oe%G#MS4AdU0)OP>PbsyAU!C%!77y>uw`#F_J_&XT_tSsVl zdSERrUi0oNYi2rnJ%8199&ODn0 zaTqW^KIdlD6Wp&>CeytxK|rAqz`UfKt(tXxU_;7<+3=uGj92jp#}D_8v>39RPy)hm zjhW8qwk4k_Q((cuDHhlUx4HA3%q5ug7&}1LzEmA+`$Lc~@X+We>i_YXlT3E2Gpiek z4N6DbeQrIHaM!Izsq{!>ks$L7>Q(vZZ^a9jAP`fHsA7(o1C^W?C zbUhT91d1M3&q0@`BcLcKxe)Qr=~P~Dya^o<&O|$rrOVBiBAXc*T`Du)r797Z=q683 zb(Q+_dg?7L;4!~?-bv3p=sD{6SSs^;_|jsY^UL&GqcUfzOqWhPH!J3AmdZ+)U$L|) zG(KlsZxA0e3Sld0((7J%HeUTx1ii@1)L)DSmM5+$(F<8q5g3k&ei;KIJ~q;{3&Crh z{bj2Vq}YmRTRbPWz-m2}&RfLw^2_2g;$T~Lkm`0ggOK+{ZEIj~WqvxQ)(f1lJ8lQv|*@NLBkMsJfmw`1kDwhFv$ofQn<)=k0aZHE^|3p2JG25dL; z@8R1e8XkGgcC-54E~MBl)F592yqy7lmH~b*6h{B_P#ALur{VrnfOP@STFav)7~Td{ zqkvxl@GB7fUjWbO!^1;%2#?95Cul;HzY(wgy}Kn;=y`@uTWuh=*g$OIRDiPV z*bXei6~oFzInLZV>}1o_6rYiSfyq`;35-Bw(xs5Yk?b{aZ@Y(OAFbTPxXxZ=O)8k9 ztrTRT;wp*nu43h0#R6AxRpyGz7(2=Es-fo30G3$%1_rqm2Y3^lS;dp{oD5II%{V|6 zqEp2IDzB@Hb|zXW4)FG6@N^R$PiOTxsb9ze7VAUxHQfk|1H4q41XEi|SNhl1A;YW7 zoXvwTcc}OAv59$ zBZmGH8f|^b0$Xl)mQd<*Y>p}MaG;&GwSz6#YJ`P*jM%1a>&9wPTwy9Djs&nfoDQMj za7=rx6ym}$3*aC`sEE!zFru?sgOdt8q6i^^DM+&9f)Qy~V#uUhOoI0tgc4l1&F;tC z2>3f&ZMG^uX8SaC%fY*?WbLGSDg778f3zDaIdtC0V}f)^lVnQM!ucOUcLz zc4Hn@1m4H=1SYiFj;*2?-$F*D?HIS&-!HuL${!RmGDJ*f5O?{Jq_#&{Ql6Gesa6Yf z;CPb2@g$$)&>RcsShMU{bItUAHj3$M3!gUQPh`V|3FE(zO_r$bP6n5iVytvOf>Yyj zoI-nQtadd1{o=+$&ejV?!77Jrx^ddJ1s|>V4GD)5Gub$M-vVJqB0gYcB0Y+I_lNP> zy;RQM&6#VW6nQx38VG3J?pyM-$bJ^+0%Z6@#G>A%!|^0yDIDrBrClTbYQU6kZQj@GQp;95n#R~k!W}#e(QT0zTIcrzZ2#AO@ER)PYo< z-p~nmU&GCz*yokA)#=;L^Xsd!2uQth6L-aDEL7jR z9gOGKfjij+hDX+1wJ_UDq{cO$-3C0kGJj~91H@u~;oxS^pzgyhJGX#lY&7(u`1Txn zwca;m-@s6qVaj%J2$hJqW5L|f(*r!t{!x(nFD2pItKa!l16aK`I&~O23Mv01CZpLj zS1*mG{GRk_r_0->{99$J+3E7maHhpx`8&u%%2%1gR+hQgWmolgRG5`K82WPf<=Hy}(J7*(D{{3#*xnJ|1 zy}@(~7KYD8lFD529ZoLlnplHYXMZiV{9W0fA+=~V@YTmtPUtV)laWobt`q|i#(gV9eWQ+#*{bw}vWqp~MEqQ4hCYE#kB+|(fuAHVP>8_sEoHq4W~(d; zVyU#3FPAk)yDUowsl1w#grCoH3kmP_Z6^s|VkG>us>ZMa&tC`WUV?PbgyGh%Adj=t zC4>CD0<9M$OlBL!XDj1A=N;) z-_H1G%cF1QIyn7}1E>K_?nlGq!2pvn`uY_wk~YwT?kA@F?iVx74YSH?1ay4HF!j$l zkbs^Wv%evSH$Pvbhl*&~2^sN&&x2&CE_vJ-@EidQ^Gbsq+=h>7ksxtr2!ZIpk;;z` z-i=6xXK%9Vhz&~MncV;DSe1$oel0cb0~3uQ5`C}{XehsyhOG9+ZM9b(9O4Qtl^h)^ zy!dk*TKv&n2=+cqjoSrJ#UxV8O@oojmznJSAdZd_>IHdkh70qzRr)tiPXzrXr-K(= zQW2b5;V;(Q8PX9Kr=Or5Hv_qrT*>V_Q6!;{zC_E$+OuW2A4Q`V z=^7i|c8OAWLT)2lIFE-SDSmp0is4_xH{9o-6Oy5)Y`;&3+9XSNCL-(5e1isIy2CNb5lKq?s2BNbegNCtz(CxfeCWv2B>a*pc1=mjXey}c(9OoM%y+y^Y`uX_DS z9Ddj!I4MyIsoSLaoNuu+v2kFdGLH>Q9rIG18FnF(2pGBB>yWngK*TMgmQKKT4eMhX zDPNYb5Os_3UT`Ju2~s$WwBp{x%woVn1z%2H!-hkYpeM zWEG6hUQcV;tl$;>pv}i(vTgI>rN4nlh0Vuf)oeH(C>&!ZtogcS3@5k;sk_KkOA}I=o;x)2pu?PGxet$Sbr-x z)P*i`%typA1yV%Csp2}ueE}P$Wa(>+V}lLLn1}G;!cv?TcA^3YJ{b*c*icIi^xSkLxWYvbl>^^2R+zZY>IG1x zmc#1)D9fQIkc_;<1E=d2f7H!?M=>DQxJ7(oydaVqADe4MId!zalzo}G!h8Cui2#Ax zW2VwpQ=s$L>OC+y#}VVOb-vgScF)XeHL+D6BAT647xtrvOHHKT{yHQ1i{f)06KVFx zEEfO>#i?ik^5jOE0HsMau)60mv?!3Q#FYt*@%n}XdDfJFX#65>BI zcUTJMV8`?xVs|GjL01iT7bt7aUMEq!zZsIr*#$zyc=Ig^XnDUmS;BCGC%9J-N~Rh; z7Gc?_=uSzgkPt{rMF9S%%0EKetOXXvI{`>AU2ijLYI1V-GAA^AP^0c@rc|!xl4Gf? zASy5A1>W0Ef%R>t!1}gRV13&uu)ggSSl@OEtZ#pz%&_vUHYPND%LxtNazewmBsAoa zq=s*q)bK5n8oq^;ZYfej7`q>6>Qx^CWQ)GMI-<+52g?g33x1pLjRJNB!{2uLs|NeX z!@@H93t%BXgr(}msC5ZWmF)B)wz6<#nIp%6sSr5Nl zOa9~XKE+*U58q!<*|9@wQj^bDyT@==9g$nXp5Q&_wi-o!#oNf-3i|sc6&wL!-lCU0 zJW~sID*R!7j&oWi@gh|)>T2h-N@0DE9CdY~@fEH*_0vt89pQt*)IGg4wM<@kYFHy z52CU|lNPH?wh1r1h3^ZOtEp0^KT}5TVB*k}U%V^SbWuF=3C9zKyC}pEHx9|55aJPuR&<%izNr<<0yG9usX2z zeiBlz3bev*PUG+aqOIhcjU*0hOYzMx<%a)E#tdOrBRq~xc|>?*=*P(1kps_L=rilQ zg+9-<{IHN6t^nsP0&7TpMJ1{|Ef?E(O)Ibxu$e{RD2A$mF6(vQ4IA1`QhG?>z%gXu zCz+J)6j__zkIeZJh>Alnk+uJ+7m*(E-0TU@$%gQiMDP>IoK;_``U*RXXVZVWR7(#_ z!ul*r!gztO-y68uED3GSk|5Fo#Bdj(4wgIbei!t`l zlF&mo3TmC3CE?vC$i1XLw{NEUSn58l^7I~lJ*7F}@6!c2-MRGMamebHon}usWbFIK zQo-TIqF68sn*uwr2}r%)mrVf*c2R69yPNxDjY00;Ymc=evfxywzJmMokhn3xiEDw` z6WjvwCLJ}`;UMM8ujrvfGME#?N5X_EW^zkX&cz?%--Q4t?m$Nz*;-pF5DnOv3RC5k z=5{J6lO_^ga(zs`$wUZ`rOca)-gZ(JuNSCIu?{<72V%}yYAuT#+?VqJK1va`gXC@Y z2z_&H!$CW?#C+F|^Nq$fVY2CL+bdQ#5HOq*70CeoR2>_Qd2BSsS2%I4hAd{oxIr)e zE(qhxiL#e;A|ld-w-&ZYI7Obd+r`$lz}|kH!vk1!*fgwY(=>=h%mBHax#KT+GfOJ$ zfSBH|dI__nCWj^~-zMrezoLbdzM$+?76Fpf5W@6~M30kBpMx}v_|P+Iwj005!u zkk!yzc$}~99S)Rte+@z<{OU7A7_wHb5C(gTllmpJ<;#QIG${xjQ$(=?)21-0Y4&CM z7<0C=5SDUAYZL9H3Tz|sGMtWIg4l6D`)q~7#$~;Xo!{D({GKes)Nx-i{nEYIkV};b zTJ#fmRAlKNGMRS4vzZN^mj`MppLt|EcOgLmoxr<^WQVhHOb7{?5dNnblip#6885>X zcb{~RNJb;25s18qg=%h@d|9k{rvtHx-4CUl0u}znv$mtm!s^s3Uqa^(W*1|OHJ?!fjoY*m)pSM~DlU(%7j zT}@__RJ}Y)lI;GC^>qM8YNaJ{%uHwc<<9Q6d!$_J9)a#K)BQ|yCv1niFE?~Oog|^g z2ll@E9pbanKMjGAOtFVkeg}?rI)zZEV*&pNVLAZ+&SAl2@UIH|+v~N;D8;1@I^6vp zcsGLWmI%uQ9BjouS@`$KP$!ZMN}wer8;I!@=e~rVj4CIv*^5W;2f*g^Z`x2benML& z!k*&o65W=^#wHiK0s>ZUpY`g23k@j;B)*xf{L}1fQT2X-Ny5isry8#3axu=qtUZ8Vk%h^zlpy?9YXU1DE1Y%`mX9 z`wKkJw3-r3E`zF>L~-zZlMFxu^g~~;c`=_h)<@rlthrFTLaWfpRZMx2CH`8xLpsBZ9AI1o zx!l-(uvP=p86IRQQ!9BbKL@Wcd#MpLLef~%q;gAj9JnSOFQOK;416_crpB;@qZuS} zu$uVASVWKqxYY0m!>~%+Jset&yk!S=UhMuY^o#DQgBV_E#YDlF;uwVZ7WVZ%4O14R z<~2xE>@F~+=|X8_`_BwgQvNf^p@)Qs3L(LLQgAF#=gZm!2x5g`J^GBrLnJi#*12P3 zB&G$JujGYfWPNQg?j1WLF@IQ2BC=n~OQaS16)vy5F03~G6#HRnoE7J$Et$A85xBWm z%Y`ExG3%um2R-D&t_a+}0-Et)l;~E>ABBQ@8_9N%1S0N4lwQDTvJ*CN=_X#ro-KfS z3y<=*`$t;!IEHXk!hejL5FB7fNyv%Zr#VBs(QJ4NKcnoEWRFH0rY@&AYJ|{FGKWJ7 z0e4#2{gz@<*xQ3Zx0iGXZI}HVBFg=mCPWcU1)*ro4*|)PX?bq$%>YH!(vV?d zXax;c2qBZ)jg|o{N(^p(+M5i<{Qw9g{rPj?@Z;tyh=@OKRv3NmRCL|P1v8Sq^%(Vq=70{{)+ z!Zysn4RgSH=+-S<=0fqIb8@>u#cv)S@5j?W`;YeH_7nFu;r+H+85F*0 zInQ+d`d!BlUzbZHlN(Wt{eH$DIQHPbmL9fa*YPTUbNGEQ{cfkeH`zB4Qq!;6_eS^4 zjUVMqX1bF^f0H6#wEhA;R5ig)TR(3v`@GgR_EAcx<4Kk|H}mtHDfsu#`5G^i)-i#I zT=PrDXKkGCr8iZN-nw0pM4By@o_5Z}6rtzrn_W_A_^v>654_0E`MsYHN6|u%LlW4= zO#ODzIz?lQ_vPTd!qio?NmF-78EPBHLGH~F;j$`-fd?g4hD64SN-yOT7ZGl$V z)REe6bE|~X6-xN`FX5Emxa%|qAk7eC{Vv+c1-<#3ZHe)Qblc<|^-d!K)9PcpdYLEdXg zPbY()Ew}gjbN9xZx|vezMAK$E(pP^|drX}XR;%xcNNxqun7oC5qebJg^#gk)IRxx= z4%i=@2<*m+X)%9Qg;orvSm6Dd;9W7#!MnL)0Y8Kwub9a!S1eafe@Vr?JoT;l z;gV`nlbV4po|zf=%l8U$@Nl~0x^NDz%j4K*`^z=~$`?!?HZPWHENyVpup^v?zddxS zX;7h9(3sbdH4nbh`r*_+50fhzn24Wm>6?h6r}`(Nz~0?Nr&g7=@i}l}Ug^=qKnw2Z zbZGxHvNY?%UHTadR*h7d7}in$l^Cj|riFYy+Q6TLBL@j0RKwx@trH{7XSb2gl9=aa zB98;1_sn!Nk;n4**)%s3d1>-Agn9aw2YqPT+>ljk(|RWRZ&@D8Y`C?NWv>3pcV;!k z?&wi>`!)SsWrmtLKqgWq;#3=+S(Y{7LkjVsLbUNw_DG%OG?rbxZSA z75orR&{gAk4=3m%?|D2~GgnQs?`2ob)Hf59re&L;bot>^Pmgjj zJ!&+@^oUjuoSy66%1lp3ANiWi^tdZBp&S>eOk9Dfkvi9VO+TT=-)q<*wT3J!R8VBe zS<0v*-NDK(Kp*oPhr*DScJiL^>xaU{R(6ExY2Mqy_r1KY4&S?CP3h7(>x3>S_~&Jz zOjG+jF+)w2hD40$5o(UWZSLAUBy+Kz*gcyTkesMoW&DcEN!ey@xh~hFgnKsjQZy@O z@kxb;MJ7DdneY%T(Xsk|$${_BY2>6-G)iXJ^wZO5$fxZ7pp{!PCWKnvKG`UKbh=i)pjLWOE}e8Vw^}PX)=G290;(M_AeS`GT5B#@ z#Pb0)_{q~X*uI?xuckp0oI`&)o}ngMo@+!F zd}-Y>_fz^CmiVR;-&(gkOq@U>o&k->Ag`}`AWRh0(bzN=aolpd%=+#Ee$0Fz z$1mVBC%l;;M{Ch%g9fd6x9ac>62Ld{a|o*e@$?>|+NwwAg%dwsaLS6O_c2Ndk7J#h z_YeL7JJ2c$AV-xbx$a8+-WN~r4Q1;1Et%G2Woj4|W@=E8X$w9^rhg?F7jeD{n=l72*zyD(T@(pYV+T&BdQ330B`oRCvvetHgaq%#5fE#eJ z`feT`6>*^fh)?B~j)?(BH-Q z#gX*24ZPN-ZoM)mK6QQxK8Ps#>rEBD$|82#QCcV5>W--g$<3rB2))0O*Z5R|LAoG0 zT(00P7I#$3o%USiZU{o|-OG23GHIUi>5V1hSI2{B$&{pjEU8e5SO+$tCx15?j44T! zrSU)IQt|5!N3Sdz(pXQ-;>(Ks%}uWjMMm9mFw)lk+R*cQ?s-x|X-zQhvh*EqVqV`8 z-nyM69?o=jNi@({GDWS_v0?6E!`zV!xGAA*Gk2mTA{%O&Zp|w?X1)*~5O)B&nYmb8 z;kz{sIJWCI0O(gCtl_>vwhte!+kDa?H(54lt_%<;`o=w@q+#&DZ~xGN&wOL> zz}=>mrrbQMNww1t0V1uR0tA!K00haYYb-XpUABQv%Uk@mK_D~H%Pa;w(%PU2cQ;@z zS9gkRVIPdc-%J9-4$a)WqwhBL6rW4oy7t0^!_h04{b^M}^pmHWea=68GClo3f!yV; zpfD)*R($%h5)ls?TjCm{(Xb_1y?X^4*Ai}?@5CeT#+q)uw&<9<@61~~$-t1ofN(&A zFhO9Dl+q7|Lo}X21TB*u>&##;);{KZ&w#hl(!@B^(0eu(qQ>^USm=vZj z0){fca7R@z`4dI{ZY_dWv5yB`j>I+? zvUN^=?4FI9a50h%@!;FV1YP1YM`ROx@S0;o^>G6`=R$}k5gsE?$13;ZXG!`1Dv3tC zC@kE_<&t<=6HO})Q%rIBm?Efn4_9M$&*!Ydj@h4%_viLn4n=6AX_I~}&>3Gs$@JAl zv|)ZFVP2;4@1o>#L%Oqppdb`ti}|wZPYF!%$P?7zHN9dT&#LDFtH+9ljSVOli*%^% z$FrL9TJF~<@#a;%M>YvCjo+hrH=Xyl@r@57Jz!t;@-X$l_D3=l6WVt-`NPbK)R?cv z+g}|9>ik++62a^uy!KR~*Yd9NHEn2!rzWEc=0F5$%H$&gB}D?+3zhph^kU7VF8UK;3e}6xBM4@mSaV+LA)sa@@wocxaZ@Fw)mDC@+b!K ze7m^HKfB7mA-DTRDN6?z$E2XKvzVKn9Fk#b>7`*sxOC`O{fF*au5#Lg6<>Nkh6j*iLTaQV@eK4x{RmN0pBy^>Xtb@98KK0-Oag46$SN$gkZ64j9 zvuX}UQQHlurgBgf+g=4MTR>gl(exS`qS@+6o2oF=#)&Ywt6@+Tf2S&RgUXib2Fd}A zo9A_Z=41dp2`DCpg$IJ7x}p0w=Ds*+LW#gI7zXF`x30$3dQtb7lNCNm>yPhqT_4oC z(Ut*(rCVpTBn`2wY@N16S z+gGCcONbGPNd~u3-$r4P*K(9e5aHmKqFJvY+>24Glr)o;+23p(I1xFRk3Q@?`Uf$Z zP}~x3ByDv#S^zInG;T)Gc!$`%s*U>}Wc9k)$&jw&)!Ki%ES0xFn zoVCpv;6YfJ-QS7ySBQuEP073@jdZC`neIA{6GyCXAUUUThI%dP=z1+Ndl;~8cGro! zUZZO~eXkz?-t@X51LzZb?Rs(gj{o?TOvhbr^<6|DtM4KYarFFc>O226eplTWRkiLH zZc?J{6u1&tqYym}ktUi!8Yw(Zg#DbUqNy6eeo&=<1P)~~eL4LIw!iE~pe|-8SrTM3 zQkH8T9Ir+Fz1j5RBumJ*TJ{mg<(bSXO8TI6a6NmY??AZ6GD}3yE_*T-K_`8Wh93(a zRf7=qY!JXv?g=5#{YeQp{uwlXZrJ?5wrj(-3*&Ul#0nUeH813$`8GXLwoemZy+=$F z$an7(UpbR@f3jD=+js0t+tpHw1%K0!S!-%k;)EJ~6l!%wjea82DA&w~ti!=NGv2Xr z!J0h;r$9<$K^27TOIa;ei6nLZBcv>|pPyWHW8Zy)i$s9@caxlRm%4$yJrUX8T37PY zFERO4t>$n7wCIWS(qD!)x8{GsowGW)Gd~(!QC)e^YrY5|hAIFj6=oU3y4X}#J^ECr zF_{M8kS4&9AS#9jf&Qe94Buz+ek(1fyPMeV@3k#_SSdN@@vHMCMOf!ur5Et*_``~v z^soMv66vfGQU9Tm)yl;sK6<8Gl%pprhsrPFm(Qqma_QZA$8)}V@imp`%_!x0 zx%Etco*bvtE9_faz<6EsSmf(A@mnw2DT7vr-W!J!=Z=rg?2oR@N7Kbseqfa zPr%LXbe2Ym&L;v_sTtr_@NU3u<+R$mJW5NIYbXjJ#`Ejw5Dc(}F+v_*JsWfCgdlol%v=1-Mcfv` zEs;O!@}>@U~pQ@UJH*-pnwz2+&WSv)1ytynm} zopj;E`BiFWe#Jv=eji%E{EitkzkB)BG@+ob-Zj5zo>7hHua=`Yqgxq-SU1*6FEOr* zLTkAYg1gr2Nx>cpGOf&btKG1jzLW~qjT_Wt4ui{}l-|{(NN%H=Jn}ErWNBZM(Xhz^ za?oU3*rYuvsN_tOMZBl~g9=W$^zQf_BA#S4;LaSR#}oaXLbCj5VhH3Qk7ew7=rFq( z2yVu?Uh6f0QlV0tUh^8+c5c>E^jbcvRJ@;>HW$R&4-So`YIAYG@mf976SRSH6>lnT zD1qDQS&R!%grnj_aELs~W$0;Q$lpgz2nk)BbHpWmZb5ZW_-NEGTy59P9OFv&$ZlMY z?#V?p8m zV9ek9V-|55gG{pyb^imoh^|1t+V_9ioRX4}-SU^-ag?JHbE_~^QUmtSGFBG>F7%|H zu?O*Ms)`1qj$QAMibaF^W4Uyj_c*I9UU`(uC&OdtvD9DV8FP5<=X9wfCqLwJ)+R5S zzOEtgP_1=u%>H2hBY*P84e6tYUh|4!8VB}lB1%t1E6|Ax92$c}$ut%>+u>JHuRdfd z6G%tUe5rV;xA-#7WE=6ggcr3nP4hgH`Ib|_)G;MURp**S8#JH0QWJsp5#8n{*6F#+ z`NkxAZUe@7E@^?VRB$Hbun0?eNLUi7#y4|}vV`va{Dx~qqGTre(6>)VStf(iRgboY zl%;O)`b80%p)6Cnv?vbEKMhXb_n*S)hm3bP$}%$++=+S^BAPfg@{qJhDjVE2Cmd!-ODQ>ww0wmQuDf;6Ixpwf3~AB3*15#V!j~D6x6IZ#ngGXZ z*3Agl`FL`$&R2%(+@2Iva%P>!cuzn1&otRMsL48h$&ePkt4YyPBQ47)!MZH&YjS?r zWCJ;9vNLSbo)lDarpal%r@uu7rz9;G{D&hgGXea>AkhP9Ij9N|^2OB?;bDkaP~f$Q zz{Z+Bz&)^AM}s-zqdTpJ$NtT^ygx@q>u&X=7*P zm_p`WNK9vZ?r^srHJn9hH`5TqB+Bxw(A`n<%-e?!A#4*?s-Ekqh!@|WJE5jYaXFKp zLP0ouObV78F+az|yu)FSSksoFoT6Yb$0oAdz;oQ9A?vQf3nO;+D>5sH(w_?5Ohxz9=>Qic zdZxfYx;;YV$EM&XbU?(YSZKij9AS%TPcLFsS`#$qg`Lj}Y1;S}3%Omfi`dn2|pfZt%3fdS}Oovk+vTGj2H_B1gW3f85 z?AHousCsl?NTC}BlR;Dv845jZzQ|eK_fA6^-uaD4!x9td744;sfC$$Ii7R7Ozhh^M zALT@-HQ@Yy3}XE@=-qN$@^3l8bhlJj5)rkvB+Xc=yy~5mEU+~tJ$zMr(Op&N?G)YO z>+t#^QL=UM%3kC_9#MW-&eLoDK7UUo<1Vpr_J$N+YhdtD-4&-9ia(DWM)AKr7xKGo z5cyreuNjK3cah&kJdNUi0)GLBq577gz+kPqxb6Y!p}TcPfS1_)kql-spNUkMOilNa zHBTr?)}_3sAH#&c?x8__P=y&5pm+5_Z5j*s871h0AePk!L2cbC*N29%4=YKd54VPW zuw-gda;6Wfc~9SPIy3&!htaPcFP`gO9i!7%S9?W?BgL@CYdG_N3HqiY}garsc7N* ze#{3E6<|Mq$6GR3Hl~1b^2jToElAvkWUypRkerDOqRW* zRy9IM(S|tYM3fl=?|0m%fCmCKhr_rvRhO~tuy_YYEktUkj@DpkOQim42**njkv(cV zPvdB5(`$~vN5rhT-^M=9INlMl7i@_Er}H~r=9El*ZwSuz z?pU4#=38#rCGUhxnul2+dA Qu zG8sH%^B)gdZO*YkhBy+dNCZ>rx+|oTV{jU<3YF59#^rls?f+uU)np%bz<^5r$-nx9>x}x0f?# zs4^}-9Xs0yajSZC+z#o4@Ov3d<4MY}vw1yYXZOrJ4Ld9Ocd0U1D|E$T)I4WwtSU%c z97|%0W#J`*WQ@>Uosb(*>ni#BV8S+P$(ToAktao2!EP7dKSmF@uMua;xllZLHe|`Kmh725_jtEq3wJc&qYE~}jH)w&%hWGS; zEv8TVvin3X^>#G5RIlFEKec20(5D2eS2NJpB?tUos*b_zO;>foHP%>G!|A^3Ou}2u9*B@^MfREjVP@1=Xwj)*di6H)xw0TZ^voHma@8< z_Rb;fQ@1z0l)L8VNx)z7(nEUhsJ}+ z`7_~@(uBZE^XqVOwIT5}Ie!{9!F;ITt8ms2)G5J=v+;zpeIdqOBGAyL0kN{4;rH+u zn$A`~=e5fE%Z*7yymQf6?P%)+_L!UjCydgvk_s|NTIID|ufa^zDpTsbALxPJul zx~4?H6^YQCCCb>c9!QiS$?&BkgD##cZ-RG$D&g5<@LyGu){~;jEEa3OGrej|tXu8J zId!Bh4Y-+Z-=Dg0`^_$ceJH zpfF|HX~_Hgzrc&R2xoIHi<{BS<8b#{&NUB^uWnHk;eWQ!)jK7_BhGhk==Zcf!F1Sc z9qbG@=EWy=usGAf(x^K4pa1PN9sH&`__MdHXa97t&%OJEMibWPys*)N6B{kaG+MM= z`q~MnYxLFsPNR1Mj#JG+p|w_QtvRptY_n5tNv5s5PTAmg-+r0_{*Bt&xbM_$bz;S= zdbDkj?|OE7*ixDCj5M=|_pxgB+ox-GsG5E29;R)b9}mDQO3UfMyc$}bFnX1R^z>RTKn>!41!BS>8^mL22YtY9A%`tB67^2 z<+Ohr5>)Q115KdC{F<>Z>s=C5DNnO6-_Syd{HzkP1;>;NnMu#|CCX8ll|$vr`6Xjt z*1OUwc$$6ron}gm$|@0sIn^l_b?TYkL5@>ORn7k*`5gaZa)x$hIRHBg^MfSzS(sO5 zf2_`Ye5i%FgsxRRx-kTACl#IuUZrNh+r_(qcl50cY)sa`H0-_nnh{X-uCz4I2ZUzn zrqc}cpMQ>pc`Vi81;u#^JLapAHa~=HmY8}YQ216%hYh7Rt$>4mHF?J_J3$4XCZqvp zcX8Yvjh*>y<|4`|#2+2I1l1^M4OuQ`A$MZbr^%ejGn?Z!cxd~B&Q<2 z73%W0wwg%pX!sA-DcOMFEiXqV1dZnwIrk-WvUQDkqTXH30e>Qsd$l;pph%riIse>p zujTbm;bV7%8NglZTstgUGkyN(@vGr#qs7%=G2&*U>uMt7MoWJ_UX2t>16(SM)4D{r zyyf?doOLz-!aNs}qh@;J$!i%qnn4kDxqf(YCJ)1cX%e$uoKh_*PvK?-;%z*)pk{i4 zn&QDX&{gh)dy?6!-EC4%FLKL#704gW^_`NJxgn?4um93`WtlX+-nuZT`bm*dqX{m$ zA?{E1${$s?T|XuT^`nuIo=Xxd2?^KrBZJOdpuO3SHP`s_FTyO1wwnX88-6c@2NH<@ znD|UwP!rDk7DPn@5+%{E5caj~DDf^bAgc}PFCULz!R1pDK^>zfw#BoA^LtJqwBixM z0CW;aSS|;b*TMJe&@$v-9t$cGI1o)AKYn#An9M{+-o^-8QbiD=s`fwRGWI=~SYpz| zPY5OtcSm!p&f66p3cY=`l)*Xx`>mLD+K@AT$74dwL`2pK)rxB8QnlGu8ze5}^o7(o z9e5UAI^GNmV=u+cLBU1|m)pfGnQKFW7|cP9bje(9hy7^<_!JMWN(Ogh)jpo8+fUb~KI2bSxN`rUs_ zJ!wDip`!?*_a2+Pazh_7_1V( zMFa{?mhC|u`Tb~6@|_#}k^|MmS&v8Fy1~EoKrZ7VuJ5dU%B>pj6w$PO22W{Vd#(0w z5)AsWxur<0?75Hc(j*yS_L`$?TL+V_nWrFK z&7&WrHE(fyaY(&Z^Mc`L^zs~rIQ3XR4Qn2~lB8@hR#y|Wjy3~PNXZ~!TWTWF(G8+! z%qVstvm`>#AY()O$=I|;2#~WeV0OfZMK^|cwTzTgJQFG#heFQMSlqk6fG`U=8*1ci zT^=2%nZCyQ23cETjT>d#1HD;d9mFU#y1|*)p>7p@t28x=8zver%&VE+`XS{LqZ?Qh zTiu@4PZShi(Kc!NveOpAj5oRg+x}zPrD+yekRu^?VOLp7j^ZtIJ=QhGqE0VCotE|Y z+7Ujqu-hm4iHk+}Ia{+&V1QNxKt9!E`JTY*i zofxbNTjWH`5ojhpA+MlJ=tSQ-x&iHeBKWb8CJf}{J^W+g6$EmXLoj?AA)B%3{&JF6 z6Si)<=-@P{1ElaHgQ67F|2CTv(i>62nejU|WGLaxi9u_r8i4k_R~sxVRny!O$mcV) z!IDxn5-)qFHkeUrrp%gD;tA9|Z_}=0*Mx_6_(_m)O)Q%EwIRX#qqpf(t@ zjSGxB6i0WIQmuo)S719n+m?hf8Td(;XEYSl=s&gk%B-uWJ z@bx}{u=(mdpy(}r?xK*Y?&Jl6b#)HOlY-`}3wS1{J{dO&F`r9Rmt3t41YPTd)VIql zoxqcEQl$CnHU^1OXjm+jJKWi6prxh#v~-G2_^dLkqAvK<>O~)=_N!LQG@MZEewl{n za#wBbc7-h^(@c?DXs zr9hZVvk9{s-twAYjSU8YUK+pmM67JUHIXH5G$=T-DF;;l>byzQn+-Y?Z?)nkM{cEX zs};_G0tHrlOEgcqW2bhknI5)_kA(xGNb55qt%F-7^2kL6P~}WR4(P@}cF@q0F#npc zmmi3l3jr|qj~w4uE*V@W`vkyji%;#;Y-;KxvKn2NBOZ;rIj)KHRW{L|d^Y}?*KsdN zTLwg`10X@IU6-<23F zkS&hnY3|xUKSsF$cmcUKu)t9a#L#Plh-B=@+mlkcnD_P$OO|0n?o0&t*a9*?NHG(e zO9;h1T57T2$F_{{7o6@3-ksM@vQaZ< z#18x;M&=|&M0|r3AXob%uF`rlLHI!KHs;Qnwz(H$a7d)?8j`GpDUPj7`eU(?et@Ag z?654}P`_tmsWBJB)vDp5qrRpv=FyKTK!0v~9IJG)awCDj6$$rNIuS!Bjn6CB#rUtr zhyfg2k3n00ZQjG*tiwB$?r=i%2NmL}n9Jjlo8f$IF|K+`B}#@QD!ID^Ntp`(|B&<_ zpY^)#zo;Bl;w@}r6BVUfi-3U1=z}?sMD5i88C%XGz$7^-Hnln@e#d^3I)dqWSmK%K z*9ms}CJKTHLGv}!$nP!w5nczTBlsaN2u#;BkPLcXGf#6i^>A`(2^xdY6_oOb5ECgp zQ@K)wuhOLKLp=a$voqYjf~0*F0c5TzCX4N%khBw@E;`)KJwpFZcHx!!TJ@;$0>7|C z+G&yVBtj{eVH7Et-ca>lsy*q|?qa%Pa1fy|pBuP$i7zqe>no$5j#c@5bD)9mYOlKe z`pU_lF6ROx-r2pqNr3~^=Mf7Mi-(n%@#%&{P*?(EX|Fo3O-32D{UDg*TJT!F0c*93 zM`0(QHg;lErgr)=gU%wBnSsZJ)iPqen+3kaph9dL8+tPGeB6&-n1?^d#ObZBAnVWy zB61`nn=$c+fQ+WZLS&=ni8-&&5j0i)n^=EkFKdf)@;H%mw5R7Nn#Qtu&eSszVlZTW~ zoW3g4*)`U<5#(cZc1_s$s<81t#)FBv`;?-{>NBpLQaimlQ}h($beNQkY>Z9a8kU6n zlym%PRs(dY52ju%kyyL>;Fb;G+DIR;Ciydl&a9pOkZUwCb#ouCW8Vk2P5|>mA(-Dt z`q3*J{tPg~+C3PTyHtJRhYT~bVB!o@(bCpQbySMN0o-iau;7lzjc%aQ?F z%P0{n(DHX^3N2osL9VKx>|WB1rJ@VT#_PH zhP*cA4;Eqkbv=JYDNXWGsHidXX^fVgR5*bxsVHRj6TB zVTJ0pTNRupQ>>fIkl0{VSdZCJL6|T(KN%|{(gIB3P$Ia#L84MnJCisgh-@MNS`CTF z%VG$S+_FF5w83zHfQ|m^u~_gO9KRkg4l5!ug}jPKU}ZRYr${MZf?(hvo!~gRxA=WB z=>FDFAGm`P3cF1sqn>pUh`f)oLlj3-r~f0O67XmrO;EA zNT549@8^5GLq(Aw|LVZEavzI$2k{Ko711hQ`f;c(_ZTw zYj-v{gY8(>Kf z^*3--9CF7NO!6C_fPud^E1gVTHw50dk-g1O?TUsVcQhy@bnd6%q|p~}KG=YvzKctG zxcaZb)yzl3xt_n6-5ZfevW8TAD>-0pDTX9njaNt*Q!{WlgQE-&KIK$yuQ0b

    m&JnY;B;ZP#f}Ki2Wp*gOl}%38#QYALmOPZFF$?K9k^zltA%sclgr21LH1%2F;I&p|zsQC(;2 zWhFd>8sy37%cbtAO^w(lAjC#G_@tR1+~Xe0Tntb@vbbjYs?1i8mTEfwuYD?# z|I?K2_&uFW>HhjZv)X=`*1GEc6;3E@x~EvgHhd0u97JYGl(i3v+ctlgiDHr#Lfp+- zF8^rG22PgHEx&~&0B9I`2QgsapHbI2Ef8~J=!y!+B;W$-tckRSI=d&}!k;$`&XoEv zB_B9E(ztM6OQ%qiWi?XkM?Z!oY1N0cu`2A;yR-&Il_B96CWS^(KzC$Y(UZhy@$?q&>;eDIiNFeTYC+8QjLHr_5y)Jg{3-F7gJ|6YyWsd9=_w$P) z_yt&hn37Yz`kMR9h&262geo4}}@vV{7LiR@Hc-^C)$<670`giDn3+CtKZ0Mdi zWC&-dGsmcJjG^1V=M8C}iNm&t%ka1b4ClBxUECA9m-uJV;JTtJDh{qI4xD8;|iuj%{tjsOdftkcKuHr76n zW6oq%t7T+NcZ~Q*4&9%ZWZ{;}nz1#B#8bh&TPc`zP3jRfi8b#r?wHh-rfx@1 z7(E?wlNiHQGj+TY*w5Ww+hQ?j{rhIB9G8>ZV}**6GsYwR*PMare!_}|9qYV>j;XS+ zW0$**eOwXd2XrL8g7~Q2KPIP*NW*NSY|MW|HM3+(wu-vP#iu`b` z@}%tcUQ$X)nXjym-E|Vs2Gr^`CUOWvpeZSB^|JSF)ru|@( zMk#FSLn93>L?ht{XrwW5r>0OP#4XUs;noT(?%$_DrZ0LFRQTaBCwrJ#R6gtIJ zoqJ-D*Z&0YW@ooEc&eTregaDDyd;v-eQkE3!Be&T#6s7MrO-L*9OFaFGGJXVw{^Yh z&sf)&eUWwj;J|flhfW8q>or=}@7ze%mHk<@YDC>b`m6w}0{P=)JEar+-7{JKicNeb zX!O-*v(RWTrEV!W0iF}S$0Qs?L)Et~2g9?DLK#9Qf2{wY`zM3rYJ=nafp9!2T|77z zptKDHib))fX@%^nSMdAoWU_YjXB7g6@Y5^sGn8#5+bQAq#dv&=?}g}*1i2%8~7pYwO;A@O-hT5J6#Amt0g{84blN7hVIV4=mQ{c23(Qzg|BMw=X_=c`y@q(upvf)% zDp`B`vz}r}zxS2XOzuN7nA~|BCp$4-Wz!o|kRG|6l*2>{1MVN}mjvSod~6Zh;&L3F z)a#_EsQ*42mstA2d;`+W%4AwSPOwWf9LpwRzw;vItXrNK0(;VuVw6E8l0^AZ0g}cm zxDZNRO7T^czWq1+*tBsh-58Eg|qxt%pzyJb0e< z{OgCj(HjnVUuokq`mMKnm$&19^U+VwyeMaOp5BUiJLFC2Jmig8@8_0qo}jYJYk8Jx ztW`AsGeGVGXx)c7gxt z0HMlT9v|5HBU}%0a)1pcs_&m`LoUb$*vOYoC>E-o?%8 zdCuVdTDaemq|5mHn^(rBUd&@Pc5^mf55{$2>3Sjz?b7KMf{w8hTh2~wDSNMbV}5c0 z_q2*V_@DUgN8{l4ZHov5=Am5c$!xoDxFAwlc3L#JOxF@B-qM`aT+wNSI;dU{4<@nX zwxW>1HE_IEUu^2zd~pPo8x{YP-BD~Rww%pg>%Z$gs9ud4K!Lr;$St@=oF0)cS1hnT z!TIw@!+W$4M-AS~nsNd}+w#mNd99yfs}~EB9T*IQIeTwNP5$yw?gF(*@Wa*p)^n`#!?#yMWAI8C zy!IH-?2kcZ}jfly+To_ojg_5n>?+$HnJCP zRhj4Ta+s3arN8xE1$s1g72ke?Hzm);p8y?-$d%HI>cMq@iduVfH{hk8e8}}6P-ngfjE)7rYDW%$xi9O|9wQWPtN*%EVwaU#g!aEvL_MgjyG*AfCXL1L4pkh(aO8_dJErUlf?=W=IG9b zz>tUAZ-r%1+rHn{6_{AXUA8kxw7W9~tZ>8OvFEtWEDO}UP*cJm{~aB=3UQ9BmmR`X zgSyrrN33e>AeNBVHSEwk?(Y`kW8qMJd!?8Q7%XUuvFFPq#Bd~3G%@|Nf*@Gebk=R`)q3S|L%=G(MljFxXaw!Wpk=%wS%yChwz(F!#Y;Nk#VBTz1Hv^nx@QsRi)6u+m zFw$$$rh_F;u#!W#UB&$!gRZuJo>X_0RWenDgDz0qN)mSxK#B>w6vwdQJloKl=`_oz zPMm9YD#&8x4xQ~Q?BKAVM=M-jKS5wLr{9je2{`>?j@IS%9lE@J0tZ?;1|)KMJqKEL zQnWV6Z{y&`dJb-o#u=8iB%0UrOm*72f4g;m!yqrMI(7fQgb{d6x$a+M-B)l(qIP{P2d#*J@HKw+>ox zA+B04L6k=34xdG&DCOIdtUNZGsFV4dW$>g zWW4D;FnNjm$aHuTUhzt=(SZy<7cB^Bf+*=>t^Q5=^R)iFsz2{u=auGf{2UsDaGPVZBVN9vs&VnJCdo~ zr)K|!`T%*!G+lrYc}oXh!}FAvY_nc4R`<$4P8avZy^+5icZSO)Q&aN1#ouIht~f6F z!)T6|e81@rFuUWisn4;W6U9+*692A_gb&Oz&eKi_%*Ef+M3OR;rH}I^{TD!e?IU_si+rMAn&X(AkSR%mdZXhEg9;zl-o7&aUMJb}&`t{XJ`!TOHajd{AoqVhq z7$1X_Zvg_squY%BZ{szwP4qvpP4s{AHqrmd+lqOw-&QKVu#F<35xuj112*gWl7xi#9^MOGm$U8YSLUzXv&yieX~w0KuJ@AW$&#_Iue=d2D9 z;|+-jXX!G;IPU#mW2~}$_9bD5YlB1Q^70}tEj z%y4*ya1y?pgbe={DMSkw@7ivj$2x}pq#Yql1i4^o?u*8)ULtyLYE&KF4zJsF1o?&)5sM7h>J-`8)^Wsd3% zVizchLv|5Q#a+k$jU+lQN?W#-Ntf5O^<4}D+E^&W$2xdbEJEzWc4(vj5`M<-8AHGw z;94;WoY%fB63eAxTX~MmEt>Tb`Q*wi>FGj1&_Qp3f~rx>a;ib7VD(flat4W&7$ok+ zAh8sRupEQLgJzJRTir`g1`&Sd1E%qctp^??QFI)b(f64w0* zo}^yZd;GXD^6nbmsN?hf*Nm>6DYWR{URI>Fy{xzGUdu|g#RjuQnE()bOiLT*URRSk zp8V-ipE}Jx^Y`CE+3|-%Qg#for!8QK(d&f&>ohe*gUb=YwBbok{UG75&_*a4dYz$6p&UaAk?-5s8n#EZ z9V{)%$r{s#Qk{LMEm3pMudTd$Qc2469LS|J52BxH!-0n7WnN4U*sWM?5R7pQo zZeJ}^Tw;SgQg!xQiz+8)g*^;G_*!JYrRKTBD!AMDeK>k?&CgU5Xv^S)&Bk}FZp!;hBWH05DR9H z$#&SGh#98(ccx~_V$7Y^%||N8T@63USV}iU{a?qd1~#ji?daNKQqt>Yg?zect#WX{ z>ItZz+m#-N->lFnvA|l@#?)-C>`lL@y=egjxJw`unEw2|Dch;hd->O^y=12op8g-~ zP0_B6POGXm{pq52{M&5|uAz_NIGge=F)_Ujr@cRiF*^tD!79Xn*=z{YmzxKtTJ`^%9D< zOUQ{=?$Q3#1b`}7YLF_W;uCkNj|jiKg)c!~qJbfs+o&2o1%^*t1~{Hf(ZDe2WII#> zhvlBb1sx`rfavk2UYM_^k5I)TlkK^8%|)jJ_85az|n>Q zbBVUW<|CZamgj!(mq<_f-r^q**PJ2b6uw|ox@X(1`ET>5{%xe!(iv|fx0cR-`$P9l+v@BTGA#R zR$zW9@DrjFvu2DH^izIu1RY{@i(?>^5hFzLv)F+aMYVr`U`V~y{_f;dc7FHgk=Dl% z9?M!o{TxBX(z5T^dgv#Uvj1npV3_v?h9?Xj(2rwG~}+xc~hpzX1Z zU#AG#p1yrwMhUmSf8XbnaBknH=8d3f-^UgLnKzof?;BIzN6=+UCLLe~KVjm2ls z{16hBbR?|TwCPSZ?k8iqGmqIqaNp{v7y%$e#j3nX9ntd$(EkCBS^%wF3*j#w747Py zRzXXLKAsqk9%Xg@Bd)ba#xQW$W` z1_IYWJ6z?28jD~o_H|vV@y?vcVf0>AReskEsrt`xM*QLDC#3SRd9d;G9)3LPJ^Wf# z)81Zb2dB1$Bm#<{?)fQoBkJG3l1E4vv?KOf3+ZgN|MV4y1Ixlmm7USRHbjJe>0~#p z;zXy}L8&%guTPD;H0rM{qKDOyP0`4&r}1{hRx%o`aWI04*qrz)3ivf7GTdaW$%7nu zhpuC5ygL!NpJ96JFROE;$l?qo5s~vns1GakJZ(AipHqRtJ*Gpe@@^_TqMvTe(QlJq z$f@$*W$eG6N#)8nYWEGPl2SHSjO7(&{J1I}^&A0~UZ&n#4;L`9z53xVR6&VVK1P+l z$@fh&juaqtX?)5urbKzhJgE*s^>_&ss2bgfE31vy(sU;m3I{U*yavJ_sibGyEX5D&0yT`0 zd}r1Uw9bjjUEac9Au4t+=A3Taf19f*u{>r=V57FZW3?O*q9NX@u2 zr#gZ$@Hk1Ya`?9Cb#9PGLuzE!Ut3C*QMWQ^V4iEVjz`R&vlO%7y_j7Wfy#nyxSa5S z)e2$(#4Mlu%|bDFtsyttS%b7$J|RsSLr5%ORvKa`dYTUXU!)M%1t34=#jVFy-U4$| zZQ0rQktXXT4w7?7Htt)6c01JoNq^pJZ6NW;vjl;HeW{aGk*5$*tFJhG&PI5-d*2H9FYuEFH)TYLkqFTBab9o!fu>#%m>MH;7Xs}ikFPUn*67h4+%4qP2 zChmsRn9pL~dhmwSxX(l*wxfyqw{@_9G?u7;*K(HdM(%l*2G46g7pjaU%y_f)i-nWs zUk?UgR9x9091O9ws*rjG9I2D>%Ux~2s6;Qek`?v^LVOP)H2D>_kj{zv>t&?L-$K00 zEqNjxUX4H2C}kmfe>R&e#lnr=!=Ya@-o25uvOxwhd`$i**8$x5pxn37oG&8MJIySp zPBnhif}iM0kKoty=nE}Zs2`&$2}M8`KBneJor9WmDGT*&_2Jen1zZZVrAW1Zw#Faj zQJcuY81>^#^WlTy2icQ(N=56i*DITS`^Wmuvi7&j{sTK*0)8J3V~p_Ioih-xS?g%m@3h>IFpn z7L7ZLJ13=PJWUkvYr&iDcM%WRnG*DP;6yXRy+R6y z5GPq$;I1$M+;x~Bo55WU6VAiEBaJ=}(e}cjiO5@mO76K)e+&B8d|ml=VbbO{alTk% zLE*;@4OmKr8@z{2*kB#54CXNFxAlNyOOuh;Rf^Ldsj=5;QVI*vye=XH0CS0qnZK<^MK89QAIXeAfu37aU-FcKEB(WX5+p(Vy)b5!OUxZy(_VA&im=RFFz2TjZT#ztqvX+LW5Z3Xe@&6ose9Wk9iA!f{vZMT^fwE@=o;}m@b;xPLqyg z&|?o%RfpR7!`(X-9DZlFae~0f%mZ#hd;}tCa&wHkpJJ8IdaeITO3Z&2F}kc1b;%G@ zm+WFIKX)WztyTcCK9J&iy5sG#)uT+v-<-MZ@KYg7WH{L@!^vhDPTEnGQu}%gCm8Ik z684gtvwwLDfOt*+?T;F$W#F9lZjN|d_~qL+;<6q(>K~H*Om`lxcX3CSF*xJFvD5@Q)aAAQy$!cZ+XgmOI_Su@fr}gz zYZvp%lau_yCoQ_L7@}8&#S&5`N3E#&!ITCT*=L+fQK` zDF6k`GNMe3OqLO)g_e;bUd=KxH19N)krflLj3m$X zsI;)fJYE;b7IW{}r)lvDwfG&5`VYJxGW54Am-@U7bBvIW%P26KlnNC7{V{v&(r)QC zq_BO+FXNTRn}h<=33Yy|z%s2U(jz<{J5Y0v?E}p|eCb5zyKAEyjqD6#IdUam~sTf6`ulgM>I60334p!)W%Sk27z^evyXL%xZ zsnu}b0v<@jrTXIJi+zQ5ll!LF*Zp<&TZXdDbUCNlZ=n_CzD4$xy4N0NVnU{0X-NpY2ttyN|Pv+YROv0g5+{R}!|a5oQHhJphS0P$>Lp)f zYuEG|{tra)ym>Du&`BrR3LsXFHGQXqt56>gY}p~S^xA0dT+RlXjdl(-veDUV#qR6k z;UgydsUF@CEmwkilEA9{=fS=-iNTF4<&+V5D(c0LCZ|%k*9=92^ntiu%*=CYKz2>e zix9l(Kn4xBCDr(|FbJ3s+m$@pi2Ls%AFDOgMHxTCu5@}zpPwP1X#XsV100-!Bn}u- z;r$y4F!eTqod!3qj{6&eIV(dej$GmT++GH&Rgnqg8iRwgY$EbTl-pnEMkuGlDtrfz z>hI*E1$x|iRGfcG4Al%4fB@FUVA4kN*hd%04P`1xn` z%7rXyE@a;kZUoiKF{(S10*`EZn5~&KAL=2w?zJ3cqh>Na_8SE#ec6_~%fIEBBC6qEC&w2p-No0w3w+xbQ`J=mkCk z%PNTB0q_d6GAV^xGBqQa1Nw5o_~yA6Bf>4kR)G$z+EoURJc~oy8+s@CiT!Ms2si4NAwn$lXgZ!eCR|C@sE_NUqdYH8=xV+L~fc#Lhqpe_cX+ZPOc$V^I+U1 z<{5Mn4e{9WK79GgO~RKgT6T%bwbLl*Ej%O`2M*NED)HyfxPYk3v; zMlsN)_gI48|CIKGyW>r-S#-M1PD;F$REHAD)Gb8Fe#~qA3Q4R$vFx&g@upXCdL--} zYwz&fPli}AF&NcVU2+LNcqt%o2icvilf zapLS5koabzvfFFA5p={gG(E{5wcp}?cOy5BCsCLBHK*vA8%&e+aj+BToup=*IA=4M zC%x8hTE-`n1R~^yZ@UbYJKl_0qIu#?jL+_NFa^-uYeEDK2g;%ny<*3qd>}K;#zoZa z?1Tv)o$_$BGabJ+DEY5SP(!AW+*jT5T-3KUS_MncQZx!x%^`$DnMqp2D$gZIw+q*b zPo{+w=43+BtHyzYBME*rwD``Yx)p$L!WGu#@ocL)(p4SVfNkJx_a^gzqXv}dMD7#( zLb?=En^QFCZr z=}4G^bR>j9rYS|)_+a{DwTMP-HL3hBXSPI+mO0s|Te6Xsb|0QS@9^wt;Td|+zrm^2 zqE#f32JS*{YNwB~1*4lsX}z9GFcNkx4ZCcz5&o-qq!;c-`ykn9q96STJH7cA`Kq(e8fn=r6yTEgmiR7RD*SSVdA8gbmq2 zO2j~r3Ok8Vgm@&e2ia&Cu-_!uBO86r$wvAGF~O*TW1T2%w4M2L<)XtGb82`ZrG@n> z*;2b8$eMZ>QXS|F(}{aC_iY(R2=_~UQcZ^9=m3?IkuidgBf^M@IREn^<6nq4|6Olc zM(|i_^0QeY&O|IGTfNr5Rjxhy9t@da9!Ufz#u7zj;uvCqMN)nn8<+H8V-Y^a z9+1T+ymN{xdfc5;PNeBHk*3o`nqAyHh4b?6j7ZZdk)|*4%^3dJO_$SuGb83=1I+K? za7RxJCpLIXM0Rck`w|(NgC1kK&HLQE)z1Ihe#-=#9Yw4o9MC zP-dk=A$LU$U7aI&rn4qhecY%+(y7T^lnE>M8OklXEL8%=iHBf^D zO`9M@Cpd#MfEqNj25J}V!>-t+T&(Rvi(FcMJB($!y34k9AGVKu*4@^X?$%vws|^>q z3I>p?it(O^N)&|vO8)Q9_xvU#h_-#6XZO#G%Xu$hmM@+g^()j>dvogEaz$$h3a)L;w;N2hdV zY-s?z`ZMg4E#jWM8oRnk%n&2LV6#*iBwa~P!e&MH*Yg5T__2G|A(Sy z99N}!6)V4$MfW&Cy{E^0{%{O$UGOksGhK~G^%SnK|F#bsTkK&JrH)2+rFf5L=K_kfivLjQYvwcui zxGs1C`k=1ngy@61=_f=V)XhCn`d_x!p9(J;p^X9lN15Y)q&w~N#{a;=u`XmZlJP!J z*OI=K_#V%R?9zq;-(&Mxd=G3b|JJY+bAJxLho+02UGwDgJv2j2mE+7wF7f^xOG0{a zi%+(5KHeGwplHGQQ*3IZVu2m%t+Th31DK_{8 zj#+`VVEK)?AiH~|c6SVhxe(X_ILMmzOZ1gM0W1_R>HzG zo!Q#IKfVKo|5VP0hDsbrI3LDrZ0CGvxt+!NSP@?IOSik*S`_aoYwPbbw~4ilfwQr} zF?1XIV0PjwN)f_IY^a}rZ`*B6jdEzmjE`G0o$`4)7riC96X${tsukzN0BNFmIc%EH zR&S@o8?$pqQ#>0o_NEWCYw#|18oVMSe0faj0DHZeoNi6!Zep*0KfHX3ufdD46FOB7 z8qv{FgLgE0eUxbQSeMGhK~~5jOHY?O$RMr!m{*gH+K3?!UqJgG&*hdZdje} z>>n_dD0AJR1?JVSZMrlbsINlRa9Ta_sFQ75nGP+!@bY^)FgX%gJUmG*;PkW~mi}&T z*k&XsT5WJIY!`jnF+0A;TX!5y=O)97SQlPCha|Liq=i=UqQ8Zvi6OJ}oqLA(6YQVZ zZ_F0$;CZKzZXfsfWx^wFu{vzYa|_7VWH>I>~WjA<3xops)gXX zXKJzbIu?pX@W3C>LV*`-h*fk5BRi+WXQ`k|uV@J`ny=;;lO^jXW{ci~ekCjcfgSc> z(JW@l(iwoD38sx%lJs8w1m^i9H$}9_&tay(Fwy5eNn!-a-7BkPqYSxW2O`)fZ=tEj z$!|X=_%*2#^R5JGqE!Jy1xCr;4QcOn$6I+Z&s&+YMlb*~M8gAr1)EmMgiM)|lZsHA zkHykCf)b%pRCWCM>cBx%t6{R}PKttglSFy(n6mj(D4zTY$MIDDAd2S`e3e?-V|IP$I^dhgj5@^Y{X!2E<8N?Qn9s z9$hiWC|_eKT4B5mpHFfjCpY*ch2oQ3C_YIcdnq!c_f3X04|tReX&wmtkLQzoxvC>E z^$9+SbvZ9aGCoOtCq9WGhz@)bD5;F2r1S>Ph{K!?C1f2+aHJJVC@qX<=Y!t40t22jE2Yhx(9-Vu;snqe0LPPURk}J-mRFeZ; zs5>X>vROKdN#a`y95r7Zc`I?JIFxtSv36oMH59@rxZh`z5UJU#Ywg4&*(t)Q!3d|F zMmRMX;k45Trv@XOb{gT-(3wfH_EVW8+CE{D4E;lxB=Ir+tZx$Kq%mq|k~j*u^SqsF zrWTtXUzhOmzD5__j_^mu<9%V8z$tmYoi4cah1r zC;tkZjrHN>8GYuhXM;|Zyu=AT0iOYm1L5{`<_<8j7MwN;+axNsNvh(A)Q6(2d8){Q z)57+ZWw}&^PC3)^Q@;8TBi|wI-K2=1q#!F7-HN)^)!2X&hBr~N7eg|ft%MF@y-p@5 zqR*2Hf+f793C&_h5gpRqC%7k@NzL1g_aguOiAQ{(N34$m2axNk`0i3prf(j-j zJy2q`u*nS#0(TiP^mW}zrb}%YHk<)nhj)OvSI`MSU2bMG)dLlpMO|4 zdUOLnTtYRc-)M>}3)9|O%<{3rP?+Z8)Jbqqam`7vPjTHz2I&9DXGpT*#Oy~2k~wE! z3WpLHoGFy?8J{5=%-~EtmI{K8{sSlEtAZGR{b99B1LW>y;YFWk?*IiWEBPF78(#ku zcOkEF>^`rv%aH5+T|#j0nCbaJYj+ePOgBDTHZqMykWYzx?GTfi3o?7Z2Xo!6xTCpw*-;gfF^pWJ~;cIHUV&Y`vV41OAb zNws@!dKX1{5_~>+)t9sdY;c}Jex|W#-vT-ecw(9}fz|kYQ$y;s^9URZXZ!^C{vzir z#BI$#R}S1>EPm5eLN~ed?}McJ$o)20;cy+CQ<3+j5xTEk19q?PEF{D+IZ+`m)%QmEEbLhqV2fGg1tBD6(70b9j#kfepw}B3JP`BN0>b7N0 z-8P~Tk?Rv>V!HDRzGL0(Kwgh+M&0&vFK}Ks_Pe5Ck8}vzB_AA!1DZDUN8R?GJ*+9; z(WS3;>+9RD26K=RcF`(|V{c!{C7vCMFG}S9t1a#EN4TV?eSl9CC;^;*F{8%jNrxwj z3Al#W><;yId2*p$ezt;3C+8Vf`YK?CS-_mf|BIwoS&u1Cn&-(ac{`^ z>k_QNj{Z2o){%2Hk49Ku%n6EihBY=h&IwAY;zaldcM&_lcY*>R_VE_=JiF93k(_Dx z!UMCSvo>7l`|fZ$7wt|^TKNRX5(qG~UAVAm6x-z|rFO{;ws%WaI5~T|EMr}kT6>pE zxWrj5@m{;+X4u6w1Apv1HMM1YOZ956DIQL(gXO4o?!2J1kb|LU)TPt-NRPgw>AP?F zj!({C0afNyrP_N1VbgPGoS?8E7g~7_iYG&#_VWZ$zDGkyH(KqbGrsW%)%)Z!67a!^ zlwcqqARge@+tcoFqtfmKMV~c2G2Ca4&vmhHeb4d+_b5Bgz~YU0j3 zbY>q{;rL?nslGqn3CbVupz}JEY!4txt*tu{(Pi#|!C1A_rVdES_W#&H=hA_ucQR;! zyN;TttDKW;z2> z4MxbCo6cV|rb&GH-2s>J%=p@FakhUxDIeF1FC-7A((UQDZ-83wyX$mJquQwWQdov; zQuQ_FMT7FqAIe}R&0KaqX}}aX;=Fdw&wK4Ov*+-l=d?l`#cBRf47xa~2(*yNXzG1c zm2(~X(d7-X)3*CVaZ+meLrHjBeSat_iDjz(w(DgXWP<^(bEki`5L~I<(PFolPQB9r z?+n?VIGP$U{t=j};Ys2w;vu8+<+ilO=o!}jzP(^IUTS&ukhKM zCKwiU<Fe zAb9jyQ_);=gJKKT&TkF0g_E2X<;Y!&pS*)iEQ((uIs$k$^V0WPo^`GuvgOI_EJA(V zJ1K=cn$QPO<&CK1C;G5_^6uyXLLnq}jsXW;{8_wU1hWwf}dqd|rsH z?st=ckK(zQ&cw{@f>rTc<=A*hW3F-`g#rMtgt@4EC!U2nCqD@#ALA8Z1|?OMU>0a$ zgQ`nDbnb1dOJ4WPf{kM)xLObez&b2pbT?-lA9UlsOZ>$PR^Z6x-_VdsI9D({JuH1G zZ(ZDb57^Zhc)LAETR;~($B=R7>=8P)p7$80X+#&BrZgT19>!lymGSO>#2xdgr5pD) z!faD>>&?S|osLv^(qLfunMLQ02YvTx&QN4^9OD zjo8)5px2-<^)L~aNimgeQH^6B-R_vv_#;|cgU1o5s7MfxG?o3aV8c{S zdP{w~%bGm+2A1@v^gdLt#0!)dB604=;?6}|VcN(ltZ#p@W20{-R$V3LW0;Xq)qK;p>TAaHm2XIO)@;%{bx+<0@FkG%o;(o9IX&GY(eIud zx3uB}hW_!UznP)GVP@zD_@#drqjhn5~opw@my)@O`B$#71^RE>QCpSb1>|2eyaX z*Wmm4)w;v2R*1aLtJPnobVdt;^)3X#a{ZXHcoLrA=?G75@xHD)vX2Ty;(dE=-^F%T zz^}_Q%JL*zVwbAif}Zh;XT!^%APH%GwYLduRE=B1?9a5qs}{e3X2GG6xLtaWGFabb z;qR?8gl8%Z-s5AnD7|?gxk=o4zTXLnUd`_htJjV757cF9pMHGY|+sdCg z7fEMB=C>h;c1j5K;PgUVHe`aB5tT*KUfFr1tV(CgPHI{R1}pdKWpW_0EFSoY&}ntW z$CzN^iv1ygyitfUYc0%L3!V0;^NQh53ph;33(s`z@bqy!a2kZPpI3(Q?5Tk#VLkT_ zKSGrUlgBr)n={tS;1Gc2n$8RZ$PUFii(u7xL~NsEG&D;vw;g6PZezB(3B9@%nEp$1 zUJx1F%3e|qW@Gc&hdSWGWG>Z@BW2&N=B=YEV-P`rmJ6ZySiLF{XyDa(dKK!b&!Y#i z$UBI&YTrKNQO8wMku)hYMK7?6&0?@{7lCVR&;V{#l*q0J3mhzUDL(^>u0g+Nzdnm? zjR)YF$xi9Gz9CmS@UAl6X|6k_7j&V`=GkKynn>^ZjydkOmop1&dCff-fxCIo9J^dS z(HkZ#9jUbTRKCDm(Rfe<4VnLf)K2@3sm=|%7UdbWr1Bb6C|6MX$8vBX?L#csz(0&o zI-qzSK2pS<6aOMYinQW5E`#*Sp+;fNNX@~)Ut2LTJNKXt`h5qW8Qw$5jEe9gtyr*` z7mSBow7g(waY`3b2A~K{b8s($h1fhbL}6`c$bx)BVq2ZMO*(K|MLUeyBUibPJk}zO z%V~`ZZyoBis^=aootT|}uw2QEN~JZEQ4!XBAzQ8N(Kg)cnh0^5Cn04ok0Ng=14Fcy{KDBnS0U=#H-@{Q@hM=IX!y*=3KK9>&I z7Cy{eqPgw22lWAU%2*b&Z8xZ5=DRBAzX;5lS_rFaQ#^ZTgR9-a;ENGzFOLV_#FZP` zG$H{%V%p!NJ$Qu=ydvdX2Y`vdCOL8GBL6Q$)X4?Elnk79FsO9r6sXG$?8yKh2?ONq zC2Ete&NI<;6~N0@3tD~Hd(mL8C>F4Y2)Mdoz&Ftb?V$sT%5bv6>{tWxfR_q13NB(X zT2&YergE{a$-qXngCXI?Fncj9NJD@*HKbGxDeIzMXh^g<(~z@4?nTQx#^8<^HkH?4 zk>+3y;0`a^4cN6KT0?iAifG%>>*@5gL)EgS_!Y?0fodK&{cS^z+N;^MwPXLxp-2PE zujSeP+COr^F9QuySAsOp1EeN6{<^^w-u&3VUtxbfj}7}ESM0|t50WFpD-% z9BylY!qFb;6CaSs3weUTK=oASiEW$OHX*AK0kf#gyvQtFK?ajcnKXhiSZUuosYcc$ z7{Kmo%Oz=)x4!uZ9_XvRjm=Kk-AN)o-Cs_s;-vGJlk!eVTG-%A+>(KPd4Duv4D7>@392`K07hjA2dJdn;(7|7hd_%W1U&cF*ik!|^ z`Flq=gY0TPUw&x3gF0w+@R#!=V9VFfz78Fc*6{LWq~PR2=gW3~IXDKBDv|liK|Ocd zx%}mrbkz5kBYPmU77$uC_|nn69g_&9uqnLwDP(Z+mXq+J>ml}Jq0rL&&m_7&i9YhZ z<@^iIag3ALyp=oR3#=d<`%}D^FwLYgXMERmiX+g-vNK_tGSM#y)0F1>u4&@dyyZMc zZ0t`JrhW5NxJ&cr5d`LIoWy4x#CMG*zDqdqT?6l|MrHDARN8f}a)~xqNqqOGpH*Xl zYOH=8=&z}oTy<;JZHdKi&mj0BKHjRcUmsYV{aUnY@plxHSU6;79h+Kt6isGe0~#wBRcHaNajRB@pj@XUcus z%Ko$logFYS;Xdr6#>BlQ&M{BhpVy;Phy2NzAB%LDnt?bbs(RuhCJ6uLG0jWdk3C83 z!Y|vD5SsEMxi8xJ)MtRe+!JAr3>}8=oV7))wkE4B9-GvuI-c|O)z+)NuYOj2LF#Lc zo&JRU_EX{&w$Kxaa}^T)Lvt^PCbJ^NOOq>`RvbZ?Fhqxc4lhQVQ`0c|gXwoC%$kWC z&%qJQh7rUv+*=gry;Nv>`M2OjjjYEJ3DG9%t1H%qm;VpBlJ;N$y$kWv^f!yqU{HW~ zstVu#W3+uNNIdFk#L+?&NBp34_D;O%CLp~`C1~lj+`(-`-Q_hnR-cTOvV&CTw>+8q z7Wz`0x_%?pmiH`3Em?xz&YL|@DU+rHDlT6HzxIBz?Lw@ZBL&-aLOjMz{GBYBcc(Pxdb!9wP9*&Df#=y33kM#jyOkL<`Uv)T)2N~Yk9c1 z_e-Z$-;n)w8NHJW)%M%M6`OL|m%qxN$mF`6UkhjS_cruMW)mrygM^G~f~y}xHQ4EnBJhTm(K(ce%#8YAmg9o@3t$&X-WKEc|G z3&vQ+e&u!l7 zcF1eA!P5rraE!#!b0Jos_(dKog~R|#j7G;o1{)JHUDAqcnCb8$SCHr7bl@f4yv~qy z0jyAagkOn?EF?6Ka7)dH;Yae@2lEqYfs4_Xg!Os+5V>JAimO4u9|RWWa9O_nhzUwq zC6*+774zB1FQ{ zcR-QBOlsZ=i0(r24~TY!87p+bv3M>Q2d+Sip}V8!G> z?JMtqVLElJBMTC$e6LQRecZc)^BRJ zq~Vd8-GgC4?mFmo zyJiZuyKC>K-L>D7?mFmkuA-O1U!cnH7pPDgq$X~Mq6#niGXWavEsJIEq%Oa}2ehd+ zh?9p*!BcvIK6g~r#@R16{|)(25eqN*N7TlhUc}$&&O2~cfU5gQ%_H3^FbVMtzfKbI z3}q^|7Q~AX=1f4t%T@VTRGkzX1||bSwFTGu^-JeX@$N8b+J&6Rv^@}303|o0y~~>W zp%z+TT{5sW892#}bb47y$M-YCJJIZwqHth+Iv4A!0T0FqHCAYgANncus@XOefs5ja zMv5$FQIuSRu5`Hu4RE>Ywiy~DJ|i{<2Ad5uTM-!N4ArnC$ku6ChPnji#de{MvkxS* z3)nC*lUgUe>}+*8vPZT_VDDu>a}vXbLXP&(@X`kX*MvEM+dy7)n3E;zu*98|@Hk$* zY!v-kc#?qe!@PH4w=J$G6#WlLLCpnlCaz~*hz3Ew<(@Jc+WUXD3S1%uf2XT#f>>}<# zc1MrfN(kXcF0+%ZOP*aKbh1j^b+^w{2gK?WH!awA$JTGW=cIHzIy-EGv$0c zXo|9dgAN#y`U{?fnQl;O96xwFls9vbuj_WO_+&oHTwlOkH~(5gUEI4!Sv6$O(8Atd z3#jQu<^7{7FR zr_&{WFb0F5f9&U-Prt&M(Z8^~qn5h7bLjwkFgtFC=8vQK2_3&0fhb5f6iEU0n*|7e z%Vz?F`*l^X2#iu|)Kl*{_R0amIu2`;F#DP2pV%hM-g_McpM%bFk$&DAY^-C`xS3#U z3=j$x@>90>5*V()?RzVH4DEt!Ew`rO<6`BYj2|FG#8XV!LY{Dm1S<@`5&m1AA0b+* zZQK}T*k+7g?Yz}y(0L4(7Bbb4f5iZ{dgdtJ1>|0^%-@+|lhotfZiQG5TYJ zKqBw*+ddqj%y3A_SqBR^H*6%+-1vbqJAnUyd*!*)^1vphv?0H<3~sBw+nh|pBIe_( zlyjctoNEaqv=07Sx!c#l|MClj|4F6ut-#S=cUg>rB$R`;Ti3Cxv^4Nz&4x`+sG?M> zV+`3rF&odUkTfYPlox;I4H+&*ZIQ(?UJ>BNc z%w%nY7s@m22hL+(e<@YbHm4d_B?$lsL#kw8x1h82sCIZ98$=4;;g&(DL+}yU4~%vb zu4+)C2>ozjFL?YEG8^Ap!kyC81Uk`c_<q13sVHCJ$M(X5I-1OdqG~T#;X3HduC!aECfq*8O}Y4D(;V!q zLZUB_n7BeV$xgT$VGhdS96qym!WhT@y&}ZQt%J0|VcbMu+`*C>Bd68%&2vxLtLt&fc`KML4-Qrj;=Vq3m)7SLRp7Bcxv)4!2{i_^T;`XYq ztbd9s;ZIe@Iy5;%6RMtQrQxYuJT_Jh4#r$-c^qzSjmHuj)Y7rE^r+Av6Q<%RZ+?skuZuP6+zZxPicV)_&{y6QVmku0`4|n> zdQFoOF5VU{eqr&+uHhvsN&XF6M;CJyBLCc=o9E)Wzii`-kZFkL=3d+embpU8pLmqz z=eT}O^OI>HOD*^yvqO3J@!>PN*`}ZE;oJKCOAA;4G`NMITIrg~sf$!i2?Bq`ZW5>J z&D33O>uC@w2M5B%4P4gY82$cxm@slu^?~=qObzGy;C6$e2d+6l)mP@#N zacfu7FG_j+Q{F}4C5o%|I~%6fZZ@99Le%G5j}5YkTS2vb6;swbJe+82=dHx zWNwS+YQ|WybUSbW7tWj_`50d{DB*pTaRDjssEnOpZgNr9>UM>1 z8(nkc!Y-g*25t{Oh5Z@za4~^~ixsTr`3ePrtd%0e)JDC&EPTHRVs*JE*!XiAuz~tH zkEaNOGd3TORlLnxCf}Oyj%Ke+5ZBh*hb0w}5#}KyFN-zFJuM1R;U#6yp`UsswKxg3?oP2j5MUJS&)t^{QTaj4>Uw?cF>~Dxy0n1y7LT zV6tlQX@K${NU!>}hMQ-$iu<_}SXSr0?ZA?FPJPaR-r%}ina zS50k)$2>pzmdT0x-mYZ`v)#R?1s82khl_EG7#aRkN@SLP66R+k6Geu>9ZrAsO{g zeC7{{yOmn)Ra~j11ytE-h$ih$CBA zARlJ^l-N_EftMOBzH2w$2<~Q)v0v1nszlyD*CQ4bC zn)czu+_0G3_W4#0oU+IKHatbH>GvjKzSE0QHIFe`rd=s?1&i49D6 z=jZCWcTIS|jXgq%J26NojK-SY`b|Ggdo;!)%yH^eT}}VKwqr8f-E~cqp6mxnM@bH= zBuk#FGROYm;+Al6vjRdaFELa9cx)i{wZ?c9VVe6+SNI5GJ;K{#drid>DZDGuvxT$+ zrsn@j-}M6in2&7XsPr)WNc>%)Up+rIHl2(2<4Ct8mSAO1MBouFCQMl6&-knh2c~3T zL%0}aoc+dQIb_V1{bt_HRG&%*o=yfnCPYs%u${m%77B*-^JWUR3_MSGnUKK&Y(L>< z4vVF{hhp^nx#8zAG-^Mm`P0+>$yDpFIx9hKB zjduNQtck1oAen|HqNkuL9xK-c`GU6Ev8n7#1||ED&2=g}JqD{J6|3d2vYoGB-yTZl zs@mvFRqp1tDzE;RT~pIe;##)_T4hGK_;oCu61lJUOe}sq?6IvE&WzoQFoB!7u~{i5 zyeH!qr|vsa9%WOHH9q@`*g{HAWtY3&(x6dun!pV*9Ac9?!Alm*v2ZbEMn>22idFK# z;#2G{FY2AciJJIFdF0(|)ww@46!@k?fzUkW!tEfC?Qr0B?rPuAWZU+`%`U!sL7R{0 z5aOnib3H#99Mxs^>PFZwb3kbCAKttW1wFQt9cos*LKH%s%68~ah;ZsF;o?24)1x$+ zOdo~sztb)D<*^mCks)~?rU@ihxR@#;zpzJc+B5vZ$7YeavB63B@3ik-!-i_dVOsUR zYW$F=$jn$VmAs=D`L8m~Jk^Tsuq?IjhL=ue6NXoL|Fs3^*j@G7V!{!C=Uxjh-w%VU z$~%m1-USc^OCQ&xd3>tQ-4dy)*u|!8Id&*#I%Z`15i zYu^As5mwAR))O~Jpb=a&9aZ(GXA?K@eO2{51G1aHtwLZlxHVj?cm)r{T5TlW<$igr z3oyd2fgVmhh>{ahUFwjSUtgkp0vzmYPaLQ-GQ-^O(zD+vqI4~5tY5*|Zxj%#b{B6B zzkXI}3BB3Mo1JIBsnr`MyWfAF{bq(*7e90_OofxY|2y8JrvlGOt?a#wN8Fk7gyg0c z#8TTFUUZr04W{i?{p?i9n|Se|o?g)t>KGutNI{m58F_Bq=onyVXp|FmtN(#+wHB&Y zRJ!C))xwXu&MQEea`;-@b#$AL>LgA)QJZ|_G@9baa6iB-F{BD$RyPxm4aK9HUsG#0 zK}bwh^sw4D(iJCXA4n^fP%jGCXa3B-Nlvs@>SjL2%+fl|tP#b`Z1W)>sG7OrPmJaP zQA>UVh!MIt5?;PSz=mH8PwWmLVB~8C1lTinh6C*|5u5sVK@d!LYPseQ(P}tT*p{;kJI@t1v{Pa0 z&MxfLS0sq4LndtG(^tGKgR%1rbc7AmXnaMC7*-TPSI7E5r$* zrw$@=nKMc&Msu9XJ{((RbNsg9s>rB-ngNUtyU1i(Q$HlXLtf8=s3g_v_qLv27tR&g zlsQd01ljPvewi;JqmD2zQ{RDTc|BY+{2>y*7QXW7Z=Qd8?ZOki!}kw8ArcrweJ{W4 zhLrUwn=kuq9O~u{4!kouZN)UNFjhvbC-`eLJdyc09e9)vnH^gX zdsF!Sa#%hLo!e`N#Y8*x)OHW2&CwT$HH-!ST7Ea)3tpDHzHM=9cLJl3l0piC>}c^? z7#IXB>SEN@wTz&*7G$%w`BGzXz*marQs=i-?L0xCB54gwO$FXU4i$qUN_(&30}mLR z4v7Qh^`}r1SEd7pK??LJ5-b6ygl{Vt-^eg324Ix{EHp9|c!{01OsO)QxFH?bfW&t8 zGsFV!(=|7t4ONNn|Bx0nt6SDAwYO8Vun)<_)hcuPNEkNPsxn%2s8g#5EKI9HU;JdN ze)SUdOS%4A)+*SdhqV9usUex(q*2A{(5ibruNX=t$KZ7Uc^^P=exOf-{psV^^c{uu zzwdR1aN&ZUi{I(Gc>C$Lr#auuLl^yd`642)u@3kH38j`S*^t;ouRu!oZK&lFcj`1f zqpDwZ70+kURO9O%Yd!*i<k+8^DAiopW$ESQPHBNA&#lr$!=RP&5ycn;SD zM@IrLSoNEyBW#VNmY&F=t?NAv940a4H`m6FLE-DOSFb`4VXDKPZzk%DE%FWqoP}RL z3bPq3HQnBV_TEx!ORixi*r2H|O}H#>zGkK+vME$Mh10OEPZ<5)|%E^>h)8eSnG`0wR$TuD{ni?ewg z;VU>d+p#pydSk_RV!iD+!+IlUJ&3~CZef*ohO?2{hxP~ZWVj(c=(vr`Z=nE^*@=?~ zx1H9(ZkJ+f;|~e~KNq}R5#Msb^HN@QW76B4&Q2^xgq_4$4kG6)%ZrnZH?IkQMELd& ztW5^i;*wxIfK8~BDL7gJ8l=%-vw)4N(?3Af)|p~Xj*ZL3ZUfZrrG|02 z=-&ZMns;J*-ylzG|R%G&`kj2XVgjP0YWXZbtLx5HWqLv8dSnppcyW&H}3KJ3ddsm%(5 z(6%S51Fi8u^=fB`u@9LMevk-VvqyDG6jxX_B3wKlHFKW7tg0%nN@Z^8zn~mPxTXk#!h8 zYslNlkm{R1r}i&B_8k^+k977cXz-ju$?%&9+ z29KAlPjfiLH=OrgE_!<^fXVN^s>QGMK)d9dBimROjKMaH%QQN0`Pn*z21XupMyH-1 z+j+`L9|>4&aQQcLtNioaIVq=$4X#qq$_SBcn54?vm(1PZRBMid5wcSny!|C|*@kAu z@%@4IiW%8PR2;V#r7gC^<2Glx7;sws2qs=VCU|8RPb6pqPVcz=e3I}7I3Ofak*$8l zO&?G+jHT{!Ys(d(!W86FFVKK^t|$`+Y2=Fj-kY+Tc*#yF%?Zp=wgST`OTG!=$Buvn zUSYpgsT|o*NY{`c=#$-=jWg|H^>0RdO?>xY4@CR87@ktEHReoSF2Kwr)T(sw#~O>` ztCtsO{e~{kSJ56fnOQ$}5@t@}&#UC{*{zEBY{ zj9iMYR=J<&V|^Dp|At)AWpW@8e(ZTZpV?~b{)>h-E{!n1{Z{&pvL_yfH^~vfIgCBBGH_= zYC<+PhOi|Hz?1f37pJ{peba#hS|_i|=NPpm0`piQJHm^83N6%pz%3I8%@vN0jey0+IU7aTPcy(^RLZi2-w%7}) zfbD7Q9&%KZH>vxObK$U)bYceWqXcQq@YYwD_)zv}189zlC~L3#8r5Cq*L}AHfGE&N z!$+Tvv3Wjz9YKOBY-oskMA=lK(V#h;HrVH%P2=!pDB2^B5dHwAw&20>*`k+l=-0-M zlkkeRCcLuE$-oY>&3@g5j0-QC1HNwV?!?~vjMQyA{OBj>+tqpcb`9C%*=x{Xkx6B8 znrI8AyFplAviOO+eUDZkDYO6a9+kBVbjc%@#km{sezrgBa_ljK`tQzDv*MSMQV=AiU1$e6`ylB? z&Q_Uv$M@7KBoeuAIdV2P7it!n2to#nObQq850fHK-}Qe+%2uIzegC(C5{Pi<*fX^3 z^(rt=%R+&q_K28OL~J8w<&F~%hx6sa8#Kk{rE`Pa0A(#|5L%aET%75IlgbWAWN#~1 zptuy2Zz6jyGEV|COdz(0b3m_;`p1^+`3 z5lIGqFSY{cKojkPV8_?xf*&%DU8+hpUXO=XULUJszf@#;&n&5{O7Kx&`*xLd0CFp7 zD!a)-ptPK_QIB5Dgg4o|Kia|tf8=XW!}&-g@!|!mxqXk@IL0jU1!`rY69zq^k|6Lr zJK6ZPrKUCKihAmd9J|2#iPc362Ji6*RaJRgG4gKUD^L=M%MDs9N4!?jTxdS$JAnwv z?ME$B4%X{w+)(Ch~T zgg`&f1%j>)oWRR{F;!srO_Man)*>NhaHn?5xR)Df7qjDM@d%+p=%}ffu9e!;loiaq zMiEkP75mCcDpkJxzWQ!;uJQs<5ZmZU;i~RN!k^~xl(wso1!~AB7)>HZnN{6CGhQYJGzBC?qPd*&TT-2t_v3DuKoH7hm!7)M4QN0*u zwOy&iVM_b}o5_t4sowRKPA^~S;0L0{Pjl1UkjR*HL`Vf z-ogr7jn^6dK8VS8e!p-QBKQHc1Uy(!3RpN6vhda?r)`T@OnGF^x1gj2EnO$WZp^`wpF>xZkp-PdUMnOYcCVpHX&Q72=%A2^!y0AeFtPmpn4%s zCp43(kGrU@*=zI7vW5`2wXGf+FCJ)!2R5S|w`d)7N!C^stGI1#mAA2~Vuy>@>)bhH zZHa~#RgkgyrwC?Pqp;Nz(+)seUJ%bk!8Yb{0D_^XTcuUrW>&F=L5FgqFd5XKNxt3jeY;K>$=2ZzQ zeH6*YD$I?;&jZTuF%rO_v^!pMXylgcQlXK2{0O`(2M!UZJQpnwe@{lb7@N8UFZO_) z#>QtkDX~<7CqbE7$S%C55RuOT&_Zvw*M+=a!<_X>Ov6HCGxXyo5c-1E%u6PO+TOgC z7{Fqrd$G;wTQ_<^8E>oz;QT=={!229m$d{lET81@iZ_%p`=5y~qq-rW8^E&na_h(? zs9a)2T9{Lu-(-KLu?6H{FTcWq19_`R=erUMxlDV9;K>dU`zq8SC zBRX^v-iqs|k*9Q5a{{K*WSCmuJh&Fef!38aLc4L|&>hqUX$5x1dq6Hex{L6HaaMza zl_|6>CF6R!n81Mm?|O=m3k_xsM7I%zaT~TXeFseNf(R^xz;i#@#Da`mk;0!9j=;YE$i)IfOkv zGIv`9`SiAS2M(7jbEP$ONG z1cY0HyE}PsxLotD^boDUgM)cfa2^~k7i$3%23Y6Yod1RuIB*!M%nXRIBCS{;E(J(m z%m$3Nz+=AN?jRA&J)8pvwL=aZXvczlJ7T+W)R6Azy|w;DbfR!(Cy zH}2>vqo*$`Z)lqmowo)}!7_Xpu*Gf@)JaJ;>fml2c^%y0ZRB`6*pcfJM_mCjScPXN0v&fuM)6cu$t9# zoRb~l-Bhpbwm=!1Z9D)!ODei+$nrEZdqhpCyd)Jk!g^Y%8Npx(#~YY*b?2!tczH5c z)=kb449t{%fzm^lYuDW-%Zk3Tg&Ytyd&i=6yrk2F-pkHwG3Z)BmNVcL*vP4vszj$^ zdHUEUV{8pVe{GZD0BVV?2e@D#34HF9$A!Y_L!@|rRWfi)tzay8!(!tNi%lExHuJl1 zwc1hUz{=WjF0fLA%k7Xy=E{Na(;Qp@zu`r%0$Lr=s_5<~Nb(S+O_ z)Q!)Ec55PnIv%qJ-_0J({wprxWa0BJ?f873!{^$Pw}Pd&u`S=|h5ExcLvtq!S;dR@ zk;#C!qkO!Ijaj>~q4zJ(UfrQtIc<~GfsJgvfzuolL_@)A6{+DfuGx=0%N1U9xHZ37 zx2<)1v^HxKN94EZ+nh@UJ1H7FZZn$!*!mH>xMOAZ@iq2jXHDP1_w&uSq09|8qInnZ z@`}^GziG2wzwhm33>voUW*PqLv#iuHYj3)<&UC2zR%ORUr9pk)27O_gi=SdmKGJ>B zUtjoY*Bw4;H*P=Mmi(jJt)h$dnYRvAcK%m+13Fd6IG(MxJ?ya5wj=zWOKtmN+A72H z#A-4$c?(h7F5|9UZJU6UzS=gKYM)W2npI?~?2ze>-hL)jj^@T@G>ue-c!vzLWNszp z?^&wq-q%#h1!VeEuLWy=jRJUwF$rH9@6x4R5i~zPXy2mXJ}cpUi0&;Xo=Y*!kPUY- zdqXL<;#=`@0hghnVq19mZ^65qSC`Apb7C60|C`aA2!_A^d3&yJ!?WMp^g27GJh7(W zKmY#Y&sV%WhUJcT@<03XEsZnV-X4=EIhy$0?N$Fe`3KqPgN# z28c*hixl_AX)g%hpfEUfLN&uZoojLO*<(jM<_9FOk@KMLnADgy}$6Y3kB1 z9sBLw_aCOIu-l*fX!MH*#;n^zQx7Db+7=5f`O2Z!XzFb=HJVIk!^z*>^&f8@AA9}Y zF-Qgy-mr_P_h#CeRhurNO@BpIYQv4J;9fU+WjCoE+3{Xkn0DOFOCnnm*rPCX;Y2U^ z*Ui!kgR@?q_)XEKZ}6W%BD7cH$;9k2AADy^(-`>Lf0O_(Kd@Hx#PTHe>XT4@#>pEQSXPC8guS`2qI z_4>(Ytbr&0(~KZKy#Y8b=NVH3Kl^a&x`1WU(>{XL4_jSyw*?B3T*|@gZ zrTp=VSHeH|8Z4<~?lyQhCt2%H$i{x!uC~~oVy*Qv>%4u9C%x+iCeAEa@8-dYr}9gl zT`a=eC-Mtk&*KLJVw2ZN|F`!9F3C;T8SH4syRN5xIVM&lygBS@H%7RknERK5o26@+ zSkt~*f1O{&R3Aw^m0zPt?`EpYFJr6T6r{!vq|(N*b%e(CQnLcuTE#bj+c#}fs>PqKZeux zV_|0x?o^}Dh<6If0OxR=EJN|uLnsUuh~lS<%YUTb;&-e8WCO%w2Nbj<(vbw_;&W*qChIpm z+i|g%&QYP0yop3H!9`}x={dRs36^z1-}O}%T+EXN-(qw?t?RVam>mert;-^FN0|^#i&=xQlc!wto*s#yHp3BL$NU)FvbRc(kN)3 za*b3CWvB3CYyybwxFU`2)r$&!UU^C$$1o!1Y^1|l1`B3UzuiPO2TzjsO=VE0N$n+) zIHcA#qOe%A-S|#@lr^fXZzyY#lQF9--=0}tUZhM#M1IL>>cWebFkj4srY+?uP8Wf< zj?5VcC8)_k{peYLf;8ddbHN=NMf=SJ-z9wOGXxMtTkUBAE+1g4J*aJCe=_ir*=o zz>ZhL3FJ^SdwVg%@3` zPaTJrf>fU9f?k|JD#L!<4Uu9rXyyYGd;FdgrB}7g!K6w~OuD1h`>Wkr!5+HE^BBiB{P-Wu3NIHcfZt z$(In+9#jyKH;YDax(*=!yqeU)U|+n{YDI+B-+RcH~K zpdZr&@dOKtFw32?5`Mx_wPE`D2*J768z*WgwCDgz(%q&w zFj0BJJORTCXQA;8gL&AdE+qm&M}4~+Ium0d61oUh05&K(r#p9$5uvS`^`$CVD)D^> zp!jJe7g@>90qF*qOY`<8Irwt&ZdA4l#SSPs4;KC2R7LeF(=`Y$x|U_pEK&^7Jnre+ zA;8uJBfFo!#&fJBCyrv-3lf0cfd;L20|{xY?f?Y&*19nlm!@;yF8Ghvs08tMR2(va zO30jQhN9$+US$x#;)!mATO-Y_7P%jQYk>P9ja^?{dk7Aq=i{xAJ6PPh zWtTD?VC9WW@_RtYLU?(r;mP*U$0$^>rPPU)U@(Fm53K+UXqY@S4Twc3YM2`F4v(3c z8=3xUroW}b^rKOsI?~>o25nTsH)R(k@ocMkZ=tMfY~BY@Hq&l1t|nIwhzDR*!0!uQ zg}#MNJw?3AWMtwS2h-pKYA`1I9VedbAqxK}9e7<+7X}gvLj%UKi8jbO@Nym)0&Br+f(}M1c$GAxSfypXCVDXFxH*C56ZZw6#J7YT zgBP2|N1Je?E79#GsD$7&u_uGH5+hC&rQmWOm#f4@52FnW4t3&o=}PsqRyiSS)(!}u zKpi6xL3H7r&zyOuSxVKI)vLiz@dszaiT690(RVn6nMci$SfwwWL|GzGxn04n?=W#C zw>pjaTV~Tkf6;y@bH(O-2l?iWwCV02e8!P!@V|r^93wKDuONQgr!=qQ5pC&e>OZ@A zN^>W*rE9p=SuNkZkH7vI^{@KpGxc9|^i2H`3h7|7Kb?b4)f1EWP34w~J7)DOlRrF4 z^XnI{?A{LbFZitb2Y0CdyLj@HS#-O%$61{BI1!HA70<#0@L4kBIcJ_Q2eMil1v}SXHRioQoAM%{{MR><*9c}mA{TbtQ?;~MsuhCZ$zvuk$_iwQ? zp!hutDIJI(^&gLO=y~F~$tMebbouHrqzw6mQhvSa?YB0sYI;^F{eDUc_GR1-|1P(% zZlMg#z`XWFZcy&59r7Jsu*_=@X|4CW*JU%aR~hcs${Ia`J#X<_dU{t+uOXGq$i^q5 z$J%}m{Yu=INWlYK6Hj#g(gnwMkNUZ_=qgtl0VaxHNIW(5;^)8D@WSpf`Vy^DrV4R6=Ny9e~~3yw?P%Lyj=!9i40mzCQ5saKTKMsIqJHD5p%5^8)sy-TRY@D zS5`*G#Wvo*>l=C^|l*MwS;0jl&EYdQv$E`i6J6ZN-%%pkHH~jJ}htg{Y z-RdXxzSF-MRihgUmSte=v;5RG>G3_XM~3wHcTL4f&I!-un<7(MMl@V|N(IWAw-y`o z+EcuLn?I{dW_xuXG6c$FH~53Nt>54On+?Nh5}8GcQMWR?`RW~B5C67%EmPh?d@J*Q zuRgcw(qLn=$d8r15BT6S?DeUF)|w?VPqm|eLW_B0o*uUQEvW7N7)A3|roz~YYta3+ z*GYvPM=(6f60`SdGSb@(%D9$tG*@nltOch@QZHp&Z7r!C{eg<6nX^ zQzi9@z`i7&3Uk4+a6IY}f1wK;g7X@Zg>vjVZf>CE5yH7HRQa)Tj@pa(`@Wt+g=sJP zCHUUgp$Yo5wy0D|gK7%hkn}=*l3v-D(M!beAtY_P!f0PoEA&1(9wzlf8rcsHYskK| z){o{fcpu+DIu=IDwVp0vB-7amu%1rzOlSKu&1>h~&ad=GSauZKO+Su(cbzzHh2ORz z{PtkGFV^q)Qv0>x8gBzNK4B@7?6+2oW9O|Hb#2VpqubRP)sifc1tS%S_fv@4TGH;u z<5$pAPl6HDTcx2|Sov4@d3E2BURj7S`~;O=d7X_&ALR*cMbxm&p8M-vXuRE?D-|FS4dG_)-4DeV2tlzr*{9#N{ z+sL))Oj>OVx`F+!A$JpoJa-W&^S%ORLMrfBj^@}uBG}BfX_XGm2av6(QoMXODZ}f z_b;LUwA5d68`#?2uMvQpkYiWGEMJ=U1#$H!BsmplYOTp)qx!ASr83@ltgyHO_uZ)x-EW{nnJKqc!97TUV<7){L{?(qg5I zD?W@5owW&J5PX$kW3dBCz9dGx4Vk!!RazKC7*!a$RX?gAsA{8st)IVTaDK>5k@7}4 z!4yWT^hlc`1!JsNnGM|cE^$5VH`1C;fp8gO=B2K*_P`1%+d`b+TM2JQ^rkN_L^OnGsvGQ4;>LWa3FL=Jzk z^MF2!pIHqk`Frs<0E7t7Ja`*_0A?8ywDu90howcg6l{I|A|2W#?Cwc~7QBv<#_GPq z+jCO!MMlMcU{w4k{FjdfABw8)S^ohveBqyR6pN8Rk>ex~#~;Wf^A*XTi=o?MaXL0u7zh;&{E3&!~x|9E%W&W#{N%g|nN-p2K91+ZMzn;m6i_ zlUGYR_Dy(*(gpkru1-q!4pOo`9i?Q?;S4>Qn@ru3k`3j_Ny$nzAOEkUWLN$Zi0HQ7 z#azxIB};lB-+K`LPKa;G+){yP^TXI~_j^sc6&_R9WPDcPNr)=5g1 z^e#wxw_16BfRyZVzcJmCUVnXd4k=mE>y8hQrO3%@5n#fFLh~t*$li{w{6V;9d*mt% zp?W%d1CD`?!}M#xEoqoH1Q{f7R>@{G;U7U0{&j&d%JmB+W2h?GAQ*wpsFDN~bE%cr z=Ryy2{|w%C#-h?)%uyV^Q`agu_VD&lKAy4~<#~h+<-DmX!K~~_v0_YdeyP|6xDlU3 z0)n!!ToPu<`Jnhb0Ckf=^MaN$y7N+_ce?Yhn(n+6s}QMKD=Zz@>{M#~3RBaLVRaCT%PdfIEHTJev(rQ$Go#?u`ZD-kY8w0} zH4RmMG;FVc9k6)8GQ@&|xkGJKMM`&G)tT??{(+Z7hWvf@SGJW0oWu`kXa6xxoZ{1pjq-ockM`!QOl}Hc(oq4PNDBXE1C_C!TFO%-P zYnD~z>&_E-uaoY)3GSpjzY$y1s)`S?w&WZiIcrPK*PZ`c>7Yw@{+-0MLoDE{P&gmK zuBc@c&y|(B^;zYyYdxxA=%71q0hJK9YwfYL)c;N^+X)Y|KXI%2K_B7BB<6N1J)=0E z=Ba8i{&<#O&t29eq)u^OV~Hel7|CZ8=NrSzFD8Nb%{1CqoKKLkU2*M}(;{4CS zuz!T&y!0#0Yp`48)h(aYmtVt9W%}}WuBvK#x?NxXeZ*2hO>!W;T6>x4%PV08^2?(* zSczA>i!?L%S^DyKF7q*&^yLlx0A{Gh69Uj5Yw61$ar*MtpgmuY7#n^0jZO~v4G0~l zFF%=Jl@#WT0+3raw(BqZ7TVymg`l=c44YGyZ*j`gpEo|<2W%*T~t}Jf~&i|Fl@@hw3Sw7zmDa+%ayhEr%Us>K- z^WUK?e~STJ2W9y@+;sxDys|v#uN~-oO?jYBn(_|n&eoJ)<5erJ;UA(YzvB04%0Keo ztSK)w_}`-`FD>;?Xv(j$&G!G9ro0Pgcy3MkmUC*#TLYvizxuyVQ@-{0Ys%lbtbM~p zQ~rhUVmX)bahXuvIW**f%4Fw}O_t`%WbY-_ zm&s}yZ|ZsT8JVmVn|p8->1Z$M(sbY(pTQ1TzT9M@DyR9k$RwXSck?>QWLJ>+?B*%W zmx-?A)|bgz^Zx9n&!|7tq5faAoTw^6Z)Z7gB%Kt>!6tA;sdOI^pfnf##Y-_D1Q*qw{Qh1D_FqMMZe|pneca zxF}j471tDRorwya-`dbqXN`w>{w9$ZSP>Wg=8T|q!bCWSCaSPp;DhZ$jqME)P{@b@` zQNcgEhsdY~KUHp=Ylr_-PYkRiigKBnd7IKrZe2V4KX^y7Ng++PDZw6-q?+wJzvkLe zbNw<$O>@PW<5iP9`j9}2H&WF5bk^oYzFY168R_DvF|H8AjDCCMy|vB+naBB7F3H@S z;b@wYsC=~GP?^-G%&7i;D>S|%g0(s_ z`b`JW45}4_bWo5I8TFE%{ywvQ>Tmc0F1j4iM+zQwZz98=^Rt+|b=3dX6JUBWP*+Z&EMMgj7e{4fN{67C__$>cM4i;;l=3{@F!Wjuu1qZdmXObse{HnTzWV-fE z{-hVcAmks&HR@WG+>brj+GIx;;5 zBT8Ib^zjNMSV?+8s2LWrm z5TR;(JmS@O9}_~=6c#I?SPA+mG$~Zg_);b4rx2Il@$u!Vt)>q$+*ILM1h?bIa@S|9 zQs)*Xl#oz@ehMei{=&KACn-Tcg|&KLYkB+BO6jbw@D93NSTp_(Jx%Xpmzu&EN~{|{ z!zH>);VhRpONljo>@vOZUibOER#+dqJY1-)L+KBXw>$Db)F*%UaG}iH+*`Zj?E`)C zcMlcH_Q1WhJA2!HSGcnMt=(D4`MZY;SNU%r8gF;JeYj8iUEw4C+Xu$moxRQ9Jyf{b zfBW!wyR*0Xy9Wxz+jp(9JA13U=GSCX$@*c2sr? z4}_r#-OQf}M$1YkntVNItxc|dBZwESHN3@J6ZT`d&>Bf7%lgWRS_zIr_Y)IEBT{ss zez8weXz@b3A86^NmJ-o@>|#q9sg!76OSwe9(W{k$lP;{e?|QcXnHMqt1*2i(z(%k zd#UBT#`4%#QE5;V#-yuM7{i<%3$^UsYE|N-{G6ZICHlFAZ{ATKV*@c) z`*YnulNAP)EjUL%mkJhx7lxN8&PeL6?R`^s?dg}g>qT_5n^-~rl3d#uOh`K)?{rTm zN>IE-yo=DCfKDIUP0V11hy*^ak~eSi;ZE_pU{S+Z`{;iRO=e0tVzH7^U|STen2V1FA>17w}vx^ z62Duut>i!^yoeW4tCAvMq~CVU2wQEz+cq_IyLmABZuI|hbJg$P?HU<0jl%h2h@M40 zgfm1jLAxxB5@C4i==m;NLCUU5ufyeg?GTqv9w`R>oy*kw8m@`#NZ#+@+k(M7rXcZ> zs17K~j8wN!!MMuOh7Hi_OAE{)5C~QpbV4p zGyC&Lm^Mayg1|qHw4b#22-_CtPta< zn=pyAnWeUa){U?&bLNCvORIJH?r{0;uy5~BTHS~luDltRHp8XOa`|T2x3ijWVz5#k zVJxC-7@P4$$A*FZ=zddQK&*TeR4W~*g$eYa7|EV&Am~Cx5w1tOcT{g;B}rYuX$Oo` zU6tqQ7fk{Ej?laN_^Di^yYE@z`Sz>8qJ@N=O@!Rh4@ZW=s1-CUqk@M0iGGWw(tcB>O0In+s6vKaAcZV$icH;T*wrx5 z7Axc_u~U_5&YOn$@9YEXN|AM?NL?us3=I>|6xkf3w4o2JiNmfk?Cfneqhd5c&@o~6 z>o!kw_*H%QRektXffvXYtX@@Yzoqu8C>x;cg!iokf0OvDDb|KfAPbf-^0X5?A0+LfP;^3-(;0%7O{@)*sqkAXOsjwJ_L_ zP=H4fp@l&#AuFl7vU}32?8;w&d*r^A-8;5LIAg8na7ORQU%8t>SGpV1!_A10j`Vxm z&otzGy+e;t3XgSCbe!6+(Y>2Gq)j*Al<&Li=>KWg%qwKQX%`qq=Z%|mFr3=&S1!x& z8eN63?y`hB`Czxh+0-FVxGaNyxl9;py;B%n2kCwk-5DL4ZmOqDJ9hM|c6ob$OkTBM z`}cK~mQAGKJl-kT4z&z-`3#k9R|o7YNHJ4;KW|@7EjX$x=Ysbrdq3b&x0iBWO-TlR z3y0QqAU0Fq3ordwX3zk?o77tbNg-SIAxo|4)>BETNrt{sUEHNxM2R(%BKk1Z#a+4? zvPw-d1Xk0TjgD`&imU8Z+4bQPae>=NCjo5Aw*Nu@5)UAh^ckw6+A9m%`WtC7SA5P$dM}I|^f_O&JX6+y9TY zcL8s!y7Io2*aia*Qi_wfturIQ0i_PDfOIfTATkZ%D9DLYE^$g))WT3xZb}GXIuukA z7i)y5N~;;qwCQMCJT-5}MKjYB$JCC(Ed~k*3dLMX#ibx~6|{i4=KHO+jvPaQcb@P0 zJ|5zA{%0TU{XhG%_HCWD`7BcY-YYS*&?NCNP#rf(?K$?lm`E+Bn7(@0kz8^yTL*L} z)yw5cI+Qy}2Y2UaQ#~gj_s`L$dQRK>8i2&{au59%gO+rIJAS#_9l0zY)VNQcucGlB ziKS5of{nkB>qVNzqLcLcllu4h>9I?-89iVh|NQgvJC{wXK+cXM-aPa(zr5+mWnu|> z(J~B3wGv@u8s(bF;bk+K3T}!r3*6+9KQpmSxh%>YaFa*=%w!_CDcZzyo~Gy5@UbTv zg>t>a%JpF_S6pb0Q?AmX67N35yC0vj5!uo(*C%p~s#;u+S|A=tb8(V?DZaVGTmfGc zI0qJ$c+mpKH3{oq<|H}Rshyv+W9!x4H2qZ_d>`OB+!;1YF?qI;54aoG@sA%g{>$`- zM{RYKgQKRcP5$sD`S9Xg{-XI>WMOo9i(j=QM?Eg!LQS^L6_c&6E@h?m$2=(}TYkA8 z`x|*c92*Gg`k_1(SkF_}Ri9dpdyu$15iffQ_(=C3H(#voKN7^J16?PzMAoaslrnW8 zx$<5;p8TaX@m~?w8;xNmSV!}3HUGZw{E-e_i1y2vb~ey2|K4fErVv9fj6mOX++z*- zVX_&kuVySYn{ms9iQSalo%Tbn>DROY_lM@$)tYCWnrD2a^1e(19|K3pkETVMA4@*w zwePwJKMY%*6SEBQcjBHe_;J2xCg#j$5b{yyd)`vMV|sY`tJitN2ZE=4h{X?&lf12b zJ>fl%Zt}XmYpN&i^}Kk|i#>&lCO*P{&4u!-!lqB`@n2K@;S`q-`mPDtPc)%vzH6$# z`%wQbuK$UueVv;2uz-#KiF)d8#~JUb|B3zzYvfZWCrtA{;gih?Cb{NM6H}!k4`OC# zb^_B~$9|YQSu};Xq2RmZCgRb$7EW=5m-v>L@Nz9q-i}I}aV9>ASaVLO7H$7LGA@mqlQDS?7srwifaOuTiemxFf*9U{_ zg1J5zLR_k$m6&GmjeVPl)Swg=J6Doo)wC+zD9)XI=7Yh@7p_i?o`50q$2~q6F4Ho?ZKJSG{L|Px`C@C63RC2TC zG0xcGqx{Q~_j2wGjZAo}%L0ylSLb^a>&2)6DH?*MdM4Ew0!Eg7;(-AJOH5(ZkuTp; zC(K$BTgcq|Yd(5FqQD8NM1e7)B!oIBiIB54dU2iL$a%3>aAED_BCb+uCfRd`cwUh5 zXP*95Zf|G$>EVOl^l9dJVI}w8c-R~-NG)xzxoh(i>UiN{F4ggZILP*X_f~#K0m#c^ z13G}Ru#(a?foBSADC30jh}3DkFAH6CZl@qKPP3=F^r?&31MktxnpgR0OmC|5Q(};a zcws4b#<5eL7cgr2gzI_XNjxubiEETU$~bd5hcVQ=6j}1r#(U|4F=jJzDLb;pvd%TP zqOl7>?5X5c_*z~(FBDy?$<^k0p^pL?#{;~0Uf^4#mIJ^zXV9|Zb{>ktjnE-9jCfwi zGogEY%JV`kN>9IKeGj9e=lRDjs{1kZ2XpTI83ike7!~A4Ft!-S5UHpYT|6&HwdXtb z17_eVF(~!>=%hHF@HITzk%~NOeivA+T_!(p{VuQ*()gJ72Gx}KT`2GIyTH2G$)Cq| z^*mM?E-GPImgz{6d&l?UcR?J`yM7nWOOU91oigQgL6$I^k0zgUyxA*~{+W;ZI#SCY zHJ=MCMlT~K`GxCq0S@Or=HpHJ@LM8!=Ck~nx9IP%wvk0;^||nB%_*E+Vrj}p{%728 zJ{RN{;&XweXPFlHE_>7;CMk2dz?%88vofM$T&D{Vx)a^9Zuw*4a)DjS<8fA56m7E? zf9BQ7va)`8zq6y}Zu#=QUIzZW-to9xcr++6tG~|K#C)`>F4yG(ajt(Xh}lL-PA9>H zLyjy#g)PVB!VxTHyqDpKl7Wu&xvzP=S1zY%PP|M*3(I*V?@Vtl_&JB;Q+xD+HscRA z7OMlU=kxRMiE)Z7p3n}chm~ng7oLEAb4F9G(UEl|eN46&)6{ic`R5?ked0!ID;Su4Jd%P~ZO8vkJ5HGFiMY4`sJ;vr3 zbi#QFTrPM6XFhBm7jU?s)n$=TFh4=#;&GvG%Hx6-{$F`qko`yB;(a-6#&x+sDu;7# z_Tr;)x$v;-a)IA2U53kryq5aR_qkkIu#p~x|Y zWJ%)Whqceb$u$L z$@@CQ>B9BqbfGM-qZU3s(?=CJ<;S>kxiC68OW*R#C5WoHhS*n_~L&cmi74z>?vEUH|`wS;^@@I7yf7Ws= z>AZiFeH`S^`;fHc6J)t^b&Nl2xMHj2T$nfqSg|IWmr+;ELo$x4VKl|XADMfLw@3NQ z5!ZF=zQwjg&9mh1>0Avl2_diNoFR8xIVhO@9F+SJ-oX4Aw?sYdqpI+5x%`A&;)90E zPs?TVk>0=p$9=9vb!N+A*#MHml5nfap2xlyE_4_UrW;;|M@PDGL%8PtNUGts5_N!0 zAi7vzq~>;caAVm?R#?dPZW)CWeLipZ>+sG$)pBg%RpzhqH3B@tLYdX!*BQ*O<(+Wx z^f}RYGa{|xXnSt$49ka?GzVVhtq9=v^2~nnKtqjOasoGh^$0QFfpWXCR{pNnJ879V!;wEMg%?WK*IP@yRWI@51$*=e_XEmJm6B^F+yko8`3Z z&2Q~{;Ub4mW6}-3=8HFcp7l!7wG_inQt2fo%D?sjInaY=H$F)*Z@R)8sBK{>>0((l zu^&2|9makf*`oO%<#ZIE&N6A@h)bT5LcX0R*yd=!yVAUdAUS|iZt-iD5i*->AfS=s z%izlE9w6h4dCeR{4sF4b6Z2XQmp72o;0=_1qmyb-ethxnNO3`vqtGw1^+<;Ia(Je= z3w(pJp^}~4P3{C{eMQBbvsBE#K*fS?1SD2S3tlBH_*7}ZKXF^|f4D7pg|y&R(t=Nw z7W|V05hMS@ZNa~ETkx;l7JRw3;1$|}S4j*0rQ3pkEk6Wbt}S?lw%}FKk8Pandd@pv z8t28*I4_pQdAT&s%e8T?(8jq!8|Nx*oU5FP8kU&Y>8&=-KhQXzV^Qu!kL=p84t7CD z@;=J#26kH=CO$O}Qs*Nz_b>@^S|4O1)^=gZxKCdqt&?^->p-rmt#g6gZT&;Fb$*7{ zc@Vdxz+|L4uR+Ifv*of;H)TI1m(4u4U|;vSgXK<3tL@IdOuFS79a zAkC<*J99wYP;{*Vf6-&pfB*-D>MBYwP@1GBligf!7=4^`2&fW|6KJyX~@eRNf~Y z;oap4J{_Q)9ujH&6Eovg2zHw}RhPHnnvG~_2_E?)U9eBK)67Chj_{jXE3Y`WLAIFZ zHrB}B=32_KW$%w`c}`MZ?=3l`URvJ4)MMTdCat&8^b)+@-m(*(+|%G*(4v!yVvTM& z+x1lPbVPq7j>Z`DvSpyJNkyprEX1|h@pf#TgRI$+j|4XaDBTaXyW0q8Txjji%c%hr z59cPktFOQw2aJh1PD&2U{ENj2V< zvkJL7**JrCV-=DCN%)P&yj!;LmXULAr_E87oBvyyoUZHX$$WpL_n6B&YCYp6aWpo! z)=$rf=6&z`ro$y{9|>qU5OrVHyXaK8{Rz3zJLWjAO?duy^mSNr)X$f#vL`x9Q4c`#N=je+VRW-cf zFuV$}uknS6x3yX?`1*yPeEuEEjOPT>DOUm9Yryr#+doC|a)w`B@y+JQ)SBd+B^ith&=Kas%Zu@o{ zB+Wk`K#Pzz&Zqb3+J9ygvR9;47XtT{CM^C@*tCAKHiEB<*0=Z{{~^>qVqA2r)A}4g z#!DlM1#?Jsk^ZiUDtmsURhBE~HRF?I`C(-Hf<{S+res>1n*D&&`YNkyPq0y@t)h9= zs??&pJ#R3O-o0~ma#3@n=1B?LSdJtYw}g|wi=6Z70n+AIr5g6)xWK=|jT|a$`6(WJ zo6m*Sr%1CS)eE$fTg&0px__e99Zr5} z?(khcn`l_5Y@(JY&!wU!Yk3HliODmiuAWTY#Lsrn!Ic2@Qp;mG8~jN;w8N%l;-1fI z8IW^B;9w?gWk4GyI4*$6>L5mNWQDs^va ztWX_NxMK!SVkd*!xgmPKLWS{oqYrO+zQmjL(g;@wv6kqO1#e*atv;z!45j8RzkN@g zdPeFLPpt?|G{T%!8hNb(>bE1+&?0V>C5BG#mK&&Kd;!k(al%P`{%q*e1F8*&lbZ8& zAU@w&Jy>wMhBV?=XEFQCi#LaBUZI1!Dv~;^Lmo=X0Y?#zFi#$`3is@i6gFL9yxq2r zM_6xdWoMIb2<8NMIFg#PP{o4JAe`iEW&|_BHKcObf!siC?$^P2f61jSayD!7Ac-)X zuD#Sr9kY-Apl#FXG)T{mdP)J$j&o~$G``2LmbS_U8bSNY-G)!l{KoWdgtqGS&6c~3 zvr&)#t#?mu3368sDVf{MN#OH;tasPzkeC%rP8_`9A&fIbRbc?+!#bnpJ`(ETF|vI5 zJ3cw%b@Ogji=@jMVu+6}>&X_gfobK9IMv+|l_-(;Mb8DC)MZp;*)9=f$S)e(ITWLT zt=;dijf)$_=C8>MQ?vC@c!vjeii*XKx3+%bUS3&>z4o>k%?a&3d-+aBn&a}F(J6&e zf^FU7=WDB+`<(2D0A9xe$3oBuboV?s{F20O7 zJ#bbtPvHxC9rfdrTyky#HEAAKqFq?%{TK50AX@)HsGdXEyX(Mde`?ly=SfYh+l}Cd z9!V(~S>Pd;{XENYFiX)cvnuw~D+s!+Lou_BtV}hC_tyn--oT+NQ;QE-&A*kY#)I$& zeGuB~Tu~oBo;-Lpo9mS6ddk)hhaay@%CFLk^gY6@&vR1Ia?wb1f|s?hp?~rMsr--O zl7+fLYYIpkMJ1iw5)uuiiYv-X9H<&;>EYF?P^eagTdgYGI;|@34vQf#bG)ltM8_O) zM>xGjuc##-qh(kVZE@bGW~3Z%)pES`ugejQIq`pjqG?VRO@mbvnx+{|LvO}g)O)uK zNy#QLR9SjI$4Q_=t|j}2&Lv}AqbaEV7m#ySGYke=Cq6Cy1n>^k0;+e z8)AtXIz-jZfvRQ>tq!{Cju%^~wX=>@G3O{1^MfL!^=VU+DLJ!oQ$2+UrXez>lxgZ@ zJ#zxo1~WV#A0O1*Llds$x1xYUsU~a zqH2?qRCk=_kmqlGQ+3k8SbmX1%_`>1Q89miL^!!QLFyltQN%r4CRy{os5V&*dx;o z>d0YL@?2@OkyBt(d)Z1EfkcwGp@M#Zf;yWYgj=5@mTz!H2ik?e)c!!~6)I;j&G;oM z4^OToAd;Hjsp7D8_85KTdfI%tc_vSEaF53A#~lA)+{*h`nT}cH#~SEMqGv?MpnMKQ z$6UrksI%siMO{&9KU|qybSS&v%9wh}iHFNgUoCoI;()`d1(>K7;H_4Gw|<}i?>yTI zFw&wWh-Hox;rbRWLk{ARqKvd?DW2S-#kd|FLB8?3aB@qF6qXcBt*)-o>IE<>kTPI^ zCWtwSAjVsQY++{}o#DiJi$r-yx0oDP<sC&@yMoWk(+O%$;@j zFJs}*y1(I#KmX#tE{OhN8O?lMcx0&j;91w*_S7;e0xrO7e}rB|zb)M#HA{cf$Y^Bo zzfc*y&h~RQUiXLN7nLzwYuKM5nX~hWT4#9k(~X}G{m=6p%<)@iDF5c%vtB#;rDYwh zPlZP=@9sEc(e*DcizJ^3xBi)^_D41DgMMk~NIn)xeg<8+>5_2GooLT6lxyDNsc`Gt zRrNSSv|#OlywPz4qrLVQU8xH45UxJyDoGi8F^{eDZ&nrXNfmQGp<@1iA{PGDvZYL3 zjhNkJr(v_+st5etdjZZnKLb?{sL`DD%7)}$N$3Tk;DnCa@GNT!&EQkkYJ+ETU zUsTM07r`h!By$2srUOx#33PU&%0p0}?L_$#jq#^5&YQ#t@O5?ZCoZGUZhkg5CUelP z7=PkX{&dUF{6rFy1;8#@0PJewDlYfp0j|1(Ty?ii_!hDR(|RiveF{ELk-5l+uyn9%Qrp$AGd)b{q)$4GPt^q3J`ThcPzd0)2}bM zg-Q{rLuoeV=%{BE1$&I~TMaX}y~883Z@%$YkKFwu;#{;Bi|u>M*;UN(W)l6GPHOQCCv|Qe zW37fLlRoGysztxXnA^>yn&+5~kkq0mqbhxuaO(?3CD-KLuxWTkXqVA1>TM&bU*cprS-Bf($h|7Mu^<}b(Ms-IAUkAJ~E^$PXd^vOV zq2d?k(P7Ls7y_dvF++)@T3Rpxo{gOfHKc|bQCmY>dfJWNHYt}pIgZ73XY#(y2HC3>gO^oGJnRi-u4Q0iePlNTDy z((mvA$o|rdXebO?X*%m@Ck+#0#6pYkok=-G z71v=^=3!OZYgDDLQPsUp75h4AA@3i&uC06Qa#a_NHc{Sd<733*Ye#k0-A~9_VejSg z6@!eZ-BHm8+rGB*a1zV=HCXb7G2h*Q&F-cCj$}KZXs%(_HhreDpVpkGXdI7*M-q3u zdC{Dg?pPMye$UKzUpexuJC->^-?;g_pa1OxyQnR-Uv`G?JAWX!+PMw2y;yY+UHxP9 z*gw&poWtPA&xo`AYlr{SuP*$4o1qXxF#@jTX4LWo5GVK&qq;8CIrFUf?+~#o&S| z$;wpip(m!6Mr6K1IUP(1GDT@*tb)}kG=5Cwb*Ctt*SP3FN_V+V?qw$8b67p$(aU7P zgi$NS?w|Ot7A@p+zAlBlyhTd+09y{<^dm)=m}kQ_{q#qBhd4mg%{o&*_dusl${~r&+SrgvQ71ZwqD16BuN- z_%YIMkuPvtf)f)5|KAnH$Nfs~+KzTOU5}>GQjvqc~Xs*#2)n z+5U-7pS!GV|RKr5W=LbbE|u zEM4jcRmZ=xEsVyTs#B&q+E5+;EE~rEU#Jc{ybJ>s7CGKh)jAd)Uc73}oLkd(EeqeY z&o3^x^p!8(NvFHC5dO{OuMIpov_m>%x|5Mt?|*W1$=}|J>M$qQ)D^5fZkDxM`n?mR zr`W!8_Uo%2`t%OE)}k|XO#HEbJf`PYRHJ65(9Kt|BD#SpdL>$7mPcoM+fRD!(9~gX z|GS)CgZgHylR~B%8&;-xgc-&LRyVw8h@Ax544x<3sj(p$RiYM9_>1;OnQ6TbQ|2~b4H`xKW@6}KPKoRn$KEz@p+fOOcxPeYP|O8EOkB9VeXZ)`?0;^rMdvBY&eI)al%i z^pSHNoxnt;;@-nvDwFD6D&`bKEPUU3gY@F;*Q}TRT-Lx@jSR^6mhO=yobav?t2wB{ zq^~2{S>KV2A-j105bqxiOq_!njNooI-SDnF#>ekY>%Go!^@Z4M*x?LSU!E-^eJZ@? z6>q9$2j^$9kVOpX25gEN-(zF#Qif-Tv*P<3R`FZHBh`#x+{gNU<95b=M=+dZycndX zn!6`I!*4tqN!D-rYDY~G>pu(@+PBMaDbmXR#zXSiI=MBII-$F_K3Slt{glo~J|)+U za!z93#hPp1S25=wMZ7=Pp05!z_T*bw5Z@X5BP9}*Du0J*YquX~!l{9YZ#7HB5z`sntY#~oZR{64&W66*E-(G!{>gIiTxcchho2oBHMg`dl zJDW|Qm%_iPW(XDNaEvqgm_6Bisx$4qTaKbmUXN#v&*PS;nrVy>7BiTT9iN7yc%xID zRKwwsRP#%e4|+|WO|#uj37ta(&H>OB;hli)$ z>89%YOTMBJb}&rZzZwx|QBX8#S+{Lo%s3P8-NRGwpKjPr3qm2VPBC1~yGW8f&bQb_ z+H`tH&DfABgL@@EW@zi5jWK}}X}!0DQ_;~6(*D`Ylq`^Ef#svy{Anstdh zuy#&dpQFfS>DF)C>62nbrZ!ZQdtG?2Y=;LWhFV{Tnof1_6B$IgyXkvXchehHBj_Rn z4JRTM$h1KREvCUQD0|tx|zxrx>+JE&0 z!Z%f4mPUCjibUG~%i-Vbd8NjqovCb~J+5Ua)Yg$c6Sb18UCN3;8&!NQ?fhuk`O7Rf z9P76AW2$Yv;R4!u8};!9e*Oh%=Ddi`gD5I#=Ddq+>m?VTFme4nY3rzMEMGX%p`pdw z^CX4C2C-i^F2``=#g_e9xG?(Tsj?chZqBnvvUkBUd4Ml``Gk4FQ`}=O`JD?y+;x_B z{TTlq;ifml8I2Llb{4<;303 z4@-<|kNF=F3m2opah@-x3NzFml)Gnj$Rrta1y$XP>7p)^B9)%YYUT!N$E9r%*|tlD zok(&`bmADAyL>>&W=qfgn>u*eBZ-N!_!4i+08w7Eu5yaK?j({|JCG-K)N0mDy&v`l z`|u{THSYm`!$tGl=l8<9FY!3+{@}lo_o-_V>TBy}AjqlOcSCQB?H8_^I_u`>z1g+< zJM8Cd-d(rx-j%y*Ly{W|8m`rr$OpS-4nR~58EgWG>esSSm~OtGw*3n(vFtuco^6yo zY?d~_@-^fC!dZ^@a&}+le3ysV_Pj#Hf^LL_JS5LNEX^Au5+=3Oky^gHU0jqvG1sTY z@Rz|B9aRk@8DeIKl(AG}E!Nmn7>@ilQ5|)jrGs($A?W4vpnP^ z?`Bh#0Zo}l!kbZEVhB?=Na74)*45q?CzHdw3ow>0ux3J@+4vZHOB@ux^lr&vzO*Hi z+2CKqQtIMfw1Go=VkEqXBWV|pp~-M#(GXFzfpw=#>A-6jdi?tEc zQS-5CK^yV;L`35YStG_4WnEqBOIiqXet_id*7L+iHDcWBSR>xcZNy~c?bSwn5gpcXLzicvgqro83S=u4p@!#ZAt9!ZnIC%!UK#FLct$@84w4j00xmzStu* zXe+&gR$3x}R{Ai4U$-2`pG7n2I**gQ(MI`4wseN|sl)yUL3^D`AA7U3*OEMhf5O=f z(wKF{NRMHmX9Lr<@t3}haru{J*?+1h-g3XT-4{3UZRniO5-F#u&~DW+0r@xUAJ$m@ zZAM~=sd?wr(5^9z6-!JmP<~imKEL;od`2OTn39Y=cS^pg)1xuXt70{;W^)Kh&1;%R zROiLlN3^?4ar{VX>Ap12vuTGIwAZeomAgIcgVw##{A3BwN8`k9XX%8KKKDhkKt89V zRno07ghffMnRv*jRs3sgu{r6epSKAe@uIxT4N-fS8`#2alI#d5z?RN0TQwiu9vUzJ7JK^gGl0Qo2#BQnecu z=P|ysDWADtlfHBzwPq7>&=AiPvC!T6Bl|z3vxNDjOcUDaFvB6@sawZyCd6%$bd{LL z%&F&wbaC3sYH2m=>UvgN&Zdzte*GJJTA7X=Y&1Y!5!TvUq8l*Bo8DW}9c!JzAbxkP zck}%?WS8V0Auelp1+KI*dETjZptBy(d)n}%1FhZo0Nv%a4!S(mJ`+`0lO_3$dilqPwyMk-&spFa$kX0M^~`r4&9*GX}eTKqL$i`ap`0R=$WK^14~ibQqzRR35O;s0?$e zB~>-3q^w?--|>wS1@#hTB8BmqUkgLrEJbF~(LTqAMs+exV62j&CrvGm(yD2+4c+`$ zGg%Bbld|Y`uC!=T@z&)QspR*&ZMk;lgb(H)XfWT07H@FX-%FLy&TGBP{7fVj@7o$O z)p_v>nyEU{l>C(b%J(77;}rSb+QU|f*wZ{dtQ+#v4benwOgZtXY0cslc7#6AEJh=i zueT#%_eY+nc0T{_n#F~HUE0q%ks|lGGcp#%w8=j>vSKg@=D^AC%z%s{0+uy3s%UlX$Rc=9L?ecpwx$# z_=PGOX&93K$rH%+)#Umm!3kYDPGXX+qcOgWsVjZ$lb%uOlZ57lwYrr?8sK@718~UHUXU*_!j|shgU&#KsYu zt&$tf%%K)1sOOhU>}%&-qGEm=A+L3Z{CPb#iO)B2;5(LFzN$M$5ZIu+c@yHM6o*>JAv6$%>NXA6rgc?KuuV;$_) z+BrWZa;vqd>BeIv@_QXgG+-?D%AV(W#Qfu+gB()ZMWpZ({EFegY-E=(5iOcJ#VvUT&HnDK?!3w))E>!!u ziL>xg5!O8gb`orwah286Kb)@FQulcXl3|Z4v>G~7Gf!*ip@dRQ^Y`W!uOOouSvt^F zg1PIckn^|kLvAp0Q18ZA-z@lViHkCOhWjkvPRmssMkUu!F*gJzWVYiZ?~%2owL^HJx*+t z4+%HFMWvLgcR4lk3aybW@iy+D^3Blae9gxSYbFwNDqkhqweu$sjBrP%YN1TY_te6r zM*yjTOaxZ!8B|aM8H&yNHoujc@!AUIRrfBE9Mt-@LYlKy#QkN&@L@HNj5?K!S{0c1 zS)KH(j6tP9>V8c$d=J6ptRGp-b3_Wmf{+tRtTZzi;DUv}lq~Pz*)UoAPcl%Y>Bu#D zO_hYG43yr)GSYZoHM!_a3S{^z^7^8D>sBlK^>sJOtyaFuTzUoZGr*kJPL=T0-7EKZ z)l%D3UrE0pSf?1OUC0mPgujNZSYUrDCJMdA4)=NcxtNTpFUnPYJFXVn-sgG zQ9D)aR2Z>2q0(%AYo>Se5_n7UQAx%|JrDZcl_4nQzkZg)E1BY!|ICe#vT|_+JcBOJ zhRfktqfhx7kEP(>SZ{fGr)21T@>_S#Mtd9Ot#^=tWa^$3mWv$9`up-LO5|v$OCh!E zD^$yxSj1Xwh2#mEM#_6i&8*OJp4d?{t&C^Ax?D2(6=It6GM5sgN&M{b0%0P=10Tg3 zq$gWN@zQfOUW0yM?Zxe~DAmI!&L-CPm+DF~`{~n^Y~6nnwdAv5Eyvl66MR!;_b3lq z*-gjN=Zd3zWljEGDHeXD>k3(=~DMaQ`6~-mhkT7FWb8pz9`cA z0SugNgokh!FrBx1dpYjM z&yoww%<+z%Y0Duh*-Z1y`MIZj z*b83IXhNzP4g=%j63@qeyObz8P#ok1gnO8ZyZ*WbdYaOA6*Ph(agAH4BdoNVjV0(cso22rx(~pkt8n*His8DK9mDv%FCYjel*=D7vS#VD2wS8cmz1~n`zfRSXXW2obdKRKyy;n;4slVZityXrj_E+S{_T6sou z|7DLn;Ni~iBTH`aUfm?WJmY?6$?v>ZH*g)^{adVJ8@*TU`VYVv5A1GvFh_RaKuIFU zMM(S^a?N>9N;jK-Mcj$>d!EI=R_b!6UC-8o^bpUq>sMZYZU7FWG6@3q*9M?Qwdr? zn*{_AvYSXM5*MlXxKsYjxTYde@`~dx5OW}11dVo*m^Y9uX-KwWX%DHisZX1C~(85(*+*2AviVvw$eVWgzLmpbb$z#282dFzDhI41&U-%NT@=LDU%J zjX}W}6pcaL;_F55s@({eLCyjOET9kJGLUp&kU*5L`@QCYBmjdvw_p$x261B$HwFn~ zP%;J;W8l%u92v6siU=4K5H5qV1yn4cgm4*1IxrYRln*ink^l@QxdnraFz7Z0Ib)DF z20qfH9{5#cgT}z~lE&ABkm5$T41yNWW&r_&%RthBfsZ@o9Nm`GcViIZ77Pl)pw}1_ zxgJi)^}?PIDLUzNkfXYw5j7eyqv7yVB8?%S5kvN zr!*vHGNSml(g=Y@`;11E>*0)EZ;k0w=?uaf=#Q%yOo&+6<3l${7OBVvRcsBZ=#Q!x zj3KDK<0L}z6$FG!2$yjEI~w3a5a2<$goPHrC?m>a_bXxH0O2McBHwbL(E%fz=XyA2 zgbVsqx`KdkQN>_M#KNAql1e93WHTzZ=2Z0ORSXso5cV6dHscjQxP+q?&}jh9_HjL&H^P3dDd;Ey!a)^-ArT9Eib^V7Qjx8w*y=&K zc^CHkR1Er6)s1vn@(BbP8ArH;`z#=50U3l#SZG1G8&N*%K5LyyWn_R`5RQRH$Bb~C z>*0bCPUutVJOaWQ6@xhu3wwe}DjiahjjGrhQ_&w+F_=J*!+A@73<2RGgiE+&0c8sq zN4SKA7K96k^0uNiC8aV_;g&Qd(CD}kE^<9wG{Pl)D(%CY7KAGxZ(z_PXkkxANu_ft zvUwF-3o81HDh5jk2v1t_J~;@Es_Gu~MnHf|DR~Ro^;QoVnF`b8}4@!-6f9QLWm`c-TVs^|}?7>ptyT(soN z2ndfOT*4m4Q&RFWtlHHxNq|dOXc16ClwY}9b67Y)*vGRF4uM9SjBu3eVV@C>=~L+p z0>W_>g9#A}dtyo|9aoV}sMwlO(VtT>m`6ak$#?~gmmlF0b}S%j0U?A-SZF~wfGCHI zuyBBIC$}J+1C0iZaGvX7zY#9zQ|SrB@qjI3Q8(nRFN&I*jiE1@6j%Q&}V~= zm?hthAS1gFF5!#?^jSbJ!X+%UARI@OzxP|sVc`Jb9Je6sp-UNUGr~Tuhl57g&$Z}b z1cZYs216ni_V{f$613q+NX6EuivF02!8n2(9De##toGX$w-#4ilMThNka*^ z6XtmWk?QF+RBtF_$Y-d}P?MpYA-|ykLjgm1LqS7BhT04j422Ah8FCC24Mh!&8|pMv zG88jZHq>RPVkmBC(onY{89(xV2}AXUdJV}qkFboPCPRIOWbj8=&QQS6fFT(X5|%gA zW@yNej@>9fLym=w8IqA4zbhK*G&F8VhIfRO40RbQ8}iZl6IL6LK4UHQbGE_2DFjO`)W~gGQ zXlT;VxFHWC1t~v6^@hrZe1!pLkUAZL%oKY3}p=Y4fPoc7|Iz68X7RvW+-ncWN65cW2j&#YG}+* zr=g;un4xh)U4}}A;)cqGx(!tfB@9g(>NVt{+a^CVhUyLV8S)v*8EP^#V90MMZzy1B z$WYKw!BCr_F+(9kMMI9EaYIoBI87dlb42>I#8Y&s; zG*mVe1L5;HE~7NMLA%){HDz*K zdHRVbSPQcj&S?R1B)~Q5J_QG&*Zc|YoD#=?SH_R>O_qFTHI5f}j!TdcB1a+=H2QSe zQW-;pH^1B9y{730j6ajxWaOx46F8j7f%Xh1Z;vEz;cevSd<=PLB$bul%83N&#b0o0 zMkGQ$>Rj@wclCYYC7cVq`r-Ede&^j%_`WV)%ftNc*p=yD9V4vDb=`B=Uc5yUiPZE< zg1FIt*;%6LZTumHBfp8@K{k~YezyLMPj2Dku0N;J6$Z_68U$l4p6N)1ar^KlpZR^6 zZ4GDh$PhO@-fK=5Bzbfy7nGO$%HdecRCZcEgj0v}`zU96aX^H;C)qCvcZgHgL`GK6 z$n z7KtRu@eZ%!PUQF_$?_*=h@;1vyE=Lvy?B9}*L)JnN8!!y;CFpxvibG!?%O+-{CVSx z?wfZcUx?Hc@Z?GpK<_;K+&(6Qv< zjisrW%0#m>vg9uB=9|7Z1FwF~yE}#+lD{(>Ek!MrcC}=b))53*4T3OQRn09(u4;wV38Ra?B?2^ZK^>iZK zG!qukYXRK|OEWDo^NSdwJTRhZYLw}bj69pl#wE>8OH2QXXgD1L3CW zqZJZ$lMJm`2uHYSO3VaQ5aq&e^gT67_C4g;R5mYZc3GNHOS52U#w^W%MIExJg9tax zP78=xKosGoDKV3#Xohmc($px~>5ykpTasqn(u`Z0B~9~`1ce#5pZChMY-}Lh1alTJ zU;%vyH$jP(1QUqzqcn0VkjBTxhCIt=og~<;2_B!JBuld7pFAZ;YD4zhqCChZ2Et9P zYylMuC?RYMAuVx|+8CnzE+NJwgdtmn_fOWQzDd3`FnFO$R;A`dK$ z3kGq}XwDcUG$dO70se9sz^A#W#k4!4Se_P_lrs1&kwH29gd83W)NB#y}E) zL4{i|D1t@@j6q35vi{eUK?Ou9cob!Q2pCLSe7=e@@E}|U0WKx8Ex?a(8Av(=)N`l& z%8i-_k^l_axCMhCXf$sOLK>1yAjpHLigZjxHjaQnh+h$3CxSe15H5qb1$0|L7s6#A z>F|pvqI`idkOW|m;1&!rpwS^?kkgQC2?2w=igZCmwupd1uf>-`z#xNg84OuK!2b-20vatC1JCOck_{nX;8T(ItH=fsFeqAlWdsby5iSFd zb=vjP-Li^JfXhJAfk6pTKF1hH0xsLxQvP|?t& zp>abpg(bH|!}CTmg$0!j$rM(K#*j>5L6e4L3JVINn)sbeVL@$%WC{xk8Imb1$T1{S zSWwiEOkqKthGYs0${3OPeDV55{4>?P}I=d0%#bY4^R`7pvOEtOHzdpRAfGnVtSrxinheSEJjicImghkML$W*%3L28- zc~F}nS)K>Q4axF6sN0Y%&x1ri!Bdv!LA{1#c^;H8B+K)lK0|RsMMK?&#tkJ5iN+z$ zUPEO=8ABCC{T`{;$!s4t8AaBku$Zoj-r}giCKYL)-s}k|8u2UII?2?GiIGRze`?UD zVx&n$c2c9>>eHzEn^X+?Rg45Iy_}FprUxY1WHzrNJ)~k=LB+@zf@yXU;l1Yb-;r58 zHfpJr`jND^M?bP;X6(KC2UB5RaFXvio1gJ+@;PtZZnNTx35+E9%Iega&XPyGSDz&h zCm#`uzTZ2WpPV6{y=#8Q=`|NOMp9euw(O|AmxHvNCHHV%O#15AsFWf84TE+8sDwAigaGCH4PU=!DIQL=cNj>+}yb(zshp)vS zDm`rauuR5H=*=7dH1Xg3NLG0`jD!6`DSnP1=cpr01b05SEX=o?HNWdfb+VrEHtSk4 zujZI?=f1aAr)xjMikZy7SqGB&IQ31JJ5p(xtFt=M&J;>qmfasoubUxf9enpCVOXQH zcU*mpvBp;7(T?;|F7;Q{g^2Vb%(``Ye_{&v-s$FxBq}oI;czlCACJAw7l|F9-q?LR z&wL?*TObLFP+oVj>LVOj0@2?Qm84T$u)uEn#Bfa_OY2rj8+=shT><00>h@$ptfYJYlPDM7abhkO$&_`kjc~3<3JuM(%0da)OK+=)-M3hHKHa zfeh$I%f=vR3}n0|qe1!s7)S@_U6{>CuYfhF#i!bc`6A1+gQ78z&XYW-AjpG&B^0uRf(VyErv=0;Ac}Aq zNIEcRLzIs)29f}I(8Vnnl!QUO=jXCYP~m#mBiER_$XjCfKsP}~_(0I`>-%hrTco`R z-nSd!(#ToBfCcm+Tx$kN3>pbU+4l?02#FaQW&)CqfkvB*Mx5(mpI&d39v2#Ugg4Ni zQ8Abku~4-D+$vU4J*+Kx7jE^b==ZA_3?j(4aZEj=9K_;-l?8-LxL#J}lOsM^j%Q^7 z;Sv^F1e6iw)BleW77h?@;vw>_02&P#;Ud?=ej{Acr?fwYa0TSWs*L^^!XYJV)hgE0{pX(_36UPZQ`Vrx-Fe@Vq)1p(nMOFn@hBjX5{aGwR_ zEFgn$2@5R{Bu57r`==l1i6UWGgDRdRQm)V#=vv(2tNRVZ7RmR{&A15*E;D z0S=;CB`hF_DF5i^n#00Dssy(n90HAY8R00`!!aWq)2GrI1cc)%1`{GM&y@?DC#e&7%U+moVVo15D*?hxP(gt z&}{)-2$!(X;uldw`JwByN(cuCC%6US0%&x=2p72?&Kcp7K9%;Nz#&`#i5?cjikp&3 z7gS`6Dz=tX^jB02daT3kwd8XM2xky3;UNnsSU?`(5*Atz?n9IhF~Y(D!eiWmupcx! zWQ2oU59f_=NS{i_5fF~57>tQvfzAd4ej5w~RcsBZ=#Q!xj3LP3q9tEOKzJPC686Ys zfRaZLFiC(*SZEPYLXyKX}jLkUBZhI$R@I4fB- zG_03VSF)$i!erD1${A`hG+;=EVua-l1q=-tDp~Fp49P5yC&vuQXbDs_G-+tukcYmU zu#%yALuErgLlr|!h9(X94SCFLEnukLP|%RiP@AD9Lm@+cLyn<hGK?7 zhPn(nhT?{zhPn-P8cG<78R|9EWhi4PZm7>tx1pS&grNaLy@v9JGKPi>^%*J{${89n zG+?M`C~s)o(2${$p@N~Zp)o@hLq$WAhQuI< z7BEzAC}_xMsLfE5AsJEeJHH{vP{2^sP|#4Pp*BNBLm@-sh8#mO5+cs1p|YV)Llr|Y zLz9NO40-4^`CZ&ly`gSHK0^sZO@?|6`3+?Z1q}5W3L458YBMxoC}b#a$T2izC~Bx+ zsMFAxp_rkfp)Nz?hT?`whPn-v4J8a!4D}kCG?X#qF|)NkL-mGohJ1zw3^f_b8}b_( zG88aWFcdU2W~j|j(NM_HxFN?-$xzf#*-)pUilLaHNkd(RJoLL#euiYt4%BVPXDDGv z)+!0>HRLyxF(fOOg!LH;8p;`JGc;f*WGHXQF*IZ-YN%kS)6kfqn4zMfE<@vn;)Y6w zx($^LB@9&z^%|NqlriKn>$N^Z^@ehWe1--LH5tkq@*5g56fjgU6f`tusLfE(P{`1@ zA;(b3P}ES_P^Y1ap_rjbLtTbEZvSVf-tGSk`P}}`P?OvL8S)#-7z!BbGZZwGGt_2i zz);9g-jE|GmF|`?RI+EtZbtQybXiflU||Id>$I?-^nYi}>iEM7)@^&nEG%YG7eTC^ zXXJOOo-VsNE{`O~G1v3(QQ^)vKwzEMCL+CfpXB__ zkMTAiunFXxh1-t2pYPhm;LXG0rL0_EBd4l&B%h0oLKxF zg^8egHC>ELqY;TdyyP#(dsjaaUh)p&=HvGp_ii~4zx9#ilP9JxJBB4<*Fx~A)mR9o zG$jlLBQ@Iw_M~Z6f~-H^tCoVwM%QV{TcO*|I+xg_sdb!_8j5nfO!JJ)TPqj#V>d(G+#muRHtZcqzAW20M4^ZJSvJZxf%8q*TJVx- z)`BhEbZUC^@#HNZuom2X_Fq{GzQ8TD7Tm4Yg0H{dTJR8e#eH@9OwN2tHUA~T(XYwo z$?)!79ZTMxG8g0oF>Lz&%3M%C*vD#6@@ks7;5%wAc%+yMj(^ZxFq|BlG8a4yYGN*k zGk?ql$M%>DzG3Eq1c=J04WYh81}7xtHI?J4q*le~4bz@&&dljIAt8m&EP zT^?boG9b^e1dO0OWwBkNCSc6Okc3+ia8t^*eDyV$3yxWwk_0tU2NUV6j75lH+U>(2BdZ(SDIblIH49!E<&-M~pV;tCN}2)n1Hmp$j9b*G zpo(-zMK+3{bcbx2y@-H80pT(zTR_DEN(gsqgmMh|*QO^uz zkkF890Re-IigZpzHjjXTM=kP3nh-FkN4N}v7SLt^0ffsy(jnJ;+$n$F7)Syz2yqJr zMbK!yF(_$BR%}mTPyw;p>rvzyt88=l74gLoFo+^t2Hh5ruz)ziWgzKDxgpB`gJn9U zAPI>2;T8;npi!SO2x&+*p=tI+RitAovT+1?kg@m%5HRRNxC{ywFlGTm2$zAR1A`o* ze7G@?1Yl6)77Q|=(I#V%(-5_5ArJB(@}Qt1TSUNM+~TVsU{FH14C>WTZp4Qmz=LoZ zNIEbmBg!{mkxm|zG@Ys?Wd$_qHwGSzOsI)s1p@=0inL#aYc{jZZwa+oLIH%!AZh`f z7T_RU22BbV)_Ff}j-g7T*{G z215v!LCFHj7BG%*84OrJ0a0FP3?u>apu#Qkzy}&_GX{PQ$;OO9P(?bVA{#}(VAA6A z$<8mujc^$Rxa3uX7T`y?3?v-_>bXObYRejDE}-i<^fx^{}vm*tupiGMw6=i ztumhmS?9VnZ%8^po|O4CVQq#AhOA56D)VW=r0e3zq9OT?9VGKz(}V?4iiCNXoq^g6)f);K@)>drH5rN;@*CaWpp2Rf zON)N4rQ)1ZtYnNNfI z49R>NR5TPsO&JimkF`z=YHG3e*&mnYir^Y_n~Fk)S@((}wU~^SyPl$MfMy#{{7vP+oL(`_N4qxAtfUHHgCcxQQ;lR7F=b4w(3 zI#zmrretNh8%{6XH+rxGq_hHkRmf1Zk zX!kocX?a(t20w-UGNoUYYIw6F`7B2c%=BLQ8L`%TjGWtJtrul+tZJ=Sk;zrEU)Ias z=a^7d@unOTb^;g@#1V`IVh9@xjPzPS#sU%u*IG}K;1^wp@*CgQ@sOtETI)p_hRB?Z zp#tNN7#zsSUKQJN!f3j+UiBldf(7Ie)e(pNq7PC2{#7>WB1*5w1sd&iM_n3{ zm5~f-=3vH{C$Az~P`Yk|SED@`NV|96Gp3qgTNi?WPK3)q(vjgBqU<#Wk^l_i+=79O zpGITGK*mbEbZ^=&TYMP=2_+CNg8>W3TR;xsGLUp+xP~aFzpHs5 z3BX{8TQDdIgDzuGF$O*sQY7D1cckMgvfA8OJh1r25il4-xC|;5Flhm0gv&tEfk6>b z-p?3F0x=qA{o#0}sO(*KS1y(H37G0fQXEWiVy|MGGh(Tn3U3 z3VaRAP6v%a2mynV#W#t7K^fsP@adFyTN8qS zdW6eB(t$w*QLZrtk^p(&=OGyQK%;%ez|Zw?My|~eh7~stV+ATh%xJ`oM!-@FS!zLq zOQX{QVipiZxP}>$7&O`t<;SpyXDTK!OLbHOCz}ioxHJeE&gu2mpgv`vv<3QQOyvy> zMny11GIilWyGkLc(2WG|!v3J5!4N`fFNu)6U+kHvy$F|Zn+1d{Ac$}Y3oU-pgebQf z;h0hxakwS57c@F#gcDp3=Z$bipRzCD0{uA865r;b6`P zM=kj-1cW;gF5!d)^jbhS!X+%UARI%KzlG^OIb2XGBN=W%xCj~@Gr}dVhYLoyqEFce zbAf)HZw3Zs;0NKn5iS_vqKd6075x~p+8 ze*pyHq6n6IjBvsTXHD$ZmzOynwEMAfUEqF&vh>UQTsluUQ} z(otkcVkK@8IU$LX(nM*1oDdR}P}>s%@qWJd_h>w?{o2F{-F^RfZ+*^v&U1ftbmlqF z^W4vQPAa%=N5hU9CKW7M2rgrizsjQloZ(eSIcu_sGrWeT=N6pNB+s=4=VB^ouY%bw z9u>kImt+_nvfz~kuPrze_shqu*V%ITE`}4?#-xHrc8u*9Vp749h2Rb*`S)(1NCTI| zgiQ#pLDTH##{h1F&(|{X`LGpx#e%5_?m(R3z6{f7U6tp2Gbw~QEQL9$ggLHZs3lGv zet|*o43i2@>{#2e!lZ&F3&C?t@&yR~L*|>QeM1^Coo_ZarSr|y=)srHH;b(A{$4uY zOf4aN>3p-u>|V?_Q;P*(#s_ilzqV17FG1G?h&) zQ^nLaRZSgJ&7@usrPNJ*Q^TZgAHJq(WNMklrnYHf>X=SVUDM3eH_c5$)50_|Elp$7 z$}}-0rc=|}G&7x><|Z`IVj7vMrm?AJnwaXQQ&YnlrxP?dDGZb zFilKF)2XRsnwiR?gOiEw&&)~k#!BpRl2QF~aB^JqaxP!gAHzwLebD55F9LgKJAJn~@k(f6yI6018&rTy!?>vq_8pX!J9K#dH%P@P3 zFo#K)!3x9SYZ*EbDtP~QVlLCsI^qrTv2CvqrdJFzD1|vJV;Ik>$n>81P5aNj@BexH zT&B10?7yCQJLzO5&0*rv;B=|8{SWT;dYZV-tL(2{dC$(3U)^CzFOo4)@IWmFji5Tr zNapTOGlA)m9gRkv%-C?Mp)So|;`3ET_0q+(_8F1$aR)sW_LANUZ;x3_ymTyPF{$XC z+aF|&v*ph1e}I|a@r?Iuzw$Lzjhg-z19-Pod#`=Aq$OW-B_=T`8Vh;tZbht!yL)@A zS5)oYa{nuSh96qHY}PpINv?;o(m71&qGg`L6nZa~I(wOBDcyax;1DJ+{biA6eldJT zgDYk}X)+q#^la=N+~vtjjJCyK(#{oL{ud#2a$otQ-;qvUy1dlcce0TI#rWoro4oWq zoR3-R>?>7>mO6Xn$tN#8@1{EsUiM&Sck7``lb3!w{n9)84_@7RJ!6j_;lbud*E&1V zZ>ph343n3NUhC{{{6XdhvzOj~QPlck_R|0IKW}C)z47|lOX*@~I+NQ!xn?~6!!Ksn z&AClyFa51&>Adc(*h#aOax}4NfrlhUR<*S^C~>rn1hx{@iFot7sfco4Ncv z>~GS!O+LnSscGJ2Dg?8aRG5a~sGBGu@y;1-yf6CrY0-JdEZC95c(%(RiXlO);{VhS zM?XhpA-bY{)7eV}bro(rd+Ds|q8l!{hDl?#?daIi!lW~7R5IVQj!Ay06)~eW^)xSH zs{Wi79W$fJkQcL;a+)Z~8dWYKS`3#bfW;&|bt>?40!}e$%&w0ZVUq7~%&3W(S)qN? z*-ItIEI6j?+Cj-Nmo8zg-7n7!+pI8`(=F%n%&=G{5HX2jzT=1Ddq$BLGs9FVPs{1K zb<9Ro$%C3>7ATVv$}YNyNzZM~j=CLHO!__Zc9by5_c>-1c`-ArrI;1RY&mAfF*R$I zbK7(Y9SmQmg-K%$?HJk7$D}bEcC<0cNB&lP&nWU@W>{Y_tB%=s%#mZp{8!eRatU*c zel|=Rb7epG z@fc(}Gwh_Mm|y!h?k#vmJtS&Z3VR0e%E@z>f26BD->;_E>Cx-AbT zb}@XpHYPpOBRj@+3^C~_sN$fxgGmmV-^)md0%%}?O(+;a)203bk@)j5r%rL2f#E!KcD@>|DaZoVFBwuX>3V?!hHlaY%1g0%3$nlwTP{W|05GE#W zp`ZexAQN+2PVyKOWHG6Nk{x9`ikMV^;-DbMmgJu@9hq~W0IDU~gn|Y%ZCgPrJc9`a z1)VT4aSH__2nAJ+qPzwM1vN~nplwITjus|Wpg0^+$0T221qy(IE}Kv=gQguTScGSg zBj1jK6~wsSI!r8khl0M#8)Hx~#H0#lcFgTK#iR-p2L&TcGGMkc=Rg5auwWAkG+|-d zwSrQ31}!V7go%k;oP!30f~Ct_V^FZdqzW|WNGDsV9ZyzD6(|ml1e1KJ6(|4-^6ZO( z4m9msK|ef$1%`7l3e%f}iDmClP;ekkG$K$DlPaj$QMaRtNfjs#3QCydHQbD8J5`i< zh*iBb7Q%*H{He$Dx=_KSF%76_(wGKRGHFZ$s+csU0aZ;J(|~FwjcGtFlg2b4J?lVr zSYsMc$D}b0sBhAk1{9ATu(FhCWS_<~@J&n_(}3c6gw2{@gPDC@`xd6YX=xgoR;H1u z5r6Q5v8idAm|CV&Q`@)Av@j*6rD<()suOhZ%EG&0ppV^iHUF*Qu5rlx6T(jOb~=BBY}VbWh9 zzNP8Zv@*?t;;ldIlCY6>Sxh!Mh@~Ux2PN!6uX3e5dG$%q**fUZGiHuz{6W%1%ji-( zILn3^%(Y88QEvZ8Ba`%ZGP)S(n}$i3R_UE9EQ0{<{30KXdq}`KZTNep(-5{>)G5(`T~ERg`*V ztzUj=&deuYx_|4pU79oVN#@Ml#V*X5k!Le!MrA!ZXU1i2=FGf;IWzCuepOyt7?Rlj z`RMI3Qu6@oZ|Un)w;tHN{a78zmmb{w>8pAK>1O84T+y7FfBemt=gd^tXFB9wNn>dp z*Zh$VyKc^mzQo0xnJU1&uYuuiS;K7FEOvD4Xkj*O7CY*gP8WCuKW|m{ftQ znv)z`lGnXF&Vd4;pu#2;ETmv!1)8FupTi1r#N-?l!la`HXH|~UuYl37fZ6;Cc697$ zVK%>l9d%6dtyZ7_DCn|DzXFZh=`8&f_ zjF}yCJ5Diax=+CnKEfnl&Nvj!N0p2WW&M#6(>WHFvBq<49-j|0+^dmM!fY3ha$$}O zGGu^5RIg)g{V<24Fh`Rx$1@CqJs0#ulL-*4sRgNEFEV+e3_lK~{Zqk`g}1;wE`r>S7c!m-9Aul>Fd+z%;d1$IL42%4@fc*5sv zi3QJMuUID>!3zk%D;XXy3Q@gEm_aSfVI#~@E6i~R!x=7GSH-$Ym{f4xj)omIOe$Ei z5Ug3S$(9ALL&{l`O}a8^#!NF?(YMX<`P#V!7x>I2QNtj(6y~@hL(LJQdZRFdNtnY~ zn4?9Q;}r(MEr;)7IFW5kDtKha*p4A46)af@?qHHX_m|=fO9Pk0giQ!;K+~KBxA=T5 z8=nt5u~)1@j^IAT86L?n6DLIVl%t??q~QoH^AqMsV-VZVJ@&A{*{Q=XFuGJRso=zp zwH+%=Dp;}*JjW#el3AEs!;_G5cFraQ&!B0+f){+gmbc(l>=lcaBX|uVI71@}!5WL$ zW?EC2K`YE*C(Kbl%<%}r8O|sbz@@4j0GBEz64SM46lOX=}*pZCTreKu0`+!Lhww6 znK-&RQS*n1=PD6g2|B8UIc{J$!+nPzV-P&Vq=IL5%Pwp!;6q| zwqO&2SJ1R(!D~KWt6FeIH4*hN2En;7#|0UxHEMMPufh!0VGc92Dpak7IWAxjyma_A z2Ei*#Dmd#ILOBeM3?>yUSqM%r$$!zz<<0Q=W=@9&y-ARzYY6Fv4P`t-K;zm_)|8>X zg>t5>DR0V|3Z}fNXeyXWrlP5ADw!&#vZ-pSm};h~scx#78m79bX=<2SrlzTFYMDBw zwyA6CnEIx!X=v)3My8=@Y#Ny+rm^YNG%?Lgr>41SW?Go$rlo0NTA7xn#I!Q4O^NB; zv^HftL*U$$HD#zO_4}E!ro1Uesbs2{%BHHRVyc;{rn;$SYMAP# zrm10SnVP1ysb%Vz+NQ3lW9pl_rlF~C8kvTsv1w$Qn8v14)5J70otoyRnQ38~o0g`9 zX=PfP64T1GHYKKW)7q5r41se~)|8>n)$eE0I69O!`s;0WBW@?yXM4mZSriOhjlSbo-*EY3G9a9Y0vj&Z+V_)CYH4ROD)5tV5 zjZGud#56XYnkJ^1>C`kg%}fi^+_W?;Oe@pUl$chgwJ9;3o7Sd`a`cR_n6f6_CH4E6 zvZlOA_bhw`Q{GfG=|+aHWGb4=-0#S`_zzg?|HX*=k3bUZ85sI-{PvHjc= z&1Beq?wKZLemhM8O~T~aqg7}dWF?F%CQL6MW>5%oSi~^IR+5Q19=|*IqnYC|j)Dgo zJYZa>>oEEzp5yU*&(-Kj441@Q3%<}0=VRx1#Bt1j!S%Q~9xD0mIwK4y-`%_`)-*BlT1HVp1c@n(_JOr~=@UdXOm zp@uD)bdE=bhADr93pQzvN1f&|{gaSHgIrq~!lB(lqg5A=+T}W$f3$y95RSPWrx+)f z2R{BpKS%O&cSXBAnnI-4wC_Q@mTuZmTb#6}TFJd$F7B>_QZ${XB5c<1?@{7Ofg%I*>KF7W40W#=@L5Hoe2tPM! zOY(zP<9kMt{GQx9=x3EQ?AB4t;-I2ny+H@VuUiY#YlIoJFzPsQ6y?Qjh+h}l{JPu> zaKsIUUl&RT{uBp?Zez)>?}h>e;9AuU2L*j-+O>jFcm^vB3MOHCvoM1N1_kcHos@O+ zAzg~u{MLLVP~DCyCRLy~I7*o0uULTsprFAf6s)0X-wHBH1hbe31_ik=y+W8l34?;B z%j;nD%VRdbyd5Ju`j}LK;-H|7Nmh5pIZyx;jM;>O8Z;eRK_fha5e5aVFuhKgK_7#H ziOZW~bRA$e*MS|09ZO8AKygqo!z6#n3KReZMWvB=kPe!TtY8+NL5BP?3Ko!h)nNu} z3<^q-gZgYA>HM{q#5qs^6tt{BnfB?}3X~J)S7=y)65S}Mgc&$3{y9F<`Mp-404UI- zmYjnYG@V#MCp?>nO8XHyo;qc8Yyxo(KDS3Ym(20hs7J)vJkq&>rl(f04$q*(AT+;1 zCQL6EW>CPOAj=3kziL4P=}-NU&c9#<3cxw2YPg@_WN13Gf?9auwWug)K>P}=FoO;T z1vM*ZT0tF?UWpw$x^}cN>6NHBXl`JVU)5|>>UY(3F?pdy70U)!>jQN!AyvQR$wsE8 zN!?3)u8d=V6;h?ip6XsgexNPh69Bmi9jJQ=)uJ*PEKGHix|jGGCUq|%Pdpl^dkMAd zTbtS@buaNvOc^>W(5WeFQXPh}oJn(tpuA~eDwvk0qA3@DZiA93Zz`J#ri!U(s+vls znyGB6n_8xZscmYSI;NJ%lWhiVQ{TRhX=v)27N)*wX&RbTbLjUoY2FMpHmyw))4A!? zREj^d!OW!jF&sBHsV;yPCe4k3mZq9%WzzH+e2J-VTAPNZbJNJA?j^t9*re{Iep{2e zm-=l@>Rv*b_){3DdkJMt>Rv+ndnLNMmr&lM?j=+(se1_(P3m4k`eWlbbuXc&N!?3G ze}VYay@d2OKuFz7$bXjco?aRhWBFL-5<^$;G)z1)&8&ra(Ag|@IV|cghk3kVjw@l} zIa$i=YM1@PwyyI1cr%Dv@ImojV4}AbeZSYi&|2w+>Gi{$48xp_F!aI3nC*N1>6d8) z^~SRn{_$6Dd^ec2@S`{{&sz8a?fk^E7NS1czkb$&wp~AKL0e+hg1+MA=?Uqq1^F*; z_N;|>-n`KnvlgP*%d-|v4;2wW8XFwwiEC!`+6jb<%;>?`@QTaiwG{Hz5X#B~*& z6wg{vn9pw3g37uyYaz;f%&dhMON(bMsI!yKTF}?=tc4k$9zSd0m-3fqEof+Fv(kqr zWq7_Q9cPn8_U$ zEDZ?GvlD_x(6nH|6Fy(dTktIQ>a8&dUW7Sb$=qn(6Pe$c1urakWx)mODqB|(lM1fc zQMaRtNd-$5f=ig>r@z&IZXxBY!6pP}n0zrUS#XZe*NPTgh)Ef}8V13oFvk@cW-o-O zUWQ=~&0Yv|<8?%u4&T9WB3qbL@X(Ht9eqqHSh5h@#v~tnq5n2Q%GsDr2yQ^riUqg$ ze64K3o!F~4!63LF=6EE-;7UmROx6*ZIQ$%g;8RR0cx6Xo#}bnYmMjF%Fv&MsurzQ< ztl5O%88od~@Pg0RsusM8y?QyWB?PabZKhj@7>luB4J2`f7e2!pb|SaF4zpQDu+XkSGlSO?gvB)g=isQ`S^8sG<8fPQ`a;$^-UAg&~$1VnP#T3X>OXB7N%3v z(lj%zOmkCWDy6@lshs|Priv-!bamB~HPuWxQ{9v|HB1Fl(^NFIOeIs>R5o=?6_Z-N zTm@BA-&8ZH4UMmE8kriVv8idAm|CV&Q`D*K?Wt^_AnzE*vDQBvi@}`EV zU}~C*rk1H>YMaWYj;UhmnyRM0sb(6Q>ZXyYVH%s7rirO#IyJRTGgHSjH+4-5Q{S{S z4NWW4$ds7IrnPBeIyaq~GOnd&rmSgh>X;TLjXdc0GpT-uR;HmTF^x=X)7W%w(w%_g zGOBP7;#p5dNIJToFi*=HXR*skCFo>sU(UX{eO=MZU+|xPJd)*k`*d5OlmbMuyszU9 z_LkmQ)Gm=MugQJ=A_wi*^{g9_dgVC&NH;fza^m?M^1u*-H={6zr(xn5Khoke?a5Pp zI&QPbK`G)5>ai`RDKJda3>vh;9JXVZUPmSp;GeH=^OzU5d^U?5oJYZfb%Z%yI?PHY z7CBfxQyuYGLt>KvPjEgq0UpO4#F7t>OMt8B8zjL0+A|)X0RPj!bu+i=UWQ7;32?=_ zVFFycTqM9H_lXnWq4%)~@EpfKaROY2Fnp$ObzK5HzDgv(;|wVQ{?aeHK?3|wu#usZ z*!^({@Grpmm<0GIp8nr40q$>cCdHpk0{k1%=2x`bc##90$ut4}RqRRvJkD*J0Dsvt zA^~1tCndm}Gzn=jh9s6*L=ydUJ=#G-?Oeq4bxhi{Q$aZLHrXg+;A3NUO!D04vdBTp zWmdG;!I276-#?BytNPG}4*f$OL~;Ii5XI2Wrj%%Njum{QK~nTZBs z`Z9pCiHn}Q=u=D@Q+H8LKw`%dlg1p|F~cNJbId4`zMb|Z;Xr`t$T16!Ing)@If$6l zes=B>a{BUg&oF7sA|HuavZH|U&`iA197mQd$^ZBbac-kX@}>-vs6VNpnXzIPBTLU8 zNsdeoSMdrDBOmK9gG{7%&SoBCSz=Hy$D|6@cAVRhVA8=M#X-RWlZ>7h3KW39oHTo_ zRM>Q41*Px|S{M{m!bF0derp4w$M?BqufN6$6aWQj_PPU2PpzOIp1}fxf>D@Au%loG zp`h)Gsjn)9kts}i4#sv&>=~)d9JvL0D zLh;hm2k|-*GGyxA;+xyoFuA%LG)=0O*i*e*_DoFb-9oOU1|5?s6ZY(yvL^Lz*)wNS z?-o)Oz@8&h(KI%>LKvub%bxmEWl!~PA+Lh5$-V0D7vJ2zbJN0C}|wUT3DVeREUAl!?n>P&H*u zY3?;=s@s=0HB1Fl(^NFIObt`p)HHQWEmPOjHuX&%)6mp4jZC_T`5nflrD|+l$yFbIqhAT}%{X`WAFB5Lf?o;o9PLbw^-a|)@8ZP@yb|KQ)vb51 zfLOc|;w?TMH@&U;$i3Cu->O$ay!t_Ht3G`1qpyUBElLhQSj0sZ_~ELPvFR%z!hd-) z$>Dcw-+lU!bdr)iczX5VweO5#_iuY3-ahdTUI{Uj-^tej=%y+6ZK;y)eou1gMolC}4qYH~P38#7G~ zyUTZ|M)*Zv=S;2d8zqM)f54aB+H)u3v5&O7yL1!{cqfMy=CexA+& zadKFlfiyX+ujAyfx($y{4*$gObKM=BXf-x&h9&miB!_3ZjWcJ0P1hxd7c{~ylEY=Z z+y`rla^GGBlePt#cC_qhVAABULU2SCldPEm!922vg~SG z?BQtl{nXb*6cx!=ROQ6|ehp1mzT2t^pmraIm@U2^ciT>wK|h+D=?st))lhs-RbuJ) zbOmt|6$A}J9BG?JarmC9;gYNsC;$pni=aSlhiPI3B`c^{!N>|GR-pDW_j^@3l&5M2 z1#2i(kazyGU`GyX=l4;-H{{Np7+N1wcWIO(^I{!MPRmtzcvYEi33)K_7#Hw#(~d zI0qd}s$gu##EubW)AF>Vi%EX+kHoJWDrlR>f@R3H@<)ueQJBFb%;7A|(IU+83d1i~CkWwN%F;2l0h0>$+C(RPJ35$D zuw-#W6O$AzxD`^)hHTQc15Ha7+~@PPq6Lp)uigT)&11n~j%PCDT0>Nfq$$@*jYx7> z0~urjHG;9tlj0Zzj~xCKgWxeH6}+%RYa{6jz@&mD3&9gi^5b6{XIL6I!^%zShlZvV z3tsd2TG@i56_d^aC?2U5!x>id1;Mot)oX+qw89*A!W{L(9FH&vP8>d?fmG@TC>5O7 zKr3ApJ93y*uw>yl$0Tq3nh;!4+ll&toe*4srZo$$@%dWSf*Y~djpqwYLR4=SX0Qlz zxC(Q$4s)Dwg;uhzs&$nyso;hkO*`tCRIp?rxPnQ(%!2zCtbt|(k0iKZ!4nCtTky<+ z*BCB|MVQTeft)Mbf-Bonn8Qk#qgt5b21d1y!}l?q;SMGhJho$E#|V=OmMjE!G0FEo zJ94cn%3^>$&9%lL2`dvjgW9q$U7){hN^`9pQ<`h-n$lcr-<0NBho&^wIx=OPxziAg zk_4uSDQ7x0HlJd9|nn#!h{sbZ>|s-}jiW@?)1rk1H;YMYv-j;Uqp zn%btmsbflWC|%RYzP@Q}8k#1ik?GVlHqA^E)7*4wT9{_0rD<+jnHHwRv^1?vE7Q3t zF{v8me6CGH)454?E53{~cVko5qzV^b&U9+Zn^X(qE12e{qDfUVzLH6eMW}32eGOGi ziK%K*?TN2uIyco#8UD8MHB4Dk)08u{Od7Xl&$g*x>X?eAuBl||o64r4sbU(Ls;052 zW}28ZW=*_PQ^PbfHBEC<%d{}HO-ob9v@&%~iK%Z|n}()y)5w%b^LVCgn#VKcOsA&2 zX=W;z=BA=)VJexHrm|^es+bZ})wDL%Oy{P$DdWHJhAC@mnsTO=DQ{|<3Z{;!XzH3u zroO3c8k#Dmk*O*oQKovDdDh-oi(Pulpjayi-^9MUeFa^EFMn44FGddY)V_v`oHE)q z>GwW9hxw+R{Wm=S?ddx0nOKATP22Zq!FJw$xZ8{S$<_T|xq4-B^~!&Vb=n8RD3`Aq zS<>D8`}xvcwq0f6Jl?F$ryY8WcYl&K+dukobsc+Sw!Qcog#%}4#S^0<2XP=jkjlKX z_rh>Am&^y5%K* z>n)MWRHW)7zp}d(VbYkl$2%0S_HKLYD}I_-p=KIt4nppAxy*FwbuZX1S-S_{Q{K7z z_p+Q{3EJNKi#kiJ+s+S9N|WWMyl(sV=tH`0yH7}ZHYmXBwzJ|}6tQ#Vm-)q2b_{WR z@9%J-Jo3xc-j8QB(y`O4Ww&4bO>ATUAWp&KQkq|a^D!ySPk)R;K7(g^zyAv|cOKmG z-*&e?eretIk6tXc{-3UHy@B=CKe%)6uU}fXUB9lL>BW%JEO_1aTYvus%eJpBN}69R z+x{Y?Iiq>+^~<(DytBX9z1{QXe)8j5w*5Kmx;eFJM)Or)q|@p}0hH0C;YCAIQfN8F zIVAf?pPS~;L}&EACzwf&-?y%TkM%6_A1B{FZMn>4e9I#hMyI_%Ek*?0wm9_MMJE{j zUE|1wKa!=y%tFpaU6(Lze`&OSRTiQvGMkL18jvi*tfpNr*6?B&a1qVAr=CTPS+uCE z6Ck@nOxu0Ip88YKw>f4Md67k3DCWp98;+SF1Hm=aa?FWi&K>g_4h_f&K(7vD3A4=8naGn~Npc9_KEMo5U!}LaB(uWSu zhAwY{LBR-o=izACk6(|l0)|lkYUmWK^0Z@=;bxY86W(Ae-3_1}r)+%Sv zq!ARUUKErZsOmsvOsb$^N7IfvCRLy~D5zkPsud^z3Y2Z-9Q2{-+zLkF8LT4ao>EOH zn1zW{FACZ&uaDuYb}*@eu^kgTMwnEA;-H|5N#6J@V^ZP`w{EBvEZ0W|d9h zW#*=wNtF$I=1o~sBsLBXUG*F)Z^3b@BG@w$H5V^(cgtk+BKL~-)E_o`M)v05uxhH= z=Rfnqx=DYI?Ab6iO-+;kI1gK<5|<2nwoPSI$5b(OO;uChR5J}tb<@byH;qk0)5N5| z4&t4f#-^ERVw#&yO$*c7v^1TYR;CQUHDxBItZ8k^na)jlQ$~Zw2ZuFN*5pj*Vb0XB zFK=?D^RQrQ*;h2RO(l~qKeUuh&UD7we8kf=iLYv(Go6Pu(;|FFD_vRphjlh`mrk^i z3^0Z!_<5M#IyUZQHT-sPmch^wnCs#@IF6h5!I|!^#9L}lIs;MWvAX5_DP(jexHJ^j zPp7KFR=oXQJIqNZ%vm>f+3RDr@9F$!HGyvYVCXmh#>RJp+}~H>yqx>{BJI5Y9=#5p zm$-j`+~0euTla5rfA91Oxar-Ikb76W4*o%HyY9iz*b=!v{Utt{{S|$P++SUvocp`{I`~h= z>)_vb>2>f??hSK)7q5f=#!&L)4~D9k>vDg8@Sf-psfTy4r<~U2b?^^Wc^&-DLAkoc zOV;bW4*pZs2hOkdZu+9?l`}QoxsudKB@-6pz7RjY8=;5l45i&CUb*D{%Jbi}+k469 zRrNaf?g#naTPND=v$RWDK=-klZ{ANO_Yx9zWTfXw8z31`T&UpR% z$L`#}<$2=tb?_hCdE`EJ`I73^o8{TP{rnYgNky_^b{xgUZ0S+-PA`2O{CoeauBLb$ zygCH5@88Ai;Ny#Iy?giec&ASF;N}N*_HSkh?>DEfga0lab#RpC0o7NFJm7!GB9AO! zjnOE&nQG7M9DLWU)ffLq>E?S@G)%SM(+DOfD26BRi>F0&_rRfHNE{jM#;`P`FUZ5x z3V}nzo775~SWkk|xqqq0HeGPzx~AaVvs>y!GyhC!6P}chmQg&oLy2l9In*Glt6@JD z0mhMme4|R=B6Os-RPqx{#w6t!W%bTx`opEkq!i53x5|Q|Fd8437{|{cp8I7X%%BwC zIA$W~8>=GV8)H%#=X}&Rb|z>Ir7{#u-x!lTlnoh*!Z*&cFET2Uv9gSsWi&3y(AX0) zG|WWuBIA*TT%?zdijJ1Yq%taYRP88ZQW*+{i~=V4Af{Y=XkTH^swPj2!V|GbK z#WHG^(Xfn>3q8dkV~j~=y^UFj6Co-ecg0&RzT+7Gj!;u=G_6?miqF@|R=wskstbHwRA(?7)j4fq zoi$flC0AONFo(4;M~yJYEexvL*3if33c+ly5IZJzj4+!k#Evc|`2wq!5LBPCNmna0 ztyy)2&)2F}UE?#VI~Y_qFdNk^ZQ>FRWxalw!6?k(B+St)%<%$)>X|hxF{qwnQq^la z&h1DrscLECTrV)mU7r_8!MMS(YNjf&122=hzn2b_=lF#g_a51oH>D%w1=Ga7qA48( zFPUccl}$1H&FasgeQ#l3WHBxtN?O~uvM;h2Jk)8*$dITqWlb8}Ms?1Vp~(T|O<7aH zlrt4gc~i+$FqKV3Q^iy=RZV46%~UbfO;uCFR5LYAb(1P=zC*)QG&N1C#qqUFWs}=j zdlgg1zN)EfQtiueeN){uG&M{kQ`0myxt`vvdfK+{)V_{sX6l;eCRMG(TbPEXrDrj{uagP(hClg3Lms%z3%D%3UQO?^|0ogVBBO-1`grjluFDw`%I z54P@|nyU8AOf}Qoq)}6%FH8;7($qAqOf6GlYMa)kj_KUgHD!Fw_f1*T(3CTcOnKAT zR4`3UMboLNWSW`Ern#wNT9~S)rKx6Gnd+v*)G)10P1CulWy;XVR56{34tiQ{i3_vpjkDOL*AD6}?W@^0w{I?b`Lq7&iz0zn zw{PL18xZM?k&fdbL~m?r7bWog2GiaPHwnD^=>GTFl`fp>b^86oFq?&>PQ$l133E6P zGnj=rUSP-qbrg`9xevdOVXamKI_t{xUifsHQ^RoYjl!hku!Bj^;c1w7Rm%Re55Mj4 z3B1|P{u}Rj{+sT2{zv2O!6Zyi%{q=jyhy5D8XIZ+EfBy@Sw^Ov8M_#|Xb*xzFBZx6`dh?#; zo_0xlhXs*K+&y?Hxw=ngxA*?MvT=8xRXB(wU0tM?E8nFLK7e%P^M6|J3%~um06chBsZ^ySsJo)%{yPReeO8U-8i$<#Lsr(+S-E$xkRb z_ap4OIi+cG?jJchSJTPTdb_lOXe3Ed^dBx|eAq zn56E&Dw)75?aMNZ3f#IBxRC~CWKn^`^b!}7QSC(!0!jnt*+TgRJ93ybu!_fVj!E9n z1bDu&N+xho`?7|f0=F*(R&zj2Z3iwnaLMIYU49vp25#8Vw4;tm1FLufS1`#BIOdcmj7Z$wwcIZ>*9De5!qU z4oQK#mjbUGxZ%Jp2cEf@rH-K~j!6Tr?Krn1!K8szJb@ROB@;MWx;(n1!2L^s zH8iaLfdls)SPfx{iB>M1K`0HZ)~wDb21O-I8d$~SP%An4)PIX_tda>FjokE6$l;~H zH9Fe_9y##Dfom=%8o2c5pfqsDjxL74ZHzkjT-7R`zzt0D#~fHC>r~Uvrpwe&2Y*Ch zvWKnk^d^|iI75fe40rUy3`W{ve=u`TeTmVD$5=-CLdc_YI}%Jf&Y)n(SYVQa-}Nu9 zvM$nRGiW-tj74~QIfm*tGFEIt#yU(qn~984}cBYXb!Dcw4;Ja zZn6wTL56Z$oQ(oBomfUGJiXQ>85KSwqZTHf{6dBkX-9oW>tIqDV?OewCw7c5>Df>) z99>NE6Q78)p(y%M*o2G@G(EM9et3Ed%;s#2_>7E6n0QK4KZ*-oV)Ub6Hb06T=XNBR z&5vTo0+T$%j3Ck~8SQlW`M?|(9>e0b$Q5l~`&u^@?Q57yrlv_%1jn^ZRa4tkGj&Y* zn`Y0hscGt)TBe~%e}wEgGIdR3Q{OZ(>92-8PfcUf%rr60O}f6>b7AV5mL^^F_*N$8 z>^5t&>MsG`+CJy(2InSStoSk-{=IlQ(HXUYu3&sQ`<$~I11C<8nke zsf0PJI$l?j_R|Gh2SY{Q?~THojKjpcGO7Dcq3wI#`#Lo(Z=9uj#r+%K4YG9KjdOSZ zH!q&hyF)ww|MP_2m&bQ_;wSVTnyLx-6Q`N&SN`0a`KT=2p*}>G?*GuI$3LO>`&SP> zZ|CmUU&_+y7fqiS{J|G*e`$vQzT&3r-+tN-%Z7a9&GD?@s})Jl3O==fXrQ_KxTOdQ4lS;eNIE z*Zj8Gx4j8vTk)nc)@^;)#oK0Yc{dknF^)YcU|2WiY0QQz@$u@x&0q1--fcgi)D{i+ zkH2*P=Ko2YrsO_O&*!d#o4r?Vvy?ynHx9|t8vUoHvj-vA!Wo{nLOH*=1X>m#} z%iex8ucz-(-Fg>qo2~GPNAn)gt7e(cnZ9lI-_BJB|6wV)HTTf}4k@|sCY4LeQ>E*6 zNcVO+;|8?3<+RkYASI{!1Gl{B{T}r(+-ua0-rVx+P$wCOdd{0$o*n94C%^SkH-J=D z@2sG|Qc`lzbnaVTAw0bjW)ojOKDRubY;s}x@sLsEQ0}7@{ngXl!lW{yf}_=Ahbq5R zhJtZK8I!!+G86?Fs`rplk&K09)GVWMNrqat$moZOabjddCCTla5|Gixq%uZ)BwEx; zOx}Z1848A@gGqkvx8rOm3Nj{aLPkq6mX^`6jQ%AV6U$Hon6shgEHX}A=mLX`877sH z*s-=_g-K;77&7LVeLm{dl| zjU*-#W@RM>=!g=8d_v9gTyB^hdf>)HsjNl;cfltLRAWYjRJ zjJ6#eJ6f1jhJtZK9g}>AWhe?Vx@SzEm}K@_aW)hM84ETcqa+!bFN_v@Me)y(wCN11T|&2E#@`vI zWD#bt!ce6yUGf@(mKDZYdRe#5bNbsSk&a1I7mA3M1e5%95?T}hEd}yGXqiCMoVCpO zd@UQF4;OrswZqhbqku7th&SJYelQ>^BL7M45~+%jp~UuJ(ZN) zsWmJxsGea`)rlQzJ64!fwX~snj!9nen`#?)_QwB*$t~5%N{;9cj%0;tX;MXvZ)F;q z64S`EHjPc^CRMN;mvO2@!v;{+q*@osnKbMG_k*q7L+Dumd3_oz zl13%DuTL5+*p+s>>PwPF>bKH;Rfm-YX4F&FOu{gSSygTfiiA1Ng|w4`O57xka#F^N z+-00JDu;Wo5~f!TGpL0*tcQumi}#=1zV(TcMsI)Oq*1TWpVjXE{OXnWIB8VyPhZ4b zpEYsP=%2q%9g*lvJyFu=9gilBRMjQ4E6@*C*WJvM3d5C6&M znl$1k(2PW$d!tGv@YRb2E5G-;#L@R{5=VdGa^mO{{B$}hJrma@j(nn=pi=kvYtNKF zn(g#naVdZF`~Q(IwRNa{ukOER=k5Of3#QO zE2jCQ2Y-n#k*4I*{LyQl9(VE@J1KuurlCPQBnw7=?2jUU^iGnF(~1jLoK3+q{f+z) z<&R$TU)-6XNaPRoZ4TnGwrQ2XnhlTNE%RLXWBKVI_9b8kMa(zk_o(W z;59U@T?(9WQlsF&r7)jk{^)0a&COjWHKGnDx1gj({Zin916Lfl=D@1r`NmOyGnx*i zZ9i4eIHE2l=>Vlk4Hb_=^?&m94y=;-#!)w?sk+9cz!e8>IB?5>+b*V$;Z%1pY2dLP z6FWwjG_Z;%a2JytGYOw@3zbaZQ|+6k>YA4VHypU*z?=ozZV;=l_BR`X3i zrP^jsJ%99eCfgHOB@;MLH<4aRL%q=sft5cBPb{&s8Mo<#j9x#?V5A)w;dXzs?EYpE z<6nGGv!iZD6_a*~6%64eOme4XOd{CkwU{$#+O>>Dc;dOZjf@qW=nt>M3^MdVkzR+i*~qD^i+5udplRPSO5urz<2EuXY(hpYOgyEB zjEM`KV~}x*NoB0;NbFc*QW;}AW|-t#k)bwpCd~vQUL*y0xuL0O-^f%ljZHDQ&jOUD7~?0kV2YuB z7N9iMeB8oRH|fG6Uc;nUH$qL5t~RJ;8k*WBU4r;Jrm?AO(p7@5Z%Rx6Bh$HQ zY|{0FZ(_=tPEGpB@y$$C)7+%%0N=t?H!V$#pyP>t73ZL+*V@{65SJ857GoH=;=k0+PyCKNpN{L_ zk*96fJqq;}ZHaf}>2HCVHat{yFU7wteH1GEmpA(zdB1S9(HZZ^i()UoBkwixJIV6- zQmIztC;y$ced_bKU;R7!^qC}CqTCxk3U!fWc}^&K@+6Cjx$aS@PyC-sve3MHA6J1N zg?hJ>EY*8I_M+W`FRX6;?(V_&)vjLomFfeZz8cH7muQ)gWcebluv|2FqUpQoNU#V7 z8}Q^O5T9@7aFU zPyB+ep!cv)WXw+@kHf=rJ$;?4Tg!B&RQmYS*6#k>(_BkNNByC>7G2}l=UUVTrg`|e zJ^u7z5^}nA=nttED;7+L+%qoj5{kj&9&&SL>F(;*r(W-Udj(8-d#Kt`v!jAZZx1;; zikRf@GdYYpkG zQzgylJ;qvkMLy~Wu%m!U2W=G*N0u$g*&?(k09usfK}!XiF07@-=WFx$d>HMY-dB_1ne7?4{>KUIIAYWrpy})c#ue9l@4C`m&zJHX*pgN05RhR52+fl@%s-=yulVeNr zoo|bCEg`6`unE-}c9^cMI>+a0iB%VLU~jL6L3IhUQC-odr!uTxB@!AM7*y9Vsp_^J z9Xnc>RJF8mL>-g-v$s;&AH;|OqcZ9=LDi@SW6~X@8Ux?LK2_RK^s5g1_AZ9t?eooH zFEN$8=h{>@otyOMPbuzLZHD#Lb0VJV1bjKu&=jNJ2Yaq4_M&rju%|vGdltQ?{+6MV zscDMQZ_*Z~ihXU9dsln@tKU=iiRfMXV)Pp=riOh(Q}nRVVrtnpHnmOu>)q>^PVMWO z8a@+!Q`0mwwM-*Z+cY+HOcPVrbZY9GW~QNOZW@^urm<;hnwVCmQ&VD^nbxMc>D;t1 zWjr9iG-XXIQ_hr_@}{+^U^+JyO&R~1B~#W^HswqeQ{GfH6-+f#(Ns5;Obt`n)HGF0 zEmPIhHq}fWQ{B`xH6VsnTl}GNx%IuVsg3(*3uyP{-@5n3F_=9J-=MBNxdvUzNE=D$ z`?$6?@(j5P8;5U+JIf`*JQP-e=I?X+=YN^5K!bg>h(nZi(hTE;K6q3ke6i369fM)e zpdaRBq&<1IEy{j?E$IrUq z(DoaiKfB}k55;_cCXZ*X?$L1|(MhZI!&HYezUI#U@9nbK_x_;F&wlmFJFEM@9M67u z>dgK-Xr~tB+5aH@kX(Fv{m$Kwu%g+I{$FZ-$72tk&E9s>`QvLJ)dT=isgX> zp37hs&^Ph~ze=NHz#3+Y>g^9>7~Fnf`;}k)Z&c-lik;rydp3iguYI=kB|qD_nNj1{ zJH+l*G)S4<|Eb;EbnPvEA2rJft_LDs%mWeUk3JBQMabhHh=>EO z?kDLPNx$^&!IxAIc6cD-0lslwXMr>M%C8)2K>OaEUiH#|_Cx=gX6}|-=lk#G@rLam z`D4|G@AH86+i|{5Eqj(YqkHte?N`s(LI*;>(v^pqWW}2GJP+|cdJfgSM}F+EQYGt?l zZmd@J$6ri;?Dwj7--nJ*UkqsP?mxnX{psrMzq@@mH^t1=gImsbw)pvP`9$@RH?mm| zM9gDAJKFx~fcEeF9N*&Z7_QEw1KRiVjrsek5nBV==aj}Jr;{FyURv9;sDRUM&}Z{N z#H}+1v@_W#SaCK5>z>0OTv~n|4>#79ggo^JB4%%l284=4{!oQ5<_Jx*1l}|jJ8YnR z(AQm^5sNUN=g8ikVes6u59H@QQ{yr+V$c8VBM} zQWZ9V`~Joq41Z&)oyK-d>=am3xl(YjYb#N$!)>RAgs#uI=cwCGgksVEpWS~#MIHHD0e&bg{hN2*& z!zN_ZplQi68sX`UFdG>yJ|m+OCZ;|iqw7LP7-aM@sf<%QW_C<4sSE`}#t@Tyj64?o zS4Ba_oK47>K-02i%)-;l(5BwVSVa8ZD$HQ59nwKIrZQ0iGM1QBMut;Mv>4U8Z|@vO zDnr3=tT4&Dk->0i{7Jp52f8&3J*xhW}m4e5&4Ey|>;5mIg#-_jKMXf7mEB#U|K z#8mN~=cY&I-()G-ZB zo|-lonfmsPO+(Yfv@o5TmZq6WzYE`CZqnQ`Xkl6h9j|qEz48kcT$bNfFMmE&YMUNPvb5Oh4$sXI6sg*lsq8JxS!j3O|48Rje(CT7Ml&Y3`5BkM4|^DrkFddakU zve8+NcP4M&(|e8XBR3xB{DslRcZ12~KaKP9Wb#*P=O>;_?h|nR>t3|&`q#Z^ODy@M ztC1V%V_)|o|K-ho-OHQ$(s?nNJc_;ix|e?=zsEU$<7fG(an4`UhZyI4yFPs;&7|1h=Z6j%^-35!07Ikx9{BhAtsYo@BN(@RS&+Hr#E+bUUY}G zv>te5=gOQmw;D+_V!wrJN-aJv1GPf<#nmRcZZi1~Gr;-C_N%^F-*PjV{JY-5H;y%z z7>ax=mrE(iI4;WcZsx5te&Y1tnan1C-exv=a@YPd|AaW5O`gPT@@Hx`xjehKe@L^* zqpU|~lSi3pdy&yrCSJUE`&B>qFKF5AznvD9Tcq1Rzo1PQP1mglc5gpXGv=;?XTEuN z|C!7t|9HB<(}xdLWo=&cvf$P-tx#oFdy)HKiKhnrwCi54$0fbL52v)W^6`au+0XI&K5zs)wkqVY994k!nW7jz8 z7ju8pH&e8^gy@H-Z>G@S7L=j3V$ZHgbr+;RIDAnnv#5wkwKhKeVc?7UjsZQB>Rx>M zYr&@q89FtoQit>>gs)iBA=rKxVx^^dP%N=!|Y{wVOZOy{PyDZ{D8*D+;H zT~p4~H|0%3Q^7Pc6-{GP$uu#QO{b=cX=bXL=BAoyVXB*!riN){YMK&L%d|GNP3NYL zDLQieex|JM5Bz?noM~vvn?|OBX>2N*CZ>|<)KoUjOcm2ybZ}DQV&f!Ny>St{oOFUt z+V<7#TiQ1lz5E4V|EW8u6k_%ga#t?8fsd|vMaMC_*c+QVKyycr`*L6Z*7IWQdRC4| z?&uwOb+>~-m5toc>tXh4VGf&N1`W)1@vOuJvt2wXV7{IDsG{qKbUscRnq7s9ccE`T z_e85DZa?=-uZH<{{*1NGB7KooXd4V;&lu^ZH8KtwOu`(V#xA{?OuQkz^m}~sKY}-; zm*ZlO$7?t@`Ji~_#&1Y}$56HIiM~=g)AX#!=f}PwJ&rr*sj$brAzf$Z25(6Jfq$ZQ z$8V9Rz9q)tw1DJS{LPqYs%U;gx?)9K+C$~IB|@yV-%^zAy52 zHqy?F-5>Wlfeg;ayiVYw12qNTqvsy4+|Mu_Q&c~1hvC|-`>*c(=ZgWlyL!*N>CS_f zJ($_udg#*Y1b#dH(mVSPUfp^2r2UXYOKBZ+qKk(+k&kGiifAIu%065s2LZ0i95ZqT`)6fDQ9?~${=O%Fv11yu z9AVP$smdP5!j2gxjoG(jj7ffx zDI99lsYn)r*S_gs=*%(uj@eSyOp(H3?NyV1-oZMhIMoAxo} z6)(@#`@l!OY`gf%x5$5av#0QV>?bxlV+vmsdwB}qTjlrA)_=Z-j~d!~yFSFw)?A++ zKeWYa=B$%&c{TGW_sNI0zCV;a`4m1CbKTI^pW-0iWPEuw^LJM7{mq+5SKeSX^PMZ7 zOdDLRYtG8vgF@T{4ohL&LSwZ8=+P;B4|xh7OPFuz%WlPx3sd-hl}ki>@-ik?Fh45u zF&*-v0ldv+TVV_H^S#2DqYdc@*9Sa@@0+Syp9q)MFu$K;Rq&&e z_+0pA65rn@{rbM`SAADc*UYyu0;&Ch^rI=-}pev4%M-LNJN%xsR~& z*;`-DcVPIOtSWV(n#{3=`HN50!t#0Je7LE=IRb1Rj z-1{IPq=1}y-Hi~G;et>=D82WnSRA?qCBOK8``)9k!#!4iw5${aO;_o?Cp^6o=8_6E zZ1^JF1PWm`6Z(e!e3W=C8Ci!}cQ7qkj*@T#h#3U9ovzW!> z#LO&4T~mg4Rv1pe%0-`J5R+h1F}b+)?d35zvY1qiLLz33N&abiPqdf{#2e z!f2ofDT+%+b&g4{GEG6P@Kh1^F%;?6I?Y>=Zl%|9@%b=roy>uYy^eIxyqE*W=L@wB z|B5YNQk^h2UQFPW!%(uoNIPbu-Hx>#E6hf_9dk_b8cmO2b=)`)H=dcMKQ+b~a#3H! z!-!DcRIpFgG^G?xsvMz`Np&|=HbpheK$b~WFuoY!@xpGr*Sz9^714HC*z>w5r!s3 zO9iv=m6pXlYeYQ1GsRChcf%b+e*7s7g9f88hvP8ElQ1WznEhwJ?n93qfZ~0XF%@j{ zobxC6BUD@Lo)7ck>i#FGc{2P|SNDJU>J=V!emB#=h*XFZz&DTSOjXSWJIbbIbpN(f#*CM{d&s>{CdlK?|8;y z`;|ZSD%EAY-tvXtthZZAVAB8IiwBH~>v#@*cfQRak1m$0xnWmtUti1( z+xdUVdms3^>+1ghLK=urxB*&-SR`&$g2i#QMWZQ_LaO(|y=_p@;GY>+WpR@k3)O7W z8C#;c-`mTgYi71JGj4RtHlo=yTkJ@7+d`YRNJBvgpfrNOjpa`Op`l3od%n*3+?$&; zZSf!9efR6*(VTle=ks~L&v~EspL5RpUy_?F_hR17cv!B@$`X3|-QXt6pWE6nJ1log z%nr-lmR}pj!Y?L7wFvCGGnS|3`9Zmb>%zG2W^1&{P8trcc>xn~-xBW>%4AI4jqdM9T=U&TwaShJaY zw$G)Y0bp#lLBPuFGGO5ucnW!ID^ugZ@CP_E?GY!aBZp7{2<%>E2~VXw$$kN52=0U= znD2_E9C%<_&&P~x#)f4-PE#FVa0y~YrXbjmo54O6oO4R_$02v5Gp@YqX8M;?tLc;q_W@DrLnxWJP+YQS*swkezHw)!=Uyk4lIeN?T52$m zZZy!>WMH5ffFfD};hR448FjLSE2h|y76e>MzLcZo!%D194vyQ{M?A_-+sFr&?pK8B z$bls(i7hs%8$YbQV>`Yz3{OImfHU~$EoiPRkDSFrB$MPVCh}rQh}wn z>W2lE&NIdzScn!Vh_w$Nv|Fx&5iF59NoQ`x7wkwB4H4RU*?6{<&jZU3uCd8q04G)vb9{ zyHe|DgAJmA0TpZzec`YTqE{;XRWu;`is%vsoV}SyUqEzez(!DCP=)BXyp;L?j&5|bN57ssn!DBK`wUt#%L(z)1DutBu<2K7}lZ4ix5 z-ym8wxk2=i{c2FhiY%020QP(ZPQlvLx1C)H%VdwsS8x+4K~;iblyfuw*d;cI8tmW zQ8Y^+cOp`M+ z>dcHE#*D0&!(vNqo^&^WJUajZGZ`lgIiVjAFrzGCrVEhmWs+UN6K7_aM+%-W;0?Aq zGaCFhHS>F_saLLXI^EI>6^I;NTnt=6#-$Lbs#b*$d8tYZz1sjl%|qhm6L z!I~TknVxeS4NDwrby}%oZH|>W*5Q~c4XJcFR^eE;W2!>XdL65Dtlu%OSHAp;@^spe z)9RhGVaFOA8*!}Bu~EmG9LqY^?AW+tt&UAN*5+7B4bR-TElu84ERyS$$_Y4aUXZkXd>7UTWokmdiEvw^>sW^S7yLsM-0r3 zhIKX>@TgF-rxh%D&Ij(D9(rN1b1b<9?>)B@?@?Ne?Zo?$ek6yZ>An!<%0)Br1=|t} zSX3MwsTRavYzcA@a9ODNoO14Od~qv>UYSndz6 z`y-xk5wz{UyVF7}g_l9+?js_^a<)P&iK3@5lE!WO-3$2;OCtG;M9~ApMji`h@N}#k zHM7!-LISWp=y#u85-wdD;%cKGU2|FZ%$kcr+JQIjr@ue5^2fRLQ5d>1}`{s0B&vzJ%T4dc47MRLphSTMa5oOuL)GgUtlKCjhu(IzzEc;Q^IhF?5M?Cu`MkE;x8kmj|WswO+2iWLev;wj{Nz2}n%&+Q?kipQ4NQsx>lXJ zUc|5gRcEAa(woW7YURg%PXj%*2Kwp@4AdL&6-P`&f>Ff72GS!2`bG^5WC4`>I3Rq} z-+e@V*UZ6-CqA2_<+pngya>AX-4KJW{eyJv4}{kZ==CFS_=;GzQ#X9++0+eRdSV;C zD#hO68@@y@eC!*(Mm{V~^BcY_*}@H9{i1vD;`QQE!Hc>2VZn=&1I8)oR}j3g#E%}l zh~?Nh%C0XZGbMO2hmR5%6ZrALsLZvA+Vw^7V(gMABXSY9A6~<*uiK(`y%<}N!N7B~ zV-Ze$E^1+8jF07vu9H`YXxG<{@K+Z92|^dytO{3%?96Zanm@VetGz;fXL=q{i-JvG zbFK}d7Q<}qI%8RS&b2|*VmNl_cD81n=bOIHh*ymjZu+vXsK81yH{hl}%;eL9;jjGd zwOZ+WH{*DxMsBVUVbhn%5iQ~Zz}%*o5pcOHHIiZw}6}4!VulJjeTAbc& zU8AKQL@h?>6AOAl4Z!66n~GX|%ll#_iAkZRu0R3U;HdY-y+%oA00mqeDQe-JL`xIt z&=)rVg1)#-wUL<)C$s{BzF1jmd;nzUI5Wx%X1aI;Gjf#&v(C(@Gc$e|GjfU;7#a<< zyQ|}UDaY-Q4$Sld0%k_|NuJhSv4{vPU`AO&=m%uK+G?s$UNECRO@RW2jKOhd#=LsY z7~|2@l4)~hWT6lv=mpSIj(gH2N{%f+U;#7bJR#2tCzJsKW`b@s#FOj+rehhgl^4uJ zcmy*VzXn4m`H(3tCSYuu=|tuj56w_1o?+)`)Hq64k_v-(EdY+H0nU-FaD>q4gnB^W z`72)tQ9yP`Q<<;6=PyO$hE}`Z+Td8!F=-!Ktz%7&)j8%>qNU!kR;M*MCVlZ;qhlS8 zH900FLTh%c+p$*1T(h}_9Q{t~a9YN(F2{x(>vl|P&=zYcGampL(L)<|rG5yLhP>w{!^)Uxn1Z3c!7>B|Dx4*Yf;)(L)6fkT+DR1QTAFj7hlbSfl( zK~Zj?N8W$(oYN)Sl-)GJVg?-QpW4wjKSP8B8$NFOiGCy}sPZ8)iLtCB4sFeyY-1;&;8;H&iuyu^m46X@g)YjJw0qUTR00bqRBk*^ zq^bkY`h8P8>kkQ&XKfC*FMUwy1Xuccxx`bi@sn+KAhDz)GfPw(Xb$`#DID4s?flOcH03rlMeQw{DJMu)AP>4 z!RCCM$8fO67{lXLPZv1Y&n1fPV_@Dp)A=@bQ8H^7&JNDE**AH<&5M4%&5QXp4DsZC zyz3XuyXG!3&bB$2NY2@j^R8p8%Al6`SRY=qe>|I{9Aw=<(NSnA2wPECH&yN=LC$gB=JjjB-!{N>j$JoqIWE-bD58is089xNmKsYAr5 z+BypaJ>PL}@?Dnwuj*ZY)U&rF^WJs6vM)a@`;a^j77=*%rE*+|i+lFJqIdmc<_Z}s zEy=uh-K^{@4$HpWvv2e4Bc8oNvl{2zy;W#77#ZuG(BOnRK(L6Q!U>AoW`Ezaw!h)ll`(VkvPy7M9V>Cn zn4-Qr7B$+&j8b6^l85wSb*eO}wDFzlYfxSson{Yhfi1mhqhXy{0~=MZ7+69|EY(+H zU_ja?_gc%LbJ%j&IAWk@)IeX>z`(eH_HwaAM=mA^Mi@v}8tAJwFc1aMaB2bJo8FL6 z)1KM+JaI*iHp9&M&;DTg%=rjUjxuxZ#WQv0T+gP?oa>3roJ%K#Q{=(Sx#)$Dedhcl z@f@c%b8g8N&YV|??#|~s#ig9jh<=#!`6grhmCl@7;zxHr@3=zj9DU|o$xLxRzrjZ= zOSGevZOvYM!Oj@_GBj@^sKi^-#p;xDlbdFo!Uax_&PEFcyD| zAy!l86U&o}-YNX}0FNEox?JzXi}r~WuX<=D&a$P3&1Iiyl7v)qqk8&syig8T?x~j- zdKZITT6T+jp(aw4A+XAp0dPg;Gl}G5++}%EurK3}UsOuR@njy*Ht(irqlA3CcRMav;0)i!iZpdxAlxIy#NNXEbK3 zz^S!Bt8<#l7OdW}2FDs4YjiAd;F=t3a$2)v&5pG?*6NrFi8R|B>u{{YF%=mNyjcaG zpTX_cLyqg<6`ZuIHkp&w?H}~|=e>scs;>OBXTKhrlQzV!X-=B_Z2FFR<&^RTU@2QA z!2sJ~w3aplo!th4!^3*|4cpiYz-Sn@ECMGjV@Tf!AaK&M{G_st8%R$Wu$|jP_DZb2 zZ7em=QwB($v-aVix{J1xheveL{t@C-7j3=Luprtzuww9Sn@-Es-zRX+`puY_l?c1}Y&Af|NPj^Rk zD}jfC4tUZ&!E1>1jXz+t2xt9p@vj4>_1&)Wx)qSK2 z^?gkGDJwMVSczdl@T$F@hw2)3cx9j!#k*D3tE!(NnZhAI#+D%Vv+D#>0IKSqe z&-0=eKK5z1Ph28S^V4pYY~i%q648@;wGxJd3w_m0(Mue?d>48>^!a7EZ&`zrT6d8? zXJTooY_ z^mSfHq(AGv&U076O5WG`#iXx8vbnuY5jE99UuXWAQ(c|;hr2rS&x{v6w>&xDJRJ^M zw6rEYosCL!x~KC#csYuv)1&?xPv^x%@@e;UY`$&&0X3+Ng*(t&tpm2hPl6riiPR1A zqkbYdaw(zwDT_1TBg0!dGmTai5~sce-RbUUHf30;7I1LeaPYPi{RodX|R2Kspf z2W{e@!#U`(QODK-z(GCYO!YCyDC6mk0N`K<5O6T=gb62P0Racf2M&e-*-qw3DT7|i zXCNd=S%4}Ix}AezesAj1Z+4ofIQ@j5sg4C~$j2ekasX_U0s=M^qJdEDga|;61>LwZ zgCOT8`*~ZD?}x@==+jR#uZJn$lInYV% zF|^T*JgM@azu3$`QfA5YRan05L&}N8cJ|Ou65=>CFlGm;4fx7MZYBWZ9JF$B3RhSF zLg%1GEMp&}l6@n_)SYZU4WHi^0pT39YJko`t5r^1RA8?RWDRQ>H_$#|pi{##y;6w} z_!^e4NPplhq2xJV=$Y;na1?(mxs48(E?83&`w=kF@?`j?r%b`NXF-lD3CEHz+2va7 zNPQ@-9jPn>#T{UIWP2&xCz9KPRR-2~daxvUPi*bW%-}rrepMISff}rhY_Z)-oT0;~ zoNIP2qjx1g=_A>L`mSK(#KJwXs%OK?*@Sw4Rgw2EIr;AJjqBe>QhCqd-SP~?UG~KC z$yJfjqRt8u!!dX|w9t zF5ca8B6&}ns5n!hlM1E-&0^t0{0Z08_eUllkmHjGS0JCcFXaJs^NlpoTrJ5 zO%O8-ul;nbtg|@>V?{47OU}tKB=eX&lXtRMGQU#tS>|%auH@BR$p(uh!&7~QUb?No zSD=ToLQV(Ayx0UC9hJ(JQc{myto4U`l5(xyC4>$( z*zbL0Db^i*WUaTKa@l&xfjUp2QLj(V=s;+7LYots0iI`CDZ@+yAp086(~``)3-!t~ z<9S9r&qmMF4ASI4m#5GVAkS_n9}j%7 zLT9gIE?%d?D$v9RZ)O~;b4-C2)RNTz zSZBQ@*3+S+If>SQok2%_!-lnwC?k$vF_2cAg^p_6K;hJQ_@?!Xs7X^y@;$0s7Np;m z$kFm9d1-zn+_xbX9(?|Hdilr(xs_OQszI)2Qw?%GF@s#P6if$7mClk zL2k(w8sxpA=M8cU@uHVzw#D`3bX#1U9Lp9LUG{q{9iNXePJI1hV@bw%Nt8K-@OSQ6 zmb&@TR?>_z`FGP(1GGaK_~ou6rEo&P>l4|m&H=j^WQQ7b3j^kzn; z3agv8PA%U#=ZtY1i3o=!(tqejp1(yCF}_rt-3A9Ijq!uDi&9IeFCvhhef;Fa!zsVq z#KT@qJOt+W>|o--Qq7y=F`sz&bEaHkN!@4eV`=z1L&T6I5I00lPCQ_aKaM$mTrlx) z=yEl{DdzaFb)oHUA#JQBf!~@remc!x){M*`CIVCkIcx`Pa70~BMZ2t@Xxi+YBbnpf zruvQQ4(Nb-0YL|(mP&tWEtO?oV1Y5Ld?54#vTaP4!9l%qpymt*jp88d95nNL)2MfV z^(xGCdX&EGFq?eb6D?6f#QnhnHp+QIZf5u~_<#k*urh-X;z{^2)oo&Ga6PYJxZeE_X1G?^2kCMDu31bIofpO|fIn>2LqAj&TBXsj z&(a^j@3cn&ST8C9`qC1KfNg8Q_IwdTuQ05$9B@R#H3E@-v(6F?3|EZ{ z7_Q?08LlDa#K~j!%0Po*!MgJHCc`?L4fM6zEA4H7z;M0u?|((ZRXqGUhU=-CEd9+G zuHTEPO5{S?X1I#G?6SH4&ls-%5S_tr{Spt4Xt;hD;xxncy-MVNq~V%;ulmkcWVn8g zSEm`S2Z%w@tku72m(RHMx)$pQMi2VEF00_bs^NMY^8)m3N@UV-?FAd0@ct~L&MF_^ z9=49^*EC#fJ3k}y>ucjoi z9=W4W$)!4#ID=-lfxa#SX@x*2?_LA#CVDD8WSAeDn;H;rIN(_W#v3eFTUV8idXH6W zV4x0wvsQ1Qy}>|dqk*0#19twg%zZGr*fx8Z?f`^u`qMW{^^?)sRUdb=FugQ*PAGBh zV+T3JGIhF+?i35phEJQd^P2EkH9K(vbvO5&D}QR&yj_q_Ov^={cXnszu6ui8Y_{mH z#75JX(`__K{ma{Ee|^5>m~Nw0l9t(Me+K#0veEva23G#Z*l6Fq>{qeT7V#C8yD(&0 zLSv$T=%q+$Fu8*`W68%7snyXX0~Ydj_jX#~v`1%mQY}4N+7t2?r`sn2Jr*s! zj)p}CV!8Oq;))cK=U}NCb4B~G@=u#HbR_ev+_c^!<-=(OAh3&SolxflRkVPEGABd; z*=OpEgHgTYCy>LzIG7z<3I`!IU~Yr~DA7R?kC&G zIupN}g{2(gtio<03RiSS^f3$K3=9~%xiDv+`e}tg6w^yLg0P@N_D=Zx&Nd_2;J|{X z`NW^p-O?Qm8L;3azRU<%@|?T>dInR703Pd)ErNF(btTdA)9_6bCcF6#6t!~15Q;D0 z^f+^ev}<+2UXT)T%Qid!KC%Sj#)8<|Ul6t{QDd88{n#B)(d5=d^7aIajk%eO_peCb zaFM+JN~Pq{yE1+%diR_~?_TH1LMe)uXzI_IM>|wP*^1+E%O^diR}I3Z z=T8e${Igy^0!I^F>&skBZy7PYcSn=kuwj*iojp9I)F|{DKe0p>5?35}XiqD(!|N{Q zArVdcikm^#K4PK0tsdGdgE;MqgJLCe%qtGKSSxget~f{({hZhyw?J%9RK2t^cf~;> z`DnZ-Lu_wf;K%Bw0|rr3lCPRuo?cX;P0%MK(x3TpNSmN%y<5?}y|J}hiSFIMk_j+V zILkvwXmh-3S9tBk)pp0hHttVgdTlrNt@7BSdo0%GoMM$|c+Jy_?!A#$ryV#KDWdfy z$7LXuS(i7>KpN$1T55#~eul_iPt*w#f|S&@RjPr{pZy17!}M=TWYRzy2OBJRVq_G*edp(=^zxC9trB1HY3HFEulu)zDVFQsKmhv2ALxlKz7_w}(mUO3 z+PyMZd@Fk4V_$sxP+p*}Lw{(ww9{LB2lcTS@RWei7-JZ)wvE*i(iyrXs*A7lIm_=vL%G-GAL|b|L zq1wcPEw)E{1X9^(*h)vE;Ke8C{{hqyL z>Dla5v7{Lg)ojX0Fz8wm={cpC;>v=_hEtiH&Rqfc5=)cbC0rvheaK5(0T|_HQ#QdFPtUT=XT)GL^ef_w$dDO&1k}Z6MQ16+60X=- zZlFh{uUcfeZf1!Z#!Lt#eE!B#13l$Ro~8Z*={eeNR?AO@Q1wj7bIyd9=#;%=HX(VN zokshhjmRe)hZtI?__E3Fqd6POEa8bn@*(Ya_WRG`tYXv#GpmT?DlVz0;yIzKzqOa_ zLTk}|l{^a$H?`3`sL1go!CBkCM44E1=B(S`P+SSiY-!c=T#+8DdilSli}3P^lXr)2 z%&3+nf5vVyTd64CvR^2&gK?FS9gJ(+l|9ScxwwmWuk1iWdPO&!Pc>?cZLfhrQ-CG) z0F)5rC+4E5Kb>mStWa64wOKHXng%O5j2fG<43@G4=1@>LsVgyR-WgB+1oKjj&KB@n z&I~b@g|?lwyelwja%bl*!KnEJ507ZnEQXjfYA*Bn%JY>-5cb(>_cl$=S5CRNX|@?P zes9xsqsH!SxijSmT}PdPo<`9MZJNGT zC$u@C88CxQ^AUwA6@c+wssvK>6*Wj-vF^@5ddNVZawOw=Ymk0EEC*;CHqZp1lW8_! zXS9ZIioce`k6=|?RGFjAFppLSF`j%XnhwsBDACJDo<|cySQWc%FX5fo#p!j=8-ZGsUXd!AEw>%KcI*)jF|Y*lt;|qa( z(zCf=#d-z~mxwN~-h#eMeFP1!L?GAUnj0MWT?;eb4agHqf6&jE_{!U1xyUx#a2)2( z^ESl1X98c7$e|@DSJJ)8D^iOpI4IMm4r#TIUy)q&CgFiq@p$x5hF8j1{2)rSYO_wp zbmr3Y>?`KPlxEQQ6Y0yCWE%;8WzR(_i4i8*Y+xbny&P6mE^#`4sGT1H&yEYH?4{a)>Bxhq|mCEr9~D;3YF|-ExoMUx`)mhw#Ig(Y;@LRJg6xRB!SrspolK2s*^WUJzI(cP+;EiPqM6zPXq6)#4d@fYGU2RLFon%s>mcX+Jg z6<8JBSV+ILRdF33{ok`H&X@TAL#&Eb7yc?%MfUe(RZLmB(@0~qEm9cR3PKROl;zHL z=gH;t8#MzIOFoXBpPM)0Z4Xi$zIr~mz|B|BuegL9SG?txFEd^yM=&guIB|+D19tS$ zl*J>--L@Wsc!jwD`}Z=HA@iT9j8Q=HoNJWQG=F}NO-{Hoe+n+CEiaxW-_)<6Bge`?Y(24gqlx5g_%>zs?B2i}$MiQK8&4QSppTRJ<5?^)^v4j27{B^fI3Pd8{;kV}{?^&gafx;M(TN7g>Cb z^GKfvu3cWKmB#u;E}=Wo!NvzaH3n32^Ayc*$<0&TKI1%vYEgKNtwL_#Rf;$mcuOYT`RKua%q>3lR>-1Y>Bv{SYY~{R z$$1J0uKB}PAX}7)FI4>5mk1)z+AJ-L;n$0q^ZmFOj-nKH)BKZE{U#R`gj*(~?=N1E zqso{g&pN%ir5--}O#T1sPt)SSg z%OXN{SwyKWi@36K-w&cyFNN3MPaM~Zk`pXaD=S%rK@xXH7u*{yx-*`B?{U%8tuHGX zbCMUI7Ef+p`RLfqe5AvNv<)l>z5B}3DWUg|6MEmuEUIb(y##Ac11I_5WFTHT&j;cy zXo{~~$-|)e27TI05%}r_a9(7c-{BE>rJMJjEdn1A7r#;jUTM+SA1wm^brzlk5%_A} z#i)>HO*I6vzj)lsq_ou?-px6!k|{T$Uy-BO0jT}!%gbKR$TP> zpXCNMrA^~%1|-k9hsTA1?l_Yx3QV)TdfK?f#+br5^r;%L6o)S6M-bg0Ag5HL$q5fa zt1R+CXz79uK@|f9t9%Jo2h}4Vj{b^OaqH@ij>fKFqNjjaTJT$>=WiV zR`dH9;b^_$;b^g*pJSH*)5orYc(h47Jsz#vWMkJKS>X|i{)B!^4@FxM%@~TdVw)Vh zEE7ef?>j#jy9#~B@AB}7W7ka(b7NN!k^Z6*`7KAJy<7O@Bhs5Hj_x~38{st;k^XyL zogBShwAyLG=%z`xamLYW`Yd~X^s5cfII7R{iOD{FL|As2?^~U87&GD5k4)j~>%~bB>eby*9o%E;VKu?Ww;u1q7;0%;?AVpyd0)BdjmcG>X#xg zVSF0%yvl;%>O}0rYhhm##E&p7{5!(cvkT|wK_-mf5ign$#f}f=OZ5borx)2*Q$xG) z^m{zC``{bZyvK8)U52aY2<@s)$BLf8STE-nM-FCKj>7(lGlS6X2l#4`bA<5^R%fD{ zLWgc#TMldA@1ij+`F{O<_b__2Xt-g+H*`Newv#$_n$)94_($q-;MLyX)f)D#iq0}TK=#ldoElpA!hg@ZpgT0l&O+TD zu`rYU_tmFRXFt}eB7kSc*$M-FQ3C@F5+wP=$Cz;2G4}h72iZE(H_V z(SoJ1i$o!KVC#AMc|E-5^3NV*I$S#Pbyi~^=beRn#)`jWpcTLcQ}L=!fBmH9X|G2- zvk?*-`zl02$oft98#n=I!P93cQqsMq4w*u)6u9)?}l!s3ys(x_Y`$>UR=2R|A&Dp^|$DOQ% z;`vH0qsYXI9;0n)`zdEuen!&TRYAEWYVA5&V(e?z9z2B4dVDxtik8sGzV2zC-g=}@ zKgg%ie2NL&!1sB1xbQ^?bt4+Vl)1SOJ z6kGe#@b#$nwi8iexaDC}K9>kKn7QT>J@T2AF59otOQ0{~AqWf9g z`1!M0CwXE#HT&5_(pE-uSuM&nkDQHPC!!Ya?)Ak(uH45=xsRE0AC9fPjpc2RtPGU< zn3S7;_+-55{_8%x9K~|3?8Twwsre5qOU{3Y1LPpA95>^MBYOlYu@#jNS-pu zSrtjGR(Y^8GEl-jkhzc-9iL!2esJHnrX}#=*N>XOUn+rIQ`A2G@S1<=pVqcEf8RCz z$3QgQ%Uja)N2j2L?fX(FX!^o!rs;nN=tzeuyX`Q%X3_R(>3_l#>LT5-Z$rcu=-{`t z-M$RJwDubn^DEBg1NB|LY|tAt2V=~N>T2C^^q*bZYRFmyn65?H&w4|SC7)wm!-5em zW|@`O^+VB?%;#T+u1mZjU;hKnR@xk`8d~{uF6}ub(e&&sxt2VSAi=CHjQurRN;u4@ z=5|Ks43UbhD<9i;2JLvu)Q9N$q3hnyUcckWW7e|N1@|vYUhsga`XM!BTucVpyBW&H z!)r?aLz*(ta}7CdW%6AJEG|LGrv*x;Ay4`AhkZx*v`L@l)T^Qluldf%wBp}(zpJ+q zh(&Ye>Q+xkTVckwLPWhI{C4$*^6IrcGXINP?>n9| z9ZB@OdaXMO4gc^@zo}1i!?4V%@S58h%cm6ogY*f~XA2PZHU;Ya{1nvG z8w|rAg`(#DI#cgY0Xk!&%I;AJuld}(Y3YB_60$u}V^2V27;Ytx$zix#5__yVWk+*P z4#OAyvcs@Gm_7`jaKvHwgx|<89I_atQ}*CI*3Ch%nvV1goAu)_UM-%PpQs)jbUo~5RAxR(I9prj1H0_?4Y7z&Q1 zKgUpobzP>n_l&*iA_M;nNF;w2EMN_2m#%|^@aS*xUgxj&Mq3zMC32dw&Y23H;Vus!A%=v|`f8Eq!ch>gYsQdUn_Pg1rJNfJ>8CVHor6-ZW zsmoG}_by8=_CXi>%1mHh*_uet-Vt6?gg+CkFT%vIqWDK1xiZfVhTCsX`{>T|4*TeH zd=$e>kpj)_46m8EG+)wZ)R@W!FEa(oF+_pAg%~-+(koqo-+%ypXWSH+NJuk#@~Z@Q zg9r8ER$fGbN^flWGQAckQ1|jpS73Su1uj0*j`L?>{q{o3>2Xes!E!=_a)Dw=j`4pm zzJT!aoHJuAucls9V~4l&hoz)qrkaf&ME z>M`M z?(054Waivh8h&wNS^63{vAd));r}`=@E2e*8$EJ}pAdII4X_1%B_RDa1nK<;g$t(eoQXieHP+HJG+eK?{we zKY>Eqe5TP9dj02eZPU|#0enjOX-g=rbjMb%)XP2Et?0&4HNV{U)h@^X&9?92KSVy( zy(6ZNm{jj_kg>fGj&2+sccf2mhCtK%&=*PCw~&Cv3Ngl%So%tW50{mUMIfNJuYcL} zcJ>;nVzN)&06z8sULm}1z3K0))eFHYQQNx|^r(I=u`m718#?pfF)iG1pLLt}#L_n? z+^{>mZks*WMcuM^!yG;+v~ym|Xm!HnsX4o^$Tg8WR*qX%A}}%ccq|A&doz68n&IO! zMjIYKJlasZJUtsTXYo6jJ;MW?vv*3c;imy&%(g>L+v)>%(BvG_i z=E?5{V;d(4T@+$)+e~@)eqRxI=oe1u$Uu6k@^o(lM_88T&5?G@QTeG`+m;@1z%kk5);- zYdXQl_VP+_#^~4^zbP(#_lV!h6togk3dX>Nl(LOn1wmIX;ftlOLn|-jg09b^mBfO( z(F*TBjK%RlqUhcr>Ppazrm~HuB6TE)y?9e0xOXu}CCz#$rwnf^4_RAz$lA*N9(H{o zH)K7ewvvCykah2MSCYboI!qjW45N>G>HT>g1m=E1Td^yf!fQ6SPwK-WbF$0Fmj9Jh zqF9Yv9DDZti#3*l4_jya@Jv2L4^Q7*sFj}-Vue~6f`DDIzgy~1Xw40Z1OE&Q&q2$n zqxoM7)uAqTnmQIwQ^#KGs3z61+ZxHFI(WZO9XUfHmR@wp<*8XHg|-kVCCEvnUt24+ zq;LsZSv;dw#!M@V_Y?j2)=WzI*x%=ra+0-^J^Q=|oBZytXZ-Gsd^hb>!42PL2s0nW z2ePq$`;J;(X6z%tz!n!8pMqLP$Bu0}yRo-HL3Ka)cd1VCZ&%$N-<_6lou^>6D*8Q% zW%~`V2yL@lU=f<*O|yFUG(A3UdfSzs%g~5~8>sPzRyB*)12z6ot!h$@b1uOi+=)G? z3#e^MBd^9|&1sBGYg{&`k$*_z`r&m~Yfb}G{@s}JcVWu!vBvd7>+GUM4`B}aoW^;# zNM2usuC`@%b|QI4Q0D&**=IJ65A^x>^m~N~Joc|gP2h7%pR*DQj*GnEKc|)d*ZN(t zRlowpUN8kMRP5;>X7OGxhbfb{>yy+ z>O)W%2~XH!?KcVVuD2Skh1Z<3b>?h7Yw5L{RoTWnIc?`BCbg!JWn+GVhI7b%W*oN1 zZI}!k^Q^Vsr(-zg@v4Wz>qZQJc;TMJg8P=G=gA-RQSzQdfnOd=&t@^&Ja!q*yE{sV zsOr7~(`8O2t?@u^X2S=|12$M5u)&gpB(^h+bs#rb9?)Q!e@J`2=eiG*f+oYX4Pml9 z-=p@-#`PCCxPiWAG`!|itLCP)oc(Vl66j^D2RbK$FlrumNLtym?_1MSxPw*{RGb-8 z_+#aeoU)zrTenLiW-bPbx9!$r|F$jYv4MHT(_>FTP4V&_me6BEp~qe^WZ*FXJGJuh zm_OSwb2gWIdJ4mgJ*jta{rGLsHQVxr%0myER2l)C#mS(_^nv*&rtp30&}~jj6PVHD zIAcw00W-mK7GvykiN{E^Xj^`EnhB>Z%aa#u$&JXKhi0c4P9K&K?v`>=4o3PT( zTb7zduRg25O4}AK+8eJL*LH;Pntikj`ecoNHYpM;MV+8mS8-vl1!Xn%d76rk>$+i8 z{rflA;82*>H(zmDZzipLgV(ScUK6`_QZ06r+1Q8g^QQh9U|#Q;u>-s~i552XQ7AO^ z_m3F37ocTZzKDxivHPcI@S>&UdjFZIg^k=wBv`u3!8!0at#_YA@6Lh+;0G&xWGZ){3rViukJybOz*3c|M; z8{RV|I*Jv$4Cy%XOfxJ`! zsV1lYx6y9Av4?{3y=z)GzwB5^Jk1MOa-=hL-CT#Qo2#~Ub4$Am7tJm0zEor6_NBee zXR-$Fym?1i=eF~Mr-a77_SS5@W-j}E$EVs)q&C`QmXCe(^AZas^|eILR? z3_lyb`UFnL)|rtf<>}`fgZ}bYkN*9Sk3k)=BzvrT(0%KVM@eFq`O9l!Bamj6}EFDHL4%NgZg z`zp)-D(07yKbPf<@~?UI2&M=bHrCkAN4cjrxC4SeA{D8ZM{o%YZ%!-emkTXg6eLVTp%gNxWc;Vq+gC;%ThmZ4__2=m@%@(BN3;qw=oXu>OmUl7@MJR8MrL&+AdWSo87+;}Q}PX}>3 z7NM808C4Hga@wl2)zv3Z-A=iZ-_cYp#-Pj_Y?O}3nq{Xzb}1LEwz3M?CY`sZFRu8Jlfjehxw zYPQhm0NjBgjMbXdCHO!r9Y2&<@ihCtnLY0Xi6!shhTm9t`46L;A7=0MFte(|JdY-y zW7A^BehqXP*w`&FWs@Y!R9LOd%fnNj*CY>ct5`I3MFdm4Wk-zT3L??)vY{p6@7#y3 z`8i&boCtqsOY*Abs-f_@&zuqpRgH(&eG;gXj59EZi(X3F?AEs|((QH1i6xAHL^yG~ z-WbQEa#goPuB5U=Q(vsSEIsc_@#Ixq zi3N8>ldH3KCP(-?w^JBU< z2PzF)MNiN-3Y{%&S*{m-Sv&aFuI}aMv;3?{9^|Y5rMdPo0tS{+qUbKp?MwD4xgf*% zifnq(@e2>tq~{lLzY@vS(BP7trM$8vxuquAndKRAd)ON1S3-NOdM5alY?rIa=0g2# zspfA@a&;@wcjGD5sbX2Xx;YfS@sg86p|z`9IdbqKe$}LUl;pxa&eOt7O=`ft_CuSO z7LC<#qZG-#Cq4f)$pMwq(xMk@P`Lei29{I~#!($V*lksBAgyAnN%l1u7-$5rBu1>F zq=;c3>!ALr_~NNVcRY1fS52x<@2%ZZVmpYQTFN5I#0qw}EIOcm;{+Ddoi^(r=u4u{ z-lm7A>fvlX{6)B8&Ne30Uex0=)yK>^sQ2dWW^+MS0Xtn`2s2VB9Ic&c}hQ!5&}~4@IpOwDarKuZ4na_ z!aI~HV)7Ily427cLG`*vUq9>aXll;ARGGGT>Qf!@)U{Nd zRbAnVp(W|X$4k?*w=OxfHM)WuA+Daii}kSEV#zrN6UoKDh^H3c$uw`#(q^z1rOEiq zA?3AlbB-;`igi?nGO4AlHATZUMMG5+;Wb-+0ejY}Xt9TABdc4NRBh+1Xt8Z=jyu}; z%?2jk9QzldT=cpeKoDOsL<=seNzXaXTWC%Cg5$kCC%4mxRSFArt)Vv>Yl}24wQX9K zwU%UBDlKf;%$j(sZda@3oGTSEE&E!s1&ccNaj+$857ExA;umGCf?wLQ-&N?$)JM zKhcww|D3Y?>CuM>)`>N5|56^ko)__sn$$*>GIj4g=|#U6^oBLbRhgQi$Eb~)?P+pV ze>{D`uGs$D6F!lB2rcc<=SeN8Rl{(ajVJe0 zZ@bj3%(}aVC2w?c3}Xz(t2z?t_{Fli&N%Mb%jgc?pqFNE#dv!+)V65RLD60#+H9TU zJ%CR&H&Ut!!-X0YcA=1?9UUuu|J3KCZPIM=Vtb06{)9KHecP?cyqEF`E zT~jmx6O6q3^$Bk!ik?zVp9(3fPreaNU)!NqFW3r&$xackHR5O9D2w^}U8V8VXLgn8 z`P-R=dy`&XY^*HaLQjyf{;*9w;!f)kFIk$t0KuOWC%Uh6wa%J(ncSb2$`eIn>Sbo# zohaI`Zsmk$-%Dw{Ns8C=*>JHxPGLYgRixQ(dbTE9`hi{L@znLZD)jiQw&lr1=jmk% zMExUNtnP;rbd5W$Yy4Q~n)im!`sg_!xH%DSq#pQq-uYOa<758asnyL1&+k0tH~+l! zEC%w`#*ND4pvr`7FBJ8H^Tf^dyCU(_4ZAA!m?ByHCNV>isNdX@S~V(O4z1l*V!h|i z2<2+-vv2?>Zq2#L3s#QbbHQQdMPx;`qI#-iSj83h0s&m#?FqG0S7S=n;pNe-a z6_3JQ?G}myWah;}R+G1gm>*0)3a%INQd`Q?1fT1#R4N%3!-owT=+` zS#!MJ?c`mrcirr)&yBNO%5%o+_13)Cr&f7w+f_79#uV{WiK3U4-+4-U{&|dTZ>Dy6 zHPiD8_56bK7=w0Momr(@70$Yz3a83t`7PdpM7^}0{WYm;GoG)FyVNp9qne^DTII4G z*@?HK*{8+I;@8KEo~Au@Nh7m%MT^GK0aCw5b&M5U$H$7ciG<)hKUL3Xze(fou5vvn zz2-d#U9LCg?c^^)bDK|U)wneJU>mPo{n1?Y!jD;zA*(FqJPr@rgZdUN+HQRSY0Te6 z<%-kZP(JOA`a^r;DA%{eie6A27if@GV}n9t(~!I?B0k{?p2H@sHvSH460RGaz&HPXvdv+tHBX6>2m z<-_Ol=2e)nCwg~|mhbiMTto8~I%y5hS0rbjxjcEpTvk#n-lb|YTl>9fBXjt;n-N;W zvUTroTiIK{R$2q*lA=S0HZLjK&vc^(6b5VA9QY~1mQ?NLG;e-{*E~Fda5ic)oZDEf zL3_$@z3k@!2COgxQt=u_XWHE9~@h@UxxUDV|$Fda%Jt^5h8BX21rko!4Qbw3I$zypD>y zijCt2dO~`5e#^M=lMXS1%sGLj20F_PY>XJ_sRpRXNuQkS0Pq?G1m)W3geE6600Lgc z5nt2-vS&K4Vg+8Cc?7TJV1rTTHDZ*OMzK}VS#4lrt%06;0q&bJe$w>@+8YgYHXGR3 zW}v4F0I#i{a~A+!+W-Nt{Z7a@p%)PFDvsc_1Cafrzp-)^EATqRBY15F8?1F++l!=XIRlo9gU$XXrt_)zX{QTN_Kk!WBK`0^D%{ zH&ohk1MLw5oz(_5)*9%k2T-_W&R4|wDhC7%N1agXglfQiC~9C%r~qW2{Hx6#ZHX6QRu8CH0^W1vFZ=PFj-`_H~*6>^AmV!su z{;Yo0-wZZVY?Nvp9mA#uezR|Pc+AS6-n)z@0J>=a1ZB|XgbpXP0#pWgGfD)dH3G6@ z?Z?TZi>CY9hA9MkiQoY$UowQQ6~%o0{N8)^7jL>W9xJB_p<27Z_ZQx6Q^Ft^um>Ve@m&+RgtdSLi1bK4B39)Jh(x4Hb;oygzn@|Qkg z@{jXKZIi`vYMWqz{N-9c$5`ToGC&}|5`hrnNp|cnbMg<{iYfH3bdM?jg^>dJLwq6m zGbADT$M*@R9vHrU?x^9^1H(7W9X6bLVED~*Glo+S48LV=ui?}K@Id}Lga*;6>rSW_@J67NAVdM#^?#8ogmGIhMj#`o60eL1 z<<2U3tiYB<6gPBndA?;|XDAY{1<*#S?R$|Phdf9QC+ z#4BwQR}7Z>!4R?=5C}OeI(`4kQxi(3H#}snk`2|AO^M$oZ zl8}(KhSMeurP8G;ux7_99BXwf;#iwwm5y~dR_$1qV^PPt9jkS$ z*ReXs`W>rxEaO;%V?&NLIyUTBlVc-}H9I!ySgT`M$J!hlcdWy)3CFq|3u!-1s;}Fz z632QSD|M{ju`k4uV6-iJ2{+LwS4(=0X6S!T4p29n16 z8UL<8I)wh@1{>%sH?T2cpr;zZk*ak70v*YLdVXNnHyB7a8t7~SAmI?4R=@29POhHY zNCwphx5ZO8&TWzyYqyj}legZUCBt~~#@m%K@uuUen-8A8ayQ>7h;r*(`31pO9cGWe zqOW@I%74|*&sUh2Y|tRD5wrbXQC>3Ig0Cj{d6c~77sw?mDEO+9pRe#MnH9lTO*Y&g zk;B5gdKol>uljBLd_`Yr;LFKn1JWz{N+U^5E`GjJx#%Zza#@#ow7jA#PI+rN$73g% z5PIVRezCTMRm$xVYBxWBpwWTQ=$0tw(&9Q!SqegEF_vTok=q`2*!9yV;biKJ+?#YE zHHlPOBGwF|$?e=99b3TdjrUT`>(qF-#bLpO7EEwMB)FYq+gV|hT^uyB@CA-Im>s_9 zBfmpbFPUzFVCQAiJfike`zTupSkG?Rq|!=*^KDxJb<1om*Y70=d~QEnJD@Z=k9<0jjRX?B#Us`7Sls7a_(i82}%xIUCBI? zQ8{b~(IW)O4+QVWHb2g_(i>Iotd~$#VYl1635Ay)&-BRC%zvCY>v!1Cz!IS?93*u2 z%F#fSe2RB6%kf;I>PO+V^Urm0;4DI*eVmPE!P!ud+1SP*R7^ibi%cCc4$@ik1OcD1 zdtZ-m+`j!6r=Nz%sg_17Hg02d^T%tEu_iZoL<;M(qUF*>UZtF5`PEATtWH? zOC`w45htklv(GeJFieRMw$Ui1AS2jdl+5VnBSvYj1<>1914vrq7fIXTw7o^+SCFR$ zAqY15Y;Vy3738UuA!u;RuJ$~YBzf9!Lckbou-5ZzG)j9LfIOQ4G-wLZuTb070Hg8A2&fvTyJ_l_YX{pekJsHrNp8(~~9Y-}{p(=5OQ zfPr+Ef%aYlof!ighYj?M0w|w)kBl|};I#n|@Y?2t4kxq%0$#-tyfy-|Z*^YBNef=P zcm%JZAHi#r^IFPpT2(IqUds(^j2P&t79gl@AYE^uz0p8tvw@9m270;x@Y?M;X8`cp z3kY}}al)t*h5-Su;s{>*0oj%ttXz9Z3tqE4g4Yb#V6*c&Y?OA5_3%0h7G|=-Ku<^y ziBTI!mm6r8=g*bK77#dpW36F5^#FJs_nb=(8Ltyy0k2xN0!tN6C<6q%iX#Xio@DR; zqVXzL;5EV{cx?t7Y;|7SjM5o-NR-YlFnH}X(3253zh&4!delJsxPi`)KH&Og13l#c zc&#LTa;^nXuGN5m*9IpvIziKsTwF?@*C~$pA_~YRE+d})0!khywdjJo7d}YPJi~hg z%=UW-J;3&!{9O3P8_F1b^uVHL#s|?e!3vyL!|~J&$9XjzPu*~wSCaxy9X#;V+b9sq zNS!*OXuOT4J7synUz@P)EzJNjR4?9bul4mhp$ia5LO?JSozdER>SdF4G#h<=i{*&?tvA>9wN%hLuDN}l$GnK+a-z`t39=16&+!CBT<7eOawq6QM0|) z*Xo2OKp>HS-&fC*?9%th~24cTjb!%oNm0*U;43pr#ji{^AB-{P1O-CtTD zkcf5+08vW- zfkgg&-#D*km&9^9BAH`L^uF+Mq5cdR(AO20^9d3aj|x_-D=syBUGcEt>x)B%uP@FR zzM*(rlAgbzxEDOSHp@(bY**Ph$(G(>K&nMH4p>O8HsJ-wN*s$gR_a)#V`YxXPT{+9 z$D)o^I408pTEwvq$0{9@JprxSv2Mqrj>*V?R_j>5V|9+n@_?p^F8CaBtidsvBhVTh z8*!}3G1(~4njOnJ*6LWTM(botn`3p3bvRbS%>R5$iwT?v`t8=We#SjwT_KAR_B;(2xO>tEbCZ<7F}*A->>q1amAkP!xk0mKkS45UX5 zbY>0oj2jr303b&$V>2RZoa*0~ds#3F9ryS>%ky!CeFt%zImOS4zr z^|l8UZ~NX{nHv5{lUV`^#2n)j1&V@P`1Q(iVFU|uv9auxj z9ses4f1FM($i=$5qvT={kR7klim$6CqNzV)G2kIKNgW?Yh6__1ut_lJ;e!hw%q7Yuwld2rJ@1QJTpHqFA>diFDp&r9 za1oKX2P~_q}4OXM~@G(?SaUu^x8+L%K#O*;%K@ z9+Bgv220NZS2U}7qj~6$6R$<{=ok?wi%+pTfsm9AL~39fL$9+>@3jQfJ)N|(XOSm1 z0J0^?;%#v8VzlV)<*853Wm(_$<;nStiPR@A3b6*8kk!g~(RiZjCB>QSd(OYYiN!ha z2v#(`k~=*f3x6d!TUAJFJ^L!fXZSnA+>T`86tzq4cxu)`LQdR`d3F$TidI<^FT7?k ze$m*+Ng!B0II$JaErU7YON_9A`?nV?AIyTVDk?Li&ZZ}Ho4`OBK!yka?&P~foKWe6 z3IIE?;IT!?^F=97vY)-wJV&L4S5&QcQ!T?_gG1y`&(~#{wcD7AApu6xQQjkkdc97> z0ubccPac)9}tJs2V z9y*R*+{QO}*)QneupDyl$L60TmWY%)LJ5Dn(hYQ54-RWXV zbcyL=uPcrizOJ~}#9m)qZut7*F2gqzmm0pIxNTC*tcy8p{P&EA|8z^Ktcm2nxUlUl zqkurnlG}|?3V;v-1Y-L416f|p-lbRx$+XwQrirQajwNP2j*+Gvc{Qg^EpL-HLp+n1 zF7~?O@j%RKqpvSk$Uc1j`r?S;8;Vs_aw^Kf18q*Ym}PLhY21Fd$Sy^5U@#q8uV8Gdu|FqU}u{F{rr48Nr~WB4t_ZQw|+6_zEZ zT3xP(<4qy^-BOLshV%_COEUn4HUa|aJDkwvgf>7Ry%ItCCP4P9p9!QdWif2+C#07%~t2&5l%Le>c*fIxaBg7g_cHu=Ya z^cvJndL?@->F1tOAbqU`&TyMaLDE+nj@xWFHQI38X2Yq`hT}F{Y2930YWU5?T9YE_ zLx$f{JPaO4U*Xb^!||qam%bU}Tm81nQo7Bg4*>${EBL7j?u2qcAiWZSP{NaJiu-J> zmDdt8FzJ=-v7~?Dpcg%hRw zkm0u!mm7Xd@i?UwNMGsFSHkh8h)dt~6O+E0N61nKK=)BVAbq0~nw-!82&7jcd{GO? zrav7>-$)F_q*t=XlKws>g!47OjSnP!Jt;`~X2aJN*BZXQxY6+S#npyyD6ThrLvh6L zn~Q4=zqz>F@LP(j4Zo#WF`hvBs7v1r$D68MdR^6l?ps}!E&$TE0Rrj!ose-tFCdU! zi6DIkAo~{$f%Mhb3MRdhJ(l$SnD}|=6&RKDW^Ew7hbw9SW`r<88=dxVI3u*-w12~I zF7|LG?H{W~HNW2Iw14nG`g)gs2#z<^@%#I={6Y3%9x%v_;v6DSRv0@106`Ii%v>BO zkqybJW6`0|@hc_17zJb(e=;b7dX{Ba5hy(`f?y$S(D4VDb^PmbMf!tPwZ+4HpdzRx z1yz8I;dBCquP^R3oKC>-4aHrC(+PkhqE^*5xrn8(x~WkjHn@mo;yv9`{+KZwaY@Pn zfrwFlswz97TEInAN)Rdl*{fFsB6czUnutp8SR%HaSRi64A4o)v>Jl+zICb4{#+~$*k(9&9Xt@R%|)z(qfM<6vDrne7t`q$?Jt1gCSgqN0Rj=*_z9uI39SMyqEdp; z2*`f^4+0Ujm%~Ie8Ma32!b&#WeirP7!T0J@~lTJ>pRHtE*VZ#hEw($^d z0&^Ki009ZSgi8bjJjT>M-{13F+I#lKX77C3`D1?iz0bSWde(Z^yDraq)_Ua_1=BPE zS<$RwCT}TZnmZs{Hd{9f7b>>dnN=*?FsqtrmO(gqSrJRaOs-Zi4g8VG;|i9U$?*!N z*#NTezuIb@m^Cenv2(k%X||vtCYCQVjk96fW=m!Rvx3>KSW3!6cky+JjVzzE}Y*sUynr)b6W_7cfS;OqatZA0hc#-F4wqVvZ%bRVR zEtw6>Vw8<-(5z_L$gE_xZ?vFevvsqnSrghqHQk`lFwHv+NHHA_?l|p6FfqcDCm6u=t z^AGABz4_u7=lTrPIKo|H;Ky zy@)HT?N4Gq#$A*$=lh6H;f%LuR384w%9*dS75o>z^`al+3zo1De<`GGdMD`7U>H|^t zQCm0$`oY^jlJasXN}~H??LNQbXCBG%t)m;BfhXhAOSf*xR?qwq-=Tk0pFBJN)!RSI z*#VV1?&Hw7o{D6ZFP^{R(~n_NehI@ zYV1V}F|c|t#$GASJY6+{CH2_Y%Yl@pVn(2WS+?#p6(wmFxQR6Lu)~qlEQF+0cA6!C zd=?#b*-@8(l;*kxH4Cc1)0|JmOq$C;_LFRul@T^#KG@(AX;xu}`%1IetA(UB2FSIR zg3^*CI{-#7G^jhiO@PcbfTY2|f?W%?fuw=bL4zic{fISC0_1wcB{Z184#(DD8j^4X zK!X_!4RV?{vIhY`gMG(00nlI!Bn>hPW)@6=q=C{wgCig-TZ4k8o)?`{OR&QuYfuhJ zOWg|^RAFdP3+UAWl|fX1gH6?nCva6g*tK9ANCy86hiC%XU4O$*L7f(76nvTlcnYw? zNqPz)Y31mjF!$8Zevz=vpRz^1cqBYXwN9RkxsF z!3L0Yl}3c90@=rYG<20J=-T9xYANjS*t*92mce=s3IoL4f$~U%ZVmEf`0lj8G zzZL-Y?v3Y=o8Q>1@y`R{c6BYEnrv&&~@UJGXPzWfuyT8A*0d)fZzl{(p4HE zm;%|q`jIHtCUK#wb~>YL7j~Fg*Fi{H<@biJBN)1l1BMd;i#`FJSwJtRJ6ZGz*eL`I zO8~kqS*4OyDga5>iUm~*%0SXp8lh_u$UgkTuCK&}uIpSu2B2%rDK`L$Zv#lWb}iVpU=v8XN+Wcw1KGD*SE+)o z11_n)!VXVTeGN%V13Gjqg~~hSfMHcYeGTZ;1A5JXem7ue5HK78=(_8a#{jyHfTZiO z1yc(qfL*s*(gD)mpk$Phypv>Xwp8d;@? zA7WNFeQ^_D7rW#B(a=ns4UZ$E@Y=I|}O>Qxk8%ohN4VMAgq8P5CW>pOTTYv=B zQ*Xp=2XzZ-K+2fIA5^%KebZmP(om!Lu9mTne*RR(@&u4AYHp~>1;1pdnJGhLY;LHT z20v}6Ib3kY8lmy9X&4DQL%EHSzik-#+XS4ygMDAw1(Y#z?C=L&u4K>VumKyMShiWY z=>g_#-#g~Eiz}Xq#ER$3W~cHaAGR>`l zW~Ppia2sZuW_7c!S;K7GtZAk$lW?16yJlUpk=eG{zS+R6KtDmaU9+Ou$gE_xZ?vFevvsqnS|z+M(`P@t8P z@hqTI3g|Bf47&k)a&IHfeaBfK&hVHl@*_MZOOeXKGJsvJ9MGu*^s52G^?!`B9XQZGY4oy)xpeb=K@O<61|?YCBLI$k-$2H{89Z@P+a;+fyWN`^S>SbQam z!{^U(D1YVQ-@|i}|5(qCWKcNsL4JjSlPgzd29QY z{6zy$M|PRTSDb$wBhX*}B&C^-CA^oRcAk;f#bXIa_nq=9oI)60%DBwXYKfcK%TWRt zg%yAte+ViTR4ph2^J$3%MId|sOJZ80xESisXayMRmtluXq_16xAxUQ=^lLDtCG~(| zQ-FN|ePmz26H4}lfPNuhrxY+O1E_RD{OBsDEOgBQN!KDjl?e;v#FccFMhF(TlHFuo zyP?rRl}qS4fE^aB>nJ2Xdhm%(Za~*+=+mhM^y&fqX24E2U^oEKb)EQ0xelOf4M@6f zTF|wi2_#*m5g|5!>{oA%a-CV%Z7!j!yfzMt)>R%IJVe?0nL^p$!v`Z4<6uN|9fdxf zaX@bp(4PkE%mRkFa8DTyobo<^uDd|ebz;G>1xG;ART`n|2*@5<30oW0^auq<=GLUrLut07O zDsUj_DvbzH0kXejU8M@Tj<|%bW7y%cb)AHyr7B|fH)WtUF)Gwry0=e2J{C3 zJEMT%7(my3r#t~rX$&M?GYe)GOo8MTD2>qd2*@6NUYfy8h%HVelvbxtBuq|^=|sZB z;zYvs=QKBMRT+Fs96k6KJ{uXGp311aO_Wh(p6TB8&iJdYF9!!h{_5*X!NK5nUtb6g z!c#`8&gcLQFI4!=@ke=P?>yRFE|J?YKyF7s%I&cQQwt`*^N`T-C=x>K16h-;q&{eI zMq-g$#p~S4&GAxhlNY29TDK%)}4P@G06YSxmkEqX)w3@aUvvF5IOP!hp6e&UDF=AUf8F^nq4R|e=fBGMQq2&T$W0aC`Imu| z{|yW37Sw>0e?>xw3XnDNYj*xin8PFgiubDd|6N827Y`aOhdGAh_lQFIF9oL@g1`ED z*?Tb0T%QYm_x1VUltYx)Yp%CBhjIvh&-FIvP!8~v|EBZbK<5h$=U+w=^51lBwgK|L z38egwEZDbT7fAV6B;>yfWX%`N^Iv5!8TnVdSIz%#WT*0P^UR&sYf_>7SHoOGIRs}9 zXmH9QID0^YQx3s7U^O`95d0n=TS)znr3=^puJb=e=L?(8zc&1l|0CyS3XuN^kn(?G zK~96L2U{~(%D*BZ|HnYqEYI^_XZ9WWSG-rv|0aXHi_gDF2-W`@Q7HfQ;FLpf4pvva1K}vPB{d>=lW7`$^o99|E}}DKxQrs`2D(V6+(NM=Yo!c!*!S}6`j{5 zAQeJca_YJT%K{`cf{F=20myE8;k*#?OgEzt6rl@2E`OIA!Q>I>M)3dm1ci`X0i#B5>~+bVcj%rs~v+|*24CSaM_%xq?MVs>Jd z(~yNOXAjugTQFNN%bVrRmduvS3T6efqFK?bWL7d;Hd{6;o0ZKfW)-ulS=DUaY~8G8 zRx{f$+c2w})y*1a4YQ_M(`?gh)2wUOHQP4ZHXE1?%y!Lo%|>P;vwgFDv$5IO?8xlM zY+^PsJ2pEuo0?6{GPBHVW;QcBF*`BKX(Yn)`)xlzGrObh<<0Dlwzp(vceK5NncdO$ zie`34+bfyb9c^#f%0iAk4zY(|WWkk*7L_SBd z0r1}b&p78WL(_E5;fw^5|JRAKagF|ZjDb?9r5Fx9sn^))(-Ae8OQGcIagAwd2$Vv} z6nc%JG;m0v8qr~2lZNVP=lPP2_sL7+wCA0=t`zDdx|AnPi%|H`y=XG`p*yc%owLuR z>)%$d*f|?MbbKLZyxP9^YkcT@5+J7nhMo1S+`!~P_o(~TU1H#D`tbQ~KfKm{C*E8> z3~(%o4g=&1XdmJ*z_aSwCy)16+41l={S9}shk=tu*tE1rZh6`7^ zGY5+O=C@SNf01(lE9W15qx%1J4&V>{z9Rh~H@^_qx$h0vx!-zG90RC?Rvza|q(h|@ zQLmog)1+*z^TK!D&Q}3L7Y_f!-EgISoczJkCQk2oPM;FF<6uM-_|N?WC6bN-d`TPw z_{gPW02xi$drm(%22h!x*p)BN&Qk>8J@?5E%uTx=;+Hl~ugH7uSt}2Zy&e9|Tz*lg zyVhBM>e~5_FTU!xbf?Y%eB3^ZJ_qo+bPnL!DgQY>AjUa>_MgKN`Uw7WYv)h<&%KX3 zp2pFAe9_xdUstqdIb1=Wl#RE}aB;%O~O_!0&l6M(lf6F!isUzwh=Br|evG zpnKoNqX2*ZSXp|(pQE0khK>Tni|>~{geT*DIt%bKm(BuI>BL!ppOgpP>lIFC0Y36) zd7dnPskHE*JMz#_YBB27bHvaw;3Z{vrx+LzN^?~Ra9BEf{BhLW~)1UsCN7){|gB)u6xi#P#@x}rvtBmdNBKEY0GkL1{nh&-jKm~BvcdtR*>w!N0BLRmDW78tjx5**QksgHGzUQT z-|;^npNf(+CtM;;O+^l;PO}=4UK1eA8bF%Ij$sCn<`hV2E-)}4>b%AW-bb6#RLlr6 zAZt5KMM;`V+)J8W*kR^02O;T=0n!`+q*-v(%Z|DTq%^A*tXoh4QksgHG)q8sz0*{b zq*>z^|31%%s@>vj2yJxF}mi zNt$`p6wZ@`9iAx7Vy_gEo)#@-`3vaO0(y0TTx-Qhc~G6W%IAoZ21((I%ro&G9t=G}r)A8FVe!wqO&mCAX(^(4Y=v zZ-0TyK)qP!;N)YWK>>ESU=2zk=}n{oAMOe87h{U?#TeA8>mp}g2K2fC{XxLaC}21S z&^7n*NO=iB*99Qys>8ofY1x7zkaU$s2=ZLXo@-sD3cA+0L}^W7hk5Hd3rSCFs_2>v z*vSVBwFrx@T75;=azL*d(60sT)B}c109_lzPs&{YU7JACb=QKC1=<{!bd^Sg*aWhl zzbVSKOI+wWww`@@I)S?IK>qd;KrR&z_1LUYvz=7 z8a=wsU`f{{uAq`mFhiiz>yxh12*C-Ez2z^5uHpE?$^$o{t6W_U3)VGUTR6Sd*8HZD zF79*#h64esBmtdqKyMPzp9bvA0){z)qwBI&s#>KokaXR!pl(48NV-ZRbgcl{H(6Jy zLb*1$gsuhHVKLR$kR*@Dei??Y)qr75Kz$A9Gy{6wfc_w0XB03T1L)dx%G&_Nw+SR& zM;7c`unX9CtS^nwwF_j=eWqQkdZYIc{;DUm{rJ1FRg6hMR`;+`V3isWG;9?N7-g02 z22VB$tdh;(wozz#A-qv+kSS3hdZ+J;tmN)jiG@ca`Ynk)!TBe9%N7)Ylp}}V%X20B z7EZp9(^#+czH7C z1=_ud+I2=_W(7@1wtC_5!->IW(O+3E*)-Y4MjjU-FUMTI}rkNUZWL>lHLSdw1rWPLAz%0B_+Pz(~ zy4t#SZ)6sGjTo$&sU=1>HVfD8cJIinYuUt1Zr$8@Y^F9FHZ=>+Z$|oNBgz-aFsqo=&8lV% zvvsqkS>=Ardi&yu9;m4d)sCO%LZmevt6^2*~o0! zY~QSGHa4r69hr^HCT9C)$7W-*so9ZPW;QXKnH`&*m`%;J0>tyn%ofaMW?EoEc48Kj zdA^cKD@nN&EL$)unyHaRRx)dtEt{$3MOHT3G^?1YIYw4B+csM_QyYz}X0~g#VWx%~ zS>0^ktYN0s99a{_cuz9}I*kdyMyn;Y1zW8`fIsZDbx?(2YFQ8Ppn9vn5o|aJIM@YL z*@;@+9}N=2im}?IcK;Z7{g2U-<1aJiH{XI|XdSYH8Nht&29&Z+-+j88Pb;oLsI*a0Q~tq<)+gm3te(q==`Q=4DWiFfZNF@mUpc93O$ zecd2oBzWKJHDh~HXRO>?l^Hf)eSA?zzTM|J?jQZGCTw40pDf<-oY4Q(Uve7Ho>d-yGuJut?Z00@b2(%EAj;Vp>wA)#zlV;G z-TZF4+lZ9eZa&iLJo^{Zk#8TqbmZGt@FjX*B=uhuTxzP-tg4QnfEKTPkrjw zkj0U259!Fa)tf$`{J-ll9=|8AI_z!b%okVMd>b2JaJB@iUUQ$6kqA$l9gPuJ{v}%cmKlQqw4B* zj+f)ax7L`S*f73jwcW9vVN~F=6MS2t6Up%b;I*yiJqt?=_K1JX&oiisW7Y=#S!?IN zaQnx&Q9*C*oc(zWCzlR_abl;{wSfGf#UbOu_8k`E6zTXDT?vYg;lSo&0Nw ziK#BY{XCq5B0mw7EGPi!q&G#2V1X-H>rcWVB5b^DY|_1)^hWH5%Nl1gk>EE2q47R| zN2bzkAC$R|7}j+=8QX5E5@1sgyb+bU*4RDtYW&yR66+Zba_W$TKo+={Cba}RtXS7_NLn>|7<8>lyW&nQU|1L2*eZuUooYa@ z7SOK;>@)+0T>xG4?+;yz0J<&#N!PLk6$_Suq^mSS*8-6JGdzH3_oWKDR=I?(b=cv$ zb#3zdLN$K(yKz@*%+L#k2e8HBa3r{~HTWGtXB5yI2lOWaJJW#S3_#)a_eb(|0EKHn zQh3vXt_4ltc}S>1QVWGQfNb}S` z14Tj^Oo42`Cs|wuC58m^GEmf4FM}VW$G%t(WEhFL7tyE;WHeD3XuzQ|m;`6;75wgV z8qjNR)hx>FHRm+=U*y0m4Q5miG*MW*k>kGLsSGw<26-}cq3JTv@Ru@Ja#l;uY5_=P zP_dwDK^aJ8phzf#B9Pt9_hnoLV_w2}87S(jm%%cf&c!mw6GUYY?=oeO3(h+cuQ*2n zQLK6w)BxyRm2 z%Ajk(wgsC&Dg#AA8PtJn`cJp*I`oQq&<%c19D1dC(1fQl*mW5U(EGx`Wl+O*K^g2iM`M687y+pa zjxCs4Fac5-C=$wGAIM&P!@LY~4BY2sps2522A_NIR2ftWqIw|zB)tpe;Jg#T*|rv( zcOtk?z0$id4$jecA?KY4e$TmFaNY@cDuc1hAVcp9`}}_0h<}v8j0^PNve}TWh2M^X zIN@R{hyqts?=4soAfa{_-=%_^MR;DtWI9>u|)O%^Tqb)Z>}kn zddw7RnV<6|`m3a+J|=|2^c|5O+(eKutB3SFZ?3*~BhVKb(Inncvy-^M3;%$$t z@-;doasI<`K+ocBpVuk3w~tlbdQxzH7>~5fe&V@t7?0yV(^tBeoyGHODS05#i zr6YK-FGOBf?)~_g9)lXyNHrjmCYC|56>pTu(<=89V$PR5y2C-KB{KL7T`SNx&;2!4}b;YV=a zb$XJm2C;`9f%{b{MQ^G!=}pys(l_d9GOSQUsvO8S;|3x4oJB(PiiYUBK=xuEEFEn)C-HDeR!3q! zJSI)1lesjV*F65lP98w(sbe?+NHYUcntA7Q2|%y_q%;*XY0iM`9g8v5Ekw)*1#Z%` z9CkQ$n&ptRY5-|g0n#iw>awFQ0V&OO3u+crft03VCe39a``b=aQPLi4a7oi^*kR^0 zn<0t)f27%Unsvvp36PxzkkTAjuxr6KKqXMwDrVAb0@-so%2}pdjlDYu+D4_ag&oe6 zX3@L<7;42pwLe3`Y(5ukm>2vh4#hth5I-sJ1L(R7BwZ&K99wV%BweKuAx1#<4`?~j zHO9!e861bM8bKePSl0o+smSFRQ1(6c-WglhiFKU@T*IOG2TR0H$|V3@3qaDfVnNk{ zGLUqYMuaE=+2M7et5l&}*SSQwR$+&^XGFQyLK4ScVb-aK$~(<~VOM~aB%l-H;~RV9 zVEswJ&NN^+1E_a3r`!P0bpuGcb}iVpU=v8XN+Wcw1KBgJtGZEi9dHR<^RUAO>skm& zviJ8(FzP@#U|1D!K1x8R9?)wB^t%B&gMi@(K-XQTJO6?T}nuG5gTnlbk7&tT~4k@zqM=+sxq_=rP5uN=_VO2y)hJGFpe z9YEKaQ;ttoVO)SEUA5Ooj~XBoOF+_98X?eLpX>sMMXSCN7rJUg5xRC^hfCIVpj0}; zGAozVfe{Q{#{t8M05fDjxar`Cn$w+_Ap>>_0mBl2uKIQsDOUkhDg#MZZB<85x1a`S zL7L7=8X>3v*{^(Ao_xGKIV@8vH$C7F?|$!?I~Q;J3QN`cc7xd$G&K0d-=RYd&WSV9 zAZCI>CO}qu+ib&ZU{*KVHH&33){@QC z)}ZIUSqx}dOE#NXc4T&9HZjZbQWNgjY{6`5mN(1Hmds{m1+x>gqM599lwiqh!7RLi zSxYt>Shi%gYgRBDnH9}+${L!L%*JNRW;#d>S=nr2Rxvv^tC~&C*3B}rn%T^3!|cSY zZl*Sd6dGo7(1JD1>Smi};lsuAGgE8Co!e&e-+~Ryx@Nm(;o`;fGgG_8o%?3HW@EFF z*^$}4*~F~CJ4?7@vzT1q3t(2VEHhg+o0*l(PRuH1vLy2Ss%Bc>glRpM6l8UT)y!hG zlaCIW6)dZp70nuEn$i(YZ40r)td7-cv$AC~vx?b?S=CIhFX7hB7R+j9dexC_m@S#r z%?f4>v!YqkOic*W8cl2oz8M$$3wrIhTKRyzrGSGnz|^`D;DOgxe?8bx10)99n*jM+ zcAPohhu8m28Zw4H3;d2ngkVwef9qnf70VQTyB>i&k@%y zJDx*V;&=`SeEM!Q*NX5@qnu}7FH35kI-Wzp zSP{OakAVGOijj|iMN(HB&+*I1aQfyPj+J{q{r#N9!6)BW-t{Ppx+Mnetn$W*9ZzsP zho&f%&J!Nbv91w+to&AWQykB+pzhZcC?hC|4{7E8mx&(oyEh>iNzxkWT67{MSp1 z!JDsVG59bRgAc-L(B3&ZASU*h9};fspR*Xe*X1UL4!Z!OjBS7yi<-GNw&2KueIP9c zD_TMffUNPpSPWKtjEE+>7mpFxVL>CJ8(Ymtu$O-$63(875%sZSnCW($uz{53!W$y$ zJb)kvcof!C%%qtC+5LRZfKgaP$(gEJbi&b*1P+THg_V?8r&R|Sg_Q$#ssY2AfHi7V zWW-nw=v4#ywSb*^z_1CRYmxX#xeTCE2}ru?=xYQu3#vdGF-ju@%RshdU8M@;v%w{F zZNd(ht!tOx7fSKFKZv_p1-c7{jU(7%aX1!mN^2<983go30sV2n&Lm(s1yH!|D%W{i8H-mllg7YD);4CTyf6cjOa2Az<-*c`GPm2i^ij7iT zqMBSN$M2RpJIbKodbI3%R0L8PR4rJypaP^aP$ZN=3CMon%zPbTHs(pitHUHzUD#C@ zncqNrd9e)CEvpQsL=(g4;4Cr+XBZuvMdsiPql2@^9Gpd^D6`j`8w6)jDL9MF@Kgrt zE`u6+U#PkawCqM1Y&b_vfO=2|QWltBZ?zW=H7GRVK_QW?aG-c`%s z-_eL&EQ6{H43t5RXkt+*IE&1j)}RH}Qg9ZTgR`guP)K{+u zx6=+^ECbCcR0aig$68Mc&LVSg){}y>$Q+#Yq~I(vN15?erQj?w2fycBAvlZ7@Kgp3 zm%$9ZFVtNIngvh>C(cn`4KZyhkjkJKjq$K#K>%rP@o+^Vb+NcaBM58ij24{gaIA>!9XMr_1XJZDx``jQn-&P9F0&DPl&Xt4TbFK+b zWw7ZoSVr#)O_#x#aXe*E<`Owt2PlIIkjkKLLBoO#AeDh4Aw(6(Zsu+;v}>d|F9St= z^?Fboo+<;)F;oUK#<3~`%}3;HFb&QEd+Sl0Hs~3wbum@*>HSTADJ@`H61{xQK z(+RzA^tha%`CDA$b2M}cbiBpa23t2Pnbpje%{I)+W_7cQS;MSq)-+o;+cc}0bBMFCjki*VQW^$td>1;yWPje-3es8?FgQ`ec+qK>1(deRN8r?>a2yGfx= zqKUtzP->u4sHJESt|^q7v=nNYpYzqSjB2ymzVm^oK3}`ys74@#is|K(Z|^;wFTFM? zlxJ99Ps7!hpL@lt=PPr+#4m>559oDeF#P71be_%lxaT_l1^IYg_KA$xl6!BgI(dgL z3k|H7j2G`>97e#sv7SChZs_IUlfvzHRBn1?t^Hmmjsr>3j^B^Lx8ZB;w_%4<#aU~A z}sqWkq zMkILtE4an#%0!<}-TKd}J#jBVzm*NY&zGjzo6c!@?g6K8=0H_=t@FI!Up+rmVz>Wm zR_7Fd?C}kCSKFVTug-bopLYAkWMGXMUiwhRyK#D5-D0ON8b530jz{>O^$%1RTi+d} z_6Li1=|>v2r@~WV-udglKA#@m&97TKe2Mt74`jTOtCug%{Tx?faqi2Nn`V6Y8W-r7 zcCP#Lm)7Ry-^XD0?ss##AvNJioTE04zFAc z1uBMB&K&_>+Iikh^ToM;_@!K|&b?3{%HSIpUY`4qEDI4Jf)h9KelC{h?%vUdGElH{ z_PcN0x*=OTldZIG`23~ixi?krc#sce^y68afB)huKK>ZXbH7BeSe|>8xA`6syO!s= z?wO<(y-~D8ETyUKVIHM>@B#!>6_D@8ZNtb*dpMGubDe!r)hfIFW2z?+0pnjKa=0BS z^ip%E_LGPv4wC_-a15jra!z^yKyZTKED~NU#f45&AiLX+z7b{Tpvb+$IpEyawW3}i*8sVK==9U#pdE$HE{ z)9k8+>$KFqlI8$LnhnR$RVX$j0x8X13q}?UfHX%_%%r&qWPk95n8PYc(o_qld@9Y6 z(k%97A!%vU&3rN!u#*oM76i;E13Kk^UNxX!3)ra#44VMDs@WvvFuAcI5tek7X$?Wx z)Yy;+OS(!U1TxuW%ht6^T<9u`8@di)hx^ub6q1(RQu|{VQ^`rda4O&^M2)1`gdNZ; z1@y}SJJo~HK1P$*r^B14`5S=t!fFNYaU3t>g)7+)E1P0q^mSSpmU$I%|E6^ z+uGC02kjz{X&L`mF65cX!n$TNDkkhic8IM#4SirUvz#AqX0~89HS3}&cOIKY;2ZyZU-=i1+t)!&=MDEskN_>9Buo~f-Z84v)NSuRzzI7Mavc}Yg(oQxQVP} zS>Cd`Wevx|Vz>fqG~ez5CUa&gPv%(1K!oPmAAk?lLOWk*(aWQ|~Z z>yE5KEJQuxp`u_@x6lv9o&5!hoQ`(MC0}#YO-DU;)MZ6R4HsjNkW*+z3jNK9thEd1 zQPHH4P%$nZj6(T6`InR4RJUx!$Lh7OD6$eq=~9pzPIlAD9tHGg0ejPcUL}-htw*w* z1;x45*@Q8CJyz81PClSt3fMb}{x80(MWzc1faNftKXb8e2DFwGfPs}uw@!L&o$3a3 zwgY_d=vIF>bUBy=>}3J{lYnSpD9D->tP$tpUB7&13@#Ta7L{=%-pZM&JQ(z3&ey)# zBrz*?WHz>JY^JJ9xP7zCvXR-qY}d>M--;*2^wZ%sEYp)BmIX6a5LnL4b+6@owOo-~ zei|*m2Q6p4wc&7nM6J46)DtG@W-hBZyqXmJXj|Ksxqh_c&O z4J%+z2~%~ZR&SkuLJr|ajZrWIM& zvUSTgEmI?`>S@w)se|p!nYjzmUV8S&Z?U6Zk@z~ z>uoxl%MQ2Ua3zPEI$Yl2794Koa7V#fC5NjyT+!h&hbuYUw!=*wuIX?^hg)~Jg2T-m zZrS0=4p)nCEGx2n=|EKnT2dhPK8Cz?;;>bRttjkPdS?%!W!p;cb8E@5R2)m*v1}_A zdR_qAMKz#R35ekU4b_rv;gbur5tR3_6Us$GZX{{1Z|F=kr&mbtNE7n=BN5;n~wMqHjKmPs| z?Y#XeJLlEeG0m&A-_I#$l{2inzLifLtgvKyhEF8C6|v@;*dhMR%DvOG6@3PQFC;v| zf9m2cB4+5Sm5SrcSLoRGBes~x(hzvs8g_|fL%|tV3EupcFb%NWD$nTFXSL(Due-7H z{CTRKB4nBMTX=JI`^9C}8y;eSqcpHLOxR}o&6UUR#eMfz`1v${OtZ0e=8={2Z@>Lx z+^C>T-q$c-T-tHF&SL4u7hn0+o+{3L*pvEWZsV*tcHBmmSY%bES!8`^$=u8nJZ|`(u=HevSvtp1Tcu!Mu9Yl)?NSv znFZP)kQQ0(S3lHFg6vtZi^+-NW57Sty<4q1?C@9ver9wb>E$#}rSVX@jHbDdsPo#* zfZZQRX%_j3pkzS-@W8#Nm=P>+CHwI|@`Na+z6WJ3x-cPv9Zu7PC?u^Kz$Bv-uu~2g zRt2p6q6ibsZa{Ak&>sctj01)f09`A@Ps*{p#OY(Oq-(>1CO{_YK$>JoBSNeL*>7=Z zH4DO0h4R_tk|sp3!z@jRLed&bEha<(JA;7XNPt^j=+l`6^m43#$Sp5mrw|ZpgXr3I z%DVt6Z39Wyu?4X^f`<%Cx=JH-9RS%kSXZfnt`jby>jZXqVqK^FzA%g5{aM@<o*4_m%T(YCx%k~0zbVR~%q3M9fUH)4R0eem8WwB-sSFee zA*w+3?VOdIc3RR1TwDMm>Z_N*xqo}A3`PV|8K}971)$)sI;S>Ii=o}%U~qO=1_y() z02CYy&H_+y5T43l$z{+)?+baC!8H2Zy-nw608j>9AeF(s1!D_FKq>=8LK$oW*|+_{ zybKCdzZ_N*^wp=zU_ua;LDXXw!N$RH5Qyr{0$^|)1gQLS3>XAwb6s#20E6Qo z5S#_T;5Z2AW%17IqRZe2y)P781~GZYBI+Dv0A+9tq%z1wLo{3f5S$=LWuQnXgDH^x z<&R%116JziWuU09UIwrKH>b)#bJZvVE%;Lg)8Ldra25cAQwBt>G6+)+J1xTjfQ7(O z$SH%6-*YaEJ2z4WQf0mnm{(pdE(EIig%!Otwrf^0Q=5!z*-WlJu(FvNYFNeW$gFCn z)*IQnnY?;nH8VA+unjXg?!fA1YGq*!vlFwXSx&DrAHFkNFzcG-&9=>!%m!u!vt6^I z*~qM9wr{p5c!tYMbZ7FT9|W(#JU zW_h!&*;25*C6&uouMlw11Q>B|21K9Ag5`F|TH6usPrG1QAeoCB5C=q&mgsgB+qEt1 zY50^vY31M=L#Y8tp^E&x)=<0~^HBW!`k^W>|BkiBd=c@7^s96BOM2CHFfgaLd?%wz zy&tRi+Ff-K@i|%rYkhg~u5aYWO8f0v^Y8-VS}Y(kR9@DDXuor{{Volr+Xp51TKi*+ ziuDv%VjWQrQoGZ9X7Fm8Rj|icLi`)QrapJCiqvan9Ms0|w35g)*7aadQLc2J{mqrm z3!lRQF-mde{Nry_rZ_A3<}a_X3U%8|uKXYAXu$uKmvnyVJ6N21?RUf);;($_nM_6^ znU%-yXS}OKyrOvC%U_*azI^+?OSi1HKa~~`*V=6KJCN=#`npSrZ_(Q8)<5@jZ|hlF zNMt+XVr!W)3$I!I;AL{&qF7X>cYf(r^C{4$`E@HtIbXh(_+GBMTsjRl`h9ZoRrhg) z`OIIt`LmRDZ1npii;0BO{N$?@4hw$%d_k~t!=Lj;zb~_vn6ZSqdOka~(T@{`Zh1Ou zer)uM9A383FUp-ci>k?Ool_hAK7DB^aqOkU2X$m{#Bgz^-xrDYBP-{>x_HNDwzQOp zdYpv((yd#LSI>NSt$oW0C;A}1{nSoBmCV}tcP_r-4<2KV@iv0RQexxjlp7~*A=Of1 z$$gu&Vr&<6gUwvQhN>d;UV2!n78+PvP&Je#XDV){^s*m%bHuI)G1xy)a7}KaXGxmZOL5V04uI^3k7I-$QQA$EQLk3z4$CCQXm+C3!%L#f7^W}{Tphy< zAXif$wSc5qaGD#AA$o?Z zc&aMqqq>8TE zQ$YE2VTU#AItWQ?Dz(@^6|gf77)}ICc2PuS7tkvO^veM|)qr6Q;91t4a_l|86Bd?q z9ayjnpzAh}bd^Tv+61z=9651;S925guO8`y&LO_2z!tI?z1?}uceK{zqX0gjW zG_z;QR{vOWvTrG%lLZ{i0$K~9#6h%}TYWW^42FvV(Oxl9*>_c3LcztmzU?2xJKz%N zbmPX9cxThhiglW1(vR#l%v6A|x|ws**)WU8(C*aCoY~I0nF@k%RWp?btYYS;7~X}v zI4U`0%PAI>Di1ovV&?31;?Yv@DHh9?%%TqQ5}QT+YIhdQqVDk$n?=2BccQv%b)wF; zJ1SgsiTd1*5{GR#1w95>ya(-$o(-&F*~F}Arn-P^(=4hWi#=xhmTjAjm);q_RYFxW3x@OBeSO2#H?Xs zamzPUwth9OoOFs@VItvHxaX!hI%h5Jq72Q2T6QK3YVKLoQ8z&M=eHw#;7>1`Z2b!j z&#pYM^yj&{+Wz##151A@_>&)4N)nYT4=mNS%MUE&iVrO12g@eMR~}e;#bqB@`cprx z7nuV~6<_<*fu*YwXxZeQ&H0?+0e<0E7#@Z514{|UZ10*5Ed9z)DJc#tRZ>?RSo&dP zu|4gfE4Qa<{QQL5(>T18*4fx4@H`fG_Rbz&E7R#5N{%tf{<%X0wWrsTI4^p7)(Bn=lz_ zTv|5y=c{L!NqX5tS^Ju0lRC>LpICfl?N?QC-psOzrycPH={;qMWfNukrCVp;!55@o z+CH1-3)0FEd(#R)S~hv)S1={l89Xtb(wy{)Ws{l~HgN5u^-9YoKB#ndSa0y)pu)|I3Itoc^Cbjs0L%_}?U^o@ve-`?5$^pG< zK))8SQx6z60m}8*DbE0OodQW$`R1UKJjql!fTXK5LXZL3_B*3or3$*rj|W|I8pL<4 zYd(he_A}%&*Dwb0rGQ~sz}CCar!xrXjRN}PfSpM|SclQIV3n4wQV~eHRxMb!paMJ- z32%LP7EzJ8lKuW~Us`FI5wBNTVw{#%TDkuMcLDXv(YN}J?93&*=Pk%YYHQmK@+_%?79pJtUQp_ zP3LF;PzGHfmBGFRV+%$=Dg#AA8EgaD`#6cyYfA$Z_N*+kW{}8OXmw&$&x9 zdd|7vm)6&26sw+dJ>;w<1i!StHVJ-deN8K8i>xV>)i=)96x7C0ZR@sIFQ|&}1u(O` z*~o0kOea(_l_;2v&5CA6W+k(U*|OQOS=nrARx#6=kHlFuo0+Yf>C8xEHM5*HPV-?v zvjwxdS>CK+wq({cE0}GX70tS4+P+Pk+h*E&4I7wgKQ?UFO#8KABeSa6zFBPP#)aRk zX4#S1hS|g{_JME3S`}s8uxx5s(=0RFG@F@q%}&g=&2p;H?bg6-!EDzoZ#FVpGTS$c z7lA!aW*)1wj?DDZ5a+}!1~#mjnCS&WHZ{}W29}xWWrWSl*3C}LYG%3L;TE2s*@9W! zOs9TfORB58V^4K}d+4HjXtq$t#pt0K1gT?`r)I!`TrQXm&jLE(EU^{6CFwOtffh7R zU6Q3KpjQg$mjiaH0mB-=7_I^M=*K3%;^@aselU>h26VOq`U8M0FQNMW570_zt5}o7 z(z?c`a+X$J79zx*4@e1FnXfqdQH@0k6%*{Q8;aGC+kSk$8nU8aU%MJ|6m8NqtcLJm zF0Y1M#}9HiAt1xH(6jxZS437=2jQ?KNn%Tt7ERg*StRjMOe}7DJSb7ekbY z6TD(E#E;?f#Sm%#KW8yS$YGF^PtB3IVhQ&vM(Z+ei`kd-^89D8{7nJW)-p2q!5m!4=f1ivY-hWzoV)sQdq zy#=j?Je(fT%DsF!@#4-Z6+BZBRTEZ2Zl3R~y5)0T4Pkb7!j`C~u5gm#M|e&uqf3h+ zd_VDc?fm_VcYOEHr)*tX40&n$mIqfJA0s}!7^0H7v>5W|2o{SWzsqSByr4C`!z_mE zyHj@E-HW<`K{n>gL)A9=V=0pQ;~bBhZdZ>K!3lz7!gu(g(#(GSjWLpnIX@MJJVzdf1P0(3#0cafRk=Wjbnh^}g(hCzlkkZ_?U|>NPNNFl&LNtKv+nuJOWSAw_ zFVgJ74v(DXASAI$LYgC|sn(4cjsVi!2U40-3)I4?0DzRHVkX2G$PU?xNb@;ynra3~ zbE-5aPIKloWoRNz*_0UToH&NOIu!=pKuWX7PogeaPykYziW$KISF&53rlQnvl1rp1 zE7#$%(=3IgRR>733}}qWeZ;U1kY)u)Y1S=hSg-*+4GHb5VkSft$UeaaY;_Y6^TA9l zJG}+$aH=$my>3WaRS)(DFcon?Zwx5cgd)DYMnYb1n&+A;2ucl#CSG^oK2Giy)}iT7m{`%NiQ-021k2Lcvo0y^V>-Xx$u4cM6l40DWG(RG9P zNx2E2YaK|sZd)+0pbI2jr4b<-Kz1A-i)qP8Iu;VvKR<;@KsG{Kh zX{O2v8=38!MHfY9Yo@-7a3^NlW;s0u`b)DgXyOH8RSkeh#p}dO z50f}+X1iwVW_rTNs%HCU6|*C=EZs@@a%W!Z;uUQ+vrG>J*+~j#mg7#W@8S8)L2W8J z_Lc{vjWY)}$+xOp#IPSr0DMG+;ETnBI>8r)>gE>ZO*5QO32^|lG5uRDYvdqj6bFTDM7qLfc0ECl^?%e8> z9pKoqsbyWulywSzV%f1}+m@+3kR4ezv20+O3ownlJ4cr7TIN#iX+XwsQBRRr_8rUE zcaD5#n0h(PFfNA2{>ZoO`?h`G=7)B$5f=}l0x?_iog*&tcn1Lo+X1o4&Y-BF0L-D| zqWy^5opoJg#^9)*@IS)DycDdT57=7>ILHB4c;)}gf27)RrC0vXa`m)V{!avdQm=f~H_Xe&mB;VX z_pLrt>D>LLxOSOWzOIB<{w6=3z$;(!)0gd)|Fo)x5O=@VX`J%P|LkoDWL|#jKb()k z?&a4NUik`ktzP;6UNLg|StNCZSN^Xedt&plMk8Oxyd2}2&J&uKHKeh5Sp#C5mt(ZU z3``eT8j2xMjM>vDFOBJ*(7dd>lX+PYCiAjKOQ+4tN`o=y)y>Na`ef$im;H<@4(8<; z$l1KCEMZ<&rY|=y$I$tFN5i{hUj7pn0Owx$VP1~2$bIfWGsj@(a7M50@0;T?t@kBOC233w zQT*v+SoWJdZ8bZn6EkmK!zph7?xTCl7F2=kevXV_M5CBVxvUnNQ55X(#N&y0$2+YO zFFy8Hz0^?%3@WP9hOZL~nBQv9$NV;+R|@Et19qwb!x}(EiO!493#wDVxD9wvanR5e zHfmT<2a;h^Y9UZRmp$~FONPxl5!$dR_2wq7CpT=qhK7R7j<|Vl*qli<44Vbz4}+I< zl))<>90O-?PE!hwfipO#DMhX^aKe*ebKzNG*lbd)7jpdeV*` z4)(c%U~It%c%FxziVDFtke&baxoIzl{dsQMiw69v=FKfyo{Q#9ubgJb3lj=Om9d(Or9$S%`ME{P-bzK}m%5)-aa5>t&TFx`lq zo>U#A7Uk5WDwTwyBE%HPewc$zY~(C3yqK4S;+)rjCqGrLM!RsaBqjt=N#uz}B{2?; zu`@W%W(BjRSDrTDap;^^zWVUX$Z&ouK zn{AjKnbplEW(~7rv!>b9Y||_=>zd8Xwu9|0MPc>S6f*eCBV**U6cA03M$W;8C52<2 zAZYLH62LaL5x>I5w$Bf}g#n$Tfc_+4cnpx`0g3MaMZKGt+VmPGquGL1gp$#0J3`#~ zKs@lTHMObA&K-~W`Sn9pUjB`L@{+l!?Q{IX+4#@U5JsKqJp1ixH(5b_Q>Fbr4!^;$ zw}`vzta8(|A{)+IR@x8np4_a-*Wz9AIg!>|7VmnLKx#EWn2DeYSk^eZ8&}$oR_=HNcjI^dJq>B1_qJOtzAF)KZ&~5Cb`+e! zx1wF^Jo{TXA&5ofXJ|o}D`?0!MQ=M=JO3UQqK;qm^tWI4`vas#Rmbcb<;XCDS9Jdf0KP74Gk5?wk5z~<(8%@{bd;Mcry>9;U z&1iUra$4Q`(Q0Mu@8BZw=)x5~#+MgFh4Q=kMaD#qT4zz`^Fqj#*eO^c?7eX z_6@F{pPVwQz4f-v3vaZOapW)+e)t-@w8^@v$8D6h%xX{NVa9a}%CT-~tzlFko)WA3F}FFfY^sjKZ5KEzH?W7wf3asvL9!dSI&1 z8X-i`Ue!V;yUp)2iv9mqcZUt-LlxJYV&6d53Crg&H)#d(gVTwoA1lNkG!6V6LL-XsB^ z0RU3|$`({CSO$`68 zfLNm-|4qff0p|ifuL2}BJk9LIq?GS%An*XOrNju)1+sr*HIxc!sL?}>ChV|mHM;zc z`p)ohz;8x|qk!QUAbqutz_K9uYh(DdrgdxD4Cr?Qb_M~%5kR9`P~*yBF@W^uO4(OR zfD|TfsfAz($o?A&Q~gvFwmOX@WX;RbtqU+$m{lyx%&KO!xTUl0i#1=|2-fKa>qtcs z+^|f!U_P{M*{)@E%NmvqEK7N6z+~5^fata+Dkmn~0i9_;e-^T^kaW*e4` z&1%68Hb{q5orSPWQv&g%s8g2hI$RVkXTJyQWr~H`7q|2py0~>P@SVF(VLfi?h3-_M zxKk&wA8h-!c*?A~20J*3KnGpRlvB#NP9O{#>j7aTrnoD?4$6Sqmq=wV9vbE-g3Ge1 z;8aR6oT&r)M*(q4Gf!k6#-m>k*vmq;7flD5ROok{_nVnDwTFkA{a z$OGuqwN8x)w^xhUI1k~?yiV@he)I3@q1p1niqV_hw{3GZ4Y>cN`?gndMMjO^tK9TH z^=tD!?aT2k@()GKSJ+{@Lv-x5i^)=6DqdpUz_wLM*9mGa)~`&ZhWdT{^hO>eEd z>x9pZ(?+P{TWyb5ZhF(|8D#gaoVicKuX{gwcJ(G)_FB>Xbj?(lDZOK87>N`0_18a9E*xp~raw z-@dWN{#al10DUCF|Cn#z_&1`bjdzMK@zA`{#i=zoth$Sfmxf^rm+0j5Lea_TEyMg# z7Tg#P3-r8GRO3rLvw*%l4i@p33m6sv9@VlMQ`VEzit;5MfR~OMG(Tfo^J@f}R;TV* z8WBR4*zDQXRjO!Iz$J98!4B80Yds|4CxWg`X~+6cz;GbAu~iCvI^}>~HK1P$*r^8$ zn*b^`o$@xIp#zX~9a*q%!7eZ#I#|#JvJK8NmANG}Iv8^aUB|G)4eL7L_k~*g?oZ>c zFhrs73`XJR=#)^n8%lKs0liT`e;lwg2^dZR6h3nDQvii0KvMX`f*ezH1T$E&EJ!U1 z_ZY~2=-*##-g+}4v~4M`p7^RZmVZkNbJ4P3y>XM1a#$83J93i?&iUlZ9_~|-2exFZ zAoTIu$Xb!}$%DV<+#v4feDdI&)efJ#PxVS7oc1Lv3Lkbcix-ZMGMZ^jjZB|?_{OaeOAXP+Rf=@q#fnC@b7nd^C@)yaH3h7SLG_h{{fG zGZ@uNW;Wj4Za{Ak(3csGcXu2x48s-YZNd(pPnDwGp7C2Bi#a&q2aRbCJ!z~L0{VI7 zfk8K*@4~#{+>Epyd(-OHo##&Y#XKxuX}{r1jRwo#*RsnRRdz$t4s&T)2lJ@CFS^qK?BE{PlRJl8YX?}Z(VFh{<06zLRlLcVRJen6V`e`fx zby|2jD=9@29W?_NFZJHn=IrZPd7LPrj+1DzwY#HhQ6$7%(0k0X1?;e)?u0%rBw=ab z)hUx!C(`nY7 z<_I9oCO~%Uj$soZ>IRU~99Xbx!8VZ6RLrE=1hSuUnu?Nqj<}>Q6n41jG$$d6q9)C$ z)7*Cq6M!_wKuR;SU}nJ-NZqz#Ce0%t`-y)WPj89eoTo#-M5 z!9_v`s#EBqZh-lz##xMR>xvprOMn(%1&@N7ph?|;fkC{m^b$!9KMBmxvCo{dK<}Kaj{hl=oEDE@cg-C8#Xf70Drxk&7V6P*lq{vj==zxqRQ?Xulkx)Qs!7WhH4b9}{aEy+(` z_HM1;Dd|zX`b$pZ)NZZ+Ac3ZIef&k-_Wm1wU9nqB!LD_;)@memx0AYJw^j*RET`Y+ z-C7^M_%SiHVJq#2Fqt!%tF*ru`>{T(-<=!2llriZoX>J=cDHuZ2a>eikA6?H!RV;M zpxUoHmQf6x9xoKnY+GrIi1SBfq+BhpGlokOldjYZETv+;Y7*UPsw!7 zo-m_(nrC$X?6TcjkIi>$Dd-i;>8qVGGrH;GE5GfBHKQBT?f4`gKAy08#)tEqiIwNI zt?P6M#Y@}QX}6X#R5>5rQ<~Aexk``NbwBU~GrEaJON>gQ6^Sp2{g2J)KIdjr@zHGR zEu-1&!Vb69Y!*G1Wg(JF%#zglF^n7s3@3scV~vg`b%tvCwkj8TChsXR;dUiU8@$XTTlVg;=43L*AkF@ z=fA!bSW~&bSYG4 zS5f3yyG=sQr>)|CcALPx_)bMHL$JfpOixw){9$@njKp~lbZvydrfSV8q}s}~E6 z7w1RP0$ItjSZL%pQL}+%WwTwgG(Q@dRV~{$OY@_#Sb_yS zW_h!bnZ^Og_RaLjU}LkQ*^wCY5+3iApQ^tBeru?+B+vU*2#B|a{<#XHw_XS6!fOHj z4PB(Pd4im#M9tPbfJqK7VwYc3?m@s4PtRt$c|IXa?n(UxRQbX7^WXVx6yX&sq1i=h@)>2Fy-2_PaO^~2qNIxfp*upD=%A-85q8iP|DisdDpvzjSA4IiaQ^E#2~-Ze#Z z`Aq4v|99*`P(q$5DVazzebVj4W$Qd^q|2}JhRd%d;aumT#EVA<7+n^#m0n>K84QeyH+07{E6?#{K5+`e=5!S zCWAA7blcWXekr$l=JQOWPF5a&aE;9bpSif+`3@#Kv&(~Mivo{RCAWI!kGRvbqnNkE z@mF71%zp#3s>go%#f#55`!A-AJVCM0^_W!f@HSkeY zXWj!dXq4y;8U>Zsw5Aew&<4RZHYgdG;Jt7!#1>lGLYuzRT5PS2e3h*Dsxw41fbu26`~N@ZPBIB-?Ynh%-4}n7=gzt3 zp3mnzU*~zw840g34Og;3Cl5GDr+D*p-!%M@;(3}1{h5S7c_Vu7c_VufLA9=#)||% zVu7lYMUwX+6Y4Bsoy%06rSc|aT`f~}l8&H+0#$S#fLA9;3SN+;pia_9Z(o%q<3&C| zV$&iuq%h>7IFKdw1k=~bJQ!gBtjdIdhBg6}hXr`*Mk5;qjby5Tm^2C&2o`oljC4%9 zqPC2nDgjdwiKTo^wV`n-AFFFbTGg8xiWWOrEKYX7Ch4%E3Wmoj>`!q;V`!sCB$u|V^i}Yl*PxERnQ5X9( zEYD8cr&-4r6zb!8iXuFYr=I&X`0V5E)BHrL!afbF>akDrO}sC_n1NpjNI94aMDm(#d)jAsDAth`q z=KlgIKLf%hM2>Q<-|kXAHI4sSQvT$7q^)hLt^c#7{F2K5cPal(Ea1~pJ`fVl8ba^> z1}VQF_q3E>4QlhBkn)dw{=Y%W|Mz0j&A+phe_fb`c9-(cT>R;g@(U4?t_*cU@N^0( z|6(Nfkn+z&(x+6)zi{M#LdriLI<=Hf!5f^70sFN1 zr2LwBQfHCJ`#=^yc`5&`^8Yd^zxTylsh_Zv|LzD@(o@Rch17H@e}nw~Z;|qk4L}1= zCFQ@y7nJe~&^SdAuJW3h?v3>~Ncs0lRi~EnXX2fh?vK)R50So`=^nzr2>#uqe2Vih z#$k0~r}{ikvKK$LP267hZ^K&=``zrm9+~fy`_l#fzlWGFQuZe-=09;gQRzd(e9<%h zikLqh1(?ncbx+D)9tY*{T2pPQhMinA@H}Px&J*i5h+8Sz1KUNJ z05PXRWv`ZBwKW3j>H*MJ+0evIm84m4J_b-WhQK(vLu!XLoE2XHGc4LKsFh>o2&Zx8vrC`+6XvyG!CyK;t`IS^y5qwxsaaI+EhAi6#LehRmS zwDABN01o$EtIdCXIEqs4m2hGi1Sgg+aNH7K{^#>}-?mr0U+ld&^yJ;th1-k0k8n0V z=8R2M%O_=*mB3S2r09X8SBRC-r&U$b-s<%A%(AdU9)&6Kj+9xJ?k!@LpuNG|o ztcTq~hgXZ?4j-Z)!nI(}>6M#i1%Z^TvePOX$37%3zSy-yqnuSL@eOoNM0~?HR zkrEe=PQR8moEzgAR1!4GVlH63<~WUa%|1Q`x%3*34NeJi`5eqo+h9yZkjqATxTp`6 zQP#BgVDdCK>+rD{W&f!+r@XRAaC_DAmUMAVCJN$O3)_1Nam@?Qt((n?5S9WEP()8*tMYUC z-cN<-u@DeFRs^Eg2C%$UiEAD5rZR_X9DyfX@hW}>b(ZoS+*trT;x!wOcu}rilmU2k zvShXrAhB<@>K^W@#!rw0mWox7C!mp4q0?aLz4#p3v(J5y-( ztmh-lo|1A09Ij4ajA3kVSjG=3SD|@IGWfxD{IsWs!UUwIdnknE_lJ5YurWQ)la;h? z9tunm4}~Rc!^s{Be4n1IJQOZq-{7I3>PYiYIHutR#hgDDq&o9!JoWHU;AhZ~A&vIH#)>{sTiG)esxuqYkD;gaqj<6Ceb{qaGgVz%peeCwrU2$S6d{4Gh6L zVuA2B&rhx4l-+VT7pK$#6DAxIZscD zoI7bILn;<@ivYE6oyPOA^g8gyuv@T8;RELA;G7yRZNno@_iA(7_* z>ao~{61;~~DQHlUJiXxY+|CPX{!P||Y=3$?qTZ30vJK{Kx`Diuvg7XXOU1)rSOI2~ zRS%6z#3+dMF*q4Ch5E*|`B!89Vb|}B7-f4CFVCZ;L@s_(5u=mvwYMLdiWprh7t}1o z3w-XeUWjSzLYF6{5(c^=NB;$5L&wp$iGWc90i&jKKKDaSd!<(SBfJ#0%LfnRv7bOv zEVU%KcJS0GlBmkmV95nGgMo{R5`G>}kd%6ZrwS8pQcSonlGVVuH>n7mBiEo(VZvq* zbBQzCUg-rzrnlM}#g6OATchpX*62ZS;iJNZkECsl9t0OgEJ*rpsye+*bR^T??#)ss z7oKp9aAAa+VsCU5_C^_Mx?Znn!U1mU$c5F1sjbodSfU$cYxEp6-E;4A=X%$1yVt*FDtm??-u{lVe z_Ez#@z95IYZ)gfh7vZS~hvR1-m%}wzGpsvaEf4|sa6g`o$p0QMFVo9&S_;dtdDM1o)2S)_2XG2To7 zN2#jUvP!`Og%)@&0ZKOSxly;SbE9soJFquM4hw+qbT4Q)#3N6P1@k(Jbs*J3R!wcx zVf{^)jXKM}2hX!C{{gG;2&1#*;}6@Y8+bLbC|!excY*Ts^Ly9g4Lk~WyfOAbYym0< zgVfrQjk+g?0O8{2bZ*q0%<{Z(_}f^X|74c;YuH82$dztiVR=~6Tq7WZEdbO)Wwf&Q z$~u&j47QDR%`0h$j5Fh*-QZml@NrMx1xm*#2cfo?2-)4MRh@?ilwHFw-3At5*at*q zp~I$f!<562cxb-RmQLLeldU7aWkZY--euTeafar=N^4o-+jjcIDMR9zmAuiUH6*MU!pZQZ~pH*j6|GZFHTsw9QfnFtpm z1#DMTN1Ta3OCVIo%tj%s*Wq6I(At8_pnfo2-7;8raC6Tw7`>PQ@XqA z$QdyG2f(yA&Yesv^Nf=<$0lGI2&5d3;L3L?%`rh6j2w?JI3H}s39K;ut1Uaw{Zs^M zj-u`=o`rbM!w78T#Ax$gB+ts`$8_geB_l07E77Gjo{DGH<7*(IVC#qSEIT$;vUTHE zw|t-2C0t6D$v3b($*3@|9ElI%Q1ib?4DT8EdmB=_bEwHk!32I-;IGusBk)(!x;d0E zML5(_Jan<5{V5K`_vy*Xq2yjsyC2%3>PT}anavmEP;0JA;p5YIVl&fB&HM};YJhM< zciVRsPj(dP|&f~ zgDWZ55^yN-E?GxDWy8b#bp`@^7G;QvJ4iUz|p!P!}lgiyd$0-<8QoKq$PZDJ1#~;R^tSgB`!k{?X z-91UzGu;`uU)_;H(VpbAbD;=>Y99=IgK`EserL7*l<&m+3Lfh8WL7pz%}?fRe-S&1 zqFTWcx3;)i*ayNop=+ULA7nT(uEiJp)|dG6rcB@R0r*TxQaambna7R#Snb-%41gKT zI(t8|=6G4dc0(55YYO}czt>_qKZ0}R zOtA1fA@095WhER;lkdNN99$r|=AeMf4jm`&%YTzB&@B=WEfEka6;N9ypsrj%L$!d$ z8UUJZ>lJk43PxKLjI{xRadrrBeF^@GW(kPp2&l~$P*)_Np+rDqDFE%dWeU3G3P!6H zjMV@p!yVG-`q!n=aRJd50kJj#wH*TLd~YyILzaNX8~`>tUqQD>!Dxwsu~I#vYss%LG0LVxy=*AU{wkQ~D17zI-Tp#<5ngzsi1k~mWs4EiCP$HnQ6hKB=LAPAN zXtjc|8o=Z~?o}iGsx&$-Alf1z)+V5~LqMJHHD+nZ6400fAS11yTclvLM8Q}oAV*q& zTP`44Eg)7SptfE>U0gszi-5*902yfoU7rjB`m10p2Qc|ayBg_Nq|rqJq9p=ir2=Zp z1k{xaXs8y@SOXv6wYEJr|XzJR(S0SzSr8cP9Wq!o0_ z6^vFZ7^?wH=Iv1Ubc+;>mM9o21>{Hz zaLWZms|Cbr1k~0GsEZ3|Xc5rZ1|TD?pzA}g@jIHOU@QkP`KyE)>0Q$3A_3770kKj6 zwPgb8$^|r33uvqXkdao5&?~+05Z}F zy5$N+s}+pZ046Vf^Eezb*W&0do!c0NjYR<3yw?54aYz>kyDuctMW~Tldvf3_DtE;i zY`Dl5M&VIy-fO#0nfvXwcB%L?qE-*|XO#wbWMyW#r{$MNmcUT;5tq?Q-h z(JgVWS-5Wc%_t#%tPA4`4&i!XoIRYb<9IO*F~O@0KaRkEmEq6YyfrUlw45mW&ub98 zW6tcvDF*iIyO6cwNN>#rHHUJvuRYqMu%CYX!ZK0V&`mfzb4&eEBFp?OWuV2f`BHII zpY}$wcv~t%*WM^MFI@|iF2v0Lq7T$i zwQ$rTQp@MJX8`w4BufZ3C7-xZKz4tWoL5hc9N6bWc70brv`6?DrKjFu}Hs|HLqoFk2{X_ZFT3y8)A#99Q@wh5@~ z5YXV;&YX=|05Z}Fy7>x5ixiBN0J3fYZkd2+xqw);fZ7@Xb@c)o;sP350A!>UbUPG` z`eZQBVZh{|Owa?+7k^Y?m%9u|rp>Fm;FK6v8~}RaieMsQX9N-USGk9+T)&~x0V}v|yqk$nU>;COV;VR3$b&F4%cVRDfzM&1BSBuXh zxgNb$Yw&SqsyGTt`yME*W$$nQMbC0J_&!ECx1pS&aS++nl+r;ORugH(PEm1~ME2n$ zpdFGS2h^7th z0Bl4Hf8sDHT;hsGvxqyah0gW{P>|niu zZd}1=i-NH>z~u6)q|qH%V?Y7liv-au0kIqbwfO?-iUc&22xu$?V57?vbjuZtRx22* z0c70*+_->fi-1_0fZ7fLbv};56%APe8gpb2&|3xFA_b!*3dTwSlhXA0tZ zJ%BbZc+Dwi%l-oL*s-O^!+>j?qr{Kg2AW^M6>9Jcrg@JzgQ~*d+)e1-M=szA-QNTk z*sLwuC0t;mX>Wtjjavfni6?Wf_hfF5(ht1W#PPTmLOQ!-?#@?`n6UwrE_3e`nR}=3 zfYu%|_fGPF&P4El_0zwN5^flS7UOyVh};2gNg|yhHx4{VT7~c8q~UGayh)#@Qc=kf zP}rPe0qI)I0c27v02CN3U}O73J&Nh~afqqMciaTWK=zhKo}f>J@3+lGPQGAFP`f)NTNI48DH!VjM9+L++Zf&~0nr=*G4gWlids?Wuc#}LUk#-K8p{CK zvvLL9Y6YV;3dZUIlLPgX@X6ldo@Y9jY4e^yUsCFg*aaq`s~|8X%yhEYS^p&I&Z)#s zdeQa}J74{uB6fb~C`0GfpwI)0KhhmUlN*>z+%^bT&scRM7aIut|M@xwwow_T1oh^80|gySet}?9@&{7|tOcN!pguGUqYLr9 zHt+kl^!RuLz5=^o>7IqkGZYP72bY3y-2*yAp3Q9`g4UJoyTJ;J#MpLp!? z+3qH(VF8$=j+=HixBt7Fq=p5++;(+mkGq6D?#kd<20MDN$6ehL!5*KTehW&-fr@nb z7$^IMF?KdjghM*n<7&%)*ecv(xw$WC^RE0FI_fm=J`F>Tn&7x}*``c;U$?Pc#_SdE zLsx?2iZ9l+|GY;A=!z~uED`oWI z1zK{4<@wWlVAtRoDCk6T3(|q1XZ%b+1VHKYa`RT9-07pu^OyJd_#J!&<0&uX>NK7< zl;9V4=AEc~oU)!yrYW?WB==4ls@?%qJ)|vqNl5OjMF1l>&p?MwuMZkYakh>ozC!e%?x$!s2D zXTBg9x^ATcP60W1GVNqaj!R$q-@TpFavbOhRU6rlv@e!> zUb{*w{~JoX5T&VU_j%J!Q6LRB@3}RVp$#ZU#NnMGX&HX-!&C-!t2W3c2}>7EEB-+$ zLrs$^q2}ps8FE0Nx-hHlF%PrW*gcSA_dgR4;>o)KLG{l57XjY~P^iT(!L3^Xw0UPP z?(y}n@D)(21#f{`bXo;XV1x^G19cNGz&6_DPsXgHCu7!|f?50F4r>K*G=muCJyX$E zp@ML$WO2l#F;3>%v391q3l<0lsUh_WDDojlmS%(BkuntR?v@B7+nR=CX}VmEsrW#WKKT3y9b$t{a*8ATUj& zp5)?R2ucoD;Pqe0uaW;MpY=Ri{52$dpG`r27#0T*ClN6ws43^G1KWY51xWDJSK#LL zJ*nPnX}IZa8np;+t~YU{E^*W3Hy&(MIM3c zL`c~w>P!SeZk+y2>e$#Rx*k+-_~tP-!diH5%tldLb^k7T`mWZbf^Icu#kg(C4p|@G#yh#A^dhItB6CvpAK32X8Zj?-^Fw zDUdw_>H_@9=UX^O2#A&lh?NScEfY{zE})@WKw}L65wD&|NfOtF$6x*290@O|J zSE!rZuaKLIVJB&kca3cTM7$2bWd6_5rjt*(J^tGsB(DGONFdiGpIM4t9ZVL~35WvV z>z)T8Uh~HuUvI}(u%i@#D&WLokSOJSqs}~Yq9sV@7N(dtASdScV7}a_OgE!Et1a3r zXxO=TnT=1inNCu_O3Oyox8 zFXUXau5xbwSmkIaN8uw+aVNTUJi(GX(d{vz6@TR@uHrxUn7L_~8qRw*r)X310+b0b zjYZ><(H=+R@HE42^6oHvg?ZNj#C|3xN5Fno&U74P2!O)7>}NeEo{X@^#J?yL-)vGr zSUJw+#J6D=1*eoYdE^JjlRB9&oMm=SJnF#A|KrD+`PLLaOrQBy_+J(_$;_h^nR!Tc z*()K{A)VBx+sr5HIrHLn-#PQd@$NH!_oJL2&U|m7LCq)4{I5P%IU`UG$UzYXpN0?t z(NY0&h^~g%VEI*7Euf)BKw~|C7()2-3KdO^E4-m-gO0=n$Pvh3U~TfNu0ucrCpp+u&!P&fv_$#%?G?9}$!?kzeE_%P%tgMG)Qtur5G&&+gO?rEI?VXwkh>DDw7rMRe~>+-pH} zkDvq?FoqAp9xo*KOiJ!Z7g7a5$t+AVGFzLs8;i2-SS|qy$qbk*NG5*29#gn8IRX}1 zOz1-ZB7AfY`v^bZ_2CQn0Mf6TL>1qMSDb+v-$cAt_vQu1%lIbEqdruM5j1&bcK zP8_BnhIUFFqVZ!+vq$JoV7-CkFD23%79**OFUGi;kbaxebpCWdsZJRq-A}4B5$tEf z^ax5AA<{1-k9FWb%1=sk{x#w!#Z8+-+Ppi6<6dO9n#b3RfX#kKPoWbKVZ2`O=%JvHz4(k6wo%xuUi4=E8W9S`g|BwQ{O$x4IdSE z>jl1e3a_^;v$@Q)8JI#ZmY)`J!`@`M-+)&{ySC_cS(Ztz%Jm4QM|P1LE&uZtqWC}W zY1X)#VwmA%t~Bh-IIPMBA|+CqHD4j1c(eXHZze~<<83pe0mGYR_pJq^fVwtPkQfDz zx6M?nI}@=wpPxQ;j2pO|Gz7bE%{VJn1q43N)rsEkHVgML2u7QCJ5gMP&2+6v#KLqB zf=Ny12gr@!9S9V(h;ussrAK+6`g!8h^{>ZISy2Z9MnX@vwJIO@Z9OXLKtjp~9*^P!|H!|= zvHh^bnV`w=fp0x=BIN^*NBY16h!6aXmB{Mr^nstbP^J zw9E~lG)$ScKRERy^nCtrn$Ms1IX$1B+WFL7kIp|+b$fB{LVTI3cE2|H3}_MDM;5kI+ho8%Us=k5e`5-`UTB5xl)c5Doliq=rcb-=9C8;9wMGVYV z-oAjuY40R+Q`*;IvUlwjsf;p z>K78JfoXXYa&tU2tlyKotBP5&sf%fOlXLU=;l)fEc%GK`-P|JnzKp+fyJ=-m$*7pE z(DH80ElH_nLFOBLzLqy5x0K(pu>QlcPN|=1d2@2hn5lr7hG${#K+VO?#oGD3@TY&E zUw3uuyy@B4ig^wy7j|Pjh3h<=;e*(jxvPjoD`5iqz35$C`g9t8oz?3!ex1fI-zSD& zzdL@xY5H}Ve*K;C%RUT#0?ziWJ~tgBeu2q48V;)j?+To~vYIbbED$f4?+WCbc`4ra z!oN@k|77vc0RACg4CS?7!Q(F7VPD3tz}ftB6aSpcKlg%1)264=Z>K$rhO938WY7AZ zeE+|;KI0Rvuc!TW`%(1owEZ>3+DccUpcrEuVjK^7&Z@PUF{U{Q5iN*D2)h-*x=g%EQ-v!u9p!x9i?H&2K-o{Pq;` z(~-TW=krrLpHR<9f~fZodF#~nfu8I4EaW?_&wfh%iPGjfwC5D_o%a57r+nYF-*O~* zS{^zr4}J3T&;xINg7Q$B{&)rIIlX^)djIh6y?>a8jacy5KEL|Q1%O`%ugyBA4$r28 z$H~pQbGGS>$H7ZSGH}6ru4#w4b(@fxO z-#>8nG~8{m0q56a{~rZnrx|bo9GyEp!gY^vtLCd|NaE>#BsNMgB##oG>e>E ze2s4BllUJ!su;Tu>s`nFP?(lJ2Ffv=b4}+w)4{cXnNY1v>QW{(C^HvVhniHGps|?H zYk18OVUY(*Jy_`h4*@V|}N|UPrJL7w5SWH(M-QwK1m)`89Q=?X#T z7t^z(<%>n55-~btk#kmE5%FB8(E^LJ8 zIGGbXUo=#CplT`)o~k%Mw=I?8Ls{~Qs-iq7tqGs&sg#n`!_?Hn!qmgk)I&V=(42Zm zq#iP)c_=U|^^lK;luo*_hgsD=^IRO>&CUAYjh~E&`IU7n@-y0)-Bhx z;uiZfx9-j)=%mN>>EDIQ`z~C%<-RT?KqtM4I_Wou9t82d~yeW@C2rTXE`S|(u0>&V)#P1a0=XZ358zk`amJwDr-DM_3E zL#$sm!Cs*~(t`g(_QbA1@Xnl=lbh3Z0pXJ+a_B@3x{1lo9g52kVWvgFIAVDp%M>1PpVOCccRmA9@7D zxexXID-A7>h8BIChW27Zi&9OHhT;;>w1(!gq0g2hm!8U%*3duU#fLWZd%yT=4b78= zmY%wyxN06FixFML5uH?uCgi7@APpsI%ZQp7xdDmGKdLR;A53ctj6rIlc=n*s*S<0l zJdd)C#hZwq7V+qr{QkJe(tga7kv8b|^SZq`ap}DqPS`7OU5++C=M1bRXM8?5D6W1t zv~kUNi0qT7ueH3N8K1vEN>laSK0Y6$wLH}D6xX5UXqNNs0?XckV|;GbZd-A)Ru%`P z`PuwjNJ(f$! zPj|fXoTsHcTx%{}#MR@{J1a6=GjS8Ea}P_=PvAP@hjM4*@juuJ(|Mu@WW$VnUaM+H z>viV|ihZeb<$l?MA2{j-LdOBf>NxeOmS3@K7Qta_+Ji{HC*u6o^hR$z`1Tlg!k13y z8;_22C)6V6BjqSxZ+g8qPYzk|2Ye0EWd#$)p_g$JglYdl1U}1t&kXM6uOcb;X^~oW zNUv@9!o*A!Al=0DQOebw`6?g!sv~_|WJYtqLL0|LZf(xMnYwsxAMMP!HgIEb_|>DG z8D9*9{JU=q4*Q1?52so`ZG-8k634lNEfjzfRgETKss`35#$Jl95Vy? zGB4I68$BhZ;%UJhpH{{Dw}q7BqHEj4u95qgydu|x%~VO&d{claAuRE(&YpmsBfiG> zM5A&voN$T2#kn5yXt9ZYcRuu+H zUR=b!ETv*~8-)@J zB*Xy^IG*SDM*IWm_}PSC9z*lcte2;~t{3jnD(*+i4R>gcS^ptJ^XZ!!SY3NZC*32^iq#k-CvPs2=RUe#Cz{a z#CuOS;w_}S$ZLE7AbBlGDT#N!q(7~QIp&x7IC?su6`Ao8iT8dha_dVOI6M*0ds4)E zs1WaB{|g}A!D9agE(H+pUn_Rt4xWMn1VdN@OOzS`+mLPmU1g{WU!Fe5v=8X^dwOuY z5lpDn4BGwgtSjV9z7jNf@@ITu|FdDxNRn-w!`g@b_YoKIiI-!B>V_Scp#mGAF)?E=bVRE+9S{FSgyq7UTPe>MoEvH zq1!ujw+s{<*TcH(IVP$c5Tt`+?wQpBR4gm0pW!kK(C>Sh(;Yrn=N*Wk-?Eyt%70?= zq20J~1oZnI(C?psP~wh{|ATbgmcfM)T&ue?<_2(vuV2paU5QKWXZ5$-uY-W^2>UmU zwkK2_vuvCVzncX77*^)1#bAyg;1hB|!6)Z}gs+fM#@@#E9*<)Gnf z14iNDX|J1wE47Nn?3in!S?+AmaR2_1_Kdm53`DKt=G*r6*@nH7RJ*Btgxv3D`tfs< zvGIMLKODjm-p8~0+~Gs4;47y84R|gTqr*N3GQ}j~FbMhgkFtkN2>bVpwg-RB@^7>X zS59li>BN!`!vqq(YgRua2;>}iCJ_5s|F)2weO8Kq8#u2!vRC)7wsF$v(~21s`^qkzR%$rzze|8ie)`vG|{3)(3)_^$L8k>Bva^sTx75SPv&x+Lu2$DB}egL0MoHt=g{^G zIn4yAFGpDvWz}+>(`~uVp`rL8Z@E4#%au#8Mm~ASTdq%g%k}9~EZ3*iave6C%k{P| zdCPSvI@l?39f8DkO$4uiOuZgcOE1!7_Z8+9JgEN2d(R{0k+0Y*kF z$O#-R;A=&jHlx4(J0(tyVB(=x90`u)n80!@37CZ|v_*rEZrUqA3gHt_@hT*#9frR} zuZ+(+Uw3cmWw-lx*#qy<$x3=gBQdD`CO5~Q1U93;Fck&>a}6rm1dY-U|gK`XdNcW<2tp(#`G9yfam*B$s) z*uNocXWkh0Zw=cMAg=mX7=^7OJV{OpLT)h@U$eF#ANBabjE+Kp+GFEJ*5qfAg5xT_ zB}>YiDXq9U8NmYb47lZ}#y3&7U#C8cI)}z__-rfQ8}>0Xaxs;L7;nhKT_L=c+5%M- zVWH{O-na+W@-O!E#|B({j&BZ{b{%f~#?$j-BLg3VY-`%qQe7LrS;rSTPBpZPmzj2~ z1Wm$K-ID<9DGTk`Y&__8Ezjx2plZN^4n5eW+ieE*Ys_(anr>HSNdA-4an}pV>5=}- zFe>KG%pBb=E>GM8wZSf4M44*ZWz?*}i-1nJ;SwEM#wE$S0ZqnbWcIFuYmvQOqYGn$O%gO%z}*dx_y!?{)QlwgM#z)TnpW>Q@{9ZDPInZV5nQ z(2NZyFu!-fEzT-eO!bn_a}Dnp8plfMbN})Sz-wPUc0l`a=3FE||9A%)%FWP4cJjFe zi|l9FoolESI>7XcmSM1c&aiu70~yy5vWMNzqaF%3V-KR@&Mcoc|3~NeV1C+B3&Pr1 zjj?!AmWeZQfaw(HqjO9{38=VsDISj}K6lrK6VG&1ZSgHfjf6gw5)TM%f7gv^6ZU>e$x3S=k)K##CAXXD8bZ8lmUSWww2 zAO5jbeMeCp#}RY6;TU#7ZqSJFk>Ph+LF^4mm6$~5P6&u@0-xe6-y+QG((!KKEIU@p z;+==%Aj&%I(srXR1&uJ8{?Z5Jq6M!ZGK?kC;?Z<2vYh*T=pt@OU~>#-!EC9*055B7 zW?>{BO@HZa;fNvUX9cu+HMN1DyadwFLR7=$2*K?T#Bdn}hrsl&#EHS|FXUy*|C=I= zgB5%prNx=%f8X#gC}0&$ul2_5ZS1@md=^b(^_IN_#SUPTu|xqJ=@1&nhT~jfmSH+E z)u~F(q;5B6AtNR*M?i5k<|1DnU6LMJN?w5Mgn2!S(-q?c;FR>Wm8E!#hCpOmjag)0 z$2b!%o5Yix{85e$Zr8eOj5Fi1qA}Vd6D}*E7y`8*%b>mgIIp)s0fv7Y@RJpJD4<9D zSazHS&{y_Oj|^M@srLj(eT?lgK&x;KcGEi}3^#lxbgjdf42~BX!2twy0~+d)@Unnb z^(fjGdYY{S>Q*!|8(2?vB@%qIAW_H=SnlAtz!kpqrV&kIRZy*741mDxyV03*6>VWx zF(soIXF#VCv1pl&BrwKl8@#@lZtg@@ic&eo2E<`7uKlyF#7X0G(N6Y!TqL&!#niH* zV&~TEKyh$zcCr8E_KZ{mvEr&nJKsG&FglofezAXGZzHm*qLFLJch?v!?gSeg$$rYH zI0}toGMt0)1l#Mj&%mf-w>=O#bX1STk+BUK?aJ@s!?2V6R2UZhV*ie?9h-`j_H)B_ zt-Mmdbr^8nslBYoPO2FTxesJO{Mcl`Q0d+G=x-?=`WIv4Q69-X0bNL9y%Cjpiw{an zjjI0x(_cqi9PiF}I8f{aw%%xmzvnA^mcsoruEw1CP`Ylf!U{Mn zeHGCGcVD)to+ku|Pd}AJy46I%1pb}p4m#`WxJeXh%H$l`XqiJ`Xt^s-=sH}JPp0J5NUV-fa)va z|3?ykE4T{ehZ73Gbzs`N4Vt@nQosi4{tTQ~WJdb2 z24LBk$gum6-Y^xF=>D0_<0IMkjCKav*a;ZvgzpQC3!TNoR~W0V(mG8Y;Y5N0OAwoCdDa*bZL%f*ThI2Vvto5B4A z0dUo$yoj+a%P`lzibj6qyQ?pGw&`dlj%<1c=`i>QfWE+8Rs%!S4&VZ3-@;{ePF;de z!5v*}Dhvq}1z~OngGaUMewnth5MKwESdmM{J2M6s8NgRurZ?Dfe@OcLfE7HBNqx=m zuMNX2tw(Ss`x_v33Qwe^VS8p9)?Nn)`~8;v4%w1!PsH-|x+A1M>`aV#UH`+X7*bv%#_mvGtTu87c^Gt(z1VmsN{WW2&bRQ4sFq^ zNb{&!W;!*45slPrtTX5GNmxa|m7^w<{EFB7MzF;=v~#R8>~acv!9%dG>He)mXc&aD z=grcb;r|@6hu?!>9|Jpu`;6c|+LPSC0(fLq;}}r6m!toIk=l;~KZjq|&jR=3Mvj05 z&8NNn0$j6ta*wK=7Ds%$J)KTWUN1M`A8>w2{7oF#)*~4Jgp;nfc7?8Kiv)t z6-2`JrUHq1&p}RQvqWdQ2+`U z$J?B6I+e58mmN4_KJU2VZ`*A6&b3@_ga)kW_Wo zXfSTYfEy?VjEe;7vFa;1e5PNvfK zVPC4u%5_@Rb!>$#>Ye3&3-i)y*}G{G6oWjhY)V0P1degq zBj#l#W1Kmc6@i%pS9SlBS|kjPEIUM(%sBEiNd=3Q*f6Pvo13tri*>D z;nnzX1Ni!NBQv9YM9Y0Kk(oJkDxG%tjwpE8OmyM|nOG8MaG3uHw!` zWY)G)lw27Gpgb`@u>r)_8(!$&c}RkO#J}=op|xbrmtjv^rbim5A{DiZq~lCkTI}@W z02vY9+6exQCf@-~q^}vQT!v9Mf@2GSF|v>xu|E{s{cdyuOTuAVqfnY%S5gO(fbkTz^7_hI4 zf@C*vae~~D(m+x9CagH5R1njlD8RGE4TNYj5hdg|q(f$KCk-=taHZw^ky;6iGSrFi zWYWMu{Ue#iB=AVY#cN=<&=u$*LW*GG>9o}B!B{K0BC0=>3$?-5a~W448JZGpxv_upRAOL03{1Gu863vl5FT3@{}O ziy8(IwmSSZBa$E6ai+Zq0yZ=RIBQ^Ywh2fA0URRkI0mv~Bj`e{at}ri1{!Pt6_X9S zne%YF8FpliLrwS%0qrUP&?=*%DGNR*y$$zvYyoZ67F~#R%ifAXw}K%0Vrexh-oT#h zF3Z2426}f+6%MVRLdImkc40*7`W;3fo zDmW6MhsyW}+>i{oD-apb-?gLd;nU&qfL-DfaXgn<{(Z!vzj({76N?m5aSIpYI_pv+ zxDkV<_44?r?mr9+c>&n;=&@ou&@Y55E&VI(72(1dSC>}x80Bm3rbF=Y+*10b#*PdxnHlQjTl0)|ZmNG$hL z17Kcg08c%HXBpaM%fjK-iN~j~wrh|M(K}Ay z#E8il9Cjj2RO7cPQ4QM%G-4xo$lo!>$-WE-FWT#P#fh8dvKI9=fMDW6e1_= z29jmF@sw0NZ2J<=Lx3b1cO)a^9Ol#`8K9APpc9FE6R7w><3zKzC@M?cT537HEXNQ+ zu2r_ne4hXnujHV**$d@LOHlC@ii+QcWNfcu1%Qh00TrjJeNZ2uL1n&I$oS7e#=F+tDbwMqqg6c3KByLe0D6^RPV$BpV)py4Ja-YZopG~f|`0(;2ZG|JBW@kqzq1OmMR&$n6r zBo%%TXf^fS?EXh*U1|lJpbGpWD07s(HvRi3>q18U6D|I|5VYlgLD^|Sc5|V~om$m@ zAg8cs+m|#Gpr4OlupyGtmsjIS>B~d#%J6o=)n1jXBp^kaEJ=ifz>Xd8SNbS}3@8w= znyt~Q#0#6sE-b?!?3_uhYKJV)D8IydQ5JMZObJSk!{W^Vj(N)J7{}~A2`JyY1Y@`k zp=gjp*Q7?z-^78%wu@{IZX)9^e6d&?k1O3*aPz)!l`QbEHompE?@Dd{muQ29XaFAT zS-#cIZ{k}ors;h0&0Qf+L>8I&&@NAeh5p6HjgOcW#~=~iP3ZxqUoiJzpo$wwDRplp z)IHfxlhUZ|z48W0%mUID6irG4F1iNN_iPG5{(~SKids$?2lC6XI>HyxN2M~V-CeOD4!c`i1G)W7GglWe#Psk}TfVei z(wmfS2;#X#uYt{Qp!Zh9 z)}C+m!UNNXBLl}3#D;Cvo$%S7&>;g0q2ufl-5)p`?^%nJU2kVU%8QO+M&D1tqmhns zVoan(8gZe&OGyo-C@=Bk0+AZ{jIr@0^A2-+C)s}&z9J7E%m;iv=Y~#)k((d70L0_f zWAqCNbozztgZqb8@xjZO$+dy|G5!#_#3iI7nLr{g_1>jFU>rJ{yy8_59Cg2~;f%~N zB3HvZ?-=|_@46)9j0`+*=!oHr$qLyc1I~;`k6|^2dX3Cj30K4SLu*H3fg-v!73Ont ze2)(mKU3hv_hjG)&v8=mJtL-UfKeHCrc$s`M)zRCl?#Y6{tP{6M!*l6l>rbeO{@9^ zG*>tU4j?u;XBy%GaYTn>DH2PN$e4;r0-qKqUWWHj`k>QZnWTTXYj+zuLhtAVAiXbH z9=+YAJXk{6cq=mOLU=dnkpXDy30NtgR*^T@I%P-UwNB07bRMBGQL8FOb9Hz^k#;S^ zKbQ`ZBe2_TI(N59zWZq&pihUXoV&-lbA|w=?(vMQO;)fK`m&<__RB_akFgOhAg}bs zu)*&w=F=8DEUiu$!6uG@&Qk3bBM1?vl@V2WEZ>h%!#{L}@)SrO^IktDp=YfwOlWoCRiFi5;I?3lOujH5|P4dSA%D#VUMr+H)o%0*df0*53C3 z(9x%rA2`a)M*_=c^`=`21?kr^2-Ck{*>AyB7GY5H(N5He?Mk*4Z45c#GeHakUxYuR zb2o>Kt}X0`U%W@Tn+A!nEBzkO$tP{KyLh`kR7ziau^I zPf2<(&vuKhr9-nk*V0Pz3)OinT<3y+zzcY25DOQgU2r?($aRg7HreEqa#S$CnDJ7YUB*&QIZu%DA3>mNS>+U8{TyBVyXGi;8ICP>Il270H>S&0zFbd=JuSE!%J`oGxF3Cq0e^pI;P$XRdG|43-1b1&9=sc# zoQyJf1LBkN+jPGUYC=PX+*utUuZ+p7%hs z6^a44_zLwY25?+4fP=tx_ap{TA`R_i0E>jWpOOK1F`YmKegg*Z3K_s2Fo0J)25=Nc zFfxESoeW^N#{gco3g4La9MMR}wDGp1F&Ev!$)28f0#%A_ovhUGf4lh z^0#{Qf1I1!$exoAfN6BGf{=fp4~XgUfG>~-Y{W)Y7Z1Sk8IhKgc)+D-tcnLB<;OIa z0+52!zr{6kb%_n?j4}`%fLuVb*?-?~AQJokR5%cs0L2;!2YT^FGJ&hk_L#u;x-)^# zd;u@CM=-1&6Hr6fHALQ63KPIC>PBG#H}}%ruYd{c;UMA5azGOcnyW~6ZUGbc05;U? zEN7u&0)NI#S@vc{N1G;E{Ad(4q1o0*?0R%9QLt6}|S}}pi7l8>Nq)C{-3NnFe z#RSR~6KFO4E5{?$hfJWKZ9Z~1$Pg*I2#7Nsb@u4KCi=8jKCOd$yO_V@D{^I6hBaWfP5jJ)w;v(BN-)c zNHGI0AXY^>od*aPm<`|uw_=}T19(Fdo_}ci_wu?@h>)qpHPAvE@}VB8UTfp$;8i#s9;BmRJ&K4GWN`+dT`V(^`?UkwvRCp9*y zk+ULkY!Zd-^BFOxRb@awrKnGwfKucXgD@NhVX%No%JCgz+X@WTDt}E}x1V2zoS^A@ zM;QL3CnVlzD*q8>>FkY_bRSog?krIB;V=TE4L9(VGrYwfz7ccR0=h6^BNhcT+AY%( zx*M1%rNU(pCkki_rqQ~u${gp0eL@(x3_1&bTneVe3f@GM|9s3De7=3_++)e>@S$a| zZ)9n7Qbxoce3MCN+mHe!bk@zOw%X64xn>YXjTLDvR>tfgyp_@7!B3f3%ly)ChmYbq z=SV=-+v3B{(%1RGKH&M=roUC3mvwir*OiH?E58-@E^)6xSNcd-g3Yq1Q@zn1N$Ac= zJqny}Lm5hbAKzo0W(|#d4AJ%{zk)O~qK=y`w%3P&23!=$99Sf@OT(BfWe@P;o4CKt zaEaOuyf^H3;fyI>%XWj0rXG7Myf;C+rb5aI+dqOg-H#TA?Yh}`XGQi34UKVU*wDsr z5u+WWnZ&2ouwj&QGf*nRo8s_RUWQnv0m#}jZfWI7u}R(**s0RXSiniKOv6tG`+LUWb_`y{musc?{GgcDK1ihP#S4U!L}#w#m`C_qB( z5gfRH2R$-zA*4PtQpxV?nz<3?DcGynCQ~z;82DAje0IYC)MFv=AAYQOLV~V9sQ?K_ zLSnW2iY_E@RbY}crJROMm91W0xRc~pL#zCnxd`@8ZUQ3WsfGZiW&+2`!La2sk6l?J zFQi0l{N&-+TyzjGW~=v0n%~XL2hedG3wCzUWmgxgztW(iU_Aq72+cIr0+ypXEC*qk-q`A}4 zu$kIS%R)R;9{R&HbcdU1&3HVXxXHj~+WzkGOw0s3-7!$1L*Yv@|Bvq}rnLz}k4U#X3?(v)``hb6(9 zsL(ZbakS3h?qp z%ejXVniYf!oSkbqPmuH}Ysyvw3JVrDs2nJF`FJ<;JGA+uB^J(tw5Ke=l;;qSonkEi zAGM&$8q@`RDne@5`OzZa)DpwFe>N5em$v9!hY$_&qZ(}NkWR2^(3_nv>Q08~OoE%w z-Q~z^s8ebzWeGzwTA1j+zW~7U-$VNuzD}?*r;+_LogWu~FCY>^HvL3x*p1bi&xPeo zTnf88&9dYm+9S_!DS8X_ey&ptyUu>lb;pS<}`PAgg5~pnwrh6YEWQX;W;l-AU4(2Km5|Fau06r`%DN zcSj-=!p@Wq2-?L&gXc5YHdyRz+)~^06Bl$9iHGxZMm> zZZ{L)mR${U#Z2ww^?d?~;bxZND;OvHWx(~)GrSA<74 zN|ZaS{RqHmopluoUxMaT!!>XoK9css!KS*?YbNC1PnR3j7@QnakGeToqx{1zN9@wo zj9t2#aZ7jB`0fhfC6N~SWPbj9f>AzFX0lv7IYrR z#{a(Qk8$b|owOhja)xgmWe@*K$eAO-Nq9!+{}!WgBR47Ki&F$AN$jlUnm6=9JZnE$MXVwm{W&t7sU{Eq7mxL-sNkE`d zV-s|3akHXtegYC*3RHVy&EW8>Q~ z`12JjN2n59mJR0~krnA<>^u{fDyD$u{gOl#2a=!)p(l*AoKg=T&mi`(#Fi&V#90q2CF5Erwp#utNC#8opVA4rf?>bt;hQOOA}K`VBCvvQ z;GIIrZL*_)Ydk=)>GcejydR$*&M8^4cu2q!eFu+6ZaBeH=WE=5tr z4C{p}TJQtQPupph5j+vS4y9juKj*U1>Wo|q-D@EhYz;(uRu9+6$8`5D zI{&XUY)m+=a@#us@iiDJ&Yd%*8O|8j2!nEp6Oa;c3=EEpBWo)Ezr4K*d{p(B|DP~} zO#z*#QK`~O>+F^q+ogqVX+v8ECOU&NklI+W#g^T1UAonljghh~B08X)o*cw_qph~? zR$JWFN~^Y@Rg-`OrDy=f2#WE_jChHl5Rj7p`}2Iyx7%js}HN~y}}-|0nD|Kz~7yjo4#M((p!-LBa+@DdV;s~tGy4=Tj)8DGV+$z z@X$}1t28ZVf;l~Dyrn;u&P5lX!2ccJtwPN?8p1MubZz9#9TlZUK}Vg*$Z3NxOI1oO zS!rQQqab0+PWQ(`a1^$bVLez+IU5T3pW%;R>|&PQtf_6DI}+&!y}Ez)Ed(YJd)xS* z$i-)`INclj`BWsk)H@NEzKr4Woh&9%Rm`n{cNqEB)55q1t{Qu)6a;nWOj@il@_6xa zA)rF!{m~hJ&bZ>=X@j~o3Ks^%Ei@GFB&rp7XnWxxC`3%GlROfKqT@lT?r90Dz7Lc2 z3%pj(opTD^LZgcp#Gv9fd=V{jFBMC+*2a>Z#oN0<(TY#P@9a$05a8F}pcHv90g--wxY+7+BsbC^z`$DX#nP(ZV0L`f; ze`_acO|U3Fj2t%m!$7j5fX2xBW3MJT!XnX8g%bgjh694J*Ki(^xd)t5dgj89ky>zv z!mfS;5;qb`d&BEHK02_-1&0<%*E}4{|Hd>@t^rq>Uv;@xbtPO9?;Ca&0}7bH6r99# zk{o(1u~~^&a!v6;23PV5Sk8Unmlv2>H1F2bmT$Faqo!~m5djD!~t z7K!vsA0rZJy$=+=H2zSLNQD@lP-)?tTO|^yEF#fAxCo=UyC%UZ9NG3a{Y0Ys`7u-? z(F|U?2%`-kT{w!HzEt8UuI0{oO#P=cEYMrg-H_8o3J`_om#785Oc?O5?r;xRs86xG zLLZ)9n$~V*n~add2+h||7$+p7EJ{+ZSAr5@hifny$gvC1anWFlH*%Q`rWno=p9|$0R^<6Q`Y2M8blQOM3}`c$?CBdNtuvE}d@dt9l9cybFR6GL${Ymuc!5!?i1 zw;7Yqw3MZ*cN4Wk2-fovVV#t>3sj_UKt;lO;3svSik9l37c_GrKZyMZ30x_-%D@By zeVQZj3y`4lmLCHWZ&6F$c5^4PK zD;WVs#bX1#(=~mY4I{`LK_u_qtlXb&7N}>v$NfvYye@@mG*ctnVu?+KNQ@)r2sC)d zxbW5N!rjo^`SWJG7^96~N?gC9l*f^4q-NeOP7YW>U*;w6R+(Gvu>x7@?& zL!^VOtsXIi43_Ddr-+vbhJ`vv*;#gm!9`~VRSVdL80nKoD?s9CBq-5K*A^&Qd;!p| zF-FFo;3SN6t}#$(#jbSZZNL6=(dw$t^$Uymh~sZc&Tb#BL?dm!v%ZBw)EHYlcdBSl zZxm5Tw`!X?*)OPiQ0ZcN)({>VyK5Gr!njPesRYv1bH z*p-4`T-Q)eEYfn8v^EhFJy1|c>X2GT3JSXIWB^c?Qz-)Z>TakRL3tx&$lI1s(cou34;YU63|2%U;j3>s#qlSGQv`zEn!#W7-6q$byqg>3qw>9vr)4Pt-WfJ zr{27lPhE@?zLi0AQX1(V|6*+Fk)LSocnyBZHthtHXZ zc2!G)9A*;MRi%>-2f??fPKb1eJ*@4rEoHd?R?~N+Ih9Van^NA>7NZnojtb+E3|-_l z!YlfLS}+|))itrjH_;VaQ~9=s5&xw?p4nfgTWS;E^BefkDsfm~YVQ1pwNW}TxQ$g{ z(O5lUqX_%Ehd_m%>yb1ZVfRaE|5Cve6dg~`Ca9?KUYy&9Ssnz9nmu!r_RLXUU&2{lCZ;+*mmMP4Bt0osif z(M*uM+?>+KUxVw5VO6lwt$EnD!nAiawgHhDz>dpJ{mEZiUBQYQIeIXPAGChG0fHy#Z3R%b<0t z7C~VH*4#!^X&dCljsb`;qg`3pODwxq2Q4`q>~=^tNFcd%Da>eHHb{P6(z0!{$XdGg z^y%`lcHX=xAjex(b2b?6Ik}p;{U#4ox5-j9dx$dP?T>luz()9$K$iLREJ-GoLB%89 z(8wH_@@$;YCcQo^$rd?xh}?x6X)BXK2uYy$0O3Xmkzia9=_g?E|9iFe$pJfV4TS)u zAP`Exo~ZoGkR6-ek|dDl87WHG_tl*E@;s8j)9J{1NdlE9{_;d(Er9=)r9oK)u1(!; zO#ks>^RG4k+3OsizoFr^9aZA&4}O}iS$}cNkNOEO+JqRv&xW^PE{Z>gt#!=&R~a&= zj}l?`Qt^BA)SQ3!#1?!{MPYdEB(!`1|c2>c`)2<;PI*_w#w_ zOdi`2eEV5h#_TrcBY$ZZCiJhvvp}n)Z|ftK?~3I&PJ9o1w9~%9se?r_XbA9P1B#v6 zjT_9QkVmoG!avn}NU(ZRFP+88P$HlZK#@W$8<1urb;LR-%s&|MO_vw#*;I9RHiAO! zE>S!b8Ngq&rU1uUN9|B4t*|+<{f^EVP6O4YOS9t}sAY1)7J)mi#$EqvQ~}L!U#Omh znEQF`f658PAv#9Lj2EV$j!x&Q;sn-HmTV*XB$YEi{uJpMNdkj09Y5k&(`>`T+2*ty zYD&RD&)Q-t$7c_73A00Pix&(JhrvMwO>zI=pavw=HL<34J@;0*;Gii%CQs7c7b67c z+!(b9?~on46czLv&|z;>kfs6^_MrEU3cBGvqJsK8&*0ggzm?8oug)uy^u{Ow$V(@B zbAL`-gadVedKd8C`ZypQh(y7qaG)>28WGY7J2Lij77la(!$uw?9w+lx{Ck)KHVbuf z-x~m=)x&yVcrzW$h8C|8!rY7N=Mf-G3*F5S<4W`o2=huI%+E`s-tKL#$$}9F8Gll{ zBGhk;E*>a=$$o#_lYdtdWBfUwT?eV91<8?k>V7wpe~Sz49BXNTt&d zTr0hXDVzCib}E_jOa-ITQcFWRIt7!SCFDaZ)Wt8vfC3kC<*>S#Xw(!TlXo(YB6a!z z3aXOS)^0DW%yE!I5>TFrf}u>ZI=GeZwM(PrThl3tm0|QfKH04bU-fSmbEKmZ2y3av zQ*VQ!xg+iA>TWsJ)a->wuBD;Ged>b=jEI9z$)%zO=FbE;%YPsl(YHP&hi-^1m?h-l zc37s`WG<|Eq#mG5H`S5j1ybesG7H!#y!?xP0-RwQ1s*vcA6fL|#$g(B#;5PdGqFf{ zCVaqcV9qHQc$BSKKW}Tu&az110UMIwj@(ZBAt$eD`!JRKiy5@@E_N(C09wLS&e-Z- zZKhX6Td}rc@v$Gk0BEVike77-)vMv|g|G0hk|7`!*_O66j)c3ISpmg-Xafl4;BcnF zSz1|$o;Ip~NtYlVWBjVZIIz=(tfgV!{II^g9`r^7|Xf*4eQ0t9|6Xf)xRQ0_Aj#R{W+-&tZ z;~>Bf%8C`rU;oHTC6w*a4aW7hrR4NOUFcxkx;rKJf!QXNz^I|7c!t zT_-hNBnY+uo8V)Ez8e zhEpP@&|}hVgGIXh=wdJWqmYv!{Qvdh_3(v`lWAif;beYZQbo?EqQdaAj4jc;akd)l=m)q zG~=X5xv2XPhbGwlNnK*{csk8l#m5@fXmP_D|PQoE~)`^GT%LsOAxd@eF(Yh>$R3h$Ri;adMqe}!5+@-fx@5TFxYPo z^eIvy80-ozg%7V5gRQbK*#F@a=wE!s80;&L>c?RJfFDD}V1JaCj={bF>X7!&Aw&ZF zL4MEnRPIqGDW%#MKGJ4;+xp@K+SakfAIF&}<6kQRl<|KS`u>o_Fdu5xCjdwK1?a;` zr0kd9VR$YdYM3Cv}+H3?wv-#3=yNDW1D;e@GM=EB{^^d>NdOGP zCI4g#3t@s+4O_bnh({0l{L!}MOf!hjW1Z@c_|7BAdLc8nX9=m;2)wy|WJq9?fkC!lY(OEK z#L`1te$0I0ynY0rFcYEI&s%_Luh-AVPdv!$N6`6y;`L*2=5n_ILRwen^&@EcYrKB+ z#o@euM)5rgqk&#Obre3V*Uw3+<*;5q21WAv2?41;R0;wQa{T!YKv%q(jf#Bp&c{mf z&1>BCI{u8*Qdo}S;oQN;cDu&Q?3W{UE`4cAIg0y2coB=jOzx#@#l4w|**8=&@83xx z+C3fH}T>^Wqj_;0nUQpS#G{82N8+&MuaoURK2C-H6uPM(weP# z7K*2}OV|;85ZuBFaVtufkgnbgWijaobfPuO`1cD5#-`x)uzgT+Xh+8Xr71C-2XMA} zyAmL0BdasMFC3Wl-e!ZiQN0v1?@1E`aG1PSh+CcTeIZazLN)C=sL$i58DH2;NI8-h zW|C74YYdSRm>OZgtA;J8pTWf((ETC@u8|Ai z8rPx~9Iau2T(#(47S%zoXU*>!Y5oDd$L#hPsv5*LK{IlkCQJy1OX1@`mS;`dA)Ylh zU*29y8-qF^o3Qh&vC2Zv8pEfNOC=^iZxfU59n8`3|#4G4ria z&kpNbgEvi`&BFtlS4aPD?l$y&nJ-$OCNklCtb)so-Lmv%B`ey{033(=D&zV$%iRp~b{6 zw;3PN5tvCxz9t`=my~!g*EoM*f?yd;O71SRr?9wkvLQm|qGlqi-_V{RL^;o;iM#N%2_1{Hb)z^?>uexn5Ru1Pn+M;+17rZHroey+H@o%@j-s_ zglKj2g#4wQW%K?960jUUn=723&DWVP=Vx;X&Z6V5bWS$gG2Z-E_vMu6&^-z&|`g%+@Nk9C_Fs;P`N>c*uMgb!pnb<+@P|^4WFg~ z6!U}IO>USnsGr<0ksl^E6dx}+-h4>Z=l92*a#D$+pU9olSe}YO1|D8C6%G~xBwC62 zKGYyyx>{)5n@st=O3R&Fdi8LoS1ZY)(F8#G6UDUR*dmV> zJXo&rhLn6*x?_v)qaGqQdL3A7esOBxF?w1iUv}3Y@~e0$n~aUCJ&#Vozdv+g*$1QP zHnSgU0dQFJP0p`=ym$YzVck|0&k7DPL7yF%jr`HE%?SJ2Wn$9({}KWrto|$JdtS{E z2X`AQTfJGkRr@Uh1Dh8Eo8=JCKD`RwEBw+X(aw`wONel?(lxk4!os~4`7dor_F=p2 zC8u#KIYpa8H@v72G^Xxucg&dil&sP$kldFy@8MIz8*;Zo^FYSha-;>k#u+ipt;DPx zp<4-Wm9SO;HDz)uv35y=_;XN?R)9^b9a(ZKc>%YQ@p3B}AG(z&U#)xS+)Bpx<*T)- zdNYlNr$pjbGWP-HO#C?#j-3sITgkv&wbmDgZUe-{m*#ORdBEIC)E9Fr=}T5SUCC-k zkgRqqjDD|QiOy!gAHZ@sm)uJR6*{3qGI%9RNuFm4JahJ0DhF~URnb4XoV8>-{F4Dn z|D3f)lycVU6wxstZF1HwIVflC2p*$tADFY2Q$%$%N7j3Wc~>3?huA~Ml5FI~emQHG zyhqMjfyrN$v-VH#k+YWPS<=qr-)5~#lqDd6Io>6Um9zHW$ys{~_;od9E=GLyDosf}SKb-q-QeL!b#`r2}3 z>5gpj+LJYBgLbyS9x@9CW#(9-t>zp{c-v%edqD`U^R72V@f@-6!hV}2>#zj#V1E+F zXgvk{QoMkQ=n3BG;I&^me-a}>e_gG89PW-=b^PtZt#+h^#(_V{Pi<{YQ0wJ!ue60c ztUpPuKkTYnZ`gv8KM4WqH-`QsC+teVp58dnp+pB#9PY8~Hdn|%PJ^4P&nqOLs?c80$c=Dh0ok6mQ`h8Sw8`-hh;tMVPjc;w&%FM;{dPbhq0`m z<)u?~-vlNf(>&%8V?pwlb|W7@CyvlDs3FHH-V|2RbSc$qz=0oxaET0M2|PFLj{h?e zCv*RhL*$-kEgKMCYSlY4k)Mg$V3^KE?l6LNW-uZJ9T1jf|?(>}k$aDQ2KyC+Z z^*VrPM&3Uy>^1M<0MhTdrG>p!;1e{`w3@|#M)_ck1$Fsg7x4al^TEmileg72I;fSB*xdpm&08FO#{^smNjXMh5i{`I#m{VTo>ZC;DvwZV*DG|sK0 zS5e&kDl*>hk9*?Ck~p=FJ10(U<(0~^Q>8sLV~In}&L}?mSS^YBVbZV?ghm=xVd$BjFP>kzZPestfROw#PU&My0&#h1{iw z7Vpo zjtoY{a6O?-92t_{NueKux{4ozI)1Pp1LQ8p94ABtt+T!X8IlNtN^;ui;!}AY`Y|jk zI6sDGj6fd7kKrl`s4Dp}@Tv4weW<rPJ6~7Ay7S7Q5NG9=~+P3TKPl{yRvku5>bX$M#`8gWxBt-WKVs4$BE%PX<-g} zCtEA=X!fZey}^rK6WUqLx!`mtgrjMnp?R$Q?IltrYEroW(?+UF znQYnE@4xu)10u(NKdcLKyuE@0dWqvI2a~0%51{}3 za+>X-LS9#voCdDABi7Fk&JrjU*#l>KS(?x#(kD%r?Ei7dS~{W-Eu~Vbllg-KDI=|* zfyt3S4pEM(@Cf(Dc!~p~b=-S0J|o4SSt)ONe6&qLMA!;bw)vBKeg0gyOsANcX69B% zZLP30(kEg}ku(;^C={{x@9pn{!nhqxDvQ;IXrdOye|>j~cWbIBqRDX|5+VoiV4SKcnpXpo*x zN5{!^c$>Vdjyb(%*l#a`F&Oq+b3otO@CL}>yDgkO->kFehg~B_DsDDh5T2x+uGw^f zJ50N^VH+Ky*q<{Y1 zQFy?QNY15Pg@p0HP|hT_wuWVDW=7ChMnZ8KMbB9S@`&Y+r#ro#pS^=;6q*%AX6OP1 zb~g7RQn@k*yb1A)jgtc(7%CH`86n;>RlOsP+~ItG7r1%Z(=j=i9%wq<=ySt{rXnqV zW?`A1To@%Kd`;o9kK&2W2s06Eq{;X=ZTbll{pl;B32(%wG7<1z+IuQlb76d1?21pa zqj!8a%wT%RmL?HzY(ds6BO%g5_~no^l+E&M%~hr%I+gL}6c6MPBfWF=_2c-3_jn|F zX0Ga*;!(1j^tSf^)Y>oziQo=JA=cgwt*W5#JpnLG9{~hTEoURgu2gKdvLb4t;ZW2+ zrZSt0$Fq??fz|?bFeRkP`h)Dlan>$6>hkIAxW{rolO~G-b=0FnFXt2VRV23SbqhhQ-=S1_5q?A5;#O3Jr zFOOEQ3Snof!44K+U`Kli*lAn=Nf~=o2s@95u%iIS_g+hwm$2OA_bq2c_n^hr;33Xz zVbG09IGhB;VuQ5L0lnC843}w~ZlP-Z96C~tvm2U@JkDy&tLRz7IYIk&d`zgIF5zc< z;D6XhGLd)4)}Fo z<8dqDT;ig}F+nS-e5@)b3O5{fLi{#ula2T=px#&RL+@Ko{>vNSW^HSHm;8HJZCKP| zj@yt09v?5<|F`0Q9n)9*9IwQstQD-lkS(Yk1Qg`H1nVU#tPG@Niq4J7cwP9gL`e|E zWpK!7rTnHrhFAT2202Xp%AiaTy&b_U;p4oGd(i{{zRl7(!t6<5oA%Ebr|gYcKbH3I z6j7qG0YvFu5vAC|hze6M*7Tp;Wxe(3{L2=Y@-W}<{yM#fLgXJNK=5_qacara&>U-; ztLNUIvfdgt^DAQef)St9;bV9>T+f$aosLw1zM8S6@sh_qK0+7^G0m^*EV8*v*pK6{ zA?kzZ>xMT8E1VKk{apsHgvg6npRPl>vC4d@?f9tVvZ$R1dpq4AWbloWX7|wNS%Mey z>om*q^u`^W6VTyl&=Sy@>mf~R5u1O@)`^P2pfnm@#h5YsbzsHERCMC%7yB46YXnRIHaTT0*~5G#R?955YE zb1?Ya>ANRvPZ zbspXyh=_uq-wr{F{%4p0+o7F|_q6OvA({a)nkYH7 z_ayb9_ufyo>M6nahq5p;!G#x*Tzc*rjp{7jR4}w!Z|>Qkx+hb($i0vWP771_)goJV z%pN5+Eb_8?i2Hni zEXa>!NmeEaWJs)R-ueXQz+`*^<0`2<+W2|07KWSDe2Ntwe0XTtgBe9Ws16?2eL?So zdITJPO}j;fyqAZP(Ep(kr!6b%Ylie$SQwfM`k?Bw?dbbaKqYf0CSSMaH{yDeHir$sERvH){b` z@%b6@IZerpJt^h=Q!~1>7+SopRCQ;{M>KyM!8Ln8wUzQ-(KJI zQ1<{0)b*y1^vzqLP<^e;Kq`wOYFrgx`nALTvvEE?yEExmk`V(QGLe6wJhnhb2XUG_ zzmacmr;!jm%q_of=~hmo&xw^!7=&2vTEU2UyjaiL?AdU2l7qde?HS5ryq-oM3Qenk zm>C*$;HnMGC6$sBD0!OuD8+3zWeQVXd>_y$CtE9~Z&jQ2Z!GX>(ku3m9q_7UswSx7 zbhj4LNBI)^0CAtiw97Q~B+Y$>c9_HTrYQXP~Q_?B8U4Nk=Rj(U@kAQNB^xh$2s+q?kP{85!#^ z>gtBKrLI{6xjhj54_c+M?G10CbwMp-DwzYQV@yA@apVQD1FcfKaCqpSFaBJqGwMlX zQ*Re0`wOgTc(2Kk`tli*$zn=#D>!YM&l=u7J$6^);wWTr2I}-B%p@t<7NKIx)C5|m z*cG?)7k$1hhwql7bh5Zx4o+Uy0{Ct@e779FEytMMX9k&zSls6aL;DE|%=ihEk+9eg zGi~gLO0hnf-0)aa#nF2370wS+_u&}6!qH(z+qUhm-hZC7IQ`W7nIHv2(h_TWgy*PR z#{gL5JbfOG7&v;Z)cZptWA9_IshaMFcP`M>GP74md#}8#JKtw!nb>U2+KWGu@)J7M z4DOp=CFoW8#E4B1ZyRt~CsikDt(bzg+D=AQ=2vo1@m-rIdiA&O2l(dAG#!7_NP1|B z`mnSM0(`Ss{pqzPynlacJ7rK9PBy-;tn|W~yFVeB>?lY@171KEIFH^yBv%@Mf!NN}aGN{wV&n}{DyFIbgF8mq}7Qy_y z))f=X5sqgUJS^?k_4ciIZ>35GvX9jgX_Os}sd^R#xGYh*wuOSj%jq&tR=5`(?y}rn z%BX;MBdta27{9uCSHh7?UtEtF$PgRDjxE-4o@vYeGUiBC+cjn*05iD!Q^!FDIuVo^ zkAF#rLhr8Og|wyY(+i{&)jikCs(O>e6H!!s{g}E;q-spo+i;L`(}fgei}pD;{aZ9u zL+*!qJ@?j*>Cri*BrlW`9d;DBxnUf3rhS~Q*$a-0eYX{P_CWMU)Bpll`@SeLHm{Wo zMHhb*Ro57HGRIPOvyMZDixHQvRn?4d`>tY=}bv%_w!3k{|Wt0lDv{i zAzv*Ga`u7ekGdly`yQui)?NI4PTusY7Msm=UBk{D|D5*7d*M`yU(41#tLO_55r9YtlkOBpm`3Tp3Eh71Eb{1&m-P@xBvo~0cK!YP}L4QR-vW3XBx5{vBmdNGFyFzq0)y8 zFOmftLA}e z=}hI4_eD{rrgB^HH@F-v$fkt%gi_ngBg+1gMVwLhU?Tr6*L<;Y%s+6>=u84maJv{pN@jD)D)9 z68ZfIyW?o8)_Wlte5V}ld4Dpvcu+FwoUX=ncJY&s|Q#&aX}4Ys!*mk;Maj}B7WXl*1m+6uel(+;AV5sUE3)*Z{4Ztv z?~WU@dvb2XN%(DRw;~-2SX>z01KNM^Bmx6>CbU8`h33zr&ME3b+Iv!6sY?c5lZ{*P zo^MX!IN)sc<9N%voqaY^Z*~y^_xv-1xu1Z?-yS2SDQSdoy)c!?%aL@x4Y}q`{0c5z z>s``;xTQ|`hCskv>W6QsO=Pa^`BQAM@{FZz8?J+Zq=?2K8S#;lu@>H^2R`s`D$34S z)9pOSc%3rwqK+@6B3=yu%|7ys2<8Ri=9HOwm-gry{v1FpB(j%6tK9WIoVk;ER$qK% zZKM&TBqiqRhFxdW)c+)U*>P~kB)SP2N0&z~>A-+dnTgc4XLB#IGyun-OwHEV6`#_$ zY^;n6H!Q6{(%bB^!6a)yQ_LOA9X#6n*cJcA_A0*K5C3Zm%JwPr-$yh!r9dpw3*oWm z#y8s%!YgY*VvBEJ^7wW>yxnja8l7YwTim6Iaw)MCpXibbgm}-dZ3n>|_E7WEI>8_* zC8pO}3Sd->Ka5k&Mou=z+^Q6Bq@91JcIb}Sf`1jogBFsQ$iK9`aKkxrpxbTvV2!hh zEna7~QA9KUMiDjA^E7kG!jw6GPx~rld9Ep-^V)ecZ$;afFBBwn9f;6kBSc&Q| z2nQ{KfI4v8zk5IN-1mryVK3jO2%MEVn!<(Pq-%E1+bZ3`B>I6l(?O(?e_u2|?N`Oq zvf(jJ1S6b8W)DyEgJJdT4uv-$!#bR66Q9jp1OOspvvdA|F<>pNWb>kBcn1csv9b=I zlS(8VtU>Wkc;Mrsw-q$0SYE3F3@-2<2)phiwe-m z2csNOC#&NE#?wZC#k>>o&bu$a7vi{;b>{?He&3I_Fd5lfQ`yjS)*;NI~>#b5DLX1wh*#bPB}ilZpVIq5ni{feu!V>o$4wH`rwZuU~U zPD4<-p%#E0#`6fR2Sx&dwRPx0DoDU9k~i}W-iCW2;}KZua2c*1It9I%#ha>A(9@CK zQ%k3ypXpcW6m%_3x_T2p`Y5d1lps1}b``VKUh7xQC%IW3G$C~^R1--{mf1^~VI^9bOYnQ*USR~{m6jzmN12Ef&O@_Dws z_tiF`M*IN83iyqUlW%%Enb9UEu zcK|soP2s`L^`wSq)_J8WmCl`zLNjMlV3>P6WMCPaZT?j5vm8MivZtIfD;$A&T=WeC zl$j9}#8JHt?v?reosP`wrsmWAD!gy5iz|43lT#={~yAhp*-J;lh?o7zjR@hHtswbCsdJJFjURBAdr5{}CRSrFl4q_y_O z-j(szr z>tT7Kp~5)uH2)rD-;KDjl-}!=RL$C0eu1t0x68d(6C@<8x;o_*Q#A!P<#$uw8URFA zX6Gax>7w_X?*va#llJyzsvpS)!_wr3GyxDuJR5o^eMoJDvs0?RSBp65jrewo;}&Z+ zH#~)=E6kAi6~x5W*+Yo>1fu z7Vp>&=0^F%uQF%X>R-sI70U1n6FVYT$r+7$q%V|Ow`5mvDoyX+Q2QulC#9r3q=+<% zTujyI1x{UguTySb->!GT^`qSf(kP~aV2=Bsj3GmZnDWwzgb?n&!v{GOfO3~JX9NH& z;}*MyzT{VzU2bmXQaJF~dW8kg%Q?N^7b{dg)C)Fz$ms<|#&DW@FGXZ;wz;RIEIT(tx&^!p=UYwf2s?BvH#X$^nPOQ$vbvzSTPE-e*y zBt}Y|WsXINEgmiRRZIABUOQZ*)&NygDp#K2)QH?r*5fLz2iK;!wuM+4@1la7ki~d9 zJp~#_TYGs|s*n^MF7f0qoD<<6wg1x=??5tb@V@7{jM-2-Nb?xjwi*rry$5kn-JP+6jCN|rcpM* z`oXKH91Mttk3KtPmoU|vQ>b`1&rlK1WWmWfC4%)I5TELgMYXa!l_QQS#R*d0{`>)nYO)j)7=f+MTwgTk7G+LXFWYM{-?kMS8?&r?MLw%N4;l2PO1)vA-4rD*I99#S)fhh=3G9lVOK`-de(3aaW zNLbn>soap1cgZ4(XgdIBbNF01jEhA4P=P>d9~KaiOSR*~VT>5VROygpk|s{y__d3W z7tK>B?d`<<=Ol3dd^Y1IiVHYFpSv{Ot_Aj`j(9X+&sM*RM2}Y%I8BhPZ~@F9igSv* zfn_(X^XKszX~!H_Q*?gYK;T~XVKzd};})bAeTPuGo`qC*5<~ZzAmx$@#TI-4%#y+F zR<(0*O9YXe!4o3yU)lj>(b^Zbq)c{o2`T`b`EG!mW?^$$+m0u?VG?bALkGFh4C)@k zBivl)5DFZt5^@VW;E$KVlZp|@GTe!(8TE|%Kq7oPsyhsu`~|IbOv%-2ul38UJE=Ol zL`Ry{w9OraKwR_KysZwa++r<@$OM%3#@ zEj-sh2pkxBa|o|;69p^;D=1gsu~RrH>e$lD#wjnale|N8qm$>{F^$Nr>Uz>)Dv>0& znn7JT2mSIU>+J(M-5^1BzMs5Gax4d|edG+k@%l2CduS=MtlUFq_+zgn?@(8581 zJa0M5f+fJjQYySf;c!k{iHLL;(y4O(NPyjE0_<@-Ax)5-7xf*hz3FSY4hxk_seQ~ zB707@!b7sw?ij8&(CtIsq-!3#_)B1t`M`y7HI~fQ`bVF%OOeNntZ?Wlwn&COAdT%~ zPT+jHSKxdB%tiF{ubIZ(I($l2&SBkbGIY4gQX8@qCm-!t3dzL1e1pu4vHUhZ>z}0- zGh^{l%X_=yxl;UE1syBAyKjgjRoyekWyPU#;l=FYB-OU!6!ZiA_~Vpx%@dyg!GbTR zR^I=>Q%^rPck36!gUC|e2U6bDipGy9G+NWNaLLGDm+hi&SF%i~47)2D3Ohy&c&ncG zd&{ypk4DV0D2(5Hr0w*PKt!2$dfYpG6jhymn*NOUPS5O&9X+-3g4hXDhwE;n?ndcu zwC={~Zi4PojVG!rL37xZADQYPzgJxu-up(~==Y{=;>a1a+BPvh(k`cAI^@@M{+6u@ z4;l|Ihs4jNJd%Un6tAG$S?_UNCUO5nbjR|D<#wxoaWv_lIc(nW6<<61?6c1Zs=krf z^J=1H-^q#UjmerVjUP&Z<0Q;Hz~6)O=^v+^3LJzU;P zBcE~pZ8KStwhw6F-uGq}-uO9cjj)IM%-gndoE0w%i_h}wqKIAR%<8K!{JiixeS3%} zTdB7E-U)3J#PNlEX~_AeHg%?MKZ~c0L-3c=?(W%9p*xk#?;X@w5hV8Ky9a$=ujlr@ zp6gym^!nX=clq~^Y+DeY&qFIQH2k4LHbY}Jvca@!ore^@5f+e^#tO^`3(N=$d_e_pbwbB7pE4OwKF9I7IJIPg z=}aN^#?gtC zx89#vv9LMmBZa4M*|SL;d?68Uk#y) zC%enoCO_gP>2>Ej%lULEZyRg-fp_pnV@g)eWF4S8iIr<#d;;A8dbws*X#8Ek?3hALq|MeHFwnTIH)4`;l|pU*2_L63^klqf~rS?VUr_o zwMD@4JwfzzZ&Fn2MJ@fpE2R{i#Uu3R@tK^-9iM?XlnywKqBH{h$8OlKH`9O`b${Tc z?yRo>ei$fk*pFuxTB2ai@N=Yt(UjoG{(D?jp94_w+q-f;P-FN3}xUV(7 zVJa|ZT!eXy95_A5d|*T(@`yKixPR6NFExv>#5%98kr)Ime_7)XJpyzEZQ|vsGFTAA^}+)4)C&+l`^iuO=!7L496i`*`we1 z%-z&xp!xUUoDejrqj73qM@sdroLhp+B_+6g&%VUyO9?o`wn!5Z&U3qFXmX=pR?`AH zoEZy#p$TB`YavA1>f<`mW*uGDfXH3JkgABaf>?pnC%aAj9m+4Cv8 zC@iaMVbAT zbWZbIOvIsBo27ITdYAErahwd!@pB&}<5^Su7JEzv1#(%4PEF8nHWmH?kg`mCxFXm` zri00|l;B|$efbSkE*T$vW{~{3-Hqe!S9UjnJH5rAmZGYRRRwb7Baub|MJNEZr2yNi zDgF%Ol;Ll=3I=z?<6JYW(+aLcTG=Nv`S=FAV?SLNPgzBCf1)a0 zVz)&_>d)jh?V*xwidQg@B!D0|F1+<$^y>1}?Np+TF0$g6<-7O97Brm*P<3}-LJk;* z&uV?7bVuE5%fF7E*4-~`7CjPF!SRhudS987^uHeGepJ#scW%uTMuIz=7x9dkk3mw-CwP_QDEPc{f$;!BG+3|cS zj-Zl4bpOy@`>jRd3G}*f6&0$3+IOW2A3QDGz{73M>KNWJg(<&1Ou?~X!I7?DJPD;T z*<$43N{lez<#bAlmz}Xw9ZnF7u8P_Q|NHDoTq#T<17V?TF#Sp_ozun0 zik!M4w!H7XxM}vm(nOsM{dql?Dav546ATdAp#{Ib9oPIpj^t7h(`$o)r4QNtb z8n~q89UllE>~3Lf6)e5hkEznWVi|FecPl6q&^CB$qgzE=v%V!P{PVBf>OFLXR*y~n znPywLWX(q7DrQcwcNWw~X9<37G@^Z-KO}&fsL(2EAPl5&7 zWD8^;FWi{$zB)^*L{e|}NxCh%iI&O)?dzE#wj$YGn)Yz3B0@PrJ%aAG!N-Qw*S51;683A~rW);(}IgSN)YchqlO00;0RXZY;YmCprHt%03kao;V zi7P3wA{i#TlRk=am0T}<9(}}>FQ1f{|uUVKCx*#ZqX-u zduwB7{MiM;CN{mC?>RXcJEL$$(D*qxrY>~$Jvt{K=@s^L)Ycq8QT{M#GHO=Ef^Q*B zCCEpx_-ou`as_RJ57G3_NwI0sq97mUtm*T-)SI5Ddy_1x5A8BRe#E^x@+G~Z$TMM) zVMSGuENXE!@ULs(#!Eg3=i@a#uzyF@ykkOqu!f~#R7WQ_RAAmdI(!Ov?bg%iTQ%s# zK^%$LsjD%ntV-o}S?RaBi%$Wksa#8b?+DJ$yzErl<`eUCe=5+PL#NE)^W72icI-GR zgysD6`O$f~;Ni$Me?XYnovazikr#T5LhceP7@)@$N?Wgu*TaR&UD{Sf| zLrjIVV=xTtn2oToLt9H^43H5U3e}n}AfF);6V#o8I0YO3BK8l9f6dS_=PH~ zB4(xvoUSp$t*RZmHn!mO{xvGoJg5$(9`%7Tr@^4E1A>HrW_(ABZh{^AsqidY$mrrGrUy ztUcDWg@=2dPDCEfKmP%{vfyJL!J(7f4`J8LWsT~9z35{*W9LR6M@1ifjEIsnp)>G> zO@>ji{gTgO4g46>yTB#~O^dn_qTHPmsbHJ_X0}!8Qon7aF4MP-CVJ)grwXgDEoR8Ut4?Iti5fny=|_&ZGWk~-{9bM@h61yT$65I*iDtu zRhqXJ+i|DgNY->EC`=M!!E`2I+kJbsutCYae zWTmFZhi7tMk4_1uZ==!aaVkX^QX0I`g=;pItL_QxAnmk+;4_mu$${v7C!-^jZ}4x` zul&2f=Pf)M0H3YU{G)ca0-p7En%!_77sZle9x9hd;WzFRJY>Dm1|Z) zS-`VzX$y2h;0YQ$H@aEixxs>`HVQn!IlRVHPkd&J1J8v9o=8i)P(3QJ#Ncy-!RH1C zpBo%}ZgB9q!NKPS2cH`pd~R^?xzXTdqk|U$hXtP-4PG`1J~tYCZZ!DZ2z<6OxONAh z13PgreDd`u`+8Kpz8*!T2A>P3_blvqO(CZg^~N?_!FA{aZN*8gfW(H6l6x(5~QC1uHK$5NxUMwj1S z>wOhr&k05jI%ZS~f%P=P?%&~5!iVZik|uyn2vxFOwC-PYh}y*a-mF4wffJ_$)xC08 zCKQmm^<65838v$hNJc}{50g=`ayWMRa`XT_>G}DgWtjbcK)51-Ss|`Y#Ik>K z=8MuKEvkz{|c{M zaX94_d1_1eL?m+>2coHVA%(15aDF%wL01?@Nn8&tDISh88gD4xs#%~acm#njLeeGHpBdb!yCU;-tHd+2==OfZBu zq2B{CS&$t>wRcgwe$?sh9P0&iT0iE8KW2z(&SFZW+*!u8aPtPf$*-POnrA15yPh%q znp~UuRPH+CfmKfP!jeztf~{pE!(;DiB(mg?9u&(BPexfYC1HPZ#X`gtw`QUhfJ7PJ zOLEtwkVT6M*xQu-S&MPQq4kIST>&p>$L@>0+k*? zX#r?~`mjD9^of8^Z>ssH`!22%P9Xutc~r&RH0!zQc`!~rB0njHgPQY`w@A%-k_qm^AgO`a)0+Ey3PG5yiytIZV( zt6Po`Z`5vB84SL*B=VPyT4qrg($r9d=wp#8n&8D8+!m|l_ z#_R~!sN-w7N~CM&T6pFan3Bs^FQ*)@H0|=enMxWFo2|wV(r}8WJ3iR+Sa_>_A_gXZ z02b!c9LnpDN$hE*GFaGrSiukNJsR^&Zd>tHHCW?DHT%OnQ98V8&?|*-m3)>jdEY+o z?{-A=GAtR(D^G-$Pvs^DQ7f0_j2f}vN*L{!qh$o=18M>buXSN_Lx68&vv{MOh;-tNJ}Qi=hK#bW>7(qV`X-PM&QtL0dQwFko8=*kEx4R^N-vBJ zF@C7s_@Q>k54AgfsNL~H?T#O6cl=PhVE5hn@{roWlZmAce#9;wUp&7&v5uW#lL zFZj!I{_@!IL!04;zS-A-31ySu&nZ31N{_PAqbP0sPrLCy?T-Ixcl=NLU#cJeXICum zl4ACoA<4n#Mt2(Xvzw4PN;SMvyh@8eI*OKpLpTw#?`_=B4fjc`$m}nR39>n!1l#!; zm`$r>2om|x(a-R=GV_@VJ<1HJ&@+B9%1T78hV?<_nDS)s6^_E&IXe!vu^kvLSMo8$ z{&V$L68mG_21erIv)N<%Qo9D+ibsV3+3Bw z+ApQn<>sgTLg`UfdK9&AFWH*9qFb!~Ew278uKq25sea^HH%GDjzv5(~wlrg+f;L$a zY~AKDl~L4fo}Fx-i4;!|W8R!-*>SR=tz?Ari8dxSyz3J2X#=?lwOL~WNdt9m^ca2~ zw1JN4zk!fo*g*AVY@oBWfnrzcq#h;y1=>rUN^Z7I#9wWq&E3VjDMK>KPa>LV5E5Pv zGD8&`$;=<>jo4K9z&P>v709lDL%-5qv5pto^?es@7JilX%uK;)P&cCR@O0nNp;xTMg;VzSL{+i8#hUA*= zsb1BZsb2k>iiZ0oD=sx4WF@#3U)@gsoR}bUWH-;0KNlnQt!9^&1+&>64*ZZwOZhPE zD9u+eOSoZ&no*~W5lhHosQ;jYqoch_QuNI3vG9+nZQ7z;)Q|q*=wugIS9N;SNig8kVjkIQ%$S3E+<-gm2_0$Q@vD?C)~g>d zJo-izVV~Hh&GN!D(&cH%R@2&(CF|$=om~areg{ApJ9eryHB#c44G4%EaBGI{1>Sj$ zhR*!Q7K~xl1(bD(;D^f57+d^Ng9Emejaa%)FPvbm%~W0jiBwRvqIxe<1fW4Wf)EY` z50+3e5oD?Xh?mI|&<7B2^uV?VAV`h9E*mK%y?-HHPwW1gJq8iQ?lZk;5!Sp|(XjHp z7PxpBkfFsI#V(VJL~P+=LVlBeb?w5}Gr3z$$O4{umd!n!$p0CQudOElV>>0NdRUW` zs=mYYL;x`fC4$V$W!7)vsnPX5?GDj-64zw(sgK5{zLOlfIkrIjT?tM!rP4D^4(4`t z7p^+tXrg}#V|FKCEU2=UWMLb+F`CW3p!C7y;IvNN>!VcevD)D4SZ{7&M=&R^eM%u>ikpT==F)}#>Q zzFucKyA^_tzImwWn>X{;D|)0gKAofx&9Np;=bon-bRx1IOF`*Nsh!u04_e6dMmuL? zLPNZw4^#XR8>eW57TU16;Y}exy#T}PEM;H*o6N&90Tg*#f?ZQAa&WYhgJCGqcn1bT8O zCJaB)D=;jfekn#4am{y|z|dZl>Z!!-NMLC1#~PtAf08LFgW+@nLwl)YEZ;0b64ErX zExB^lyX|y}TX{zwAo!r~41P~OsE${T50d*{@HJQ=%uHX<(>+_0k&Z@-r(T!#-)K=~RGdL&W>=*y z^}9yuGJV%*TcuqUx@2|@*QI{fC|#!S8pq|_=x+VZ?5@ZQLQvJvet+D(a46U>> z26HB1t>O0QXs?7-ypmE0Zxyf(2NY^7I@tBS4A2)vZwr756I~hotRx7=eUvb6^s{=F z`7HSR+{{rGdc+S#SqTMhcwF*B@UJ~JYkH*ztA?39ob*6i2uTkcob=#K0VX|=L$ts2 zfKdP)&T=|r>I9AOJ*5YD^uJDe_%nI5n^nqY%DLEvz6DzRbdk%tb9KSLK&QO@JJoo=93h95Aop`Ub$_P z2rdStQ%&sZKl80J5A>9bY&Kgf%0A9>$dR&m<7~4q zTTQlkz)#vdM;x+wj_AL6vZV8Sd{U4+shpTI7Is=J|I^n*1e*oyrGCNgNCM}tgoicV z#o3er*~`5UW_&L)Z;8+BV=)~sdg)M+5Qz%;vI;G&Zh4{uc?51{T;VhkGnx%MOdKbF z2Pt@BO^@;yA$A%?P|8|p&_Qa}(@IL&38rBcRu7f3$A0HfrR-=^%A%p})5y*Y%ct7T z==ucBaP7WOn%GVMa*!r=T&Rha1^`X$FMo7s{S!*PnG@=JOSKmkQk&*M!cBh8C`L2* z6?S>3$(lQ>G|GA74pt;5OLcZ1T<52$v-BMy5C_dns`T9x2YRO7f$u5v1IoR_U8)QR}Iv?)cxjX9M7IY?enC4w8DO4ycgK1M2@%foS6uSZ*+*VaG zJ~E?d<_qJa%%o6ZhD#xfQZ+Oss7NrO&x$aM#s2SF5zfKqjbY59qXH+{uYUCs z5)k$$bm)CEvogb^Bvy`#K54pniA7_YdjY^@ig78aouzoG0O8S@Zt0}sb~^cbYLSL% z8sks-snIEHXxA+oT6SoA(+9LyLHPmg=|QQzO77RHy{{kA-uYpBGhBP))L#6s?Oiya zz2OJ9rw66>#MO7Jy;uMF;PEwv?ag%UO;CIHTy?nd%^lF*sDs%ykygiUR`a%frc zho}++wT{Dg28dq6lBTIR4?PHIZsYR`UBz<0ha0Dy{x4qZTd~nHe3)hd=2wOx^wYd` z@mEPfc^&K~Nlw4d)1)GK#;` zTgF`g1wrgSH`7XN>bdo;Bl$bMbu=tzD;#HQB@AclNchcG_|4`D>Cu0_;~x+0LZ5#L z>}M<7Ctr@zm!tSnZIE94T)Lz-TC9zh_iN)m^rfiZI-Pi;xmS}mTOxf@&z~FJXoRo5 zq^m4Wq&U3Fj#aGW%x4w3jhj%wO*)4&VmBO+IMUv}vzXq7UN@ni^QzBH=&SHRt+6JL zhX=U{Z8(gZkTIfk>pk3r^m>4sP++S#(2wJS(lRor|CjzkTbw_}z|MpM&3yV_yO2{h>eUw_A=h8e$ zCLiCXoT+YNruxyRr+CTdkjcq2u}w0$b9d?|6E-4~yNAZ;N!B_(xl1zno=_&=>16WI zm5zDcHQ?pzDNbC^4}RKBj2qlN)+_Z>6Q$Nt{@AC|UL%9m&OZDl=j0u=jwM(|A`E${>%g%;_8Pj-TC>g>-F>7GQiJo zC%-yshpxk&w|{k^{s;a7#UL(y=H^$JH@KgN9|mM6bhNyAGD4z`?rh%B!@-?D=v!U* z=aPyo9SkFfh?~7s?u`TqCO9AdjbzQEja4b{RZ?U|iJ3|H^+%&9t6$e$>u27GQfiP& zkPYx<_xiL?oatS-&J;w=gKG9P+*4AnCWGmpEl-dxH;K;R%C^m#s7+{!hyew57W|$E z(m|5mduMO|)Ly8a@u%-XUo`#E?qZWl=6irtWh3k@D_MYGAAzaqi=2Pri_Ezp9zuc* zOy7+)Jk?Z$2kyLC#l_Fg zqGIv3oFRXunC6)YGc>FK1PIN@$}kb1A@(8B$FC|Le&tQ@EaosZpSCT`Msr4>$0%csNWHv0p*5`gPSvh!+j3n1Y z^-8Bp>9P2hhIOHv4;hDLmnNSW!45)QAmQi`pD_4H{r|_^+rU>qoNBUTf`Vy+7-D zThFr=Z}qE@^$#LkT~;K@L@%2=GW-SLquID{3-=z`CLyN^d8EndrbTR zO;@EH=ratIS*dkWMnUc|uE-GBVqGSYy1nROh7=D0u!X#Io8_drW?OHdlJxifHeyz= zUf^(b_eNiE^9HLe7T3HR{{i7iePxLFnwID1G+btc+asKyY-azttq0k6i4@Jq;zG;I z0XmPpg(IA6o-1Xj6A!XMM{Bjag?6~O;*~756ouW1UC%& zP)ml}kBq&o06ouGH%0VInfm-C>Fk8koo-1t`mPsqMUa=sH|w$)+Sja2HWr)ueO?&B z{ND|>yV3mL&GHksWUPOax?GO{?UY;8xWDhPv38eD< zcF!kfF|)&Oob@kx8kOJojq85&7x)Y9o~;eSj~ARBkK;IWSsVE~6AArgE z-VxGHym_tDP}Q2@o5!w=I}LAP!_%V^EU?2W4m3e1-v`RQK^zd&*UI zIR`%hsp3Cs*akzC<{sOJsFaAZgUhZmt5nO1we=n(bz8&PLTTe;5Ep2l=Ohy=QAH=- zqif!Kkq^(0u#UMNQ@bTqg<=v!)#a>SO}(57LQ_(v-M}mR-?{bs{1Cobt`3^>N6R3| zdE-;GcP`mbRR?fClg#C$)^Vl(ggAOVdMY|#348VzB%04d83wy{8?%56qlLeSDv0yT zu6>>BeK<-68z`1?au>06`e++TaRcLv#F;rE5hPZXV2OR!+w zQ=kl)T$yrJwq`wjoPI*84dWeyD~o<0<62yd?Ad z{2~N`|9brys&%MLT~KDdY2ugDP2{`D7~cgz>VpCsD1el&ntai5k-7=VNYMl4?!dq} zC($kH2V%9Lk867oBY`f^GA)2=labCS9cu=%p^!Jeeo~*(XVMo-V*5o!ax~1~bA3*{x)COL2%3naHn#d>m(lU<2-vYoZDnx6Yl(*KUtiU z11>A_N(Oj$Q#Xu3Z8MXMr#S1NzA92zMWlSu+SBc&hiO#YpUwy#kOB5aUhz@@et^j= znvQ_8Xj&q*=(qShvX)wM3|%71GUctpg5Ihoh!}{w=&iZ zo8Qpa8yGoV86HrLYy=tY81bW?+Gy#sX}gxxd}tVhr=VXC$YVwqMKB>#=^S8VzWFst zB5)v4I0?V*itfO=6Vs+mCwa0gGVwGqeUeNfH}Lt_=6!>fX_JVIQiI)ZUg=h;AsUK! z%G$t5gfpM-<1{ovdiv+Th=`;ri?jTa=f$fLU@Tgdk$88Xs#6@RmJ47L5}cLX8HAK6 z*qH0ADj=!92O0(vhEq57U2x$Zr{$Pz2>hLpH@SE=C+dhtM8Im}p%K#!mH}0k9>uFU zu|e)3mTa8pKOjRC7GxNcqZFJ+a83ioum_UmuW z*j6=^CF_qwhM;^d8_H>Xb%f}>A(*CZCq}>-Yv9-(IV%@)@`q<`&ocaZAqK18n#pNM zXeX-m$(k)0oX%DsB7}S$PRGy^Db?GU>F?pZ&kwhf4;v8X_CM`cZOrr$RD37ld2h`$ z9iI?SO_hw7;X2#w7<-R`(JHY3IpY4vO3jH!J8;_YCwbtEb~tnUjTO~PTEmF5SW}bD zY!Rk_XMz)9n$DZaeo+7t$&>j`sc~-XI34$@xt%!F-FF}5xb76+z zn7Jh8tc@Un(6K%PuJS(Iq&1xDMHk(YssFgKOWNz)`qC$L9^R74X?)e~jO8fM2-voa zflpGa5HCMh@N<+yubwYTol!b^iI5OdYiUl@@?a39^l*r!Fete> zjKlu9aG7acXg!#iB`Za{-E4fI62|?FK2A2f7{gNFtLq{smBQxCX=*aW*~r3p^}ElH z{NC)sxAE$F4P^*U^5`%=venssfx8+XZba^vg0gnVMVgm z{i@$)dY2xD@~wZ*q6Z^Wa1op$&H*zd-UBnd9n0NGlH1e{Wr5hgddL z%Jpl0nCV?iQFvNP-xroX+}ABiW67##%=RbZkoLHxI-Ip~M{XC`FXcZ1JZ2Zz@F{m2 z>ES6yfR>8X5?0qgvhehWNSZU@jq_WPH-LtV~l;tYr#8V3(Q2nct1RceL4M-_(KVRK`?Zg!YB4Ajnd2-L)Vy!jo1u;s7h zcVlD)Y;t3M5bSYV?SVe`e*!`up8^6c%Jp2Pv%OQr>YX-|#gi6gvxxu6O-^6uM}Eu! z|HDA}(reJT@pMU$PbiDC^{FtmF1XFmEC>UKXgk2fR`fHBk?*#ccvV|tiRN?~iegau z5)m}Q?-kYFJsH=px(D>!fnoC}xh793izZ7CRip}=lix+wWM!gY3nNVN%=X;pt?WcDD=nkg*m zY<4oyl)*KxpZE<6wdTG|1Hm)*vCw}%AOSQwmwN}il3lUrp0Iy)7kZc-#c%uw9ALa2 zy2Tm`#r!&I^=rn`s~x>R1~fo^gKyURO+Cm|e{YVCRASs9M*yPj*H!5NpZsnhRWoG_ zTZ1|~bWQLOUHBzuQR5K;1VSNenGxfK2*TA|->tfx6Q_}orbbsIZqnmKELK5bJR0Jw zA!pH_BX&>UYxeYE_H-267N>dAr)-=;1fiB~@%WovT-w*e{R`iD5C=_)Z_*pz0JdKtPOWo*Hv(5uWc zW1_-I?<|B2w-`D{JAs6;8OdiZ09wOGXLou{W`bZi20Nq2owZSe`?cI@u_a8hkka5@ z*I!zwJ#vqF*W((l4Ri3)!7L)x-1ab2M5tTsLA6FRr9Fvcka(Co8$MR=I?%_qxy9{=!Y%toh>{0|ZT7d$0MRj6@f%lnk^P4*D@{EDCFzmCJBF-XxjRP!RJtIaC@>uf9=@Q?^C3T}S&Bo0h(pUyo#ZaY|4z4;{ z(W!<9cSE3D^30nbEAVH{xvD^>beF%mJml1Ok9UdRk;d!uk|5{PKL-FU@59UJG z#!9MkGx{?SL*n(agbw9Wv&M3dvb)^eCu6DW2V>DUmz`Hx-ABBK%G@_JRDw6Br0`cT z$!^JGa8ECLsT;@OYUl$iS$YdG?_0QRf9n}^?NeTJ{XQ>M|M@X`>BN5EpqDDT6z^W2 z{o~fc9Ixb+!FJ-7JnIfV0)$swJQVrwcqPxpQr?o&gm28m;G5BlzJ)`A54=>(=h4{R z^QP-J%vAdX_6hxwfycg>|BBmwXc8`_UX10wqVLO?Sa)AWC7$Ka{Le*k!pN{v86|dUqf8|oYceuFM7bQLFMdJ9(P#^GvkBX z18~kt4{=|3oHFWWO(1iaCJAA&AqT{AYbHl*!I)oJ;QFz=m>%q*!iu$)B_(%((Ckp@$>RJ>Q&~$i3U}^KPncJhH&F+deQU z`VKS{Mx}{&%=dc{@tdN|^bD+@a4bHf>G&90FcFM?vDr-618;-$S`drRxDcZm{A>u&G_Zv=5NG}~0 znJAyv-9VtNv4frPjAo3OI%$8apGhwG39^C4_nekb>pt>=`(Qr@#?<{qygEJ*U2se0 z#?tWSPCN*nDtYm>h_&Wc*Zm?hE6Nv6%L3lr!43k%cu}m%a1PE5p0)_Stqu7L<;3JT zYpdZYf(ewE%Ff-0ISZ%R9qeNKoV5)APR%~yMbTEJW@Dnzw)7KV%Q~T6=jyS_F1Z&D^U9u6QIV?C&HEiSQW|=|9laSwI9= zyrrYY(QT2IchR&%8Xhoq8cna|LQd>0A=Fvo3t+$Z#e#esnz7uUcoY9tn&9VcwTI)m z?`hA*Q`1+6RNpx;8HAZPLXVY}%jiVt@d=Y~a&kO+?0Uw>(wbtSJA_qD>r)YWK79-S z8&rR+_HB!!Bu$Jn$~s2FFZoVOTHgg!7z~z8meR`xJ*B>@MW`%1n8*?pK)`KQag<-*?)qL1;B=B-HT02%=nd zm66Kgx-0X?dBFpIGJ%ts~KzZE=G11XLm#5WK&p zs`lidps%8wmp4u#r<+(9Gf2HYz(cG_~XE{znTF+wWjAmIUxj4QF zdG0KJdlURNKFeRV9!kqNB8}aIAOu{ue_dJn?U^H)_J{5_B3n*kovCBf?F&qPURc3H zTZ8<0Hvj*!`T0Zn4+r`4ZT?L*zhEf;ksyDe&HrngUpSQic#yx?=DXx;eM;y$ROZ>B zjPzK^cp+lxb4M%oa!_o!DK>#(@BEd8rqgH$+8aT!6%>mn5sZ&Z@1~q2BV)l{x|XuZ zC>>-{{Y`r>1>^NqUuW!N$*YC{Vfj2{Mbi2%K&5BU)Y(~p!0E)6LAdmrThjj!J!#xC zK`Yw$K=!}10L{VhxJS;l>W40yf04}}9{2npU+Qzd|ESF$9{0i^zsKhH{-uFGJnj>N z{DU@sC;6w0dr?p(O&L4xKOe2w)S%d5Q%vLjk3q2!<32qoHbAjp+`mpajeDf-j4dEo zIZ|>edqfZ);P!`&W+h$KkX8nxp}rC0J`R}$OdjFf0<e9 ziar}uB*ZytMOCJv(5z|VE5mgmjr`3}eW5St`;AqTs@!anlr?QxQ>IK+6F1e|ZhUm8y7@|{x`jMVrv@*z z)rq|uwYvJCy2X6qw!S-hb;?wAOL%Gwmz(ExE3ju+W2#wis%bXNsa?*LTBomqWfJ$x z*RxdoZ*IuiX3as}D(JRuGIbAi^16*c-)x|NSpE7NftiOvHLvSL_GRb?W?5-dg{)D zE4~6!ve#MtbwDDNsLXv80naZ6AQOH8LAk3pN;=`9Zy?5&lX{Ss-kkn;aDV0LYdAU1WgqCi}VPmbs*_rz*{QNuL49Yeyf+%!^+;n%iH`|)~UC>{CTTgq%vPT(*=_J@4C z{aWYxo;=KpdU)B*3yu*L0@-yMp4Lsy`1P|TB94nG(nx4TG!kxd=5J!j$o+0~fFX4f zos7fy=y46hb^;|t2ZCY1Gtk?$blOg(CeckU#q`7ShmwJC_k}yv5_tIK(|S*bia@;I z+}{HW09n}kJja_pFJ>hKLZteM&f2?`jNqyV?#0ja{)kti$6Y7q5lEjpNu!ZDy*H9R zq?Lic6OmitV*!0sI&j%bBuWquR;F%@Xs-$v%aXw=#}A--hTS}(9AUDA(TAr%{(Ogq z`jRIaM-n6Ut3+q{dzcXLWlZ<$l}mF{nnuy8RN?!RlS2fyrTDXkV&M zuAQpR8e364v%9i-L3d+iT=g%R+GkWEH3tElv-%O)yjCA&(1rk1ZH7Ou z`*CIqb?2Cx!09px(0|U_Z7AgZ1C{=4Fs&rm`G&#c)d=Nf zhf~bU2pNIu)B=hn7yO<&AFr(5jSFls-s-pOzwd$e5Au_b(>!GTQ+7q5&7I>fxCj~X zQzC(;VT&Kg*Km(fU9|>i{n$h~Yp(*l>wjQ9HhanXA0bOtJXVs`qzwYzVu%l|YMpHI zjhDlds_m(5&rce4kity6S|ZL$ZDdLk)c~CxMK|R%uVIvCOHCEsYI^Ime2o+>2tj1W zs{)?^o|T$@o+0b}x*uf_;1mr4P-8c^jaKOg4~;p>2ke10j5*7`rAgM$c=g2YINoB; zMcDH*#vq^B-4|%qjGpXgh>)3gm6;fnNpz!r3kzBG8>M7g-CcW6Y5@!4>x1~IQkSp) zbfS9ukT`aH|1-0aRjCZBjure_kjj{byMB)c$+203!N_T`#C*_%^(D!v;Xx5}ljRoEC-Fbq71iYIxlPLz-$BdsQP- z#WwQ{Dqwh3!H3LH^*dgwe9%7-iym}t{SDhuI8a?(_X znlvE=n!0k3Pl0cCu|zMSWYmp5-Y`p~PW8*6t~vgq;>_IYs^4dzd)A?$O%wxo!8!%t z{Wp5KfX(7R7Atvna2wnI-!k+}Em%-<@cgjXhMQg3g9V zN}W8dTHOeEnkJzi!DQphp;#r6%KwVA2W7hQB;+O3uz`;B&Upq--L4lKjo66c+gL|4 z#|&AhR!A(m5P{r}_)rSORN}Y%>N1jH%u_oubNoabT}yQ2%<=QvjEJtY_LXo!l*=qy zg%`T1e;5R#Xn8tKeavG;^)U`P;HJFa;uPWmh{L)q1HIj35$YWi`R|OuD-fh-H6b)= z)-ZB4Kg;+FFzerrFYk+E(U%&RR#ZO{i#}WbJ+lQ~5)K+eaO#HTID|@+@bU2q|NR8v z(}}E(y~oeA^egQ_J@~FXLIb0N&R3j+P`d_PU=*GPY@>8--g_jFA>WAaG9gVQ@Lvk3x!H| z4l^H-tnjFYI!a(xC_}vhD?U(MrU|Vr@FV6{N@yS|$pJ!x1sE~H;7>Np$bVdPMrf4i zh8BsvfBCG4wB5azt6|Udda~N(YDn|Gml)bl@Fy$&?udA^8)>SE_f6;~e#ZTGk{9Ea zitZG!tF%#s2(=!Ic|ubl{bLKPqpY#3)ib#~vV{(V{6DV9vTTy-_Zmu?J^+h818q@y z^omrGvAh+<#hy9HM}DLzeZk&>oMfb^FE7lGSD$B@H_2f7040`kji~~G1W(~3HB*RE zO)z`cv~R0vuP~FKyGeAs(f3fH|1i^dnioCP@DW0hjp-}mdeKqIjNf+A|C|lgL(mVT zHJ(4o+%rOqzfmV*9OsY^3UjN{Rc*osY6h`0Ol2_PJUb&r>g*u;xIw37W{{&{;z|ft z4X5zS^G|3I9Hd+p-+4RpY^-N<-jGlvU^&x|T^Lx-8bbmRBTJ}MT>U)ryx;J>uD@e= zSZ3lvA9rVDYpOIP^f|?ynnPZ4(Jh(Ak9yHpoVDK}9c1k`4UThe{YPH5eCOJ0ul4-5 z-TpV*k4)4y2mlUyswZ9Gd?UYH4hb$DKRa8wdg`%{k=+V$to#&WpMyY&-7fCXv-=Atc9pm z46L#M);zWAvy|-nb9=?{rz~rJjdhxT3Ms77a+=p;j@rkV;i7#VT0vtjcQZf0cNNup z<6Kx>JI`nfgXv_DmIFUrTZZK2J>`9#H0S|V4@FjxRB{++X|6wQRa@s6UUM3*^LJRO zmQ_cfPXEFn-rFEoWEV6|yZ0ak4dFgJclz$~WYzA-EWd7N#LYdTrxXd5T-0) z)yj+0C(WHJyMeI$T9=uX%PyMbPrpsuUjXMM>pz3mpeh3KTK8q{L-ZpNJ)s`!0=OcJ zJ1yh$7(3RY%8y{L1{kxE>{TLq)M}P5X_qaqP;F)UNUm8+Znl+ z0RYoP?hAOWv`A}}6R!nUU0u=NW_T?ucWg$86bQ(kf71{HmcJroz+UUSXw;%ZTv=98 z0;6A#h2BWO$;fS;kvr5bv`6atKb33)pgC!RuHg5Vi?IDsz;U9!+1g(;AB& zrrm5zGf|?{mujTflNj!1^vIjJ-j=|oExNDniW^aQ?QbaeqI(*ln6T4*3U`aQVS(0G z?k84dP-=2>@3u_eXJv3V*^55Wh!!7fyQeAU+hXv=wwNz7pExex?u?bb3^u|Ff{8qj z%5{TKOB3B5%}FbT9-BD;C-uq4YIegpERq$KsreWQPhUOQ$=gl6_fZV$ zohxS1{mOD$){&wm#(g}zZ@?%T909kp$>6ukQwyMGs8EwRD_N5qvioiL3S674dFnSp z*W7^Cx$c*AW^k$F4n90vVTM@K$xI)DDoS8rtOUL{+Ol1>zY$Q?1*V*r)fsidEqQtt z>QOf9QZ~rM6_tKZ^aE$*M92ft!0Ib`>b?eKDOTXk=6;6f&p;r!k+duWQmt5x(jWN8 z;5`VCLBxFbGG|WnFG=IK>pz3k@7`Fd{w%C4-gjDVQ57Zcn{$s@5Z&hauZfsU)ng>H z4L@nC1Ha$Y6w)oVo4fG>FN{Xs29F89%kNsPEvi zPum%Qbi*?8M+0E^5Kfigc)8Dc{>06!j0!gA%C8tQ$#&T5s$<4$E{#ZnK}l(>{q|>%Wr6<)uH3a&C2j^CeE-$Omp~dh~OvD}C8y&WG+1=L3eu z_TWOR6Yrdrw?L=E>1CAb$tvgh*B#V})du`@?`7m3%*y4IA?yI1Okw{cAm+H*ref)= zVxIq9amvK=oQ>iABTn~+tG zj;95si=ydYD|d2ME*)QIJFW|6VXvDh*1HzUca&Zi^R;>{9OSkxAHCO`(UlIQD?d$b z)3R$z6&A%i$C|!VSF^f3K~0)5qENs&`%}`#|ANf25t&s*lL28m4hS>ZPpDLUL@9i# z(>~8XKfOhn^G0M!57{}^bUWIWZ&c3X8_7#>3CZ54 z$={f}^!uTevA+XXI}>UEu_Q?>)R;vA3A_eXrM%?M45=Tox@5nsY{ z;s+7~<-@gyEAXk>bSbNi(#8n@rSb3IhM$Saq?WezJ%<>18xwP_Gs&Z+Rqj>pH{5T2 z{i^s)Z|JZ~_`7w;=Rol!{0=X9VFfmpFc~YzA(4ba?#W9z_Cynkx?ZQR{XOCV zb#fR9Jx?`7ttwA0+6qVgBFEGgo(KD%F6nUATufVZS9GkNhZ-*Tq84(ai{R`*6MbJl*9 zMZpWS{Zfh|D^xF#po#1cDE&9x{zL6245j~MYUU4f2m24WxgP|ldDCES<2ih$Wt1a| zKX$ZfgUn}HYA@+5g?l|@Zdcf$8>0A$gml_@Ea8ROOZdYm{@q`uHkpflB`^I|LD|ylS(enDtR*F@HZ;3BC7zPMkn@XP_l1IFeX@-z6Wt1 zyg~H83_TaTLHH}Os!=;KL=p)Dn|br=~xgUR+!RMD8GlJcuwg zqFeX_^SZeWL%%A!@L$tkJ`-ZhN(3-xR^4tg07Sh^;bidPH+F%Pe zEUTrL=m!h z(M;c@@?`z$>;h0(t8D>juV_YhH;}d;h0kt}?rQj#(07)(a_|%!D1=1m{@JPgsUpS> z)6CLCriaZEnp9_Ir|PC+g@l!aUA^I^MB@4fy2qZx?Gw+rsmMbi>BzN(ExM7YPFMI( zx?BwowkNzVlp;vtyB10OD?6vM`q7H&j)c$O$Kxdf!WI(g#xY4R>9?ZXcrH@jH;pLw z3_?bKkFVyWBLAlPt+o?)MQw@P?U$z{=SJH)^ zVUN7SYBxG77cv6jI#8=b?x;tSf*Pz7%zwBxBq&Mi%e4zNT8L|RrH@csm=E?bbfz4c z>~wP<4}F*{`y74;_F{p(H=|JzJND2nw+J1kaKG(A##oe)V^*`5Tk^>{wdr;T(=MX=+pXv zI`{f#^rL7UdfbD~yhn&gTlW!ZO(S<4Z68~Ax_&0^h#YN?*xyxmt-FakmpPpg1qQY! z<-XdtZ9f|$x8jmr_f>0;R7Br$nqnN#oe>$_Q?i33sMJeHD?QZ5o#BJST0J-SVWZZ= zKAuf^2=8YPvfzJ>*FqFF?Jwpce~os-)}5^#dX7ZMXAd9{J!hcy*+94Fq3u|$t6kE( zx4$}8R!O=OHTcz3-qehDqpuSMG+aTyXa&By^*SZOkg>UpGua z|BW&?XJrCobP9R~C3`RAg4rnD-U5JOT5|p9=ilb^X@ykQHlnf!SLzvKLr(^TdGobr`vS)ZJ=cOUgdUY#sZfp1Go!^qq`#5zTKB>-8*oW>vr`$kRIl4d0KHR6= zoQWfukWtu&TU0JDtDJw`F!%61Wfo**GU=mm4|6Ei`vr(phCuij`su>ad5Hi+cACqomE2bUz}L z)J^CkqQL}iKLTa&+r8UJgK<7!{MTpG>v0+xSk!UgZQzZgSGui*a%O-+V?H-2z2y8z za(5B)|4#ICfEk#E${*#i$Xf>+pW+*1WR-{#k=202Mjb8a5TNj+<@=#|O(4&6cXG3p!@ax*2|*82ggMchrJhQ#kI zi|$Dpt@iXeSlwhEbr9|{VAlm;H&85l5H@^_1i)?_ z2*E}L_UEJ;us`F+s9^6lV4DN5>rMi@?h_X5`n=BtWBc;Qps}w2W?ki|@HQEE%L8~T zPJ*{$yoI-BatQBs;Bmv6rBO*sxe9V4<62qW&MwMxS|)#rUa@4?kQgw-XKp0gZyxD} zbT zhE?8IdstF|$4GCy=!xx7%v%&^rd3KJsE04Gmk=+XD zvkO1HBupT|+l?DxQm`o_rP!q4QkWFn`jRrkq~IJ_kzl%N@9q04m2O!*N~IS?c9{x* zxl4g8fUKX2X5sC|#V`;@!rB8@fBlr9#v9G29RkaG#Qpqj6@I=VON;+EqC1fjcrrRJ z#mVecq3`32?vu{VyP3U;YA1JJWi_GR_xt%p!bP`^`y>o`$;2WkDrc=0Jmy-&!}%`B z8u@i*oIB$sby74>-9rJc%p9{y!}iy5rEW)?Shyom@&vRFq3#Bt?i0}`T;ur>*ACdy z>|k8p`-47p=DzNo@r2WSh5>K2n(<_nT*gp=y#5qGceTsRMyc9NgA|jDwJ>{4za+1@7-Lf1+*HxC75xtz#mVw8 zF(ysZ=@BQG)18!O_AV8 zn_<#S5V=YWV1LA0f$gk}?z;Yh5FU4+!miBq zCq8n8KXI4Qf9=vH#q^T?$D1DJT74P~jo4`6gM`oBnY)TMo1gC|I1J<#r_Q{hkFQKE zdSgI=OABQ5xPlpyu6{yX#%K$QCYQE}&(-NGK2NwXecJiP`OP$!OB|&;QR6hmtG6Y5 zG`N_wP1edSh)d$MKv1^Jq%E(~H@6uzL72vgQ`FMn0%Jks&Gg?+D$vjIkvC1kTj{DW z;Vt9rrmyx%S&kGKw?+W1^xu#vPF^A@r7=}NjctHxGsF#(|=be?`gAX_3fXl)2kh;t)vN15XExRUO-LC5%G`kLi8##~TIvG+A zF5vn{xO}@$%C|33>lZw#orZyj7K>(wA<-mwyG+cE?E|4Kh6R7McZ9_8-u3~YR;@Z( zUp7qWU~*K{+BWREulqE)n+?bvj^Hvjw~pfYbk4Z+{io{^%~cqd>`$bsiZGJJ36mCY z@QCL=Aq^v2eItnp|3rn)rP3GTDes8^F4k3XuY;Z6CMRaX*rf* z$3?*krm5)|C+XKY$+fyInmP!YB0?-KCoP)#0=ZU(<*|xEQx$|GYnh}}E+6N%yPT-8 zk}e2nO`FhEc%HDdv>gSOKzrNy_pq^t+OBPC4{kj9_Jod7{yt0$2RlSlW>fSaEI5Y< zb~@mmR*Ki7AWI~fGZg$}(iCxtG;@j)CDWuSG81X$9DSN|bUR%L@RMytc7=l9V=B>6 z*<+5;r_J9UbB;c3{`Q!IbQsvqM0Dr%=Z76A#bby)Krii4r!y4%PT^|?hHw}z& zZk|g|q;f9j$$fEih$~8!?5T5~Q&jCBNT;(}r?*Vz%XBcaKZ)`@jBxDG%}GvwvOGDn zn_KNMyhk{RS0w;oBZxV> zBO^gf6^IK3;`~!UczM|{c*6<}vjQ;9W6sL&f@!QZ8XhIn%c{kd(en8k{e?+y9RgT% z^=`Dy^LIFj!w65yxXIcWjq&GF(VM~X9d!JDi~PYd?FLJF#^A$rAqWz*Zveq(Q5F5J z|ElM|D(o_hYYd)&V+X~E^*P9hW}zCJV9^aKe=-fqadYuF$U->Jh9w*<5E?)?a{%#a zE_Mumy|KVd;U~-#rVSl!0}Af+Oh7?vlH#nE5LNwV0?i1Z^_-I|>;j?ANlx6=Fg=E; z!o{!xny}{@KU?YVLdJ!-^%?qC5E<`Oo%WIXLWL;1#(T!h7Z1D#cj43%2n%*a8onS9 z(*&YKAU-z|gf~797~B5wWEj>C##wotnJezo;ww7(`m(qgevSe=S5+%<-jPh)lxeuw zrIsleSA5RJ1_L)0RdlI(ClNioZ3EP>P&LrV-3I65@m>quSkC#qW^}j|RC*|J-Yxi#gG1Pse!h+`PU*6{xla z5<2z9^H;||$6Y+yOQ=Qf^XijFr>4`XpaM>#+VQLn^B*jXU$uR}z&h<53yT8w&_ZTz zBXt~yEexrsKpgS0quXGhUL?cpT|Awn{tnu@!)e(|8b0Kt<3HUid0jMv5t1@smJro| zJ;6v_t>_Zt`5ACcuOS@U9fSg}`$1S=aFHh~o(fD+K|+jBLDg=UpMnLuVSdi$hP2|T z>^AXKb{8w2%5D=+1$OG{gm|c{tHd{5y$}YuI*`;_Yy9~=zfu#1I`@S|@ zb6E~yA$Aczg_6Z8SxiYlM7Y>iD>%z^Fy#^Rllyi8|mZk_{i%x zv7|(;ke1W(cllCFvVmoIJS2B*?SfKpTb~Vf@L?uz#12*h$1DVc4XZRyL__1?IGyxy zHfYvKujQRW{_^#a6oklM|3qc=w{jA>JvvlGNL-$(d3pd>yI+q~rV{W|$;V0uz1qJpHKb4+zcL7X$K1};LGLu)U)9735cRI<;Yl3hY2<~pUJo`%?=ZqfT76!Amd0WM+x;O-zqCf^ThTqoSKhn5v2 z_80`R#~_eB27&A`2xN~zAbSh~+4Da}AUkV+mW@C@1b@&3A&@-=f$T8|WY32qke$RA zj&@xSOK+(ivz&Jcfv79OAeLtAs(l6dXG?LOmC=nL0J6~sRybL>qrA-Gjq3_;wVSX7a!fg!d008E<>2+1162q0+iB&!gW166&J zz@ln=D6sez`~ZYig^^Sws$U9imSwXLZb9!*PI~{xEHA)scA|t7Z9z)p&43v|ih<}M ziwn@n6ic2C6X~p-so(y#fD=&E&7CoMHz(vKW{U*ebXNaP?WcEZC~DYQ^Q-}RiZh5y z;J|^f7uSc6#-gvp{608=XGIkvZ+NNk0y&Ps1QHRMIT5@U!A)03ip@sq6`qO|a~$lA z%t_Wf3LlUS0C~epjh__&Sc#DUykg4+7zn&TRa!1!m$UNwmJ5Kg)QQlx?5|Ea5zJkM z9sYYxBF(82<*x4+qwh49>WmIJ0LgLapp_>JeZc_;-wjA^!jE?hhJ7NCFgPt2VKy>M zH~i0}3|I7zw)saM>xtBYc7&I|U@nH_>#e70f9D>6O!^M3?V8dGtSf_yDW$BfE{wz@xSABEasyt}sVz_HnV<#|?vh+_2Wi zA=^5kIzOmASOJMO5<;I@b?Mr7-Q;Du^Erdn!ktosm26noHZS*25acH>FrCH{1sVFE z1+`6t#bpo)4PRzywX-soUZNA^v>d1E%>PB(0>Zj$8C3d};s;LKLn_Cgg2x-VXP*d- zZ7ix68p{MI${K6e8VevnSe*HpQ6V**0?C}q9k7|(oR#0Utcy9Dqwg=9Z`KV>m;B0& z?rbcFTfwU*99ObtB_YZ7$X(wvlPf#44`N@ z-F;|z2os5f|I~=!S-&F9*c)-lEwy-TJo<#watCP&+P9O)SzgIbS%`3iw-GiPiKaI4 z&>@nXy1T-k+Jz7U;~DHlx@xhju|jOb{q6Do4kMw)H)xO;uoDWgP3Yb6UI*Pc$LkRJ zq5y~I5Mhy>NT|8?+GqN3AN^l^#sbsMHRWGSAVdD_$)8-FjO_lZ&!PKOKeE$^X?E52 z>B#*pn?Y)<5l3#fq1e-gVn6xFJx7=f+1_H2={@g^y6Zs6BEeT3>de6eW6+-$sYjA$ z^{yuF%q-A;>J8~?*t_isGdvq=`@iP z%0%c4!&M;h3qo!_K|!k$_AsVOeS=9y;wS%cTs%nlo&Fv#_X&bkj6qZ5iWv;yVK2t= zLZg3t2R54FloI`)3=ELoG3xcYdd6s&P_$|)m8X`i8g#H$|zHy|Xw60$vk z?XGoXH@?5q9tU40*%;%>i`_gZd{kJU6NP^O^+N7(M1M`MosL7h(N4lO-g^@MU6VLrv?KOyJZ~n{z_x}>!VUvWi*XpO7wF$UO?)=&~iMPN(B=E>+4Nt73XBlZjk{*}6HsG}U4QW`Pw8=Zh zm?7^NJDt@HG{PzFb&3zOQBhp!b&~#?=5XKHDc(WXE?%sz{mChQ+bKTA5p-CMoVdd& ze&vQ-z9r>PPSvMAYD)Df>3xz+-W#UN?X{cf!X~3)<42w8k*$t;=^(Mc46}E8kt&b> zQU?e*w$s--g>C%9cWL3yx+}BVw}_Zi#o`&xUbH9ADSn*;W;$LO+s8UppKbY$ntaTu z`oc={>tUz(ai@6iwazslfNwp)zei>1xTUX*uPmVK&nwMGuk-ortj~`Dfv>WG)V4Xr zPdUXeI>qU0oliW)zZZ`<-$L^Bt;hMD9-2AC1RcEC4)TLe$D@C8n(FE4DKp>&xkoUt2vhrnse#omjs9~d7f7I~A z8KZUJ4O7ERQ-l3Fs}h@FE3(X5u`0W>&-BIKZZVa;8&tMAtZXrr2}fT6I`Df+2NA7V z-aL0Zkp$r*xbM-n>^s9EVWB>5TU{KvsP-dR4P0a;&BqoQ;n}zIFOtk5|00#}E<%Qc zQNcxdeP=VGXFd^>Nn9kRXgm)gKg@>ZylGS5`WY$v)62eycEHp#8z>{iNQ8?;j3juc ztrEQ1R*oe5fsTRFL4$=#4H0?mC~dyPwD}U-=2+O~OH7+DF>SuYw)v8v&7TR|e2H!I zB_rCLs=7?v8_ue~$VqQn?9$>VCHT^j$bW|~tMEy%Eq<(;7Q3|gNsFYPWPFc{X-!iS z^on_jb#LReOoTL!<7|lAIer^@RAZ8KI*I0#@KR+Qkzm>PK+W>DQqm^%saw*6=uZ>& zdAg+F;{46uCS`MEhyH?H)mM`-9+RBGHu$dE$8hO_Ka2K?{&pcjr}=yiY(_X=!O0hy z;NtBM-PtLZ3EqSs;a7I2axem6nQ7nz{u z^#nEd6x)1;P^q^gPmcvVCg@SOqZrp&XD4=;ys8e9SJN>;iC%}vThJllTNnRc;@=5! zuEt#a>O#W(U0p+XbPwK__~<-{Y0kFI7s*fk&P9dWc%@Ig(-P+*N|QkMNT5+3hx#^k zbv#|=`*Ua^X+ts9+nkjz=_XY-<1{=HRdys68M=W1F(aX|)+jL&Wgg1ZU@)reU@T%V%$OKyqe8P+nb7Qu)Z(k_6fOShe06()i3(q1qQcjk zsPOI1MfuxMVzi^lAlJEwZ`5J_@SSrJr9{$5n7VQrOhjp$hgWsB9xJPs;HA&ROO8X? zKL<+7f4VXifrlx4iWL#rrk=1kWRcOPzbr8pm6920bNY7HJ_(f}ZR5#^IAieG!T^u0 zV;o1|F(q8cKj|vg>nS|;*sF#K(w6!w_Zs)x?zgs=KGT~}oA>u#q^o2QtowU^4sq=0 zB3VeEX4|Lcon~s{x`=iV#!%X8X%a>A511$H68Cq!Y|BkHPLCza7s;}9ImlEOP^5Z)h*omH?{n*1g|&4oRPQnMtJ;8l>>shw}M0p1R%m6d}6Z zxO7)Uwk_oghe{L%C8hx#2eTV({-UA$i9!Aho4qvpZ5jSXN;%G9-4RV$Eyp5%VY80 zZ{q5v$5P=bbH6C)UJu`gkqvipHFm`G*93(QQivh=rOh9n{<>l&W^mY{_0U(%LOk&m{HkYaWtJal`IZ|;y)X# zD=1R{3_JBt2E|59{oO$^xtGz@-%FuBLN3|uV@4~OHXFmSReM}_H4|NOH^gSn8;;?a z*EF+;3k9F1W5dfOY<24wpkcNlBBA(JF5xP&idB_worc{0&I5LWuo=AeHAEIfI>-j`$II}#Bw9Lz0233-pD zz-9{I2kidg0&PKoJX_#a3UK9)a7_)jd&%k8;|6U6vCFTZ+97lwBKn8A%=dQcO82Md z^8L_|IuB_)b(NNgkVh2}@+gLmYu^{TBLg6J6)j{JI*GS+y1?0Up8-ZDY`tFQ4Ucu} zBh)2Eq0DVvXGR%$y)2U%H~BG~kNPBQ(2b5pW?FFsH$@BSUrxI1z&L8fmdn%^M^T<# z*W%&2RP}Pzwb+#8Y zaUQPQ`hy#;zV%ttRr?Jg*G#1eY@_pnK33)qR}81B6~Yl`j(*y(nVL)+x}VQ#gNAzr z!)=Bc=jId|Zb7qk3Oal)alUq|+b^4LFF9(jc<3Xn-b$W0d91AjP>pC4TpH2C(=_68 z8WD;JM;Ui(D>dBrxXx_84b7@F0Rz0ZzF}HYOiPR}d`f~T z38w0>9YY=063FT_j)F9nSaj*BrcB^T-0}Aw=goSyYkil7U~ifG*vW%H%vZSqEYPPk zqnM{@Mg`5N@Sia)sAzu)lE`kDq1FtyfcB{NX+iCJx~=O??ajuAAaoz?h?Cx$p&di( z;jy8GXzxM<%il)8Qfuagt$FZSEeialWwm0l4#VMA(C;OxA@XUh`7OcZ&nF4(p>bAu za@X%Nx69T0g_P1dSj6yyMb_+zDNJa1)htmw9Z#jqJB6z%-fG6=(9X=EJT=9$SEe8;dQJP?EEt`&`VQ>jT zVnV*ET)c$vU2HFEs7TFR51rlvz5Y~~&Ak^KZx*)4k`vov{=|0t26Yn9vkC=MvZ^hD z$7wF1DjMmI+Q;QnFy*3*JiP3SAxvpvR8561tF%PPo{Ch2N(y_Dw3Xja`E|Eq4NcS) zZbi^~#=?+Vd}dBlnx;WWUK#=fz0F8o=9b(rO-NL+GTkh)CmhmIrbes#wUB&!DEnP6;3i5rV4qZX+vT;y)oR&LHvN4C*%PnN- zn)d2EghM`8){_MWh0Y!`edX*iGj9smVT_7VgH)#SR|E`k-PiFfjTrCyoj8`>$)1X= zVi)HaFVn+N6ppcQCCu7&6K}$+GpaCLK;!C}hT&=D+b*^;Y+FN$1I+0I5;PY;E(Z* zcX_ARB@CC-fY$-bKndbzX3s3+%IX|k`Z#MpA!30@B-GkQZSmYqrb)UI(MDNelP;dg zFUC{ebHn5X_)m=sNebGO!u{2ovE(8@z@f zb55fqVj5t`CHtWtUh>cTz9X>Ay+t-6hSVUgHQY`$v=)nILJ|I++G~o4mre?!jQ7yo zSKYzA_}RK6Gt`t-OW`#cJB^lVsYq7s8bI#%(m*U(%KDSq$#}Sftq!TMlc}$ewblyQ zXhzTyRFx%9aS;Q*;1wm7;f3$L9UL65Mj<#i6}en&csG?oMrfsNFyDe#=uBlvSBPO* z=M(UCfNWpirs}tVX1AJX^%bcbi}ic5a9rxfhO@9tAY!!Xpdv1H2uWMg`hNkoZ|YC%Fj`q`r>rXIsL$Qtv)nG^urd}V2hB) z4?b2;O6^g|cNJ0z(dqnAPD$6gNNf*g+ats8l^c?L;YP8WV2&9wgqqzN zr`%X{o12^+i8%=_;_Nc3L1V?;IV~OgoyLhorzOH);W9z6E_07CbMe#&jb4v2p;;Fg zy|3UC!%PW+06wA(V#Q9P-If0t0pYjkgC&wH|6@1&!!WM^{MLg&726^V;I?i6`ViDC zXv+OU0Bt?LZx^)Bp9(D&HsmzC2WgLEdl}b#*jd(5|7zIK{t4cwtuiC}9cof#V0>IFE$+Inj`APqm zs9*bqs3mHVjw=Fa4n#Y>$mgEi$3}jkjSF}f9tzOQS|s4n2DWO9aojB7Qy$M)gJ!nvoP2rI=mo}<<4cm1S)5V9npy{V#o=Ln_H zRJ}yo5u4E?1B25>ptjmQVoRs$zA}asb-m;S5p_G+W*J)GRB9~s*(#wPEkS4Pos0*g zHOQvY2hOdxXyMROp%e|2%E$b6e+g=1Z6TE+I!=g>hU3);^YBl>RPi&k6Ld5M4c(M3 z{os=FQU9KN<@_h!rYElGL6@LqH$}u*kI3LjJS% zrDy)&B-voe8w%7f_gsH&-1Tpm$6|RLP&|5gG<*$-8Ls$l;QE+4 ztYE?DW=rTg5K9NGcU!In%{@WN_s$)%AD@k|DL^ zC>)|OKElufR{#WXAY{)jXKufD#tx^s(0s}Q(5JLTpQIPk7I55pejCn4OPSwM6i1c@ zBg`u8*Yb?^lcd%-i4!;*Z!UU6LxiH&KHjyD0X^&oJhYxGtEWM4bpau#KA}@ez!K5J z4VU@HPr`+V4K9oaxNte;4A#=O0oLNIRdRaG?s3*sM>n}wk*H7LTa%H&RwLLk|Z_m6X)}8qeJ7`PZ{b_@o#woow~oM&d6Aq zeBO1C=IH5jX`a#3B9XY!=)Lny8w^9*QdDe8)gVk4S)qxWCV0FQ>t#mpVq^#+n3OXk zo`SZdI=z&sSUe~e*US9iWu9I%+A4+}FHH(+UZ|J#L9xYpF;o`CmI(Cn0Q7Rb)SDL& zv(^yx>}1Iry$Dc)u%n zj|cA?g7&1`@C?jgLhH*>d%JY``d%>H}WoDqMJ=Q1gQEBcm+I7yd2Wg*SI9!^l%%$QDaC# zqP-@!fl6}L-bPrAkeil3M7f}g&D06uCe6eU^7y*;NS!}RW)jVY4oQ2RkS5NBhD{NoqCG;m>-ov!F8kPEAL0aAW~NzMP9qV7C@r&N z!9m*c8U=0iQxJqCDh5ID)aI8}FcNBmAh@Yw5d&$+P;tYfan|`v-9kA+0~!L00SE*p zd9gN*q_AabgLaL4RmBr5Z*3XLoaYHe2~h||&DRxsvw3KNK^QbyxI!&in4ng>Youo( z$080a!Qwz)uJ%wBh@&|`9E_w!gZFvLWOkRBO%WoJO%{>RXp2BLS%i|>WDx}PtwAUZ z_l5wD*`!)TCm|HGS%EVWp==5e3iYbD%BL@qJ+~Qn_ZQhs%=u&9aeZb+g`V*)iH8u1 zMr*T4hiWnJ+zeHJvJi`;Btk42ziFl{KJs~w({`;KjX}84^UQlok=^LX1kL-VBD=9| z5Oz(l-Pj0iOg{9a;49 z*$unN2Crmn7MgT>rb#%oSoN?Tga}mc66MnlAp(t&5Q!8CE6g+0W(=zb)|>LMjV!Vu zL_z%1XXuk%UEMTw$ z8hlWHT>pEzz>Bn$BH69BTC3K4v_e`a8(27QYZs;x;JzXI2>+V0^n8I##)cGK4;Au> zEL1k~35xjQ7nNT=Z1XWO$lq-9^Gtqha;Tzus3^$aV)N7J(}6#v!g^?Gkl$wWyKFvA zt!$GYnjYkL+5C+*f9g>F%pkwp=C85&;Kks3FUaq)`HOA-^r8GjkbltT$H_OV#2g<1 zjH;kanlkZZJWm??Nuw295EMLY3*yIUT>9w2ac2G9$%RiA+BC9QRw?_ooK?uOYaGtQ z4CU{6GlnPsH2N$qq880!4-0N+7Ds5%*;C3)-_mx{Y}SOmC70R!OWHPKHtWKk+Waq@ z{H)om4?Ae{&$ao(v)LTvYm)*0eKhIJ_V8@B1o`4x$$#4B56|Z9LB39R@*lAI!?Sr; zkY8Z)e`@oGXY=kLe}c{b0r{uQ=BA*`WXgoIdF5yY?+*$V+k$2`izyh)VlE!SlXGjD zj*W3v-EWHEqb6(F=#-hK_aW@jx)q3;xfw!$)#tgbh3{tR#6#qf`d?#lL;Wkl<9>ju zNl}01Q$CiQ`YZGmzmnKP-?KJy(!az|)kNJ^ ziMUE!r4o;iC~<$$ya0xt=~7C#FsQ+v5}j~T$DR#3wuX6UNxqZStJ$fVbH;K3sv@=E z&H`P4GSPx@xOGBD&pJNvoH(&L_XphrE56b%p=AJ2RYV+KE{$&?klu^z}*<%q@fdA@oMq}5!n)R`T4(0eA&f0(A#q-~H zQ`Zc-&OHaXMDlc{|03~nTq5=1XU4OEBp0fsoU-#-bJDCyywQ4C^`+`g$H#HotW?z( za!R_xwh)$+C0D>#tT$Q{bXNC=xDI_+(FElfFOIGge+(-HrULNAs%E%jot(iMirWn& zJtwOGlQNBG9(n1B^va68Xvv@9hNxTseJ{%i!1a@I09Q@q=L_av@-88txjV6Kn6` z!9DUntHE1O76hG;)M18TpSsUikUX@{(~msxUv2K6KK);9?&T`+pKk7NP=c@+Lwoxa zq;=}v9$`r0rfNU&ZD|{Kw{gy>zG1>9fOGerAUTt#;zQX0t2Z?9`#@u{&KeqVlC}SELsFlLAnj zyyKDhkT1!`DLXu-<_rN02decy-{A#(B%OToTJZGH4!?<)lXke>Fl=(W!(oWDH0Z}- zo?0r}<{*G@r-KCkU$NOQ-V*M!lQ#Q5jM(fgrXT-LZuo!yeb^8-yf)Ct4X@#JR_O*;zO-yG||jdGGJuLqo#O(r?_aMP=~B|C^E#(uz0{$z1*I!46V z2%4Lmx!Lt+-WvqAI2_7ekz%Y3FZ&XA%L-6T=|G%B@h5Kd6c3?l35qk~-pTan7d zS$n8gCigo|7=xvQ=7pH4(?xHY!AV_(&sp2W(w#%n?`@&zCA; zLBhPtitPW(!@7!F=i#dTuwngc%9vp_y_N4QEnsm0Bh2QGYZZl&JMhb($o8zFm+dNg zD)&)V(F?gHnEpK~n>n_q1)^0XhKf~mAFIf2Q6fI6SxQf2g;3w z4f5ilwdIfLy-fG`clK>6-Cr8oJdoLD%g7dkH<8yoy7Y#WMQ>KI%$tr+-nz-_?cr|x zmVa42MupegPuJT|M+!qlwo^nh(cTN6Q~kYjdWNsn6aP8k@2K$c9*c=ug+JgXzm&W* zdLjsJ<)qY;BxLk6364i3l#r{7iVjN*ii6_1qJs%6GlB<;S%QZY z!(_le{Xv7_mb`^Y+kCGZW45V1Ug~uQ0_i-gpfR;MCmzJz4LQ!1xvrOM7 z8a^(qCzo0MsO&<#TQXd!3TseMG*ujta<)zO9G7=SBqo*Jpqk^? z-;yzABgt7yR+$3+50-F`zoIiTV2Y{L19=V41m6z>?CWwSd7Pw^R;b*F_-GqRsPNy_ zPMpS^x_^+eUMEEvZ=x1w@QfwD%r(5^l8B+Wu=_)sPOt7Vl2`C4!~KtW&f23Ct*Cx8 z-t++u8sy6}!Tp8o3;uni*$e)U#Z$BKf{=Dv{zRHC_`A7J;(<+`*q#)pgyY^XOO%fD z=LkwZd!JRUR97pLk#>5$O}(k~Bk~8YV}K^9?Ehi!{o|u5&%FPH88p@C88k|2v8LU) z8y#v>LtEORmBBMI0~4S&ZKIp5J{`8@*-f`J29~xdA|aI1$w9icE%vD{-P)&qciV!k zx@fIU!jA+{3?L9d5v@NmMj)V&0Rr>9KleG41jOBbU*CV8Kfb)koOABqKd$?_uj{(6 z>$=IL4k%%A*q^VpQ`4Rz3{Go$O6BRX z2bVTi&hD9L=4dZ?Wvsnd-XMzQ_h1Yj$-N+XgQ(djV@<+5ZxDOs4We#enHT1HgV-x? z5VQATI=PN<*lR7G&$ws4_a063r*8?-2LAuww3m8Eurb7fy>t&fJabw}nyMVBbB-cS}*zleH>3tePw4{&fk3 zNk_pr(zR-9a9GIcQqnj;)rVCl#f32h#B=N7k)DM=S2d-A+Lq%?FU$OAM#67ZY>6Y( z)jwH;TszHNfglDMFXsYW*bvAh@cw@aE>1FZ7ha zxrZtul26@IyGrm96#9F7A7ILQ8+u`Ply?H0X#8%*=i)D}r85y3x&D0tQ9TXM=CcY6 zt%`2)ZcDnwyLndQgT$Co<2r%`U4jeqc5BINRFlsWvnuL$g!tVcyJcQ+0x=$Mr=baW zyLb&)ZQNaiH;K1`&Ry&Lo8EA8E-w){aV8IC`CNQXgm?M@1= z*#T%&*gGnD->gaqu&s&%DuGZQwcGWxK{nlWyJaYSW!-L!pKC7ZD))-pqcXQBzHzq< zp=s1aJU$kY=Guoy6OVK&#S8k`YAvqNBJd6iyfHO>qB|s?M{?6BT5Y;hyqjEfh0mnA zQj2R0-qhx!UTc*yY3i-*#vewN8fD$FpHghowKh8bK`*dJIlNH1MlZWmxZg{)u@=Y6 zrrnpk^;bjf-eWDkohDOvw^i{nvyS78m-%Ck?|6n;XGX_V0}c3hrI}YSJ9q4LqlE&e z#Q`DM)TTu0jQkcY$`;PM5aZ(?YKEJ0qnh3pog=VvPBN#lg63Dw043Xv90{WW=BQ+! z;Du*fwHw?*ugigkItL7O@xnHHPc=f1#UVu5iojzPy@42fY0yjh*4O@)&4~n|t z75>=eNo(EFKC-=IVgl8@IO4d=9>%J{t^`$5eTiT;5AS?1jpYQ@ZU!?jxQ~2TLj^qN zA^sT_WxSKchf-N_<{vc#-q(%Wy|wsBEaZ~sIxP4wfrk8Y<1ED^TmnvjmSQg4HM|tt z=6^^%4W7gw1g*MU{$pxJ-#`=Sfo9_JhL;ErXvE?voWWe<;ZsJgM7XAel#EOV-?OoE zuemnh1*|7P=I%8gIr<@!Vgmts^)rQ zJlwwMWZ}Hg2r>I&xGNpibS&y{H?|sv?**LWwk6yW{IrxXnI*ax1eY*Ze2Y3Tr&sG5 zde5l?*9&)Dt31Y6gPbv_^Kyh&Gx}rXJGb*6?PQz;QNScfDu9|SB#C$0Nt;9FCZ1?> zuzVD%J+1es<;02{kPcRD|+!cN|Tx-kW}PkyKS@(W0jEIKTP$5Xv|C?Zm18t$sOX8d5<+$j#s9xa?$! zF-zmyQ3~c9oRq)yiw?6`rUp6ifBHUjGpp5u1p?kK1FhD_w)aK zuIG~w>EmvVnu?E=Z*G)GjfSBS@pP#lHA|MYUotTP6H(?zU^+Rf_p>I#8*UR@q1ZI1 zAYbB?pZkV;$0-Guf79v_ViWZ>L{Ge34P%raK>km@QCuur*l~`o6HZ$K);{L6oqc1% zUgA7wEKyuyakYfi+DVY@9K}UqxI0gEnM<;nfM6Fq5U_LXgMvAb!W{?L;8Oz0R}CF9 z1@C79u2)F_L>}O~rj7M-#SSmvm0Q5CZR`{^quUh%PB=hNvW>e~+JyNp`FDcx`Ky?h z8`fAA>sd4FRgpUl+<2q`!S?n}K#;~Vcg|RTT%JpULf$1=5JsD@l5N$27x-hd(GdRNYO}7XUqno8Z^M>&>f}sU zo;VJ-<^8A#rIg6!BR2`XuC+7O3W1=$I@P*zc1J0j*)w0g#j2a#7SbchgTh}`qF{&8 z*d0)*xOkdk)u9az1#m#=G=m@cFx4|q&nicoa@64WgDf>2P^=XlnyTD5l8}`N)pTuA z-Wu~>+pTQd>BT;!5!oPu0A>YW^}2(HnsIu9mn)OKQaS6|D%qF-Qv(NA{~H;TpiT$H7*+O!Z_ z;Ev52=C+1)p3kpdTC{;zuZ^_t4&2H;ch@J8yL7XoK);4cAYD3u&AJjnXk8F|aNBke z1UYdrHoE&NZGO)wX9L&Q_{M=#bzco&U_6cgh9vk@>zsd`cITSyknDcU4~bzl)F{~% zOU=iZwRIkact}KcEqn?be~_$i%rBOAI_t~pGxsrGLwl39@3Z!%`RD9Sm7rGbO_QTf zJbcdHH2K5I+&MK~>+Mb7mVlC?@apTm#;cuL%w{n;zm<^m`re~|@|}#K z62=A;_aoI6{C|0oUPDd%EI(fL+}Qh=7w^?$;%iMjdPd$LT-Ez8UJ}e02r)_S^pp5| z_^94*kYs2Foa4uu?YCxL1q6~KoqdmEiU2*dVt=)fCqgb^Uu@=IsbS+a^{i# zgK7mI>6>gsf8F$w+j7<61L`omb1jlR5j}HxN|Q_U|1>u!kr>~|6?vvdr7uOioxZ(@ zfHed}(*=R9X!_RTmhD3tbwu@=JWm<^UA9td`KCzGM6wK=Qe4K{llqA^f7`PRoZ?#s ze%rGQoZ?#s-YUz$?NR4e;-3eFk27wC=@r!vrIbOSmxuJl`SgnM(<@A`5sr^}VC{#S1zz0Z z%cxVj8(6h@Vks^>RmQu=`X#EpUa}%3yO<+My(n04A#v{0q-Pph%kQL%o}B7YLvz{A zpE*O2_?w4B3pzj?r_axoIiD+c<|(|)i!SG3EtzwL8JEUr`rG4Wx#yO+Dm>D$u-rI2 zX}tQ$6(n>gIe}cH)0hXQvCgt)o5u~ za5R>e;tDF@JllRc(0*_nQoXV%ZvDptHnMtwqaDWTK~HXPbB^3UaKc&Fg0N}^0^%1i z>Up94bg+3tfO*xB)9-~-hb{e_N#(uMAM?!heo?|=MZnu@EJAE2Q-!aBBRlX}b^4n8 zs+Iu~YxDH%`=V}Rc_EoG_VI9sJF5_} zDT`SpYe$~N z5-Vdzj`6?}|1R_`;XV&hi*|UW_bm8cP{;_a0XR@u@cFyE%=oZ=a*hN36KL%)FFN@{ z%E*3iEcQ07WKTJ}6whMME}xY**Bcre2Z@Ez(joh-k9)<`8dJT+?=HqO)x*6`-cIkl z#oX!H=}nzuZ1f@&lTT*Qj zT13p$Ynv_b-=8WQ1vPvZcUM# z@80L-@8Ha60ajBjBESIU1x~-_*V*83a`!W{nHe*v`v)Qj%uL4|5M*h4ob`DOE zJ)CrGR0*E0@;cQ0J}C^K;6o zo#*3jZ8_wv?A^>9nZbFq`~{xElyi`kYO=cZ1gCp;ZY;o%LUoLx6WmgLEb~9g^s&PK z;0Onb%Kxa;$6Wsd^OgI`TU8weOjgWVKPIk^HU7seeXR07uygZN)|KZ@ef0Y=bM(>W zf6zB*TEA#`ll#hFH6Px7q?C(DDchxG8cN_sgQ)PVDZ!%w^<99FOYy7x_#*%NVe|dP z=QU)#ex5Z7V|vZ>Fl+s$PH(zp9+LIHwQBVJj{n{5e;1i@P%bcK!?Pi_b@R>=6}R3mE9;kKwB2Y+ftCvK&-n30{&$c6Es37upZC8@{qJu7TgX81z2@7a z@T5O0f=_*&=*Pe1r=RS95BlH2d&)1xaHXH+e+T{VTK~J=Pk*QXy~zKbJV`0xqJy+3Yz}bEH>2)Cq0Y?o;cgMZ6!%T@1dJL<2GgW5dopKH-})XQQaW4_iHPL z5klU`P2{VprmuSP5dXuY$a{#p0lrN0RC3VV8)e*vM+L3cGA*YSO2^0lrC8yBX&&8B?`f{E#Q%>S{(J1;t#%(fxW6v< zu)(mwnuk3+T@LBuP6p7l;^KP#UymJbUi+702R1SFi6!A-hv{pQ>FM1=*x_@Wdx+AO zZoQ8s^89`*eQS-VSLIJf%W{eGDQ-8lHBE43&=q_-f3*!oU0g{T0YM@e)3X~ zK|OXxohM0i4wcCDs)r#KvF0oPj5*$cs_B0aF|fC}Bh>!pD5u-=t%vJ*NpxW?xPCDZ z=JrLTZ&DE~75%Lu>~!$Qs0RMPXqt4R8t9fR&0o2Q)~;8N6ib&%6L4`}6VPbwdXdsA zJtq>0wblHmW1_gcH0j`SC-{A%`}Z8$x(^YB9KHv+kcb1^IM8jiCb!A`Is(Fj&8Kl} z{V>Y9-zFt-N`;C(OG=JO9JJNsWSq))tUh7_%64XM^^e)`XXQ!}PRa2j_Pj2zP~Qc&B$m|`{* z-kabyqH}NbQ%qhg*PQv;9R^MJME+%Y{T(%kHH8EqdL)8LOC zCWM>7Bik6$0o}Q@y{{)>mS3OgmgoKMEFE3xY>m{>ofS+*PFk(9CK=enGSJuuP;A1x zWng$6Ua3k&h^5E>SiTumX?MfXcdbGtdCyg-$n&hi1V>Gj4@05y^DB_hhNJ#8bA;b& z#b`hpI@I6piekEtDWbP&boxN72V3X zb2^dwLV>Pix|++Y;DrBm0#BN`*8-+1KD8v!Uu-6B;@_+ZCki&2PtzT~@s zD1x+9n;pif+@>hHt?2l=jfc@yUSfp$Pd@Y9uMn2|PLW-^F!zK);@0ZUcwobyX5IR* zq3-%M$j$55NP^KwHFC4i#1oUU&Meo&m9O{^nTVWAp!|gwJ?&++5iTGFgl(|P%hnP} ztPRh=Po;h)>IYSs-rq5A0@b(~ApG8GI-A$eil-hm9gD9eFaP@g6b~HwlW8NZ?j=O+ z8mb!kzyi~*`omeSX2k5d)ng>71~(!!=x**tA14b2u?+YFG+GH}xB!wo(z_)Y^ZiWBVI?}Jwry5{wd4TgC%J^~QEkHJyH z*|*bmj}LMoPc&Wgcrcot@OWUO9o`t;rAhB$`0$1Isay`nW@K&iCO>r?Nosd^Hv-}N z$|WV|aX=&OHhmV71%>OmIhuKrzoYR$HXhgrXg)*&GwBAT;;vo6aiqt=dNWk_Q9!Q= zaA6kSAu*TzzGPr$C9tEZDbg~5$1L)}4%pEo2?5J;;J=5Vf8xrh^TNyTkujsn+^r1rh zyzsm%6Kl=$ArIs5EldRA-H)&^i6xw%RUr(*Lnh_VjHR9+kyZ9v;`no%&edXFxRQ zSq8>kdkvm#VR#hsuphlZA9Kxz$EoOhE#JfPL4V!}Z}ZcwWLA}~%l}^Gf3NYswZ$vm z^U39%lk2<3l%++)s592d*D2E9&1Tr_#ATmEUk2-2BT_le|)1^&#L zNer6uqwUtxpVLeTapzgw6tJQ+a<;R<`;b@?y{VmE?hT27Jz=hb#sxDcvKr~sK`COC zkqS~uV~l3?CMi*r@*Z=x#ll^&z!s56Ap&e7DtSsIHH#UB#X3n_fK(~{+d(ShrId&51Fo@ops}}%ORi!QD(PVe?nC^Zf}-p&c9wq zF_fTA&Tx~*vx(-HQ5)Ta8Ac=5?zZc&(`xw|sk~E}sQb;L$RVrsW`%Gq?eSQ6o9H0r z=ic25@j`(Eit3h4Gu+_7{A<;yntlv8_Mkws`kl+M4CcN~^hZCsMHg&tNuc4mFOlM+ z&5}(bqtRWf>5{U|4@rxT+BO1`UDz&Mve*mQOh8>%Dfe`K(+k*RQdA_Gxr(jkk~#vD zk>|*{rQ!Eh#kOcpYWUltkvGvLbCgh7liL;-J z6ixuBHM{+>_yyVFphk`bc^WXyI82>4Z2tDB#yfB?PYp7h3VT4tWTSHTehupE-Tk@> zwC0N2DTv|R(QuLN^oGH-w4a8MZVYPclf2khtme=CjkMWrdmm}Ltfhzln(4}I;1pQk zsl$6guXXREgfj?&Y+75W1*nx}yXB?U_rA;xU~(qsL8`Y_l!EazKriH?(kQ?HJz!yg z9;(m)J?RAW9Dc3k!94uT6eT5GT*&L#^V=6#ORl5|cH|Idd6bi-JaEDiP$KJ^0ZF7V zH~7a~g2OVX^Q5)<0_-YLPqpEdc*j0RL6a>IC@fJ;48aQbnIqYcX2H7cve-TR%fs%-K+N zFcy9*%BAu+kckC)t6N^3&rOaS5|OtWvWe8eMDu!Xpnt6a|N9$akqr%1+^R8o(HX(p z@xJ#P1?J<<)~bWeubzYo0!8(hoLC}l8fCMYk`d@b?Z?8g2=n=nk zh+q1{FWuqyylti`n#?ba<(IbdOC$NEjr`I$erX%O!;NbAiN;Wims<{F?sxGQl0!Iy z#gkBizj>kcl+a}^;}0j?2?NvI`h(~zPB=6p-Sm2PM!NpB>c?}rg(ia@^Ztg zBLMs|3O^4(zr#4hob_CZ9&LZ?8Xr^x2cp}s-G9|u`oAhuIYO8A># zHEhgdxv6f`N6;EPKd7>(C~^J#Yc*bh!wEPOe@$T#oRLNF5p1nz>!&``KRg;nb5ZL) z8F(q~j{h|GcKtZrvE8Q4|r%zhEpZ+|q>yYQtrmbQW2@c=|z{f|SioJ&;` zZ%+Nv;$cKAlG5Vbgwb0`>u7@5d$Bmyl1XI>7-hBK#+dO%)*)O(14KJ&j%M+!PSyRM zi(hIUgJkqnTxa+5w8P5uBn3u z7n|Or7Epxnje6kos^Y}eO-1z*HO+0p7nj?}h4fy3;8cgYH_;a{sb`Y<;KIruhIjRG z<)_czN2<{ryAwWuPlDFh5v|K7LFrBM&7VmuOZlW-jL4~ z<8h^`O`@fi<03HHbgx!6-n@~ch=GQI1Up8vc3RFEcyGvNPBAo)vrr2BLMg=gR)hY` zGwHk%=T5-pleDS5SlK+fU(82T7F8hftQ*)L+yu0 zMV%}XXPy06t&0g~1r59u4L}t3Hop-_xW&J%cD8YLWruUq+)4LWho6auyFh(a$1y0I z<_4YlS8>zBe}>Y@H6e$m?eGGzlZf;;yiP-|E=VwnZX>N2*l12l{^so|);E&h3t>0( z4SP|Due)vYb$4=62-Bfpb)>UlU*ENgA5O;C`I707qgmpx#J~#)H~8Dcz>929E2{&q zB*GhL-l|*RWkXZaO>0Bw<~|*|#j)3h61h(DHN2Yng+H;{a-99qwG3y0?oi7G-X6L_ zt-9LT4X2=zfr*vX;lb+ghM8_~Etgwmx$w7%ABVS?!<)iN6jq|J5`~qR)1osCy5Qob z!l*l07lD5S6fw=UHB0NwASDAmj8k<0kzmu~#URcHxe0jo2knCUDb{egbvam^(v(Pf_kO=m2{9>3z->#qNHM_ za{gQK`I5=2iHqauVBwauvq$yELF zL5B8DA&b4@&ehXxWVfY2Zgud zr%N-JgWqps^ZRm5XVz+Yhz3-r`qA55euzlJP8i?KspARvp9*2T4kc5Yoh`}0v+yr} zmU{+K(aGoF;jX+S^Qsu*o@VYNw@P{Go0+JCfRJ0 z>@|{^@3DLfFOzJFThifIJl`a3G)a$<)O?TS+ghxP%ULz*29TlNA@{OY_eJ*Hbwf1J zZ3o`Wt&6%fAE87X{q>rWL|TLe(`_C3L4C0=z<3x^65WK#7OV`*cTy6Z-uT@M8=$Cq z8SI2Rt`h=V!cc$QH23zT>=UJ68tY4=PrQO;156`0izB;WQHU0(c6xC`RMkeiFX;Vc zMUXQ(H1duWz`Cl~nQr+z3m+3QpkTiz=9H69xM8q^z&;mT5jkVE^b7LOUBk}CJf7kR zMF)CyOZb`eI1wM zI6OURs5XR=JDzC5IuITwipx-NX=-0JGDa@dqJhakALSI0%j^n_i_V5Y9Bck`pp8s! z%}d#*m3^jLci6b*)akR1-5wS_1Ibgzw|6NiB+^{}1M-cNHxG4yPQ23xAr>e$TZe8U z(^gS`@5evxkuds5`Xv}L4g9WtjyQaSUN?=iR^vqyVKX_@(0JgbWZz7e>8K)X(JJvX8N~KuhLD zO6MMS82J#W5#(M8cvpLe9F+>8X|oLsc;}3w2-g_w2^9&M7g8FKvhcM0_=AXbV5rg5 z$dxJ0DifzsC37i=UC6pp$l4oS1y>5+>tsW@P<~$G9jWkPPB@mCT>c4%cWUAL>eoi0 zJmzqt$CT29uYSgRk;a>XdQA#X1xw%k{`U$$KI?zy4>$6M7pweuIZ_;&Kf3df=?=r- z$CvrvYyIz1|GUlq&L2t$V`x*UP(15SYq9sMpW@@5^;(MNP+=T;O2m0bSq!g+I(0nV zxMr~B_}#~>B|jsR2;noPXOxsnt{t>mW)ZBASsDPIlX<4$vI^#1X2^Sri8fDU=ab?I zi$>)~b5`cB@w8U8FY|`%IQM~)GL@&$cwrmXp39c4lQ2!8rdQkYo#y*z<%5DyXbv;_ z{$3n+#8`0Xz)0)Wq z2L`MvLIdcG%KXfHBDkQ0gu~^OUSVpRsu#0gYMvf5nJbFsF3wEcuQI$tx4$UUyi1i_ z^j)X10n(Rhq_A93CWDW;VVde)=a%QL;d93=^DE|d^5ccbU<<9q4Qaf_)VB~hpR0ZR|HPl zH=g1ZY~RMiTE5jdpLv7ysHi-XM^M_?7>eI>QSAGQ&^6$+&e<96h?$K`U6NMdIwM2KwHW~bP-`|kkY3Uk zPi$wmgICy_48TCl$suyznF#FFpsZrqR=f29m~j2jfUGKHH&NMaL`yswu-nv^o#D>z zGs*&MB&cwI=5KN+3uxc?8OePd4Y91ZGNI3R?|8k_Z}2va#FJ#N4v8heJ-fLf;7RfyRijmMIQg5SmDQM6biDG|0m?q)=gUIP) zXke(>Le@AMG=%ti2=O2D-IBAGUr865a|rc6$1EnD*PYYNuNkTvqI+Yu3fE>=Ued6~ zBfB?xWcRU=B)8trBD;m@y>^VDfXHF1`S+T+q0kT_nH*+q(ARTXK4b=!09Sv`v>W;tFIX%^#^e?dh6nS|l7T{Q;JJ09P zk36em2VO=I!VYAFidB&vI3evrNb#6Ep#(P)&8Ba?kz+I62}i^kKzZZHD!JdI#NiE0 zz*qusn0y7q+VOl!h;LHXnUpVz;57kb383t;BN9S>lW?|4_?i-$fUyMFknJR-d)xD+ zLV%OF(Ih^m#3o=Y0oLM}*#^9xn5Ds7=64O`i%fdt@LiK*fsUB_l|txC%vLF%z>8eqT2pR&L?v%=gSHS{ zh%}WK~dAj;N?cJ4Yr!8ygHf2wY zahlcehkWx9^RdOe$6)4hL!LlzLUA`(ZN?*qC!Stw=|4RWO5xlQctoT|%O@f~Nw$0ooKU91e8OjwH}X-d^^F0d&5U~rhul-Z0_-97{`3b2PUVSA zoZI>h7d)H|2l*zCfQQa_T0qpa<}7&dgA6121}Tk;CO?la{#O8<1ovRf3t%1rE;X%FE=#m-~p5<)IP!-V&!chw|WIhX(?O z0_!;43_zXb;e!MM4mE6U;cn-q?6D{%_;#GoE^;vve1wVa90oU6-PZ6kw52>@;)~R|>z2ka~H9{Bo!m)dZzPF^uj4Yv~x8BQX)q zx2@H0DT$=B1Qr`BHh8DSB^G%;?6O5!rjrp5d^+g;7FjIg+9lf@Fzk7 zM|i)}op73@1>phOUrQ*171+x8Z26s4xId^bpM$rETC1Ypb|+PFkP~fg)3Ee&rai-L zI$aUVclqO*8>`utANgpGnJK@YwvEML>>rG-qhW)bw#x^3$UOX9`DGxo1=w%)T^AMVc z*mEJ0V=f>~IS`s}j2yiSA7=aP02c~)@F!-TNCtR630^`gFxNiS9j66?EFTIu^ZP*uv>w=O>m`B};1I2hQ+1~c6dlzD8&Gyd7xB!Ofn-5vQfQ`GOYT9Y zl4;oU|GCV*M}Ai*0mb4AaM_O}<14#!IX~nbUJ02s9P)}6@>w1lD#?Vf5~TGDn4J-l zo%DAZU?Z?PpHRp_TQ>(FG8<%zOnjHjspuJ%?+NXkiJ22y_%!FmKh?|;F^7C3&#)I0 zK6HlN8F&Ag^Wj}h--tTfC0*z+mxkEk?nJ61j%Jv#IaCqR&fxFKDTPoSWP^~IRl-py zY?GDY)402(q$~zzSVA_xwOP&bl5_@_dO0}@@8H6ZZsM>c+#SC^K7derL*{qdne>4h z)XZZ8a>|_d?>p>&t@*9mxU*X@^)RKepyH`ZMeVFoqv)q-b!;xaKbS}*(}-s#-OJ{G zZxG~o?_kWmgZm9$j77Fst*S%TqRIGtCJEaOT?88evNb7T|Utk zU2ltcH4rLqCj!s2J#0=oZNkp>F0^S!e|*#Bu+tfv)A{xT7l5lS z16QF6oJbuD(o%#?1GXiZGHvz1>a6m zjg2~IY_1M>IF1T^Axp9^f}6E>aza+K0rjF@R8%{=E-#3n;(N!o8SW(c$I+gFZXH_$ zIettIGLu-3hzU`u&cVY)?MfP)QVVhZncSTKrGo1z#IC zKO@r0WkUo0Xu3P4Fw$i$mTfE!+)s?MT2rH0+sYXDDg%%8WrH45h}nOCTaILa@QxA4$dCmjKaOhqjQiAKQzlP z<9|_xQHh@B>aqu4EgI!d-Q1AZ1pYgW;HWb0bi~6ouztDCnrz614ke!2b6^3Qlni%F@>I&NN}vqagvYy%sy4LAMT-MJLRjeRbX(02DuaBR zcB8ZN1AR1~GCDh_(AgPa8JaFEAcBJEfYQH52bziUI`DU>9Iu0`C%|@gp!m2k{9?5` zZddc4FSNrus`jZHJOLd(R8>%La^e)`mH-0(xd*c90Xt4beM}ID(pVFJg(`J=i%9X zrTjMbRgiOxeb|s`!Nc4(k?b=LvuX|(k#TIzVJu!qrK2|xbUqxq%H{L*B8&)Y7FqgnjYAbx2Nzchqj z+QBak;FtRO9j>_HCwQ%rEH`y9iHi8*b_NZ(6|((Z)nShBgHUTFz-zFZdw6;{#H!zm zn5w=9L|VgJZe1eMgNo7j^N@QFFSfI@YG3=oYrLBPqk%V}?YEt#22J8;G`E^rR60vl z084Bls-3g-Q(u~$nMP!t9zSuWQ_kP`QdFfvf?X7g>OO#C(chvozGME?>;j3vjsz@g zx^7p0B3-|+KjGBrr+!y|Jg_wx*u-{+N|b$Xv19Y%)ZANq4pvxGShYQK3<@u%ry=Xk ziykujIV!6`1J0txDa+s3@o-sFhHI;i7=_*18K8A)Ql9@D8SG2cA4cdWI=}V&#&WTQ@Z^H2M zIq*GqDS2n>&ACG7QW*;!Ae)Yjcvwpw{(wj5xYGjojcZpQXR&74dFMzI(jy!o4T^fd z^A*p<CZ-*%IBaEHF^v2askef;Wv;(IUF-^r)y?T;N<3xzxJ%qopdO%M;p=-~bJxjk4B?Q=F}{ znz(DbP+E5RtfYI}XxmvZ2nBU1XKBAS91!!Qoj)&)&+AZmkOgruBQ^U^s7^Jl9h{M> z|7GwNr$#^Z4-6)9>!vz2|IZ+HL>Nxo{k)h4Qz^nA^!dEfRc{e`Tml~^cPzVWbqa7e zjMm=!f+kjA%W>f#JBxfSEx^>uEpWz_V`JtdHSG{ob43tN7NrQ0*jQe9RtNJvi8`l& zNr5&yitY4iP(9%G#CPfB4+fK|Z4j<22DymyN06}JLHi|uepf6#y$C~|PhlB@&(#St ztR;IGzF6R8+no=MIlFjtEb@-ksxwTZaew^08ut~N!Bp-RcT$4Q7=0Kua~bVX!%+fh z!pRmPiwK$Nj!WyRD`47ljVD%i7M+aGbSJHb4z4A|e~|4?#6Rj1RB@RRyX(NBh>DWX zmUM6haXPa8^i>Dm zsMe9?Lx!-@kqtdxMgOV;F9DRlES~Dj{%vv09e<4xmuW~?0ZIUP{sJpGX^Fr|F&J~jl54QzZX>gsNQo35z991lsy9{tju+YWct(gIV{2L-V%q-5rQW>hvt;PAqyhJU z-lW*>>`$-*Cd+e?J@Y^6bv+r_Enp6Gv#SW;RJI17I`I6oRNaq?(~b8JPH`H4RE!Hz z&uM|RxQQ($n~C==oryE z88rH9cuGPcJi@R{O(&Z%im=gebH6o;K2YT!-Se%#y@6b<_@h~XDo80 zX##5^nPO7U7HPoEN-$~~f_2AhA2STa0 zp^98m7Q}J>lXq<%=uWyNk0~?}-k!iTKHP&!x&8+_67Agm!GVx1SD@deBp8gxz^IHo zMAje7fRcL|lu>%R+w}bq{BkEYNuSX#GP)~JFkJT_5-jfT+MLCyqr`s;_ZiTy13I?@*T39Mu6~LZ(7;lma!`} zx}n}>ua2yJXt0b?A@+|% zYC}A*P23Z>Ld8gPvbfX!{h)?_Xh&=L2HO^%Sp~Pdv^zUTqv72KW}OnWtA=;2{EnR8 z7kw-)^g)3_U4{SvP4=rcR%EYvA~fMSC0+AxAl|xP()8INx71#D+9*R35Sd8zF+Hft zd=Xj9!r(1#{bi%<^p)5fqrq!OGFEFTsrbUO5OkxSn&t3 zXYmGQYkxd)x?!!Gys6Or9NphOKgu|IaK-G=h-3h->RvnSz@&0oc1xh?-v^U{J#4O~ zo-(dLmx&TZD2Ym>#CZUItt6Bc6h0U3Wfiq+U3BprxyH|;OudD! zs(WayWVdRf$wITb2+I#E`gH%oR`ZbYSwrvAwg}XcUs8I(E$R9zi0cE=(3HP^9pqv+ z!Bf(8R}|fnMw16r)J6b)?Q1XO=;Fet+jMn7W7QK#gjm-R6m6}Un`!%;=9dc_ON26( zF#;gS3S8ju>s%=+6PE_;aEJTe=j??;3+xDVXiM#(;G5mXk8pOj2^IOj!=cW&FIOS* ztSbe}G>syQ=gKh_dC4vQ0IZx4%@gD*uv&|t^|f29WDk~Fi9(aE{Ug?up`j+N5-~iP z49V1~MEe_oJgJw*<8*Zqd2}ze$XW>FUsVUtP5>2X$Evi$9s<$<-z4d>N zdq&`#wl96zwCC4Gah&!Xjnn0c%E+^lCmpKbp#vdxOa~Oq^J z3?n_$Q%$aJKn>YBv;4b^pob4dlqe!;B8t0&s(4p;>C6;6nj&jVWKEY51?dB%QTLom zs_QZsgO3JBSkW}mo%8@rp-o;>874JVj9M8_!KsD~M3KlnXUxHVSyWH}E<2iZCsfQ# z)%+o3PGxs^7~~9w%AMw1b_clnWW)Ywt{r2|Tsy|iuML$Ji#%&B)_GQDD`lUR#6*2p zQAWQm)!&>Q7k7@_eRZDwjy5+rgQ$$Aq!EKuqWQ$Qh46IVDOU5uf_acEd2b5n?NGk9 z>Qy|UWai|GI!AH3k#jD7H)_e}%N0pPV7aFl7OhQl0Y&ghiR(sz%dHs=K-TSV1z&Z0FcDALN( zHZ3|gzkv|!;S&4f1#WRIt7R>*ZsSFxZQX$0#)r-74R2&AYa2G?@Epz^lBsnZ0~<_O zo!YN0&UrHt-hqFE4J0$(0Xgn?K=06_EqYFOgR85Y5xw7t%8z=)>!F)2-pDm_pfC(LS?L`!UA(5c$retdi|2}vwWj&y)(xnNL)Uo3Y~c8| zGZ?QzzHUea)|0hVaIAWyycDn?O_e3q-wFJeSdF<&{@SF-Rj?dI&pxV7^x zLEllt)mZr(%5gTA6T%Ljiu9X=+k0g6^T)sUnQC|f9%pV zE4eRXVX0q{j&#g2HN(p7>V7!f32Rp%1L$bX*=V!$mEP!%bEomA$U!{mSDyF~jwAu% zhg5O}ZpJVL;*-5rp$I{Gd05M1V7B+<+C9o9Guk*?_2ydbp+JF+w~wT2=eBV1E(FWm zx$#bWvx+sX+T3p~p97*9?irdu-LyB@lbK}@kOy}v=z!^&*Fp~n1zV=SDQ;uo)W{fk z?)?wxCCOos2tE;b0C1Uswl;04waGT^k+mhv+4vrRPB#anWn0#=-TCCa2DtuDsKPmd zZZMz-NtGp{5i~cK@=615hx>CIovWZ;LeBfiTk3qW@7wI8P)9~ zbvuwGce}~=L8zBf=fb`z)M(s)sm7$!j!Gjl+!@@a^nK+T9RB2GNkVY`Hk*p*0F%!T zj-S+CL&~Aknd_q53hZDmHHQoyC9D>i4j^BkPu*%sJH06l>>+i?8AXdqoeyUALiiIe zyz4yIe)yWI?ST_(8To>3Ir*zG@{x6*ltlZ1QPbR@kw1WxS7C7d8$1dgfwO56O7e#!hTDtjOd zgMHe2=@zHV+c=@b!E@XEN+WJWOh6TX1mjLvj#A$C5T150K2L7P?mW2*lXK(8_cgbX zrrrW>Mb-36C<>DoZqi5@==>iG(oMfB#(&x}n)FC<=HsM*KMolTukk!S@Dk@Bhd!>f5Q1v6+h zCl8r1ldwXgozoWPHa-A(QM??RoqLMe6rYA%ycgMSb8+TsB?l@*B#Bs>?1Oupr*nZY zg$Nj-qm`scmz3u&PFG?GI;JyLAb;Fe>oJ2DMiM%IR>;{7+gCzz7y<`}?dRSn`4Q$? zWX|&MB7QAz^`ISKqOXPM8RO1%2D8|@F(5xF9JYrta zz8h;F!AXPMKO9A_gW7!a6R)es{^5!nY-de&8w6>lc6Y2}Y z=U11*3^pzstWNDRf{fkT5wcA4GCXeUI0*LBLr5G4nQ~3*{zNDBkL7xOTRufRvUR#M zsoOB#T;;js8FaIp;&R)K=7_SEKgBl-Mw==P7BWZAPzN~q^Nswr%bebWr*f$?mY3uA zHoxyy9kj$}=&P*iVSS`~-V!OrHleOgriyCknS{gDE*nTJ!G`5H>yBHSKtUf->PyC_ITUk@paf_wND^61r5!cEc$N;Lzj zR3Z~hMv^*l^mY@CeW{Ew%Hrv7tx{f%xbiLFDL(IElMg~yM_aRO=e8BS*OrQ%@Yo6+ zA|YoYo<>zFV;dQAqqrNg5#9L5v0bEc4Ts`Zn8J2(K&mg{INJ%9>+(D>_eDU~h0dkc z@{}2nC5HKRU?Dy6jG(ZL9O2KYA5zmgr}hM|1KWM)I*+M4JNLsTca6ynP9K^5fR8MDE0lfGd9$xE+3)nTmyOKc z|5sk^*;-{kU14yo7SagbFBUmA5227p#NF)FJyl#dG4rVl{Ui997XYIi!QW>b(}ApX zU|ZVB2#RQ_F@iB1Qy~oOJv7BTjKAgIbb!9ZXrZP{up1$g&5$E`l4~kUqmd9GKl+&B`zxwt79$-`HO$4IPvhrQN+|)4u;xOekN^B~@2*jSjnbh+D_bDxS=ZYA zMY?*jE#^cy*KcclKX_E>lzn<(wHfs!cXy-R?5$6LDfz-R8TVPb)NP-tJbq2vLbo$?tgP9 zy{OP+xRX2TD6)dXa>Ov3t(hlq-pY$H0kvjsyZEHFq~E}?HyZdcI*PV4G^%=`*);PA z5!8;~bWP;3%{r3dZFt6*$AFq$Qm$hT9gHF>gq#ZF2(&GSIL;Vi60AO`k=n7=s(q~e z$)*+vEYpu9YL;QIDKhLp%~bdTJRupY#H$mX9q>gs8`x=@qx}bI-*~RzL}p5nf>q5I z=RKgq>eTv$|HyUpjNvwX<0g^(l;zdN<6(n}JS~2hd_TY~ z?1^5y!&Y4l)&q`b<|LSIVN6N7Jmzhh=H02@5_-U zBc?slbQ^%5Y+zkXcdhfLJN-1Uz||mdTdU{vQ`F?+8!7akcmqD> zDq0v(B`h%I+35?Sk*;|)c_>d8*x?SKTYp{om=A)~Od-(-DfgadFqz!^e%OI~sB<2zqQUf@-q17eG@>e=V;7 zXufEUKks3iZ^L^$L|fka3A-8A{W1!7qlI~y5=S>3*79TIk2y!NJ_Qij*ic#1P^eff zPl6UWSSU=`siwtQ@QTd?=pxgO{2BlRICwp#gvxiPgk+)+lHpwm^nE0aUZhXA#4Ku$ z(S^}Ds?-$@5^WDf!NUaLAW%9+?u?}ud018$I? z9ZfI-*G*P$eZ?c4W_7{!R&dRZISn9S%f;KQC0Ch}{q@f#Z~EYzG{XsMva*sn7(Fi} zS6k49J=Xj8csr9mm+6@%S<@BGtyiUH6a($J>NU$Quv-po)ro3%!dBD(pTh+IG)G$> z(n@6v&RMPW|EwizR;w1gX4xs~t21k;kq z;qCX9!sV_ZzHg)y4l{-*w;8!9x*mC(w}^D$C)s3pJDYhH0gAC?M6r5Yf-`Y#)_0H7Y>DbIW&UoTx+;&EP0<82lY3S@WV`xk{~;qMEC`-f$TiQwsscL+Ggm+@&7&9 zx#5H7%id+OPdqQ#d6idtc7%o@#d| zO=qe({b@fCj6BN;-buXV)>VQhCY?+;lP+l3C+z@tW{yRpg>NcsSP z68DWx@=Sl`X`(=>bH(8Zsdh2Y!yHbYn>mNm0nKRPC!v1M=5SW2o23D(i`MEgnUWWAKxwy(hN&682@05 z{GJqC)`fom^%Rwq%SGdW|19tO7Ezw}ecRa@cW0pFf5K`#K~2$tJ=~WZ3lLg!x**#8 z@`dbXZ3+!+qLB1YD-Jn>aFbc=OmR`QV`QjPkV@t-CUx>sN%5)6 z4-zsgm-G;WAs;>Z7Dz-IsS*WYh$9U>6015sg86g03@pe&y7R1^E`gZyh!cN-EmFfg zHH(|wzHtArqg(;sNu=? zK#V>&MhgwRWlHIk5qF3cOK@7?WUSRVJ@6!$=}HM?xS2GBK>-NZkH%APz4rRv@0*lINh%{t*(ILwX}@ z5VPa)QOG|@nrEcmO)-0^KtwQCn1^}O`kQUU4XnH2n=I&%A?NV zz)&=jcK~o6q=8iY8KY$R0=O$>gQ{Q6um1(F6^85;aMI{vUqZ5Vh8uiMY2)EX%NOyi zmfksseY}EM+T!7(2zd;yu4+p}j#@K2*y(gxk2+Z$*~~Smd!rYx!+8j!EEIaD1S4|< zom%oqVR)K^?m`!4sK;QuF3k3xUMpb-!AiD@g5rTL*eEQiCK;P(@mj3JAztf%Zq_g( z;nr_}$NGRFbu}p9@}j?l(=r+p&w>JF=e=Y-FVf(0XGp02Y%IJnum#~(YLDz&a$Sh^ zV0I0IY%O0&TES$Onn_nsQiX?=v=_BGGm0_ih;)S6>(LSBB+Zj^g#;0C=S6R_oOK2e zjGeBB%eax!AgYA(&ak}61AX?ic)`My9?aT53gn&MwLD_Ot;y>-Vf-rM*UPquV1{Ci_D_C5cp;r7bLGaEi$2eEdT=8nUy3=%agD=_!8xz&-F z^$quokTIQ?=F7Bj%O~~IzS4sEH!=m-n-sqvNcs@gq|G^{<{`zH#wPu<-o_*ae?_oB}xs_!Uz)=oa zzMkk97Ms=mn49)jqo%xHD`AabxhLryj1Rn+lq!67t4t0FgI&5kWIVBtRiSBYD2ReP;3odfVsI+t2g=^C9!H zXPoPe_4#B?f2R7)momE9^l@jO} zYE<5)o!3(lXTp1?J8I8#FeJpGpzo2XvB(!XNjXH}N6D}f`9ixs(K`Y-{q5y@6sP@^ zQ+7>ye>aiiPaw9QAcYb`Vl91`8%8{DfwAFxB9iw;B=6|t7)e?t+hdL=elTQ z2469sP8kC&l2k~If$$X*g7q0X2GxCIa4QFV?ii3zfu(a!at!cybH^YODC%Ph!=N;OCnGM&F93-A% zXYZS#*k{Gak=QgQQFCX=o(ms`;1ufM*XweMnMs_#<0u*SZ?>vG&24c*c!xCtFUtvU z5;7l$-RfCANrKwjLM3?FqLu=ddu6$Aqc;0ZcLQq>OOHAj;dBeUC z(J{>lHln;B87ZQd6=LeDGmsc{Sb*1`wllw{BQ`xwUQf(e@!1wp?JjnJdom_Pc?8_ia+DF^7p5B14R4pDK6GMmEvu5 zDn)Ta_9sN~whyE@OTSC;C;l3W)8gqVUI~&)Z#a*M{}!w7NhGKDO>v+T@VXp`y1!$h z9sGTd7%jLfv$w&&lfzI255mKU@piL*uuihxv$-ns6~ywoc6t)Mt@b%iB)8YUVd2O; zcF*9ZD<`j=F<|{pUNxXZ_{ekFlj*$!;}VhfSD{?+_8=D9LAUJq$)NaqBJI!umh2PQ z-HfTus3)N(n*5oX3UqU}o5|(|ButTgs3`9}9ERT#&ULl1uZ%ce@3EEu4~h|`x<0$^ z0Lfxr4W|;?oJBbZY=!n-Oe}ft1w0$8_Y$Q@02&Otv1rM0M*XeIi*AgKS_x%_;r^SzGFj)x@WqFy3eNn)Sz{6Rm}K=7ANnFzb(D+@d15MeXYN z*uXma@zgq4XXafKu@8lTXv=%Ah?S2%5cK(GFg9*^VGO`p0zQ#*6O`#*rW^(s{VNdr zob<4{dH!JRY#}MJTMXt+@dolfkIzvsFVlW6aLzVs@kP)LYFf1);e$)N9?3Be?RgY{AT6sP!(9^daJ6vnQrc_>Y^?vz`t2HbwkL%gIeS z?&skyH(^eAmi3+W;AMP=Gs(HFEP~_2E-VUj<7r0&)^~G$KFj*TE zd)!Zp{A=`^w;V5J7yJ>BDHp~l+_j^~vr~4AduhQimL%=?*m*>qzoBU4?&`f{Zeu$@ zR+$F+H4Q7 z(qspBvUHYW^OWgFJ6TKvr8@qRqjjen_tx2+*r{Jsog#j~-YSn1MhDI$5R9`7MuG|;=AFm-;x*V6Moo?br(kb)2r zY$QdA;5JK;`vglsKpD~Mt zs^6X;2C0tixc2p-s6;qhPu6sueTs$}!6!r*RGk?S+vmeCPDvTq4_C+_$7WE+z@r8K zLop5?9HG2u#)RJg0<5m@X3)E-a^wxf&RD|ncqLi5cWd1a`pR&f`a%XR%?7<9lZv-_ z3!Q*xENGV`x%w&h4cKwqKv><~li#2xj*|sO-e??b(#py5k>$42xxQsF^OFT-muH5m>xj~AE8n6m+H~}!pi_1pG3j6ICEW89q3Ejymj#&h zO(`NoqQQr}lVhak3EI1-*u}5m;@e9a`r5Hf$bj8R)OQB%l03tBqD@v=HGiZlg?1gA zc9{r_LrtNlg$FUw#O!<(P&`Y7%g3C(R0f6uKHw`)k7OShZ>Er*>Is@6Aa@5(G*fWh zzO(f$i_?T;!OXLHqIxU>+w?@Vh<)=CI7=;I_#STpIqNI0MpwinKMbP_F~=vwBWfBX zmWRCISn(!Yc8Ytt1(b+Fcs%eYp8ySsj8IfJHmjVKccurv7$~0oJOJ#0FWwUN90@tD z!6+2_LFS4$#ba5gZ|TIw-qr0wBRkLeYPd((KHUDPl^&Q2&jI6RSG}_B&&tT6UT8yZ zAevuLNyw=&*U%Q9j7g12ho-j4;J;_8TP_xfY-UVAnIU)?-Tq9A2R(IVJ~t^Nto!p` zpeKd}{9RR*_Li}6wt4}x$0yO&@eLRQ$mrHviATO`hy#S82?va-CZ+Xr@b^7iKdw@vvwOGUd7EM z`Ou_sq0K%{4BP7rGvZ}2m>-!!_tI9Z>aiYJ5db6Sb}yPb`D1@a#x38HXL($@g zVar3zXSi`3a01sL_K}4mBqbqYKCd4Jw-+c_UJVBA#Mt9ZZkMV7l2P@hBD^ac-ojrzz_JjemC)c2KGH+y7MQ|~1 z403tIzIjypcbYUslM9w6QUyUr#lCU=SMT{E6#KI-&O1VqPw0`qqJ;^6XZq~|a38fL z@Wt6}e7`+#ySh3%Is1!!Gc}3T4bm*W3d}o#z5U9%zIhq~t+t@*o*io&X(07g1`5NP1M=$ zL`|NTg?{w5SvQ!k&-0L}_2c81c4X;)N@Y6S=3N^nxD~IVu)Bba)&i2NIg7az7dOCE zCH)FOkkkUAYgj;@Ni872q&}ToKW<~9K8)p}Fm{`_y8CRa=3MPT-_5pahVcP$l|>fz z@m>ZuROn0^#(LrJwrUigrNyMzEG9-IYcV|7%obi@YM6t$hK8-j|O2N0y!->mRBb3~@rf;M~fs^R#Ao!Ov%~D&D|CSeE877?-lAaFF2&G1GI;$&?5~Tvy&1iIN{= ztMn@-wpK$3I$OjR#Lwdqy8+)#T>hW-#c63;bY_FQm`t^O=ja=Y2{Mn>WvV^%93HG8 zTc?)p@;J$fq_LQ&J*HrZdA_d7u}se}iRL-v_OyjP8^Ru%cip6mqQM85Uho(^-wg4} zR=KMR!=3rU7MEY%O*r@P6c&6o&vs1 z^~BXFq>M5(%e0UnliO$2y9_GB4hbD2zR)Bm__<-o#Ls6iv(C;i^C^e924p2Nkd?() zhe%f@khs*^5|rvBf=?k*Mv88BBwBGe(-_5LRcV==4zswF9YHLX9hO)`X~WpC-ApNJ zqm@V;ei1g_Xf1sb*)JFfPol`v;f{2Y;4C}ax~D~hPkZGd*`4?yHOC%z=IfLm3=X9p z1Snxt2FWgns`q=5s$+Yl=G{WY2ryRU&7MBY-Yl-ar=4dh|J78>AZS&>E|v>E%x2Z_sLNLO9SK&<{V%? z`gwM6bGNmumiccjyPsFlX-34UIwQmN%h*HNWXIc(guEU86mA3p0ygU+;PZe+Dv-QJ z-wW*?A>ORy*!mCLDy@3YnIPK)^Y)lv`mdb<r{|YDf(>XhK^ws0hzCERK=0~sZ!7bZipojjcQ**uqS5R# z`qa%5%9xTbpK|U zf?vfGh4u+;S`zMxUg%jrHr|gTbb}K{N>5GqQm*lEQEQ++`x}<4k zO)B3+*S{<&=?chk+*!I3>>vS|kARf=axeA8@B?)wY3l7?KnhC$L$2wFO0R#*JzvEw zyKB2=OW;qs8YO#0JE9$s*ly`XA@G!QeA-8FhT0UkWp*b&2EKTk#2Mlpy))ujZkY_$NrK?P?uFmyz{VV0ylL7*nk(A14#EHG`37*Kq zz%kWx&pWthk$=VHpZqFH(w`#|mUDbah zUY??3D69npEULe_sJt!81bWkhu?r0d)4%eSRowOOQy?wpr|f-t$Fyj9*o9>!2aY?2>>jKOYgXAr^E{&cB~dG&&)ru{lej515?+g0BIw z!y2@0qBG$tdu!0&Yb{&H6&O$he6Fcif4g=EJ-q?v?sR7U^y-tKz|~QV#2^4S?_Eh$ zPPKMN^4^u`84Y$%2J-DCq<@-m;bqY`GRc~HGTgPBZ?0>X^iF_^r*-M{A@`h<6#(I5 zQef{ZEggr$iiZfxM3%`tW4wfTfkH1>H4u31Uw&9|0DO|>hu^+_<;hvCbgj@Xg6P(s ztv8|$rV}54ZhTdGp?|Mc`xFy3@n>GRdU{_pIL{Y6Grcb$`=*dRM)Kt`#3_zD>I~e^ z?TiU-4qTsQCdf8+JnEz|cHpHp!IXHC>5N*v{Bx>bFrPAsD2tuKDa zJR^_Vg-l*cIvsUKv7wHpc4;2_cUW@!J> zIc~7swmXG;}31}3jo>-fM`@qm33{<{_DFk^^jHn&n(!(BIpq8o6A=lE~o2taw3_N3i)y;ugoo&|?= z`vQ5slkkd0o6~rr-v1T&O5l#bmjh*{`xH_(pb$~FRKN|xE;s$hDi*NskwLg52yBlB z-qBM4{>5ZnvO^u(L5FrzY))`P0?O3CxQ>y+_9)_~>m?W-^qhge$TbRbreNlwezL`Y6Y z<0Z(7GDRb`@eUft+j?_>Hstdyyfmw38HGCLzE3|61s59mv42yJo4|@+c?N_7v=2LU z)~R(zQ8%z+G!-!jYU%F>A`0cvIKG3^3s4f;o8LJr?PVXeL(T+WGR7q2xa)WO&(A#@ zxlx2&+U#HDJ80EDt;tlM z!S2A#iy=Gm1)-N|lYgBzgza(L5MP1>|BID7?3>^CNZLf}DsLSx!MbeoI@-MEvw>st z5ibV@pl;qJsVUQW1B|^EI*)2HLcgy3FJU|JLU8$J_=qSX4OR8)mMovM`CMqP3s=8k z1*+dXQ%XymBE)<3TW3a`iTPx08A*Zug`9Z>fmnuiW^)-rNnqs|)zT|zf|w8bW=o*4 z1OQk{aTrUWdV=iq;*DW^)?}5@=xa7?(i{oU$}}E`B^vQ+{)osqQT?V zlAlu$lFH3HbG5iaBYiQpqp$Sq+&>^gRyc2^6n`;6*u%*o!Bu>m9G$QWOYnk^hWsZMUIdG0d(R_f z$D*%G%#{SY*$)A8BeU)$0*7#o$pMQx9>H)6Xw~#qT zWp{nju;o3=nxEQ+6W_EftQv}&b*)hJH{#*;3JKswoipi?PO_Ta11om=Be{Ub5E-ja z;@_Cb_v(`w6}MHN^xXA{Ks8Bz7k~OZjdFK}wfK>2&57O99Pdp0M1Z+VDEVLYNpGs^ z)#s~M*p=>tSq>Ey5uJn6o~9+SO9wtdOPVi?c2k6qiLk#F zhZB|BtpVVbNGb;Z73MKYaT$?_l=!%&zc@l?WZrtYzu=uAdFZXjK1Fu5^8HAXV;n>q z_kD0*Xxzl$3QUvw^ph7k=QCa$YG;g;zY(@wL>g2k4jNHPA)5=AvA4 zQ7#v;DW_Y!(k));7O!;czq!Zn0VtjKaZOZ17WV4ib%rc!UALiioW%;mbU!u3QGPey zl(lT>FbHEGdSM*m6}g*ipuP6jY@wn!Qn(}&v05~<9{w780awN{*Ia0so>(}uN=TWv=$1wC&9V1jGcr;rtTo5^yudApLJenNe&hm#k z$_Mr!6(3?{XLV{~b!vK*b!vLe)c9Ty>D2Tp?$q=u>(um`se95(-Ixh<%-oKbvSXvo zjY(;7Oc6Z&_xzU#>&WFAE_LbbA{$s|9HWvE0d}M|^}w zRIhcFI&2=<@y=kpchD7Lujv7(lx!jSyYzs1fMD>gCY8?quNdLHM$F*D)vgqi*DFZt zP0GDfd9|)YB>)a(jUMWje4gMxxTN_E?nUueHc&j`mi&$zxEX=t*8)UNawRS+<%V2b ztcy!tr-4`0z?a68+UI-bo?lTWmJweX-+Tt5HVytm9^muRYAp()rKPCAgAQLoeUtnr zyI?$x73A~M#=TaR6W7ZC(v?_RVjpja%`|na;w{R>$H;9K^AfA}4b$E1;a@iQE(I8! z0@|pvmTDd3le@H5{#LR`lr(D6uw!dkh-05V&Rf_n$Pe3d8H#;cT+K4On}r}`lPq_S zy#FOzI3<`F%3~+tdbSgB9nSlUE5KPsQGE-oX*k)nhJiTt6RP54#OfS3fY@ z)K=e;ZP`PXY(3hGM$P2Wt=emmQi;Pn2c2F}<#w&iXaKw1{JaPx!q1wY$mYqY->b>WPYGV2s5fl#hdtJ^ZOP z0rXf6cPLiEDb=OFpuosUjRty@hD=J$$mDw_?*YcPkWBk zRn{mhtjK10{g=zc4sM9h6vz7w9Z88b*c3h6!*V{2-~0H8nUCK}^RQ#917`cf6bmZq zTHY*}@Q$j3NLUUQ4lf{~+lfrf^fOuiFSKgj|0wsd;{$c(0~BcvA;jy7oKl23I`d`< zr80Z!i#%JjWRsQ&@Q`}>FI+9bvQ@W8t}x;q?=JC?ce`1*x1$ZoFM*7z#5hrtfnA*p zeY6(KNh0-wno6y5Stf;J*(w7DJ7?8sHCweRU+nK)t=Hn!!k*2Zxq7tTDpu#?`gB2X zb*A2mSC7=&%+~^D! zZXk2LtMwXLovpXx)uZ)RwmP2@Z=rT0)CwOoF_Ahm;=6;cE){pGej}QB&)&S_ww2EyQ zh2iU8lKe$e=%j+R_?NuSjC^$ZB1K-o{8Yq6XksQE`f7?Thx~#j{@@qF|3yE9tsm-O5$`ByXn~;Jy$}4TzZQ~45vGyC!|YmvXD85+>Wc< zs^7mTRrTDFr&MJxMO94i+IHj1nL=@n<|zB#nqaSo=7)EBqiC(z!WLPjaf z*9bE?KD#R90)E1FGavmi8&~qV>=C|2kr6k5mO6L1JM`NrvsWW+8W1&kThU!Hx}iUQ zO!K3K)}X331)AA$Xu{{D0*UvwTO;ClJ5vF^m8rs%{>bHC>2K)gyrQ4;YV`99a8WT@ zoY@{2{jIE1;=$O17wI?tm(2)Z5LchkC5_g@YX_WXDpq0sehE;n9U);Iz z0JQ|RK3|*25y{zc7lrN;A4r*Rjf4R0K+*zm@r@u;c1rsIxOCuS`t5}bB; zHI;KsF}DCmK!346U)UDoALU4#dm%Y3gd> z#CRJ|`nOw)@1`I%AGDChweUsa21UO(K3d<(;`x{fE(peT=6^vXu0#6^isQL@D~lVs z!E|tEgF6|_TtIFR#;TcMCW4s$<=`P7(T1*lWzMZw6_M2$1gz+fJIu&czlEFT&X!<<1v^; zzE06l7IBB8MJytz8O&=MOGpfZo0OZH{mEg`JTox2Nr})Yx#^mTam{M#lbZwigW&;b zEjvQ`7}nFK(Y%&5<+G9oo6LIJWY*KBTv;#9*6P=-6s8SDSgm- z+GN(#rVr!|wfVdeO_y{?CMJ0!DI_Fk;{%06UHQJj!?D%CpTs*}G~==5Kx#bhIdwel zJk5CAMj6?{WhdKJl=sTuQ32WdLXFJDA3P%L!oUxx?_-u97-mV$SIH)$@&jMu%Bwn8 zUe&qss?L>Hb*{Vu(?s&B?*D3BK3rba8F>XxisV(DE3fK4bWENzV{%_2wOq*bJwS51 zc|ekq`;F<%nG++x+p$uew% zzmEm8DDO3lnA$B@?@5;%U7jqNQylL{q>YYDZC0noCbUeoC#*7d*mXn#dA8$dc{Ir> z63rrFf-G4l=c@1m7vK)LmYoONV*Xt$Mzqyp=pw_CPy;4vPASGnI~F zx>vMNz+NY*-UK#!iYlF?9yJt6?L4Q&a#l~Xb6QdqN%fco_HZhI?21&OW^2}A%|RfF zAWT-L2qOgY{T-L2Dq&5}0!nkhj|Yte4e`8KcSISj;@bA&rW1xNA)CcS{(RCfE~gq3 zV@)_($ex7Lmc8IQaIDOVCUMEZ{(KN^QcA`x6dC_o0X=C?LN@0wP{sn+wJqRjAyv&c zKzR!0)s4l9iWEKWE^4wDvV)fx=j0EopnqNYTR2R9Bhvre*5U;aF}bj%);A^wN?3N} zsF9yXjr=@nNNV%Fom8M~{Q{SO=ZA2#$qZ0K(QxXKRy z&Gb+12M4WRr=>sGUZn=xtJGk7mAcqor=`EzWIwposusRb>H)Q2xO>9>oe!1J>5stm zV|Sp_?@0U?l>dPJIVVFywY#5EloSJf`}1nbK5&1o4VL=x!TWR7IAwpX!hih!TzCB+ z*q^6p@c-`qJPdT=(EYi!xQw~fw>59rEe<__h+GDhPT89OfWjeL^KVe}fm`#G-R6V0 z=BhDhYyJR|QrlJiV7UN!_fn)|&wuQGpl^S!p8OB)&!_JaFS`#c9y z19)@k0&%FE_MU}0_naejww;pdw9M2;CBii)6sYpjhd@LE+-$s6^Date`T{hfw!Ugjrc6=n()^Z_D*124RfCLh zTiWps8`^Z)pr+>!Y&qUN7$G0o#5PV+O9&FchI&Cfqw^K%9??}n)ixPx1e zx{G!P-MY&S?p>IT+@&IUm$u|x&O6;*ss`QV5vmTliwaVAd4kWmKJK!uS<}%7i_lxnqPR9Eddgwa# z7_-l*h7RNO;XRu2`S>2)T8`-ZpVWsHW%~Elht=lu+CWzSCs}?ZyN7ND_z^wqA>{yS z?bzI>2QOCIAVc79i@<|7B446t=te~2@b}b%7eeur;x%AD^8ZMKTVIsG;BwpIfn6V9YUF@9eaS|E!uTKv>O()KynIm=Rm6rJJp59*LLg#5Nvg;GS zp#cm8iJP}Gnm<}OodaSZH6-ojoG0lo%^~8v=zEcO1-Cz^cg|fx4vv84Gv_Wk9DPC+ zW7D@r_`xg{in&n$&QqqA!V@J`^@W9B`LuLOGdjdQj257kL2JoKwZmG1-_vu(`#`5R z$yI`dBc#JuEf>j^f}$CtRm6wcKJyzv99lr|Bz1*wgfqYUdH4_uoWy0mS$dM^!<0Qi znS0cAMR4=ZNOY}g@n;f1@s4l2$v2@aE_?X{H#d9uAI#O+m;Tm$zvfBz{rbmJ zty*_%r}ek_J2}hB!4)ZI2Y(0o>(!Zmqdbqx8jUYPqwz&>&y9e5v=;r4sTOn!(?QB8 zzlX4XA~_>@o9{i5e%CObspAV_Ag8L171|rHi2+T0GVDYS5<#j&8F9C>*~4>^9nsA> zmddKbr8$Gv%eMpZIqyny$-w&i@T)fD;20&V)lg$qIk8d2WFYa_8Knaj61nP^#L{|O zs=K|`eXkP{-s@}JBRtudwWM`cA-y2vgVDS$UVQ?~!yy7g_MbIm7%M)~H-u;yeY=k7 z*#={S5_>IPz8XGDm`xhKOAI?Roe4QA9`>itDa@%2?6i`2`TkIJGdDVDQQ34)pgam4DD(!&fC$BB3~on%N(EJEy2 zPQij{;b=2~qk?p0#zySd`zf$?00ma{QD7TD4t*5(thq)MXn*;uN&)QRlP+**6&Z7B zKwT6!iQ)uPQ#Pzfz0X~JH|Mh1!}3)jU|k!Zr?12Rov#cXhO#lO{>Vc;){;eZ9c~Hv z+ZOyO`5f0FF?z+6ajT}3pVjH=*DbphTj{yS>xjXgNU2d!oSU*a)Aj_9RBFZ=YeQ!lUTWxchi%wNo%@8xhRd-&dk4W9Lq?0!LyWGa5I0jd}tqk#xZvf z1vsAE0fglpZ$wBlUneIM?t6X{z2g0fm(6==n|1rJZ}HJj?0o4SzTBa5{P~NAo41+6 zGs|n8IUto35)Ij1`AOYfw+7gXd$jQcBt+vz@Ti*qhTE(ghIO#pEHKR;Jxz1kFkS~r zfryP7mg4>PhkiJS?F;PO<_!1~=O&KZ$bd}F0=V-5@qtN}bZG4H_V0ZK?^T4u^VH)X zQ9WAa-1~)X;&GcZBzp$lv?zK5panQU{fd^XnrpZP-#Kro;X66L2OhF~pCYq^3V?s- z+?HWL3}#Z80x{r-1>^#G(C-7FudJLm{T20j=X>#MDm-G{dPRXLyG`G-&!0jAoZK9xg1F_-5yRT7 zv$#q@l%@;{=j}is)hC!_*;iabeXAIt_To1f>c&|?>(Fb!Ff_v1B(BWu;ASl}T>rZI zP_~X{U#IwlW;)ta{kv!A$Kh+}LI!1JZ&Uw$8tX2!id$GH%HE@~W*R%Bde^J_8TxcU zY*JE3t#|k%<@arxU1bMVddRvBpU|AfS=O5@wXcrLm8V9L|1Z{}H;F$Ks=_pPFeV{) z_iHdxQ{~SjHr=nmNEO^*3goLwxfzV3W6fa1Z?uC?qE!lhq5Qwh3=?Q_+E8Wc_vzqC zS~vpegPAsobiT2DWOn_A3y78)lxgFql$pqX(8irY&hQZA)szvNzX902yj4o4LD6hLvA;Ii&*}p;;Q5V}tkv z@U~-v_{0>Lq0z}2d{T0q%O^M5IsZw-IU`>FN2chdTdzgt!o)V9hK6f~e-E&$K-u25!u1_-7#62?~chtJLknPa3p|#BfHpOxRJcg zX>xEKD2f3D?s&kRQqSg`Rsu*K z@q!dtwau9rp?Bbd!Fw1?TdXB}=r`fV{TXnxP~&A88O;@iv5NyM$}$FoAcM?6I@GTe zwEy5g&PwBXQcb*^!(}1oL6htXqvw>3XR!f2qwnWY$)EFSm7mA(v-&TD_`W*6WS#NU ziDlYnx1W)$HGW{NG09p5s+DVB-M)uxp**Rl;w*nn^nj1h zKvDDyffcW%%SoQ>t;ur~3@!SN|M)B3oiQ;M{DT)5(m#OA`Yx%Y|A4t;J7%3sMdgBm zAcTY5_B($MJ%St=Bx(Bcgk(RTpdFt0^YrrNpeb{S9%NLE!3m=2y?rD#XaN(ITjAwM zvIQBhXra4J$2LdI6d}@1rx$L;kUi;sp3t83$ckbv39MMo0~I`CzzWu_}Z(H3IMnl%=}-ez@Na$_-kmUMoF`QdApS_LHk6Zb9XN& zD_uD8dk(u;mf`4nC7cP`zcN|fboK*e3@16+#CXdX7_`Yk0Dc=E19r1eDe%?)m0_v= z2fWFda|x*oc1(1}T^k@6D%oKY=n|#5*d);jtk_33pJYdoVy|^u0I}QC=B}8nVHKLH z8-B=Cb&Zg>&yLu)1DWRf*ubG_?dS7+ZoelvbFNPZ4uiZAPSzRzmZ}QkMN;<__VC`` zzU+6YUIaZAzR@=+)dCqWde;LHlxr>8kCv7I5|pG*^f@h{^G>vK1K$sM`$+B5H$_~T zRtK`Eh%BP__ie>MMx7iT^`9=MG7EZ}laH3{e#rS&2Dm6s!=MKWW22siKMP|spZ1D9 zbH$$dVm9$~d&6&GG6PVOWU@hQdUpFitv!WJ!BtbgQf&G?)o@wUZ9)$y7F7+sw@;%6 z`b%$ITDd5Z*mH{%qQ}*+0Ph)lbWC(^dAQ@JuL1S)DdZLd3 z7^3_6d!&zH_dPAS`lxI8#a0E|20RA?dB9$pWw^I7L@bh+G1WaQlrXG{Fc>f|0xJeH z?o@{i_UzII)16yCAF{vO&%a;S?fbYkb&C~4xOZ?P?fF~;6X(Ok3TQF9yxoY|nJ)l# z2AnVVl0;}H8uj)R4{z4?(csnCL^(70gZ3UF*<_-*O7^#Kso}Fir)n6`EdmU_K8<*~ z)zLj)DP&3nG{2rcKfeW zz3{L+krrrzfOLA-2K^jZSc`VSw1OSV7Jd(~QB6UT-i@>teI2x?n79^poDUV5OGY}y zk|MFX$6Jvd^ZH)ErjLp4Y%9{%;fdw=sweo;7Tm=yVF_uI&;kZ5zCo+#$e;yyKGQ$2 z;@SRWXD$N_To?L-VmNqlgJN_PZ-inRPu6j^vDXGvU_ z@1Z^?Hi{{p2C6eCsRD#xpnXmx+sk5-2_9L_FgwR5^Z8;Z6}0yn;8_Ey6!5$PGI9!d z_IeBtdIXV-Y#vV%Jsw;y@Y(esh}DtqCQf>c;8q|*v%Ua~?-#&RYXZi172vbVmO2TO z&YsGThohLbdPAOukPtWA0SHGUOT4TN0(YzE?Zy!yh2#6EubaLPgz_cUjQb<_IR?w- zQ^fx3(0q%1v)g|`Vsa@Yv$;b)_ZE40Ad$ykf6rH#^(zdbZ(GFE1}81nt=Fs6(t|bbe>Re^Y$|r*0#7XAhdLwuisz;?%`ZnfzYgU^<(T7oGb7 zensch)WqH6NhU~!m3&?NK1^G>))dBKr(CQ4x?@cb9HCO`qea%4CCFvXk zhZ|x)hNjI020g99R{&U*@f~vKseD2-JBKhH_ z5vKIx%txHB+0YLFd#?kow-4<7W@KJ!olcRAk@{&-bk0$bdgmNKNRGKo-ymI6vS7|- z%*AvC^d#rr&1#WA`t?i_vN!GIt(1r;t*Z^(bL zd`oPM51I-eEZL-4*^}cGaK6VR*;VP|@DF!sZ`gCV2ncutj0Qd&t@s1nSk5niphQa~b279MaaKcZuK--jT= zKXzx57auee&m- z$auw#mc84lSt4$NTIjloafDw`Tp5fQTu84IQOzFnmx|Ftc-msUi*lDJqt&n zg9~OUnRcpsR?%9c&!rR^W{Y-!#ke0hK*-7Kpuk;XRTvteEHL$_uUO2j`tG2yEio(W z|NbTF+mBYZLx({J%7z^7f94QZ+cO zS~u{gLt%fTRlNv}Mqb(yDWOv2u|;sMLqPydIb!Ez zBH1$Goj3}@78HcYdFciLvs;pvcx89JlDCLiR~+v-NG0hARY%Yf$Uw~jnweJ-+v}6Q zASRWN=#vntR!L8L5}iChbJ~_mE3QQK&KGg1n-Z zzwVxIg`%BuYD+=dwvrTMo%*c4LaUj=vqg*@>BF-n034-I!cYAOd6IU>?s^ z0noId+J6YNZP$fzX!tN_+k!#^ZL8)^2W@Na%St*udCNX%+YmzF^w74|-1GF%wz|pb zply#OcRGeHn!ZLq1Jaj|R_&!`k@)LWv?i>&r%}<|r+Cpw3Cx6l1a;k{{{ZP)nRtqQ z=xAQwk~m75`pCvX+gxjL14gPses)tUd>&z8QY(Cl4=e*WI+5|jQCQro0ayTj$OkWtvyRenl)e9vZy zNKYGx?GYqNQeEf4A3{F5{2x(H6ew7a_7?HY=+Ci0Y8&VP4n)JvMbUaAY}`}}A;(*1 zvM)?mf(2Kd6T6N_t7>2`^IXyv^PulnrUAF1_HUQDy4!f8yPc^`s06Sdw zOg>Hag&MaZTL~E4#*FIr!8sWA&Tu7SkTx|hBheZ&P04MfObq16z;=?Efj(Yy9y2qQ zh`~M78Jve9AUa8!zkpBs%ldR1AAhlZwG9{){pS8@T4DXoN8ddlDfJKAtrx z1^TxP#nYx)B>!fK&BMtw482Z>h>c_xhPokH7;w|;!+(tKWdq{M$>jC`hLkKIVZqmd z@Z3ihhE3rv;vFN8r4@PhYqSbvQ__Q_MC%l1%%d_Ulms2$d0pElIWs4Cdsi7t5!zM| zpHT8-p;Zk`!Z2NjKqd);Rs?I=eY~nt0ZACnOeSHFo8IIhNf>@hnX78`Ct>&*Whws! zl&F^w4bJq;epM`f zzcd-;RtWk=8!uf>DL7M$ME4ZNGVr|(VeuSEde8kDeliI^sdsD1gG>%-+;P5vBxg*S z@~hD*(L!0kW;5*O3<}t1!5c;P$RfMM6h6Z5MegtI{U5vguab3^2E>zXd}K-R%`eJp zY)I=2`)$)Ip+8ji0E+qJK={JoiY9%-i5OztC z5_J+ck7d*Ji#o$nh`!=NeE#RTI4{skygEyQbuNfwU3cQ+rmjn~*jd#luu#g%hRwT2L-tvNEhP-u3!zzv!zU7Z&G~j(IB#dj(~zwZ4lqnLNG8f z!7Z$gI--aEWx}a1_RTP!tE-@W2@%;iDti^5FSl(_=pw$^K+x6oLC`4%!j$Ur8OzOp z)#+9E3A}+_ptmyc6Lh!_egbb1@Dq3|20wu};V0-`4SEGONN>Of=?&N*9s4)%!VkPs z&MU>Z2PkT$ytdt2zpKdLC6-6mxclBY(5?9t< zSS&ptDGAVz)UtSY57%qT)yajnAPc9K*cnUWx(_PtcJY67YqUdlG0>K|v4H}WTZN71_P!%|?E&Q(_e@*(w@2*{*2KR@q3EjaFH%%0{a!S7rGs8;@T-ei-Ie08qiTRH$gpS1tE9 zCWGJwSC#)*-Au?0MSY#Gj?8wu#es+s%bMC*!T`=LUT5&B%GMcts+sEq5p_Xiox!In zUT5&B%GMcts+sG?Gv~5exVN`ebFjs9qgC^KMDIc&AZZ2 z*vwIp8471%E6Lgbg(Ya^I7~Gt935*$PO5Y5kN5%I*BzZCV~V}uF|aeL@J)!}c^ve& z1Y;FH?O7NO`a2f}ft*`_zw~k7Xrn|^WJfl!?Qi8-iHsL2Z8i!%eo1w>zwSTFIFgn` zT3je>e!#7iZ^nZ2>VhXCF_d_16zGVQtdM<9$exmE)gDuq(be{t9=;K(d&3(sVzQ88 zW&uv=#tflqO5=(#R5c~>G+mix&_LRV>jdk<%(@7*p|d69vwiFE`wyyvR*B$ePXkc< z395l{nS`eu!2{(`-*qibq0^4&xSrd%;I!As`4KWGuq-==3;UsIOIb9|e>GEgbD?QV zlgSO3`N|Efz_djXR(-Lzs6h+EKg!))XxaciWhFRZy2!Lv^k;AWOfSyf}$a9+G*AQ}OMzP~K|X?Hak3kLy@`jBx}+QseDC4YwvX zO1sFP9JHpbEmRihUz&E{rEuQbkY`;8SP!P(471wL#m_G##Nf2dL>KL9VY*-KN83$D zZb_|o)0~;=09`?`J!raMZwqzppy9A*XV|mG9HI5~WjB2Roy6_SdefIPO;c6s%llyu zSxAtiXaipSmZW^V{;B@%DCC}zA;`gO@wi(+HfRia>Kc=>)4V@zMnGG_HuF6r6q}qG zw9gDY&l-+o<0yIx&5S5SDJOBj8En*Y2N_UZK;de3-i+oGT%$3sE!M_Y#5d%H%ztJJK8DluAmp^fMWYQq1bjI(|NvN0*)>{ zGvFrgU>XL=o`!;ykj?HuHcPM)TYMMfY z8svUsEm_77?%8e7-X3x8M0HpTfSF3WcF^UZ2ROSo&J5&{d5oMcz_@Iz1eAuHOzxlv zWMCH(rBoq=QXsYgV;dnY_kIb2xkb(xc4Cdhm%$*vB>(N_@yi60K??X2bM4c@n+*nvEoAeslZ)f@1UzsvM;XsYmprLIep?F;fn`qs1d>I3nYCIuq?VYN%$Kgp1u3QHC2_U~bHs9&x^uDZA~R-oULGY~A@E z&RehAk^r2;y{=+S==Pb-a!YV?N5Dm+NyLGqSaP=!Y%YSBq&0oPU-jC$%28_NDRb{W z?7a*GzUi1TK_vU-)^YP3>uQKWy%AW1Tvj@s#zQnvImv^6)w8$(nc+N6+}-}Co+*S* z#dGaxf3WE^&vRFm?kbuNdX|r#=2>n;teA(n5z&zn=cy;|dzu1jm8zkBzv+;1b%(SdfaD}N3B*s4CHEpyE48>CvU;SA?he!!`AyOxgE z*-yKBn(v#bp)CpG3F&n1@dl!%lqk-m3T5qZzKPPe->R8LS=SEFRwPnhLsA~KRvM)g zHbDh6Y_b(nN*qaN-YA5{Y-r?hzOXkN?K3JYqja4Xk}sn?3B*CJTz5G*Y& z-mSV}Zknr#xvH3}in&yz39zkc6KHGN1lgK4SAS@m#M7^|svm@~QiN$5I_go3tf-T$ z5Wp9e$`fXx8n_uf7t1*ZX)kFwZlMKtIDT;2;h1@v;h6rx!{KV=A3hxO2M!1L!$xsr zINbPVJ;Xm|JWy9P3I3kr;WcKO_O#MfX$NvC- z{1Rxpznwo`Pz(V4AuZ0#PAp@_jgV8w{8MpwI<%nwF0 zv=b30fNr(Ns`-qVW~WDC^m&c=B1ordt^8=e_-fZGuOqn;-gZiy~Ayv-U19qcaI!J*W}mE_E0$1^!5`^C8R zSi&Oy)#aUG&n7Tkx2KRQN4v%$q|-L74cknd*ETkg_&DqYrt(7bJI1MP3iayy;hnI* z-KzdG#${u$n4<2mAu^TGvx$>RkUB46boh3b%7>^q_FzY=!e6bLUFLxikmfO%gOi;J zmxQX{vX=BR+l)u4wM4r~v$e8MM4T{zYzeDI2Ia2Z*NhX4JK@eZY9%>_ z@RiSc&m>Pgfjfr?z|*czJ?&+t1X-N5UTffb96GXA_d9f4V16bXcm2TfL*$3Hs^`dH zF5}D;r`SBJcxXn*vkKP^GF}?j4l44jH&Tui*+iTO(_3rM`lIp=1ct7mz1yqjEv zor=3<6h|Sx0$89 z%`D|@Eal!dw1YNj2W`?0+LGIj4dssu4S&FGfgM0Spk}UW=2BB_lDEffBv237N2In9 zAJpaxL_S;9yTIW!P3sw2^yGry^eRA_-^&w;m#BbVwlN$%!vKH&Ru}Z)?TBF@`G7FP z+o7*9VcDBtGiVN*O%%=R+@Q%b`+_ESRI-Ul?iLNP}Yaobb6 z+4tQNEz2xEi!};HKLY_IJF?x-f4iaoc0>Q|hW^_P{kI$XZ#VjxqIpXrJIw&>G{oA; z0H7K&0y{MVJ2e7383D3PzHn)Fho8V6p z;#o$BShDG)e#QutlKuoTtTw~Y!Z3V>S_}jDpYAZ+s;kT}Nc+_F*^zCA{@V=ww;B3xGxXnP=)cX-f18>AyF{v8hE%%@sdhms?=GmnOVr;b>hDTY zf4e*XjmpFgg*QpfT-D4~&0K1V{0QArx*+mzGi`4Bur`_hZC3U0l+^9h#$e=9FH!j; zV0i=Q0QKLJ6x!HN{VkGThWY|;Kb88@eupx_gb$-Wdd-JZA0FtZ{yb5iOAPgs`;&hJ z{oPysUFq+fvO75){lB5jA@s+q(X%?y!$QDp3%;ZCk&m&NXbkIIn=8mv^tPi(I!DFsfAV^MF ztYyJiwpm{Yf*|_K-LYePS47FZG^608`9Z$OP+M`$06$G+-r(~+<`{BS`6lS<+I?{0FejXZ4P_KM(@4|Y8n7eTL^N&Y zeR&T_7->6buX6*8IDRHN*{S$!Z{N}LErI|m;7Id{!q`Vhw|#?>fQJe_IW2{D@oKL# zY8n9}#Gtj1OTPFKZ=r`A;Ki#m5s&)L0qX|22z_Z~cE za!5*je-G~IUz_NuSWb5DaraN;Pn(60Gs^;Yy?aOtq6m6u(9;&!KqNjVbl{5oR0$q(Ixp1SbLLi~z9R_O0qc&W~VILJOYF;?}P9%sVc z5VO#(c)n+1Z}2xgH^t_x_L_?-TD^buRmoAPA-X8|~+;>xtDn^T-#JwGdL!NehK@obVU@VDOMvPIIVt6AGPaa6%o z?t7?BtP!{i&f=jnxnXk}oAzFt5bYnWlvEjTXz-Hcl?Hz?^#tuza|Y%%jpie2t=b&m zk2qfEVb92^LDx3C7wQrj&dpx@)N8g=WY;rK@-~d!QH|?Zv@?`Cpp$2}16k9xo^`wv5nweYY~8+A1@5NQ?XY3%Oh)7az9ypo@bJZG*j zk6lM{;EMkx(HqpK8-~o3=lf^ME2j$3f(bOnYzg&fmRvH=xZ)3)6oJ^6(}K>JxK38P zsZN+#VVaZmC4W&`)u%K!G^vs&caC?FQ&y7RoQ@r$*DgKH6qC!%H2t{UNESgA9rSGK z3rs_ubC%ncAaiIJK zCvr`?b91kMyR~$?T=iXlbjkEs@dG_bvDyZT(YTiVNk4P6W#ql%{Q;X!+-UFZv5R9p ziO2bI?D50|-iVYIPwQV|B#eYT#as2m2q6j8hC7DC9d~^z#ToW0jw7%$@2M*3+D6Qo zXMOeS9wi%CudZ-1l^tmI-mAtGhXSHRC)W8m({rJBIfpx7K5QsIY%J8pP?Wmrp6mD^ z>+}sW_p|~hk(?gxioO%JS?!2b4ls8Ra+2w3 zH#P?^>CuM;XX&HHJk3N|n-Mb#BpAjBhi&{I7x1=1XF<9`VLK)L@l&nvZ571i9w`PK z_{{W?33^{3Hs>b-OYZETkqAl`S*?|POTTzJf? zi6VVip_cdHyi{?0C_1}4;769;bDbMV;e4|ZM_%YHy{r;=Q;INF?Rqul z+;-BxYQZ(U_xe}ebv{9xmvnb+?_G7H&4(N9s!Mu0E>>Yrs<5Zy>>KS!@;4$uAlX71 z3fXmG9d>6WLd*|$mpbBjJwo-X{Mxl0*Z#T#86X5WUuNobST&PPF>=%MDq>aGC9lfu z6MUcSvAy<$N9+kdGlvE{%a4SdQBP?Kg}NGagjsR^QKk|l3%&miun+U;K>5LrkLdf5 z!mxkyyo>4CSPs2S-|SJ#?NL95So}h}(R0nw2A01CUkcgv;k;xV8}uqbwK@>1dW_}s zB#ilZ&%*pd|GI^FXi6;htqVRD@SmuVCmbA%@A>mRll-vpJ!kX=U+C!=hWG9LJ?@#u zf)}*&4!JXohNp}8_N{651y-$WVuj94Xi+Rr|IQcCh)qSpCgiXfm1wzEwg8-5%sL*q~Pw%@XVn=+qZcq44VJvb8o+;xc zHtJBJops1aws%}_w|LO0x&}A;@1oKjvzA^&(}GFz93pP$H{CbcWxweT*d2*<-O}($ z;`_{aY*rS6%yRCeJn?Zp!eT$}0h%#-u(t^={k6F7NWi8rv7Q5$Q}-ib<}J)IJ;Wr1 ze`bX2Bf;2}CIi;JBxjs2HZ~Z`CG^8g9ZtWJii9vBsZxMxuUYFGUOd6r_^|+l z7%01`G-0HP1W6lzEkWc+TprHP%P)10$kQ&K9iL=ZL4$1Y^FXIKP6hxVbPk zZfW6?eGBFV?KfR|Lub^Jfafn8PJ+7TCy6+yYh^xim)@!7kWr=kN8GWzZ;^zS$SbN+C{R$u!0C8zEIwn-!m@*d6*s#?JIO< zrGo_WCRctY-N^MM1RkFa*q;1+uLj$xbk8J#Y;fv&#q9m(r4{BiF(-f@=nV9>&_I)C zSI~YZkarvefutfe$tnBRFoGy9#Vd4u(3vH$pR3mdtRg0O)@Qgz=z&*bE-2klNPplF zcA+*` zJD8auh9c#x+AlLTl_b%snZu`uy>XDJE}^VXRJVnk`N-DwR!xB7fW6+}OO5SCS_54c zj&4!juTMdcmk7QY_X312w2u~Ak)7H@jwtlMy)diL|CfblY6LQXxslN6E?+OTb|tDT zR;jsh^j^8jSE33h?Tg^=eK)uyjauKGun4re@3x@ZzJ(S$OIIG+qaUQ+?pQO+n$<2i zJ5}gXg;g|`ptMsz3+?zYA1a&mZ5=O%&}QOZuGrB+Bk!Wb)|da7Ya3=+^R{N9{%++9 z3irGXqxph?YXOc~8|Hm7R`n1MIO-<^;RNliR-~CN)CfjRkN4WbGbwf-j|F%``9^ze zpP&fX#|rb_3EH`dbvUVGQ+XEq-2nSX_1nbb5OD*_0f^DsPG}N@fsC_{AvzEnKyX^M zw@LVzbvBD#M1KbC?59{YrR=sFFYz$?Qw{-(EEs7@|2dRqvL#2FtnJXgL!V7 zOKJ07qw#T=Kro=O)@UIEIAwibDB#Bf)e~Mxvubms1yxtQ;^p%WJ)sns4dt&pK_V@u zBZl6sv~bj#SY1`qLlr4Ls1E6-Q6w#MdFc~S%e1zjARt6Q!ijaL60f*|6=rDDs2APP8NZvXzD&?&)BaW}P>ElflOv zJ=p|0!BnLfrqIGyh z&q!$CXir^yMW*=f32`KAc!h8K-2s`-d?QD`NzAAoUo*GL4`JYeq2< zk($yssi?U$Su&8@6Sp}KM7G?KW7w~7AX zgdWTJqdIGEL0KYp@+CqndKVrIbnWIlWB6zFD%u(LAGzytNUsTK2YOKQ|J*atE`GUZ zlFg)K7!qFd$Q6I+i9}Bp`QN?kqwo~%IqYw~-&ZSO7cc2aY~$IM+ntz@UP{&O>}U(d zCislTqw#jf^nK)32#~yiyMhE|1DBc*gTayEMpG=o1w^LV6>Kq#60f{mKAPGo!juj# zIkjkxG4{>N{ts>M9v@YG=l=(0)M%phkt z4t3ow+p;0B{JLYf1jN(HL2R{RtCii}thJT4x`nEka0?fOBuKc)#cLCy7(hsXk@-Gf zpED5-KFO&DNs41BoRla6-x}J&ahk$@sanVknMlKgSxG?oy>p&xlA=XG$fU< z>lqSQm|>G?C=!*3PQ$HxN=b1zb(I1Fiq$O5W~sAf?gL&Le~;l8pHoRuEVsrzJbRLMOT1dB?N!_?kX2y)u9X^;Kd^#>6eshS`5 zg<23rY7owpGJtx@5Br#eLa%Ad_trS4>WV>(V-bw`VYLNYXcFEEuf1G?YgId?#WlA?IVQ5NY(u*J^v`x>_)X3qkDx;!__K7^D~v}` zZ?bSa#;*Gr0gn{q&8tYVG#Y=_G)|SK3bzdyx5v_54^Wt~npvYa-h1xw9x}sY&(p=N zXO5V=cFoi2(`G4}*cruNWnQUPIPq@SekIiVD)ad?6zR{+$fyX2cr@*noZjPsJ*CH{ zYOWC|{@MUeDZ5fIvp&%H5`C<{m=$a=D+qs_X+{PeSok^cg_(Fmxn?%7N9_E-LIEp5 zz70EdD#*8cJkAJvLnPSuAiOU(!wT15YFkWoi}hpEK!gBK{&U=xR((V5MyH0@PDr&0 z*NyuoOm5ZVX@$@x2nL}`XqzB-)b#^X7aZCmBr2;b2GH4BgiI5|=o-bL-oJXOnleBw zSrAy524ylKy}LBQT?gE&7VBwKW0&HC!JV#!1jNx~-exYl^7zP_HF)wXqLH@J8JN%1 zFgQ_3@uY2zu|y3gAlDzcNMQ1)kxOO`G>05r1qC>p2RcLYo4W_wdn3+7#4Gq9{j0f+ z57N$tH+&dtLT?~O$jl(a>oX?BO1PX|@Vu!nY>xn$j&Kp_W|^N5x{AgPQRw6?kMx@S z^L3x`9;glpNQFn28?tZ(5sSd!CpbUQ`utAcx>q8?{2 zPx({2)|7B=&jhyw?!5yw7%bp?xb#O|ZDS&7r|sBtz;9zoA)|3))fqT+xu?LwuW%fN zQeO($?IA$Z^0m9FqDW$8h`6fH8?TcXdP+%`V|EFQH+V8azIPO6OSq@lL{FG!jU`R` zW?yM$HF8a$I6n=B-Ln`hx(T5>Icu}IYeI^r2^Mw9yxu+K>mjEeqn4cUc5HOo1X`Vt zsDXO5wJib*-vv#D6a$2`BY>-Rwagt0+|laRe@ zJ9w+d8pIO3KQ0(s4w{Nl188h{I!II`is8i09fq-v3yJ5s?v#tsUwF3fwP2 zU^HJe{KMX zQ-H%EJG&B`2}b*Y%dK9rQ))DH6OXigm~S?K@cAxIQxutY^6@kovFq|enUz)$9QrEs zu@)kqiFcu!4dv}ZZ})|Qo9f4*vQ^x~#QJe|T}66g0vZdF;c@D$x{349^<-iPa3>Yh zgu$zY?DgTYO_^qHKg&g+`*L&(6$bC~`d_G}7%zY=;i&S03GLmID3jvtXDSg{7)NF$++RjM+%`kr$3j)oi7kHLdilW-Gh2 zs5OdIE!bZBmRUUHYL}xi=8cf^)eK^;%0NRUClKKqB2E?6I#n;g=OusKH`eB(OOE+s z<-*Rt408EYc*N9{MQQD5w!>rT%&M_Y!F5*f^;!QJO}rEezLNZ|C023X?z$=3+<8;@BkStM3OnH} z1!S6G1Dj5|bLNSDFy!eNr{>c{;9QFY@;Z{0JYygtu<&kXx2u7VkbTglx{*ELJb~Cd zZ&0Z17zem~a7XAIbdnC>PgV>VL6|lBp|dVdhqnK8UC^ttTLWkbHA>T2%g8YS4-kYO|V-mhyDYsf|DEre` z`_T+Fk?9&qI^k0Ky@qE3ZC-z5KZd2R@fOE^vf0>=;VbUCieo>Cr?~4V?)r&iphb3= z+hc2ut=C#aW4G6=m95uW?8ny1er&Dm$JSy$)`W3Ji|og;6EK@*G2NqNsY;frWGN-7 z0{<22#BT-rF&x9Gv-z*piT&8|X~Wd@ld>2)CW|pdwg?oD*LJNUaQ@zY`JpFYi%17Z zc$ldDzLhFOBpF!vGp0A1I2>s>$r30?r^=A`2Z_<8PvGh@h+9U!goQ{PAG|2~hepN2 z>fH{p6!NViNu)$+3LcEH$c&E*v5cIU8r3z?9`)XY7XN+?7~NbPg_IHHkDRD%sQsRI z^LQ)?KQlm@BG;^y*V`thl5M#Y?YgZw6Yb$MT*S$jB%h$a^-7D6;Qr#=oy;9wy z`DB}%vi=e-D$0TAnQ-p-v^VkAg>KKqWr2h6F;D) z&BPCw+$JCXp|Lg-KcK43#1E)xGw}l^x5+;nshVk54%%DYc8!DfR^y=EZXC3?8VBtG z?MH%Zr(tAI`|(skbKI_4gQniUQWIw+ETq_sC-O>Ml860Tf0t0$$T3ppgo201r?5X#ZGEs%@`Q}Ng=1zuIS{iR*ol`eM;TEaJ7oMdb$bZE zL6q@eTm9pqJ3`+KeIrz}irgO6?C8_s$>^5}3wv!8O3OYRwLd^lSzm;7gPD0 z0j`rRrdXZ5m*u3c63G3LXEu=lK5f z0_zq3->N~Y(zpK18jLU!m)2T9%c(=cP4vxmGrq*CAVB(GkJd>`!hCU64H~nOA ztD>y5pIW0|s7m^@#X#?tJ{br2z*i*XI?6d0GI+~JYQcU%`#+t^1lc)d6+6yDL z|H|&m*%+5@G&O!R?@Bg8-jzJIuFS2yh*S5<-0lJuc+xEpyE0c>tO94 zNVTO?=Zr5fd!~gk)Um3s_Ec7(n}!TbbaH157d;x$0S4^Q`PZTIuY>bXZp&NGasG91{!y}2B}*wubsyqC@L_dw z{&l(MA0}J!N@52dFiP_-8H|%_Ch})Y<%|c2R6k-t!gA-T9g;77NL)-*pnFvORxhJ^Y z+#iGIi`+FPJ@&eYGl@fQXP|L7_wcJH_Ra=E@L`q zwRrN5DegI~V_O8&Y<(H**J7|=i}5*9`mG^Wi;DtV3h_3wR?1nPdvY)zX0?=>d&TZO zIjM86!raReO)G1E-5pe0a#d>4$4WhJ$v1_}XG^j9Z9ZE@n&15|uUFKQ%gdWcg|m&n zc94w%oUoBrw}LOlR*OlGh*NXDr6YxLYDA{Jotu|8$vX zj3NGBbG{w!yjeFCqTsMeRduA62wmpIoeG#>*{{h^DPKKZNHDwIm@MyOJ>$0%+01Y*4$p4SAA%^Ge6cg!j_W;?Q0 z$hR^=^0)g%^W1LjG#KAstk?bFRLvg$!1v2||Fe4kQ)j(z70VObtAHzUedZY69hm!F zgY*$dn2^h34AQTHUrbH;-*j-R-AN7t4y0>?ZL>ZT>{8_FQ1ms1zXLdisq@Zur8 z!|8*6a=hY{zy?7`iE#us##ph)k^-Wrb>NvVCUl3^g! z8yb0zSNYdN52XeDJR3U$jjwU9ckk(LjqNiE;wk?zw9fkT7`1mI&ghOvZ;P=p_zc*Kur0aMWZ1Jq|-KQNo)wDVwZg)Nl_F*- zsnNrMJ^5_F^yKaV#ECcUr_FC9Y9Ep`Qi~tsB;u!pek5b}D9w0cuyk0Wm$0jCNRx%E z0hty9zr`srD1f}15~J)jB<0Lnly-vr4tfpT?OtXD**#k6YrKpsgl2z^w>oW_zyo(V<~ zpyQd4dW>Umx#liV6iil@)>Lr_h^-^J>NfGKW5?d#Ey$e}@)d#>0 z;HH9Z4u@29`@oLSNsUwxr4htZ(R~w~s!KAAR6%a51myJ8wVUCxLanH$dR7^6+@R-{ zee0_N-fGMK`kS3k=AGGdx;GknvTO^%nu7-ejf%Dz3LXtKzOOTp14T(c+9K!;6T5D9 z{8vYO>j={mm_LVxbQ(2MELOJ5RqV+MJLWravtzx$q8MqEv3mIv_xr70ND_C8tJhn? zZOh(^Q*{fTrTctkaJuBIJ~{)E1BK_NT1;owqKWIN?TrRk1saMe4_@SVZC}?%bHn)&i3P~yWL?1C-PHrhc z!_-`Weo7y8Ed^QGS*sHxTz*KIJ<8bo^o{jfHNhDbjQRQ^zJoE}F-Y5I^T2U0BvFg2XIESi`y7o(KXC73gTLw*Co-T@ln#e-v>f5xmFoio?xov zYrH0d0q$X}Y(K9bdqctFA?FUlw;vtvj1F3X*tW8l!)0v-mw^t9vdEX5n>MJB$(Wlq zSdZNs^=%Rk%MTghl71HSpS0?>Gv#9$gEPr8M}BV*=VGB9a0l`Kz*bUXaOzS6(?%x? z^}AR*0F+rLlu0~weN=Y->>~sWGv^_=5!R(7?1MPXoH}?d-)@8RP93|-( z^l4$Lbav)}=3^z3U8as-lhiWDe$8&Mr&34=J*uC&Pd_+02K3{(i_US@TK)X*nd`Sz zLU7jYrPMXhHQ`jgArM2UVJruxfHuOjaE=e>&{dEwfu}nGvXGDTUSA&+@{J%W8j)9a zIe9>~ch(q^Mw5&o0HN2x!ay<;{c*$w%<=&<%S-7!9*CQm;JPeX<1U`&*epnvtVs&v zBc<0zg+40Hs(1eVB`$4)wP4AqDGvJrW{N|;>)feDXM`iah#S*%`wbkoBuuvqvs3W8Ob1{8k+%2s50+W{k==2fvuSSbOB|;Pv<9xVG*N4nm}&Dt;~fX zG~wZ6PErt;1nQX^0CTbkO-n0+NM9eUh&(2mI)9n#Ek~BNBn)pA^*n-SfZ%&7QMAahYt78e28dW8e#>t)b<^+~WC``dw_Ip;UXl@uAxXfmPQgd8d zb|-U9n4SD9qR+tF`qoOJv>5+kG~^``9DTEDbzflqZ)wYzZb(su&v$O15&v5BSG%#5 ziYB_F_HHoqyV1m^hS&R|zL!aOAMtgSD^PNN?43Szc$Yr#$IDT_ZEtACxV>O|5cBxk z71gZ&ulDsoDSEgo6!^!4R_47>a9g0^=bYVA4%<7Tfu}cuHe<@arTCKh)~kIPLLc6~ zl7bTJa9#VCu4%krI{Pm=^-X7Y>z3U)CaVak9ej2>mUb|1%gWh{Of z%*3XU?<8JeNC!}O>?ZHmt1_tx`8q?sbs-;~PAkjX1EoEdGx-X-_a@oQG_amNj^mx=6=l6|ZwUQAg(5xk1?ZSgHg;7YWXv-hdIwv^p)V@vBVJ?y&DL)(atL#AP6yknd%R04*lY=Gm;22BgtDq27e^8?jaJ z8Fxm#LK-f|zgl}sQmK4vc;E73PV&IlE?D^c%X8oX=reM5e3_#5dazmQAH;rN*jd>- zI0x;eGYYZUdvRyV?wtA;*=dCXj&@pw5ANV}=a*Pw*~DcJ_}Oaz^!*XFNg2YvV1Jl> zVjQb(PSpK4jZHF!OR2m+q51d|hkNW#*w(}JY_`gdl^w%J8WsQM%x3Kg7I-=_f&r+U z?h9K)c}j|Z#U+eI2C7dV^kLFTx=g0}n^isR9U0IVaNN@mj&b%*ECG{tg43ko4T$DG zATf$f4dhN+#CN>hC|hEEX6Jlusk?Jlx;sa~e)@NfexJQ_`q(*p0}WGYkOuneMG57T zfH>c3>dPn=Ap2&oK!R)bjT~!CNB_RRqrcNF`vd2D4D6UwWY(0P!iYL~x8i0FZ2rLV zts@`cV9U49hf)5aP{Uhnj%}82v*r7X??gFyCprP2D+NA;)M1ZwhJ(AK&WKK?E#7yR z!fqeY4tbeXH`l|s=8cc>Mz+{DOtBhMY&XTs^)Rj}MxFq#*tblv$)?y_6f@VuxOPTd zO(~~nOSZo0rXcxbX!ZyN&Gj&@19NWyg6u79hTQ~4nD%+!N;CG&q_4`XaqwVCwKnQF_^Nm6KWip-#Grj!fk-5eW+|pX2bL^2YaU@21k+sZ;$Ut`Mc~8 zF!wd)6fv8e9kP{m-e*Pyx|Zp~`|ciLx9Suj-YR$4e%JAqS5#+)5-OOYyLs81A{6Bg z4U`QisxyP4lTFdLRMfpQj62l&If^<{Ue57q)|o-^I#ay=6rpDB1m=#;o+9?k?3;J3 z;QnbNe9dM)_V`w5-xQTXSNpnnVy1QbseQAZeG^UWJw^1!e20nS0hP;f0k+>K@-|sA z3NEi?Bd(uU=gv!`tuG8SyFtG?V-JK8{HM? zP7QwPo;(Aj_Q|dS4iN*-DL^<7?}c{;cu%4q{E+ix&N~v@MRcS*YT}5aAB-d}lxC`j z2PA`Q;6$mJi`Vk~xsRkq++V&jRd+vjc}L2K4Pf0*F0HtHSG&SCHfzoIghRom>BSNj zxAMBXiLlL6Biz3YN$?+-lPq3Iv22+Kg_N5$Jj z#yLqmT-k(^0{4EE(+oTrwp*;S4?^}~-JTh;d&6aYuuCY`32P85+p71biW!8qQflw06GOIhK-yb48Sa9SYgItTN<|5RNb$mXb8lO;Pq0w(DB} z4|S(_qf+E^lOm}`GY*t;Gb4`c&|zQq=X_uwlIRu>R(GJU^GFXXo-G+kv?4q5Z56j( z=6YTDo;Qsc*z4%QPBepA#A}2!m`ghMhv zBXF{tBy&Q&)a0s{9^lJ0cL+Jvxt21c{TsK!WFOpxR7o;}!Vqd+x&Qe#lV}B*#(^0n zV7sclocTM*K2S|ZP|%T{iG|ttpT0op#wae1uSOFGIV{&_!O!Kt#-O)vL9KE{IWOH6 zxTB35u@)(FKIPunz>S)g!a&u>hqyO(m=dMRmqMxZuP)Dt1u>z!V`J?fNnrqc1_v0rTk2IVZoFpt3tdqU7;q{Y9Qjo}~Z}>L77j;G- zbh||xgX!90+R(^KH^hP~O-uV|NzJH@2~tcK&2l@(LZeh)S5sEwz`BKEBKqC7W~& zx05Pjc-Jq@)7JwHk6s|s&7@se7r6HuTww-m`KDkeO)~ZB!2Mt37DrnpJshNsq>VEM zWENQP?_dkySIUTydV)}_q$1_Qugpa$WEfaO|E>j*f3Ep^7Y61n z_X8cuFY64KH*NrHvD+yNHTHC8^Y}la&=H71b1+uxFq1ndBc3?&bz}>Y5Lur^dii;O2Gk7O%pOhGhv^2^0 z`fg4kR;a7wHe<+`x6Pd1+Y~>2=#*^=b~H4(jSNMlR!1M7RUNr}PVOk=v#z6* zH;15;r_?b2Hd#P+m@F<;+hij-tZJJvf9y~@Lnd!4)V;~uWCl5?ufzywp8@bm|M{f*e4ew9R81G%&hbg#_^i=5uAxtS(iuMK z3!kStQTuR=X*I;tw-J=S8%Jk9x0^13cP2XiwLlyJ)sVCMTjNe17OPX*Sg5L2)~KqD zRF+d(T~o>}NW7K7fYVMOb!8T${+nAIZ*IU2>EP9pZx8x+EOTf4lK}$w-?iQW2QWmU zi4AQ1uPF~2{4nH9IEavV$|ZgARB}&W+@7LDy~#`ZVyO|A#8ad9#O)EdZ;ZaAcCB#1 zcxTGxgZg16}>kJwr66hW>XIX*wi!8u33w7n}oH#*J8eABHsKe z4?F(_Nc5`~AkmNgDzBk$P~Gid3-|D$KQb}&?T#fj5rxpHD$LY>DxLzblK3Q!=?Fcn z+Jj_fN8GOI;JeKVuC3n_^O1aooG;C(n)~xpRSWX$s{8Zpngw}h6BeQ04}!lQBzvj$ zu78G-5+$;aiEPO^DthWHN`&rLTa=kinJ$Ivjd8J^3*pSaiZ4T%oUXTs`}8*pcD+cc zKaf<1Xo+)oVCzl*sT=w7ZYi-Vw`2_O-TI?@tB|k2)s-+HSWo0%@#X(E3CtBt&SZ7$Q0<4nz?tQY(^qptsjrgo zk?caxlso~s8L^))QD)Q_-e`Aot+=5}bae5><)3HMMPzs#VUSil_bxv2Lifcl)2;c^ zd7B^N0|M7Hs4O`5qdofAr;k>Ba0c(Moc^|GS-c-$i5M)jxQx|;%xllYci_xX~M z%+M+G(&atZ{3<83d}LrNyrI7Y3RT2AB~XI>o%v=vw~oS)=8;cdj6q%)!J}Kpiay>H zFFDd4+&N|J#iT*MRyVROpf1TLXOk(BA88qroAdWnVyRs2fO2A$P~XFhc9!Z{{(xsj z!{yactU3x*M~=!B4k#xFze?3n+4<%etbOLJ7KEL~{5@y@BsHOcXl<}ek-)rv2m&~X zH?lM33p8HKyy%LroIqpIX|v>wYI!lu%2Ht}k3-92m&g`3^`BF-lV;yh*;)H3dRIE2 zcLMK-^I*wLUa{=!J45OsC|wZi)$5g!1Zc%bUN#Emh`@g`S_ z@aLS&yoTZd-CSOo9sVMqHMG1Z@ATnE2tcSO`KF_oGxNJtEB4J#GAEHU=A^v6^9Fim z=zBB%hGa=D5c??_jM+aoN1lNWrM@1?O^a>6kE)|KNx3AnNd4U43ggvBQ!8QvT2SFa zArxj_-<=yO=|k0k66$RaGsS;XO1}kTqt)X_DLpn7dnWCz(25%K>VqYkekS$5+yb~_ zc-vuewm_*{;OlB{${FqD@Qjg|_Vior6@8EPMo`){qzx>TEM8;NnUC*pNrh&|!p43d zH-t1b87t}rRLxX&-z0coG0jv4{U!I@dTNte92KnmHq)WT_jPloVdVBnLP*!BD+(0Kggx?P^}Z833Ar0z5(>iFx= zGwnk$$2d$>U)U~K#^3U6NUfd--l^&$cz8k9>8}obq&qzM=r7>Fn&qEuPHT9}ce;zb zr#h$4d>ReDGL5JsUb9WAUd>vze-VF*tV5C79;${72hXrd#+e%r3`B7@S(HZdco zZOEwI;_XFj>AY>I5Dz-CaqfB^Y50^E$g}yDy&sJ73cfHyvKR4JFy(h{Vwm`ThVALO zileBbi#s`idCy(N1MpDbet`%JT1n`VzvJf_z)U;Kb2ya*%-h+xq2)9G-T<@P-7G$q zf4rV{?k-|8=2G751dR>weu5_kRe>V(+id>ffcxX4DV;x{v;{iarxKLZcjrASQ8=K4 z>RZMW(t(*$`mOpVf0p_ts&w&y(oAq?wmN-xeoh5S2NY0s>v(c;wmSV*b(7S+97=Z= zF`so(Zwk^4bSB;0yGuD#?erkyY*{gwtcNm7lT~9Db6ZHu}oQ7UJ)FL9s)CA0E zXQeLAG~2n7N_@{{mT)^JltUAt9Gqk@(?+z6jLg1Ac>pchsa_=JB(!OYyk;Rgw$d-X zFW*?UVb|MI`x;(HIj+}H>x^QFIcV4HV6{JFpQP;k9(L{`$`=sZ!-3Xb(cL8=QlBhX6m^i43>rXb3%K_4(D-%DCcNk;WDN#)DX@YoW(dgyF_;{ z;rkqzXCzxym?xKQ8Ct&BV4i-u*}eTay~!@lr$|g^=+_Gk`JCrrAahQGPZm>PMFkZ? zMSrFOJWx3R4|s(N&Hf)e+*CRyH>nDbeZf7Hh2j?pKG=Oinz6)#=3uoD;_FbwoM#CD z=;~Uc&a^b)7Ge%D01W1!#t9D5a)c`LsU=32CaE^A@8fM905er@ToA@m@unB`q8B7!7%D)=SAfd zZdh&ls8tXThf4StIjKT1ay#h)krP~7+?`jbUs&~?G7WCwR=;U*Gbzn5XvO4qskx0v zSf1(xee@aO2Qd$d)$mL@Ft)`n<8gg2;7d|rrHjN@eV%y^bARd0NM;c6-RDJ6GtnUP z?lTm`{a(<#Y&6KTZiA+$T`jb%*0PNe;M+8o#p3uY!V>e?jZ_m!42m$#ecV8q&95GQ z$#Zw%Vmc`9UXL`hs!|;th^q-@w*(vhs{h7090b%Jh_?oJ-s8`#@4hX2Bi0HH@g5h` zKMi{lOAxq@mmW^5g)bGbgiRcN4-*8BkM3fM$R#OZ%}?KwAOuDcYo&a^0|2r;Eb~XRaX^W<=N`)nnrAKZ3k0k```t)S zeYIWPS9=9`a;^d1{ZF}@?|_1?ir&k zy07UIHr6nNel*RNujaTPJK*EFm@=oy6as>;Nkc7|K(kN_gtrb6!NUqRiClnucA;D| zt@rWMSOmE+deK;W^dfg5DlQifF`hA=+HED=>)&l4!14aL=KNA_hwTjt2tj&?CMMk~ zYmFvWYR0eix@rz~tgROi*MApLI(Lru70nxuyw{ugH@r@<^)6_AOk1yLSu`8x{0o}b z*o%IiNhXLj#a*phi=t(B1$OBUwihRNYFTPt>|d6R-Jd_lYyB^fB%)xMUa30u%4RLp zNUtZZT`SA9z&{_m&|6M~e4}TxU<s*PTpx>qIu*k&P41b^Ce%x^a zu_HKzUYfm#9|`Wc=OdvOYmN!u(|s2d2lT~+MDn)~a6~?j1W!)C3U9j?F({~;!@Z+n z8wbt|Zb01YzM-Cn$)!9@>LJ3kDJ#{kCdez{`@Q#wo|%1bnP|c&nPV5;0qf4G z;gWIgxCExvjLRfQ;%w#T{9PKPu!J2kVapbAx}=hqhz%A33fVI;B3i*O_xOMheGqp$ z58wwvb&~u2P_3YkHN5;X!jie7oeS{#AGK?dw&;roz`B=#Y$eOU#ru?u#-Ca?BawMN0kx_s1-JRZrdmqZBgRDFW=Ut|iqV&gLak2A@jC3~Z^E^1a2qSet6 zC;CR=sS*B@aES|r!xMR)%6lX=>Ze$xKx?Y4;DKnODG)mVIO{T+81YjJQyzQ(5At{5 zkc9#vZ1;*D5Bqu*73&F#L6wJn2Q1%HW*A}#mU5T)^b{g`GWabm=^Z|B4qm4a4cW_M)VuGR3P;-6VCK!Ff;54l=j}@JoA0gY=P1P zfzqvk(%0E2fzns4Kq;Q!`xhM^A9%ZHg+3>*$ko@B75VzATTw`@)vH+e>a=boSI9lS z`iMRb=tj+oQhiNcAs6}TZTdZBh4QvnzoCy;_4?LmLrZ=Pr{Bc{^sa8XOYaA&6^x{M zr|tlS)myw((2bR`#Idk59qsw1z+6S96eD4ujF*vV?3t2fn(u~_g9DAX<*{l|-C9Nc z3pKngu1AF?QD~ww>KZ8twBAg>A6%l5})sV7yn9_l93-j3$@S~xaje5k^R>UBsFA6ziQJGM27 zwKc=Pq7^u)meE`_3pWdCg11i5hPUzBIx4TNwc0f#-KU`BLM^fEKmM0x!aa@M;!GrsK2kou>`nh8A$l@UVS zNR8TS4@>-}n`cf0A>q-ixpgt1oYKS)e~@Lm0HcncGpU2$jhy?_t+IPMh8&HDSI<^Rs)p%{Iv8mymFh7u;{pWk8a zkLWUaBc>wuen(8-DzV^9eiwR#)6W5Hho>70bxC10BC7?d|A!X zv_NQl83xzU%qHHgeKmx6RoNQ5$9}mC3$@WR@X#?p7s&tk{)ddS`kR6&+^wFZzB<*Rs!%7&u&(%?Ie-<=BLBH zJ!AEqJuNd$;O=UQ23`5(^bik(FvmEfKFg~WT2CLDJ)Sbh0lv7!A>Rhlv&OqZ!6P6- z6@Wb?ZogZi`&K}tlAF}i2bhP-nnS+Tn9ST5F6$yiL$*$#+)~p_EPrtDWh5t845m&n zaJEh%Vxe6X%Jvl-v}`W}bJwFE*C-`@P+fPs#ir`ZJ-Ikj7U?Q`fKkU{UAhMteY}$^ zPoR-i)!^e3#v77o5!4#C!}($RTLq~3unC-Agq*rKWZ#4P&}}175$Et1fnd0kvr?}c zT+w(dS7E|#c#42iGL7Z4Q3(*)`aeHO{Zq5&$2WekJT?wF$uYtUj1j@jSlYm8B5fte)Hbd_13<85zz{VgocwjiW@ zE_E1lVQR?byYrpTTx^C*S%30^ko{`+rJ?7g$7ncl37&#)oEorK|MDf&uOVwv5#pRf z7osPy2j)Z(Z~t?NU4C%k#pHw`V%dr(1`HQ3@Ry8|j}9O|bVqLwj(8)sC*ZG?9c?9j zwSsTlbIUn8wKUr)gKw8NougBF;%Wj}5q?|h)CU(ZfoH4hmSt-buN_*x{jA!?&vsS3 zt9*%(&@E+nP(q11+Cdm>yQR8FFS{hiYML_=!iB`aNJLZ%>;sVZe;fj zkPx@u=`OTjEp$7pyQW^6umq6uHU{Q@ATT0~g_^wi)} z_~f3Cfx3IxY6gB9j$eX!3hGC9&M`ZM*#`HS*;#y6gX5RFD=~gqg=S|g4T1bsS^4_; z#JkT5`?D~Dt%ngltSHuyX?2NO<$I~VL9gZ-&sx_`;1rVCg~~mW$jae3p86<%&Iu~@ zCWr!|giqDg8aSEOeILyZKNLFk<)lAKu=TO)IG?lL8 ze0;=6%}Z!z#iRieaY{@w6Uf+SQ;)P_mL_t4F(s=9l!Uk~<#3|I?m5Ko&NUS3`u!V< zsf}i#>#4txcB2K6p$cWzcfHxIsAgTyDBp2Ym!CAqP>EgNCV#uW3rQd@H;Abuz}9yq z_InijpvQcz+s{{f*S)XntGo$*HO|>W#ZoRq%q$fE+P7g^vWECHqOG-mPSYtr#e;!5 z%QHyvKIYly!`z$-pOQwNN8FGXBSkKS#g7ys8P188< z>!GV#Muj}bQ!T&Sjpq3DLavJWv_jG_7Ykxl841&}ZP}wAKoXZ#FCW4(+Vv%G3G1ZB zQ4UW2dR`cyY4%iMS%N?d8#sz`%9@}fXaCVp?^_1hl6BO^mNX{ zyepK>urj<5SSZc2Iy#c?%qoK6olvZn70RJPl=9niTLuXh0`nFli-mRw+;4Hsd7|Y* z6@7zV9{|}XsF&ZF1?wIf;FLWFSc_oP)6UyY=H{%p+W;wVivP;tc0P4$FYCA9d9<{= zSAGI`p6V5q2D(p=DW>nv6CdaCOz*L3%ICJBswkr0s>!IITUB(nS5ySCY+g)*+7rLm zeuO6Ch==4FBnC1_oW_? zbD7miyWzJ33vWhi2i9v+FZoQjzGkL69Yj;Y;rP9bZ z$uXr!nSC=#U}hwp)O`>7Nh5^LI+ZuuNnQd#jh-c+jpk+_sQRXfM@YUpv@xg`p%Xa?f`wd1{5sZ|8R`guO{t;P`xgTPaX0 zsCWm6G$_3MqS%6{Y99l@V%X#QAPzq*@_C z@A-w~QEFw>`EI2`t(z&vI1fR5W3@jyv)dSRp~_Q6^`&%;|8Qrgv`bmCBs&m~YCWA+^+c_r zZ`|RbXW;Y}ceHLIgA3dH0S@745~xHxwkkXk7try4?W*;d z5B=o=5%Z@TXV8)#LPwrv^7SN@yCz@##QnqElGWG!e4k0=FM>dp9Ko=0%lizG-*56Y zerlF!ooSfX?;gsPrv#>65c#5OMQg94n=2Mm3!{EQcs((eq6H<s)r&325_*_ zas|$D=X+^sbgC(cPbA3UhEWUj6TmXwU1ZX8*{%D6YhiY`Pma$083BJZhq&@-Q+cb|sen7gUUkJ_W= zgzQnu^T~tSgZB3Rd;;rztJ;W`JL7t7x;r%^iSY98%8IGyl~jm42Uxf3+nM19 zk4$1V^pE8j$=wel_Ok$eispanG^}Bz?n=9cHu1!2%l-?hZ7n}>NyQ;b>>MIDAge0< zMDJdfRNI4`QuEa|#u^{P(yvWijYM7LM<*n(lEtOdWVRU#J4giZ&~l+ZBqYj2h#lJq zZp-Svl5R^kcpo)d)G&!_Mze^^EDDqX;9@-mm8&nzjhgpX2d0W#WaN(uTFOP1;Y+pu364l!1zen#9aXx}zU_X?}6ff>qb#=gjzq zK+vp1qNr7Q1+Qd8k1_h9R?KL_KC&|I3S~B8=_}LTnpTs0uqa!G%Tt9KR-y4xDe;8c zYM)jfCS_o9MGDi%@Nfd_m}O}KP}k@8?t&r4p`mJ-QjQDbupZp1-A;7g?u2g@9Cn0X_QFauM$-x+>DDWkFnW|j^1 zfXf@_7^kkB)5rxE!p) z*aTh=%udcOK>1NAxee6!1E;$igyiTZcO}Wt0tos;nN>H-NQym0kd)aVl9~miGi%MJ zGuskacrV_-S|uh};s|X;=_s`5!Y8Gw)7`lqwGaw+)JG+brw!pBY3~#57&np&bX%xQ zI@CfeC=q3Xwyx%5^1}$kCM&_&WDMI^(h=~LYwm2)n-v=SD1@I^yTVV>&8+nYHwG5| zm<*R*tD5=>S~Dk5)~uKgXvcX6FmXg|lV@~0gP7>lkl)9?hk!H5|Mm+38j8mm&w6B$ zVRmIFIP;9jut#@k#Wf8=T>>+mT4s8AyaM~8sjDts5G z@Tltz#K$b3`tQnmh!88;k5hNUp#CVax1E}nnupA|%=nZJE@to0Jn0%a%~oYJYwJ%2 zr(pOoOizfH>rQJnADp{6Le8`dXjDxH8ukNT3jF6(VXwhHlTq@I`v}bQcwg5hfgVl{ zCMz5PV)2nyR=E2B6f(luH4w|I#yfe}DZIx0GWd-q-VX;~O3orPT-f(o$cd2|?ie`W zUY;Snij@(b+RYBPR@vbuKxXKqi`rY_Wl9a_Wryp|W{2BeH?iNq#7z*Fm2SyWyR*vC zhIj9HrX^=(iqmEbEPN9m_O1*cA$y(Ckr2C>>0UqHvHW;D;9x*{ucmCKI81Mt36m*q zgXVR!GR18eXBTb8j~hc!lPONLfHK9c%VvtJ<0X<2$9_Z}H$^_SV~hH_zQfsw)PFvX z`H1_EbsBJ7!o2&F7ZM4hv^(IciI5$~R^eS)IuJfx#ozLgS)I#lCJK$+S$bL5`5)mS zu;+$hnIsj*u+CiY1XW7^+~lbdUGlM@1QqnU6%|qw{SEzd6Y6|Y8J6nBz{2u%r*ENb z7b{H{X$z&_f^OszMB)Z;e0ehfSJOPCKkV%2Ua0&7<0bT?aXTNdmY{3rR6-Z>JAf$otXSX(1Qz zea?lP$%KTK`~UVrw!V4BLe9?4trqfU(&*oJ#@yy(R(NV57i(_+OXU^~D5uo3q&;8} zJMZAx+4HVpF)HBm8v};541J-7wUqC34r{R))^_x=_=Wy8|NLWboH48=1BUgIl<-ds z=&pg!(}wkghV^rmTRNbeP?|d`n@4AlDr-M?TD(x=ey@!su8R=jfz3&D@NHze1J_ zuls8+oUJN-EgIZ94HK?xKbyQ}Z0jNV>HiV#xVHZR_7CN1_b(GJj62^NWajKoT&TQ8 zs2#V2Z<)WFoUWk;Ozd-}50kWu2%ngMtJmam)$f!52jMoqyDSkJ73uUBFO zbJ0Y~*TB4+(O^aF1L~<>?fm}y%jmAF#*LGu3fsK<5A%SOybBS#HB+~d@Q^w0a@=_C z8A=w}1i1=MyPMpPl;ERQYCN21(>>Qf75yX)-v)7mqywSdc*5&vUudBk^_7CjZFP&H ziFMRW*ubDQESb6} ze2h|7Ds7L4HmXS>(c0cMp8cDu`y&kFT2e7gAIkAGun5upf0*v>un(o`8oV-xx_6po zREQ22^sl@?GwjaHX`nxd2j>9&{h-pY-7V1HLb3>fJ~GuU0{v2feiNhiW;!*R{#Xt` zHQGk#^8IW+Gz0i5$8`4F0gTi#o157+BiDkzK?xUtd;otAaGbZmGYNRT`*VM#yg>ep z@&b8sGd!Q|AIvB1r~E$z9CLtowxw$$0KhXru6)x#KIyQ-c5`510xnaupyXbP-!?L3 zhWUgpA+xm~L<=u5kE=>18Da~3b*BQR7j|E!_{<6vK??7>5(L<91@4#I-pz@cU#833 z(fa=qp0g8QFhmQ#MifRMa|IbywD)Qg%wO+SxY8D-GpH_qSJjP-J2eo4IEO_XzX4&Q znmQ7aV2w+zZUwp884tb^vj0uc`Fs1@>H3!x5NV`W-h}D*x{jyNkM(qte99CLz7lf0 zG#w|XTx#-j=@=pEsxd#o%*>gA}t=axj>|3VF0zt=k^`}LTHWI*{mDlMXb*)_}4-Pb5U-aBT7(GjocQ!k6%k{>fA8BxR(<(wy0 zeb=q*1FBozH=g|1aGKA!BcP*w$|+Oq`hTq;9+;-WS5*?h9r!uIuzn?jThDW5j~ibg zjhhGsB;2VgW%TgBGHj=Lg2us+^EhlDf=?c=4U0N{Ru8%e<^-PiaZ^iR-nDLD2$-6v z`6;`+?y+>t8S&Fl!#&JFci6rS_rbcKBG@@v$FLRO(0-$L7ee%BjetP_jS^ibX*XJj zlKjBD;n~T`mjJ@;!(sYB_vl0L(DWWUF#QVf7wnW*1O@v~(%oMc$CiBwP5e*Nb!FPr zs>8Bni8nqqpSEW%{#b?<4|p8R9F1Kg)-3e)pXqhqptI8pT=xs1Npdm)+7!~@mu8CIJ2RI~`wRfkJ;w}61RdH29d4+7FG5I=94|j4 z!e_S_sE_klsO$l}JxGAlsu&yIQ|$ZCdKy)N+@Z$i+pQv1H9v=_1xEb52AcMGA0gI7 z@Hk~09fWx#w`HUx8E zp%|)2qQ^~veJ=-g%+EjY7SVcMNZ&=CINNS3p>Rx=LmuES#;UZZsX4a%cUsNcBcc(}0_xel`u~$j$0J`)lD*^jH10 zgdmHv&RWOAxV|B?49xulos*H1oV7?$`iwcQU1zOlp=-p3jMM=7J+(NhNiTI7q*O`i zM9n}JQ&73VJ24Pig*k_z&fg}R)tbTRr#;uK1GQa7LSi~2r>rH^jZ>^|laBRbGVC~< znl8!#D2-cI!SAzPS@GbJTEdP}?n7O&jsc%>Cx%lJ+YRuPKUT9~HZXq=UqmY=E+76_ zUHD_IS2!bK*0}Q@_+y<6G(P7RF$-(?He}-)^NSghq(=x(|1?iJqNUAH1vz+6Yd*{v z!~>{coNT(FT0O@XXg<_OQ#`m}hA0rQY8#%}%&?$boO;T`;%ju-qvpH+Wg7T40l zgSGqF;2-9jg}YLFJh*wLQ~p`a#y{(i_-9T2W7a>5JnhCm zYrXulR)x!U*xT(kVwgLl|B?KD2Kw;NnsDc7{#h|072}*mK9!hp&T0cE9hP&})fC0a zs^2-wMMO^W>cPRC=l0Ed>yER1v#N#X$W5}!g2a^DHiQR>?RCs)F)ZI99h+v+jBnN> z_-4Hg&GQJ{P|2M*X7LFfF?0GTme1ftr|3)2g!v)gc7-R+bqXqA(y1`y1xvaQke3Wl&$r(j3Y0dRR%)cthW{E3{%XioWa31W?&F*SENc z@@1>_z}$}_`c-=~vq+ug5tbFTL1pf_ASxoCL5bZezZE^$iFk2oKzK91=yw;7g!Ube*65-Xh`E`mSS~_ln1P z>O7Czt5T%H-GBlJDTv95I6vdsbwm=I*(nG^zAcWhKV`bf8~8Qxg4-LK@=3^NL+gAS za^&SeW2L!W{;sdZjSbQQ2dlj4L;{-(o!#Ppicu1><9B>=3a^O-_sh|AN=byBed!I~ zFtFAXb0$ATmb%q=iRaXztLHHcA0&}zpC6r~ebB3$H_v`VX7Fje2zB1#pX)X$g#b+w z9I3f>ezfg zGuB+h9MB{$*UuA09C15F|0}H2XE2vd;VgK|YYmyf_F&8Y3{pmLmzF29-d&+4Fn7%P zXMeQeP0;?ELi?*-wEs(k(_alWtOo7B1KNKZ_gf;luvjTQBDaGyCvSxs-t>jb-VvU| zcbPCuELpN7GB#EBD?%UD{SToe2ukvHEfSPEGVN$N361>>VLY-X66V(7u~4DU_(}dU z%lZSoSxXd)BgF7<*B@+tuBTAR(}wBrj1ZgccYgSdCuwaBw~5;EyjIV0W+86<0Kg8B zjeDFk<+@C$?E}-%cW0DKiU+ArkH+|{Lw*7(AIe2?^gfZjn)Qt&X|1|J&Tk5icP8I} zsWcJTEsUjyVx*)am4RBnAWVnFA6m)(H5oF%7sTQgB+oBud9oLbmjd_YsQ+&FC*Rw}`Q8UpIqbCtNV% z>x$7a>On8rJSUKLF@_Tq#VpyON{&l*xKeJ@tjA5ev*$Pxq zbzeG`nEWHG!(v3>F#utFtbb+p>=fb}1IV=|#fDx*g- z(R;v{=*>xY4@+4O40wmY9D3&g4p$cSE#yRSR`w?b;OQ|fAOwMRW@FcdVkw)tQZQNa z**WN5ei^KtC7N$4>)qwsDR!FBGQ@*? z#+*!aN(6=K3)>?W^5^>QY?d0O(G+oo)d;bBn+?K7sOCOU9ePp1y5*2ov-~UEs6Hp) zTT9L?CER{ysc3N5v`K-wd$=NYrwvK44bK#Y^Gw=fS?YWDeOZi7HGVj zJ1m>2hIduXIH%|$EvhIUjF4QjDPzLKoIgQ<%&P2!*jF35Yxyp58cTSRGh?FYT>XqB zMsEjH>pz;R!!v5sc6*QSXz!lPCYwvl<+fumm8rkNJgnR9cb_(_J!u}xQFB-A3$hc% zJTypbZz`Nt6ie)#kRY`p`GM;Ly?gP&labWow2V{Cf{UrHHda!}k~@uwlvQ%K!aGmJ zJb|RsS%#fC)Eu45GD>{)Da$Bo(D_P$$BQ(*g+kSm32h;-~9UNc2MmRv^2X`-BaYtaa#T$iC7Wr~tXN^QI{>ir|;mZ!;VZLZF$;aa!7= z4W-pbmdOmW{7vSi9b>ZY`ijv0z@3uK5UEatHB)`!bBWtxoy zJ7fopfm4M!g*XasGDm?CZjq=22G#ThBr#`oD_!xjtOsc= z&``;-B)PAHeM-zBRtgE^e%wbk=O6cVmGDgV>|y6$1{qx+s21p5gprQIHDaxkAs1)C zbyo28S^pVLkPGXTU~+8XQ9(93mpuB9|E5uVQh<+ts7vW z)0MT*SywmK2-Xc`nqdQ*PP%j1zxIP6V)wJGas&~9g?BT%UBnSZ&3!OymD9y+HjQ^; zd06Efa~<{eA(K^3Pu402367Zw>jBJi zV%W?>3-opUyTq%zOv;M+?OjU|$p&2USoVCc8gRn*nbDJG`axqE9kpMIqOu#~pD*5a zYVv~AnEdX+C^&gu4S1)Jt4gR{!Eb~#+j(36-0Wb1g}eD3NgQ*-Jccjj0yb|TY4CaO z^^*p>W6n3=4oG)(rMZnf)VIT>4Y0<7Hh6c&RXW!zX$*1Tczg6u$MI+U6n58=+~iU7 zNHhWT>u)^zl{nGv1EaG3jn4YtA+?2R>~`ZsXI~SMaK_U}aPKsP+)rhj+@*tp6SL^2 zX3OlYeXo4i3v@;Y@cc~6m|TrLu zEe?dqr%opv@y>P0NC-zaL_uKTXd3dS9q-&GymLdg^;>qh^;FvadTw_5)t#2X`V7n~ z#^=>I>dG}2|MQu6>6WRQ0baVJOZuI3n|P_;N%vIX{-+GK?0j}*zklv%SX<0nD4x%s zEcgv_Wde+Q?ti^bN!LAhG+AI>HHb>Bqjcvt^wjmvb?aHeUC%jJzh$FioO8=n(sj;N zJ#H*A)g#>0d4-<3zPWBaOS$V>3%TdN>M^dl-LK^u*Id*u?%@dO4YT|QTyw2I8`oT{ z(wP<*Vj|h$n%jS==yk{mo-*r*{$FT^)dW-TqcJeoOd)8qni8CN%j4|`ons@Z*h-Oe zdR5rI64_t!U)>+O7(@OY7$-TLj2Z$!myL;LF961M$d#mGq}(}Q^IxF)3(jBtg{r^s{MBEi`istA{l%)k`25vhqWVkDU;U-3zx4do zKSK47IDhqzRQ&|AK40)ZO7)LAfAvG`CWlv?zxqe3{?X^Ben=@OBkY0p1m^Y_)xAsR zg__^Mp_N3jE~Te~FA711t!rkZXr%vuj**Av=tm9V@&WR%1IVW*cvtZQ!IzVxqY2`G z_J&jNE#V-c`gC&CJ;@nCoY~~>-8i#Prgd^m`2%;!8C&=3bmrxdtxGB3_trk_bsh05?j{goC{^%%dV4>?R=-4Y=7mQ%%`N*R zmOi*8ETcXG==CD;^*j>-_b%X`7zT*8JK=FT>KhGF7VKkf=<)&#;L`mZd@GE`Xl?I9YhU^{OY`DI}csAQBi~Arw-?C#HlJF|I`>aDZrcCa%H6Z|7d#~_^PTa??2&2 zOcgyrK~o!R+Qw=0(n^K4OfP+!3-{u^dN0sUtf7r!8_Mvssqn-|85@xjK#rG#%uL(C z89T%D(J3>vBdxZBt)&S850NU45;jE}k1Ct%_SfXrI13_nZO zErYDzTF7Yj(p(wVtlxIW?F*?nS&PrHe4DD}8wy63dNDyU$ENbB$j-FG+#)xGm0o$l z9BX+NVcemP_f>SeYY`CR_Qg1BH_kn3i>Hna9Cr5qMG_{b1<~$u=_Ok{TyOMsHePVF zyvU70UBD&fVb*cxii$=^O=S69gX zu}P;D9_M#|pH$TneWceUg-IH#4bJ=1LI;(nPpg&2?)v*Uf6q%oER;{;`(N zHSEgmEx4e1ODq*N9n4g{<!&cq=i2s>96Ao>v`aGYNTyfdVg!?p>soP-a zPh)-!)iR+nwAh4F`0IDsJi!dc31$%+54|`4pL!-u*FgY#h2cMF)=WB6QSeyHf32Cb zKUKQ~9oLa+j^Mpy24ZT&l1OUU6ZWVjlbpm=Oh;R+Wf?+T5H|%I!sc8##%<33W+i%3 zD_m4ue|cHOWi9y;UBUci#*DD8!Hdpj1w-Z>VAoFy&3FR;2yDkbL2I@~?MHDfygsXY zW80Nn>Zr+->6z@=f7qD|=qKhTfCLoA1AEjyff7ZR$RWAc z0AqP)WxlS&MbPnhga84sCz(vkS9byu)9EpPI^7U>%^voIl*XbqYvBe%f-b%_W4e6T zr^2xP{S15BFl+hWi8LAd+;(nf%Cva-0z%-}RsDweXvRsxF%xFLyLI}_mP3Eds2b;u zs{XU(-t9yd^$fYeX3O7^gxON_N#EI0yyvGVG5Y})^8jPE^t>1LFrERk<#*Rm{nX3V z4>DVRQ4p4RNd}uOZy-Tyr;a#sc8D&^s1KW2b0Ex&+149LIQV=C$uqGTA&D6+VQ&-* z*YW7MZbpZ9@EXHUSt`UfRcdr3^l*yiOll-k&mgyw{-@Gy@0E`IKJQY}zgJXauP7Cfk8?mHc;!p-F_)5lk8}`stOt^V z9wbE^Dw|BC`V0tq(V5>LDU6a_UyJOKR$mNQOOB{`Mxuv2yP<; zuGlUVJ8nm=%NQjowz!}W1SE+chyYl(REwiUBB2iPjeNa2Qvz}%u^kGUn95sAUlcLF zd?knl$y%;FP7{zHcJgjfC+Ugt&?eqvkw9JQBVniX$}8aS4df1CbT$m7>LTNO0UT@9 zV>$Bh*blo5bz#^3M#NhF-bfe0hj{{>3i8_oODlRgn|9fERSC%q9eF~&+zsKEXM8x; zi=Q6^>p7Iz8|$~c3f6NC`dnNZvNh`jAM2gMddJp53d>hvQ?uwp@7&%Fr5ZqdT;vO0 z)(A^(8?C4Edf|obV0C6z{SY<;4dE?%n`@SQw0U^3CloQZt>ynklxXq=o`a#R@Iz5H z?!!^`iC+%V%F+E$c5DkM8`mFYw|T?V5bCHeg0c;y8^AP*`lIZhm1+RWe4JQ|Zu@9Y zJ6W_Afyn1U76c}0;M5Ga2@l0o14A)u*`;e?q4qmI30AUs z=?UNCLCYup17OPXj6H{jiq@t}NucBLN*MD_A;kb=figN-PbYX^!F#xRUT4PquMS>+ z!mq#JL+k(7f6pFJ=imiSrNHpZ2XE9-RU|Cx?_uBED!6(;%kHA&btPo#K@Q8rgJjb+ z$v15_ET#AGTlb(z%Z?Li;3^#rZf6#O6~Bmev%ECgt#PgV`re|90VUIb=ZgKelmNl@ z;ahXO0@~e5{%){J=6Pw-q)El{m}~swEfKdujk_L*mwKtPMMFbc zKH(-=+dIh$FG-G@q^sUcHbp%}tn}h@-T3{)i^^lY5wprmlTVsh3P=1`wft_dbgR8| zg(h9hBy>pV(;M`i<!kNW-b)y}1IQ=)7m&|d1Fg#@aV-A!Cb#91Xw3Gr52+753(H(kUzBYvKS%|# zEy<4C8~o8G3;P^n@iU5vW4Fu{*1giJiikaXmXsMQDZk|hRJLwIuUH9zpq%o#+Dz!H zXSYy(;*+F|!zx_&=ESUf)nvmwNy+GnpvroqZ&_1mxhZRbSC+XdI+K+6NsCu+$c}{C ztmUOJXqmQfgoeWlE^m-QBuCIj6|8%!SCJ?w`ZJf8I9Kgw@=>JId%5$!GkC`xq`dIU zEvDlzYUtH#eD!e(F`%xJ=LXg#VyeP#Fk_I$%Ge;c=Qi^0t5C5T17`&f4o-^!=Y5Zk z9;A$35G^vUa{L<{W)b-;oiPBenrB5b^fb(v<%=i32qv-Hb?vIcN;Ild*U}*_Q$aJ_ zi?7(6o9tLjEQXC<%WGgTi*Y_ z193cfZ5f|YM~?Mso72BG1$@SyKHU;@eV+4M??lJ`8VLf~!W`^GU zhs+S`Kkj0-8E-n8vw}>fJ0_-aj+U2dX?|IvAb(J1>2?_chC>S&ovuUs`4#@yFumA^ zb&?j3gQE&ysiqI(_HNiH*C;=Kne~k_Ah_Ps=*G_hg0V(#oB!qqcjMSTa1UtPv6?^E zjUT|z#u>yuV-U;X*j`xW%k4lE5rg*L(p3X{k2^=vrNh(=E33Lvk9;hckrG|EKy_i|)!xW`!wloNz0n)F>h1i#{hTmWVmIRs z*Em)B{mfL=GpdV8#>}J{tY_Nt`?qC;;OsB(vd+#oob<5|=+qK}wYR)Z9oMH*b(|D@ z(M^MP>Wlw8utGCQeW0W>c*i|xKzQHlxY7MPP66(0>F#0ZE)c)b{(x%vG_YuJ#?1DC zJ010)ZI;03oq5_tE|aA<799Y&oh9HHGsL> zf4yLH13u}EjTq(X!kz&r-tY`#V}U_sj|{o$mCH~Yw&)KFceu)^5;Jm2?864*HbcUb zz9d9m=7bx~*l^k4bC=oRB2z17T<-9=om#!w>_gb#vOb^=XwK0;hz&A4280x z0F?T^eF)UOQ-s)9a%GJWNH}Qyc*6{5u>u8aNLSnu@^I9p`cU6;iW= zF<*Pf7JbC2%E*kDji`;6Ro0@V<4$G;;bxlmHJzLZY(hhvVeZg~gc|4GET`2V+(rB{ zGyP01ODvE(5-zcjHtAb{36~gREx(U9qfD91%i#38($Mc)!(HKdB`xitUv26spykb# zu8^QM_wdnG-Y{H6ic~BMfn*hX@B*z*vehOTUiQ|K4%9-yv9U4xZo^<%=j9q-TE1T4 z{=te^Bx_-RK9Tw>IFHN9gs2`P z*q0kfFG?5V3cvhTPA`>H!oF`s%kTd|t)7_c=U%tnt3W)N%lleviYGySPl84-!FDgf zER(>+TdHUlXTu)%Mz^1(FGL4Dh&28&Kd^d1)H2G2hPAfamUS&&WlO!vF8DATkQ3>y{vd^%2u=y@#k}+T3uK^);18MMj2}6ltB<{HJ5b`(pxKHcGKNX<*z$iy1zKE*D!oGaN;v{%;s>Q z-nd5ROzDq3j{K70$RN=vm0Q%rN4N$)Yg?kMa+~px&ath9u%a9uOD@`KB^SeY3yx2XGqZ9m5JL8U_wNpwt=PUfetpbZ_~%Y zMnl{w0b_O6vUh}1dlRwp)(|+QdQ}kRsly|Itugw+u)gX;fpBmy-SKOYfPlnHY@%$d zId#bP{7>iRVC((Qo%V>Qv9pMCIYj$C4i_54I@X)hm$~K$_L5Fxfb*kxbq$6<9C&ZL z0mGZwkpba}P=i(d6dUA#2W%1@MGnB|lZ)Sl_c(cL5=c0L67YUBDaAxM$<9jQW`j~H zPPWDN40YJWbq)+L_l#LymdR zb$xPftvDD9HCfdmZFJ+Ez#E+=Bggt1MTf@Jq^Y94^#&4+X>QvV<8rp(Gw!f*CSEkl zTwmI9?#YZ**BLnnp{%qZyY+``TS5xz1H(_b%|X-J{F{4iBq^Y0o2m6lHnFu@rp#V@ zDy_eG2N)?ybF$e^1{K(<%wa?HOXQHaa3{~p^PN90yqpc66sLvfe)xX!%PTaa^qcl` z$Q^Uo3N`!5OSGq-Yl7Tq$!yG-nV&Rfm&rH>eL(5*d!>_>+}n59 zJlggE_Ni*y*JY>LGneS`h!1Cv*-ZEX!nt%qcY{zasu^Z~La7SMXWc-6nB)rcWCr7T z+PZ(_A8x`!iZy))iSUaJx_4MO^$7QF zCAs72e(pxPS9Px7tT&G}JhbP$nrAq5e^xm47$%2FZt96f?0ZWPMwglta47S9rXbhA z#E~DK(bRXi1?jP|)G>}ail`%&EW5v$I!f!K8j^B=wU(T0k}PCp%DJ@0o%Y^Znxj_MoFPFHbcC%k7w0>e01Y;i<1=v?W@W1h3wKzO)x1 zJguOmEw4UFscu-nttXtiHc+e8o;t6a0RV7(smFyMn51E!w-_%C4Kht@3+`zP|G&s{&6paQZ`W0v$G_ipnS*(YJ^_?Tb7;ceUz5R)3cxcd>aIVM(=%5J@v zB8_x~B`qOJCxGc)F@)4r)#stZ;+5~)RV&k+&%J(#wW$4vG=7YHU+An{J98~P8!OwG zD62>A44?+GL(2SfaEmX$9&S>uRS^4i_u6`{@n;7 zU;9EwQvg;@YD_j+!cfvGKCI=pKT1kKR(T0$nA-$<8+z;GYE3LiZnd_RBlYi z1Ls=)VbryZEwxrMgq?o@FR8|vtlIV z;=x)t!iWKG^EHrFEcw+BP^C~x1ww+k-<&6NmU@Nu3;jL~vZ>h(%44MGkxh)Xd>9{5 zdwV2UkH2G$1!78w!EYCKpwNcj?>jDl+aglOoGcfGq|6~DBD%ru7>*&2$31CN+!@iD zwD*oV&QbMd2Pks#Vg+Kn{nwAOKI zZ!*}Fz~gvFvupReGZCr}ivzP#+mi?|RSLq;0hVf;!dGv%7Txv(^}r%Ccw~5Qs<1D_ zKwmD!aY0H$THI530ZoGY9;b2#bkxx@<#w(|aKl76N*@U@W$+Y_5>mSB0#FhJ5euxx zy@seD=9KSdM2>&cT9|1l$Hh-yis>PhzBGbCbAVr9F}wK%S8$uvRBNHMdBBOMD31wPCKTgDki!gzRY*icxu}g)#Qz z{0F?nqU!QTzGzR3Q3RZ$r<1iZS@vir_J8YK{u>T$cs!3{F@uQO^RSw(!4=l}EWFKd z(+@trcKEc9^C@@mWm67137ZRW6RSGyw5H{$Kx#aU{=D3@+Mmok_T_^El`aLnNoUy8 zJ@kysb%mkC76?tZ(zTO9mAY_4GKM`rW7spES|d&gZuWMis$N7ZI&55oMd5N$Sv0uS zs7zqc&NS@E_sRX%T~7IJ*pd70x4y$r`+Kd7Rb{*^ah~HAGnRH%-53s)FYkOTM@IwX zKSy3q>?(Y#mkm4r;VI0G3zsThRG~sVeg-q0zhRa-F!zhB_!EI0Xk!09eV3``)`_N? zk5i4YE(ZwK{eMz*%g zJ>+p5HAFoXP7V88&Y)*=fnlSytWF(57nl(q4YnZroyw>vIjOzE{iNly9IHgt*0h#bqj8V4!CxTYMqIhc-yiTevCdC z6x%)@h=7Uh!jRWdelOs9folWlN7!d6{o!N3uNd$__+^|culS!C*z~l}%~{F_&PSpIU|ABpzzPprY21GcTu`RiPR!3 zusyKbsl2nBPp!7_dX(Hl3cWj(S0KG!(T#PmIJ)cR1XERSeWF=_^~pQi3%(j~&I1sa5*y$y3Dn|+e zC2}GoQCl9@)m&*fQ>f+fF9*+7cOflg%oNkziBg=50#ed&9CzF3%YDJ+ZcXMbFMmqX zpDU(G)2wo(!!6q=U*F4rWw@Hl%ha@XO@t7NCPcp=Z{|V!_mB2_cROSMS)-Hs!oi&= zI%pO}!VcBNno9+W1d0-#AH?$1B69hY+2peEOIX=56+df+B=0*J`jRAYz4N1q)(hpY zaOUS#R>il!dfFzNwjq1LKzNl~Nm z9uKxkb_1%oleJ#6j2Zpi8>cwsPR5k7#Lw_anBYc@!0UL;%}H!YpPpcqBpTBkCnI1u z0XkK-CmguwwHB^#@DO+l$3WrWeon4+Z;<^A4Jw;3GK=oY%S zKhpzj;fT64L-{OFeMG344Ok)M3fc8sZ-pi<)0J(a&RyN%;0{KNBI#vG6(T)%wAk;3 zox3yXJ0JPXt$sIo-NJhHx=a?ezQ_SR%pdkO96+_q4HOTj?{@OGChf{&EY5MT z(l)O_%^KJd?rw;6za9>qwU+;oR{CsfaO`jqNzVikL5B4k)_B8oVHoRtq#|K5E)m3Rdy1MePcns%{QX=F4%EL+na@G5_(U zjcC($8e`hdYC1=$I67ydJrq!eP@pQ+6b&E&6|>n1d!;~472{C9`8tF|S@}|iEe_;4 z9La&bsP)2Ya#Sxc5xkMf1cvq0Q(z@o#!;K+4N@XZB1!@UFXb`WnSo<-ZJ@kl8WD3w zb>Y7A8C00MQnPF)TLZ(p#X;%L#3pyt?n{RQyQP=u-on5mG!|N4dA$oI5)+X3W-{NQYYfcJ5@zVbw(hq=l;7eZlo7O_9VbRA|wl zrZMH?81K4{#t9CF;rw+pO>jnKb~FP?T6l!B>%nBq1J75IfU7K;ub1#|Vd~r4u87`w z+{Q8gPEB@X%%H}w^JperRs?}@FEN5_O?bi4OfgD947)M4i3hBr;24*u@Vb)MICov> zeJStUArlTZ;X`ycpn?r_IE3Eij4u{5S-?AS8wIxEMto}(K@SQzyOE)t4u`rTR-z+} zGkMT6m2j=E&vAu?rWzULMeRM&V7p>xQNSc;>^QwQ^3LTHxM$x)P>5D-CnW4-xy}h7=lW85OgQ6Q{A*bR&30D|C-*5+$5DG8ON)Hua5m4jhq*c z1`b98_`7+jU@Z|;@8Sv+vMWmR8aLr1D)|;8d`r4 zWV`r5amTxu??F<=)Hi^Ak2AiOpfv=kzSZW*x{;{J(&q~b$wFVG^~tk=ClrybP|TWm z;8bLrwdlQX8ro3!{HvfarE_M{+YCR#Xqp(aWY$RFI81RPig#0Hs*IbHIx%4=E<~t= zX%5>Vm0=EwdiY=|_~wiZZAs-6WmD-aGR?H^sH>Qy zBCTbAeJ7^)td=t#X{CjV1rF+l^3}X>u)(b4cnvh*!14+vsq&Gmx=OFJ_ThoekH^&_{R`udB9|o=FZOT{M`T_1Q1i-d{u6}e@ zhV#wLN3Qn6?Qd|)%07W^E&rL($Ls(Px&o%Vd-EpdWtCZdKF3;i2<$P+Md(s17@8?N zZnhPY&Zz4Xf#cj@+=@F8Jb>8EasqNaPC%%WB}p}TUAZjkd=J-U_;;VIAp5nreIgoc zO9W1btB+c`3M$Yld+hD1mOriqNB`V0_mdK~6o{~!6FJR%xXCKM;`*-P8OadWJCrn5 zyo2*ofsOO>!V~--<^L`IcR?8It=n8+#-ZdfP2zl5GIbcF!gnY{jdDDcH5Hdv}R!O}H zm=&+C%OUVf1Tw!9{;sv~JJ6GL+q1?@03{ubD(TYCG5z2|y~J&czAg#sM##nG#oOcqeMs}s~zF&J>$M4&GM-P%TjlIhj zXe77LXtXm_7&X%y$yCE4>lt*68WYkptBxLwE=S1x~F8*MNL>e)PGHYk2V?x$VDM+bKXk z@^=@9YXIN;pFG7DDByw8S~Xxe5Amb9SF(g(N(tzlisecemH42U zt&sc?l{RMRb2|Hhz;PZ2+LoD;2F#CgyonVf53g%0@ZqHcE228Z6vTOk4L|k+?8C<4M-N zge_A4P0Om|l1>+hcxr4N^2qfNRNSs?O@k~|rk)N5-U|m?^PO3b?*fG*Uv~vR$dD$I|?g1&e~M0Y$Jt= zl@S{@YsIjCGuRx0xMj{6Ul$JUL%mj8edNku+ZenU9iN-8R^_oinkGsrDc$c9!hR?o z`>1_b5dqCo4HA);&>f?XBuT~t`(gpMQS$c2I_hLSWi47|M)N*qy3==AIawzoR$<%B zyQ~``CpArsXk$D~+eko3o$IsuJ~k*5*44!Rs3$n7oW%`o?pe6p3GN#>B&OH z?^Ar~iCp6ORs4*TqZL2n2PqeR52n?+pa(vyxBpYWY{{}@&%Q~rodH@x-Rj6^n_tLI>AL;UVoJ%#( z$REcn4XdlOY^&AsdLrqRA2+0yx4)-T_PL$1Pn{BDnRSqr6zUa5Y*rn2Nkq_K#2EOD zRXJsXbTGUemuW4$Tk9OgsUqn{jRq031_^^v)UUB@sNWqjP`rjEPSq%tVWfoz4~6lN zXr@8M1Jz764{PzSFanD_>B?PPgal&}aYq*&w-$fx)4VKhe&pJ~X4twGH?7l&1CZ^i z;}w?Q8Nt25XN<&UH$L5QK5TC?2B&WVD3FPnC7fqm3zZjO?~oyU6B~|v%7JIPO9j>> z&lfBpOQOt`_GO2cA(9nShZjPu_ppKKYb@bd*RWgcij~}ZxFr#MzF-dN*%CyDgG6jF zIKEZx{+viHmi+AbDBj*f`_vHeO>iZIMC`-X3$q+`GK>jP)vC?4UD8~A^Nl)y5B5@XdH)*x$g zzuC~VSv9Ux!Lk-vLu|qxRzTF9XppeV1K>A#a!gcu4lr`dd{Ra(@E-`|6dHZ3SMYxZu~MM9f37Wmf9K$B@h=zoEURNl?Jhy7f9OS@sAjuFMTox;bt$7~AqoL#e0U@w$wc&k zfOAdr8BMLTKVRoQZ~Y}tXh`&oa+C9L)(fY|EgEHjfUpE>l&QqB@EncEzx*#CS%NuM zH-yzTN3 zNX$S_^VHHY$MN4+Lw(CRmQEENA>st+3mv1&uZAHR6m#IK&*t%?|q0 zf&e=}l238+TG5+grh6IS7NVIPyVQt$pfsn$COM;qM(qiS6f|s`x#0r&_pFEt6VQuZJ-l>PJE?b0L@seTcO`r+Qhyx0`q$^j!{3w18u?rf z8P<}26Ca@C2R0l))DZ!;>hV0zn~w(~l-YM=<>NzZraOd?Nz$S_<0sIC+;HS0L@=FC z8<=>IxbzMmBSht$S4`gdinSkx5hg5=-oszexZ_1wQ7;H7>TUKbvt6VNiV4ZzQ%Tmn z5yfka7xd|xc8gS0bsabB*5fa4Lx|}+ug+RnVd$mp1l37_$5npr3k`SKcHJ>!t}P{` zul@H$Y_Sk&=Xj(klQCtqbD-uRp@U4hJww&iU9vt~L9rQC-{@<{tb>IwmuMDZt}0=^ z55JsIpp!t9tPDNwzwVlK6G`!~F=vH$$XWPk36!~>Nept-ajbdR=8M>GM(tf(nI7zp z1kuuf75tioU|%~cZxwsi&Y~`{3WQ67u3!_k!zHqST=dFF)Epl%ulMmv;%sqYj!Bs7 ze8$v-UT1f;lW0db zc6@=?=}i?tIZ`HPa;cNP+)8N;lw(TaDQJ>q>&dWy*~wbIQIZi~EBT_Gh!!sr!P~3ThvkYC? z*0LK>r|S-b>UYyzlZ3}Id#~DUKw|C^NU~5{%Ci^$){V)?id@U_HTcK3xryqlh+N;| z%I4Y{!deJBIN2`#Sj%L4#>ZIqeyx#^?FwmB$aX>+VyUmyD5T+TerjMLT&;Mr;yE7? z(j(i)bm5DSp}-Mo6$DAlz7%tYi6x_jX7RNz7V3JqFdle4?u=s7ZyKwF`haG4*XVql)Rhb_77QF)_Hl)R=gVt zz9TA74(<`h_))T;I#&j1hy;6*P8RkkUqPBuI$=#~XAzu7p=yN&G2`A42R*6$|1&-$ zozGTOemX+~u&`AqN)tLI!GSbhA@>Qxg`q_Sg;yAT_I2T4y>HGKba{bcjWIGgS&z$Z zwE=R)TKkSbjYdNT5nN?Y3DTZAcS&S#=n)H*B3qC~bPv9eWhzmF4*>BA z)hW0ITG-xI^dx&GhOSxKfLni%dIPEd0PH{RydfoVMO?b*+$Olxeu@UU8lT8X9&^;n zU3J_05n=-ScU+`b+)i5NZo@MA1i4cg${fQ%pl~&}wy~EmBM+x(P-!}uRE+|UjvXt89s|p^nhQu&Lt6n0F%5+Huau1L23+t zavi_;9XHvj+)XdC$4Mk+VB5kSP07G{C6~~rc}unW3tzDcg-d<9ituRQqR_HZNg>G5 zz#@LMnkeXHl?i6#BBT-%E8D{ysWe7+yH6UP@3x?jnSex8o3@^s0-&0Gm0gZ)!IoHB z6wy2AE;!BYVP~QevR!ivvn6ttlcGbdsI^XVgvM>PxW1YfA zAPwr-VSZ&8@k7h+fXSD=Mu&NSJETa-Z zv%qp6IV`F?{byc~*x`A>ia$VJs)LK&bbEn|hY8NuxlxBja;S6ec1z`~@=?E&eW`qU7FEe|qp+3dl{|W;YPQW*@U0-tZA*E%JZ=A9zK~ia z<7h6Vs9YN9&w<{Y%0#|iGxjVJGXp;!4Q%#}7UmFyHI^@w_M04grc_VvU{Wx)VuXvw zGQG1(k`zv#3N9f{us#W{d1$&)i(*_Dk5eSR7J!d)b(xPm8ZT>_Bq z^-M$89697pLy31?#`rGOVqBte`C#px>^#cnh6uoA@Dj@m1uXv-`~(Vc8wI$+CDqNL zt^ZSc=(`p~GLj&G=<~XSf*!dDsYW%sXKW-GK_Co)+evYIjm@wtX?R+KK?j#gYNqvd zw{qHkP?!brLWb#oVH{ncEM;YDxq$B;dT=|C6HI$9FHFX6>*;oPwGp;Acm#lpGG9Q7 z+vjwW4`VM5H&V3P0oX>xy;tg5?uO-|Ho1D)j{Vr}OOaa_alYBjf^RPk+o}fXz6fXh z7qKe}2Tn<{*baWxMh#nm-J{!$q2vs_;@ab$=W0kvllx^?TL1x}8fJQy+A|*!gOh4F zczG7Cg$_53(mAUjfurASbi4cdYIKVWa+6N!xwKKc8eK5zTvpfxMxtUNCk1JtXJ<$e zxShe9vVMwM7TheA=#LA0^=@}vIP{ja{9R;s;a)3jn=>~*HYkeN2Q>oKV;&Kyfh#mH z5ola%%Ma5Ws2rgqb*J@$t0@Sv=q04km`XfOJd3=h|a%F%t?NW|U zEYfJMpiFUol_H5#)kp2uBzUN1$#lNhK8`4J^z zT&m1}(-`oiwy<*_?)_bJEqjl&u^?SV0=K#QwUGCF)CQU={HQGgj+;Thn8}Sl&Uon? zgv@Aw3A%}E=2?WM#XAK-d-v+sS5yA!<QTlYX_wGBnuKvDYlFs>P%C3S#aYW< z0U4g@n$gH|+wa_m!}ebEUhhHMu5v6H*e?S`<?a6H^2F zcQ@)f3~bdrbt^m45p2vvUDh&fC;U&@t4nrtaH9qxtpYV^^^WG?ZfE@KJ+#<& z7VKf79xx;mFp09maOtO3L!s!sv>(yY$o@sg{)tZB5UD|7oiMG4lNgi930zKW4}JVv z_O3fnCmqdbogm8gzhce<>7+9Y3-GqNHy|}6?PH1H5e{>j^Qp}TRWNQdRU-Q_(DR$}5mMM1C(1V1auX${{LK+nUOSzxL!}n_x z(r}MmJ`~?An`(fl;yJtt+f5x!K3kNvtmp<@Cv`H_J#C1sAcnWJ?%`Y6hipglHHL}2 z7VmvBP~pEWO(c32dkacUPHjvZ5(&0JXzCH8r}=E6Y%}XRGI0<$Rj%wClJ+drG&NrK zLl~q4-+r518Sx6m15al}04^jpJ^`;jT>sm^vF@um8h3p+ z-VJM`p_5WDD+liX&FOpPYTddXcTA~k?MBF1U<3hDrMf5WCpyK$G2nyk5XOmnO4>p~ zQ@>^ir6g7*1$G3s8|(bb$!Y{9$xKBb!?tz|x~wCuD^Qw)_|{9OjSbypEr^suMhmir z7lR{OBM~4Wemml$8pB-A{js~0&`uz`0+2Zz>@}m$ zkbfeqJvK6UeRW8L6*VoBUInK(EP%;{O(%e$7r-GTDi@QfYNT0t*YF{(mH{|E-;xZg za6zENXiPMJHK;MMNYfd`cYB5WaCQ)8O&7}I_!!@uPPI+{FzhJv%p8yvPzCPBs%cjxGg@>6PFc zMrGpaaT38d%gTHVVT#t+Mxw7ZhQGhWuy*0Ocv z(WaP4BY{^`L3K=4Py!Xx4-R#N_RYN--A*!iG#Pq>i|w#pS@HzQQQ0Iz?^(-!$U9j0 zsH?8&f)HUSXX{MHANoT}%)HP^kHfBg+BfU+>TkPkm$8*&4&WIhN zqHNx!vYF_qY!t_Anlt0HI_;2NOO5uXk)A7=f%e8KIl}93UOf#CX0$Fll+s0Xt#Kie zPX;;^Bs}QVdI6$^$n+jKoeZ2oi9;bBn_R=9n-nD_&LNd2xUex&ejlXDrZiSO@1xDQ zVQiBzJBnB%-p4#|+Btz)j)H`!Q3qTzB!Z8-8V~H;8{?fDB276m zCEBE{Rj%@<3gr*kF3p^TG_g@SiX+p<; z0|hb{LvK~6wB>HIkI`&idvs-=rrADK8O792&Ok~rg_W0t6ckf9H`#6!Q+YekOC`{) zV!totRNfJzpb`!5a%otsiL)$H{~#xFsLIeVf+w%$7QfvU+wnanebwpKIK}&8s^Ft2 zfEoTe)ZI&8)#~f3OP68pa$!c5H6!H0jNVGGq^rCHx14rLucNwnYk`%PjO74miPT`j$A&6? z#wc9F&|_tAT_(dwV4>Xlx{ueW^H(Uj4$u9jxTxV()(g+N15^j54kxu6^^!X+!0*+X z$W#!nb;J(qzLCN0vgaJGV0GIebUC-)Xu@*xlzs*&S?HARb+tXEM@UQ<>xvi$_g28- z(g+H^o(V^RwD;hP-K{w%{(sxTZ++$4OM_Wi@K0*~5{nNgW2~N0a^rDih-dLc;*35Rn&fN0VEi<7cb)R z$hF|+po*{;FXg-Xf*fDj#_^T3!p0h$%4ORC-66J-mX~GzaVgwCnULW{IgnE@#*$SwdI8TA=xqr17&ZT@4P`4CRS{OH?4{K>q)Pi17a%G>dxcrvqi5rLlwb(tBo|{!^oMWo} z1giHrX|DK{v|Gc_#N^mt%^Iv2w@Q{ z>%N1kyPs}c^^#OjN31rpDEJ>5e{X1z#)0P(JST*dV}&BIY0 zYx%2$Q(6N;d92KM%c?=(6GPDS?BsDKx|utzV}V`18IdG8oo9$Sd2eD^v0P>iC|E|* z5t<9soLKi}&NAc_Z_{@55*2{-8=r^3djrm0GQiGnyZF0?^9hgU(`1ynGfT zY~5djJM`eBe;%fok6eluM-rDorpME_ik~|Z<*z$ zID{Hr!yMO)6n97C+@JYlx5M?B*IhKD&6ali12R}kW*HI69q=9};Nsp4d~9~xv$A{^ zU@hOk;Ppqpwd{A=pX%eM(%5$`WzZ!Yae(4a4$1*kY|FSWGd@@J8lNo5vNb%jTdujE zsFl5RX-AFkjcJfpH79@J>l?|*=St^T?ko0a;HrckUiO{Lhy@P zIX`FziW@3B+Bt=D4JwpkErix@$|Q99X%h3Cy$g`%q_vLe(xRyO5=my)5!3u8p9d~d z_Wqs%XRE-rH~G1tT&0fBrqE+v!qM*qogPgS&yRxruBCcJS7wx7k{} z&2HoK;kU9#IaBMnlW!5&tg|&I)g|-WoUbC^Hdzbrmk1r)%UBq~?Tz^&8J);!j0Dd| zY*d!mmq16#x6`BR>cd?=X&aCQR@C`xsH?s!65!yKOU~qMSI)5Y&<2K#o(FKdK)L9u zFU+*QjsJ$(Si?i)#Fek7(vj&69Ki!aqUC6y3!Q^?3k#kFFgPf*@Zw!g))(2T;Pni& zJOn%INa*ksC#zNjJBydGb=3(MXZdVC!OwyB z`I&u`pSE`@o~Cn~`L6?}k?=O<6L zk$Qex)P5su??JPE7}Fw@GvUxKtJ)E&44OOk23})xV2j!KF(ijh7sPs<=l7G~&sTKd z5{*ieARKs|A@>P}m!`?$^X=fHiBrknt{PtEi=)hcsr!WOU9^A`v(Fe=fc?!_3Y8*Y$Uq_y zILK1$5Gw4qEpV+9Y#ZR|94WeVGi937LAd9NJNIQJSh_BImr#34BG8DMyZUe-xJBlG zI_h~qJ_jBIj^yI*xpy#Lb4qt{X!hoxuJ_t>y}~#Q%I&cuGilaiMBqm&9(uE42OWo< z+o(+S9$`nBdXXY)FzS&(adHmiYc8W_!-c0C|g)wYWivsLWu(?mXuG7V0qF?&*hX7rvs zt>``a=~9{|GgK}pjRKp^TNj1RzZef~dpP3G!pw}W(77|lv2SO@o3yHQi)i7=8jlvP zBPg;(q;QQ$p@MMZnr&Ofu6WsN$ej|aBzwl_MfGNpp26)2=UbVH&|&K-=^mw*m<1U} zg8QPux1x8x9cCBZNF1N}n8^N3$o^6!fJT!ixRWJJ^(mleb ziBQ-Dt9qUrwhKXi`gTe4h;(!WlzqoxYss&2M0$(NSvc2iUc`QnRKttXbWt`;66?0n zBxsGP*EXpYgK_ zlI%pVpn$v|?Unba<;bkF^;&XRPBy=|o=t?Z3LYLq0X~$8GPfXh)(se)GVB!?eTsVg zE}fYGge*Y#Bdz(s5~kn5>SPTQFC3>NW8MbGqBFW;l^(3$sUs5DOV`g68O>7FBw9dh z3>sL>E|0UZpRnlTxoHWwf|AX@YtxgQ@_XrGTte|rv;AzCgx_HLZv8+fZF6r z*gr_K^a}!kB?yv0aBhO}~RaVbNR zPQm-u!uMFLApJF^z-!bEWR3N*<6u>%2;qXYm>ANXhIh&s@L9uANL>>0!a{~aA9RWgN020Nk^_&4-dR(90R_l!QJk^i)f%sU2S*X-IJPP=dlP+! zn7x=tcX|ms4`jo2mpw>`y$d|ygb_DOt+v(qi!@H(#e#2!7o_F2rMd0X++#DO>YTj`Uj$#y&>atB-bV2!B*$6cVYz}; z*O7`d=9Zckkr&?jobg=VGybHEw5W`ziuYSzB`#KdvFP!u_^q*=oA~Z&tqwexrtSlU zf;m?Gu4Q*G?yel(QSY|1j+j4zy9{T#Y2}N2v$z7BNU(!Lz^$H06$zYeR#1Sx%pl@6JzV&-C5vVtf>Zoz|s^y6(S++^tr!GTQ$jR%}Dz>;Y zM~@ku(mv)?c8*3GxS_OD;_nT`o!T0{VMb@69+jQrtir5|hz*g8(&3g~%;&fK;%EvR zp4Cad8zb01-IjNel7>e*bI3$UZiJ2Hi>hRJX=lE|N;?Y)n{iP!4lk!h!pb|x5mtF| zv^lfNy-o|Ku~uk%tQXAwMx?hsXVsC1*TF&>z%TIg3;2VB7`AT9>J(^EcE>w`ULf%f zL@p@214$ncDt?B0e&+#A{R{UQ^qtcHl&QN=2xY~Cd$6X$kRoyx{xj-gGF8A3D7cuk zN9nj*EOeowrS<1z?V*gH@Bt4n9zO8~Ii@*qfiB+x3-4ApM?ku~SmTW3#8Es)l7xv5WOnH8va4&54B$RG>?AvqzlDk6~NsO478U8=FL~ zKg5~y3H&+VlVT6h@X32@_6uQ>t!X)wmy0|xK$(%Nl@fg>rixdlMUuQYkt(swTDVspH#k8#OH;4m74WYNBpBFdwjO=eP`;GMVWiBvoPs=Tw?2sm zzQ$U#gT!oDj{Mn+S{xZiKsoXNgp67{_amMQptkE2WxN7qSG)UoLlC&5_HJnLfxX({ zjU19G&jYn0P7X8>G`#eXl#_e4`p7!Op2JO4fdu-a~(n}m!qx|BxK*brUy%Jd(;BWE_ zQbL#x%}dga<4xRtT@4b15{zTSN*OVgr%ztK5KLxu4rLh~AwrUbP6;%thsoMy}W+7R2*fr3cNq%laIE9g7 zf3|!NQ7&7a%}jFCTJ|LZur9sF8FdOj6*wAr=gLTMkGwXo6{eiAO^jP&_hOI4cvGNR zoNdb1BeGF0wWeuFHBA^S*$#P?XpbH$OF5>XE-~wAE&7pWqvWK1%Fk2jZT!0V3JoBaa!qZQ^4)x5 z=x#nKOiHBlBwwz{=T_7;&V{cp#U21B7$JGencHFY7PjYQ$U<*>5CFloc7RS;PVkddZCE)gQCJs>ouOV zm7s;RgEn7jdm2pI;!B!hKd8yK(qx}RFpG1(3#&X1c~*Rl(+VQKWbiPXT}_A@r|y;{ z&(yyik>yPd+TwQ8R}l>1sHit7GI)xylw%Fg!+55Dzv49wAF&Lb>2kSZB7n>7;f(lh z_U?vbTgHqeJ(5I8R2*N(WD*ctvKH2{7bm&dFeXN@Qv8|i2#%X-+6hdpxrd8@TXHz#D=l+2kA63saysUfVzFFcRr@cpneRX0P3 z;aZEIgkF5@g&JIxZna6pHASuebcTh?n#}48?0=u*rbvS7&t48X;s(9cD`>kL^sfXV zxVP@%KGw*SzO$)a3}x}D*5$ud^v>3MWbN!WMEk14eyx4eJJMElHUMY}vzC0uF!EM! zBgfquWXoGi8!a|D-QLlhz>`J}$rFYAOjeSB_ApCkkNN z#n%)*@2XYza;Yia%LDI(cFZ^HXID{pR5u(im$Zt9O(gSI!4=roE++cI@E?eP`5ltt zP&<(9I+}d}Z6`h?E%clttfXCqA`-{QOs&-d+>*Lk3FI-|IB^<-eewu7q=Ys~3pB_d z+Q!efwZ&Q9#Lt}FVp-^2(dnMy=iBGlHvfF$mk0n+Ybs`-n_z+&l^-!UE0jRv6fZ16&!qKgj>$^*Vv}vUekNeM6Iu@{{Hp7^&f-Rmp!09 z>2Gt|veXG~by#(_NwQFN$`7ui8%oB!TZVe9MK3F=?n_dlSz+l9@;vfnbyLw5W5gh@{wDal&9~F zr4j{2;n1sLr}&!8hbIl(ev#jeqIjSVg-1sm*Os9se0ejc#S8_{q$*R6anxO1lTA?- zZ*l0;=D5dJ3<81fGy~`{NgD33aURC$`v#zUNGf8@GAG|gM2$E<9HKz{?d4r9i7yS#c`qlTGn{GgT-mvMZ z?;{esi;v{E6{-{Qn%e@NUq{2NKI8m*S`)2q8BFSawxrZs~5&u6$zJb7FL@5{Hl1(a^p*Ef_>`-HbPKj)UK{`l-!LSeDR zpV>(0qeCjQ`0nEWC^bLuu2yTER`p*zCvH%D^S_eDlUk=Whu4YzNH*;-KP7Jo2vm64 z?oPu#>xuSfO|C1xr~0gEbxOKk0zTr$G&Jf;N%BzCtx@~({6A_Xyu z&uEp8d3_a`uenGj;g>Sm4`Y^Z;$~mX{P{e40ylbrSN9HF;{~2Oid?X{^)KG$v9tAk zj8gf!{eZDUn#F86#9I6xg5|&M82g`u8Bb==idh1WFF4%$E3R%vZKc~^u(zywM1q*M z#O&>HyRG^l*CNzlR;(2;dglGu><*7?lZpI|S=-zXIas(cvMmQ2UACzkD&FFP1gpB~ zY1!4eMM;{}fd>lM29`D%qcEIyl8{@U*N}2dP1|N%97G+wgIiA>_%TBFH-3sF<66RU zPms0fZeW7layco7#V&PoLG2g2BglE2`#GY#|3^-Lr%ir9Hjn?X3Hd>d>wX)SHQVb3;x!Ii$udQkdS38#|DlugzT-w6Uh^)sS4F`AI9RI^}T*Z)xeWteUmWWe+(~!%z ztc^v@_j|75+}d-)XV|W)?wpXy+RDzTe?4b1^qL8-*o}^aThDd1=jpk5&;X(q_tX9U z@L(0LNT`uO(^_TYUQ)o7 zwb~Ln)6}+3u4y|RsGfynRF3cPN~Gj!ia1(jFmifA_4v~nkBsWBiR(Zvf9+opt#Y~P z1bh6F?%D}<)sn19Tw{vHswTh`SC_^`!Rf3)^9=dGJgnuzSf58R{&+G0q2;n15P%@) zx=eI4f)YH1XywD@03bz+Agr!h*r{WHcn2hf(ZO+&K}RACs4OECE{!p?;dVBKv-nVf zezPaoW1pB{S3Z$7!Hzs(+JTU}3$-6fwYj4rkT+DPs6OgEl&Ru0e*Fbb#I6|YArtjs zhjxy&yfL_r*oC;+(KX|XIYM4BF1!x1&9GzH_TBT`OEfjW@?A?5v=F&u#0yH;Ziw6L z6JR2EWMZoP*J*ppU8&+pK$IJ&{Y}xCIJ0PvxrDQ}!HuXSS>y*UMRk2;ZHCC7LI z)oMk~evo9MQi@%w2UqCm@r?2I%aQ>VC*QpEGyS*knrh!yY)>h*XP4X4=b%BDq>})X zbrRs~`PGllg4v#y$v8EsLc^wF^+mHpV%G9E6;;M$5;Fq!DFQXLj9oT%Dm_*zjYOFB zGdC7F)7Ye`vzBcjtfPrFXHH;O_2DanO)}1EjxF9i_tQqp;Wblb0e5s3W_MY8u)zYd z=qx<*SD@=hiQz_1n8hl##;?WG+dIsdqD|iM2V@K>L2E2 zamt~xKt-4!7ZExRG2jeIzclX2hk?nsnRW5obH8LbwJQ=K3Y|-o?R3U}6|RRNUhUzm zaOjO>DsqXlRgoLmQcqmUm~0Qbp<=I7d0nRS^=`CFB}ffc^^T>&H3$6-+ZPv&J5|~e zirj(QrD3OGo2S}ae@QBha%siP1y62b5}F^yD!F^#PCe(spJwy zJSTog68?YKdms3?s%q~$X{Izl;iTNq7ATkK9W;)3k*Wpx_Jv8vZsdrFp); zz0XM|C4ld9pXd3!@8^Bt)0{K=?7wTTz4qE`t-Y4_YJ}*?;wuUsHwYiuaTt?{#WQu5 z6k6zBp)>}SA$;12txoG%Go3)jP)z0H>;xmF6@pE#g5vQC@W$famofa~h;7@r%& zjzO(CEjyQMXgl3hbOSSj7J*cx-j7iB0$fZsZST+CO_rL1ol(@RY|Pl&dIPwG2ogFV2F?vlc7q|SKYs8%{V<5l~OhCrgPAHYGVbN$0iMl_<>l%Q|YdQD4D*4&X zPmn_H1*m(C&By(!D{+Kn(a2o&0=#@;jD~_)g%O#!{B(Vx2(FOITm-wtUY|ncul%k4 zwXmm7jlB%IX6DtugXiLB+hqZF9d@-~;i zYO04XekIJsFI^ZD<8Y5!g!pPG7(w$8vWSFB8KM<$3}5U>3-v(v#zU98bfVIAGu<__ zm&~q@(+&YRuH<6Z7njg(bHq!vlI?%jjjj`^`<=^7GrpQm1{)N8UZQapbrl>DYkEb< zyEOXFVr+gj-Ue_Lu$@Gwnw2QS-$m$c1shaP{Yj+2|k;9XJe zT~X&H|yHYnwRq7Haqgd)%)fDljuabQNu`yo9D!9vpP7@R?QNA(s zJN&LvV@3pd?V{6@Qy`{@tSL%hBd>nBrN?VAqwslO0nyIgpT&V{Ig2`b=XqZXd0#8^ zzBZo0Mw7=S;apCLpwUzusOe!zq|FlNIs)0FscZ9@IpOI=sitvbu@3EFpoZJijQ}`z zgV{WV`1(EBf4crtsLn($72KiJJd|sddERE?WyDTlpGIhQs)>ZFp3nTLoC{^qGRYxc;(y{~ERHwBM|JK1vHqsJLHaBe%v9sC|O- zXRr()iWC%`@8ucPtv$1!?WM+hi_of^H~*f~;>%83J^+t;eaI8b_L*P>QNlH26xsO_ zhtj4pqD))w@!HePMh2h0^#NO+sI zSL#l26dy_4s18jqVu-B8{lOcM1p~r9u3{*{Rxt=5OOEEb+?17n!a+ev2 z5x3o#Ieu`z;50anhz>Sv+;)RkZwe)SI}6T60+K-YGYI6+?~)Ri=D7GGv-VFjrcr|4w< zT?}JdEd5IwLsj2!X4rnFSY{R1gs??F_2nNR40W#Etc2)*E?m?P5M%4i$8EY~{iK(W zK5u}Ioc(}Jf5@hnlfGcU*zO<_{1xAD?@V=D8*jzP7|jUG@OJ)jL;V^^`n6kv?lLoWwDj+`?j^%5{7Gh3W0a88DUHBQK%qeboh5k2~5eu z8fyj0vEnqgK}XRTkKv9_vFQzC#MGbhIoGUfeEM(flt^VPXwSvrZ_sVt;pdC;K`9;r z^i`Ujj+L4nX2!W@f{p?j7|wX_=>iPwALC3i7$ewL*$(5(oQuB@xfd>UJF^!?Pu$_O zZl>!I@?M6*3U5blDs&K$6ag#{$j1x&U2hxaCx!i)gTFp0FZ*3Gt0T)*$Q$kmLP-&3 z_J?@GIyw?lSirYk?@)~E&Ye$>p(Fn)F6q5GlC~WoZ|DI!LVs?eBLt1uM2PUhflKMd zK<4Z8B2xCm;1&!gpG;jk2y045PUhzQ=Ofod>eqRM*G_k4&obu;85qQmAKY;WHG__P zn1sKiV{@wb0B+Box-40HG8Yfhc!8YQe_68r1&(N*=^MTIyJ-IB7bj~Snav==nlx~6 zvfg<;>eWwrowbhpwh_%cHyv-VR$UmA+l8Ogg}ahXV~%)DCmhM{2jQKwqRh?b1d;CTL4^;};a^@oXdVrhL)%e~m0v&^y;R;wgprMG`zkIbVUwxWi z-rcYA*|*2#J@612huWv=*&kLONb+pAYer#SCHa1TCJ|IdZRJtZO4M&4XtI38xWcr0#M^AFER_=+){o*mX zbvvO%xyY?|<-S+BGgHX@`Z2jzljBrBx89YzN4f7)?jy(KzK0w^PxP+b{mR{@+@bSw zfk~8!oZNa>?hxV4GM`uO@yF!ePL2}gqThN~?#aqsuH41P{{@)*ehXblgYe9BD*4BGk4@-c^gUIXM4h7IHYRC*LowHkL(k&fA5 zSVj8cWYfQ)Z=3pWcv%XM8A3Ii$p|!9VB6_#kGgu|TOi!DoPp`sR$>~2U*ehBeL6#* zo|8ihw1@JTl$c4-yN14B_5Dt{qdB=5TB%>1o|*3}Lp&#gIk8d&#~xE%#;@*0RadXv zwK=(i_@tWsa@F@K<*3ieq51}>176V7r+0O4K=q9$w_@B1{NtV0r%vLV{}bkF71Soe z4akD$q+q&=JnX7JqaI@&t(y~KWA&`qYn|I_mRQeBtWss$JejBJU@B*uIo>FU7Ae&n zom_8oU!epKrn-i`EzLg}z(za%dS3xLptyG!Rt9I#y5@bD*#bdUm}+nke6I;567e1e zrb|dP9<;1sdd%D9K9D!q+ESv?rmS1Z`{o(2;0#7JthvpghmR16)Xmqfe2j6O7WZO> zZdas;g1{*<`Sw=ew7+g#UR?KY23_ao57Q5OroG`O93Rym`WfSXX24 zDQ`~O%P_-U&)~Y;-doqb3GcAHI%pZF&s3+WK%CEPTq71*#th4)s^z{;EcKu2qz;i< z7O>`uBxZLJ4RSk)B%JxB)(Ls{Enu)xV8ycoku{GpR!jxoZkb@Fhq+(^av;Q%%vFjH zDIX{}zU;(!al5=Tx_tfyJb%%dMbwTx$5gD>_v%ZX=JNZ=AD;bK-U{?W>VAq_%%o=i zZ~mzscBq+>GU z5DiH)fSj%AlI^ZRh)a6rQhVmvH^*@g$Ma8V1 z4&e)a0)+ucVvYA|wCu4OoZB_*uh^@#_Af$Prdi{beSe|q1SA?Si>q2yYf{Y9Hi5AV z3I}z-zzyK2a1{Kidc$cKI#;B*X-N;pkHwj%7?G#Jw&b*e=l z?vaAWTMn}vULeUVhvyn!l-qW{2jtQ+h!&7yfguTus+JXQ`=f$p!_JB~gNbno9_SwI z@u!airJX+4nbn_Jj%aU~%m-N7(aeNts=wseCx**`kJk;a+HR@h|4K074 z7MywAQp7SWzxhHsj$}hb(2#=X2JUMGW>A9HZWJYmdy&bJH46Y-E|=-1{%mRCH*u3> zNoU;qKupY|tj#3ThX<9b^~h%_~-Ea*}$=Vhw2Fn z%ygjyF;*cj-|*kfby;dW29JY%AlS1WxFe^Hik+EOs>r?pK>>#VI{F9mINvWgqdO6mepk*-|9nVaJ$F-i|wIRJX)bP`he1PyN;% zKoNjCp5oA>-qm%Pd}N8{sv#rIHqf<>dsUosWeFY^4LB@_h6(er%daF@ex+vl-F*Ob z9$ar}0=v1{>?i1A1xPSg3kVK~?r4udi$PX@zYn06{k}{L3~%(9X4vpX5Ar5225U5r zsR!ScK{6zhJYr#Lz72zPKf^IparZz)8j{%iEl4NGGGEXbqI;-&`5jr4rxDw8>M$kb zP6{6_H9SP|S0RQn++}NC$cO6h|K8#a=N$c9@s0jrf}B}-8Q?I?k*v??S@vb_S1N+I zehl>>d2RK5>*;D_P46fSD{cg~5WX5SAR2JJuNMtB;0{xhOqjO(R&0~mWwZrLncK{8 z(fb}U4c==S^jTx>o%bQnn{|g;TcI9yMdky0ogEMl` zcL$XPt&KqF9BL6VcD*hFg+hZd-+76J?j6XsBOb=da%v4vYHp$C(Fw*AG-n9LidJ?jBB&J)9q7a(1|1j8DB(Abvi>b34s=Jc3P7Bz5r^Zsq+cFL@>WZ77=j$`Pl1B7IYCiB6(bUoK~u zq|gT!>qv}>o%TjX!J!gOT7&Ip%H_K1A*anK zu@CMh9yz|)&@-YE;0-2B7L(^nWu&pYR5m*q{Yxk?GL9#?j2icfk8*20RyELQ{Ads5 z#724fP*!Lp_fwTr7?l2!Gto~PA0*+tK7_yRqPWdk6r_{YPbvNuXR;tJ=xI z2lDz!Q-UP&)^02zFE_%Kwz+JiNJBck?Qvgw^wdT4})51UJM?QP?XCt4z+yvQjQ%&K8lB_O?)0?Ku zegAHnFE`EiN$o;gajBCw$DO-(#0u~%!g~59(kP2qzvb;6i1n`|z7w%-ROVg)#b zzNquP5eowXaE8Be6o@=(g%!HHKLXkGrGDdNJ?4Q5JQi#$C7+L0Ll~$pO&iPgXx>;! z1|OG(P?01bi-u5PGp?gv8qLr;hS)L%MtSuvhg6Mh-w#QOCM*lLe;2Mn)yJ21k zUrpSa!5xRC!J`v5-9|g&$5--fjvPo`mhCtU>^T8_dwHJ*pZn+ zQSEx!eH7Jyn&q*9StYK4Q@=yD3w%Mz@$h*3-35S*Rc%$7d6aQ*LQf`M8&}IBMa`#* zj}HbKO*J2%A5Ar#o*zkFjeW?T#h;8dY?E)cf`e{qiW4i?oQ(d=E_PKJ-`a0GC9e>s zQ%?PMH9#-8*_Uz)h$IaOjBtaYVPDm~2FlK|-*aMTtqSB2kcG0@o-dpEx#rHGr5I5} z6wI1#1BS!^HEhCn=trYvoe>Y?%6NDQK@C2dAHnBGwBT@L#~{HVJg&>uFhe!oW|?%# zEJ-xROr<}=Ix^ft+9j!I5%~x^inl!+%%vsaS;GfA_v(-ELS#xrL>={IBuaDW)wd$~XPEY8UY zoeuZ&rIq5B>(7$eO;PQ6Ox+xeJ?3m@?Y?{je;z~qP`0UODOdPBd=?2Aviz#6SCq6l zy}V8^uXQhS5$0viPQd^YRT<@5KtA&DXiNntfk)wwU^Qe1Pn@HFw&<{V@x_UTU64IG z@guw;Jxal%+P(d>!|~^@x0)V5(qDmr#+-F#fzZ)zj#+94k4|cbM<4Duo{4+UMpLyH z78tiKc2b;Wx4tK0eD@iExb!=PEidG^Y(6@;w&ies)1~<9xg^ze{+Kut&!qs=Y47Hg z6UR_Y5s)!Pg|*P-J`5%5!zJP)N)aS=lM|1yo3g)#7t-@=378tv7ZJ;oyB9mLDu@-V z)%LbTMP@_#SyfAit_D?Y!){7D_lALsQd2+b+Gkl1Po;?MQJxy#C+PO(wJYPaY@}RJ*m@Sop;! zV;`WY)@rMZueG3E%hC_M1w?}>cB|gj_ged%N8@i5Y;v|B&pIFfZCoD=R&8B;af}$= z1smLgK5;S(xj8&LQht4+D9v6iBss0jg>eC#*xZ8D? zy&1+uv$10?@fJKClAwQZ{qUD~)$`_KqcNz`3g!-!4CtuY+!Q;!_=8M=WRP$2Y+}SsS5xwo@lX&L=o-UIzH;(PlQd-20BU~pg*wt-+ z80Fi{=^z-GnB`JCRDXQ9r3;tNNXCE3MaJFn)byW6lHWMu_1{|YY9u+X>{Wvd-mApc z?1FnLJJ2!^a@v2PR^j5*det}JmfLxu1KJQ+4+>WKL8(N*gd*VtEzV;NHCz}WOeYSc z-PHJ74Kq|5p3gQWnu-~rS1iLQ(RKA7RnwhD+b3|@;o1?x9fw_^f=)ePm=~~*Js9wD zdxi2Mkgb12Lg%&&;@A4$c|+*VPWdE#ipnYF)Q5!1E|Iy000c)b;8hAb)m-0FJ9D+z z*vZ+!W68?~-~`WwN^*WE-g9Yk!9+r`<5|#i5>4Nvasvb}wl=JOWP>Z|IJurhF_~=6`JZ z7?&!he?B7IjOXUXtW@#M@rDYZeG72aR0ypld@=joEk;7cqUj}-#Eder8CKJ# zqSUQcvYk_)S`x*o%ZCusUDrFn+POOf#+dk~XQHjUm91KIVn(X=G}=#7R~>a}H}0pd zSgPqE`~*GkU;xVuVic}_0Qa{7A;qu+wJUBabZN*7&qh%=x%D6j}n^J7DFW6T&oc%Gf6HSBKa}SU+s>W+gbJrc1wQj;UCw!>UPV8wR7q^A1Vbs0bBr9 z58uR3e}irLO-;(O+Y7~X9hBHc01?~;e;;gI0R1Dvfj9CLi?iVMWHcEN7lBK&!DMXJ zWZ+WTOvV#_v(bV953+C3CsObf)K!Q}crf;%UEtFM@F`xfInFgDVWP8a6^as(a-lGc zl~7VBu31wCiLCO>(_eFB-Og`Tm6oEnJ5FfB)x0^&?m=}Bpg!GMMdI=_U8y8HWT!;* zOF@%FXCr^%57JEit?~Mt_Wck9v-)XwJ_T^6)$k_Xe%yvC2nd7$@*QD2G_>KiaGG*j z{tL+p8UMXxG~J}3_X37$T5C!jjU+GOercCBOnH&2^)~t> zQA8rG8h~*LnOK=35}G*mLZK#A)@eIaM-Job`wzTDyti;Qc`}>g@_*A$BP@%guH$Or zlTO=8lVcZB^qR7_d@8}2L?IPxAby%c;i!5GvHX=~L9}{loI^J3+?>FtC=tTyI~#ZV z6Cd<4)^H$)I@lV)WvIjLrdFr}75`*J#T>i2M*ow55o8fgG)d8)gl<((zj;p#Q-=B{ z)D=$Us%4mzP{dDzm?&)E6T{S@UVZ_KIJK+DFgc-!p9VppNYfL;6r%oN72!CqBEuww zBBYr(gHLcRSVW?}D=x)x>AMh#004E62|JA<5ja-3780=+Z?VoYtwQ7H)&j_%1(@vn zaP@Zt|E}0Vz|a3~1jsZOqSP-!95%$N4vab%LKUH>u0_jcof8cRk^o>Fvb1ql(g5S?Y;gfJkBHS0fyryTrC-5f$B z&lzSF8FQ53LC>;Z0B-Wek%f^68i*l_@QAe$RQo}y?fXsO05o7dzD~sf7iyTRfVE0; zjmGEe;4(N=4O1gvs{u-|@?)Mz>+XqkWDvk{;E@_=KZ%CTrNy2+ZEiP3}G*)L$&Nx?x=1-XvOIBg=z9*5Kaw1py)n7oE@M$kM zGC0-2NI81u^il_u+;QNG6AcwE+h640kwn!qi@q4AL-6u=beeXQliX#==^SMH5~`k> z$!J@2$M)A@U>gj<ph%k7~^(6&j%a2(@jl1K9X!KT#kMPf2(A*8<<8v zTLsyJHD~Bu`49PMp_+a)o|-DfFPrxM5VF6^wGI|0yoZQbOpP(O0VaaWhN{l%lHYg; zErTT8L|M{HG?W!N+1DsTD!f(Q5O?JA zJE9Aa_2KyfhbthJJt3a0&H%~Ao}+tx8eBEmdG~_fm8#Br&MnK*H*#1?KC5BsA7ZJm zj=3mV|A!-(YH>I|fN-Mfa~z7F=cUHWqL}+bA=$McI1A9r9#hrrzQWQ!#L#3f=|IKM za-K!{X-T^5YtxKFjLUXY+A^9N$7+6SWv=4M@xks&@rDe?45$5*j7)r#2A}7&UanKQ z;Y@T#N$awk59nbDFl>w9#rmWXAyPmB;`IT#p_#ff^@tTzsbLs<5jOMstu+>)3DN1Vr`{ora~`3I=P^EubCb<6*BkcRDn7k z?U9ofjx{qdPAEQ%JT8=R3sh%gFX!jMPVPEet7(`{A}hJbriG`@vK59?vDj=hpF*cq ze1cr5ivwDBJe8Z7%+te1Zk|Q@=_5B!gWPm|JIO+~5}v~=6Ppn#!|3P!Be2(3u&xLx zpa23d`ZZc2a+G5OJ}+rZ*@J2%$P*d~GONuK$+UT*!7xwG3OpsI6atI5%;h&MUR$u3 z28?JaL@GwAPU|L}nT%-ZLEeZllbY78=2VP`1V=?3)Pxue+em_&k}Lw#4oSUyG&IOO zEhW_q)#*2fFXE9L7fXJJMHb2sJmO6JJK}BZ+e9^3a3Xutl-C;BRD){%wqd#6o|yMC z__CAj@6~wKE~n)@EEVd8y?u?tYCJh@J3%)S-Xb;AM>gE9=(LN|oIW^Mo) z`~(?fX5W;Jwb4}R4C7@JQfe*%jvBgffGc>=KRfdTv^bDM(!^=Yf+J&|0b#V`@+qe7 zL<(2lN%>m+S;Z5F4@EnhmL$z=s7InH68M#|l$J>H+sY=%V69SGjutv?GkMd*b@Rzk zK~8wQa@?k#Bt6f z5(PPkhqw>77UGZ&C=?$>1NcDpSCzd!Y_xK<`}ARAeTW#7go=btiD2+i*-3>6zabh@ zw7}*^N~8P>On!pYS@Oh3)^aodp7nu-J0tj2;9y9uN9Dll?D|2+$TdwfdA@m?(_0h&&d|`3n(Ms^q z4a5ufnrI1DxJ#T_kV%nIdQ_cHKHigT1pHmF&I59Ry0D-xQil82yJhd1DA*lucq3Z1 z(OEW2Mrq$&FYYMk=)?Y$eG0})EPEP6R6QkTOvq1TNOCwFW96OAvc4nQ#!CnwE#4g;t zRXd@yO-0(7Cyr+)t}_bfNkX~eN$4G_RLO$Z%|^}kY&YF0+QPX=P7GhlepqG0Dx0$f zPr`fbr}N~_G-?Zf0*9EaGqO%o>293g&e^Eq+H@yQpTzIFF1%Py7)QoQp-Ex`1Ta-m z|GHem66dU7&@I4dQpxz8bx52zUYouAfuc$!ZIaT8^|x-1YCDU!NmC{f2>yOU`{T%s zH9xcP(14RmG5^e%CPUC%ZJz!tP~skb2m9wRWxvgCP=v<`_Iy+YFSwo07PyEJg>8$z zB&-sm2+Nk5S}b2}G=xe|P1~pz&DKT_R+6SIQu8)56*BOSzQwYYhA>)zj$_IrNH#+m z!wSR-vTQw#d$?*ocs;JhEwj%p?CiH#Ost%%jlAH^?6sUvIHo*>MwE3Sf}Y>>_s1-G zVh`&BD?gjhg1b0b{7dX=Py`wBd>yp7=Huu&q0q8#p_)Sa$a?xbzr3fI%bf?Gf=Z*7 zuzvG6)Dkpmd^oy7y4uvV!#e4^3GaC$y?sr;W@{aGYsj22i*!mu2w>?Nvx!u*Ib06f z9yLM%O`X=Pbid^~%vI~$>~cEXrB&5S-`VMD+}dpo?+^$L`KFoBjwZ!hiLD)mh6D=H z0R7+{HIx)?QYzCoE&|e?kaOOiff$&AWG==_F-rQP%gy#7vRZ#s5i^Pw?9rY8jh`6L zCvfC?UTViEiI}yl7iZ4X{6j20C(A!}o4RNDr+NG*GEJH{hKg&6{_9NmvVJefSBpn! z=$i@{QB=D}&gY9}3@B7W{3ux_Hs_n=u#+V-F*-)!I^-1`j+-T=NWXKsSyCpJ0jpWd zhYo7_=({2Y*X^Um375-P`6PO(1<(TwlsLyE*5_ON+XM4C9y(`bFzUvaO*fk9hB0M` zD+lZ;Um7*yG*wPy1oC66*CyaV%jgBnd0@^4^-f_S=WNy6^Ssq{>CZz9e};z7czBKJ z6=;gr*7Rs9ng9eqUtodWY+62~44O;8^*MEbZF6EhL$Y)B1*YS1Qsz+;v5D+-s5f(7 zuR`(;X4z)rB|-t51$75V6DMLp})9BAyqU9o`2uiBnXia zbWE0LzC=Xh9_0i1L=Xf+k%Ow{@O)?4Bz7Y9K&&rgWrvJvII{HZ{OiZDQa_{2STEL% zX?`Wzo!D<-iFkZ;FMzDP zK@OO@&tStVKbrX239qM0JT7Lr+^Y3araGRi)&+ALlP#>zE6lgXieh(u^P zt~AwKfxhe$Se8~R$Eo+;K(^Z>JBs!r8Y+jn*7Fb<#aafC?Vc^ocEuq38W?Qb+v{V8mhb?^;lQ>cR+V;Iz6uk8Byo>SD|o(^V_M-B>>>-M6q8&qbt$c*W5sFqp2%df$0Ph2rD+}u%Yr`fX>*y;3;x(zyT)*V$wC|>b zF7p}1C&Ci6P&a+o)VB+%!*SN$3!TD_9DCLCM%b&aGaK@h^YAMpv$dWfbJcay2kt;D zzc$cSCaR2G;XH~2=Bn!k8h;s#@}gAe6l_0n7#c0juOVPX6h>NbS#$yFzY&TJ(b@Qu zGEeN}>~BsGwXYKHGg_8U)z(n;Rfz987xPw_eN9gShT2*7I+&u9ti~u>&Jze}a=`mE zkHK}Rs|yA<5tD9kqql*wTENb-aVlq5^K#C@TEyDjDIlH^&wg6WRH12OZGkK!2~5N| z&vx49fRkD)rHuBxGD5Y-&qF=FlNp{(NwE!Xq9HG}a10aMOYNO6gAjxMCOAwyQql4; zJK$%g{XpmfZOM?=;H)rJ4ADxegAO455Pu+IaSG%KD7IM=5^s2nqS{_d)i4-3putd8 z9lxQlk7!-w>02t)8R!cGG7``&u5)Olrge}@JqAkss>vr>M)dI7fS2LQuZHN{yq~Xf z#BJ{R3+J$!_WTkhrtR=Ks6bGT`uhonWcwuTQ&sWfkFl3L9`|9x_L5javz5lzV+kMH zhjwQe^(3mPlXW%Uc{Khu01_VHZ3Ms~+9pEXHE1Gg!yw<<#h*?zJVE0>mvyMZ{s~gp zNd~LaSZos7tzQtLb9K>vD_H3V6+=@c2Q7Fd&bS3pL&BV8FM&q_jR5OyKtC(&H;~8j z6bLG7fLQ@PIm;?2C9LuhFF?3skql`u2EL!hWR}yF)Ba&hU*k#NUKZiXeCoEsm30B( z{C8Q$dj4LMyB&bxMLxbC(`eAEV;k3~R?~vf1sjBuYkTyq1}(K48uU$gI1sZd$4y21 zEF&wQB>qllFv{#pTm9&!S4H@Le)o_X_MvS#YFMq@nAa2YvZ!JIctfCuU5};E+k_8! z?uN8R@;(cef!<*daO9dzU5#3Km$w}sy#?EM94>evT6Mr_zl)p)pNe$!TUB_Z;BDYG znSWECc+#2K{ zK{AhMS03=S##^g2_?DyaC?Deu3ILD7*$rU{IoSH&(q^`jcSc3W7RJ0C0j7v7X?d!Z zRpgM!WvO{K!KAdTLnt3U4!8SZRw6?A@RUT=?u1vPNW-Th`od_ek?=~k_Tkm_9>XAf zNW$9)ld^|@ID&oLX=$N7^^)E95R3T@Ipn)6IjtvN@MOZf9$D^!4ft|=TwDqQSma8t zuxR_Zu3>*Y%P%vmU@SR!8La1bTUyzFkn(wF_DcwKg8KgDzf#{Lh=NdN%Pa&E#EPui z<}7;{T9Ew_Uq;w>&j*)c-s@tl?OMb9xy|~SA>2BtJ;0?VIVH>nxzM;%5nbwxVvF~bPqhH_{Wp)f(>%^(V+YWbSqkJD`( zcW3}pOfR_P>5a*h)3mk@2ACt4r!(c))uyP&dRsg31A4>XPWvhJM=pn6(8ji%Vwq20 zMc9}irCTXwq+s}#4rWM1Ag=&d`PEI-C@I*CQsgc(%Jo*Mw`#q)dYi4cI=#((XTNYH zQ-Dm8s^H0mUZ^Bz^J{o^gF$wL8KekmA-N(Q`_J)X=ctemsi=3OJ9Oq;lDXg>UFFwR zlVGB!8aUlzeA7g|(=(y%29V`L8K(IeCQ~V}+`r9Yi%@zf&-5S{*v!82CZmzhWt2D@U6}d)Cd##^CW?S_3 zg3)?g@8_vhEp8b6c1FuK&(BtEvXzr9^ROLzKPf|FU*KnRm6&wdicZKpXfmSBF=@!p z%@eod=4r3>YxBwQJG1j{aX45PG4Y(!r-Yl2i+WSSeMM_H1q&fhAl}tFk9}cic?XSm zG|{*a;0_Uuj&9Zoo)=K_s-3`<-X$5u1b4eG>91v_wTzpA5|rnxw1G_xa{jC(gOjeFl%!E+_et}fK9-~S&z=9!^J ztEPl+_*za=K00=^`U6^G1~mS>Q3qrIL(S>x^G6J*jy3{vYnu_OLusSQg++Z%@X1dI zeu~)2f;H-$|A`-6nD?6VHL#+buohz{^Aoqs-bojlm+r2yC-4Fh9&~R0t}bM^3_`gN zpCxLx_l7UW8rE6zvH$Od3dnOc4XNS{j6csUYcmk^HQAfoD&p?V+9s(co~q1`u9_3O zoz~x&!j|l4yBFAv0bAzQ*(Wg(#tdy}OKCZj&z@50w0`eQdcka(JBil=y;uX5$GT7c zMZTyvJyb+YnXlx<%C@2n{8+5zX=3wiYWlm#!A=GPDXb!=y$c-my5p(3!dTT?2xF9b zkQ-+Y*A#T?%oAKR=k6RXW7CVzkjPcFb55J(O?&DxZ`y8-E%B&L88cKAg0xkCbSL-`lRSOqRMj?AtAc1$fistQV%C2lT>1pN|jV%lN80Ca+ONL zEp?iXcQ*b<--WpiDJJ|nRm=s+ViLgLuk&TMR_|7BU4%2?7aqIc;my zV#6DxCK{xRFRDL`hwL*4&X=Q-qT1IG_O2y)PVHeM+l}h$seANQr&SU!;@Eje5|3_P zC+HR3yFPGWtRFDHcr;xR)Lr@rR?mE#Q~Q=a&Orf4jVq{;X1{BjjlZhK>S|xH_3B8g z*9l6eR*s>FmHQ=q7AM+1o@FP+8CIeegub*N_<{4F5*{BG0P&A+ikR3zUp!r~g5d*( z2Gu=+o#kSClnfTzaTHC=#56oTNfLezM#?(5?sKpwQov={O^ZJu;Hx5y&)i|e{r7#- z6c!bY+O^${e{~yBvJ`I$@|k#4p)KTUB^RE^yA_ja3oh1AU1SqBD?HVf62S3KHem}1 z^S0p5ptBH%>j@G;KT1B-crPaOTtMMQ=e6CbC4`*oa+WP)MiG5*H#lCFUV141`mqS{ z`f4OTZGJId7*CSZ_QGZ&tndHoBbBixf2W;Cz)%?(}=7VG#rSyqG z?F^FR7|1^0w3mbIG=1vxH&X^TMK@6gaXIP!se4JnZ^}|~>pzmrFr1b-|GV*miWiY-gXO6vEFM?&rKGGfeo4~{vsmCMUfq`lQbw$ zB)|_ckRUY|m1Q*B$+3OyU`Fz!7kNaJIQ;j z4r37Xl@~}>{(&R+h8*b-cLk7{bg9#!DZ%d+VTdd_-Cr+FTHodaP5V?LP zUeJ#cO|)E;IY#&g1=T{VFOf!3jCT|dCej0ENuB<65fREhnH#}I2vXziX4fPtnKsX0 z4+vl~1SHw+uA($!DdlLnnpa8v=WDd(x~w4q4|_$OWaCgm*1%Hb(GEes1`*Won4iWi zCGY*bM{4~<^P=O4S+a5O`KvYIW?`|a1ad7j711hFHJRUj$W~pbvq#JNYOP*_U&{e& ztl?oyHsCI91M8whzT^thNgU;txAA+8;O=oT?OWVI+UB$^A?;ufRJCBEPgOTc;!7B- z52{tcRI4s@Sj)p$j7$g}HcR1fRj}Jpcw-jtY_*%UA#^Rtu?{aI@xppo|p+Kb~S}9m7E{GQu3Yg5#!VI z^htSneYjYaf6ujsNrgB_X=x`98CD@VK!erPL1;Z)HWl*12_ArI7#S#LrKu%j%q;FD z?cg5G;^QsPL2COC(tVur0%$FTdMXAy(FZ~+Y5qVFE13V&+~AgaCGv+d!Htyj$N+BN0+2wPo>BjxUF|ctmlzC=XD6L8qaRC+$Opqg9vNtwu64T3l*XP@tf$O6c~JZn6`vCn*Yd>n4h91TQGDX- zaD{1b!)dQ(qm+73;~gT0@YN71%MzXs(8LnT8u#Z@M62Y#!P2U4^V{$vsY~Gh`kl6` zNx&6PMLJr>rIBE!6}RU!y9j9(9w>dTBHnaa9w^qZUA&dn|6#t}!Z&eL{H{GLey_zQ zY$l=pu=u@3o3Mq1d56J+F7bQUm?{qs@p~AVish@R>Nl-?4gSV0TkA7=>Ap`B9}`9| zVt7^L-56TQPmDT}!{8NCDYh8zVDREq=|yL%h^8vk39`}gzH`KJrtP2rpO}F_m^1eC z-!p95wLI8Q4GEFIuX*9QV#eGg#y|n17OaPWLkrF`WZVmr2^`PeCq&sMbTM~3Yqw~& zucLivoX#P2wVU*@2bSuQ#WjL_R9VKlCQDK6X63K4Kh9itli|)*3~^^s75@Bo1_FmR z;mm*Idta2Qo?Lvs+V`9GYk8y8@OWn~Czo12rtnvT%2__FY_7<6JMA)FX7FQUDg%?2 zr4BB~)A_NVF-di%=T6JM)3n&^wn|3B<;W*HtgCB^I{E0Evt4l)YwYT zQpIlz`p5=|YE0-s0=Xy5dx;b8jGl-AV;Onl-s6Hi``v_)m@Tp2*H=qMVEF->B#FPF zFiPa)*jtwyj_N0Rcw>KR9w*(#gR;?ZVO4#&8s-r@ODRk$eX_!d3v-H`W0wXb{$Tk_ z#O20DbFeES+V%J+Y2 zWP6o?Z0dnkl-4y$DN&H^eeTaz+M~|cp&~dO4_Cykn*sw{#{7S^nlb-c5APDLWzH%` za8#*2+Vcj`w_=i=hL;V*B(>)7f&D6xoq82M^`tw-Im_=NkD;>>51oAkF~fkPpsdnt<-thBoPM zbW@Ril-P$kADSTV9Iv1d+eO?>Vdq+?@PtSuglW;V;1o5>KSjlKddh8u)e-81nyDMr zDr30`A8=IUR=Zu*u7%Tf03OiLUlnU(2^isCoGPZZi6TTwTOrbS$zb=;NUGYB)vuBi zg{*R{9s&=_)y3zFR;WqAXqXFR2Nftj>k7QJV=q5jOY~Y}5b;@8raE?lRoE0F9vD(} z#XK8uhV<>6ri(eRo*JSw1aPg6+now=_FC8^tkZG36MB61Gd5v82@5)bZyI|1k*y@g zt6)d2-JtWg4{F;moe`)nfkEIfeh~i%fC+|Hs8lu}8Xe*+{smp&X?`;pqIW2O8Ygm` zkZ6PvmqWXH&KV=E4tI0nTQSCxi$)bjV zyjC4mEM@2l=H*42oVIc`w0?Zv z#JyMD)V(%}gNFt=g9VkyY$!aN7BjD1XzU9xC%DB_k1r^vbyg9J7LR34>lNtLctid8 z1#V(Rj;@a^JyLqZ?ZHTl_E&oX4rA#udk@FoP*655A6%n zN8J}zL)jsnk&bk!1pfY(UGJay4V*BM^IB+9h2<;HeU)E zuMi^0QwOWFkqg){De&9>o0QK!0b-~4-3{6)PQBASawLodft*bgzB+mnnd^@O{oIp~ zEq>K$f}FN({4$q{Gz}>ZJ5bDF?MBD#j1Ozdx#!a!ykEd)zDsON!uDXpDVr$1vw z=X$5RDHnvB2||BvgbuHeJehrew6z2){f2oOy-0abXU^#FH+@@ee3eJTbrtD&>dM(8 z$1Y>|%k>W#P!(Xf1f=jmmMX|efVXz`s2u=Ug}n66;NMC=${U!*9BRCUSrc~TXB zoSJHqQ^WpThMLDly_fn<`is@Jy)A7U;>Fv|-Xbi&J)EX^M20|ICg-xNonB5!j}CXJ z;~~EzTAGoLX{ICGJUMol)_y?bqnnJfT+>NRj*xqJnvwqShvV`hRWE(#^5NQpHai~m zTUkoxNJs6c!?i?NqfxahcuGx{siNBV8uBQuJ>j>u$^du$sI6Vn;{&&Mp@93?4}`!$ ze*;c*xNaEP=Q{RNZ=|D_`ZRUD^iXD~``-yGeG-f^JO#6U^BbC~-waMC5d*W&)2v`N zbGW6T4;?T1qnK|-kyk#dO7RX0uS@PRuyUyGor-zc$ZC2C>--pxsMk}mv!&OMi~*=5ty(0mup-x>BqX|%51cdL_18*V;kVa3 z55Lt%1S6QATa2uaszcnsnG{`XT3KsaSxYPFP^@ZQW3O(9sTHTC{wa|;+h$N2F~c6U z6lm$PpCA+B-M;RMv^HpS>&oadZyv{&>lu+U?<)k*Qd9%caQ>>a~#EHOH$q zNgUE@Mo&}Sv4fpPn}~48CbBzB>6Ub_8~x#wZJ1P!!HHI5rth>M2Vr8nb3YwOaOiJY zk+lF4SD~p8*wFLgy&@!Lq+7`aop|p(h^CKNm>Vh8*q{9@#ZY+m{rUI#SRu`O-du9X zZhBVE^grd>52B4rQ=25GIodu3CqxN)r8c|CrN%@I#KraSL@e`T#4@!j5zB0@Azq*p zf0{tjH(VY3Ogvpv^?I{w#4(%Y=#@=UTC+LP9p*Y${8@fjjUBH|XX!g%q>k&A9Hl7! zn#}+=$tzN_Skd3!}_(BDzR-ifLrU7qM<&>AuYQy1JsPM{u@ExH6}#kNLMBt zG>1B8xn|!;SYUrs5#|FWn^X|k9u~aS^4I)m*;CR^?bWQq*#uHVY?`Uemm6QzYm`FbV-!=!}SHn~o41F{L-(WWq{^bk}ZDw7W2X*zUeh{LK}N z0OQkuanaOwE9--DcMdpTd|%ClxSqdRbDL1%ut7^*0a`a9x|J(SIGUvxkTmsYG@RjAgpYuj*#Dyhz7f zHnP5tj>vz+&+lq?QhrzYXN&)c5UlF4QCOKFW-arB@BiOpQ08%RcpvU0^f9qXoJ=Ae zt7u(Y$xg%Q9lPh^rBfVOiFmP6^|{>auSY$zzdEV=5D$&A$BsAkE4arRQ~fd3at^Tj zD`F!=u1PGlx`0e2DLytPkE=< zv`3Pf%Wa1wH8WcMcS#{x0&}nk-_sf(8$ifdec*;)#9$+Qhj@qQHTNaCOEPlxm60on z#%)%h>%Dxn2#Gm}u(*0zn%cs26cC~5=b8B`(`{DVp9$naSoanGwd&6Ds~f@=`2)7t z@`F*Z-3b%&y2ifz)sd1N86>S8nAwG&Z&T(2FAokH zp6nVT#X#KqAnuaIIc*A_$>pSS%z%op{w;;D$bj0&+-2}q4TFL}S86W;sUVLico^37 z;BKBs?4<2GRleYgW+lh3o#l;RXS8(b#(ur7o8|uW`wcN{ zDU|P1>OmO5ngTQ+f6eEeH(g)_(q|g4=D`8dX9cZMfKe!;_khi$NC1}cWBX>E<&uLAkWNXXz)@mgzqZceHz}=YCVjKA-n3Y;u{A0 zy2Qha5a!H9vT%gD1dT-Y%Vht3K2Xkgmi=l!v$!)ml}C_tvrRfJC#l&c9mm7hWM&ue zPHU?TT;J6CxrbL{K_k;sGl@33r$jO4fRQRTbLp1dX_#3nhLuUr3s{Cloy)el2cP6e z#F;e^J#m}U`Un+jYVGMH*Yx!7KjfR9CK^tVhpP71SX&yrvT}QreZZWPXnFLb%#@pJ zlEo`(s`k`)k8zOc;}XveR|P*4eKl2YG+%;7nUqAs3!~HS|DcZIYl;ynSrLi zH{V~-Nyq<=1)>f*`aZxprjxKE=w>!GelL5e`q?6cJiy?jsNhh&l2_KgP}EAMF;)3z zYz?+LZJS6#)&G()RmqnDU|_0JBGj<#xIO5{lG8I>9>#qY{)b-B@x+4JRiG62V3#?a zV&&kc`fwF7e2nAN#OPx(bKNCxT#^eID~FL;oldM0pBu7+T2GcDJg)kUZJX;KR7wM=Q z?H0yIC?htp&|D?ibtCsbrjR=jzVM|)jkqaTip(9q;Bz?Vvq}~rTOfZejAz%3!du{w zGfT+_jU2wrG1ZiTBSr1kz(?VmmYp(rGeVzK>#e_t_>j&$J(x3U-^B9I?oAGaa>~!r$>?%HOWPVHOcFWoc3|p zdudh_v@e=GMXHnbgEL6OAump$Qxn)vyYk)uIP$7c$3?B*BDTjSv+Y+B-;WSq&n9n2 z6QE!lfLT8`#J%9^2-b+4fKon~O&?890`!MSoZB%CYHTy`6uTXQ}eoD&7oceAqg ztC|lfUt3N-&Uz@=x#yKRQJ-$f`J^gJiu@`{G@q}lif2*FKX6-4K2%oKs-im6%_r8P zpr3QkibxSP&fVt5@jZeY3Nkl&LZqr&W{ys3GJ}bFm;=Aml?UrM=*P1zMqZAatV(`sD=}2fRPvBtNi~(E`1nrH30qeIGi>+@TyV6ScZtIx zeH?$eO+}i1NR`@l3%_fUX9azXdT$OxuH#YKlCZs;+>wqFBLpA1B6gceR`9u!O!2oE z%@et!K`&HEDev4&=2j6Uc0sxkH1oiIllPWz8mPVR-LGH!HJC*f0P{t^hH6?dcfXeU zxmKHr@In5%pUVw$eU4m;eOEHnl_P$Z*<^`&r(`P0@j&R~zZvQ*Y+4=PT!y4)W)c}7 z!Nc=9-ekVTC{LM{gR4dvaIv3fzB=OSUf6b%4fnKy3!)D*x+G5c%x|B>_;AZS`%Ue} zH#om+7KPU{1e09f3I~{zMfDYurqz zxdtSxfK<#jk$! ze+Cva>Bs0WpJrg5@nOCS;8mn^W>^VUT*q;PcO$Voa(xbDx54cwT163G2|8!g|E|}k zbNpnIgtj8}$s$P+wZLwT96TIv=!qmhf$CkB>`#yl&xL0=?Yr0+b>p@5bC`l~1JX%p zRz>lgwgtQy+Sb6!=wq2~#`3xu%P}{EOGQ2)_=Tk+zf}w%SWn3!?c66*X|R}H!nsHy zgO?Gu@<>%E?6gS*L-*%e7ax+nYkiI0iKyvB;rUuJ>~1;Ge4krtr6Mix$$Bf1yd_6$dkKw2s}|q_EH(WpXW4~X z5ZZ75H;n6vMei}LyHUB14!Qriaea-(Mz62lz$xm(sdB_jR0cBWYJ<_|s*+*g7?=C+ zU|!sYTMVv>e;gv`;DLmxvtdD`2!=GlDREKil$zv4g>J*~HA&pxgY}Wrd~7MX_NzRp z@yF{bNO`1#eOf$vdpl1rW5n8c=fKBJsx}YTNQaTlONt#4&aI)X8gKkTZgAoDCTaae z*QDb4#D|O@#5{@smK%q^#HwC39~-x%YA?tqNM%)qIKaeUV0%zi!7wQNLtKR&TW72x z!=|EDqRde*eg{6ozK-99VC!IzR;0l2@ZQlDuFN5?a)VI9nv$lzR0|ezprK1vq532x z77S5r{_Y6T`0%KCYb1Hu5wH8!ip`Paab=s0ryFlG!QeLHu_9XbJp15MYA`|JenwN~ zLM&BOU4{!YsSJ?PNgOc~t0hS;v{@>TnJU&ok%r<*dr|tYMR9 zg2EXM5xg+68?B<`0^LorqZ7!q@&&>>c;ZXvrXdGr#%=d&^iWQxTJx~&vXaI(;hU`k zGc@)niU7|xSbH^x=L&=7<0Vl-FHHKNni4dY$C6*ojS08&(qz-g zIO&+S&-KnrR1wK|+J~*{GUTbMg{BBS@E)Bve#>46{FY(%>9l-`uHvt3ul$w~5^n7X zzh#e+#W?*@NI1lRgjqfU?a$uDaW+UWZo7X*LXG!Kgpf{(2`9x_O)7+cvAy!z^a0w4 zHw@Ge>mgc(>^zm|><&Qx!}~B=sGFLvhe6e!w-6;aY*O#3*(aZntcff5$=Y zyQ`@V*sdm9)Z4)a!+){vR`WsL){B(ET0nr);mKGUAO&0gChO+sA>XF|SVh9e+0* z9}YfBv7JOL#en4TOr&Zb!ei<)CN>-qPU5NN4S6V@aJO{M7^=U=`2Rl16t!>(rU zG*BB6CQg&1nWSqD?tOykry-;7>20SSb#fh`u5O?(im1BLcY1FI?#pwmk8sfb4 z$Ut!j&TZ1Dk>V(@z!Vq}+sP)48Y_+hO{Tzz$WAtC)M#-OXf_3g!^P1hk`U>?BVOEj zY^z-BdPlrC3jqR^26Gw2i;EJCEQl9Z0?mkH_98qmu*ABPr#~<66)%oHYFbc0jtCgH z*PoSwR~0YL&P>5Rh?(#cLmHG7#_Aia!u%#a6mH>%cvKRt%QM;52@xlo4*7@+Rh53_ z*oDZ#)B050nA^-kbC&I}#&LLh5Vy7|K@WhF5){dlP&rlQdXOA&U^5KtHs=hC1q zpEhuDaQUF*585ly(#mFp6dBpU%f_RMW#z5q@J^OSiOBi7wT6^ZtWva=+lH?#iheUNxt!u1OxpE%Q($`S~NF zK$U!R+W*CX%N~!b>e!%`DWTz$Qg8Qu5Ev1vWRr1Dr84Dwq%)}77hpEq@LJTHjxZB` zF)Bt*qO{3q!R3K(yL(oKqq5lTDUv1#|8Pw`f<69;%(2%0c66@7ca zC?!l#%%<>Mc}p|Y6lyqM;KC2Vy>>?=1%CutIgYJV(*m`eV^&L0joXNlSn`wcf@c%S zY3IPdpC0o*iSxo&ar=<3D|X;I)oT}HA5yhojoD~N8;LF+3t4G_un~{(4WV?J4_R1PHg4<6c5H0o$7#$m_0F^r}zBg*?ja*jDG6En@uF0* zb(qOE`Y8gt%VXx|#hOGqhLDiSBOkC93M$dpHg-h2cJ`nw@eP#R45X_&An*q zT2N&lo-#F|Mfz}yrN2T@gL|pwPmBq8+Z}@z6Wh!(hPC~X$b;|)&WUJ)@|Fo(Tm{u( zB7bDTm}qzkL=!nIp?7E$XTXbWor0-3|VxG zbE123l38q>WS(noltj-314GlX2{lZzqAUuefrm^BSa8Y&zOi6WRBhME!a&|9j?S`~ z2GasaSm+3$glgjFEs7nBUML=+AOC>*kVC)IKFfH@MAR2ZW<(Oqc?`hnJQj#&tQ5v+ zU4@~9b~f#FEtUCA^>Od7ZmQLscd^$=lk7ickNi2f5Oe>93q-PdG@nVgRwQpb?;4v5 zW*)kb4=wA)9 z6Hg-<(X;28YW%2?P+`eLA2kDI=Tb-bJyjhbaHIe*6gYB#L_csOmzVf4D^>r@K-`;x ze@AQeuS4H(07-iT$&6T>N{RRy!^IFrQnobkG3>&b=u~rkN1-E^(wyL-`Lod@{kW0b z0NQaVTK2Tta59FqLK`s-PWw$1@VOb0ir~N{gFl$2N3<8>dcV0BW?`O~r>$~Yirdn6 zi5|IH)hT*p7PqBG&arMwp}?$#=km~p-H?7KX#H+$8(zUm5xS`Rn!a+LrVELN)1uxU z0!YFxA-jNKT@`QGE?y4aC=e+$i#@^aB%m4sgyvQIibf0BTQRhI7z@J}1TJ}4)Uw8S z44Z%pc!NQ@EY-A?E;QqWDK&MYj%=bsI;Y1KRPc~t8g+uR4H)aedL{>)!F+GMB1le* zB`Y8fegw&r_!g5;;=xAUdEMkJ)vq$54-+rc0Lm?cv>zyO{gex8crxtwb@xF<*Xt}cA8)E6)g@AX^kD$@HlcX z-W}X37wk8GmX-Q`DYq&eBq1mBqD1nNPuuh2Z2>8WtTIP z@q4%7l(@G~2lthHkT$oQdJJ+UFGdV8J0IT5ZP^H`#W{peWw^T83GdL5PJMZh`btQP zr)K4gYLxO`lbWaSNi;-*FqC5WR3(e*JW|w^0Qodpt_+STfDoEmrmuA|?@mR-3L$Nn zP8xOj6d-e=pjO_G0hii|CN1(Xcu^lhOaQvPs4$-YmYsoJ?PVBg5VO zYnbQQxbn7)?O&{c>l#Dy0$ZQt1%{@nr=^|A=r2Z8J8#24GV}{0CZr+R*C{3X3&KVd zk|HObydO2%d>k1x+9V-XAY^n-KzTo8wD~wfs?cPTkSaKHawE$7@uJPg5kiIL4ftCa z77^5Qb%Bub)80iy5DZ$;qAgHNK>0|j4rJL&kVN7HFr)G{B0>*Pe7GYR_#R=rHWC9Q zQLu4HGCUIc56c!RCTCrvKp(Ua62h85LbxZX2=W9zDcGY3^1^Lr*`E;!z&q$z0n%A9 zoW;0cr=$`s6^UL;c?Mi^aQSFiI~2hz^6XFW$tzR)vw(z`jeFbPk@ug5@_v=Pe)qEV zq61cVk^KyWrQ*%(pP@Be#K;vnoQq{hb_K-(cY*==dqe(!j}U=GqK(xo&47YPZFmm@ zqt}4`9_y2vIwm(Wr_6gp}fb<3##PGk2b!;OWXJS@Mt-6#z;L7EUnb1CP$zaE19!Uz!sD6$z63o$kv z1Hehs(aRd<{Ruht4P#~`oBl+k+#^_#90B@O3lYS;#tYKv%Tf#eR7lr^s<0M-Q8j4~ z=rx_Z(>fgoJSF7N*40lspEYfg16X#Eev&LkLu1my)NE)C6q25d-fT%$5F$6O%S11*#dk=wJLYvvuW~GRcYo?quRo<=sfJy`W)?}1W84*>eb~`CU*}MJhX=SIE>b`)V zRx!pd(3#9c)YZb&o?=O7URJJCR+7Rk(nhhU24p&cnEYEL<7&w&%DPJ~orhj)@e z#)$)_p`ymNNMUD&DK6$&x|>adMmh8EI&=Y8Gwas##6}8KNI6bhJ>(0VEBX5=B@+DlrExV zxbA4sWSP4a%kHtfxfa2Fd}I17FkN{1G#|6HF7#S+Bp7~7UGzm4)`BAQhD3!ir z*-dl-+(NSd0C()0ys0Fl0B@;4qRSzXvM%nGK*(ZkfaD^X`dB$@#&TLQHXvV8sqMl6r%qUB=Ou6lJxD|s+9`?#rdO(xulza4FK5*pzIaL zPb%A|=`Fr|TzeF>AT^b=xjV|;PnypN4s6=o7o5hUNcd?5+Az$Xf?gH;j)EXI!7IvD~x2@|v8u1AnV z?mnZexW@+fkQv<4ien^tK#86xfr2r2PU9zlm4I9XjW4(hOc%y#-s%wJblvk=k-1P zQDz<>O8=9QK?A*zZ^5TC?ep{W3bm2q4hulXc>62p zTm|@#aP{-_))zbwB5K35*AwI@RRf|rCX>?gvBwMHW_5Z zO9;7OI!O^LEPIYMo*tY9fW^g&A;eOVNY6)1{n z{r@^cuV(848G0oc{5ctV#btCNY9+Pt8G5x6noY9~ut2i}K*p1l2fTVb6WLEoWaZ^# z&6h65W#|>0*$lm-jMB7X#ed0`>PO7a&}*0|>!%ilKUy~g5fcjFzmuWY>~F}>>wwtf zGW1?%GxYuqyD%_9yu)PZoj`ub(5nYfq4fRKo1H5C=^%#^7-RHGNi~lnUN}P84TlV$ zn9n^;74rtzG?QP%Uy)y)N$M*N68jOQ=dCHogomMDMnhUo68gct$c;lJ8C6M4fZT2X z9ObxC0*&JxHZyOKt2aLokOlOGQiB#tbvFwV4oUizIX^P#dRZ_bsmg}5plsXn6aXn7 zR3$2~Jx+{!rJ$TmB_;vC0hbo$-OL}WDK;w_VDJaFGBHJOSSfnv86IXts8B5X2Je2*ZDSBsV zI-=Pqsr(eZIeZ#ZY;}#L2vYRgNjE8a37bxZ0aYMenmS-o^fILLQuNXiN02-xWAdMn zqL<-2IS;5i4cR6|uibF?DS8F_;(>ydXi6!1fpw!%ks=w8yRfuSf;E`ac#4-~A?WTK z%g#G&v-1|IU3_3|cHZ`K_bB2g*?D)fV=NCHlrbrpd5=a0cMGcLnd9fuf%4E0(mdyO z`>morv_HTk;jqC0KQ%A0Db3!7=~5pps1wRs_$7EZD_TQ9HZLoe`HW-c7JjDzc+|3! zwFFhiK;WI?E4BNEVkMeTlaKe$1AFG!=Hty7Qa)bWqqmyJiPEf`iO|aXS$O}KM&&%y zMr^ggJ!s&t88#VsWfIExG+0a)Od?&Jk`vyHK7FZ@)V#r*l!vy6DrqKs|0NByY6B=e zKL4)#_+JcUyNUxQLTsluN( z?w*z0pwY_8MJIbAoZ1ZD=HcimV9HClYt1ot++8P1`9Ol>r`2l7KZJUd+h)dQ(|wNc-mBy@=3VeUm$cQ4(yGbiZ0(Ee7^TI*G(6oyE8INLEsLGm|9W zBo-r2V-hPzII|<4$Bi{fn!}w;l5*D~3g70{$h-%n(5Qb^uvF{f16+d1Tw#9uXCgkR z7^w73lQ{OP)d3*^dDiv_3gsXaWKPh~N1ZTpPnUfezMTNEuEe#baK?lU$g|I1Xe zltAG#iC(OuBWaH_5!Q63Iy2Dy#xW#eb@L5uKVgg%TvE0orfD-`T}iMn5g3EK`s{4C z3bjIYuXpq0gjewWNGi7=d77yA^##KSU0pQftoo3&K!AS}^`j-9NB>($37K!?O0w$9 zz+v1ZMmmHwVKik@Ce`P_3o|jDCHt8ly%rbwxEJRf?3A6)O=$^hQ ziaC}(Qp&j$;Ybs1t|B#&EvD|k`L#Ky_OsdQ@CFS=vvLlv96PkaRooV31?OI~aSGo; z)r2h{JFg-pjV;O@S2eLkQ99{`njJf|D5;nr!pcR*MIjk z&A>GgvG^X|H8k(H4TW-#LAlCuN-4Cmpp|FkN7R3E$5o6*5eqAaviCjgm%g|70QGhh1b zq&x5U*qxD&nbf5Us5+A;qQsf>B|+~L^sDc$C!6kIb7Q;HACfSD!-ab)Uetz=&=C(E zF>rSW+ZPLWHQb#Kck{HlF^qFO+|ASsc`-D(sn=mIJ> z4EQ{R8Q)+6zkHkWhNDT zP#c9*ihLj&g;a`a&Vx~kYR`jFit2sn6eI?qYcdk$G&G|`E3k0sBwu2k#*pm-ut_8` zA1q-lElg4R-+9Gto_>-@)$mHULl!^}vdjv{o989ospB!Rp?MIq!YF&od?U*MyqbRz z>ljyq{}C@XnchXc`zIOu&Up1+0;*{?B521FesKp5gL$pblP;{I& znKj5MEgvBX@FRyfdo zGSuNPx`<#Bqaj`?uU2~Q?8Js4Jst&3R=v`!I>Pe+ zBgdG%!L??qTyZs`|9s*A&2Ps_@)h(1l|4aEw2hc{t-e=qbv$XZ z*{Atc$<~7U`?<|Ax0OdpF8&H~OYmZOiK$mhJ?e0&^9&4-i~D-xrz6Oo>*apdu7A^_ zvhwO(&^CJT7#p=tv6%h=zR^||+V^c?epTlH>CT<`YYqI;Qnr*}5mEXBjI5-vJD&~D<0@T!W$+SAW4n7)m4`EWzg~dTaV4AtLX?R=j+AU!l!#ZKND#&fx1Z5LTap+F9bw!oqdW9%O^DVxFnYz=CHg9h zTFEvR%FEyM!>mobxdd02nmLq#63zP7V7YvgKs6SXD=2xu^` zuuoESfOo5rW#b!>!$}Y`!vwrY)YHs~N*ssZ;27GHK}SrOk9)8*Si9a1{dZh1F!Yst z#SXpwEr;Is*i8EL=(s+qOZt#TpWpWxy0ZF-agSp>&o<#!cy7Xcn3yXcRlOgLs|Wug z$U#LxVPC-oM`L%|>3`cX8dfFt;L$>GE$+6)t7qYj(-cW%#;fNs)|E_=jxr<<#og2L zh%0kDiBOD;UnSp4D64j|?BMY}FvM+T!BTU@S6P}AyWJOk*M?T+r^WaxQHqh`dNnO& zykJppry8CaPE;R9TKlQ>6^*7YpWa4-QrtzO_>H<-qD5^AAMCagW@JO8s4J2@MK@o1 zo4QGid)g|wg-yVA3gnIPB#lPAFJfRd5-Gt*zMl#T?^Yyv$)fxxyl?)?p^qS~C5U#67(&R`d2a**@Y>VW3S7|#_oC90c5^m`L*5EtF9 zJx(i~0cV@I5Rg=aV=1?haYkcXxLbjKbYyM3q_^&X-cv28N)s1zXsWB zPPP5A(H(~(VfN&yc9pF?y75qLm9fF-DU2uAvcc$b8cPBDV5p;GBw5x+f=Oi-SBtbR z)!@C-(+s#V7#y>Ip+INfdM%QbC@-R$l zvh0Owlc@&8*_txH`;eV^^MVX0DNB54fB>NbiU9aMDM5TCRW0*AKM7j%>hsU)hx;0k^zle@|J4EMDhs{FWZW6) zIQKE!JR=|1V3*Pe%CD`Fj~fpG4xIj|O{H83;_j>LIHz!IfFT6G`}Sk=8B5|jVHA7g z_saUZF(Y4{ant|K7~Lp0@s`~vS3+!<>8V3~|9ILok}osHCwWdt0cX`u2(}SVp5`=d z3wM&W@f=nx%vtC@en*iXWVbW!eHqoqE`q{QSmt&p-CxJ_5!{`jwi=I_v*o>vljZ!` zq7MolMd>77Eah_uQqPS8s~J}RafSoAW^G2H!>V=uTL9xYpD#qA@LnSz?X{cIy$D7A zru6Yqnq_3oy>?T&*KSJpj%`XGAEjWbSHIV8O83sBA-gGke3YC~WH+UckJ2%U?56bb zQ8Gr6-IP8)O1~(wo6^VgMZE$VR9=FNKDH?h#w@e^*y z?BUVryPYuj)}XcAg^-Ar*;?tHQenAm&j~A0Ww=|*tI7D%Q|3i;CJ|JNBDsM*N`p-J z3N8jS1C$I94{C6a5bl9s@#dtmzHi=q5KLo<@nJ@EXa1BPO(X#lMX*JFMMk!cv}q4F zvI%S0B{)y08Gm)p$3j3ueL%Z!K6f7>jJ$|2skzMiB3rXH?9-y5H5LXth9aRZ26EHn zh}%os&Z;d)rkJoo9v+iP!*ethcR6hRy;19X70x6|wZmdY64j?@tUPoUuq`hd>Of3s zA*#SOh?3BGlr~v$K*mmayr_A7%FNQE)~ON+W{BT9(3P_I4HFkkYO|R_!zp}*#5UWm zA7-GVTlGZs0PCwRmRE0z;$gO*Mm4XAeq&NZChqd;PKhq|SiBRq>bOs%R@e$g#|B&q8b+ z6xMzs;kL)!6XouU0qY8wdfdyMgd;$2+^g8m0T?-^vPq_w-5eWSgE*DpENkFz(5rwG z>t#VeVDSA~#93UiEKED3&APjdD@iy`cibIw7AyR>A`D2(C_wYKGuC`A-zmhh-v;Gv zdCgf|+sO&+m9?+&cm7NKdmV><4%aL9*8Qaa3vd4IvHkg5eP5X#n;4nC$k*k&LJtV7 z@s=O{*I=Hap{`)693@uAYvPJd{$bZ|4gi~NX}n})VL}3mR_u0f>UOPoD*A`9C6nky zKKAiTCS+FhRJ&wGM?F$Uwu#PYXrE9Vz(i7EZ!WjT9N;rXz<>eGd*iz~FqGBcQhteS z32}7NWDo|(GYG@l_fdX6=KHL;%-w>h5_#}tfOP3sE{!B#AxiF+a}g9o3YNR9Gz?!m ziD4EJhoMI=gAtH`a`vn~@r-y4H%%%p>I-ODfWlCTMo|eF6U0nZ5Ub&}{WD}xJB+33 zT!ig?)q6&u+Y#@}xMO?&I0;F8WP>nNqhWt6uV6J`geKIC5C2bkqCRNU$PQOdwrsT# z8U-951+)%0@Yc&ut|4z=Ev1I4Azyfvh_{{2%1X-0++AXF%kC+4#PqZr||)hNymUo`6X6- zU*M5<426djaU5Tx3pFN2Ivy{SYh|%&&O|q%ojS*=8`DoJJws7Pyl88Jzd(jLN%vXO zTyn{Tt?d+CWs)W-I!qP2l{eJ8Q=~w7v~$9{NaXTIS{vb@GW|Mt!G;`5D-xo=ZeCwE zG&hy_#W1OSkP_6WG^HAYX>E&Ii@p;DQVxIbhl-H3XJ0x(WB%K>dx;NcBto0#re>^& z4DLl*wvE_{Fpa!w8{sdF42?E2Kv>~ebtmCMh>S`2wDhMbU{9CsCgXs-6U$Lh!SLgu z9qQBL^eNcfu)BWDfU86X5Ctn$?HtTTmd%c{@^0a_c2Q07(B^oN$q!={0}35+t5>mm zB6{CWsYP$>%5w`6ULDb=w>T?rq#XT(NtI1v&;u7E_3w@rosa~hR7c8fv8ch)A|Iix z9Iz~|u<^vxYmA;FH?T_-es2|iV?4`z<7by}^-fQ)UyQk@Mnx_k=>yO< z-#!n^1N;ZuN4wE!x-ll3{&0LJaKS?~_~95nLji1&MdzBsV-%orH-rSYM!hhG&EUT+ zvdCO}cntq5cklv?Q!k9+GT3j6h~6XYKRky0l{y*43r{bMKf#n^o^b!LkNcIN<;zav zn*{F(=1#b8@DT!V-rV6Kx$vU_Oku727(913U;U4CC9j$l>Xy(d zG|^rzQ*1;(#9`6Cq%T2Nt;|y22a2!7#xglHa{oWgPBnagc&;~t^T55hlaf2Dn#4&a zjcDSi_!ri_)eveBaRAzp2;p-%U)i<^Tu_D7&SpQ?7_VE|eZEbx9HoL&*`ZMy{!T?U zL8pcWyV8FNmP%25q4>)8h|9U;HnkyXr03Qly$D#bcvf{$dG)(xQ>OfrUGe5axXnec z&xqqc#~yeOW95E-I982MoqXtQl#*L`_9)OhPI6G6nSjP{x2V|q7M zw4vNRj!q-2d0asWj!2)Q8ZH;=Sy2zV84lf1aD#z7`&UE&E06>aX7V8J4wCRw0_8k@ z$xu_fumnA*G*=tu{T3`_)vIFDROzR*7g)h_T4FbAml3@FuJlW?jJD+%FmYo>T3$pw zd~bOs;bg#Ee^qcFS4rQqXbW%7Gg5=zCt10PA&l*dpD-0fWMkE@#=NP&OnrG6P5t!K zsZh~rpXs(IIEq2E;0%jE%kiQ<6EE*I4T70#rM*bW186{Bq=b=V^JSPt2|I?YZ#b*2 zf3K~lmD7r93I+c6Pz@KuGIxC>`O-ODF0jl%=B8G8^)UvX&z&Z(i}}~U?lQme3gJD? zp&8#3CX}w4)tqTqnj`TX&4Z|#78a}--C1-gl+mhd^cifFmR(Jv>v(dAJZDTytacipTZFqFd*co##Pn3+@;!b_9Qs~;|)rLBt#WRNVTunEG z*QR{psAUf4p1?Ms54-Mm~8%&E(B8?`{+dKQbcem}?OB?K~TW1-sZRLZKP84f&;|(q!LSowb5!6wWI5 z3iW!U6nLSu&dgRls_GbeYa!U~-9?3%@lU^lJF%)+JdgqP(VNO+~FJ69TGBDr8#WG6y~Sv4vcNu&=aoh%(rVu@;;77-Q`|C7zm zY0OUX9Gc(CGg%6gB8_q?o6Pm|jl#B~&ulHL{-=zBk(aHv;(Sw?!g4RM$9&}dl%YBSXS%DV$MgL!?8V$MH}faSQ~Jm$IuP=-uUDz7j#0KpBF>l5<1Zz*xyi`fKT*YtI_cHHqCdaFBCPsU!$3XLw z<_bC+`t>X0#~nbq57j)Wm2rSZpun3YSOMFA4 z5M4Cg2gXhJ>6J#SsUF}eu8l?|;%*?&7iu95%~^R9Pi*q5E9k2G+VYbotBF2^7IzY5 zHi*MNqQTwctQ;W1V3~V(`o?I{8JsaMCe4nq+ZZliesa+*^f6C8syaqX8ABuHC? z1c?As^ZNM`q=L5grXy2&Aqa{iOMi2Fy#z~x9x%e7`UXnDk|WtvLXJ1d_s zRS*e|l@$&9L?9X(!6|sr+!(W$Nt0TpA?l&a_}Lh8Y72ud1GrBdgHNn4FFES#GFV^x zT7dq?$Iw4$Q}{3VQM*=q^n(daTTRgq#tzDa^$Ct)1f4uhS2V9 z05S%cXuqe9jJ7?Ew)=k&X!-+*w?(ZA4f(!MYCxR^dF@8yJd$%knMFc~*}cGSC5#{e zNN!rnqDbZTKzTKxUaU-yvJdw{2%@TCqs~$FeVDu;*z}fj&>|V&DbqreYVD^h_@#4{ z0zuM*KslNy^XU|&Ms%X)U8eIvH=Z{82M+LKgWaIva%oj#UhQS*q&Y@1C%B$ofP86` z$jU>U^;pgGE8J;yW>H}}TXQ4|<{LwW%~Uk2sa`1vgpEi&8t9{s;y6|UygO4hpw~9u z4iQGsV>34z8CC;Cml=JjNkxO^rD9$Z32dcE^U!Xty)toVUL z)Rd-up4#El8ksZ-_wifuZ{i3-acNk$1QZeDC7{U71QfYA;Wb>X0~;fpJCseyax@H$ zNY$&3NFwhAgY;{PUdq)=j$V?nX3o`mX)0n|!$szeTC&Pf^;%v#rs@T%K1J32m?Bi4 zM)lISsak`reIvC;RC~t7M9(ulIu{Eu0dzxwz1nSe2r9zcrA`bIuBC7q-;3ZbG&3^? zI+&SbCNy)Jf&J!cCryhopaxmK46aD?TO`q!mz;2t-5djJp|s++5LzVW<+fs3VOAbc ziV=(KIogVO;qHK)sXeu$4M0Du{Df(p!zH^HxP|RUE~jugF>b=Ge5LLnh!-DeRmA8f z)BOb0qd)ij(hpLq#xqT4-)hS+hJI*Q=pKhW8ucu0<1NkF!Unw1s3F!xl81nVY5xrI zL~NIk9n%B>a{Gbsx5lm6$(Yx5xN5 z$Q-#W)D!7ABRieY9#p{)``sw4rr{ogA{x!nfJ}6 zFM+G3u^-l~FJ&Bk`8}qOI7!)wEq4zK%${ZNF=9q7Z(95Xbx;Tv%y6(X(bs3l z89k>EUTYupLxez3Y+^um8NalRvBzU9?vQG+QuEYnzjuP50rMM*#anD5eDyevXeQ|6 z2#_HQrDfOhx()hx6?Z1+;|z9zIM(qKH4-{L+eJ;U9lKO&5bgne82T1`Nc2hI@rb!T zZPi643S{ov;;9=zm#*?u?j_|V`)w4+ig8gO{nmWoI)50!;I)t%PTV~zEvxg)0sftc zmvk6?sCfB*7;$^Pt5c`3|Gf;I6{&5Y3T7H?W6=HaRE&*dMB(IXrGD;U!_-ZfQ2G!pDP zxD(;l$}5%&Z3wkdh8Yd2mRa;``Y~bMv)n3F z!;fSdo_)JfJYhc0W>l%pbM7=+p^7O(kdXJNiP{ds(1^VSL*xCa7sI@!@qWMF|BQLR z#=LJB+`Z=g+9~KdOY=_5fj8LqZ?1zbzkuz6b z_){=vqltH^i7J{XbFv*Z(aWDJv*<&^^%>ma#K03eO(~t`QrRQvz;aF)BJ-~{|JJlw zH3k28)P2ma)7UP+WJ=9CGM{E0nNO{wro72q{UrmRv}EVACE?!ypFj=En)s5W^UQ0p z=9fb8lCFhVDOs2l*l9T>r;93znwl5AQZ&d`mjhN>Up^O@9(5cs_&OLE6XkcR)D> zta(X6H=5EvO`9l*h2T&6-JBRpo_>^QiQ2}G- zp7cljLjQpN;s^&;(>ba-sRNEeGR?eCH}EF5*-WLh44J$Gz~c6dS!xu2Xnqj7qoE+i zO}}nt2B;fdQKQ($fm>Jt*qJ}ZUP zl-e7J;*s0SC%+WUlDqHl2Gwz((X57&mMB8#8f=o){ zMr0Nnc14}jLTc*knG2MtwSAdZp3PPOHTuS*&x~r=8%&Q*YMvN|Q@B%0!YtF5w~pb# z*S}!CUVo!7`b(x;Ots<$#sCVZaSzfk5H73`uP{Ueh!o^RQ&Vj?4?!5_9e}gE>+|1K zh0pNBAlbcV(45maokox#V}y?@;%^nX>Xw@D9=+*GeGjwVyCyfh8VF4hcPkr)GpK(N z&)$dD0U^jl%rTghJV;!R87S200a$k=5gJK^203)0*Li#>z@q?%IBdqpRVXn_s9**L zYOF8_gx7^$@hPKob=1;A)V!?1O$ImOUic&2D8S9S$y$!8LF9!~x~nB#WywJ%-y+F7 z43e-m6@O}=8*qY1H)Htmj-k4x>c5?RzjI){RzX0cS^ZPy-yUSe@Xcc$6^!AYSP8T4 zB!8+=JI_2}hCN77*8+U1HWL2lec~AU3{i&_gTbA)>6*6x^lC z>Z6X`1+_J=F!U~`Fzpm>=au<2XMA452|XO8g1?m3%A~LIApedqy2HbGOjfL5G%^ase5~k=mA#19uo~S8HRXi~(;(iRz%$#_21u`T6D1ekpQg*pl z^-dI?y^HT-8<6L$dH@a;E8?6UYaFBKWlw41ji3eM+%M|fzJ<8m+y$*foZC)BFWurS z`-t8I@E=IH;R5Z~gfw}5r+<<~F?V<^WF}JK(a)QNc3^i&v>@AA^+Rlo8^gE zMBv=ENgWn`Uq##$)PL~)96r89=JpCqV;G3tnY(1177ZCgq@LC$(l0f_7gG0E8X4J zS$63OXW2$Nl5n9?uV^teOPPJ2|8W-R%$*hi6VqtX>v)DT^)53;Iidp~wy`K3D{4-j z<=c-@UhbY|%d%c`T3)mxP@AFj=liBK5!w;+W*C)9c~K7@;>O|&HA2jtR^XnEIJX~> zLM*g5QN%H855G@edOVhzR#5+;MA2DJ3^ywtGm(-@Tl=>DhzZu@hBlNb zRtrcsxQ{SJp;Mt(k}pj{QrKGby7HW!#B6o5j4T-8=|$OuH9Zn@`6rEXf87A~<2|v# z^|HXOze?07+#|La?a5U5i5?ssur}XY_fr2mZ*~g9JrfGahCbjV-!0*FuuESo4-rg* zQ+dD{qw>V-FvF}9CN%s&-SPCR$nw}bwZ-rVPo84Hzc5`tJ;8=nI67)WJ8yDa?si(x zh`UJ!cAcPa^1!5MQBNGJz~xPga&Ax6@5mtd%Px+*5+&_*#~JT>gll6|UjJT0gV$$h zQxsjF8DUH<)*O6I-J$+mOtv}Aolts|STauXX{cd572Ux;F1(8kxUyayPd`TK^lkln z5ah$oO3BeAw~7~W=#Bn1_pAOua!#%ZIm_|O$r$WOuE}mbG8qknR~arZ+2pJ|NO74z zmV~<@iCyF1UWOA3!NKvSWK3fAID8gTQ#1L`(gWpl^DVyd?~A4-+)^;0UT|*=L~*d3 zlbW%5jyvPG=wuQlLv;hvTl2US+Qd`f`Jve02D8NPHYKk)_l6(3+gTEBWG=$-lC^cm z`jJYgd-ofk;NRjTx8q>VBC8jP5c(cGu%J!Qk=(}FsjSCmyIJ2s;YQWEf%H?x8N0WC z0|S8wGgB`xl9(GTw4ERA;DY&yxTOEMg$e3*Rz692ncHnVk(eF)kVN-6v){JpDh=I` zWJ2gXM$n>fu`=3$ph$3`YM2gZ}dK3t0T_IjO3zk+@>& zhKReiEX2;NH!`wmj!R*pIft$V;yc6789HM+N!y%ZI;*BqHT8BW zWS444?yxp!a7WHaq`xwPlEl-5_42JGzZeS%;+BZbo_uhZxL9tC8r@-WL8F8xn*k-*UIc27otf<)l`P&0*Cc?$K4T_xT*_8TT(IVV&gIzWe*+d zB5T@BlOiMQ2xW2Iq_UC&WHE)9rvH;aygkoI21+i>_@Wn2>QIyr5yv@VT6E!iU|&7^ z4mtye;d6>v&gAArQuRZ_ZvENeNNUCqSI+c^Jv>xL0;g#OUj0Wg^rp5qX9S^Uo|9Cz zmRR+Mm{;*lGscWmeIu`ZbtpZLCy^FySTc-BHlUP#9z;O;LBDGH_gmyZj-4W@Sf=d5 z;y_bbDhJs}^U)-pjsZ9iLSH(Ma+u!x>+h36G3C zPjAdhJQq(kWisd{Em|u$l*$^6yRjj?`5gb6+{v+)@F2A_yy*K!BB8b39kMBa6MD+f zNOn|$q{NEa;-MF;G5P;PX~K){x`21Nf~7?arbS5#?A>SW$%|F$Zo$2rctEJ(cFC>0 ztZ1OTdV>Td*7Z80avB_R?!2gIS++J2InhCDc|1^eaDsdegKLodD+j*<%%Dg%T-TsfgPH6t~2jkXWqGvci{k z*+A5NZKSDakMm4FdZf_nCCy|*x?!@@n8hpFIjsV{X-5&H8G9m%94 zw|EViMCYu}9P0ZEdJ!qwJ+f)AH?+sQmDot1qa&BI5nB-Xbfjvn+sq^realE^(@!e1 z^GL@jI3DJni>71fBzooL9%uWq@3vIMxnU$URd6w_OpZ_;L|NS|s3P*4V zWtlPrlXU(F^_}uZ6m_T^CVbv`=(~5(*0NJWYlF+crxGDN-lx45=S0xV zAn{cEl}(;QM0)iiRo@>Y0tEpmvY$eN+)L45SF$O)xo^i?JU5lQA~Mo8$F1-(=DMXR{;foKVSiY6h^_oLu-?ISa#2%!u-Qn2 z*W%K6Z|)=fU80BQ+Fx^)K;99Umt;Lk)WvWNp}M#K8e8qW3g0-d8iE{1A1C}_@&j~J zolNB}9cgnbmLt?I?u3i@s@c=3EB;EfGS#pZZ}#`JSSC? zH+-8{aTQeIvq(P28t$EwYIyhX&0fQ`fc{8X(OGn7NDrJ&t!}tgN3z9g(Y!q~k}Ahg ze z;`M5GR-juj<5!EZ^m1m7A%Po+e$|BNtodd}8DXoKg=uE??!T51(EBAndCO|`I2Q7S zv6czFCGtJ9j6oxe4VM)izP&nn(J*5Rx&bu4OCO!%)_jBV4P{tVuKJ?k1dP}mj&Bo% zpJ}I9lTC|6_?+>mCN4k92(ruEIW&K+tY~ngDKfI9%w6bD8_T}<7Q4vQD-?q$9-W-} zA|_^Ts$u!?+)%?q!*hxnl9q&t|6xo-5);l*v{JBX(2E6PeXJFAo}TXMeD zd(J3uCr7ZeTlOJf6_8mxHIh6FeZHHYm>26rvjWA$&^NR6)PS|KN}=7N9o8) z652d{TgNG=<}Hcpol$T0q}!{rwj#Z2+|cz4&Pp#*dC_Bk?`js;U6Kc37x?X`_}4;WhCa*WIkSfm*X51~Srr54e!eF5K`Xyjm4HRA=o_GPuhzYa zOW#8384VouaJSo1H^8i=r}6#i8~gW}F5xvR07bwseJv+4l8d*3#r5>ZCHWE^(yRKW zPNW`9N5;WXi$u+g^e-twXld7WlGZ;%>$)E2_jrG-JA7UflWz5DBP;4Wb16+|`$jrW zRH>cVhQUK_Lc&g*x6QtWvaxM;N4Ynj9WZ{$mznbEO`%RU*@HcyPIw?tw&>bGdx)r6 zmYTX0=?&hw91x!I)iVAW>fKy-D2CEjo3enNfaxpZgKG^-fl%9ruiXr5S-}o`N!AL( zIko2 zGDb$7W$lK?m|gpN4UtI@OUVenmu}<-qd=AL7|fCVObtw*lapcgFs7y$%o@7B=$4zS`XGLPdtSk;#Z|VE@YL8%iJ<}%h|G`BkWm5HkSbe!}ctMHC`MOE#mBs9rFaf zvW__uU(uhU3cj6O17F!zR&p?y1PI<&;VZ#lU`5Dc(GtMsCx#@TTbIwRn$C2yLCj?f zz-T@>)tp`|7iU4yiRXXwfyvWP_C4`%7EdG3YvP?%-{mhMOcBP}{2Qr~Xyt6NJBEm2 zw#Wn|5&*L&je7I2MxMGAosYOo#rNPc^n|;w0c2HM;WG2!GH-kcU2lTv4b=VCtN7p~ zZ}tc=yB^wQy0tA{9sL$Orl~%2c`p*)aR22(WPNdYFFLaotGT0>ij}Ax4IL8?^!vF9 z0^M;6R9JLt@D`aulMSfe#dkJDy^q6ps-A`KRQ$^@<(BQJ9JUjb6O#rmScXu)#sou* zm>w>gDgaA1d=tKt6SNNhdA7{0pvTE|G0T5Y8I6aCQE0Hx;*;6*Tp)?P7m`-E;R_`4 z^3}YTq2|5+GXZUd5qNW;XH5+igFO?;D&`d8JO%~eD5&K&ypi*q5a($Z=NaWt{H_~V z-kZK$jAvUv8VouM<1r8%bq55*BxN+cj=RSM#uMmP0CefA1!~nzNPHfrdDFg{zC3`v z7OhZ5dYO39w)9i*9==z`_qc4~*CXThI}aXxin`@EQ&!)|_F6}RPpSZ85q3Z3ta{a< z>jiBeH12*~+@~&)s^@(w1u_Px9(4y>pkt8C*KKmzx9Op~HkLf-0DhOBTuUI06VrU> zCbuWy&F0W)z*)JMvcX<}D6|hh3-+k{v|U3h{2pUNON(%T+uf`+x4BtOMhCG*df{aS z`+1}@%wWUw{{)3%{u~eFgxlH0Oo_Hs<_}9z7-Tdn|edwv{6N1c(RrlbJ z`N8rK88-{|#|PJm`8&(7N`)!g_stZeonneH-e8KQstR|SADx**0t|N;v^DInPV+0g-8|ZEJ|Ep~o8N9fw%ss(!k#IjQNzcn#6s!>*P_1U&1qrM@&v>5ODPIWIce_=7`B2a^ z4iaM6RtJ!<(aZe+?HZ3ni6k5(9p^{@yh&U{ZnMNwjZBQu%)Bt49*XGBKgJsDbbCxFRk45h_vEDQ%|G zt~faq$5PV@D7@@%R8bLR@^QL|f6<5rg+7+|A0cY9uNDG_^Ifa+4zF(`X zE!Xj0Fmg?}J;SMJ<=4o~&L^M|WpXUNqZRPaGWl_Gg|}B$Y{wa7fk7)%FhvEtUDb{P zyYQNSpi!sdAT3bf+`-LtH4tr?gBeV}vUYnO?;jO9*^((Lp@D|>{EVnmc+s`A5OpeA zXo8}sb4SZuL!6Ca9rOVcw#4>AdbgmJqMU>&nxdk)&YFt$Vl{Hrf%@!>GN+tB4DHM&;7?aRbRM$?{*J zCMQ87Z=4*eYbKZ!>f1RPos4($#)T$hE@ub~T$8}S>>P{^{-uQ%9y~8;pc*tUaXUKL z_kb`FZ~i2}vT-+K7VHo^`@6l%D#4T!)sAj#ApE9H5941`J+@dMs0u` z1+B;d0>4bNZ7#elPG8Kt3BV2tzyw?eeYiR(z{ovp;Og)gT&ZA6#o zs#of=HykZ_QAevzVz+iE zD4`D#=w`{a(sYz;S#q_8X^2^NbgL-Wg6MuIS5>R9fO6Bd?!`ZF3O7g$6P+R_)i_cG zWxDK6y63E%`&X<3$9TyXiH*Eb;zhF+FW%1syS0qEn-auEmXp%TJe3Y2?Qe^QwvG}Q zB35!v(7TA8jvo$@{uK~FaQ-1WH@~3WSZ^qx;P$#h0d*8%a0(AQg?K(@A7CADIp5(c z8JuNbA3sSLp+X_~o9M~brJ^Tam#Q8CpR8GQN%Z9DQqdz^zOt%E*f_sQe>UpRHvQ?9 z%{w%izlpAFT`Icrb*bu-xL3Jfe@^Mo5&h{TDlLa%-A>~d0qFjPLDz%x|1ufP@P}^k zmtOJLcIyAqhwHwFQ@~;V9pT?gSP&91a68j@fZK9ZS-{g+{K*0$!}$|#<2DjRNfQnr zDX?uc)NQ?$?sh)V<0L!s#soP8f<^JJ*PZJh#U! zvU!vy!-y~9?PyzqNWgZ~Ix04($L2s*>^eTka30#j-vALM2dP+yr^aNfIZt5vBtL|G z1=oRmFMnxr{f7uWjh=7)oK)$qXvq+`cN~@7;=e+bTwZc+$$QvivA0|DPM{Uj+og$WOcN#wp&lb0J}w8 zt^s+0r6pGxQS0R;S1`0}Wv0^zH|e5`bTGj!WjAayV#x@>hNLIGhxsu{m+r%SZ6}3R ze^%y|XGTiW&dO(0KTSb!wL zH%q%QIRc>1mY3|o{Je5&-3#T_FG8yOARLDRI#D>RH9X}kJI63FvYq1;W~F8F%}q^O z7`|Y${=5|BF#LLb2ZkN)15Z1|v!htEQ&82H>z6<2h7fLAxGR_2p4(oqn&SvD$P# zf2-2PYVDZ*?3sfY!6zUq>-b%{jwY^etK}0~gg()N*Tslx`U>@phQ4AdT=i2b=?P{T-FP~u^q?nTRDhc;#?m8%;=?a>HoNi}WhZy{Vn!aL6!}`?x z^%DnjNMn%aQRPeebJ~nXJ26PzFpPnN8mQf2APF)y%-6O$jW*KuYvo0|BTG-?Z3Et? z7c+J_1vZ?(9*G?efObwG0$Af{w_ot_BJ}J?PzhWWzJN{H!Vl|P<}&~`txaoV zQg(lK0$`*4;!#d%8@f3Q*_$k6Z=#cMsfhCdd`=c9p3gPUn^&t|tP6p7R+m!w9-*D3 zqad!qya&L%S(N)^(7P2j%_;KrDnjv0a-t%#Ivijh&=U>qLIt?!y+XTOu?j^Kn4jA! zWXrXosW;UfD6ei~zuz^w-~XY(s}6>Ff+@+RqlM>~rk(tI83VidrM){N)S$ z&thi8werUVGvm}<64;Z>34Bbe+uip@z`(WX&$CZ+qL>2L~2$w;0(Jd&ZMsik7ui*|Z%$U~FUe*|asvS3+ zo5akh+(JLFX=vu1D+pA3N<_bjGE#DOFxYZ;B12Q8^b0UFLfMk00fy#eL!xsJ3gimg z;b*zxXYG7w!8R@3T)I8R&(@6NXIkF*ym4LFGBt+K=JPYLT6j`rD-b7kR!ZyonD`^@ z>3eFk6y9V38{VFPoe8p`Y*}Jyyk{VLC-3rr#r}Zeb1Z1CyM#VpcDOn_qd!Y`d$=>Z zRcHQ-I!su;ox{gKxct^Tg^(Bq1uU)@7WYpSj>krX%eg9&a5(`R5iWZd{SSkK2k66D z?kY=Pq|-{UHX>_Gq74c?g&<=rIV}ZC-EaHaxMW zyI9TCb{l5c&~2DuO}F;1m9Oj1KK+r5xnNL#3}zWrJ*fwB$F6J=R`m$0_$Gh(q~(xc zRk5&2jwE(`>z%@3dWqClc$imnB@A!o-wyumQLnSi5G#5NNA!nK%Mj)`m022aWkt6h zRaSLtbd|MqA3RlC3trHl?fPQ~%~9?uwfnBr?%Vbh$^5!3C=hvs#=1-MqusrW?t(1Z zK{UQAQ`(79^tcGF+y6O(8?TQEd%)?71~+mKFsAhkZ`}SI8d$iCkLPwFtInT#TB3O3 zYz9BBOd#dat8VpPRSdPN>;*rj8vGDy{K5DO{4**MeFZc)5TF6Db+c0`kuCtPK(ynP zy6*G>-r+E3){;y3+vIrf!jJ%GYqNnmo-G(p6vU)*QP$d-!1x9Vt-__u`xqOjBhJcy zQIXq^d{9=@t>j$z2}FrC!m;Xybf~OTjcjar45R~(;cW)q2?Y$i(;Yn${Q>53!rS1+ za*x=QNaYqFt+x4G$2x+MvVxh~Y+B{!f(RhT;rTV2HF@(JHd_qX2nbwRwQ(E<2*B$% znyr_R;L7@qVo4B7KzBqBr?siLw#~eAR3%kyYAnY*n8E`fvCp*ImZxvkZkCpIesr@z zqkYmfGVQ#;dsLfJ)n>vR)NC~9RJBo{dS%To`AZMJmws7e{#5k1lC_^LLvq3Tsu-8QGOi6hpuyoLWi znpAioQ^y=11+AvFY4*exnVdJ9JnGpw&;IXBnmBQrIH|_W=gjtW!X(iyHSFYw&$fZq z{-h|?9tIK-sf1^P3kI!wjI*=Z#{GDd>&YOjP`)K>7!PT~p zBKxc$zBMC158sF165j;{1!oMjoUss0*QX9^sZH^enltE(TPBMV{BTqsCJ&;eA!$|c z2~h`OBptVVxr)bVI3%P2Dibxky~@#NjRJ0_t8`o!X(NVj(pIJ|FmkGd0Ms2Jl&@yvqe)>B)IRi%(X)(du2^W zp+OKs0cgd4TEERat>0#zN@~urMN?EHn$uaVVO4b)8d23@h=ZXc<`jviq9EIh@Y}F$ zrldl%$*@IJDAJh-WY=k2BdQ>;ga2#uDZDp~)!_ZMKY9K{9GE^Zc%KLXw|~lf3HzBY z;l0qD+dpM~L@k&e&5H=aHVA@0ACn;nq^w^Eu%b&IhdUD4$k;lHGy+y1by%OUL`~kS z+idmNeaxsupAB!fk|SzKs~nM9@)s12NsgS5J1f7hBKOF7$`MQ?eC0?1A1BK$+x7yZ z94R2owS-%v905DdSB~rlFOC9Oxkr&0&$0@VruM)T=9fxbnx8P@(tIl}%|~3)SW%9M zMxY$w!Xbn%HEc4_K1n$u-6YBpE){IMxYUd(M_O5f`DSN@^6t9QZdQX&XeGNP`tgB@ z%8`2Qq#VU>prbFSqc70WH2+S~(PnjYTDSf-*p5bxTt~On8|g>*+kk#V%Z+}7OTy|$ zy0xO_%e-QG5qx>Pegt}D^droi^dlYUM-ri(ngerSVJF(?M+*D|X>|vpU*o(ia;`bL zLf56IYMfQseR31BCj;i7-#>L%yajVgAjQ5_l>HjfOR8_l^lv=a`W8>$c(C=LO5gNg z>o0YTpyt%=@OF@XKE^~ySmEvVXshn!gqI6o_{pwxx;b`OG|HdY{BYin0Lrr4Rfn{& z=vr(}53WqGuz%MsMXC^{J4WG2QSP1vsG zmb#b0GyjYR6Xag!p+n4#R9Z472+Tz=D3BG24rw&YI_G(ktC{Wh`3j($=B5g^5(Ri; zv}C`_mO3%Kd}J{yEpswDQKeK=ZuXwmoSc*ZElI0)Gq#)NYtXEXoJmLLSs zFHUDRIgNh{{nF{o&C2Ad(-|KigF~9AysSz#E~@4P+bGpWk9j{9jIS(}&~fj#Iqu!a zAsq)YoX1Q@&e3^Hk$>3xSDL6;h@g)aqBYY>;fK<$%Z_m4P}vO|jW+8S2v$Ko8PU5N z*1MC1;$K5AoYQ!`7mxJFvK8TY-DU*a>b}Ml%Zl^w~}oTML1E zrvdkly8U8ed5KUr=IImk#d6FYZ3B=Xzgc!wtH8a!H6Mv1JJD+3y;bmD)hc+eZfoQqbd|QwRYD$p>pJtT>&&;V<6AN0RfQ#J{3y$t{`Lh%Q(;C^ z!)P?7vB6ZB!PGDq4M}6k(paiCfuW2@xYl6C(#lwR_{SN-0!}KbvPg7Sg*eXNS~eI? z6=E|T)7$h&_-)?4j<-j9cQ3v3Zk>c$vhhdsQAQH(V2s%CO9?_2W|#cQ7&!+U2q9~M z#yy2FjjjZk!kr4c%iJ!`b-N9M9T3xr9>8F)F!x3JWQ=pN4yrV9kjbnvb|)`dBWYuy3Mq-{h|{}>kt9fi;1 z@Nom5cv>Lk#w6wTQa0GFQ)xMSTwIjqm=_m9teJ>XVgr8Zo14&5eg0$8DdiBGLpjpg z>JBGDClevEG=&FZKeeWdU(iHhGTO)0@1qJ!z$80AxscdDg8Tw;^}uck@D1; z5jyxog59ZuZAZq+9`?)rV_eyn{jwiW_Fu{j=}-AzyzXV&s;1%}57{q0d~mGnPQUES z&o3<@QLu-XL*)4t+)i(bwIHPc#4U4Y{gu7O@=M8XUx4@h>ZhqfV44D+ z&dbzOPws{-vooWr@@h9#e&ttj@4ZV;@9OKN^o{V)5~6n_f6$+_3`{|mW%{lH$>M)) ze3l+OIwZl{-4sn-i=UM2#bu2^IwplBUBNB>jn1kwpk5@!|KGp-SXt@=#P3?lBWKlS z%5V0<(@Jc?;(Sd;F>2tJ3^O$ku2b{lV07#`?_(0unwq(M1epQr%-_(~_?i2?2`Kvf zJcga{mYJ|^k>~S2xPuAAhBJR`5}R^pis@>d_hDve-*e2xZ!<=gCG#~h&u^yEZ$^cY z=Zi1UOuNVn&2-hMna62n^ zQ8rv)xJzkIvnGrG$n#H+8}8g^Isei)pIfRnpZ(3-GK|9-PW1B5#9MAX7d&uwL~*nN zO=Y)3EQ*#3d}W3Il`iv@=f-`-2XNxh@(3?B)9?MT)2D0S z+ZpQ3snXS}AE(v`k(xL!r2OWhhSkF(Ew@+W9vg9D_!ALE_e)so+Eq@t@4L;b`UWvi zKAD+tKby_W#Y11iz$&!qg<1e-)dnWf#26u7&L8x`^pjCHmrx<4slJ;&m4)h= zAE=*;&H5$W(gL%98e5?%r7*QJtXQMV7XdXrNJUo-lQ!duj7W%R6-^Phe${Zidd8~Q z$d+<1He&YHMSMD5GSG03B6~bACxvHew4`+OQLujOBB6M?3!Pady@zh8y5fY z5qSbXfWwW>3f4KRsLi9J5pO)wa(Qv!p_XeeFgRegBUTzBef!l!%~vb1e+u4H6G zZ4`U~ua%Ew^*f_w5p-(?M^=3V01S$Y{vj{KEVr09+8RiB&6!sJoX;SI<8QJV%~e z`gM`9z>72CC4LUfW)<|+{gb}$o48efj&Rw>$dLJO(AzHBcUI-{;aKu4Zlno%T3)?7 zQT=qmQXU~7$y|;wbzN~H4S1zVKRb1<_2hAuzlRqF_a$4hn~zT>Sfm%hleW)U8KyYi zeDET-kBDi?aM2qYN*)erL(wApg5_A>O#S(ysgcx22KNz#_OWmzboOSq^c(CTqVDko zClQC^Uc;(zY_LTHwEiy@gCMagtV?(md7ou)vm`5p%*z*B>-P8O`;TnB3)CP@%EIf} z5t6L%qWIwMMCf3wdS$^U+A^dYzOLF1^kzV2wOTF!{x$^uy_$EyEf znUacC&tDmLN$)s+UBatPLMsT5lkjSOPSBsoc4BILmmp09^wH|f9GOudu1L-RT;K2f z*qx?cq$1%};E4Y5M76K5@P1`8c%{Dhw7!8z>_sqV`GK^vpF&;Lk(^L!sP zR5$3fotQAUoNrBGJmc%VsL z$fXO|=PVytz0Q2s68VTz4nIKG$R@~8zL+~X;nvZQ*>J5}@<#ixzWvSm@Pg^XOw)&D z1xxwpxNg{jOHEI#$8)i`1+VP?dK>YemyigUtOlY z-Cntq`=(Q$oDStBuP@%UdjG_>ro3ry51HOp`MnkFOz5o&I7DaOY=q9;>TUNk^!Dh) zFZ_Dz+iYY)b@s2dwomd}!kdvK3go|yb$Y<>bRSRY^kQB!fe4S$>7j{D{vFRQ46ehb z(@XtM>q8SdtpdB)%S_nt0d=}Soepys%pX&nF}~9?)ahq=71xzyD*E%WK4+S@5FU6) zpWC*K_PJ|y_QV$dP0!vy!}0Q8PDs3f_$R-Zm*G78DqD*5Y5s7wo5}Cra2wQUiDdJw zjP&nJSs?YY`?&yvAdxa8J4JQrTZ&Piepk7tY#5oWr$YBH91S7U67z1yL-ka{U4vbU z9<$Dm9<$C6(#k(RI;Qq%)>@V<{K6gK=jBIiJ1hvcK$;v^5S@iNi@F>+EZ;Ro$I zxa7Cgy_#On!|6@^JF)ylh&N27p`bX75feER?G^lpfMuh3H>bl;8cWzoyr zpXIvuZm0J!_g!2MI`fo+3$yhm_zULt{nWfyHF@iJA8!)Vxc8_t?{!;iJ+(N9*msVv zEGhjiigyAq?5SIx&;S>LD+DVcBvz=b{20Am_=xZduML{rGboyEQq_d z-o^IDzT3_Z)JqFF1#`}!0b7h&|I>!igj(J5y#DtEl-iBu^1 zFhZnRBYTu0=_)@FBHh_l-Zwu&J|b>baD${(fHnX1OSvb|Q@>IzYKI&1o-P>X8g)Mn z*&ve`_xCg*%FNSt@)P$+s<|f@Y>VL4e*a1mtGXX9rVWBqyB{v$=06{yM%=|)_0;sH zmW%Q!0$)b@eutf_xMwtV#Z1Z~sf$w|zEL+tYf{(0kDH?P+JvMpM(bdPMDny?Jn72w zcHI7kFOPm`2lO1Bj67d8Zf|1CuGWAcnN3_XJ_7am$Y%~Wj0wx*hZ53Iq90&aIqhs zokCI$sNw2qrbWaD5Z1k<@1>2}BPD(_R$+!;;c;7G9Tg0_`QzgM7~ADY++JNev2)*{ zW_l9wr2k*)-UU3$>e~O$kO6}R-=J8jqUP9m8Vo8q&=w48Mker%&LFkX#vZEl498Lr zr_wke?TO(siSjy3pr>lJ7puK$Ym2ScqoQpR2niqxSOn#cC^L*)RT3aDzt4BSGfB9f zKIeb_zyI^+dC0ui{qDW?T5GS{UJGS@N=BKt=3hf`g5*v7$zoTlnXZ$WXLcmXzhEND zo}_+sN_&HrY}+9jSDh(KgiaH?#yA#adl<^iRzQPzwpUgGEz$DMu~IM}fWJ32ubKM_t~0 z2_d|s!q)B?#IeXgU;7dyF&vLxZur{S7qg_m*Yr`Z3g^R6d>qVyK+@zua|G zUUs*-Rxo`Jp3>WQT>;5&@?U@}F3aw{|2Mm5PqV$#TW;T;JE3p$Oy5iznLqM(X8xa) zOeXl}9G!Td*NNA?@q*avfIm^P69|4%{YL6r|8IN>i}y@Mbo{4I34u`APAhsP_K@rx zbxjYjqe8LZU~0Gv7T1iw{L)mcL{<#QrQ+Ue5 zB>!NMFM>g_127N{F66?pNN*CdKHPbu6P&NqtP4@c@r}Px`{pSzCyOz@vQMpeD{_zD zNs!Eh6@PU{3@w$Syc$Rbk8N;#Jiq|&7w89E%)%A0i6pU143)=mD7VRnRYMYB7pd$p z#r1;qWW8NB^K6p5l&!5rw}x2Hps2yIcLG)&IIyBnDn*CPcmwZiyp^ z9cXTRPR*=NXJ7mJF-lFFZo?Q6?}U;b?sQsn_qA^s?bJL>hMh*Me!pqRb)2ac&FI+J zgjlEfZXlehASERx6I(gnY-~yM{!4E#Y?~)xRI@nEP7xNP8SIc7swvUb*!;REGtY3R zEVmMEtDC5&zazsd8CtMxlqoM_?soDkD`g7_^vRuDzlNSiNd!Zxxk&E{r{+HaQ#x|i zXa{3hsxNt7W_LPzP!58V)Bo<4y)Lnr_Jtg}kQ7}D%B*?)D z{AA~_Mrnzdsn=ob^HV^oN*{U7Y#8)|j8eq2v!p&euJ6#NiF)icR~rYxIP(K5_0X@S zL{EWM?&Pcqh9f`dOgHnv=arAiYVhh~6zpBVb5_HDuv`d~*)bT1zh-(e+EcTrbK1E< z>bkf3|7_4T#X>*^r^xG_4BPF_7QL+=QF6PKg)cqEsri|C?LA&2Ne=(?+GbGV&txlp z(JY_zvz&L*&5T+H&S%&^sp+LlKjyE=<3r9nu8!B$>33;$)FF8EDS2ViwHN!GkKNqW zWHDSsYNi!X%%?fzr(Psv`;;u!X_Dw2{}2hR^_15oQEX2YOwbSh**^$cg4 zt%3Y%_6p27!{-+So28$+q8a9HX7+e1hx05#-x#Z01cPf;=F&CLk<}nUoie?4-1`D$ z5FYJxZ2b3+c9P|h1dkNfxFREO-+IUf0h9-Sn>{=Xq9IK%h~o` zq?N;TCY3>@1{UeEy8V>tkZKRCB5sUw3G035ye;7ChE?|jZDOW-;ihNKWSZG z=0;8`mk*OfnrfY2g4gUI?dv}hU-g;+gVj*V_o0|V9u>YAm=M!qU?P;@Iw(9#KN*;u z2BV#J(#?=D=~&q=NMJHASo43t_uDu5a(9`8i4SAW3p!f@C25;9+w6?8onxVrx5^~0_FAV>(Z7~q+rKny zd|Wv4Uu3=F{d8k`86xxJeAk-uHa3I|2KyQQR4$4k$UcQ;>867tXsCkX6?9pGbw$a?0>@U` zLxv$;XuR`vE{kQ%@3h9PBzGt&Zk@<{rsd;M*;1-z&;UuPNR#(MsN@)=sKlh@Nr8Rx=W$`W@DT@}RQ+ zjwFL6i}A}Wk{BbHj0;!pB0FF3F$DqD^k!>Ws-Lz6o&MZ5oF0#LjtdXib*6`~ z9hm3XL|gs)>}W>E{a2CWJu@V}HN5;es+PJ)<^aF*-i^7HPl*Bl8bN_H@^1JAJDAX-<%zMC-nLwMaYkslKNTvS zMxYqB+e~$ZS%crAZq*B#OW6pRd3V-zVILRxd4?b9yAm2*86k@hr5G9KP>Ww}k zW5@@JF#_5a)uLoGi0!~NSns*C8dvAYuy?VC4>oel_f01`HJzke>$%L1SJLXfKmA&`W-xc17?Zk1I^!QuMEh@u zykKkz1-A99vS(W6t0X(7whJanx$Zzmmn*d3)9{xZFTl9#O^yl@R7f2{L~_L`!p%o$pPqnynE zgO#lWF6~Ov*iXSHhs0b+7=Exr9Uymc14C(MCHx%%K8v*QMtTWk@=&J`u~XhsN<;!4 zt%zEEwRXn*f25am70LdOyoE7^tK_Df>uMa#6zyAcrXV62M#B3-p#L#HVObjQE8|P< zqN7Mr-(UG;PVQUTRVV0t$`Uo6YG7}XeG~RmbN^|$L{{Yxa5NgJ9a(Km<1lp!nQB)H zi`G0uF4uXcESE|!C2DtO*U{53KfklPWRKy07tspX{1hF{ur_`Bq;A3OPGodFIhy(? z7^{z(2_b_Zp}uC34e#Y5mYfNXX)TixI-FhfE1Y$##gCEX`+aVW$({6lRvy4psiUs2tgr6Oe-k`~^NZs}}GSl}vNu=v48~EAY=FT&enwju@{vad0QfCkHR3O~q zi{k&ynRd5omUOmnLIm~2Cj73menZXqTzclXOAqXJ_E2Ojyu5ugp|f!s(02AhCgWW~ ze@8o!!p_mrn$OW3D*A-ab*2|{8l#rU>IIYua%k2hxL#HJFv#N;huM7@#ny6nuRdzR zBX>{t;r!nak6i3|Vwh5PU)-ytnZ@4cczHiE2g%02!ON}8RZhqlWtVLtpY5E^>cx7I zsxbbt#Po|GXr6wdv&YjfNEe&a>5RmlE5WBnKm*(3{UrV;5$v#oHy&5R;d045@ZbZm zfqV=C0}dd`?c=*km6!WNqXFKO#ya}o2&~DdTQ|k?7sVpqrvS}@&SVkSjGZE5=dkL2 z3b$ZOzOXvnjGY6ytQ9+kfGI_-?g8$jr9G+((V9NWuzZggj3mdbIl*>_mUB&(MrQ0m zTEapJ0utu8(u5GgEL*Y41%PkDBa#Inj`+Wkn|;DX2!oqQzsZBXl1)A{C&PBf|HDJ6 z0bkSJ%WjNMDD$j7LX@tuWZfV`H|#{xnA+76N{q`N(3$tZ%7ZV%XGiTZ)|iwzt^OeU zd4D`|6(77aU3O&p<&rQc0GGQbYY`KTs4=Wgzw2;Ahsg&u8mcie$nTNoLM2tslh9jpJ+mV= zs840bK`#5hbdD|y#yg4VeD$jSVq z{yagrh1&&(B34$t(ni<{NHQbAb?LlE_af&rx3ZIG=C*#4q)>GHtz2^RtQouY8O72p z*iOgNlOxfNPBDPwT0Uk>0-zkp@A;RUi~m;4MeNt_=86{wZr_ac!ik6lfuYGXHD#>& zLpYJzYgo(FkSfk&$>yu27N$c2IY9jG!L!VQ>TW;PRXx=3?C`yGJ zt4s9f+(aF3!7Mexp3IU6{h4R`qUmE+Jkw3)%XG7rZswe>oAw#IsU{NVpRSwZ&AW{z zy5jh5&YYXr6hBorGl90nl-N{0uh_NOxZBhvlJcofB7$etEH10TJys_}7D7)U5ooP_ z6xQH##xR^x>^rA~des?+qXrUwI!2QOC%SXyjGaqUT`t#GCYmP7N4cRv-M~+r&uLHhSl)xK^pH!TzU|^f{hEN4Pu-#7-vE4C9hzyp(h1e1`tDpExmLXcc0xl|(O)++h z&|!_C=Dc)k&nNX*^bpC^CgHm@5)|LiTgp{X>?>OxyTNaTmTL@TF_EEupf$gdj+vSb zd`=~^>UXom4s_@Ix_+mb^QmW?b2XC~A2V}K%H31X`3%#ul)(Tun~MYnl9ayBQU7-Tx-<@Hg)_#|o~#%qeE2sNkL z@gOn7m0!Iz?doIvjHeTsvoC)o=&TV?UZgRbie>RgQH@rqa-OlBF>eH&+n4yAJO7qw z0QZzhWxO`nma8t3Z4)cONG6*h%&_W4s*CN5HAJg!K0m{DBM(U?nh`6m-%U3stIswE zaHE`@+RqycZ<}n;;kCF2WY7h@W$g(%1Bw#wT`lYE0K$t2Y~mtOiXikvPi%zM;5&!* z*JL~{pXa9XKIXZxyAo)JokWW$y=zogb@`^SAA>~RW%#DtZ9_$acY+6+C!bG%gIf`kcQ^e5QCjITMIk24X?_-RvQib z`#Y&kMy=X+s-ITT$U?!rfS4=n(SE86l(kuNwCP13m?08km_Q-M=o#)nB{#sepf;1aS>PhH8g7 zW=|O5WD_-e$A@TzxRedia+-p~_@b*>^S)><`x(IuUv6V2psbNB{U)Yt*>v#(jh2t<4NVN}!7^_=D5_S331cBka+#KRy=ApZBcTh;*wn zB6_q}&9~ebDb*r$ma8hpF693y7o@wCvmxq@8uaDXECzim7gO(>BPzw}SM{L?WUk)k zk55o-*U{;+HkDe!9P9RjNYN)cZ}gzRfkoSf?KV!uezb?BDNA?RPZ-5j-E_P~H^seA znQ$RPa(|t@H)r9@g zj$19T8g+BebY-ZMc9DCSN-S8Vo#3JlEOgP%^qc6#uXgZ<<5o&cr&nU)vF3bHq!jbI z`!EazWr-&{L1sjT5Hw9zLofW#is+sJi>VclG0Zu%V#c%#4na7VnffxTzi)) zO3Dt`Pz_4ikT{Ewn6e3ka7WF&RX7QX>morl96}~E>>FArrw@jiR|(z*4S^PMQ!XEm z9>Tww!%}O|(5iczar`b4uH<&>~v{+!3;A|!MOKjtD!$(_L?HMGO?jy zyR{LU2Fj$1#W%)==U`7k!NZnioU+tX3*fCT+e38#rUB2n4I{wvZ;CgV2?@k%mNTLx z*4|i0Fx*r#g5on3&ZkfKhwbv0>@xH6gwJX64_i*P?h5euqMKut&CsSl+Htc}*=#C- zmbKKb4LR$HRHFVnHsUCyI6t`AscGI<`=lKceWGm`sA3tQ)NE(44D-ylk68_489*1* zvJgw&3y64Sau2}FNPdlrA{QesW$ze~iR~JanvkCm(R`J+ei>m&&QN~J-5-f@U(JY6 zwnIU8SAYsStBnA4oZxgDyCTjkIMpu%n)Gi9=rNT^s{+5rb6mx>@jmDF{M=QD!)WD* z!-&EKTtWr98jHXwRiL>ih{N4Vrn1}ROQt6i8l3e zPsW=Q5?`OIA|5^fj?Qm22=d@Y-`$nsr!b7K6=KB5=CFp|Dh zX~Jd!^yAx;V#9Otd z1Gd|Med-3D%QR5ndu7J)Jy?)va2qJksU6`YvadU1A3uHwFVceV6`QXM3)+uY7qv$;!)s zDj8IX8!Or3nl3AxP3$0O+KtOC)#b^Y4wFp>dMzVKI4?~b@Jz*$e`6?Q~Qf#d%z(pQJ=U6 zF3P>^9yp(KBorTwfZSMfZ~GRNtUAiRxArZ$7~j*xgh(oO*Nf4uUU6NFp{y*6U8z_z zB9oS4O}&r1!9QE7_p|-NinbC2Eh*P5W365}W!bG^O1AGy{+64=(y4dcu;a&dDe@8dRC%PU@y~XAcbdTgr4E1E6SjVoIu>cnWo{>{~AFO4D^M6@J zN4m?-X55Db#Ct=`N;f%{MD%}kb%l6E+G!q^MnI2OBA*{dzEW<9k}kO920OgCZ#v+B z9Fb^^AH;KJX2(_&b?hR!k}_dc1QCq5c5N4sto^>jXAQJfz;& zqd7X1jS;O6TkKO=sE&^1&q*&Et#FgFx2$>p35ZMHaue(0Quq!d!5h8@l_FT`=_=4Y z*3f4DtD$ftsdB>49hozZw2g^Pu!hPWF-@}nYK}`U-BhMe9YDSVe4%uPm@T6=;(7-(H0fe;+>;wn+Gn3XfX8E{eoToPr; znh7?=%q4~6b^{ZB+@UbNvQ*8G<3zp~Jp6cx&w{N}R0h01TD#45+A(khR5>=X2r+MM z?Ta=9UW{NDh%RvjyKf=b-A_kO7VI8l1DQH)l=UucLpBf$AsKZ8xkEBYp%|R2Bh2fm zbu^=O%r;twR136@+0r^@_tZLSBGNI;Pzm5cu{b=lwa#QYo$p zhWDbxK1RQorBWbO>Is=wlfUZm9w4>NyItSX+E;b* zd$)U&|1KWAI}kn(W=9{5weNMI7b3MW_tk!0I;Pd|d*s#Q^-5XM@)Dn3l+WU01bWv1 z1)G;TiFSPr2o0+X=Xs!gt6ccF@+5IVTCh= zgJHXU@c=?VlQsV*bWGZ$Vto*H0wrx48Jl)x&=?-gx~a&&xmbp(q1g2PfKAUN9(ao+ zTIm+1Ou6HclO`FP-VYH`nc7=o!Cf68Cz$HsMzk|ksLJK_jZzSo83mE7@lp_to~W$x zW`AC?`bmje=rUd=pAH$NkUs5%665L|p3=-Uiw11(@o%2~SfIVP31P-M1}DV-zmSxRLqwI$M=xnnkB(uGl2olu>j?1peXpz z=i@+m9a!!1@uvZXAZ8#J-DzP$=t^c#&%JIzt|Js5k07_E<~!Ij+P7eULz45CtW&O8 zlGQc322QmD^L7KYVREo&L?pL;!@RXm>7hWhk-bUH)%%00UA-MPoP7rFE%zSW8?*2l zxOWRTF;=J6NhDE&u+h)<^a8JHYpJ{oHzne$M4{r|oB=yPxCBj$7L2 zCT=;gpZj|B^YYX7a~X2->H67mhJJ3HdWL@H+~8`d!1I|C`}rGQJPw|DJe-B+_ZFNA zo^Ww_4Kp4@*SVK`gA`Iuhw++f4Ht_ie-df3PH8eI;3KE^RjYx-xf+oa!YqcI;58j+ zn#eiXYr6K{Q*}Diw{DN_U8n0?;Tij8Ji66Ke=xs&(t@$Xc%@PObkv}W?(ZGv5TWeJXXU3jNK4#-NUdjrFg6VHLq91Dl+LD!fouAvl_~| zE2TQGB36VGZn&}5O_bLV*C8wh5$kuu)=23$UY>?VZ^hiY&8oXWKI7;=Z$Gn`J~R{Sl0-}U`GYl7IubWQxdGhQ&u5i z5;B>rU6A}2(_O+|PTAe>Glu{D?$-X#yZZtilBhn5U+u-Mlxe*io)&;$C$aXYD~fGu_Nuy%h+4jl|2=ep1zDNqkj4HxWp z3--mj@HrRu0=Em|N04$NZ9q4&s>1+V>#NzZxxDr_G7PE95}We;vEfBd1;c=0I7m0d zJ#xz_HNkY(q5>taVp60Y=@oP^ca-j9KF1)H(~E)Cqtb$mKjo=thi6*A^(aXi{D4aV zL;{3g;+`X*yn@rP?L3MH?%fB@)jkJj!lSs@e%6`trjZL64pLR^I#azO+5tj5O&i@U zYTwc6TdX}pi>ZG`)T_OnG!I5x!hMMIIJdFObND&8m*L=A>}C_z;xBAghtxHCM7&~< zs3`mjWsTGOOV0vqRLmx%IqjzeJ!e(1f%>6X;;~+>()Dw!dGZkXokMQOCLxl$eYtOS zsqmMZVdW0k8;k7qI+Y1;?mPU&+Q6pFWc5x3{>5+SgNLV|i-kW{`Cpy6mCtuN1D?mp zO=?Z_*QxLZ+c|1SKd?w4F`&K0Rb21ja{H!eOF`4_UQW`Ee;K8fN}kHW-@Zws-W&ZO zSG%|Nn&8o8({W(rFYr70KQ!Q9jj)3k*UorxFZkHXxM%0PiJ4Yb?@pc1j&Rp!+kH_9 zDbI}!c*Ys9(2QYE^#SoJv8B2T=o!8kt6>`u5ucf8w%>vm64VP~k-1*r{U(-@*r54k z9|yx!H~uY;vVBOhe|o9k8C673{j*pjw%!<<@Oy2;H8T6Ij@sKzy@0a!A{E42;*Snf zQnkX_iOE7wP#x7*)`*GZS8M@|JWT^^mc&u{D~=RxsVn<=u)lvh1)Q2xDt3w@CU+nw z^Vshdp!uvxqmN>MM&K{oY|Z%&%Z5^>Kt)89YTD&r#!ED(RCkW2e(~cOAcWz^VjYGZ z7*}H`ydDFh)vyrhfUpL`iwzgEckW(dh$bS`=nTI_3j2`f9U z?;m6E`rqn%?f-V)uRdj$%X@TLkcK-k=LXCbW!nwdUB25s^BO_<%G8wx#1&=jGcVPJ z&t~{8uw=P2uyx^VxUGTfAOBmp{-=5&qId%d$t=ELotb#-k|Kr30&n`wSpE-Tis5A0 z{+eke`$Y%orG#*b61EYj{aaB&ZCP1!WH??^66J>{J(R(I){md#>u<}V{X?L#|L44y zz#%WR|G2u%#dCDB-x8HeqfjmgUj5|V3k+5Zy$xF516n7G=qD*$&qvr455n^Z8>*RM zI~_d|6n(2ZtR%yFYHs&wQ$5^v*cy}a2i;!j;-*^}Jt@O>_Gb-a8J^NseSrF_Rx}R- zNUK--e_Vt0QqmHAf}ad?*p{q^{p9%4=tm<04xG8pY?@S@=_6(rC5BnqAf6H(63>KM z_Y8+2XJzctdh$3x(@wF^xzgv9XlZt?sl6pBj1OK?*I2H|SMxk?YF(8{KlVi+OlF~6zq5*sQIF=Zxx$)1 zgeTcP{wPtklO9DBB&!|8eBKC_ZMWv_#~^qHzBaKy)*p9gXofQ>T)k|= z%(MK|v@d?(O88-gGlG3PbqzFO>KMLf#bu$CIqNBYWe;&mQ`MpH3i##RjK}>8aCoxG(P{4wQdg_Z1$wEa{-DnpTtl&0rT`ng z;o3=69W?d%#CVekg3SR6;2PhsKQ;)Ks#SpjiWv_y2?R-SaEKg&R>Paf>~Po-J>)A5 zT+Wl$9NEhJ&Uo($514p8P_EYOd2%Pf9kV|sU-cvcvcAYP^m2$bsC=DSSYyq9pB4%F ze;sm~ASamigkuF|@3u8hY~1e*FcwElQ<>?=%z|5&SO_O1fk+?eEL&^>9f}{gkZJHc zH}I`Wq@~(hGBC%U-xg8|4&{-`dw_@`7v^}sDv;7JtOyc$2-6RXitCKXG4RH;_nB0F z7RNDl$~YA$d%HHqehXu&M6l}#Nldzaf(hAm(QvLP`bEL=IN&)mPK2EuUhMkIBz(z{ zp+VWv?H2oM`W5VXJpOO}Kf<-ozD_kv+5I|3{mwFNiE6|5aA>C$O9BBduQP0=y|P5jH@07Acog z>#}U%IDM+fVRKu zL3E@bPR(Cwv||++2<&|%kSc4RK8ha5Af3C4ZAXuFoVhu&%AyULk6(-KMNrdwiU3vc zP;!moT=G0=G1F+K_ExY?Y^V%D#+&_w4gVps7;W`_bsTqUFZdbt?3j)@JBg;!gL%ihU`Cw&?u z35L{>I<*nrESF7!_$2L9+9$;C2*oBPiBI|z-@&tt`Do1-PjFVfB4<^rf7oGv$ze3% z+Rp}Jm4`YU|0@K4RUX=B+*ZeG*Wv2YCb#rT#Nk&u?6S=vXVRg4wNJ^8lF%#xGd?F? z5^a@|7l>Em#TvsPh3PMg;lgz_F5XxrOkOWJaqD7Nl@GYFSOBD!>}towFp!W( zbOB=~*{m{vsJYVsfsOzKGvt8t5u>lU`nXZ!V}AOCVHe=9dYZSE1j|0G-4b#(x}(L# z`?N+|`zJFz@ESw4JYDYaB4Yc4_+x2X&hh+Gf*ea3IhaT|NYHqQL=McB)9xoMxt_ge zAJksvGf~N-(C5gxYoe03C*C1Jr+Fde)kXN^13941&v;1uv9Dp6WQaTh=0~|GC=NVP zYrTgXJ+;>Fumo(j=6%In9(FJ{VU*U~L`G+Y3g~G?%=;2io_~}q%C5qFFwF+LeJMLn zaicev**yDW7d$)b6YsN+94`F}8~Y^r*{(`1w$ zZFJm_+t#JTUlIrp*&GN*He)bYEaR56EsPuJ?^D=QiF3VadOlqyo7Nw=$0q)`O`L81 zsMweAJAMgh_Nuwf<$ZF+J1d6mZc1Io4#P{*UE2r$Ar}JyHk-Y94hQ7o=EpS?q^fri zlprsDRl01&^nAD!yT~6R7$N^5U+glXdJeMeNWp9eBHE28E`g?BB#tVi#hZ}-gmjOA zH^v6cPA^C9V`F96T5I03yx}WZYXn=EvY*=5Y|TG8(Z%$yO0v^BMr`nJZ;pHaFfLrP z91VNQasm?~e^u}SIQdrsghwsspp9EY_)hlD@HSA?JU~{l>cwWIA&*60kI7r{o+5;I zv)l%A6KpyBEdjw(eyijam}ZuX(-W4c-^!PW{Uz=-_&gP53xfM~?`zc6KY(4 zm_NLW9VP!en9W`a$2%%^A=cmv4PK8k?HaUh8@53K`*DBobeF~L(%i}|-q@5ac@DoM zHm%$OQnM*}J;pZCPKCnY&xUqlkd?=~@OXs&oz_wzv=&jZ0&G@~kBJSMLzoJAQ%K!H zW{G(!=c7uhufc-Q#@H@0ns}NPg}RN6PbeYE{fHDHVz|cQ1imFcs^OOKly%_kq=n$^ z8`w)om#|RC{4^~tWr9!NV{TzNeclEs@->9fTMum0GD)LVchv%B4D7{neO zA6q7^`WG1BKM{>`mYd6WUl*r)hze-x*1&!-$`MiJ3r$8G3s0| z<3Fi*2khp5n)-7Tq2}*|l?D8zN~pNL*ebAlC7gW z)2Jo9A$0?k*Qn>Jr}Jl$N5z8PxSS$3OE`NvkyK*NUy?tqVF@uO6d?epKxDyeoMLMZb|XQ zzfxc(_fjsQ_%Y-XlroEKfw`*9HvJ+dgwmuKFRjYne@$7Ga#*1%p^eoa+F{ZN@7+NK zd8?S3Ma$uBRK&K5_fQrxxGBePRragp1s2h&LtLudL_xyh37aSjSUhRdQ2tKYRLGOA;8$PU zu0N{mUiCNqS*bru^`~8bs3HB&;K1EhRVV+EY^%toOyOFq>Inbem!9_mNDuE)$2ZeXM>P>3`^jAw zuT(+i0`CE&5T2O96WnmYxYH_b9UUKVE7jIp0VjnfucSy8B}3_|D!Qe?@;WrVPMWxn1MTnX=oQ^1U)&1cIs2`;`*|x! zkeagx(i~-0_{5-t=g8}tNB2e*@y-6%``nQ6T%P*jnKZ z)pju7AhWvN)~=I+#OFUfhtG0k1|T`n1nO>5sFeD7-ZuUO+f-1mvdt9KYa7b(q_%SYPH7v@-$>g;{?@di zem035d%w6-pJ?N--?JR@d%@H0?{k`tH{EF}z^+%{&bwGbo z`m;lSHtEkh`tz1GXM#(c(1M{!a;sOZ=KoUuZ|DCKEzrQG`dhGMP$W>Yc-CRVx|gM{ z#tH@NW@m~x_qJn*o9kI)sk*nEVL+Sx_IxM?#)47RRGmQMx$kp&2A)jqK!i-5*vJ#y z=m|=z7zS|xlUrpV+(!`ZBP>YptXXB(ftD~&S4t;#n9t{~S$!CEez2ZfJ`&<(mu)6x zjX&<~D^mB94#h)jSFVES`G#2)RT%QhZCqFn;j3)>`@!(LsAx^^d+EUi5x&Xq6;sUb z9jhqkHj=|Kc*Y%DIT@nstTC0Bn4d|P+Q$goreCcd=;|n>f{_;v!Ak zbIGYR>|o-}1LqheL-sBH?Ykkj+bEuImt)(26Tc;a5S&N@x*bhc~={5l*m{^ z`aMJW%8R+=#*8)x<2UvSU`3gC7T4rRXpV06_)AtPRP)`PNW`!RuqkdV-7C_=Ra zGXxS|2od$Ldxp8aD%xZwBb4;Kx1NU+c`P# z^C6969q+G=#{GUZdD8h1*-5Yq6oi~z3Jwi9`^jK$Y;IuC1&{53sxm2Q#7KV4IdiiC zVq6Q26_d2T`F)QTie}C(vAE4I=an0E@ql&P73Y|1x9hy%f;&0!S;Zgofaq!O0Ym&t z{fI+IV$tSaT)b}sJgYhB;d@tH&GS|zb$=`0XYN}lg}ImN;1gP){r71n#mCxcxOtoU zFyT#_-NxlZ;7k?LSM%XMy4i2t`&Ldbu1)xe=a14@M}<|{c7T$aM`)~-#`fyD>lT{l zINBu|s%qk?J^VlBvu$`PzuXQ{16$Vg6;lq98-F|0y9(%*6zq!Vm^C1#F2LAgd zYv!29<7N)45#7JWzloW%yJk*^#mseGxWQat=v+1vH>j0~W8TnAoV+1jWAn$v;R0Q)o|8kHWvWCalc4#Tg{sn3cYIuMtJE zY1ap7glie$XZ&mPs21v7rO5|~)gPwLr;O@au%ySu-Ex~mkKr1*DTb(Wvom0oiA-Ew zy*HWQsv;9NswU%_Mgt@VsFdyZ4moRr^36ldum?|kQLR%%8f{Y=|cW73{yAO+i zc0-s)3}IeyJ*^nR+|Bd5Axx@!SFRReLcNACKUE`Fea1Y;(Z_}`n|Z38|9c_K#Uji- zrri?>^K4Z!HHC3q!d!J<_;|w9tcffun6)j;+N*-1W-Z_h*ut!3&u`Eg3JnfxZk3L)nl7ZHEYtspx&UDuO~h*I#o5b+KWaj{ES z?eBraEYskk!AWF&$yNPtibXa-0mG%Ep?`?5ptL~yVq-EigtgKT)=EQIZJIn)mvsqi zr6H`Yi@S|~>X%{wF*JpMlfNqCncACd;3{3;qzL7jan9;tjnQprBzqeXqh&La0(qgo z1)Sixz#OxtHp+Wey@fAY(La$D#coAA(?2vcbz^VxCtPK})h6JQd=nZ4jVs_@w}DT+ zk8MK!aSDKS|31m{2{VSdA#cfB+SB;t@~vC~CKtrc!UA-0w4+Z=UmEIt)n+SaF(wL* zy)6kegT=bqPP2%cC)tZ}{IB)LzJ%*Mq*SRyH4@)RbcBsDP&)GKNE0Z){#e0H@j+(4 zf!P(#mOc~ZIEbkZN^W2cP5fZjIS5+^eFkapg*#ei`kg|OD^9wY;lV4h81==z;}-e;oG~qI2<0xu;`(4mS({oy>hj0C^vW~kmEwT3JJ@}{8M z;EU8IgAwwplpDLPaWx~D4V99Eo17Q`vR<=Q(Ot>#o=hU`pVGIMY(zM5cKXZSx8{Ef zY0uOi+3t7Vm!Ua#qcJnHpJRNERrfbwuH>u6U5zs+n@Oyk?@J~eij{1EdQ^pQ zz1nuxh2o?32jT;sCu_a>QWbKNp;*mz>=Iv!3-Sy5aD#d}C_>O5&rZ#C30+GBqAlk7 zC%XO#))lrD5sl(^4rt0HaP}A%Y3|SSuC^Ia~~MPwvI^O9SC8v=mgT^9^?HX6g*^Rfhz7&MrPKkI_UCF7A%W4&?!f z7p(8JOGtz`fnSV)Wmw~_Ier8mJU>MvKnR5+=sir=%(>nyH%4p|2VvGlmqdKdeyd?I zK)_8=bhArqJZtcW77W(V!bG(Ic1$QL#Ad#rlVsbmDL*u^qH+HPY*sp^}zy z@kzgDm8KV%E6&9Ud~HF7+A>{4n+QuP$wqy&saa-8td>|kGw)|BTV*3I&N|J zgDw7b24;3lv}ptoKP?illwKA{FZY!lwC2bG)ip{pKzE1lB`lOnX7q3*yZc^i7-Nt< zR^1iQ{{2Kd`JtMxxpwlU89O-{5saO@Kc;%Kw!7@}&FZ~kz^uhH{eR|b3NqM-�{R zK0PUUOpMkPKHJM&B)?7Y7{>C=)@9lJbv9AlcK8N6Ecv=mDBNG{8!ezdU2Z+OwD!BS zkNSCalh69`ViMGCuBh8EZ4w^B8F%ADm@&)(y(TEJSkT-O4F+vvmf**;90m9aDHd$Kq=tM!?H z)9AakbWQ2OME<27HD8$enalq(jz(t z`_E@R!uCBlTZf0kri#4f)9xj3NWzo$TMO|mHwK!v<^~5Zt#AA;MO(~Ow8G5Qrlhb-T-tcY6p`_%>hVZC~NO?T=k< zy>wPKDkgSmMQkLP(Ki_WCtZ6AsEqnXFig=kx0EOMdfD*{{yd6CVedmZewJiSIvx=p zztsvgm+l@lE^^+e%JM&ZBIlG3-9747tNx4P+R>w)R|V$Jl9uTlEgk-50y+FeLyVGa z-Llv>vh{&H=3)p|CDzg%*4*294-P)}Tz(b6S$7@>u;?LpW$Sg3n{~@GPuDeZK&WcH zc0c)@q9UJz_4MlArSBlCK3u{@tNsf9a;@JLT>D-hH;_zSnfo_x;32l={*D7PkwLK_ zsDo0qV|U6{O$LtMEuX(0b*vzts21+V6fbVo>3id;0~hc8m)*me0eq!z1;U?b`77|< zW`~cE#6uBVq41lEntO`Fpt@GvlpX+ISVCM1VKNR@x?KiO?0^2cZ-VdZzB_$)Ee4vS z%dJOR*y@~4z5<`k;5*O|q*!}%rWu&g2Q-05(GWX+-Ivy4B*fB?lh|}}i!L4LWn<6y zscAFE8ASBW_T(Gp48J-tmIA;)06_RvQ^#cn-NUTUjmAbk z(DKo%U9>dubTVZE$pRWm&NLqY4{tSa`UL2N!mUBouH_-$ZKZ1f)-!7Cb^$0G*q5&S zXnYn@N#*a)+N)%{@>vU8?8j}$$R6wlB_^-Uj)T=Gnt*T@F719|7R@Iu^F)Ro-s+-< z;@D*su|nhbh+QpYH*l=q;E!Q~#Zwmy7k8s;i}jO6d8b}#jC&hFXK?mUy@l3FC^*QP z+scQ8zAO0U zx)87dL+#H^>jUI&N!m~j3;i3^fSNXSP_&ox^x3g>7ssv)+3AK6E04ZC)Fcnmj`1JLKwus1JE+E z+3>kRE}w(xsNLux_?sr$FuI@U;0RZq;vkDVx=34*I}~(1cN=F0DVWxL@FFkqv+X>~ zLDL7l0?yKad=kBHPKqV*L?BFo2Po~szANMT7dxrGD>9)38`1;T2c7oB_dhsk^6p-6 z9RKk!Em{6^MEu7fgyBEOA;deYvIz0@4^M8>tbdGF@1sG%mCvSKof(F7l!?6i>Tdcr z6WyAnUevLqRKl+NtY|W_4&@o3eAw^fUWR zenn~8U9o)s#fnuiG_4hDBONPUra8^mPtSSo$joy`_dK(*X(XC#N~G?v>}JOIr(9S8 zIFL5Xpzh~9U}p5!9Asxy7kMG_b+h&;-F0T|VHTNEZ{m%uW=g$2QkD4Q11>hsATzm* zOzt0c4#xydk?%dezAQNeiX90$%l&-`Sk2DrqW4dl0m%Ux^l0Rn*0J%L8`8=C2Bh$P zdU*PI?fq7EUh82#Col?^UWt$(dZ3FT2L?AKucU2m)-gD-^$e?>{m}wWgW>b6mp-Ea z-bT*saNkgvwK1s7Ysx{%^;LQb3@=w;mn{u_yzZG$ak!1q(Bap0ZuO6_xxQZSgw54` z=5=-$!npO+R&zcHy@EzYfGbi%C&#B6`d=Eac5&jJQRA$-{qVR^m60!ux^>#%(#Fya z!h*W|UO73l4p&C(S%+_(b}bCO?l6x9ou$}yN_VGj8a3LgA8(!+XUN^C^3zt95@57c zaObhq7079`4)fqOJg7C{ewujRV}ecU8-va}k#}upd1&M=;X}^L{rF>zYYmM2+pBmQ zbF5%(PCQM$Xd5#ZHL-~#U?hnpMaTu%l# z?80y1*etr>Y+6GW&@@`!OWuFYREc8FK$M3Wa=As7oW zcJVv6>Y=UXp<~}5zS0VP9RHfAMx#RfEz=~jnR?uotjZ|56 zA2Lf7rMtOut83PP6A^ucjBCg&avmi10?Zg9dx12Qs+Ct!x?|R%+ai|v9mn%ah*l~} ztC3^3Mb0(9!K|dr`e{wx12QAiFL1^j&APid*>xaekOzp)EJ|->M66 zvFZI@S}jZoPhux?e0?_>Eb}`bpj-ECftKFcE`=Kj8-E_MR?M47yv?-Vai`Y#XEzyI z5OQS62t^~at_%L7CBF>%DcF`y)@SfsgJfYi4WS)w%M#iYcu4B$?)95>hKWvIVVZ%C z)P`B+UpH6GxtE?Kf7yNBTjwH1_@thfn3VjEdk$4;%x1t0oB=cJ(lw0J41CkJ%)rf< zXTE9Zr>DHolka5eG5DH3@Or4ReZf<_Y&a17$KMzI2iW=gE-5|e>-$k4yu_Ct(41UE zH@Zi6_X6qDHVOU_IRnnI+rC2mFWX_y=R1-`@TxI)2;Ew{pjnnJ)(b{MI!B)&U7W3n zZ(ZQY3B<>EFmb?(n(d}tH`tz4_UaCD*OE7KaR*sxcqhbO+Mu(Kx^ka#mSeZCFQwxA zkd{17g3c<6Hd04Bb#Z1M?dW1pVDLwnDf8^;?!3Ur&9%Yc$RiKzlpn)?Wrx(co8$RI z?&00^J!m9f?d@x|@cym7$72uP;`UCwR}@>AXo0V0^{><~WM^Oz$n!+Vfh_A0LT7emCwF>H zpptj<1H>_WwfC+TTy!q9M;RUpu4X46r;%)8DAAr$ya-zoUq2@cXRyZD7*cTq2f=$_ z2Hwax7|XlhT`bc<(fQ`Z5vPW?_UN1*-uWlNJMH50r>Ib1veSk(by|FerDf`QvRVVx z#1j~4NH%OWNCgdH?-puCm*j!2&ZdyFCG}Z@KZ`verbjmdBj39vKIPM#+FJu7w*=$U zJhj^lmKLG0vS$X^VbP0+_$zq+Xo=8t+dZCc93^-|uO%*H?z^z`r(JN%^Mssrr$g0r zBH90xsOrkA!b%*n1=jq35|q}7-UF1#$>JmSd&+#AiQc>6W0Ud~_BS_VFl zYhEeb+Q4U^flmvt*$s>q1D{>D#EU+u{b%eEqdS5lkA@g*2GOkkqdQzYn}Y{XunNQt zuMw(~vCeQA8EL>Wa13{qUQT>Ub%!oU{h*7U&j_a`cG5`ZKMuu!kF5P!_-t|Qi%VVn zStlubD^mjy63Mhu-`6;7BJgASwLnK z<{Q>#%~v39YOOop?e2WPbK6%KOaONwTu6rW?(zKc#PR%q?=T+9w$*-vd8^1N-H;lA zeH(jF!$VyUlkGUuxnm;#J6Q^3DBHx}32icf$^OQfxXPALyk?7Ww{Bt{VDBS0&V2s# z13m9l1Lgb7*A$KKn;PF{zNQG2C%g1B@SD+f&7YaP48P5cSGG!+zE#)AFqpdR{OnKs z43lgi?k^I9UDC~9F*upkY)3F&v$&)7pKpp!+1?RoU8)j1KxL$vXKK0?2jY~&F&LYL zi+~b7u=wr63JOho(9iFk!R z*3uI+yUe!`KO%tU-|hH>T^-0wj5jwm3c56m;#nFC#HV+`=G_d=q!U-c_IdVZ1Dg!K z+}y$HWEP@6R9px|TRnFBdxmR7-q{EIa%cXQ81ioN*qUi=4{S8C(Ou|Igq2yhPlOXJ zCJQJ!Z_U3!fKrJ4=#J!fIo7=P;Fq^i24n?fGb0d{x+upuOLMu+hE|-hX!UGtK|L07 zRY{4MY}K`~mIvZ>SjM{7m}T}AIbe?TcRO(v-33HOS+N@K(bCWCm&=7rgZly!71Yi4 zRn)DfP#@53qF7`as~=Dl3bo5qoe zR9-H%p>zYPvYsjo#;2wO?Hk!XmK%seV8L8g4gD!jW%xNL3(+Esg*=^h^k`mWba3Ry z4}2&_MgRny8@cHo7KGqcuxqV!&%X{wAG{^I(q)w4#K>Hicc*?QzKtw}{G|nca633# zd#xlg1At z7TB|=6b&?`7*S~E%lax&q{oFWiN#1*(xgF|w}mo)BM-a-OOSA34L+PSRp@Amo(q_;Fq+W$= z9*mD_q2EXC|#q?r5X z?7@4bk|TM#+)2`>(RFZ_Zo(kr$^|FNpG++4X#~`8@ob!?f4o39LM;~hKwV|cKZ5-vwcN~;%dd`!#k>6Kc>IH@V8F<*tin^_ zU+**H-^9fC2v|n56UzeslyhF=sIt*?hYDl5ywaFb;&*sJvp$4XmG@*^hIVXqeqfNQ zIN+#`4dBKr8dYb-8GVIevOnKj^lG`VsX~ERm2?|=2-h5f(7v!02@0ce9X*1 z(D^tRpO}}rC?iLwz&YtYM_m*=l8%fHjNDUe_?LDe!@wk#!@FFx68i0VS$rpnIClih1vC&u@~4Q5m{>@cGRmuP!GY5c`1fK42?aTF&Yd2^~!CJ7LAdN$eRB- z7MTAI8wwNs`kWdYdf4j_7BpU19;{1v8=%v+hZIuzt-4kKQcpxF<{4H7%{~O6+cMFO z2iqCJ2ob}K#Lq5q(K;zzK`$7DD?9<=CR+2)29=YOc*xifFdY2P@$G{D4&To1-4oxw z{Qo_^x$>{T1K`0q>_c5h7ozk>yecnsNmd>WL_cE9Z1Ds=WC=qR!VVX?nOPd$5gPd^ z+X5<(e53-c6S~cO$>nw^K3Ob8kTlx0v1IH_93|C-!N1@9KgGZE|1SKCYpp&7H#!sk zE&KET6#p)}`0vEO!!W#__?OZ54@#sZY+X{?WOvD}l$16Ki64Ura)E?1cn%nk*8o&H z!%Ax>7WC>`X$!4}n+)bb*U(GxqAqR}A7bJ|VMyy)U$O4G?2ON`yaeLjJ~}Y0t@~Bl#XfElzBQ zFDo=VpWSEZ8Km{e-xKic74ii}Zko0fwpSh;SyWV8W5)&+NwzY}xfp=4dF>SM==UNF zZ}9uR+hG{dBjqN7Obh~H@s{;s5^(L!@_rvmR1bD1ON;9GAc+g$DI8Xb$rYGEW9{oP zPfe(nBr$Pw1F3*S%Gm$PbOCJdF4TBJd3)EyVLhve-N3Ni271W9q zA99q%3t>Vy(%~YA5tBd=e{VA;9(u3~BZLT3HAqDg7n}uB1&H*HM|$U^MrY{Wm>NE{ z>Xaffiw>@VA!8?a8@6fCfqBiS;zEg?0nZ*T-^s=rp@?@UXdz8}+8;8j7YNP*l~-G9 z$As$>P(|avQO{gy+$_Vs%6l+L?G)lnvf_z~BWt_Cu#`^x99A#jWb70er7%=@_DJEA z4vuMaS~IIzIha>F(+C#or5S|jCA!!S8`HBU}yc#f2;i&SqDMYc{>j zCoWfVOWeDvOAskcTug|YRygqz3^oFcJ$p!zp$#}oUh?wH!Udl(*nuR>#B_0yDs`m(xgyWXcR>ya16W3>l%TMu$5BGD`Jo zUlp{*eT>O)bB3uHjdXoR$!oGb>%oaugA<@}n~On47c4ZV-1fGp^s6Dim*t7E2k+B~ zo#m%yiVV(zNa~^j;VN(fwgfy&bh9`(7&8U6oxM$Zu|U^s+mp}FW@%T@IQ8+5PtH-NL)z-~%vKh|Q?Y!nTY^9d}Wf%oiCH*7Si;TN1a)B%y+zLS#%q z(txBAG7U^*^4EM)csK)$R%d1?1aTJK$)NFzZi+X6G&OPdVR}7#iLmg5HL=dTqIRb8 zF|!cWxi4~pl>S?(g-g0^!^S>gY=3TS8Bx=uU$la;TTq_9io0ekv~({BcNcg#c4#CV zq&iG&3~S|PN*KHg06s?NqQEG71nwUZsSL<F7ktF6^bN&^K1wv9A^e2e0>4e#Lid zaPXenY^N2-_97I(e}a=D>#waS-5@=V_NG0r{vq_FUb(xw&#oc&FoNCekBV`m8vAcu z(RdCKoHb_WHIwGhc3w339HkOYl$bYJAem|t&rqfJAkAk0p-A+3ehtgzmm75^_!CM| zV=hds25^o2F7t{e>)rT^Zrlxz6qIhD%Q)Lu`Qi;~@pZX>E8^cur~1HO1I`h0=UkBE z2MSo%o#yElfgEF=xehn^^4NeMwr|%)sCe%P7!Y)3&oIpFaBizlEP&oUtbOfbJY{2HLZm)G?fbf%t!T ztof4-!PON_)L4jH!Bb)WX|w}5zB%swaUkxEa&HNS4f8MYG3Fo8PB71+9dnlB+K&Hj z{JGjp?iduM`$vF7$;e&7*hMbVyq859Vu?Ymx4|p$K=_l$;LqkB_~X6IEDK%En{ND3 z_CSL_zjExI(ADu@h}^bUl>jstT#btnY+Z`zmNboF!6^^fDHVZ)hEA5 zrf(xkjZ8fd>{|bfS%^Ridc%T7EXB*B5Mv5QlJ;45oQ2KXvr|gCI6Y%Q8A#mrk)9zk zeq?IeYaDdptqF>Uj!HKq?}RKDxcu$^K7J}t_kWMS-TjLb@pFLTZ~rZRx*W|#PQ%p1 z(8Sop)WptQ#+Kn|@U||dcHjSmsa@K1GE#Q0HD-Ox_{VUH8J^+d*w}IwMeq|rnI!-O ztpZUCv#W*B*KvyvXw6{}9ScI5RefwhW?>fk8hi8D@p?_GIgb@vb+@s6*sQZgpo`tf ziUca0Ed<5bMts=L%Yc#$5YH(xUk>JFk!gl!H5xLmI8-TRl?EAn$9l&t!n@K^4) zx@$PFqpuas;%OQxmV}dt@^T;i|44Xoa3kwRB_uSg(b6 zpgJafP}ELITN6mc;tibyW4|n##ob`ZB(g}5vJ2|7=0C=}oS=^9)SeSq-5H23IV%v| z(P7Vag@H69vgRv}HG4&JoHhU3x&r$bs_DZM`DF-xkuBX20gqSYCVDBeh*JuWJIusL zwpDhn1j+b-=ES;679(CLw_^iPmseSFMY>Aw$B_D*nOyD997;fw9UD^gvLpoY1%zYv z3t&(V4#paI)C*V=vYeFA6oX#Er|6R%A4HgY2cPCzi@r+w3`F$-m<;wLZYG>h@4%Nh z6{xr=m5b+w65HX~t5Gl%?cmG^sPvPVM&U@}wauE&Z6^Hfn})v` zN^$wyQ+kx%^Q`!r3s8=aXK~_wusGqd;ct(gg1?!TVl!R-_L>pDt-3qSgV)-zTWK6K zn%IfqzCHQd6+aVy+b;61-^gE#5mwza@h|wBSwO71yE)DBH*b*`T%{g>E1Bj-R^on% z`!bhIS4yxFhnx>Vi6}GOgpDzdBR(l<<;wJFhN}r za$56$tSca)t_UTnbVuKVF!12%mioo^DzOaaR%RD#At7M|duheWa6L$HXJYd$Vtj5I zf7=D*Ml}ciPIUQ)wa{%({BML<225~^R+7gvpPdY;h>o01-E2|pFrxsUz!nQ#9_Mn# zs$hIL3>DRmzJ#28K~D!<5i1g&@5KAxJb^Eg&}3g1U%bumMdJe2E)3%uGnkC9X87VS z*=LK1>yA6EdEYQ>k)De;j&R8>%NCzv6js9$Gv?_)|g7oR<=D_T4bPc2Vf`Wj1wule6f$FWfpD18sUc6(`2Hj0ZtBK>^F=t#W0qN zYv{qm`|{lx?pTDeB`|msJ#o3?x5OP^H>^tPrVD=)1rqeQNR~wc8!jp2v*u3|e`0^c zkGi;Ip%%qLd!&o>*8HQS27ybq@%RZ`Qr&S;&G0*L&UiqR^JsH{&*hI}dh$n+l|juc ze;k;ccoKgs)<_$9Qv6XHcQbV(d|!3BW2-%QUB;v=?r40QIf<2o)JP6bzMbKSg|v{9 zeC9a*_?;8@Bgv{V`pN8%49hs4KQa-L|Lz4hje!B-j~Wa*5$}U}$@Y+8i>&yP{JMDM z3BuoG!}E;rS8f~OPc5A&`3*Nu8OaZHJdNac&X2?ymE+5*{}X?46j^oU;&R45WYrDl zILj6*%;w?Cbr;e!tO2=igcWy1LBj`3Ph8{z6P|ngI#}NnFktYJE)mt00Ih}Xr;-A( z#|W2tN`oVMN`tP|3V(DDQ82TgU6P=&#&n5-6SM1=Op#NAB}GMDjPXa1+vymiIGf8D zE5!z3jJo17#%f*3a6e(+c-_%=!8F9sT$dCKUo?C&YwF!8Vw4=XII-mhu|xTyAnQDP zWZVB??_J>IDyzN!3{BdAr8_`dBBDgCnsCtuizL!Y0twv%lTvOa6$;ftErM7ufg+Hm zBmu_hq&ySBRz_|h$u;KDfd!tg>nf6VTKBnYXgY+e}C)Qd(R|IFQ`y> z|Mt_&%-;LCKkHd*{nlE~v%U1q6k@ucUbiZqhow~dk_9bB9IsSmz{TE3R6L*Kco`{z zRgoe%)hU7*rwI1=!wOm1Vi=|e9(lU>U1mr<(3c+gyc$&|rd}25fh-!>kMX-3KJ4^B zBBs2BryIvZ5frm4mkx+J#Qb}mw_6W5NA(=(t?D=Q(#p;3<$TEAwN*V(jiYk3z`j79 z$cRcO=z$57|NN3;c*fE;8()Xr(FXX8cpY_VkYbsJ*lYB_qQ2x@u=c--;VM!6Jj&pw zPzD<+UWk-Iy(q^igFz6VnhTDQk{KI^C4d&-;hO6$TI!hGz2A$N923bh$f<&dE5#71 zU=A}H<%E3BVtulIB-3Dh@SEIoau14ILVI%gL~+@qDjJ{<)(q4Keet_iG7hN^mWBG@ zV`m2Z?(KlXRgtA2yEeG0v8x|#gWrjt!?UP8UmyHtqz|^*bHlr~x@kR48yfFMFxT|K zMv{Sd^YlR~ad_A9i3snC=Z5;AaXo0laXsV4`TF3P?+u|3e$%*~8!if(naB8?J~$;{ zd{!KUKHf_oX15g134y!z1oq@~(bDgV_X$c=+y^PYEdIAd;{g8y{^sk5ZtuU32D#J* zDyJe6ceXVoe62WPWfT8%YLr96rXPZa(J%7xa9P9yZ`=kCTtbPC2hI(6pzb&x z*ctFZ-5JaSX^fblghM_PyoPJ3E)f%aowr1Brsnu|&hhNY-B&vBZNKFuW&G9*?+wsT$B>iCicmnr~z9o@u=}01n`e1qX8>(Xf ze}q-%^g$EQPTs;FPjVXJN@9-(J@Ny+8}D7S&<-_$tZ-_YMS=*Q@a@2tyqT4?-A3mg%NmC z@ma1n!`?6%_6}SuMzYguUWZ> zHdwWLDOese>bOlvwF>vB%7G2p%EmlC)A*2xK{p+BJ4ybSI@qe>(}fntGB27>N$;6| zkPXCN@TPrnh>|zu5x?SL+h>6BKJb&Rz(4NX`qgVL*(9Q#S$nJ4638==8p%?7k;v#f}JRK^L*0(B?kBOl!@R+`LaI!+SP#O=+3ZsgucDiOTw zT>dQJqP9-9iKR!5MZysD4CZ0vGJitpJH56saTx0~wBI3@8q&WSr?8PkHIYZ&BDSzn zxIuEco?%oqf+(dlI5F(!<670x^imsYQq6^dBn*YJKoiLarlfD_)dmHJ6IIUCfQe~V z)Q<7Sfk1LhOM^FsX?iZcV3n@o=~Igs#Ao8paW4OPiB#ZqnZk!-1t-v1)IpBtHS2@? zI1(fnUo>ETe8G!KtUC&6+D< zJ1>!%h#{H5h^Mc1Ba@!cM?}H6el}k)P<{pRd5k{tNBt3ep!FQ==6ZBLJARlHPBO5G zdm!^npsK2E&n@%>%Rzzkf}{4V?aY!`bn?acg1^{6Fdpjpf|dHp9K{Zv#xHByN}JPC zrfploOj{omGgILSi@JrV(?v(5B2LS4)tU{>v5P7l=Dvz`Mq-ba z5a;ME#!@p~r^E~aiUGn?hI!w)5lyh^zq5MzX<#=E?Sp0GZKkUd_tx~$IQsutYDe|q z9RMFPk3&w~lc27+J@UTdQbDykaU7d=4pJqt+a)yTNo8zQiRhsB==n_DDYZIKkfw$) zj$vFb5{dmdXcIR%>4n;&g^k;kaJjea9--oLYGL;$?Dv#6wel6`DGkrB?(@=1R9kXI zoD;!iQZl_ik$gU|j!7-3__NAHYk49E1$$*36BKlc)r4+>V3D~}o#SX-a+Av9kD-Vo zq!iv!oY^lC({`Sd$z)L;reu*wWc|qw1*ASg6`6S`8V%Kdk?p_PV4vB!C=a!$G;x^u zi146B*?`IigLmb?8(($49@Ty=<@YTA*=cobs)BGmGcnx$AT3WjnM!lM6nG z>+=sBiL$7b^v_99N1-$Rq=kkMd>$9hI$JXcP*kFX1{0G+OnECI@`uskA z-oI~sUTJ(XlAn3z5wRMRpAtG-8b+!@;aS$S?_k3S@AJjdVD=MY2J);TW9MsS{?sJr zk4|pnS!yz~#_QC+ zY(GXsfPf|v5?E(4lh}E2O(!bBpAnx&L`qJUL~^oBbqpmZAD0mN{P~fb)II=NBz~eA zBq#40T22-RauR#fJCc(n`Eruuf&1zPEW?s~G5Oa^qh)y9$rAYV+DgkrMPOLyD! zo2n#%g2bqjm@Ey% z`knJMl9R~YZTbsJx9TsLm*+2FHn!<7Xp~UHyloBxABVxQk?jn5w1SOFny4$)Y6pt? zLWg_kJNW7~Ia?atHS@agu_X0xZKQ#N@*M>7OX0YK{02_44)PmJ9q2c(;JdB*4H_ni zYk^1+Z!<%`fgkt{8ifsyxnK)BT50C;$&npxe9muBmhU$}ux$!@j~?Wl=Q5%D0=H#> z>p-&_xekKiIv@yW5CBILFfSyYj3N98jgcRL*|PbN)GONoM}j;E8@}%>YG_dAK|r0d zjT`1c7;n-&&x26cj74qHQH<8GUyW;}*#te~NhtL?&qsHW3EqtBWr~g}WdT{-jx?1J zyep7I*>?R2zp#T29GL(2CS#suIWUi&!r~m{ zPjHC-ZO+b23`5Uw*0r+cMd}JWzHoXtjYZnEya_*Z-h@}rkGLia`&7|u80S1zW4kybN&wT&+ha7 z#XkW%10AmaIR8B2+V=tf+`Vdh{PRQS4Z%N;I^u)RKbQUQcfvml=fXdaMNxfU^3T~E zpcxuNzx>U2z(43^N#WrkXf=2v0 z`%1gLN+2+?RB;dSWqKz(f7{L@ccNaQC@MvekC4sdO;YBBE_?M9h;q&`z~6P0|88dx=E&P zqC?mh^n$4we)ltYF@(46aJn#p*aV_eGZa<2nSJ%Ebg&p{Z*a%LTfRUo<=#?SpfbCk zq3=OV9>Nb-I=YP4In}gSTp`l+W=brY{(!0C=hpa0XXiLQ?L|xPOMAm;Mve0UYNCt! zRzzTMHa$0RS+tMqqIO@~PpMiOrHlV{Fu=kSoW83tfCl+6ULwK;lRP_1+zBy^#S@ut zeT?`m(>+jgrrIWiJw+#6E*rk&$)0zdkooBekZ9LAI4VmXS zbwvG~>sO$hyH*gCtXos#6)O|N&cWQoMk`dDDuTudFVPIJLC=CK2zzX7Nb=syK%OgG zxzx5frrSyfL$5dyEL73U?%RoGis~!Wp((`0u&aDuMsTwnG!_nXAaNI)Wc;a7rYig! z+9akub>G5%N~g4{b=SN8ZuUJXD zq3%4#rIudbJ{obTE?(Uq#D#H%?U0C1_Q6K@t}K9ej6FL#3B`x*Ef|a{p?bWjtmHnU zJV*WG0GX=;>X#c(%eYrjVd(mq^FOE9)fcn?xJ&-m-2$kxrf9O~&N17NLi=5eS&i)g zVpHfdyuG3Jlo^S`*q{-v0~)L0D3Sejj^e(SFpy@#)H(8V*_-NhcIcKUQm+vX`gIBU zaO5%<&Nb;x*+|g68#8(oI4CpseK;qAANrcuk0a86qJ!nlX4ED)&w`CAk2p3$mRFcN zbAnntz1Ex`*j;n<7?GcN1hh9twh6Ofn0N9pR;0J^)0kkh``Zh$!#$L>Cjp6TLZfPi zjtQ&CsCpZo(}99^!W&pqJ3h-NajTXz|CE2@7N;T?V(X07vfWCahi7)0JpRn=?aAY! zGyf%z-yM1U6e{O-k#-Bfs@_0Ds z)(@7)yU@L%`ECl6FQzd% z(B0s4=-*I$0ea{G+PKQFU~FEtaktPPL#>=mD`ZgJJ^v+b^5;1Y9&gd^hMJ{!1FtB7 z=H0>RpJ=KeUF{YI)x#2Nd``ntxpQ?@j#xy2?5L(>2| zJfK`}8l}N=@Lgpt-c>@pb{bm~^zvS1lJ5QLsUEWgZUA39Wc_qz4U(J#c0kNtXE*6= z<`n5rW+*{fO;VI04)W15dmRF}z#CC^CkZYC0}kHxZ<%uMFhe3Oyl@Yr!W)Qsg(QGL zfF9cIwgA^~Aj+1I*^Z1Pv_-A{60Nqp+Cy@W@zBi8kA=>VGH=lg3*?~1!4WXBYXFSr z3K(Ch<}2huu=zSJ;>qQB0QsRlLZT1Z{$Gc8Z8M0&yBy8n@D&?F4DXg@ezE%i`8rQ+ z`{^kXmBDZ_+9BTkc732988SA!%YYgFaXBCN@d;a#?G6^3}XPE8(&cc&WpL6&nJS&9>f+w-6s^Pod<7M2Uy zIs2!#=o7-ehYrNP)4;w_pluhu46*NBC@}+NZKGk|;~n;uv>Xtm6r6v%ljP~-leZ^N zKQ--N@^oj((nml+~6~fc9q2OtW)Ww0(@qNcioZf8k^oD`(^v@2SJ~$;OP8*W1 z2_Vo4DT26cQIzoD1TfXKd{r?%1gc;Y{_6w;kVy`Jn%V-o4B)9WjJ&5pt4bfBSqD!! zm|pm{SbgtOdP^`&m!`x~TJTipR_*fx{0bT}kUVv}_?6>+_6hLoTHs1L_ZalC5@ytJN`-X5lRWDcYFzBi5(an{k)dpDFkofD3K>Og_ zIS3(w<+%R8iIAo`=Pu_k%PEWp7-#S(M_lsvex3uIv}e%VT^SsE_pndTpaJs>sS}n5 z6jF09YVhPbx|{McZ}UcMMe>~?N2bm-*SSsr)WF$QEbuxfAH0GG^1!P*$cVh$*{gID4UUNGE%E4GyhQ^4MebSZsIQ4bExUg*H=>Z2p!i&;!-q+>0SkpYZ zaSW_LytFQw!OTZB5cZcKabfG=G{>^ciFgzO^42;C$XjC?kvHi@75{#;k@xLTO6Fs{ zcGdj2qVFJ{AtY@Dr-&Wu?H6W+fV2(Ru6oCQTn?(hk83A(WIn`;NJ2U6(G;yh5wF9w zNCOMgFkD*`_;K@b?KyXZau@@H^W)AjvdodIanit&l80;YuWI8|a5zP=SF{f^7#vs|0SP4 zF!H&(Ph#^O%I6=)wv^9T9<`->K4biQET6y2TS9hBK0jQalg~4Hc8YvHYV(%z`3Rad z5Dz=~ybtat$Kp)D-Dv76j1w9E_nctHH~E#opu-u*1U+Z{^f zUKjT`2-2Mn6K(*EF0TnHsPU_b?escNGhnRfS2*HSX?)|QZ1yTygu(lSk>?_e35T8l z=mz%&hsrD7${Io2Ta^c$8~}%29mGkuyI{`r$Oi+s+^9okg#D$@JCLuCPi5Yb(CEgO z#Ei8qOQwn-G}@UG!qDh5`(+@NdVSd8vMmiA8hsDe95r;Ng+_xfEG{|-k#?ccxaJ0j zMiZ&}3tFnP0)5&~JahnxZL_#uX-Bgf6BT_8=>rc37ld)4z=ZvD481{zao7LZNA+VDTDyq1NaW(^mb)=_@kBuwkv6D*~LU9?l^e`tugJ3X-vCXjw7* z3ZM`V!w_7}Nr~?GE*jdsCuB$Bp)Y^YvxS^BC1b-FDR8{ehb@DOFx#cstm%5c-i<1N_!IyhNa9OZeepu^Yu2 zHjD>W`*$c_`e*h=Fy}wM_KTstyD{H?Tow3_XATiBT}ZPB_>a%w;>44JpbNb zLwSDop<9>d{TPD8gl4|K6Qk zm=i5DP?J-~*7zwfQlR#xrk3fEfytC#EOcuaB{i=^1(Z-gxe}OKlk(9s406rGi%>IO z50;pYX0Agi&FwRG6%`M6s&MKkN;H70pt@8o>Q;DSkAMV+X0#t>>Dj*Lr{XksLLcf~ zpS8nuLOHx|7`MrkE6Sa44-T@X5&+pQI-);0-YfWaMe}ELq)16Y(}xrduC5d`Pe)VI zs0{EznCe=w3I)umzd(pq5*wVAvc_vCkK}e z-`=I^`_cOoIF`j4%5ghba!Iam@nwGZbB9YcySGoBN5bgAFu$$$uVzk&VOa=hS zOdZF`)Il9nrIycgjzM(H>y)|2p?7|w8wW0M%5Ll8ji9|&hcrZ?j_%&w0FfNN7qp94 zi>Uepb6l+Uk=yiHOUnLXdCN&_v_N03R56o4^`sMEhDXS>XJfedC5~N ziQOwt_E)Olj=ZzpqR$1rnd7(3n;Y}K*X7;VrHl|_(0(q;r97`wmE5$dL%588xh#y7pdNQIhHU-`6r;Ef?ZNhF`*)TKf{ zwlSU>{kZ6LZ;KDk+_(32{qa;Gx4N2Nj;AKijkm3ULRKZJd*^d9aOkgdN5`wkD!-bZ zE_689oAQRwv6U>kH@!6K8~p)@ss+T>-eCA6u2+G!7aH*~q*cz}o=CnDy#=c(!Mnt$ zX^HZ;y;X>X3|mW|$c%y?XLMKc$JDq;_|+kzF>f*Sqls~56V~O6nMy3B%5D(_+Ca-e zRL`j#lD3jm?|3qh zM@Lsng-j2Pm1~bq-D3SC4&LWA7j4Th$~{?_h;?&-WIQ?X?&hrbYgkBNfNLX9u`CFS zX^i^arSEEY*cNsIV3{iPMU7QHsjFBm`dPinOCJm6vwl_e=+8H+@ zp4yv5W4ZCi7$&$oV zhq_65Nw1oyc!tqiX#`UR>SXw}Szks+n+U&p6?Cvk8MW)bAhX+lOApp4wyFbAU3t@2 zfD?V-W?xABVH$_VxdRNtGoDDL$+Et;(|FAxrq)r%$;t4dxU zB(9)X3-Jj}zt_2r2^HP&9LDPI!r*K%(;9El{}HdVSD&!CVriGXMtMGWHF zm_~?wN*$W0e#YxuLs_-~U2;~WB(lq+CN&m{5*K3`FZa7QLW=D4>C^kNWNr+MQHb(B zM`5n_A~Fp}v4{mS@v9$~hsHbhl_}|oAwia0l@z|pwC^lx)sHzUx$%!m>K}H*T;EG%d^XhkUdOYx zG{bURsNL3wYj(C;PmO{QFxfLLt?XH`g@Nb@Lqd5oBgOx2D5*W{mh+bdS7(J;+#)YJMW+4 z9h-9#sbev8>NUYAlYx9qjYuGaM1s;BB%&p6oRA44Cnuw^1-=P;4QHt3O@_4w8il>1 zIM75=lM%K-4^xv_F+mg}udCDV)zsmq+sDn6)aF{+ir3!4T%%bgQd6jm7c*9LSFUg9 zxXtUtH&IZZp50&hdYu9)_vP(d8;(pDj;z?!_I50}?1E8#deWieCKV)~OO5`)<_-QV z9anGX*;Fi>cQ6a3?fDpDI-cD3Wp_}2Jb7MG&{i|_h zVjMJhwS7;#F_B!0%jQph+J$csclH|3*)WnwkD2r;vzA;u58l~R(-$jK7jK#?PMVzC zia;w)Bo{a8vZv-sItF3Xi06>1<{H091e>T{-F#z%&hS`hFYHP%M2$8?bNFmX9ng@v zxVWMEMX&QvYtIQfDdaQ;z>k_b@+!hjk@4Sw8*mg5k$2}P{wm9EB+SdJv4OYDt4~j} zA!R2KZ!01mtTtV^8)Mq9G5v7Pz?evX^x;o1x^LE|Mt@hs%bU7Z6IM3wvl^awY)#vX z3~yIMvhbyrPa-Juin(xkl=`Bz2=RC_@ltW+>+%R5lgA%N;<=W6G?0hs!abbe?;WA- zT|MoEA{718?~3`AYUxu5;~`6AA4O>w2t7&ct2(>dE6T z8SWo8xvFJPz(;1c`4WY|iQ?trFJ~jVqRSdPzi$w}tI|AbNy=ZDI(d#c2BnNrk&i*! zg7w1lL{F~KlQKa(@dF<{B{iQV6Cu75p}ZybXr8Y!VZ&3Aleaj1IyKMois%ge8PE#= zUZdB(Fa&r`#q$G<*XTr8fbnj!%o4%EcwY}N-qbBHo~3gbPdricFc{+3{G~EAEl5hSarV&MR-zo89+%nHIF=W4zLQ zjAv~{ZLo%d@odo#h4H%7`7JS?HCpVfoHl!%mjYwt6 z6$nB`>WJftIhZ#>BEy=7?$JeRG3!!|DY+f979up5SE95=8&s`YaxkylTXfpcFb|iD zd;gt-c_#!g&v+D^*;~{YbO^#90P}p+X6=_!EFH?KWMX<%bp-o}x|EV%Y~D60QNVFE zKBH6tpg@~4;IW#$2%1`(6ZCmUJo2@qOVtcqzyaE`u6x%z2q4S{mb}3R1`HS=zNOTl z;krgO$-oilqk+D8KyZYW@E=-u4*wxC!2^c>er1_0-`4TpuG_?aA?^$Pn|kwFHF5H{ zIC8676nm>u;HST_)5hi0T6|+t~dn$U*3z6gCzhLzb#D7)! z_>cFsPax7(c6~;9F$L=Y`&eH%{uuyh1pGD)1b&+80QhNnNjY@BK&j=dxKdLcf3ZZs z?^y$WUzWI|GSrW-7eI9f{7^?+PaXDC-$Fm>Ht=77^x9ljAYgF5GF@M-QNlVP((xAU zZMvhu1Sy!{mKuYA3_TE#bHKKQfOIMzy9Wpu+b#rzR?z&RRKWt%ck`5XgMfWdxsXN9 zTO29qt>knHy7&V4ug2lOk}dGxh{5=;WUKhE2K?t{LG7suRQCw~l{@^$YY>G00&N4EsKhU5j=UvfWKZy42v#DC%5 z@Br0U69{v4xG3KA3BQ1L-|!Y?1OeZ6q8PdtMU9Ub2T;&-POWjT^D!f%0DqCrn6NGX z2oKh57Z28mmsuuERqH5MixHk+JS^mH@>M%PC_WYf!eVVcaDb3-7XyU;Ks;!>W3>Jp z9vlIB8L=fEl$;k`Z51S|#?hk%;|c(7!fco6!rrK}AnTF*vFMmYEW zIK+cy5@_5C9%R>gga;7_IXpPmSk4xBaB7GLWyprq8XX=)cX7>*@L-J$ju9R#*Rt

    !Gl5& z0Um^9Iy^YXPmaV8>2v0Y*d!A2I+i_85mSc?5zZ7=)csz&Kebq@rNow>5)2e0=ixQ( zp}|3?P&zoc#NCJY%kLLN9p?M{LJ)HlU+)+h{sPZsJnkpRXkj(=7I!mIv78kelN&;XfTjBQq#k&JN>S99)kT^Da1-!tnUK` z`~AK;jJsR-{kDqto_g!re~Q2F4KMwSwF^B}DrTO)?{0?g-ShV``FYO1x^*I&p`Cr2 z`t3XWesfjM**7h~d_y_=4jkm{3+#T|zYF&@tFL7{}g}UKK~Z_`!tU`-`|(>*Sb}0MvyKwO-7Kz>fd8rqEOKi89Ow80q7^Hk z(@z1h0yj}=UQOWs3sm0--}xn^EmJ~cEU9^95+uWgfyGWpFmwVE;hCBT-Vm@e$6+9U zVL|Vrzt7 z{=Oij3YDZ$sO361w_JUw*7nb@kV7DF#10Mf999dk8)yKeuEU+8P)}>_R(*g2&R{e1)cd{XF~Z`3*80zbso{C?*L_zxTZJMsIie}0=d za0mTI}r^Ho5{e? z&v)kc!*~Rxn%_@c_nrIwx+A<`aRJ-%|7{$M2mew3U)wwJ|ApSkT>R&d{=Z*s#sBxS z?fd^i=WXy-8W;b$S_AA&vG`A7H=mL7uMg+nV&T25`TasX_>cPgLhqjAU-^E&z~4vg zf}ujk+KqROyEejvc|N}y)RKB!&L2pB-;=E&9^Co26Z8Z9eai>q!7crLl8E}3^Y@MU z7ak=3^UaCxllae__|G>cq9?uA@t<$b+8!RPP5#Yo z*?-O6;(T2Zt?gJVq{lHLKOdLj+H2?RY*dV05~<^XcErxaE0#6r_(Mn%L`Q#k^TdK6HkwM-#FIaqC-Z#8n)>8|Y(C7?^0S){G@XivYOQfca&u&1?aQ9vO`-2+a+T`0Ooe)pH z$`(pD#JAZH>vR@3#1=rAVlzfO9O7;ZIX8cdhPYPmA7Eq&Ay2pwCi2^j@cCiC(vyDw zTK@R1P9&$dGPrfgv-%Rz;NF`^{-*{vk^CPU{MdbdFur`-_{Ni`(2DpqamLrr8{co+ z_`b;*w2bc&I^L$PVr^Z;8V&Ge4Dfe?@z~1vUX?e#mkk)-ukN*j<2$7)`{&&FPOCkM zrB%OqR6*^DM!uR=kuPws6rbD?seRWRkveBhq1Qfvc%6WRp958ufxH{iXG44A96MeXu+}R z30L`P_EjC59{rms=@TCylCqBRcbgHC^Kk8H_d%;xyPsU@_9XbN+uDe*rnx&2Tkp4Z z7bmKpZ0=CtevNdO61iT}!NFR3B~9Q!VO5)gmOhd_38P!F#Vi)Z_0kRf%WPu7vZ6&W zxfQ)!Uht`U&PuMzUJRvaN&7v881?8sJa5t67LmU`dz8p93T?9fwM~j0!=|pL6HkEC z9eWgJ(c~SO3pb#%B_Fw|U{ilApr_<6{(@x%YQRDIY{ud+sf^^A^-o;ee^Wt0A-lLW zUP(6ZE+S6*oD#q^Bus#mY-t@?|(fcq}ANM$3i7KzB zO77Y!zoq)?eFy(g`=Wen_o&%d!ylOaYni_g>rI*4Lk0>9wa+ zY4Y)#3(DwRPv#t+SRF~;+jQI4wLSV~)kQ$=?;(38=2lJ~D#+abn9{w~-}vRGMCID# zi4gKz|_-<4gNM;^VlpZHk%-ZY->UQ0j(m7f9WS&!*>ddwe*p!#XRHjK==cgANRadh!w}b{Zzu>0<_$9RHMwvTQ=5^DroNWDjQ<2DS=*G6k8UrzBl1bzP;^*SaVN9^~3R`mD-TJte677HM}8t zM?>=dI4?qD?ZveaOW5f2zy-x{#Oy^>mZ*N}Tcg|w;eN&AnH%Y4JbjBez%GiwNWQ@S z#mo}!_7sic3|}NjL3X-L$&2)AFDvy{{kSYk)ORy16t15laUV2hrpsjye zKyIp_%sL4E1c}4+r1Z-Ow&aS;s}DjgBs{tD^_zF2HV(7Tl(F7Ax{}LVjv(Q8NSL|X zrSjU-B(ZetZzAREM!m^p^X7G|Z*GExwQ~@4LGq-6o2xN%MNr*E{|1Xb)A6wx1<7@_)hjL?QI|Zk zpf1_l)>qszvZubFn0zGIoyrG!AIP=y6uHzre>&|C_^1WoG2t(sl+xFKH z`K8TYy7BwkS6|=pyw@?GR2v@)`#JNaQ3aLjGe30&tMMI2D#0yEFMSPt;t*i0rYey> z=((Cn1t=D6f2m6C{tJGa_DhmIu>na|l+$**S<1~B9BJ*2bSv}PW!Sq(Ow9Xf_r}t; zw@Nr&Y@~O2In;Sh9t3{sIt~Q6qHrAbvkQ0=Mt&NUNlhIs!jiJ; z{d$w%quv!{C)xzn6l9Lv!Ti5)`Gd9v#V|%*M>R!dPvnEPHXn(o6#b{h?8ylW@`2j)fJ_`r1eQ>MrBUZoTkUj z=T35$Om7)^i+;_8W`Lp96LiWrkW0e~jJWbBSs9ImV@i73^$m|oS8;SH8?4nN}^y5BN{M5$X zL-~bRZ9X88I?PW^s-bzc{SU>fUu@os{eb;VyVI9nPMTEEvx{{AO}_aadvK7?xRF}t zMT~Na2+Vs-KkH8bwR-~-3Iji)ID44JyQk<$p6K7kw!!i-Rdg>kz$wyWy7*9N$$r`9HG zdF5>z@1n{`$vWu-w)3Yy`T*^bY|7jTGbI0+TxUuih8~J8=O<@4d?e6Ml21TN{UdI*W(%H~Q&AMystoMZ0pXf0b*)@r-E5k8K)2L)M;vlp-1uucG>ASZ$}w$nFO} z%r({V8ycA!>uYQNr0bqnCo>iIT^k1Aay}~0YhGW4d|i`BeHrma7|-!F%~fsBV5Xfn z-cQY~YC8M4{<)3)b4&W?PEBxZP9jy~ad}d;ScSTb95wlv5z4n8(;kDnU+uT}-f0}(?HJq(bl3Kb%cM&AEU^;G#dv$j= zXjkd|+~2&apcUrUaRa{>JX27k-|Ru5a5=T-mN8+anjlSz>Z2I_<6MI54EkmCa7_Bt zPZ9e3L}r#`XV9wMbz=i$kv)WT z+>0f=IySD?RAony$R3w6Cp<2U9&dbtahJTz=`@M-q(8upYg2o}SUA;UP-95XGMHY+ zT0H|fQ=1yW&~~iR5T+;H{T$+F_q*wr##{PHp2R2<^ zYLa8FcpAf6`k)n6RNZ!IL9FE>$mez%f*|}Qk^=DlbFRRwi&0Uf)w~E>;^c);Od%;s z3Mnh|-!LFQeQ7!H;$W(TsU5>eDaXSc8=v|0U4{Y@wVF7A>bB=w5zobKnV5eK?@hU6 zNo@~r(X;-XFA=png=AlqVwj$k$M z=6)vF6oSmZLl?h^CA;t2klmBygZQtF|DRN4w5oj0B@k<@gf-Ukil7hgioUU2Z%~q6 z`G58IJTygQNkG9l4-`Zbv0Y_yraAzwacx!EHJleEB>vhLh zU%%o%NmiCfeyzAJnejS!En30GJ;l$K#elDjK=sSM*RVzyB^YY9TT=%oIGPq$2jk3oHoK=@MIj%i(5Po@($jQLiYWcmzay_ep8cfooma;N@~7w2y(5Vo?Wrc zG#^HHyoI%le<&xUX;i;_i3jYeTuWGZK|%F$Zwh;e??u8vS})b5&ML00UfJ|Vl3lt+ zoVL`&Whyjk`w7&ZZPKJh@=f5;F~^oK*`|wEAmwK#PAX{LZR0`oJM)$Z2(3?} z>c=wLwZN!m;2hHYA-Csv1w z=M^-KGH%m6qOw2pDn_LGTI>96%? zP821ki((||DQf$oQ#n(Z{c8H-vsRd`a@MAJ^{PwHN2P?V-A@vcKs;1Uo)lhC1Z?nX>M&Ri!;ksU)!HJ zY{Ixpens(T=`_srr2j=Nb;+vC7s!|GW2V%<<9KER;kEybTemXS{h6mB@a%AYh3h3< z^eNKSrK+-5k%-A@hcZZWwytvYFD_<=a;)S&W2))7Q8bh;${tJ`lJ{XjPu`U(5!Sfg zJ@BiY0`Ij;GS{Y0qEEs3FthIRdCgaP;#G0jO?vdre){VBr!vP;{eJQqXL@YB(oZ%n z?y2dMT=!#lB$7)SX};gnI*%{PMV{BR+IMs|3a9=z|0zDJD?aP(oPn`!MU7Hru97%j zutJ>(B{KA!dFw?9gQBaERRSGeM?%B(J7yqzgz8HdT@*ZO9tQC{JUZ!9Fu2dpzj2R%SujtGEx{+3^Vpr-{JcNPB2EWb@Fv}hc+jqfMdT~V|*7h)a_ zv;G?Ies)AdY;(Lv^1fdH4jI`~^b$fq|7zjPnWaW8mzKwSCOiK1gvulxQZVz$J0#HS z3(`~j>#8@*zZy2&GJ_T!0Pm_?@24&WBbda5v?kvfrLBHs{!>bNFiL$X&8d7oShuFP zXLg4OMXyG!OM)tpw$+*Wk1Gyqe6y`Lrjsp^lx-V^C1w%6&rj`fODA^OCE2IbvVS#hCihzJY}H2WIsBAw zY%bq;!@vNTp&@y6#g_dw-gah;Yf}hAwFotq;ki1?njaAp?$pt5Sg}>(f@h_8Cen4| z%Cze(ktV*7Qt?dCXX+WPdU~-T$_P=Ky@k?(^~H>Lub+tK6?iA&$=Bl*5Bi?}pwBsd z5Wjc*Yj$pBbD_@UiYKSSPDhXP?|a6-ueTwI;j0mM+GSb`4as>`ynliuH41Q?N4w&& zm*UAeenWC5!6eHYl5@%$lE=$6q*NtJ)v8o&UGp%eT}P|9-Ag1a&|?I`tU z_2aMmIexl!S@p{pC;iLpqX>7-FY-o+`R(z%@j*;Imqq zKioWN9#1N}ur2JK8Z!ZYtKS?b`3f>MlGo;Px{{(`R9AA6K|yNFMI<$|j}8x|C3-5u zvXfKkq92NN&)WQZ5rdD@bk^vlEX=*A%)9ZNHF5T4CO5p||B{w`bBa6X|jR4wLdBtpD{PXO@rn)k3PYQdlv5Fic1wBoEb?=i^pJjE8&KdRBQ62kzV^u z1kbG}Qdnj+qh^DgtRGG68txgm)V{(j>8Y{GE=QNix|P08_LEF|8J_yF$43!ehF4Of5?t^x#9Z zX4Z_+z%-5{9Nw`$`3Pt1(NY~tP`9!S@Ey-kE!90M*YxhXn-$gtf+CI zSTPo5H!tCdjsoJ9sk<=*aLxlO*VbVd`oQoP zJc^-nbY@sLYXQCBpnV>kSkQ8sJlmy-H0REs;m0@Me{|}SyUH+|9rMWvw<9HwNlv&O z_ZP}-crIJAyX{F7)i+{okM#TZW}07s544O*eEb=I^Mn4!|8{h;>8`SPTX(Fk`i}X( zNi~eFO&^6NeO0V_wYTs{WKgQUhWRM1OPxf-%9}B-Qwy(>Ab>88qdU1ixx8W4YI@cE z6i39xyPw27s>79s)1RZ$KioGiCsV88rSv6-$2eSO^d+xzY~KY56gy+} z_x9`NrG2%$0CiSR@~zs<4|9|cFFS3Rb(^h|S<4r^CFua+7z^Rl{FVOvy*X=LYaufn zOuWp$FN1<3k_D?LlF#AT+IX1b_vpoOQXNaGxc9TJZ`Jz?{-)wC+#{ac)R5e)hw=NK zJ$BcL%M!7>6S3PX`sN+u&st63{9T;Ov;13MN{_7a7rd!FiCJ$=MANF`P?@h%*t9>^kn--h_E zqnAnFaE^i4VW%>B9l{$1@E*{Na;QM%>y`aI^`%+?OyhK)147GC-o#Eh3~&&|#2(ap zw%A%&nrtqee;?4bTqcfmhq1Ht)xS%?)`ImEFt@g@LNT$Idg_h6`?KmnoSep+8IB{a z$LlqB}cES@93&a z7R@KC*ZCIA8%cRCUVB(rYUDEi<0DszgVk1d&3}<4QrUlWs_^cuc1@HYd#Jv8_55|I zq8rvuEU51D7X3(gs>|#At{};JSem$-R_4a>wd_q$uaPJ1Z_&!S)Tdg=MO;UH^{Zaz z54k0KS9LwFnL3pmxFi09t~`;;*Rle_a$>H$OJc6+m)P2B*>0k8^-rTjpKczHQge+D z!6m$(^?mDmsiHO9@or48Owwa6sTWB6RE)}#?f;>y@mZ^CSyjoAm+^Q8qeF}8k`phZ zZQi1$|H~|6s`_aDa?ObYoWbU}dDBs{s-%XxjLjtZSXg* zjemUfvh0tzDYGR<(~7(}W|xXdE-Mwyv+k@-^3ve;J2jBm z7cofZv=663{E%cs2PKRC@;Rvxi(s5)fc`f&Z)UIOqo?QyMnFYp@8sN^`s!zTipFzC z|Gc!6;M7T_9cx<-P3``_DWbA#;~tUz>ZDrBzSRqjYMWo|X}2HB8%VsTdx|!YP36NR z%JmJtL+LILE!2Xc$5S)t*ysTtzXU(;PnRA#tLRxwnK>PF^gtc-1``jV9y;+4IX!e% z(XXkO6FWb{7tt6?FaR{bl{j+QA_YErEcd%JrT#VEjjtysEJ!5RR11-=^;%AL1xTv3FZm4?9becx#T4sy_25w^8Muf zw9D(YKg!L#{8KD{b60i+_XE7(ro^qRyCG&Nkh?QksiJER0`}G$*H6}u%zE5Jzn`~v zP++Ej(%SlX$#|zYYHG~VyQL+qhCfZC1H@4sfvK{n?T8Y1-X*&gCzlC&=(T&CbTRsm zQeb5G?aEYX35hf)27|INsE9pO_}aSg6W(-8t#{+t);D)+I->Q>1Dk+Fn_zcsecqKPPMF!U z&LCfHdUDK`9_^AcmH8Mgi_f~JP8vnH23a2eC4&AkO|0+em#q;QBL!u?=_fttCx27$ zS;Z>TPk5>04X;{%lIJ`9gyv_?xQQt{`!y}j^X{6cmTKZh-^=8k^*ft*uU$(i51jlP zJ%v;NCr6UQ>zMV5P54V|$a4sJ9J3zvo82_7J(;hPoWx_sk~n)PX_J#aq@Q1fg;e%u z>%~d5RvEGMAsq*>f}Gg!I#z;kdy0eE|YOV*yug{5&l` z?N96UFPq_#ioWeCN~xm5^DFv2CAf-y!Y@?Y z((E*ds&aj{R;#5yd#v-)Pv2j>@b@*!%epMM^#wjMztqx76;0H`tqK0*nE$wgkv^Dm z+9rLEpRuOdsWCCKu=-E6V2^pJqW|IAPkr>;JZDW$P91chZX`F@QiMcmMcLR?8nGKI z`bBtT#to`{((4t#$>aFlQ*1rq*)7(m~FgV`GS6q>h z;>A7nL__I&n7-n=guXII|Ar2UN&S$kJl=Lb9c}B|m81K{oJ^tKqOb5=?>FJj?k92Q z<+!(h;kcK*>C5=*#(Q+&YJ2Q^``7cTPj}mId$LcD*62|j105Ip4-22_NtfTYp-)eJ z;+s^aWnM!Pj^XaL%rE&0t9+&}o@@qc6M3u1H~1khHF>g+mLGvy(pg2`CTVLWW(aA=7Q{N+-K0%zU=M4COcafk%{YHzo66iU^GnL z8{xw8<@YGYG=yK_0cH>~Wv|6%%o4V@;pN%&UQ_?wVA62xoR1& zE2!=CC&=C9a?h>_s&?6@4#+-pK=!#&c7MUDR+{7Y-{vj)79=me*!HaF-rwtQ?vZNL zH0keb8(ptqy>0G+*A+DFw~bOrSw=dTU_ld_dHENj=JKS3CosB#rZJ4~mx88`cD-jE zCXx>(l20%e-Td9hAMat&YgT3e*18i_M?|IZ*X%lP z>cjEPqM?Fj;yYH=z!$0bw)sEE-psw(i`6{-rWNyXnqHkXTPHA|t5>~Tp!0rP#=l(W zl^j)NUC_rv`glSg&+6kveQef8KQw+~kJS#~E!8bsncQM!dSfpr*DYI~++yy%u`M=1j!NAc?xpn=y9V%V3 z9p$riK9+o6P)BWqZR~9Ng2gVP{}QWLJlgd+^wVv3y+GBZ*h%m~YwdjqF*TWh*ZBNVRbw(Ke+uKf5*N*la9tWrMy@%6no zvLIUDyG0kQqqn7S8XI68ZHg{f-%mvstnUY-3)c5-?jqaG_dmA2=SRh|7SE3^XxEw1 z1?_6o#g4A;1EQRi`7thX>syZG5FbSAT=DqubH@48NPFhkzM!sfb$`~~wl8jnEBp)Y zwtaCsT;*SKx9uw=(RZ_KlhKFUT2};Hq)xf@{(9bepYd)sBccOa_d7n2%4h3-Z(29h zkn-H5yviN8@V748CD*qv|08}dUHpLJN4aL(7gHB;gO9oU_Qm~(BWy_+jw@_Q0^8yY zV*{?>EzUPpCSk#l5X5 z07fUq23Ry%5sh825Fd>$ScvyT7chur(FF|RchLn5;yQPcU83(m&pSC7V7|sOo_uLM z`3jfY7K(sVPMS^&7+2FtL7SQq0mEuKQhI4XKcWxKTu{Dx>`HWrS2v9f%fUndeQ;&p zc`+=x#q+OUu+4~-e6W9oep`7Q>b&wkwBOPFQ__ViAx==>gxBm_u<$I@zc|~c@N~%A z)b=-ijp0{(bGIo>2SQshLhz^e@X@GWd*Eg2F2*M$jNo-Hg_A|{r7hbU=g)VUy^bI8 z&<^?PL%Fi4hqI)zD%F1_-vba~}xt*P}&lLiD;FI3%F z+gj^Y)VA_-x(K{6zL;y3a$c`je$l49_ZbUN4W&>s4}TWQ`YX;`*XZ)^T;7 zE-gA(!in~|{wV2=^h4>k)d4-I_kS0i5 zLRvxA za;$*)yb1bT9nq(^syjBgL9@M8x7*D@l)4T|&4iTdt-8l=zQf++=%cu0end~X>4r_#-bArmc95G}PAE5r=v1w@YMqT| z{uI`FzVPAAZ(xc?_@z^W$X{>#F zjjKqut4n5I>g^E8?k3qDE}4Ci?4co&NeTL}OJ-jrdt!)Wk8^JiUhVi24cS}Yy52Ro z*0-+r2(I<5>kkLl`Zo6d5mrSs?js`p6!e=c`Qp-Ln!myEog6oL_kKn4II#CdlHbg? zt1!4Zk$;O>Y@MM0B#j^bvPpNWf1z~0YykiB+g@lDcknl_l5*g6oUN&ch`J@;6_BFc;gWwv>w!K&aH!*rGXJLmh@h*|>l@E84d`d}Rosi@vdzq8i zr-kCzLqbzpjg!phP9?R3xFj)!&y)nFg1Oc_HM4*9{A;WN=?N-Q3V_OxWLG9KM2Ves zC~y4?>V+DbSB|r5Am5yxAIY1j_d$ADdbCUfeZ7UZskbsn1(uF9X5>M3@tlDyh@LYQ zN3}8+$SS9|NAl{ZoV?nPEDSaBYT7jn^>qvmO#0l_jK(@fB4hIFrxcr`vz+wlj=8}< z%CYWX3W|d%Fy>j%@qz0KUSxoPC0j|-ci zIS~y>x@aRI>xcwHG>E(RkqtdAYym%9wft~Z^261`4_8N6zVZ8DUXP8&JvUtN`=f3m zm#df`w^LVqF+YMzjhCz6j(^LN)m;O*NO{@3MfW=+7Uqxx8>2xlq)Td zCL<&Umu`pX!7aUEEf)s;(-H;_dSms;g|MMFHV+|sWAkvRH&$rW+eJNY*69nr?I&%7;h}yp=Bp zK5dL?b}Q^)G0bQQ%xI}rTNfWw*6=Z{mygpV3%t(%WE~+70>9t%ufXvdSIGb8O+Smp z*mxJEAQ>DS^roK&GiZE}Qp-qi(NZp+pm=12bN$uPK;gJX)pb-29;WH>HM+iy>nX?# z2mH8wobX%YT5eC9sbteP>3Tiary)ZEF((!^Q%KGW8Wy#RAFe4;GgL@WcV4yn8B~>5 zOH{$;9(hZ>&ihOdn~S352pIW*vD=Z_VID*9r_Y2%ZCON)E6Fb8>`BNUs*ciz49WbK z;z#%aX(x+(wkY8%d^E1emU0V6j@TEmUV$o*G7>nKZd?Efv@FqVhz6!;UZ#l#PV2Sl z=ViF~`J(xk`X7!pZP^5K1lZ(A;j>P@N7O^+Hg9*c;y zdhX^CNKHr}JVd+C&7E33m1_Ys?&cB8%xEq}ET50$*)}^uxAK}lsOf4MASBn`Et;wu z1Ddx*%fd#5d^)5v)7Ju_cswgBnjl&EOu~_ z<3Watu8S@3<4{<9P5|6yZvKvCTA<(2_7cbQH`wTRTkOUjXr8-92%t~Wz^&_+ zW94nh^S1=6(W}@M)v1KPGX7x3#%1|g!{1c?X7V@JU(nsES{Rw0L3G*vT~!jeX!jXZ zoYbyddJ+~ic|j8C)`6afp|PN81oycY>eF8PVI)^?vIp}+@eJZm!y>u}+OHHg+wbs8 zUAZNHJm`Xj!nC`%80QrJ#I}l$^hs;KH!x{L=k4DzzDqy8&W}8efryS^{+P*7R(}`* zCo*pOYLynv<9Ko!-U)g1W=0Il5-i|2c=YroUinv+dgW(zdFAJ=@yaifjIMPuxq|9<{0EFg83(@Rm`{5%D2_Xx7EhCRl&Cv&$ksVX6lO72$(!G zx!e8`hCQUaFAg3Ia&NOX5oR=hMwjp{H=cvDIzkQkTN83N4u5mSi(qr~ZG5f0jW1>~ zE;*}djJIazYOQh{qa$JL?wS<0(lpQf_!*67+-=Z~-*)rW|GXA%r$Nzt*n0ZR;G%=V1{D&nvnJMGZsmy2gS+!q+Xu!u z6xn~|{|R}2==O08vkX9t$>XCAQ;?>8ptol&RG1qPt)>C~9-R>o z2n(;%;yv>D21^=04y0czyz4kf?PA^GqoQ^(clZ(5hRSP~=m{ScwM%#cTd5TkkMmJc zyOcXi1M=rVmmcs@QQO4>SWN92-QlC67EYlbflw;1?bQ=LDr(^waoA4nCf(r!w!@u) zjvSrRBKnZM3%RiaJs`~z70Aa{TQ1fi2T5+-Ybjt)*n#rJOXM6GU{Ba0pSX&1i`3at zV`8u`F}>ymfwOpfX&&}s9vq!Zj>;dRrrSgF?tNJdGL#q})#T^PyJ)VCyOM0v(RWrY zi>cc%w^et<7)-2Fwb$5aaA%F49j8-8^8i}pY)8xOm9XT3ng>FK*CHlW48~gmU06cjCi_4>(u*+*~=2k^7~yClIc_JFfXD#8A&at;ZM zCtryt?`%kRG0b(mqc?TKxW!~sYM*Vi<7zmxdt6n5O;S^J$b2I+M*L2UQ-Q|#6>MSW zoZCxBCD<5M6^||RI>(M8FZ*YCouGb#3h!W`%6lwY6iI71OV4Ysaun zUTIpzpvq`O_t1#$p%L9@0uJ^OuQz$y@Ya#@E%nzh^*| z?;jaQ<#z+9UvBX9%MF}hyi9tC*DkwC zNS6#vK#$7lhC#m^O^HB4%G6!gUHx(dBMJ=ZZg5wWH)d4rNXm6Vd85_`^Tu}ZGRY(k zl#t#-J59eonYJC-dX!g^7{>gT9H*bB#;C8p6&o3Cl_gle?$WPr{d!Qpmg$$d=$DH$ zD7{2-i_$@2=u4Cj*%UM#i=e4*RY>BItuMQ3ba9+rP!TJC`U?1VW0!v2rC;6p^`L$U z1epuEaXEaoUV4`CmGrOmRwGwW+grPM3;!2=fy3-FfWs8RVd^MhAcq;mQ6fHaG0hF< zYg>H8EBOkeg9EnYyd_@AMUH>mO;;oSp>4UEfsowYx()et+>&MuB{l+>K2sjs8;KN*Ozz;wRty3qY-W9Xfh(lztYxl zD7Hn8(vLc?P~t#Nm!_5!{Uh|3R(6|9n?aj5n=LxI6#@!a{roo8XKu2r3|%_nvC?$u zD9Fmyr6VJ&!O_F>UBXcTA8k5390XNAm>!0z!p*sOTq~mz&G&xfmy(dr)^ZcPvLxhJ z+RqiuYi>rPd2FbD&1*jy7LW6fIM1{gj|=5!8VAcF{sX>MU%=-c!`VxZmcFt$-haE- z`APB^-(4vj>~-t~DFn0K@^$I)rJZHi7ePwH`I}P0$Fwp&P8-k1nY#ZC-D}ppOSy+! zmLU_t&L5ll8rg%;_yp*X>=nvhq3ji>ji(jpe=BQbYW?A2`f2vn&hL^t8040NDKn}y zs4FZvDv@%^D5osoyH0+z>=$G`)0(2hqysjuEQ!)d4$yz<3kRs=OiXh$9Pm6mn5XP8 zo-;lacVNxk_4*BXu6 zDgPgN?*blYb=`Ywd;vj#dB<0gKq88gNFgC|LJ~QURI&xk*dtrU2FBPiGIor(iy(sp zwh^`5qd8%WIHjjb4{b#snkwIyHcCI5DlKg!TVsnf7Xe8y5P||BNEm`b5|D9>&+otX zerF_EwxLP;obNe$9_@F(`@Yv+x4rgy_t=V?kl*%cisj(u$1uKUw>CKlMoWJl0#WNg zLj~JD=$p8q&{s_Lt9-Qdg`>dnX~1c4q`VGoJQzoIlb*+~#t(+D&LLyutsE}?nU!s! zf9(NsJg0|utCono1;pl^z?0#zSRnRkK2c8+ZwQn)&nN0h;%1P8;~p~J>ofEuV{17X zAnEK2xytjynm= zIOc##{e(LEeRk?7xwFP<7Ce^NzAKXGdv0E`jJ^HV7#Cn+28awscW&2JO6gs;t@j&z zw))`)KQtidH>xLY^e;N{BLu(U&u{eE-_M|V+wmXdYh*6S3q{RMhE9193k_ut61|&U zheTjNtAg`BTal1A*-_h$M){edZK<|%{jro=AAFIJm zr9Ew1CX5Q<)}P#LuB}cLw#}1k%ie#OYs+4r(YU(vZFPpbf2!t3)jerc_MRV=z1paH z^DUV{!WjZ4j4HpSbEE1-Hr`|Q0*d8FXT@xE+IIMv_M&1{ve`qcu!WA^^G|H?y&TsV z^FuaBy;DG{iQf@^6G!p30GFSi6?X$rJ8tb1b8u1Y87n;=4&ix`7d>3+2F4oB89L?% z^em6s3j)cd*q-JVY2c8yKYWhUw@uF=oRPNBctxhLt^E50lx z5_`o2&Ndy+ws<^e%W<`<0jZ%8K|-6Ll`?FuZZ{Ach8R!l1@KY!e>9%QH`VJjbW>?# zSa|XU2}{dS`btCkaePSa%LsX7W4*b?jL%qO#y-NL`9=o~2{k~+KGZ1UU=sI8pv9r& zJN)_m3_Rb84OW!&h+@a0;M{%%!NWPF!B)U)$u}mr*{dU6gFI;~+w*N}iuRgg5jolm z?P8`ke(G(se=Pd?;8EzyhL|U>c90*xsT4PcKsTb9$p}7`syY#0v0La8<~*)WiK9Ai zqI0vUEERgL>?ByzZSyopfuq|RgrBlch$AS=5VBVl4X?hdk|qfsC2i@T#8O!P2P$tk zw@b|rsg1mBdR)DY3c0*ky7NBC_emY;bzC2MHNI=+Oj|OpA9hVl#D|={Xz4hrv&My7 zZtRLZN_FG36YUS%KB&QqbjRb97Ff)4JiNW#bpF)qJ8nJY7q_L4<;<_C?FRiO%lAKV zKcNfsCi0`Vx1Y%KFWoPmaKG1)Oz*mMWirh#I{Yf0{+@oj1HTA%q#S^;J83LQMO$}* z6mib6>Z|NR$Kk*Kj;@-kE~(=eQIeStXUQgChhmu$d)b!o#hZUB&H_v3*1>QEV#CSU!1zO;97oWNKWXUo zBl-!6{G6tWh5YF4=>Pg@W1Y%n$8O7x&E~)=kv^pR{?kt^^WNh+E3An3u}zp3-I?HL z?sEJtnf~{snGdf>>ezN@CO?|PQRDY(()$yA2l*Q8->}u#dW{?6#Pv(2_dp|Ol=N54 zy!)a2}<{;Kz1{BlG2wIQ|5qcU1b>Qg{hxqpIJSc{o(2{ z3S7(tYEn-t`4N(TN%8@uJf@Uh^;dV?{wl}yS9zTN{#y%6cbqQo>D2NbZKw20-nY^D&`~;%-?g^@#;mdDAl;iE!@T44&0-%N&Qd7uc^`Ux`=kY*^lHebU&Kr} z2l(jDUoqM|x`vB?d^E}72R_QjTeD;12z?p?91T@~TML8C!_9a7I{|DwAfy3ryTQoi zc=PARYr}W9fHn}w0}vEzcoT`^SnJjQ+}6{#l$2*@u0EVSb@dzBxvO8zp1JzP?E6&<0qy}8UD9p}`^c=1XCIk&OCi&LEBolI8-nbk^KK{t5QnnO zv(L{q&%dKEdtf%>J}`f4k?Q<9lKttdHO1MV&RbIosD70lnRRJ-c4XeA71<|K&ryl# zHP64LlvASRaWyp?;+#@x=O8l{eDKyC{1Q0Hcb|{ zK*QGUu+y&?n)Ig$a1B>hLL;}Xz!Cg^Jj0*J;U55E?T&vbbe!Gs^hff1 zd;<5*^XrLRI>(oxn>;tp^Is+BxvsWQGR%zV`|Qa8nUcRwF}{=FxF^AJ5h$}t;C83a z+XzD}n{{bHwrt*|Brlv*EpD)I9=~1NUj<+8uZpE!?yov4^;Cb=g495cF*CS4za-Uj zE+yyrN%p|3#qhCti;Eo3fV03W;XF^y`h1Xma^B}jPt0l*rxlMXLa6P_{xbD#81iqk zkEVVBM?(x9n7@W{wCgw%iaP0`R3P0LIedFAhARgn_zN-!{<750Pb(*jBlt`9fVc|V z10w4J$7l{n)n^NkJ<#ynGUGNmP5)%^m>hqi&aFtshW*R3BdZ4yUvHAKtvvhF)%#d% z>X$BOdaH*JH7`@_=gYE>t{#Q~f0vxgDoJ^DS@sc>c*#Awug&(YK0w81dAYclia+%g zpHsyVU-8zuBYJEIdkk3y9hXn&*r+z&`Me|g4#xF;;*?z*137uZ-Y~~MzIYV=acuY) zk2nHGM#aC|P(zN9JPv(K0HkpUzjBNrzi{DL4$hJe89|4P!86W+XDoncG?zge(}P3V z*}*S(`AL7(*};?9j|cpmcwQsie5o^-OrlSg_niK-BB={zv$i$R+gYi#a}oVzq&An4 z+FYj8<}y;jY3#|_VB}7NbqirZ_8ro(G#-fgw<6(hi2g;j5fB=Q?hpRz!S{R!g(TTm2MA9hj#9ylHDHE+i3>@R1rst?>e4+aV8kHO^*h@T3` ztT{Z5TxpzIb6U&dS8WE6M5K3l=9GKmhm$20(R-f##c}taINvz_*LTX4^4-~2V&jb} z`(%F%!4eE6^NvYou zzZ@o7`WCG4H7Vu9uS9=scySp#=^z^Ri=?>vXQh5j+*K`0{V-Pxoz}`OOzkBNo$WyB zCUr8Q*IE)L^a>-L*lWY@(yN(D)UhTrzT^`aQKkIa9<0t)B`sD6+8bPmXbQ93a zk3gu)`#pm$b36q8Y{;ce7{#cijf1|oq~zLs8;fAF;w^rkXcECqddK z_#>JI0L$Mg4u#r&xE^lf&N{-(Af_fne!Sj7#+a0hny&1LW5pJL5r z6l*S{SaTW0n#(BGTt=~GzRG}`<}DOwarij0Uw!kJQ|Ko556_m`S_sQt8f1St4=XX7 zZcHunR+h>HfvPueO$Ec;$1opdl;76I7-r6R=C6?))u86DEFz|n&0ktdOv9VMm>u)1 z&lgDhEgWa`z%GE{XWr)0Y~QS{<=MV@TPv9IZ<+CLj5mrKHX|WuVXNBL1m|y7`3Gm$!)incy)LZe@Epti+7HfU*N?1G2n9~etO(&c){tcj=|@#PI|24 z+-SH{ap`h6;PLAUm5*SwqRzKbw@!8G<_H$KykSE9sc6>^-|;uwOdkt>a{TRH5bd4u zx3@8mBjFcvsfjQ=g7W<&LPoRZ9j)&;{xfcj^r7J#xy}>0NXR{o$~DIGhRv0E`p;AS zI9m4<4xZbNc>k@F)qUw)lj%34)hTFnDtZiQZwi_V`_1h#r+b5Ej-BM`3)0F_)t4Q| zt2U*;^Y@0Am*o^B?KjR!Jp(w=dL4-zCEGB7;3(O`aUuG+Y{LcL0V^q2wCFvXosR(n zn#BJ+{%%_nDs+?bY5yIM-!LUVg5nShD~?GY6Q_W!)WOJ*F^^(Gukolg0h>OCL4NZ1 zC0`7+99Ho&NPdU2|I->y9)H|c$#eBQo(MZ~m=V^^?T$X<+2>K|E5r|v8b|DpvIl1g zzVmX{g@d!$9LZ3@hW|-MevlG|B-k)R3j}2_jNlp{mJ!7LTHpD16WCR_zEwwC-{baA z+u9rDR`LB4+MhgrN^5r%kREQO9fe-#HbTzYZ>unF-!sGQdseWU0if(U_i%r-ogcA( z8NYXFJ39Sw=sOktVMJyRx!ksE^RkCl@5;_(KlYo|-_D+z(s}Hal>}GUX*YLcAsfwS z$UlgM^#$^OO_tO750%;xs7hVNKJ|!J{;HQ@Q~Ga*cv@RUVOybY?VA)RjU=xUN#^#i zbw^vD|IqkDxt8xU2#N4KBaj^bV$4&(hgGZ$VZ?w7{a!abU7J93TPHSXZ+UX)U%d77 zLlK3X=;-V#mf{@5&c04hZ9t3Rz^b{7Bs;KbF56%_oSiV8h43BuGvGM^;f~e*S+m}g zJ!>9HS=lUNLPT0O}oJK`u9B zT_TxpPhqj5@hCF^UCy0|F2anr9A# z{Mq(p2WPQ5A%8wldUY{HZj{J+85}ojz8xtj6n3Q955y7a$>Fw5QYxU6W8y!@H-d)zu>g&uR!nVp!dPxVmc3& z6^>6qTm;L4@hL@0DGF2k9RDNmJ8u6TB1ePYr23SWeA5&p-=N5QdroQjzw?ESd@xiKN0l1_fo_?sLLeccY zC6)GMt9^G#+@h@|wLGIcU&LuDo*vl#{E2v#eOEM(Yt;$y^!+78+^~EYTxK3@BXGOOcHw zZG?>_9fYe&Itka7bP*;?x>aFSiHg#k`l6URi)|?xqQvzj^hTW4>B!K7Uk9b#^@H@c zp4+m5Dy0U?28gbpN}#K=g2bp2FSEhlXoJ61c{eI=o8?_eT?Q6d!{sDz>Ls|yx=5B( zs`_#p&&HBM%B(6WB3xTiOqeVwCEQq2K_N2YdR%W`>janEOmJJI!1X0{YUMWCWd`+x z)g=uon=EP4iS`Y*Nn=a^Y#J7FBww& ziZNPsANLTsyQE7ElG|*xme4?~wM6DpB`&h+*XSF0w>Yr}&Et?l?xGQ8T-B?hHv?V9 z*JG>qr+s}A@$~`ryh!Yh3;Y>=_>V+&bW_sqNfb`Ql_`8){?~;vYkU1ojih>2cu?F{yw~$!hMt!4ZDwh(!9s*_Vo+1oJMmNMfHWM?R zM9YS(v|Q_3Y*&j~tXOxEl8AH``$$WvkF=NjNKaf5$~M`P_B(8(pj!_kam=m`Oedk7 za8Me3WRhE!Ww-t@cT=Q=oqEoSKCbxr>|I@Rys9A z&@`-3r$&iZ^2-vhMxs0Zo?j&AbHEQIr#s=4O#e#4Xevn*-~O=4#e&8yHR-(z5JoLb zser*;FkPPXM9!N=@L@c=gA#t;AUNYh5%3(lKI)WdiqGKJn|t-$P3+EIg|~^%#cmQO zh+QpC5W7;GAa=QUVQjhhMC{_R$9+JiVWJjLBcz3HCT% z)+TVHU-ObXvg`F$QwL^5TmObOR8p!y@{13ec96`RVNT_VbT-lV+i8iu7iKQWobm2N z&!Ri0t46xFCjBJ8VjoZcB%Xe>CjDHvT@Yq1L;x2nvKrNAZ!sWf z#%;e(k=3Z$!!63Ybx7Y>DR$W~8Mm?=!DVB5ziCL}a;4s+)a7Ghp6g8tR0$%%dgGiX z4P#AeE!NPcuwD!yR%hs$>Qub8OJTfQVWrTZsh6N(fS`VmAdeNb^cRbVNbwR#u>hP+ zriT)JKReNU%_Bo`u9uALjz_WyLX?(DK(YPB>Cx7ef@bEtL&Ah)x^F>mZhOc0&zNR2 z1qJw>?;ttT__;@cXiQgN##X3v1bH-8H5Okuy7`fK-;4N?zm$lK`6ZhcZGDi&^GkN0 zQ|S7JrY9bKla-ssHB~j4Q>Jgbg2hSNvLw?_wA171EC;GmUqC#8n$)X>xQx!E0(hDj zKl?Z&v3V~aQ}G?{OlCf#CNjv(nKNV2lp~GnseE#R8?Tb-Z)-uO3qt`OVP!btNaF|N zU%cNc==Y$X-c}S(KdJG|u)95H^fHnNzyH4ZWmMWanw{|R0S)i}1`rteE!;D|8{ z0MQhCSjuew`7|rTXr%MT({IHigWG=|L8*3%HtkBumL@I8hWdJ<@5K{X#zgw@BqKL^ zr(_c)IPE`Yd1gl0(#!>=u&0m0rp{fGnN!A>6CYZdIpafWsZcFtI;7X?HPEYH3DzOH z^RLWU=C=1*y$u!8k4+=y?V4T|wo>UgI|Z6p^PuU}#8!)JEjKYN^;_ktMoq1TNFhny zSBTX*MOb<>DX@6LdXb$|jkh41ED%Yee`1{H3w^fgBKD@}u13f7{T zb`vHgL1NXWw(wBX8>K#=i>muZ)2X+ZPQ40IN;kDb3RA{G3|E6n<2M(>5`wE~fY0s- zZlii|r>Jt3>EdhA#iIeN7!6h3qm--PLf+v_5K*s~3*X$3ywNEc7pbvLZZHrVgDE8e zr!cXon=eBe$fjZ3qM6IPp6!Xw4YM$-=@tkpmRb+-)@7~!r{$BABossVZrs_4sY z5w4;A;ARTaNfY6HB`vTG(wavJR!|RRx6P7JqT5~G6>4e80C}xWKr^A%l1`VoXiz;Y z+DGn#UYSBKHjM!tTHRf%?m`U(9lh5o(zVHCbvWo!?hcjZR;RI8H%_wCwwK#q%_+!e z@hljMxcb-d*@}_y1w*E52Nb``5QrTDalZ#B0NwSvNQ)b*P|#4Qus%>&SEMjitgyCJ zVZ59$Smm_IwN4Y=XgVmWQkU`?ZS#h@(xbPe)4gjeRXG(`SXZmCKBcgsPGM6$Flian zSa^$T7*y=l!|ef4$pqL~yg^}YlfsS`!HFUpZDUCHLwaiji+M;};*qqyVKB$`hHJq? zDt6k666vxPCDLt*7LlG#*JiA(%SYO6?a1or$#oZ~W$wn%gWECm;C>7}lHe*2AuA7I zD>XZNeOq0&#OlwMSpDtuS#3i;(rzoP{%nP5Wh2{IKp1x1B&FgtI3ljWmR5Pm6E9t<6W;+kK>?!$&$heWa_) zM_RfSVR3uhv%A+ly9V5|bI?88hupJm*gZQ&c_t$$9s5zJ+R?J5z!Z^)aff?AcOOlZ zNz0B?jEe#PR^}P#xq-W(^r>iHvEFLYX!cqxg-VIK84Z?W-7($fVk8r#kRWJN+jlAN zYKbUCZW`kwzXCV9Mo3<4xPx@FnMf0jt%dZ(kh@4-C$6(hOtV@-Mo zHb1)qz1+ffv)5wRjDo%vTMvrvu~>?s0^4$z%#nzm0!bBP_@Zu zAR$RclM3kSVKjR7YJM|J8H~`_*k5n84FX%>AI)$r)mw`X+XkT~(Z#rC~q`pIPaG3}1~ovX5) ztBp-bAsNr6q*eyEYGmsu6f9HjMQYRSFvs(#O&aNqY8C|sZPqZWsgkJYPc5bffM`u| zOB~Ognrbb{u(tw~iZ!Jy!4MfG4@5@EBdjY@h>}N$l1GS=M_B1<)mg1>wb0!wLRC}s zmS}X~v>GKgSYodVbei;4Vv{8rm2{XOCb6eQ?PwN8H|;~d*&fqLlx~#NX1b8dn}(uv zgFuUkY^8UE?HIK=?M=mu?0UMw+%XNQr`x?c2GrBTTOtBJ$)xo~PMqU?FPspMeAO^J z5y6_UKM@&$0EF5Qz-yEjDb?}{bb@y)xWvS)VoTs#eZ^YE3NsoIY2e&smnGH1m|kvC zW*sLy`8HrYkUFxF5ZOqGY$QZB5+WN3k&T4NMnZOstczGRk4A(L4{aKGYy{zXNFMXh zCXR>fpFDID0|2%-aUpTao6N^Nq&)Lj>ma+zG5MqeAkxpzAA?HE`1v!I4^b_+O7jmC zTjO}In|{FBHo$^m&}6O5&zU#H> zC;Hx;jtwc1IWH33`Kp1&*-|jY=tMsKC`PFhJUZ-xkM&mSY{H(#ZQD@CCr}tL zZ=H~gIKxm)$I$^*947oO_}R$i zcAlb+#)Ut$3iE9 zRPm(Fay*N+I4mPv1x@itV#wi9T~g%Rn$}o4t}PE4PV+CqB~Jkq;c-J8UWmp zYk`jL$(~^69Jc@?e~PISdJjo`HSHW?5nYf_C1e6^CBnybDV+`*)JUjJMxFH zch8JR9#8cB9HS=UOyvg>>0ieAMTW8VWcn%88<@m7@v@g{cD#Ze^5fB+Bdouj3A`$n z@M&$oY~#ht6>P?Adv?22UM<5FteZOnKuw_p;sA|hlmI<~_ZuzMl!zOZ%KnSgt1b0n zmAzW27c2EY$@(w(sozyhPOsMdpTe|%4ju^~XUf>H~k6BRc$RRzDg2+QyRMIKOK#mW(|2I@%UI z{MW{d*_i0sOR2H2>Vwl*IZXafWAf*=8GUSNX8#{?8k0;vn>Uy<7(0%!9Wh%5R>O!< zzqrL|0D?6Y%%U2$$R+PD4Z9E|)( zW6zxO8y?_2?zVK}&%maMW==8YU0o@%D%4@XvvKeaiIa$oYWgsoKUNdm*2>HePvhqW zw=Ly_C7xzo-g50h-l!??5;dX->a6jTsSa1R|01&a-*vhYkGv@kqJ}xbX*`=z9tuZU zU7&H!uo2EE2#5CangzX|t6E$2xvF(lSMFwvBUgYUc~D2?KNr#~2My!TC-}h=4h&HC zM7Yo_TYsb4MCOcMolp1!2pw0rTkM!A8Tiu}RexM!JUsw;+OdH@n39NvTPX*}O!8pLKK%HS=;SnB-K!8y#Vjw#g_JC672%O^A|5h%jV3GDN`s z2Kle`xk_nJhc~S+&(m}TRo;%tR@yuqpi-zB7pm40Ap1@9o8&jakF03o2HC{+VK4WW zWRhnB&0mC*_4K@fp=gGI?Z>snwoSOU*|t~LR@*xph1>0D5Dq&Ua6kU*O&B&O(fGeEe}U` zTnMuemBA}eg>@7!tarzwNZXnRz5<#1&e2Pio`UAF__r=a|$xmFXjq&0i9RCnHda6tn7* zebX90tCsws}Y#Vvo<~7P=qB2OaM2kQeX_*+s7nP>2OFY&tF(2 zHo)<|1JLCo+b%I($3QJbXJ(EM9ie7uQB8xXwZ`M7TT~W>x(nyLKZO&qDsGa+ZjuZI z_y!EgDPWq>yZB#RXwztnhQ$ih{*00dj47PZh<=(Pzi|H*G2kHC6$sCY_+6w&?AKtw zB=pnYdU^>;e0SCY+b&jzv6g%8fWXWJ8*U^5yr`QV@Z8H{j8)|ASqTZA;g{1$&%tYzunak z-Pti+@@jV+XB8PdbSmG*Q$;FNxKwg2&aRTBk{&H%h|GBAR9emNc7YW#xlt-5ReDJI zKA}zp@hQav06kJxK9$88wY8*0#mHr&JEW+N=QHQI`{DQQDv*Mex!@Uc3gTs)={J@% z$uU3{7g;kk2=I4pNj%!R9t5fSH)c`ruf&)-_QYuGXNkwt@Z2rJ@y3$!_#6A;XQSQ6 z({IMhhBXvU_J5?T3QKw_zT+{RYWHkg98Ztvibjnt`n7*Q{E&kS4OM7fQ2NY|edIKx z?N9#=GXQo+G|2R;iA?gl1;bzY`@@H;R##mS&s=&qUba6|b2z?t?-)xM&&-&O8aO+- zp^rxK*@0(HU&ZgMWg4?+T{B*xB@SB7*n>k)ylijcjc2reBC+5-HJK&F$@Fu$h&VcY zjbBEZvkO62xBx-6`f<3;Aig-PgoOzyngcw(E zOUZoc?ZKz<9m7We;TO{Z%u5Kd{c&yrJ-m54zXC=Impe><&|&3W`wM^#hJPTYqZMIi zDjr!20THWH3~B5RJ}L4^+5E_85R_8j1om$z(;;28%2$^ZBSPxY%-;o`schk1ZrDe? z1l<*?tfxYV6jEBta)hMDPAErh>R>XdT`-ZQw*C>bO{PZ~Qan$4cp!<+;01Nu&T3l;y;ORltb98}d4UmS@i?OV@Sbg-rK^xG zfz>#oEESOocmAU6GzRo~4VaUefi@0Fp7QiYMdKBgsL6nKTyK_Y82{Lou zUeRa*&5TonJ@L#1dN;C6r1vJub|>C=wr0oc!nt=xcU~hUAD~o%r08WQ9-AcJ@9Fk< z^!S|U@gcQaXGHl{P2?$0j)}|#Ak7`ZtH>+cujjxuy5ny>U6w+ZlGg$e6Rd@eILNaa z(jM)nG>Tal83fQyK?W@e1YGu-$Tv~OuKD^Cdwu;Ptsuq9jkGD+5YH?g6JT(Nf++*q zefCy17*Fr&5w*t4X!~(rglcejp)eBxF(o~4DZ4O1~%?m!lync zz6#~PZcLyC);fIIR}LReU7_P7RZeCutzbXEUAc}2uq05wUzMjRz+v_KSQN8o9g9yk z7Pr&mvH7E|$2V=A$1wq809udDf0Td;=(7-kt0_5s3ls5cqnnmg5!ti0q{twXnSmoB z&b@+2kzg%n&mo2kp6ym*apKXpV6zpG#xq6etZ2c=ZP=CAI*z=kkJ5PFq;~J>?;>x4 zZA$Z%KHv>cIb~o#?MoTJky#Q2;NbImGX)%1|CF%ZvLzf3CcjYkG_H?p-sNz)6&4)rliHPR_F1DDrOSs8O5jwnIrE^5+d zu%kD+^URqNS$LdF95?7kN87B(S6$mISgC%F##RkB_R6+ux%suI40xPKKM5<+D73FD zO{RY;G@kwb(*TH*UWUlS_kP*w1v2ETZZfk5xId9hk6gH*w+ew=&1NyPytukd0$V=; z`V?DRe&tDeFDaLxKTQz#Roll3k>;0-HI_|~_lWqZkKhrGb==Fo&aOJ7`VZ2lt& zFr7_lzpUGe5_j#=;w2I11}qS|5@r(t@dOAH=uJ9wl@2C&g*utg03VPKQ+cn`?<5!g zMLJS^2f{DfYDfVH7YK9$)JtcdRxloZXsW1HKqZ9UaO!VN_Dho!Uq8c%DM?H1#-_7( z0lO2KRatmohMp3c#VpEWRo`S31;AF=U|Q6>(Hy>|#Qf&UnD!nZ!B|X-S}~Sb_@t>( zd$xWinP#KXLIuJ96jZ2S25Xboqo^pK*nOLa_>~4u=)NJ5uzfGO)LZ-iMoF80DF#qp z6ZvsG@{9z0P3C%Zy+;qC1gKqr`ZF^Ppv6i%C=z$5bs7UeuP6T!uOt{NjjIi*1<-~x zQ|aEk1t7QVD zfo?^wQU%80m#pMd)9s3}#vnNG&$cIKw z?Z&D^w-NLjyJ{>{!b7bTM5+Uk-qe1|)OCUeDFOWQ^2U;;{Y$U|u<-cu0c>9E7EhqbD_;@rM$^IC^sEKeblPkNL|K7@>k8=1en zgz&f$BpyACVzpw&Ihd#rfs_|EFf* z-aB72z}7^5nByoV{bDGNMZd}-kK9Gz+fPRLiLSngc6A`f-pEK&Xp`o+Vq$uH;qK@? z^7q=`nMYpmV!S?~4^_1kV)#zz+BV@0GxVb^KU^L zDn4A&qPE5>7?oAu(yDqLL9zrc2mjFTkpnZYHiWhY<705eiHb&jPSN0;&CB}Cc6Fs! zlUJ-PDn}wyU0@6@j)gW<8dACD{I@mYnx^#*sCuV010R)&k>{BY+_t=@ z8B1dNf}+6+R@7!NlNOB4MoI?y!5>21=m+=nq6M$|S1Aa|9XJ?ATW67%1KY<#V(x#> zM6l^#6u=Y%z7Tf9<$vMy1cN!!BVZF`o3}g&pRCeP)D}SGSqOeFb_fIDwi~O{Z&s(@ zSnzr^+aaKm*QW%}a^Sh(!UaF`07b4FBtK?hdE@&9Pxcw7{4}w>e=2|`7XD!KPs9t7 z3xBft?`%W2haZaDhuQ&1pG<6jYi4wZTqQlvWa!DrGa6*vcCi32@#rB`1_2CC{uuNv z@mLq%4tmWH=SR}|7#$zh2>GP~pkoxFV>F;+Z1y@vxv45S9m8xA@*#|)+=|mDpd1X0P3c>vn|c-D zTYqkL1(01xjwFa@8fT(}KEj(wpv9ialDeAo^ZL9`E911%WX28{P$4+|b#f!8=g*%Y zHEI@qA02;wbmuQ<3}l_bhG8(zqDg^F?JRa270-BL^Uu)|3L6o~dkdvI?EkWGt5_f^ z)l`F#8xY{!PXjNhiM$p+$Bix?c~YVxNS=>26y32}IEkXr1Y%ceTbly=o-pjY9*#~< zrJ!G*7yDatC|p<*Ipl;Xh8U0&_#G+v5wl>Hll<&?&&ch0PoNXcAiCqzjA7(94P**M zK=a`TLeV_zH*Z3^O6*5z~s5&hE4jE||?R3dYct$(SuCU73{3Sj_tru^;> zJHoi#NfG=8kk9zw8QI$$6`b7(az5CcRh$AWnUq&4i&Af8Fi z)YcqE608~fXR)T}&cD<`ldx(K#=bYyA1)sgCcwr?-lkvYu6`8U;nXr*|Iu;lPu}Ji z;tQYJ3Nr7C?EgB^Ex&OqlezvGeM-khBvczh-EgD|m}~V*O=F0>E|-UZ(b>4%5Tp0# zS|heaN0dt}+#9_|pJ49)vpjb4yU+Ug51$x(Vfe`)jwtSWd6@ZyS4bq!dB{{fQEj;_ z4)NS6g^@Ijm)(hNcVsKs<-YhcrZL(DGa3t-QPsZ)c+v|=DKKs#o?|)!s)LRkUq&~_HR%YXsy=-sz4$ZPlW3k_0*qGMvBSNp+f;__x2TsG(ph7gyY4|zV z7&sEQIWXWv`sL8#TvPTd2Khuhv!XEm##83?^N^Rg94sW$uVrpI%s3veN{`|;=Cq&J zaoIQ_&SoWZ!4ruMgK;uUfnf>Q&OoT_qD};LAC2$r9c4io_Y?850msorH&px~^99OI zhf^hBj6A}@W!q(OtdpF+&%qWYyuyqFdv~>n(@L{4M>Uho?$qy~NWdWqqS|>7i4;r)Z;923{&L1XPhR9h zYY!W$;Kp{R;sdH^N`(WPcwB|75QZ{RV^}}d5Y(mvr~gNH&eI-*l4jK_(&<#4*Cb@} z%rq5KsYv4~PJ-3!l3k~&QYmFVXGb_UW-5Xsq9JULJJ}$hR1187j ze5$cHgR~%Y5@2i+qNjwuwISA1n8qfl>kgBzlevhb>MW#?s%1rq}dQo**(1UUfZ?PYXvtz z+^K5CxIh_pSAA21u%fIRqV^2DP&|^rJ~L;a6iUqu&!^%J2{Ltv^<91=e@4lLnQIPj zyP+ymg`DF@?)I@9yWDbAn+7(AADZvQD8v^dlDW1XwPP1@_{x&JrQLulcQUdU={py@5k};%{*L;DnCE(}o}M z(xNO0BncZ9kG+X)6Yg`;Z0|0e)g{Z`Fh>ASj<6e}fA)=_*hdV-yyyYTJ}L{2j+ru_WBu@8FK`8|L7WQubd%kGmh%i3g(PMJ@-NyBj(>+)qT4^kt<41Sc zkr5NaeJbmQEbZ?Q*dQ_W&#dyuy?pH{eNEchxckXu#JKC_CIMF-jt@IWa#pNPNi2ar zQP3R?4Lp;qf85?%v0Y1oFXHuhzkPWZ*Y%&RP9B*W_OP9K z*>w%~yPFWu;bi~KTrdsAeRTVaxyu;1ugqiA!(NAMwNF(MY&GeADxHL_POVF1hW<2M zP^&M>1)l?rY6tNATUymMk3OWOGL(^CB&btyi(yY+k) ze!Sq7(9X8-g=p(bluj&sIlA+MCpZ;;jhvr?m2!RxmddX#SY!&uEf(G(XQ|*i`I`kB z%sJ^2b62{;+?5tt%2lP{$XY(4k;8kBN?u{DT~a}cK2VqIyHu3`&m=+|u<$7Qw1RT- z+$Xd8W>lZsbP{glyBsE@Z&`WZpsWXub8eQylvvBBH!1+i&Ka3k+j5kGQOBa{_Aypt1CrDO(dusTthK=pwg2_+x0Z$dU}sa zEiP2JLEznBKzuOwnfV3{d$DE^docIK`34P-_c7ng1`U*V$qM1n*?MiTmRM(+ZUmA% z^vM@FP3kVzphopot>q6WslHM#NF%*ipSb+0LapVd6!O6jAs_q@R%(^vj4%d%k!AJl zs)Zm4^3oPYAU%W>ly7UXNyj?<8c|B{@yOjXYaOWDsRTY>>~hbpUOg$< z5n@bRxS%cKJl653FVkbILnnc9)QK=ow_A`V_RHIYB`vNrQ*6>8H|m?uSZAGO^SNVK z%ng9rqtx;jWq9K86xCgwWeu-r zh;>SoXnHLjKGI&~BW3RS zCDm)v2h}U`i966F&o)&@OGgyECdsDA!6U>Q@~@n_Xz+i9u_C$f`Dp9U3VF?Zo>wvX zr6!pcn;e4fVFYVTx_rUXuQHCG5+Md(5C;fuw>at1SQ5?yHc;LK6bS)Q$vrBatkR9hIv!gPc04x90i3?}DW5Ob>2OHt zx?qnKX;e4b$Y89zZ)0RZf+pn<%!dIQS4u&pO>VlXHbN2B!I)|+P*6d`x;`jKXxOpl zIMFSP13%!^f=8@5rD8S_GWIFy=30f<)GJ)yprR24DsO4@mELP;OR)h8JM|#;l@28;*VCUarBUvn)$I&( z9b!{=)N+RjwG^67x0UpaLM$~JeAqs@yLU*n)!3Mde7(&#_9deq4b3Qu$O8jmKf^wf z9`%vC#)xpHRIE>v!T4fyV*dB?zlZ-m{(FlPclC*kKz=swPA3Fg?Xxvu>#Z||t^c4F zL6!F~nBa~=MQ16ng`cLC`JjSx75Md}AQ($nU&uVJQXrKfkZ5)ywo>iHPFJwPqM!|N zR06^&SB~j6+sfS>7gVk>1X!O^e6_9R3PXlOgHoz6rE~G}_FeqCRqm7Y6I5v*Z^avZgWB|D7r%bUhv? zFYFmj<9^Kc*U5#ip>G#T-~Lf_rwXz@5G($p3OnG_+Wz z#2b~k%o5L1$toqTS0Ye^B~&PYHxcrYD`A}_^N}lYK5`|Dmn*Ck!+2XCII-|E9PW?D z`{9=4!pEXJbQO#Clj)bZ5I`5w@#*JtC+0vO+0E5{iO8eL$S@$6WaOj6|1Qv;|5bxr zwDmd6Fk3$-+lN5SL_W^{N`uQe#Qur|K)l`f52kpU{g$i!A=rx8$>x-0v-b=Wm zRAHiAVO2$ZyTb%cM(8 zTn@1qY=t2>1e>umQ~iGSnyzDyZp{54bJtBG0)^%*v=fGF?ukb+_`Jx6^1bZ!&yVi> z7^9E_o{)EG<~(++-?r}@lM4rPgp@6q;>G9**d#;T=RSv^Ncf3 z0Uw7pTIZC7Lqb^$e}Y-4$%?PZe>|B#(V@o2L}cPRkQ>x;1dkiaC3a1(m{gjRT*eX^EsBE$+MknYd zMFg7^TSqLm$~HIX7+s{)ipYazl~}F;iA2zJOt|Q-oZBpx*EANWj9tlL?Vn70)usz= zG+n4ty{s4F=z(*bf>GP z!Go`ioib=1geVbe*E9m@h#h)Ohcf!E9^YTF`UAf;TEu^+HPfvTOtl6|uc}o`Xg`EE z*C})g&jVd*lGl6p`N&;EKJujrionRhHzZ)3nPtJ#BiH=KZk3wA5vtZg)+4p zvW1bK@#Ald^K25GJTy)w7~3*^BR-*%U1m$5<`okyT@pi3+D0 z%ND_sgC7BSC8X;zq!=LKGF4w)s{CuDB!>9pwOKmpu&%mQ;x@I8@qiY3^e!bgwoxV_ z`$(0UlPEC;#_c1Hay&?$*$J+*%%$bL-=b#j&;WzQ>X~9gdbv($9Bb==7wGlWH{W12 zNHL6!S^YDA?$W@z4rNKXj@8$zxWh)*R4gu1iq)zQcL5_6+EvPt0)+*F`X&bQkv~zB zh}Z^#BMbty) z4N#p%BD7;zOoQD+$|vG%03?iAg;-ayz{7^I)PX71RqhgcD%`WH-aT6+l+;3tn5%}~ z?Vn>jM_&J>;nNIZ&8h9L8weH^QcP@QNzusvWZOrU&iy~Yzp1OI6EUk$6<`lObA_uV zj*G?u1hp9GKWHSS1ZG!}*-kbXRF#xsO(VBJhtxjx4Aq7tPU#zYO@`pmUi!}M!ICxO z?ZFaf5>*1kG3~(u;S}~@0rZ&m;7u1sOJ6whhF;uzynPr;u*&>G0bljI?Sx+JNYm}2 z`>_@4ylsMgcxmPo?83UNS9ap?0^b?uYC45Bo$N&W@G}x;Klk=woQ5aahyQq%^b736 z??wOv?clm%g&V|-f;D1BvJyk~@D<{>Sm><8E2YoNI!bu0$cf9kSwUTRDx&XJ`D?AU ztF+o{VF}_%y-If$<0TbBzobKZ_$Up{QadQpvGHc&RZcwdwY17#59@F&LEQ{n)1%h( zn6kNw#TsQS0X&safnmY=astzjt~aAE2ht=kJjS9?IK4VpFNP3c?KU$pVmBkgcBYi+g>uEjcRV{Whx zng};yN~XcOQiYWoD|U(~R^c{BZ`SmG{gG(<7bH-F>CT@zWKtrv<+B$_PTdw*B z#*@;Z>IC?Dp;0W}M2HaS&|{+^ERsc?W12ITP9ZM@V%^5n$r744V+SvIuBf=soU(S& zmLi?D@5T+5rg+m_Un zOEv2(18i|^B8uabl}16CI@fb(ZFNVs)^JK=4-L0KuSwHZe0Kq~f;9tjH@gT#Zz+TfmTUc7o^FEc6E z&_cS4wGUc3((9BS8jKlOuR7Z2a_`HX47GK+l!tRvr>N%(?6WCY%?;MWpniX1vZ zqJ_pLZqEo!!UqavWZN*oB)q5yD7n)#yCZasaXL0d@Vje8Ru~VW0lO6d;I>MbjEP^R zdeufW!8KN=(zP_8nq0F1!(MF4^t)ADM_g;+CDGXUqf5Ih(`&nA3<`4G&ZEah=#7S& ztchY9qj104*>taGacNcB)8#gtJLx=Fr}5Tlyl`|g0Kxo~;dXYP)R@>I)8Ux9;Czcs zp;ecR*6xfp*CJ1Oar-m$eQk~^T}FoD*oaiy=QRali`Ib704>zgdGS7av+*haV(D3kR-ixO33Ak6Kt++NFV4|6@k(j|KiozgPUBzKfh$6_ke8I~DRM7@s@y1UuF(&jVs8^WHjxKRZSOl=T$2H?;z z92&=tFbIq4#~Xw<&pfI@80ep*C71?WF?A99sDe)_s9+{C2&23xxXSPty+V690<#WQ z3a9=n48qO;92$m0qwqw7aE0dGSZfC1vzYVND$T$fgf-FsBzy1+$FK*-8I!j1wR(Dc zu;Q=3ZF{h_FqJ)cDIeR(9<1ixhCO)w$*9uk49;_N5$$ySL zSdG68d$1eRmvZ)CKc)%BpX1qs)kfYPtQI`FVGq_X9?1@z;wf8igT3ExR?zsPx<`~- zFb^XFXGeEFYxZDgbj6eU54o!j@Vx)j7f*Gj;UwQdw*DA2Of1~JO=dsL!YF~e#U6AO zSQU|@*o0-S^>$%%e|j?>;f7zF54~MjgElk1?zq-iBaNSmpYKfe(bo4eu=qmv=Ip{A zOj^FF?81VGT%-c+PR9XcD!Z_Br`}7NDKoB>D&+5oF zh>#ibRpY&|Dz|AfNo?}-laztY8ZSots`5G^LJY$zY!~~6q@nbKspTeykM-&~y6!EN ziD7wrW2D85y)Cdx0qe|4KeSoAI1V|rBv|*Jk=}9kRx1-*yAW}#%ZStsc-Zn8pTytdsgW!?J88P=B0|DY;>v}+t+hL zq6$k~p$+xup;K@)mk@MxJD_AKLryRAfJCDrcIHJt6KLEi_c}?5*or2B$sM$;uT$Ji z0mnEmR4sp~ZA!^%Q$*4x&sq29pQj7@n){R@(RDKX(dy}>t$RXs?=@9J`hk!|03y+8 z7*dZkT{H{nCL6sj6<3ModaK;2HKe^Sbt$5nUIRMyTJ=YQohQ?=Y>>RBy~^SZ;prjO z)3&YGa!vct>!7`kk~`8e(H1?5tfPi`KYN;+dFVL<PN`QK4D~J zt+OQ0{0GILNxssueqD;#kfd!C^+G2@r(P4&tt{me*U$Ri#Q^ zQLZpiF|yOypC^oQwT;onC%U0vWaL?f!=coI!y_FQlkNHmXG;X9LBb+KLP5@s0nJA4 z4g&+T*UD9o1-h-6a?<>SvTal}mHFyY<=v#dWU}J4#1PXoEwe3w@lKC7B@1lrVl9Iv z%}Dkcp?f#g-lt}+7Rpk(SC2+eL0t_Jnh6TCC&}K6gacbDtSi+xG(2jJDuvw$w$Wmx zm|-edqj+#@xhrFXTSG0{8FES15SBM*8lfGV?V1W3+OR8QZJc><$S{D_f^LC4_t9GoTGR|z~Cf#uDC<~fwS8H_yEuK7Po)Z@60UK>w?tTNQ-IJ@_ zS(uU5gQ^X*$t9D7?g*ksgu@$~B1X{Rs45mZs1=%{r% zsLI`?2q9}la@u7FG_8x^)u~o3*3p#96UMgG>opq8{JdIZ-(GI-%wvoBH8coHoyy_LuUB1@j|E2XZeTt zF~1xBociof3^yPIe}q$|Rp*LOPJWc8qd|B!aAaa~Zp3tDt6Hf}Pe{9cnhXewOuH%9vv*z2FQnhNQX{6Vkoy}bB3Wo=}Ba0a9@7ymALq}_2W0Z&F2mvNT-3XdV$3f^Bl=L@UjM(MYH;_0SFp`{ zKN9@5$4Hf3J~P+b<*~f8ev6E;Is5wt<5|vLzf!z7Z?C5$wr;{pY}KzSR{YvhgQ=c%1^p4!gxMu~cL!#>;Q(O^9^ z5#C?Y!nzW1UbxF`Oji~Q8bg3*?SXZHTLvwj>wIy;8 zBBQp`AZVyp9Z?a7b;2d3s%U|U;-G;U@{3Bw#AHM_7OX~ld_62))Z+kyu5y-LY~_Q> zr!5eO@DHq0$9L&;NSQV^&o#X%pO&uDpo3d9Biz|2^H9z)`xcf!#&=GLY#kD z+1@K_tw5!<2{z~~k+RNOAFn6DdpX1QU2k!v8Bk>VZF2xXk_=D}38SgP?g#boh+Wx0 zl_rgep{PGcBmSJ%3&Cj6TGFD%oKZ?{yY}XfYt>i>c@Kp?^szSIb*!V^73}QQlfkzS z_=uN}F=tyxgcxusFy?C5&kd6oj0V-X&0m{w zPqi{1Q(OMnroAB;Mv3beFc~wfM?6j=my<$(13B|Cx!Potg1wVq8)mEslwD$Tv1w1I z9e5C}m|cL42Ae`R{Z+Qik&C+Uh~eDm-ZAM+2s($cmsUvOyTQ4s1Mfgd`9I&7~Xxi2wh8%31h}y{#*iJsA>Wo6{h_wvLkFhT%TyKknYbx;-r3w?a z^i^&(D+L%3fbi{jWHWWlb?(OmWBeclJ(|z_cIM4D$t$bea(8i?||Lpgh-SkJ%jQMA?oC~$4wsSJ~OU}!9x04w2 zXwp}3{-ZiOqp|NtZc-wQ3dGP_d*ei%K^JBK_o-0OAbk0~`e(bND1DRQC_%r1^Lz5o z{={@J2Yb9b*;Kg#=zPq4=eqrKVi zKh-}wB?0(F=dpZ*fA;?e^5LJo)$C^fMgH0U2wjE#*<1gM{Ie6x6FdCY|A>D!NV8Z- zbLx`sVU%Fes*Drr_sC+2_(*^m(BCU@W~nc6`pADL)!#ow{p$?%*hCOF&EpD@Ai@~) zh=R|&`d!!bHP*BtWwUYG2U;Wm=;=!)0*QRnq!tnPu@aH=fG=~G$tabPj2gKEooSp$ z@QbfI$HeWvuaidZwL4GTiHIh6jdJkGGRm;|RTbMTOGgglsH-9uuJF22(^c9nrGn~Ta0wkmQ4ypZwONTl63m%xnFNmH99zh8f-799PD(YR z86fUNx;K-B4z!QxGO;Q-N>B~EAt81JLbs=rCmf1XH=#3#vj>M=mZ}bJ%Njs0p);o4 zO4GDDM2U;l_tg@6LA}kSsX~n|Vl?{Z8MeqbDYUW0ZR%P~u_d+37Kx0R@BI#-BqHkr z8Gh3e>n;NMUClPyvN^>%YL&?5BkrEL-^Nx+Z59c;4G)O4*zyy}?X+?qytdo&tBk2A zMA|~Ny{pjm8*_$4vU)0AXKi(1j^rL=GM{R6I{~e&B~0t!%{dK`+8d@0+8hQ5SJ`S9 zkYjCwVLq^ob+_AFtle)^S~}hP5kIZnG2k-V_PJ;0kbCwF>#1pt5gFP2D~Dp$y9?>} z)PMZ8a5lCmAn>leYoI-{(2TIfkZw!uoKyHF$$z8pnJuoOoFI{RtY|4gT_r&(uGd-u zcHkHU>k0h!dE^t$)PLq@RU1k>qi^IPk@~rzd+%}WgW)|7;k^(1lAUADM|bi4huoD9 zp>@yS`w&kb7-ta7+XJAC+zFxE9zrvu zaw>tn+4t~x;zC$|--ELcULb#7vkmgI!1(pfI7c;va?zc?p3**eN8s&)b7UXnKtXF| zUyW_j3aw*NWG{oh%Ly)WL@s?K|6wfgFBB_fk&*Kf3PQ+jgl;GC1s2ue0GbiS^qG;f z2-*i3u!SyCl7{Enje%g!tBHNufZjGb`-wCx8s4WzwQa|!G;E!XT4!T~Y(eNuLx*|N z*~OZ`Z5sP}#o#z#piBRqvsaPNhY$ z>~;H07KtK@RrP*n+bPUm)epvPVBkGf}AS{VvVK zEgcTIp1ny#W9hXNxrDO_W+7aoRUv0oIZ9+$!BQ;}iDO}61&ND=cqA5p;wmYHJ63B; ztJ7LuQU=}HO69IHYau&PTNmf#3)>;*;hgiTN4?rwSHTwEire>=vAR+<+GHv9am8y> z3gdMOE9;qiLlZ$$1EZ5=kH#Gu2SQ_{g+V;ZTZi)8vLk=?k>?Cg*{F*IielGjSIV9gbyLIw zW+2MUbttE(WcOSZM7F#2%Q17w7&%70hsLZYW<3uNa}(VH;F2 z#Y2bQjyiS1Dufn5FMM%m_Pv+;0xfZu(AD4*+S*(~d%Hb@oU<(xaiC>rJ@nX!IYpBa zHc_g_jmsM~)pd_+DD=eb9&qoWL>KFj>#wbXz|`wn$XOamvNdFFJ5`l7+q+yFIal3% zzRe-`>>hT{j!``|h%q8E4?2_Ju1aSf%$o*veexvp;NMO%4|1(+&OA7UbV7Uyn3!As zQoAF40RN|jl2#je6>M;zu`?(*5Gdn(aP3nveG(?GMtHiR`qhOhZa%QE*EZHuZW1J6 zHH>PLE#BHq*vJCFtDMQMp-4q!6Lbg3&L?*xx*|oItjPsr`lEYqyE3m8CzPnRPwY|n zV;U=+3|l9oO17&X*kaIFXz+_Vzg)x&iP!=uWsI4fi3t^kbAt6aM#v2fl!6@+!v8P? zIqTqhGYuikWEv8SGCsgVGw0#$f*PYtNaa?pl2-D5x1^gv5JMwTXBJ#73FVE0>r*Oz zO#`En7$=^;tD#%3>zfpY_Cfmsjgnnf(sQ9zkfF*L*%5iba}T({K5G|H!K0WdBQ|y@ z2vg8~V;PdkoDvPoee0>_I)&?MuFFT9>o6(b>{SYdosp1~uMhb$N3jh$d!X!qef;O` zg1W_F3fo|XL)P4F4Q+YbAYhkqW1At(RHi|>*ny=icoCzQyBJY3314DSdA`XiLPG@< ztyJQFrfra^%Z<<52J?2o{1@*dEfa5RaJIo8INP9`ZfF|(payUAvKhH=-+})-Fzd)R zD7#T1FiwoSy@6kE%irE`qS*$gzP%wXc6Cf|U3vT;%Qk2&IB#8UZYW;L?G4N9_J$>_ z^JH&bXB)Ju8$#P)3&`f|gWKU^^4I;p#y%*}ad|`h==V3&QX<;==iWZ}u=5`SYd$X2 zSt<5+4*!41KW1~Igx|qFsNwj#8;*53Lp@Ks zPnD%rDOK;lU-wz&`OfTw?Z9Ae`9GWCjNM9f-8>Rd9~fT3M4x<`=SHo-xwh! zQ*5iqRy=p+=r>h=-3iK$j9fdxpg{iZLQLlib81#a;nin8Y;~N0<6_e%E>bbG_}c*` zyCzdZaD6*X4c}|x5$0ZHuv5uZlu3e268*< zrj)lyN-ZCG??l662E(J+pI^S2(_9E~tNOpofKf&WF+T{Q5NvksXp@5Tz+HOqk< zDZORrvT|Yua+DP9qgi6KtWHvK>H(xwLf;xtd2PsKydb>F^g+}<;@+Lotx7QkHNP>!7OLS;6ds%3|U)XPO{e zLuC)Sq+!W;Y?dmejwoe{;qCrqO!>EK@UmPeUg1hf_y^_*LlvoL!5u!w<`TZB=ioD+ z{wG64Ja1{oeTSO+%CpO`i&CGM<4OhZf0r-bXgU`*HxNu`w5l9e*ctBfI(mhgY>h;{ z%zftIH>@Wtiw9N zOW5Rk!uNSV1E{xh>*Oy&yY5Co?IznOYbX(Za7mh0ZRQ88omjXN(`i0?=wjEMH-S=i zSi^1esh#!=&^L3tC1z;oq}6qrFx~g;Q$a@Syf+Lla-Nv(Q$So-U85}nuF;u)`i}-W z>J&m4|C_yUfsd*<``$oS0upzlpz(qR8#JicXrO|Sn$@hH#a$aOD7JvX2*qn-yHQkv zp}Wx>j*HQ%#eQgG>jkZ?sl_%ZkOYJTuMsaq@DjY9HD2PSG2$iP|NqQ6XEz~%VAc0~ z-|x-um)SXU=K9Pt&ph*=XXX?NPPDv1WrWKYRBW}rlbqSl8Fd|2E?xMImwv*%3^C>u zX+Mi1Er9IQjXis-caQ|0j59LhDaw#qz&v%GXL<(fAUdiTC6gV!?%mZ zpK`Y^qAZh(%j7PHkC9Nmu8=7)6%Y$6(Fn~zpTLGSZjDzqqWlU#8X^VpT^!Vgybo-) zBVh&_wTwo2gEzol1@cmyG8Hji7Qv4QOoXa12{xcVg?f4dY(OXDUc}>}rcU%Md3!Hb zeLcSABL<)at`N*VqYHrgdX^lkz+KoFz%r8EJe%@Pws0W-(CfKyC{AVVslZz?OH+98 zLL|vZGUD_KHhdWwLg6_;h`|iyX>`kEyj&`LH7AQ9Gv)2HT>3*3>EifI1`W3;Q!!d0 zFB{-0%XoF*gO()}`E77zlzL~ej@V^V#>ZE(DROxLz*{Asz2~4Q$hHH|=OHrk?t&|( zH9r#(OiLTw{SKEh72FTZ5$-i!gz(Th3*>yptt+@NiDls`*Ib62$vKbavCJG*LB$K; zh5@rN&my=N2(*jKr{U)X0jyCeQ=KYRkjtg8>_@=WQib!SDD1f*V@Uyn5I$crE@pck%&t*MZ&BD9-U9H1Tf|l^OW2DF z0)_DD(oP`FEVjWeRumSNrNlnUqIx0uw<*sp_I0t#EK@Zgzg_amdlE7eGZIkSGVcO? zLB=dNpeRVg7Dp|>%Il{9$tWcoWy}*cB4h)uxkSxT#bhcTIY7__&=&BcF5BTnFnEK? zBZvlJ_~9lR!U_ubz%vY<49UJgW3X04S0T8NYVa4&qdTvZE`VIP3I$RdjL4xGVaTSp6;EP-QvCN-o%!nuJ&fZno6;@{UCBU$7b%;TU zh{%a+7jCd`DF8U?kR;2BW#32yK(|I^YD34!LfujXPwhk%y$70HXH`ONx+0c>a8b{M zjjCg}nNh{*KciE+l5&RaOmdP~!%r+~Oe5%hXN?!tS=M zLs3(U;t9Ce8WqT`s@ks1QoAxWmZxU9{NQ9Raj4kCYhe-qcEcKEGfn#gaB7J2|eU0N{HE%5I`?6K~W$nSXbTU z#+${t%*vn=>&aLks{&ba5g3LPUXBPCQn<{`A{(kvEJDRP<|tx>`)hbBg2O9PPt-@q z>;@^Y87_5wmeUG%flNqpX8`7kT4XO5+Q>>pP>bUbv=Ei$o}$P5GuHhS8G!5siU!UK zT?iH1FPX6p;+7>&0bn5qbQiUu)h8YVo`toigj6#G8X62 z(ZLtW(vvTiJ1@HUVo{f!RV_TWJ(_j-E=(X(`H|n0kI9xfU|b+mFTfSHd=mhtXUQW> z586xbi3y%}o|gfbSmDYQshmdP*K+9=u-jo9s5U8J$!V!su;T<5lNDjb2_6^ve~&hw z+F%P`!fm@~sNA-j%O-~BNb`;&etR}*!unE&V7sJQ(ki7Juuak=kaBl1T-@ZDhVo!R z&aES*?-m4cgDWMnr!w0z@2tQRS(PIcKXEIT(zf)z@u zH*Qfe@xj)4l4AJ3(L`LS`x&p_4K%)$8i*YxCsA3>qv zCUpOI-1rWTn05vyz2}L33QajM=|xZMFL(=1#NH4bC~R;ql6Cm`9C3iU;S@=*Ccy=n zpclbQ(M)A@iwGb{cRGn2Ad!9K9a(XI4_2LllurU=>d%F*Y0St4YT~|I+-or0!b!)VLI>mjY*x>nV){l&Q@$am zMAl~U3p9`7!#dmXIm%GVCVquRs=_bprZif_N(tu%C*Puo6@42u3{Fx{0GGA z|4HoAV}0+*-D<^2i5~!<&j}xkJZKay=k9oNPRyE5As6J|V*2 z#wjMMm56l=IX{c;L^>DAyd-w$Vt0O-C=;?VSHOuYLn$?Cm95s-RA-PD4@vPd4aeDB;IXD?GS)NwGxur|a= z0hW-44wD?Iv(i(OX?dK5frCiqzjBvq2?-}^5?NQ& zA)+#JVNv83Nm@Zq68yMSJuj_Mze=meGNM*JE3h!3%h$Cq9646BTAr#l%VVqaqQ=L^ zt6Lucx_Hw)tXEGf&2Hj^=yP;A&o`;vHyc^>`oMDD39U7fOl&m43K^y3kKzJ2=rcSP z!RckASvo)dOJ$?!{sU8sY>J-;v0{B!>U+cY{`x->-#cCGH+$oI9S9BK16{FXh);CS z#0m=9zqO3&1@Xy_O2Xt*gb(FQ4dRP^4c1N+8_V&GD=EPBy9epvpCu;lIeCd#1`9^9q)K1#lI_hp)IxKGP+iVz|6=l{G45svRIcXp9KHT8dJV z8rw?<5fjZ|_I&zx4e>o_Lwu_ohz}Y&lH#_J#C54a^JEEx@M38pmbNs+!8HpI8ehWPH@!DRE6?+D_PHMs)%AU12rU)*?uL=)IA1I-Y5%LxSXmZDz4 zehTRG&XB3Y%S|A>DJWnxb(~YgVv!~Zis;UpPIrDWT?O%#meOA^pRPg-xs8Jy&QfB2 zhJyHbLkj{a)uj?9e`vjjAM5aWRRt-GXIN_?Gv@P4V5PUtyayG;=j^#HwPwl0UEg(WDn*6^@zr)%Ar-P* zX09$Zhky>GABao>Vx}bpQAd&xoiUF;VFmH26ZWu1tgtexw&qvBUDnD!W2rsUs=Y!a zUgki24>}NEU6wV0IS}8f>>8D662xbp4bQMYq6N52xE#4g6`Qjm1@>g9SuMIDyTQuq z7Tes{vJpjeXMR?v*Ae1CeCh&Lgs2P7nRkVqH??b$VwnT+C5%f~^#Sp%a3H>@jgKcF zzNMBD0qa^Te|6U@E3@1RsTFO2m8oM0kzV!teL{TvfabS@_})#1_(nr)`_kY5$O1YC z>80-JknN|_A#CN&f4PMTVz(NN6Le32KJ^_zp5mb(Uyit!G5x|UIJ0xu1!@%U66mAM zu0tkgVYqVwX@;8&@u@v0;!d0^YLWfi95}N51oKjUa>s)BM6vG$@m(Mg-;C@oM3VJC zfIWOWmk=MoKHyZCf>BpOnRpP057sFXA`l-CKt__G$NPxzpisYn3`1^pBM78pEE$qC zbH&5#EV?~_J{hVsoQCSF)lP~wzHlHu-G=yRgN+vs#HZIdDLVMVf%tTp-=wZxeBnTR z^4*W!g7`ZAXG46a{})4iqrWZ0w;8gG9XTJrgo29YdB70g^Sglf1kVth@3^%8#rZ&6 z&yB-ikGTt+&xa`ACC>K+#`i#QzJKqC^FfS`3Em9*wBC5%WWjCMm49oz4+wNn-vrce zEiW+*5%yDP9Z=Fvg^%`t{7z)$k|Dn|)U6@SC`nmx&nngrmNgfPf7AyPCnXMBZmeuok~Xfq+qT7$a^5^8lQD=w@McuYkkI4(nQUswJ=W=$Gc~eSmXI(bdX|%# zuYh5WnWSSKsq856N|{Ll$~;Duo= zOaX!Jn{N~nThx2e3SH16bVCw`NKCOJ=^2>fBqqYv0}KeI3!wKRHJ%ox{@_j&Z23RVsMhtdIv3HJ=ib*fdFW+~aKMvFY;s5-UEL#}#gV_}n(-=rT! zNX$wH9eYY?b59e>&tvEsFkCs^{%t5*R5b6HCM!N| zrI27E(^^nwsm2h;hSD;X%y1Sy=?2q+TO;yo8CN1b^*y9iMwjq7E4d06L^bHTbL&YY zC{pp1{UwI$Xej|!lQqoPvYLeL;c{eVe{ce8x>~-q%@*)nC(riMhMT`wZp>rejAt!U z5U*LDt+fiCTjaS$MZ|NfJj==jmAT~xAu+;Dj7ZBwR;^ypH#DVW?#)hWsL(d{>2;r@ z5@#sTQ`t`o=E2cQrKFjvq%qS}8i+)|8AV9g#vHU9JQmN7zhxOz{#atqvbKWa zZK$uk-=px>O|+*B=+8Lzl(4N#HmTg2Fr~CjD=jq)=8>Y7?O;!-F3#*}Pl^3p%bYT( z!%(tou%>@Qdr4lci3~D9cx7|xm`&1HQe&_fPU2Ecbw{S$y!k{BNAuJ85|MJ`_fwcz z24RYVfLsZ1>?*~^a-xLojy+{6?I|bX+&t|m@j1<}yo%ppjge$liFsJ;Dj&wzu{^O{ zWmhRCm6t6gRZy$g zSc+MTI%y9Bc;?JC*AP-H69CRovuZhTgFv$oUL zKW5J?HOU9uj>=Aldlv8~rkw|OfdXAiCDjp3dcMpxKbN9l(T|X+l07F&)N(%D2eT`v z%HY+nrTmN7fV&;L${*p$0;Y(a$`TcEe<2y4>BZX{vTK+DjUi<@inpgqQJ8jUp;@cm zKIp)$zsX@~7w6*b-3oxhV+o60W*?Hj#Rgq(ut8S~I%0;VoneRa+->7VCm|2oRrau) zw07x;chib>2P;bvJ1~Rtc&*vp+FP>_SK+HmWFGQb(^(PuD?=+FmyxURLrei-1sWeX zo8W+)H~p|PMOw8V2if1urwe2P@sdUH6jqQc&(q>5 zs32F`P9gQu3ep0>u${uAIxY{7J?SFHG`_x|7vx%7W2LhoSAI+i$<&7v;i;0|L&8F3 zRY@jAaJ3D&+EX(KF_HPJk6>ZaQrS8ilL^Sx`MhF<^drlVeq^pTiR$aR$ixvDETS+D6_zefpqiM5lB_G`Fb<07LQH!q%Q%Y2D>e}oHi~-8K(p~6$m_WU ztQohF5OO(HIUc2xprw4kJ}QG`G;&RYhuPHaGR~EeIRnJN1Fo8en`~TpZn4Uw7Lq@4 zCjH!bDzuKFe;1L#tYkb>5F*sEm^@d8_Y9B-p$?XMyEWQT9%p>H=y46#=eXvtn~j4ns7FQ$Pk7sC6Z8rO&{%Q*dXiK9p{=dMbzEfn2)2iEKQK zY~fz6(Y>&U?(FGw(T{LXpGOxcIb7fT{;ezL%COr5%_~0#btTtQ4`RELnuYN|rbeRx z7fI>IFk@5}E-DN6T)VRHpPs`IR2HspqO!)@xq0QtZ;QS9AS!5aMv2Qa%f1H)0Dj>85xwI$t5f=wUlNp<;hOl?6NdrQ~4|q?DA=-IoTa# z5Gn`}_${>m$fRu-DDOcm`8%}c{1ohxKzWrRBZ)%xvaLDCH+q)vM#%oHIkDc7?^NBV z@ZE*Pcbyfra|nP}ih((-bC4%y;^q#}_zSXT#IonyU3~Xe;^G#*yO1WG?27^!rQavM zTcGgWh2O@WlhRWpX^}`$Eolxepv>XQ%8TU^;*A+{jo=qzDTFx<+5x9?NE=VGmHKE5 zy^M23j-D=ZG+>J+%1#kYSBYr4oWnL_wiaJ02RJJzE0EQ$5hf+%%^#kEP$^<#keW6S(7+?r> zR2J$tHIn~w#N$D4xquS7Pc6LXWKjs;C0aWuxc(|o5RHc3fMB7N(icEZ1YibNss;Qw zivd?nxeQ#2R}cmgSfeOqsTY``7*pn4##}BPAcR(z+%T|~fsVd`__H;J_==cTUFUt_ zJo<5X1FpJt2Of1FH$y~ShUca>mJW|@TAoE*oy3pC_f?Y3Y?on9L7j`z;Ao^_K_;A0 zYv+RmNPT)5-TmnVymWmQo5VL`hX65)nQ%H27BS(e^qoXs{O~o{ z1Yfad{K7()qK*gvJCJL@C38?;1T1F&M;0{XDha7&h-kVCb0wgT0XcAJ%7!Eje8wws z5TBd*j91EYMb2u8Tj4BFhUfrSGf&eRw*sg3bf zf&mw}{ulpMigQ2b>3ie9g+O@8QxMdB;J^Fq-5dXfO^!9U%trqx{5O;Z-|6TiIajan zUyd!TY|*W9&ngzIHRw8p|6aj7{zLp%osv}euR2#xc#W&>7P#sd;|}=m$*d!_X|ZX# z60DY3Y-9TCKuTIWiV>4FDPrqIEyG<>)4-)MFXGf2jNF_R%b!G9mL@!u5={(G@dl=35#8}1O6M` z0sno_#(yotK~`1?ExD}K8$wmoNqT;$K~88~%-$;j?d5QN0v$eyWu}p(f&ao4$QKg0 z8V?Y>wManT!JFb7y3=#{f{ckD>L&;*nn>3MgO~CRP00`j{1O@ddNrM}+y*Ou z-u@ueXed%+-adgV|a5Zx{@Zr?bHE`04XhJ#EMFE}C7T zDr9X9BWRU_|EfE7SeZ;K{}m4YYi(_?f?4WihGTNOOmR5!y4%5jom2Hy6Ro@~PDiX8 z9Q?PUz{<elJnCv75~juqaZGQW)Adz#l6;pquzd_?X@`n0I>L^p>c1cScRi352mhs_;KdTo zS|#!37p!%v@Ek~kGaJ%L&e+R5#XB=7YL_DLG`{AAs}Q#}aCzbivsWe@-v8pgJcoR! z)>tX@in5tlQX#}yjB!e+Lmt!}F%Dwe}lNAA_t{c{-+;SI>r*_uX?Er=(liFlV!LPbFV6aG*l{c#F=2j_@D z7oSjbmphb5?4HTQNY})4xQrgFgeq2>HDJFKNl>-qs!7On30caJzl$osXvGp(BN66_ zf4TTe#V?x5RrBG`|KNP-K3ahyow}iig*MA$jjbDq4uNsHhS3r6@1jJ&bHAt$w1#bo z{}X6bGLC$f!jav&l)>E!UJ(nv^uob@1(IX80WMTkxB&@~t@^97;)Vi$-9eT37qr#v zLOOyCv+!ASQ4xV+qIWal&{|8GW?2xufXiTYWDH)13wC8u6Q!tv_$y#HByqn#TY5`V zm18xeN-6Puk^p4_%ul02HsB0^c^uQDV}vPy{0NuSNXSIwD_ko4gg9cBO*L8~)iTnR zOyQkr1=UHA@TB0;!f=e0i>y#(crQ((I|t1awugUO4ql?R@P-)gDw5!G5<`Z~Y`#7h zFM#D#BN7zur3eAkj07;Xkh(PU;Yt>OB3r;i{Kkzuw911Ojf$qXG*`Vb<-tnR!G~X4 z(YoY8qRD+yUf?Z~SsGse6p;t7JXmis5$64k^&nN7@bh9d1j<~DFQYa?#xX%rgvi*< zz}ST!LmlZA&aD9M42FB%Bbf=-k;1`vcB^MGN8{DT3P%MvEoe1Bka_S;FJ+!}irHba zTq{LrpxVgw=Sih74r{=B6gh~g&g`O;R*n;t@<%7ua>Sy-&RA-Q;Bs2VLgmCR21v?M zdE4fMHlPYsGK87Rbi$hv?tDPZKEsP#S|oj!6R(X`I7n3?!veQai7r*9DY0|aG8d^k zn5$S|A=NvxqxImGaghTr_~$Ok^Si2|-F z;Bd7r!91VCou4s>l{VsLAUzPM>1+d{q0f;vqnJZt`b6Y1p<^bQ#G7u)@2r0_BFh-J zSp_sBW@!%U_8vR}XU!{$cUV&GA1aP*dmTib6V?uMt8oD~A$S-=526h=46rL3G#&R` zq2Dwe*7BOZLDPY7X*w2i>JuoqKrf)b9*kv+^+lu&7h81?g5`67QJX{h*SIyy9cX;p zJvDaJYIHjcq%lhcVyU$OeQO})#h|`U(>F7)AxM+#v$9R37!pK42Sc0jJyU!~?C?-! zH%!V7JuNn3bWnfEvt$9a9{HwVq6L9TxL4^Wys$3ELPwmy-Z+m0lB-zHlioR&f!vLk z>uRj)(#J9oq6wmi-37^x=fmi*-_-#jbRWn)k&d7U$y-v^Q0_I-(SZf*5e*J);xmdl ze0!MCqoe1`b#IX-+&N``=!2g=H7f$Rgs^f9F337HcGehIa4@Ftp#G7jo1_IUE*u@I z>&|z=Sk|n4NvOO@UZ#C|Bb4Z^OFp; ziV$rh$pi!JyDzV~V>431<256QkyN>H;SoLRd8}1W`R?dic7SzJ)}-dL*M4zK!%W`{ z-%Q^u-+AlMxF|;w-U});yijT3UfzQt;_uIJ8L)P-Qi4r3VZ06On%DuEAJ@dY6hPc#kH=vVRuVj~VrNWNno$(O@w7QlK9 z^}K$-a<3XK8P#zX2Q{fbi@m_}!qNju=Go#-`Xqi8M!WUBCuj(lbpH{-KLnYlC1bNLKas53qz^rnKiY*Rd4;HT>F9=q zwk9dOcP#o^^kphhGD>)-CR7Ko_HId5rAb1>K+J6DL!-PJ!ayVzN1-iYcUPkv1(v1A z+_gses7ToUG|ECHVUbRQWl(C{EGruTmT;|`78x+$9o+2unOLEnyNiiL9Z&VP_+GV zEBOMtAWDN`EW&CI+vnU3!T#M{eejb1L|!HI!GOML=lbBOSnP>DIDRy~o_&~S$)%zU zHpy`Xkyl$h(I~>SNzYr~^MlN>Z)kOq7jYSo7)WKE-B zJ)X|b**qfA($1sdk+yO1bK>p_E!2!UkqE5b%i!ar@Jb4;9F_|!e=p`k&Wo7AF^YDj z7vey7mbDJvZ@^MZ>4lJ5mR|U!(hIlZtPAwQ%TXI-%cB@$)}4wiD*dG%dSM1gMY%w| zkQ$UwW<(Qwg-x8sccvExC$;eVeEqD5yBxg`D`MVN->(GIVj~XOm0ozdC1-a}ez{ww ziUd%~S4w<|5@ODJd1Ni$i~Xz5GmA6KxI0w}?^LuNS`B&)rw`%E6*Cv+#J_}W3F>Ph z-fmD*#(jz8VHa_vh`25;b-zSu$nq-k7_lV`s`L{W8J>|pQ6GFur(l!%70#dXMM&OMLB3r7m~@E8HTsF zS{mNpR3t~kyH7}@zS-48Wb-p5c%|v=GCO`2t`e&w26^eJoRAQ(gsk;Ch8Fe75Qxpek?T@D<=f++U1K7=oUM zK8?JCY={%;p9Es#t0M2F0AZ|Di3kp^XXILungRXAK*~!2!jv!rC2rVd*AJjszDtW> zqljOoI-Vc;@GO}mx}HhdY2Wj!P5KDyCDHeGcE}5zcmR76nh;zZ@`8IJJ8u&HF9)Gi zFJkK^=|=bO`;b>tY5?EtO4*{NysV|XrVe?%>!}vJET8@TJ_Zy;3rT#O z0aL+xObwV4Cd2&GQ+cGwNLXPJChQ_i2#mN3C}AB@<^)pMNbVw1NKDbxp8HaZjbDrJ zv3Zu9L#d*##S;2Jz|H^=aVdXKyznoU+~GMcYN5PFNCY~OvOc9_FlBQPpP#|H83(~2 zA3YB}k5!B&kRk8m$Kh!u8OH>P6|P0)7Vb+4F^rCykdoj+HObg;;R%`%CS2ILZ~~Xl zCT`kq+%`A~-{hVP<@qpFQ|27|e*GtK9aq^aJ&;4|UTef0v)nIo5_(>>5|OZ9kQ|_c z-C(`zspb(o<99JP#vit{tqZJpW8;NjH>fcXfqTP;eAw4qQlCre5p$4fMxlM z4$1lys6V_oOAZ&dg>e60lUJDZ@mZVKd&sNMq_$niD}LS=+T9N*uWtTf<<%4Y$}8Fw zC*&1KFy2fn@B(pxnBWp2BuZ4T_tVVk2xiLM`s=z4{sYbQrdxk+RT zuAe%BOLjag!DZcV3EWS! zF?}g_UqPxUp%zo}#eHLs0SbJ zcR&t%>H$#M07&nKT9>Nw&Hw5IX>;Fd-TjtYw^>E9rhs@YDU*cTQK`fCPeiFBh?uO? zeT1fS{rlfipS!Lf`FIQEqxwh^`sjbOd>oIV-=9h5_ovV8?os^jR-c=q^tro}<>O0z z$;B^~oDq9Wu6N}-OV-9vfBM`@Q0WG&&v{Tl`FE$!@%RelxY$(=T%YTqQ$y-)oD7ix z5eWbUZqKdYUqLk3-%To}kb>zYv~sHEw$cwJ@OmqUfo%!D;K#Y#Uq{yEB1 z%Het?LlY1n>@l$1VDU*1U^-JmKSb4bV>h@_$-!~Y99TmAo!{44yy3^lt!{qOxqNmh))Ph2-v=ENJ4P0t>T9qAz7e=r2A0G+}36{qcTd_BqoOvV6z6@ zCH<=j(x${7u~IT+PX>0nu<~M^1VJL z)IT?08g*~CPsirQ=jM}m)xL+X9!hw3q26__?>yhEb=dH*zt4sAXTm@+pmze?315mV zrp5~Mx)*vYCT5lG8R&jS>uyHiwH<-j!u`zhta~vJHDM~px@Uo!+1E{ONradFF{j{=in&HR2 z0_DpQRLes9Dex2&*dFuM=c4KQ>xcvk#rJsOuFJe+uN2f}Lt)IQz#|H~`pO~t>!$xl zDK39yCvZp%@lOBJ6i@Usyw@V-%Uz!6AK{gJs?90GQ(ToW5xfCGL1S9=;+ab;-c0c? zUi=kgnXh8oH-*EV^jFDK(73cZXw0k)>33w|rDn{;WBKx+{um8?H6v858FFzPQ9$`F zXy-{64hn|~_1_e$$VLrH@#~jgz>)&SAE<|stM>NiZ4BzCrb#T_U~r)h6UCV=DANoY z=qaNdma*^8T<7`cO{|%wKO1>t$Qs48AN%zVGw;PzR%yo+h5F}fkiw;JSvmdW`@mb~ z^uyWKna#e=$QO8%<%#k;r~bviW6p((LrZ-XZ+wHcr}&3G=dY4b^ed{-j8w}*`kibq znt;a;sIi#T@I+~$4I(rr6Ja|d3K4>Z`ZXj1-abYm6zbQ42%+YHal1`~j64jNYe)ki z^p7bT0DtYHMSaoW3%}lF{`iG{XaGKI27lF5RDF%QR%mF7`CGS(Js-Wfk9z;ouJ?2Uumj(Wf_<<@i`fp9!SKkvh@}wA~I@e|-&VHDc{luteeGBz(3ia*g<2#L{Z_wA8cl8$q<9Wic z6jyu?usi%?;op$};dyL4x)amdcSe9dyC$z&s{6@){WKer%@aKo$6|bSU^aZlIW`X! zH_EEa*Dt29YNC+b7eX=^yOnP&`6)+llz^(-PY%^k9xCB$P!8JyczG}usx{YL0g8Mi zhr=pRialRh^1cZ29w}-mvh^|ud6Vrav1%_y&pUkDNg zA`8=8VQ-<1Jd^Up`<77bWPEoRHixKF2)D2+qCf()niXX!uJ$LbiQf7V`bFN)Hh<*@VUMq3iHH-waqmR*bPy^62y9YA1%F-}GM3b!U7^a2 zut0>z*XhG_aJ*0V6ZX^<9;WmP3eOC?{LWE^ZfHRifE`U zw(wU{@w3_mDwWpJ+sQgEYVsEd#;7 zeIsl|r6;|MG-E#vpSIR#wmt?@p^4>fBtK~%(ElCY(^qlNb~L?-@gm#z@LWF(C#|)T zO&k1O!@9FyEXK^{>#Ssy)bP~0qmc#1F0A+!`7nL938(oM-^w_hYg5a%R6LR8tCGj| z1xev+E1vM$;TIs!Zp8PNJ?L8;W6Fw+X}&7)shYUUhWRSw+1vgT)~qbIVk7dEp!RI1 zP6zCyP8IijgPgxc+!PF3Z+JhPzc7Cj8|>28L6h)rMcet}BVWa86A_`y9FDom%DNyt zE@0fs152P^c*KSik98$Ir*1eg55)Y)9C5JdIsR58 zvmksxUMK3Dx5-?ir!c{BNMJ=|y5hMWBu9-LdI&|dO{r@+Y0$>ry;{>D#NlL1wMZr3RO`5=20QSrTa=# z!+QprDw&9X4lhBm;(5@3r#|)u+L#CNFs((4EeK38{Rp7i8Ah6b5##YQt3T6FXyoyZ zHLrl9A6)?_pf~$gwujA;;AgJt9p9lP2a*B)75)*L=nnFbkE^%GrDgXA+4WA9dY2vN5IeQZ&H5e@ zFjkYA=I{2BK0d&_8XmA;9of+0!S+GnLHas7=1S>{aH_tpePrGybR^R+MIGk)^jld` zL~LW5s}m8~-wflQGY}6!#4MKm%bpP#W<`|w!c%!PLPADm142VatQkMnu*~#Ce}|`l z@d#&>KrHqUp0voe4$en&eV&&pYY>pP2{l^|4{P`!ej%^^hMz|ZkVs;2V2dXW9?#fC ze1V@L`6$Ltk=TG>AUmB!rHf zXQw1r;qVI5v5W@0{i z9_#$7Qh~J_V&-LYKZm8txyoN&kVy|EKYWm=lJ!__fYP9>X zw8dKKq%=?T3Pkcny1({BUst}bJkd({0wtS$G5=eUF7K5ifNC_Fhxi6JJ=dj`00B5D zvwaxK86SQ})6dNG#ZH8<9_G28CfRu3oxMH_<2YcXW@`otJu@?449~_+1vEVT8pmjQ zULca1ofcmWCT29l>(h%;d&LUqrD*|UN_Noj1ob@w#&~400a=XC_C>a*mF*KOfyvM{ z$UE^OZ_`Q+6o~1_{8ZP%^98@qjGt)TYp3dA7vfGqCQZmhvOP@?y1XG{L^iA^p)!rg z4jBiWrq6I?CFgmXaf!=&+L4#Ic;YTI(7hhtwtG5IGCx(Dym`T&Wg-LlQVKn%b%jd0 zVOH}6YLym$1NBHy01erJ0?BnLfwkC4nTjYJl{-%lB?}twK{@-imDZUb(lvrSZK(20xF(RwbJP`ZO7i z+sB7Zq{nbPy*siU!*M@Jv%yF2#BcN#pU%9mk_$t)MX^gjy$$ z5rAeGkXp&X$f~~qc?|~SY_VUr$75!%@i^o(y)YBwaX7|fBgW%!jK_@A^s_RvlFOQE zEXeduJ#s;&j7P1z3AP~5hDuIK4NPva#$)8m6whg`TFF+tdKpzpi@$3R76VG;w4U5! z5g~xV%|AD4_4x4i&>M;|pPV4W2c7`*a-f9WtohZBKR> zs$A>}LWto@-4F<&oeX@N7q zMI;f!tO0Ov9fn+OoK|$seusreyLEk&x67^kSYNQwK{bnLYXXu^#hGpyYLOcKfNwk7Z`I z`z)Wg{W!d2HQJBv-4PZW-GTdf+cUsAsb#`CC9j8Km#jxNj}HRX0DnC|Mvi=gHR2lh z3?W>kYe;xRq-$u{gSLi;MY{F~yCYrhvY`T0>j2EaNPwATt&BMUT>%{n0-o&D*DGm{ zVz$UPQ_3(36h&E$co^_N@7gOiD#UWp-0DS#0yBzFL%9Nw^;Lpot{KzX@)|@bz{(m@ zp|RhnJ^3y2ei2wzAg+M08AL1a8>(N=fYX|l)Ng^DhhR^G{Ihkg*C2F5C5;sD!E8wQ zeFJ)Gb`J?(m<Z!jCIbyBm*wo30R!%%_VHA2KZ@=tz~w^6iTDqagA=P$H2 zlq$eL$O!sZBlNFaBq>K`)W6CxmMQOZA@7rmr@YV2O3wN;V@59YuNk?P{XAH)b5l(zgvP8#;fX&Ahg+@I+>EjD}|yG{iA z&_EM71+{{R!c8-gE{tarPmwMR=dUGr4-R9DrhO<+F$QM(}#`N0hV+i9rR9{FmYh=m{!M)Me{`< z!k8>DX-uob#8Dfshpd!(^i_9D5cwgKgi`~g$Z2c)jY`3tgfB+&Cybx$a+U3AxL4ma z*(JHvk<6OzUcdlgK^|z$EicXK*4=+VNc$d!`)2$$xx4a^5`XO*)qb)ypA|t4Q)z@i z!L$XPv%JMeSm@F=pZ>MqxQ?rLK&M0!fb4R<^Q~ewx*+}#gdG4b(OVA;Wj;@6`g2<3 z4YkPkga^&_Y;K5b^E_{QRyCCEiS2rA@N?$FV~4tYp86$3BqpQ8Cp@P#Y9+whD|0{M z?rWuXlN=+e5MShFBPY^Gw{=e{b5Xigps zY{ytaKCK^ws`-vw;z9zoCSfWN_WBW|_3LY1nROq2p+B2$q{`ds>%5MbYC-rg%;P77 z^8&^a1!SV?8+-&Zo#)gIzC6zM^TK<;{bkvZka2GT$}wbfMUQa@8gwVZ2z7yTkbcK} z30uOxDAZ#M7&fyaXvmgIP#<~uv49~Bi51jGU5qDeXzS@0!4s-{E35_eHwMx#2jmQO ztt>$EwMbV%{oONPM2Ehkc}{HBN}e-AS?ILIONiQcHewWaA|C1wnCE@^7In|T8!X<{ z1NNfvut`01%A56g2t?Lo;Q_B|;G%Ax=&3+m*Px$J)*Hb16%QDzWuqz7VeSjPOfFLT zWFRe=4z386bfK$ROmOn{U+)z#*33s`%-A7AUG3w7`gS{D0Rk-lnk$C_WK2MPGL#cjzDNYse{dM`t4>oEzm>ga~7?)qSAE$n;c_LW!o| zjVEdP<-ooR^=`ZMR@?I$47B@T7zzx$-NlFX+wNNr?$z!n0{U;g{QAu>R z4^l*d&-X`)eITI*PKs$``X$BUQN2iU6$1Jv#Wf&QpQJ!@77HmlTe5pm0-9jAO$jy_ zsQXzzo$T6Bc|KkYGh4s9r`soLpl|YZE>Nb><9`wsGlhCNmLg9U>X%|?Z~ckJl)pAa zAz(_Nbg$u{FB=XK-QYhK7~kjZSt~stBA~to-@j6l@EA5aeZZC*Iy;F02xnHz2U@sC#r$Jj;o+12$g(}rqrlDnXm@x|qn@RhW3fIZvK09`)pNrYsBxiD zUYEDE(73b~0*n#~H!*oCX@Ucxp8^)|EyNIwBQIoJ$3ds*>3bR6A#ryv#=ZwWD;G`0 zTc9WqARm%HB3}>kR6YzJ5>Aw#HCaqp*&QvZrE+MJ~@aT*2ebJJjiTP z0i2x}kYP_N*n@PN58$QGSi`nfb}t+PVZHo|dyw&x2BZ%ew>9GjOif}zjOlnsCjs^7UBKR~MQe2|Y-cM_>4HhrB9QeQ`q+UFTt!F>2jm>R!@X&vIW ziQ6JBpz3%**&E<6fvUH?D;sk1(EgkMf{H-3s#Q`hQ1Wz0S47fyNwIECTaP)<++1j^UuEn7)OzRUw z4jzh3`y2dMAY~qQQ%A0^qP{copZEa`jLO1hN0xd}0$~GSV+Jx?TY3N_shUTob(qf# zhiv)>KAppY&?%VAtytKBH*5Je2C%!&w>R_c)i7ibl}(F1!ogfvC3$mnVC-Uqm|HIu z$UQuj>R`aAvK4@|4Zd7a5tG881RUd9EHi!-o9cIRxec=gW2F%2t~XKOVuaNfViGp@ z-hNMa`vZMe?Hn{E{tBdyrb}k#*`M8moWw7Q^)&N&Fny9NkNa3yB>yjCp$~?~*B1e8 z#fDy!`}YjMpLuf^^3dH+ehi9Z4*|QAP43^?FUzp%g~ZC+n74J&%9;~ibfusQIADi9 z^mT)$8@;|oT`%EjL7Qfb{OG#Lt~FtBf)-m%)eK|s1ym>gR3{o&jFQa>pRzEVPuS#% z4q+yB6{rJr!P*a@2klxBTn`z(gCgjAO!m!HCYs&|6;xBhc@xI#Wlzra6hjN?i<;!Nrb1)U-ROWq-MylcQS;jlXP54y88Fc$KTgbRYh?}(DfW4)cY4lrNV0rLZ8h(O$ zC9ew!>ak3Y1J6HOr^Zt6Am;>QqmJOuk~=@~o!W6#*qZJx37p7V??ZuE?u z{&&yVqPsj}wVOO+3l7#jrmkO!u4hZ}H(adFb$a{`D0m)m0$My2D76i3vV`hynOBANaTM`I{e- zcwOC|=ra&D;Pu<=2s+lhVDyH<$#vv(PxQnzm#e!Gz?gT@7sBIjqk!{!7jT-LKA;Nt zty2Ka5KzDbJ3@|Cz#_^2GqArWx(p(-M;UL(l4VWt>&ro-Ef_&JcS4JhzbH=;=Fsn z79;PT04sryz=BQgnTW?faP`lOX{+i#M{XiK_2*EHYfw?ER#*suuP$Orj%Q2_PyqSq z1jy+IYjF!1UDhINc!F`Ek`ExBr>%m%(lyl>|ACi+ZYAku%*3YRmVs#d7afQ}H@G!Y zUW2=*^0AI+^4CB*VOaUSP5!%c;e}4!!NH^ZmlN{E(hUX=AXkkUf}jiy%r50jZDm=_JMYpD`DFamd>zDgu$Nz|C%h;%ozFgqRB36 zjd8#Tz8!FLuR+n;;B{-74?%yFtGRYo=#{9JQ!G2h`8lw)DKv)O!6Lqj zO5QrLJNxZ6D6t4f!>Q?|LU2My8)AjPXcl1kfB=I<`-A9+8Y^G5vhGnxwpdvmY)-qM zr`78|9JKwhnVMssd!GYc%`y8Y&oQOojRDLtv-jKC9K%e0h&kpjndpDLvIDRfyW>pF z5Wh6h)=XHJ4G?XIe2|!K)^&)O`zk)!rDh$K4wDaKs~O65wD~@XWVl~MG?9jtpFkgi zcr!+my`nVG6e~?d(uM5_k`7HKDXTXClJ2$d&PXb4`~jxz>F8MNki#j8HnB%owh+a) zVTj9o3GKA!?W-XzcZh{~`%mU%7a|{R-cOfBiH61 zw~%A2JM1;ThG50ia3})!2b2HsuzFggnR)M_*eMuF=E_!?3-_xJ^64+?X=o(Bp&W^@ z;F*M&M)@jp5qdmQ-r)*op*AnzCHcjz857$F<#j`wHp;rpueDTH`$QR*N6?IS4E6c& zA%=fd{_oMB;gR{b@n^4m9xVzF$-f0ZWod@r^zFGJyj;e#NEqZi9Aed+xpt1o?)p^L z?YuZBfmb>9#A23%BLn*5#H02RG5n6X1>_3CLUSz}co37dZk7gm5CKByfFDB$Jt8zM z?=oLmJ&06+vJ5SrmGxBK0$)A!6PM{hdGQS!qen_`(Q=v_>=4>e$o7k&c?yveHN!+ry$x;H7J}8_z^*6ADH9z9_ore$pwV5 zoLUz~#^p?o)*DNyO2wz)f^em0aUw_OE`A4fFsek)TJs^t%er_jA|-P8vC1K6)JYEG z>>OZcj`UNL(l11MaB6%QqV<sdz&_IbBsmBU~dXmDAp zPwai#2mqt$myKf6la#8TGk`rYO=PWm$=hhVC{5u&LnejGf6XX7WQ!1vOwsYcK_DiNvxkxs{sjGDp3e5L}HMVAg`e zi3Y(Hf0KeMHT!7uBa+2%w<17EuBmKEB!9_)=vG|!gr_(iMPB_qUmZ2e0m%8oynWCs zem1f)syK}F^sf0VGe4Upg@*@?HlBtk%6AAbo^dhL&3 zz0yV|(PLzNEK~~AK+twJ5S|^tKmdQilxSv${w0<^``qV6H-sZ{wqV*``gaO+d z=(56Ud7Y2)HFR4O=RJmkjaxEVEzwI~u-I6QSbrOvl_ z@P73-g499_(f%*MH;MUv5kLZrn=cQDe3^FTg|IT|&VIGH>ONOJ#drHp>M6e4e_T)T z-JVlV@!dYUekp$rsQ(>*_NnK=-1g!19BJ+D`fB`0F%X&EAF~kDW^Ns(rR28ZA}I6p z-hu1}%N_|=|K(5LAAMPNJo@eWZ4lwVMT-FK>vOPc{rFU4%G;vs4@V|}?#Ba>uiOjX z!y2IjLgFAKL@m&PJRoLW+}?9NT8sBMT_ESoE;W6tnHRH$jA{$XrZ^}%v!zgfKJum8 z6MdU2u1NlxOw_0__SjmaP8M5#W;p)LJ26}^A~v_#Vyg-h}X^@i(Jm zF(HI-lF6A3S++GB`awxgTY{4Rcr!5@I?*upx4y#J&<`SRBUudh69`a5>{O6x#Rwtd zr+A9fF{)(>8#&?EjF>;0uQ`R)$P~sHN+0A>~Lu@5Azw5Z(0*;LvV(Lzw4_t*Sxc;~?2;?U#S% zio_Y#dty25iJpxb_Z-&ogHed$n%};f;F<$^48(zP&E9D{zc$n1;V%158!je=O0{ zHhnX#cSPlB z0xPQNkK7Ra%H97p2`IWCi@^aJH7cDFo@94Sw?J}6J4Jo0qM3OpIEfWUxrem5k>}9A1Si)OW0{CcC?5rI>M~y*G8D>}C%TPq zO075C95w5$H%)k`uaGy-EZ*<A|A#l*`Bzc9YI4u9BTQ%hTk|%mogsy1KL*2~?sZbemr}+XKtVTOf?*?c(tywo zY^P`I;6BK;@(?r}cwn=!`YDnpcI$jhp5`G>6G#Yqc*gIbqn5k!w#F+Mk*E4S^*kp< z*rjYgl`3zm9nU-ro5JnWVFfFwdYw7&Axx)mWXL}nzD#OUUxFDeo=$Z zQ--=!8Rk>qMO2TC9SFD`ONE|L(k#_zz)`#X_cymZpz88lP#u$W?l1TUxY+aq|H9^4Ej?5J1JCihuzR(uqRf_X2!7ej^^ zfIm}vMHq6?i#Ed?21E-CGv1DH_-Dxs^KazmiJrs_kRA+^*Z>hDA@e54S~TiW8f6W5 zv@Jtd?4YakJKC5%8E3%R=kHebY9gKVQeq zE#>gTm;){yqhFdRlPQsA)MZ18%e)>fwx`r1w{XVnJ1%C{;PcoGO*z^;i$pTg^YN&5 zLyuJ2&Zon`WS(dap5k;AN#A)PLDC-E$sMTD0C@k3?zA1b#33m&`5|e~vASC3;D<0($Z?uVr%(hraGb)p{_ zqenly`gEcnGQbL4XhfOK?b4m2PFLBKOEyU+Cg})|9|OHlyZ{UA+o0Q!~xI8fBmA5o;PF-6#3$p;h~W) z=6NdD;8U-`*k7qJ#UF-0`Mij=zUrXh`p!321P*P(xlHJH`b-mxHv*UdmR~Zn-=T0= zX93KBg98Qarn1s$6F&9A-KU$d@myWx{GS9`Yoyxm-Y=g{DHLq}qJ z=UuT*;015jeF|1JP$M~bf#YmOx!OKSVA`$bY(&D=OajyHYikC@a#sekN~_r>vIE!Y z0L&l20fC#)cQ_CbnEcwW(@{Cr>zR*Hdwk3mt=VEW;vqQr&ES!^|1DAVC($4&?cuuw zv)-`{R`*6ZMJc>m-(KGczc3$WJiyNJ)U7?v*A`d{Yq2##Ut!w`rSjIHOWU}-#<46- z4|Rk}I?Mweqajk4GDJ$pgHK-%lsC2}r2ss{9jeSfN=F_+JF)#Dle^3I76Zt`APRjr zP$LR;{a928i!|(KZNVIg^tVZR1Nyg#h7+*J#D)Q=B0Bks4mR80fQ_6zhSA2hlAq#= zl=D!=@$eb$Kb&V<1l<51f)KV?h1nKCS6VO3d!NK$g%+1=5p;6~K>Syqg;?U=Zj<|D zMCKpx*#@)BN|591^!^Sptt$%m!JP!SOvvnbn)CMOX6sYPM0R>VT&Z??d1-+$A(tgQ ziAd6-Pe3J7=txos-z|D8oaSr7o)-SVntj`SVoUuR@FT>>TeBd@WJ~=4=F{YU76JTI zd+24V;Dgm3`Y+X!m&K(Tles@`o&*7Fe)t3`BYWsWL0sHmCwu4EId1^{L$UBrQUV@- zr%a?c&ywnj--EKb?e_z4)mHOhN?PWwtLfs|cc z1k>6zM4ce4L^7GLwZlkabreB3^cfw;2=~7ZWP}IphVjsBdfAXb_tV#I3lE0HKSUqD z_i{AwgcB>KWVymTZKX|Kx8P&gIu4=?THwY}16UcJ{RbcbdXwSy|H5X1KUe+FZU0JIP3Lv`DyC$+!Ut%RKP?}LWk=VEi&GD) zNMTCs`bEllEiS2!lT-F;74fD zdCz}=zVbvb!&97&y;)Ut4kPBT;A`57S94tk<-8E#5>YAg*79saBVt?o58KHVqR3}5 z?unf7Dz_4U*#gHtPbvrY)P96zI%Mrf1oW?|F!}S|!t!MeiszQZ`?7&hhbL}H;0aq2 z595hj5_mGw@5h54s(_O4XGu~P#fC$T#P{D2G}7-7Z|IhwG4c=Mowh7!jQYKJXWosH zZh;pX+Jo@kq`WJP^c&&RL#vF{kE0L(!Q6L%5A?bVGEiS#hX->p+G~in678<6MOe}< zgls`zm_Ve^O&03%6E~1Dh7m6u4z^%>FQt8e>)NDRhf0 zcK!$tCmcB+gG~#e&@>Ei?pO$A%)g^glel(3n-;6lgg)SXsDFR{oxN$X4~mZCI#9~L z2S4k@QA-&>j{4m?;oPTI*_>OfHZ88TBm5dGM6#^nC^f$=;-*FNPTCHqHePw$Zj|g> z4D6WuyJjD)YCl;KM>Z%1md_vi$_K_r1L@Sk@1@~Z%dUm{qh}RPFgUIq`7&2-Sc^}4 zlgkAfzxAD zgYl?H`Zf$FF!Wb;2ua_-Q=E=wtfoLVuf7p`AMe5-Cn27074ZbogdUVQ`=U4F#ZY&U z&xOnno(#F|k?)hkfgC61lwLo?! z8hUK=KWWZGi|AKL79)KF0u=M)L)}HEFZfWH=XgBD>Dc)AF+oPmpUKxe6L7n1cQ8f| zefkRKXKi;pu!fXh7axg8sxNZt`ss@S>TPvz^wHN&Uoev&VptCXM*y@ZH09XivFxP2 zxE2ky1>}!7vaP;wqM5Gf;6sKeN#XVD{FP`J; zL|-sQkG^C;R-^ggc!(hPqadh)q;EbojEFst-u;Kfx*9fkVHC*c+I-b8v7eUF6t z0aB#@iOKYkS!j&>Ba`XVIt=&i@ag^HbxS zd%cSLIO0ZC+@}zCk&62Q&I7@x`(M$38}ETS&((+EBf|8)HCNw**O9|(&Q%nF_x-tg z3YEV z((t_noGF$(&_==?INr`8XW2z2H}!U8W4KR{=qQ2lj<@3_H}!Ifx1Yqbn!2wYFS)4! ziT9B|si~jfVTY!UmUvAPk4-($82OBfmyz65^NV`xKwXpjYP?4kfrK}N)A(71OBc_9 zOwPXo;T$zybINssj?YE_{|xt&H=$@?BD@2y$-NR!{8K=w_3;UOE6NXn3*BqYm{ixJ zd*VF~`SObxUFHq{kXUD_Y{(ewz5(pTYRF=c9{i#1Q_wp+f1BA6X-k11^y$y* zANv+PS#gNV)!4RYWZNL0-cgv>+PH0~FVcpsosSFiUiLM%4e>>`rTO$v{CTau#%-y- z$Qxc?;~Q!IyqEoXTRz8WffQG`2>H0GfIxA872>#(B6if>27?~Y*r>b3`fad&Yw@c^ z%!0Blp1;Xq;?Bz9P(}*EXGKCC1?{K#7QNYhEqUNS%`Y`Fr=uQhlIr;zo80n$$$J;@ zsH&?CcybvM2y&u=;ss50R4iUnLNx;F9GQVLI?-4~X{(j5C}LY%)EPy~W#UX^&Kw4? zVnquYFI3uU8(V~c2s3~rfIM!GgSV5e$VqiKhHzX z?8|!hUTd$t_I+cq-HOr98L7D*@t+R z=vPH0(dhodlJ#Ou%mU3VX%wUJVrRhyu_WT(WsmOaCzeD@u+>1fued)`vF^BL1l>HS zFSM)oRcXuZbj<``smT{nc+bW8^%5a)t`&-yUIo9Gt}f_a35QDHJ``Y5eTWaJ;mMc4 zy)?b0oG=moXf^>GK?+TtA{_dPNOGQH9fy$B)lgZw)p`E{R_T7g!s$g?;Qko%refG( z>%!8EFmnK;pkDZDc@{^yu189|Bz*Tu=-C(q(gSd%I4neU!&muBA@B%1SJQ<=nmxmW z)(`g#$9)W-_*Y(n0RM$H3%f=?!gV&H;w+|`jHR3eUB3f3APd3oLvaWySnBzEG@;zIH(BtMA5l4vBqV)82{ zKjZ&tAMap&iSew*X zUtgUSYnC4C3W`Mr68CY%;Mw79COhF$?8Wk0@2HfuiAWXeYuO0b>Ifan$*fxEsu8f` z7+}Z@f-MO*eq+_J_K$Gz#h&G0kCMR0Ge)ug8bqmxY@L9wzq4Q(o*=P~$(d4EP3e3? z1WJW#Og!>5Tj1I^)FcC25n@(98?B#Tr8YBc0&q7C+Nury)~=dE2SMT~6T_|@{zKwJ zeWVE+Qnq&@5WQG)s10F4?Gk`v*)zET`FsvA8IqR}h0Eu&2A0TlEyA^$G?KV^&3aEZ zl}o4k2dI)~tsbqrpCfm_)njz`9Jv3Lm%N{qgKKd7?N>1@a_bR(t46rd(Ed!K=5OWc z-2B}@ctcl{HQ-!ctwuj*^$ohu#i~!~YNzgV27HF@#D<4!I*6q!|8^zuOilTH)43`C zBRuF|0EaKE*u~G8!<6n&nGwih20w+TL1K zyHN`?{MJ+>j$t|FYxAqr8wn>md*6|7q6`Vl z+GdpOUbIWrQmBEyv!5{YFbYDu+r5r%q=jCUlU`MtKs^g6=#{Dua#U(CsDrz<3C~>t z?AYc0bA~ALo+Jv(?5wazD?j0YcdDskgA|Pwy6_$eskYlm5tgAU3f6h72Q>MgX}IXn>Yr42cJi#>B<)TF)fCBI*+#)@|e$zTCY~_ zcvFw^QHxWTOt>q!%09$!5f-`JxZ)B+mQGe9k%OL_*V1vH>%fLcJ`uJ4gXx`1Lm!ZHdd%E9IZ zv~4l8IFfH{W&+FZi`nrk3;o%Wqe67b`-wjB<6 zvqRp}@qW!d3nYo@5BVUC@4;WqE*iVZ2js6Y&M(2_05GGU_paGZ5|1W|93^X_$wEg- z6cYudXuV6;M!za9NI5V;;BU2Ko}{0nq|sRt#q0(N9J2%%H8iVB)rP02#n3I--MEm% z1Q8x&5s#eQ(a0h`J$SN|S{phMS3*&suuKo}?pS0z#l52iL>}E$T5?c6P_w}T7CY91#-a>5f9ME{;5=~d zCndONa2jUMaetz^>%67WS%)YVc~Cy$#KpQrDMx5ghT^=+*}5Es4#jZ^tKRLYIL_c* zbltNvbUuY=Dh@^oI%^d#F2eJei%D-tfABO7viIS%dU*%>h|}tw@=>wlJ^!wJhn#TA zaephWK93bg6NOGWfl|wN%3p{jO(+k{S?$RaWlUe~DG*CGi2l#Y5HnBQ`lVR%wo_g& zmb@d%AB*xwVstO!epV`?Gv?oeS54Zlc7*#sNemN=v*Msr-tDY7AV!k~njG=&yR+i! zRUQn9Mul&_81eQ+92E!Af1OtUop)Jzd*M;_{Ane)2N4adqvT++mwK_Sv!nw^uagRW z_$vKHh3LeFQ~3i-%$3w^p-P~5=Zh7c(Y?K)bww3jV6srGI3z|tD;6uh6)TQ*tmP@X z>ua{q4BZ=~$+$^Ko1hz{RgyvV1b$&)kXA_s&4pX?C)Ei$O1ZuE3;eZve&Vm{v?tv) z`>59a*JzlY>s*~ZE$5WiIOMe=>LAs`-Bc6Ri8(R)xjr+O?4Fr(lx)Y;oTKD@ZEns{ z0_pJNoU^3a&y#b`lC6%CZDPqr%mQ}G^q2>28^P=v?Mda!LDfl9+~|qRYrLpUi5lwo zaP@p$tDd;PACKKEE1V*BM7V;U89W91g7pe|*cj&Bv%XhakAIC?B0K96BFXq{w%528 z+^$&HT!IOTRG!>xdWB+L&W?OMNHhIB#rh9+709EDr=NE+H#ltXQs%;X*n@sV_DISn+vrVZ|me_o#mlV}bQ6-nM(gp=b8$ZuRV=f}7 zb}0c{j2#}rUSONgF_zfs@Fm*uL_3LS7jwuwTRpx+ixfSS&H`Hlhb*y0@WsnjHXpuj zc^;=mlud9`s?F@bKudjzmev9rb&!d!4qqrqxv*?XKG9Q(a90<)%!B%-L+C}@HYp5v;C;wPXOuTe}=DQ+f;TZm$^MlnUB7)KQ2 zLE+OVf-1!?iQ-P8n5$9D*C=q$_Oi*7KvAbrELJHd6UF^RQLj-nXcQizcn}m3jiO1V zm;(Q~J{ByBL?dcZiRM453c5akFGyn=X`D$L9#cc-1~uw7jk;5#o~u#+L8T_U&4q-o zu&iO8Mon{|lwrCpn*=|QzQVHkq~{K${uPzDOd}qQFRpy#u(>a3q|{O1GNZ3Dzm7xe z>8%}P+OAPbOi4Atq0Gg8Qckp5qa3GF)~l3ntCZt4%1KN~>I=$s8s%h-a*9eB;n4bz z@IjhBjWWoTRC_@AE`6vhHAf$~uj5F;h|v0OcNyvR^TK_FR zRIVCj6H{^(QRaT5Q8sIoEh;5fB&EJD3W|zVql`0UF_oS&w~z}Hbxxz~R4FYST2D7# zfs!6?;3CCWX&9(d_SYy&IS>U(UuAx&N=b{jpe)lU2Q%ehmC~kBmTQ#sWDF?FRLYSm zrCpU!|;8DSx9<)@hWBnR1d!d8bBMuTeIrl;c&(sVZeeqikZzDJrE$qiohF zTU5%)D&;JdGNw_+nKGzS1~kexjj~gv^r@5!R7$m@0y|nrF{ ziZ7KTJLlO3lQUo|#|N`x0o!6k$B&h^zv2g`{pQ(TQGYD3{T)B3@vFxdB$X5O(jFdHOR$k$P(M2VjzWdtDv*`yNAv$Y|BAv-z75?iwx zvcz^69>`@2+<=VX!;s&?n{(O41oLchgb-w#N;uDEL8WHMV!f8DAxmt1-~mVrCc^<) zj1NQhg*QX?V}g0MQiKrXKzxA&4+JpeK#sA*R;Gq5v7HVNKn{i*kmdL=tGE#uA&PhAgrD5FUW6h8vLM@L|Y{;LVViFu^?Ac!Ut-B$aTU ztsDUiS;;Y$*e0tXOKij80mvzE1JZ{NLym+uLte!M=sF>UAm^%t^SGUHqOV2oLQ(~p zPXSQ#Y89{!P5>^(M}(TY2@h&6X>j%MC%6WtnrFKc{)9H3!_jkN|0TBD;70bE-~?JT zK7=+7zJ%uC*z;^H@F%nwQ$ge5PiQp!q`bx1e~E1p+(2uC6KI`G1+BnBE>RcbOE2HL z(0fIHmmb5!lY|4S@T-haN)b+}2UL`Sn$yRL&9hDAFRB@Tm)Pd1(aN-FbK#^s&%&4V zeK7nf)pC5Pq6e95f$b#@M~4jl$g7=$(fwuefNcT3$h*YU^K8}l66$=Wo@ZOa)C+9m zIDCnX4kVBy>N$Lg?G+*q*d{R<%oaIU+9q@CdA2F+z0$UhW1~*uOL_Eh_!3(XUqV~S z;pqAjdB8T8$pW@_$%(vh?0L32_C~33?0L4g@g=my91eqsFQGMY_!8S5B8Np}GK>Pq z3B$;-(Vb@Rm9~#KHp(1dLTl!5bgS_tv~M_k2{+_Gi!oWi_JxWT=h!eV?7h+!*U$>N znOI=!Ww?rPW6~miUpi@OFg_Fv1AbYR0_2<|y3L07&hcB@W#+UNe zS3@ht7ii^77O>gKxzbk2u~DZvpbhbF*M^Z zbQ52YEXD_~$SN<{DmjgpZ1wPoPY?45GlJh4<4+8%h3@%K+{auEvyG81pH-HsObDvj79XR) z3xNi&VdRCaAO^1=kQa2a+slAjNP&EMFpYX31TRQmk1vIvq#Lc{AHrYqze&HbyX0v^ z;H@fJb~5s=5-c_lc*clIp-r}aF>?e87$Tu)QOr*eJUG> zj+Y$897+pb38E=&_8%cgMj(M2nWUX*Zej9${sy`Yz zU>_?DFEB;ztjB*G-VU5VZ*$W(qJ8VNZ=Lp?i!WYntM+bl%ecCEGg##3v%^)L@h{Pq z%2CdX@@gj{ioD$&D|Xm)Xu zdm6L~_Mr@M+zLaxl~*arD*5kIkO8+6rl>CE={lg(Z2*B&h9Q%q?#cK3T)u9+q%2gS z6bct**PU7pT*@<*!~o9Y58z9=uPfH$$_j<>JfAk_&hvbj@8iN^eR^Al9bW|Z~sXkTTlT6;CZ{1uzZZyq~;k+>AFFyK7I#tTQsVsQI8$IhpFP1rL zv9;%QDlr^1q{q(X+WAhnmWPgL}McElz)`+Sb%+TiFwV$MEE&gbr4wzI{^o+3)x z_t~dnpS89bju6*GvCq07=h6}EbOyh*<%yB~`C{`Iq43jy6@B{(pux`k6rL6J?aA}C z9uoU(336B{oIr+yP0evYTWxvHK3_y)1z`Rqm1kt2%@O3>+1uBbdQXca@{zawzSg`* zYoWc*0eg_6CX2KmC`hURuU84;w2r;_q_AvaTL$t@2xZX-_Tf>42&VwPc?f`H>T3EG0J3U)Vf6 z6pACb0Y`AuhK06RzfRW($IpMv z1Yqz`Q-IGOr@F-%68U=BAODCdOBFUYMp@mtw^ywJF&j=8|eC%;kl@RI`99T;(lfG~ta?sn1Qe zs&c^%1(#k*^4ufTK6nYmeR4jU6@G4zMwIDv7To%W+7X77g*d`P5w; z8m0t0TBL$z$$xmfFy{fd6R)xmRir81NdIGs)LTOum4!qH84`bHq?$V95gi{P@FCpo zb{Oz+D4C#}CoieEL~5zmSA&So{NH{!^1$+v;Xj%9{5;|I5?e(#mXw&1$(=55i0H|_qOf-9W57lNBMu3Km`u1Q>K5LiGL*tB6esZZ~w7G}5K zh8@yn$ZLGTpKupqz_^+Q$*1A1I(gr$xHu^YoO3Fm+{n zrk<}A)iZ=^D0Cm(iN8Z!I#ODF%p_1`CV_t$sORhXFq1%mN}VBr3xBRl;F(1%ffii? zGzXim50Cte>ce43V6k1OB_>bG4)nm6#f@k6rH*#XyKiX%izEpPDb2<_Cja>UfeH1 zhMx@etY4rYTuMC~eL780huq-ei6C7(LF0=z+Zb>I?h!zh9_0x2f|Yaxi`Yu8mqtXV z?xTPoN<&oZIQvWhs8#jA3%LC6MEWesj; zQff;n;}bSWa&huX&555wwVxC5`+V(pusC^!VTbkt)Xn9$VmOFl)T<$C6Q3-`IFTEl z$;e8&vZZdK%C--gqQ>VQxTx{zg(%ecM3Ct~#B;x-bldi$L!gDQ?LuG*_G5lu_8ro; zAjAJ<1^+F#yDHKvX>(;_?oEx|0|x3PX=)R5UuYRkN3~&{-_Z9CaRU2!L9y zCAECBluG7pT_Qr5=8=0gLnT@>)R#~U&Co$8SK?^7Alq{rQ5R%(~)YgsUHbv^Cad$};Qh!2n8jw1>k+3=M7~Jh4y)ejW zBixCr3`m91bZ^hRu`51S!+*H}sZ>WYYwWCMjonBCb$7SHq%LSRDWl;pyk4&h&o5*P zKUi10TS>lbBm61B8n;ju+ zF6IJFIHqE*yNK11kDkRwuUcYF<0th z&gfyDi)dQ!K?tZlOcJv?tSBd0{&x}>r1HQ>$1j0%4AjRh0V|H~s1m6B6H7qSC2%_{ z8n!A?2jLbMbn7v_he;i-&}`~mwnw3AU%VO6(1t>B8R@?h_QM9G;}`aH19dtdX5D$M1DsK--x;F|d(+b_>~XrVoyJ;y7NUi? zR?|7l-6UOf>($|G7xYf;%~z992kK@imr(VFz*MN;{E&spNN08VxxHsFQS|oZ$~n{0x0q6!G^l1;vho^TORE3KS~5k~ zk_=0K0-|MEda7~x+-gpyQc0VPToTY*P1Eu7ttt2`7r&eOnfAh%5MEC0anlMsNVJa z5_rZA+jh7U8wRtcGE!PAgm4sLJ&|;K_F@*2Oh{{h)Luh}Mhk^nb%vyddc4w=$hl7l zJckdBAaI(dGmncjJ5lqBrYCAz(dHVmZxDoeMbiagYK~uX zWY(oJowS>2piUQvnVOkZv^ODZwL`J*53FYMbv4VVX#Eh)q@t;%GMAJpT|IJDv|~=% z^-_6Yr0%L>QqfF1l_du1bic(+0%m>pHmtX*68P+KmcU|N0*6TdXv&smXGBB`1!)$( zJ&IFnnc#4#<7{{pUEjFc9snJSoCoS=dFxCL?Ma9t1| z&1FF}=z{plD2RKnfFSq|80zlKLeOG$lv4lSt3ipHe@05n(TsajH7GSuA2;_mRqEV- zGKaW-y^^Oh(3zeG7KNo@S_s4u8B&O70{3@8CrUwsd%Q~Zsmh||w2qYQrA^)W*JEy@ z3sYXwg!PzP7|(MHwdI7{J>^ACZOV&&>Qi3y+ic3~J?w43l-G)fcy?n7VbR^6xQDg7 zO}Oncva8yHQ4$7K8)m}F((BYT+!X1H`S<-)e3*Gvd#f}A$Y)KS3}E9BpaLO1t-C%1 z7(l5T2KGmQo_Gs0Di{JVQravD;RM2ZBIzc36GDwhuMyHJ15&ka9)<98rbv1(t0oKS zZbDjSKpNMLG}aVJH`$kGAq^s=dIM5K?*j|r5>q6-zxE~7BZHi_!=3nx0jaGUDT=V3 za?Yf7Vgu3LI0#NIJB&+_L*IK>)o7UP1Hm?7Sl;${Bt<~$lX|27@fHb+gFwJYNJ}GNj zYsVUprgkHlE0|u_Ocm^U15%(H$y~v7?o1VI43LbqHdFLwjh|_)9c9Q+THN2Y)?RS2 zu3)V}R8H}# z+9jdWu;vy#Tiux88u8ZD1bLsDUUFNCNfQ-!x{6C%3t7aA$d>Ef%-)Emi5Mdue?uJt zEkfWvl_figwp$>-%}5lZq=Kn&O7)iRMrMXRaqt`#CewCn#?Wlq-YRXz3|J*buxh3^ zJVwH(oy3_&*XJ%2H=Z0p2dA^|gFP1JwiR(NrT_21BJG5rJ#X)zliu!U>*O7)Lum-Y z%r8DcR9+bzzn)hH$5Tp;#Jwd!{Sr`+m*&F@H_DUbQxU=Cp^5i6${TfvP8Tgb*Iqjg zVVKpw1zw&rkn(=oF+-^{h1E@Cwj%L@uBKpqf)c9!YrCzk(3oItr262g>bkxd7LVR3+;6MM!TbQFjh;e z(jfE(RfZHvbd?|LWfpsjM8|ErmI>+V90LAuq_7Y}N7aF4vsgb66 z-Zlzu$WJqs_6WZJyc=XRE5`}J5SVR1y>@p+mr}%UVuA6C-MRGQYO&jra*ef zmv&R zArok+DUd#$F+U4vIsx6O0hiwe<&4fAMV6QXAxSy_e!9>ZA3E@h_*DF zDG);F7RX%M5BQx0^5-Au0x9ybKo+w=er6O1J!YL2$YJC;Ju;!L9|ZDmRUpFbI=I0L zu88O?5Nfx;g?zoMGF8X<62fV{%P1^fx!x#*TR~$eusN)ESE>xgGJ(>1mjT2I3?NnS z(j`BK_3pc<7&C8Suv~0to2znc{gZP ziC#aAB#LK@XwNPk*alnZQl&h-+h?lXsgdZ0dbM`;SA2^Sw(C*{75k)l>;9&3i_|9q zr~^O`A~_b8#<6YQxh6Rr*EwyAKZ2%{41`Af)E?R!g&`PAYkM@jPOw3VkSA~midALK%C?vPJQUf9EPB7E^4KvvY? zX=&^A76jm{qdkHj`RZu?wS$6`hDyroS|^_`3e>Tbu+7#r5*2@#_BE zHz=Mw2Inp4X6mQa-MTxmTNk~Q-($Bfdam*t?0by!65Shh^*y?{Gg6Mk8&5p;E?wHV zm-`fk+EZA26ZI5`j~Zr)CLPB?F|@766Dj-0zx9~Nj+J&dN6RUy&K4aWIaqpZri>YV zy->|4j^S+oK9^s$-RyT@O37H>8_B9udEe}iCyb}UbSnx;(JB8AN_;FzJbk?8r1bF` zdR>pt);Q$YcaxDW9*5lOlwi=MpP-B zSfDNXnEQ**Rx3g6aCm>mvrMn52apy{0ZEm-unctxCy7+g*C(^*GTu?99{=eUv*&IS zu@LwYbN{NCjc1uuNwWzu2;2ND(|?e61>pDMI{A3r&BqoCZnkpblAlu`5dG}Pt0K-^ zXgSwTsI3yH4usz%BdJA`!eiUwFRU%lqoS_WzPphUQx&Xs>t^kWI?cGI>7KLzC4To! zxG79cg-F*RHr@_J2<}#E!!1vTEOy+2jc24cc>5(@LMR_Z`4fH!OBd4NBJ~UgC70Ti zkm28ba_x7Rjx&_-E2Gq7l(ggW`z~Q2K=(wcrCh|>pvv?;l`=Z9rBkoKu^tTSh2L5C zwDrXxrnT*BVMbvkJ#dPx%=aIpZh(K`7Q9_mctshV0vWOK{%;bq;8C$5xho6e`P>jc z%Z6}i5UViVYT=d;m&cd?nu{gbxp*-v7aAka<%YN~8)AGGgr=wW*; zoh>XD0(J1fwtnuZ3AKNK3zLX#s7c24wOR1)x!R-8um6^a(u39Mg4!>{mYy(I}folRIoohsN_U-Mb|cPB(BGP9AzQZL@hp;$eKelW}t8V*fjVh2BRg= z6VpT^a$=^UNo>ukqAl<+siIw9=Jp080py_ zpO_osPuUP5bBN9HoOU9&HzEE++PQK(A^qGyTB$PE$5hIk+gLX*WvhA@?d$Pflb$_c_C z3yqOOdvh{kVObcO*!@|#&>)uPhIo^6VSsog3qoV$0fsPTq_rihM4I7Y!bo}UTs+GV zhFpXR!cZbwF24LMXJ!9+b}p{X%7q5;*W3^TvmuJiA@0r%@m{ueu7ihB7FsTBxgq|L z4N+qb(Yhz6EN;wZ#BR>Wv$-MqWkVb_&&AJkL%f>}u{J9gnsyFk2vhU>I71lp!bcE2 z_2RwVIc4GgFiSf}z{8|O{*W7@cQ!<)IU_ePgefB@e3WH!zQv-Jkr7Q6eRD%>1Vx6` zT5b-pVOLIjF*6(DL34=5azi+>Au7xvM&*Xc%Z6y%VJZttZirQ&$dJXW<`8eT=9I@d2Wbnvmvf9hxjIzlaZoqh<0;EUds(}-p5(u><nsksrBXCo{&MHrqN;h}7ViKYmhcsnsi8UHvN!DfoE zG&jQ6u`D_4f=5p|cyc4WmW@zniZC=cf-jqk-2oY=kFG5pK_oaA!8cO*#S=a@Nah;s-`RKF3_eQEM_Y z`^|?rnN@4DL2PPGhS;)Kr-d*{wC4i4zSjL3$=k4i{uH@2d&0T+ZSGun5jUepawie@ zDE^CbBeZ^+h0qL-o(P|}QeE?H_qSVild`po}j z!{K|ZqBHI)BpW?=DG1m`$LOd>=B(^M&W~vu_7aay4OaRI8l4&%p!BXyAv^^^*$q%{ ztpU0XVa5jN8gggm;twC>v@T~Mc1Bxq0z6Dw(i?I^oS!}MF~EG{qi=2qg(rawvUr3h zfmB(PW;MolAgJf0xxO(=M5s|37mzzs8iDt7N}~X=Go*3Qd{#|l2vhs?diFf$OWHiA zzT0~YIvAO|y@jw3aeDHkF9iG&p+=r0xRYrZgPL4n3Zw5sKO+k!k6=b+3Fq$jatdcB zPsuDG^8|CZET4-5~IJxEf zJVK4~oe4L~mthR@oni{3%lBtlFm{5;mTwVrW@->lNBj)s>kSVR`L5fZvxq);CktXd zJd6;Ud}|oORDZ92n;;DGy#yZF^36Ud)(3HN%lC^-neyERH_JEsl-ODX^n}snyC@4r zA(*s$HO^k%mQ!=?Li`NQZia`+Fz(LW5a(n=oTx!Gz(}RAQ_Ia%+}P6HaJrPT}Msc7|};)@KSw z8&Qp62vb%fZ)LIa4|r&-@X1yKEAtSPo0SI(U_;~5!TOn{)CrJ^6gei5NYR%CK#vhs`E`M3+QGg!G99!6F)1v`TwOcku` zO@c7Ar2;%O1smT5Rt&AqH!ICp(M#ohgc?~{N$yNmo_HsxNarJV1}ih+VZur^LzuF1 z>542?&Vq-=N_7@11qkX{Dmp8l;UKkzmYqWm7|+-vN98~GxG5uJdCVp3bukFOiSg1 z*Rx7xJv_8hDW_5~u<|zqol~)jyo0ZuJHL~I%cP1+fHsn;WYQ)Z9TVAF0RpvCsnhRJcanYK#!j-{m&Wm51S>vC^Ey$}bR`gDl zy)R@zyax}hF`i4T%+gQ03*i+A%FW6Ggc@0Sl-!xDELuw(x^o?Jh9sC9Ld=FJ*C6y~AOd^{E&Z;{)^{>?=lAQc?#^EU@9%$iK23V5yYuhiYgk&Qo#p%Ayw&q7%xI|s z{u>hf9^dQf@$gRk-HRbuoCitbWgI?)f>ZVULIzINzX2gyl2$AWBMwRR)&-DQXc0YP zgEwa!p&B|PhgVwiL|+UK7p->$*@w=$;g*BRAaltw9qMuO(I|eRrAmH+&i-hr34sD& z+C#6=-gP|uQYO?M{1ZId*AEl|ar|npp_>J9t<+99@T^S{;?kjidL~Eg^Nl^ot`J|H zg(qVuX*?N|zX31H@WVSHW(N5?>ga=WnFk^XJW-P;1~<~1IL;u4(yLg`5FVNXE*|GO z;_S1-8C0Ffh|h!PqHF2#9f!=X?igR+5rb`F@M|#=$Fn=hUPuO_*o{|lVt9gQcOe}C z!_!VGZfl3LPZOSYA{SlA?+n$c0ekj4`|NfGRadYH#8y1jlS%t2Xeq5oyby2v;9Z|s z9?KmM2&Ex8ExIfP&q#p>N{d`15@)DJ4TyDUVrcDUkL<-8MC`9cQL__UjVNi!INKZ{ ze!5Bw1u5LuI>X*)vm>}!46>VYLEIpiiV)BLAQ)lfa0E9rCq$GAN!-_35NWkK^Earm z>-km}-`-F0w2v5M7hN(GnysSX;h+sjnBNRyFUA56ONNrGr`uqVIvx%p0CLfx)zBRJ z)gCSNo~fq1A1R|iS_^>~8557d9MF%7oe2TWq;_{j;{EmL zBdhPtImdCJB1nd)N{=S%W-dTeOx5n4Ho;xKE$4#~g!TPf@*DU=FuzGnwc zw7y@ZETfy1T*`AX{;Vzq>b2p%L!}{`q!EW6lw5gF4ThJy;9!-^QStV`1?f}e#8}$W?&D&xc(y=NOr?r89MU zu1qD1v>ZttJ6z#q#IaQHLA?H}JPVzFYk=FO%pq@g!2z7nZITM28rLp)CS}^?Urk(C zJbl~+i7NRYNl|7yy(#d9W}u#4!$1c9%W3YuIpbCoR8N>6N$*gfaE z6o$qrX>SpJQ)=!Z9XvX5<51U;tBWms{uXCK?~1z>{S~xn&HQp&1FpS+-qDFslhBEC z$4c^Nqz>W!Go~fEA^eLS>$a{h`!O>@+Bo}sZuz$@!Tn&_L zVSFhCU-^sM*Bam7^M6rJS}Vy%LbH#e(0#3Cq`5BnT}c_Cj4F*JtU_QdG8V2r;y;Y# z=4Hf`+$u#ASGx+{mbM!j$q$P=g_UA%Wuw4jSk(G-{lCoEAt$|+bZ*%LpO~s zcjtFWBR;u*l{8@|xTibEEw~&9YC9tOz!}nnZSI17?jgHEeTR!7hb=XYAY|YQ4;v{BIS3(yMynzyzdnTmL^{%h!rGCzhy?>hyrdE&%5Z-= z(T)m?n}&83T&v95Sk{CH)S@?H@`PXAY^jK(w&F$(?@wL+ZwsMX%E^ke1$WpiLJW8n zdr#55B;^dH>LdBO!i0>lZr=*>y&jETfif*7%2SHnN{Mp&9#Q^j-^3k=*>DGCLQ{E7 zH|-hkjY2PV#g?r=7T6t6-yR>mew?gOgn0zGq$+E$2~8b@H}^dFGqlSwbZR+zLQ{W)g7uVlQCJ>@L6JGE zi^969aH6!nYC;57nl7tANp6svP?CcGO5_K{d`)QBX;lRuxrcn{F4*lJ(kg~VrR+o7 zf`zAvLmx8j=5@u4!haC&EFrga zbCZZ^eyCwOx0{gLPKW%VxP4bTw=T|Y)r5`m0r$Dr6}z^_t4i?J=ykxa?9(H*)E7U&vU9Vw>X0}%?r&nl5X`pje!m59ed6Xvf4XftjP|9<$OS$UWa3NhuV{r|63)ghv z!mn9PkqvAuJQvZ6tvfVB;kj9_&&_DUdZtf`>FuRJr;4lN-5zCD-9$S{>djw^55UNSd(O&9&B!TFgz7R&~o!ZI4kt zVyGZkkQhPMRp}Kf4wfV?#qWuF`$6r$a%-voaHZz~$vlELF#4YL*DDlB3F2aCseHCnk~_f1cj|;{L%oqS<;pF0tQxX}6@1N0Lpiou}}jTr2~&5=Ye3}rsWNX6ELQ4&9Q z`cDcAs?__x}i!9OOPm3PB8`3iCZmVQn)G} zAKXu!m7bvl=g85H^lJ9>$Kh=qua_z zd_6L_nlA0)zG^H!`_nvnAeORAkLO}6c6I!b);vrb#$1g>1ki)rr3e@y#w59hpv6Jf%~mTl)AkH2%U=LEXb3eBlnBs3X{ge>tJN+^4pFH9K5 z85-VXGSs&>$Pn|ii2qO#>@vNfj`@lAkP7f;cc2ONT<(|_ehc_YZQpVkL?I|A!?9~9evFrLRq=PkNIFs z_I*`438e;k^68}eLR9J)A)ahmC70HL24NK?36~# zXB!iE1F+HrXB+6qT8F(c4c8s^QCjg&W-z=E7>V*Bs6`kruzJ7|s3Kg5Z8?dCvJ80~ z=+5*W#C6GqHtL-ex@2duTV6~y9We#WYWTZO@|=ageQ6NojQfK8G)l6B9d+b5NWJx{*4WXv1){h5C5_fLBTlK(e;q6LeK?X}wNiM!$B!k%!X2Bw9;cDQ|0 zh9d3;{1Q`}k?uvp%;({#n$Uht%Jy#`+DZ3_NtjK28J=!s%0Mx+jQSCn*|dB5iN4kJ zXfj4j?^3Xwitm05Kxo93Fr`AHW2?Ac9EvxXasBt@1gy-dgIo|I1ZKi5wu`s{Ylu_6 zZ@dCgY z2P8Gx-N9wJzKx_5T22iWqI`-d)OKr85+pfQ zFsK-dQK{ymQq{$Oje15kp&Y@O51!BEyBdu(Dwb=+(`w`W54it-AVQX~x%foi^W50e zsI6FP9L0^j1LN+-LL2E2+MNcN>K4>njEi85m1(fh=moe^GZ$02_+F;hh>m1DD(c&e zmuAPo8_#Zx>QAerIbm`JuvK@+?XYxi`B40$BCMLd_AQMro{Aw~p=+!o%RFa~9O5lm ze+^z&*NlK~?`ko~_8^fuf>q6HtTrtux!WG9Cstu7@;ny`%Yu85!P*To&T1HZEI#eN z&3X19Q<9lWY&(q2B}a}-8{))7>G=(1p#6`s(%P!--V3yJZv5#FsO#dL0ob_}?HOH_ z$y!%sa$kFJ^6~an2oFk*rcIK$0YTFyT)&pOD226=X(vcwge%33C_OYqZB$8yquGGv zhBq~?H4y~BS&u0-4CM(<_oJWAc%${HSegsP>5#-gI#nt=Nh`3Q&bJcv?;oqQ;xH{ zsVib0rHpQgq*(h_VrZdj;q4Ilpu?9B$BNv))J}&pp3!yTqGZc;Z?lj4C>>;j#$xQP znlRrB+%F+~m)zGz7LKi2+=f@G5+DDYX1O~5qXG(N+l})H7->5&(njmPrQw0SPaJW{ zO<3{}J6bCu(a(E3?%CFXb+|F%+fKa4A)n=n?k;pGPpDnXZMZAnV^fEe51vHJN6H@} zkUd762*L0}rV#|2-9~t$P}=l~mCW@JjQ{V#`2SlPsR)5PVd2t)5*nt+&Q8?JSyaIO zPV_oH#SfZe=Q)4|H7`)%X)&4ySY3xui)R4!>)YeX^a36P-lYx#-O9_<&5#;r>b(v1 zX5E1v-1|Oj9#cF~9@95CCS5aUYD2J@TFuO-nwd{EGoNZ^ ze!6CkjfEbil~milzQw)}m0e+wJtR3qi6usIW_-i~{fm!$H&0yyRQFYM59)7%O(NSw zlL1hA4C=A0a2jeU#&_-!FRT56-fR!iJ*W3PXxJ(#Gb4bNMfrUU z8!=uyiV6`EX3vF=IF$<=BhFif=q_cf#rq@F3>1AAmF|cEvmPIgQ3u){OQUrbqF_vf zUgdc*eoFFy-y$@5PNVgHErduB`fD|`nrYtwEe7wxtPeqo2&i6k+qsxp=bEsNY8V9u zsaqq~e0v}ABh2|HrLD|Y>mA74PK=JDl9pV%NKFls7;YPu zE>v_(UEoe$ycSOoJPpq1X*e-F)pi7&h=LnS`4}vR$JV32-4H*5ev!Nub3_=p$FB$U zl_;$lo)Uj2jN*7Qim}?A-k-rTBmG7m?Ij={q(!AcQ;!2^uWcX#Pf79d2fd>tv3~>L z^bF?AncQ-$eB;3pYr~JwV#w#cjt|Q8nK{EPiR+-fjn+TGM=S98YTz^kiYviEil?;c zB2^S5`WJ{_5fK~F8zr^RAtXs@Q1ef=v|gyKL}bMo0RplJY2+mms3i?3L9mqrLsxWz zeW!(?8PbH56x~O)P*t0V2RogDtPLYJN)xbcfMqwW06RM%W$!LDCZq=@c$hE7667?@ zuOXkew_&Y98m68f-I*t^Prpztu&z>V{*$oG$x;dG5JT#(YS&3 z(7)1S@)LY-XhZVPDOCP6Ui}b{x--Y)nDcm0yKS0>YITUL4#h7MWpTU~grB&Gns1w? z@o_(GDDIY@V7tPLvDyTnu=EKUlp{fXP_AAw{>#@3Na{5Gu1-ryDL;*5d@mk*AoB>y zoCh-9lsrbEI}0TFLnCD3k|SNvjwfQ^A#0$bO9lfKdys{cNI<7(prQpOcT=|_J-;U3 zj$G2Ch}g>THt-bdg-gibdHXb4&%iI_+@f6h*(Jj*H7QFZm6|3rTDQYB1In_R{?Lkm zOa4?o0?D89&jKPXO>L?Q$6j<-?%7Da73_oHDX>2d zT=O1R(oB%H(^nwN|5v!dNU@}DX18Bz+%mR*HY4>Vd& zCu;m_EJ%UX-aDlvv#zEr{<;P5&r1e zyc^K1ShxKX(2?!COSX%0|N2JjdbsIdLP8E#m*Q7N`--|re1gEmjA95#Jr3@&=9Y z4Jo+^x$i7QuA}iYw(siL7M@y}il(eE20!S(s?mB9DCnP7(;eyg)M~Wk=+2>r(?$f; za@yX-6SmlRMN=d3iq0}pfTZ=U>#!Uqw5tFS#Ttc-X|s1IDQH9p{+Vv8eeZ*wAxr@TRZ6A`Pv zXr$I+LxVUZ;wosTO#<=(EMj-M{H;a2>`wb&=*bY5f;s=~yRkuFCnnagL106bV!>j$ ztE9y}A>snkLzricNXoFc>M&&?o%>00#I<2hFQ{r8c7b+B)#JMLLS70Ou< z2Q5|spLSGy?iliU)r8Mn(LERmEU-nOV>AsTVm(k&9w-f+I{XyxnOH~cAG$Sf_$_(f zQoL}GFZtK!2ex^4VduH^jEKJ}51rZBGf^d9l)u@!1Q!XKr!Y`{KXy$w|ot5gMOUB#x}cTXy4do z+!FK1MfAfSe54!$ID8-e5xBzl_d_XBdvJOMxNXL`a~Nj+nw|1JgDKo4KSxat*84|+ zK8F-ABxojXzJc zx$#Xd<5?K_anhvZyS%QVn;oq^DPL{b0!5c^kHIXU!_2GRD5kqw;=>QVgw^i1Dz-U? zw#x&iZi7|aDG!)}FGk?~+A4Org$9sYZ8>6a%u(II@$ zLVvc2+mqt<&z-0$MVN;73`(Br6jtuU|7{+tbHt7r#n^1&Dp;HBO_eMjg_64Dbu>b{ zit>9V@*5x7`4ZNEi>&u z_ep0PZ%rUOl=X`!lQkV$);DRs!^rp7ns03@^7mSb`kHE{#o?Qm!^lvGta4(^6Y=~KeX(osP@(5a|DinZi4J)^_7zbtF+i`6C42i1;q9j&$Y8zU`6GCW z;mOVZuHFxMM}>#2c7~@;Zcg@fhNm=Rze4Ya#;2mL)LR(d*r)!96ZKv%hMcL97kNgH zyqHqL0?*|Daf}$baD2i0mZ_IIWc(_8-;!D@4{F*%15T)T_q;Xr+2ZnmzfuVGhASeg z#}gN@VkYsd(-BX$PUXLkXf%n3k5Z?uXY@wvb%;Xp(z*g>Q3fLlGOVUbbh52MtB<%n-Sr)Jnk+eMjL)#jo*#dzin0%7nkNG z9zY|cC!>Rq(4IgXvwX<|ycD7iA<(hNv~T5Vmtq>s37QhEYk~PE|CQH*$|BU>1KY5A zBq`XAFUh{FcUF8^vC|=6T!C=xtiiAI@C%>w@oBV{;xEYw`*zvDT!mlD*}inFss_w) z*q8e?vYU^O>_Uxf-0_jc*bcP)-%Gg7WU zBaUv&dXX)=9k%Q$vSn9f+cMg>oV3E0c|EEf`#n5#JN7?jcFaw745Jm;u{zOrmBl+k z3_X~#`?@aj{0M(9_6%WDMms^cdRt-226CIk;k*X0s|H@_=tP zB4EJh{Pzp|jqgN1Ua@|NpWvZNnlRvf{KON4wcDnbIY!tp1q1AU{0rE^?7>J=eFaLw}Q{jn=X7DPkY`i>_{NU^3ds zmul`7!&a&0t_iuDoJuy3tUsa%vs!fmu%=nW0K8UEmJ%sgycLv{ z#J|(OzQ!-uMId$OJ<*#z{|L|S>?gj#nqy7|a4;a#9@;f~h#?l+! zVLwzr?t{fQ#x;8waaQbc$kslHzy{G;h+pu?!>7@Dq)9i3V?jzvBm}P0YVmP)xC%A0 ztH z5B%SnucuCC^Mz*zBk1I4`J_IVLv}{uy^&W3rUBWE_0~eE@5P}>G>>{{?Rsb{_rNf| zY3epy%|^rZ0^*S2iipCh%P@s-Gwjv~vRjvt-71y8#vX0|5%jjMfM`^+bw78>?u9%2 zi)R0k-VecOow?c(p85-Pz8vA{YUfKeTG-=kpZbz+w0@ED9l6Le)OX}!&&6!AXi;SJ zh>?r9_jUSc8Nbl`!VIT8z`35MS+Bt-%V=EyFL}Uu{P$e^ji3Jw8Lj^KsTr*k@H1_+ zE($X`j23Z+emLIFIr)Jt>buPh6^9eyI9FAkQ z-yL>-6EFOz3)B7%Y_Jib7Z^PUCHb%rz+xf#8Lu}ZnoLtpEjSH`5oa^4yxoW}hjQ;X zqW@@~FuMb1obl^cA^au(I#ekH_G8vf3_H90oi__Jx1y$Ck_PWFm%aNk_DF4zWPZiZ zEr+K-xCstdiX^#q5;@mUbasv>=fBd52c-hDRffW zNw;byewudD8h_$iayHhY6;4rUs#zelOVANS)#*bZ;>5K$iBr-cF-or}?Q9`uClw=e z(oD`o+DXl0Vh0!Un-TiGIUUqMPMVfh3G2yOpLS9Un|NMx(mXISGZ=ofFEAmKzs&B$ zv^2>;BKd9FNjjRiBki0-&g!(Yj+|oJIiH+E)6O6{&rLf?7zx^qu4Z)#IccFmbxtN{ zds>j=$hj}=w3D+1PADDpWitiHJHE^G)w&akN!|K*PnP6`<$wXpm4rsSFA(5F0A>W` zg#%G^2rI)Uc^}-88n+ss>I0qSitjGahN-KrCZ@zWr_0%AyCcXhM`-LWNALq|i^LiG+vBuH5&ILJ zAw`YaisSWLoI!RuLRGsR!7Yedz*`xEM{pKCALFBV=uwJoJ0kX38|0s2d(`JS!GTkP z4te1o7(Y5&PhVso8x}Vquhm$rnDPp>OXY`*+t?LLvK(3#4|(eb4U!b zi}GdbL_-=Vi4V!MIYA{rVW7nw12`*!U7|sb#saGS4CIc`Gg{uj z;fIbOyC_|hmkQW=2<2rDHrku_b5TM-C_M_(qEX)$$$&R1R_+O_`KF)t_Qq20>A3U& zwEJy&kyxRBAdgm=gy`#SCBv_Qh?|I~d>|@t};Zf*?Afd}WJd*ZEFqq<3p&jzw zSewO$Dzj&yvG&BzLc=hi6VrgHxh8biU}$M+dg7<-)bImq&ztpNVG8hIC7U@jQU&dJ~5r{=`*zmpT{ zkE*42$_|s#BZa5!v}kAlALhOVzRB|XKW$nlrSKL7#fjQ!r(m5T^@0{>Uq~>)#8te^ zIWH)apWAdQB!CVuED7XI2;fhdZVv5!o0HwyycLj=!f5Ng;B<(a6mXIdFL+rgAoTzJ zp67j&w6vA7%je$@z=7c#E(U8?u8uy(QqZ;o)y1DiHdIH%58F1$#Lhw_ z?ra?g<(k%PP<%mRcOg%xVpIoqZm_2~qrWs8txV>KkM%jC&v4t!R<{k+x9q0z9~BR>NH+8>=x1xc#E$+j6I4iJK#UgZ;xV=$uybAUmWVjju3e|P zx$FMw;{A@uC)E)NK$B%ZOMHm&p09RZsLsP!k~6=}QM?{jcGQ-88+K-^2|KZ8i~S*0 zC8;JRDu+p&MkT`;l}$dfp(PE1MJS`WARM0K?u(IzK^%6SK0-?LLAtOx`j5wy1$L;aTkL^DFr#7c5Fl;jCw{@;9-McEZZX;IhqQd|eQ;#}G{<-u8Dv&DcF% zu!w~=cEDVKu_ZZcX*c_eT8-}*Ta%GDyIqa*Yq4B;t1zdn8r!^g^)N2q8Z;4`P%Oe& zM}-88eFsZ?7(Nxt(& zH!USy5)^U@EYV-=MW=a^2qYU|v7CH{2M`2s4d9qSLO6Ros4k}F5-|#}N1!VK#*k+? z^&aCXHTB*=E@iMB#hU05E|UgAid-5f&@BxV=!FKt(X&G7zri)g)PKV{6+&NVryNWn zdgZL`d@@bF`5_=Jc<>6p6{%o0Oh8SoLL}}zYb)ElQ(;_gSrX{n4f)Nyp-9_%>5 z8P{8#+QjCGk&;q`JBH^uy45 z6ZMYQ^hQTX2RK8!IwkOJ(}NoiVQ?mE3tvF@VDSVBgdYSpJ!#YHTU(!mm_I`G`s(d) zZWd=PolWAj?SS)naVF^eqd3cU!ud;a2IzcLg}w{tQWZ*PSe&hN-Y3rLe>`bRPuJ^f z`Tee5Z+j2lTk+k6@AU}hcd}kTC5i7Oy*|P3c)h+Xh3~~^Ex%*X)ZO@=*_DL46-R22 zP+Q;O8j%r7_d}UTizE7FRddcO^;crqT^{qDS9HYJr@p(~!9Ne55Eyr!&A$e@lj&cG zwh|0B3Fl(XSJAT^UIXFI=DRu-{)nP5|3oBNd?0$rY6KRDkZX}T<9&JrigS4{r3^+L z3soKKF4yV{&I9v>dDG8f4TBf5mb^ruMX*Gk*+QogX9)R`9%C6pTyc{v8E%Cy`CZro z3eJ55k^&!N9T3`6_{P>U5|E=U-U@H91B}N_;s?6h1X8PB_)e$rb zYf-QdS|ZCWiee69!=ze;!jdlMu#i$Gr89}GQ4}Un%7IdH?6XlsN7)Z*rNoYix8K?B zj!hg63{ANm-xZ*+^Zdn7#G``2HW*rieH8jd;h-#i_UcOzUPlfSBz(EAm*E-#Q_^b6 zM?e%T#~1~Q9xeA5waCDteHXJp-+B18`_5iX^@1ZVOph$2?5{gGZ?w%f89eldcflLn zaR{cXeB*VcE77*T$bSJh^m7qFg^;%OdH%1otx_5J#j{QB3q5YQ2tZX7p(rMPwiLvAZxWCY1VTq>+zqArt)kC zvv@*3?KoJTUkr&e36v>NQ^GU{F$Ev@sa7S39q?-?o&&NX&tI@2-*+q&j3GCfEGy*^ zLJM!gQ3A%_R-kM^`DNhOWkt9zqA#$HHv4Q^xB@<^?CYnn-8t*<^+m zn4uz_vDFL>Z^V!{6?XjEym_zV2^vT=;ejH7hkg2QNoUlxNuSj9<`rPfvR{BV4{Dgo3WJAkl2#k*h94cfV`B}kk}7fvU$UApnt2(PU7-&N?zq=y{cI^T42hd zL36xl!rkwYta3BtJe`#g-K!s3PEo#Z;y)DX^L^uj`}6$AI-!0S+zujOAMQcFf?9D8 zy5H`fi6jWP4gt>iB;0!L8!+ouN4z93A?}#ek{+nX$G3ooG3$zs^|+-I@r~tJB~r2f zA~A{tQMAzzMLP@CXrVL~A{tUvAmRvfjyK>?0vv-}zoN*(B>bjFbrRsHWW=yh@>_x5 zRM2;6}#6A_MLaiR2iP6%1Ms#@l}i(LO$q2x2( z!k0s*3zYEkvk4*Ox$AYpdB^4FGYBE8Ua#XX>(ZPN!K^@&MAvqA)52=5bNs=WldGc{ zIIlok=s=jdiEDlnM3k}*3Ttg=A-wK(CRX{b17oMh{l&}%-X@8JzGln!{Rjn+bT9HP zf?Ph)n;u(d!#8=+tG@tSDlu==5f_SXK?Cej%wGC?X1j{~w;XYHU}tW*z{~|J3VcUi zEp`*$U7>cs&K%{k`zz4`ZWnp}nYk^P(%WFlUUV5U@0aBs1@E!J9u5|Y(K%(AJ8R|lKZo}vF)^{|V+0eu#N0F__e?wnu>N3T>HV)mr zU5$`Azxn=4%mxR5eiR)R@ZXW!hDdL{MPUU}1nGf%f2aBFHKSQ;weKOcX*Rc`G485` zNz7nph+W!S?U+~sK&Kw{2(gd!RuUn?|Ai3SYZ2&?fIA>ISYL~|xB0ks2n;anQ1?Fw zFcDF0Z!JNe0!Yd}`DRM9E(F0u`V`R2^KkCm{I<7}klF5^W@fhgIssO%8O?!iV}pgXinQ>r5xWBG z=l}4v%Ef5-PqE7JjqQSB-)#OxNBTJF?@5(y*q2SzTaR#%kB}JxKE0gghJpv+(&6${ z?eyIWi=5fS4XK0mYP%bJO)?>p~sD*jz*<=j0Gq}5U)T%VZ%|PsPmor>xTSN&z2-r)%LoG2{(Lb# zN>b*pvOmj`@SkX%A`1MaD`2;BMXA4N1+Xox-sQG0*=zgE1=dYzK9&|*iy`QHX~$>V zRHieaJy3{!S3Ir?=t3RIF4mFsC12 zAaCBK_$`pDFdjeE;1!_2oORybTY-9P!4%974$wS0LdY-nBkB<0gh_J&dTjCC;#)#( zem(XW8I^kEaoU*baf#&CeS2?plYE6(tq|3qlp*x?@@EiIL)o^}`*4BOHIw8Jx;H;Y zLiZN@rY?c`43iet7WIe6OeT`KTT{P65vxdyrcR`bL}+SA#-+j4R5%3XWU1EFpide2 z`SM)CHP!wJxICY&1u~ghS~nY|xQ&O4(8$y(-VC=bYFkFCD-fPLTsANbdmLA*D*r21HU15$5>-zvngzOPXItm;N_r~~&68~Y zS5m)0zT^;gF_vZ5bm?v@8*;{paX=nrW+?xFKIfqqb>tvrwZl0q!{ef-z^A`?vIAhP3E8fV` zM};>+jW#8vUB1SW(iXfr$G!W}uly32v)2=X6dJ zei@*!8Xdy26#)r$tnvlD3T8=~!NkZapZpvNDZ{-PxOT7;0^HZ(|D_b-zL-MXP^5d+ zQlvX)uy8M+d~%OsXWW7SJ${cU(cLs5?)x2h8F$rv`-!vLGBB6 znAZpA;v8@;l;+7kaGbzUP)c;rJb_Co(G9!*5#sZ?`0c{DxRnvZrpWJ2_)Xr@D2$6M z;IWv};6my1DsvbYLy?kfiXwbDVp$pOwuf`YpHZ?F`h<%MyQ{wH zX>g9#B=FyWH_YHMv;~StM zh?*B~kRUKY7M+I?gI4KDm;V6oX&DW07S_-i-2OS-UmXhfG;QX)a1U~c8)~WA{teT# z?~gkfYN@b@eGC5Ib^d|-m~i^8;nTE3dy(SPY1%X@v3@p9d;6aVJA}x+rA&dJ@9jtE zzG>S3;5+a6^JUQm8}Wk1$J2l5s%oBb2JYQP;JR(bz<>^O19QIf@a_QN_4O;c@$ZF*Q{$jifmeVyId1Ams!iiS~mr$1!xOa(qS?7 z^j%nFA6W@A3oLz|71S^7wVZ{x#Wbmiy!3^ZGe3P+cO~1>!&q|HrqF!E^W|jVV=V@o zV7~C0J;@svs0-{pY`?bdA&EEehHS8*WKJ36H}*6ZzGxD?Kjz7t{8`?}-s2|y7 zbjXFwzX@%9{7!#cy~0`T#94c&K+~ozeob)JA>gb?k-}LI&m_(Qmbt6&r*sBe1!qlx z+rn87iTk6?mC&Ex52HbrejD-E3Ay;IN)jFw{!&;e*Z}<1O#Ia-_>1xc?#F}sfX42n z)WBI(zjdA!t{-nGY^6sCd$iCU)EjWw)E(3@m%_Zz`k>61I4*#e57Qg zyWZ$dS)9|S zeC=F>ie&0jzGs+E(Mx^GH=X$uvDBx0=P;k5l=_tKePRlQWcrkk>IWu`)Q5b&$tHT~ zLmn->fsCYXXrTX}s3VbaSpnxJY3?;2tMBWk1ZAZop4$4xyQapl*hgW_)VPy z{+e|*)E2c{8E}FVM&72>;|Nl!t3xxcVQ@7SUX1*J3sb)~HDV7?nDKGyO0e-N6RBc| z!MdkzR8(5&&7`P6DvkOq`P{DrJEh(N+pF@0)Xh*p>0-aAn!2RA@lWusS}E4}4=}XA z#DZANF0i#|_7hJAf=ugMs6n?WUL`5(Vab z88VJ|ci~{(yy4>;9bfK%!tl$?uXntnVtqUGU?XH34ne^259pBjLP7#Oyfq@#?yNcV?6d*iZOcI z@lLNP!sx8JV}uf6bjN%n`XIu18$}o)v@yaIVH_!7;J-aMcTb-0%+)i{#X28;;Lq0_ z6p2fKLI7o;EUJP+Xch{g?yE@DV=M(1Uxg(Qs80>1;5Z(KDi{G>7g?Cy7ih`%&3`|D zJ=hhGKSB*ofHYsOg#A>gY9?HG`2<@{vnWr;uc`IK!w(@<^1;WTGVfm*JOse=*1C;X zw2&W#5c;te0Pi;@!LSI^ScD_CmRTq#t1ad|K3ouYd>*dgA*jugL#f9vQ)>SEld&1a~q*@UN@u?SwAl$QY*85UR9)OvwmJ>q?Ts= z)$|9l{#p!h>h7$6EaRtS{blsmWc|bGuZG{<6e{O6DE?V(D`i}HHZ9jWleOc^WGUVe znElv8KX+QwpQJyT^|#W$CF|cpe>40XoECc4WFwpD|4r7Pp#RaVzmEQx@`I`5A53%0 zV{sz1rThqW!xr4w)c36Pj`ESIo3fs=)RkG!?39S&sJU3l0?xA{L**;zFVFh9x=lT6 znLCb0svsL5q5m`dm}3y2|6R-PD8D^L)g*~@l-HzQgh!yK0S=F``$!mTUvKG8*emvH zUgM7PYWCEnIRC*8r+*m0&TIU(d?eaL;NmenJ&h@^W6CLM7!5|t9p$6bHKuDg1Um_# zp7J8M;VUmqUx)|^fzdn_@)Z#I*cP!Opfn-^tJd0xPD#MmhYpp|bp`H0? z*M%1TIhScpv7Jgp2O+`l0gVgSAT2arxgf#sA?as*hWzRc4>zAFcf7UPiAKyDL^UE%{E9)=gUMMR; z)z2MKbOo&T(EnUEJ@-h6?Ptp4W|?|8>*ubSTA1VKzImV3czW(MJ+hTfF+H-OUS)b@ zTb*cnWOKd9^vD)_Ru5b3N@)0Tr16H6>I*koPfUij^6iOLKD*j(C&hgBK5Vx>y!JVK zd|;g2+-_I-WK;YqSB$=vd#JS>-NEO}3F9{3P4XV1+H;jIaF|9P%$>^>_b$b5T#NlK zbrn>t)bhz-kZJ~D_pMPCK}%V>fL9lX!us_!OVdys_F^+#OL&3m09N@k5ju^yxsGa~ zI>3;z~|zL@CNr|FTF$@N_9Y$DK&IPCsO9y zKT@g#z%wy#9ZiR-RlcZPRyhpe2x`%djn*iop!AgKvOGx&qjJYOZYsB^%Jpftl7!S-*=JvG>Vg>MY) zY=AuR7%8DnP)5>bX7RtGSQA|sEUuW{ZS-@+t{Uz(pr%CTMVAy7J%sn@(IB)0Qv{3l zut`qphlG(c_MEz){dBHe(1w9hm07{y@=lWLe?z>ITz?fVT+qITPgCJ4{1V`_P(6{c zl3afZPKqJdfFsz46a5`#wyXP=?KCr6A0^kf0<(*h_kZhRcXKmYIb9{!JwG>P)VY~) z&_r_m0xR@OW~fN6mzkkqzFXQ<=$w-)lZ-X|- z8fV7(FuOQFCX$nLV~3it8OinYa$>`;0K!argH9#6-u2Q~G$wwDWY(>33B=ZWyY~GW zhEN&rnxU?J??Hfd?K`F0Yu`z{_El2rk13J$v6jes_Tra2pB(NX=tGl(xcF5P>%)F@ zA2|Sz;J3@g?|eoKn)9y4h)Xrh9@D}7VqOeJ{DkZh1Y0kN*aOxjYf z!(}DN9fSw&CO1X|>4}Q6I3m4mdFH zg#4|2$oCl*kj00?=9=Y~MEOr0~0eW?q90xbLMPk__Z?FQqy^fM=7r2xoAD~SEAGUV z*C$@1o#?u-APwctdwR1~c_S zTl8T*7N$pk_!8O%!yx5(P}9`vfA}JsYK~7t(#UkVJ6>DG^6_9qRTG9<^SqV%Ik38A zUonA5%f4cZvadLIi=tOy@QiOx!CVr#)3j_x3yV~9=C{oJmYQFi`4wYtVrfy2K2Evy z$d>ZqFi8TvN>nutvi&sKjK_FL{^A*;0?cpmtYXEf3$#9I>w3lugY5vZ#+Pdkb);sa z2=#cpUXNfrw)B4L+YD2}u~2A%s~rVX=3gF}SLtvp9FAE)#gc{Q+Sj>ox0pQcf5D&! zP;3tD+!c5ULJ-nqobw^f|6P=mqMfNemi{_wSvQWQ*FDg4=_M?ktgTGxr)AoXN1stG zn)*+(;mY@Z`UmT-X1P<$a<_ET>Zg%5eN|ryJ$>C27CNw(LT^^1KwXSd-$j_b(Qx76 zQgRmEu_eR#(dr+kk`+WKTL20!V_BVi;z~(;c@2Dckq#m%cn~ZPtbLF1yK02NsOBE| zJOSd1#w4kDkMeB3ksjj^&bmyL{C<#p7P%${QPkzM1(ACyN5fdzspHPTqs~oYI3N~ZPk%W0w@>w5hvTi&p^`Ra~nv&%0y(?FMl9(voUDgX$&6}j$dqBWgGG) zj#_hpW(&_pFg`O8>@fyCJWD=BGjYO=44Z`Zc#M<=gm)!HvFF0PR z;zw~3M#bz_^0LKv>qijCs!~h|RyGqkv}X%1n1>E%j@R^H>n>^iYN+y{rH+9O`l_;_ zFv}e&JO*jdm={l#&!>w}-~!ZC$CPGeR|KT8bx4`q8vjLyRSm27lyRu8b2TKA&1$NT zmug-@I#lzNs^)1{a|)|rO0$~&L8)f;e8kN_HRwnkJET23?01M-HRVe*;Ol4#?%2is za9~Sh*fPm7=uVW1(VB)*1^*vLe}fSLegy32-nqw8kqRfgvEL_AysywxkxUmOycIsU z-En7uyJ|rx)_}I~T8smBnrErjgDXH-M$;BTCe6HLsRcx23)Dh$5i`EAVB{b(5PR&% zJeU*On4j8><&vA!mr2^OG4)E9NM3QWoMOD6A(mg=v1j+7b(9DT-HJ$*#I}23mc0U& z=@W+{{oD=7OU-0n`$oK^bf_U&6q%Ukt=g!C?#Ncaa&Zf}F-49Q)n!oJK!1ryC>MYd zf!C|l(?B?=YbmofcSQnKeU2k|tM)7&np;2xgEHS(x6$BkNDX&JirfZ9^+#+eT2tym z1DuiZdEVG#4ALVL^37O1GTol8ggvKLJu=#?4OSTSNHr2KW@1Owxx*RJtqio@>5NRW zXDa z2qfrn%aSbNZ9?Fe3|S|-b8nKYQ3F}ztIX*7)!UFFc{VpEqfw73?;n=@0`P}DdNv|a z3P&Fg;$mk2_T;l*I3}Z0t!SqSgU>3r<7^WKrva~ZN&zUC+&N4j?rRbzxv>}yd5sjo zD|IQxi6wgNui%j`f|pEK)hk-4q;n|(U+qAn=6rjhkX&lclegkUcd+5}^gzT(X>sr8 zdUOE^Jm`!aOT85FIPhHB7Jyp1z+re>GZTL%=wCbnJ{oh0)8Y!nXR;;%>qX5C{ z^OZr_>+R_?07I?LNIv6qW|)rGrTsgi{q)HAe3s&n44Crz77V4$H$dO}7VGL#K9tUcvbYcF*_ zvM1dU0OeE=vF*pfUMbq?HWn0N`07qaP75kK!K8wHj0_7)4gl6kwWA~|l?a$$_&sIC za2ZVcFpxBE@>DZ0fIx56?}?0O4Y3e0E}XQ`_Ys56)FL&B*}KHd*(IyT!w)lOW{gqu zZMepwPNo?IrWVYbxs4w&q>f2DwRDw)7<)m@{D^C`9#Gu@8)s1X$W52}$9TJ~o@v*i z7#p9#`?yp5KO=`al4T3QYsK26q8G;owQ`&?OEu?x$kFEh1PTd9yH7zav_d^eb}Qoz z97EcDrFcl)Sg-}v;WHe?;59ETd>8!s^K1i>L)|%xOrZVtH0xCQhO`IJFL2)&o4?fE zw4ja|@Rzy`=`k%he&O?25k9VpcjR^PtrpI?9Gw8}Yen+dtczP%h5aqJ@fcnBH1m_wqSw(g6Hw41mdh4FA;d(1 z&o5we1dz}KlsFO@T=rM3>Qoh0(_HqKI<-!gCX%vptgbwCzs$#`c5Q}-&B!~fb?3{t zxB2e!#_HKNFD$K2aaV2geamcmFmj)!ad7E{94Ks(%P{2w0S!+i@xtSEd;y z2w*cXk!j7FS8uuP2vAe3h32D9Gefn1fQeec^JrT@B0kTT3A)5W6IENxRK7xY)mA?+ z*<&0rb2r2Iab0=r4OhfVZuV9+XbXAO%9J2r9&1H)o{HDK_T6aqN+iS*@)tt>As-uK za^_529-(o*5{w38F&h4U`Z`8Ki5(9X;oA@~&Y%9d`-uFN406QT)OiJ8sjqqdpIo7Z^!bxb1%j1QQPQz+&#j1>U^J2=s?1R_2nofFA-YU0oh* zG~Xw_7?@_7;!gzM2R@(_(dRrikk!QdGcU9oiv&PA{6+L|%kjp3TdpAS17DGQ@87-l zkFc*A2fY=)EpKJZwE9pvNmqCLM$oiBE$4jCJPntDzLRI*~&x|B$6;E1N-YwlZG*^j_Kcu9dx*sSG4fdFRrHbuPW%7nc4m7YRC> z>B=|E(uH`!1Dd()9H9(f1F8XKcyKY;IlpA?;KtA0knC0^Y<3uTw&0ObJjaNFtd4@P z#7+)f+wl;Z+0jVUZNzjC=kF~D8VP~K=LQiH9U~6` z>t#W)0|yJ`BLlV2V{Ay{70;ilbp@p#E(CD)!dGKHIT!?ezGi)$9=Lb3&5zd%?mgG$ zy9A%}Y`&bjE3oiDhqj2!ZKJcLIN1g*b0O?c#q{SEHArvNM`uFVIW-W+Wd~wlW+422 zs#9~ZkLzbC1o*x&uE+dbuZTCVD^*i5>#BC&ujHs2E$!q9zCsw;HYRN zw~9@F$qGrAS}rRNN)hWU?rM?T- zI3zz4Uw80eA!y({x8~f)nds+^UssSWv8DpzDg_Ak#Bcu`&v-%`+^f}B7vfdmbG3zc z<6aH|M;puDhZW7}A{jkc%m+Jmkt{+BIfeOB3TIo;SH}i9_)>yJSMR0&uQ<0C=!q0~ zVF<*G_Ct*apd}KRttNXmC))`g{HbWs=ZM5D;P(r^HG!9H^X!ci3Ica?KlY?D)1Enek(c#rG2W912Cp~ z61=!1$!XphlGMfa=_?1ZdA}X6n&*g2D3};=RA6OpgkB3v{4$aqL^8A$v3ZRX^2_kG zGZju$w|ArmAV$?n5a7t6;aKrz!;L9rR=B{`!$nMRuAmchm(arV5SW^aA1fQ0&n}<; z1??XC-)r|az|djsrWkH&BYrwV)x({kDv|?L0#bt!fS!$k0L#)`kSbMEIl!DeXkO+{ z+l7Rx5w4Dx{#1;CKNvZ-aYEjp$W?;AIg)8@WpTtV=gADv_>0qLU;;T)M+Q*sV8p3b zl*{xFMqAYErskokW?2?oeZNx!FP0pqpoRL%V*QVU91*)Cayj1Gn2 z0xPzrfEG@2DjIrtMd{3RSsOuiYv8UR6diGZrwh6bm!rBAh1GJ}>^t>8SKrfsPI;!S zGpK54TMnp_)nI`tdMmsBPcab+V*f{g4f`u0R_(79@MMXp<1h!n4%j#|_l#$A zOi$@VlJ+#pzh;5v4CD~7n2w$x);}{n+p5eOWZ(v3r7W821>*e|q{rswJ6=fsA(>A4 zzeJRl9-0jpz~T!Kip7JwKkzAbC+~m>b3O2j@+^aXiC|rIE-La}km1ljUoL0o*u5r; z-t-TgZSv?(=YXRmlS!|H6fCVIOPB++QY%KvJO!(x1>wln6bO{{9 ztDMOQK`{e(>eD0FU6oX18T_a&)Mq5fy( zQh|Ost1(fh!z2T84wK5O4wI?hqmWLmPyHILBsyX;q0&>=z)V#vjCA_5~xqYhwT-NKO{1PVMzDX zOew>`+9RW*(J`7QY`Gq6bd2fXmFo%&BxImm+8?a@!~*|t8ktnAsk3IHr*bsLQx~YZ zo>iONSC1X@D6C+wQP1)%)~N3r-~y5n=Q5gcJ8E9#`gE6lANbLXuo!l{JQJh&kj}*A z*$QyY$E%Ah)!u#`#b$?6XG-{w$mrCC1qz-ztQNI^_ z?J#(qBF6Pl$Z9UwqPPpZ4foN10bdVd{TmhA|0PI%c#IuZ*EiioiTDO@)yux)G080= z3x=5mJlxre+24{LkMUr8z#K(O4oX$-inqM>eXgo)Gm72D-(aM~-#=Z+z3aOOk}Aa6MgED9(`iM5z>b5kvdHX}o887jwjCexqF`UJ6dCbhevv>i*BC0c zekCs>AfLh~t$d(BrNMPx2oAQ=r01N=n z0kv#Ci`iArTFsudCWo?T{hI93s|f|*rxfcQe`%UP1xZ_zolV7P}IGx4|{Cpr92osLkj0F#7J`Fe0Y{`u+ zu;lBR`jqdcH+W^@u|IV?T#ndpW-}oC!Mrlh)HQd*9k~WeVsG;Ir~z+td+mFjRsWdt zLG+sTL+e2^4G-+kpHt_WddcRWUBqX%?U$^DBQ~rFzv0d3b7$cy2$ao(-eqAeqS-39 z@n<$m=S?HzF^pH)I1z^INS-A%HhS%!JFEUV=Yy_gbrgPmN>=2?q2K{Z8u$~yk^QHu z-!=dJQtZecBU}ogh87ov6hT#NnG`ReSqPgae$tuzRBXW|{o{JaPHoiekF`;EZ`VfM zzDXN3r9m5Y-5<44H9ylvxgO9)RnI3HbsGm=#xq5@S6&Bm55OdNUop;?DZLQ9+AV4V z7;xxe0|6TTEy>9@f?_fnscjjeK4DXM5Av0vURV6a(x&id@Qs$n#3`u48hfdSd5lp&#%jDRAjPv;jPE25X`Bz)e@Kp&8dOVI(saPimX7Re%(g?oQzfUYh4S zF-Jf-093x}42&Rdv?_duI=W1X@v07)Z^DDo)bL?`@Vz{z_N>fa16~;nw(fNdBw%pP z2pD?9?tXd@uPAEIDzIqSQJ@ERe&ifz!Gz3m!>+=HR=YLX!S}Z51NWMf42*@^8a^yA ztKz+W!+ZIt>VT?>0W72;RT$i!$1)fad~ff-Jw`JM$;7wzYuMgDTgSSAd(0{bHjb#w zvi7VHzQNY}2R1k&4H5C-3w9e9st*9}W0kis{2UgeZ!V?;wSFjaKHu_;_L~M ze|P-aA{=uX&!@^W?A>>1CUm0BX4d|jn#meq5diiCT*iE!ZD4vN;hMj`6R^MKWBYF$C%Bg6;i$g?PEx|1TDlTM_Hh16NEg^%x(a zA9ybFnmx%|fGE4&I~BbVe};Q^a^O`;mg2#7QVFu3gG3;)0OcaQ6#Jms9r=bm-?de{ z<636*#45bTAJoPqw1O-4El8^Ucs5#teS=AI->+PZHpJbdVsijMSARl7Y%`tDHNV7K40%`kU&TG_ z!xnf zKn_6xdpr*q4U;mIT{5~@G*1$N?FYHN(Ua~U_$9vwtx-yS0}aZZ#V15qR%WpfGNJ#* zS*+5+tuSJ?T9o#?gT%9*%FN=e(fMgKGcy1EPJJzK#T0c%g}&1%@Bm#M0A^!=sn1BC zj39e%(5cX`$;5+6uRtSp9omuG>6Jt&3Uo^W)&Is$Pli2Vy!Nnqa!*r!;h!>{&H-I& z|3v10)~WOPoj{i(wVM|kQgEfy0ycVHt z^7?m~7ADJ5IOMHJB^>gvuf7vu>JjNg?jzFN>oZc;n#;J3_D?~eJ;E)fj+wgMI_<}93T zl+~V9Osm(i)a34=J+(`Xo;1%uN^`*Og0s&9#!O!{U`%5*kk4;l*;B*nnbH(gPk!tA z9`@#XPJor_{GL)tf_e_eY8j1^o)U5oyh01#hdUrboU8`CL1@fZ1P)K$GmE(A;pjaZ zlbNbPN|S#%|9#4Bk!5Bvh1;EDUVtUN7JYTVzrqII&XzHo-LadC@X#qG=gI%^#Gc~W z#cfO+iKDex12V!i*;6;g$1KYuKs0Sws#xWaBwMeXdH(*5k~mL$_9X8!;#@J67g>f+G9LOn3!G#u`a5&FA-7Pq zb^2dagPs5~kjsoH|i zi}=5Fn)a9Ni2Do){<0JQ|2+NI$kU9Vw~F9xnC8~zZE#nupD_xZS8cAq7Zu@B4i3}< zlL8+5R-~E!HwXp5?ty*zBOK58Gwehq90DXBV>w|m`PYjOXDn|<5gsVB!~}FxTOh`S zN$=+aw`YH$|Ki@jr_=-=UkP%XpyU6o{&ZgI6cp-+e-q$ypmf%k^?E>)%^7+Z@2nnH z;TSNP313@Hz4FkzpyoIwT~p#Yl`B_3karKx7~a@TWnP%}U-AG8j$RAp3Os53WxZ|U zK5pE`fxGFUeRGMm}bGc$`IS8?5xYCjVtTH^IJreh1 z0rDDR6U(q!%)1R`*ObD9T5LI!;n@$hHoWNKdA`fAa|5T9v5o1kWg0ZV-SLvwxT!2% zf%f5{8!*H-C!%^2*J#y{jbOj^K&{BksPD|3<5PyGUWMYhjX_yV4rRW<| z#lq|*R0;qsx5MQDJGxN}zG1kp4nlBnSqQ;UT(~+2o*;hnry0v;BWRk#Sau(y+9qC= z=O0kH*$fXR4g}jPwS|wMYf4oi0S=crR3KxXLXS8~T9_vMF+?Lt&O4(wO-_-pv1ZRV z60aTR`-VUh97aH{t&s%8M9=^)%>?|OMacMFVvd#n1k5C)psyW`d2+!50DHwk(*p?pDd0z;cio&iB6^h)0m18m0jl z6?npc?|u`-V=r|jhy1hv+_H^qwllI7y~x8rU0LcI>I`l657h%N6(HCdxd{@>V77)f z`-%_-^;`tBZ79IA>}?zHnB=Q6Gz#psZ~{Jbe@JB;2f(EeK7fmDb=mhPf9LP7tRWJH zi+r=bu#tB>Dvf0FQr|5mm?q!+P`!j+iDi+#oRRsyiaGs4F zxe^m{g-fxT5Vo4X+~{Sk2GHJA z(c&8QpfDXrJ;+OQ_-u?ef)d>%i4iUgq-65TVr(_E00Ab$OqeKH?(WxkC^Mtr1TRfk zWfW)|Ea?5pB9HN)oGfBDLS{fN(~=q40qt4g>$!|=7JY6s=td&>2iSlCReyMf*qX7} z$C4dYJPrzl7K(Oh+iXk8t87i3=4|P z!tP5XV=lS0ERSmrgT=Waof&!pc{pmB$-4t-%mf}adESam9yNLRaPsis$hwxj3 zZ)Qo#T1;I;I!~?G&Z{&v6{`_YpQ^*YqtLKyK^8Xt@v;IK1;?_l>>z8`WxSPayIc;L zhXXoU#2-SLjfpn(lt_=w94RLN8q|6#`KzANc@!2o97FU!`Cpm8pqfA2RE05DN-z*i zhT-sF#u(XD{p|_L*Zus}skGfJ^ut%)DyG%zSYC1oF6z3ScNvX(rd%x*V^ki*X|CI} zCb`{t4neeyOg&1}+|!u7KH}f8Frj*&I9opkto+N1Qo5Z5m|Ay_T^11Tb~q^E*K@2T zA6cWXQj7&t$_P@D(D)Y_z0Y9xwk;rR1K}iqchKO7UXF7?1Ggxk<+ce|;_wg>1P#@) z@J(>xnaH*V+}=cp%J3<|#}%7V4Q@v(rV-ck2+(7m@=_W@J6{Z6xn6(IwYSkWJm2Ok zuP;R^*iBvu`IUseY7BjRNdS^7P0kj2)2G%GB_mC%N<(3loHX=~k9s2ZFl2rspVNnT zE+Toj%U!ug`5cja_yV86r#A-L@v-@fD-#T33J(;uja6Nn)#Or)-w z-f$qeuVmJJ5M1aef29@-5?p1*=dMgHa8XQjXgQuwNYUz;8N6;{Hkd-`O!A3KJImW@ z6sKqwLIOmoJjUPI%lDA4A9eTO&vy8mS`g4#f8e^*;L0>yc!Zicev8)Y9q zX|wE(4TZoIL{knSQ``8fK$3q(*Fur6@eKxxZsvf%q?)4CiO3E|e(D%Fs$TNlm3j#Y zi4g*muFMw^r!GbQCR60k;6h7Xc}8=vbz89gYTvQJebZ3-zKK3nI&JE)bXSKATk3c4 zSG|NcsnHcJ%qQBS<0r2u^$jck2*Ze!c~;7xS#}57bkT}D|M|gvXM(YY(BQse-x;ph zl2#5!N3#dU7k)@as51(Ut^EUhY5bP?{-Iwy++UhoBG*%iJ#gz)hfr1OH2Au7Y%>Z} zW7P~7vKFNdGDs{0=KIPxqP~7i;TsyARMXZ_>et%FPcG6zk04pvuEKoBGYpKqrtvih zwl$8QoS%9I4vr}T(Z&U-Mdg;ne|Hux_9)XzAV@|1w3frR=pWwyip`n#@G96~Ua z?Vj*<*lB>CZ`GFRf2A}fmQO2UT=s>Jpd|>N(GPNaXZlXUI0bg@wFV(_{Z+1xB}9R# z(X6m)i|-wt>)*l=9%+gYpE@29D2~iqx$Y4c7);=_J5B9nps#SS$ELk9x{$@Me!5UB(?Yu%jB_sD+=y!JJy!VV5|-!-)c$ zU_;fyw@Pt%RRw2j{~40Mt)a|+k~@a7Ax+D%`!XIFDzAommCL@zRrSvFG`c~I*ou={ zQo7-)+A?dfy9vb*qouavC$xDLFACHRgCBa(FIJCfbM4&%?xuaiYVHMmyQEr=_{wWw zh94MvZXGMFc1Fja0Y25Fui)qU)4{A?>W(|gp)2kDEjU)*TKwGjf7KEH3YW2VC7~;> zK86!RjmHddnZXUn+(p=QSJD|RfB=&JW>@?wJejhLgBP8UH*SD$(6}<+0C&~0c7#mV zr2Byv^7IIXF%5$rAHh%=dR2{BTe6fFjR8;jWH1jAFC+U28sP5ml$WKFY|7LGJ7sN; z+3`Ww^*=(DdpT={7MOF)W^dJUR;u9wThQgeF>lB3-5cz+ zygE-?@@s@@A)eub+qYqC213GhZ}7mFS(m`VP)GUS6Z@V761>9K-%-`=eQNi~+%ajLr|RwL4{=sT;=)KM1n8}4;g8sh&V{y`=X6bKNom!a)gxf$R-4EFWtw>km`zN&?8L#=@WciqM!n);#zDnA1Vk8?&FO(}4rsu^Y;ZA|-eRJvW^R!fLflKSfG& z+CWGe447N=c=$z_a0O zwp5gp;sp~0Tp37jbH|?H2y68x2M?5iE+Pt;>NF2-JRLGZvR-?_m9=Rjbf>KP9D zjMLonv5q+`_d_qa(QV}9_ODMDRBiG9MRkS<2NPjSO=fL?fGdH*FUf6N>Kyp8_FN(V zkMt0wcVQHJ6#Refhy?%V;u%3|Q?-h~j1K)5y7Hxs>Ki0rVbixz&Qsf)H(c)W1v$<$0Z5iSggOA&{g;_jqOE(}z zTX-Nm0nl{tKvJJ}5OMT_=r=id;3>0UkhmiCzf3G5#wQh-1*V5P;c*xuR}ShI0)wo; zYk%DvJM*aX>VdhovEJCJ6#Sn{!GC)(L=Zrz(~P)mg4hh@?HQ<`;Fx4=lUp>0vELH> zzjh)|+Db1YD!p|?HUxG82e#%b`F@BvZ>W6RlI~x|A#QRKZm`~?O2l#dL1%HZGa^28 zj7i+aqo6gw09>nlk5d@HtO&v<&4@FlRJ3PhTz?fniCTy>Z+42H6p}MV;P`WjC{B-& zrc^$Bkjlre;cSOUK3?;ao*XWfkMtR-eC9Q!^5L|k@)=5Pj4%sz+ab|NsrCK*O*waf-qVsuxU6JoE#gVWC2c@DF=+>{h%*k62f{~uwuzEV8M2N_o zlt?WDt^^BNuv?DoRd*A@+&zwJc0yJ$T`p6(K;hRi*ESOaKxvb*axgl~jTb(uYhq4+0%-Kc7Pg>7ckHcRGH0eo6oT?gJt;Osughc z_YaQFw-FGlaWuvk>skiN;DZcS=Ug50NoJXYrK<@%U`?RX$;C4V`6y6tTnMPQ1!+z} zO@kUUS5qK?aQ-DLi0q6%n@x&7z$QTmK@0r_v6XF*9EeC5^g-2#BwvW|EaaQn&0ufG zvCL#R?*vl*PYk$Ot1I?^8kz^x(5PkCq14w^LjzB;F9*yFfmMWhyKjUt{n-6%qEr^A zJv%+G;k_bILix~F@@ngv_2Bk{;4@&+d>viPMbyLKH<7|=7_p;A3e0^ZNP+1rSmRC8 zZip@Sm=6n+9YRm4^Yn&RcB#lYuo+$21QjoI39s&jo&~5OVJ#cLz2{!||MOj1#g1SZ z>v*Vu1WG-2H`BCl^0?mmRK6}Et0V&nvPc4BFV{k6qUE`hL+CeqawD8aKRL|Z;~-~o zz$&K8ogDA(UM2?wF{oiuFUi|LGGXY$?};$>a)wb$1tZdnmWpKc#?C7D8owvu1{}bQ z-q^Rxi@e5@r0g(849Z1_%P{N;A%0UgzBvV|uPW06oPXW89{1N$zc+iw4n-A+S>cY| zOlv$qa-$atHajBLU>I-d#+KyQ@H9t{!-(t3cZ{vcN$1F|Quhl~UAz&bmALCkU!0gU zfJ(gQ>|RQ)=Voi(awZ#lOQ{m!W;OYEZ^`Nj-&TSC-cq`P0>SyITW|o)%?9%n$*SIR zx`VRELaJXjtJFXo>*@)ER=o$m+Dn%qMF{F%(5TusQ!ywmxU2TeITq+(3&xGy$ErQr zq7m)5O@<8+WqV=d7|R9-W%9DiFo7H>kf#Pf3U^O$Ohnwh#(a_vkWvv+!1zh4_?9c* zqpZo=pJH|Nd5k)t7SyH{s6B`-9keJLM|ZE zLUt=4M=1O!XuXLY&Vcjiu>*7W2-exPu!`xd1wqt(4z{Eo^VKu8HIL_?)yq73V@p<| zhx%$-dIoa_Bw8!-dNs$3cpPUBoG>BduG%!~T+8}}A*bME$C(@`bt0}K`gK*Uufy2l z_Qjbfi%bcOS%@@ zxkL;~D>?wGbtH?8JuJkl9e8XBN5pGy)&oxxt_~oC2W2s&vQR3957t2>gYhuInPRVM zg|$JSBl*{n=v>BvNbit!Itn{_$YSmuAtVQ~m@XHx-q_h2WHGe`S#OW(1+vsVd!FyO zwgArsMLrxJcEJHL@(t8a3DybSs)e3`FAx!O)*7k%v6VqkhB!)`nW1&CwLil*r>SedmYfZYlhxaVtaouZaSwiM{^z0AWrp8 zaGnEZNOaRs!~Mk#y3*`-L|ROwT%M;#4JyNnwFrb$Bc4N!)+mj52q;JbGXs*dYEh0y z4BaNoXBFhvqt<%qfmU<-kcSLQ%_ch{4}d1KiGYU~ zA%Ren0=4Ab50D7+O*d0!i6-Co%tOs!*f0AJ9%@n_d;n`HXr0o@tvmnGp+?|r=-AgK0+~_dG8)Yddoxg@odc2)GU238P zFn3j_9~6Dwub|FuI-Qs8wEaKWY3TU=B#lm+I=(%2`qJ4soz}t&0XSCgq5-PtMjBd@ zf$d7~w-|;sA`CRASr0@x>tJ+<*&k7w9Ho#jG=I%<%JcFQdQ`HB2C!K~`WPgq;w34# zKrKr(wSgN-Q`>fTJ9ZnfbD99t^x=OFV4xvUNkO!%k`rQ!Q5Be*)WZ zT|uY#G&I1{DeiHY{^rjero-12r3RFeap&Oz010`YT~|z*`a`nYPXCH{RS7Eo1}pDB z)oCaom!koe0&b$79G*~*p1a>s2k8A-; zAj0Hj8L$Y{(r;=f11y5Ox*ef~(8e@J$N*~iPmK^XmfPRUG{90?KF1x)1I%_(T2{xa zjNbCypppsNsa42sU2%lFa?npkSIraGo!sSWrkIN(S9SSFIOxoMBy=&;<o7Lw}^Dynp$=)Mm2!JF7ISVd(w-MP)zoTMMQ)Z!HELX?t_dvUef-(T^;1AIZov zUGB(E{cA5H+ezd3J16x*)^yT(zO=WLa)8Ovd_JbP#HRN1G4EzzTkvo!5Bv(nIuq7} zH>N`ex&eB0BKnuwv6I*20dzH2UK956TKn5$j2{3CykzFdaP5Mt z-^`(Ky$Vq)GG%$wh!=OL4QCAS&4$B!SxUQr3gS5b1*pWE-mh3V0-CI4gCSjyc?$hy5cs_}xKnwV|&`G1|qONf(>SyGllUNrc7o9W~E+_3u$`c(Y*b8vJ~hGuuE3=RG3o|WZ( z*I60brOiuFRh!Ck(hn%hNzbS(_je8jx$QPBJgFb{8`V-R zlzr=`~d4&-0bw`5_Gt6~W4xe;6XGpF^&v z*gnr`EuPaF(;&~pTRjH7UauQ4e!T&=u$AaL^qEX9mkq<*P~<|LN#*= zhRaj&j;HFzJz9J=)(jB$buvBd5BQ}-+Rn&7z}8|?CrnLO9Kr*A^G=1GYFBJ-YjX2g zT5UsnEB@-qo7?KiTO*u#^uQ4fa*XsqJMML7;VRy2(Ln!zwjf_=ErY&!pdEnwL=hsZ z9xO%b>Bqp-Ppij}0fio0EyAGoAyd`=d%VHb!n3i9u}ZV=F5@Xqj8(uuSH*+F*?%;_ zoF)H2SFjP%`)cH3YuI@&G&*S0yG2_v3M4NWy3%jxrWklH_^gVc=i)Iqs+P)3pjb**AFd9wjWf zD_%GI12GJ)6wd6tK_(1o;c4g@>SKN~*iXs~_M;3@%gyX%`s*B2qtR-?#y~;NSjjkz z${nX~9$vzrO!4C+5(sSXdJHFM8b0F2;c^A{K@?>v!$2+gN4lz-w4jdEj#z07y5=wH z+KWc1!>B31&QgTf>F=dZWnonBsgl&k!W%1c#I7rF#A=FSH6@Zs*Iv?IP&pm2LS(o~ zP(UdQcs;e96|R_Ln9aBU&cLZfGeGH@?*I#tz;(DL(WX6l8NXd<1=#7hP3< z)q*!7z!4j|6#a7;Lzkw!R+SDoAPJ9=hc)9%T@@dD?3+;Qrv18HT)^%Ls=w3=+aQ|` zIE=Mp2_%sxM&o1RBNG#WI2}o7v2T*?eg*3H8VxXcjh1`jXO+&p!4oez4))ExQ~x|6 zKBC-fPr%N#d+!#AieDD>6?ROFjvF{Ja^67am_wJ1o>SPtz(W(Ga|Y&3jQ9rTnZbv= zRXe9Y@16RtY91any^URUcf8<$P%)%^gF7Jv=bgIUYkcIb_}mpAF~%7^Z-g`Ybx_bB zJ0m3{oTF#qM)IJx@Jis8R2-?12s3p+TX-o$XjM15tPXtv-*;4YI|k(MNuKjhTG*kI zoNw^Dn^AFP8)WeY;GiJe*W%~El7eApPzJ|eF4O1OLs+iR77an;oW@q%oSNnZAW~`( zj^?p~^wS%ysE72EPVSwW`}u)6JfIkMo8yC#O1*;nSL!oQ0;3da&JW-Y z2#U%lC8%KV2v%1yViXZM^!bdb*H@25reE`eIKP zwgWU^py%mA_QW;ykgMwXLX!Sk_zz6c0mJZ#;h@>){3*2`qmH}K1o~+-V1sOi1N&x+ zeB_j;_FFuy5XXRJ_3Zh|CUoq57wU$4iWv-NFD3_!X6TTwM8P6ie7L$Zuc22o@#vmS zrLG2FC7O9Fxn>Yg>)A-u%Du!>5o^TzSq~^USyPhcN+;x}|AbkWGs_~XERWXFA+}gSqpkAg0 zmjl=!k?4AThimV8$W~(SiV}*IlKL0*bw2y5g*<5AztUeKJ`>_y@u4X2Gwi8Qs4+KJ zXh&j4)b}R1(}Gp5c1yJMuN+RE$-@+!$DvgFf7E?@oRihH_S_goZttK-QK?RKR1~cU zR4rre1QJXzL9RlpC`zUFoVFq)XsbeK63Cknq(v63S>u{5q?|IhVZ!R;L5tM%pzaNwR?)zo!z1P}n?Pmwx#APpXB$)6r6^6BW zVmEeon{PSmlOW z=zZ^%7~4jg_w59ug4>aA&)zd8){A^e0XPpZDqDD0u`Jqe30Sax;p`%7xDc|Id|(gE zip$(jW(7~@fLU=5t_Qc`9*nb|H+hm$zwf)Q;v>%O;AMqd!F_=W^jw!rOH`t`i{An% zKnT4VlA&-hWToX0jzB+cV`IYy7z-bk!CyWAd5(=$o{e*XayYM#U4j!8d7R?9Sg$j( z&NG}dUX7KUjpjHMIR)@WX zR#+>;u=?+sy&B9Cwn>%^wwdL^JiLrQx+l?#nhjbEDt69z3tfD+bMRlUk5vx1K6Z6a zN2GF~J@O;)LjM>YzNE@|@Euq2d-kEXf+Kpv9-h%=ETZl+IRldzDF-;Kwi}DyqtAHw zR0r{-`ymV%W zbOw&}G8XdK)Mb9EPCcU%fCoZ6=G!jxTm7D5Ft@ZwBB5Tt9Ry^1UVpsh==mz{#IXpo zG4aktA_u0Y_+?x%Wr{DeYI8lJc36k9ruf_u&S*c*YA5Ee6O$B2saSI8g7p_>DP0)v zN!?*-t!C)fJX5njr=~mFZ>Sq{(9OB&#zaImnf2#a;1HyPUXXS@%L$k@^S~5k;?A_< ziu|HFvzT)Sy+~dGy$Jf`HT$eyWI%Q=;>51YUL@oddvW=o++IwAvxPtFllYkmOIVBO zD-0|4;jBc&__P?d2L5tgaTg=xh?y_~;3|F%bdB<@GW9&#PrWFV#YYdGz_v*aNjxRxwM znI)9&QmNB<7Tdwwsz=~jVFjg72z(D=`CkfFkvN$9lYZJ^z zQJ1XKTmd=)x*rca0CnV6Tu4-oL~O!BDZnhCg#tq>?lwn)-W6As#qM?F7^5-fXpe?w z;V1Fq^|?G0_@?OkI}j3G!)U6w#N6UsPU_%Wd|O2wH6)kf{Xfmi+VLKn;)|&b$j2CC zxyQWHn$Sz>{BoSIb?6cN8Ep{`zJpV3w<(7+$sfW83#_qd8TQU(Dd{XW5R2=pqawYE zM}>R!G#34gAs7hldBZS0EbE2T{~A zJz+@3XSyso6L9}c;zX9o;bM5g)U*dp{A}R~-%EQWl*jke9 z4#8tu+JkQaz~kn$2Mq$?aZB2RQ04HL9$7}~wD?EeFdNwl!Xri|-U{2WR(p>fj_|}= zBg>9R3|blJ7&H!)IC$nr$Dv{!xgdFbj}=o#I@&H$sYEK)+383yzst$V3ij{WuVd^> z$KVYH$-}C&j(THN^e;Nhl;xF^3y zH~F@9!6iCaH@1B+JC&(*ry|&*8Byk&6DlIhc=jLvNc9f(M(J#wOt(FgE93h2ROn#c z@T^>?3b9TYlqqMa@)-vvNvO4Pq?5!BAUcL%#r5{nK`wKGQ#(^o5US|rvM{1$zL*H- zpPUrfTTo05h{p)7M!f*S6I;V61zW!`e`3oywXi61e%RV@x#@Y8{A)NXXAbV@6s(8K zIHBCpTZUk9U`%&({#9=Cc}}6ol&N8vI*}>g3oql8iA?!^cp0ZkWXg@f(&`m)iIBE7>|Kp^$gXzAHNxU;P=doI>)V|ai98|$H0dY0j%1}CLMjiD0 z+;ciyh0@1wS06csH7j%c2BI|{aDf$!1emVUe>Kk9zK!p6GemCz9jlzR4I$I0wSM3D zVF^m3_OdleDG@1noMo&XS6IJ?HvrV;!H$;wnmlkII#V9y5K_Mu|$ zH?6$aj1_zwX!u0wn>SA%NMG`UvMu+tQ|pM6cL^y+YtSv7@qg9{=(lJArw0bkE>1wR zd#@umt8VN5{+V1ZRviLr@XU3Ga)%((xN>_>JUP5!2Q z#|BPqt$zeor$6mtuZiw~mJxcj$39$xd7JztLWwy)4ZoR5+0}w-1TV|fu@$zTU$TyZ zS{WCPAt8Px1}5iB{tb1i~P}2+?|gMi)@mbYq5%j)J!NI9cN# zr+U$s&)LTr4XaTI@XrOd$b*&p;o(0L@ZK3I6?__1j}aS23%Et zspOGerX6>VQSEqw^*-))NO88X%Ju4Bu;J_gBe)US7;BrZUf{*k+p5BRC?F_R_an-4 z{KKc`Sq=2)oKp5l>L#mScezx32s@sxkB)vk{j189Jj<+NcnmsttGjB8%NV)ES@p8h z81=FoQ(w#_dGL0trp`cBfp4got5Ffdr*p1K{INfed0@fD7hEpF@D(CoJ>FI`ia)V> zAo(WNQ%rGy%p`Iim<7VWGw|&KZ+C3j1e`&Z1J;pvoYBb@u(})6NXjWNH=8}oJ`y8e z7O8qvL!u)Y49YqdViuaEjYZ5VQ_QqH#pF$E6)ly!{X|n)YF03K|A4*bbU85Z+#Oj2TD0W6XTh?-+lnr0w4^4vKYTGpvT2F_LkR z8g}|DJR`gLVI9T~ry2(=K%>yHV^A6To^gaf!8N^Zwx)l9mTGxjE;4PEE&Q&{|3RVu zeT{8o^Y3l0Y_;`x(SkQ})Z!Liku9={OdTHPIab}{Q@kk1FPszC8f&MmZVV9}8-)V@ z$dXs|RXaulQPtWba&ZMkJ?7}K*B(}1=DSjp`VYF}ja+hzcvsfe^F^3Ogyr+#COk`;BmJ20NR{X{m}JZaWGK7cx;PO0 zUsz69*hrzLq{A1~@Q0$91Lk$27`_3v`Gx3Tjz)W6BpHdT7zm*Q%7W=Q$d@srU#&{j z3B6|S)mjGb>lj~~&_50~Dswi8eqZA?2TNc^Z&~ zgtYFdE*jvBK3sve0(2U$9nCb}D0arKGt5zC&cN>dGtE)G!lU}sa&thCNDuri!?$sf zy>LJOH1kgr|HPevM70mvNInjWmy$i0nDU+`2INO=n*)bR?!HYu4|B)oPZdNYo61eS zs>9++jn+Po_o~o7!?n+{Ugg^7TRi=H)l~1pd%0v0gwdkK^Su(g9>FV2O0D--v8R*d%Ti<8z?NJ0|R!!>jgpza(9Zt~Kr%N#Ww zq=3NZ8E9S$F~kE9(uWn@y+gX20lJ%pwc>H{>uibaIATgL>HYgI#|rQBnxo47QI0N< zb%Cr6j?z)9ZfjR~dqiZ6dKIS1w5upAK8&QU?d@xEJcIuE13JaH$gvc|>8Nqyy=Zg< z9*bUHOQs|yD^6nf-;W7K$p0^;Nh9srPkhe)Sl-&>gIk1dM^rrZ^247h|x z2so1%)>5B5N7;heinnb)3=Pn&x%Vq@#>mWKC0CF%8b%v+{f0PVBOkK`4xItp=Vpg7 zdi&^bzX1rCG^8*)1h=%9k`byt86BQfPⓈd(3`Cp)FS3X0JLl_dL&xxHBquHAWeA z?jd-#>MrEldPdCFY>dY3NO(a{%S;*|B||esr~ke)+A458Iew>|751>F zCUqJ!nyxbHUQ6yIRf1{yL(bZ4(yzop4oTk#jsb6Z(#Rj;#)<;(g+`sDMjnsqH8=Zt zd)X;ym5QCh{TX+PX|*jduoDX#T9o0`;STf$SNc-_J;MrU7tM2yB5ya_vxQ<)-xA>E z7C@O@1Zx2t63dZKbafobS^``Wp#J_Tm_%gN%p3=AbruJjnd#tqEz+x*9vy(lVAy%R zTqJ$Km^q8Z7)smfGM*#Y<~!AjUil)q+50v4h%9IdWE0~g zPe-~e;4`AE!h~^0Vl)guxH@e?RXKsZ*C6@|7(IBuWzsi>Qw#PW7s=0&2v)44U{Qzhxt3`JT=TSz(1U{VHUzdKjh!FWTR;FQ&?qv z6rLU6yL{*?^=!HMD7PN=Ok@#RGj+ZBpkNIEDd7S7u{(TtHW0hbvkNT5IKq8{G1DE6 z`*?B za!~`J)_TkuE?s0sJm!BhbBaZt=rTGzrrhd)ga&!*_goc^;eifBe5wYaLhELYwP2xc z=?U>&RE(2`q?sIwkHog!s2!J%ER-cKBpFtn08zr}P81YqIo%|y8?Hfs;AN6~O51XF z;L|UZR(G;sWJsd}veN6n?SeRRkd@xq(*=P*SFs8mWUIwqf<+%%!qv^Fk;||HOl9?c zINgI=+*JqeJ`Z-EddU6wrOao2@uZ&^b*|RK4Oo2iz4?LJYM>BxNm&z=1l`rpAB+WksF ztY`3UPw`=Q)rWI>c+7uzLLd0Lr+VPW+YM*y^B?Mvq0UP;5nJRSWC#T*iOK`qepA{D zgD3yvBpO`fTFqlK5GT}JQlhkRwGg4XdNY!FPZ3&)K~t4@d>3eibh50B6(!Z=r;`hi z%?Z;96CKAAvX1dAp^m1{PyePXI$>;W51d$y+mxM_fJ2LTs(W?h&xg=997wd{K%zP< zUlGr0jc??51`s=d*06;)+2ZdP;d~ntu({At6bIrD6JmAN5Y7Bz*V!YhRlr`HU3_W} z%UAfX@f4n-D2%@kg9IFfL{{li5292CmP#P-=OrLF&OXN36o0=PFpTm>*rhWed=c`& zhJm`~#-!p2jXa8&2;di&p~$0j;fahMJ1xwjuz0CJ*3tj|1_VB8wGOW<^N=P2brLjL zfGP@$t2&JH&1tojg^?)jKm?@-eocw$_`iTsgp!F;R9(~(mT<;Z#^(YF6c#&l(w7BJ zRNbQiC9OkA3ZF>w5}rXNC8y}$eGm*plupH7&;?kcv!u*@D6_CSzPAKfg%??o>NvU0 z1Lh|Q*dAiH_0CXK{csKZAt-upQY=&jjD1cT3&kRmdtjlo0bQeDg3fra3(EB0TQt!K z`H{dv30i>#!$Jv~2b7>I5{E7ql%Ol5`hiV35J4O~{}K%k3yejyB>PFlm!knu+7kAyoK&;E_YIyU4o)exA2Vs$}7_?&q}jvT@Z4xql7 z#^9!1c4GwdXMzA7ab2=T&neHd?@%*FuYXD5`%7RFD<#@q(oEhILtOrM1r zcGp7l2`{0a%x;BHgM$Vc9PkT8cIzbAV%3ezsH3XR#`MO^q#I_kO4;ZNnimwrIZSRt`d zETrh(4n`-ugq~T{%v;@hR13YQactEPTKG9Kgc>|2J%s;>O0*xsyC4FoR{t85eKK1O zu$)f>&xi-tavXuzI-6c zXz6iQGfVoo6Uk4wADQTQ`jPRhiju3G(p3d>uyCfm(Z$}KgM~A!tC&iVWfv*gw6v?p z*h$A4p>GPzlinwzrD+@-2hOkO0tBa_98Y83gK3h^ZsTR4$V#9 ze%vsFQuGksse+2M2{%NecLL7>&^OZ(`ofWKCvJ`6c{Yf2p6Hqiz6rJIN}%4@T0-QqDvZz>gBbmWL2`X`NexaCljTW0cBWa6`M=hwcrwumt0*1=lm~ zz}aSE2aFMLfI&BpvVUx(i(XmonsLBeh9W~VP(7D9cTleiok415b`5%E*FY8B2BE?c zSt9xvFs!N$jqn8bzrhif0MsHeQQJaHWRR*m9yF9fPp6krxAt?iH_*@;Xg$+d^gi6q z87*y5i_^j~U@rq5>J5oTs3Y zKrhC+?Au=*xk5GAk0h!;TyQzfw{dI@eS_~%;@-a1tS8mm*cT8j6m`u5FAW@ z)a&pz6cJrRG@U>z?`^l@@RqLz(Z~|VDZU!KfbJ~xh50DFfkWNuh!1bJA_AWg!!uNe zVa_unb~VyN6gHNuMF5@!#f9wxlxa7&0_SJ1VBMfcEyB;bul*A3AO-Jc7OKYk+AqyQ z1M}V2R(Lngs)iG}uMH%gPv%s*qYr+@g4~1gi*nq+yZMaea6F1}MdTB~yQxMihDKZg?++yvs2JFN%Ff^kHbzANn?_xb(2!@oN+Gg3|87>A>nC_jYOGH}#p1n>U_LLZUtKMFJ_J2DF#1(;J6b7k*`TKLG1V<{k<4z@bY zO{r5sR}}J?okW_pR5WSa=OBszaqp&ou=gFxH9z<|`%nOxdQa7%i+j(4 z3wU2ccxh+x>+D=y+`*lzH)cNz{DZl!`rXAe3%X=%^g+pUZ1lI18fgZ&O+7B=Z>?dW zQPyj!axdckFDthNl|#*V2`KoAkP88sUg1C?6BM;|_WLXX_A`ssFq`=0Ft#-?y963- z!f-<4+<+#R3wN(7eRrA zF{i2i?6q0wj!?OjA8Zi`%?}6)qYlRx!#|7Pxe|u}E#3j{8IxDwrRU-O@zK-tt-#7H8O3J( zGthdrvFK7x2wAxcTA`$w;adTc#-qm%9YBSg#)jd(>YpO306;6uwaxHj7`HqlbO0r@ zuWZkuJ^&EeTa0LZ-NyBAc+7_wHOa%c4q4W%ZT?9oIo4P?KHnY5-LZaivGI2I7}vk; zF&~v2=OG6AI?!-5&)Pb!r5}FdizSekXnOKE;+$cEPTT4 zI-dIu{J=))P~4((MVDX2KEqvt-n6D0i6{R;^r>Z3&?znNa9Hfyi9_~gF@syj5bU6M z_+&XXk99oB1^Yk*lw_4iUn`>q>s?JB(D@ij$s6ZmOo&P0iOMkhE`X+-dFw|bagE!JHw215 zbyjWl7}vfE?kl+g34wFc!&ve=y3~7&(1AM#OG;EuF5CoK5yOud&ggpP2=iY0N7t}$ zpnVL%$JkiEb8w#=7Ena2aiIVr;iyY+ZZk9vp0J3Uil0Q!zu_F&Y_JL;fP~}+vwDWZ z3V^ZghT{!r=$RYTUo0YZ8m5)tvux^_t}UPVGbj6j4sZuIR;z+OKhUU9yT~K#6=$sE zN@vw(V__ZW0FQv4GNRu#M(|8b5F4%>V>6zC&3My&JE8w#F0R0OCntihyUUbW;VQ0o zn+N%n26tNBt%br}*)?#OY9em^-N6d$mTo_d45+jUuuT%88y6M0F|uAos0A9~0gewK zTngo3+H?ha;8LTWw$O3b7Eom^cRFA_0F4IJOF#XsveUS&loTR7H@4_`keHJ{1GR8# zb_@mHT)iMa8jC8%r4wokTDQAW+Jnt+Jqp;{7pD9F3>rwF8TTmh<&?-o@E7RM+g)9Bu^IUj_ zM)Qu@oXit1Do$p*s&Ng{%UoW8Z#|cP1i#~)%Z!?TE;FQ)xjg-Hrz%>F^L=h zLQS`KvTmsKK=%Qv2aMpiFn_;7FSr`7Eklv$_(xP*-tqp-e=m$R=70#5p!6f`=Z{ch zZy8;1SJFloZBIdV#UtO60i`LIc}5B^fr^(c`Ut&j@H#)&3me=SslK^>w(uF53HmnK z)~pR`1S+YCx)%yNPNHVi{6x)=PKf%x`JD{EW!uql>$1efU!JMN#l^53?OI$shC}Ae zcyi8r9qI`0cCfQwVLX*G5BGZ9W-_rGOGMuG(_$@@L>)xhd|($`y{h%BOTLXSiSR-? z!ZVCek$e_E?P~pis`a0+s(*!AqZ&mVpWdjlM!3 z*dmWo5NX*|4WbqM_w41GXGMQxA9h++2tZ^9V*KC?5iy~hITwp#otNP06q6y^;7JS_gFIB@ML$fJBPSX|vebFt;TEUS6dTt?0ngGFq~FS)Dd zVdlui{SEtoCKA0cI;&dm?h9h}yNh?Zsy>~4TJnm1xG8ms@_Nrzb#zXJGdkIyx4^`O z@0S*&&h9+?hkHu%S4LN&u7Z0QvUdWS31~jWlVOXd`0891^%@ie{+dk((+BOau&I~< zBO6N2MhC0Mn2Mn9jjXICiLm3$pX*H+cLt47lAcB@er?68!|L8ds!A{7v&HvSQpW zhM2d&w}$D-T##82bZD2N(pZNBvg=JVUf#poyz#fV1(4@JcVuS zq)6vBe;to`aL5y5FXs_0-uk1MQV-xM$X=YjS9{;G&UBI=Lb2Mu^^4NV^QS;^U!nCj zoOxryfTm~K+CsE#HP;YtzA-c$e^Fa3UN;QjQN&=UxgF?5`_&~5FHZR0j0bibuO^Ha z;=pjmqkhHP6MgrVf+4NP=}qis#dw%t05ZWkrhqtOgs$|&#uKfIIG2f0i)E_Pn@d(V zoX6wxcXYj=T>|6`{t#RloEWrAmKVAiMIhPjk%#Vs4YEDlkC#LJb^ItWf^lSnGpnNe zcHQ3}Fjy`ioB^g@;f5KZ7(zYKn+I?g^+3*NSpcHe`{o<-+*wx zAy8C|^j|%o!1ob-&vD~%>A>OX#*(9_;Dn_DeKRI@UpZRya>9JC6t>WzLC8$?+1v^& zH#n{+fR7RMBLU7R_<^22o{rr70oyAna57ZeTgGBzR-c!7;TZ_ zVBGgH4m}uTYpX|hvl=$@0Jf2fBnNaN0iVXiu6~8JOZ+t={Z2pjdkn0;E(_~gi)}SB zt~(VQ64{K9WE(hgDQ*|E#ciu`3{qDf>-Q^LY|?}#dt@A5csp{5w;P^F^9}YGbvR^+ z<0%7|@uwZAEi2+O`+bVxVKRW$t}ete*(JX2h(;e2;`<%ebVkIYiVoX}*(_F2sB|;j z@H&Jae3ij&LNR~Dj1#}*`_)eY0p1!z<@lj&g~$Wo%)lTK4lMDysSYL{#rXy{2>M~E zzlXcAc{wUe4^MRYbne0C#Ij733T`pxT|+WH)0GeIu}LiJ|8O|U>;dMG>SqhfF4;s3iaqNpdML1G|xbsTQWWh_vo(a zs2UC4U~&c!ApzZ^-I*gY2GB>l0ll)-5r#9ehHx*mOUsG`Yd9SbSU^@hnj|nYZM|m2 z*Aamo(=KAEjtH|tDP2bd3{ty@Rs_Tc5|UI8Xh2pZo&xBctaj)~fV0Vo)buYM4}eJ7 zB?8AKCmz}g>pNf~Wk;H?BWYjs3k7my2vnpo0GZjXd*ZeZ5rB&%5p)l9jKDr;4!X|~ zK?V;LI7=w-t_qaK%k=17tJ6v{wPRAhEhTINd9=mV4W;qXY}q0jOZ*3qXfqPRl*2pMJdYQv_Wng zRDAulOXpIN@kK6!up@BhAT!P-_*A>h*@N&q0Ket<#q5|}rVEiygypr&jiMIzg5)M1 zhzoqE7TkAM`6Un-S}Hr?@*7E62Pi zo>gB6lY|u#?gBrWu^`{}BJdG@0$9FeE6g=yEAT^>BDoTbH<-Zk`|NJm zbYKnH3&75s%E1la*)6!JCv64hmz?PYJg5^I|0FCb@E!p&9uu>d7d4cWR#3SEGmC#G zUx6@UhkEZ6)_v>w5m-|I*T1u$<_lu!ZN!>>RI?d6-NKv*i{M!a446*8{-5k@pi5Uu`G zCxR$!OZNM(D)RQyhEd6PXw1gr%*AWDTqvzc@+J5JNlPF19)Q@ES7>hEo;P7cs@ii9 z8GMEIsMFYE=~ecmLxABL4-E(?_>E@!^V&hCM@^Q*s`;c9%JN5N2S$lY;h* z-h*1IMi+gxM$6gwkhf$!fFN`MTsHrfYHit;{06=y%AuWBlz+jMwuswOk^Gb)dF1X} zACr}EkXi|Q$^uL}u=ybC5_rq8AG#-=741rHd9&jLXajYsCZ2=7`U>O9Zhj7Q#uFlI z`Ex?2 z5&pEZXS48e&}(kfmvBLSZ%*C}P3j7mZbGvvFE9~$3TB=AfqVl4&1RSR@5F15a4`5v z$~0Iu+}@1l?1z;Dv_JO)M^7+?rmcWb3!N=8gQdc>T7e3{QRv}&xqJ9tA{i|CJ-QJ` zyJDPYt52LWY=@(`(YF1NBNU%Iou=IF>KiLL6-xIR6i5e_Ibzr00{>wE1588(JaOFp ze|vOzAh7J}ZYl#fK*vy9RnzD&!e&1kbDvs>hr$R9aK1pL@Q&|f=IbtOv&F_g7C3@@ zZ3G+jD4+oSb3g%fnD>JdM+7*<)d)2_^qwP591!3hq*eRj zw#38tDHi2cs#hE@mwQLzM9^*Sl|fYlnmGNpUpRb|S42H4UFHpCw(wZ+PMr-ia03RR zz~_db=DZ(0ZKq-1n3p1iS<&=Xj>Rps(p9yEsmJ4X&t93O_fQ)9`mI{;y3z9%;2f0Mq_9{I%<%V z?g2Q@zwyP!xMRyJkPT{i2tGK*D8N@sh*`rJauZ^-gnHt`Zv_7fA3#*-g)du6JuH%O zW&@Aq%os-~0?f3Wxp-n@04ggP;vF4)*wyppv_rvp5z>2#U-d*U{?ch}{`(7{U_RH^ z6E2u}2R{c%nVa?S9m<-e%`!{PZFTG&^KA>5>EqShB|SJTl9t-Tn{Wvb*Az7rQ)O$9 zO~c-?aF`}H;T#8*Mh>uPj%ay7-(lnz)D=xG^S>ypVftWUSWy9A=8xM1o9S!HZDwPw zbmbrX$jAs@o--<-gsf4)io{XDI}Yqm7!0w~q9JxYo_4@rjhfVyg_^V*xk7?RdI#UWYi7~Jgz=VjIx{5cuqkX?rI-7sQRqp61M(`q_CE)|ONk4%4hTcYSB+!wR zYs{&Z>jK#CDZhUimaC+Ch4%3{ zX+@uBE@fAOCd6ET_(?Rdk+F&9K5Q&QbQJ@!%o|R;lBP$HezhubU{qzPHi>o-yL@qO2gA^*Bgt<&Vw;jFuP|2G@EiF(G@3%zxcNu&nBXdDP zZe&phwjgJPf#7LMCh?K(K;wb8@kzmT8?Ht?d9WC}q1qW(pgU^TAeh$;f|GEjt)B6^ zPCere<|_ICgB6hNWHjtKHS^jy^YAjXFjbFZi}8SI;{4g%{k{LuzO8p)snH0rH)2ga ziS30+C3qTuB_s}G@$8hqiBG+T3%lBN6Q3{T3vyiac?7cuhnzgO#b@LZ?(Ep?G8-Ar z$o}dG%eDq^1V-{i@f4!@2sbg{Cn%pERN@fw_xFHUcw&o4!2jZ4iY3~w;GoRmooZe; z9hL_SPooy|-8LyZKR}AaHKQE$E_QHOOZ-x{T63GV+R~8tweNK?>(ZS zvEp$HBn1XG*8JvTqCrw18Z>znY>LN}#Ri-{)~MfbNzp6{GuJDFIL!sJv|uLqYXl=j zri!_OYl?QZTTEnq_$TURtq*!_Nj?U@#1p?2sFbE0s1$5qnOzwMB5H@rhDt$dk7C1Og#)Mb;N8C94XNav9fB4!`En1BGZjN~JO*mXo zUIYGErFNU^ncBs*U=8Q5$9%(WK1n{%W4;Jvl>y>aJMywQbJQaYfenHOe1GfDxwJ`c>w`<~*X`C(SxnZK~}0&??4_cfz+*bE2B;_^%G ziLPRpr3k0-2~&`pE209Y9zHP40>UnX5h&Onmddx}ZQ638#ID?p;OGk`0hp zy4xemdth8`csRozF=+&bM~3}7Ihh`t?P2j`Z`vadtMKqa01>ph%eNG4w8bc5_n#$iGGK_U|U1i=$|ZEi4g){fLBF zq9D4!n{JMR1?ghzQIGQavhx=(PsvUoU3B6SNeoOEB&M4jR78+l2T+8#c?2(kC$iW#?=700Squ%sNn~ea#=2l)y8+EnxGuI8T@bs?|8oMn z`~#M{7O)HX1q;~aX8?A&9A_4?whs8Xm0XTudVE*1D85e?5e%2`0xCBZ%NN!-FVmWE zn!)TG;i%xe%tJA`{Q&bQ=xKCc_@VYViG9Jg0qdo0KiW2)Yf4Ni)2?kI`CCo=Rw~^@ zaADj&aKcz+wG@{eb8uj?T3gN~&aN0Udw7Ka!7N09Z*DTw`=97{X+oH=3y?}AOS?yVoddi*5!7BFMB!5H4cjLAdyIka&` zGEZ+2*%ZqOHUHrSRQhMp1Oa83DSIaiP^PIPpp5oXfHL|6qLJ>Ii&4q;Ju?LgW8E`j zFxyXZ&j3{Bf1&WTKxMwDXWBl@(=+X6O$Kl#tA~Iqls#(%ab_qAZr|D;fd$d6y$MUm zNp3ArXZQ|}g*x*^t?iqywYTe8Lko*`kTjrt`escVV$x{B$i}2;%EqL@{9vkGX(}j3 z72EgAcxa||zt}PFPjbHim*$ty^svw@T$)16)?8egrd(Va);Kv839Vzq(0_9|$`VoX z;?kUei1HK3?~6qg#>*CFyIdQT5;2sQg@^^@-^+`){;O!WSCp@Xbgd*rC&9+*< z50~6cUsLULTm*+!bLUW?()<*tG%#JAb_fa~JZz4`nn!r*3FP!a5GJRCr@@c9h5Ph$ z+4JRcNHvaG){r@HK@O!|P!w%y+Zt#sF&6pZR2TT;g)3pgw1&xH!L+H`zqPtLET5^H zGyadmzryk#o$+4=|8mR!n;HKo{L3u={%QZMw31q+{h<%3L8)liW_Qf9GrXMW-tJgv zr8H;_AIpVYycu5(^9@HBhhk9E#(Yq-EoT&GEOrN$>O|}OV{PUpVBCiu#uZ8cx+9F% zEx|s#ol3NvTj{@?k%0?fEWRII5;y|v53j70p*RxoVn$!Al&hHW!>)tS$-M|9Wb2kq z@F9u%B!dA*Y6NlRy&!hO2Z1BybNdjw0k_y$`+`(&UnGVI8=*H(xFX zfek@~#V<7p2M{lERmEqoyFS*dnrI;Is*Q6l850fmW{zW`i+eLMk_;GQsw~HtDy6F} zj<~a5L)B0zYPLmIw--0SuzLF;)Dqn^_j2cq;OVT13%1}h7N5QoPNxYkcAbfD{=z=V zQ?+^aYolWJQwn3_+Nus13x5m6613njTc7dZOB`LNiC@IV@e2;6m#oHL_lyRY0HyrD zUKpgkt)P1VkpL|uyMJH{_1o839Pw;kXI0?y;OlHW9Dl|CJplgLUV%TaRiG*Y76Nmr z&cQ;SMw%?J5T`K@*W(2&WbtP#$UPXpCIaSxG~`G(-*t|N%v9qaR za&*89zjx{{Fg6Ir-G+US_YcI!eF9+d$vsGDkB!Eq_e14(_qDwM;w%7~yAhg-cTQ3R zK%ho&7@W2jK!qwqu6L%Z6=?mg5e$MV?U7OAZ7uO4BV@ygzcY#(TcF+t{74p=IId-5 zx$o;Oqb8L5%D5m+90v}&anv{j7Bs+DVgURIMt22#nPMNJRO3II#z~oY4HxB|fqMrP z7@>E2kVzR;0fL%0wPn<}a_wyU=)69&fPExyl~CZbAwG?Gv5a7ns0vhNL8JwvVrjDH%H&Vv|X}aR_&6 zom)N~UZ9dY_#?T?T{B0-zMvSlaV9M !}%B6~P=6QVSPrs8kGOmq1-{LVDjOu$de zsELKXQvkN2eC6eVVaB2(Y#<(=sC=mcI#%hb3L_K(v9Xt~P%mi$Oab_W$OL-`P7Gy% zjmiR>e23{9M-8e%7x-sP*q0m$E!P*OdJ?H5c0a^cqmPcn(*#CvJc{=3*%zKT&dTMD z&dR#$RBTTJxBCGOP4d_v`2e~e>M?ToEwi2uo3@ipJtSfX>BiL&j*1*UXXb!5(j z>hJ*^vbBsFU+z5>7g0{d?p6Z7>hPQi@W;~`Woo}e%$9}{Zz=wk`DUwHdC${5U<8pT zZbG&1`&-a?{+Ig>Ye8q>=rxY2IHT)jiz_~oc;J6Zt$_fbI+mW!x^X~e#DII1x1`UY zpTuM<^L;ndM^@(?gtA{XI9=Vd^JcONnS5dQZP{jZA1Ajj(*-YMZR*$sHz7}3WI1Ir zOkrFFAb%5HJ{9XKMt?ef5eh|yX)#BRPE*t08e#D#Y&upkDG zz&xc5^a^;9Cd5C*SoCM)0YDv|Z#%0F%=tRGsi7ved*6@mH}0*9;T*wqzY*Sf+A;NIZB>(ypYsNQ=?PCj2y2p3+}?8MM=cA9Sl zD#*6_M_gnCQ=k)&89TL>(_OCwGAObbI2%XGI*@F@aOjv=TYwWZ2zgzUCJ&m>bViI( zj-*;*G8rd*@C7{-<)gp5VOY|R{vJgE9cg65B!yspoED+$$F0S?kV? z9kbw_Y19KRtCVu>Nv{{yTu6aTa_Zvk-!YSw$VAo#|K5FE2(0pYI%h2BB8w#o2#}u_ z8cQZ2W}5#5^dET7&{^qRe<#+uxjp!aq2GThIrg5#fi0jSTK^&j^u|v>OgQ zrGiba!BsQSzRYoXj@l}P6B6tihBkaiR%WX%DBhTlSU1pY3Sv^dhXL;TB`5?Gk8&u zg3ONx?8Rn0D>qs(91l=w?u_1Bme@8?)~VnEcw`Kgjo`ajOhv2yZFAIg9RP$IxUNFU zP`rD4LZE|Me!YB0A?-zf(yYx>_lx0M9*_ZLFY#X^L`Ke&LIcix^b-M`nSe`CHM;e| z>rf#%&+$IRvm6}+XEyplPmlStF6#vQUl>%d?RhFJ9a1+z#$aN0XKa&&fH%|!;S~2v zcLHis{|1|MUVc$V8cGCFFIITBsGhGEf(gUlPy%OTavarW{(R*MibZ@sfRI(prp z?9+(LzuiesW7571N(8`JGKe!$@bHvuuxca^f@nKmuWB~8Td!dH29BiTa`SD7AO4ri zvlyyQnYliUN+xa*a&oq9bm2NHyGbqj{@cdy^WQdZUvd}@ymR-J3hYnzm`(OBW6_N` z_RR^O-Hh<0ou|RIv85?=ab}t_FeVnt#D|^)+;OU_EOw*7stj+0~JuSs(t^ zi+uk~J!z}$hXy1^AajgdHTy|65n%_dy`-eE!`SphpLHCYN02^qY2!Qh%Q;lX*%+NO zNGpYjM9{ypX!^=LYB38fvaZd$YTd4hlkBbu4#?)_nxzN=z6E0d5)XezO>)@n;n;m} z9@qWv-Yt?5_N7hx&yh@M%S<$4Dvl(^vwQ{jpzaXZ8|(WrVUyiD+(=^oaPNfGCtFl z&sEw793!tqhi{mg@!)02@D1O~c<{<(_y$-(NVZ6l5|0}*9@M0SZ@4MrLG@wyhG`j( z7V)?_;~@%$8*a&X@LFZ~hUv(js@?cUxI`Rc!>F2%%;IfJJg;)V7M_K>(93z566*U* zl%gFv5*~%MBJn^T`5=S%9xJMjg-1+sW0guQ+;EmMbu7HBk{ink_wNC?wA2X?t5{KJ zjwQKRHP=z_v`TiArjH~N?mlN1wIMeW+7{n~o6p%%=IbbF-{qpM+XIa2S+}8kbjxpR zA6}xvb(=ecvwN9dckgX_NI+q;gu-s9K!?*RF#eJ1CER(o>cw=r3$pTMWd9x{lYDji zv+|v)^2L>BxwxqdbVer(0lET zm#X3^Daw>>9O>jt#daqlU@39kSp}Il;J8AZyzVRxYz1Lvkp5yKZ2g>$a@|?jE+a_R zKl{crmz%aVTpTRXRIN_nm}P;8g}7w2zx4by6eklsdN*!@Wim&m;L7uI&f>@v+<0Ej=^L4X3(qodBU5nSc{wL+WD2f3FXv2+Ou=pE z<(#6CDY)z`LS$qL?m92$q>N0tRgtv?RN&vMhE!k+5UM*Ibf_>2lulvuG@VTfIZTN2L!_eMZ(P?(4jloIX8G zo{#FAJHZ#A1~44TK3Q{vflMv|XQ=sWb7zJ%#Dw#X)+*HsZJ_Zb+3>U-899p=yqz#0 zfRI;wY2Ka+wIpXlJ2i8u=%)f7mm|7)J1)?D4&4+KBA>aU4_1p$)?4MMR7~<>he;Jl*lPA!O`$HJ6e+(WPQeHnC zQn*aVAY9VGwZ5Mm5}C=>7ObSCZu37ORXmCcPQZGc+Y+Y<&CK5Ju=aGudVPj+3!Dev zb4PpNntGY*)gJ;hs&zrDQ(Jlw+w9cJXVt*-iH8IH>514?~k89HW; z%^B@cSB5}465~cU65}rt<1Z59FA~4N#7xp8koYuI6Iudb;O#4pjN6Rh(0Pg<3CH>fIqf~lJ&T)ljL{J0hNO&?MmO;5`tht;I1OYLi#RSr6At zxLOv_a;e&Tt}QyYJW&5>;Bd*^{cEeyLnKfL_aIcfTg|(tP`I_!qbI|h1o$cAPt;e9 z7fqTG-w66h#moki=38I>Yl$*XiH*`CMQbpbHk zr32b`6MF(^-B?JmG2q@O#sb1_LE;a!R_FLaYEb(q@V3BV!&?db2VW0Yv`=*MDzk6u z_Q2u3M(8_Wz}Q1GIK(|t<5ciWggdgRY;<`b{wZFmpW6wQ+3@Td`U0=6H{zzLjMLew zDrkL&ma8(teN%V^yhEUIPC@Scso-vb36zj4*S=<(*^=r*=x2N71pQQtC;H?d6c5=S z_h1qaLf+^4!lN;Lf-fTeb3EC%Am4FbP==>VW44ySq5m)zJ%(AO6kUE$kENjZ_Q#v( zxTgr5XZYDGC*p*ahs`#>yK)>@JJcXK5T#VTtgIk#0*@k+6A%UM!u;N=)&*a)f9!bN z%Ex?cpY;Vu3Xs^VKRrSU%r2gqW_c@eY;Ceo@=kD=@UiH0d8&U52TAq@c5xrNj z&HsbSiLI($TUm8&9^pNoz3(kkJ@5S*n=}qK%cs#}0&W_9gu+r_dd1uOb>;0n-PH&W z1Qo2(jU|42yYT>=lPDwdj>)f(RuyW57SbJ=R5_kX>Pu}A3_Pwi`_7a8#lcx+tA9&5 zdlgY^VT7u7@CJI9MUsLl*d^nuC9C9XQV<%}%P&1;1(M8@&q|G~cVoB<+!< z1-r1(S=BUqr+>u7-kWUxmy2)(;9z!T9BAc4SDUC0B zzOu+WB8s~x@|;Olr06M{wBBC_USzph6}#tmeJ#&pXO*K z&qsx2*wWJrGYwJvW5*S4*@Rq^uvQ1QLxHx3qIf8pJ(@Y;i7pyOiB;5kt_N6Lc6y@E za`|wnN9TbQ0!94>;S6n&MPlL~89UBy*gvYQ#@KreTg&M2uvH*N1)0f~`XcXiSM*tO zq()u;z>x|sUJ5zITOByk!&_ymdfj_P;K)VZ%L7L)!=rdr&vHEGoab6Fuetz?-28rW zh?$kzw-H2L^}6ph8;V6C)ux%JuU2{P*2q!Pjqy(5#X|HuIDg>Lo4x@BY`!x zq;lvxv3m{%+U_tG{Q^;(GuqlJkHx#MEQm^Evp%AtvnK<11?+(zBNndFqgW*GR~egq zFwi>m?sJskT}4mTrn6Fg0=stw4nwmHPOc!;lY`Y3M{Q4B3`IVUWUB5VuUV7 zBs_Xzga$F+KVwUXCkaGh)`#C#6|q&llBtOi+r-K+`{VB69_X#<D1{uG= z`(AA-vrG+BQ#xk<42by^U(qv#-V#_>TsRCU2p79z;|c|H1=dd+4g2BLIqh@O-DS}P zYUnHH>eZ8E;NODRrN@r*n4_!tW{m1tUume#cTVbhD+!h|2jY>AD6JZxv^M|Ml@}YqPte0?rW@n-&%D{_i5A|;sV3B^NHuG&O~#s= z6V0ku>NQ0bEbAg~4-&_}l6XTIMtCHajicr2{kGXN^4(GwQ0NGpoHz@2mtvGRQ z;Ty(5I;p{bJY0nD$jA!;3p?g~{Q3R`kWl>V$XJIRzjeh%SIo4Vo~8IR?N?!-{DAw0 zSqO6ifD$F1TKwPK=!lcI#_HlsxSr-h<-5-nn^cLlQdT9*L3?E(%rd+^0*5NRSh`>G z0ghKKI1tWXEYiJ`Iz{`=#%_r*_iu$*Ja=5`EG~k0H)?b>iYZ8RgLVVMIH5ulM!69x zVdL7yRwR$I&v_g%n#U0xNh;4+u-o&-wa#O}UsDXl<8*j|6jG@x`Y3lpr}>^EQpa5| zF$$MA$WXiBoy|$N6}h5IxR8L69syaxhH%_PM@p{2rUWHQbz&lGyP^vj9WoCrT@HzD z%ptLjL5tEMc5|a;8`BS^i*3vVB(|(yj74uD4_EXduIRWEJLgQYpY=^R1)*V#l@&r} z?-j-rhB5CTYCgjln{`T5Sdn8Gb5Tw{U6r8Po2bBz4-m%1x`qC$F7i&2uClD(FbvH( zg1MN!h@v>x{|i#3+czxkp8<{QjB)!?kLT950F}@bRw-ip$@=kri zve`0%H$MZf*97(AETm(6*k#j+xgKu`&4J60+rssU3V^4jx;Hv_@K6x#)@RbUIpuo* zp93z?A^ch=($5Hu=n2fEZXe@|{whiA<+=su6JZZxzR$hqJrdn#KF7`>_wn0HjB@}8jB_~PkB(W zqBo{`G(e(8WdLLz4K&joT}^%u1 z4{}@aclfMhn*6P}l&#?AoT;X_6ljJee4<`e79X8f7`Iqdg(K3e&RS|$O|-RaEYXd| z>!w4z1N0brjTT^M78I1xZu3wfOuWn}yCHR@Gv*zFJ#w{tT_m$rXydtfFQ89dhBTPu z>wb8wO_zW=vrAbJW{aW_@2OVqr}&@eKoxqYS4UP;8OfL4eCOhW-uUS59gV-G-fH|U z^Nw(~scP^w=R)7$?0Bb1yxtP8yN-u$>!zEBAFfW$#y}Z<_zzoAt^auz3Mzj_hBwNp zHWXGc$k`?pr!)B=LxrIC;hrrf`q*qzxDcE;3EBwW0=}ecqHacUx#X}FK1Q9im$!#N zt=(CgP-`>#6eF#uwT0BWx*0WeM+1slSF^rjV%}0LSu!G0+r9AAsnos>&Q2}yyr%R3 z%Cm<@<3@z!+c3JA`LPIBhOR(F%-UVtpvg%xj%70D^$AdAgHWYZiXR;-1~pN-VySVu zAS{(W7%(VeRx>YefvI!a)7Q78`x4*7qhG8M*6w+8>}FEV>+6%}42#=}U)g>*v}Nvh zfXl%a#D+^(#;fXWk%3o)2VR5AowbgL`-(zObSWbM$gzLnoKohN`YZp&yak1^u|R=L z&K-bJa7KkFMn}9?wAsVnKDyiw=FPL4dqiHU|47PxZ98~|xuab(UdbuiS$r7JP(%h^ zqsty0abIJV?JnM4wK2N_FG&U5sK9tsV9(q$agy(v@w&5k8LK)na?`il!Z#6ja$2ot z#y>qXKJXNO>@NIY1_I8Ywq=nlz~1hOsjtG!vs>c7acjz~Cuc+D0+VIa?PmC?h1hgX z$MszVuBd^Zc^%f_$@uz}UW>h#YLW%`CNAI6H+807fH5tyE%@&2TSWR+kW^r}Mb_J# zR>RbB#aG%?Y+-LDW=%QPmfEJtnp6oSq-I0`BF9}=*d1XT%xZ*ANSw)=F~3A-nU%$* z%wnDj1g?NuO}#AtgfjK~t#{|;=#LX?o0eBBldwf2bP6I*1RB=dg= z8=1qluzWeuQ5kp;0BTt9AmO(FZ~>5sI9`#)fK^AHRf+e)66F&HmP#OQKS)4s92nDl zf(yyJiSv;+0xTyalahF<8}b2iReX0*ZcM^v&~^ba5uiXce6^7!boqA!9V0AGRAqN* z{CzAq*_DK?0#mWdKpaQy@82I;!Y}{s`91y`7H4(%FvC!M;i_9U?%|e*c_HXMw1oeIqb3p<|m2B1~pB*lXIttcdT00 z`-1GgV2a>LU_|OLO_KY?rUzTdE`WnX67Gem@xDEKGb=pnfdz>23|FlVdmQuGyfwTKPYDY$?2Hew)Myxmig=Nz{m4+ z8$qs2q7e<_GsDxre8-pI>2JR`AOHOVW>}6t*b&Fl&{T3Wn=i zosd+p?dN%GrKE!6s@0{a70|1s3(ZEnVv6o#?I0KkeJa6V<*Oe;Fko1qQ40p^nIus+ zN*EwQLL{J_7r5s*4pz9o>&tGqmFi;1Wr7UePVl2hzb(#=IYhfjJ+@-{h1t?1~ay1Y;P_eYw0e3U% z;EJvyBZq2n3wK0Ta4~hq+(Up>78bFCW(nEtea#X(T%yK>*l|4V6=|c>_A<1S_SQfy z?zFv`23Z1%ZWg7LPMZcR0M)eLNC$M*C%Q9iEt^Vo_u%RIA>K1VIEu+Bhbt|j9EOPE zF_(%^;t&x9h8^;CWqTG1$)mpoAo6<5%cDx*!MaQGeqFam~F3zq-e@15Ut@PJvndJ?VmpXZDD6GJaxYF4s z2Tyb+YZ00=lZL;SHIuwEG~LK78qY0LB$zgANGEM3;Ye8eq=Q^DU8cjTv|IyXX-1!W zqG2^1R&fL%*Yv?zwhW`RXfHewld050VvuWMTqJmjI!L2ddw49)VkHLU8sx{wxQuU+ zBWRCVyNkDKDwK>V*XU$fa*eJO<(iHagBer0VySVuAXpsw@D^pbS>?yJ{K~`V2*%ldoHI$H$r#vg64Zj+~ z#lvjl=CurNTnNGD2Zj_JdS~AK=1wKn z5P83NlazX`YsR*8!KWgzySTn>BO9^7Gt-jG$8{ zfM=yM3tqK1{Ny6ob-4G0r3-=2*B~SFT0pA;y*|25?Fnt(zQf)jlCJog4~uVSOJoMA z(2{l3&9DU}T`Z5;vX0xVPXxz^(3*eK$(Cvuc}iE2HD!|8A;mVMb%4IR6%zrk!4+Hd z2cl1sCsmRWF%XNp$`hi}N-Zj#btM3C@86j?Z}~BBw6LfsjNadDI1VMw9V;T!M--VN zo|K>*QgnhKkbv9-2EThHz;eUf#cbhCu*p#GCy58p4OiOY@8h|vUr4yW8DP4Nj<9@j zm@~rAQCp8swVY8M-f9VGc>M{&AXtY;Ei-@|0imf?MMyunW(!MTZafH1h}VD&C_3eh z0?|olMTkT;ilRz zA3w2~|Aw3eIHCQNwLYpaCm*8XgzN|8s@F$YvQ{HpSe@YalK2^+4@GgZTKl&+4y6?* zZ@%4L*1COyC2Kuzg{5UJ7sJYsb>cBAEG=tY%CK^V1+1{NtkoA`;Qc?%$XXvLS?d90 zrev+BsT;D@Aw6WRC-1>Wj;!^85eg$HBWv9ZhU$d%Cx?HMPpVn3WUY^mN7kBhCuOY{ zv2lv5^=Ug$&R0%}2SXU#+i#ir3CcQttT<7a>V*`Yx@(2%95+;EJwLd*?ew5TpbU8eGDMnUF|X$<6TT zN_3ihtWariI*3VAxs5CBOrI|)Cb^MCb~FBiViK<_53i+k(`hqK>(GosHlquPXvybj z#=AH;`adrH2qE+xE7A|$|3{>s+O+gjPpZk5exR|jq@UX4;|R^6`75?()BMy5EDjluP$b@aa_0Y5o#|PHl28NLI@u89|4GB!bQpDDX=OIf@I#*gHx07^gQRs?AgS$2Aj#6sbSaS39;ZN(6|XaaBrD2s2qcW1S0G`{zd#_#Dk)bW zp;GHm*8&N%KLLRxt2Vg;3DizG0?FZg0tr*+6-d66rl;mf;izt)f-WOnsdIh+7iKp^jN8P|2#xJQ zb~$baM2xGgu(XKrGQ&i~sIbD)BE}yP29|eO zM#RvzS-o-YPZ7fiE=P&bn43jCa={7NL zQ96;GHrxorGnlqOgHnmu&4YsUD4uLN;490kD5ofn+L2H^!~?AHp{ou*0NAD z=w}OqzECSYb_#=j5cX0_p|Dph`9n463}MOdM4s(gatRfd{2|4X1ES{&#N%UAv%!+D zrEjtlKAI&z2yMng?X?*jKLIb>23{5{`9h_+&<0aekz8voge6}n8xYMlVAnz^ED z)lsdmT#m>?JkJn=DUZ2OG#Bd5V5S*$D5pJ3p062qB3^DYrol(EGy)tSvyXyh?4;nI)VdRAt=6AAdv)hifw#SKcVqrpC(6*o=;M59E0yw=x+$`#7<*mQ(_d55Tq_3jlA3r`HnscA` zbDis)bDis4FS$Zf*~bOI5$+$V8o=T|+ai2hK=__*6TVrJyG0%sS`zm_Xo-&tA~glt zt^4Cb3q+Q@`G2-(-Igp@|4$%tA*}TAW5f|H{7(!J=Q9XTV;O>=U$t-p0?L}&H)%}` zJbP%X-OpqlyCCfG<5S$Ck=h*zd)_|dDsuK)e8&BKle=r*&j*X`QxuO!`j0GNWMq5QV>Ao()NiC$~dJ|4UqV2mV zM>xqD-J2_&)RLtF$qJU#ZsJKfnR*sa%E>_LPiiUD>;FvwB^_+`P7+GYY!R-VC6rpa zNhq0~TR z_ejRJ92sA|r4wKMO}HxtnE*Rnxy!^4%gZ|V({do&r!EsMT!d`hmrCm2Ldjx3{4R_@ zW_jr^oCivFt3}BkJj0@7wF`TcSBe+?8#yRB+`ksPG6a_(5YkliCL;Mcs^0k4YY3;` zv-MM94@K$Uyxvswq?OAZ>G0oZ{_A}DW-FF=Y6{Ra6)i+M|HX?E2%(X{aA*9Y2*Rkh zXcm59`qL=-DFS}Y{MNaTb-=!WvCkZZny6_XP>bC1t=&{~88WK+zJ-uo-$e+szOUm~ z>Z?Ei_5JJXc73}?cB-$bXy55}MIR$%SM)x@tmqy5N=0uVfQo*bspwazsCGEIkm*~l zJ$B1}Mumb82)xNjw{f7UD2i$nY~L1rCF2cG{M)!dw440}WH0z4|MK73R5S(o)bMUb zh`l;1e#&(SvQt;!H?rL*8jD~5v1YmS3F<8U&?T1d=QGY71#v>@9@qj&?33;6W=5nF z0-&Y`xjlw7xX@d5fX0F2-|%Wag!Y?dSJKSHw@v?u$2wAX;9_rId~)Agtod&$`pZ|< zs7x2KHx)gGPu2NfBV>d0VT9TH`|&Fv4I==MUUiN=H{;LiG&eoKb0mP4RKjz(YeC+~ zc4ptMw>6cc&8DKWP%9zqzq6_6B!pE*h9G2hX;&mF0)1-BILF3e3U^+$hGAKZbX2WFDTr% zHB}(s9{?bmI}4_Eq#nd4Kb}WRsd@OQI~9M-e*yw-qY?H$paQhV{3WIcTSh4bp@*>x8o%(@SqYSrC}0P0>d+#br)z|LOk?ioJ=NgyWHJJMH+2sx&LVN`MMPqF@|g8$Nc^5T zG%th1@0lIkB(g|cf$7K~@h)=>=EI*l_QLnyKxfnOqk`Iu_Aa3fj(6TL?q$YAXaD5P4r4k79LsQUOR6Y*gb zx$&2MzZAcy`53$AJk-p7{8~G$x|4ok=zX3?*gpk7^|nS_zp)Dmel`{T>tt)=yuGPt zC&H@T9SB)4YeA4O+l*hf`#gTp?)_(3FpFZ*pi&~Me{k&+_{kldLT<(ia!(j_sDm~c zklX)5l&WB<{xDu+$m)w1LH5OoU-o4*e$kgAyDtZU z_M*~|Szs15(+?R{ZAA!KwH-c5)wU16tZff|QQNa;S|j^&&$aakU!G5GJeXX@AwU~z z|F9nVXQBV=HaaQLbU#copc#pahL6&5htN?^&0)eQFp!&2m-DBo=wft~@W%C!8^hP| zsRlO;Ar1~i*4HZ#Cai|w7a5JBQUtKcwE(<4@BVFW0_xb^1NV$QN#9wQ>Cn>i4>7p{ z(VU_-^VEZCirUO;&fpaNh(OqBT=XzQk$)i+M+og-pJ{(0 z+IJe5sxAYx`!u-rVYJ;XxsI`dO^0BYFa@>644GotPvM~m?;_QFnJ^M={6L2EO8H4# zj~^JKYq>m8xCGh22s?$kl-?2WrsUe8ckI@N-@R8G{?nb>@Y}a&!>2T8!>@lz8-C@l zwc+mjwc*t@k$nM(C^z+EVTE0;B)4c3FK=?aGg5+!MoQZ*5jBZVN{052ya%S-Cz-Rj5xrh6C(DGTTUg^)*y#J-b$737- zh>jgq?}5=g0z>W-M+-)y@M?GoR>^|@Mb)1ISn&8;J&w(~vELm(-e(}N#oh2hg-?63 z0q%=lq5Kbix4N|__rvfIKb=t8aBOzMNws5hb{1gKu)=-DIu9~$dTKWk4?rljHDyRCm1A|)l5rjBfE^Xyjy=`4NKD96@6*$Ia zGqR)x!QwXS^dxS;ij?ZpU(xYlEMXp5T8r2kR+le+;^!@@2dhSV;wQrLO7ItOkQe^> zG3bWTiZikqL?Cx}aLGk2>{p3F=a3&b84rGH;L$DMi8!OL$KYW| z1ON*v55o_#d|{`+Tj`#Da0bmpOGC~Tm9N;6{is)u?m(N!^+Cbrv@7-~`7V0!JurE8 z!*_NEbl`%!ldh=5K#Tg*^0ABi1EY)CpnyW5x!vj9)T}%v( zun(bk50rj1YP%kl$hL+c;#is6c=T>yk`=5#0T#y7b~9oj1743GEnM9N*|2G6kj-r) zTZD*#ql42Qj~v8bLqM>+!Vk@EUv1D3YnIE)weU`~uCR*xG%QXFQn|4~!>b>wNe@QY z5cGyHHH>7lQnzE1H-7QwDyIi88|{ssuZ5okUgM(_26qNX2xk92EVDyHGoce9xyV9V zcmN(4Rp^_*LKV6VcU6S){U_&WUnIelUlj+Wpdh|@I9~oC%&a?15_fE@o1w*08Hk5AFWIRl3bWGMVLu_lkf6 z_GE|N-JzGZS(6NfIY7PP--T9FWIQ%N;5U>!pqgR?D``j-g}|%?!Z0TEZd++9oC`(e zOVX3Y4Lkc~+o&sTwVEK>K$Vq$16^J8V5o;!V~AdOh08M_aZBbkrgq&{a{gA1xJ6231jpl>c+ImZK_J zAFZ)7xtnT6V%AzYeWVb%IOzz-8(&c&vpG%IUN80}W@@@It^|gDTVbYiT$vsncPvxn z{YV0QLDGghk8S0jB>!yYpL%yFRULR2UM$&nktc_wH+bI1AU}4RHue)oKj}#$pRNsNl}^!3{9EBp>N(GqH~aH&ocM zu)t*HeL%Irg6XeiV&ke$5-x3i`qkS_EYKPd;H z!gIeBkM8%m6S4=IKPf##g5^hD2lIbGWQ+a%-#Fxs;(*+tS&Ip~#cs{}B0iSm!?heA z>p_n!26?nRG;3KAeDYa~3L5f!oMQ*Ar85Yqf-?8<1+(T#jE}npYlI=<#e^@l?WeAm zV9mNDCcp$I1c$S)7DJtuJ7+JTW^0%afP^`k!;G(D%kKD7?4dh;Kf7aIaY-@4zS^}F zl2#*Gj2b@TaS#v*X3*nUtR7Yu^D)&DK4XHYfeu;4AcH6V0JEBdtBT>?jAvP> zogVY3A%M5L!GP0Z`s9QbIpBwuP#k_R39zOhKlo45I0;70NK}@-I@DhLMeE3IgUx_z zfW5=S+_ai+;$-WUxKbo);u#Wn=99(ph#C0_q=39}A^Jd0a^*rB2D&j~v54-wr zaYf||%D61*ji2E&9#<5`8b-L|--RT{(!0?a5CAIX;bj~>yzz#AiGWD|-RLxCOmVBG zED1oD@iQ#nMJ(cpi?|;hV4VQZHgMC0MJ(NdMVHa2x-YV^`%-oqdtFAWX}r?MS{?-& z8kh7B%?C~p0<&k5G^>{MUwvhhi8n+oP$pfSMP*n}sXyYh(1UXdu7+zPyi~2enxFx( zMOee=GO#i}yF`zF!yNI$!`4~~obL%W6~=0KbVO_D)Pj{N!mEP#9G6+d>CGIei&1Uv z;^U>?T6}}q%F)|2IgYEe$XZ~{>Z^Ji$JE<17811ehcVW+W_cNz)?GP#{wtzVc>T!o4WyFtkzu@oqd&q`V>N<2NcQ*f< zucQhBZaUpMy0cjY!`pB=Ar^Og#L7j}G7$J)tR{`FMr-JLB|Baic~TTU?2!1+!p%KD zFo5f!G05C!r%y$cBRA@FnuxN~q4ug!By|n?kvs4jE*v%RE836xz`vtK-h@Mr)!*rD z>K}m%LJkt|LOEzm3yaYjs;XoG0BbNgOOiQKvr%>KSf1fJRAUKYwI1b3EY>0pjs?Y)&9NFve*ul_O)3!95s!-%9y1|3EGYHa^NOIa7PJ*+IB-nRV7>}q?ynix zk(t0b;=d&;4O7nrs|LLQ%laq}`U)7@M1$czb*ShEbV`)ZV|V}yGC@_G-=8D($i>eY83PE4ke4vI3naTSaXVR^^r z@>D{8Qk>Ug$s>m$dPlV^)axmnJ*!qRpRK10YnSHs<~~j<=^39|#S+rBP1RF=BF(U4 zqWIJ_=KH5f3?+ue_EC?WQ>A+0zhpaS_iGjN>$R-etm?CW3YyYQ`u>n^UcLHG1V1wX zS?EXr$b5E33BX_B`MTF~YnfY}<{z5N2J~^{ujRzpIcN5jQ!=e3h*k@PJbh*6**Q^* zjQc?0tgM=NG4M3Yt(gh4{f*^d*N~V>4Monb?=3a&FT)~-`D#A5Lc9WYb2qzSS=X4< zg4Yr{DS`Jdx`=&N@|C)GNmld)!& z)Z(!58jsfs&HlV6e)BMQ=m4D8{spzTV%Og8?sySYA;jw@PH`1%1^cW7HG*|^2tuSu z=IOu96_dLWxRDsi&BMUuU>-OVLoy;Ov@oq&g81I-iXE@RN`@9beh@3!xdUI|W$qj( zUv;jiR0MOoX5PKZ;`l#~XE!qSLovnQU+RqbFhDk^<1T9zOkW3N*c>|<<~Ou(f27+b z(NYkD3cotETSE`kz}e$^5U!EECua-LjJ(y({~;RkoR1#F7+{Msbl@ay-US#Ry3$ek zk01y>UwollDdLYNk;fMo>j4uILr?TnE# zWCIFFl2Mn3ysR8Q+Jb+e6LMRE^>w-FoC6D*snr@0lYKfvlqd;*Yxv-q|# zjs-A^_H6r6nrhu>s z9q0$I$OquFV+i6P_CT9GOICmg@N~TF&KEyhc;iid73_f6~R)aIWI#PS-iBEcQnEpCys{z|5e(e8ZY<$BbQ&;f*i`iy(<<$7TM zH0{n8@qgDeZN`=g{P}wY%ySe>(>~sfdBD#`{NFZB`}2G-*iQ6#}c!oC;;yOC< z42!_N5y4}=^ge_!hhQiGjRhDE+JX#VlPJLLX6m^qC4zK_Oev%>@KMpn$y;P3$YiA88m_%#BQsq+T}t+kms#m8!dqtw`yPk%f4sX@=8RtxlKPYuhG#-?R;WukR*&!0g zk{#=jcRHMUv1e~$*Yp_M&?Qf3*I{Bz*v6eX2w~*J6kpZG=|GiNXAGGbNBijEL<7G} z?O2ES>87eJ*ts_FEA96y*8F+!6D@xx{A4GGPmDhzotroUzw9jVQ$ej`9q^MKek<+3 zm_G$c&)$Pq={cBH*QkFrx|;LTvqJle{Y9buMFEd1wopB`?1WKIS=jpKl!YwBtK+?f zY2y^_^$$p2JZd`vF!Z1Hp9^#f43{durYEj?C$ztO=COiMCF+bzm+5P`D=DOkO>Pcv z_n$5YSY&%ZjMFnU^(LMHu;zGFq+UkY7e98?Rz3JTvh$#|v33DBc72~*^@9HMz1rFh z6XRts*WXD;#~b_=*lxIV#%pWKj&mVGgKZyKOIA^5!t*b5t3sPM0S7f6(#F8W)s%AT zi?2_CJ0#?tDwSNW)m`eV{t38nA>fH21+?(p*ev1hOS|`Q5e6_8 z)yh{ZzO0H;*t+xjtm9U@j@3D(XyG`gTbK3LEswT#Rq~E5y&7xRcsqOb1pY{`Zp^8F zap(Fk>Q+BWSiNQwr}_aUYtZ)|&swjuYc0&FbxfyPwa7M3Sa1Ou?uE{{%#JH@`Fogz zlkd9KHx*8G1;j3`Zb2)uW`U0BBfwu90)SiX296u2JzMtLP{hEOm*kg-QxSpAGVVjv zq1`(Jhft~(f6&wcG*x!jXBypwEG~R)Y$1ARKi;P*js+F@EmSUG9LNmM0AuB=2w(P8 zk3~3V(!Sq)=&CCp_bu@zubPa&MsBfZ-+TRre;b-&~c5a=(TM4&tNTX2^;PeVPa@8ger9hcL>6?P;a z5>lh^l{2VrnE44_|D+0xk0fN18xEW96M#V&x$(=<1UKH@V^WXh$Y zNKQrT5zeAnw~D9%l;R!&%tKk=_3BP|eMwGLcQf1z=3cJKXAm@lmk11fjreGR&c;*x zKB{o@4GhB`_6cYrgQ92m(x>0$6nKZ>3{vjG^Jx}HvyqlQBRhCmW7=G9o!Lw`;LD;6 zjaNaI3YQ)aGuOf85+Mt6b1|}*OHQY_bseM3UvH&n)P>9nFFcI$jo9KFF8(_3L-G|r z7Wv9#Pt!bR=0B8M#veX@)j%*w7!Lkw-MC?jm4x8;5gg6hv11===@R&ihZtqF^hm(s zne-uI8*U%=71MZAH(Jb#V0Em=5}$X%rsHu9FB!aeFb3M*Jx3Q)cKk2XHohY%0K{L5Y zd6l?^r)yl2-NvkX>wY2KFkkvAjLbj|GqFYp)3_>m)+M~z`A-hDUk0yLc)tKGNr{LO zao9ETGBlgrTl~X8IIzKBRYhP7j&a^t@oDGic*W{>;0@gx5f1+otu;-Aad#wg3fPXP z5<|a|xtv{%Ay}Xi7%gKd9NOpNl53sTR((joK|QM;ciRwpj7P_M^Nm;FY9}CH(lckQ z)EVs$Ct19VxjQ1Nak<#xDy@a@!H7ME`c^~ZeHC})sYn3QvX~w{v9}5W>r!Wkv`L$l)DeZakm$LR0W&U$6de33^lpAx1LKOSv79hDoi+odZDgJ=E_t`|h{~QV) z`Oor!dh7Y}v9;|W-a@s=lK^cWJ3<`V#`cb|5C{baZ(QV2>6i;t=bVh z#ylqH>Zwp)jx&-Au2e1Ti~Md*L0Tl!o8Dfe<+{P96tu5o$$C+0fC+F3XTZhW{_ zc-2(X)d%2@KP3zJ!7qP)!0RzN3zlPNc@%KsyA~aPN~F2wCD|gvVM$rK3_rZ`g%5z7 zlLx{}VIBnh3nmz2VZ=#2-{W3@4O<=r!Mc$7>WSZAPe|@|4Qa)Cb1s}r_c)dCHZ@Y5 z>C7l$SFM+zcl z?HNQ&=>w*Ks0K5>SiJucxt1zrar=+$=`AEyFK-HI0=KCEH6ZL z;L<>BnElFx9o=o z_UATG%myalPdEBdyLS)W&sp^iJHq-_=9Kvu;U21eAScTfgsqJkJGQ;v#&OdI<%2iA zFS2o~X@UtF;_@*#%z8wF?#(x;<_o`I^ET*C1L(RnqJ?k9@va*BU+j!uWSpPA8t0#o zU5)p>aCBDVD|mM1hNXq?LumEU*t9-6N_ z$K~u0_wDTk@gRB&C!H6=gYR?15P2E-3qsjfkgoW;VZEvs?lXwe-{`GoJzh7u0F*`W z_q=Alg+wj(Q?2B>((8>{+Q03VGt=hJnJjO3a4G zt$MoSv=!yLJX?J_a=&|A7HWGMjt+8f#C%!E9l@LL7e#KNn<{q;x`MPi387rl>I8gC zmVfQCv+PDF^Ee6$>pgq}LW)h^C$ItC)j&I5qH^-N6YhMs=G=%GGbRq}_BaTWV$O{H z;&PxY9=s^C)~i0wD@UY{Gpkk95b0RvAXRNV2E1o45=9@n5r<0cGegjdt(KFds-h3N zMGx#aq~6BDC!sG*kybEEhG9(Jgb(@=ALDDJd@ZU#X>_$6FEw-x%UF4YXh}_^-9kMqhda7rNBcs*6UlKXcOZ$ z2h9f**?Gv-zu6U)80==utT*g-Sf;3f1%D$4NDsZ&<|;kljLO$25FV2A4?*f#sRbZs7Qh{O6Qh{L(2;{?u2P^eBAZ-d2n9os;nk(M;FQ9{MR%mabAgRi(=q7J zk5nw(J5n*V7o@8Cbsw{W=_t$~6t@~r)jV!IT6l??qC=Q7Owp?t1|FQ_b$nvNlL)h# z_osi;0olq9ExaDwFl&tvK98(qYky09h_F>quSIov^hhc@Hx0h+2bMac z)iACnRX0}CbB_d-aXqQsXGrZ{M?FHhbz5+>I+Zp2I4_BIX!x;v_h4Tyw~F+&R&$n# zJt>LKa8SK9n?5~9vr)G7(~%q7`dWDWv$yr&?|I%H&LYS4__VRmcz6oFaBj&75M0Kr zhb(N=gTLlyops^^4}Z!@Q0H(k&a?`cR_5TZ3s7{2 z`QY)4>SZHy8j!bohEs0Nf0Y_sTIBDb&Our*4k|Jvefm(5k)po%Ih8)+&lPANAZ9^d z{QH$9KI8Xy3wY$%&y^0RWm)xZc>{@mKvxyIe;E^u8=)m5?dKQ|gqDnDJW%CT_5=H% z>AK7Is`t#>9_eF=jp{JK$TfeqORmSs9*M=ZJco1c($2mzOTM*v0E0-(@`gO<)AREv z$>e`$XJ4J+{+-jAXZy^2R_DyIzA{^z2sZ${%Oz0~gz#R>tumoFk1^Z_QXhfSV&1s} zJG$Dk-BZim#{DHg20J20RQgvaWsyqk%;!JVSh`oN&d$ATw)TTIUm~Xcs*mZioBBan*3w)rk3feMV%Hcpn7p=W5o$-#?<#p`wRqdVu zdoa6UG%C<9-5)>xB3M73v#@Kmoolo(#@gZ`1DNZ|M!&EVtkgg$^6o*Ezq zz|oP02|Pm;FdiZ);4ib!tEZt#Vix`bgPRIj>xX*5F?eUOm@*&ZInX|}?cF{{t>H*W z@;>p*x*9?yyk9KQACT0e8)1$CzO*dKzg@ij!OX%|xd2L})eom~DoIgtaYMYg9ngrW z8)UQz)*2i%(%_1=>(IKg&Kq1RnG03IIw&;V>#2*58!6rBI&i;aVz;bqnXJWD*23Ph zejvSMi$!|RDX z9CHbommO}Mbj%u`bt#|Jj#?Brl5?E>A=JOwGDA=aLlTk+8F+s~58={`8K}L#N3{2M zIYfJZD~d2nwt&^I9VlS+%O(Y4;>D-(6TSaBXKWH&O3Sy@D%$+nI;f$KM%z>!{Ib&Y zm}u{Vyq{NIfhh^k1hd&3-EYXr4^TOWJ1 zrHopP61FmGIoGPCjQVpZqn>X*dM-f`sJ6~5YOCbxquNLijPmYQVPPnkUaSeoEqbZH z6;+omVD#T&u{sB^O;Kh%x?ohNKb;z^e)ChH09Dp~cWyPBHtH_}Hk^9sytd(G z)7E+Ib7G7rdak1hr??ofkl*lc3!6+KvPzheEy!UR1SBVqvcBWyqv2ZzTZ zJQJ`-TlG}t7u4&v{Tyh-T2;VECnQ?z<-3ecS=zA;<*7^2bqoHvOS2!&I16^q;JxnQuMM1FoA@#!L)!Hsb9kKBZ@({HV7dNTer4XFkK9%6n(9$tg>xq zZ~=k3tSeEvEkm0<3_8t`s&(}+UZuXQK|=|*W)B8k%)=ug8)2s{)!s~;!*d7yGkat) z@e&wUH$lW%h~;S_GHzdq)N>lBpgcw1Hqz z5V}hwfM{jq=jFRT{anio2@v zDllZVd3)kBtKz+|GrE%$xeC2MfHE$n!R_vn^|14;NtliT#E7y1V@x>{Hj zv!`L#P6A5L3@Q0;N44W1G7LX+`tu;y!j)t=Mmn?w zw_?_z*##ZKLP$oy{v`zHp=vP-Dt~wn{|M@hMJzrI+Kojt^)U^~jsHnvQjj#ih)p1A ze$kZ(fMGlm$@Bjs1|ma^1@5X3r>}7*3curq9XWT^8#B&v$NwtTxsAWR#!C3jI#6_o z#DQdTcYrDK1~nVms~?=iUbRCOI+TR6?44mL$6mZf!odv%O7L%{|I=O7Gy_n5@CB*X zz%Nrf>Jd-1MpiWo^PE%F2ldnLLxqn>J=36VYt?+`gRgM_Na~_&%eJU&i}rd~W_+Tv zvaMU2y)In}4pd&=?5~g73IPW6vl7Er{TqQ_ftm5D%8@E#Cj7w>7 zae_p8{7dPWe_**n;YbouN}t184tOj2naq{nby|>6Nqn^_3w2!P=i2-c>dAqkGy3>u zrsHw;I}Ans`yfIekH|g+9g}bs9>EC_pMhJr%rV z!7I)Syoif>PXt!o)Bo_en716ZSf49u$R;0V@?m#X+w>>k)#{)C`{XlryE`^| z8q$~f9B+X~yybwWYW<9n-l^Nh#s&@aIsWb&@v0sh({aJ(G12fTY*fGCJ2u4>+r_GZI_!=AM3=N+H}hZ#sC+&g`^Kxt>Chs-K^L$i zc}IL02HANQJER1fp<3@w=vddAy=Sz##SXx%)7aoAsQ*JEPv{d^Vpz;6qs3`(_48m| zA#rm*Ps4!%;Y(u@zcmVY=I z+6JdFbe-W{SD5+{QqaS4cpFE^YqUxyzbmozt**F3kN*N|a0Xae6UscH_2t?IZIkv2 z`_kW-UTFL`S{{Rj*Og`9Ds*vScJvBQnTw6mvJygJMr2;cBt%Y?6c1k~x@oPDjkYTL|#G7n{3o_XF8+YmqN z+a6=RuqOdc+Oya`^Yr+IFKU~N3pd8^d9hG?#kgl1#fJ z=@~=fg->&`{(|eH@rK)gyPglteP)r3x{wR-I9|s)1D|SrBi{8m-ZtM8*Y8@yfG-#8 zU0iNB9(=n-ZFfemx1Y-qbYKn0`*(=G38k9UCe(#BF^s5byt0;fMjr|M(R?3ck8^mZ zHhHTWArlWgZ7&UsbQ(KC?;Q?x6b8@xqy zj;^m{=O1EWSSGO{6MvR3I1>{?VSYe10bkWeTIf#XW#j$<_Hs}0=(0bY#+%T>mgP4T zIa8M+4V&A2%);~O329?H52D5hVn5owG{=xjC%{SV{mr2o@DY zMgs(8s2y9&4ds9sLV=S)YnUs~@4+Ew07(=&Y~aMx(&oul2mQl6@d9@?12hTRs4K%^Wi>UN#ukK*q$KgJo;mU=$9<9yYjeT--ajgwgii zHkfU zLsTF&O;NRW-RSDOZgi)364mxb=S$p_=ivVDHI}rt12HD`k?5(~I+GV7X3T7TIPpio z`bo>|X|jfodDhr?**0y%7^7_4*tmaN zp|)v^fgiEW(lUM5<%u#2z8l-^)N=lOQ=tCnWKOpFn#nmV5UqTO*sP<8Ji)3Etfgm zz;OSPn-K3`auq@h?ry!@zv|`w<*7os-i#e}zkk*Hs@Bb@gfSUu2*zZj9U7C7c03Ti zcdSPqUb!Onl}knkshcEs4RzTvcRU7TM`UiVV59;-&Lsd)NmYn+zX(Wy$6UhM&lWsO{fqMz z7a=lr1A@d^qCc=#PSM|fl@e!e`v|4PncWT<{Z@UBCc6P8E|wzIX6HkHia}r%rc15P z@WU!;6?3CQwy0V9mYjmU4FuN=k3+^{38Q8mj`>yxQdMXriuwU9<6m zcf<$25pVjc($$Cw3Y!94oRSJw^7BGK0qL31l4x;W%y%LdH zhugOcA|G+-rSy5sn=a!Y@a&__eVjLTk_CIr7k7|Uk}|##|MWNxc^v<+s`3q2of!Tk z+p{{E`XS2dEAqkKN_~W z*}U=RE+XT|BYe00g4El{j|nvn0e?eF@MwpWO5k-~d`Ty%OPRLtZoHT z2EFRm9e&oyBL)Ow(+nmH=77Hx~jS0~&$?eanFcuArF?ti(f5 z4$p!7^Uv0w8~JpuSd6K9jz%VKE1VAy3+(xexX8!C?SJ8u$dk&)YX+EETd$sz+vHrl=U` zK1elK!E$AeR$rfuc@KH?X!Q-*7*oaEn2n)LV&wU5Hip)W5pz>EhSCd&nVgNG4Q|BT zoQ>g&BVumJ#?UA*Vy2*Ll%c^x9^dUS!b%uaA9E{YRw#DkiXs>j4Fq`!w{jHJTX_y; z^YHBswa5dzRh5c{$7{lLMz!CZP#Q%m8C7H zBH2bTc`r1oE6@(Fe)Xn+r!d=X7PAJQQ!DdUR#>%KBhRVzdO_RjVcB->Q!!U!bKpF? zo2uPJdx-fl1$4HbZwG?)Mzz}trccPk&5I&i_DiaZFXZxoWeW6`#E%yKExH9}cH$W> zF1*Vw=1*b~7a3aOO3^#E;^1L%cf23YWY*w~kB7wZJfZXB*Nud=Bj)tRZyAk)k&7ud z{(3zsizqh!286hHV&iW_h>IpR{<{cqvBbvTgb)`=Z2V+|xHw|tZ$^lVA~yaOgt!=D zB9t*b0nb<*q4o#D2R>CQwWaA6uQVaz79zS;738dDkN%Z=#nZ}c`zG`N{F?w@q)6I z1uBJ690H;%3p+&}W>kJQ${inHfywzPCI>0?W}%D#wF*-)m{jY?{@TIP6{<8dp!6`5 zCK4ieCFn!{ckrzy{cg88c^Sp9?~ksL#p>`u4Z4=&Kac^JE0Pg@Wr1banF0% zmDG;GYI`=xh!OuWBamSc*Oehepfbi|UP$ZW!INhco-19rOu$5V5`~p|g0{BA{4Q>2 z=}}fy-Vyu!PLJ_y=W?5%rzaF`gGC;d*4JXH^Rv5gJEV3@8|ZmfnJU$9C!1wW@grxFyZH0aL#v zn%K&L`OAM*;C^JYb8xQ(tGKvx+0<0jYBPk+2KSa3mJ$@s_=G~2F#*akxoxFJA%D!F zM>E-C6CfKrAs>U6Qn48Y&gf4msL#*XSY*{5nXf{8p++mM2wz2+uVQ?mRx7O^zWQ}( z`&raz_jQQX*G`?IrqAc-Ty7odN$@#pT`T;r76Ab}rGB%g>bv9_XywT*$ZN@nmwk@^ z@MdDKly`gz>$HXMtF3`z0N5IMfwrE}V)De0qUmyoc=A-z*XHF_7n4)VA3P>BMW!Gc zBL^FINjZW(ZQ{pZS?C?mf8JuA(1iz2qXf_F(Q>9+x$2dNpVKW7;Da~YcT(qP0i-`i5q|Gf5ZvOu$z zS>O;r@pdPG^7dx=Bo|Ca+QlAVq~x5p<1Ob%E6E7?5WfKTw-z#6LV$Zv&f%=6L=l_TeewZSal3OMVfcN3n3iYr!!{gsHN` zSUi%o+mB@CxA15_F>#Fpk^3Fs$a%JyIG$#X85-KV@`8wC=0U|KAN${PH$!I5$n6MkO#XHV{H~PcufxLt*ob5PgNV= z#NbIyy@~loG-1TEZ}wIlo;eVc<4qJs0Btz6>B)(SG8%fN)qF3YIW9f%i`O!v|JZopLalj>QMkau z89n%1rJVl$@#+MB4+=>YUVoQl;M$CrVQdL#cImB#_-7*ZfW@BjOmf*=3DsOjA_KPe_5XO)I6cv zWAQm!-Gy;&6TCA|GcJs2b@xC3<&}mH@O4kDzXig?N zRxSrZBcL70L+x}c3et5XVlmT5=e+^XW$jqM$Wp>AMuIFkbAFUQXe7*A+J0oT9*If= z-QG>*TCh(pxH3DITBOhnjs5=AQFK7qY~T>_hpt>bzieT_>ezyn|( zEr}MSv7dVIMHv2-w|I!!TxiL(Ad&0>ZeqdFXzO)+jM^v6>WqHnA1Q4*k8i2=b%qz6 z56#<8vCzB%Nm<(DDm%Im8*yrNl2i5&hnT99@VsRR%k%*-zeQMtrLXM7R5vBPU7LvK~d3d`PO~(#MaS zDgm8M;+6E*)WS-DlAE|SOq{x%fI#x?h=8C}HIIyL?8^wl*qc8C5ZGuA5We}_qXq>3 zW5fdZFU9oy?MnfIm?Di-;2`eUNDnCU29d&Qihyznr@^h&U* zwD54`!4hMN9>pDVDOXa13CF!-!JrhWFl$Yu{*9DuCD&XC=kbg3SjozbkR(Gr5LKb5 zc7=a}RioS3jKg^dDn`hv8xiI1hCR}NwZTNMw4Vs0Zg?clZ8Uw4RTbPjqp55c;euJd z$KoC@eU3#6R0OWgR)j-Ebgi=6Yv1EA2ZYzYAK{|XxpnL)P=l5Jq*6FZV*<2jG5VbZ zFu=e$22Efq?*giHV+Isg#3JlQZW;EIWzbL7k{Jm*t|HV>$9Cy>>JH4TflqHIQ&F8&YpR)A~$Ht_F^ah9YrL4S9?Zj_0aQ)7g z)(Kz_;R?FVu3WLvP|IqguWa&3t#lMe~`pn-v^0#BIJ66#H7SeK7@2Z!I)Sj zX>TtH6!xJs4>JkTnGy84lY%~c@nDiA=;OdetYy|DE3%86&q$ExWxvuk@WudPpI_nA z|EmH;lS1O>SGX_08&k{lmd+ACtbY2W^sPs|(iz7>G`sL}nzN?QYY)5!ux8x*MS{XWF|E#C716D}wl^2pvs= z*d`JqCOmpjF52QW=ljd-W8h7uC`z`(e=0(>S&$F+dciurKo$63M;xsVR0m!H=M84G zh9Npo??u?57~NGOP%<-9j(#cI59@o@!qc9x-t-Qev=&F(K?Y~GCx4U~2edGh?D zts@k>H=slsH0Md*-`_o=C2&IOOw?-4F(P0-k!N*|)vO|>TLNBz8&OX^>P7)p2TsZS zEfCCfw{3Ta)(7?I(pDr!hghw_$R-F+5pjXFEEYfuc-BiIP|$qK)4Rd!PfjE zbTsE5Q^&U|+!745$v!lKGys2hT5kK7W!i7WHh47Kho6k)oEv4)>VPfAg?kEx7Vyc} zy{xU>H|NsCQ|Hd@D^W~OEqwLS?p)J2)Qt%~LSAlG-i*LQ#~~$XS&-4@-HUG}eU>+H zIUxih$7ov(e7G6M0kPtpeG)erKoOi6jev zb&z(lP_ZOXX4NFMXB%q_pFq*1{?ITpzh~Dmi*4*yc$(ASF?M=sP8+GeA)mGA;CDw4 z)kEyGV>Lu3arMu`3r!Ls9fUUQFX7!s-s9~4nXSiK5MYg+f%BT3)QbAaz9jR@0j6aV zIxFj8F4O8>;u#W=GO9))o%76J*+t>$BQJHblwVSUTz1C*Xntn8@k6@+H5od0W1^iz ziCiYBqB1`7d^?feF;joxK&@%Z?3_a~JLj?X&Z&jDeROIDv%uJf?XPHzsnO;gocZu?Sfl^v7$OU_;ZVh~>I9jWa~GC39UBO#vzge@jIPQ2 zSop0FvBDn1`(>TR9NA4aU-ot_HKzUnQj3w`tPR$}KL$ida_9yC*pqmc=aqEGd>BVdw~ic>>BzHqAN+DU zg2PkIbjOQ;j*U7uE>?iiBD;a)xxfjaCyJ;#<4fxkCcB-J!9yC}gcptim;f;I?+%I# zcRo~n5OPo_?%{Wi?umyMbHtU~@iu_AJ0Z#sN$ts%^eYH`IrEb}s;KWaub5k-nBuG# z(P-f=0&6K6EkqGTqvs_7J?k5=B$bEPi6OWo2zi&<&1A(uL507AWgw#IZ%a1H+4%Kz zgey0rw5KUtIR(G`$1rQeG18H)a2oX8`b7Lh&-%Yi$oC0oQuy@=An=t z{H=8Gka_O|WT%HKg`XaJPMXOJ46(5cXY^op zGo-p#sMo?+;2gUShEv}q{|Zm0hjpU~6^Ufhe)F$(@i$PJZ$z8V@qrB~U;cA4Ry+gx z&_529k5&s`0`|a&ylJ@rrz`sSZOW9qFFwC=87rbdV>X9>s@R+HUqov>b{>S`sBwNJ zg)Zo+QOkI0d{E*tm0}q@SV>YIy|&GS;Gq!iz8)H%55mQ2J4Z-hr};#J>bzD;Zdc6p zaWSAMC%(scP##b-IknUBw9|qZKpq}A|LG3BUkyBgwgfD5OolxT7|d^SC7JAruO#Q! z9ogrJKgxv-!;mB1PWSi3=O!7?TipU83N-%ais&-5*d`_}h5h#LVZ1;KTIO>)111%Y-2 z1t?YYf)Dx*hWgI`Gsl_Mp>r|21f7t@gF4Jrz!R7A?Oh}2Btp-NIo`kzz*YlW4a1D@1zONW|zk+*@p<$;`AhsB`TqALq1mx~9Ne zwG2qED;+=w)t%?9Av~XF?#;J`Kxe_Jw~z$}X$}I12=P3Bf2Yyj)`D)OA>A?Sc{q6_ zm0RH-8gn(pCN;(;zfc_uJRfx>qmy<yoovHwVIM5;9aJGIjY{+egcKiUDc zndzXpCt>%Da?z6av3V6zrBQAWH9z0vquE@}?#8SK=Sl1;UrGzr1NFfd38q zoWS)Tm<%)~R~w$HU7E5NoB7ANzkx8WY+CNABdz^$WeGZ)x(7ToBrU^0WoK8*(|=p1 zU0ssZroO=5)3e@pe<@L_`qVk754-v=)u!Ioc~f5p!zorjQVwLy+1K})ugyDXcQW-Z z4#mzez%Yq{hs<;5^Guzqj#RY{0w-8o4UbYePgD5_DrBg)j?{XLFwb0e_>ck}wIw|v z*{cez166h_IZxN)@@7r#ovMKUSZr0+5Iv~dye@(%=?u&C+dz*bTA?)STn2!_&?CuD zz0DG5N{Mm{`o9$DZ^aX(YRD>Tb{vup`ZuTkiZrt|%w|B-@>Y8s`)tf*N$XatroP+6 zo2#T)=b3&2gEE&fLGT3VIJHw}h^0z&{1?4vvQaye8ON%1o|c3B!g&e{k875rhyAoj zipzdqggjtayxEQ)ukisq5}b^e6|9ZBJn_gfKuInF++}#V@n3A)HMUa48$pC9#xpJB z-*pjV1PVA#RKKmK?+<`}i->+}dGe_De>+dA`m%fqTts+oTk4;*Np7is;uJxv>hza8 zPJ|l(?>Lbp0v@)jrx|M4T0Hns6kzHVPP?2=i16~KTS& zllDfh#T7P#+NpQ>tfRjB%JzHUMy~&{ksy(Jbv*Xu5jh?UY}O4hQEvlIQ>4Shw(X?& zz7Gzu1GTUivI>+WNC_Be#N`sCE4Dl^FI}zXkQs+ykMsp<5{K!(q$#o)g-0Sc%=N+f z*xxf>;%*Fv$662r3q?u%?2E7^ytS-D{(TXeISp#zhw%|#@;*MamD~5h@=cg3tq|L1 z&AK?Lf~_)E<4N350%3gy(_hi?VJu-DAH7sb13t$_U;M<+TT~BLjrPP(q|dQm(C3)* zSdwifj*%oN3{HD9jsuYOvs&c*a2g-1#o9)m4{fhwC(b7y!c`0A0^G8pZ%D=_vHWg; z${qIsw122T5ihcM;wzdF>oHc;;|CKe@X*`pgD9efFYW|fcfyqeTv&$N z2;6vtAcXf9`~~q@%I3Pc{UW$*w_j3Lx&0D|4o29J>2y!s;Eq4TO5Ki4aNVV*;xm?m z6H2JQp09;J8A{^qVq6<9JV`=u>~*HN0=pQY%ZAu-U;m07>JNKiEDlSA;vS5lF)$&8 zxXy0B@&>`}*FOO%5SEX|4$>c=KoL$bYoU2eY^#p8!nl3(Lp^5jtc1Px0vPnCp<4OI zgx1C)dyo;vp;NBdqs$cCnY7IMyP^`|jZdnDF?*#sw{xkpKMXrHz-TxlnAWhfAN=O2 z^w7>Z&eAUFTT-E&`OLwy08V-J(9SkwLJf?t5F?lk-e(1E%dz3*A*p;q!WPOOK>9xbER4)x@J8buL74ut; zy@vJOXDV#MN!fbzd0$OCJ_`K4|pSV`UX~+$DD015&f(JIjuXOD`nucq9Mc~@UtmgHza4(ZP{R<^(;<3<~lJOcRC!UV7KmdZ8lpW=U!+26mCF!Er<)iN?!C5;}pMeHpeZmSru3b7^`*DBg<}X z68*<)@MdT6UR|+Ya;wAZ(MY^y&6SJU_fZ8hX9l~UsL5;V_|@m20vOb`Qu`PzGxpl& zRZInddm3zLWFLdg4k!B_CWBJf#a;%6XE8OfIGW8?k%0&p8H9)h3Vk2-GlVe>C7(S1 ziNI<(&itCS0!sWvFsJE1#%C-bywcyiJmJrS$=Q|il`C&7G|FqJ8#Ky(Tnwxx&$?#M7aAay~xu z10!|af?h$X8e_BkT z3t4I$3t2X(hin8Hn^mun8u1lejCgzTpQQ(9kIM6(7O&02ILzy2{06HlP_8$Q8%6sp zSj6V;!o#>LkSHq&fU)SS%{boE7S2T>Y#G+lh9U{Rxx7<%Fd;FEHyCK+E!vD*lRF`I z2=jqy$^iK9(FKUpF^MuH;`$C*#W7d>857aIsfRs@Ir(OTQ}O+20@g)yqTJeCMk`*f z8_d&00MzAZ)VH*|pcr{0lw#<01;%J$i56yPwY5V_T!{%wad|n>mAE>I>kHd(Y2&ty ziw=bl#@d@o@_WgkSGA6dB6<2#3GX-Zp#@XDSG94eWv%U(w0+q2_#St-iX&pRq`w zpFEDksEF~3d4o%AKpa=g8)W)e7|uhaQzHF8;LPV9k9?+3FSTbucj2fVkr0o8Brs{v zpnYIe5~I?ms@N!F8}$odQHdw=(~`-!c?e%J;{jX`C$*Yafj;kbtK-!=@eHqCX6jbu zqVe&)xD?0b_6osU-c#Ua3n~QYUo{hkwQmUSk5N3YFK0 zGo`QlZ+F_lX{20+X|DfTAN%(xup0jD#LL{vP$23RX1P8Z&Byx6DZKTyB=N=JqB--^ zGn1%MnLVGHnGy!(>3wB0FZ>C4&A`%1cld#l>-s)QA5 z`~9XAfLTlCw5O`67BJ7#T#cze2~gljupKrQ1P6`(cr@o0aG4Zq#|`6}#^dBZ$YZZ^ zi>MxiR^P!l5lGW-_n&Gl18`bkMH-oF*$~90SupMKsV>9BB>W-1A&vV+?Djd*zN%f_ z{2@YjV$LtS)@M~^y>M6*6P`v$llmN=fS%yUy*LFF{Ru~iLScZo#YrkHBHd@Kl>)}v zW|Sk7I8d8<7lt6s!$0PWN4dw47ZSDC)hrX>fY_wkFEK_7L-R1h8a|3xlRNv+v@tKc zqYngFOJYquVnI`IuX%i5nXBvn-47O#oH2t`C73VZx6oD*EZ$2DHqF}D0;UCb!iN?_ z0~$<6R3bu2c>W92g1OR=Do`wwN14%?7!*MdAak($fU9&HxH3YpV$G46qOE+2pP_f# zO826u9+gkt8yZr@sKw6Eu(L4q?gyoNJ7?Kh1pgCume9L9y4O)?)j{@e!_I=xy9Y}5 zq7i;_ET9OAbo5+Xxqwk%?UZs*QTbwqhGencknD$a>E_P5(q=VWPCD3Bt-x4ZWhF5= zM~8G~v^6T9I$Sd{lX8Ptd06jXuiPDitF_q#pka3kH*W{5pj8*Za=oh--pSaB;LaW5 zi%Ip-S4+>YXvM1Mlj{DBsvc*wUfH&Cs97nLvTgm*K?X^U#pW>tkB2AIS!E?W9*Vn4 zcs#6+N)j`PDQ0_5nsCymDx9{@B>zq7?EVpszN2<_vx(GhNaxo90rF(8p82Cb z5LplYyx?jr@-zhHZBK#}B(vRKLHHy74e+eFEt$TxG`=rk5UAf^Q!r@J$*CZLhC4Fg zQ$aSMGag}WuIRlqIhOLFmCi8G!plLqC^&o%Qm97_4jdPJ18#whDcd(-uj2}=$sN}v z_P9JS{2UX0O0?!fbU!;b-28LLCLRHQfR?(B?Ij31s!z-dQtA|K=sJffi+POs8kGLU^~mx&{|CL%XX!TrZwcm z(sb1ZZFheS@MG6lo^qm_T>(R{w+b+KDD@?r$wz^=!%2sKzh)DFsRH`D6Nz2{6Z~5) zV5YH$xz7EvlTF8dtc8&9pT$uI25_9VSHDvc<;aaXJ&mUZI~`&>791`>ue!qFPp}!G z;BXrZe;!o?fdjvl?*R_q`4l+Zy*d{TU67wf0i!iE2$+ROL1*M=mXsGQbsgI)5M5Pc zGn9(b(VJuV>Dvs?TdRvdWo(bE${icFU!1eTuIu8XFS>v{JUJ~C_5+daInVbGq)&1FSnaHcbq#>{4>Lmg?eo$ z2ae2_3&(5w>R=~NdpCWr56YmEr@agM%Be1#1d+N!7WI{xdo(=l9fW8(QCGIdcyY$f z9+}-U;bX56_kb05W1>@Akuz6*x90s7VwoHd@ktMr<|do;sdvX_*9EwT1zL0=y?pUI zOJM8~Px{Spzz0F*N$pyA2$(89*v~|@UIR2>bkSmL?9s{fbV9#oF~qJQ=|bWTtKwzJ zdr##sG0DAvlGLu)HI=t}I$oiRYhT=3IfY)(V~#$$b5{xnlDxQ&JiHUi zxX@Dx|5|<3xuPl$g>II?s0-z0i;$Kn%hsp90nJ>t7kQCGGOno{rUy4v*k#jqU_VET zV6T3n2gx}3ex9pjG`ubqz<#@S z@Ae_6Y}5vD6K0<|J~s4XPY2$gPqGVltn)#NgZZn}oZPb=6>*|`Ra-nwks$Us{_|<$ zH~I`o(1QuND5Pk08=1+~a$NucW=OFEX)nn0m*`-6<>}9YEwzM_m+&H0?LSrzu2B!6 z;iY)ZCmdYc6i@3S_1#_cY0w8M!xfw>ZS5lRuU(1DDcb?zX7~yRJT?FxF9%QHYsDHO z3T%W^_ht9Zic@kig&E1oIwumf4 zReefVSq~SGXT1#)A9q0FBhZ4^rKCuGSPvIHN#B_pzapDu&joWvmT_<(!=j?SH709> zfVe$0h`XtwJwgC{R^VXH3NKF#()=f3sjC-^a)jiW+g}WX#1n?qK>FK+B%UyooZQG9 z`CWO!*bT8GJYjtEhkU}2?x8mdb)^KG;!B3r3|=yS~F0S)t#CL=9KyV=$V} z7tHy{>4`5{h97xvJ{2-GB-i}apvA2OV=Qb`Eg3CC+wO<(voM9RX-Jev)b_9_z&{aD zRJ3NF&FY=G78Z$cs`s)YI?G5}5_WU+SXj2-!?)T@3^%~Fh;Y>7&dQO-7{II-(Ot>V zD+GFg8)?IPAzIga8Lpm6xXEd9{y+A<1w5+i+CNVS5I8}JL`4}jYBXA@p^6S_24>(4 z%m6AVRa7);v8_sR253#l;LOlDa~O)Pc=0MWt$onj)?#nPfD$I4Nx)YCr3e)QT6@Ov z5yXZ7!u)@0?R{n@Pf)q{fBSvS2XprOx%S#?uf6tK#e@fYP6>r(xDmr`n77^d$qirN zayZM=h!dR>%*IhYcA2062-D?;J^Ztc58u^l+PVzZzfpgi^}Ji-*vB*a6| zZYgPz0v^Yv$M*L~DHJYLPC@Heu_d6}mY3~{O(c=UaD>PY8;cD)0-IbFD;}fFieo3e znu7epl0Tp`PCp2M#U%IT*4{yc6Gp~JdIQ`}sZ7ehvJ+DiXnP$*Ac2m+XN=sgH7mH)6!2|RNiV!2vU0=9S}rpkX9=7q<= zfn(k(ybJWeG?Al5eZqMV8%jg`6kunXcN9066M1V`C3s(W?5GIa^ZS_4g1HLzh>@Ot z4MCc_j5u^BkRy|?@LUxUnn92Z%93X=?=V$_sS98=f|pMw%3$>l1Axbk0Zc6H1&@Kj z;6mbnVb)Fy6h?)sI`A$HFvTt|TqR={7dF9#861JM)r;Tdk@s%|F|=pS3zH*5s-5-w zvfb804_yM=Os3z7(5)MW}b?7^1X=9ZO?S75$}>zZ$%5`;zeb&O;Xg zUb%6ASJ7C&s~9!3mf-cBIe#My(p!52+B2>?nuzI`D%hcFa6~g>Pr~g#+y}xAhjYD? z9pPmJG$cdGFx~tiC?f#QCeJCbXi2~YJJk&i+z}6o-%78719bbc-!mDo<-JmZJ^&?y z%8rk*>yDMS$dvc}hYRMyz+wAHkeqy)i4U;Vp`Hweva}UrE*HFqiUNap&ZlEZ3F`L_ zN+QEp35*BO8r2XLI};v%6_m{cen9f0O5I|n#{GvpO5i^UQ1yIZQhLZr$Crb)wuQtP z^m#6EDRrAB>G`im9|Vbx4xZ_%n6`4fQkOp%PYgW+?V5XKvNU_d`7suYMfvf=5Sx~? zY{qFs%f7@!J&0MajZP^{5%^f~XDCQ{WEn7aY!7~bDvzMX{CQulm(wW!&+%h}L3JQmh&b;WgrEli ze>|ciscZ=|vAOW1kLb5McUm;zJPIZt%ObGA(5^`zS{k4Dc@Aw0#E((sp;2DQJyb!` zPrw{U^B|%*r&pcEt#}sANw%UDp7d6XHDfx1j@uk?9^o@+gtL#B^>Dd2p{Q7m*;h5a zmarLmIi(??53@5}p>gv-Ia+=7B3|hbhJ9iiu zyI+^E{u;wD=VG%z@dpWHX*wj-&QX$4QxW{obwa(mb1nLkk#Rmcv~90DxY;wD-suw# zaO;mT7`UyQ-O6N$9SAQmlju=}S(*vw;3a`bB7JGV;tS3IWQ$^4);AaAJ0m}Y{$Yva z{fY8r zM^20wje--ZAX@Ov@Zuc5_o%t+nZ;9#>aVJWSOnc68?NDe7^m`M8}K7LAggqQ2RlNi z%GX+If=&C;oVFk(G~+9QM({~Zo}|nw&hFqn{+{9lr_B-S-(w-(^|6IWDMubhJZg(E zGL$y*4CEmwxUlGj5bA-PucXF;|U#Uo}F&Z0#wA$&)eX%en9feXw$!`t!uy!XEvqTK`G5%ld{>nY`cV zTSDs@mq#7%O=5ef;51YhLZ2n78$;cv2MfU(cJ<7xlWO>TU{|i8f_gx8&52$XWF2Kp ziqFN2ZH`_BvZJhB%=k@jiF@d=6f!-L9!t^E?isYbXc{nfAM35hRBT$0_u6~uaSC+t z1PYuW0lvS3AkEh%Iq@tQ4RM4g@Z4<-wXnSrkZhFk12h}F>7!QVt|8&Ci! zjaBRM_C13*X0WtA7|ZBz8Ud|5LQ)&CA&_4orjAUy7fBCM(nB4R{v1h7Ixn^t9xffn zgpA3NVK;zx+ZS1mbjb33Dt$G6IuY*5BR8ZM_81q2`bA+woM)3e;!U7<(8 z@kzGuI;2R4u1mo&70@*iB0OIgy3$MDhT9@h@_rzquUm4m1Fv-I!1t5Ygik^>?$VtC z>$P`l-?E$mVS@i^qr=&e@ zS8FJ?2V9nLLyX6uV>y2r$1Qj2c?!EO90wWb?V{U9veVLuxt_!Z2TDThXJ zlT#VHrNiE?1iqUTvJ9DuIlspK?$9HId>mzD5u0x=?OJ3hPKk{{=xM^9Mg;5B;v%RZ z^pwIrlj`5s%8!W^53W}J8ujm0wi(JxQSSgU{E@xID7g=GkJbn>J5rsEyO44mg58nH zkn@PBa2m4|ar)ifLT|8CeH|sh5tk!xy^G$HMJR|6TKGRJkNh@cd}tUBY#VI8wdBjd zD^r}nfE=`^MOU;jZyG$cj+O>zsyvY?CuA(Iu;Z-F;Y1gjX!LxzcUxA--2Xg zk}7iJUee-*A@jg2Bt-%e&NzYb$(uzx&rop2Jwu&|MjZJraYVii-2nDiMX)z!OVl&B zfU2@-8!&QY{M=o7ctT_}-SuV|=M5sn%fZC92=BpoDRskX57@dY6O2vI44ePRrC>~(H$_ENKd3HB-bs2?$R3-^2x7Ht5@FHNvOb)msFO|dsaCU1GMx;V! ziV!HH;9{gKfg?0wdMbnz`6C2&*v&MC2!S1TGlW#AAr0)Xn;{>G5ZGZiLrCr$X<&!l z3~3V~u)}VKkO(Q#+>r_)iBp8kMAO*(bTkH|<}0X+;#JsBBnhB5|@)2C^ zr>R8Z4I5W!_CqGx(}9OjIosB|{@bIH5oYlihe1Mof;x zU0o8uOgkr#BhWPgM4mW-9CIY#$pZw=W`LVu!7LE-4Wnxg8jQ7@U7*V4c%+rh>3w^V zmCKf6kyiF}QFaNcvA~(E)L8<6F7FbGN97X=x`aahZbDHqRJKT?+bvsiv|(k4n;<7P ztqDs-6Q%&W5coM8Z7N|L9JV+HyTA|`g=$pkj29-uA|Y-#XU0L6Gs$I3>Qtw#QUYIO zqbZ5!X`PbE?dNH?Njy*Z9|R&@d=o~&jzD&)%LU+TP=PL8LD7T?T>8xz zgk^*TU?v_G<5y6rF1>n`TU$rV-X5Mj-4S9jBRIbeCoOb1Z-J9mIGne_NlP2f8F12? zhVwQ!X)(ijJDjwN;k*M*TE1}3gp<}SoLHR#*l|B9%*XE&lgmC%kQ{oz<}zNszI_7v z*vDxI$WsOJ+J*cf1Nk!PTQ3u4o6Dv{Y_*Kdp|z5Vk)bdt&muaU)kG&UWZzMlh=JJw zTtd%J&B!BW3CQ|IDhB1zfbZ;NjA(jn9FS$w5w?~#@Nrj>mteh3Ja!?qpC4`i_wTUJ87U7F$ER(T1Cg#aX zco6aAmevNkoJ1HLfV5MJ`(WVG$a&2N$Q-K z)B0D%pMi{%Bd)<&V;XY$TVNyvp>qzzVrX62*7)C`d2DP$&H#(F^>iRM9}z^QDvPJX z6}t~Vs^8I?)!lp^IG@?|fl+@;&J<760vzAPG(81q`?`n9^y6xAvg9!*q2xNc14ug) z9k{%gGZB~!t+PFi0oLi5dg;L?=!Z4^$&g{l^(77E%d+dn~d9&j(8=CCo zw=iH|x07`EELjT-PwWu^Y4&O zV-i!)uH*ZWauf@)DvF&-JR;_t!cjmBpFH(+N_G z7G+#>XzCzrLXI6!gpvbx4ifn)&w&<{vsnvDklVq z!|BQQ;YWpaZNmNJuoc$^~ z=_i92(A7hU>k$Bg16S&1xBDndf&dEt;qq$8XGW_Y=5cusK^hPZW+ZzH&&O5nihA3h zEw1dw$jFRD6rHhd7#AMa#~zw-ZRWV}j6Rv;LPOY>H7+!@Pv#t~J$ptb2HX}Ildv`^ zi++MKF#wR@ab>^hz<`Vm+Xp9L;P2|O4RBcEKS0%0-#@w4&K=gd%Km1R{Sy{D9{US} z9k>EvjZRx*<3V=pw>q_>K$z_|?Q?p2 z=hWVS_FT~TSOYLd@*xE6n@!ERWNM?utu-1SoOv{%Z6vDubTkB7VbRDEjHiqB<$ewy zEqzyHnT2*OjTJV5uZC3)9avO0*1{&FXbTR2$0yW(Lh?QzKByGkWII@2fM{XB(5^3| z@_{!;RN|!0s-p15El-vkFM{+~9$37Th-On?LG`$^x4HGpzj9ui@7hsr{bJIayMXlO zR)Yl#`w!yP2lkQsv8SZ%b=safEN!gqeWupj_ePSX6GyYH4H7UJP#PK_drVH<)W@U* z+K_?u^aVbGOVy_r!5Ey-yl4;W;&obmxo4p7MLN}E#AXgdGHs8s@)>#)?S?68Z5GNT zX_H)j*GA`*B`C|K>oxfBS+AXCdu(_RGls0Z$SAT00Ou%~-Lwbb(tbukJ$6%B&FY)b zh>kB}ezUiiOlrcv5{3Gnp>ysL8WTs^`);jUtB! zYkCwPWp#uAk&4A4padF9rOsd10JA9n1DeK5@cyyk<=sH+(nNt z!H=mAnDYuf!sLt#J;IcNwU#l2soAfx9^tQ$j}!r``spw=!y;0oNBCz+O~HOV$)N<; zt&*C8b)hL3VfR47Tf|nMV!9s2RVczb>Je@^6MBRd&`FRxxe13CIfeu{FaVC>2yOJe z2Q9)I9N~phLl<~8EywKrH#$NbLi1n`KPe*L1Ltw4J;Xi@9d|cxiTmFp1;7hwUhCh3 z0^k-X0H(|oK$%_IGrp8F1gBgP#8I-~Obtm_tPi3Q3m_Mz`w9^5)O@sIQhr^hfO|E) z1s~2D4v}J#Fi)g!Z*{ScHNsFB=$&R$n{Y4+kfWq8DN{i& z(S;IT2cU0h4Ir&?%-zHBp`!6BoL2@YO6Vz_3EdhFbgzcOYDF#3bj`XFdRR$KuhiPxRZZ_hAfQ+tgxXFlA8OT?YrDvG;%#T9Yb}k6@!Y$; zv>iI`O3)ywrdQdXtwtt7zsTNJZEW7X+SvTi*g^Ly+sBsEk4isNl#4Qzi);n>Z^8c& z+!YN>c}Af$l~B;S2K53=2qieJK0**m;MWKP5D~tFg4PEyB&48~6){2`IVCk-xX@J4 z`T!m(%ju+;q=HsLrmV8ntu1Uu1b9!)Zta&lC=JcDzMPycZFv!@p%7mURd|#mwVE2v z;%H8xcT+!WGK}=Inz-M5UAYKwi`SJt^L6E!@Vn@uk*sH8g&NQPnJ_)O3AaBkx?h72 zNG6et`H|>V;Uj&$ZCJ<&tPO9TWo>x# zTr1u@&vb-C23i1aF0{A8lYH|`ubrX26~C;#RkY-r#P#)-rl&iV(+%WwxQFF*7(Bdo z<~HDyL9^fJ%fpBM2oI!r#Ts5CfGXh`T4zBTRezKQ&@jf}S{pb!?n>%dt+vS&Yg*D0 zt~V1xCO27=L=UqFfPwAvNNpyCrOL|lO}wFif&^mD@{Dxpzo7K6l;(kEhRR~-g0<)@ z`)5o%i*>;cwl&xhOyU7m&Bpd;v97gGU1YH0u+fB#T-9#`Gixg?Fw#5N-F5(a99K(3 zZ5VS02?5~mf&&YBm%{KAl{R&{WavrdCM9$0_kc}r>f96|_X9cnX+HH==zMkQS`9{t z$;V}I2y;^3wrSsMCEV@Hn|2X-=dYdeh@XC>LPT^G1u-$K$;)!s2KKW@r2g`2s@PfRryn@&g`X!KzOSN89-Pii-5*O=Ga!XpzTh5DXmba;;2_kw}UY-?>f0NK3^O)KM}3S+MDb2-tIUmem@q`lw784Zzx z2MG--EPgA_Ce&fPr-zQuH@ShX(obF42VK_KL;c;_N6=d1?Hlip56n*n6V<_9YUo(F zTVKlE6nltUUrxk`6GvH%N79|W#U>~ZXy)Y2gf(;exD6N{r?!+cXiJGUBF&tR=Ge!$ zL|6mRx*BG)Jwm6=*neZr7M)_ zM7l!h(!27;mR|C8P-pzs&|bO{HTv4Z%Zb4Ay?3nt4h@EC*ar=s{js7*2PYBSq=nOw zMVeD#mxfY90V(z~96Xy~RfYlxp6!ugK{OLMVKo;5^{KW2yJU&tWLh83l1Ed@lscN? zeZ0^?O2^mwc%Kf5a&UhA6z5lsPOzdfBzliDsnQ{rLXct)rRZ2pjx2_BoYcRUg+xch zF_;3V#r3gVp>1_Jh4|k)I6w?RGQOn`jP0cQvwpx1*&V|C7$m}G%4%r3pdqOqP;U>_ zhuDYBo|1&2qySoJkM&0|xmW`#Yc|FBwPZt+Du$I4>QpByQVp?_mcFS#70ORh*I?Au zRgWs_(CL`&+e>;>*-3=ViRe*n<_i>4kE+WjByN{8MAEtXi5hYeFEIiKUCf!LLJ;{P zMG8|PI9#Qh3aP*moH-0cT)^4=5jwR@O|TX!T>kk+FPRu?-VJr1>oJx>0qZ}9^a9?b z4-E=fe*^&pQvoXxNkRdusz02kmq}iw@%k)QXGl97&O%qv@ORa}dRwzkH}$VJL;orj zX6j!pL?r@Wo8#uWQCw!y#NnQgM&;{|Tat1zj+}a&oDEicVTu0mBrUwg5;?tDN+7HLcC*YFYv5lxt6NhIboXA$9lWJO3JsXRzqng&{Zq&41gp6NKO)KX1L=S%V6UsgQ*0+Yz znfo76s0SN+$(K%dcBiHl?fWv!@dr+F$T(6u zv!OJOe`@F@Uk5d<&*%5Di*``cs`r+Xx8*t-BEfmMy|=_tP3sDwVVLO*f?92%MJ_>? zJ{CsvHbQ>%k@+B^VhzsEv{_24_D1Cmv43J^YZXoizqnlHW*{Q zADn}yOW?(YbhGUxIPjceYzaOY%0K$UD2ZB`u52!V5*&&H4|RmHxj&(WLfM=HgVs^moRFXu`ny)4Ot_$LZWTH} zVUNAN3N1g$`sOC+f!C?338na=q6x~M;6Od3xg)#T)HfGGFG%0qGU_T=oRr0`1y{0f z8I6)L?PC~1)j23WNDhx28yNKCLk&g?HcEV$9Quph2^u$SY762ws6#hmol6b<$;OrOA?)I^t$nnrs1G&ojf#QWnn)5a?tO6X{2i2=Lh zX#j;#$`%2i&rRYePN=@Yiemf8tbgvT@}9F9p9}LH`^Ef*TL`Zy zV}qkLGq#y9mmgOtbj6eFoo?FjV=Z-z9BibhPJ$Kds%tT!Pw1+<2`EYEs@vxEFOKA#o5xVxGXc@jkYf0H(NqNvDduYWBxcOn;3fci0g46MviTtzJ$A}$9j+sFdMbjbGfJ_u=3qMZpUGOf^357JC z%Wh?{K#F0vWL{?%SLvBTg~H4)`_~h%m5e9%losTRl?} zoBfA#<~i}y5Q?v(XJBXXy;?5oj$aOs#q^vHPl4$vf+x@PK)~qL9O-dHZh?xfBW22u zolq<7uGj?y((lg1{VCoQ)`F_Vlwb&hgv&6@OGOW<->}SzF>68+WP<2RGhE2CL*{7= z8qx(OIqLw{Ry}eoEkepe`7-LNk>>72v?XjvM41 z*R~-~34RYDC^Ce^q%t*dEBx5S05jK949v1GQAHA})tPwRhKgmSv2P%TpO(@9IVRg*>2?RgQ(zUq|i8@Dw&cZdnW=YM^1~ zRQfU+RDc@|mpwErOKVO<0i4O3kDG&(mot(_#9sV$=xp^H>|)*BoJg3+i7Ez*X zeCdWdH$H@JZlQlydz|P5d_wrZU~8u~jITV}6=3Y)6;uh}#vcA7)dP!NRJtSdEEVoK z$6Wz}cP!p(F;yw;g<=LMQH*}r^lrzhB$;EpvXp9M`le&&iAH%6cLor!c$%tlM81cO z;V5*>KS4{P;$xtQk26juo%>v^pjt;OU0(FU3~SeJ8aykfD+N>B(!jaKHQ$c!S~ zmp#qW7QaGq*fNl%23hzX=)<$6cu|_b1;=)=kE`Mac?mIMYe}R6N2w;eI7J3I9yX#-Q<)&SXy#|h5V$dEjey^ywSA$!5rXIS>)2rHUr%dzoUuE>l$$X;-T z@mo5}UR33Y^H4foGUt9x|0G$^aqeYTIsz264LV=U1{Eb6G{`irs|0R83v(#|4-ezB zyu*Qt33z;m`+6Wm-^VlBcR0^;rDTL?>ig7t4DkCLcxvS;P}a z;c-4t;S@E%Rcg4hKa4$3SZHsCE_+NF6r>(Pp&7~UXWvLG8d$O0R3j)CZ zN0w@ySgP@X9o8w~24`ei0!!7U*grH$hR8td{xE4e9}7hiJRNs798P$5*LiubEbzF2 zsc6^9^7J#wzi%-)d4b$2-4RCuL|2l-qBsmmH=u5!A}^+~D*L$jQ!H_)vjhs4#DuZ^ zOj2OQo4h;w?~+7tmmYP5pCvRB3g*#yN}%qZ>4GS>5J49#3W?=xT;n-PG$RD2>97=x zVzXzw6ymyi-18ZE#i~r4U}E|`p(GZdeZ8%S*FB?VdX>V0lXqd+3&BZWcdI^@+_jt< z^nnX*mAQE_y)9)Zd0UFzfYLhc>O&xCE}og*-~PX~>UncbZqUhQVuKdV{C(FA+O2i$ zs!6$UW|*>UL*?o#`rVa%-vndPW!Ht&q0!&Ccadf|q7N1J$+L#mKE{(f0pQbga3g!$%IlDch zdoJx*mT~jOo)}J(fz_}H5qUvK_Q64XYQUWb^YjGU3bz$>aV5D|Y9ulrtu;<9=8KAs zOe`v+6lJi86-JLlN_@m!rFMe9kEg;7Zfl&71bj-w)6LOJMO{FA<@kJk#5eGJNyI0& zi|{h4AQ**BaIPXGFmq_NV44v3E5$T{Vfu8O_aEKkJmWvAJJ&*3?jFE87@1sf=T)dGdVoI_%oDok3tm>^M&QaXenV6c~w=1*5*mj6e8#7@g zWSC8tj4LtqCqP=26?DXD=SnU?x$hWAEBxXC3V!(kiXiv!00j(=()4tva=L+>&ctsR z-CQ}W_#79%iA!U;DRvW&;}g0m#$)Q#O)=p&FOgQC_}9_;%kUKYB6RssjyWVyYv^Oa zX2Tc;x_1P_iLez1Nt~ia))8(EKtH8nSg637CaWZfuT34 zb&&frAE%xF>s~T;Isp9vFQR3`=;g!-HH;GW+%Ssmp<#=E)l0?>XgdvMOMI;=b*(Pz zC*7m%=>l!f#_W83w0#qV^g1ri@G`1^(Kc6cGSGI*4?EXFX!~qn(4NtD`Tq>sR`N`= zJ&WYqh--a9aL_AzI}PXd`4>dneY!*2!#+P*X#3&;|8i*C#_wt*2F9&)knX5KtPy$E z5lfp_jqje@173zHN!Yjv{1SUtN6hOz4df=_SV?OVHl2=Rt~@B0;T|zU(J*qStr&%h z9pN*vomrsSfP|j3CenzrJAR4DgoEaF1X~X&krLE}Tfao(nDEG}vC%<4j=U{YD-z^~ zA)gW|;;^SvZV<{8VLe0|bQ(~AZ}hbmZ>!7=+c<$IK}ZI-DnWY6YCROOL5y=5)r)sp zu)H`*QP3zY3#3l%$+*Fwb(-bzufNaZP+vMrID6V}g^MfB(aosx~fwd~Lsk(VsS zLzk`?VrreXy)2rD!bD|5wnYhE18NR^iIAv6>1LsE2WUa2bw_TMig$J&+zngiLh;US zT(i%nqkH65=-+u&S^OGuXm9923M_5)f1tQ3-f@-g)*5hTpeogf{YvP+X(#~Srod@E zFz0~QnuywAf-&EQ8(mm1Y_~+@s(Kb}@5icoE=M&RP~x^ZF_-ln#s3Q;pT*4L{pzWixXay$h&i9devBBK z_NpD)*8NAIw1{$u6U{rtzGN(6U#JhVi9+qHKX3^4y?ZMN)J83686D-N%+NGMRV zd8jbEJYo>+NP$LV*cE7Q#V+f9dw8^UT&S`v(;lw0W`=UulNGXCGw1BYyFJPiv0srX zVMJ>*A!ITXGQFcL+Kwiv6&qx42w1W=*uyhMB?wv??4uGEC_jp=k_}&puU*?M8vY6E z{yMPbSg>vGmuNWDMNz}wIH893>!IOu&*`SoePyHja-$`tkmvyis(4?uB1p(Vg0d@n zM~YO#IXjm*=*+Jx?1O1!Lw(c#O6gfVXEIDeh9UYGvm*?|Q|z)G^kr)d@9$)1>|64? z@f|{ii)t`lCgHaTZb@H_f%Am+RZ7@1eMPZ7&{vl{*-OSc%E)u5edf~k8<*`p0vyr9 z<#fk)hWm}I-V&Q!xz>H1y6?GOFuV-B%r;+69-r>*mAvfuT5`W}UrR5&FdLQy4T+Nf z9D55Sju}1{?}z9#qy(OWE4Bqc9j4FosAzx5$!ovKtWg39G$eK*9!qqnQVED8 z!gItYq|rDbsOfdsQq?{Mx#rkL{B)}J8Jx*PwO60KYCF}Dwixa_(QZ+~9>H`C#rCim zhA;0WV;yBoTMXy!?gflG^uqHpjglw0_T==SL)l8;?&Rd31J_BaBQ^O`fS_VN{Fp1? zoK_$@oMB_v><2_>+hX6sx1$A&{YLJ)CptJvfW#987#%=KCkcAZ)?SQt*lEB%0%jNW z`A=efu&~n)_kj>)i`|Z`6f!%j2%+l}p_T$Fqay$w*$zJ44+Fb^p<*oCjeoob@%q>j zwi>^PpJYOJ1{BXEC4&&zBTSnodVqEM^NK0UdI4uYtEtZP46|#|9t(!38(rvTcpw3@ zC=&$fN?)2xtEXRawJpTq#I82A@GJxMjjpyLAG!)UpIF>V;LivqlOegd9;fR9!M7=G z2EmSCCAb*rNqi-MZ&JkW&h#<6|ByLx7sIudHm4IpbCj^>E(*RGF3wZ;XYz*pV19uk z{2K!UfO~MFhjDL?!v~FsJcAgwO*=|Eyd%WP_y=dbS?uiL`X`N$^v?&7) z7O5=570DUV1G`q-eTxgJtJTQV5n$KyU3>hJ&g@zbcz4hdclrBAh+-fS4L}5XVxToP z;>SW6kYor$8ITlz0}HT@ASKf?U0$}*EqA)0Svkp&SxJWM3iF2PQo7+jd2(hd;S{it z0`Cb3sKJMpV&Hdhw2i@*HC7ul6T?msUl}=RFf!XM&+)mXy(~+y(Xy?y{l*L1d)ZAy zN;XHh--z^<(x%sq!jMDEj!;=OzQhKFb+zBnL*RqP(v4q`u!?D5Ew&H$Muf2xxk!Mx zVw13WNZjQteY^z&6SE>n9+tGjv9qx~Cb`E2Y24$O9Tyy6Ajd}ID_2rCB>xB$c|ur? z684DI)=+E@<9^joddXNv8Plko(Qo%M^frAp4Ja<$+A&nHV!(TVv)1LjajM;Ug9F{u zo~OrVP@h668iN_|jGgMR+e48YI8Ven(uc=#GS<&RtIFEw{aa*N0cQ*r;nNtLieJQ` zufZY^q4-$Dr$l^4-~%!AQTPCXQL=Iop^DEG@tKZ~(ef+OUabV5e~b3-Ak~A52721( z)JEWJM*(=?HWLA`bb_bn&x??!Ef@rsc01CTnPwuysm&fGL*&hgEi`+2Dum3AAO!Y> zI2Y2;R)Y}O7cxVL`GOGG7cxWW(KkY1U&suhCmINWeIYZXO@zR{kQqXcpONN{R0!EA zLC8#0OWdFG=qIqt6QK^3`#u2I$Oa20q|CCx5rQ+kns2nCpWsn-GEsR}n@o2!m5yE- zQ(;s}dGrG_y-awdOTs=fAv6_o!7|~&E(y&9NDuo$+`LayiD)IulFWX{M0+|VYW_r~ zgMFd&8rOG9hrXiyurHLJs9GkHp%@oJ9ViesTx@q?#NWt>%APLDEdWbS9x-@p_7KYCnq+o2}?y2rpWcAHjYzi zMdP-WV%#8@z<%SUhH6ylj29-uR)>%*<>O5H5?Z#TObb?uaK2Ciyh;+QEf_$;B8-+2 z&l3^>Z;x&WB^HCc03(tJqn4zVp*kv7)vpApK_$EN@wfqBM5q8(VPIuw2^9?6L!%&) zHxo{K_zqYZ;wJ~?;d$S-g;vvYhw~OVX`RD)E1a~z;hX^{t!y}NgOeHy=k0LPT88ru zIB5~XITKD=y>Q-Xg1jTlJY2wlm}2&Eg5(4MLYWFd8UcfXCZR$I)WvdzK_DhjQU%d^ zhHpI=7X2jKTs*uG%(T@qHiuSBDn^DBl3t@0&4vt z6@&74*@frvl0#&ch@?=N?Jk7obO=3$!YDK|6{_ml^V|f#fS3iU5vndY7k?R77~j*r6XnM!*T%$xn}>&Le@e55$jIdTUiTM^-yDnXLf7r^ntiSppsJ zFfKsc$X~qH3u(f(OuBzX!|#4gvlwI_L0$L}bY~c);9k70`DD4N$z!Z{a}#NRjfFn=(pB_zk6-U_MBoHth40ZOTYQH zkiB>ih1!cph|ee+H2>nit$=RHw#83P<+d}eozD8h~j@U z{;se+rY0S9Hh&GW2#)aN>uqiIIH5mDJ{)?>cEL_&vBfhG zw;C`|Io3D&Jd5`LB+L=xtBP7YgE-<97}+>0YVm&N5SnYpM(h{mh?kP%VN)R6UK$0# zOy{O@n7rHwq1&fh;IUhG*fmFJY-DO?mLuZG#DyGqCU)!2%6<;$d5=6zQ5C!XL#*CFWo$7!TA_Rl^T2_7$9JyFp(GLogoyQg~-r~*)-HWOV=0L ze3S9)E{apD4+Dcw2p>@QxKX89vTJUivCU4x0d60r43ZEO99}`CWB%-6QG@y3j_W4b zd#D+`89P5ivXt>N`DXXwgv5M{v^sD}OC=i9zs+(8%YE9k>9DEIV=xA;s`cuQqXQf zV%=7juIL1b9U(f^n&S!kK8|W6{Nsuz3sPX>NzDJ6urF<(d1~n%H5+>dgnd;=8k&2? zkxYIc8zfxe!p;HJsXJorSfvP-YZnNgVq^OdiVJZ>;Keeb9~l8X*w9w7ONp#Sg3g$T zFa}=zZFK$IM%=LjqAMr=gIY-f`(V#=&( zM(wPNy}hd_Y3upycq{Ov-zS$O2^WE4f|aUS$Jm863dWUq&4r1Je;`zdP7;x zA1YI3IxDs)OICp3a%(N1JPz)FG0dV&AJviec`1IV5gNHJQy4PYUAMsK~~z-fe5FC{lSI48N6LE^dGV6M@Ji2D63uV#RZ6 zl6vCdjr|#QOL|Fkxok=jUv2pT%(&xHP_-TBye@Yd?Zf@T(Z$qBfNP)2d${(YcSt50a;T9Rm*d(;$n1A92l2E-N@BW4 zLgSFRmc-Sj98aqE_%}eTFX)?9ibbbBOPvlgr6H-#4O7d>5&U?;cakXJC{Vz=%90@f2^{BC(gJpHw-o5iK1l2U>j7Hz z2oSxS9?=P8fBDh~ITYC)*YK7CX-E=|?uQo4KjL5t@8`kCZe-wjfNp z7Hvi59#b*Dfu)Dmjsb`f&*9RSnCH+vecoBnD5KZJM9gyyLbht#i@lU=p343VX$I5% zD_k5qv{%KH*y`iM%c73#cWhgZK+%L%sE@-ya*G2Aaxv&iClCKZfuZueE4n)o?6~L%EY`e7a|;5OdR2DkW0k9 zj3fJXNGEPNgw18{bs)^BhVgg}1AR)coM;ckgB&RRbvj_7+t%15 ze96ox^LP9oS-_q#Torr4)oCr;1-?!TtoFHs?=KkS8-1$93q7P8oz}lqe&({i=PAeD za|YfG%u^;t?B{2wr5jai>zw@f)Hy}Y?6+Lj4<9N3hXv+G)Y5In=y!86piwXBU;H=h zyddLGb7z0VyR)k_j`e`l#-m6ISZf8iL)rHIEzDm)JrDgZz8=a2N$w#dy}j*dFBuGU zYGj<%a1vkY{#Lj4cWQURSYPEeuw0r4?Lg33Q{C#ee&jio+i}oY`ZiZ>3`dQm&}Ni7 z8@34%e$-`6%<1d49-A{TK5E`+6C*j7sn&KVGNQ6SG#*6buz`|hwb0}$ zv&o6Muf*RG`Vb}mtQk$GM%u_`1e-)8ol;db7;kWKUQKr69$1BX8Isr7Q;lz~`9(s# z&%M&XrUK&#HAufo)f}t9oM%EobJrSYz3>aD@%z{_0|r|2DlPc!x8NI)aCSzj@|^yL zb}_`-XU0fs`jGXcz>!~t!0;^Y(7i07doP)^hZ!UD89^nB3pc}v6i7`5L{c}jh6QS+I zJe;=i2-IdB#V}t*?XA^9;txs+oCiOK5SeXlDKflxDSj~Bpe}d1v)^^r$8%|DoEV6@ zJPeJy^c_e;YfVo$zqj#aXZ9;)n@cx8QMRFUgSHd*_NZs~S~=P|#o=i$+d@-|bKEdR z9Pj|s>y9GP1Rp%m{;vc+rmnQ-cpnf$m70%*_20)q%%%;}nc@U@Q@cG!f8K+^v1xPj z9NGi<`Z^jvo3@|;>@ONShc<2qv|SQ#IkZVdP|;lLJouqn|KTal`oq`3s;o`BX;>`I zRYGUmJ~$w;PE(YsR}~dIwLxkH*Gy;JTgKTrbwcWdKH zp!AX|cWaYIBr88`R_@ep8WsOR_x%K1B|8fD?OCFyaL&!S7k%v``U?MoJlRL_!y??S z-gmfo4O9>xjKN~A^S;)C3o(6^kk)ASXKLyG_&tQ8yv1tmn+I=v@7GVhY(cW}F^XKz zebZ7}%i7{s65~CE0P2tBsP&&%o!PCb|AQ7+X#+AdUKGe6m08tjAcc`zbAR(EvOMSd z6FJ`gwcIY^Td$?6%cA~790@}EQb`_^KRtK(;gd~4yMziKKW zo?Dx!MxRA?I|TZM`)HDQyek^O?OmYwD)9<{_R=PJtM_wSIUm?DVMV-RFK=D2@HGSp zhd|>j{MERFXaSIjKB?Bj^YSM}axQej4Dy-q&FKf;u@+k$^VLI>Z9T+o}23(gELIu}5~?&#n7m zV%n~_wu6#(Xj^Rchq6E?EjZh*XX$-yR*0O?8o+xNQo%rH9*6av%6%|Moo!n~w?Je% zddZ_`M562_ zLMAO63*s}owzd9nR&eWrGpX)+C0K^K@zerUi`uN4EB{V)D}hrGqxT)7yOyu zowteJE`7l@HN~3nC4hUS{1dOx5c`_^Bud^6u$yvNl^({ZlO=F}YfNaCU&tf5U@>)PG5M7&&j?{{TE}0)BV{2Pwc(auE!*TTfAf zPXT&xhB9%3-5RAuus54`Lq-h?kwStzL|(dude6{tx;@gWXVG#w*lb(aLYToeASyA# ze(f`X6;8GG^v@~c+kiLifjWf9^#D|`;D;yJ zioRW2@kUv~nY~GSqyAV{ux-Jq)-3OD!QsQo7p*vkR_sM9HhCuLr|7OoD^_m3wb@fH zYbQ10BYRu+z&z;wDY|lAGcWnRGGqEe#kR)#6|K*n=i{;C&WHab&&T=Q&WEQceJ(ux zQ$0z|h_b|Y;%zyhS$U%SSy`MuD@x!;*rrnLAw}$g?;z+)Opp?|qC*+!`}^_nXA{ux z|F8Y@3e^37bU*zKfZ_l9etKmm{F#E2)RwwFwWa<=ZmEBeP%Q!B-|)~4<@aUx)Bh9j zpv?PLhyC>H!-M~$a$-CQ`X4Nwe}dx25un+r?Zy$H$*H{s`yx0LKm{h=wN|ybHC(k< z8Ip=NrZ?tfkTeVF0do2ix$`QW6@SGwN)cEPqH*F_+XRw73X;D$$r>x$L_FmTtD{v_ zCT&)=CV2qvnv&C%ZQ_)Zdrg^k89D_GSaT~lC}4GLeC|jBE25{CpvRueTv|*meHG3s zhkEcGFagC$W*4^61*eQrR*x+6AG3JpfXkrb!0`!Woqntm2dc+Hv%N;yE)0_eouooe zLm@e3{&tHJgpT-xEa=1I7KEdD?3c)J?^51x7k)$%n3yt9)(0>lO^(YUvq1Cp1`cpL zz^cWx;Q;p*IIGGMlG`b3n;6L-Sr(n7=a;yxdnf7klDv8OF6$=c5mIQ6pgH;O>?VAb zN6wJKl|>p!Kur)16T9l-xv-+ zihmOxSnXMA42DnDr!7?@qfb>2?qrUcGkd%7LrOJ(Wsd%8xEgYx3J%PzJ?_$jPX8+f zsKlsTXb(f4Prqjsplziiknq4D;y+M>s(Y6kr&E@N$LOYK?wJteTW$=UOAi@5gVtY! zu9dX`T9*BZZx;Zq_u#C}YQ+g^oA`u+F4ovy$dqNw8wiCROKCPC1sN~KNtal;)0P|c z4|Oi}IxZEGa=~4(KOhGh6~h|}X1u54Xa7ed^xRwi<4SPbGBLV1@K?1yo1*J5N-@%pC=oZeQ+-K;9?=C z7)AhXa|ZcG!Ei6k06|#@vf-3|B9BahuhAouv$q2XHzo@2c=}3A_WPb8P91`mP$3eG zx*}=`G)5eXXTj1=c3eHUOI^4zqns-E1bhO!cF3W%8gKks7LzDE6=m@H1YMIwq@gIpGPKax=-y-Wa5g^SLKB`$s9 z2;+rkF!u{z9>JM<03%e?LKV?QI1Joyq@NARs=Aq$l^J&Bg(*2}KSzt7&`w=x> zpAQ(wDSn@VlK}BI_+0vw0(%l5XbkN7^dg#m0T6E?M4vy5=32nRYh1((2@6s9kXC@f zOYjf`%vvQKvwsDL^1^&BYJLre3UGK#xzG+PKg z7fzZTI4y9}Y`{4RLmPz?<3=UWXe0CrIGcrYB%C{h^Kv*_gmVO(hH#p*odqvK+ePR& zIH^z+W`~pJ8O||q(j3EC4kt}9oYUp>W{VPNb`g3L63}$QITg-P!g&Ln<-$1yPE|N( zp@b=L=7QjSxa+*LRP^C5iA;tS`o2G_@crW5WXhidqnt}h0iB^JA{vB69u-w2VkWF z4H5CU@U;pbo!t@FE_^=~z6{KU@njF^?|`AB461&;)hS`H^5 zMxrQt-WQ%G_Ou93Gkb_ZjM{g=BO#=P!wK4v-C)n>!qdv0R^e%9Pd)|=*{S6cHuB)q zYx59}>;>$}5uPIU&=4cW!k%FwdkH)e5=L-%kw`R(Jwt@2oIM4?qq64`k$nn0d7@R* zIlM$9n#rDG;hDuAi}1{5&uEc-K0I{qj8^$Le3VEOV$Vq7S<0Rf!n2$`E|I+k9*7rF z_LUs2ibSi}V;7!U_LK`xlsz*<_9l1+i0sWAK3yc*!JetY)54x9!eg-K`yzWQJozGf zJBQB_i3k|<+Pj4(k3BPmr+__`B6|@$14VWVhtC&@O4vhJvFO$a_RJQZQS4bPvX{ey zryP_>V^w$~6oVxu%3e~LHAr3jI9mJ*mnn;?iTHH{=QH%YlSmY>f%;?Mqoa?S1W$!Fm) zcgPo4!PC90q{EW?KS0|L@(h_}{x_+HTp~E~&hruLR^^H`V_OUpieHcP{I^ zX?A5!)D0odL>_)@wO`;&W*$rj;9Qz#3`YsE2~dM1_tn@l5OSa-DWOS|i6XDoO?k-? zlC5Nb9|U$*i;zPE=kRUtlprYnh5wr8f?&ERfdg3isy?uC@s%0t+t1pbk=RnUYYjb& z#@%atfd9~8d&HJ&S0>fl{4Ld!^qf~(&fgAZP}DQg*5)Hk85YmCz~^%6t45&X;h|Tb z<{btDsYAjyXI_0%rWblj8?&IVG%K*xyALJio*DHwWg>f#Tldk~0Y!PAPt-3wQPrQ-oaUUo=G0#LOh;|}Bd z2=`aDXL$RYWq^SV#wCf-x%AZp!M-I&0dGFz2lMgdLHm@YJPkWeJMq45kphfzuSP;< z#K~Uxg%6pO#Uz{vRw&rcXrqqj1SCXb^8ceqg8Ew>;5FmshD5Zh&>;v}-4B^!X8+r? zw@7;r50ASYI(<|)kuAf2&Gv=7wA*o9RQ1ANgs#l6`M>C+M2Pdh-U6;}Vyo)EW|l~` z8(G%!ROcT7Aaxu|+ma}}8pR{U znQ19F{9+NFjc^-}3En_a69E%(R6~EN9Y3CvPpLVeRn@5h z9sJwmfLe1uM}!h=r300J9Ze#ND+G6-r>f=Hp#^8Cer`8d-H<_cS^rD4g${y{nQo_< zZiE}{3-XI6WGQTWgfMlHCqI>gbaa0T(Q+DIWA2Z>NN5{@RSP7Ny=M{D*{2|a%&}Uy zp$0{+pN${r?rXT^SjY6=qV(%i>B~0Jf>iZCQ!cE@KCZ|(XmMz1)h6ZL3;Ed4q(KNB zHl098LQ`Wtg1gJX06SmsM>y2tWyZ}cp;|wC`HjoX*{;F{P<-&HfakjQFtwy zA)}qz(Ac{SN$&Q>OqzfW4IYM+a%}s-X~M^CRVnz`|EnZ?n80l=I4GHzgR+l!nN>FCDpNo7j?v}0~#M3t8j@o zoducb4pr3$kvLJ&T42|NZ-E6jaBrx3KW~<{4dLF8)yTA!s&*RmW;AJ}HzP>bGfK(8 z&FqWJWMAQH>{~{{;7Z9^Z?Nw+pHg!EHg?{#6b;$|r>ae>!Mz%lfqOOFHS)u3ghmsE zt=Q;r)n~yYkwoDxc-Hc+p%1*7d$QSEh@A5&C)5_&TBH}JI zV#cWlYp6_t$Z6jV?(*Wwlu;`HIV)=&B{lc~+EY-{W^ zP^U?x86>5I7*dH7A)37<_9lW%nnKWb8&Cl)N#mMu&-C4vAA;@}W+v!{zN@7KM>JVN zH}u`lDZx%NK{xc>B1*7EB|KOV3d{EU68i?V@ zU2!x~7)2(?rC`f;;G{Cyu=)RvlgcF@3ySY!&*^UKI)tWmN>AYu4;2nn=L1gOp<6yzBIE1jij4eTItpM%9 zr(}5p=;4m>ES2~oITKss|LxS*)u2Hz1LygzSZHkvm_$(mzel*OEy%mJ68sr_&Wa%Q z0k0(d?S~^boPRRmqKBx(;UX3V$%Rs}(j$el6JN4iw+Kr&;7-}YI(cuqT zJQ~aM$OX)$1V#h-xbOAAM6&P_m@vP2E zpuA*$oBOGkxKC;LtkS9 zCC^IWZL3T<%1GRB3{OZI2#o`9Cm}B2M|YiigpT1b)~paQSB3|7I9y?~*oS8m4${Bn zfch=RpxO*f1;quEjy!}Y7umB~=?8kX>{(E-WzUMLexuy`fi28{UHp&yJex0)g|s=g z5C=ImQKc3k5RB*1GtpbnFkUf*&Dd9CLF^~83pU@cYmw|2V5A4Vf zkfy%ShN#iUw{K5zrf=`DXiIMYW?N_(Mc6_zZI-79X-R*eZ|_kwLudw-kvSYmiU@ss zk06pXu_SZmc`iUsQn5$1Wcl_TrCJVVMY$4Iy=PWZz~y|#<$Q{A_NSL);YiYJ=-ayo zkwSkdw?KB(H}k$@a-Q18-I^3LnQ7%T6_s`y5lhT=6R;$Q*Y$@ zTk!mc)C56d%QG6U^}PL%tJ$uNh+pAv&-Uh%5ASeY2sl4YLh%n^X{_moa~%%U=V(U~ z@jOZh(@!H%uD_+gHlRVMn?^8bD=40ej4n6n!}@>ZsQNeC?AHPv-Hin3r5lOBDiFk> zE0XV&l%unLZ;oBR0n}sP$@+}EB8PS=b|)m9h79hgIVq8x8*uWe!8khWTaZCTvDZ%0 zr}nitwEpp`ZtED5s$*Y{t6~i5P$p~k!9^||@`r!Xp$(Gt)~i{6<$c7+N`FDK>~hF>(b)aJW8x8#U9OUR!-Jv=q8z6CaM zobRQ>PJMKCqHqm1K57axQCxcNH>v%Yd_3PTSL;8>aalKbPgC`UT)&Q^2klZ{KprHH zqeO>LTLKG6z+=}wVGHb&D72%pt}Emx=-O9VA=ir)k_e`+5V>aeVF#0Ic3{H;v}T(S z!qk@m>Pt{wVybJoYm94tg*35SX#=HY8X6IQPC8F_1HsZBbTeUN-wjz_x1alb2(pJ3mwpy&!;;*-@edr}vAVVwx zY$1YeL9B#_IK!X>tw{i7e&4nCIrGW{1Lgkyzu*1iM>6N^z0Q8Fz4m(TwV_Sf^R*2- zI*$;2U2Gi=f^Orbb;NmM_a`ZKq8#C_8-u>E@m5;nN^ddFcwm=t#=V=2GwyuNIAdzu zIOE3O8fRSlv~h;_`zSmbe6U^kgu2aEc-{nbt^+!^PAfDCr@2T3Z8O*tzNGUWI9DUG z8s7q!$rWAODg*WA`gpQ}gF!|_EbHOjB>`V}cWH323r93*P>NVaWx>Hd`*mC)t@^Q= z3A*B?D~Yc~_Oj2Y=hQ%SIxcev!8bQ9YplX30q^$CAg*-35lHjNsr)6Tr{VZkRj zho2F+0M+VdU-+Xvu}KxiHSO@Lb{OsM!zGK|LQ6rgG**rw}`(bm&K!mQIP~p1ox#h+IT&ne z^N0~zlrqctaU}lv&8Kb2cMwJA)zu@r9alW3UCWrIL>|ET z#Tyl-I{02)RE@aLTp!hg9z7CM4XR+d64o!*6{O&_z0oU`CgWtZ2a<7Fm%HlplE4rm zka8_8{N?(Gc5uU&WO*mVaQlq0W$^lY@W& zvIUiNwN?eD$ch`NR@^iU#B&;B0uD5G10>obr?4aZB!n*%{xJ9{%@x zEz&73E9FIU(!;;UBce-)l2i&OdAa`4E4W||y^GZJ@Y?~2o_EXtI-gtka2+3mDFJb* zvFjm26i7hI5$qT!ZYkF%0^fWud?Opr>^m=T)J@=;i_Z+8tYD3W?5vD%TlK=(zkCXW zh)K&6!)CLTPv|qBeF$4zqb%Fzc}m^H{9UA40!6D8x1VZ7t z=oNWG`6w|Oyyk;m3(X0~er*?)B<=s(%=h##V?Hp5r(l1SeBG@-RFv}Ep=NmAbZqh&Ib{bKkpNXw%zPmo}3 zr$4kG>!O!@i#DZ)Kd4K1_!33BUVvoD-XWw*7M>$<(fyDv%|G9e^YO*%cegqy#b^|MEWD*eDJtcpftc4|zSu;g(-TTj znX#Yu&SHU!5nHLmMOEa*y3B5jz$=vG4kJ){hw=B8@Frtz!uVrL5Dj^|x9qjVjXy3Y zDBqIUW?JB$u$-@4#uePv*u$nT8zrGHB`W#&uBByx>RE%iLp8D@aC8%aAzEDN<$>c# z4<-`#|44!pwFHKYTcNUi>E*$$WsytNR%=b{Dt0?$;>F-d+B#&>lX&pcT)HC1Oxjd* zztg4Rv0znOquhixmNz1pzd*LvRB?o$>7tz{T8Wyh@b0k>9nBtpCuzReeMnIXDs`-j z7j9K0*gtL2^w0aN7#oR*aqJJu9my`_PWAqNVj%DSviJOBIN-K(ag7WKP)Ga_sCJ+{ zO%q2aU*^HD7dSvfY|~qr$9!=|lzOyFwI=GiJ_HKki|o;uqW@_inmKaGUs z`&^n}b=|c@h?2#)LR~fEYD5lz#{QFj{OdG!*yEo(8h5d;HLLb!hQwtqPaJg$<8hhb zr{cOjoHx{rc=9X~E&6;G-`bl0pWUjZ2HD%)pm^f9k5Ix5jEa@Og%VyFqwu16GNMM~ zcX&&lCjfcQNflGI@ybT<2fzNb&4nvhCGk?XzbI$jdCiIe)NO-bSpa@X4!GsGwDFcK z`0)kc!*ak!>(UqGfbaNPeq%P$6T2~%Q`7fzz!w#O3zKhyyLIVz<$ym{0N#)TZaF@E zFfH5mTl2sJH`pcLtxKMp1A1;g=olL`qCuzSfDXz74SoZo*UzS8tY<&vQTSd`f5M|u zySG*Rh)2b-wpBdAqh&q2j8Z!_Y$cB`=*JIl&sfmz2ew_Oew|0r!zODwvj|~X(5@lR zp5CwClRp8sKup1aa{)=dt%5#A7&OppWJrFj^TiIOuV@?#Fa-(8E>K&*Q#h2`!n33w zIt!6MIj3oU=ry0LR1J_2ha?7ZznZqrGj1!&*$#jGho)x-afD1yB7Dg?v`|!Xs4q}0 ze^d{Ls<_v74i4|nl=q_G43}>3w?Jp`)0;(SkTK`S_6F<3ho1940r-(tKJ+|s=)M0b2#jzJPXHE@zXbB?GGjL0ec<)%2QsR76v^T67b z^CqmFm+RlucsEv(f`?TVKcbhb35ab)%ptXMiRdO^qjRK;@E-U*O#BKyHVJ-DeVRIk zXH(T8cgJ(Tl$2NYx4P)X2lbsRbm@h4(Q!s(Ihqk(P-0Z#5+}(N&?3hiUNPrOw=p)?ai1KDsRe8{7)L}iO6d#VH%V$5L3g}6)y`MHLCggEv?mv`xqvO2h%>!_lZIn;_QGy=UmDc!mN&e^rKl=45 z1m4a&l)x*qjKKT8dW*?CBJloGz0IjnZzp!CwFVX&(oBOYedf(2mFeLZuv6KHue4|OI-AKKOugYiQ8X|A$HLh7tDw|(x zQJdeE0-K)&n`86alC}9+nK?GUEm@nNm08s0wFwI;QVbCmb^v$^r6-Kd6HJ8n9xsRvd{YTVEn6 z>e;bB0_h6PDE++ADEC$`{5%+ncE>@JU2-4~e0aFh6+J&O>LnGf;7m-WV&L>ics)&^ zh-cj>)=%h+eAP5Z@{_}qomVdw@c{oWWvR=yE;BEiY9Xe&YU@euZm=OR4A-hU^D6G4 zi>ajjkaPla%#ld3GQgV$E~eVF87E|F;xos~+T71xz+%M*LoVD(CdS?-K_vPHmT|ex zXuKF(!NTkM8W-n_YFx%LE@BnV8J8*?0jd}qF&k&bMqrW&*m9eY$k^OL`(A^bHKAvVxn-UQ2|x?G1O7NGCv8RR7DW;vJ>&?WNAn z@a7U%(~Dvi4{!U}n)%AIHO{}`$|dt&YPjFG0FwLQsB`-_6ZTp6?=qeaQU4}z#WwXU zoX}VQ?)$y!ANLV!yT8U(aa9n90B^KWnvEw-X`qI`B^X(jDZtZG)x2Y6vEENkRa#GK zc4bhKM;7$(=d5wv!`pZ|L_PeR(KrwJc;V;z>f!f(m%%-8d&t4PQVaLQFCv3`0+YO& z5_9KfJL^=p{1-eOqLvT91TPmVu(ubdCV%~{YWbI#8{5sJBD8tQ=#rL>0k~i2sRH4Y zuLu4g+1V<=aZ>E}LsTGrm7f}D0m=ZV>A6*j?OEbek?G`87V{zMvli`umDx&+;cfBpVhctD$mdZ7+ znD678`{-I<7fUU zBmi7xwOF!B^acq(Uxm!_0F#|`0%1$k+5@-t8p{Lsb%p3n<1FWT0b|IFc z;(P&k&;}^tfqS9=+-L(7@xUz?fD1H0FAv)soq&GlPKzme_v_l}**M{+D>XS3lm!<81vnnMX^9@HrkW9YXqg+XJ^^Igh9v zUgW1me=-g@#csD%oXw-sA3WDve_)W87^fR#M6455r6eMVe}mGJ_w!BOeFjy`Dps)5 z+3~P6A1bv0H|3!wKyN^_>B%h^0=(u@Oc$NaRWkJ^m%iftfP1DmdWjw(vDha!(!b&% z@^quzrRaqd9>1Z>(;D)ca|QG8cfld#MUjlG8g|*=88S1{^maau#-tc!JwYF>K8d+RnwCeTX&2J8 zKzQr%_kU5b3T3P6qMtgb@8n)l#OX7P$Rei*!V^a$Pk*SSXflk*drFK}k5$>n0ZOFS z07{b90NKa$l~g@(bP=)o7K%Yrf6tdW(>80`Qdi3k&e;$^KD4#OJaQ5@ey1Rr^8GkAbd!PMWtKh8T zsNdD);%?uoJ?3pwy-~c+qu-Nkk9i+HZIfy35A?3JMotjjgkK+N=6^_<+w9<&1PUaj zOcE!hj?6I$Q7Z#Up4k_rxuWg?5~+>OL3dqIF*|?>UtGnulOj8Pm2td z*!lVWz(}8mxunl{NXkOWo1(xCs?SE`^Q_WC*l)doO5;Aazs3==f3(QFi(w3HnO9c3 zE%Q!C<_$U$XTcLABAqX7_k~|6pVc6;ZBv7YyRw`@j|okwkx9a+Dg}6&W-0M^8U^R~ z*oaJ(t_o5bkttHwp_^^h9YocwIihNj?%evE>dwV>cO)L;tOgNDn;Jw)&336Oze`GL zeT2dbyA+dt=q}Ad@Hy07LWUh6U9x1@B3*j)S=FV0G+p1K-V|?7;O#A%zeZ z$q4Adn9lSc>cK$ZeJ@AgEixE0ey#@N4r$n|261+8YS6N-jjH82y${G?lak<2>E5!C zK%bU6NlCsrNhgaxlbw$!V|9NT4Jqt?gY;Q<|6wNWPNWD!B zA_!;ETfC2RR;&_?AEEHVF8x~ip}X`;Cj3x$2{CzqbjcEvi*)H%KT}<**XXT8<#*qCxMDU4%O~01aI-vef{hW+mu|PrIsle06${m6sbi#sbCARyNZZ` zEmxUe`(mZ}q`+ujFsVfOf{i%XPkqr5uF!-Fg9BZm@04C0IIj<$c}1&o(srBgDE~0G zxd)+S-Q>OLWXb#3tdSUFFG@EPf4E2yx&^p9%e%-Zh$kgkDP&((3aN{#Z|b6B{N}Iq zpf8e-ywNXV$@-~`IU=1-`O!RvOGP7|ErW=XJ@5s$Sw9u6j{wv~qXK}80H-}iQhZS* z1Be}FxMh&AVa=$l$3A=7d)X<`pd&FCf>aElSG1022;jCiC!X~d$K(~m)+u;gt=gZtHcla%dElGcu0EQ+0hS zhsI4rX))afD54x1Apkeq07aBT4gr{80~ApXy)yxT<1|1o<IL6sF4+@^heqQM?2A6GzTzzIRk0Ihc;j2jyWAr_Y3@i?FPqK~Rjz%KJ2eH!tX-CZsxk@p#qPl@`ZVc!tY(TE(aUqo6n zA_L_`Im2H^CQsEyv-)#uB_fld_r=`(<$rO~{OE*9@kAwHRl5YN>JS{2 z`SM32YMOEj@R~y}ef@m&^A%(HafKcot-?*EhsQrFUSQjByl+o@_?f-75904gE(pd^ z7agsFaX^RzCwc2%^-XwGNAr%Xq$Ro3`)xuP-FSg=qf&8XywMXEp3l;suwF$(xcU~$ zn`SK$5zYZFc)dmL&!twk+1(p|$6PH@v0#{0%(@=DtL9qXRSC5d3u8Tdfd35FrMMdTGjct+({rWIzzc9(Pe8){~$oU>@bj0<@wj$jLlky&eJh zMXt_fleNVx- z4XAUx(WmB9l6OK>3Y54CZ+W9X&PkHE3Q_fLJ|;h|C5rS%hhBOf{xlO-tD#?evo-Xu zsnLPL|CZeJ@R!-t1bu|HAasq7;FaMR|YZjyTR&rxH9^H?rGR@WgXyv3Xw-c)U(3R1Ev#M=?wAlWX zTn@C3NDoi2OR2NyoO-&Q8tW#k3Lfi={y{a3Q&_&}L)Ddui>3CX3X@$DX(0!4Vs(1> zY|67Mkwy_~fvb8s3%AdB^ebSC9(SLLxZvh|RLl76@L&HWd-!Frr62T{PzybQ9twVixNLPLSijwx{#R3OBN#|b0|()tHUkaJX*(F;J78nL6~ee`}um^s;dl zbLpDYH*@*db6|REY=9!nC~{-@c4p$oXDfaTQ&pRu2Wy)QFzM~H&Eoob^H+-i9gm_L-=(e&t}D=B&vNN zcmB8^hmcO@ln&u1)phU6xmZkq$Shn*bcgBxXOkbhV9!FwnG!oyG+_NWV>RsdBL4sC zXbQV1N3OZc)EB#TK;pSeX=O|dI-h*{>n4~4L281lcFH&XXvQP;MVhg&lAc@{yZN&N zD9g0~D_wtjG_hDwP_=Sp+IogU2ntpbyoxdx&h3z)5>nfbHg5THkv1mh>H-Nt@)%E2 z=#6(g+y6ozD^@7sh$v_3rUPi)<;BW@#lX&HJ8)a4{Vad?YmrYtC|HgU#GEXbXCeD; z9KR;<;}^Kb+T4iQd4Z2zPv{yLsWun7q_L6_iB=Mk^O|AM>8|2toJx`P9o-#T6Pt0!c;@`m?tKh?_|j^XL! zz&QTy3m)a_npwhbRBlB6i=vXh1fGm^@VsosOv#u*hHKVi0^1b_`e_mY>7n2f9rh~t zVDMJL6mpiGxKY&x*-?L$tJ%SPHtd$a-q@2JS=1l#g>_D+Q--1tc z-o!Q%RY}Vt!v$0%OUarQleg42mv~?M1?QR0W67JXO4W1uv21>4Etx3k&Ybk;N05HZ zlItb?gLAX+pF5d$aAdF_)Z)zB${n+uE;An5T@$R5Td&XHmN-{>MQB1zpwm~sLXwU_ zq)l%$8k@z~pI+fjOX`g6L|v7H%-H?_-mb2`B7WETY?MR)gME%u*G6nUgXrUa-00Bn zk>oZj<^ceo74PZiiOME6R&PCS8Jr5=$Z+17Gn{|qrU`~ql9rVpXAdQf|HRJh7+lbq z4J0gaGS%uvwr5b9F0O_I!qUq@Y+ON*eowqu2=N@9@X54z)vdJ7Y?Rh58A8cQCosOn zrExWJsZz`?l57NQRcP7n#c$s73qF$Cesj?Q)izbv7NR&}3d?F35IB2@Y(;1#=l+@V ztwO|UzUWgErKgF8(r8= zJ+m4#e8*n*;JBwry%j=LW}&+KhN{UzZ7c>Q6gIR;YLq9sX4NQf*%~#J)M!CjHReO< z*4JihTvDt?4He2l&FCAdDhss}D76l(;lK||=7gUM|00NkFO{0Aw#E?eYJK6B#v>48 z`AK}~WZ8rR#Ijl>fO@4QhJ)m!D1;xxvtBRu+6tUmY+Zf-Bzs-i%hiY+&v*elKU1=` z2B&3UlhSbzN~-D;p=8m6Py*8zLg~CuLMVayWQ59t>Jy>zp!!583reF(p9qx))h9yb z)z~LO{nqOx)VH9q-XfF#_El!#*QzUf+PRf*j zbf)~luFztc?UKM$HWoo3R|ubqlX+1{5b7BixSXT`fm;4n1}^rc)l8<&;k6_Yi%u1f*Ke_N#@9OwhN=p;FuND?gZS-{|^Ciimm5HA! zcQvE&!y^<^#-T7xG5@WhL@kg@NViEF=k}t_GDvk}nxzbXJ(m-_Pjo?5#~kV)n$<}T zi!)3=e41i&S6gguo42eL%g)0`bk(Le21mNmt2y;R!i=4k9>D&Ia6AeFkXnWwb2p1h zExM>$bahd+(uh!?iM`G9e``2*K}(`6_QY3svwJvn-^ZDKpoC{j6v%7@pQd|r`N%3M z+I%4smUyK4qXNhZ&ioLjsTbswEabAr`v`Hu06c6&*2%ILU(+ULB{bn|BQk>r#|nVe4N(8Q9nF>I}+l)09ycq2Fy_0M*dttj)))gs%& zC+(j`)M3_#P^%{72_Ki%NxxN9R)@pW=MtcHq7kT^HT3y22RWJye?1ZW-*RJS@Reb5 zd_OUmkNjo(>dF+~f7vqkC6GxG)kBNa1O@J^Gxsoz^3tb)@L6u#6W0fBlri7%L+#G} zB29_Sk&pT#_MP{6X~gbH%gQfAf~1YoN4b6d{lr~Yl{+q5R{mLf=0W1FaXY7V1c(;q z>D0l8Q-k$0Er#^;Nmv($Qiw6JMIzHep|+kWqKtY=cu&oUs*RI(i3asCL2GX~UXIOT z@V92*qn;l9mw6(5MK3w-?(-dqXFvUP+H7+{Pz3)^8)Fv`xGi-xFx$QgOhX<_Sq6r< z9(VZoYISHb>t3Gq+#7 z4h10buRPEB2s@>}W66C|yr=J8Q=~0Q3FwX8eByKH#QLoSyr5W7q67>tlF`Gw{5;5` zUk*kW_;;vzuVG96I8)}qssm>fEB7GOffp1j#~Yh6FZmR{3W)`yiz1ZBfgsf5{D4qT z@N?h@wFpYwYh-MMk_r?;ec=p+Q1ad%gsNmZa}i3u>jy%eQ>-lqhfv#uW)`lKLx@l_ zi3#dB2|StULd7QA zq$6PX+B}rS1!~UZ<`lX~XL18Si>tIkOcQlmja3POgw9A}f6%F!K@nY^R+M_p^|J;g zAExkSjZy-8hEkv=e@;>&_Nk&vMN}m$l?Xp9m6`k;_)_`7l|{zXUMf<7S}JGCUWLMs z_x|+lA52v4Qjzcau~Y^WYs)T=F4)FDK@j?0TQ^$?(5Q?YUn0`+Q( zm7})(U$E`NeqMSTsP_hVm1SjbuE|F|&o)r+-%lutdM_}epxz(&0rg(u=fF|#C!Qi> zXrrD~piu98$Szb*-ur`k@6hpF)RXV}fqGTN+H!EH_a}FeZXH6@n^vs+Lx6fiiu=2ZEWcsj&1ImUgB&*pB+^V#i=Po#vq3%PgX+*~JO`c{m`6*JG<(odVm}jn)7>ocd7NDFt zylez>c!HE?&!IJWgUhnh_3Ko2IDW=+e}?1J1A0%_AGQ}Cj(r3o(PbvT4~WIV(Ze=R z=t5x?+dNHfel6X!Iy$dZWFGUc-1qR0P-5aSLjRU2wG%h4pt^m z5dD^OEa#@rHaxpsW$A`=mr`1l&?X}5+IolC7ZbCSK>vm--8N}i

    2y&-T~9W98dP zj>H#^rBR}RKMQ4&&6cKHMKuuKTVg!sLd%@d{HgwglxD+WG>S84bjn;bOtEuEH0+ah ze3E*}(k<1+ekBbeItPd++N(szMbgP>vqh;y&{|v3G;Ovk{mQb)P^xSErDqAR+1#IfQsoa}b` zVs)bjTU9s`J$%TqASXH^t~h2uZ9UATG>{tFJRPEROTPN9Y!_|$Ba^s^uaj?P^>?8M zOU@2_lij7ix+=4l-DR2hTO0vNsH^wP_QsShlW`KIT;f8u9|pWmrS^XEC45(Gk3n7A4;>rJb2)Bf4X3&4XM z1*OMq?{c9&b`nKf`AD?P*y%Psvy+o#{c7isMc-m(?G~hm=eEFzY)1ct=1)K@jVX5? z^k)OU<5Gr*ihc~jhrUyCw$XSJPk9|$dt`211-*SKCo|jIsVp+>43b=(6asL`%o|}~ zMlhjS2Ij}SKn$GJF*6(yX@zv?jey9q_c>tA)4n^LUM zgWy+&7b{1x$_wCEvMyMGVW>02g3YPHyWRk$r;4xBz$zQ(jK-rkD9qe38O)q_&IO{b+NtlQqtH6DitW!dV{noHb>t3v$7v$ zpmJGj`K})b`XZFMS6dDaLGLP7)FEW82Nx^<5U|$2yRgU*90aP~RjizhRA+13h?f0# zhjIjxLRYxY)dn|n|a`Z7po@V)V$6quaNpKQ`@Ns@{R&%4!P)so;u zK2y9&m)kCr;s`o@9pQ>veCEe(9x;Wo{Y~4!zfP;v^1yH+eyih-Tu~XGF4vOnIRiCf zc##~-as&n~Q>Wb=sVj+3_5vwzs=nwHJW+#l{Zao^kXa7E_@k3+y)pj|ERdcr=i!w)AFtFG@Jd~f*!NdulfTaTraucH%J6%QB|W~_6H1vGZW}zl3(v2aa=S(1 zFK>M;UTH8#bTvAS=q~rPSn+MvS;u+wXR(+xvQK;3eU9WT`b8 zU!rXCB?dS(U|%c)BiYrBp05IGj&LXb|A{?b3)L+le)q+>k09B2(2WlsCr6y zvK@O|hQbCYvjIkDk}B<_BQi;)R+5FMx*fAlRPCSs>oX~9{f^*J$lMYK!s-T5Ca$Hg1B^$u&}i+rGgk&&JC~FPChxz^u35?nWq!HQ zI1+|-2=Q-KLeiv;oXk?mWU5qV>g(C5N{Zcm))O*hp_MW(@?^EDLIPXL{7PEtVrgga zTovk4r^v`k7S1aBZzbj3$=Bt^BeRaTd)cnhN}N7RQ+{iXLIgV1^A}28#FONfq|T-z zf^73EgO&5Eg5~qeS*LRroPsN--UF)=`rz&0i)!N`YVk`rZXXWlxuO1 z%9eX1 zz+JSlG&t5S%V?|L^R+`yw%6?y#x&cpA#X&_*kfhGAw$(IfRd^JZkScUqggsVx?FwpsMm0>b6Jk2>E*bYe(PpUL+1$%4J{UGR_2XeRw95Y;wURx zNJ|xQhh~=tE~n#@hJ;=&7*94N=~?PDkx5dY;%{Xt_f`hwCwV?hINE`;s<>9ud`e~o z(#atnZnR{~g>iC4J+ikYb=Cvo!bmDqtwTmfsM@1E&>)%O+Td9W-{V&;CTlqNi!MS3 z16T7`h2@^9gOka%_bM#6dOtaJ{=%J7X1|%hW$HU=qcHZWjWY2$ZR|YYHeR9HcoYjm zcvE!+xq3=nxln@U^}lht0OnDa66K60cpXS6rPAO|-Qd6%)W8T^P!c#-hJ$q|5#A1< z9&1}S8ox{sEg|DKNoZ=lJYBP%66S7nYiP?1SCe{Xjs>N-qM(NPRX)jj6WUW690S(Q zqh*fZdC+j9@f99JuZD&YV?FoVhet4>?b9`3yL%*b#kWMYANU_fdP|q8_X~W);6sVZK|c? zQ|Wk1a)6Ncagi0E@&TaR}a zyGX@SoSa(<+kzuiC8a2_mX>qO4FZ43??u*yPFNSHBKen+d_Kt&)@ebQ zEJl~9YE-WHtW+cNYbgRr$Ej(!IXVers1D z1#B*ratq5j#jYj?)T&0nt+J(M!E3YbsHG&-e&f;w(tq#T4)62AKm^Y2YOM^Oxa4j+ z>SbmSte9~l^^M0?>i_n3{Zzt=y-;pa~iFRK=`G>_w@8=IWKupr;2*UD9qR)qsS zQB|{C*!t)wyuMiiLNH-JzHO0EHr`{#x7=Yiu9J$}8Wa4;c%)7g+`o@da2SoAl}xJ9 z*@AL>@P_`N!}=f*-#d@vPo2CHCvCA{H$txdFfon1a1T*ZZW^Wqjb1bDM_6N##itV#R#Bbm$aqAGCI z@y+qk#%dm(7kgLm)KeTS4#y?(htn<^*%H;NGfGSsZn2X4NJ7uaQ@35G5fMHWMPuSW zOY}jd<97%Jn5nlMD9hW7cIbg|tf&noSY$vJjUl%)I1ewd)5#sLn3WYk`SR*7LNqfQ}OcTbFTJT z<2SFvRQf|j6#LrpjhA$oadV>`5K>32zTx+*rM^D$ro;1TX6PAFGVaZ6AeBlBr3MTw z)OgkFKGcKZ>75MBPL>$Ffox9|Mq~)nk!8FX7;+VHjYzNxVZDN9SapRq?_)xA?OHJ> z`wvaxe@Akz1}_O#XA8ee7G~E>-8iHwrOiuz4ao6b3+V-fOwpOd(2wWI6*VmMZ9_@b zfOcinYgNP-Fh{Bs81d!QYb_%>QcbBy5=w}Rx%7#(*Vy;8IMJb0GDNUTQW_p)f}TYVGSf+IqU1n4*; z@{Alxw}$U*I#n=yt00rQ39ky8TI$j4boCy-WD;szP)bv#l*ay+@{BGecdRB!DVV0( zmZ3ID=MCd&k~L->&Jsv%1(iE9l~?w+@>8k2*bpy=A6h7z4d>N!2f4a?9^rjoAFc22oyJSCztA=syGs4cS*?Da zZ0Coe6hc`OI3m8eGTu?;d?UW8+PTiTK4s9W_~t6-^7xi&=SrvO&hUX@dP9r;%!lCT zojJYy9)%Q4?pe|mwM52b5jlsP6v0nl?@|&h5?#vM+3NORio{6HAMxLpB<4|$&wK?P z`srjV4E1)uWiQ3=W@V>p7WMDtv-xl4+TER6dHm8M=OPunG z*r|-h>)%%6--}v&7RdoWAc3{ohijR%CUMn2WrEuX>jyH=fX=F*lWIe*o6uu4HfV$q zULh0|TZjlONE#w;lm^Pjtw@#rwg&e-DLQm1Q|P9uaT^jp{F83cQY?~@4Z#f2mLmjx zjM%lTD?KmWS>l~+;)4P-I4uJ>TJ=j+o;&yU?h<-Vn2~*n0ajzqqcPSZN{uf(>sm^s z=y2}ZwkBc9_7gSODluN@~Rj)nUM0J7#L*rRW1pMp!DuPl;9w# zBJ$YBfMq82nQF0gb^xC`*HV%}YTlRD*p(OyuA!G1u%QdC&3VO6d%9BDJtm*bdP3=9 zHlu^})QFbS@LuBBm!9$PzymF=7fx{2LWs^VQT41i)^NM7Da3->mmec-3oMu^yFN z6@WDBbW$ zLmYauk!=;mU(Q$jp0c8Ij<5)j%3AnYn%Qr4-NK6x2zugyK#y;U1|N@3PB3(1nZAT; zm!h1OtedRnq-o-k9Sj2=ZuO;1awVllj|}e_8aOMw#~C=IS=4t6uvupS15AvjweWldC2L76XOatAK8J6UDOw&{w30zN zPE0>qNLe8_f8Bm6lH+92%nWievPR2TMYUbm=K##Ibg?Zq<=XQJ?;RlRt{zmTcNARuCp)rX2+t@6++>aaF)Gzc(03Jns`ObO#CL2@+P zVe=asQfk$Z!AL&LOTkE9CC&R94fB?@d1GHF;YM>K{A=Fbvr63;#}SAmFTIrX`*$Sg z@KQjD21^5=M41`5f^%7kpC?Gop)ub2ss#@)T0Zj$S*H0uJz5$iH&n1GC-+ic;zlW} zz6$-e^|cYXlsZ&-xpm|f%IWh;qNN()#extRk*rNA`6BOFo(6Lwvc`e5fu*tHci+MO z*n|D?cx1H3mKmomK&j;LHY~bOR3P$b_#5R}HqQl)8j!qMPM_7cNJ8>gJVz_;vkUnr zrBcX|)FAtgLxnI%`qc*n!JBe=(#10-8Er}_Z%LMBlsqRaxSlT-PUcT!g+cgcm-&S7 z3&|2bQM`b<>Nh{{ZANLaAgWC+W`c&W?SZcs%+)QdD!lXUHL($N5HKQsJSR*{ck+MH z$3$YAjJN0zjtRVN(N%R0!UpSe&=bGn)9{5ugO4cqKHHT$m;Z0H&UQ_)mOSa3thf%j3 zDRQUy2u#K_W0!>|amUp1uG+S5^6 zV<{7Luo3g&p>A~^E}O|oK9nhTRY`uarxg^dbX_|~!^monyduSK=SZj&dYW#z%m|$L z=#A<0Xzoi_+;MUwZ?d;Vmb}Hhc(Gu|V3 z()@!sizEOp{atDDkvD0Txb*at2QE@JRFC#SKnofQo(3nPq`}sb;PG9pr9o8CEwx7E zI=<3QK*l2;o^96ScV)@*d9~Df4x_OLcTHcLa{5%8cY^oCp3R_t0i_lsC`PFl+_k?! zSn$>T=GN~w_mutS-oC%w!uZS>F3cTMxS7Q5a7cXC1s9D4rzPnQ9j~-)piWtxUSq-L z`QI)O$uS51zx&;4ZHPXq_Tt~$Sr~3&aFV6n)40L(ydD_r3cp(EHm7V&UC`#)3bHv| zFU#N5>G75-SHsd!Iz0nvJS1u`;K#QJtbA{J)|s9+O;3lbyA@ppde8>>xVu%p4qU;5 zY;b{*zV1KO@X&nww;+U5`4cSjn(^p4=D1`ORI{^hmh2nzvhOCFVqjn?{MH=U>jn1O zEUc)t9h7$kFpH~s_M1t9zsJ5ihlYoHs*So%&J_7q5lIpY<3QR))UfcTk*;`8MfZBb z6oum>30tZ-aPQi8CPf2{?Ot=2chqWHS4DXk5zJMoZ|h+%AuN4R3DAvyB(E;^t#sX} zE)REY)c9m!q8Y{mWC(xD0)taS+|l4Vw=?)A|2klXFem_dc3te;OZh5wDm5^7j)2o1 zFlXv3_TyB4eV5OJy*iLIk`0AGvMrl&i-PoRP zG2O90PYOTO*zO3t!^wc)5pAB=sUqZ#GIP<%?Ws!p$=9$4Wz!5J{37|h+|A23CL`>6 z!`o`?R!E?zBD0q|M$&sv8y%{pG$ZmW#(4qyR!8zTJo&oc@P(H;-R5i2>94Qd>56X| z>2mHhr@w9?K;SHMpV?#Xj&G}uC#vI{DxID2os|un9FDZZxvSwFejLtjGuX~Nf1dKp zi<4qc^)3j}Gb$kfZM!k^4ITu`#d340FZ^~5SROdu-}r8GKyc>XEY48Oa{x=$-I8@@ zURIPWduBc*Wt?C&vq(9q+sG3n4G3f~1KGRS)CG2vs-@nD)EmmJm-tMiKP2f79^NnwZVxq-=fH*kX0#v1e-)MDCJ@9k#5AZ>1^PqFaYa$7m0Wi`&}`%IRg`{Id# z@%IelB{U-?@a!j=o_2Wt%J8a6Gq^QHbPXk&DOFzTVt3TPu0n{E3%V6=t8$ww8deMK zioa7CPgXm3!&i?_yM%-Vw^9<9Xsk1*ziCeI=w7A?S%ewwUZ&{SmEFsPgatn3?Os~L zLvy9@pAMVac%w)7%&H_|2S5Q0(DO|II{Bl>kp*xP0D9t$$dNg~2?6fN0am0-itK^N zHJ?X~KJ#yKLr84FxN_vR^m#_z>c$l=uGR2`w?U*z6_I*X5vje3NNrF=s@0`kch+vc zJX-f8=U-R*M(v@EHjzrF9#F?lH$kM*BC)ODG$z&gW8Y5uN9{(XBoZ5kh9FX$>Oo@L zYZ0mGNNm%Q*rp?~i3=EzpSdPB@kqW(jiv^==Lih8#%*xwcI)Y8G1xoN#&d2v9k?12 zHQ6Fjb)%LO_VzkR)RPv8dexVH6%zGimPFwXD)QQfpkc{t(cspor#&@5|9USe`$$AJ zrGva=^=87jP z$wT&YJOA!N7(@v4IA1gUVD#kIlRp>wD8i7xJvoEqZ?3%ui6wPii1D^E#756ybKC=};_1M!pOpUs^XMp<;7u{Z_x|XK0*o zd57ueVfuNPejcWuhv{c)mVR3DF=W)X4QLU$GQ)h z;T4sQYm^&-;dw1}ZvPohVE{C%*|l_-5&0hblXxfk;X-lQGbe8qK2yoa3-eeNB47;m znUzT*28*as!*>hwI2IdV3;=lB8IhB-kQA<1Op0G9{HE}w07j@ zo!A%8xppU9XMFQWC!D{+n*Txm-VDF_uJD`NY7n~NH@g<*@tZap zYksq9VIEs(XKH>^&-Td_BU4{P=|zhYep3tFfC|5>0GHu=N=`quTe7l zQkRP2>07%A#o`4FiFs0~_F zzk;Vck~s{L*`-v8!~#p5B;q;JI6pxprSEdB-NdOhQ4g(K`<~bgKd`1e@I`Z%*=fG- z!T`Ie+T5Fw(cjC;=-ZSDc9ppg*{?dDs*Z0%0(@1Z_-$H3U!}!(w{x`;(EYC`e<%bq z__{g0J=xToUT&p3%2vC9Oo$fG(emvS z;arTiN;Y@)h-kiTxJ<<=tl?S7{04KcC`}N!IiQo#nXJp|Oy00`CL2X%!hBdNlT|qy zlhw9Bz53@@d9ZJUjK6{MF*jEd?*)JiRYs2<0WRC?v3E6~}upxU(*ixSou@SXx7TcDx z-KNbYij*yohb8SiRy47|icU z7>~q-^eBOQ9yHY#{<9d&CC-g9XfN}|6E$uLPTz`1BTRBDmT$Lnz1xgu_+fl!;|a@x z=v?h;=nxSmzNONIO^oy{BDY}q5?fh%hTFN}6v>C@c01SMH;sRAvI_6oLC4d`dw9K&pgJ6goE zs4AY|=)LmJq3KluAm2#25O(Ogt9xm#PxVp+J>^rq6e&viRKHTgL!l$e2=lmP1PR^O zt+NZfj3j#+*%YpQs&CAJE%2!xq3Ajv)B^Le_Nnd=pX!E;AJIBO7x`cHg*y=U<@~6* z8fibCM%ee(rxEtO>9)nvT<_X#(VG_`>aX{XT1C@rQU5Qg2lc$?_z-cp3Ww^iA?l}a zGYO9LhSP}p{3RwQf6D@cQcjQg54ZCktn>HS{?zY^KlPdC^O5*dzXIMUe`-Bg&eR=r zSdH5hfBm~Y=U;FP6Cajq@TU%DBz~^X9P$mbZjlK5$9n6z6nJ&iy~vXH!w(VbBajp~ zf~+$&^A%-cai-Q!zJ}eo&eXeYXX-89@D}`sbQ4goZ74Er;y<*Z(0_>eqBphlrnfWo zdS5t>-_Qyq`?c?3lf~2JeI#vb=5eO}0C9d7%ffP|UKdA_-=wTX>yg(%bLU$~g-oz= zrXJVJduX}sOf3q{7ICKDiuceOai-o{==CFrrJbp_7J3g!mUgDr(}MTV8gZu92wLEU z1h6<$zhZk2tr2Hx4O!qlB#<~$>n7n$y|vJpS^#jS-dgBAM0&=VI-HQ2(YvymYFn=C%xty(!i}7V^HOwE3 zo!hxdb9HX#7PtAT?0@2`)KTf&C>~A10Se0pd#81yF6Vj}L6^CqVT-VU7XSB#+u4EZ zIQ-xCD*W-B+|Lsnz&W|n)WxpYcXJuOR>km1US$ev4;&Kg9H-_Ko0q7fVO7oyOJ^OE z`z2V+*($}--2m%{54k!j2luztoWgE2ZC#&!9Q@T^mFKgfa2 z=kTOr#pC5v8>M(_uRg74m+5C zyiVA`?;Pmyy2)^anEBuc^;70}o%F*#UU!?<{6KSrxuF86)x#A1dp@?p*c|Gmgz3>a%tmHG6n1&;^I=lGL9$WT#!YIbaExI7)I8H8$HU15vN zp$jrL87|<)_f~m&t`_nsv{Sq|v0Gy`LRx;OQb=f09B#Er#wLzb_nk@!wFEKlUJmQC!V~ zBQb;9CUFQOCUHd=yL)-D<4iOWi+H+Ei#Y!4-7b>@JlcQ#U$cmN+Jzhr!26e9+ajLh zOmwI$;@7g5YK!>ic*?Vgi}O0cqFzS_z4kpYP#ML8SihA&5ms?rrq{k>#^q?Sc(h}Q z#i(st#c@@673XN=Y_n5TOx^MA>S*#C%01emm-cFL;s?J=*kCLf2eA}Zq7ao9L6zU%*Y8^_gQXdKoxPn410`%RB)E<8++g^1?)eB#-n$n9Zz ze3%{|rpJe!mC#DNo&9rG>VqB^x6g}~)p%r1hBkBrBw@V zX95clMkU1_ZwL++`$h#erPRfR46#-!kf(GCNjb>5rAjfviUocf7I=M*i~TduRWbih zruo|XkAx1peb2g2aJB!MVuQ7}a2^|MyCM4lP+kD;EF_f_a|D?3x}{9Ghxnm511M#; znk3sHfDbJm`JdYD-fm@4_xr6V5;VhnFz)v-%mwcEnqkhk-@`Cx-0xwSIrpg;=J&FJ zdU9My|Ic~f!zg1>QVcW4608HCBViOR?|XCyhs66nU^C3Q6Q#60dCar8leQoLa|OcM zo#KLTxs#&bfOBTWXn)eR+i@wyXySGf?^mHy;LC3FZ*Fr9(SFPxq)2fq)tvMDvXm@M z!!COvIq^H)BO)orDp_!Dr$o20R+}6wR2m6HQFvvM`jQe_NFKzo^l2HM{DYsJtO(_Z zzx98xBYt*;{Xgd-P|$SCA-^D1$772QP`Y7rtsLkHZzkj!CbaM#LY`eCG^u_~dh}nX zUL?Hr@)CD+B#{){<{NJFEnEQH=0-ufZIzr4v7MBimX9(n%9hn1ij2kAfDmiLzPKr+ zzR0N`?_#hh#6Jjq>KKS{c*{qG263S4s4IJGd>6)kvV+6ZZP=xa@2x?EDO;fv11Sm- zJRY+VA}1aLqWjQlilxH>_Y1Xl$qAa1ywBHA!NR=QXiKAmO=t2elxOAUnelb*Rpctl zJShv7r{4ukTkxI9F@Si?4Jt62&s^$@MU@GEH(}Ax>RN%(Bp8T3?$nQ9Ao%QedY`uy zw;zgrBA)NE|66+HkKKuWVyEnL9J4PL3*;USC)bno-E6l6r6fUSiwBE+OumQOwmP+H27gvn=^jKqX7`s0;7Rv|h3zlBFkMq$)wI#(LK0_}<2P%TNywmL&_xOFzPIKTjX)?GJr&Tzr^5LF5k8 zr`{oo4%4T@^hrXY^g-kQb^4Tvmu6Xt#J2u08>{75sVLJbIH%LN-WvNgvEbQyJZ6XN zKJU=7BL0&&PnyfM%Vazu%u_{pd1>l%F7wacC2ScX{=qWsIL0%+#TDKP&-9Asncf+n zws@vvU1_p<;F>CEN``An!ZLZrbl~2urQ7+OAAgL(xPzn4^lY79qDb+y_CBrS5>xhj z!VqaGq|iDp+4qt?pW}{qX2B@BSd6u4+B`1t)uySVQJMH^({y|_kGa){TNuophxlrb zj?QpZyWy&Ih_(KmguGl17S@?QgtWg{Vc|{+)x&a#hpXqn@n< ze~GFGU&BY*Em9iKi*k!3a*+zFM)hz52NhB6Ih(7p=SPV_+~ej8zk+AvCUp!l-a%Yc z3mv$^QaGl5N162$Fjkw4nH_W?+<`;n24So?N!?P^?k$M+44_5q-jdZMS=Ka25gB84 z9&4pSB&Ti#Q1Mm(_G$H|&=ky-YELnvx8%cI^)h;sZk_7Z7_LT88N6T72Jfww!JA=p zIX}vb}y;3LQpr%;Hc{Cd1YISU~dqSqt7)HdZ6yDVeIi@Q*4 zKn2lM@NY{c@dY4fs3W!rpvU>Dt6{6?|2)n=OMw<8d~c)&QaFfNstB(tP2EEi&`Mb3 zFuomXxFNjxBQz;E2O&aw%U*L?)Nq6=-ReRGWqfZQE7Mc9!paD|;~KNp#q|^jwKzHv zW()f0TDyZ+Tym&=E#!JK$ABhhqPqQ%3azMa*Aw|o#|2YHMvqbkw$%VoG-N~aDC+ih zYk;E4!1tk;c6_&Oih62bF^dx@GZW%%DHThVRy>cF0X5es&7Y+D%#RrZ6_svXU2K+| z9e0IypC`fIRLHlLL`X&yEn)4kp(tDVN9y?aR&{**6_>g(!?$+J<CoIpZW@~R<$`<~H zw_&M@0v$ZXhOU<4?ND%b@hKXUTclTjYAt!y23jUfx9Yr50PNUpHo&t0 zsIYAfOLg2f;;L~Hd~+sln+Mg%%6P&V-=yNU#c>?43Jlz$TzSMPfl-#AZEacID&%aF zB4_AURkS=6v<*7PTx5f`6`hN`m~D6o>6mSnf;da4Aw9&TOwQUXqHu(6py9~(PwFqd z?l?@Z57XIkpl6)Eglpg? zcpd#!9BBa;gE|pV_DXCNj!33P;?}6SY25Dbq}qIDdW~YHS7ey!?lxhyxq>yl)P?_} z@xAxp*vis6IgoUX;qsfMaMG`FUbK5XstwoLlvpS6zIW~wM%p@0--^!RN8q8vSGpEI zQ-bwK%oNQ&Yg2hqX6y4*XUUmG1D_?~bhS(A899)>dFLrxwb_P{G10*|1IxzCxv}Y; z88f=(rD>Fpz(wMfk1s6V>I;jpyy<%-5b$kxn z?aw%%!gVK|ZMOHRHlk}r52^K4o6l2cTnNJ}Vyj+Z9~AI;*p0AxiuWnpW7hlB;<%S9 z13H13Bzm2e3)_?5m!Zk$xI3976`4szPDZbwA~XH#k?d4tCcTP^@$R{i>{MhX4O)y3 zw<6i8$V>+n$*$L&q4z*kQl6;0B}~(1J4};jos$5WiW4VHQ#|YRKN+Y0J?3r^hVTtu zW^v(f2>H`Y_hO9y_#yD6vz+=H1zgn5RNO9(F z>%Oq)usUoGBftVo(%84ubyd5Inp`~|h2B0E9gy73#(7(CBC+F-0_YtUKNl5SP6 zfe+1%;npFd9r>VpefLI4dP7?&;q=V)@s1&Dx4E3H>{X~}J$OTDMTt6&g7`K8gtv4v zQs|PSdGj`Q1_zaOrQ3K2;12$J_r~#Ey1?-pq#$L$PyL$5&Sm5VxL0jC`wal+^Hi>$&Q!r%Oa{xT%Z;a0l)qNKl8e`Yx_KVI%};s($a_^eXkr3s|Sm-tx($9n5Kz3Jsq4w5{**DY-i9Dv**6xbVl1i$rtW(HR$_JGd zl&lX)uibaj3=WSG-EEdj2zOB|QN(06iswK-AWsuV0bm**P zrP@+F&UR}9ayvWG>~P3O)>^wSzOBaZe7_ED_n*;IW&Gvq`bCdg4$~vSrvC@&(YZ_V z=+TMRYoGLJvh%hkN&YJOAl7)=Yyn2&sZfDp+`+tRuOtM zEvJ5$e*T|9k2u(z<&Us1N$jEN39&L6k8H^BM^iuhe;t1mgFtBh=!z_VbYQ%Z@I>YZ z{Ow4FDUGf4JiG-mVz$K-?V?b4B61pc1wO>>aU*Q$@Ca+O$we z;T8n}@lTbixK$S{Dq7S861>3#@elr6@UdG(-Cb7}62M&w!8Fj@OAvQOaaR=IL$|BG zmFEgpRA`F!52zHXQox0R2nk`e{IUPg=J!1_bMvn^SX|!c^WN{NADVk-&OK-5%*>fH zXU?1nk0*U7Y!zD2*-Q(vDOETM2j?kLeN45O%&Wo|#*`nNk`E6M8W4gUZ={$<*hp`} z)Xr5Na=^n&SAFM`bzHtsU|GzQ?}=C1Gypu)6>fqCC3FO)Q6XO5ltx!SK)=PInXn0y z_Vm0+AW4Hc73=J{OG$u(YeAQAT6O_UT2L2YXhcMev?AzolCO#?ptK6b=%Bu01Oo?C zjNmvxS`@{Oj#G?|(uJ`?F>1A7CBYP<7VxrDS24OxRN7^?nGg&<;$q4a4%$W)qXKZ| zhw4VRMs=fG-;T+m>-n=Li_X%PD~X)cPN^rRCa6u)Lh6Evs#9A9C!`~){von-MAbTx zMXKA={F#ZWE={H_q7qBhZA}Vh4z5X6GfnDXf+lqUn$!uVNkN~*ff1%jb#_~mYGaxd zU2H^})In%c9S+=g`#jU6y6lgW3nKH4#u5)AtOFv<4H5PLMA)A&BDjyV;l^_2BQ2}f zSd^nO>;S^y^d4H_ZNVCE6D)LCj-iln?57KwIwvN-R(N4tFh<*Yrel1C zx0kQ*qVD{#2bzx367Q>AcCe-a7ZDx{9O{pA;#hZ(X>Xh4djsuF@s_Z{y9et#Sh8Bt zQM0hp+3)USY=Iq*zq=rz$aa^_Y>UDgf*NKH*BvK{&IoXL#Wy%FeD&UeLkT zdU;fGEcV==;M_1`J&=Uag1nFNZq5Lu@bCp6Q!IBn`f$J`%8RJ(*pS0#IL&_0M5a5S zhr3hs1p6aocN|I)!bv{;ZA}*LMl*yygdoK0Gvbx5t!&wt5rcbKWUS(FPl(rL3=Ymt zi+TDjJe})JB}h{~vn%hvJqnES9x(dnjg)MN-cBcPwo?-B$7Y-Da6Dkw&S3){OSVSr zxnujCw%vsXIF=CMdt}^X=RK(Hx?=(V6j0c)>uw)<6nm<@Rp;lXBdW8>bOi1`u0BY* z_-1UcBR9^|8`bU^zK?2uk6hH^FyU^hk1;Jd;OH&3)wel@Zi7qGy@-^J{e9eN@v%Mf z@fh`vH8D5uHGEUOC1F#Y9YbdpLEM4O>YvLb7-|UpnyMXuG_ak z_H)3u`Ritp*I5a3*FgG_pWYg08@rQljZOG8sTu1dtNJuMDF zVE-UGk#h*4;JFLTJ|@k+;L;2pf~GIX+(iL*n4OVj!0;vPjGMXP3t@Dy`b4Z4NHQlR z*?vf}y-p>UO%viGFfNxLU`NH+S{A{_OHkyvco*G~Z!3S4ZzMYZcgeSpS0~7~x5R4~ z`Bp75gnWBlye7-HM|t{>@-0ceJ@|S|zTM8Be~5e=&OYrb-v){FWck+iH!k-y`DPGs zB;OA6y#Mp^Ef)U_fh8JZ-i_p@9gBZ!Hk0zk_Fo~KX#-YlHM*w2n+xW1vY|tmH$j2J zSvUNJI}zQ^Q9~C(GW)0j#ygv-8af^m(GcENQzhwekn&Ndp>|=*vjLf@oiws{`TxjOqlmV7l=t8rf&~>@Z5flV^82c76+M%0u zB8B|cp|W8;2j5Ct6GE)J9-|X`L+J<_sbvFSqlJkv)Z56^GJ|+MLF!f&sbvCA5*hor z`qlO-|Ez(*K`q z+J|;x5eq9Vf_yQ_$$$_62QBVY`7Skw*3OD~yxOJpVXh$xG`23Rls9PFo1?I1 z*6-K>xn0oSwz;kZ&f5e|hqgye8AR+_kx_sQW~N65)87V(jI#w`u6QT;md&5zR-SR* z&vyT66cxJMk*F>QBfQY%nn;(69zAVsv==rrU9J+k9G0_aMBL^h;uqQ2_HhlxFS0ZQ z5x9w|bH{NY&SrwgAe1>AtUhKVf0F$W3h34t_T-sKPR;u$;1S=!qwh$gVXp6E5A`n}Y(3^XT5a2L6WbfLcI0h%L%Wu|;`EY*Dhn z4RAv-9i`JP;ET2s3%S6nr(l1wl0;t+i`Qx^qKoV9Pp$%KZhxCluHn(DN!+y;-I$bo?_=l*E1dg+sQIjn7EWsB$1jmKkj|Aeg&-k+kiHh_5b2baf$F0H z8-m`-9-(OfalnV(ODB`*)^6npv!*TB>%j{epY1Z<=Ttt%CE;o0?2UV#B_GWmFuYm3 z2j|lc;}q;Lo`6FN3~4Q{e##M8Fn|}8H6*R->uR4{nWPC*zQ`= z=Gr=7g)B7~#OB)3*yh^NQ`lVF2)z!jUTkx%9vea%6E@ejC2g+JE+5K)d5t#LT=Vfj ziv!7*habGqwClbc4}81pL(FsNS?4_;8^2JcnXgH7hQPXLKh59R>%v$Dbn^=G&I)L= zIGe&T3B-R$t5)Ukl#Q6w>2sRc*;W}X@wzv+(_Pa4(%gP4Dv8<|Tr!{AX=$7=xAPsc zA2hv7k9&YQX^O`VK++W7`drE(|GCK08S?)nvS`Tr__MaONNgD7yD2{=0it_yiGbRk zTv95=BN{)cwShEO6yS~1qYs201lzlz5BytHK2-h>lMk!Fs2}zJM17zJV@s1KG5z1q z<;lm-#^gz8F+mFbAL)Afz{3EE>i-Ec!T^D#>Hj}Z*8epb0mBdaPKqS}1l_4F0ovFS z03ZI)B|sX?T(ks0u{`KIsg?lSm#35u?}{uP`S7I3BKhzDe~zgH_ftYlAar*LaJj%K zR043FEdfko34q;CS_0rY+W~=t{kyXSIHmDEb!_>M>;3<6&d8@Q-ght4AMe#j|8cxW z{euram2$j)D6(|M`->ur#=Dz8$Hu#h5>9=*UoUW;=J9?~{htMEVfHjM5MI0mtA5O+?&zULr1qeSOXx5ghw-G)5_>~r8wh=y>M95|G#G$P_k z0}elh`y-ZfPq?sseLfv%p&*z1?h|rhtHUNJ?lLjJg{}BFHbJ*pA_4wRo1mNFr~?-^ zglwQq&|QIj*$XyCUD)axnk=RUWl9q^=oDKJZhr{!GO0OK4g%PIE0m*l1E79~yRcQk zg$)OxWM36r*lhb-cNJ7}jD*G(RBVS8TXXnf@0N6d*BQje;ky@{U^}Bjso>DzV7RR( z0A~;mY+JGj&_OZ1mFrz&dk4fIUsj;=2O%JbP6%``<;j>O9Ui2N2f9h$ED= zJ+O*k;mF9g2S|j#*57PX5N&&(!3>`*GHRe}uuX!=;v_5GO4AEIrjk!ZE`V(~ItD(# zDvyot$c^{{2LCe!77r~F>R?^j8XltU3HENKHIBj6JM0ioR=UsfM%qX7L?RR(7N5Z# zu-Tn27YRE;6Wb>E9H)?)*d3zm6w-d6@u*Xp!bbd&7o14LH8;}ZE0BsM!j0Mzp;1~$ z+q<+&aBhq3c$&+B(f{URjeT#hr-@nYawMv;fEoy>B~hrw8dRaSgUN8=mQywJ?kLoq z8q@$JUl2_`UnFz&Vg&LAMDxxRc|dCh@syhj+NQ!TRV(-o_Jo3eq`D6)&FZ9P8LTrK zJa8~X@SyF1LsForAGRwc6Ry;9VnpDabCX4StBP*RRi_*`Z47)R1@;0YB$ zZrMUd{w6gmZj2xFciaAB(xbNh)1*ghr%5yFbMWT~{)B6fN%NiiWeWMKfpQ_M<#vJ@kLEJStGMemR0YCCQ`y(d;us_K)%?ULNI@ zYV5m^J?YD%&P5v3x9kZ}I`XJC3RSH^kvw`bn*4-Fj>#imG|wyYx+{-vj(%wuU;ZzU zNAQfmX8Beg3=h{4G5x4MYA0=iJhFRhnSO)|EhaVDTPt%hKyi}Wy&qRX!y%*<3X-yg z=|?yM3O9%<90jHGCD4$*f-+P?DiU-0ptIa?E5liU?b!Q`#_QO|&jBFRgK2BH7t@e% z6XzBMD$=dYNo*HaiMW1L71NJCi@NyNKtI||`cXC4kG>|y zf75nQvosvU)C$o)rI`h%hH7**PCi6^#MX1oD8TkMQ@o(hF7ETih%Db zh+-d4+V8+AEO!&zXemBUG$kL`l!~D#ogkgXEHou_60RvZcp!JW@IGEsI$?u1ICNj8 zDea5Xlo%EdX-eCmDeVjo0Vbx1=xR#4NK?XLDAJT_4ET&%gES>}Ufbbgn$j9wO$m;D zMirG=(8)EWRp58LrqnDg{Em_mG^H}H#^6%+bSpF^t$C(;~I%?*b~~Y7e0(O13>miLG}p{U^fHE-IsY|L}A&UOze&JVxn)! zec_2HQoleNenTxjth6y*sv0c|U24jH8(lfWb*V7Zr6xg_+6rXQr8d%KifZw3c!hq= zbt$M@aQ!F6>mWSH5E-Y2l&NA`j0C%-O!Z^RlsyaQ=q$=_vqR@_WvT=<(buO$Fi-OJ z`V1q4`+9lCF`X(6OT6t^ch$pb6(^FygD9xP2?(N#NK~2HxD+x`%-md{mu%ZnvxY!u zptKg}3n?(MQ;42x3hD|fN!FOz@uF!d0BlMvHY zm9rBL`h2&5dXXW-4w;5`2Gv5%GLZ78LUl_Ok(H*b3H~n85ug-Z1 zj@SLg3^BKd{Qo^(d-1BW@%qhNR_z}+UbpbC!#d;jO_8NDUY`_MWKeyCKmY$QUK7>_ zkHkg&?-^YqRARhhjgY4HRB9CH$uz$PNN_;W?}W7Ahki{R+5`)AB^PpBvehU79GKt} z>{m3wj^Zv5mtlUT2u)^exWgzJV2`eEFts*mQ|qKg?&BQ3j-q22lIM~Z{rUnD@60 zr}vR>RUg4jdzd1Jd&Eo&t}>k)E(}$697eGD_LC1Yjz&{dSep_S3b&YP_gGC+Fw<@$ z`y|7|X4+lQy1xjY2V88XjRmN_O)zFW{Q7~}HHHWE!F>AxpKl*&bYB53M0IaAu zN}6)*(NF;69%CG5L-;hj6v`K4Q@D1YHx47>V zNA<7Afh(xe(AmticoRqUt9gR!m<22M1HGWrkva{Xj-APm>eEFQth+@jeT+Lpum%TN z_fSeD5)cONPbhZUmMjJ_98ZXy2H1<~IK7ATMZyj3hXSS*V=0|T#3J?~X5)eMS=UfJ zV7wY!ebmhBW?^$CJ+u@VYUZW<#fuk!u;CLAdmhiepTYLwFL!ZR>T*)ac$TxrO(^+% zZAFSzX?7~%w+8{l+hp`l?=RVKK!NT7ftF^#QF?Yv3n#R2jNXdFdvxtb!(QC{ffgWf z;L1?i!oPGVU*S53G#r(uWjO38kf=DGWx?^RN<=a1gShQzwJB||q3GQB0q1>wynd5CvI#Nkm$8`j z>=w0U{CNE~cfaT@YG?)3jd*HUOtL4d(n9NWG}Fv0HG;j>%y(VHDui9j{2O~h`OK)6 zR02sR4%w%ZWUcrX4UG)ANHx!T7$-T{eH#)ywp_#2%y}HkOtO3l_t;Op~@ZGlL-x5jKiWCYjX*x`Eg zaJjJByB+Rp)!E@5mi0u;svJR6HUu%uXz7eyMXa2w*`Z9FNn#QJq4Kd!_lZ!}Nfek` zm0QS^Pmhj&{z~JYJ^e2m|FL-8bU;$vgaehI z?zjH;=={GD|wFaiV`K}QKmADC&PxtP=HaI9&iZ|EM)yn1u$@vhod|#t#~yWPD=v-_jq4 z2J86!G<(1*Oy=*B)Mk_U7ZejmIqDqR0Q)|8Npm?4Uej^w?cw`{F%9ZFsrWFay?|`H z|M%j!bsyZTO!K*R;=0b&ACuP=PGyJFxY>2Fb0`AgY&qG%YuwGUT^ziQ-9JMIukV9O z+5LmpllJ4%54wGZei3R0CQmktk0$1u)Xa`wGvIyPnU$13}*Ay0;3E>Oj)6HP+Bh1ha;U&=col{^SL5@5C?lqyrMwA(+`Xs&^YXRVK5X7?r>wWcdt4`OM2zNr;=j6#>j$iO?loV5)d zgRhpcbA|;o+ch(F!ZX^UjM7#>iAB-Y9*L>a`DSrGa;rn_fi1qo{XHK#EVqrD$J5ka zn}bOFort_omun+31LA^XRAY1t+jz5BR2;v3C;0g8MN3HM2!G(9qTuu)}(dMfZvDAZ=aRvn4?0?VITb zL5WY0rg;NkAuzGag)dOEXi(zs+vLL533j^h1vF@OYWR`(BSqNdBI5upl>0G%ppk0k zOAj&Lgs<1i!*ei*RFN|jIcyNI95-@)E^;t#uI7(y+=MUU?|?TmZlvk@^h7tM)XXe_ zXa{75yr9~Hc19;e^YR^%z=46P?KrH`xQ4GjP?ZDOXi@rwUybvx`JVpX^nbFyzc@{= zzpF_7vA?f*AXR_=v&iY%-+wD|(BH@L$7p}2_wM)iK?2ba@9%N;Sst&E{97rKmDu~d zS;+TmaA*@(fz!TcPpgpcjY7WfM9Fh8QYG6l0uO|tvh5=AzRO)GG`1^nd{r21 zAlq9auws&^hiu;kZEe9urmjW(MMp!hhp&N;D3H1b2#ZWDBH2TfleShHK3gbjmC)6a zz9un#Hz+kc!$409F z%;h?Tx(~G{!M)Z5mqW;D1f6Hw zmMEd-!jLT2Cy-o6OjWjRN$Yo#>mnM&es=*CvwNPNa4{s&j`}P(!9=?&UbMs2vm7N& z5bc|Ok*ce&7CBwJ`a+R|uKqLr$hvxz<7(y|NRI3A+zBC?uN@5K?Gp{(!rA~a>jn1B zOx|w<=b5~pqRIO&n7qejKne1GMO5C)-ov?AxisPK8j4Vg+c@bi3S0_lSD&us)t5@H z!$Jo4{YfS1XQ1g?eC-$=x$qvwkEP829e!E@Ik*}a4|Zw2?+|{m66%3)F?d3(n5-8X4C-L<0ECICme*{eZBvHp<3&gixI- zJ@G2uL+`DO^(3dS&H z>SEGrcMu&szIGqsJ@h~vrurBr3i{cVPgUC6k^;kTy^2POZHZtKnKsBeI=h-avd}*#^pMT z;2D-1zJ{Kyc({TdrqNR#ODfF`4@s`+MZBgv&gqB%Mkf3Z7i^ryOPs2%LuVL5?`C~dl~&s!^2Q|D9!0g(ZVS{$S5u>MeT^_98R>qAe!Oo z4WhL~6w!P&x}!vWomAh29{LoNt{2aEyiz<;0WKELdS#f*%kaezR_lkT0B&A@vo*2g z%CSgmm$iWb-hDZNL&gXq774chR8*f8W8754Vb(Y>6?BOMQ#B4u)uTR(Q-6R_e|iu| zU~-U3#v++X$HCbo51Di%R-qOVocjtN$>q{xmzV`VR+4to|%YR~f5+d4}X0 z4XE-g$wz{Cm9 zV!9#;Q-8wrZ6;$e!?Y@fNx$1`Wzy~T-^5{hE`~|J*)>eM-TtdMOiMLPdd;4t*X+mQ zzCPt<9}LFwX8-dQ)a(m`#I%?wBLU7dEGEELQ=iZzm?lUkFhSZx-w8oV&q9#Wqb5k{ zSx=Pp23Aaze>#f<>B2TbgaX{65t0_&ff@>N$%!=+ObvP(cEv8iH}o!E2Vv;aYeD5S zx}r&BR#O6uk1+bNi;bvOx>>ANxuHEe3e8K8`7Wp5xyF07q# zlypFE04G7KGe+e?Ma27zm7yGEgZqjv?UcWsiqW$jdo zYtg#`ct`Jg3<(8wvF;&I?Efk8LKnqN$tbSYNAY566dB1Vj!_TmT8jHpqX;CUSgl`* zA*oT!OGfcX5(+U`8?Q*&FRsKrhY5rA0wm}(>ax@*zV1juu^S2TC`60g#!%?C$ZHHm zT%-P(P;_Odlp4ju$tdpDNAcn1Df`96$tVU06v=vgAs58``eDWL5n!~DEGqhNY7!fh zTkH+dVp#OBsWv(>N&aV$)ph#sDW-qw_VLsIztMZ5kllM(%4RPFbV9TL1PMBA_B=zO z+h%D@qQtdXGmT}m8LDC+O(w1?pCT)DRo+5wd{tJ^dtz12N?n!50G&{khmfFCm4^J3 z4S)4Fgd(mg7a>7Zg=yxYf5S?K;%>i;U)9#;ZA+7uJb@3qZFfojh4fI_>214RTJ$^8U5Y3KvKeMAS+!LV zYWhzusyS9&ql@3*)(mf$ylG|r019~d&Ap-hk91u0$M3H$nWja~r zqzZ5QC@Q@fX|AheIuN?Ad7AV!ln__?G--RKcdyhCl-{j$o1nVN#;w82FNO9GY%*c# z$w|~l6I!r^s@F)v1?^Gv)z%b11_6{sK(D0$$`wGv2xw6Xpd0}-h=6_}fV5^5eS&m< z>Jzk#2;GnZQN8F~jRZ6}1yH2`A_G$BIL5Ue2UZK93If`a0%)ZGBKue9l@vfr1<-N= z@}&Us2%u5|nwkP=x&WF(K!quQD%se1DzBEt&RGH|iI+_b5rhXJItr%iabT*T_7DMm zlmf^sfMfzHPXUx8fCdo|dEV)fGYFt80=h2+5SeVK|F==)u1x_{FMt{esJ{S8;D9x6 zs$Fs9JrrsIF)B<_?nKJHJJhJ3Yo=T|L@vEL-wvnTQK9EVF6+J4yj)5h79tU^SNY*c zr+SUTZ|LU&D5+4>3B{Zc83OfCR z=fQqgj+*%!^(uoY^VjU}z3lJZ_zO!K8fQZ;%x1yd))yjlg&N$xvTHK0LoRk1BjJZ- zrK3CCyLG71pj59zK~NoMbMWWSkapqjtJ<1?#A+?~!m$W(2e^ zq8BA|3sN@>r(!(Y5?_qBkj{#M+ugcVj7=9N7GvkrtQc7+hPQ40EEM2=tpGig%*jO7 zN@OogAUjecdv`a<-kwCZh?A9g?X#531Ikr~aPOMTo%p5dZ@7b~zV=OgWvh_KD%)ME z|F|Hrvj4;tD&TpHs!LFPNKj=4DRT5m>K||e!1%*gVes!KUO->s{b#{p zl5`y87*x(ii}EQ{P7JkgH_)_OfPGXP0`X6(rEOK)l`X-SYQBw-X88%ev#XB0EFPMw zpoQ+Wc?VUTZ!NnPc3QQ#wqTpZ6UlW;ut-=Un~_Yft|Rz6Oe&%K6ALPF6+5Cxti-?N zif=ByR(vk}m6i7%q8Hmz#kN?nl_K9$}&KwkNetS)GYmVON@J*Os0?_R377c1_h(pyX26}V0bJTI4(&7fZ? ztuK%x8~t~_;O!XfpVwqp`{zmHT4n#3h@&uAoGGn0hSR}OX?=@de!<&5*gvO98doE& zU$XL!azmuf+kWZn>mmLlc^`Su@yuoJ3Udh#b-a#v75J#xv!38!VSgS8)wYT>en`af zHrP2o^wF89iu%ZES=oWca9vQr+1dfNI^)F;QY4WAJ8Sb!CBmQ zVp=l?L?vGnN>bya=OJhiig9%*f?>gPmWu2x_88pHI*aNYiqnJMRl_<4H9SIm;5tXj zmwaw~9LtewY#xHBu~F<_L&$(y;g%=KHwG=mDVaDWcb4UC0txqG6yMb-O1`1M2&%H5 z^_&=PDuz{AF%{WX#WxW@!HJg>)7Z0BWjRFamW!x}IIBqA6=g+`s8ak}jDJh5ik~_N za+Xt<3Ec_b16+V=F*R#E=|oAS^@aYsST~rBChkP*ZTEIK+-L9_;N&7UA~#|zg)i`S z+@>YdsYQ|8n*(C!jde|L<1R%Mw?TWZ>-ka8Xnw@4Kek%SEgICR(~s4IVjvejQ7EBbxZzSR%zqrDPqr2AzV8lx$FOlR?Hnqa@snRMrHt}xCl?*lnY5efwU~5(D zQNd3xrFumN-OdZdpu>RUf2nnEeF07G(#5wn*jT*F4>SVkzUWJ2pp79 zMt&%mam8qF93wkV(IxfDzh50y3 zk|;R1z}<5RHF~nZ-F<%d1@4y+ig5+Zi!xaJWsc?L+et z>3O2`&Pt${j&ybM@)<1q7S%-U9)ZO*V8AghW|%{MCS1tdHLwBRwoN z=~(;g(uMr3_jXLsCW9+L4viV|V785$BSwhihmp*?185sU_Yzb)obnIjO=Y@)w{xIW z5=O4KbAVK$BHi101@2mA%EEB^XaP$bfrSi9E5K`bdbb7htTsKtT)+Ml1amGZG6A+5 zeFecc8Lv?d*V*27qq_&X_2TfE-gYQlTVZg=>(VgJ7&}Y3q8xev!mQiHt$|IqtHO0b z_lk?QY4&!Gl}hr_CA^&zrIHKT!yULA5*&^j4U_Q7*@-H#F2Y69_Sk61L|sz#&Oczr z7oB)Fb^*Fd!q9YrV8xjrl@vnh^LE}Vm0XF3xKg|a8O%$OFG|6M@r_6q=;s4{ic&;7 z>d$nGpb4r2&{yJUu7F(PG$HZhYJNV_1x-_GnxW;uCcyS%OG2mSINFVM4pTX`acB)# zhF0MkK*{$VsIab70^;g2(hwt63j6hTP>1S>b*K(>C=Y1FI+U!e8HEp$=V>l6|C46- z1c@oD44gF8m%!12Z3Pi!QmHa&u`+2X_7|X+7O$+Jc}rGyLJ@_UiIH5`={n!8&dtlR z8%O8Kg?nc9vr6ktTwddz)WVP5hs@U%_~)ca)*6_^-B+8hoB5sOdkrnyT~+vID3+1h z1htzf0c_1T2Nk5L1B<|@BEl>9AtwIB3R2BBV@~ZZ;cc+mtA3(DYmb#$TRg)afa?QP zLS^eZZ)du)#tcBoznW@>)9V*{+XuPM^|qhw8su%ycVWN}arO1KpXKW1Z67H46o7f# z%`?ZWXB^#tP{#&?Io%*P9FTpjuKdxt?z3!#CyM)lmG;O7mI&5!MsHiL>kthSzGO2> zzH*=uvO`@)1<<-j=sXl&>rl*%U`$!%0Le5!{}r)Z>yCNsxW+mAs9yE;oeF ziak@&dWtDWzjKY%B}j&cZn8OKhrFZH$|ZZi7{;N`*uys0HQgA{zxpbkDWHj!kl?QC zF8v}eg^24q9y+=&JNXFy6+Ymc!VXxsM#ex!ICUSP-jM~R!xH&8Q~=4zxbhT`Yu&|n zAvk04wne0pL3m`p-%v4w?Z!ts-2O_(2v_F`xO-E6h+ zog6ol@7-7`pTh{Ayy|^G-V&(>ceA7?o(FfsBe=0{tiQiv^*ipY4_|6S2wC4@&34h)+DA@N(@bT) zE|ndxpWeC*)}=D@G*kI|P>*AMPBRs!E|tIh?euc&;6c5*SWYvQ1-evr{pabe%Me{E z?$bg}*NvE00ExJ_x`r7H`Sm;Z=x{N)|RJ^)W{_*PRt;@N(RA!%MDsS!A<5<7b zOyyQxDzCnBdN~&ULa#2i(@e#uOJ&brPj6k$*QN4U_o#3^8hd?)(5gdFRJ*$y{mMQ) z24-}RXt$|Yb*VgGetH?Wd#_$yMs<%0tx>tD)JT4Kd=Kf4CaeW;oU|xz16}N>M@^-} z0n^oHX+^kEQ>BTS*CpT2u(tD$d%@c_*gt`7x577pS(P8hsufmc_W<60GieFPcBey+ z9g9S~op(sSo&e!#9L5D0Phl>cMj0R;UEkPMS6I*z_!ACy;!JiU z%x-Xm_-RvnB=kA*Bb%N6d1)5UyfoCx9;pFo&yA=RJVX4;hNG-O*DCHX^B@0!pLYuu zM3hQC9>HI>rW;Vuo(OtM+bEuORH#hXY*7uug94QYKKvboGd zUyM$3T{OCv>w?in*SX2XeU}&4v!^{0?klT4qHQV7?m>%8;Ep5fR$w2dY^Q&A8ks{P zn{6fkbf3kV$F7dfbNDl^aTYd9kN*KK1y+^q23wR}e%*=-W6Phwob6uMIYgrNL3>uF5pJS9Nodqpu z5%icGeB)4BgE#&=?=-*JMV-chTNTvzC@*;RH?SeAYY2Bir9Hn@q+=_9k~}vUT$egj zA3fU(Yb5_N6lP4>NQ1d_tpDg%Q+1olow`(3qdB_K zA-YYad6!;Y#&?rSg4+=JJY(yC3snD{7rc?d{)r@~k4odJy=@b;eNx!j4dMH}ZTD&k z7=MQF?a9Nk5^xmySlG(+hGhW?f3jhjY;x4YA<-_}NrpCTaU})+#P}&%M*e%sM$M3v z-w_=8B8?5QA4yiElPM|5hp*f1@X$`ZcBoo;dRsePm&)YROy#*9dUa`e;Z*9vbpcF> zFuamurl%YB!8~2M^G=EG_j?|$Z`7;Zpwmp{Ze1#GJbx-Yq`I7!!iy4`!#CUYDssyy zlQ_Af<`cS9LMu+SA}6PEsV)`oX{NIAGd+%-dzz_C(WUa%bElVMt)J@E<<{;|;i?Xe z&g3nBJrVmF0KZ4X`c}ZFi?&*75nNLUO=Tn77I11F)^>PU+cgjCxNU*USxuO9j+4!c z{(RbG^M{}4vFc(FIGr=`G+io{e>znv-@lLYZG&EY?mT5mCm)he>r!ccwp;a~%^|HZ zx#N7uj=;>_o=ykr5}(;U;_UpZ_waB!g@A}{@C-*ablgbT+ zo96X_hLd4S!;3|+<&YCu$?fRyI1g~4RB{RtB zwKxkQZ};}Ht5Xcvo*P}bb>7|ZKE~->TsK%_QHpW7_rYGyqKG|z4?AGte}+zn1WTUb zsy%I8MiF(`i}v86xUv3>(Xw$$vt5~DD6EFJiF%2uuuS$&;Zw-oI8)i`_ z<)JQvEUG)V8b`KD$EKIwZd7j0P-bSy-i_IW$)*%%<8Vfejdt>}dH`diCm+PAhYC6v zp_{`<<$@IAqD;cU3+E_h>>ydWJxf+@M!7cPz!|3yevWwRtFx=_L8ZoN%FXFio_S_( z`&4PkK0;r#RrdcrLsr`C*ow@rwooKE?6z)0Fch0~O9R#gj{F)2d)bT|#9Tvy!w#k! z>_zX}j0a`oM!RA|RUXI=4JVBdr%M9C^NoS6xMO10C5V3IAAJVcZ!OEX##(BbN~KQdL+#W4F~m`HVD+e{7_%cGhdoqFt6U7b1d}x`r6TD=gmPTmwQwV|hbd zB1=>SGe>2j!H}7kCi(synK;LyIQxg5!J{s(c#T3+0Xc1{=+9={riw1zgm~Y$Srk?8 zaH!|r-O&^4tSPl%slgry=Spj@vLgvsqU^HZR=}3WDPj&*;kYy!u{R5LS>B-ycF($F zNKQvYFh3n$v?#R*r@jldFdf5}D|#W#sx(@*2E9!g7H?CU_dshPn2sA4jTlHU=`;iC zJtOK64NsZg1AFj-(>{%s){WFabOPP-rookoE0n@#Sd?a< zK7l+G1=b52Ucbnq)Ib=WvewMv7q4GIwiC*=`NtlC{UuLYG!7%kS%lz-?hk8hwN#%m zICY*2qsj&|UJ%3?X(0*Tk=i>bgd%Vpw5Ye`c&ko$I|^q19t|DI`*iAEFvU;-Y|;iF z9IF7brU^fG^*R6#3O3(@PtSpO={oB2DIkNJ2&x4H*I_l15^5De)dR|@p23d5Ih9(A zw80-o)}me)^xFaU*Y87i&Fz5l5)?5YRl!CO$teUybyT)?t!1z;fm}x*)JCZg1t$Qi zKcE;(y<5^kucNAQ{G7x2X}AacBvy5$#Q3?A@O+4-VEoiAP%(l0l|UFX^^pbdA}BAQ zh?xYV&rGunu*u(t?9i=%x|*OEGgFYLb zUa*j=o`Qu_=u?FV5bhL^!D|Q#!D=}dbs62CK+FIk77{^y7JfGlV1rMJ>6M89X@U18 z=O5wfTKM292cYT+it#T6)I5TEg`ik}OaXN_L6rc?rjE(6Dz-|S-;9vxZ9Sz$)%eaP zz4cNvO2Kg8WzA8%6tq}z|Aghuv}qP)8Rg=aWkkDiwzTM%_?ma+%E{%7GwAd>oPmG{ zeql!;A~1h|fsA)+{d6YWyEh}S7s7P|BN7uR!9U&v_$?fMojzI;0E=w^EAJj!f}cDV z@N-h2mEM9NVq#foWt6+cQR1=lvDA#^rwY_J5r=x;HdU^fpS+e}f9fimLV zYYv1m8}==z!Y2_^hth#Nhk*=n{OHFFoa&@XZ`A>ug!OiuEiL+r)S;qDh#~W-c?x34 zc;9crRb92J`$I^R6;xjZy9bCVkY!VLSe3bXIf^TvS z3$;8g*!n#LY`snww%g|c+dJr|6q=P-qI~8(kOAg1&V#G|k!z4^V9ds)AdLB(>8;ou z@ED-4(H(e{u5rCpaQz^zbRe#`vd@6KrOHf$0N3V#eyVkaHjqQhx~*p^lu4FJxMRt7^LwciK*|dLM5I; z`H88biGDb?2@hcTX+JHf{`h-Vrd%Ave9+t0+w}_sadu5vXGT%qxehFE`1rN9Mtr4vh_MjYXn)jsbW$4U#q zJXvJ;Pwnbih*B=zvNqQ|T@0+9vuyoixa)It{_vpP^69fG!IFu17L_9Ew4_Ob`iBQJ!)GDfsn`uh z{+cs#hB8Fk@A)41j9! zs(5B>$7k#)6~?UgEn{Tjw=07a*taX=zx@?`yALxIjbZ=2C%h-HjJX7q3${VdJ>3j^ z^h*lRJ7)apGWa)I)G0aMjrb5Nn0kerBBrzk4m@xw+VTU6zLdKj7 z_dqb!sz8)5VG+EYx*m(;hOP;^8Cu3GQ;;zdUsGGrLM93Oy=0u||2^0rxCKC8qag@M zJoeF(k@1}Z-;L+sJ)jjLSsASgEQ@hfL9n3@gU4Yq2vd4IHI}mp z5(Z)gx{8K0_#k1N(4`O+S|Mh$LLg*fOen1abZE#)3sD<q1uk~&GSP`4dp1G|lDgOQ0Ph!ZOs8%T zY#?zwg|yp597f0FQ&5h(S@%J-oxPGsukm2H9$lE zK&SWLTkAcMHhW0dnuH!kHmeTKLk{JqR^)e33qvpbZ*PEdROj$*v{aapWRt7`tFjTw zE{v5+XqxnHHd|T)K!Loq&!-^;^X5hi?)9-5>ujcg4Lu(#6i7Z8B?$%8^5-cUI|AC! z1iRo14&7StKcl$r$s0n36~eC9z} zfNu%eTe0}!izlLwrPdc&(DkjRjR2u6GcBMfi>vaepvTbg#e$9ajR1=2?&Lrt8WV$D z>-DZ{NRAcklGdMPQ3iYW?QvpD!P_xz9h8R+lC{C2{4B$XDb%9em*rF+!SAH((90+h z)In%0t?HDOxL|x0w2`OVP(Nil_Jg?j4s`nP8|neg3qbx9LYz_LC_F5K!=A21Z350*QWgL3{R+4!+m23fKm z3D$m`ZU|o}7ww>IWoNJg@AkqegNpk?$sGzMcO$*cJ&F*j(3Yf4nSlH^`si6WyOZq`5q*)_+A7*Pq8)i*EZJRPHvY-i=VsAqC+1hD&D^M6^}ht8tACEDmW9 zFFCGUhXThrXJv3s-gnU8ot1P{Pl9>h;(3W6zP78rhggU9b)Y%SE_Q>=WY3)82G6TciJMWD9RMj$ zN0ziGpQco4eHFGdDjzI2RP;d=EgNVG^mO3Xnib@th0rH$PIV0hAeDW)aI4HpB)WTsT%981t$O*Es!R{ZEX3yUyM>g4&6+zH& zD$IIfSA0art}x7@&%hSiTJvq2g^PLHEZ1e6jc^)ZnLScv!;Tap#D_5~;CHKD-*I>( zj&TxgATX5LDoSn3(F_Pr29~>DPql4%8tO$+SHltu zF2)YLhmDT>qjcHWEq3+2CSa8dPt5Ks`!lYS3ma$Tgmyz*&lrODv*p6JnP>K# z;{^NVXk!W;a1j#O`yK@@O>>{2BDXYS zAYCe?OsbV5u$Q8#&=uxgj&PFYs(UrkmyY+3&b1pE_k#1wUx3#$`og58=m?Szajp&F z%P?_*?7TesXuLl=7gX&=Kh+%V-3#TT;zR;y?73f2WI%^;AAMcY3hh6#SyFHpD|#82 z%KMbv_z8L|``p9sK}#pDi*6?SU1vwiCM_@7CVE=5->sppES20(ET%)uKck1%9c;kK z#v^j;Zi~u!dJpv_Hsp?>jPM^-eDtk`P~{z2W!*YNm#yIbA-a#P93f)9!WU@r=^B-9 zzyTUY$S&B$8jkl2G^1!jJMS4NKWjT>1+`t!*B9+t1%9JB2pRRPT8Cssh4(}8Cc5PvI`j6{(t1~HTnY3c*fJ9uFlZ({N}*mD() zCM_4zt|+JC5~`W9EDK1WBSKFUz|I7I*b8?`B`0VH7sP zbR;3gq!J(clR$+2=)TigxPk*Z#VoR4aGmT01VyDy^N6F0Gwqbe&~^_8Mr)vEX**y@L=;@Q7UWakxLO zYeq(nsTTJ)TTFGPj}acyq9C5TzY%CC+SuZsf}pL;pN^Kbc=qnGm9j@6qfG8=ovME| zVAsP=h0B}j?2_#WIzk4(<-(6=N#z-CQ+ArAl%<4!lh>&|773{Ey{JXHdz@Y6RbBhr zG+gP4lJ~NjKDJ96>SQKD*VEjoeC+f)^3vqMS2vQt@E+(yBMCfC$+kD#7g(rAiL^X; z+-GN_`AZ?%q=iEvhD*?MhTsMV8Ue@F~PzP<3stiIrC z1kYxKLjnMf&8#-KB*3kWgF|6a zWZ(*)<|zDZc8<)W$~gSly+LS3A0*B=OEy+H3hQU~mGdVpbtv0|hu=qU%huj*z#Ack zI4*S<+fhvF=nfp0Ph)Yh5Mte)|B0OcnWL~{)_Ev7HC(P#GM-9K_DiND*d^VAcXTj8_b@Oq7AczejVg!POUij_Qhb zDrPc$O%q=13LCt#(Y+K!qRyX=q#$x+$ZhsvwisBUOzemVVJYLjRo(-j4aoS4{&N&I zxTZuEwjQobXl-tX#q+yJAG`my2;%Y=?zAi09MVk>Kyl_6TGEo2-yJ`%t(Sg9p^5_=ans=i`arTR6btd5=`ZG@K9eR&{D0<~P{A9ck_n zC@y_bZg!tr-bL7+DZb5c_wp1%fqM~<%rLG$y~Jh~emQ+~DtQMCi-g*7F$ubH6R{+} zt;|_bQs;V@MW%won{@|`RN%KObr>g-Z$H3fWs~e5-3wg+niFF?Ys0|wZ&{m@xL!dL zL1o$_=5ZRNG@avzR3||#w4AlVQOQ?=2SLYL=3H(ose>RdbqzxID0LcJ?D-!$3Xjb0 z7e02)QK!g0!5L92nya9SArqD1k`~OO8{#NK8}_mR@1Nv6)t%Ug@l%BH*R2vPTzj1WEo)Q5YY?YKgz$Cmb{BLIysK)bTRp$`xBobcxiZqS|~sppUp#C+fJ$UN1p3e z=`F20>_v6aNuw?|RE-dcC=Cru&%E@rCEo}*6f_4ZsSc$l<#d-&mWIe=`oL?`f zI->;<5>}fw#C#A!WD<-xO^4S~;l&l3t6q51>>)@ zE643MSYl!IdebvpQs>yc>sKQItIj(7gfpGK78ewvg{vXpV8n7~!ioz)R2ZD~h{$@H zXKiz5uA?mY7K1L#Z4D0P0BoOXF}%+A1TS9Bd!y?o5THSavB{Ail+)4#jwKvNojdbw zjy`0U#{GltX+9UnOI%{^J>e$Y@u37SwSKlGgsP^45ZhO;{jTV!d07 zSsK<)y4vdSl#Oh`m@>DEJrws}n1v~kn-SeOFHqbB4TB~hj1Urt!tBOujsANgvh;c* z1`XK_&93XPI$RA;ql zUM#8~4F<(ean`~QvS3%xyo`4P(w#*&xD^l>rPM%hGQwhl76t7x*i9PM+1$njFQK3n zofsAqGzBsn!@mHawe*2X*u&|teLXH4W3c-G>r}oB4xl~{VAmz+5cLeTBfr^UY?F;p zLKhG{Cr)D`{3i~FJEd_4sHHN5Ys zE;W3NHEB0$_={zyRKo&*pVk`Es)`O?!_X_0{DW%Q!WN}zuD;Ocaiqb3R$qg3xW%~b zveF1+6gQ#Dtu5%gO~?{GP3y^upY>9I|1{j~>4qJ{nwAD-m%1xd7-bnfz5gB?J z;+Xm8EI90;uW=NDNxouqKOAZQJ6S1U7AZc{qq22w>u$LSS8a&&ZPJowQC|$`)vQ?P zwiT?~x+@)p2j=Be+seV5Z)$8Sfg4*g5QTK{1^j}QFR_~iGqC!O7*NG+uy+NIJlW1G zNGg0^+53(dQ@^CyPyHkHaVAb_Oi9*yN8zE_xonUeQj6Py$NumF|C-`BV5B&3>>)fC zlOY3n1lRX{iV9+*4i~HxH=)#xPUU?_4@gOT?o_@G{ueMrdtkE|V@))`j4%f(e2mp$ zjBRli?!_28jCBN!u^Lwe?J6@Spaq!e5Ms5FaIs2bAJbg+4zbW_>@<50<~s8am@B`| z6fCyqx0pQ<7_z@6>l0@$*#{)D=aE(FNu)aqzmXR2!Got5R+W-F@#HODi6@xI0JUFw zViEcW$gW0NP#$+BNipB~)P$-^%4G#C3~0_e@UB*~B#=_UTOl|WpD$)V>b&?=;y5&sZvC zNvvg`Aw0Zg(WtIDFurHZoS`+cg9N9w9yh#r?8-;H@i0xI2V$B;(w<;ssc116?2DUe z%M_DsKIThEM$Bwah$eHQ#?Hd%B*~iWEov!V@NlkG`5Jhc|9$XP;Iu36JCr87_ghr_ zS}G%2QY!f=p4if{i5RJRsa7psruIo|hf8Z^D18%2=`$N$14*^p3!SfuX?6jtsoGgo z36mh~g!^(#M{vexkm)EL@hPgdD%eSzo8wTtG~hh{K}_Bg&TegV6jh2u1art>?cz|X zMbrH8kG$?u$w6>GvDs!LPirjS^rU_P%Z0+44nI@{X34<(FZ{-p+R!af%i?PhhBc|65g=;G@U$_8;>RUVh36W8w9@LAg&1p z2WPUa;GeKBI}m(2_>o^1 z0?2}+Sf@G>`QxP}qGw%(`8H7&1odRW@t7>2j>QEcwh%}TgfC`23z*4>7aR}NEZ?qt z;DC|N`yKk$J;Vss%WlCFR5_Rj(KdRFfZ5XK3BJErpAkNMg%S5JFv6oTVkt4=IsbnH zBd}g}dx93A?!t(nC_iV!U_3EKyrDPTXqaKV&7tuo8(o6}2eHU%!hqX?0cSJSl6kx6 zNEnv+rmVn0Smtpw4yO55nCLNy(Gp8q`~o57@>Yzx&>OIv#CO{7>H0UQ-Rk<^gQX3Z zhSQv z&8cjL7l9FKFhcCVX8y&m%MA``{k!I$<3UGvppNh4g?ga`UBWCFCbc5GS!W|?ur@C1uG%azvNZjAF-Tu+~d{sBS7 zpt0Wz=(nQKagfZnG4ywWL_V}wj?Z2*ZWvMQ0;$A7jvJOxx-PI&09#N=IL8eWc)P${ z`~5JjMuUW{+R2tO<}8WjQ+bYC%FeNrviI^__r>8G%X3|Y7VmfFnO9kr5MP2eG|5;d zw_)inL3OEe4Z$*mdOD0&>8+n(9sl?!^bu>>?UJm{$#I*;s~LOL9QX=^?^0~F zo{rw`%f@?0?}0({5ca&{HdM_nY^bin77LDqlujxSF8U(^f1RHUK*ux%z%&3@%i!AK z>FDJek_`A70}NUKBp2Z*mG?Un>kTD6$@#|nT_36BJKA*fe%DtjIff@07dc#yX@5TL zt}zaqrIOXiKwYuuA?Ge$*E2+2adzRplt)#kE#@BVg$?Cc?_~$>Iw5}_IzXJg3 zy7HuTodh7%6$hlhgTaxHkCJSv+Vzq7219(k8o?dZD?=(lR}u9(OVkU;YqWX|OsrQ0 z)vF@DUUvXbGUuahxHPyCtCN$o;nLv00|52HM%hW)uoyseE48$t9(|FC3AlnR?!oJj zC6#;`t;5-(4mk0z)nQ0t9ad8vR>#-jFIgw4!*b}$C#}Qs;BEk*4$DtkhqnO)qpDU1 zl2Z#hBKSKiKi1pEpd{fgJ-G_P4;tfaV1SjZ3E!Y2PemiUEH&dE!mB}AbT%nKMgPRH z^nb2|Jf-n&XA#pOnp?222|ATF8vMLtr@Jn&sFp!8$tU&JELph|{IWxmPso+kaXBGc zLvF~$AM7UQy4|wff2)~*x^v-b(|^K%81e7>ujgLEFwX6ntA~=x3zI_6CWjGvKgvD~i#!L;8$Xb9+mP70nDJzND0NVk1=b>r23Y} zJ28;5+y!JXMC-}wldO>W^|HFa0Mdx}Axk&a%L+>;ZnN$XX^FrvH3?8T{WsH&&l%AyWv@Bo+mi?1+B5p`J8;Z7^ij2ZXzxg@) z23g(;!ewwzWPqxtjT)e^adxT?hiTQyhl%@f#tG$5Y}FWt-Kb%Y;+u7zj1PEOlA%AP z{k4Q*$~7KVDwHK!;@1HM0cUb$%0-Rg413Xi!-&0F^V~}>kZ%rS87q{!j%s2rY@dA* zYX$E*T6!DiV)~j?FRd>lM`!QePP*8vztVR^eF>H&&{*|i!$Q5maQOb%m3Bf<#0hCxq zY_cjH#s-UeACzb7$J23!fk{Mf6KSH8CycVI_vLI2+KqegddGzE7NukfY!#eKvp_3O zerWnGrrm`MyK!7r^+GB-*0AGp$cWw3^D-Sp+CxgR5Qr#smS`iy9ukEGF@{1~d#2~z z+h~OYrH}&fvO0ER2aeIjRI3q9l(MAL7F3Rj+_5K%lve1%p|R+1NM0FBUJ11^GzbF< z$xCC&xJtSrw1X!vk0mdMA`@B&uZyS#;X4eV3M;CYT$pI(M6U~VQfFs+p|tR98g81- z>&wR5$#KxIBI#%>V-iGtoO*{`7?5io*M>5rBn(t+cv3%POxl5%xAduJ9d|0~g%K;2 zJc?EGIN5d~r1R$>a|BRSLP5)*7e zUAt}!@|B5G1*9_Zemv1S1>fL!0k)eaLJNA5QYr{E$}MT_ljJQ9?}fK1-Mg>ndh8oS z5Wh$R2|Y2gGqRpCH{ff7ax|Lp^6%QUp&r>J`a0vo)@ESvETL}aVF{H;5F3OZ;NbV0 zdk^Qp?@`&Rw3)ArkVQKa@Y3Q<_)AWZRrtm2K{>PMIEr?Y1H(>tmah(Os&(NW(&9w~ zRq48ljCaaLcmlfeDn9z~!w=#9)%r!GE^x@`&)8b%JgrDpw4kl?@xm8(~z8!Es|aFYy|B@tI|LF4jpKb(`wL6%D+n-6^R&VrxW)OoWB zNiIXOEqDZ*lw^zr2D|q}&RiV(X~ug|3kCAE;?(M~F$m-fYglCtIlvsT7ap5gh7&P8 zej-Pz@iOCBXbu{%pe6hzDLA*|86}Z?i8R?80Et>6Q6+gF!Y3eOz`>hJB!JAFNGYfc?^UWcpzNO3orP6OeYLHbt{XI$ z6*q?_V-Bf+w#xaD-2P4+ZB{l}lzM9V3t7{@fxn2CE-n5mwY}fm>22#PEh1&z0^dQL z>v2uM-z;~}w;_xT;ce z{LcU(33d~WSecLWk@7kk==2}9XXVy?(8P@xXSk^tLmr;Iq=I8JP#gB}qHx1C4EhS8 z_-`5b*FPKIfZZSXbK(bn+wy1wcOCdQzkezNA1sr6x1oL5$hZGL_TC0Os_NSRPci`l ziJX9lQ~{#~3kGZytkglt;EbGs8L$5H-B00elIlIOCv3q)7mEexJ4XIg^79~n@m63hCsN5Xm#0Sr9CUM4EmSkGS{m2Z5Qi`XnZ{vYELj;oYISFeoV9c+*O z07JkT{8c7{7(KBY|Av2t-+(5&S<&6auoe#yvw{sTy0i$uC2&?lV0b$H98?NFpPHp) z0H6BVGM-#6AdBQvADCDz+)YPXa%7%{uU9*xn603G2E3BU;xK>WZx%=?G!!& zF4`=?jNuMMGgyAR*J_;;TVMcXT|k7MudXXRINe&`wER8bqYiA^b~a=Dg{Paq$8ZNT zeZIgrRyGeo89wVd;*q;K4_%$%mnMIoI1G1jA^a;LP%JuKB-@Mb*dK`(d5T*+?q_Q@ z;^H8>0HX=JnI#5gPOzhi^$g!H`+~<}r8nt2`=F=dm0)!j&g<20?C9~Wd{k7=?1s=- zl+{*``<0qP%#UXk;?YEU0ZARVKxsxW;gM%$?*E~bqEc)d&tzUk<+GeWU zN(`h$&Tg`Md`ylOi8KDk_iB;9h!%0E2Dg_BDOTMG(UH}sa)2_n1npSap!H`!HzK_m zX`ik+)p&FWRAMaL`8)OMd-Qh`Z#OmNx z&70ne7QH%Hz0>E~m?~imo|dkpKOqzT1>`y(wNJN(Mp3Ed9ctFoOL?LB0Z-(^YnK^9 zo-#^EEdMF4!Y`?zbfHD4nH-!@y;;W6gumueBfj{3Tzr=NC)D^1ydUR=v2+h-CL~(& z%90`$9R;7$0pln^8HUI2fZsipTO<~qsPTb1fVS5C0r5Iuk$?Qx6E5;|Ctjo)-Z_mx z<$E*s{Qp0`|6dv3Pu+FGeSO)JC(K^|pBdl3x${`#+xJ8+HU8f5eF-I;;P`HSJh#Zd zcYJSIb;3o?Kk*`uH@>xtj2RttI(ZVa{W98|ZIhpk20Ogmnen}4{^C|tC%PSIAlwNc zZUuMZd?$+jyC?{w@m|zD8nY3l#7cP~0UhyV84K{K!BJnk*-kevN9KwxUouB-Or`^r`DGV(bFgMvU zBa>SVx!GBTi@SVn`Js^#@^BI*NOlX7elX z$5=I%?3E6F&x|yGsOvnMQaDe@$&`8IdHG+GzXc2BugjO3LoP?Na#4OSqRAzfqdJ$i z#_U`!SGjmpE&-LxmGZYxHc^Y-#FAK8JP#Av>=0{lM(%X~TkC9ooRpdFW5pYhwI~+U z+(en~^MLu@DxN5#U+0peD91XvOw?wB9!N&yKAp>?jIvDLExBxF>VRP#Y5CBMd@NP! z_~7^0{1g)SQa7K#nIPZ-{r4v3f*8dK5lb&E5CRw72Yz;A5Y*) z=u`atvgYqAdpYu-G=F~t%X~#~H+4cD^>Vmtxa~iYZRzz97ZU`1K zGEB!ioc~rY=Z~dGpY=B<+XYgNV*Lq<^(VmkbIAtQ&ty}cosG@dD^M3E9PRHc^>mRWh?aW->uhYCy*30{gZQf8u;*4A)vCPS(ESL9xp>sL2 zm-odN_c*-2gB{=$`gT?>@BcNYO2Yg97y4 zf9hPa*j)y|aoGKhKmP;S{pZKX>>tYRIe11H;t^Yi_%LPb2%6D&Eu7XJf8e!rIyBPU z#k! zx_2XE@kwY-jg>jFN5`(^nhEkvbsLJ8m>B(jT@jzB26>1U!>q_MDX8$O*(d_e)eH{@ zQe$4ONY;RYVyUh)l=-cZlH)o#vLmphw3+QZhEr=*vAuj z`u-Gz+icWZyh)ZxF_EV?r-sX>O`i3YQcmRQHjYbulMIF#vH#?WU@(oplbqbI8g~rl z8{U63KQ{K4f#{S7s$hPs{PbYOdqMY`#vN~wj#uAERlp^mO$rk+t+&Pg(hk)*bhJ$c zVy5nq6z&&|#!I1pc2dORH?8JoJgi4f|(Oc5b-Azh%j2>9&dSV^{#eX>30TpvKHT=qsV$B(bokEVnuoL(d zh8@PQxDv3Y|Fp4cKNsw{=(E@+vDp)OLpYX&AXs*3dt_e$#Ap*S#omS2T*6*ePkUoO zhGEl-Zn>3{lVH}5I(~d#USz}lsWRcc`rFA)?OhnzusOvh`FldMpAc4!Y-qz*`lye! z@R(rv%x{cFnNaz$>hCy>DuL0*C5agww;LfYhcdZ07i;PnZvlhPkvw6RY|UKa-|tp=iRT0HuE0iZNK$4dX5tO13MaYo|x*ME_?VAx_*{lt@%8#dKp()Ul^0BYQ3*oRM?o zEjP%7xu)O!+z z6pVQXfi!HWol#U4K9{4r-7haMOTDXlnV~XpE;{|t@aJsM!>IcY>Zv|n_TNg54g8&C z-hrm_r?(o7+xUd-3)vmfYaNYrltQM5BKxbN3lovo3qXW8#ws6&^3K`DQ)5T*g)jDf z#K%XAZn=bcpg8h&EE8R~;ePbgp48>A%r&XAxZkYqKMxC*dXxa+ndrJbsk2y1pRNYX zFz!f zR$GHCOK`vB)PM_SsCbVctZSEDBE9@};;TPa>u$#)D4#7JjF_688q~nvft%t-iX!oz zRFo`AYt9Q;Nr=k2!u7^`O&{RCG2NLe9`w7PUGfLcV9sMXf$PPGQoq1vPAaxNW+N5v z9`h|~P4o}*vA>^xzyB|ae?#9k8sA2CDBk^|;@z`zc=z-i-aSe2ZtDC`X43OCla|{| znnE-mvn>vze#Qa%hT2S;+M@U%^|Y|$Qw~dtZu`4f@-GfcuE=7^DX`?+)Xy_4Ic@-! z912T*HYscc=NU0sE6?G+d8whI@9O690uKC9eKz-%2)E&X<8Yo4c^`R{&3)%$mO%&D}G5nA}NI9F8pMUGa?o#v$-yLD-U42eOfHu$X&L;6@C)?L2O+D zj`=GHu2|6Fg;Sf*A2SsUiyZ1&Ichr7nb0}4M=HbYYr9D{g=Xe~JJVDGM$WhLl>j67 zSv^zeVoS{yHKnohkhBWT8XTH8bvv1xy_pwYjCQJ=u^{A`5ei*0}1Q`yi_oaxPav-v7RAh0o%A(7B zMHj#G2C8QWGYi68nnjo=ZNfa9O_*_-Fl&1W<7A~fio0CWWWUzZCyO{)_-J(8nSUCR z7xkeG2&7ggBccMvScTYM{|ETr>3O`C%r^NB2{%N2<(BWBK$HdHRx_TMe$Xf#a=*N1hn)8CMgDlQ67QML z<@D`1|#AX+G+;MM1eS$l$5p3lYHm+vJ77Q&^o+U4N*$a;+iGRED zH|eN)Nf^6#rT&0TOnFCxRc@jn>rz5;YX>Jrp5b%t_G~+fPZ)I+$JNkDp2)NLPl&zh ziL?}Wt%T1?Mq2YdEB5ALy0E=^Lh&m*m+*xoGwMh1ow-hUiGRxjY?i{Wzdp{cjM9K` zmE>JjnrGB)pkQ`3jXYb><-3PXgbtAH$s02Z)bQj0thl!V$DHSkhB55poD?S^ z`JVmdjrw0wp8B%xCtP_~#)QD8n(VM=`bStA0{OZq5@$U^x2`Q@!pC~ZO*D5j9o3q={z%akB>bp z>0tT{ia?<-vmjHKA=@QOG5VNR3PVIRaNxi*WbL(L!r!`t!oTFF3NG00V@Jory6xe` z>^$4u?rvW;!4tc@z}>!dob%>tc6eF!Q;CI)U7l~LUQf->rAqxj_oqsH?(wMNwbl#o za@^7oy`Of0>@8wSecwr^+B|rpNEUxd2`X;xTo2 zm{B)d@#5hULRz7SH@fJ63>-2S3EnK+JYcbMO@uO!{?1+v1QuiK@Yft?iZ|pLc z$C%enHk23RV|@;@%c#4J;=Jr6uA2TUslV{GYEB@w5dYgQnoooGdSc7+t@YA{y5WW8 zn#0isLXJ``ml7AfsfJ0J)XwWx8HUb`E?kqw3vauZoeaqUocgTFbhEW^4bS9;8tm~X zw&ZwSpSAlJ-l^NY72DNh6vwb(HK%*hO|en`>e}vgqoOwuEQ)h?%4i641r4fbL};GZ z?YqlZwSwzh2Kn|6`ZLH{|M3{4%U50+9vxYFS6-MC|9T+R$FPNQr$jQb-Ky8!>@k9E z>>`fyv#b{)C3+Yk^O{jvcab2nv@`9Cc}Ex245fz3YurUEB1;?K*w+kL8XhO| zWM3XbDYEnso%1Llt?>Mx_)U$-yp%`(O!?$c&*6u@9-n)Yap&ng2~?vj2~|Q31uNn~ z7xUQlB3u0F%{5cjedqe?ulIDnZEf>f+vA4|;z!P?*b*CMLCA{jo=9`$?1oYKIP#JB zM>`&$LMzr)@CVq(Fq=IMRe*d-P_eUH8%HtHs0KkCM+B^2i4MTKn;=d6#Hc3@yWKeM zDp?cRR~Uc0Akyq@C?$zYD*x^fQAwTNiVZXYjAxn8B$%%IH9r`&YrSMO~(WYHlpZi>ga+RBKM+`1rhgw|AxQ9@F(RRi&<`!qA|Wg2^dY zOTl^ddtx`|8+YDEn;1r%q>SrYraNpQ^K+a4)yWbnyKDL0R18qzn9kA26>gGR}?GwQBE zZrZYYlkYCkN?IE$g(KojD{N0}+W0;y+IPs7bhfS*eU8c!3FnCM>pOD9xKh`?LrCx| zMS{;mf}^WBv80c#e(!tzn^bY!CUMFqw!&L}*N&$Ibj>y!eocn9*`VHuWr*nz;OGSg zN3dcCG4*Q#5(27)w8dcTN!-9!l1vMi5`;>Qf{_9eUeYM-G)z(&b$2sVMIY5okqafp zuFB6EHon+Z1u)xzS+T-mPF0PKLhQ{aG-4-)fY1HX@?y8IW7(X@(vG~oMA`k_{zMt= zJ%N4}`H0jzfn!^i?nqQB)Tf@T)|EF)|sJ zwy^ZOK9E7|`T*Z$_OJK5-e*@-$7*Jea!$z+v=Mh^O8mojg!p&4lt2^uOCe~Gl?(6b zYA%%dh?00MRq4sNt7mS`;~S4_m#B93%DGcc2aNhU*<~oJpR_bXQ6S!iBD)58{+yp; z_mj;l7nRrUE2@3Hv?*2C^tNl5tR{y2SkR$h?zlYnhW`C^{jB5l7ozQ3Vva8|qrXyC zF2QtApN8GV2JWZ%D>$>>Q-HinxuJ?qA^HnpzDFp@u^dJIiXPDd6@&+WAi99qnWfh& zN_k^mSH5oR($T^I=p4y|@BI}`BJIvZyNq)r9*dFvlJpaJ|LXY^0`C-htgo>8A{jVf z?Z8%eE@8LPmQN!fe@ptlWxi5%ypHhy4|;`v2D3L9gsG1!FL1V=y|FGEIhiojN_FhJIqo

    Ou1j7@80!gSz#DK?H8K=ou zW&e!i>*V<^)$L2_$7g(UekS-9C-%yeUGX5u*gb4dUe9t^0tXSpdo;4IDzX>Ys-rai z_TX(vrLv|`QZH#a*+LChU#GR`K%(cH+TKY13?kZaO!Dq`1&CJb8Oo8QzN==K21Ny^ zWLakbLS#y|mQpegnHk#SkNmx=W z*uja4?BT&2JJIDkP#CaAm9rrx8|d79wdRe39%FPVNRUA)=&x?) zAv85BwrOdCt9W87?_>uPvtk$3;mn@cjPW&>FC)lWPnU~YhE(`tHRJKO+3#nUXlqO2 zM_5;^o1wY2yXgMhKhhAXlqNwjf%lANP9KQh2X|DT$&%Ot9 zkmq&>d2Rtt0(l-P$TRprUaBAR`~k?b7{I;Avlvhsd6uc@?ASGeJR?0{^IE?WxG_;C zl1WXlHS(-Jh^luqOy#DK=RXT^EjGP>8{~P1XWJ3PurMJ4@9#mLpC`Mh?}7WN!tyMb zc{Pt6m^lH=e4k3T_82hpo4{ttdXh**fSJR$cKH(dp~VpPK?hO3gdnw<8c(iDUS{LT zvyI2XfAU!G113v9(PcwG5SA~SbV=>qW9Eh?uGlY+f>LW%R=@z4)A+9SH{ZB z8V-K{Wc;`TW1&6qwQH0%7Cz44$3OpkuLabGP4Zi%f{xtaM zg~y`-Xt8AWiD+@BrN##m{ZI~CjN}!J6d1xmi|=E|_&#(dp?ZL&m*w;-t|1C7{(3*O zSQaGup~bpwKmMvhi+eO$JWg?*pvCK;h?pVvK>T!QaWx+w11%Pk0Izha=199WT1W{BWUr( zd?m>uOGUWsV-RX|NC7B`(ehrK}V%>Y^ach8B^ktFG?4zbt$nXWl15HZ|zFvk~U^6 zb;CGZa(zem1(T20U)h+kl3~$>=%^+dwsru_Sf>yz zW@E+&`e4QfZOqtzg`$*=8B1FgX3WVS3NHHu%(!ooeq!(I6`w-v?WG=li87819L)Gc z#NMySW>NrJb^bF z0~Wqkh^37I*8%<{Z{v@`faRdEEDX3Kg8{2fn4`eDJc{Q67%2=G<61CaP7Vnka4_Ibrga?&FDD(6Owhy}#r)(%LH~L{ zs|IE-FyI4tb{`u9?nn#`0^ej~!0j3X?noHYT+s`l#jd5O2Ep|cy8@)oV8B`+yh$E? zt9Isbss?n81XoTIxfrlW-3$ht=!*d-`eDF(dVxxGoaH;T$=3;W^Ahu^RdT(;fK{GG z-Ou6Ih??es0k7l+9EZ8jF)-lWf&tG^81QSJ*p-3-?@mt6!GJLeGzPrIi-VW+ofni3 zTvhejs!;>?+ThQAa<57M!w?PzyhZYL@_d`>_9gYB=X`R0Ku-y4%ha^O7`uHRqBxc- z`1cTJiT8tl(LNVaNH0}^e`UZzSy0%-;knv?NN$9Ff}SMX74}=pH~-h*zjNTxf$(3c zdtdxl(&pm7r1~WMSNpp2? zLb2J#y=(#uB-tt_THW*zc;vc3>=6-{z_)E4YbO}u8jYL)NQ!#@3ns`-rJQkL`QEU6 z3Cni?Mi)8a?99<2J9FG;`8uLTE*xnE4~5SHjI^;x1AgezNaP_6L>>|#attGKWw4ve zhF0YQiw7(Yu)YUvvpO_1aul!ELWMo1hb|wYp~s=%!v*5=Iw*4V(wZ9uc$DVGE-P@y z8`K&e?yh(S3JZC2P)8Y*i9aGHyixVmZ?&vcA7ItWJ3$>KD|L#N+H&$3sN-<)-t;`F z9bPwy!z;rQhu1#-uJ~hh&=&3RDsHS9*zq#4C6#w;L@dgwZ;1C}m#+id@s}#y8bB`F zyOqg(9u;ZP2wm1<#$yAPx(j5SJxD`rt?~?w}ec-sLzBfogjS9@~ zg&K*LJX`{7-=No>LpuA6mjn)BgT#%Ynpl+XcCWi**=GeX=VIx2=iO`x4_j3)xKeDk zx{UC>7q>vg$jWUS$T6XsXU6a`Wg{2-RH20@w!GIt6+$S; zajmIbb-^7S2i3d3tMqP}RMP9#e&A<;z{&P>;-RXRnZX<{P#&slHRgChp08r7S|VjJ z$7i+TpxW%MXto_xdxq7Vmfm3dr#2gnKcPqQPd#8X$iX8}qKY5Ne%(z8FxMcd71mUcN@VS%tNgm$_q7e zw7{6R+gik$0Mqyb80goWn&pC8klr9ZoER*I54WFmcznji6i+XR&)&o;=5ZCf=3&ZZ z-YQ1_Ckjq)sNc?Fg5jgkb_&1q90e;bV#2#A z*bj+|X_GtLuAH)(aLVEdPFYPWefQy%RbJYZP(E2W2dBf+#SMN&KbH9^Rl>~65vb3P zby(&*2)nwbu*tXK%LEHlE~ZjX0S%WFq|T$UBA8ju_E&sJ3cu@!b}xNH5uhtE(xVm< z4tQdrvH8*f2PIS#>x&XfV{D(&%==y!D_h`yj`~e)N^U`-^lQ%sitF2+^yyA}er^k) zb0MhUoT5^GGQbzlX1=(NFBo+i?yHc`wHDmuTZ1kZxDUNE% zhrTzIxDmZb=sGA^Mm74clTKFb=cq=+D$*2Z@L{1D;v9OBIEVJriEUN=n_QAnxA#3m4=&zRqCtU8(G?nUj( zMqPBXYI|5W?B3Nw(XW@P2wy!&`?&9g54qu4u2z?>9kH%lxzmL8; z#_1zDDT;-PYCa5qU3$b;Zz85?5*S{oS@D5~#bELKoFOR!c3e{R9+5{72@Ee!d3@r` z%Mn3>;fcph{R~AFB}-%16l!^NT5cJ3{y2c7&Y{oQ#mq(zs7H2PGU@usr#nv-`IMR> zVQ`C~j9{!?T>-Xg&Vir+WtUlp8gD9Kw4aZ1rwT+~qI3@A53z&xD z93Ar9#UgH$zVx_WOSV#M7DH*-S%Kazq$SBa02H+QWf52Xa;hC5 zrzcNwa$2Brx^;8%W?(zdlcEGXkxjT;Cgjp*?M;s31rnTzQIe22k0mhM8$s7|SdoZ) zyo|tX#w2#rC#352+q0G1mnaE=nLL0)B0DDltYJ;O>R#Bs{0gyyDJ09Ya!lgCzW}N* zH&DILUR}|CH5EIRYI_vAL17Ud8e6mVbYiJ|bxOaM-!AFGPiDoIJ zY3gXN^n ztV!?{04>QwVR6r?oVH|rzV02!+=qH~_NU|d6f~qG3ms#O+347T0nxF$5~q@37NIiU zk<|OTL}J%;t%H**povWMlao5RIHOkRXz%w>_P_KW9HR;HL4W^2&nBOg^Z%g#;O5W& zFZ~Day9lN~hW}tA?>?pf;1{Tmjox+qeg1>uUl|=Y;s^h@`1ndVcp!ho`v&qy#0^m- zF8E(V)dgMHBpr6#o2Y@*XbRxlC2` zdA@StzuT`G+G-CHKVQ4Ac35*m{cEZvOC``;l%3N_lFd8ynLj|%ON z0UY)VlxHq1xZ%EI#>r0+^$?9Ia&WfZe3pQP9+}ANOGOzdBylh0Iu4BY0wjLGebms9z0Lx_o@6&O(=C{7!aahSK?cP{L zU2ONpDr#iZeMbSlfQ{#KiyUra>A_RW<5YM|C5Ox#C#L8@Z->!3|}dY5vi;DQNP zsJv9}#&D;+EXvSQ<$A;bZGrKc4+)wF@RpR!mRQWjPsp>HLYj5lfB{g5|S5N;xgvFN(R7b zA3$E~)$Ug#E#P)BzVTMbHUn*zmJ(`+ye}l6l?2)o)U$Lo;x6C%nUWl_Ff`DcO7!|p z>Hz~uphox}J6thw>D+u7fR$9ztun`vGJKafQg#t`FS!9~o>Q4_vBG!pOm6Zjo_Pwa zHIJPxt!IEVciXz8VmF6Z*+KWy9(8qj*%Ya*w%3A%4ER@HIs zSf)gvYEmBfTz}@7IP7@L<9JdwWIQRqM0v)YCxMAX!wp_{3vu_IR=B}qbv`9(142vO zJtwgE8c1Nr-G4p{^i*;8I(*1OJU9SCiyeCZ?uz|lo$Kh>9)L^>f)XlR(w#ZCSS=JlN%U}b}zUh6g4h9P}M{76B?OWs(?zxrI8K?&G~ z3ea=x1s-b$iGQ@i(;IYOzu6#|}+Z&c~6X**K_nG?KL) zCpgu?K^K)*)$X^WQ>&WZbyW>}ReCERn8X$RnCuQJhykA?+BXb29+Tm2^fi%=SFv}2 zoHV8z(2`e4oq@7AUyKFf>^OWuYkF{0QFK!=_%@*u`ztaOnicb&Oc*|n*0fb1(K>67>&mFY?C|D;b|<8#vYgHi9+|@Ui?9M!~$xb7a041&D3L z{lK1cHJn;`3+sW1@>FtuK9+6dsR0q890Gk&Xh*;%n+_^B8{i zu_QJ>jlh-={h$ibm+_z?^hKu3jZI@hqRjGTGZ_yWm12i$y>h8V60%5B4q~jC1TmB# zLXZnR5JvJ6eL(O*MW^+MP@V1O=93#3tQ4X~vNI0-v1zV=t3~3*tW7R#Qd#~uBxoan z<_d?cO`JSYDBj>wNxk~^%}WKx>lyUTfL>4J(NIbmQ1il6{HWpO& zRdixOi>p#|Qs*c-$%o=nF3rt^xBgXcoHi>)6 zGn&*kF?_BURUmOcDfJV{w2!)cHvQ}4P@c^m>raOA$!VayQ@gB3gaMO(04eWRK;-}h z+;{>7-1#cAj!Bd|&pPcbxpp$kNpcO7Pv29db{wJz@6DkOgWUnCP6;Aa(%0V!3{oGT5@H zy!0$>QY8NZJ#EY<=~nKSGCljh#{cq>G9cXn{4dv^N&WlyUs{s3G&}zO=cKX`+yn?N zDDJ@V_tz1BzcoAl-gkoW_gzWNFMbB5U*Z*22>wX5Xpv$sT>TtdRif~(1G69spDo=H z?7e+XtngRDoPpT5^W=w+q*z_~U%B+8UpFS*`o1yg=Do(G8@3sfu8kX$uKu$z>5AVP zlgytOld4t(tY^JeUHQ%Ag;T86SbnRz>JCI7E^p$}Z+%4c&r}u;#VXyHmzQ6}=G~kM z`W~mGFK;XtS8$UIt|hJf-oUSVaV-N}UEJ(k)H)Yp=c-qCITxkQ#aid0%(-~Txu|q5 znw*O&=c3KIxWc*UkZNtJQ`O@#FLa9M@yYz^CIA4B9tlD**z>qhOqS7B`3V8=T6AWZ7GSY`W$0-rPJp6T+ zOwiuN{vCVG|H-=)!tpwQyXQ%qAc1RZ_{E@=OikdAXJwG%U8gjZl!phKk!OlhgKKA$ z%ZUS#X9`G2a%suc6e7C>Q(5i^Oi>xi8sh+)Fee#js$41>aojW}ZXv&lPRc93m+tm@S4{R=FwK2d8J<3{x z8h*}~)cj(uI4l)VTP@>}{hZmo%XDi2V8&{U{Lp9EgoX{{qm4=o_;>90$40$qx?V{A zv!4)xC8zk)8Z>O#@hd!W$b1ERDr)17y$Ty=8XijwQLjFaV*1M zREdmlZ&Zr`DO8Pf#Vm-dynx}`OgB|=88m#)ijb~_g(gvlDyc(gIIIvlP1qnWJR~(j z?n=xR&+y8X9L=%@p_C5mL42Ud45; z6-U&K;oX&d0a%{WX;WV4^H6ZGaff&%o2h3pu z2U8`q@MbECn+Tg8)oS(Ul7?Y^c0$NfQ-4Ru$-&BWha|a)-zn&<;(zlr2nQ+KtyYTmq|6U zqqaUKfuoxF-dep;xFI~=%)Ez8PpXG`p@UA+Ky-Ea4Wy$&PLakcHxH!PpemMEx>%9u zlGcpOD2LNe;Zhz+O+>V++8ek3Ontms-73c9Fo)PI_$7`Kof(K-Gc4_AgLS4Ux8EgS zMn{#K7Ms%2oi@k7mBKNsy1XkNy;+!U2}JLme6uR=Epx|v*0w+~8&|EKEJf3T$+xOk zFZp-8Ar$4kf5*N+@mm4w-pQRL@w-1*{1=7c;S99q;=##ytRrG~8Bg_5#W?yl;QTHnB zPZMKLZj_JWdtGMiVb!JGyCU%-4sbUa+w7l-(rqF^;zy%oj-zh^6*J0{*N7gJeE~nF zM0(a=-3pg?n=B|s4)5TEDnV8whd*oFc`sM~n7JEJWnOH-;N5;>{y|vvwa^M(j*gRw8eXfK)Z_hzyk zSZPG$craEo6OO}wA#L0)2NU(>GbST-Jf^kPY_s2F#@{MDXnds=mYbnj?oHXrJo2X0 z(=1Nn2O*7pMXI=yDuUhKJ3}*|B$V3jmXz{ACiOd#`VCS)!~b_Adr5a7=-$Nrvy1Ch z=yoo1&WV-yAQwmEY{uh1=x$!(p?{&!cKKW=1rfGN4TIK^pw%N{$iFQSEN-KvQrvd= zBl#-|wsElqqI{)sgH+b;L(vM`5|XK@`msrxwoU#B^|#AOR@75{%Q?f_mX)X+K9C$z zxL+xmsSc2EF;W7tQ+6SKFEbt+H7gjqH9!9LAP%Q8W2crG=>tBE^j`aO|(BrU-iVo>+oAxtMeXHGZnC}2&R z$5mC_$Bodr(Bdz6~sovf361OTtzs!{Q*SS1!c8@>)-ZY36I#~mY;w)ko zx0&&M#VO7vXlAU&_mx0{WyM(nIKZM-maO)#*i?WzMBXYv=&#=TIO_(8l;miJ#}JXe z(?u5)$4$e_Mz&i_Ib^OoPKEM9C$IbCA9+{5{qZC6jlp@zC?-`o~oGV7SV|b8h$bsAp&N0i1JnQgh!v{#rkA@CLd%$X9kjQ@NhO;Q9ro`(ZVxemK-ux5ucnL^j9)FXwO}3L(~bsDsP`(a)H+6)#%9 ziAP4=G-~8WpP}~U0b8FTEN1#6O;r~CwBtQ5XG+L$&-3r-Fy%}vF?@qoyJc>}W{%o?;&u|CZSSw|PYEv;55 zV~8_yggM@HME(W%T6AkC6-{m3G^Qf7owkZ0ff#DHqUPsqA(AW^w9t-p%^kva^pfd*_ZBZOO`tHo)`0$ z(lh$a9JFSKB(_G(akMUDS{}(iGdi3RmgXQ?pp_1J5NYo5r(2abynYutAXez9jvHBC ztzR}>u2V7~br~}z(;A*~Gl+=1vU}W=X`D$eL|{3UJsUro5h-lE)q0X_Glgjt_*bNB zDS3IBKa#%9xHHZ*k8VU9)|})>xjIQ<+pHls7e(C5Tx`%!W~;eaRUvy|#|B089nEbw zF+%d#nQ~)Z6`vZu_N1^;_NQ0bpQ>rxAk)4pb-pcsBYGLtdwNl3mF z;OTzNYaOP~QfEpt)#Lcv6aDeGPBn3tOD|6&LP(qx@>>+cdeBq$xQ*aBga$o<@}gi+6Zh)G3q473bhfg8!pJgs4erz>-2G)<_e&nN2AKOT# z#D>C2!bLVl^1ivEro2dM79PUu@bDBk4m0S`XC(0`XN05p4@w>XjP;3Y?mvyHFT<|m43Bqz{vIUjIv zvgRo5jE%c!){wm9YSu2Vzbgm7U&FBe1pJ=y`DM5t5LqaotYe}zO2;!hFN}Y=`=R!o0dR6H>DRrJy zIZw)*Cs#O6DxD|SI!~&cCpSA!uHcDa2MyFlmC!-;}pR<7>*VR?h+D zUss@fp!^DzA#wopqx@!?Y&}qZts?g|>8pv3t-3WTqDHZT2Fq^8`Ycg`hAau|QOznWI2h0z@R{UA3OK}LO2 zo|58b!1q_UPX2ef)Swr950sBF>O~AD*UK9RdH=IK`A_=^jWX(f!;_%(0^bITZ!Et# z1G^`U`Z`_#JwGr*fbPGsx{v5v22wZ;*qwz*ja!G#@~s?QRVy&}7LB^UXwv z+H1<0%?iq1Q$7*0iP)naM%_2K@YG&fX4Eg_%4YL-lO{I`VQ-|V{_a=&E_P#oUWX~@ z&InIRo^^JnYr-Jxcp8l0vt)7aWBMN!ia=QoMu;@upZYT8SHUJON%*?Ft0}MK{sS)6 z>E_&*ao;NUGoiGuZ~YFPbUIc4FD`8>V0)-WXRP7$^<*ksE*2V| zA37BoDsXzB{8s;tH|NI!&*lYOTTLub*w zf}EcwH>ZGt)M?(ZA@uvp)R+uciA?~0F6d;qc*VozjbzEcS}Q?2CusP53lChE$aQZ% zhIe=J+hwYGrMwPZXhzb&=+BMkkpfDoUM(*I)%Pe>1s87fqstSSzyYJH5;Tmi z($ShC(t*`rt%<~2CE(pLKy*oIgXpsABzjLOA{eKtym9+))W^CGNv7 zheyr6aJnX!!0Fo@IGx=Gvf%WsQiohPeXCFcIDM-Wl!4O~<#XZmOU@MNfZk$iLM~Zw zx)j?NPT$oBPT%4y-euGsE<-(PIGvAdI9+n<3#ZqWw~-)m?nn91N8czo{oYe4OZE#v z4s2tR;;-HUx4#HbFv48%@p>GNjK)V#C(VkFFC<&z&ilFX#}7q;d*w%N6BCEOlC-80$@c3VqeKe z$s{ful7}#SS@IQX18oWSQb2(O8BG*}S#?hI&oXk2+dhU)0zpYOGGlI%d#cjPuVZ-x zV_$=n$D);OQueh}Y?T$iVWJ}^ig7iOg7U0x&S1#T zr-u6QUbVb5lZu*bCCi|Ur^-bCGM5j5!C)wkkrfPJiFl&Sk3YTfAj=>RZtz$y`K@Pz z#)B^fj0cbU<8SiS5kTOwpz8$&UYVagk6iJon}hBbaFtf`w>W?T^0;$v&XsSVTMV0RW~f^BWI-$dlLk|AC)62dxf&yn_}U1_6=U`{M`7 zfZB!xqBSp<1zbl0?jr$mzx@=PvRmA)_;Ce6U`Y7Pq$1yYV%|zAp zb6l%;YUu$V%yH|RCDZ3@^6s226n`9kL!x4Aq{HKwIbtF3N-+yhcUGoDxU!3hQedXN zJIg!*q;OvP1B!8t+iGPh3L7i-h3OUh+Il)80R~ppGKkcWh}3K?!|Et}R_dde&Zs|q zoD2^;K@4kLdSQ%T;ftH+#0p24(Mn`P=p6xYBo|@ZF#rX)=$~Y|xvF<{`^GGOF0fwE@D=`zd&u!uyo#wU2+N|(aj^{YT>tethW)z7c$38@3 zGK-gM)|&5L@+;kR~u zJ^+yw4_Z%~k(L7gj(4oXtPxo8c|#v~LkdYZ2ddwlXVtyY!Ogtrx5xDeH?iP)c;3*u z1FB(>r#o5eooC&9K+<^J+ZO-3jBZX368u_QQ%*0%LU{x}3}{rvE>F8#joaU*p&$#^ zVW(rdcLgi91S(z(xSsP@$LB?_**P)DI{%KhrKYb3hOXWywLtW3l;V>t;q=nHn%#`p z8&w`fJ}xjC&qCk}1Snr{Gzz)mS{K>NL>>QMv{&E|){UUMf8mj~QM{>TQf_xNH!KQQF>fcv>6Q=ObuKIACL>1J9YDGYFX7M)nQ;*BV8yJb>Xxg7Tq;R-bDHJturG)!f%P$`-52{~ z^Dn>;V4Bmsj+uVr@%N_@;?m7T^Eo;n_+3`|g2sHl8KoB_lZLLWQTK1`M!Bw5C_2eo zc(eSuR{mTef2zz#qAI+<*S@=LEeWN1V&wdfj5id~Oc`Zryt+EGTMI(9r5WX1Ke@~6pe9Tg}dnRJjDoAo(qg50RqMS8w|OEu`{;m;320x11r8h;I3 z@pXT6^)|st=x~`snIc~r$ib+eNNuGGlBbMm$xGH@gpZ?*qiRV+&m+ZYtfWc4Dh3Re zH~2LdOhn>IR;9Or$!(ZEB#*O+0#_FJ39&@(4GOroP>l+nFJrSSLa!bxxh%6TUBR05 zNkhKCR2v0h{I$g6j~2#BK0{T0+=VDdk>*7~2jbkyH7RCY7A{rr<%S#w1N3o+ZK`<7e)HUUza(8jVsi;~z zVQ}EOfTDf3EZ};H?Q{Zez^msnI#sl?Yg^F0&7-UavC*Vf{^|`LEC~6`bm6bWWNR0- z*eEsi$g1J$jcU5GscvH}kK|upy?E;a0d0-OpW{^Pu`t#+DSPk7NVn@}fjsV%&-9hu z`T{Dk_;sYmlG8~$&sx1zlE|-0kdBLB!C75b5Svc6m7D0t6bV$fi)B~$Ez-*&>XnGj zmusa;U|D0-4R7S8bY5(=GFp|z=NOv)=q#+iT%#0|qP)sfTC5LVW?P}yM2rRU4@9rQ zhZ$^9AMRoTw)KoLJpf8O!pvOl%9Q6m=?h?87^e zj`FcnP?H>erYCPc*EU#39f2k@=-Zq5R%p&n1_Sm?PJhddu#a?p5o%Deg_>mGSS-0< z+}@}=a=N{Lkm;InE`R`?c^Wom!2RAlYw}s1_0k}*u>-Cf&+VBLtvQX8bwBdEKbm9J zoYmtDCnQm)-`%|U2`O(nTd5q=$ne0oUU%ycFCg4UEY~r9j-H06rUyWf7;|+y8>HI& zs&U4$hS1C(9g(8O5YCL2A|k?UMb*<==TSfTzR=-##XF(^f&7C{!|((8qDth%x4!}J!b4WciZU^2~)uHLGPz+ng7 ziL2sJhu!QqntBco3uz+L^FnM6fQNwnG;%oKxb0`El^Tv(S0p#_w^7D6qKXlct=ZgL zmYnZbX5_L@v)1s6wPz0cFl=odQmbtY^dNY|Hv@L;)lWMxauKp0W06%gh@=Eww3He!@1 ztNVSwwYcahNryNyUHINHO?K_T4Fh3qx?W_m3@l=elx!y=JDIl#)L%DCn4TWO#p7Xn ztRl}v(lgvOEC91Boim`sK88$?wa1BpD032qJaT$ki#UwS^x4{qgnpC%DX-NXw4SHg zX_|jDXze#G=KA|(F@O~#1T+TW0e%huI|SXFGr1EvJ^2jNol^9G0=QqB?ic1-qne$0 zst_aKdW(-t*X}u+3Y&x?;xZy~*&kal4roO7aufAI)V@6@WIkm}>5BJdVYHP2spPaG z(s5+;9E%>WmUX9I&75vcKX>alWupWf8I@8#iub!>SEI3$ORL#>F|t3OgNduR%fg#d zz3M^d>s$O4_Y`D(f_jk z5D6wX^0ipaPPYMIFk^rn%-9Tje$4U_H?1O2ufW4~Yb_L1(p5M_4A5in0ZLhULS%7{ zleN>>1~U7*aJ#0iUro7F#0F;phm;pERDNCnEqB7mDh^Eo<2W1c?)KP za2JR-toSla_!b+d2!3Zg_%Wjp&V0q>Y!J)_xa1wFnZ}>69a3=U(?QqkGIex+B>W;; zS&hh8$*F;gPSd@`;YYxpfSbAB;9mU66yOF^-!VsBubLIDWXD_*#E@-DT>Ao1PfyUb zF^Fj)gBi6zv&{UP$@#|eTaDY?!ol%3Imi~b7Q68k@5nH|IS_@$!reD0-6UG$R#A7? z1}z_;c{7U2bOY5Gx7`Z%!Dcw&hd)-Pfdg2G5h0%|`vH!%4F&sWj%(U! z+FlqLaJ?IFzpKPvz?yt9)SBZ8oz^oidgI8RoOd@~+#{sKS}>WquNSJxa*i?>#4>PW zTrQcSOao-0zhZ;wdU&HY2p-mkH=gAQsw6Fxs-=pYD~W`yHzb@P3Zx!$=5ykyCi6Mm z7}b0ZO(Wl{HHp2@1E+p}`gv!~!H++waht3dYSQ>)9+ZC^`k>*!tjuI(H34-WbiIRrKKA@rDR^FV_1GTuQu$?5e4rRhOMiiX@Zxod zB8M)4*jQPW6rL}nilZb0M2wepHzd*ofAuq>_oXbsZ+rE=q+`~l-_UMp2Fpwsn>G|y z{cJzCTyY2ZB)8nBjz~qAml9ZQyX8Km-EyDm>z3O&kXx=lcE<&*b|Ho@TsCCgg=Cf* zDt*@QdnuSbI~=cE)A7nZGB_A30Z-O5aN8?aTqUpzSgfFp^x~XYqhbW*l`8-u^Pp0r z?z50hP$AS_sVI1yaefL^dI+WLhUJ&T+n# zM5>W}oNt+hh?}i0ris3kM9TA4J-Xw+gjZ}t7U{@F4T==9>jO*s_&iH8a~tr=*mAQz z{los$5ajX!U1=sNP~*l)rMS4s?-)>;(t!Il@krK52o6x@@h4DY$+&)$&|_3nf=cR; zRY9es)v)9)_M;(MY%kVc$uERTtOXQ$0yA6#HM?7&9%5CdNb*`uP)b>>5RNKE zz%98&(Uz&fNJKo(P~D1Iu}+`mBg)7ZGg$pZ2BzUZcyL;P z-A8QST6tTW>sxDD3d<}kPs(&EU_B>`%o4w{p9RSGodw9}>;*`~t}H*Qbw~*fX(c|+ zAN!JFRy2#OT}u`UgF6a&mrbUbpQV|?V)6#MeWkHYz%sUXrq1##^C-uwcf@CGuihZ8 zh$E#x#Hm+IiBw_G3L^*K2o-6kUdGdkjpALG?bTa|j|nx2F=BZGZc(W3?@`{YVwQme zAt|F{%f*iud`AER{C3r=)CjID2BdiJlFIL5Q})x7wYxA}Y}egdvM-e)Y}Z}9y<`j} z$G$4wj@qx|7}yGq`PTdRfq-?0*X{)Mg&ZT~OnayuOaV$FCTEc?Hf6Tv7|)I>_QKOw zFwCaI_>~BaDlaz^z1*3&=8nhX1kc=R+cS41)l;6iQ&w*iSFQ`Uy(FHwp*Qo=`vGUd z-%NcUpWCmcuIqKp-5d_2uF}34Wr5&l@XZyMI-~wttVpr*N*y~dGjQ2B)ONf&2JMpFFVhFT9=RG9(jK{e zWTDb>${}~-sd~hYNd?%CTO4wK_aD6ux&Pt3?RCf%pDU42p|SSx4WBH*Lrr>PT1y2Z z6_#UTP9%g!oNR`RLzTGVDxblFeOz%*N{ttfoX{9ada^U5U2t`+9`3o0xHZ~w3#1b- z+!J8-49${tdwQAApMK7vA+EN4Xp_A4ggk8<6(oi3+^M7slfPb1TLG)oyivW%@wD9s zM>D(+X*>&0TM_JO+tc=GUW%u!?nE+4Ua?*sm@V*CyoOXkosuH5S)6y z$s>4`2;P?CUwpMhxm(YQe}lEdno+J+YgiW+0WNOS7(fXLoJ7cU@GB-sr}~A^!&J~i zCAad=nABLWOz0`HDZ<(cvrZ!Rf-w--yItx1g4s zusdbn6UC$K`!l%+4bk@fDeJ_(x2vk=c&6d)#3f&h95EDX`A+}TLSUl*9FR_iaRv-37HZKQG`sG!d&jlGPHk&Dw&P4X zt(`Jci$OUZ)Ifs6a%WlReK~V{&oFa5=R?nQW;mzLIZUe-Yr@5F7YHZ_$VCt~2@n*y z3FQ6${?A&uaOvfpc@LitS$o}{^<4hX^ZcIw<@dOAPsEFniicZt2H!1 z*o!Q_)Qyjs&tpT0+b*Lsb9C|GhI^GkbuT}Bc#xlTz2vDO=ps8u(oLQwHVm~h^^gq? zyir?(GVIAg?IO!6vejzg60*T9N+iH@13sz`d(Vx|SQ(>zC3fxm*S80;8kv3*?coyp z6*_^aOi^N-7vYvxc#Vd|?;<;6Pb8{WX_C1ZW=BkiBRhxlV{9uwN3ldv&})y>h&V)l z&qe&i$+K!vD%hF{r_D6;MXG5xyIIbw+((wDda2ixC0c@2@~qD93!uEv&91IpTld)_Vq31-^O}#q9wslR9eSvp+7Qd!%1KhTD ztL0(9=~>MnU!9VceMfPMsQ0EbpLlXe(;H(tFHMINKiBle*ML2As>3z2S+3!}wEXFR z$ONRG4)`D-yhO?$Wl&>)<%n8Uj!-OEhPiDS25=24f`lJ6V#yOjaO>;5!a|K8Q?al% z^tDSYS4^lSswZU?W98ErD|t1WeA}BTjbNrqE>-vfFG@M>2QYhlW*v)bG`v#y05(SI z&j>9V$4f^@f^j{aRgDwFg{Ra)5r)Nvp{g5c_;zAx*`26tCzkqmVxeneh1@xXxMaHx zcyzm^4J<4Q<|oy3(gmo{mUD_gobgFzW7uO1m6TtfE60znuC(Qp%B<{`r}H8hYO783 z>Qu%W^#sQ?7^MOj?#up@R{SgiaYh^G{ptza z06$=Q0l&N74M$vfchi|WYrXUvsYG|p>?e9KlX}f-@0F?xVf3Ec3s%7~AsQPmYkazA z%v7r6P5o#%)_JR6g~?=3I(V;V<+M)`LCEm7l($)UIc8hTiNQPjI@rx28&+RGcKsV} zF)0L7q``Tvff;&KrfPLS9NnZe9U|HYV-z;ACG}` zi-k|us~RuWm0zUr8pj3)7_#@VtQ4r~x2$~m-duU^mCy5svXeWKJtE6_|W@C zD^adsjHbPVn|7vBO?xY{ZKuc3eKp)b)69No=vk0z;`Qipv-!n^=hgA(h%a!|a5|oX zjU}bIl`nF|sbtfP4nNi7b1F4k#r^hIjpX_QLYbx~>ARFks7|he8j7T#QUiC^smrxe zZ0PxpZF8Sd>o4Pyr5h(eW(DptByxeYYJ>f-jW>*gmHOB_kSX|{f86s|ObWj}fuS#& z@h(XRSJ`TWOmvo+WPFll<|?0``i*R`$PX50ghUwnUm2$6XzRQxL(nIyVnRDsXs8EM zkL^qzZOi3cA7 za)&?445Q=2(eeK1Si>>X)LAq2o$QR$|HQmM{bGK6o#dVxk_`@bUYdHPhEz!PGT)oD z1|OE}j1!Gq(MYRWMUB=W1$&L^o>o=03iYcRX?trD8edIPSS)}QURU&qi;7aONJ;#` z=e_bdomwqq%-krh3X~*kwE|tAx$zxpW}Ir~@{H7Q{1a)#eylR3;5WrZE#fz<6$dnd zACTYctOKf?cQo+ZNHt@z{Mh0Q+H@1={5Ry5?|MIO)!Omc7Wv^^tSSz+vJpcMo6`bz zx-=F+HK$y3>>|9YV;^nOrOy&BgoN7zx%v*Tc@bGhukWTid_Wk_Q;CkTt?S^)74gX9 z-^3cT!N#`y6U-6S<4HG%|8Y;N;u1DzOYyI17|%%9FdmG5G%L=Do$zA?n{%aS{GfU~ zGdn~*7-|+xY5ih2xd=b!9mQ}~)CCO}m88O2+%h&jen+mJuDml>wGp?K4OTx`7Vt+U z@B8a6#sWwy)dkV5yeo@bGu$st7j$mc5c|}-G-RXwrLU;1Q5dVO-?)f5VWIVHW@_)b zQ`B0OyX7?>;zYf;TyJ8icT=Ga+R~J&{Q5WcD9z|K&#?+G$fZ5M!0OU`c3rjVIlrC( z_#vKR_h8(NQf*x~q=Kc|HW+>Hx>G2C)cc-U&ZAla7F{A^*BqNda(P_(yE9?+&ojw0 zw(KFdxv+Q|1}roiAh5gfGiQB+vqkHD`G(8UDlVNA6kqO#qwm2ZGr5$N7QcUv2X|~7 zGczK)65`dq?`~+soq4F$FKxdsoPJA@Qt7S>iyz4(+s(5EzoW~K%LBY=akrmn&n1s| zGrtRzRQ)NhG~*pK9s0WkLj`y;OLk-twqamWG(IBp$WH6T)z@PCB z+%RLej9u?U3E|1EWi}@>LIq*jigZ|fM>y_>pAXCaJ_cUuEa5}fG5DeT4a=_elbhq@ zzOV^5$!ygUtXVbQOi{ALqf=2MF5<~SBBS&EDp5myv~>+7%LE_{&DI~mDLKx3E#>N< zKzp*@)P@gK_Q)Sh{G(qCAE@ZT8%#ug&-`!76!(n`v@|v> zMDlAG&by(88XjFDmks7-uNGXf4f)8$H6k;44llao!IX)G+8XUbwzLb&b;)sh1uqe3 zu+?7L>dNh2I+9Di-}e$G&r%5eTDw!p^;23>!4a9n66>LfV@@rhZqtcfvACk{#9=B0 z@NBy29;&Q<9r;5q6a^zC-r{3KDk-Xcp^ZIEpiCaSSj!}~=aSp|=i-=LQF^mZzS$*U zJtK|Pg`e1*ty<%c-E3wnfX;AJR7eyWGs)FbS`^tp58gX^(h(VA)6k7Kn=keYXuC2!W>Yeogk=!%Ket0hV$eDJnR)5qU>Vxpk6?x8yQ zvx}rUxvrkcmnPe1lkO~F-Rlp1|63X!XA2R`x;M$g7^buw!gsAv@PM*)6&@U?8w)Kp z7LF-B7iC52&9;4sO#N|KvF@eY9OPT7uUrhedU_bn$L2U;h$?AM6kqth^ zMS1i$Y6Et_-hD%g>*j~jnXTV;pZ9w4cP8a4_GZFcesQs~JmICGBq{R%nVtMic95OB z-Q}K1c5amKd3W{8_uMGoTN=8u!BzsOgDq@gB+n>(TkwNAT^qoDu;2Nn$T8|&{%^oX z<$dQ>d}svj!MIaraq&vx{JJ;xgd}(fhp(;KpO zp^e(|hcjum#OB9!ET5KlC0AfVs6}%ARcU z9bA)Gq~T=B13KFMp2ggmvX3#(5C4O9Y*ml|5iz#W8WZd$ntWn7@01?S%G{%QPi^Vb z(9bis)N$@ooL`A!xXIlZj>1H1B`*l2^rG=>oy!*!!}LaN&@LiWxm^bzQD1N3#dDD3 z8S3w&9I+4VJ)}@5c}DISk;4{e9&(3KN#~Ns&G$Miy9gfuQ)1%ro52A)xj7p=bgCq- zNfxW-1iV^qcL{t%y0iJ=r!si(B;Qr|*C78S()p&is8kYfrc5k&X5a^GU_@n?*jusa z8dfZhRxCQB6)T#j?h78eu_P6&^1~kv0umijefhX!sV`)MtLnnxAF1IaX3tX_nQ-_> zzaB)gMSJHqf10s89qhH)sO=D-Zhb0oY8^Z$hBtqz7ig4cR$B@#Bh-6W)RL7b@zf4o z)}kQj5%IaT)A`#$Lyw-*sG|4P_w}LY{lxGw1a(c!mof6M%q3U4;nWYx$~Cb2iHFAE zvEvuv^3?yXUrwvw3;mQ=l%6W=-td7>5=nIaS_^*!n%w*Njq+uw+CMQdx2pu< z)KNWRV!%=Lm%pkr!5>iLRIIiwQ4P+iv@ylpdDp-Y%2MSX+4WbT3VWA+Kys! zQf!6mS&;@h%Re_;zh3}Z-x%PhW0jxf8bN61u8odTo7)uk&e#L5t2~(*ZnoLa z8jQ$djepUVE4l4GR|#YD*w$alG)>q&aS4Pd6il%CbzIk^yq9 z9dYL2c%d;*z(zSQEL2DPHzwj&xsRc}AEa4L3!HnDZur@MW=6KI#+@KLSd1TBrso3#NUl*<`|(G?Kd!fVq6!UNogI5I|` z;i-epmAQ?uIu{j_%Qt*-d?x$~d-E`?D%>UlAMmO&9F0#X2b=wR^c5_*_cQT9x5_L4 zKLPI5GQN@Widt5qI2bcu+|Rc(m-4Nn+%dn-oUk#0I*Fz3>)W%*rFB8GdHcn4KsLF3 zVmP`q9{)3mlu`VDjSx4Emu@iaZ6ACdd~_Ax(?QkUA}JLtk%cJjNQ`H##|pI=0b&Z zuEcay;!2b#p0~n>E*{jgGTHI?C&#w-WuV!@i>PNJdKLlpnL99nUD~gGClYif3qdyj zI1}|k`&KqTk+7cmOC$%`{6%WZN6D$?@7Z=-P}yilHYTv6D~S{xMHEh<>T5BmNDnd% zF_T87MAw-&ln$yADaxFf;9lEelEMt0%U8aOmv}A40J+e5KRdwmzJ~uxHO@lGV?hAb98rgm0F96!a4wnC`LOt$Pw2dy z^K%7fo?Tbl=y}uGbL{2YNEDC4VlpvbeKjsvab-^osy}5YFFgwMG5u=%h5Ox`{;A`- z+0;gK(I)u|yE;mT)33!-abQKI!bv^Jb&uZ&*3DKy;oN-0ISw~Ro);Xgr(7z`aj8_@ zzo&&Yz=md9RM%8JMnvE&Ttoln!F0G)>R7q(drX&eoFhAx`rHO;%;;}%V|16D&#kJe1-MivOw$}gC+dKkwH zwD)ZX71-mKN*7~q$cb9`BNLA9hd<^N>qRV4DD9Jr6&|#jBCOIU2EdP1_84x$COEhW zvmc5UY~}PAv^WRQx(sD8=FNOpWyTR7Gnc(0M`H!GDZvB~XYFI(*Sf>b!wdh^Xf>(X*p;Nc^IMr7H{&Us zI{Fl-@rz>*WE9!Rm*SKOqpvQvmc-Q2*?CjedwqK4(ASigY(D+T@!9+X%%5@6w4v1t zLyb-RG__6q3>=#Hfj!x#C1>RH-L&Y8qR+uZ#gBa&RnYYJl!!wM(MwuZ2@QPaI31r} zqM2FUT+re|NV(9+Lj|El{B{JxJAX`xFH&u}R2OU~8fMyU@jEZU!Mi7GunscS;)Ax0Ce^K*$ESyTiBlqB9H zOjRFvl=34+`uT{4@nGJOeVTz0KGnCz8C9|3+0+itx~irbRW;MToaup;UL*?s%^KLd z$M&R}b`V(HDy_gNC2l{InM_mr;B4~vls$g(4b%fYtY((z0UdQ;Hsa(PQ}*Fu0p>Uc zp@wRYuVB3Ln!jOEgbj=vr2;e;J5~^`|TT>C*_B; zztFq2!PW?%EI}ruzfs5=wU5PY8}srAp#qUA&|pkDj2}e7lZr~=hh?LXI+hB_)keEg z0B}wUCU=zg1;jEuj?ki2GJ>laiU?BSD_z;dMg;_6^iWEPlYDh2|JNXqhjRd;U>`*H zrV#p2xmFDsBuVV33&vq7TZ0-9fU+YOR*#z$jvn6^vqT?Fo>9ICm_F18Pz150MzOHy zwjAmZ11OX7#T|})2jwmSIUNd*%_J9ETX-`U7(Cfaz<*r7t_A(7Lx$6otw=JlOUJ^A z)3Fr)y)AOCpsM5=cjC!9o~L;e5Hqe4VGE~XTUl6nKdmVrpA-%oVYA^EzHH*=CvYV} zU~>VX(gzSxulXl}GYk16!V7t>JSurbKiJlFLv3P@Gv`S39^^U-Z2hd^XBr{Vquw*4 z4b8-Iz0hP?Pwk*bNR}n%I#;KRWn1T)IG^o0<5{xWE29yZR@wEm%Ivx}CV8cb>?$vk z7iCX^tI~Tnr1htfLKWo_)x=Y^Yq)ZBie?llUmmu^ymw)JH^fRUmkM2J7 z3G_2E5iJ5EtwKLT7TqW2MaT1vCKqZX6;~PiVmQ5WP;K~KEJ8{cA(Wzn~({^X}AqFZ?laWneZvBL4aJ1 zAo7klX_c^>cr9CtaM^~tnY*~|K&&7B1@YDgu~PtrCWZ}n5OIA5Mr-ex=Xgf5r3qft z80X-v)je8cg16?DY0}T3>9zQ*ExFRY6rxNyK^asgyoE~F-Q1lk-HyV_-pD2o3U3`a zyY~FB`p+epj3~wAeY6rHsw~YUlRWU)O}Y9*B;G($4|CD_H^%crW%dV1dtv%7nc16 zu2}s`s znZY&H+S3T&hKP@Qw)&H7)T=Inen zl0&xB*u2U{`c1?jrI#^ABB7lFj>9(1S1pnD12Q5ME%UZaV%sHn&hFfKW|~_IS@V-l&?n?rz?E`C1C? zhGZ(~fiHhcwV{%cm+KEubNQC_(t@zo(x^0>r>9<;?O9dVv~YJLCu({s_ug+gMPj~r zk)C$;DVkRGY6`^v_9=dxr#3B!^D+bqn8|9sj9GyO;QP67c$t1L({I9u>*29mIx+9Q zDtz&>-H=9i1T%9-I)GFQ>kP~yh}LXwGFNvqmrJFw&G2FZBsstGMZK5AT)Q-7YA3gS z21g^;mc8Z{Rj1lb&;mtJk?wN-Q;tkoU8>f;N$G400ewreI(2KQ zl1rs3+eMMIB(#xCBN}~MEnTzB%9=)a?mMJW>h!Nc1XZaQC z@-a{(SO_eJ(Db0>h_$ZI<}E55O^*TKd*&qJiir>5M|wz{SW!I+c3FuvT~p#*F#M{N z)-kSPYpc#^Vp1Kb%%&ZqtmiWin3D)YXu?Dr%C z!$^m)TKkS9awO-dU-zg8>I7r#yn3hPZiM}gI~Ix|&L#biQi!wVj3sWLsJUv5jfkpw zWl_jdpVtJd;`l)a&>$1M>oxyJlY9vHMz6MvAe72TwrXiE;wYGJxltQiF7hKm+Ne*K zsJ;+_+jFpafc2#b$KHRbQm1fsq#zts_!|4_+{*EGjB-PVD7WWau5$U&AM_FzNckw@ zf*rNc8=?I4es+ShWe^wm!JArLX2P;<%CU5!MtUUTg2e-f3zQjit_X|o@!`IR+<#0p z3dIXVna&xXrHDEW3qe(svYexfQ~~*+E!a#)lJ-5ZH=Dm7lAaCOst2qsaPLy&Q+j;c=KQ>y_wh-%>6c8O{tYM*TI6@U)BdXVYy72fb>X0)!L z5ljTgX8!@Kuj9F%_M5sFP|XHV)U+F|4il`G5MjA4VP2PX<8bgiR~Q?IAR%couG3n= zX)w4(>xIO}ikw+T+!HK=ZtJuEtQMjDcQAeU;k+fTqs*&(1Yyy+I!fFzGyv-QK>mYC ziE%g5$#eO#%X5h}x#Sw>j*<(?#>$&!QljBT@Vb9Fc)kB!e=K+%7qX_s-7Ml{Pj#92 zV)*S_u&25qHx=UggCbc)d2A$oIa{^FhYF!Yxe_IUa*5$WQ>4`q$Ig=YmypA(2d|-k zA@eb}P@vk{FD!;k5z-$PcuWP{VA}DXTTfL$Qh@GS9YdGR31OyYII~>m!ao5@$!AVF zP3A7`St#87`1j>#6jjSvd`C(~9RQG;Se`2-)O&t~(&p0@GN>B2tFa?wBfcYDWXwC8 z?`UE$f4E+R7zpi8a@Auu!L$Ih*ea-{9mGUWlvrMO@tm!CtPXl!yF)=`>}2M_rn*9I zSiJ1bWb+ZKZs)|XVh_Jmd%La37k8R7gk)ZXJk($Tw*!Fx+oS2^!Zw!%JaO&)XqENZv%v;jsk(nis}dJ zVZE>{ak-%YHB$Wb-pjapG@;$|^OdJ^!FvECKYZX$oFD)^_+`|e1kW*4b=C&E;iEZK zgPvaVH|gA|QLzU3;`R~#zr+7s8tNa^HMuTA;b!_RIM`T-;?%LXPbs1q9!3~E6-Yk>C zEuub#C0XP~?Xq5-&=3vV%mAvH2(;`Q2wF0Uk9i3$sBC-sfFv(QEmjd2#Jri`XH1T3 z0Qrni%R9gkji*-Bvw%yCSbozu3cwkht#3ywzeLsPzP`+$ip&QwJJN7b78gSwDK=0XtnckNW_B5W%heC zoXGPl*YX>*v)j7h1*K#l1c?WGvo6lFY-p0TPok33Qtv~DLLeCfh1h%~U8FLRty@|M^5W?0d4tNNHfIQL( zArJ6J3_kwVI)-HM&=!HvOlkKOmyz#c%Z+X>R$IXn(4jgbBT(v;E_rB zvP3SiB9~m@dh(>8>_#n9bBPDW9-ov)M?LVae`V@ZJP1(KCi$|)zNy8%d&^rb5B0TbDimhgo z8wE(V!|P+S)7EWLG1Hd6M8@N#_SHF#c%GpuY`pLDXhp{1)WS9%KHj)GMFn;2g zzzCCf@Z}OEA+H;>H}#8h!C26gM%fp&CSZ(tiKEy2Ramhwj^S8>&dSM%48ex)yl(?IcFM)6u+L*37^cx{b{YLYA zrqud}X)4vTdfK1T5WR3@7TGW>hu88Wej+rrK}U+6acZkN*!|F~ooWsHq4srV&yzBH zim*{;Pirn6b)QLsJAxua#{7`s7`+?%l35ze>raD1j_4_&iJ$U4q~=JBAXHe5)UNRd z;?4eu`4j$<3;zYK@SG z)daJV)dcdbno!AAotnz5M(D4qk!&zZdOj#?G1*9FyqT#;{c*nT@tgXDfQQL(=wH%< zNx2`;Xhi@sVYLAf(1tKa{b5$`QPAO`vjE5Gfq-LyBqtKLSd0yD$ef2*JF%ZvIV?U` zk2qT8j_$8+bFfTo`Al1vTx{y}aj^Q7uO6uu`IK zmknpU#C2Dpe)tE>6dkfSc7ih=x(1x_F{sA;$4|?iDF3Ym5xh9U1O~h~nk_xWkYn%y zpKXH|=)%$eJOA;ICI;?}ED`W#PYf%2?T6&V9M7?nq;auK?w9>=gIvFzzT>p)hh)0$ z;`!zbuCc8TUTD81bREQ+$$$Lk*6hE7|M+8n+y^h_U%+>~7CDUQ>mujzh5hkGCLDcL zCeK5$^SIZ%VjUVmIgrCwHc+8)0k`mT6&fk|5aYyyih{*?09_7RouA=nESKkxm>JD_ zLxrKnXLlm$IB-AWI!aEQDf;n~)^BEh^b_F5viyKB?D>^D7`naY35E`cFQ@a@h4Z)8a8nHGxDuGhTuk>gG9I0U*F7hz&bQARy32fv_rX$puIF^&T$N+jIDROF;oyb&uk} zM=%yjqmfH2V`yV{qZIQ$DhfjV`?2A!gUHDbD!Thyv1C_4ExjxYcX)gHBSeRiplN1g zQ{kAoE^~$zEyq+G!V(VHLkcWQ-GcAhe zAIMm3u*=b=5RXa4)+RO}48839kN>gYcsB_Uu46Lr9oAzFSAaNLb9wxXVbSglSj+|3 z*rfy36R3!%4`E3*@OGpkUW$r%(UhMPYEv{Q{5&BwJ08E@LTcWbm{_niLzU^MGBBcS zb@^{uWyky=X$-HG23Xm0t{BWHWuM8|tp=>|IELt!+*;qFi00PHNElsK-OrTW$}w9I z*NqC~4Q#?~xS@s(pCyv!487rT7F>-yMXdGSo_6h>g-X@Ec_dC1_T=r+ko0F7cXv{)?WT)EmVkiJGD#Et&FRVIEg#{LUTfq0fUO*ugnH=z8&N zkV8g;8y4~bc17cMw-gu2_aVD^zfi(uf_uxSR}))57U24WA>ZP=O*^}r7M1g5B5m5s z;r>0GLcM)SPn$yId)hgf@*&ZGSc?i}q%d}QCws^LZY(i{-LLfY1oQeX#-X;&^+32rpF{6i$$~lta#QyQX8^3oe72?v`KneWlRN z+p_J@$VF3c=GScfY8XO(rd`Wvqur=+q#0gwI~7zI{+dirj8%Yp}?xU1|Gx!ul@~o$|uq z$Q-TG>%-d@xO@t6xS*-wCurX-gdm3dFcT)N8(MTPp|W4bO5?(34~e301L3pd>ihYC_=yj*_3sjQo8~=*(EflB+Jl9c zmzYQwIyOdCr!2{trI79>OFe~Oz*z&@Ec_#Tf&(fGSL_$3pwoaA7C=(SP+9oO&a(^j z@Vi_IuXtiZuQSbc2R7nHY+KGmz8(3&_9c8ku9b`k#S}g-{zBL$;DaJq)MAD=5i>lg zW2mBpE56}}-?{$v1I$8UC19 z5~L1r4lmQM#NnmvO3?{9f0x21xApYM?ZQd669&<~h>Au=#TPl=8~Vqggf0Hwcug%Z{t7Q82ncJhb2t%!u%>R-uvp6`bQvMv1Sk*cSOgv(a{zq+RW=6N1BuR z6>-Z{#e6f~*9Q2y95fT-F`=OP)gYNGvrRiM5`!)Lhh@=jX;Y>DWjD(d&YUxL6piR5 zKs>JB5uIVMT#Saeex_#Z#z`Iq#8Y+%y2OmAizV)&4#rK!^&K!D!hpCJ2E^SkAhwGE zaS0Z|bZIMuW`p^@#;k^lm;dRXnCD(O$qD0&@6|5rypbQ!*S%sK=T{mBVwBxz$0#qo zOe8dmvZkUCFHIlGfDaqejVm%Yp3ID82oN=UrHup`@XMf6rt8!|m=u{MgQsW^d%Riy zKrLmGC%swXchHsQy!}|-@QD=MW~UfMI!p9RnNA&RE#fHZ!&Ye+@K!t1YBKS5vOo3V zzvv>Kj=`y4M}62xc0_~cs1FZ7eb@o@VWA)O;Ztb3WxBjX86YP;h5gC}Cz`1X(p6fP z|3z1$ynPAV?AXk)MS5at1sbQjjqcEB4pR`vc2=BCaF_}zD*FmF$`xp^3REGALr>o$ zF^T?$*MHlB8M$FcL~bb28$fRO6WT-tvpQz+9@Q~bT4Ztxq2WK;??(P25wEEWPNWYy4N2@xw>pG<1?LVx*5ce;?6*`qP40s$FOX-bg@c_?H7H4M*~E?$AIy41r10 zX*j?BHcO6z?GdHn{(ZZi5v5^uRh*P#G_-=8#b~%0iHJ?g$m5NRkUZ#-S{p8prL?@r zFFnb^2YMvzMDTC$8wx7;4RZ-W7k;vRU=_OAL${$@EU)!`u{V-hRxgI!N|%U?DylFd zZ=(uB{SRO(+=FUU6Qx>_n(~^LkSBF(sw>V!_tUk(V*kdIsTm*Ya>~Rk)z(?eSI5J)_piPee1>?rLVPJhyV4D8e`g2PM#^ChHC5FGkdCmBJq;p^gaa$r5; zIMm=h^^>WE$|5b3ozXsoM>-qCR-v}TGiy0@t~Gko9wyJO?6IxcrX|I+iCYQgy!0N^ z7<`zakRS>Tmbvg}N+!EbEBm`Ah4UxaY1?VY4pHYyCXxm4A5?3*Cxr{El`Zid5)0Cw z?~qeGmU!Cn9h!$b;a8Bu?9;5MDu-Yx`o+pD<~u}?TwkDTTc|I&m4x-t9d=VPX?dh+ z4$x1Lk{qx`YPzD8#&Fbt|2)?P4}Trq;TvD%*@*5CiQj4nyC2;l@i?M8+ zLxk;c?Ky0Ra^a1Fv7!s$fS_NT`Q1ua*J=txFS6){-ZV*e@y3&S0 z=dc~7MX1;SdLCHTiD7ZA-qD@*erOwq-zqKsaFjX6j56fm|I||Ix5Z^41*$$8PV>>)L zknM1BFWccMueq`oafR&=zoHcp+u_ni>bc>3Y=;mGb)|y?EcjtN)W~-=Z{uGdu^leW z1pD{xnPF^)x1Pmz2xC4f7?b3knW~jR4hcCA-QgB!T7s+TbDGV6J>8+exrQ~PJKO=? zp)gcGy2I2$@g1gK7vUk}P0sUA3AJ>ghiXUi2g7_K1&_uWKdc{=X*)g!C(o2RU=8`K z4KU+i$CkK=q0>pbUW|k))wH8RmtDXY>=(?^8Mq=C`+qSccct@E3j zg_h~cu}xZ^*+RIdRe-k9-ouK@F-k@N?SAzsrY0F6Vlli>@)%y2oNiAO)w+evfM;#- zJ%3Bu^OxfWF|2paE74MnX^+{2#(yTQQd~uTrhYTVMGX6BW57ji1tul2C`-M-KaK7% z`MqbHeI2Ye_|5RXMZ^0Rj5hq#q_jfSVf}4Jn+DUuNKGELdovTK_hdz8!Wt&<>1CM- zpV8FwoU}%-H1Y@VTJ|Up>-cbVygxeDaLhCn0I`_~MsHY>necU9f2t()s^0CqJoRb~ zM@xwBh~*Hc<)ennvolWW8OX8@%WR~TfQD){MVh0nmsyBfBOnNB1nCZ~_GxRY{dfpQ zB&=~Mq#C#Iwv_En$JaeMMXFB%lcNvh*m%6{V1m^gwCj&A9Lm>!G4AU^7V`JUJ)QN^ z>o2o7WOPx6rnAT2b{0tgAvnSEsA=a7EFb>MF9A=9+Mug^JYj{31YP360{ zJ@rRU<;s_!Zoj0} zyW}dnQ$D9ncf{-1Co2Ni9hnCgLmWtunU=k{Su?QJZl~M zrS@v=FD!BGrC$9k4Hh?&aXI{3TMAkBe*7Z@l2t2;Y10{2P@dZ0JwLn;E=X91+>}Wd za$Jz;fgBm+R>`yN2I`*3)wg+U-X-x_(Mtx&qKC~u`?w#q>w`SX8K68k&A2|0%J ziEKr81Sce)5H(vcc?|T7lgD6RKWL$;$4X_ikoL=HA@3C}1!a#FEFeEqXt@L`>6;0dVIOQX-%|POUkxRcp;b6Dii~HgpZ>={GM6Pqp}PY zf%b6zG`(UjfAcxKkf(Ct|kPW7w9BRqdtKypX~BwIx+oyZ}#BW3YCH-H@S z(i)0H$iFhpAy>a93;AJ`{S-bPB8OZ98={dzZcAx%*5~dbHJf;9u~f;u%yC0bzY}iA z9+<_wXMQ2^jyj0AA=Nix8IHIin|VYvR9S+!1B{rx-ZZMmZMozCs>iNea!;QrOpC?R z0#x4OheR7AQpwFYgRn_$pQ~#wL8$cVzL&%g*`+}S+DGw29`56Zbj_S50-Lr{7fbc5 zF@DImyrx_3A=l!EJSu)jrvei{sqYcC2IZ&_&A}S%YwwLomt4)h4`{5PwZnw`E2aYmfcW7bIwkPi3U}NhrpT|K%@lbkTYuV^ zBJax&-;25^{DsoGakmz_P`W* zKt|B5dd7a}J;=YYhHev6WC3fa2r;|#fR1(_Cx&Ffm?CrGw6mBZW%JpA{NW>VN)KmQ z-az^>m-%ZAjcCpOpy?IIHt(`W?v5uQ(tdm z&K8YS#1y&KeB1^yMT%kU17>w&io|C%tbi%9*UK%F*q=%6&jyoEmBclvm4tW^2p0Sx zlUQm@k)vUXJeWxy#OXCN=z))MVl<{mm1F=@q*lZ#yH-gLsyLimv4GW9EPA6AE1I|N z3nt%K!YVHpJ_=Lh+#{+l`~{cD$de6jK!ImAb&1)F)J7((F3;8DisqOiM>4SEzF>H? z?Z6GfA&D-i3JEr+`j+VhmQ~Mm(DZTrQtxp~8Y835^-*=e@f>yDsKw0%+Cj@cJ*Q!1 zj2&6H@S)hAn;6a(UT|ntu*Yu)F8*$i$8BJke6`?E(3xIMS(?FVd~&j4u-2b>d9ni+t#M ztlS^-y~oeX7r7II1~^UAB7NB0c5uUs_#zn+#20yB0AJ){<7@K6GNYuL5kfjGe)vhT!vk#2CtthefHm*Sjuz|FIb`e^B!8BIR!fvBn1rPvMb zVe!p8qk9cq;yH#c60ekDg{E71BUcQ9{HOV->$R{-l!WXG4jxX~4%UE9E zyU!BS))L_@w=?Ik!qoN`?m^uWVI(_QFkq-NZz3z|qdV+4&s+g6+~r)>3;(SC_HRr? zgpu+)fT3ya&zaT4`F0!W`r(itX<`oRh$oz5`O>FUWqyA0*fHYg)n4AzNPxqJc$7|I zBYj}-P?UucX{17-h$T6|T!xPu1UVG&5kVmJ8;;yw#{Yfn6FzplAH44-vnAQ&5@&nU zSTFFQ_%99dye>vXKd}bVWNlEw)<$w`O04n|#Iqf?VLBp=JZyxKczMAx#HYx@89vpG z$5Wev&v1T{lag+LXgnvIpJN@5fUud$tl{u6d}D1Y?dt+@lh! z0jm?E?cAMR&rw}MZ0J0yA$hW}EjY7adBp6^S6K0EIF2~!TzU)fPG~HpfY7r`yQZo# zWJjG(|5nc$C;GwRu|4Yw>>m9YoJe}KaOzD?rV^bixj1;b)t#p{aXHcqVSt{8L zZ{+eiva4L^sMmnVil3<8Id-{e9*%M?Zf~aQ-FhaM|B`qkck8`eJ_VE0g57HWZ2lfq z^TT9U9u1G$5#AU(M#W$@DN@sM+%ZH+!+2rRJHMANQtz{mn$}!SNT6eKa*_!;iBnnw zX^Vu3Dm8&}AZZ(|DmtcY&?(0?`LJael_YJBj_Dm*a_stvVdb^>u~`U<_F~Tk>E-3l zC@kMLksmQeSj&P1ndNz#l((^mJ8s@ACM86UhN+9|c;x)-!(4(8k4?Gc+lIDIE4L~; zMhw2akDZ`bQ{KG_Ht>`Cpq7{bWo7YQeco~+V(L-uhyiTxBVtl`rGOxj=DEZM>AIsBj$0-BS5PpK$4UZd|BrbE}e_;(a!mX&K*JI*^)x= zInSxK9YG|F)|^LpBaf3yn-jXM*pH2*_Z-5#ilkl$sZA`xne#n0Jrr&T} zH=EkcQO@`wRY$NF6@fJdR#b{@qmsvrA2L_+CbaF{> z!$3Bi&O5;wfzyM4jD~TsD;?p~sLf;iRew_Z$;-cZjDFgUmyzFyAF{>x zA>F>6hybzH>u`&X_#xjC-XQL>xOX3Ua#f+s#{P6~i=P^Qx|So7kG^>7%*AY3YFFHy ztPw=oUJk<$TP&0t(NaMW$u?r!G`A`csO6Ns0xAOOS>QtkiuUAT5kyAk;eu1gsqcXV zkza#p=57&0E~iqO6y)3nH_&H{Ad-zpiCh*(c)wj7%)A>{Fe_jzAU$qM>-=)>r)C|U z`UTSCiyG_VrexdJs43scB;M|8^>?xDr-L!K!1nx<;5O>Uo#8Z~;6gzQE7hF&b(a~#*Y;4LNs>42De zz!j{hfAZ4MqMFa3wRQLc9ywloffsDa>A-V;;>YKe8NOi)kw`%rj~qk|;Y9`8V{)_i z<95JK4tGB>KY|lNVW04lJNO*yshZjIjWb@$y)Vty=v`SFtD^R-&0+j23@XGU_w z5?M+uO)ediHFcW-2?3!JZi-S%fa0|Fbt`AMEu?~j85YhA`O-=W6X5S)fnJPIB>9M7 zRQQcSJiE$b%i-xwvglz};*KNOQEU?%aifY9wG6gq=8@ne1NmFF-GFgFKFHI2MSQ^G zetbVuj|BkJt@Rqm{m68$y$6i@@gO{s_PHe4o4=|A5rvv$4Rm7Wp$Uz?JTD#{GyFez2f=v)&^}asQ$b(IbnegVXn#NCRW7ToZ zr-+hjPUF0)S<6nfLCv$SO{4@>wTu6e!ANWVDK~52Ucr7wO}pTKv_PmMO5R+cl_8`N z{>Kj#2(?Zw(2!hj&;vT^z6C<9o3f87f))P}G<#~CNBE2pK-SV-;^sEJw_eHD0UPGq zcO-G5reMT3da-OiM|m)7sSWZ|AcKTBn%`>0498eHVo{3aES9?%uEaAAoY($`DmW)l0t_yHu1$bgf$?gMyUlUwPB6bn*CHy z4r{RcmM^T)hDHypu?fz{QjlveC$)ga2>}f_k_Iq7q8>7!bS#^|1Q1bD-06BZG8* za6%dYlAOb)a6QtSXg)chu`?zCsfIo!Ls%&a^!^^x z#ar=$CP~Qv8Q^k!{#ll1Lj$EF3S3nLs_3b zKgx}CLzRt=4x<}bwZAX{$0WU@b zgDweIR?$6vHa~Bu^MM1AeG$4xz!>_)J}@Sog4(g>41q!IXHp`3Y&FnT(|8)j$FgIr zqasCzTFewQW@^SdX`XkE6;Wf6w z=KCUUYWckznczhE_(PxNY#Tu=^&g|sS&e;0`(#a{JAGG<{sa%Q0oIjVmJ#HX{QV#9 z=kITvk8J*Q-Q$#Q0OzAH7z4{KxWKdNV8r=2y|P@Kk6X}u@@=pAI}}HT$EL+_J}w|j z)KeXMiT(0gO5hA~a6V4{Bg{QihX%p$mYe@}C=>?G+oZ%m4XELFHcyN5aXFlit5kT$ z`8fTLz7=T$^KO#7^IxlBVd46CAf^nQka#D{ESA#;v~z!!AWk^XFBMn_j6A|qpy z`Kc02o+7naw?$Ae*Nj!5n2eZ?>%9?v0zyfkYVu?40gwy+vZSA8Ai?G;pit~R;M>F@ zzy4#X6|1mds?;x%oT3Djca4xrUf@Sr_L~2*Mg`4HW{F|psk@Z)WsWRFPpMvY{*qmH zRtrhoTFy21sspI=Xx*l=HVULL;M!NBipkJe)?s?pJ8n@Scxvg=q4YgXI%HsN&N?b7#@n$xGlbhzq(URpLg6+fF58m!}~NrH;8EDr7iro1S8S!MIj!1*dwU zT(a`q7mU81%_ZY;BVF~ON@z9Mt4FxNP=X&;KMF`F6tH7Y`_oK)XKw^!&-KwZa9+z1 zezGJQ$NgQ)-u5 zl%@CqtH%Updc+pZ3BAD#oH+hAa)pudGDb?WrL$D9In`FU!NJIMVx^*WPpGpXOUu1y z{)y*f#R-DFyOB;KK@e-D&Rx$ypKU$Hjh(_dc8(zExq*1zPZVSKf@Zk-+MG6tIPP@R z6NBo@rKk22=~C@*b1itj|J~`AgXd9WqdSrv9zICdE7IX~@j<#Tr@}w#(eOsOL-d^cIta8Qk; zmkpK6#%!pZJ-ggxyk4VNU<-c9vB5RLy$GE2kxarvV)mthe2|3{>M;>bv*nvWQcmV3 zIkvSr{v|V*@@X@e_9tA&6E1oqxkh}D%P~LZXj;S{`gWMw4JGufCT1+B9c~CM19z;_ zH~Kcwsk?Z-SwE>5yQ7lk2x2BS5~C?rtuBnFOT3vze;MpxRN2E9&LV^yZP(};<^__) z8#%e|ExRa}B0x5kg))&|=z02x%76Tv%4cGeE7#VhSPT;%snr=Yzk=Tq*(u z_i)EFTJVjzb+X&?rJl?WHaWPMUJ6j%vm4LYf{ z`9QxEKLI_=3ijFT?9&qp#ArVoF+#QhVh&35jK+GtW5x{27)K`)ToqTq#BjKcf9zpe zTV)n2RYyFU#xUl$9aUkey*69FUBE@P>Avo`t6ju7qKT&Qc9B5Z%Fk=L$p|60oJ$C~ zN+}p22OK$X=`@O zt{1>1%1neyZt$xhgk1bfy@7Yn1#rn~iJ`K54lUEWY=m?+F2PtSbj=#3dHh0LPb96MSYsdoX8Ojc{G*WP_qGAA^8I zyVQ8OFkQrYvo#a-MYW94)yAGyU=yvbk!(M>mKdS>Zm)S55&|pDSp-eT2NE(h9Bb5I9kc*8UQVPPBVuw$RuR13is`w$zFAIE9{DOg(J_RA4jo#?xhb&e!0r;dp zKjgAh(1w4B@X4l$5n;7&tOj5p2&Rk{C9yS7jWS^A2h)r z`Jh1)==!XxA&A^+zP6}S*hhlxyK32gS;oZ!BkID*gMkV2jDV1u87w%$e=$C>uNOo} zHXFZZ{E+XV^tC|?h^TSP20M0DcrSKlY%$(OfZVF*$$@ih{7@;dR0#gqF+^e`!=a;| zZQ^f7VAbhcqh;$$9KGhR(e&{YqP0UgSL4nsPAHX08P?NUOm1R`(%}75JCC7CJoQ99 zs$Zwp*ED3ktmpF&eFW%&@kzUF7-Kc%-bmmNIzU#QJE^SIMhXQ(Bn~yPq9r1QTFbJj zmlUd^xS#i|&kiTX5qUUei%k&}IaLeW3#@eh#8N3v zC|AO>2iu83!zFTc)oug7Vc4zT14X1&r#=iLnq!FEs!|y~3CP52y63e##ZT6JwZTfq z5V?|NgY2PQY7P6L21dwHtQ4eJS&3rhKpoatJ)ooR%i$I50yf!=A1~O%F+~22TCn~d z#Kcr8F}{>aMQ>}yp53oeV_`s*a=pam1?~Z3j#v&N1shX8#{GpxHwb#LzAUKnGS4DJ zk?>Tq`{zw=*Y(mza^=!8_{ASaVfJ16%CujXJkMd=zBJG^PX28+qrsIr= zFL6EQkIVo>R?2>9{E@@JA-(*Oz5ZS2@<(Jc0HthA^{f_1=;R^Wy6Cl?RR@8nPZ z80H`cKj6W;fG_zqb!YjK4}c$;umVc0YkD;!Uh^-FJraNNYtGVr{MG;?6|6BG2ilB4 z&c+03*h-!?cskg{^hwk%o?1j2ivy8S`9p4N6Ir%;*vT?|b0)dj7Qw`80EM+JRd7N+ z$T-Y*t;KtsNFBDQSNKdOc(5d1B)QoWg5E7C%IYyH4?{O&hEpv_nv?xd1GUw4KcHG- z)Xfp*$gQqF;a8zih3m(;E`os~Er5Cz9ByKW*T$M_OSsP-?TDRi$>o?Mwb{qIbnre( z9zcRTVld1sVM_zqx#VqUzzCi8z7fp!1`^nkOU#jzuY;4QGcJ>#*ybluZ4W=*7xE`} zEQ=EbC2V0!u9HX&DB;ZvYcFM<-5ainQGzQ5jl9|(f+mgrq!NocQYGs}3+z~-Jr%mT1$L&Y zmg5yCNU&9J+Yhy(i+vrV7 zA?9ok7K|?8+%x8&bg6i*xz;SV^tA+W;+j(D!l&3k$dmMT#*dWt!e7Jvn9h%`gi)p>oh-m0xmrX?j`fI+ zB;q4=f~*lA5zD-Du(9{~m5xO63`G_tNca&yL{2h7y_W&ZY8zUcat89^m_ITKsWnbX zXc4^TW^pBkkO%NajSUbjF`t%WkxbmKF+;bEMDi^NFXPk;PxCVUbSj$&_lP?3z_cr2 z0+>49F_U=Be*)uV;Z^}c6oUe`d`aQZRWl3SQ@kBaO z%#Y@|ye~9;=in~-ik(1BniIkJfXZh#=o=E2;GyPVa zWU6nCcp~wUDZIPY@kI6)1Mx$?MB|Fr@nw$26B!AzygFLBCT-^Zh>SY+^PHb0I)%Ts z&M`2Z-}c?F@NR#e$iw1^EH|FW34ik=MS|V(<0s&WY$EU84YApBY%2z1kqkbCXr;Yh zT}01lm}-vowB)R#X>Zbso;9L?dN|e8%7&H4fB3{#*=?R6>QCKrGeUI*BTCPtL`7Sw zXV=lT!3}pdEr;={UEcUN>3o!a{T{!j-q5ssaCE0s=bk%>K05XJv1nAU==!02&C`|p z@^xh}&~_U&V)x?S`S9P6-^<4Q|B&D5kBZc${PV+<#WeHW1F5g1zMA^lm%oyk(e(&` zBklcMn!CTFda14JZq=b`ljhWW(9WiM-t$IHJM4{mbf-7!k#*jvhugeS5B`fc>i+-g zjmrGBH>zevD%ha$;6>7s+pN~un0&GUyQOfIGa0f1kqf9P<3={*{yN@k_ zZL;J$-l0}74l_A`(|(l4KSsnq*7CO98WUgH5nri^uXM*(?vJm?Ms9CC9A7DquRI!G z8Nn4{g8QT6gYgqD#mTkuqoLyU(G$6KB^T* zqw3N7)zC0=tm(uLyuXq$LUASGB@bH1x~T~k$Xudwd8%hOG<^@!fD?G6pdc^KAE6R1 z;b-<(dl5soH>*hR0~=?F7FM)vja0-SZ`M8y?0=Y5b)CqNL)|U)D@S^>*67Y7+=ulb+20xINPzZ8f-lB6++i+<^HZ&nLG2x$2)-yaIDWChqolRcHp1mj>K ze4w(V=Goh8nvXVoD)sD@HH~XVG_KI1sOGM>c=0|8Zw<~HPrseX^9JnIC5?CT&0)xC zE?83=>?u^~^OVr?a{aH(ixmv+t0*rL@C;wEj68c;v%+{et$p_Q$VRGh)rj<6yS!PS zbon4#$eyyY(Xx?#_EWXZyQhAaPxEDJ4!<=aFa8XhieKpRY|~yG^G;=Ftm1YV%`t+u z9C@)fs>S*wt`MiVIEKP}4-q3_uUXwW)p+*^Z(8gy_@9u}1y4E^PR{K@C^u0xEbh0B<(evK>1og~e@tqP6ocv?=Oi zR}wknxQ=lvvG7}BraS*2Q@XD+=M&|@H#1E;h&_xXFwvcVcKxy&1$ygWz->Q)JL^YR)<87!E5|rG^vG#r@e-s z>~#9B2GK@Fyqoyaw4#PfXwrtOY0jdl7j<5yld|lLH+eQuxUJS|Z0hI9Ik_%_u&8Y6 z6`FE1N@u)RkAt_|Njli!2PbbTY8*_jQcENz=(q2sPZsv2tpp4%MGberN;1^@s~_IW z`vkQhB*)sx48sL0938z{u5O1LPT3^)Txjns(=5l`W1DEZ9J&=&>Aa{$B2wD9d>oknR+mP-l$C|`KuPL0%$@Jn@! zBOxk^N`4hRb$KRVT!}Z5qA)}tn+b{;`SEk**}`d_=4v+lye&QSKKGU=k*U|Kj&w!p z!6tTLSITT=&%1V2S{N;}V@GqUui0)htz2?nQy%psA&Hd~b*O%FNg2?%Xqon& znPM+H-!mu60!&}($-02hiQ(iys1;9Zk@d{e$l`yB_lS9PnzWZq}wXx(UQ$@4Uvie>4$7(Jh zjP()nQvYs~(4mcji6fI(#^Ca|UEu7NKd<4@87FGN2i}h#)=5~`PKa;@{*m^KH>n*V zz5EH{BupgxBvfcg-+Jm=saW*OM08OkqV7_B3wA7&Gd1x$z0!LPQ98`eYRrv`D6?fB{<{7sa^)ZlyxZ7h+myB~69`d%8P%g=$Y9n7S zzSK{)nSxo478qNTYiSS5#;eMcw&#?C9@J`yjT!N!HCL;Z;58x;rW|{&H}eCtAyGH* z>{P=2w;QhpRZ_mJ5;+)CPh?>z@nQVU$#J^-R4Hfrbf< z2b7ThX=Jv04Fm(Xf;Cu!HZN)9PH+gKflP8T&~oNiz^*a!m8sN(oYlDrIoU8FXMt}* z4)7ZpPr&L)HbljdEty!WEfMu*&AOK?#Lvj2#D@)=$!8NEZU~`1;pZ=+TeBArT~TTI z;P7&}MM74YTFcOQJ{OQNZzntdkaPt47R# z=z94?TV!22vE1x^tdu~rQnfuJ5ljb%Fh*=}nRSDb$Ut2^b%^edlg(+)5x>d?o;eRTTxW4OG$YlDrx@6JU|2?If zZgM7muj&NVNF25XR52~gS=Gp+J{)OEYHZJkpZA`E*n)r#TqLiA#ey!|{o%dd(|$<_ zRaEXL-bV1i7rU6NmO0d zz)w%Z6&bpW;UMx{q;&Ilb>1U$ke<~|B_eVTnbO0uPh|6VW||<_?~?TE8R<*x#VF%N z@J*9xyM&f1xU0~jFWLypk46Ct`(Qt`$bjK60GV)^acOowAXGQ23I#&kUj4HqO1ZEY zUBURGhC?d8%MU6T^3^%4SG2+wYZ>)^%NAehW=?&zk^Fe0(xPoli?%T>+QxKD+o)D7 zA))B8<_alW)MyV!$NQsW4M*2_%$*ZNdZky(Rd1SeIjV)cmIj(3Gr>_{4R#b*uS!>7 zaiSCSiz(#y(OX~(e)21_H9kx(V{{XB&yE^T4sxwlZ}!n$W7n+bI!xZ7)Tzv843#&J}y7-08jK@_dhjsVt(G% zMyie}4~wZxqS@dBl}c@6o9{kk)D~+Mo{8f(Q@&8pBPuI)W69q%esjGYzO9?b`@u%d zpdzoRf1iE1A+1&fw@j{n0;4klh{=_BBJ7?`YxKE@!~H>gn;-_u8t_J<4Ub0QfQ)p3 zlPgOw;^M7;AR8Q#d3d%mhZh{5J;d>ZLLoC;BYN8Cve*U@CIV;(h??20&ZgsWzBnc%GB__hj>Cm9VGJb1kaWVDgct)2 zk_}=*H;J!B8F$B-b+XQkGn3hIW|=XWbrZ*^>E_yi+)+VLE-H3eAP7ivumAV=ocHYu z7d12f_cQz7Kic))&U@Z-dCqyB^IU$XGrWlJ7@kt(3_J+9BBYb(Ql`Z>8dWr7-ewgR z|Hnrtay9{4QshjXKktpXiKgXerR7#Zu(@!i&xgG|?~eRB<2!zC__0kn5cO^to(ERP zclbm)>Ki($P@OqOkIdYjnRiQJena#i=vRt_>ny!qNB|v}tbY?YY1&|{`?S|w3}MSR zrI8!#%=d;;CeybY2A1j`Pv2`8Sn6f~1x3R5sIUPkh_oNIYgZk0{=-~r_^|3F9T8y~ zM%=ehlz>0V3r=N_9HIQMyP0TVSpi=Jleg2=6Vk&l#dpWVLe5%Gw@GXjPDKjNVwhNa z5g0{w*?1rZ&=n;~`# zyNZetImyi&f3HC^??Posf1}{6ObFes(y9$4ID?5b&L6nP;*lX*gTxwCFfKDK>-?7vgN6qaI`1 zK}oZ%ZyF?)6{6})lK+F5L-VI~12wU3ps3ajfoPEQZ)bIIF9;Na#dqP%N#e{8ku&n; zPSHXNSoTDH7B?mv=?Q;eg&7;y@vO#QKYT~)JA)nidMqN)HlS6HVG;L!{38;C(h!(h z`$bGRYwTC1Ni6sxs9?Q4K2r1<92M)*MPm|?mPEA0wN;&8bfd=5_(;uXj@PAY#t^I5 z{b|jOK|I(h!u4Kr_?ayf9dP!m3u8oH)kN3MsW1ufKr+(2UyC^%HF+@g?0>*WdSC^c z>7)mueAqF2$nXQezBVmG=v)De)lfrbcok2Mu==t|={42xp?RO-1V9l42S$bEW~Thr zKiXrDPGOrFXGG}0fT) z{dzF0mK@c0z=2W8PSj-D13) zF@ovDRcUE%YF)nBXcDF3q64#2=Vqk>5U{7LAnn`@8WR&CkD$cxG+{ISel-wIe`sO6 zLH%9Hsh$$6Qj_fn%94)SY87ZA=)9?wzoo!fohh1iZ9KYi-s|FR_7c^%mmmwhlzkKk ztF9T-4aJMEqyixz&|YSLhRnfg3m;IIXD3dnCss(3e*Mb~UK<8+!O` z#aM32!Zt*S(vt?$pvl2V3T-H_tZTG$u!I73mSwrd1bPTPIC==p-)a!eG=zzXcY`+| zdEg$hO0a8&81-b%c}E^uthB|I*C(PvNUV7P!HI`mB7n&T5w^j35$^An=_os-KM=AI z;g2t=ZRRR-@5y6ic$nKS#_M;bd@zSt*5L+hu|8rY0>6?v;&38LVHfXw0zwLv4)N$= z+=aVPhc<(DNwf$21vN=zMJl?2TI_sWwBAh!K$U{(fN&8ohd?4hbCJZ4hOEcZ03dYe zbfn0OTHi$>X`7vol808sYI%vyYHZEt>XDiUT?3et2-kD}fM9y(=-qEPtM*riAL~T9 zX2)Q1mi6(diY36SI1%yqZsi1c#VlbFJ388PD4fZpJ(c+)PTj(gR!3Fxkxsy?kg4O4 z<+4oQX@FPyj!3SN&)}GSRHHtDPl5?uOcQbT;1IP=oGGNOkeouA3%fWZFUcq( z;drM20SDwe;?XLc1PSFUye=9`WF%b{r=p^`e_}$q;x%9u2--CA@Sc=sqY$(O!5~3` z7y&0p?7oN~QC66Wwi)0R!2Qg;GhXWfcy(}y=`d6VB3Hz_B}yz8;1z0<#YTKilGwxj z^^zn6Z{fqz4ob)c!<^C@cQ!#{cbz|QS5m%~5+rtmcQp|G_2^FUwJtHD2jGm~s1riKtG$r~TSY*Fu4NJFtk)b3rmEhK z`*))!bB{lWBqiZ>pL0635&qqX8(%HZqzn>RgwT1&2INK?GzoUWNY=BXG}4E4;T6K) zl;I5gP1HS7hlYXbFFEv0mA9G%hQhfWk_bsgBq)+J8I}9Gew?GO9}ceFM`(7tAC$OL zW_9`#69e@ep-JzlCK{Zop+5X@A~LK9PqYc?QAJ7gbkQ?%<|~-sj~d9bAQ72SbbLa3 zUJ-bl-JZ=Gcw7&gmJ=)X_RQzPfef~kV%aa;bhT)1V$s6^FlR?yWQm1}>8L3R|77Fg z$@CQp8M{K@Lca&r)B(jS0nEw9aD(88@1m7YMqcY|V*2v|Yd(ytZTJyL>c|sh9NcCa za9m$v4GT24ixhL~7;XGLV-O4U6*iXOFx2i-&bwFPBtZ)k=>o;em$O)@iLHffP-v^nh(6NtbtuR$jpecNj)RJrS4 zQs}6@$GT4iL^!MKvt+A2COAKPq9FbL#<+(qQRFgb6D^;SKR5Ofa`+Z-=C(Oh!81&bHgPM9HjJV;(YR$!}yu?$z7ds0E zXDe_}Xx5e@ysSDDYXpOH;Q`>F!ud6v+dr&$!loC%L!G?p-WkXyJEjJ>RMLV>Mn+(p zi`Xrq1WoS)n7&aemOM>S81E&&;Ap#?itm>&(?GD|HRYO-7JU&n7gU@OE?WG>MFpCP z@UYsSz5R04$W2`09@`k=oq8b9qH6k0(+_A-HT}lA?K=oT_7?x#GCcm7dH2ZP+L{F| z3VmVmUw*~Vq9zF~YJzk4+lY@;?1TLfJW`CQYE-(0W@j@C8H$$ zC$R(c)uKWqX4Q)JL0tLmys^Xz;QFB!$c#QXk#`PiXMwTWb>|wPzS-)KiT{3Ia2Nt1IuEisfxEn6L=Ba8}uJk31hLI+95F=#Qp?A_^ zi{O_ObDaBi8PJGm%`TfC066wuPmP|Krar25q*a{xMztKD9)ZrvFrgB@kRyZ%g`WS2 zgHt#~!w_T%CKQ{hAO{QWSYS{f!wV`Wz=RsNs;HGR5bb5yP;5$z5iqipcycDA=!@`u z_Do<=y~-Msw&P7y!f_fKIY8B<_XZ&h+-+fs%~sO7OxcUdR6VX1!7_dB)KJTIgD{aw z)tCCIokWXPf9hAw{m}Hl*RguELg35Q*!qWKKrFvnC{SjVQdH35zpo4gZg25la2oSl zFd8Z#p%xQzeT!sSYkoV?FkxCFSg}pPiY*AWLVmXo=&0vH%Z|3pY-empuT%fFJOG;S zgGiJ0ZhX`cprVxFYKk7+FS-wVm<>z=G1=7=y^?DeC`3J2ml=U6lGs0Li(G8OPuFVJ zahXZ|$!LjnxrVYe5ieTP1PeLEQTngj6u8T4{tH#gU&m5IiWXY`Df>#I>OfayqCO>k zn+Bp>f1wWO%BbwMPyWNJfAK)XeZ zMr1D|FhFxsp#)o;$dp|PY62l6p%K?%VfR3D0%(Ll85M=Mh`hmDh|KV1kvR!)N6ynf z=tOg3VgTaZYFjv#@D2bnsDTSj#5sm-)D1O3B}gf}HfRZs))IWiT0+Y$Yk{toaMPZl zCO}O>P0&F07LGv?ckakIe^~S!4jLwIS`QE==#fUc8>UZ@P8($x62wCh=q$tLmg)qu zWS-i`FXh!0(etua(y}#?Hk;!?aH3rtgwvcKg;JEhXVXuHVZnRxj2nkxU`Z$b!9YgL zQu@0*70IQdIX9iA{9z>)NgA12Ks?Qia^h*aKb=v6K90z7?2=$6D4u50<%O9q&O|sEtCS8eS zdlC*i=WEIO_IwL8?c!}HS_;1^RB$Okj!HGx4AZyj(u;=;;3!41au7DcD;96VO=e!n zvn|OUUOE`^{o;lWpui-$Y2g(#?)2OSx^j>-K8GYkIcT7Bw#Ay0kJ zo*jJ1bcN7A1V7#c4<|_Bg@GmsGY{(Vt#z52%T4GY8NLFS$FY_JJ>sN|wpyW(0N^J! zps+<|!$uM^W3}@q*lWz}2*}(^`s=~XV!E=hlqZxbngt@DOV8w_lXi(4fL?d0c;XT> zh?+$CBpG8h@l`D3ECk^+xF)(3C?lZIKyB z7@=e_J~L@6pz9YCFMz;T=5%(WGKc-D78BAVu#*Jh#c68YC0^v2wa*hT(4d_!Uev8B z5_x@~c+q+R@dE4!-s~Y>gw=K%FeN&+o$pfOS}5TcX(kAk-aX}tSXFB%S|saR8KR-CDtL>3U*{4lmLk(5RxFiR@r6#g!p@9h45Fz`5KS#1M3a33 zE9Ci-1)`;sEFOSzO>IC=o-0{Mk`QHgNfwKHNES#Eud0wD%65)O4}**x)RR2irU$z@ zM+Dg^0d*Van$#NY7~u?1)mu?&Bw*Yv^4SfY}`G6fWdp zC8$WY^~@5sz?GmPS!WPW>(sQF5RxenE|7HdJ)t61m;m=c!UaBdp>TmEHW5W=`P6eH z(Jq2!24q7th)hL350dFcgo{M_E`*Eyi73Io+GK?(SbZ2kGHJwi$31Y6Oyrdm?m^H3 z%*)mST(|H@%s6ZTHE!5H3IBWIz9w8CcJRbOGF@D_2)dp@|G4FQzK~&4Z`fu&zPp)# zvj*0_?g9sWt>or8nD7fEaF8qWuV_TG6Ni|;G1l7d1dgRz&ljLnVA^98;e|ElJKe|Y zqdb+MA)0sbKdH#T%ba}Cr>6ul3_SNOwEtA$xzFfxu6!XpcgYv6$QK(WU(_I9Ow6-* zQJExPw5U-Z)(5LLVv9hnA9-wRAY|CKSB#gfj+qsT$FNS1r&;^9%)VCsfA1q#U?S)t zRJ^Q@Tui7CrG0=<@f~mQ*wFs@?@qo@v;3bgTwHb)UG#y%MLDz%aeuQ!BXF@<$$M%w zBsT8bf%CDeFR7jY=M!tJRSF%Ped_0{b8V$9RCYBG-XsG%0FVJXA>#ouGpI0&?Xtqc8_&d&7u=RjgkifCLk;f83 zik8bG6i?@wZ^ff+v#vC4mGf~-`b95D#75V#zo#-|w%8HM4AC=UInI5qV=tu0(1*f~ z?XJjB$AyZFk#>$ELzRap)S8`&4E1zKL7|a3v`F_M0$Lz2f z6EP%eG%B+${))Wu5$iKlz)pRJm7;2?!~?aW^cj*z*!Fih=I&6bQJ5=Lk(DA4Ij*;r zx)uF>)ESng>Pk~0TX_$yBkxf1NNJhro;h`f1j!(tCo_Si=bH1?8PgtqA9*8H+KLmS z=`%3Zm_EaWZ=mdG`2c+eCF!Qmh(}w02YrS$%m4Wz$J6)(e}Kq=lzx}^EgJIzj`2** zmHAZqdobXES86p^071lX*Q#fgkM07TTC@%ALkw{0$u=#t&{1GV$qZx54S13$4#XnV z7;XHarrI+EKNC?!C67?V;f>Ixzi`6ECTA|$WQ$>2&Y-=(PeIV}mj4&`3hGn;A(|>~1232C&*Ee!xyCxr!tKLpA6jU}!TvDKgHplAy>4 ztt75(LMsV6L^SW+_qAvyxbC%}U~G6bcx7Lo10&AnzY2 z#9D%yj^&mFjgcHR3amvs1q|0BPQX~EO*pW>3?b#eR=^l()wZC2l=Xv2nVY#QVoyKu1irZ~yrI%7g+k&Qdh=T}yXcpNxn4J6 z=?OxnGL3hSB`08m=3nyk4@jTuBa_zye}r``;jaJ^v+2z-!`Z$4MGJ;Gjtg$TOSBc9 zYBQ&#nW)8sOwXEuT>Z=|M5kW!IL+JGQhuS@XbY`m#SpJqiu^>!t3V`I3?Z^TmHDGF ziKZ1}*}uU;*t7AbeTB}eKh9S3K4-cTv;V@nnNvT~!p-VCE|bJ9u5^ioNHUY)$n~6k-#=O7)vil4 z?JZHumlN|;F<@M#?7<0{f!|F;)+V;JCpub`(rdnk1Mcb4I#Qc>#7aISPIET>Jqg_1 zOwCAoH0WF)39Xai+&bzXbh5&Z>^dtOou)^T#q1j-rWmbY+_SfAD`_mL!Yy=(8*t+f z5;1Qoal!1$xJezHHcCR!O%=B*_|HK?n+yB4f!q!>;4vGdA66Y@6#Hv#&=V(!x83q4m!&J> zTi)(6?8Zyi1Pv#;GT17wc9Yik28u!z9v9I76+|Nx6cJ9MdgxxmkHgy>gCDnW-o>^?W>oL}g+%-X}X}5KlIYO=M6>GACzh25iig>Q1h>7JgS2V()yz02zbI zQdAn*DTy>s4Pb9l5HG}QG|>|%0z4)z&W&_)_8VYkCRrCPc)egim!DXC!Ks20<{M(0 zi~r)<-i)8I)!_ij%}EkZk{MM2=xuxJm*`^mK|U1HVY;ZIrV8EsVxyTK4j`AwK`z5v z!h9r7;*dd{UB@c=wV>gefSP*%`y3jhOhtMIrqpnSaDgrr=F@CK$_)tZa9CP!0T0aX zn;R?$p@vT=VZU&YM>GcL0u6HEOojJ9W>cLF{m$`XdZLeDWOO!m_FsTKv}Vsv|6k$R zdyshSsYJG&W7r#bRD+|C{j}nrS!m8{Fc3~oBlEuPuR=Y8t-R_a?yMRt&4EF!+4!%+ z5-yzi7J#eGFNocmbDmhUob%$*4Ks;2Iqo%W(6~rHa#~54E1aZ8lzH^{%=YX*^Kf`R z_YyL;oA8)S3PdKQOEn;gN%NX#uLgK>us)Ca#2?RFi2S7LCf&Zswt@3R8StSa? zBD!I0W&f+l>9@2=?`$s+PAR}`|A9JZMvtigPjf!s=vpuJz<+%DQVDPCl!h zVn3}elM><(Pt+pXWk5~;Kp&gd1z)RwOb|tnb4$mEgJWZGyoY1FseSD1SDcph`Oor# z;x&|4Ev^cnq-($KNi=r6o=sMAtS4T-q+m(7)6i4Nq08dKcZI0&3zi`fwwN@B{VER1QDs9PsjU}HqeV!S8on)A zy3Jc8VMX_wf69r3L=yqaR~3NbmX~k<6IoTDQg}nBK|EvDAxL|e} zqFN3j?SB*;r=-sc_f$MHv+%*on>ROH`oNVqg*^CiLSLFU&ps@5qJV`Lyh)~G8DFgj z27wLZf85VLqwj3l+qCp_HcvF9iUS9;5>T3a_N>b2uGLN1clfcwKf_5-zRC3UjbZS6?M*Gm{0M<3Y1UIupCZ@az*F=ouXdY%O=sn%Q4gx~**~FjSE_QC z+lRSzDNh6oBC7r{^`wSWFD97X0;9jN{>N2bKn-g*X0HtDd1+GhimfWZ@{`Y%g;!#T z_7W2F5<73?7dm-X4UntsSfLaRLo^gMe3HP~XqyfVgZag59GL?{`i=P$lYWlUa@sIB z(R6y6_t1YFXXSrhVn)*6+g`m#X2p5e(Y|bOPFbHX<%uirs$Tk-mD#I(Df>-U=wT}I zjjgOLs7_?=D-4qHv>-c{-^6b?<6r*%pzVH~4}6>IBmR=+hB1L*Gg{na`HFodwW;rf08R=G}Av7t~)Q){_q zNFa2!v?u#;n|sJU<$&hoq8MjrkHvYz&@(r49eyO}|^ULYW``=46Ew4^hEeHI}$dT+4nMN&&AZ-kck6DWm z+pgwrdcBvpfZB+Iu;b&I+Y4u3_8YYbgqm2;Qp}sVdFE+KDlGJWO51_ABu&8{)IqH0 z)(S1WX;~3rGG;W1do|l_qE9D8lt4&8_^Hg}$||wxH2#yHpOE=^kzKZ)?xiqC8z#{` zNiVgB0^_v!RMTzlQ%NWE- zDNhF2@<$_$Wjv*&xTlhUgRw;h4Q zLRi?&&{{!NorL(F$EdV<_Eqs{yVrE)cD|Ee5qm}-r(XM24?FVmZ^LkO! z>$r@a`PhBEV@)fnbC=d;W`BmWFD=?!>(vq_exu;C7p=bkZzbvsP^IIHF-VN5I$xbC~;(bQ@f7Unh4aYYB9|_mHHW?X@2CK`?X+V#yO|uf++zX9qSi; zgGN*94N=QgOOsR?FP+pE<>(3>QJt+QS7hninp7&4D=V-I*D_P)RIHSO6;wZ4ps{4C zL(<~{2NZx#DXx`FQfBERMpI;25?RgsKaoxq^s7%4R(4FJRe|t3oSu*IxHew8DP%ia zB*AHtuk|CDvWF8}-btW8B(A*S77)&F2e4!1?7oC~gcl7*o>wEqnvQ=q=GDAg6IogF z!0q{X^pw~9ty-x`Z3s>~!I<;UcC2V5ZNp`a_vfo;f0kTy($JCnRI=(VVxZVZjXlwR zk99L#=*zqfT842UK{~LK{JU3}ATy&rHGK2ROAzsJNnk{ioh)`bWr!xK*7?$n;n_-+ z?b%{Gl`1uIu*SchM2zi*k0YVax@_!&;JUYtZ9G#w`(qH{?6;p0Yt!q8?Ddan-q5Lk znKmL=uw0^WH_gUxZ%vh_{^bk&$Y0k>ZtxGvrHpShz10i$g+_s>a$2*CwK1973TtBRj__h6IU` zcI}9?#(zx?_mb22H7qZX&ZjbExR$h*1nrq&?+_|o2w0d0;}l`V*|8*8!ahmLVJ3M z%c;3ZskTlc7+6Dd+ZviUGizw>TSEtPO!n`i1lu)IW$*gtvU_0sI!+6Y6NBSej`5}} z>z>4dQ~!XhIIj;UQy87|FL_Qc=PrM4ECm`C*LYGr3mTA=F{oHyJyvm-`pS5^DqqlWn;y>P)C4gJB9h{mitm5V-_W!QmVh6+ zva8yJrW4{+8_|0P`^z0r@Jmp?8Y5*BXxdS zxd+mkR-x@SsW@5XH)VhY@rpSGFVdpOZ-Jj`z(Hf8HZ&h&5Y1RDeWadG4}~J zOA51{N@FK_&F!=G+RQf-(Zj($TSt|EPC9DO^DB9xeYQ3yGE)G~IKsy20?fFUF4b(P z4Z)B!EpaM6xkQL9>PU^jZP1^#+H@HD&3n~?>6NiqUF$~#0;#Ut&h^gz%vw4WN$qVd8>r-(hd!CQDID;uHRFR=2~DDR z!BLW#qQX>tmQ6zhkJyLSWpnocpLze_;rUuQY;2BgIvs4${$s7Q#9{Sq8hO8KW-#!8VZ|_OW>6op|&eqrHSb>?&<% z7HPQrcp^RHW5;_un{m}~+v{xUp+xlb%;%K1%9fcr26)GwZ3FCaO?20sp#VfBt8#VP z`b@RZR%kkc6Ql_uk-jDu;fI-H_I1*&sGZ`O$6P>b(@N$Ipgl(nPc)$nKbVp?B8l{- zfv3Hs1_BHzQ&Wh>(>+L7MCP+RG5o_s=4(7+5sn#a3|?24;AC)|nRd?I=ftZf>-Wgt z;0?uRn$ai8CWVGKvLjv!ilfUNh=K}jPYpz+i_Zj%MDdxBwk@jh;MYP#E=sKNlNHL#1)36{gXfvofvCT`G&x5vYv z=wN$l3Cx)B+zy6BW)hKkA5*_wC$V+Q{v^`SKibx9Q=N|D!oJRK0psfSo-_Js62vQ2 z7|6OR>L6Za$tl$$$d6{%4I`6I6<**a3ZJpw%(rC!QO|>qOE0zPG2I}5LYbzYEwXPI z2WYaC&9*Ibr|58qQ6bS`cW~So99uX#(E-bt3rfW@D{dj2Rd4YE_>>Hry5o>lU&f1a z`0C%v>NXq-x$Y%chnd%257X(h3N3;%&-85;Q<4tzTJppA_9@D#MV88-_@!zo>e7#xTe9Nf-PaRx=sY+Cc01{& z-f;nwX+_Egj-a3dQkq1OB4{#ZP6+{xWh&~Din};6+nyyAD5YXP0zY?7fT?stpOJ8S zmcjzWP>ky%PLhb6qG_tpbU={Fdb~o}bPg=C2y?>;td%y;qHQlBXZC|WMj*d9!(_fi z8Q4$n$zwbLZV;3SxF?`!pjo-EAH*A_&VR&gK(@S79Dnp62vx(M8HfOUJEWhANHExjhPXx5=Fq@CtaKBtg+n%5LuG!9M*Q#%b`kZT#m97Vb*JQ8jax2uiH1c!1uQh_wYwe?a z0(^&fq+bNB$N2Q9s{y2=X>9 ztmdf^UYWA*-bOJPH_)p?Q}y{oRR`-K2QA7mF!~-XQQM@ik^pg)1c*->fHsQ_)?@&$ zUT(mv+i}n;>@}VZe+x*S%FITBKx*L}ZHo8MRvHZUOQ5$2TFSBM4Bm>8A8hC+fPj_! zfH-OLL-EDshhTqc);XipZE+u;8R3WJL&Tm`6xHkw$ zMSeg9IIP?L(u@09Y4hut@}2yEo%4g>9TFf}BzZx7$3RMWHDIabdJC&_;cKchx+2i> zEN4TLU%XT8Bk*H(z{4T+Vr{nY#?%mw}`cC4cs)UJdaxy zi``7kC)jGY1(Cuif;SqUCJR1E2oHGxqm#Q6XD{PuAiIa3Lb-K2`2m8YFVW!ElYC&* z$E+vWZ)jQWIxR3OdOxkQB+`@mj7+4HeX7H()rZ#fObo`$>1yNUG=s5QFpq%Ej&C|8 z2s8Q2f_MS&YBIV*z^lPaWa0z>_fmF(0k1l~t0~8%1&-a90$B;J2_NKN^vb>AsK^#D z^V;&>1^8%^vl0tt)x8e`u~47toYBgT$e0)3SA90f8{ZkD~glQ`%KY7*6t6blJ9H)Fcg0$hv3$$cpi_?Hr! zMw&!~Wbq~}ejT`{Vp9`Ip!wROMI!6bg$S9QMYC=Y7KD8868nJ@lc9-7&TKqf#ouY3 zu#*T@N;K|Cu^a7zvX6U@>hh13Hl5!S7D63wZ<@S-gKDjo{E$ z_s7-D{?GTfiN(TF)c|s+Q%h^;sT&@2y&`NzHT>K!#q;Y>x3F@*@6&wICm@DxviF|F zQ`})kD1UdRB0;3Mm#z_Z#ET(z#8xE%J7TLP0IM|m;>>o8r$DV96($iqHG~p$Lam0K z&MbJ;UP*t)pjMTQ$ZawBQe~3>qHHn7iG_-a3~3eYWBbVV38-vR{%f^91Ih#t3AC^ACs+p| ztxBl|rw7XsVefp%_IPI0r`ewx!b7Q^j2@ie&sf?6X%%N{2_W{h^-L`YAmok=@S@an zjuOSZ*kXYD5}CnlM+c6Z{RT)U4nQ?MtY&iJ$F@3u7!=2x&jv`*Z6K{yO~?%UY!^vM z{x~E01M0t<{9!V>_B9Zw?}n5V7D8-)ctX025Drl%@={%7#xhn=ZBj_97n}gXYBiFo zB9taBT`rm^74y5YebueVk#){TV4vKLRr@ueex_@wO+XAI-W> z2XI=WUf}5cc&J!VFs+GDMYu}U!T`~=h+5Yghan;B`f08M!VJfN=3-5&orD=m$aJQX zizwW1X3kc&5UdKL=1}=Wt*ZaSsmQ2ujB;p|N>Y(sspu{zQl|WY10+_aBJ+T@N>42T zf1>--sRM}DKP99o1Xp@ZjcST8z3-mIGqt9= z>5{va>^E7AFSGv^edVMtY(L0Il}KOO(X|M(MfUq-O*J-wrVBP)Z>ya#Jh7u*@-JJcZuQYXLrq|DV^d^!uaGne}fdt z=bR4Ebbfzo%_)v0*>YfKbJ~*Y36i5}u^j6%Q!mXk1K&j<5G*-+f-^LemtuyHdzR0> zBzPC%Dgt;Zo27wpc61udOd_b}z6VIoqdYA7G=D%@A@Xq#(E$n=l8WGC@^jnLI~6^} z7rJ4(qKHaHQ2D|{CxSY7sqMM&`MN@1lHBt5D^ z6@ZCWAB8oj_}ZUd74n)Nq@|?QX-D{{}}c)VP9J!y#j5eqNg23h2q9G$~d8I8{?5z;?Y;w(xu%z z<|G=K;bjvqAyy?;)f`YtR88xWQ3euKOJoK{yoKMz;3AEiS`)xMaT5HNc7=@@wxSra z>Rsm#ypi3z#gEmTu_|^yaxK|4O$04T5^I@r)@V|^uWH_@POxv~*XB3Oy-Pb-Xxk9> zBw76OC&}2RNN@34&i!36|7=WQY*pCS@+Ot<*Zc0w2(f7eAS(xFzK%nQ)3e>sfGlcyH|%?8<*3WkEgwaA zLqsE)QH+vjD@yEqm^GmYw9>BKpw;sM`d+5&mXN084cAFdu078qr;r?JL={P5p^7a9 z+ah$l?C$!fM%^!V51Q78djw5e$;d(_h^K3z))lBgUQp!-oF0z4&EREQOoo+rHZ{A; zj_mMYT6r7~^e(j+X`e@1YuBtSEuAYCJ3IkS7{JOdgR+BwX^`KvmK5?EK#y2y!994B z#jC^J)#AZmWrh5Pw2l33M*u53nao|l^r+7ytB$ag2yL^{C`UIW{7b`?rq;|-ATj(^ zWRTzDRj0@dZ$Fqc+UI0sUpzg5z}*+HS3Bf4#cxS|vy-U^-|4 zvbPrK?2w=(5XY<~f(}aHU4)Aan-RU-JHvQ5jD}*=2V)o^7ZkNXWwWSfpS!E;&}hrHzYIA6IM-y(z!FVj^3g_ zxt2$rCQIR+6L35*n$RWzSZ=zRE8A3U?e&DRF}STQE*JiS`+*Z`=7)Hpq0*JGI6jl? zgRp!8c05OTE2rqy*0-=vJ~c{GOUgegks9ecQF;`^#we8$`{XERpA=9h`bF%M?~Ui7 z-bk>qC-Sf&vcAgLWuktappK^o>P2>Is9|5w=q}-{oTk{P^+w!30{>Mu@jj28wnp&X z6ICw>PCe|?1{$@=5Gf<&;=nTOWQ)v*Pmrd|NJ)4oM#|3v9D8vKWv(jxETRg4 z_ZN`*awX_+t*eoNz2+lYL#0Q-8qfMHWllL3dWLBwSL>f1mzjDQLW*=*?`W2q2*nVN zdzmB>W*u$zw$J9A`W-S^NtqEn(_=d=;mz~AEZ2FkJDJ!Q<-l-3HO(Tf=Ma@ zYC9i^yrxNf8#A&rJx(g|2a9ox<-_cWwzI`_`S|5=tjo;XdOVasLdoNz5=1ZpHRGrj z=8u}QX`Og|#G zI^~6AMBW+`{DB?aWihr{)IKvSaMc*Ms>Ub>l3Xu+hw7Tj3}hOU#9-4Qg{#YqcoRxP zVt6f9wNpZZ>f1G$ohuq#cv2hh5Bz+*{s>~hQ8k-om|qW4$~WWnuXTzAORfn#bG*fW z#i^u%Q!zOWSDlhnfX9u!Z6{;Z`nEe#$4p|?P6fLoop!zQ)M zfun?7)HNxxLZSY;)|=}4N4bV~zNo^AxwqK$2u#3FRkYdpFjEO_SU@IhYV|jttq!^s$BWddlC;2tWZGqP(t2c0)+fhY1epLV4BKJBcgJCg;FeEwLI? z-dixR5sWs(ZxOE_Ddt9j<90-2%2AWz)0PEhA&weNPuLMfyzVn~t5Vn|*PO@e_ZrG; z$m@9?@_J^F71pm^ydDcg4_>drT#VNr#8P!0%Bxm2R^;<|{d>mizuyDp^)XjVczqH@ zfvg81ILhvb1~E)XB}fr$3b(KpU<9fKB;l$b^f_w@?uRX*e598Xm4a!HWm1IUP+l)K z973I5$OJ?Fhj3?GAxy|5FGE8|1b;B=GOffJY_K<*4nt!l4i)~@i=bSzdpR1HWtxNZ zh+&gN2Cj+Zk)&dqNP#O^-uv-?B~i%mrG<8M$c|t}myg&EOW^_tgNWl2bhn-d_D1}b zuD~ySTzc3Q-F%Y9`NM`ff2AuxN11U&cYmdE{tWDmI5S~yMCB@fCCB@3&rFiN(eeIT z(6wXHQ!+GePE{SoL+NN6U)3?LqyLoguVnga?T2(Vt9*GXp_#OHc`D#X#`bA8n334N zaYhmu=Mz4Pm>8BoWBtKxWBvb2t!MEkNzgAcA0sn{9nDMa(|34!Bk2g$3=RQabvJsv9f1g|g(SL1)|7~^rpWQ)Z zrp(v%d1|ZD$>GADP|yEw^M13iy$0`x<(PRa;h*y1$vaI!fFvN5gZasv<@9xl0OK1 zhnY#mVDfa61okGQdx-(c#bj=03f^kE16whzOhlF^Ruvu815+Ka45jEPzy!Kf2ddoo z02nOM@tUa$RIfls5Gn{#e#JGlII~otzPhj+kg9(N-&$)leGo93SbqK7Zzk%`NTQTS z;o`?XUQl2f4sY?FaEe~QKP=ey7`cXSx3sy0fSnUL>2$k|M>{&*ZgpR7w>qL>iFV9v z$Jw@<5HMe2Z~Y-Hg509$v5E(%wyyP3*i+)=u7{Bay7y?HM=`m8`^n4*6a>fxcD}@@ zKvc1j>r|%Sh>!w4Ko(FDkOhq9ddLE2)LJqKw2-2wEWnLAFy5`ICJTsGpWv?6{XJxX zxo|QS@&P-d{o*Kr_GuEEU4WxV_a3|dY{lccFIj-&M=lGfFu%Jjpdx=rS-@%;$O5X- zd9r{?V6s5a0+I!+#%N@NnyVQlD_D!bX4E217FeZ?grfkVaHmTau)%)Lpt#sjpk-fB zr?L7hK^AE1&il=9mKm|mdfmSQ(yf12eh6=IBj&F`H1&qojt@ynPenG%bPM_GHiiq9 z{8BOo`xvw2kNd}omX{~6nQfed^7jJ4CpfU7rTBlazq9gJ@M4bjKU*Gd8Sg)0Y@99e zMri%7m{d~^Y)+N#AMdljvpyX?6!8Cno&29-1^j<)4L(89Ra*apFd44@wcnas|2Owo z|Es>{ploaZoO4iqf?9nz2W6QaK2ir|uX#G~5Y9>2miW#c+AZXT44k@jvjvJK{4+6sc|zOFu?aAs47k*qy}*B&(|6>6o5(bLx={a|0X@D0bJ_xTyTpEcXfDGn#uJ@hV{cW;F z^PT`I#jiwPAtEY~nBV-FZu~xpcwS8vv|y@a_CT9(+Hns;1G&#!dYnTz*@sLd9E_S< z3v88vfsSJ;T||9|{KF}MP#hvOsM=Y!drtWT9>eP8h`~mD{wwAIsyGd8pn(&p{BF;R z-M1OLFT1SUZd^&$_fg`uhP8JoKV;j%Qo#xkU+UaH zMXUyvId*x$9JIsq|67%VJF|XlT8gL67J2IIk|kg>V{)gG=x7OWwvFympv?gSpA^YO zKhD!&)rL*a2C-cDnL!j1(YkkC<|!+$*yM326ekC_Afv|*ah=Tk{IovN*~OX1PX7W) zDD2|#nSR7-x@N%EViR~MEux@J`bSVQVlniZ{|dTF`s`Id>VO(2QH9aycmlIb6+5E< z7Q8P}1=bPHgQm;Zf>7nDOFyzz-=B~fwLvsGfHn&i`!FNXB(mibx=Se@wUj!&f~}xos&=zQza4`Xk<+kUyB5J|m~}9GJ{etNG~+EC zg??ZB+$aZ~fhgyk;Sr7p&2iyi*I*!IFSEGZqC?ZoN7aY%P8pJGXvmf#Ub94WmNr31 zcB`;XTWTU(kR06(%CNgR^_q$F4thwNk-FihkBjshCdEs71p6BwPDT$~zL>I$%D#<9(WUTB(_Q>`cnK>Q&~YpcMcl+->!E8&4i<5kfND zv$U(1%sTFjQqxq0agdFqZXUugf!MXWjB~2-I+Ekc2rezBz}cFMP?7&Ln{N7$AuSE#LmbNCEy@3qNBMu3M{! zMAW-E@Ce?1N#*V3$*MO~k=?aEG@sRcJeIe`5Ny0|*@v4c zFoI@o)=P#aor=B-x)%Qkem|TO2MN%=G?o(^WsQJ5Cz4U7Y|ZVNqN{Jq44iUnrtE)e zabC@BU@|bGd|FT$%y_pXquZVNrN+ArH?EC|s^uW`jrA73F3RovHhRd<7vj%U==~&$ zEtVxkZ_3O})mv7Js;yz^YjGUevai}YT~VUIln)fv4Nwe(WH1k(sd7G96kW0FKCL1MPHuz5S7X#FE5O2 zCLBNL;~H%c>u44Q5gOZA^d+z9D^dm5Z=zF(+;`esqLcVoP1PnEgs$DHu0<0Lpv+Mm zX`DxBXE9QdgLoZul|5CuKIWxR!n)RAXKFx0lEc|96dEQL^O_K=qo5HSW23GhT;Ho* zo$EDxwf3PFErgwad!}DoO=NQnl;BRd6he^iLceYE&)0O~@D)59VF-O`gw(RHJr9d$ zI$b_5it=YTq2=E%zGZzeqj>kBBido;Qx01B(9CyJ(dAy#e*(Sl)|Ew-)nfCwULMKb z#T{nO+-}jyqvE~!wKavG4>37#ka~tMr8v-hy2SU%D;hXj0 z=hhV$H0?Rmw6y$)cmE~u?s9gAeK!_;VOHOK>&i>25#70%d4xy_qLQ-rlEd)Txm~|2 zT2FQ=P@)L1lPN5iI1K5Eikc{$o~#%U^O9Q={tE#z6WmSUOp=@u2F|pXWe^~Fufzom z&B6z9PPurQF9Mt?y3N#a0wJkq1cp-%rNPfR$&|ec32BT5P&Quk#(yT?Of47=AZ^$S zM5T}&PH_U^EEi@HnC*@g`Imvc_#m*CTJF-i(@0p*An>%g9+xUc!R(>g3BPe-qVi$Y zJ5kwj6o2!pvv=}Eq>=7)b55d6*^0239V;2x1r3#wIv;?xZIBP&v8csg3R(}10Pl}% zvZlz!Y^Dd1m+$eNW4}}>oDn2DU-+2EvS0tL?m3@`?4yvKE;dT8!vO)%EJFptm+}OT zjI&{@^9$G3d5eXg>3vrDcD!1O0q@9CA<; z&raIj`N~S9u;zK^HDSo?!bwjEiLKbf>X+g0d+qk(f?EL=jitcv1C#^rD12LI;A%dP z@b%^N#E7rg!Vy~E!MF9z!MHFu-_~kAhi~hs@3LYmlE&KkwodJfZ!0dw23KaF%h^x9 zsM-{Nb_?apjJ|1OaY1$#w>-(&p??s&NlJ}IYuS|62zi14bt&>~!@Z6L;orWfrN*1E zDVA?TzG|2T2ptf}Cw_469jw5U;3fX?^^nvcW`O*J$iOwR{OiY-_G+`E} z*XbHOrd7F5ayEN#)0$qvlTuxK?jrc??1xwyWcpXEq0s)kifwU!q*wWc>UetQ$auPr z+*i5qcZ|a8^c)u!-FF1)zfkWha?JsZN?CWHCdG4Qs25Tf`SN^x^bvA)m zus3gP;G_=SKl5MMYL3rbebI9K5}GH$$!}b+97hxir*hPV<#ovCQ~85DSa>JHs`OCaxR6b z+{wjW9<*~LVdc$xn0mQB%{9+-e@YAIukeiYQ`d5wTuqU-aB-4{8@QpIrflW!5Py1W zBY(&FQACa>r31#)U7r`6drwCVkIT(-Fe?_1C~-CN!kIqXgD zdw-T1jxKM!ukT@RO7XY3%C09li3dFe`{Cxc!?czj*686ct$*mY>ki#tP%v6QUh_h3 zGFa(RmQoe%r>=+nu|WZu6jkukP*LK#v>&yq?7P3ct6Mj6-o0CYVb5H*KH}1CM}QcD z!&OoD?u~2=d-zUL(ZgS&uovjzYHrh57wh2<-Lq3^(aM`Q!-DCL5ANkZa|zWwH{a*Z z|KINA+*P!+jj4mH>8)0-=-~Q&tU|fHL z3HGpKX7p(~8?cZ@lD9?rS*#N64O@92D z0w9s8-wpqCK$KlR=r1@<_h!93jIpRCO!w|!GP;AFuDoISo5clB-_c+5 zXXVYSxah#;U`=Ad9)UEswqFWPEsQc*)#m;Oda9)OACQnrndUh?k5EweN;(vApo-(kI)O#4?WHBYn-@E*AKAD+o@=DH` zai@qXfxDl)lq2Qs-@^3M%K37R%rBEy8E!N;ioZy|Re?n(>=*;7+sDjG3*iZ$Abol@xH1=PBo?bhw zz9=8Go@388;cnkwxTpOe=h)ds>0FOC`d#ViD7>?io;tYr5N&p0dRk))y0UmP$8Pj= zQ392g(Gq<(ohUB2PLSWs^VQYRr$nzW7#BBj>xQ=D)@0W`PC~}hZtsr$ z4Bd5yyg&8Qmr1Q(3nx2y*h2~{og1=q-F>%?X z#pKri80RbbTb@-c#r;FOq*`xzON4Cueup+7r#8-8v)Wt0l604#{+qkm7Fn=IBGrQI zv@y)t*-IAeIh_}881$tM)KQVO)8pR!mYVb*^s7n72H z1x!X>Vqa9jPb5p1k#1W}I#H7TL6Mfj3gO>U<8nsVNcdaQ-$0r*WOTe1mc#oBq?6fP zaF8bw5h4=b4Zeu$9I!>DThfIw_fejz5SA@47aK?iZ(Fe~!U}lWG03KBLu9r7YihmX z`GUrRf}uxRb43eY7h7A9(;BX7Z8EaPU(>X7NYjZzZ}DSH+#TDSS_j3p?7_!3W>fOu zSVt=@RqieN?>vre$(mA9_=_mZHK%*cm+&CvJ-7W|Sd9^Ox7K^;M(!lG?2+1d%ihQ) zWjYoEkwEK9+ft<)4=23eZ)IyX9U;dry+IUr$14k#9-{Y3UmDJ`VEJBAK>r8cv+;DZ zj-)%V;BDcfs&Ct(laJG^wk5qwnK!J9HfBX}F<|GE*} zPNQiAGnc7(wN&bVj5d)NvYx-ztk6K4mW~xR7`Dn)Ef52mU1&LM5>`>K~y84yG)oiWM#@2p#CjCYOC0pS#i5sm`Es*VV zAL>mN!F?#Zn=M8VG2k9Fe(}9W)bKBvUZ(sjs20W+bmK2wQ(xzTzK+jILiwlD)_W$Y zK66Uv<=6ce?p=ht{KO?0^dH@8-MI^Ic5;`AB!fH?l#12gx%7Fhy*%}G-f-N76Q=W? z+~tgkP8X+B-uYne@`TG|h-h;$=b}ws?BXt5baEHYKPv7*R(+>hQ%z;sDF4@Tmjp5K z{}*zXKScWYKb^bK>;3-fIhg~X7_`*0T$^x!UB_dRO4JML1zIg{me+w4mh z;4Zu{=zrS7%KpocS@>E{?m~jyo!sR=lY-&w;e!^aUA3;Yd zmm(*HU6dp#MR$_Cu#oeliBwL=`D2sPKKfHo5Q!3JnN7@^PFt;+s85k|t1df`RMKahgK`Zow#=a1Fz*;n3YtiB)H zpqSmqsAC&dPPn@u+sMD$#Wr5&{D1$V$?EBv=dF9Pl7?Y^%A6yUm z8@n&tRvsP9Gd~@RW?|zE507FkzY!fgY8J2Q%M3O8m}QJsj+G}cE^(BCyYjjwdtdTS ziljy-^%%{j!%®?%~*2`b; zD*K^VpR$|m4)Mn)r(i#ug34*~erQ;F^_vSwiO7LMu0PI0Q>30E-5oD?>DMQ(T(ERL zx`qWO=b+ta-xZ~Cp9Fj_9(7UB8L z36tn%9VwdbokYtvWogsN5#CSbJje14UESH&;2T?&?Sd0h$atBB_H2bXML{DCxJjz{ zdR2u~NJCR#?)FsbE>_YF#o1dO|31P)X%wj6!K2f?nfnG$_wG6NN3_o&nq$^Reh%_% z)=Oiids{i#x?KCIv9D=Cb~is^_SvJ|F1med!3lkF)~KuikyUbKu_;>+D)v_(nrQ!mKP)ZL?QTC=+R#OURq{rCHOX;!F#K{gU+SV zSf!f{p}YUXdG!AyGE%P|L8{@{Ke!&$WcNRq{-MyPE$M}af!3qYq78#-c7BmzP;U?2 zFu2{$yA6X6NB_HxSNxmle+t>WAN^m?b4c!gAN|wm{|@Q@Fmn|{(9ZiLFZ9*?%bbBUGqvwG z?0jh}Q_POyTKAxpiAomrrER@+cQAK3_PxZ8xmKp@{yC-v=J}SU-Gzr^-qfO{!7Gzn zO+RKOKF-iS?XOz!mPU65l!)>cv6Qh9ujxVN4F5!Hwx4cHES&Y(j_uErDv!E*%Rc|` z(3KsVhn_5*S8<$aN0#D(zvr*9p^UvnN~%`kXmL7stNo7d@#4E3n{b~zK6K5{m+;d( z?q0eIC$W#KC_=Cynmb;)G+wn*u9-4R^Sg|lO_lp#y<2*6_9emX*7m`;czxX_z;bHn zZW~t|JF^sF>=rjS7A$+1R;4wUw$Ub^D{U!U7W>i{;|un;(LoA{DzPKLn08!j`+FyG z{T#xz;`J&y)_A|#R+lOIb5$1G$ES3t+NN04CwYpuns@!&cfITH+2dV**Cy}!X|3M% zlYi-5Kk=`;>*N2~yMF8fLL3EUm?7#dHHek6*U01nyBcqKWE z$QpJJ_qVs#*ZnzhF3S|Qz-O?PBV;yL?B<+XPjRTWTZ9#HE_YSiuAMryaQ%D%l0iK4 ztf9vfF(?ElWz+uWHRPHue&>hRcRfy5w}0|BZZBA_X8B6&Ys;{8JjN6_{8;-}<0=K{ zPNQ?5qoBY+d5i9V97yrk-zq9-Pu;5L?D93L;u(Fj{RM73uQoF0n`>%$3>@m{mAWzd z`@CX)^#qDl3~y-mI#d=UY|qha?=CwqGj zy~)#Lbmg4O!&|9>Jd$QJ)Z_4^@AUKyKq9;H)MH*zUPuy6^`tyEq146 z&gE75Psy_JiH=rHY7HMh;(fp9w&^jv!N=mxTtYz7%>B83 zh;ZlKjYnUe^$k3A@0cF*izb4%$Bmf>a})ecwoy}ScJT0)$eK+jKs)f*-zxDZO zD?7WD&7WTDm(AsD()?bWPMX_m=4+XG1%;X0^F;exN;>b?4fD^EZ^PWP%Z6{xJwljK zkNx4>C~HFG{78jxD>dR;IQn>F9Bh#jCXlYp6^+~yJu!(fNHig{Z_tqYZsIWdz6c=t znVXNzyNRfs19;9JwX z&qh6o%}qOU#L~l_tT?;n3?#FLY@6O31M+^;TO(tbHe*e@FWE>gzpD8ATK_FF`+E@l z=Q4{d*s~iEGS>9QfYvO2v~OL4Edm7XNIZQ@tmzb_d38L^=7lrX$vsAcj@T0VKHhq! zsF@J2?RE>a5bEgtYNKMu@Qt54E;BF@XY-zWG;kkQ{b?fM(c!UrmoT#*A2(in-9ZOrdse#&tV@8F8Lv>%Sq$~2ytS26ba zes

    f(9EAM`dg_Q?#RfN$k(%PS|VMBf9bgN zh_*z!-z)9?PO|rVoD2YlFN-f&H-}!#j?{Igc;k1jXAc5Amc8eTw4=lPYvmZPn&LCf zMgdDp*MpZb?{FOFXx(LtjNUHJF34=QGRs-Xi_>HlukW`FZ}_r1-1?$5>(!L9gXWp6 ztYeA>QQfo81Q*IO`;Yuklv=&b$CV&#ZZ&oLH*q%4KHw4!AyF;cm}UA7;0zxBH{dOY zZz*++_vBLCpUbw_M%wVH9+w$W*FKaCa&?S_ec!&GLD;U40ewX~DDEywG_?W6RGlt+ zg#aQvw`;r_BI#?|a|7Dn9{uO=E09WCDc|>4(tRP_?{RH&+nul%eV=u+I0iX(+xB+) z!|*aTEz1;7`r%Cw^+;Gr|AbC6#eXe#Wxp3vNFy(Gu7`v41G~~+=F%^G-}G-l-$DM{ zb($%@>4NEjb#x++_p2I0q1f!531h)-72yGH$U*t6zjVP~t;1U1E{e6bU$WrjAo!q{ zk^4INevY}q2^jpAAaNp3;7@pn4KXW@IS+}}Y>``P&KsO=s5siOeZhLXtdNX-pRKB?}s1Di6(5`CqK@o@B1#T7O|PH zZ;_h-i|sJFw<`iX*BcCYgPVeehwqbkn-|IH1;%@YtRDrl@hgGfaKRY5eX z3E8C^;sr^f5&Tw-wOZf{3Dj2DgiVCax=O9B_mC&F{o#H3Iyx&>*4Q&5wXz<<%KAe3mnXb)zTo+IsO8P97|9;p%gVNXv}g}EbJTG` zN{jc2???pM48bnW5rqs+t))AGtEHL4n+bGPUIw3oyEW|SH3!BgjMR+;K5`@&t~dD=w2oq_>M4Ier2TY=H?1=m~{V%Btojun-@qKM!wu{D6|{1aU>O-=r3V1 z4YA2_DQ5zXPidl53N2D91w|=Mh!!b%%QKBs$$LSQ_$Z>h!-q0e@v|I=kQ(mS8mR$f zK6WCRh=P6o0e-D=dnI!GFywtCmrn=^nK;H>=%5!(#*I{#y`8m%% zE=aNIwyNe0tM`gID-%G|Ls>@B06L%jR)8PoEwcBDTAzulQM9N+uj2^bC?Urv>^*Y- zfZW0WMXbBsl*giBLnJpjWV)7_tUxCjn}a)G}@tG%17x z7Y)z~NvTSKJdAsLg?+Om5|9{TlAFZ0Q=)w)3HZdjnwvm)9jflapWiHZzK}~57ak5= zpA)BGpOLyx7?>V2v&wu}!7inilxsTjWyuGROx|h?87q5Bz4A!vPG{&1^#-Wln<^v^ zLsD_Et^)b75)2%TB<6wgmNOX#VGNXCt5i1fd7|=G8mW3&SiuIo8$%C{)E663vbPKm zd*>&1tdE21J#Erh@Yi$`%e*Gn1-~lQG*i5r7F$Y~u)?+7ZpLe1lGkobmQ`%b`N>WS zV?x#921d3rO?Dy8_|s~Fb6Q=jafgqvgFTr^JNyN%)jeJQq|psjzy@azsClquaI<}2 zHWQT7n+7ti$2#8e6luZ7%;osiTD2i$`;MJiu%Po@VenUZ5tQ9aD~^S7gR z-F|McK1U+uvDE?_G4fc5pD)Gx5fS!D1XK$=zrP}JUoo+&P0(rAHhy3^H?G_4;o ze1SvcdFEjz=Vmqq=BoVXGQ^ju)7ea=PG6mjW0jh-G|Gba7d2%GP-@>qaCyB39hSNa z7n}E^q8)gV{$hmixK*-5xS`E(6;YL$)1#!COFuo=w@8}CP*O76Nbkqecv1WPrRu&f z?vOFDQts11g@M)nC(n#*{i>}EG=ejO^cVhX_BM^LJTPN>YJ1zHR6TLl_VyVKF@`j7 zt7?#=+S?j+%e1$3$}Rh6QnBQ|%I01$!y;^s`^>KQ{lC=ie)<2M-95lI%`m%bKMzA4 zeLx);?2n$#kG<0BuqZ%v0uyyrm%Ao-+5puh)!=IR?%87H|8 zutXlKOY2yBc@rb7)s?Lm$JM6syicIcOC9m68^ykOkcrywr^r#zwm0H*3kEv{lm&#V^UMjr}DA=p$Lg^k3+zOHUmY_lZi`!jU*>Z8* z%Ct(CFUEM^hb<#8bwr_xmbaB^*(cRs79l$B`wAZWhO~L$V&0*Jb0klZlT=MJjM<`9CI{4r$)ky-O5s^ZKqa|gQ+_N2QZj=q&K?z__5*c1WD%8cuhSl4g%HE9(moz z1n<-h5=aL_nyJuw@a2K2tjDIw3EEn#*c@Lor2>ClS|OvnD51S|8jwN`SvWksJ{iYG z-Qtwda|W`_!4_u&)x0E`yJnGCE+Ezkh@cZ}^v$M6+wOa#1iVl!{1vT!>WGCZ5R+Bb zX<;hBe9y|4>OK%q|1>F(5?`)y_uG$&xPrR!$C$ zjFOWtRp43Xq~z2&c^*7mEf&76P2r4gP=>n)-6`1`a@g;Am8RHZ?vX{>keldlDXYw@ zCW;t=^u(kyEQ`30li*%x(9(}{pAKV$#n*8ki_e!{3vW7S(*_kZWBm{F4JCr)o$~0b za6<=PtHKI)Q|9a9+?9jW1K?8+0AlmjRvt}suUvg}NM+^rzF0kldl2cpl3?R$!3IlP zf02&)%}r88614huW5@DQMf$Tov3%3mwe^d|lL(d{X7xPt!0|&*nFM4b!T#*Yv0=vO&p<*&(ZSua1+z zZV2}U65%F&`by>_;ftdm)PErLLZG%=@LdqO@C81{D{@E$NF!t!Wko!gC|MP@pS74O zAVQ7ew^cUO^ILq4+D1@flxM>km}4d-H6$s#PRElc{MTGx$A&D$4+JV8@@hwI!Ye(R z7Ej0XQKRf7f=iEHBR-!wk1_2&6N^RH-C{m7JmwqZG2cmcWdtIWj_&eGQ`O=$Qry5R zr=lxNM)Q``F~tdiy@?tf@gvC>7g$eF$CyU>T(f!(bvcRnW?018D|1UxC3 zS_;8Hlv)xFz_Uz-cq%hWdvw!MRKP8}kEhoOLsgI3Vg>}^g%z-cQqh%*D#qojd8%@K zX;p(naTWz!LbS!YJ6stT=z~{ODQ#7+@-EbfUkUIEaic5)r#d&uyj3<_{4({2!hJ<6 zWndTMSlxpYe&v&TAyg#ske#eamN;>%daN|cmLbHPuqxFR`aU{VrLDs#D`W0zq?-yE zu1U1}#33`r9I=C7ak4tYthK2i7|^O|p!<5~QOs0P^VriKj=RxN3osmiWatf1fS z5nV*l6ajfz+!9N&+?%{ZEmdJKXFM^D>DS=2T8A!<*@;nAdP(3OzB?!4+XoqfI1j4~ zB>E2^@qpW`wmWEW|LHWi?C6VWF_v0KrKj(c7W zbA*(b)W2qpyMbEr@NfXR1w^Qt@)@~m>#|lh7}g#>W%IB~zh9;UmIv5uuaao5Fapa? z3K9q|5C|UUmT4DUsWyU-ovOf!`$=J8-NA~=D1U;fD>0r96-?2B%Dw$cTh(J9dW%L4HsB_(NP@Woqo{Z#gb>iUPCIT=~1 zvFk*s2vu2MC>ed3I*5S2p^f^~g=BYKoOI1FCrkDhgBnwNAzQu`Q_k1m7tR_XaCP+`d(jPzc z1h@oy>R9DXw6DN9=yE8jZNNR^Lgg-y?m(~eaAU>w8PZQjE$J&H#1a_MPk&GK)8VIc ztooSrg7akz^O+f@x*BwvWy@n8T?^TpSRg$WnT3>nCX#D$GmSF!GwHL_ug_y|B-5O9 z{;%LO+C-4BuerAe%G_4oQSS8{XWo;r!~A6K1>{h}_&v&pGdF zeg_Hc)pU*oN@rC@5mR@PO*M?5DUc-8!mfTVnvph>bo->EpfO~@;R`JG5 zKBV(6vp(iT)KFFa=1xhqoXaRnr^<+1S$fo$PR;9*LnKLlIf{?pjwl)NV*~}XpW!1B zLIpgkWCgBt=w)k|h?yv{}_b_E!ue_-P{{ls5zkfivwL98?L_I=m)TdJx zP@OXAk)hHu5SjXsz~bWv;%2{VZDc3yVfv#eLzGZYjIH#HLj)SMTZd=E{sgH^DjWK$ zhi-BM4ASS?%6;j_f1Qj&aE#g+dxaEqXKXyqz+xT+;z}DX!;GcsVXfmi&ZC~AN}xKX zTOlW#6U*%Gh&?iTm|ibU{Kg)&MVAqK6@itFli{h9=e9O3tM9Z~r2|?pz=7Xt% z;piHwJX;aXoOZsN zYl$yoc&aYhsa?PfLfkgitYPK{WFdpq53*b!B*mNW(( zyj#*3k2Q{$Fw8%9&60cJ#D>;L_lc@jDb1r@AQ|8#R=(6~{caj92<0<@Fq8*N4z5V; zHA;o$Q4dYsO`VXpe~A;^hSVjrZI59o@K7Ogn8K4|=&Z!iLw35hmy}kP5Q*3gB!{TH zfmh~=QtI8^z+}_SLtRiE=QIBSyYxy0cB(qGXv8hzQ^(85*l%jB)JLr3&23v!LSutS zLYK9IW1hDq^t$lxq!ze{d+AtEgX6N5^xYxKguoPKX?-l+OrL))P-{l!}Ca zJeD2j%Zxr1_S9xckCIWZzIF;1KT21ik(Or%hOdTW#r2E7!X9~8q&kryMk}%o&@I{z{fb=A zz^>O)BMz@iWQNEmKFKC2)fMoI4A*thgeP1a%eKqNc^gaV$y;HPr zm#!o&j-gJa9ocTN@W!|`X<7l#aSxF?aMv{wzfZr9p@B=OGx6L&b=gO{f0iTROqFC^MDUH+@Ez=tO=51@UDFqzRwC zRwOqdp=cV`b-#=@83YWn_++IrW^RZ;Use{fNpfS=h|V z&3R+IB`}KmS_Tz#v797d{1VGaddiy~ONnTcR=K^`rImD}nw&joCnig~BfYLZz5YZ; z9@;mBHx#wfrBj{FZD^@j#3suBj2Ky#6ks#AL>@RtF-cE#JZCq|pqSRLV&qIT#>iZa za{0;xdH+Z+D_7h0e@j@q85I97l2ko(k_n_K@gWls1M5)y%8-h#3QCYpzw~m^wx}1t zC;aanl>KP570(Ug8D^>;toVY_jk0GjPL;WHI*Tza7-JvL29Mbn2wfJ~rh2^qM~SN; zMly~yW(oADQf8wbs6y4f?~}0Zc4aBDCf6Li{oE8FRw)Q5!=drc4w}&pS+v=7lTr3R zq_5mdi-!sN@x!FZ6#7g_D)cM$lO=2ACCjU?lKh(q3|xz+WBm4VFv_J|C@UFG@Qf&A zN)M9sQa#PdGp3Ne!!%|YDvKXd7{1dMa$B1!H=;sm;Cp=w05o*E!D&Z)(Nh}oC1=s%v$>xKB; zRkSLll@@BF(!E%q#kHeksq}gq*;&9w4dco6l%9^I@0V7U(5x>dvg9k&482N!!M(0@ zzcf$O_VlI;2L3|&5JrB-=IGEMf_eJQ=IEc|>)0G2SsHuQ0R2Nnm|Tm7$Zpx5<2wTPFd zP)0k_>7n72*VMs|tL`~p$up=P#$h-DgD4RlU09>D$UZEwmxRC($_c&JsMlX8Fa4=C zf!)fA`y}icC*Z5b-ADGMS)WiDSgGzZcVo7m=DX-svVEqP7~`K|($7JkgkOoL!W5@w zjn>BLDJ=E=i_BEU>3KF3Dz0e!Be-tQpd@y;Kaf$oUvo;Cz`)cm`ET0%_WP~TOX#8QionfFd1%;7eAO@pH&=qBAW@l2|XvWHcK58d60X( zz9b^%u@l{YN-s;!LhK{`Ur?Ir11>oUQci|sY0=61(b-*;I^r*M_+dD+bBZRb$mRy% z+i{Cz0f@&jhqHPC!B}_FH+f7 zr$0*1e_$86S*fc24o|`JW?<)=g1=$p@&Dka;CQlq)|-M~pz=S(*+qZgcJP=OeI|@~ zc2NR1A~yvOCFDPHcF~phsb_42P%5nd@YzLwL@M?rlafQ<{-OCaSE!UudYZ*7A5^ze z`^_XOYz!Fsu2P$X<>Xf)w4W`JNerIm8}H&x@JT1b^jE3=CpQVNkhuaQ`lkLD%zMcU zxJJyz{oi_~J3qN-yEHqYGmWI%T>gpKmiVM?3{0Z|Gs*%4b-GDdPCDXdr82VBM&6Loz?~+y(a$H zv{Pw2e*BQQlLp;PSSPK{wM2>1>Ld{yYIVeRL#@t{dm~z%^(u+5R)=&M6ZJj2mgg4; zJ>!;VyozkLJlEm=Z&_)u<%w@^dCn)dp_V6JWxc)S+4rMw-STXwTk!v2%d?lZ`u~QO zrw{qy*&8ABKi~2^fz)8j^V|bw%QID_6t(4%ek2cJzk7&!>Xv5+F=%;G=)IlX@|;lY z|H+o;uWFJvddpK{-bn$(+fSm5 zbB4B$b4J)6iPD?|k2jJg={zEY8kUIR%yGIpVZ)hEh)9$0ZwzN%GW$+vHk_HHBAboM zEx7+%jmoZ*hckW2Y2af$oN0SlJ+%yFWO07}z&-c_vOo8vLH)eb4QIB{>i<93sO+Ly zKI=xsed^)NFFPB~e2wi#4rd1Zr-n1V$cHp4LjUuP%3QPaBEy+}(^U$=r<9O^`6?u} z-=lPCPThuN5rZ})oqpKKZAf>O$bYg8Svg55#I&AzM?_CkeYV0!yD{`7^Io#FAtku~ zTaR$(ZO9=8106;$auh42hk}e=Tx#^vN>Hbxm#yZ_(~n*rBjUe3db!pV@^6h^zKR&V z7;1tmZ1j@B>kxBWCx;6>bkjAKwuYd;bl+=C&S5=ox3W$1J`OwZ65M5l^qHt;IZ?9&y|fg5=N z75sh$8GDqzn32k!ztzT_E7hkEMs};jFbkN`t+J(CjPdg%K`geC)%_jzTTM{=tP)vd zZE5VqVu2+8&n_Vsu4SC4)9>O>!{#gx9#& zOvD&Vk)(aFMbhS_tI1i>&bdNyR~KYzx}ivK3phVtZb(kz_z>Ryw9v76rNc?5SgykLV5&5svGy1Q|Uw$;Tjx;h!WBJjf#N`L?+_e1Q z_^M?)AMN&)W%>4k-OD#t{V3hCeD(N6qU7>bd7mynIKhXOWq9TJZn5$a^w6g=gWqI~ z;X%1I(e7T&dGEt)mmactuCu9Cdh$t7`Rs@j-b<@8+_knIe1>e5&B(0edwG@nZz`?2 zDjgV~>;uZK*7RAInICmzBRfZANRoUc*lJ`RmD+rVd$pXn-lMg#zfrbI)ag;9;;8o~ zMrKQz&&rOP;;wK%_E_TpzI;}6o@|NlQ+}i0qyjt}RQQpwl zK7g4&aP!zHVsMRWp4Zkxwy0En)%TmT!IpT#m|d-Gmk8 z@(I5>yV~F;X2pkISMnK(VeR==D9U^+9KH`tb<41X-R@?AwGzzG@dRx!36e7ag?X@-(DVx}oejH!!h z2Slwu;BJxDZ>&zJW6sR;g~QIzaqYX#?mi~xBf*jBuCcm5vAaLBxexoF{pKY(Hz{3G zb65N4iFXtSuVCXDDakftOr5R#OZf_Ds?B|6N>LvN$A1jTz}L1?Vk9afB7=ESuuDb*k-G}*XCN)aAkCvIQd#4N|RQ_DE2Jq&gANh36 z>W@nu$>NzM$8i;9**wJ@UU(vJMiyx`k+TQoMXa}9o+7=nAuO4@QITF(LDE=`+3zCp zyZfg2m!ALv>BPA*lkx(8CpFG4vZ&boVjy=Qsvi{l@1jBzzF~rnb9?qdXhd%JpW7-R zW@6u&NsFje<+K$Wnup`z9sMZL{qv4W)LArC%S88nHqV_LF}0R6th^)gBtmY>OKpyr z2a+0x5HdzW1`*Oxx}X&<-M!8KCcP3Y%vQd+_&ilnp~T72Y~FvST#`)H#S=)5o=^z; ze=oe8KqPSUxXQ=f%TzQPyp?M8tow8S%XH98^gmL(@1f|8Hsi`r@cL)go-c@yY$b90^do6 zGos{$c+`0>C0P*gdF~wGfAbir>k$9yX31oY_%9(*f2Hy-6KMSJC^zS-X+U08{^iOq zaeswBJMLI^+~MrF6H@kIlkNRO*WX&`{@#uOD2(jh_`U*BL3rM72dFM&i|^E?Bm%be z4wXS&P`+SR&5RzGss%e1>uJjzkmieG0Ip>X$T#tNgSD@G@I!>8t6V!MbSoM=SS6h- zkA@_hOtR`bvkvbcQj+Da`+iVOCQ}`aG7l+XMj1_k$o__>tJzTwjz2wFa>PY?aD1v7 z#PtVVkDtZFo3M9~9c?dinzuRiip zTe;6DlOd9v#-sw@lSj?n%$ax&cdP${uU~5OKYv&XeZ-AGBjtCmq~q-ucQl^e($par z5zg^-zvOx6OXd{*5{pQG1?m2Y@QdMVHg!j;VQWpM=w$JKNd&$i-&S;UNQ04Rpm;E& z?VMRp836a z^4;n`_!VhIviRSZ^t~f~$b0RelH~337M-`72`6t0si4C1Rs$mbIU9x%tD+)wr*XG`qc4Uc+)cp60tx`ieC??=7F=ac8ZZd`S*23ODWJY@@ zn!>Vy;GfDK{O=Gia6Q#Lf?`lIvv?t{SX_?cH*m$_8dLm=v9K(q4^CIhjm5tvI39Ow z@e@*}{Uz=wzcJ_M(pJQ+5ck|E;+Fbk5Ne8MrdeJtsXf5G!ufaF+`Ck-oc=^z;2Mj6 zGn$4yFA?qOykRmL`q;+Tw&W3M`&VT2Z?pI}lAPVWBAcG=g%Y3W7XMm_ zB)wAms1?SX((Won|C1`YqSxijHkF*mOi3D|LkC}KOE3GfC>zyp3|Ia7km^NOhb%1> z{gkCS+}r)xR7UKg}Uhh+Q~ z?||>y?%T`$mo1}E^ zV9ef3IlnX0cHfsAX9)Hbs^_r;A3evbN%2pt#BW#8;f_!7FQNz?p7<10r4)(o@MI)3 zI6RLe)KMTR%4eW#7VyJgnyw`O|KJifRXy}&650{hnC8oN?`w?9jtf{T?zEJxDNZye zC>rl5Y3**5%W4cdn?*hBqwYzZkzjLwE=T5ZwBnsHu2ziI3vAYsS#fM$m?KWloqcU_ z>+GKFL|feIOiy;aW7MJPxIb}>Iyn6tdt9Y`l+SR?Y==n>fA%8MiERQ#$ETlS| z`@uAdyDIrJ9Oi@hD$DBq{UuA@5zpfeK9~svwLh3n?#P3AU|;kH6XDqx*uBL`OGt?) z`8}nH)pJk0-TRXZWQ>;W%^V;HXZC;p0%ABAq%ot-5Y6uZdpgmgIX!5=Pn>bPd!1Fy zH?7{Ew#wn@nNoga#!yT;(^%NMt#Z^SIbKKaSUl&C^*+)sHpiRMpNr#sPH(lx`7^v3 z-D0e5E3KG7H}vXllSpZ+vb~O>l)Il(F(0lT=%7InfE;n08>yzi#YkRKwSDkWu#ckF ze~k=f8tZj#d2(HIiboscT(w6uz8l>;Bk2 zWMAWA;`=22(9DY7){-4JA#Ic0_~4-!TbwZUH<@JQZFg11YAzRNul6$L%4;}AUC*5- zr(%wt%#QDzxEnTE+xDo0JSI;!lPBPy!pino=# ze%F{|MTX5SKvJmvX}+Y{3_hQj)=2gMh-oFuK*8qjnc^>_+-;PtjT)%zL&+x%h5Hjs zL0J7Gc-|-@ao@Zm{yO@fMJY+zI8|-xKUY1Gq;~U)vg@QV5y^CC;0S9n?DstsgX(;% z?lZ0ZAhfp|OI2`Od+<3bm|~GqXb*1YvCi~78l&n=ds|Ir+GYn|0a$&)K~==;$&Aau z36LL&jWrf#V*0aU83`oBX1KRzc<+gEjQX52g&!Fj*Y>ev)bSaKX5^p6ib`6aU#S#y zvF$Q}SH+eXz1V`qeUDT)!5UCCvKw=FmK_20EPsqU_$*&fQ2Vp|5AMjbd?}$(5o@co zwJi^v;Dwl3Ma&Vghy6hwss%1718ZEDMHM2!f z9fHh!--ws#Z~w$b8tY*vmE6S=`)Q={sGN&Cm=$M4vPZMctUT07vXR#CA+h~8nlhK- z4$2%7A@fx&vtMU2m1Q|a)}h@>zv*GJwh`2B0{L3jDng^e!r9w24armj~7%cNKR56PbA&SXwTHs;7? zIs2&f#@ydYq?*iRh{cmRoS|s{BDxg!q&ALOdMmY-zb6u97^X%}=@L>a8hbKRZ8a|O z%b(5dvf;G3pOX-|#lQ~@7^2Vn-+&5HvGKbMyzsz&ba2|WlovGeiFow5Nh0EJB zoiPsI`^`Ava61!;+2(7@9PZ8>mgbYHj$@$}StO|`SNQlwM*ntqb6dhSTNwQel)AvZ z!s^M=d9iyYr8Z`nc}bVLBO)&+q<}qHr^<`nJt@^%lNFYk;f%DiBsZy6&m^*A_vCh( zotcRex6Nm5%NlNVXOSZ{TIX$^EZ<2u?IIVauyP7*GL-0t_2aV$+G z=K|}?Hhd2E`>Be&Gfa_J(;+tZulhsW-aM`u?l*2V$#{t0_NAaa`s&TRLUpfLazDcS zU+e@6*XSqCXNH7>i=^0?ym{M(D?cVuFuz@LQ&P zpUqt^3^kelc(%l3$lS_162MHhzn%oFZOd(?)gsPXx=az*aqG189}op8qmxm{znMY- zOQWV-RHl8f1b)FqX|sVwYsqz@&7DDQ=235pHp)0}5^X%?$s$e$0KbIY<|!$G13%ie zAb{EMa)CiagP=tsyGH-KKN&ARj|X*$Nc6rhX)zKyhRDWqQSKFLF|s4U{<%9|YWn~_ zQTpLcD1Dhy+9;PDl$mL5uJD zbLGAn_xwv#l0gcYPzC-2Z~P1+r{37J2u9g$UJxy@bB7@6i*z{d{+X}nu zME~L**`7b7$U}!rd)snTK2rzNUbA^#UWx9~8&3u>o99J|=6_;4kTD&+uMt>+h^wRd zRY7N_eIdo@{v0TJlk4auxW%Jb9UjvVJ*FXgl=(V5ragL;t=ioC?y0ubsDdD~miD4h z-#1=LAyCxRaDUjVY}C6U%tq7El^NSJOvQZva_jB4O~|$0YP~J3%}-a!V$HYaO`4d0 zSDrj_8GI5YcwfD&^Y@B~!Zxxy_fuj$jb@FM0|`ZY%w$2Re-$c9e3 zubi!P11|H$@$ao}zI|S4<;W%Xr{lcwnNqS2PQ7-mj5p7=aTu9C^<9ZoiSkjD5(@#9 z>hmZFY9ux%x+lr2K38qB3XYYRgAP8;;rb+91;oR#LSmHGmJq+WM$#}N`E0#p-9&SZ zg(5ansX;Q*bDJ0rX^NVUeuM_X{!tn*<`L*lGjxB9viGG6Un9~!iFZ2fF)hn z(#wt%_YCLFaIZt*(%p&VOVmc;(i7rw@Ul`sFEM_vwMW$>l_D6pR2I>b)W`slGa0BT zEKpNaKpRs9l_B!1^ipUrU0wQE%GX&BOfD`C;5zoubQB&QS%8Z9;d)s;P{2dj- zkv*RPl{_Wt=oi~)X;TS(jZiyV%-Gk6;gNd360cDEAjrn`eY6q|M_&ZN6mAL22_R z{k|#CxTS+Wmv>CxuF~i2@^+`qbyRY^-b`ayL>g}g({KmVpwq6uuS1V-7*8s*@Z{&{ znroQ0JnrzY)PmXbp0p|scZ2;>UI8=}UubV$mQ3LrDCz1EUrml>|D;xgXdg65O@Nl6Ug8!VfRvgL%A zjG}>jPaHR-;Cd5%Sjk|NEf9zMfd4m}q{GG}I;qR2a}uF`w*<=grA&Pb%l{~T))vW2 z5xH-VTVZ2b$AWX5cYI>3oyCy24VRa6?9HFc`w@HT3OT-t-rN&EjUj)B{27}ODsN7P zi1hndv&P#RSwys-?=?$Y|968ix)H;1Uz5$fwQ*1fdG60eR*Q%bS=%ftF=??CE> zJVRtGiz5Osx4KWIVp2~@`6e2N@aWGF-GpOQ5Dqz6CLl*^s)|NG-*)$!C2c28%+Bzf zZ;h+BHrHpQZSwTCxhmtW&DEBen9`yv%UHc8tsG4)3nDnI&~)Q5*9@wT3FMsv1uDChYqFmK-gAi(|46+?s|F@cIJ>HlzlBZ4QuD3OAjkS4A zM%tPna#iif-AKG3a%rYpAva39Eg+YI+wSrmbMtb@$G40`{wC10H~X3>@!}wioh4M= z_$!TgF(=t|gsb>_$ZirizcQRmf%t&6CCQjG9MLDoE?T3&<#?u|Yz?lM1IzbBxgfa8 zLNZK!gWyV7Y@r#b!0lSmZC;|S&F5a@7*fSydBMbeP1P)-n{jzXZ(CdCyd+}S+g6sX zDf$kfMZG(O7VoVNMyU?s<2zPesN77f`c4E3s074V1$=-}h7YTmlBi8;75$}s#(S%5 zLuzet^3_NcF}R*W#XaC7K0I>LOc5)O*VpomtRB#n@NS`tlwrIl!QxFsRK}>)GXwUx zs_OaH+hmQdn{{ZF*)p~LAWaV+$t$|dc$amA?Qmi7C2B=e77_mCvGcf_aqkDfY1xF28z+NMeAjXxbXO z-`&R;@Ai$Q2#T*F>C2R)X)fdm;~b+YJRW9^UB6dWBVLJ#O1arx)k$)jgQ--p)KOlIR4MW)$RTx( zxJ{0@4ff`$I6x~JXszgDZ>zG-J6GD61}UsIdU5Jz@lLBpwIx>fXV&J=ycMdIN()$< zmrLbZe3jLGE@{ORU423_`;^g(R!a(UY*?@^e!+CBx_FLuTiS|WM=WcHBnPpQonR(u zmWIi;odyEen9b6ZT4^@of*B@yumvmn++Z6{L$H-HdyA}fwKs3IS00ZQ;_Z2^ydU-3 zUB|mP``El=<7|~jVG5SHV<+g-YdOGwh&?V zNcmc01IrkB&*pc;@g|nfTV=aHb9e`safUS7n>Rb+KIbX0jjGM`{Nz}s`{84cZE3vj z+j2@$4M3|vYvc=k?`_JyZ*$;FI!YLT!W`&V+!AXEx+#YF7@RD)j$y{V($35UBW?1d zN+#UMOdFh!4F-$jOzdxvvcHu<6D)cG^CLB*j6ML3uW5&yrPx`F%*V;hmRV|DZEWs! z&Ff6dOgq@TLfPd_)HBC|wy9cjscNOgoz^XAtG9K^UQ{V|y4JKu)!W*uZBu$%BFXG+ z6+bT)wm~p$BC(*oPN9*K3UU1!u~#%f<*KBRnVRkX_odx8?K?bvQC+*pcFUF8)XtLh z<_-4B7A$u|&~h6P*1>Z9(JVJZEH@)%gMHLW_4PTi+yd;LFUJlcINN(Smb(+nt;TYz zP0QUNmdj1Y5Jo*bBq6IDRc%^slWDmP+H(Eb?s|teURy5J%LWI7ByG8OW4U=D%l$T- z3T17#E$tvlZ)HHF1sP@IF=x|?iodX~h_gt~LD_jZH`;lz`092a9Z%EpJA^6wud}(2 z+89x>28cdJQvGCX~VA)Ub9+@+oJci}F-sxARp$A=j1#~^{*yn6R1aGPIM zLZCoyd%9=1yAd2uFu$t!K&HuMCax1E0@GfV{Ho#tDPql}D`|2=h7J6xVgo&Ndh^bw zcPYluRuyPgqn{E02(F)%?=j2Y2gg!*Ys;y_{86*f--+^%k(aP z&vr9u87uMR??ILm%HQohO?s0|L-Myz^VewpKWqM{H2-6of0E`OtNE|h{9kDPrJDcu znt!h5FVg(En*V0af0gFnqWKqU{ueaAQ}aKf`ExY?NX>t_=3lG%|EBq$*8DRy|NWXj zOY>i&`7hS|A8GzSY5oe$KSlEwX#Sft{}r15Jk7sM^Z!=!&(Zu3YX0$>|60xeUCnQ3 z{`WNhvzq^Bntzh!cWC~rH2(#fzpLi|r{;f3^H0`Onk*v6}CIrY~v!nVSDD&3}{Tzf$uX zn!i=kJ(~X+%|Au+->&(u)%+=%zpLgur0F)z|Agj$Q1g$~{8wrI0h+%})4iI1z2+~| z{F5}l9HK0LmuvpMny*>Y9h(1B&HtF@&(-`RHUGt$zo+Iqpy?*fU!(bpG{0T*U#aOz9voUHU9^i|1X-K70BvusOC@7{D(E&q4}3< z{SfmYd9E(kXkTMH;R?X7i&OEuzH-o*)PsLR8o+6&7e`?-S#511@Qj_0e?I=_@IQxt0saN}U&H?z{F@b!dmBYYd-dkE*_$afte`~cz2gg0kYjBU%9M+c59jx*I! z#8WZB^eN)0m}vSG@l+I=K1Dng(sdw)D)bHL8_;*4??B&&GWR}qIdnOcfv^2zC<{C7 zpFy`mw?cP8cR{~|ehEDcJuI0#o>6f-T|>A1c*eZjREf%xS+byrr$W}K;8Vm?A^lH$ zig+sI^&CD$JQa_aK1DngMW#;?PsL-VPZ7`9G7>LCi6@{>K%ap=1APhl67&zyKS2Kq z{VVjJ(0@YTgT4o4i=cfOl%@FgkDzOzYoS}9TcBS+zku$8?t^{}{hGWUBb&#hJbz%S zqll;C4%4TIr{ZqYr--NGKGUa&r{ZDLr--LQHc^m$MLZSKbH}HMXRM1PT_o*+dZ53A z{u25k^hM|^&{v>;f&K;h59mLj|APJt$~$m7nvVSt`XRI)S`THRt$j0eCv+#Y5!wj- z3i=gU{6>nCYuElvKo1ahK^+#8dG@)2E21;>V^>5l@927C`0{@l^cG z^eN&QJBOs_ph5+-0{S%cY3K{k7oe=Tu>T(VXXu}yZ$saPE`ctAvH-(g1+9hFLf1go zKsP}*L3coRK=(rTLJvU?k=0hr_x2Oy6^Hva^_<#G#T4;W+-CX|@l@oSK1DngGCN6z z6!BEZF$ee*@l^b;=~Kj0@u=xj#51;(#7j}a4Ru3*0sRH^dFb=d-$8!|eI3e%qOpI6 z{vEm)x){oO4tphZ6_jQCV^>30LpMSIl56x&7GER#dUn#l)8@)tpHV)8);+`1>yDUfEZNtuG@e?)3NxEI5onYRCMK)s zuOX(Lon5Y-d`?d$^PJMCCpiXhqJ2)H8JBki-E%xWH|2Qy_O`a|Q15w~WUU&1GDuc` z(mCKy#?JD$K+`5o)1`;NpG-Z;UxTK@WP+2w5>4wgO_ojre^WK}X_}zk|!Zi7d7?VYFCdxnfX$RA zAxfTvM3v_`g**z;lt;0e@+3sblaQ$L17PePPD35hE2#Z$=RAvNX22IWbJk|!b2XCQGL#^BMi;$P_2F_su>oW9z6{(hH3}Rv#BT zANZYedjprdn(*G%z$L$F)>6`W4W`a2P~**(@H%upYJT3cvl_vpC`>hiFUWq={=6$-vymcD^&U^yg5-{so$$z8d z-<+upWj^#ex{PS5Rh!j%wX|x^qQ=-l#&q2onT*k|AW4gwvwjEs0qJjq=BH&9y!^4sP5qfD zSS&x&{;8T4YFeP_?V8#&6(cE;5-AZ&nJ>jMUkqdcuGA(^oaE*HpfLBYz7tJ*epbeSfT`@~LL|`<m5)nm(_od1`{i@_~;3jHbIZP15mh)bvN1{z}to zP1WKD@)hi#ZP)y=s!;w$YI?t>ztD84rtj+bPiVST(?os$`-n)dF_*=XxonNdZJw9gRz=P2&RxXM$B)%8xxBW@<*jLM z13y1M))VHon9<(F`2oKb{668wX7k+7`R(SnpWl%}ckT%@>N|Mf=eL|6=QQMg#&0XX zUHsSXqew^)@Tgz_^KUPlW?%=nV-ywHyYrD#SCxnygayd*ZcNIU5 zam(GvZ#%yLzk}}FqwQL|MtlD%^z^E9p2)Te1M{dof6*JQV)(KauagF0~B1fq>2=cz(tD;FU{=j9$3QGgAR*v)b>}GA-UMLm+T$yPVDzmCW zWd;?RRU#LOk+ncB(ja8{2Dvm#uToPc9$Hg@cQoS^Laq2d4O59PwQ0i9Wm zp+^kgT$#lYDl;}hWp+lW%)~&mD&+ElT>dPVC32~i3t!W7X6mkKyd#(8a$(7-GfOJuu*#UAxfxo3Ot6YyCR2sV#Hp~9$>kZj{6Q}N zl*=-?a8R~0OX_T0U*ny7i)NOoO!3RKrBIool;|$G{8BEj$mJh$k%usgX%J_YRO{_k zIw5m!*8DPGD1Mn66e{z8!ZAlKPs`=^a(P=WGOWpB{hKpOYW}cVpP;#NB!W-ERx=)}n=+L@Ik zmt?sNqfRWL1{Qa^TyB-iy>ej$vQ%!(T28|vi!LL(n=Cc76#cm|F(}_&>Nf@LA&EVb z#2!gvPu4KGAbXF<-XpU2AiK0iV(ZjrRnfgCl??<%rc(I5pnS6R{Fi37#>@D|=01+~se)T-0-YPw0&D|C8AnpSFR==AQ@^bJjqYdTJ+ zzgnl?Pp4C$=^r)yO4A#3dh;~>Ow&O+y(yZ$r)hVc&fS{6rfG|&cAfr5I{hS_POhfE z({#V4*Xs0Kn$~HWtke6krVBMq(CJLjRJL2o-&dMu==5uJ`aN_yw`=;6rU6Z_(do_B z^g~TA)agB->D!uGbUL?b`WsF6YkHGTze=ayMW>Uk>9d-Cq3KYa-lLkX(DXYxy?Zr% zL(^|Gb?Ee-*HpfmCVwM!`tR%XV{|$;O`q0uo2IEcy&_F3HSMj_xm(lMG(DnemQL>( zO~24|gie2vPXDN;={mg%P1kFhtkZi$)5V&0)9Kuy=>kpnYkHGT?+Hz}XgXA<|CUbo zpr+U9^yX;#siysPdiQJkcTHn-IzQ0#IZbzKDj!#nzcNkNYAVO*$lq%^-GHXUbb3G2 zv_{h;onC>auWNc#(_3_U^ELfk)2noP@}&s*lMmy`-$0%I0-f%5O;dGx(==VGX`)VN zyr#d?^q{7rbb4|Mf&8u0^m3hEk*3Qu?Wfb1Gr3)@IkXVdx^=P4OwPWq=PzwB>ue0l zVm2}YF?xh1^rU69q+fSp_T5Z6b&*w^u08BTs7aFTB7=|GVrp%JKk@W>a`)91+x4|} z_d#Rso0rp=GSoB5WFE}Z>u1~}sjTi@EIIe}^t2}tnjb=R#&?>~fWu+WgEBZLo$ZG0 z>Q8Nh%>;&qB``EKn7|#elEC?90+)42puN4ex%Scrn8G%O6;P)k`rFJSv1D1XW#%~G zNS}6vk$RbtIxfjboxnl<6Im*MxiL5=$rzlQYz&?>3@PbI;8&AwqD8K*PUMuD`}+Qp zDPdl|F##{LUY=f$?^1X$by;G#-UkMfkC2TTk;2W7I2);j=|<}0TaDBi_Zq3Q>G!-_ z0=F^v!E|Hrlv|C#Gw(G9JA>V!>93==PfyoAc8#PVN8&BN;DDmLM{)f_u&f z@i}wwg=OQ%T_ds)Dt;+JlJEbdk4_gvW?+!T`wErBlnEkv;xI0Sh@LX}RxUH{jL#UH)r8G7U^8{tj8C*i2)_gAq!bsKQm{Yi=`~?zn7zCK|Yy-=8kw z_?$WTR0eKNh=3|+C;gvHr)m-Vpr%oxMT7{OAi^g4xD>v{W%2?pGv;$KHEp+!tR|hl zGZz-;Bv_me!s46)i*qI{PMwio{M#8pK=QO?lo&(7n�!b_oGvE;;xPBvW2@#COQ9 z`8;HM-PCbX;ZgQ&)4Jl9nw+PdGl8V`?EkntF9I)yVPF^+^I%^^G2KL>hYO97#=aN| zDqUPVd1Euu*o5Dy{HyU#kr|X+tZ7o+v|f}Z_B5r*6pcq-h)4hitg0{5ivJWBp{rRF znb$MWSCwDtgaf9|6Stx7r|7#BEq$V2tC!V|y76aTltvumWro!Vz~eKnq6YCN~1@5ku-eh5#cWxcv?QP*8@XM^WMmNUik z*y-@>37!MckH%s04Iw<^LwNEs9s9(u@x=da@LbrIaB|Nh%JUvwUybKJjpr8h{Rn;E z3*o7>tXJ19>bfibZ16lkQoB>w=QpRrvj=!yh<-!RZ&V1+gbZS-}NCpyN2+jw+f#4HJks5bupV9Tzc<#}7u1DV*^j#RjQ)yYRu3OY~SGTjl)7^5Wcpf<&o?XE6JLt!F ze)9K2cyF`Vd&wl7P2>nKc@az%7lSviq6Tik2|F^+&?vXRYGrGPS&s`eN z&(L={`o0swQ)yYRu3OY~SC6y7GjKRUyHnu#_37}82hYCfmx6vW&Ns)KJwtf1suMi% zYdrCP8$7R#)VNdojIOW7^9zk9AIU6ShQ9v{;i}TE{*(0?(g?%169iFk^*$4f;i+(a^Y1-#GAw17fc;eT1;{P^yK6~iQ@Qkjn z#&d_pa}D}dq3_!vJe8L9>bgZ;cb#)Kcpg0%q1`F)Ja{@hW5BaF`dxy4SBLQAh1_KxPTZ#0)Zqmx+e zm(wE02noNBsC6f^Pf+Zv7tCSzX-Do{;pTmS@OPSY^i)lFbv8On`V^^_(BBT7_ZCg< zPPA2gkqAv-zic=rDpwuk2ho(cLG0S&nMlh$!L&U*IR9<)OlS!Y7rYiqdDW0}w!4mF ztLp@|xlUw@>zHQGgkw@e9eQjy0N+ICsU z4$9)DGlxC4?Q)Q-$CrQ7vq&rEq1HLCG&0gMUsmijw z`5kkq;zs7pT;8YG;{?%_EUCCAmXZrCZ{h)+UBNh*J1{oq!}Yyj_0(*KVa=zxcBf30^;LKq&a26YYbJ+Zw%f{bHtfb93616-(5P9qu?o=KT zoH=YNJ~MfzQmu2X^z$kCLzSr6LW7fY6RMs}{5r`+XSz%Ic0@2*Dxvb}fObc0kryh7 z4w#3^S4t^Z7V`@|6Hds&PHMN1eZM2+!4~H+Y-=9JmgWg;XP)>a<$G9{FA3w9`<}!C_8eIdd2;>yp2%ajcvM;3bmp*~ z{A4+y`uS9C05J0cb>Z{g(|j&4URrF?_PcfdGQzEUbd z?C0awWnkWy^8AP3&zANvY-1nC7WN5jU!T}Wd446WGx%o_!xsyh2)2%JI_k=l*90j&U%Wx zcd&<(bKOZ^6<QTB({#^9Ew){OGF;$1w@y{U1ts_ z3PhEo%KwzAoJI>N|4x&Ro~miMx<2R(g;V4`0^ex4?j)~@uOr$~u=Upd-==si#lVIDtwR36(q5&O!gds zWfv*RBrX$@xlA0!r7)e#Iqb1vf~nKGpz6AI>PJagUtf`$$g0kld;WG$C>Mw42NA`5)*Ir#;1 zIHpOWG;oy`G%LZLmfUTTl5SK1@%mG;Pbr9HApShTFf_Qn^Jwoga1{*oj-ypn z^{0-(pO9uKL3SKT3O|URLa;w7r*nIC(ke+Jgn06fj_{@j!6BI@b53hQgDjdNnL1hGMKV5;@i8Cv7VjtDf-ZnAfX;`` zhn7G~LTZR%%_y1vw+ICWueS}B)r^z0nFNcR^3{y8SgqrFG?oqKuxxNr1}hn-a2e;+ zxh%|N)^H`~tq;zb$^qOXjT&*wmYI>p36_32Zxz>JTr<nVdC0}OV*e&>4|jE{d4$w)qWG7BTrH9m{_Khce|!r6kHxn|(i8mI zI}85!6#j3BZ$CbT|I6ZQ#%JR1HSx!9;y){dzsm1f;JG3~CHX_!?fxiR%3k3g1 z1pmh(@Q)9}U)&o1_z?cMH2%0W{Bk4xi^OXH7A$j|Ib7C ztNfk?{=3(o9{*Od5wZRb{Kta-U4s9Q1^=H#;NK+-e{pO4S?Z?o$EESdrSZq5@yDg{ z$8`qy-`Bx}+VK~~_X={gNK*K-XC3_UDg0~2w?)zu{Mp$K{`eIBe-__;#Mg|^ z#J|GCAHRwJ&qDaC{GJ8=h3ig_|536Lv0e}S?ckp;_&+50KN^95*D(CWt?_4RoW>uQ z#vhl)AD6}-m&PC08Q{OOg9)|cFNy~QxmqMC{MqIY{`eIBtHifO(i8kS3;_J`Dg0j- z-+p`w|L4WmjL*d1ZQ_sL#Q)I{{wlv`f&cEcr^lZ!4@`(y;RpUU@Xr(ce@n2&LSPuyP zS>T^5_&+H4&y2voTNwW0*7&pZPUDYDglxhDSjP5jj%77Blr-?PAf z_v+K*e}rsAtRDpbG2lNz@MoBnI&MY;{@ugy7q`ZrrFt5FTpE8|8h>0Ge_R@WTxWp) zeH~1w9e+`Lw;)%GB!xfcZ-75Oh5riiZISc@e@^KDe|!r6KZbI*O8$36Fb>)uoFtNz9Ahv;AOI}ZK#-qKkAe?~T9=MAC%4(NY5^6{E|KFwW zZt|o4ze*nuAd3F~jlM_V6a8OK-xKhu{x_)p;aB~Or4-S>c@%j;VjDr+> z{Wv=4)DOt1ACOZ&Ag6vnPW^x)^=I$@B&twU|0($W)ZERWB>IO<9OxfD(LY`&L;vJQ z{ljt&^beot{}c2*0-xyr{q#KnpXz^9^$)-5Uu^M+{w2TT(Eo40-&p^DKsI9MAEEyf zp#M{;{}t4KDW?Bvp8g3t{o|;i(?1}me?U(EfSmpTIsF4_LjT=~DirCTg5O8Y-3&^i zf7lR${^1k-Ur*oNO|| zdvjy`{~pIQRCFmbM(f=m;?j}F#ABLHrfA~cI|4QE@@QME4OWzalss7ii z{^3{si>W8kzvOou`v2{XS^CF5|1{}txe1RK8vD@@1C20@O zRm&GJjjwr=grJnSQ(}9;w)@|W_e=O_IyXdH&ierV<0HuQP%@K8u6^Tn5X~gC9C)D` zO}LOgm!wG{p(otIYQkEAFJa3l_bx)IXwCz#11`NOUMl?Ty1uM{EDK>GR^Gnwtfx%RG0|F{5x ztkZHi`7xBl8Ta5{*DWlQ>+rAmCHz}+1^%tQ6jS5}7RlQWyc=6rzSu7lzW)ky@0E!h zJw};88kC9pE~GCiljcNZi9o)!ly5ENTTA)YQogm6Z>`7&6ODX3Bl4|}O)_TQ-Z_&+ z@~!X2i{#Qjv^=(O9o~p9T1N+_McOIel5qck?D+ygm zh-Xh0eVNepgsvxaE1_En-G_fF&wU6>l?SI-L>`<~NtcJ?K9I#0A8C$~`Y56I6M8?P zPZ0V9A)bX=^k0PdN$5p45W0=fZG`T}Kb7Zxgr&-ZQ&l1l&Q7Jv!+9W(#n2#Wo=@uM z6S|DhWrRLS=#zwa*ly8R2z`gpcL@EI&`$~d8vj(DUn4A4oav=+lHgO^Aol7hOeYGoj6deopA;gdV^@<^KS}Qu#lj z{GSNYVRiW&xHP&(7zM*2V6M8eDlL(ze=r}^h5o#sWO6aA8UP@>h{s}++ z^ZD(m{9vKZ@p~t6-btJRLIZ@(CUiETrG%Cenn!3Jp+gBBO6VX$2N9Zzf5LAnf_#3H zmEYu$-#du&4&w9^>L>IjLT@6pgwPT~#}Yc0&@4i;2)%^RO9<_Yf5LBH1o`|XDZfb} zzyC*^|3{p22%SUdEJ9}ydL5zH5juv@F@*k+&_5D-F`*X|dJg^xzvm#x=QmOLVOi$% z`F7&Goj7kL^j1P|B=kl?|3v7Y2+bulm(Z&Ty_(RA2)&5VKKLj6_Cb)(Zx7{%kHEXa=DfgbpNhAfYMvC;X-$$m90{m4f$tv_GLq_$T}(At>Va0+gO;QjZBUWtli-LfwSA2`wYE zjL?aMP9!vk&>TXqB=kx`&nNVJLKE>%_)SDm$PeS;gx;}fxPCLC*Xn19I3?n&Ahd$e zsf11?bONCh2(=MvBlHSFuORe1LeC?#2mT4aJrES~Yq{zLy~+CdHsZXEIC(;OLa!(E zdP41l+6m1jG@H=N3B8=qa|u0{&;1 z@GwofdXI#V|7uKD9Xa)X6Y@HH5j)Ku>CtiNtm5p#_DC=MN^|=B``9Dh`d=~W z>gY4wzNcp|H+DWdv}dxz?U5cCmpHS2rpxQ<=T5Un`r$7(tIu@%o}NBq=dDA1?r?jg z5Bz6L;!J&}%j@*H)9jHhj!Rdkex}>^^z<1!KOO3Ghub6l;Fp@yXS%#jpF7PS=~G{f zNmoao>GnN6ea6m1hx**%_DC1SCC;p$>GC>#?lgO(pZ!9!`b@X)>FG0ezB$zA4!1}8 z#DByj&eUhRyiT7x%^v9+;?mXB&t23W>6M?4DbGnOn`WZWa z9M;brZjbbg&&5=kSwGX|b@g+n*(3e>zsIDjsh^Sk%yj#no<3vei9>zvaC@YC#U;+v zXS%#jpF7PSY2Rm?)n~eWPfwq*^TDA$cep*$t3DHxI8&eL@;ZI)G<&4~5SOk_{YFINlf800J=MJ|=y7JS_=`&qkr_Y^ckMyQb#iXmF&vg5qo<3vecSC*daC@XLj7ywZ zKhx!P`rK*uNJsvyS$(G4_w@7`JC7UcbBEg_-TcXz#F_d`m)GfYr`aQ&8JDh3{YFG0ezBbh74!1|T<`d27GhJS%&z)wE^v)||(#7?O_Y1r2k;bgB(l%(S^;9`G2zxr7 z#n#>SNLhb&+ane0tuTMI+a76XCDnB^tRK7Wk>cceJ)@sr#T)6}_DJJ)L(^@u?zTtj zTi@i_hHF@NGAx7QR07-IZhNF+2^RgcZ}U~(SK{pZZhNFqLTFlbw>?rEf8TA7)U&3l z%R@Jw@3u#pw2;Y8_&?bRH?Rb%YGi->b^P0HkJPstnreI1t+(RVUw0*Yq%;jV^Qpy0 z|D-&%bJM+h(4ypdKfv8G6fe%CK6~txUj4q<20^U7N9WskzjeEE)-n?oeWGud<0kNY z-2XiVw|?J(o4!MKsr7Q-Hfd`LCtPI&VvH7UHhNZ9afI@B?~P~WQkFxuy;U0focVi} z;NCRUdEU3R^lGf4g32yugLRL1R&84+Ja3l6%~!}h-n`&q`C}-qdvKZi7F^-J4#o8) z6xS6fu1ir|dYSaYep%s~M=clHkxh~^8?q>;j!P5eWas_d`P)~uod1^TyhAIdWLrir zN5KH?M=sB1l+#SjMpkAYe!mj76p(GtMy6yx1ma^;-`FeX3|mHLswvs~E>ATjYkGF) zKgXuNf_ToJ>?Py3C;QDTHab7`?a5wK`1{(Ez0~y+rdzqcZJ&PsTiBER@q6Nh`)sl& zyDU+4tsbc%++EzB?CF=p74MxN56gcSw0&*&jNe0w_n^?|GT(7*=30; z6xIJ{fj!yN#~SN@7q=&STcQd@`hOPKlfAv#SpU1YJ=tZ6DirDeSzu50^ottne;2nW zdt0IkMf!gh*pt2eg2wva#qG&1OH`pq|IY$@vZrrotp8oyp6qRjDirDeSzu50_R+@r z-^K08E=yFQNdM0Qd$OmW*I56%xINk15>+VD|FgiJ?Ct9s>wg!wC%Y_Bg(Cew3+&0B zzP5q>akgw%wgzh5r5dLZZ^bo>o`={jh;E{Z{{aMsQJ0C-R?6yCP+O*sLEUJRoGvvR} zo*~Bf-S%hE&z!{`=PambxBc1O_Gfq7pWSVLcGtE)+iK%``)TdV+fVOY|L`djuv1jM zY`T0(rh4&o9#UOWJ%9QY;$A%cGjJEQeC>{Z+BoTB0C_sLmCirj(Yf*b>8}BH`?mXA zW}f@|mYGBMw#;1hla`rp+0-)g%>QhedCI@G%ykdGc@D6sdD;-zg8hd~Dt?;MX*lxilNLF>d&!TW3JhZ{wF+ zPqV#;-HylnaqU<4fw=P(JnX8Jn1 z(A7~0>#SZgeLmfd^MXepYV}7%B7rTZFb5ka@6F)#-=Tur-`sw7`rgQXDma7>13vNUPXDlz4~)h7nI2GA?>68Goj^t z)-h!36n^Ld;4y8D&y^D&yVRYUv53}mDf1g&T8ySLU%PXHm`s(C&JZ9Bt zFOnOZcMbv;cSGA#`vR*@A9P5rIvq3yzozMMX*S#?)#-q(?*SE8o&K=pc&fU(sbj;o zcb(>H5zcl)=<{o9(Ph)uF$yhAYtdy^i+=IDcrDt8f^VF91AUY;4 zk*0b>=Z3o~9l)Cfys-Lx4>X>`_>J=}TPc$L2l2 z79v%z#Hu$YRd4d0hd^>PCy{!ARMN@cW!T0eUK-|RR!VNh=6wJJw-!L=(&e4i-?-kb zz4~n+v z+$pdB=$X|`N91xr?v#&x^vq*6Ri+>YC7*l!$KG(}=sO?F4etvo^T{=j@3D1Wy{Ira z+&5T216{gh&aIu*rFV2zJFe*5-0_*gN}<2H{Nd_zJF92kbIP*UpL#Vpv|M@g*;fp| z@aW~A9Dd%>OFuI_b#uqVq~AHV{Eq4#Z+yd9XM+ActQi{*_$8dNj)%vVZW(OL(OzZeLcH?XaeV&}#UcTkVj4QFB*ZOqPCGA4fRIOnQQT|Eg-%axyf8Jx;N z?bTd+^~_1_)y^sH)l>Ez-8^A*+mv_ixp?%t{T{ll`YlrKq9}8=E$J3M9dpnO&c0{q zhU;1`;h?aj`p&CQc=u%ok?}>hOh4$@3B$wd?z`u@2Pe0D?bgms_f0xs?EHi7M&!bl ztFAfdR{##qJ$8JqefaqKDZri+g^oIQwAM<3( z#r)vulCgJQjh^_652MJB%C&5`2C5o;=axNMF8(qgDyMVf9KpftL@l{?|NaFV*X*!;Nj5VQPAMAQE-6Z=?I>I;8{`dehA(l z!3QGvB~)$8*F=o3bMR@e-iF&Li#OfB$LP~i&P!TOzH`pDr5o;Qx#Ta1Ur=5CrN!0j zDgBaa;kqT&fg6`phi_paJbwPSx{;f8EgSv?2|MQeZpp?^evA2A)bh2;!MVlj{}=ks zwVZz@a=&Ebyv_eOJ9px{_kUvDeS5Wh?GK$B9Zu&P~6agd&~v$M*I2up}3a9sb0o2PbaY+S0yh%bq7x zPn$LgMKf*6!s>!)`!1{=K5g-~?=BwwpGhqj^K+;+6=9(r^Ou&3k4M;ovE^Sv8-4mg z5JwGLGKTz(A%A1YAIfs`o)A2@b@5-fZCgD0zl&QooB^E88*W5lF#?78B`L+ruY==C zlHiymsVPcoe(YmJss3WqgHuNDYZ-mIrDek&AX>e1)7Jgh-^*^`IX90!h0up3+1Js` zbDJLAchf_Y*5Ak2(feDTbKB_Cdv>-g`2AK2vZQ(oa&Q!K(A)Cpb!fM*7jP}4oBUdU zlEsv~;pG%C*6y+Og4t7sxKiM(oruNZeP>jd%D~lVCxDK)C z(OS;`z35=_SLi<~x4LcF)znJMmDRKFt}g#|wc}4`f%&i7pST{OlPXi%zrhOr&~w_? z-#LhKJ@~RsTVJ-II{7uTp{9w~S0}dun7FC^ zCr|$5Nd&(HzUt(cGO{}L`Jl1&RmdN@*{j=!E2|2FmA=l6U*$){(C1#Xx#QCA_N5Ch zT7Fq|`D2~c;VoJnI<|~;JeFP&Ixae913y94vf;;2%UH+7$8?+51s#YDo&QZK>tmBSUict3Xo^CgH+yne|kmW{)dE;2eJ*k-Mzr}3qiPWWqn>)Tl zptJf_He^?+366DqDHXZps*dxZ((2?bubG|u$(HKmU&BRff(j3~^8qUFfFHqe1Km#{ zQ~E&nQ|40#x}Rd8Lq$6SXj?yo766@ZJo_u&a92J1YK%CmAXVq)4MT8rxVxqLd1#bHroNwM;e65s$=m#JjEo-|6VSoB?xgLJxFB z=Z0HbF8MM@qT9U`-R_6Ta{jxonMx_%wPAwJ@c=7bTXDs+ZJzn zVA6uI&rkg*lC)g)(W#tgx3B*Vhrspsv){z1D3R@(ez))X2RQI;dT37!absVZdIi&N z`|h?I+P8hLquPJu6g0qx@Oz@8<%@rA-}J~n?bUZ2iJ|*VNABBEJ^aYdZP#^H1622J=15S4N9qu(MEj*ACHp2mQOi{r81Lo4xM}Oe_Ue+^urWTh!kDp_Jh7`IctdxjDKyp_&9{2FS!Uy?|bj( z0D`QJX;#MypYe;hee*=*Ah-3Ar)+>c8MvD_T!a#2MCZnhLsGgM*THdp3BfT*lG>es z6>%1zf8IJ}^xhU344;&c8#X<(|N8r7jJ$L7FBl{5)r8-aL2@gmbz3Is7}`F1PfPoA zZXA7T&m}DjzQ6VBNQZF}8QKpSa^vJo0cD(=CfQtmQJt)Y!{rp@u=i4|O_yW7&&%W0 zKURO)Uj6UU-%M&BePEBulqWWGn5*o&;dhn8p4iNp@9>N{kIOQf$+v8J;3L~wzA$O} zoLk2hOn=E|<}YYj@bqVMh-z8z;Nv$;7(N>7y2^7~zVMRiW0R(j-Z;NHX?n{S_MZ-N z&v$`Snc4+oB}S@eV{v*z7`+ZsDb_>yPWa0fV3K!6dv#m;>5Hq6w=Z8@{aO2IOEw<7 z>JNwHmUnJE^jx^hmdyOk?7KQQ{m;bC(TAsOIr!IDFoEMst!^x-KDea%_yW+_w*TFo zqc=?GJo=$wnCkw{l(VqYfZc{SgMV*yfAWtQ$4H4OIHVAn{Os|Az_EHvi{{%r_T1Alv-k+=~yp?~;*@<1~Kp{J(zo_qQ%xamw*? zJrbR+a90sruSU`=R1y%>m4g0d0sMK-6x&@KB;8Ds)$ZQXT?G+)%z$>Fe$RCBsZ8FBF1p308+Wt1qAn1MhG)~>&ilr@Zb=L zRLaVGwm7+=Hs{W9?&0d5+XbYvFppJlZp8VEBO1_uu5+Eg=iIIpMHdE`S(5~V#T9QQ zu%d6MQ0go8^mW5`*fGfOS-BDXO86}v?Cu}#DFm-Dg_OJc2D|bk*wwb6t29L3t$izt zuQ;Z0T9=Ob?&>ZM_M%K$2g<8V7ZTnuG3&eK0k@_t~iLgKb zSJy3&`Rj*tbeFcD8JsFv8$c5X`U|KKs5<%XRRz?fTyCECEa+I$aeBuRF9aacXnpgj z6nlf7QgJ9i926CbU@)uL(&B1X(n3FKDeBqFkyPqm*FbS~p{EN~R24$xuA%;7#p!23 z5ru#>Qp5XJuBrr;BBbuEfP$oT_{FkekaGN4NyQx6793hE^`IpK$oH=-20exTww?f? zqBOrks1_l1a9n^sVraM`d2-!FoH%@S={xc){c(~F`J9n24Kn}CYL_*YE>q>)Am85~ zgv}%9Ee;R%1bu@+U!@@Z$)FK>Er3NBnL6>C4wz#UABG(XH=0*!OuV0d^7xKYsaOKH zp;h_b;lb{?!J1MLViA^pQ+vv}0crZrc=b2^QICt^4)W82X)g3S0!S5;F zr@pK1^POwq$A4%0=#Ezor<--ABOU*u`GkgtI3IYRSe?xzk{zqxtmH@D!@XSpwQ>COGA(~r4Xcso1X7+45!^ z<-`36(n!+PRE$?>?}_LbSA?y;2Fu7E>jdAm!WaElhy6R(x)N0+&ez5{mCakrtW;_n*Z*P z#^WtK%RM)de*c6&3vXwIf9WGC{}Si2-uVyp!10qB|TJAPm=xtNRY{U>{+eg&if(MoS&pfwkqq+2^!zJ>_-mE~Yy zxLgTV6oNe0$9ce&HN{raK4sNNxvx9lAMiX$rLO>8%Tl^0STPJm7qQi|D!&?t!P^U^ zqT4xY&0%AuP#PqfETH7@X+Rya%*uUbY`Z`Nw*gZe>>mL$P%Bl2z%S@qiM^vj55qc9 z&|C=SODnNqh2^^?n%7z>4TCQhe#F7bbzoj=Z@#}=pxkd8&i9m%d9DZh;jfhX@`Ee; z3jlMg3g_mr^v6OD;e|@cJlSOmeFjoUqE_T!5VZ{3T3DCkpbfNZnRSISw_)AF&Ph)I zS^8O|vjWsNsRGzbh*$TBH1$a7^$~HLwzY<#h|7hy4HpJc^UD?NH_e?5!MeFcHVC*C zTOe**ueYyMmQ6q-mg3gxJyLS0_rap5KDBzV5b8X&^i#_98PK=>#ri7qn@FSgFA%VF zueyuwQTGkMQn&4w>K=1fJp2p4h{qe=g?DQB+kdWZhC} zKZX4GV4&^soi)S34>3>-uZs*hL_CKZWrBAAR^%Lse{dhdQ>i+tV z>P~U4g_~>fhG%qlv^(n$D#t0mSJ(1u`Lz6rGQ5A(7t4-iPd#%E$9W?6T{u6qa$vc$ zY+2`6wwwcUZaED<&ht2@h-l#_fp=cF8bj33jHpV236(zW_guf8(Q^6KN09`ivu_9W>w;!k}4sfX|LHXJ`a z!;Bx(^09dJ<#HFls6)U#4^+471?v9!`Re}H^VI#<{o>(wx5VQO?-kQD{JiI=J8f@u zFWxgAo{TpjhWgHOlW7x`P8Vfv(>aimAr;z`H+gc)zV8E$#>c^h5JE7SS%7{1|Hewi=g zGOeG+hy6Ix_w!BIWMrK2^zjiK(l%U+XB?lO9H-^}`FZMIc&xfBj#0OLuDTtsRrirO z>Yn3Vi#NP~YSZ{v%~p59Vd`E#D;}PVH$0=equuLYt^9AFp|0iE@@e@~twjH+FP0t4 zih54#-zOuS<;gN&KWcqB`(M@v)=BH{0mdGq&vc}b*1wal)fM*V)|aziH`>1oykMHC9=}kUAp0xS+ z_zd&YP=24crDqz;kB{%;GA$opUh@-|Y57>Z`fC5rKBGeddzY(QS*GsB*T=)BIlsjl zo`vsf?ja|u{7JbipO!z<56gl&v$jA#VJkB$55EkoPh`5R$LO=138%FKqsch_j4t8H z_?b-f8*H)}eac7J>#WOwmSiJFMIDf{|(lZ^OtAD3@ykv{IH~zP}pZ}@4-@aMh zUtb#!Kh60q-thkCtD5dbUr_hXPpW(TN7P;S-neV=hG%qlw0ppX%6HGT>RNs+pO(KJ z&389F)%UYi51&}0@?YMsZm~;UZ9Up1*}mAH_-&MHBaWpEV;sj_hFQPE@s?r4Wt(JL zhS~VbIQkjKw##%jo=pZ!x@_Zqd*=8@9-Kpv4*L_PV|w!C9D;N?t}`9eGn{lupJP6G zat^_COwVxgCm+%yUCv9G&ennCM|z}7JmNE+>4--eOb?cS%Qxdmlkuh>(qKGkm_8WC zaQ+x>aen^&y!!d_^Wf)$=}l+8ewf~LLH?FMKaYMsEw4`*eI<(<9@3 z9G{=h1IgrJTBhNT@%&l7j8;-tmM*CSre|8_n{mvC(KovE6DB{4W8REEVa79#F#7`5 zY3tVw$I@F`OV4nlVJ>OdSU@_-_B?N*`*nc&F`Zf+VLHOwlb*DUp6S)-G2D3g z^nLy9?D9^^M>$Lu%GpdjddU9J9`xaWD z565}qY2yiTlJYQ)59P7+q{oM8DPJ<2alSl^Pd*IuWlN?Z50jhe_%IFmCBqp#H zVqQ!~zP>C!MxW{V<74=Sr=j}aS8!EJV<4m8&gID~A34COtbiwlcuWZglKOG} zrpUuCIMx;91-Uhcb2=S;IFeK1O_xHYAjflfdJNQX=p{hX;W7^^4Hnh_yO3MhaoVYi z+fQ1wqyy)+I!-us@rkcv7(&}SI~JUJ@=1_qVaMy2w=Xz#@sjq_I!7^rtStE-#96m_ZL{VugGkdhGtdK1!?@1Ju-I{^6x2BsM$S@Ec?GCci{oG? zN8paJbr%P4GYDB(QRvQ7lR(Si@K}GP5833|E_X7@Wwp$ke>mnf79p=l;cVC-naYVj7qSK=jv`no zSEzzzg-S4kqV@L;^i|4T1Gq!fGu&U8Ni^stIHUd4le$hmsq3_kWv6v5Jo(hFrOTI` zw)m7K9bL;7^ZM6PoUn5T$$}h@c$F)-=T)KPYuv4*-coTO;8nzYiD%QObfw)q&2#!l z6BV?8YB__a*qm-9uc6-agClG5BQs}_LD1J5j1-4Us*Ro^&f>9#i7M+90a}HfEzGQC zI4Gva^4KUv*~oLTzqoRw5pLJY{^7#hoYg6>3P5wvf1$s3E@gKWVi31V1Nv8%io-+d zOYJLo$8i9M^Kjy@tI)HuPzH~HCp_i!AjLEZd5}=<8wy<1v?}SO-17WUwy)%AE zWz;ZKdZ(d~dU>;S4U0Og*SIrlOoN~Y2OoK06o)?h^Fx7DND-Q{i8>9Bx@ef+UYuU7 zpI=;UWg^s1=2t+u11I@yE|1EjQ657^kUKq}LT4QL#I;YhZ73oLPVSX9;DSUJwgPm_ zC|{>Cc0G39mqn&`Hq&+JdMmAy@rK0m!JxtW!8};XQOd?rfHJl=vIjyO`}Ot}`g>3_ z&#mBoabLN+I9ztulu0d@dwAbYaqn~P2b??KxsN_a<3H})dCvXZJ{tZC=kC9^`Zr8b z_xpRPd;gy5z7|}@bH8!C=_M1aPRr=cibg+^mgeFhH(gE{ z{2JuZNd>J9=6ibFMQR?y#f529o4GjD&YRP6oLMW9b|1W|iy;sroE+TEm)YaETk3A? z9FY6KEBkQbdZ<*ym^y$_3AX;EvNO5#Jv`Z*8eywV=F4S!DGD4z6u ze5U7G-JYy?n?EMYEwVjCOqiSwZ4s$IiDz~f%yoR%WwT$$8hmKQEZpj;^rSZJ z39sq1b=ob?(sNYmC#&--etkn2HYmWoU$#PKMnSDDO=hx&~=AfFUe|CC&uix zR}}OjPh#!>{8hLVf)?T#7SNRjSF78HZ#lLVQ#j`^z3}Eo3g5miY3i`PKnV^WBpoQ< z#wESFq4{kllW{y|QB*Y-*LbjOjwZ~wZ$dK|v*b3fE2Zmr3i1*-R03>y85I~cvuNf;w5WtaA{IfXO3(GZJX4)0G zm4!hX8A0>Fc7}KPOUeWcMND*5+Mcmy&$}ApawH2HHZNP&Bz40ws;?h3)Xe(9?XXZW zS~acEJ+~fxX&>&c7<8n{b(Jq#^?JloK&3Bzoybu3`{-ndDI!{+)$il2ZcA5*ZW{YT z+^|AL84PAy#nByx6wxHelg}zzBw<&jXx(K`VF-1(ys9{i*&XjkLLGyL@~Y!3ZfoI2 zB)UAA-xW$euV(2tG2HlML%3P`+pDT(>6`NWRk}Cih4Ll=kACeKyuCtuOzP4v=oYcC z83~)GEb>s4T|LDCTq^d6rGU1+%NWh22efw2&Aqc1AWP=VEda`DA>y4P04?DN0XJL(~gM z(#PhCZp7gwVg%Qx9nt{Z8kyWmB`J{NpgwbI7tMj(2p`XwO$bAq3E;!cIB2A-J&&)4 zgZpNpT_ortX@5hab!e7Cnyd4855p;Kil_nP@}@ADO`Da6FkF|(0bUob#LH8eNxA+N zWvuT~<7Lde`q`7B2p8K{#4^mNH4RLjl#Ud99M>rttX4U54}3`!mY?H4;Pd1AgIK`$ z1W4ef3XtR<)jPb4iag_D?Bk^}g0;~ic;{Yg^h`g|80h44d&DM( zQ4jk9Oly?Y=&>GlPW%USX7irR|5$#u_8v592|6)r)t%OGP()kzqqrnJ`B{ z?3M+1mdh5*oVFExJQ##-0Vb3r{n8Ug_@)J9ymYTUye3_+5Z0`VrM|a|4QP315(K9e zD|m%NWD3>3z>O<&jYY7gSUM-n3wKYD6!w{-(h+r*f*Hie!I~mYgut$KzbxHwB7wtw zxCeljz^W8%LFZAr988Pec)J*OpPY`$QTK_D=$y3hWa{Zu2LyCyfSsI{phWSfUVV&L zMsAOU<1&`3YLPo@-DzCv(WkL3R*X0wtGw<7yCY=nt=6^ntSu}%Uej57wf-XM-%;Va z9$nQB`^=Z&XZeiuWqORe)~{(XG~X{8UDJcnNrpGuKOS-9_Vtg%qwE1|nd??%zAYQS zv01z9>4vRU&4Nkw&Z@(tJ)ZuP>Cp!?-+vO}nf9MY92x6Bm$n~qB>OJ9Cph;+xLHrV zyvN(^j_n_q^=A8rs4mCrZf&^r5y^Dv;Z}Ezj@4o6%IdMjMgDYJQG6C}#dGiE!uJhw z_!Ru~XsEm`)t8dCXmlr7F*xwml5D?W2*ti5Uqfh8%F7iUx8`J@7=FhmR%o^Z#)Xyb zOX?f86*#|ej*g+VhW})6*A(tdUPc<>jd4ip)JjbCy%P#udUy+~ayi%K=FibvUdSBQ z#qQ$Jh;GxZz}XfUQy0q68OIKM9{`_d2;AN*-_Ph<7|~rNSdF8WV#*K$v`$&LlnV7y zp9d`Al^p}fV>-eRCK8n+HRXb3b{rYo{h~eO2zv#w4Ggn@$T3h8Nq-Y`oQpkHmS1?L zIV2J##XBgJH&(-X*a&CQlJek%ODNHJAQ4>kq#aI_9cD{v&ryp`Ptvjt=vi%BP#PU`xpA4*7Oj0pZCcxER(LYq-_D=j z$JEOCe>0K*hO^FCSo3uzNprmZ`gN{0PurK?@@4cWrG?ezwNW0j zWN3t!jBl2XrmK}R3;)>?9@mGROS5uG`Yqhb(ER3Rh1cpW&Nn+=DO(hvz#roylRcn!i@gM)GKUdY_V^UcHusV{y2ID;(!N&U=0Akis=IR)aD6g>!{|3T=^xFRyw2jLYO6?kVGY zdsr^f&_A{ZKncgtc=%B-*XCqR#Z3cynW~9Q6Ro&1hNYP9E1Xjp!TxuT+oP9bx&bvA zm~DQ6qho{t-&J(;lZ$?sz+~%kK>X-bHTc?L@o*Nd~*UAia|8SfI|6hrM{fW){@1aojXX z*EOqlvDZy$lbYGl=)PmQUz5y)EcFB4sr15LYD+ zF*2)VgIh-gBW`(Ej!Crefk98oOMg zhYilP?FKpl25ui`NuJ9TPS1(wdCI$lKF&@+gmtf`&giE-GC8>yj!||ZnquX^>LNBv z^XJNIR}2<~0*{Z!Yo}{`UHVOxE|8J;u1c8KN*ua09cw2p7NX3-dFdU-d_`bBRL&1`MbH>T?+LT}WDqLlLvkwUY+3OAATsu9QaWc@=s_xjx~ z!h*~xOoS%&JMyBoNL}3YvGw0KY|SG9{`$-%lVmO74wAtObqxP#@K6 zcQt%0U1l#K{gI_AROTIGu-Bhj*;?bOTd?WnD)|lDR%Yjj`b9mugrO3fqUklG#`+6I z5#^=Rmo(XmOUf$A56LBGnMjtinXMbCbIy&XqDYgN>4rEGj(C;PtGt-I>-k571=~B{ zGP?1unGG~>U5@*b*0J+s2@((VJ5HBQ^l7+mq>tmeKp)oyDXu>k4bH`aBpiPmPIzPU zSm5T*Z5~$^7}nC&|q*qSoG$Dk@2 ze~r_7q5x5T_CA={F`Y)_m>b8#2JwtJ0M4ZfBR5bc27Qfd&7F!8g4LPCO>@;*J4`Xj zk>u!tdl0xoNX^M$69#8aWyF08Eqpo}jbHQcEyHD&;KKRA=f1KUe*^ zVCKC*xsd1PS(pZ$!@<&~DXwwqJ6>-9b$P8VFDWOvAY_X{x9CJ~IS6||`WZaTQ$;X6 z2EyJ+UvK9Ii;zDS7v3A?#j=9ELDsfrXJA~*gET%>5jwif?`kAYdgDGnFQ97Ta(dlQ zj6tvQi$R#+93U3@(#ObQ_89B1)~=EK*jhFGNFVP}_Ukto&Dek}ViN1$uwHAn>QxP2 zrZ8{T5hyx30s(YZ$ozX|8qgA5WI~J1c8|-gQgZ!A21Y{fiCJk_zH+`o>B(UrJxCCh zSB)-Qy@yj$x2R?5x=7PP4JB?e#SDz)ysDw6CZi8KqAt6pmnv&K zE|RgZ5+^iqs=~#Wk3kQ|ye-DTPdyD1PIR$%(9Iiy*n7dnY+MSLtuB^b2-Pz3z7r~CHdN{>53v0BAkRZ1IPTlm6Z!+aek?i5;Km}= zsBoeJ-DyZor)`Ik;y%Lh%j`@kAVeSU>1~ZN( z=S*&)qf<-qK*6@aN>&C()8W)Cp1tl`SIs!E$Noe;9$gzfjS$+W1HFBf^mh+5`X{Fp zS+*oD-Lbc8#{{xr%yVcu@tn=HZj2Myt>Bu)Rgriez2bcS zDnNqbd7x>Mw)72Ej3ptrT(YC_W#op=xMXbOg<~fl*2@C5;XRS8(VVZo+|ppjqZ^0d zcsQTWL%RT((Yw4!NHe;Lr*B>tjsbMx zLi!l_botz>$r+zS*PZo-B6Vy?+fU0N5$9 z@xwsir{&+#$!T|2u2Rs%NsoLqy$%O|ej`0u&5X7F3_6_q)!>CAeQZ5!6YyvyQ%5*N z`SQ7Pt>IK(!UpscYs;|ipl@)n>m%apON-MLW;TzM_u$&)G^rjx{~7boXOewwADA0( zT;)waSS{2cHhWm$DSAu;-F`rJ)+L7LS?rvMokL0sOQzZRem!eqGDU9uJWW=3?b((1 zS)@pQqi6iG{DyDwaW|WvrAyLJr&miS3(vyMH9khSQFxn@&!Ur_u9kkBZ+5)W``h#Z^<_61v)v?qBfse&nJz0l znQlk>n=R8ud`valqWk&TsBdFVc8(E&TZz;orSb)0_J)=Qr2F z%}s_I-5u?k{KhYtUyB!Ic>k!;iS9=`&6Dt>ZH2w?<1-mQhVjR5xlF6nxx10+OkP6$Lw^;`q3P|^*v18h&DMiN)yGaJbUkzl&iULuxjvR+dGaU zHnN*+sgvm}Jn1I+=5ovB`PuPF*Dx(S>2DNn@mX$?Uea%PS>efeOV`LXyeu~z|CZx5 zJn35MWVrb)zIit(7uy%xSyVTzZD?I&J7s&d_RDt7_WC^hvT)e0`7O+>cz#DS8E5x5 zqVV*#(J0>UKayz~_fq`Wzq|}T>tmQV=850+V;^PT2aNFJI*GzfMh%I=K^FauWeHQ zvg_3CzgFE1-&XhI-%|J3Yt%J1=9cP)^cN29@O=DOr<0FQpY)6eX&N7+OJ^6~i@eV?!8mFcYB3ZnaG@r+{{!!=rz+kbq1mX^4FdgjZ%n`wDt zKKX1fzG6pZmnCnr^po_6N1CROq~G|lJpCt&pUr3dc+-)uw`TQgJbn2X=F_L&;t41F z7waqjUg4C9?au#Eul`S8L`MI)Zo;!x{(CNIMbBevlX*(|v+{1~EI!;nlb4WGX`b_gEL!^b}8SrakFwDkBv%PN$}p# z;(dbP_0u>zHlUPU8Fyk@nYVC5j{CxLjP~$DxmPUPR!1wy52QJZ|8o1mH#bWf@%+d+ zNp5FDCieo- z64cXJ9iE2_ zuSLuPKVMt~l{G~>9>I7s77E#U41lKhDIK$%o@Z%P@+M%m=o%NA!dEZua6fV7ZC(6Y zUhEa4J9UHig{m^{$!F*R$G|1E-Xz!|{P1$PF+VHEh(Gcbo_f&JNbJU5!{gZT+YxyE zz!Rn3c00cx7^x0NQ^I?28TppikueN=!G+!%awM<8fgpk-8@RCJ7nz+En|U;cM=Sj~ z92lM9bWeP{)j@7SMvNrl(Igra`FH} zJw!0oSO2r^poDq-SGBRz0e-&9O=c{C)4UQPpK2bQ=IKce6(;-mLV_1xmRX)$mzQ3E zJhi|wfOhfjEIc6K9{dzC-t!}F)iWVe86#&&qe;iBgt%RagYc6-9uIQUyx+d2SSv;bZVv z9}Sn7p}~f$Yu_=@9`zWzM;O#h=ei>A7kd%4Z|l2n|-(iG7R6? z9qtaP1p&j#{QP_=-(M;6?n}PJFpsZK+rdK9m&2!<)&4M-bM`MI``}hc@)=e;smjCc zm{jE;cPIvBg5S?N{Vv-Qr!YiwXQBWzyICGQ<2P1_*Jdu7vGDn8Cpz z#fWpX(rjb0Ioa~YZZ~-=)Y-EFLrp6u>+QL2jwvS8V|e|In~YsRTwAq#s9KB)#2AsmToMpS#B| z*A8d-1w6~Yvo%XhW)%84#HbAg;JOcP_Y{Zmbw<6QFv|k_U~`+FS+rnZYpnNC#%C$) zGUa?KG8+PtqC%vwf=XLq?zhk?HM4JU2xc%So}9Qg8C?PKP^=p`*tYzEQV#>$eODJ( z#wS7xmEs`zMBRATlNBv z)k-YzalstPyWKcL#Z5FIxhLxI#Ck%AmpL!M_sr$HZ}IZse*S4_-@QeCz=HDvU7EUT ztZP`=LUwkKWeX{ZqqF?+;n;MlE|%&sF=~rpi9)}O$drE}w4=k2b!}~j>FWV>QEf*m z=)HGf*|8$1x$bZuaS-NN%Iww9zv*{lTiuv}^tC)@M?7X9;n)>07U8qJm^TJCuFXDN z>Pmfl_hQ4pt(IMmyeJgq9RLWFB7zgqkM#`> zv*7cCBWv;_un~p#JJva%Uhp&N@?}B}1yGHSRfQhG<>#A;>(a9^INoTx*eqNL9uePC z2_?l=g}ve#L%lQPvq<`RKj=#bz3hCu`s-(1WR;Nx_e;BjB{t(oh@Z>N@ZJ}(G1b-z z{hDioysL;99Hq^~TMG2=+D5ypjdE3AKCT>&7H(rF{L*8*pgrkm=!$6^rPZ_WiFQ^LZuksR$ycGQUE4F(0 zQYPbAe`Apu@yjDo4ji^Uz7VkVPT{I=%rQ;V-AV|TPq%mSl;c5 zwFiE6*%EjamEB5c`Y(lQ6vTToVpS0>$fi)yl-)8ydf|R3dIRtMc0?)_k{O3x_wvw4 zG1~v+6epI_7)SHENT>uAe~KE+=&uBa9zILWX|1dThtEuvDhjO4G_3lWG|?C@AC-mb zUE{)gz7<$L^)zU_U?cDTy)|6e(atz3dLb_ztQ#GpVRxpECEWeaej4<@HukWa#A=Cy zUEmFx`2M@}g}TWBLn$&V3_D-3{nn@l&X$canf-I6gb&LXF_DV>*uKwwR5XbI-lQNbcRGc&$&llsQx!ypzit&>VE2cbq^R-_jTu~ zTV1E_=69+4@H^Fgu5(}e4)ve)|J42Ph`K*tqps1}+3sIgE5DaJ*Z3_Q*6?#G>hfGo zt*%vr$?(V?eEoP|^BL!M)>#^hH@~`Xm>+j@>(n2*ETTGEa3cecd@CCjn;o*V6Cf|48Rz#_t&R?c33;J>Ohi}w_K8)p z&`CdcA#8t8addtV0Gj)p` ze6#bMzM&z10xNGjbWZHB$jiT-xT>A7sm3;S+Z`#TjMA0(t7v4JJnrzhq@!T zt9$Ct)IICAc=(TQjmI0_r+=d1|NLWhFZ-do>%JckPsSUb(cRJR>YJ3m(Y5?qJ}rN$ zwdg;!#WQ?7D@d1T1qt&0PlIO@$&cZLd9KrB zvpD(*`}B+s!x?Y#(Qo_-Go7Co3!`iF2>UV_zUANYYjP&zv;3s*^Y-OrobmMW5gf{I zxE9YiJ`4V+<-Y0<>R$YNb-(nOx_3OP?q45?hriGHE#C01`JJY_=V5gxId{fG@$h84 z;Thc>?Jjvx`44SX*Ya!mwEU@7qW{zv%Z_DFJ@Z_33w}K7{5<@u99ZrwTh=+2t(}>k z2AF5Cc}|*Vu#=C`CqD6*hG(f?j33WT8-3Cxf6}EaH%d3x1ddvsu*psB!h(GcDryjn~+i?8!3^RUA%g5r? zm&<+rd1ngvs{PbmJ5AjK_Eq<`ebn7FB_96Qz2fnPcfy_;e&s}UTPLXd`Tx~=XW`~r zyx|$$9qqpAugc%(T7E5`mOs;rxu!3cDRpS|gnq(ShpfK%Wnz62(`7xxHy%ctG>jhW zgHOlW7x`P8Vfv(>aimAr;z`H+gc)zV8E$#>c^h4(wfgPLWB7){c429W%d~zPANJ#j zEk0fq;0qs&p1B6f34QP9~`0Xrw>>6ygBOT+te+zsyl6#x?}$sk2k!x zzFNZ<&Q$m1Gt|9rdOSQCZ+J#`N4xjELis-)sB8JPd|LigE75=Ii)F{MqMoha^!s<~ zD_I8YN3Abs|I2#AI%)kqz}RE-nU3`*t$!z9t1IMtAb#x2*{>UI>+elI_VJX1vibcx zys^jX!!xPh)Q{=Fua}hB=x5b`%Rlj%7ayPcAPvf9Pm-RG@8kOEO+G)KwE6h>4D-_@ zd0Tp>vHbY>J}%Sp@#Qr?ahaBn#jCIO|LafI`g*}qbuW9Jy8p2_9^UHw7H@bKzN@*5 z7ODJ6xh$WSKhqD(f;zLdKtEwCGb<0j46ILNx~#|OvyKr?YX?S?ar_xw!mPI@6a5C8 zY(}5*5jHsi%46|NPd*lJJQ>cP@wD_z$LEgUs2;y?kGflauI>+hpzg1(S9j9Y@$kx3 z@p!{K=nEP?_fzUV^-*=Z-mmTz)wpZ%hG%qlw0p!_<@>5N>RNs+pO(KJ&389F)%UYi z4>uH5{;&3^`<^q@)z+hJlI@HAiQh)KhT~YuFvfA*WtjCl9B&y$T((K3Wtfe>Ha}n- z+b+}Dc*Z`1blJxJ_RR5*JUE9S9rh45&x)WVw;PFFW~D7M2C|&UDsi zQ}0$*C^D(FpbH=G{!qg*ZhXdbi}2fF83H%4+t}k`wa{u zOqsd&z%atZVOoaK_4g+jM?Ekdz{45RLdZ{QdK&lA&IzL?(h$@Hc-Uq60c{rviQwtO>f z@*zLJU6{PqW~^Mv)5@Lct(>eZSPvLx^_uDF|694|=(WtkDz_>(8gjNwL$bcn}v3}?Jg$Hz52GTz7W`T0DMOdh6X z8vYp1pXJMFC3R)#k~&~|re(ev$9x!lqf0+w^0PSR&G-{$JmUznFJPUve%){^y`{DE z3^y9)l7@{1q?2sVH1-mP|t)CO6aZVH)yFhBJ(eJ)qir%8j>Y-(8Ad_=T6)GMAEskC z`7)n|XD))0-`1A1Cp?J4IHu!cuJJe5+MT({wiEf4g3p(94KL~+G#3_L+vb#x#Yb*> zcrAXMeuSSDZgd;DhHvTO{&-$3u30yoW>WS@*Ge}l@6R+{T3)uFW?Tn5OXls>mEqOq zFD`dIR=Ckgk8i9mliTps<$uOx_3uVE=~_PGZP{p>tj4pEzgfJUla6`d6Xmg4KFNGF zi??&q#q*G*`(}CX&f7C@<4GMR{aO}M`P@G}UyAeMdV{5_oF5qKFW~#23dHYan*lC4 zvl<@eSInLu#BpbBLDX(U(1KNX7FchLAvSUJS2^k}PC3!*?xr|Nnm_=LN)fgK2lD;> zJRD!H6mdt5YFlg9uUgDdjt39Vnk^Qlm|Z`d=aOAiDxO@p zbhfF|>9$F1U0D-fqvMf&xmOubor8RQJ7k*?El!V6;Q<>{iq zC4P203O60a&uQyrBzLsCS@|NO$kTZB8zMu&R`=`^Mp?DhU9=G~V8icc&q4zCEa2?-z15e5vY+mK@fkWJd z!@bL%!pdHJTi3hgO6v)Iy?tnNU}ZWUS~XIB8(CU!fkXNpcjVz z!w|V2k9(T9Yg*~U{Zz?o*w=Z~=Ry+P5w{yw1Kq_!Z*N~WzaUx;UNg_@GThB0&%RpV zveO-YYcvld3?s-oXri6UHM7V@DU>L&zWLCe0xl2~dT<9;5#5(C)#GQ%VMh5#|K46@ zWJv5mxY7!5VmZ~~{zOc-t+@WA1|(RB=M+ZP;B(G2Jp-L+7YR_ysisb>C{|Vl<&pAg z+{ncR2X;sfbT{Xq1;dRg9JeDPG+@TDLY!nBbjf07J*^5FpCnGiCj-spEhZnjBYc~Q zjZiNsyBi}kuuvE%53dNnv&Q^IH98NoL52SQ*05d|c+pjFn~bM+;~uw%c&uK<^Mj7V z#r>S-+%-_h5oqO(1;eaDRJhSyJS*l{KJ2=qYY#5Z0o#VF2@1ObAYk4Zr+uczS>M7) z#yN8a*3QkkK~29F6B@{7+XUbCMeAK%fJ%*qu|Pq4-43ty#EHn|p7e3Wk#IMPL~ZW- zR4k>&R6|*!qHO{xJ~kMt484{&3#<{s_0bkTp7A<{Gv2WxLY8hv<)o5g0B*=`0HU0#-f&&IfT zR$1?QBNcV6pfQVlX(aq2WLUO+P&AB)h_MC~s`YDO*H^-AUR+vFk~e%eRjuhNLY36A zR;}tV0kU;c&UKTKSfAzBQFkd5K_-uN73t;U($~)9Fdtd*R(21rjGQklAN9w|hAN3< z*94fbxP@vMMUzvm5vq)-cxcmdfm*I<#_s>aNPtSlcH*w?&$9fc)6(7}p|rYvZq(3f z+k(uS-Qtvr&Ujq=v-%USFAXZAwX+P;5}d6cXLOlmQDPVGjC`f5&E_j&JE?03(<01# z$snwcZvP>cfaMwsaHZ^Q%baHBKP5mbPb&ljMT#+SL`Ur>H4jSDH+nDw86Hg9aBmQA-UMH#(*# zS01d2NhVpV4=l&D)18g>DYI^Ng{TWQ5K6eLPYM;lA>?|I(Ch5_Y3_#jvIohRZj*TXJZmz-Jk~G zLK#AT20d3F!ZCZi^+6Gx(oLeMPm_>@zTJS!4s?9n3^6{K$LgOA=Fk*$1rCOzqJ?9X z+H)Ge2+%J}H7YIf`MQ-t_c?1@@X9TeF;R4W*;-#7OX329dom z)6`Xmc3`yA`rf8!O9mmoD7zfm1_s1-FO%<_HaO0$VUi7oUKtk|`?h2`*W@yVfG~!Uc5gx&x6sZ6 zDZB1I-(>x0nlDB@k8j-QdVRiW{cSUBP2YmQJ^FHp{$x3>FG--4-04U{wns+}(dQM{ zQ7tc5?OaQX_gXdjVaM-2m*lpiKWr=3`a9L?k8B+QmhnTfb6q)sk%FR}1s3ZEGA6#qlB6Zu-Kw=7+TT{rN zgW@##d-}@Qb*S{cU0?ZuVxtiwaPKq1Z}VscJcNV~Vd);yO-so74$;kvQp5zAT#&~b zru;dyE#}5BQIr@<){OPwjgM6qq+eBBQ^5BW1APA~+>!?}?TDlL=w5NOQO4ISmd|L& zl1kG=K7niRTM|l|H!slKrqh4Mv}^Sj&c`s)Hq%b1MhNGcC*K9j=63q`!_stwJT&YT zKwsw3rC@-kQbPOQQXgclZvBl;5t>&#?aOKVfED;Ug%DFzRMu`v(u|_Qyn8qeGtTZX zr}Bl%SM&O-SC<8ym^xi(7)7hg2Cw_@t-wReu#Mj{E3Aij8&q_P!LS-ybe)Sf3m^Zy z4-Rq-WbGyX62v+(HdY5~->Eehcp$~Dm1uaeBkwC?w9w|vZneu$uGt0|qZ93|)V5w% zeAKnmT?3_IER5*Mn#$`uVkaLGk!>E2sC*jrgFuow0Wuf)eQ@VbC~fj2&2IKZqS%4JF)4>dKObb31FXT3a%vOyg&2wOO0 z_fo~@qfv6Vh7Z3;X)!ElgISER`UujYJn@8WR%hHq1XSww8?|#Xhv?=R&ga({4HCIs z{gmq5T-A)v{~SJ-g3Lz47G&)~Yfw`trjJ;yYYsDNf66bK$2Sxd9njC*tOUUHtB)7qY1X!cgVCgM8yasa$>Oj7*(H14Kq z+jF3r=J1R|!I%$g7wML(;a;hfxf4-8Z=!ps*=3Gu8KzGu^C-G4oR5U%H!CVVl%yjg zQL~$_Ox2nGvv%Q+C%@Y^$?9Jk;=99j+SKqpBQ{MO*0G*I&kOP#DF!fnon9-{Y_w5tO>gV|^y4Jn zOH-Rd@Go;*JQC?FuX-3`{ACr`a=59TgOFeSy#tpI+dHtDlH5CRvd4SLW)uY7ZZ|G; zCdHE6Z}1m?GD~z70xM79)r?%t_4!5^xiH$bofsp%{R~qfJMhf?jPcb4jEh-oLTd|6 zED9aZ2qR-Q;%9*Qj&1cJvtj$Q*T*5naB>;yjqjyw%$GH+*N~eK+3HRVs~NHV4#ULs ziG-3yfie${$*S{X8O&U#mc8D#w6WQ?w^Z=v+A$vf+@}E(>yB+8kNjb795r14#`w6| z7HU!hE@68$j3(3_UkljG&Z)xD31t+&O6cvS=t~jpJ3X~w(@Vn~f~&((sWl!nOL+I& zhck%L`5Rd#CI=38<{kBY{5+yHT%&b*B)DcM@~5pueY#<(`zWDOqd=wW@}RYD96Bz3YrxTmhG@P!5 z6$i9KB&V3rAM%PdJ%7KT{>DwB;Nmhish~)&(zeD?+-wux@!j}Di*viMaB&6En;C_T z#mU9g+S6o90p`_VPOTZfUrm+bgOqRJLAz1>QzH6g!Q_?TGd8Y zt66%im-~YO?|7yt*y*=Py0!ZC@tdnn@xI*6c5uvKu#83UfV?ZR`o9M_}Q? zVq>&?iHXZ&Yb-W1Ije2f?6YSDXU&<_cD8Jj;Sy*Gmuj3I6wi?61(KZU6oD5$ilxe` z;>zNno&~o%p4c~X*NXz9g$?(pZ8lYTSqDu}H-sFDtpR=8-)eNZZ|2jUcc|=0;h)~- z6P1S*-KW`b7a?9}fNDHfx7id|x}Bar@3Y<9?zOAuTN4)G1;cl*7NLx|p&hxvd1zyn9?W=j1gF}R5dzY7(Qs?FDP={t~_*KLT>R#Tw>R?i%ZO zA-W5e;cYh?k{*JK66yg5Hxz}Z2jK5srTL9r6k{DR5o$P!s+k;u@dcEq4-JcZVFr8e z`;Y~11WGB>8bF(8-nE?DH0cXdH~56|uJ8_SsNP|eZgSGUgib>>R3%kEWj zI`j5I2_NwdU#c0kpkrXDGU5?99a*?zHZ%d z2Xy4S$cw}8V9TeEQNPpco5QjG42?RaN?9vIlXbTyMV4R&G-pg_26@!N=&R01!6qK1 zz^Plvulkb8l0p??vbyQqvy9|n+36M1a2#w>${LZd_EggW5KXSp;}g2b!EkqF80TZa zZ+Tg|E(l>$FF7kC?PB3DhH35|=Szb~g=vdj%N-u#Fj&U-!t3?FXdTFNZ;$NZ#_pIM z>?#Y-4sj@UUduG~;3_FjeH2!rpG4!=#)j?)ecjM-#csGAj2znC&+VZn0yr(+JN6qm&t=Wd!$E>;#^h65OK$oCHyW{Pg|R!Xiv zan&O2*loU4%8yXSxDI5rnK5@}IQ2nI=r82U6|H|@KyIv{v(Y{+x7vF(tkuH=l4_Ji*7ZEX%&ZeauyK;x#TvcNQH(2_9mSvLd zh}AicuB!PoU6fb#_2RSeR6lRBCT^#Ku84rkA`zKn`N>45oI#2WUJv=F&`M1v{R@5gNjUC-5>@2!Fs!k^5OZv0;q^FDY8P{Xu@N{~O z+7_`Q+F3MAmSlV*zvbQV&EE)byz$M_wRCZLEdNnIk>vmX+4~OoD2t}?lMX5rR4EozP&!ft=>ke`f;0i?NUw@03izMd-FeF1 z^W0q!-tYZ>|L@>3x4YAJws&W`jN%8EBjsX}IHU>dbY~%PW4#!<il%K zn;seU|4;FCmhsZoZnh7nPiXj|*I&$+<%GuHzkbo_{!{!iCdb__c00J^g&I#g zKYx2=Ed2lUakhKtcG2l|cgFHj#?v!Yd7;I~8;i5e*3g#Hp9>?`3T zeI#^B2aYF0a~#0w#Cow?kDopK?(?zBXB(JuWjOt1KR4(f*U)*B!F9gD_%Xge9^23^ z-wmJh2!}J&`G$&jyL6%Q4;Alr^)Tr|v!98dF}weJy3q9VPtVZkO#MQ`|MznK)AsxC zmKSP1zk7J0rMq5daz0?Fhnx9I+CO->o=(B^lHvT`CF{Y^U%s8cKV2|+!RYPbtcO2z zmgA2n`T57gjXtCP%wN*!_Ha)xmc!63-ZETtGVl+%tY78dOF;psuVHoH$=}SIp%%?gTN{rau$nzKX^}%Hx0KryBBQ{qS8lh_ND!X;#YV%0qz`s%bqh5LfMJ-i<#=% zPJEb|oXfx8c?jHAF7}CsbRa!|4OIO3jG-x6Zfp|wqg(bB`qeMB;&4k}T-$WqgJju% zNN*$Y4kxU3)Qd=zQuMHtH~<_+@6h2cbR-O*p5xwMWlTDE@3Q^Z#Grl0fj%n!F8N#4 zZ-ERDh&hJY`Rn=rj`4S?pYAmOyQV)MTy)ESd`QeM|AlH_R|cV_U$FAw%HGRo2~`Yj zw>E@um{7$}QoA(&m_38b=N2%d3WR2#pykI^!O-{z&EI#1zkB}vm;7b><(RvTqZ{%> zhF=a3Y#^0CWczjZ_{;o9dr19zfA$Dy2h8l{^EMa+jy~6~;w)$=+{GBcew;I)1ff4M z_TQ`;Nt?fM03i37BaYJ^Saq~0@S&!2x>RDu@xMT@fzpKh@0B+FI4j%L(4I!o4+0(!luzI z&7WJxs`T6IZDgF2QN02-DRoDTuA-U3qL-;o+u#{@Us_~hOf2o0j!sHRp|_0aZpM`4 zq`aZ;j3PW?a(Ue@o91RE+HO#Anj!HjVI(# zk2LHzMx}_pQi`u#Iu0_)TjqaM$xDg~>5;MNiQ=`M$W+nClJ9sK<<_{mT$O^T{h}=sT z`OSFC6ekRbUR@F)?SKzy(F7XZ{u#Xf29*Va-e#%FegxHF;_^2`!977zj z4UI1u)Zx?MaHR09sNlSV(yhZ$%0Ja5T*q&w@RSsD57*tLHF`ZfOv!md;jtdKD}QPbdAj_Jx`*E; z|Gq)u$984?KXH-6@|mA*C+72GbAKd<{-J}2`*_!$X1pLK@u%0J2_ zT&HWH@Z9*%3L-DBi=6DrpYs><-*DQlH^=9D7deYHe|GD7jb=OrSuR6eKFihZQ9#i@ z#r#w}*q{07kooUa@zWv8;rNFNnQpn_%TSj;^4>PWt9333yI+=e)?sZGUM2`0(>CBSOqdr;wk@}vwW!HO~a(}J)v-}S={~pTSR`buK+~aOa z{w$Z_oIj=iXa&0}$Z{CIrTlAZ;U$%u`ROn+ZyVut{=vYos|wd4%V)^p?2dat@)bfH z{?`5b-V%Bh{Nr8e&elW1ys|9{YKr~hB=aV}cgp|64-?ZfNlRNCk_Lqg-<!zb`AuZWAN$FUG%J`oP>h9_F7> zJf_p(WoRxwyZsoB94j94V7(;d_}#Ak|1G^;8-Ew`_YblA z=y>ebA;*)cO*h-0L+sE@ce_9HXFlvUu>$jDJf<`GxY1FX5*4Q>LHdwCeXPIPt>X%U zkpB4V6%v_&+)zd0@jx$$GWs$X;{5uE7U{H(I*H*p|HAEMFeto{N?{juWe zG*&mElMMDFH~r>*9FJ?=-Lju&j)x^DcYKyaQu)LAiXo>9!^HSnaJ{+#ci~a4;w1eH>-;Oez`@gzA?9UOhL$(V;569PL8`IJTUWDSa zN14JWIR5k7+JSLgDT!+W0gehG&1IuaqUIJ<&7@d9v6)_&C^FlrMa@_d28k` z@I%za#La*%O_Fh$lGZ^oNaJ7{!@Sn|gmMJuLGsr>M8r6ZN08R_=zgB;_|1XeEcoRQ zm6~kqaDXI(yonF}X6WP>D2(w5T0g{-KkQF@_{(9soBW;d*^eR9yFtcd$a36ZPDIRw z-+S?UAAZS}WZMVu`yhVFo@D3T_6>!<6J9KrQsWlUMF!=LwfZ1uQPnA!eN z4)AaPg(v>e^O@JEf`n0ZN70DO6yWjZdK<0GrM%^(pMQgP`L-yy^WSiFTcwQH&r8)@7=7-{b4 zL*9nUArZ)RLa)Kqe^)tfnpF4fk>0prK(2w(*2mOt# zC*9ws{Apnx>7yKOhQqb&&c66~THLg3x)gWP(o(GdeoSvkuF{Q_(NbdB)Z8eE3*K~( zUAb!E9KZ^_VvLX* zO>&76>G7UXoxVNZ?}qoF@?vo+Vi7yBUqaeI?9W1r;VLy<(i-hUHc2Tlm=bB27sUPu zOmn>bSv)jEcEwzl5QnLe*sd&J{z|*d@ES&1c_+IDW3c7BJxO9{b|YD-9paLc zDZR~XNesj@rlb=lw1bMyaiF~?ywQbzQ)1%ok~HHTU=h8H#?O%NWHz!_+w{2j7%FOM zz65LOs@2F+zFd%~L^3juWjv8*%B!-vR)km8@ z%)M(KuZu2JSgn^RqH5MMhC48+X7PAlu!uzd!qa&6j%1l9LrmSoqqNA6o0Fp%ZBmjq=dHEIgOE*1RM7v7Pm-KSH^}{k$x3Q6_=0YRr8j`Ygm0{ zy(q`1`&{fnM@Oix!(?SGj9S#NKV?=odWwsko_07=^&qx^8+9e+@tCNzDB@+uCtP~l zk81arkYrkn?|(NZ%8?gxYGN=A&6{pxQ<4&dBZW}xY$c>9%j$z7OeV30Dq$gN83MwBNn&swCR-u*mw9&#|0wn?cn!rJLSFP*uUr4%wu>-`&w} z1<6ZyXvd~t)0Ze<*`$=RASG=xO^U@I z-g2do$|5VJy+AdS$w|)Bc!7F*N|w;er^uQjGW%AsyCpA)1J1~S1y5kwfKjU==x z=q@i^+-c8GC19u9NLzP1sHZ1nn}Q=l+*_X1t}EJFC>)wxj;C?nz-k70VY#LEi*a&O zhm1z{R)-l-eQW=hvjuheaqljlNuW*GSl8flIq{fJu~e5#FQw%xd!N{$ZWJsrpC+XS zU`wHbvwyqk79o|-;*k`e(4uOAbmzfYdfU|Kl(^(HYjG6$7H52;Qt%Kd?)A51DKV6! zs923@jPx9skvUNu_Cs)FkD|psf3#5&9#1usNKSfGmG3>;&X4ocGy(J#5wtM#OF`y= zIVm6;oT-t5Q*5|(T@L=x1 z^roJn@v+-GFmHX`$=~fpAIx75zg@Q*o$k-JVSk3Yzuisq&7}s7(5Mh z`e1J69}F*8c&L0r#dDTtPZP#r$h;-YxUKFqy{?z;*5x^e2hVGgj>@*(KB4lzQ+QGj z(!pNOgvOuCm>FNmkN#S}w3cN3GMyU?o)7H$F&{TNiktN#-_4PILu~)#>1h0c_bO2D z3xBEiU-4H(!|xg6S0%66m+)U_2ox6CHY(L;_WQYI_GcmxsgXDO`8;Xnw6uYUG*VFW z6vkYgSf!BtXq-!z!suY3!P8GZO~$FdlgZCE@4;#iAB#*ei${pI=UI#yJg>XVK$DF$ zK=9yua$RtNgQi6doltf|`Jk#fSI50G*{3w)n3UYrv>7gT(|n`o?DF&?NijIn`*qg& z4Ro5iTLaKcs?Vsp@@Ai%`g~SYr}M{BKP#59yYNzxr3nK(JE{bTvAxQmG>B0@!+CgP z8BSq-U__cNFffDOJ>sSK8XaA;H|#nuALcC~X632pOzRD#IYytl%OsVa&QsY^j*`To zcv|zp2#DV}Y$Bo5{S+6T7>iXjdLs;6;fwd;-iE|9oEpG&9kKK$=8@G=S(+ZkF@ysu zCW#?WUty#<)<86*mjjKFuk1-D&*EGA`@~G1g=@e+BK&ocW!`m|n8NfDP;QYmQ z6z9Duk?msjzCRJ;50xA&LEUiC(x5p@u~uho6IxO?S0W5BIT2M z)`r4p5=3hu=fNcwWmb%TBwyXeuK}jY6VhDvjQc6H@*03t&Ky{)fwJ;xbP-^kfig3; zJe4geIZl{<0i?(|aHl04%bYdFQB*Yc)W=FHv>9uoJOq8R->bu_}Vws^kSDcr`<`Pp$8XcEX3ZMx;l@W2M4tHq;g5ZVnX= z8U}R6T?_Q`Y7|Pt(wu;kta#Of*0vZUm$Dw&wA!y3ij)lv@8fU`q#SFlKT({%o@?39 zVP_F!Plp{@?dve|MF52+)-@ST5tW!~+Ir+J<)^!3$z=4fJr83jKiMlCBiHgSBx5j4nO}@ljDfJ|=Mudd6qy4uDO+vr5xc-r zFdyS?AACR8#8=e}7G?Wz7qv1!JRf52h3EMaIX|O^lP_V=91ZUc)^S32vn&bqxgnho zX>I!HG&(PK>+xX!!1OG~)QRbIe!<*#icZRLo&yY3hrn_6kE@Q)a&#Chj*PG4Wz=7% z*WJvIA%{!oHs=>=-se1FLYBkOF7M9sm2&KPK$jiN9n2Q?IAq*rZt~syS)Ly5<{u1C z50`Eyn^Ap2A2U7eGAV3sN+JPImW~p(6f5=~&sPc3{b0O={yZcvfBUfv4%hXyhjShx z{e>dhpXt9y`LCal&~seE=|`3S5eYLLmT>Pu3G*p<@qlzs+Hd#g@c$P0(LSl47JacM zLVjdL{*s&QrGLnuairDB$NDkOU3lEit4i$uJ3lM!a73MZvDz@uZ^mak9|1}uP80e~ z)CB3n{#K4we}Sa_SaJ2VwYmwN_^}_k>9<~fxh*7IE`uhHq;_|68D=TOMSiSnTlAYS z^e<6!|BCfxD7hHtqm(i-cAitBCjkqra`MKZ#*@(79q7 zb^7tNdIaDf!d!At_U0Uqzy687&X(Rf4Q^};VkK#49N$%LPqeCR`yFuI0LQm-P=d!h zXbhvy*>uIx9#29U@pl~V%Sp<>GcPuE{2Zb2$3cr4sXEW7_^~xSf%$eEWgoQ|hMTgH9CNr_@-u&6t& z^(CEEb*pdKpX(i}?f$pXava>+BuXOxFs^SUWFBk>cAL=N4*2uqaE3Zx-F>@wl1|2n zdEPEBNpH4w?9M2^jN%8@+uycs_$-$p<8eH6cSi9tif@{_%3N2ggrB>eJB2=%1V8LpcPpE;IX$ z4b}D{ugBwUA=c%1YlPookIt54DnD}%l7k**Al~6GPNNuOG;zko440eiY(rO5Jv_^9 z&{+?si<>vZzEDfJ+kzGAYo46;x0_`HmUw%?QD>7uK&8DFW==}m!d;X$($!oiROyOo zW}3vdq{(KZZJ7RxeKtBrsk%(lw3vo!$Y{!TOh&N+$$C&;aZW#8fV8B8il@bNG96sx z>Pevsw%ORh7)D&9)t+50HD(0E#a>#HuQ9jNTCC*7_}U)*FvG-<)?y5?{%>w9vXo=e z$7%(y&eM##VrqKmT(vWy)^ch)&StGFD8ecQ%UaS$!xw2QZ<3*Fap?9B9PK-8axE$L zq0lsxVKWU6WPv(XWr6Mx?&or$tjv$({>)Ykx1RDc+GdHLL!uVmaKa~ z${H->-dN{-bW)7k*1@vf_e(izErbi3;{7D)DV^kf0JgJ(+9^ynkyP6yJq$y-W(wzY zw9sMN7<&dn*w-!go5-!*ct;Oy*70?s?MhC$Nn|GEA5;gYOoeo`tCBXE$l`9{V-E-( zcO9SNER^$BtyUhlTqy^h&o(wcI>m=h5O5kMrN`6Lo%Ajfo(fIC{TO1$4izkth6m%- zr6If@L(Q+*RVnLjBnuz9puUu(&5Zm=pqhFD`a21a9Od%Bp(%L-Ucks2eZo{l!pMUl#GJ3QVEK? zU`MZeDni3;rBt5kjUuKo;;(}3@pquH2??k3`i8Xxwmilxb+R!JfNQ*lsPs47R_@A^ z^_Q=?a*UPBiZ8qbwyaGIWki5Io+hr!yXy3TLyc?CoYXIoXD=`v#OVskrJbVU)A6)L z`7kdYi>g3{ry@2zSe}w_TRE#N9afFiZe)=clpeUXF%~z<`qlfI7INbrJwb(HJo0Tc zB%%cI(%nmn4OZdK^|!+gN@PjA*dBNz8LpCuh~YC{_+na^x07&D>^hN$(~LF7S!;K6 z#nF1=+A7=@PeB4*)@5FN_lxd9lg1?bDP3?WLkdI{-CIV)x649>Nlm=3OutSFSDN^G zII|wM6J!0U?%q(bM%m^Oew5{v2qNvmu+qm@zEW`8rZp{5Z(*lkYWwLOOl`ZWVn@AO zJVYSvsT8)PjO9S=+E{QJxY9W{Qcg0&3YGoHj>8^qN9AmLw^1ced{R z+0Se){1tlW{EgXOo6+`aw2#rMr zPb=-XRbDT}M05$DSGVF0w$~fra zgy(hRX}1N(&{@6{u3${eT|TOw_R0Q|sFiT7K0PHCj|O57Bq<)N2I?}EOvH(mlrSE_ zs^@>(ivF7mYvIlO)%jqzw#A|06th33o$cog{AY_?CW}<@;o+u*pS(Pn8L2*8fSFp0 z&23Dp7%#y4qRCQn5UTarT;+-z-B7p~gG*B0+T%(?=+O%(a?-n903 zJO{fTRK;Q2N!2Ny^T2whC#T?glH*GAVRK^d9&$f{X-$Qexe8y^4Wl zQdPzhC!h^kYW|W%@w~dN5Hpp_1g+&BC5;>EO-+JQRkQ+~eR1vDVA5a%lD ztgy8vq)Z+t|5z0C*or*T8S$|Nh@qfsn3HAP_&8;E7hIexkerKK4990avGQ}-qMC|z ziM1Z1Tw%42B`#PNg7gpUoaC^R^Ry4I{=;s#!+6490UQ%!w^uZOI1xs5x;Y(a=OViI zvYrukAsyYuco~yp=i(&C7`*uxZo45&lZt#SCeq4!n_;xLz{=?1oy6&>X`;;FJ)7bl zN47yY^;xhCxZ6e7#?Ux$n@Hm;(aCUZ5iRW@x5^kg6tCi|nGt^KyNpfveTcOByi%XDf%EzPGx`LtPBWKw?Vg1ShuBv{I) ze<0SDjOW-XHOsFPttrHr7~^7;Qzv?gt9$!t;jY?HT*Gj9fwvVT5SLgRarT!h-${s1!VIp;iyX*N4wplDBR$IE{Zbf+2j5-OQ3lXyVEHSUK6Zvx zsEP|jXv9OO3!H9-Hk4`s($|!Zh}2cY8iEQU-il(pOQIy3jiPG)(0FnJgwk0qb{Xxa zLa{Uem_xkHu>rLe7ql9d+bF!$p4SwRX&k-;L#qNjB(l~t-FzuY7$fAxSX8&mDf9qU z63_o5ccL}xa1}sRPF!?*F}#UuhbQ2DF{Mza^h9wK9CL+;kF3As+6QtnY)6G2n7Y!jSe7E8~XXVi-vsE7aA<`?dht5AY_cDF~yiiiSxR zCG*-dS00Q=T2h9$ZW%$*v?n16kI*D=UcvY)pK!705ui*lYf)huBP%Refl3E10^1Ip zP=#t~pZqK!rwzh|?or9&ts}m*K*QpbIH zcb-<3j^+(uJBv1|z41$DvEC@vtYEB8b=vx(qwppefiHs9{Z&S# zXWo=()DiZ(>l9Oa6xFL_mc3*GO(+(K50+k=sa*MxetbEQB@SZZS7vy#%v(Hh%0g|B zMS9ERk)e|f7t@JHlDMj(E>*$wmz@$avKpqVB@z)w+nx|*Qc=z=tX((tcro+gbvm?} zh1la*+1SV<+(J(rJIb{f%8E4Tw9KDagjhFcC_35n2BwmOK((175PM|fzIg$4x2O`* z<^$(6;6m-Z@xUe{*hT@=NhY~vX;{xIE(le;fo9e%?WZd}3bN(xP-sLA!bQM3+b-sh z&G~kx%EX*(H|*-Fo0MZMd1xxkdveE4YM9(XgpkMXc%QM%fpU_=aLTy|NvkkSk}kLf zF3j5{A*u^*p}`4mk<$rR<~XB*#Gzj(OY&}X!Is+H=+r!l+lsJCFY7xG95shxDD3BA zZ=TPz^xs@CX`;8Ox#_jw9`%5~K=6(i*ahd0xki|T8 zUb>rQGCsTS7T)dhWjcnszPkH%@pL+NGt}kiZXHi|Gk!3CJzRG)9|_&g)wua{{=VDc zZh4;N`-gKpb*RTzcQd~3ue)_TcI!~5)7^}(`|EBUPj}n#O?xmNLpxsZbCD81RJ`En zVVCcYA1a<6FWs&4(Zkuz(2gHG-a4I|Tlbf8Lg%m3>+Vqbg^H*1XE(!)+UeiQwaYW} zH~Z^)-D$TjN9TXL;m&-5=L=mPyBWIiy}SNqd1gI=!Mm%ETf6k%g%m$pM3{8B=-!?@cm)^yAR;@DxU3hn(7vtJc>5Z`^ zuP4&ffSe=2k+1QaM!Y=fgrj#c8K-8}(8vKk27mu`*E_)7wk8s)1X_a-%R6dOGJy6t zS7BYU#GMfs`2-){z>V`{co$VddVE?OUimDy{+QF;coB309^#WrbAkEOW(&S)j;8i_ z{!wgQAP=$JNt-X^xwFo+Q;;@ch&@MYKcp0dYlX%-Z}6o;xpZozk7Z&F_rRkNvD1NP zPlYxXQ}C82T;~*Tvdb)C+wMe*yQDwQqS_aF<<5*Cm-C_J4Ecv)S1YLa|k49{rMgDRMSWHIB= z3m*Fv`dR0o+|I%HAA*re2hq=uzkL@ImwD98B>^(Z-@be4U-P%t^;F;Iu;@c=KsNm5 z#BVPA7QiomsP-k?huOmg5+3o%ir;(jdp~~pL$XOG$+!={x$(;%YHtdo;|ca~fyAHq za6CvBe*%ROf2Lu4CwL@(y6|TBk#aL^UOY>7FrtvecZ0tw zdoY}%+zj35?zTVc&w6lLb3cdjC*?!RbJh>#S<0J~Zz+H3`7s!Mu<-vz{@lkS-SvJK zdZFL__|1dg{G#tD{irlq=d`Kxne@zuc~{PoGc#dGEasWXkFUg{aQQ1|W+|t9Rtbq- z_bZ>>O}3Bm+GRt_bRgm3*2 zK82Bd(u3ra9{izj@}qFhw_M)Mu_J|A!--0MWZmXpubH$|_xaaTrYy;eIbywakCQGY zzOG9!x8%(A1M@N6dbsYk^VjKfsxr*{INn6XcI3L3{K|{i$@0!L44Ibcf~=BzRbIHqE!@rj&g3D=3;Z$5l$2@4UCQEc*4=d9F22s!&WH4(eELA< z0!AN(^KIoU)g1juC+ZJNPEPrp+Kl}8wc`;!jYBz3p+cG3X8Wbn>9%5e$cml1S>2k^^jAxIBt{11H4$XFh`D6@Q%aXs$ zz&ZuDl};a;ZW7BJFA*2k%{qp{J;b(8GbFTrDQ-w=tjiK#>({g;>nSDQt#PPnFDb`# zvwVj3a86^!cY_=s4riO0@OJr14ahFU!5;<=r!=5X=ae{n&tDP8QLG@H9TLE7_t}Of;qV{#@mEtsy@Gp=4a$S$2B;PAGuFAvXg0#q{_R{le zt6EhPi@M^b6%I&kAC-)!I7I;N6sNO7Y2K1ueQBlqo`WJ`N_{*lDn$F@1%1gXrM%T- z92(JS4;7!<^3nows&r7-BgOerWolT~KcyWt1k;)_I2A9j!k3suO8U`S0`ZtJy_TgO zQIZRVbdKLRy5%LE#CZ~2YIeSK((>lIpK#;UjnjEQ!P{7Ob)Y5Lfx=BKo!JMXl?P(n zjuHoyYdt5Np4cHVsWWZ^P)BQ&3DIW8?g(RVfLhfx&*X~LdOQ{8^^3bVDm4`^%u@M{ z)`Asdo}y@rVmbo)Nh8Qqb18?Gz|hK}mY;3(Dt|Z^1k@)0tvEOxAlycs$ngeCkY{abnHwl$)QPuKSBTo)&TV zVkuU9MZNF%rQ9n{Z^zkeelez^_t;4$R0_`9y>9#1{|5_}HbR=;BCmZM3DN8wD%<4yl@sH8CT#A{7sB60Jl z4=>(}N~Ela{jV5r?Zyp6|IZ1Ju)XoV#CCXleOq7GBt*B!b>C~ly6`;MorVvnwOt(= za(SH~n;L`jdcs|TmH$r;=181BRrclia)#{xfC^{G{=p#QGe344=`ChT%rc?-8~hcX zpIiAee})Dh)|=^dsOKvVXMfGj{28)7x?7je;S8CMq3+LhhFMp*ms!R!_H`NizvMjG zzx97W@zWviFXO#yq;utLQYQVj`rCiImF-YyGlmnIK31N0SGWHk^x?eBkn{KhmVJiS z-}by=O^e{aA5i6#WwG1Hn_@?(rG8OvBb>`Q`|EDy&-@wc^bat-4w)ZA4tH@ge}-1u zn0_jcYP>j{p_P`?zzmZ-A3^CE6i>=_=fmNOAKT7= zD%@~uc&_q8#bf!QLgveQ=}?8c>J?1Ro#xN{{@e7@?ZA5K_GI_J)nAtv*v);|;Q2N% zACvySC4P20>ha`tcT?|B;};AsaQwOMl2}w{-HAStl6lAaOdJOts<^w=QLgeeKCXC* zf5_p?m-W)23J;l|F8@yRXMX=}dfn}K>-;n3=05ws9Rry3oDND4?FT6OFE%zVI*xWnh_yO2kLe>eBFHnj zINhe}WW_X8GWZL9>?jm3JAcE7h)w%2EHWJEo$P2PZ)B&m4vIblbMcg-L@6e!Q9na} zJ7Xh$PkITNR&eXY;hFpvzLZpY*Scca@*Yo(rZwx=H+UeP@pwjLdONgkfPEb;n!Rjn z>%g@rB(-nr@YJf&tVYw?&AiPUHEs54^P0_?zgoLiWZhTm*Ft$s8rN^stSR!3jZdQe zDK%?1Xn;-uBb&Y6q&7Nabkx){@<%c~u4Z5e%ZHksth8#OB&79RD_tOcf-MyFuf|FE?)z*{sHk4QkWYiYUCvf&ATN zA$=p94cGQcSocP_?S;T36>DK4FGNyq@yhg0<_FJbkRR zQnKUiIh%Q>i(1 zJ_93rB<36x&oAlzIv=BNqsCP1W;`CBvOh`ZexdlS=3ht-eRVq4gZXgZ){ZN+Bz}x% z4QJUVls3?1nQqB1u%$W;@kBz(?I&O9MhjQy|d-(e?!_(ex#4}ECKx{-N~OJ zS;+dmTjvJMJi=)x(}w*?C;GVeJMPH#ADzFYWxPH9p`Pu_d5`su0a-H4e9AWAd@OB4 ze=BFvaqVu2>6E|iJl)Hp9naKBp83(wz*^&B%GP)UsfW0n8anymOU@i_LfzllEz75* zVp%4%)3871L(|@z77YK}=I@^SGVECWah3#Qar}C;FX`DaO>|yFC z>9`-sanPZO?`B`tLx*;~IKPoEVS4dPI~V=sF8lJDS_#9c^P*zU+4H3a(E3wUr*P{p&4K1%g`QgPABHi&`dWw zzR5Qn8qVUnKfGLD;nIO8#t{5<&a;Csw2_}C2)xE1BRM_^ zSE|Ho){*j{NMwatxIU6d3q^PzZ^Ifbn>23ldV~6nYV*Pb(bE|^JZ2k@ICR*yCi+$M zR`8a`6Snx%<9*Issl2yLIQ=hQwtV^W7()LjOuEa2OKFPI z8hHXXl}|aKEL2hGm{EcD;%Aywl)VrRS_h;LxFW#miHWDhQ^*cF^N(k;VxKQtp%nAc zm;}qjXfMB9q0R-n#fcWOEy<$^B&{(G%p=VDIcqaU#;x35kGBa`d#2s($HXYRNF$ar zsWE4oC&j!k<5_Ne&=jk{u1V>l0L5S(+74e?^>&U*p$os!zlb^4;;1$0ZLSYm6_*E} z=^k++#8>3o;n*l81>K^yz++(Ii9EwW5C0jCxI_;l5Tr1I=~zK z6uK)r`0fjJs|VYFIsg_01j`J!T{7CCWM+Hbve21zwDTqv);Fa6B=!i&)oLye_V_xr zOQu$6+a}b;NFTTMh4`DT3evPtPY=tNJ0x*&1ged++(RRq2=}`&jE)~h-#8CXxzT<> z2KKKcCkjgK5SN_ni@}RAh{m*Q$Yjp_erzSE_fGw4{6QUm65xtU4GZFml%Ne=h%3@Q zc$p(?Za%oK!BkgGs5iY`{}|skp;O zyl5MZT*ZbuZy7vko`ii?(RC1|hx_qfUral3PY>dVpTsj-j5m~p1%IzrQVQoZG#d^M_AZcjz~0p z%}!QmT4z*WlfR)g#oGO2H>V`Gv=7qmLGC$n=dRZk{`}2i8oigbfYj! zn#%emNTY7%CY8wIRJSQ5EB>T!W(&-Mzv*lJ(5wW_Md7&1Q{%J9p^e7Qd7 zNAY+NzYIB?A2Wdo}t9IrYBBRrKVyM8fDlakOnT^MzR6L$rS%9t@zO-F|mS8LZZkZ z-jaziv87Nk(I#VN!PyX;YluxrN)WZJIl{#D(!A^n+Y#!qkxaZ$PCUe(mV&{mqD=MH zjY>~VEz`h<*VDzM_{ucEjG2Zl1C7?&;dOPi-56;T@v<$v!z)R=(}fLCTx^`t4x4eY z5~3vk))w>m<-{16w}{{ zfr_9*vQTa@Q^YARsjP$1@?a8BW=j_N(jk3fVnymG96f=wikcYW$FMc?ri;>$)SmLe zIqT(@>%0Fcf3r?VOX`5vA(9zI9>bYQbQ{sO=V8ArX66}5XU(pDVJbV}F7eJOBum%9 zA-nnE2x2@h;Y1&k64j3UtsibLO*_ka(sbMFPu<^t4J$A{uP^ZV9&Qg9D&2Z%FhaQ* z_EK)G{r0Hv%f|Y*ZbMaF$g+;c@T%wgsNzmc@m9yt0#*~9EKbD1n>|zFx_GNq^Oj9Z zN%xiYHjL^ZW|Dp0sF)a0y2a$XQB7k3z?%Z&u?tIj%4y@a>2dKfl2f&^vDlyRQHj#^ zqpJk*td9@xVNCJSY`&o>^1+HTna6I%1bbXJUr7>-tivkcJ)d5WDtuU{Mq_h<7wN>r zrDEQ}iNExubS#>RyOD=UM^g_u(;rDYxu~ZjmT}BnW2XOqCZCXQ_~|A7`a|U%JiS#N zE+S&aRhDgko154su4We#Md{!SbbFE2is9Gvx0e^4%kG~2h1Ztu5`N!R!X=#~oRliz z@MH-GCP*0bwuBMwBrN}ygr_G-cyywKr9PK1*LVq+jh67_a0#;wlF-ywru#Q%rT@`m z5@tCd;Y)iYth7zS0UIUM={cT%tQa7Eo?a^9?nM%AS|H)rc@nmoEn&r(5}uwa;o3?3DJYI8yDD8rLo%stWdoxgn#G0kuZh0M(?6 ze1#(trxMb92>}`_r9K@QHQGF~OW?Rh%GGXaYa5GoZ*NQzcA%)^B#ul);Xnnu`AO}% zmSqHN!%UuTb+lsZMZWmza8!I;j8_fR>B?-HPgVMghkxyQN}eKs^unQ2Ogc?KV|O|& z3Y*ImIn0*>h~(t>xM(p%q3&IDQc?<9sv6EZD*iYGz~oI&?;ZD`!f? zDJ$F>k(5H>ys6lbi#b3vh`7qt;2)KMPdrD;Xqa}<+9Sit_Hl-h<E7)l1^7 z2$T_Q4>xCwH`?7nOCEBCHg@mii%*KCF{;ZTo-&Wi$6G&E6i3|b5RWsgouhD+kKHtL zAQdJqiMAegE*@91;xpJ$tL6<46LD4DOQTeJGf*hax=*k3oZZ~-*69e_-Y=2#+&<_~ zn&UFa{G@Uj4cTcL!WSvCKIM}dUE)%^;uZU}MaGs-DBbZMdu!SwQx|?|Noi5>CRd|u zn-XzVAxafB(#?gB1*-~|FOvuNjE%F|u6+D3snEDs!NM&#jwpN-0riooAo~dJZL!3n zzto2?)0W#*9h&$ghC;1!_%}nsv46J9eZ+?6Y0b?6jHg4jU)jU{OwVqHjK}F2E-|=F7$1eDFtMF40GeDG?{L4%^q09pcQXUMo}f2Vt>4_} zwtgkuWtCo+f$7=bKhHbMH}%o;I=h|e$k!`{iN8ksi1%&KCOsMg8*@KqV~zcdbRSLq zY887WF#tzSl8-+V>CX)g-RfbNVr|RJK<20AFB3uJD{oVtJ2fUEu!oowA0wJ#(V3wN z*PL=iJ+WQJU2x)_3XBcm;s!^YK<+GQa3aH)2o9|+b!b9Ual+AAH$x6L1~%O&L0sC` z)Q}rkcRtVomv1FRaRMGd5>F1Qc+9$F(H*3?G}sDd40OIMgLd}-^$yKu~#Wi0XWqo*Z> zaO`a2aKds~xe*_KeCnq85d^`npbH3sUs1=m>^Jn&$d{0e{Z3^lYue#9Iv;kV*g|Ai zd^^QrE-ErMQ&GV+mscfyj2G!}^QyrIoo0Gi11yO_oR$4)iqZ`q=QY(PU#y341t)=5 zBCwWXwMEADHnu$W6Bi!lO`&fE{8l7|X_bolQ@B9pDhsD(ty|CJI4LCsH(bQYJ>o{1 z*yDtuQ4-Cf6U7gE>q*gAB*{R;!@%Nw5VV{wcV`$+gYdgiM!c;NrIi>9CT((|LhGWJ zdwfy?#s@4b^1NnNLCbwHJLGm(o^R3n zY1}qD)0l0$q@%z7x@olP3?0*&=dD;a!~b?VO+R%e(1@4c8J|El;y6oaluzoAid_fd zXo=cnAhzG)xt-MXw)mFOkJY65m3h?g6E$8>zgBqQ`x&cqHGrV=|gQ}MAoTv|4=In4yqsU^{GF=YGE zrr~rOmoumQDy2iJ^9(YK^TjIV&yeSz7_vX}VSk?g#0pT0pR8qY5=ojdU?wtbWKBn^+-S|lI$o#s z2QyNZUmTCiD^0t|H+t$}3v8ARz0P5`weApXds&#{PlG>D8;zfy_Ha*xbo2a8PIj+E z|6X)&fDETGj5v5?#+3JaVfE~7N4wjKTUK#sk{oI5R$x{FW`BC9fGbN$*j&M_C8fKl zf+=OB8x*`2Cf!37%&nkqKkFMtHo?kqq_*Vqrh=1e+1>1a`bFt~Bf>eH@fhZQ?uPsj)b`CmxbLx+X zntNb#vHSW(9y$S87kzZ|$rp}7T$QFr;{Q1h?`KZ@{QDz|5qM|?^ux2(TQX314Uc;`GT{oC}F@PQQ(59Rb0 zN|?JEDqJt|^z3EFAp3%flsH)keZz?G+3X?xA)hV%d+w_L2OVr7JEL zdPEH0Bk9{rlQ3kw?a=Vz%(^fW7A2EA8aw@2M3r zVRPwyujlCl)2@#Dr1SB6A`Y(G+p0j9&9LW>_8&aAa}un)zd-(S6L%^79+vzs_g&=? zpUTobAzr$B^^k5)O9hpFy;@6mL~{u*r>^qQr03@;BM27r0NO z*C|HdLF<3W7xdhFu7T-zLxs7u823cuHQ-_1L^%~5u-_Y~v*RW=l#Y@ct=X3hB-y>M zZs{!tWZ)*>MvoaWxb+t?%vK^eXRKi>ec3Ldm6TXqK z>jDXP%#-kk*%E#>Q^LH{Bz$&~gfC5yu=schuZ@#%?FSO3441IddlGIQAYp^v66WeA z;oJf5U9UFoYgqN(sAnH7xfRyD+TzNVvwPu>p0GOW>qp?g15;t>8z-RASk(Dh%FC&8T4X_?yR9OcKKB}JcWx?|#iHSolz1@ex4aTk33Q{{65mK}uQ&&O?? z@!WBEe|quhCGwtvv>|`anbq_x+tqRUya`uP8_}*2DVzi|9FQ* zklr_2rBh$cg9UFaJb(Pk6gW5TaL-K_KJe53o`^vUwtu}4j^}^7-KoOcVatqS?-hAt zKfHT&Y`;lojzZ#_6Am^gdJ?`#ZrJI!MQ5PmZ`JOrIO06qKeAtef@3d2yF7J|oLuU! zH``_Zfe(wPPgx7CU;i*$=Im=BHCJN(glDMR>USo)(+uyX)WVo(=i( z|G5rYH2D10Pd-`)ONNvgRtV*cGoXhVB(#Jh>_BkB~C8=EudG9E8QEcgIdz zdmK8XOgdOQ>@@T}@o=Sxug}5U>yO6%{`^IFw@bsP!lqw>8x3=xJ_{Ql&#EJx-;Z1m zH`3o&b`I^mvg)P+*NT4+Z&#jGdd{hp(DJ+Sry8|d46UD9{l&b)bKt@67A@Gn^%Fy{ zg;_4OUAk%`e6#1ZQR|-H2a|rwk<_mCF=D#mVvcHbpTePY*o*pWD`eB*j+Au4?Ag4Bbnq0WPm z(Hj$&!Bg88w&|03J`^a`t?2q5pTpcvho0>*eHmoho40<8_+2pea-)T3yB~qU_kA|E z;jLd_&Ax;aiCxaZ=btUfyJF!5xOe8kJYNns)9aZ=uROA5=w`?{GpXy9nw#L=-=`g0 zymCGK`s1;0UwC2-tbXuXqrC-ILbc?dhg9po0Gj?@;=M9|Pc-7q`KNwZp03k+ZiRQ! z-oKoG!Osv?aBfBKuoKXv%lLc)r<{R98yYVQ(JY0c*CxqaP;z z^3$~~@Z`iJZ!Y?16YQKeX-oI5>tJ`Q7RjHiTMe(Q%+s*Wm_@L1+tm%PES+S?KT-bL zpOdq%f=}m7^9~)d7p`|+m9_EaWANM&c^~mw9kTP@L$>@7F!SFJ_woK`<26{(rE8V8eG8mq4_S4oSron-$=N{WR z@D zd1x+tbYw;3<2hD&=MPCj(zJ42toBO=F*>2V1f^d3;6ZJP_Q?$!$<-r9Z!K7M-C zo5jli0)Jl2{HJf*Bsg2T=qKHtSOnS9`*i%sKJ&%S}d~g(cgvz0r2ZafANP1IO;U zc3~kDY|wS#qDR-m>DpuJH~e+05&lhB?9C6eOoMA9w`5s7c&i%seXGWO+tj%4M+5)- z<0bB^ziu96ihA&&BZYUXapXGKB*u}u{KlQ!pWuEdLx(Z0C^}KChYR>#3kfSVlJIbC z3Dc@dxV?geHA+bMT7C(4+$&*$zlRAvD^E-K^KJ?MS|#DIsS^JEo`k<8Nx0_~3BBPG zp1)th>L+FYqUj0=dHj3d(yg^&@kW^3<*9L>WcnG7+-m;Dz#{SR>9JN{PCYsmQY&}# z6zFfV|oMo{2m8e!NBhN$ePjX)g zAGQg4t#9I+o$m|`8@u>m;-!VqA^rODGZE)u;-?kIy!pW{82I~xd!pL^0u`EW-%>sM z&u}=rV2KZA9EFBEU!FQ^$r_ka`KQ@O`=5bg<0p6QK5_@#f90PR6=(kfwa=dNWxKKu zR*qO)sA`*|@aB?Nf7qBE>-$?rr+7a&38hZ{mNt0APB_{6Xz4XE#~|nDl{SX`wG-OZ zd+XcJ!w*5eRR>qqeSSQgfA{*W-^PxG1^td@IhFN8D0FaD;Rf-Q;K>`ya~@v#HauAH z^oq3)4T2vg&i=EncMx1UIDAm9v2CH&+a=ajspW&~9k&*m_IC<|J@m(h=f6yahKU1y z{=?T9W-S<3U`@6z&}Z|S!;t6jQ@`Ff z;=@fHsk&9NJnulV+b8=j>Qe|r6o3uof^_>JCmeqMYMZtl&MW6FE0 z;j1s-f2s88!|+AZzjyt*{yWI-8#=^OZaVDBw0Oy9lRtr3t2KefnGcac@fy#p{R z^~G0a4Tf*}Ec$Cqk?~Nd=%8ua|LF@?bDSIEJJSLx=6LMX^6Y)#-5FyNHeDY9y$^T2 z|6-{zkh5assQ6dMz~=`ionHK5UnqPwadz=sAHmEjP5!=je;mAgZTSmj4h(`WQ*&JV zcFHiQRXA_#wXT^56^ddKWgZWbojpaNblO_ zhvC%;)lL_A>>wO|_2Aea=I(>2*a1y{e`7nWPYdtZW5znj+P=&K*TR;=?2j9zK;l>M zc(MFPd+Zww1HXOY_`S{c!POq+TgOyB4v)7Ov-#NGqwv}r_$-l|G7E^ddO zRUT{G6#KiU6Ef#&{OcaLH}B$!t+O46&v)$WoTK6zXtwR!Sz8aBg?Vvb=5CU75{5oB zb6Jn6Tj2UDeg8gGZCOO~sBM!`{<+|2>5}X6g^&If~WJUL*AR=ij{Oln?lmUiM(vX@ zYX0v9iWOP~jjH6C5Z&T597&5>(YV}Pn02UCiJe!D!L4FdFQ!*q08yLT^j~!37ueD1 z)wf!9{}P7ZD!sF0jdO5qbo7TW)*1>EPLB6g!t&pGc%I#3h7ExidY1@qIQSI&J$8T2 zqRo23$Q{QL3gx*7!)9!G@=Eq0P_@THyW=Ok4=ozsoc>GM7h!JO^<(cJGzLDoHhkmm zwr^CI%bbcUDOe||ORl8%tK&EBE&doG51+I{>+{`G5N z?W}Kh?_0GWns1*p_vZS;@M*S|A1!Y-8P<6h9vJ`YL3ngV>0CoT`xJg%|Hn(Q*)Bop z8hidOmuVYZ?X<1m^v1X^`0+slGOaia2PTaBBmK;e(0<6D;QMS3bS!!0t3R@wfS4j@ z*KRnl99FJ8-FE-!a}b}dP`{XVd?iyUQdH;nd7fMeEk!cmjCyMbIy4muKf7vJD=U?3HxAFY|f8I z!5`PMecvYkc(^uaz~lWcFMv^bm;W}hB#tMpoL&)k^B}wy-fVfkQ9~i_c;#^$f87SL z;ocHYe|;FH6$z^|wbE{QuKwzG?%8nyo`{>eF}D3qX#d!-&Uu<0hnz>t&1v}H23RpL z>zYyfu5=pqwancyIm=%7y+`i!OFIt2yF;Ful%MLdg@zS|{uxMMW{k5Bn zfc`_~h&3(lp#b7Xt{U$CDxrP93@7QwQ11<(AooQ zjq2V8nvSRyKB3G=xVoyy#ADNkL(05OH6JSXDJ;vL@b%2Z320YE!{2k zWC|qTs`q29UWtZe=ePld5S*3TQ!}rgCZz|94mt*&IXxjX(^+mdlgu>;H z{Cs{_U-9b-dEF9Ws*`rsF13UzIqkYSvNZ*Kwb7r1{L0P7B{_gS`=yPr(jLP51!rSn+Nxtt)2XH=dYkfrI>c_MZ=!kH3nLK z(qn6%H+R73)A4oQZng?0J&|jD$6`Oj$~hlDb+!6oSoKPmOx5oB5e`4yFV{=8PQrbY z&h?t}-3q8WcK%QM($2vPdmpP^fAS89OL%=ir|!qW*Xd}!%{970yR!}M>Gs%MXwtFB zw$0lo!mH6M`W|{~3gk$P`?C7$AHx%uZcdqZVl4PhKl4$`Wh3FYBID+co;e8yb~<*r z;q1?$Wae@Yj=gjMPWNrPsr9A9knPBzqNloThTs1D<7V^xD_~vKdp<}?Sp#Q>T)nqT zhqLfW@D7R_*A+@Mp^{4~+`{N=Bd0l6-t5{Jis0hohrALhmg#YZNZ`CCsYw zMDq9#KY>hdw|xEg7Kfq0h3L08o}2yKivQqtjvY=3XoA^Bsg4i#q*QH@r6#dt`k0-aXr4+N3Y@T2 z{MmMA;k5Xr;GH)(HTJU!P%?kR$p@p>4qkDW}(ef6~*GvL^^gQFJwvI2TNRXJv9rG+r!_ip3QTv!6D-%DMw z?a@O}>W81-URQV(oUZZAl$U;81#*3E3+&&1?~o2deufQm3!NR@aS?3E{`j~x%J zwVy1prTB8_vg!M%miyMgfj@iKtv2=$qy2S8Q1{!&n~_gE8C}z~euL zJPr&tPUP^s+eQdhPpp@)$+r^5&6lw66ba{jDB&{$CET4X;b*T&_f;x|hplGKpYX_jh<d^owKQr@eKTof)|f>g7E0(Qlbg!B5Zk_&n>eK5)Kyoi^{? zH~_g;537FV_!0P}K(5lhir>KCp}D?1`M@4%eYoAJ=ifgHPZs;_%h6Mk;rVUpuRdR_ zE&R}7+i$ym=nSuXnB)ASe50Y!vu#$lk9{6?RM}L$_D=&L&zi9_u1!yeO)t&4<@LM; zmty){DE~_@Sl;d7i?yb;hlkg+oR<35OEB)xoF5-aYY*j;)06&c*crM-W@%J7XGiF_ zszcbBpXx4#4bEpT+NA@&nADS*z^v^=ILfH@W1|@5e%mPp913fd>mFWWeFAh5R?Wh4T{#@x+MZT;89R}TZ;^C~Z5LfTu`>#IN2L3uzFYIWe zPSE-ODvRp%TLJx{&*~B*(M zRR-Jbn1_FloPGZhi0HYY<>PtAK(nepbclHD8#tQvjXaya-3~Lx{{8B?;zOYB?9(^z z!|_$^RfVD_yipml?iyV9hw`H#{?*>MK77CjJzI8e`Fiancx2Y!CCaZJ1WiAy-nUc7 zIC!Vuj19|Lb%GsbcMZ8QGz!+$d22z=iJhQ+n|Ch$_)c$lH&gPt$)g6sMQ^qt)0?Ej zhYMSt%bkBE44&G0@#^;`z_ywz?i;sx7aU*GWZA7^$6?oF?eiVFnGDmX|1#m7CWm0r zjMm$FuG#{lFZHTWFY7V*v&HYr8-6eYs_pOn)D1rN)d=hN=Ev~jcO|mklQabOZY{L)|FQQS@KIIE|2N4JAcP`P1VmRMQY3*O zHHabEY{E*K*@R+?A=wm3Gn+ub0xI?fSa>2R7OYsGiUqNYC?Xc@3W~ivv6lzrKXYd0 z?(W&W*-b>>&;Q3=!gpuR%$zyro_p@;_t-htr%o%q?bD1~Ur)Vx_X8iN{CHPtUCxHw zqq63u#ulEs_4dKJUR(+F^Sz5ZAHFDc+OI9mU;lJ@>RUJWc1_Q}DfOKE$Lp8c zUr#;q{lbl#2RxEG_SAmY?7nhkWcoZ~0ole%Qok~{9|{8?(rl+OR+YfHsP zsheHL?7si-=Tq`13Qmxi)?7VsO1+PxqnR=DCcS)b@ds2JkddEIle^cuB z9cC0Cf8*lR3-fM${<#@zQ-8bg?q4sw`_|L}O;O!0{p7XOpD%Q}7e2Nw^@i?;exIIw zOX`|0SKcx3?e(b>df#zt{nq57m`HDWL_vrMQ|Nj!!e+R1kD9cnI6D z|4|hg*#A*oG9NBs;L>2cpuG1P-x)HQj%yR&5#@gNq1@+Ih^fUiN15+D7TrLem3}xr z*_U(l+K;-OP=4#aSnG`H7`c9QK;BRsQLy_<^2vvK{B5JjR{*mw`|=dC4Nbt|ER zan@?0*Ih%1*IKSg+mWu7PcN{1N?DNd8cYY49Vrv-MTuu$-LK+@*u{E6-mNELf~vmw zqxYfyPQ-T7;-mO2KK@aR+%8{NEkCfVNxdv6Wyfb*%8-s^Gje%dU#A1@N!gULBk}xE zyz86G)%`n>al;oxAHn$gr$nPS;ja(pt7W<1@Cfo<^56fOprf(yM_Z&?S}@1RB8JdM zr#k@~)-)sCC}3S7CFc|*q!ODV0ZsfYJp)HbS@_`$0a@l<3u z?W3x!sib=7JlJ@w_68>6XXu1sDe8yCfA*pC@PuRZT}cd`I4q?IHcB?w@r3j;yGQLU zOwv9|-cbjqzN_=`p=UN5G=@UVnjn)F@(^>Y@-=X(0-l6e4X;A8gHJV0jq2!n!^l?z zB%2TVqc?Tf@z`N}F$)|UQc_U|?`*_$4IfTBBvaswY3MsPyn`uk~cs5B@8C(NApJk#&LCcnWAsGmU&ARY^C01~=S#+50l*i~1%*TW>gXxX zK#?m5&6c!_nBgY7_Sx{7(K5_bi~!P;!Fg+ENjvbIkO(a3tOD=xfOqh)Jcnssm^yN) zL>aD^dBJjFudb)IuBoCDUSa?*%fuHjU>qLFa*!QvcVnsWHdd9wr7xFjRNqjALlJdw zhO0$-LtSUsX=9O(whQFGIFYF)qUKSaEJ?UbfvH530yF+1jhhix$wI#@*X65 zlLfpIv=NHi0(wP5J(O#8?tCE>HyMh+qKAhr+2_?Y;Awh%OiN8wMI|0z1To-AL-=L~ zD39nq@-c9m0@Og>i# zU&K+?)SwdV^?GV%SI>uc!m3iy0ItFTv+9UceiJC3N(o1YdhIl};b)W2VQAGX?ID6w z-YGsfGN5!$VvVP!4(@DkX(iOjx}RQ8!(4PtT^K5>IC7#ikq`2CUVK9p95#$8nGI(p z&9Rr1LuGF-fno<22~WIL<1>Nr8rem5Di!LDVgBjk>zHEC@bfb;|3diXpD1w49G8-| zo;;(2X?iXS-^7lAZ35AcR^t^ECOlI|J68q!D!%8j*kfe-(mph8ahp=~gzq1(zukQm zE@K;dyq0_|t>TB|MUWj$UfL(YdXi7lUJ;tG{qo`LMHVh?KuKp1n&l?Y?;ts?Z{h2g z1^VHC-6icJD|D#xV0GR6?S<0&qv36hHz;2$^N;dH((Xgzi=AM;ga_uU$V(nZS{|`( zk#jDv?}X(XEu%d|jNc!HkM{lLtobB|vK`>h27mg!6if%+8Mp6J@RaV zO_0)p6iNj1sds`ohQ6WU221b$DR9tn-KD+7ph~0rLw#sE?mu8grzz za9y9|#g2)Vbw^;lraWAyz<7zq{3X7QV#i8O!gYUz7JF856s{sy|LsZ*VzzWVBidECc%g7v2mT8tmT_zzxlOs}sDThVf_>i0$< z-)D#Tf3|)9YlUf5eMFl0Z16yzzm|GhIca0Zr)Ahxs9g=M@W4s-G^aCPy-9+Oq=x>S z;r5;6)`%~ph5orA!wJ|?ukuizF~vUA0C~GT3BM|C^L5bh@&<271-y^~-&hF8{58Pw zt1!M}_c>x1&<8C~G<(ElP3k=vFb2YLK=&U8Wgty7{z08YHAM_PPTyFPNK;=^^@?fq z#2hfe4l0jzRKX}tDZFF?`+tF>Dj-zY;4$An+z5xXR>7Ng=a#^HJseJpZ)~fA7t!O9 zuV^o)q@KE>K=@~mna&Ov6nGSeJ| zBkb7<)u|l;@_v0k5N25fI^csxpUmRoyIv*KpM^qXFM$D%63AqD0SaY&ib@xZa-=)$ zGx7=wT+R%8c3xh-ePZ$i=quywJj$#79>4U%aU1}~tngx?9(Lo) zs~VsvQ)d)U#~T6p7^x8`<;h9*bk&ii5kOdtV2)?vNQghpBP(d%ZXcaw&xR2jEOS!) zu(ymJsWFHVlqhuqH5Lvink5Y=j@KFV;ZtHC-8`D4iFX9PCJ|D^11O+I$x;S=dMP_HDyxYd9a_=~@Nm#DRSDI?UqbaY<2|7~Po4$%EIQH?Ga;NVnZC9+|d z+G7;(Xf;G@xOo%^e>>>SJvc&wLw#n5X$!BNs+I%p|JM9i5`G}WxHCksMiuJi8V;H^l3C6cEU6Mw)cK9(& z+qo1!%E(9Be!jEOJ^zoz^W8jmFsMDU&|e#VFY=@P+7Y`_ z?N${n3=i`I73%-YG*>pwD^QOlk~S-)!Af5G%jj2-jM)z5{Ltv&zBjyeQ|vg8U5>6A zAI>5?dOG2jBEorYLb9er;XiYpSD&9v)%yiPizefuKw9ic|3Kz*rCyNxdz6Dxd(V-C ztB=IG1!v6#e^wEGYt|1LS+ z`h8r?ANfPy@HhH|zlFweAN-Ac4DZOajd>!Eav0u)!?8bzbXTTP4`pQ>3H31?-ye^B zk>4MFV;IUIU*bc%DBl&s2g7d+$2ANnFaDw* zD2I9|EAk2O8||ZCD39@=9O|R}Vep5t65rwQ8||ZAltX_|AN@x8k?@D|sE<1MhjQ2_ zM*HXo>SH`8KNkK_9_^qU+C?4lAN@l6m`;?R1b--x_K?O0Erw&dQ4j5)F8<}gOA*tv z)7&tHQ`1xnr~g9Rt_r5Qjl6tkE(R3m7UdKdPAzbzWw?#3yu!QyMqW;S0PSyYYEy-$ z9{XbccGZI#;^jE=8|vU__8NTZ7ec>?`Z>_v^{6)ht2fkPzYp7TGM9w&llVr+TA1pi z$s%}vB(!C`$~4FDY~dsMnqseS ztb{&GS+ROE2~YJyg+IHx#9PckFb4_`8+em5b|R8!A|0LxWuBCTGWJvKnH^o2j{+BA zeh))(^6lAmb{R2trh0LvYMxhD&2A`x z3AcGwFsokVb{6Ax&&i*hY_F?V-ozOr;kA(?%RFpvRsv4268xOF{W^>YJ7U$+=INkQ4Q0UW?E%VTH z&45*=sGLbC8(CW41UD1h>mf1^!Y~}ApjYV`3B5Bxj z>aYw}LU~~yiCU)x3ay5ZfZ-rmT7z-&tFDYGLkA6W!5~Jp9Y%~`2THBIpfKB>!y}oF z5_pAZT}9{V$zzg6B_@v=Z9f_$lE>Odk4he6;NV9CuA0K#D=^yQsV#*yOO+m2_ka&_ zSmMDECcr=u9i-=xZ`-k*n$R+S;-8LYR02kr=XYQsY*0e&cd6JT(ow4@f@ zhIK9t^BN%E?H+hXDvYjHD3MSahM}yW7Wh{Sk1J?d81B5H0*4cZ0%|MZp_2gFCofi} z)i5&l>63u>kIt`cgoQn{QVt%UxoJ7hY?r$bdPdNL3mv!FPEZePe8X>pPfsEVp<3Xa z;mXaRxIzRQz7b=UHBw+yF@szV$~fxe!Ke{*LsjFYx~{e&gj{->W12fZ4YEchGlYa; zcxuZM>&g>V#Jt7?TNfc^IYxO>HZ|g?kX^lDGo(B|`f+nphBMOzBNWbYtQeq`KK~%z=!A(8Jd-awQ;Ad<%sThJ2-)iA#~Xqa%>BC~e?W zQ-c>5)MAM+Yu%6rtNh3R=T$X_++@qQI~NK;@=g~-+b|52e7y9~G<5!UC) z1R3x{s6sq`kx)NC8?2$J93De-uE33k3LL7QlD|gMjfT?E@HhJnL2H;w$NA=0kcG_%cD#8RN4A^*~y{Q)A z!*sW|w4n-~9RBYdg|;61IR^(X$i+fuL5}iK!eDK0qjLV3A{Tm3uMm}{LpcmwQ=J3N zK(k&E9@axp&MKjOY1TcM4BS`&%kGLcyE6Dbf^ixDQW?rYe2zdh4`W&|bRZ81I_&`RlX?$Uk4NRB8YgkPj)liS zsN4;iIJ_>HFX=^@na%=7UQupgTeP`Pgq4q#YlcOeqQp*31he7_l_yrZuudXO%iF*2 zYu1Qfj|UdS&#tP59W|k%GhlE|b%&|lDUV&*1VIlkT%Zrni{Oq9dQBl%z?2*sETS;LlO>LuzPA?wq6Yb_(Y8+Sho+gC%!IF?H*J0ADJ=CDuepc zep;|@EuiY=-nO5Fn&g9O1V;6w%&UD~UcU&eWiV$+H-YPFl`u%RS;s)Vid#D{FUnxB z0^aFpJ|_KnfqwdAxm{?$kST1afa{=|>uPy|fvaR1R7R->pHT~gBzBd_kXOVqU|$zL zwYmRJOnmkbn`qU`WQCy1jDxh&XEI9zjun7Mb?~lmcpo@y?De0cYVsKG{C1Iib4QJ~W}a z44$7-be;0hhT_bf)45f3R2K1Cg_0|S){3;>pj}j<9ugL^zMCMlEx+O&GA_yoE}q!J z@W9$7i@0E92s^ITb}5L7boWW|36&NRrA<0?uUMrU+fld_OfR>g?24@1r&cy$dC**V z9#%k^f^MhUkO+k;bY4LVLd{okF%OwvGXLXmER=uHW5+UFRokR$w}7@=D0z4Yz>u9U zHKAmrKj%N%7)s8JEM&=q@i$kN+nF_e1UzP8pJ6~V)U5ycR^bLuqUjlKQKT}XcFMsv z!BVbSlhAH@kz1L?Hm91{E5UXu))r+=YGWZh**$aN&c^FScXdAA=dhEv94bP=^+Ol;Gs1Hv-c&Omu2tLAb@D_(-49TZPPct+Nah?LM zz4S9>N)HNoupG4o(2(*QnxC|K6q1Q^qVR$7H*Ak`!>jcXIHyiI6~lJ-Sa4XU|VmjcDu)py>eHzGf{2Lv7m7SWWx&dt9wI)Auf^k!c~R#x`;C$*4gkVHrBtgt~OvjC(qJi<3P$>rr#(yuje&@2d#Ut zMr~>^2+!~NUN8Z}N3`x&E^ih1rpnjQhGF*URbCuo61xpBR?>)LC6pLL%_mAzM>c?# z&95z~fmr~UHmHFzk7Wo;66UXxhX*gL|AT5pDPYxsB@+q+jIgsTbnY5GputmWh77>N zP>{?P!00zzFK?P8J%eL~<+&KEQ*8`S8||#+hW9?BpH3J= zoNu4%!MQ|`YfxjfkjwLNA^;aiLd&7TlbD$AfK)=mn_Eawy>$v z7~CH8D5#zfQmwVt3TQF7dPJg6nQHO_$L`eh15^xf4Ph?4b`Crs`F4j20iFWpC?AZ? zxC$YoQthDcayp&G8LsKB3}CS@8 z?7SITpb9I>%?K4pbsm;Cv!UbbZu<=y`1f(p7su4J0+_djMLRx4EAi@*+0d*t?-Z=G zpg9K5f4EdQ4-A*hixnq~FF0`-5OtzGuqWHBp3N|`-hjfQ#z#O;>O0mqV8{_)5wAMx z*s~l8wI|e{aLybQAgJb`0o4G*u-FAvcM1*|hz-;Ql5D7cx5Q`|xoS9|v=Xa*M;Z+O zs~cb4t!@~GgQeQY^-G6Jr0NNqM&Q;4t1?c8dE!^j)nWyjtxy9ZaE}F#t%cX&@?5RD zQsKp+-LE>Q_}B?6-NdWHBToU0>DWDR)&o5LXcPzXA4&=h7Gh0j7A4Gg=Lmb|2w3q9 z{H)g1=t{X-7m^}jz_>tbK4j-*xg2=q)!iv=c%1iuWf|sJw>j_#bE|NxPlg>5Ar}=z2P8YrU{0g@(MD1j!Il=9*r#uPYqLX>Z$&f0w+y{ zGVaHzXRtn!2!7QjPA$rEa)Xt6H(vX=G1H{~hqtlMmT&%5Jb=p6tR!eg3e)1u%QUZd zC<&P}Y|RSKF}EgS@SKInV9~NFWFOGio64$qLn;a-43ICJjA=vFx~V zvrLyDpS-wS0^0i6fmAn7KpjH!KUkkN)zWW6g_l8!nWi#|*9?1KaNWT102}a#;88+s zPJ*A96o`^*4eo!-MTY}kw0cZUv3kiSN^yhLocC7s9LDH1Odb|oFFu@Pb%U?0%lS8I z@&3&_tjw1MLtb8xAZ@{VsFiraUUAv-u@N-9b))pi^N=5`L;ceHCtT>;2pE~2Jy zw7gKYS>?GcWA<2%gUdS>F}L%WA{f|kLEAu0sriZ<8dCX#f@Kibs14{Vyw3jK);7RRXDOY^bY; zKCAvjmD?1qm^97I`VppGp{lgTb@wzt!?(N&%87k;RRsA6EQM42FZ&VOhb}kov3zYA->k+VbUkCZ3Xg9 zo*lzMg;DByVs7KvQxF4Ry->G_Tv%?f!(c2_!q5PN+O86|eL;&|nvOm@t=@NR5bANf z{nX9Mmx@?w7|Yi*1=rOz!)!OBg6;xzfw3}}I>J741l|VuA=0cC86E3WqXT-<{Zg#P z6`u^9s_BhXKXMEBhXvebl9xHw*E*>A?4N%BKA(Rg$gaAm za6&jv^`^ODj4T&*y|6SMN+0Bq>91cZU`#+AGd&nu)o`=G!>+ch1XiVJ<;O3wV)>u?U?#%G2r2Wk}GS{5~P7m%4lRqGG>{@C?|aTMvE z;#p}jxDT^9Fp~rm3VxO#pYt59v_ja%E6eIZzrdrK12~eQTCCjHMg9Cd>;b{z>Hrz$ z@|J8!D?a#qw$Y~md1wm++oZvp06DP>14XpkJJ@s{^ks0I5f|a4_>CPvQK0cuX>LL0 z;8pPLt4ucBW(^KuU<9J^Wh4p*=5az9Y%{1>Trl5X>E&4Dtf;k7Z8mte7BEc(3P?Oz;`-}Jd%gv(FX=V=IWl$5@ z-TAo0j0@EqbcLtR)L8)4FjuKMP;dY~-Vkty)Wc(_LC%$fp+)G$2FXZXlQ3K-m(OSF zXMm%6+d#kX9qy^F%t9DDrtKU4`DX;kDhcq66@p4~G8JST_f>5PCl8;_#=SdSSg>5# zOTCp<<&DLqC6IS4OWr2JL5x?WR z_g!bwH~*-C`XGoAVpH9oOx6VEechD z4&;KRIA8B{$fb<5f>{AqK$I{Ws6h@TL}fm9?VzKpYHL*&oBAk=QgDR=gs?2IJeY#Pr8KHM7tG8IDUD zyg0t@_c%7FptMm5{BFIRW~)oC71c00uwxBwbX`Z*@W`YRjh*3|@;bHG4`y>IIs9}> z^Q||}fMImXx*0ad%7JX~^L(}+g?V7U*Q zOG}55Smg)khmH?~DF$v6;aWJ=-eQN!WNzB@5D%$^bw$#e(vt<_XCj&+rqQ6;ogL{L zsTA81W*Viu3o;#GJFNlx(gCIe!X0Lxo~#8*!WBh=6*9jxy zxWUL2z?oDy2N`Z6SQzhYt}KC7p*V(^UsM?29jqV7$jd2qJE8jl+GhI`k^yUmB9|>N z_f%Aktb-vZ?!EZ@1TUo#D-{*Qhs6updTtoR3wP~`BB*m%1|Ab|yTGVRS)v+kr=qL| z_~F?&c``it=cvaB^dl-u{1%_XMr9dg!iN|(WNTr>v;-&0p{WJyDX;}0eZ>4cx2w>V zmn-uV!iPCjKQ6SxVE0$fWZ!&>dHdne2{w13Iw^vq+zWEj3RO3drfbZ2ls-oS?fo`e zl3p+9imT=ro+GWGz?GH-Gaax#EHB#(SI-*he?WbT!}xduqsuBIxqm!4H_x=?>oP%Y zI~(@L!`e$3G!!2KWa{8-qH0q_&J5>4G5=9mU!KEQ9W5J&D9rgf6$unN+_VPew!Ruy z094jh!|HS_$1b&W0EacGAiyXFti@9|wR#^G7D9OXHu(w=yDXp zcylrCHB)+G&o3NU`Ppf+!0++ni_4m7>Wg8u6fSsxA!0~MV*roWoXC<*7&|f7<71}? z`ub{xFV5BT$PVn=PM&HXkv0t0qrhNNf;Y|%wyi#RzQkTQvjoHO=n`FS-9*}NydeyV zoS?`HZG|EyC~`vogOTO`-z}g1f4|OcO`pi?_uokly8g2m3mB&{W-v}>9LG44aVVp1 zSLl#?-|f(*f=xNNa?_kAKA z(BXS9WAg#|H1`CvVgE*NFDxy54>=(SnRc-Aw*1t*>zW!GMu@f6hJ0G15Y`q+)u=* zi$vf25jsox4)gSoyhNM@#2zK)9gGUvUc^hyMh4pduDurP-!Kh>Dl zB5BV!`3PvV^E+m6eeP5PP>&^cV2Q^O9mRv}KhY>UZWWSCY z9#nOd-x@JBPD6*DjfC|z)$l?ySQG}uJcPgIh2tM-IPz8CoUE3|sd@ueieMEF^;O_u z9e4u;%tEW`y~KW8Zr%yXMuuPI4#QC+{hDw?;HivjoAErE2%PeB65roe3oF22KvuS< zXe%p6;PNgrkedPcFie<`G(nxQ=4USGr_28g6>faub4A*tnZbK#xIH?;jB^l8-38f3 z#y+wS+afWQDoLDQ54jdErt#*S&M`+e;-X*Bj8F2P5wAp!qntAS3 z2(u=O&&a~zQ5<5F$tLwk=81o}r{H$+Epqh@15ylHi^w#se$covnh#un&{_m|Enq1L zB#B0C)xw5AvnCZd25cW{t~7)u+c2o28s~Z7zJh_$G?*d8A29*mL59wjbJmpU;7&p#&7emW#$>d}T#7yr%;uVB#`hVgsvi=*z0U zEet8ZON3K!lE(~d!kH!9-0cfgb1+448ntt#!fVy-0^v z`SG!dAQAk@I-SO6$1)CLjAi`fGzu3weSRP<{B9O}3IA_1>FFN4#`d3PT+MhgzRRpXH#tI`YFaYLGLkFl0??D=1NNrg0 zCZS1HRV0D=lCrV}zsd&d8dU)$9@SK;CV9QS(CTJz0V*dIhWq$^LH;4|j4GXz%$1(B(k!P-A+H-J`2$7M;p~mexWs71t&rCqr!V!fitVPV8RK$r~=#!B|Nb$!pWoB zB%RzQ>CtVHKB7(1W7;G=wk^^buC_?K+a#Ty-xk~HGutAa(I)A%Hc30$B<*ffDqU@n zc4lU`Ax|9cEO(~64GPYJf;LFwAyqKg75UAXmz{w<={9IM3c}w-<*-7i!kc(h>AW&@ zWlYi-|LVr9BSg#_nOJ$_yhyB-!+~-UL<*;8hRY`Luc0hr(VFH`ud3j+DmEz1AlLx! zet?l%@HL!pvA6NKQ76FjLr%gh12U3ChESv$Gu$N!p-7j#9g0+sMyLp@%it_b*!~m2 zB}6Ba+nX(#V&vJPDMp?xnquVH0*YIp0mZgv%b50Ni>4TPwrGlxXN#s7dA5LJTeD?sd$UDTj67R3#mKWo zQ;a-YK(VdaGOoSZqA5n6Et+EF*`g^%o-Lr*)@&Ky-fYnnBhMC1G4gED6eG_TP;67S zG}qK{O9h)as-0v0H#1ZpQ<_}Gs7X1|9!<)M_GnUGv`3RVfbG$w&R}~q$Ej9edo;(l zTXRCYHEAHAJ>K%DK)Y1iUy733UyPF5UyhR7Uyzc+mZaihy2FZLAwg1z?pZ*1h<;f> zc!&;JV0ds(EFj#X3l=C7y6+Vr6SC8#ON8!i1xSVH^aOXa!f6Co-{CZZ>+NtF!4-BW z4Xc_uNLK5ZM381pBZ4$*8WE&f(}*C=pb>GJwO&UAY1T9%NVBF9L7Fv<2+|B15vN(} zQbdquO(TLdYZ?)xS<{Fh&7cu+nzjBy1ZmbZB1p5Q5kZi>kLGYW=$i4 zG;10Wq*>F5AkCl=ahkQ3egtXOG$Kf|rV&A!HH`?;3>p!qS!>2ekY-IIf;4Ly5u{nu zh#<|N5m}le>P`ec-XiKp1glUwTWN0wt58DQq!PBJ7aU95T6n4(6}FQQ981{VL9j~L zZb7h0*#1DUO8AaI2puZsZMrhyoBkoo*BTy z_oreQtZTuSCm6YThB3?O<~1{FCx+S+4X?g)&U9wLS>M@dg|6vN)bX7X3cm~CWT~8D zM?rR`?>EX2AGq=x^|Er{U;?lPXMd#?xNy@n{Dk-GVGMBI51dh@jva;H#}wriVqh8^ z3IH4F^QQtq=jI|0-mwS@X>J!T!7-*eXDR&*7wn9JRN=w!$j>dxR_B!aodsZ|yK>=V z9+hr79RTED#U~!1j61p2+fUIKJR%eltUS!X%!5x+KG>v_Aq;i!2+8H70lJIwaZ9-J zCm+tvQSybEiJ>;Kth$}nBM2^KTJT(^1?Mp>D12RC_#%fsg!sWrUmnu z78Jg&FMN?JdXeIZXMFkvq8Bhqcrw$U^YyT6pHTT|116qrfhfOG4tcG8IU^M(8 zEx%)!MtwX(18GG4vvt4KIx8aji8ro`NKO}e;-mKI>2}&m_sFAo1*fbG^h5Z9Vt+{u z$&EUZ@T9d&UlPa{Inmo!DE>(N`zju}?rpsurd}Jbe~(V9RhI17METa%{5k2-w&}Ik zPg5_#a+=W8dP>e6c#RUU!qYgs=OHAgqv#1=Xe&%)JA%5N(Cx)YT=?bpoHtR@WY|5XO;iB_oBLK zc5zLG+8SXcX0&jKobUvXEycm-7ydxR9}3|IVT&LMD~-Va{NII)A#j2}yu+!n5#Nge zzb7G&=t)SY_~;ZmR}0=oj4!co7H zFE6bqyO8^MNaxPVg|l`s9{gPZ9YBRM2xox(bXQg}y}cRx&V}%DA(Mo@>`c(WKJCmb zM0hO_^e|x`ZF-K8nK9GI%$jL{tE%@5%PXM|IYZtZ1btdK*9*=IbEi??n%?_@{mJwk z7xZQG3*d0_k-`4Ag9^4w1NMSWoW0XyQL z<2>2G_x&IZXOiLmYL%wEf~>S$*RkL|S_FUij6VF0{q?-uY?W4ZCW+$VJAMjh<%1>K zr42r_H9BKsvO%v~c4nZBG~6mSwIDAyugHxwjz<*3;d$_uHgkMJXxy`f`*6@Yh^pTz zfA}}1KOeME27N=BP@n6jQ~h(Q1$s699F5lXN-e^Vv*5ce_`2O`7IF>?zOMgwp(nL5 zJx8$o;f!|1-fgrK$MP*jq07UM7JSLqFT#Y2oZts6{~F`-jE^x&SuM&We^METG4^4M z)57;U1Le=t=w_yMew8LC@g1x2r!jq`#!uAfgP88F@x|_6je2^+#c#0R-(^sKe#E$e zQS|R-dNt!x#&a0wGFC9oWOOl#9UVtRn{P>dP-?7kp!GbS#9tjgJa)P(B{0hbk85b~0`F!GRO2-Y1OBl~&oTr7?X!M@5 z0`+$>t@C$kauVNb8vkjg|E=+F)ac8ZK3n69-MeIR2z zW6PP8@82?RXMCCQaYidYZshRu80RroFzV@eUfO}`cY2*2NBYRG>lWwn1*5OW*)(oD=EG683!;vb_MZoW4s^? zUc!2>u$)AK^BwqE^ztnVJF5R_J_LV${v`2nZlpaQoL9lm4z^<>Qq8B}&)1pXiTUEs z66Wv6d@B(9n>9bh&NCX{%8nIZ>^#JFBtF4=n6IbnB#kfO>zOb4Ectp9^YKgp{K#BW zr1?Nv!T*c@S3E)2QT!JC7xQs`t398;%KrIWJ|$no|0T?q@+0Y3smV+J-=y&+|JQ2# zNb^F{U-k;+uf!w%9l+PMGaD5D4rIQ>Zxx@|pThEb`lm8q;uZT7H2HA$|LpQHg8h;5 zE%|c==ezFzV3v!)mvn#5e7UYtZ+xxs zrTp*G_)_kEWWK~_RUUM{l)v4YUAcb7Rx0=6pP-HT;;*E?p6eUoOFH8i@$XmmL-I%b*u{LwC-L(wO{#(7 zpRLNzOzk>~|N8Sp;?HM!$zMVJzOeFV2TUyb|6K>P{~zcr^8f1xg#RDRNCtdyj;Xct z{|;D5?ck_uxIMfgkeZ7s=tbsJ$^d{?{wJs*z7IobLq>$!C(zW>t?`Umf}Y%GTN zY~Z}H3*YEi3vUj~hWBnHW>mq8zwm7M0yuOMvp?wb=$n);?ZqotKO9!RP4To9r?P!P z(T{n9>oJ(0JH|BX*5{@ebhcuj6dhU@A#YHzVch_2p-S*FrHE9IHpBz&li+$`wAuhr|+Zd@FDvrDE4)9vz*S?X)C#K z_H{dd6)k=VTE%OXE?wSAPV7s4spIRMzxVyk@Q?bvkke~rXR$?oSjq3J{F8X)I;s8* zywM2zHuAf;yhe4%GGKkEH*KX76|81ju#9QJuW43%@Iv#KWrPF(SX#CYqrraY z@k)BE_>vFzl~eizuVY&95~c+gFfAy2U0?VjC-LbRS4!~<{ydv#!JSMCZe?0f_`1IE zMNZU^Qwi&l1pFDQNqN_^pH(HD6gm#(Jt9dZp}XU6YV5dAjelZ5{bsOyWK$m{V6y=DW&-~Dfj-#-?a|L?I}72~h#L+g#z_}d;OxyKm) ztbDrtPqM$@PqJ&34}W!hR(=Toul7gcll$w^C#n3*`GY8S1plbLze@kl_P5+3U;nCj z)1Id5JO6Kn`^s;zBe*~3!~0KBz6gCE(;{~()B6e~|IcN+Lbn&I*p8r;ou~-ovyuyE z-zwfen=gI|TE%CTE?wSAPV7s4spGMnzj=Q%{G)!SaeA%nq*&yKmHfWSKZ#ea6ZT)c zjdk_vfG}bD;fpU*J#Z=GSdEtOmMtWwV#9!>bcWu8)Rd=fS}gZiS0D z{9p|wJ$n3Be8~?TRr%!cVLc4#(hTx%5aUKiAT8mSGGE7D=aKwj=MsK+P9QDeR(NAG z$uD87X3S;$dLD%ft>Zx)9x83f+juhRU&=U9qa}QA70KzieL3-OW-Qcb3Gc^z9Zy(B z`adouEMydV1k=wiq43ifh5qR};;*`vuq&g`^H&r9omGVE7=?b~CgPvRI6d-gY1r1#s~q45~z_hEehEt0!U!)urp9Luy7-u))odGHOw6EqY%zi*>( zD}0v2OEi@9=Ele*%iK^_$4Uug`-7Z6kE%_#cfWJcCha2~T0Zj-4iv-m@u$C5%E# z_(10C`1lmkJB{%Gjh67&Q%O$8C-aGa2ID}Dmhg}BNKVK5_&Tm({1@XzjAt;){jK8x zTBXbDeZzK#dXX8jVv$&A|=CH%LOC|t*fP9}a6V^58i@VBc-PDj1I($i-? z-+6s?!mNZE+;5ODH6bU#on#~&k#s~g(xnNblSY@R|IkL|*%aSVjCV5H8TD{HSu_eZ zYhZlk6GwR)8>mNKm_7{-C&SaVi{TipbU5y-7>?d@Oe=u!P0%vN-P3#H&JF(nO{Hj`)vV+Lcopvb#OE`u?7EYZnh7>{5a z&6vzMig03zQ7|FJNYp;)OJXAU@5;(`Wx5<`aL~AOW( zB`13mlE)<_kE^bp37m;Z6NR2BySvaLebTDcdVc6&yW#z?V9<>(1gDEw+lUtZ_3d^u z1~?FZCX%fghbZE*Jhh$%uv_4%fE@##2CqG{p{~ZBQ&L)4RqK(`qD53qrhT64Dfvf0 zuCTfWt!0$D_2hB~VP|gKQWU$Iw^TH zS&fU++?2w^rM1-(l?VpCkV`7VyyAw&g@Qbx4C`uq-82?H1ns}Le}sZA#LS$Wuy?jr zYqn0t*}-H&;%K@Usw_~!^85cEnSb&}z4m-&@c;S~E-ubho0#LNscV>T*D4Wgs07q? z=0ixTAob{Losjw@Y;`PV0;)Aj-vTQ*(=n~q;)k=w{im9Wtfsau83DCgN?hwTmKOR? z<@8VG6kIJ4C!(@p81;>n4X~fK*z2h-#|E3wrNC|U_|YY`rJiaZUFLzdd!>)|G*>nH z>(?|v$E>)j7P(@Rc-3{Kb97!)EpdJP(z@ER;&~;?sOT%6S9Kj!-?F5tPIWBtTxIxk zIExFX;`z$()+c9Lp|dzM&6Qo82VKqL+@hSI*62SBJqJeCH`JAmG>nnuW$?f1zc(hq z06~Jct9sO7e;&{DE=D=X`Kft1&}&!yb~yMvCm-H(Wia6NX`HD(U{7S^fbBpU1_3hi zilG0B=N}Yj!XfIpdBrmd((;RQ(h9O%a(0D7=jMRw#BvPZ@>( zF8?o$bL2DL|9c=U;SJ2!F~&~uzk4v@X2zu&ikuaSKRTu-kljNV2Wa$XgDHHQ1r8WX z;kO+@c(qd8Xjp;xgV*K1f=N&X36XdT0a>+(7+ z`r?m{cd{S%YS_&0%@V%QI))3^<#k&0b-#pug#Fl{;ZqHif5I19$8h1gyiSY0_@iSt zFZt0^!)NCO@`ct>^mKltwCL-83Ei!k{m}5)(*pTI>)4a^bbh3?=!-u(b~&B==&s?e zGXwcT>nM6UKT=xsb-#p8JB$2qYIx3hfqbEL6g{0EDJ}ZqkB+afAKNtS&F{ApzR)^` z3)kg!TJ&|lgg%k|n62R#%P9YZFSL%~!gYC_7JczY$HdFYk7NxSmIv~M)=~6yex$VM z>wXFS68rIrhCNr3f5I19$8h1gyiSY0_@iS5`!PqucUO~t!WUY{aN)YVPK&+%wuFLDR=<9w7eJT5~OvC>7 zQT_>EXdT0a>+(7+`r?m{wd_ZOhP@vo|Aa5Jj^V;}d7T!0-7lf{vLDgw$REKqkA$X$ zFR054KT;HZ@khr?`MsRWG%S9cuP^h3)=~6yex$VM>wXD+%oF5Ck%k{W6UY}@N72*y zk*>So&%pUuYdgPv=KUi@xrc&{40EA00Gw^ZRp!FSL%~!gYC_7JczY$M4vW zpEUHoLw*ZiXdT0a>+(7+`nq32@AocWM-9tA2;>W`V{g{e`H|A1FaGElwVki8hSNU^ zu?8i?U&i$196TZ+oh6~r_bz1brA07LBMt%&`@QE)2`9kX` zdOAN+TJ&|lgud-7^5aeo^S=$`3$3H*>HJ7((HDPooVbhpn5<#T4}pB4bre0FA1N*R zx?e)?`H}pH`Y8}M{SulMzM$v{-BuKR@khrye^X!v8t zK)%pArn8>TkCYaD@khs_IwXFS8~d?G!^OSGKj90lW4Lf#UZ+K0 z{L#^S0Qn(U#kAl_ObZq=Ehv0lU-%-Y$1C)wY)|lgrUkb#Ex4I!LE-EA!WTJ-PsfUW zs})P|IHm>jnHJ1oT2T19zVJm(k5}l=*`DBbrUl<*TJS}t1%xLk_0+1^Y2A7{|2W?;O9N@O6FRi`;L0D4x3+J&Xew zU+GQZ=P^!Z%o<7j#lu2lf)*a5(d&~!>(y#}mqtr`gDv>68vnz@(D8_!7q##^HTp7* zK1HM58l9xkoi+O75rO_ZuF)$rx=EwO?_)In2#ppwE9}VfA01BqJjVDhMlWM7<1j|C z*MaFB!%6>9MhU-)=~Fa*f2Q|vxp|B6e#R8W-i+T3CHtEhZ(%%(@dU;RjJ+5m*&kL~ zS5s403k&y7X@d7{(7vr)I0+*cPJmSFv(mHk9Mf=XmC!|*na%=7UJ>m>GS_ewI33vr z%M{_FE@lAF>a!_pwF-KO@fOB4nZ&=$NjNuyaFK)X!gRu?(+Fc3=cE$--=hdmVf<(^ z(XUM+EM@#5h3Ept4<-^_%lP{QqEBY*zeXYF|6uV5UrkMLm4PMk(t#q$&AmsPm%cd(q9oPp-AfFA>mE(W|Ktc$I~@aWD_ zaj`MxrxVG=cQv|o@3CLc{SBj+Vf60P_ke!=A!LAYpmC6CDa!nXKcZnTW3>7TJ8EFm zK~V=s9TIhDR6^8YQA4AKV|a`aW4Gb|gKQue104Jx|DqDr|082Y*^H>sF-Ktd|Mnv( z)awJaU$dsM80vtKXDD6Quv$6(hy@6)0b&@A=8G%XCwP9coWltXD}@|lWDQ) zQrG`?}stPM4rnxXu?^^aRJUJqg!o;S2U)`59bq2qrTv*oA4q&-r=^ zKFPGMugi;Edr|C#!}i+O^{(Y~30j5ge4#~8u$k>ixK0aS(9QDp8oFNucXRzN_%_pm zk1#DLd|hAoB4<&(8gXpzqdDZqy^I$y&SD(R7|r-Dmm3KeJEAXqk++Kf$6AUv98O|C z|0v$f@d@hotoR});es>So`ef6={=sG>)}xJ|0wq2_yl!(R(z3@aKY!e9U|dEOZx6V zg|1&X6#YMnRUDt7ZqJG@auO~$fbB`R(2~A4PownJE(ncB&m(>{<8||ij+#sOP$Qw( z5wx-=e6cGi_67BL^!Oy+Ixoeqqr?*_8Wx|^IDLW+rUegST5vo2BN%0&ugi;Edr|C# z!}i+O^(1|QR^d8dXwegVjPp&xbz1m>D_Q>8Cc6HD7cebY!L(ok(}GzR`ntTxwHL)+ zIBc(dT~E>{XceyWg%&-*Sk5O2*J!gapTq9>Tg`6S^wEquWwmOq&5eZgLIE!%rX9c^Di8hvY&qxqd7i7-JTU+ z&VV4jN;B!Yl&aXco5@#cMyLO&hbgYj|3Pi`ZA%dLb( zjKUwsv=#Q?@NoFSEo9#cPv`J(cJ%OE&8{9U@d@9G*7+hIDUM=4{z1CVf46+-#@Fxb zo5}wd7;j}fm$8g7ozc#C$Qsf!EIv{3MpS%MRD5)Fd`wilEh@f4RD5hye8;HxPEqll zW8&kY}cD+qpep*TknpxJ{@g+JK7HD zXzSO}*1w}|Kxf;)INL#Swu9qrhs41ZArA0y_#r+KW z9%39~q`~(PMdRgx*eU?^~A1@ zx?H5R9$z>*QoH{vIV=CgpGfnqt#-t&#M4%^ick1$wf8@l@85saC~%@b{`XgWI(H6^ zrArr>O%M8ndU}{b*gt@SJsaw+ULasf`hIjUjKTN^^Y-d59uWWf@L#lH9H#&Iw1aNdEMQr98sC!QYZc7A~0Veqr(l!zFM2l>Av_x)Sn7%R+1sg!}xm zaN#c`6VixbERtwQ>f412zxB5X1kJhNkuGX!0hBU?EC^N~K?#E(^;yJdhLd=ErGNy?@tfcK6dRhDtYt~W5$jfKVf28x+BAx>932wHTB_|x?Pvo!!LbdwGwIk zo8bZfV}B3j`1cjIH~)LGACY2v9^a+Jb&;NJvo|6@P9as2xV+nevd zZ>8%ODYiGB|0{Ywa(cy|FPV-M4ej&NYm|TYGYiL?`B8^7U_w{#+c=xbTE#XDLKdcFVsX+|d;bTwoit@j?jj z|12Wn*M*GSHQmMZE~Zx>3C~~bG-rVvbdI}EAn%uqBfW_KUlbs@sDeol$RGHLk*W&H-m#w0T^~ zGNZ%p{U%j6w%#;=?)Z^&WQ*N;CtvFP5B8@G-BxcT-~|DDif z!etj-n7%3|Z9+p*;^m7onkIB#@awuYSKdCsmHppk=dIc?;rN3enfJvry(S)U%dOi6 z{p^~!sPY2O8xt2zT>aEnd#6pke`40ZZ{B<2v0qH=cT)a_pYJ(1rN@!qk6W?Dozm;Y zyPlcy)cGlIpZ?BITfg6sa?7Q+Uj5XJA5xCFujiD1Ck~zT>4|-N*e9MiDeszYarf_B zHfd1$viR#)Zk)9C)d%x7oxNw$TF0xeoX{}($mOqRX8zQz;>h(EytVwkS63d{XZmN? z-W~Jmk=Go4{khjHj-7ngTvz2&2}e%e@5{t9uU>x2R+C_=cw;0cb@;iuOAV2uIOI_IOUU-qiz6Pa?msD-vAtQ*iUof z9mb*^xfL}}-r+DNFFonwnIAf)T>L=uz`J{Awdhm&>6jW@5iUS zeS!1Lo(GToY{(PNL*D%K_Z`VUI={Sl^~7064a*#SPp9+0y`(s^Z*7MM9(d^T%$1um z58Zk5^O-THz4hfaTlZ$3m9w#-B>jl2o%Z=J|JJiIYe3Zu$3uOu&ARvcKEq$z@@m$= zqgVcT-dP=|t~vhc?}n95p88q8{^Nf?pK)HC|8(=z`OhEl^BecQH#Ph8muEfq z?S8Ink9X`^Hz(8e+!2LeuZca)b^Pl4|2<^!y)MWf^^tNT<^KEpD|&|o*E=_25dsy%NJAan*e$VutFZI0djIZ)e?RxwxU$=aB!~LBuo!WoF@gu*DX&RgG?6ZAV z8cTo4AAfCgxzY8xDI*T}Jz3ld!Y88fdwmD|rgy^cjd3@|m377MC*42k{#;M|-qIVt zm3=GwZtAzG--QD%95Ck~{AM45-^9WAO*$;;u)M?S4-1S!uB+r*!>^a^d}elS&VsQ| z-m!iCrej|0@#=Mlby_<8#z`ZuSb5>}@OvS#O-3qBY#`sq_f=05+QPbw~$`|k3Tv0uHMf9es9YmYqm z)U{9t(TCDU|Ce;Y@1dOz?eugUesAiE-*bB4w|sy64(W3~e5?9ZsWf&u2)|$3@%z#s z{MKrzGmLvq`CwJ$fH%MB*71(nhn#ZQvR9rjdbFzRJrBlCI(+yuJ&yl)r|q~E3od;4 z(gUCSZc4vzD(<^+eA3e5&!e_K_tE-CCMB0#)I6a2whK?6c-QnpH@d%hZ{yodO~)7Z z`trc@Ut8v_x_a>7+s~i3_36hG?|l7%qi4Uf{K&5t&wl^+t&dF`a`PisOmyCP(7iAJ zwA(Rl#J{(kIeK@m6MrdAzu~A!E5`ox%d0PRd%-yS`v=b3GxdxeOV_>9c&;IANyUx4n7x$#5jF)1G;Z|m^By|x!<=U}Tyf>6Z?C;4<(Jb2 zF6sW(@tw!MH~9YjyWKx6egC8nH=mzh*Lm~$i(76V{9>1uukL<)+c%GG+573c%h%jL zF0Hu!f<0SG7VkH2^BwEc7kskqipSr0u&Vm*4v&pLchKUj0a$BHB`&ILu#-as%*B$oeTgH;LwWFKQJ$m4t*k0Q7{idr9J<~bm zw7T8bK2U%7t#>}Vs>9CgaXtHue|F=59Zyf+zWC?k_p461s>}W>{@uIdrc<{pf5QIm z)JOY2_1LZ-&+qy`{?&7@O8zSUqnlEDt>2UIN&idp`hB%w{L5P(dga??cXf#AFyy&A z*7e)ycA>Haz z)>7Frr=_-~p{1#%x#ct%BR{L<+?ESkE^b-Ua(T;DEh}19wXANrvE`PQ+gt8zxwqy1 zmUS(Uwrps5vgO&9=UZNEdAa4)mTfI>x4hS~y=7<1r!8N!eABY4<%gDET7GZY(-LLa zV0A&9(GAu*^fC^BU8M&ZhZ+gSP-6tV0b{f=&X{N%X-qL3My7GJkz?c=g~klySmQ*a z#3(Z=j5$WFaf;DoG#jTH3yrgkbBqg&i;c^S%Z;mytBqBV0=XY{c$VdyVmsoe8=p$M zV@buf?_Yd$XW!U&7OZ<{QOoVO-ub`-TffXL%OCXE-E%LF?f0K|E_wUw$8sJxx0CzU zm@b{W^e#MM@1eK7*}Gq_FaDcQm+|V>oeO@OH=;HnE@SF<$G$OX*&FU3|Kr&5WzxTo z>i^k;pQK;k&Aa_$&OXB)L*MIT@q1_-ePg=fcX1E=uGt^Iv3=>A)gQk@2jcfOJAQ`` zrth>N_}x4lzuzR{w>Fu+5?3gc@>bsQqnGoiy}Y&O+rQs^?%v+-f9U@CiEB=ry#2}( z3*Xu_@Z=A#T(!M;u50DaEgQZlbU*&yy7>Le>JR+S4c}aL#f2^JUGc-W-qU|7J$TFO zPj<}vyz`l3A9{N3&duKs8@c$*Pp4G%|M;FS&j}Sb@=l8J|9%*Y-y1s9cTiXS-qeG> z3BB-pZeRRv>`&jR2jTa&L+Cp^VR%B9q4XVb_?<2JEkEqNW$)2@f7!EYPu8B_cdyz# zW%oD#UGm?_|K0KXvBo-hrRoV$k3{v2J|%i%^x&8?V&07zYCF}2Uim&}j467#?1mHP zNjn$l^>dH7pQlBQU)5de=_@Y&;o2t`FLq0P z{Yc$CvEQ%p43&EOb!Sq>y7N+hdy(sJ*P9c2uc^B1m%Ut%56C(H*lro#2R3kho;>Qx zU(b)LOqP0m@@bEZJG|>tdv!E|v0c`zzkl(z{oZs;pE70O?;DdBCSUpf4Dti96V;}itUrXJ?rv*dtEzTANrCz>cR~}C$@~+&|~RC zJumEk&5-inW3HUC{Q8gcKA8RDqu-rd9J689=gS(G?aVxXb*%sQ%&z|5vwHb|O9%LW zGY<9telpbeEg$Ls9WvJU{d|(|yD8oOtLM6p{%vOd`oiNqo1a_S?dH2y_uIK8|Dx}P zPVVaI8{c&1xlMC76>M2Cddtw9TRuKv^0OyQy6D(TRSfand7La5D1OX$82#O>zAT-`V0TU`FRFn)Nl0g)VLl8wkNs2@f31%^28W>P9 zqJjZY(vUNfbJ*&hY2@L1-=5uX&+a+D(l|N`7vf|h$v9FhQ zHS4ZVD{e|&yuxeq_3b++ta);zSf)vXhn^?haAy6D@j0pK+%j)=oe)`Pyy2m?d8o!L zxBZ&pf+^MJQ+_^{F4&;&rdEG1^3|2{bso>J#ly1mE>H5!r}W?KwP^P*`WW_8cGl#W z{dcCes#lnol`8K0{536lrF%t^cD7s4w|empD|ws@7AMqJ^wkAMxi+(S|NAd^sv{l+SkZ z%3`wJEaud>G3eg{rnp_^6uV3VrZ9PV0y|zJxH@qwo{_ZBpeU8jzfwEd=eWshCj+GmK zI#^u0om6%#A9Mp3eXpUO=%5n|*TsNFC$E~3 zd@Q0vMG3yeMg9aIMTw#i=@OL67dYh@ z&X+0&ibUlr#VH5D$Kh|L>J6NB7_K+f4n$;5y`?zq@DF}YyHouz-0oCApvY9aQ~mG{ zeontLIdU-E@01*%$WoksXL01-~S^&qUEj z=FgGe48k8>&BJ=nu>+&)PsAHpe-3}nFh8aD|Iz+Lypiqy2S26v|Iz`~T2CviuyqC-m<`I5!v1jhn+boi9jJO!?Lg^0$NrK0BkUii{J;6BcBlG* z(tD2mCHY6#-#_xF`kj&kO7A)LpWvtTp0ERdRC5M#WbH*QnpVE6m4oC6l4D0=W zjDG|_rT2s${J~G@-G7X~Wcf#ozoY6;=^@JHUoWbiM+g4)AC*6oV|SRG@t?|{$d|AK zqw@z!?azw|$h zl0PO#{+OfWkAd;RDtx~TSJ4Uc;q`3H{tGe^lk!B32X1Vz_x{!#h|9Q|XC(m#Ta z7>EDJpVE5{rN(_~9ze7|G42z56h*g`{bB*7_ndMJ=S!7iM85xKe}K|^Y92(@n`#Fl zGfusU@t;$FD*tAn^q!iBQSDCk1LCLJof!ZB;HUJSBL~C%PRRjLeons=c7W40 z(mP`O=kQZ{|6k)gC0|4t|5sNtjGBLp&L0r>$ov`X)Q0CDRQ)MCIIQ=h=05}AZi&tbi%#v#N%QvPt{M%QnC zO7H(e{>k!>kpDmUIr>MY*|J(eVn)eS=YTT#h0jRK)-v8VDe>h*N9F*RV zdj25Vjd~71x0Kus+rQ!G07~yiJ^v8=)N{Z;_$j@oo&zYoANBl2@Kf`!fACX!PsstL z_oJTwh<2x*1OCBJ$sHw!l-`ee{v`MbIV32$sQTwn;~zB-W>R`T>iL(<|6iVefzo?Q z4=KGL_54lnQ}gf<`BQpGlzhrS zZ=fjAN@|?-C$&}HZ{FG~o6MzAl--7O2K&4!xqgGZD0#=Q>NnAQikAj4H6-qTt`SaT zu8yB=K0)9jbNXv%^pC+5YdQT*&@B{pCXC06BJY66P2MHK)v=uQt8auoBhnk<&=YKm z(WSaQXLWo2Vp>0HzM&G_#4PZ9a?td4BXe97x1T|N1Cy2E$;~&hfw^f~%>&Pk^~`jO z{ieSz)-ivm3Y|aOP|IZ1=JltnsbyYovz_$hW(`wUo?Gnl|s=7LQ9fI3>4RMdO!cgi7GC1)lZ1__5r9Bs^(FIk%?QWqgaB zL);gwcwDR|`B&+Kt9Z^Pw~a6BZs8d`M>V~&opIR~%ja)3&*RBi-xha048^&gBtN;b z*A=%bQnft&<~lAcPTQn+_#zHr>C-OVxP;?x_YXXL8HXX&G9Bh;E8`sgb|Eq>YPVFG=m<7J^xoC$$n;%}Q zj9Jft^Z2Js*UQdHxACG(2JD>SgG)SqGQWAv1^mGRsay6*mvNhWd96oMlJQ$FkBwQn z-y1h|yqjn1;*Za8Vmy}^yn)Zs8JrR0aU9>W?Z|P%l3RFXmRMcT23P#Zx$Q~M^v>Z^ zmu}dkzB&f~WNh12A54uV6I8kHjPlB~LAi=`6q5}UPl`wXt&iIaRgZhOVysdMf}2!Ari^H;72 z-T3k_eyH4xZ=Xpx{#MUveTm^wyfDoB{q3GOyr-FeMdr?6+@RyirzvjH_=hp?J2QU- z<3BTnYtALc-~~&A>S8`9;5;|Z-MuPC$ED3xLbmJO!i8qePoJY!%tBH}Q9-lAf2R-Nfe(>_~hkYK711{?L&vl8h&%e{f3- zjlsw3w6)z4yoTFcnZ~E2b`lS|J?~Ta@vC^aa;V#$pT4-He6(_~coIG?;#-i=$^?AQ z^98MIO(OB0CSe{${hRo0fs5V?azk+m?K8T;b_sYv{~3PO>6h?uy%}?si#3C);?zUD z&x=ZAI(sXO+Y~TOlX)f#mDBR%o!8b7_1=E4cSPlCLjr1xDY@A*+E_ zi0{l+qEBlBe!i?*`0_Sbpf^(|)}RfF^|r?)ySBl{gZAro2em<}L3PTrn{7b5a!%&` z8|0s{faPD&#<7R(Fp<7GaQ?J*xc6i6dec?y;A|BnHO{>qc&%A0Zr*5zK-(lE{o;1u z+atJ=Tc`svg$MFJ(K^7^*>q)wQwOM-By<&B>VT5vOWvq_?0|&502e#xrNbk zo$$$ClFzyq-#OI-;`f(%3%=`tZigmr9;$)EM<<|>N4+ZrH zU-g2x;pK2k?mpNqZf%*lq7NKjp8h<`qYo-HY_!kZ>jM>sdKba^J_zsZIC5=HKX~`- z|K+%=AFgbF_0#HHKm4c(_!9E6AFM;~VuRiNAaH7u^zDTMa861r=9jIB)d=nNhJ zE@`GqA@~w==9Rw25ERbo$u6)Sf~17+KWjsW;QiZxjmMcN{Ah()blnhJ9x~Wx zYSB2!B*#ZuGm||YPx?Fl{vCh+j=z7$-@oJU-|_eF`1}9C`1^nLyawm__CHAT@cPe) z{oWD#yv@VwOC#1(N35eZQ~M{w=O$1_)P5DZZKn1|sC^M)enIVrk>S+(+lckf5&P`T z)c(fsxdy~EVjsVGc>R#GZb+m*Vx6*i^tvP&&e@M7ibCx_44*q7_@*nL-t?N?z zS)}}oXn*Sb2(@la_V0-PV^aH5qt>Gt?Arg{fBp~oq0ZM(`)XwRzt530Q|tD_=XQwp z;p`Wq+veeOA=JJw@*FAu)cGTz_I*+KNd2MqHHObMq41IVH+*j6KlGQ0;{PwM=F$8_ z{1N*+&7<=t!bj{QHIFVo5k6v{>W})9>Hppb`=kAc@DclL&7<3&4FA24*F1cFfZ8`8 z_scL52<}aYT|BoI& z$nX*JGkW|X!$-&;wSPanZ;uK!QhrB|e+2)Cec(UFPa=Gz{)`@fiSUv7H+uXg)Bn9s z+YJBb>+>kZ;r&E%Uy;@~yA~oY>PjeRTcY)R_T}K+6F*-}dt>en+5U{8#T^mn%?q@G zR^c}+HV>L*Ju6msnEQzJdBe&&#kIWCLvjVC*UuPSkv#uy#}cm^AMIy~^PHk&Zk)yvgOQOlRjI1qrh3Z%G?GwY>)KMW_%j?OHdBlq9`&Zo%p=g1KLIet?1kxl>3r$)&SF&>RLH}-cvMV(Wm z&S??tGh#mXcRs~=AA&lEL$uHDb9aBNCy?`<5ziB&*CUAVzw@cT^Qph~@BatAtDgDrj z$b}d-xzl>dmd^qBfsg~*u#~S_6o#*veM`)-dMqXw&>Z0-5{LV2S5G-U zmlxwLbj40JN8oekZ1++#=f#}2$4%G}7=dS#?{V{DzNP`4C-%B%fZ)(TmzGLcLMKAMV+wJmhl-66} z<{LjPZ7bu$a;%4*T^hWAi+t3J@RQ-kO2)hq6`ge+ZwS$j`mv86dr;S$sq`oiFNj;P zvhpTBrft%;%e(UkzVwh-#O)S-4431LerkFJugLn4vTT_EcHO*3D!1l5zG-9eC9h)w znC!=3`Tjf3cu?~dui%#gSejzw&c*goxMii$k-g&uG5W>Fkw<0E<9lRQ+~eLZh}}1I zb?~wA!I=Xd+ihb7u~Vw=Lk>+1z;AsqjJQ-Ih+UYWP`Gz)Jl-p|>2bX3IPCV=^LG`6 zFXOt#eXR#ijKe+@nFxL#I)H!9Tpu(udmMIu{2k@n4z76gmXk$MlH;+Py99F2v3&6L zxjPhFtjA;fBtz^L+FIi_LB9&69*xKDN0clTa0bo3g(tnStyG+lTo7_xXLc-yint1lwN-eQ}bwesSDv z-{1D`|9$)RyI$QXYUQdTZ5jxOY< zlu181<%P=g{~18}J6Ktp9k4lQH7b~$mK+tj(819`0sXv{m9>@2KV#b2nAnQW zw#v-G!SR5Uqmz{bRV*nKWM=1RjS3}*nOQix67dL1eBYU*&TP7m7lZR{yZc1XlxS{GP!!LOlQ5g2a61Fu4;$#etLN2|h9# ziaKKsR_+JP_8zcuL2-xgQ9R=Qfa4)E7t~6>@0~Fx$3q0jv|X(1&5$IKyu1l>Ek zIa1UabG0zDBML`SI|quAX^?)X?bwtP7lk0vBt(v+Nc8`4PcRbUBz1Nn^~e=b!i_|f z>{o)4Zch7qp#Jhe{pF#8DC#c{l&1&kFGBr^d`wI%-R$i>FzrnnwAOCKu&rx165k)k zHW}z_(be0ugSg+mQG3|2O>fiIt;kQGLy7P?2(uAhOe0)~j$zZuY=Uu|7#GL=j^iG-omo|oZBXA*bBk)|qu(1fd2z&_q2m%N`S264)f-k};gwqIq z2s{X55qJ^!5cm-U5Cl=d&Y;Q&B8=OFVdD`3QQMzIn1C=5fy)f#Z;B|wq_-G$?hT>{ zLg;x}7$N8Zh6N)CAqXRgpgM=3Du@seM)yL9B5*07bkH+77x7&Fg$+?eLqD?-hUjDt zL<#zx4N*ix^VkSObTS8`1TA1g6w%P1Y=j{?nFCQoMQt!FY#*WokOc~}LzDm#&M>6V zq6l2*R|LcmrXYAB!*?Fx0sv3d5ohBoL+%ln?pwB8q_dqy9&rqc8Y-5?}F0 z7=tju4a24*1RlV!XoLv}(-CHbVpvQFq6p(IBlb8%30R?fOGFW7uE(%h2(jxh>=MFE zgjobdS{AE|C<6L;Ej9*$eir46fFX=QnD7kcgAn)><%=)@VLF1;U9@4Df+)i52n@S? z5m5ri(EU+F3B;iLXhaEkqI)``1h%95ZHOX_OGM>NKonsD`gH1aguqmk7s3RD=?HU{ zqmRO?A&MY^6g31Xu?PXA+#w=}A_z`HO*Iu!gb5!|8rg^vP(}BP5G8=@PoOfQ2;*L$ ze4itVAUy%Yu8c>Nz=->~=sp4Y5kGP%gYFXvO2nCu;>#gQV8s1gbf19y<|4?T`$U2w zaOI*O#zdHc;FW`6NeCAZxDe(cOhK51`r;Dmhgk^!=*JQ5Be4p@WDzc|#IR%p2?SY$ z%jopmY=ro^sErUV&qHp6I0UH?^s+kgM~Fj^Lbx&(K>%SK!XysF5EVz5fiMd}8bO`| zKSTo&f)UOmgd^PG;5}+vlm-dJ6Nq?7C?UE8VHv_&4mKc4U^Bv24t5}Ffnberhy(OA z9_WpL@(o1!2BLfeQJ#TO2$vA9AS5H8GLU$JD1kH%n1~X{LU@hv2|)|B{T&2N1eE`U z-3TTlV2kb@5nK_Di~!2x0)hJo-$vjEx~EWt?l}+?;^!6+65?5JhJN$hYrKH}J!M1} z3k0{(gd!#j@m!uP%;Ps#OUO@Ei${QG0yl!tTjlZG2ts}+Y@E(^?f@$z0Y6n?9swa! zo(;Z>h0df3qj*|E0^-6vYZ3gr1h~ho+0MOAT$tb!5a2;^d1er4p?e}-Eh4^vfR+%? zTV-VwXR!c^%d<{SgnRw+5bjAx%@q)I5KIyFAs}(VkO*Pg2vP`igd~IngqH|31b&1v z1Z)hlYY1xyiky~+`XHDh&=F7pD5Ks@YfBS>|bCxHDs0hE~5qH!x3-#>r`?pP~wH*!}%}+4XiT}_==e$`;+@XBQ z>-Vph(Ag;v{|}y^?g#%ZJq|0If20HbVknGqQ~7Yb|NJc!DknDmoioQhI)77TlLLB0 zV!@&H$jW0<{quE@=3yDDO>V6w{11JZtBVMIi`@}zM5SJa3amnuHH*hji=cHoD~K}c zx7@ZS&ebZ16y)HD(tQr#8i-;UiO-fJ68CKGd}NWapn#3+--nqon7tUer7l<;Lsl0v zz4Ya)3Zl(ZwYDiEN_(c5rAYWEO`b!DT~1`iWqCxgppxqOg#U~PZ$gad*D?zUF{Ewm z-9v~8UGey3X+)LfdN#~KRH_A1r4SWzA5xlyC~J`JHv`cWi59Nuh|;3G_D&_}Qu|L5 zM0lvRi8!KkhsmkPx?vf|16GJ48h66uIvP1Jo!&L^5VFO9|aW{RNcD(|lF5ri z`%>4x>=*r(VfH!TcA_7KuU>TCnQ*MqP9)DeztdcnMz|yIw>?|qSHeV^q%HqrjDr*`!PwNZ2dZPM_UsfGIuTd_nea-I&W~-QPX&P z7L$GM_#5ZA9IwVTM-yAKbPw%LCG@=&x@pm? zpos-Mn|Ii$5{kH0hsIqL(8Sz*=P53#1Qj3G{`Ygzu(>_0mozJ&YqQXrO&13kShmdU=rI+b z_qtixfx_wVYI%DpO{{RS zu(?ec=$p?O+hR5@4P&I|rzn@fk-cjic>6_Ad%QBS=q`mXo`Y{!x-3Y;OmDAs&nN}! zDyPQco7p&qx6+zUmx8|TjqZ)vqMF#n*3K83OJVKp(D?8oRR2A%rMst=!o9+nXRCc> z(y(k{U%v_#tQ4p7U7SB%6Wf+kcJMX}WRD*|ZM$ZcCiYTwEYqC@109W8b3Es1Vmt@a zO;@piwfuaw$xEIzjQ?Jx;Y1cpKjL!tipJP9Y|Y_2JMWjklC@Lt-jf(AFLzV&x)ShT zH^#B@11i7J1B1(D#ju%cwPCxgk|vf?^kU_aV&G46*{W|fHw}}Moq9&J7}Vx3;=4C* zavF9~Z;jjSBG_+MXsVDfGY#u5*5z7T1Xrz-YwzrqM)JTbp;S=_DM_zaya?w@!*=St z?m1Bix7TjTEJ~f9hQ)!6>GVRNm)4x1H!Re|SoCRTPYS?(uVDM`d|6FQPM4?Gpa9NG z`Y6bpNBxzvX3PAJpRiN=(3Y&Ds6X@1;Eka_!RT;udh61enppQ-E^XDH(BTntLgy9A zzgetK{>u+Y$;c6kl|}NgbMmSyu0Npp2Up@`X)#pZ-4<6xf50*2D#eF;QGYA@UtOM> z4^BMQm8FJKY1kY4L)&-e!>s*c}Kdr0JK^!9#-{RSd$f~1hVbRXR}FZMgQiw`Is zYnYGZ`_;jGt?zK(v~aC}KazimJ5>{_^5B%hoTFB=#Wk^g(JS7Z$%D9h1KBTeNS;#E z$8js?0d`xZS~^t$$;+;iv~S;_&?bp z{u$bN^w;%9FVMvD3HkpFsrPr6WQL;tdOXoyNAxq)J=J|$d`b}2&(I=*nG287R&Q=h zLgC#v-|w-_1>_3NLe@who`-FM;}d=LSGY8hyo)iseo|1;8+_#$^@d=bm#=mQLKTQ+EiYjh(d<5aM z&#c5|zhhuR)k71vegx%qEmK*M=QtMhHAVC82UwCK*0o@W&_}D*WkMgIqBGU)_&WYH zOsM%)pJO(BmcNkY($K=dSQ=`la^6F#$hKWC*Q5T(*}WrQ>Yo84Cdkte(1v?4tot}m{x%rDUzk<@)(UpP1NdJWb(l_pS z1@4OYLjO;an&>lCwlroIOux9VUfM|nwa4X(O4%%Ueaxn^MiuFQimJC}@Jnz{9oXjK zEra?yB2lOB1#DQd|9E~bYVRPilzyuh;ODYl`l`|^94$bMH_Lqvmmhe(w~OJ{#4^?{ zaMpYddrH2Xlb(R|ty%iG{Pj#&9HFLtHW~FNi|D^hXysG*=>BUqDo^agizhQ+VUU1R zQ6AV%8YT<~Ufz_q7?od2(0lpobYSUJ-PxCc+LPvEA)A~As^ZDBXns=>KV!_! z(+v1>)9_WUE-Jt2t-v??pF!omE_r$ovM(8TX$Lnxg*SZKPf}M-MEtvqj8&h&&(&$_ zdxWJ?d1y+B z@RtYhtF+xqM!f^|cW!b=+I{%Gu^`d-4XU5i>I9za_u!aK^zE8dr2nS6xfu18;^(-EBCc@pjV+VN|}1q7Sa`ZvvlO{_56!Q_(oxm(zOtIw(HS zSTeOA>3hZ{(d%JX;n+OGobw)%DE`;hu%k&3e@C*RFP00%SNwW=Zvw~-q`A3HLFL5) zmD;w%!;#e4tjHB|sJ*KFjI`ol>-UyD8Ny>UF}i5OXNzcPyB7N{anBphWqA#yF+aku<;40$)j!rpey;&K zX)qavy;H}b?;>6@O}^LZ!&su)cTICjGd%k6IC8#O6z<8TA-ZpNGo)_Jnxw+?VwjQV zMw`KifA?1JAZJGQGhxNA%bH8&Q=eOCC%6Am?EtD3>#?IFqOSArOKw{^OhY;1;r zoH%ul7e1VGrp;jWz%8N7H4yikg-;Z;YKHI^5j&2&KhG%cEShiY)C{ut-LjJ40LId* zF7jWGp!J?pI@=aYdvngEqH|_G_tvNTn&B+Iy`5VX2vl zg!`IcTypuWsMpt;L2ZWSDZAX0oO7(rFwU%Sonq2O{G?rlPD@5J{F?rm*RLlG?^^95 zACisQV^i6b!kIyMgVAznjr?ZVuL2btGNTymbFa;?jP6_^TPFacyHf zi3wv&`!aZEZ(lPUN!$3cG0K*)Li)R$GG7aP8wiU-aQ-#toiU(W^^apt*3(({n=B3>JB=wgqCB zwnQ?OLK%uGn?lc{?^E8;W-hM@_GfH9oA~CUVG9V}XnL}r=7m3h;k+$jZwoA%TIZ$F zx)VP_p2KZ{gJ-@!(F*cpWIQ|X`}KGWSQ_3egIFiLE-*l?=S&OOO$yJI77Au487-O+kFp)!cs{4|3kydzny?>#? zu2B3!;j!Sg==+;ZiD6;KuX*9QA|CNY@~v<9oRyYtw_XKb^rL>E5P~n_D5Fy*+(<<{8}W<4ot1#;ve$+KYAZrJS( zt*~9>)}0y=UwrbU+`VURv_f*w6v*j7XdC4Ax3yi_<%g@}>-9U$ZiAyd z5@)NU&)|#du4+71Yy*k52Y8K6G=qI^x($+cE%li#8;UFRmhUxR+Xe}q{Go1!-i($@ zAtqVqd!=%^8}~Hr@n>k9E{<2RYy;!Rc5&J&0gU(LIqNnkt6RyeQ@_Ai=QdM%-ibEA z?|qDY*AcPdr5B8*(h$t9Kr+ygK=X!izR|G2due_fRauwX{*YGN%ok_2dF_YEE#@akl{@ zwpm!;$bZP3~rYtP`0w+PWY;0xM-&MW37+vV3a0kGv7D} zpHMUqajy{N=f0m&&~OnSx{>dxP~Q$)4jU;RlR3{wCeN+6L-~$fp9SuRF`86#PH6FW zfQjy-wNY~q<16=mivKyK1Ac|3*_=Fhj`3?F)EtxP0Ow!7Rs}{JWq6V2+&kbFes@Ot zVLC(hR%d(J$__Ygq9AD>atfamV)QOya|c9KHvWp<7s&W5R9oa^+5ye=XQw#y1u@v? z;t_x7j4=zJMc|)amKDez?|_$2cAN=#62usI9sX4$umfslMD8vxz$M;SBaUdc?n4cdXu`3pn@Tt9`;xJ7DSxX}!ybq8N{Kcb%E{wgcjQZ9J!~$MI1A zh#;N(4p?RI;A(PSG=qKaz5|S_=*m4wQMhw`q12Vm4hZ@5p}eThk0DTa@JZ>|PFP)R z5Vf)_l+oV#p=yCxC&=nOUbkX>EPj$ar{4+T4`|0Ty+auT^Cf2#sdhr8<&$)w)faK8 z7ukz-S9OA_UyK{RCV=ti9AogwmQD~@k^J^sc_c%IJlEd|i>L28C6F4$=v3u@o#~9+ zW_CLlojS{Ky{7kdyJsg@t?1Iet!9e8pB;O*J*X3mwCf|&cuwQ&?`Cy^f#to)i;JQd zE5zM;x1@B!#F)s19cqVh=Ff3%A{m`9Vcd|lfu9RQ=it|(!cQoF*Ot_4hof;N^1Xph zxN#asKXYfxs8ru|G2~Y#+Xhvlw$kd1CzSIB+2lr zcHS=h0QsIl7epLB?Yr8+lW``e&euz+3tSfFEsPTkVI1>oVahfPb^H`*9WZ=lkzV z(l&L$bcZu$1FM7Zx8!>XUGT+TWyh|$K@0(h8+YeAbwT&);3S4a8p8O&n|tfCXg6$_AvR%|Wf(r0d{3eq@)wDHouL=Q z=+b&JQ*UWEe3LIxiHwTCZ@re*ow~Xk`aWn~@yR>Qn7#Xwc>9iS$eD7ldrk6gMkD!N zMK?U{{2JB$>JnpVg36C~9^H_(y5RHo&nNMSy=Q*BKGO~A50ADz4~xJj?Q~DbiRy+0 zQf}Jkx1#TOlkZ`4gY0@=gO=J0xVw1X)3NE@;Gn&#-}rqj9-#ej%A!x*aJ{^Ck?}Vt z#*e-H#`{^_P<8LE<2vDR2K&8@ZmXEoeoA8+4jJNH$DM|VraFyiMN zu24PK0}bwa@jq`I#h>!Mb83m}fkjmxgVS7t850J#Zg_UD2PD3AZrGR~!(hKh(gW$O z&MCS_kK*4Rua`WK*8{3vMOV_NoM%W&mrGjI^nin2mHWH7?s#k~U!ZYs4}9!xx&HB* z55tOl@1z%0zfCtE9}3m=SC zCiUM7W9&^0oX%;u6JJ$9q{hC9w|_=Wm<%r9YN2%Q5m1>v129HMe=2 zy9F5R_j3BcCsyHbj;0sR7vJ{6rlb$H?yfVHo`*98W`5uOytNNpqix~cKrBP^zLuFB zZ$B)4*LT_QOdx~(9#20MtzuFwzP6W@qWsl32AoHJx{gVqm%ue@2y zbfWM%eZB6hxAnuFhoN)%l!7_${q&>pYt7Jx(;>L(+tYqmkMzT??K0`l4xVK^tmX}~ zN8bV0-a}u*xao`+yxhElcBLOW_$TD1x1M6K-xKPGg0;1|@44M@w<-3Dliv43ND$^b zY0fc5?+c^t<4XF$CB|#3Mt&gUz>VFz#oGE|$B_NwTK-7JQS!Z_0f;{Av1%D3nz8RK zzx>u|1JJZIa`sY#^LVS@1pZS>1K@r##`(ya7)IXZcXe-84S?trL*~{3WdF$bkOqKn z+3xRLjb8YdD)X9yb^{P+<+<)~jR}6y`|Xr+`T*3FH2P=G3}(2Q4mlg0AAt1E$Y%;; zBRTIa4Zxy@_BNPwG%n_?o_92T04n@#Ls||-F-#wfX`B6J0A5HmyYKiJg74&=ZuzYm zegFKa$Js53(F_yvJ*NTKvtDA;hs0op_%TUaYvDoAKCvfl{zDhW{L3Apy7LC%g6LsS z+0<}`NYfMzRgFRLe>I?z&>q2HzZW$K=d!QS{bIfGgZ9>Qms<_Ol1Fpgy1|#>t@pZb z^Wi}#3mpG$&bJVp_UOYQk8^`?cUuZQj6az1lYEbA5JKgm#igTT84mA``nEqAgw~4C zIZEDPc#HK}g*BfBA>fwqgSOCUhR{ig`0Eve5NL2JA@Ef&=e?^zNJ&lbZGRnuFVISz z9zAIYbY@6cVRJ$m;ZJRs$;%AEsSAOsi_;q?DUsW_? zu;1$%f|;R-ZClrz!bQJ@EPa|b1gU2Q#9XaC7%k4{Yp>+(YJq89w(@CG(i&Zl^Z4@&v)Nwca0B@gY7p=)X$lORNVg8p8QA{|nK&A;IMEb|Kn61$1>I4nulFNk#v zu5{nBD4mF*l=BPBg(6QrGTB9hXROWm1?O6H?x{s@A;MWUDZe0@E_X{=M4xb*o{Reh zQgf@{TxH{{^ey6_>#2=e}%$gXgRpIwO~o;j14u!S-3oS|Y0yNdD)E zO^}vkZ=Dmkfpo9D&;&1oukHx$*}Q@%-)r9{n7OvTq9&3C?P)Osm+`LF{ju3axE|Cz~g#M$2s@`000+H-X8u&Axfp zw-fwvTNg9||Lcp!*Ip_SZdU))CJ0>QClGL6nut%kF%Fe)fn`&^(MmGDaepH${T%kf z++qt6E+yXB2xqVJl&&t*BitEZiyEOK%5dJ{N4tsmwD6COpp^A);@zX`h;WuMvk@NO z*AtoRBty9A@+pmwKKQk&NmYu7FEtR?2ovM7mot8967GyI!HuwB`IP*@l;##6Srka9{ z(3YK0G4Y8c!7ruL*8q>x@u&K>G%~-<4GmCqY?3hVz6oUd7DWxf|Lyy+Req%W(LFvk zfOD&9)P8GH{^?=N1~AQw9JfiF%-{4uN&`e|dSNb1Qop2rTy6lrh9tEfHBvt4T%iqc z_SiV}fr71Me#$-#u-Mk?)!QuDbfUf%ZVljR;WU2h(p`kxG-_`Hyx!P$?BP^hB0lT; zjs~cyuB6@8BfubyR*lj^b+UZ#zSM({{?6x@iuVxw^d(vK(3G|0O7y^Tl0PxE9yX-NxQabpNran9 zUaf~o+bqSFTv8|8w2+8;2acMaj#a^qw@l^@1GBo z`O{1mqw;05uDnzt+mF^SQxE#`ZfBog(Inz$#E92JadpU5&j+)J^fOio)I+Uv<80n7 zr2b1a_13`^`s9g6c9Zp$ifO2WiI$pp&NCx|-&DW24#bkf&t;t@>nFvZQwPiCZb+Z0 zRU*=(z09nGN#CBecjlAr$?~~h2OEyMiRv9%L*~CWu@34c9y$7KGh2Qphu6VmC&v!V zT#evou};@P`q`D~9qY*YvF;tNgA3Xd1FeEL5#gqOc6IPA>t=xlFIhh+OXE6l`XLDc z<4O6ITBTnHwkzrc3av={NuRf}4(#TZxOa{w)_@5y%K>sxW9GF`f+Ncd}8^1wXkRV$iXt#Zt zv)Y?&Z}UoOVa}2lQ@1jVi1e_++*+71lvX#spVU8A<%?Qyo%rRBg)wQ*S#1w%VgDSZ z#GaZ}WO}?;Ya!6)al_KxWc}&WBWoe1=0U4`>KY-Pe}WN#hKSaSe)JYlcz{G?fo`X9=$1JcI+n0m(i;m)F9z=SM5AG%hC6XIaUk`aN_Dh}%or_l(OkYT;B)?y|cJjEVU4(n+-- zRk-z9+htO}=rUZjVAJ-cpdfEG!5?SeUITu$QPTzG$@pYnHk(UNU`j~5c z4M;M!1U{ZGO1MqGht+`H!WSF#Oxf}Vr)t39tnc{BjRpiicGIH<C&>1|1UA@8+pDL=geXs( z0#*Y?(c{llr;y{9X=ZCRjB&g?CoY!kAE{lH)v)<%zzYi-Ql2x~zgL4ZgDc`Yw+>mJ zuy@svaiz7m@uDW-j$4*i4JkL)HV$RZCETpyJJsNno>Ff8l1Ai*or$joT=LQ#yCJr` zsGYBd)K0xeIcH^v@VNR@)$m$2ct(l|+5fco!__e3xtvg%Bxx_>_SjcL#lw`N@hxn5 zo@!bRw_Z+@e^#@I;Aa(XsfLZ6%l94W&?55Bh}Wrx(QnUY4`JF?+m{rB#9V@%3qWb!7eH)K#nCv;Qu$uWR(k z@@}421!jR;9mn{P_BPH=vI?ZM7K?U9lI@N8kFSDLSzfy~&0Imm$8HT(LfzNRgNOY{ ze){LuN+_+@9l#W~v&&yu2@wW13C>^H`XTqD5^hW6(#>p1d5hbbT?yk<^_1rqlKIgC zn3Ygc+$xxMO`S-e_2OP7>L?zI_JWvg_XUq4A zfJ%5hWq`|!J$}T!JW&a$jbqn6*iOzT;wHFO!ZUSk&22WM{lEH~It zS0xA(#b$GFBjwL@K(7+?ZOUd%)F;z7-A1bf%ThzT2OjIl^4wOfgi~DW#hk^+_Kq7b zTM1*@U3qOQN&CREpIQmg7Sr5pwvhA7xX%+Rp;7+G(Nk}ViTP@V`j|=(-+1GWn;W}* zlF)hjeZIthZSHjS8}YxN%DCi!}VGP%=nPJZk;=R8|U z`^b7~Tmj=>y6yOSovgpfxxjo|Gr4!=e@Nz@JA&M0hvR{&X4s3g}7bQ+!>| zPXB9PIY5q9t+7p`ZuX0#;e}iDn47NOKl$V3QX!Q8bOnri1sy(k9R)>kaMW-@} z`eG^X$|3Gy<@K|vbI5SV^l~_3tjxvVPtLbYRqmC;POqR7V++al$GQ^B!TpZFRDW)M zf}h2VD2L2dylYpcv+bdOU^&eFe#Y2E9w*b=?O6_~7o1;xnk-Jlk5h0fhxrv=W_p>V zKGC>s%Hj51hZ|W74T*4C;hu7^%rF{s-$~jB+GF(oL&cM%aZzUE_)8DhE{E%8hfZ!C zV(a%|wQ>l^bLrl&iENKJlZEJgityw7iauM2^yq7(${`~s&$VO)S%3Os(Q>$KAUgh* z3w!*K<}ZhD375UIt=R1^)?Wreu7)SoEXnw^am{6L%F8c4ehxW4u(&JAz_HW7e<0D2 zs2_dkdl^Iu7i`f~R44K?9eiH~=pm`h#*&<$(6Ed$5Mqw8jgenM)^F^CGANmTIOXRa zQeKgLEQ5XB4`1KkN6JrzM06RLml#Xz)g;}RY)~0wm(K5syT+CuHJ>t&eXVNgmrah3 z*ar79P?_hhHQr5`C{LWFT^T$QUK>1dK0E&tre#p-nyvZ4h8!QUm~Ca?#M~@<(S|I4 zM%tP(=zFqeC00P%3wkMD21?y~+MK76_SKYM1-(x)b)v+j`X zM>CN`@1HCWqf2)45&6^3O(+991xGdir=#aRqQd@zEa&Cr4XdrY&m`r zsb5kmb)|5j^TdI~X3|ZwFD`}6_0cP21IhHIZhkHWCRrcs)s<4{)o@Q)6GD!stjQNkVd-NorAJ&F ziT=p23@C-KZ;RzN@d^-b`eS-2@V39#(VexMaMLEam4e=dAKV^-q#LubDFyk{yZwFX z(nNjZvW!ZhJMXD$LVpV}K1s=JDTU~RC$}C9BP1i$HarBZ0VUi$LT7IHovmmysWrD{uQN3YK&!ZQ>lP<{f3x7!Nm5b0-J8ea-~ zFC9Ae)Qo)I&X_!=6m(t*$UE#L^-qeYjs?267Stw~+Qej*r2D zq(qO&F=nJaGo6~qf_0kvLnNC?d5lv#i+%@W)$^+}=aTX&WqybShmWhw?OjOrKNfC^ zekZ;)dY~|HrvcN59LY;3Un&$ogVG z$Fe{#a~F)uC)cE z=p7{>P+5Ct#nE|W{vQ^Uz__0!kD^3LdrX@=SPaI>VH(LBNqM0=<`#q5&+|qXGuh=W zO(=%9rZzOm$RFfpKWS{Aj9&)YVADI{$b@-1+Y7uNB^7* zyZzeK3m{D8UIm{IX1R= zXY`(PKY=&r)2jLbJ+eG@RzG2*pyR%)t4V#yXjT6SLSHeL2w}E6K&Jw}N!j z)T@5L!gG$x`!z(AXrAq z8*SHxeBe?!D7m+t)F1jiyL>oWyvXUyeA3>~XRgYJ8<*}E*PD^{nHD3N53KiNjPA>j z{YzJD{tnk7Yw@d&qGbM`Uwwxs=JB~UQw@poW}J@s4ojc&`tqxj^Huuh1K;6MY3@0T z{iHr;EL@M?=h6wTc$Z0r)27b(4&Rd^v?G(q`3p9+ClA6(mTloWH;G6OTbPpv4hz?$ zb}`8GG5zE`FdLAREW5>?|M(uygAEafucrZ!@jq_Q1HCZ?*7{khMENi|g*5HX?GFj?m9xqlMg23{da z=HmOx-BI>$n#&d9do(6^P`>O73oBe9CF<#)#s|p9uPOFvE}2kk(fT%3`$+i-5gEB; zMfB-U9#xd%FK$(C!TquvUlNr|uJC&+2nfc zgzeu=a`{4CQ#K(x!uxEZ@_6G*tjs1AqrWuW7$eu$^lfZ5S^3qgSmR;Na`{DjWRqyk z!T#Z;mE*IfeKv7fwup>hsl+|LT_$6R?}i<}wwBxT%hk(d((Fv{n;YLt_ut%!-IvLc z`wkwa>+jIL)THSo`P{UPS!A;3h$iDJD&ya4 zQWiNd6?5#7q+QS5~sE=M}}Tg>R;vh2~y4BRP7Iq?B(*; zV|`+1zl_^XzVh+Rd3HZRdVEbz$`9-)=U24I39`er)}{3uzex8J!kr_>$4Pw97}`UOt|M;f4(2czsux zeS2lRW(>+8-bD_qaVo3m`HC4NF6TrAk5bCLzpcZsq=2zv>t%JN9+crXA$tm+PoHMp8#Vi(YU|DZj?-qvYN0i!BG= zY$^Az08|#j)p1aWuHhRryA!*e4@(!?A|er99h5lK~Q65 zyu96)N^0jVsT=iK`TUgCG?mm#*WH>wQEC63O$UkZTvd@J%K3_`QxpCKs^R?x$mK0w zdVrMfa_jbidP@D;mN`H=uP?XkeMM#emYThv?77*@uYI_3yjP(6$d;TcQPs98=b!Fz z`^dNYn+L96Enok+{eSEwZu2TmwA-(o|GmfTB~P!3EnE}p%jH#jxQCqUxX3QuU;aGA zRrcRQ>UwXS;^9zKj=Nn?A>-GCPpbW1>7RA|Qi$g_@A9c{WcbFdsV4_R^T>L!`FY)L_5WgADl$GJeb|XXPVNUHGQ{|OK0aan7c&j zUsaDSMRGl`H>y!N-=PYoR<7?V(A}yC!+&sR| zQ~CaWwq_%#9of9i)xpaCKHp>mNnPhT{`3{4yod${5_cmm#=fg^e|VE$N2b17^RDDt zW&h~gtsxzA%U90K=;tc6mus<#bfoiE-`%I259}Kyki>emcOJ7S{f#$^kO51|R5T3f zDyLssZ7G@YarSSeI?2Z`ceCPRl3AwLqBb5%{&{8fz%CEH(9S|Qr?sQ=lZ3B^-2xddL`w(`G2lY zDp-%yhOI|Z-lK0JCE5BT>-9#~>x-<{6BVo|uh2P#4YO>DhP!TOk7wm!ysJ&g7G7wh#d1?yW9+4>gi z^(+PJSMIX)D+TLSjrs^75qLw6u=OX_>rJfJmlUigNnq-7Ky&;K`M&;MIL?{EElf5G$o z_1W|M1<&svVbAYdKd)c#e0~;tKHvIzeCy}$t)I6qc)q?Rd%oWKd3x*T=L?>fKgFJx zw|+j}`gwTecOd?J{=MLNcYF4{d%^SVCD`-r*3YvSJiqS3o?o|qUfufn^n&NnquBH4 z*3X|?KX0!5uEbZ8%$_f|exBU=`El###jT$YFL)k&JbNCz;Q8<3?D=o&=e?ERrTFvt z?t*u4bpNCfNsD8XZj!4hGQd&-a7WPllsq$vLNKr}u^Z&C0-hP`+KD@u) z60_m z1NkS9?!WL1QN0{+Ilg9Vyl<#!5e?>tf)|OmTeWk9epkhoWzLfq_vY<6TDb@Ot5-jH zT_BB{Z^#&UKx$v}xo2ivB(LqtTz=QY6Z+-%J&#@@?R-Z%eA?F)ep}nzxGYk5Pz9U! ze>ivI^m`jztZStsr>6Q?@?QBbyA%eUcx$8gZW` zI|u%rORf6W-Uj)aW-hhunU9-~DnG^jC_%=gi`{B>d}_9vfD7!TZzfHsoS{ zH}QPo=yn&R{wjZONb@VChiiPfpcyV`|MXG!#Vcg+`Dw+fpg$7* zTo&e$J7XOO(iM3Bkx%Hl%Qdc(QK#NNa6N+kp)&3ml60M1-5XGHRlMY%^Uucn+paEX zc0JY)`$KzXVGH98GUNO`z0-KKH_NqAaJS!yw$3`+?g!95Rb1IAS-%tYr7|@$=HmTP zs))ndK{v_wY3G(7+mHRHSv0T8-J9fIwPD3J?Zo@rRQ1&>N8KVtWAm5$yukacS(Q$VqtW2JG>8W->_HT?vk;2g=XD$$M{mIGehuw^Tfo) zi(*Qnd||Mm{=|D^OQpSPIidViN3iJ2=zJz)n z<1~qLAFR4AzWdgRyB1Lv@9(-ZuzlU@;#5+@G}_J;@uG9NxLR?Zs)oF!`n7^-`Ur8TimXRW$Y~L-!|Znas2kjE6-gO zn{ZpN3~uU%_p9~Gf9HEu+#1z=K6e`B^Er#?oh#z9!}=U=UxNI`w^}*oiWv3yu#>4) z`(t=3`mpuybHy&ZdSr*cafaTbu69PQ=rp0_szGbaM>)RC+(W8du}RTBxLF-d}>Y{w&V*4daO!Tnjl9QVv z{~PoD=4Xi;?!@(OcG?5_xAW`O$`aikR?LhF?TG#uJ7v57B{9A4N%gqOozQ=sY^Th= zD4M>~H(MgxqW$6DeUdMTw(8%G%nU+)f@^+4&UvwY=Hdqz-W5B>nTOOG`t_XXe89b| zer6;1Grkxao)c3;>pWRGq&xCIGWbRBvtpf7fkMOz)K~Dl*Lm_8vG9fdqej$3{~Nm5 z?%b9s_8MN(kPKh>Io}r%jqZQ&~=*|%*#pCssmS|_w3*&=MPh56Fe7jCpamg`^4@2Vy2TvUrhlRWfOPS4jf0!6rlG!E!;KG@ zo5c44&Fd%J?t%D#p{3S{;()-!)ETW&9{+OjQX8WAx1K z)du5@fB$*j^TVQN*{3_sRh0TS)NAkXLt@u!EBAhGg#9ZR+?M2~iv72LIQsFWH}p%k zcl16eo^`EVBzwCP;!m@?p4u;__8waPgvT?Cr;SUSy6+S1?vHZus)6?KgD=G%-6O7; zv999Y$*7NT^J9`ris<0G`$=6Vj5p!8w+kb7ibscy>(j9@#wQnY%^0~|w7)j#_mMTF z{W(4TTijN$Wxw68=eBE&c>j8iQ#Xqj!cQ*g;*Rkqv`zGyzCrBK?~Z?&8W^vf`emCM zYsFr#_cu?iBaNqtPLthNh)Yt6^!S783SU(wd&DA<-0wZ|P(F@l&eF3^vtPyNhvocQ zd!aloF8qY;c+vjJg#m|0Nd5cQzba|_0&}OHATI|7E#Go{g6oL=^O|(^IUtsB3+>|J zsH|)GtAaCeT$<~kC#yM2y{?@QGZf-7T^(;83>)~UGxIOIj{be#w!jkIB%dq7U2|P| zdbn55>h&c*r6_mHb<+ih(3uUrBtN8xaMyLzqg(5J8p(QHQSO23jYmxyU;cvg8Ge$l z828w<$hU@jYktD{5e+KAJ#}^LaANKJ6};qkv*lj6_L=bHNbIgwl5Z&~ymBqJX2ga= z)0#{E{Nnr{u6<|T+OXNBljNtBFuiuQ{ZgvD@fTcg@Mp`vb)Bs`xa!;&56Rb-G`({T z)PK0Mw3fT%CzRqoxNfwG33`$y$L-4qA6;|5-EDs{ueTIGUzYpq>V8!1owiDj&sPaw zTr)=wU{<+Nz{J1|7@z5sB7JYukyp9ouqiB z(gu#~IPaW(scLb_|6ZCeMCPj0SIdXX?Qd9?D@+!o^^cj}$6kv2l`|E_^M&pUe;F>9 zpP&+okgnsdwfnTZr4)Zqo-azq?h3p6J{<4g#9Oy3nv0UUn;l2D`_w}6gDM${k!)2@ z^|6JrKDV;AIC&QS_1-mGIlWI+bqUg@cb%XHD{ZCp%k4}h$o=>z%iAw6r1wKRR2OVW zle67M1sLS=PSxOT$qtXhYiggD_it1!t|a;WUG%h^XKs?dNgY#3vbcIz-_YH%zfr9% zMdtKae`Q{hyuYLBsY{bbp1Qr-u@$BCJ?+h<$=BCY&b+@S_gCwNhB9PtnIm_LJ(APs zHsZ^YOV4tv&Ri>xpWMb=Inv0-Qf%tkcT)XsH#L z()F0TQ&q1buSR*O*M;K#i{swgSyaTXyx;X6i{<<)Rre`Rx^~!8Hoq^fzZ}=DMoM{N zaK1RLRYzP;@l!oDRTW5?ZBbpa<8lATal>nAE09CR`OVFJaFg-}lPL%dDo_DrEeU{;kQJLQ;NTo0+N*&sY1(RroHC?+%Wt zs>J?sVES~ff)qEl&{ZX)8aoV`=YC z^+WRhjB&A4BVC7Gz4vX7y#E??^r=qH{}O&AwyxaYcRQt2Cql__Lob=+{5B9(4U+gI z=h2ObqH_Ljx*Fu`FYR{My&~7=k-Mn|`Br1cqxJ7fOYu}sbxm@hQ|x*51^M{=t&32T zoDXfd?RE3YQar4ixhA>xF4FjIzPvxFm!=l+^0jYwu#fCN>7lPhvew?XFm#r5zt83M zveY7)n5-3rZp!2TVsD??q~yIu$IjG}>mS?4P@8Q2-ns$5OFn;%>&Mk0O?H+XJN~mg zzNhrp)*(IA74PmpCLe$E2Ab-SF4;a29TrIALAcaRr6x~?Z7BXVM{2*YyScNPoH@17 zYr_&bE;@#&iDhe>PvPg}{hQq)K}~L4Qm?eRE03pqO{SV8@7YozWtLpOY$uDF=<6Lm zbho1Hzig?lOOCz}CM4S9{+$y_xAv(^-uPFreOy}_UxH&Bp)MIV?``bE&iK5*3H910 z)g@tb>({l8^6LXPbH?a?V7dEzcu1DV1iOZU> zr;DV|aS5qM0zE3;SZk8UZ*B*DJrY~!VXgapr8rlrlc^qQIrr+#@sp+Vf#B(CsYeQ* z=N-PZmG#qzx;}Z^Xw8bdNpgAf`EK<|>sD1}ie)5UxabyFpTv4kZc=oiH2#H39!d2{ zV`EgiK~cDW=7eFMdG$%HBJ&-4bdrznsLq@{DZX><*(gC8AA+fi#-6n5HzeaiK?aAGzH@A7ek@|xZyPNFEtk%JXQW^5`Ztjt9Pw4$$W_H}t zUdpdiFS`aLc2J_v__NaWQCR2QtpPbQtzz>gzf0#Ip|DR}12SWRu}+uQj*{QJkD&n> z+P?IO4wak1=T`L1YCu|Mv>*I6NFF~$eYu8Y%Ag*T>Xa!VrH}5fX-Ed1ICAWXgWTSv z0e%h1o4y&(=XlBWt?d_&cr8;o+lun|T`?%FAt^F*RA!?JQvJA!L-HGvGL<}E*BdU6 ze^qw5s^ZI4EgNq>Ykv&!i`jRoi0y6$&I&&y-9K`@a>OcPnz(lL-HHy9Z=3sD74c-v zLj5+UOZPY2@m&8Z;!#`I6VZQtJ%amGUZ>+)n7=Ehe+WN}k*nsM%eYSZ>exJO^%HkpJ;>!jdq|XCf;p?QbSmCk% zJk1U{KK^>0%3|wL4cb0Vl*?;)<5eZG*WxuD#>Ded`kWhLCDD1i6Lp*EF8Nb`|E-ef zbRxEj`?*Sz-}t6~C2_%#U8M$n`FIrm<(n-kiEoxH+|;a&ixiK$MJtMz9k0w7p3z+L zYu&z7QG7Ga@ao_dd|ttFmfO24iY3I?xoh*hB)|EcsTIZj6W%wj^xvJ{6~+4F z{YPK_O)fveT&JR#sGsf7w6j`@m%jU|g4q1&fGLywYe|06U9p1rtd{%a6aH?J?{V+9 z3Sy7CHe8tq_ z$7jBl`eW~-I_1UV#us-&&&zuL@hg?sW4rUqNgY~B`JaC*szg5B;agERxjzTw|E3a` zZMoXEdR2Km?8%Q*i5H4LO*Z(-`wOePRAR%}N1ylXag_AplX5Dt$doQ$qg~|mvvb9A z;@PscFN$sLF2(0x@h>MXyxp_R1uwaO^;c?U{8cP;KM`Co5NEiG!ws5iQ-m;L-(bxMotSMO}uV~(6Y>$X@* z?4v!AomWh*|NcAvrNqix)w!hxdrJD{W?E7#x6RzP&{BE)Hn}U76pzf_{d!AE7b#x+ zo_|Tv#<$hkjcWwcWlJtk2l`YeU%&S+h=)H$40!CoqVeL)|yiO2Ond!#+hri z2r1o8@}2XimJoZcJw0xiU1!PvoL{GexN<zajVkq(A%%i>0(< zianSnkM9bvX(6#eqo}Q=-R1gjdA+`nXnWLm>7nX!`-{KvFC><)aO!j6uJZm~{)Tem z{ra^-#q;&0{MB#Qb7F_Nw}!9uaX{kJ3hdvdl@nARiW3?;e^C>=G zJfq)@+S|_#J37hdx1rC;cVnNVy*6bNvpD{6+2$&zIs?W3Nkl$GG&D zkM9RB$yZ~g%Ilgn+E-Z0FZ0#ZFUGWxW!EnBm&Z?%Mf_~+zjEWL%mn%PnE40&WQ@`O zT7=J+%lCUtJ{j%aEL&!{B#%$~H&Z_vXPf7YxcWxU|M?s7gK@&0%Vk<5$o-rAmcBQh zE)i4enyYM*N?_mBCV_|7=-VakY0N#0U@mcFNNjlazPbh-Jj)g`~< z2lCd~b#{G$l$Yyg{xJ28am(c9 zw<=X`kLm+`Zk#@AHPxlbsn3kzx13d9oaFqnKGG+~MjPjDc@!?!-|%T_zH#NF z2Wu=h{RxSe7!Jyp*M}^zLf9WX;Mik zKjACAZj8NCu~)oMLh|`<^r~^?uJ#W$ndI?r`9^b$g)V+R(moyYMM(dhW*Ns+?O5_r zoV-7{@ARDU^$d@(zJ2BM5#pzfM?T)0bvH=v4>hIf#w``P=9xyx?c*s;HTs8Sm1$5+ zu8%}>XYB7v_8Dm*xeSyCVe7@)! zO$ZrsbVke2VCnN@%D2>wq2zW=rzk@)slJAVcPfn`GlfkvFK%iM-;`S6*D!MQ!Kd@_ zL!|rrtOa9mg*OOW%ZaylHpom?5(}h{dn%fj}baDQC%qfmoifMF}oT& zj3uh@X7Boa_k_=N*4`aU7A>6|T&IZCU%A`XtcoIr$x~cLUY9;E``o(SFPey#?_6oP zP|82+PQx-Wq*+7Ds_8eS@>BN2oQfe2gD>y*UdT)7`(;jzCBteSOzKQhmBrf3#yf8C$|bm~&jx$A9+;jw6~1r5gUexDI^3 z{pqzQkduWEoN(r(&kvP4I_FIwb*no3(&<7s`0C~R7fmFGgPL`%lkN^bH=}KjUr6@a z*H1g!O8GC%FczIe#v5D3J3W@h*ZyTajgyG@ak$E_xwQWiI-18%CYqZ1b#-S+{clK} z;53Cys&``dmp;;XvM*8X*%Wg4&6qhOOGx#b+0?jsDp^zYaNvyo()iOaZrws4O&0X< zKi9Dd{En-x#t7s}@$(DfN=f6RY|A~D1u}lnr2!4xn!^9Of1%?v5?7~bbh`|xf1T?` z&YMQkgL7W39Vz*iNqzIDksigOZ>P=%`pB>=q-_+eWoy>jL*k;9@ zuJEs_%F^kiewVU&zm}24%Yf?NhRh&S@2<%8sQA7k$GNCprOhB?J`H&F_JdTPgRk#b z#yeMESN(Wpkko%4(|?beNh*yMAGdDQ0lwputCwby4bN(K()VizKfY0Jvst9w;g3mv zhWhYZ8*}H(A|7XNj(MIT#RJ{*9?c>rUMF|1rIY%@egAEb*`(2qmT}d_bb?>FQodm} zIiEJL|LW?}__3ZpKELSf&T(Ro)KfzY8>H*$ny#1nj1zA(}j7%RJEsmP< z;dHxM(*1v4yF-ePV7y0Tx!uu@-5Yd?~N2IO)u?b+*KF8wv5x~ z2(f6Tjh=fvr25&^E94#_&WWv7a(G?I&l-4fPPlmMld*a83;2G7OW2igIZT}Cz5m&3 zope9u(@YY*^zH{88q|xHuA!Un}X)fIlIrmMp zgo+d9?wYc_w$#6wJp-IW#Ua04PoCJNDg3Na)rAmoOvg7lytA}Fx^2ojJxZM1ZpMwp z&l|wEp)<;j62nL3IyKxO-@pITdf-U$``UwE6~9UMGj>()tqT?>AL_mNaFQE*=bZVE zg2XreLyyj%-V46Z?$(Y$VwL0jlB&0r_7}h7dh7^s zc+4HXws4JNfuh-QY1Es^Rp9##OYIpTUTE9vo&r+@U$Au2363a?@-TjNH z{^GWAWuJBwnoIHi@4E~aue{yAd|rF0{FLH$SBHwn<`vs?extm9-n9xIBF5i3vUQBB zbibpn-~H_%u~I{uVmF&h_48Rcc!r-C{ynetEHCN)hi?~LVW3#^Z0~P|jV+}7YK`8| zUtGQ4Yh~CsDL=hisK!^EHgIgI?XgmQ3>yQ*zT)F5lfv^|r2aJV1HAi)WK!1*W015z zwe8{$_ZFS^Uu>QCM%o|3NWZ+E;>L;d^W57>``1vm)_X5e*ScPVd7q^5uWfO)VplQ8 zu9ddi!zMd2pj>lc^D8@E<+O}R$7CsLO z84D}56N|*zbbW9~ZqM!oy`99pYkE6e>LA@u3gw?wY9!8b?t3e5sni~>L$%6P#qUk# zwH%fs-+yD1_1~Yrv8hB!(V&Clzul8N(Ht+!(7U6rL-;+i1#AD6CY-jb+=rF`xauqv=z=QjZ*k zrex;heKAr!g#gBmY`Y!f+sAU8&tlxkI9H)*6eHeyBDdFGA&2*tNIrK@`8@?8T_L}L z`O_3~feKCT%(rLpVhZ`k50(0zQOG4LG%aL)ltR8g^V>7lV%rNb|B?Lrqnzn1<8Fog zGKJhPY`d2ET@?y=--Fx^yw^b{-rpdRzo$?*!~8u8IlNy%j^jNF5(T_3K_b_eu>+$$ zV;P0Q`+JJctdKj)i1!aja(A$J3b_w=m3rJ~yrhuFdVDE= z(^lp$W$|f@5sX7vyqiK(8|GvEyQJsJGg7nSzfj2ku249`wx=gu$qmaAJ{F}`Go%z=l@_7nPSDAl>`8f)OY=zuq=3ip|MTMsG3i)%) zKg0Y?=ATk1oK(o2V15Sk(-oRTg}jmZN11;_A$M4zkjDH}<{x1GeubvJ3i&sBY&#<# z&$j=n&@`LH8TnZ(K9j{~usEYIoo%1SwlngA;tNw*dXL;`H?Ih%;G^T&M1sv+XLBlMm|9C1ucvFvp6F^oW+N+?Tq|Twta{~ z(_j{7~<2}Z^jAq6= zjJFwYG2UeSo$&_ab;dl#Ym8SJuQ28^<|q`h880*9z0^|sg-eVV880xNXFSJvmhlW@ zCgW+wQ;a7WPcR;5%wSAch~H+G%Qux{pBou@Mvl=`mch-;1V0)*X0f`V5dLc-Rt-z95|%zdEHD2}BTBl&f6*7@qtHT}!o#aN9*P#5 z?QeW^OVvYCdb3?4SLu6n{8`AC&`O1h?_465+7j9^?PI1CH&qJ{{1G2qZ|#z&rM8I0 z*I#igzBF5k8x~~8{)k^%HfHvQN&CbR+jecaH#twv|3$M=KjITAe2&Hs4~ZS#7k3`k z^tKdN&nYv!BZxl>iJ5S6$f(69#mtah?K_;7KfkGOHJJA!{%zxqe&5Sn5U@%Bs4w@N2&RV$AXj>_{1>bobW z|A_xO|Iw;_(aB`fhO&)Eu9oLD%$oP@S^j3?y+%K^S@*T#o@2rvd!6O^6k(5f+z);1 z;LgFZcwW29f|i%Y=;e7C^`n6WzuSQKn0-th=VaJSZZtnNz-_%ezhmB`{gvgPMXrn* zRJKm7WHDvvhf6C0<@18NYGCY-xKE2g<$^b?78^FWylH`QzT@9dj%VeYr2hQr?_b9g z)04l^i>!R|H|2}0{^H-%Uu5kkf75=E^&k10{u5dMi+|JqBHMrB-|Rn;?SJua_P@x+ z5BZz%BeL;F{$~7%Z2XeH8NVVM|KxARzsQas@;Aqi$c{hqH^-mIj$iUO$FKO)&i^<6 zv{>t<^wROq#+Svqd?_v+|3BhZ^_Sw(@&6-k)qXjD9REM!R{bZ%rQ`o7h(C*U|I2Y4 z|3BhZ`%jMJ`2P{N+W&GK$3H9IY(0MDIFA1xajWqs#iiq)|I~i#^QRR5x&MgO`B%>Wr~bD-f6Mv*wEu|J`CpFzwEv0K z^+S&TG=8kFKXUx1@kgw#Uvm7X@k^|(e^T81)A%P=*H0<_^YLSS{gvWBAAi=@Z#n;; zj$hLH^nk?swNAS#_X(fz{upibfc^STe-b(Vn3t62C;2a!k6)S4#jd$$5Yj7u5i>q* zY+TvX`|`j>Uro1KzgxL1@OL-8N5>r_`g{*KdE~ZBgngC-!FCL`xz-L%*Z?wuJO0$B?m4$KC~Xnx?py{ zjqh##xxeE6xxf17{)!zR|8jjKICy@(KmOYw|of9|h-T>q@DkN@0X;lt=p^Uu=t@IUREAF|*%#{Ve` zzK8msQp29J{-3g-a|+5=aV7i31dJG?j)@8w5v-00jtUQr2#5&|QU?S^L`H=NgoRCT zEGen}k}fcIz6(nD7!;o3DOG&A~evz?JBZBb~n9vCPACKrp z#>Pnh^g$1Jg$In1Ha2MP)ZWpleKhFo=;SQ1z;Eg3)bfWf<%d{1N2hktYIOsrwvJA1 z!~F2CpSEcnoitJ~T5hdW;$Q!o7yPNaNNrTtM^gOY+<)n>WJ$TkF6x3ml;Y#@r;E*+ zI99E=lB}ib2o!@fNUQXPdSqyrv_aY;^@=(oHasvmifxgq-6A+n?yCmT4T2g(!w(P8 z0i2_}chLu7v0VR%F%j4?T-VOto%?!u_EFG2`EgzR`ne70 zjQ!BBvt)7_u$2_=$NmAd_IHxgwDv~|$lW2~e0uwMc>97LJ$v=<*~haFwz+lg$8~XP zE015d0e(sL&_VD(S@)+RP#;Ii& z&dt*g+J2ooL)@i*&z^(SUf#X?dUo!s_UYT(qjSH0z5BAXo%>4VC_0}mfBxG;DwgZl z&5i5j<0t)-vn&6Znk#&!rb?fwp~`0}*ukp9YQk!NrYgj<5Klo|kGKwTE#g|lwTN3( zh#{^=T!*+1;ymI!;ymJ6i0cv8A?|~?25}YQD#TTY8xYqb&LgfyoI~7P4ORnI3p&I# zh^r8{R7QSPp+Ve$xB+nu;ufin6;Thw^@wW`*CMV(+)@tP5!WNGL)-^(HR5W-)rhAc zu0xzhT#dL2akEqh)X|JO>JV2WZb2QgPzMw0s7G9nxE^uM`%hH({E23L`9#&w zdUa9M0eTbkDrmK~$P;=FTAwnXsnH$zc_D2##9)@L(85$OLl@K!X6lTzFtaD}f^jgt z2l9p;guWs42chi(y9(V%*n8+^!>YixK-(5}3c3NXN6?Lf6^A85UlaOdXgk8rLpv1q z9J)!c(y%qqHiI37wkPZ+bYZZs&~AiPfPN#iEnykZ_J!SpE(%r{wiw!au)WZ_!?K|b zguR9~0cHbz0<;dWG-$iQ@}LWWeS|I^W(P}x))|%wtsg8O+J&(1&@F`3hV6pZ6?PHY z;jov`O@Wn#t%KGPW`x!ob{pE6u(#07gjIrVhPE~A1hl@e2hhd9io%vcYY*EGttTuO z+KI5I&`pGugspr;jts0gBEf33r zRtvL0C%{xN1GE~L30kc)((~9x5QFJmL72W12-9~2VfqdrOz(nnV7m4w7uo@^uh30` zJ%=s~_8ht}*mLN@V9%iogFS~X40aRRp0K0P_JqBLHVSqR+CbPnXaiyQpbdoGgEkO$ z586OjHni@rz0kVD@}UiZ;$x)uoKXF!cIWz z3EK~?J!~no_OP?ic848?)&+JLS{K-1XkB23p>=^BhSmkP9op)!xzJXJnV{uiDbQ+Q zDbQ+QDbQ+QDbQ+QDbQ+Q2540<0a_I-1zHWv0IeEkfL0ANK&yrspjE>R(5hj2XgQcp z($|2tCi18S)&bREJ+MC50Bi_4fQ`YXU^CDWYymnU59m{%*VG1~*VF}}*Vu#5YZ`&j zYnp)2Ynp@5YcwGA`NKgi>J*5)f^eQ22@8RZhJ|5_B5pujKwOJBkGKYL4dNQaO^6GK zYZ2!WS0k=MT!pv_aRcI7#CgQkh;xXWN5Mj2V^AjI8pKtITSnk`3r2kqPeD8daUO9F zadQC5LfnA34sjjgI>b4|P5#)9xPZ78aSh@c#5IVUhG9G6TEuz8)rebA2Mg+GK^+Ce zdBjzSTTllx>X?Ff3gRh<^N3rdGEfHt;(Eljh-(qoA}(DEe7Yg#g>>DKz9-W3LO$Lo z-v{~kL7V!bTwm0;Kk^xXvizVOg!~6X(;3^KS3#@ofo;%p(E9X7p3qyM=ldZ~=*`e; z1|m=Bv!GWG!MSxY(yv530X{5c1=7Q^mLoryWf{`LR4~I*=wYTM$RB2gb{y;xbmL&f zVauUy2s;RE7uZ$kM#A1hHyc(3wguX@uv5^6!EQnq2Kx%#d{|9bGPE6G=b;@6dk)g%|UrE1GH6ON1^QqONO=?EE(Enuw-bP z!IGhE21|yv8Eg%-rD2nxEe+cXZA;ijXzRf?LR$~E5!!mNjnLMEZG^TSY%#QjVNuW) zh9yDk084<@4we9|9V`J_J6Hm=cCZ9!?O^fHeuORr_VHKjM`&xq7D8JVwh-E~u!Yc; zg)M}(ENmgPWnojGe+lhy*h}b_LR$$o6WXG%na~!6&4jinY$mitVKbpE3X6gM0kpob z2hh)jwj^vKw4b4y2>T4(MA&EOCc-{LHxc$3+R?BZ&~}I2fL?%>gXy5RK&yjUpw+=F z(CT0oXmv0Pv|3mev^*>edL6VDXtgjiv|5-MS}n{Btrlj6Rtqyj>jN`EtAQCtcFvJG#CSp1IL3Cz=_}_a56X*6i{zT8-{;F&qspL^HCu5d@Kk(9|uCu{{lkK zPXVFlr+ucOQ6v1rqenT82#Dc4A|o&@5D}x+MMdfYMg_!#MnO+mwa2VRxQ;H!s66*J4xVd`zafO zlnp`B=RVsmQks$SmXVV0)wZ>i*yT^1^iN4E2ZG=g=%s%uc}Sr@^KcIcQbz}mh>XBA zO4O*>@Zg9Tu1i2nK$yC-)Cd=~M?i!;M-mzl8WW1?7BwbM)ZKyuboiby8gm;i(&R#D zgf2G5U;5Cm#@t82zoqj2OcNbEO3K|oI&@<2&w?S%<&XTs@Y2A@2+Yz%OFcL;Dl!~X zJaIAdOoCKIOr$yx^F2`$BxgiqxGpRhb3fc)a_uC|O~k3ugK}F@b!m176GM^MRl(}; z;P6Q3kyA({I)+Kr4swkYZDXmG~y@|UJ@zUXPG^5Zeb1Gm>hQ>*SX5f-(UFm{5$KJ+F<~A7 zx|rCgVC*?%XT?U0kdJ^Lsj#Qj5ivnwVU93VLY~4K7!Wo_9g2PWZ|Cr=i|0DWjR@As z*+LT)5E_j(1;s{%MvP)pa^sO7JgJTSLPtel@S-Dsr2Ti>)B!QlSkZC)yt?-5+;xCN zubwy#LHGXsWOnhv1ks?#Sao=8bc{MIG-8Z;d}vGv{uLM-F+LPW3`SCHG>(WLGlnBs z`_aiU6EKcqg2Np8Hdgy!+=s@7OaJVpMqkV07ds&k{V6Bs<|g2Ns0W*%uMNJnMg*ofx7p*Sc!LV_`O+66-i149~u>Tv;4p#f4` z<)h{QSM&3E;NRzpK9ajp+Ts7^@4wk5oNlCZ+K0K3$x2=KOc45*3AP$W7M64aOk3<1K9borAE_A znwE|T9*^S|^VhLBp#=uZ*ul3~W3^{&=<{UQJF)DLIX2jNpQ!Oa!)Gr-aqe?KhGmRVZi}7t>Ic6 zIue)55S%LmBXQ!Bj*>`Sa1_p5(y3QI1<0BG_3&Y*Bc&PAIS+H%e;Jei7xHhWmL}}w z%3!A6&D--YE&EI9nCt&P-@ca3)c97QnOgo@pqU!q3N%yWYXP}J_{!iv)#hLKm=@!B}Cx@@l!GV zF}QH^5gPH63g@y=TrQ(<@eZ3Hhj9MDH3oOqKZf()X82Ry(mxB;DAK{RImc}+hBt3b zSx)u%xA5z7D(ox7rGS}x3URvl<p#z0$NDp$?q1Rxg23<}=@J*3Vtrav);>;D4!#6_uGb^Y73TIc)B+&9^ z1^po8}A2T#BdP!+t6rhq!?k4Fn%31fQI=<*8}~mUq=Pd zXX`p@hxFy`IK{`k3{Yr$f5<^)#+G zw$E8l^`Ht&0!_cIryoJ>^7XWv59)n=Jxu^pZX-X?Y+g?}d`YR#Ur)85&mSlcRDE7g z)qT;=wgwsxs>&Ov1yqAJxSuuaH&8!Nw_*cL0!`~T(2t;H*9O|n7yWr?15E(c=QhxM zP?NKPI`>EW?{A>-pyBBTnkV@$H&6$B^Qtejk;Z`rP!IC_Mrtz<+vjeiexL!=fkOI5 zY68_IHc>l2)XQcQpdJ+V zZlYPB{s8JZ9DW+g0rg-eXaLQi`p_n-@<+bun`j(pII)SQfx26$uNJ%yAIt*P0Vo%A z2K5g%VO|*V7swCfY&KK7K(Op)nhE-p+e~dnp#GINQ!SVU#(`!~4_c~jrg@;Y+GeW4 zXE0UW&6q<+`3{>gkBodAH`8vx@Le|36wrrkrVi3%f!k&(fPxRo!zU$E0DLed41Ngu zEpjtWl9-HqL!m!_azUSL_@j~T7JN|i6y<>WGKn;9j8uBp46N!3&JgDl2{6Ka8M4AN(ptBC`Uz|t{V9H^n zAB*-MMS9TiD3Qj4!sA5D{h%K8w@`;DsUBM}mxK6dP!n5|R~ z>L+idAHkFjTWPoPi0|J@6F~i;tu!CZy1tb<$H9NSmBxcURg!2PsM91-hY85nJ&DGF zKHZXNCMb+ZqIMHezt|+I1x+WCXbNa4vyF1UAYNk|4FR>yx6w4oZ?%ouOhS5>ZBz%E zx@@C)V9LmC)L}B(6SIxRffi5?YU8$1GpJd;jcTSqzkVAPK%ew&G)wYNLN^ulzPz2r zfvTt5sTs8F+(9)0^1Zf$3ZU-h4r&2?KJ1`=(@<{pWSRt~1SeC~bd0z4$y5t!wkOjR zP%tJ_ZU*}8LNfIMeZD4B1DH~HC$)fj+nto3iS&*;sUGwR+)2%#dd^O&nT73OH;`YC zbhDA)Ii!>LXeafFN50>7Vs04ufoYOoc^Bp8pdIR6G(;l5i#pFk`hL4GH;Me?c2Rx- z(yiM?(-tDW3)_D~y^rpuX`mr}H|6wb_qp9P1mv&mrdgob41W>Qe?@#T`lnh7O#pSR zQ>bPM%I}jxGePsP6xwYm(gh$6T0&ANw+!tFPoX}bDKdq|gXT#o_|5?BoQ&Y(zbO*-zs)fyegKJTMEi zNWO7D_1ld6&hMutP*wB*RV5-nn*%ff)RjI!)mxBHqXSe2s(cR6JkT%~{#LYO-T`U= zv*u$vs7gCP9g-Xf__8&f8GV@dGp-%({hipit)^b=Z#j*F8vepbm@&`T7TG zp0wTmAhm#I$AgsLf%brYAlCxvK|zCbpdPe<2GAxM^#RpjR{MiA4de*6??k?1p$FBo zksh=xJxEh_A^qWl)NVJ@Jw8Z%4j}#qbfCbcQuRUXZ&fN4K(0k9%>;dhrBb_8)DP5v zy2Yt94m52?9JCxpJPqlOAP(wHsWc7LolK<;hfuHUsWb)D+(G__kpa7b?9HRN4 zA?^@$HbS3sh{l8bki#?&Oc{5WI*ZbNIZWe0%f-VqA55unglbHn_Yo?9+R;a7zQn8} z)Hxmf0{VbHV~)}!P@Qm$av4a!%}D(~6Q~0X+l@2{)Fc~eKB!JH(r(A$rx|Gis1uEp zI{}_D(h$&a!AP^ftXv~?K8bea8L0sJTsP88kb7dJcBkM!MS4&R3KH9kGz+wJ6RE># zjK2Vp8Zxncgh;tFsMl^2^#OHzO*9MS4w$IsEViebXbQ+3F;Vq7sXiuZ0=W|=+U-30 z@3e_#f`;?ZUqJr(CaSs!9#5xQFy%@*O#!*9=`~NfFa?#(K<1_)}S{q92CGTn^QCo^szlf`8(KN{uE6Dxk{&~jTzgko}wY3rp76n1sYnNqUyWw z-=Cs7iTzGf6KL6XnyT(e<(;NlP}4Y*rhxw+d+!3@RC)i8C+F#%5(2GQpg_c`RZ$}p zMP(YW*jk_js8R(q0t!gcsHiBY(O|`ynTJ1G>FU+|&Z|M#uripMqXM=QB;*x)<(#*2LXFXSj(+ zfRWqZ;nsbS_vJg>1$69rhpz+1kG#WeUqP<7!*Exexa zjx9U{j04vJqjzrMwqwxut}WaFbOP&vw%>2ztAXyCt^5QqK7T8B9f$khZ{@pyp4Yc> z`w7I?pSJQvKsPW5j5clMBfmjJ2dtmIlt-SnO@Nn<|?PqP{VS2uH8#nzE z;h46KmjI*JZQ~Ales&vQ4Gg}%jh_I9*KgzY@9_M_Htq&SBincr(DT+d9tXxZZsQ~W zg?M^r8(#!;H*dq9NSGHyx%J-&U#}?kR{~Fu@(3_8BFghPp6`wFdZ7EuC|?b9?uqgi zplM%}mz&I{*jG_L7Z^DZ9>2%KK-aGKxJiNg()YO&=)B{7 z9s-)~dY{LDj;8myotaJc!5?rBFh2VO9tB2T`~dqj;qT=S_#&Y7@CUpJXd1blmt=z% z=m3TnZ|6b67q;^lF#7ZD+?IpqUvB3vpy|c!JVeiHU=Iwv0{dL(@f+9!9lzVoSI{#s z40P?-&PV3K{HyJ}Iv?`m+xa4(-MWLD3c!Ev4!!~yJAVh?1q@xWgV*kB=AHlY3NoqPq*Gju2R@524LJNas0nz0S~U(=Hwa#(=AVA?HW@1mQIwamQfzoBk1>OSteOz7FVq z6A!;^n7+XWd6U1`IWQ#DhbSPG5e+ou?vw&i$BImqGurA9K@ba0e^_ny&ho z2Z63dAM;&6hv#GNJ{|ra`Iv`*?#RbH4z&OKW9~QunDq(w07E&S@YO&^uTOYhIrN$H z39kpb=D{2odGr%*KNI170?$Cxnosx%pr_AnUVRpx=kMk#2w&XITY!;2?#A9cgnQd= zZW;>yzwhQwp!15q@(|Ge#9w(FX!`44x#JwTKmJ$DqvF~0H|{tW?tv~~7`O;%xBU(C zqtL7VZT( z;Bx?@kTV)`fUALyzd=7>^f>&F!Skt~W4|^0UHUoZRlz&@bH46!$OlG&Zs+IRRta~L zKIe0RPM`-Eo(y-u=oGjk`>Q_3er))k4SQhh7MKIW_rd=auz%ol9t1jptAXK%KIeH= za2NcX*8`)^!e2Gyy$pXq`$p()+e&_m|H6~H(!Oy>K(BR=ok!{fl%U3+-mB$(f`hueXn#n1<6T>^c89^f*d^M2?9 zw0WQp&;g7Btq(yTpdDzM40pg1V0bCQ2eds5KA`83J=_BfJqmq*k;mX47z4Hdoj&-V z0{4FS2gZSRpfw2pz!=aCG(8S|fUYO^@Gvk6YyyUs@8L0E9C!lgSg{BDXW{OdJ(wSd zzmYRLmy!DefR@fKR~=*4SAnIU!Xg;g-3y5U<)vMMhhP~74FJg zxDyz?sD;nH2Jt?iES9%A^LxR7=>wwXMecU!5 z*mED|g(1J!J{||UNA2U`2Dl%O=LO)MyN{o^1@ZmxK5lYTI>8)he_|i6zYXS3fe#oC zf$w(ktlo!tT=;u&A72f0u7Q7G_}BZm^A6yva1V6;ZXdTVguHe8xEtsJE&~REAz=Iu z`!Jsi{y)PU=z0@!fzh`h_bxnd+=qRC@b{N}y!>w9yO0ZvZh<^tXy-oOvIy>WLGOE@ z???N12`~z@1H%Kp;>+%ZoU*TY92gn;6|Y|meTIF7d0Oaq@mIWj3DUj#E9@skx=e)q zeei$lSKRgh`2YD8k9iQze}BbCJ_tFc{X7Va6z%6HfTltFx#uCsJ!e19^CCVS`?(t! z8@C_xr{H;TKi~B*%>M#^kHFn0`?+-)c>cMcuK;?K1HArGVDCpnnLw=7Zey9Q4UK z$d>_QJq~i)^Dws_4 z4$KR~{AUMwJun$Z^&98~ ztOuHY1$&@<4S0SFK43Y}`D^F_bOXac*UJZa$y&GzgBKWn74Z!8{1*EC4*CN}60SwO z0^P42+lbZ1EWCGAE6)64mAB9&+EYlv;*sb@pqvoFt!=- zMbALfI;2<0A?^UiFFnLVz}S_CcpMnL4(5M=+?j{?GN5DLAsz)fZ#%^2zK(F-bBLS% z2=@;j;wyl`#|~kB7Us_#!u%}4`v%ce{Gycf$_<4UJ`+MJ^T^Qi1XDz&&)WF10z7& zn~1+zaqaUxoX3@C>X5+Sfua zpy#zXH@yr0e~j~bV5|w@q33tt59k7(06O1=|ILVp&F~MjHOKiPdfp26!0!eI8s|+w$IQcg?t9>yeV9jprW+6Q z7GP-3VQzmP<_(8=80c7Vn8$$DTMqN`51_aEFs}!CZa>V|0i(b;FnAx_ZHK%25A(bo z;Ct{ecLL+y!`%8Ic<=@0k-*r)hxrO%*O&)|Uid@BEst z28ItqzF9Fj3y<&^Q!vgyg83;0!cafC;J_DT2xcs`zixy#<_KR0bYFXf zTYD(@qWKZ-0orE3Juq|~+ykxGAK`h0FbCR!u{)0N77O%w0{ZoVp07ZDU${FAefmS* z5$FdDe|v-n2S6_ly-MMKa4TPDBmG+WiqjD8DXrXeI-aj?<>f%rovqw)HuPEB%58So zZ))Z7^I`s%R&E~#KHwstqq&tg0qt8_v9Aj5f#t(t4|D>fz(qjE)>gino`Er7EZWMg z6^OU@AqVK$4tGG?hpjvewC{pDpyOk>8v%EpwDMiR=wHEq0qo0OVI42q34yrZLlZY4*$U5N6@=?$sFu&j!#=S7V_!wUYbYFUmJ0~GrmmkCXl+e5C z7!L!T1Wp4V;q}Kb-UQFAV>}LY-30k{@IMc{gbm;W zS|5Nt(D4ZTT?KcKLO-AfxD0509qy(feCy$VI_%%YGtj={7%!iJXP^@p1TF$bfFWQU z*aS4~J;r0#gMT0RU3fl-@Bw4Tj^X`S_|G}cL$iQ+$MG&K+!Y+><+Jfzc$_Z+IxWX} z7-;WvoV#y?K7EgK`%S=pcm~=_;SXpVjORI!Z#&M{0pmlCWBdrdQ;+i%!0>6{n+N%4 z9LM+(?#_g}o53^mIM168|K}X%PN4ltz(b# z7GSXcIJeyfcffj}`S|;xBoZ%1kg6{8;m0%Z}2yKBrtl~H{1oZ5B-KOBlBV3@G#*BoL50O z5@$~UZwaGnLw`2+YT91VFu4=@f41M?QcAJ7K0R>2?8bLBS} zufqTMZ}=iI2L^#Q;A)^97y-Jb4yjpp&$A^2>pRJV0;DSdSU)FNl<2MpmoO6w27hxaTaKr7zEwLb>^pN2bN9GK?=-!pjE5=d9E_{DzedncRB zi>&4Wg}He_bFP)lOL6T!3T$8=f$ zOU@czHUy@op|~q?+oxksHPAHLV!gbOS-r|+YmRc4soL6;-4%S`wk?&LDxu1Tq&(72 z=tiDQraIgtFFMSDUsTm+2#|C+)<)%i?;5l3CA0rUbKqsO`fD@$=fDkB%~e~fwpMMM zxM?(O8

  1. >D{ytNVn};hcwX?5NZ-{y?3B;rLVugU!YVS!1m`f*KC;Lp;0k1f;^FjP~~So#ZbL6sdjK zf@~3z%59Y!h^#lrG^+}Dt3cP+bC=|C=186~7OPJgV=3{oN{fq)$gz}cfl>1qiza6_ zoHf8-bcyt5XPN%SSZsl;(U$VY>?%uCQ5IVwOu3oBXZ*;2k~w8gd+auV#L zVcwYSQ~WHDMU1O(V~7F;9ryvze_Sd3gq$&!ay5Ij#qP}+Z5i2^3yJ30mR;s4mYDfU z{8#>fhtYT#ZE3+B$9)2~M;UEdhC7IRg;Hq=0axP=BjoFV5!_9x(~EsP*s`n_l)$|LcL?`t++p17a7S=A;f~_o zg*%431$P|x3EUnl0)ab-dxdq1C1kzI;_0P43(_$l9Rt!aARPnJF(5_Aa7S=A;f~_o zg*%431$P|x3EUp*7?8q0?iJQLjg(bp8^r;Ics%Z<$P2MwI_S|9A1EM|FKfLgI|KdH z66HqU0Dph>eo3;FQO-OWITOa@K>DM6z8!qgw;j@8j)Y|Sstt^|$2;72q5lH4f}I$q zV;c@OSOi9>6-(f)6get7bhIFFjFmi{<)cU*8{XRz&6{VzzZ$cpDQ`TUZlkAz=8hu+ z$(HBMY0Q-wSv1)%-bs)Q1&AG36?3S@x$8Pg6e^ww{&8f2FA*-8B zv*CI_{M*(^|M5kVptEqr%{!4E5j`WQR zT&!Ni9_g#gedaJqULd*O6lM3f;S=J?Mb zE9p)23)X-y_#4S*)y%0q+6eQIW}a5xtEh=f8qpqk%xtdNQi7PVZc8*s#qjqX>9{U6{vM?Kef}kZ#p=DnBh_!Kz-N1^QamTheIh;lEY+S@p`lh< z+qSmUfF~+e;%fz8^vB;HUu6N>@u$BZzB1^y9DMelXne?{bRquO8b-NA=6njrdbo={ zFWn{bSu&o-sd-iYf|=f2UyndOJ3o6vWpm}0%B|?qq1ntuEcfsi1oBm_dnU?PVGq<> zYb0Nye9==G%x#)^upeoob*rhrI?msFrq|-@6R@hi*dr(D#8@DvkH0rr&4!-_@Pyx% z{2u(LtG#qg@0Z0H`#}$*iYKmXS4@~DH*E*E{XHqiWD{aYj+UR%fo#kYmBM_pug3(6 z1?4%>YOssV{(?Ea9@Qz6+Ds>xm;?Fb#9yF1Ej@+J78|OTWHB2n%41^|O60Jl?_Wu` z*CN{CHBG<`3KB_*{H1g=G=oo;@5U@G!4y_*77oWs16HhioT0NDth1Y$Zg*?*maWP@ zjiabzcgpf~U(?bb=A}_+v7srYb2f>b9nd75q?6=Ir<+Xf_DXj$7)Uy*pH}rmdLEYP z8Saxz&w#>S$fg=}EY+>dCjKM;i@KEZ!EX4Av9ZEKv@GebO+MI@Os40AK5TWHe6T*# z$<{XcV6oC+KA4d7t>uHmZSuinmYENJ`G5H!ke|#43z42{dZGR(m+9#|z2o$}A{pJQ zWqMX84YUNl38hXe=ppH3FY7S%e#{cpgqC`xNc$O-PnEUO^K039&zVJ52}*ZGS|QFT zv$}F=P~J3gS{b`eaB2@!c34EK)LCC$A=6a})oF!sM%sT-NVUQzORtRIwScnT_?al< z-L5qZ?bWCCY0-?Le3w2_((1*FbPn06sp1x*aP)_DvX;d2kaTD?0<2v@3o^k(1W%lGF6a@8Ehp47El*=V;kE8;0bo#Se_Lii753uw39qMqRc z*=_qDdob8a~T%yTAUx%*Fpfu6`|k#uof>}Y|mo~YciA*)5%fB8R?{VE5b>7ZHHct$E9BJ0m8V`@S~qm zl4m4K-_KxM`gGkfX+U~46eBDDVgdqFBSXxX&74mE4x(mJMmMu5X5dZD zYk!59`0;*=`Jx|TaIRKJIw8xx#vUSz0>f88<;J}5^Gp&2{$NDSV9Yw8|dF{$$uLx z>l!c*jJpYU6!$LNG2AV<PABwgi+E1@P^*1VE9@ES{8U3Slxnj_LQ)7Ddok`=F!zzJsoH4>~72#Jzx~;aa~0&<&$0&gHR48O1+$U z(!4XhA_`k;++OPPgP~p#ol_})4WJo%+3KZU;U7qIw1-|f?_6bx^|{W{(&q|Gybo3a zaeIoe5{Ns9dj;+g?$x-%xYyy1;BLYl#k~u640j9eIPMd;J;m39QyJqcnC8z9xPeHn!FZHsKAucjs19OjNo@hTQzBj@=sF{aT?LvV1 zG=dee2@>?<2{=AxfEsWIo8O{~bAA}tY=#5Ws!u}dXibPNn|CHtw9z30wS&zs~w zKVYx%4P%$)>6SyzMSd7YcItW3-zdOZ@P!|gd}-~izQ5pNb2Db81OfFgTjAgSi1cq) zBro)7#MCk^ABq}{%4g}RNQXzIyRepzjq5q~d=?1W-SU8a7U^9gQU1YieO&TKgw)RJ zclL62H~4phKl*gH_+RTPKlOV?Au@x{OMW-zCh0PcA2Ap_ZrDDBb>&Bl&sI^Q{YJ_W zd!M=>2lFgdhV4zp+zFMh!qX6*KS(+0<*N+lAweZs1EUpxvzo1IZQ{28D6TP`g4c7kN?5U&F zulvz=BoLN13j39wIM6OBx;YuxSaUvz!zSu@o5<; z$ye*O*ZGGBhFzncuQdBAm?vKse|E%Q1=*|TQ?Nw*tpZ=Y*f`(_1`2J*hs> zcapEfe=;T|bacg_gK?m*in*i&Un}@*PfEU!){jl{P4VVT!N!r?Du0%;%a_Nlz_z;$ zsg+YokUX)qBv<))v(&E=c_;Fe(f)zY`l1$p!c-goz}%*phqQi6XZ1~_2>a)nimpK??n-p%*oTIjbRtFRbu@{l z^ej6Q;cL;tS0fclhR^9ASg#IH9Nzwc(i-0&_IQ6?0`y1t2KfilW=7$W!nY87*5Skq z6u(lA59T(_Ja&P!NXn@V^q%bP<@-wU_o-E_>>?Y)q>`l<#E?~>w<;Oy;C(mvOgBq8 zp|Kf!Q`E!~{3PX+0N3=Uui*Mfkm;)=6SUS5&BaY-x3 z>&jB0tV@rAc~~>Y>mK4l z{A&HMN^Co0W0lm#0AXK;--YmJDv^AiLSfu#zaf~-W)ya;yyz!1gV$3gc}>|}oHI53wf!KS)kE=oHmYC8`eRU;pPo)4JS!mwA88c%_$Do*nwXWevB<#S4sY~eTHqqUxi71rHPs=m_%Fec-74!ax z4AG_`La^K{6{c`BK#sM(Z8&a3ILO`ydrt@U6wWoUk8Ad6`_wc&DV*^R!`T4;`{Ca- zP0F{X;=iN%5c8wAnLDZv<@~6&Hgm17m$J8cg0I&N&0~GNAVkj3O}8Vw*GYNtRQ+He zueR&*_Uq+QJ=F|(rW>^IkrKGb{0q_}!zGG*vqlu2AMj!WJYR=c4<5O z+ZIUwQEgv%vVEQ9&GP34a@1_461}^3^wTd{Xj}87wO~V@1C|X#zI#~mnR28>s@$gL zol!p|-zNwwcNo=n`qgyyv|$uwIR2M`W06kVN#Dn$zAh~s34PP&g{eNP)R$qJjo0ck z+SHm+pOLM`NBL^haEwEIQjS$KF9X)W+@+a^HFLy&qoUl4EQR?N{H6S~1n#VU=|9%h z{FKdZHwZr_E30j;B~wqc@z1E^3`&fJ2T8HVZH|Du7r82KJ_K$x6wLnl=IGsH7v|J zE9`7E3RIPe+>59%wSvb@A6UTUPQ^!(CuC+b(*2OT>9~htOcHxj`s?C+*nM4{Pig?a z5B$M*B!6O_rwT6}-QgcR(`Qo$Dx(8~5_`b5UE#C&2L}ehbiTK=aR3{sY}llX5r3am zGW**eg)9<2C_GgDzJom5ds3dOi~Yr@nf=7L{I%_0&At%%??WjkR7lc0nHW@#)gT;CMMoW8N0!u)qv zH;hTR6^bv%?@I7`_DWul>{fI-PQbk1``y@I#jZE({AWxOLMO^M6&K;>8>yG0H~!;7 z`;tEYEG9awX5WZve?@g*I4j8)S+Xi~NdmK-Sd;LL@K*$eW5e`CIas|Bd?Ngi<0z;V z&+!5QorXWEuRer!}SThW75EfyW(QZpPwZ43a09z_VO9K6w9FKL+Lsy z)K9>gE3J0pjYb1oWv`(%=|kzU5&A?gR{rNwa_IG_%FF$|MbKaatlGR&2F#}qH5*HFy4 z#@>{AS-V&t#m&rQSRci8?HF5NsF&U`>4hXTZG>L&&6-}Rc09d4X7j|7C+ZsQoiUrX z7EIyFqP6$;r2o)K_>Zg8^2XSH!+ohyUDC25!$}#vW0GHodnNP={X^NXe(95$FjpO7{uLAzdMk5`*mHtC`rVIHaH9w?0mYQCY)?$8iI{Z2Q zDg8M$b7VkmegTalMxUZ*j%=A2S5iDIhrgia&zg#d^!!Ze{zh`c!vwkE!JFB;NZas0 z_4j@X$G@aLE=`|AKL5VP#U!V041WHtg}Y1bvFPtEG~7>()*`*XOLEpjj`NaMO2BmZbKfZag=sAYR~!A}1#E2_{o)0QB1`#i6?kl_ z7EZyEng2FtiWlwmZurBYxWY#aeG0lVu(8cjPGTH8 z9_G_w9@ot63rTv~yu;lz4^`#MQzom~Re>CA_SVfiWX?oUJkTqcHis-pQNgB#XS96J zIcQd1PaEnA7j^jkg7nb*Ihpi`cxb;r!A_x;qWxZJV@|RQF&i|au%_myl==j*rEazE7_sK4+U>%H_o7Mt8d7l~<0-G~Cy ze(*$Y*7UVz@Z9gsPfYZ%VYxb*^f@3(*NQ7p?iNcPtJYp7^_k%7GtO)A_ns4=7h->D z)iI^L5G%!t`O2l>a|I=ziQW;ymE!aEs`VAA)~Y~nrPAMr?V|N^{laHa+PWv{x1IQ& zmwXPbUP$9B9OttJEK0q%O2?b7tS*_-3b z#)3Fw)wwvOWBWE`79hHf4K%AI>}zG4;==RRZEUwWAqg)a(=xj7rR-2kYPKmKs3mpV zh?nx~a>%p(RmyXv@@slKm{D$NoN<{!&q>Y;?+33trp1d^A0^|Z)_e9O-+AiLseyB9 z{pYg!!Ma7)v!U;K{&NH8s6$ChIln)u8trxdB=P*8ju$F#Yaq`yP|AyI6|`}AqiJ%V z;qs_kSDVRrD!vl&f4Y=oD-*#><;VHzAmxB}U|_H^#dnI|#x|X-izqsG2*!cI>LB5f z^5bmq*=r=9Co_NF>B~n0R7KjS7}Idc{1;*UpRsyBybA5x1Wx0F!+RpY7-ubuN8dJHzc1eb3R~b4QDnDn0H-3_Fc&Qz!phzs7 zEaEfLTR@7hE>O6@Ti~9c2QOb#B#^(gTWumtS?T?z|>%~^( z>q=kd?kR2k4}7s5lFybS^-jja1ax@m%!fK}ZjG-88`E|_o9=Phq?|bR!qb(E zpR2vrDz$g5zbMd0dC6DIepo0nUgEt$EZzBv$x@XGMSPXWyY^mF1drV!AjRkO_MHaz z#p+4QF<%LLwy=4^26;*z9YoR>bS2VS`YQ%32cK)8P=A= zseP-xCs#L?u-_{f%hL3l?llymB)z`_U(6=uM2AR0$#|IH&8kwf$I)W&e9W)SEzxDX z%LS*}!*diR}dte)ss?FV0Up5(J<>Zeru`rqj7i*pA{)RWoS3H_=zjMtKhP7@@n zN#+gm6$_z|NPntYZ_&bCXcp$lc&zpJo8;>sD7isBd7if~duOJu9;5Wvh-LVw94rT) z^Iqx+BA;sQXJ_RNuqH6F#(xoe`Z1l} z7eMce{TBsBs#tTPi}=Q)NV%`RN<2rjdN~;nYs|pne=n@m`1|j4ze)Vp_kzSRU%1Y&PC--Xhv| zJ$@nNM1LmbxHJ1R;{ttZ{6)3ila$MS#cFSMPN}Z`ISCP;UjLBZ8^Pz;Ao=3x+tAgS z-l1%^`ZUA!kG6UbMOLv}t`_`GS_8wCOy36Yzy-c7X4&;+FVgnZR5eGv;)I>_NBLz5 z_&imT&#ujLC;6P}Dc5_41Z*|_!7gm8eOdor$Pf??!uqdG)#?S}YX)C)pN>MsT^4WTkXu)4qs4OGA6ELLrp=;AinTj4^Z}w}Ou0o&<&D2#) z>}MwZ)_^Mfq2#kwWblnsd!yV;^IEIXaHHt3@L3`XJ7~Cx?>kUM3#JO9=;;}JwZ3BT z&G%ZVsb}BH{M-QtWs@M!u4+1QJm3Gpj=5ZYM3Uu3X*Fec^;XrQPNCFAH33D zz|JveXi28B{7kP$f38Z#hhwM=cd9%FCe*0oYy7qIz2kfn*(CiY?{P@}iT>Ka1eFpB z7e2pYS_3}QLdj>+#xaP;_UG}cETK|XVz#U<9cu}fUW+GXeb*kEI&{{tO&6(k&N^o6 z(1y)P1PDjWb~!*gshvMuLowH%b+nioDy7v_IT6bKZtjXRBpW4T!?pNPW%}7p#(!MN z{BX5*z;*sXfq~O~gVj=2t)CSbfb1}sY}HcfO_aCw;IsWg@+Hb!CG5Au+^(6&Gv$o) z_nb-NQyPS_e-!B|owV^OwX3Dm!2gEiPqa^+mD>72HukmGzu$}!nw z03k=e-s3T||2wbmf5&-!bu*Bjdu4id=e#~2{F%O!{{HX0K3a*Dhau|Dhx=c0ZX=!7 zH~o6_FKpCkAwOvSi}uR(|DD(O{hrsi-GzF)O2+&Drt|uIHz1!()%5;Gad3{SE$GuRKlP}cnbo?6rFPzu6A95o1Y4M_s zH`|Ms^nF#>Px>D}uW#ur%=bMi_4=Q5USBCXLC&8`z5XYi*S8jW1>cl<{ZBftZ~Tpz zKiaLu*TAmj-z$F*}s)~*$b0;bu@0m62=g-#e?(u@NW~&cTpnojuda1XRE8%R#^JhXdfN;xJ)i0>qSk(|7Gk4&{S|kQ1?Ma_~%7 z9c~}Yqnf$9i~WFLHXCcO{wMbDeF0v_#Zq2W%U`K>U%Yp`9`8HhMgP3MIBUwT`FoXoqn0K(^9{} z2E>#9`{SDqKF=>DU$`biKc_bryDX~$Syle*Dqjv;px<*wJ5_T0*?}x=rwWC44fyO| zOTM6(rB4g*Bm~quuqH4V!JX?nh2`tdRmlu7<@fKv7sPH32vlT0Tkwm2;Emdo7??1@3TbZWEBLGY~wpKYwhM+FC0l5eW- z4CN~CscKnG;ItY3)7kU-4@S|M9%uMZ51gh_4J6Y&>lTFnX~}1QRv4%FCSX0vS3J&Z zReMkJ7qPb`U569llumWvi(fEZ5Lsz$6jxHeNxsoawf6^pN8mE`Quc{Hygz_;qotMf zCg%B8fzPx|yEoc95dWfsMokVF>!KtVq$LB1IJ$a zPsPL-!`CPEF(EQE&5JF(9sO!6O?Kka>W9wqIr86vZsb4qq~ZHEdc{~}cN`ZQZ;#g% zgYGd8>y8?KHf)9T0Yo&HBHs7kfq1_`#(U61k>B|~fvAQ3Yk*Nsi(1m_7j})|CX@`v zBMehC!|~+d-B4qg;fP1iEaG7~ehcr!&u21zqN9azr}bj2n5{M}T(RQx_!(~$2E9`$ zpW4$^&?|cCb(%sFlI>}&FW2Q|DzQfhuMgmcskcyD{&yM&r}s(^zlzNr&Gf9IZbO zv>Gp+bmiPo(qk?3h=l)p^`Q72wFv#ZwNekO)?Z1+?CbVtBuu8;BHHvfiMIB!!DipZ>`r|TJ#*t9<;Ti<5uYx}=h5c( zjMI%(vo7ZM?v#sW=wY2L^+{M!hpf>fzSviDdlN;XF*WpboWi z9?mAcNdJBY?dKL2_%eySh;J46qVu)*?Jv!fd`|D!dVh7GO1)x|?@D%s{)4Jx!FQ#! zP2+0?pR-Z&g|&7r#pl0zoNwxM?-aGJCU6yd`F!1gbP5Qk`mYXLrPfKpNTEjwf~MH0UGjk^_KxI9%nyq2!#u8;XU^ZG ze_sJLD1C1xYQ~`hZMUV!!<$6=2foN=DJM~GNKWB>kl!rLJz4@J<7JZHf~1?Q7FGp% z&cIImUi#)Db0T91FbnrPLU8DKd|j z5b@j!Ii`==>Q#6@%1=AyWiYp8m@fy#D45$db6XeZ>#$${JHvAd^!xRV>ruU1Xe8$| zwnH!HXEJr$G&R&{zD%2C>N+b1f7^~DSH6vvPbecGUsn5 zd$XpB6K*EZ$!YANQ+2(FHv8l$-WGx{($6IX#3)1HGOjPh`}e=I7^QSf*Z*OU8a9f0 z$0UC}?m`ddna_3MAL^T~_sePw(^KCsQ=T&lgWfG0X7~b$-Z7P*W)I5M4_x?%_&rTP z=kcmA=P5=yWgG!ik%PAPLFD^cE+N1 zxZT+ew}-powi{8b7=H96Bk6wMbsd2Lik!<#sVgDkco7fcRL5^AmVZV}c!kQd(^t0xA9m>yrmHx{E zW7N@Xgt_rD?L0=MGHH52kIXX~Ls?!&<7Ej4m7rb;{_r}<9~}e(T*-bM4u>yIyferS z%9o@PZ?~kqPDuUwFTms3=_2nY=eYt>JmUhEDt|90&NK8DR^dR10Yh~ixXc3~sJmA2 zDEdd)HwdD{IEC~b5A#^Ud_;zvMf4?l`N?@UtwJY*);bd}-IBh`!4tn&@;gg1cxrt; zaAXk?jaT#79{tx8(wU?`5q|JFrbxcTe#m4zPVf~fmEJu0ZArF5|8{?y&oPPdL&Xo# z&zhwV|5At>4|9)Z9@P5Xo#i_W))q0#E;Bx*Xr6ikR6SamcOmRWm->+`-34BWVX=PVx1`x2JtQtD8Yh;jVlP z>9s)0b9J>ppT)-KSX#31>By{mEU_%*!L$cVQp#}@!T?ui`O1^c zerqTvV}*p0tHAUwX3|?___gum98DswTa@08eDL z#`8VYrxhydm-{52<07G6sy)HXULbphm(B6#s9EgB3v}UZvm7Jp)1}~Zz9#u>l1}s& zR>It^na4*;i_Y=|&Ry_a*l|y!&AAH{KUqP{Qyr4>Bj-yw$@ZaMEv)hOsP$Xs`g#R= zva0iR0m_{A67wZ>;Io~AP0hH1nfc%vuSLNZ6VcujqP3k}ucM>$p)@P0hTvNTzVKqn zXQe&|uB3j`e0^)Yc;i#Py36(~)y-FCyw!_2Irwb_UxZP~L;Ma9&`Ej2H?_M_4(c99 zeKA<_hbV$^CH1|{TNXGS2jGkm$IHYn(y80#cp0JZD)2?;Ykb_wOy@$sGMaz zfq1xE@<%fDy~R679lTiXW@ESM)lFN&A#dZsW8WxwOv5SEY2n8E!xOzd>E+>xek;54 zG+ny4eSer(RubQF$rtWYI^k_uGqZQ6UKIKNNz{vdZWQ{Ou(z15WO~&Gva7JP>Sfbu zA(hq4)G6MkKvO$XM|_JUpN+_H)!}Y{x#=Eh9({&P)8tI^{>ZG<`5rg>u><-^v%1{O zdaTf8jvtv(I@0Wgf8yN;-e{3jJUY}Y%#-?G=iP2ruJY|N`*)fHADY!2=ByRvW|NM2 zJ29uZ00Z%sF2^{+fz8Lbg1y`D9yCwzA2y>;|Ft;~H>-!tS#RR-3mx%6BL3P8XVQh7 z=U)h3`{cQT*D8MHdX^974$VBKnIoTT{TDhfvpM5y7wCh)-A4GcO_6*-sV1dg;yWJR zMCV%BuZ=nA5OVFy9#kJ>{Rs6-o%EmBpWaFN+SJu`Bg$X1!5^yE!kZ@pmQ0@s{@zpZ zxhShzR2%5Sh9-7FR*BQK=<{t>e{Z~kUL?JVc3~~)>yms9u{zy_{({1m8IB_(x(P@j zr}QcGYv)Kgrmo9zc2~|)l5>lcWAD10A9h#He#o)i)onRbyCbI(=~VY)wCDFpIg!lw z9Tb=B0%3_EpUqYhM;UIY!CMY#-5}yw2_EZ%8jqI#Y5Dp(I=A)#99MgJB0J+8O#0F= znO{jC0meo7?+frmHJ-#cJ(d4d3(j@8CeW+OZ=LSz&GzWepUbS7iLYV>#(9rRy_{Nk ztF$SEkW!54i( z@+Im6lCu)#G0ogG5eB%DdgD;Yao%2&{e6^bIwXP(q3s17p9@(Bzx#>rQz<9dOVAM? zefKz&js5$+i~J)47f$hxP%mID1=^RK)4q2c%Jz;xffTOP3#5PA&sO;~+Rww1*H$9U zjq4Ar=VY@ThWlA!y7?BTQI}5dlw}$2$;)tjv*8Fk!||YQFdI$@X7IWVC++o)W%P=E z(R#F@!Tfo`#Hn;8-r0bz?#H40SNap=mmV7b_>A_i&fiaYz}NqJZ(sG~nm`FVPk&-d z+7Lu2wgkTo;Ir4?ES@7>(|0o+M%$HrLCWTi913wFzV<_Y{8}kL@&1uq#D<;e^Up7^H(^wpfh7ZK1tg1F_ zqGP>oPB&wD>CVTdTS1g*)UychEGaLs&jaz9er^M57DZWRS&dKhgz-7}y1PX;Dm#GxpW=U^jB+P9#$oI0?Q;av*&0`gsM zDL-Nm56kcsjeAIux!-dh^ zvdS{t!MvH4Sne#C-wmV>tr)Do#&XkVgOqE!?pCTP`Vm7zXy+c6`kOwH7RmN_f-heQ z;hrBpOZ*&LBF)~_R&E~^p&Kw80Ta?hy1Deb8Gz><9dZnjeo$TK!3HLa;2}7y`cY~bO|~@rTzhAO=^pF zrSf@{uU|?&2lhwMh4|}e-Z`kSo3lEaXb+0Fh?B>xi*o>1fj{(X$sd&T9rG)5k-}|` zZ>MkiB~LA);a?jU8t-~w@e9aDFKgk^63#e3U|w5c*Bkcd^y_rfj0&LMDYF@FgV8${ z>9HO9yWf!dyH1h;OX#odm!qQ}#-Wx&%Ok!YDfi>Ked41`${QV6fT|LA#VYjIKal+P zHza>D|J>>AlQ>6@eXc)bH+?dWc$R?2^aQoss29%=kSYh`yalrohXu18`p;CRozq15 zc_Vmie~>(;!VI1X{``qJq8+1+`GGt(ypzw%i|?ov{~Ua8OTKU_Keu_`i^e?j>AUsH z>lo%JcZk1#!e4f+qW`QU8ZXq?PQ1pRO^)dMvsX87Q9hyv{DI2Tar+=Qx>?Fij2jc_ z*8cuKHovR$5X8S9{K0LKKWdio)CvE~UG4wP2Hp5ypdNTn^2fS9jz8US|5!Wo5^EvH z@sX6{=u$sZeAlALaFpTEua{7GN`HxJ`V%R~u8kLs<4c?e8a7-j#5qzObZV^O@ z_AC|NF&0|@%dF*UHbzp(@6%%Z{R6{v${2N$-a~(ddbLK%31(Kj@*@gh!c+WX8)z-MzxzEEB!UjTeLE`L6v7V#R;?^A6zUYo%esh51V zxfy)Z0u{6TBPM!>P4Zo!4rkZ*(M9SosCR*XM4&<)F8wV9l)i}ZZ$$DX&Pz6q*YE#* z7mD{)(8Kz+)WeN1(v>V9*LzRF$KS9Mq%3f%I)uGdrVH082$yCh{ZY7D!RNWI zlKi18DH!qDsIUvDx<^Ze|C&D3uP$4Ie08sM?@F~BT6>70o0(PO`~>tRtklp6pOkLX z;m@{2`g5n+gO2)zD3X(N+wT|3a=r$9L9gU zD;ra@ym{jq^OfJ@BV5dCZtsJUQH)>k&DbmzX;0x>5B|uC|DNzsI*xh;?ZMMhelVY6 zx3l;a`}j{cTu(q5PT#jd}|@QIKKqbAo}uG2QRzf&%R3fix|Xzdb^18 zRDNXeg0slK7068S7bUL;a_B<7YSTXkuQH=;M_Bv5I(33E4nu`w+kkPouJ(}Yk1HX^ z{gRXuOO^NZ@+Pv*RrqKQ8c}zl#36 zCMVIp8<#(fBhBm*gZRfZkUoDXYDPH38;Uc%`Hcl?o^r4Fl3vC~C&bPZ*lR^NkNwfSVbeB| zpO%6@`e!YjQ}csu@)M>r6y+uw6f!e?su5q6&CETRWA{T& zc!QMV*4Al~{fG&HLZ!i5K%cF_x#X;$ej{Ysh?8PP_KQdT7VX<^$rpS}nkV^c1Nl|{ zf;rw?Wrwc^W}Xk|KX{P2QTR0{0Z8A1oKfji_OI7N(oA~}I z`65?m@XhdzR7WUJdMj!I7u5JKWWUgV$EpGyr;+{(0~e?xgh$eE=vw5n$+wB;#OK^Hx<~;n{y*==j-5|5y zLSrAcq)gYHZZq&%2&!iAh2N8W(NZC%<9Q-%70F^sZ(kAHicbf>1f*}0wBP+04Y%TO zyCOL;Rn@F)_7zn%LqrAc%HN@U9Ms}Piq+SL%Kh!uZ%g3MdPoa@d*!yxxCQMq3m6Pz zWx8(%Z{)D#ZCf9pzHLN(;4v$A1hTJEbCjJ}pS@LfSyFX_$4oC~`WdBr*=s1DM1gkFWehhE=F9+Re5IuFjPQtp(;t1dNs7TLV59yIth4L^`DF zmkQ@U4a3V zE`c1=04*KbFaPKuHD-&iX)V{L6w}wi;Jps_M(~6ON*)Kw1YMoQOEiy_7|egj{a>#m z|DLU-gO*P^s3|{wTlGl~eH@&||{h;eI zhi7itHB^4mfd$1U^|OZl5%u60$scP!|A~Ikb=b&Lgd75bU*nP%b-@ zQ9p?43m^EyRg&M8nrBBkEBT@qc1`bKFZSNRj>{kV-THG@ zNbl)b8wx24g#c@2|8s)Rsx0*uPLvGQ z#`D^E4gE9iJi)sYqnlK>tXvFk&@ZENQN*~p9Xr;Wrtvzmt;@6%0k6PsVFdlrmo>eF zX~wv|gMMr!{Dm}s;Z!+JjX(bj{n%p2UkP64t5TmtKY;SVT9~^ub7wOQa3#yb40TaW z;GPNIyKDUS*7z2)g|F%|!riEb7W?lF+@mfM{)jK@P2{Wl?iA1AHtCUCKcLaM(%Rn4 zR6IE|MSOMOb3O3=@vQ=%^}+9luMGONf-mxr#;5gf5Pxh96LY^J9w;28Z=rtsp>${0 z=C_jZjP(wTZ)eh5jX1~VeEs*p()z=KO^!<%z!!Q_@f4VUL3C&G#a3f*TAO+&%bO!{4@@oD)Xsoy+`8x~V2x;CK>hWqc} z-f^*X?@G-tih8S^bA>RJcur|MK_ItIU|Nn&zZd%_*pnSNgUnI57ru@Ba+#DH%S>Nv zN(|sjnJ8R17CDPOlU}gkm(pP^{Cmbq{~oRVPKI-W-&*4dO2$jksw4J+1 ze!~w$xR&D1LVTF+Yd;>^-*+J9DOVZv^E1a)6eS&QPa{1jUVPBQ^^nvfo*6IW&|jq^ z`zYVjdC_b15kv9P4FAq$(!WXcGSl-XUhnqzVyBsXR!l_nWE=Dg)tMcRI`EbL1$=*z zd{#2Rm5gU+;1zSdKWtWR@&4NEd)2JIY-Z<;*0nXirng^SHNz3y!k+wB;$8?|*MPg} z(PR>)ZThET9qE3xK$*6!PQSrX`V#x**Aq{v-|##lhsKqa;YvxorusnX(hdh@~{znq3fj{&L=bZymRaQHwA7~=hgV;u#*<+_~wFd zj&Ejk;YdU~=;Z5?NEjQV=&`t?-*EP)(%vFwM$#&t~&&SM>z zXNg(nS@3U!;hUcAoN_A1U9FJobV<2s{k3-H+dazvN8Q)JM|o6x@6K#C350D5X-iw$ zrfu5Nf;CpuTIn@FAR!6K5>h@&S^`ZAEwqF-{ibbnDWdL2RPc&EsJV*DRn&Mv z?5k;66}5WNyL!1=?+v_Bx!$U1-v61IeRk$~o_Vrp@B6-Yf4|K>IdkTmGhb)UoH;WO ze+#za3KnBwk4CIv5z9m#b}6>#*KOa%Kews!FsD5FdX8N9{Ig;ALK{wdwLwb#W+&+6 zZ~>Q)lzUD0Kv|OS6zJtYBIymNb^<*WCrcxEb*hS#BpbtQx$p=- z7rTq-1LDXWwvFhFkwj4b?-A&sXH|O@=Us8G26osU*kMDk!{8eF7Z$4qp$a*VZAHGm zJu+XzHSThW6G`m8#FXTDc;W1y$v`pZvGeqKjLJ0vdPCon^oHx*^pa<>ZzLwG?Sz#1 z;z!SRg3w5*>W#mi;>dS%~1kJ#3i z`Kj!7MEXpfX5WU$Pu1VC!)IPILghY0@+_2m1}_rg7U!wei3>Y3Gg{IYwWKa?!HXqc zxX{pm?iWkULH3##u->>$(yJ}@j|Ejxm|bh|QikZ#1YZT?;-(RU&059{VA}1(5V*1#-^^1<)`v% zrUj`p^es)D@h7iAwmXqch%f!0Ih5=3lD`&L=-;2&_wf$qm3+iE*qR~^$Xu>*0==mp zCqaMsOOk%*JjvJTKdTe3>CDu((B|T`Ey-8$i_M!(Ujxngs?@dEUz7u%+VdFEdqLIL zSuT1HC0-@BBOgn?hTjk|28Fg+NpjVFHxz34nW964@p0s8%|x40aHUqROq6w{%lQqa zUFkmgK=k@SZ}_rD1fBYg;-^TD?MiN1nYm|8;%@fd)W**AX8!$FL%6$9(oLz2>CKsY zkd^w|A?NXFzJf}$k*^bnQu4>06qcwbs)lj7fD{v2g4&PyvsQF(MT6i z`_z0Ne?BPbs^jlQ``oiK)3+wE8SQg-XL<|2yv1mr&1j!{Qg^4fWcom+m%gCa5P1|& zsOM_&GohatdaWbyUiks@yf(=_0zTE}C_X;@$}M+WfZRlH#!=V_1CrjrE70#ZfnLuy zCB44ovL2j%#`dS$@5r<*O?I#~=_S31R{jg~vWZsIYw?xf)Nc=fUhYEDjF|V`^V9_W zmdbY;`3EkR`5QU~8Lgf7rbjjBWPnih0zMG=2`KL{_;~O753VMB09utIeZhCxDIC({X z<}&tp;?h*z?di+;551wZSI8(^Q0T&U?hnzgmq~iH5hakrI)<2KXWhEW3ir_9D9QJb^|Z3@Zt+3qEn7m5i;M6==o$B?4ilt_AA3d5j3sLNA&iBUOipL zOrM$Z$Dy|_acz6%)h+4zmegxjC9mV3zSO9dYf*~pQm;wZXI?Eb&c)x;M6XTKt96eb zm%X;%QN7Y$qx^GUgk9Ax^ZzyT&Q|2FkIVdV#UK60yf-`_<_%gjA9>rT0L1?Q@(*;% z{AW7;Mfr*UO)~$OyZl0bL=g=^^In91)@Rt~@<;jAdRYve zW30H{NyQfHl6}ZGe2dJdrW4`E8zFiHc&$L6aGuGt&9RrT&K(oZa(-?ltWq`rzd3&< z@Y>zHG5xRxylRs5BO7jj33dGh{r)j2U;doZCgSa9(eW)K-hLbKcLKlX{SrT}*85^yK!@7=u|s?V))eq}@Ge?YJY9)5)v+(( z5#BgF?IPgGzzyypV}pAq-=jv>AjU4mDX#Rekm+tfRj z)6k;p!T<<|HQ7=izk$;txW2{z)F|i!zZ%?7WWzpXT zIp>owCegL<_|`~ljI$g)HV1Zm&pU02Gnu$6bb3K2^pK*IF0j29^*m5Ll*#m&qVE?=X`G9`*8Bc*yUw` zZdVhT_>;W5@{sGxW;yl(z7Oy|1@F580DLBrH&>1h66F5K88;;G1%dLqkpB>gy;zP} zp!|tguAH651A7)vBv(Jay+234{ufz}cyT`_1K;RCcv);mxCN(%T4GP(n+-3H?ZNL* zxUCT5G!V|Pj#7}=M+%$V;7Ru4G4QSbx#T-Y9S9$%|8^!WY01=XmhNW$KGU1x2^$jh zX8!{7SlNJ}Q`i@A=&hoA0$b8}_bOg|%WF+~+C_mPH`)-tTS2ekDoL-e#C|sz#Z@J_ zD1!I~qkJfEE+32<4y_e|;h82f`$O!h==@kV`UJ6Ic#(FLeGHGV=^^)=f5p5wPs&}| zxeorGGEDTP+~X5L|JVuo@fJmY78v3)QU8Wk?~Uz%IWoxEm!T1HcM5NZuIH1Z3cLo; z<$x|G=$ycs8!*T2Wq}8@UC2pBA}k{&X9YVj3?^(LWs4)5EblJ->^cs=*8KwlFjn;M z1o}G>>~RCk3x>gf$KM5RY39ti@v<{O7X5ebzhPW&mGTXrC&VnJo#KUdI-s}H_P}Y= zRmsl_jXEfvyddw&W2vuA+B4UJ6^KSh1EBpvHWRO9&0Sq~(u_&oC#I|>(( zClHhySm?9Upf~iz0YS)f4@*2VeP!bO)Vb;NSVQt0zRTRGJ0Aqkp+s>A9Tcd)w*3lr z-FGCtfntC4_m9)7q}e!ZD2&v|gY?gj@W8TULgC$>mV3xyJ~`KzaCF!b&_wY;f1mIm!>XKH_65}8A z`hNV%(4+o-8uYS1k@O1vo%q!J2l|(S_pAp1AIHvVPt0%0ENDqLwxkxeBp30^ZZ`aE z^Pw0Pr52_eGYdpMVgG|(_58Pp|8r&HhxDzvUhUzl%FOlZyjV{nQV6jS_CM(4ngX*@Ce}kJJ=(Dek#ZaHZ@|!v8W;1w@ge3RQ z6KKC@q})O=16D$PuPW5{bE*JhMVt#Zdri5&5$H>BwN6T}@B@&s?Ih&>f~xOY0PvYe z?lFE>>}9ys;2ZjUYzOXX8H}u;b^Ch|s{{2o#`!~m%giye06PLL3>Wg%`+M$*@NK`*{p($n?zA;5bSeE97yKJAGc5qjN{esfEzp(Qzw zN1inJPyqJ4R73jBDgc}GboiN-^Q;VKUqjV|kb8}RzdBwlE`O)Ws2a0vf3SzhP25FJijM|PFRrC@uvgH9{83tWuU8%oh#uPXpYXG% zr2Gwwh4>T7Kgb_Z)B0VQ)mOn%cwAW}3$-1ndDu{y7kdeQ@G*V|xbo8xm20801u*Xj zTV@_|VHblxOjtiZ6Z>lO?4S|lvJFndWyZIF2aS*3-@}joLs{-ziS}bIa!2e%MD6Ay zop>=;7xoEokS7xSvg4dN6;26sKe>=^gVPAMK;c-qFuP{_7uE+Sq}+x1rXS^*1Ne}F z=Sm#!gAq7*#eT`{w8DQT@ZD7ACW+`MG%xK1-+@0%d3r7v;NpC`EWtC8&U9IOD%zAR zzqb&WDJ~Px-cqs?*-n8@zIK}+kQZKRF^=^0h>CNBq)>O#M?w2MY?OQy&r%7tp@k#x zbp!aUUxYZypd!Ti9N!S~A_56A8{g#1(4#Y@Ts=j(QjAZI$hZ;2&I+mJymD)h&O1U@bZ|Jbd6f@|Jl4x+Oyy%dNo)K z4RlF*19!OSwIniK`-^6tc?nal1@B5096Q}2)? zy+qf77GoJHC()}KhrYexZGup)Mf?=?+$tj0lD-`MYAyQJYI@yFaUmw}8NGzAAeH%u zUN`6sJSpi7tN!bhcSGXhjp^FVC2Wz{Fs(P~c{WV^$RTVLYQ71$9G1(@fN74P;sV8C3pII5e^-Zf&q!gO9BVvu<0`j-U~I6#XirRa5yydoN8BPcT6Z>86Sdt z*iarWepee~aQ9k>!9M z(CvE)&uT?<*3ERWCtlHlV6EMzwLcFq=``fmdd|fbl4LyEUho@RtN7g|`8oC0nYe0A za#re^^wpV}{0A2sa$kjNQ%R!ypc5LAbow6m(7AdIPEyTI&&piG?=p{ITn#!ZX)cvN z3O&>E4nbhZe;q82**$%h_Xs=5u@(7iZhr%-&PPbj`B>~NE6PcFB2tO|vp~wJ>yH_L$6at5_j3U6QSd_i0mh-+*WRLq>LIj4 z#Ph);jlKVYaA8NAHvehEyBPVWV`|vDjGI zW?CvN2yA!Pg5&!P3l8Wcd|$$Mtn3aVaSlOg88RQxHbC(zDm)KF*$TA+A$`y`DICh) zsoGn0gkpQ+Mk=~@w1>mRE&LsD=@jD_Mv*^>{C)Sx{5>Vkw@|2o@6v$=)lapq3N%n$ z$X^KbZJWqVQ1YEn@++Xu>8L>QKlXr%&Yd578Bw|ec>P;GEaEn{P7a511G2oem8G>S z_5;hqYS(ZT*}K0W58TuAbda7tj3@qh*m(qUfSGUZ2a*J{@vXrjj-~*bm$`^@#|}4Lb2V8_h-?m-{`#9_1nvv;2pjhhI$`<`C#z2k!h?y z#^BJN4>$PTaA?Otg52PAXoQX%fHn2QqmZZmvr?V`0^;M6ht3D|aPPDv_8DrXV7z@! z<{ygr=J)8=!N@xDPt#!wzB_RB0l%l#BiT=b+Q-DDK-8z8z_JlUzed=1$N~FdV)$0! zi={_l4;_X4J>O96C&d@=QNa6L@GhiBVpyjsc#mFRXr?f3bWBZVYoBKWsmaah^5#rM zbE2|&`y|%){6h6&SN6$5Oj8yyO_E_7e!4+7e@L}Mm4rL?%1WFlF6&4~TW}vhvVy76F| zekAD)s`<&0@1{hgHG`wi(JiU+wGgnzyr9r6Aj#Ku7V7suRJ|+v!J)S@Q`4SC%*}b7 z32dRC%Nxvq!f7b*c?c*xCqpw5#vs1CKyRQtDgH0aOTGASAK-%uUO!nRyZg7Ne_~7Y z4}oz6=5C>Q@7j!NtjnfK{)3W@!^d+!7TX9Pw((XqicwSVU6c1>d9DI*qS&xE2Kq_x zi%*mMw0#xRo`%8I62=`?HR*HsNCdaQFMOfZZBfI@65H^P39JhkaM%Lzd?~KK5+$K} zJPm%emrH&ALzxYfuS5(LobT{ zG6Fue8zrAYf1!SK9PoMtZ;qxXYHBd!^o$Tw3(AUeJqYCB42`V1SP!UpzHqY2y6kMQlDf z`T0t7!SCeRJe=~rcDx%P}W(7Z9{JjnZJNoTlJ`;g=C zO`tk3^?4ik>;j*GsuZye<=y%@o}RHJdGVUW1(^%iq%PubHDA+u0s8sHsf*GxGHQGf zy;0EXIZx6nyeF?X4%4$*5?8Y}a`3?ObEWC|(mX#x95G+dosN3GQqmjr)F&B__ZDw9 zq7^O$GxvEx4|+lD`$d>wDD)rr4PPbs73Q~Yq#go1r{J3Xs@n}Tbos5?JpvSehae{9 zdShGNCPX2H>aFg4lyjEkTd&%?SZ_(_!^@VWFUO1Mu+cQl+;8-3G}WP=`a!SfjgsD2 zm8?(nL;akHkhiSdyc~n%mG@?_Cu}MF6Q0X93YqS==6S%H=V4nO_AXn>3R?nhk9J)H zQjiSGCL;w^BKrRY7_W>C3Ve`#8oRZGuNcA#+6!zqSsuWqJlAHghoMc zY`LU2T-;|!Bbse`0?|?MPly%IcPop%LB6>)EBZ;A@z-gw8fFrEn>EvEt>3vat+Hie zzqF-jFZXj1`?xI&OW0Dxd(?s>0oJbhV9=F%m}x|NCAJ5rbPUr#dHzZMFxE_HeOvdpETM5MPz ziQdDKPiTQGD9WkgL{$6d!u&In(-*LhyukmFQ9`VycF**Jts2q@o>lxn+)qqp|_DJ<>3a*!{>JrfL!LI{6 zKIo-07w};P*XeW-9UuHnMCV;zI@^ejg6nj45gi}=eMINol8%l)0(hT->-Bb===i`- z6P@>X<*9+uG_2q{{n>!$ec+8`WbO3Q=?1({!Q&zMq5j-Y^c6fShll9TNx*yFXVRhZ zv>Wi8f@eMRZ|3Tj)T|}R*((z>??_+6-)3$V&BTD3otl-tCLsPDFah`;;k*eEroJppDwaqi(+sm8bDi(2KkaPl!j+%F_*aL(~iJ2fVt%3r_-` zuk^xq13om_3qJt(z!We1DB$t4yzo)LYtNSO1|hAy&nj{m>RrKm)cQwEgbNuNNur7B zfIk~}!_#E`AiOT%)t(!SNAlyr1>)#cDf7nyJ>cOBq8mq>U}x!Zs@d}%PA=>Nd0t&@0qIg-TR2fiEd z&=sa!MCSnDxhuW!qkv~;N_Z{s=tKCUfDbFUUhW8t(!p!I_%i?>a>1!S<^Y~ka9e#4 zzi!~wze>_Al#}xJ1D;iITYkdZ1-wwblFR9r@MNAP`lUF5L3oFNS9@JBo+v-?8s>P* z8My-OtKbDW34aFQIR($*fBF!74&d3>Nje2M$D7dY@DE|oX@^6y)^>Q2sJU-XU?=;}GH%fRM`RPOaYOX{%3UKAe!;S%70Uu~o`HTKSwGJZx0Tzp}ajRi!i38KL z_(6b|2X>Da0_!D>8L0sVn*K%MEkWyepCNQG3l8F2Aa5f^tz@FJl=h*Uc)=JGFA{0>7SjN;y3D*Tj=`OUb@}G*O$mlz-kVm)rW6 zBlF;!K}_TzpEG)&N%$Lq8_6c}EkTYh z6BQ>)0(|5q?irBfkDN)R)t?FS1oy2OwZ?YZODEf(`ro!$=r6yJ{iWcSaQfep&~F3@`rG%V;GYgzAuI;7LNis=UEqic!qMS+Lq&B$W@u``f@4u=hvQ?xm_WFnB~ zaeBJzO!#$h3NPxWd|x|*eC#8!p(y)blnn!QEXrRigun~oL2ZD*|A|XF%W#jUs3XKD z;`b$d$I5VpXBppK;UK;1# zr*Nxo76+Px`hh9(hr&b${fF}x10(YWjC=^QbXcwi%Rno_%*u}hY91Hz4j~`<7w3Nn ztX)^Wjc33F{`ZnAOteoI{vLlV+U<+7-Lh&Q5#wIpZ$ju!0!lC+=66goqj==nE05RP zIq&Kq!dvm3I|p{gH&j2JL(qx)!|)`&;lkKJj6=T7rn$Q7@A5B(d;pC^7CJI=OVz^VS}xC1vz^*hKh zd*KoF3-FA%CT;3!TUg z8)SSVELq0hOUJ|)2QxO0lWh)EJ%c9lZv)Lr6Pdl01bPPvv?blHs{JV5WX_u~Uwlx?JrI!z!E*DJ zkrLVTg4|Bf@A-(NUs%5jZ)mc5MWRYZI5%&f%#Yz90M@C4_&yb0hG zo(*(0~y!8gy|aCFmK`-lP0+{m6)= z;KHOZKbx6+!9l(M=0?oVpO<_J@vhL2VZ8c`;dR#O$dUx&*PFMO->ng7QE^AQaq!`= zG)6#|>TM^{{i38h41GZ#YyV>Ze9II@g z@{ThQ;mXoQpn0jP0pstvW9+oP;M zIfZ?0gfFHeamKk9xnh+|;q_TN6e|Dp_=@SWR;_1r#QuWY z0VduHS}UuK|5JDbeCShy?_Th$UaIO%&5Lb-9|C-!Q^MoQ58$V_aIu2dY@At`C5eli z*J~DHz1Ah^^(a0Dy$o~-{3Ws<`N_=jXe6q!T^}zN=c=S@NFUTCi;|l@fMMO<&){Ce%aqhBh5$f$0$+uSV z#lBGSz0w?!u+vdp;(W7uk+jS%+Bb>(V?8o|VL!bF>AL|Btu^6Pp9cW1R&d{T^6aPJ z*e9-~hBdn~7Qcgj19YbpjQm`6P0$PLB>y3`t~dIF51)ZBUFQJP6<7G;_6Iy<@xXDh zQGnJOFw~(CfXcZW{A)Kz{uA1R^T;lva^h86VYW6F@1@^0cDAyd#HXqm>zX?ypFY2S z?^Dh=wrD{A_E>xq{RTK!i+uXQC%#eg87!F(Ch{=6$dXS<*(CWC`r}0H7U#bV zoP^>oJxKM|xEO`#lY9#6fQk7WIb%M1iO+qKk9ME1zrIBm;O_`0C$SetaM5Ysqp^6S z?QIe9;yWe8ykFCT_IW_^$(4969UVOIv|G;T+JPIVCh7zp858*qdpCzIXow)YqtH8% zR*bI!S>9m{J_GQ)g6A~&9KeU(BJr~d-i4-V13dm#3D3`y3BmmUtHnybF0dmER_Z;D zKQ=k`R3$dy@ZE#&P$f3u@Hw$i+tl1lc z{#yb)|GeZQ-`*9l?iPAh7&UJX3gnOTDu`$UjjCa#d{5cEWU2llQ0OUgA^E5LUDj_POGD98Syb)?X?yxz~) z?@Pz!Th4$mpLr(8xw9w^Bpilxd~%@a;}U;+>EZ`2Fio=jU4i??CNlf3T?W{mXveur zq3@@^S2SSmou#$o*fhTEir8=sdpI^W4dxP_HsgsuP(zO&q{q>~tLw+68SVVCT}VVR z8Ms?ZN9A`0HkL`3Kl-ZDDR-BS%Dc}%h`>D_Q(nMYe+fGH_v^tyaXJ6ap1;s))0>UbLq9j@}=XVN%x_hPp!bbbbYQzWd7;#D>f7gsstrU%ZEY zupIHacnj~l=xIIh(e?4&Q;yzLj;>$MyDsp7Qou<$y^p$_zaKBqFmmCY(&g+n0AXqg z)-XHqyB|oy<#^{tIsfGulmeHvm0Xvifk;2>T?PHHS+-ksjchkm0Aov&bt@9J^0af) z_Dgs+g1cvNzZzaE^Bil$WzP#^FJhM^k9{V2FD+zd=*fWR#H(!hbCqtb44b-k`z6j9 z>TO^*`)26DgydgeEBQ}2|CICB2i|*;HT%ui@Ye2f+>x3shj4pPxkLEwN4pK9-LmE4 z+|WMAk^iWaqqZcw9{z2-zBHi54fi(xcwpx>ajz&HmuigcgZ|YRgrAb~7yLzk>%MU# z=#CKG&q%s`g?PA|aQWF}dHGLf3IY?gcBXsLoFozsACj-88|&a9N#~Wai)bF*1iHD; zDfv`9Kyd#N{_h(C)%u{hju-1+@M-u*$wvhHf;aeh=26=9xHnAE4tyi+@$*e#znQd8 zOr#VOfr<3ak>}Yq%EH=5o(J8X_%_~x_1xDbzxrzdz$ds|BGU3dW(D=gyiqP*7C6b8 z$i%-FUEvty8atutTRGGxl52?WFbo(duB%_a9T>CaLOxu$f0g!TVX9#lNiQ^tsSMynrGPj#T<^W+?K{1j&15ZzAs_xcr5Y&vHx`7csAKnJ>%Pm zGvqygk@cKc_hn5~&tsgw_naW%#|%3)v=8HXFZeV}|9fiQ&{(bbnXsP?F!qZeHUp+R zW7iqr9xol2|2nW%T|&H9y+wH*sQz{X9$F{ip%UwFD9o1y3NU2Y7okS**?LDfwBwr5alB3o zlNw$OzaciWDOSHIc70>4VScO`TZ;2zD;LFj+GDkilVTMMCU1?+Y>w5>k6pho*03a2 zOWE)}1Ue0~M#q1OXF;b$pn*=4pfiv5B3GiXbxJx-lW{ZDB0&d?mH`;6p!%p<9}c|; zIx~pQ(pdFk1h4MKV;$gmz^723$3&aKT4s70ZjIU$=JAuZcXgiFTpn)x0umHnq{1NK2)Jv#o9DF@1}>I*x=PJQ+8>%zVa7TBvs@i_oK z(_b?>{&5?hV!Je9;7#}EvoMek+4psK!rr=WbbOU+e__~*12IY1b~CqA`zLVta5&7b zXOl!5y=Q&t%`eic+k}d}adaHlNR~qH>%R1wi}dC`Q$nlEz34|X73~>}t z?Jt6F9(;#!_#u$*KJe|EKRUj-M7~!N-@-A2W#B=4*?qn|S|+bo0{z9`Yy*+LZ?o}AVeF^(fx5Ht0 z^1^I|Z+X=)6n0P5X3QteqvNwm4e>%1f30_ zlTv!YLkB*bDthgnk(-!GJ8%T~_jmm5a@1^rzK{QPa?pI#h5UU>(Y~gB^S2j!@Ltai zYh!(wPsxs27VBB;Tj5II%?15^Bwy#~_*(<(=}zBzB0KRE$+v8D{KW|VDe6l<{VM|O zpJLchg{jGI7aOZ%VYUqq?Eq{n0PgaY8AeVAFzx{63V2U&bPO*c8Y8L2e(TnI!=dL^ zjE+yIHO548zy*`TX@0~O4q~0K1J0QN#@>Plylb7^Qvkry@)>-veCS%0USO_*j|bK? z@eMhxxJ_^QBoIe(fddBkQS;CsE1{P`sy59~*q-XbrB9B;8X!2O4*^;$0lDnM7!+34)h?}#jKB=sFRw0)W_|kdB*OWQ}(t zHzbh#cm#6H-17fkj;;r=9`7F=-&jh0z%KeC*$HF=k?BDzA^0SpLw)3M)KdX&vew6Q zsE-`#<3)V)Vcg$StdC=mW9EbZZ{?tV+xsB;$0MWTZ?Ne(eLP`Yzmvu_wxXb3NohjQ z{gVPbh+m=j-h+oWU~Db`?Bi(%YX)K?#(5+3-WsL%NUqb6Yyac_f5~+Ka_xKw`X@0u zzJvB!i}Qm2c*-&!!%08ZLL1YI@Icxf7b5I|iXXyW{2o*o0ACU*K)FLf==Hb~=bi!% zj`RsK_u*GiS%3%JC4`FGkMA%YJ($3Z6n@^Whv9#I$NxExT*XVdhDfN&3 zx`6sCP3}&ArFnTV0P73gvtMB#qCxgxz8_99f#Xc(aCo8m2ibiB7rnj%4|?D2M&DiG zH@`z>l6wSlKlS(j^W@(4DEiBXM#p!SQs21z;9jOC?G560kl`|ur%;z!3Ozx02jD@4 zK@lVZ!oQ1mxd|M~Byjrifb|mUn@j*?>c&Ge0FCJOIL?p%$v*J0r&N8<-HP?nv;VW? zCjD{>a)6;4}(02~l0K)Fpp zsKO=AJq4Tx@IYkl!>^zc$3rs!jVf%W8%WBu~w(ec+% ztY@%(Z=pl_=aS>rZ>b9_i1pwifG%7FfO(Q5Mvw9HIiM>5-GE=LW*P6o>oEo7cKpH| zWqgbvctj*Tc)GhXLM&tH&^sQ4her7RRDd>H)q%)D9r4!wQ0R z9O?m(5LPm%hXH=8f{1#k8GwH-_sZ2nFX-jJZ?A`KNDmzy9iLN5Jx~kV>%pf#O!M@I z6(#nE8E*-P_WbmftA|aXw?A*Mha}QpMEZYEe|Wv8KiuZ&4;U9d{hHcrspo^)tv18DM*8`-R{^ z<=F*3)BgZ{fak)e4iEbP?*sf90v6j38{%-xO-F^Ion|BH80AMhJV|&<=*2@Q-gX=~ zs7*xJvPlPH(_0V20Xsr%L;R|?V?O%+&hbkLA8!SZqc0M?4)7uH6R#{qd#?hVWSR^3 ze!xcwAMkat>2T|!w_~ne5v!&x`$d!6HQ+50*gP3>xG`G|AYqD;K;w5e_%!^{v#;%M zuQl)v|KTh9AJIDndc%Jj9fuoKw?B&XitBO22cT#87$3?VEBaUC+n`@gkB%QU=`}n3 zLANIx`0M=TTPQZjsNHsgUf*9v$Cu(cw2<1ZvDj{+>d0$OiRg>?9s+(A_~Qgv=8WeS z^oMt%q7R}&9FA4st+lw`UpPI1M)hzS`8JG?j^jtK2fuYT9q?b~+gsH>A@!5C9hfge zC&tOmQTUL)=>1CrGun$^ zjsP1Jx*mm|iOyX+|9NaQynv2=1eGS*AN2aziSa+0<;H%6CqAJwmY>Q;h@fYf$`Vq! z8{ZClHgaN|mJ@{!!Mg#U?gQ@!yc+N;3ds1Sc1!|36Yy^nyg05Ak{HH@pwh)nlNq!j zh7XPM`IAZC9zwq10=+oRBhEA;%6lB?Ii!nsM;7gEzy6N-w2XXh7Of=ZobwKh$7v_V zPm-KnPJg4|X_(^E=cx_{OO#$?Cwm;pxe57RMm}-03gt`S+<0N`qJEM@`b$VZU(Kt2 zdYW&?=%Km5(bO$s+;k)V2=X`gsQN3Gv)G@D<8TT3b4P4tPpoI5hz3|1i?{fW^F@NX z951uq3HsYljQ^Wsr{dip;>Fae-{9@jO7FMe_!A$RbH2OAPOp*54|+SEJu&_a%}ajtisOWD#oC1o6ZgbJbZU~&XM0YJi<@Np z=oIDRYa{-2c7jef=xq4xiSa6GWWV+(%7eoqVUGROm$0og7T$zk+J~g8^JHvx{uzp;^=rrC zxT5fB{t|gsm%x{?Q8`liGvuM|0OVHul0TN8O*m_GNUK$@?*o;bxwqh#{IVn$jh_RM zYvmE>-E#|a1&qfb&QG4@JAOpu4AHB~KwtmciSe(WR~o(F`_mH>7t!kmy&b1djGsf} zThv>yd|&gY=g7Ag^j21%9N&LVY4i^J({toI4SLUAadP~}bhbCRUEA?;ApRw+r+hYCk!CdSZG@Nxn}`KyMWEX7-*O?|0hQ zDxaYDIe&UWf0Le^`!1CC(Uar9jNl(XJz3Om{2e~}mS!%Zvki1Y11HCCBEx9{I`8(O zLnau}83CQ?Po5nA$loYW&AV|9`t2vjXO z5>IlrLB3v85ap>zx@@f*(CP-<BAVjuNxWy3KhBJ|tVU74 z<#dB`rVKn}(L^uS63~tO6HqSy1d@#A#Z!>0`V!SHWSiqtlq*xwim_VWlqzdUM)^lf z!RYm`QH-PVj9MsBeK-C+%6XZhCzn@6dN(DhojVfcX`ZRzkA@4P9ZZxb%TVWlE~2J) zWY!WEQvz#tvd}n2OBM1h*AkMDV+3-H)k!(3NvGoDl&dWnMUk4)k)}*#Q=)?ZlsUN* z6{1X$Or={ACqYW`HYbbHD205wB$96(e!8DRr@vat6PMtkJjE^^MzuSqBf$%_UJ|SqoCLKI>|Sy&YL;(7)EhdViHa*Rd%Gx z`PZN$3#CHsP7>`~PN}@pY>(~_aoMui8Q6l(fp|>d%DQN5m+`5 z^~Y_XQ#)VMp{*DC6y;r;h%CzR6$hmnM+d}h9^cphYZL#-Y$2-mqo9{vAnElexI?ce z8M$So<1q0(4ZKjJl3zJX9K5Bevi4*o9c@kEd>4;}X&O1$lBl4Wh3%&D2!$0%$q8r| z=(T+S_0g*Ms(Zj3dL4-f8j;3TbPL+??Pk5xxI#ryJMvZBXc8@nwb)Yllh#bK0;s&B zkgsp0lrQh8=QYXb(nJ}?V}!kf*r<84jCzECe%^tC7S;3Ir_pb3mh@`zKYg6?E;}s# zC%(PF>r;3QZvD`lsc1`7cF5A>IJ!|nPxlsn-hH4q)GhfI?z?sP8uVa==)GGb$1e@$ z)CIX`kb{1WUdh*s_bY)n8~J;IH+-MO%X{d3>+nKoe<>wm`jNg9_}PAmU+eBK%TOtQ z#4MsR5dI;e|A53V*clP(-?8clsU=|-MsNrvbXdgYoC1FRLkeHLPu+`8i@ZcxCK4g< zS{g4f!cVGP{3N3hTB06|P^TCXf1ekBUl4zfh`)ygNn9;TGbYV`k;pqCjXe`d;>`pg zeW;v!KZJVOuIfcV<$djDIZ5urVw@ZU{;LyvxicN(@lbV*+uTgr)lfX9@RFo&_Hfx@gH4p!XN^7o{ zF0>_K`6aZZM+7W^{1aHOEyXG|yV;h7S!-vlElZOv0qZ-9#6Ps9VDadmg+FU;&%*Td zf~U&(Rp(miebh>i|Ja_Z$(l>tx3le|7-y5779F#2Z;#VITQe1~0F`+#*)&PD*-&35 z5h0qNj)89d6iK(B9~`=mlKIwrxDj}f-Qm!H!js-y&5mhKV3AtJMyN_)APbi4-c$u! z{ydqXg^6e@=(K@OZMEcA?e4L3Q*_6gQw|oiwOy3#lKqbOg<(SW8L}6L_h*pSs zj&+3u_M|OE*9~Ttm9{K;&5Ht1ea+s3bi9+Q|sZstxq_fqu`mQjWZ5{3JM=pNZUh1bEx?mZO9OY7H$1xg5px-FT$s@FvK; z^OI=QH_CE)=8=_!O3p<2SIkL7ujZl{#7$4x>u{qr6!D9E3VPu0B)?#4Q( zD_OzgUWPCoDb-Ya#7`x#cN_c;plJQzH#lGN%h7TLAE#YbCMKsRwI?gt1F7;RctfV~ z=Npft;1^*~2uJvbB1Dc{&_cIXrYEg+1B56#206#gJi=TwP=u5QWP>|XryBt6WRhhM zdLSMu>@hcvhc2Hhs#%vtsBRtL$;3R6Za1Tw+yFLgLZD$Mq00Y}sVc{7Xz{d=YJZ&q z%|`#2^J(axm9qUB)P2BC`!x%{cBZTgql-UG^qt92b6!7WOJJX}rih02BgUT-ox(3^ zot0XHE#)p-!fm#M`)vvL*b>-oTZ&cSTWvY430rMBdTj~V+466$GcV!2XH3c}m9>EE z-)v0G8DHynVmSJBlsj#ttaVaY^2w=NFuc`9I*c!@IwxlaoCnoVLi?#qwGTN?(*{QSyy@T!ozpl^0o*Iz+ z3h(uG^kZi-x;|CD2A=i`tc)gcv9BQi!*;6LRe-Jgm`D&U12GC-M9Om!f1w37oy^mz z=i#9+E$0s|lxZtGwB>%&Dae=IA>|vQO2WsHuQ?rELt7r$EMv{u{wC^Gwo-AYn({T$ z_w!gcyLLrcr_T@781mYZ+OXtY{orlB~c&yRf>*L~h4FWc&ef1nX4c z|KErG#P_Ira?7()R8m@ODkdZRNweEfFT~c6*ev>v)^)`?y&rV5e=q5J_Ct787;Rh? zK610LyUD-08~FM6OZ;pU0DQFeD#Ly@{|@GCvJd1wHjZrT|FUQF|JI0q7D~)z`ag@G z$G{bA#Xj+jFJQfvm3%$>sluO8-kyqNqKlK9A2LUwW^hV*cjIRh=nd|c^x|$k(4357 zO9iGzg#Xi7vc?LHLwy9`>y$P!!EBo!GFp=chKZ_HdnOR08hBk;ItW2&{Z{iuipNy- z?a>$M$a?r9ek(K_sv8Rk&hDX2?r2k@{4U~paK6~vjy@v(VckcZT7_-^{eI9N_(w^< z-qUY0*eoxjEjM;I6+-fn3P5bbDT}gL3WA2}Kz9UmhrTT7*5ZHqIQ?XmEFa;W0$xtx z^$-$14jx-75D9O_moUD*BI#8NEDcZ97vVJmub~9IO~8wnfVUHPJqoYZ&9}W+jsw6O zu;Fz`Jkl%2ftOWyJ#KpN@4??BW=+aL<*C_^MmZqM?ZH>|L+v;hcs&Yl4FA)|smE^2 zYXuE}g((d)Xy*AvsOTL47O+~Jdfy4U@vmCyU7`s&4-o$e@Y>LSj{~ny;nljw9b2A? z_9rT7=b8OM)A!gbRr}GyP})*_s7D8kC6pJ)Fz$SyFg?6bUWf7Q1+#DZL1FuQQHwK? zCKr}LUQC9)Yai&Be4!_Np~rop{uJ`QxX=1Qv8eD73~nDU^bS8D(__S(#_^?klV5&c zAQYvSz3ks37#efF0zH02_Rl`07@U5;Bonzg!8^z+z$4-0M*i7~k>p19EsZ2RQPOFk z_aO(!U`{#Q9jM*`93U3pUQ9OR3w^I26ss*SfekPaHr_;k9`H-nE8LL;Ccl?Z(?|Hl)@LT@mV1hT34Z~Z* zcx)2}-#q8(_JfNOyitY=kSW-bjNCoKK5`Ivjz5#^rK8}}@GHruJ}UdI(?8>>GQ_tf zqYSl4Y8iQ@8Cr&O8XnLQ4+ulc%qHp2!G2HM*Pv%lD884t__7Yz)D(jj=_Tu&{ZZ1< zr+4iCP^{5P)0C8^zeqx_Da<4gTT5VmUhxUCJZK}PO6VimT2&j~B#dN#$@o>)JhZ&< z&s4DKynL*(vF$cuy|x5qE|sVb>-mu>Ba5GJf}3MW@~+gK=?$6nY@yiS+O(amEj)lJ6eJ*Q#YmIDo?pO* z`&}lXTI2(!U4`82MrQL0Y5ce4_Cz=mBn3x+bt5f;?II6bJ~yfeAp%6^D&X|m67B=F z7Nf}DE97O*6rSLZl;qG9syv58t~OasOJzOCf1vy&4q941I92wjyPN?vw$xfo)}+XI zYhbahnAGyS@!k1NtiP|5{h`n8ce!0IwGl{*aN0yAe{C_2dr_jY5JW2ix!02Y;Ph~; zy_{rqS^x_&+P%}lLT@RIhl8*~YzZXioCwx`IA9-ty_7S45ka-}A8V$)>`H7iX3FDu z4f($tV~yO!>fI6iX>-2UlFX5-C9o|vYSt`#UD%e#)EpWc{spUO{Cie%rk_+NH`|&= z?nF6Ln3id+O=_(E3XO%P(sGy@r<4S9{?u~ttF027DpJd1YC?Ui|K%e5YJ>s?>e zJI&26W`ZU9un+OldkFfcH@`2i-CB5&qPz7RDRC0dR%86SN!GM(r_EeV!=qu!=L5z6FJeFT*abqJ7X9!z5L~_pvA0RyLwi*&zl*j{#T(2SRZBAG6D`3B zB9~4tEybQ?lcz3JXq+_*|AM!YR36iG)A&nQoYOP36w}zz5@d|CUludeLCa#LWzK+@9%K8z*bMx$HBotk$0Hvd^?ERxZ}2wkBA+AZd={aD~?##lGhUq&~^I^+|iW ztUHCRYHYf)Q^`B=9(C9bcW$9SY@Yc0C-HYa{k>H@Hi*9+^cUwo5qWUu1N6MKnD}_{ z5w{kMfYjGD?d@z3tn~vjEQFjv>!7yz0h#}X2^) zp2B;|9eLuJNGr8@OR}8(CQ-pQAH*@V{)6m=M8)QV`2QUTaq=4Hcd=v67SrEOKp(*O zmV~W$KUjfN7io0^FrrNia*vphHt;(De)a!L@uTB` z_&D{8V0;`_p|F%r1a7aW&;*vV3&m#xL1qhWMc1kNG5-8O((7}dUq@_QW^z-ysuh9V zmALZVphv-Q0H>=mli5dYDOd|SbtVJr3Rym4OR;9*RaOD`K5LR`EonlVQ$i^TPuN7} zpSH3$=YEX~+JM?K`4iaFzfkpGB^$*jTBqPllfx8X)Lw}Nd@{}1LJ%3Xo+LbBmfHp=u71SVk{G>h= z__OhMgyc|k`UF&?vjW^PhDdkQXDhy^fge9D`FhX&Wui^uikh2oMUCSx7L}xIZy2V< z{)`4FoNy5#nR2vhP<4k5?S<2a;)k{#!+!W*Z2al!3B;D6iA29q!(VK@Bdn0~-w9jI z4JNurL3c3xL1Ke@O2v;}pV3Y_PszHe2UBy%GmYt}JcnjL<|!N*M?3qcke5ligC4r5 zuM}?lC|g}wl~xIqAMcB?f5}M=UBt;}xnwY&1+#Nh_j;YN4U6l1%lbC9t>Ivas*jQaFWQ75lF) z0)=4tr>wOln9g`jG;@ulCDx z2@6qiQcH~hx#u!}HvuHi)O~lmi1+wiU?0LTg zU;0d66gXVr%+LuJ#E)YQGmCxDOq6o^lEIunrG3UPgRkuR+~o+f^pzmO-xMY?_nV@O z_zGVru3+rSAv4?pXQP{zOp(H3Z0Pl;C;3)}Z@Doj1QGH=qB8ttm822xtn(`rpnYUz za#nyut8M-C7OE@L3kwMfWCI$6;g&CdS#Z+Y@xrQcwKanE51a}0Z<6Dx`XZU&*fod; zgZV|roqH1$D;W+O+K4viDljA9XeA#sElMp39Zl1RS_1PPJyX=MHDSqOnzR}*dzOc6 z#H@nxE3D(+e=BXlCmbSkK3x!oD4MXP)q(T z$$w+5V}3Qa<+4_o8APQCz`kvxWzPC~7IV(kQryv1dXg);N=tG@S7|BS6_EuX;uPtGvErGAG z3dZ+_t+{qvlh)hvSnCG;#ZsNGBrP~jZEV=*tSQzCW&dQ$!+&V48$|J1O3MGmo@tFO z6M}Lrtq6iUALF|-}BE+f7R3*7?=hFl1 zoss9+XLV%Cz7D4_>9m}P&L99{MUJcnU=!rq3;F6lD&_OsQ_&3f(1X%dpW-;;NXG== zvA+*BMWsgS#=;Ztbbz-MVDQq*98yh&_Q8IeaT5Nok4t`Io_KzW?@La)UBvgHK7QxX z_J#PqoY#6$N#2P-CAjvLX;zsqv}wR5fOm!}NOsa|C#WQ^F;K{34P_uuU{; z7Ctv(%j3G!Q>z{F*a%{{>&2;E!B3NtMwR^2)v5qH~Lr2SE z;}r@I!t}>aB+BB-~kdBEGOGQMQEQe%2%_`HkGDGiY&Kxlo8M z)H^#wACid*izuF@ozM~!CIMgfWtqNywu2X|7b$H zT;6&LA|d^${S`Hkw9(?PvUWAGvEnB)@BJ&Pz}h-RuS_AzRrMw&&Sm-u5Kz&Dt4(Df zn^v7gHp(h1=!XDeIa{q!s0y5Ant`Zfwu-DLkS6QJci(@}extI>-1|J88Qhak2k*J_ z-T=o&=D0JhFN|fbl0ccx07EDRlJsUqh_re)6b_B)2pBr6Yo%)D8Y4CtH#8f z@wEgicYcwzE&mF^%!3XZ|1%fNW!C&nwD|4TLRuTrG&wc)>}$48VVc}}mT%dz;9YgL zB$q8(5;@mBmwF!47S&R$P2;jfwJg>l`${&NwaZ%jC47&x|M6$+-(U10p;7zZEETI` zhjwJjR;Lk)fE{s!6!EW4Hfo3K|ZSW7V%H(G)>jzEnA*YZKj;yOI3r+m~_18#qTmT9dmkEsW= z9M%N(LmMsY5U{o;@3syAYh|*x*!Wws=#icB1hA_AMH(r@n!)az%UEcvTk5y`*)ILo zp04UhRHtH@vo_%rpX)VCcuyS;>ckK)dDeQ3?7W1Qz#B|mpe31=rzNmY+o)Ny@GDHs zrc?U|8#Vr2dnR*w)5vj7(bM-GL=2#~B1TKnt$d>rO#hsg!yIy2g4uscNe~S;7k{fF zER?%Pw&##+&SIQbGtQmkO;o99;jR_Lbj!-7L}Ec zrGel`aiBXvr@l|p8N@tFA7|dgxhlljElJ?~dlc~l{5NJx(28Fwf0QC#G4&>QZT z^u`2Kqt}AC$RESOuHb}UQ^rC=_e=Z+H@!e2DkJ<1yOUiY?-2}Y) z2PEBEH{I0|kNEEdUR>dM;_`6Mw{zV*aOdEA2>8Paf6z_0Il;wy-%wc*3J8)lf0+23 zCO!{Jd8*y}E&K;zD&%@qF@!%m%0fL4mxfPrbpyZeQHk$~mt@~0^6WAC`;b$eqC7j1 zFZ7tqmvygi*)SoC`wiF*L1F=kNb-#!U-ogEd@qXf^lIff4g8^j((n%vk8;%WTP6OG zTdrpG$kZfUqS}O2T*sND8ZbMv>dF##>C29zW)&A z=-VdCk$0D)H8F|a5GYe6b$I+cs99A8nWPdffNx;j;e>ZxQc( zLnyDd#;2Pnlmfx(pYtov)=DGf+y%NrPf5C-^C@khOXoQdKm_*!JE>)sbh$L2As>CH zKaPT4_Gw8kC!m@hSdm0@Ij&P@yVMAg2yOVOt3-Y6lKHCL?-OiA6gf^<(hCZ4$TG?w zi5iknbI}VUaSl`vBt6>?dIQf&dZDP~5+Yu|5HjH znZ2kVl_sO|9s}N>!t?0S`$#DMBit@e+l|;D#J|YXi*L;&7OEYR^oOb?14llF23=NI zoAB3|HVL(-kGUWlL?uXiH5lSs!6!E?`P6&(tV~t3Brfep(lL%n6jiB>r%S;{y>En9 zmD!Rgn$bU#X$@%9%-K^*VCJ;0r+ml8g+ev``3F!leTO=qK^ryGgwnH^#kXSw@dPp0Bl+}9b6qX(4nPniA`GRgs_ z7;{r?Y6-5uBrU~s!DtDlH%UwIu893mu*>GjvhVF%ho*qZcQ=W zMmn`$S@V3{mU5dd!DlJ0>gEn>7Hd6QxtP-Sda-T;g2kGNYXF=cPWxtN2i_^!^tFY^ua0TQ>Vg%-NCY1Cs%|E-5ul8SMzCm@s z$;sEADMN^Q8gCHgsk8W>O>3C+F~Hh6H<~|Af!@%6NP5HW`Je9#7v!A*qp|IiKYhx@VJSUiRLs3>z8_RZ+^ot5nc!Bv(%h!lz5e@&WddpMLH9{^y}a95ede!_ zXY@O7Z_LRc{#Vmh=E0M$r@taRnf?RqZ!JmueNNsb^1rJ7L21p8l-B%XSvo0b zY&RaBznQ+S^xpaW#5uq2w2|6B@@^$}So`fH{~*i1R<%DeuL9ZM&;2l8yzCw)>G?G- zF3tTqJ+G_J(z&?7Dt74^-a+LSWmaz2*GbRgHz++D^bZ~M^?ZbXd0}p0MSd|_T|YbZ zOv3TzYVFyNcT)RxA1-NsOYX<_$egS4%L{Dy&sv7lpYxiQcYoU~nSOkR^z6G$=_&lb z4*!$T{M=vCUM|0g%kg`j+V}3L)}H;Ce=Wstw`zZ#i&O5$T$fE9IPwY0@+ywx`+w5& z!hWTv05oa27q_=*e_o_bqEE&wo)8=bW9&+5OQF5l=JB$L(k zU+Q<{pN-a!{e6b|tvjsxJ?HA%rhcDb?xX5Q3-VZM)+hDv7;v6y)?)>h`XwAS&{QM( zb)7t8+3eizt!L5v@^eamVO-PAlbb2JH&b-^nR^ENFxklQy^s1G`T5cM?V^59P`?eI zQvHq=<`Mdn`uY4P8q`FR7yl=6OS{0eZ?}qF`pW2_lDr!f)bCuJ|NZ3OuPS|yyZG)P zP*~lT|80+{{x7)tx6wQ>M_(5GNy=x+CyFnh zTjs1^P%K6rtluoKx}SExi$VFU@6_pD@Z;hiAlyH%>?mAU-Nu9Xp}D!=r899gp{Y9bE^w&20rUf ze1>NCDl}nORQ_jlo#LpDkDHIT9h!SEU(538jZ!P`rt+Wqb^d6yemvfvpnflWMfEGp zr&k}EdtaXO|3FTvT+T15aE|^D1(y0R1WtG~>i(76EuY_DILGmwuOt0mRr-&)&qtEK z`IncMC=Uz(aUGxg-%I_U`?uru=RA0V`XBw8>Yo+yR^y?V>Gb>~8DtKS>jrtCQ=Lu= zw9%R|hqB>OU$NoOZ{Z^@d1%I)Bd1vkw zW8B}YysNIGbKKlANP&R&sc0QTh$rtCV*fseDJTZ@X@^u0ruvUsv#N{Fn5Z zd-+^x)laM_tLpxISPcEynzkgwvN8jcsu}*3z-h$5LF!)f+Oq}~j`Pllo(h)gM zyys4)ulzVa+@r_-IN}0*_(vb|b;q520)5I8`0A+A%Jqy>^IK67y?zW&`Bxf%H7yBz zJ>Z!OX#KkNNWMTk=dL@O51)A3p_LD=qKkg-%1?jvzXS8PbSWDiUXh>PxXiiNdfV#X z|9umkhb}37J@@xg>Bnt9erUeC<>6KL&}rC-b7!n9EI|BYoAkGV%%l&ky7!{1 z3R*kr`Oi1gb&VfWdiC-=Sf4+l_JzFO@1k}ul(pM7X!j_!Tm9q19D(rjJMumN=)Tk&GW#4r*df4~LjEYiG{1YC2 zz?>U`hOq9PrF{;S)!28+3}JJBTnc4r$SD3d((8K{(s|j>9HCF0&Ib26jd#=EbsnOh zfaM=Mq2Kv%zR6&Gx8EKVd>(V-MYR9@*&{5rbJX4EZ$3Q#A^K@%%BZX9Z`1!DI$!j| zS8BX{YuG>{*LNTJ@jU78ed0)7e!<&^m{7wH+%=Ssy68HZrx>2?>P1W6{bPG-Tz8eq+hQg#|imcC=Rz=OzXq1 zs5tc8=lDLXCKj4|=u5$$$?vDo-_eoz1e+1mxxbkE)2p83|2yPAQ{l9k`+w0G96FO# zXTuxwzxbn{GuKT&CAcS6_4`TW|b=o`^Jplb@g>@BP4 z{<5yQ9G26cqbrv_Odqb~S(tu;S$)XUI)5(giMP^v^4kjEj=SD>-+gHQN9YfO=NF&c zqRs@#iTS-O_2W;{twlaJq#xbep_YmKddI1kki5s0ycgX0p!-ekn*ZqVB7f@sLf&&L znX{4l9sRuOS2*A8zL$0ZR}3@cb5HJ5hFnbY9%VbepyVAZ*zsRjd;Vj_AIk0c<-Fq) z)bAPU_uLm%zryvC5Aijj?k;|Y>U|Wr{8_5^fA!h?DhSKrYG!UcwCdyhoB5l`HHG<`0(W#{4h_gnjy}&(iNv4X!`s8V;G9?*C|&Hb5kq-eLP6d>ic}es?jppS zPfys-ckfj*Q698>W7bu(p&BuY^Do>s{U0kIbjw4J>-ntz)VCAsh>iRQmOQ zWDW#%uW_~IzYdmP2&KfzEgGhOBl}PKkNmOHf5grEcR#%1z4TS3|CJ{lR?WEGW)?^Q z9iO4s^CV}(SB`M8v(B9tZhmMEKSw{;eIFY~zr65E?7*{I^i@SRnD&G8duhbnq;7jZ zG`C6BJ~a11)hSiZ9&u9Mhp}A-8(X70;i2;esA%B*cJkIZZ2klG$?61^QR$2T>|8=$j1mcjMiM zX%a^&SiAk3%nHOYAL0g1D?i9W@`ZqCU(SKl)GT zy7yO)(NV3z1#QdGWhL$!O)ZIow6x^w)O^k$o8R=oL{0b9+tHqJ2fh9gUk8u$f)QZF0Hw>w8q{58`A9kC$C4( zzmxL+-zvYZ8|K$flxZYEbnv)5`&~3IJ%5CYoz-qUx*Isf@^1ycpFeeP<@fwwWUl2; z*Q(5AIlD;Ck^l1ui}A?0oLk@Af9r1NkMH5P>(pD`?`(Si0?B#&Ye({OVcc}{$Ia=x zx%B)8wd?#l)o%6adGo<}-z|quK787y{4Y(edvIayt@cSTf6Z&*@M-*qChjjYn^m5F zAwjQA_Riku)%}+iffv+9@ZQzoOT`^3n$*-uIvvP!+7wV+H( zcT;K2?WHyMm(|dJN0wFDC(VY{Doxb=uMKn^;y1{x3>S&%Hi!3q6s4 z$|n9sGfa#sXP6i@c4AejaE6J|#Z3{j z${8j`l`~9?no`^BVN#_>_jnng&L}a2b?s4N*4U%Os0lz|j}oI#p6Bnpg2u-QznbUY zDC6TG_1mWVRUIF^u02Nmj_H0I-20oiKYa2XhfaF;;Zq+vg?~@xq0=nz_(H@gu6tNt z7d@ZkeUId=J6+k|%e^r6U!L)H{zh7Nbo+6~8?RpnNzQYxEWu5$Upy{9MeVXzsdoE{ z>(^-*msioae80VZoi-Skb7$L=pjoxn9?fReb){9#B|oFnehYJ>!X6byh4Y`IM$OzQ zSKW4isgIb`*FPw3B?(&7~q4~=f);_%AvW0brR$jKS{{9oMS~$95 zZu2V^);~?WCofxA`z*EkDmDL8>i5j$3#%@p2K1L=CqAf8$>%PdtKOK@vpr9cJ!hQr zo#WdWlwtNfcjDZK-w;yq+=-Swf77krnAG1wudQ1MpZ9*}c;~$p?0Mv@x%ZtEQt`-H zradhGF_QnluYKqEy6Y>*@0~TbF(|)h$>-_r)OU9~H~+(Tjz3PHaWMaE;vXaa5ip4| z{_iCI-QOX9tJrhol(`GHhWtHpis|p%%Yyk}Hzr#cpJ&LPzuWZU@zpm{VOTyKJ8SNg zQ$qF}E8uhf)!oi7{NjtppCj=&*3gHI#DC;dFCJgVOxk#Ukkfnh6$^YTfa|wYefG;Q z9`Errri}~h=JwC!byUjh@1y$Xe)YxU`MKl9g>3HXu2ugTs_%TpU(f5?Q&hk1vo9Xs zwvq~@`B0aIyl>^gY8rX^egwDs7PY(MF}K|fg?6WJrSrzmzj%CuCGR||9sBi8YWJlt zy?8vo_Qoo|ZQFed)&Iip`Rh5a?xp&>{|(_npF0~CRx@G#qr`uK_{W%`59U9{`hK6{ z%RJrwV*2^c8T2zW3oo2B_v#ZC&L9+4)BHn0dEq4bA7O5l>-iq_ zd*BZU*Atkdj;%yae-B;n`9rdMo(jYAsMnqQn?S0v-P=jtzNdA5C^fnMdx`&mhyN(? zk9hcx5&uif*UzG}D2~HZ#DDHjUOb*(o8ma^wBzs%s?WYkIJ4(m|09EXwr~C#x-Rpa z#+Ax^FnvJpTA8)R^mk^^|@+ z=jVe|zv^3LrFX)uKdMSzjX4aPW|PDPp|%!?>ln(;-7E& z51amC)7Lls$4!5^>901uu=%OYf245SPI9&#r}4yc^uc*{FYzBB{yL5e<>)>6yg|v! z(}yY)-#?z$-etVgbffewefxI^6r%jy({inICl9DFMRj%ZS?tv z%e7oa%}j&3H&kzXOZBGR`^k(SAzdFKlP;&vcaG5a7pc#Csn2cH|GMh^HZDAJMfbzi z+ixjvO0nR)x%Ya?kCP~$bZnR~|54&U=ixs_{4YEFr>Ol?#6L>>d>x{EI?Vghhj?H5 z@H}lj53QiF`?~IT7S_^2kkLYL25m%F(?*nr+2gM}wBm67t(}jCtGkDW)Za3s{>pGY z&z}$8K;!Y0myT!jd2r#B3p5we9Pya0e~#zR@VKG<_u||m!GUvh(M;62hXRWjZPx9^ z4+l5LPUAO>U`98%MYILeL>W50uq+;_Z6I@9B)YpsuwfLrBlwo*2alU)-bd@*EA8=g z3-P}}{3FEg@cc}9qxVNN81A3%{so<(89Stm?tjfc+@+fX9`2PUH&>fqN8NZ6-T!#i zOUI8gi{wAVRxHo3eD*1U9l9RsZo&c|Dbzy2&cADMrU`0G6U2Z_Jd!~YD+ z_wb(}{sSKV^Th9Y_}?P_-5&n@4^#el_-ly&WrxrEmy3zt`Tm#G`J6KkU$yYus=M7w z9nY;&mpQr{=qa>ACtiL3s=2FAcy{xXo1dl!aPFrcX{6_spMG|?`urn#h5CFwvFV8= zZgP9h&hh>N>wjGl?`MdA#t*)9{D>2WZxH{;4^ev^8zvlw?-Bn?#NWUSeSC}P=^vo; zFXF$zqeBgW)j!>x|4$@VXW}ZIFT}l^+7!9mv&iN1mLm6^UM}Zqu`Tc9i`=zdt}&7g zd-=IANT825(rf;M6#v&#JlSfB=izSmzpCv4ef+@Bt^DYpb$|W7l?R@>>b{kCJ++}< zb5sA*mi{ODw>5Q2!*XvSx!-+*-j{R_-#7PjE4x4QXIDP8G5_>#`otgRUU34^_vq5% zQ-Ahe=3a?*{Ndf;sJMNBo0%l_+Rj7)d%yxLHy2*FCG6Q z{hL-?#r*FP|4Tpi((x~z#~gJq|MXjE{`%ZY$M1S0xT^j6#Q*Z2y>$FVqy3H4WFzq( z|3}I%jh}g4@T!Gl-MPgR+!1lCt474T%PJltxt}7r4|KkJ{PBKV3j4ZaUD^tJ_I1a) z*w@jw5yA~V60Yt(9j@09?IODMLu7CFyT|kILiX3S{d~J}6Tfx09a>4ZlCGxrJD=Qg zXywL-Pw9U0S-Mwv?V*())PFd4O82?`MQCc+=l(&Ts}!=nCrIDFU-{kR>p0W<`j+U6 zop0=O0kXZs{4_IfdhoPsbN<)$RrIa& zJK5BZ>i}fSwoT1l` z)z7M~dQ2XfS33@tNe7>IKT3LDAU#XWpz-)Hoq^GQ{>p{y@H}m!A6&6{Vcq>JH!rL| zbmDs!HqZ`?t})X-pZ5EdAJm?QAm{PdNzST;?;hv$agPlbZOB>2)+zePJ3f<_GtKX4 ze$K4$_9D-1eDDm#$CS{uiR^x*mfO`783Tf2ilh*mi$j%l$P?QT|y+-+$EQ zzllW0_2V9`-=()|{*6w(tLHYo4!C@`{O5Y!2LF$B`L`TC>W9&fkJ;~|PCwUgl&8i2 zpXYN(IzBgLbbBIuuh(+7YI=pH?{f4V(B-=$(P_hfx$M0}^y61VCf3tqpX8SMyi(FTi_^+c+cm!w7`Jc=A^Yg27o>ten?#AED`72hbr*ic6 zr1QXEtM;o_-JI9+t$jY8`5VQ5Uem8@`VCEwY5F})=l@o z){6eUrhlmEnVNo2-GG+%d{mcD)8)U@Wqxdq+n@Sr<dA%;L*5zHg{Bm7>K$pKymyhZ)e=VHleO;IN zb`h74>GCUedHz?FzE|n;8M^#xUGDvwsy{=QH|zS>=<*A?{!CrIL)X7nmw!Q**XZ(d zx_p){|D7&>zb+%!2e2y+ZrOR*7<(oJCCVlF3*6Q*D_o?!^y8Mi8&yO@QzDKnEZ`9=tpHcRougj}` zRh2K$-r0I`7vF-NSBZ5_HWVU?6a!>#kzb%m*1+( z-_rdrL3x*#DvA^!{AY)qkz%w!c&K@oy`7-Ajrd z`$t8Ou2gu`?f=3L{koBjgO88ALGjl)^yt}&4|+`3mrlaUmwzUwJU{bs?BZu~%JVTFXDHI)`I?VaZ&md?Kl8!s3?Eue zXIpmzl{)yllFs^9s4|x6M^>sbuYY`O*Vl1){o@1rc)c-?IbGQIA*Ek$hdLW{M?BuZ z>o6a$R;2U5Yd7Sd!0(-@%6c2pS*7tiNw{GCFS8zhjcR{fm*M9zUH;S=s-D|6 z`N%$~aC2>3`GyTS>s6Ybqv<7@ZqoE7O?PN|m!|h?`Uy=xtLYateOlA6Y5Gk~U(|Hv zTCHExb2Pm~(@mP*r0EV#@6z;sO+TUOXEptzrcZ17HBG;%>5H1KJXh=2^c+nu(R7oh zH)*;<)4MdiU(-)$`dLlCsOi(1eofPFYWkw4E6>yVH9beuOElf2=}nsM(DW`%@7MGb zntoQ(FKYUB={1{hFSm=_Q(O()1=xcW8Q-ruS?52~9t%=@&J9TGOv- z`b|w=)O6+fTEC{}XnKjJn>4*i(;b@LrRn{eenQjFYWhV@pVstintoH$7d2gZf!43- zIhtOg=_XBY(sYNWcWHXRrk~LCvzmTU)2B84nx@~>^hHfqzDeuX^c+nu(R7ohH)*;< z)4Me7BszG1w?HqR9{IJI-rq*l$3I)QAyV4rb@YTX%Q<-hZK~SCYtk@#hP82Zk;wdD zUwO@9ycoOJ(-O%%UO#{(eJnkEI1`2oEQ8P8Afrj`Oe{k7O1A0XkUf{z~;aAV;E zd7zLxt^0#X`+@s9(3_f0Dn51BwK5!FzsUC^lo}tu*3r4K>=Zd+>|^7TdS0(Pu4DTv z_W1J)IL}%>%$mP-^B>uRe5ot1t#Sk>AP}ap;vd#B`Px{1iJWlkV&fz0K^SkhHa7lE zTTf;!A7;(py7`9j(Drd4I3d!0+O+ultz15C)9?{{!npu^WIYJu z%$mP-^A_Wwsrg&izgT_=PCy_`W8)pxHo4kZeup>WAw>CEZO_{&p*R18k ztod6v-!LAKFLmX$RgT~U1i~~{{KHx%UmMFWkrR$xYT&C>&dL;!>svR zH{UQG+CB~hCq&v$n-+h+mCMI%8a`rAI2VAAtOsG7+*;sPcfM?@oLS3B8TjgPDcVZ7bi*!VYXJ(;z9m^FXv<{QRC+sA?6 zgh=~o)8g;9a{0JT!$<51=K}DN^&pIsTMOLk&X-M!>AJ$T>mi`m>c(s=CTJ^Lj8ApChflumrI<uf*4nfZ`(0+mr-F|k7jWB(Puu-#Yuv;y zWUima!Uxi0$rCw1)K3K;KQ7=l4WFjk)ij*M9%PE2wiO?E+gAU?FGSc+1s^{yE?01J z5wXjHkBx_0YAZhQv#tJ#Ux=`u3O;^ZT(02cB4U>X9~%$1)K+}pXIuRfzYt+R6@2`- zxLm=>MZ_)(J~ke1sjc|H&$jv}ej&nsD){(uak+w%i-=tod~7`2Qd{wXpKbL|{6d8N zRPgcR;&KHi7ZJNG_}F;3rMBV&Kile`_=O1jso>+s#pMc4E+TeW@Uii5OKrsmezw&= z@e2|5Q^CiN%P?-!a4WM{>?}iOJig#L9&Tm51kW;L#^Vc~=!%BA~+sj@Ei}fvR;B`88YMX1<&zt8?~35XREqJwdon`U1ud&Ex{fzisb;t)&DFzaLKX__3@@21%o z%O3I5MPRgYtT@DyGtBx}dYUH3^}A{I#j;2IbP*V>94ij7tpF@njF{frr8(E9`Vyf zV6<|qIK+}O%=%b*nkL8fyJ_~tvPb-M5g4r;D-N;b46{C#o~Frh{cf6lvFs5)T?9re z$BIKNIm4`vrKf3fT)&%UUo3mXPZxpF%CX`QOU`K4H>>q=IwoyVEZo~Jr<*7+z%8}> zy3fiXs8 zPSflg#~xWHWSwyHx^8)#JoM>oyPVYXcxw4|=hL>v*UjZN_$ljztP^ft*DbeUT=+1E z?N{n~JhgmTCwy5_FTAhutr=ke6?mt($~L|p3n<=PlK zZ|d4NjysvRH*YZ>nwr0L{fp(7-~9a6+X0v}y78Te*DPrr{&@gmVG-$a)aQ$*l!$b?3{b%9*u%m^FXv<}JoU zQ}eg3f3f@$oPa=>#>P9WZF04-{1Q3gn8n6N)`KwKZf$J*n=*gHuUX57S@XAUzF|Bd zU+T(hs~o`z2!v^@_=mMjzBZO$A}1WX*!akL5XRfBjg5cP){|MwhgtKtZoXkWw0#^1 zPKdOhHZA^sE0>SkG+wl_NL- zfiR5~|FD+k*T%vjmYg!gV##lsoHBo_@|)(5*b|PN;4>L~TrIJ1cjcm-T0ZoE#?sd` zIq(m(Y4*jk2mXP^lG`*n@DH?U_QkO0I34hBQZ$C$Y-`))q(0A1Enm)aIZKO2PqR|v zpIW}ew-{R=2k~wjUOr!A^4f}<_!Z6)!AI~3BQTj-$-^+tO~ps{J>j^ywM~ssvR zH*YZ>nwr0L{fp(7-~rlUobi>dv1{l{0JkFl+wS&0CCzrsi*5 z|6=(iI01n$jg5C$TfEv>cE^$v&ojTISaymWKfd6`#z)pSAX|;b#=j}+5&W99e3&(V z>*gCq3G$_`ytc{_oPa=>#)^MfOSM}0{fOrN4n^vDI<k&sgPH_KBQuL}KG3`-U*yZf$J*o3>Aw zwS1U0f9vKO#zWi3f#8Hl`)SkS@3*o#H#3jw-D6P_=Y=nEdr>y^e2n8QMF5tEWpStT> zY8+g=W&Kx(0QXq&6FJDVYSdbXt96Oe%F-+A|Ja!JbWd6T{SXR1eq6w93qG;t{Z!+~ z#aq^Yg$VL5R{TT`GOZp(TvCk($gdkOcnNu_?M*FzR`Ia*g9z#bsHHc{3L1+XyGc(M zQ|Co$`E~QIEjXmcS>)T}2c@>;Pt(WIr0{n2#KNU*a$KBJ&kwQiTdwmL(Tj{pLwj26 zq;an54eX1R$4!w_*N&?ANjpJcnh_}b4FwrL(;QW?eNqUNjh|uqd%8j0aVB!YNDDsA z#HViFhrN}s%FPDMWBaPIR5p2MQyIF8^pQ9+*D;^vGLOrqzF~bJ&$Qo_!R1lg`Rs#?G<9?R7yyrfzVbTPZ|+m|=;?;3)+yML zS`Xw;`o0$Qros>MG4?u<59|4;$g)G?EWKG)Xj&CS$IHbl|OC6M~b$Gx|{>jptWd(gjj@_iEi_<=@ z$IAO@$3g73^BbkM?S>3 zOg(?3mLDrGQ`;%>?fgTjEqOTY@ooAzLcV}n^B&6RyPRd@vLm?g;Z)-n@piY2Vdb6yc zvB^cO13_htxQWe0%($)Rz2d`Z$^t-maclxU@}oj_C9mjkny|@k6ol38l(Tm$~ALg&3*NODvKFohPy;jqU>$vYp^x`&L z$9=z#Ufjmj_X^^jPOn$f>s9n}^>N)R>2(IZxQ(li`!N4ZdcB5Tu0F2gzOSVhw-Ns( z{*(s&W1Mjx>NBh^RNpr$@FCQn>wNVl&-~14hLx+d87714&3ViG&P;I*JJtIg9P_&) zZ)2lM4pWaSd$ax?59UeJ4)c2~C89h0opM*c`~4l$PG23{UR8$A&#HZ4hv{Px5A_`? zpPg8n%CK~j&QSB@2zSaMu%V#$pq$F(n3IhK7Q zCmfO3_%wapjO}mT^`-6h%vwIon!k1PAG1^2$ARF4Nc(Bi;_tVzIozh6kbd<35` z0^!=Ga|VtOY8~9PVf5U~P zWUH?(mfl!$d^VcASb9W`iE8n);8VoJAiZ zCuM$B<-`A`+E>+&VeQ~&+s;ec?pLb3Y&&jk>8yhgtKtZr)-Ykns&9!c=gY3_f8k z%U>&b5RO4p@saf*95=VNsd22k?!m8F%ZFL>w{D(bJRo1{%4@3}!3hY2X{`8%wJd*a zEI&m~IF_;Tk@X>rw_6(<|E8@kvz8CD=5O76!+2=>I1ro=X+LdR{QXvr%02e`)p`ut zx%YL=-?I$WRns%L|Jw9ORyK#*G`z%~aBct}Ss%hUxwXKp?)=$Q zIkT1zv*vHzyv2BEYW~*sFP2||6A%c~*m#Gv4XHhP>xLmMIzRU0qp$z1EuX(p)92kX z|L?c?J8-}FNj`q(Qeq$ZAY5eJmvod=NBK`&v&R=em}-?a;oJ1{iXcBuiVGA zBX8z;<9pD{arCrO_&u%-A}5SoYT&C<7L+JVb=Vun{OBoZ661M6C&-W zO^d(Z%Ie%Y&yQ8tGJeaR?pil5MNT*dvGI}hC5*RQ8yo+ojh9)=hgtKtZoXkWw0#^1 zPKdOhHZA^sE1Sb@8eU>gI5&WgtPf$F+*;sPcm8auoLS3NZ;Cp>I+%jLE;_pbh-$T8q)0yX-J6YFLc@>uz=!Nf)YE%pJC(P&RMZ#sUnvQE0uLwr*C@9G=33_F{WM`BMnl7f%m z6Gk9h8!LapTAH`Mr}8_N+@{HKo?y7O7v<)k|Q1#YS3OMG>rJ7iM$OMD&R zhZGT)x_RrWi6ysba$G-Smz(CV*b|Ph;3N2i5eV1D%Ac?nxxO|GAGbbMTw=*-x_#oO z8=-pTRCvOwRPtlVjU@;Ex-^#jrpa;r9JSmuf5e_}1e=CW*xF)kBkiB@-;a>%qs`qf zr@p?GT7KQ@Oii0FV%w7%|J3p&zQr}p$BCUcO~KvgYfN5SaTCA7St9rdK4Apv)wVUi zTvWtQ7m;weX?VHTHqE|R_PBn!<5lep48-@fXv zfAl{6yWp^W^m_Fh0CU!F0`TtxY^GlwV7k83E&RR!^WRP??f=wnTKf|UKEW5*@BVHA z^KGAsGD81HouV%yTSn_%$1Rf!eyZ#LkZ=CB1$dLBO~)_v`?I6wbJg}H{vrKM7z?g_ zYR;PT&RaZZ!De9L{%#8922guUck?-gWxS4lmW6YNe_sXjhKUexn6_s@D(Z zCfLmX>A=6|!glZreEL|J$KVIkQI4K&%<}6TJ>6O4_)%;ZKBMnL{HSy~gYhx`T8y#o zAJe1BWf|*fZv>gYL~Df6BA1OH|IU_6$0{un*42k{%^8T)|)&rX%m?YiNS`<3S? z^SZ+a{?`X(P_(1p{mKuw9r!Lq|KI!H{@tJd)xCf5E>QfR5%z=NgF+wZ-|3AV%Ak;s z@|U%JD5IZdTlw!>Gcg{qt{2Zs6z;z9I_i7?9au}bzmLcB1Ng2zp*r*#WsUA>pb!_} z7K=jur1$C2o60ZXlUfhtw;jK>`&W0}LB4?^FC@Q#$Y?Y*evltK?(j0Td{>W*PatB` z%slL>q$N`=eJ)24YWqio|=T8BNuOAn1flpKCSJ>%NYyNX96P7K#GVhL!bWit`dCL!>;N!;y+_vB| zE%Pq$Uaspbb#Zd@rmj5TA##AMO=IC>OC6M~b$Gx|{>jptWd(gjj@_iEi_^aD#mf6> z$3g73^BbkMeFN#%>HCl)SkljGu)I{#zg zw_N8hq8AyHhW51BN#i`KH?Xtm;{|?A%3i@kAs!oV>pTHLodC7;W?4aFkz+UM>0;`< zNG(6sx|P~ak#FZ8N^Qx*X^(Hy$I+zn#nlrFm$u1qaY~*4vGAMp{uT3^=tah)q05Ey zFmGU2to&`89KmlG0^xe=JRsaOYOSR=%L=lK9J@(R7gMhrspZESkE!hx`F8%H)RsJ) z_V_k^93fvot@#hk2~bO~%)4VF-qSs&ecXus{uGe-`f&jl_)N>Z3wxLAJi0DUsc^4r z7jP9hh)^|Zt;5y2L}_K|&9Z{bBFAph)5U3DH)7@MwBsQ5+xd-BTk<@0e49Rw+<40R zuMk0g$BLiGL8eus);e6ROO#fY-YhG~EOP87JzY#aucVeAD_>LFDe~?7L#Zu!IPLLm z`Z#j)Mb>|X2*yvW_=y~3T0M%mq@EY*#tU9f%3i@kAs!oVYd?sfPJmi^v#g-8$g!LB zbTM^aq?TWI9JU3A)HsWLd;Fl(mi%e@IGPmRuAW%9v`vnSQ|kF47Jkch{vvvjF==Q| zi=8yiRlR|IvGTYna;$x5RWKs7v-DUk@*{8)LA+D?&g=O0RK$-`-n zZ&SySHP0bwCO|E{GQWGbb`-p;M3IkwG4f0{wr&gfN$xQd3S7td%EYe?@Ppf ze+o!^{kVV&e5PgIg}sx$egnOAaY}`IUAtoW*H$^c|95wJ{J-93Q-BeR;{TYd|0oZ& z+uZ4P%zkd!{4er4a#G24?L*nb#r*$s6GO922m{ylQOmFiw5ndT2aVkiazV@FqaL(w zyY-ZFhzb9XeJHP#&hC&rw{uwfbUN!hr|09Ev1N=IleZBayuZ8O)US*zOn4;F7{I~ zGV$j&90QJ-+unb@r995u-zUe-hpO$?cjo&0DEGWAR996#+PQed^dY2U5_(zxIJr_5 zv${5y$*pRqPrr{>RbD7QqsS19eb;6O^FcB0{yAs-cICRJWsPxjF?8+QoU`3|I$Sr` zpQDTYLUn_975g=}u54U}F&fVw&fWE$`7zflg?%VjH`98^I@~-_yina>Y?R?KTt-oT z*twaL5&<*xVendx%$5A8R`tuuWx<6`nTE(3qZ%geG{=Q#1cpU+YF z{AiwDE9rG2y;jldBzm1puT$x@nqJ>WuUF9Pbb7s#Uaz9p8T5J$z4#u_Yw6|6TR}Wi zCYMj4*URYja(bOcuUFFxhuNQbW|{4SJYRdRciX#V^ml!PJhqMfWxJ4%CO)zI55vQ? z$1M-@udE*D3cmRUSTJ?_o3R`xKTO&DneE{5gL!R~wT1h*W6zu)%IeLr#$(GoTz}no zoAun!EKedo%k-7y^RV{g)+2w+xyr;fG;d8~J2OYj&t>_`xK#BMx$kRl>M}p~bb;fS z;^=9ib+2Cyvn{nA$e-5he`WZ=FNuE{LW&QZB>rKX+*;t4YW$~`4}VhYfqcm?AYP3E zw^aEBD^lx$e2G60uSS8J#J?I|ZmZPzLB8xST;%OCaFX$F<1(xS++_R@L&{&D8b8RF z@$bhUT;L?*ABa?=z)i+~HN4zbsquq+8UHTwb{ROy__uLEsmeVIZp-+P`OlvM5??n!2borlTI+DNE>T)pdb6w`v&gZV^mH-xypmdetb9#vr^vVS52d!` z;k3uM>Ep=F7g_%mA{alh;wN&DY4s@Ll6qdK8!vb{DSHJEg?Mbdt^FW^Ist0w&9Z{V zBFAph)5X+zky?J;ao83dQsXT0?eT+BTk@yr<7iTNyLw{b(l$9RPO0aISokg1`HSd9 z#-yP=Eq2m4SM>(=#meKR$g%dJRl$hR&eEG@1&KwD-K3|BspqZK@?+&eYCA=~oqs5` zB@d@PzD*xT$QMv+{sVIY)Y2>S?%0U;bkAuYH)6j(1th+HT)+iB(=zYE-btTdKyO`~ zQsG|Lu2}xHRSx3jQfnP{D-)J2y|Vs~jdV}Cma6KnlQHI7`oW&Kx( zApc^;Pvjues!?kluGS?=D@(7e|6^m?(>+toTOvOk8o{R-_{5s`Q;j2_gnW_pUm*fK zV#QD7Ak*qm#3j{ufc(1gf|rn&+TPUiXB7`?KZu}CfLeO9te~;Tv77XCF?C*~mR~pT z+JZxBoJGDpeo$&l{xp3YO$u*UPb^&8Cdb7o_52VEzvViA5xvNmG_vhtUO3Ej6b0&2~F zU`~KqdS%`n8}Xj*Iql;{?DwaD#Mh4txWH#x=3Ur3>GKQdt&3AC-0RvE%fGhDLEKzw zt;23*!m_1T*8j1Q?&+Sge)=I4eEhh8+ZKFctskkzk&Cyi{|XW0U#$3v9AsKGYOTZ7 zx6P_=Y)pH)XR3Ki*ifsa7c}_$hXH2N^QxX zrjMgZ;qB^)g-hGyxHzSrA7bIRT<0&M7a5a=_O#eZ<6PAn*cU60nZ3wtMhegVC8aY}`IUAtoW*H$@*n@g>A*sV-hw)D#SKQ_`m z-BZ?2KZJsh9~W@jf={gVBh@%^@s{;pA%gsi6+e-KOsht%b+}rWD6K5Lvi^^aX;1e| zHE)UhaA*XdX5bTR-cL1-fD-aW)_;Wv@Q4*Zk%LUDM-i7);{o#P#tU9TUTS+&%b!&| zto%sc{zh_V_`mE&0>*aWpBsT|KdIX`37u zr_}R9Ec}-1{6+L4W75!`7CUL2t9k?bV&!pD*gEA zL)*uJ;Dku~Y188Gx3W3hrr{;_gmVM<$ode*$*l!$b?48f%9*u%m^FXv<}JoUQ}eg3 zf3f@$oPa=>#>P9WZTV_r`6+V3F^r9mtPf$l-P+jrH)TGDU$d4Ev*vHze8YG^zSNc1 zRyl$b5D3#)@egYmUTZxEKfHOg7M9*DE66Q!>?S>3Og)dKmLF>#No}XdxAPCBw&dZo z$G7R@2>AkP&3|A{fLeNG-W?n9p6)sA<3{ZFr+~!Qj|;fKXIkc6*gNU(H$ZP)oKoRl z*RELpwN(z{=2B}Nb}JK>Exoe-kBxLs_muV1524`W#|7NB;1g^8NHvaJyk-4Yh#>!B z#ZTlQ)2dNx9j?|TN-ImRtp8(U+S5H#&08Wr92&u=8TiDS_fw4{poDyp^efW+623%I~%TIOBYJL&Ta=&g%WD%|VZ70bW2%0b**YOTX= zWx}$hSJwZrk?!f9vVQs@6ny-+fZG;)Vyz#k#*vG+tp5rTWLiCnxTG2nkY6`m z@DlP;+nZYctm0wq2NBc>P)l!?6*Lw(c9Whirp}Ah^6TbZTX0B?v&gr{4@zyxpQewa zN#X74iG@qs65* zPd|i$j~^Fs+k#K5^&{0da`Be+Um=40ixoeSgG{SNt#!Csmnf|)y|Vs~jcHH!Of_$b z{BURlpJw0_Yu-;aj(`&KMb>|X2=Is%Kaqn>t49%+RO12i>&6RSLSAZnQ_G)KJgog7 zf;s_e>CLi&#v;dV($mG%d68Ov-MniH4ykb#`S$ohsV(`_^l>yPyj?x9aA}(y7pK(o zLoEE3>-IhhfwhG;{tA5@QJm4 zq#8#q-m?BHM38^6;wN&DY1OE;4p-|ErIn>u*8j0F?dhJW<}HyQ4vpZ`418kE`>Dne zP(r@Q`mYcH9NKcWuETHO?a69zQ6xC4ZVejwXe-t0xvNZIk2TlzM)Mh2L_WzldIBOd8tL zVkeDrRc~NltUPXt9BUt16^sb&EWKG)kXYo{O?tYRdfrMcKUN;3wo~NW`G-ROKQ^X4-80p^CGx|e5qz3~Ppo-A)i?r5$QN1v6(YbRR{TT` zGOZp(TvCk($gdkOcnNu_?M*FzR`Ia*g9z#bsHHc{3L1+XyGc(MQ|Co$`E~QIEjXmc zS>)T}2c@>;Pt(WIr0{n2#KNU*a$KBJ&kwQiTdwmL(Tj{pLwj26q;an54eX1R$4!xA z?L(`A5uu%>H_HkViyXU2PZv|qTdC#8%7fH)ihMi&P-;saPJ4WtK8}ztpw|2c<^-sv zSLWTZ5%1}q(>`v*et!x`eEqn93w)+!-i5uBKEHt8x;Ul6y{=uc{A;Tm#LcDFI_y>^ zEL(bI{U00Yp6)5@ryoMW$BzrRZNVqj`jKiJxp>R^uMk20#fqQEL8eus);e6ROO#fY zURnRg#jsu zAuqMPspZcq9@c&kL7f1#^k!K>W07Mw>FHwXyhts-Zr-&8htxQWe0%($)Rz2d`Z$^t z-maclxU@}|m_ z*?$Q!uj-u8+1%;obUo3{R6d*d7+Y`ex3T%$?`>3P$}sz(o|=>%X5ZI!I;Zjcc{;t& zw@N+Ri}tRfLH|J;@Zc-=WgpoW_h1ZoZ?S@2^Yl8IUZ>D&fnKN4i|g3tmGt5^Tz4wH zUPdo&!+n^)ie4wui~BJD<@8!jFRtUhC((=Ba2@ykK6-H*SKlj$$N0ROUaz8;tB>nm zNv|{L#cf=D+=uyR((5(!a`kZ?_kAtBxQ+NP@uxKCAD9#Rj0zt@eTLPA>MN+u^S7)W z%l64PdFE%9Gpt;t%`h2Uk2%Vni!slkem%`LnEx<`p$`1Fu~8+5ukC<0d`$?+<~3&^ zOU=JNe_*Gtj^$UC;j^V`U&b|s{u0k+6 zcHD>UMcEfu#`z*TJ>a>P&l$K6Fh>qm;Xy|XokdyYaY$$X=sJ;ipvXVhAGX`SQnShmV({uZ^!gXQQsFe`Rqq{dfHWKJbn60qrrLxP4$3 zV;rMB>voS(;>UUEvk~^gH~7UAd2eDiYI~Mbw~y;L%Hlt+&#Cb{dc2A`F>0(P*&cBR zb>ly4{sRY>_B5mF{@(3hwH!-NEIDO%$CBSPIc5G<%9Lo-o6GmR}nJ#=_ZPVfgyIk5dJ7d}7`Z;PjmK`D|jJ)78UHDkvKM9*2 zwbs&`Wd+$qj@_iEi>dD`rj}p#xC=^`ox5 zSayjVL}onNH2liEXqug|>?!lNDnFJTA}5Tv;L}WeaDNl`HE}Q9cOSpX^8xNXe)GOQ z%QoxB)oCJGX1}Qi&sLQA#4K+EKz9#q;DpKlE1 z2ykPH+%++b`J6&kJ7%HXdir(}us1R0c|gX${d~?WD!{JU!{a)ZBj$mihm^x`qoRKCJS?H6Dp@B%Hv4fUXL+BM0R!865ie5)$Y zhk=h*O&;b5juWqM%N=KT%&=XsY1}%MgX3d_?{>frYz&{rY z@JEqj${wdb{2eaG&PzA;uz6bcm8tDqPro(-Y~6Eq+T!#N%qwMiuVmQRLoTQpJLVx4 zs0WSHt~s`ZFvEAT*mrXt;c}=S#*jNUxnCKsp}IJjk2lZw?Jds9Xy=Y;)2~n+w_6_E z%6(Bbsazc%%c|{S!~wd*c5^RPb)1+vIa-Y8O7~=;+#a`X+%Zvx!?<>Y`VF%YV;b{= z+n&p1b!C3cmJE#b>ihO0rqyI{oDr|o>s{5@PO@Fdf8a8F9T?2-VcV<4B);C^_Lc2B zvCqVu>l?QwuPUByzE%%paTa)hR;_I$Eru`VFh(V|=>gx6%RnDaGE7J$8Kz*2{ z=nK4B@qx_4LcTW*x5K@qKJ}&s!!h zmJY@nva0MW-~;;Dv^f6P)17(v!157a(|=d5Ez>^dfGno4r7E7jeaApX`EUQRJ+PZU zv%Rd}^nv-11^eB4*zUHg(%0oFwfBz^IJ{q1r0bb+k ztJ<%w9vIvK+2zkTkxHw9Dh9MiS7yQEbj9NPk&r#*|bcecf+bX9F&lvue z{kO?L=dnu%pGW%?!#>v7R5_{kch>JDFaQ%eEWKG)&|2i!O?tYR3YSUAk2McXI}T#M zo!=-;Di5a}|E7;4H=gqQ3O%7ow};=u+POMMZ6Cs7R9VB?bG?a$88={T+B0r@^kZ3NhnrvM!_>5k z?KN#06>rFeEjVXq{l2vY@=Y6DY{uzVhJ(uwop-oxW0ozwSym8T)zT-j+Hj zO-g>O^NVT6LF^yop807~c{uI(H+>u-riiE9A5w?_k67^&ImonX)LMtDb&1l-(wk)k znMID>q^FBAZz&+A9S5=B&To`@`h(yDL~IItV$J)haE8^eSJr=p2=Is%Kaqn>t46JL zxLTJett`E={*R4mPxnkUZ;AYHXat{T;1g@!Pc@E!67ogXe}xF}h!sDPgG{SNt#!Cs zmnf|)y|Vs~jcHH!Of_$b{BURlpJw0_Yu-;aj(`&KMb>|X2=Is%Kaqn>8;`a%9>dUR ztKZ^RIP!u|7$4L&4JX*;(x%xN%O2Oys%7gut7@kR?JT`=em6FvJ>4_azEtFgLnHV! z1D{y?`c&fxC?Q|u{7xYPJYvO9oX z@3w?^!=AZ!pP^?vpdZi6voGw2ZO7pIQs(pY?lb+6@3RASkn6+E*Dq%KkgRHTq3^f( zV?8{7#+5lk#h9ZP0P!4}2kqX&s)MPs8LcPy4E4dN96X;Nr%pYJAOjxH(d_ z4mi8i?2kH=SN6R;-*@f3^>&A^u-M-cGs@(4~ zf2zqXVmEwVoF92z9WFCY+?Aec-@)XzjFCH@P&V@c`v+gFfj|FlIdTf^QK$I+|2^Ye z^&PO!m$$Hy<(BOUpxZZoefq%b=?``Hosj3!Sn^GL%vd1?Oo0J-lWgbu?UrNVAaYz} z?Xuuw*aRk_bw>&?j5CI;s z;wN&DX`@kzLl`f?XEyPH*G-E*>~d+-?2KiP>u1%nb)HeRQ-pSw-YhFfEOP87Jzbpk zeQT`sc-nCg`|bQjsV#Y)I=)RGM{Ydj{6-;y{EijBS(l@pc^vl{_fWs$Gnr-2KO)yn zis$p(=MT$dG_`%`dma3IVc7wHe9v!!hvzum=Mv3lI@3I7T^@HlE6LPnpa0ob^&Ii2 z?SX?2M;AX|-uQU#GoSFs#duPES-;OFAJ2y$_qX$*Ja(aHkW=Ilux0AAJ!Y^%pq{YU&NmYt{3;s=cRMvKWy{3 z{a8Nif-RxgaU1wQN;}gJpUy!%tIx@%%qIC?CBIAzfvKApzy$R!ZF76x^8h1re3%$8 zKJMWg3uQRDIkQ~thK-{#EMnWQuvK%JoqOZ++_`0#+!*cMoTyT^u47l}5UGu&H_HlA ziyXU2PZv{PmrE@_*7cs$c8YvE|4?d69!`6Fn?8=*e39$t3K5K-Sn(4%$h6U@#378A z;4_=}!0V>PA9lI4X?Di4$Mtj6ax6PUP8fN?XS(o#wM~l~>~d+-?2KiP>nF;%E{|)1 z!>^fjt?P%w+C#2=eQI!>-?f9U#iI{jpX6(2cHhA@GxTNZ`eFAezu(UC&Fi4^uwg+;3y3^Fz`&{6_y4VKx*WEKVtFC-)4%<1oe&#&jj(^|{ zteGOt!*Z)^ZX9I~xjG|ul#edawN_xzU615I7H-r}C;xi(d47t)ocE_Cg> zyv{s-hM#6^`Lh{Iv^O#K;W$pcs~2U~&zQZw)9Laag!hqbE5{ak<~5J=#n%pThL0?h zbI;EoXR~z-V%>&!aevq}kv$C^5eHkZy znQiQ`aLTf@gD+%S{}_g!=>z<9d3|A?4=lfK-ooxS$8Z!MISx2Xe1WrXPAKE?*k;{k zOu4O@ufybyD#ND_xmBjiU5nhc%e0@zF^@lU9J5^53I8_Jd}a1yzG(-KXSQ|FzK9dr zn{vwL0JLTMPWIYYoX1R?OdUQS%^Wg6vkdqF3R}!N9}k$Bx`BtUy^lAl47SnL=gJ*c zZ{o(EN6jC19Z)iwoe!?fW)9#p<_*xc&L5l~xaQ^Nf^Q6rnja^5$8WRq!?hVX!8w4> z$P3Wv%8$W$NqBx(u6BdxEfwZ-&UzD`{}CfIUi=wr!OQ3~=E<_Qb@*xyw4XB@zJ{LI zUwe2@!TQT$GpcQ--|IVP(uh=&KqsPAvMk- z-yT0GwIzR=K8{?xmunwX7bn+`y7G{JA_vIYG!{O#)IrHwhX?HBpDevuR?t`E*iCx6 zIPLR#th}Fg9K?P*zfo#So~Mp))5nn;Pg(yJBFOJp@e?`7G@DxMtzDJ0Wa-Vag03RR zZqn1m)bmGb`LXgcwVfj0&Oemel84hC-=>cvIA5z zH_HkdiyXU2PZv|?MQZtV$6;G=NR6||x5p1kZONaekE2Q9?dpkzOWWkQIHjH+V&S)3 z=P#lc8Iy+gwAe}GT-6)c7b}k^EysP%nZGMwen+ni2kxiZ+TV=;&wSRHd3XjH^+lfg zZpZL;<=;b4vSZ2d`8AL|>h}_WBl0EHygDg8@MF^B5_(hN2l;i!A>!cD)bgPZdfFBr z*S~S&WSwV2=me;xH_HkdiyXU2PZv|?e`@*T#tmq+1&7o)i+p5^P1}+`O&>=#>hk?5 z7Y~#tm5)u&mr3Cu^CB|Orh>nXhg$+ZO&>?F8}=^Oc|cv9TtDi{10Es=$l5d(KDN|B z$vXcTu#Uy)-s>FMIMuN$%Qe%f&m`|bQjsV#Y)I=)RGM{Yc2{a1(}zhlKu zx-KkCm^f?G*WT{-M;CJe>CUHhmnq`6BDT zLImR{R{TT`GOZp(TvE>qb>jsuCuOhTp%9Oax3wQcP$xhwy;)Y!SmfAEdb*f8FH*~| zI}Y1|Lu#BwzCC_WYD@k!eH={+Z&yz&T-qkb#VPgt5DUNMI)4$p$e1*=r^QYh=c?Yo zzF2wO6ggG>AGcjwaTCA786o%xK4An@t^56<(Ep3zJ43$j6qV^>`M&=K!uN~J|4ndp zn|1uZB)m46|4HVyANIdt>pS894P^fygLSR%oZK(-dSUvF|3<<0w#+*Cw!U+ErT)Ox zq>wR;H|l?b`Q(l&!^NF#^vMO!{O=1hrrgh$8>T#tJ7aIgUG=N}KRPU9od1jS>2`e| z_-KD0j`@7}#+T_Ie`c9wyisEVdrY~b%5Z)3*=FXuuioUD@n?ROn7deivZkMF2A<|p-?T3^2MS_fN9JDCSvs=jNj zk*Ifdn&rX#2>oiTnR;CPr)vR_4;iqX`R4kpY*TZri-{|P>(Sn{!ENWxVT^SuTc%ExrrCUeCp5Y^FUws^nXn{daSn%gFcjo%u?8 z=#UJqdmRlu9#<>rWsWnGKZ;J|>8Sb1=LBZ%nzkU1VF&U8)a+NBk5=^eD46@$#({m+ z<~0{b=qX!AF~6C%xia9-din=G(_ga>Y=%7U!w1S{+dA@<)WJK;$GTzaV0%~(=by

    @drIF?P&(iQQZ2v zWyr6aUuAa0l0V3)!TfFJLRp+SN6XsHQvRln&$P=&eqjydoZ-30oHLM1puW1Qyy3Yw z$n$aLzgTmqJ5K^1*CrP$-+AExWBb|#W0oIBZ{46il)wMjlaIdsx3+x#Mopi0%Y06J zoDN9%#ZU6_JC{=V$R|Jfl}qP!1?D^6&tXr;{d@;xbvnmb4jsoXRdWCSQa+dEKCT^k zGtb)!4{s8zo>l_C$JHrv!pOzOr|Ii{Y=0#`{rLr)XDuIQ&ELBDkL*Fd)Ros(If4@q z2-8^c4{KTe+E{*yoNz2-<0I=s7;m>WHvUapUuG>IX3gKa`G)b(_HiIMA<}-@wD|k2 zY!0_+c!@pX+yFkZK7?^{Yk^zc`Ln5VW-T9P&EL9ti}BFZ{H^O>EWZRNAP}ap@eXTS zzS>xRikxr^W8)+1Ll|$jHa7lEna|+2Hj^G3Y!ZcR=!&;WV zHkO|vCmhSz_{jPY#@nrpjepbDms!h)S@XAUzF|DHeH;i*h_s(JE&hHho5O7yUSdx; zH-L|<4`H0#THsc9{%oq8S<8o6^S5r^Vmvf8f9v`e%P+wR2!v^Dyu;ecYpvgrFK-sT z#?qT*1^Gpe-K3|BspqlO@?(wL)OLz|JO5B>OCC;pe49RwkT0Ot{0HU)sHIot-LVnx z>7LU*Zp40n3P^nYxPS|Mre)rRz5KfmlRSD_SzVl9b1Zox2Z;JT523zyk-4YhyeFk@e?`7v})8^hpTmo(#p~+ z>;Kr8_H<8K|NRgOK7L%lZ3{lJ=KWOT$i-XMe}xG0FIN0S4l->#+SYiCiUx2^H}BelLu#BwzCC_WYD@k! zeH={+Z&yz&T-qkb#VPgt5DUNMI)4+r$e1*=r^Tkmne))hb(C4J`hTNU*8h<4|9$ZP zT=0KItX(?r_BUO0ZU)LGvn>2K1(#WlDc{=XaRYq}8xK9*E;Syo$E8itZ(`}%Sf>pC zQp;cN_@(x5+T{-$hvViL@=N6V5fps~U9lfzGaa;>xAwi}|KWxI6D};jZ2!x;4;)|L zGX3e#&x+?+@FA4XKD$gGUQLA`q}S^;lh+e|@xB4_&3KsO0l5%5$MVTQze(3=7cCO9 zJ>~f+8zJ(`&-byfDT~jrdMn7DLQnIS>wn!nCXK{`{pP*Lkpv`e4EvV*{Bzdz%lV%_ z(UG6ijt}NRzn9~4fzPzdpY`!C{*ONf>h#3;5&Y|*IDTKjUtuTtH+~M)=_&aq`Ns&z z_)~c>>Gz&iDELnrd8Mx@_)q)!o!IZsU*wnIBl!3c2y-QW1fMVh;abTb!6%GBxK{E< z@ChRju9f@|e8LEXYbAdKpD+U9TFIYg;4|&_XT^Sh9$|b5K7x-QfiPF{XEyMW>!1EO zOaA+D0e4dPNPYrwo5sTbWD5=gO)vi&h?`_zYiNj@}QGxPZ#9=wFY9sMDSODOa4tb@wB?8 zXzdMb13tXX( z(Dk-auHUh^ls$+qBwdC~9X z_*~#K?eb;*89xW=^hEy1{NqPa@bTjUuHXYC{1o_1`}{oZ_BVZg!@1%(=eNG!vRp2C z{!uV^jtBnvewQ^R&poeaJAAm+u^&2Ix%_*(KHp+s;nRuV_x0(l%9};GKA-v8QOfw0 z#iJ|_U4Bn9nm)g|cB9-D`(=GZL~V-rrar$bu6M=X_{Mze`~C0wb>+XwU1f~B_LucZ z+0I?J*ajS<>+O!YzWV!_`h9i|>izxQ`BBPt=d=kY47IN z_M@)e!^9u>4tQ!TU|qpl;?AFI$cru4Y`S*sMd!W?a~MC@Z_f2=I_GxIJ1@I(|Ng!E zv;9j4@7%v9qwVxQh$8UWjAlRq0c6hZoVP! z%W(nbu!-jseCGJ!Gk@;^pE(EdnPr%mQL%pjYh~y8ovllYcd=^+_U>ZW*rRv!fiZo1 zQ`X0tb)o;j1@n`RPM|+9Uej5Z$1+>{wsW)HJNN9|edq4%uEkwW^w=i#d{89J1CQOEZ%l- z@BW=Xx_EHs-aYT=<8V%g185@P{Y;657!5GY`D_8bL{VAe;{)W&2ZOmR{6M|vJpASdCB99DZjp-ra-=*%=PZM9gl$<4iZch zx7!Y6`}Xf7^bYRL4&Jep?YVO|ji=idciC`qw&=W?Je~?4(yLR@Ocpa8^B_C1sMAjnV_=?PG96F(`pjd7W$T zJb1z09T)6h+;jVqUN3g;$*#Wg%Ikn5b_jzx*Ie7z(6<(^yYc$Vu3!76^Dm|y0ME-j zxAC5ibIY9fu(qP!oa;QuElk{dF0ux1NIXt>&hUdaIeQkl1@+&r@;eQV@%K56HNv z+VC%tLGw_St$oY6S@~jO&g@=0l#Gkd&B_;*iZb4MZsuKF@_C`6j7!eVuDNsft+b}n zCUno*n_SEQ{t*3mRk&=FDES*Q|N%?u-rj6No z{qq}Rf8nkT7~A#c(5&+wwSQaML)*Be19WOd%CEm>Esr-!leOn!tpQe8YZ!OFwlFH+ zT$?br^v_>|lMC;@F}GaOVMEQsIEDQ{pU;V)4xMSLKh76UGVHH=-b$kK1Lv=6=&A*8 z{NBH~e-EFd?Or-?V3D>0`3e4kJ8#`jNwag$5}iR_d?CmDyz>UZjsf9iMm4BtHH9>J4-z$|*!sy?ffF@)>dDT#50S;{#bbt@{M|&Gl%*JpRn{ zD9;Q0qI2(graWJmHpObgGJS{If4{jiSRVH+?x$s7X;*e|@xVvjGe~OD7pqn=RXzqF18Iy_nSNF9IER6r$k17LL8t{zG?8wP`>c# zVEHDhuSW03fv4>YpAVLAqAJQDP_cQ*&&+9T;7mQgB5@n-i0JV9qR&eS)BzrQckIZv z?_9inFJIKy$9o#2N>B!EDhD#QFYQ{qhqf11_uQeN4BAu7w@7qsH zhH|4+#)Wzh#raX(L~)F>MG~_6)?N1~8Cgby#uE{FOxG*jf6rFSB0I_G!jbRt_?yzP!`|K5*fi+i>cD!cC7y@$@f7xz+|;8iF{X z%(je|c^)2;rLaA%bNQ~lw|!J)h_z4Tz0?}Af^=MS-Ikj?bthBZHJh%#_L>{H5^Fj4 zQ?gI&Y`N^ZYi}@ep6dpbEWLN#d4R6Y?YaHVU5oqA&*)6%qvrmb+YT_0Ybw~k^LXU(VCVZOomkgY zaDLK+YZ!bD4EEGJUpgB(XPhrxcEfd7)A^D*YqHLnoH;Mw4{;9j*yWtYy-r>yIZvy! zH{+$o{RN%=`IEgt$*(f!7idcMC)cWz_8m0A?Yr|JF6FPi#=l|luVJK{PaOI3gCpfi zkC?EGjHTcb{aU)6wR9Vugu7z=GW3pu7VYt6;JzANCD@hW=9;=`v3Bca)$D+bo%)`K zD`w04O*wvFuEf1Wb=M)gc2lUj|M*cn7_E ziS99HYt^Nr_2-&SXp8(Z`qxPg-a-4BJNE9P?NMKx$Cua9P{6*C=WX}E`3LV0u3tK^ zbNihXD_Q}J`yg+E*tNSC@4jHq-u=7j+L1H1x~zlOd^Lt>ui-st1EP<$7imcZ)-YM> zy4J<#zJqo1X`31u7+~2bb}3nJ9mwLH;hl7!neU43q05>h_^4!Ea_&10&>1C3pnxd+ z6nK?nVJ!u2>YgqIfDbDOhGh!Fp}47L`rVc_K)<4_>uE23ke-IfmiP$^LzwAhMOjx6 z{K037SBP& zR2@y0nX~3K3(nzD%G?(FZeF`X^OGsp{Osy9>&(wp+PQNhmoY!8@%h^RwF`CMINuFi zp|4gL`(pcf3TJ-npR1XBkFqwvdJR2MW}eTP=W=hB^SHoy96dXx&f_xVnt2|l;(G32 z&u2amV1-xD#*`DP&)}N*HT}6_>t%zF`dT?XD75MN8*}zGH{5vTbvM}OUc7F?u3^{A zd5_D_fSKcj^Ybivv7Gbh1zGd-8M&kEeZBd7&f*TaiUfrEh)PWyU3Am51tjaeld2Z>sqE)gnF4XE3}5~m2(xZ+8rQ?ZGU&>tDPzZu3;No(-??uWdl$M+o7+LR%d<`T zRFHN~wA(*GkmR@0`p-KCuJz`ZGU-9aJ1CLn_z z|1|LEpPThB(e_Ww0y6j#JWetr@s0#;tFYE@&^2OcxQ>6Ks6z;Q_lKe6T_reSrA5%Bji&8=|cycpj?B2U) zCqFh#%cFgSWbou>$e^1Nc$m1l44&M!F5N{pC+R8y&y9Qb^7F|2IPxBPJfLq*$c}t+ z+qHOmj;OlQkl%pP&*b!t3CZArcujt{h#r}_eUUPRp8+afsIg_3Im&A)=N#V;;s0>J zzK*Xka~+p)&6CS~E@7TexN9=E=dr>4H_;2SaSwp^#AX{)mf6OX%QCnOS=^tmyYe-0 zUw{6-jP$qnhKw2S-T8SW;0Yeb3pv5KfghvoIJ$g&5Kl7Idkpq(XW?4^?!DW0?%=&j zJ|>p-(;jyB(st_2@_CP{?u}nWJA@nf!ESnl>|=NAq}!HyqTR7`KRtk^q|l`ddkiTV zxQ}}wO)A*&s;ByCHKIQBU|N6Y!~;5i6wY0X`uk@`CQULo@RM-#6%~Esk_w4<^8|~Yk5vBxsPovpQFg+IrhrC=@CbIJhA_n;jMIQ;ZC}i zN7L@*TQ9p|IHvGl**o-^khi|AG5r-b^jdS{(Qjmt-`S{gBCG;2d8X%pGykbLF13U9g}S>?naHLD9X-x^fMu} zL(gS+cB7_{pdGYBx9u=@=L0Dr85hw8-Lbn$jZ|_OSh}5KubGsU)qz;lY09X^o8@3o(|wKZ{H|2 zl9WCMWl(--Jd869+A8HIrrQ?}E-G0;8I&Jh88|W3VnQnEOb^m8#v9gDW+qQp{&sOc~HrCgcBS z?|tCwnzH`?(>86RLW7p1f?HC8wo-zW;?f|c2#S=@t5Q;;jW!61iy$b1Ac)FPnjr`> zCPtAGWK4}PHIo@(F4G}1)0qj1qGNvh&wEv}++&z$p6C1h{vPM0c0TXB?mGLdz0W@T z?6c3lIcCpLto4?)c_N}sI1kMDDD7Utvo+?##7kMDMG_U%4wKjL5Cn|-?v+i&>S z_h#Sj!wwpm^OUzq-EEn@t20BGl?&#VOWA$94?AdNo^;zeZ|0WHl%;ukyTH7|;7-B~ zx4qx)!w%N?nP&^_dyJ+B%c1SDq5ESp6XwHTQB6d7@7SF*11C1fp@jSJSJVwYq+v+r zCM+Ma6I#A+89xg@7W-PG9b^42^Ac=6%sl1|V=~e%IUnZAIAg<<1{=@|=PZ~{|5`Fi zO#AzgHaIKT-aH?hV7pvqwx{WxNBkoK_owOZ+cDyU3%8#^TWOM|J>NZfBJq~>dbfXD`hX&mjBLi zfbWwpYx~3YLj=B01il{svG3{q%el+;KL6jCyF5n5mcB7}*q+TviYXrk1%k)XjbK!ntS6v-d`R@YoDu znJ&i}b0jbJoR)D_JC1AT#-Cp{XP$ja&|FbXM`yo?*nYDw|DVoxdQjwEJ2lH7@N&Jm z#%{P)WtmZ9GX!TcXY;vvAlK`!t=)BfgT0S!YM_tV&RrOI%p>(NZz!w&$NX($j8ebE zroZmb`u}b7mv2@_vP@!Z$Hn`PSzB(I?bl14*~a``X#Ux2xUl|y`~R)3`$^y35+C2k zw*Nl*|NUL_`(NGHE)yp1I?)`zY&PC@ZUoQ$%&9STzIo2>#&+lVk&c|HM;%#U`iQ3A z{f)VvYK(P*AJZEQ@w5B)@?&m(HGkG%()HqT7?nOk{*nf2jk)ovKMw#TCC$%eQL%#VF|{tZ8729;Z0$Oid4`mqnt zWtO9wOzZE+Lj6cN`Fwr7zSV%jVQSOYHNbc6vx3b6H+iI>-{g@EWhc)eOqKpl+c(FT zByU;4j?7s{+U0|tW{t}{_LPlmRTjvUbT|N&+k8-{eOKals42~ z$IP|D&7rWq%-`;M=Kr><-`ESM*xNcL`S!m1y?c=?1G)fRY`(n=zh0Ehv?p$mz}{P) zHh<3P<`L9fbGs-{m0THrvkdL?C>fhF&r;+KkN)S1svRLd7@OMAhL{-Jn^oTRQ2vtp z_&(!G=G5B|=dZ`6?K zvEhS$ev+4qFI(H5hF@c(84D|0>W67d``2~fnrxWjvLPqmmXAs1x;bz(#*f_X?p_=H zdXOu*57$4m!;Ur|(zHa()HL(F#GHK7j@gh0`^Put0441!Nt+>kZQJ(|*1wO|pMM|Q z6w{X2HmLvi!~A|9+y4Dn@h@#&|94%jPkqg`_bc}I?E3dh`}g_8pTwbmdm83T_WfP` z{7>xTyXMt|;v1Xv_wD+hX3XBN+qt0!(r*Y)X6f5$+{TMNF59+$^ZH<(K80N#LfX{- z#P#8aw%y-rNxAsvAK&enL0EhEe@okbq*+|kH+i(}<{D$xdn~J*UH%R>K{Jx|;<{r@}rO7`7vYbR|xAJ)cwTiY%^C2pdV?LW-F zd{<(m8&KPR+Vz*kr|rYbcltlikT~o7+C0g3#m0VLw*LwL5*NvL|2iOfN|r~Tw}JEV ztS>+3GG)VY^?xtN{w-rzDduk*4;_%+e44?Z;-%3s>%;4<(M6y60rGYP|jY z>!FSfZ9@NkegAr8$H%9!Fk-~6m*>WMz8>@N_02p>@M|NwWf3E$zDPX!pX1-+x9C6T zce8%^Jy6^Z$d7yW@xAlAML)l`w)#NyKhA&8?@&9>XTb9p8#DX-9#U;Oyvjyukz z(Y!tO*yEuGAKYc!w41Yyj%@StIazn!aYyF4uOGaXu^ByT-^aGNC41WDn{T$+X6Ezs z^pPV+-uQ?7O=nHLV3Su@u1wqHh1|5Kd+*(NLh0Czjh_)qEA|_4?cLoQ%{u6!jSjmx zd!xsCewBJnO-<^R=?A5n@26hew_=qZ)24;^+=%h0VJuN}Ja>;*$jeunN+HF@YUZQBkVHgxFF z7mr+%a=_KAQgVOvOv>T4%TmlSq(oL+oHFxob5rVHK0f8(f`XJ8CA+6gO&yyu^uTmG z7LsCvXHxg?pKNgp?dCo;!Exg2v>olfWdF7f>?Wzb;F>M&{%`(=-jKrc-Dr#$g{NiH zmbnkDdz+=jXzSMMX0)v{mMury&#dl2+c6KT+iSc(dk$HjX@_}j+fVzQLbP3T#OgTO zwgpzVqU|$B`~6pL@9Xzd5=TZGYdzejd5Te?AJ`z~`gU%h6k+*PypT zkDBhkZ-0Zu`pZXWqD#?Z&~@mo(XHq#bT8UIleGR)kMRD@b6cm!qqjp(M@P_A=&|S~ z^!DgZ^bY7X=xlV>k$!*U&@<3GqN~w6p_|b;=q~im==JDb&>2U0|GT26pvR-j(G$@1 z=!xhq^ls?XBJVF3orkv1S8V)B(YvE-(R-j*qV4bcSo`2;?{81^c(m>B+Ruy7_F7?e z1v(#Hi?;oB`*{o6{>F%{uU+VU`Ft&U3OeT)zkfTY&g~DqKRS*+z-W8UHKU_^-iF6l>2&3)s&p;o^=jG_5&^72H>>JTXqnD$PK_}2=xd!KdJ$eQ@a-7fK3Fs)={>GEd zPbqq)`P;_727NN0H=|EM$7x??8SToS&tpd0_HZrwRP(p>pLe|9|7>(S-#-mq$>*i$ zX7n6%=ySv#y+G`*_x20XYuKM%&%*96r`UgfE;@#N6}ptqFF@C$FGMG>zX;vU z=W(NLd1cJ>{x9eA$PHd!fu6$WSE5VMSD}m1SEH-ZHRwk4HR$E&YtcRE>(If8e*cS& zw)HO$eLbHSqHjQ#pl?K1qHEFB=$p{>=$p|^=v&a~r}+KXp_lXdt>`ZFZRiC0cJvx_ zJ$lqh-rpVQBJ`c;IQlMh1G)j-fxa7^Krcb3mU#d7p!3j;=o#oAp)1k%q8riop;w`o zq66B$`_bdk51?nDZ7ytmjiZ~;OVK|@uS7qHUXOkV9U=bB=tA_v=s5NB5%eNHe-xeI z^A>dUMjxNY(2eNF(KUSk33NTW6}<|*0v*(Pf1O6#`kCPKpYwUjEdRMZxokXQ*bhRt zqwPX2_VdV1-ri1Baq&Y-2Rebalh5tv1^6F^EfVGd_?EPs>on}!_KD(FZyPq?e#|VEk@hp6J4jif2;cbZR-2CtMAtvZSy1kp6B~j`kA4x|f_@3ziGCTKK(960?ynd933@&HQ*^Y>$M-XIBYGV=_f-G+=SG|Vf>QJs z=-^iW`FiwXKK}=LIr=Mf40{`FgEsgZgkFRFVDwt_5OmsXzrPf89(pLc5IqcCiXM)x zK&PUc&>NvwqDP>6(Ho=Jq0`XgPxJZN#Ax$hkdNLJU4kBou0p4y>(E(7+wy8bZ-eed zZ;KvP>i4%DdI~y%E=G??cM<0f+Lm!S_j-HP0K_7t*&h+^?5}l1c z3SEdULRX-VM%SW`K{un1MJLcR&?#s6{T+wSMjwyPL!W>yL>Hqg(KFFC=o8Tm=#$XR z=n`~0`ebwu`V@3ZxzFD$bOt(xE(OVRbI$hp zDMLrmbJ4}FLoY-xM^~Z~ z=yTEO^ZowLL+7B+M@P|B=rZ&L=xX$Z=qB_<=x+2PbZUj)-^J+h=u6Or=u6R+=s3C_ zeHpp~eK~qP`U-U99KXM6bQFChx)^;Gx)Oagx(;1~?m%CIUX8vM9W3zsyAB;eFGd%k zuSYLJ-+*pH--vEQ*P_>;Z$hUm^!vLRork^!U5Tzk*Q0MmccO1Y_n~h`M=HJldUQMe zn>)}Ye10do4t*DTCAtBfdan0(H#%~g*Gtg3e0~qQ6y1n!ME?jK=ll1fTloAwbRT*t zI{Q4ozx&bC(GQ>(qnDvu&`s!W^pDZ&(GQ|?&iDQwLMLwXx*1)<=MST6(2trk-a)JMT8#)L56nZ-PXXr)f zr_s@R|NZ6Y7CwIl-N@(9q7!`n96EBL|9(5V2)zQm2>m>IDf$I;7rF!8hkg+~>LTy| zCG-^Z%ji;cC%OjxbM$ibE9kZ8U!a3Ky#JNxoJC&0ijML5FVQ7@{u+8Qx(mG={W^L* z`VDm6#oqs~(52{A=vwrf=yvq4(Fyc#&}o-=f8FRP`nTvx^zYEk=(o`A9A6JQ!RK$I z(=PS?-$Cc1e~&IgC(xDXchPm|_t35AKcH8lSEJXV|A@|x`~AO~w-}vn>6+9f1yla?(oD zMWofFi%IK98%Uc-TS(hT+ete~yGXl96QsSQeWdG1gM`ml8fgY;*?XQ>l4iqmNOMW^ zNu#8Nq(!8~q%qPm(hAZ_(nX}zq>D-GNE=9(k~WjJk}fChAYDniinNDxHR&4CwWRAw zgLnOLr;w(Srje$Tjv~z>%_bdBnnyZ?w19LvX)$RDX(?$rX(j0*(rVJhq;;eXq)SPg zNn1&mlXj4Hk@k@GlCC9PM;cJ>X`~sX5z-veT+)2f0@CTEGe}EFOGzt87m-$zE+(xb zZ6IAr+DzI)+Dh6+x}3C~wB;RNo*ks!q_qy}5k+hc7w&(UblGx!s_j%a= zvc~)U6y0E-ECoS~w3M`*w1TvXbP;Ja>0;74(gxC{q|KzQr0t{~q$^2Rk@k=#NLQ1t zA?+hwODe}9>3Vp|jsCdONYhEhE(4uQI)${5bOvcLsg9$Kvs^p%Xa5~~&}DIVeG=b; zE(-?PYu2F4C5;ctkPj{A^M2^R^ylEqPeI zY|0^S{<5jFx2d(Wsf~k8&G8Sh{>*WjbZ`)HeumgZC|sO8A7Wn7wx6fi&rLd{V>fiv z*$uOw|KGCN^66h}|EjzOnfhU?flclAY#Jern)H8qbLD8u$JE!j*||+k3Hj8PpVVWU znv4&wHqEa6+?)^8gTa)u|Ndo0+0Sk2%io^|R@?8}^7r+}aaSJ(){8+w#AHNmL+pM{ zJ^5k#Ap-p);OdX5PcF6XtgT=61Pj^B=Th%neRR7239P8Gie+3gt=bV1(x#gARb7${k{>@!*T0|l9Gu!3!Pc7B>yIY1h_yK=2 zs6WKyhnNgFAAhJ2KU9eSqZMM|d1sf;G7A`+5yWr5Qhcl7H!eYwCQLFf=h{oqBz+0` zq00YI<^PXXdD9L0p$`5~2Y;x8a#Qfb+3?M?;k)1d{C8M}l*o7A)qmN+ci+`_w+zYD z5BQta?|*en{@2#1?|$I_9hU#Q>YTb|$)A`v!7S68H_`kN1QQotaCYUXvrSsLz^7&M zm;IHL1r@%zjJ|obBgH^*@Lq!Pfny``e6=n+F3Qeq%0Dn&E?jZyr~s;e*ZUsEw1N z=C7|eJ8jDHgyILnBfCexHa36R_xA?{V}cCwY4c&X)6Ks@N#bnZpSJ#^%8z|7d5~HA zNtaif;mMBcxe)$R2!Az%uQGg4VAdfk_VJfTHHi@W_e1z!@e{>Q)M&eXWd0?~|L2C= z{l=C3S0VQHy<2PFj=d3Xv+vI)^KTdKarQH*SJ-bEVjsr03$g!C@v!}dar=I6vf~Zo zlS1tOQ#@?HVSJyE{1h7Q&Wk$x27eIP_uTFFuk7Qu4YZ#T;{R0qx7U07kw)7stiJuH zczH;E{$JtehUEYM6&_ZOmrx&SH?4Q|VA2Se1lPg4GCV)QPJ%Przw%R&E2HXJOlfc%1<`- zaqML(!(P}2w|oC_lMlO1#l9AMGj+gi$HLp;E8wS!{SiJtlFv$bF8x5e&V}7-#1Hnv zjken@Cbe;hbG#<#ZnN*dSzZX2_}KTnEN|p^Wxw`)D(43-$NM5YP5JTf*L<@d<==Dp zCjZd*vGMOa&L8g@pUuF&cVT(rc+X!Yp6TX%viYg4A6UNI!-G3Km*dTKJTqwDZ=n4F z*hla7T#ol}@dJ;NpJI3o`;|D98J?^@Ul79M&QE5LcEG^=Tmw&4{AS0;1YP7u%Ij`; zbjd(J55wbdiNiDaPshLHzeDUF_kP5_OZdHTI(Bahe-duW$!>oUuJZXAyi@V7;O%h9 zPl`D}TfQrm{Rns?JmU5m1f$^9%03$&5QixC6W}#!zk3^=tQ-^Od&&6J5c^|7_^Bbh zB7|QW!fQkLk3#t4A^e5!$$u4MAIAR>Vjspo4zUm8Lxv_VmoUCXhM13KQ=cg$P8j<`um+2 zJkxO34lj#3(q|WZG}~VA$ca&>%`LLqj)j{Gxzlml?FC{#&+`~3{Nsk(^F1-owJD?e)oS*EsvkAaa(Ef1$_0ZSZ!=MfijG zsW{%p$G&%Mx7V?cD?jhS6N-Q7_{gA!{LB6O#wLKazSYBxncKF8H^Mi>&2W2Mk(oX} z0be*+c+B&PW4xc!@uSP@eC*@rMV(<0fvXcgZ3jBuSLG|#6VA_=Aj0@bw|5_`fCtp8 z2>dm%ha2g(&*8c74ES#5M6>m?Ncou!uTXv#z^mYq7@dgXukrao@L!T!9E@*3l~xsO)uc@Fj| z%6=ci?R7AIS=1d-Y)5}!Ct}~N;&2wc;0V88=_f3LHyr6Xm-pa$c#g7P5@P=-JXhJb zhuFUk&sX;Eh1h=#U(Iou)8B0=<`I;whdTeG;eFW4@$ML6zc+lHvM&s=p9v3C{?81t zzX+bH>=%dF-wjX4Uh3f^@C>-r!{`$OTy*h~9X9AZBg9>d;9w_OOYfXn%H9bCt)0j~4^FuYRvc{aq)YaxCT z@G9l!!w^4%%>^-8ecl4zgr6LaHygePJ|4a&y!|MDUQdS~0`J1!NVlB;Ukx{>o7>9Z zx;?o7uIt0Ka2?OP;JQ9EhuA*@*Y*FGa9xhS5Ao9n*Y$spxly%o)_yjJ>-_HkUrT(X zKIetl9}Ev@SH=E#xZdv>A%3dhY0A$vA%5-*@$-<_<44Zl<-$2GX-{4a@$(Km8$WWM z{yoHxd9<9gK5qsej~{8@wukHZ>=ELp0G_A(92er}^bkMi!>8cKG=pxdflr6ad2t6^ zUymLP@&7bjUyoLX*uM?e*Q39M*#8qAP>yoFOE=>s$=Z{#aD6?R6k>lMycqvd?nj5% zp9(J_ZgQV{4!jb+3vs^8aWgJ)n(sF@aRAG(Po@83x>asl4$pu~y?q@XQT%;)j^ba! za}`e??c;^gV!kj z8N62UH1h*6wqDgMJ{I1n_+IcP#Se$KC?12iDSj@zUGZz-or>QB?^3)K-mUo0;R(gx zf%hu@F}zRl)UAAc)+xRXJUGN(m!;nB4o_A5Pz`u_$zRq+qt>58w1XDGgznTluYRRk{m{~h4jith=}fy?#fFnGT5 zKMNjJyb@lh_%-k%#h1W~6@LOAQ@j&iruf_N3dKKyS1CT+JZP}-i7TE3uTgvwyjJl; z;Pr~11aDNl0^X$fmGBnD?}WE0{wTa%@eX*W;=hG=DgHNjx8g(00FjMPLh%fEui_Kn zeTp9hU#Iv9@St#D{V#{7Dt;L}UGdxC8Hzsyk0{;_&r$qMc&_4qhUY8(Pk2=EQRaD_ zja#AOJHv|<-ydGA__6Sq;$`qM#V>|eD1I}%O7UgzxZ=ylFVC z9!wip|I@bf@kv#DEIeKDz2F&&9}bTw9)ss7el9#$@oVAvir)i|D&7h&RQ%`gBE{c< z7c2fTJf?VR#KynL+16zYOe_;{G25&qsXzE8uDHF2~0NxjYvTz8)Th z=VG5T*7`B?vKS{f!)R{X%kj*hYp#!v+@BUWJ~AjHo|2#A;N^;+4zE!Be0ZheHSj9M z?=;*!e}6IRGkAtie&+1WeeSsf%W*Y44v!A<_M2``xu56l3q20<9UmEV5P!LkC=B7n zhP(WXKhSxI9_$@0#DC=cf&T09vq&A+L-ApT}p*ljz*i{WM%&25w6aoSI6S1=7;j=hWr&V(<5o9?CC z=ECdYX1K|17dSp9Xjko64ZKV7+a1pg(us2fKM%lj;Zomz0*}I_o$P=Ysq*@j<0FGk z;yD!me}Z?ZIIoAVQhel&KF;0B&p3EO+2_MoD}FeB@MQBOtFcc#da27f%};O( zT-HIA^Wt83C*>>gd>7sempH72_bEPnr{wt=ZMZ#uM0>}Gl$bN^JfY|u-sr}}` z)A1w6TL{lkyaXN`>*Fl@Jqxan_ab-%KN9C3!=uXoGw?#iUpG8iJ(ThP))Jo|xqiKm zpH*;q{_+_-0Z$=rsip$k_@tlg{m6NpX}Ejte@B6{liV!5yb*gTm$8Q1d`4~?n9mcj*ZGurEY0|lc3$SO zw8PDCpWDvFkIv6Ua9v*4!GoBO!&Lm-6=MGoJf`fQhF6~A{mAw17a@M$g4bZb7yJE7 zh@UUvUD$7gy_}Cda4D~iclG7c3zvGeHC+3Vc1-tscXjrr);!|xJ7Vm&)Noslxpz^H zROox)iF-ZIC8O`K-?ik&40pKgZ}4>Lq1=yr<+z#8%zmR>VD=twkIT%1derBq5I+@; zj|_DEiNjObZ$9?&yj#~3X;*a|YVo7%Pa}K={>^Qs+gjjJxb%zK;X0pP@NVk!MEoS+ zI-k;C(tf1Bq|X=WFX{8;!w~;+zoY%j{gKY+U~_>;)(*&X*wwVdrdZv!MTmViJdS-H z_VV0W$6-%rZ~Ecf&sI`T=D{Q9yy-j$e@N^X4CK9HU+KBDC)=2Uu=Op{?CV<>{%1OF z=IwBO^tIi*_YH4Ud?7rT;oAqXkBgt;d0)c1+P(l z;_zCa<(s}+9; zzF6^gcpY5I_f2@cvi~!@i2jL`?>`+k^WlH@OV>h1XeX!b>El+c?B)JCO25|(gShP! z>|@Ga=8Nk7&qC}QPxSSz2tRRnaFXZc@ay3f@Cf`)crD!AKD%uhyd9nmZ-w{4rN6WS zo=*PLu>U2zjN{!DF5^g5aOpq4jeVAi!$vNG$~*^Enr>-+i%{esvq%TweXQg^#DMZ_;m%V!sdO1uj3|90xeg zanpZ(%jaMGOaG^x`)E0jHuQ58m;Owb;dO06rK+M6TC?A&)_k*#9^qpA+`0k7B1(@7Vt*pXDqx0p2~iAgC|OT zK8xV{!J~6Lmv-QA@dJ-wKNH@i_!;m%xU>)F!Xu}9{}P8Q;JNT@{NDtRDf@fi74Qt~ zABNY$B|cBX8x{XKyag`tk#Ub+>g~q(mvN7^aIu$mLvtC2S&zN6Co*oJxs3nl{r-l0 zYW@K{>k1#w5#;l;5I%getv_a*q{p9MQvXLgZsyyZ;r$fiX9sw+%=0*W61*KAg&zP9 z=6d@G{0MjiF6Dj_JXi6#@F-mB|M~C=xRmde@VN4G3%nLC<@F=SO&s1H7>7r(Z$H!L zU(SnX;E}UDm-FHm@J6`A;kWPvT;lKnJSZO+pHIX;JcqaqF%70Y-;3Z9x6R-&cn0>{ z!Q*flH=6)&glA*FFT6|np9W7T|0lqMvwi+0{&V2ziZ6sm;1d7K;L&;BkJPst;f?SZ z`Met*%=h+kybps_q;5a+p(3&{v`fwOVW;XK-p{f>d_>)Ni4 zo9ij#KPlKxh8HP*C_JY4aqtSoPlLx5KL=i`_@(eh#jl6AD1H~bUGX0~ZqAE${CN@M zxPA(6SNuhIeK&s6%!y#niv(Qk$H1fK56n-F*u%wsFR`!k_QDI` zjfx)w4=xyJAA`r>a$NJ^E$~R-w?*(SxU>(~ivJ6}f2p7K@N~r=fJflsrxjkL?4O6n zlzkVx7B21BJMb1|zXqOA{0n&cMLz$MpVa+*c|{f95?-NrHoOroaoZi2UFXCOlX1DtM9da}_)Wm$=oz6JmGC~r ze+N&$*dMR>?}bMc{}i4Jmv%4Z0Ln}8&EZ9gN8mB#e*-wGT6+aAKt9UWIQSsB^ zO>nvYS_E%V{AS0^b%guSD#}IP`_s?MVv$; zw;XP6lieoo@vViM;R3h4hyU@_zI;u$!EGPQe&OOrp6@rp#g9DS?}kf0<@tW+<;5kE4oHT7y=?mNIY%xi^;#1*q#f#xJik}UyRs3>z zz2bKIlg($N;?3|T#aF;v;6sSduN^n%%OCvt5`%Ahu=ig=c}cyh81H#CJRAEsya_J# zY9fAgy^{47biI=KB+FGj*&jb^;HJ8|?MV12+9j!1r#NobQ=*>8`F=k5g7IppS2d203|dv3m%x`R-U{zf{1y00#S`#Vihm04Q9R8IgWLMBTJi1SYZT9i zuT}g=_Qy23OW?t3U*Ci`<0qZ*M)ChV_J!D+ z+da1pHD9#HTR^#Q2Oka3P=0oWmtwy;_WQyk%Km70j^by)>z;kU=L0|I!*iAW_3(Vf z?_!=?75N#5pZl=a=Y`CdOQXLh^;zcEY2Ir5BzwN|vh#1=10tTa?DsQx?2o=&gzq%X z*Z<)Cf&2t`qvBV?qaO^k|0z77_y>-g_ieB7^-9L8WuCKMzw0yX^*UX{5A*dwuj?iA z@y6qSB*(jzvp4G{a=xd)v*9ttC&4Qe-ya@V{BU?RT>3c|Id0Ai;-AHSWxh~?`XKp{ z`9G@_f5iD28T2at9DI%9UGP4|--WM*4<|pLz}Lg&eB9`8ALkU}DSR7v8eH-}(ePyT zQ0AG(uJz@f&3+5;qwD_+coY63*k1$D z&*1_7B|e)>PacPe;r99xjCsu+kvR?BHo~SRJIN9$v=5ZkHSl#tLZYGRwlXk2fZn~pxi#b2ve7-Et-TD@LKhmDa zbGmf=Ou&yk*Neit#^x}M1OPV)+mH=lUs<9{jn@1mZh!XJYt6n_@p zr}!`60mmzTy5Z@H{}CQh{3Cd-;{Sw46;C_L*YhI9GvP7CcZ8S0<$T`sdtimA?cX`6*lgM~of_yH-y{u!Vk4x4En?gRN{g-*^0e&QI zlS7X8FnIgTKA%zcE90Mfzb83+GyX>V8Nq%jyic{Oe}xC<`T0EQ*iSmzx1TZE&o=l4 z@W?)|IU?=ARgRnYn{M#=6hF7XBZ@b|a}|FW9##Bj@FK-uhR5J?zDxhD44y*%d$2E8 z_A(E=QgN9FzDRMI*IljnhxlKtxXjEw4XmHC-k`3Z^1f9ZdwT;;Z5 z$M|+h+i&G~W{^Yul>5_@uwSk6Z`YN#_pNIbzY@My@jD$i>&A1wNWEHy{kj`{9HbsD zcih}x?CZ}LbGo@r#^oAs_x3a3vfiUUuC!x)J_F(){^h-xpx*m2!x3(ibtbi+vH0mz z`IPs1qU5I#KYL-X{TvGKReoeVGeP+tho6!VKWD>ZI%X6`7uwSq0?Gkv3Dz7KtX^MBkM=Aa` zJWKJ9;MwpL;xoil02`kiWuM`=xzC#7&kLzeF870}T*r6CkBo=p!FPbmI=4DM z8|DvF59R(v?kjuYGX6H=_~i9d?q6!Km*;?6huDvI+{~w?9W%F+ZkvmJR2}an@Iu9J zffp&>1TR+n8F)-_8J8#~ZgM`pf&F5*JZE_quH*TUYW4{-1mh#p17rFeH=TN8m^GNFFGvsqU^Te#7oV|Hyt*XZ!t*!hU?Qk6W7ZA2mE#d}ca(lmANZrxrhT@c6j{xjbLf zzt`{@_A&gV;z!2o668nPCFvioR(!)ap5hzE@f4SFwm!vWd~dDdvQE)D#bsTi^@_jE zaYfD>7>BHxHqK_;Sn-qKvGcusj5x^iM;$l0UIz`neoEYS9_Pz(6kPhN@?0_%z7hWK zWWNWW;+w-W6wh|t#FMy5JuHRC zss_eW`fvJoh~&9ywu+Ce7nBQ^`y=_iBppxb59slBdETe(<#}IJ?RTlmzgdrq>!Y*} zf8e;{l$WVyZX0)!k6V_C&))Ee;?v;Sik}3}QT%N9c*QS;=PG^^JP$7I)&1}(ia!M} zQ2bT+bj9C=&rtjmc!}a0mH7CS!exAZ8+f_0p9HT|{9wbAwTH)J-*LA;U*veta@@>= zYV-9_+FKb9i7fH<2UCtRuSs7oWS&n4_H=uLd)aRnd`JAqIEMBk^H0`cFL97{JbJFa z-+5p-Hjwe6;2xh(xvt50Q9eAve$O!nX#0)Yzua$X|4)$rV*KoZpBLbZm49i+w0~*$ zwExNDe14koBmFeFZ|Z_)uwPlnK>L^bHSJ&4G1LC#ch-9GpM`%}pI?`Yyl*1>ve;B?- z@#o=d75@!G|R^)P4O+^qZHp2o~3vco~`(C@bQYD3C~mfQuq|b>)xIzgpRc zjdx|?XN|I-J|Ld{>1NBuFJt}ABO@JpDp3j;VJmv8D6CL6!;9qkAfE~J{w-5__^?y z;xbN>@*`i*<@zG;F-73{1o|7zu5p69mWU+$N~#w}y`?^XV9!2e?9 zU+(wUDF0#OoJ;Y)Uip6m|8>g0JnzoF*O&Wllw;WVWH0{HIq#&NZ&&K$-=O@<{EZp- zmv&=M?DhG6h~t?-w(@@s_Dhw28Rx0Rzw}qb)?vFRWWO!!H(%{Hfqk>u@2BuKwcoIL zxnbjJL+AK*Y`WU-o{pP&jB3A!!xQXxBIR`=T*vb)_;TgvGQ*SIcib7mrC;58|5CR{ zna{8+WWO?>yc&DSr#$!6`E0{aA@*|J>l#&yTdv@*G+FpTvDc<1%l55OI_D zHMG6lAElEYY4_y$ueSfK%cmK?;yNPNoe`(|^CJB|zu%$kcRP57;(73h;?v+cik||{ zReT{lUvU{XUagKR?Dznt$M&8uiOvH{g>u4?$m?5Tu0=- zETFu`5jVLn%Yn;vMCLi@a*=*c7XD>?_{x|smm;{#e~^AliQ zmvsX=$)}7b$a5B*Pg$2h=TolNI-fGnR_|AyU+8>($?<-}{wNcQqP-qIK%qM4C0&@rIbrCd^KFg*)Dh7{Emh?Uv7sNDc%e(R(u6KrueVnWs3g= zUZHqU=HpPM_-J@s@m=6GiXQ;4ReT1#Uh%o`M#V3IHz|G#yhZUQc$?zSz}ppn1Kz3l z2k~ z-lzEHXL4TSe>ncf!q+MLz2O1<0qLI{0Z)Yw!H?W8=y79tt{rE;Y1oIohj^OvZ=NF) zpD6a%vER7LXCu5u@t?qJ6@LX@ulVobjf$^@Hz~f+S;_m!TN-Z1rTcz7@I2ksadTYl z1N%$T@5+A2+e?2kh97-Bl77+J2fe-Yx5N6wGM}mgd+Be7^@n9#y$t(ph`)@h*T5&k z!}`hRkpD=t&!_am<#~iYE_p7{P8_5kF7GdEdzp8dOMWD7GH+AcUq<|6&-nPq$^YZz zvyl4*spl`lixlsH7c2fDJf^tx=gSnA{(Obv(x0zVT>8(A#7E9w=?~W`F8$$p#iid{ z0{@}k>+7fV&;Pged*ycr^!YNZ+_q!pzLoQ(l=Ed@$43TnRX>a1HHy!H*D8J?yk7Ae z;f;zfg*Pew6ud?8U&7lI{{y^Tap{M5DlYx-F2$uE-mSRw!xM^2KfG6Q>4*0zF8%Oz zic3E{P}djfho>qo{qS_fr5~Q5xb(v#ic3E{M{((g=PEA!@O;IkA0Aa)`r(C&OFz6w zap{K_D=z);nBvk8FH>Cl;T4KYKfFqD>4(P^mwtGS;?iHOg{N>HNq@CY@v#2nI_m8@ z<$u$&{dwB>?04%=9_Z{x1_9Six!#=sPgVSEc)H?Y{mCn^&rtSvz$1!33eSQ6yZy%yW(dVo^0Ipybvz) zeDwSQndejgu)nU!^Shbj{Bh}aUf$E!e&jvNZF+@${yZSnr4Unk>ch1l_Sd9CpES^9PNJ3cZfr9Ub4_9=L|;;+Ih6@M4LNbyhL)rxO4-^XpS z;@iOM6rTidQ2b!{QpIH)uZ{S~{iBTIb-}kMZZeLy79N4mbpA7gdg3PIpO>-UX0_j2 z;jN1Q7`|NbXW$)*zYbri_#fe`;L`5NIN_*AeEpH%*tckNJH`j!T{^4N4gxQkMJ4YVu9!BPkP?9vF9>=+e7}xa9lEe zyACe*q4K;n?@?c`q}`Zo{JZg3;+(+GDeyGvi9FZ7+Ho_lOy$1;9&p}C`|}t)RdJcW zT~2<)zr0^u1DEHX8^%xI@|^1>@)`U2z-eFU5Z4u*JOSSf`?+xa zySf*`>%R1U-=QHoAI*;``t6d{t&qSo#GSVI&Ni#+xpOcW|8w;OTjc@ujBue<7Pdj zBfFfvw9hZY8x?;OKkJ_MagcUk4ff4Pdp|iGmyDa0yyWe7fKNWp$1PYs(2qP%k7K_h z_C?sIDtmc;+Jt>B_Ge(9uIw*?>vE}u7gH|Me*Oqv3zv5I@en^R7;fX=WnVNlTOTLh zkn{cV_K{C1_fha{{7)kPf>^Kpw}e<-{g|69R}L;TEzH=Ml8S;~2L0X!8y zQ}A;wyg>QCE5v^@yz51u&%N;TOo;t2;qA|P`<<}=J-in#<%739u{Hu2O0_^)}hl{w8djfmiu6Dp@sQA1I zUku-!e7+BFhf90@8C=(s)C+tZ^!lHfaJ~NLE^xj6=f3cSI^U0R+>DPM;m>y;r66cF z4Za=!PrTsEMcT1&tmc;{fa>s`h0dN zd-?srPV7gMpA77~mHlpTou32Yd1}AMz$@Tm@PAr}pGtVg^FBUuK3)kA@FVTUZ6SV^ z!AtP75BqI{*TZ*(|2)Lc@8D_J?~nao;M3t!Ki7x&+2kT0|CSa0xa9h~Ej$62^LjV9 zj&l?q!~OvBb2PjWJ`z4V#Lq%_g!4<{Sq&fmjL)a!=hhHE55Rk=&wH}ppN9D94Ds_@ zcr$+X!Ox%Jak!M%mmz-A7Wp_AU_Ti@+rYJ-iEtg~1K#3t zzpj9KF&IB zS@8AG`uZdFVFEl)`QJap&rycE>(SZAxIN}h^E7`ZB_Vzuh3ojV!*zUK5ApLJT*v2QxQHV;3G;mhH2KHd#q3*QL)N8kbVmf@D*Id~de?7QF@aMNvY z+q>}b@GamU!J}}7ZGs_jALr@HeiS?gmwv@KcokgEuf5=lmH$KG^>De)7Q>t1a=dfl zt%_d=Z&&`WgRg{d68NnF-UFBZ^TTl6?mY)Drd;HD(FNDn(|1Gsd<0*|eVo*XA(#0$ zYd@plIzQv!?f8-UvsZ}yp^lr@egCe&ZpA4s3FN)_TE>OI!A1C~gUfwHExbYT`{7F! z{~5el@z>z3im!$*SNwB$hvJ)F?&G#n@g3l+6winED1HQdwc@A2*C>7ge68X)!q+Q) zKRo3z-=0W3pN6L?{yKb=;vc}X6#oZ2Tk$Qfpk67yGdxf61K?8>KMr1?_*wAjieCnw zq4@3a62+V0rHZeBmn;5jc%|ZhfiF@#sP=KFR(v#kvEsYH>l8l#-k|sl_)^8^!kZPp z1m3FnE%4=vH^Dm;e+Ir%@i*YB6#oF;qxgFGYQ;CZ(#LI$;yc3ED!wm#z2Zgil*gC4 zhG(d6eu6phG{rB3k5c?bc$VTz;n|8m1s|{YFX4HL{{cQl@pbS5#W%Ui$7j0Y+rwul zzBjx?@#*kV#ZQHoD}EllQt|8Hixh8!S1bM#_+rIhf!8Vidw7H5YvD^3-{@)|pJv6k zg|{kx@NV9IIXs1WvIq9<%DxcZsrbq8F2xtXyA{70o>062-mCay@IJ*~g0EBjEqL(6 z!1~_@PgQ(qjgLdR;$z?$ith%GC|&^1QG6ymSMho9e8sPTM-{J!7b^ZRyh!oq;l+yo z1|Cy<4ZKY8LD%^BR4BeByh`z1;c>;I@EXOBgV!p4CcIwpOW}=*%lbl1aH-FA*f%Tt zAH!P}e-^%6@n69^6z_$vRQwp(G2%n+&TksOaKZMtkA07(?gBSbbEqTS4%f9S) z3%JhbIJow+7d)c;92(+hW{96N;q7Xi?V=Dr*N6C70$MIT!hRX{CCXmj*U-)8>A@)<0y}ZxTK^$bR zO_zHf_SMS%aJY`=$?#h0TMoxH58ehJ1HUxH&rR@l;y)Gpd*Q3_lL~(V-UFBV&;ehk z_?z(YaJfFd4=;nu`SKZDAMZvt+c;+i@u^)dC%*Ou!Bodb25VKjF%!OC@%iwSpLh?_ z4qOROQ~WOYD8(OxXDR+NJX`U%;o}wm7@nv2Mz{ESHAV65;022B37@X`ac1D!K9{dq z>5tb)x5+yB4RE=>%kPAC!=+pf$GaPqs}-+; zFIN0Uc%9-8IBw3uB7eL^9Phh^+vkSqZ+j9O;y=i|)$_)mdtR}H=bx7P;|*T*^+fu& z^7}^_aA{|bF@9{l()FR#@ywu=_)9jO$bs$TCE{P*2i*u?jQ_px z-x%Wm@en^Rz@zxt3O}nt{JihDss9K2`fsL1xh+!fAl`*c-aP4EoGpM^&hUj@%m z{Lk=Q#e=*2@#ZVOB|NJ5czB`W2f>RJFNPN@J`WyKyc%An_?_?y#arOITvot!JNX7& z*XPwCem;RudCi{}dsAM+8j{zO47kqE&hQlFXP*#1(?k569O7qQh@W_fpPS&ieZDuu zPpjkReWF8ryV^t?QttL~s8Z!J1|C;D7ha?IA@EwoOW^g2FMu~HUITAZd*8BRzh< zQT&X!C;54r1=snR0IwuJa(&r9#7~jqW<8Tb{dr-!*>1ZX`&Fu*JOb}g{6+X`xb!!A z;A@oq$MCg^k7)GAyB;q6jj{0Hr#?P%pPLU)Rs1M;y5gt9GZeoV9#Omwo}>6f@La{8 zhvzH)TXh3vX3?Pq@DB90J$%WJtRA zAEW&|kT{%xy{`Xr#gD507s7S@zb?ej-Ee&!c?7PnBgN!X=l?nE%Q^2RlmD)e{k{j+ ze#YUyoj4qXpN~WQ3^k{Dvi4+4cs}{r0Y5vzbv!3KZu(b+1Fs{OW4~OL?;Y?C#arMj z;ZmRNYh^Z{tCama@E*lKfv<)SA^&Ojdq2I(eg}A;;`_kYDSk9OXfr!9+fe+M!BZ8# z6rQg5ZSV}mABIO1?||nh{uVq}@kO-rO_ZZt7e2zi2R@ek4|%}HN0;wt!|nZY#a{;A zFQ<(3_S*k(_=&vj<1-cir-%4&C!fI^-d?U3RoG8~?}VRgLj1fJa$UPi^271Ub*(wX z&ytY1J&V1*Uw$pb&%2JBtI9NgUUZQE>}5V~`KrA3g+~=X241N6TzHYXFcdc}7Psc%PNulqkSxUSE4hxmB} z-bj7hm-1Q=;%9M)pK9z&m7iNf{G1u$XIY4!wh%vsA%0%LUiZh|3i0z-$IW|@)LSFn zcF>P~IX0?tnF()FyaL{$_|@<>#h1X_75@pmQ}LDXF2(-lk9z0vwe-0n7 zczUxh$2`S%f=^L=e|Ul7$HAv7UJjq3_!aOH#qWfdD*hO}T=7oF#{}JK-pjAyJ&Lb} zuU7mcc(3BY!!|x+f;Eb73hz@q3%*wIUEm4D^Bo@XaW@SGJb(PM&k!i+zK#e+sVKlV3PKCRnHP|6BNa#XrE$QsrOPx6#iZzrwy* z*~_}Y89cAaAr7M-@%2{cQ-0SYdzFvpF4)WOFBidghwl{PXEJ;>aoZpJ56Aoc>gV`} zh4_)*-Dtv(^ao0?*U$0K4)JrT2i~Cg(eR~;m%*DAm*1(;^D!>PzFL)6EnJtotdp$$Y*plsEBj4fAF_$tz4+1d zI-UseFTY!~hWyC&>zd7z*M}EF{K)T{x8X;|d!LJWKe|5rCdAL595>@g)Q4J*YnK-9 zr&Y!IK=^XSi{TxL&xfy6{3`e=#qWmqDBcQRt@tnCYZQMEzE<(i;p-Jof6O0m%FlfH z%60bBqdae*+z%i=@;e|s@SWg0;YZgi`Td$g?B)EG-@B}a%l+Ww5I=`IZpJsJceyc6zq2- zpYl5_>_=e#mbtLn`|)DM<#$;0`_XrWn?OBFv8Uat6M@Jhw&;foZ16ke_P zOYp^tzYVWbd@Z~|@r_%39F{7+J-k`*$?#Uii{Q%@KLg&O_$Ba_ir)%frFb*ENAVZn zs}MYmC(Olu z-QRutAlIWq9XI14v%6f*W8^=l$or4>dHZbmmG}wZ;->*#3OC(Rw>=C`RrZtdUkjJ# z0v*_=EBm+LE8%JQUjxrj_CucZ`Pc3LXm~`~kB95y-4C9l?6W6$|K0FC$&WGQxYXq&m;9tW<;$xKZi>%svQAgMvL78{FYAMKD*GL= zU#I-b`dv964a|?MYp3mH{jOr{cO##&epd}#&ab`MZ>zGGb+@#AA@-}Wm*)|(-dE&f zpU=J7?@a8A;bMO#T-#p+@B762*&RQN;n|;hJ{o>Ed2=gLmU+GJc+ikK(u{!o${&{T22F*zbq^ zYPhcFpTPBT4SU9yOBwl*`mhyT+g}*>_Uk#XCI8pK^YJ77ft(OOqp*+SN9xHqxQ=Jo z`ooj)pN1c)SBHh{_ayi#+5x#Pl*9FX_r)Q8Zh%Ksy}Ae9gny}@Ve56bU>_(yD?v*O- zNBf}qpQGW0YkfR7$B(Qds`Dx9>TCZy;%6OxyRz2VDHf zdi&asta~{Md+Be;x|jNRFT#Hb_Hw?&xP!_%W*Tl!Sl-aFrU$XVqg7^uMaYgF{<6ypT&yHx`K7^ z6pnXi?CX{N{_sY{kA*iWUIuSb{9<^U;y1(F6<-GLRD3zSOYzs?-HN{tPbmH+yjSt` z6+Ui#ijRY@Q+ywI@cV)BKMJ0zcqu$x@eAM?ir)Z_D1IM2NAWgzuHvu4^A&#&9##A^ zc%kBH&-?fkDLxintoUB=nBs@S%M_2nD-=H$UZwc8@VMglz-tt5h1V+nb9lYt@4y=s z{}|q+cmnn z4-y0G|KH)Mil=n=_@pbI3C~b`B0Qq_RCtc!#qeCk&xYqKemOj<`0emQ#hc+pim&+p z=(_*7zUTe_<8Rh1)~s1*(|Ds1LI}+oZ{#e5MhLMtLOVhTAv8kB5n@A#g%As2j>g+Z z2q6!mZSEsnW*Q;CH-apnWZtoxK7r&L|4vO3R$A-o2{b_5(?fq$?FPcJQpUM9JhCf;%msCFK+M6D-^f) z=0(N7Ay0|8y-%-9+}^`kA#U&CtP;2PaMp;AvfMgxd*9=7aeLomqqx2Av02>S_t+{v z<5kALxV?WeCjP(oXNqq}o^Ek_A7-z(y$`crd_H*w#qB+u!{YWH&b8wCj6Y(~@8J~*V^V)5a$DY^jka&AuyBkj; z&pnsBdg}RR`V{BduUBYKQk?6r)$;>954Zb2gMK%`p7+uG-;k$h^7uNh#kHLqbxz#Q z?%&tKrS-nSrsBX0Mp2ED&Ao%mtK$qbgeAfTOx<6Y98 z#d!P_*UnAJ6ZHN`doD)nSw^0<)YG=3rMTA9p6Aj$w-Vn;9vjb10eS2>EY0%_@yp3$ z*E3%W$nz1ddA`Ft7;m;c{uz*GqbU=QlZ4lumy^flfjM|HZr9m@e*eXu7t?m`LY{Q# z?|!(}-=5dgJd21Ak;lIGJS8BHJ>RW)%875B?#9&tjH{~y@`!+fe%c$ZUwR!c=y$ue^y9tzR13TP46*fHq9e#tBm41UyiWXLd^sLR zd#=YDB>rB!NxThj5q}+T6aNfv7ykwC5RZS;)u&5*4&EcaJKiV05FZdP!iU7q#Ye=i z!AHgK!sEUge;nJ2Cy2j-Cy9TIr-=WEr;5jQx%#Aw&%!gscfqs855#lC3-LVhv+x4( zEAb-nWq7f83tlSz5?(I;0bVKoJzgyyddtPl zi{FZOh&SV1;;Zo<@ilm#_#i$Y{$G4ZJn3y$w-NCj@lo*z9yc(4{2zlSh?n9?;#cA+ z;>+<=@yGFWaeI$?rntQ?JzKnkJUQYY<9Xu4c!Br^@3^`ZiKpPjxXrga<0TS*AYLYZ z9A2S5*DW{9aibl#?7pq@Y?Jdfgocmi(s!`I01u-y;eh}(J1(tzdel^$y)fc8A=`>ast@9uabYU>4$;=3bcp9PXJe-Yc*FX-s$R(RSK%9NJEM zj-!-zrjTdswLD|@nd`W^l<}kaZ?N%p?fCKBN_+CiKZpE5?-@JJU+(NsnEQBZh`%0h z#xw9ceD~hFb%OVQypMMqkN@ey`|xS_I^U;<8ozeih1G52cU^ynaU17z@VI}uc<(US z|779`;)mi%;-}y#;uqto;&phs_(OQ6_zQTp`1^Q{_z<2aK531sLxK2gyhwaEyjVOJ zFBM;mmy2JBSBl?=SL1QizY(vI_-FAt@wf5i;$P#9;-h#oZp)qio~uub#BYbUi7&w0 z#S8Eb@iTq*=7CZ-o}={F-p?Nw@3yZD+}^{ViSLF#Rpi>K@h{^g5^v9!Y5WdzU7iNw z_aOgD+8L#tHZT2xH=gC%Z`;@2J!5&ieib>7k>?8Er-!d>(u6 zO4dgY`jy;}dfIze)PJ7t`jx+-8$Wg&a*&^YdPx140JryvX}rBpOx>PKs%5#>&LxQx zx90}Di+DTVZ@@=zJ8n6Hc7`@`{o0i}*!wOr@Fd*cccJyM_l;=#?L8aX{?r++{hDXb z0JrynXnuPihnDs` z8|OWE{ z^+@OW43rwr$But=9NvM)Xivn?5(+&+o~nf|PX-6v_CC69=Fe2(|3#kVjAxryf5X#o zYk$!1J=y!~G{3#Su2AyZ^Mjf{=y#wt^QOD8I%xiG=93ZnwLAU#0@wUOzYi7PJC@&j z?v?#QA9)VK8&7oOBp*K#AI8J@Vm$FA7oUum;u*Nj8yDjdiN6Mq;@&XxKeys#;*EF} zZtLqYyj9}=iN_@VHGEj&d+^X=*RL?``2r8)$@mX=1h@A8iRX*Qf8^>PmHeCHRg!-j z-=~Md?CI}SzYOmdzaH;s@aM;sy9}ar>RJ2Hg5L!=EWQ_>CcgIxE>8w-<9{xmDSj}XC7wtAdiL+$WfuR_!ts*s zr&=#|%Pp1o6Un33H_q{WR%ki%UJChNBtBdEWxwl`BmTZ0KReXV^$MF$ekOnDyly{p zl>EDTJHD~~Y#QIM*?uY#;EV8f`en!StEq$f+X4Q0fS(eOfBl_ZJ2n3o-eJ#J`_=9J zQQEIuT*t?NnERVhq(B3=LL4WOgJ$vs^XofrfxBC$8B!3jQ?_tlUUnNsr{4DDK z7V(rRz2iN$uY8vK6dsPcepTbY;H`KV4}CVaT<>?6aNAy{;r+O6ceC-( z$u55)dA7$B#WV3RZpU@|Sg> zP<%CBB>oN_75@S+7XJk=5ug0I8xN)8o8x8TJK*Kw^YIGt!|+Pn_G_o&)#4Z9wcE@L+)e0>z9GsJn$HKbU*u|@3TU^vK?*mg{wn&sL4;9@6w0DcoklX z?}88GVLTg8{I|EyBBUDe;| zPXEgFSI6z`-hqdId?I=7FJj!j;nuqyCj|W-(=Yo?oaa>X>+f{$8_=H4(ih}usj_~5#?!?&9B}Q)6c6Ls;(Oyc z;)mmT;-}#S;+1%j_^o)c_#=3!_)B=XcrRWl{v%#3zQNb74z=QQ@Otq~-@W=@IDUIM z2an>my*z?9UNnAt`I`K-a-Z$5c%!)e-dUTt{oYxp_>_OSe)Wkb<9dJZ4tSiLAMJxD ziXV!nh!^2{9B#iSl_~LOcoWFjcA@tJoaN=2=)Gsp^F4St=>dP_@5cDQ`e>J@0Jrmw zjl79sEPok3n|OO~VJ&X=lh}P44fr<1Cq!Kyov)Vq{q?>dKWdF1nL~U#b%=3(G#T&4 zJH-d^Zt=BvuXw^Yu08$YVSG?L6CW1O#n+14^UaJcIlp;&uJn?`TJe--mcRp4a$KX@97|^~>^qyQ^zY73T>NqNp;&_r(ET>(~W4S z?cddp^84$J|D)aZW#j*3>d=_t>YPiSbMVj{=T-P+coiPOZ@^=C7{3GW$8Ehogb#~9 zjfb{$%eC?UGM<6k`h6FV;FkY$JRi69^>5$3Ivg{;4u29~wUt|LKJDLd$gSUg+_sC& z@o3n^M~I(`H{xM@4?HHmKi-e05q|`pxV6h~{W=j3<2L@!#3Q&JS6qxoaofJG#p@*h zZFr;PUxCN)1lsuo-Yxzj-j7@T-@-%Nx_;Ss`vi~TQSyI_$8hWKZ`nd$l1{;sOn?e7{VyT7pGby>qxgk*t9UiO3b#5u@B8#nbbB`r zqtxehJch^c5AmwB@$p~d{dgVmzgYYZF1`$3??*TOLpwUR?Q1$7#iPW}!DDzYz7yWK z)A;txv;67Ktvw4Z9=H5QTl~)B^PGxD#m~iK;#c6|UB>t8M!XCU)Bd~gIy?h^*z)6v z__KJo_$zq7cs_3P*k5>=#7`Y|>#3y+Ckig!!?>+oUmWq9Il%S1PvH^V_G>TU zWw_1%@8DJ9pW=0r|9iYu{CB)t@=W>3t*?IZP4Qve=Dlt4(C)6k=DXpE;``xY-1>DG zo+0rk;1Tg9c)s{WcvSpqyab=jdcO-V6Mw>YZ$EN^+b>iQe>&%h`aI4>xIWiYgX{G% zyZ&6l{yKyFNABS2zZ|#m@F{uPaqn>5|NMZD;Ctd*|fT zE*=yA7v3rUC*CcdxWDUHulO+Qv9ZRjckiG3AG@DK*UJUuNw~(v zrxG7aclk5$E%9zVAKw^1m+=tAZQi(IrOTts-Q(vm_pa+6=eFM*@|5FcxQ&ygzE2PJ zOMh?22gN_4U&G>$62Dgb2jW9}xOvj%pGgO}_Q#7S+B_d7xKKZE&aOIt#|K_{^w&n9k=-P ze;JFP9cpF!wf)Eecuf3Syj%QD-@WUKtlu)0n>gaylPvX|i-*Pc!PCS)KG5aK5dRU+ z5|8r+-q?H?5#I&R6+aNq7e9jb6p9xT9~D0fFA={IFT*EMpJG41x4jgt@g<7e^R`8- zFB@0(ylpj}O1xd?Z^mt0?Q)Q-gN`e^FHXmmJr~(7<78j*4B_5z^*@K>Nz6+&t{(LJ z<=tl}`-N}tVey^+GuBS;Iy~2zZGJe<_gSG3*QIS-t@3?(s9fs&HeM+{fLDvx{LR&; zR{S2kUc3!&5bwvE#DB$G#Q&f@ZQ=+KFy_X5;qUbPnr%EBp%btdczT{B<$$n-G5+@iB>SpV(4M)p=TX|D+r{_9Cvd!H{#o{wEe3h!{dTjKieKlZ(0Kkba8JwwE2Z13WS*K>c7_?yeqx{LEf^88%j`ZXYV z_9nhDeSG{0o=?=yvppZHXMXnh@o<&z-uGhFZaier&XL<)d~81#Z|7O7$x|qKCNFdG zy~JmdXASXDiMQV?Nr<@obBO=p~bGh zgDm$f+FwL_cEbCYMCrJEXxb|z~KU{y4Bz{{woA%iEyqS24#2<{Oiraf2E68Kx z@Fe2XC4S}Qu07hX^ZoeQp*s1VdMREneiQjK$#3((eR#Rl|8lnXbha0p_nslXQsQqS zK5l!rpR)5Q`yDH7|C{8=lJ@lBc~Xa;eD~(1)5gzB_I}Gw>bX1PA@xsJw*tvi)!vG~p8(Rt}q;!7pI0xuW85!ZR?9=uZGw+oo(pCZ0m;yZDz&qsKz#M^t` zv_3x&UoY{KMqND{#O=N{otKh{Z<6@q0{XQx@huX60IvNy3U8D65?tq{i}7}e{|DY7 zK5&=oug*&=i0_j4k;`1Xj{jA}_egxoy)It+^%n7c62CL?Ixl@m{D8#&h7XC``(1Tj zO8CpQXGG$+515y>CO%u@_rmLCJ6(w9NW8uOR_7D@{UEJp5qU<*WAoctcxd18`->}m z_vVw+-F!04ykYN^9i^Q%@3oO9Uh>%cX44OF`IE`>I`N4T{~4YvZueE@kY{W1{6c(K z;_Y{Qv<~tAb?Yll;@iC)<=F9U3Hj~#Z4U7n68{$QIuGnle3ry7#3SOLkw@prBI0u; z{#-m?{73TWJb4ZAg%W=kuJvibqY`iLS=IWyM0|#rdd%QyY_YGVg zohL)B<$8#9{Kmc*Abr}@r#Jp?J;RRSN|l5 z-vLh%KZQIxU+qhLs>C0Kr;DFY9-XgBh|iSx_bXg~wLX^-pDppX;98#*c#g!M=^c=d zjYF-^D$67BZ{Y>vmE_U+>PzB_B>p#C`xU>wTQ9{De-HV!Uvr2rm3Vs}wa!<&6JIXz z3-L;Edw;dgS4G5EOZ>UG_UlT#R^sh_@7k|r#MeuF3tq+e-f8gG#JHF%TwH@MDM zYw;F|x8HHre%X76VzkH3@9e%W_5ZyGfcX7rzr6<_F~`k6_I>WONfXbL_I+Q{LKkm! zu;<4M@Ko||8Ib3)qult9{mtcBKzu*n1BS>m6Q6X^#M|SGQRf2(xjgfT5Bfbj`@Q>e z;^!0p$QExS z8D1uyj#r2ufLDnZ;x*!D<8|WI_;T?(@ka4hyjlEJyj8ppUnTxC9utq>z}2Tyd`rAr zJQIH(XE=xK_q8jS=WYLGzu!HQ>&C6kGxq!4X$L!>#duywetqt*5ZC?Y5>hj^clQBG0JAKgsp# zc-n8{;blA-x8*LZa?92AyZ)51@#&qHowUYZUZ-1Z$iCm~WgOc1-JX8@^iZFS+e7dH z@x}O%csV{IejPq4eh(g(HGY163QrL4#FNB7#Z$z8##6#XInF@sIFI@gMMN@ktxH`qYXiG|ohfc&-8LGxEPyZY#PWixs7Jn^{aCY~Q&49Nc+d0MEa&4+K`dcKw$kl)@9 zTyTinuI;$g-VYp)+q`Y>2Tu9e#oK&4Dbck*i+DR!%f_Z6od>c-U^+W(hd|5>5Nu@}yJpEB;-*=-{??=>-x+5RyHZ9v&}#3Z5ulfhUXq z0}qQg;c4Rk#52UZ@htIw;SupsJXd^^1XrJY@ie?pd|x~&UVxW~{~a$Aufi+DZ^x^| zTksn3|HJFVd-3JsKj4kxanoEKn#E`1t>PK@D)GPJG4Ue2Q~W%EYY6UDReWbwoCuy`?^CVmN?Azp`Pi9d)(#M|*) z@iln9_#j>={$D&Qo;2Onr$l^5yi7cTSBM{jSBaP6HR4y|b>hqM<>HUyjp7}6v-rn& zt9a_pZoiq!e#iFLhvZM}_8zSQ;_bTGL#Mg;TG@X+?_Cfc``)Al--rF$FzwO(;ChK; z_4m#POWgj>yB*j6*mFjqJU5>0y4)1nnT2mn{0-%9xtf1blJg?s?KokEcVTm^oy&2% zewh2>#Ch!bsX_X+Da*Czr}TR1FE31-$DS9{JodbpUN5!h#q@gV`T^Hd#E&?|jfXvPyUwvsn0<*cJ7cKcnq(!is0-+?Jr@?DJ+^)A%X*36_WkvJ0ePPEeO9QS z?W>#id`o<*jE8mjD)CK|+&GMh?}T@X?~iwjAB*>jpN02}Uxg2f-+>Q{uf*4izk-M4 zzVT1+c=4a`MDZz`x;i9_&%wjud*Er}2je^Aw%rwZKGE|*C6*`Ojb}Svy2N+yc<=G? z$9s?9;g!y#toM(}6MER?iQq%HZg>C18=GCc_n4UfN!-lULF2da-5YN_uarsr(Zt8D zcX=k`XX2gWOYv^;3zxXkTHmBiz;>*a>FK+K$91w3Neo*{5JVO1qqWy2;QQVG) zKgApHRN{ZcwQlQeK330Jp`@$b`pO`FzVFjRL$t^0wg?{)KLZ~XzYLGNVSN2>#bdP7 z=J^NkRY$sb?=;8%Jd0Nz<9ti}bzJ-P37$>7U1$C`-u!!$pTXv_bpd&1B)jpZ?b#OZ zJ9>P3_QbV43-M9nZC*VNFZj^4XD9k~WlINv>{O<+i{~Fiz@*AE?J+~(RhO;NG=N5ST zQLYX){&&VlaU1{p1>{+TYkN+`OUYx~;{^eEuEis=e(%6*$z#Vqj|SvfjfW)9J9xI_ z`63|CFSzz=@)oY1gUml+>byCw+w~53O!jN@@p#%}~&+=Vn~rW4|IG&(i^UUc>c0_8$f0`5tef zU$*`Jg%9Dj{Z5}V@jS3KuJzdi*XvXV;d-6w*ns>?EMD4qDPD-%b-x<}^4yE}a6Dk= zaZljG_*};4%K>@b_uc#5B93Q9C%JzRx23C3f*gm;#*@S|@D%aC;i=+9c)Iv`c&2y_ zo-KY4o+I9d=ZU|87l`-cMdH8W#o`HDv7L%9pXu0SD!BN9q}IV2;L`t3_c)UiVuljiI0dc$4A8<$Kz_< zd^nlyr2|h8{}@jaAI4L}H`vJn`%C0`W$?Nc)jyH){;w|F0;BDf~c)R!uc!zio z-X;DW-Xk8`*43d;d^3DNJRKhrKL8&QFT_X1&&K0!96$c6@dWWZ@g(t9JVpFfJXO38 zPZ$3g&lHbOb@j;>-xALe&&2b@55Wt>qj-_{g?O=eEnX^qKVB}r3a=D@8?P20z-z_- z!0W{m=eqhdh;N5CiD%<2;z#0b;w5;y_~m#5*9~Scf7an8$GUOlJ-+IH?#Ih;@9{wY z(}q{zc3k}`UX8~S-;0NibNTJO^*db8TSsv{Z{2u1S2sOQ4&xE>+j;BmxSqG>;F|xK zfczzRt<>QXyk6>1i|cvHJ$NJW+f$!byc3^`{~taq`FrqD+|FPAg~u1VI@|fnT09B2 z^Oudbcl8Y8wjNXPbjh;|uJw=L(c|56?Rfr3T(3tJ2jsaB&tkb&pBg+uemft(Gaye3 z9wOex!wa}xkLnJ{^CcdWaW#TB$n~fV(k33C$+-4wN4$~zb6D@$0eKF`BQ37Z5#pn` zUXMC2AWt?N=9GMZfI2?q>mchVdBd-Nw)QJGgr4^_(PJ$KiIk zwkHd3B)_%ikbpczcp4{cd2Ye0Bu^8r*K?i;$kT~yzdpA7^vlN2P(Ysl z;t^?2;*PG)dOc?wT)iJ~cAew| z;ydKH=v=%@{93$6{BFEY{3(1u{B?Xt{BwLn{6F}p_|%l;@{u};(y^q;xl(~^(hwL0WTHb4=)!# z8m|;T6R#Fuir0!S!|TN#!yCk3#+$@H!dt|D#M{It@9OH%F1`icA-)^lCB6{v5kC>{ z6F(mx5Wfx|62BK85q}yV6@L?tyJ`IR{{l}C{|!$PpO)e3lOnz?o+>^MPZvJ|&lEom z&lbNF&k?^F&l7(LFA!gi7m2@z7mI(3mx`~$%f&a{&DEz;d?&nGe1E)F{8+qR{4Bgd z{3^Uj{0_WDd?nr{{tDhM{t4b8{uACMK4o`ThaT}cc%S$l_<;Dq_>lNwd_?>Ld{q1f zJg#p1_`eTN5Pud=5`PO%5&sHL75^Pi7oWa|t52r*Ts&KRKAt1K2+tEg11}K23@;MD z6)zTl7%vrn5ib{iA1^q?)p-;4v)|zDoLAa?IKSh=`0m6{&2;riJ;CL%^X@r#25#3$ zcEz*s$>iA|k4XGccrI?wJD-NHUHG7%!Tch;koZLMUx({))LnSwG1vYG@sHv8)MqpN z#eh8T;#K51kod3g=wg@O&eQ)BkY~!CuAcQ#7jO3^&cZuzd#-;cT>G^E? z=e{qt>nA7U8T8k_?>isQEOqViZrAreSL3?eWq6c$yAJj+p4aP^YyNydp11J&)7)~? zSnlU|Bl+z-_a}>&x=q^4)l=)XDX#6`9@o0f!?kXQ;&s%`?yo)(@4{_-o`d({_P&>; zxVGn3yx{My4pz4Z@Cf%EnLitl=XG4i)viyv`{J}dp9JK&{6ZIBbh>MgJ%{pd;?w?g z>({$|-T$n!f-G_tBdi(qaX4!*t~s1K%TqtZW&iA@zj%D{&d>&Qb3;fED!y%`}e-aNAbPM z^IJfk4d=Of))8;p;}-ZTxj%4cTb>O zuz);^@nn{3_vN08Copf@{d-phP#b>17#CXd~3d~iUX69V#_h3hj8<;O)#O)~}~=?bmAo zc|O8NSiiQte~+h=->yIZ6_96owyU!qM{SLlkl(hKJ#ek_L3lUwnC&-@#kF5c0`gpH zd1Riv5!ZS0-hez$;G^uTm#g?h45B7@olK zhF$-E5f78+Ao9E$kmt~wUB7g{`4#ax9{v-MXUe{Az3B1eEL@K#cfxf&p7pqEj~?$W zAU>b*Kbw9XftTWTzwya<18(c<{D9?NjqCB`GF*@6AI7`be(iYvyhmL7^?3gIfaSi0 zYrj6nwO>Eka*N&eV)N2<-r?WabCju^A0<(rN&C6=5{KJ){ie9qe|ucpGY{AH%)ieq zH<|olmU}4iS@?GNi2=(!Ct$ft1D1O$9woo6-=(xi>#+14*G{d&0|D)M7GFz#JDz_X z*Xte|-Rtt}b&OAl*XtPj60g@W{%y;Z>lo{By^e8zgIjJo^SRxxG9%*Fd#3odcs6eL zKkSKDGmqJIfQ5Lj#2<$j;2W@h&%||HU54wtcN5-Do$a{jzJNSY?{sNwoEI|w?Kto$ z%P-r-D*<^{k*8m-^L$8r8hPw`%eMh}{>1gTW!nC({(9W96|VK!4cFtAUskyO>i+$} zfIR2XuRM-VY<@VJ_-Z-NIwK&@f0@Vh_~&Bc_4wz8fIN5Odi=8z*W;g;0`lBI9rXC; zJ>s=KUkBv*4IkvXkR8u&cz|19y1&~3*Y&kCo<<%!{@D*N!R>fsQ9zzk@kXu(TAmB= ze%$h0i|5I69CzUQd`HhRH-7Z_jz@`4pq+L<)oMH$pU!su4zAC4e1Yq8*}vfW+{fet zU7fX_o8!s!cUzXb1D=hi;`0OY9ESIuxr&kmS?>jSI~&+=Vp94dF*=l3S95^csd}@Yj}T)YmXg2e}rdqzCV}o^L;>` zzwog1Yx+U1&QaXP!`8Ugc@Mmq?;Wf@2jPRb;;CjEx?*VzH{%x$D-u)^!uJPAMD_<1N_kDV(Qof&Bgjb87 zf!B&(hS!VViZ_Tqj5mqDh_{HpkGF|`kGG4jx6qBB4)M+LF7ci59()qx_CUN>;*Z1o z#m~V9#jnPP#qYw`ia&veZg$((WZLr@9xwhWo+$nco-Dp$uB%U2d@DRnd`~<>{7^hg z{A4^Lei5E4ej}bQz5*{4e-4j|zk`>Ee~p)k|A|+K&p6oCr%HT#yheNhUMGGOzFd3> z-Y9+r-Yk9_-YWhmzDoQhJSP4j-YNcXyjy(IA+8R+;vTyYWQvr|@L)*YU9U=XjdcJgTz!_~am-_>c!R|6gExui<1ON+<89)V zc)R#5c!zj1-X;D5-Xq?F_lbXp4~T~jb9ERJ-wYoSPsc~a55VJY9lu=^;tAqs<4NMx zc#8O)c&d0So-Y0>o+;jkXN&)g=ZME2?&^~#z9n8Do{1NUAA%Q)NAXhe3-NOCTD(&H ze!NTKWNcx)7zUfh}J}Kfm;i=;L;W^@W;CbRJ@dEKz z@FMX~@M7_w@KW(91+EU|;&bpy@jdWr@q_VN@x^$(_yu@__zifI_lM+_=xyr_^9};c--yd$N$54g7}MglKA_0 zium_8KY^EuzlN8Ke~MR% z|AJSGZ+NV$Pp$Y?c)j?Zc!T(%c$4_ac#HT&c$@f*c)R!tyhHpsyi5EYyhr?Nyifd3 zd_a6gp{vi3`1bgS_yT-X{3twb+4%9l1WypZ0#6dZ4Nnn&6i*d@2~QXQ5YH6cx%l09rT9~LwfO6Jt@!77z4(9d2JxxK zyZSVVZ;iKz?~S*KABMM!pNe;gUyOH&--P#wKY;g%KaUTHzl&F$>&C6!FLC?p?t8S6 zvz^;@_^*i1Jjc0R=O4lKdw~s3VEZE8zF*rMAI0r^@V{T-mYY@P^4onBX~b*(GcR}X z-Nf7X*ZUA3qF?sBz@Y(oPQ-gI8Q-t7alLQdY{4K<5zuv~RU-r9Bx?WZV^y~M4JF1s) z6(L^li(V9v=TtnKJhnYfz09?<5>Mv(UU@*CYw-Rj-FUG3t9PNldcS=<{mnYx#cxIa zWdZp+sehH^f0%f^fBT;SdAjgE#;45>pW?~%*X~39As|oaM7Q2`Jj}rBS-*B4-8Q(6 zhfG|@gZ=*XFnR2~tOo_;d5t>jc-|ynJeRY*X#20mbvz#%u-v(9r}eDIEY{=ZtKIlX z#%+FHLY}+|x85!Ol7RfRc*aF8-tJGk8}H@)x3+)TllQ}?v0SVF;{o|&cqZe)_B*}Q zvmCekir)>$licq5+fKjsrVgi4&k@}6e-)6&-nU;(ygkS9AL8{npuLv5l2(cPn%~CKIpg(SAQd*W(TW`RC)h9%Hmq*W-&-uKl_m^8)gpgokB* zILG3tr|rk9%;mYETkw9yo6QfGF`i>jxO&?Bwjva^hru{B_y)3scV7WiwO&r%{Q|G&1bmOoex8vk>0eNOb-8czJ zJrivHB#&)(+YqnwPbOY^o?Bnm9{U~GdbuC1JNF`^PQ`$Wx0qwvL}S?lvdS|MpV>d0wPnTA%Z2PYHQ!oW}z4v~pY*r9HNN zy@Y3z$L_~l6Od=t#jeiUo*nTx^4Rzv2*|TD%hmD!EAcvCO*z?(H=VDNaUEBekzd>S z54@0hZ$9IH$ACQ9ct7LQ_RELi+Rl@3o%hZO$iEcVcHV+Fvs_!hD+2OF7!P_}w+Pqc z(x(IRyoQHa?riGwIP*g`ZsXQ|Pg$Q6=?%#LF~>!E-1|MQ$GzVLhSM1h{-j6yH*Y!2m_gSIv9qxYA zNW4pQH1R{r+;%sa{Ac1L;!E*S@nv}2^6_~d!xO|`#*@T9!c)Y5#8bs5pXTb2F1`hx zDZU$?Exr)X5kC>n6F(m>5WfyD62BKO7JnKq6@L>i7ykmU6#osc7N2&yt52=?ws^hx zJiI~t2)s%BG`vOpQoK$4X1rbeA-qF;HQpuu9^NDVE#4=-4j&NT^bA*@A@QB?5%K-; zQSoE(xI4y=|FiG}@vHD8@jLJo@s)V0_$zq2_$PR#_)mDY_>>Y?haB-ac%Jwkc!BuA zc#-&Gyjc7Kyj1)Kyj=V~yi)vGyjuJ%yjJ`xyk7iwyg_{W5?7xl@ws@5_d6T}b1lf;k1 zQ^e1~Q^l{w)5Y(?GsU04v&CP-bHqQz^TdC_3&b}()77U)d@H+>v)m)=XkOBfACWAsb{QgJeEnY7^4{s1Z0&fyO4Q~;@6mJv18E+SV2=5SI zjdzK^hxdqoi}#7I!w1ASJXlc zdZ}k>K%N`OGjh4hW9{6F_zd#cb*hB{c@~nVnLKtKbuQP<`tc;{a9lv1Gd*8FG%eJ9 z+DU$774cKrU46>PW8Zf)1mvl`!o@eXxqjL6^>^d?dpC~<U%%(0{V3lp2@tC&2m3v{?YeroD+~|DZZBZ(B`p~m%H(%@7cH| zAWswCE_uErkG^N)>3}@1;f+s?-(EIld&xb>xsAi#fIMfu;MyONJh|klrk%F^eix8u z6i+8UOr1BQUwWN<+JzI3!>xSx-rI1WyH4J%q4MdB~x#o`~~rQ$#0<>HescJ-+g-vX}|-wm%7Ux?R>pNKbzpN}_*Ux&Ad-;1}2 zKaIDGzlnE+ zNqjY)BK{tpD*i2=F1`-W6yNkxSD$S0o$ws-{qa2UWAOsNeC0A}nsFoWamO!f=6dN*#3c`?2v{v~{(g_g<1?wluig(tj^*h&#O2=z|C9KkUgviFHcY>?ZoeJu@>ENErW`VH zJ3rgW`2g`-v)mtWZRbOWPTbB-X}`8}-dq>2bvqa@r4H#V_c(kxo`NsIwLQCgFO(ar zn=UukdjP~=FXXX$PW8V3pQz63U*^V@*7H*8ukF79kCESw+grVkjOAa8+wtnY2RYaF zAC7DL8_Clq?cXVP;`S#6w0}F_z2iEzqcZAw5#En?;m?t0m2B5<;_b2>eTjF7|BiQw zCtmLA+#|j{-Y32kBDD|kBZ-k$2C6SS70)Acmhul@5GbDKgUzVf5lV9 zr(NOdkS?BzXNu3qv&E0ZbHtb6dE!-gf%r1KNc?fUSo{^dRJ;!_7ykvX6yK=I)uCE^ zYrIxG3$GVH0&fsM9dE+z{STMn%@SXaw~9ZCuM+=1JSP4T-YGtecZ*M1>gv!dz9rr- zz9&8?o`(;MpNg*)zXT86=f=O)=Vm+(x8sK;+#epf(#6}n`f`z*momjS>U18%z1@WW zIc~c1j;mZA`yH9T<0aM3?Kzryr(gYkQW^FKy2yxW2di zZd~76zGc92GjLt*5be?BK1SX2z2z_9T8DRVt;7BS?OESj(PPII+MeegaX!fQW!L?_ zXMO3o9mRE=%p|{#lcNIKQxedg3dX0l=emG#JKMYAd8}XBo@)A~?Kv%=JuLz4X}#Fx z&tN;Jq*ce~;j1+-`0<1UY`ub()s)AkJ0{;0HPJ#PXW zt4|%v-Gb$Ag16vF_;ms8xwm-Y_WYgWSe=Ix3tYU;!+Vk^j^!?3xpxIDx1auM9d;vs zD*a6$PqBAFeyqPEjAw5%@jn&xSC{)(z;a)VPTb!|$)o*k$8+e{ESCEguIv59faU&3 zy!JQbo#>7AOP3p&hGI{(Cb z4W4LRb)M#2$JLapCf*;NN*-NqIj-w>9qrL^mFR7-W9`v#H7j7bQ*3=vA3KhkcC*W) z%k8HbQEU$hnTI1p)0j!uMIB*aK_) z5mLc{>5at4bG$m4@zaDSia(Dhi?6}M;@{$F;-P9cPBO$d$FszD!6V`a;kn{Pc)s}g zc%k_9cvSp8yhMBzUMBtyULpQ3yh{8pyhc3fYUVfbo$%%22jGq3$KlQ5Wq7OjwfHLW zd+?a}(|D(N7v3%Y72YfU2i`9};~H0oLGd(vSbRTxt@tr`=ze#+ZR7kbJYKvSPZYlk zPZoa?4~xH!r-}FD8REa;S>hXC>*^2@pNr>;XXE+eN8yFyf5)TZOYsu%<#?I+O1wh+ zRlG|4Q@loe1g{gHTI1@lTznh6QG6cWES`_Iil2e662BaeiQk5Iinrk1;xFU9;veJv z;y>Yo;_=tHIt+_%g|8Lg3lFUrKmHHHMo_;q-icq5)6{w$s){x%*F{~FH~AI0;FuBjpD!K&EkpwaCK-E-yUBjzAqjVKN{~8 zFU7mXuflu9@5KAXpTGyjJMm%h)4dBaW9JK_)oz^I`OdE4iO+W;xSnS%!u34sbC#>u z8-K!exwow6>a6EkXL=Wu#@eapS(Uh+XRUve%cIME;lYXfyUXhn_cw_=+TXdj_IIy< z<-SWhwZC8D+TXiqr}p<5uAggva|4!pEAa(ayY;&p=WE9kUxV9qfHU!C+`G);f6B;{ zif7=J0n7b|=VRadhxb_QM<%Z4{=r*#MyB&Ho=`WozGj6YkGS*AB>WKHz3+Kt+@6ew z9vDAASK#sDH{prm58}z^S2W{JPCm@vrfi_>^16`ZYV$Exx1YW7|da3^)GESinhmUDSEiB)7fP z;fcl0^YIn;xcMsdv>X2s7am%Qw_okt-XFNp6c;~)ClcS`x6`}dM&5_^f$y_IRV&^0 z7$ts2y<1-qS?)G?_BC#~b{|eU%Pqp~dhY_f0#7CX9^@INo%`bDUNy(&f6bpmyte-s z-@W@W9(C<+Ad<3`a(jSsv*W=I6 zO`QK*;uEiR%eDR5Jo4w@-q$Yv=McOMXEO@@5wP43Uv_mot90r@uSnG3w@h4dH*vsAmuE-R9?i9t+5S z!05#JOYjo%*gQGFdauQ8{J$8G|6N?$|0Ui}zjmjcO^p8}8E?M?JZyhMDn<*q(u;ydFN;yHMg_z8H8 z_<4Ap_;vVl@kYE+{8_wN{B68d{A+xb_$VF|pLvI?L#OzTc(?fec&~UN-Yq4?Q$~T)m0Mi+_nHivNx$iznXc>JS#+9#0eB7tats8qX3h#UtWZ;kn{> z;`!oF;DzFycvSpzyhQw0yi9!BU9Jul;;DF*_yb5m=Uxqh}KaRJG zzk;t4@55u_zu=wX8#TB(bc=6|7qMTq{nwLryoAqT-g_CZ!?(qECyyS_yt9E@Zkgoi z;QMraZZ0Pv&oREw3ROSu=4bCQ0sm7&e6RHDUc6uY8GKOuEqqvf!1K7!PwQCR|NfK1 z{rPL}Y4U9ff3xNoxBtqia@%zn|K?!lTAypY1BtQo8qIU)Y0hIDXWIQgTX+W&WAU2j zKYshY@9R5UeeC#iBku;PvG^!?INc1L#Bz&q+pnF6mx`}G*5xS|e;2P5-|lX=-mAs; z!E412_k5x{FAngt{5-Qmg_pSVbnEXn+y@eR*400r`tN~v9PZYa^>-%s&vc*Ud_&^@ zcb^aLU8eItcArllZuhU+eLjP@9nZ}48a7t{!M9y|Y`K^C?f2H#t8RT2l0W?!7vFJ@ zYmXhbFCfpb6>ayS#ZnfTB<Jf0|S_ZOv- z$Gc6%{~SqtvcyNvbp6%wTuFRb;_bd8txq@cX%hc6o*{1cDQSKFAU;dt?f#`K`n4JT zn(iHVkFDQ`#HZr9;_vR~;`7O4^X)w1^CkX%f1FGY6^b9p{YAy(@gBqRKYJZDaXpXc z{=*vLZJh5n&BfP?+w(rUy}aQ~_+$Om?d4-UCfmz*xNa}@+>mZBW$7+|(keGTQ|VU~ zo`u_ep}QR9;!E%u#M}L!IFZXU4n=pFBI^JnPA@!RQsc)WN4o+!QqPZqx%4~yT5r-?V?8RDz) zEb*%upOw_j&i8M}bvwGh$kkJ~i#6nLkoCJY_rJB`TeH4)!+UT$ZaHR?iPx9i@2BJ3 z?)MuZk9WDi|JZ$fI{x>!`|)J_&tSXLJd21|Uv-*mr*1FjGEeHbI+;AW9ohYUqf!TZ zek7i8Zu7i7Z<6wy8*iJ^U%Q`K$GP42sO|sCUtivJSH^QSc{aP(jpxCa$B*Zo@L}-? zzE=EbJk&8h&)@NQ@hk8|@p?R2{9!yS{sNvR{vMtoK8R z+{Jd?kK6v&o`cZsWxl`MS)l>83#^Nas4&%rLfkUa6!VJ_zjQQVGK?Ku>!gFSz(`R(~@ZRZN=uX!G$o?(uk zi)qi7)F<|ut3wq35f68c_ffnGj}X7%{cc>v@H%`mJo@_hJlk5lcm^JRV|@Gqyb8Dc zhgkfZ>2i6zGWws(@kTs~-++hSa`E0_u>V<(XW+^B19-l~ zKZ#f2HqKwfTk$Y?y6|qv{}Dcn+xgVL@DS%aHV%Km{?w!}ja?9|j_%)tSbba7X;v1RI z6B$=41LALEzDjx5jdQE#^UUX3PkWEVaJP&1rbqv?k@rR0MD>4__JoMH_4r>r4WCS& zO&)OLGeg|w;XK;83-Pw!(ROa<=b07iWWVVh7W$v-k8thGlKeKVnxziW!zb>Sz1O0W zc&mfGCqdhDGX0839qzzOq&<(}W#UC%0mtgx%W}QbWdCFPcU|sFhdB2TfcDyIz;D#*GJW*!Z8TqZ7x^e9*1mdX{VB;SjuC+H(@#A%33c6OI4t{P@|S zM$Rk4t~sHX@tF93$seKp7N78tYiCq^HeQ9>_Emt_;qff@A9$m9r|+{v{j?{a`1PB| zmODEXxzt_9Ghcu=ieK!z_k1q-E&f_O{GMAc=C|Qh;w$iOJdyT%iua3e{;;dhu=pZ8 z)Z>Pw8$ROd6ED6co+!SD=M&ZE=9}Gi)K0v&dHSFG1Khr+7$Dx} z2m78P@}cXOciGMV987zvaJw!s>v^}_M%=FRyo_tzj`#A6-N)7cMTwucj(^aCm;K~C z%mLFzkMbU*4VU=w`CO2-`)7t&u5Cy8Ui{d+r+zZtO1!rl@;^J$PW7{KtP{i64Py zh}-udS$G`nFD8D3I@tNq1$b$%>(}1IUxVv-NdA`_KgGn`dfcJGx#pije7fYf_oiz8 zW&Uz!g=(q4ZKr?Ho^0vwCXcy#=7?{P=ZR)V$x%Ov#V)ttm z6K~%S+WlH7AG`Re)YIf#&7W9Kh+ zf0r)T?(fp&+WTX5z1V#w+MZKrPcO^OpueN9yY|FWhpq5wZ#dWXY|i}kl*12;ak{dOOk z=3hX2){@7z(<-(v&A-8ouKk+-Hop$ueQUNIai94p^(m6^KjU%N&SLTH@KW*lc)55! zUMYSWUM+qJUMqeRUN7E+H;6xnH;KQEw}^j*w~4RC+r_7?boJ>F-v;jz-y81{&%^t~ zPsRttFT{t$Z@@>y8}U)`r}4ON-MloJasCFLApSX?BtC+th;P{H>XRzIC7v$62c9XO zi)V|Ui06o(hv$i3ix-GD;6>t3;Kkyv;-%uB;N{}Oc%}H{CtQ81#b@Jb%#${6?-by6 ze`d~05BY0w66?|K&y0}A-0mZ7#BG0S_mTGEc7E6H4UDnlvA9p%IGI8IxA0`#=E=|S zbli@wzPMuIdFi80=Q%9b_M6|~{Xe+n9>{V};(pfx^4s@c_C9%?_p-gZjUBHJAOCkh zLmkJTm*W|Q&SQ8CuR7JaJ*P0~N%EXQ9uA}q!J}p5!LP%sN}cz!0-oE@t@r5Xu3z5e zegE?YUW4w`aC=`GUPCO^*}oJ!!gMw)dpze))Tr ztL>?7o_PH>(_d}R0@l0ke@6rIPkYL(myD>ZvppyBH@xaZ=dG;Y?Y#4qv3hEKj-Z_( z>a!ztw)e4XzsfnDsqb^^(ay8%`M%g^ycIpxo@(OfvE1vu_K&$P*Pi1G z5pUbCJ;#@Y+jeTt@#RVUNI-jj_L@Dm+>TFO`|bUrcLlV^p5xOx*mHc<^=F~ zuZjoVa&w8d^ShRS<;Df9$D_%UL>?RGs{``9jcfbu`OqF&zyAoRn?0u!CVm_GJLNvt zuTp$F+tN3ZX`V9jY8S;^*Ma;?;Po_#OBv@yGF)_{(^wcrV^9{%^cjeEp|g9s0#L#|OpJ z@nP}(@wMW|;Gyr_{4kkubtWD!UiJUzy5qP$=l%cVAJ#0>j%JzKG9T6^gl3^x?1P+z z5JHG$8jbkI8rd3+A%qYMLyi!J5GOPXA>;@lbcpScBS#2va{R8(=lyuO-Fp5$SAU#y zbHBazy586OdSCDBeO;gHdcW~_@mujk@rUuC_(nWcya!Jg{~FH}{~sO_Kl8uzKjIa5 zp7@k!Ts;?vrx0HxJ`XPuPbE*8_h$WO?<6*C0;Ln6W$>H0Ny12 z6#LaI{yg!mxSfw(c$>txj=J)9h`)t*iGP9ji2sN3^ofrnezSNYJ}CY<ls(u`MWUUNrAw7 zu3s(Vyta8?wclP#o(9Qd^TCcXj!GfVqr^8!{5bCii12tr=dpj8_-2VuAYPwWe?)w% z#D9mki;r)0^``UTPsKYWKI;q@uh*kA;)^8y->b<_JoP(T72Vu?s#dvH4|Se@n3%E;)DI}ys-B0i;u6MoY@k8 z9bSUlIANXb7w-LMppkow{h1yFGSC? zL!R@%CKqqx^S?drJQKJ3^b8pJOfqG6MkNxiO54>^2?XQiW zJ1U}=)86mW{CAS4KIq*bcz=m(H|dh-dF(xB%`^Q(7e6ZPVJ7vg_gTw)>cQsk)%^DU zc0c*O9y#*&p-(%p`EvER9RE*O&NlMcc{kvfhx*a-{1s0pkDYh+9!?2v_sh*b=av`&qV@jhoQ=_s%deDQ^Gtl!^|yL|bc0WMY(8zxWAkbEbKdPp{qOHnp6QY8dhh-I z!(BJMpV1?KC6p&auFIF=S>kn8e({I#T=8~1U;G2SP<#+C7T@wYS8t`_iFmpAUU;Q= zHoivu6ud^f46hTv3STF_4sR5H5??RgiMNPL*P+70(bq2+tDF z$Fs%H!ErZ+K>SndpSk{8ziQvdHR9G!+V^pt_zddPzKt#e4DHs0aH_D&|WUKNY`Wrpu%C`QHi7lZm(IW42yW2)FlknmCR+E*f1FJ%3!0 z^D^?-aarkIn8Nj``JeU4zjMBeub1*%N&Zg!FYIrO&v?ncbIIa(?M%FV7gI@n+IXpT ziQBH;*Sz6ZPQHK1CXbCX?K>dNGwO5yV)Ke?Ic;9?81f%P`E6ct%|FR!oMYepX@2{T zuao+jNB)z2>eJ=}*E|wi0xGchTe?Rd#E*DR6 zd9?jk+yZC8%r}#3wTl^Zl zSNtBlU;Jr&K>SU7Nc?krMEn;#@U82I$J72NZFKb$D?SsC7oUeGiXVdq#h2iz;w$lV z@tg2W@dxpc_y#;j{5?ER{A;{G{13cHeEW7+KP9-0D|W?8#pmH=lIIw_LVO8cCB71` z7QYFv6@L(~7vF$4h`)z7iGPhZi~oVQif{j-tDko9J@8KPgYjQseylxD!H30X;UiMd z^YMT@$2%5}6+at~7hi=Zir<0<#UH{`#W&*V;_u^`;@@~4?fvSNm$~b5%6IPgTK(7f z`0tVY(*os{?)`kL&uv}~*YmVMnfTHwmp?@QAjidi$5c;>m%yjkSLKewV+o&E@YW zzx5CHer)QHYghI@Pc!Aw{^2E`JmWgt`5QwX?=~v(_aWuiJez&;{9NwxX#M-Ww~!Fo zuJ`fen!O;@Ib(wkCuNn9^A%xHudxVO|Cuk-rpFJt?@7MMvkLBKb*~Zp~rCo$FY5) z%YP_&mhzr(EqT1#hsfU-m%8n0o&(5JL>?>WLZ3XFeA;IrdGgt=-FM7i?&?j;^SDoW z_K(z?H_s34s+jUGqdsG(XKPp0c%1lMc!Kzoc(V9wc#3!*o+kc1o*}-~t8Ra@#HZug z;^}y<_+fa5)TiHjWhX}BlL9GQy7SSyy^Z``OP+kme;VyA@Vz@vz1!8u-}yfN{Z?+j ziix-RF6?`vN<5i7_C3+MGhF^Tc;ySx+o65e6HgxdoyF$G)%WmiUR?b?VyaKOx^b=B zuI9JzH8j6{uc7%*@yT!BFX;0+`+h;6*V%lh`A53?vFr6}-gheb(Rq-1yBS|kyq#Zu zze6?99vUXP_K-uKw>=NP*IN5_X+*khK>S+x_$CDc+l-C3d1$LC&ph(jJhYj)uAFvV z^ZR|x-VIKct6d4zw`SY@Yk)}ajcL$e!oxIytSFcAINq$J{!FqemCBE z4DoY`U*q$fYFn?~!u1(^#norCSHAGyq2|vz55zgY6c60&Jjf5j&*9x~I&UB6;;;7} z7>1uiYP-D~*Y{5IDx>e$qI;cd{o8wkoxJC1_5W|5{k8eb^L}#2(SGl~%cnl4$41}o zgS;Q8zk43f`@MRdI-2LeLAGo6UrUQzzohYNg3-5o3iVdad!E*wfAH!*T+fu-v#q^mmiubU|6Xtvv~-LGB$UzbPAGs~wuHm|tmw|T_}!Y@2~f7U-F`;_z7SEJY4<+nR; zkvtR5h+hBpU7nW5zRSxXkF^u~F0UN7e(!6ac5CxmYkr&8IzS$KPQIT{z1jTIn#aET z>)`rs=iT)_*VFTSuGa-4uHNd&lSX?x%BSA!d)`#y?Ye2-^M;Og$I*VDTIjQ1_MNrv zmwjj5L3^|FvA`$K(ujNC1v5^oq@TZ&_(B<{J%JaCzlN9MG1S9Hc$vh1hgXP?f8DjW zD)H%fwfG#oR(v5|FMb-{AifN562As-7QY8?6@MCU7k?A)6#pFW7XJnB6`%BmtDk=H znfQSCJbXy}7<@#02_D$O-N%jRIIhHF#c#sn#UI2I#W&zV@%Qjl@vrf8@jviP@$KJq z^%D}`1J4mZ7|#;o4=)nG0xuE29WTS}ym$mJm-rX)O7RczHR9jmHR9vCTs_o@ zC*kYF_r@E=55w1spNhALUx2rXUyXN&--UOHKZW;*zmE5be}-=s{|O%y-{vh>Kf~fX zSyJUx=fzJJv63=-cb@mqQi7Q*)to5k&W$xJCvj?evL zB6->*PtLY(9H`~li}((S&&IpN-)M4q;-oys`rQB8cdu>4dq2ZP{`U7N|0$8}CIxzF z=k{E#p7PX4drs?gLoN1A`Z!_K?NZ}-=ePm6wD_YtpozQwC3&mq*m-}`AR?u%ZYyYN!VvlDq9!)tK6 zKlOW$&b|`~QXcy~Vy@5e`nbiFr;YYz{q{$z>3?v$9@+Obv6Lr^a{9eDXx|NKe)|qc z-#^dxDd!KI7nSnO?%M>veXqPyN{Y>UEUI zo-00mdi46V^+$BOolD$y^*U?s59@VyozH&R`Y)Q_)_KwE?Dsx-KH>VVd9pcP`RuQ? zs}pd2PJ4vUai2`Q=C^fx^gZFXeadOyH6&0TyDopn_YQi!-kWx%?Ql(>tN$L_gXKBZ zr~HM-yZDAluKzrk^Jrs{bGzX-+qSIivNVyi*NJ3JFgqWcgCB<_s5&X zkHTBU&&1osFTp#-Z^XOB@5g(^pU3;f-@ymOzru&af5%6}r+nb*ClE7sT(KJ-E4~1a z7e4_{6h9Xaim%2~#nZe6Kh(C*S`UY%0pkey? zo#;>I65l4Lry=5PJ)j2i z?1kGpV%_-mxP4DFfZMp#z9$O&?&{xu2k)l*dR_b6^YC-p{`T`DnbT=NJAdRn{uSqC z54jDWk2hcVe-Ws19C!q;I^VhFvG4oRD32ZArL)|1DkSw_-}mJcZ{r+W2dxgb>r|r8 zc<&ppJdt$}Xb&ZnGwoy7{$t0F?I#bxVd;<2C5ABxYwi^MbV65RTeg?Op>DR>!f{f2#y*(1l@zQ^oKaP8B3vJm+@<%Q_u zpYtO5lLE24hZZFMZMIvr)!6gsQ@maLTRbqq#g~z1)bijt_%?m6-um$(d>S5#b$L?p z-S9Fzh-c!pxb;g5@n$@Z_!IGVJQiPqcjDvmm3X)KO?a>PgZMvjJ6^W#()$0o<6`~1 zeYetuTR&{yt!V%Jc~$h|cx93EO!DkZ`RzNJHMsQ;39F;$S?N7658o$hp6l>J^4M|t z$>(`ymG{F+IL|2U)5g`$Q9s&Gz8P`vy$jl5A>|+cPudCfY3EBKzFF#jFMLou8y^-w z1s@eJ!(-(4h^z28@pX8D_>*|Dc&EAiKJ{tDz2DvV4#J)r+xJI9)W2Q7rhn?{Cq?qu zcS%9shqw2O<`ADI@!xQKi-@=FE+jrf;%(ilTH=EouhWRnlK3ghqqnzZUVOCgdafkT zP@?Mx?0mc<;z@yu1SKsk4z{K09iKCQp9-?>7#^)r6IN6d}n@vcI1-SM(^RYv|g%4zj{CB9Dl z4!lwPaeTda2i_uXzpEBgej6u$M0^|Zc3i%}+r@v!JH)r`cgMX`d}q8%+IO(k@6%3(&e~ZKsmc9ryZB8@Lusd@qY1U zd_epad`SFbJeGE7+x;%$Nr48=cWXbd@jhYVbk{zoQxAK5?&?2Y@;tWDwet+(?LF!c z@re>|??sdnZ}ofv@j;2tIL&QW>-ikwN7!F$SF7+*@mf5vt=lh)zYmWQe+G{gw|Pry zD8HTWuM^*d?@PVe`_=upo$ntLujl(>pXZI=MB=^oH>6$d_JymTILc|qcLAOtegd8> zelDIOz8X&xUyEnpR-X^!nc^GpEb(qUB)$pH7Pt4_1Ig|<+IemBxdrk4sDFE(zW}%P zwvy|Pp4UIKU2Sg@HihdsDNrl*|JR6b8_1!YR{w=~p7@1$fp|4uBz`wuBHn_h%K7p} z#FGNuoYx7|gMC+0K|NT%ckH<6=a+pa(n7rT12#WfH=arUaX!yi|3`V+sW&Un+|6#g zWwKv~;}zmHMJ_&eM|a%qyt@le!Re*}E8H_)xc2k=`t)!6 z5wH2{sZYI*{QSJzuI4ZB8Hd=s6PZC*pZik(t2R*nw5EvAjRjuxDbKsO_S+9pPQC6t zhwFaX{2TFUF`^JJbB9`&_>kR=N7o@)zK}Y}fAl zE}Ig)J@--mO5$zY_<~RSU%lMri6K6V`my;F^!0H|~n- zdrGzri@v9{&}ZE8ZDfDF=dSy@>!bH$Rpf8C0k>bp^jCI$%)(2gA3F{&6EDFl#4p9G z#Ov^C@rUtR@pimk`~$o}d=PIE-|}m>zs=%_c&qqcc)NHu-YI?x-Ys5+_ljSI_lvK? z2gIMmhr~Pa5%Ev)z+~6Y*mZdrj}@QzZ&yF@;z2x7d_O!Wo{Oi7FUHfwEAUM58}N{L zBc3Dv9G)lMjTeZ2i5H2F;w9qSedFq64u$DSkEd=w-2M9O3HQN)nno&&tr8GT&wxEB!q{jQKa_Is0k zUsi+9A%CM!9{X;qoBCNm{GDF0!};UMW7o}R$dij(Id?cS`f;>*U7Dqx*t{;uY}fmF zEAm%Y8GV0e{^q=WrmIi8&JMild=#HSp1pkX*t)%1o>$3JN1inD9N}|(?R$UCW8eFi zNS-r%%Cq-vuHH0{txKCh9vkO(u8dwkwyv(`v2}Gd&wqXLeEho0uX+CUFXyq8$KHQF z)u(<+am{n|Yc5aUF77y5o?Cs&W9wpT9$T-oi9A+6_wc+(`;){kqwm)tqt44E&uOPd zZ_hS=h?b|#yFiD}mn`zw`EKiVRzKJnX;C&#JC|{$meb}7()>1GP>ke1voLx&Z5|}e zWAh;O?(FK{&bxzr>h0#cqu1MgcoTW7KV0S09&Yey4>rG0h2+Wfsh>sny7I&je<0_n z&BK$8&%(=yAKu{Ve{1|6%2V)xbL)p+r~T(2cYh?(t|K;oPAT~`{$*yRaPo^5>EiLIZm?Znnk-~77E zWBqNj&+&cH=lH&hH%XpNK6&yUar>*~vH8t%m=DL=?U^fFJ?MF4^Q~zfn{Q3$x3T%w zbbgy*pK{u~D4O5qMd{*tXZN$?zm0wzr{bE&=1bB0ZksPf@4H{|>95{e=C)f!dF(u0 z>hpW(u95P1_nZ5>`^_~mt^u7&IXh)Mc>&%nel^}Jeiz;^{uDkS{yIJ+{uw?Z{u3V9 z&h>9zw;cJ~=0C0;V#RmHEbuynd0~3A@S$&9PxMXJn^sa z0`cGRBJnBTx%w#)-wiJlUw~JLpMY11pNm(Euf}V|*W&f!kKzsDFXK((AK}g7-{Gy| z5w2M#2JH_YV-Qo-JUh&iLe(`1afcQ1|koZ0Li1^cZV9MC`|0W(Q{y82m{tKQc zKIwZ`KSA-Cc&hk3JYD=4JX3rL9ui-P=ZN2g=ZQav7l?1bi^Si$A`oh;UnV9@j$}Z_J187D}FB?FaCEtQT#1DD830#75^1a7vFZ+)la7Q zEIcGWAI}j#7S9tu8!r%Fg%^q6f|rOtgqMkL#4E(#$E(D@!K=l${K?frt#}e%FP@G! zh%dyO#81bY#h2r);x%}?_#0-<0zZwM4#`~cn{*j_rLml?;y&l<8xbgRp;-u^;Hvg zb?2|W4{z(J>ioTVKKX6k(k$|%Qhr;vv>3N}o8Laf)ti>{6Y8gk-(f@KS<1W|I)Cpw zKKE-Ue&Fh-pZc`t6^nh!Ki<3T3fHIB|5RM>U%IJ(y?Ob?1xyeqr;3X#d=Md-Oc} zGOtKA<(WZwY+fv#=Xo9Vqt^?Yk4y8|d|W!uv(2xf{r02%(aUM`Vl`1t`+eszpYrs_ zyF6N+?{U43Y)L(6dCv5?KH9pyn&0N#(tfgMZS?(WkCfkg?sTB*CpT07BkWhNw9jpS zbLU0B_-uSY{6Kt2JRctsKNk;79or9Ij>qCW9t+%x$B8%L@sejFo+$nS9u)r;PZf{( zud9c2@#%P`_&#_@{BS%+ya>+|zZfqNzX2~2zaK9VZ^O^St)KaGJ|E6&uUSU^w)B3G z4Udbm#ce*20^FVt+k7Bv@F00kS>p0E;&bu0DUY7l=XeRj+wGP7@%hd*zpW1*vzu!_ zmOpQki`V=%ze*W#9mLys>2sg@ z+3Gl#f0TIp?!M?;=bC?qJm;yqyZW*GKlW{o#a1=`m}k9V)taOrcP@xz=uUQt z(w=egh2)t}{u8D+58;Fd&W`Mt*MA=LUL-P)6X`+rw~X`4`m5*ga`CtD3OP?V<5lAS z#jC})`+p8*r|?ekH}G!p&+%UI5xie~+yA+G z7!aS04~ZX$kBH~vfgQ$PkIuzo#V^O>#c#(G#hdY<_-lBo_@{Wf_)mDIc-$YZ9zxtMt2+COyT+CP-AU%K5S?}zMg9^J3q@WMA-`K^C=+iM=- zc+F$;t7smZUnMAcc3t3(m*%l`s5Q@()Mu6a?!4NkKL0~Mrg^^b2JqqX>+jc%K6$!) z^4NTL`up_?pL%}SCy&jur@vqS-KTzPBKf`VVHdc5ICBfv;QHBak+j>|cijG#h(Cyz ziNB9mi2p+VD)B+$tHr0i>$Y1fJ_oNC|BH8(3LlpS@kPWpiC=^_i_aoYtN3iMx+2G2 zJbXJ4_D=D9yjwhr{Jr9Tr#$`Q|G)>t|Ah~UA5Z=f@pJHi%ww<`j}@=S%lbw`jP|6dx zrEC8o+3rj{N8ILVsiHhKp0{~gv^)opNBi5{hM| zW%J&Q;`W~HMxXLrS>*DpC*GdV+dMY9U+?(j*%a}lKmz-f&heTx&ed~~ls^kE5kDR; z6F_dU)?l|5a%wRU3jrD#2@CXXJMiQWY_-2OAkW9|PJZ@?dRt%qBD^4uTsq(HXR z!vOJBQvN^iYVoNtuHI_J_r&YPCmi9**-H7XeSYfQxP{BF^^i>-t%o%4MaOV_jnwD4 zUWG)fhZBABltkQ{zfS65J@E}v{+ID4@sIIl@$d0g@!0WOMxEbgb*C$TKmDP-=RC!W z5ARp|iLU+F`$fA&+`Ioe+nuLXwC8-{OZIm0bMdoqtejVlW{`uBhx#QI=c|Kq4u17;0U+edFB3}1v4xUdv*!{vGcp08SdF(yd zM%?bx{eI^8pgBJuYAv(E2y67hkP#_sQVxE`0w@K}kz6_1CHPsQzf2Yqkhf5g`j@7-2M{vPr9y<^+0-SN`* zD6T4W^``Gp*n8Jno*;Sjd*>&gclD;J7PSlUR7p?PVjN`ebo~M61)z!~1^=$pW-|tG#RJwZ5{W^tf>b zWV@$*61{y^N8-KfIPG(U{e6NwtY1b z;!_v9{T;#WIq*{AML){dXFN+h z6VDbu2G12g3(pr{g%^sqpT_yld13unFYQ+Qhx6JvuRp#&(xS%Eu5LcvHbJT@JxACespHI?b`9Zo;)#9p80o2Zzl<>o!61aw)^dZ z===NRMJ_%l+pXce(0LW^!gXGSckhf|o;U2gBfquJSr@x_omXLp4bF95g=Id!x7znI z+8#dOI;GbazxPHyiImg3UYy{@SKf3+k-tfCuD>d#-?08Rh?huzvOiuXel%Voz67rl zuf(gxZ^3KDAI9s&U&I^4d+{dm@9<{vttPp8XcgZPZx_$NJH?O0yTupdz2cYP{o=Lw zfcS&>koXJui1_<>;K;Gp$3Z++eB57LJ;aMo!xP2l;6d>mJXL%Vo-Te7o+*Ak9ujZF zbHty=^Tgl93&g+1i^K!lx_T%P-vKWZ-wUr0KMb!DFT|_Gm*KVI6aVJ=je7BGiEj|k zVBUlKaZdNZt6XQR>2K|Mk*#y2z8BY{dgASQLM{EOUQcaZ9=)C(b#L_k)8_rtafq$U zqxUJcE@a$(u07lR-7@AsOu=n@V)F^>dwus(Z-vC~%y{NWT;J<^8Q1IS`*<69GRX7i zJks3fhH#rNdWiTr_$N)#>*q@^fB3zNs_U0UB12oce=sTDwa=9OT|L-#KjuEDO15kB zHWv_Y+nqrk-LKF}SDqT;?fYe0FSQGwPx(jBaM$11Ojn+{xZm?wn?JdWczf=VPI>hC z#>vmR^5}DnbMOK3Y|nNVFuv7xl80vzpGEv&n=5|>eh{8fqkBY3tVMdzjyDxBGpzoLZy>D=Pq@3P3?Ibr&OXYljh4ME^Ki`Kpi~oqXicg&E z`i*w+o$*fbOuSqC7`#{fEWBTQ6+R$dhYyMOJ?Prci1?3qAlIE2_PfR-~ zAy1%`_k@$q|7|)2$z{|w< z#Vf>f@hb5%@oMoEc&+$Nc)fTN-XOjaZxa6iZx;U+ZxxT3Li-n=j(3XhgLjJ`j`xZe z;r-$l;{)P1;6vi~<0Im2c;Kk9?f*SIR{Y<1y!aLgt{xJ_6Y-$#I19J&WE|Ji z6s}WKxW4S@;{&a(pKKw12Jw5dT^&!_yxaqu-18`VUUA96E{|ScY~F0mZ}Vnrew)|2 zhw|9--U}a&e*N1066fuVuMVaBA<7>(z#SJGC%@s7r-pG$Ioq}I)q6hsW%Iyi5^v*{ zW7)3O!R;-BDo;xCcE zK>Q=TNPGw{5udQVYtLokGw=%Weeo*sT)bNROuSb79iCq$bKED>9=`DLa&#X+I`C7KKo_!(x($|dnonP&gGk(3>-+E~$TTXTDvqAg>;+w=v@n-QP^0bOyL43RT9eAgBI(fRq z7vjC*r{n$N%kcs68hl9nK72&{IXrOm*z4Lmc&zvU9xwg}o+v(b2Uq_=@ln3p9pbp# zJdJx2ufF|d?)a9?cjdJE*4en8UmKos=T{B!yV6b;__W*g#B2Ud8{Bp^|1jP{e!D&{ zIWYS5@$}`+HUEddy8M0QnMXNo{_w;sx4$!Sn?F1Yw|?xY$6X%nmky#nb-OF6w`%g( zc~^s1N&j#c-a)+WZ`Cc)w`=oD>vl7*bMe80+DP`E|QX@gefq_d&-{KU!}#Ke^@^N1k@_?9FjG*QY!$wM8$_xDHqTLF&`qo3i=9 z6UlGK#pVOo`YG_KpEG>+Yne}bu=(T*D38_iH9qY*hxU+3yS3+jNj~rK+Ik!T;`gWC zuJnmt6Dg-Rnmg6?^SKOspP>Ay(w}tV>EfT^nc_d=A@NCxuD{9=Pr>uV=i>$9$Kgfd zOYsu%D!fd5EnXr17+xj*3SKSVhu4b#h}VlxOyasJzBAq=o{2Y$AA`4wpM|%JufjXU z>+o*zNAOBr!qmSFV1{z;TeCq;N5B9r&t>e&*TR--wPk&7vr(ynMR&vxIRCRo9@ncJuc-w<@soS^zwZ0nk!Eq^=ak5&nMpI2iD_d z^8=@n$9_NB-zU!jUq-KoBk@8x?lXM$*XH%r^4Pq-TAuTK%475TYMz0uTsb>vx7H5R zeadqm^{IJU@L}>;{cPb=o;{v$$4m1h-xIw&hxnAo=E2rHHV<|l<+0KJ$F?SiAb2{8~RYZ@kvez^l>AbKI@b%QNW>=bC@U z9nQPCPTBS4ET8tU9raUByuH6#;S+E3!|Qf!e)ux-*!|kIK6!TIIvz*79p806@wUE$ zZr9d#(E7CX9b&nz+3|hMCx1Jx$M>n5TzyuP$Byrm^62Na&7Yhui?qJ=*PXE`!B7B`HU;7$z%2Zj?eyXinzD#YN5N|86M|OfNhiA^(Z9cx7m1(_zlK+de~MR&|Ag0y$L;9qphn)_s0Wy4@4T2-KQLl$BHk( z5A5vfVMKffJaFvT_P-Y%D}ERrFJ6cziZ8>1;@9G-;`id|;;ne5 z_}h3${7XDX{C7N0JYg4CKLz4@;6>tx;3eWG<7MJyc!l`Yc$N6wc(wS`c&&IBUN620 zZxH_tZxWw8)73+>cq-m1z5s6*w{@VZxUY<3ylU$}sqe-8V=M7H5TC$&q5Av6EL`8` zJdyI~czBEL-1wyaFxSraBfrgirt4wZyl1)|md$&n>tU7nZ1QLD zjnh{6NZ%K4c0Ls3UcrKKo_!c4~QS-cDT)>$82M@7DsK z{mR32J*l=_2P%%4dN%`P2y#E zv-s6`tN7h`yZF<1r+63MExrlw75@$I7oY5XP!K-f2gFnHA@K$Hi1>+k;P|oa|2#Za zd<`BiekYzN{v;k0e;rR1@5j@{f59`w|FWB_hmiOzJV!hW&l5i$FAzTmFA`skmx$Nn zW#W(H72>brRpS4|tHp=$TJddmclA&&z6;(UJ`Zma&%>L=&&FHDFU8x%Z^b*s*W=yd zFXO%9ALISv-{S+~v3t0B7!uzJ9}(XV59E(+|3~4m;>CEp_)0uc{AN5T{t%uj-j1h> ze~4#_{|66=k56;;kRzUq=ZVk73&fAWi^R{sOT;ViGVvSn3h_0JV;i_%w)Z`3esA?p zx&Lh?{y@fK(|zu*Z=d4EMeU4>4k6y=Uk#q>j(Z5V`B%FZI=A1~eo1wCVso6^IPd}X zOYc)`9^gLW?RkaG102WvC-#2D&~7fj&VPQ?q0#TBY<^&!|J>#W*8DagVuTE?)DWjB9?IFI49@-e)GqWe;~;?03dDe74)? zdH6fr{u{jy`nz&u~eqg3|;}+hpG>+Gw`Pr_{i*EB02Mb+!ti9dF z@ol6%*z>dn-gd+Jwf+1#FEQ=Y^8C2Km8Vql9P5+E<|QtYJe^Bio(##en@@YNdFkso zFYI^B2|o9UyKvs65ufF%IWQM5!R94-TtHpoEYsC}x;<_xp2i_ol2;L-qGTw~a{2rxvi^N}nw~60@ zcZffMcZql6J>s9?ed0gko5d&X?doArJOv*XpO24YULyI)(1$B9?r3F2$< zWbw!F6!BN^H1R$>L;OcPOMGIwtA}jyo$*}pOgvxw7`#yYEWB8J6<#V{hnI^#f>(;a zgs&0*2(J+z!t2B*%yIRwPTc0REvCQqy4lFzS6;^(?k9C#{SR@SSAPciwO_q;SC>cU z)t~OYFdxpZ*BzU0RlB7|5|qR>vi^#F2C;AyC*u=dG*tM%5U@NY95a~M=~_i{%t(1%S*VI6~9hX-rXY;DD<+S+^ zwVXEp;d=5UP#&BAupLjtf297kJT?!Z9xt1RFi_;`;ZX9}yeJxP^P&_<{M*z|`ROi? zH;j+`o!aB-S@Xo~>)L-c@pgZ-BlA{i9-FtSoA|BC{~zM}a64XiZFKEq0JnB!^HXUa zo6oA_Xjgt4XKo)Ur}ulu8h2eNV!MZU9zI{%FXuSYpfAA7u63SHL03@^!<2{H(7;;C zA5S|>Cx0W`ZD+e7&c}D~z*Vk1ImGX0^-p`ScD@jgWxIAidpF;AYdf)d!?Yf3o=H89 zHZNH|`FEl`*RkCY?)^*|`TJj_{M!b!o!k77y_DbHquB2`cO12xHvgpN`Ju|i>-jQn zwexm4Uu<4(&A*X6n!g*@a-LZjeH<7w=zKH%us7_C{Ee=NzF#)KYZdVs#GmOCzwLhE z^JrS2s`C9vr1u(gkTsqdzv-r!#`rQ`4+PU>7uSGm55M1usTQ~WCiTJjGDxP~} zQ_h(E-Fe+FJ{b?4=EeyYKLf8?){&=E@;rfe zi_gV-#dGj}@!7As@(+lgM*NWYh4=_QfqJ+a51iqSm(^Py`D5|ziT~^>x80z`zk#RX zmVXBM(cHvE3%>Ia}g~iO&_^n(gL`KTUk0_y+P9i)YiWO2tpc%f-*f zE5%o^ziY%FCB82(lW9MV;2 z7fHOW6Qtv`xOt2>&UEF;BTo_@Dt2Cq&&HeaAU+rG##8YS9$4b?q~J&4>9~!TPQmkV zyYDy~FJXV}{_zs-$189fKUWZ6NFM7SuE&eT|Av=}+dQJ}%U$`s*FhtHeT<@so(>j(6F|2JMm9`6mv$e+zOtL@X~ zr%fb&XX3Z#zD)DKR_V5@@f#MqcB1h%uXQ))*FogBd95?~y>%b_%Gaas*9DP!@b20# zcKv4w@qeR!%H_QNJ6T5uKZLT%#1Fvp#Pje1@w4zE@k+cz`~uzsucw{Z^TR*qWyP~NzBVuG5N_ico0m25Vs~7o z5Pvh<)&6Z9^GxdV_M}T(J5M8zT`z3@%m&5}<~Dz3Ch^wKG)A`TJzuJD{hs~q_A%ut zlY00buMm%2;Eq?7_)d7W_Row`)|~*6oTpdu;z; z>vqM7KSX&F#BDvVWN};1D@EMa^GXx9^}I5~Z9T6n@pj6SEpF?4<%-)nU-{x6lBZDo zKX|eD_>gPorQ*qWx%gbXQv3*fjrbXOjd%rKCw?QoPW%D9QT#WqciNBH{I@OAkJ-%}oc!EIOjy$zB2nHDJG zdTsZuKStcUKf1*AhuQScw*Jw2sZU$~s72h?KWY=V^^ZElZT+Jzaa-@H2e)y8t@qT2 zTfb-PJ@rc-TkmN=+}3*!w{@4&#ckcCOmSOxDI~s}^5lrydQ5rZwjNV~cnx`q#BH6X67l

    cyXXZk_qy}CTYTc*ocD^`dQbi0+f}&u9L7acIp1ylBYi$&>mTX!8C(BI?|*Gw8};qE zPbp%%yRzNaI$e3RKRk}#A2t5bs_60WM2=Tdpq+j!ME=-A+<84fJ=lF{5I*aeixo0Zu6zXSV zcD?5SD_s9SM7{ls@?=SQY<-z*aa&&|SA3K_`Qon^sS~$#YSxJ#OrAz@TX$x?xUDw22px zzeC*Cqv;Y~`k*_Hdc#FOzp@wxbB@gwj-aa$Lln(Mgtxm@JW)&)?%dYOBU zx{mk*iO>Dj)mtAP#QoOGv-$rsD_s9z@1xrM|2iL$&Hq0j>j7PNU-a|$y*B6i{^w@A zKDRMaLTmp&doMnP-wW08(oZ!mkB*nNx;}dT70kz|`JZ6BI*zjW`E|QCKfi9*=I7Tu zXL!dq{61mBf{P;i)z6K}&3Nbl=SBG4>{nogtN$4suifcCgSfpvb|mGm!RHfi^KTDb z;_}$I%jUc8CEni48o$=nTPJSuHeaRo=ef_jc+F$;W^4TJ#B2Wj*xzp2TQcRZ=RMwb z%D*RW^MNK*?S6Tas~_F3 zm&rfK{?25-Y~Iv(_RHQUw0Tpr@coImc~i^rEc`UKtM#+%W3D_}54Mg*9p#x%9=~<6 zp0oF>t6aMZ5xrE{xEh$C4)#51i}j$DUWj-S4&= zD{kv~#f#gzU5VnhZdXwJ7`B@#ZtHoai`#l$nc`=WCnSC><Ihd4qvAW_G3Sl#Z!_>X@gwmB@x^$u_$7FXcrBhL{ve(q{sNvQ{yrY${S!NX2P5u1 zf3x?jcyIqj-g_Bkd}94i%8{;qQYFuPJYD?jTix|{ggo}1(s9IRO8inhBtDPvq~@t2 zK1br$;(6ka;RWKa;6>tnc!~Irc$xUbTvtDx@}ANcx4C*4q#o?|?wyJ6miSD(SNzpi z-Su7T;TYokCH^dYK>S0WJgbNwlK47&MEnsvAocJP9xMJ49xpzGCyF=U$v8^d;fr{E ze^ca2WbJAO^{n+{>ldio`URS2!cp!x)>9t4f1D9)2TzOmv_OdW676@o zo7PeO@PNeovvS@_{szgv9&ZwV8E+Qv{IAQe?aI~-(fzV@L$n@#{#W#Nl}PzD&&QOf zLdui)W%T|1p7<(>k3HJebG7(Rc&+#})>VmL>H1-Nj$!MqsNejWD^CjX_8i03dC}(> ze(O5@dN=z;9(#^)6t4FRw$6?|$M9Q+;y|x~g`Z34bBr>6Khoz6_s~D<^Mu!5cX{-A zf~}*Z`E4B~&2Q@{>GOvPlt;I_i1O=pr+YUn;r-G)#|E93Rl4J7&m|V)dcV93?}+`qG5_PpZaC!^=zk@nv&&l48>;o|i@+ueM& zyF2G~JLh{A<@8&h<#gg3h`09q>sD^N+CSL3SNc4`Z{3y_@)wieo+s=_KdJSc6Y*(* z_{-mql-%CWFUN!8_u}c|Z{i``zF+t);z@zfDt8@>=fbwvF|I$)Vf<;&D{Q@zJQNZ;F@JH%;QU z-c7T(t#{KZZtI4$i`%*(o#H1^Z{6bOfG>vs&}_I$(E zD~UPZ^#gW)v6eiExIN#n^-3~u%VX=CWaIXH<1z9S;#Qs)@gi|s7p54u`y*Qyrc~V4 zg((-ebzv&Sd)V$8aa$j!M%>oNsS~&LW!8z?`ZA5;w(ie*aa&KPMcmfYX%qj3@^^^a z`axadTjsfbphw)+ZRr!Ybz3%zCy{4RJRKhvw{=@a#clnUnE!L_&5p0F{}Lx|>)<4a zkMkbPhOdvw;tMHHiny(#lqP;U@fqUF@hov$&nR2m)?>;QxAmCv#ciFMLUCKyrdZt8 zuPGI`dDLT8x%#wm_{Xfbu5RsHi}$Hw8dZiQZFpJg1S z<8Z%qEx-KGU9WYVZ0kYjIN8>N(DCpmY*)v_OZgpB^RK`)|6RC_pKTon-L9?UpxeF9 z`(Z2EINav{*YWN5X^dMKKU;rm>lEm5v2_YGkF6u1@r(PS=YN!PW?$;sm5rlbz;&Gb zHolH{yDzYHC3Kv8H|5k8#qrW{ zxZirUwys1A+qH4H-@2=|j*RvXwvLSU59270j>Fr1`X5_grhxL;IQ(6o_{|ab-rr{Y zoI^cKIW~M9@xEilQ}6|Nzj!Gg&+{dVzb)e4d*GLi9f!XW@ofVY^xHNL|0iB0{rNCn zExyfh?s``%z6)M2J`ZmY&%>L<&&Hd@FU4EMZ^hfi*W;byFXP?fALG5^-{bw_vB$f5 z7!cnH9}?dW9}zza50s4^hZN(nxQ$mY#^WUZ20TIhemq&c4Nnn&4^P8wyI+xX4a>1Y(Ubvo9Imy*9l z+}7`C6Sws{I>c@LjxKRqU!zCd*4OA0zk>2?#>Y{gw(iD&#M`jSD!Khcesf|tAYb|~$9rg!5I9!Kf; ze?H~Waigu%H_UeJI%wGi#zajcI2kMha?x5r(15-)S*wD+cLeSvJ;<~R6`@|Veb zN{f8*Uw{`${>f9^b~V4vm)<1#{nkPI zsE2s(hk$T<({aAd&#&)2+Wh=_A2G-B@SNGUd%1Uf!|!JnO~2S}k&3f*98!q4{?^uO zNENsB8bTl6AIW3!FBiJe- z_?)LU@3+>o&HJtUJ8M^09uJ@JS;98%ZKJ_-b$mQ4LXzO>Vw{u+77jJTTf>*eH_+ZNK zw{BxR?WA3z59MR`J$-*0`-!ALp1`8QU- z7m2Lr1m5*TcinH3>+eB$hxiG2mv|}OBYp+mCw>RMS^NonP`nc#7XJ(%75^EJxzHWo z@zl?xlidEsiKpNR;`8xj@#F9m@uhg0com)@z823Ce+GxtFBQ+k%f*kuE5*;k*NCseYsBmDI`K#Fb>c7Kjp85S>&1ug7ToSPC!Fl+p+n+l z;9cVT;yvQIc%S&0_-64H_@MYr_^@~rJ}SNuk6AXhoqvGGiGPbHh{v4b>LFQtI-VlF z51uA|IG!P1glCCgjAx7Afai+ekLTkyE^5UKB>ru@Nc>B@MErNWOg!OKS3ecvd*D^# zhv3!XC*!r^Wq7^#)p&#W-FTDu(|EIZ7v3tq32ztw4eu1Ub%?sfCl|W<=@qwii2B8C z9ijp8TV}iK^5D^KTx#RY)JXoMKqB*ydzbad-vw-UNb*$UBe;!k@4-hU{uw+*-amW` zkHam`z20X~;c-+u^NM?~yF~tKHb(c&UY=;{DIB@P#SbwKv2oNdhdbB%)9ucQ?*G`= zc_(>hQ63u~YM$>S`!y}l&+}fp|B64&9mitw*mW}nFU2#+e-z#z@n_&o;-@o?Z5Cg{ zaqmoa_k(uamy@Se;ve!VDpLRA*Ld;K>N%792>spa25-P0&ZGB(ww_DTZLVLn-&vBp ziVeqWecF9W2Jv=ZZ{t#puaE3kQlOuCO07N*`#+aIan0EN{QmQu2XT8Y`YfIy@o(W- z;y>Zp;#;%bT=5R-KVQ5TFBBidi^T({yLMG7o`9E&r{b03S@;_9JiJD{7_Sqrz}Jb_ z;Em!9_so2p<&B$A`sB@KNzfJm$)= z?Xwn-6Tcr%5PuF&7JnO05#NlbiT{dci2tR?)mxVMOgvjW6VDYt3eOi`j2DVuj2DZa z$a9ra@fzaG#qY%{#h<~~h`))~i1*`l;y>Z*#3!EN>a9_HCw#ql2HqlmINm0HI^H3^ z4DS-J#(Tu?!u!OZ#5aq-h7YPA>-yDU@t^i`J}TZve9Tp2+yC^vU3{E)I-VeYBAzUM zE}kM@g{O&sPkA!LZzVoU{9!y>d?TJK-h=0he~lN4{|_$~pOWtCr&Rnvyj(mLuN1!t zUnBkiUL*cIUMGGWzE1pXyivRoUoYN`w}}4>ZxjCw?-1X1j;o(8@f5sAd>-B>{ zy7FgGvXcBHllb z{2huH;UR8p&cz#^aq&6C-(q?GKGvVdL#@v9h~H%SiSNgcKFpPWJ>&n`xV`_T<9~aO zT}iyxZASh+=XXqv-{#D4y(I+_T3mVTK5@T@ZyV^6`aBZv!6%cy2p^F6<@k{JwfKnm zJ$RscY(LO~$BMs>$BTc8CyM`w2gPHHUHeHD-w{t2-v`eWUxiydAfCSc`W^{Cd1g;$OtOCH@1vSK`0H`y@VamaCu5 z62Cn@Ao087LlVCLAC~xhd{p9>;(=?%o_CkxvAEUGEqI*7H{l5qzX4B__;>N3#D9gS zNckpi{FSB;#O~sc#*_EitFC*YO19mjL< zDv7@guNJSvYsDYJ>&0Kd8*tn1dw8S758&%1{&&1t;+(!IPCOG& z5I+h}7GI2~h+mASiPzv6;`icN;?LmO;&0-);{ABO_)mDD_{8&F{S=GugqMnE;N{|n zp1;Wgsbc%ArN_&V_?@ka62@b%(-c#HV=c$@fE|L5wbLwq{kC7zD=;C8+r zhWASRDR{s5|KS7TYw#iQ+wl?c$M8VS*!KT29xL99$KzK1Z}9|)-?GfrPqO$9c#3!$ zo+dutyYUa-XX$f>J#hUU@Oj=(8|FUU`}r^OXY*s|efkZ@yZk-G+xu@tM>`+NyFc>p zEsxEEp?MCDls_qu#r?khK6nxPl_C3e9iAoLfM?_O9N=lZK;qxPi^M;}OT>rqGV!f1 zaL21cdFT&%+m*a`z z*Wy9(d+=287Cc@271~>-_{Vri{5w2HJjR<)C_LWF6Hmem#P`CB#1F+w#0&5;@$>Ks z@yqcl@wIrh_Qa{b&+vBa`yW{QR3-C_ye7swHDc&o7 zDc&!B3qBy;gb#^tz(>Tt!UMHq+yA?GtoSG%FTSt$fnK;>C5j(`2gMiRsp92$y7)DC zruf}>Nc<^0N4yiy6aOb(ApQehBtBuf+usuLWV}p#4qhStSG-F6RJ>Ze46hZx60aA( z18)$29B&fuz?;QC!du1vgSU&1^Ii}Qw}(#gM7&#kPrO(B5WHXf$`f3Ey>GSex%BsO z`wlC4t!wA@`|{LpqknffGcqnp3Y2lb>0OQ^erCyW{vcrak`uOQVf8 zBs56UV387p22nw<2!dSJl}j$gBCa5=AP9;@5LXb|OI*RC2#TdeE~V=#4T?pPOR%&E zf}jXOf3tI5pZj?1`1WQIIdkUB%$b=cd{oMLDV}vh=KggPo+JJs zo-dxji^bo@OT@p#%fwgX72^5lx^ZBY_||x}_?~#J_~Ce+cq2Yb{35(T{6@S<{64%z zd=Wld{0+QK{4=~m{5O2Ac;0!ge!9h{`1iZ2vzz!!<1k1r9w4qqmIH@;lF z7atIR6<;a-2|gtLGrmeZr`6TZsQ6}h){U9%eI&n&%sN?|ACi@-+@<% zFT|_FU&5=!Kg4Urf57X+v(I<+GfRA9yg__Nyh;23yhVH#K3n`uyiNQ{yhHp}e6DyL z?-u`kzUx2diLd{V^ZDX0kY}OzR>Ut7ufmszzek>B;@{%S#j`GO^*3l z7hfe_kB^F(%hxj_bxb>PVzB%44z6(B2 zJaD0FZ}Y{EA%3CwS@lND_$u)jJ}Uk=p7qbn_Wv@TBmNPdFTM&d7GL{f zS3f1QJK+`LHF%ZyF?hB3S$M7ZRd}6vH$F@JQM^I?MZ8J;eY{0{7@sY^)+Mff z+QjXBBYOU5?;Fwkp7y?xcFrH|JxIkDx#NZ2uPmO)@sW6YujW5_-m?k!PM`f>7SG9Q zo+7{eg@HD??|BI8)gkM3B0g8V74OFFy!BcO;`iYt z;*0Py@i#ml>p5ckUPf`3>)&#zH~T(??nfW_`HKR>ZEyRLLE_iC)a|FSc`nZ+yvTR& z`!Cs{vRc~IQm zAEkM=Bz{=pcgIJ>?R`@nvk|nZ@ORG{F5@`_aNTB!=mq1D;p=z^?o_Mc01_Wtvz4!EamUKJ+mI( z!n?!=@tFAUcn@yxZ(09xw|#phek(j7UWNCG+q|GS^-w@P*u0>HY_BT(WabO?5x*6F zEAxeh@%3^0F0j_WUBAt`#nq3shxf@7#Iwm`@5?I1z0KkO>^NR7KItI0zf|Hm#2@C@ zgZDltwpWnnq%Ng?l2Si6;r-$d;wkY2J}CY+J}mwvJ|eyv58RR2e)8MgcFz{y8qX8o z6EDE6|2Z5lmiR`zMB*>POC|nByj>G*9+T;IcQ z-;>huLk;n zP1+7WU(>~FJAZ@yMcer&xW0$bzC)+^r&AAeDNiNkd10LL-0k-Rg@M=?Zk*selosDd^WyB{04lP_`UdY@u%?t z@g%-d{8M~L{8xOHcaA707>|nYfVYe9k9Ue6 zjdzJR<1z6o@E-Ah;c@Xt@LusHctZTYc%S$;cv5`A)vkW}#S8G1_;&c9_&)fs_>uUC zcoQDDGqc@Zif4=4b(KnvgH!0Q=4|QOLm6)4^nsI{ZRW3k&at-eb|*#$4j&D9+qq4 zC40ZUj+gBH_Bvjw@J>9_^`Of={buJ{&-UJXU0-|ey{@ml_g=prx2d7p8cu+2I|4PyzKv8d~xjZ+xL%3h_~^Teg88 zWi4ll@u9Z=?{IDZYqDNCzWQaH^|J3z&80jxzM8gl?DALp{eyQEf$NRdkDZR^iQkL| zal7vEyzk!i0s6fJ<20KGUMc;L%>xgK+kEL7ahn$%7PooP_2Qp+Co<{w91*v9(T(CZ zFS=RW=AXBU+dT8AxXm+f7q@xlo#Hmnyi45Xna9L!K6a0|&Bu<5+kEU^ahrFY5Vv{P zed0F1Iw^khhOU3^$8B6>^Q#AN8`s(V>LJ`~-u}<#R|oEL{jJ5@{OUa1#&tHox_xXrI# zB5v=!Ur9f2?d@M2@6;DZTss*d-o`oh9)2C?tn&N4|MUJ=V5-a0ben6>HqHr6aQln) z^T*6_@q;qXDSXIfk;jUp9ukGKy2c+%az6Ye^ zoF(Iw$G%TgL3ym6pC6|@Yh9B*Zz>9e7`N0=Z#&?fcnN+Ko)B;Iy)Y2^`Yk^)!8qq} z-@W&$N&oXQzFhnxd_a5^zEXVc4tL%+B)$p0N_;1LRJ;byy4$r+JDwhc=ZK$$=Zjy3 z7mIh}CE}0bW#TX572@yXRpP^VwfI`sy85XVFT(4@XW+BM?fHcUaeGdoN&J=nx^~`z z+qlA>UueZ`JY&xZi%<&7v|%(z3lmgh2r-7!XojnDd!U0%4yFL^hvxu zN01b^=Lq`6?Ky&!xIITOC~nUY42#?I0wdz~yg)$ir`z)a+2Z!RK%TfgFHj(E&kF>_ z?RkMxaeE%5T-=@qsT8;8K|%J z#LnX`#v|gjoOkPZDq4txpj-A3_$w=(}hkDH%S53SUL?Jw(HmtJ4* zegyMvn#r@D@40~_$8p==kHS;9?eAyct0cY+&$`#un|C|X|J{P;;MNa3jOU9#j~9#g z<0azfp5p4W47c_Dn)q_u%CqM6Zo5}Xo{jL3#FybU62CVd7C!=yKA3r&YVzItzVJ`( z`0EWj{ohT#7X@mscJrOA{OfJw)~lcGZsXf|7y(hUmE6G#Ha+Ab&N&IJc zOnemY5kHghaNsewzTPm;|E=HY>Nzg)rM?#i64Zk?-12{Qz83|;QV%xX&L_Xs!wKZ? zmHe%ELi~T<86=O*+q{nWK8c@)C&iz_`^A&Kd-H;RcH7s+Y4)C+5X-ge=Og4vNuG6Y zaP>AQZtvBpCXZe3Dj|MY;&;PG#BKghm^^l0AWVEhb@#PZ#rSFA-rW2O??a9tt?You@BEC`L?R%gxDbK^iH%q*ICv=|VUqXBV?K7Kte%JS+K;kOb9|rNY=D6+E zN`9;7X}){cZ)Lwb#P^~=jQ+&thg?9OsFbsv?XL4kJBe?X_e_jn`mu3K5AlI3UHh@|VG<9DU&(Wh!TfvtmbL@!?Wxb*I50te z?=a{8CO$*|K)lUke0HLX@4&t3CH}AS8W-P-Q?Ht>WIHy z-uO-Gf8Bqkx3BlzCH4zD&R)Z~Vma$&{o$T|d~Tp$^3>re@l)|Z@pzeA-xT?+exk$= zOZ-jvi1>Uw@KEOQ=s$S2c)#!7c>&uuk9z*pckj47?2gOT_`t8Oob`;~to@Yy=DbnH zb-Uut;)md^;wR!!@m9QD{C2!k{N5*AJLwW%KzvO68@va%ar=Z(w_b~ITi*hFndF(e zor@o3J62I|rCviyACD>*xb3nbo`0!xZO>D0a_z8z`VSI+pzpbX<+9x4@B#62@Rj1v zKkb$qraZRYuVH^tpW5Q;GeW#whqUXKSzEdFviASKegB`H{@#|@Ezr!wa~eh^ZM0e=ii1rbBW)TJjXxi z);Eb);EzzAz-_KPp_AQT*nNRG>t+4tbIgkv#kVKVn|K-dXW-*KU-Ng$srk>MoPFfC za{d$ZeU2-RTI8S{8D^W{3bl>KDWJW zy!s%XBc8zX#oxw@#lOT$#8=~G;`v?f_+BBtHC`pYCtfXnI9@B>h}VfA zoO~wb>EQgx#@pR2w?>w`^cL68^pR(0%J~@aVTrf-ErBQ8df9lpkNA3tU(z~uKlUN< zJ;d8_Y8Bp#Tl<;#FSlJ%oG;jUaRok%ms9=-9&FDXANEal^_KH+=KfoJhbw30lg_>2 zjsN?Q_+o6P^Y8}oyD4Xr_*2BUi2vJ*PaijjuXV?%6#LN!Y{v-OH$weP zyw$}guXpiruG4Pgd3xM3oBY;(s)&!?n3?}5KfWl?NjtG|MI#;)KNpYSrIhDRJTCE% z;0f_0_0UE+ZU23S_{Zsg?0h7f`R841FI%tA$kQQt3W@I~-i}kF#Lt!b-|aKk4mJP! zIj%i-OMaWrKTq<1=9fP=Fi-NAl4rj7DC--N`kCDA_V=)Of$zD2D0!?Nw(&gOej;-- zx9=guFOq&~AI8HK^kbW{9jn=|mq>gg@pZ&oKXVlE%Orl~t*$=v&UgLEw&ZUne!0Z| zNPHXl_agpE;s+$YVZPfgE#$XxdpGebCH@@ZmyqAuZ3Fc)B=JR$y8Jpn;W6^BlK2bA zGb(-@{mc-{wfPvG#Aiu+sO@(3mP5O;dh7VNb3O04mpq-a+?l_-_yU$Yjrv?fe3!&e zrkpkVx$(bu`t1MSBt9nbi^nO?An~md|NAdvm*)@SqY}TxuP%PHI`e!a|2EgZwM+cq zi{z*L);=eUGk(~HJQ2xLMm=b~g@|vI_&tap9dYHfc6$Wz%@QAF`=)Z-eqr-wpS;kO zU$<`)dCDcvjDNZKV8Z3uo9%TO@s$$)#!aq0>wJdVsd6@W8iJ$P4i;psn zvio}Ri^k5gggimXv&AhgzM4F{v0k4%J9eJ;$g@!Pqha3*1EF8txHL?j&2M-8YLkp_ zkK%gKeD=F3#FzW=xq(HJe}8<5_+H*XE`9v%B~LMVW)Z(k;?KgDi`#b!mXpWs&wgI% z@-M{gI=MYZtnv1~4vnAUbu8&}YP>yPtnv1K35}oSb)@M$8sF}(S5csy^V3Px!~MQ{ z*Rj8I+ohaw&Rf(&Bj-&P{{`MG=UJ=qR`Ct)aQ#D6d|SL-d~du{{7Ae@{B%5qTRAVs zdnEoAJTCqS-YfnBo)CW@?-TzHPl`{9xq9fwt(+Uyrnv*#y~TdD0{y|9N*K02VPz@cK#QZx;(>@=N(+H%gv!Y(M@Li znM2v9MAo*Sr<_7=gz;^*S^;vINI{4Tsvyccg4 ze+_RHUx`P>f5qFy^X_*0SEu-vc$at;9uxmF-Xq?K$Hgzkd&To#aP1+1+j-MmKfW*! z_|0vX8rKX1ci|E7xbH=Q78yT0i?@m|!<)t5!)J>R;!*LR@HX+Rd9I!ZWc*O%yVu?* zzg?HJ_sK+M+;}K?R!SawpMzeP+hUySS}iZR{a3HcokV%&%5}LpEI0oV*Z3(3|zny!-9{+bg@x>CqJ zr`vV8?e9r%m!d!lw|?muJdf>IzvtN+sCGyzymWO$dfnE?P_nlUE%{AFGgu^cK`ZF;yWe&Le^KW zhn!A)m&DuqI)YER^4Rh8a^hnWZ}0J#%lW(AZ@Pu}9*MX2d+7C$M~IJ0yuJ5BuZO%q ze6PeG(&y@5uZQf<_DV?n`{d~p--UXMP!B=c?RUf{CEnhbqSr&#nK1V8ebRldJJ&fZ;6Yat7`}{(Dj>PYM!Pwh3x5w4z zDk;wiUc*kehZM)z5bf>0aq>(j&yeKV=1!NVjB?s_mAA*)j`n_@DEpTkkL>+C>h@lp z1o1mjPJ6G8o{!jjb@Y71-m9bMBQwt%yWV#9);E2;YhK5@K;-?B`?&?b&wiKvwA+rh zT~4{%<I9p@dC)8=>Ok5m5_`t8jdx5#f9A7S8i4TY$g0B>Bz=y;yz*mWP;-ljC;#v1+ zjuRH)IpS~P`Qn3kvG^Z&iFp14u71kIx4|pKLwJ?=5qP!uEw8xaV=Zpu)h0jQJKy;| z^L*z5JR;tXC&X{^y(rKj=Ogp*Zt=(PcJTz>DgGKhS9}2P693Y7@Axa@y}*O%diLhU z{o&R(%6NEmq1#`U&_CF9nC<=e+(3!snd(h2OZO*w9`tO>*!yEOdFmvOy`Ln?amud$ zA4U8uiJ#AMdnS1YIPYiuc{A}165l;ed9EaWA@O!z(~U2|y~X*zI~v@2>HN%7xlXS0 zGan;QzvS=32XSkMN9Mcs+064AHlBaak1q_gbDn7NUrcrJ^%8H-y)Iki_FubRw3_&c z#79nZ>s9qk=J90%%F`(E8--nb5AhY$&&2uZc2yJz(GG39Z0Eao+>t!?{J55LTb5fR z@zuMGUCzCU4@>-7qpp5hD5v%R`%<1EssAJJVchD!!5cWG+qssriTDwTZ{<1tp;lL) zTTnlj5g(9p+VlQ;U$~3-Y>Bt`01UEyZM_~QK2PG$9&qK?^PnZf7fAff!(F_d2fasp zP~ro$e?1QxCcaeSCqCr*`Ev1DEVr2LwK4TpOnjxp?}&Fx{eM^H%D<5MvH3GK#LtuX zVfqt2uQ`_Z`4WG?IQ>Zr@of@s?^)9F{Db%oiMRJJ>3L0z__-2q?`6{Sn!}EB?O)Gp zo*++?-y-q$UM4-S`Gok{5^wKo(({@Lbryd}ifO8n!;j$LoN5nmzkC6=G^>`J>06R-7uJYFVw8p#tN&rI^1H%^{* zJV)|O{x|&|$8l@_w-cW)@%DbF4&rUOzm8K63;jHWfv{Y+JaD?(@AP@Szv9{H3z*(- zQ`W1}yP%ZrS2f<=qdq`CVDZiD*Q5Ak^8APL#8$cSOfNpf`i5m3xaK3Soz#mL;1Tid z@ka4#yjlDxyj8pzkBVQ3w~Kez~tEZVE4=9%kaB_>Opici}ocE(%i5c71yf zJS2XC@80(M(Y5Dp^8Ca1+(3_P-#hTQ_(Hr_{3Sdg{vqBc{sW#A&wkX^bHDh;cuIUn zd{F%K-`#c}7GH>uh#x?nzyq#7v2ofgJX`$Jr(J#>x4+8s{yJ_y)60{-4pUz1?iU2t zbQ|Ea8(g0Gv_l*BUh9R8)o#DL#(6XGyR#kFq@C#T=%{h>Tww4SI*^9{=*iqe~F*qdAfau-*xRXZ-QI!qr?wL{D1J2xZVF< zDPDMhTkfFvTjUwWZGEpe)WwfT{Py^$_^0FvNIj3>*|_DOve4zvllV>WeDNLd0`Y3k z$7(+(jpG-Sr;|Lkf6W~y-rl!XzQnb+eA>hP~zf#UV%4z*=-s9=*;vJ_>U+zbG z&Di~>y8PAD!zOU8AMfp_lE>aJ*Fe1WlP3`0FY$KWAV$26S6hisNxWS*h%R;Yzdz-% z^FAFXEMc^f3*Ls*oe4fPHbKm7JxN_Qg#8bo|#h3%LmK1lu$?MLfvlstn{|Mono*2DTwxcz!q z;_W%pe#&F*p_KR$iSK^gwYPlA=^ZKk-wcPN zPrp3gaiPhz|5D=DkGXadr{A#luod1bUWF&b?LEU)lxIWo+w~~*bNupnYa{)@Wq6+W z^>|Rc8!s2X9}kH?frrIUI>pt0AM0iNk-fKPnYdjyt7Cm_oNU*})SqX$5m{~$Zx;Um zkBWbZcZ&av$HcRqOt;&jKwNy_zixe#vR-x^UoLLfyP8;EyH2<`;__%awD)FfJGA#k zc9Lfr?PNW_oP~itX`hGr?#-W}Jk~z{hNr|Y#0SOgy^eak_}SYL(&MrDl*jhR&u~2+ z*?U_0q#o>jEP7n9_pS^PZ|8&dew8x%d7H0p?@_75E2tlPU%J-kVfnOMDUZFEN&9De z&yx1T_Wn=pZ|(h`+OOL6A1#l)zf|kT-e0Qyq`kjX`$M}9rujQ*CjmK*zrl7NmUg=W zUnT9~7kpGax7YRaS<-J$$8*GY$MeMx!;8gF#!JL6!pp?%`hNv({gU06sT7|>o+`<6 zKVB`q7_Sw78?O`p3ZEsu#=plNuWm4oKgf0X`aXC3vg3t4H_?pSys0bbXS6+R?d4C8 z>q6&c9@mccJvY$Deq{Z|8F*5B(PwTy>KA{v(s_*XSpV<}<=1lBdquRIms8G0DQ7R` zNy&1T;e+BSd|2GR_qvF3+BnvpAJKA-9_Q9e%ejhjc1k(7f6DC_BeL9m@BquTdOiZr z7XSP}x7-2zf7hwDa<1jH>!@1JQ~mtj_fMsqJuEj*mb(Zq5KrPkar;hd;3d~SZQNzg z(P%mCIIg6fl^;s&*-5xI&-v_T0f6bd<<6qCAoVFj$*>ddqe9t>@k9Ga$ z2tR*eAiFhlKWb;WAz5xWULzjI!{SRkAM1SfW6#sq2lDp0)IZWCX+WDSa-KTCc{$g$ z_U3pOeA#UmyWV~n-hkV2){cYoaNCY{9M|n-$0N;e@AnIl$HqT)yw*I&c;!#`OXbw3 z*NynUJAKa$gxFqo-QWYf2Dkm_dps;Y=^594>cxxki1-e8qxhNBTY~kn^RnY|Tss-U z*QWdnW;q|hi}C02{8!v|vFq(8tQfn!?eCYTFwiLVGnaBUOF8eyTg9KnqvCJj?c#%Y zr}*!9m$cQ%>-uK)|jyhpqZ zkBk2c?-h@GKGy#Dy65TrG5E`6ZcW+n>n_IEyxjNj1ozjrKjtlS+ug2P{@>moHUIzH z{qaz*{OR+c$TjXdm7T9$?|We&A??ui$7Z&>?vJhFwm(M2ZGUVRxBanG-1f%`>eGA7 z)BpYdy+6K7J&Z^_*#6ih<+S}VCT{yLG~#hdj-a$L19Wm%I9@ zCcdBeR*ARy#=YdX-F5_>*Z%lVC$Cw&}`-`nO|;6(SI8PDVMoi{VCw(rd5)2{5ebF0_P z()AM(x9`mAa?kSe`}bL-pIqp>H=dz?w*C4gyhr?rKDXQ^mb(G_(T9G#_uMZ1p|#tu z@tF819v7do#O;r9mTP%7#utju@VziFkN(i^FWdEb?Z?h1Prq!(>&Y{lJf*DH$=uIs zV|~5TVgJ`po|NRV?*q;!zKr;9h#!>r@xB*q&s8lsWS*bFwu?PKl|0tDjsNYt$qC$^ zbGPS=`lX%N^Fy8h~a^Siu%IM#V+)(fuv%$D|ZxbNP3Ii#JOf+xf;!TZGR`L!}B zk3FYWjaxtePx5Fxx96UUiMRG}uOIK-50&=zIGz+=;(KABOV&5=qHCXxuey4(?Xn@> zENob7lJ`BzE)4&Ms{ z3uS$izI*e9WW7Gatax936hKF%Y==S#dj52E*X z?EMwm4&&#${Z7YwGX|V%J=ebPTsY&*V-SBQUsS4sKpzMj_qYT~OU-sWlR zcyEK3+;*&$c$=rK*0?y@{VC@pgY)$9vy;4PdO}(UIgSmOSOY94zYww3bO@#utc@;u;| z(|eAL^T%e&`5onNq~EjsV#3R=eKtvdSctcX&%kGk?}xXEAB}g2pNY>EzY6abzYU)! zZqIpTalEkW-V40=v92@N{KM$muHUxyW7qd$xNUd4&#Ue54Zl1^fpR%M=Dm`xPwzS# z{kfgz*8A=aI>>MR@acHA`0?I>KHYAUxb^=wuRzOb-vQBbUgqa73RFlrmr~9FDdz^u zTzklq@@#__h}(BCNAQhlZ+4x$;2l@bCHN`lx%JZWk9U7zFMqj3fsmBH77vU66_1Gj z&G*8&S+734RQvDxd`svPW69w{aou|y!$oZ`^zl~ zG|PIe#-rjnuco)7cm60|=zC!xfA(^}9M(RYeD}U1AnSE09umI^ufeT9xeu=u-_>it z>Gs?~J=l2fWv`;r9>?u^rrp2O`myiNYCG@sm+O6BM%MQQJTCqwo)G`Yckh0d)KB?q zZoddiJ?w|qiy!6rSpCoGV%b>W;Z)~KT)_>Z4A03a`{6-x=+dL)BW8Xh&C%@gN zv;IxTSN1(49Y1UxnN8Wj}mW{AfJuUDw_${!Bavw|3Ho=ZW8p=S!Z4 z@M7`j@e=X>;$`CB;uYfOvA-;&o!D__t)%PsQnJ5H^}R6AEc?Y~cvRfx4OX#Ss|Wi| zYe?L_i&`yi-?3UwIjw)2;Vn0P-LmP&p=Wl%X#y?V@zvD^qoHtxMuao6&g4c`N zeC*(VUAwj8$PRwI_kAU)hY&t2ekdN8@A^-x=VMv!ELrZEctqUh`|0*=BYz(Gt$&__ z2gUEg%f)S;hUR~i_>jaW@UZynctrd|-@Whav0mP7Cja*}9u*(OJH@BG>9%7`ya{N7#JVCftrkHg8t@^KQR9g@Mpw z*RD#b&mSYMe!{d{>u)C?@4Q}oQ#>O6j+Z~(Z^TaV9%S==NjfHLCvnOd^#3*xu=xXt zYv=j0FK+v_mfw!QUF5Or*mnHQBab(Y-~ZY1UGwCDoSFPC_mx2)qRo42gxw|QSWzOwmC>URF6dF*^mm%Gk#*FLkUH*2?B`0hPt z!S=Q53^vXmB;NYxlgN`NdF=W0ruW@`S4F$JkoW?L|Lb(O9rZr-4a5f}{uJU<8 z(&JvO|F?**l=w~dbMZaYk3Ao4?`hHX{enCrvftT!9$oHg;sdf=o97c^xpuwo{l{H- zbh#V6?b_j>EZ45v=yJCuepupdzE+N`ubqGCa`*P~r2E_QM_hj!o!}bKg`SUfe7SKP zxA)$654d*zzy6c?z{_x(&usI?wLJ6u_43a9UduebeC50MJ}C0oe!3bj6QBBytIrDY zvYD>_hwv@gUrzH5Wa)OL<+Se?YdN>_^A~#egEGr`GRv)!0=vG)A0dNuv|yboRbv2oqD{&KzX+ncW4M%QpV zz>#?3E$21t7nkF~<(d8n9>u-l`M>w^6yA#4^OY@>$F4uyybEm)>rwt{iMQtyHQt`j z&6jw4zE9&nWS+)K*}v>PR~m2cH=9Si%}clUR%!gC|E9OEci;1MS8rAicirahQ#Y(| z+r|1ZyMEP#+wt)bZvu9DziyWJtGxqR+FQjJ;8F1b#@p@U-xJ>{e)EQ|oL#t;=hx5O za=XQQh>wZS^y|TUf4KMoc#pW9|0davcAjF_<%V#t8~1-UK93f<`n2mLJ2#BI|JJiz zTG=k;&g_&c zzdbi?_dPY<#`C&dJ1?jvkBuMfyr2cQ@*FlW_V%@Le!rB*?!Rk!Y`(FU$L?$7f9%%F z%47F6v^;lv9p+faUmGXSCXdxmk@r7i#oKsQ%VW<^X?da?_q9AWA5z!Xj=#fF9-IHE z@z)*h%Bkgv9O7KdW8)<)&v)JdYpnIP<7_YG*_rlc^F_5hcD_?B@%DZ;jZacPG1`OW zw|N&DZ`Zq$w111Y_xowQJr`3!ytNa%Z>#Zl)Bhyse-a#jU#Fi*O24rZ?-&0CPl>Pl zo*P#Tif@4ri&x?!;(x*eD_#4y{_q4mTRixl+rD|Y^>619pD*!;#h9-pz5p)~?;uZ^ z_?>u#_!D@Q_$zp|cnYr-{}HbfpZvb7=UL*L;tk>zc$4^nc#HV4_-ygB@iy^xyhHpp ze6ILoc(?dce4h9R-j0yof9H#Tk1rG-AkQN4@9-t!69-&%GiIczq;*i=NfP4YpYlG_!wu56=<*7S9*Y`oOi@V(~(} zM0|U^OnhIw0=NFN4zHB>Q}B@Z#dwYQ96T)ET+#-IKpzRpRw!bx?H;+sCle^DF4jur`~i9x82uq<M5z6EJ(f`?XbuG_h{(k2@ulKg=uR4f-<_uTJ7Y0 zd?ovDO#D*fd&K{V$Hhm;(<`3yq3g#I;z7JmyaG>(*Wmr)v+$I7Gd?KZh7XH(;UnVq zo(J9T_MQiA&u5)E_I_u_Q*947-S5V$+Wzgm4Z+V{``nl9Yv&!>9@anAEjKFhHt$j6 z=lknh7#O1cc-^W0`;>YJkjL83FL<{2IvaqT&u@>u^9BHpf#SwE)hWyg!C#9Ke9@#nMLpe*-~d2YKTWqoZN68gfG-|mZ9 zf1>#xCx3@kw`6-+KQgR8 zKW4T=J3kFTK->Me)Ih-zxZL6U;G%$kC&7G6g=-Ym*4yxJcQdg z>QcN};;+SH5`PPx6u$=#jJo9pDbJ&L5Vz$%gNG&lCA?YuZM+k={^w&nF7aRENs0dj z9~NKhGq>IIes|^1qx|dPLEM(RF&>imt?{t<&Ui%p)xW#rW;1U6Vy^QT_nRhv?(%e!CrJFEcr)=~{02OL zTmI#ET=EnSy8KD;WAS0}yYakhT{*2hpX24?+kWBlhsDppo5dI4ow$|%S3GcCX1(qG zrOV$e-j1ilU&F)KXXeTO%H>JmwqEskO5$(F!=0IVR$3n1@{|s_{3(h5J089vGtWXi zfm@yt%Oml7eoZ~!=<-#T%io2k#O-=x4aY~D4`Acl z7Tm^5Hm^XBgLXYLx}iJ%+WEUZ@2T-Q5w~CKa&26y%eDEUnrFaUuk?9A@ZIHs^v_G{ z|F-_tc@)paXX2gW`{FV2Fdi2_22Y5eiYLX-!&BmI_^|j5c%a{{mzDo^JWu>VJSg6a zmy5rEhs58+!{Q&|5%D3sS^O6~Dn4=8ZI@2*sd!9$Q#>xdEuIiR_Y~UIAMQA1^|p&2 zpBo5^AB5M7AA?84oAE~R%kgIMoA6fg`|+swBD`Jvb-Yvj6TD0OM?5B;{hd1w_J~iz z%}j^BjTNS zqxju;v-lHutN2TJRD1w$7ylOT6kl`1)mxYN26#-o6z>t=9gmA2g7=Cak0-=i@ILXY z@TB;^@P6@!@RWE09~6HJ9~S=%9})ir53HHl{&RkD^_eZcDV`_3BVHiBA08C1$4kXe z!^_1l#w*2dz(eBm@EY+a@v!*Ic)j=sctm^{Zxo;KtE;zW@eT1-@vZTwcop6*ekk54 zegfVlehwZJZ^wJYZ^h%{597V!&*2I2<#?a?=Xg^5SG-?*o!?x2ro@Bzp!iPsu=xJ? zi1=Uez=X{9--Kt2UxMd}--s88--8Fmd+}27SMYN25AjOz@9>a#)~Ktu8u5+ru=qB3 zz4#t@L_CZ)il2x#i=T_PieHUK#k=u#@kj7Z@&Djm;&0$!{YbiBjW$Y16i5ve;J-F{t=!h{yknGzSbYE z-h$!lFu}V%oEsPsFT?|DWw!q^JX?G(JWu@3c!Bsycu>3*FBQKAFBiWZuM~e24~Z|q zYsBBh!{T4!_2R$d5%Ih=Tzxi*Z-F<9&%|5B55%M5v+#EDGw@FF%kVDof8sIm9=u2V zX*@3e8s01ZF`f`#h4+b1TGQ2AQoIQ77vBy~iHGn(@x$?9@xS3C;^*UmiJ9%c1J4$} z1J4tG3@;FW0S}7zp%Y5--7P#CO5N;s@dN;>X|-@n*bH{Bpcm z{3g6r{C+$tz6fs@e;w}>{{-(6{}GRgXJ@&3>k*%Z$HlkDd&T$06XJDvpZLjmQv3qE zU;J7;B_6{E#TVei;xFPO;{U}1lQP@?5S}f*8qX77e=S#^1>)23pm-%-Dt<6tE`BUt zDSjp%5^uw6#BavK;t$~U;?Lj_@g&|Tz5;I+{|RpuUwfjfx2SkA-Yz}^?-bt$?-KtD z9usfGd&DoqP|kDBgvaia&^#i$9B3iobz}#8==o;y>bH@k!aPKI_E`@rd}g zc%%3pc(eGSc&qsFcvSpsyj}bXyi@#Uyi5FkJSP4$-Xs1h9v4sHz2ZOM3Gs<*yZY=C zFT|7LWq7~%o_I<;j1P*RfDene;3MK!;(@g@+kY3HE&c$WC%yKv|G}HZm*cJCpW#vQ5xiY|@;a_QJH?CfF7fU0n0N^95&ttD7jM9O#m~hP;_Y~! z_`mR^_CDp2P>mKf#B^SK%Y#6W4Y18JLpU{UZtodu6u0-AHH)9be7sii zIg~Ss+q~}k@OJU1@lNsA@hf1Bs&`RA#9Zt&w`%qM>tPlTKY*K~Q-%X9I~dpNi6P5%`Sn!E78 z?RdD##V7HVmM05mxii*t`9l*k{Q^8MJJVmlQ)_2>?)olId`hPO6_2iy>38Gd+)V!( z53c7tMEQ4|>heeM2=#Lzo|x+5&6nW84Ksb6e3vI$;5i z{~I0^KL_s=zZ{Q=-+;%(@4yq{58+Air}32dOZc$(yLjNe%=-Bh&lCT__uN2vPUg61 z(kAZsSSdaY4~fsfYsB}(!{SHc_2Q@D5%Ej#M)5g#v-o{@tN7D+RQz?kU3>-JDgHCw zB|c?SS8p-#P4OP_o$$E$0eG+Y(Rf1q47^YLay%)1Gu|)$Af6Imj1P*xg%68=j*p1{ zh6mQkY;UL)3_5#BGpEuIqJ3m+6e93K`x86Oe95D%=I+5WG`v&HYm^TeOT3&dZ+ zgW@0IrQ$!}<>HgJaP?LxJ`E3v&%kTM_r=5FN8PzCGu|aWrNq@+Ong(kM|>wdE`9*sD}FSd5I+O&6Tci!irL7$Qv6mtB>o6q zBmO)d7JnD77yk;6h_A*Q#iwrR>aAIPE4)>FcRVV7DBdo9BHk%}9^NH>4IUG}1Md-E zfXBs`;=SVU;|cL^@jmehTeFBt8SL5#JXNiyw*Ci=T!^#4o`c#pmG7 z;`iaL;!opI@z?Qo@fCQd_|JHk_>`?(y~V^g#e2ke!sFrx;JxBU;|cLI@ILX&@uc|8 zc)$3AcuIURJ}CYcJ}mw@J|g}b9#}84{pW7u>MdJ*3p`JJ7ra3HU_2;(99}AZHeN1% z6<#TRD;^Sm1g{Z)9uJGZi`R>Pg-66!75@P*7oW79tG7z=X?RF{23{k+FCG>@60a9O z4UdRlf;WoK!JEbJ!&}9l#-rk|HM9Na&T#dXExrYwC%y|_Abv0& z6h96x6+as<7rzRx6u%V@i9dqZh(C{q#oxv2#lONM;;ZpS@u}sm-kQa?!du06$D`th z;_c!m;+^8>;a%d_;4$$#@E-96cwBrb-Yfn-o)G^Q?-QS}gR7sU_(piY__laTd@p=Z z{BV32xBJ?S_=xyLcp%@ke~Z5n&lbNA&l6vS7l^-!2gU9CjQV~^dta!&AJX0juJ1kG zU@LdOM&BE0@1NB7+1mSiN4XERCHHac{m*sWSF-oO+jq6}K9s%ZQ}ft+K1;|m!}5>w zJyv^P?h?vl?;Eu5h3Rq!{rdFYH^qIEI`Z$Zqia{CQqKqA<>JTSmEvdPA@Qs68u2^u zu=wM6z4$A5MEqmV$9iw)w|;z4Ab9=T{+inR%-7i|y}m_(a&i0aUin6@JzKoJ?<@4) zJ${}E)SJEUtNJ+?Z*JcU(0Kb^fV#c^R`b|<$uz#qD}Q?4MfgH@|1?B->^;4j=Zc7H z=j!%8VaWT#FZDe9NM=3Tyc*5(Anzqse;U{PUr|5bOFcijz&$TnCG}(9 z6VW{Oo_t-d-M`j&yML{2-xJY1uZ&av!V219GP8c(AEzGd{=4S?iGEni6ZZ0__tRBU zKLy>cenL_|zl~E)`|gP@_n+e|_jBGi9wmQ}{cAe$G2Gr?ZQm2o{`PXp|C5w|q3?x( z#QW~Pc0T#P^gTCFO@2F`uEuM{?Y-z)Z+2W8Am01(sQ?{*Lt(} zz3X!GcXr!rMAmmt-wOlFS>F=M^YlWu9qTBM^|z<{@wtI|S>Ma>i1^JcHz57Y6L_BZ zJLGAU<=XcYbiM3&t@U8XYmFadx%n*D`p>u6ubX7K(`Jr+{3`L>|8DGnYbRyQznXin z>#xcS+;PX+NtGY(eWyeGV{f36o|h65Uxn9*hshHbKM}7Nzm)Ps#Lp$ZU~^YaJ3e;! z?u|nxxZ`p)>va$D#l+is9r%DdUWB%Ad2D?3H1Q=8|Ay~HfxJ$aKacjd0uSQ$-mstW za*3b3i)+sz@lAZs4V1}xRp8}Po^76X_1{GKy>80?9YlPk#7FRuYCZNIDZy)Y2^!1Zs7Cc1wRX1R^@CsuDK z;Z4%dT!6QTUysk0JX_xB>N6_w^N4R3|2N(#{u+I(0IWE3A-YdQf zo)E9a`^1mOlj7&%{o>c)De)LSDE>G;EdDY+BK{E`D0KUy_4BLnZ1J^sclDDez6o9+ zz7rnAt^L&CB@%xOUM7APULk%JUM1d*SBpQ2*NXSWTsy48t(@!8KI{(axQ zQQk_oAFZ6^_M;z&Z;(9MRrI&w8{;kFJL0p&55U`SEB`FKUEPl@;jc$xS%c!l_0c$Ih^UM+qKUMqevUMD^WpC#Ud zH;6xjH;KQAw}^j^&lVrW+r-z~%hg+l_)*upexPc)+g|H&+&m3$*vfehzCo@#{)UO4 zjPKFse3s-n1lK&r;hN{Z9+#(C@=O~iPuVzmcA=bYlBWjO^1RG)wLDw;_2%_&L#}@d za=x%9^*NXNwEpLCyi4l25s!&qg!hQwh{wh6!+XUS;R*3K@ILX+@TB-}c)xgF$hDu8 z_;h?wd^dbp{7`&Eya5kP%j`GK$Fs$+!}G-N#tX!I@u2vtc&Yd&c)9q`c%^vG-mZQ^ z;+x?$;xqBE_~vuR-XF^*x&1=h?F&oC-XGh7WABegtvhy}ZSEX9&r2^k*Zt^_amuq3 z<=6e_mY3Z17TvF3Tj17L*XwWDW0&V(zuvs__pdYe#|G-NUh4A#JR;tSH;UhjH;XUA zTgBhRqvC^jyZ9e?r+EH8uKje0Z-d9gLwJw)5qMm@3GWrZ3{Qx6;eFx{<4N%)c)$32 zcuIU29~7Usud9b)@nU>Ld`CP`oY`;G;MwBG;(6jNcmZzx`SpujJM7{(;_X)c@3{`= zy?7~p!9>@dQ@DL!awU02aPKhW|0=I>d9t^3<=+s$lJo8$zCQjB%9)V!;+XG+f#h25 zyxxx2`F*ZD73A?A$M%2!CQqN_d7V51l4s-D?2l5;LGmOe&mZI&lswm6lauxHWh$G;&@O7fgSKQNd0nZ#%9@9J$(;$J=6ZO3KA z+jcJ^epuqmeJ=_mlJaxA;oRKTrJ9GhDlxkK6IozC#+9`1^_P6@La#h`)jNN&Z&KxlH0a@a5t$d_a65 zzEZpo9}*wHSBVefqvBaLu6<^0lDS_L;5p)Dc)oZDFBY%EOT-)TGV$4Xg?J}kB|Zj?YU0;bbOZhW2d?H(;&W#{7vFZiEk1AnE2V^1H`w9PyU-*Zio1H#LpGq zl=yD(pIGiZ@e1PSi%&VwwTFe`2NJ(XJV^W!@neZ!CcZQA%f-(oen9*n;#Z0vhY#Vl zU$@}H5`Q&5B0hPktLJi#BU^GD+2kg7e5uE`z;E~S6b2%{x#LScH|(Dze_+$h{peLZ zTYLqcC;kgwAf9`W+b%)z>3FI5?s&QQVR)tZ$#_WoBD_X?4jvZ2AFmf*j7P-Z#v8@I z!kfj{IM~%gtN3#(8MnOd>fh!Yj53~ICjJQH&+wnU3vS-e;x{6H=VmUCclz)Dw!t-i z!;4+}(fnJDh<|JF&o&5QV})tls5N_+yh^Qab0dbv@xZIoCW(C}+8>*9_uy`@Tc`psd#*J}mwQ<4Ila z6y|?c$Z~%rPj=ANj~##4IV9cAz3Ut7r(GP7{(h`muN>m-y2|BvzIYd2EdCH)BK{w| zO#EHELVO6X5?|vuSI%nj4e?s>ZSgws5I#%%FL(oP=LM(YjS_ze-Yh=dujkxAtN3ns zRPrB+w@G}1=VLvWVe^xd6>j_5alz&%2X=OD{lCpa&KH04cDG-Y;&$JBGw&a!ucuYv z)_(r?p0^7!_q$|T-yMjrl=uVi zkob8IyXz0L$z$i6?|CPf>H43CdyhN$zw7X7d=lR5-Iz$n_u|%mMrqF)Z_nKf5^v|T zS43Q%5N_Muo-4_j>Dr0Shy34jA5tEB{-Tn2%VWe;?p&u0@KmiSYM zua@OrO?$m&x5%GcJUB49A#_jJG{{ivY;@{(W;*)lA%PkOp#e4B-x_*Mad? z`nHO<&|gKxug2TOZ^t{uOUU0PzAGLRzw0)4eC!cFk@&dyR|{SJ_tMYX@n{s+^Ma}C zxp+M<*csP6`{RS;pUQFPk+AEZHU7b$T>eqwz1`6N6?qSSrrU|ew>{vzY?sV&<2h@) zdZ@?q$Yb+k^*qJq#}>Dcj~z3bw2Jbwzy)%rP}?V{W37v}$T zv0NL646(g5{vpb#%|YmBjU&6jpAqH&EoBNtN3krRQxf# zU3@9tDL#OAiGPR3#3!EN>ZeD18Xgxf$9r+B=l$?S5`PrFMEneVnRpw%T>KV%0Jr5n zjHe|2d3;d3A0HO~8Xpl~v)R>8V7tuyWg|QrxAK(XITBw@d(M~mzv2ZF|93nnemPz$ zdAjg2iGK*Mkof=Ll@k9h9ugnIYb4Jae|G&+t;BDL*Gc@gc)i4j@QCoCO+Y6_B-(cJTAT+-YdQjo)AA0 z?-Osrlj7h1KdilboK@rd|9^L&L1{;6nu>)m5p5|Y(UM{)*^y9SC8gR0=DiQnE`W2}{B_W%CX>|L%2Nuj~Drb({VDd_RxJcm9}N&;8o3`?|0D zxYk~44dUEu@M@Y(Q>8~h3IRt8@OZX5hB?H@kp$9-ZR?I-kU0s6_ip1HL&$`9i{ck}xo zzc25jOujeA^#ixA=lzxWeT@g6!oE(vZ+)wG#r}J8@Dp|X;rBTHsk~q6gnBh0UQ-nz z4|4vhEqDT4&gXXl?`rU6hd7=dMn2bpI|knYKE&XI;h!}4SI`$5{4a3V;3xjT@st>R z9Q;!TZw&ncgSQ3u41NRna)VcTgUd~WOWsZdUup2eI6t`p?c0*Oo09MM4}uqfZ-8F4 z;&CVY{GIrow-8*eyO!$~9Pmrva}j(z@Dsoxve;LX6d z8N4C*F2ny5w99^Qsn>tN14F+8`7AT^TcH2W&|AlF|1_`L*#I9O-z&+w^Wr*gM{^%C za2(p#xXy4Fe1Z#je93+wonxQ#mBer8<@!c*KO@&Sn(-Wg&qgDDxn9w%uUxNa`pfm7 z=Jhkry~*qHX2bu-8Jq{xzw*qA^Y#VuY5M=vmGxO851+{WP496&Wxe?CeNP78^9jdU zwKePIeC(5Vv43;$<1w!9YQz1ZJvdH-sd$WeS8zH1`P}R5W1g=YS((cn1ih?xa{ryF z?+Krzp_l7XO}*T&Hy--Bh+pp4Gt2!@?^eU}lcvw|^%dvmGUTTe{&JpqZ4Uit=*{zx zwXknD^S^04=WRLsWnXd34dJ?}??=Nro;-X+=of>pF!&nql?LAqzTV&m z!8aQGckpcnkM-dE>@xV7;QI~U2K=DGyMTXZ@FC!b4L%Y4PlK0&S3N&EE}jOjZt%$m zc)qG_a3A^x2HykT$l%|BH!*l)_%}CrTktjpzX80x!EXWYWbn#8IsaV^o)6x~;OBu4 zGI)FN;RcuMX;)%imGw@pr#%QR^QT--dl+1Qy+}VV z`19aP4Zab4g~2}rUup0|;Oh-ur2*G>qrvmRw;B9g@LdLP2fp9n-N6qUd^q@b2A>Rm z*x>WQ|1|hB;8mMN=OrJ!y1{pY*EaY!;0+A^4|pSk*KWvpYhv)m;LQzwDR>)$Uk~2i z;6uPW8GHhGSA)+1?_==I`UG0IpB!ZHkHLo<{3r0y2Cs(xGv440z^58~G<;?n{9f=< zgFgzs(BLnDFE#k>m{-l?pwv39uX$Y4bR2V2e_S74r_AG;yWyWkxw0>v555Lm_961T z2-AN7uB$YU`+mt0XSMYe$0^U3FyoZx+xteG>t5!1Z8qY3O2=Q(b@DIf;Bp zzzgAX5x8&gPQ>*(dm*p0Q*mB*5b>HSf&L@?q!_%1!DoUy2KT^+7yu{#Dd-MJ1J7GWc@vLc@POcoRdP0dH>bgWzoppCg)A zG@n=M8|G7g@7a>a-9c2i9&vr$DaO0x;aqUr;Fp0H8T)#M z&)^-vV+QXDo^SA5!7YPN1}`-DJn*=|p8{`X@K-gjXne{1Fa&y;AKuQP&%i$my{wy` z=Fper;Qz_N`}MCl&Rscpkc0oIc{uMaxPseDz89|MRP0|j2XCx7J;$#v&p(o%HpB~5 z=9MV#2JV5&emg0AE$g)@{S?E$J^W=~HyvDoi%$wX&)|=19$xpN+CNObv1;tU7J9EO zm+R=`tMKO?;st8C5$8_uT}Hk35wEFyd~Ysseh2+t!>85&&RYy|#<^H!5id|_Lw_;& z8iRKO4~%#QfqQGB`5dEpn1@(L&Vz#u=ycNS`=F5rX~zYcS2Qk`<=|^_@Hff7K;^HC z_J{r8dEnBHM{@WaJ+R_6R)R|=qJ)Ho4`jKd_R1aABg7p z5cI`{Ufsy$deBS$Ptd%gcDG2c_qW?QZ$*gz+#LE=@OP^1A*IBBIrt!hUk^US-~+*j z8~hIOufqN^Z%h$hHOe0VPZ~Z;z>5u@1|MzkH^9dm{6lc(sA#!|gdZK{RR(dt4T5Ms z>w(*!F?W#XbHF`t$-fP*4zPYX^w)#?;G(}7-1kuK^Fh zrQ9vx_7_o~{otO#v*7AW)@KpVQG+>e>MQ0FXFYHa+=u>raHlLU598lx#NPsX z`*qe^)wluLXPdON0lK*dr>+7J-iI#iR zE!-bGgIk(c)Su%yc-tJjV-DUu2fr}~zbyx!n1j#C!5_=PU&z7V&cVOT!GFxb)o|pw zE9bv2`hRuJsoe*9L^7CX3ZPdvu>KJAjWn;QU7A6^w?FIipuYzG!36e~^|U*9+Taej zJu#{u3LZ1~NX^6fWX;Xda%X8?QJfFv;7`KG8O}a~v7kN=?v7%9IqJ0uJTUly9R5G% z;Of?j<2*t0uwG6vmn-|CvvTNLL+=^-YjfxaK<`7JhkA|6p`WFB*iY;&XczR8C*hNs z$Z?9#D)7Aq-g;@O^q zJ9);|Bjy z_=8-oLI?dG+ya+=`y+VF;J<(?gZ}}Zogb~2x}EErLOgjG7gfPa3|<2~fRE_&!CgcD zzir1{`bOHnqJDJ&%FTa)>m~8D0goBH19+anJA*5OcLzU$dg;zVKLfx$a2t8MReYY~ zcodEwi-kWE<*xWY9gV*PJZt3he(*Ab&jAk%{;=l%r@Sp#6D?QrmNK~Ht;FDxH`m~j zw_@be%$o&n=FMFd&5z{GeKE=|MOPn%qqzx|fhG%e@ zHv+@|9n?1lz7*~90k{H}a`%I;F?_zzyrO<9`7hjBasKV_4`}Ki@t6EthFeWis2Dd(p=D7iQ%;2YiD}$dUd^h?n zPH@D*Qz%#R*$Uh>_@&?p_~#+c%fX8bF7vQ$@FM728T=aXxWRAGyrTI*^5#Ns=1qMP z&D($TurHbi$!8Wmk_X9WU~tJ>(%_Oe$KaB;IN~w$R%md^n`LmxTfV_1Z!v=p%8@te zx2~Zdjr=FUB@g4l9fQj_N*H_^^tQnt$PteRy=UlGfTs-pVh*1-bMW1o)A99z#nfYC zI1lhS`PWlN2J(6JLiFb&;H_?qeotL}bU04+d3)phVFThdRr+)8S6N(O)EeCTnz_s; z3GnvcFkgUjhk@tANB9Kd`uYc)pDe~c^8x7h!zYgYss|o}Pagc&5wD}{>$eec!1sZB z;H|)a)x4r{SMv^@uY&J6e(|pdZXIH7!KV>;7WzVPY2OUE^tYza$G&5q6zX*WxM%1u z1y39CTnX+Q`YxJRR4)g57xBkXv75kc;fVhh@C0}qeB}S&pZSIBW%{Rt8~z@+_`5m$ zQ#rVogFl~xzp8n-9;GjMiXxGA*#hnvT=EdF#d-(vOFljDn8j~o;1d%L{YS$8;rz(P z?lbV+Wy7LASAZwGf#U<6!2{^Urwe!n{?ZS7icfp^py3CAC&1B+ z|J|P~kb0pV2SXog&OWlQyA3=*yA(oyJ9u33051EeH2fugIgTqa_yqVYH@K{)uED23 zpECG8npZSG$ni+4Vy>6OBkO4ogUfMZVl48BddYE0+|bLu+BWpEe~uem_RsMV(LBrX zpk?^W{@H?F#Ec-zvTajQLf}aYjDZG1#ad)1}<^R zyc8Hd(k^=qF72|};4kH9my^ea>!AKS>DVXBe0YiG;eIDAb;3ISRPtrWhTjD&a zJ2(BT5`J2gzpi;j`PmM=i+F70^E2Z5zB!aD>(o!0hvO*KnrHqvuA}=CK0bV8JRUQy z;&Q`&P*FT*XniGBOO-WWfk^n}0^+q*ehbb|`8O-_X{+^0ouKjzeS&;WQdaM%PfzHx z&7*uc>GSpd1yMdl^AmI);vrmKZTyAQ25d-*l(7aZ7{jL8Vamjx#%`H|&eh-7*e=9>={1?IB z88?@>rJp+x{wxFc8NI7i{sgX9(2o0+ z%pZlChkE-VuGeztZ-(Bje-#lqKT`^QaLX>@4)p86oyI$e#E#)Neuhs_GJ-ku)h34J z>g)Y(C^Ju+pg$Rf|5zSha(;Lr zab4fZ(RNt_ALliWQ_i<<2TyHbowuk@eBe_cjW#r^Vpr5hjA`{W;+>MY_CeegIIJO*$$uNGd!OM(vIMn zS2@pd_~cFF_|xNff{CHv7T}rJ;e-C!3p`eb=kv@hY%~r$iT!|s8-^EwXX7>rr=i?u zG!N@#U(f52%zFpHU8BB-;1gTH3y9?B=;`d^JeeWqGWa*sJe-%5!{h4))XKRR`7J|QX)y{?;s9QxtH0RhxPJ@MdyLl@Np+{!jg#RTkvFzGb8-; zd)OzK{~oy)VICN$d04M>g8NAvK4ZXBM*o=s?oY@3qo=6wXEk_mi0_xlpuK#}!*$=9 z&GQVFW%U8{nQpu;%e?U^xYH@xZ+|8qorj)0pA2cqgIjsB0 z^GV?9Ene>e@MfBadG^+D|4*Qw_Y(a&&Zpah{iln*4*Ch^z2~5Jmfk@^yMXoYlfFRN z#{8d!K79%Y?qeQ1`(Ct*GlYHMZ-ZwZ;`w9>+N+c16#vZV{Btw$0=3z=k9!<^y#8a! zKf!5I^WkH^%svi>uU>=R|Bc&S#>)=jqj~?ODH?^m<=+M)Y`jH+(Y$>JZZC?)f7DElKiPrDk;V3^q2^)!oq19H zh0q7T;eI;w+jijTHN5ZgPG+Mi;QnfkU)5#q!9Q;U&tqstwF>&|kf|i}FJb*x(EHCu z$7#VVj#JHv#@Q0wp2(bMEv33>9=4ZznA=PGe{an#E-LbSEPVV|qVw%i_+)?Lap#`O zAKOBDJz3luJr4R9KF)$@oWFy6Y2FXFLO##FA8}UY{eUHT*4)zV;ttpriSruGY2N6| z`++ppmNPzfTgIg`wIfMKR)||?1#`%}y=&{ge z2eXfJ92YPjdT$Vy%kL_+0ebH+=Q+T>aSM3z-BL2hU>(^3o|*puaqoEckIm+I{NFhq zX)l|&zTfcvXnPHSUOmn6IBcWt(wxT2R}T@n0rT6v;A#}_1Y~`D20qrTXuUR(9;W49 zJ|exI$Bgy#7x?(AqT{{s9IjVzN;JwA;)AVKh#?g8}h5f{y&HEp>kajZl2hP$wte0cVGfkmSZ|3;@R{XJ>gQU%Z z#=QL`c=p0RWDvWKeclDPi#igB*JNIGUKpo--p&Zl%o>c}`kIINPhvlS;iVdrUbj~) zn$Molr{{DgW9M}C9|OJexqr(3^Lgk~<2e8FcR9C1@4pl6S6@RPo6YC(d?cdwe8l-J z?=xc!xZL*O>04(pz&>gMcx)?=-_clqXKEg{mtTeJRfzK*>%qNk98VFusePhf8s&$H z7pUgOxU2FY`uW4rdNtHM%(J(N*EPEt7tkC$o9;v);A*Rz!0m~=j<~4TZQ$N9xLGel6?;I!|-(eP6sW4<8nNS#-W_^bp7Cu3(=gDCAnr!}fLl=6VHssSkg; zlV0zO=0xY=q0qa{c-~XU|2Xi(mhNm|@yl}Yzn42m8Uyt`^4G_G#_`Ut!i%?&K??Ij z-oqScq7Rpw#<-{po;{1X&Bdxh@JvVM=oRW>&BOLm4LA=nPu>K*a|(|j2jlC0(ibSp zSdUh~$8NooN|f^+`{85nE+wAE`g;&O;qcBu&LibL!u7Jw;dR+Xf3P$UV*| zfsZ4?=cI=}wHJo*7pOubZ_U7qjDCBq<|pt+BfoDVy`J}8;W%Y}yN~oWl={FUy^Kc> zJm|vnkAv~P9New{FzNL+jDFS;=YN;~y&d{^Kg=6w$FDRG+r@9cgXGeGtVP_8=__w1 zZeiYNrFpo1Ex>sgJ)-C*LA;*Ij^}#Gcuc}4`}7FXxhz-np?6Ao{_g?4n|Oh0V9e)V zK<}<(y#;-vM>$Rh-@C=Z+k@N9rV+{H@f*{@)firn*3@A>PxG)|B{+|bWlcQ-eYP8~ zYd-W_!M#6blYw;{`}_p%+>hgZv`dZ0xc}rC$7L3AeY`M}>m~c-{+fsLSRCg!q<;(wfXD8t@yg3`(pUioXb!{8`Rq+B+*28{aH|h2F z#m4ts)fRI+_VqmfSZFT`Jidj`V`Na@vxV2-{*ypFmuVi(KR%v!m$LYc-r%L!Kf_*) zC0KGSmL_Z+9&K`h1TZ`uzIUe~5+!`~40*PZCJZ1^k*S~87 zaR>8%3-IIz{fSF|?hYP&!2K|FBG>C4&BO6nyLdVKGgh;R>-j3k5Rr9i6MPagIZnyj zN8q+G&;J0PtksKrY&nit%JHkF+~1N2^m6cE?f}-K-G_nugZTI>k7fzV|$b z-pm}&n$|h=*Ff*SJ&%NP{Bncl;dlu)@pzGToRGt3w&tgCQIX#-kdJ;&sj+TuB_Dkp zG`c706UXq!4uSjkp}rU|zmSiPXK-{rIpqm%$K;mF$so-c9py zgu;4J25!Z<14_Anz{fv^>m~b&)0bD=KU)&l?cVJMD$#Gu1@{1VP_G2qu~_pk5B4oP zNGR7Wya0XTYu>k~k>?MG3zSEbO~^+yr0Z|66j7ySaBpKZjy zQ~V#|cv2WI>gh0k{XAY{eAUxDj6YM4=l{#|*uOD&ViV^_zL&oeJl?+p3F9@mql_Yd zy`TSeCvjOHUjTQE^LSg~lR63eBIJ3$_*dci-^IqO<})0pD&=`^HukG0fqR=gD%V55 zJsUiGFZ;xx@1=RzPg>o~$EUJBju!n6KJF;N`ZWo9#~AMqf(N%p>$^wu(F73H1J0F89Ct0pbNJW*o15 z0iW~&u9u8=^&H2O-qVc&v6^!{Ex@e~y$N_-nRf-Z&vFSQ3z*+2KD&9{%$~q}GI)Fm zx3BE;9|CtC;`t|mef3^&Zy)>1y!tbEFrM2tj&`r{Jjb7$%JmA6|9s79o}9w@bT}M! z0dal3w{g8|d+4o&QGI{-XL@m*lDCQA>I#lW;w%MEKZ5-j#`|L82%_A}%g{SN3?%BG z&u@OAc^H3y^E|RXR!?(%-H(QoQ1&Mmfd@lNi6@bV%QUBc^$9N^7Ur27ptmoN_RrDK z+xT8g*1@IFTOal(f2r?_&=(u?#t!HM>w3~>Fj-W60sXBG?>|$>PgBh)&JCP@UQLwh zOuRrPjqgovg^$|Uh5UnB^r9Aldm}mjHe>ZHar~#;%SQ6Ar}B;S=iA_uI53;ka{T)Z z>Gg97?&Ao#bS-%?tk=JP>JZn@Z*R!w%@Va)(^m7azCDa`uN3{z0VI^;z7fy|xDE%) zmzn~-Kb`BFMY}%$9&f_)Re;dugD01BkFw9^H&%mNJ&FjVFJb;MxHEv)qu=451^1KV zNtos7L)Cr>?Kn3&j^dh!^R~6sCA}PX_Xc-gTgV@_iL_T_5!1+UoXAbo4NZt?hME)Nlz3%5J?&m`&TBTM%pThSA4tM|_+|KbR*Uk`tJF};}#p83+~*@$3fZp%zKKy2iI#P>NO19`mHkwUGTd#r}<=5 zv>z@64~+9LFTqFs%{~eA{~e*evcB#J_ci2kIO+%Zlo{i(>T0f+I|SQ)6KEKmSbLwx8MDx}K`q*=$NtlAsMB?K5|G& zRc3wzasGGt-#0^_Fus3Gg4=UApR(>O(mbq}e~GPC&>4J zu~#{MI z-7_fnKJhQ(eYg+(9L>Y}Iy-rMmBIfl@qfx8lCH^bd@20e4g})paCKhe`Ud#k3foE5 z5Ip`T`XSbl7T~cnuOlC;5&QQCw?7%Y97WJY>%$9d%=})UED9k3setd+|_!W zbN_r7{j(u><`a%Ti})|pJdCHv*r#1edag_P-(8^hi+Q}r@y;yp zU_Q?q4nDLD++7vr+sI#^Z~2wuEX8s92jF&V-als$er5;MF_ zRM&%BLrRJJ@aYX7^=LGn(aDp{)66EH#98#BO5tO-;ygHv)iUA#M8{n~ zJ`k0AIV}38qWTLrg!TIO&(*~Bb%x9Dp*KB9rf43vqkR+Cs|frl=ws(TPQy z@#DHRhr?9&5HC;(qyI01z6{4@dC;!|PaEskK5%86|E%*S$~_p(e^1TBe&syghn!vb zkB8pRkFKXHp^vSaOiIV%4}1-tY&MWUq8anpM)X^`zL&8&Q@C*)TBLb+-Y;&P_Zv)H z@4FguJTlKO0=Hj?*6UO9M`7h&D!;|?WN^P>@)&;e49&xKao&oKyMEyI@7qWy$KAKX z$HILX(yzvY$J+3?wy^Jg6g+<7?c^iZAHD*A>$PZq{selpqciEfIvnROq%Tl=@7zrQ z%bGg#ZLU}BT%IRw%mbH#J3sNdlda7@9W@W@8yNedkFVru zCwMTtlz@f#f3om7Ls-bupL!i!ZM&Cvl1~q*Dx0|e~|B!FiYj z@;?APb)+BZQ?2Pm-A|nVUH7+T$16f}86Yv=bAJ6Cd zVwkFF(5KJfbwSQ=ECSEm(w_o!3pmcL~FFD@1MDwseyTP>;i`EW=*9P0J?md(a< z8`i?df0*+u-+O)mpLm+bmt}Dts=pVOtFId|_5+PIr+#t^_Xj!Oaz6CR$lF!W`}G_$ z4r;UiNa1sN;`fk;SII}8uls@fzl_s8;NE@QzS7SR!zWRV*Uk8)>|ZCtab}y|O(0`2 z@1}W}&&|g9_EFGh{@_H$&|V9m&)|E68f>H90(Xq>VZR5r9^?It4WHN!E;ks%@fX3T zvF2eugS1B^ko^O=h5Lmu99057)?4i3z-I*XsaafK`zn58sqi^n+5b)EZ-V_4utj`t?LKA*pV*9E!WY#@02GhXjx zo__#5F_YH?$-_eUCyo2KpVhpgdE19iw)FrCR<5`Cntb$iHPd z=JmiIfyZlJPs;f5{DGr)VO&h(e9Cdt$(o1bLQUd0Q}DkCdUw7@B*^18I)SH7qIpIAq?zV4-*(`3l=d1c{!2!XO&sHN3AlR#&%<6bF6C|VDNtp`Jp4KQ ztw(u&ll^vV5BDo~LG<|IG|g$g9aTcc{>kj$A3S!1=j{~gJB57o^ThC6IE6Up5!crv zVIGt7PV32sJz0loVW=h?xV-;!S6uicf$?;!9$g%@@pk~ov!IO_wn%QO5vg+iQ7 zHK+deI_EinPao)mKNb>6f)9m07{T+Z00kUXI^=lKXS|YUV}4-}4Cgm_K`hXE!Y-?%=#xfACCS?w_(xxEVY)gZBy5 z;4@Nl>W9YnfHR=CM&3>SNi^g}@bovsiOcmuKf))2eUY?#>_e_sdKbrOBhHgFr*i9X zyYQ^2)D^__eHO-ielvWW*&P2)i61_;vERNI`t+MTj*^&gp87?mhithKW|~4Tmb)KqudvvPy9KP9FiEnpM%Gy@I0Bqe(6v0(Z>tM z^N~*fh~tb+7|8Kl!~u2HJZ#@!Wpsa)B(A@QHP*G6@UdL(w?5mbQqtGd_gQkDF)gVT zq=%^7%hnwHGx&RR?;v%iI)AA0{xD8`zQwpd_jJv}{AX%;EW~`$20T$RhIw0l=?@;8 zJcNMHSWN*Bw)7_=>&sklcMq?R9^zRI?oa4Rdbw`=faYO7J!3yv>0`v%c@pX4I8JE~ z?$78*T-Ntu&BTdBvOSN(aumH9jk?$n({O1UogEBFNO?jT+UpT?iCzkL#q zYngv~Y98h@Siu(?4!zfd`=MMHF&W&CbBjAzr=En5 zm5%25EAUpvysAFqa)Zs>e;m}Sq2?9s&o3mdpZm9%_ixFX{DE%5Yj8X^`u}M7yThEwDL)`i-i zR~+X##P#`^H+j95^LWiP5BuAYzR`VS2k4WdxqsF}y?TJVjrsgT7JL|Zc0I3CbCKse zzyqURb2Jajb&cnAJqPY=;PEBLvtN@B8mZjNpU^AxTWQDo2ie~;`rC!X_5Cu&eJdR` z565r%XzsT%pAUeK^Ec06a(?Mi=o5JERuVBi37)zAVIo=Z7s2C6-k+o}PB#)SS0ViK z3+S^Sb9*V|^ILF#9dnLKsUzTSl{?8npGKgcx?ga;?6o{UyV$3l0-pNuA<`9MzB&(F zRpIq3IEH&?`V= z-oWON>Dr+L`E+2cHNkbc_-`qXutN!j1dg5JY@Jr>Gc z1g?JK{JZG?OTdF$x&N18K7U&Hc$XaH`^^A6S*e70f~Qe+@>gN}`aXT^KRtR^Zx@N{ zb>T*=%NXysgj}Dm+h`mo-mN+H=Z3eFgN@_&N8#g6=J91A|2v86O|Y>){~dbg_Gms& zDr0}II?uN@j@Jq`5Bq~vhmW)5{`!{S%6N`MKk>Pn^EM9o93pz-e$|=K#|D&Ay&UAZ z6g-XRB*^s=50j6+AHlc|@MZAL2H&Z9c>TQjoS9GIuO8s@(s7F$=Gd<}53xGjA3VmY zE_nP*-e1Xi&bHubm*;^P>e~rCRf*4UNWFS%9_CZk;(Ydi|4q;*#zuWc5r?SU%M9|- z?K__5`6S+Z1^$6?Uwi<6|3_XoCC+2M;rb>&nr~bEG zuVDLQ#IuOA1$gqt0mNng=>%?l&hw<)4||*D)Lt(~*RMyRcb4%A6@&j;((86Hj+;IZ zpMBe?T-mRF4!vhQ=loarTX;UI#98+{u9x4`BOf_Wd!goGoR0Baiv;v>+*jr9p^vFi z;IRQ*U-5T|v!?v-QuuqN(Rt%JaH}RCKg#_(AH&}}zdPB8|Bv9wg`F(y^k+;*pod#n`D0yzGc^HpZpN|*hyyZaX)kQpxB>rO3>+>YjmXnXi z#i|nG`Z)>4IDHB}as0h+7y8#puh)zD(SEWIKF%rJ0XIYc6@1hZ&O`bspjBCzeLYhTnp|OM*HC`aCc2Ko;0}gICE}&rM7B*8e%K|^0nsS`s*0?9sdq) zKXM<*vp4gnF8Pu5{_3d&(wOLz#LGMLzo%&)p5NGP%#)81*W=o_UVSzE<9Hrm3YOc! zt+{+Y!Na^%^`|hNfB)3W!J84+#}`wsqYwG{{MjMG@9Ijx2ESkPu)P9f|Nj(m-G7XF zy$!wJp7Sr~Z+|8Kf5&<3e?otKP z56>5p@iG=XzRpHbh9>~G`v zs=Q?Q zv*77hJR$+&sqzQM={DOzT=sQsG^cfN5ATQN`^_7`6CTg2$#b}XY4B0CxxPFbD76aQ zIqzK(#&Le>P4M7c)=Rm+!QUFzlk^G9OAY@-oFDBZF7w+^aP=_zWH}tQT=;FQmvOxt zJh+y*jXWIn7uVPJIB)q_?~d0zY)6IrUS(ct4t;iCDU~SaSKEMF)7fVP#?ckRTaF>U zjQ3&ix9;V6uNd*)1AVd!&)f2Nj^{|Pzel@^kJHi3)z|RxmatC|d@B9T@dw6z)AckD z+c(yn`(ZU4rxXg$a=ZKJSeJn(UY<+NKGy52z?0we_)Va`eZd23D(NLZvxy_PaxY6X zr#u_iJ8cE`jr$!w2etc%b=g6d6=IJ){zwU z4@*RUW7KCG^!DXT$RUA#wIAHC+nJp&;g?^*vw!pXG5KDghN`N|{r68};x&~0Ll=58 zdkSkhY98+ME#tb)G0-QU=YA-Emtit^YE=mtxP92?4e;#ELm1%v;a>1KuIIO~U&?|z zxNa)VpHg)zh4JgWRhvV^K^{)gJZxXv`2O*7=v^EKx#(Ae!Gp2f59NN<3Bo&Zo?|F? z4*Y|C+%8?gw?pp~^S;H`Q)c*6rE(ZgP4x=)EqRR9shWrJCwuU5ae#Q5kY1nnJIM2l z>_58^FHo(F^>;LUvdeh9q%khW!^b-+LnX>Qwp8@Tak)~jH2h19Yf1e_yr`Yf(ARm36;cafmBF5@(%}>L>%fHmAia0m%yc$Epw*_}U zWZrt_P3zDy0%VjJw|O@w43Dq~Fei zUg0{Z0C6sZ-mc5*qv!*0>pku#az3io(Hv)R5AQQYf3fCaoY`9kkh4>p3%H5&`uQHX z&!suaoev)e`(6h;4Q|cja%CO=0sh`&ynYSAKI(7c_;9(GhSd<~bKEYn&UVneqWQKL zas7SMA4ziYyRq36@L)I3!xr{4Yr(zU9tmTZH{Ju!9N>2Gv4QwN^Kjnwjs5(u;(ryl zZx%lPfIAm;B>xo3y&#YCY`=K}@$A*~q6ULoabABjt(ZRup4{pYNHA6_G!MsxH=6S! z<8Cwb!F4>J$Z`6|(A!(MpOnGpgkuoTY@Ro=_4$qV;6A=T%^>~(;A#iYCz+b8AEtR2 zkAEx2BkTJN=&d`3kuZS+q)p(-ulTs&3(PaS;A7tso!|10Wq-9jdc16F9`;*Ro#){! z_JLQEUazx8dyRsReKwCT$-^V?3C{N@PK$mkwN(87>`p}fzQDV}W89xtqTTnxKfrY? z(k_R^e>0CSxjv`{?ikN|*#@3$csCil7=*`E=XjE@@$r;{aoq$w-D5QADU$QpSF=spd2;rt|oc`<+{YTP4%UA$=1Y z4FylWJcodX@i>w=3M=ZX>vFoX7qQJ`S!+!E~a&5B2(c z@FL?mAvJ1peXAPJ-#%IMu)YD#2U>X?YzJ^}BKA?pe;4BADujRD485~1I$kD$ThH_S z?7@E(xPR6xa)`laGkA7?Pa^UhhQBlq^JCq^M{-;|m3(TdA=p1(2%iPe+t*%0#K%5lqwsw8$y)q@ZQ!Y0 z9syZ5190#7D~YEt51&|z+bhp#uhWU^^`Z^eOZL@W!JY2BKaulY<24WSlitYXX3>sw zpm&Y$o1O>v@O;rm6qQmRir#pR&5!WUPUUqu&_gQxIq?L}f85xA*4I3Y$Ny_M=@OV% zuK;(Jao)(we z7>&n)-oy9K8H}UJ(EGTL1KR}ktoZ!H^KF)kRUd*|Zgd3d2%`QjcRlJ)>HQo zk#X7%JYLBAC0Tc_0*_tG^MHqT90=}q;Nus!B^NMF^RT{0cJlrTajp2T=;3ZBH@VRYzSr7jRYir0%n;8$xN#*;Am;Q(;e zINErgHK3c@ywo487kK^9=a=;P!dUWxV{Zc{r}KZF%1=d2U@dj8k8? zd>i+usqpEjd8iML8bBn5aZwDO%FHJ2*WwQ>A|HKTr5X0&I8J;Q`s^#0lQ52P`X%(1 zk)O)>oHxt3AE$xlVLa9tZYcRay%Xv6b6s$K6uOUcp|`7!qjEDC7)yzB%;kTtAs;=i zjpuZ|1s^pxI$l24Jf`<2LE}B;ZB!Zb$pcvLs`J~wz~48nPdlL=>N_(!-p>Q~uj2VZ z&eIM8SH}1IQ#23rliuS|fznUrfhR7$mUwU$$CHLnuw)18v9A3Dy-GoUG3%=qaGcIc zj?-bR8fzYwn>c$u`*h$p&L_S89@)4Lr7iTy-IGb^W1dMu-^$Rt&^vfOfXr|6gfHg# zIaP(rT_irnd8)O<_5AQQ=Tp|@&%guRpJlO)s$HM!mF>apF4y6l3!X5ZhuHxqyg6}^BOPI7WM;!!2K$NNSMU&@(l3QYaSaQ&yQ&y#%WiJj`w}g+dEmG zKs?_=@1=NtmhYjOG(^8O=J_Jc!~K6A_W!c(^d_#y>BZb{WqvD#Pq2maBj;(;@F_9= zUe#;xaZcmo8u@!bo5B53jcW2!{O$X>UeZ7JL!bO=CMjdc=ilH7b($?qQ_9zTT( z?xK0vj=?mpudJK1!IQ@K8mqt^}U)5sWFAP{2j)NHK%erqyKO? z>K1UdkJraC@TKtae=Q}FviOY^;7RWe0$KFWE#UE$mlOAKKH&iTE#o@U<4z6Z{P)kv z#A_(`860Op(p2+s-CSz?UGEme>nZnc&Zk@tnG}AQ>nrp5bKpIU^7|uIu$J z+6(j5H}Fw?c>lwrK&gMgv&QrPYoE?>s?kfxIjF@2oUVD;AKVwC>q`;z-fP^xa-MB8 z^y;FKHHD;hUr0dhTbubi*JKIdD{#M#6f3W2)%3E7x^ai z7On%q(V5x-y@mS@ijjx!z=L9*e`MV`=M40#1fO@3`Md+To!^TbEF9O5)SSk(ah=A! z#0!*TocDVQJ{gzmCEx4q1NToJOa8L%e=YhJONskf7=8v%zH}#XIc}|cCh}hrZLbS8 z5671`n%hgRH!cEC{yvg?WF5Z?JoDHM#FMAfi+Tb6meFrNfZp*Yu@LKQm9x0qB*vq| z@2a}s&K91pq`plw5A$j7=XQ~GAt^p9cz-VUM?WNd5bv+-lemDL;F+#Ge>#@yyx@|>AV zz|-H~O-eZrKb-vabA*h2-M!#3>>H)rN8pnj(3gBtE*HEGJgCm=ZyF!?jC}O-F>o9d zuw4C2diJmmjg%_*P7 z(RqFqxWAXV^oJk7y`kLCix5w}vpG&Tm_Wn7OIP zogN&&jd^Jnc%s>oi2gy%sXybs)H0N@2Kx9Pyw9=F-#&)kYsmGL^Vmn7!}anWM7hXY zBXEC?N6vEIuc_wYezM5ePhJdtdfbg1X9)*1O!)I0|I24HzZ*P(aV>dR2%dbo3kg%0 z58nsR%;OeGwPl~mO*nq_Kz9OGUFK(lrxx5oK)z4ur+Jt+Zwj}s!*Vqi`uIgWj*>XO zo<#ZrwZNEf7imt%t;XNocnUsNzs}^G#)+!U@F_I%_9bzBoU)SlITqqM^<2a`n)eB^ z&v7&l=iBTNZeMOqrKUpf;{F=>USK70{XLg4-gk)qgV8*EBYZk@S=Wv_kIPL==lz?k zn{~ir1FxgVZB*cD;;2lymwwO(#e<1LuBHqBl;`;b`t7rtQ$IJZgL()0%-4&_Cyp{c z1NZKEjEJ0P{tet|cs+6HZ^tza>-F!SMw*A^`l;x?=sMEt{bVznKIGt|-AG@czt`AJ z#5#-L7z`hKVszbE3Lk6#2ok2=VEudIALIE}&I2C;cVnd_^cu4M7xCY~{xYsx#ksxw z9=DOu8p8S^nuqmLZ${hq9^(2wETf-42Ys-Z^*s8N+5-RV9WEJXaa`~l^d-hVyutY# zPv%-)A2FS)rkaQGxQ4zXxZm^F zA2pHdCFhgBh2FZI_dglTht->LoUM%Ww6!%4$7AMwo@e5(v40Ej)Ozlp4rA3CT)C`I zBA%h(c8^7*OkBnv7!U4Fq#0lNBsEvP||NN)jW(piRWkb z!aUOnJY)5sK;(HuBf(Qg@&0xg^5%lu<2j#_xBD~?*T*%+dDNxE^*nDpe_%U&V*R+i zvgmI=LmwFDZ)>&)1={fjC#C89~_m2+pJP^H+p7$GvW>XCV(2K}iXPW_%DPs&C6^lvc!(V8U_71<9&g0QYpRe7xRf{w zEBA6e^se#T&S{#5{lPQl)h9&%E!HW-`8s%d_$+eIqKvOZKieZ>qu>5Y{`$NVu4hg` ze^M*Xb80-#Z%x22)I7{{;sB5LIQp{#9-qklxeWSY@KFn+<8&7EYPU;D5Am#q-Z%a} z@<-rKn&XlD|1J9Kc%7B;d%;Bz!lV=YD!?uCMCN`WVJ(JK?wRdXz+cdxK|Q_Nc%B`r*VmhVs9sK%Xta_(FR< zr+FBUW&EATP2h3kd!Ma1Vdq!9hIFX&%z#0yjt>>JVD)DGw! zW|I@V(4$% z!L3<59?t>a3!dn?gbmOSzXx|u<9S&6ZKX>&&h!uLBi9{O*PP-sz85$X`T+aJh3L1f z#ph+0%9VZ8O``96FUOCBJ_(+k%lj7j-ej%jRBj{g5Ar?8&*08U?~;#vuTi-z#~;6j z>+7Pv7I;c=eGjADrr_#1{$5Y=&{BMUY)}4aEb2FEPVu}NZLj&zXDjpmFeT$x^nY>u zh2Zaldw3qHL!~J79k}iB_!WMX&Gl0FJFp4p8)+WKV?Dw1vm9Ss2YvjT#iWcwKLk8E ze-0CiUy>o$^LEO3-pfq#*Z2S8`38mXSqz^5f4?RMz6Lyg?CnG>Nza<{zYoDDF^*d#R)^osZ^!XxcJlrqi+*@Mc=jC5kE|nI!PRD7_XG5k zJBXJrk^lW5^vPupFzC-8_&|JcUxSU0ehQvx|2Po`8;%#|Q7;<-_COcmv_ppUae ze;mgn`=}YD*War?jQkhy#~z11X_UJL`V77=$k?pk1-*JT+He0LUZAqZbMxwTK>Hf^ zc{Ky~Zi@Q!5?&)i1ZG2jaK(L3OG!N*ys3=FjPJo46W8~N8~ejnnxB9e z%D;3XuCF`AbLvufvpaZdHkX?Qp8#&p>P5ts`2jpw&iixcME<~2;Ms$73CRBZ1>!I* z_wu&p;XJ&?m}kDoq5lW|R@+i?iQ%}Q+STX}-+IJd`mIz$%`N=9{LA^!XTIWgk^MkN z&1v1i^R;9h?*o18;%Q`)tjBKm5ijq||MsAF+w<|DoS)wdo@~qGOU}3a2%i3p=ixXk zYj)&#EaUHwGy!*w^Ryi`59c3$6z?+w_zZyFUl8s86TsD_yGdCU^Ts@IdsK9tdKLcZ zI*ZwvhpT!Addv9!_e=1EvHv*)A5|UWy%yV@(~09x-^uIyFvQaWJTa8#J!!AbnuqOG zX!v&%pZ0wGl5NEPlcBegoCi72un^pTpU1UapR*c1DsGd(scfU(0?*)kNeBF6a2v-* z3GgH2udkmp=A}BB(%pYi?IrT$4hg0?s?V!&b=6Ol_XK(QIl{o)!Jo~t! z?>mt|%wqm3cyjhI1|RXuA;fXAJj&%93aF#fp5KJpyhyTHA*IIf?>6@C%iF|PO9Oq|Oq|NCR;V{Lif zkmG`HG!OfOe;bdNB7Eqm>k!XXJP*tL{xyh~cjkXvnuk8YksSo2{|q8tph}E%yC@6MVeFov5&>!tm+PZ>J;9urjWN1@bm}V-+V4cy#(&! zd|C|gzb5=;UQZKfm(RfyI9^CX|Ci=rJpLA*AEaJ|T@n9VyuKt5PgBi9eUY(G=qLIY zdEm-;p9P-0ko%`T%%`7u;3=Qm{T7Tn4?G?4elmF?>o*Wb(B)qCXdcF6_eOgm|21!5 z?r!4#BkRlAnuqOWJ#a0#1n_D{yqq!q*$qDa3(14lh~ow659dMeyc3Q8YUtBD zIWvBoD|`#Mhv)x@&uH+ZkNq?H)l6`I49{0d@P*)+fY0+t|4EDf7tYTTEUe)6fQT>QNuhu&4{QTTgt_LuRsG35GrVm_`*K^jy5y~6mi;8UXq z*UQCynrDEY1Rg(U7Lhpi8*Rb8D|md#x^|`bH0E}6>#@-Y@mV^8fE@Rgf@ga0e4c!R z^{c?GD{-D5dH6*9Z{+->a6EWSPmVvkvL6}5uur%E-21XK@i@lCHJXRVSr+n{;9^x@ z;`NlfpT~u?*8|{|aem-=&BJk##NR`-E3?r$@ZcdnALXH+Y=Vz>0P6+Htv)(@zK#An zBgXx?KR~Z={$JMR<9cy_3x@Ij$3neY6W90Az(=9suK{0ftiQKu9>yOp#`r?}P9cuq z%Dp^DK6>6T=Bst^3BKcTw;1KV1MYUXlUz~_+3XN_;^|QYT#Na!y*VCr{{jLt;d26U z)|CIQ}|eidEE(Wv%Xp%u5YlBk6+~cRZGpo@f#S|m0ce4aNah)SG@&3 zDPtdaH@I^&FYH0d(Aeka_vJW!<9p{;nuq-@ zTj_B!v$22f2<{!l$49ch4+c*^$y}a~G*zX9o#=<9Y3i*$73aKBc_x*pYy$!5oSymqQ_z7S`oWUk2no&%flpUL&?tAXJ=l%pM>F(*8 znP#fHD_u2XupHld_1>-OH~s$R{q%HWe#+P(4mQaMu#JorI*>r5NKS(S#vwolVnP%Y zH^O!zq{J;-wvmZV%aI(#C?acpYoB}1{=W6d%|I)XBzMs!OXt?w9H2KXwSLomVq8Qixdqyu6`UmB`k{GR9TmNaHzwm;ewC8{Z*9MuRH%o!Jqi*sPE)Uf}wv}@CSb* z){%Z+{P}mIouBxwsBb^N{eHtSpZ~s)+g@L43jLeqoxYy_M!~m!C)T_E-0-yE@0I&X z|7vNUA1L^P7h-(%{q-{ifBG8&@8$4U3Z`^r5}r=k1>jdF$tgXAF1w{A{sT z^zyJ<@VEb~2gv!oG6252;KzSD`2V`nZr@+4xkGaGRfhXM=+0T>(8n)&vZpWi5Pzq%!@S@(KNNPPr%S)ThJ5V&m;7?S z7xX3Z;Lm?u@_FYg-URw~(F1?J;K#*3|G12o|Eu6n{HbW4C(3yI7X^R&c8sGtMNjz9 ztI3vEyMG4AJEedBe8KN5V!XfiWs%^gOa5D5R<9TT zxXEu`GV1%FcgzFtm3I5)g1`CK&Oq1K>)Q){^R@2>{!W=UzRPf52OoU# z-v!>UgMYQqzx}g+BJz0|f3|+6;P1Wr!vG!xy!DF(Ki-e={&vyF{-2)yPL$iX&+ioc z9lBTk6`ziFc&CpWQ}X}A1t0xFjMGu!rz`kd|IU8|%6Gmo65Q|e`QBFm^yPk=;m{8$ z&edNo^mqP#)T^iep@Q>$^PedAXP+(l`M)0J{!GE&If{Av$I86@3x<2STPHM5`}}{d zZqI*M@b~^vt#ABJ$>;4KtMmCcP9pzNng5IUZ2b|#ef~Kv@8G;!_<6R_KSA`j3jW|1 zBL9BhbW-veorWIX&wD=zJnBCD?|)P1-z@Kx_3ioBk^cv`Zqoeli@5H`FU$@8{AQs){;9h_-sLa4`uj?A!=eBD?Oz39&;Pd;{6RTS|BaIW4;Flj{38C_g5UYxT7LeP z;aI1>IP6ZxC7*xT=R@ZmUw9t$qp#Wp<(oGm!Pgp&b^I^Z`Cl*eZ~gb7SG@JNLJ+^R z(BC1u*^dWT75hvn_s^Gn{`aES z_4Cz_75o9cyYY`pK3m)0kDPmX_^pE9`GOPRJwH#p5&VDP-w*oZGVlH29{-6?g8t2G z!RRLp_jT|C2cbXr{OlF_H=n)_!q0wrWb~H{{cq6z@vj3n`@{Fu^8afkpSS*8w8NXF z9o{YUPoLHF|FY0;{jS%dUS)pxH@_w7_2#W&Z}}s^e_QaI|K&FW=>58P3;uy`{L{ei zd@$&Lz;N%!JG77cxq?4IelNdX@TdRt*njo=;t&3*;OD)68uQq3>6ouB_!IxuUx;#x z9`)}U{?)-k_1{~C{_P)#_2sSd>$e#0{jx>p3*TSpM>}^wd9w`czfthd7Qc~RPX128 z-}_ho3()_Iufd_fF4NC(E;g<<9=m;p%iNftJhNqviemqr2Pt z%iXi1lhft)`RiLdM+e9ItFzValhf(6v78g4<-NVbz2)}F$@Uw|)!~_4;JtUUeXv^Y zo*x{%VMzvGOQSriNVi`52|LuQ3v;2gA8P)PeNg9ad0mKU{r9>95Eni)o9Ip1g%;66w zJ?>fenH?-&wp4qEhih6ev)nz|d(BxsIy^l)J~=vmauj$}XW4UG@?RcC(FgtafdjjH zukG!wmM7=?tF438!O@Ag)bi};eCL&Ad~dySWX-w1f8;D!%i2F)-NN_sAmEeL{%ZSl zwLCsLt$wgxS*=VC;@7>ydq@4x2iwQ-W90M7`Tf<|{@wCx`3i#Q&AvupaF9u1x%>g` z-uC|9x2$#x5tzN}%x&-Po~%w!x9%UE9o^mEKCOsfU!53cHODWfs}r>A*8b}L_KpeM z>#Ooh;UfsFId)8LPFK67MNhZ--_N$s&evaOdk3qd^Rul;743&|g8FpJ^Iv}Ye09DW z{J7t2PyyuY<`e7-zA zzq|Q9Iyg8w1l*G#b^qb?M<;vtEy3xl=;^*Ck56AY*xTJY_7>cVfA2dVAYA`zxpQ=W zcorO4UR(Q~J4lYVeW=>xU{&xzv^?B7I(}n0??2D#&-isx|LUI@5;1I+H(q4mHUTd) z#mj4o^9=*YbDzG?Hyp+9^j*@gc`E7G-zEL}dq2|q_fxCakB?5yo;o*SIDP8y?%B#` z&8JrP_Qv~rhv%;^5BKiBa<>1*Q+H3c4|iVq`ew2mJvAORlTkBnmZN55|9fhG@9ysE zwWsc#ob5k#da~o+_l{1Uvj1D>?HyV%C$FrI_K)trv3h-b=j_RQi;+!{w{E|DAGrTz~QQ^5#p=zj*sr`QiDS%lj*vqqfg% zKC$`K=8w}?mYW}4ibJNBCO#&s2ZJAdBw4!CH>^DltQu!0d#?|E?i1`AC9zHcyZCUt2Bj?H_$+xqWDS9@*C>JFYl4-i+I7 zHl`%gIRg_0IMa?Z?Z%syvx(Iw_#Kx0f$JbNl(1 zHYt5=J-2qXIrzZV&E@v#v9-<8`e^THozL?xK7V`Zne}-EFwC$LA1u-XahghHnhgi1 z+t#=TrTo*rOp_I~`tj;y?`U^#r)SUzs-oJ-Y?IZlU>QzP`MD{l!}^y*w1lb$+eb9N^ctzHXG@fQKg@5K`&t~xZ2c{UT)k2-~c|Bp- zYFl1U$BVjo+cC9oJ8qeRs@yiz1#ROUKNys4!*f}~oQ`N5wIkwmydX};3*vOVAWp{% z;&jaF+jvf#j_1VKc*e!D0FGIU8PBM;;~8fJLY0pg2oN!(QqCOGuAL;cDz?N(1ualk zuD=NA3#x#wZU~swsLg8BW;JTF8ns!C+N?&CtVWZpMw6^YldMLQtVWZpMw6^YldMM2 zfVk$2YLvZli(hgrfNN5HH`)2!*HS&gPyjiyv>kedDay3zSdQqS&d)~VR@TpHG(ySDHmCd7FmrJS&bH1jbIItg0dPdvKlS2K7uub z^6X#@5iqGy2WyB>CN=6{4H3$uk2+XGgfgj72m6FjCVkYwKEafkUeRSsNtZ1pU6b@t zmn|h-wv=?)Qqna^A9dMM(q&6Ymn|h-wv=?)QqpBQRhU}2>BfoFb>pm$##xPE_u)J< zovLdyse=JWl4nxaW_^_DR9&W1b(v1pWja-t=~P{&Q+1h6)nz(Wm+4eprc-s9PSs^P zRabPXXKq|?CfD?==i0M3KK^8wqGx8mtF}umZ}D}Bow+Rs01K?r?ZcD$kp_e%S z>jlzTssJAr72wie0X{ob0H&tFNztHF{1Bu+gOeWH{J80~`N)irSEC%8mEww&yrbpa zx^3sdsKH#}q_>OtqrWlA;b6kUFt zjj&k3D6uXLE1eq+Hi!?P3c;lW-Vs1^=Ct$P|?@Fn(5jqwfV$u&OWO-y4#@ZCd3L1!VToJkf!xk zs|m3t6I9rsa=mMf&^(#^=-yBFclYkyJ3sY*-7|L!hfdXxfox;bOEOrRW5KbxG9ACN z?U^pga^w^1P_s9l2!c3oJ%k~))i(1Db(H=ZN*?cCQaF@8Djhl>Vbp_WkzR8*EU%UF zIAOB6$h5rij0-@0RwpNR@UErM5|3jk#(b0$=EHH&6XWI~g=$mMc#A`P%F*|c?H10V z&d>JtPu=lqdtW8Yyl(204cqt|GwE|a%Y%*o3w}fHE_|o2?j0}9(`R+MeA3+Ys%kbO zJ#6W3*wWvOxU!@1<8nh4T~MFMi2)z&*h2i6?LacErv|hj@d;5!th1TDr3J2~{95V= zHnFpXT~3BLy-HRL##AcSYstiP_D5*Kdwcu)agw@sxVtiEsjIg>l7>v)Umclm-pL!J zPw+XFP0pIV3-l#bnlEOLmvF%x@WEk6oyyw@-c5AWNqn3or&+8PHGJyYuv=Zjg4UR% zJW8{@_}tCqM_;)0F|0g~lJNFNuD`Ine&g21p1J9cL)jc~acABB=9|}F`bc;^J#yj? zzx2|}kDRD>U5G7GJB5|C|9~lT{So^f*Lx=8vgL^nY^Q^4(!d&BJ|@4e!DnWDeZ(Y z%d_7$4k^>>!Mwl)!Mq?~Uz;k=jCoiRBzdS(_4Flo?Anh+#?`#0Z$RCk|qSGGiWRE<%|x4^ux= z!qhKd#uCmHgff$4Y}AD^Yb6{C5ak$$0sMyUhB31a#8M28g z?SI43cb`ie3Q+$WY}xDIa1git!r^8AHI7xFq#NTj$;=esY#ep&zoH$>SA&!DHDxF( zJ!Q0U{}pZAr;9f3zpC;YoX+)mns1&B)Abj;P1awSyVhTrWc#mCEFz_ZQRo8w7nb2B ztfJj0Y?l33xMKHTs6(N&Nzkp!_LYt}Oa{H-edp-J?yR_}&*6;v)fs&NB6(Y;1tq-O(ALhR~*yzUlZse<;z6h zmE`_w0r}~_X4P+VOziz{bL8)KjOO7y__DQN_=QQh z&og$T>#t!aPMSE{D4dO|(#;Au$a7NtHmTBuw?SWmU27VoYb!p>U5rxRq~g=O%LnO3 zRl3ozymm3HL%V>|-#B4eHYfdW(<!^aM< z-FDDZPU3Wj6|uO;BWRJkbShg98UM8?T&H%)+b>+M^_j7{O|$2DWAj+GHa4SjQa6T5 zF}-BOX2sW*AF{(XSpNicMOHxXQ~`al5zq&$fUdL(==&Z4ebErmn_ocJNEw8-C16$~ z2(3_(B5fwfNAB|b`*yFKCd?Rb;|VMTBwXfTZxs>H8%IEI909#?1oXyX5X+T--Z+m? z&7s!5d*5{TjfhXprTogxrTKgkw}y?I3si<|oM|pMu0QwD>z|vfK6g3Q!;ptL99IN% zsSwb|k$^5L0>;sPJ)dB5WJ;`f0=iTP=#zkeJ_!hzF^|2$n*9UZ2CPYGIX&D6#s|>5d)Nm>4K6)=i=H$w_EK zPhnaZ6_nP6PEnUSMSaXD>Vrnnv=;EiHCo?Rm}7?z4O_e8EBs=}Fk-flpt-Ve^d<{h zH&{h5|GR2Lhn-KTs1YrmMX*C@p{Nn-e1~crx21_HY=K_L#vZXSk771U$QYQRK+%Vxqp&RWn{kgQBIJJi3^GdPb3=PG_EkWFy^h< zZk?Ln0QqL2yBl0=alLij{Jza`F6ryofaA0!)x){&Lx61K23Z|1P^~kli%ME*fO_3}D`( zGGNwX%!lFxE$sn$TtteaU99)6P8f(mfEi)U z*4i1@J^!A)@zRGserw>n^0*nfAIlPwc>Otyt;fyixrmANzVfJrIu=zsu83s}!ZyLx zma^QA%XzW?(uIYx|7Ex;k8%5h*N3pzbDz0bFeT)SLG#6XXiM2egWcuMxdqg-NJ~c+ z!f?j|J@S;!D-3M<0{WsYps%&-BPyR2Nj@7mR$M6IAz)x~Enpiq&yIT5X_=HloHquu zo2U)P%4)Kkt&KRlksYYvy99QSczHLhYq)3r)khvG4o;|#nUGZf#v;^IGl2w5uzLlU z7xl{a;eDEgSX!u@aC{fgWkEn+2^fT@nSkD*4pusgP`TRJL9?BXVNNK!vZ+ONv7a_y zWp{UZ{gXbr_Uucac=0(*OO|2P#ugao@+`9^Jz2fR&C0e%_!$Z46=9I?dfD05!`V7n zSp>_w7R?kB12e)aN@}FUYR#1JSQ5}XNkE@B2;`m4eDUyF#El~N9oXBkz?BqJO@-nCGB_fIUu z>2BB(27GiQa}v0ik1Hf!yszYDJ499NMzeRTxBYt7@(Hg3gaU_96$y^=YQ)un8tE6~ zbxAl2&ilAuWX)fln{hmB$JQM0AF&v@oT z0llXM^d=C{`&&ToI0my@`*uMoqx8O$b%9+hbigE#)a}bNq-YEVS|?rm)*`kCdVvnF;brDeB3Uw;r}f zwN?eXUY5e4#rG&1$OkhnHf|uFoCxx%i69@_1bOEgq}|wylA?f}BfP zEQ`D?cI+VvkNnQ9!LtS&XYB%arPy55IG?^CQ{Lx=I~bv^Sr7Y?^^~=ru0Isvu}&-) z$$8iur|)nt;CEGnk$y z;jV#D`dAmx7wneUt;hcUIU0glW|@I)ZnkCAnbDwy@Lb`-* zdokGy&wNuwxoOF0Mb9gaFZK@YIhE`>$du|cNJt`@s%bpJpr#4v4JTkI3$^T(pxQME zHI0))O%u@PNCAC{6wsSiK<{+{efbtJs}W8;gwh3(LFjG*`jjPLRwL+cLYdVFx|>jD zHNu&mQ*IVYW5@e^4P**uIOUE8LUep$Ph{9*JH6c9JIcgP*7KPC$-rpgcZ~_5jme#8 zX?JC@ebb~^FDYpg9`D0i^xUH+G!SV1Y;c87K$j2!y^95OMg?>}1@tanl(sg@y-v4q zVV$ihVn$7-sBU)Y6h)ebnImI%v81ra(LAj=^7ILhW&yoQ0=j?-=<`KC`#KZ-Oy&Rf z#&2vcHnEMPXGVT}~ZY>vX_m?^Pz*ofG4#^VmSbZCX{ z$>Sqj+67I=Qn>I7EtKaW+kK~9WrX3Bibn%>00L%%sl;xor2rc`N$zYew)Xc9_RhjS z@5ydTs`UimG{5mnD7c^na6M{$$+JK-p4u;5<8{cB z^XwToyXmK7w*4`uIrDr7wyeuACB+r#dZRjL=iE6*UYc`6oH=^~&ACQ)Igm@CcAInj zr8x&^np>E%YA&C1P`x=DKkN=9C*eFycIr&+wrUMuN8mF&OGp@X=bncnEfgVQGN+lFV*wA|CB^~g|+rz`Q`{NNbZrKM-U7$T9i z+t*bqSs56f3S)pOi~*&vG#qyz$3~l*pThfVTI%l^Vvi0iH|FYG*VQgN)_?`PWPtR` zxdf)-EclrfiM2cDr!{6AQf!=cJcMR8Nmd;@6C*LPWk?y zg&@ynHCK^`(_`5PN~lnCaHkSE0Q5p0Y31p9%3LpaFilyir`)~^KB|~<`%XowWzOZ% zWw9CR$}MC@6`AE|j|*PUrYwHK(jabS#z~i)F`w zI6Dqd-tidjSQBad(7R$}&W{Mrc~YBmxpR*6J?FJ$&co7zmQ%5|f+gAvk9$_3Ig`Yc zG|z$s&a<$B5s!nUe-5jmfQh|po(0T{;5w9i0Viky!{$}>hQDiWN&}G^>YG_bVYjH; z#AscoQrg6dXS7MZ3{5O~hGJVHr6pZpv}xTUtA31_Yn(ibGPuYh7e<^qPM(EbTx4Mv7n!+tk=b?^<;G0S zJOVUv=~=kV1#GWO2}7%Zi3BgQ0HP5hiIYc6F6yK8QzC<{=OP>a3mhA8o+Zw1UH5GG zFVc~o*|sgrvkty_HvH#Vc*sRI`WM;YUu5AS7unEXlp9iYH6w~0wP$wIcadH7U0@@` z?HQ5aIL~AzSY#3W7ZFO2lPA;R0cB81vtD?T(6Kb!%)qL99a5Z3001FB2b~-lI+Y1&r^)yMtTM^dYEtn#w;SF%d`n*NmlQgN7nL3Y+o>>plj-?r8w>}JY4MS;t zC@boEprWn~E9&y1s7r>TzS;>2w=qRi&fwp#v?;$>3zXI+S<#eVEC)gh-+e`cUtF$U z#2i&3trj)VQGMYy@P|4`ecXqgjxt@Z-p;l30nfCzLH() zVkY}104?|?jcYsiDXmZ~WCrJa<7rbijuh30m{VUi4q07QQPaIHHFRb$=R}s zG0rRas6z8{Aym}oBSpPG6!msi)SFq*G`!>p+LhA!s8KZK7uz|dP5H%!j%mki^RjzD z)a+vk9AJSSu3}0m=SL+l;Tzl~Y(lpuYkZU@u#eIN_I6Sj)l6XTtpxV&QaE0;lW7FI z(uCRvromS*uO&Vov$1(5BuR(s_9mIBU-$M-PR|fsHT+v>TE8&e>BjnT322Kg>gbqSd10*v7l(qnNL$n>yk{U1&yN~;iFoU7A9e> zbHYcWjSXGOmNiCum#wC-G(2mvCBa^KlQb;JY)P;O7AVcg92b(M;)e#R zYe~@BIZ12F>zf6J;52;tY!3$1<+SX0WiL+<149Qu`Q>eXQP-kM*A<3KY&TGOF zZ)4y}YD}yKFa&t?nPa&Wz$4T$h8|3{Fc_-0z?&=EgTo}NkxP%}9j`oSCfEch>;jZz z;XwkJ7E@~-j z*=}qF@rYoL1tYnVK6iS4;*rEnM5D5ZvgDGUKq z7$ZR7h#{|V&LAwF${^0~5;$itUb)gDQwB@CcBU=?+6it&VQkFZ^b!TD?^oK;6qvU( zt?HM&scKaOGc!F0L#@+Mw?h4)BL z87?0ES9t35U*SGSvyEL&hHuxE#HaZGliiDV!j`4?NCLYgC2$1Hp4v49|Gfk-o<^*2 zZnZXiw6qqbQK|uHobb+O%&r-t;5K94$e3csLo~ky#;bFES<3IK%bteT2P+%{NMXpQ z!WcjbV@N2Bp{y`Qio%#E1&&<`!+auO_7UzQz6@l6_O*9tw_!9_(t}D%yY?qdELq0m zi3+0`6h<=$9LkZxXnBDVcZXwNSsS5Ol^VS&FnsJZ6AY9Dh9F5Me3oM|Gt-ksmStRq z?C$-cx}7_T8_QY%_Pi%XgbjK&n!!(Uio7q}!7%)CnN%bZfj1p=WC-(7_< z>nnT#-&l==I(&@<#;Tn#m{+HNC7jlX@b;Fx!{1xsygL1x0Jd>EJ38L@Y+NPbazsj=9 zY%N)^V%V`NWfzp{Ogk1mdtQnuxQF>Dq~jCgj)zgl=9Z4lEq23;isj8t#|IpC(TtMt zwf&CwM;&jEx{fM0=Wq%gAJfhGbl7gi5FdO9J!jXgjwPt$JnXg#Wy&Jeu}Dovq@#D- zKz6aW&eVLk8Q}KdumcuXh?1~4%-J(&%0f5iR-f{WXpb$`rOdf2{bk2$dYiIH%~@ck zyiuF7qu!i{*pv@{?Tt1nmJc4Le2hEi;W3qN;7N4Ktk1b`XM7+y<3^qhyss{p1S!s0 zU9nkq3u=~KmbKtRw#-wz%(Ba}v$!Tf1!XtDEaXv^Cw4fT9GhGQu}feOn-~VMLtrqg zQFb5NB19#8X7{0IaovFm%I@>cvKzD(S1Kzgsk?<_Q%VcmmVrq%=h?kji^!HF&o0Z( zv*!lqVG*tCKF{v&&T&nMWXU4NC8cM#Naxv=;(2zZcplqJVkx@MD%-BEhcPan{d3M2|sT&VJ)C#4Xi$duWkAObI z3F!KifIgWC=u?z{eQgFVLJKSoOo?DF0%kSB6&az-n8$58q0E@a+9H%0^EfJEN*ojk zm@$ul5lp#$#B$h5SlO5o26YCpGY~Lq5IFuZB{nMzVzVM(RwL|+m=Y^6gIHGu%<{yt zERx21~Uu@+* zebuh(Z`&S31w zl^P1M!lfwA1REEjj?I|DKBtKKVbOnc7+SbylJgz=ex=U&jzC#L9Xh_kIo}b%%c<7` zE{p=20k$3j$EH)^ytvqS*2U#57gh+#_X7EdcvebXTJEAT*eg>fE4=%?XHW3hQyhI9 z_Vqwsn5E;waeUQ0hB0b+Y+pH#f%pF-=0QVN=DIM(D2$<`Fd9~23?+pjIs)f@7;#yO z_iKhiPBasYu#2bVzG+X7S3BlOuzz;s&-`thCtE*FTSTvmC$P(tTNJy?52G(G-Oi>i zUL*R_-Bo(EU%ZxjzAbJo3H+G7*d!9hm@iL_dA~Nct7MlAmy{j%e|+4OgL~XXtepja zYy&PF!}82Oz(1ocdbe>d_p;Q(XLo8fV9btaW7`%}dt8=#@CN_nCFRcB$MN9G$3+8r zSbN&_g|DfdXZd>4e_-p^e;`6m`G}Z<{Rh^!{sYr$|A7r){{dH({sX4=_?V7h*X%#A zj`SY`4(zaL!<&Vo_I13FO|WK`4~v()`NhIKZ$9E$QXz{F9DN2bHJ6WgmbiS3F`M-t zFl_c8h%DEC4C~XvqFa7x;lNxzEHc1`9Xr(=eBeaEZ3OGpGdLdrK0j3y(H;Ye$Z!Do zELtV;*|q|FLahMIr8VL!aE%Bnm{V(-p8rbSMifV=pIJZ; zYJ9n5!%i#>o37-xVI!GpD~XTOg)DY9and~b2#E*Lg0cmGO0_khAhZnBVqgw7#8K7h zmt81Z%(A}8dV;80zUN)fR5(kh5g&LJf=zmj_*_^cQJq1~*qzrjQOhBXPZKqb zPZ2eu{P=`X)A+RDNIfn1)TC%%W=-3dTcdqRHQIAjqbU!tItmZCC!=WJhE={es#4mt zZm>rxZCW>2B$YO;TM;~J-%EzpP`|RldT(#v9@O4DIk5{QdxyKL*RvVb90(!m_S%^B zUH=tF{{7cHt|Il6*#577gQ;uto2s_=F11v`U@j! z{WWnJ*nCx`upDw&8wy{ zX&%0=l?gJtSJ~p>^G*W$;7nkb{{(gcQ#cNk>7>@$!$mcrcDYPopHdPy=R2HZv`C*n zl1x&*BcP5@n+-S1#Eg>xQ+J6pA06($vA!AFZygA{` z<%G{%Cw!nf;gQ|4Yhuf;i7iWhYnQhBD#S&z%~Qbc&t98U=s$RAq)~zW0@mK=0{T8NT|BYgQ{BP^*0;KcaL`8z+;Qc{Uf`^P*HK4 zJx(Us{NQufS_yNxrpXL?A7efe8S^II_;mMug(sb>ignbp!Fu7mjW9$<;! zx@QkB_u-c}CPBMh7pEd^S#>uSzK3MlH>kfa)(hZ6$YoG@6*_zC&1!At&-m&uj^S$> zZc631X*|u)f5jrxf5m$S{a1Jy_Fw%)H{@w|JqG1<;R#wO?KP?4Z{dvWH_OfO~ zF5x`Z{}xYx^j~p!(|?7tQ~8>NOJ@HSk0bP7@v2P!6<5mpuZovRRr(~n1xr-%Nz}c3 zwef;M{}r!O^k026Y1GIxAFq4=TbzycUvci#e}x-l`5MQw4gFX6ko8~T3OI_s9Y-Dd zuV|O@)x`TV{cmx+(f<~0)_+Bt^XD-M&&*C?Kv>AxcQ zcK;QD!27RwsGaHI?7&{)J1=`YW!}ZT8n?)L`FGMyF|ICo5m? zxA*NicRQu&hwTz?np@}_FLV+eY|ARXZ1MJD%2xyDkn&}L_6EPT_O#fB(jwh?=l7J; z(9t88wyVA-q4$>(!ppWVFP_}#zhu* zXiwQinCQZ%>F%4~+VE^Gl;%%W>UYsJRW&+IRO{j}JFLHAQ`NJHG132KcM>+N*aPrG zrp-NS@LPEswd7)9wuZl9Wc7L4b?3ovc8_`ZHS9jqu?7t>iHNyl;$i=R3 z4ZomK_msA)8T{5(e6|&z7OQYTIgZ_0sh>UYG5D=qKJB}2SO*INIiNI0#6jt8_>dRQ z%)(y%HtZvdy*Q|!jg;!E5|`Pq4%T6V{~Y-e?I(s-3zY8C8}(&A=5jofHLi`w8*KY4qaH8=yktA*0r?n=!u zRI+yOo2s>G7k}6JqS@yHH7#=Zs0Hx;HF)ALNkb-ZXX=mA8J0{ ziDPOP(8r~KKA{Te&D^Ejl=6$~M=guAHSXYSOW=fWT-)QuD6CrIV)><{9j*!r=oJvq zg;qcT++ZP~3!Z?{AjG3jX-o<8r+{=?+Ld$uIzMRAk~FIcLWUCMgk3p0j7p;NND5SH zQZ?JZGF4L73Exw-JILB1=9iIyE{oyLV6oyLD6uc|FYgv#Kh{PmI1|u{V((XLzP;DR zAgy;N+2W_zZA>2~-^C(F!%Xt=wiD2sib2#sz)--d{;(U?nta0kouTqde%>MkPWXb) z6mBI%6&oS}v+6-fXG-YD1Wx$G$Xss{{@CAZiUVlMYYGF7fJuGrQF|@KE|h0r)={t# za6#ByF$ntzfwtYR2hJ3Fy;H4)*;!#KxVX+9CXiQolVu7MnB?uPB%qHm0ln!2^j2aJ z4oCtf3i}jR9idFLc#BJu6_hd05woY*no1#AL&G}4l(6LsnAHYG8KF!VZ`t#43d@fq z&AI_r6QQJ=U>0Z~X)ajlIBB+#nr2(BDK_bm7fJIeWz_P0 zPK%Y073X3~NvE*;37B!qclRs~M3NuEfO3A=zzgWzFQChgEi>thC-9 zihBJO^$u6mJ6BQfT|vVz#+*e!I6+-9HHVZlTy(~du&K2sB)A7ylPHr&szGuSjs1x&2sJH2{{oXlQ`Qc7J{>bsb!bMqQ z3Fs{-pf{j^J|YElK@`x(qkt}k0=g737y+=U5us5CWyX9Q=5q3kd1yV7XU2RM*u$yhf;#3wFrMxp-uV4(Ytb% z@{6lDLK}x*TpG6PN}KWMCftm z7j7DoLpUNZZ5-hWiuG5}lwa)swX~F9xNssB)m^8K)F6e zNr!O}td9@lB3hrIG0HfH{*FSWp3Gy07Fx8mppXqgAsd3C2N;ccP*C)XppYX$AxDhH zn#5?#6^?FHr?d)u7jDims4T+VB|Un9-bMzV;%Fu)xDpf%D<~REP&AgHXe>r!fe{pg zPEZJfpeeuMnBhm9IoxT1?mN9cPqWQzPQe<(Ja_f0tGjX916f>Km{bqXI zn%=(N=xe|`oqEBlCpoeC!f0qwv?eg)+prtzV|VI}x|TG^EiV^QMV(tkT|yM~xk^wD z`E7S1*c+DQe#mkYZ`lFPHMr!!7e6CS#q6g!GOWKf4zKumZsQEEO>dwK? zEdmDDbk63iW-c6B7?HXx3$4L*xA31ejlJH*wXi1$iDn`BEM$b)9VbdP=dg;6#V)OB z?4>?#jk!p#tb~?|rDZM>HJ6Z-@)US8mvJ$danXo8TTs}#7WU*UOI8UCBd)xbL)01vN+;Bx*hZ7VgR7HKwR@4_rMSUq$)R#g(|*hR08O&)ej_^~&T1>t(h8$VVSD|%B_ za>rwip>8kLQyUsW{8(&1LYf%|$~S~cw^W2!zjJHMxHaqvOQBJo`FQ|K#qBd=&qnjt zCI!|wlwOuC$c(ojV|o9*nX%ey2=Qa7qz$=uEEVx%siY0%@(--syc%7db=JP3+|2t`xQu=P^flwT+hO6$slqA9;n9)z~s z;jIM51UTgvYMADbwj}Q0Fl_{gP&CWI-l9+HW^XU2XjbDfPOqi3w1>vnGAnJ?4r81z z3N5z5ie|kT&&(@rS~qNXg%&0WMYC}+MhGFH#Wq;cGzSF3Rob*}xOT6!X>Yl!_KD6YEKsAbHebL}*htOgZt7z62apRk4o2e>aqL|B5s?Ai@ zL)pezOqyCvXr`io$WySUwXmu+ zn1v0gYig;uojW=Gk~g5u63S)CRHuN{Z*Wm2;7aoUcq|^EVMmklT#5 zyWqZ%5Q1iVW*T{@&Mc+0Wi*6R*@D3;t;I~KTi%|?kyO%yEuWs+UV^r0W@+Y}$I6eG z6UK7pI+pE)O7ED>0L_>mS~r9xYRnr2^Wx@OOhlcZuo=LvCDAxFX`wbW8p)aG4U+_= z;gKR2#4VM|GuKpJs<%-fG-4u>SJ*9;a45ZF;ofSA8n^6cUrF3KO#{R@h_2} zvUZNiJvfoEV`1m&n%bEtb13pNwqSgcid$7))wEQ!E;nj08?$NIW_4~2+XvUB8x2ds zSUec?3DyZquer@g&SGe{?x{<+6GllT?PL2HP9-yv94VM(Q0m3&yM+hg9`px-YU$Ov z*CH*}GIm-$ncY#e1gdeG?dKxu6^P542rNth8V}3*rx2FY} zhR3pnH0O4<<3UO_V)^mN;zA?&u!Nhbh*POYSHp%$3#Cc@ZjNfy8fH4-c}$GEM#CJM zD;Cv44r*-RO3pm58ja*E^K-{5thuF8JC8f*9eEYX!{*dH+h~$nh)%1zjcuIjd~Cc^ zEyfekzRV)Vsn}p|sVEIhBm=k?6+i2R732&c_!`C+mg9 zU#&~GCS-m(*|~H)-Ypfkd?)&$-9F{AL<7-r(TR@KHpH_{b=-rUv_>oP+)3})6=>#A z*7r_yq)tYzg;TBbvFVwmrQ>zbPM4+SMMtu*WOdG#N?Jo^fR1N2OC|l4Alw>b89SZq zJtaujSl9QdXlPSzF-yfWqy^cj>uweyYG*sjrV9yn|G>Ql?Mr>QiWs15LPf@qxDeAT|L2)vosN0Ygb=#hzZb4JjEq;oowZM6a(x$b5+ltV_ZAH

    $c^Tz*GN4b#VJc4KE;b}W2{rNz@mGj zTshB5{zC`Par&Hm%3=o>L@4V8b^17J#A?0sml{bxn7dKLRM?z??&vmGpCDqmaZ9d{1v>S=S!jOda1$YTPOf2dS!e8v3j^kfYcJI zmh%Uw(s0&~vLtR_P&>~>=s>g45os54@3;;LBDqfzf2+)w+fKg6{j6bJOYN|P{QR%p z8T03Tv&tMI@a2QT%haQFm+j@l({aOV$0rsr>NolD5OrS9J(tB~^7n5H~>t_jO%+yv6-|*Y` zdT+V)7Fq&trFJzWaHc$*tT%dg40!XCl#ktQemWi6r1BNP&{&IHS2%vZgw zFe)t9_!cCew|m{3RqM5Ov#iPxwGI%s&LgY&7WK;rS@10 zbLaWJ3W!%R+*j6Uic|Kkr&?`R%#uSNeW-TE?P#!Q!Z#WPj(9>hhITv6n_7+r3Yr>zD z;hQ^C!okGxb~WBz-5wn|{;G?{%hcywIwO+yi49t0!C@nP6zJAXve{KPM^7CiNpy*5 zIusqJp~!K$#xti{b)!o1=+Rd0j_eFxG;z_$mMnkc@^-uP2;+ZHsJ`>Iw>7VZE7?h@4HohX2BzJq z-VggI)o)d){RXP%MHxI05t5d&B(_({$LR`xqS`Zr_I@AX|oD>2cv=# z+aL|fY<#^%L9oAab{=ljxT|IvSj|>x@QfN-5&5|Zbo7kp1zJ-!;N?_6Emin#5A76d zgk|7@<=D$)fgKra6mNy-@)7ewo?N_o!QbrXB+JX5X55IqxIDGXEsj2&oE4noS{7a6 z-iWZ_r^G7WZg77UCo-`~JX~%XE@|dGbJU@mwHoO(5=56oYS zw55jqx%Rflsn+MXKXBmbOSpgjL<-rbyGD`duT?LY!oVctp)$LSVICd0y8HAkI%gxN zqq-eH#cbB?4pSgiLa9u8L^1)4bp_ya+?ok#VOS~REpY9JljRWznW)Yh{b-|Dc_hF| zdNP;vC6p4vwYaR!~OEKV`i4@<=ke2N;;JMPNz$Zoqu0#n)z^Ikcwm;2#fTNX>D zY}%MPc9agM6FD*so*hGVEP{EVE}$)=Dt4>{PmRQyYTEp0X%Ipi*l{Hj;5y5vJ*ZZ^)=9<0RitHj?BL=*9n z2&mb7Dh)ae9L~%@%<7n-Oe^d>6i(63UOB@83%9U@_1kt>O(v-COcnN#|h+! zkm>2ttLUJjvQr;)d>2q|5sxioWBDO`7K(RyC*$U=Vm6Ti{|q4nPP|>g(T8e}%Iw}~ z*5nsKSE7otzKwesb*j_ccoN!dk)L~>BKdkL*E4+tTUFvOYe1|Y4cuIvmVIUg0Dzyd ztcba1wUJ1-Pt4?Df|~P%1DedZsbo-6jn1~yOGbK?2AHq|C97K`Cg9N6VYx# zCt?L9;!Kd_S=ul3<1wTW`P~??n_g7Ub1I>UP7KR&H>Cv+5VmK+`=3R%_wICgtg81Q zFocUbUq}C1lRoDY$yi+r&4Ph8k1G*E_=r-s|9& zye{4{8=J{;<)HvBk*mcv10nJWSzQ1JnjCsy26FOQi33kk>O{(zsCF93Ncddi&^7F8 zw1?e9Y#4<@5n53Z84igUE6yePSNTC0m`Qz3(KS$bT^|D$jS6`2ObK4U+wbX`5$bH_ zrE;o_=OE`8_(%xyTE6g%V$iP{RzXoCmouJ%>-gIHO^NS1$41QXgP-}OZ)~=P@}4z4 z>Vg6$Hiz;{$J;8gHOpa~y*$xzGxB?T$;y_(Ip6BX-P*ZP*B+^VhuQKF zmg^!Q%_{EmZnwfSs^0KbR%;wvBvLy?;8=8z)5XcXzLXq<2)wt0ocp@x{;Sp+VTHLv z4pnr~dL#+t$($Q2jNu5MGA0Zo_Moj!>kY;#FsTMei}ADL(AK0mm@WzpmBW zQb7hW9M7sTepljmr(p4ko3}#Maj>8GhPuP{tZYDy@+x7)bC-JacznX)&)hn^^)WS> zQz0d`t8e0_E(Y4N>HLmx(=*oW(wH3ddh`>~tdzq=u8@yh_ljY@d{+{_VfnU?sRj`Ipjh#GYdXyeZ!gaglpaLc z-&?p)FNWwp)NJupD$h)&4UfW>NFQyXFCkG|II2W2 z8&tnS0|99rLMBc*&T@PtETa}W;gaq3l(E=U?Y&smjYdKbPB?ZgRJW)OeNE|kS-O)R zT%H;dN|tqrx|sBJ?hJ0W_Q`BjHho>c(gc9+;aF%QU-Ns^|_>Bs0JbPK$xH9JSxOiJe_?7&<_(p6^qPyr8 ztZ=R9S(~2V7Bs(*XN>pF8~naYiPJ@?D%>AaggL26y|-j7HK6xg)X;WHTTD6r>?qA} zfLLKYdm})HC_5t>XjvgRi*9Wr!BMflMPukFc0pa=Jw7O&%teind!tnSRWW~VG|zh+ z8N5^1aoxH1LHAI$ryQZ5L`~MnlaSq30^W6u|Z42i^r#}ta!iva}dGQ(-*iUp*%Ytz;Ir1 zP(UsZ=V8>pa{BBT&P>7pI~Dxki()e|)0(uv&`btRas33!`(<2$Q}nig^YHoSI!c&_ zeT+b*(IUp^2&s+0o?B27?ira*;+m$cJbB67is-rl*E#S(wpf0BqIMCO0#CQnm;+>8D;CeGi#p;POW+>>6mUMvs*5@ zI%#AZT9texdj~JcR!y5v(VsE+1%?Yvy_1@7*;*a#^svlsE|XsNT5s9YYFx-O44Y`e ztFx|L)eL~H&9aEgd)~)bJ4EQ{zU!E0?hsg^(Oy>7miwU%~4p*xWv6DL{9v)nO^ zjgv)Db(s^-(CZamQq}3wy?uEK+99C<#bPJvQCre?nJZTyp2 z8;8Q)jdm5`fM=pVaM%OsvrlJAVO1=7j3LMl&y2-`bbMcp+F{V*2^y;%SV+C8$`I3b zzm8W(A&BS@HvVeuxxwyzitL}xV2S{;$l!K&%y$YaAsWCq7sfI<2g?@oNgu)Jjw32uOI~J-rkd`)(f0$;V?N`~;o? zlP}*!(Q|U|QK0uX6j)(gnb2gNI?r3yo=igBG@rM&5S6B){iq0@8Jkxg66!8p&B_*v zbqOxbwFi|%!&ouMCl|=P{#}Ne1UG$0DBy(cBFp`pI)TDtS_j|V;hrKNO#s`A=Dc_3 zblhh==E-v=OD7WIy*S&ILdM!t4Od(Aq~3R%v=&p-?kkJZNJ{S`pmy!0_-_kuRRRV< zt$MbmsuLtyfW?(}f5X@Jo)Vk`mBXRQOLkBwL<8d{jbg?60M+yG>1*X02o}C}WU`(h z8$#Jo!)Bk%^^cc2-&$j#bz2u0GZXY&ov-?}DRvz#o7B`CM(+XREZp4t-cIo)C1dA; zi*o9M&ge!Imh1y8;1bq7BWG|ot5!Wh?*>nTK1)UGrc@Lq+oi;oBL zS>c67_g-kSWs)w#Hh2!SPgy&(m^Ze(Cr=ZO*7TC{0}N8<7=Ot5>TJiH!yPaJ-{#8K51VJ9^Gfnx(T8{cY?WBPgG@Tdh-fc{`e@nqIsBxMuOiGvpaIM%}3)1t}+;L=R z1n&Uq^~BHw;pA+Pi-Mk?sJ>bAJ%*gQ6n**j9cJ1l7)Y5GrhHMR@%!3P^G?x92mV9|YO= z>THa_)!C!MM9-Du)8;5CV&Qdx(0zPCIX@i+gy?B&b`{sHkyy>fi$rK0xtL|>gB@zjOJHH7HDVYKI zfXE{-DOd^3dtQE@2n@}r)}V`CbOW{%*#n7utt4K!*?vfc=4BbIjfUv8kCq0P9S5*fC=})y*-OvuXiPn` z<;T1guRpJLdhY9C^AH^vY{4=o^_$dqcHd19cxR(r4BWvRsbnIVo>CEqaZCRwbGT z48PmppY;y-2;zcU(;LLO2%wZfXvH6W%ck!AB*bWoIZ|_e)x_W75DWfvgTAhY9)?Qz ze7h;fPD2VBWOgJ|*Jgt2IZA90nW}Acox=#h4{O`HSz|@Uw+P=@vzSyS>$A%bUra|c ziQz+a^rXRt{mE#!-653!^yiLsXE#!}>L{&V9X?`bQ7^>wH)&-($# zj_p^uUf<(tDAM!1GO^Z@IkEGV=#!+S#z0N3j`C4N{S|k|mJeCoUINF+lDNoQ%ZKC8(CA@0g%C3umM%Xa63YFjZTmd-EJQys zt3}?BI6dv(J4N{G)t&*i)Tn1uQ3&FH3Dz9|?Lp*=0Fj7H4o2BfYIWm?&D+XU+X{xo z;{IuP3;En*z-|km=wogWY>(?YMoCC!vLdJn7GG~cqePPU4_U$mX6v97e=@=R=TuD` zp8n2eD`Hg6a(asd2M5F#Bi9`|lls|7FReVPV3j z`FA?{mo;YkFMQ))^_zf`(SM{ttQ`M#3K`h{Z?h09J1f*bAo0J~Xc+#pDB)~iZDAx} zYi4copVYFFvx$xBzce$)zskw~qa*rH&RNLZ!0|sCJ90WfIw3k?IvF}8Is-aGIwLw` zIuklmIx{+RItw~$IvYA$Iy*XhI!8JuI%hf;I(Iq`ivNDsf0p2XO1}Rlv;MFBj_H4b zkpI4e_5Wt6|0T%Tnf{;2Y7P#1*8g8gUQ8RPaOoXfQqX>;u1pi-;%V@ zfvr7wE36}*oIX6jXjEwcSpfmx6}|z$L|A?HA)q4&c~AnIzp$?;H2g0BHszoo(axWB z$kBwX;>6P7L4(7?Avj0=`e6e#!|CdPwD83+{Ls+=gE{@F{<}25OZ>2VeVRt2CE#ak z{P2F9%>}CBXzf5x-Lrs}ir^>XrSDS+m~0(1RHsJg&Gs#8|t0NY^h*e)WrI+o6bkoObMUVIw8hP&& zbq~}(2S8s98Y^}e)OkyPk1spBZ~B$T-Q#aQz5lWgmOfoL%G(e0DlniU7;yX@n?7CK zuk#n%!0{1?x*&BtfKxro5W?&3)vIa!a^Bm|&py1GKf#@@Z#KZ*?JS?%$SYJ+Fy}_s zx76=pB*#$+vodjs#*gJYURg5o63Slx$TX<_;Q=TRdjK~Oz|SXm-S5ofEXdEz4_p-( z#KY?O4^dHJ5eo8M*U&BP&FHHe*^Hk=(0yHx0nnElB+FS(em}s7-?JUa5vb*-{qfA?8aDB`N>_b@!?5u zfc|}awkl1PsiApCMHt-fq zlldlP-0UYZ)>_LYIC9G9q;Wl}RTq>y?z0=`$86LW)5YYra(L0B9@&cubKI4~9u)W# zE;8hKyOBhKIJ4_f#I_bXm9l;kPA4N@D%jD$7JxW>Oa6+soUAkkGNUk33iRaQX^we5 z;^wgI9Foy7`LcIIt4Gj7`P8KfR#7i_2Vhh06DOkF z6eRBVQ!Zys61LBbx$VdjywInSC9JhxQEMAZa@WaoHEZx}vHH%S?@rhmq1vJJcO3c( z$be)KrAP*vnbw7A%#?yJ<}bTO4d)O%Z6pyu>7hmX$!}7Cf>U-)N4LPy>GUc1)|s=f zJ*Ot9u&6$@n!AivW%g1mtW!d??3-v1&R0@HYhW&>rm66&qUC&tbtsMeW$>XD3LwrB z#cAl~=x>ARtqX7OxX&SwAn63bUgqm+aD5K@<_;4*_64&ui5j*b(J5 zu!AU}$<;ZB;P6ll#4Dw|ABefs-a~Wfxb|&|$pn%g3{mMY@?LSL zu4Y>>oLIY@{>!y2bHLhj|OFqQjjdes#!I$m=45p7>O?>N!09To#x=(~0mnCDw+gXg5B z#LFXzM3T>7&05mI)EAV=%Nt*~Fsadf^>8~_$+1*cvR=ZkQ}Z7G;R5O04(US^CLd?u ziIpeRXE*Mmev4S}QsS;Ga3wr)c?96~A|zcV03>i|tHM!seVGVw2?R8SD*Jfy!CW$n zFV|$6HRkPvSIUYOYsD&5}VLSM4 zPt&9^O9XwK42S(~)hO8hGw4IQq(QB9foZGM2ORCP}Oa{>EQv&SSCe2 za_&{GtjDHm58Xp5>+z(Nnxs$jOto;AbdeFC2~*Xo=f<+n{IAX0ilS*D_Ca|iftRli9Iy_8 zSghq08@cfvI@c=*?mg3gL~CceC!oypk6(G51$%WGJD)5`bn#-%D4`MgS6487Quah; zsS`uX4;p3U*(|hS&GC!veBNYVg@pDJ!`9S^#Y`2>$t=Ln4lwQgd&e$`tW&oh%EDkU z;?&U{&{HF#q;~>9)F0Op^MP%kK^mCRSv3;PD^N#6d4lbsl~mp&TvntMgX(H?UGVa_ zg|SL$R9n}y*@lOCP`iFyYk+Z3rwvL8D?V4;&QlM$zJWvoCDN+7_(3NgYwo`PR*gSr zYMqUTX-?oG0KXf+%{+2J^N2(;GV_WmwNqYukTcFLtg`9%FSXBwu$jJZWhOLGLUpH;4lw%(HhS+V95S`ud+lg;~p+b z=SCYJjY@HHYfYT0FkK<)&&->ovPXaPg?fEYu{gL~=uQdEu=7rX=e0`{MF6p59K&D? zJv7w;*A><~ih$#e2rde~CS_qw$4vtN(^_tr|N7DN4m(@rJm|ZZ<*UWWu+Gp0wHtX_$El_A@A_zl&vo>y zmySzD2e2G$Q}2RY{+T^?tFy$_-=(YbrWPR}@yyA>V2)M>gUD-xXFsdH=>>7+fpJ@#fyyW4gCf345a4{3S`%yH-{zV~O3i9fel+ z_y-CKJ7wxAt?2~P)uCh+?ATU*wE%N7vFEjR9c4pC!d%pLSvvOU0Os5i>qn9Wd6t%5 z!`zennm-^T)cD5fTUFw?cj%U^207ytriNTtK_z0mT`c1a%g=|BAlm6eTd`;+eBN;A z<--GHxarBJ#8n%Vl(PNA!kMLo^wy#^ZU)H-g$}j>P?zf-nlUC!R?aR1(m4J>s z1d&vu$ysJxnR&>lvde3HxmaqYMMZ9u;Pdc}$q*7mSSQGgzzS~F*MUiHqj%2k7r%+5 z9zoWP{lX*tr(2cQx}lA)`sU^QBw8}Nz5=ec#I!JxP)A0{uuA~$a0!VKoTdyWvB{cb zkgQ=x6)D&}usR~dJB4pdhJ&t2tVajHU9Xi-!J^49+^H7{?(Ya!W<2(#wsVu&lb(Wy zJYV=%qC`+@9hOXYTT{TIq{10K!+^9aN{tXDIuDgrTxM0B?KEo=`#kD>xwHXN>rXI1 zvHyEC>gE{F=?N9V=-63PTVtyyIxZf&P#pUwu=51cld`R-`}R``&$f?Ptm+P)`^*x4 zgQIl`H5>4=u+&yrhnc1eX>vE#DhyR-mECB^v~4z%ok8p!z;;-r=SQBB+`3;PdOZPK zViN0QBvtzsU-WOJM^+SKG*#hr*im)sZ93bhVQwRCXyUwoVY>{gw9UlRzRSaWIz_sC zDnC|4UX@jU*Q1W72H_Uo#<1?^I5bv1VsDn|@^R-3$zb}~ z?rpjT15*MkbVk${H~SX_P{1zlHaf=LVIoeizfS1OmH5gX5|-w?%=HXpzbJn|o|n?W z2A4bJNKs7*LZ^1ctUF~nw!u7K$VKs(EC3R8(x2Xkx zj~@q|kY;b(0K4oBc~K4J(ZVu%ehjO)xOx@Gd+X}WDeIPX)o@_A6zpS{W3JsUt!-}4 z6DeNFqKYESis$3@4D^JZ8kQIcPV`Kh20N?OQYkLRcu>W90E%&i5AIZ5FCH-Sh3V@n zE`DotX775Kr-=cUk4WYCoq>(p9{1F#0IH^Lu(yS%LqI^cYHn#!D#Ukn$@Oj)_rv#; z?ZX}sjrwm6dP=TfhCJ&LF-)!qlUptooaLv>PAzmC|9vz9@?Qm%oU2oHju3Hhzz%yA*?nye<*F`_Cg0E@>#6($@4V zNu^5ycA%3YhEqfcqz5OpcdnOo{423dxuw}aMcuI5_0-z2go`N_*!`x3fEVCg%jr}d z!s>&nMyJwfY;T$?_JU*TOWw8q@5`vOUYka({*%xB>ID*6vFkqqY<1$TC{0RTBZ+hS zGNMf^df$E9-|Y)PLetqsX;^!yNA&kO{SAo=%vBEO0i)^1d88N546+6SMq;k%8i2q& zi5bkn(TgLMRme%garO`ra;JqdUy)&>%SaQ~r{G~*!WFU5(pw%TL|^1v=eFOU)UIg$ zKCT-E^=>kW;N`6E_8_|YO5qrx3$N{3U3ViNz8)G`452Xh|41Ky>%%C=+@`s&JG5 zHdE%0Q>xKmsoBy_GQQqt$2qx8<4={EPHK+5SbCv!FOf1a>D^|c3u1AZL--i%^4mqV zBSFm_Ud6bSZ_T$IUpnvp5%Ha=uYQWN41QTj8l1xcgSZGp{2pNRx!Fq{1x zCn@*sh-(@I$zpfKkz?&V;%D<~PC73@!SeO?EJgKzD&qPI!L8ns%7MUS_h(cQqSvc8 z4shZ1ScnU+)U1RiHDc%SK8*39Bn`k&qDb% z{=>HGTFqrW!6L}CST?Smud3XeR$SQ$G2(%|p(1PJe3^}`;@Af^vN{Xq(|fW%meX$^w0bmFe$n=jP3yK^6@!lBEi&_>s?A*Ze8j8l zE9kIu5jM{Qc56yceH${znPuc20eM)_x!zsN7U4=SxNh7l2h%ZHJ+-NM+lZP^-*kx= zJMt3)x4tw2c05>m7SSdbEG~?;opgWfINaIUL|Uo{GMGO6O4Q*C$B5Hj`C^8dP((Lk zXzELR*A5CwXJ_mBDdmX2~wVz_H5>8CNysSrTFc9`7HydMjHYSHHhFhR%K`2~Qrw>w$Q(WS` zx7=8+Z|I|FYa1>@CD<9f=DwhQ+ntjmnw3u+-$XGg&bYZf*QoE~nWuLu(i0}#dr354 zq~8TRh;Y>%2kggl%iHRQLV|0oCO+LNx9FkjYEZApk$cn*)S5vei=C#PXGQwa)WhRymNF#;>{6G z^U+XG!M7x{gc=s0m{lm$R#5KQd4(FANXS1jSRi?=p}P4%D6|xPYk>wvDf$O7&zS#j z?JEYc6|mCK7a;*n(GTE_vC-oK-fZGME}=>wXy|0Xt(OotxL8}}avlQ>Crk~(1PQ(a z;xdzblZXzLBNivafZ1KygY+tw$n61yo%&8%Y&mo-sD$S;-@AEm+m-1A`=zRLBN5XU+uWQcZ6_60b?|$Yf?m>ZNKB(ERzp{6)tS2)RVIT zp(3-Er}7poU;wv(PB~anG7`}YDF<|?U`1XpQk-E z9{e%6-_pQein2oztFNkr&qKprRvwff%N#A^)&OT&?%4NXNgZ8c=-A>(qhsr>CQ<+u z2Wd>%R_a~KmL6Vib&#af7wwkSr-}wy@y6Fl;#0*7DhC-h?ah+E1y9+>?s=@;#B!~S z&?tgWZKEojXTlg>H#woQS+=1Gu|;7(o0Af0^^nph~UIG zARDVUX(~Qq;b$!E`N%F#u|s)2#RjDwWMcos#JM&3KCKUdW1~0|SaV5SYU&mm!J_1s zNN&rMbFvqFA?qo5PB%r0v$U|)nPyme8S|`3zTpS6w;(GL;{=mv470;Q{qZO*&_pKU zI6f{-_>~F3xUMd0oU7`qdBS~#GkVJk#;DI4(BzXznKyt`d7m=;aodkiz_1^m_=4N% zAO9wKXSXR-SX#AY&T~4xzJlzam&h!eZ;$y_o@`OCO{*;UV|?bpE*ITcI%6@9sUT?0;BiF0u}WdxOKJ^HyW=JTAV2I&mbQIV64?m z61xuVFa9!ANea|y9(#yp#rkDoQEWq{4n}?bN(niyGFcg=qA%;gd`atdaq%9%&t)ZNcyDmv65q4GwL6HHkVeyfQ}G=KFhUwd$F+jJu~0$VhvsS7y^ zw+opcT^)EEsV6Gp)>UrSNLiKpU8hmTcQ1XM33P2W^3JenhbE}IhJ4d#koEI}IyZeyKJ}f1syeW{m0sj|k=M0Jqn*XOt^NXS+~}u>*=}O-OpU>A44oRD$$eKWIMcA5;__X$IUS9}gtO>R3}ULPt10 z;WCW|rFnEvWW@QIc~yV@@PasQa?+w&TaMPIm3330c^|2{Naw62^&bUOCM#WjlWJmi zqecwr!YfD_u}ppbBJ-K+1PE&aARHyKu@dSu=|RII}*=LKGv(> zH@8XFQh^C2KRpyeTMNqiY{{M|xa++LzH%>9vO8INRID@}WyJJFU5+wFjgj3cReh-2 zQSWIY^pE{6m)G5giOUY*#K{!=xbB+wN?#sIT7^sJ)+NKLAtu)^1+la&;I36^lS6#H z5I^fnqz7|Dg#WOYB*(8v-0UwK3>UHIzxt7iF6G9g_4vn%QJLaE%Ot}}EPdLBHTaZu zA9^E1Y{b&^Xq)HWd*T}@{p=+9jlyRcU(%FDJs3;DA}S=@k+7bcYg;|Ps)zgjdrYZ9 zwdocVS;aAntl9eg>PYY=y9OwAF?P`zz-PYO^>f3ebt zU(pFucG&pSo`hMHXSdZTHQRiPU;=kjo*y6P7rUyQ71HffMi$|ic7H0Zq-YM*(0eG> zrD3MmMzQ?c&f;sOOqX@(znV@8Fr5fupUuECzIch&z8d4wQeP}DJ6~>GuO3DBU`-|y zgPdzX7xJv^UeZgytX(0Mw^9jZ>BjkxW2ZYPlkS-Oh~3c&Uh;z7wk7bZ+&YrE4-Pu} z%cfU_JyW3G1h>&g6CL%T<9$CJgZK+Q?{~l_goaWTz0j>mBtu5uA$WDELr+rhGxtZMcXqgg?f7(g;PI-Wm+kLlr^hw)(k1_v|oy zxIH<3ILPM+GL%kyC@=Do5n0sOqv7{>B5AgP7Ps-Nf2>|4If~rynPa$WDT6;w5^VR; zpc$y*ji!2Ml_3-DEcS5_oMA}n%g~OYZpsYgI1BrIG^Z^<(rfv;;A`I75vHM~z`Q<|Wk9>>r}j(2@VfSgn8f;6tcl&=Nlmqt3@*bl~LtcuEbKU(q(KLsj3I zNt-4Jx4}60`vSU3KSXcUOp1 z@jCZ0f-z)zR20$-EH}2o>g!aPJM&2p5)7MN3E`YDggX$Rk)#bH ztm>YQ?eBYVD*x3nDttV!vh2iQX5ZQ9LC#c)#y|y@V3jwD!hTM0QB5ZRv))RZa>t{P zogh%WEl^?IULdo+ZR06L_rut6_~isXJHKJy^e%vF7>TC^9p|+qc|)1t3WR>l&sK4V zrai5z|O%5EpMWHsd5ns&mkhUeHswoG@azlUsATb2S^Sx zFuy2HM=ri6)Of@j4li&dEZaJJW%iHBp-c8hHcG8MGUw$F7id|beENkae9cY(ftM%_ z%R}Bg(-5qVe$^vujm!6p5x7$~%u|eoSqz_i313hfO*FcPj4b$h#2J=U&0tB5o{7OK=UzY{*g5P!j(!Vy6!`A91-l^8neJS(0 zYgrM6b_d*1F~rf;u>A396~3uJs_RYW{QlPwgx{Tt)Eo0VX+y&*T<0GK3l-`&Jg{2k z4$4_Ejq_xXzmsCVG8w+FIlqNr4v9q@w4aWY!s!7WxW}@`tl(yL=!x-!T_~YIAj-~d z>m2v4=ZAQC$T((ErjIV;#-x_}%uSuvc_)55BcDW9*~K}>jF)uk&8x7Ux`;UTZ!ezq zutV!bY0VHUb(OQGa8W-juz^P1U=&z>EYzuV!m0F^loXbqg_;ugy$jGYB9lu6(WVik z#j{9atjpvAg^Q~}k7!%@fT7_(Pc9{;==g6kmV3cF1wulw7Qd!$j|foBLcD*2n3)F* zl}QS7(cBCPNbIL0u_0c1-D`{soJItBHBM8n98F>@A;s7b!p=vSK=}_;&AAQOlMRIHjg9_C$b@V(lo$QD8^ zZ%i(moFc*MRkRz_4>uKOIi(_8j0K(w#;Hh1(7jBiE`*7&3YL;YNQrBuY9TN9oj5i- zjcSAvG^oBoTcSenw;gG0VN$iio6%P2Ff88-q=e@9X-*|c;BkvrT(n&ha%!@z)+i$d z$MQ5D>?@H!W0)6xuI__1uoG$s&ETI_*})o|8U=G3OA1)Va8CUC;8KUSA1t1Wpn3JO zRAH2@Ds_fmR&1k(?z&NQtD(Z&p`vzcVIUisgdHsP=n&x(6_uxVli6Xjz;r5M{8paL;``YiSvz=-``y>*+ePx=WL}$u^_1O9?!G&X4wx>)N>HTk;baMa=xP;l zQkgH(l|!$JM?`bd%giNN`B~NT{XpQ!*LQPS)uZvcvHrfqB>PKALJRb*%jhp9T}E=u z0QixIf9$hLMCRr=y`}D?oQNYmMO4s;%C%pq#m$G~gx8+*u{5zAn+crOp9$v+PBc`F zIgw9-5F-tff^SUP!=*k(p_~3;dP3EE^z}7oN1ufylsKm$=7F#TKyFN@gO?b^6;fr? zz7YPq_(_1lw|Be$as;um#hXD{QKre9;%?jOfZ?C$#)liAie&V)89Ri)`-2qsM!+UM z{j^7ogb>yNPZeuRTH}Sju4Wka(MR6;0T#4$+PEN@Uso>iyQz?r^3Wy_&M@^Dw&&XL zK+4NMB;NEmm4n?L?aiYb6?50DG1ZA#>OuNM)oO0`YTzn~*KtHhM?>@qMCT4&2Xsv2 z;!m{A57BJDUCFL@DKA1XnwU<=VTWxjM@c(A*vd`!m4M15@nL1iN9>t-VdpjZ_#Nkj2J>&0{xmnz@CV`zl8a=<@au>U zuLFUKA`AY}+;}FTNB6wA(m&lada#jq7Mf7wX$B-(HROKHS%$IVd zdg$pD7XB(>IP-|3<#6fNa7j?olkHEBoL-q4aLjWW<;Q1(OF$! zN|BBRq4+rO<6*h-`USy+(+rBg!^Tqq5c|ZcYpFD7A~zp$Wzg524KUC&jJ6?`BRTDZ zKc&MLE6OlNW8!TvLNwlsRBuKEW_6TJzCF^}_Kz0YR%$qaNOu;L zZ^C{LMZkZ<4F0PN{BHv^4CBA_$^OsGpoFlZtdPiGW>8Lw`7hM>-!X%%EdO8z|DnHS z`=|W&e_;k$|2Jlkp7}2w_%GBT=U+VW-=RTP=Klx{3jGrslw?%>3kzEO6BGOgBj^}eeb>Py!AZ6{k)O;>Fo)9~9pn!6xLkUXxFo2G@g2F<$R{6PmP9V97#$fAPD=9vn;|sHY4~VXV9S{jI@$hp8 zUYxs7E9ov1TORxXH;L{I>Mj$SVOSt3GFPsD(@uih;I1w?ICxiQCzv6FCU8_o5F97r zPVgW%2m};e|0b#tHX8NIR)9W@3D~dQl(?BT&z{9%{Jm`u!jEEW@eTVcJG3&7 z8RzsUP*LNJ7W|szedIWx7g({bHLb3dDZl{~Y0E*P&)_oJM;Ey#D9*r+55ym!5k+el z3mJGLu||61Z|bL+MhVi}=1uhR`Q^T|je!jYvO>Je)r+wkAe#6&kAE$`@?C#B?k?d4 z`rPYrB?NR+yY0V4cl*#Vkf$W@UG%+Go7d2s5LnKAO*r@+PEBRl2@LQfMh-B5f`K4H zg2F-?=z00>nDl4ZvA^l*@?ttL2nGF~SHicA1-{Yq3+mn8+7{&d-UDAY$k>JW;unSt zqGScxc?*5VFr>nY@fZB+LBHuZ_!j>#(EBpj_`U`$_sCQ18PM(7|CYcy`YHPQksNT` z0EtiwYYV53fATHg75P$VX8Q|&Zs4$|@Qe#fpYYBSl5gadm;}Ty9^gl&4t^S4H!rfc z6XT!u@XT<-swl}Oj2I;L^>(mR*}L-{v1YRa2)0mBfPFt#u58hI^@jUVFwu-y zI)%s}OZJY>QYWv}Nkr9}S<*|Ub+jdxH-aUz>ZY|cl|LSry(eICnVD|N7=wFAV~n#q z$wP0;ez>aLf<-3VO^3UqzxISvE!;EfbVT1l_RBA-F-(4W)O0b)j+;W}uA)Tu;`BPZ z^vu*I7JlglPU~|FBd}08<;+YGg}9s}ow4(Y^zRp?GeuKw^_lCCPRJTK9mH?bu83f2 zMt4hkzW_1|te6YJ zLhdYb{R;!3_?BokN3){c}$)oWDMQ(ZDN(;14y#+XA_2CXvQK(){`4_U6%MSSO*Y^4M;P+EP;*h}$ zybj@tC}Qg2I052*m3ih7Id77bqxpQ3+~m`07}Nq9R~pr*iC8nPW&svKP)UK&FIxz&p{#!({xU!}E$TtCv2F4!k$hCtyvT%(XaZQ;?eF&0(>o54 zMI#8uD#{GP%$XozCL&xbyr@Ge8^U3(puMQS53I>uqk)fOPkWrB>1d zrMQVNnu{Uv*PPp;0~`((S6kcrdG@FGA)#$2iCjQNl_8)fqgZBC`*Ub~uo9!{_QWCv zy!=r&+UXv}ccA%GUz0PKVDS)Mu}5I4x_VXw0^!K)JoH$~PA(zzLWX@asxqR(l~jJoFQKTKjM^G z)%?-@?hZ}`4>~!*@f`hRelj!i88&}pbR3}_vQow=>~^oR&lVV9QSHFEgrGI`e@#WN$RIe}XX~KS#6PJ;Nk1zc zW@;l&#;l`fA>ila{8~0meqC4fhks4e+y5h;*fyM!ZdkN5q%cYSIozi`w4gC(cIa?( z^BX#1@;lq=LvRdMS`IIWmN+V%-M63 z<7xQ{0rgYJOE2&hInANQ;oN!o9VbS3BET&gL^HiNGT&Q+fi{G;GlrHXIosUudFn=Kr(5kBf zs9pQn?Akq(#gdt0rpRol_v@4CWHZ!RIz$Y8>|SNDv@nSW@QcG9cLa=5>Q@;cOYsG5 z5DI-0)R)iqj==PbV61Np+mT7*QUQJI>gHgpQ~`MTXX;r-%3@gSXA9hjNNIC3#fh&6 zOh*&YsoOwzyne|028WOy)gt+P`hIuvT2R*;AMm%EP|teG5Mrs~Z#DQ-EAjC%P5b&& zZ<^TX%uaL73y$$b+?6w;kAvynaRx^|KXX~|t-|xKn=f5lzt>483zZe?utlxMWUC73 z4rvJ1wfC(2(UJV*IY4*1(&46Z$pU>!%CSX<=6hVDJ#kI8^75Ygt7GKP_PwFxxZaF+ zeaAf+*I})F+t>FY2&d@-FtodmamJLvaEuU$P^d>t?BLTB_s=54eCv&_A8je71@ojm z{rLjSRHi_yfNbK}T%9;tds1x0KZPdQUj=EV_z80RaXmZvSZmIlqYFyav`677y-O?| z$Q%3t!0X-$%qp9Pam~yn-MP+VF2h&Vmgp84i#f7%Mted9ea4xgqrW*V8Fhw7$e$Kf zF-G=^ueWL$4lf5wkN^|rZ{lZ(gu6Z)Gfo1#7u6gT6gK$po)lhpZRoANdlFs0Sq$POUVZ#!b{O&dr_G#*tT*;(uQkdyI6h$4Y z77mG#WUthJECZ0 zv5u*upPkxy9DRFtEe#ox8R!ubtDDxQ>@Wl^Yxo_O5G3{KN2~o`jBlh>o=Z7Eh(c^}TLR_U!wp zTb;fA`fX*mNp1CdgTO;GZ%>g(;fP5-K&qG`k557cYH@}Nb8XlX+BSrNYmr2?b*iZM zc7&>xjMm5@yt0{Z%bq%uHThE;R`qJZj2ZjIBu9n(mlO2-=lB!g#~ovtmp*Ejoe&-d zw^Q||<_GKf`BWA%1?Hb;!4;mDiCcUUq3&7zdiR7>ChyW4Vwc--LBu37!p2+iQu4`2 zuRk5HQkc$>C4QXxby z(2;p$@p_$E9+t<5Ki@i~nR5kYGhLQGdw(c%h_uzPW`&_NjHKJL%c+o`} zy_J&D;_v$+bGeV(PcKl)Jpdb(u#CKwP{~PalqWcGi@t}jdL53E<-GmTYK52G1%N#- z>&H2T%7H2I2c2pjjGqZ0ylZX-5T|HHM=_AB4)rs&^tmgw@zgk5kz3i-qVv?g-JO`; zG-MnD#1Fp~mnHYQ=UJ-*LlkOS=oH|Na^UAN%6@eDQy|d_>>1~LEWXhxchBZ-yZc@L z=+D}WNlN0>zl+tK_kJo02q=d;t>0z5s2)eY+5%yvM=9=v74J(vJ~WU%{y6A>7Ck}m z-EX_!DX&ZDg`)2b*SkYUHYm!r;RX)z=Lyop-yFFho%(SUl4HzI`N`zuvLIQ@#**x{ zP*e>#b*bjQ>&#q|+7VildJ5Ea`%%#IwVcb}$>2#dfs!bl2o4(Cqh77sjT1}4VAC~p z=V7-vQFlcLQZ1s|fP&J}oCWdIqaHeJsnXj*2^oHk1rlBwf$DKGDulm#zH`*G#^3r} z1}w`ZV&u;nx8ez?U86aI(tsaeMvA^FZIKe08TLr#SIicDhZhx7oxcrVnsY)NJ~h6* zW3{S^X;-C!@AWV^Y9!e{$zDK!^gLF^y`E#r6X@>C)L!#IsaQQq1i=M9FprSE7jEmr zvX-xw{6#84ij2Op5oq$-g3igX6VS|g!h)VqMa1ft}M)Iei zzeV%+pGFm~5&~eqoN(_Oq)R&}fW^37F4BIq>|L@Up;7Stk1nbH))TNLjFJg^i z)+y30a(Kv`f+sY$-@KRq4fiN}5HBx;McY2=I^<~Mql(6LD7sCL(A8x@Vj|=W6A}n@ z;#@1*=~xc(1idOBUyG+cv3FZW{yUb9B=51{k=wx&Sm?TrNGt&W=Q zai1Ua;rfrBH8o!Dzcgj3w~1WP8{KYRM9v!#PMIy*l-;V@gQKH6y@*a((Z5uirhgIE zvaYQ0X}v`u;P4|us!qwBxp5!}XexO&@{vbdeJ37y+3%VC9L9|7>rAAl}ul4%^sw2S%saf># z^c{|RcOz23yQhTCfeRsI4iD8r)h z+3c{1bJAITqr6sEgdv7J>e|Ae{@9#Xs`lKtXqD-iPEpCD*j0{QZ$qW50UazTBf%Hv z3OOBi{FB1bv~-@5GRutE5i>P2PK)2H$W;>kC0WnO`fy1T<5G6^&oAouL3bLzaWDYF z`9Av}TODS9gP1VsxUk~SOI+WUd|h^`(-92@`1mGj#~U5}+O{|V!y}zi3+;fQOD(zQ zi_TjK2!(J36*VZ7oOiE0Jx~V`$;!f%|Frw`;u=Gj-D;hMnB`*->qXNRC|nEU1VEU= z;Yvj_r15M@Hb5ETw<{)3U_5bBW0HowV?BYjq@R;#sdHw2d#i9^D+Sm+`S6*sL4wS_ z0~jhrGr9VjYbcrKe$B>sg%HS7&EF9yT?>#2c*Mf6J|f#gJcZJ6x3^}!xeDrD z*DIr_g{bR3ZkcV94QcIIxm}z(%>{AgI*ARU?{#ns zMZQi{e6M8-7uH3HqaVv1w0^^5;}lW_u<8}M?BhIz^GzPyEuKtK+Mt3eP!_6Q<6qT9 zn`>JNy~EDib@He4W|M`HG%^ySUF0DZ&+&8JNJ-&EBe1`5QN=p~z7~|-BU(o&hE7k1 zZSa33aMG~cUrj2?cPM91#5UTu?u{uDwiBVN!T35$|5i_t5u5BT^6tFUCSi|z2owJC zDKWfYXX+@6zHMJ-PC+}v!k%l8t-uj~Ot-@Eq5m{sn?>^&k$8NjNhr_XHwe~ z>|rKp1ZKAyVM1p72rd$7&byl|o)5a6KtBglJ4AGrOTFHz04fY2i(+CiG7yaJfXuz% zWhYM(KHDiJEEINE7m53t`}_K1}FpE(~T>k9={ z?qe28-?pGG`!d0g>9nE1ze(2=O~zpU_;j$$o_x_S{&t--$zUkC>3gqSl_GS8X>%^` zP$5!yK^q%vrdA!uIhCh*RHOo}w9nSrLeN}*KMQ$IxlErO8pY=>U{xmfbQ@nfGdXxL zV^tB!J*S?h0mr`5Q60(Q+XBNdztgyr{?T87er~DoH1OPn|M-}AKit_AI!{RLIi+bg z$bP6mn57z>tj=Jideh0K%>XvpcooatU5J>wCAQTRqJQn5%dl?u#xo-^0^vq6UsaHs;V77|y3*r#{0J;>!re83vx z=~C2@&x}7{?<`oLvKp;aH(mfQZkt86_Gg{#Cli`0*xo&Lces{c+&3c<^R2=-R(L8Q zD0~=BH%9bk7~q|Ck1SWQI+FGI0(c5S(u0qH)g7c9 zx&}`G4RfdvCVcj<8g1tw;@|h8nH6vr2D~>LFH#6xChndc78daL4^1Z9=FVOJcD%ue zzH5%`@wHICI}NYDmsFfg{j%TW9jH$i?n-z&n4A}iL``@9#QU9A&N%2=+qK-zm!NZc zo&Umc33WDI(blqPCPPlazEy**`{S^&sq4{(?&;pSq3zQLmzNq}9^L8Dx6keCq?a}e zQNLU>)OQ>Ob(PR#PIlJmQY2z`o(vUpPV@`Kb_%by_^iQIrdFDSTw_CqOD__56@h!& znO{<_<2{NX7@)nWL!rRmem{Q{4Dyna5%41z&e`Yvq4zk_a8hDp$P)^vI&jY zquaxwEwY%U8od^)&}{{AO5BR^T0$Xx;^Y!;k;{Z;zeSG!l9@6y|Dz(8>HkM&`u9@*LuP9ApTsHuNI#Wf{%;)0_OETu z|0xb-`P*^(ZviL^5eqXj`@e7g$4*KX7IrR{e+Hs|@6*c0#mwn{?xc)*0$0>sUjvWW z``bN<VMyi*fBuepyzBngE<*9!3r)JNRfA>y!{*LV4MdX#(h*uVB{tDr(_zmXZB zU zD`Y@OVlX|@#V3IH4aNzC%Oj9Bh#w`K zBC|8tS2i{*3cKL^@Y1DyTSy}M%KQX6lm|N3iZ+mtT`j>CkxU-#PBLB|aV?mlE5y$) z4)wS70O%V9Tc8WNi*NYn*yn4(=DeP)NjkbLyzEKAt!5(YfaGdWq&%9!L69d9R^SQ2 zlpgp=yp1gV&q=-s8~lk01NbkVHf%w0U3|l*j2*yfn^x-@Ptd03h7G=7>7O^=3G3uy zp_Byqm>5B%75LNV*CHFeK#W?mXY;65NitiOK%qF&K~@kRT&0?$Y)ydslX#KlQ4Aqyg*Av#XmEgk~27@Iy-z zNcWe>oh$1-5J+#$m7xE&KkXMLaeX5woh^MYkaJ!WJ=Cefg9h`=nf=F_kA@E8-`|Ai z7xkbke&3(ZqbIJNblHLkTmBQ@XN;8@Q5CH(I>SAzU$yeW{iCou;}b&=hDST*pmpB_ zEL+Qv-{0`}+aMp5uRTRS%$vXQt_+Y5h1BJNzIvQJ=(qguZeA?tPQJ9Ty?Vb{%DB3w zSdavtEgs-kTUY7y{a3yLjJ*a7-`_`H?n&P*v)?_C36Aa#FEVn^sbAj`wnvudJD;(A z=Tsd*2Ft>$r>@+B-^;3yFV8fzp!Bwz_}{ha1U66Y1bal*q2DR9OLD_Yu$JZKu+4R^ z-XUM}!OJ%Y%|v+_iJ6zzsqg`>O-A1m&+QHvPqmC_EzA0!#UR~R^WVzSL3CMk{)_~W zoQS;>i;EMur%jKwVYoZvU+wuRg0(&3xV>W_P9Qz)K>G9dkeb|WB%fDQh@1gxA1x>L zgP?}VFF_u_RSEt`gaK-2Jz=Tvy)^fb^`M$&-$V#Nl^cYE(1yw1L9IYlF#a>N9eaci zV>J(uT@AF~LbVq(-(o(s7eD?U2pax-Anz5ji^cL&s1|PRAG@afk-uqK-h=dCC%*HR zKPL1h=`I3mIYZH3Vzcgh?s|?tdSLv3Du?`$pRJi-DMObDz9ssH9(DFkUP5o&@3rW^ z!40Sb{fS0s=dJH2H*CJx4qAdE-_OTB9KEVL7YSc}7(O!odBk1&+k8s<1=_~#FB0qT z_=WKSJ@vW1F}nF^U{edR^!>B;_B$))yy=ExYl=f~riV`7?0e6`ySnwWXU97ED|_4; z8vi?a+}iW&*Pfp%co)N;o`>2|o=+oxSGPC9$Me(d?=piR?w+lXyzf&A%y+=t_a*r; zZ7S=`xFxl?w4#YZGL12Dwd_y)eV3yOV=OmJ2dQ@aPm81)t~dq zz|6wGx?nw5x|3#8pD_+_wp{q>=;yoN@Y7Z|&|muYjlu}ro9AZ z7;G4(CntG+so_YXaForwYjuX7jpk*(Ew;?@?9KKv{h)?@y{ub11VD7_(%MQW=|FiG zdOGl4c!2*BasKHw9<*I3wXr^$jZqW~z0rO9L3+EUk0NSpE?2MDLx~BvB=SC?_~QnC zhKK1cz}Cd5*^kH72b?D>vCm4xt4Bga*Xd2jzrzB3=r|ApDaI zywh`g@8@ARcr8UfNP~@P$${AsC*3>Vsamr=sSy0;A^~aS_G*i>0I0BK_*-2wYK06= zot!SUs$+$=EJ=OuV%C#j!soR*3T^fBTDH2|=pf*w^oIcuYnc~^L|}AwH{!OgIz;GO zntgvlradHXNHfo;YlNt`Sa>!6Dt3`A97#$l*ql^?kxXBqB0i6x=LM%MfKT9_zds`w z=CvD;+Dd7R^fZ-E{bM+8(r#cSBXhY=|@;#=hCS19_6#|A(|k9508D@bWBL_cqQYmCu7IO>$~M z3B9K3l^P$?+fIw+Zz8oBxf^yxxaWN}5h4k>%rkm?FzMmUWURBOO>#@=#O6MT%XAfc-=Rm)H=oV(ZR-rwWwM(t%`7L{Sc zYV-=X_JFX;d5gCI>k&{=CX}Qb+bo+E5|a_9fDe?lD79h`@r%^9UvwRExw7@%4GPiy z$#x;^l`9&;`DXng_+D|U*2)FD+M!{n9kG15jisHY&Wl2yW};TeVC&6l3(nzM2lt7R z(s)Q7ix65?SUt@!ASa`RRl=^@q?#8dq9lSg(35k@a=v$5McR6e{T z;*{iUi?{!}d;HyehFogDOp*|18(nlEthFo8trJ`AbC4LyIE~}Cm$hrl2{gvOZpIY- zGg0sbf`?hfSz009ObhwjA+9?STER_nc9~9B*+7`15&^sJ~UO1kkDpMrc_OD_w zK|((|Vr+MJr@J$r8`yp`5A@p-f{O>sb6p`!FprBxVL-?>+fx7VeplS+7g6%)=4rMQ zw*+GMbcMIikEu{>f{@=BA;Jq=3=0jTm|suzd+f70d_$tTuwEa#x0&z*tmifk;L(<& z>JuK*wU9_zNAVUq{dTl!F~t%2rY2rrD~OBdZI1OI_y~**z5$QSG?)6Isu_IYW9x8* z9oNUwTsePwccB;R3yJB-v`CWRJnlC-uV3n6h~kCl5&ASh9IbUd=8~8Q<@~G15+2*= zj{t+11bNZhCAgkHlKp=xwS99OcT`6}3(6RUs^8V6xef+4RnuPNVdp6d2)JAzThFA! zSN2ZVI_Pqgn(N30nzeGu@&3FXmD7|lY-&H7aiZ@e9yRvsXdW!yJfejO^~ALEAxkOY8XXt5618m2uNmdzGK*a1ZUl)PtPNSo4brBfaN6 zAH_K;!4>6CPKU@@&Y@s<#u4s*UqVE8{AB?Gw#JMV9aI0*{JRY zIyw%-Ev{@nIPmC=%E@Bv)|)Bi$+5LIF>EibymSjZIxC7EdQrmWpZZEi>a5Ej#N<~U zZi-Q$*+H&m7DtHp=hU#WjDB!40H?_*IL#C1}R)?o>u;R|V$D z!WcDCZ3FN;I*9>PM1BcM)g4I6q8r@GxRV;u$e1I9cTh4=n%Pb-!i^g4l`X8_(Qb}# z!p9?n@=S6gn9W3Dy{y3UIF4fTzRW4qrqQ76zj+VU{d`6slN6r>)E*5;N z+C{BBXvlmfFgMsA98%E-3(8F?`{4Y&DSJ-@CUyZpDxrGA)*q(k08e8UIgp-pv;1>m6j2pK&Rz#u;bC@Vpc8Zpk8o9%f@dVXy z*2S4eM_0WHhXK?6RfLzr-@pk=E|ovg9#KdI3n7<%pCpFyK`h)qnFerSCt z%<=dp5MttGlS5NY&w1^)EB!K*Ba9w!ct-W*wD*MFQF(m_Qq%)68Mj8F>%@BC=6aMA zW6N-ad(0miCCET6g>f2b5!hRRnrGneBi%k80x7J|>5kCkrXo{cWSqm+S%Z@)RjP#I zWEa|JBkJBOd~5BM`W0>eo%0ueFVC6%QMEnNu|k?=Gf*VnU+Q!s;~4#rhB zFuqjzin!SxXYP661J?K&BPk_AcvH=fIl3ES|XtLy7#j9CMK(@O%8oas{t-C)-hEd*j}U;Yy9QD@bEjo(FkYI_bv!UutP(O%;kL7MEfC5@HX znat#D3An3ZA5C8#M=RS^XQ=q8wa%~AFAyCt5@A&?SW5~+*R zPs4WuB(k!Xg*N|Z0!gBnk(|0?w488iRsH_?mf7x;FG>^#`6th9qo&f{z!^4TU1_&- zdKFC#vJ{!)cD~*wH$zn2g-kD-uY{)Wk)B>3xb<(MP6%N72*>&4UJfkr{5AOtr1i?G zzkMDta&D3iRoE6%o8UAhMSxlT#O71F^Jv2q#VS~2OQUsusEa(Z(VV<>&>aGDS#hWE z%xlMV8Yq;_n5-M4)CI!}qA3-VYd;AXykB!WSYk(XDw4`y%xHJ3fmc55F))F@vAN2+ z2hL8a`m6uImfwR#-4tHyYiqJc#>rG@F573+>^a3Q-PvDXuAYCX!G%_Xr;!oL&%OKj zKsibXfKtaY6}G7GWy|GBcG)Wt=`DK5zQr-n)pL>9i=veQkNAP+b!OQO*9qY=DRU%P7 zKiO@faOIj0PBjos-}3~?dD#opeDFOx1}%=|I@42sTDI2tM+!HSK^GdwE=jN2qWFc# zYDk=qe&4p&V$W}dW;DheF@B;>m9r|Jsse-$gJy%e0~|1WD3E>JWv$u%j;jjm{)q;V-M?#=K%Z9rsnc7?Lhf%rFFF^&xB~eX8|?jBL>WjzJJa4#c|ep=erW-pp$!0Y zWP%t&cDABJ<@hvj)Ux_AY@9se>gkh>e~0}!Od!x>%qIjT9$R7@p3bn?T>5Az-1Vcb zk0MEfEMCUnA%`=HPj619aue6CxIp<8A(F=*fIEj!!9`duM^}AYqdASyWjWkj>f{?( zKi`#e`>_T0^c2Yx8X#r}sRSr0f3Lxa;?_@)8IO{G@OH7LPn90LWAwHT@4JbM=KUvf<@Or> zMtGZlu{<EcHcK+>f9?3e9R`|6S^6qKZxG{{T@yuD>&o z_W*sWXet6Q{Z>rfWt#NmWTk!3tyHwxW4NWy*zoZqLp;vhllss`v5L7>DC1J=_tlUr zCkn*q#Ud@lR-egB>qF~Nv+bBz_ir*elc_@8Si1M#D~+Y)6HxaItxyBj*DqY6x*SGb zv0TM+X`^4#=P%NXJ11O}fKD|TDOx`--=W+T#K%wYiX7AT+89YmES*1B9#ywm&oO0Rc{B>j2#uArr z-7tgKkTy}h=;e2J`lRJPAyOq^F%-@lAZA*6_P+9hn1~&{kdBS%wsLE@$jkhf!IyU% z!1bTnQVO$v$<58W=>C&MlCBX0czv1!;sg80R`^d)DS7dUYW{+-5fsy{ir3SWV{w`} z4QMhq_lA3fPdCOh3D6{j(8z+Rh#h{1Zvj$PIS0%Iy(k-F z$T%;_G)4qU?aVQLE>Smv72@DoMTT-!UrsVeT(wt&x(K|CzBa+NiqLPKW_Q*Z1v+Hj zL32BOe`BzhJ0TnB*L&-MZHu0LT+aC*92LIsHVVAu?3k^ygii{WOxnT z&K0(5p>p~bn{}NzxS%#Jt0oz#2AfYyEDN=oQ1r$cu#?QBp&(EHCnn@@eU(OOoC!(D zUsX5AddSglVS#l%T{G8boUK!aNc9WgpU=;F8{DR!@MPYZqLB_o&edU=oR>Uxl%Z$Lfr5$BKQ`Is~xDC8Z zKXO4vtD6%lbCXy+k|MM$@24$_3P1IU4^X?M_d5Xn3m-SX(D(j%Jxa6RG_WEH1Olx} zXB}IMy2Lq8Kh2$KAanEx6U5CK)LJ$yBs?l)7%tc1l2#C3;94C2zz=-9L-&Il27k9> zpX^H)-*bJAz^Uw*tb8UIQSj(uQY7<(M7;PGI{sOEH8wT_DdjO;J>;9g@~V(lr>+1o z%=;fpq85zT)a%uVKUG?mB{aDC!)}8+YaydcvnaafdNOLQ_cae%SGJAKOLTe>;FjoW z7^nbIo^a*2`}8;wQ3+e2#@H(4t`*&SJ_SMrVKjKI$%5jR@{&ZRtl>faNX&KsNFE=< zVTTL!k*A0ZMJ_^y(I7=;g83Dl0*xKD$k9siQd!#I9^9Vgd%W6-sS)W@j)e(1HQr9V zD$<{N+d6~HH8O*k(#mo3Mri{QA2+k9Fd>Z2IjDuyn|3$f?LylaZ;);sj2wRr$m^&4 z(eGP7~0ouIa2^pz_wB zDB?!dDgQ}Fm8X=&vTvh;P>g(UK6ziGsa1S8BlISI$#@@Z}Z;IyU;vBy~*huj6;~Cn}wptHrqTNhPhm8$#(4*J3e-^S@bU1 zia~>~arkTM7+Qc}-TV1X9a^GywY;Ld%ZjQkfE<8l@MslJ_>Q}!n?s?e2JRwbkVInZ zkleVt`RrUqOa29}>3WHN2uXhAr%{3gU?Q2PYE(7!MVKxs^gT^sxx>3y&coyz671=j z#%QZTLfPtqkBRo1*yZ8v*uzp?Z`!4>iCyVQTX1px_tNT*$nPBuP=`vxosFRmHz7W<&nH2co~h~qFE8L@)RRq zJd3K2I~}V>vSb~7|9Up9&R3@tWDlXWJ(}j)b?#2#MBIIQGqF_SDL|gW1Me%=L+Rg zdL_mnh(#_=uY8F0muIakTWQ1PV1)v1ckW5XVCnF7V$Rh&EG=zqD&}3*Joj|##6}L< zCvm)y=vYKSz2>B@OOh}Zoq*C%jdJ1R+Qe`rIF3v%v?I>u72AC^KVV5wJZjr^%N7o+69w*oDw(Vmsw99^DJhy z8D!4I|G1+H@AUqdnncf-Zx)AWBT<5)b0VnkbSSy{u_3Ot*a5=1$1^v#_=9folHdTsRAGn`;+KETn!EqI#r-ljI9xrvcD6wHvF;$`>(nk8W+*~ zfnjgGPyEJNE<;uNc(b%oQmq%Bl4H#umfOlK(-;+-H2W+YHjLYE@|;^JApK6rUlxH_MvZ(W<$3;>+C4g zfM|L`25v8gCM9arJ?RiqY{V}ms9^$w~c~RhqLZ4Q*s3shE2NM=tStwyJ|ErnSbR zX72KEEv2CskFKhq>HTMY5sGF**PT9yS30%q7A_{_#HwR_N=QuZGYWV%cb$>s@1$(m z@mj;-CNOh8019q*>O$?B%$E|mg*$5;z1VbE4@kMujCM;2gH2PV6Q9wm+b)MB4-P;2=&>O*rL+fsaR63#s1qhH44&_?`7* zW2XqeT6vPP_zmA<<aV^cf`@&ziAm-o{bI4{HM+$L#U6Z_Knz5bXTo_8DP z{O#O{iE<)4Nu17+Ww{-F`w50ZPsnKMVb_Ui5B<4ZKO87|r>Q{WxrFt4R^>-{~DZYC@x zL$<0uX?{~)wt*p-G_UuG0j)0~-$MTwODT5l6mH!Ca3n;Gt(W#_dgwSXg!VYz`2WmT z`!cEh;VWY&yYmMMd)77oxV=y8(?x}P0~8G6Yb?Cy2`n;6)VmxX_)RkeIIWyrd*=P3`wjvg~(>`#f zkHN%dhCEbX$nvAywzx{jylwxO=|mDO=CR3c3HCKp;ktaaJ=3DD}uGB zq07(kRI5Pmh2C{8e1_yU)kH}!&f+7_9kXna$k1fH%}D@ZiN08XWELjSYe`ufhKi0Mkwa(o zJm-30=ib?wNMh3t{MtWpF;`@#6+~!W$kgCe0IQZLYr*$KCWCeOO+ZY2#0J0eeS*jb+;lL+h=}296>z>w;nvIY4bQ4Ku~$cW(yp zJ|oi9Rf}O0pS5@w3>jINL$`K&?F~BbeTU$$HL`i|_jmK&t$@$?+&c=KbAqi&C{@YCdhP|Bkv zeN>Bn)V|;Hjn>mX?Yh?m5@D%o3f_Uk#1|)%+lDXL*Heaz4^*YXpp->Jf8xa1mpdys zfvK{xjT?q|1G7%MMMvA?h^89b@1#cHueSt0FPQi5g5hdakwk75s(wBg6Aa%H1XXdoioIW-UZ_ddfB$Jw7{PAT;B` zn(n(fmCafbIef#{HfK@ydph$D3aYrTO1=4vLhDkQm5)sIq8(z!5i5E>V{pd-K~?N9 z4(>atlaLL^Rh{bCQKaFbXGC@8?LJYHeWPM6wffpIPaozJ?FY$@``S}8TX@tVTD+-6 zy8=WY&xy*T=tDO}oQOp{wDjIFpF9%@Yn9UNK-!_|U1<3ZjP90%MlF zY;>AnkueJK+;i)*s=q;U@??6=M12y6%k^S}~Y;-r<-{V&JAV7})#r=Kso!olu< z7WIdx|py?M=Cm_}enz&}itDXZ~zG)>;pu1YOVJr@>7 zeEVn^?SwtM6oISf-5$WCsuFX3S?JI^vUdNouGH&NbHGmMpLJImWR5{de`Jl+QtX4u}QIqabnmarw1^v@I&gS-_ z<@@nBu9rP{12Ri{&~iJkTBP~vhszU~uBM`QhgpYy|IP@C??hd(~uO+3A{di|7m?O%{?8a;M7Yp?H*t1q7j;p z9Q--dw{fOI6#2lt8T>PG9q<1BR+bS?SArjTnLsA$PJ1Gq)_b5DB&z=P zeT@uFY)^>==VtJ9K1`1lW4 z&kllD{re8|EeX9wLfy~YaXk_ATJh|8rt5y#`7AsH{@dli6QqXiQ{oH-SM;HknPRAK z%u4c~&jC#%jeM|6_xN18lB%L#MljXv$32DH6hno8~h9|^i8l%@;ZJ9y_}ZY~B)LshEXq8iWsIg7P#ST1Y)f73m0z$>0L_6Rx^_)iUQf zOq?`2aWk~vZ2Q$14Y3BxuDf}-VHkUCYE6e+-~wzTj(Biq*Bz?NW9dG{mXIuK;(HV_Ysf^}gHnL$rM%{g;s{0tTtgKu$x30qOP@ zWIu`*U-Y`0OWYx1EG}S7*L>twwFYW_ZGlF7ck(Y%cC*y1F5!Bj%+G{N>%G@e)hmpe zCcl~z01*;PO}&qwMI?##)#LO`waBd_=Y+rGjT;^2W50e0ng#qC*^R`4(9ycxJaH3D zor)`ygSn|@X&PItTQz9nPoGOlyKWdfN-6FB@Q_*6p7m_Y%2C%>B)p346v5+V*}h|5 zM5vRl?n6-!rJsn{UQiE!kgOVpw?KCdR3CdJt`lZ=31o~DT4s4{`O^k= zZpBkJs4=VhvrM-uBUYZxW%MWcOCFmdjFlsbCTGYM!|%2QhO*-N9~le{#EC>L?gMHR{>?~yxE z`0Jciml9%b;o&fWaOg+x6Wv60YeCSvV7D^I%f6l!p$N*;~`nWFbQpcQNx!qjKPJb zSJ-AvEb@8&Y~J97Uf@XF{~rB11!^|%y~+S}=)P2jcG#0wcOQ}-8NX&MokcJ^f2owC zty;!uwb$Fhiylag)f9~B{i&{odT`Gi9!p^0F%-VIcI;{hi+i)E9rEA?h0X`Rg74Dk zWu078MIUOAJ>}JkTuS;WWRTuq?5|1N! z?=}Gwp;*}OKdRpZ%g_k1@mOQo?^eqQd7^F%-AVR#`NtQx6nDdw+p*5n-C}qH2Byck z9v(I4ZIcZ*1)4)!R$pkVo?g}nZN@c{Bq`m=k}qL$DVJuWeXG65xz{%?4toy)-A613 zEhC4c3Mcd1773<=KFwx^_Ul)dn*mq}zwqo>h_hr*>iC)EaFMet;;~_3lNZH4);*$SeOumgka~(|aE9~-A;o$;d_*k)8O0)QBbLS(qLK4OW zeBV6I+d7a{-$jKb*&;$yz>T^6*Z0cJn(Fpw)pUIGKZsQ-(gX0(Vom7R5ppj!G^&=2 z%JQ?mr{X=yPMnpHz>Ig@P#6q(o=;J4aVLD$>WmLF!Lw#YWDDUgh`pJ|{$KLp1JcXu4 zWMw^3YlUjBP_M_^OY_#K zFNGQzb#E$OOb3h^1Z&SN7JyK@*NXPpOGl<(%sT_}vvaz* zCWZmZ@ZCiOX4NH2wGa}*wWRpb+1WkEjt+q~Y)o25@tq|wK0Bsa4STs8>Bwj%A%TEf zh2=%DPwX9|i+WIyIL|fWw;M~C@WEBN1A7EWmEl@PWs(p`0?vqGT4la@e)7xWwq4!c zC8||S{~)=N4(aY;x!yOm-uX7%QN$2Lv?@VH&uNE>-G?Bm3&t?~GLp9YUnIfD&z4Uz z*M)Ct1!?J7S53FWaNseF>8((Bk}!IUVT7LWITDDFZkq8>^|iYad1K(IX~iLBgSnIp z$#n)0MR@6(d&Higs;tTv?+KI9q;g4&oEsXNc(FHR#xA%@yWKOK`3z$EUUNs zzQiEhrGG7Wf!X!oZ>RI)9&i`|LbEuB{kRlM6gnSo$Nkm=g&?Kn@Y;W4kTDv5<-v+@ zlKXD8J-E-);9ftOuZRFLe2qO0<7gKYc+e~cjRu#Zb85D_z;nV#`hi$q60&c6kNm3{{hqN%x&ExA-yn8;`x%Lf zY*9>M(CB~?0jytnHOSyB?cAaEll~JM+tsd^6nn5(*_ASn#%DHK<#I+O{%BhMw;rwhnO&LE7ZBrF3lC5QG z!V85~i!j800rXL#chfWPUAs-W-L{U#gC>L_Iv{SgOK zWufr&#r7@rzFPetl$h!HSbTAaCInWSL=d^f)GUXZ5%K_=J`WQz^26X28Oy9@?M3ig z#3|I`Ux@KP)5lJgK^g~`7Yx?i5#i~c>ioEq1@}V8^Tu@|+jS-Z=dKH3Zv_w#Zh!e! zAUgn?096CFjE^^lf$V0qipGO3@>||vL3o|R`&zQu5ec*%-zp=26BzOcAEFBop zr!pQ+Pfa1~KeK-0irr&>0O6{);&TT_qGdjFo#j~&#p9Cpvns2~k(3uzwx*d5mJ?%H z)?k9gDq{rTMXg_`z8v&(l{c0+C?D8pm=>8#zloYRzal@O&`7V@2wqervP+iZJr{9; zrjiE~c1Nw#IfbTf$xnM<^GuYvZZ&aX1Sk7W)A)|grhZ&Qi;X90NU0H2c{%>tu*!Kf z1ntA5kTnhE2t+z$%!rXX2~1b7@Y+ycE&uF2vju}fRcHt#!8I0;<=E=8y{IiI+*Z#? z9{C`gW|L#8&|;$do+rhE*pfkGCHja-PR_e#Tpv#bK$Sr;+fr3dVXwF%^Jz)6sW(Z} zWx3hDOE1g!XEgnOH@@3vcLRTfCluqiHVbVV8Od>u;~Z3w?;&OaAp=BUuwa738V5x{ zoBU*CtY4h$oxl?{63FJa>@-{+cNn7u+cK>j8~SV!2w(BSNmSh=1%?OQ8x036jQWqq2zjJUPcJO zuJHY!Aa?4zhMFECbn;$hmf2`*<;uV?J#s0gu1@-((^f9Z;?Q-;A%^2VE;O?e7yn2D z<4xEsUG1>O=IBJ!3JG%A%PlKGc7K^~N6KXi*i890-mgc4oLpQ5W$R@@qk9oY0oG2KUW)1}2TrU(=i7o3V*~bR)em5Ezh=zywgQDgejXe;@(wFtU|; z6)~#Syexm)~G7v2l)BI9M8bwClZ7 zh0mmR6Oru?T7PcRQ~G+W6MiA_igS^US$+=BR9t!qINI(EW=L{FYR4Syr1TZ_ljc>E z?~B{`i9HzXs!z5_<_o8#!bpgh;RNQ|*~=f6$!mfBLml$G&Vl)GvW z!v7k=Yb?2wLLHiQ>718K{DF&@=l>v+Z6Kt%<=g(4cn&knOw^ zYYYM>Ak=b-?Mfpp1Dlp#I5z_D1O~$v656t3zR~qE*}U6#80z zy0bUUEx#B~Wm{sg9@7!g9$_Lu{#s?O1=ry$Ou?USK+g&cIwOILKFuz%SXlf3yOG4a1H{? zF`nI*roGm^F>hFinFy|Q17bmOuF}W6=ZS*oID6MSCIoqhufo2wt%hBB_V~)Mn_&r2 zn!(&&r6LWXq_F$MlBGmC(D*9xEi7Ym8_C<=euFM=;GcbUgUa~qH6klgBsxN|GrAuz z_&Nqz+O{G%SH2Z$vce~RF5ba~M|m4JHlIB8_UjirmHObZDxJ>gNj!=DlO zV6uJB;qfGj?5@wdZp+Uod)CCe&_<{aiXdh*|9pAynfOEj=9(PEUNlX%elwebsOt$u zvdMQ^^I*`|skE54W+{Eu-RC%&&3dLI>s^UIG(OnhAz*82FTp@=Z}VPSywWt#7J<5_ zet&vXRB$-F9`Mn_+J~Vkpop~WKo70wj!h(Ad39DtNnby|Yl~&k2`mWHr(Rz^_fR6( z>NS`|liTtGT1~WW*2xJfSI=k%Q6!FV!9%t61Y(k}ZP2BD`^w01?37GYjKyBy@IsL6 z0NNd2Exx;H72U;&%n-23++oH0O-!RNnYO12w&>oHQ&zLa91Ob@m9tP=5U9G^Il5t3ai zOHSGzlnxas))E~zvwU>?VxbT=EFD^^VX$(k??<%KD<^YzU}vI5J6&RR)a_-OZ5pp8 z8$ZebY!$Gx3!^vDK~pB-#zk|e<-jUna!qwgd?|sf*6F(yU29ixTL?hx<(!;8n(jT# z?unq3gH?P78{tX=>zw=Pgs-Jx1zQJj1O{^tfcDyVleIT8J5 zH!VYXBC2O9glx%+aqleWH@Z4jyMkZJu#n z{_=F{J88&j3lCDpsHdx(XvHh3DT_W#pD&IRf(@YY9?`53(-fEjdTFpYChl2#A#U}C z9WfbUw?j)%BD#SCFQdXHBh{hxBIJfPkDhuM2zIdh ztcm{06!X!wRSzbu=o-fz{^(B!pGZx(1>oPLUSTxbu2pd-v66X(Z4@ZvD3>*8iq@Lr z(4F|U9=-!bp@fM6>x!b>C+Y4w5j}$XwCh zg10{`zTgrbJ)V7K_d`z5{}X){g6WgKf2B2j`2NccmNy}VQd4HA3A7s%^NByZPH&|J zu5S}OH+et6+Jw4>!Wux*(T#|OOwF=DxtQoBsH48Q&cP2oj%B!%hqV_NeHwHU+% zJr1$qZ@p(QZZbDX&q)F;AhkciMp(_pr&lUoS_eHb38;^+7c`RFXD-&ZORzUDv?<2x zV7I}Vys!IAt?W_3pitBRMNb+z2d~gIFZwYM^g(o8)`-O|vMW}pCJ`m#dvba(+7SoN zSyxzM zlt##!6Yb|aF+UgtJ-5{vdBe+)xjeoLcD3sOD|-W;c;{qgc8)`aj7X0rH+&5KTTGn~ zlIDQUCOdcsgx{H_3>4uqGj+}AKp;E|1R}btZ&+6f%f8`1yrxTFjb5Zwc71<-YY>?ra^+!qfd!`&0XC-&@>@1Dq9H{%MvQli0MXS7+g@`lW1CRtf82r5wW8%k z#$>3mS7#y?qzA(yY$S)hMQ@~Ia-mO*Pm5T!&}T&2+)r2Q{Nm452(JpST*3;ywC(TY z&zSX^jZ>c?G^L4uh_CO-uvoCi?K0eR>$X=6v1_!jh*E{BGwN_;sAwj6U`|!3AAw}q z@sDicM$6}r6&P`$O+BJQ0O@{TvRgWYg>@6AV2R+4mAB1ZJFI-IUUZ@8CUZ#7Sz%0k zk-yYsm_V$$2-CwLgN1#6h)Ti3ct=1Z%!&<)Sao*chxWp7yZVklRzLN~e-V|2=#tvx zJ#>fXD$f2=mG5NWL1XHve~o&l9Gqg0ZhDUZ`ozh2)ivi8RmW^cxF+d~z$+&G7;e4n zt~Q?ML8DK$5f#J;uHGN{#$Iy%dK}`eX=`8G(fp{Grl~k|X<3R#-u27a;%3x%vB(l) zc4)6vYIx_h%rPTaWo950cw_xJYYbBAc8ShcI1i+peKzS_$fz-h;BXW2Nd^{3f%Q6+ z*tGJD-#Z_Q)p%nbQ>al6Sjwl-DgU(~Zs}$l=K#xPI}UQgj=%{N#X1mGC=*lAkNtc9 zO#G9FoJ~fZzM1q>9uxb#k&jbKoPbV9zYt?(Y|L@=t`p!J5Do=5Fk| zyfpZrbX(;;S!>Busk<9hwyuV4n5jdONy<2N@CGxi7BfhLtUYxYqs9(17_IKvR?T>P zcVaP%HFztdmVg<_brw9JHzg-`UecYxd926^>z7X2u^hO@Ri`6V+<*>Gr#Cz!1a~(1 zQMT{`p0@5PLlV%~msem2Rqs0h6Wy)C%ch>GP7^oTd2Qn3iCtg%=~Pbta1x~jbtnTh zcbkR3->cn7w(C^`UP55nukETbCt2F;;4t~O!k}a)cz<)JsAWomDk~?Mn$bURohcnN z3I?Sr=tkS52aZPoLEQwG%fj)Kg!PjJI@Tdti!xmsCkajD`L7DM zfVt|z(TB^elu+E%S2tWGOoh)ukxe}M=LChYtzK{BXsv>ET#`ble`tuYlTfSMa{?x}%%OBdEEae_9E2ZLVI z@Nd9fnwR+cJ7YT9=Q`4idY_4xx+oh1KScr?mTJ`%Um%WSd`jA3Zm`?fJiXf`pwXm> z>#g%R59T0l9Iij0l!)+_7K99=rUb@>5>$Ni3NqCSat*;`o_5N*_;MFz)QBL8Ep3iz z7xbGck&1<4NKX&qH_HRJ{tnzP%cM|xc_`jVwveyGmW z?K&bS>~B`vcXA>$n`Jw&=QaF>i;!lmJxbpCcF-S?pPh zaYi6h?!;Vru<+-6+_jDe*Xb+sqvYrZl~-5_sm5z_q>#!@N_~43iO)>i;qH0;rs*XPgJTq@rc{~4{&pW=SSIRSUP2S1S^xE{bveK|7rUL$bs;3wp+0;>jn z7q=~w__sw~F{#L9nXsd{{!hEk*t4Q#bGmWe3ZG@l` z#|4Q38ZETtP26(F)_6TO=jbIBdr27J(Ze?U=kDKy&lBWl4B(e<5k`c|HKDXz`jz;!!{`yQHWL5! zSbx_fUPF`)0=WxD(I+--<8*;Ze?4j|WzXYEU#z;rfQgGJWaMYk`SM=RwAzbg1KpON zmtIL>zO&0&72a28LPv*NGQp#SJ zcvf%Qj&!g2^^HCUW(7Wde-+oP80!@Mnd}le1D#MJWa4oqr9c5}4j3-sz_INQ1EGI` z{Va=EndWFE!E~!{)U~=hyT@h`xPLt(qlqEA`A!4!^I}fBnI&^Cq5C+hOJ?95G%1eLfS9*qAzY$9?_7?i7zjNi`G(khOv4D&`=izboKubOTS9G|`ft*!6n;=U0r z?xWU?WOqAAR%lp$3p#a7cIy_|xI%8#Hbn466zv9|BNo}S zbCZglnovO2jfA?GicuQDHg*{WwP8uYH7H)Vb5k-NX#=QZts9N%9N|w&f%+r-2kj#M zmO3e8GS+Q(f)4-!QvPi%T7b8C@-OtoZagXMU!xNsvk7hVXuG?~1%Vp5@zJSC$-}sK5N=`zcSlB1F|}P`I*Mw*`Ruv&d}p(PrQ9h-4wUaES2HyNzgpD z=^YF=@pkkI$|l0lFTVKh(CXy2P&SC6mC|4z>Lg)o_(hu0Z&`8G_Y8duEhkE(?=gS$ zUJ;{rZSq;GZSY}!u_N7uiAQgS9q0H)!_M7$vsA^Jt=0abNtNppr?6f&0?@el*{A zsprH9zy3C|;LZu=4+uGjL$qV3YGnw8!cZ!G)@b>kqDBwh^vo^l{W+r$HD(!KQl;HZ z#m$@-`XtV<`)Q;LbAqwVHf^l#*4EI zw@$l_u!nt5q~DoEM4`^Y^*Jm&E+A=-7$IzHu*yI{V!;YK>%I$(;2cI>W4!aP?=s^+T01>cwklV1tr3kE zr7Qu0zTf}hv^1Ca$+Oc>YbU0FRKTl|CPY59w}j17C$S>}T@%bxSQNH0_AZwb1ux{T zcNJ4}I!)n#H6S-PaHG6Gj1(aGWmD&D;0F+Y*n?LU0jN=_0IRhc1&D|$;e9zW-fGz!vv9uQjM*25c}^x%+@2^P=Zs*TCN^=b&|0%nKZ-D zq3)6=ffZGyyEM+d2`PH~?1Pr*mh;u4HK)OQKnI3eV40r_;U~^~5g3fOArfPNb@8LO zjD7Hgd+)7p=wy;uDOE{8B!HJIyba4tGhlYqI1rfXbhtctOv z4f(=<;6|pWQ&|q-5B|fKIB^1>_;{zCp=;fLo8g=C70$X$=xV#$hI$4b+oo@X8CmRz zLNvVX=+6XplV!V4T}mCuaM(>bNC<=Q{p}!?=OpGc@5YA(XIfdwxi#-kChes3D!Z(2zl#E`I; z20}+lt~p+XbZA_%6hkcf96$txe)J&rmeIGBvM8~ zFXV;K1c%H&7I<$$t@`<*DWD_9akx(!`f=KiE;Qkb4i}*1?B^MpM3tH>4RzNF$msCH z&umFL!tx>K;HNd+7%lZP{9tK`-P3>Qk&P>aII z5nx+k)1hp=+7q_CvwCRP4%)$D`4~<-gZRUq5Cj$TU6tPN5HdzGS1_3XuTgE315P?> zbqVRKgHtmjr{`d`cv)Gm1!k%d`UbZKUivbH*}H4AE(fTxyN8i?*oAQpYjJ#^thFm8 z7)5A(f?8h?Czj_0Vq%QF0ML7hdIe_j$XFBm<(fdQhH+OUzR-`RIICo11R7iQ4Et~S znBtbI*>?SCMNr3^F8Qar8%F)e#Bq+O;=Bq*Mo#t6V~5@H=ftFHMC|t#SKwYE*Hed^ z3!Ndt)K5#UQhLTWEP<_1e-!a?kwCe!Eg2jceZ60w7fj+p0?oOL9L63jnZ|++=Dh<&uQ_tkhLD^6S#jA3fRQ4!R#ieJG#ciyGfuUy^XYq z%lf~`@zJm0XgvmCKZRFY8__qBll7R1)kPgw$gyi};OHO-d@CL{n6eUrlyf$T44nSs zRQFLaYZ6h5qLT4=pRp;K`}SkyXp19+M-ZPsZKUcpd56e6;{x*h@uO{LfC>D0#)j3E zrtMI`k9Y)v!ar(RxroTUjDMW?AmkBP(WAi3UQ<-0y>oDE(Ymi4t=L|%opfy5#)@s* zPF8GZ#kOsmE4FPrx!HT)eQKZj?y2uq-Ktrm24?r@+5Ja%&8OerePF>9%UTd!rY%!u%1I_k zrSeN3*K#Zjt40a)W##fHC2lv8JmG$$4ELP8GfojUiWXc+_0Q$bY;9b6jXumU!uqx` z_8_EOWsK$Ol$u{AP9vzUzBF5Yi`Ii&xszF}uy0WZM8aS27Q=vEzbx5)*fhC_PQj7a zbE^YaP5k`;$iD34cZ>Z$f-BJsP%_V<7_^>jht~d&BmEP1epe!LP>W#GPlcc)seMrK zZILSyQqeZ&5O?Wk5-qxTz^XREf&YgfX2$RMVp{`?|EnNoc~Ln50mbhiX2t(WUi+Qv z{J-V3^c?>$LCoK_*ng>OS-*3V|A!dnf2nJQ0ipmgfH*(`APJBHNCRX5vH*F2(zno7 z1)vI01Ly+`00s{FhL*-oR>mey|L!}Oo0>TR3;~9=R<<_Zt+lm2!06k7Yiwim59h71 zy|ca*zyx6OkHZ}B&%?zSVDdd@>+JAt$~6O+x!ai;+W^b~mjBe|+5l|KZHxi70Nd~O z+n}rOU~Kcx4gcBu*LL4pT|;9Vr+@2p?E&`Awob-I23G$(@!x}go%_$xzq$?pM}VWb z8^8(RWaeOO3~+L_1vmp-0IvT~^8!4K9c=$Ikouqb)Bi1y`a5Czzdqvs^7AsWf4|57 z8Zi>EaImrbd-R`q)T|r~O#kPDUG8F^|Q3jtF~%y-K9gl1vX^)nvk^sl^yy- zAbI&;SUClT6i|rhJ_HmrG=c-Y`mh25y}lY@?9x4uBw+9fpSnJzV3%t_0GWrKFwJJxNB0~9p3R2vc!@kC==sil>sj1P!29vxx^BO~fScP;siPIq;S$h$hUg-m^Q;Hq^%Gp;>A@Xz6U~t2eJ$hkQuw9T)YJr_A_BQU_;p@n1o@z` zJ=%kQxqPzbPvdVNfxCjT=MegV62R--Y8c-%sUvh@gJ%5W3#KQCQnC!wWlKH6c`b9_zU_nijP#)J0vf7lTpsWt^C076Co1mJ5}y3idLgN0?y+hSnS z7Wy_T`>*s~_?pWKOXC0u67cg1ANS_F8UXPTXk-6y^mm$t~e0UJRpxubDMmxK~!*>cW@3zdi3 zYf4S@sJ!+1HR_~Q&PQcdf&`cL6~^K>sKb_P8Rnd<+=)O;z<>jPww3vtQIdo5Sxxjw z65c$&jTVStpF?V*o1?j|2(%%hk*E9f`$MOR<>5r3y$qjlO#sW))N2wd9r5qKMdoY2 z)wFeiay8exu-kr{hF)YZX5i%iUB7n{T%N~bs2!g?9jzLy716SdWL_b9 zd59-$_K*+5Qv7o%G<>sq&sxwjVR8!b(XgG-&^9y%gj(o|`{fBIH+c-PVS?G(jz3;` z?Srg6=CcVyQ*Jt%^OBz5_1kZ(1Vs|T-jnz z4p!1|;BM)v$3?1ep>ZzX+)J~RUdzktUAA_$;7JMtJEm4iakiup`9~Vtq7vWufQCEwB_j)tw?NywoJ&M*KREVugL^OW<(JqT0E{1BVgZkn7MtJrIbQp_K zN@v|o&I<)n9}p2lb_f3I zg?Td6XD6D|L|V&lrBn*Hg519Uz84V~0wT3uVeaFEP3NS5fj3o)*>Um6Ila(dF9AOW zzxzW=fP{IX-o-ykyUC!z9V;#EHF%kxykFyVmt3_ngI@HOOT=)(kbyQiVL| z71%W2b71sda(Ekg3e0IhB|*JVWbfb@#;!JMR>j$V=5;e-?YXVQA^mS`Zimx(81*8`T=fMgYT;-dZOi3zs%6HutvGy1xDjglOZ2-g5>DaewI!{?`1Jwur97m)((++0 zV9_Mw>MurL8uE@*q~eH}t@so~yT)olI$LNNN#>gO2@4rUQ_^4dZQ2C2gPSxDdWoUz z-_cLHV-(F@I7Sn=#26C0i~BIR-1phoS0wV|vXq*K!rOrjdNLO;OnHd3p zVZra+_DpPR`C1^HPX>&Gu`a7TKVhShq8e}D^Q|`OT8F3nObu>6kO3ka@0?G{<)_H{ zC(iF}EF2?&hFe8sN=XB+vP?}@y_}+d(Vb6~Wqn%|TZA+@Lwe2yg~Td%@)sM;K&>i} z7!%)T^>m;5iy%pbH_$f5x@>z7J;HC@esQubK(Xgoh^0sK8>0%zlCoEPEXO7PO5Uw; z^odw`6i%hJs#x9lg)k?HJ}Ha!mlNiW9&U#>P-dI{d8o}2wRUl3*?VoVF{6GO{VvN5%q<}<5m=e z&J%v@N6Vs<+EC2V*BRc!)R&7CA6@S2c5#Egb7(g5NN^07ASzpEKt@Kqe5!hbwv)9wOg z!pZvV_k+SFYSEvv?n^p*xt=<-{T3B|*jznLiKuFZ5;hQntV2a2aBF8KnXryoJGW65 z;yS85akdl5Lbl7?cPR*ovUV3uq{MBMcUVe-pUJ(AoZG!rmVWJi67&)6}E2OX2sb6tO zS#gi3z8sqeq{Q_`CD>YZRyz~LUJ+ru8E$(X8r5x=MRwv(-s4(Fmxtuw$7gu?`*gP7Nl*yl2d%AH1$Lm_$ye2MZO6aWNxNOZx)k%Q^<8za z(+!bU*&GzLNzJ(MrZJl4?C$jJeCS84B}DSDo4=LOV5c0Cpc4UN_~&O0<~M!J^A#%apRH2r>(6U-v}QjCjDP@`Xk6QF;ntsdAGSbTzMN=K-RxECGFUbOAzVeCco-PV@nvPDksw!*WPaX`-5hax z7sDYXU|2Qw+qN(8=K^E=*4A1rI84pU{bXE()(zh8NWZ6t!kagYcU-GMTBo9##1)`7 zdl`I=`U%5(t1o7)vo|(Qw?Wp5MwF@cG2ltErnP`?efonjio;$jiH2uGHEnuq;Iy34 z%H)_uoWkY@52_Qym5(^0H&=9g_bS!>$i$YHMH9Ek+SaYYjtk2(qUy{=m&Oh6PUY&% z6B}~=J6aXXFJ0wuSFFK8yh2%>B=M3ECW-=?xkmrt7^;u1$j-@#1g12cdD?B)IX(ti z^?>M(w!Q6C>U{gTru8(cl)kUOTCUECKoxqa@3oHxP~F=uLSKgT3^CmcWAut@8sjd zw-2THgWp;Z>D)oBZ~ua}t^{pP^uT+q|D-BoiyRp^&A0^1&jCuXg6i6r`Ww-YIIRFO z`VcCTvM^o9_v?-8SjT%E<{ErNGW81@m|Iw z|BXhN^srakit37F=`1ejPRjA-geZwP>|LV}j@P`hpfs~2(Y5?2!oTd1y)D|9AEYtv zP$nAX+$eHqB{m+z_na=0uJVZ{2*i8Q;)>3CJ4s0lKG?01Qo#O+b)0JR0KOGeg$oYn z){mW1VP<* zU3{7J$flob@_*?Z7;DyyRAzpUf-uo}mx|7tEU0$AHH8M()%AsC#a+sE2VrJ(G+S>ypp!C~sZ9 z?K2Inp%x6^^=%W|YlA&e3mx-|Y0|enyXK?*)y~8c6D;75JkX3^Q>+)(7HFta0V*ap zNoq~#5Hjh1;s;BeAdow(GAb~8iHSMT5>4$h&iUTwr=B8^_p=1oMs%H%Zi0r!>|Q;8 zpT+)V*~{*{8f)YpC1qhGlBXnC_>JFU1*IeA5_5LQIAlM@H%O9AKNgw93624ax77Kr zfV;`ZizW0&HQOR36RiQ#e7tiGf|xga$ZFWicFolAkf)2X_p$JB@n8z~q>ZM3%B?MX zRK|Zvk#*<&HcrtAD^|^%px#J5kdZvjZx!7+EYxnOPRet4(;Eg5E47}%fVnei^IX_19bFW>HmH4Fvz@S2<^ycri!%6As zzkq|Sb$uH|DA29bZ-l%F1%Dvv@fo-JILvjH==j>1i4-X^(^DTj2ExmjhDp+e z(D>VmU9iWX^w|SHXhWSQQ}?>Sjl4JFxiGm0e8CVwSjiRQ(;*gCeX4%*PysQ}Bw-Z3 z83A~bb+&{h8#HNwzV{f%H;|$8lIEBF7fPY?V&QwS59<-IE^e=GG@_>NKm=JL` zAB{CW!Y{om!TUAO$*r@9w;?vn1DO(ExRrnbn&wU<-dmruY%{OFGJNj71-^tXQ`^K! zNf~fGLiNWHf2Z?A?Uw?J`3B|pwu4}(#=%4vU!zaw7XRd{3I@(-VtMeGi5TsRHeX=F zb$(Kn)rw@v(dn6D=>LEMKX!G1;>%4tave%lRJzt*$$r3}a&i{DqmD6Hj%<>x5ZP_$ zAmT2bLNj7cCOb4b%XVeZ^IwnzF=@wu6gqMdKv@NdaZnz_3qt&mAK*M&S_yDVI(hMv zEeYfs-P9N=Bl3g?k3q9xC7n_gD-^LdUQ4c6&UYS<3BKxkV?evJP0LFb5r$aqD&O?2 zFG$iZ^)Bx#Z@JJIyI(nz{mjGt;%`LxDi3+W)#%``dA_8zj0ig{eATjX#WX-1*ocwi zVisf_3b~2e!RJV^Z+LjDp3<7KaVA`6(=k^)3UVS@-{VAGEFx>7+*xgrrmh>KCX(21;($p$&_fOjN9 zZD5`Vzn~ab{XAliQGFBzyoUPu`gaE}Bd z@CYCfRA%{g%La?lk6#7&{CvMRx!{B_P71D&TQp zld7p73z^sK1Xkog>x4mf$Rr@93f<_<(?8^?PcA~VI)#hXx&7=53W?;~Z z;dAp8JX05A?SP6`pdcZL@q}b*_}%OluOrm##tTv=?Hkjcf5{;9%aqnKxx4 zBML29xSIHs`vsa?#;tN8#6sFGLgq{&t;9?jFxxQkcru? zTia?M{yrLuYWJ%R&IvQLLEdxG=3sJ^F+&n*|CXv#UHYIbDB^jHO=p4Sf~dcY@pQYs z+&*RNn5h_6PrljRNs-g_s*`HWa@s0!)AP6I-)ill+mqvZ;lS;Ch|Je!f2Eg!1I;TP z0pmpjSqw`ITX6pmIm;L?=6$C8J#}1otcL!WaFqcV6H2__(bu#-H)B)dsC7`3`%DWw zuxvkPH+^g?2u&Be(`2r8h^GEV{IaJp2k#6eC=h8K&r0xJh^uUiYrlS`!a61ac2I4n zedx<@|M_WBqsN*5x~h7c&^_RyHnSKFr$S}SR@67$#U~sav;Tyct+mUsqK~aaj1*Zj z)*4-$GS84-`KU402CwfMRh!b zX{G(vphVw)Fxy8ZOltaZ)kFC%b}Xv1V#h;AkLbJL$Tiue+CWvhlV^G2<@pl+c?#O@c=q)V2#ju<#MHQk2-TAAnz zz0d}5Sp3ifzOK~?km?x*p#df!9vPdW0cz1rKF=qFlBNpRu4EoB2$(UaD16As)%uM4 z#=N2kx?AQvR_qQSwq|CDj#sbP+M;$ypKGaUYYaR z+AtZm!@v07QMWvT35ZH?A&*qjMi)!wK5$CR50I9mT0*um9 zez*!_yx&@dZ{ zl6nvZXCEA4VBbTTt|na|F>QT9Y+88#{6C;o=KtVs%Ip>ho0_iusLV3d*Hy7aMQxS#K|2)9zadj`3TK-PvcaT3h=; zfht?#{7B(-fu*^zn82|F^3XXIhDN|3Ab$Kv-vO|xse%2N(E>f6iztq%ed{xJsEVh2 z+=&}{da$a+AVYe%&hp|t-mYLkBp^Ux68-~)e*Av)h!ii)#A7nhIUtXILcp8>es2^c zurd?5kq!?ofn4kcHO`+tV0J=oKm-yJ_McljKq45a*f=1fAWl7)VyQ4qL|~CXn7IUY zm_u*)lr6?M447(^goNLwTY(xF4a9>(g5iFI>mWlM;NSGj6O*9eKi&giXMVKzeDb4^ z90Fl-_09VJjFf-Gl&isp^;03(M#Mypg0mMB)VBe$a`uZWV&$Jk`~5zy{sw^X>B&9> z;t$C2Eqp`yphm)Z;lhOV&(YHA6}M&o3#^AA)&t~Wu^NC0faL><4El5cBc7qK;$8-Y z74y5Of$xri2QQ(-0_yn{I5zm>_drgVZ>HRj zOYlIww@cc4)0QdmMDo8+wxf8_L91T@z|O8{i~@c5t^Ld@pU-+K17C|AJ@h~dIR&Yy z6p%okV1DibIKe(>^p7sVAFQ9Mh78YdZFyS2kH0YKeOq{7-vrJhz&(3_FxgyFyRUq) zJ}Hp``GF{K0)Ur$akj;GeNBhU^dEgkmtWd@JAsne@!&{?k@wV_sz8I+}b31^#K>Ff=fF&3RfWSb)fCmOefIq(`?yBM6qduEe@nOFl z+rCCh!WzVYNxne*FE+RMxj*Rx-=3?bTkkT!j}YrI^B^<0G@f;SNNecRJ}KQ+v7F;Oos zZ?{xsU@_Z?!^I(Jrho81f%!ju{_UT&umfN!<460me-0LQhxk|e`w{EEQZT$h3tJ1Zk1q&TidLq$ge_1jqQ*&O%`K_uA!4p7baHTR|F2O?BEcaoPs?=tlCzqkR6^H~V4 zZ>-l0ZSD8q9oxP<;Q|G^_Yw>^&QXLqmCTLLG}U8?fXn$$_k&4|<0?R*cgE#mPNfxh zMXv^_pQ6MhTIEh(!4{rPCx^tyy)j&0W=6U3cqO1Tq!z`+^eS9vt8gMxU_SfY4*?Is zip+9Fh8K%fDqfOf(Z{W6>}ooY{*loQ3Udvs=zdmoTJhKMC1{1S15V74uPI{CGeEoJ zY_iY(RZ|Br1gFJQ9N2KEpRi+FWd7MX;0+SPrD740`*zuB@iT?v`DSk|qifSCu3xb7 z(xUcgN7<>_`?CHJj`U$pf&6gYH+X1A8JS0cPEJNIpV|fLNNb=TP4}HaeR(N;8L+## zol}nEq;z%DF8aioc-&y6v$RW?KdI4l<4X9KOGZK=`km$EToPwNJ|m$w^1}j2*oTc5 zj>#{l%5X>06j?>X#UeL~YYS88nO%6`b$mIKX>GYeIJQQmj7Bi;YmSMO!5i!w_H?ei z2TN1=g=Ymy>Y~V{ESRr&AJcVjH=A}|OFAYS?ca#btu^&lg@U5K;h{VT%Lll7F1k#s z?o!LlCOjn;b(9&TYE=GIE{2oy(s?)X)Azya^05qQy9fO-y28-pri640VmS8G@WMF* zb^{w-Q9s;20o6!(%JV=Pa9BRD$&&BFQHMVpTGR$2ZX&^MUka{n4V& zx207}cMD8JRp>~hw{W<^RrCnqZ6Eowdf26HtyOWUlNoDD?i!)w9DJehbww}&DJkkE zk9G|Itt4NX=B;PddRRu-M*Hdb^t8^|Q*#=j5-jzMHR$PPUZNVj z*&~coemI$$k^u0n*m^M$|IR~XGAGMidAYO{?QREo+JJ_=YF8{9{X-__==Gu6?ag!z z5#gmuEwo+ef+OL!qsD-UE~6LEJb^mimQ^jjR6F&DF8YH+#pY)Ru0eR2lJRA zZX~idPqj<+9O;RtBlt_!;{fvZTiK9s&)CVCF}mZxna}dm{ZVL9H(Uwwut=`sh8FAHNk!wcd9mK9I` zXE@X0-E1yeAs7*h&jngr8WZzDb-G>%t6MbNShvBPj{7w}#)Z+jie=%TMsr z2x|*vh=zToaohpYZ2*mQy8V=v31PJ z$GU*807Way*!kPNIVcysc+Rn&AVeVC@cfGLd47)K^hG`_i#gc)3Yw`QsBe=!Jcmt0`M}u9nJ1 zHrG$EbZm)D=sie=dl2@np%<|UXU2gEpBz&ApU~w#b^=>UB{F0Tudi-&=!{PD^xhly&wVA-7SGz8l7_%n6pZ#UcJVS4T zN`ZB4Jt`Kh3^wJU@M{UjNa3Q(tz>5)-v0y1mx4IIzm|FH=>(pwS&|)s?sla3LOML{ zS+l-+-9QlhNY7WUVtCp>A^7ToRo-y6jx6%k zbJ}z&SnkGA5J6Rca!IpklCY;Oe39V-pH<+>vsc#(GsM{s#+#)yf}V@nt@MQsOd3vE zPI20H-*XNxBx(P)|8th*&7;bwCT=AE#=Li=J*qG6_*arCz>-c^lIUj+3p$hEWID5u80T*JtI1L0{3LK zigcDW%ERmZ@pN}0_?{JnThLHMzHiw|{UGQjZ%ym{4ACw9v3^SG=e--)xLwcMhCQoP3 zHgJ3rmX*Uxko;=hcZJ(hM_6~6G+_1~{LzUUWgxo)d%-fzt2vZX_@L_aZJR`G$%18b ztj@ME;wRpljYq-^QUUv|3DN;rR;Ll9ElYoN>wI&xbL(dl4dv#Jh&7q#`p&OYn^6*3 zyZ8iV`~-kAHT^F5^m2zmypU@Y`ju*It18B2fH`r>^m<^vYq<0sH(RVHc|O}&QRJE; zMLQD;dV^T<$ffNSzKuqC&o~{e6nw!9V=I1oQ2Vd$O&#Vi_NVb7iFT=L?RjRWHJ^17 zkFz+R*sqhppzL!MY4pb@>6DVJY#+8>a89XPOG?L#uhk}}PpnV2Iv?4j zzP!XS(B9pZts?RG$GI}>zotJaLBQC8=f^NH!P7(hg3U4eGY*o?v;7FhT5h>8a-JmC{Eou3?%7}*x*-w zd;Ol-tyB>B3OJ1WbET-0H0y(TA&)&J?LR+nLJB^<>HayCmGp=Ob0zN?OyED$MlK+i zm@5p^+_%1-K!dL+uGB8rOjlea<*_+z>Tph;l{q3vOiCk}Ea1yyD$JY5xuyMfbmA2>=hShtGi z?_n(5eQzxoSlW$JhH=NDz4S+z76#%EoZBQWjErjVccWxckBGl=T&cq+u9i01){`pN zh5RE~5UgXU+>eJ2D+1$2=~mzpZFQ?o+sRlBlfIgJRI`(+)myqx}i-c9Ws^Y@yEOT20OJrR?=M{IqluOB+n9XbQ(`f3^<=J8b6D^Pt8EV z|NirmsY|)%+QR%Z1mas!z@0_7sD7Y?T{`E!jcuBBU zOce_bk1?~X&wMT`oxkm!qhuUoDN3u1@paa9*^CJFRLY!~hDjMy48h2O-2yV*r%hs! z57*I(8l6u1xY(ip&{Av&=Fi`ym`6f{L@y5d7@S!hxe9N4ho>9!2T6TQSMBTN3r#q8 zU1+eVg%#G|6C8s4viI?7ceNjFiln*=iE9bo3x(cN6VDxiS?Gopy-bgek12J{CwxDq z_eX36(1Z!NQB{f1?#+!fl_HhcaXL6Zu_8C_)BX&){~en#9sjumv97gtV!_{>Nq4tE zaYD&SOsH>0CVg7PxpWeK+uwk$hWCENO%BHAX!Wa(0><52U)h+k9|5 z@9EvPRRtcmiq0!dUc_9<2axuWdBxS`AMrpN%b%4TbJL!E`B};@mvoTdp#j0ayt~HE+82QVmK@kT~ zil$Qpp5$iE7|;gv2`@({G7OP@(_O=HXZXr4skB*%t)hE93CR4B7Mm_2Zyx0^(i2hT zQVx}loX@(V1~1-ndj%5y>qBbhN%+mMu!Yr#Sdta{yW?y&K!Wg@t{6nyk5j$<4&(BE zceTLt#2ZdL&4eaHkDsU;7BGlfQKp@wr5IvMczD@UhY0i*5IZ&@sK?}v;fD14E##M{ zyni*|pAKV&4ATmATkmSD7bUWN=_O^(Zq4vHTb_&FTV%WLe8kJ;_I9tEdviV1v?yZfhJqw_OxmWw*olB50PsJ#pcgnju{$e0J&PDVd#>0=p z>pxLL*_!z&bI<;e?=iSqA*}O?ZZ5#$A3c0TYD2CeZ9Z~}?00`=MtFN>)3gw(QVo2` zRnMjGQ6F|6M`skkFuj|FzfRw9o`XBie=^3t@gaDhK<(C940oSlk$m3Rzz6dpuq>46 zr!~UdJWoT@rTR%iMNo*8Xog0Y|> z@#jYk+@TicBWRJCjq^9jxFt>$F>TnwryNfMe{5O3IG5XmL6ieY=Z>_|^wQP*Z0ahq zm^P->y#hJ9R)^;d+P5g7Iz=a&3Gu6pPo4GJhWJK-4juQpktbQ5!aqdLgqI_#+>dHf z>E1?~YA>uFU^UrIS7GXm%esIS@HZH7MQq3iRNuwYz#oUB(_JU{%jqTNEkn|^do90B z(XYdB~nn?XJdADM(j6ujYfaqUVQ8464SHhNX?cO$R%@RZkkL^%?sciThztQPqw)gq+BYh}vX)xrq$rz+P<;+q~ENNkS_&dGdjsqNoC4pf7 zT;3u29zDBYR=r^m#r>0oc5IGc zPq~qLvZVu7{euvJ{HJpOtPgz*wIx0V9x3aro3Y#G^SnYIYSCgts&{6>J%i?Px<%c( zU5jph11+yRAZ!>Rnko6k!f;%BgxP<=haQ$KU4~~PXp_>VG@f9d>lJ8khlTV2o<+RC z-gn#D@vV>{k+yX=4R`AmyVI^*UAS?HoQ`3-Uxnc=WehcwN@Kz!$jO%IyuK9|mAmp> zN}4I8jiwm{&vw{vzRQ+TGl4qXO?l&3cXs?SwZy~$&6SN{ji87bN@BP1D9k z!ntMg3h!pVgwpvlz5GJJU7{K1yuAHzayy%JFPp$)TXUM$k-&cXy1T(cTXSE^X1Phi zfn(m5FQt>E_>+*=9K2CS()qwRQbmT&4K2hH+8FWXRWULYKg>18>c&zN-mVkeo{#=G zB>REG7WRF3?{=kp;}=ZT{}bbnoyheLHU_L?wF z9C)YjaF!&zVHmY_ifBru`-&A4TBucfAPWA;;VP`mRcS~W)6y2KwMc7Q631C=ha!Re zae#f74^@1+|1n-cI-41Isy|W`?JBuZvhqZzj7CS~7{p&=QkcAf30} zh=`n1dsFMZ=1{S7yLe#A{V)WJXsG6kY$v%N7^ermAOa^&_+U@cFiwE71}}oMErxJN zm2O4W-x3?7+v+~)U~&p$XEOz5?&co>mqM>Hd}tCfGk+$aV%SFE{D@39$?D@=u~Hkk z;bz<4S+m??)TWQbA_xjjMxf#q&3oNz@AX|=5~+MlrCc=MRl^4}Ctefkn;|sc!}CT2 zCP^EQm2+`kB3x(F#tT&S8uU8pu3n|~k~w=?jQSS7OY18b?!Z3Co8VGNfgF?i8;fnw zLhxo{+H_L0SZu_6k_Ok$*R)xUwXyLA`ZsldmL@Y?=IWpY)7jL`G$}v)fXm zIkL1{XHr^DN5^eu>8v<;5_VeWW%AULCV*TGBPqMFY_{?-O-W2e+GrPhUVAf{6RI@4 z!;f>V#ltQ%u)G(YGu4rXcJXhR?L811Gj*m%1VCwtku$7Kv;TCr)zHP`^QzC3BhtE^ z9ndE1^(V)w!_Qu0(uMJv*}Z#a&{na&ZV<}K@kir>_R`uDP1pj2k$zTg zT2Lg2SlB>m4!hi5vpQ&JURkX%(Ddxbri;BZKxT)~3)tU;d6YV zM_k`OHUHBuGc(OOmt2##jX3k_ZnT+5yxu`UieYwel;#k*_sA7vt80JGiIm5UxL+)f zSLM=@VnsoD^7o@qX$AYW2-Lo8@dpf)(|_MXK1}Xg-*6PJHuYy2?`Ox@G9^ zSR@4TbdUP~18Zdc4AD8=I{E>~7@!!Oe@%xo? zu>2Q}{7(SMz(mjXF9P|^U(Kz)H~Z$YR{BoH!p4TSM#j**ywHwL4#xV{&~B?yPe0_f z))s$2?;)=9%&>#GHg8{IRrrHroq)I5OW8q@w4i7S+96!_3K583Z^v#|#SlNOJ9d9n zdsMesJmJj^VOdVLma(E_HsKXl(9UBOKnC}4xVO3u06Ad2Qgv_x;o@rKjl!j=_%x4ctqgwx3hQd#UFM@r*LrYY6YaDpr9YkHwRotN8nlm zhX^tQ)Q8JYCl|@eZ|a9P4-Omf_AUpd3I)Nwt`hlYZG1ce<``rzplwa6)*h&%#}2}e z4ienq32X)AGZuCRtj+H;c_?@kY{nI+|I^`E;9^^c-xYCtbQ`t_SU^vX5)V-`mTNl< zH>Wrce#YU4z$dio7quVg_0u7cTdUg_<&*0pesE7LUxGg?tNeEX(EtQ&EyS{arT`GF zh%;RaTLvgl(DEk|q||6gV{u-v4SIX__LQvrFI!>VNgud>FUaR%qDmzRJ*z@-g z(M!HDZtHrG0af_ZU66nt{Z!uyIlOcDI`>sq{L5~HB`A=Gfaed06@S7e7vGVZ2fG7S zKfeubeyUsFVeT~gFUxv}Uf=+3Zf+tkBA{4opndDTo(~BBt{CcLIr1y~LvlD^pDKAZ zzl{V~d7x$Z`}>d+2vCmzAUjtCdB3f0+^-0FcX!|>J#6+KEF*;9dY{d&2|taVFnlAG)d?7ajJFvg~8gl8c@t>xY&=ID;Zg`@yqUPo{Ks-6?__TA1 zM_+YyeuTo!KgJ;Kqo9HSZEX1Srpn=72Y~_mbja0Pz}$Y;4+5`iAyT|k{! zd%^G`3it&55d^d@2lGSds}XgRobk!Gmz;6Ads_+oUH4j|b=a413nlHTdmANfI{Vr; zdSWS}pni>u47JNl-YMS4AKnT}TXsxQuxU_?vZTJPu4qP^Gnm&>h zm4dt3IpBb#O6~>5;LxbOsM(-O4eIGd68}#|q=b70jq3ZH;ehzj*_!-C#S+JRH?rjB zdH+1mbJIL0mrUg|Vbfzl$Yh&t$COdg@(BBSG+Vdn1(gIno0^U)J5F9b^XG1#C{|3A z067NI&af!7b;_hgwU;_E7t2O&A0$`Y&#%nqZ$!e`=^G?>ebf^ZgA=;l=v3CpgQM11 zU%^w_kcmeq$x>eJM_Ckw_v3c$siN1^I@k7BrGCE0U)bFhDr{Z3L^)Oi6{m|oNf2sr zZ%T0os#|mTmAnZb+t!n}bAs<8#a<^z$1g@7M7ll#$uT?!2a>|^;nOv*hgp=epU{;D zulzZO)jCYfX?nQ`Qd3!yfL+W{5{vmou7^JdnGNo&$SAvb5QlCnpI$uTY+!`s=o|Kn zD-M)yAUcNf%Zm}kk%Ph^7~Wn|_0xz}zr-&9%=YwUB+ygD61bfQHikPkFM_E(oiXx` z{0z&Mo(V9SJ3P3@Oju#H%HijKde6hgN`VbL%jVia;vQ@i*`=gL?k<|Ki9xo>D=is) zP$x!>b!CdC>MQe<>4n}gZuP+u^x8|`lATZEAn%4}IH3x}9k$xjb+?BnP>;@u^XG?a zj=)*+U2bN79RQ=a+ti}7;^;GG$A1u=i3WLqAgC4Ot2}U8@;xrNXEBj2Wcq)HAH`TU zZWEOyZ8YU#2y5w{TNY| z4?$(k%{H3=NjJY!l+%{=0dR%v2TRAkB+x;~)*|j%hZ%x3 zlhUFk^G}112GX~3`4D)JVw|+&yybboGB$;tX z2q-{(OeoMP@Mf{n=KVmGAXoN2yIX_%ehr6Z?;AdnBaY~cep?OnLQ+P>&K%uuRwZYZ z1J6>3w<(J5bb?ikU|+0xFLO?^>)wA=r+dih6e#L45=zM|XEw-%7qVr6SK(}Y>=Jf* zLqsT|gC5nx>v>yM`klx3QSe=m%sZ7)2}!TDhh(SRN;+2CV2O~Xn+Vrb8hAtYgdrf{ z(TZ>5A~=%wZA$wH>SASCkk$6*NE1Y=TtzV^$rY;S5oTnO5cSY`rM)>bY+Ly8wWK0i zJ>fmA*I}==^oUr|eXIw`?)Nr~;*e-?rUhw~zh0eX`lgqVA2|1Tb8DcD6A1puwdsxguCieP6am^b~lAFFby?sC218vd$1!&<($@*4_!4e?h7(%-$^ zQfkX*o!GItR!~)XG@A_=C|Wa9os2giF3yE{+Cfy!|r zjG}Ml*Y2-w;({74Kx6?U7a4#jOA9wM^D>FK%mQ=-p~u@q;9RWi%i!Xf07pX_J&ugR zPoyW$UfikBPm4b*4#!RU_<*){R>FP1>4I0Ed3k@~CSR!jmD{I@rmm;CVfk2+j_US>7N=83FY)*JD zgaO_6>sEa4Oa$R=uQuJqrrIP!I@*6SXKHgb-X)A<0Z2R&$5Rm3^7?31L1C;;Ad`0S zn#)H>v5?-}b%JsqwBBr&miJ9(lT~m)(0a)(pNKrdYw5fV<41_xk)I^*^R01~ianMW zT1=rsTya}L&oimV8i}Hf+3O7=Xm;%f#@8d-6{nK&NVZm$Q`i!`QR1eys0qm$Dn4hi zYP|lqh-Wh$GF2c#D7VdiZ>v?O8X8hD)%o}X>WLAWv%e7H$059R&FmJXxwQn+x@->U zTN9DO&xr4QUeo9r{BD1<1GB6=>Fd{msSrESPh`cGI@HsSc|&>y_uG%of?H9wpEwRp;#n~LfDOkVRc~)(2=||3P+OK3 z!SAf9@VGsWJR%^R%$YbZZK;LhufN?Z_FCA+9GwBgD}g4}5=KnDp{|Z)YTYQ&vn!?* z*N(F7e%>A8rU)1U2jr)e64d}dt-vp#6`GGE1@$7`H&gv;-rP5S{jU~AP0D!ab5>e1 zst~_rkghbaSDukZJ}Z4A>(uzNBD5&1&RANswD1&k=zRvb)n>9bzaq*^ zzf3-59vrUF=4rHA!@^vi-S-`{c_*!lPe@bi((g4oST*}}Ohh$*SR}Q5_2nB{hJ9ZS zhIjR$nBc-Azx3suSBTIRw_Pt40|w5eX0MV0t?f4pVeMVnq75F9zM2)>t3k~iIX*s} z5vC-egG|u*QS~8}X@qX_HFr)ar^o1#oNBo5~N9LssYZj-%-Ck1?cm&2ed0 zfP9rn1S^8pgN$rkJd<9Ul_zy~Gf*iTUd5l38GU70nP2;&6!JBXYEYlH*l7#JW6{%MxhflYa8U> z{pL8?J>Tf0B>9v5X1K_4Kb$Cb3E3wzPI@;+o7!Y{z)fQ~sSX`pROtn;KF^+lo&Z?h zFg2}Yv7dYwjp!jHJEp{v2D?r*fe|rq6`AFXnB;gTrWTY)Aj8b-WVst+Ay*ygl1S_n z>4~FP4NdnLfUrw_;49TEq#g{w)A2dqpT3`oz$M72H@ABGVH}f>$om@(YrQjM+;78apH)>k2mF&|NsF%i?Elaiq6=w!4RXwmtZ2XXE`hFF8 zvw$BS)~cf2-6a*T9m1TjsIG%&D}1~UbU+e^a=`C5p2d|GH?1zKVDY4f$5bU$cb#kaTvpnIeN87+1Ti2AOr4x1jQG#YNv0GRduZc_6_{i&$ zt`S_W916hQme_b5%bT*RTpDR2*D~TQtV#yo9WIkUp7jFA+S7^YWhj4)9g}m~W`AzmnQWuwn2*paCcefoE?HqxGWUfIfviB07t#J;8I zyAVzHG;K|szXsZRd@-lB6X5$GB+5r2y;MYWuvTfEwB9LjA-2k7qeNMhgXP(paUB1; zPf8Y$HQczBLULN>CcH! zCLw8H8cqh6kd8cWHN#W6zK#4O*Y?u8`erar`#~W^b+G71Z`*tN^*)1 z#;OO`Q;5&raz=5r#`AxAYbc@`dehnXVPMin7hCF@&HZ@Mc4ZGNvRUD=+PU;J>BDeS zt(Ak?TPb$)sz;2~lL$xC#fjcae$C~oc3R@-iLiqrr$on&gvOU5&vD-ufnV+-+0+4u ziJjLTgtBgCV&b37A_j1um5I2WAhQyy4Yah``Wq*@_<~TsuA;Q71k`q_NYFBZkCNNq)ts(_?R;dRXWwb}K7xh9T1@aMf9q-H z?bm=K^8J_Zd_3W>r%)ff?ALt=&ga9t@hnk}NX3NYQNCT79Hw4lkSN7uX82YW@7;-~ z*#a*`2&O3}(iAMmiHZ5tU4HJHB$Vl5k-6CcK|?#-2-Exri57aL(N49fr<>Fl?f$(- z^G0lDHt~gEgh=yXR1zH%01>YM&lDVMj!`*gmqCS(-SAM5b>;FakP(2S^97YCQ6B886 zEdP5~PDkXSSdBN&O3Y>T3zZCW|Kn%{ykdO{iw@OR0-R3un;_=FAs14v_6qWl$W_lM zWa#KR8viZ;S#grCp#VBg$*!e{;e;4tj))@ZT@w$~c(o*MnxArr(eiVidoi|;Raq~1 zor28Y6Hf&cKo5QCY)5ejF2}#JPwA zt@Z>@Hgb&0VrxL#|s8K<9=Xh;``FFDl4HOg*02}B{_zI_0Etf{b5Rx zfv53p^B2##56*I_Y0+XIFi}acGaW45zr}n2%*u&ze5)U)WuN!Sn}9YEYF;TC;HlL3 z&$kRu-Qw@r*Tk*7yLQS*&iXQp7gV$kB}`Th8)e-ihV@?yoZ*J2B~L{F;t!%f z^5COUZ!mvCG#If6w(!dusnziSrl$UIrB=?t9fi8Lwre~dE>SLS)kJaH=2j#9w8^)wh&LqHJmIV8 zv=`?+7#Xql3_%<%I$NbL)302|d$id)26MN<4q(4!>6c_=5lv%& zKK0En9~d7l0SsulrW?tBG|i%obyphUVtKGlW4l>ib^K!Ll>XH-8ow!}GPT!c9U*?N zZwvDUCU?VS^zQUifWE`RE-BItUk(z|4+C;#_t)yJgf+BB2PGN$`i4Sk-+6I|~|Lj?aB%TD_%BFYKi}!Ep7vz;)JKDLWQ>(M<>qmk5YV0l?8}Zx!%#qbIkLB%M+~ z#Rgf$^%r#1*Eh#K%#B#wZ73#$KhtK06w50{Clv(2tAvGj9>e4-kaII()x1b5 z9&Jl?|4@JwZg?WlO-|WBd@%gp@fhh5i!@_1kMX$f}mZ*|sr`?wQ0O(|fBNH$?0d@r%z!6Q&!- z_~0`HL!@Lrck~iM#S-mq)X<^891?$J2oJW&)PuyA!i9<6$sCjtJda8{DF+e7PREyo zE-EXB)Cqh)wlT@_F%F#@2x?w+tw?+zsrB)@6>XBnk6_il)!7&dZ2Fm}eOxgjHaX|< zAj6%?+9$MPCQb9%Z#YJoeZ#dBZjliL^$ucOr)zh;3HPCBe5udZ9Mh2-p^=#CzynmC zVa)OyF(+>MN;m>3R;tHrO4NhLCCh3WHj?;aIo_2&oI)a@R3crSXk2VXbe@+%u+ALX zENl6&;Ocj>Je`LX9oBzHcZ?#EXwC9+TAs#iIZ@)EMUcOrNocQJ-NB`<~2|qPoIY_3&gKdCdtwM7!$8;-1$*QgZS_ag`VL zC*N(AfJQ%6jgnzX;}cNs)cYM_4;8NM3SiLRTMN{3+l{#ma#p%`wzbfy+M<<8)lc-=?GA5slo0GL43ZdP zM3g(h6RGN|`~u2^4OHeWsh`Pm7st@4@GYw++=~!n<)+>^&Ql8FT-AVkg>uc!IhnAu zpCFm>#KVnKQ}mEmiVGM-*MrZfdEGBr+MB-BUBQ#ML->a!S(8r>k zfl=dU=qm0co#_?F?rvU=x^u`lafkXy^`(nQHnY-%NO5ksM$z_sc3J1!$V|&4;SV$totC9- z86Yuyfi?bvj^=DgsRgIR>SRVmaO<qO_s$hW@wS<+t^Dj}V=hYVUa8W*Jm2WtazphTZSaCI^ z#9hTTIR1I4-y-G>L1wfLJ-@qsKhO`@eQ$f_kJGa9c$z5IWM?g^?#iF{sX9rGUO8V^ z$^_ey{tHu7XXfYT7W&gE&QHcC=PNTynS3F7+&KMII{iAz{Nn^BryH#0|PmIP!Pm6u4|g zlZ+xSkK}AXVITy7EuP-58;rfYBX1dJQ&;ehgHsJC*@tT_2Qe1INu4qvD?WhY7jQK${*~o?}S8YQ;4@u@G^s zNbXn&b|ea2Sp6CP1>7sf5+wX7g zGES4MLZ%2LqLOK8J z#-#fE171rtA=2mFc5z0QGRf1{rq-U`%6bp2{^*`N!0Is5)Pj~x0>MDAz>;f>uKR81 zdo~B#Tqedj^4*Z;x5#39%*`k#oH3slvtaF$ag?uHU@e#BdcGEgkLGsn1DJ+nTiSQ*1CrOM9X{e2S{FDJhbKRc6U z-L2k;Ov|=)6lpc#G^ij7)Pxo=K8%<33{z3t_SNf&Ri3wASbYh3)B%I}UER$uo|agP znS`vJy7X$-6`%8Lo=A%ngR#6=7o?t=Y2O>lo>`DfUPD5!>C_(I(ac;av;4R+6l{Pl ztA40gx3yof1o>JlIYTLf(qD>Zst>4Qsk0#(>O3=Kj63fc9iTHyUJp%B4cv2g>%end_)lrvTwnJ~#qXIb;|{B%W)9U#&euS`h7U z=arX#w^>uwJyZ9pYSo9Rh#GBeL#BV1Qa6RWarj)fD2@6p0bsoU-6MS?D#wTSwi6^| z#=%sG0b(6CPu)_N!y9TpXi~j7MM;LoxMfG|^iisR{bii8h5SN9OiCu?c<20Cbo_Pp znm6v|#$*)i7d$k2i8oVzP>d(zN&bXkt8EP!fZ1d_z}TJe7mRn{nwxp4c;a#-JzrG| zhJnzJMW~S+G;pfSJ1Hq>3bApcqbpefOXp2w&SDojzq{P9ltfu=j9@?qy>-j;_k^LT1#GR2k#)VmC}AkXMY3l zm}{soQpUGP^ZZ3KMraQ}r?P2hK|ZATUgX8|(Bo_Z+U=`TJ1Cmt)Z>Rs8le$q9WNxh23?7GKII%T{m_^pLDX=7=R=gUsj%5o$rrVjGn*+vEolI4f*oUw%$df0e z{U}n}yEnzd%Du@-bfHhQzP|R%y5aZflSY46)N^N5hn7JeB`-`UUyg)%&*B;rs(0N< zc{%{)m3gLzO&{Q38>~kk=t*5emu>MPXV7 zccoj2vw=cHqwJ~{{JF|&0w`XE(*5w6E1Q_J|CE$r)9Kc>GOpi%!ZG-CRMoCoROXJd z<_;-k1FX8j24@;?N38S-o#_JZN2OpZ3axt#6S=w0po>nTJ2vn&8PleA#EylPX^%~< zFaN_s#>s?rl8xs`2ka{^k+`zRL^Gz_!?$587hO7e5OMYsqjTs&D1v4jo6KV6LTmoJ zw(u>Z4Z8S#yqei~7cC|HfYy)qCw#@P!@I>o4w5X)3wVx%Z1dX1fXZ#N z{;Si@Le7teMzb+%rLfx@6Hh2ILTh{4^h=*U?{i~dpPm*fsUpkT{&n|OgjQo8iEoOE z>)P3Yx~@#MH->e=Oq+ArB~ zevCmFw4FY>vaF*pkdM-rlRA&LR(MoKQ@%EVvg{%_Vou8n8lYklyS2{8MnEZ^sAAS9 zp?z_p*)X{?*&oe*T(4j_>(ufDm-S3P@)|BMR%3jnvPui8FPFUEcj~wrjo1c(wT|@I zYf--Aw)c|hhBzd@gbOes*xgEE(nM&Tiw*{K;-8LBHVzI6=&+m!SdGjZB&3mDZ-e@A zOu3*@J1TQ5C?^eS&^@F`vWF~#Zz{m67`qOP`2(RFB-LkKZ8K|?2yDgJHg}ILaN|C*06UK&zRMkrB#iD#uoOKm~w z8o0c+ZnkQ76jpgH?a7+B63SGsWXrP9vym;AdOld?b%FSjSU(J{GndVNyJf-XWiZa0 z%WH8I4OA;M&nEA8EQ#b|-nVOeBe~3^QTbELDl_?dn^YfYFGQ5;woJ>F!ig?xaT4D~ zKALp|88SRxNB5>rP#y~9-$Hr9+sY!Inq?Tw#9EB0nR>B{M|C}SJlVcY3m_J+xByItp$)V5}V+V|f)3KZB;JyYU%h78tw2{jq`8i>Kj%@_B^4IxB*o(aI{^C&8 zkDoycsAJL@0maJ-lC`Hh>(wHvBN_VawS9Jd4&^0iDA3pSO|8L- zaj6PAkqS&3SO~E4g0=4%w`=iS`^h+$9fTwBA=e`*_)HS0;V)gP^Q9L%kgz|HUWG?S zGT~UOU+8M9xlrc3YO853Xo_3vyFD~ivoP-&Wy_<-;ckFn+;b-F4X=rFMS{gdS%Mv~ zY}D%jvXNH@^l>d@;mGG>ELSfMZ@pRVmT}St-WQNY!dH)P7)a+q@26uxlDc(zh?KNp z<+du`Kd)s4p332#x9rVsJm~w$FTp)LRaBl3 z$s953{^VB4TvrfmB7^Vn#HH~}h^^OJ7-;2m#?(~XF88VyrRI>^N$^td9gXI4rv_8m za?V_1f#sw-CuwY@sZH5!9VP7pZ9B%Pq{MyWLn3A8VN6~e=AmVEJS)@+dEWK;EKo(* zhsyC*M5zbLaaE~zQDnqIMSC#T$5yNCoG5x>=Mn_(FTq5@uAW|}NaMle_*m%lrdd~= zEaB`8(~%@#)pR!LB&;!81GT>Bc`y05wB1f)&KC+e9Q2eJ5u(-ZN>`@(_O$+Ps|cHM zy=?+ES7)4o) zOEuy&G~;Cut3DZZ2M;24LEd%p*pf`OUDAde^Lxb6Te2Z1V?1YuEZ^!5f8XmYNfn-a z1y2S3T(dz*qEK|2E=OmN}Pl2y&uifBfL$S?x&e__(ruDo9e7 z?lA8|lfX~E5ELTi?oX0{Sx4^k)k`)#o|aGBUp~mJ%H*dk@3@FW(ANX181m8N+3`ud z)Sk0fNKN&Qv5)jpiBYz(V8z>e+bHPu!{`aI%G293ipv{@cUCB)Un}tR&s7TsNLj)n zzvt5onjP>vL2CN~eC)qq;UXWKtWjO|jG5bK9`&QE9Pc5}M~H_$=N_DW3{`U)YI}Zu z5lvNgLNpPyF{)@?>C1drVrJ|o@)^q$tGIToj)TzKJ|;%{;lcgq=sweS)-%3v330ld z;*;R0r{#^WGd*W94#EoR4urnEmZsa6OeJNmEF+~JQONGr6f|VSd9Uo$GJ13v(nL@m zzO~n605SN`9_P`8zjv`O@zl6-sc)#iaJ+3=`Z!cq5bwE!ZFexTQXFP(Ta1EALz|?L z!cRk#8sQoKqXYlcmXOUUnkFLZD7dMKx1TwERsC4)V$14+`UMFzJ;d`$e&~q~DML1D zSgsl;1bR_^M7$R77^p)yjPb1&Y&Gw@DQxCgJ)8<5=Csw7YsVms#&2&OvJ9DMsW!VE za9n+zw-#^JT^_`E+Ce79I$WuCHOVa}XCv+31=t-xygU_v#e+{XOG*V_ER#JNcF)>w`t zQ;!V7hs#K#_Z3o_LsE)6>%6Vf)WP4SVrl2xOl?m3#e)$D)vdnObp+P@p!%krLnQ&v zz@s&tB%cZbG4&~{I2)hMo}hq9$kQ)NCXnL4lx&gXv|cTbn4q3LZ>-={^>4x>MLZdK zxG{9$!#Ospw*v|~Xg+sOZAH@4C_%AgiAK2Q(E~*AyysH{a|`zHcu$q1_R-~h>WI8m z94tsLvW}aU#~c}Dt$b5nj;8x4sVv-lElJTh4w`B_sY*({;VB?-D%cIQf$xdCCMx*E z5ndWt7swg7PoO5cPAO|S>7+2n!SS$6J@{6Zz~im!mF}${rAWi|&cMpS8+P5^4)&*P z2sz|ta`gowqFuI=?qFe{x0I$i;tH6GJK8+{L;wg<++Z#>ryYP zAq%F=Pnq|^YtxVTWFJvul_te%zA&FD|4jN2zu5_9`D&ITI~3rcjbyjk5%2On+UTR3 zpL8M?```)w*KaYqXXvdGedNA-c-cOo5wS5=Nj^#r-1s92*o;4AEVxcC*x--%86Gx2 zz2MeRW{A^EsK0(O(6w}ae9iZ9&El(#9{bH3t<(56F%0g!N^9x5V-Is$uG{w%K?(KA zH?s9C^v7fQ9et-#q-co6!>O`KsgqOK=65oMQ8&c>(XX1@NWJsS4_I@9cQ_6FeW;S( zgun1}vC3nkoyMv3H8RQT+&Kf*!Gk^VqFCo+bX_O!kX8oLu;Spw`u-0 zWS1po#NTD3ATKD2=ftJbBnLMY!cT6ED`htX21^*p49`j&aU5p^W?QQ`Ue!G%#g}q0-GeO3nv|P(+mY4F{K`m&6FX^Z zl)U#3H8v3X=QfZ)NC1*S$0*ns{);YSh2i9>!Yd9rcyU6x{fR|G!*^^A`PO=fxqG)9 zD=~9t4q$kl;;>{pzEo<@R!ecc%VS+!97@Kq;vV1I`W-iotRP%Cd%IzJp=X?@30y{B zFwpGokXy;M-D(@ZxvS>)c4>`4U>z7}>8MDsE!>$V*VXMu3pu(!3aw*=lQziwrh+T7}i#wa~VV-oXoZ+`H% zmu-uw@wuNy8S$~u*jZM<^jt1P_mfHTa$oHI)THe_12Bw1A7J3Xrtgm*bOLGD)snr7 z#xBcrzHj*M8F%3D_=8<s=~SpHTF4O<~P9z3wwL z`T`kLNd>PG_o(DzT(RGe*qGCLYq-cKd3{q>-}U5AAUy~d5Tz&ncx0R!5SW}ylV3re zxCiFqs>(fYjwN|rp!U92Mz!}IP!+hUj7uh{t()*YjP2Ir5sNe~inFqBvk>XFzh9oI zlpZgR$`+%w2er0mau_mjJGHv~2|s2eFB<`>CWVXv^zz*NNO&KAHRbn;$!QQq`a6FH zSMe%|;c#!^N~-T__uN#EW~zcQBB=F@)0|%tKxq{J`!LOViNg7K28xP7H41s6KQiaur-Eh!~N2O z`=#_|@lSy_yMGC{{Sstzf=RH!{UQOd9+1B_fYFwqj!r`622cPytcjzv!9Q<+ zEU>lIER3DZ9RaMrnos^23&($q(f@=+Oi*50KnR9K<{y#zOYcemtc&AsSU@lz|7R?} zGzR~S1ql3q1|uRPtf>C0KcvvY-M<|3kFmVG0GQMt zO!yGxKPT`1Mx>oH?EJ#Wj#3uJjsUGc z2#WyVA6o%f{zwS`%O5V#fe{SjHqkA7jv;-60RPGj=wD z5g2LgjZKwJ)ER(`Y|M;6W>`@Yf-x9jEoK2UF!R4|E$nQCVLV3wjW8z*Gms7Tq#$Mp z2*Scf&kUqyW~PRXld&`Y--akd4eaerjA5in18YYU7*J&qbw*KVYimOTTiah)l+7(1 z0kFS+V0sHsg%woT)&N#U*q$H`7WRL^WME-r`2!$8+QP*Iz{1ST0i%){S{T^U0<7!} zU}en20O0b^*&s${M%aV>+j(wK6H^ps00@Y}{9hM<9Rz~CJxl@rumRbDtT5mIx&XHS zwt@bG4g9-}nFV(JHkX+N2!z%2zpMwl0m7pF7aIpmP7@aTKihz?VPIIe|7>IC;DB)a zeH@4b7W6-lgUx0BRc?Q?v4LO-^_z|LSIYfn1H(M>7aMFf4(8wXV1`vpc3AoO^ITXw z*dTwiv4S~%+n1S{1(r;In+yC^&i=9la9TT?s0A7%5`jW9rqn^k~SL. + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from modena.Strategy import BackwardMappingScriptTask + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# Source code in src/twoTanksMacroscopicProblem.C +m = BackwardMappingScriptTask( + script='../src/MacroscopicProblem' +) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/initModels b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/initModels new file mode 100755 index 000000000..0d4f5687f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/initModels @@ -0,0 +1,62 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors +''' + +from modena import SurrogateModel +from modena.Strategy import Workflow2 +#import flowRate +import modSolubility +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from fireworks.utilities.fw_serializers import load_object + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +initWfs = Workflow2([]) +for m in SurrogateModel.get_instances(): + initWfs.addNoLink(m.initialisationStrategy().workflow(m)) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/modSolubility.py b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/modSolubility.py new file mode 100644 index 000000000..ad1695cb3 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/modSolubility.py @@ -0,0 +1,176 @@ + + +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +import os +import modena +from modena import ForwardMappingModel,BackwardMappingModel,SurrogateModel,CFunction,IndexSet +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +# Create terminal for colour output +term = Terminal() + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# ********************************* Class ********************************** # +@explicit_serialize +class SolubilityExactSim(FireTaskBase): + """ + A FireTask that starts a microscopic code and updates the database. + """ + + def run_task(self, fw_spec): + print( + term.yellow + + "Performing exact simulation (microscopic code recipe)" + + term.normal + ) + + # Write input for detailed model + ff = open('in.txt', 'w') + Tstr = str(self['point']['T']) + ff.write('%s \n' %(Tstr)) + + + ##TODO INPUT SHOULD COME FROM IndexSet + + ff.write('2 \n') #number of components in system + ff.write('co2 \n') #component 1 + ff.write('hexane \n') #component 2 + ff.write('0.5 \n') #molar feed (initial) concentration (mol/m^3) component 1 + ff.write('0.5 \n') #molar feed (initial) concentration (mol/m^3) component 2 + ff.close() + + #create output file for detailed code + fff = open('out.txt', 'w+') + fff.close() + + # Execute detailed model + os.system('../src/PCSAFT_Henry') + + # Analyse output + f = open('out.txt', 'r') + self['point']['H'] = float(f.readline()) + f.close() + + return FWAction(mod_spec=[{'_push': self['point']}]) + + + + + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void surroSolubility +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + + const double T = inputs[0]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + const double P2 = parameters[2]; + + const double term1 = P1*(1/T - 1/P2); + const double term2 = exp(term1); + + outputs[0] = P0*term2; + + //outputs[0] = P0 + T*P1 + P2*T*T; +} +''', + # These are global bounds for the function + inputs={ + 'T': { 'min': 200.0, 'max': 250.0, 'argPos': 0 }, #check if boundaries reasonable, from this range, the random values for the DOE are chosen! + }, + outputs={ + 'H': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': -1E10, 'max': 1E10, 'argPos': 0 }, #check if boundaries are reasonable!!! + 'param1': { 'min': -1E10, 'max': 1E10, 'argPos': 1 }, + 'param2': { 'min': 1.0, 'max': 1E10, 'argPos': 2 }, + }, +) + +m = BackwardMappingModel( + _id= 'Solubility', + surrogateFunction= f, + exactTask= SolubilityExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [200.0, 220.0], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 50.0, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/.gitignore b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/.gitignore new file mode 100644 index 000000000..0c66e77c1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/.gitignore @@ -0,0 +1,20 @@ +# Backups +*~ +*bak + +# Various intermediate files from automake +CMakeFiles/ +Makefile +libmodena.pc +CMakeCache.txt +cmake_install.cmake +install_manifest.txt + +# Intermediate files generated by SWIG +*_wrap.c + +# locate results (executables and libraries) +*.l[ao] + +flowRateExact +twoTanksMacroscopicProblem diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/CMakeLists.txt new file mode 100644 index 000000000..b55e0d37e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/CMakeLists.txt @@ -0,0 +1,31 @@ +cmake_minimum_required (VERSION 2.8) +project (tutorialModels C CXX) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + + +add_executable(MacroscopicProblem MacroscopicProblem.C) +target_link_libraries(MacroscopicProblem MODENA::modena) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/MacroscopicProblem.C b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/MacroscopicProblem.C new file mode 100644 index 000000000..1c40b7cce --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/MacroscopicProblem.C @@ -0,0 +1,108 @@ +/* + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Solving the two tank problem the MoDeNa way. + + A prototypical macros-scopic code embeds a micro-scale model (flowRate) + through the MoDeNa interface library. + +Authors + Henrik Rusche + +Contributors +*/ + +#include +#include +#include "modena.h" + +using namespace std; + +int +main(int argc, char *argv[]) +{ + double T = 200; + double Tend = 220.0; + + // Instantiate index set + //modena_index_set_t *indexSet = modena_index_set_new("species"); + + + // Instantiate a model + modena_model_t *model = modena_model_new("Solubility"); //muss das FunctionModule genau so heißen?? + if(modena_error_occurred()) + { + return modena_error(); + } + + // Allocate memory and fetch arg positions + modena_inputs_t *inputs = modena_inputs_new(model); //How many inputs and outputs is defined in the function module!! + modena_outputs_t *outputs = modena_outputs_new(model); + + + size_t Tpos = modena_model_inputs_argPos(model, "T"); + + modena_model_argPos_check(model); + + + while(T < Tend) + { + // Set input vector + modena_inputs_set(inputs, Tpos, T); + + // Call the model + int ret = modena_model_call(model, inputs, outputs); + + // Terminate, if requested + if(modena_error_occurred()) + { + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return modena_error(); + } + + // Fetch result + double H = modena_outputs_get(outputs, 0); + + cout << "T = " << T; + + + T = T + 10.0; + } + + + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return 0; +} diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 new file mode 100644 index 000000000..7a243184b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.f90 @@ -0,0 +1,1667 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_derivative ( ya, x1a, x2a, y1a, y2a, y12a, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(OUT) :: y1a(r_grid,NDFT) + REAL, INTENT(OUT) :: y2a(r_grid,NDFT) + REAL, INTENT(OUT) :: y12a(r_grid,NDFT) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k +! ---------------------------------------------------------------------- + + +DO i = 2, i_max-1 + DO k = 2, k_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k+1)-ya(i+1,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) + END DO +END DO + +i = 1 +DO k = 1, k_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + +k = 1 +DO i = 1, i_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + + +i = i_max +DO k = 2, k_max-1 + y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i,k+1)-ya(i,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) +END DO + + +k = k_max +DO i = 2, i_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k)-ya(i+1,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k)-x2a(k-1))) +END DO + +k = k_max +i = i_max +y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) +y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) +y12a(i,k)= (ya(i,k)-ya(i,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k)-x2a(k-1))) + +END SUBROUTINE bicub_derivative + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_c ( ya, x1a, x2a, y1a, y2a, y12a, c_bicub, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(OUT) :: c_bicub(r_grid,NDFT,4,4) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, m, n + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +DO i = 1, i_max-1 + DO k = 1, k_max-1 + y(1)=ya(i,k) + y(2)=ya(i+1,k) + y(3)=ya(i+1,k+1) + y(4)=ya(i,k+1) + + y1(1)=y1a(i,k) + y1(2)=y1a(i+1,k) + y1(3)=y1a(i+1,k+1) + y1(4)=y1a(i,k+1) + + y2(1)=y2a(i,k) + y2(2)=y2a(i+1,k) + y2(3)=y2a(i+1,k+1) + y2(4)=y2a(i,k+1) + + y12(1)=y12a(i,k) + y12(2)=y12a(i+1,k) + y12(3)=y12a(i+1,k+1) + y12(4)=y12a(i,k+1) + + x1l=x1a(i) + x1u=x1a(i+1) + x2l=x2a(k) + x2u=x2a(k+1) + + CALL bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) + DO m=1,4 + DO n=1,4 + c_bicub(i,k,m,n)=c(m,n) + END DO + END DO + + END DO +END DO + +END SUBROUTINE bicub_c + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: y(4) + REAL, INTENT(IN) :: y1(4) + REAL, INTENT(IN) :: y2(4) + REAL, INTENT(IN) :: y12(4) + REAL, INTENT(IN) :: d1 + REAL, INTENT(IN) :: d2 + REAL, INTENT(OUT) :: c(4,4) +! +! ---------------------------------------------------------------------- + INTEGER :: i,j,k,l + REAL :: d1d2,xx,cl(16),wt(16,16),x(16) + SAVE wt + DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4,10* & + 0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4, & + 1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0, & + -6,4,2*0,3,-2,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2, & + 10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4, & + -2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0, & + 2,-2,2*0,-1,1/ +! ---------------------------------------------------------------------- + +d1d2 = d1 * d2 +DO i = 1, 4 + x(i) = y(i) + x(i+4) = y1(i)*d1 + x(i+8) = y2(i)*d2 + x(i+12) = y12(i)*d1d2 +END DO +DO i = 1, 16 + xx = 0.0 + DO k = 1, 16 + xx = xx + wt(i,k) * x(k) + END DO + cl(i) = xx +END DO +l = 0 +DO i = 1, 4 + DO j = 1, 4 + l = l + 1 + c(i,j) = cl(l) + END DO +END DO + +END SUBROUTINE bcucof + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE BI_CUB_SPLINE ( rho_rdf, xg, ya, x1a, x2a, y1a, y2a, y12a, & + c_bicub, rdf, dg_drho, dg_dr, i_max, ih, k ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: rho_rdf + REAL, INTENT(IN OUT) :: xg + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(IN) :: c_bicub(r_grid,NDFT,4,4) + REAL, INTENT(OUT) :: rdf + REAL, INTENT(OUT) :: dg_drho + REAL, INTENT(OUT) :: dg_dr + INTEGER, INTENT(IN OUT) :: i_max + !INTEGER, INTENT(IN OUT) :: k_max + INTEGER, INTENT(OUT) :: ih + INTEGER, INTENT(IN) :: k +! +! ---------------------------------------------------------------------- + INTEGER :: m, n + + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +IF ( rho_rdf < x1a(1) ) THEN + dg_drho = 0.0 + dg_dr = 0.0 + rdf = 1.0 + RETURN +END IF +IF ( x1a(ih) <= rho_rdf .AND. rho_rdf < x1a(ih+1) ) GO TO 10 +IF ( ih > 2 ) THEN + IF ( x1a(ih-1) <= rho_rdf .AND. rho_rdf < x1a(ih) ) THEN + ih = ih - 1 + GO TO 10 + END IF +END IF +! write (*,*) 'in ',ih +CALL hunt ( x1a, i_max, rho_rdf, ih ) +! write (*,*) 'out',ih +10 CONTINUE +IF ( x2a(k) /= xg ) THEN +! write (*,*) 'error bi-cubic-spline',k,x2a(k),xg +! DO k=1,NDFT +! write (*,*) k,x2a(k) +! ENDDO +! stop +END IF + + + +y(1) = ya(ih,k) +y(2) = ya(ih+1,k) +y(3) = ya(ih+1,k+1) +y(4) = ya(ih,k+1) + +y1(1) = y1a(ih,k) +y1(2) = y1a(ih+1,k) +y1(3) = y1a(ih+1,k+1) +y1(4) = y1a(ih,k+1) + +y2(1) = y2a(ih,k) +y2(2) = y2a(ih+1,k) +y2(3) = y2a(ih+1,k+1) +y2(4) = y2a(ih,k+1) + +y12(1) = y12a(ih,k) +y12(2) = y12a(ih+1,k) +y12(3) = y12a(ih+1,k+1) +y12(4) = y12a(ih,k+1) + +x1l = x1a(ih) +x1u = x1a(ih+1) +x2l = x2a(k) +x2u = x2a(k+1) + +DO m = 1, 4 + DO n = 1, 4 + c(m,n) = c_bicub( ih, k, m, n ) + END DO +END DO +CALL bcuint ( x1l, x1u, x2l, x2u, rho_rdf, xg, c, rdf, dg_drho, dg_dr ) + +END SUBROUTINE BI_CUB_SPLINE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE hunt +! +! Given an array xx(1:n), and given a value x, returns a value jlo +! such that x is between xx(jlo) and xx(jlo+1). xx(1:n) must be +! monotonic, either increasing or decreasing. jlo=0 or jlo=n is +! returned to indicate that x is out of range. jlo on input is taken +! as the initial guess for jlo on output. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE hunt ( xx, n, x, jlo ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(OUT) :: jlo + REAL, INTENT(IN) :: xx(n) + REAL :: x +! +! ---------------------------------------------------------------------- + INTEGER :: inc,jhi,jm + LOGICAL :: ascnd +! ---------------------------------------------------------------------- + +ascnd = xx(n) >= xx(1) +IF( jlo <= 0 .OR. jlo > n ) THEN + jlo = 0 + jhi = n + 1 + GO TO 3 +END IF +inc = 1 +IF( x >= xx(jlo) .EQV. ascnd ) THEN +1 jhi = jlo + inc + IF ( jhi > n ) THEN + jhi = n + 1 + ELSE IF ( x >= xx(jhi) .EQV. ascnd ) THEN + jlo = jhi + inc = inc + inc + GO TO 1 + END IF +ELSE + jhi = jlo +2 jlo = jhi - inc + IF ( jlo < 1 ) THEN + jlo = 0 + ELSE IF ( x < xx(jlo) .EQV. ascnd ) THEN + jhi = jlo + inc = inc + inc + GO TO 2 + END IF +END IF +3 IF (jhi-jlo == 1 ) THEN + IF ( x == xx(n)) jlo = n - 1 + IF ( x == xx(1) ) jlo = 1 + RETURN +END IF +jm = ( jhi + jlo ) / 2 +IF ( x >= xx(jm) .EQV. ascnd ) THEN + jlo = jm +ELSE + jhi = jm +END IF +GO TO 3 +END SUBROUTINE hunt + + + +!********************************************************************** +! +!********************************************************************** +! + !SUBROUTINE bcuint ( y, y1, y2, y12, x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) + SUBROUTINE bcuint ( x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + !REAL, INTENT(IN OUT) :: y(4) + !REAL, INTENT(IN OUT) :: y1(4) + !REAL, INTENT(IN OUT) :: y2(4) + !REAL, INTENT(IN OUT) :: y12(4) + REAL, INTENT(IN OUT) :: x1l + REAL, INTENT(IN OUT) :: x1u + REAL, INTENT(IN OUT) :: x2l + REAL, INTENT(IN OUT) :: x2u + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: x2 + REAL, INTENT(IN) :: c(4,4) + REAL, INTENT(OUT) :: ansy + REAL, INTENT(OUT) :: ansy1 + REAL, INTENT(OUT) :: ansy2 +! +! ---------------------------------------------------------------------- + !U USES bcucof + INTEGER :: i + REAL :: t, u +! ---------------------------------------------------------------------- + +! call bcucof ( y, y1, y2, y12, x1u-x1l, x2u-x2l, c ) + +IF ( x1u == x1l .OR. x2u == x2l ) PAUSE 'bad input in bcuint' +t = (x1-x1l) / (x1u-x1l) +u = (x2-x2l) / (x2u-x2l) +ansy = 0.0 +ansy2 = 0.0 +ansy1 = 0.0 +DO i = 4, 1, -1 + ansy = t *ansy + ( (c(i,4)*u + c(i,3))*u+c(i,2) )*u + c(i,1) + ansy2 = t *ansy2 + ( 3.*c(i,4)*u+2.*c(i,3) )*u + c(i,2) + ansy1 = u *ansy1 + ( 3.*c(4,i)*t+2.*c(3,i) )*t + c(2,i) +END DO +ansy1 = ansy1 / (x1u-x1l) +ansy2 = ansy2 / (x2u-x2l) + +END SUBROUTINE bcuint + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE spline ( x, y, n, yp1, ypn, y2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: NMAX = 500 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(NMAX) +! ---------------------------------------------------------------------- + + IF ( yp1 > 0.99E30 ) THEN + y2(1) = 0.0 + u(1) = 0.0 + ELSE + y2(1) = -0.5 + u(1) = ( 3.0/(x(2)-x(1)) ) * ( (y(2)-y(1))/(x(2)-x(1))-yp1 ) + END IF + DO i = 2, n-1 + IF ( (x(i+1)-x(i)) == 0.0 .OR. (x(i)-x(i-1)) == 0.0 .OR. (x(i+1)-x(i-1)) == 0.0 ) THEN + write (*,*) 'error in spline-interpolation' + stop + END IF + sig = (x(i)-x(i-1)) / (x(i+1)-x(i-1)) + p = sig*y2(i-1) + 2.0 + y2(i) = (sig-1.0) / p + u(i) = ( 6.0 * ((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1))) / (x(i+1)-x(i-1)) & + - sig * u(i-1) ) / p + END DO + IF ( ypn > 0.99E30 ) THEN + qn = 0.0 + un = 0.0 + ELSE + qn = 0.5 + un = (3.0/(x(n)-x(n-1))) * (ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2(n) = (un-qn*u(n-1)) / (qn*y2(n-1)+1.0) + DO k = n-1, 1, -1 + y2(k) = y2(k) * y2(k+1) + u(k) + END DO + +END SUBROUTINE spline + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE splint_integral ( xa, ya, y2a, n, xlo, xhi, integral ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, INT, x0, x1, y0, y1, y20, y21 +! ---------------------------------------------------------------------- + + integral = 0.0 + klo_l = 1 + khi_l = n +1 IF ( khi_l-klo_l > 1 ) THEN + k = ( khi_l + klo_l ) / 2 + IF ( xa(k) > xlo ) THEN + khi_l = k + ELSE + klo_l = k + END IF + GO TO 1 + END IF + + klo_h = 1 + khi_h = n +2 IF ( khi_h-klo_h > 1 ) THEN + k = ( khi_h + klo_h ) / 2 + IF ( xa(k) > xhi ) THEN + khi_h = k + ELSE + klo_h = k + END IF + GO TO 2 + END IF + + ! integration in spline pieces, the lower interval, bracketed + ! by xa(klo_L) and xa(khi_L) is in steps shifted upward. + + ! first: determine upper integration bound + xl = xlo +3 CONTINUE + IF ( khi_h > khi_l ) THEN + xh = xa(khi_l) + ELSE IF ( khi_h == khi_l ) THEN + xh = xhi + ELSE + WRITE (*,*) 'error in spline-integration' + PAUSE + END IF + + h = xa(khi_l) - xa(klo_l) + IF ( h == 0.0 ) PAUSE 'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0 = ya(klo_l) + y1 = ya(khi_l) + y20= y2a(klo_l) + y21= y2a(khi_l) + ! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & + ! -y20/6.*h*h*(x1-.5*xL) & + ! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xL-x0) ) + ! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & + ! -y20/6.*h*h*(x1-.5*xH) & + ! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xH-x0) ) + INT = -1.0/h * ( xl*((x1-.5*xl)*y0 + (0.5*xl-x0)*y1) & + -y20/24.*(x1-xl)**4 + y20/6.*(0.5*xl*xl-x1*xl)*h*h & + +y21/24.*(xl-x0)**4 - y21/6.*(0.5*xl*xl-x0*xl)*h*h ) + INT = INT + 1.0/h * ( xh*((x1-.5*xh)*y0 + (0.5*xh-x0)*y1) & + -y20/24.*(x1-xh)**4 + y20/6.*(0.5*xh*xh-x1*xh)*h*h & + +y21/24.*(xh-x0)**4 - y21/6.*(0.5*xh*xh-x0*xh)*h*h ) + + integral = integral + INT + ! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h /= (khi_l-1)) GO TO 3 ! the -1 in (khi_L-1) because khi_L was already counted up + +END SUBROUTINE splint_integral + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION praxis( t0, machep, h0, n, prin, x, f, fmin ) + + IMPLICIT NONE + +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: x(n) + REAL :: f + REAL, INTENT(IN OUT) :: fmin +! ---------------------------------------------------------------------- + +EXTERNAL f + +! PRAXIS RETURNS THE MINIMUM OF THE FUNCTION F(X,N) OF N VARIABLES +! USING THE PRINCIPAL AXIS METHOD. THE GRADIENT OF THE FUNCTION IS +! NOT REQUIRED. + +! FOR A DESCRIPTION OF THE ALGORITHM, SEE CHAPTER SEVEN OF +! "ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT +! CALCULATING DERIVATIVES" BY RICHARD P BRENT. + +! THE PARAMETERS ARE: +! T0 IS A TOLERANCE. PRAXIS ATTEMPTS TO RETURN PRAXIS=F(X) +! SUCH THAT IF X0 IS THE TRUE LOCAL MINIMUM NEAR X, THEN +! NORM(X-X0) < T0 + SQUAREROOT(MACHEP)*NORM(X). +! MACHEP IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT +! 1 + MACHEP > 1. MACHEP SHOULD BE 16.**-13 (ABOUT +! 2.22D-16) FOR REAL*8 ARITHMETIC ON THE IBM 360. +! H0 IS THE MAXIMUM STEP SIZE. H0 SHOULD BE SET TO ABOUT THE +! MAXIMUM DISTANCE FROM THE INITIAL GUESS TO THE MINIMUM. +! (IF H0 IS SET TOO LARGE OR TOO SMALL, THE INITIAL RATE OF +! CONVERGENCE MAY BE SLOW.) +! N (AT LEAST TWO) IS THE NUMBER OF VARIABLES UPON WHICH +! THE FUNCTION DEPENDS. +! PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. +! IF PRIN=0, NOTHING IS PRINTED. +! IF PRIN=1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR +! MINIMIZATIONS. FINAL X IS PRINTED, BUT INTERMEDIATE X IS +! PRINTED ONLY IF N IS AT MOST 4. +! IF PRIN=2, THE SCALE FACTORS AND THE PRINCIPAL VALUES OF +! THE APPROXIMATING QUADRATIC FORM ARE ALSO PRINTED. +! IF PRIN=3, X IS ALSO PRINTED AFTER EVERY FEW LINEAR +! MINIMIZATIONS. +! IF PRIN=4, THE PRINCIPAL VECTORS OF THE APPROXIMATING +! QUADRATIC FORM ARE ALSO PRINTED. +! X IS AN ARRAY CONTAINING ON ENTRY A GUESS OF THE POINT OF +! MINIMUM, ON RETURN THE ESTIMATED POINT OF MINIMUM. +! F(X,N) IS THE FUNCTION TO BE MINIMIZED. F SHOULD BE A REAL*8 +! FUNCTION DECLARED EXTERNAL IN THE CALLING PROGRAM. +! FMIN IS AN ESTIMATE OF THE MINIMUM, USED ONLY IN PRINTING +! INTERMEDIATE RESULTS. +! THE APPROXIMATING QUADRATIC FORM IS +! Q(X') = F(X,N) + (1/2) * (X'-X)-TRANSPOSE * A * (X'-X) +! WHERE X IS THE BEST ESTIMATE OF THE MINIMUM AND A IS +! INVERSE(V-TRANSPOSE) * D * INVERSE(V) +! (V(*,*) IS THE MATRIX OF SEARCH DIRECTIONS; D(*) IS THE ARRAY +! OF SECOND DIFFERENCES). IF F HAS CONTINUOUS SECOND DERIVATIVES +! NEAR X0, A WILL TEND TO THE HESSIAN OF F AT X0 AS X APPROACHES X0. + +! IT IS ASSUMED THAT ON FLOATING-POINT UNDERFLOW THE RESULT IS SET +! TO ZERO. +! THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS AFTER +! THE INITIALIZATION OF MACHINE DEPENDENT NUMBERS. + + LOGICAL :: illc + INTEGER :: nl,nf,kl,kt,ktm,idim,i,j,k,k2,km1,klmk,ii,im1 + REAL :: s,sl,dn,dmin,fx,f1,lds,ldt,t,h,sf,df,qf1,qd0, qd1,qa,qb,qc + REAL :: m2,m4,small,vsmall,large,vlarge,scbd,ldfac,t2, dni,value + REAL :: random + +!.....IF N>20 OR IF N<20 AND YOU NEED MORE SPACE, CHANGE '20' TO THE +! LARGEST VALUE OF N IN THE NEXT CARD, IN THE CARD 'IDIM=20', AND +! IN THE DIMENSION STATEMENTS IN SUBROUTINES MINFIT,MIN,FLIN,QUAD. + + REAL :: d(20),y(20),z(20),q0(20),q1(20),v(20,20) + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 + +! --------------------------------- +! introduced by Joachim........ + idim = n +! --------------------------------- + + + +!.....INITIALIZATION..... +! MACHINE DEPENDENT NUMBERS: + +small = machep*machep +vsmall = small*small +large = 1.d0/small +vlarge = 1.d0/vsmall +m2 = SQRT(machep) +m4 = SQRT(m2) + +! HEURISTIC NUMBERS: +! IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF +! POSSIBLE), THEN SET SCBD=10. OTHERWISE SET SCBD=1. +! IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED, SET ILLC=TRUE. +! OTHERWISE SET ILLC=FALSE. +! KTM IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE THE +! ALGORITHM TERMINATES. KTM=4 IS VERY CAUTIOUS; USUALLY KTM=1 +! IS SATISFACTORY. + +scbd = 1.0 +illc = .false. +ktm = 1 + +ldfac = 0.01 +IF (illc) ldfac = 0.1 +kt = 0 +nl = 0 +nf = 1 +fx = f(x,n) +qf1 = fx +t = small+ABS(t0) +t2 = t +dmin = small +h = h0 +IF (h < 100*t) h = 100*t +ldt = h +!.....THE FIRST SET OF SEARCH DIRECTIONS V IS THE IDENTITY MATRIX..... +DO i = 1,n + DO j = 1,n + v(i,j) = 0.0 + END DO + v(i,i) = 1.0 +END DO +d(1) = 0.0 +qd0 = 0.0 +DO i = 1,n + q0(i) = x(i) + q1(i) = x(i) +END DO +IF (prin > 0) CALL PRINT(n,x,prin,fmin) + +!.....THE MAIN LOOP STARTS HERE..... +40 sf=d(1) +d(1)=0.d0 +s=0.d0 + +!.....MINIMIZE ALONG THE FIRST DIRECTION V(*,1). +! FX MUST BE PASSED TO MIN BY VALUE. +value=fx +CALL MIN(n,1,2,d(1),s,value,.false.,f,x,t,machep,h) +IF (s > 0.d0) GO TO 50 +DO i=1,n + v(i,1)=-v(i,1) +END DO +50 IF (sf > 0.9D0*d(1).AND.0.9D0*sf < d(1)) GO TO 70 +DO i=2,n + d(i)=0.d0 +END DO + +!.....THE INNER LOOP STARTS HERE..... +70 DO k=2,n + DO i=1,n + y(i)=x(i) + END DO + sf=fx + IF (kt > 0) illc=.true. + 80 kl=k + df=0.d0 + +!.....A RANDOM STEP FOLLOWS (TO AVOID RESOLUTION VALLEYS). +! PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM NUMBER UNIFORMLY +! DISTRIBUTED IN (0,1). + + IF(.NOT.illc) GO TO 95 + DO i=1,n + s=(0.1D0*ldt+t2*(10**kt))*(random(n)-0.5D0) + z(i)=s + DO j=1,n + x(j)=x(j)+s*v(j,i) + END DO + END DO + fx=f(x,n) + nf=nf+1 + +!.....MINIMIZE ALONG THE "NON-CONJUGATE" DIRECTIONS V(*,K),...,V(*,N) + + 95 DO k2=k,n + sl=fx + s=0.d0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + IF (illc) GO TO 97 + s=sl-fx + GO TO 99 + 97 s=d(k2)*((s+z(k2))**2) + 99 IF (df > s) CYCLE + df=s + kl=k2 + END DO + IF (illc.OR.(df >= ABS((100*machep)*fx))) GO TO 110 + +!.....IF THERE WAS NOT MUCH IMPROVEMENT ON THE FIRST TRY, SET +! ILLC=TRUE AND START THE INNER LOOP AGAIN..... + + illc=.true. + GO TO 80 + 110 IF (k == 2.AND.prin > 1) CALL vcprnt(1,d,n) + +!.....MINIMIZE ALONG THE "CONJUGATE" DIRECTIONS V(*,1),...,V(*,K-1) + + km1=k-1 + DO k2=1,km1 + s=0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + END DO + f1=fx + fx=sf + lds=0 + DO i=1,n + sl=x(i) + x(i)=y(i) + sl=sl-y(i) + y(i)=sl + lds=lds+sl*sl + END DO + lds=SQRT(lds) + IF (lds <= small) GO TO 160 + +!.....DISCARD DIRECTION V(*,KL). +! IF NO RANDOM STEP WAS TAKEN, V(*,KL) IS THE "NON-CONJUGATE" +! DIRECTION ALONG WHICH THE GREATEST IMPROVEMENT WAS MADE..... + + klmk=kl-k + IF (klmk < 1) GO TO 141 + DO ii=1,klmk + i=kl-ii + DO j=1,n + v(j,i+1)=v(j,i) + END DO + d(i+1)=d(i) + END DO + 141 d(k)=0 + DO i=1,n + v(i,k)=y(i)/lds + END DO + +!.....MINIMIZE ALONG THE NEW "CONJUGATE" DIRECTION V(*,K), WHICH IS +! THE NORMALIZED VECTOR: (NEW X) - (0LD X)..... + + value=f1 + CALL MIN(n,k,4,d(k),lds,value,.true.,f,x,t,machep,h) + IF (lds > 0.d0) GO TO 160 + lds=-lds + DO i=1,n + v(i,k)=-v(i,k) + END DO + 160 ldt=ldfac*ldt + IF (ldt < lds) ldt=lds + IF (prin > 0) CALL PRINT(n,x,prin,fmin) + t2=0.d0 + DO i=1,n + t2=t2+x(i)**2 + END DO + t2=m2*SQRT(t2)+t + +!.....SEE WHETHER THE LENGTH OF THE STEP TAKEN SINCE STARTING THE +! INNER LOOP EXCEEDS HALF THE TOLERANCE..... + + IF (ldt > (0.5*t2)) kt=-1 + kt=kt+1 + IF (kt > ktm) GO TO 400 +END DO +!.....THE INNER LOOP ENDS HERE. + +! TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE IN A CURVED VALLEY. + +CALL quad(n,f,x,t,machep,h) +dn=0.d0 +DO i=1,n + d(i)=1.d0/SQRT(d(i)) + IF (dn < d(i)) dn=d(i) +END DO +IF (prin > 3) CALL maprnt(1,v,idim,n) +DO j=1,n + s=d(j)/dn + DO i=1,n + v(i,j)=s*v(i,j) + END DO +END DO + +!.....SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER..... + +IF (scbd <= 1.d0) GO TO 200 +s=vlarge +DO i=1,n + sl=0.d0 + DO j=1,n + sl=sl+v(i,j)*v(i,j) + END DO + z(i)=SQRT(sl) + IF (z(i) < m4) z(i)=m4 + IF (s > z(i)) s=z(i) +END DO +DO i=1,n + sl=s/z(i) + z(i)=1.d0/sl + IF (z(i) <= scbd) GO TO 189 + sl=1.d0/scbd + z(i)=scbd + 189 DO j=1,n + v(i,j)=sl*v(i,j) + END DO +END DO + +!.....CALCULATE A NEW SET OF ORTHOGONAL DIRECTIONS BEFORE REPEATING +! THE MAIN LOOP. +! FIRST TRANSPOSE V FOR MINFIT: + +200 DO i=2,n + im1=i-1 + DO j=1,im1 + s=v(i,j) + v(i,j)=v(j,i) + v(j,i)=s + END DO +END DO + +!.....CALL MINFIT TO FIND THE SINGULAR VALUE DECOMPOSITION OF V. +! THIS GIVES THE PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF THE +! APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE CONDITION +! NUMBER..... + +CALL minfit(idim,n,machep,vsmall,v,d) + +!.....UNSCALE THE AXES..... + +IF (scbd <= 1.d0) GO TO 250 +DO i=1,n + s=z(i) + DO j=1,n + v(i,j)=s*v(i,j) + END DO +END DO +DO i=1,n + s=0.d0 + DO j=1,n + s=s+v(j,i)**2 + END DO + s=SQRT(s) + d(i)=s*d(i) + s=1/s + DO j=1,n + v(j,i)=s*v(j,i) + END DO +END DO + +250 DO i=1,n + dni=dn*d(i) + IF (dni > large) GO TO 265 + IF (dni < small) GO TO 260 + d(i)=1/(dni*dni) + CYCLE + 260 d(i)=vlarge + CYCLE + 265 d(i)=vsmall +END DO + +!.....SORT THE EIGENVALUES AND EIGENVECTORS..... + +CALL sort(idim,n,d,v) +dmin=d(n) +IF (dmin < small) dmin=small +illc=.false. +IF (m2*d(1) > dmin) illc=.true. +IF (prin > 1.AND.scbd > 1.d0) CALL vcprnt(2,z,n) +IF (prin > 1) CALL vcprnt(3,d,n) +IF (prin > 3) CALL maprnt(2,v,idim,n) +!.....THE MAIN LOOP ENDS HERE..... + +GO TO 40 + +!.....RETURN..... + +400 IF (prin > 0) CALL vcprnt(4,x,n) +praxis=fx + +END FUNCTION praxis + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE minfit(m,n,machep,tol,ab,q) + + IMPLICIT NONE + + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: machep + REAL, INTENT(IN OUT) :: tol + REAL, INTENT(IN OUT) :: ab(m,n) + REAL, INTENT(OUT) :: q(n) + INTEGER :: i,j,k,l, kk,kt,l2,ll2,ii,lp1 +! IMPLICIT REAL (A-H,O-Z) + + +REAL :: x,eps,e(20),g,s, f,h,y,c,z,temp +!...AN IMPROVED VERSION OF MINFIT (SEE GOLUB AND REINSCH, 1969) +! RESTRICTED TO M=N,P=0. +! THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q AND AB IS +! OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT U.DIAG(Q) = AB.V, +! WHERE U IS ANOTHER ORTHOGONAL MATRIX. + +!...HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... +IF (n == 1) GO TO 200 +eps = machep +g = 0.d0 +x = 0.d0 +DO i=1,n + e(i) = g + s = 0.d0 + l = i + 1 + DO j=i,n + s = s + ab(j,i)**2 + END DO + g = 0.d0 + IF (s < tol) GO TO 4 + f = ab(i,i) + g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + ab(i,i)=f-g + IF (l > n) GO TO 4 + DO j=l,n + f = 0.d0 + DO k=i,n + f = f + ab(k,i)*ab(k,j) + END DO + f = f/h + DO k=i,n + ab(k,j) = ab(k,j) + f*ab(k,i) + END DO + END DO + 4 q(i) = g + s = 0.d0 + IF (i == n) GO TO 6 + DO j=l,n + s = s + ab(i,j)*ab(i,j) + END DO + 6 g = 0.d0 + IF (s < tol) GO TO 10 + IF (i == n) GO TO 16 + f = ab(i,i+1) + 16 g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + IF (i == n) GO TO 10 + ab(i,i+1) = f - g + DO j=l,n + e(j) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(j,k)*ab(i,k) + END DO + DO k=l,n + ab(j,k) = ab(j,k) + s*e(k) + END DO + END DO + 10 y = ABS(q(i)) + ABS(e(i)) + IF (y > x) x = y +END DO +!...ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... +ab(n,n) = 1.d0 +g = e(n) +l = n +DO ii=2,n + i = n - ii + 1 + IF (g == 0.d0) GO TO 23 + h = ab(i,i+1)*g + DO j=l,n + ab(j,i) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(i,k)*ab(k,j) + END DO + DO k=l,n + ab(k,j) = ab(k,j) + s*ab(k,i) + END DO + END DO + 23 DO j=l,n + ab(i,j) = 0.d0 + ab(j,i) = 0.d0 + END DO + ab(i,i) = 1.d0 + g = e(i) + l = i +END DO +!...DIAGONALIZATION OF THE BIDIAGONAL FORM... +eps = eps*x +DO kk=1,n + k = n - kk + 1 + kt = 0 + 101 kt = kt + 1 + IF (kt <= 30) GO TO 102 + e(k) = 0.d0 + WRITE (6,1000) + 1000 FORMAT (' QR FAILED') + 102 DO ll2=1,k + l2 = k - ll2 + 1 + l = l2 + IF (ABS(e(l)) <= eps) GO TO 120 + IF (l == 1) CYCLE + IF (ABS(q(l-1)) <= eps) EXIT + END DO +!...CANCELLATION OF E(L) IF L>1... + c = 0.d0 + s = 1.d0 + DO i=l,k + f = s*e(i) + e(i) = c*e(i) + IF (ABS(f) <= eps) GO TO 120 + g = q(i) +!...Q(I) = H = SQRT(G*G + F*F)... + IF (ABS(f) < ABS(g)) GO TO 113 + IF (f == 0.0) THEN + GO TO 111 + ELSE + GO TO 112 + END IF + 111 h = 0.d0 + GO TO 114 + 112 h = ABS(f)*SQRT(1 + (g/f)**2) + GO TO 114 + 113 h = ABS(g)*SQRT(1 + (f/g)**2) + 114 q(i) = h + IF (h /= 0.d0) GO TO 115 + g = 1.d0 + h = 1.d0 + 115 c = g/h + s = -f/h + END DO +!...TEST FOR CONVERGENCE... + 120 z = q(k) + IF (l == k) GO TO 140 +!...SHIFT FROM BOTTOM 2*2 MINOR... + x = q(l) + y = q(k-1) + g = e(k-1) + h = e(k) + f = ((y - z)*(y + z) + (g - h)*(g + h))/(2*h*y) + g = SQRT(f*f + 1.0D0) + temp = f - g + IF (f >= 0.d0) temp = f + g + f = ((x - z)*(x + z) + h*(y/temp - h))/x +!...NEXT QR TRANSFORMATION... + c = 1.d0 + s = 1.d0 + lp1 = l + 1 + IF (lp1 > k) GO TO 133 + DO i=lp1,k + g = e(i) + y = q(i) + h = s*g + g = g*c + IF (ABS(f) < ABS(h)) GO TO 123 + IF (f == 0.0) THEN + GO TO 121 + ELSE + GO TO 122 + END IF + 121 z = 0.d0 + GO TO 124 + 122 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 124 + 123 z = ABS(h)*SQRT(1 + (f/h)**2) + 124 e(i-1) = z + IF (z /= 0.d0) GO TO 125 + f = 1.d0 + z = 1.d0 + 125 c = f/z + s = h/z + f = x*c + g*s + g = -x*s + g*c + h = y*s + y = y*c + DO j=1,n + x = ab(j,i-1) + z = ab(j,i) + ab(j,i-1) = x*c + z*s + ab(j,i) = -x*s + z*c + END DO + IF (ABS(f) < ABS(h)) GO TO 129 + IF (f == 0.0) THEN + GO TO 127 + ELSE + GO TO 128 + END IF + 127 z = 0.d0 + GO TO 130 + 128 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 130 + 129 z = ABS(h)*SQRT(1 + (f/h)**2) + 130 q(i-1) = z + IF (z /= 0.d0) GO TO 131 + f = 1.d0 + z = 1.d0 + 131 c = f/z + s = h/z + f = c*g + s*y + x = -s*g + c*y + END DO + 133 e(l) = 0.d0 + e(k) = f + q(k) = x + GO TO 101 +!...CONVERGENCE: Q(K) IS MADE NON-NEGATIVE... + 140 IF (z >= 0.d0) CYCLE + q(k) = -z + DO j=1,n + ab(j,k) = -ab(j,k) + END DO +END DO +RETURN +200 q(1) = ab(1,1) +ab(1,1) = 1.d0 + +END SUBROUTINE minfit + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE MIN(n,j,nits,d2,x1,f1,fk,f,x,t,machep,h) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER :: j + INTEGER :: nits + REAL, INTENT(IN OUT) :: d2 + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: f1 + LOGICAL :: fk + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN) :: t + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h + + INTEGER :: i,k + EXTERNAL f + + + REAL :: flin ! function + REAL :: small,sf1,sx1,s,temp, xm,x2,f2,d1 + REAL :: fm,f0,t2 +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +!...THE SUBROUTINE MIN MINIMIZES F FROM X IN THE DIRECTION V(*,J) UNLESS +! J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS MADE IN THE PLANE +! DEFINED BY Q0,Q1,X. +! D2 IS EITHER ZERO OR AN APPROXIMATION TO HALF F". +! ON ENTRY, X1 IS AN ESTIMATE OF THE DISTANCE FROM X TO THE MINIMUM +! ALONG V(*,J) (OR, IF J=0, A CURVE). ON RETURN, X1 IS THE DISTANCE +! FOUND. +! IF FK=.TRUE., THEN F1 IS FLIN(X1). OTHERWISE X1 AND F1 ARE IGNORED +! ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. +! NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT WILL BE MADE TO HALVE +! THE INTERVAL. + LOGICAL :: dz + REAL :: m2,m4 + +small = machep**2 +m2 = SQRT(machep) +m4 = SQRT(m2) +sf1 = f1 +sx1 = x1 +k = 0 +xm = 0.d0 +fm = fx +f0 = fx +dz = d2 < machep +!...FIND THE STEP SIZE... +s = 0.d0 +DO i=1,n + s = s + x(i)**2 +END DO +s = SQRT(s) +temp = d2 +IF (dz) temp = dmin +t2 = m4*SQRT(ABS(fx)/temp + s*ldt) + m2*ldt +s = m4*s + t +IF (dz.AND.t2 > s) t2 = s +t2 = DMAX1(t2,small) +t2 = DMIN1(t2,.01D0*h) +IF (.NOT.fk.OR.f1 > fm) GO TO 2 +xm = x1 +fm = f1 +2 IF (fk.AND.ABS(x1) >= t2) GO TO 3 +temp=1.d0 +IF (x1 < 0.d0) temp=-1.d0 +x1=temp*t2 +f1 = flin(n,j,x1,f,x,nf) +3 IF (f1 > fm) GO TO 4 +xm = x1 +fm = f1 +4 IF (.NOT.dz) GO TO 6 +!...EVALUATE FLIN AT ANOTHER POINT AND ESTIMATE THE SECOND DERIVATIVE... +x2 = -x1 +IF (f0 >= f1) x2 = 2.d0*x1 +f2 = flin(n,j,x2,f,x,nf) +IF (f2 > fm) GO TO 5 +xm = x2 +fm = f2 +5 d2 = (x2*(f1 - f0)-x1*(f2 - f0))/((x1*x2)*(x1 - x2)) +!...ESTIMATE THE FIRST DERIVATIVE AT 0... +6 d1 = (f1 - f0)/x1 - x1*d2 +dz = .true. +!...PREDICT THE MINIMUM... +IF (d2 > small) GO TO 7 +x2 = h +IF (d1 >= 0.d0) x2 = -x2 +GO TO 8 +7 x2 = (-.5D0*d1)/d2 +8 IF (ABS(x2) <= h) GO TO 11 +IF (x2 > 0.0) THEN + GO TO 10 +END IF +x2 = -h +GO TO 11 +10 x2 = h +!...EVALUATE F AT THE PREDICTED MINIMUM... +11 f2 = flin(n,j,x2,f,x,nf) +IF (k >= nits.OR.f2 <= f0) GO TO 12 +!...NO SUCCESS, SO TRY AGAIN... +k = k + 1 +IF (f0 < f1.AND.(x1*x2) > 0.d0) GO TO 4 +x2 = 0.5D0*x2 +GO TO 11 +!...INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER... +12 nl = nl + 1 +IF (f2 <= fm) GO TO 13 +x2 = xm +GO TO 14 +13 fm = f2 +!...GET A NEW ESTIMATE OF THE SECOND DERIVATIVE... +14 IF (ABS(x2*(x2 - x1)) <= small) GO TO 15 +d2 = (x2*(f1-f0) - x1*(fm-f0))/((x1*x2)*(x1 - x2)) +GO TO 16 +15 IF (k > 0) d2 = 0.d0 +16 IF (d2 <= small) d2 = small +x1 = x2 +fx = fm +IF (sf1 >= fx) GO TO 17 +fx = sf1 +x1 = sx1 +!...UPDATE X FOR LINEAR BUT NOT PARABOLIC SEARCH... +17 IF (j == 0) RETURN +DO i=1,n + x(i) = x(i) + x1*v(i,j) +END DO + +END SUBROUTINE MIN + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vcprnt(option,v,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(n) + INTEGER :: n + + INTEGER :: i + +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 + CASE ( 3) + GO TO 3 + CASE ( 4) + GO TO 4 +END SELECT + +1 WRITE (6,101) (v(i),i=1,n) +RETURN +2 WRITE (6,102) (v(i),i=1,n) +RETURN +3 WRITE (6,103) (v(i),i=1,n) +RETURN +4 WRITE (6,104) (v(i),i=1,n) +RETURN +101 FORMAT (/' THE SECOND DIFFERENCE ARRAY D(*) IS:'/ (e32.14,4E25.14)) +102 FORMAT (/' THE SCALE FACTORS ARE:'/(e32.14,4E25.14)) +103 FORMAT (/' THE APPROXIMATING QUADR. FORM HAS PRINCIPAL VALUES:'/ & + (e32.14,4E25.14)) +104 FORMAT (/' X IS:',e26.14/(e32.14)) +END SUBROUTINE vcprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRINT(n,x,prin,fmin) + + IMPLICIT NONE + INTEGER :: n + REAL, INTENT(IN OUT) :: x(n) + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: fmin + + INTEGER :: i + REAL :: ln +!---------------------------------------------- +INTEGER :: nf,nl +REAL :: fx,ldt,dmin +COMMON /global/ fx,ldt,dmin,nf,nl +!---------------------------------------------- +WRITE (6,101) nl,nf,fx + +IF (fx <= fmin) GO TO 1 +ln = LOG10(fx-fmin) +WRITE (6,102) fmin,ln +GO TO 2 +1 WRITE (6,103) fmin +2 IF (n > 4.AND.prin <= 2) RETURN +WRITE (6,104) (x(i),i=1,n) +RETURN +101 FORMAT (/' AFTER',i6, & + ' LINEAR SEARCHES, THE FUNCTION HAS BEEN EVALUATED',i6, & + ' TIMES. THE SMALLEST VALUE FOUND IS F(X) = ',e21.14) +102 FORMAT (' LOG (F(X)-',e21.14,') = ',e21.14) +103 FORMAT (' LOG (F(X)-',e21.14,') IS UNDEFINED.') +104 FORMAT (' X IS:',e26.14/(e32.14)) +END SUBROUTINE PRINT + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE maprnt(option,v,m,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(m,n) + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + INTEGER :: i,j + + INTEGER :: low,upp +!...THE SUBROUTINE MAPRNT PRINTS THE COLUMNS OF THE NXN MATRIX V +! WITH A HEADING AS SPECIFIED BY OPTION. +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM... +low = 1 +upp = 5 +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 +END SELECT +1 WRITE (6,101) +101 FORMAT (/' THE NEW DIRECTIONS ARE:') +GO TO 3 +2 WRITE (6,102) +102 FORMAT (' AND THE PRINCIPAL AXES:') +3 IF (n < upp) upp = n +DO i=1,n + WRITE (6,104) (v(i,j),j=low,upp) +END DO +low = low + 5 +IF (n < low) RETURN +upp = upp + 5 +WRITE (6,103) +GO TO 3 +103 FORMAT (' ') +104 FORMAT (e32.14,4E25.14) +END SUBROUTINE maprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION random(naught) + + IMPLICIT NONE + INTEGER, INTENT(IN OUT) :: naught + + REAL :: ran1,ran3(127),half + INTEGER :: i,j,ran2,q,r + LOGICAL :: init + DATA init/.false./ + SAVE init,ran2,ran1,ran3 + +IF (init) GO TO 3 +r = MOD(naught,8190) + 1 +ran2 = 128 +DO i=1,127 + ran2 = ran2 - 1 + ran1 = -2.d0**55 + DO j=1,7 + r = MOD(1756*r,8191) + q = r/32 + ran1 = (ran1 + q)*(1.0D0/256) + END DO + ran3(ran2) = ran1 +END DO +init = .true. +3 IF (ran2 == 1) ran2 = 128 +ran2 = ran2 - 1 +ran1 = ran1 + ran3(ran2) +half = .5D0 +IF (ran1 >= 0.d0) half = -half +ran1 = ran1 + half +ran3(ran2) = ran1 +random = ran1 + .5D0 + +END FUNCTION random + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION flin (n,j,l,f,x,nf) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN OUT) :: j + REAL, INTENT(IN) :: l + REAL :: f + REAL, INTENT(IN) :: x(n) + INTEGER, INTENT(OUT) :: nf + + INTEGER :: i + REAL :: t(20) + + EXTERNAL f + +!...FLIN IS THE FUNCTION OF ONE REAL VARIABLE L THAT IS MINIMIZED +! BY THE SUBROUTINE MIN... +!---------------------------------------------- + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +IF (j == 0) GO TO 2 +!...THE SEARCH IS LINEAR... +DO i=1,n + t(i) = x(i) + l*v(i,j) +END DO +GO TO 4 +!...THE SEARCH IS ALONG A PARABOLIC SPACE CURVE... +2 qa = (l*(l - qd1))/(qd0*(qd0 + qd1)) +qb = ((l + qd0)*(qd1 - l))/(qd0*qd1) +qc = (l*(l + qd0))/(qd1*(qd0 + qd1)) +DO i=1,n + t(i) = (qa*q0(i) + qb*x(i)) + qc*q1(i) +END DO +!...THE FUNCTION EVALUATION COUNTER NF IS INCREMENTED... +4 nf = nf + 1 +flin = f(t,n) + +END FUNCTION flin + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE sort(m,n,d,v) + IMPLICIT NONE +! + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: d(n) + REAL, INTENT(IN OUT) :: v(m,n) + + INTEGER :: i,j,k,nm1,ip1 + REAL :: s +!...SORTS THE ELEMENTS OF D(N) INTO DESCENDING ORDER AND MOVES THE +! CORRESPONDING COLUMNS OF V(N,N). +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM. +IF (n == 1) RETURN +nm1 = n - 1 +DO i = 1,nm1 + k=i + s = d(i) + ip1 = i + 1 + DO j = ip1,n + IF (d(j) <= s) CYCLE + k = j + s = d(j) + END DO + IF (k <= i) CYCLE + d(k) = d(i) + d(i) = s + DO j = 1,n + s = v(j,i) + v(j,i) = v(j,k) + v(j,k) = s + END DO +END DO +END SUBROUTINE sort + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE quad(n,f,x,t,machep,h) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN OUT) :: t + REAL :: machep + REAL, INTENT(IN OUT) :: h +! IMPLICIT REAL (A-H,O-Z) + EXTERNAL f + +!...QUAD LOOKS FOR THE MINIMUM OF F ALONG A CURVE DEFINED BY Q0,Q1,X... + INTEGER :: i + REAL :: l + REAL :: s,value +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + +REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 +COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +s = fx +fx = qf1 +qf1 = s +qd1 = 0.d0 +DO i=1,n + s = x(i) + l = q1(i) + x(i) = l + q1(i) = s + qd1 = qd1 + (s-l)**2 +END DO +qd1 = SQRT(qd1) +l = qd1 +s = 0.d0 +IF (qd0 <= 0.d0 .OR. qd1 <= 0.d0 .OR. nl < 3*n*n) GO TO 2 +value=qf1 +CALL MIN(n,0,2,s,l,value,.true.,f,x,t,machep,h) +qa = (l*(l-qd1))/(qd0*(qd0+qd1)) +qb = ((l+qd0)*(qd1-l))/(qd0*qd1) +qc = (l*(l+qd0))/(qd1*(qd0+qd1)) +GO TO 3 +2 fx = qf1 +qa = 0.d0 +qb = qa +qc = 1.d0 +3 qd0 = qd1 +DO i=1,n + s = q0(i) + q0(i) = x(i) + x(i) = (qa*s + qb*x(i)) + qc*q1(i) +END DO +END SUBROUTINE quad + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 new file mode 100644 index 000000000..d4f0498c7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_main.f90 @@ -0,0 +1,102 @@ +SUBROUTINE VLE_MIX(rhob,density,chemPot_total,compID) + + USE parameters, ONLY: PI, RGAS, KBOL + USE basic_variables + USE EOS_VARIABLES, ONLY: fres, eta, eta_start, dhs, mseg, uij, sig_ij, rho, x, z3t + USE DFT_MODULE + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE + + + +! --------------------------------------------------------------------- +! Variables +! --------------------------------------------------------------------- + + !passed + REAL :: chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + INTEGER :: compID + + !local + REAL, DIMENSION(nc) :: dhs_star + REAL :: w(np,nc), lnphi(np,nc) + INTEGER :: converg + CHARACTER(LEN=4) :: char_ncomp + REAL :: Henry + INTEGER :: i + CHARACTER (LEN=50) :: filename + + +! --------------------------------------------------------------------- +! prepare for phase equilibrium calculation for given T +! --------------------------------------------------------------------- + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12*EXP( -3.0*parame(1:ncomp,3)/t ) ) ! needed for rdf_matrix + dhs_star(1:ncomp) = dhs(1:ncomp)/parame(1:ncomp,2) + + nphas = 2 ! number of phases + outp = 0 ! output to terminal + + CALL START_VAR (converg) + + IF ( converg /= 1 ) THEN + WRITE (*,*) 'no VLE found' + RETURN + END IF + + ! rhob(phase,0): molecular density + rhob(1,0) = dense(1) / ( PI/6.0* SUM( xi(1,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + rhob(2,0) = dense(2) / ( PI/6.0* SUM( xi(2,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + ! rhob(phase,i): molecular component density (with i=(1,...ncomp) ) in units (1/A^3) + rhob(1,1:ncomp) = rhob(1,0)*xi(1,1:ncomp) + rhob(2,1:ncomp) = rhob(2,0)*xi(2,1:ncomp) + + ! get density in SI-units (kg/m**3) + CALL SI_DENS ( density, w ) + + ! calculate residual chemical potentials + ensemble_flag = 'tv' ! this flag is for: mu_res=mu_res(T,rho) + densta(1) = dense(1) ! Index 1 is for liquid density (here: packing fraction eta) + densta(2) = dense(2) ! Index 2 is for vapour density (here: packing fraction eta) + CALL fugacity (lnphi) ! calculate fugacities + + +! --------------------------------------------------------------------- +! Output results of phase equilibrim calculation +! --------------------------------------------------------------------- + + WRITE(*,*) '--------------------------------------------------' + WRITE(*,*)'RESULT OF PHASE EQUILIBRIUM CALCULATION' + WRITE (char_ncomp,'(I3)') ncomp + WRITE (*,*) 'T = ',t, 'K, and p =', p/1.E5,' bar' + WRITE(*,*)' ' + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,*)' ' + !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I density', (rhob(1,i),i=1,ncomp) + !! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II density', (rhob(2,i),i=1,ncomp) + !!WRITE(*,*)' ' + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I chemPot', (lnphi(1,i) + LOG(rhob(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II chemPot', (lnphi(2,i) + LOG(rhob(2,i)),i=1,ncomp) + WRITE(*,*)' ' + !!WRITE(*,*)'Phase densities ' + WRITE(*,'(2x,a,2(g13.6,1x))') 'SI-DENSITY [kg/m3] ', density(1),density(2) + !!WRITE(*,'(2x,a,2(g13.6,1x))') 'NUMBER-DENSITY ', rhob(1,0),rhob(2,0) + WRITE(*,*) + + !Calculate Solubility + !output: Henrys law: xi*H(T) = yi * p -> H = yip/xi + Henry = EXP(lnx(2,1))*p /EXP(lnx(1,1)) + + !write solubility to outputfile "out.txt" + filename='./out.txt' + CALL file_open(filename,78) + write(78,*) Henry / 100000.0 + write(*,*)'Henry coefficient (bar):',Henry / 100000.0 + ! write(*,*)'g_CO2 / g_PU', exp(lnx(1,2)) * mm(2) / (exp(lnx(1,1)) * mm(1)) + +END SUBROUTINE VLE_MIX diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 new file mode 100644 index 000000000..3f54b25ea --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.f90 @@ -0,0 +1,7156 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE start_var +! +! This subroutine generates a converged solution for binary systems +! or performes a flash calculation for mixtues. This routine is a +! fairly weak point of the program. +! +! IF a polymer is considered, starting values for mole fractions +! are determined from the SUBROUTINGE POLY_STA_VAR (see below). The +! polymer needs to be placed as component 1 (first line) in INPUT +! file. +! +! A phase equilib. iteration is started at the end of this routine. +! If no solution is found (converg=0), the program will stop within +! this routine. +! +! Currently, this routine assumes two-phase equilibrium and derives +! starting values (xi,density) only for two phases. +! +! Prerequisites are: +! SUBROUTINE INPUT needs to be called prior to this routine, because +! all pure comp. parameters as well as (T,P,kij) need to be in place. +! Also, the variable to be iterated "it(i)" and the variables to be +! calculated through the summation relation "sum_rel(i)" have to be +! defined. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE start_var(converg) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: ph, i, k + INTEGER :: ncompsav, n_unkwsav, ph_split + LOGICAL :: lle_check, flashcase, renormalize + REAL :: den1, den2, x_1, x_2 + CHARACTER (LEN=50) :: filename +! ---------------------------------------------------------------------- + +converg = 0 + +! CALL RACHFORD_RICE (converg) +! CALL Heidemann_Khalil + +! ---------------------------------------------------------------------- +! This first condition (eos >= 4) is for LJ models, not for PC-SAFT +! ---------------------------------------------------------------------- + +IF (eos >= 4) THEN + + ncomp = 2 ! set number of components to 2 + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + filename = 'LJ_START_VAL.INC' + CALL file_open(filename,84) + READ (84,*) den1,den2 + READ (84,*) x_1,x_2 + CLOSE (84) + + xi(1,1) = x_1 + xi(2,1) = x_2 + xi(1,2) = 1.0 - xi(1,1) + xi(2,2) = 1.0 - xi(2,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,2) = LOG(xi(2,2)) + + val_init(1) = den1 + val_init(2) = den2 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = LOG(xi(ph,k)) + END DO + END DO + + CALL objective_ctrl (converg) + IF (converg == 1) WRITE (*,*) t, p/1.0E5, xi(1,1), xi(2,1) + IF (converg == 0) WRITE (*,*) ' weak starting values' + + +! ---------------------------------------------------------------------- +! ELSE: PC-SAFT equation of state +! ---------------------------------------------------------------------- + +ELSE + + renormalize = .false. ! for renormalization group theory (RGT) + IF (num == 2) renormalize = .true. + IF (num == 2) num = 0 ! if RGT: initial phase equilibr. is for non-renormalized model + + flashcase = .false. ! .true. when a specific feed conc. xif is given + IF (xif(1) /= 0.0) flashcase = .true. + + lle_check = .true. + +! ---------------------------------------------------------------------- +! IF: non-polymeric system +! ---------------------------------------------------------------------- + IF (mm(1) < 1.0E8) THEN + + DO i=1,ncomp ! setting mole-fractions for the case that + ! anything goes wrong in the coming routines + xi(1,i) = 1.0 / REAL(ncomp) + xi(2,i) = 1.0 / REAL(ncomp) + END DO + + + ! ------------------------------------------------------------------ + ! determine an initial conc. (phase 1) that will phase split + ! ------------------------------------------------------------------ + IF( ncomp == 2 .AND. .NOT.flashcase ) THEN + CALL vle_min( lle_check ) + WRITE(*,*)' INITIAL FEED-COMPOSITION',(xi(1,i), i=1,ncomp),converg + END IF + + ! ------------------------------------------------------------------ + ! perform a phase stability test + ! ------------------------------------------------------------------ + ph_split = 0 + CALL phase_stability ( .false., flashcase, ph_split ) + write (*,*) 'stability analysis I indicates phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! determine species i, for which x(i) is calc from summation relation + ! ------------------------------------------------------------------ + CALL select_sum_rel (1,0,1) ! synthax (m,n,o): phase m + ! exclude comp. n + ! assign it(o) and higher + CALL select_sum_rel (2,0,2) ! for ncomp>=3, the quantities + ! to be iterated will be overwritten + + ! ------------------------------------------------------------------ + ! if 2 phases (VLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + ! --- perform tangent plane minimization ------------------------ + CALL tangent_plane + ph_split = 0 + + ! --- determine, for which substance summation relation is used -- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe a VLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! test for LLE + ! ------------------------------------------------------------------ + ph_split = 0 + + IF (lle_check) CALL phase_stability (lle_check,flashcase,ph_split) + IF (lle_check) write (*,*) 'stability analysis II, phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! if two phases (LLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + write (*,*) ' LLE-stability test indicates 2 phases (VLE or LLE)' + + ! --- perform tangent plane minimization ------------------------ + IF (flashcase) CALL select_sum_rel (1,0,1) + IF (flashcase) CALL select_sum_rel (2,0,2) + + CALL tangent_plane + + ! --- determine, for which substance summation relation ---------- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + val_conv(2) = 0.0 + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe an LLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! equilibr. calc. converged: set initial var. for further calc. + ! ------------------------------------------------------------------ + IF (converg == 1) THEN + val_init = val_conv + DO ph = 1,nphas + DO i = 1,ncomp + xi(ph,i) = EXP( val_conv(4+i+(ph-1)*ncomp) ) + END DO + END DO + dense(1:2) = val_conv(1:2) + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + + ! --------------------------------------------------------------------- + ! ELSE: for systems with polymers + ! --------------------------------------------------------------------- + + ELSE + + ncompsav = ncomp + ncomp = 2 ! set number of components to 2 + n_unkwsav = n_unkw + + CALL poly_sta_var(converg) + + IF (converg == 1) THEN + val_init = val_conv + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + ncomp = ncompsav + n_unkw = n_unkwsav ! number of quantities to be iterated + + END IF + +! --- for RGT: set flag back to num=2 indicating an RGT calculation ---- + IF (renormalize) num = 2 + +END IF + +END SUBROUTINE start_var + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE objective_ctrl +! +! This subroutine controls the iso-fugacity iteration. It uses +! the variables defined in the array "val_init". If successfull, +! the converged values are written to "val_conv", and the flag +! converg is set to 1. +! See also above desciption for subroutine PHASE_EQUILIB +! This routine calls SUBROUTINE HYBRID, which is a solver (modified +! POWELL HYBRID METHOD). HYBRID is freely available for non-commercial +! applications. HYBRID requires three definitions: +! 1.the number of equations to be solved (=No. of variables to be +! iterated). The appropriate parameter is: "n_unkw" +! 2.the equations to be iterated, they are here gathered in the SUB- +! ROUTINE OBJEC_FCT (see below). Since HYBRID is a root finder, +! these objective functions are iterated to be zero (essentially, +! OBJEC_FCT contains the iso-fugacity relation. +! 3.an array of variables is required, containing the quatities to be +! iterated. This array is termed "y(i)" +! +! INPUT VARIABLES: +! val_init(i) array containing (densities,T,P,lnx's) serving as +! starting values for the phase equilibrium calculation +! it(i) contains the information, which variable is deter- +! mined iteratively. For syntax refer e.g.to SUB BINMIX. +! sum_rel(i) indicates, which mole fraction is determined from the +! summation relation sum(xi)=1 +! +! OUTPUT VARIABLES: +! val_conv(i) array containing the converged system variables +! analogous to "val_init" +! converg 0 if no convergence achieved, 1 if converged solution +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objective_ctrl (converg) +! + USE BASIC_VARIABLES + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE objec_fct + END INTERFACE +! + INTEGER :: info,k,posn,i + INTEGER, PARAMETER :: mxr = nc*(nc+1)/2 + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + REAL :: x_init, x_solut, r_diff1, r_diff2, totres + REAL :: r_thrash, x_thrash + CHARACTER (LEN=2) :: compon + LOGICAL :: convergence +! ---------------------------------------------------------------------- + +info=1 + +ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + +IF (num == 0) acc_a = 1.E-7 +IF (num == 0) step_a = 2.E-8 +IF (num == 1) acc_a = 1.E-7 +IF (num == 1) step_a = 2.E-8 +IF (num == 2) acc_a = 5.E-7 +IF (num == 2) step_a = 1.E-7 + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') y(posn) = val_init(3) + IF (it(i) == 'p') y(posn) = val_init(4) + IF (it(i) == 'lnp') y(posn) = LOG( val_init(4) ) + IF (it(i) == 'fls') y(posn) = alpha + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') y(posn) = val_init(4+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') y(posn) = val_init(4+ncomp+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') y(posn) = val_init(4+ncomp+ncomp+k) +END DO + +CALL init_vars + +x_init = 0.0 +DO i = 1,ncomp + IF (lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0) THEN + x_init = x_init + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + x_init = x_init + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO + +CALL hbrd (objec_fct, n_unkw, y, residu, step_a, acc_a, info, diag) + +x_solut = 0.0 +DO i = 1,ncomp + IF ( lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0 ) THEN + x_solut = x_solut + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + IF (lnx(1,i) < 1E300 .AND. lnx(1,i) > -1.E300 ) & + x_solut = x_solut + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO +r_diff1 = ABS( 1.0 - dense(1)/dense(2) ) +IF ( val_conv(2) > 0.0 ) THEN + r_diff2 = ABS( 1.0 - val_conv(1)/val_conv(2) ) +ELSE + r_diff2 = 0.0 +END IF + +totres = SUM( ABS( residu(1:n_unkw) ) ) + +r_thrash = 0.0005 +x_thrash = 0.0005 +if (num > 0 ) r_thrash = r_thrash * 10.0 +if (num > 0 ) x_thrash = x_thrash * 100.0 + +convergence = .true. + +IF ( info >= 2 ) convergence = .false. +IF ( ABS( 1.0- dense(1)/dense(2) ) < r_thrash .AND. x_solut < x_thrash ) THEN + IF ( x_init > 0.050 ) convergence = .false. + IF ( ( ABS( 1.0- dense(1)/dense(2) ) + x_solut ) < 1.E-7 ) convergence = .false. +ENDIF +IF ( r_diff2 /= 0.0 .AND. r_diff2 > (4.0*r_diff1) .AND. bindiag == 1 ) convergence = .false. +IF ( ncomp == 1 .AND. totres > 100.0*acc_a ) convergence = .false. +IF ( totres > 1000.0*acc_a ) convergence = .false. +IF ( ncomp == 1 .AND. r_diff1 < 1.d-5 ) convergence = .false. + +IF ( convergence ) THEN + converg = 1 + ! write (*,*) residu(1),residu(2) + CALL converged + IF (num <= 1) CALL enthalpy_etc +ELSE + converg = 0 +END IF + +DEALLOCATE( y, diag, residu ) + +END SUBROUTINE objective_ctrl + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE objec_fct +! +! This subroutine contains the equations to be solved numerically +! (iso-fugacity: fi'-fi''=0) as well as other dependent equations, +! which can be solved analytically, namely the summation relation +! xi=1-sum(xj) or the condition of equal charge for electrolyte +! solutions. +! This subroutine is required and controlled by the solver HBRD ! +! HBRD varies the variables "y(i)" and eveluates the result of +! these changes from this routine. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: density_error + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph,k,posn, skip,phase + REAL :: lnphi(np,nc),isofugacity + CHARACTER (LEN=2) :: compon +! ---------------------------------------------------------------------- + + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') t = y(posn) + IF (it(i) == 'p') p = y(posn) + IF (it(i) == 'lnp') p = EXP( y(posn) ) + IF (it(i) == 'fls') alpha = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') lnx(1,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') lnx(2,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') lnx(3,k) = y(posn) +END DO + +DO k = 1,ncomp + IF (lnx(1,k) > 0.0) lnx(1,k) = 0.0 + IF (lnx(2,k) > 0.0) lnx(2,k) = 0.0 +END DO + +IF (p < 1.E-100) p = 1.E-12 +!IF ( IsNaN( p ) ) p = 1000.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( t ) ) t = 300.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( alpha ) ) alpha = 0.5 ! rebounce for the case of NaN-solver output +IF ( p /= p ) p = 1000.0 ! rebounce for the case of NaN-solver output +IF ( t /= t ) t = 300.0 ! rebounce for the case of NaN-solver output +IF ( alpha /= alpha ) alpha = 0.5 ! rebounce for the case of NaN-solver output + +! --- setting of mole fractions ---------------------------------------- +DO ph = 1, nphas + DO i = 1, ncomp + IF ( lnx(ph,i) < -300.0 ) THEN + xi(ph,i) = 0.0 + ELSE + xi(ph,i) = EXP( lnx(ph,i) ) + END IF + END DO +END DO + +IF (ncomp > 1) CALL x_summation + +CALL fugacity (lnphi) + +phase = 2 +DO i = 1,n_unkw + skip = 0 !for ions/polymers, the isofug-eq. is not always solved + IF (n_unkw < (ncomp*(nphas-1))) skip = ncomp*(nphas-1) - n_unkw + IF ((i+skip-ncomp*(phase-2)) > ncomp) phase = phase + 1 + residu(i) = isofugacity((i+skip-ncomp*(phase-2)),phase,lnphi) + if ( density_error(phase) /= 0.0 ) residu(i) = residu(i) + SIGN( density_error(phase), residu(i) ) * 0.001 +END DO + +END SUBROUTINE objec_fct + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! REAL FUNCTION isofugacity +! +! calculates the deviation from the condition of equal fugacities in +! logarithmic form. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION isofugacity (i,phase,lnphi) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i + INTEGER, INTENT(IN) :: phase + REAL, INTENT(IN) :: lnphi(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: p1, p2 +! ---------------------------------------------------------------------- + + +! p1=1 +p1 = phase-1 +p2 = phase + +isofugacity = scaling(i) *( lnphi(p2,i)+lnx(p2,i)-lnx(p1,i)-lnphi(p1,i) ) +! write (*,'(a, 4G18.8)') ' t, p ',t,p,dense(1),dense(2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_V',i,p2,lnx(p2,i),lnphi(p2,i),dense(p2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_L',i,p1,lnx(p1,i),lnphi(p1,i),dense(p1) +! write (*,*) ' ISOFUGACITY',i,ISOFUGACITY, scaling(i) +! write (*,'(a,i3,4G18.8)') ' ISOFUGACITY',i,ISOFUGACITY, lnphi(p2,i)+lnx(p2,i), -lnx(p1,i)-lnphi(p1,i) +! pause + +END FUNCTION isofugacity + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vle_min(lle_check) +! + USE PARAMETERS, ONLY: RGAS + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL, INTENT(OUT) :: lle_check + + INTEGER :: i,j,k,phasen(0:40),steps + REAL :: lnphi(np,nc) + REAL :: vlemin(0:40),llemin(0:40),xval(0:40) + REAL :: start_xv(0:40),start_xl(0:40),x_sav,dg_dx2 +! ---------------------------------------------------------------------- + + + +j = 0 +k = 0 +nphas = 2 + +steps = 40 + +x_sav = xi(1,1) +sum_rel(1) = 'x12' ! summation relation +sum_rel(2) = 'x22' ! summation relation + +DO i = 0, steps + densta(1) = 0.45 + densta(2) = 1.d-6 + xi(1,1) = 1.0 - REAL(i) / REAL(steps) + IF ( xi(1,1) <= 1.E-50 ) xi(1,1) = 1.E-50 + xi(2,1) = xi(1,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + + CALL x_summation + CALL fugacity (lnphi) + CALL enthalpy_etc !!KANN DAS RAUS???? + + + + + xval(i) = xi(1,1) + llemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t + + IF ( ABS(1.0-dense(1)/dense(2)) > 0.0001 ) THEN + vlemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t & + - ( gibbs(2) +(xi(2,1)*lnx(2,1)+xi(2,2)*lnx(2,2))*RGAS*t ) + phasen(i) = 2 + ELSE + phasen(i) = 1 + END IF + + IF (i > 0 .AND. phasen(i) == 2) THEN + IF (phasen(i-1) == 2 .AND. ABS(vlemin(i)+vlemin(i-1)) < & + ABS(vlemin(i))+ABS(vlemin(i-1))) THEN + j = j + 1 + start_xv(j)=xval(i-1) + (xval(i)-xval(i-1)) & + * ABS(vlemin(i-1))/ABS(vlemin(i)-vlemin(i-1)) + END IF + END IF + +END DO + + +DO i=2,steps-2 + dg_dx2 = (-llemin(i-2)+16.0*llemin(i-1)-30.0*llemin(i) & + +16.0*llemin(i+1)-llemin(i+2)) / (12.0*((xval(i)-xval(i-1))**2)) + IF (dg_dx2 < 0.0) THEN + k = k + 1 + start_xl(k)=xval(i) + END IF +END DO + + +IF (start_xl(1) == 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + lle_check=.false. + ! write (*,*) 'VLE is likely', xi(1,1),xi(1,2) +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) == 0.0) THEN + xi(1,1) = start_xl(1) + xi(1,2) = 1.0-xi(1,1) + ! write (*,*) 'LLE is likely', xi(1,1),xi(1,2) + lle_check=.true. +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + ! write(*,*) 'starting with VLE and check for LLE' + lle_check=.true. +ELSE + xi(1,1) = x_sav + xi(1,2) = 1.0 - xi(1,1) +END IF + + +CALL x_summation + +END SUBROUTINE vle_min + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_stability +! +! the index 'LLE_check' is for the starting density (which determines +! whether a liquid or vapor phase is found) of the trial phase. The +! feed-point exits either as a vapor or as a liquid. If it can exist as +! both (feedphases=2), then both states are tested. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_stability ( lle_check, flashcase, ph_split ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI, x, eta, eta_start, z3t, fres + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL :: lle_check + LOGICAL, INTENT(IN OUT) :: flashcase + INTEGER, INTENT(OUT) :: ph_split +! ---------------------------------------------------------------------- + + INTERFACE + REAL FUNCTION F_STABILITY ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) + END FUNCTION + END INTERFACE + +!INTERFACE +! SUBROUTINE F_STABILITY (fmin, optpara, n) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE F_STABILITY +! +! SUBROUTINE stability_grad (g, optpara, n) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_grad +! +! SUBROUTINE stability_hessian (hessian, g, fmin, optpara, n) +! REAL, INTENT(IN OUT) :: hessian(:,:) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_hessian +!END INTERFACE + + INTEGER :: n, PRIN + REAL :: fmin, t0, h0, MACHEP, PRAXIS + REAL, ALLOCATABLE :: optpara(:) + + INTEGER :: i, feedphases, trial + REAL :: rhoi(nc),rho_start + REAL :: feeddens, rho_phas(np) + REAL :: fden + REAL :: dens + REAL :: rhot + REAL :: lnphi(np,nc) + REAL :: w(np,nc), mean_mass +! ---------------------------------------------------------------------- + +n = ncomp +ALLOCATE( optpara(n) ) + +IF (lle_check) WRITE (*,*) ' stability test starting with dense phase' + +DO i = 1, ncomp ! setting feed-phase x's + IF (.NOT.flashcase) xif(i) = xi(1,i) + IF (flashcase) xi(1,i) = xif(i) + xi(2,i) = xif(i) ! feed is tested for both: V and L density +END DO + +densta(1) = 0.45 +densta(2) = 1.d-6 + +CALL dens_calc(rho_phas) +IF ( ABS(1.0-dense(1)/dense(2)) > 0.0005 ) THEN + feedphases=2 ! feed-composition can exist both, in V and L +ELSE + feedphases=1 ! feed-composition can exist either in V or L +END IF +densta(1) = dense(1) +feeddens = dense(2) +!write (*,*) 'feedphases',dense(1), dense(2),feedphases + +10 CONTINUE ! IF FeedPhases=2 THEN there is a second cycle + + trial = 1 + + ! -------------------------------------------------------------------- + ! setting trial-phase mole-fractions + ! if there is no phase-split then further trial-phases are + ! considered (loop: 20 CONTINUE) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + w(2,i) = 1.0 / REAL(ncomp) + END DO + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + + 20 CONTINUE + + DO i = 1, ncomp + rhoif(i) = rho_phas(1) * xif(i) + rhoi(i) = rhoif(i) + END DO + + !write (*,'(a,6G16.8)') 'startval',rho_phas(2),xi(2,1:ncomp) + + ! -------------------------------------------------------------------- + ! calc Helmholtz energy density and derivative (numerical) to rhoif(i). + ! The derivative is taken around the "feed-point" not the trial phase + ! -------------------------------------------------------------------- + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + CALL PERTURBATION_PARAMETER + xi(1,1:ncomp) = x(1:ncomp) + eta = rhot * z3t + eta_start = eta + densta(1) = eta_start + ensemble_flag = 'tv' + CALL FUGACITY (lnphi) + ensemble_flag = 'tp' + + call fden_calc ( fden, rhoi ) + fdenf = fden + + grad_fd(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + + ! -------------------------------------------------------------------- + ! starting values for iteration (optpara) + ! -------------------------------------------------------------------- + rho_start = 1.E-5 + IF (lle_check) THEN + densta(2) = 0.45 + CALL dens_calc(rho_phas) + rho_start = rho_phas(2)*0.45/dense(2) + END IF + DO i = 1,ncomp + rhoi(i) = xi(2,i)*rho_start + optpara(i) = LOG( rhoi(i) ) + END DO + + ! -------------------------------------------------------------------- + ! minimizing the objective fct. Phase split for values of fmin < 0.0 + ! -------------------------------------------------------------------- + t0 = 5.E-5 + h0 = 0.5 + PRIN = 0 + MACHEP = 1.E-15 + + fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, F_STABILITY, fmin ) + + + ! -------------------------------------------------------------------- + ! updating the ln(x) valus from optpara. The optimal optpara-vector is + ! not necessarily the one that was last evaluated. At the very end, + ! cg_decent writes the best values to optpara + ! -------------------------------------------------------------------- + fmin = F_STABILITY( optpara, n ) + + + + ! IF ( n == 2 ) THEN + ! CALL Newton_Opt_2D ( stability_hessian, F_stability, optpara, n, 1.E-8, 1.E-8, g, fmin) + ! ELSE + ! CALL cg_descent (1.d-5, optpara, n, F_STABILITY, stability_grad, STATUS, & + ! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) + ! ENDIF + ! CALL F_STABILITY (fmin, optpara, n) + + + ! -------------------------------------------------------------------- + ! determine instability & non-trivial solution + ! -------------------------------------------------------------------- + ph_split = 0 + IF (fmin < -1.E-7 .AND. & + ABS( 1.0 - maxval(EXP(optpara),mask=optpara /= 0.0) /maxval(rhoif) ) > 0.0005) THEN + ph_split = 1 + END IF + + IF (ph_split == 1) THEN + + ! ------------------------------------------------------------------ + ! here, there should be IF FeedPhases=2 THEN GOTO 10 + ! and test for another phase (while saving optpara) + ! ------------------------------------------------------------------ + + rhoi2(1:ncomp) = EXP( optpara(1:ncomp) ) + dens = PI/6.0 * SUM( rhoi2(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + rhot = SUM( rhoi2(1:ncomp) ) + xi(2,1:ncomp) = rhoi2(1:ncomp) / rhot + + ELSE + + IF (trial <= ncomp + ncomp) THEN + ! ---------------------------------------------------------------- + ! setting trial-phase x's + ! ---------------------------------------------------------------- + IF (trial <= ncomp) THEN + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.05 + END DO + w(2,trial) = 0.95 + ELSE + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.00001 + END DO + w(2,trial-ncomp) = 0.99999 + END IF + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + trial = trial + 1 + GO TO 20 + END IF + ! IF (.NOT.LLE_check) write (*,*) 'no phase split detected' + ! IF (.NOT.LLE_check) pause + IF (feedphases > 1 .AND. .NOT.lle_check .AND. densta(1) > 0.2) THEN + densta(1) = feeddens ! this will be the lower-valued density (vapor) + CALL dens_calc(rho_phas) + ! WRITE (*,*) 'try feed as vapor-phase' + GO TO 10 + END IF + + END IF + +DEALLOCATE( optpara ) + +END SUBROUTINE phase_stability + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE select_sum_rel +! +! This subroutine determines which component of a phase "ph" is calculated +! from the summation relation x_i = 1 - sum(x_j). The other components are, +! by default, said to be iterated during the phase equilibrium calculation. +! +! Note that for flash calculations not all of these mole fractions are in +! fact iterated - this is raken care of in "determine_flash_it". +! +! ph phase +! excl exclude comp. n +! startindex assign it(startindex) for quantities to be iterated +! (further it(startindex+1) is assigned, for a ternary +! mixture, etc.) +! +! sum_index indicates the component, with the largest mole +! fraction. If ph=1 and sum_index=2, we define +! sum_rel(ph=1)='x12', so that this component is +! calculated from the summation relation. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE select_sum_rel (ph,excl,startindex) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph + INTEGER, INTENT(IN) :: excl + INTEGER, INTENT(IN) :: startindex +! ---------------------------------------------------------------------- + INTEGER :: i,j, sum_index + REAL :: xmax(np) + ! CHARACTER :: compNo*2,phasNo*2 +! ---------------------------------------------------------------------- + +xmax(ph) = 0.0 +DO i = 1, ncomp + + IF ( xi(ph,i) > xmax(ph) ) THEN + xmax(ph) = xi(ph,i) + sum_index = i + + IF (ph == 1 .AND. i == 1) sum_rel(1) = 'x11' + IF (ph == 1 .AND. i == 2) sum_rel(1) = 'x12' + IF (ph == 1 .AND. i == 3) sum_rel(1) = 'x13' + IF (ph == 1 .AND. i == 4) sum_rel(1) = 'x14' + IF (ph == 1 .AND. i == 5) sum_rel(1) = 'x15' + + IF (ph == 2 .AND. i == 1) sum_rel(2) = 'x21' + IF (ph == 2 .AND. i == 2) sum_rel(2) = 'x22' + IF (ph == 2 .AND. i == 3) sum_rel(2) = 'x23' + IF (ph == 2 .AND. i == 4) sum_rel(2) = 'x24' + IF (ph == 2 .AND. i == 5) sum_rel(2) = 'x25' + + IF (ph == 3 .AND. i == 1) sum_rel(3) = 'x31' + IF (ph == 3 .AND. i == 2) sum_rel(3) = 'x32' + IF (ph == 3 .AND. i == 3) sum_rel(3) = 'x33' + IF (ph == 3 .AND. i == 4) sum_rel(3) = 'x34' + IF (ph == 3 .AND. i == 5) sum_rel(3) = 'x35' +! write (*,*) ph,i,xi(ph,i),sum_rel(ph) + END IF + +END DO + +j = 0 +DO i = 1, ncomp + + IF ( i /= sum_index .AND. i /= excl ) THEN + IF (ph == 1 .AND. i == 1) it(startindex+j) = 'x11' + IF (ph == 1 .AND. i == 2) it(startindex+j) = 'x12' + IF (ph == 1 .AND. i == 3) it(startindex+j) = 'x13' + IF (ph == 1 .AND. i == 4) it(startindex+j) = 'x14' + IF (ph == 1 .AND. i == 5) it(startindex+j) = 'x15' + + IF (ph == 2 .AND. i == 1) it(startindex+j) = 'x21' + IF (ph == 2 .AND. i == 2) it(startindex+j) = 'x22' + IF (ph == 2 .AND. i == 3) it(startindex+j) = 'x23' + IF (ph == 2 .AND. i == 4) it(startindex+j) = 'x24' + IF (ph == 2 .AND. i == 5) it(startindex+j) = 'x25' + + IF (ph == 3 .AND. i == 1) it(startindex+j) = 'x31' + IF (ph == 3 .AND. i == 2) it(startindex+j) = 'x32' + IF (ph == 3 .AND. i == 3) it(startindex+j) = 'x33' + IF (ph == 3 .AND. i == 4) it(startindex+j) = 'x34' + IF (ph == 3 .AND. i == 5) it(startindex+j) = 'x35' +! write (*,*) 'iter ',it(startindex+j) + j = j + 1 + END IF + +END DO + +END SUBROUTINE select_sum_rel + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE tangent_plane +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +!!$ INTERFACE +!!$ SUBROUTINE tangent_value (fmin, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: fmin +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_value +!!$ +!!$ SUBROUTINE tangent_grad (g, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: g(:) +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_grad +!!$ END INTERFACE + +! +! ---------------------------------------------------------------------- + INTERFACE + REAL FUNCTION PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE, fmin ) + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: optpara(n) + REAL, EXTERNAL :: TANGENT_VALUE + REAL, INTENT(IN OUT) :: fmin + END FUNCTION + + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + END FUNCTION + END INTERFACE +! +! ---------------------------------------------------------------------- + INTEGER :: n + INTEGER :: i, k, ph + INTEGER :: small_i, min_ph, other_ph + INTEGER :: PRIN + REAL :: fmin , t0, h0, MACHEP + REAL :: lnphi(np,nc) + REAL, ALLOCATABLE :: optpara(:) + +! INTEGER :: STATUS, iter, nfunc, ngrad +! REAL :: gnorm +! REAL, ALLOCATABLE :: d(:), g(:), xtemp(:), gtemp(:) +! ---------------------------------------------------------------------- + +n = ncomp +t0 = 1.E-4 +h0 = 0.1 +PRIN = 0 +MACHEP = 1.E-15 + +ALLOCATE( optpara(n) ) +!ALLOCATE( d(n) ) +!ALLOCATE( g(n) ) +!ALLOCATE( xtemp(n) ) +!ALLOCATE( gtemp(n) ) + +DO i = 1,ncomp + rhoi1(i) = rhoif(i) + lnx(1,i) = LOG(xi(1,i)) + lnx(2,i) = LOG(xi(2,i)) +END DO + +DO i = 1,ncomp + optpara(i) = LOG( xi(2,i) * 0.001 ) +END DO + +! CALL cg_descent (1.d-4, optpara, n, tangent_value, tangent_grad, STATUS, & +! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) +! +! updating the ln(x) valus from optpara. The optimal optpara-vector is not necessarily +! the one that was last evaluated. At the very end, cg_decent writes the best values to optpara +! CALL tangent_value (fmin, optpara, n) + + + +fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE2, fmin ) + +! The optimal optpara-vector is not necessarily the one that was last evaluated. +! TANGENT_VALUE is reexecuted with the optimal vector optpara, in order to update the ln(x) values +fmin = TANGENT_VALUE2( optpara, n ) + + +! ---------------------------------------------------------------------- +! If one component is a polymer (indicated by a low component-density) +! then get an estimate of the polymer-lean composition, by solving for +! xi_p1 = ( xi_p2 * phii_p2) / phii_p1 (phase equilibrium condition, +! with p1 for phase 1) +! ---------------------------------------------------------------------- +IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + min_ph = 1 + other_ph = 2 +ELSE + min_ph = 2 + other_ph = 1 +ENDIF +small_i = MINLOC( lnx(min_ph,1:ncomp), 1 ) +! --- if one component is a polymer ------------------------------------ +IF ( MINVAL( lnx(min_ph,1:ncomp) ) < -20.0 ) THEN + CALL FUGACITY ( lnphi ) + lnx(min_ph,small_i) = lnx(other_ph,small_i)+lnphi(other_ph,small_i) - lnphi(min_ph,small_i) + optpara(small_i) = lnx(2,small_i) + LOG( SUM( EXP( optpara(1:ncomp) ) ) ) +END IF + +! ---------------------------------------------------------------------- +! caution: these initial values are for a flashcase overwritten in +! SUBROUTINE determine_flash_it2, because in that case, the lnx-values +! treated as ln(mole_number). +! ---------------------------------------------------------------------- +val_init(1) = dense(1) +val_init(2) = dense(2) +val_init(3) = t +val_init(4) = p +DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO +END DO +!alpha = optpara(1) + + +!DEALLOCATE( optpara, d, g, xtemp, gtemp ) +DEALLOCATE( optpara ) + +END SUBROUTINE tangent_plane + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE determine_flash_it2 +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, ph + REAL :: n_phase1, n_phase2, max_x_diff +! ---------------------------------------------------------------------- + + IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + it(1) = 'x11' + it(2) = 'x12' + IF (ncomp >= 3) it(3) = 'x13' + IF (ncomp >= 4) it(4) = 'x14' + IF (ncomp >= 5) it(5) = 'x15' + sum_rel(1) = 'nfl' + ELSE + it(1) = 'x21' + it(2) = 'x22' + IF (ncomp >= 3) it(3) = 'x23' + IF (ncomp >= 4) it(4) = 'x24' + IF (ncomp >= 5) it(5) = 'x25' + sum_rel(2) = 'nfl' + ENDIF + max_x_diff = 0.0 + DO i = 1,ncomp + IF ( ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) > max_x_diff ) THEN + max_x_diff = ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase1 = ( xif(i) - EXP( lnx(2,i) ) ) / ( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase2 = 1.0 - n_phase1 + END IF + END DO + lnx(1,1:ncomp) = lnx(1,1:ncomp) + LOG( n_phase1 ) ! these x's are treated as mole numbers + lnx(2,1:ncomp) = lnx(2,1:ncomp) + LOG( n_phase2 ) ! these x's are treated as mole numbers + + + val_init(1) = dense(1) + val_init(2) = dense(2) + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) ! - LOG( SUM( EXP( lnx(ph,1:ncomp) ) ) ) + ! write (*,*) ph,k, lnx(ph,k) + END DO + END DO + +END SUBROUTINE determine_flash_it2 + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE poly_sta_var +! +! This subroutine generates starting values for mole fractons of +! polymer-solvent systems. +! The determination of these starting values follows a two-step +! procedure. Fist, the equilibrium concentration of the polymer-rich +! phase is estimated with the assumption of zero concentration +! of polymer in the polymer-lean-phase. This is achieved in the +! SUBROUTINE POLYMER_FREE. (Only one equation has to be iterated +! for this case). Once this is achieved, the rigorous calculation +! is triggered. If it converges, fine! If no solution is obtained, +! the pressure is somewhat reduced, the procedure is repeated and +! a calculation is started to approach the originally specified +! pressure. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE poly_sta_var (converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k,ph,sol + REAL :: p_spec,solution(10,4+nc*np) +! ---------------------------------------------------------------------- + + p_spec = p + + find_equilibrium: DO + + CALL polymer_free(p_spec,sol,solution) + + WRITE (*,*) ' ' + WRITE (*,*) ' GENERATING STARTING VALUES' + + val_init(1) = solution(1,1) ! approx.solutions for next iteration + val_init(2) = solution(1,2) ! approx.solutions for next iteration + val_init(3) = solution(1,3) ! approx.solutions for next iteration + val_init(4) = solution(1,4) ! approx.solutions for next iteration + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = solution(1,4+k+(ph-1)*ncomp) + END DO + END DO + val_init(7) = -10000.0 ! start.val. for lnx(2,1) for iterat. + + IF (p /= p_spec) & + WRITE (*,*) ' INITIAL EQUILIBRIUM CALC. FAILD. NEXT STEP STARTS' + + IF (p == p_spec) THEN + n_unkw = ncomp ! number of quantities to be iterated + it(1)='x11' ! iteration of mol fraction of comp.1 phase 1 + it(2)='x21' ! iteration of mol fraction of comp.1 phase 2 + CALL objective_ctrl (converg) + ELSE + outp = 0 ! output to terminal + running ='p' ! Pressure is running var. in PHASE_EQUILIB + CALL phase_equilib(p_spec,5.0,converg) + END IF + + IF (converg == 1) EXIT find_equilibrium + p = p * 0.9 + IF ( p < (0.7*p_spec) ) WRITE (*,*) ' NO SOLUTION FOUND' + IF ( p < (0.7*p_spec) ) STOP + + END DO find_equilibrium + + WRITE (*,*) ' FINISHED: POLY_STA_VAR' + +END SUBROUTINE poly_sta_var + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE x_summation +! +! This subroutine solves the summation relation: xi=1-sum(xj) +! The variable "sum_rel(i)" contains the information, which mole +! fraction is the one to be calculated here. Consider the example +! sum_rel(1)='x12'. The fist letter 'x' of this variable indicates, +! that this subroutine needs to be executed and that the mole +! fraction of a component has to be calculated. The second letter +! of the string points to phase 1, the third letter to component 2. +! If the fist letter is 'e', not 'x', then the subroutine +! NEUTR_CHARGE is called. This is the case of electrolyte solutions, +! neutral charges have to be enforced in all phases (see below). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE x_summation +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, ph_i + REAL :: sum_x + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno + LOGICAL :: flashcase2 +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF (sum_rel(j)(1:3) == 'nfl') THEN + CALL new_flash (j) + RETURN + END IF +END DO + + + +flashcase2 = .false. + +DO j = 1, nphas + + IF (sum_rel(j)(1:1) == 'x') THEN + + phasno = sum_rel(j)(2:2) + READ(phasno,*) ph_i + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( sum_rel(nphas+j)(1:1) == 'e' ) CALL neutr_charge(nphas+j) + + sum_x = 0.0 + DO i = 1, ncomp + IF ( i /= comp_i ) sum_x = sum_x + xi(ph_i,i) + END DO + xi(ph_i,comp_i) = 1.0 - sum_x + IF ( xi(ph_i,comp_i ) < 0.0 ) xi(ph_i,comp_i) = 0.0 + IF ( xi(ph_i,comp_i ) /= 0.0 ) THEN + lnx(ph_i,comp_i) = LOG( xi(ph_i,comp_i) ) + ELSE + lnx(ph_i,comp_i) = -100000.0 + END IF + ! write (*,*) 'sum_x',ph_i,comp_i,lnx(ph_i,comp_i),xi(ph_i,comp_i) + + ELSE IF ( sum_rel(j)(1:2) == 'fl' ) THEN + + flashcase2 = .true. + ! ------------------------------------------------------------------ + ! This case is true when all molefractions of one phase are + ! determined from a component balance. What is needed to + ! calculate all molefractions of that phase are all mole- + ! fractions of the other phase (nphas=2, so far) and the + ! phase fraction alpha. + ! Alpha is calculated (in FLASH_ALPHA) from the mole fraction + ! of component {sum_rel(j)(3:3)}. IF sum_rel(2)='fl3', then + ! the alpha is determined from the molefraction of comp. 3 and + ! the molefraction of phase 2 is then completely determined ELSE + ! ------------------------------------------------------------------ + + ELSE + WRITE (*,*) 'summation relation not defined' + STOP + END IF + +END DO + +IF ( it(1) == 'fls' ) CALL flash_sum +IF ( flashcase2 ) CALL flash_alpha + +END SUBROUTINE x_summation + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE FUGACITY +! +! This subroutine serves as an interface to the eos-subroutines. +! (1) case 1, when ensemble_flag = 'tp' +! The subroutine gives the residual chemical potential: +! mu_i^res(T,p,x)/kT = ln( phi_i ) +! and in addition, the densities that satisfy the specified p +! (2) case 2, when ensemble_flag = 'tv' +! The subroutine gives the residual chemical potential: +! --> mu_i^res(T,rho,x)/kT +! and in addition the resulting pressure for the given density. +! The term "residual" means difference of the property and the same +! property for an ideal gas mixture. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE FUGACITY (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + DO ph = 1,nphas + + phas = ph + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(ph) = eta + ln_phi(ph,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE enthalpy_etc +! +! This subroutine serves as an interface to the EOS-routines. The +! residual enthalpy h_res, residual entropy s_res, residual Gibbs +! enthalpy g_res, and residual heat capacity at constant pressure +! (cp_res) corresponding to converged conditions are calculated. +! The conditions in (T,P,xi,rho) need to be converged equilibrium +! conditions !! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE enthalpy_etc +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! + INTEGER :: ph +! ------------------------------------------------------------------ + +IF (eos <= 1) THEN + + DO ph=1,nphas + + phas = ph + eta = dense(ph) +! eta_start = dense(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF(num == 0) THEN + CALL H_EOS + ELSE + IF(num == 1) CALL H_numerical + IF(num == 2) write (*,*) 'enthalpy_etc: incorporate H_EOS_RN' + IF(num == 2) stop +! IF(num == 2) CALL H_EOS_rn + END IF + enthal(ph) = h_res + entrop(ph) = s_res + ! gibbs(ph) = h_res - t * s_res ! already defined in eos.f90 (including ideal gas) + cpres(ph) = cp_res + + END DO + IF (nphas == 2) h_lv = enthal(2)-enthal(1) + +ENDIF + +END SUBROUTINE enthalpy_etc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dens_calc +! +! This subroutine serves as an interface to the EOS-routines. The +! densities corresponding to given (P,T,xi) are calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dens_calc(rho_phas) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! +!------------------------------------------------------------------ + REAL, INTENT(OUT) :: rho_phas(np) +! + INTEGER :: ph +!------------------------------------------------------------------ + + +DO ph = 1, nphas + + IF (eos < 2) THEN + + phas = ph + eta = densta(ph) + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + CALL PERTURBATION_PARAMETER + CALL DENSITY_ITERATION + + dense(ph)= eta + rho_phas(ph) = eta/z3t + + ELSE + write (*,*) ' SUBROUTINE DENS_CALC not available for cubic EOS' + stop + END IF + +END DO + +END SUBROUTINE dens_calc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE fden_calc (fden, rhoi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fden + REAL, INTENT(IN OUT) :: rhoi(nc) +! ---------------------------------------------------------------------- + REAL :: rhot, fden_id +! ---------------------------------------------------------------------- + + +IF (eos < 2) THEN + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + + CALL PERTURBATION_PARAMETER + eta = rhot * z3t + eta_start = eta + + IF (num == 0) THEN + CALL F_EOS + ELSE IF(num == 1) THEN + CALL F_NUMERICAL + ELSE + write (*,*) 'deactivated this line when making a transition to f90' + stop + ! CALL F_EOS_rn + END IF + + fden_id = SUM( rhoi(1:ncomp) * ( LOG( rhoi(1:ncomp) ) - 1.0 ) ) + + fden = fres * rhot + fden_id + +ELSE + write (*,*) ' SUBROUTINE FDEN_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE fden_calc + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE polymer_free +! +! This subroutine performes a phase equilibrium calculation assuming +! the polymer-lean hase to be polymer-free (x_poly=0). Only the +! equality of the solvent-fugacities has to be ensured (only one +! equation to be iterated). This procedure delivers very good +! appoximations for the polymer-rich phase up-to fairly close to the +! mixture critical point. Both, liquid-liquid and vapor-liquid +! equilibria can be calculated. +! See also comments to SUBROUTINE POLY_STA_VAR. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE polymer_free (p_spec,sol,solution) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: p_spec + INTEGER, INTENT(OUT) :: sol + REAL, INTENT(OUT) :: solution(10,4+nc*np) +! +! ---------------------------------------------------------------------- + INTEGER :: k,j,ph, converg + REAL :: grid(10) +! ---------------------------------------------------------------------- + + sol = 0 + + grid(1)=0.98 + grid(2)=0.9 + grid(3)=0.7 + grid(4)=0.5 + grid(5)=0.3 + grid(6)=0.2 + grid(7)=0.1 + grid(8)=0.05 + + DO WHILE ( sol == 0 ) + + DO j = 1,8 + ! Phase 2 is solvent-phase + ! starting value for xi(1,1) of polymer-phase 1: w_polymer=0.95 to 0.05 + ! from simple approximate equation + xi(1,1) = grid(j) / ( (1.0-grid(j)) * mm(1) / mm(2) ) !xi(1,1) Phase 1 Komponente 1 + IF ( mm(1) < 5000.0 ) xi(1,1) = xi(1,1) * 0.8 + xi(1,2) = 1.0 - xi(1,1) !xi(1,2) Phase 1 Komponente 2 + lnx(1,1) = LOG(xi(1,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,1) = -1.E10 !ln(xi) Phase 2 Komponente 1 + lnx(2,2) = 0.0 !ln(xi) Phase 2 Komponente 2 + + + + val_init(1) = 0.45 ! starting density targeting at a liquid phase + val_init(2) = 0.0001 ! starting density targeting at a vapor phase + ! val_init(2) = 0.45 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO + END DO + + + + + n_unkw = ncomp-1 ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = ' ' + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' + + CALL objective_ctrl (converg) + + IF (converg == 1 .AND. ABS(dense(1)/dense(2)-1.0) > 1.d-3 .AND. dense(1) > 0.1) THEN + IF (sol == 0) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + ELSE IF (ABS(solution(sol,5)/lnx(1,1)-1.0) > 1.d-2) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + END IF + END IF + + END DO + + + + + + IF (sol == 0) THEN + WRITE (*,*) ' no initial solution found' + p = p*0.9 + IF (p < (0.7*p_spec)) WRITE (*,*) ' NO SOLUTION FOUND' + IF (p < (0.7*p_spec)) STOP + ELSE IF (sol > 1) THEN + ! write (*,*) ' ' + ! write (*,*) ' ',sol,' solutions found:' + ! write (*,*) ' lnx(1,1), dichte_1, dichte_2' + ! DO k = 1,sol + ! write (*,*) solution(k,5),solution(k,1),solution(k,2) + ! END DO + END IF + END DO + + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + + END SUBROUTINE polymer_free + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_equilib +! +! This subroutine varies a predefined "running variable" and +! organizes phase equilibrium calculations. For an isotherm +! calculation e.g., the running variable is often the pressure. The +! code is designed to deliver only converged solutions. In order to +! enforce convergence, a step-width adjustment (reduction) is +! implemented. + +! VARIABLE LIST: +! running defines the running variable. For example: if you want +! to calculate the vapor pressure curve of a component +! starting from 100�C to 200�C, then running is 't'. The +! temperature is step-wise increased until the end- +! -temperature of 200�C is reached. +! (in this example end_x=200+273.15) +! end_x end point for running variable +! steps No. of calculation steps towards the end point of calc. +! converg 0 if no convergence achieved, 1 if converged solution +! +! PREREQUISITES: +! prior to execution of this routine, the follwing variables have to +! be defined: "val_init" an array containing the starting values for +! this iteration, "it(i)" provides the information, which variable is +! determined iteratively, "sum_rel(i)" indicates, which mole fraction +! is determined from the summation relation sum(xi)=1. Furthermore, +! the number of phases and the variables provided by the subroutine +! INPUT are required. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_equilib (end_x,steps,converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: end_x + REAL, INTENT(IN) :: steps + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k, count1,count2,runindex,maxiter + REAL :: delta_x,delta_org,val_org,runvar + CHARACTER (LEN=2) :: compon + LOGICAL :: continue_cycle +! ---------------------------------------------------------------------- + +IF (running(1:2) == 'd1') runindex = 1 +IF (running(1:2) == 'd2') runindex = 2 +IF (running(1:1) == 't') runindex = 3 +IF (running(1:1) == 'p') runindex = 4 +IF (running(1:2) == 'x1') compon = running(3:3) +IF (running(1:2) == 'x1') READ(compon,*) k +IF (running(1:2) == 'x1') runindex = 4+k +IF (running(1:2) == 'x2') compon = running(3:3) +IF (running(1:2) == 'x2') READ(compon,*) k +IF (running(1:2) == 'x2') runindex = 4+ncomp+k +IF (running(1:2) == 'l1') compon = running(3:3) +IF (running(1:2) == 'l1') READ(compon,*) k +IF (running(1:2) == 'l1') runindex = 4+k +IF (running(1:2) == 'l2') compon = running(3:3) +IF (running(1:2) == 'l2') READ(compon,*) k +IF (running(1:2) == 'l2') runindex = 4+ncomp+k + +maxiter = 200 +IF ( ncomp >= 3 ) maxiter = 1000 +count1 = 0 +count2 = 0 +delta_x = ( end_x - val_init(runindex) ) / steps !J: calc increment in running var = (phi_end - phi_init)/steps +delta_org = ( end_x - val_init(runindex) ) / steps +val_org = val_init(runindex) +IF ( running(1:1) == 'x' ) THEN + delta_x = ( end_x - EXP(val_init(runindex)) ) / steps + delta_org = ( end_x - EXP(val_init(runindex)) ) / steps + val_org = EXP(val_init(runindex)) +END IF + +continue_cycle = .true. + +DO WHILE ( continue_cycle ) + + count1 = count1 + 1 + count2 = count2 + 1 + ! val_org = val_init(runindex) + + + CALL objective_ctrl (converg) + + IF (converg == 1) THEN + val_init( 1:(4+ncomp*nphas) ) = val_conv( 1:(4+ncomp*nphas) ) + IF (outp == 1 .AND. (ABS(delta_x) > 0.1*ABS(delta_org) .OR. count2 == 2)) CALL output + ELSE + delta_x = delta_x / 2.0 + IF (num == 2) delta_x = delta_x / 2.0 + val_init(runindex) = val_org + IF (running(1:1) == 'x') val_init(runindex) = LOG(val_org) + continue_cycle = .true. + count2 = 0 + END IF + runvar = val_init(runindex) + IF (running(1:1) == 'x') runvar = EXP(val_init(runindex)) + + IF ( end_x == 0.0 .AND. running(1:1) /= 'x' ) THEN + IF ( ABS(runvar-end_x) < 1.E-8 ) continue_cycle = .false. + ELSE IF ( ABS((runvar-end_x)/end_x) < 1.E-8 ) THEN + ! IF(delta_org.NE.0.0) WRITE (*,*)' FINISHED ITERATION',count1 + continue_cycle = .false. + ELSE IF ( count1 == maxiter ) THEN + WRITE (*,*) ' MAX. NO OF ITERATIONS',count1 + converg = 0 + continue_cycle = .false. + ELSE IF ( ABS(delta_x) < 1.E-5*ABS(delta_org) ) THEN + ! WRITE (*,*) ' CLOSEST APPROACH REACHED',count1 + converg = 0 + continue_cycle = .false. + ELSE + continue_cycle = .true. + val_org = runvar + IF (ABS(runvar+delta_x-end_x) > ABS(runvar-end_x)) delta_x = end_x - runvar ! if end-point passed + val_init(runindex) = runvar + delta_x + IF (running(1:1) == 'x') val_init(runindex) = LOG(runvar+delta_x) + END IF + + IF (ABS(delta_x) < ABS(delta_org) .AND. count2 >= 5) THEN + delta_x = delta_x * 2.0 + count2 = 0 + END IF + +END DO ! continue_cycle + +END SUBROUTINE phase_equilib + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE new_flash (ph_it) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph_it +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph_cal + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + ph_cal = 3 - ph_it ! for two phases only + + DO i = 1, ncomp + IF ( lnx(ph_it,i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( lnx(ph_it,i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i)-ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(ph_it,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + DO i = 1, ncomp + IF ( xi(ph_it,i) >= 1.E-300 ) lnx(ph_it,i) = LOG( xi(ph_it,i) ) + END DO + xi(ph_cal,1:ncomp) = ni_1(1:ncomp) / SUM( ni_1(1:ncomp) ) + lnx(ph_cal,1:ncomp) = LOG( xi(ph_cal,1:ncomp) ) + +END SUBROUTINE new_flash + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PHI_EOS +! +! This subroutine gives the residual chemical potential: +! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! The required input for this case (T, p, x(nc)) and as a starting value +! eta_start +! +! or it gives +! +! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! The required input for this case (T, eta_start, x(nc)). Note that +! eta_start is the specified density (packing fraction) in this case. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_EOS +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + +END DO + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + +END SUBROUTINE PHI_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE, ONLY: z_ges, fres_temp + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + INTEGER :: k + REAL :: zres, zges + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: delta_rho + REAL, DIMENSION(nc) :: myres + REAL, DIMENSION(nc) :: rhoi, rhoi_0 + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +!----------------------------------------------------------------------- +! density iteration or pressure calculation +!----------------------------------------------------------------------- + +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_NUMERICAL +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (tv) or (tp)' + stop +END IF + +!----------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +!----------------------------------------------------------------------- + +zges = (p * 1.E-30) / (kbol*t*eta/z3t) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.E-30) / (kbol*t*eta/z3t) +zres = zges - 1.0 +z_ges = zges + +rhoi_0(1:ncomp) = x(1:ncomp) * eta/z3t +rhoi(1:ncomp) = rhoi_0(1:ncomp) + + +!----------------------------------------------------------------------- +! derivative to rho_k (keeping other rho_i's constant +!----------------------------------------------------------------------- + +DO k = 1, ncomp + + IF ( rhoi_0(k) > 1.d-9 ) THEN + delta_rho = 1.E-13 * 10.0**(0.5*(15.0+LOG10(rhoi_0(k)))) + ELSE + delta_rho = 1.E-10 + END IF + + rhoi(k) = rhoi_0(k) + delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres1 = fres*rho + tfr_1 = tfr*rho + + rhoi(k) = rhoi_0(k) + 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres2 = fres*rho + tfr_2 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + rhoi(k) = rhoi_0(k) - 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres4 = fres*rho + tfr_4 = tfr*rho + + rhoi(k) = rhoi_0(k) - delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres5 = fres*rho + tfr_5 = tfr*rho + END IF + + rhoi(k) = rhoi_0(k) + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres3 = fres*rho + tfr_3 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + myres(k) = ( fres5 - 8.0*fres4 + 8.0*fres2 - fres1 ) / ( 6.0*delta_rho ) + ELSE + myres(k) = ( -3.0*fres3 + 4.0*fres2 - fres1 ) / delta_rho + END IF + +END DO + + +!----------------------------------------------------------------------- +! residual Helmholtz energy +!----------------------------------------------------------------------- + +fres_temp = fres + +!----------------------------------------------------------------------- +! residual chemical potential +!----------------------------------------------------------------------- + +DO k = 1, ncomp + IF (ensemble_flag == 'tp') lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' .AND. eta >= 0.0) lnphi(k) = myres(k) !+LOG(rho) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta + ! IF (DFT.GE.98) write (*,*) dft + ! write (*,*) 'lnphi',k,LNPHI(k),x(k),MYRES(k), -LOG(ZGES) + ! pause + ! write (*,*) k, myres(k), fres, ZRES +END DO + +END SUBROUTINE PHI_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +! SUBROUTINE H_EOS (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! IMPLICIT NONE +! INTEGER nc +! PARAMETER (nc=20) +! INTEGER phas,ncomp,eos,i +! REAL kij(nc,nc),lij(nc,nc),x(nc),t,p,parame(nc,25) +! REAL eta_start,eta,tfr,h_res,cp_res,s_res + + +! i=1 + +! IF (i.EQ.1) THEN +! CALL H_EOS_1(phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ELSE +! CALL H_EOS_NUM (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ENDIF + +! RETURN +! END + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS +! + USE PARAMETERS, ONLY: RGAS + USE EOS_CONSTANTS + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL :: zges, df_dt, dfdr, ddfdrdr + REAL :: cv_res, df_dt2, df_drdt + REAL :: fact, dist, t_tmp, rho_0 + REAL :: fdr1, fdr2, fdr3, fdr4 + + INTEGER :: i, m + REAL :: dhsdt(nc), dhsdt2(nc) + REAL :: z0, z1, z2, z3, z1tdt, z2tdt, z3tdt + REAL :: z1dt, z2dt, z3dt, zms, gii + REAL :: fhsdt, fhsdt2 + REAL :: fchdt, fchdt2 + REAL :: fdspdt, fdspdt2 + REAL :: fhbdt, fhbdt2 + REAL :: sumseg, I1, I2, I1dt, I2dt, I1dt2, I2dt2 + REAL :: c1_con, c2_con, c3_con, c1_dt, c1_dt2 + REAL :: z1tdt2, z2tdt2, z3tdt2 + REAL :: z1dt2, z2dt2, z3dt2 + + INTEGER :: j, k, l, no, ass_cnt, max_eval + LOGICAL :: assoc + REAL :: dij, dijdt, dijdt2 + REAL :: gij1dt, gij2dt, gij3dt + REAL :: gij1dt2, gij2dt2, gij3dt2 + REAL, DIMENSION(nc,nc) :: gijdt, gijdt2, kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: ass_d_dt, ass_d_dt2, eps_hb, delta, deltadt, deltadt2 + REAL, DIMENSION(nc,nsite) :: mxdt, mxdt2, mx_itr, mx_itrdt, mx_itrdt2 + REAL :: attenu, tol, suma, sumdt, sumdt2, err_sum + + INTEGER :: dipole + REAL :: fdddt, fdddt2 + REAL, DIMENSION(nc) :: my2dd, my0 + REAL, DIMENSION(nc,nc) :: idd2, idd2dt, idd2dt2, idd4, idd4dt, idd4dt2 + REAL, DIMENSION(nc,nc,nc) :: idd3, idd3dt, idd3dt2 + REAL :: factor2, factor3 + REAL :: fdd2, fdd3, fdd2dt, fdd3dt, fdd2dt2, fdd3dt2 + REAL :: eij, xijmt, xijkmt + + INTEGER :: qudpole + REAL :: fqqdt, fqqdt2 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: iqq2, iqq2dt, iqq2dt2, iqq4, iqq4dt, iqq4dt2 + REAL, DIMENSION(nc,nc,nc) :: iqq3, iqq3dt, iqq3dt2 + REAL :: fqq2, fqq2dt, fqq2dt2, fqq3, fqq3dt, fqq3dt2 + + INTEGER :: dip_quad + REAL :: fdqdt, fdqdt2 + REAL, DIMENSION(nc) :: myfac, q_fac + REAL, DIMENSION(nc,nc) :: idq2, idq2dt, idq2dt2, idq4, idq4dt, idq4dt2 + REAL, DIMENSION(nc,nc,nc) :: idq3, idq3dt, idq3dt2 + REAL :: fdq2, fdq2dt, fdq2dt2, fdq3, fdq3dt, fdq3dt2 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! Initializing +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +sumseg = z0t / (PI/6.0) +zms = 1.0 - z3 + + +! ---------------------------------------------------------------------- +! first and second derivative of f to density (dfdr,ddfdrdr) +! ---------------------------------------------------------------------- +CALL P_EOS + +zges = (pges * 1.E-30)/(kbol*t*rho) + +dfdr = pges/(eta*rho*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + + +! ---------------------------------------------------------------------- +! Helmholtz Energy f/kT = fres +! ---------------------------------------------------------------------- +CALL F_EOS + + +! ---------------------------------------------------------------------- +! derivative of some auxilliary properties to temperature +! ---------------------------------------------------------------------- +DO i = 1,ncomp + dhsdt(i)=parame(i,2) *(-3.0*parame(i,3)/t/t)*0.12*EXP(-3.0*parame(i,3)/t) + dhsdt2(i) = dhsdt(i)*3.0*parame(i,3)/t/t & + + 6.0*parame(i,2)*parame(i,3)/t**3 *0.12*EXP(-3.0*parame(i,3)/t) +END DO + +z1tdt = 0.0 +z2tdt = 0.0 +z3tdt = 0.0 +DO i = 1,ncomp + z1tdt = z1tdt + x(i) * mseg(i) * dhsdt(i) + z2tdt = z2tdt + x(i) * mseg(i) * 2.0*dhs(i)*dhsdt(i) + z3tdt = z3tdt + x(i) * mseg(i) * 3.0*dhs(i)*dhs(i)*dhsdt(i) +END DO +z1dt = PI / 6.0*z1tdt *rho +z2dt = PI / 6.0*z2tdt *rho +z3dt = PI / 6.0*z3tdt *rho + + +z1tdt2 = 0.0 +z2tdt2 = 0.0 +z3tdt2 = 0.0 +DO i = 1,ncomp + z1tdt2 = z1tdt2 + x(i)*mseg(i)*dhsdt2(i) + z2tdt2 = z2tdt2 + x(i)*mseg(i)*2.0 *( dhsdt(i)*dhsdt(i) +dhs(i)*dhsdt2(i) ) + z3tdt2 = z3tdt2 + x(i)*mseg(i)*3.0 *( 2.0*dhs(i)*dhsdt(i)* & + dhsdt(i) +dhs(i)*dhs(i)*dhsdt2(i) ) +END DO +z1dt2 = PI / 6.0*z1tdt2 *rho +z2dt2 = PI / 6.0*z2tdt2 *rho +z3dt2 = PI / 6.0*z3tdt2 *rho + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT hard spheres to temp. (fhsdt) +! ---------------------------------------------------------------------- +fhsdt = 6.0/PI/rho*( 3.0*(z1dt*z2+z1*z2dt)/zms + 3.0*z1*z2*z3dt/zms/zms & + + 3.0*z2*z2*z2dt/z3/zms/zms & + + z2**3 *(2.0*z3*z3dt-z3dt*zms)/(z3*z3*zms**3 ) & + + (3.0*z2*z2*z2dt*z3-2.0*z2**3 *z3dt)/z3**3 *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3dt/zms ) + +fhsdt2= 6.0/PI/rho*( 3.0*(z1dt2*z2+2.0*z1dt*z2dt+z1*z2dt2)/zms & + + 6.0*(z1dt*z2+z1*z2dt)*z3dt/zms/zms & + + 3.0*z1*z2*z3dt2/zms/zms + 6.0*z1*z2*z3dt*z3dt/zms**3 & + + 3.0*z2*(2.0*z2dt*z2dt+z2*z2dt2)/z3/zms/zms & + - z2*z2*(6.0*z2dt*z3dt+z2*z3dt2)/(z3*z3*zms*zms) & + + 2.0*z2**3 *z3dt*z3dt/(z3**3 *zms*zms) & + - 4.0*z2**3 *z3dt*z3dt/(z3*z3 *zms**3 ) & + + (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/(z3*zms**3 ) & + + 6.0*z2**3 *z3dt*z3dt/(z3*zms**4 ) & + - 2.0*(3.0*z2*z2*z2dt/z3/z3-2.0*z2**3 *z3dt/z3**3 ) *z3dt/zms & + -(z2**3 /z3/z3-z0)*(z3dt2/zms+z3dt*z3dt/zms/zms) & + + ( (6.0*z2*z2dt*z2dt+3.0*z2*z2*z2dt2)/z3/z3 & + - (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/z3**3 & + + 6.0*z2**3 *z3dt*z3dt/z3**4 )* LOG(zms) ) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT of chain term to T (fchdt) +! ---------------------------------------------------------------------- +fchdt = 0.0 +fchdt2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + dij=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + dijdt =(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) / (dhs(i)+dhs(j)) & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) + dijdt2=(dhsdt2(i)*dhs(j) + 2.0*dhsdt(i)*dhsdt(j) & + + dhs(i)*dhsdt2(j)) / (dhs(i)+dhs(j)) & + - 2.0*(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) & + / (dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) & + + 2.0* dhs(i)*dhs(j) / (dhs(i)+dhs(j))**3 & + * (dhsdt(i)+dhsdt(j))**2 & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt2(i)+dhsdt2(j)) + gij1dt = z3dt/zms/zms + gij2dt = 3.0*( z2dt*dij+z2*dijdt )/zms/zms +6.0*z2*dij*z3dt/zms**3 + gij3dt = 4.0*(dij*z2)* (dijdt*z2 + dij*z2dt) /zms**3 & + + 6.0*(dij*z2)**2 * z3dt /zms**4 + gij1dt2 = z3dt2/zms/zms +2.0*z3dt*z3dt/zms**3 + gij2dt2 = 3.0*( z2dt2*dij+2.0*z2dt*dijdt+z2*dijdt2 )/zms/zms & + + 6.0*( z2dt*dij+z2*dijdt )/zms**3 * z3dt & + + 6.0*(z2dt*dij*z3dt+z2*dijdt*z3dt+z2*dij*z3dt2) /zms**3 & + + 18.0*z2*dij*z3dt*z3dt/zms**4 + gij3dt2 = 4.0*(dijdt*z2+dij*z2dt)**2 /zms**3 & + + 4.0*(dij*z2)* (dijdt2*z2+2.0*dijdt*z2dt+dij*z2dt2) /zms**3 & + + 24.0*(dij*z2) *(dijdt*z2+dij*z2dt)/zms**4 *z3dt & + + 6.0*(dij*z2)**2 * z3dt2 /zms**4 & + + 24.0*(dij*z2)**2 * z3dt*z3dt /zms**5 + gijdt(i,j) = gij1dt + gij2dt + gij3dt + gijdt2(i,j) = gij1dt2 + gij2dt2 + gij3dt2 + END DO +END DO + +DO i = 1, ncomp + gii = 1.0/zms + 3.0*dhs(i)/2.0*z2/zms/zms + 2.0*dhs(i)*dhs(i)/4.0*z2*z2/zms**3 + fchdt = fchdt + x(i) * (1.0-mseg(i)) * gijdt(i,i) / gii + fchdt2= fchdt2+ x(i) * (1.0-mseg(i)) & + * (gijdt2(i,i) / gii - (gijdt(i,i)/gii)**2 ) +END DO + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT dispersion term to T (fdspdt) +! ---------------------------------------------------------------------- +I1 = 0.0 +I2 = 0.0 +I1dt = 0.0 +I2dt = 0.0 +I1dt2= 0.0 +I2dt2= 0.0 +DO m = 0, 6 + I1 = I1 + apar(m)*z3**REAL(m) + I2 = I2 + bpar(m)*z3**REAL(m) + I1dt = I1dt + apar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I2dt = I2dt + bpar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I1dt2= I1dt2+ apar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + apar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) + I2dt2= I2dt2+ bpar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + bpar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) +END DO + +c1_con= 1.0/ ( 1.0 + sumseg*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - sumseg)*(20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) +c2_con= - c1_con*c1_con *(sumseg*(-4.0*z3**2 +20.0*z3+8.0)/zms**5 & + + (1.0 - sumseg) *(2.0*z3**3 +12.0*z3**2 -48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) +c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( sumseg*(-12.0*z3**2 +72.0*z3+60.0)/zms**6 + (1.0 - sumseg) & + *(-6.0*z3**4 -48.0*z3**3 +288.0*z3**2 -480.0*z3+264.0) & + /(zms*(2.0-z3))**4 ) +c1_dt = c2_con*z3dt +c1_dt2 = c3_con*z3dt*z3dt + c2_con*z3dt2 + +fdspdt = - 2.0*PI*rho*(I1dt-I1/t)*order1 & + - PI*rho*sumseg*(c1_dt*I2+c1_con*I2dt-2.0*c1_con*I2/t)*order2 + +fdspdt2 = - 2.0*PI*rho*(I1dt2-2.0*I1dt/t+2.0*I1/t/t)*order1 & + - PI*rho*sumseg*order2*( c1_dt2*I2 +2.0*c1_dt*I2dt -4.0*c1_dt*I2/t & + + 6.0*c1_con*I2/t/t -4.0*c1_con*I2dt/t +c1_con*I2dt2) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT association term to T (fhbdt) +! ---------------------------------------------------------------------- +fhbdt = 0.0 +fhbdt2 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) THEN + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1,nhb_typ(i) + DO k = 1,nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO j = 1,nhb_typ(i) + no = no + 1 + END DO + ELSE + kap_hb(i,i) = 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0) ) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + ! kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l)=(eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l)=eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN + eps_hb(1,2,3,1)=0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1)=0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ! ass_d(i,j,k,l)=kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + ass_d_dt(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) + ass_d_dt2(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 & + * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) & + * (-2.0/t - eps_hb(i,j,k,l)/t/t) + END DO + END DO + END DO + END DO + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l)=gij(i,j)*ass_d(i,j,k,l) + deltadt(i,j,k,l) = gijdt(i,j)*ass_d(i,j,k,l) + gij(i,j)*ass_d_dt(i,j,k,l) + deltadt2(i,j,k,l)= gijdt2(i,j)*ass_d(i,j,k,l) & + + 2.0*gijdt(i,j)*ass_d_dt(i,j,k,l) +gij(i,j)*ass_d_dt2(i,j,k,l) + END DO + END DO + END DO + END DO + + +! ------ constants for iteration --------------------------------------- + attenu = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-12 + max_eval = 200 + +! ------ initialize mxdt(i,j) ------------------------------------------ + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + mxdt(i,k) = 0.0 + mxdt2(i,k) = 0.0 + END DO + END DO + + +! ------ iterate over all components and all sites --------------------- + DO ass_cnt = 1, max_eval + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + suma = 0.0 + sumdt = 0.0 + sumdt2= 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + suma = suma + x(j)*nhb_no(j,l)* mx(j,l) *delta(i,j,k,l) + sumdt = sumdt + x(j)*nhb_no(j,l)*( mx(j,l) *deltadt(i,j,k,l) & + + mxdt(j,l)*delta(i,j,k,l) ) + sumdt2 = sumdt2 + x(j)*nhb_no(j,l)*( mx(j,l)*deltadt2(i,j,k,l) & + + 2.0*mxdt(j,l)*deltadt(i,j,k,l) + mxdt2(j,l)*delta(i,j,k,l) ) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + suma * rho) + mx_itrdt(i,k)= - mx_itr(i,k)**2 * sumdt*rho + mx_itrdt2(i,k)= +2.0*mx_itr(i,k)**3 * (sumdt*rho)**2 - mx_itr(i,k)**2 *sumdt2*rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) & + + ABS(mx_itrdt(i,k) - mxdt(i,k)) + ABS(mx_itrdt2(i,k) - mxdt2(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + mxdt(i,k)=mx_itrdt(i,k)*attenu +mxdt(i,k)* (1.0 - attenu) + mxdt2(i,k)=mx_itrdt2(i,k)*attenu +mxdt2(i,k)* (1.0 - attenu) + END DO + END DO + IF(err_sum <= tol) GO TO 10 + + END DO + WRITE(6,*) 'CAL_PCSAFT: max_eval violated err_sum = ',err_sum,tol + STOP + 10 CONTINUE + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + ! fhb = fhb + x(i)* nhb_no(i,k)* ( 0.5 * ( 1.0 - mx(i,k) ) + LOG(mx(i,k)) ) + fhbdt = fhbdt + x(i)*nhb_no(i,k) *mxdt(i,k)*(1.0/mx(i,k)-0.5) + fhbdt2= fhbdt2 + x(i)*nhb_no(i,k) *(mxdt2(i,k)*(1.0/mx(i,k)-0.5) & + -(mxdt(i,k)/mx(i,k))**2 ) + END DO + END DO + +END IF + + +! ---------------------------------------------------------------------- +! derivatives of f/kT of dipole-dipole term to temp. (fdddt) +! ---------------------------------------------------------------------- +fdddt = 0.0 +fdddt2 = 0.0 +dipole = 0 +DO i = 1,ncomp + my2dd(i) = 0.0 + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 ) THEN + dipole = 1 + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END IF + my0(i) = my2dd(i) ! needed for dipole-quadrupole-term +END DO + +IF (dipole == 1) THEN + DO i = 1,ncomp + DO j = 1,ncomp + idd2(i,j) =0.0 + idd4(i,j) =0.0 + idd2dt(i,j) =0.0 + idd4dt(i,j) =0.0 + idd2dt2(i,j)=0.0 + idd4dt2(i,j)=0.0 + DO m=0,4 + idd2(i,j) = idd2(i,j) +ddp2(i,j,m)*z3**REAL(m) + idd4(i,j) = idd4(i,j) +ddp4(i,j,m)*z3**REAL(m) + idd2dt(i,j)= idd2dt(i,j) +ddp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd4dt(i,j)= idd4dt(i,j) +ddp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd2dt2(i,j)=idd2dt2(i,j)+ddp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idd4dt2(i,j)=idd4dt2(i,j)+ddp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + idd3(i,j,k) =0.0 + idd3dt(i,j,k) =0.0 + idd3dt2(i,j,k)=0.0 + DO m = 0, 4 + idd3(i,j,k) = idd3(i,j,k) +ddp3(i,j,k,m)*z3**REAL(m) + idd3dt(i,j,k) = idd3dt(i,j,k)+ddp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idd3dt2(i,j,k)= idd3dt2(i,j,k)+ddp3(i,j,k,m)*z3dt2*REAL(m) & + *z3**REAL(m-1) +ddp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1) *z3**REAL(m-2) + END DO + END DO + END DO + END DO + + + factor2= -PI *rho + factor3= -4.0/3.0*PI**2 * rho**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2dt= 0.0 + fdd3dt= 0.0 + fdd2dt2= 0.0 + fdd3dt2= 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + xijmt = x(i)*parame(i,3)*parame(i,2)**3 *x(j)*parame(j,3)*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2* xijmt/t/t*(idd2(i,j)+eij/t*idd4(i,j)) + fdd2dt= fdd2dt+ factor2* xijmt/t/t*(idd2dt(i,j)-2.0*idd2(i,j)/t & + +eij/t*idd4dt(i,j)-3.0*eij/t/t*idd4(i,j)) + fdd2dt2=fdd2dt2+factor2*xijmt/t/t*(idd2dt2(i,j)-4.0*idd2dt(i,j)/t & + +6.0*idd2(i,j)/t/t+eij/t*idd4dt2(i,j) & + -6.0*eij/t/t*idd4dt(i,j)+12.0*eij/t**3 *idd4(i,j)) + DO k = 1, ncomp + xijkmt=x(i)*parame(i,3)*parame(i,2)**3 & + *x(j)*parame(j,3)*parame(j,2)**3 & + *x(k)*parame(k,3)*parame(k,2)**3 & + /((parame(i,2)+parame(j,2))/2.0) /((parame(i,2)+parame(k,2))/2.0) & + /((parame(j,2)+parame(k,2))/2.0) *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 =fdd3 +factor3*xijkmt/t**3 *idd3(i,j,k) + fdd3dt =fdd3dt +factor3*xijkmt/t**3 * (idd3dt(i,j,k)-3.0*idd3(i,j,k)/t) + fdd3dt2=fdd3dt2+factor3*xijkmt/t**3 & + *( idd3dt2(i,j,k)-6.0*idd3dt(i,j,k)/t+12.0*idd3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fdd2 < -1.E-100 .AND. fdd3 /= 0.0 ) THEN + fdddt = fdd2* (fdd2*fdd2dt - 2.0*fdd3*fdd2dt+fdd2*fdd3dt) / (fdd2-fdd3)**2 + fdddt2 = ( 2.0*fdd2*fdd2dt*fdd2dt +fdd2*fdd2*fdd2dt2 & + -2.0*fdd2dt**2 *fdd3 -2.0*fdd2*fdd2dt2*fdd3 +fdd2*fdd2*fdd3dt2 ) & + /(fdd2-fdd3)**2 + fdddt * 2.0*(fdd3dt-fdd2dt)/(fdd2-fdd3) + END IF +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of quadrupole-quadrup. term to T (fqqdt) +! ---------------------------------------------------------------------- +fqqdt = 0.0 +fqqdt2 = 0.0 +qudpole = 0 +DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + IF (qq2(i) /= 0.0) qudpole = 1 +END DO + +IF (qudpole == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + iqq2(i,j) = 0.0 + iqq4(i,j) = 0.0 + iqq2dt(i,j) = 0.0 + iqq4dt(i,j) = 0.0 + iqq2dt2(i,j)= 0.0 + iqq4dt2(i,j)= 0.0 + DO m = 0, 4 + iqq2(i,j) = iqq2(i,j) + qqp2(i,j,m)*z3**REAL(m) + iqq4(i,j) = iqq4(i,j) + qqp4(i,j,m)*z3**REAL(m) + iqq2dt(i,j) = iqq2dt(i,j)+ qqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq4dt(i,j) = iqq4dt(i,j)+ qqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq2dt2(i,j)= iqq2dt2(i,j)+qqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + iqq4dt2(i,j)= iqq4dt2(i,j)+qqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + iqq3(i,j,k) =0.0 + iqq3dt(i,j,k) =0.0 + iqq3dt2(i,j,k)=0.0 + DO m = 0, 4 + iqq3(i,j,k) = iqq3(i,j,k) + qqp3(i,j,k,m)*z3**REAL(m) + iqq3dt(i,j,k) = iqq3dt(i,j,k)+ qqp3(i,j,k,m)*z3dt*REAL(m) * z3**REAL(m-1) + iqq3dt2(i,j,k)= iqq3dt2(i,j,k)+qqp3(i,j,k,m)*z3dt2*REAL(m) * z3**REAL(m-1) & + + qqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END DO + END DO + END DO + + factor2 = -9.0/16.0 * PI *rho + factor3 = 9.0/16.0 * PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2dt = 0.0 + fqq3dt = 0.0 + fqq2dt2= 0.0 + fqq3dt2= 0.0 + DO i = 1,ncomp + DO j = 1,ncomp + xijmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2 = fqq2 +factor2* xijmt/t/t*(iqq2(i,j)+eij/t*iqq4(i,j)) + fqq2dt= fqq2dt +factor2* xijmt/t/t*(iqq2dt(i,j)-2.0*iqq2(i,j)/t & + + eij/t*iqq4dt(i,j)-3.0*eij/t/t*iqq4(i,j)) + fqq2dt2=fqq2dt2+factor2*xijmt/t/t*(iqq2dt2(i,j)-4.0*iqq2dt(i,j)/t & + + 6.0*iqq2(i,j)/t/t+eij/t*iqq4dt2(i,j) & + - 6.0*eij/t/t*iqq4dt(i,j)+12.0*eij/t**3 *iqq4(i,j)) + DO k = 1,ncomp + xijkmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /sig_ij(i,j)**3 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,k)**3 & + * x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /sig_ij(j,k)**3 + fqq3 = fqq3 +factor3*xijkmt/t**3 *iqq3(i,j,k) + fqq3dt = fqq3dt +factor3*xijkmt/t**3 *(iqq3dt(i,j,k)-3.0*iqq3(i,j,k)/t) + fqq3dt2= fqq3dt2+factor3*xijkmt/t**3 & + * ( iqq3dt2(i,j,k)-6.0*iqq3dt(i,j,k)/t+12.0*iqq3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fqq2 /= 0.0 .AND. fqq3 /= 0.0 ) THEN + fqqdt = fqq2* (fqq2*fqq2dt - 2.0*fqq3*fqq2dt+fqq2*fqq3dt) / (fqq2-fqq3)**2 + fqqdt2 = ( 2.0*fqq2*fqq2dt*fqq2dt +fqq2*fqq2*fqq2dt2 & + - 2.0*fqq2dt**2 *fqq3 -2.0*fqq2*fqq2dt2*fqq3 +fqq2*fqq2*fqq3dt2 ) & + / (fqq2-fqq3)**2 + fqqdt * 2.0*(fqq3dt-fqq2dt)/(fqq2-fqq3) + END IF + +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of dipole-quadruppole term to T (fdqdt) +! ---------------------------------------------------------------------- +fdqdt = 0.0 +fdqdt2= 0.0 +dip_quad = 0 +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,7) /= 0.0) dip_quad = 1 + END DO + myfac(i) = parame(i,3)*parame(i,2)**4 *my0(i) + q_fac(i) = parame(i,3)*parame(i,2)**4 *qq2(i) +END DO + +IF (dip_quad == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + idq2(i,j) = 0.0 + idq4(i,j) = 0.0 + idq2dt(i,j) = 0.0 + idq4dt(i,j) = 0.0 + idq2dt2(i,j)= 0.0 + idq4dt2(i,j)= 0.0 + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + DO m = 0, 4 + idq2(i,j) = idq2(i,j) + dqp2(i,j,m)*z3**REAL(m) + idq4(i,j) = idq4(i,j) + dqp4(i,j,m)*z3**REAL(m) + idq2dt(i,j) = idq2dt(i,j)+ dqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq4dt(i,j) = idq4dt(i,j)+ dqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq2dt2(i,j)= idq2dt2(i,j)+dqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idq4dt2(i,j)= idq4dt2(i,j)+dqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + + DO k = 1,ncomp + idq3(i,j,k) = 0.0 + idq3dt(i,j,k) = 0.0 + idq3dt2(i,j,k)= 0.0 + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + DO m = 0, 4 + idq3(i,j,k) = idq3(i,j,k) + dqp3(i,j,k,m)*z3**REAL(m) + idq3dt(i,j,k)= idq3dt(i,j,k)+ dqp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idq3dt2(i,j,k)= idq3dt2(i,j,k)+dqp3(i,j,k,m)*z3dt2*REAL(m) *z3**REAL(m-1) & + + dqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/4.0 * PI * rho + factor3= PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2dt= 0.0 + fdq3dt= 0.0 + fdq2dt2=0.0 + fdq3dt2=0.0 + DO i = 1,ncomp + DO j = 1,ncomp + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + xijmt = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 + factor2* xijmt/t/t*(idq2(i,j)+eij/t*idq4(i,j)) + fdq2dt= fdq2dt+ factor2* xijmt/t/t*(idq2dt(i,j)-2.0*idq2(i,j)/t & + + eij/t*idq4dt(i,j)-3.0*eij/t/t*idq4(i,j)) + fdq2dt2 = fdq2dt2+factor2*xijmt/t/t*(idq2dt2(i,j)-4.0*idq2dt(i,j)/t & + + 6.0*idq2(i,j)/t/t+eij/t*idq4dt2(i,j) & + - 6.0*eij/t/t*idq4dt(i,j)+12.0*eij/t**3 *idq4(i,j)) + DO k = 1,ncomp + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + xijkmt= x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + * ( myfac(i)*q_fac(j)*myfac(k) & + + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + + fdq3 =fdq3 + factor3*xijkmt/t**3 *idq3(i,j,k) + fdq3dt=fdq3dt+ factor3*xijkmt/t**3 * (idq3dt(i,j,k)-3.0*idq3(i,j,k)/t) + fdq3dt2=fdq3dt2+factor3*xijkmt/t**3 & + *( idq3dt2(i,j,k)-6.0*idq3dt(i,j,k)/t+12.0*idq3(i,j,k)/t/t ) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 /= 0.0 .AND. fdq3 /= 0.0) THEN + fdqdt = fdq2* (fdq2*fdq2dt - 2.0*fdq3*fdq2dt+fdq2*fdq3dt) / (fdq2-fdq3)**2 + fdqdt2 = ( 2.0*fdq2*fdq2dt*fdq2dt +fdq2*fdq2*fdq2dt2 & + - 2.0*fdq2dt**2 *fdq3 -2.0*fdq2*fdq2dt2*fdq3 +fdq2*fdq2*fdq3dt2 ) & + / (fdq2-fdq3)**2 + fdqdt * 2.0*(fdq3dt-fdq2dt)/(fdq2-fdq3) + END IF + +END IF +! ---------------------------------------------------------------------- + + + + +! ---------------------------------------------------------------------- +! total derivative of fres/kT to temperature +! ---------------------------------------------------------------------- + +df_dt = fhsdt + fchdt + fdspdt + fhbdt + fdddt + fqqdt + fdqdt + + + +! ---------------------------------------------------------------------- +! second derivative of fres/kT to T +! ---------------------------------------------------------------------- + +df_dt2 = fhsdt2 +fchdt2 +fdspdt2 +fhbdt2 +fdddt2 +fqqdt2 +fdqdt2 + + + +! ---------------------------------------------------------------------- +! ------ derivatives of fres/kt to density and to T -------------------- +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! the analytic derivative of fres/kT to (density and T) (df_drdt) +! is still missing. A numerical differentiation is implemented. +! ---------------------------------------------------------------------- +fact = 1.0 +dist = t * 100.E-5 * fact +t_tmp = t +rho_0 = rho + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr1 = pges / (eta*rho_0*(kbol*t)/1.E-30) +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr2 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr3 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr4 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + + +df_drdt = (-fdr4+8.0*fdr3-8.0*fdr2+fdr1)/(12.0*dist) + + + + + +! ---------------------------------------------------------------------- +! thermodynamic properties +! ---------------------------------------------------------------------- + +s_res = ( - df_dt *t - fres )*RGAS + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS *t +cv_res = - ( t*df_dt2 + 2.0*df_dt ) * RGAS*t +cp_res = cv_res - RGAS + RGAS*(zges +eta*t*df_drdt)**2 & + / (1.0 + 2.0*eta*dfdr +eta**2 *ddfdrdr) + +! write (*,*) 'df_... ', df_dt,df_dt2 +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h,cv,cp', h_res,cv_res,cp_res + + +END SUBROUTINE H_EOS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE H_EOS_num +! +! This subroutine calculates enthalpies and heat capacities (cp) by +! taking numerical derivatieves. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS_num +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: df_dt, df_dtdt, df_drdt, dfdr, ddfdrdr + +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +df_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +df_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +s_res = (- df_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*df_dtdt + 2.0*df_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_1 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_2 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_3 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_4 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + +dfdr = pges / (eta*rho_0*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho_0*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + +df_drdt = ( -f_4 +8.0*f_3 -8.0*f_2 +f_1) / (12.0*dist) + +cp_res = cv_res - RGAS +RGAS*(zges+eta*t*df_drdt)**2 & + * 1.0/(1.0 + 2.0*eta*dfdr + eta**2 *ddfdrdr) + +! write (*,*) 'n',df_dt,df_dtdt +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h, cv', h_res, cv_res +! write (*,*) h_res - t*s_res +! write (*,*) cv_res,cp_res,eta +! pause + +END SUBROUTINE H_EOS_num + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE DENSITY_ITERATION +! +! iterates the density until the calculated pressure 'pges' is equal to +! the specified pressure 'p'. A Newton-scheme is used for determining +! the root to the objective function f(eta) = (pges / p ) - 1.0. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE DENSITY_ITERATION +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, start, max_i + REAL :: eta_iteration + REAL :: error, dydx, acc_i, delta_eta +! ---------------------------------------------------------------------- + + +IF ( densav(phas) /= 0.0 .AND. eta_start == denold(phas) ) THEN + denold(phas) = eta_start + eta_start = densav(phas) +ELSE + denold(phas) = eta_start + densav(phas) = eta_start +END IF + + +acc_i = 1.d-9 +max_i = 30 +density_error(:) = 0.0 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- +iterate_density: DO + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = (pges / p ) - 1.0 + + ! --- instable region correction ------------------------------------- + IF ( pgesdz < 0.0 .AND. i < max_i ) THEN + IF ( error > 0.0 .AND. pgesd2 > 0.0 ) THEN ! no liquid density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) > 0.0 ) eta_iteration = 0.001 ! no solution possible + IF ( ((pges/p ) -1.0) <=0.0 ) eta_iteration = eta_iteration * 1.1 ! no solution found so far + ELSE IF ( error < 0.0 .AND. pgesd2 < 0.0 ) THEN ! no vapor density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) < 0.0 ) eta_iteration = 0.5 ! no solution possible + IF ( ((pges/p ) -1.0) >=0.0 ) eta_iteration = eta_iteration * 0.9 ! no solution found so far + ELSE + eta_iteration = (eta_iteration + eta_start) / 2.0 + IF (eta_iteration == eta_start) eta_iteration = eta_iteration + 0.2 + END IF + CYCLE iterate_density + END IF + + + dydx = pgesdz/p + delta_eta = error/ dydx + IF ( delta_eta > 0.05 ) delta_eta = 0.05 + IF ( delta_eta < -0.05 ) delta_eta = -0.05 + + eta_iteration = eta_iteration - delta_eta + + IF (eta_iteration > 0.9) eta_iteration = 0.6 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + start = 1 + + IF ( ABS(error*p/pgesdz) < 1.d-12 ) start = 0 + IF ( ABS(error) < acc_i ) start = 0 + IF ( i > max_i ) THEN + start = 0 + density_error(phas) = ABS( error ) + ! write (*,*) 'density iteration failed' + END IF + + IF (start /= 1) EXIT iterate_density + +END DO iterate_density + +eta = eta_iteration + +IF ((eta > 0.3 .AND. densav(phas) > 0.3) .OR. & + (eta < 0.1 .AND. densav(phas) < 0.1)) densav(phas) = eta + +END SUBROUTINE DENSITY_ITERATION + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE F_EOS +! +! calculates the Helmholtz energy f/kT. The input to the subroutine is +! (T,eta,x), where eta is the packing fraction. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_EOS +! + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean ! ,lij(nc,nc) + REAL :: I1,I2, c1_con + REAL :: fhs, fdsp, fhc + + LOGICAL :: assoc + INTEGER :: ass_cnt,max_eval + REAL :: delta(nc,nc,nsite,nsite) + REAL :: mx_itr(nc,nsite), err_sum, sum, attenu, tol, fhb + REAL :: ass_s1, ass_s2 + + REAL :: fdd, fqq, fdq +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t / ( PI / 6.0 ) +zms = 1.0 - eta + +! m_mean2 = 0.0 +! lij(1,2) = -0.05 +! lij(2,1) = lij(1,2) +! DO i = 1, ncomp +! DO j = 1, ncomp +! m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : hard sphere contribution +! ---------------------------------------------------------------------- +fhs= m_mean*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + +! ---------------------------------------------------------------------- +! Helmholtz energy : chain term +! ---------------------------------------------------------------------- +fhc = 0.0 +DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : PC-SAFT dispersion contribution +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + +! ---------------------------------------------------------------------- +! Helmholtz energy : SAFT (Chen, Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdsp = 0.0 + DO n = 1,4 + DO m = 1,9 + fdsp = fdsp + dnm(n,m) * (um/t)**REAL(n) *(eta/tau)**REAL(m) + END DO + END DO + fdsp = m_mean * fdsp + +END IF + + +! ---------------------------------------------------------------------- +! TPT-1-association according to Chapman et al. +! ---------------------------------------------------------------------- +fhb = 0.0 +assoc = .false. +DO i = 1, ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + IF (mx(i,k) == 0.0) mx(i,k) = 1.0 ! Initialize mx(i,j) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l) = gij(i,j) * ass_d(i,j,k,l) + END DO + END DO + END DO + END DO + + +! --- constants for iteration ------------------------------------------ + attenu = 0.70 + tol = 1.d-10 + IF (eta < 0.2) tol = 1.d-12 + IF (eta < 0.01) tol = 1.d-13 + max_eval = 200 + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum = sum + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,j,k,l) +! if (ass_cnt == 1) write (*,*) j,l,x(j), mx(j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum * rho) +! if (ass_cnt == 1) write (*,*) 'B',ass_cnt,sum, rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF (ass_cnt >= max_eval) WRITE(*,'(a,2G15.7)') 'F_EOS: Max_eval violated (mx) Err_Sum = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG( mx(i,k) ) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1 / 2.0 ) + END DO + +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! polar terms +! ---------------------------------------------------------------------- + CALL F_POLAR ( fdd, fqq, fdq ) + + +! ---------------------------------------------------------------------- +! resid. Helmholtz energy f/kT +! ---------------------------------------------------------------------- +fres = fhs + fhc + fdsp + fhb + fdd + fqq + fdq + +tfr= fres + +END SUBROUTINE F_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE EOS_NUMERICAL_DERIVATIVES, ONLY: ideal_gas, hard_sphere, chain_term, & + disp_term, hb_term, LC_term, branch_term, & + II_term, ID_term, subtract1, subtract2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + +!-----local variables------------------------------------------------- + INTEGER :: i, j + REAL :: m_mean2 + REAL :: fid, fhs, fdsp, fhc + REAL :: fhb, fdd, fqq, fdq + REAL :: fhend, fcc + REAL :: fbr, flc + REAL :: fref + + REAL :: eps_kij, k_kij +!--------------------------------------------------------------------- + +eps_kij = 0.0 +k_kij = 0.0 + +fid = 0.0 +fhs = 0.0 +fhc = 0.0 +fdsp= 0.0 +fhb = 0.0 +fdd = 0.0 +fqq = 0.0 +fdq = 0.0 +fcc = 0.0 +fbr = 0.0 +flc = 0.0 + + +CALL PERTURBATION_PARAMETER + +! ---------------------------------------------------------------------- +! overwrite the standard mixing rules by those published by Tang & Gross +! using an additional lij parameter +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*mseg(i)/t*( x(j)*mseg(j) & + *sig_ij(i,j)*(uij(i,i)*uij(j,j))**(1.0/6.0) )**3 *lij(i,j) + END DO +END DO + + +! ---------------------------------------------------------------------- +! a non-standard mixing rule scaling the hard-sphere term +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! (uses an additional lij parameter) +! ---------------------------------------------------------------------- +m_mean2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + ! m_mean2=m_mean2+x(i)*(x(j)*((mseg(i)+mseg(j))*0.5)**(1.0/3.0) *lij(i,j) )**3 + END DO +END DO + +! --- ideal gas contribution ------------------------------------------- +IF ( ideal_gas == 'yes' ) CALL F_IDEAL_GAS ( fid ) +! ---------------------------------------------------------------------- + +! --- hard-sphere contribution ----------------------------------------- +IF ( hard_sphere == 'CSBM' ) CALL F_HARD_SPHERE ( m_mean2, fhs ) +! ---------------------------------------------------------------------- + +! -- chain term -------------------------------------------------------- +IF ( chain_term == 'TPT1' ) CALL F_CHAIN_TPT1 ( fhc ) +IF ( chain_term == 'TPT2' ) CALL F_CHAIN_TPT_D ( fhc ) +IF ( chain_term == 'HuLiu' ) CALL F_CHAIN_HU_LIU ( fhc ) +IF ( chain_term == 'HuLiu_rc' ) CALL F_CHAIN_HU_LIU_RC ( fhs, fhc ) +!!IF ( chain_term == 'SPT' ) CALL F_SPT ( fhs, fhc ) +IF ( chain_term == 'SPT' ) WRITE(*,*) 'SPT NOT INCLUDED YET' +! ---------------------------------------------------------------------- + +! --- dispersive attraction -------------------------------------------- +IF ( disp_term == 'PC-SAFT') CALL F_DISP_PCSAFT ( fdsp ) +IF ( disp_term == 'CK') CALL F_DISP_CKSAFT ( fdsp ) +IF ( disp_term(1:2) == 'PT') CALL F_pert_theory ( fdsp ) +! ---------------------------------------------------------------------- + +! --- H-bonding contribution / Association ----------------------------- +IF ( hb_term == 'TPT1_Chap') CALL F_ASSOCIATION( eps_kij, k_kij, fhb ) +! ---------------------------------------------------------------------- + +! --- polar terms ------------------------------------------------------ + CALL F_POLAR ( fdd, fqq, fdq ) +! ---------------------------------------------------------------------- + +! --- ion-dipole term -------------------------------------------------- +IF ( ID_term == 'TBH') CALL F_ION_DIPOLE_TBH ( fhend ) +! ---------------------------------------------------------------------- + +! --- ion-ion term ----------------------------------------------------- +IF ( II_term == 'primMSA') CALL F_ION_ION_PrimMSA ( fcc ) +IF ( II_term == 'nprMSA') CALL F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! ---------------------------------------------------------------------- + +! --- liquid-crystal term ---------------------------------------------- +IF ( LC_term == 'MSaupe') CALL F_LC_MayerSaupe ( flc ) + +!!IF ( LC_term == 'OVL') fref = fhs + fhc +IF ( LC_term == 'OVL') WRITE(*,*) 'OVL NOT INCLUDED YET' +!IF ( LC_term == 'OVL') CALL F_LC_OVL ( fref, flc ) +!! IF ( LC_term == 'SPT') fref = fhs + fhc +IF ( LC_term == 'SPT') WRITE(*,*) 'SPT NOT INCLUDED YET' +!!IF ( LC_term == 'SPT') CALL F_LC_SPT( fref, flc ) +! ---------------------------------------------------------------------- + +! ====================================================================== +! SUBTRACT TERMS (local density approximation) FOR DFT +! ====================================================================== + +!IF ( subtract1 == '1PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract1 == '2PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract2 =='ITTpolar') CALL F_local_ITT_polar ( fdd ) +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! residual Helmholtz energy F/(NkT) +! ---------------------------------------------------------------------- +fres = fid + fhs + fhc + fdsp + fhb + fdd + fqq + fdq + fcc + flc + +tfr = 0.0 + +END SUBROUTINE F_NUMERICAL + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE P_EOS +! +! calculates the pressure in units (Pa). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_EOS +! +! ---------------------------------------------------------------------- + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + INTEGER :: ass_cnt,max_eval + LOGICAL :: assoc + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean + REAL :: zges, zgesdz, zgesd2, zgesd3 + REAL :: zhs, zhsdz, zhsd2, zhsd3 + REAL :: zhc, zhcdz, zhcd2, zhcd3 + REAL, DIMENSION(nc,nc) :: dgijdz, dgijd2, dgijd3, dgijd4 + REAL :: zdsp, zdspdz, zdspd2, zdspd3 + REAL :: c1_con, c2_con, c3_con, c4_con, c5_con + REAL :: I2, edI1dz, edI2dz, edI1d2, edI2d2 + REAL :: edI1d3, edI2d3, edI1d4, edI2d4 + REAL :: fdspdz,fdspd2 + REAL :: zhb, zhbdz, zhbd2, zhbd3 + REAL, DIMENSION(nc,nc,nsite,nsite) :: delta, dq_dz, dq_d2, dq_d3, dq_d4 + REAL, DIMENSION(nc,nsite) :: mx_itr, dmx_dz, ndmxdz, dmx_d2, ndmxd2 + REAL, DIMENSION(nc,nsite) :: dmx_d3, ndmxd3, dmx_d4, ndmxd4 + REAL :: err_sum, sum0, sum1, sum2, sum3, sum4, attenu, tol + REAL :: sum_d1, sum_d2, sum_d3, sum_d4 + REAL :: zdd, zddz, zddz2, zddz3 + REAL :: zqq, zqqz, zqqz2, zqqz3 + REAL :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t/(PI/6.0) +zms = 1.0 -eta + +! m_mean2=0.0 +! lij(1,2)= -0.050 +! lij(2,1)=lij(1,2) +! DO i =1,ncomp +! DO j =1,ncomp +! m_mean2=m_mean2+x(i)*x(j) * (mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij , and derivatives +! dgijdz=d(gij)/d(eta) and dgijd2 = dd(gij)/d(eta)**2 +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + ! j=i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + dgijd2(i,j) = 2.0/zms**3 & + + 6.0*dij_ab(i,j)*z2/z3/zms**4 *(2.0+z3) & + + (2.0*dij_ab(i,j)*z2/z3)**2 /zms**5 *(1.0+4.0*z3+z3*z3) + dgijd3(i,j) = 6.0/zms**4 & + + 18.0*dij_ab(i,j)*z2/z3/zms**5 *(3.0+z3) & + + 12.0*(dij_ab(i,j)*z2/z3/zms**3 )**2 *(3.0+6.0*z3+z3*z3) + dgijd4(i,j) = 24.0/zms**5 & + + 72.0*dij_ab(i,j)*z2/z3/zms**6 *(4.0+z3) & + + 48.0*(dij_ab(i,j)*z2/z3)**2 /zms**7 *(6.0+8.0*z3+z3*z3) + END DO +END DO + + +! ---------------------------------------------------------------------- +! p : hard sphere contribution +! ---------------------------------------------------------------------- +zhs = m_mean* ( z3/zms + 3.0*z1*z2/z0/zms/zms + z2**3 /z0*(3.0-z3)/zms**3 ) +zhsdz = m_mean*( 1.0/zms/zms + 3.0*z1*z2/z0/z3*(1.0+z3)/zms**3 & + + 6.0*z2**3 /z0/z3/zms**4 ) +zhsd2 = m_mean*( 2.0/zms**3 + 6.0*z1*z2/z0/z3*(2.0+z3)/zms**4 & + + 6.0*z2**3 /z0/z3/z3*(1.0+3.0*z3)/zms**5 ) +zhsd3 = m_mean*( 6.0/zms**4 + 18.0*z1*z2/z0/z3*(3.0+z3)/zms**5 & + + 24.0*z2**3 /z0/z3/z3*(2.0+3.0*z3)/zms**6 ) + + +! ---------------------------------------------------------------------- +! p : chain term +! ---------------------------------------------------------------------- +zhc = 0.0 +zhcdz = 0.0 +zhcd2 = 0.0 +zhcd3 = 0.0 +DO i= 1, ncomp + zhc = zhc + x(i)*(1.0-mseg(i))*eta/gij(i,i)* dgijdz(i,i) + zhcdz = zhcdz + x(i)*(1.0-mseg(i)) *(-eta*(dgijdz(i,i)/gij(i,i))**2 & + + dgijdz(i,i)/gij(i,i) + eta/gij(i,i)*dgijd2(i,i)) + zhcd2 = zhcd2 + x(i)*(1.0-mseg(i)) & + *( 2.0*eta*(dgijdz(i,i)/gij(i,i))**3 & + -2.0*(dgijdz(i,i)/gij(i,i))**2 & + -3.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) & + +2.0/gij(i,i)*dgijd2(i,i) +eta/gij(i,i)*dgijd3(i,i) ) + zhcd3 = zhcd3 + x(i)*(1.0-mseg(i)) *( 6.0*(dgijdz(i,i)/gij(i,i))**3 & + -6.0*eta*(dgijdz(i,i)/gij(i,i))**4 & + +12.0*eta/gij(i,i)**3 *dgijdz(i,i)**2 *dgijd2(i,i) & + -9.0/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) +3.0/gij(i,i)*dgijd3(i,i) & + -3.0*eta*(dgijd2(i,i)/gij(i,i))**2 & + -4.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd3(i,i) & + +eta/gij(i,i)*dgijd4(i,i) ) +END DO + +! ---------------------------------------------------------------------- +! p : PC-SAFT dispersion contribution +! note: edI1dz is equal to d(eta*I1)/d(eta), analogous for edI2dz +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I2 = 0.0 + edI1dz = 0.0 + edI2dz = 0.0 + edI1d2 = 0.0 + edI2d2 = 0.0 + edI1d3 = 0.0 + edI2d3 = 0.0 + edI1d4 = 0.0 + edI2d4 = 0.0 + DO m=0,6 + I2 = I2 + bpar(m)*z3**REAL(m) + edI1dz= edI1dz+apar(m)*REAL(m+1)*z3**REAL(m) + edI2dz= edI2dz+bpar(m)*REAL(m+1)*z3**REAL(m) + edI1d2= edI1d2+apar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI2d2= edI2d2+bpar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI1d3= edI1d3+apar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI2d3= edI2d3+bpar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI1d4= edI1d4+apar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + edI2d4= edI2d4+bpar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + c2_con= - c1_con*c1_con & + *(m_mean*(-4.0*eta**2 +20.0*eta+8.0)/zms**5 + (1.0 - m_mean) & + *(2.0*eta**3 +12.0*eta**2 -48.0*eta+40.0) & + /(zms*(2.0-eta))**3 ) + c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( m_mean*(-12.0*eta**2 +72.0*eta+60.0)/zms**6 & + + (1.0 - m_mean) & + *(-6.0*eta**4 -48.0*eta**3 +288.0*eta**2 & + -480.0*eta+264.0) /(zms*(2.0-eta))**4 ) + c4_con= 6.0*c2_con*c3_con/c1_con -6.0*c2_con**3 /c1_con**2 & + - c1_con*c1_con & + *( m_mean*(-48.0*eta**2 +336.0*eta+432.0)/zms**7 & + + (1.0 - m_mean) & + *(24.0*eta**5 +240.0*eta**4 -1920.0*eta**3 & + +4800.0*eta**2 -5280.0*eta+2208.0) /(zms*(2.0-eta))**5 ) + c5_con= 6.0*c3_con**2 /c1_con - 36.0*c2_con**2 /c1_con**2 *c3_con & + + 8.0*c2_con/c1_con*c4_con+24.0*c2_con**4 /c1_con**3 & + - c1_con*c1_con & + *( m_mean*(-240.0*eta**2 +1920.0*eta+3360.0)/zms**8 & + + (1.0 - m_mean) & + *(-120.0*eta**6 -1440.0*eta**5 +14400.0*eta**4 & + -48000.0*eta**3 +79200.0*eta**2 -66240.0*eta+22560.0) & + /(zms*(2.0-eta))**6 ) + + zdsp = - 2.0*PI*rho*edI1dz*order1 & + - PI*rho*order2*m_mean*(c2_con*I2*eta + c1_con*edI2dz) + zdspdz= zdsp/eta - 2.0*PI*rho*edI1d2*order1 & + - PI*rho*order2*m_mean*(c3_con*I2*eta & + + 2.0*c2_con*edI2dz + c1_con*edI2d2) + zdspd2= -2.0*zdsp/eta/eta +2.0*zdspdz/eta & + - 2.0*PI*rho*edI1d3*order1 - PI*rho*order2*m_mean*(c4_con*I2*eta & + + 3.0*c3_con*edI2dz +3.0*c2_con*edI2d2 +c1_con*edI2d3) + zdspd3= 6.0*zdsp/eta**3 -6.0*zdspdz/eta/eta & + + 3.0*zdspd2/eta - 2.0*PI*rho*edI1d4*order1 & + - PI*rho*order2*m_mean*(c5_con*I2*eta & + + 4.0*c4_con*edI2dz +6.0*c3_con*edI2d2 & + + 4.0*c2_con*edI2d3 + c1_con*edI2d4) + + +! ---------------------------------------------------------------------- +! p : SAFT (Chen & Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdspdz = 0.0 + fdspd2 = 0.0 + DO n = 1,4 + DO m = 1,9 + fdspdz = fdspdz + m_mean/tau * dnm(n,m) * (um/t)**REAL(n) *REAL(m)*(eta/tau)**REAL(m-1) + END DO + DO m= 2,9 + fdspd2= fdspd2 + m_mean/tau * dnm(n,m)*(um/t)**REAL(n) *REAL(m)*REAL(m-1) & + * (eta/tau)**REAL(m-2) * 1.0/tau + END DO + END DO + zdsp = eta * fdspdz + zdspdz = (2.0*fdspdz + eta*fdspd2) - zdsp/z3 + +END IF +! --- end of dispersion contribution ----------------------------------- + + +! ---------------------------------------------------------------------- +! p: TPT-1-association accord. to Chapman et al. +! ---------------------------------------------------------------------- +zhb = 0.0 +zhbdz = 0.0 +zhbd2 = 0.0 +zhbd3 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO j = 1, ncomp + DO i = 1, nhb_typ(j) + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + delta(j,k,i,l) = gij(j,k) * ass_d(j,k,i,l) + dq_dz(j,k,i,l) = dgijdz(j,k) * ass_d(j,k,i,l) + dq_d2(j,k,i,l) = dgijd2(j,k) * ass_d(j,k,i,l) + dq_d3(j,k,i,l) = dgijd3(j,k) * ass_d(j,k,i,l) + dq_d4(j,k,i,l) = dgijd4(j,k) * ass_d(j,k,i,l) + END DO + END DO + END DO + END DO + +! --- constants for iteration ------------------------------------------ + attenu = 0.7 + tol = 1.d-10 + IF ( eta < 0.2 ) tol = 1.d-12 + IF ( eta < 0.01 ) tol = 1.d-13 + IF ( eta < 1.E-6) tol = 1.d-15 + max_eval = 1000 + +! --- initialize mx(i,j) ----------------------------------------------- + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + mx(i,j) = 1.0 + dmx_dz(i,j) = 0.0 + dmx_d2(i,j) = 0.0 + dmx_d3(i,j) = 0.0 + dmx_d4(i,j) = 0.0 + END DO + END DO + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + err_sum = tol + 1.0 + DO WHILE ( err_sum > tol .AND. ass_cnt <= max_eval) + ass_cnt = ass_cnt + 1 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + sum0 = 0.0 + sum1 = 0.0 + sum2 = 0.0 + sum3 = 0.0 + sum4 = 0.0 + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + sum0 =sum0 +x(k)*nhb_no(k,l)* mx(k,l)* delta(i,k,j,l) + sum1 =sum1 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_dz(i,k,j,l) & + + dmx_dz(k,l)* delta(i,k,j,l)) + sum2 =sum2 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d2(i,k,j,l) & + + 2.0*dmx_dz(k,l)* dq_dz(i,k,j,l) & + + dmx_d2(k,l)* delta(i,k,j,l)) + sum3 =sum3 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d3(i,k,j,l) & + + 3.0*dmx_dz(k,l)* dq_d2(i,k,j,l) & + + 3.0*dmx_d2(k,l)* dq_dz(i,k,j,l) & + + dmx_d3(k,l)* delta(i,k,j,l)) + sum4 =sum4 + x(k)*nhb_no(k,l)*( mx(k,l)* dq_d4(i,k,j,l) & + + 4.0*dmx_dz(k,l)* dq_d3(i,k,j,l) & + + 6.0*dmx_d2(k,l)* dq_d2(i,k,j,l) & + + 4.0*dmx_d3(k,l)* dq_dz(i,k,j,l) & + + dmx_d4(k,l)* delta(i,k,j,l)) + END DO + END DO + mx_itr(i,j)= 1.0 / (1.0 + sum0 * rho) + ndmxdz(i,j)= -(mx_itr(i,j)*mx_itr(i,j))* (sum0/z3t +sum1*rho) + ndmxd2(i,j)= + 2.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxdz(i,j) & + - (mx_itr(i,j)*mx_itr(i,j)) * (2.0/z3t*sum1 + rho*sum2) + ndmxd3(i,j)= - 6.0/mx_itr(i,j)**2 *ndmxdz(i,j)**3 & + + 6.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd2(i,j) - mx_itr(i,j)*mx_itr(i,j) & + * (3.0/z3t*sum2 + rho*sum3) + ndmxd4(i,j)= 24.0/mx_itr(i,j)**3 *ndmxdz(i,j)**4 & + -36.0/mx_itr(i,j)**2 *ndmxdz(i,j)**2 *ndmxd2(i,j) & + +6.0/mx_itr(i,j)*ndmxd2(i,j)**2 & + +8.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd3(i,j) - mx_itr(i,j)**2 & + *(4.0/z3t*sum3 + rho*sum4) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,j) - mx(i,j)) & + + ABS(ndmxdz(i,j) - dmx_dz(i,j)) + ABS(ndmxd2(i,j) - dmx_d2(i,j)) + mx(i,j) = mx_itr(i,j)*attenu + mx(i,j) * (1.0-attenu) + dmx_dz(i,j) = ndmxdz(i,j)*attenu + dmx_dz(i,j) * (1.0-attenu) + dmx_d2(i,j) = ndmxd2(i,j)*attenu + dmx_d2(i,j) * (1.0-attenu) + dmx_d3(i,j) = ndmxd3(i,j)*attenu + dmx_d3(i,j) * (1.0-attenu) + dmx_d4(i,j) = ndmxd4(i,j)*attenu + dmx_d4(i,j) * (1.0-attenu) + END DO + END DO + END DO + + IF ( ass_cnt >= max_eval .AND. err_sum > SQRT(tol) ) THEN + WRITE (*,'(a,2G15.7)') 'P_EOS: Max_eval violated (mx) Err_Sum= ',err_sum,tol + ! stop + END IF + + + ! --- calculate the hydrogen-bonding contribution -------------------- + DO i = 1, ncomp + sum_d1 = 0.0 + sum_d2 = 0.0 + sum_d3 = 0.0 + sum_d4 = 0.0 + DO j = 1, nhb_typ(i) + sum_d1= sum_d1 +nhb_no(i,j)* dmx_dz(i,j)*(1.0/mx(i,j)-0.5) + sum_d2= sum_d2 +nhb_no(i,j)*(dmx_d2(i,j)*(1.0/mx(i,j)-0.5) & + -(dmx_dz(i,j)/mx(i,j))**2 ) + sum_d3= sum_d3 +nhb_no(i,j)*(dmx_d3(i,j)*(1.0/mx(i,j)-0.5) & + -3.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d2(i,j) + 2.0*(dmx_dz(i,j)/mx(i,j))**3 ) + sum_d4= sum_d4 +nhb_no(i,j)*(dmx_d4(i,j)*(1.0/mx(i,j)-0.5) & + -4.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d3(i,j) & + + 12.0/mx(i,j)**3 *dmx_dz(i,j)**2 *dmx_d2(i,j) & + - 3.0/mx(i,j)**2 *dmx_d2(i,j)**2 - 6.0*(dmx_dz(i,j)/mx(i,j))**4 ) + END DO + zhb = zhb + x(i) * eta * sum_d1 + zhbdz = zhbdz + x(i) * eta * sum_d2 + zhbd2 = zhbd2 + x(i) * eta * sum_d3 + zhbd3 = zhbd3 + x(i) * eta * sum_d4 + END DO + zhbdz = zhbdz + zhb/eta + zhbd2 = zhbd2 + 2.0/eta*zhbdz-2.0/eta**2 *zhb + zhbd3 = zhbd3 - 6.0/eta**2 *zhbdz+3.0/eta*zhbd2 + 6.0/eta**3 *zhb +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! p: polar terms +! ---------------------------------------------------------------------- +CALL P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) + + +! ---------------------------------------------------------------------- +! compressibility factor z and total p +! as well as derivatives d(z)/d(eta) and d(p)/d(eta) with unit [Pa] +! ---------------------------------------------------------------------- +zges = 1.0 + zhs + zhc + zdsp + zhb + zdd + zqq + zdq +zgesdz = zhsdz + zhcdz + zdspdz + zhbdz + zddz + zqqz + zdqz +zgesd2 = zhsd2 + zhcd2 + zdspd2 + zhbd2 + zddz2 +zqqz2+zdqz2 +zgesd3 = zhsd3 + zhcd3 + zdspd3 + zhbd3 + zddz3 +zqqz3+zdqz3 + +pges = zges *rho *(kbol*t)/1.d-30 +pgesdz = ( zgesdz*rho + zges*rho/z3 )*(kbol*t)/1.d-30 +pgesd2 = ( zgesd2*rho + 2.0*zgesdz*rho/z3 )*(kbol*t)/1.d-30 +pgesd3 = ( zgesd3*rho + 3.0*zgesd2*rho/z3 )*(kbol*t)/1.d-30 + +END SUBROUTINE P_EOS + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(OUT) :: fdd_rk, fqq_rk, fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd_rk = 0.0 + fqq_rk = 0.0 + fdq_rk = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) + ! IF (dd_term == 'SF') CALL PHI_DD_SAAGER_FISCHER( k ) + + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL PHI_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL PHI_QQ_GROSS( k, z3_rk, fqq_rk ) + + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) + + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE PHI_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdd_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdd2, fdd3, fdd2x, fdd3x + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd4, Idd2x, Idd4x + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3x +! ---------------------------------------------------------------------- + + + fdd_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2x(i,j) = 0.0 + Idd4x(i,j) = 0.0 + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + DO m=0,4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m)*z3**m + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m)*z3**m + Idd2x(i,j) =Idd2x(i,j)+ ddp2(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + Idd4x(i,j) =Idd4x(i,j)+ ddp4(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Idd3(i,j,l) = 0.0 + Idd3x(i,j,l) = 0.0 + IF (parame(l,6) /= 0.0) THEN + DO m=0,4 + Idd3(i,j,l) =Idd3(i,j,l) +ddp3(i,j,l,m)*z3**m + Idd3x(i,j,l)=Idd3x(i,j,l)+ddp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -PI + factor3= -4.0/3.0*PI**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2x = 0.0 + fdd3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(i,k)**3 + eij = (parame(i,3)*parame(k,3))**0.5 + fdd2x = fdd2x + factor2*xijfa_x*( Idd2(i,k) + eij/t*Idd4(i,k) ) + DO j = 1, ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,j)**3 + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j) ) + fdd2x =fdd2x +factor2*xijfa*(Idd2x(i,j)+eij/t*Idd4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t/sig_ij(i,j) & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,k) & + *3.0* uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(j,k) + fdd3x=fdd3x+factor3*xijkf_x*Idd3(i,j,k) + DO l=1,ncomp + IF (parame(l,6) /= 0.0) THEN + xijkfa= x(i)*rho*uij(i,i)/t*my2dd(i)*sig_ij(i,i)**3 & + *x(j)*rho*uij(j,j)/t*my2dd(j)*sig_ij(j,j)**3 & + *x(l)*rho*uij(l,l)/t*my2dd(l)*sig_ij(l,l)**3 & + /sig_ij(i,j)/sig_ij(i,l)/sig_ij(j,l) + fdd3 =fdd3 + factor3 * xijkfa *Idd3(i,j,l) + fdd3x =fdd3x + factor3 * xijkfa *Idd3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2x /= 0.0 .AND. fdd3x /= 0.0)THEN + + fdd_rk = fdd2* (fdd2*fdd2x - 2.0*fdd3*fdd2x+fdd2*fdd3x) / (fdd2-fdd3)**2 + + END IF + +END SUBROUTINE PHI_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_QQ_GROSS( k, z3_rk, fqq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fqq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fqq2, fqq3, fqq2x, fqq3x + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4, Iqq2x, Iqq4x + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3x +! ---------------------------------------------------------------------- + + + fqq_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_QQ_GROSS: do not use dimensionless units' + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2x(i,j) = 0.0 + Iqq4x(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m) * z3**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m) * z3**m + Iqq2x(i,j) = Iqq2x(i,j) + qqp2(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + Iqq4x(i,j) = Iqq4x(i,j) + qqp4(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Iqq3(i,j,l) = 0.0 + Iqq3x(i,j,l) = 0.0 + IF (parame(l,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,l) = Iqq3(i,j,l) + qqp3(i,j,l,m)*z3**m + Iqq3x(i,j,l) = Iqq3x(i,j,l) + qqp3(i,j,l,m)*REAL(m) *z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/16.0*PI + factor3= 9.0/16.0*PI**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2x = 0.0 + fqq3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(i,k)**7.0 + eij = (parame(i,3)*parame(k,3))**0.5 + fqq2x =fqq2x +factor2*xijfa_x*(Iqq2(i,k)+eij/t*Iqq4(i,k)) + DO j=1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2x =fqq2x +factor2*xijfa*(Iqq2x(i,j)+eij/t*Iqq4x(i,j)) + ! ------------------ + xijkf_x=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *3.0* uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3x = fqq3x + factor3*xijkf_x*Iqq3(i,j,k) + DO l = 1, ncomp + IF (parame(l,7) /= 0.0) THEN + xijkfa=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,l)**3 & + *x(l)*rho*uij(l,l)*qq2(l)*sig_ij(l,l)**5 /t/sig_ij(j,l)**3 + fqq3 =fqq3 + factor3 * xijkfa *Iqq3(i,j,l) + fqq3x =fqq3x + factor3 * xijkfa *Iqq3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2x /= 0.0 .AND. fqq3x /= 0.0) THEN + fqq_rk = fqq2* (fqq2*fqq2x - 2.0*fqq3*fqq2x+fqq2*fqq3x) / (fqq2-fqq3)**2 + END IF + +END SUBROUTINE PHI_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdq2, fdq3, fdq2x, fdq3x + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4, Idq2x, Idq4x + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3x +! ---------------------------------------------------------------------- + + fdq_rk = 0.0 + z3 = eta + DO i=1,ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2x(i,j) = 0.0 + Idq4x(i,j) = 0.0 + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*z3**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*z3**m + Idq2x(i,j) = Idq2x(i,j) + dqp2(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + Idq4x(i,j) = Idq4x(i,j) + dqp4(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + END DO + DO l = 1, ncomp + Idq3(i,j,l) = 0.0 + Idq3x(i,j,l) = 0.0 + DO m = 0, 4 + Idq3(i,j,l) =Idq3(i,j,l) +dqp3(i,j,l,m)*z3**m + Idq3x(i,j,l)=Idq3x(i,j,l)+dqp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END DO + END DO + END DO + + factor2= -9.0/4.0*PI + factor3= PI**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2x = 0.0 + fdq3x = 0.0 + DO i = 1, ncomp + xijfa_x = x(i)*rho*( myfac(i)*q_fac(k) + myfac(k)*q_fac(i) ) / sig_ij(i,k)**5 + eij = (parame(i,3)*parame(k,3))**0.5 + fdq2x =fdq2x +factor2*xijfa_x*(Idq2(i,k)+eij/t*Idq4(i,k)) + DO j=1,ncomp + xijfa =x(i)*rho*myfac(i) * x(j)*rho*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2x =fdq2x +factor2*xijfa*(Idq2x(i,j) +eij/t*Idq4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*x(j)*rho/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(k)*myfac(j) & + + myfac(k)*q_fac(i)*myfac(j) +myfac(i)*q_fac(j)*q_fac(k)*1.1937350 & + +myfac(i)*q_fac(k)*q_fac(j)*1.193735 & + +myfac(k)*q_fac(i)*q_fac(j)*1.193735 ) + fdq3x = fdq3x + factor3*xijkf_x*Idq3(i,j,k) + DO l = 1, ncomp + xijkfa=x(i)*rho*x(j)*rho*x(l)*rho/(sig_ij(i,j)*sig_ij(i,l)*sig_ij(j,l))**2 & + *( myfac(i)*q_fac(j)*myfac(l) & + +myfac(i)*q_fac(j)*q_fac(l)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa *Idq3(i,j,l) + fdq3x =fdq3x + factor3 * xijkfa *Idq3x(i,j,l) + END DO + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2x /= 0.0 .AND. fdq3x /= 0.0)THEN + + fdq_rk = fdq2* (fdq2*fdq2x - 2.0*fdq3*fdq2x+fdq2*fdq3x) / (fdq2-fdq3)**2 + + END IF + +END SUBROUTINE PHI_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_NUMERICAL +! + USE EOS_VARIABLES + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + REAL :: dzetdv, eta_0, dist, fact + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: df_dr, df_drdr, pideal, dpiddz + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +IF (eta > 0.1) THEN + fact = 1.0 +ELSE IF (eta <= 0.1 .AND. eta > 0.01) THEN + fact = 10.0 +ELSE + fact = 10.0 +END IF +dist = eta*3.d-3 *fact +! dist = eta*4.d-3 *fact +!***************************** +! fuer MC simulation: neues dist: +! dist = eta*5.d-3*fact + +eta_0 = eta +eta = eta_0 - 2.0*dist +CALL F_NUMERICAL +fres1 = fres +tfr_1 = tfr +eta = eta_0 - dist +CALL F_NUMERICAL +fres2 = fres +tfr_2 = tfr +eta = eta_0 + dist +CALL F_NUMERICAL +fres3 = fres +tfr_3 = tfr +eta = eta_0 + 2.0*dist +CALL F_NUMERICAL +fres4 = fres +tfr_4 = tfr +eta = eta_0 +CALL F_NUMERICAL +fres5 = fres +tfr_5 = tfr + +!--------------------------------------------------------- +! ptfr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! & *dzetdv*(KBOL*T)/1.E-30 +! ztfr =ptfr /( rho * (KBOL*t) / 1.E-30) +! ptfrdz = (-tfr_4+16.0*tfr_3-3.d1*tfr_5+16.0*tfr_2-tfr_1) +! & /(12.0*(dist**2 ))* dzetdv*(KBOL*T)/1.E-30 +! & + (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1) +! & /(12.0*dist) * 2.0 *eta*6.0/PI/D +! & *(KBOL*T)/1.E-30 +! ztfrdz=ptfrdz/( rho*(kbol*T)/1.E-30 ) - ztfr/eta +! write (*,*) eta,ztfr,ztfrdz + +! dtfr_dr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! write (*,*) eta,dtfr_dr +! stop +!--------------------------------------------------------- + +df_dr = (-fres4+8.0*fres3-8.0*fres2+fres1) / (12.0*dist) +df_drdr = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +dzetdv = eta*rho + +pges = (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) *dzetdv*(kbol*t)/1.E-30 + +dpiddz = 1.0/z3t*(kbol*t)/1.E-30 +pgesdz = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 ))* dzetdv*(kbol*t)/1.E-30 & + + (-fres4+8.0*fres3-8.0*fres2+fres1) /(12.0*dist) * 2.0 *rho & + *(kbol*t)/1.E-30 + dpiddz + +pgesd2 = (fres4-2.0*fres3+2.0*fres2-fres1) /(2.0*dist**3 ) & + * dzetdv*(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) & + * 4.0 *rho *(kbol*t)/1.E-30 + (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) * 2.0 /z3t *(kbol*t)/1.E-30 +pgesd3 = (fres4-4.0*fres3+6.0*fres5-4.0*fres2+fres1) /(dist**4 ) & + * dzetdv*(kbol*t)/1.E-30 + (fres4-2.0*fres3+2.0*fres2-fres1) & + /(2.0*dist**3 ) * 6.0 *rho *(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*dist**2 )* 6.0 /z3t *(kbol*t)/1.E-30 + +!------------------p ideal------------------------------------ +pideal = rho * (kbol*t) / 1.E-30 + +!------------------p summation, p comes out in Pa ------------ +pges = pideal + pges + +END SUBROUTINE P_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_numerical +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1,fres2,fres3,fres4,fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: f_dt, f_dtdt, f_dr, f_drdr, f_drdt +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +f_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +f_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) + +s_res = (- f_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*f_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*f_dtdt + 2.0*f_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_1 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_2 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_3 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_4 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL + +f_dr = pges / (eta*rho_0*(KBOL*T)/1.E-30) +f_drdr = pgesdz/ (eta*rho_0*(KBOL*T)/1.E-30) - f_dr*2.0/eta - 1.0/eta**2 + +f_drdt = ( - f_4 + 8.0*f_3 - 8.0*f_2 + f_1 ) / ( 12.0*dist ) + +cp_res = cv_res - RGAS + RGAS*( zges + eta*t*f_drdt)**2 / (1.0 + 2.0*eta*f_dr + eta**2 *f_drdr) +! write (*,*) cv_res,cp_res,eta + + +END SUBROUTINE H_numerical + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_POLAR ( fdd, fqq, fdq ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fdd, fqq, fdq +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL F_DD_GROSS_VRABEC( fdd ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL F_QQ_GROSS( fqq ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL F_DQ_VRABEC_GROSS( fdq ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE F_POLAR + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PRESSURE_SPINODAL +! +! iterates the density until the derivative of pressure 'pges' to +! density is equal to zero. A Newton-scheme is used for determining +! the root to the objective function. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRESSURE_SPINODAL +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, max_i + REAL :: eta_iteration + REAL :: error, acc_i, delta_eta +! ---------------------------------------------------------------------- + +acc_i = 1.d-6 +max_i = 30 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- + +error = acc_i + 1.0 +DO WHILE ( ABS(error) > acc_i .AND. i < max_i ) + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = pgesdz + + delta_eta = error/ pgesd2 + IF ( delta_eta > 0.02 ) delta_eta = 0.02 + IF ( delta_eta < -0.02 ) delta_eta = -0.02 + + eta_iteration = eta_iteration - delta_eta + ! write (*,'(a,i3,3G18.10)') 'iter',i, error, eta_iteration, pgesdz + + IF (eta_iteration > 0.9) eta_iteration = 0.5 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + +END DO + +eta = eta_iteration + +END SUBROUTINE PRESSURE_SPINODAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_IDEAL_GAS ( fid ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, x, rho, PI, KBOL, NAv + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fid +!--------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi +!---------------------------------------------------------------------- + + !h_Planck = 6.62606896E-34 ! Js + DO i = 1, ncomp + rhoi(i) = x(i) * rho + ! debroglie(i) = h_Planck *1d10 & ! in units Angstrom + ! *SQRT( 1.0 / (2.0*PI *1.0 / NAv / 1000.0 * KBOL*T) ) + ! ! *SQRT( 1.0 / (2.0*PI *mm(i) /NAv/1000.0 * KBOL*T) ) + ! fid = fid + x(i) * ( LOG(rhoi(i)*debroglie(i)**3) - 1.0 ) + fid = fid + x(i) * ( LOG(rhoi(i)) - 1.0 ) + END DO + + END SUBROUTINE F_IDEAL_GAS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_HARD_SPHERE ( m_mean2, fhs ) +! + USE EOS_VARIABLES, ONLY: z0t, z1t, z2t, z3t, eta, rho + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: m_mean2 + REAL, INTENT(IN OUT) :: fhs +!--------------------------------------------------------------------- + REAL :: z0, z1, z2, z3, zms +!---------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + fhs= m_mean2*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + + END SUBROUTINE F_HARD_SPHERE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT1 ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, & + rho, eta, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + fhc = 0.0 + DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) + END DO + + END SUBROUTINE F_CHAIN_TPT1 + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT_D ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, rho, eta, & + dhs, mseg, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL, DIMENSION(nc) :: gij_hd + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + DO i = 1, ncomp + gij_hd(i) = 1.0/(2.0*zms) + 3.0*dij_ab(i,i)*z2 / zms**2 + END DO + + fhc = 0.0 + DO i = 1, ncomp + IF ( mseg(i) >= 2.0 ) THEN + fhc = fhc - x(i) * ( mseg(i)/2.0 * LOG( gij(i,i) ) + ( mseg(i)/2.0 - 1.0 ) * LOG( gij_hd(i)) ) + ELSE + fhc = fhc + x(i) * ( 1.0 - mseg(i) ) * LOG( gij(i,i) ) + END IF + END DO + + END SUBROUTINE F_CHAIN_TPT_D + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, rho, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: a20, b20, c20, a30, b30, c30 + REAL :: sum1, sum2, am, bm, cm + REAL :: zms +!--------------------------------------------------------------------- + + zms = 1.0 - eta + + sum1 = SUM( x(1:ncomp)*(mseg(1:ncomp)-1.0) ) + sum2 = SUM( x(1:ncomp)/mseg(1:ncomp)*(mseg(1:ncomp)-1.0)*(mseg(1:ncomp)-2.0) ) + + a2 = 0.45696 + a3 = -0.74745 + b2 = 2.10386 + b3 = 3.49695 + c2 = 1.75503 + c3 = 4.83207 + a20 = - a2 + b2 - 3.0*c2 + b20 = - a2 - b2 + c2 + c20 = c2 + a30 = - a3 + b3 - 3.0*c3 + b30 = - a3 - b3 + c3 + c30 = c3 + am = (3.0 + a20) * sum1 + a30 * sum2 + bm = (1.0 + b20) * sum1 + b30 * sum2 + cm = (1.0 + c20) * sum1 + c30 * sum2 + + fhc = - ( (am*eta - bm) / (2.0*zms) + bm/2.0/zms**2 - cm *LOG(ZMS) ) + + + END SUBROUTINE F_CHAIN_HU_LIU + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU_RC ( fhs, fhc ) +! + USE EOS_VARIABLES, ONLY: mseg, chiR, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: fhs + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: para1,para2,para3,para4 + REAL :: aLH,bLH,cLH +!--------------------------------------------------------------------- + +! This routine is only for pure components + + a2 = 0.45696 + b2 = 2.10386 + c2 = 1.75503 + + para1 = -0.74745 + para2 = 0.299154629727814 + para3 = 1.087271036653154 + para4 = -0.708979110326831 + a3 = para1 + para2*chiR(1) + para3*chiR(1)**2 + para4*chiR(1)**3 + b3 = 3.49695 - (3.49695 + 0.317719074806190)*chiR(1) + c3 = 4.83207 - (4.83207 - 3.480163780334421)*chiR(1) + + aLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*a2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*a3 ) + bLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*b2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*b3 ) + cLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*c2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*c3 ) + + fhc = ((3.0 + aLH - bLH + 3.0*cLH)*eta - (1.0 + aLH + bLH - cLH)) / (2.0*(1.0-eta)) + & + (1.0 + aLH + bLH - cLH) / ( 2.0*(1.0-eta)**2 ) + (cLH - 1.0)*LOG(1.0-eta) + + fhc = fhc - fhs + + END SUBROUTINE F_CHAIN_HU_LIU_RC + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_PCSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: PI, rho, eta, z0t, apar, bpar, order1, order2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: m + REAL :: I1, I2, c1_con, z3, zms, m_mean +!--------------------------------------------------------------------- + + z3 = eta + zms = 1.0 - eta + m_mean = z0t / ( PI / 6.0 ) + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m) * z3**m + I2 = I2 + bpar(m) * z3**m + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0-m_mean)*( 20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 )/(zms*(2.0-z3))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + + END SUBROUTINE F_DISP_PCSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_CKSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, PI, TAU, t, rho, eta, x, z0t, mseg, vij, uij, parame, um + USE EOS_CONSTANTS, ONLY: DNM + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: i, j, n, m + REAL :: zmr, nmr, m_mean +!--------------------------------------------------------------------- + + m_mean = z0t / ( PI / 6.0 ) + + DO i = 1, ncomp + DO j = 1, ncomp + vij(i,j)=(0.5*((parame(i,2)*(1.0-0.12 *EXP(-3.0*parame(i,3)/t))**3 )**(1.0/3.0) & + +(parame(j,2)*(1.0-0.12 *EXP(-3.0*parame(j,3)/t))**3 )**(1.0/3.0)))**3 + END DO + END DO + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr + fdsp = 0.0 + DO n = 1, 4 + DO m = 1, 9 + fdsp = fdsp + DNM(n,m) * (um/t)**n *(eta/TAU)**m + END DO + END DO + fdsp = m_mean * fdsp + + + END SUBROUTINE F_DISP_CKSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ASSOCIATION ( eps_kij, k_kij, fhb ) +! + USE EOS_VARIABLES, ONLY: nc, nsite, ncomp, t, z0t, z1t, z2t, z3t, rho, eta, x, & + parame, sig_ij, dij_ab, gij, nhb_typ, mx, nhb_no + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: eps_kij, k_kij + REAL, INTENT(IN OUT) :: fhb +!--------------------------------------------------------------------- + LOGICAL :: assoc + INTEGER :: i, j, k, l, no, ass_cnt, max_eval + REAL, DIMENSION(nc,nc) :: kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nsite,nc,nsite) :: delta + REAL, DIMENSION(nc,nsite) :: mx_itr + REAL :: err_sum, sum0, amix, tol, ass_s1, ass_s2 + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + assoc = .false. + DO i = 1,ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + + DO i = 1, ncomp + IF ( NINT(parame(i,12)) /= 0 ) THEN + nhb_typ(i) = NINT( parame(i,12) ) + kap_hb(i,i) = parame(i,13) + no = 0 + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(i) + eps_hb(i,i,k,l) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO k = 1,nhb_typ(i) + nhb_no(i,k) = parame(i,(14+no)) + no = no + 1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0.AND.nhb_typ(j) /= 0) ) THEN + ! kap_hb(i,j)= (kap_hb(i,i)+kap_hb(j,j))/2.0 + ! kap_hb(i,j)= ( ( kap_hb(i,i)**(1.0/3.0) + kap_hb(j,j)**(1.0/3.0) )/2.0 )**3 + kap_hb(i,j) = (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + / (0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF ( k /= l .AND. nhb_typ(i) >= 2 .AND. nhb_typ(j) >= 2 ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)*eps_hb(j,j,l,k))**0.5 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + ELSE IF ( nhb_typ(i) == 1 .AND. l > k ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(j,i,l,k) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + eps_hb(j,i,l,k) = eps_hb(j,i,l,k)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + +!-----setting the self-association to zero for ionic compounds------ + DO i = 1,ncomp + IF ( parame(i,10) /= 0) kap_hb(i,i)=0.0 + DO j = 1,ncomp + IF ( parame(i,10) /= 0 .AND. parame(j,10) /= 0 ) kap_hb(i,j) = 0.0 + END DO + END DO + ! kap_hb(1,2)=0.050 + ! kap_hb(2,1)=0.050 + ! eps_hb(2,1,1,1)=465.0 + ! eps_hb(1,2,1,1)=465.0 + ! nhb_typ(1) = 1 + ! nhb_typ(2) = 1 + ! nhb_no(1,1)= 1.0 + ! nhb_no(2,1)= 1.0 + + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,k,j,l)=gij(i,j)*kap_hb(i,j)*(EXP(eps_hb(i,j,k,l)/t)-1.0) *sig_ij(i,j)**3 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! IF ((i+j).EQ.3) delta(i,k,j,l)=94.0 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + END DO + END DO + IF ( mx(i,k) == 0.0 ) mx(i,k) = 1.0 + END DO + END DO + +!------constants for Iteration --------------------------------------- + amix = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-14 + max_eval = 200 + +! --- Iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum0 = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum0 = sum0 + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,k,j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum0*rho) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS( mx_itr(i,k) - mx(i,k) ) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * amix + mx(i,k) * (1.0 - amix) + IF ( mx(i,k) <= 0.0 ) mx(i,k)=1.E-50 + IF ( mx(i,k) > 1.0 ) mx(i,k)=1.0 + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF ( ass_cnt >= max_eval ) WRITE(*,*) 'F_NUMERICAL: Max_eval violated = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG(mx(i,k)) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1/2.0 ) + END DO + + END IF + + END SUBROUTINE F_ASSOCIATION + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_DIPOLE_TBH ( fhend ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, eta, x, z0t, parame, uij, sig_ij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhend +!--------------------------------------------------------------------- + INTEGER :: i, dipole, ions + REAL :: m_mean + REAL :: fh32, fh2, fh52, fh3 + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: polabil, ydd, kappa, x_dipol, x_ions + REAL, DIMENSION(nc) :: my2dd, z_ii, e_cd, x_dd, x_ii + REAL :: sig_c, sig_d, sig_cd, r_s + REAL :: I0cc, I1cc, I2cc, Icd, Idd + REAL :: Iccc, Iccd, Icdd, Iddd +!--------------------------------------------------------------------- + +m_mean = z0t / ( PI / 6.0 ) + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + + 2.78E1*(t/293.15))*rho_sol**2 & + + (-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + - 1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + + 8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Dipole-Ion Term----------------------------------- +dipole = 0 +ions = 0 +fhend = 0.0 +DO i = 1, ncomp + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*sig_ij(i,i)**3 *1.E-30) + dipole = 1 + ELSE + my2dd(i) = 0.0 + END IF + + z_ii(i) = parame(i,10) + IF ( z_ii(i) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + e_cd(i) = ( parame(i,10)*e_elem* 1.E5 / SQRT(1.11265005) )**2 & + / ( uij(i,i)*kbol*sig_ij(i,i)*1.E-10 ) + ions = 1 + ELSE + e_cd(i) = 0.0 + END IF +END DO + + +IF ( dipole == 1 .AND. ions == 1 ) THEN + + ydd = 0.0 + kappa = 0.0 + x_dipol = 0.0 + x_ions = 0.0 + polabil = 0.0 + DO i = 1, ncomp + ydd = ydd + x(i)*(parame(i,6))**2 *1.E-49/ (kbol*t*1.E-30) + kappa = kappa + x(i) & + *(parame(i,10)*e_elem* 1.E5/SQRT(1.11265005))**2 /(KBOL*t*1.E-10) + IF (parame(i,10) /= 0.0) THEN + x_ions = x_ions + x(i) + ELSE + polabil = polabil + 4.0*PI*x(i)*rho*1.4573 *1.E-30 & + / (sig_ij(3,3)**3 *1.E-30) + END IF + IF (parame(i,6) /= 0.0) x_dipol= x_dipol+ x(i) + END DO + ydd = ydd * 4.0/9.0 * PI * rho + kappa = SQRT( 4.0 * PI * rho * kappa ) + + fh2 = 0.0 + sig_c = 0.0 + sig_d = 0.0 + DO i=1,ncomp + x_ii(i) = 0.0 + x_dd(i) = 0.0 + IF(parame(i,10) /= 0.0 .AND. x_ions /= 0.0) x_ii(i) = x(i)/x_ions + IF(parame(i,6) /= 0.0 .AND. x_dipol /= 0.0) x_dd(i) = x(i)/x_dipol + sig_c = sig_c + x_ii(i)*parame(i,2) + sig_d = sig_d + x_dd(i)*parame(i,2) + END DO + sig_cd = 0.5 * (sig_c + sig_d) + + r_s = 0.0 + ! DO i=1,ncomp + ! r_s=r_s + rho * x(i) * dhs(i)**3 + ! END DO + r_s = eta*6.0 / PI / m_mean + + I0cc = - (1.0 + 0.97743 * r_s + 0.05257*r_s*r_s) & + /(1.0 + 1.43613 * r_s + 0.41580*r_s*r_s) + ! I1cc = - (10.0 - 2.0*z3 + z3*z3) /20.0/(1.0 + 2.0*z3) + I1cc = - (10.0 - 2.0*r_s*pi/6.0 + r_s*r_s*pi/6.0*pi/6.0) & + /20.0/(1.0 + 2.0*r_s*pi/6.0) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + ! I2cc = + (z3-4.0)*(z3*z3+2.0) /24.0/(1.0+2.0*z3) + ! relation of Stell and Lebowitz + I2cc = -0.33331+0.7418*r_s - 1.2047*r_s*r_s & + + 1.6139*r_s**3 - 1.5487*r_s**4 + 0.6626*r_s**5 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Icd = (1.0 + 0.79576 *r_s + 0.104556 *r_s*r_s) & + /(1.0 + 0.486704*r_s - 0.0222903*r_s*r_s) + Idd = (1.0 + 0.18158*r_s - 0.11467*r_s*r_s) & + /3.0/(1.0 - 0.49303*r_s + 0.06293*r_s*r_s) + Iccc= 3.0*(1.0 - 1.05560*r_s + 0.26591*r_s*r_s) & + /2.0/(1.0 + 0.53892*r_s - 0.94236*r_s*r_s) + Iccd= 11.0*(1.0 + 2.25642 *r_s + 0.05679 *r_s*r_s) & + /6.0/(1.0 + 2.64178 *r_s + 0.79783 *r_s*r_s) + Icdd= 0.94685*(1.0 + 2.97323 *r_s + 3.11931 *r_s*r_s) & + /(1.0 + 2.70186 *r_s + 1.22989 *r_s*r_s) + Iddd= 5.0*(1.0 + 1.12754*r_s + 0.56192*r_s*r_s) & + /24.0/(1.0 - 0.05495*r_s + 0.13332*r_s*r_s) + + IF ( sig_c <= 0.0 ) WRITE (*,*) 'error in Henderson ion term' + + fh32= - kappa**3 /(12.0*pi*rho) + fh2 = - 3.0* kappa**2 * ydd*Icd /(8.0*pi*rho) / sig_cd & + - kappa**4 *sig_c/(16.0*pi*rho)*I0cc + IF (sig_d /= 0.0) fh2 = fh2 - 27.0* ydd * ydd*Idd & + /(8.0*pi*rho) / sig_d**3 + fh52= (3.0*kappa**3 * ydd + kappa**5 *sig_c**2 *I1cc) & + /(8.0*pi*rho) + fh3 = - kappa**6 * sig_c**3 /(8.0*pi*rho) *(I2cc-Iccc/6.0) & + + kappa**4 * ydd *sig_c/(16.0*pi*rho) & + *( (6.0+5.0/3.0*sig_d/sig_c)*I0cc + 3.0*sig_d/sig_c*Iccd ) & + + 3.0*kappa**2 * ydd*ydd /(8.0*pi*rho) / sig_cd & + *( (2.0-3.21555*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + IF (sig_d /= 0.0) fh3 = fh3 + 27.0*ydd**3 & + /(16.0*pi*rho)/sig_d**3 *Iddd + + fhend = ( fh32 + (fh32*fh32*fh3-2.0*fh32*fh2*fh52+fh2**3 ) & + /(fh2*fh2-fh32*fh52) ) & + / ( 1.0 + (fh32*fh3-fh2*fh52) /(fh2*fh2-fh32*fh52) & + - (fh2*fh3-fh52*fh52) /(fh2*fh2-fh32*fh52) ) +!---------- +! fH32= - kappa**3 /(12.0*PI*rho) +! fH2 = - 3.0* kappa**2 * ydd*Icd /(8.0*PI*rho) / sig_cd +! fH52= (3.0*kappa**3 * ydd)/(8.0*PI*rho) +! fH3 = + kappa**4 * ydd *sig_c/(16.0*PI*rho) & +! *( (6.0+5.0/3.0*sig_d/sig_c)*0.0*I0cc + 3.0*sig_d/sig_c*Iccd) & +! + 3.0*kappa**2 * ydd*ydd /(8.0*PI*rho) / sig_cd & +! *( (2.0-3.215550*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + +! fHcd = ( + (fH32*fH32*fH3-2.0*fH32*fH2*fH52+fH2**3 ) & +! /(fH2*fH2-fH32*fH52) ) & +! / ( 1.0 + (fH32*fH3-fH2*fH52) /(fH2*fH2-fH32*fH52) & +! - (fH2*fH3-fH52*fH52) /(fH2*fH2-fH32*fH52) ) + +END IF + + END SUBROUTINE F_ION_DIPOLE_TBH + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_PrimMSA ( fcc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, x, parame, mx + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fcc +!--------------------------------------------------------------------- + INTEGER :: i, j, cc_it, ions + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: x_ions + REAL :: cc_sig1, cc_sig2, cc_sig3 + REAL, DIMENSION(nc) :: z_ii, x_ii, sigm_i, my2dd + REAL :: alpha_2, kappa, ii_par + REAL :: cc_omeg, p_n, q2_i, cc_q2, cc_gam + REAL :: cc_error(2), cc_delt + REAL :: rhs, lambda, lam_s +!--------------------------------------------------------------------- + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + +2.78E1*(t/293.15))*rho_sol**2 & + +(-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + -1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + +8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Ion-Ion: primitive MSA ------------------------------- +! the (dipole moment)**2 [my**2] corresponds to an attraction from +! point charges of [ SUM(xi * zi**2 * e_elem**2) * 3 * di**2 ] + +! parame(ion,6))**2 * 1.E-49 / (kbol*T) +! = (e_elem* 1.E5/SQRT(1.112650050))**2 +! *x(i)*zi**2 *3.0*sig_ij(1,1)**2 *1.E-20 + +! parame(ion,6))**2 = (e_elem* 1.E5/SQRT(1.112650050))**2 /1.E-49 +! *x(i)*zi**2 *3.0*sig_ij(i,i)**2 *1.E-20 + +! with the units +! my**2 [=] D**2 = 1.E-49 J*m3 +! e_elem **2 [=] C**2 = 1.E5 / SQRT(1.112650050) J*m + + +ions = 0 +x_ions = 0.0 +fcc = 0.0 +DO i = 1, ncomp + z_ii(i) = parame(i,10) + IF (z_ii(i) /= 0.0) THEN + sigm_i(i) = parame(i,2) + ELSE + sigm_i(i) = 0.0 + END IF + IF (z_ii(i) /= 0.0) ions = 1 + IF (z_ii(i) /= 0.0) x_ions = x_ions + x(i) +END DO + +IF (ions == 1 .AND. x_ions > 0.0) THEN + + cc_sig1 = 0.0 + cc_sig2 = 0.0 + cc_sig3 = 0.0 + DO i=1,ncomp + IF (z_ii(i) /= 0.0) THEN + x_ii(i) = x(i)/x_ions + ELSE + x_ii(i) =0.0 + END IF + cc_sig1 = cc_sig1 +x_ii(i)*sigm_i(i) + cc_sig2 = cc_sig2 +x_ii(i)*sigm_i(i)**2 + cc_sig3 = cc_sig3 +x_ii(i)*sigm_i(i)**3 + END DO + + + ! alpha_2 = 4.0*PI*e_elem**2 /eps_cc0/dielec/kbol/T + alpha_2 = e_elem**2 /eps_cc0 / dielec / KBOL/t + kappa = 0.0 + DO i = 1, ncomp + kappa = kappa + x(i)*z_ii(i)*z_ii(i)*mx(i,1) + END DO + kappa = SQRT( rho * alpha_2 * kappa ) + ii_par= kappa * cc_sig1 + + ! Temporaer: nach der Arbeit von Krienke verifiziert + ! noch nicht fuer Mischungen mit unterschiedl. Ladung erweitert + ! ii_par = DSQRT( e_elem**2 /eps_cc0/dielec/kbol/T & + ! *rho*(x(1)*Z_ii(1)**2 + x(2)*Z_ii(2)**2 ) )*cc_sig1 + + + cc_gam = kappa/2.0 + + ! noch offen !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + cc_delt = 0.0 + DO i = 1, ncomp + cc_delt = cc_delt + x(i)*mx(i,1)*rho*sigm_i(i)**3 + END DO + cc_delt= 1.0 - PI/6.0*cc_delt + + cc_it = 0 + 13 CONTINUE + j = 0 + cc_it = cc_it + 1 + 131 CONTINUE + j = j + 1 + cc_omeg = 0.0 + DO i = 1, ncomp + cc_omeg = cc_omeg +x(i)*mx(i,1)*sigm_i(i)**3 /(1.0+cc_gam*sigm_i(i)) + END DO + cc_omeg = 1.0 + PI/2.0 / cc_delt * rho * cc_omeg + p_n = 0.0 + DO i = 1, ncomp + p_n = p_n + x(i)*mx(i,1)*rho / cc_omeg*sigm_i(i)*z_ii(i) / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = 0.0 + cc_q2= 0.0 + DO i = 1, ncomp + q2_i = q2_i + rho*x(i)*mx(i,1)*( (z_ii(i)-pi/2.0/cc_delt*sigm_i(i)**2 *p_n) & + /(1.0+cc_gam*sigm_i(i)) )**2 + cc_q2 = cc_q2 + x(i)*mx(i,1)*rho*z_ii(i)**2 / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = q2_i*alpha_2 / 4.0 + + cc_error(j) = cc_gam - SQRT(q2_i) + IF (j == 1) cc_gam = cc_gam*1.000001 + IF (j == 2) cc_gam = cc_gam - cc_error(2)* (cc_gam-cc_gam/1.000001)/(cc_error(2)-cc_error(1)) + + IF ( j == 1 .AND. ABS(cc_error(1)) > 1.E-15 ) GO TO 131 + IF ( cc_it >= 10 ) THEN + WRITE (*,*) ' cc error' + STOP + END IF + IF ( j /= 1 ) GO TO 13 + + fcc= - alpha_2 / PI/4.0 /rho* (cc_gam*cc_q2 & + + pi/2.0/cc_delt *cc_omeg*p_n**2 ) + cc_gam**3 /pi/3.0/rho + ! Restricted Primitive Model + ! fcc=-(3.0*ii_par*ii_par+6.0*ii_par+2.0 & + ! -2.0*(1.0+2.0*ii_par)**1.50) & + ! /(12.0*PI*rho *cc_sig1**3 ) + + ! fcc = x_ions * fcc + + my2dd(3) = (parame(3,6))**2 *1.E-19 /(KBOL*t) + my2dd(3) = (1.84)**2 *1.E-19 /(kbol*t) + + rhs = 12.0 * PI * rho * x(3) * my2dd(3) + lam_s = 1.0 + 12 CONTINUE + lambda = (rhs/((lam_s+2.0)**2 ) + 16.0/((1.0+lam_s)**4 ) )**0.5 + IF ( ABS(lam_s-lambda) > 1.E-10 )THEN + lam_s = ( lambda + lam_s ) / 2.0 + GO TO 12 + END IF + + ! f_cd = -(ii_par*ii_par)/(4.0*PI*rho*m_mean *cc_sig1**3 ) & + ! *(dielec-1.0)/(1.0 + parame(3,2)/cc_sig1/lambda) + ! write (*,*) ' ',f_cd,fcc,x_ions + ! f_cd = f_cd/(1.0 - fcc/f_cd) + ! fcc = 0.0 + +END IF + + +END SUBROUTINE F_ION_ION_PrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, eta, x, parame, mseg + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd, fqq, fdq, fcc +!--------------------------------------------------------------------- + INTEGER :: dipole + !REAL :: A_MSA !, A_CC, A_CD, A_DD, U_MSA, chempot + REAL, DIMENSION(nc) :: x_export, msegm +!--------------------------------------------------------------------- + + dipole = 0 + IF ( SUM( parame(1:ncomp,6) ) > 1.E-5 ) dipole = 1 + + IF ( dipole /= 0 ) THEN ! alternatively ions and dipoles = 1 + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + fcc = 0.0 + msegm(:) = mseg(:) ! the entries of the vector mseg and x are changed + x_export(:) = x(:) ! in SEMIRESTRICTED because the ions should be positioned first + ! that is why dummy vectors msegm and x_export are defined + !CALL SEMIRESTRICTED (A_MSA,A_CC,A_CD,A_DD,U_MSA, & + ! chempot,ncomp,parame,t,eta,x_export,msegm,0) + !fdd = A_MSA + write (*,*) 'why are individual contrib. A_CC,A_CD,A_DD not used' + stop + END IF + + END SUBROUTINE F_ION_ION_nonPrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_LC_MayerSaupe ( flc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, phas, t, rho, eta, & + x, mseg, parame, E_lc, S_lc, dhs + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: flc +!--------------------------------------------------------------------- + INTEGER :: i, j, k + INTEGER :: liq_crystal, count_lc, steps_lc + REAL :: alpha_lc, tolerance, deltay + REAL :: integrand1, integrand2, accel_lc + REAL :: error_lc, u_term, sphase + REAL, DIMENSION(nc) :: z_lc, S_lc1, S_lc2, sumu + REAL, DIMENSION(nc,nc) :: u_lc, klc +!--------------------------------------------------------------------- +INTEGER :: stabil +COMMON /stabil / stabil +!--------------------------------------------------------------------- + + + klc(1,2) = 0.0 + klc(2,1) = klc(1,2) + + alpha_lc = 1.0 + accel_lc = 4.0 + IF ( eta < 0.35 ) accel_lc = 1.3 + IF ( eta < 0.15 ) accel_lc = 1.0 + + liq_crystal = 0 + DO i = 1, ncomp + DO j = 1, ncomp + E_lc(i,j) = (E_lc(i,i)*E_lc(j,j))**0.5 *(1.0-klc(i,j)) !combining rule + ! E_LC(i,j)= ( E_LC(i,i)+E_LC(j,j) ) * 0.5 !combining rule + ! S_LC(i,j)= ( S_LC(i,i)+S_LC(j,j) ) * 0.5 !combining rule + IF (E_lc(i,j) /= 0.0) liq_crystal = 1 + END DO + END DO + ! S_LC(1,2) = 0.0 + ! S_LC(2,1) = S_LC(1,2) + ! E_LC(1,2) = 60.0 + ! E_LC(2,1) = E_LC(1,2) + + IF ( liq_crystal == 1 .AND. phas == 1 .AND. stabil == 0 ) THEN + + count_lc = 0 + tolerance = 1.E-6 + + steps_lc = 200 + deltay = 1.0 / REAL(steps_lc) + + ! --- dimensionless function U_LC repres. anisotr. intermolecular interactions in l.c. + + DO i = 1, ncomp + DO j = 1, ncomp + u_lc(i,j) = 2.0/3.0*pi*mseg(i)*mseg(j) *(0.5*(dhs(i)+dhs(j)))**3 & ! sig_ij(i,j)**3 + *(E_lc(i,j)/t+S_lc(i,j))*rho + END DO + END DO + + + DO i=1,ncomp + ! S_lc2(i) = 0.0 !for isotropic + S_lc2(i) = 0.5 !for nematic + S_lc1(i) = S_lc2(i) + END DO + + 1 CONTINUE + + DO i = 1, ncomp + IF (S_lc2(i) <= 0.3) S_lc1(i) = S_lc2(i) + IF (S_lc2(i) > 0.3) S_lc1(i) = S_lc1(i) + (S_lc2(i)-S_lc1(i))*accel_lc + END DO + + count_lc = count_lc + 1 + + ! --- single-particle orientation partition function Z_LC in liquid crystals + + DO i = 1, ncomp + sumu(i) = 0.0 + DO j = 1, ncomp + sumu(i) = sumu(i) + x(j)*u_lc(i,j)*S_lc1(j) + END DO + END DO + + DO i = 1, ncomp + z_lc(i) = 0.0 + integrand1 = EXP(-0.5*sumu(i)) !eq. for Z_LC with y=0 + DO k = 1, steps_lc + integrand2 = EXP(0.5*sumu(i)*(3.0*(deltay*REAL(k)) **2 -1.0)) + z_lc(i) = z_lc(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + END DO !i-index Z_LC(i) calculation + + ! --- order parameter S_lc in liquid crystals ----------------------- + + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i) = 0.0 + integrand1 = -1.0/z_lc(i)*0.5*EXP(-0.5*sumu(i)) !for S_lc with y=0 + DO k = 1, steps_lc + integrand2 = 1.0/z_lc(i)*0.5*(3.0*(deltay*REAL(k)) & + **2 -1.0)*EXP(0.5*sumu(i)*(3.0 *(deltay*REAL(k))**2 -1.0)) + S_lc2(i) = S_lc2(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + error_lc = error_lc + ABS(S_lc2(i)-S_lc1(i)) + END DO !i-index Z_LC(i) calculation + + sphase = 0.0 + DO i = 1, ncomp + sphase = sphase + S_lc2(i) + END DO + IF (sphase < 1.E-4) THEN + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i)= 0.0 + z_lc(i) = 1.0 + END DO + END IF + + + ! write (*,*) count_LC,S_lc2(1)-S_lc1(1),S_lc2(2)-S_lc1(2) + IF (error_lc > tolerance .AND. count_lc < 400) GO TO 1 + ! write (*,*) 'done',eta,S_lc2(1),S_lc2(2) + + IF (count_lc == 400) WRITE (*,*) 'LC iteration not converg.' + + ! --- the anisotropic contribution to the Helmholtz energy ---------- + + u_term = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + u_term = u_term + 0.5*x(i)*x(j)*S_lc2(i) *S_lc2(j)*u_lc(i,j) + END DO + END DO + + flc = 0.0 + DO i = 1, ncomp + IF (z_lc(i) /= 0.0) flc = flc - x(i) * LOG(z_lc(i)) + END DO + flc = flc + u_term + ! pause + + END IF + ! write (*,'(i2,i2,4(f15.8))') phas,stabil,flc,eta,S_lc2(1),x(1) + + + END SUBROUTINE F_LC_MayerSaupe + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: zdd, zddz, zddz2, zddz3 + REAL, INTENT(OUT) :: zqq, zqqz, zqqz2, zqqz3 + REAL, INTENT(OUT) :: zdq, zdqz, zdqz2, zdqz3 +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE P_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdd, zddz, zddz2, zddz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdddr, fddd2, fddd3, fddd4 + REAL :: fdd2, fdd2z, fdd2z2, fdd2z3, fdd2z4 + REAL :: fdd3, fdd3z, fdd3z2, fdd3z3, fdd3z4 + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd2z, Idd2z2, Idd2z3, Idd2z4 + REAL, DIMENSION(nc,nc) :: Idd4, Idd4z, Idd4z2, Idd4z3, Idd4z4 + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3z, Idd3z2, Idd3z3, Idd3z4 +! ---------------------------------------------------------------------- + + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2z(i,j) = 0.0 + Idd4z(i,j) = 0.0 + Idd2z2(i,j) = 0.0 + Idd4z2(i,j) = 0.0 + Idd2z3(i,j) = 0.0 + Idd4z3(i,j) = 0.0 + Idd2z4(i,j) = 0.0 + Idd4z4(i,j) = 0.0 + ! IF (paramei,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m) *z3**(m+1) + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m) *z3**(m+1) + Idd2z(i,j) =Idd2z(i,j) +ddp2(i,j,m)*REAL(m+1) *z3**m + Idd4z(i,j) =Idd4z(i,j) +ddp4(i,j,m)*REAL(m+1) *z3**m + Idd2z2(i,j)=Idd2z2(i,j)+ddp2(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd4z2(i,j)=Idd4z2(i,j)+ddp4(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd2z3(i,j)=Idd2z3(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd4z3(i,j)=Idd4z3(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd2z4(i,j)=Idd2z4(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idd4z4(i,j)=Idd4z4(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + Idd3z(i,j,k) = 0.0 + Idd3z2(i,j,k) = 0.0 + Idd3z3(i,j,k) = 0.0 + Idd3z4(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) =Idd3(i,j,k) +ddp3(i,j,k,m)*z3**(m+2) + Idd3z(i,j,k) =Idd3z(i,j,k) +ddp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idd3z2(i,j,k)=Idd3z2(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1))*z3**m + Idd3z3(i,j,k)=Idd3z3(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m)*z3**(m-1) + Idd3z4(i,j,k)=Idd3z4(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2= -PI *rho/z3 + factor3= -4.0/3.0*PI**2 * (rho/z3)**2 + + fdd2 = 0.0 + fdd2z = 0.0 + fdd2z2 = 0.0 + fdd2z3 = 0.0 + fdd2z4 = 0.0 + fdd3 = 0.0 + fdd3z = 0.0 + fdd3z2 = 0.0 + fdd3z3 = 0.0 + fdd3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j)) + fdd2z = fdd2z +factor2*xijfa*(Idd2z(i,j) +eij/t*Idd4z(i,j)) + fdd2z2 = fdd2z2+factor2*xijfa*(Idd2z2(i,j)+eij/t*Idd4z2(i,j)) + fdd2z3 = fdd2z3+factor2*xijfa*(Idd2z3(i,j)+eij/t*Idd4z3(i,j)) + fdd2z4 = fdd2z4+factor2*xijfa*(Idd2z4(i,j)+eij/t*Idd4z4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa= x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) & + *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 = fdd3 + factor3 * xijkfa*Idd3(i,j,k) + fdd3z = fdd3z + factor3 * xijkfa*Idd3z(i,j,k) + fdd3z2 = fdd3z2 + factor3 * xijkfa*Idd3z2(i,j,k) + fdd3z3 = fdd3z3 + factor3 * xijkfa*Idd3z3(i,j,k) + fdd3z4 = fdd3z4 + factor3 * xijkfa*Idd3z4(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2z /= 0.0 .AND. fdd3z /= 0.0) THEN + + fdddr= fdd2* (fdd2*fdd2z - 2.0*fdd3*fdd2z+fdd2*fdd3z) / (fdd2-fdd3)**2 + fddd2=(2.0*fdd2*fdd2z*fdd2z +fdd2*fdd2*fdd2z2 & + -2.0*fdd2z**2 *fdd3-2.0*fdd2*fdd2z2*fdd3+fdd2*fdd2*fdd3z2) & + /(fdd2-fdd3)**2 + fdddr * 2.0*(fdd3z-fdd2z)/(fdd2-fdd3) + fddd3=(2.0*fdd2z**3 +6.0*fdd2*fdd2z*fdd2z2+fdd2*fdd2*fdd2z3 & + -6.0*fdd2z*fdd2z2*fdd3-2.0*fdd2z**2 *fdd3z & + -2.0*fdd2*fdd2z3*fdd3 -2.0*fdd2*fdd2z2*fdd3z & + +2.0*fdd2*fdd2z*fdd3z2+fdd2*fdd2*fdd3z3) /(fdd2-fdd3)**2 & + + 2.0/(fdd2-fdd3)* ( 2.0*fddd2*(fdd3z-fdd2z) & + + fdddr*(fdd3z2-fdd2z2) & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)**2 ) + fddd4=( 12.0*fdd2z**2 *fdd2z2+6.0*fdd2*fdd2z2**2 & + +8.0*fdd2*fdd2z*fdd2z3+fdd2*fdd2*fdd2z4-6.0*fdd2z2**2 *fdd3 & + -12.0*fdd2z*fdd2z2*fdd3z -8.0*fdd2z*fdd2z3*fdd3 & + -2.0*fdd2*fdd2z4*fdd3-4.0*fdd2*fdd2z3*fdd3z & + +4.0*fdd2*fdd2z*fdd3z3+fdd2**2 *fdd3z4 ) /(fdd2-fdd3)**2 & + + 6.0/(fdd2-fdd3)* ( fddd3*(fdd3z-fdd2z) & + -fddd2/(fdd2-fdd3)*(fdd3z-fdd2z)**2 & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)*(fdd3z2-fdd2z2) & + + fddd2*(fdd3z2-fdd2z2) +1.0/3.0*fdddr*(fdd3z3-fdd2z3) ) + zdd = fdddr*eta + zddz = fddd2*eta + fdddr + zddz2 = fddd3*eta + 2.0* fddd2 + zddz3 = fddd4*eta + 3.0* fddd3 + + END IF + + +END SUBROUTINE P_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zqq, zqqz, zqqz2, zqqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fqqdr, fqqd2, fqqd3, fqqd4 + REAL :: fqq2, fqq2z, fqq2z2, fqq2z3, fqq2z4 + REAL :: fqq3, fqq3z, fqq3z2, fqq3z3, fqq3z4 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq2z, Iqq2z2, Iqq2z3, Iqq2z4 + REAL, DIMENSION(nc,nc) :: Iqq4, Iqq4z, Iqq4z2, Iqq4z3, Iqq4z4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3z, Iqq3z2, Iqq3z3, Iqq3z4 +! ---------------------------------------------------------------------- + + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + z3 = eta + DO i=1,ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2z(i,j) = 0.0 + Iqq4z(i,j) = 0.0 + Iqq2z2(i,j) = 0.0 + Iqq4z2(i,j) = 0.0 + Iqq2z3(i,j) = 0.0 + Iqq4z3(i,j) = 0.0 + Iqq2z4(i,j) = 0.0 + Iqq4z4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) =Iqq2(i,j) + qqp2(i,j,m)*z3**(m+1) + Iqq4(i,j) =Iqq4(i,j) + qqp4(i,j,m)*z3**(m+1) + Iqq2z(i,j) =Iqq2z(i,j) +qqp2(i,j,m)*REAL(m+1)*z3**m + Iqq4z(i,j) =Iqq4z(i,j) +qqp4(i,j,m)*REAL(m+1)*z3**m + Iqq2z2(i,j)=Iqq2z2(i,j)+qqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq4z2(i,j)=Iqq4z2(i,j)+qqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq2z3(i,j)=Iqq2z3(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq4z3(i,j)=Iqq4z3(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq2z4(i,j)=Iqq2z4(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Iqq4z4(i,j)=Iqq4z4(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k=1,ncomp + Iqq3(i,j,k) = 0.0 + Iqq3z(i,j,k) = 0.0 + Iqq3z2(i,j,k) = 0.0 + Iqq3z3(i,j,k) = 0.0 + Iqq3z4(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m=0,4 + Iqq3(i,j,k) =Iqq3(i,j,k) + qqp3(i,j,k,m)*z3**(m+2) + Iqq3z(i,j,k)=Iqq3z(i,j,k)+qqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Iqq3z2(i,j,k)=Iqq3z2(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Iqq3z3(i,j,k)=Iqq3z3(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Iqq3z4(i,j,k)=Iqq3z4(i,j,k)+qqp3(i,j,k,m) *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/16.0*PI *rho/z3 + factor3= 9.0/16.0*PI**2 * (rho/z3)**2 + + fqq2 = 0.0 + fqq2z = 0.0 + fqq2z2 = 0.0 + fqq2z3 = 0.0 + fqq2z4 = 0.0 + fqq3 = 0.0 + fqq3z = 0.0 + fqq3z2 = 0.0 + fqq3z3 = 0.0 + fqq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2z =fqq2z +factor2*xijfa*(Iqq2z(i,j) +eij/t*Iqq4z(i,j) ) + fqq2z2=fqq2z2+factor2*xijfa*(Iqq2z2(i,j)+eij/t*Iqq4z2(i,j)) + fqq2z3=fqq2z3+factor2*xijfa*(Iqq2z3(i,j)+eij/t*Iqq4z3(i,j)) + fqq2z4=fqq2z4+factor2*xijfa*(Iqq2z4(i,j)+eij/t*Iqq4z4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa*Iqq3(i,j,k) + fqq3z = fqq3z + factor3 * xijkfa*Iqq3z(i,j,k) + fqq3z2 = fqq3z2 + factor3 * xijkfa*Iqq3z2(i,j,k) + fqq3z3 = fqq3z3 + factor3 * xijkfa*Iqq3z3(i,j,k) + fqq3z4 = fqq3z4 + factor3 * xijkfa*Iqq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2z /= 0.0 .AND. fqq3z /= 0.0) THEN + fqqdr = fqq2* (fqq2*fqq2z - 2.0*fqq3*fqq2z+fqq2*fqq3z) /(fqq2-fqq3)**2 + fqqd2= (2.0*fqq2*fqq2z*fqq2z +fqq2*fqq2*fqq2z2 & + -2.0*fqq2z**2 *fqq3-2.0*fqq2*fqq2z2*fqq3+fqq2*fqq2*fqq3z2) & + /(fqq2-fqq3)**2 + fqqdr * 2.0*(fqq3z-fqq2z)/(fqq2-fqq3) + fqqd3=(2.0*fqq2z**3 +6.0*fqq2*fqq2z*fqq2z2+fqq2*fqq2*fqq2z3 & + -6.0*fqq2z*fqq2z2*fqq3-2.0*fqq2z**2 *fqq3z & + -2.0*fqq2*fqq2z3*fqq3 -2.0*fqq2*fqq2z2*fqq3z & + +2.0*fqq2*fqq2z*fqq3z2+fqq2*fqq2*fqq3z3) /(fqq2-fqq3)**2 & + + 2.0/(fqq2-fqq3)* ( 2.0*fqqd2*(fqq3z-fqq2z) & + + fqqdr*(fqq3z2-fqq2z2) - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)**2 ) + fqqd4=( 12.0*fqq2z**2 *fqq2z2+6.0*fqq2*fqq2z2**2 & + +8.0*fqq2*fqq2z*fqq2z3+fqq2*fqq2*fqq2z4-6.0*fqq2z2**2 *fqq3 & + -12.0*fqq2z*fqq2z2*fqq3z -8.0*fqq2z*fqq2z3*fqq3 & + -2.0*fqq2*fqq2z4*fqq3-4.0*fqq2*fqq2z3*fqq3z & + +4.0*fqq2*fqq2z*fqq3z3+fqq2**2 *fqq3z4 ) /(fqq2-fqq3)**2 & + + 6.0/(fqq2-fqq3)* ( fqqd3*(fqq3z-fqq2z) & + -fqqd2/(fqq2-fqq3)*(fqq3z-fqq2z)**2 & + - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)*(fqq3z2-fqq2z2) & + + fqqd2*(fqq3z2-fqq2z2) +1.0/3.0*fqqdr*(fqq3z3-fqq2z3) ) + zqq = fqqdr*eta + zqqz = fqqd2*eta + fqqdr + zqqz2 = fqqd3*eta + 2.0* fqqd2 + zqqz3 = fqqd4*eta + 3.0* fqqd3 + END IF + + +END SUBROUTINE P_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdqdr, fdqd2, fdqd3, fdqd4 + REAL :: fdq2, fdq2z, fdq2z2, fdq2z3, fdq2z4 + REAL :: fdq3, fdq3z, fdq3z2, fdq3z3, fdq3z4 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq2z, Idq2z2, Idq2z3, Idq2z4 + REAL, DIMENSION(nc,nc) :: Idq4, Idq4z, Idq4z2, Idq4z3, Idq4z4 + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3z, Idq3z2, Idq3z3, Idq3z4 +! ---------------------------------------------------------------------- + + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2z(i,j) = 0.0 + Idq4z(i,j) = 0.0 + Idq2z2(i,j) = 0.0 + Idq4z2(i,j) = 0.0 + Idq2z3(i,j) = 0.0 + Idq4z3(i,j) = 0.0 + Idq2z4(i,j) = 0.0 + Idq4z4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) =Idq2(i,j) + dqp2(i,j,m)*z3**(m+1) + Idq4(i,j) =Idq4(i,j) + dqp4(i,j,m)*z3**(m+1) + Idq2z(i,j) =Idq2z(i,j) +dqp2(i,j,m)*REAL(m+1)*z3**m + Idq4z(i,j) =Idq4z(i,j) +dqp4(i,j,m)*REAL(m+1)*z3**m + Idq2z2(i,j)=Idq2z2(i,j)+dqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq4z2(i,j)=Idq4z2(i,j)+dqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq2z3(i,j)=Idq2z3(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq4z3(i,j)=Idq4z3(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq2z4(i,j)=Idq2z4(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idq4z4(i,j)=Idq4z4(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + Idq3z(i,j,k) = 0.0 + Idq3z2(i,j,k) = 0.0 + Idq3z3(i,j,k) = 0.0 + Idq3z4(i,j,k) = 0.0 + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) =Idq3(i,j,k) + dqp3(i,j,k,m)*z3**(m+2) + Idq3z(i,j,k)=Idq3z(i,j,k)+dqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idq3z2(i,j,k)=Idq3z2(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Idq3z3(i,j,k)=Idq3z3(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Idq3z4(i,j,k)=Idq3z4(i,j,k)+dqp3(i,j,k,m) & + *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/4.0*PI *rho/z3 + factor3= PI**2 * (rho/z3)**2 + + fdq2 = 0.0 + fdq2z = 0.0 + fdq2z2 = 0.0 + fdq2z3 = 0.0 + fdq2z4 = 0.0 + fdq3 = 0.0 + fdq3z = 0.0 + fdq3z2 = 0.0 + fdq3z3 = 0.0 + fdq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa =x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2z =fdq2z +factor2*xijfa*(Idq2z(i,j) +eij/t*Idq4z(i,j) ) + fdq2z2=fdq2z2+factor2*xijfa*(Idq2z2(i,j)+eij/t*Idq4z2(i,j)) + fdq2z3=fdq2z3+factor2*xijfa*(Idq2z3(i,j)+eij/t*Idq4z3(i,j)) + fdq2z4=fdq2z4+factor2*xijfa*(Idq2z4(i,j)+eij/t*Idq4z4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa*Idq3(i,j,k) + fdq3z =fdq3z + factor3 * xijkfa*Idq3z(i,j,k) + fdq3z2=fdq3z2 + factor3 * xijkfa*Idq3z2(i,j,k) + fdq3z3=fdq3z3 + factor3 * xijkfa*Idq3z3(i,j,k) + fdq3z4=fdq3z4 + factor3 * xijkfa*Idq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2z /= 0.0 .AND. fdq3z /= 0.0) THEN + fdqdr = fdq2* (fdq2*fdq2z - 2.0*fdq3*fdq2z+fdq2*fdq3z) /(fdq2-fdq3)**2 + fdqd2= (2.0*fdq2*fdq2z*fdq2z +fdq2*fdq2*fdq2z2 & + -2.0*fdq2z**2 *fdq3-2.0*fdq2*fdq2z2*fdq3+fdq2*fdq2*fdq3z2) & + /(fdq2-fdq3)**2 + fdqdr * 2.0*(fdq3z-fdq2z)/(fdq2-fdq3) + fdqd3=(2.0*fdq2z**3 +6.0*fdq2*fdq2z*fdq2z2+fdq2*fdq2*fdq2z3 & + -6.0*fdq2z*fdq2z2*fdq3-2.0*fdq2z**2 *fdq3z & + -2.0*fdq2*fdq2z3*fdq3 -2.0*fdq2*fdq2z2*fdq3z & + +2.0*fdq2*fdq2z*fdq3z2+fdq2*fdq2*fdq3z3) /(fdq2-fdq3)**2 & + + 2.0/(fdq2-fdq3)* ( 2.0*fdqd2*(fdq3z-fdq2z) & + + fdqdr*(fdq3z2-fdq2z2) - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)**2 ) + fdqd4=( 12.0*fdq2z**2 *fdq2z2+6.0*fdq2*fdq2z2**2 & + +8.0*fdq2*fdq2z*fdq2z3+fdq2*fdq2*fdq2z4-6.0*fdq2z2**2 *fdq3 & + -12.0*fdq2z*fdq2z2*fdq3z -8.0*fdq2z*fdq2z3*fdq3 & + -2.0*fdq2*fdq2z4*fdq3-4.0*fdq2*fdq2z3*fdq3z & + +4.0*fdq2*fdq2z*fdq3z3+fdq2**2 *fdq3z4 ) /(fdq2-fdq3)**2 & + + 6.0/(fdq2-fdq3)* ( fdqd3*(fdq3z-fdq2z) & + -fdqd2/(fdq2-fdq3)*(fdq3z-fdq2z)**2 & + - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)*(fdq3z2-fdq2z2) & + + fdqd2*(fdq3z2-fdq2z2) +1.0/3.0*fdqdr*(fdq3z3-fdq2z3) ) + zdq = fdqdr*eta + zdqz = fdqd2*eta + fdqdr + zdqz2 = fdqd3*eta + 2.0* fdqd2 + zdqz3 = fdqd4*eta + 3.0* fdqd3 + END IF + + +END SUBROUTINE P_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_pert_theory ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, p, rho, eta, & + x, z0t, mseg, parame, order1, order2 + USE EOS_NUMERICAL_DERIVATIVES, ONLY: disp_term + USE DFT_MODULE + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + REAL :: I1, I2 + REAL :: z3, zms, c1_con, m_mean +!--------------------------------------------------------------------- + + ! caution: positive sign of correlation integral is used here ! + ! (the Helmholtz energy terms are written with a negative sign, while I1 and I2 are positive) + + IF (disp_term == 'PT1') THEN + + CALL f_dft ( I1, I2) + c1_con = 0.0 + I2 = 0.0 + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + + ELSEIF (disp_term == 'PT2') THEN + + CALL f_dft ( I1, I2) + z3 = eta + zms = 1.0 - z3 + m_mean = z0t / ( PI / 6.0 ) + c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + ELSEIF (disp_term == 'PT_MIX') THEN + + CALL f_pert_theory_mix ( fdsp ) + + ELSEIF (disp_term == 'PT_MF') THEN + + ! mean field theory + I1 = - ( - 8.0/9.0 - 4.0/9.0*(rc**(-9) -3.0*rc**(-3) ) - tau_cut/3.0*(rc**3 -1.0) ) + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + write (*,*) 'caution: not thoroughly checked and tested' + + ELSE + write (*,*) 'define the type of perturbation theory' + stop + END IF + + ! I1 = I1 + 4.0/9.0*(2.5**-9 -3.0*2.5**-3 ) + ! fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + END SUBROUTINE F_pert_theory + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_pert_theory_mix ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1 + REAL :: int10, int11 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + + DO l = 1, ncomp + DO m = 1, ncomp + + rad = rc + + int10 = rc * rc * ua_c + ! intgrid(0)= int10 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int11 = rdf * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int11 + int10 ) / 2.0 + + int10 = int11 + ! intgrid(k)= int11 + + END DO + + ! stepno = k + ! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) + ! CALL SPLINE_INT (I1_spline,dzr,intgrid,utri,stepno) + + + ! caution: 1st order integral is in F_EOS.f defined with negative sign + ! --------------------------------------------------------------- + ! cut-off corrections + ! --------------------------------------------------------------- + ! I1(l,m) = I1(l,m) + ( 4.0/9.0 * rc**-9 - 4.0/3.0 * rc**-3 ) + ! I2(l,m) = I2(l,m) + 16.0/21.0 * rc**-21 - 32.0/15.0 * rc**-15 + 16.0/9.0 * rc**-9 + + END DO + END DO + + + fdsp = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + fdsp = fdsp + 2.0*PI*rho*x(l)*x(m)* mseg(l)*mseg(m)*sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! ( 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + END DO + END DO + + +!!$ IF (disp_term == 'PT1') THEN +!!$ c1_con = 0.0 +!!$ I2 = 0.0 +!!$ ELSEIF (disp_term == 'PT2') THEN +!!$ zms = 1.0 - z3 +!!$ c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & +!!$ + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & +!!$ /(zms*(2.0-z3))**2 ) +!!$ ELSE +!!$ write (*,*) 'define the type of perturbation theory' +!!$ stop +!!$ END IF + + +END SUBROUTINE f_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE mu_pert_theory_mix ( mu_dsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: mu_dsp(nc) +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1, I2 + REAL :: int1_0, int1_1, int2_0, int2_1 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + REAL :: term1(nc), term2 + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + I2(:,:) = 0.0 + + DO l = 1, ncomp + + term1(l) = 0.0 + + DO m = 1, ncomp + + rad = rc + + int1_0 = rc * rc * ua_c + int2_0 = 0.0 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int1_1 = rdf * rad * rad * ua + int2_1 = dg_dz3 * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int1_1 + int1_0 ) / 2.0 + I2(l,m) = I2(l,m) + dzr_local * ( int2_1 + int2_0 ) / 2.0 + + int1_0 = int1_1 + int2_0 = int2_1 + + term1(l) = term1(l) +4.0*PI*rho*x(m)* mseg(l)*mseg(m) *sig_ij(l,m)**3 *uij(l,m)/t* dzr_local*(int1_1+int1_0)/2.0 + + END DO + + END DO + END DO + + + ! DO l = 1, ncomp + ! term1(l) = 0.0 + ! DO m = 1, ncomp + ! term1(l) = term1(l) + 4.0*PI*rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! END DO + ! END DO + + term2 = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + term2 = term2 + 2.0*PI*rho*x(l) * rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I2(l,m) + END DO + END DO + + DO l = 1, ncomp + mu_dsp(l) = term1(l) + term2 * PI/ 6.0 * mseg(l)*dhs(l)**3 + END DO + +END SUBROUTINE mu_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DD_GROSS_VRABEC( fdd ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + INTEGER :: ddit, ddmax + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, xijf_j, xijkf_j, eij + REAL :: fdd2, fdd3 + REAL, DIMENSION(nc) :: my2dd, my0, alph_tst, z1dd, z2dd, dderror + REAL, DIMENSION(nc) :: fdd2m, fdd3m, fdd2m2, fdd3m2, fddm, fddm2 + REAL, DIMENSION(nc,nc) :: Idd2, Idd4 + REAL, DIMENSION(nc,nc,nc) :: Idd3 +! ---------------------------------------------------------------------- + + fdd = 0.0 + ddit = 0 + ddmax = 0 ! value assigned, if polarizable compound is present + fddm(:) = 0.0 + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'F_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + alph_tst(i) = parame(i,11) / (mseg(i)*sig_ij(i,i)**3 ) * t/parame(i,3) + IF ( alph_Tst(i) /= 0.0 ) ddmax = 25 ! set maximum number of polarizable RGT-iterations + z1dd(i) = my2dd(i) + 3.0*alph_tst(i) + z2dd(i) = 3.0*alph_tst(i) + my0(i) = my2dd(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) = Idd2(i,j) + ddp2(i,j,m)*eta**m + Idd4(i,j) = Idd4(i,j) + ddp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) = Idd3(i,j,k) + ddp3(i,j,k,m)*eta**m + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2 = -PI *rho + factor3 = -4.0/3.0*PI**2 * rho**2 + +9 CONTINUE + + fdd2m(:) = 0.0 + fdd2m2(:) = 0.0 + fdd3m(:) = 0.0 + fdd3m2(:) = 0.0 + fdd2 = 0.0 + fdd3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa =x(i)*parame(i,3)/t*parame(i,2)**3 * x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 * (z1dd(i)*z1dd(j)-z2dd(i)*z2dd(j)) ! * (1.0-lij(i,j)) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 + factor2 * xijfa * ( Idd2(i,j) + eij/t*Idd4(i,j) ) + xijf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 ! * (1.0-lij(i,j)) + fdd2m(i)=fdd2m(i)+4.0*SQRT(my2dd(i))*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + fdd2m2(i)=fdd2m2(i) + 4.0*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + IF (j == i) fdd2m2(i) =fdd2m2(i) +8.0*factor2* xijf_j*my2dd(i) *(Idd2(i,j)+eij/t*Idd4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 / ((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) / ((parame(j,2)+parame(k,2))/2.0) & + *(z1dd(i)*z1dd(j)*z1dd(k)-z2dd(i)*z2dd(j)*z2dd(k)) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3 = fdd3 + factor3 * xijkfa * Idd3(i,j,k) + xijkf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3m(i)=fdd3m(i)+6.0*factor3*SQRT(my2dd(i))*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + fdd3m2(i)=fdd3m2(i)+6.0*factor3*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + IF(j == i) fdd3m2(i) =fdd3m2(i)+24.0*factor3*my2dd(i)*z1dd(k) *xijkf_j*Idd3(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0) THEN + fdd = fdd2 / ( 1.0 - fdd3/fdd2 ) + IF ( ddmax /= 0 ) THEN + DO i = 1, ncomp + ddit = ddit + 1 + fddm(i) =fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i)+fdd2*fdd3m(i)) /(fdd2-fdd3)**2 + fddm2(i) = fdd2m(i) * (fdd2*fdd2m(i)-2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) / (fdd2-fdd3)**2 & + + fdd2*(fdd2*fdd2m2(i) -2.0*fdd3*fdd2m2(i)+fdd2m(i)**2 & + -fdd2m(i)*fdd3m(i) +fdd2*fdd3m2(i)) / (fdd2-fdd3)**2 & + - 2.0*fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) /(fdd2-fdd3)**3 & + *(fdd2m(i)-fdd3m(i)) + dderror(i)= SQRT( my2dd(i) ) - SQRT( my0(i) ) + alph_Tst(i)*fddm(i) + my2dd(i) = ( SQRT( my2dd(i) ) - dderror(i) / (1.0+alph_Tst(i)*fddm2(i)) )**2 + z1dd(i) = my2dd(i) + 3.0 * alph_Tst(i) + ENDDO + DO i = 1, ncomp + IF (ABS(dderror(i)) > 1.E-11 .AND. ddit < ddmax) GOTO 9 + ENDDO + fdd = fdd + SUM( 0.5*x(1:ncomp)*alph_Tst(1:ncomp)*fddm(1:ncomp)**2 ) + ENDIF + END IF + + +END SUBROUTINE F_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_QQ_GROSS( fqq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fqq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fqq2, fqq3 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3 +! ---------------------------------------------------------------------- + + + fqq = 0.0 + DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m)*eta**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Iqq3(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,k) = Iqq3(i,j,k) + qqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/16.0*PI *rho + factor3 = 9.0/16.0*PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2* xijfa * (Iqq2(i,j)+eij/t*Iqq4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa * Iqq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF ( fqq2 < -1.E-50 .AND. fqq3 /= 0.0 ) THEN + fqq = fqq2 / ( 1.0 - fqq3/fqq2 ) + END IF + + + +END SUBROUTINE F_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DQ_VRABEC_GROSS( fdq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fdq2, fdq3 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4 + REAL, DIMENSION(nc,nc,nc) :: Idq3 +! ---------------------------------------------------------------------- + + + fdq = 0.0 + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + ! myfac(i)=parame(i,3)/T*parame(i,2)**4 *my2dd_renormalized(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*eta**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) = Idq3(i,j,k) + dqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/4.0 * PI *rho + factor3 = PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 +factor2* xijfa*(Idq2(i,j)+eij/t*Idq4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.1937350 ) + fdq3 = fdq3 + factor3*xijkfa*Idq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0) THEN + fdq = fdq2 / ( 1.0 - fdq3/fdq2 ) + END IF + +END SUBROUTINE F_DQ_VRABEC_GROSS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_dft ( I1_dft, I2_dft ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, mseg, parame + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: I1_dft + REAL, INTENT(OUT) :: I2_dft +! +! ---------------------------------------------------------------------- + INTEGER :: k,ih + ! REAL :: z3 + REAL :: ua, ua_c, ua_2, ua_c_2, rm + REAL :: int10, int11, int20, int21 + REAL :: dg_drho + REAL :: rad, xg, rdf, rho_st, msegm + REAL :: sig_ij + REAL :: dg_dr, dzr_org !,rdf_d + ! REAL :: intgrid(0:NDFT),intgri2(0:NDFT) +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- +msegm = parame(1,1) +rho_st = rho * parame(1,2)**3 + +ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) +ua_c_2 = ua_c * ua_c +rm = 2.0**(1.0/6.0) + +int10 = rc*rc* ua_c +int20 = rc*rc* ua_c_2 +! intgrid(0)= int10 +! intgri2(0)= int20 + + +sig_ij = parame(1,2) + + +I1_dft = 0.0 +I2_dft = 0.0 +rad = rc +!dzr = dzp / 2.0 ! this line is obsolete. dzr is defined in DFT-nMF2 (dimensionless) +dzr_org= dzr +k = 0 +ih = 85 + +DO WHILE ( rad-dzr+1.E-9 >= 1.0 ) + + rad = rad - dzr + ! IF (rad <= 8.0) dzr = dzp + ! IF (rad <= rg) dzr = dzp/2.0 + k = k + 1 + xg = rad / dhs_st + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + ua_2 = ua * ua + rdf = 1.0 + dg_drho = 0.0 + IF ( rad <= rg ) THEN + CALL BI_CUB_SPLINE (rho_st,xg,ya,x1a,x2a,y1a,y2a,y12a, & + c_bicub,rdf,dg_drho,dg_dr,den_step,ih,k) + END IF + + int11 = rdf*rad*rad* ua + int21 = rdf*rad*rad* ua_2 + I1_dft= I1_dft + dzr*(int11+int10)/2.0 + I2_dft= I2_dft + dzr*(int21+int20)/2.0 + int10 = int11 + int20 = int21 + +END DO + +dzr = dzr_org + +! stepno = k +! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) +! CALL SPLINE_INT (I1,dzr,intgrid,utri,stepno) + +! caution: 1st order integral is in F_EOS.f defined with negative sign +I1_dft= - I1_dft - ( 4.0/9.0 * rc**(-9) - 4.0/3.0 * rc**(-3) ) + +! CALL SPLINE_PARA (dzr,intgri2,utri,stepno) +! CALL SPLINE_INT (I2,dzr,intgri2,utri,stepno) + +I2_dft = I2_dft + 16.0/21.0 * rc**(-21) - 32.0/15.0 * rc**(-15) + 16.0/9.0 * rc**(-9) + + +END SUBROUTINE f_dft + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) +! SUBROUTINE TANGENT_VALUE ( fmin, optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + !REAL, INTENT(IN) :: optpara(:) + !REAL, INTENT(IN OUT) :: fmin +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: lnphi(np,nc),ph_frac, gibbs_full(np),xlnx1,xlnx2 + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + + ! --- setting of mole fractions --------------------------------------- + DO i = 1, ncomp + IF ( optpara(i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( optpara(i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i) - ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(2,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + lnx(2,1:ncomp) = optpara(1:ncomp) - LOG( SUM( ni_2(1:ncomp) ) ) + + ph_frac = SUM( ni_1(1:ncomp) ) + xi(1,1:ncomp) = ni_1(1:ncomp) / ph_frac + lnx(1,1:ncomp) = LOG( ni_1(1:ncomp) ) - LOG( ph_frac ) + ! write (*,'(a,4G18.8)') 'FF',(xif(i),i=1,ncomp) + ! write (*,'(a,4G18.8)') 'AA',(xi(1,i),i=1,ncomp) + ! write (*,'(a,3G18.8)') 'BB',(xi(2,i),i=1,ncomp) + + CALL fugacity (lnphi) + !CALL enthalpy_etc + + gibbs(1) = SUM( xi(1,1:ncomp) * lnphi(1,1:ncomp) ) ! dimensionless g/RT + gibbs(2) = SUM( xi(2,1:ncomp) * lnphi(2,1:ncomp) ) + + xlnx1 = SUM( xi(1,1:ncomp)*lnx(1,1:ncomp) ) ! dimensionless s/RT + xlnx2 = SUM( xi(2,1:ncomp)*lnx(2,1:ncomp) ) + + gibbs_full(1) = gibbs(1) + xlnx1 + gibbs_full(2) = gibbs(2) + xlnx2 + + TANGENT_VALUE2 = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !fmin = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !write (*,'(a,4G18.8)') 'TP',TANGENT_VALUE2,(lnx(1,i),i=1,ncomp) + !write (*,'(a,4G18.8)') 'al',ph_frac,(lnx(2,i), i=1,ncomp) + !write (*,*) ' ' + !pause + +END FUNCTION TANGENT_VALUE2 + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 new file mode 100644 index 000000000..a09221fd4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.f90 @@ -0,0 +1,4078 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE eos_const +! +! This subroutine provides the constants of the PC-SAFT EOS. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE eos_const (ap,bp,dnm) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ap(0:6,3) + REAL, INTENT(OUT) :: bp(0:6,3) + REAL, INTENT(OUT) :: dnm(4,9) +! ---------------------------------------------------------------------- + + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +! square-well fluid +! ap(1,1)= 0.79152347258784 +! ap(1,2)= -0.62269805320654 +! ap(1,3)= -0.06798823934067 +! ap(2,1)= 1.07120982251709 +! ap(2,2)= 0.48628215731716 +! ap(2,3)= 0.02837828512515 +! ap(3,1)= 0.92084839459226 +! ap(3,2)= 1.11652038059747 +! ap(3,3)= 0.09713202077943 +! ap(4,1)= -7.84708350369249 +! ap(4,2)= -2.04200599876547 +! ap(4,3)= 0.06475764015088 +! ap(5,1)= 25.90284137818050 +! ap(5,2)= 9.27791640100603 +! ap(5,3)= 0.07729792971827 +! ap(6,1)= -57.1528726997640 +! ap(6,2)= -16.8377999920957 +! ap(6,3)= 0.24883598436184 +! ap(7,1)= 42.02314637860930 +! ap(7,2)= 7.62432635016420 +! ap(7,3)= -0.72472024688888 + +! bp(1,1)= 0.79152347258784 +! bp(1,2)= -0.62269805320654 +! bp(1,3)= -0.06798823934067 +! bp(2,1)= 1.07120982251709 *2.0 +! bp(2,2)= 0.48628215731716 *2.0 +! bp(2,3)= 0.02837828512515 *2.0 +! bp(3,1)= 0.92084839459226 *3.0 +! bp(3,2)= 1.11652038059747 *3.0 +! bp(3,3)= 0.09713202077943 *3.0 +! bp(4,1)= -7.84708350369249 *4.0 +! bp(4,2)= -2.04200599876547 *4.0 +! bp(4,3)= 0.06475764015088 *4.0 +! bp(5,1)= 25.90284137818050 *5.0 +! bp(5,2)= 9.27791640100603 *5.0 +! bp(5,3)= 0.07729792971827 *5.0 +! bp(6,1)= -57.1528726997640 *6.0 +! bp(6,2)= -16.8377999920957 *6.0 +! bp(6,3)= 0.24883598436184 *6.0 +! bp(7,1)= 42.02314637860930 *7.0 +! bp(7,2)= 7.62432635016420 *7.0 +! bp(7,3)= -0.72472024688888 *7.0 + + +dnm(1,1) = -8.8043 +dnm(1,2) = +4.1646270 +dnm(1,3) = -48.203555 +dnm(1,4) = +140.43620 +dnm(1,5) = -195.23339 +dnm(1,6) = +113.51500 +dnm(2,1) = +2.9396 +dnm(2,2) = -6.0865383 +dnm(2,3) = +40.137956 +dnm(2,4) = -76.230797 +dnm(2,5) = -133.70055 +dnm(2,6) = +860.25349 +dnm(2,7) = -1535.3224 +dnm(2,8) = +1221.4261 +dnm(2,9) = -409.10539 +dnm(3,1) = -2.8225 +dnm(3,2) = +4.7600148 +dnm(3,3) = +11.257177 +dnm(3,4) = -66.382743 +dnm(3,5) = +69.248785 +dnm(4,1) = +0.3400 +dnm(4,2) = -3.1875014 +dnm(4,3) = +12.231796 +dnm(4,4) = -12.110681 + +END SUBROUTINE eos_const + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dq_const +! +! This subr. provides the constants of the dipole-quadrupole term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dq_const ( dqp2,dqp3,dqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: dqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: dqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: dqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mdq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i=1,ncomp + mdq(i) = parame(i,1) + IF (mdq(i) > 2.0) mdq(i) = 2.0 +END DO + + +DO i=1,ncomp + DO j=1,ncomp + + msegij=(mdq(i)*mdq(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + dqp2(i,j,0) = 0.697094963 + mf1*(-0.673459279) + mf2*0.670340770 + dqp2(i,j,1) = -0.633554144 + mf1*(-1.425899106) + mf2*(-4.338471826) + dqp2(i,j,2) = 2.945509028 + mf1 * 4.19441392 + mf2*7.234168360 + dqp2(i,j,3) = -1.467027314 + mf1 * 1.0266216 + dqp2(i,j,4) = 0.0 + + dqp4(i,j,0) = -0.484038322 + mf1 * 0.67651011 + mf2*(-1.167560146) + dqp4(i,j,1) = 1.970405465 + mf1*(-3.013867512) + mf2*2.13488432 + dqp4(i,j,2) = -2.118572671 + mf1 * 0.46742656 + dqp4(i,j,3) = 0.0 + dqp4(i,j,4) = 0.0 + + + DO k=1,ncomp + msegij=(mdq(i)*mdq(j)*mdq(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = (msegij-2.0)/msegij + dqp3(i,j,k,0) = 0.795009692 + mf1*(-2.099579397) + dqp3(i,j,k,1) = 3.386863396 + mf1*(-5.941376392) + dqp3(i,j,k,2) = 0.475106328 + mf1*(-0.178820384) + dqp3(i,j,k,3) = 0.0 + dqp3(i,j,k,4) = 0.0 + END DO + + END DO +END DO + +END SUBROUTINE dq_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dd_const +! +! This subroutine provides the constants of the dipole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dd_const ( ddp2,ddp3,ddp4 ) +! + USE PARAMETERS, ONLY: nc, PI + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ddp2(nc,nc,0:8) + REAL, INTENT(OUT) :: ddp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: ddp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: pardd(nc) + REAL :: mf1,mf2,msegij,sin2t +! ---------------------------------------------------------------------- + +sin2t = SIN( 0.0 * PI / 180.0 ) +sin2t = sin2t*sin2t + +DO i = 1, ncomp + pardd(i) = parame(i,1) + IF (pardd(i) > 2.0) pardd(i) = 2.0 +END DO + +DO i=1,ncomp + DO j=1,ncomp +! IF (parame(i,6).NE.0.0.AND.parame(j,6).NE.0.0) THEN + + msegij=(pardd(i)*pardd(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + ddp2(i,j,0) = 0.30435038064 + mf1*(0.95346405973+0.201436*sin2t) & + + mf2*(-1.16100802773-1.74114*sin2t) + ddp2(i,j,1) = -0.13585877707 + mf1*(-1.83963831920+1.31649*sin2t) & + + mf2*4.52586067320 + ddp2(i,j,2) = 1.44933285154 + mf1 * 2.01311801180 + mf2*0.97512223853 + ddp2(i,j,3) = 0.35569769252 + mf1*(-7.37249576667) + mf2*(-12.2810377713) + ddp2(i,j,4) = -2.06533084541 + mf1 * 8.23741345333 + mf2*5.93975747420 + + ddp4(i,j,0) = 0.21879385627 + mf1*(-0.58731641193) + mf2*3.48695755800 + ddp4(i,j,1) = -1.18964307357 + mf1 * 1.24891317047 + mf2*(-14.9159739347) + ddp4(i,j,2) = 1.16268885692 + mf1*(-0.50852797392) + mf2*15.3720218600 + ddp4(i,j,3) = 0.0 + ddp4(i,j,4) = 0.0 + + DO k=1,ncomp +! IF (parame(k,6).NE.0.0) THEN + msegij=(pardd(i)*pardd(j)*pardd(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + ddp3(i,j,k,0) = -0.06467735252 + mf1*(-0.95208758351+0.28503*sin2t) & + + mf2*(-0.62609792333+2.2195*sin2t) + ddp3(i,j,k,1) = 0.19758818347 + mf1 * 2.99242575222 + mf2*1.29246858189 + ddp3(i,j,k,2) = -0.80875619458 + mf1*(-2.38026356489) + mf2*1.65427830900 + ddp3(i,j,k,3) = 0.69028490492 + mf1*(-0.27012609786) + mf2*(-3.43967436378) + ddp3(i,j,k,4) = 0.0 + +! ENDIF + END DO + +! ENDIF + END DO +END DO + +END SUBROUTINE dd_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE qq_const +! +! This subroutine provides the constants of the quadrupole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qq_const ( qqp2,qqp3,qqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: qqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: qqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: qqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mqq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i = 1,ncomp + mqq(i) = parame(i,1) + IF (mqq(i) > 2.0) mqq(i) = 2.0 +END DO + +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + + msegij=(mqq(i)*mqq(j))**0.5 +! msegij=(parame(i,1)*parame(j,1))**0.50 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + qqp2(i,j,0) = 1.237830788 + mf1 * 1.285410878 + mf2*1.794295401 + qqp2(i,j,1) = 2.435503144 + mf1*(-11.46561451) + mf2*0.769510293 + qqp2(i,j,2) = 1.633090469 + mf1 *22.08689285 + mf2*7.264792255 + qqp2(i,j,3) = -1.611815241 + mf1 * 7.46913832 + mf2*94.48669892 + qqp2(i,j,4) = 6.977118504 + mf1*(-17.19777208) + mf2*(-77.1484579) + + qqp4(i,j,0) = 0.454271755 + mf1*(-0.813734006) + mf2*6.868267516 + qqp4(i,j,1) = -4.501626435 + mf1 * 10.06402986 + mf2*(-5.173223765) + qqp4(i,j,2) = 3.585886783 + mf1*(-10.87663092) + mf2*(-17.2402066) + qqp4(i,j,3) = 0.0 + qqp4(i,j,4) = 0.0 + + DO k = 1,ncomp + IF (parame(k,7) /= 0.0) THEN + msegij=(mqq(i)*mqq(j)*mqq(k))**(1.0/3.0) +! msegij=(parame(i,1)*parame(j,1)*parame(k,1))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + qqp3(i,j,k,0) = -0.500043713 + mf1 * 2.000209381 + mf2*3.135827145 + qqp3(i,j,k,1) = 6.531869153 + mf1*(-6.78386584) + mf2*7.247588801 + qqp3(i,j,k,2) = -16.01477983 + mf1 * 20.38324603 + mf2*3.075947834 + qqp3(i,j,k,3) = 14.42597018 + mf1*(-10.89598394) + qqp3(i,j,k,4) = 0.0 + END IF + END DO + + END IF + END DO +END DO + +END SUBROUTINE qq_const + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SET_DEFAULT_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + + ideal_gas = 'no' ! ( yes, no ) + hard_sphere = 'CSBM' ! ( CSBM, no ) + chain_term = 'TPT1' ! ( TPT1, HuLiu, no ) + disp_term = 'PC-SAFT' ! ( PC-SAFT, CK, PT1, PT2, PT_MF, PT_MIX, no ) + hb_term = 'TPT1_Chap' ! ( TPT1_Chap, no ) + LC_term = 'no' ! ( MSaupe, OVL, no ) + branch_term = 'no' ! ( TPT2, no ) + II_term = 'no' + ID_term = 'no' + + subtract1 = 'no' ! (1PT, 2PT, no) + subtract2 = 'no' ! (ITTpolar, no) + +END SUBROUTINE SET_DEFAULT_EOS_NUMERICAL + + + + + + + + + +! SUBROUTINE READ_INPUT +! ! +! USE BASIC_VARIABLES +! IMPLICIT NONE +! ! +! ! ---------------------------------------------------------------------- +! INTEGER :: i +! REAL :: reading2,reading3,sumfeed +! CHARACTER (LEN=4) :: uoutp, uinp +! CHARACTER (LEN=1) :: uoutt, uint +! CHARACTER (LEN=50) :: filename +! CHARACTER (LEN=30) :: reading1 +! ! ---------------------------------------------------------------------- +! +! filename='./input_file/INPUT.INP' +! CALL file_open(filename,30) +! READ (30,*) eos, pol !J: specify by numbers! eos(1=pcsaft, 2=SRK,...) pol (=polar) yes(1) no(0) +! READ (30,*) t, uint, p, uinp !J: t: value of temp, uint: unit of temp, p: value of pressure, uinp: unit of pressure +! +! ncomp = 0 +! i = 0 +! sumfeed = 0.0 +! read_loop: DO +! READ (30,*) reading1,reading2,reading3 +! IF (reading1 == 'end') EXIT read_loop +! ncomp = ncomp + 1 +! i = i + 1 +! compna(i)= reading1 ! comp.name +! mm(i) = reading2 ! molec.mass (mandatory only for polymers) +! xif(i) = reading3 !J: molefractions +! sumfeed = sumfeed + xif(i) +! ENDDO read_loop +! +! CLOSE (30) +! +! IF (sumfeed /= 0.0 .AND. sumfeed /= 1.0) THEN !J: in case mole fractions dont sum up to 1?? +! xif(1:ncomp) = xif(1:ncomp)/sumfeed +! END IF +! +! uoutt = uint +! uoutp = uinp +! IF (uint == 'C') THEN !J: unit stuff +! u_in_t = 273.15 +! ELSE +! u_in_t = 0.0 +! END IF +! IF (uinp == 'bar') THEN +! u_in_p = 1.E5 +! ELSE IF (uinp == 'mbar') THEN +! u_in_p = 1.E2 +! ELSE IF (uinp == 'MPa') THEN +! u_in_p = 1.E6 +! ELSE IF (uinp == 'kPa') THEN +! u_in_p = 1.E3 +! ELSE +! u_in_p = 1.E0 +! END IF +! +! IF (uoutt == 'C') THEN +! u_out_t = 273.15 +! ELSE +! u_out_t = 0.0 +! END IF +! IF (uoutp == 'bar') THEN +! u_out_p = 1.E5 +! ELSE IF (uoutp == 'mbar') THEN +! u_out_p = 1.E2 +! ELSE IF (uoutp == 'MPa') THEN +! u_out_p = 1.E6 +! ELSE IF (uoutp == 'kPa') THEN +! u_out_p = 1.E3 +! ELSE +! u_out_p = 1.0 +! END IF +! +! t = t + u_in_t !J: calculate temp in Kelvin +! p = p * u_in_p !J: calculate pressure in Pascal +! +! CALL para_input ! retriev pure comp. parameters +! +! +! END SUBROUTINE READ_INPUT + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE file_open +! +! This subroutine opens files for reading. Beforehand, it checks +! whether this file is available. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE file_open(filename,file_number) +! +! ---------------------------------------------------------------------- + CHARACTER (LEN=50) :: filename + INTEGER :: file_number + LOGICAL :: filefound +! ---------------------------------------------------------------------- + +INQUIRE (FILE=filename, EXIST = filefound) +IF (filefound) THEN + OPEN (file_number, FILE = filename) +ELSE + write (*,*) ' FOLLOWING FILE CAN NOT BE OPENED', filename + stop +END IF + +END SUBROUTINE file_open + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE para_input +! +! This subroutine provides pure component parameters and kij parameters. +! The following syntax applies: +! +! compna(i) component name +! parame(i,k) pure comp. parameter: +! parame(i,1): segment number [/] +! parame(i,2): segment diameter "sigma" [Angstrom] +! parame(i,3): segment energy param. epsilon/k [K] +! parame(i,4): model parameter; not used for PC-SAFT (=0) +! it is 10K most of the time for SAFT [K] +! parame(i,5): Param. for T-dependent segment diameter [/] +! parame(i,6): dipolar moment [debye] +! parame(i,7): quadrupolar moment [debye] +! parame(i,8): number of segments that are part of a branching 4-mer [/] +! parame(i,9): +! parame(i,10): ionic charge number (positiv or negativ) [/] +! parame(i,11): polarizability [A**3] +! parame(i,12): number of association sites [/] +! parame(i,13): (=kap_hb, see below) [/] +! parame(i,14 to 25): (=eps_hb, see below) [K] +! nhb_typ(i) number of different types of association sites (comp. i) +! nhb_no(i,k) number of association sites of type k +! eps_hb depth of association potential [K] +! kap_hb effective width of assoc. potential (angle-averg.) +! mm molec. mass +! scaling param. for roughly scaling the set of objective functions +! +! As opposed to low-molec mass compounds, the molecular mass of a +! polymer is not obtained from this routine. Rather, it is a +! user-specification given in the file INPUT.INP +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE para_input +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i +!---------------------------------------------------------------------- + +IF (eos == 1) THEN + CALL pcsaft_par +ELSE IF (eos == 4 .OR. eos == 5 .OR. eos == 6 .OR. eos == 8) THEN + ! CALL lj_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 7) THEN + ! CALL sw_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 10) THEN + i = 1 + IF (compna(i) == 'LC_generic' .AND. ncomp == 1 ) THEN + mm(i) = 1.0 + parame(i,1) = 7.0 + parame(i,2) = 1.0 + parame(i,3) = 0.0 + ELSE + write (*,*) 'PARA_INPUT: define the component !' + stop + ENDIF +ELSE + !CALL saft_par +END IF + +DO i = 1, ncomp + IF ( mm(i) >= 1.0 .AND. mm(i) < 45.0 ) THEN + scaling(i) = 10000.0 + ELSE IF( mm(i) >= 45.0 .AND. mm(i) < 90.0 ) THEN + scaling(i) = 1000.0 + ELSE IF( mm(i) >= 90.0 .AND. mm(i) < 150.0 ) THEN + scaling(i) = 100.0 + ELSE IF( mm(i) >= 150.0 .AND. mm(i) < 250.0 ) THEN + scaling(i) = 10.0 + ELSE + scaling(i) = 1.0 + END IF + IF (parame(i,10) /= 0.0) scaling(i) = scaling(i) / 1.E4 ! Electrolytes +END DO + +END SUBROUTINE para_input + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE pcsaft_par +! +! pure component parameters and kij parameters +! (as described in SUBROUTINE para_input) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE pcsaft_par +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i, j, k, no + INTEGER, DIMENSION(nc) :: nhb_typ + INTEGER, DIMENSION(nc,nsite) :: nhb_no + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb +!---------------------------------------------------------------------- + + +DO i = 1, ncomp + parame(i,4) = 0.0 ! T correct. required for SAFT, not PC-SAFT + parame(i,5) = 0.12 ! Param. for T-dependent segment diameter + parame(i,6) = 0.0 ! dipolar moment + parame(i,7) = 0.0 ! quadrupolar moment + parame(i,8) = 0.0 ! number of segments that are part of a branching 4-mer + parame(i,9) = 0.0 + parame(i,10)= 0.0 ! ionic charge number + parame(i,11)= 0.0 ! polarizability + lli(i) = 0.0 + phi_criti(i)= 0.0 + chap(i) = 0.0 + + nhb_typ(i) = 0 + kap_hb(i,i) = 0.0 + + IF (compna(i) == '14-butandiol') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + + ELSE IF (compna(i) == 'ps') THEN + parame(i,1) = mm(i)*1.9E-2 + parame(i,2) = 4.10705961 + parame(i,3) = 267.0 + ELSE IF (compna(i) == 'pg2') THEN !Polyglycerol 2 + mm(i) = 2000.0 + parame(i,1) = mm(i)*2.37E-2 ! from figure 5 PCSAFT paper + parame(i,2) = 3.8 ! from figure 5 PCSAFT paper + parame(i,3) = 270.0 ! starting value for iteration + ! this is the extra parameter + parame(i,8) = mm(i)*2.37E-2 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 27 ! no. of sites of type 1 + nhb_no(i,2) = 27 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2544.6 ! taken from butanol (same M/OH) + eps_hb(i,i,2,1)= 2544.6 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i)= .00489087833 ! taken from butanol (same M/OH) + ELSE IF (compna(i) == 'peva') THEN + parame(i,1) = mm(i)*2.63E-2 + ! -- 0 Gew.% VA------------- + ! parame(i,2) = 4.021767 + ! parame(i,3) = 249.5 + ! -- 7.5 Gew.% VA------------- + ! parame(i,2) = 4.011 + ! parame(i,3) = 248.1864 + ! parame(i,3) = 247.6286 + ! ---12.7 Gew.% VA------------ + ! parame(i,2) = 4.0028 + ! parame(i,3) = 247.2075 + ! parame(i,3) = 246.24454 + ! ---27.3 Gew.% VA------------ + ! parame(i,2) = 3.9762 + ! parame(i,3) = 244.114 + ! parame(i,3) = 241.9345 + ! ---31.8 Gew.% VA------------ + parame(i,2) = 3.9666 + parame(i,3) = 243.0436 + ! parame(i,3) = 240.46 + ! ---42.7 Gew.% VA------------ + ! parame(i,2) = 3.9400 + ! parame(i,3) = 240.184 + ! parame(i,3) = 236.62 + ! --------------- + ELSE IF (compna(i) == 'pp') THEN + parame(i,1) = mm(i)*2.2E-2 + parame(i,2) = 4.2 + parame(i,3) = 220.0 + + parame(i,1) = mm(i)*0.0230487701 + parame(i,2) = 4.1 + parame(i,3) = 217.0 + ELSE IF (compna(i) == 'pe') THEN + parame(i,1) = mm(i)*2.622E-2 + parame(i,2) = 4.021767 + parame(i,3) = 252.0 + ! HDPE: extrapolated from pure comp. param. of n-alkane series! + ! parame(i,1) = mm(i)*2.4346E-2 + ! parame(i,2) = 4.07182 + ! parame(i,3) = 269.67 + !! parame(i,3) = 252.5 + ELSE IF (compna(i) == 'ldpe') THEN + parame(i,1) = mm(i)*2.63E-2 + parame(i,2) = 4.021767 + parame(i,3) = 249.5 + ELSE IF (compna(i) == 'pba') THEN + parame(i,1) = mm(i)*2.5872E-2 + parame(i,2) = 3.95 + parame(i,3) = 229.0 + ELSE IF (compna(i) == 'dextran') THEN + parame(i,1) = mm(i)*2.E-2 + parame(i,2) = 4.0 + parame(i,3) = 300.0 + ELSE IF (compna(i) == 'glycol-ethers') THEN + ! mm(i) = 218.0 + ! parame(i,1) = 7.4044 + ! parame(i,2) = 3.61576 + ! parame(i,3) = 244.0034598 + mm(i) = 222.0 + parame(i,1) = 7.994 + parame(i,2) = 3.445377778 + parame(i,3) = 234.916506 + ELSE IF (compna(i) == 'LJ') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 1.0 + ELSE IF (compna(i) == 'LJ1205') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 140.0 + ELSE IF (compna(i) == 'adamantane') THEN + mm(i) = 136.235000000000 + parame(i,1) = 4.81897145432221 + parame(i,2) = 3.47128575274660 + parame(i,3) = 266.936967922521 + ELSE IF (compna(i) == 'methane') THEN + mm(i) = 16.043 + parame(i,1) = 1.0 + parame(i,2) = 3.70388767 + parame(i,3) = 150.033987 + ! LLi(i) = 1.185*parame(i,2) + ! phi_criti(i)= 11.141 + ! chap(i) = 0.787 + lli(i) = 1.398*parame(i,2) + phi_criti(i)= 16.01197 + chap(i) = 0.6 + IF (pol == 2) parame(i,11)= 2.593 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 16.0430000000000 + ! parame(i,1) = 1.03353666429362 + ! parame(i,2) = 3.64824920605089 + ! parame(i,3) = 147.903953522994 + lli(i) = 2.254442763775*parame(i,2) + phi_criti(i)= 42.060975627454 + chap(i) = 0.704895924 + lli(i) = 1.935801125833*parame(i,2) + phi_criti(i)= 26.363325937261 + chap(i) = 0.700112854298 + lli(i) = 2.610103087662*parame(i,2) + phi_criti(i)= 38.192854403173 + chap(i) = 0.812100472735 + ! 2.122960316503 34.937141524804 0.734513223627 + ! 2.082897379591 33.036391564859 0.877578492999 + ELSE IF (compna(i) == 'ethane') THEN + mm(i) = 30.070 + parame(i,1) =mm(i)* .0534364758 + parame(i,2) = 3.5205923 + parame(i,3) = 191.423815 + lli(i) = 1.40*parame(i,2) + phi_criti(i)= 15.38 + chap(i) = 0.520 + IF (pol == 2) parame(i,11)= 4.3 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 30.069 + ! parame(i,1) = 1.74034548122 + ! parame(i,2) = 3.4697441893134 + ! parame(i,3) = 181.90770083591 + IF (pol >= 1) mm(i) = 30.0700000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 5.341907666260094E-002 + IF (pol >= 1) parame(i,2) = 3.52104466654628 + IF (pol >= 1) parame(i,3) = 191.449300423694 + IF (pol >= 1) parame(i,7) = 0.650000000000000 + IF (pol >= 1) lli(i) = 0.0 + IF (pol >= 1) phi_criti(i)= 0.0 + IF (pol >= 1) chap(i) = 0.0 + ELSE IF (compna(i) == 'propane') THEN + mm(i) = 44.096 + parame(i,1) = mm(i)* .0453970622 + parame(i,2) = 3.61835302 + parame(i,3) = 208.110116 + lli(i) = 1.8*parame(i,2) + phi_criti(i)= 21.0 + chap(i) = 1.0 + lli(i) = 1.63*parame(i,2) + phi_criti(i)= 20.37 + chap(i) = 0.397 + IF (pol == 2) parame(i,11)= 6.29 + ELSE IF (compna(i) == 'butane_debug') THEN + mm(i) = 58.123 + parame(i,1) = 2.3374 + parame(i,2) = 3.6655 + parame(i,3) = 214.805 + ELSE IF (compna(i) == 'butane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0401146927 + parame(i,2) = 3.70860139 + parame(i,3) = 222.877405 + lli(i) = 1.75*parame(i,2) + phi_criti(i)= 23.43 + chap(i) = 0.304 + ! LLi(i) = 1.942079633622*parame(i,2) + ! phi_criti(i)= 24.527323443155 + ! chap(i) = 0.734064026277 + ! LLi(i) = 1.515115760477*parame(i,2) + ! phi_criti(i)= 17.682929717796 + ! chap(i) = 0.335848717079 + IF (pol == 2) parame(i,11)= 8.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 58.1230000000 + ! parame(i,1) = 2.45352304112 + ! parame(i,2) = 3.74239117802 + ! parame(i,3) = 214.185157925 + ELSE IF (compna(i) == 'pentane') THEN + mm(i) = 72.146 + parame(i,1) = mm(i)* .03727896 + parame(i,2) = 3.77293174 + parame(i,3) = 231.197015 + IF (pol == 2) parame(i,11)= 9.99 + ELSE IF (compna(i) == 'hexane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0354812325 + parame(i,2) = 3.79829291 + parame(i,3) = 236.769054 + lli(i) = 2.24*parame(i,2) + phi_criti(i)= 33.25 + chap(i) = 0.205 + IF (pol == 2) parame(i,11)= 11.9 + ELSE IF (compna(i) == 'heptane') THEN + mm(i) = 100.203 + parame(i,1) = mm(i)* .034762384 + parame(i,2) = 3.80487025 + parame(i,3) = 238.400913 + lli(i) = 2.35*parame(i,2) + phi_criti(i)= 38.10 + chap(i) = 0.173 + IF (pol == 2) parame(i,11)= 13.61 + ELSE IF (compna(i) == 'octane') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* .0334228038 + parame(i,2) = 3.83732677 + parame(i,3) = 242.775853 + ! LLi(i) = 2.0*parame(i,2) + ! phi_criti(i)= 18.75 + ! chap(i) = 1.0 + lli(i) = 2.63*parame(i,2) + phi_criti(i)= 42.06 + chap(i) = 0.155 + IF (pol == 2) parame(i,11)= 15.9 + ELSE IF (compna(i) == 'nonane') THEN + mm(i) = 128.25 + parame(i,1) = mm(i)* .0328062594 + parame(i,2) = 3.84483643 + parame(i,3) = 244.508457 + ELSE IF (compna(i) == 'decane') THEN + mm(i) = 142.285 + parame(i,1) = mm(i)* .03277373 + parame(i,2) = 3.8384498 + parame(i,3) = 243.866074 + lli(i) = 1.845*parame(i,2) + phi_criti(i)= 21.27 + chap(i) = 1.0 + lli(i) = 2.68*parame(i,2) + phi_criti(i)= 45.0 + chap(i) = 0.15 + IF (pol == 2) parame(i,11)= 19.1 + ! --- adjusted to Tc, Pc und omega --- + ! parame(i,1) = 4.794137228322 + ! parame(i,2) = 4.030446690586 + ! parame(i,3) = 236.5884493386 + ELSE IF (compna(i) == 'dodecane') THEN + mm(i) = 170.338 + parame(i,1) = mm(i)* .0311484156 + parame(i,2) = 3.89589236 + parame(i,3) = 249.214532 + ELSE IF (compna(i) == 'hexadecane') THEN + mm(i) = 226.446 + parame(i,1) = mm(i)* .0293593045 + parame(i,2) = 3.95516743 + parame(i,3) = 254.700131 + ELSE IF (compna(i) == 'octadecane') THEN + mm(i) = 254.5 + parame(i,1) = 7.3271 + parame(i,2) = 3.9668 + parame(i,3) = 256.20 + IF (pol == 2) parame(i,11)= 30.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 226.446000000000 + ! parame(i,1) = 6.66976520488694 + ! parame(i,2) = 4.25025597912511 + ! parame(i,3) = 249.582941976119 + ELSE IF (compna(i) == 'eicosane') THEN + mm(i) = 282.553 + parame(i,1) = mm(i)* .0282572812 + parame(i,2) = 3.98692612 + parame(i,3) = 257.747939 + ELSE IF (compna(i) == 'triacontane') THEN + ! mm(i) = 422.822 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 422.822 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'octaeicosane') THEN + mm(i) = 395.0 ! param. by extrapolation of n-alkanes (sloppy!!) + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'tetracontane') THEN + ! mm(i) = 563.1 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 563.1 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)*0.026287593 + parame(i,2) = 4.023277 + parame(i,3) = 264.10466 + ELSE IF (compna(i) == 'isobutane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0389105395 + parame(i,2) = 3.75735249 + parame(i,3) = 216.528584 + ELSE IF (compna(i) == 'isopentane') THEN + mm(i) = 72.15 + parame(i,1) = 2.5620 + parame(i,2) = 3.8296 + parame(i,3) = 230.75 + ELSE IF (compna(i) == '2-methylpentane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0340166994 + parame(i,2) = 3.85354665 + parame(i,3) = 235.5801 + ELSE IF (compna(i) == '23-dimethylbutane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0311599207 + parame(i,2) = 3.9544545 + parame(i,3) = 246.068188 + ELSE IF (compna(i) == 'ethylene') THEN + mm(i) = 28.05 + parame(i,1) = mm(i)* .0567939013 + parame(i,2) = 3.44499904 + parame(i,3) = 176.468725 + IF (pol == 2) parame(i,11)= 4.252 +! eigener 3-ter Anlauf. + IF (pol >= 1) parame(i,1) = mm(i)* 5.574644443117726E-002 + IF (pol >= 1) parame(i,2) = 3.43281482228714 + IF (pol >= 1) parame(i,3) = 178.627308564610 + IF (pol >= 1) parame(i,7) = 1.56885870200446 + IF (pol == 2) parame(i,11)= 4.252 + ELSE IF (compna(i) == 'propylene') THEN + mm(i) = 42.081 + parame(i,1) = mm(i)* .0465710324 + parame(i,2) = 3.53559831 + parame(i,3) = 207.189309 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 42.081 + ! parame(i,1) = 2.086735327675 + ! parame(i,2) = 3.536779407969 + ! parame(i,3) = 198.3529810625 + ELSE IF (compna(i) == '1-butene') THEN + mm(i) = 56.107 + parame(i,1) = mm(i)* .0407524782 + parame(i,2) = 3.64305136 + parame(i,3) = 222.002756 + IF (pol == 2) parame(i,11)= 7.97 + ELSE IF (compna(i) == '1-pentene') THEN + mm(i) = 70.134 + parame(i,1) = 2.6006 + parame(i,2) = 3.7399 + parame(i,3) = 231.99 + ELSE IF (compna(i) == '1-hexene') THEN + mm(i) = 84.616 + parame(i,1) = mm(i)* .0352836857 + parame(i,2) = 3.77529612 + parame(i,3) = 236.810973 + ELSE IF (compna(i) == '1-octene') THEN + mm(i) = 112.215 + parame(i,1) = mm(i)* .033345175 + parame(i,2) = 3.81329011 + parame(i,3) = 243.017587 + ELSE IF (compna(i) == 'cyclopentane') THEN + mm(i) = 70.13 + parame(i,1) = mm(i)* .0337262571 + parame(i,2) = 3.71139254 + parame(i,3) = 265.828755 + ELSE IF (compna(i) == 'cyclohexane') THEN + mm(i) = 84.147 + parame(i,1) = mm(i)* .0300695505 + parame(i,2) = 3.84990887 + parame(i,3) = 278.108786 + IF (pol == 2) parame(i,11)= 10.87 + ELSE IF (compna(i) == 'toluene') THEN + mm(i) = 92.141 + parame(i,1) = mm(i)* .0305499338 + parame(i,2) = 3.71689689 + parame(i,3) = 285.68996 + IF (pol == 2) parame(i,11)= 11.8 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 92.141 + ! parame(i,1) = 3.002119827762 + ! parame(i,2) = 3.803702734224 + ! parame(i,3) = 271.9428642880 + ELSE IF (compna(i) == 'm-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .030011086 + parame(i,2) = 3.75625585 + parame(i,3) = 283.977525 + ELSE IF (compna(i) == 'o-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0295409161 + parame(i,2) = 3.76000631 + parame(i,3) = 291.049123 + ELSE IF (compna(i) == 'thf') THEN + mm(i) = 72.1057000000000 + ! parame(i,1) = mm(i)* 0.34311391E-01 + parame(i,1) = 2.47404685540709 + parame(i,2) = 3.51369375633677 + parame(i,3) = 274.181927093696 + parame(i,6) = 1.63100000000000 + + + Else IF(compna(i) == 'po') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + Else IF(compna(i) == 'mdi') THEN + mm(i) = 2.50252E+02 + parame(i,1) = mm(i)*0.030769 + parame(i,2) = 2.886003 + parame(i,3) = 283.052778 + + Else IF(compna(i) == 'pu') THEN +! mm(i) = 2042.22 !pu n = 5 +! parame(i,1) = mm(i)*0.008845 +! parame(i,2) = 5.680270 +! parame(i,3) = 497.997594 +! mm(i) = 340.37 !pu n = 0 +! parame(i,1) = mm(i)*0.043312 +! parame(i,2) = 3.008359 +! parame(i,3) = 273.445205 +! mm(i) = 680.74 !pu n = 1 +! parame(i,1) = mm(i)*0.024106 +! parame(i,2) = 3.744327 +! parame(i,3) = 321.486386 + mm(i) = 1021.11 !pu n = 2 + parame(i,1) = mm(i)*0.015076 + parame(i,2) = 4.537837 + parame(i,3) = 400.036950 + + ELSE IF (compna(i) == 'air') THEN + mm(i) = 28.899 !n2 and o2 according to mole fractions + parame(i,1) = 1.18938 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,2) = 3.28694 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,3) = 95.672 !n2 and o2 according to mole fractions (weighted artihm. avg) + + + + + + ELSE IF (compna(i) == 'co2') THEN + mm(i) = 44.01 + parame(i,1) = mm(i)* .0470968503 + parame(i,2) = 2.7851954 + parame(i,3) = 169.207418 + IF (pol >= 1) parame(i,1) = mm(i)* 3.438191426159075E-002 + IF (pol >= 1) parame(i,2) = 3.18693935424469 + IF (pol >= 1) parame(i,3) = 163.333232725156 + IF (pol >= 1) parame(i,7) = 4.400000000000 + IF (pol >= 1) lli(i) = 1.472215*parame(i,2) + IF (pol >= 1) phi_criti(i)= 17.706567 + IF (pol >= 1) chap(i) = 0.5 + IF (pol == 2) parame(i,11)= 2.911 + ELSE IF (compna(i) == 'co') THEN + IF (pol /= 1) write (*,*) 'parameters for co missing' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 28.01 + IF (pol >= 1) parame(i,1) = mm(i)* 5.126059746332587E-002 ! 1.43580933494776 + IF (pol >= 1) parame(i,2) = 3.13556624711756 + IF (pol >= 1) parame(i,3) = 87.7191028693595 + IF (pol >= 1) parame(i,6) = 0.1098 + ELSE IF (compna(i) == 'n2') THEN + mm(i) = 28.01 + parame(i,1) = mm(i)* .0430301713 + parame(i,2) = 3.3129702 + parame(i,3) = 90.9606924 + IF (pol >= 1) parame(i,1) = mm(i)* 3.971157114787596E-002 + IF (pol >= 1) parame(i,2) = 3.42116853868336 + IF (pol >= 1) parame(i,3) = 92.3972606842862 + IF (pol >= 1) parame(i,7) = 1.52000000000000 + IF (pol >= 1) lli(i) = 1.5188*parame(i,2) + IF (pol >= 1) phi_criti(i)= 19.9247 + IF (pol >= 1) chap(i) = 0.375 + ! better RGT-results came later, with: 1.5822 21.201 0.3972 + ELSE IF (compna(i) == 'o2') THEN + mm(i) = 32.05 + parame(i,1) = mm(i)* .0353671563 + parame(i,2) = 3.19465166 + parame(i,3) = 114.430197 + ELSE IF (compna(i) == 'hydrogen') THEN + mm(i) = 2.016 + parame(i,1) = mm(i)* .258951975 + parame(i,2) = 4.43304935 + parame(i,3) = 29.6509579 + + mm(i) = 2.016 + parame(i,1) = 1.0 + parame(i,2) = 2.915 + parame(i,3) = 38.0 + + ! mm(i) = 2.016 ! Ghosh et al. 2003 + ! parame(i,1) = 1.0 + ! parame(i,2) = 2.986 + ! parame(i,3) = 19.2775 + ELSE IF (compna(i) == 'argon') THEN + ! mm(i) = 39.948 ! adjusted m !! + ! parame(i,1) = 0.9285 + ! parame(i,2) = 3.4784 + ! parame(i,3) = 122.23 + mm(i) = 39.948 ! enforced m=1 !! + parame(i,1) = 1.0 + parame(i,2) = 3.3658 + parame(i,3) = 118.34 + IF (pol == 2) parame(i,11)= 1.6411 + ELSE IF (compna(i) == 'xenon') THEN + mm(i) = 131.29 + parame(i,1) = 1.0 + parame(i,2) = 3.93143 + parame(i,3) = 227.749 + ELSE IF (compna(i) == 'chlorine') THEN ! Cl2 + mm(i) = 70.906 + parame(i,1) = 1.5514 + parame(i,2) = 3.3672 + parame(i,3) = 265.67 + ELSE IF (compna(i) == 'SF6') THEN + mm(i) = 146.056 ! adjusted m !! + parame(i,1) = 2.48191 + parame(i,2) = 3.32727 + parame(i,3) = 161.639 + ! mm(i) = 146.056 ! enforced m=1 !! + ! parame(i,1) = 1.0 + ! parame(i,2) = 4.55222 + ! parame(i,3) = 263.1356 + ELSE IF (compna(i) == 'benzene') THEN + mm(i) = 78.114 + parame(i,1) = mm(i)* .0315590546 + parame(i,2) = 3.64778975 + parame(i,3) = 287.354574 + IF (pol >= 1) mm(i) = 78.114 ! PCP-SAFT with m=2 in QQ term + IF (pol >= 1) parame(i,1) = mm(i)* 2.932783311E-2 ! = 2.29091435590515 + IF (pol >= 1) parame(i,2) = 3.7563854 + IF (pol >= 1) parame(i,3) = 294.06253 + IF (pol >= 1) parame(i,7) = 5.5907 + ELSE IF (compna(i) == 'ethylbenzene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0290120497 + parame(i,2) = 3.79741116 + parame(i,3) = 287.348098 + IF (pol == 2) parame(i,11)= 13.3 + ELSE IF (compna(i) == 'propylbenzene') THEN + mm(i) = 120.194 + parame(i,1) = mm(i)* .0278171627 + parame(i,2) = 3.8437772 + parame(i,3) = 288.128269 + ELSE IF (compna(i) == 'n-butylbenzene') THEN + mm(i) = 134.221 + parame(i,1) = mm(i)* .0280642225 + parame(i,2) = 3.87267961 + parame(i,3) = 283.072331 + ELSE IF (compna(i) == 'tetralin') THEN + mm(i) = 132.205 + parame(i,1) = mm(i)* .0250640795 + parame(i,2) = 3.87498866 + parame(i,3) = 325.065688 + ELSE IF (compna(i) == 'methylcyclohexane') THEN + mm(i) = 98.182 + parame(i,1) = mm(i)* .0271259953 + parame(i,2) = 3.99931892 + parame(i,3) = 282.334148 + IF (pol == 2) parame(i,11)= 13.1 + ELSE IF (compna(i) == 'methylcyclopentane') THEN + mm(i) = 84.156 + parame(i,1) = mm(i)* .0310459009 + parame(i,2) = 3.82534693 + parame(i,3) = 265.122799 + ELSE IF (compna(i) == 'acetone') THEN + mm(i) = 58.0800000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.870380408159182E-002 ! =2.82871694105885 + parame(i,2) = 3.24969003020675 + parame(i,3) = 250.262241927379 + lli(i) = 2.0021*parame(i,2) + phi_criti(i)= 21.336 + chap(i) = 0.24931 + IF (pol >= 1) mm(i) = 58.0800000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.725811736856114E-002 ! =2.74475145676603 + IF (pol >= 1) parame(i,2) = 3.27423145271184 + IF (pol >= 1) parame(i,3) = 232.990879135326 + IF (pol >= 1) parame(i,6) = 2.88000000000000 + IF (pol >= 1) lli(i) = 2.0641*parame(i,2) + IF (pol >= 1) phi_criti(i)= 28.1783 + IF (pol >= 1) chap(i) = 0.22695 + IF (pol >= 2) mm(i) = 58.0800000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.902301475689938E-002 ! =2.84725669708072 + IF (pol >= 2) parame(i,2) = 3.23880349104868 + IF (pol >= 2) parame(i,3) = 220.884202656054 + IF (pol >= 2) parame(i,6) = 2.88000000000000 + IF (pol == 2) parame(i,11)= 6.40000000000000 + ELSE IF (compna(i) == 'butanone') THEN + mm(i) = 72.1066 ! PC-SAFT + parame(i,1) = mm(i)* 4.264192830122321E-002 ! =3.07476446724498 + parame(i,2) = 3.39324011060028 + parame(i,3) = 252.267273608975 + IF (pol >= 1) mm(i) = 72.1066 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.137668924230600E-002 ! =2.98353238051926 + IF (pol >= 1) parame(i,2) = 3.42393701353423 + IF (pol >= 1) parame(i,3) = 244.994381354681 + IF (pol >= 1) parame(i,6) = 2.78000000000000 + IF (pol >= 2) mm(i) = 72.1066 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.254697075199448E-002 ! =3.06791740122577 + IF (pol >= 2) parame(i,2) = 3.39138375903252 + IF (pol >= 2) parame(i,3) = 236.527763837528 + IF (pol >= 2) parame(i,6) = 2.78000000000000 + IF (pol == 2) parame(i,11)= 8.13000000000000 + ELSE IF (compna(i) == '2-pentanone') THEN + ! mm(i) = 86.134 ! PC-SAFT + ! parame(i,1) = mm(i)* 3.982654501296355E-002 ! =3.43041962814660 + ! parame(i,2) = 3.46877976946838 + ! parame(i,3) = 249.834724442656 + ! mm(i) = 86.134 ! PCP-SAFT + ! parame(i,1) = mm(i)* 3.893594769994072E-002 ! =3.35370891918669 + ! parame(i,2) = 3.49417356096593 + ! parame(i,3) = 246.656329096835 + ! parame(i,6) = 2.70000000000000 + mm(i) = 86.134 ! PCIP-SAFT + parame(i,1) = mm(i)* 3.973160761515879E-002 ! =3.42224229032409 + parame(i,2) = 3.46827593107280 + parame(i,3) = 240.904278156822 + parame(i,6) = 2.70000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == '3-pentanone') THEN + mm(i) = 86.134 ! PC-SAFT + parame(i,1) = 3.36439508013322 + parame(i,2) = 3.48770251979329 + parame(i,3) = 252.695415552376 + IF (pol >= 1) mm(i) = 86.134 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.27863398611842 + IF (pol >= 1) parame(i,2) = 3.51592571835030 + IF (pol >= 1) parame(i,3) = 248.690775540981 + IF (pol >= 1) parame(i,6) = 2.82000000000000 + IF (pol == 2) mm(i) = 86.134 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 3.34821857026283 + IF (pol == 2) parame(i,2) = 3.48903345340516 + IF (pol == 2) parame(i,3) = 242.314578558329 + IF (pol == 2) parame(i,6) = 2.82000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == 'cyclohexanone') THEN ! from DIPPR + ! IF (pol.GE.1) mm(i) = 98.1430 ! PCP-SAFT + ! IF (pol.GE.1) parame(i,1) = 3.084202 + ! IF (pol.GE.1) parame(i,2) = 3.613681 + ! IF (pol.GE.1) parame(i,3) = 286.15865 + ! IF (pol.GE.1) parame(i,6) = 3.087862 + IF (pol >= 1) mm(i) = 98.1500000000000 + IF (pol >= 1) parame(i,1) = 2.72291913132818 + IF (pol >= 1) parame(i,2) = 3.79018433908522 + IF (pol >= 1) parame(i,3) = 314.772193827344 + IF (pol >= 1) parame(i,6) = 3.24600000000000 + IF (pol /= 1) WRITE (*,*) 'no non-polar param. for cyclohexanone' + IF (pol /= 1) STOP + ELSE IF (compna(i) == 'propanal') THEN + mm(i) = 58.08 ! PC-SAFT + parame(i,1) = 2.67564746980910 + parame(i,2) = 3.26295953984941 + parame(i,3) = 251.888982765626 + IF (pol >= 1) mm(i) = 58.08 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.60007872084995 + IF (pol >= 1) parame(i,2) = 3.28720732189761 + IF (pol >= 1) parame(i,3) = 235.205188090107 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + IF (pol >= 2) mm(i) = 58.08 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.72471167411028 + IF (pol >= 2) parame(i,2) = 3.24781643022922 + IF (pol >= 2) parame(i,3) = 221.642071811094 + IF (pol >= 2) parame(i,6) = 2.72000000000000 + IF (pol >= 2) parame(i,11)= 6.50000000000000 + ELSE IF (compna(i) == 'butanal') THEN + mm(i) = 72.1066000000000 ! PC-SAFT + parame(i,1) = 2.96824823599784 + parame(i,2) = 3.44068916025889 + parame(i,3) = 253.929404992884 + IF (pol >= 1) mm(i) = 72.1066000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.86783706423953 + IF (pol >= 1) parame(i,2) = 3.47737904036296 + IF (pol >= 1) parame(i,3) = 247.543312127310 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + ELSE IF (compna(i) == 'dmso') THEN + mm(i) = 78.1300000000000 ! PC-SAFT + parame(i,1) = 2.92225114054231 + parame(i,2) = 3.27780791606297 + parame(i,3) = 355.688793038512 + IF (pol >= 1) mm(i) = 78.1300000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.02433694138348 + IF (pol >= 1) parame(i,2) = 3.24270742566613 + IF (pol >= 1) parame(i,3) = 309.357476696679 + IF (pol >= 1) parame(i,6) = 3.96000000000000 + IF (pol >= 2) mm(i) = 78.1300000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 3.19078234633277 + IF (pol >= 2) parame(i,2) = 3.19778269816832 + IF (pol >= 2) parame(i,3) = 286.337981216861 + IF (pol >= 2) parame(i,6) = 3.96000000000000 + IF (pol >= 2) parame(i,11)= 7.97000000000000 + ELSE IF (compna(i) == 'acetone_JC') THEN ! Jog-Chapman + ! mm(i) = 58.0800000000000 ! Dominik et al.2005 + ! parame(i,1) = 2.221 + ! parame(i,2) = 3.607908 + ! parame(i,3) = 259.99 + ! parame(i,6) = 2.7 + ! parame(i,8) = 0.2258 + ! mm(i) = 58.0800000000000 + ! parame(i,1) = mm(i)* 3.556617369195472E-002 + ! parame(i,2) = 3.58780367502515 + ! parame(i,3) = 273.025100470307 + ! parame(i,6) = 2.70000000000000 + ! parame(i,8) = 0.229800000000000 + + mm(i) = 58.08 ! Tumakaka Sadowski 2004 + parame(i,1) = mm(i)* 3.766E-2 + parame(i,2) = 3.6028 + parame(i,3) = 245.49 + parame(i,6) = 2.72 + parame(i,8) = 0.2969 + ! mm(i) = 58.0800000000000 ! no adjust. DD-param. + ! parame(i,1) = 1.87041620247774 + ! parame(i,2) = 3.79783535570774 + ! parame(i,3) = 208.885730881588 + ! parame(i,6) = 2.88000000000000 + ! parame(i,8) = 1.0/parame(i,1) + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = -0.005 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'acetone_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = mm(i)* 4.603296414764944E-002 + parame(i,2) = 3.29454924451643 + parame(i,3) = 221.052649057645 + parame(i,6) = 2.70000000000000 + parame(i,8) = 0.625410000000000 + mm(i) = 58.08 ! form as expected from me - no DD-param adjusted.dat + parame(i,1) = mm(i)* 4.364264724158790E-002 ! =2.53476495179143 + parame(i,2) = 3.37098670735567 + parame(i,3) = 254.366379701851 + parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 - no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.694644361257521E-002 ! =2.72664944501837 + ! parame(i,2) = 3.27842292595463 + ! parame(i,3) = 238.398883501772 + ! parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 and fdd*sumseg- no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.458214655521766E-002 ! =2.58933107192704 + ! parame(i,2) = 3.32050824493493 + ! parame(i,3) = 218.285994651271 + ! parame(i,6) = 2.88000000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = 0.035 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'ethylacetate_JC') THEN ! Jog-Chapman + ! mm(i) = 88.11 + ! parame(i,1) = 2.7481 + ! parame(i,2) = 3.6511 + ! parame(i,3) = 236.99 + ! parame(i,6) = 1.84 + ! parame(i,8) = 0.5458 + mm(i) = 88.1060000000000 + parame(i,1) = mm(i)* 0.03117 ! 2.74626402 + parame(i,2) = 3.6493 + parame(i,3) = 236.75 + parame(i,6) = 1.8 + parame(i,8) = 0.5462 + ELSE IF (compna(i) == 'ethylacetate_SF') THEN ! Saager-Fischer + mm(i) = 88.106 + parame(i,1) = mm(i)* 3.564165384763394E-002 + parame(i,2) = 3.447379322 + parame(i,3) = 226.0930487 + parame(i,6) = 1.8 + parame(i,8) = 0.849967000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_JC') THEN ! Jog-Chapman + mm(i) = 58.08 + parame(i,1) = 2.0105 + parame(i,2) = 3.6095 + parame(i,3) = 258.82 + parame(i,6) = 2.0 + parame(i,8) = 0.3979 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = 2.1341 + parame(i,2) = 3.4739 + parame(i,3) = 252.95 + parame(i,6) = 2.0 + parame(i,8) = 0.916 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == 'acrylonitrile') THEN + IF (pol >= 2) mm(i) = 53.06 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.168 + IF (pol >= 2) parame(i,2) = 3.575 + IF (pol >= 2) parame(i,3) = 214.83 + IF (pol >= 2) parame(i,6) = 3.91 + IF (pol == 2) parame(i,11)= 8.04 + IF (pol >= 2) mm(i) = 53.0000000000000 ! second parameter set ?? + IF (pol >= 2) parame(i,1) = 2.45403467006041 + IF (pol >= 2) parame(i,2) = 3.41276825781723 + IF (pol >= 2) parame(i,3) = 195.194353082408 + IF (pol >= 2) parame(i,6) = 3.91000000000000 + IF (pol == 2) parame(i,11)= 8.04000000000000 + ELSE IF (compna(i) == 'butyronitrile') THEN + ! mm(i) = 69.11 + ! parame(i,1) = 2.860 + ! parame(i,2) = 3.478 + ! parame(i,3) = 253.21 + ! parame(i,6) = 4.07 + mm(i) = 69.11 + parame(i,1) = 2.989 + parame(i,2) = 3.441 + parame(i,3) = 234.04 + parame(i,6) = 4.07 + IF (pol == 2) parame(i,11)= 8.4 + ELSE IF (compna(i) == 'propionitrile') THEN + mm(i) = 55.079 ! PC-SAFT + parame(i,1) = 2.66211021227108 + parame(i,2) = 3.34032231132738 + parame(i,3) = 294.078737359580 + IF (pol >= 1) mm(i) = 55.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.50958981615666 + IF (pol >= 1) parame(i,2) = 3.39806320429568 + IF (pol >= 1) parame(i,3) = 239.152759066148 + IF (pol >= 1) parame(i,6) = 4.05000000000000 + IF (pol >= 2) mm(i) = 55.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.54684827683436 + IF (pol >= 2) parame(i,2) = 3.41240089912190 + IF (pol >= 2) parame(i,3) = 218.299491580335 + IF (pol >= 2) parame(i,6) = 4.05000000000000 + IF (pol == 2) parame(i,11)= 6.24000000000000 + ! IF (pol.GE.2) mm(i) = 55.079 ! PCIP-SAFT my_DD adjusted + ! IF (pol.GE.2) parame(i,1) = 2.61175151088002 + ! IF (pol.GE.2) parame(i,2) = 3.37194293181453 + ! IF (pol.GE.2) parame(i,3) = 233.346110749402 + ! IF (pol.GE.2) parame(i,6) = 3.74682245835235 + ! IF (pol.EQ.2) parame(i,11)= 6.24000000000000 + ELSE IF (compna(i) == 'nitromethane') THEN + mm(i) = 61.04 ! PC-SAFT + parame(i,1) = mm(i)* 4.233767489308791E-002 ! =2.58429167547409 + parame(i,2) = 3.10839592337018 + parame(i,3) = 310.694151426943 + IF (pol >= 1) mm(i) = 61.04 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.191475020685036E-002 ! =2.55847635262615 + IF (pol >= 1) parame(i,2) = 3.10129282495975 + IF (pol >= 1) parame(i,3) = 256.456941430554 + IF (pol >= 1) parame(i,6) = 3.46000000000000 + IF (pol >= 2) mm(i) = 61.04 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.394323357988009E-002 ! =2.68229497771588 + IF (pol >= 2) parame(i,2) = 3.10654492320028 + IF (pol >= 2) parame(i,3) = 225.973607468282 + IF (pol >= 2) parame(i,6) = 3.46000000000000 + IF (pol >= 2) parame(i,11)= 7.37000000000000 + ELSE IF (compna(i) == 'nitroethane') THEN + mm(i) = 75.067 ! PC-SAFT + parame(i,1) = mm(i)* 4.019977215251163E-002 ! =3.01767629617259 + parame(i,2) = 3.21364231060938 + parame(i,3) = 286.571650044235 + IF (pol >= 1) mm(i) = 75.067 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.928506808347654E-002 ! =2.94901220582233 + IF (pol >= 1) parame(i,2) = 3.23117331990738 + IF (pol >= 1) parame(i,3) = 265.961000131109 + IF (pol >= 1) parame(i,6) = 3.23000000000000 + IF (pol >= 2) mm(i) = 75.067 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.117677400894779E-002 ! =3.09101689452968 + IF (pol >= 2) parame(i,2) = 3.19364569858756 + IF (pol >= 2) parame(i,3) = 246.676040248662 + IF (pol >= 2) parame(i,6) = 3.23000000000000 + IF (pol >= 2) parame(i,11)= 9.63000000000000 + ELSE IF (compna(i) == 'acetonitrile') THEN + mm(i) = 41.052 ! PC-SAFT + parame(i,1) = mm(i)* 5.673187410405271E-002 ! =2.32895689571957 + parame(i,2) = 3.18980108373791 + parame(i,3) = 311.307486044181 + IF (pol >= 1) mm(i) = 41.052 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 5.254832931037250E-002 ! =2.15721401484941 + IF (pol >= 1) parame(i,2) = 3.27301469369132 + IF (pol >= 1) parame(i,3) = 216.888948676921 + IF (pol >= 1) parame(i,6) = 3.92520000000000 + IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 5.125846581157176E-002 ! =2.10426253849664 + IF (pol >= 2) parame(i,2) = 3.39403305120647 + IF (pol >= 2) parame(i,3) = 199.070191065791 + IF (pol >= 2) parame(i,6) = 3.92520000000000 + IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT my_DD adjusted + ! IF (pol >= 2) parame(i,1) = mm(i)* 5.755347845863738E-002 ! =2.36268539768398 + ! IF (pol >= 2) parame(i,2) = 3.18554306395900 + ! IF (pol >= 2) parame(i,3) = 225.143934506015 + ! IF (pol >= 2) parame(i,6) = 3.43151866932598 + ! IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! mm(i) = 41.053 ! PCP-SAFT dipole and quadrupole + ! parame(i,1) = 1.79993 + ! parame(i,2) = 3.47366 + ! parame(i,3) = 211.001 + ! parame(i,6) = 3.93800 + ! parame(i,7) = 2.44000 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'dmf') THEN + mm(i) = 73.09 ! PC-SAFT + parame(i,1) = 2.388 + parame(i,2) = 3.658 + parame(i,3) = 363.77 + IF (pol >= 1) mm(i) = 73.09 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.269 + IF (pol >= 1) parame(i,2) = 3.714 + IF (pol >= 1) parame(i,3) = 331.56 + IF (pol >= 1) parame(i,6) = 3.82 + IF (pol >= 2) mm(i) = 73.09 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.375 + IF (pol >= 2) parame(i,2) = 3.667 + IF (pol >= 2) parame(i,3) = 308.42 + IF (pol >= 2) parame(i,6) = 3.82 + IF (pol >= 2) parame(i,11)= 7.81 + ELSE IF (compna(i) == 'chloroform') THEN + mm(i) = 119.377 ! PCIP-SAFT + parame(i,1) = 2.5957 + parame(i,2) = 3.4299 + parame(i,3) = 264.664 + parame(i,6) = 1.04 + IF (pol == 2) parame(i,11)= 8.23 + ELSE IF (compna(i) == 'dimethyl-ether') THEN + mm(i) = 46.069 ! PC-SAFT + parame(i,1) = mm(i)* 0.049107715 ! =2.26234331 + parame(i,2) = 3.276640534 + parame(i,3) = 212.9343244 + IF (pol >= 1) mm(i) = 46.0690000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.048170452 ! =2.219164566 + IF (pol >= 1) parame(i,2) = 3.296939638 + IF (pol >= 1) parame(i,3) = 212.1048888 + IF (pol >= 1) parame(i,6) = 1.30000000000000 + IF (pol >= 2) mm(i) = 46.0690000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.939183716945787E-002 ! =2.27543254655976 + IF (pol >= 2) parame(i,2) = 3.26584718800835 + IF (pol >= 2) parame(i,3) = 206.904551967059 + IF (pol >= 2) parame(i,6) = 1.30000000000000 + IF (pol == 2) parame(i,11)= 5.29000000000000 + ELSE IF (compna(i) == 'methyl-ethyl-ether') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0442404671 + parame(i,2) = 3.37282595 + parame(i,3) = 216.010217 + IF (pol >= 1) mm(i) = 60.096 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.3971676124088D-002 ! =2.64252184835325 + IF (pol >= 1) parame(i,2) = 3.37938465390 + IF (pol >= 1) parame(i,3) = 215.787173860 + IF (pol >= 1) parame(i,6) = 1.17000000000 + IF (pol >= 2) mm(i) = 60.096 ! PICP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.4580196137984D-002 ! =2.67909146710834 + IF (pol >= 2) parame(i,2) = 3.36105342286 + IF (pol >= 2) parame(i,3) = 212.871911999 + IF (pol >= 2) parame(i,6) = 1.17000000000 + IF (pol >= 2) parame(i,11) = 7.93000000000 + ELSE IF (compna(i) == 'diethyl-ether') THEN + mm(i) = 74.123 ! PC-SAFT + parame(i,1) = mm(i)* .0409704089 + parame(i,2) = 3.48569553 + parame(i,3) = 217.64113 + IF (pol >= 1) mm(i) = 74.123 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.0103121403686E-2 ! =2.97256367 + IF (pol >= 1) parame(i,2) = 3.51268687697978 + IF (pol >= 1) parame(i,3) = 219.527376572135 + IF (pol >= 1) parame(i,6) = 1.15000000000000 + IF (pol >= 2) mm(i) = 74.123 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.04144179873E-2 ! =2.9956379 + IF (pol >= 2) parame(i,2) = 3.501724569 + IF (pol >= 2) parame(i,3) = 217.8941822 + IF (pol >= 2) parame(i,6) = 1.15 + IF (pol == 2) parame(i,11)= 8.73 + ELSE IF (compna(i) == 'vinylacetate') THEN + mm(i) = 86.092 + parame(i,1) = mm(i)* .0374329292 + parame(i,2) = 3.35278602 + parame(i,3) = 240.492049 + ELSE IF (compna(i) == 'chloromethane') THEN ! R40 + mm(i) = 50.488 ! PC-SAFT + parame(i,1) = mm(i)* 0.039418879 ! 1.9902 + parame(i,2) = 3.1974 + parame(i,3) = 237.27 + IF (pol >= 1) mm(i) = 50.488 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.035790801 ! 1.8070 + IF (pol >= 1) parame(i,2) = 3.3034 + IF (pol >= 1) parame(i,3) = 229.97 + IF (pol >= 1) parame(i,6) = 1.8963 + IF (pol >= 1) lli(i) = 1.67703*parame(i,2) + IF (pol >= 1) phi_criti(i)= 20.75417 + IF (pol >= 1) chap(i) = 0.5 + IF (pol >= 2) mm(i) = 50.488 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.68559992E-2 ! 1.86078 + IF (pol >= 2) parame(i,2) = 3.275186 + IF (pol >= 2) parame(i,3) = 216.4621 + IF (pol >= 2) parame(i,6) = 1.8963 + IF (pol == 2) parame(i,11)= 4.72 + ELSE IF (compna(i) == 'fluoromethane') THEN ! R41 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for fluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 34.0329000000000 + IF (pol >= 1) parame(i,1) = 1.94494757526896 + IF (pol >= 1) parame(i,2) = 2.96858005012635 + IF (pol >= 1) parame(i,3) = 168.938697391009 + IF (pol >= 1) parame(i,6) = 1.57823038894029 + ELSE IF (compna(i) == 'dichloromethane') THEN ! R30 + mm(i) = 84.932 ! PC-SAFT + parame(i,1) = 2.3117 + parame(i,2) = 3.3161 + parame(i,3) = 270.98 + IF (pol >= 1) mm(i) = 84.932 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.2687 + IF (pol >= 1) parame(i,2) = 3.3373 + IF (pol >= 1) parame(i,3) = 269.08 + IF (pol >= 1) parame(i,6) = 1.6 + IF (pol >= 2) mm(i) = 84.932 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.3435 + IF (pol >= 2) parame(i,2) = 3.2987 + IF (pol >= 2) parame(i,3) = 260.66 + IF (pol >= 2) parame(i,6) = 1.6 + IF (pol == 2) parame(i,11)= 6.48 + ELSE IF (compna(i) == 'difluoromethane') THEN ! R32 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for difluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 52.0236 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.814700934384165E-002 ! 2.50478075530028 + IF (pol >= 1) parame(i,2) = 2.79365980535456 + IF (pol >= 1) parame(i,3) = 160.893555378523 + IF (pol >= 1) parame(i,6) = 1.97850000000000 + ELSE IF (compna(i) == 'trifluoromethane') THEN ! R23 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 70.0138000000000 + IF (pol >= 1) parame(i,1) = 2.66039274225485 + IF (pol >= 1) parame(i,2) = 2.82905884530501 + IF (pol >= 1) parame(i,3) = 149.527709542333 + IF (pol >= 1) parame(i,6) = 1.339963415253999E-002 + ELSE IF (compna(i) == 'tetrachloromethane') THEN ! R10 + mm(i) = 153.822 + parame(i,1) = mm(i)* .0150432213 + parame(i,2) = 3.81801454 + parame(i,3) = 292.838632 + ELSE IF (compna(i) == 'trichlorofluoromethane') THEN ! R11 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trichlorofluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 137.368000000000 + IF (pol >= 1) parame(i,1) = 2.28793359008803 + IF (pol >= 1) parame(i,2) = 3.69013104930876 + IF (pol >= 1) parame(i,3) = 248.603173885090 + IF (pol >= 1) parame(i,6) = 0.23225538492979 + ELSE IF (compna(i) == 'chlorodifluoromethane') THEN ! R22 ( CHClF2 or CHF2Cl) + IF (pol /= 1) write (*,*) 'non-polar parameters missing for chlorodifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 86.4684000000000 + IF (pol >= 1) parame(i,1) = 2.47218586047893 + IF (pol >= 1) parame(i,2) = 3.13845692489930 + IF (pol >= 1) parame(i,3) = 187.666355083434 + IF (pol >= 1) parame(i,6) = 1.04954264812860 + ELSE IF (compna(i) == 'chloroethane') THEN + mm(i) = 64.514 + parame(i,1) = mm(i)* .0350926868 + parame(i,2) = 3.41602397 + parame(i,3) = 245.42626 + ELSE IF (compna(i) == '11difluoroethane') THEN + ! mm(i) = 66.0500000000000 ! PC-SAFT + ! parame(i,1) = mm(i)* 4.109944338817734E-002 + ! parame(i,2) = 3.10257444633546 + ! parame(i,3) = 192.177159144029 + ! mm(i) = 66.05 ! PC-SAFT assoc + ! parame(i,1)= 2.984947188 + ! parame(i,2)= 2.978630027 + ! parame(i,3)= 137.8192282 + ! nhb_typ(i) = 2 + ! nhb_no(i,1)= 1 + ! nhb_no(i,2)= 1 + ! eps_hb(i,i,1,2)= 823.3478288 + ! eps_hb(i,i,2,1)= 823.3478288 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.96345994 + IF (pol >= 1) mm(i) = 66.0500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.949665745363346E-002 ! =2.60875422481249 + IF (pol >= 1) parame(i,2) = 3.13758353925036 + IF (pol >= 1) parame(i,3) = 179.517952627836 + IF (pol >= 1) parame(i,6) = 2.27000000000000 + IF (pol >= 1) lli(i) = 2.03907*parame(i,2) + IF (pol >= 1) phi_criti(i)= 26.5 + IF (pol >= 1) chap(i) = 0.4 + IF (pol >= 2) mm(i) = 66.0500000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.093647666154238E-002 ! =2.70385428349487 + IF (pol >= 2) parame(i,2) = 3.10437129415885 + IF (pol >= 2) parame(i,3) = 170.464400902455 + IF (pol >= 2) parame(i,6) = 2.27000000000000 + IF (pol == 2) parame(i,11)= 5.01000000000000 + ELSE IF (compna(i) == '1-chlorobutane') THEN + mm(i) = 92.568 + parame(i,1) = mm(i)* .0308793201 + parame(i,2) = 3.64240187 + parame(i,3) = 258.655298 + ELSE IF (compna(i) == 'chlorobenzene') THEN + ! mm(i) = 112.558 + ! parame(i,1) = mm(i)* .0235308686 + ! parame(i,2) = 3.75328494 + ! parame(i,3) = 315.039018 + mm(i) = 112.558 ! PCIP-SAFT + parame(i,1) = mm(i)* 0.023824167 ! =2.6816 + parame(i,2) = 3.7352 + parame(i,3) = 308.82 + parame(i,6) = 1.69 + IF (pol == 2) parame(i,11)= 14.1 + ELSE IF (compna(i) == 'styrene') THEN + mm(i) = 104.150 + parame(i,1) = mm(i)* 2.9124104853E-2 + parame(i,2) = 3.760233548 + parame(i,3) = 298.51287564 + ELSE IF (compna(i) == 'methylmethanoate') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0446000264 + parame(i,2) = 3.08753499 + parame(i,3) = 242.626755 + IF (pol >= 1) mm(i) = 60.053 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.366991153963102E-002 ! =2.62250919768946 + IF (pol >= 1) parame(i,2) = 3.10946396964 + IF (pol >= 1) parame(i,3) = 239.051951942 + IF (pol >= 1) parame(i,6) = 1.77 + IF (pol >= 2) mm(i) = 60.053 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.492572388931002E-2 ! 2.69792449 + IF (pol >= 2) parame(i,2) = 3.078467837 + IF (pol >= 2) parame(i,3) = 232.1842551 + IF (pol >= 2) parame(i,6) = 1.77 + IF (pol == 2) parame(i,11)= 5.05 + ELSE IF (compna(i) == 'ethylmethanoate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* .03898009 + parame(i,2) = 3.31087192 + parame(i,3) = 246.465646 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.825407152074255E-002 ! =2.83382336418509 + IF (pol >= 1) parame(i,2) = 3.33160046679 + IF (pol >= 1) parame(i,3) = 244.495680932 + IF (pol >= 1) parame(i,6) = 1.93000000000 + ELSE IF (compna(i) == 'propylmethanoate') THEN + mm(i) = 88.106 + parame(i,1) = mm(i)* .0364206062 + parame(i,2) = 3.41679642 + parame(i,3) = 246.457732 + IF (pol >= 1) mm(i) = 88.106 + IF (pol >= 1) parame(i,1) = mm(i)* 3.60050739149E-2 ! =3.17226304235232 + IF (pol >= 1) parame(i,2) = 3.42957609309 + IF (pol >= 1) parame(i,3) = 245.637644107 + IF (pol >= 1) parame(i,6) = 1.89 + ELSE IF (compna(i) == 'methylacetate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* 4.286817177E-2 ! =3.175631296 + parame(i,2) = 3.18722021277843 + parame(i,3) = 234.106931032456 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.228922065E-2 ! =3.132743176 + IF (pol >= 1) parame(i,2) = 3.2011401688 + IF (pol >= 1) parame(i,3) = 233.17562886 + IF (pol >= 1) parame(i,6) = 1.72 + IF (pol >= 2) mm(i) = 74.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.298900538E-2 ! =3.18458252 + IF (pol >= 2) parame(i,2) = 3.180642322 + IF (pol >= 2) parame(i,3) = 229.3132680 + IF (pol >= 2) parame(i,6) = 1.72 + IF (pol == 2) parame(i,11)= 6.94 + ELSE IF (compna(i) == 'ethylacetate') THEN + mm(i) = 88.106 ! PC-SAFT + parame(i,1) = mm(i)* .0401464427 ! =3.537142481 + parame(i,2) = 3.30789258 + parame(i,3) = 230.800689 + IF (pol >= 1) mm(i) = 88.106 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.039792575 ! =3.505964572 + IF (pol >= 1) parame(i,2) = 3.317655188 + IF (pol >= 1) parame(i,3) = 230.2434769 + IF (pol >= 1) parame(i,6) = 1.78 + IF (pol >= 2) mm(i) = 88.106 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 0.040270267 ! =3.548052143 + IF (pol >= 2) parame(i,2) = 3.302097562 + IF (pol >= 2) parame(i,3) = 227.5026191 + IF (pol >= 2) parame(i,6) = 1.78 + IF (pol == 2) parame(i,11)= 8.62 + ELSE IF (compna(i) == 'ethyl-propanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0375692464 + parame(i,2) = 3.40306071 + parame(i,3) = 232.778374 + ELSE IF (compna(i) == 'propyl-ethanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0370721275 + parame(i,2) = 3.42272266 + parame(i,3) = 235.758378 + IF (pol >= 1) mm(i) = 102.133 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.687149995200072E-2 ! =3.76579690459769 + IF (pol >= 1) parame(i,2) = 3.4289353421006 + IF (pol >= 1) parame(i,3) = 235.41679442910 + IF (pol >= 1) parame(i,6) = 1.78 + ! IF (pol.EQ.2) parame(i,11)= 10.41 + ELSE IF (compna(i) == 'nbutyl-ethanoate') THEN + mm(i) = 116.16 ! PC-SAFT + parame(i,1) = mm(i)* .03427004 + parame(i,2) = 3.54269638 + parame(i,3) = 242.515768 + IF (pol >= 1) mm(i) = 116.16 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.411585209773470E-002 ! =3.96289737967286 + IF (pol >= 1) parame(i,2) = 3.54821589228130 + IF (pol >= 1) parame(i,3) = 242.274388267447 + IF (pol >= 1) parame(i,6) = 1.87000000000000 + IF (pol >= 2) mm(i) = 116.16 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.442139015733717E-002 ! =3.99838868067629 + IF (pol >= 2) parame(i,2) = 3.53576054452119 + IF (pol >= 2) parame(i,3) = 240.154409609249 + IF (pol >= 2) parame(i,6) = 1.87000000000000 + IF (pol == 2) parame(i,11)= 14.2000000000000 + ELSE IF (compna(i) == 'methyl-octanoate') THEN + mm(i) = 158.24 ! PC-SAFT + parame(i,1) = 5.2074 + parame(i,2) = 3.6069 + parame(i,3) = 244.12 + ELSE IF (compna(i) == 'methyl-decanoate') THEN + mm(i) = 186.2912 ! PC-SAFT + parame(i,1) = 5.8402 + parame(i,2) = 3.6871 + parame(i,3) = 248.27 + + mm(i) = 186.2912 ! PC-SAFT from GC-method Tim + parame(i,1) = 7.716 + parame(i,2) = 3.337303029 + parame(i,3) = 204.250907 + + mm(i) = 186.2912 ! PC-SAFT from GC-method (tightly fit) Tim + parame(i,1) = 7.728 + parame(i,2) = 3.334023322 + parame(i,3) = 206.9099379 + + ! mm(i) = 186.2912 ! PC-SAFT from fit to DIPPR + ! parame(i,1) = 6.285005 + ! parame(i,2) = 3.594888 + ! parame(i,3) = 236.781461 + ! ! parame(i,6) = 2.08056 + + ! mm(i) = 186.291000000000 + ! parame(i,1) = 6.28500485898895 + ! parame(i,2) = 3.59488828061149 + ! parame(i,3) = 236.781461491921 + ! parame(i,6) = 2.08055996894836 + ! parame(i,8) = 1.00000000000000 + mm(i) = 186.291000000000 + parame(i,1) = 6.14436331493372 + parame(i,2) = 3.61977264863944 + parame(i,3) = 242.071887817656 + + ELSE IF (compna(i) == 'methyl-dodecanoate') THEN + mm(i) = 214.344 ! PC-SAFT + parame(i,1) = 6.5153 + parame(i,2) = 3.7406 + parame(i,3) = 250.7 + ELSE IF (compna(i) == 'methyl-tetradecanoate') THEN + mm(i) = 242.398 ! PC-SAFT + parame(i,1) = 7.1197 + parame(i,2) = 3.7968 + parame(i,3) = 253.77 + ELSE IF (compna(i) == 'methyl-hexadecanoate') THEN + mm(i) = 270.451 ! PC-SAFT + parame(i,1) = 7.891 + parame(i,2) = 3.814 + parame(i,3) = 253.71 + ELSE IF (compna(i) == 'methyl-octadecanoate') THEN + mm(i) = 298.504 ! PC-SAFT + parame(i,1) = 8.8759 + parame(i,2) = 3.7932 + parame(i,3) = 250.81 + ELSE IF (compna(i) == 'CH2F2') THEN + mm(i) = 52.02 + parame(i,1) = 3.110084171 + parame(i,2) = 2.8145230485 + parame(i,3) = 158.98060151 + ELSE IF (compna(i) == 'naphthalene') THEN + ! mm(i) = 128.174000000 + ! parame(i,1) = mm(i)* 2.4877834216412E-2 + ! parame(i,2) = 3.82355815011 + ! parame(i,3) = 341.560675334 + + mm(i) = 128.17400000000 + parame(i,1) = mm(i)* 2.6400924157729E-2 + parame(i,2) = 3.8102186020014 + parame(i,3) = 328.96792935903 + ELSE IF (compna(i) == 'h2s') THEN + mm(i) = 34.0820000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.838886696385162E-002 ! = 1.64918936386199 + parame(i,2) = 3.05478289838459 + parame(i,3) = 229.838873939562 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 536.634834731413 + eps_hb(i,i,2,1)= 536.634834731413 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.000000000000000E-003 +! PC-SAFT from Xiaohua + mm(i) = 34.082 ! PC-SAFT + parame(i,1) = 1.63677 + parame(i,2) = 3.06565 + parame(i,3) = 230.2121 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 275.1088 + eps_hb(i,i,2,1)= 275.1088 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.E-2 + ! IF (pol.GE.1) mm(i) = 34.082 ! PCP-SAFT with quadrupole + ! IF (pol.GE.1) parame(i,1) = mm(i)* 3.03171032558E-2 ! =1.03326751316478 + ! IF (pol.GE.1) parame(i,2) = 3.6868189914018 + ! IF (pol.GE.1) parame(i,3) = 246.862831266172 + ! IF (pol.GE.1) nhb_typ(i) = 2 + ! IF (pol.GE.1) nhb_no(i,1) = 1 + ! IF (pol.GE.1) nhb_no(i,2) = 1 + ! IF (pol.GE.1) eps_hb(i,i,1,2)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,2,1)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.GE.1) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.GE.1) kap_hb(i,i) = 5.5480659623d-4 + ! IF (pol.GE.1) parame(i,6) = 0.97833 + ! IF (pol.GE.1) parame(i,7) = 3.8623 + ! IF (pol.GE.1) LLi(i) = 1.2737*parame(i,2) + ! IF (pol.GE.1) phi_criti(i)= 14.316 + ! IF (pol.GE.1) chap(i) = 0.4473 + IF (pol >= 1) mm(i) = 34.0820000000000 ! PCP-SAFT no quadrupoLE + IF (pol >= 1) parame(i,1) = mm(i)* 4.646468487062725E-002 ! 1.58360938976072 + IF (pol >= 1) parame(i,2) = 3.10111012646306 + IF (pol >= 1) parame(i,3) = 230.243457544889 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,2,1)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1) parame(i,6) = 0.978330000000000 + + IF (pol >= 1) lli(i) = 1.2737*parame(i,2) + IF (pol >= 1) phi_criti(i)= 14.316 + IF (pol >= 1) chap(i) = 0.4473 + + + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) mm(i) = 34.0820000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.806418212963168E-002 ! 1.63812345534211 + IF (pol == 2) parame(i,2) = 3.06556006883749 + IF (pol == 2) parame(i,3) = 221.746622243054 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,2,1)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol == 2) parame(i,6) = 0.978330000000000 + IF (pol == 2) parame(i,11) = 3.60200000000000 + IF (pol == 2) parame(i,7) = 0.0 + + IF (pol >= 1)mm(i) = 34.0820000000000 !PCP-SAFT D&Q + IF (pol >= 1)parame(i,1) = mm(i)* 3.974667896078737E-002 ! = 1.35464631234155 + IF (pol >= 1)parame(i,2) = 3.30857082333438 + IF (pol >= 1)parame(i,3) = 234.248947273191 + IF (pol >= 1)nhb_typ(i) = 2 + IF (pol >= 1)nhb_no(i,1) = 1 + IF (pol >= 1)nhb_no(i,2) = 1 + IF (pol >= 1)eps_hb(i,i,1,2)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,2,1)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1)eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1)kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1)parame(i,6) = 0.978330000000000 + IF (pol >= 1)parame(i,7) = 2.93750500000000 + + ELSE IF (compna(i) == 'methanol') THEN + mm(i) = 32.042 ! PC-SAFT + parame(i,1) = mm(i)* .0476100379 + parame(i,2) = 3.23000005 + parame(i,3) = 188.904644 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2899.49055 + eps_hb(i,i,2,1)= 2899.49055 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0351760892 + IF (pol >= 1) mm(i) = 32.042 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 7.213091821E-2 ! =2.31121888139672 + IF (pol >= 1) parame(i,2) = 2.8270129502 + IF (pol >= 1) parame(i,3) = 176.3760515 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,2,1)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 8.9248658086E-2 + IF (pol >= 1) parame(i,6) = 1.7 + IF (pol >= 1) lli(i) = 1.75*parame(i,2) + IF (pol >= 1) phi_criti(i)= 23.43 + IF (pol >= 1) chap(i) = 0.304 + IF (pol == 2) mm(i) = 32.042 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 2.0693 + IF (pol == 2) parame(i,2) = 2.9547 + IF (pol == 2) parame(i,3) = 174.51 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2418.5 + IF (pol == 2) eps_hb(i,i,2,1)= 2418.5 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 0.06319 + IF (pol == 2) parame(i,6) = 1.7 + IF (pol == 2) parame(i,11)= 3.29 + ! mm(i) = 32.0420000000000 ! PCP-SAFT with adjusted QQ + ! parame(i,1) = mm(i)* 6.241807629559099E-002 + ! ! parame(i,1) = 2.00000000066333 + ! parame(i,2) = 2.97610169698593 + ! parame(i,3) = 163.268505098639 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2449.55621933612 + ! eps_hb(i,i,2,1)= 2449.55621933612 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 8.431015160393653E-002 + ! parame(i,6) = 1.72000000000000 + ! parame(i,7) = 1.59810028824523 + ELSE IF (compna(i) == 'ethanol') THEN + mm(i) = 46.069 + parame(i,1) = mm(i)* .0517195521 + parame(i,2) = 3.17705595 + parame(i,3) = 198.236542 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2653.38367 + eps_hb(i,i,2,1)= 2653.38367 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0323840159 + IF (pol >= 1) mm(i) = 46.0690000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 4.753626908781145E-002 ! =2.18994838060639 + IF (pol >= 1) parame(i,2) = 3.30120000000000 + IF (pol >= 1) parame(i,3) = 209.824555801706 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,2,1)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.349382956935725E-002 + IF (pol >= 1) parame(i,6) = 1.69000000000000 + ! mm(i) = 46.0690000000000 + ! parame(i,1) = mm(i)* 5.117957752785066E-002 ! =2.357791957 + ! parame(i,2) = 3.24027031244304 + ! parame(i,3) = 175.657110615456 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2273.62670516146 + ! eps_hb(i,i,2,1)= 2273.62670516146 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 7.030279197039477E-002 + ! parame(i,6) = 1.69000000000000 + ! parame(i,7) = 3.63701294195013 + IF (pol == 2) mm(i) = 46.0690000000000 + IF (pol == 2) parame(i,1) = mm(i)* 4.733436280008321E-002 ! =2.18064676 + IF (pol == 2) parame(i,2) = 3.31260000000000 + IF (pol == 2) parame(i,3) = 207.594119926613 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,2,1)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 2.132561218631547E-002 + IF (pol == 2) parame(i,6) = 1.69000000000000 + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) parame(i,11)= 5.11000000000000 + ELSE IF (compna(i) == '1-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0499154461 + parame(i,2) = 3.25221234 + parame(i,3) = 233.396705 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2276.77867 + eps_hb(i,i,2,1)= 2276.77867 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0152683094 + ELSE IF (compna(i) == '1-butanol') THEN + mm(i) = 74.123 + parame(i,1) = mm(i)* .0341065046 + parame(i,2) = 3.72361538 + parame(i,3) = 269.798048 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2661.37119 + eps_hb(i,i,2,1)= 2661.37119 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00489087833 + mm(i) = 74.1230000000000 + parame(i,1) = mm(i)* 3.329202420547412E-002 ! =2.46770471018236 + parame(i,2) = 3.76179376417092 + parame(i,3) = 270.237284242002 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 2669.28754983370 + eps_hb(i,i,2,1)= 2669.28754983370 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 4.855584122733399E-003 + parame(i,6) = 1.66000000000000 + ELSE IF (compna(i) == '1-pentanol') THEN + mm(i) = 88.15 ! PC-SAFT + parame(i,1) = mm(i)* .041134139 + parame(i,2) = 3.45079143 + parame(i,3) = 247.278748 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2252.09237 + eps_hb(i,i,2,1)= 2252.09237 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0103189939 + IF (pol >= 1) mm(i) = 88.1500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.138903382168521E-002 ! =3.64844333138155 + IF (pol >= 1) parame(i,2) = 3.44250118689142 + IF (pol >= 1) parame(i,3) = 246.078034174947 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,2,1)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.040067895187016E-002 + IF (pol >= 1) parame(i,6) = 1.70000000000000 + IF (pol == 2) mm(i) = 88.1500000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.161521814399406E-002 ! =3.66838147939308 + IF (pol == 2) parame(i,2) = 3.43496654431777 + IF (pol == 2) parame(i,3) = 244.177313808431 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,2,1)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.049516309928397E-002 + IF (pol == 2) parame(i,6) = 1.70000000000000 + IF (pol == 2) parame(i,11)= 10.8000000000000 + ELSE IF (compna(i) == '1-octanol') THEN + mm(i) = 130.23 + parame(i,1) = mm(i)* .0334446084 + parame(i,2) = 3.714535 + parame(i,3) = 262.740637 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2754.77272 + eps_hb(i,i,2,1)= 2754.77272 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00219656803 + ELSE IF (compna(i) == '1-nonanol') THEN + mm(i) = 144.257 + parame(i,1) = mm(i)* .0324692669 + parame(i,2) = 3.72924286 + parame(i,3) = 263.636673 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2941.9231 + eps_hb(i,i,2,1)= 2941.9231 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00142696883 + ELSE IF (compna(i) == '2-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0514663133 + parame(i,2) = 3.20845858 + parame(i,3) = 208.420809 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2253.91064 + eps_hb(i,i,2,1)= 2253.91064 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0246746934 + ELSE IF (compna(i) == '2-methyl-2-butanol') THEN + mm(i) = 88.15 + parame(i,1) = mm(i)* .0289135026 + parame(i,2) = 3.90526707 + parame(i,3) = 266.011828 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2618.80124 + eps_hb(i,i,2,1)= 2618.80124 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00186263367 + ELSE IF (compna(i) == 'acetic-acid') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0227076949 + parame(i,2) = 3.79651163 + parame(i,3) = 199.225066 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3092.40109 + eps_hb(i,i,2,1)= 3092.40109 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0870093874 + + + mm(i) = 60.053 + parame(i,1) = mm(i)* .0181797646 + parame(i,2) = 4.13711044 + parame(i,3) = 207.552969 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3198.84362 + eps_hb(i,i,2,1)= 3198.84362 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0586552968 + +! mit gesetztem Dipol-Moment + mm(i) = 60.0530000000000 + parame(i,1) = mm(i)* 1.736420143637533E-002 + parame(i,2) = 4.25220708070687 + parame(i,3) = 190.957247854820 + parame(i,6) = 3.50000000000000 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3096.36190957945 + eps_hb(i,i,2,1)= 3096.36190957945 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 6.154307094782551E-002 + + ELSE IF (compna(i) == 'propionic-acid') THEN + mm(i) = 74.0800000000000 + parame(i,1) = mm(i)* 2.359519915877884E-002 + parame(i,2) = 3.99339224153844 + parame(i,3) = 295.947729838532 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2668.97826430874 + eps_hb(i,i,2,1)= 2668.97826430874 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 3.660242292423115E-002 + ELSE IF (compna(i) == 'acrylic-acid') THEN + mm(i) = 72.0636 + parame(i,1) = mm(i)* .0430585424 + parame(i,2) = 3.0545415 + parame(i,3) = 164.115604 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3065.40667 + eps_hb(i,i,2,1)= 3065.40667 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .336261669 + ELSE IF (compna(i) == 'caproic-acid') THEN + mm(i) = 116.16 + parame(i,1) = 5.87151 + parame(i,2) = 3.0694697 + parame(i,3) = 241.4569 + nhb_typ(i) = 1 + eps_hb(i,i,1,1)= 2871.37 + kap_hb(i,i) = 3.411613D-3 + ELSE IF (compna(i) == 'aniline') THEN + mm(i) = 93.13 + parame(i,1) = mm(i)* .0285695992 + parame(i,2) = 3.70214085 + parame(i,3) = 335.471062 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 1351.64234 + eps_hb(i,i,2,1)= 1351.64234 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0748830615 + + mm(i) = 93.1300000000000 + parame(i,1) = mm(i)* 2.834372610192228E-002 ! =2.63965121187202 + parame(i,2) = 3.71326867619433 + parame(i,3) = 332.253796842009 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 1392.14266886674 + eps_hb(i,i,2,1)= 1392.14266886674 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 7.424612087328866E-002 + parame(i,6) = 1.55000000000000 + IF (pol == 2) parame(i,11)= 12.1000000000000 + ELSE IF (compna(i) == 'HF') THEN + ! mm(i) = 20.006 ! PC-SAFT + ! parame(i,1) = 0.87731 + ! parame(i,2) = 3.0006 + ! parame(i,3) = 112.24 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2208.22 + ! eps_hb(i,i,2,1)= 2208.22 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.71265 + mm(i) = 20.0060000000000 ! PCP-SAFT + parame(i,1) = 1.00030000000000 + parame(i,2) = 3.17603622195029 + parame(i,3) = 331.133373208282 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 348.251433080979 + eps_hb(i,i,2,1)= 348.251433080979 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 2.868887975449893E-002 + parame(i,6) = 1.82600000000000 + ELSE IF (compna(i) == 'HCl') THEN + ! mm(i) = 36.4610000000000 + ! parame(i,1) = mm(i)* 3.922046741026943E-002 + ! parame(i,2) = 3.08731180727493 + ! parame(i,3) = 203.898845304388 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 245.462773177367 + ! eps_hb(i,i,2,1)= 245.462773177367 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.256454187330899 + mm(i) = 36.461 ! PCIP-SAFT + parame(i,1) = 1.6335 + parame(i,2) = 2.9066 + parame(i,3) = 190.17 + parame(i,6) = 1.1086 + IF (pol == 2) parame(i,11)= 2.63 + ELSE IF (compna(i) == 'gen') THEN + mm(i) = 302.0 + parame(i,1) = 8.7563 + parame(i,2) = 3.604243 + parame(i,3) = 255.6434 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 0.0 + eps_hb(i,i,2,1)= 0.0 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.02 + ELSE IF (compna(i) == 'h2o') THEN + mm(i) = 18.015 + parame(i,1) = mm(i)* .05915 + parame(i,2) = 3.00068335 + parame(i,3) = 366.512135 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2500.6706 + eps_hb(i,i,2,1)= 2500.6706 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0348679836 + + ! mm(i) = 18.015 + ! parame(i,1) = 1.706 + ! parame(i,2) = 2.429 + ! parame(i,3) = 242.19 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 2644.2 + ! eps_hb(i,i,2,1)= 2644.2 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.153 + + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* .0588185709 + ! parame(i,2) = 3.02483704 + ! parame(i,3) = 382.086672 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 2 ! no. of sites of type 2 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! eps_hb(i,i,1,2)= 2442.49782 + ! eps_hb(i,i,2,1)= 2442.49782 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = .0303754635 + + ! mit gefittetem Dipol-Moment - Haarlem-night + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* 7.0037160952278E-2 + ! parame(i,2) = 2.79276650240763 + ! parame(i,3) = 270.970053834558 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 1427.8287 + ! eps_hb(i,i,2,1)= 1427.8287 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = 4.335167238E-2 + ! parame(i,6) = 3.968686856378 + + IF (pol >= 1) mm(i) = 18.015 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 0.922688825223317 + IF (pol >= 1) parame(i,2) = 3.17562052023944 + IF (pol >= 1) parame(i,3) = 388.462197714696 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,2,1)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.040614952751225E-003 + IF (pol >= 1) parame(i,6) = 1.85500000000000 + IF (pol >= 1) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_RPT + ! IF (pol.EQ.2) parame(i,1) = 1.0 + ! IF (pol.EQ.2) parame(i,2) = 3.14540664928026 + ! IF (pol.EQ.2) parame(i,3) = 320.283823615925 + ! IF (pol.EQ.2) nhb_typ(i) = 2 + ! IF (pol.EQ.2) nhb_no(i,1) = 2 + ! IF (pol.EQ.2) nhb_no(i,2) = 2 + ! IF (pol.EQ.2) eps_hb(i,i,1,2)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,2,1)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.EQ.2) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.EQ.2) kap_hb(i,i) = 4.162619960844732E-003 + ! IF (pol.EQ.2) parame(i,6) = 1.85500000000000 + ! IF (pol.EQ.2) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.0150000000000 + ! parame(i,1) = 1.0 + ! parame(i,2) = 3.11505069470915 + ! parame(i,3) = 320.991387913502 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2037.76329812542 + ! eps_hb(i,i,2,1)= 2037.76329812542 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 3.763148982832804E-003 + ! parame(i,6) = 1.85500000000000 + ! parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + IF (pol == 2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_0 + IF (pol == 2) parame(i,1) = 1.0 + IF (pol == 2) parame(i,2) = 3.11574491885322 + IF (pol == 2) parame(i,3) = 322.699984283499 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,2,1)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 3.815764667176484E-003 + IF (pol == 2) parame(i,6) = 1.85500000000000 + IF (pol == 2) parame(i,7) = 2.00000000000000 + IF (pol == 2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.015 ! Dortmund + ! parame(i,1) = 0.11065254*mm(i) + ! parame(i,2) = 2.36393615 + ! parame(i,3) = 300.288589 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 1193.45585 + ! eps_hb(i,i,2,1)= 1193.45585 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.091203519 + ! parame(i,6) = 1.8546 + ! parame(i,7) = 0.0 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'MBBA') THEN + mm(i) = 267.37 + parame(i,1) = 12.194 + parame(i,2) = 3.064 + parame(i,3) = 270.7 + e_lc(i,i) = 13.7 !Hino & Prausnitz + s_lc(i,i) = 0.176 !Hino & Prausnitz + ELSE IF (compna(i) == 'PCH5') THEN + mm(i) = 255.41 + parame(i,1) = 11.6 + parame(i,2) = 3.2 + parame(i,3) = 270.7 + ! E_LC(i,i) = 16.7 !Hino & Prausnitz + ! S_LC(i,i) = 0.176 !Hino & Prausnitz + e_lc(i,i) = 8.95 + s_lc(i,i) = 0.2 + + ! mm(i) = 255.41 + ! parame(i,1) = 11.6 + ! parame(i,2) = 3.2 + ! parame(i,3) = 290.7 + ! E_LC(i,i) = 7.18 + ! S_LC(i,i) = 0.2 + + ELSE IF (compna(i) == 'Li') THEN + mm(i) = 6.9 + parame(i,1) = 1.0 + parame(i,2) = 1.4 + parame(i,3) = 96.83 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.008 + ELSE IF (compna(i) == 'Na') THEN + mm(i) = 23.0 + parame(i,1) = 1.0 + parame(i,2) = 1.9 + parame(i,3) = 147.38 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 8946.28257 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.001648933 + ELSE IF (compna(i) == 'Ka') THEN + mm(i) = 39.1 + parame(i,1) = 1.0 + parame(i,2) = 2.66 + parame(i,3) = 221.44 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 3118.336216 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cs') THEN + mm(i) = 132.9 + parame(i,1) = 1.0 + parame(i,2) = 3.38 + parame(i,3) = 523.28 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cl') THEN + mm(i) = 35.5 + parame(i,1) = 1.0 + parame(i,2) = 3.62 + parame(i,3) = 225.44 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 6744.12509 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00155252 + ELSE IF (compna(i) == 'Br') THEN + mm(i) = 79.9 + parame(i,1) = 1.0 + parame(i,2) = 3.9 + parame(i,3) = 330.82 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 4516.033227 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Io') THEN + mm(i) = 126.9 + parame(i,1) = 1.0 + parame(i,2) = 4.4 + parame(i,3) = 380.60 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 1631.203342 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'OH') THEN + mm(i) = 17.0 + parame(i,1) = 1.0 + parame(i,2) = 3.06 + parame(i,3) = 217.26 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 14118.68089 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'NO3') THEN + mm(i) = 62.0 + parame(i,1) = 1.0 + parame(i,2) = 4.12 + parame(i,3) = 239.48 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 4 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'bf4') THEN + mm(i) = 86.8 + parame(i,1) = 1.0 + parame(i,2) = 4.51 ! *0.85 + parame(i,3) = 164.7 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'pf6') THEN + mm(i) = 145.0 + parame(i,1) = 1.0 + parame(i,2) = 5.06 + parame(i,3) = 224.9 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'emim') THEN + mm(i) = 111.16 + parame(i,1) = 3.11 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'bmim') THEN + mm(i) = 139.21 + ! parame(i,1) = 2.81 + ! parame(i,2) = 3.5 + parame(i,1) = 3.81 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,6) = 0.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'hmim') THEN + mm(i) = 167.27 + parame(i,1) = 4.53 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'omim') THEN + mm(i) = 195.32 + parame(i,1) = 5.30 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'sw') THEN + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 100.0 + parame(i,4) = 0.0 + parame(i,5) = 0.0 + mm(i) = 1.0 + parame(i,6) = 0.1175015839*2.0 + ! use Temp. in Kelvin in the input-file. For dimensionless quantities + ! (P*=P*sig**3/epsilon, T*=T*kBol/epsilon, rho*=rho*sig**3) calculate + ! P* = P *1E5 * (1.e-10)^3 / (100*8.31441/6.022045E+23) + ! T* = (T+273.15)/100 + ! for rho* go to utilities.f (subroutine SI_DENS) and write + ! density(ph) = dense(ph)*6.0/PI + ELSE IF (compna(i) == 'c8-sim') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* 4.095944E-2 ! =4.67883774717337 + parame(i,2) = 3.501769 + parame(i,3) = 163.8606 + ! mm(i) = 114.231000000000 + ! parame(i,1) = mm(i)* 3.547001476437745E-002 ! =4.05177525654960 + ! parame(i,2) = 3.70988567055814 + ! parame(i,3) = 192.787548176343 + ELSE IF (compna(i) == 'argon_ge') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 100.188975 + ELSE IF (compna(i) == 'argon_ge2') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 0.8*100.188975 + ELSE + WRITE (*,*) ' pure component parameters missing for ',compna(i) + STOP + END IF + + IF (pol == 2.AND.parame(i,11) == 0.0) THEN + WRITE (*,*) ' polarizability missing for comp. ',compna(i) + STOP + END IF + + IF (nhb_typ(i) /= 0) THEN + parame(i,12) = DBLE(nhb_typ(i)) + parame(i,13) = kap_hb(i,i) + no = 0 + DO j=1,nhb_typ(i) + DO k=1,nhb_typ(i) + parame(i,(14+no))=eps_hb(i,i,j,k) + no=no+1 + END DO + END DO + DO j=1,nhb_typ(i) + parame(i,(14+no))=DBLE(nhb_no(i,j)) + no=no+1 + END DO + ELSE + DO k=12,25 + parame(i,k)=0.0 + END DO + END IF + +END DO + + +DO i = 1,ncomp + DO j = 1,ncomp + IF (compna(i) == 'ps'.AND.compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.0075 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'ethylene')THEN +! -- 0 Gew.% VA------------- + ! kij(i,j) = 0.039 +! -- 7.5 Gew.% VA------------- + ! kij(i,j) = 0.0377325 + ! kij(i,j) = 0.0374867 +! ---12.7 Gew.% VA------------ + ! kij(i,j) = 0.036854 + ! kij(i,j) = 0.0366508 +! ---27.3 Gew.% VA------------ + ! kij(i,j) = 0.034386 + ! kij(i,j) = 0.0352375 +! ---31.8 Gew.% VA------------ + kij(i,j) = 0.033626 + ! kij(i,j) = 0.0350795 +! ---42.7 Gew.% VA------------ + ! kij(i,j) = 0.031784 + ! kij(i,j) = 0.035239 + ELSE IF(compna(i) == 'gen'.AND.compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'vinylacetate')THEN + kij(i,j) = 0.019 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'co2') THEN + IF ( pol == 0 ) kij(i,j) = 0.195 + IF ( pol == 1 ) kij(i,j) = 0.06 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.021 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'hexane') THEN + kij(i,j) = 0.012 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'pentane')THEN + kij(i,j) = 0.005 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'methylcyclohexane') THEN + kij(i,j) = 0.0073 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'ethylbenzene')THEN + kij(i,j) = 0.008 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.181 + kij(i,j) = 0.088 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0206 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'argon') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'pentane') THEN + ! kij(i,j) = -0.0195 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'hexane') THEN + ! kij(i,j) = 0.008 + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.0404 + ! kij(i,j) = 0.0423 + ! kij(i,j) = 0.044 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'ldpe'.AND.compna(j) == 'cyclopentane')THEN + kij(i,j) = -0.016 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0242 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'pentane') THEN + kij(i,j) = 0.0137583176 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.1767 ! without quadrupol-term + kij(i,j) = 0.063 ! with quadrupol-term + ELSE IF(compna(i) == 'pba'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'n2'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = -0.04 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.051875 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.0353125 ! PCP-SAFT + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co') THEN + ! IF (pol == 1) kij(i,j) = -0.003 ! PCP-SAFT + IF (pol == 1) kij(i,j) = 0.018 ! PCP-SAFT + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.095 + kij(i,j) = 0.021 + ! kij(i,j) = 0.024 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.042 + ELSE IF(compna(i) == 'argon_ge'.AND.compna(j) == 'argon_ge2') THEN + read (*,*) kij(i,j) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.115 + ! kij(i,j) = 0.048 + kij(i,j) = 0.036 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.143 ! without quadrupol-term + kij(i,j) = 0.0 ! with quadrupol-term + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.125 ! without quadrupol-term + kij(i,j) = 0.0495 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.11 ! without quadrupol-term + ! kij(i,j) = 0.05 + ! kij(i,j) = 0.039 ! with quadrupol-term + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.128 ! without quadrupol-term + kij(i,j) = 0.053 ! with quadrupol-term + ELSE IF(compna(i) == 'dodecane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.12 ! without quadrupol-term + kij(i,j) = 0.0508 ! with quadrupol-term + ELSE IF(compna(i) == 'benzene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.087968750000 ! without quadrupol-term + ! kij(i,j) = 0.008203125 ! only co2 quadrupol + kij(i,j) = 0.042 ! both quadrupol + ! kij(i,j) = 0.003 ! both quadrupol + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.110784912 ! without quadrupol-term + kij(i,j) = 0.0305 ! with quadrupol-term + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.13 + lij(i,j) = - 0.00 + ! kij(i,j) = 0.045 + ELSE IF(compna(i) == 'chloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.04 ! PC-SAFT + kij(i,j) = 0.025 ! PCP-SAFT + ! kij(i,j) = 0.083 ! PCIP-SAFT + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'n2')THEN + kij(i,j) = 0.035211 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + kij(i,j) = 0.023 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + !kij(i,j) = 1.722238535635467E-002 ! PCP-SAFT + !lij(i,j) = 2.815974678394451E-003 ! PCP-SAFT + !kij(i,j) = 1.931522058164026E-002 ! PCP-SAFT + !lij(i,j) = 0.0 ! PCP-SAFT + !kij(i,j) = 1.641053794134795E-002 ! PCP-SAFT + !lij(i,j) = -5.850421759950764E-003 ! PCP-SAFT + if ( num == 0 ) write (*,*) 'calculation with lij only possible with num=1' + if ( num == 0 ) stop + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.015 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.02 ! PCP-SAFT + IF (pol == 2) kij(i,j) = -0.005 ! PCIP-SAFT where DQ with my=my_vacuum + ! IF (pol.EQ.2) kij(i,j) = 0.0 ! PCIP-SAFT where DQ with my=my_RPT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.0288 ! PC-SAFT + ! kij(i,j) = - 0.035 ! PCP-SAFT for co2 and PC-SAFT methanol + ! kij(i,j) = - 0.035 ! PCP-SAFT + ! lij(i,j) = 0.3 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.00896894 ! PC-SAFT + ! kij(i,j) = - 0.015 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'h2o')THEN + ! kij(i,j) = -0.134 ! PC-SAFT + ELSE IF(compna(i) == 'dichloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.06881725 ! PC-SAFT + ! kij(i,j) = 0.05839145 ! PCP-SAFT + kij(i,j) = -0.00944346 ! PCP-SAFT co2 dichloromethane PC-SAFT + ! kij(i,j) = 0.06 ! PCIP-SAFT + ELSE IF(compna(i) == 'h2s'.AND.compna(j) == 'methane')THEN + ! kij(i,j) = 0.0414 ! PC-SAFT + kij(i,j) = 0.0152 ! PCP-SAFT Dipole momnet (d with Q) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'h2s')THEN + kij(i,j) = -0.002 ! PCP-SAFT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'h2s')THEN + kij(i,j) = 0.0 ! PCP-SAFT + lij(i,j) = 0.0 ! PCP-SAFT + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hydrogen') THEN + ! lij(i,j) = -0.08 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.0251171875 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hexadecane') THEN + ! kij(i,j) = 0.1194 ! PC-SAFT ohne QQ + kij(i,j) = 0.0588 + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.038 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.037 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.072 ! no DD + ! kij(i,j) = 0.041 ! DD non-polarizable + kij(i,j) = 0.039 ! DD polarizable + ! kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.063 + kij(i,j) = 0.038 ! PCP-SAFT + ! kij(i,j) = 0.036 ! PCIP-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.035 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.059 ! no DD + ! kij(i,j) = 0.03281250 ! DD non-polarizable + kij(i,j) = 0.028 ! DD polarizable + ELSE IF(compna(i) == 'hexadecane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.07 ! no DD + ! kij(i,j) = 0.0415 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.027 ! PCP-SAFT + ! kij(i,j) = 0.033 ! PCP-SAFT with lij + ! lij(i,j) = 0.13 ! PCP-SAFT + ! kij(i,j) = 0.042 ! PC-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.042 ! no DD + ! kij(i,j) = 0.027 ! DD non-polarizable + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == '2-pentanone')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.031 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '3-pentanone')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.055 ! no DD + kij(i,j) = 0.027 ! DD non-polarizable + ! kij(i,j) = 0.026 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.036 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable 22 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanal')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.025 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'octane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'dmso')THEN + ! kij(i,j) = 0.025 ! no DD + kij(i,j) = - 0.0105 ! DD non-polarizable + ! kij(i,j) = - 0.019 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acrylonitrile')THEN + kij(i,j) = - 0.05 ! DD polarizable + ELSE IF(compna(i) == 'heptane' .AND. compna(j) == 'butyronitrile')THEN + kij(i,j) = - 0.002 ! DD polarizable 11 + kij(i,j) = 0.002 ! DD polarizable 22 + ELSE IF(compna(i) == '1-butene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.04 ! no DD + ! kij(i,j) = 0.004 ! DD non-polarizable + kij(i,j) = 0.005 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'dmf')THEN + kij(i,j) = 0.0135 ! DD polarizable 11 + kij(i,j) = 0.022 ! DD polarizable 22 + ELSE IF(compna(i) == 'ethylene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = - 0.0215 ! DD polarizable 11 + kij(i,j) = - 0.01 ! DD polarizable 22 + ELSE IF(compna(i) == 'nbutyl-ethanoate'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.016 ! no DD + ! kij(i,j) = -0.01 ! DD non-polarizable + kij(i,j) = - 0.015 ! DD polarizable 22 + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.066 ! PC-SAFT + ! kij(i,j) = 0.061 ! PCP-SAFT + ! kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate'.AND.compna(j) == 'decane')THEN + kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'methanol')THEN + ! kij(i,j) = -0.07 ! PCIP-SAFT + ELSE IF(compna(i) == 'pentane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0498 + IF (pol >= 1) kij(i,j) = -0.01 + IF (pol >= 2) kij(i,j) = -0.027 + ELSE IF(compna(i) == 'hexane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.05 + IF (pol >= 1) kij(i,j) = 0.0 + IF (pol >= 2) kij(i,j) = -0.03 + ELSE IF(compna(i) == 'octane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitromethane')THEN + kij(i,j) = 0.14 ! no DD + ! kij(i,j) = 0.07 ! DD non-polarizable + ! kij(i,j) = 0.055 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitroethane')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.03 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'nitromethane')THEN + ! kij(i,j) = - 0.017 ! no DD + kij(i,j) = - 0.021 ! DD non-polarizable + ! kij(i,j) = - 0.023 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 ! PCP-SAFT (no cross-association) + ELSE IF(compna(i) == 'methylcyclohexane' .AND. compna(j) == 'acetonitrile')THEN + ! kij(i,j) = 0.09 ! no DD + ! kij(i,j) = 0.033 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable 22 + kij(i,j) = 0.04 ! DD polarizable 22 und my angepasst + ELSE IF(compna(i) == 'ethylacetate' .AND. compna(j) == 'acetonitrile')THEN + kij(i,j) = 0.007 ! no DD + ! kij(i,j) = -0.045 ! DD polarizable 22 + ELSE IF(compna(i) == 'dimethyl-ether' .AND. compna(j) == 'propane')THEN + ! kij(i,j) = 0.03 ! no DD + kij(i,j) = 0.0225 ! DD non-polarizable + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'pentane')THEN + ! kij(i,j) = 0.012968750 ! ohne QQ + ! kij(i,j) = 0.004921875 ! mit QQ=5.6D (gefittet) + ! kij(i,j) = -0.006406250 ! mit QQ=7.45D (Literatur) + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.01328125 + ! kij(i,j) = 0.0038 + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == '1-hexene')THEN + kij(i,j) = 0.0067 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.04 + kij(i,j) = -0.029 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'vinylacetate') THEN + kij(i,j) = - 0.013847 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'ethylene') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.061953125 ! polyethylene parameters + kij(i,j) = 0.039609375 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.06515625 ! polyethylene parameters + kij(i,j) = 0.04453125 ! param. by extrapolation of n-alkanes + ! --- kij and lij adjusted ------- + ! kij(i,j) = 0.045786119 ! param. by extrapolation of n-alkanes + ! lij(i,j) = +8.53466437d-4 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'eicosane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 ! assumed equal to eicosane-C1 + ELSE IF(compna(i) == 'chlorobenzene' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.013 + ELSE IF(compna(i) == 'chloroethane' .AND. compna(j) == 'butane')THEN + kij(i,j) = 0.025 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.0070105 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'hydrogen' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.1501 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'co2') THEN + ! kij(i,j) = -0.08 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'propane') THEN + kij(i,j) = - 0.07 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'ethane') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.028 + kij(i,j) = 0.016 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.037 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '1-octanol')THEN + kij(i,j) = 0.06 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.0508 + ! kij(i,j) = 0.03 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.034 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'decane')THEN + ! kij(i,j) = 0.042 ! PC-SAFT + ! kij(i,j) = 0.011 ! PCP-SAFT + kij(i,j) = 0.000 ! PCIP-SAFT + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'isobutane') THEN + kij(i,j) = 0.051 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == '1-octanol') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == '1-butanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.015 + ELSE IF(compna(i) == '1-nonanol' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.076 + kij(i,j) = 0.01443 + ELSE IF(compna(i) == '1-propanol' .AND. compna(j) == 'ethylbenzene') THEN + kij(i,j) = 0.0251757813 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = 0.085 + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '1-chlorobutane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'aniline'.AND.compna(j) == 'methylcyclopentane') THEN + kij(i,j) = 0.0153 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'nbutyl-ethanoate')THEN + kij(i,j) = 0.027 + ELSE IF(compna(i) == '1-hexene'.AND.compna(j) == 'ethyl-ethanoate')THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == '1-butanol')THEN + ! kij(i,j) = 0.075 + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'acrylic-acid'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'bmim'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'bf4'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'butane')THEN !K.R.Hall FPE 2007 254 112-125 kij=0.1850 + kij(i,j) = -0.07 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-butanol')THEN + kij(i,j) = -0.12 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'aniline')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methanol') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = -0.027 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'styrene') THEN + kij(i,j) = 0.1 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propyl-ethanoate') THEN + kij(i,j) = -0.205 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethyl-propanoate') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-pentanol') THEN + kij(i,j) = 0.0165 + ! kij(i,j) = 0.0294 + ! kij(i,j) = -0.082 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methane') THEN + ! kij(i,j) = +0.06 + kij(i,j) = -0.08 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'hexane') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'co2') THEN + if (pol == 0) kij(i,j) = 0.0030625 ! for T=50C, according to X.Tang + stop ! very T-dependent + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'caproic-acid'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.041531 + ELSE IF(compna(i) == '1-octanol'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.07 + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02132466 ! PC-SAFT + ! kij(i,j) = 0.01495148 ! PCP-SAFT + ! kij(i,j) = -0.00735575 ! PCP-SAFT but non-polar benzene + ELSE IF(compna(i) == '1-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02017 + ELSE IF(compna(i) == '2-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.021386 + ELSE IF(compna(i) == '1-pentanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.0129638671875 + ELSE IF(compna(i) == 'CH2F2' .AND. compna(j) == 'co2') THEN + kij(i,j) = 2.2548828125E-2 + ELSE IF(compna(i) == 'dmso' .AND. compna(j) == 'co2') THEN + kij(i,j) = -0.00 + ELSE IF(compna(i) == 'dmf'.AND.compna(j) == 'h2o')THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = 0.032 ! association: eps_kij = 0.16 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.004 ! PCP-SAFT (taken from simulation) + ELSE IF(compna(i) == 'difluoromethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'naphthalene'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.137 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + kij(i,j) = 0.09 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'methanol')THEN + kij(i,j) = 0.03 + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.05 + ELSE IF(compna(i) == 'PCH5'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = -0.047 + kij(i,j) = +0.055 + ! kij(i,j) = +0.036 + ELSE + END IF + kij(j,i) = kij(i,j) + lij(j,i) = -lij(i,j) + + END DO +END DO + +END SUBROUTINE pcsaft_par + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE init_vars +! +! This subroutine writes variables from an array "val_init" to the +! system-variables. Those variables +! include some specifications but also some starting values for a +! phase equilibrium calculation. (val_init stands for 'initial value') + +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(5+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE init_vars +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +densta(3)=val_init(0) +densta(1)=val_init(1) +densta(2)=val_init(2) +t = val_init(3) +p = val_init(4) +DO ph = 1,nphas + DO i = 1,ncomp + lnx(ph,i) = val_init(4+i+(ph-1)*ncomp) + END DO +END DO + +END SUBROUTINE init_vars + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE converged +! +! Once a converged solution for an equilibrium calculation is found, +! this subroutine writes variables to an array "val_conv". +! (= short for converged values) +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(4+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE converged +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +val_conv(0) = dense(3) +val_conv(1) = dense(1) +val_conv(2) = dense(2) +val_conv(3) = t +val_conv(4) = p +DO ph = 1,nphas + DO i = 1,ncomp + val_conv(4+i+(ph-1)*ncomp) = lnx(ph,i) + END DO +END DO + +END SUBROUTINE converged + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PERTURBATION_PARAMETER +! +! calculates density-independent parameters of the equation of state. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PERTURBATION_PARAMETER +! + USE PARAMETERS, ONLY: PI, KBOL, RGAS, NAV, TAU + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, no + LOGICAL :: assoc, qudpole, dipole + REAL :: m_mean + REAL, DIMENSION(nc) :: v00, v0, d00, u + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb + REAL :: zmr, nmr + REAL :: eps_kij, k_kij +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- +DO i = 1, ncomp + u(i) = parame(i,3) * (1.0 + parame(i,4)/t) + mseg(i) = parame(i,1) + IF (eos == 0) THEN + v00(i) = parame(i,2) + v0(i) = v00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t))**3 + d00(i) = (1.d30/1.d6 *tau *v00(i)*6.0/PI /NAV)**(1.0/3.0) + dhs(i) = d00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + ELSE + dhs(i) = parame(i,2)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + d00(i) = parame(i,2) + END IF +END DO + + +! ---------------------------------------------------------------------- +! combination rules +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j = 1, ncomp + sig_ij(i,j) = 0.5 * ( d00(i) + d00(j) ) + uij(i,j) = ( 1.0 - kij(i,j) ) * ( u(i)*u(j) )**0.5 + vij(i,j) = ( 0.5*( v0(i)**(1.0/3.0) + v0(j)**(1.0/3.0) ) )**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +z0t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + +m_mean = z0t/(PI/6.0) + +DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO +END DO + +! ---------------------------------------------------------------------- +! dispersion term parameters for chain molecules +! ---------------------------------------------------------------------- +DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +END DO + + +! ---------------------------------------------------------------------- +! van der Waals mixing rules for perturbation terms +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO + + +! ---------------------------------------------------------------------- +! SAFT parameters +! ---------------------------------------------------------------------- +IF (eos == 0) THEN + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr +END IF + + + +! ---------------------------------------------------------------------- +! association and polar parameters +! ---------------------------------------------------------------------- +assoc = .false. +qudpole = .false. +dipole = .false. +DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + IF (parame(i,7) /= 0.0) qudpole = .true. + IF (parame(i,6) /= 0.0) dipole = .true. +END DO + +! --- dipole and quadrupole constants ---------------------------------- +IF (qudpole) CALL qq_const ( qqp2, qqp3, qqp4 ) +IF (dipole) CALL dd_const ( ddp2, ddp3, ddp4 ) +IF (dipole .AND. qudpole) CALL dq_const ( dqp2, dqp3, dqp4 ) + + +! --- TPT-1-association parameters ------------------------------------- +IF (assoc) THEN + + eps_kij = 0.0 + k_kij = 0.0 + + DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) THEN + nhb_typ(i) = NINT(parame(i,12)) + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1, nhb_typ(i) + DO k = 1, nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no=no+1 + END DO + END DO + DO j = 1, nhb_typ(i) + nhb_no(i,j) = parame(i,(14+no)) + no=no+1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1, nsite + DO l = 1, nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + IF (i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0)) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1, nhb_typ(i) + DO l = 1, nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN +! write(*,*)'eps_hb manuell eingegeben' + eps_hb(1,2,3,1) = 0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1) = 0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ass_d(i,j,k,l) = kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + END DO + END DO + END DO + END DO + +END IF + +END SUBROUTINE PERTURBATION_PARAMETER + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE OUTPUT +! +! The purpose of this subroutine is obvious. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE OUTPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + CHARACTER (LEN=4) :: t_ind + CHARACTER (LEN=4) :: p_ind + CHARACTER (LEN=4) :: char_ncomp + REAL :: density(np),w(np,nc) +! ---------------------------------------------------------------------- + + CALL si_dens (density,w) + + IF (u_in_p == 1.E5) THEN + p_ind = ' bar' + ELSE IF (u_in_p == 1.E2) THEN + p_ind = 'mbar' + ELSE IF (u_in_p == 1.E6) THEN + p_ind = ' MPa' + ELSE IF (u_in_p == 1.E3) THEN + p_ind = ' kPa' + ELSE + p_ind = ' Pa' + END IF + IF (u_in_t == 273.15) THEN + t_ind = ' C' + ELSE + t_ind = ' K' + END IF + + WRITE(*,*) '--------------------------------------------------' + WRITE (char_ncomp,'(I3)') ncomp + WRITE(*,'(t2,a,f7.2,2a,f9.4,a)') ' T =',t-u_out_t,t_ind & + ,' P =',p/u_out_p,p_ind + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,'(2x,a,2(g13.6,1x))') 'DENSITY ', density(1),density(2) + + !-----output to files-------------------------------------------------- + IF (ncomp == 1) THEN + WRITE (40,'(7(2x,f18.8))') t-u_out_t, p/u_out_p, & + density(1), density(2),h_lv,cpres(1),cpres(2) + ! & ,(enthal(2)-enthal(1))/mm(1) + ! WRITE (40,'(4(2x,f15.8))') t, p, 0.3107*dense(1) + ! & /0.1617*(0.689+0.311*(T/1.328)**0.3674),0.3107 + ! & *dense(2)/0.1617*(0.689+0.311*(T/1.328)**0.3674) + ELSE IF (ncomp == 2) THEN + WRITE (40,'(12(2x,G15.8))') 1.0-xi(1,1),1.0-xi(2,1), & + w(1,1),w(2,1),t-u_out_t, p/u_out_p, density(1),density(2) & + ,enthal(1),enthal(2),cpres(1),cpres(2) + ELSE IF (ncomp == 3) THEN + WRITE (40,'(10(2x,f15.8))') xi(1,1),xi(1,2),xi(1,3),xi(2,1),xi(2,2), & + xi(2,3),t-u_out_t, p/u_out_p, density(1),density(2) + END IF + + END SUBROUTINE OUTPUT + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE neutr_charge +! +! This subroutine is called for electrolye solutions, where a +! neutral overall-charge has to be enforced in all phases. The basic +! philosophy is similar to the above described routine X_SUMMATION. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE neutr_charge(i) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i +! +! ---------------------------------------------------------------------- + INTEGER :: comp_e, ph_e + REAL :: sum_c + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + +phasno = sum_rel(i)(2:2) +READ(phasno,*) ph_e +compno = sum_rel(i)(3:3) +READ(compno,*) comp_e + +sum_c = 0.0 +write (*,*) 'there must be an error in neutr_charge' +stop +! there is an error in the following passage. The index i is an +! argument to this subroutine - I guess it is INTENT(IN), so the +! index in the following loop can not be i. +! +! I have commented the loop until I check the code. +!DO i=1,ncomp +! IF ( comp_e /= i .AND. parame(i,10) /= 0.0) & +! sum_c = sum_c + xi(ph_e,i)*parame(i,10) +!END DO + +xi(ph_e,comp_e) = - sum_c +IF (xi(ph_e,comp_e) < 0.0) xi(ph_e,comp_e)=0.0 +IF (xi(ph_e,comp_e) /= 0.0) THEN + lnx(ph_e,comp_e) = LOG(xi(ph_e,comp_e)) +ELSE + lnx(ph_e,comp_e) = -100000.0 +END IF + +! xi(2,1) = xi(2,2) +! IF (xi(2,1).NE.0.0) lnx(2,1) = LOG(xi(2,1)) + +END SUBROUTINE neutr_charge + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_sum +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, j, ph_i, phase1, phase2 +! ---------------------------------------------------------------------- + +phase1=0 +phase2=0 +DO j=1,ncomp + IF (it(j)(2:2) == '1') phase1=phase1+1 + IF (it(j)(2:2) == '2') phase2=phase2+1 +END DO + +IF (phase1 == ncomp-1) THEN + ph_i = 1 +ELSE IF (phase2 == ncomp-1) THEN + ph_i = 2 +ELSE + WRITE (*,*) ' FLASH_SUM: undefined flash-case' + STOP +END IF + + + +IF (ph_i == 1) THEN + DO i=1,ncomp + IF (alpha > DMIN1(1.0,xif(i)/xi(1,i), & + (xif(i)-1.0)/(xi(1,i)-1.0),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 1st alpha-bound' + alpha=DMIN1(1.0,xif(i)/xi(1,i),(xif(i)-1.0)/(xi(1,i)-1.0)) + END IF + END DO + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF (xi(2,i) > 0.0) THEN + lnx(2,i) = LOG(xi(2,i)) + ELSE + xi(2,i) = 0.0 + lnx(2,i) = -100000.0 + END IF + END DO +ELSE IF (ph_i == 2) THEN + DO i=1,ncomp + IF (alpha > DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), & + 1.0-xif(i)/xi(2,i),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 2nd alpha-bound' + WRITE (*,*) 0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i) + alpha=DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i)) + END IF + END DO + DO i=1,ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) / alpha +! write (*,*) 'x1,i',xi(1,i),xi(2,i),alpha + IF (xi(1,i) > 0.0) THEN + lnx(1,i) = LOG(xi(1,i)) + ELSE + xi(1,i) = 0.0 + lnx(1,i) = -100000.0 + END IF + END DO +END IF + +! pause + +RETURN +END SUBROUTINE flash_sum + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE flash_alpha +! +! This subroutine calculates all molefractions of one phase +! from a component balance. What is needed for this calculation +! are all molefractions of the other phase (nphas=2, so far) +! and the phase fraction alpha. +! Alpha is calculated from the mole fraction +! of component {sum_rel(j)(3:3)}. If for example sum_rel(2)='fl3', +! then the alpha is determined from the molefraction of comp. 3 and +! all molefractions of one phase are calculated using that alpha-value. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_alpha +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, phase1, phase2 + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! first calculate the phase fraction alpha from a known composition +! of component sum_rel(j)(3:3). +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF ( sum_rel(j)(1:2) == 'fl' ) THEN + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( (xi(1,comp_i)-xi(2,comp_i)) /= 0.0 ) THEN + alpha = (xif(comp_i)-xi(2,comp_i)) / (xi(1,comp_i)-xi(2,comp_i)) + write (*,*) 'flsh',(xif(comp_i)-xi(2,comp_i)),(xi(1,comp_i)-xi(2,comp_i)) + ELSE + alpha = 0.5 + WRITE (*,*) 'FLASH_ALPHA:error in calc. of phase fraction',comp_i + END IF + ! IF (alpha <= 0.0 .OR. alpha >= 1.0) WRITE(*,*) 'FLASH_ALPHA: error',alpha + IF (alpha > 1.0) alpha = 1.0 + IF (alpha < 0.0) alpha = 0.0 + END IF +END DO + +! ---------------------------------------------------------------------- +! determine which phase is fully determined by iterated molefractions (+ summation relation) +! ---------------------------------------------------------------------- +phase1 = 0 +phase2 = 0 +DO i = 1, ncomp + IF ( it(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( it(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO +DO i = 1, ncomp + IF ( sum_rel(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( sum_rel(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO + + +IF ( phase1 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 1 is defined by iterated molefractions + summation relation + ! phase 2 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + IF ( alpha == 1.0 ) alpha = 1.0 - 1.0E-10 + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF ( xi(2,i) < 0.0 ) xi(2,i) = 0.0 + IF ( xi(2,i) > 1.0 ) xi(2,i) = 1.0 + IF ( xi(2,i) /= 0.0 ) THEN + lnx(2,i) = LOG( xi(2,i) ) + ELSE + lnx(2,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=2',i,lnx(2,i),xi(2,i) + END DO +ELSE IF ( phase2 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 2 is defined by iterated molefractions + summation relation + ! phase 1 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) /alpha + IF ( xi(1,i) < 0.0 ) xi(1,i) = 0.0 + IF ( xi(1,i) > 1.0 ) xi(1,i) = 1.0 + IF ( xi(1,i) /= 0.0 ) THEN + lnx(1,i) = LOG( xi(1,i) ) + ELSE + lnx(1,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=1',i,lnx(1,i),xi(1,i),alpha + END DO +ELSE + WRITE (*,*) ' FLASH_ALPHA: undefined flash-case' + STOP +END IF + +END SUBROUTINE flash_alpha + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE SI_DENS (density,w) +! +! This subroutine calculates the (macroskopic) fluid-density in +! units [kg/m3] from the dimensionless density (eta=zeta3). +! Further, mass fractions are calculated from mole fractions. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SI_DENS (density,w) +! + USE PARAMETERS, ONLY: pi, nav, tau + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: density(np) + REAL, INTENT(OUT) :: w(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph + REAL :: mm_mean, rho, z3t + REAL :: dhs(nc), d00(nc), t_p, pcon, l_st +! ---------------------------------------------------------------------- + + +DO i = 1,ncomp + IF (eos == 1) THEN + dhs(i) = parame(i,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 0) THEN + d00(i) = ( 1.E30/1.E6*tau*parame(i,2)*6.0/pi/nav )**(1.0/3.0) + dhs(i) = d00(i) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 4) THEN + dhs(i) = ( 0.1617/0.3107 / ( 0.689+0.311*(t/parame(i,3)/1.328)**0.3674 ) & + / ( pi/6.0 ) )**(1.0/3.0) * parame(i,2) + ELSE IF (eos == 5.OR.eos == 6) THEN + l_st = parame(1,25) + IF (ncomp /= 1) write (*,*) ' ERROR for EOS = 5' + t_p =((34.037352+17.733741*l_st) /(1.0+0.53237307*l_st+12.860239*l_st**2 ))**0.5 + IF (l_st == 0.0) t_p = t_p/4.0 + IF (eos == 5 .AND. l_st /= 0.0) t_p = t_p/4.0*parame(1,1)**2 + t_p = t/parame(i,3)/t_p + pcon =0.5256+3.2088804*l_st**2 -3.1499114*l_st**2.5 +0.43049357*l_st**4 + dhs(i) = ( pcon/(0.67793+0.32207*(t_p)**0.3674) /(pi/6.0) )**(1.0/3.0) *parame(i,2) + ELSE IF (eos == 8) THEN + dhs(i) = parame(i,2)*(1.0+0.2977*t/parame(i,3)) & + /(1.0+0.33163*t/parame(i,3) +1.0477E-3*(t/parame(i,3))**2 ) + ELSE + write (*,*) 'define EOS in subroutine: SI_DENS' + stop + END IF +END DO + +DO ph = 1,nphas + mm_mean = 0.0 + z3t = 0.0 + DO i = 1, ncomp + mm_mean = mm_mean + xi(ph,i)*mm(i) + z3t = z3t + xi(ph,i) * parame(i,1) * dhs(i)**3 + END DO + z3t = pi/6.0 * z3t + rho = dense(ph)/z3t + density(ph) = rho * mm_mean * 1.E27 /nav + DO i = 1, ncomp + w(ph,i) = xi(ph,i) * mm(i)/mm_mean + END DO +! write (*,*) density(ph),rho,mm_mean,1.d27 /NAV +END DO + +END SUBROUTINE SI_DENS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION F_STABILITY ( optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) +! +! ---------------------------------------------------------------------- + INTEGER :: i, stabil + REAL :: rhoi(nc),gradterm + REAL :: fden,punish + REAL :: dens +! ---------------------------------------------------------------------- + +COMMON /stabil / stabil + +punish = 0.0 +stabil = 1 + +DO i = 1, n + IF ( optpara(i) < 0.5 ) rhoi(i) = EXP(optpara(i) ) + IF ( optpara(i) >= 0.5) rhoi(i) = EXP(0.5) +END DO + +dens = PI/6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + +IF (dens > 0.65) THEN + punish = punish + (dens-0.65)*10000.0 + rhoi(1:n) = rhoi(1:n)*0.65/dens +END IF + +CALL fden_calc (fden, rhoi) + +gradterm = sum( grad_fd(1:n) * ( rhoi(1:n) - rhoif(1:n) ) ) + +f_stability = fden - fdenf - gradterm + punish + +! write (*,'(5G16.8)') F_STABILITY,(rhoi(i),i=1,n) +! pause + +stabil = 0 + +END FUNCTION F_STABILITY + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE p_calc (pges_transfer, zges) +! +! This subroutine serves as an iterface to the EOS-routines. The +! system pressure corresponding to given (desity,T,xi) is calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. This +! routine is only used for one-phase systems, e.g. calculation of +! virial coefficients) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE p_calc (pges_transfer, zges) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: pges_transfer + REAL, INTENT(OUT) :: zges +! ---------------------------------------------------------------------- + +IF (nphas /= 1 ) THEN + write (*,*) 'P_CALC: can only be called for single phases' + stop +ENDIF + +IF (eos < 2) THEN + + phas = 1 + eta = dense(1) + x(1:ncomp) = xi(1,1:ncomp) + + CALL PERTURBATION_PARAMETER + IF (num == 0) CALL P_EOS + IF(num == 1) CALL P_NUMERICAL + !! IF(num == 2) CALL F_EOS_RN + + pges_transfer = pges + rho = eta/z3t + zges = (pges * 1.E-30) / (kbol*t*rho) + +ELSE + write (*,*) ' SUBROUTINE P_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE p_calc + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL ( only_term, type_of_term ) +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! + character (LEN=9) :: only_term, type_of_term +! ---------------------------------------------------------------------- + + save_eos_terms(1) = ideal_gas + save_eos_terms(2) = hard_sphere + save_eos_terms(3) = chain_term + save_eos_terms(4) = disp_term + save_eos_terms(5) = hb_term + save_eos_terms(6) = LC_term + save_eos_terms(7) = branch_term + save_eos_terms(8) = II_term + save_eos_terms(9) = ID_term + + ideal_gas = 'no' + hard_sphere = 'no' + chain_term = 'no' + disp_term = 'no' + hb_term = 'no' + LC_term = 'no' + branch_term = 'no' + II_term = 'no' + ID_term = 'no' + + IF ( only_term == 'ideal_gas' ) ideal_gas = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hard_sphere' ) hard_sphere = trim( adjustl( type_of_term ) ) + IF ( only_term == 'chain_term' ) chain_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'disp_term' ) disp_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hb_term' ) hb_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'LC_term' ) LC_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'branch_term' ) branch_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'II_term' ) II_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'ID_term' ) ID_term = trim( adjustl( type_of_term ) ) + +END SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + ideal_gas = trim( adjustl( save_eos_terms(1) ) ) + hard_sphere = trim( adjustl( save_eos_terms(2) ) ) + chain_term = trim( adjustl( save_eos_terms(3) ) ) + disp_term = trim( adjustl( save_eos_terms(4) ) ) + hb_term = trim( adjustl( save_eos_terms(5) ) ) + LC_term = trim( adjustl( save_eos_terms(6) ) ) + branch_term = trim( adjustl( save_eos_terms(7) ) ) + II_term = trim( adjustl( save_eos_terms(8) ) ) + ID_term = trim( adjustl( save_eos_terms(9) ) ) + +END SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL + + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/in.txt b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/in.txt new file mode 100644 index 000000000..c6f3172fc --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/in.txt @@ -0,0 +1,8 @@ +380.0 +3 +co2 +mdi +po +0.1 +0.5 +0.4 \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/main.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/main.f90 new file mode 100644 index 000000000..4c7ff58c8 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/main.f90 @@ -0,0 +1,129 @@ + + +! +!THIS CODE WAS WRITTEN AT +!UNIVERSITY OF STUTTGART, +!INSTITUTE OF TECHNICAL THERMODYNAMICS AND THERMAL PROCESS ENGINEERING +!BY +!JOACHIM GROSS +! +! +! +! + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This program calculates solubilities (Henry coefficients) using the +! PC-SAFT equation of state. +! The input parameters are read from the file "in.txt" which has to +! be in the same directory as the executable. +! +! The input file must have the following format: +! Line1: Value of temperature in Kelvin +! Line2: Number of components present in the system (ncomp) +! Line3 Name of component 1 +! ... +! Line3+ncomp Name of component ncomp +! Line3+ncomp+1 Molar (overall) concentration of component 1 +! ... +! Line3+2ncomp Molar (overall) concentration of component ncomp +! +! For a binary system, these molar concentrations are only treated as an initial guess and may be set to e.g. 0.5 +! +! +! So far, pressure is set to 1bar in all calculaions +! +! +!If you would like to use this code in your work, please cite the +!following publications: +! +!Gross, Joachim, and Gabriele Sadowski. "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules." Industrial & engineering chemistry research 40.4 (2001): 1244-1260. +!Gross, Joachim, and Gabriele Sadowski. "Application of the perturbed-chain SAFT equation of state to associating systems." Industrial & engineering chemistry research 41.22 (2002): 5510-5515. +!Gross, Joachim, and Jadran Vrabec. "An equation‐of‐state contribution for polar components: Dipolar molecules." AIChE journal 52.3 (2006): 1194-1204. + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + + +PROGRAM PC_SAFT +! +! ---------------------------------------------------------------------- + USE BASIC_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE + USE EOS_VARIABLES + IMPLICIT NONE + + +! ---------------------------------------------------------------------- +!Variables +! ---------------------------------------------------------------------- + + REAL :: tc,pc,chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + CHARACTER (LEN=50) :: filename + INTEGER :: compID,i + + +! ---------------------------------------------------------------------- +!Read information from inputfile "in.txt" +! ---------------------------------------------------------------------- + + filename='./in.txt' + CALL file_open(filename,77) ! open input file + READ (77,*) t ! read temperature + READ (77,*) ncomp ! read number of components in the system + Do i = 1,ncomp ! read component names + READ (77,*) compna(i) + End Do + Do i = 1,ncomp ! read component overall molar concentrations + READ (77,*) cif(i) + End Do + + + !calculate molar fractions from molar concentrations + xif(1:ncomp) = cif(1:ncomp) / sum(cif(1:ncomp)) + + + +! ---------------------------------------------------------------------- +!General simulation set up +! ---------------------------------------------------------------------- + + num = 1 ! (num=0: using analytical derivatives of EOS) + ! (num=1: using numerical derivatives of EOS) + ! (num=2: White's renormalization group theory) + IF ( num /= 0 ) CALL SET_DEFAULT_EOS_NUMERICAL + + eos = 1 ! eos=1: use PC-SAFT equation of state + pol = 1 ! pol=1: include polar interactions (use PCP-SAFT parameters) + + p = 1.000e05 ! pressure is fixed to 1bar in all simulations + + CALL para_input ! retriev pure comp. parameters + + ensemble_flag = 'tp' ! this specifies, whether the eos-subroutines + ! are executed for constant 'tp' or for constant 'tv' + +! ---------------------------------------------------------------------- +!Start phase equilibrium calculation +! ---------------------------------------------------------------------- + + CALL EOS_CONST (ap, bp, dnm) ! read EOS constants + + dd_term = 'GV' ! dipole-dipole term of Gross & Vrabec (2006) + qq_term = 'JG' ! quadrupole-quadrupole term of Gross (2005) + dq_term = 'VG' ! dipole-quadrupole term of Vrabec & Gross (2008) + + CALL VLE_MIX(rhob,density,chemPot_total,compID) ! call routine that calculates phase equilibria + + + + + +END PROGRAM PC_SAFT + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/makefile b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/makefile new file mode 100644 index 000000000..8926c29b5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/makefile @@ -0,0 +1,31 @@ + + +#Source files +SOURCE = modules.f90 \ + module_solve_nonlinear.f90 \ + getting_started_subroutines.f90 \ + Numeric_subroutines.f90 \ + VLE_subroutines.f90 \ + VLE_main.f90\ + main.f90 \ + + + + +#Object files +OBJECT = $(SOURCE:%.f90=%.o) + + + +#define target for non-PETSc files +%.o: %.f90 + gfortran -c -fdefault-real-8 $< -o $@ + +EOS: $(OBJECT) + gfortran -o PCSAFT_Henry $(OBJECT) + +clean: + rm *.o *.mod + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 new file mode 100644 index 000000000..595a8ba80 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.f90 @@ -0,0 +1,1645 @@ + +MODULE Solve_NonLin + +! Corrections to FUNCTION Enorm - 28 November 2003 + +IMPLICIT NONE +INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HBRD + +! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +! FINAL ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +! PRECISION. + +! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +! IS AT MOST TOL. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +! BETWEEN X AND THE SOLUTION IS AT MOST TOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). + +! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... HYBRD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! Reference: +! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +! Breach, London 1970. +! ********** +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 1.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0 + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0 + alpha = delta / qnorm + IF (gnorm /= 0.0) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0 + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0 + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0-(delta/qnorm)**2)*(1.0-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/modules.f90 b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/modules.f90 new file mode 100644 index 000000000..53ea371b6 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/modules.f90 @@ -0,0 +1,364 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and constants +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module PARAMETERS + + implicit none + save + + integer, parameter :: nc = 6 + integer, parameter :: np = 3 + integer, parameter :: nsite = 5 + + real, parameter :: PI = 3.141592653589793 + real, parameter :: RGAS = 8.31441 + real, parameter :: NAv = 6.022045E23 + real, parameter :: KBOL = RGAS / NAv + real, parameter :: TAU = PI / 3.0 / SQRT(2.0) + +End Module PARAMETERS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains some frequently used variables +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module BASIC_VARIABLES + + use PARAMETERS, only: nc, np, nsite + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture +! ---------------------------------------------------------------------- + integer :: ncomp + integer :: nphas + + real :: t + !real :: tc + real :: p + real, dimension(np) :: dense + !real, dimension(np) :: rhob + + real, dimension(np, nc) :: xi + real, dimension(np, nc) :: lnx + real, dimension(nc) :: xiF + real, dimension(nc) :: ciF + + + real, dimension(nc) :: mm + real, dimension(np, nc, nsite) :: mxx + + real :: alpha + + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- + real, dimension(nc, 25) :: parame = 0.0 + real, dimension(nc) :: chiR + character*30, dimension(nc) :: compna + real, dimension(nc, nc) :: kij, lij + real, dimension(nc, nc) :: E_LC, S_LC + real, dimension(nc) :: LLi, phi_criti, chap + + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real, dimension(np) :: densta + real, dimension(0:nc*np+6) :: val_init, val_conv + + real :: h_lv + real, dimension(np) :: cpres, enthal, entrop, gibbs, f_res + + real, dimension(np) :: dp_dz, dp_dz2 + + +! ---------------------------------------------------------------------- +! choice of EOS-model and solution method +! ---------------------------------------------------------------------- + integer :: eos, pol + integer :: num + character (LEN=2) :: ensemble_flag + character (LEN=10) :: RGT_variant + + +! ---------------------------------------------------------------------- +! for input/output +! ---------------------------------------------------------------------- + integer :: outp, bindiag + real :: u_in_T, u_out_T, u_in_P, u_out_P + + +! ---------------------------------------------------------------------- +! quantities defining the numerical procedure +! ---------------------------------------------------------------------- + integer :: n_unkw + + real :: step_a, acc_a !, acc_i + real, dimension(nc) :: scaling + real, dimension(3500) :: plv_kon + real, dimension(2, 3500) :: d_kond + + character*3, dimension(10) :: it, sum_rel + character*3 :: running + + +End Module BASIC_VARIABLES + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables for the use of the EOS +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_VARIABLES + + use PARAMETERS, only: nc, nsite, PI, KBOL, TAU, NAv + use BASIC_VARIABLES, only: ncomp, eos, t, p, parame, E_LC, S_LC, chiR, & + LLi, phi_criti, chap, kij, lij, ensemble_flag + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture (single phase) +! ---------------------------------------------------------------------- + real :: x(nc) + real :: eta_start + real :: eta + real :: rho + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real :: fres + real :: lnphi(nc) + real :: pges + real :: pgesdz + real :: pgesd2 + real :: pgesd3 + + real :: h_res + real :: cp_res + real :: s_res + +! ---------------------------------------------------------------------- +! quantities of fluid theory +! ---------------------------------------------------------------------- + real :: gij(nc,nc) + real :: mx(nc,nsite) + + real :: mseg(nc) + real :: dhs(nc) + real :: uij(nc,nc) + real :: sig_ij(nc,nc) + real :: vij(nc,nc) + + real :: um + real :: order1 + real :: order2 + real :: apar(0:6) + real :: bpar(0:6) + + real :: z0t + real :: z1t + real :: z2t + real :: z3t + + integer :: nhb_typ(nc) + real :: ass_d(nc,nc,nsite,nsite) + real :: nhb_no(nc,nsite) + real :: dij_ab(nc,nc) + +! ---------------------------------------------------------------------- +! auxilliary quantities +! ---------------------------------------------------------------------- + real :: tfr + integer :: phas + + character (LEN = 2) :: dd_term, qq_term, dq_term + + real :: densav(3), denold(3) + real :: density_error(3) + + real :: alpha_nematic + real :: alpha_test(2) + +End Module EOS_VARIABLES + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains variables to store the EOS model constants +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_CONSTANTS + + use PARAMETERS, only: nc + implicit none + save + + real, dimension(0:6,3) :: ap, bp + real, dimension(4,9) :: dnm + + real, dimension(28) :: c_dd, n_dd, m_dd, k_dd, o_dd + real, dimension(nc,nc,0:8) :: qqp2, qqp4, ddp2, ddp4, dqp2, dqp4 + real, dimension(nc,nc,nc,0:8) :: qqp3, ddp3, dqp3 + +End Module EOS_CONSTANTS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables for the numerical +! evaluation of derivatives of the EOS +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_NUMERICAL_DERIVATIVES + + use EOS_VARIABLES, only: dd_term, qq_term, dq_term + + implicit none + save + + character (LEN=9) :: ideal_gas ! (yes, no) + character (LEN=9) :: hard_sphere ! (CSBM, no) + character (LEN=9) :: chain_term ! (TPT1, no) + character (LEN=9) :: disp_term ! (PC-SAFT, CK, no) + character (LEN=9) :: hb_term ! (TPT1_Chap, no) + character (LEN=9) :: LC_term ! (MSaupe, no) + character (LEN=9) :: branch_term ! (TPT2, no) + character (LEN=9) :: II_term ! (......., no) + character (LEN=9) :: ID_term ! (......., no) + + character (LEN=9) :: subtract1 ! (1PT, 2PT, no) + character (LEN=9) :: subtract2 ! (ITTpolar, no) + + character (LEN=9) :: save_eos_terms(10) + +End Module EOS_NUMERICAL_DERIVATIVES + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module STARTING_VALUES +! +! This module contains parameters and variables for a phase stability +! analyis as part of a flash calculation. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + Module STARTING_VALUES + + use PARAMETERS, only: nc + implicit none + save + + REAL, DIMENSION(nc) :: rhoif, rhoi1, rhoi2, grad_fd + REAL :: fdenf + + End Module STARTING_VALUES + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module DFT_MODULE +! +! This module contains parameters and variables for DFT calculations. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module DFT_MODULE + + use PARAMETERS, only: nc + implicit none + save + + INTEGER, PARAMETER :: NDFT = 4000 + !!integer :: discret + REAL :: box_l_no_unit + INTEGER, PARAMETER :: r_grid = 200 + INTEGER :: kmax, den_step + LOGICAL :: shift, WCA, MFT + REAL :: rc, rg, dzr, tau_cut,dzp + REAL :: d_hs, dhs_st, z3t_st + REAL :: z_ges + REAL, DIMENSION(r_grid) :: x1a + REAL, DIMENSION(NDFT) :: x2a + REAL, DIMENSION(r_grid,NDFT) :: ya, y1a, y2a, y12a + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub + REAL :: fres_temp + + REAL, DIMENSION(r_grid) :: x1a_11 + REAL, DIMENSION(NDFT) :: x2a_11 + REAL, DIMENSION(r_grid,NDFT) :: ya_11, y1a_11, y2a_11, y12a_11 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_11 + REAL, DIMENSION(r_grid) :: x1a_12 + REAL, DIMENSION(NDFT) :: x2a_12 + REAL, DIMENSION(r_grid,NDFT) :: ya_12, y1a_12, y2a_12, y12a_12 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_12 + REAL, DIMENSION(r_grid) :: x1a_22 + REAL, DIMENSION(NDFT) :: x2a_22 + REAL, DIMENSION(r_grid,NDFT) :: ya_22, y1a_22, y2a_22, y12a_22 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_22 + + End Module DFT_MODULE + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module rdf_variables + + implicit none + save + + real, dimension(0:20) :: fac(0:20) + +End Module rdf_variables + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains the variavles that are needed in the core DFT_FCN +! They are not passed directly to DFT_FCN because the nonlinear solver +! needs a certain calling structure: fcn(x,fvec,n) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module DFT_FCN_MODULE + +use PARAMETERS, only: nc +use DFT_MODULE, only: ndft + implicit none + +INTEGER :: irc(nc),irc_j,ih,fa(nc) + REAL, DIMENSION(-NDFT:NDFT) :: zp + REAL, DIMENSION(-NDFT:NDFT) :: f_tot + REAL, DIMENSION(-NDFT:NDFT,2) :: dF_drho_tot + REAL :: rhob_dft(2,0:nc) + REAL :: my0(nc) + +End Module DFT_FCN_MODULE + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module Module_Heidemann_Khalil +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module Module_Heidemann_Khalil + + implicit none + save + + real :: error_condition2 + + End Module + + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/out.txt b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/out.txt new file mode 100644 index 000000000..3a68e692a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/src/srcDetailedCode/out.txt @@ -0,0 +1 @@ + 2.2654943032705011 diff --git a/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/workflow b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/workflow new file mode 100755 index 000000000..63676605b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/ExampleOfUsage/workflow @@ -0,0 +1,57 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + A simple workflow + +Authors + Henrik Rusche + +Contributors +''' + +from fireworks import Firework, Workflow, LaunchPad +from fireworks.core.rocket_launcher import rapidfire +import Solubility +from modulefinder import ModuleFinder + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +# create the individual FireWorks and Workflow +# Source code in src/twoTanksMacroscopicProblem.C +wf = Workflow([Firework(Solubility.m)], {}, name="simulation") + +# store workflow and launch it locally +launchpad.add_wf(wf) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/Solubility.py b/applications/PUfoam/MoDeNaModels/Solubility/Solubility.py new file mode 100644 index 000000000..4b6dc1842 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/Solubility.py @@ -0,0 +1,194 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks +This is the Solubility python module. Basically, it contains the following: + +The FireTask which controls the call of the detailed model. This detailed model is called +at the very beginning of the simulation in order to generate initial data points +which can be used to fit the parameters of the surrogate model and during a running simulation +as soon as the Solubility model is called with input parameters which lie outside the range +the parameters of the surrogate model was so far fitted for. This FireTask is stored in the class +"SolubilityExactSim" and a more detailed description of the detailed model can be found +in the description of this class. + +Furthermore, this module contains the code of the surrogate model function as well as the +definitions of its input and output values and its fittable parameters. Care should be +taken to set reasonable bounds for these variables. + +Also, this module contains the backward mapping model. This model consits of the +surrogate model function, an initialisation strategy, the out of bounds strategy and the +parameter fitting strategy. The initialisation strategy defines the initial data points where the +detailed model will be evaluated at simulation start for an initial fit of the surrogate model parameters. +The out of bounds strategy determines, how many new points and where to place these new +points, once the Solubility model is called for input values outside of the +fitted range. The parameter fitting strategy defines tolerances and maximal iterations +which are passed to the numerical solver which performs the actual fitting of the +surrogate model parameters. + +@author Jonas Mairhofer +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +""" + +import os +import modena +from modena import ForwardMappingModel,BackwardMappingModel,SurrogateModel,CFunction,IndexSet +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +# Create terminal for colour output +term = Terminal() + +@explicit_serialize +class SolubilityExactSim(FireTaskBase): + """ + This FireTask controls the execution of the detailed model of the Solubility model. + The detailed model uses the PC-SAFT equation of state. A + detailed description of PC-SAFT model can be found in Deliverable 1.3 on the MoDeNa website. + + In order to start the detailed model, the input values for the model are first written to the + file "in.txt". The detailed model code picks them up from this file and performs the according + calculation. Once it is done, the output value is written to the file "out.txt". This FireTask + then reads in the calculated solubility from "out.txt" and inserts this value into the + database. + """ + + + def run_task(self, fw_spec): + print( + term.yellow + + "Performing exact simulation (microscopic code recipe)" + + term.normal + ) + + # Write input for detailed model + ff = open('in.txt', 'w') + Tstr = str(self['point']['T']) + ff.write('%s \n' %(Tstr)) + + + ##TODO INPUT SHOULD COME FROM IndexSet + + ff.write('2 \n') #number of components in system + ff.write('co2 \n') #component 1 + ff.write('hexane \n') #component 2 + ff.write('0.5 \n') #molar feed (initial) concentration (mol/m^3) component 1 + ff.write('0.5 \n') #molar feed (initial) concentration (mol/m^3) component 2 + ff.close() + + #create output file for detailed code + fff = open('out.txt', 'w+') + fff.close() + + # Execute detailed model + os.system('../src/PCSAFT_Henry') + + # Analyse output + f = open('out.txt', 'r') + self['point']['H'] = float(f.readline()) + f.close() + + return FWAction(mod_spec=[{'_push': self['point']}]) + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void surroSolubility +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + + const double T = inputs[0]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + const double P2 = parameters[2]; + + const double term1 = P1*(1/T - 1/P2); + const double term2 = exp(term1); + + outputs[0] = P0*term2; + + //outputs[0] = P0 + T*P1 + P2*T*T; +} +''', + # These are global bounds for the function + inputs={ + 'T': { 'min': 200.0, 'max': 250.0, 'argPos': 0 }, #check if boundaries reasonable, from this range, the random values for the DOE are chosen! + }, + outputs={ + 'H': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': -1E10, 'max': 1E10, 'argPos': 0 }, #check if boundaries are reasonable!!! + 'param1': { 'min': -1E10, 'max': 1E10, 'argPos': 1 }, + 'param2': { 'min': 1.0, 'max': 1E10, 'argPos': 2 }, + }, +) + + +m = BackwardMappingModel( + _id= 'Solubility', + surrogateFunction= f, + exactTask= SolubilityExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [200.0, 220.0], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 50.0, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/__init__.py b/applications/PUfoam/MoDeNaModels/Solubility/__init__.py new file mode 100644 index 000000000..74decabba --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/__init__.py @@ -0,0 +1,41 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' +from modSolubility import f +from modSolubility import m_solubilityCO2 +from modSolubility import m_solubilityAir +from modSolubility import m_solubilityCyclopentane diff --git a/applications/PUfoam/MoDeNaModels/Solubility/initModels b/applications/PUfoam/MoDeNaModels/Solubility/initModels new file mode 100755 index 000000000..0d4f5687f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/initModels @@ -0,0 +1,62 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors +''' + +from modena import SurrogateModel +from modena.Strategy import Workflow2 +#import flowRate +import modSolubility +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from fireworks.utilities.fw_serializers import load_object + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +initWfs = Workflow2([]) +for m in SurrogateModel.get_instances(): + initWfs.addNoLink(m.initialisationStrategy().workflow(m)) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/Numeric_subroutines.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/Numeric_subroutines.f90 new file mode 100644 index 000000000..5a0eb6a30 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/Numeric_subroutines.f90 @@ -0,0 +1,1672 @@ +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This file contains subroutines for subtasks like spline interpolations, +!! spline integration and function minimization +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + + + + +SUBROUTINE bicub_derivative ( ya, x1a, x2a, y1a, y2a, y12a, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(OUT) :: y1a(r_grid,NDFT) + REAL, INTENT(OUT) :: y2a(r_grid,NDFT) + REAL, INTENT(OUT) :: y12a(r_grid,NDFT) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k +! ---------------------------------------------------------------------- + + +DO i = 2, i_max-1 + DO k = 2, k_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k+1)-ya(i+1,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) + END DO +END DO + +i = 1 +DO k = 1, k_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + +k = 1 +DO i = 1, i_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + + +i = i_max +DO k = 2, k_max-1 + y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i,k+1)-ya(i,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) +END DO + + +k = k_max +DO i = 2, i_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k)-ya(i+1,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k)-x2a(k-1))) +END DO + +k = k_max +i = i_max +y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) +y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) +y12a(i,k)= (ya(i,k)-ya(i,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k)-x2a(k-1))) + +END SUBROUTINE bicub_derivative + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_c ( ya, x1a, x2a, y1a, y2a, y12a, c_bicub, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(OUT) :: c_bicub(r_grid,NDFT,4,4) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, m, n + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +DO i = 1, i_max-1 + DO k = 1, k_max-1 + y(1)=ya(i,k) + y(2)=ya(i+1,k) + y(3)=ya(i+1,k+1) + y(4)=ya(i,k+1) + + y1(1)=y1a(i,k) + y1(2)=y1a(i+1,k) + y1(3)=y1a(i+1,k+1) + y1(4)=y1a(i,k+1) + + y2(1)=y2a(i,k) + y2(2)=y2a(i+1,k) + y2(3)=y2a(i+1,k+1) + y2(4)=y2a(i,k+1) + + y12(1)=y12a(i,k) + y12(2)=y12a(i+1,k) + y12(3)=y12a(i+1,k+1) + y12(4)=y12a(i,k+1) + + x1l=x1a(i) + x1u=x1a(i+1) + x2l=x2a(k) + x2u=x2a(k+1) + + CALL bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) + DO m=1,4 + DO n=1,4 + c_bicub(i,k,m,n)=c(m,n) + END DO + END DO + + END DO +END DO + +END SUBROUTINE bicub_c + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: y(4) + REAL, INTENT(IN) :: y1(4) + REAL, INTENT(IN) :: y2(4) + REAL, INTENT(IN) :: y12(4) + REAL, INTENT(IN) :: d1 + REAL, INTENT(IN) :: d2 + REAL, INTENT(OUT) :: c(4,4) +! +! ---------------------------------------------------------------------- + INTEGER :: i,j,k,l + REAL :: d1d2,xx,cl(16),wt(16,16),x(16) + SAVE wt + DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4,10* & + 0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4, & + 1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0, & + -6,4,2*0,3,-2,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2, & + 10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4, & + -2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0, & + 2,-2,2*0,-1,1/ +! ---------------------------------------------------------------------- + +d1d2 = d1 * d2 +DO i = 1, 4 + x(i) = y(i) + x(i+4) = y1(i)*d1 + x(i+8) = y2(i)*d2 + x(i+12) = y12(i)*d1d2 +END DO +DO i = 1, 16 + xx = 0.0 + DO k = 1, 16 + xx = xx + wt(i,k) * x(k) + END DO + cl(i) = xx +END DO +l = 0 +DO i = 1, 4 + DO j = 1, 4 + l = l + 1 + c(i,j) = cl(l) + END DO +END DO + +END SUBROUTINE bcucof + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE BI_CUB_SPLINE ( rho_rdf, xg, ya, x1a, x2a, y1a, y2a, y12a, & + c_bicub, rdf, dg_drho, dg_dr, i_max, ih, k ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: rho_rdf + REAL, INTENT(IN OUT) :: xg + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(IN) :: c_bicub(r_grid,NDFT,4,4) + REAL, INTENT(OUT) :: rdf + REAL, INTENT(OUT) :: dg_drho + REAL, INTENT(OUT) :: dg_dr + INTEGER, INTENT(IN OUT) :: i_max + !INTEGER, INTENT(IN OUT) :: k_max + INTEGER, INTENT(OUT) :: ih + INTEGER, INTENT(IN) :: k +! +! ---------------------------------------------------------------------- + INTEGER :: m, n + + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +IF ( rho_rdf < x1a(1) ) THEN + dg_drho = 0.0 + dg_dr = 0.0 + rdf = 1.0 + RETURN +END IF +IF ( x1a(ih) <= rho_rdf .AND. rho_rdf < x1a(ih+1) ) GO TO 10 +IF ( ih > 2 ) THEN + IF ( x1a(ih-1) <= rho_rdf .AND. rho_rdf < x1a(ih) ) THEN + ih = ih - 1 + GO TO 10 + END IF +END IF +! write (*,*) 'in ',ih +CALL hunt ( x1a, i_max, rho_rdf, ih ) +! write (*,*) 'out',ih +10 CONTINUE +IF ( x2a(k) /= xg ) THEN +! write (*,*) 'error bi-cubic-spline',k,x2a(k),xg +! DO k=1,NDFT +! write (*,*) k,x2a(k) +! ENDDO +! stop +END IF + + + +y(1) = ya(ih,k) +y(2) = ya(ih+1,k) +y(3) = ya(ih+1,k+1) +y(4) = ya(ih,k+1) + +y1(1) = y1a(ih,k) +y1(2) = y1a(ih+1,k) +y1(3) = y1a(ih+1,k+1) +y1(4) = y1a(ih,k+1) + +y2(1) = y2a(ih,k) +y2(2) = y2a(ih+1,k) +y2(3) = y2a(ih+1,k+1) +y2(4) = y2a(ih,k+1) + +y12(1) = y12a(ih,k) +y12(2) = y12a(ih+1,k) +y12(3) = y12a(ih+1,k+1) +y12(4) = y12a(ih,k+1) + +x1l = x1a(ih) +x1u = x1a(ih+1) +x2l = x2a(k) +x2u = x2a(k+1) + +DO m = 1, 4 + DO n = 1, 4 + c(m,n) = c_bicub( ih, k, m, n ) + END DO +END DO +CALL bcuint ( x1l, x1u, x2l, x2u, rho_rdf, xg, c, rdf, dg_drho, dg_dr ) + +END SUBROUTINE BI_CUB_SPLINE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE hunt +! +! Given an array xx(1:n), and given a value x, returns a value jlo +! such that x is between xx(jlo) and xx(jlo+1). xx(1:n) must be +! monotonic, either increasing or decreasing. jlo=0 or jlo=n is +! returned to indicate that x is out of range. jlo on input is taken +! as the initial guess for jlo on output. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE hunt ( xx, n, x, jlo ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(OUT) :: jlo + REAL, INTENT(IN) :: xx(n) + REAL :: x +! +! ---------------------------------------------------------------------- + INTEGER :: inc,jhi,jm + LOGICAL :: ascnd +! ---------------------------------------------------------------------- + +ascnd = xx(n) >= xx(1) +IF( jlo <= 0 .OR. jlo > n ) THEN + jlo = 0 + jhi = n + 1 + GO TO 3 +END IF +inc = 1 +IF( x >= xx(jlo) .EQV. ascnd ) THEN +1 jhi = jlo + inc + IF ( jhi > n ) THEN + jhi = n + 1 + ELSE IF ( x >= xx(jhi) .EQV. ascnd ) THEN + jlo = jhi + inc = inc + inc + GO TO 1 + END IF +ELSE + jhi = jlo +2 jlo = jhi - inc + IF ( jlo < 1 ) THEN + jlo = 0 + ELSE IF ( x < xx(jlo) .EQV. ascnd ) THEN + jhi = jlo + inc = inc + inc + GO TO 2 + END IF +END IF +3 IF (jhi-jlo == 1 ) THEN + IF ( x == xx(n)) jlo = n - 1 + IF ( x == xx(1) ) jlo = 1 + RETURN +END IF +jm = ( jhi + jlo ) / 2 +IF ( x >= xx(jm) .EQV. ascnd ) THEN + jlo = jm +ELSE + jhi = jm +END IF +GO TO 3 +END SUBROUTINE hunt + + + +!********************************************************************** +! +!********************************************************************** +! + !SUBROUTINE bcuint ( y, y1, y2, y12, x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) + SUBROUTINE bcuint ( x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + !REAL, INTENT(IN OUT) :: y(4) + !REAL, INTENT(IN OUT) :: y1(4) + !REAL, INTENT(IN OUT) :: y2(4) + !REAL, INTENT(IN OUT) :: y12(4) + REAL, INTENT(IN OUT) :: x1l + REAL, INTENT(IN OUT) :: x1u + REAL, INTENT(IN OUT) :: x2l + REAL, INTENT(IN OUT) :: x2u + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: x2 + REAL, INTENT(IN) :: c(4,4) + REAL, INTENT(OUT) :: ansy + REAL, INTENT(OUT) :: ansy1 + REAL, INTENT(OUT) :: ansy2 +! +! ---------------------------------------------------------------------- + !U USES bcucof + INTEGER :: i + REAL :: t, u +! ---------------------------------------------------------------------- + +! call bcucof ( y, y1, y2, y12, x1u-x1l, x2u-x2l, c ) + +IF ( x1u == x1l .OR. x2u == x2l ) PAUSE 'bad input in bcuint' +t = (x1-x1l) / (x1u-x1l) +u = (x2-x2l) / (x2u-x2l) +ansy = 0.0 +ansy2 = 0.0 +ansy1 = 0.0 +DO i = 4, 1, -1 + ansy = t *ansy + ( (c(i,4)*u + c(i,3))*u+c(i,2) )*u + c(i,1) + ansy2 = t *ansy2 + ( 3.*c(i,4)*u+2.*c(i,3) )*u + c(i,2) + ansy1 = u *ansy1 + ( 3.*c(4,i)*t+2.*c(3,i) )*t + c(2,i) +END DO +ansy1 = ansy1 / (x1u-x1l) +ansy2 = ansy2 / (x2u-x2l) + +END SUBROUTINE bcuint + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE spline ( x, y, n, yp1, ypn, y2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: NMAX = 500 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(NMAX) +! ---------------------------------------------------------------------- + + IF ( yp1 > 0.99E30 ) THEN + y2(1) = 0.0 + u(1) = 0.0 + ELSE + y2(1) = -0.5 + u(1) = ( 3.0/(x(2)-x(1)) ) * ( (y(2)-y(1))/(x(2)-x(1))-yp1 ) + END IF + DO i = 2, n-1 + IF ( (x(i+1)-x(i)) == 0.0 .OR. (x(i)-x(i-1)) == 0.0 .OR. (x(i+1)-x(i-1)) == 0.0 ) THEN + write (*,*) 'error in spline-interpolation' + stop + END IF + sig = (x(i)-x(i-1)) / (x(i+1)-x(i-1)) + p = sig*y2(i-1) + 2.0 + y2(i) = (sig-1.0) / p + u(i) = ( 6.0 * ((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1))) / (x(i+1)-x(i-1)) & + - sig * u(i-1) ) / p + END DO + IF ( ypn > 0.99E30 ) THEN + qn = 0.0 + un = 0.0 + ELSE + qn = 0.5 + un = (3.0/(x(n)-x(n-1))) * (ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2(n) = (un-qn*u(n-1)) / (qn*y2(n-1)+1.0) + DO k = n-1, 1, -1 + y2(k) = y2(k) * y2(k+1) + u(k) + END DO + +END SUBROUTINE spline + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE splint_integral ( xa, ya, y2a, n, xlo, xhi, integral ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, INT, x0, x1, y0, y1, y20, y21 +! ---------------------------------------------------------------------- + + integral = 0.0 + klo_l = 1 + khi_l = n +1 IF ( khi_l-klo_l > 1 ) THEN + k = ( khi_l + klo_l ) / 2 + IF ( xa(k) > xlo ) THEN + khi_l = k + ELSE + klo_l = k + END IF + GO TO 1 + END IF + + klo_h = 1 + khi_h = n +2 IF ( khi_h-klo_h > 1 ) THEN + k = ( khi_h + klo_h ) / 2 + IF ( xa(k) > xhi ) THEN + khi_h = k + ELSE + klo_h = k + END IF + GO TO 2 + END IF + + ! integration in spline pieces, the lower interval, bracketed + ! by xa(klo_L) and xa(khi_L) is in steps shifted upward. + + ! first: determine upper integration bound + xl = xlo +3 CONTINUE + IF ( khi_h > khi_l ) THEN + xh = xa(khi_l) + ELSE IF ( khi_h == khi_l ) THEN + xh = xhi + ELSE + WRITE (*,*) 'error in spline-integration' + PAUSE + END IF + + h = xa(khi_l) - xa(klo_l) + IF ( h == 0.0 ) PAUSE 'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0 = ya(klo_l) + y1 = ya(khi_l) + y20= y2a(klo_l) + y21= y2a(khi_l) + ! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & + ! -y20/6.*h*h*(x1-.5*xL) & + ! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xL-x0) ) + ! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & + ! -y20/6.*h*h*(x1-.5*xH) & + ! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xH-x0) ) + INT = -1.0/h * ( xl*((x1-.5*xl)*y0 + (0.5*xl-x0)*y1) & + -y20/24.*(x1-xl)**4 + y20/6.*(0.5*xl*xl-x1*xl)*h*h & + +y21/24.*(xl-x0)**4 - y21/6.*(0.5*xl*xl-x0*xl)*h*h ) + INT = INT + 1.0/h * ( xh*((x1-.5*xh)*y0 + (0.5*xh-x0)*y1) & + -y20/24.*(x1-xh)**4 + y20/6.*(0.5*xh*xh-x1*xh)*h*h & + +y21/24.*(xh-x0)**4 - y21/6.*(0.5*xh*xh-x0*xh)*h*h ) + + integral = integral + INT + ! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h /= (khi_l-1)) GO TO 3 ! the -1 in (khi_L-1) because khi_L was already counted up + +END SUBROUTINE splint_integral + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION praxis( t0, machep, h0, n, prin, x, f, fmin ) + + IMPLICIT NONE + +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: x(n) + REAL :: f + REAL, INTENT(IN OUT) :: fmin +! ---------------------------------------------------------------------- + +EXTERNAL f + +! PRAXIS RETURNS THE MINIMUM OF THE FUNCTION F(X,N) OF N VARIABLES +! USING THE PRINCIPAL AXIS METHOD. THE GRADIENT OF THE FUNCTION IS +! NOT REQUIRED. + +! FOR A DESCRIPTION OF THE ALGORITHM, SEE CHAPTER SEVEN OF +! "ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT +! CALCULATING DERIVATIVES" BY RICHARD P BRENT. + +! THE PARAMETERS ARE: +! T0 IS A TOLERANCE. PRAXIS ATTEMPTS TO RETURN PRAXIS=F(X) +! SUCH THAT IF X0 IS THE TRUE LOCAL MINIMUM NEAR X, THEN +! NORM(X-X0) < T0 + SQUAREROOT(MACHEP)*NORM(X). +! MACHEP IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT +! 1 + MACHEP > 1. MACHEP SHOULD BE 16.**-13 (ABOUT +! 2.22D-16) FOR REAL*8 ARITHMETIC ON THE IBM 360. +! H0 IS THE MAXIMUM STEP SIZE. H0 SHOULD BE SET TO ABOUT THE +! MAXIMUM DISTANCE FROM THE INITIAL GUESS TO THE MINIMUM. +! (IF H0 IS SET TOO LARGE OR TOO SMALL, THE INITIAL RATE OF +! CONVERGENCE MAY BE SLOW.) +! N (AT LEAST TWO) IS THE NUMBER OF VARIABLES UPON WHICH +! THE FUNCTION DEPENDS. +! PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. +! IF PRIN=0, NOTHING IS PRINTED. +! IF PRIN=1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR +! MINIMIZATIONS. FINAL X IS PRINTED, BUT INTERMEDIATE X IS +! PRINTED ONLY IF N IS AT MOST 4. +! IF PRIN=2, THE SCALE FACTORS AND THE PRINCIPAL VALUES OF +! THE APPROXIMATING QUADRATIC FORM ARE ALSO PRINTED. +! IF PRIN=3, X IS ALSO PRINTED AFTER EVERY FEW LINEAR +! MINIMIZATIONS. +! IF PRIN=4, THE PRINCIPAL VECTORS OF THE APPROXIMATING +! QUADRATIC FORM ARE ALSO PRINTED. +! X IS AN ARRAY CONTAINING ON ENTRY A GUESS OF THE POINT OF +! MINIMUM, ON RETURN THE ESTIMATED POINT OF MINIMUM. +! F(X,N) IS THE FUNCTION TO BE MINIMIZED. F SHOULD BE A REAL*8 +! FUNCTION DECLARED EXTERNAL IN THE CALLING PROGRAM. +! FMIN IS AN ESTIMATE OF THE MINIMUM, USED ONLY IN PRINTING +! INTERMEDIATE RESULTS. +! THE APPROXIMATING QUADRATIC FORM IS +! Q(X') = F(X,N) + (1/2) * (X'-X)-TRANSPOSE * A * (X'-X) +! WHERE X IS THE BEST ESTIMATE OF THE MINIMUM AND A IS +! INVERSE(V-TRANSPOSE) * D * INVERSE(V) +! (V(*,*) IS THE MATRIX OF SEARCH DIRECTIONS; D(*) IS THE ARRAY +! OF SECOND DIFFERENCES). IF F HAS CONTINUOUS SECOND DERIVATIVES +! NEAR X0, A WILL TEND TO THE HESSIAN OF F AT X0 AS X APPROACHES X0. + +! IT IS ASSUMED THAT ON FLOATING-POINT UNDERFLOW THE RESULT IS SET +! TO ZERO. +! THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS AFTER +! THE INITIALIZATION OF MACHINE DEPENDENT NUMBERS. + + LOGICAL :: illc + INTEGER :: nl,nf,kl,kt,ktm,idim,i,j,k,k2,km1,klmk,ii,im1 + REAL :: s,sl,dn,dmin,fx,f1,lds,ldt,t,h,sf,df,qf1,qd0, qd1,qa,qb,qc + REAL :: m2,m4,small,vsmall,large,vlarge,scbd,ldfac,t2, dni,value + REAL :: random + +!.....IF N>20 OR IF N<20 AND YOU NEED MORE SPACE, CHANGE '20' TO THE +! LARGEST VALUE OF N IN THE NEXT CARD, IN THE CARD 'IDIM=20', AND +! IN THE DIMENSION STATEMENTS IN SUBROUTINES MINFIT,MIN,FLIN,QUAD. + + REAL :: d(20),y(20),z(20),q0(20),q1(20),v(20,20) + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 + +! --------------------------------- +! introduced by Joachim........ + idim = n +! --------------------------------- + + + +!.....INITIALIZATION..... +! MACHINE DEPENDENT NUMBERS: + +small = machep*machep +vsmall = small*small +large = 1.d0/small +vlarge = 1.d0/vsmall +m2 = SQRT(machep) +m4 = SQRT(m2) + +! HEURISTIC NUMBERS: +! IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF +! POSSIBLE), THEN SET SCBD=10. OTHERWISE SET SCBD=1. +! IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED, SET ILLC=TRUE. +! OTHERWISE SET ILLC=FALSE. +! KTM IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE THE +! ALGORITHM TERMINATES. KTM=4 IS VERY CAUTIOUS; USUALLY KTM=1 +! IS SATISFACTORY. + +scbd = 1.0 +illc = .false. +ktm = 1 + +ldfac = 0.01 +IF (illc) ldfac = 0.1 +kt = 0 +nl = 0 +nf = 1 +fx = f(x,n) +qf1 = fx +t = small+ABS(t0) +t2 = t +dmin = small +h = h0 +IF (h < 100*t) h = 100*t +ldt = h +!.....THE FIRST SET OF SEARCH DIRECTIONS V IS THE IDENTITY MATRIX..... +DO i = 1,n + DO j = 1,n + v(i,j) = 0.0 + END DO + v(i,i) = 1.0 +END DO +d(1) = 0.0 +qd0 = 0.0 +DO i = 1,n + q0(i) = x(i) + q1(i) = x(i) +END DO +IF (prin > 0) CALL PRINT(n,x,prin,fmin) + +!.....THE MAIN LOOP STARTS HERE..... +40 sf=d(1) +d(1)=0.d0 +s=0.d0 + +!.....MINIMIZE ALONG THE FIRST DIRECTION V(*,1). +! FX MUST BE PASSED TO MIN BY VALUE. +value=fx +CALL MIN(n,1,2,d(1),s,value,.false.,f,x,t,machep,h) +IF (s > 0.d0) GO TO 50 +DO i=1,n + v(i,1)=-v(i,1) +END DO +50 IF (sf > 0.9D0*d(1).AND.0.9D0*sf < d(1)) GO TO 70 +DO i=2,n + d(i)=0.d0 +END DO + +!.....THE INNER LOOP STARTS HERE..... +70 DO k=2,n + DO i=1,n + y(i)=x(i) + END DO + sf=fx + IF (kt > 0) illc=.true. + 80 kl=k + df=0.d0 + +!.....A RANDOM STEP FOLLOWS (TO AVOID RESOLUTION VALLEYS). +! PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM NUMBER UNIFORMLY +! DISTRIBUTED IN (0,1). + + IF(.NOT.illc) GO TO 95 + DO i=1,n + s=(0.1D0*ldt+t2*(10**kt))*(random(n)-0.5D0) + z(i)=s + DO j=1,n + x(j)=x(j)+s*v(j,i) + END DO + END DO + fx=f(x,n) + nf=nf+1 + +!.....MINIMIZE ALONG THE "NON-CONJUGATE" DIRECTIONS V(*,K),...,V(*,N) + + 95 DO k2=k,n + sl=fx + s=0.d0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + IF (illc) GO TO 97 + s=sl-fx + GO TO 99 + 97 s=d(k2)*((s+z(k2))**2) + 99 IF (df > s) CYCLE + df=s + kl=k2 + END DO + IF (illc.OR.(df >= ABS((100*machep)*fx))) GO TO 110 + +!.....IF THERE WAS NOT MUCH IMPROVEMENT ON THE FIRST TRY, SET +! ILLC=TRUE AND START THE INNER LOOP AGAIN..... + + illc=.true. + GO TO 80 + 110 IF (k == 2.AND.prin > 1) CALL vcprnt(1,d,n) + +!.....MINIMIZE ALONG THE "CONJUGATE" DIRECTIONS V(*,1),...,V(*,K-1) + + km1=k-1 + DO k2=1,km1 + s=0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + END DO + f1=fx + fx=sf + lds=0 + DO i=1,n + sl=x(i) + x(i)=y(i) + sl=sl-y(i) + y(i)=sl + lds=lds+sl*sl + END DO + lds=SQRT(lds) + IF (lds <= small) GO TO 160 + +!.....DISCARD DIRECTION V(*,KL). +! IF NO RANDOM STEP WAS TAKEN, V(*,KL) IS THE "NON-CONJUGATE" +! DIRECTION ALONG WHICH THE GREATEST IMPROVEMENT WAS MADE..... + + klmk=kl-k + IF (klmk < 1) GO TO 141 + DO ii=1,klmk + i=kl-ii + DO j=1,n + v(j,i+1)=v(j,i) + END DO + d(i+1)=d(i) + END DO + 141 d(k)=0 + DO i=1,n + v(i,k)=y(i)/lds + END DO + +!.....MINIMIZE ALONG THE NEW "CONJUGATE" DIRECTION V(*,K), WHICH IS +! THE NORMALIZED VECTOR: (NEW X) - (0LD X)..... + + value=f1 + CALL MIN(n,k,4,d(k),lds,value,.true.,f,x,t,machep,h) + IF (lds > 0.d0) GO TO 160 + lds=-lds + DO i=1,n + v(i,k)=-v(i,k) + END DO + 160 ldt=ldfac*ldt + IF (ldt < lds) ldt=lds + IF (prin > 0) CALL PRINT(n,x,prin,fmin) + t2=0.d0 + DO i=1,n + t2=t2+x(i)**2 + END DO + t2=m2*SQRT(t2)+t + +!.....SEE WHETHER THE LENGTH OF THE STEP TAKEN SINCE STARTING THE +! INNER LOOP EXCEEDS HALF THE TOLERANCE..... + + IF (ldt > (0.5*t2)) kt=-1 + kt=kt+1 + IF (kt > ktm) GO TO 400 +END DO +!.....THE INNER LOOP ENDS HERE. + +! TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE IN A CURVED VALLEY. + +CALL quad(n,f,x,t,machep,h) +dn=0.d0 +DO i=1,n + d(i)=1.d0/SQRT(d(i)) + IF (dn < d(i)) dn=d(i) +END DO +IF (prin > 3) CALL maprnt(1,v,idim,n) +DO j=1,n + s=d(j)/dn + DO i=1,n + v(i,j)=s*v(i,j) + END DO +END DO + +!.....SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER..... + +IF (scbd <= 1.d0) GO TO 200 +s=vlarge +DO i=1,n + sl=0.d0 + DO j=1,n + sl=sl+v(i,j)*v(i,j) + END DO + z(i)=SQRT(sl) + IF (z(i) < m4) z(i)=m4 + IF (s > z(i)) s=z(i) +END DO +DO i=1,n + sl=s/z(i) + z(i)=1.d0/sl + IF (z(i) <= scbd) GO TO 189 + sl=1.d0/scbd + z(i)=scbd + 189 DO j=1,n + v(i,j)=sl*v(i,j) + END DO +END DO + +!.....CALCULATE A NEW SET OF ORTHOGONAL DIRECTIONS BEFORE REPEATING +! THE MAIN LOOP. +! FIRST TRANSPOSE V FOR MINFIT: + +200 DO i=2,n + im1=i-1 + DO j=1,im1 + s=v(i,j) + v(i,j)=v(j,i) + v(j,i)=s + END DO +END DO + +!.....CALL MINFIT TO FIND THE SINGULAR VALUE DECOMPOSITION OF V. +! THIS GIVES THE PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF THE +! APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE CONDITION +! NUMBER..... + +CALL minfit(idim,n,machep,vsmall,v,d) + +!.....UNSCALE THE AXES..... + +IF (scbd <= 1.d0) GO TO 250 +DO i=1,n + s=z(i) + DO j=1,n + v(i,j)=s*v(i,j) + END DO +END DO +DO i=1,n + s=0.d0 + DO j=1,n + s=s+v(j,i)**2 + END DO + s=SQRT(s) + d(i)=s*d(i) + s=1/s + DO j=1,n + v(j,i)=s*v(j,i) + END DO +END DO + +250 DO i=1,n + dni=dn*d(i) + IF (dni > large) GO TO 265 + IF (dni < small) GO TO 260 + d(i)=1/(dni*dni) + CYCLE + 260 d(i)=vlarge + CYCLE + 265 d(i)=vsmall +END DO + +!.....SORT THE EIGENVALUES AND EIGENVECTORS..... + +CALL sort(idim,n,d,v) +dmin=d(n) +IF (dmin < small) dmin=small +illc=.false. +IF (m2*d(1) > dmin) illc=.true. +IF (prin > 1.AND.scbd > 1.d0) CALL vcprnt(2,z,n) +IF (prin > 1) CALL vcprnt(3,d,n) +IF (prin > 3) CALL maprnt(2,v,idim,n) +!.....THE MAIN LOOP ENDS HERE..... + +GO TO 40 + +!.....RETURN..... + +400 IF (prin > 0) CALL vcprnt(4,x,n) +praxis=fx + +END FUNCTION praxis + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE minfit(m,n,machep,tol,ab,q) + + IMPLICIT NONE + + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: machep + REAL, INTENT(IN OUT) :: tol + REAL, INTENT(IN OUT) :: ab(m,n) + REAL, INTENT(OUT) :: q(n) + INTEGER :: i,j,k,l, kk,kt,l2,ll2,ii,lp1 +! IMPLICIT REAL (A-H,O-Z) + + +REAL :: x,eps,e(20),g,s, f,h,y,c,z,temp +!...AN IMPROVED VERSION OF MINFIT (SEE GOLUB AND REINSCH, 1969) +! RESTRICTED TO M=N,P=0. +! THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q AND AB IS +! OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT U.DIAG(Q) = AB.V, +! WHERE U IS ANOTHER ORTHOGONAL MATRIX. + +!...HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... +IF (n == 1) GO TO 200 +eps = machep +g = 0.d0 +x = 0.d0 +DO i=1,n + e(i) = g + s = 0.d0 + l = i + 1 + DO j=i,n + s = s + ab(j,i)**2 + END DO + g = 0.d0 + IF (s < tol) GO TO 4 + f = ab(i,i) + g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + ab(i,i)=f-g + IF (l > n) GO TO 4 + DO j=l,n + f = 0.d0 + DO k=i,n + f = f + ab(k,i)*ab(k,j) + END DO + f = f/h + DO k=i,n + ab(k,j) = ab(k,j) + f*ab(k,i) + END DO + END DO + 4 q(i) = g + s = 0.d0 + IF (i == n) GO TO 6 + DO j=l,n + s = s + ab(i,j)*ab(i,j) + END DO + 6 g = 0.d0 + IF (s < tol) GO TO 10 + IF (i == n) GO TO 16 + f = ab(i,i+1) + 16 g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + IF (i == n) GO TO 10 + ab(i,i+1) = f - g + DO j=l,n + e(j) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(j,k)*ab(i,k) + END DO + DO k=l,n + ab(j,k) = ab(j,k) + s*e(k) + END DO + END DO + 10 y = ABS(q(i)) + ABS(e(i)) + IF (y > x) x = y +END DO +!...ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... +ab(n,n) = 1.d0 +g = e(n) +l = n +DO ii=2,n + i = n - ii + 1 + IF (g == 0.d0) GO TO 23 + h = ab(i,i+1)*g + DO j=l,n + ab(j,i) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(i,k)*ab(k,j) + END DO + DO k=l,n + ab(k,j) = ab(k,j) + s*ab(k,i) + END DO + END DO + 23 DO j=l,n + ab(i,j) = 0.d0 + ab(j,i) = 0.d0 + END DO + ab(i,i) = 1.d0 + g = e(i) + l = i +END DO +!...DIAGONALIZATION OF THE BIDIAGONAL FORM... +eps = eps*x +DO kk=1,n + k = n - kk + 1 + kt = 0 + 101 kt = kt + 1 + IF (kt <= 30) GO TO 102 + e(k) = 0.d0 + WRITE (6,1000) + 1000 FORMAT (' QR FAILED') + 102 DO ll2=1,k + l2 = k - ll2 + 1 + l = l2 + IF (ABS(e(l)) <= eps) GO TO 120 + IF (l == 1) CYCLE + IF (ABS(q(l-1)) <= eps) EXIT + END DO +!...CANCELLATION OF E(L) IF L>1... + c = 0.d0 + s = 1.d0 + DO i=l,k + f = s*e(i) + e(i) = c*e(i) + IF (ABS(f) <= eps) GO TO 120 + g = q(i) +!...Q(I) = H = SQRT(G*G + F*F)... + IF (ABS(f) < ABS(g)) GO TO 113 + IF (f == 0.0) THEN + GO TO 111 + ELSE + GO TO 112 + END IF + 111 h = 0.d0 + GO TO 114 + 112 h = ABS(f)*SQRT(1 + (g/f)**2) + GO TO 114 + 113 h = ABS(g)*SQRT(1 + (f/g)**2) + 114 q(i) = h + IF (h /= 0.d0) GO TO 115 + g = 1.d0 + h = 1.d0 + 115 c = g/h + s = -f/h + END DO +!...TEST FOR CONVERGENCE... + 120 z = q(k) + IF (l == k) GO TO 140 +!...SHIFT FROM BOTTOM 2*2 MINOR... + x = q(l) + y = q(k-1) + g = e(k-1) + h = e(k) + f = ((y - z)*(y + z) + (g - h)*(g + h))/(2*h*y) + g = SQRT(f*f + 1.0D0) + temp = f - g + IF (f >= 0.d0) temp = f + g + f = ((x - z)*(x + z) + h*(y/temp - h))/x +!...NEXT QR TRANSFORMATION... + c = 1.d0 + s = 1.d0 + lp1 = l + 1 + IF (lp1 > k) GO TO 133 + DO i=lp1,k + g = e(i) + y = q(i) + h = s*g + g = g*c + IF (ABS(f) < ABS(h)) GO TO 123 + IF (f == 0.0) THEN + GO TO 121 + ELSE + GO TO 122 + END IF + 121 z = 0.d0 + GO TO 124 + 122 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 124 + 123 z = ABS(h)*SQRT(1 + (f/h)**2) + 124 e(i-1) = z + IF (z /= 0.d0) GO TO 125 + f = 1.d0 + z = 1.d0 + 125 c = f/z + s = h/z + f = x*c + g*s + g = -x*s + g*c + h = y*s + y = y*c + DO j=1,n + x = ab(j,i-1) + z = ab(j,i) + ab(j,i-1) = x*c + z*s + ab(j,i) = -x*s + z*c + END DO + IF (ABS(f) < ABS(h)) GO TO 129 + IF (f == 0.0) THEN + GO TO 127 + ELSE + GO TO 128 + END IF + 127 z = 0.d0 + GO TO 130 + 128 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 130 + 129 z = ABS(h)*SQRT(1 + (f/h)**2) + 130 q(i-1) = z + IF (z /= 0.d0) GO TO 131 + f = 1.d0 + z = 1.d0 + 131 c = f/z + s = h/z + f = c*g + s*y + x = -s*g + c*y + END DO + 133 e(l) = 0.d0 + e(k) = f + q(k) = x + GO TO 101 +!...CONVERGENCE: Q(K) IS MADE NON-NEGATIVE... + 140 IF (z >= 0.d0) CYCLE + q(k) = -z + DO j=1,n + ab(j,k) = -ab(j,k) + END DO +END DO +RETURN +200 q(1) = ab(1,1) +ab(1,1) = 1.d0 + +END SUBROUTINE minfit + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE MIN(n,j,nits,d2,x1,f1,fk,f,x,t,machep,h) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER :: j + INTEGER :: nits + REAL, INTENT(IN OUT) :: d2 + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: f1 + LOGICAL :: fk + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN) :: t + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h + + INTEGER :: i,k + EXTERNAL f + + + REAL :: flin ! function + REAL :: small,sf1,sx1,s,temp, xm,x2,f2,d1 + REAL :: fm,f0,t2 +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +!...THE SUBROUTINE MIN MINIMIZES F FROM X IN THE DIRECTION V(*,J) UNLESS +! J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS MADE IN THE PLANE +! DEFINED BY Q0,Q1,X. +! D2 IS EITHER ZERO OR AN APPROXIMATION TO HALF F". +! ON ENTRY, X1 IS AN ESTIMATE OF THE DISTANCE FROM X TO THE MINIMUM +! ALONG V(*,J) (OR, IF J=0, A CURVE). ON RETURN, X1 IS THE DISTANCE +! FOUND. +! IF FK=.TRUE., THEN F1 IS FLIN(X1). OTHERWISE X1 AND F1 ARE IGNORED +! ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. +! NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT WILL BE MADE TO HALVE +! THE INTERVAL. + LOGICAL :: dz + REAL :: m2,m4 + +small = machep**2 +m2 = SQRT(machep) +m4 = SQRT(m2) +sf1 = f1 +sx1 = x1 +k = 0 +xm = 0.d0 +fm = fx +f0 = fx +dz = d2 < machep +!...FIND THE STEP SIZE... +s = 0.d0 +DO i=1,n + s = s + x(i)**2 +END DO +s = SQRT(s) +temp = d2 +IF (dz) temp = dmin +t2 = m4*SQRT(ABS(fx)/temp + s*ldt) + m2*ldt +s = m4*s + t +IF (dz.AND.t2 > s) t2 = s +t2 = DMAX1(t2,small) +t2 = DMIN1(t2,.01D0*h) +IF (.NOT.fk.OR.f1 > fm) GO TO 2 +xm = x1 +fm = f1 +2 IF (fk.AND.ABS(x1) >= t2) GO TO 3 +temp=1.d0 +IF (x1 < 0.d0) temp=-1.d0 +x1=temp*t2 +f1 = flin(n,j,x1,f,x,nf) +3 IF (f1 > fm) GO TO 4 +xm = x1 +fm = f1 +4 IF (.NOT.dz) GO TO 6 +!...EVALUATE FLIN AT ANOTHER POINT AND ESTIMATE THE SECOND DERIVATIVE... +x2 = -x1 +IF (f0 >= f1) x2 = 2.d0*x1 +f2 = flin(n,j,x2,f,x,nf) +IF (f2 > fm) GO TO 5 +xm = x2 +fm = f2 +5 d2 = (x2*(f1 - f0)-x1*(f2 - f0))/((x1*x2)*(x1 - x2)) +!...ESTIMATE THE FIRST DERIVATIVE AT 0... +6 d1 = (f1 - f0)/x1 - x1*d2 +dz = .true. +!...PREDICT THE MINIMUM... +IF (d2 > small) GO TO 7 +x2 = h +IF (d1 >= 0.d0) x2 = -x2 +GO TO 8 +7 x2 = (-.5D0*d1)/d2 +8 IF (ABS(x2) <= h) GO TO 11 +IF (x2 > 0.0) THEN + GO TO 10 +END IF +x2 = -h +GO TO 11 +10 x2 = h +!...EVALUATE F AT THE PREDICTED MINIMUM... +11 f2 = flin(n,j,x2,f,x,nf) +IF (k >= nits.OR.f2 <= f0) GO TO 12 +!...NO SUCCESS, SO TRY AGAIN... +k = k + 1 +IF (f0 < f1.AND.(x1*x2) > 0.d0) GO TO 4 +x2 = 0.5D0*x2 +GO TO 11 +!...INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER... +12 nl = nl + 1 +IF (f2 <= fm) GO TO 13 +x2 = xm +GO TO 14 +13 fm = f2 +!...GET A NEW ESTIMATE OF THE SECOND DERIVATIVE... +14 IF (ABS(x2*(x2 - x1)) <= small) GO TO 15 +d2 = (x2*(f1-f0) - x1*(fm-f0))/((x1*x2)*(x1 - x2)) +GO TO 16 +15 IF (k > 0) d2 = 0.d0 +16 IF (d2 <= small) d2 = small +x1 = x2 +fx = fm +IF (sf1 >= fx) GO TO 17 +fx = sf1 +x1 = sx1 +!...UPDATE X FOR LINEAR BUT NOT PARABOLIC SEARCH... +17 IF (j == 0) RETURN +DO i=1,n + x(i) = x(i) + x1*v(i,j) +END DO + +END SUBROUTINE MIN + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vcprnt(option,v,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(n) + INTEGER :: n + + INTEGER :: i + +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 + CASE ( 3) + GO TO 3 + CASE ( 4) + GO TO 4 +END SELECT + +1 WRITE (6,101) (v(i),i=1,n) +RETURN +2 WRITE (6,102) (v(i),i=1,n) +RETURN +3 WRITE (6,103) (v(i),i=1,n) +RETURN +4 WRITE (6,104) (v(i),i=1,n) +RETURN +101 FORMAT (/' THE SECOND DIFFERENCE ARRAY D(*) IS:'/ (e32.14,4E25.14)) +102 FORMAT (/' THE SCALE FACTORS ARE:'/(e32.14,4E25.14)) +103 FORMAT (/' THE APPROXIMATING QUADR. FORM HAS PRINCIPAL VALUES:'/ & + (e32.14,4E25.14)) +104 FORMAT (/' X IS:',e26.14/(e32.14)) +END SUBROUTINE vcprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRINT(n,x,prin,fmin) + + IMPLICIT NONE + INTEGER :: n + REAL, INTENT(IN OUT) :: x(n) + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: fmin + + INTEGER :: i + REAL :: ln +!---------------------------------------------- +INTEGER :: nf,nl +REAL :: fx,ldt,dmin +COMMON /global/ fx,ldt,dmin,nf,nl +!---------------------------------------------- +WRITE (6,101) nl,nf,fx + +IF (fx <= fmin) GO TO 1 +ln = LOG10(fx-fmin) +WRITE (6,102) fmin,ln +GO TO 2 +1 WRITE (6,103) fmin +2 IF (n > 4.AND.prin <= 2) RETURN +WRITE (6,104) (x(i),i=1,n) +RETURN +101 FORMAT (/' AFTER',i6, & + ' LINEAR SEARCHES, THE FUNCTION HAS BEEN EVALUATED',i6, & + ' TIMES. THE SMALLEST VALUE FOUND IS F(X) = ',e21.14) +102 FORMAT (' LOG (F(X)-',e21.14,') = ',e21.14) +103 FORMAT (' LOG (F(X)-',e21.14,') IS UNDEFINED.') +104 FORMAT (' X IS:',e26.14/(e32.14)) +END SUBROUTINE PRINT + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE maprnt(option,v,m,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(m,n) + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + INTEGER :: i,j + + INTEGER :: low,upp +!...THE SUBROUTINE MAPRNT PRINTS THE COLUMNS OF THE NXN MATRIX V +! WITH A HEADING AS SPECIFIED BY OPTION. +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM... +low = 1 +upp = 5 +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 +END SELECT +1 WRITE (6,101) +101 FORMAT (/' THE NEW DIRECTIONS ARE:') +GO TO 3 +2 WRITE (6,102) +102 FORMAT (' AND THE PRINCIPAL AXES:') +3 IF (n < upp) upp = n +DO i=1,n + WRITE (6,104) (v(i,j),j=low,upp) +END DO +low = low + 5 +IF (n < low) RETURN +upp = upp + 5 +WRITE (6,103) +GO TO 3 +103 FORMAT (' ') +104 FORMAT (e32.14,4E25.14) +END SUBROUTINE maprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION random(naught) + + IMPLICIT NONE + INTEGER, INTENT(IN OUT) :: naught + + REAL :: ran1,ran3(127),half + INTEGER :: i,j,ran2,q,r + LOGICAL :: init + DATA init/.false./ + SAVE init,ran2,ran1,ran3 + +IF (init) GO TO 3 +r = MOD(naught,8190) + 1 +ran2 = 128 +DO i=1,127 + ran2 = ran2 - 1 + ran1 = -2.d0**55 + DO j=1,7 + r = MOD(1756*r,8191) + q = r/32 + ran1 = (ran1 + q)*(1.0D0/256) + END DO + ran3(ran2) = ran1 +END DO +init = .true. +3 IF (ran2 == 1) ran2 = 128 +ran2 = ran2 - 1 +ran1 = ran1 + ran3(ran2) +half = .5D0 +IF (ran1 >= 0.d0) half = -half +ran1 = ran1 + half +ran3(ran2) = ran1 +random = ran1 + .5D0 + +END FUNCTION random + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION flin (n,j,l,f,x,nf) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN OUT) :: j + REAL, INTENT(IN) :: l + REAL :: f + REAL, INTENT(IN) :: x(n) + INTEGER, INTENT(OUT) :: nf + + INTEGER :: i + REAL :: t(20) + + EXTERNAL f + +!...FLIN IS THE FUNCTION OF ONE REAL VARIABLE L THAT IS MINIMIZED +! BY THE SUBROUTINE MIN... +!---------------------------------------------- + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +IF (j == 0) GO TO 2 +!...THE SEARCH IS LINEAR... +DO i=1,n + t(i) = x(i) + l*v(i,j) +END DO +GO TO 4 +!...THE SEARCH IS ALONG A PARABOLIC SPACE CURVE... +2 qa = (l*(l - qd1))/(qd0*(qd0 + qd1)) +qb = ((l + qd0)*(qd1 - l))/(qd0*qd1) +qc = (l*(l + qd0))/(qd1*(qd0 + qd1)) +DO i=1,n + t(i) = (qa*q0(i) + qb*x(i)) + qc*q1(i) +END DO +!...THE FUNCTION EVALUATION COUNTER NF IS INCREMENTED... +4 nf = nf + 1 +flin = f(t,n) + +END FUNCTION flin + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE sort(m,n,d,v) + IMPLICIT NONE +! + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: d(n) + REAL, INTENT(IN OUT) :: v(m,n) + + INTEGER :: i,j,k,nm1,ip1 + REAL :: s +!...SORTS THE ELEMENTS OF D(N) INTO DESCENDING ORDER AND MOVES THE +! CORRESPONDING COLUMNS OF V(N,N). +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM. +IF (n == 1) RETURN +nm1 = n - 1 +DO i = 1,nm1 + k=i + s = d(i) + ip1 = i + 1 + DO j = ip1,n + IF (d(j) <= s) CYCLE + k = j + s = d(j) + END DO + IF (k <= i) CYCLE + d(k) = d(i) + d(i) = s + DO j = 1,n + s = v(j,i) + v(j,i) = v(j,k) + v(j,k) = s + END DO +END DO +END SUBROUTINE sort + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE quad(n,f,x,t,machep,h) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN OUT) :: t + REAL :: machep + REAL, INTENT(IN OUT) :: h +! IMPLICIT REAL (A-H,O-Z) + EXTERNAL f + +!...QUAD LOOKS FOR THE MINIMUM OF F ALONG A CURVE DEFINED BY Q0,Q1,X... + INTEGER :: i + REAL :: l + REAL :: s,value +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + +REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 +COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +s = fx +fx = qf1 +qf1 = s +qd1 = 0.d0 +DO i=1,n + s = x(i) + l = q1(i) + x(i) = l + q1(i) = s + qd1 = qd1 + (s-l)**2 +END DO +qd1 = SQRT(qd1) +l = qd1 +s = 0.d0 +IF (qd0 <= 0.d0 .OR. qd1 <= 0.d0 .OR. nl < 3*n*n) GO TO 2 +value=qf1 +CALL MIN(n,0,2,s,l,value,.true.,f,x,t,machep,h) +qa = (l*(l-qd1))/(qd0*(qd0+qd1)) +qb = ((l+qd0)*(qd1-l))/(qd0*qd1) +qc = (l*(l+qd0))/(qd1*(qd0+qd1)) +GO TO 3 +2 fx = qf1 +qa = 0.d0 +qb = qa +qc = 1.d0 +3 qd0 = qd1 +DO i=1,n + s = q0(i) + q0(i) = x(i) + x(i) = (qa*s + qb*x(i)) + qc*q1(i) +END DO +END SUBROUTINE quad + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/VLE_main.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/VLE_main.f90 new file mode 100644 index 000000000..207513d51 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/VLE_main.f90 @@ -0,0 +1,105 @@ +!> This file contains the subroutine which starts the phase equilibrium calculation. +!! It also prints the calculated density to the outputfile "out.txt". + +SUBROUTINE VLE_MIX(rhob,density,chemPot_total,compID) + + USE parameters, ONLY: PI, RGAS, KBOL + USE basic_variables + USE EOS_VARIABLES, ONLY: fres, eta, eta_start, dhs, mseg, uij, sig_ij, rho, x, z3t + USE DFT_MODULE + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE + + + +!> --------------------------------------------------------------------- +!! Variables +!! --------------------------------------------------------------------- + + !passed + REAL :: chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + INTEGER :: compID + + !local + REAL, DIMENSION(nc) :: dhs_star + REAL :: w(np,nc), lnphi(np,nc) + INTEGER :: converg + CHARACTER(LEN=4) :: char_ncomp + REAL :: Henry + INTEGER :: i + CHARACTER (LEN=50) :: filename + + +!> --------------------------------------------------------------------- +!! prepare for phase equilibrium calculation for given T +!! --------------------------------------------------------------------- + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12*EXP( -3.0*parame(1:ncomp,3)/t ) ) ! needed for rdf_matrix + dhs_star(1:ncomp) = dhs(1:ncomp)/parame(1:ncomp,2) + + nphas = 2 ! number of phases + outp = 0 ! output to terminal + + CALL START_VAR (converg) + + IF ( converg /= 1 ) THEN + WRITE (*,*) 'no VLE found' + RETURN + END IF + + ! rhob(phase,0): molecular density + rhob(1,0) = dense(1) / ( PI/6.0* SUM( xi(1,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + rhob(2,0) = dense(2) / ( PI/6.0* SUM( xi(2,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + ! rhob(phase,i): molecular component density (with i=(1,...ncomp) ) in units (1/A^3) + rhob(1,1:ncomp) = rhob(1,0)*xi(1,1:ncomp) + rhob(2,1:ncomp) = rhob(2,0)*xi(2,1:ncomp) + + ! get density in SI-units (kg/m**3) + CALL SI_DENS ( density, w ) + + ! calculate residual chemical potentials + ensemble_flag = 'tv' ! this flag is for: mu_res=mu_res(T,rho) + densta(1) = dense(1) ! Index 1 is for liquid density (here: packing fraction eta) + densta(2) = dense(2) ! Index 2 is for vapour density (here: packing fraction eta) + CALL fugacity (lnphi) ! calculate fugacities + + +!> --------------------------------------------------------------------- +!! Output results of phase equilibrim calculation +!! --------------------------------------------------------------------- + + WRITE(*,*) '--------------------------------------------------' + WRITE(*,*)'RESULT OF PHASE EQUILIBRIUM CALCULATION' + WRITE (char_ncomp,'(I3)') ncomp + WRITE (*,*) 'T = ',t, 'K, and p =', p/1.E5,' bar' + WRITE(*,*)' ' + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,*)' ' + !!WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I density', (rhob(1,i),i=1,ncomp) + !! WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II density', (rhob(2,i),i=1,ncomp) + !!WRITE(*,*)' ' + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I chemPot', (lnphi(1,i) + LOG(rhob(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II chemPot', (lnphi(2,i) + LOG(rhob(2,i)),i=1,ncomp) + WRITE(*,*)' ' + !!WRITE(*,*)'Phase densities ' + WRITE(*,'(2x,a,2(g13.6,1x))') 'SI-DENSITY [kg/m3] ', density(1),density(2) + !!WRITE(*,'(2x,a,2(g13.6,1x))') 'NUMBER-DENSITY ', rhob(1,0),rhob(2,0) + WRITE(*,*) + + !Calculate Solubility + !output: Henrys law: xi*H(T) = yi * p -> H = yip/xi + Henry = EXP(lnx(2,1))*p /EXP(lnx(1,1)) + + !>write solubility to outputfile "out.txt" + filename='./out.txt' + CALL file_open(filename,78) + write(78,*) Henry / 100000.0 + write(*,*)'Henry coefficient (bar):',Henry / 100000.0 + ! write(*,*)'g_CO2 / g_PU', exp(lnx(1,2)) * mm(2) / (exp(lnx(1,1)) * mm(1)) + +END SUBROUTINE VLE_MIX diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/VLE_subroutines.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/VLE_subroutines.f90 new file mode 100644 index 000000000..a35f0130b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/VLE_subroutines.f90 @@ -0,0 +1,7161 @@ +!> This file contains the subroutines which perform and control the +!! phase equilibrium calculation. + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE start_var +!! +!! This subroutine generates a converged solution for binary systems +!! or performes a flash calculation for mixtues. This routine is a +!! fairly weak point of the program. +!! +!! IF a polymer is considered, starting values for mole fractions +!! are determined from the SUBROUTINGE POLY_STA_VAR (see below). The +!! polymer needs to be placed as component 1 (first line) in INPUT +!! file. +!! +!! A phase equilib. iteration is started at the end of this routine. +!! If no solution is found (converg=0), the program will stop within +!! this routine. +!! +!! Currently, this routine assumes two-phase equilibrium and derives +!! starting values (xi,density) only for two phases. +!! +!! Prerequisites are: +!! SUBROUTINE INPUT needs to be called prior to this routine, because +!! all pure comp. parameters as well as (T,P,kij) need to be in place. +!! Also, the variable to be iterated "it(i)" and the variables to be +!! calculated through the summation relation "sum_rel(i)" have to be +!! defined. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + SUBROUTINE start_var(converg) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: ph, i, k + INTEGER :: ncompsav, n_unkwsav, ph_split + LOGICAL :: lle_check, flashcase, renormalize + REAL :: den1, den2, x_1, x_2 + CHARACTER (LEN=50) :: filename +! ---------------------------------------------------------------------- + +converg = 0 + +! CALL RACHFORD_RICE (converg) +! CALL Heidemann_Khalil + +! ---------------------------------------------------------------------- +! This first condition (eos >= 4) is for LJ models, not for PC-SAFT +! ---------------------------------------------------------------------- + +IF (eos >= 4) THEN + + ncomp = 2 ! set number of components to 2 + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + filename = 'LJ_START_VAL.INC' + CALL file_open(filename,84) + READ (84,*) den1,den2 + READ (84,*) x_1,x_2 + CLOSE (84) + + xi(1,1) = x_1 + xi(2,1) = x_2 + xi(1,2) = 1.0 - xi(1,1) + xi(2,2) = 1.0 - xi(2,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,2) = LOG(xi(2,2)) + + val_init(1) = den1 + val_init(2) = den2 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = LOG(xi(ph,k)) + END DO + END DO + + CALL objective_ctrl (converg) + IF (converg == 1) WRITE (*,*) t, p/1.0E5, xi(1,1), xi(2,1) + IF (converg == 0) WRITE (*,*) ' weak starting values' + + +! ---------------------------------------------------------------------- +! ELSE: PC-SAFT equation of state +! ---------------------------------------------------------------------- + +ELSE + + renormalize = .false. ! for renormalization group theory (RGT) + IF (num == 2) renormalize = .true. + IF (num == 2) num = 0 ! if RGT: initial phase equilibr. is for non-renormalized model + + flashcase = .false. ! .true. when a specific feed conc. xif is given + IF (xif(1) /= 0.0) flashcase = .true. + + lle_check = .true. + +! ---------------------------------------------------------------------- +! IF: non-polymeric system +! ---------------------------------------------------------------------- + IF (mm(1) < 1.0E8) THEN + + DO i=1,ncomp ! setting mole-fractions for the case that + ! anything goes wrong in the coming routines + xi(1,i) = 1.0 / REAL(ncomp) + xi(2,i) = 1.0 / REAL(ncomp) + END DO + + + ! ------------------------------------------------------------------ + ! determine an initial conc. (phase 1) that will phase split + ! ------------------------------------------------------------------ + IF( ncomp == 2 .AND. .NOT.flashcase ) THEN + CALL vle_min( lle_check ) + WRITE(*,*)' INITIAL FEED-COMPOSITION',(xi(1,i), i=1,ncomp),converg + END IF + + ! ------------------------------------------------------------------ + ! perform a phase stability test + ! ------------------------------------------------------------------ + ph_split = 0 + CALL phase_stability ( .false., flashcase, ph_split ) + write (*,*) 'stability analysis I indicates phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! determine species i, for which x(i) is calc from summation relation + ! ------------------------------------------------------------------ + CALL select_sum_rel (1,0,1) ! synthax (m,n,o): phase m + ! exclude comp. n + ! assign it(o) and higher + CALL select_sum_rel (2,0,2) ! for ncomp>=3, the quantities + ! to be iterated will be overwritten + + ! ------------------------------------------------------------------ + ! if 2 phases (VLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + ! --- perform tangent plane minimization ------------------------ + CALL tangent_plane + ph_split = 0 + + ! --- determine, for which substance summation relation is used -- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe a VLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! test for LLE + ! ------------------------------------------------------------------ + ph_split = 0 + + IF (lle_check) CALL phase_stability (lle_check,flashcase,ph_split) + IF (lle_check) write (*,*) 'stability analysis II, phase-split is:',ph_split + + + ! ------------------------------------------------------------------ + ! if two phases (LLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + write (*,*) ' LLE-stability test indicates 2 phases (VLE or LLE)' + + ! --- perform tangent plane minimization ------------------------ + IF (flashcase) CALL select_sum_rel (1,0,1) + IF (flashcase) CALL select_sum_rel (2,0,2) + + CALL tangent_plane + + ! --- determine, for which substance summation relation ---------- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + val_conv(2) = 0.0 + CALL objective_ctrl (converg) + IF (converg == 1 ) write (*,*) ' converged (maybe an LLE)',dense(1),dense(2) + + END IF + + ! ------------------------------------------------------------------ + ! equilibr. calc. converged: set initial var. for further calc. + ! ------------------------------------------------------------------ + IF (converg == 1) THEN + val_init = val_conv + DO ph = 1,nphas + DO i = 1,ncomp + xi(ph,i) = EXP( val_conv(4+i+(ph-1)*ncomp) ) + END DO + END DO + dense(1:2) = val_conv(1:2) + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + + ! --------------------------------------------------------------------- + ! ELSE: for systems with polymers + ! --------------------------------------------------------------------- + + ELSE + + ncompsav = ncomp + ncomp = 2 ! set number of components to 2 + n_unkwsav = n_unkw + + CALL poly_sta_var(converg) + + IF (converg == 1) THEN + val_init = val_conv + ELSE + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + STOP + END IF + + ncomp = ncompsav + n_unkw = n_unkwsav ! number of quantities to be iterated + + END IF + +! --- for RGT: set flag back to num=2 indicating an RGT calculation ---- + IF (renormalize) num = 2 + +END IF + +END SUBROUTINE start_var + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE objective_ctrl +!! +!! This subroutine controls the iso-fugacity iteration. It uses +!! the variables defined in the array "val_init". If successfull, +!! the converged values are written to "val_conv", and the flag +!! converg is set to 1. +!! See also above desciption for subroutine PHASE_EQUILIB +!! This routine calls SUBROUTINE HYBRID, which is a solver (modified +!! POWELL HYBRID METHOD). HYBRID is freely available for non-commercial +!! applications. HYBRID requires three definitions: +!! 1.the number of equations to be solved (=No. of variables to be +!! iterated). The appropriate parameter is: "n_unkw" +!! 2.the equations to be iterated, they are here gathered in the SUB- +!! ROUTINE OBJEC_FCT (see below). Since HYBRID is a root finder, +!! these objective functions are iterated to be zero (essentially, +!! OBJEC_FCT contains the iso-fugacity relation. +!! 3.an array of variables is required, containing the quatities to be +!! iterated. This array is termed "y(i)" +!! +!! INPUT VARIABLES: +!! val_init(i) array containing (densities,T,P,lnx's) serving as +!! starting values for the phase equilibrium calculation +!! it(i) contains the information, which variable is deter- +!! mined iteratively. For syntax refer e.g.to SUB BINMIX. +!! sum_rel(i) indicates, which mole fraction is determined from the +!! summation relation sum(xi)=1 +!! +!! OUTPUT VARIABLES: +!! val_conv(i) array containing the converged system variables +!! analogous to "val_init" +!! converg 0 if no convergence achieved, 1 if converged solution +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE objective_ctrl (converg) +! + USE BASIC_VARIABLES + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE objec_fct + END INTERFACE +! + INTEGER :: info,k,posn,i + INTEGER, PARAMETER :: mxr = nc*(nc+1)/2 + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + REAL :: x_init, x_solut, r_diff1, r_diff2, totres + REAL :: r_thrash, x_thrash + CHARACTER (LEN=2) :: compon + LOGICAL :: convergence +! ---------------------------------------------------------------------- + +info=1 + +ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + +IF (num == 0) acc_a = 1.E-7 +IF (num == 0) step_a = 2.E-8 +IF (num == 1) acc_a = 1.E-7 +IF (num == 1) step_a = 2.E-8 +IF (num == 2) acc_a = 5.E-7 +IF (num == 2) step_a = 1.E-7 + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') y(posn) = val_init(3) + IF (it(i) == 'p') y(posn) = val_init(4) + IF (it(i) == 'lnp') y(posn) = LOG( val_init(4) ) + IF (it(i) == 'fls') y(posn) = alpha + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') y(posn) = val_init(4+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') y(posn) = val_init(4+ncomp+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') y(posn) = val_init(4+ncomp+ncomp+k) +END DO + +CALL init_vars + +x_init = 0.0 +DO i = 1,ncomp + IF (lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0) THEN + x_init = x_init + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + x_init = x_init + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO + +CALL hbrd (objec_fct, n_unkw, y, residu, step_a, acc_a, info, diag) + +x_solut = 0.0 +DO i = 1,ncomp + IF ( lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0 ) THEN + x_solut = x_solut + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + IF (lnx(1,i) < 1E300 .AND. lnx(1,i) > -1.E300 ) & + x_solut = x_solut + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO +r_diff1 = ABS( 1.0 - dense(1)/dense(2) ) +IF ( val_conv(2) > 0.0 ) THEN + r_diff2 = ABS( 1.0 - val_conv(1)/val_conv(2) ) +ELSE + r_diff2 = 0.0 +END IF + +totres = SUM( ABS( residu(1:n_unkw) ) ) + +r_thrash = 0.0005 +x_thrash = 0.0005 +if (num > 0 ) r_thrash = r_thrash * 10.0 +if (num > 0 ) x_thrash = x_thrash * 100.0 + +convergence = .true. + +IF ( info >= 2 ) convergence = .false. +IF ( ABS( 1.0- dense(1)/dense(2) ) < r_thrash .AND. x_solut < x_thrash ) THEN + IF ( x_init > 0.050 ) convergence = .false. + IF ( ( ABS( 1.0- dense(1)/dense(2) ) + x_solut ) < 1.E-7 ) convergence = .false. +ENDIF +IF ( r_diff2 /= 0.0 .AND. r_diff2 > (4.0*r_diff1) .AND. bindiag == 1 ) convergence = .false. +IF ( ncomp == 1 .AND. totres > 100.0*acc_a ) convergence = .false. +IF ( totres > 1000.0*acc_a ) convergence = .false. +IF ( ncomp == 1 .AND. r_diff1 < 1.d-5 ) convergence = .false. + +IF ( convergence ) THEN + converg = 1 + ! write (*,*) residu(1),residu(2) + CALL converged + IF (num <= 1) CALL enthalpy_etc +ELSE + converg = 0 +END IF + +DEALLOCATE( y, diag, residu ) + +END SUBROUTINE objective_ctrl + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE objec_fct +!! +!! This subroutine contains the equations to be solved numerically +!! (iso-fugacity: fi'-fi''=0) as well as other dependent equations, +!! which can be solved analytically, namely the summation relation +!! xi=1-sum(xj) or the condition of equal charge for electrolyte +!! solutions. +!! This subroutine is required and controlled by the solver HBRD ! +!! HBRD varies the variables "y(i)" and eveluates the result of +!! these changes from this routine. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: density_error + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph,k,posn, skip,phase + REAL :: lnphi(np,nc),isofugacity + CHARACTER (LEN=2) :: compon +! ---------------------------------------------------------------------- + + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') t = y(posn) + IF (it(i) == 'p') p = y(posn) + IF (it(i) == 'lnp') p = EXP( y(posn) ) + IF (it(i) == 'fls') alpha = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') lnx(1,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') lnx(2,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') lnx(3,k) = y(posn) +END DO + +DO k = 1,ncomp + IF (lnx(1,k) > 0.0) lnx(1,k) = 0.0 + IF (lnx(2,k) > 0.0) lnx(2,k) = 0.0 +END DO + +IF (p < 1.E-100) p = 1.E-12 +!IF ( IsNaN( p ) ) p = 1000.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( t ) ) t = 300.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( alpha ) ) alpha = 0.5 ! rebounce for the case of NaN-solver output +IF ( p /= p ) p = 1000.0 ! rebounce for the case of NaN-solver output +IF ( t /= t ) t = 300.0 ! rebounce for the case of NaN-solver output +IF ( alpha /= alpha ) alpha = 0.5 ! rebounce for the case of NaN-solver output + +! --- setting of mole fractions ---------------------------------------- +DO ph = 1, nphas + DO i = 1, ncomp + IF ( lnx(ph,i) < -300.0 ) THEN + xi(ph,i) = 0.0 + ELSE + xi(ph,i) = EXP( lnx(ph,i) ) + END IF + END DO +END DO + +IF (ncomp > 1) CALL x_summation + +CALL fugacity (lnphi) + +phase = 2 +DO i = 1,n_unkw + skip = 0 !for ions/polymers, the isofug-eq. is not always solved + IF (n_unkw < (ncomp*(nphas-1))) skip = ncomp*(nphas-1) - n_unkw + IF ((i+skip-ncomp*(phase-2)) > ncomp) phase = phase + 1 + residu(i) = isofugacity((i+skip-ncomp*(phase-2)),phase,lnphi) + if ( density_error(phase) /= 0.0 ) residu(i) = residu(i) + SIGN( density_error(phase), residu(i) ) * 0.001 +END DO + +END SUBROUTINE objec_fct + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! REAL FUNCTION isofugacity +!! +!! calculates the deviation from the condition of equal fugacities in +!! logarithmic form. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + REAL FUNCTION isofugacity (i,phase,lnphi) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i + INTEGER, INTENT(IN) :: phase + REAL, INTENT(IN) :: lnphi(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: p1, p2 +! ---------------------------------------------------------------------- + + +! p1=1 +p1 = phase-1 +p2 = phase + +isofugacity = scaling(i) *( lnphi(p2,i)+lnx(p2,i)-lnx(p1,i)-lnphi(p1,i) ) +! write (*,'(a, 4G18.8)') ' t, p ',t,p,dense(1),dense(2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_V',i,p2,lnx(p2,i),lnphi(p2,i),dense(p2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_L',i,p1,lnx(p1,i),lnphi(p1,i),dense(p1) +! write (*,*) ' ISOFUGACITY',i,ISOFUGACITY, scaling(i) +! write (*,'(a,i3,4G18.8)') ' ISOFUGACITY',i,ISOFUGACITY, lnphi(p2,i)+lnx(p2,i), -lnx(p1,i)-lnphi(p1,i) +! pause + +END FUNCTION isofugacity + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vle_min(lle_check) +! + USE PARAMETERS, ONLY: RGAS + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL, INTENT(OUT) :: lle_check + + INTEGER :: i,j,k,phasen(0:40),steps + REAL :: lnphi(np,nc) + REAL :: vlemin(0:40),llemin(0:40),xval(0:40) + REAL :: start_xv(0:40),start_xl(0:40),x_sav,dg_dx2 +! ---------------------------------------------------------------------- + + + +j = 0 +k = 0 +nphas = 2 + +steps = 40 + +x_sav = xi(1,1) +sum_rel(1) = 'x12' ! summation relation +sum_rel(2) = 'x22' ! summation relation + +DO i = 0, steps + densta(1) = 0.45 + densta(2) = 1.d-6 + xi(1,1) = 1.0 - REAL(i) / REAL(steps) + IF ( xi(1,1) <= 1.E-50 ) xi(1,1) = 1.E-50 + xi(2,1) = xi(1,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + + CALL x_summation + CALL fugacity (lnphi) + CALL enthalpy_etc !!KANN DAS RAUS???? + + + + + xval(i) = xi(1,1) + llemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t + + IF ( ABS(1.0-dense(1)/dense(2)) > 0.0001 ) THEN + vlemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t & + - ( gibbs(2) +(xi(2,1)*lnx(2,1)+xi(2,2)*lnx(2,2))*RGAS*t ) + phasen(i) = 2 + ELSE + phasen(i) = 1 + END IF + + IF (i > 0 .AND. phasen(i) == 2) THEN + IF (phasen(i-1) == 2 .AND. ABS(vlemin(i)+vlemin(i-1)) < & + ABS(vlemin(i))+ABS(vlemin(i-1))) THEN + j = j + 1 + start_xv(j)=xval(i-1) + (xval(i)-xval(i-1)) & + * ABS(vlemin(i-1))/ABS(vlemin(i)-vlemin(i-1)) + END IF + END IF + +END DO + + +DO i=2,steps-2 + dg_dx2 = (-llemin(i-2)+16.0*llemin(i-1)-30.0*llemin(i) & + +16.0*llemin(i+1)-llemin(i+2)) / (12.0*((xval(i)-xval(i-1))**2)) + IF (dg_dx2 < 0.0) THEN + k = k + 1 + start_xl(k)=xval(i) + END IF +END DO + + +IF (start_xl(1) == 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + lle_check=.false. + ! write (*,*) 'VLE is likely', xi(1,1),xi(1,2) +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) == 0.0) THEN + xi(1,1) = start_xl(1) + xi(1,2) = 1.0-xi(1,1) + ! write (*,*) 'LLE is likely', xi(1,1),xi(1,2) + lle_check=.true. +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + ! write(*,*) 'starting with VLE and check for LLE' + lle_check=.true. +ELSE + xi(1,1) = x_sav + xi(1,2) = 1.0 - xi(1,1) +END IF + + +CALL x_summation + +END SUBROUTINE vle_min + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE phase_stability +!! +!! the index 'LLE_check' is for the starting density (which determines +!! whether a liquid or vapor phase is found) of the trial phase. The +!! feed-point exits either as a vapor or as a liquid. If it can exist as +!! both (feedphases=2), then both states are tested. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE phase_stability ( lle_check, flashcase, ph_split ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI, x, eta, eta_start, z3t, fres + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL :: lle_check + LOGICAL, INTENT(IN OUT) :: flashcase + INTEGER, INTENT(OUT) :: ph_split +! ---------------------------------------------------------------------- + + INTERFACE + REAL FUNCTION F_STABILITY ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) + END FUNCTION + END INTERFACE + +!INTERFACE +! SUBROUTINE F_STABILITY (fmin, optpara, n) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE F_STABILITY +! +! SUBROUTINE stability_grad (g, optpara, n) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_grad +! +! SUBROUTINE stability_hessian (hessian, g, fmin, optpara, n) +! REAL, INTENT(IN OUT) :: hessian(:,:) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_hessian +!END INTERFACE + + INTEGER :: n, PRIN + REAL :: fmin, t0, h0, MACHEP, PRAXIS + REAL, ALLOCATABLE :: optpara(:) + + INTEGER :: i, feedphases, trial + REAL :: rhoi(nc),rho_start + REAL :: feeddens, rho_phas(np) + REAL :: fden + REAL :: dens + REAL :: rhot + REAL :: lnphi(np,nc) + REAL :: w(np,nc), mean_mass +! ---------------------------------------------------------------------- + +n = ncomp +ALLOCATE( optpara(n) ) + +IF (lle_check) WRITE (*,*) ' stability test starting with dense phase' + +DO i = 1, ncomp ! setting feed-phase x's + IF (.NOT.flashcase) xif(i) = xi(1,i) + IF (flashcase) xi(1,i) = xif(i) + xi(2,i) = xif(i) ! feed is tested for both: V and L density +END DO + +densta(1) = 0.45 +densta(2) = 1.d-6 + +CALL dens_calc(rho_phas) +IF ( ABS(1.0-dense(1)/dense(2)) > 0.0005 ) THEN + feedphases=2 ! feed-composition can exist both, in V and L +ELSE + feedphases=1 ! feed-composition can exist either in V or L +END IF +densta(1) = dense(1) +feeddens = dense(2) +!write (*,*) 'feedphases',dense(1), dense(2),feedphases + +10 CONTINUE ! IF FeedPhases=2 THEN there is a second cycle + + trial = 1 + + ! -------------------------------------------------------------------- + ! setting trial-phase mole-fractions + ! if there is no phase-split then further trial-phases are + ! considered (loop: 20 CONTINUE) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + w(2,i) = 1.0 / REAL(ncomp) + END DO + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + + 20 CONTINUE + + DO i = 1, ncomp + rhoif(i) = rho_phas(1) * xif(i) + rhoi(i) = rhoif(i) + END DO + + !write (*,'(a,6G16.8)') 'startval',rho_phas(2),xi(2,1:ncomp) + + ! -------------------------------------------------------------------- + ! calc Helmholtz energy density and derivative (numerical) to rhoif(i). + ! The derivative is taken around the "feed-point" not the trial phase + ! -------------------------------------------------------------------- + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + CALL PERTURBATION_PARAMETER + xi(1,1:ncomp) = x(1:ncomp) + eta = rhot * z3t + eta_start = eta + densta(1) = eta_start + ensemble_flag = 'tv' + CALL FUGACITY (lnphi) + ensemble_flag = 'tp' + + call fden_calc ( fden, rhoi ) + fdenf = fden + + grad_fd(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + + ! -------------------------------------------------------------------- + ! starting values for iteration (optpara) + ! -------------------------------------------------------------------- + rho_start = 1.E-5 + IF (lle_check) THEN + densta(2) = 0.45 + CALL dens_calc(rho_phas) + rho_start = rho_phas(2)*0.45/dense(2) + END IF + DO i = 1,ncomp + rhoi(i) = xi(2,i)*rho_start + optpara(i) = LOG( rhoi(i) ) + END DO + + ! -------------------------------------------------------------------- + ! minimizing the objective fct. Phase split for values of fmin < 0.0 + ! -------------------------------------------------------------------- + t0 = 5.E-5 + h0 = 0.5 + PRIN = 0 + MACHEP = 1.E-15 + + fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, F_STABILITY, fmin ) + + + ! -------------------------------------------------------------------- + ! updating the ln(x) valus from optpara. The optimal optpara-vector is + ! not necessarily the one that was last evaluated. At the very end, + ! cg_decent writes the best values to optpara + ! -------------------------------------------------------------------- + fmin = F_STABILITY( optpara, n ) + + + + ! IF ( n == 2 ) THEN + ! CALL Newton_Opt_2D ( stability_hessian, F_stability, optpara, n, 1.E-8, 1.E-8, g, fmin) + ! ELSE + ! CALL cg_descent (1.d-5, optpara, n, F_STABILITY, stability_grad, STATUS, & + ! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) + ! ENDIF + ! CALL F_STABILITY (fmin, optpara, n) + + + ! -------------------------------------------------------------------- + ! determine instability & non-trivial solution + ! -------------------------------------------------------------------- + ph_split = 0 + IF (fmin < -1.E-7 .AND. & + ABS( 1.0 - maxval(EXP(optpara),mask=optpara /= 0.0) /maxval(rhoif) ) > 0.0005) THEN + ph_split = 1 + END IF + + IF (ph_split == 1) THEN + + ! ------------------------------------------------------------------ + ! here, there should be IF FeedPhases=2 THEN GOTO 10 + ! and test for another phase (while saving optpara) + ! ------------------------------------------------------------------ + + rhoi2(1:ncomp) = EXP( optpara(1:ncomp) ) + dens = PI/6.0 * SUM( rhoi2(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + rhot = SUM( rhoi2(1:ncomp) ) + xi(2,1:ncomp) = rhoi2(1:ncomp) / rhot + + ELSE + + IF (trial <= ncomp + ncomp) THEN + ! ---------------------------------------------------------------- + ! setting trial-phase x's + ! ---------------------------------------------------------------- + IF (trial <= ncomp) THEN + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.05 + END DO + w(2,trial) = 0.95 + ELSE + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.00001 + END DO + w(2,trial-ncomp) = 0.99999 + END IF + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + trial = trial + 1 + GO TO 20 + END IF + ! IF (.NOT.LLE_check) write (*,*) 'no phase split detected' + ! IF (.NOT.LLE_check) pause + IF (feedphases > 1 .AND. .NOT.lle_check .AND. densta(1) > 0.2) THEN + densta(1) = feeddens ! this will be the lower-valued density (vapor) + CALL dens_calc(rho_phas) + ! WRITE (*,*) 'try feed as vapor-phase' + GO TO 10 + END IF + + END IF + +DEALLOCATE( optpara ) + +END SUBROUTINE phase_stability + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE select_sum_rel +!! +!! This subroutine determines which component of a phase "ph" is calculated +!! from the summation relation x_i = 1 - sum(x_j). The other components are, +!! by default, said to be iterated during the phase equilibrium calculation. +!! +!! Note that for flash calculations not all of these mole fractions are in +!! fact iterated - this is raken care of in "determine_flash_it". +!! +!! ph phase +!! excl exclude comp. n +!! startindex assign it(startindex) for quantities to be iterated +!! (further it(startindex+1) is assigned, for a ternary +!! mixture, etc.) +!! +!! sum_index indicates the component, with the largest mole +!! fraction. If ph=1 and sum_index=2, we define +!! sum_rel(ph=1)='x12', so that this component is +!! calculated from the summation relation. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE select_sum_rel (ph,excl,startindex) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph + INTEGER, INTENT(IN) :: excl + INTEGER, INTENT(IN) :: startindex +! ---------------------------------------------------------------------- + INTEGER :: i,j, sum_index + REAL :: xmax(np) + ! CHARACTER :: compNo*2,phasNo*2 +! ---------------------------------------------------------------------- + +xmax(ph) = 0.0 +DO i = 1, ncomp + + IF ( xi(ph,i) > xmax(ph) ) THEN + xmax(ph) = xi(ph,i) + sum_index = i + + IF (ph == 1 .AND. i == 1) sum_rel(1) = 'x11' + IF (ph == 1 .AND. i == 2) sum_rel(1) = 'x12' + IF (ph == 1 .AND. i == 3) sum_rel(1) = 'x13' + IF (ph == 1 .AND. i == 4) sum_rel(1) = 'x14' + IF (ph == 1 .AND. i == 5) sum_rel(1) = 'x15' + + IF (ph == 2 .AND. i == 1) sum_rel(2) = 'x21' + IF (ph == 2 .AND. i == 2) sum_rel(2) = 'x22' + IF (ph == 2 .AND. i == 3) sum_rel(2) = 'x23' + IF (ph == 2 .AND. i == 4) sum_rel(2) = 'x24' + IF (ph == 2 .AND. i == 5) sum_rel(2) = 'x25' + + IF (ph == 3 .AND. i == 1) sum_rel(3) = 'x31' + IF (ph == 3 .AND. i == 2) sum_rel(3) = 'x32' + IF (ph == 3 .AND. i == 3) sum_rel(3) = 'x33' + IF (ph == 3 .AND. i == 4) sum_rel(3) = 'x34' + IF (ph == 3 .AND. i == 5) sum_rel(3) = 'x35' +! write (*,*) ph,i,xi(ph,i),sum_rel(ph) + END IF + +END DO + +j = 0 +DO i = 1, ncomp + + IF ( i /= sum_index .AND. i /= excl ) THEN + IF (ph == 1 .AND. i == 1) it(startindex+j) = 'x11' + IF (ph == 1 .AND. i == 2) it(startindex+j) = 'x12' + IF (ph == 1 .AND. i == 3) it(startindex+j) = 'x13' + IF (ph == 1 .AND. i == 4) it(startindex+j) = 'x14' + IF (ph == 1 .AND. i == 5) it(startindex+j) = 'x15' + + IF (ph == 2 .AND. i == 1) it(startindex+j) = 'x21' + IF (ph == 2 .AND. i == 2) it(startindex+j) = 'x22' + IF (ph == 2 .AND. i == 3) it(startindex+j) = 'x23' + IF (ph == 2 .AND. i == 4) it(startindex+j) = 'x24' + IF (ph == 2 .AND. i == 5) it(startindex+j) = 'x25' + + IF (ph == 3 .AND. i == 1) it(startindex+j) = 'x31' + IF (ph == 3 .AND. i == 2) it(startindex+j) = 'x32' + IF (ph == 3 .AND. i == 3) it(startindex+j) = 'x33' + IF (ph == 3 .AND. i == 4) it(startindex+j) = 'x34' + IF (ph == 3 .AND. i == 5) it(startindex+j) = 'x35' +! write (*,*) 'iter ',it(startindex+j) + j = j + 1 + END IF + +END DO + +END SUBROUTINE select_sum_rel + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE tangent_plane +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +!!$ INTERFACE +!!$ SUBROUTINE tangent_value (fmin, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: fmin +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_value +!!$ +!!$ SUBROUTINE tangent_grad (g, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: g(:) +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_grad +!!$ END INTERFACE + +! +! ---------------------------------------------------------------------- + INTERFACE + REAL FUNCTION PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE, fmin ) + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: optpara(n) + REAL, EXTERNAL :: TANGENT_VALUE + REAL, INTENT(IN OUT) :: fmin + END FUNCTION + + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + END FUNCTION + END INTERFACE +! +! ---------------------------------------------------------------------- + INTEGER :: n + INTEGER :: i, k, ph + INTEGER :: small_i, min_ph, other_ph + INTEGER :: PRIN + REAL :: fmin , t0, h0, MACHEP + REAL :: lnphi(np,nc) + REAL, ALLOCATABLE :: optpara(:) + +! INTEGER :: STATUS, iter, nfunc, ngrad +! REAL :: gnorm +! REAL, ALLOCATABLE :: d(:), g(:), xtemp(:), gtemp(:) +! ---------------------------------------------------------------------- + +n = ncomp +t0 = 1.E-4 +h0 = 0.1 +PRIN = 0 +MACHEP = 1.E-15 + +ALLOCATE( optpara(n) ) +!ALLOCATE( d(n) ) +!ALLOCATE( g(n) ) +!ALLOCATE( xtemp(n) ) +!ALLOCATE( gtemp(n) ) + +DO i = 1,ncomp + rhoi1(i) = rhoif(i) + lnx(1,i) = LOG(xi(1,i)) + lnx(2,i) = LOG(xi(2,i)) +END DO + +DO i = 1,ncomp + optpara(i) = LOG( xi(2,i) * 0.001 ) +END DO + +! CALL cg_descent (1.d-4, optpara, n, tangent_value, tangent_grad, STATUS, & +! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) +! +! updating the ln(x) valus from optpara. The optimal optpara-vector is not necessarily +! the one that was last evaluated. At the very end, cg_decent writes the best values to optpara +! CALL tangent_value (fmin, optpara, n) + + + +fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE2, fmin ) + +! The optimal optpara-vector is not necessarily the one that was last evaluated. +! TANGENT_VALUE is reexecuted with the optimal vector optpara, in order to update the ln(x) values +fmin = TANGENT_VALUE2( optpara, n ) + + +! ---------------------------------------------------------------------- +! If one component is a polymer (indicated by a low component-density) +! then get an estimate of the polymer-lean composition, by solving for +! xi_p1 = ( xi_p2 * phii_p2) / phii_p1 (phase equilibrium condition, +! with p1 for phase 1) +! ---------------------------------------------------------------------- +IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + min_ph = 1 + other_ph = 2 +ELSE + min_ph = 2 + other_ph = 1 +ENDIF +small_i = MINLOC( lnx(min_ph,1:ncomp), 1 ) +! --- if one component is a polymer ------------------------------------ +IF ( MINVAL( lnx(min_ph,1:ncomp) ) < -20.0 ) THEN + CALL FUGACITY ( lnphi ) + lnx(min_ph,small_i) = lnx(other_ph,small_i)+lnphi(other_ph,small_i) - lnphi(min_ph,small_i) + optpara(small_i) = lnx(2,small_i) + LOG( SUM( EXP( optpara(1:ncomp) ) ) ) +END IF + +! ---------------------------------------------------------------------- +! caution: these initial values are for a flashcase overwritten in +! SUBROUTINE determine_flash_it2, because in that case, the lnx-values +! treated as ln(mole_number). +! ---------------------------------------------------------------------- +val_init(1) = dense(1) +val_init(2) = dense(2) +val_init(3) = t +val_init(4) = p +DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO +END DO +!alpha = optpara(1) + + +!DEALLOCATE( optpara, d, g, xtemp, gtemp ) +DEALLOCATE( optpara ) + +END SUBROUTINE tangent_plane + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE determine_flash_it2 +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, ph + REAL :: n_phase1, n_phase2, max_x_diff +! ---------------------------------------------------------------------- + + IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + it(1) = 'x11' + it(2) = 'x12' + IF (ncomp >= 3) it(3) = 'x13' + IF (ncomp >= 4) it(4) = 'x14' + IF (ncomp >= 5) it(5) = 'x15' + sum_rel(1) = 'nfl' + ELSE + it(1) = 'x21' + it(2) = 'x22' + IF (ncomp >= 3) it(3) = 'x23' + IF (ncomp >= 4) it(4) = 'x24' + IF (ncomp >= 5) it(5) = 'x25' + sum_rel(2) = 'nfl' + ENDIF + max_x_diff = 0.0 + DO i = 1,ncomp + IF ( ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) > max_x_diff ) THEN + max_x_diff = ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase1 = ( xif(i) - EXP( lnx(2,i) ) ) / ( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase2 = 1.0 - n_phase1 + END IF + END DO + lnx(1,1:ncomp) = lnx(1,1:ncomp) + LOG( n_phase1 ) ! these x's are treated as mole numbers + lnx(2,1:ncomp) = lnx(2,1:ncomp) + LOG( n_phase2 ) ! these x's are treated as mole numbers + + + val_init(1) = dense(1) + val_init(2) = dense(2) + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) ! - LOG( SUM( EXP( lnx(ph,1:ncomp) ) ) ) + ! write (*,*) ph,k, lnx(ph,k) + END DO + END DO + +END SUBROUTINE determine_flash_it2 + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE poly_sta_var +! +! This subroutine generates starting values for mole fractons of +! polymer-solvent systems. +! The determination of these starting values follows a two-step +! procedure. Fist, the equilibrium concentration of the polymer-rich +! phase is estimated with the assumption of zero concentration +! of polymer in the polymer-lean-phase. This is achieved in the +! SUBROUTINE POLYMER_FREE. (Only one equation has to be iterated +! for this case). Once this is achieved, the rigorous calculation +! is triggered. If it converges, fine! If no solution is obtained, +! the pressure is somewhat reduced, the procedure is repeated and +! a calculation is started to approach the originally specified +! pressure. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE poly_sta_var (converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k,ph,sol + REAL :: p_spec,solution(10,4+nc*np) +! ---------------------------------------------------------------------- + + p_spec = p + + find_equilibrium: DO + + CALL polymer_free(p_spec,sol,solution) + + WRITE (*,*) ' ' + WRITE (*,*) ' GENERATING STARTING VALUES' + + val_init(1) = solution(1,1) ! approx.solutions for next iteration + val_init(2) = solution(1,2) ! approx.solutions for next iteration + val_init(3) = solution(1,3) ! approx.solutions for next iteration + val_init(4) = solution(1,4) ! approx.solutions for next iteration + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = solution(1,4+k+(ph-1)*ncomp) + END DO + END DO + val_init(7) = -10000.0 ! start.val. for lnx(2,1) for iterat. + + IF (p /= p_spec) & + WRITE (*,*) ' INITIAL EQUILIBRIUM CALC. FAILD. NEXT STEP STARTS' + + IF (p == p_spec) THEN + n_unkw = ncomp ! number of quantities to be iterated + it(1)='x11' ! iteration of mol fraction of comp.1 phase 1 + it(2)='x21' ! iteration of mol fraction of comp.1 phase 2 + CALL objective_ctrl (converg) + ELSE + outp = 0 ! output to terminal + running ='p' ! Pressure is running var. in PHASE_EQUILIB + CALL phase_equilib(p_spec,5.0,converg) + END IF + + IF (converg == 1) EXIT find_equilibrium + p = p * 0.9 + IF ( p < (0.7*p_spec) ) WRITE (*,*) ' NO SOLUTION FOUND' + IF ( p < (0.7*p_spec) ) STOP + + END DO find_equilibrium + + WRITE (*,*) ' FINISHED: POLY_STA_VAR' + +END SUBROUTINE poly_sta_var + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE x_summation +!! +!! This subroutine solves the summation relation: xi=1-sum(xj) +!! The variable "sum_rel(i)" contains the information, which mole +!! fraction is the one to be calculated here. Consider the example +!! sum_rel(1)='x12'. The fist letter 'x' of this variable indicates, +!! that this subroutine needs to be executed and that the mole +!! fraction of a component has to be calculated. The second letter +!! of the string points to phase 1, the third letter to component 2. +!! If the fist letter is 'e', not 'x', then the subroutine +!! NEUTR_CHARGE is called. This is the case of electrolyte solutions, +!! neutral charges have to be enforced in all phases (see below). +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE x_summation +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, ph_i + REAL :: sum_x + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno + LOGICAL :: flashcase2 +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF (sum_rel(j)(1:3) == 'nfl') THEN + CALL new_flash (j) + RETURN + END IF +END DO + + + +flashcase2 = .false. + +DO j = 1, nphas + + IF (sum_rel(j)(1:1) == 'x') THEN + + phasno = sum_rel(j)(2:2) + READ(phasno,*) ph_i + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( sum_rel(nphas+j)(1:1) == 'e' ) CALL neutr_charge(nphas+j) + + sum_x = 0.0 + DO i = 1, ncomp + IF ( i /= comp_i ) sum_x = sum_x + xi(ph_i,i) + END DO + xi(ph_i,comp_i) = 1.0 - sum_x + IF ( xi(ph_i,comp_i ) < 0.0 ) xi(ph_i,comp_i) = 0.0 + IF ( xi(ph_i,comp_i ) /= 0.0 ) THEN + lnx(ph_i,comp_i) = LOG( xi(ph_i,comp_i) ) + ELSE + lnx(ph_i,comp_i) = -100000.0 + END IF + ! write (*,*) 'sum_x',ph_i,comp_i,lnx(ph_i,comp_i),xi(ph_i,comp_i) + + ELSE IF ( sum_rel(j)(1:2) == 'fl' ) THEN + + flashcase2 = .true. + ! ------------------------------------------------------------------ + ! This case is true when all molefractions of one phase are + ! determined from a component balance. What is needed to + ! calculate all molefractions of that phase are all mole- + ! fractions of the other phase (nphas=2, so far) and the + ! phase fraction alpha. + ! Alpha is calculated (in FLASH_ALPHA) from the mole fraction + ! of component {sum_rel(j)(3:3)}. IF sum_rel(2)='fl3', then + ! the alpha is determined from the molefraction of comp. 3 and + ! the molefraction of phase 2 is then completely determined ELSE + ! ------------------------------------------------------------------ + + ELSE + WRITE (*,*) 'summation relation not defined' + STOP + END IF + +END DO + +IF ( it(1) == 'fls' ) CALL flash_sum +IF ( flashcase2 ) CALL flash_alpha + +END SUBROUTINE x_summation + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE FUGACITY +!! +!! This subroutine serves as an interface to the eos-subroutines. +!! (1) case 1, when ensemble_flag = 'tp' +!! The subroutine gives the residual chemical potential: +!! mu_i^res(T,p,x)/kT = ln( phi_i ) +!! and in addition, the densities that satisfy the specified p +!! (2) case 2, when ensemble_flag = 'tv' +!! The subroutine gives the residual chemical potential: +!! --> mu_i^res(T,rho,x)/kT +!! and in addition the resulting pressure for the given density. +!! The term "residual" means difference of the property and the same +!! property for an ideal gas mixture. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE FUGACITY (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + DO ph = 1,nphas + + phas = ph + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(ph) = eta + ln_phi(ph,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE enthalpy_etc +! +! This subroutine serves as an interface to the EOS-routines. The +! residual enthalpy h_res, residual entropy s_res, residual Gibbs +! enthalpy g_res, and residual heat capacity at constant pressure +! (cp_res) corresponding to converged conditions are calculated. +! The conditions in (T,P,xi,rho) need to be converged equilibrium +! conditions !! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE enthalpy_etc +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! + INTEGER :: ph +! ------------------------------------------------------------------ + +IF (eos <= 1) THEN + + DO ph=1,nphas + + phas = ph + eta = dense(ph) +! eta_start = dense(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF(num == 0) THEN + CALL H_EOS + ELSE + IF(num == 1) CALL H_numerical + IF(num == 2) write (*,*) 'enthalpy_etc: incorporate H_EOS_RN' + IF(num == 2) stop +! IF(num == 2) CALL H_EOS_rn + END IF + enthal(ph) = h_res + entrop(ph) = s_res + ! gibbs(ph) = h_res - t * s_res ! already defined in eos.f90 (including ideal gas) + cpres(ph) = cp_res + + END DO + IF (nphas == 2) h_lv = enthal(2)-enthal(1) + +ENDIF + +END SUBROUTINE enthalpy_etc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dens_calc +! +! This subroutine serves as an interface to the EOS-routines. The +! densities corresponding to given (P,T,xi) are calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dens_calc(rho_phas) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! +!------------------------------------------------------------------ + REAL, INTENT(OUT) :: rho_phas(np) +! + INTEGER :: ph +!------------------------------------------------------------------ + + +DO ph = 1, nphas + + IF (eos < 2) THEN + + phas = ph + eta = densta(ph) + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + CALL PERTURBATION_PARAMETER + CALL DENSITY_ITERATION + + dense(ph)= eta + rho_phas(ph) = eta/z3t + + ELSE + write (*,*) ' SUBROUTINE DENS_CALC not available for cubic EOS' + stop + END IF + +END DO + +END SUBROUTINE dens_calc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE fden_calc (fden, rhoi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fden + REAL, INTENT(IN OUT) :: rhoi(nc) +! ---------------------------------------------------------------------- + REAL :: rhot, fden_id +! ---------------------------------------------------------------------- + + +IF (eos < 2) THEN + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + + CALL PERTURBATION_PARAMETER + eta = rhot * z3t + eta_start = eta + + IF (num == 0) THEN + CALL F_EOS + ELSE IF(num == 1) THEN + CALL F_NUMERICAL + ELSE + write (*,*) 'deactivated this line when making a transition to f90' + stop + ! CALL F_EOS_rn + END IF + + fden_id = SUM( rhoi(1:ncomp) * ( LOG( rhoi(1:ncomp) ) - 1.0 ) ) + + fden = fres * rhot + fden_id + +ELSE + write (*,*) ' SUBROUTINE FDEN_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE fden_calc + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE polymer_free +! +! This subroutine performes a phase equilibrium calculation assuming +! the polymer-lean hase to be polymer-free (x_poly=0). Only the +! equality of the solvent-fugacities has to be ensured (only one +! equation to be iterated). This procedure delivers very good +! appoximations for the polymer-rich phase up-to fairly close to the +! mixture critical point. Both, liquid-liquid and vapor-liquid +! equilibria can be calculated. +! See also comments to SUBROUTINE POLY_STA_VAR. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE polymer_free (p_spec,sol,solution) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: p_spec + INTEGER, INTENT(OUT) :: sol + REAL, INTENT(OUT) :: solution(10,4+nc*np) +! +! ---------------------------------------------------------------------- + INTEGER :: k,j,ph, converg + REAL :: grid(10) +! ---------------------------------------------------------------------- + + sol = 0 + + grid(1)=0.98 + grid(2)=0.9 + grid(3)=0.7 + grid(4)=0.5 + grid(5)=0.3 + grid(6)=0.2 + grid(7)=0.1 + grid(8)=0.05 + + DO WHILE ( sol == 0 ) + + DO j = 1,8 + ! Phase 2 is solvent-phase + ! starting value for xi(1,1) of polymer-phase 1: w_polymer=0.95 to 0.05 + ! from simple approximate equation + xi(1,1) = grid(j) / ( (1.0-grid(j)) * mm(1) / mm(2) ) !xi(1,1) Phase 1 Komponente 1 + IF ( mm(1) < 5000.0 ) xi(1,1) = xi(1,1) * 0.8 + xi(1,2) = 1.0 - xi(1,1) !xi(1,2) Phase 1 Komponente 2 + lnx(1,1) = LOG(xi(1,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,1) = -1.E10 !ln(xi) Phase 2 Komponente 1 + lnx(2,2) = 0.0 !ln(xi) Phase 2 Komponente 2 + + + + val_init(1) = 0.45 ! starting density targeting at a liquid phase + val_init(2) = 0.0001 ! starting density targeting at a vapor phase + ! val_init(2) = 0.45 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO + END DO + + + + + n_unkw = ncomp-1 ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = ' ' + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' + + CALL objective_ctrl (converg) + + IF (converg == 1 .AND. ABS(dense(1)/dense(2)-1.0) > 1.d-3 .AND. dense(1) > 0.1) THEN + IF (sol == 0) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + ELSE IF (ABS(solution(sol,5)/lnx(1,1)-1.0) > 1.d-2) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + END IF + END IF + + END DO + + + + + + IF (sol == 0) THEN + WRITE (*,*) ' no initial solution found' + p = p*0.9 + IF (p < (0.7*p_spec)) WRITE (*,*) ' NO SOLUTION FOUND' + IF (p < (0.7*p_spec)) STOP + ELSE IF (sol > 1) THEN + ! write (*,*) ' ' + ! write (*,*) ' ',sol,' solutions found:' + ! write (*,*) ' lnx(1,1), dichte_1, dichte_2' + ! DO k = 1,sol + ! write (*,*) solution(k,5),solution(k,1),solution(k,2) + ! END DO + END IF + END DO + + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + + END SUBROUTINE polymer_free + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_equilib +! +! This subroutine varies a predefined "running variable" and +! organizes phase equilibrium calculations. For an isotherm +! calculation e.g., the running variable is often the pressure. The +! code is designed to deliver only converged solutions. In order to +! enforce convergence, a step-width adjustment (reduction) is +! implemented. + +! VARIABLE LIST: +! running defines the running variable. For example: if you want +! to calculate the vapor pressure curve of a component +! starting from 100�C to 200�C, then running is 't'. The +! temperature is step-wise increased until the end- +! -temperature of 200�C is reached. +! (in this example end_x=200+273.15) +! end_x end point for running variable +! steps No. of calculation steps towards the end point of calc. +! converg 0 if no convergence achieved, 1 if converged solution +! +! PREREQUISITES: +! prior to execution of this routine, the follwing variables have to +! be defined: "val_init" an array containing the starting values for +! this iteration, "it(i)" provides the information, which variable is +! determined iteratively, "sum_rel(i)" indicates, which mole fraction +! is determined from the summation relation sum(xi)=1. Furthermore, +! the number of phases and the variables provided by the subroutine +! INPUT are required. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_equilib (end_x,steps,converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: end_x + REAL, INTENT(IN) :: steps + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k, count1,count2,runindex,maxiter + REAL :: delta_x,delta_org,val_org,runvar + CHARACTER (LEN=2) :: compon + LOGICAL :: continue_cycle +! ---------------------------------------------------------------------- + +IF (running(1:2) == 'd1') runindex = 1 +IF (running(1:2) == 'd2') runindex = 2 +IF (running(1:1) == 't') runindex = 3 +IF (running(1:1) == 'p') runindex = 4 +IF (running(1:2) == 'x1') compon = running(3:3) +IF (running(1:2) == 'x1') READ(compon,*) k +IF (running(1:2) == 'x1') runindex = 4+k +IF (running(1:2) == 'x2') compon = running(3:3) +IF (running(1:2) == 'x2') READ(compon,*) k +IF (running(1:2) == 'x2') runindex = 4+ncomp+k +IF (running(1:2) == 'l1') compon = running(3:3) +IF (running(1:2) == 'l1') READ(compon,*) k +IF (running(1:2) == 'l1') runindex = 4+k +IF (running(1:2) == 'l2') compon = running(3:3) +IF (running(1:2) == 'l2') READ(compon,*) k +IF (running(1:2) == 'l2') runindex = 4+ncomp+k + +maxiter = 200 +IF ( ncomp >= 3 ) maxiter = 1000 +count1 = 0 +count2 = 0 +delta_x = ( end_x - val_init(runindex) ) / steps !J: calc increment in running var = (phi_end - phi_init)/steps +delta_org = ( end_x - val_init(runindex) ) / steps +val_org = val_init(runindex) +IF ( running(1:1) == 'x' ) THEN + delta_x = ( end_x - EXP(val_init(runindex)) ) / steps + delta_org = ( end_x - EXP(val_init(runindex)) ) / steps + val_org = EXP(val_init(runindex)) +END IF + +continue_cycle = .true. + +DO WHILE ( continue_cycle ) + + count1 = count1 + 1 + count2 = count2 + 1 + ! val_org = val_init(runindex) + + + CALL objective_ctrl (converg) + + IF (converg == 1) THEN + val_init( 1:(4+ncomp*nphas) ) = val_conv( 1:(4+ncomp*nphas) ) + IF (outp == 1 .AND. (ABS(delta_x) > 0.1*ABS(delta_org) .OR. count2 == 2)) CALL output + ELSE + delta_x = delta_x / 2.0 + IF (num == 2) delta_x = delta_x / 2.0 + val_init(runindex) = val_org + IF (running(1:1) == 'x') val_init(runindex) = LOG(val_org) + continue_cycle = .true. + count2 = 0 + END IF + runvar = val_init(runindex) + IF (running(1:1) == 'x') runvar = EXP(val_init(runindex)) + + IF ( end_x == 0.0 .AND. running(1:1) /= 'x' ) THEN + IF ( ABS(runvar-end_x) < 1.E-8 ) continue_cycle = .false. + ELSE IF ( ABS((runvar-end_x)/end_x) < 1.E-8 ) THEN + ! IF(delta_org.NE.0.0) WRITE (*,*)' FINISHED ITERATION',count1 + continue_cycle = .false. + ELSE IF ( count1 == maxiter ) THEN + WRITE (*,*) ' MAX. NO OF ITERATIONS',count1 + converg = 0 + continue_cycle = .false. + ELSE IF ( ABS(delta_x) < 1.E-5*ABS(delta_org) ) THEN + ! WRITE (*,*) ' CLOSEST APPROACH REACHED',count1 + converg = 0 + continue_cycle = .false. + ELSE + continue_cycle = .true. + val_org = runvar + IF (ABS(runvar+delta_x-end_x) > ABS(runvar-end_x)) delta_x = end_x - runvar ! if end-point passed + val_init(runindex) = runvar + delta_x + IF (running(1:1) == 'x') val_init(runindex) = LOG(runvar+delta_x) + END IF + + IF (ABS(delta_x) < ABS(delta_org) .AND. count2 >= 5) THEN + delta_x = delta_x * 2.0 + count2 = 0 + END IF + +END DO ! continue_cycle + +END SUBROUTINE phase_equilib + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE new_flash (ph_it) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph_it +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph_cal + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + ph_cal = 3 - ph_it ! for two phases only + + DO i = 1, ncomp + IF ( lnx(ph_it,i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( lnx(ph_it,i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i)-ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(ph_it,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + DO i = 1, ncomp + IF ( xi(ph_it,i) >= 1.E-300 ) lnx(ph_it,i) = LOG( xi(ph_it,i) ) + END DO + xi(ph_cal,1:ncomp) = ni_1(1:ncomp) / SUM( ni_1(1:ncomp) ) + lnx(ph_cal,1:ncomp) = LOG( xi(ph_cal,1:ncomp) ) + +END SUBROUTINE new_flash + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PHI_EOS +! +! This subroutine gives the residual chemical potential: +! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! The required input for this case (T, p, x(nc)) and as a starting value +! eta_start +! +! or it gives +! +! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! The required input for this case (T, eta_start, x(nc)). Note that +! eta_start is the specified density (packing fraction) in this case. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_EOS +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + +END DO + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + +END SUBROUTINE PHI_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE, ONLY: z_ges, fres_temp + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + INTEGER :: k + REAL :: zres, zges + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: delta_rho + REAL, DIMENSION(nc) :: myres + REAL, DIMENSION(nc) :: rhoi, rhoi_0 + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +!----------------------------------------------------------------------- +! density iteration or pressure calculation +!----------------------------------------------------------------------- + +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_NUMERICAL +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (tv) or (tp)' + stop +END IF + +!----------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +!----------------------------------------------------------------------- + +zges = (p * 1.E-30) / (kbol*t*eta/z3t) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.E-30) / (kbol*t*eta/z3t) +zres = zges - 1.0 +z_ges = zges + +rhoi_0(1:ncomp) = x(1:ncomp) * eta/z3t +rhoi(1:ncomp) = rhoi_0(1:ncomp) + + +!----------------------------------------------------------------------- +! derivative to rho_k (keeping other rho_i's constant +!----------------------------------------------------------------------- + +DO k = 1, ncomp + + IF ( rhoi_0(k) > 1.d-9 ) THEN + delta_rho = 1.E-13 * 10.0**(0.5*(15.0+LOG10(rhoi_0(k)))) + ELSE + delta_rho = 1.E-10 + END IF + + rhoi(k) = rhoi_0(k) + delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres1 = fres*rho + tfr_1 = tfr*rho + + rhoi(k) = rhoi_0(k) + 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres2 = fres*rho + tfr_2 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + rhoi(k) = rhoi_0(k) - 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres4 = fres*rho + tfr_4 = tfr*rho + + rhoi(k) = rhoi_0(k) - delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres5 = fres*rho + tfr_5 = tfr*rho + END IF + + rhoi(k) = rhoi_0(k) + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres3 = fres*rho + tfr_3 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + myres(k) = ( fres5 - 8.0*fres4 + 8.0*fres2 - fres1 ) / ( 6.0*delta_rho ) + ELSE + myres(k) = ( -3.0*fres3 + 4.0*fres2 - fres1 ) / delta_rho + END IF + +END DO + + +!----------------------------------------------------------------------- +! residual Helmholtz energy +!----------------------------------------------------------------------- + +fres_temp = fres + +!----------------------------------------------------------------------- +! residual chemical potential +!----------------------------------------------------------------------- + +DO k = 1, ncomp + IF (ensemble_flag == 'tp') lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' .AND. eta >= 0.0) lnphi(k) = myres(k) !+LOG(rho) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta + ! IF (DFT.GE.98) write (*,*) dft + ! write (*,*) 'lnphi',k,LNPHI(k),x(k),MYRES(k), -LOG(ZGES) + ! pause + ! write (*,*) k, myres(k), fres, ZRES +END DO + +END SUBROUTINE PHI_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +! SUBROUTINE H_EOS (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! IMPLICIT NONE +! INTEGER nc +! PARAMETER (nc=20) +! INTEGER phas,ncomp,eos,i +! REAL kij(nc,nc),lij(nc,nc),x(nc),t,p,parame(nc,25) +! REAL eta_start,eta,tfr,h_res,cp_res,s_res + + +! i=1 + +! IF (i.EQ.1) THEN +! CALL H_EOS_1(phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ELSE +! CALL H_EOS_NUM (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ENDIF + +! RETURN +! END + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS +! + USE PARAMETERS, ONLY: RGAS + USE EOS_CONSTANTS + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL :: zges, df_dt, dfdr, ddfdrdr + REAL :: cv_res, df_dt2, df_drdt + REAL :: fact, dist, t_tmp, rho_0 + REAL :: fdr1, fdr2, fdr3, fdr4 + + INTEGER :: i, m + REAL :: dhsdt(nc), dhsdt2(nc) + REAL :: z0, z1, z2, z3, z1tdt, z2tdt, z3tdt + REAL :: z1dt, z2dt, z3dt, zms, gii + REAL :: fhsdt, fhsdt2 + REAL :: fchdt, fchdt2 + REAL :: fdspdt, fdspdt2 + REAL :: fhbdt, fhbdt2 + REAL :: sumseg, I1, I2, I1dt, I2dt, I1dt2, I2dt2 + REAL :: c1_con, c2_con, c3_con, c1_dt, c1_dt2 + REAL :: z1tdt2, z2tdt2, z3tdt2 + REAL :: z1dt2, z2dt2, z3dt2 + + INTEGER :: j, k, l, no, ass_cnt, max_eval + LOGICAL :: assoc + REAL :: dij, dijdt, dijdt2 + REAL :: gij1dt, gij2dt, gij3dt + REAL :: gij1dt2, gij2dt2, gij3dt2 + REAL, DIMENSION(nc,nc) :: gijdt, gijdt2, kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: ass_d_dt, ass_d_dt2, eps_hb, delta, deltadt, deltadt2 + REAL, DIMENSION(nc,nsite) :: mxdt, mxdt2, mx_itr, mx_itrdt, mx_itrdt2 + REAL :: attenu, tol, suma, sumdt, sumdt2, err_sum + + INTEGER :: dipole + REAL :: fdddt, fdddt2 + REAL, DIMENSION(nc) :: my2dd, my0 + REAL, DIMENSION(nc,nc) :: idd2, idd2dt, idd2dt2, idd4, idd4dt, idd4dt2 + REAL, DIMENSION(nc,nc,nc) :: idd3, idd3dt, idd3dt2 + REAL :: factor2, factor3 + REAL :: fdd2, fdd3, fdd2dt, fdd3dt, fdd2dt2, fdd3dt2 + REAL :: eij, xijmt, xijkmt + + INTEGER :: qudpole + REAL :: fqqdt, fqqdt2 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: iqq2, iqq2dt, iqq2dt2, iqq4, iqq4dt, iqq4dt2 + REAL, DIMENSION(nc,nc,nc) :: iqq3, iqq3dt, iqq3dt2 + REAL :: fqq2, fqq2dt, fqq2dt2, fqq3, fqq3dt, fqq3dt2 + + INTEGER :: dip_quad + REAL :: fdqdt, fdqdt2 + REAL, DIMENSION(nc) :: myfac, q_fac + REAL, DIMENSION(nc,nc) :: idq2, idq2dt, idq2dt2, idq4, idq4dt, idq4dt2 + REAL, DIMENSION(nc,nc,nc) :: idq3, idq3dt, idq3dt2 + REAL :: fdq2, fdq2dt, fdq2dt2, fdq3, fdq3dt, fdq3dt2 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! Initializing +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +sumseg = z0t / (PI/6.0) +zms = 1.0 - z3 + + +! ---------------------------------------------------------------------- +! first and second derivative of f to density (dfdr,ddfdrdr) +! ---------------------------------------------------------------------- +CALL P_EOS + +zges = (pges * 1.E-30)/(kbol*t*rho) + +dfdr = pges/(eta*rho*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + + +! ---------------------------------------------------------------------- +! Helmholtz Energy f/kT = fres +! ---------------------------------------------------------------------- +CALL F_EOS + + +! ---------------------------------------------------------------------- +! derivative of some auxilliary properties to temperature +! ---------------------------------------------------------------------- +DO i = 1,ncomp + dhsdt(i)=parame(i,2) *(-3.0*parame(i,3)/t/t)*0.12*EXP(-3.0*parame(i,3)/t) + dhsdt2(i) = dhsdt(i)*3.0*parame(i,3)/t/t & + + 6.0*parame(i,2)*parame(i,3)/t**3 *0.12*EXP(-3.0*parame(i,3)/t) +END DO + +z1tdt = 0.0 +z2tdt = 0.0 +z3tdt = 0.0 +DO i = 1,ncomp + z1tdt = z1tdt + x(i) * mseg(i) * dhsdt(i) + z2tdt = z2tdt + x(i) * mseg(i) * 2.0*dhs(i)*dhsdt(i) + z3tdt = z3tdt + x(i) * mseg(i) * 3.0*dhs(i)*dhs(i)*dhsdt(i) +END DO +z1dt = PI / 6.0*z1tdt *rho +z2dt = PI / 6.0*z2tdt *rho +z3dt = PI / 6.0*z3tdt *rho + + +z1tdt2 = 0.0 +z2tdt2 = 0.0 +z3tdt2 = 0.0 +DO i = 1,ncomp + z1tdt2 = z1tdt2 + x(i)*mseg(i)*dhsdt2(i) + z2tdt2 = z2tdt2 + x(i)*mseg(i)*2.0 *( dhsdt(i)*dhsdt(i) +dhs(i)*dhsdt2(i) ) + z3tdt2 = z3tdt2 + x(i)*mseg(i)*3.0 *( 2.0*dhs(i)*dhsdt(i)* & + dhsdt(i) +dhs(i)*dhs(i)*dhsdt2(i) ) +END DO +z1dt2 = PI / 6.0*z1tdt2 *rho +z2dt2 = PI / 6.0*z2tdt2 *rho +z3dt2 = PI / 6.0*z3tdt2 *rho + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT hard spheres to temp. (fhsdt) +! ---------------------------------------------------------------------- +fhsdt = 6.0/PI/rho*( 3.0*(z1dt*z2+z1*z2dt)/zms + 3.0*z1*z2*z3dt/zms/zms & + + 3.0*z2*z2*z2dt/z3/zms/zms & + + z2**3 *(2.0*z3*z3dt-z3dt*zms)/(z3*z3*zms**3 ) & + + (3.0*z2*z2*z2dt*z3-2.0*z2**3 *z3dt)/z3**3 *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3dt/zms ) + +fhsdt2= 6.0/PI/rho*( 3.0*(z1dt2*z2+2.0*z1dt*z2dt+z1*z2dt2)/zms & + + 6.0*(z1dt*z2+z1*z2dt)*z3dt/zms/zms & + + 3.0*z1*z2*z3dt2/zms/zms + 6.0*z1*z2*z3dt*z3dt/zms**3 & + + 3.0*z2*(2.0*z2dt*z2dt+z2*z2dt2)/z3/zms/zms & + - z2*z2*(6.0*z2dt*z3dt+z2*z3dt2)/(z3*z3*zms*zms) & + + 2.0*z2**3 *z3dt*z3dt/(z3**3 *zms*zms) & + - 4.0*z2**3 *z3dt*z3dt/(z3*z3 *zms**3 ) & + + (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/(z3*zms**3 ) & + + 6.0*z2**3 *z3dt*z3dt/(z3*zms**4 ) & + - 2.0*(3.0*z2*z2*z2dt/z3/z3-2.0*z2**3 *z3dt/z3**3 ) *z3dt/zms & + -(z2**3 /z3/z3-z0)*(z3dt2/zms+z3dt*z3dt/zms/zms) & + + ( (6.0*z2*z2dt*z2dt+3.0*z2*z2*z2dt2)/z3/z3 & + - (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/z3**3 & + + 6.0*z2**3 *z3dt*z3dt/z3**4 )* LOG(zms) ) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT of chain term to T (fchdt) +! ---------------------------------------------------------------------- +fchdt = 0.0 +fchdt2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + dij=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + dijdt =(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) / (dhs(i)+dhs(j)) & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) + dijdt2=(dhsdt2(i)*dhs(j) + 2.0*dhsdt(i)*dhsdt(j) & + + dhs(i)*dhsdt2(j)) / (dhs(i)+dhs(j)) & + - 2.0*(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) & + / (dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) & + + 2.0* dhs(i)*dhs(j) / (dhs(i)+dhs(j))**3 & + * (dhsdt(i)+dhsdt(j))**2 & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt2(i)+dhsdt2(j)) + gij1dt = z3dt/zms/zms + gij2dt = 3.0*( z2dt*dij+z2*dijdt )/zms/zms +6.0*z2*dij*z3dt/zms**3 + gij3dt = 4.0*(dij*z2)* (dijdt*z2 + dij*z2dt) /zms**3 & + + 6.0*(dij*z2)**2 * z3dt /zms**4 + gij1dt2 = z3dt2/zms/zms +2.0*z3dt*z3dt/zms**3 + gij2dt2 = 3.0*( z2dt2*dij+2.0*z2dt*dijdt+z2*dijdt2 )/zms/zms & + + 6.0*( z2dt*dij+z2*dijdt )/zms**3 * z3dt & + + 6.0*(z2dt*dij*z3dt+z2*dijdt*z3dt+z2*dij*z3dt2) /zms**3 & + + 18.0*z2*dij*z3dt*z3dt/zms**4 + gij3dt2 = 4.0*(dijdt*z2+dij*z2dt)**2 /zms**3 & + + 4.0*(dij*z2)* (dijdt2*z2+2.0*dijdt*z2dt+dij*z2dt2) /zms**3 & + + 24.0*(dij*z2) *(dijdt*z2+dij*z2dt)/zms**4 *z3dt & + + 6.0*(dij*z2)**2 * z3dt2 /zms**4 & + + 24.0*(dij*z2)**2 * z3dt*z3dt /zms**5 + gijdt(i,j) = gij1dt + gij2dt + gij3dt + gijdt2(i,j) = gij1dt2 + gij2dt2 + gij3dt2 + END DO +END DO + +DO i = 1, ncomp + gii = 1.0/zms + 3.0*dhs(i)/2.0*z2/zms/zms + 2.0*dhs(i)*dhs(i)/4.0*z2*z2/zms**3 + fchdt = fchdt + x(i) * (1.0-mseg(i)) * gijdt(i,i) / gii + fchdt2= fchdt2+ x(i) * (1.0-mseg(i)) & + * (gijdt2(i,i) / gii - (gijdt(i,i)/gii)**2 ) +END DO + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT dispersion term to T (fdspdt) +! ---------------------------------------------------------------------- +I1 = 0.0 +I2 = 0.0 +I1dt = 0.0 +I2dt = 0.0 +I1dt2= 0.0 +I2dt2= 0.0 +DO m = 0, 6 + I1 = I1 + apar(m)*z3**REAL(m) + I2 = I2 + bpar(m)*z3**REAL(m) + I1dt = I1dt + apar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I2dt = I2dt + bpar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I1dt2= I1dt2+ apar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + apar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) + I2dt2= I2dt2+ bpar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + bpar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) +END DO + +c1_con= 1.0/ ( 1.0 + sumseg*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - sumseg)*(20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) +c2_con= - c1_con*c1_con *(sumseg*(-4.0*z3**2 +20.0*z3+8.0)/zms**5 & + + (1.0 - sumseg) *(2.0*z3**3 +12.0*z3**2 -48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) +c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( sumseg*(-12.0*z3**2 +72.0*z3+60.0)/zms**6 + (1.0 - sumseg) & + *(-6.0*z3**4 -48.0*z3**3 +288.0*z3**2 -480.0*z3+264.0) & + /(zms*(2.0-z3))**4 ) +c1_dt = c2_con*z3dt +c1_dt2 = c3_con*z3dt*z3dt + c2_con*z3dt2 + +fdspdt = - 2.0*PI*rho*(I1dt-I1/t)*order1 & + - PI*rho*sumseg*(c1_dt*I2+c1_con*I2dt-2.0*c1_con*I2/t)*order2 + +fdspdt2 = - 2.0*PI*rho*(I1dt2-2.0*I1dt/t+2.0*I1/t/t)*order1 & + - PI*rho*sumseg*order2*( c1_dt2*I2 +2.0*c1_dt*I2dt -4.0*c1_dt*I2/t & + + 6.0*c1_con*I2/t/t -4.0*c1_con*I2dt/t +c1_con*I2dt2) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT association term to T (fhbdt) +! ---------------------------------------------------------------------- +fhbdt = 0.0 +fhbdt2 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) THEN + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1,nhb_typ(i) + DO k = 1,nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO j = 1,nhb_typ(i) + no = no + 1 + END DO + ELSE + kap_hb(i,i) = 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0) ) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + ! kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l)=(eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l)=eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN + eps_hb(1,2,3,1)=0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1)=0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ! ass_d(i,j,k,l)=kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + ass_d_dt(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) + ass_d_dt2(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 & + * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) & + * (-2.0/t - eps_hb(i,j,k,l)/t/t) + END DO + END DO + END DO + END DO + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l)=gij(i,j)*ass_d(i,j,k,l) + deltadt(i,j,k,l) = gijdt(i,j)*ass_d(i,j,k,l) + gij(i,j)*ass_d_dt(i,j,k,l) + deltadt2(i,j,k,l)= gijdt2(i,j)*ass_d(i,j,k,l) & + + 2.0*gijdt(i,j)*ass_d_dt(i,j,k,l) +gij(i,j)*ass_d_dt2(i,j,k,l) + END DO + END DO + END DO + END DO + + +! ------ constants for iteration --------------------------------------- + attenu = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-12 + max_eval = 200 + +! ------ initialize mxdt(i,j) ------------------------------------------ + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + mxdt(i,k) = 0.0 + mxdt2(i,k) = 0.0 + END DO + END DO + + +! ------ iterate over all components and all sites --------------------- + DO ass_cnt = 1, max_eval + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + suma = 0.0 + sumdt = 0.0 + sumdt2= 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + suma = suma + x(j)*nhb_no(j,l)* mx(j,l) *delta(i,j,k,l) + sumdt = sumdt + x(j)*nhb_no(j,l)*( mx(j,l) *deltadt(i,j,k,l) & + + mxdt(j,l)*delta(i,j,k,l) ) + sumdt2 = sumdt2 + x(j)*nhb_no(j,l)*( mx(j,l)*deltadt2(i,j,k,l) & + + 2.0*mxdt(j,l)*deltadt(i,j,k,l) + mxdt2(j,l)*delta(i,j,k,l) ) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + suma * rho) + mx_itrdt(i,k)= - mx_itr(i,k)**2 * sumdt*rho + mx_itrdt2(i,k)= +2.0*mx_itr(i,k)**3 * (sumdt*rho)**2 - mx_itr(i,k)**2 *sumdt2*rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) & + + ABS(mx_itrdt(i,k) - mxdt(i,k)) + ABS(mx_itrdt2(i,k) - mxdt2(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + mxdt(i,k)=mx_itrdt(i,k)*attenu +mxdt(i,k)* (1.0 - attenu) + mxdt2(i,k)=mx_itrdt2(i,k)*attenu +mxdt2(i,k)* (1.0 - attenu) + END DO + END DO + IF(err_sum <= tol) GO TO 10 + + END DO + WRITE(6,*) 'CAL_PCSAFT: max_eval violated err_sum = ',err_sum,tol + STOP + 10 CONTINUE + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + ! fhb = fhb + x(i)* nhb_no(i,k)* ( 0.5 * ( 1.0 - mx(i,k) ) + LOG(mx(i,k)) ) + fhbdt = fhbdt + x(i)*nhb_no(i,k) *mxdt(i,k)*(1.0/mx(i,k)-0.5) + fhbdt2= fhbdt2 + x(i)*nhb_no(i,k) *(mxdt2(i,k)*(1.0/mx(i,k)-0.5) & + -(mxdt(i,k)/mx(i,k))**2 ) + END DO + END DO + +END IF + + +! ---------------------------------------------------------------------- +! derivatives of f/kT of dipole-dipole term to temp. (fdddt) +! ---------------------------------------------------------------------- +fdddt = 0.0 +fdddt2 = 0.0 +dipole = 0 +DO i = 1,ncomp + my2dd(i) = 0.0 + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 ) THEN + dipole = 1 + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END IF + my0(i) = my2dd(i) ! needed for dipole-quadrupole-term +END DO + +IF (dipole == 1) THEN + DO i = 1,ncomp + DO j = 1,ncomp + idd2(i,j) =0.0 + idd4(i,j) =0.0 + idd2dt(i,j) =0.0 + idd4dt(i,j) =0.0 + idd2dt2(i,j)=0.0 + idd4dt2(i,j)=0.0 + DO m=0,4 + idd2(i,j) = idd2(i,j) +ddp2(i,j,m)*z3**REAL(m) + idd4(i,j) = idd4(i,j) +ddp4(i,j,m)*z3**REAL(m) + idd2dt(i,j)= idd2dt(i,j) +ddp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd4dt(i,j)= idd4dt(i,j) +ddp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd2dt2(i,j)=idd2dt2(i,j)+ddp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idd4dt2(i,j)=idd4dt2(i,j)+ddp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + idd3(i,j,k) =0.0 + idd3dt(i,j,k) =0.0 + idd3dt2(i,j,k)=0.0 + DO m = 0, 4 + idd3(i,j,k) = idd3(i,j,k) +ddp3(i,j,k,m)*z3**REAL(m) + idd3dt(i,j,k) = idd3dt(i,j,k)+ddp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idd3dt2(i,j,k)= idd3dt2(i,j,k)+ddp3(i,j,k,m)*z3dt2*REAL(m) & + *z3**REAL(m-1) +ddp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1) *z3**REAL(m-2) + END DO + END DO + END DO + END DO + + + factor2= -PI *rho + factor3= -4.0/3.0*PI**2 * rho**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2dt= 0.0 + fdd3dt= 0.0 + fdd2dt2= 0.0 + fdd3dt2= 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + xijmt = x(i)*parame(i,3)*parame(i,2)**3 *x(j)*parame(j,3)*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2* xijmt/t/t*(idd2(i,j)+eij/t*idd4(i,j)) + fdd2dt= fdd2dt+ factor2* xijmt/t/t*(idd2dt(i,j)-2.0*idd2(i,j)/t & + +eij/t*idd4dt(i,j)-3.0*eij/t/t*idd4(i,j)) + fdd2dt2=fdd2dt2+factor2*xijmt/t/t*(idd2dt2(i,j)-4.0*idd2dt(i,j)/t & + +6.0*idd2(i,j)/t/t+eij/t*idd4dt2(i,j) & + -6.0*eij/t/t*idd4dt(i,j)+12.0*eij/t**3 *idd4(i,j)) + DO k = 1, ncomp + xijkmt=x(i)*parame(i,3)*parame(i,2)**3 & + *x(j)*parame(j,3)*parame(j,2)**3 & + *x(k)*parame(k,3)*parame(k,2)**3 & + /((parame(i,2)+parame(j,2))/2.0) /((parame(i,2)+parame(k,2))/2.0) & + /((parame(j,2)+parame(k,2))/2.0) *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 =fdd3 +factor3*xijkmt/t**3 *idd3(i,j,k) + fdd3dt =fdd3dt +factor3*xijkmt/t**3 * (idd3dt(i,j,k)-3.0*idd3(i,j,k)/t) + fdd3dt2=fdd3dt2+factor3*xijkmt/t**3 & + *( idd3dt2(i,j,k)-6.0*idd3dt(i,j,k)/t+12.0*idd3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fdd2 < -1.E-100 .AND. fdd3 /= 0.0 ) THEN + fdddt = fdd2* (fdd2*fdd2dt - 2.0*fdd3*fdd2dt+fdd2*fdd3dt) / (fdd2-fdd3)**2 + fdddt2 = ( 2.0*fdd2*fdd2dt*fdd2dt +fdd2*fdd2*fdd2dt2 & + -2.0*fdd2dt**2 *fdd3 -2.0*fdd2*fdd2dt2*fdd3 +fdd2*fdd2*fdd3dt2 ) & + /(fdd2-fdd3)**2 + fdddt * 2.0*(fdd3dt-fdd2dt)/(fdd2-fdd3) + END IF +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of quadrupole-quadrup. term to T (fqqdt) +! ---------------------------------------------------------------------- +fqqdt = 0.0 +fqqdt2 = 0.0 +qudpole = 0 +DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + IF (qq2(i) /= 0.0) qudpole = 1 +END DO + +IF (qudpole == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + iqq2(i,j) = 0.0 + iqq4(i,j) = 0.0 + iqq2dt(i,j) = 0.0 + iqq4dt(i,j) = 0.0 + iqq2dt2(i,j)= 0.0 + iqq4dt2(i,j)= 0.0 + DO m = 0, 4 + iqq2(i,j) = iqq2(i,j) + qqp2(i,j,m)*z3**REAL(m) + iqq4(i,j) = iqq4(i,j) + qqp4(i,j,m)*z3**REAL(m) + iqq2dt(i,j) = iqq2dt(i,j)+ qqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq4dt(i,j) = iqq4dt(i,j)+ qqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq2dt2(i,j)= iqq2dt2(i,j)+qqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + iqq4dt2(i,j)= iqq4dt2(i,j)+qqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + iqq3(i,j,k) =0.0 + iqq3dt(i,j,k) =0.0 + iqq3dt2(i,j,k)=0.0 + DO m = 0, 4 + iqq3(i,j,k) = iqq3(i,j,k) + qqp3(i,j,k,m)*z3**REAL(m) + iqq3dt(i,j,k) = iqq3dt(i,j,k)+ qqp3(i,j,k,m)*z3dt*REAL(m) * z3**REAL(m-1) + iqq3dt2(i,j,k)= iqq3dt2(i,j,k)+qqp3(i,j,k,m)*z3dt2*REAL(m) * z3**REAL(m-1) & + + qqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END DO + END DO + END DO + + factor2 = -9.0/16.0 * PI *rho + factor3 = 9.0/16.0 * PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2dt = 0.0 + fqq3dt = 0.0 + fqq2dt2= 0.0 + fqq3dt2= 0.0 + DO i = 1,ncomp + DO j = 1,ncomp + xijmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2 = fqq2 +factor2* xijmt/t/t*(iqq2(i,j)+eij/t*iqq4(i,j)) + fqq2dt= fqq2dt +factor2* xijmt/t/t*(iqq2dt(i,j)-2.0*iqq2(i,j)/t & + + eij/t*iqq4dt(i,j)-3.0*eij/t/t*iqq4(i,j)) + fqq2dt2=fqq2dt2+factor2*xijmt/t/t*(iqq2dt2(i,j)-4.0*iqq2dt(i,j)/t & + + 6.0*iqq2(i,j)/t/t+eij/t*iqq4dt2(i,j) & + - 6.0*eij/t/t*iqq4dt(i,j)+12.0*eij/t**3 *iqq4(i,j)) + DO k = 1,ncomp + xijkmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /sig_ij(i,j)**3 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,k)**3 & + * x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /sig_ij(j,k)**3 + fqq3 = fqq3 +factor3*xijkmt/t**3 *iqq3(i,j,k) + fqq3dt = fqq3dt +factor3*xijkmt/t**3 *(iqq3dt(i,j,k)-3.0*iqq3(i,j,k)/t) + fqq3dt2= fqq3dt2+factor3*xijkmt/t**3 & + * ( iqq3dt2(i,j,k)-6.0*iqq3dt(i,j,k)/t+12.0*iqq3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fqq2 /= 0.0 .AND. fqq3 /= 0.0 ) THEN + fqqdt = fqq2* (fqq2*fqq2dt - 2.0*fqq3*fqq2dt+fqq2*fqq3dt) / (fqq2-fqq3)**2 + fqqdt2 = ( 2.0*fqq2*fqq2dt*fqq2dt +fqq2*fqq2*fqq2dt2 & + - 2.0*fqq2dt**2 *fqq3 -2.0*fqq2*fqq2dt2*fqq3 +fqq2*fqq2*fqq3dt2 ) & + / (fqq2-fqq3)**2 + fqqdt * 2.0*(fqq3dt-fqq2dt)/(fqq2-fqq3) + END IF + +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of dipole-quadruppole term to T (fdqdt) +! ---------------------------------------------------------------------- +fdqdt = 0.0 +fdqdt2= 0.0 +dip_quad = 0 +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,7) /= 0.0) dip_quad = 1 + END DO + myfac(i) = parame(i,3)*parame(i,2)**4 *my0(i) + q_fac(i) = parame(i,3)*parame(i,2)**4 *qq2(i) +END DO + +IF (dip_quad == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + idq2(i,j) = 0.0 + idq4(i,j) = 0.0 + idq2dt(i,j) = 0.0 + idq4dt(i,j) = 0.0 + idq2dt2(i,j)= 0.0 + idq4dt2(i,j)= 0.0 + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + DO m = 0, 4 + idq2(i,j) = idq2(i,j) + dqp2(i,j,m)*z3**REAL(m) + idq4(i,j) = idq4(i,j) + dqp4(i,j,m)*z3**REAL(m) + idq2dt(i,j) = idq2dt(i,j)+ dqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq4dt(i,j) = idq4dt(i,j)+ dqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq2dt2(i,j)= idq2dt2(i,j)+dqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idq4dt2(i,j)= idq4dt2(i,j)+dqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + + DO k = 1,ncomp + idq3(i,j,k) = 0.0 + idq3dt(i,j,k) = 0.0 + idq3dt2(i,j,k)= 0.0 + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + DO m = 0, 4 + idq3(i,j,k) = idq3(i,j,k) + dqp3(i,j,k,m)*z3**REAL(m) + idq3dt(i,j,k)= idq3dt(i,j,k)+ dqp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idq3dt2(i,j,k)= idq3dt2(i,j,k)+dqp3(i,j,k,m)*z3dt2*REAL(m) *z3**REAL(m-1) & + + dqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/4.0 * PI * rho + factor3= PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2dt= 0.0 + fdq3dt= 0.0 + fdq2dt2=0.0 + fdq3dt2=0.0 + DO i = 1,ncomp + DO j = 1,ncomp + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + xijmt = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 + factor2* xijmt/t/t*(idq2(i,j)+eij/t*idq4(i,j)) + fdq2dt= fdq2dt+ factor2* xijmt/t/t*(idq2dt(i,j)-2.0*idq2(i,j)/t & + + eij/t*idq4dt(i,j)-3.0*eij/t/t*idq4(i,j)) + fdq2dt2 = fdq2dt2+factor2*xijmt/t/t*(idq2dt2(i,j)-4.0*idq2dt(i,j)/t & + + 6.0*idq2(i,j)/t/t+eij/t*idq4dt2(i,j) & + - 6.0*eij/t/t*idq4dt(i,j)+12.0*eij/t**3 *idq4(i,j)) + DO k = 1,ncomp + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + xijkmt= x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + * ( myfac(i)*q_fac(j)*myfac(k) & + + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + + fdq3 =fdq3 + factor3*xijkmt/t**3 *idq3(i,j,k) + fdq3dt=fdq3dt+ factor3*xijkmt/t**3 * (idq3dt(i,j,k)-3.0*idq3(i,j,k)/t) + fdq3dt2=fdq3dt2+factor3*xijkmt/t**3 & + *( idq3dt2(i,j,k)-6.0*idq3dt(i,j,k)/t+12.0*idq3(i,j,k)/t/t ) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 /= 0.0 .AND. fdq3 /= 0.0) THEN + fdqdt = fdq2* (fdq2*fdq2dt - 2.0*fdq3*fdq2dt+fdq2*fdq3dt) / (fdq2-fdq3)**2 + fdqdt2 = ( 2.0*fdq2*fdq2dt*fdq2dt +fdq2*fdq2*fdq2dt2 & + - 2.0*fdq2dt**2 *fdq3 -2.0*fdq2*fdq2dt2*fdq3 +fdq2*fdq2*fdq3dt2 ) & + / (fdq2-fdq3)**2 + fdqdt * 2.0*(fdq3dt-fdq2dt)/(fdq2-fdq3) + END IF + +END IF +! ---------------------------------------------------------------------- + + + + +! ---------------------------------------------------------------------- +! total derivative of fres/kT to temperature +! ---------------------------------------------------------------------- + +df_dt = fhsdt + fchdt + fdspdt + fhbdt + fdddt + fqqdt + fdqdt + + + +! ---------------------------------------------------------------------- +! second derivative of fres/kT to T +! ---------------------------------------------------------------------- + +df_dt2 = fhsdt2 +fchdt2 +fdspdt2 +fhbdt2 +fdddt2 +fqqdt2 +fdqdt2 + + + +! ---------------------------------------------------------------------- +! ------ derivatives of fres/kt to density and to T -------------------- +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! the analytic derivative of fres/kT to (density and T) (df_drdt) +! is still missing. A numerical differentiation is implemented. +! ---------------------------------------------------------------------- +fact = 1.0 +dist = t * 100.E-5 * fact +t_tmp = t +rho_0 = rho + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr1 = pges / (eta*rho_0*(kbol*t)/1.E-30) +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr2 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr3 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr4 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + + +df_drdt = (-fdr4+8.0*fdr3-8.0*fdr2+fdr1)/(12.0*dist) + + + + + +! ---------------------------------------------------------------------- +! thermodynamic properties +! ---------------------------------------------------------------------- + +s_res = ( - df_dt *t - fres )*RGAS + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS *t +cv_res = - ( t*df_dt2 + 2.0*df_dt ) * RGAS*t +cp_res = cv_res - RGAS + RGAS*(zges +eta*t*df_drdt)**2 & + / (1.0 + 2.0*eta*dfdr +eta**2 *ddfdrdr) + +! write (*,*) 'df_... ', df_dt,df_dt2 +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h,cv,cp', h_res,cv_res,cp_res + + +END SUBROUTINE H_EOS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE H_EOS_num +! +! This subroutine calculates enthalpies and heat capacities (cp) by +! taking numerical derivatieves. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS_num +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: df_dt, df_dtdt, df_drdt, dfdr, ddfdrdr + +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +df_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +df_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +s_res = (- df_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*df_dtdt + 2.0*df_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_1 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_2 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_3 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_4 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + +dfdr = pges / (eta*rho_0*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho_0*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + +df_drdt = ( -f_4 +8.0*f_3 -8.0*f_2 +f_1) / (12.0*dist) + +cp_res = cv_res - RGAS +RGAS*(zges+eta*t*df_drdt)**2 & + * 1.0/(1.0 + 2.0*eta*dfdr + eta**2 *ddfdrdr) + +! write (*,*) 'n',df_dt,df_dtdt +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h, cv', h_res, cv_res +! write (*,*) h_res - t*s_res +! write (*,*) cv_res,cp_res,eta +! pause + +END SUBROUTINE H_EOS_num + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE DENSITY_ITERATION +! +! iterates the density until the calculated pressure 'pges' is equal to +! the specified pressure 'p'. A Newton-scheme is used for determining +! the root to the objective function f(eta) = (pges / p ) - 1.0. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE DENSITY_ITERATION +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, start, max_i + REAL :: eta_iteration + REAL :: error, dydx, acc_i, delta_eta +! ---------------------------------------------------------------------- + + +IF ( densav(phas) /= 0.0 .AND. eta_start == denold(phas) ) THEN + denold(phas) = eta_start + eta_start = densav(phas) +ELSE + denold(phas) = eta_start + densav(phas) = eta_start +END IF + + +acc_i = 1.d-9 +max_i = 30 +density_error(:) = 0.0 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- +iterate_density: DO + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = (pges / p ) - 1.0 + + ! --- instable region correction ------------------------------------- + IF ( pgesdz < 0.0 .AND. i < max_i ) THEN + IF ( error > 0.0 .AND. pgesd2 > 0.0 ) THEN ! no liquid density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) > 0.0 ) eta_iteration = 0.001 ! no solution possible + IF ( ((pges/p ) -1.0) <=0.0 ) eta_iteration = eta_iteration * 1.1 ! no solution found so far + ELSE IF ( error < 0.0 .AND. pgesd2 < 0.0 ) THEN ! no vapor density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) < 0.0 ) eta_iteration = 0.5 ! no solution possible + IF ( ((pges/p ) -1.0) >=0.0 ) eta_iteration = eta_iteration * 0.9 ! no solution found so far + ELSE + eta_iteration = (eta_iteration + eta_start) / 2.0 + IF (eta_iteration == eta_start) eta_iteration = eta_iteration + 0.2 + END IF + CYCLE iterate_density + END IF + + + dydx = pgesdz/p + delta_eta = error/ dydx + IF ( delta_eta > 0.05 ) delta_eta = 0.05 + IF ( delta_eta < -0.05 ) delta_eta = -0.05 + + eta_iteration = eta_iteration - delta_eta + + IF (eta_iteration > 0.9) eta_iteration = 0.6 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + start = 1 + + IF ( ABS(error*p/pgesdz) < 1.d-12 ) start = 0 + IF ( ABS(error) < acc_i ) start = 0 + IF ( i > max_i ) THEN + start = 0 + density_error(phas) = ABS( error ) + ! write (*,*) 'density iteration failed' + END IF + + IF (start /= 1) EXIT iterate_density + +END DO iterate_density + +eta = eta_iteration + +IF ((eta > 0.3 .AND. densav(phas) > 0.3) .OR. & + (eta < 0.1 .AND. densav(phas) < 0.1)) densav(phas) = eta + +END SUBROUTINE DENSITY_ITERATION + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE F_EOS +! +! calculates the Helmholtz energy f/kT. The input to the subroutine is +! (T,eta,x), where eta is the packing fraction. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_EOS +! + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean ! ,lij(nc,nc) + REAL :: I1,I2, c1_con + REAL :: fhs, fdsp, fhc + + LOGICAL :: assoc + INTEGER :: ass_cnt,max_eval + REAL :: delta(nc,nc,nsite,nsite) + REAL :: mx_itr(nc,nsite), err_sum, sum, attenu, tol, fhb + REAL :: ass_s1, ass_s2 + + REAL :: fdd, fqq, fdq +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t / ( PI / 6.0 ) +zms = 1.0 - eta + +! m_mean2 = 0.0 +! lij(1,2) = -0.05 +! lij(2,1) = lij(1,2) +! DO i = 1, ncomp +! DO j = 1, ncomp +! m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : hard sphere contribution +! ---------------------------------------------------------------------- +fhs= m_mean*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + +! ---------------------------------------------------------------------- +! Helmholtz energy : chain term +! ---------------------------------------------------------------------- +fhc = 0.0 +DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : PC-SAFT dispersion contribution +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + +! ---------------------------------------------------------------------- +! Helmholtz energy : SAFT (Chen, Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdsp = 0.0 + DO n = 1,4 + DO m = 1,9 + fdsp = fdsp + dnm(n,m) * (um/t)**REAL(n) *(eta/tau)**REAL(m) + END DO + END DO + fdsp = m_mean * fdsp + +END IF + + +! ---------------------------------------------------------------------- +! TPT-1-association according to Chapman et al. +! ---------------------------------------------------------------------- +fhb = 0.0 +assoc = .false. +DO i = 1, ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + IF (mx(i,k) == 0.0) mx(i,k) = 1.0 ! Initialize mx(i,j) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l) = gij(i,j) * ass_d(i,j,k,l) + END DO + END DO + END DO + END DO + + +! --- constants for iteration ------------------------------------------ + attenu = 0.70 + tol = 1.d-10 + IF (eta < 0.2) tol = 1.d-12 + IF (eta < 0.01) tol = 1.d-13 + max_eval = 200 + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum = sum + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,j,k,l) +! if (ass_cnt == 1) write (*,*) j,l,x(j), mx(j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum * rho) +! if (ass_cnt == 1) write (*,*) 'B',ass_cnt,sum, rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF (ass_cnt >= max_eval) WRITE(*,'(a,2G15.7)') 'F_EOS: Max_eval violated (mx) Err_Sum = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG( mx(i,k) ) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1 / 2.0 ) + END DO + +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! polar terms +! ---------------------------------------------------------------------- + CALL F_POLAR ( fdd, fqq, fdq ) + + +! ---------------------------------------------------------------------- +! resid. Helmholtz energy f/kT +! ---------------------------------------------------------------------- +fres = fhs + fhc + fdsp + fhb + fdd + fqq + fdq + +tfr= fres + +END SUBROUTINE F_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE EOS_NUMERICAL_DERIVATIVES, ONLY: ideal_gas, hard_sphere, chain_term, & + disp_term, hb_term, LC_term, branch_term, & + II_term, ID_term, subtract1, subtract2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + +!-----local variables------------------------------------------------- + INTEGER :: i, j + REAL :: m_mean2 + REAL :: fid, fhs, fdsp, fhc + REAL :: fhb, fdd, fqq, fdq + REAL :: fhend, fcc + REAL :: fbr, flc + REAL :: fref + + REAL :: eps_kij, k_kij +!--------------------------------------------------------------------- + +eps_kij = 0.0 +k_kij = 0.0 + +fid = 0.0 +fhs = 0.0 +fhc = 0.0 +fdsp= 0.0 +fhb = 0.0 +fdd = 0.0 +fqq = 0.0 +fdq = 0.0 +fcc = 0.0 +fbr = 0.0 +flc = 0.0 + + +CALL PERTURBATION_PARAMETER + +! ---------------------------------------------------------------------- +! overwrite the standard mixing rules by those published by Tang & Gross +! using an additional lij parameter +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*mseg(i)/t*( x(j)*mseg(j) & + *sig_ij(i,j)*(uij(i,i)*uij(j,j))**(1.0/6.0) )**3 *lij(i,j) + END DO +END DO + + +! ---------------------------------------------------------------------- +! a non-standard mixing rule scaling the hard-sphere term +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! (uses an additional lij parameter) +! ---------------------------------------------------------------------- +m_mean2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + ! m_mean2=m_mean2+x(i)*(x(j)*((mseg(i)+mseg(j))*0.5)**(1.0/3.0) *lij(i,j) )**3 + END DO +END DO + +! --- ideal gas contribution ------------------------------------------- +IF ( ideal_gas == 'yes' ) CALL F_IDEAL_GAS ( fid ) +! ---------------------------------------------------------------------- + +! --- hard-sphere contribution ----------------------------------------- +IF ( hard_sphere == 'CSBM' ) CALL F_HARD_SPHERE ( m_mean2, fhs ) +! ---------------------------------------------------------------------- + +! -- chain term -------------------------------------------------------- +IF ( chain_term == 'TPT1' ) CALL F_CHAIN_TPT1 ( fhc ) +IF ( chain_term == 'TPT2' ) CALL F_CHAIN_TPT_D ( fhc ) +IF ( chain_term == 'HuLiu' ) CALL F_CHAIN_HU_LIU ( fhc ) +IF ( chain_term == 'HuLiu_rc' ) CALL F_CHAIN_HU_LIU_RC ( fhs, fhc ) +!!IF ( chain_term == 'SPT' ) CALL F_SPT ( fhs, fhc ) +IF ( chain_term == 'SPT' ) WRITE(*,*) 'SPT NOT INCLUDED YET' +! ---------------------------------------------------------------------- + +! --- dispersive attraction -------------------------------------------- +IF ( disp_term == 'PC-SAFT') CALL F_DISP_PCSAFT ( fdsp ) +IF ( disp_term == 'CK') CALL F_DISP_CKSAFT ( fdsp ) +IF ( disp_term(1:2) == 'PT') CALL F_pert_theory ( fdsp ) +! ---------------------------------------------------------------------- + +! --- H-bonding contribution / Association ----------------------------- +IF ( hb_term == 'TPT1_Chap') CALL F_ASSOCIATION( eps_kij, k_kij, fhb ) +! ---------------------------------------------------------------------- + +! --- polar terms ------------------------------------------------------ + CALL F_POLAR ( fdd, fqq, fdq ) +! ---------------------------------------------------------------------- + +! --- ion-dipole term -------------------------------------------------- +IF ( ID_term == 'TBH') CALL F_ION_DIPOLE_TBH ( fhend ) +! ---------------------------------------------------------------------- + +! --- ion-ion term ----------------------------------------------------- +IF ( II_term == 'primMSA') CALL F_ION_ION_PrimMSA ( fcc ) +IF ( II_term == 'nprMSA') CALL F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! ---------------------------------------------------------------------- + +! --- liquid-crystal term ---------------------------------------------- +IF ( LC_term == 'MSaupe') CALL F_LC_MayerSaupe ( flc ) + +!!IF ( LC_term == 'OVL') fref = fhs + fhc +IF ( LC_term == 'OVL') WRITE(*,*) 'OVL NOT INCLUDED YET' +!IF ( LC_term == 'OVL') CALL F_LC_OVL ( fref, flc ) +!! IF ( LC_term == 'SPT') fref = fhs + fhc +IF ( LC_term == 'SPT') WRITE(*,*) 'SPT NOT INCLUDED YET' +!!IF ( LC_term == 'SPT') CALL F_LC_SPT( fref, flc ) +! ---------------------------------------------------------------------- + +! ====================================================================== +! SUBTRACT TERMS (local density approximation) FOR DFT +! ====================================================================== + +!IF ( subtract1 == '1PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract1 == '2PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract2 =='ITTpolar') CALL F_local_ITT_polar ( fdd ) +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! residual Helmholtz energy F/(NkT) +! ---------------------------------------------------------------------- +fres = fid + fhs + fhc + fdsp + fhb + fdd + fqq + fdq + fcc + flc + +tfr = 0.0 + +END SUBROUTINE F_NUMERICAL + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE P_EOS +! +! calculates the pressure in units (Pa). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_EOS +! +! ---------------------------------------------------------------------- + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + INTEGER :: ass_cnt,max_eval + LOGICAL :: assoc + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean + REAL :: zges, zgesdz, zgesd2, zgesd3 + REAL :: zhs, zhsdz, zhsd2, zhsd3 + REAL :: zhc, zhcdz, zhcd2, zhcd3 + REAL, DIMENSION(nc,nc) :: dgijdz, dgijd2, dgijd3, dgijd4 + REAL :: zdsp, zdspdz, zdspd2, zdspd3 + REAL :: c1_con, c2_con, c3_con, c4_con, c5_con + REAL :: I2, edI1dz, edI2dz, edI1d2, edI2d2 + REAL :: edI1d3, edI2d3, edI1d4, edI2d4 + REAL :: fdspdz,fdspd2 + REAL :: zhb, zhbdz, zhbd2, zhbd3 + REAL, DIMENSION(nc,nc,nsite,nsite) :: delta, dq_dz, dq_d2, dq_d3, dq_d4 + REAL, DIMENSION(nc,nsite) :: mx_itr, dmx_dz, ndmxdz, dmx_d2, ndmxd2 + REAL, DIMENSION(nc,nsite) :: dmx_d3, ndmxd3, dmx_d4, ndmxd4 + REAL :: err_sum, sum0, sum1, sum2, sum3, sum4, attenu, tol + REAL :: sum_d1, sum_d2, sum_d3, sum_d4 + REAL :: zdd, zddz, zddz2, zddz3 + REAL :: zqq, zqqz, zqqz2, zqqz3 + REAL :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t/(PI/6.0) +zms = 1.0 -eta + +! m_mean2=0.0 +! lij(1,2)= -0.050 +! lij(2,1)=lij(1,2) +! DO i =1,ncomp +! DO j =1,ncomp +! m_mean2=m_mean2+x(i)*x(j) * (mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij , and derivatives +! dgijdz=d(gij)/d(eta) and dgijd2 = dd(gij)/d(eta)**2 +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + ! j=i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + dgijd2(i,j) = 2.0/zms**3 & + + 6.0*dij_ab(i,j)*z2/z3/zms**4 *(2.0+z3) & + + (2.0*dij_ab(i,j)*z2/z3)**2 /zms**5 *(1.0+4.0*z3+z3*z3) + dgijd3(i,j) = 6.0/zms**4 & + + 18.0*dij_ab(i,j)*z2/z3/zms**5 *(3.0+z3) & + + 12.0*(dij_ab(i,j)*z2/z3/zms**3 )**2 *(3.0+6.0*z3+z3*z3) + dgijd4(i,j) = 24.0/zms**5 & + + 72.0*dij_ab(i,j)*z2/z3/zms**6 *(4.0+z3) & + + 48.0*(dij_ab(i,j)*z2/z3)**2 /zms**7 *(6.0+8.0*z3+z3*z3) + END DO +END DO + + +! ---------------------------------------------------------------------- +! p : hard sphere contribution +! ---------------------------------------------------------------------- +zhs = m_mean* ( z3/zms + 3.0*z1*z2/z0/zms/zms + z2**3 /z0*(3.0-z3)/zms**3 ) +zhsdz = m_mean*( 1.0/zms/zms + 3.0*z1*z2/z0/z3*(1.0+z3)/zms**3 & + + 6.0*z2**3 /z0/z3/zms**4 ) +zhsd2 = m_mean*( 2.0/zms**3 + 6.0*z1*z2/z0/z3*(2.0+z3)/zms**4 & + + 6.0*z2**3 /z0/z3/z3*(1.0+3.0*z3)/zms**5 ) +zhsd3 = m_mean*( 6.0/zms**4 + 18.0*z1*z2/z0/z3*(3.0+z3)/zms**5 & + + 24.0*z2**3 /z0/z3/z3*(2.0+3.0*z3)/zms**6 ) + + +! ---------------------------------------------------------------------- +! p : chain term +! ---------------------------------------------------------------------- +zhc = 0.0 +zhcdz = 0.0 +zhcd2 = 0.0 +zhcd3 = 0.0 +DO i= 1, ncomp + zhc = zhc + x(i)*(1.0-mseg(i))*eta/gij(i,i)* dgijdz(i,i) + zhcdz = zhcdz + x(i)*(1.0-mseg(i)) *(-eta*(dgijdz(i,i)/gij(i,i))**2 & + + dgijdz(i,i)/gij(i,i) + eta/gij(i,i)*dgijd2(i,i)) + zhcd2 = zhcd2 + x(i)*(1.0-mseg(i)) & + *( 2.0*eta*(dgijdz(i,i)/gij(i,i))**3 & + -2.0*(dgijdz(i,i)/gij(i,i))**2 & + -3.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) & + +2.0/gij(i,i)*dgijd2(i,i) +eta/gij(i,i)*dgijd3(i,i) ) + zhcd3 = zhcd3 + x(i)*(1.0-mseg(i)) *( 6.0*(dgijdz(i,i)/gij(i,i))**3 & + -6.0*eta*(dgijdz(i,i)/gij(i,i))**4 & + +12.0*eta/gij(i,i)**3 *dgijdz(i,i)**2 *dgijd2(i,i) & + -9.0/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) +3.0/gij(i,i)*dgijd3(i,i) & + -3.0*eta*(dgijd2(i,i)/gij(i,i))**2 & + -4.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd3(i,i) & + +eta/gij(i,i)*dgijd4(i,i) ) +END DO + +! ---------------------------------------------------------------------- +! p : PC-SAFT dispersion contribution +! note: edI1dz is equal to d(eta*I1)/d(eta), analogous for edI2dz +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I2 = 0.0 + edI1dz = 0.0 + edI2dz = 0.0 + edI1d2 = 0.0 + edI2d2 = 0.0 + edI1d3 = 0.0 + edI2d3 = 0.0 + edI1d4 = 0.0 + edI2d4 = 0.0 + DO m=0,6 + I2 = I2 + bpar(m)*z3**REAL(m) + edI1dz= edI1dz+apar(m)*REAL(m+1)*z3**REAL(m) + edI2dz= edI2dz+bpar(m)*REAL(m+1)*z3**REAL(m) + edI1d2= edI1d2+apar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI2d2= edI2d2+bpar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI1d3= edI1d3+apar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI2d3= edI2d3+bpar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI1d4= edI1d4+apar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + edI2d4= edI2d4+bpar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + c2_con= - c1_con*c1_con & + *(m_mean*(-4.0*eta**2 +20.0*eta+8.0)/zms**5 + (1.0 - m_mean) & + *(2.0*eta**3 +12.0*eta**2 -48.0*eta+40.0) & + /(zms*(2.0-eta))**3 ) + c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( m_mean*(-12.0*eta**2 +72.0*eta+60.0)/zms**6 & + + (1.0 - m_mean) & + *(-6.0*eta**4 -48.0*eta**3 +288.0*eta**2 & + -480.0*eta+264.0) /(zms*(2.0-eta))**4 ) + c4_con= 6.0*c2_con*c3_con/c1_con -6.0*c2_con**3 /c1_con**2 & + - c1_con*c1_con & + *( m_mean*(-48.0*eta**2 +336.0*eta+432.0)/zms**7 & + + (1.0 - m_mean) & + *(24.0*eta**5 +240.0*eta**4 -1920.0*eta**3 & + +4800.0*eta**2 -5280.0*eta+2208.0) /(zms*(2.0-eta))**5 ) + c5_con= 6.0*c3_con**2 /c1_con - 36.0*c2_con**2 /c1_con**2 *c3_con & + + 8.0*c2_con/c1_con*c4_con+24.0*c2_con**4 /c1_con**3 & + - c1_con*c1_con & + *( m_mean*(-240.0*eta**2 +1920.0*eta+3360.0)/zms**8 & + + (1.0 - m_mean) & + *(-120.0*eta**6 -1440.0*eta**5 +14400.0*eta**4 & + -48000.0*eta**3 +79200.0*eta**2 -66240.0*eta+22560.0) & + /(zms*(2.0-eta))**6 ) + + zdsp = - 2.0*PI*rho*edI1dz*order1 & + - PI*rho*order2*m_mean*(c2_con*I2*eta + c1_con*edI2dz) + zdspdz= zdsp/eta - 2.0*PI*rho*edI1d2*order1 & + - PI*rho*order2*m_mean*(c3_con*I2*eta & + + 2.0*c2_con*edI2dz + c1_con*edI2d2) + zdspd2= -2.0*zdsp/eta/eta +2.0*zdspdz/eta & + - 2.0*PI*rho*edI1d3*order1 - PI*rho*order2*m_mean*(c4_con*I2*eta & + + 3.0*c3_con*edI2dz +3.0*c2_con*edI2d2 +c1_con*edI2d3) + zdspd3= 6.0*zdsp/eta**3 -6.0*zdspdz/eta/eta & + + 3.0*zdspd2/eta - 2.0*PI*rho*edI1d4*order1 & + - PI*rho*order2*m_mean*(c5_con*I2*eta & + + 4.0*c4_con*edI2dz +6.0*c3_con*edI2d2 & + + 4.0*c2_con*edI2d3 + c1_con*edI2d4) + + +! ---------------------------------------------------------------------- +! p : SAFT (Chen & Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdspdz = 0.0 + fdspd2 = 0.0 + DO n = 1,4 + DO m = 1,9 + fdspdz = fdspdz + m_mean/tau * dnm(n,m) * (um/t)**REAL(n) *REAL(m)*(eta/tau)**REAL(m-1) + END DO + DO m= 2,9 + fdspd2= fdspd2 + m_mean/tau * dnm(n,m)*(um/t)**REAL(n) *REAL(m)*REAL(m-1) & + * (eta/tau)**REAL(m-2) * 1.0/tau + END DO + END DO + zdsp = eta * fdspdz + zdspdz = (2.0*fdspdz + eta*fdspd2) - zdsp/z3 + +END IF +! --- end of dispersion contribution ----------------------------------- + + +! ---------------------------------------------------------------------- +! p: TPT-1-association accord. to Chapman et al. +! ---------------------------------------------------------------------- +zhb = 0.0 +zhbdz = 0.0 +zhbd2 = 0.0 +zhbd3 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO j = 1, ncomp + DO i = 1, nhb_typ(j) + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + delta(j,k,i,l) = gij(j,k) * ass_d(j,k,i,l) + dq_dz(j,k,i,l) = dgijdz(j,k) * ass_d(j,k,i,l) + dq_d2(j,k,i,l) = dgijd2(j,k) * ass_d(j,k,i,l) + dq_d3(j,k,i,l) = dgijd3(j,k) * ass_d(j,k,i,l) + dq_d4(j,k,i,l) = dgijd4(j,k) * ass_d(j,k,i,l) + END DO + END DO + END DO + END DO + +! --- constants for iteration ------------------------------------------ + attenu = 0.7 + tol = 1.d-10 + IF ( eta < 0.2 ) tol = 1.d-12 + IF ( eta < 0.01 ) tol = 1.d-13 + IF ( eta < 1.E-6) tol = 1.d-15 + max_eval = 1000 + +! --- initialize mx(i,j) ----------------------------------------------- + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + mx(i,j) = 1.0 + dmx_dz(i,j) = 0.0 + dmx_d2(i,j) = 0.0 + dmx_d3(i,j) = 0.0 + dmx_d4(i,j) = 0.0 + END DO + END DO + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + err_sum = tol + 1.0 + DO WHILE ( err_sum > tol .AND. ass_cnt <= max_eval) + ass_cnt = ass_cnt + 1 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + sum0 = 0.0 + sum1 = 0.0 + sum2 = 0.0 + sum3 = 0.0 + sum4 = 0.0 + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + sum0 =sum0 +x(k)*nhb_no(k,l)* mx(k,l)* delta(i,k,j,l) + sum1 =sum1 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_dz(i,k,j,l) & + + dmx_dz(k,l)* delta(i,k,j,l)) + sum2 =sum2 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d2(i,k,j,l) & + + 2.0*dmx_dz(k,l)* dq_dz(i,k,j,l) & + + dmx_d2(k,l)* delta(i,k,j,l)) + sum3 =sum3 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d3(i,k,j,l) & + + 3.0*dmx_dz(k,l)* dq_d2(i,k,j,l) & + + 3.0*dmx_d2(k,l)* dq_dz(i,k,j,l) & + + dmx_d3(k,l)* delta(i,k,j,l)) + sum4 =sum4 + x(k)*nhb_no(k,l)*( mx(k,l)* dq_d4(i,k,j,l) & + + 4.0*dmx_dz(k,l)* dq_d3(i,k,j,l) & + + 6.0*dmx_d2(k,l)* dq_d2(i,k,j,l) & + + 4.0*dmx_d3(k,l)* dq_dz(i,k,j,l) & + + dmx_d4(k,l)* delta(i,k,j,l)) + END DO + END DO + mx_itr(i,j)= 1.0 / (1.0 + sum0 * rho) + ndmxdz(i,j)= -(mx_itr(i,j)*mx_itr(i,j))* (sum0/z3t +sum1*rho) + ndmxd2(i,j)= + 2.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxdz(i,j) & + - (mx_itr(i,j)*mx_itr(i,j)) * (2.0/z3t*sum1 + rho*sum2) + ndmxd3(i,j)= - 6.0/mx_itr(i,j)**2 *ndmxdz(i,j)**3 & + + 6.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd2(i,j) - mx_itr(i,j)*mx_itr(i,j) & + * (3.0/z3t*sum2 + rho*sum3) + ndmxd4(i,j)= 24.0/mx_itr(i,j)**3 *ndmxdz(i,j)**4 & + -36.0/mx_itr(i,j)**2 *ndmxdz(i,j)**2 *ndmxd2(i,j) & + +6.0/mx_itr(i,j)*ndmxd2(i,j)**2 & + +8.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd3(i,j) - mx_itr(i,j)**2 & + *(4.0/z3t*sum3 + rho*sum4) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,j) - mx(i,j)) & + + ABS(ndmxdz(i,j) - dmx_dz(i,j)) + ABS(ndmxd2(i,j) - dmx_d2(i,j)) + mx(i,j) = mx_itr(i,j)*attenu + mx(i,j) * (1.0-attenu) + dmx_dz(i,j) = ndmxdz(i,j)*attenu + dmx_dz(i,j) * (1.0-attenu) + dmx_d2(i,j) = ndmxd2(i,j)*attenu + dmx_d2(i,j) * (1.0-attenu) + dmx_d3(i,j) = ndmxd3(i,j)*attenu + dmx_d3(i,j) * (1.0-attenu) + dmx_d4(i,j) = ndmxd4(i,j)*attenu + dmx_d4(i,j) * (1.0-attenu) + END DO + END DO + END DO + + IF ( ass_cnt >= max_eval .AND. err_sum > SQRT(tol) ) THEN + WRITE (*,'(a,2G15.7)') 'P_EOS: Max_eval violated (mx) Err_Sum= ',err_sum,tol + ! stop + END IF + + + ! --- calculate the hydrogen-bonding contribution -------------------- + DO i = 1, ncomp + sum_d1 = 0.0 + sum_d2 = 0.0 + sum_d3 = 0.0 + sum_d4 = 0.0 + DO j = 1, nhb_typ(i) + sum_d1= sum_d1 +nhb_no(i,j)* dmx_dz(i,j)*(1.0/mx(i,j)-0.5) + sum_d2= sum_d2 +nhb_no(i,j)*(dmx_d2(i,j)*(1.0/mx(i,j)-0.5) & + -(dmx_dz(i,j)/mx(i,j))**2 ) + sum_d3= sum_d3 +nhb_no(i,j)*(dmx_d3(i,j)*(1.0/mx(i,j)-0.5) & + -3.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d2(i,j) + 2.0*(dmx_dz(i,j)/mx(i,j))**3 ) + sum_d4= sum_d4 +nhb_no(i,j)*(dmx_d4(i,j)*(1.0/mx(i,j)-0.5) & + -4.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d3(i,j) & + + 12.0/mx(i,j)**3 *dmx_dz(i,j)**2 *dmx_d2(i,j) & + - 3.0/mx(i,j)**2 *dmx_d2(i,j)**2 - 6.0*(dmx_dz(i,j)/mx(i,j))**4 ) + END DO + zhb = zhb + x(i) * eta * sum_d1 + zhbdz = zhbdz + x(i) * eta * sum_d2 + zhbd2 = zhbd2 + x(i) * eta * sum_d3 + zhbd3 = zhbd3 + x(i) * eta * sum_d4 + END DO + zhbdz = zhbdz + zhb/eta + zhbd2 = zhbd2 + 2.0/eta*zhbdz-2.0/eta**2 *zhb + zhbd3 = zhbd3 - 6.0/eta**2 *zhbdz+3.0/eta*zhbd2 + 6.0/eta**3 *zhb +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! p: polar terms +! ---------------------------------------------------------------------- +CALL P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) + + +! ---------------------------------------------------------------------- +! compressibility factor z and total p +! as well as derivatives d(z)/d(eta) and d(p)/d(eta) with unit [Pa] +! ---------------------------------------------------------------------- +zges = 1.0 + zhs + zhc + zdsp + zhb + zdd + zqq + zdq +zgesdz = zhsdz + zhcdz + zdspdz + zhbdz + zddz + zqqz + zdqz +zgesd2 = zhsd2 + zhcd2 + zdspd2 + zhbd2 + zddz2 +zqqz2+zdqz2 +zgesd3 = zhsd3 + zhcd3 + zdspd3 + zhbd3 + zddz3 +zqqz3+zdqz3 + +pges = zges *rho *(kbol*t)/1.d-30 +pgesdz = ( zgesdz*rho + zges*rho/z3 )*(kbol*t)/1.d-30 +pgesd2 = ( zgesd2*rho + 2.0*zgesdz*rho/z3 )*(kbol*t)/1.d-30 +pgesd3 = ( zgesd3*rho + 3.0*zgesd2*rho/z3 )*(kbol*t)/1.d-30 + +END SUBROUTINE P_EOS + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(OUT) :: fdd_rk, fqq_rk, fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd_rk = 0.0 + fqq_rk = 0.0 + fdq_rk = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) + ! IF (dd_term == 'SF') CALL PHI_DD_SAAGER_FISCHER( k ) + + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL PHI_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL PHI_QQ_GROSS( k, z3_rk, fqq_rk ) + + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) + + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE PHI_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdd_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdd2, fdd3, fdd2x, fdd3x + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd4, Idd2x, Idd4x + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3x +! ---------------------------------------------------------------------- + + + fdd_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2x(i,j) = 0.0 + Idd4x(i,j) = 0.0 + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + DO m=0,4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m)*z3**m + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m)*z3**m + Idd2x(i,j) =Idd2x(i,j)+ ddp2(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + Idd4x(i,j) =Idd4x(i,j)+ ddp4(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Idd3(i,j,l) = 0.0 + Idd3x(i,j,l) = 0.0 + IF (parame(l,6) /= 0.0) THEN + DO m=0,4 + Idd3(i,j,l) =Idd3(i,j,l) +ddp3(i,j,l,m)*z3**m + Idd3x(i,j,l)=Idd3x(i,j,l)+ddp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -PI + factor3= -4.0/3.0*PI**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2x = 0.0 + fdd3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(i,k)**3 + eij = (parame(i,3)*parame(k,3))**0.5 + fdd2x = fdd2x + factor2*xijfa_x*( Idd2(i,k) + eij/t*Idd4(i,k) ) + DO j = 1, ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,j)**3 + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j) ) + fdd2x =fdd2x +factor2*xijfa*(Idd2x(i,j)+eij/t*Idd4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t/sig_ij(i,j) & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,k) & + *3.0* uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(j,k) + fdd3x=fdd3x+factor3*xijkf_x*Idd3(i,j,k) + DO l=1,ncomp + IF (parame(l,6) /= 0.0) THEN + xijkfa= x(i)*rho*uij(i,i)/t*my2dd(i)*sig_ij(i,i)**3 & + *x(j)*rho*uij(j,j)/t*my2dd(j)*sig_ij(j,j)**3 & + *x(l)*rho*uij(l,l)/t*my2dd(l)*sig_ij(l,l)**3 & + /sig_ij(i,j)/sig_ij(i,l)/sig_ij(j,l) + fdd3 =fdd3 + factor3 * xijkfa *Idd3(i,j,l) + fdd3x =fdd3x + factor3 * xijkfa *Idd3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2x /= 0.0 .AND. fdd3x /= 0.0)THEN + + fdd_rk = fdd2* (fdd2*fdd2x - 2.0*fdd3*fdd2x+fdd2*fdd3x) / (fdd2-fdd3)**2 + + END IF + +END SUBROUTINE PHI_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_QQ_GROSS( k, z3_rk, fqq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fqq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fqq2, fqq3, fqq2x, fqq3x + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4, Iqq2x, Iqq4x + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3x +! ---------------------------------------------------------------------- + + + fqq_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_QQ_GROSS: do not use dimensionless units' + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2x(i,j) = 0.0 + Iqq4x(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m) * z3**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m) * z3**m + Iqq2x(i,j) = Iqq2x(i,j) + qqp2(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + Iqq4x(i,j) = Iqq4x(i,j) + qqp4(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Iqq3(i,j,l) = 0.0 + Iqq3x(i,j,l) = 0.0 + IF (parame(l,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,l) = Iqq3(i,j,l) + qqp3(i,j,l,m)*z3**m + Iqq3x(i,j,l) = Iqq3x(i,j,l) + qqp3(i,j,l,m)*REAL(m) *z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/16.0*PI + factor3= 9.0/16.0*PI**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2x = 0.0 + fqq3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(i,k)**7.0 + eij = (parame(i,3)*parame(k,3))**0.5 + fqq2x =fqq2x +factor2*xijfa_x*(Iqq2(i,k)+eij/t*Iqq4(i,k)) + DO j=1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2x =fqq2x +factor2*xijfa*(Iqq2x(i,j)+eij/t*Iqq4x(i,j)) + ! ------------------ + xijkf_x=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *3.0* uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3x = fqq3x + factor3*xijkf_x*Iqq3(i,j,k) + DO l = 1, ncomp + IF (parame(l,7) /= 0.0) THEN + xijkfa=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,l)**3 & + *x(l)*rho*uij(l,l)*qq2(l)*sig_ij(l,l)**5 /t/sig_ij(j,l)**3 + fqq3 =fqq3 + factor3 * xijkfa *Iqq3(i,j,l) + fqq3x =fqq3x + factor3 * xijkfa *Iqq3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2x /= 0.0 .AND. fqq3x /= 0.0) THEN + fqq_rk = fqq2* (fqq2*fqq2x - 2.0*fqq3*fqq2x+fqq2*fqq3x) / (fqq2-fqq3)**2 + END IF + +END SUBROUTINE PHI_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdq2, fdq3, fdq2x, fdq3x + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4, Idq2x, Idq4x + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3x +! ---------------------------------------------------------------------- + + fdq_rk = 0.0 + z3 = eta + DO i=1,ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2x(i,j) = 0.0 + Idq4x(i,j) = 0.0 + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*z3**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*z3**m + Idq2x(i,j) = Idq2x(i,j) + dqp2(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + Idq4x(i,j) = Idq4x(i,j) + dqp4(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + END DO + DO l = 1, ncomp + Idq3(i,j,l) = 0.0 + Idq3x(i,j,l) = 0.0 + DO m = 0, 4 + Idq3(i,j,l) =Idq3(i,j,l) +dqp3(i,j,l,m)*z3**m + Idq3x(i,j,l)=Idq3x(i,j,l)+dqp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END DO + END DO + END DO + + factor2= -9.0/4.0*PI + factor3= PI**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2x = 0.0 + fdq3x = 0.0 + DO i = 1, ncomp + xijfa_x = x(i)*rho*( myfac(i)*q_fac(k) + myfac(k)*q_fac(i) ) / sig_ij(i,k)**5 + eij = (parame(i,3)*parame(k,3))**0.5 + fdq2x =fdq2x +factor2*xijfa_x*(Idq2(i,k)+eij/t*Idq4(i,k)) + DO j=1,ncomp + xijfa =x(i)*rho*myfac(i) * x(j)*rho*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2x =fdq2x +factor2*xijfa*(Idq2x(i,j) +eij/t*Idq4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*x(j)*rho/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(k)*myfac(j) & + + myfac(k)*q_fac(i)*myfac(j) +myfac(i)*q_fac(j)*q_fac(k)*1.1937350 & + +myfac(i)*q_fac(k)*q_fac(j)*1.193735 & + +myfac(k)*q_fac(i)*q_fac(j)*1.193735 ) + fdq3x = fdq3x + factor3*xijkf_x*Idq3(i,j,k) + DO l = 1, ncomp + xijkfa=x(i)*rho*x(j)*rho*x(l)*rho/(sig_ij(i,j)*sig_ij(i,l)*sig_ij(j,l))**2 & + *( myfac(i)*q_fac(j)*myfac(l) & + +myfac(i)*q_fac(j)*q_fac(l)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa *Idq3(i,j,l) + fdq3x =fdq3x + factor3 * xijkfa *Idq3x(i,j,l) + END DO + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2x /= 0.0 .AND. fdq3x /= 0.0)THEN + + fdq_rk = fdq2* (fdq2*fdq2x - 2.0*fdq3*fdq2x+fdq2*fdq3x) / (fdq2-fdq3)**2 + + END IF + +END SUBROUTINE PHI_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_NUMERICAL +! + USE EOS_VARIABLES + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + REAL :: dzetdv, eta_0, dist, fact + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: df_dr, df_drdr, pideal, dpiddz + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +IF (eta > 0.1) THEN + fact = 1.0 +ELSE IF (eta <= 0.1 .AND. eta > 0.01) THEN + fact = 10.0 +ELSE + fact = 10.0 +END IF +dist = eta*3.d-3 *fact +! dist = eta*4.d-3 *fact +!***************************** +! fuer MC simulation: neues dist: +! dist = eta*5.d-3*fact + +eta_0 = eta +eta = eta_0 - 2.0*dist +CALL F_NUMERICAL +fres1 = fres +tfr_1 = tfr +eta = eta_0 - dist +CALL F_NUMERICAL +fres2 = fres +tfr_2 = tfr +eta = eta_0 + dist +CALL F_NUMERICAL +fres3 = fres +tfr_3 = tfr +eta = eta_0 + 2.0*dist +CALL F_NUMERICAL +fres4 = fres +tfr_4 = tfr +eta = eta_0 +CALL F_NUMERICAL +fres5 = fres +tfr_5 = tfr + +!--------------------------------------------------------- +! ptfr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! & *dzetdv*(KBOL*T)/1.E-30 +! ztfr =ptfr /( rho * (KBOL*t) / 1.E-30) +! ptfrdz = (-tfr_4+16.0*tfr_3-3.d1*tfr_5+16.0*tfr_2-tfr_1) +! & /(12.0*(dist**2 ))* dzetdv*(KBOL*T)/1.E-30 +! & + (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1) +! & /(12.0*dist) * 2.0 *eta*6.0/PI/D +! & *(KBOL*T)/1.E-30 +! ztfrdz=ptfrdz/( rho*(kbol*T)/1.E-30 ) - ztfr/eta +! write (*,*) eta,ztfr,ztfrdz + +! dtfr_dr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! write (*,*) eta,dtfr_dr +! stop +!--------------------------------------------------------- + +df_dr = (-fres4+8.0*fres3-8.0*fres2+fres1) / (12.0*dist) +df_drdr = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +dzetdv = eta*rho + +pges = (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) *dzetdv*(kbol*t)/1.E-30 + +dpiddz = 1.0/z3t*(kbol*t)/1.E-30 +pgesdz = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 ))* dzetdv*(kbol*t)/1.E-30 & + + (-fres4+8.0*fres3-8.0*fres2+fres1) /(12.0*dist) * 2.0 *rho & + *(kbol*t)/1.E-30 + dpiddz + +pgesd2 = (fres4-2.0*fres3+2.0*fres2-fres1) /(2.0*dist**3 ) & + * dzetdv*(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) & + * 4.0 *rho *(kbol*t)/1.E-30 + (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) * 2.0 /z3t *(kbol*t)/1.E-30 +pgesd3 = (fres4-4.0*fres3+6.0*fres5-4.0*fres2+fres1) /(dist**4 ) & + * dzetdv*(kbol*t)/1.E-30 + (fres4-2.0*fres3+2.0*fres2-fres1) & + /(2.0*dist**3 ) * 6.0 *rho *(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*dist**2 )* 6.0 /z3t *(kbol*t)/1.E-30 + +!------------------p ideal------------------------------------ +pideal = rho * (kbol*t) / 1.E-30 + +!------------------p summation, p comes out in Pa ------------ +pges = pideal + pges + +END SUBROUTINE P_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_numerical +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1,fres2,fres3,fres4,fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: f_dt, f_dtdt, f_dr, f_drdr, f_drdt +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +f_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +f_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) + +s_res = (- f_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*f_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*f_dtdt + 2.0*f_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_1 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_2 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_3 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_4 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL + +f_dr = pges / (eta*rho_0*(KBOL*T)/1.E-30) +f_drdr = pgesdz/ (eta*rho_0*(KBOL*T)/1.E-30) - f_dr*2.0/eta - 1.0/eta**2 + +f_drdt = ( - f_4 + 8.0*f_3 - 8.0*f_2 + f_1 ) / ( 12.0*dist ) + +cp_res = cv_res - RGAS + RGAS*( zges + eta*t*f_drdt)**2 / (1.0 + 2.0*eta*f_dr + eta**2 *f_drdr) +! write (*,*) cv_res,cp_res,eta + + +END SUBROUTINE H_numerical + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_POLAR ( fdd, fqq, fdq ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fdd, fqq, fdq +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL F_DD_GROSS_VRABEC( fdd ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL F_QQ_GROSS( fqq ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL F_DQ_VRABEC_GROSS( fdq ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE F_POLAR + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PRESSURE_SPINODAL +! +! iterates the density until the derivative of pressure 'pges' to +! density is equal to zero. A Newton-scheme is used for determining +! the root to the objective function. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRESSURE_SPINODAL +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, max_i + REAL :: eta_iteration + REAL :: error, acc_i, delta_eta +! ---------------------------------------------------------------------- + +acc_i = 1.d-6 +max_i = 30 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- + +error = acc_i + 1.0 +DO WHILE ( ABS(error) > acc_i .AND. i < max_i ) + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = pgesdz + + delta_eta = error/ pgesd2 + IF ( delta_eta > 0.02 ) delta_eta = 0.02 + IF ( delta_eta < -0.02 ) delta_eta = -0.02 + + eta_iteration = eta_iteration - delta_eta + ! write (*,'(a,i3,3G18.10)') 'iter',i, error, eta_iteration, pgesdz + + IF (eta_iteration > 0.9) eta_iteration = 0.5 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + +END DO + +eta = eta_iteration + +END SUBROUTINE PRESSURE_SPINODAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_IDEAL_GAS ( fid ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, x, rho, PI, KBOL, NAv + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fid +!--------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi +!---------------------------------------------------------------------- + + !h_Planck = 6.62606896E-34 ! Js + DO i = 1, ncomp + rhoi(i) = x(i) * rho + ! debroglie(i) = h_Planck *1d10 & ! in units Angstrom + ! *SQRT( 1.0 / (2.0*PI *1.0 / NAv / 1000.0 * KBOL*T) ) + ! ! *SQRT( 1.0 / (2.0*PI *mm(i) /NAv/1000.0 * KBOL*T) ) + ! fid = fid + x(i) * ( LOG(rhoi(i)*debroglie(i)**3) - 1.0 ) + fid = fid + x(i) * ( LOG(rhoi(i)) - 1.0 ) + END DO + + END SUBROUTINE F_IDEAL_GAS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_HARD_SPHERE ( m_mean2, fhs ) +! + USE EOS_VARIABLES, ONLY: z0t, z1t, z2t, z3t, eta, rho + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: m_mean2 + REAL, INTENT(IN OUT) :: fhs +!--------------------------------------------------------------------- + REAL :: z0, z1, z2, z3, zms +!---------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + fhs= m_mean2*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + + END SUBROUTINE F_HARD_SPHERE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT1 ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, & + rho, eta, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + fhc = 0.0 + DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) + END DO + + END SUBROUTINE F_CHAIN_TPT1 + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT_D ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, rho, eta, & + dhs, mseg, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL, DIMENSION(nc) :: gij_hd + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + DO i = 1, ncomp + gij_hd(i) = 1.0/(2.0*zms) + 3.0*dij_ab(i,i)*z2 / zms**2 + END DO + + fhc = 0.0 + DO i = 1, ncomp + IF ( mseg(i) >= 2.0 ) THEN + fhc = fhc - x(i) * ( mseg(i)/2.0 * LOG( gij(i,i) ) + ( mseg(i)/2.0 - 1.0 ) * LOG( gij_hd(i)) ) + ELSE + fhc = fhc + x(i) * ( 1.0 - mseg(i) ) * LOG( gij(i,i) ) + END IF + END DO + + END SUBROUTINE F_CHAIN_TPT_D + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, rho, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: a20, b20, c20, a30, b30, c30 + REAL :: sum1, sum2, am, bm, cm + REAL :: zms +!--------------------------------------------------------------------- + + zms = 1.0 - eta + + sum1 = SUM( x(1:ncomp)*(mseg(1:ncomp)-1.0) ) + sum2 = SUM( x(1:ncomp)/mseg(1:ncomp)*(mseg(1:ncomp)-1.0)*(mseg(1:ncomp)-2.0) ) + + a2 = 0.45696 + a3 = -0.74745 + b2 = 2.10386 + b3 = 3.49695 + c2 = 1.75503 + c3 = 4.83207 + a20 = - a2 + b2 - 3.0*c2 + b20 = - a2 - b2 + c2 + c20 = c2 + a30 = - a3 + b3 - 3.0*c3 + b30 = - a3 - b3 + c3 + c30 = c3 + am = (3.0 + a20) * sum1 + a30 * sum2 + bm = (1.0 + b20) * sum1 + b30 * sum2 + cm = (1.0 + c20) * sum1 + c30 * sum2 + + fhc = - ( (am*eta - bm) / (2.0*zms) + bm/2.0/zms**2 - cm *LOG(ZMS) ) + + + END SUBROUTINE F_CHAIN_HU_LIU + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU_RC ( fhs, fhc ) +! + USE EOS_VARIABLES, ONLY: mseg, chiR, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: fhs + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: para1,para2,para3,para4 + REAL :: aLH,bLH,cLH +!--------------------------------------------------------------------- + +! This routine is only for pure components + + a2 = 0.45696 + b2 = 2.10386 + c2 = 1.75503 + + para1 = -0.74745 + para2 = 0.299154629727814 + para3 = 1.087271036653154 + para4 = -0.708979110326831 + a3 = para1 + para2*chiR(1) + para3*chiR(1)**2 + para4*chiR(1)**3 + b3 = 3.49695 - (3.49695 + 0.317719074806190)*chiR(1) + c3 = 4.83207 - (4.83207 - 3.480163780334421)*chiR(1) + + aLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*a2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*a3 ) + bLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*b2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*b3 ) + cLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*c2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*c3 ) + + fhc = ((3.0 + aLH - bLH + 3.0*cLH)*eta - (1.0 + aLH + bLH - cLH)) / (2.0*(1.0-eta)) + & + (1.0 + aLH + bLH - cLH) / ( 2.0*(1.0-eta)**2 ) + (cLH - 1.0)*LOG(1.0-eta) + + fhc = fhc - fhs + + END SUBROUTINE F_CHAIN_HU_LIU_RC + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_PCSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: PI, rho, eta, z0t, apar, bpar, order1, order2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: m + REAL :: I1, I2, c1_con, z3, zms, m_mean +!--------------------------------------------------------------------- + + z3 = eta + zms = 1.0 - eta + m_mean = z0t / ( PI / 6.0 ) + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m) * z3**m + I2 = I2 + bpar(m) * z3**m + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0-m_mean)*( 20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 )/(zms*(2.0-z3))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + + END SUBROUTINE F_DISP_PCSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_CKSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, PI, TAU, t, rho, eta, x, z0t, mseg, vij, uij, parame, um + USE EOS_CONSTANTS, ONLY: DNM + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: i, j, n, m + REAL :: zmr, nmr, m_mean +!--------------------------------------------------------------------- + + m_mean = z0t / ( PI / 6.0 ) + + DO i = 1, ncomp + DO j = 1, ncomp + vij(i,j)=(0.5*((parame(i,2)*(1.0-0.12 *EXP(-3.0*parame(i,3)/t))**3 )**(1.0/3.0) & + +(parame(j,2)*(1.0-0.12 *EXP(-3.0*parame(j,3)/t))**3 )**(1.0/3.0)))**3 + END DO + END DO + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr + fdsp = 0.0 + DO n = 1, 4 + DO m = 1, 9 + fdsp = fdsp + DNM(n,m) * (um/t)**n *(eta/TAU)**m + END DO + END DO + fdsp = m_mean * fdsp + + + END SUBROUTINE F_DISP_CKSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ASSOCIATION ( eps_kij, k_kij, fhb ) +! + USE EOS_VARIABLES, ONLY: nc, nsite, ncomp, t, z0t, z1t, z2t, z3t, rho, eta, x, & + parame, sig_ij, dij_ab, gij, nhb_typ, mx, nhb_no + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: eps_kij, k_kij + REAL, INTENT(IN OUT) :: fhb +!--------------------------------------------------------------------- + LOGICAL :: assoc + INTEGER :: i, j, k, l, no, ass_cnt, max_eval + REAL, DIMENSION(nc,nc) :: kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nsite,nc,nsite) :: delta + REAL, DIMENSION(nc,nsite) :: mx_itr + REAL :: err_sum, sum0, amix, tol, ass_s1, ass_s2 + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + assoc = .false. + DO i = 1,ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + + DO i = 1, ncomp + IF ( NINT(parame(i,12)) /= 0 ) THEN + nhb_typ(i) = NINT( parame(i,12) ) + kap_hb(i,i) = parame(i,13) + no = 0 + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(i) + eps_hb(i,i,k,l) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO k = 1,nhb_typ(i) + nhb_no(i,k) = parame(i,(14+no)) + no = no + 1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0.AND.nhb_typ(j) /= 0) ) THEN + ! kap_hb(i,j)= (kap_hb(i,i)+kap_hb(j,j))/2.0 + ! kap_hb(i,j)= ( ( kap_hb(i,i)**(1.0/3.0) + kap_hb(j,j)**(1.0/3.0) )/2.0 )**3 + kap_hb(i,j) = (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + / (0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF ( k /= l .AND. nhb_typ(i) >= 2 .AND. nhb_typ(j) >= 2 ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)*eps_hb(j,j,l,k))**0.5 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + ELSE IF ( nhb_typ(i) == 1 .AND. l > k ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(j,i,l,k) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + eps_hb(j,i,l,k) = eps_hb(j,i,l,k)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + +!-----setting the self-association to zero for ionic compounds------ + DO i = 1,ncomp + IF ( parame(i,10) /= 0) kap_hb(i,i)=0.0 + DO j = 1,ncomp + IF ( parame(i,10) /= 0 .AND. parame(j,10) /= 0 ) kap_hb(i,j) = 0.0 + END DO + END DO + ! kap_hb(1,2)=0.050 + ! kap_hb(2,1)=0.050 + ! eps_hb(2,1,1,1)=465.0 + ! eps_hb(1,2,1,1)=465.0 + ! nhb_typ(1) = 1 + ! nhb_typ(2) = 1 + ! nhb_no(1,1)= 1.0 + ! nhb_no(2,1)= 1.0 + + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,k,j,l)=gij(i,j)*kap_hb(i,j)*(EXP(eps_hb(i,j,k,l)/t)-1.0) *sig_ij(i,j)**3 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! IF ((i+j).EQ.3) delta(i,k,j,l)=94.0 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + END DO + END DO + IF ( mx(i,k) == 0.0 ) mx(i,k) = 1.0 + END DO + END DO + +!------constants for Iteration --------------------------------------- + amix = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-14 + max_eval = 200 + +! --- Iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum0 = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum0 = sum0 + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,k,j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum0*rho) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS( mx_itr(i,k) - mx(i,k) ) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * amix + mx(i,k) * (1.0 - amix) + IF ( mx(i,k) <= 0.0 ) mx(i,k)=1.E-50 + IF ( mx(i,k) > 1.0 ) mx(i,k)=1.0 + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF ( ass_cnt >= max_eval ) WRITE(*,*) 'F_NUMERICAL: Max_eval violated = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG(mx(i,k)) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1/2.0 ) + END DO + + END IF + + END SUBROUTINE F_ASSOCIATION + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_DIPOLE_TBH ( fhend ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, eta, x, z0t, parame, uij, sig_ij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhend +!--------------------------------------------------------------------- + INTEGER :: i, dipole, ions + REAL :: m_mean + REAL :: fh32, fh2, fh52, fh3 + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: polabil, ydd, kappa, x_dipol, x_ions + REAL, DIMENSION(nc) :: my2dd, z_ii, e_cd, x_dd, x_ii + REAL :: sig_c, sig_d, sig_cd, r_s + REAL :: I0cc, I1cc, I2cc, Icd, Idd + REAL :: Iccc, Iccd, Icdd, Iddd +!--------------------------------------------------------------------- + +m_mean = z0t / ( PI / 6.0 ) + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + + 2.78E1*(t/293.15))*rho_sol**2 & + + (-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + - 1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + + 8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Dipole-Ion Term----------------------------------- +dipole = 0 +ions = 0 +fhend = 0.0 +DO i = 1, ncomp + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*sig_ij(i,i)**3 *1.E-30) + dipole = 1 + ELSE + my2dd(i) = 0.0 + END IF + + z_ii(i) = parame(i,10) + IF ( z_ii(i) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + e_cd(i) = ( parame(i,10)*e_elem* 1.E5 / SQRT(1.11265005) )**2 & + / ( uij(i,i)*kbol*sig_ij(i,i)*1.E-10 ) + ions = 1 + ELSE + e_cd(i) = 0.0 + END IF +END DO + + +IF ( dipole == 1 .AND. ions == 1 ) THEN + + ydd = 0.0 + kappa = 0.0 + x_dipol = 0.0 + x_ions = 0.0 + polabil = 0.0 + DO i = 1, ncomp + ydd = ydd + x(i)*(parame(i,6))**2 *1.E-49/ (kbol*t*1.E-30) + kappa = kappa + x(i) & + *(parame(i,10)*e_elem* 1.E5/SQRT(1.11265005))**2 /(KBOL*t*1.E-10) + IF (parame(i,10) /= 0.0) THEN + x_ions = x_ions + x(i) + ELSE + polabil = polabil + 4.0*PI*x(i)*rho*1.4573 *1.E-30 & + / (sig_ij(3,3)**3 *1.E-30) + END IF + IF (parame(i,6) /= 0.0) x_dipol= x_dipol+ x(i) + END DO + ydd = ydd * 4.0/9.0 * PI * rho + kappa = SQRT( 4.0 * PI * rho * kappa ) + + fh2 = 0.0 + sig_c = 0.0 + sig_d = 0.0 + DO i=1,ncomp + x_ii(i) = 0.0 + x_dd(i) = 0.0 + IF(parame(i,10) /= 0.0 .AND. x_ions /= 0.0) x_ii(i) = x(i)/x_ions + IF(parame(i,6) /= 0.0 .AND. x_dipol /= 0.0) x_dd(i) = x(i)/x_dipol + sig_c = sig_c + x_ii(i)*parame(i,2) + sig_d = sig_d + x_dd(i)*parame(i,2) + END DO + sig_cd = 0.5 * (sig_c + sig_d) + + r_s = 0.0 + ! DO i=1,ncomp + ! r_s=r_s + rho * x(i) * dhs(i)**3 + ! END DO + r_s = eta*6.0 / PI / m_mean + + I0cc = - (1.0 + 0.97743 * r_s + 0.05257*r_s*r_s) & + /(1.0 + 1.43613 * r_s + 0.41580*r_s*r_s) + ! I1cc = - (10.0 - 2.0*z3 + z3*z3) /20.0/(1.0 + 2.0*z3) + I1cc = - (10.0 - 2.0*r_s*pi/6.0 + r_s*r_s*pi/6.0*pi/6.0) & + /20.0/(1.0 + 2.0*r_s*pi/6.0) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + ! I2cc = + (z3-4.0)*(z3*z3+2.0) /24.0/(1.0+2.0*z3) + ! relation of Stell and Lebowitz + I2cc = -0.33331+0.7418*r_s - 1.2047*r_s*r_s & + + 1.6139*r_s**3 - 1.5487*r_s**4 + 0.6626*r_s**5 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Icd = (1.0 + 0.79576 *r_s + 0.104556 *r_s*r_s) & + /(1.0 + 0.486704*r_s - 0.0222903*r_s*r_s) + Idd = (1.0 + 0.18158*r_s - 0.11467*r_s*r_s) & + /3.0/(1.0 - 0.49303*r_s + 0.06293*r_s*r_s) + Iccc= 3.0*(1.0 - 1.05560*r_s + 0.26591*r_s*r_s) & + /2.0/(1.0 + 0.53892*r_s - 0.94236*r_s*r_s) + Iccd= 11.0*(1.0 + 2.25642 *r_s + 0.05679 *r_s*r_s) & + /6.0/(1.0 + 2.64178 *r_s + 0.79783 *r_s*r_s) + Icdd= 0.94685*(1.0 + 2.97323 *r_s + 3.11931 *r_s*r_s) & + /(1.0 + 2.70186 *r_s + 1.22989 *r_s*r_s) + Iddd= 5.0*(1.0 + 1.12754*r_s + 0.56192*r_s*r_s) & + /24.0/(1.0 - 0.05495*r_s + 0.13332*r_s*r_s) + + IF ( sig_c <= 0.0 ) WRITE (*,*) 'error in Henderson ion term' + + fh32= - kappa**3 /(12.0*pi*rho) + fh2 = - 3.0* kappa**2 * ydd*Icd /(8.0*pi*rho) / sig_cd & + - kappa**4 *sig_c/(16.0*pi*rho)*I0cc + IF (sig_d /= 0.0) fh2 = fh2 - 27.0* ydd * ydd*Idd & + /(8.0*pi*rho) / sig_d**3 + fh52= (3.0*kappa**3 * ydd + kappa**5 *sig_c**2 *I1cc) & + /(8.0*pi*rho) + fh3 = - kappa**6 * sig_c**3 /(8.0*pi*rho) *(I2cc-Iccc/6.0) & + + kappa**4 * ydd *sig_c/(16.0*pi*rho) & + *( (6.0+5.0/3.0*sig_d/sig_c)*I0cc + 3.0*sig_d/sig_c*Iccd ) & + + 3.0*kappa**2 * ydd*ydd /(8.0*pi*rho) / sig_cd & + *( (2.0-3.21555*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + IF (sig_d /= 0.0) fh3 = fh3 + 27.0*ydd**3 & + /(16.0*pi*rho)/sig_d**3 *Iddd + + fhend = ( fh32 + (fh32*fh32*fh3-2.0*fh32*fh2*fh52+fh2**3 ) & + /(fh2*fh2-fh32*fh52) ) & + / ( 1.0 + (fh32*fh3-fh2*fh52) /(fh2*fh2-fh32*fh52) & + - (fh2*fh3-fh52*fh52) /(fh2*fh2-fh32*fh52) ) +!---------- +! fH32= - kappa**3 /(12.0*PI*rho) +! fH2 = - 3.0* kappa**2 * ydd*Icd /(8.0*PI*rho) / sig_cd +! fH52= (3.0*kappa**3 * ydd)/(8.0*PI*rho) +! fH3 = + kappa**4 * ydd *sig_c/(16.0*PI*rho) & +! *( (6.0+5.0/3.0*sig_d/sig_c)*0.0*I0cc + 3.0*sig_d/sig_c*Iccd) & +! + 3.0*kappa**2 * ydd*ydd /(8.0*PI*rho) / sig_cd & +! *( (2.0-3.215550*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + +! fHcd = ( + (fH32*fH32*fH3-2.0*fH32*fH2*fH52+fH2**3 ) & +! /(fH2*fH2-fH32*fH52) ) & +! / ( 1.0 + (fH32*fH3-fH2*fH52) /(fH2*fH2-fH32*fH52) & +! - (fH2*fH3-fH52*fH52) /(fH2*fH2-fH32*fH52) ) + +END IF + + END SUBROUTINE F_ION_DIPOLE_TBH + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_PrimMSA ( fcc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, x, parame, mx + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fcc +!--------------------------------------------------------------------- + INTEGER :: i, j, cc_it, ions + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: x_ions + REAL :: cc_sig1, cc_sig2, cc_sig3 + REAL, DIMENSION(nc) :: z_ii, x_ii, sigm_i, my2dd + REAL :: alpha_2, kappa, ii_par + REAL :: cc_omeg, p_n, q2_i, cc_q2, cc_gam + REAL :: cc_error(2), cc_delt + REAL :: rhs, lambda, lam_s +!--------------------------------------------------------------------- + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + +2.78E1*(t/293.15))*rho_sol**2 & + +(-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + -1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + +8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Ion-Ion: primitive MSA ------------------------------- +! the (dipole moment)**2 [my**2] corresponds to an attraction from +! point charges of [ SUM(xi * zi**2 * e_elem**2) * 3 * di**2 ] + +! parame(ion,6))**2 * 1.E-49 / (kbol*T) +! = (e_elem* 1.E5/SQRT(1.112650050))**2 +! *x(i)*zi**2 *3.0*sig_ij(1,1)**2 *1.E-20 + +! parame(ion,6))**2 = (e_elem* 1.E5/SQRT(1.112650050))**2 /1.E-49 +! *x(i)*zi**2 *3.0*sig_ij(i,i)**2 *1.E-20 + +! with the units +! my**2 [=] D**2 = 1.E-49 J*m3 +! e_elem **2 [=] C**2 = 1.E5 / SQRT(1.112650050) J*m + + +ions = 0 +x_ions = 0.0 +fcc = 0.0 +DO i = 1, ncomp + z_ii(i) = parame(i,10) + IF (z_ii(i) /= 0.0) THEN + sigm_i(i) = parame(i,2) + ELSE + sigm_i(i) = 0.0 + END IF + IF (z_ii(i) /= 0.0) ions = 1 + IF (z_ii(i) /= 0.0) x_ions = x_ions + x(i) +END DO + +IF (ions == 1 .AND. x_ions > 0.0) THEN + + cc_sig1 = 0.0 + cc_sig2 = 0.0 + cc_sig3 = 0.0 + DO i=1,ncomp + IF (z_ii(i) /= 0.0) THEN + x_ii(i) = x(i)/x_ions + ELSE + x_ii(i) =0.0 + END IF + cc_sig1 = cc_sig1 +x_ii(i)*sigm_i(i) + cc_sig2 = cc_sig2 +x_ii(i)*sigm_i(i)**2 + cc_sig3 = cc_sig3 +x_ii(i)*sigm_i(i)**3 + END DO + + + ! alpha_2 = 4.0*PI*e_elem**2 /eps_cc0/dielec/kbol/T + alpha_2 = e_elem**2 /eps_cc0 / dielec / KBOL/t + kappa = 0.0 + DO i = 1, ncomp + kappa = kappa + x(i)*z_ii(i)*z_ii(i)*mx(i,1) + END DO + kappa = SQRT( rho * alpha_2 * kappa ) + ii_par= kappa * cc_sig1 + + ! Temporaer: nach der Arbeit von Krienke verifiziert + ! noch nicht fuer Mischungen mit unterschiedl. Ladung erweitert + ! ii_par = DSQRT( e_elem**2 /eps_cc0/dielec/kbol/T & + ! *rho*(x(1)*Z_ii(1)**2 + x(2)*Z_ii(2)**2 ) )*cc_sig1 + + + cc_gam = kappa/2.0 + + ! noch offen !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + cc_delt = 0.0 + DO i = 1, ncomp + cc_delt = cc_delt + x(i)*mx(i,1)*rho*sigm_i(i)**3 + END DO + cc_delt= 1.0 - PI/6.0*cc_delt + + cc_it = 0 + 13 CONTINUE + j = 0 + cc_it = cc_it + 1 + 131 CONTINUE + j = j + 1 + cc_omeg = 0.0 + DO i = 1, ncomp + cc_omeg = cc_omeg +x(i)*mx(i,1)*sigm_i(i)**3 /(1.0+cc_gam*sigm_i(i)) + END DO + cc_omeg = 1.0 + PI/2.0 / cc_delt * rho * cc_omeg + p_n = 0.0 + DO i = 1, ncomp + p_n = p_n + x(i)*mx(i,1)*rho / cc_omeg*sigm_i(i)*z_ii(i) / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = 0.0 + cc_q2= 0.0 + DO i = 1, ncomp + q2_i = q2_i + rho*x(i)*mx(i,1)*( (z_ii(i)-pi/2.0/cc_delt*sigm_i(i)**2 *p_n) & + /(1.0+cc_gam*sigm_i(i)) )**2 + cc_q2 = cc_q2 + x(i)*mx(i,1)*rho*z_ii(i)**2 / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = q2_i*alpha_2 / 4.0 + + cc_error(j) = cc_gam - SQRT(q2_i) + IF (j == 1) cc_gam = cc_gam*1.000001 + IF (j == 2) cc_gam = cc_gam - cc_error(2)* (cc_gam-cc_gam/1.000001)/(cc_error(2)-cc_error(1)) + + IF ( j == 1 .AND. ABS(cc_error(1)) > 1.E-15 ) GO TO 131 + IF ( cc_it >= 10 ) THEN + WRITE (*,*) ' cc error' + STOP + END IF + IF ( j /= 1 ) GO TO 13 + + fcc= - alpha_2 / PI/4.0 /rho* (cc_gam*cc_q2 & + + pi/2.0/cc_delt *cc_omeg*p_n**2 ) + cc_gam**3 /pi/3.0/rho + ! Restricted Primitive Model + ! fcc=-(3.0*ii_par*ii_par+6.0*ii_par+2.0 & + ! -2.0*(1.0+2.0*ii_par)**1.50) & + ! /(12.0*PI*rho *cc_sig1**3 ) + + ! fcc = x_ions * fcc + + my2dd(3) = (parame(3,6))**2 *1.E-19 /(KBOL*t) + my2dd(3) = (1.84)**2 *1.E-19 /(kbol*t) + + rhs = 12.0 * PI * rho * x(3) * my2dd(3) + lam_s = 1.0 + 12 CONTINUE + lambda = (rhs/((lam_s+2.0)**2 ) + 16.0/((1.0+lam_s)**4 ) )**0.5 + IF ( ABS(lam_s-lambda) > 1.E-10 )THEN + lam_s = ( lambda + lam_s ) / 2.0 + GO TO 12 + END IF + + ! f_cd = -(ii_par*ii_par)/(4.0*PI*rho*m_mean *cc_sig1**3 ) & + ! *(dielec-1.0)/(1.0 + parame(3,2)/cc_sig1/lambda) + ! write (*,*) ' ',f_cd,fcc,x_ions + ! f_cd = f_cd/(1.0 - fcc/f_cd) + ! fcc = 0.0 + +END IF + + +END SUBROUTINE F_ION_ION_PrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, eta, x, parame, mseg + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd, fqq, fdq, fcc +!--------------------------------------------------------------------- + INTEGER :: dipole + !REAL :: A_MSA !, A_CC, A_CD, A_DD, U_MSA, chempot + REAL, DIMENSION(nc) :: x_export, msegm +!--------------------------------------------------------------------- + + dipole = 0 + IF ( SUM( parame(1:ncomp,6) ) > 1.E-5 ) dipole = 1 + + IF ( dipole /= 0 ) THEN ! alternatively ions and dipoles = 1 + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + fcc = 0.0 + msegm(:) = mseg(:) ! the entries of the vector mseg and x are changed + x_export(:) = x(:) ! in SEMIRESTRICTED because the ions should be positioned first + ! that is why dummy vectors msegm and x_export are defined + !CALL SEMIRESTRICTED (A_MSA,A_CC,A_CD,A_DD,U_MSA, & + ! chempot,ncomp,parame,t,eta,x_export,msegm,0) + !fdd = A_MSA + write (*,*) 'why are individual contrib. A_CC,A_CD,A_DD not used' + stop + END IF + + END SUBROUTINE F_ION_ION_nonPrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_LC_MayerSaupe ( flc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, phas, t, rho, eta, & + x, mseg, parame, E_lc, S_lc, dhs + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: flc +!--------------------------------------------------------------------- + INTEGER :: i, j, k + INTEGER :: liq_crystal, count_lc, steps_lc + REAL :: alpha_lc, tolerance, deltay + REAL :: integrand1, integrand2, accel_lc + REAL :: error_lc, u_term, sphase + REAL, DIMENSION(nc) :: z_lc, S_lc1, S_lc2, sumu + REAL, DIMENSION(nc,nc) :: u_lc, klc +!--------------------------------------------------------------------- +INTEGER :: stabil +COMMON /stabil / stabil +!--------------------------------------------------------------------- + + + klc(1,2) = 0.0 + klc(2,1) = klc(1,2) + + alpha_lc = 1.0 + accel_lc = 4.0 + IF ( eta < 0.35 ) accel_lc = 1.3 + IF ( eta < 0.15 ) accel_lc = 1.0 + + liq_crystal = 0 + DO i = 1, ncomp + DO j = 1, ncomp + E_lc(i,j) = (E_lc(i,i)*E_lc(j,j))**0.5 *(1.0-klc(i,j)) !combining rule + ! E_LC(i,j)= ( E_LC(i,i)+E_LC(j,j) ) * 0.5 !combining rule + ! S_LC(i,j)= ( S_LC(i,i)+S_LC(j,j) ) * 0.5 !combining rule + IF (E_lc(i,j) /= 0.0) liq_crystal = 1 + END DO + END DO + ! S_LC(1,2) = 0.0 + ! S_LC(2,1) = S_LC(1,2) + ! E_LC(1,2) = 60.0 + ! E_LC(2,1) = E_LC(1,2) + + IF ( liq_crystal == 1 .AND. phas == 1 .AND. stabil == 0 ) THEN + + count_lc = 0 + tolerance = 1.E-6 + + steps_lc = 200 + deltay = 1.0 / REAL(steps_lc) + + ! --- dimensionless function U_LC repres. anisotr. intermolecular interactions in l.c. + + DO i = 1, ncomp + DO j = 1, ncomp + u_lc(i,j) = 2.0/3.0*pi*mseg(i)*mseg(j) *(0.5*(dhs(i)+dhs(j)))**3 & ! sig_ij(i,j)**3 + *(E_lc(i,j)/t+S_lc(i,j))*rho + END DO + END DO + + + DO i=1,ncomp + ! S_lc2(i) = 0.0 !for isotropic + S_lc2(i) = 0.5 !for nematic + S_lc1(i) = S_lc2(i) + END DO + + 1 CONTINUE + + DO i = 1, ncomp + IF (S_lc2(i) <= 0.3) S_lc1(i) = S_lc2(i) + IF (S_lc2(i) > 0.3) S_lc1(i) = S_lc1(i) + (S_lc2(i)-S_lc1(i))*accel_lc + END DO + + count_lc = count_lc + 1 + + ! --- single-particle orientation partition function Z_LC in liquid crystals + + DO i = 1, ncomp + sumu(i) = 0.0 + DO j = 1, ncomp + sumu(i) = sumu(i) + x(j)*u_lc(i,j)*S_lc1(j) + END DO + END DO + + DO i = 1, ncomp + z_lc(i) = 0.0 + integrand1 = EXP(-0.5*sumu(i)) !eq. for Z_LC with y=0 + DO k = 1, steps_lc + integrand2 = EXP(0.5*sumu(i)*(3.0*(deltay*REAL(k)) **2 -1.0)) + z_lc(i) = z_lc(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + END DO !i-index Z_LC(i) calculation + + ! --- order parameter S_lc in liquid crystals ----------------------- + + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i) = 0.0 + integrand1 = -1.0/z_lc(i)*0.5*EXP(-0.5*sumu(i)) !for S_lc with y=0 + DO k = 1, steps_lc + integrand2 = 1.0/z_lc(i)*0.5*(3.0*(deltay*REAL(k)) & + **2 -1.0)*EXP(0.5*sumu(i)*(3.0 *(deltay*REAL(k))**2 -1.0)) + S_lc2(i) = S_lc2(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + error_lc = error_lc + ABS(S_lc2(i)-S_lc1(i)) + END DO !i-index Z_LC(i) calculation + + sphase = 0.0 + DO i = 1, ncomp + sphase = sphase + S_lc2(i) + END DO + IF (sphase < 1.E-4) THEN + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i)= 0.0 + z_lc(i) = 1.0 + END DO + END IF + + + ! write (*,*) count_LC,S_lc2(1)-S_lc1(1),S_lc2(2)-S_lc1(2) + IF (error_lc > tolerance .AND. count_lc < 400) GO TO 1 + ! write (*,*) 'done',eta,S_lc2(1),S_lc2(2) + + IF (count_lc == 400) WRITE (*,*) 'LC iteration not converg.' + + ! --- the anisotropic contribution to the Helmholtz energy ---------- + + u_term = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + u_term = u_term + 0.5*x(i)*x(j)*S_lc2(i) *S_lc2(j)*u_lc(i,j) + END DO + END DO + + flc = 0.0 + DO i = 1, ncomp + IF (z_lc(i) /= 0.0) flc = flc - x(i) * LOG(z_lc(i)) + END DO + flc = flc + u_term + ! pause + + END IF + ! write (*,'(i2,i2,4(f15.8))') phas,stabil,flc,eta,S_lc2(1),x(1) + + + END SUBROUTINE F_LC_MayerSaupe + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: zdd, zddz, zddz2, zddz3 + REAL, INTENT(OUT) :: zqq, zqqz, zqqz2, zqqz3 + REAL, INTENT(OUT) :: zdq, zdqz, zdqz2, zdqz3 +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE P_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdd, zddz, zddz2, zddz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdddr, fddd2, fddd3, fddd4 + REAL :: fdd2, fdd2z, fdd2z2, fdd2z3, fdd2z4 + REAL :: fdd3, fdd3z, fdd3z2, fdd3z3, fdd3z4 + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd2z, Idd2z2, Idd2z3, Idd2z4 + REAL, DIMENSION(nc,nc) :: Idd4, Idd4z, Idd4z2, Idd4z3, Idd4z4 + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3z, Idd3z2, Idd3z3, Idd3z4 +! ---------------------------------------------------------------------- + + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2z(i,j) = 0.0 + Idd4z(i,j) = 0.0 + Idd2z2(i,j) = 0.0 + Idd4z2(i,j) = 0.0 + Idd2z3(i,j) = 0.0 + Idd4z3(i,j) = 0.0 + Idd2z4(i,j) = 0.0 + Idd4z4(i,j) = 0.0 + ! IF (paramei,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m) *z3**(m+1) + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m) *z3**(m+1) + Idd2z(i,j) =Idd2z(i,j) +ddp2(i,j,m)*REAL(m+1) *z3**m + Idd4z(i,j) =Idd4z(i,j) +ddp4(i,j,m)*REAL(m+1) *z3**m + Idd2z2(i,j)=Idd2z2(i,j)+ddp2(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd4z2(i,j)=Idd4z2(i,j)+ddp4(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd2z3(i,j)=Idd2z3(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd4z3(i,j)=Idd4z3(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd2z4(i,j)=Idd2z4(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idd4z4(i,j)=Idd4z4(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + Idd3z(i,j,k) = 0.0 + Idd3z2(i,j,k) = 0.0 + Idd3z3(i,j,k) = 0.0 + Idd3z4(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) =Idd3(i,j,k) +ddp3(i,j,k,m)*z3**(m+2) + Idd3z(i,j,k) =Idd3z(i,j,k) +ddp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idd3z2(i,j,k)=Idd3z2(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1))*z3**m + Idd3z3(i,j,k)=Idd3z3(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m)*z3**(m-1) + Idd3z4(i,j,k)=Idd3z4(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2= -PI *rho/z3 + factor3= -4.0/3.0*PI**2 * (rho/z3)**2 + + fdd2 = 0.0 + fdd2z = 0.0 + fdd2z2 = 0.0 + fdd2z3 = 0.0 + fdd2z4 = 0.0 + fdd3 = 0.0 + fdd3z = 0.0 + fdd3z2 = 0.0 + fdd3z3 = 0.0 + fdd3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j)) + fdd2z = fdd2z +factor2*xijfa*(Idd2z(i,j) +eij/t*Idd4z(i,j)) + fdd2z2 = fdd2z2+factor2*xijfa*(Idd2z2(i,j)+eij/t*Idd4z2(i,j)) + fdd2z3 = fdd2z3+factor2*xijfa*(Idd2z3(i,j)+eij/t*Idd4z3(i,j)) + fdd2z4 = fdd2z4+factor2*xijfa*(Idd2z4(i,j)+eij/t*Idd4z4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa= x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) & + *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 = fdd3 + factor3 * xijkfa*Idd3(i,j,k) + fdd3z = fdd3z + factor3 * xijkfa*Idd3z(i,j,k) + fdd3z2 = fdd3z2 + factor3 * xijkfa*Idd3z2(i,j,k) + fdd3z3 = fdd3z3 + factor3 * xijkfa*Idd3z3(i,j,k) + fdd3z4 = fdd3z4 + factor3 * xijkfa*Idd3z4(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2z /= 0.0 .AND. fdd3z /= 0.0) THEN + + fdddr= fdd2* (fdd2*fdd2z - 2.0*fdd3*fdd2z+fdd2*fdd3z) / (fdd2-fdd3)**2 + fddd2=(2.0*fdd2*fdd2z*fdd2z +fdd2*fdd2*fdd2z2 & + -2.0*fdd2z**2 *fdd3-2.0*fdd2*fdd2z2*fdd3+fdd2*fdd2*fdd3z2) & + /(fdd2-fdd3)**2 + fdddr * 2.0*(fdd3z-fdd2z)/(fdd2-fdd3) + fddd3=(2.0*fdd2z**3 +6.0*fdd2*fdd2z*fdd2z2+fdd2*fdd2*fdd2z3 & + -6.0*fdd2z*fdd2z2*fdd3-2.0*fdd2z**2 *fdd3z & + -2.0*fdd2*fdd2z3*fdd3 -2.0*fdd2*fdd2z2*fdd3z & + +2.0*fdd2*fdd2z*fdd3z2+fdd2*fdd2*fdd3z3) /(fdd2-fdd3)**2 & + + 2.0/(fdd2-fdd3)* ( 2.0*fddd2*(fdd3z-fdd2z) & + + fdddr*(fdd3z2-fdd2z2) & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)**2 ) + fddd4=( 12.0*fdd2z**2 *fdd2z2+6.0*fdd2*fdd2z2**2 & + +8.0*fdd2*fdd2z*fdd2z3+fdd2*fdd2*fdd2z4-6.0*fdd2z2**2 *fdd3 & + -12.0*fdd2z*fdd2z2*fdd3z -8.0*fdd2z*fdd2z3*fdd3 & + -2.0*fdd2*fdd2z4*fdd3-4.0*fdd2*fdd2z3*fdd3z & + +4.0*fdd2*fdd2z*fdd3z3+fdd2**2 *fdd3z4 ) /(fdd2-fdd3)**2 & + + 6.0/(fdd2-fdd3)* ( fddd3*(fdd3z-fdd2z) & + -fddd2/(fdd2-fdd3)*(fdd3z-fdd2z)**2 & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)*(fdd3z2-fdd2z2) & + + fddd2*(fdd3z2-fdd2z2) +1.0/3.0*fdddr*(fdd3z3-fdd2z3) ) + zdd = fdddr*eta + zddz = fddd2*eta + fdddr + zddz2 = fddd3*eta + 2.0* fddd2 + zddz3 = fddd4*eta + 3.0* fddd3 + + END IF + + +END SUBROUTINE P_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zqq, zqqz, zqqz2, zqqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fqqdr, fqqd2, fqqd3, fqqd4 + REAL :: fqq2, fqq2z, fqq2z2, fqq2z3, fqq2z4 + REAL :: fqq3, fqq3z, fqq3z2, fqq3z3, fqq3z4 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq2z, Iqq2z2, Iqq2z3, Iqq2z4 + REAL, DIMENSION(nc,nc) :: Iqq4, Iqq4z, Iqq4z2, Iqq4z3, Iqq4z4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3z, Iqq3z2, Iqq3z3, Iqq3z4 +! ---------------------------------------------------------------------- + + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + z3 = eta + DO i=1,ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2z(i,j) = 0.0 + Iqq4z(i,j) = 0.0 + Iqq2z2(i,j) = 0.0 + Iqq4z2(i,j) = 0.0 + Iqq2z3(i,j) = 0.0 + Iqq4z3(i,j) = 0.0 + Iqq2z4(i,j) = 0.0 + Iqq4z4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) =Iqq2(i,j) + qqp2(i,j,m)*z3**(m+1) + Iqq4(i,j) =Iqq4(i,j) + qqp4(i,j,m)*z3**(m+1) + Iqq2z(i,j) =Iqq2z(i,j) +qqp2(i,j,m)*REAL(m+1)*z3**m + Iqq4z(i,j) =Iqq4z(i,j) +qqp4(i,j,m)*REAL(m+1)*z3**m + Iqq2z2(i,j)=Iqq2z2(i,j)+qqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq4z2(i,j)=Iqq4z2(i,j)+qqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq2z3(i,j)=Iqq2z3(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq4z3(i,j)=Iqq4z3(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq2z4(i,j)=Iqq2z4(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Iqq4z4(i,j)=Iqq4z4(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k=1,ncomp + Iqq3(i,j,k) = 0.0 + Iqq3z(i,j,k) = 0.0 + Iqq3z2(i,j,k) = 0.0 + Iqq3z3(i,j,k) = 0.0 + Iqq3z4(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m=0,4 + Iqq3(i,j,k) =Iqq3(i,j,k) + qqp3(i,j,k,m)*z3**(m+2) + Iqq3z(i,j,k)=Iqq3z(i,j,k)+qqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Iqq3z2(i,j,k)=Iqq3z2(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Iqq3z3(i,j,k)=Iqq3z3(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Iqq3z4(i,j,k)=Iqq3z4(i,j,k)+qqp3(i,j,k,m) *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/16.0*PI *rho/z3 + factor3= 9.0/16.0*PI**2 * (rho/z3)**2 + + fqq2 = 0.0 + fqq2z = 0.0 + fqq2z2 = 0.0 + fqq2z3 = 0.0 + fqq2z4 = 0.0 + fqq3 = 0.0 + fqq3z = 0.0 + fqq3z2 = 0.0 + fqq3z3 = 0.0 + fqq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2z =fqq2z +factor2*xijfa*(Iqq2z(i,j) +eij/t*Iqq4z(i,j) ) + fqq2z2=fqq2z2+factor2*xijfa*(Iqq2z2(i,j)+eij/t*Iqq4z2(i,j)) + fqq2z3=fqq2z3+factor2*xijfa*(Iqq2z3(i,j)+eij/t*Iqq4z3(i,j)) + fqq2z4=fqq2z4+factor2*xijfa*(Iqq2z4(i,j)+eij/t*Iqq4z4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa*Iqq3(i,j,k) + fqq3z = fqq3z + factor3 * xijkfa*Iqq3z(i,j,k) + fqq3z2 = fqq3z2 + factor3 * xijkfa*Iqq3z2(i,j,k) + fqq3z3 = fqq3z3 + factor3 * xijkfa*Iqq3z3(i,j,k) + fqq3z4 = fqq3z4 + factor3 * xijkfa*Iqq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2z /= 0.0 .AND. fqq3z /= 0.0) THEN + fqqdr = fqq2* (fqq2*fqq2z - 2.0*fqq3*fqq2z+fqq2*fqq3z) /(fqq2-fqq3)**2 + fqqd2= (2.0*fqq2*fqq2z*fqq2z +fqq2*fqq2*fqq2z2 & + -2.0*fqq2z**2 *fqq3-2.0*fqq2*fqq2z2*fqq3+fqq2*fqq2*fqq3z2) & + /(fqq2-fqq3)**2 + fqqdr * 2.0*(fqq3z-fqq2z)/(fqq2-fqq3) + fqqd3=(2.0*fqq2z**3 +6.0*fqq2*fqq2z*fqq2z2+fqq2*fqq2*fqq2z3 & + -6.0*fqq2z*fqq2z2*fqq3-2.0*fqq2z**2 *fqq3z & + -2.0*fqq2*fqq2z3*fqq3 -2.0*fqq2*fqq2z2*fqq3z & + +2.0*fqq2*fqq2z*fqq3z2+fqq2*fqq2*fqq3z3) /(fqq2-fqq3)**2 & + + 2.0/(fqq2-fqq3)* ( 2.0*fqqd2*(fqq3z-fqq2z) & + + fqqdr*(fqq3z2-fqq2z2) - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)**2 ) + fqqd4=( 12.0*fqq2z**2 *fqq2z2+6.0*fqq2*fqq2z2**2 & + +8.0*fqq2*fqq2z*fqq2z3+fqq2*fqq2*fqq2z4-6.0*fqq2z2**2 *fqq3 & + -12.0*fqq2z*fqq2z2*fqq3z -8.0*fqq2z*fqq2z3*fqq3 & + -2.0*fqq2*fqq2z4*fqq3-4.0*fqq2*fqq2z3*fqq3z & + +4.0*fqq2*fqq2z*fqq3z3+fqq2**2 *fqq3z4 ) /(fqq2-fqq3)**2 & + + 6.0/(fqq2-fqq3)* ( fqqd3*(fqq3z-fqq2z) & + -fqqd2/(fqq2-fqq3)*(fqq3z-fqq2z)**2 & + - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)*(fqq3z2-fqq2z2) & + + fqqd2*(fqq3z2-fqq2z2) +1.0/3.0*fqqdr*(fqq3z3-fqq2z3) ) + zqq = fqqdr*eta + zqqz = fqqd2*eta + fqqdr + zqqz2 = fqqd3*eta + 2.0* fqqd2 + zqqz3 = fqqd4*eta + 3.0* fqqd3 + END IF + + +END SUBROUTINE P_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdqdr, fdqd2, fdqd3, fdqd4 + REAL :: fdq2, fdq2z, fdq2z2, fdq2z3, fdq2z4 + REAL :: fdq3, fdq3z, fdq3z2, fdq3z3, fdq3z4 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq2z, Idq2z2, Idq2z3, Idq2z4 + REAL, DIMENSION(nc,nc) :: Idq4, Idq4z, Idq4z2, Idq4z3, Idq4z4 + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3z, Idq3z2, Idq3z3, Idq3z4 +! ---------------------------------------------------------------------- + + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2z(i,j) = 0.0 + Idq4z(i,j) = 0.0 + Idq2z2(i,j) = 0.0 + Idq4z2(i,j) = 0.0 + Idq2z3(i,j) = 0.0 + Idq4z3(i,j) = 0.0 + Idq2z4(i,j) = 0.0 + Idq4z4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) =Idq2(i,j) + dqp2(i,j,m)*z3**(m+1) + Idq4(i,j) =Idq4(i,j) + dqp4(i,j,m)*z3**(m+1) + Idq2z(i,j) =Idq2z(i,j) +dqp2(i,j,m)*REAL(m+1)*z3**m + Idq4z(i,j) =Idq4z(i,j) +dqp4(i,j,m)*REAL(m+1)*z3**m + Idq2z2(i,j)=Idq2z2(i,j)+dqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq4z2(i,j)=Idq4z2(i,j)+dqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq2z3(i,j)=Idq2z3(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq4z3(i,j)=Idq4z3(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq2z4(i,j)=Idq2z4(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idq4z4(i,j)=Idq4z4(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + Idq3z(i,j,k) = 0.0 + Idq3z2(i,j,k) = 0.0 + Idq3z3(i,j,k) = 0.0 + Idq3z4(i,j,k) = 0.0 + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) =Idq3(i,j,k) + dqp3(i,j,k,m)*z3**(m+2) + Idq3z(i,j,k)=Idq3z(i,j,k)+dqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idq3z2(i,j,k)=Idq3z2(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Idq3z3(i,j,k)=Idq3z3(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Idq3z4(i,j,k)=Idq3z4(i,j,k)+dqp3(i,j,k,m) & + *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/4.0*PI *rho/z3 + factor3= PI**2 * (rho/z3)**2 + + fdq2 = 0.0 + fdq2z = 0.0 + fdq2z2 = 0.0 + fdq2z3 = 0.0 + fdq2z4 = 0.0 + fdq3 = 0.0 + fdq3z = 0.0 + fdq3z2 = 0.0 + fdq3z3 = 0.0 + fdq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa =x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2z =fdq2z +factor2*xijfa*(Idq2z(i,j) +eij/t*Idq4z(i,j) ) + fdq2z2=fdq2z2+factor2*xijfa*(Idq2z2(i,j)+eij/t*Idq4z2(i,j)) + fdq2z3=fdq2z3+factor2*xijfa*(Idq2z3(i,j)+eij/t*Idq4z3(i,j)) + fdq2z4=fdq2z4+factor2*xijfa*(Idq2z4(i,j)+eij/t*Idq4z4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa*Idq3(i,j,k) + fdq3z =fdq3z + factor3 * xijkfa*Idq3z(i,j,k) + fdq3z2=fdq3z2 + factor3 * xijkfa*Idq3z2(i,j,k) + fdq3z3=fdq3z3 + factor3 * xijkfa*Idq3z3(i,j,k) + fdq3z4=fdq3z4 + factor3 * xijkfa*Idq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2z /= 0.0 .AND. fdq3z /= 0.0) THEN + fdqdr = fdq2* (fdq2*fdq2z - 2.0*fdq3*fdq2z+fdq2*fdq3z) /(fdq2-fdq3)**2 + fdqd2= (2.0*fdq2*fdq2z*fdq2z +fdq2*fdq2*fdq2z2 & + -2.0*fdq2z**2 *fdq3-2.0*fdq2*fdq2z2*fdq3+fdq2*fdq2*fdq3z2) & + /(fdq2-fdq3)**2 + fdqdr * 2.0*(fdq3z-fdq2z)/(fdq2-fdq3) + fdqd3=(2.0*fdq2z**3 +6.0*fdq2*fdq2z*fdq2z2+fdq2*fdq2*fdq2z3 & + -6.0*fdq2z*fdq2z2*fdq3-2.0*fdq2z**2 *fdq3z & + -2.0*fdq2*fdq2z3*fdq3 -2.0*fdq2*fdq2z2*fdq3z & + +2.0*fdq2*fdq2z*fdq3z2+fdq2*fdq2*fdq3z3) /(fdq2-fdq3)**2 & + + 2.0/(fdq2-fdq3)* ( 2.0*fdqd2*(fdq3z-fdq2z) & + + fdqdr*(fdq3z2-fdq2z2) - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)**2 ) + fdqd4=( 12.0*fdq2z**2 *fdq2z2+6.0*fdq2*fdq2z2**2 & + +8.0*fdq2*fdq2z*fdq2z3+fdq2*fdq2*fdq2z4-6.0*fdq2z2**2 *fdq3 & + -12.0*fdq2z*fdq2z2*fdq3z -8.0*fdq2z*fdq2z3*fdq3 & + -2.0*fdq2*fdq2z4*fdq3-4.0*fdq2*fdq2z3*fdq3z & + +4.0*fdq2*fdq2z*fdq3z3+fdq2**2 *fdq3z4 ) /(fdq2-fdq3)**2 & + + 6.0/(fdq2-fdq3)* ( fdqd3*(fdq3z-fdq2z) & + -fdqd2/(fdq2-fdq3)*(fdq3z-fdq2z)**2 & + - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)*(fdq3z2-fdq2z2) & + + fdqd2*(fdq3z2-fdq2z2) +1.0/3.0*fdqdr*(fdq3z3-fdq2z3) ) + zdq = fdqdr*eta + zdqz = fdqd2*eta + fdqdr + zdqz2 = fdqd3*eta + 2.0* fdqd2 + zdqz3 = fdqd4*eta + 3.0* fdqd3 + END IF + + +END SUBROUTINE P_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_pert_theory ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, p, rho, eta, & + x, z0t, mseg, parame, order1, order2 + USE EOS_NUMERICAL_DERIVATIVES, ONLY: disp_term + USE DFT_MODULE + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + REAL :: I1, I2 + REAL :: z3, zms, c1_con, m_mean +!--------------------------------------------------------------------- + + ! caution: positive sign of correlation integral is used here ! + ! (the Helmholtz energy terms are written with a negative sign, while I1 and I2 are positive) + + IF (disp_term == 'PT1') THEN + + CALL f_dft ( I1, I2) + c1_con = 0.0 + I2 = 0.0 + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + + ELSEIF (disp_term == 'PT2') THEN + + CALL f_dft ( I1, I2) + z3 = eta + zms = 1.0 - z3 + m_mean = z0t / ( PI / 6.0 ) + c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + ELSEIF (disp_term == 'PT_MIX') THEN + + CALL f_pert_theory_mix ( fdsp ) + + ELSEIF (disp_term == 'PT_MF') THEN + + ! mean field theory + I1 = - ( - 8.0/9.0 - 4.0/9.0*(rc**(-9) -3.0*rc**(-3) ) - tau_cut/3.0*(rc**3 -1.0) ) + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + write (*,*) 'caution: not thoroughly checked and tested' + + ELSE + write (*,*) 'define the type of perturbation theory' + stop + END IF + + ! I1 = I1 + 4.0/9.0*(2.5**-9 -3.0*2.5**-3 ) + ! fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + END SUBROUTINE F_pert_theory + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_pert_theory_mix ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1 + REAL :: int10, int11 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + + DO l = 1, ncomp + DO m = 1, ncomp + + rad = rc + + int10 = rc * rc * ua_c + ! intgrid(0)= int10 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int11 = rdf * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int11 + int10 ) / 2.0 + + int10 = int11 + ! intgrid(k)= int11 + + END DO + + ! stepno = k + ! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) + ! CALL SPLINE_INT (I1_spline,dzr,intgrid,utri,stepno) + + + ! caution: 1st order integral is in F_EOS.f defined with negative sign + ! --------------------------------------------------------------- + ! cut-off corrections + ! --------------------------------------------------------------- + ! I1(l,m) = I1(l,m) + ( 4.0/9.0 * rc**-9 - 4.0/3.0 * rc**-3 ) + ! I2(l,m) = I2(l,m) + 16.0/21.0 * rc**-21 - 32.0/15.0 * rc**-15 + 16.0/9.0 * rc**-9 + + END DO + END DO + + + fdsp = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + fdsp = fdsp + 2.0*PI*rho*x(l)*x(m)* mseg(l)*mseg(m)*sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! ( 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + END DO + END DO + + +!!$ IF (disp_term == 'PT1') THEN +!!$ c1_con = 0.0 +!!$ I2 = 0.0 +!!$ ELSEIF (disp_term == 'PT2') THEN +!!$ zms = 1.0 - z3 +!!$ c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & +!!$ + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & +!!$ /(zms*(2.0-z3))**2 ) +!!$ ELSE +!!$ write (*,*) 'define the type of perturbation theory' +!!$ stop +!!$ END IF + + +END SUBROUTINE f_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE mu_pert_theory_mix ( mu_dsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: mu_dsp(nc) +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1, I2 + REAL :: int1_0, int1_1, int2_0, int2_1 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + REAL :: term1(nc), term2 + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + I2(:,:) = 0.0 + + DO l = 1, ncomp + + term1(l) = 0.0 + + DO m = 1, ncomp + + rad = rc + + int1_0 = rc * rc * ua_c + int2_0 = 0.0 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int1_1 = rdf * rad * rad * ua + int2_1 = dg_dz3 * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int1_1 + int1_0 ) / 2.0 + I2(l,m) = I2(l,m) + dzr_local * ( int2_1 + int2_0 ) / 2.0 + + int1_0 = int1_1 + int2_0 = int2_1 + + term1(l) = term1(l) +4.0*PI*rho*x(m)* mseg(l)*mseg(m) *sig_ij(l,m)**3 *uij(l,m)/t* dzr_local*(int1_1+int1_0)/2.0 + + END DO + + END DO + END DO + + + ! DO l = 1, ncomp + ! term1(l) = 0.0 + ! DO m = 1, ncomp + ! term1(l) = term1(l) + 4.0*PI*rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! END DO + ! END DO + + term2 = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + term2 = term2 + 2.0*PI*rho*x(l) * rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I2(l,m) + END DO + END DO + + DO l = 1, ncomp + mu_dsp(l) = term1(l) + term2 * PI/ 6.0 * mseg(l)*dhs(l)**3 + END DO + +END SUBROUTINE mu_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DD_GROSS_VRABEC( fdd ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + INTEGER :: ddit, ddmax + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, xijf_j, xijkf_j, eij + REAL :: fdd2, fdd3 + REAL, DIMENSION(nc) :: my2dd, my0, alph_tst, z1dd, z2dd, dderror + REAL, DIMENSION(nc) :: fdd2m, fdd3m, fdd2m2, fdd3m2, fddm, fddm2 + REAL, DIMENSION(nc,nc) :: Idd2, Idd4 + REAL, DIMENSION(nc,nc,nc) :: Idd3 +! ---------------------------------------------------------------------- + + fdd = 0.0 + ddit = 0 + ddmax = 0 ! value assigned, if polarizable compound is present + fddm(:) = 0.0 + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'F_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + alph_tst(i) = parame(i,11) / (mseg(i)*sig_ij(i,i)**3 ) * t/parame(i,3) + IF ( alph_Tst(i) /= 0.0 ) ddmax = 25 ! set maximum number of polarizable RGT-iterations + z1dd(i) = my2dd(i) + 3.0*alph_tst(i) + z2dd(i) = 3.0*alph_tst(i) + my0(i) = my2dd(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) = Idd2(i,j) + ddp2(i,j,m)*eta**m + Idd4(i,j) = Idd4(i,j) + ddp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) = Idd3(i,j,k) + ddp3(i,j,k,m)*eta**m + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2 = -PI *rho + factor3 = -4.0/3.0*PI**2 * rho**2 + +9 CONTINUE + + fdd2m(:) = 0.0 + fdd2m2(:) = 0.0 + fdd3m(:) = 0.0 + fdd3m2(:) = 0.0 + fdd2 = 0.0 + fdd3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa =x(i)*parame(i,3)/t*parame(i,2)**3 * x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 * (z1dd(i)*z1dd(j)-z2dd(i)*z2dd(j)) ! * (1.0-lij(i,j)) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 + factor2 * xijfa * ( Idd2(i,j) + eij/t*Idd4(i,j) ) + xijf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 ! * (1.0-lij(i,j)) + fdd2m(i)=fdd2m(i)+4.0*SQRT(my2dd(i))*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + fdd2m2(i)=fdd2m2(i) + 4.0*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + IF (j == i) fdd2m2(i) =fdd2m2(i) +8.0*factor2* xijf_j*my2dd(i) *(Idd2(i,j)+eij/t*Idd4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 / ((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) / ((parame(j,2)+parame(k,2))/2.0) & + *(z1dd(i)*z1dd(j)*z1dd(k)-z2dd(i)*z2dd(j)*z2dd(k)) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3 = fdd3 + factor3 * xijkfa * Idd3(i,j,k) + xijkf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3m(i)=fdd3m(i)+6.0*factor3*SQRT(my2dd(i))*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + fdd3m2(i)=fdd3m2(i)+6.0*factor3*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + IF(j == i) fdd3m2(i) =fdd3m2(i)+24.0*factor3*my2dd(i)*z1dd(k) *xijkf_j*Idd3(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0) THEN + fdd = fdd2 / ( 1.0 - fdd3/fdd2 ) + IF ( ddmax /= 0 ) THEN + DO i = 1, ncomp + ddit = ddit + 1 + fddm(i) =fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i)+fdd2*fdd3m(i)) /(fdd2-fdd3)**2 + fddm2(i) = fdd2m(i) * (fdd2*fdd2m(i)-2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) / (fdd2-fdd3)**2 & + + fdd2*(fdd2*fdd2m2(i) -2.0*fdd3*fdd2m2(i)+fdd2m(i)**2 & + -fdd2m(i)*fdd3m(i) +fdd2*fdd3m2(i)) / (fdd2-fdd3)**2 & + - 2.0*fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) /(fdd2-fdd3)**3 & + *(fdd2m(i)-fdd3m(i)) + dderror(i)= SQRT( my2dd(i) ) - SQRT( my0(i) ) + alph_Tst(i)*fddm(i) + my2dd(i) = ( SQRT( my2dd(i) ) - dderror(i) / (1.0+alph_Tst(i)*fddm2(i)) )**2 + z1dd(i) = my2dd(i) + 3.0 * alph_Tst(i) + ENDDO + DO i = 1, ncomp + IF (ABS(dderror(i)) > 1.E-11 .AND. ddit < ddmax) GOTO 9 + ENDDO + fdd = fdd + SUM( 0.5*x(1:ncomp)*alph_Tst(1:ncomp)*fddm(1:ncomp)**2 ) + ENDIF + END IF + + +END SUBROUTINE F_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_QQ_GROSS( fqq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fqq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fqq2, fqq3 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3 +! ---------------------------------------------------------------------- + + + fqq = 0.0 + DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m)*eta**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Iqq3(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,k) = Iqq3(i,j,k) + qqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/16.0*PI *rho + factor3 = 9.0/16.0*PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2* xijfa * (Iqq2(i,j)+eij/t*Iqq4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa * Iqq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF ( fqq2 < -1.E-50 .AND. fqq3 /= 0.0 ) THEN + fqq = fqq2 / ( 1.0 - fqq3/fqq2 ) + END IF + + + +END SUBROUTINE F_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DQ_VRABEC_GROSS( fdq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fdq2, fdq3 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4 + REAL, DIMENSION(nc,nc,nc) :: Idq3 +! ---------------------------------------------------------------------- + + + fdq = 0.0 + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + ! myfac(i)=parame(i,3)/T*parame(i,2)**4 *my2dd_renormalized(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*eta**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) = Idq3(i,j,k) + dqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/4.0 * PI *rho + factor3 = PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 +factor2* xijfa*(Idq2(i,j)+eij/t*Idq4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.1937350 ) + fdq3 = fdq3 + factor3*xijkfa*Idq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0) THEN + fdq = fdq2 / ( 1.0 - fdq3/fdq2 ) + END IF + +END SUBROUTINE F_DQ_VRABEC_GROSS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_dft ( I1_dft, I2_dft ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, mseg, parame + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: I1_dft + REAL, INTENT(OUT) :: I2_dft +! +! ---------------------------------------------------------------------- + INTEGER :: k,ih + ! REAL :: z3 + REAL :: ua, ua_c, ua_2, ua_c_2, rm + REAL :: int10, int11, int20, int21 + REAL :: dg_drho + REAL :: rad, xg, rdf, rho_st, msegm + REAL :: sig_ij + REAL :: dg_dr, dzr_org !,rdf_d + ! REAL :: intgrid(0:NDFT),intgri2(0:NDFT) +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- +msegm = parame(1,1) +rho_st = rho * parame(1,2)**3 + +ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) +ua_c_2 = ua_c * ua_c +rm = 2.0**(1.0/6.0) + +int10 = rc*rc* ua_c +int20 = rc*rc* ua_c_2 +! intgrid(0)= int10 +! intgri2(0)= int20 + + +sig_ij = parame(1,2) + + +I1_dft = 0.0 +I2_dft = 0.0 +rad = rc +!dzr = dzp / 2.0 ! this line is obsolete. dzr is defined in DFT-nMF2 (dimensionless) +dzr_org= dzr +k = 0 +ih = 85 + +DO WHILE ( rad-dzr+1.E-9 >= 1.0 ) + + rad = rad - dzr + ! IF (rad <= 8.0) dzr = dzp + ! IF (rad <= rg) dzr = dzp/2.0 + k = k + 1 + xg = rad / dhs_st + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + ua_2 = ua * ua + rdf = 1.0 + dg_drho = 0.0 + IF ( rad <= rg ) THEN + CALL BI_CUB_SPLINE (rho_st,xg,ya,x1a,x2a,y1a,y2a,y12a, & + c_bicub,rdf,dg_drho,dg_dr,den_step,ih,k) + END IF + + int11 = rdf*rad*rad* ua + int21 = rdf*rad*rad* ua_2 + I1_dft= I1_dft + dzr*(int11+int10)/2.0 + I2_dft= I2_dft + dzr*(int21+int20)/2.0 + int10 = int11 + int20 = int21 + +END DO + +dzr = dzr_org + +! stepno = k +! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) +! CALL SPLINE_INT (I1,dzr,intgrid,utri,stepno) + +! caution: 1st order integral is in F_EOS.f defined with negative sign +I1_dft= - I1_dft - ( 4.0/9.0 * rc**(-9) - 4.0/3.0 * rc**(-3) ) + +! CALL SPLINE_PARA (dzr,intgri2,utri,stepno) +! CALL SPLINE_INT (I2,dzr,intgri2,utri,stepno) + +I2_dft = I2_dft + 16.0/21.0 * rc**(-21) - 32.0/15.0 * rc**(-15) + 16.0/9.0 * rc**(-9) + + +END SUBROUTINE f_dft + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) +! SUBROUTINE TANGENT_VALUE ( fmin, optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + !REAL, INTENT(IN) :: optpara(:) + !REAL, INTENT(IN OUT) :: fmin +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: lnphi(np,nc),ph_frac, gibbs_full(np),xlnx1,xlnx2 + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + + ! --- setting of mole fractions --------------------------------------- + DO i = 1, ncomp + IF ( optpara(i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( optpara(i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i) - ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(2,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + lnx(2,1:ncomp) = optpara(1:ncomp) - LOG( SUM( ni_2(1:ncomp) ) ) + + ph_frac = SUM( ni_1(1:ncomp) ) + xi(1,1:ncomp) = ni_1(1:ncomp) / ph_frac + lnx(1,1:ncomp) = LOG( ni_1(1:ncomp) ) - LOG( ph_frac ) + ! write (*,'(a,4G18.8)') 'FF',(xif(i),i=1,ncomp) + ! write (*,'(a,4G18.8)') 'AA',(xi(1,i),i=1,ncomp) + ! write (*,'(a,3G18.8)') 'BB',(xi(2,i),i=1,ncomp) + + CALL fugacity (lnphi) + !CALL enthalpy_etc + + gibbs(1) = SUM( xi(1,1:ncomp) * lnphi(1,1:ncomp) ) ! dimensionless g/RT + gibbs(2) = SUM( xi(2,1:ncomp) * lnphi(2,1:ncomp) ) + + xlnx1 = SUM( xi(1,1:ncomp)*lnx(1,1:ncomp) ) ! dimensionless s/RT + xlnx2 = SUM( xi(2,1:ncomp)*lnx(2,1:ncomp) ) + + gibbs_full(1) = gibbs(1) + xlnx1 + gibbs_full(2) = gibbs(2) + xlnx2 + + TANGENT_VALUE2 = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !fmin = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !write (*,'(a,4G18.8)') 'TP',TANGENT_VALUE2,(lnx(1,i),i=1,ncomp) + !write (*,'(a,4G18.8)') 'al',ph_frac,(lnx(2,i), i=1,ncomp) + !write (*,*) ' ' + !pause + +END FUNCTION TANGENT_VALUE2 + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/getting_started_subroutines.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/getting_started_subroutines.f90 new file mode 100644 index 000000000..582a8c822 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/getting_started_subroutines.f90 @@ -0,0 +1,4082 @@ + +!> This file contains auxiliary subroutines. + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE eos_const +! +! This subroutine provides the constants of the PC-SAFT EOS. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE eos_const (ap,bp,dnm) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ap(0:6,3) + REAL, INTENT(OUT) :: bp(0:6,3) + REAL, INTENT(OUT) :: dnm(4,9) +! ---------------------------------------------------------------------- + + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +! square-well fluid +! ap(1,1)= 0.79152347258784 +! ap(1,2)= -0.62269805320654 +! ap(1,3)= -0.06798823934067 +! ap(2,1)= 1.07120982251709 +! ap(2,2)= 0.48628215731716 +! ap(2,3)= 0.02837828512515 +! ap(3,1)= 0.92084839459226 +! ap(3,2)= 1.11652038059747 +! ap(3,3)= 0.09713202077943 +! ap(4,1)= -7.84708350369249 +! ap(4,2)= -2.04200599876547 +! ap(4,3)= 0.06475764015088 +! ap(5,1)= 25.90284137818050 +! ap(5,2)= 9.27791640100603 +! ap(5,3)= 0.07729792971827 +! ap(6,1)= -57.1528726997640 +! ap(6,2)= -16.8377999920957 +! ap(6,3)= 0.24883598436184 +! ap(7,1)= 42.02314637860930 +! ap(7,2)= 7.62432635016420 +! ap(7,3)= -0.72472024688888 + +! bp(1,1)= 0.79152347258784 +! bp(1,2)= -0.62269805320654 +! bp(1,3)= -0.06798823934067 +! bp(2,1)= 1.07120982251709 *2.0 +! bp(2,2)= 0.48628215731716 *2.0 +! bp(2,3)= 0.02837828512515 *2.0 +! bp(3,1)= 0.92084839459226 *3.0 +! bp(3,2)= 1.11652038059747 *3.0 +! bp(3,3)= 0.09713202077943 *3.0 +! bp(4,1)= -7.84708350369249 *4.0 +! bp(4,2)= -2.04200599876547 *4.0 +! bp(4,3)= 0.06475764015088 *4.0 +! bp(5,1)= 25.90284137818050 *5.0 +! bp(5,2)= 9.27791640100603 *5.0 +! bp(5,3)= 0.07729792971827 *5.0 +! bp(6,1)= -57.1528726997640 *6.0 +! bp(6,2)= -16.8377999920957 *6.0 +! bp(6,3)= 0.24883598436184 *6.0 +! bp(7,1)= 42.02314637860930 *7.0 +! bp(7,2)= 7.62432635016420 *7.0 +! bp(7,3)= -0.72472024688888 *7.0 + + +dnm(1,1) = -8.8043 +dnm(1,2) = +4.1646270 +dnm(1,3) = -48.203555 +dnm(1,4) = +140.43620 +dnm(1,5) = -195.23339 +dnm(1,6) = +113.51500 +dnm(2,1) = +2.9396 +dnm(2,2) = -6.0865383 +dnm(2,3) = +40.137956 +dnm(2,4) = -76.230797 +dnm(2,5) = -133.70055 +dnm(2,6) = +860.25349 +dnm(2,7) = -1535.3224 +dnm(2,8) = +1221.4261 +dnm(2,9) = -409.10539 +dnm(3,1) = -2.8225 +dnm(3,2) = +4.7600148 +dnm(3,3) = +11.257177 +dnm(3,4) = -66.382743 +dnm(3,5) = +69.248785 +dnm(4,1) = +0.3400 +dnm(4,2) = -3.1875014 +dnm(4,3) = +12.231796 +dnm(4,4) = -12.110681 + +END SUBROUTINE eos_const + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dq_const +! +! This subr. provides the constants of the dipole-quadrupole term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dq_const ( dqp2,dqp3,dqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: dqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: dqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: dqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mdq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i=1,ncomp + mdq(i) = parame(i,1) + IF (mdq(i) > 2.0) mdq(i) = 2.0 +END DO + + +DO i=1,ncomp + DO j=1,ncomp + + msegij=(mdq(i)*mdq(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + dqp2(i,j,0) = 0.697094963 + mf1*(-0.673459279) + mf2*0.670340770 + dqp2(i,j,1) = -0.633554144 + mf1*(-1.425899106) + mf2*(-4.338471826) + dqp2(i,j,2) = 2.945509028 + mf1 * 4.19441392 + mf2*7.234168360 + dqp2(i,j,3) = -1.467027314 + mf1 * 1.0266216 + dqp2(i,j,4) = 0.0 + + dqp4(i,j,0) = -0.484038322 + mf1 * 0.67651011 + mf2*(-1.167560146) + dqp4(i,j,1) = 1.970405465 + mf1*(-3.013867512) + mf2*2.13488432 + dqp4(i,j,2) = -2.118572671 + mf1 * 0.46742656 + dqp4(i,j,3) = 0.0 + dqp4(i,j,4) = 0.0 + + + DO k=1,ncomp + msegij=(mdq(i)*mdq(j)*mdq(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = (msegij-2.0)/msegij + dqp3(i,j,k,0) = 0.795009692 + mf1*(-2.099579397) + dqp3(i,j,k,1) = 3.386863396 + mf1*(-5.941376392) + dqp3(i,j,k,2) = 0.475106328 + mf1*(-0.178820384) + dqp3(i,j,k,3) = 0.0 + dqp3(i,j,k,4) = 0.0 + END DO + + END DO +END DO + +END SUBROUTINE dq_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dd_const +! +! This subroutine provides the constants of the dipole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dd_const ( ddp2,ddp3,ddp4 ) +! + USE PARAMETERS, ONLY: nc, PI + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ddp2(nc,nc,0:8) + REAL, INTENT(OUT) :: ddp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: ddp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: pardd(nc) + REAL :: mf1,mf2,msegij,sin2t +! ---------------------------------------------------------------------- + +sin2t = SIN( 0.0 * PI / 180.0 ) +sin2t = sin2t*sin2t + +DO i = 1, ncomp + pardd(i) = parame(i,1) + IF (pardd(i) > 2.0) pardd(i) = 2.0 +END DO + +DO i=1,ncomp + DO j=1,ncomp +! IF (parame(i,6).NE.0.0.AND.parame(j,6).NE.0.0) THEN + + msegij=(pardd(i)*pardd(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + ddp2(i,j,0) = 0.30435038064 + mf1*(0.95346405973+0.201436*sin2t) & + + mf2*(-1.16100802773-1.74114*sin2t) + ddp2(i,j,1) = -0.13585877707 + mf1*(-1.83963831920+1.31649*sin2t) & + + mf2*4.52586067320 + ddp2(i,j,2) = 1.44933285154 + mf1 * 2.01311801180 + mf2*0.97512223853 + ddp2(i,j,3) = 0.35569769252 + mf1*(-7.37249576667) + mf2*(-12.2810377713) + ddp2(i,j,4) = -2.06533084541 + mf1 * 8.23741345333 + mf2*5.93975747420 + + ddp4(i,j,0) = 0.21879385627 + mf1*(-0.58731641193) + mf2*3.48695755800 + ddp4(i,j,1) = -1.18964307357 + mf1 * 1.24891317047 + mf2*(-14.9159739347) + ddp4(i,j,2) = 1.16268885692 + mf1*(-0.50852797392) + mf2*15.3720218600 + ddp4(i,j,3) = 0.0 + ddp4(i,j,4) = 0.0 + + DO k=1,ncomp +! IF (parame(k,6).NE.0.0) THEN + msegij=(pardd(i)*pardd(j)*pardd(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + ddp3(i,j,k,0) = -0.06467735252 + mf1*(-0.95208758351+0.28503*sin2t) & + + mf2*(-0.62609792333+2.2195*sin2t) + ddp3(i,j,k,1) = 0.19758818347 + mf1 * 2.99242575222 + mf2*1.29246858189 + ddp3(i,j,k,2) = -0.80875619458 + mf1*(-2.38026356489) + mf2*1.65427830900 + ddp3(i,j,k,3) = 0.69028490492 + mf1*(-0.27012609786) + mf2*(-3.43967436378) + ddp3(i,j,k,4) = 0.0 + +! ENDIF + END DO + +! ENDIF + END DO +END DO + +END SUBROUTINE dd_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE qq_const +! +! This subroutine provides the constants of the quadrupole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qq_const ( qqp2,qqp3,qqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: qqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: qqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: qqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mqq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i = 1,ncomp + mqq(i) = parame(i,1) + IF (mqq(i) > 2.0) mqq(i) = 2.0 +END DO + +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + + msegij=(mqq(i)*mqq(j))**0.5 +! msegij=(parame(i,1)*parame(j,1))**0.50 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + qqp2(i,j,0) = 1.237830788 + mf1 * 1.285410878 + mf2*1.794295401 + qqp2(i,j,1) = 2.435503144 + mf1*(-11.46561451) + mf2*0.769510293 + qqp2(i,j,2) = 1.633090469 + mf1 *22.08689285 + mf2*7.264792255 + qqp2(i,j,3) = -1.611815241 + mf1 * 7.46913832 + mf2*94.48669892 + qqp2(i,j,4) = 6.977118504 + mf1*(-17.19777208) + mf2*(-77.1484579) + + qqp4(i,j,0) = 0.454271755 + mf1*(-0.813734006) + mf2*6.868267516 + qqp4(i,j,1) = -4.501626435 + mf1 * 10.06402986 + mf2*(-5.173223765) + qqp4(i,j,2) = 3.585886783 + mf1*(-10.87663092) + mf2*(-17.2402066) + qqp4(i,j,3) = 0.0 + qqp4(i,j,4) = 0.0 + + DO k = 1,ncomp + IF (parame(k,7) /= 0.0) THEN + msegij=(mqq(i)*mqq(j)*mqq(k))**(1.0/3.0) +! msegij=(parame(i,1)*parame(j,1)*parame(k,1))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + qqp3(i,j,k,0) = -0.500043713 + mf1 * 2.000209381 + mf2*3.135827145 + qqp3(i,j,k,1) = 6.531869153 + mf1*(-6.78386584) + mf2*7.247588801 + qqp3(i,j,k,2) = -16.01477983 + mf1 * 20.38324603 + mf2*3.075947834 + qqp3(i,j,k,3) = 14.42597018 + mf1*(-10.89598394) + qqp3(i,j,k,4) = 0.0 + END IF + END DO + + END IF + END DO +END DO + +END SUBROUTINE qq_const + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SET_DEFAULT_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + + ideal_gas = 'no' ! ( yes, no ) + hard_sphere = 'CSBM' ! ( CSBM, no ) + chain_term = 'TPT1' ! ( TPT1, HuLiu, no ) + disp_term = 'PC-SAFT' ! ( PC-SAFT, CK, PT1, PT2, PT_MF, PT_MIX, no ) + hb_term = 'TPT1_Chap' ! ( TPT1_Chap, no ) + LC_term = 'no' ! ( MSaupe, OVL, no ) + branch_term = 'no' ! ( TPT2, no ) + II_term = 'no' + ID_term = 'no' + + subtract1 = 'no' ! (1PT, 2PT, no) + subtract2 = 'no' ! (ITTpolar, no) + +END SUBROUTINE SET_DEFAULT_EOS_NUMERICAL + + + + + + + + + +! SUBROUTINE READ_INPUT +! ! +! USE BASIC_VARIABLES +! IMPLICIT NONE +! ! +! ! ---------------------------------------------------------------------- +! INTEGER :: i +! REAL :: reading2,reading3,sumfeed +! CHARACTER (LEN=4) :: uoutp, uinp +! CHARACTER (LEN=1) :: uoutt, uint +! CHARACTER (LEN=50) :: filename +! CHARACTER (LEN=30) :: reading1 +! ! ---------------------------------------------------------------------- +! +! filename='./input_file/INPUT.INP' +! CALL file_open(filename,30) +! READ (30,*) eos, pol !J: specify by numbers! eos(1=pcsaft, 2=SRK,...) pol (=polar) yes(1) no(0) +! READ (30,*) t, uint, p, uinp !J: t: value of temp, uint: unit of temp, p: value of pressure, uinp: unit of pressure +! +! ncomp = 0 +! i = 0 +! sumfeed = 0.0 +! read_loop: DO +! READ (30,*) reading1,reading2,reading3 +! IF (reading1 == 'end') EXIT read_loop +! ncomp = ncomp + 1 +! i = i + 1 +! compna(i)= reading1 ! comp.name +! mm(i) = reading2 ! molec.mass (mandatory only for polymers) +! xif(i) = reading3 !J: molefractions +! sumfeed = sumfeed + xif(i) +! ENDDO read_loop +! +! CLOSE (30) +! +! IF (sumfeed /= 0.0 .AND. sumfeed /= 1.0) THEN !J: in case mole fractions dont sum up to 1?? +! xif(1:ncomp) = xif(1:ncomp)/sumfeed +! END IF +! +! uoutt = uint +! uoutp = uinp +! IF (uint == 'C') THEN !J: unit stuff +! u_in_t = 273.15 +! ELSE +! u_in_t = 0.0 +! END IF +! IF (uinp == 'bar') THEN +! u_in_p = 1.E5 +! ELSE IF (uinp == 'mbar') THEN +! u_in_p = 1.E2 +! ELSE IF (uinp == 'MPa') THEN +! u_in_p = 1.E6 +! ELSE IF (uinp == 'kPa') THEN +! u_in_p = 1.E3 +! ELSE +! u_in_p = 1.E0 +! END IF +! +! IF (uoutt == 'C') THEN +! u_out_t = 273.15 +! ELSE +! u_out_t = 0.0 +! END IF +! IF (uoutp == 'bar') THEN +! u_out_p = 1.E5 +! ELSE IF (uoutp == 'mbar') THEN +! u_out_p = 1.E2 +! ELSE IF (uoutp == 'MPa') THEN +! u_out_p = 1.E6 +! ELSE IF (uoutp == 'kPa') THEN +! u_out_p = 1.E3 +! ELSE +! u_out_p = 1.0 +! END IF +! +! t = t + u_in_t !J: calculate temp in Kelvin +! p = p * u_in_p !J: calculate pressure in Pascal +! +! CALL para_input ! retriev pure comp. parameters +! +! +! END SUBROUTINE READ_INPUT + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE file_open +! +! This subroutine opens files for reading. Beforehand, it checks +! whether this file is available. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE file_open(filename,file_number) +! +! ---------------------------------------------------------------------- + CHARACTER (LEN=50) :: filename + INTEGER :: file_number + LOGICAL :: filefound +! ---------------------------------------------------------------------- + +INQUIRE (FILE=filename, EXIST = filefound) +IF (filefound) THEN + OPEN (file_number, FILE = filename) +ELSE + write (*,*) ' FOLLOWING FILE CAN NOT BE OPENED', filename + stop +END IF + +END SUBROUTINE file_open + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE para_input +! +! This subroutine provides pure component parameters and kij parameters. +! The following syntax applies: +! +! compna(i) component name +! parame(i,k) pure comp. parameter: +! parame(i,1): segment number [/] +! parame(i,2): segment diameter "sigma" [Angstrom] +! parame(i,3): segment energy param. epsilon/k [K] +! parame(i,4): model parameter; not used for PC-SAFT (=0) +! it is 10K most of the time for SAFT [K] +! parame(i,5): Param. for T-dependent segment diameter [/] +! parame(i,6): dipolar moment [debye] +! parame(i,7): quadrupolar moment [debye] +! parame(i,8): number of segments that are part of a branching 4-mer [/] +! parame(i,9): +! parame(i,10): ionic charge number (positiv or negativ) [/] +! parame(i,11): polarizability [A**3] +! parame(i,12): number of association sites [/] +! parame(i,13): (=kap_hb, see below) [/] +! parame(i,14 to 25): (=eps_hb, see below) [K] +! nhb_typ(i) number of different types of association sites (comp. i) +! nhb_no(i,k) number of association sites of type k +! eps_hb depth of association potential [K] +! kap_hb effective width of assoc. potential (angle-averg.) +! mm molec. mass +! scaling param. for roughly scaling the set of objective functions +! +! As opposed to low-molec mass compounds, the molecular mass of a +! polymer is not obtained from this routine. Rather, it is a +! user-specification given in the file INPUT.INP +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE para_input +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i +!---------------------------------------------------------------------- + +IF (eos == 1) THEN + CALL pcsaft_par +ELSE IF (eos == 4 .OR. eos == 5 .OR. eos == 6 .OR. eos == 8) THEN + ! CALL lj_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 7) THEN + ! CALL sw_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 10) THEN + i = 1 + IF (compna(i) == 'LC_generic' .AND. ncomp == 1 ) THEN + mm(i) = 1.0 + parame(i,1) = 7.0 + parame(i,2) = 1.0 + parame(i,3) = 0.0 + ELSE + write (*,*) 'PARA_INPUT: define the component !' + stop + ENDIF +ELSE + !CALL saft_par +END IF + +DO i = 1, ncomp + IF ( mm(i) >= 1.0 .AND. mm(i) < 45.0 ) THEN + scaling(i) = 10000.0 + ELSE IF( mm(i) >= 45.0 .AND. mm(i) < 90.0 ) THEN + scaling(i) = 1000.0 + ELSE IF( mm(i) >= 90.0 .AND. mm(i) < 150.0 ) THEN + scaling(i) = 100.0 + ELSE IF( mm(i) >= 150.0 .AND. mm(i) < 250.0 ) THEN + scaling(i) = 10.0 + ELSE + scaling(i) = 1.0 + END IF + IF (parame(i,10) /= 0.0) scaling(i) = scaling(i) / 1.E4 ! Electrolytes +END DO + +END SUBROUTINE para_input + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE pcsaft_par +! +! pure component parameters and kij parameters +! (as described in SUBROUTINE para_input) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE pcsaft_par +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i, j, k, no + INTEGER, DIMENSION(nc) :: nhb_typ + INTEGER, DIMENSION(nc,nsite) :: nhb_no + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb +!---------------------------------------------------------------------- + + +DO i = 1, ncomp + parame(i,4) = 0.0 ! T correct. required for SAFT, not PC-SAFT + parame(i,5) = 0.12 ! Param. for T-dependent segment diameter + parame(i,6) = 0.0 ! dipolar moment + parame(i,7) = 0.0 ! quadrupolar moment + parame(i,8) = 0.0 ! number of segments that are part of a branching 4-mer + parame(i,9) = 0.0 + parame(i,10)= 0.0 ! ionic charge number + parame(i,11)= 0.0 ! polarizability + lli(i) = 0.0 + phi_criti(i)= 0.0 + chap(i) = 0.0 + + nhb_typ(i) = 0 + kap_hb(i,i) = 0.0 + + IF (compna(i) == '14-butandiol') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + + ELSE IF (compna(i) == 'ps') THEN + parame(i,1) = mm(i)*1.9E-2 + parame(i,2) = 4.10705961 + parame(i,3) = 267.0 + ELSE IF (compna(i) == 'pg2') THEN !Polyglycerol 2 + mm(i) = 2000.0 + parame(i,1) = mm(i)*2.37E-2 ! from figure 5 PCSAFT paper + parame(i,2) = 3.8 ! from figure 5 PCSAFT paper + parame(i,3) = 270.0 ! starting value for iteration + ! this is the extra parameter + parame(i,8) = mm(i)*2.37E-2 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 27 ! no. of sites of type 1 + nhb_no(i,2) = 27 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2544.6 ! taken from butanol (same M/OH) + eps_hb(i,i,2,1)= 2544.6 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i)= .00489087833 ! taken from butanol (same M/OH) + ELSE IF (compna(i) == 'peva') THEN + parame(i,1) = mm(i)*2.63E-2 + ! -- 0 Gew.% VA------------- + ! parame(i,2) = 4.021767 + ! parame(i,3) = 249.5 + ! -- 7.5 Gew.% VA------------- + ! parame(i,2) = 4.011 + ! parame(i,3) = 248.1864 + ! parame(i,3) = 247.6286 + ! ---12.7 Gew.% VA------------ + ! parame(i,2) = 4.0028 + ! parame(i,3) = 247.2075 + ! parame(i,3) = 246.24454 + ! ---27.3 Gew.% VA------------ + ! parame(i,2) = 3.9762 + ! parame(i,3) = 244.114 + ! parame(i,3) = 241.9345 + ! ---31.8 Gew.% VA------------ + parame(i,2) = 3.9666 + parame(i,3) = 243.0436 + ! parame(i,3) = 240.46 + ! ---42.7 Gew.% VA------------ + ! parame(i,2) = 3.9400 + ! parame(i,3) = 240.184 + ! parame(i,3) = 236.62 + ! --------------- + ELSE IF (compna(i) == 'pp') THEN + parame(i,1) = mm(i)*2.2E-2 + parame(i,2) = 4.2 + parame(i,3) = 220.0 + + parame(i,1) = mm(i)*0.0230487701 + parame(i,2) = 4.1 + parame(i,3) = 217.0 + ELSE IF (compna(i) == 'pe') THEN + parame(i,1) = mm(i)*2.622E-2 + parame(i,2) = 4.021767 + parame(i,3) = 252.0 + ! HDPE: extrapolated from pure comp. param. of n-alkane series! + ! parame(i,1) = mm(i)*2.4346E-2 + ! parame(i,2) = 4.07182 + ! parame(i,3) = 269.67 + !! parame(i,3) = 252.5 + ELSE IF (compna(i) == 'ldpe') THEN + parame(i,1) = mm(i)*2.63E-2 + parame(i,2) = 4.021767 + parame(i,3) = 249.5 + ELSE IF (compna(i) == 'pba') THEN + parame(i,1) = mm(i)*2.5872E-2 + parame(i,2) = 3.95 + parame(i,3) = 229.0 + ELSE IF (compna(i) == 'dextran') THEN + parame(i,1) = mm(i)*2.E-2 + parame(i,2) = 4.0 + parame(i,3) = 300.0 + ELSE IF (compna(i) == 'glycol-ethers') THEN + ! mm(i) = 218.0 + ! parame(i,1) = 7.4044 + ! parame(i,2) = 3.61576 + ! parame(i,3) = 244.0034598 + mm(i) = 222.0 + parame(i,1) = 7.994 + parame(i,2) = 3.445377778 + parame(i,3) = 234.916506 + ELSE IF (compna(i) == 'LJ') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 1.0 + ELSE IF (compna(i) == 'LJ1205') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 140.0 + ELSE IF (compna(i) == 'adamantane') THEN + mm(i) = 136.235000000000 + parame(i,1) = 4.81897145432221 + parame(i,2) = 3.47128575274660 + parame(i,3) = 266.936967922521 + ELSE IF (compna(i) == 'methane') THEN + mm(i) = 16.043 + parame(i,1) = 1.0 + parame(i,2) = 3.70388767 + parame(i,3) = 150.033987 + ! LLi(i) = 1.185*parame(i,2) + ! phi_criti(i)= 11.141 + ! chap(i) = 0.787 + lli(i) = 1.398*parame(i,2) + phi_criti(i)= 16.01197 + chap(i) = 0.6 + IF (pol == 2) parame(i,11)= 2.593 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 16.0430000000000 + ! parame(i,1) = 1.03353666429362 + ! parame(i,2) = 3.64824920605089 + ! parame(i,3) = 147.903953522994 + lli(i) = 2.254442763775*parame(i,2) + phi_criti(i)= 42.060975627454 + chap(i) = 0.704895924 + lli(i) = 1.935801125833*parame(i,2) + phi_criti(i)= 26.363325937261 + chap(i) = 0.700112854298 + lli(i) = 2.610103087662*parame(i,2) + phi_criti(i)= 38.192854403173 + chap(i) = 0.812100472735 + ! 2.122960316503 34.937141524804 0.734513223627 + ! 2.082897379591 33.036391564859 0.877578492999 + ELSE IF (compna(i) == 'ethane') THEN + mm(i) = 30.070 + parame(i,1) =mm(i)* .0534364758 + parame(i,2) = 3.5205923 + parame(i,3) = 191.423815 + lli(i) = 1.40*parame(i,2) + phi_criti(i)= 15.38 + chap(i) = 0.520 + IF (pol == 2) parame(i,11)= 4.3 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 30.069 + ! parame(i,1) = 1.74034548122 + ! parame(i,2) = 3.4697441893134 + ! parame(i,3) = 181.90770083591 + IF (pol >= 1) mm(i) = 30.0700000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 5.341907666260094E-002 + IF (pol >= 1) parame(i,2) = 3.52104466654628 + IF (pol >= 1) parame(i,3) = 191.449300423694 + IF (pol >= 1) parame(i,7) = 0.650000000000000 + IF (pol >= 1) lli(i) = 0.0 + IF (pol >= 1) phi_criti(i)= 0.0 + IF (pol >= 1) chap(i) = 0.0 + ELSE IF (compna(i) == 'propane') THEN + mm(i) = 44.096 + parame(i,1) = mm(i)* .0453970622 + parame(i,2) = 3.61835302 + parame(i,3) = 208.110116 + lli(i) = 1.8*parame(i,2) + phi_criti(i)= 21.0 + chap(i) = 1.0 + lli(i) = 1.63*parame(i,2) + phi_criti(i)= 20.37 + chap(i) = 0.397 + IF (pol == 2) parame(i,11)= 6.29 + ELSE IF (compna(i) == 'butane_debug') THEN + mm(i) = 58.123 + parame(i,1) = 2.3374 + parame(i,2) = 3.6655 + parame(i,3) = 214.805 + ELSE IF (compna(i) == 'butane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0401146927 + parame(i,2) = 3.70860139 + parame(i,3) = 222.877405 + lli(i) = 1.75*parame(i,2) + phi_criti(i)= 23.43 + chap(i) = 0.304 + ! LLi(i) = 1.942079633622*parame(i,2) + ! phi_criti(i)= 24.527323443155 + ! chap(i) = 0.734064026277 + ! LLi(i) = 1.515115760477*parame(i,2) + ! phi_criti(i)= 17.682929717796 + ! chap(i) = 0.335848717079 + IF (pol == 2) parame(i,11)= 8.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 58.1230000000 + ! parame(i,1) = 2.45352304112 + ! parame(i,2) = 3.74239117802 + ! parame(i,3) = 214.185157925 + ELSE IF (compna(i) == 'pentane') THEN + mm(i) = 72.146 + parame(i,1) = mm(i)* .03727896 + parame(i,2) = 3.77293174 + parame(i,3) = 231.197015 + IF (pol == 2) parame(i,11)= 9.99 + ELSE IF (compna(i) == 'hexane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0354812325 + parame(i,2) = 3.79829291 + parame(i,3) = 236.769054 + lli(i) = 2.24*parame(i,2) + phi_criti(i)= 33.25 + chap(i) = 0.205 + IF (pol == 2) parame(i,11)= 11.9 + ELSE IF (compna(i) == 'heptane') THEN + mm(i) = 100.203 + parame(i,1) = mm(i)* .034762384 + parame(i,2) = 3.80487025 + parame(i,3) = 238.400913 + lli(i) = 2.35*parame(i,2) + phi_criti(i)= 38.10 + chap(i) = 0.173 + IF (pol == 2) parame(i,11)= 13.61 + ELSE IF (compna(i) == 'octane') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* .0334228038 + parame(i,2) = 3.83732677 + parame(i,3) = 242.775853 + ! LLi(i) = 2.0*parame(i,2) + ! phi_criti(i)= 18.75 + ! chap(i) = 1.0 + lli(i) = 2.63*parame(i,2) + phi_criti(i)= 42.06 + chap(i) = 0.155 + IF (pol == 2) parame(i,11)= 15.9 + ELSE IF (compna(i) == 'nonane') THEN + mm(i) = 128.25 + parame(i,1) = mm(i)* .0328062594 + parame(i,2) = 3.84483643 + parame(i,3) = 244.508457 + ELSE IF (compna(i) == 'decane') THEN + mm(i) = 142.285 + parame(i,1) = mm(i)* .03277373 + parame(i,2) = 3.8384498 + parame(i,3) = 243.866074 + lli(i) = 1.845*parame(i,2) + phi_criti(i)= 21.27 + chap(i) = 1.0 + lli(i) = 2.68*parame(i,2) + phi_criti(i)= 45.0 + chap(i) = 0.15 + IF (pol == 2) parame(i,11)= 19.1 + ! --- adjusted to Tc, Pc und omega --- + ! parame(i,1) = 4.794137228322 + ! parame(i,2) = 4.030446690586 + ! parame(i,3) = 236.5884493386 + ELSE IF (compna(i) == 'dodecane') THEN + mm(i) = 170.338 + parame(i,1) = mm(i)* .0311484156 + parame(i,2) = 3.89589236 + parame(i,3) = 249.214532 + ELSE IF (compna(i) == 'hexadecane') THEN + mm(i) = 226.446 + parame(i,1) = mm(i)* .0293593045 + parame(i,2) = 3.95516743 + parame(i,3) = 254.700131 + ELSE IF (compna(i) == 'octadecane') THEN + mm(i) = 254.5 + parame(i,1) = 7.3271 + parame(i,2) = 3.9668 + parame(i,3) = 256.20 + IF (pol == 2) parame(i,11)= 30.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 226.446000000000 + ! parame(i,1) = 6.66976520488694 + ! parame(i,2) = 4.25025597912511 + ! parame(i,3) = 249.582941976119 + ELSE IF (compna(i) == 'eicosane') THEN + mm(i) = 282.553 + parame(i,1) = mm(i)* .0282572812 + parame(i,2) = 3.98692612 + parame(i,3) = 257.747939 + ELSE IF (compna(i) == 'triacontane') THEN + ! mm(i) = 422.822 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 422.822 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'octaeicosane') THEN + mm(i) = 395.0 ! param. by extrapolation of n-alkanes (sloppy!!) + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'tetracontane') THEN + ! mm(i) = 563.1 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 563.1 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)*0.026287593 + parame(i,2) = 4.023277 + parame(i,3) = 264.10466 + ELSE IF (compna(i) == 'isobutane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0389105395 + parame(i,2) = 3.75735249 + parame(i,3) = 216.528584 + ELSE IF (compna(i) == 'isopentane') THEN + mm(i) = 72.15 + parame(i,1) = 2.5620 + parame(i,2) = 3.8296 + parame(i,3) = 230.75 + ELSE IF (compna(i) == '2-methylpentane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0340166994 + parame(i,2) = 3.85354665 + parame(i,3) = 235.5801 + ELSE IF (compna(i) == '23-dimethylbutane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0311599207 + parame(i,2) = 3.9544545 + parame(i,3) = 246.068188 + ELSE IF (compna(i) == 'ethylene') THEN + mm(i) = 28.05 + parame(i,1) = mm(i)* .0567939013 + parame(i,2) = 3.44499904 + parame(i,3) = 176.468725 + IF (pol == 2) parame(i,11)= 4.252 +! eigener 3-ter Anlauf. + IF (pol >= 1) parame(i,1) = mm(i)* 5.574644443117726E-002 + IF (pol >= 1) parame(i,2) = 3.43281482228714 + IF (pol >= 1) parame(i,3) = 178.627308564610 + IF (pol >= 1) parame(i,7) = 1.56885870200446 + IF (pol == 2) parame(i,11)= 4.252 + ELSE IF (compna(i) == 'propylene') THEN + mm(i) = 42.081 + parame(i,1) = mm(i)* .0465710324 + parame(i,2) = 3.53559831 + parame(i,3) = 207.189309 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 42.081 + ! parame(i,1) = 2.086735327675 + ! parame(i,2) = 3.536779407969 + ! parame(i,3) = 198.3529810625 + ELSE IF (compna(i) == '1-butene') THEN + mm(i) = 56.107 + parame(i,1) = mm(i)* .0407524782 + parame(i,2) = 3.64305136 + parame(i,3) = 222.002756 + IF (pol == 2) parame(i,11)= 7.97 + ELSE IF (compna(i) == '1-pentene') THEN + mm(i) = 70.134 + parame(i,1) = 2.6006 + parame(i,2) = 3.7399 + parame(i,3) = 231.99 + ELSE IF (compna(i) == '1-hexene') THEN + mm(i) = 84.616 + parame(i,1) = mm(i)* .0352836857 + parame(i,2) = 3.77529612 + parame(i,3) = 236.810973 + ELSE IF (compna(i) == '1-octene') THEN + mm(i) = 112.215 + parame(i,1) = mm(i)* .033345175 + parame(i,2) = 3.81329011 + parame(i,3) = 243.017587 + ELSE IF (compna(i) == 'cyclopentane') THEN + mm(i) = 70.13 + parame(i,1) = mm(i)* .0337262571 + parame(i,2) = 3.71139254 + parame(i,3) = 265.828755 + ELSE IF (compna(i) == 'cyclohexane') THEN + mm(i) = 84.147 + parame(i,1) = mm(i)* .0300695505 + parame(i,2) = 3.84990887 + parame(i,3) = 278.108786 + IF (pol == 2) parame(i,11)= 10.87 + ELSE IF (compna(i) == 'toluene') THEN + mm(i) = 92.141 + parame(i,1) = mm(i)* .0305499338 + parame(i,2) = 3.71689689 + parame(i,3) = 285.68996 + IF (pol == 2) parame(i,11)= 11.8 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 92.141 + ! parame(i,1) = 3.002119827762 + ! parame(i,2) = 3.803702734224 + ! parame(i,3) = 271.9428642880 + ELSE IF (compna(i) == 'm-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .030011086 + parame(i,2) = 3.75625585 + parame(i,3) = 283.977525 + ELSE IF (compna(i) == 'o-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0295409161 + parame(i,2) = 3.76000631 + parame(i,3) = 291.049123 + ELSE IF (compna(i) == 'thf') THEN + mm(i) = 72.1057000000000 + ! parame(i,1) = mm(i)* 0.34311391E-01 + parame(i,1) = 2.47404685540709 + parame(i,2) = 3.51369375633677 + parame(i,3) = 274.181927093696 + parame(i,6) = 1.63100000000000 + + + Else IF(compna(i) == 'po') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + Else IF(compna(i) == 'mdi') THEN + mm(i) = 2.50252E+02 + parame(i,1) = mm(i)*0.030769 + parame(i,2) = 2.886003 + parame(i,3) = 283.052778 + + Else IF(compna(i) == 'pu') THEN +! mm(i) = 2042.22 !pu n = 5 +! parame(i,1) = mm(i)*0.008845 +! parame(i,2) = 5.680270 +! parame(i,3) = 497.997594 +! mm(i) = 340.37 !pu n = 0 +! parame(i,1) = mm(i)*0.043312 +! parame(i,2) = 3.008359 +! parame(i,3) = 273.445205 +! mm(i) = 680.74 !pu n = 1 +! parame(i,1) = mm(i)*0.024106 +! parame(i,2) = 3.744327 +! parame(i,3) = 321.486386 + mm(i) = 1021.11 !pu n = 2 + parame(i,1) = mm(i)*0.015076 + parame(i,2) = 4.537837 + parame(i,3) = 400.036950 + + ELSE IF (compna(i) == 'air') THEN + mm(i) = 28.899 !n2 and o2 according to mole fractions + parame(i,1) = 1.18938 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,2) = 3.28694 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,3) = 95.672 !n2 and o2 according to mole fractions (weighted artihm. avg) + + + + + + ELSE IF (compna(i) == 'co2') THEN + mm(i) = 44.01 + parame(i,1) = mm(i)* .0470968503 + parame(i,2) = 2.7851954 + parame(i,3) = 169.207418 + IF (pol >= 1) parame(i,1) = mm(i)* 3.438191426159075E-002 + IF (pol >= 1) parame(i,2) = 3.18693935424469 + IF (pol >= 1) parame(i,3) = 163.333232725156 + IF (pol >= 1) parame(i,7) = 4.400000000000 + IF (pol >= 1) lli(i) = 1.472215*parame(i,2) + IF (pol >= 1) phi_criti(i)= 17.706567 + IF (pol >= 1) chap(i) = 0.5 + IF (pol == 2) parame(i,11)= 2.911 + ELSE IF (compna(i) == 'co') THEN + IF (pol /= 1) write (*,*) 'parameters for co missing' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 28.01 + IF (pol >= 1) parame(i,1) = mm(i)* 5.126059746332587E-002 ! 1.43580933494776 + IF (pol >= 1) parame(i,2) = 3.13556624711756 + IF (pol >= 1) parame(i,3) = 87.7191028693595 + IF (pol >= 1) parame(i,6) = 0.1098 + ELSE IF (compna(i) == 'n2') THEN + mm(i) = 28.01 + parame(i,1) = mm(i)* .0430301713 + parame(i,2) = 3.3129702 + parame(i,3) = 90.9606924 + IF (pol >= 1) parame(i,1) = mm(i)* 3.971157114787596E-002 + IF (pol >= 1) parame(i,2) = 3.42116853868336 + IF (pol >= 1) parame(i,3) = 92.3972606842862 + IF (pol >= 1) parame(i,7) = 1.52000000000000 + IF (pol >= 1) lli(i) = 1.5188*parame(i,2) + IF (pol >= 1) phi_criti(i)= 19.9247 + IF (pol >= 1) chap(i) = 0.375 + ! better RGT-results came later, with: 1.5822 21.201 0.3972 + ELSE IF (compna(i) == 'o2') THEN + mm(i) = 32.05 + parame(i,1) = mm(i)* .0353671563 + parame(i,2) = 3.19465166 + parame(i,3) = 114.430197 + ELSE IF (compna(i) == 'hydrogen') THEN + mm(i) = 2.016 + parame(i,1) = mm(i)* .258951975 + parame(i,2) = 4.43304935 + parame(i,3) = 29.6509579 + + mm(i) = 2.016 + parame(i,1) = 1.0 + parame(i,2) = 2.915 + parame(i,3) = 38.0 + + ! mm(i) = 2.016 ! Ghosh et al. 2003 + ! parame(i,1) = 1.0 + ! parame(i,2) = 2.986 + ! parame(i,3) = 19.2775 + ELSE IF (compna(i) == 'argon') THEN + ! mm(i) = 39.948 ! adjusted m !! + ! parame(i,1) = 0.9285 + ! parame(i,2) = 3.4784 + ! parame(i,3) = 122.23 + mm(i) = 39.948 ! enforced m=1 !! + parame(i,1) = 1.0 + parame(i,2) = 3.3658 + parame(i,3) = 118.34 + IF (pol == 2) parame(i,11)= 1.6411 + ELSE IF (compna(i) == 'xenon') THEN + mm(i) = 131.29 + parame(i,1) = 1.0 + parame(i,2) = 3.93143 + parame(i,3) = 227.749 + ELSE IF (compna(i) == 'chlorine') THEN ! Cl2 + mm(i) = 70.906 + parame(i,1) = 1.5514 + parame(i,2) = 3.3672 + parame(i,3) = 265.67 + ELSE IF (compna(i) == 'SF6') THEN + mm(i) = 146.056 ! adjusted m !! + parame(i,1) = 2.48191 + parame(i,2) = 3.32727 + parame(i,3) = 161.639 + ! mm(i) = 146.056 ! enforced m=1 !! + ! parame(i,1) = 1.0 + ! parame(i,2) = 4.55222 + ! parame(i,3) = 263.1356 + ELSE IF (compna(i) == 'benzene') THEN + mm(i) = 78.114 + parame(i,1) = mm(i)* .0315590546 + parame(i,2) = 3.64778975 + parame(i,3) = 287.354574 + IF (pol >= 1) mm(i) = 78.114 ! PCP-SAFT with m=2 in QQ term + IF (pol >= 1) parame(i,1) = mm(i)* 2.932783311E-2 ! = 2.29091435590515 + IF (pol >= 1) parame(i,2) = 3.7563854 + IF (pol >= 1) parame(i,3) = 294.06253 + IF (pol >= 1) parame(i,7) = 5.5907 + ELSE IF (compna(i) == 'ethylbenzene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0290120497 + parame(i,2) = 3.79741116 + parame(i,3) = 287.348098 + IF (pol == 2) parame(i,11)= 13.3 + ELSE IF (compna(i) == 'propylbenzene') THEN + mm(i) = 120.194 + parame(i,1) = mm(i)* .0278171627 + parame(i,2) = 3.8437772 + parame(i,3) = 288.128269 + ELSE IF (compna(i) == 'n-butylbenzene') THEN + mm(i) = 134.221 + parame(i,1) = mm(i)* .0280642225 + parame(i,2) = 3.87267961 + parame(i,3) = 283.072331 + ELSE IF (compna(i) == 'tetralin') THEN + mm(i) = 132.205 + parame(i,1) = mm(i)* .0250640795 + parame(i,2) = 3.87498866 + parame(i,3) = 325.065688 + ELSE IF (compna(i) == 'methylcyclohexane') THEN + mm(i) = 98.182 + parame(i,1) = mm(i)* .0271259953 + parame(i,2) = 3.99931892 + parame(i,3) = 282.334148 + IF (pol == 2) parame(i,11)= 13.1 + ELSE IF (compna(i) == 'methylcyclopentane') THEN + mm(i) = 84.156 + parame(i,1) = mm(i)* .0310459009 + parame(i,2) = 3.82534693 + parame(i,3) = 265.122799 + ELSE IF (compna(i) == 'acetone') THEN + mm(i) = 58.0800000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.870380408159182E-002 ! =2.82871694105885 + parame(i,2) = 3.24969003020675 + parame(i,3) = 250.262241927379 + lli(i) = 2.0021*parame(i,2) + phi_criti(i)= 21.336 + chap(i) = 0.24931 + IF (pol >= 1) mm(i) = 58.0800000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.725811736856114E-002 ! =2.74475145676603 + IF (pol >= 1) parame(i,2) = 3.27423145271184 + IF (pol >= 1) parame(i,3) = 232.990879135326 + IF (pol >= 1) parame(i,6) = 2.88000000000000 + IF (pol >= 1) lli(i) = 2.0641*parame(i,2) + IF (pol >= 1) phi_criti(i)= 28.1783 + IF (pol >= 1) chap(i) = 0.22695 + IF (pol >= 2) mm(i) = 58.0800000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.902301475689938E-002 ! =2.84725669708072 + IF (pol >= 2) parame(i,2) = 3.23880349104868 + IF (pol >= 2) parame(i,3) = 220.884202656054 + IF (pol >= 2) parame(i,6) = 2.88000000000000 + IF (pol == 2) parame(i,11)= 6.40000000000000 + ELSE IF (compna(i) == 'butanone') THEN + mm(i) = 72.1066 ! PC-SAFT + parame(i,1) = mm(i)* 4.264192830122321E-002 ! =3.07476446724498 + parame(i,2) = 3.39324011060028 + parame(i,3) = 252.267273608975 + IF (pol >= 1) mm(i) = 72.1066 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.137668924230600E-002 ! =2.98353238051926 + IF (pol >= 1) parame(i,2) = 3.42393701353423 + IF (pol >= 1) parame(i,3) = 244.994381354681 + IF (pol >= 1) parame(i,6) = 2.78000000000000 + IF (pol >= 2) mm(i) = 72.1066 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.254697075199448E-002 ! =3.06791740122577 + IF (pol >= 2) parame(i,2) = 3.39138375903252 + IF (pol >= 2) parame(i,3) = 236.527763837528 + IF (pol >= 2) parame(i,6) = 2.78000000000000 + IF (pol == 2) parame(i,11)= 8.13000000000000 + ELSE IF (compna(i) == '2-pentanone') THEN + ! mm(i) = 86.134 ! PC-SAFT + ! parame(i,1) = mm(i)* 3.982654501296355E-002 ! =3.43041962814660 + ! parame(i,2) = 3.46877976946838 + ! parame(i,3) = 249.834724442656 + ! mm(i) = 86.134 ! PCP-SAFT + ! parame(i,1) = mm(i)* 3.893594769994072E-002 ! =3.35370891918669 + ! parame(i,2) = 3.49417356096593 + ! parame(i,3) = 246.656329096835 + ! parame(i,6) = 2.70000000000000 + mm(i) = 86.134 ! PCIP-SAFT + parame(i,1) = mm(i)* 3.973160761515879E-002 ! =3.42224229032409 + parame(i,2) = 3.46827593107280 + parame(i,3) = 240.904278156822 + parame(i,6) = 2.70000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == '3-pentanone') THEN + mm(i) = 86.134 ! PC-SAFT + parame(i,1) = 3.36439508013322 + parame(i,2) = 3.48770251979329 + parame(i,3) = 252.695415552376 + IF (pol >= 1) mm(i) = 86.134 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.27863398611842 + IF (pol >= 1) parame(i,2) = 3.51592571835030 + IF (pol >= 1) parame(i,3) = 248.690775540981 + IF (pol >= 1) parame(i,6) = 2.82000000000000 + IF (pol == 2) mm(i) = 86.134 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 3.34821857026283 + IF (pol == 2) parame(i,2) = 3.48903345340516 + IF (pol == 2) parame(i,3) = 242.314578558329 + IF (pol == 2) parame(i,6) = 2.82000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == 'cyclohexanone') THEN ! from DIPPR + ! IF (pol.GE.1) mm(i) = 98.1430 ! PCP-SAFT + ! IF (pol.GE.1) parame(i,1) = 3.084202 + ! IF (pol.GE.1) parame(i,2) = 3.613681 + ! IF (pol.GE.1) parame(i,3) = 286.15865 + ! IF (pol.GE.1) parame(i,6) = 3.087862 + IF (pol >= 1) mm(i) = 98.1500000000000 + IF (pol >= 1) parame(i,1) = 2.72291913132818 + IF (pol >= 1) parame(i,2) = 3.79018433908522 + IF (pol >= 1) parame(i,3) = 314.772193827344 + IF (pol >= 1) parame(i,6) = 3.24600000000000 + IF (pol /= 1) WRITE (*,*) 'no non-polar param. for cyclohexanone' + IF (pol /= 1) STOP + ELSE IF (compna(i) == 'propanal') THEN + mm(i) = 58.08 ! PC-SAFT + parame(i,1) = 2.67564746980910 + parame(i,2) = 3.26295953984941 + parame(i,3) = 251.888982765626 + IF (pol >= 1) mm(i) = 58.08 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.60007872084995 + IF (pol >= 1) parame(i,2) = 3.28720732189761 + IF (pol >= 1) parame(i,3) = 235.205188090107 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + IF (pol >= 2) mm(i) = 58.08 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.72471167411028 + IF (pol >= 2) parame(i,2) = 3.24781643022922 + IF (pol >= 2) parame(i,3) = 221.642071811094 + IF (pol >= 2) parame(i,6) = 2.72000000000000 + IF (pol >= 2) parame(i,11)= 6.50000000000000 + ELSE IF (compna(i) == 'butanal') THEN + mm(i) = 72.1066000000000 ! PC-SAFT + parame(i,1) = 2.96824823599784 + parame(i,2) = 3.44068916025889 + parame(i,3) = 253.929404992884 + IF (pol >= 1) mm(i) = 72.1066000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.86783706423953 + IF (pol >= 1) parame(i,2) = 3.47737904036296 + IF (pol >= 1) parame(i,3) = 247.543312127310 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + ELSE IF (compna(i) == 'dmso') THEN + mm(i) = 78.1300000000000 ! PC-SAFT + parame(i,1) = 2.92225114054231 + parame(i,2) = 3.27780791606297 + parame(i,3) = 355.688793038512 + IF (pol >= 1) mm(i) = 78.1300000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.02433694138348 + IF (pol >= 1) parame(i,2) = 3.24270742566613 + IF (pol >= 1) parame(i,3) = 309.357476696679 + IF (pol >= 1) parame(i,6) = 3.96000000000000 + IF (pol >= 2) mm(i) = 78.1300000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 3.19078234633277 + IF (pol >= 2) parame(i,2) = 3.19778269816832 + IF (pol >= 2) parame(i,3) = 286.337981216861 + IF (pol >= 2) parame(i,6) = 3.96000000000000 + IF (pol >= 2) parame(i,11)= 7.97000000000000 + ELSE IF (compna(i) == 'acetone_JC') THEN ! Jog-Chapman + ! mm(i) = 58.0800000000000 ! Dominik et al.2005 + ! parame(i,1) = 2.221 + ! parame(i,2) = 3.607908 + ! parame(i,3) = 259.99 + ! parame(i,6) = 2.7 + ! parame(i,8) = 0.2258 + ! mm(i) = 58.0800000000000 + ! parame(i,1) = mm(i)* 3.556617369195472E-002 + ! parame(i,2) = 3.58780367502515 + ! parame(i,3) = 273.025100470307 + ! parame(i,6) = 2.70000000000000 + ! parame(i,8) = 0.229800000000000 + + mm(i) = 58.08 ! Tumakaka Sadowski 2004 + parame(i,1) = mm(i)* 3.766E-2 + parame(i,2) = 3.6028 + parame(i,3) = 245.49 + parame(i,6) = 2.72 + parame(i,8) = 0.2969 + ! mm(i) = 58.0800000000000 ! no adjust. DD-param. + ! parame(i,1) = 1.87041620247774 + ! parame(i,2) = 3.79783535570774 + ! parame(i,3) = 208.885730881588 + ! parame(i,6) = 2.88000000000000 + ! parame(i,8) = 1.0/parame(i,1) + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = -0.005 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'acetone_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = mm(i)* 4.603296414764944E-002 + parame(i,2) = 3.29454924451643 + parame(i,3) = 221.052649057645 + parame(i,6) = 2.70000000000000 + parame(i,8) = 0.625410000000000 + mm(i) = 58.08 ! form as expected from me - no DD-param adjusted.dat + parame(i,1) = mm(i)* 4.364264724158790E-002 ! =2.53476495179143 + parame(i,2) = 3.37098670735567 + parame(i,3) = 254.366379701851 + parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 - no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.694644361257521E-002 ! =2.72664944501837 + ! parame(i,2) = 3.27842292595463 + ! parame(i,3) = 238.398883501772 + ! parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 and fdd*sumseg- no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.458214655521766E-002 ! =2.58933107192704 + ! parame(i,2) = 3.32050824493493 + ! parame(i,3) = 218.285994651271 + ! parame(i,6) = 2.88000000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = 0.035 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'ethylacetate_JC') THEN ! Jog-Chapman + ! mm(i) = 88.11 + ! parame(i,1) = 2.7481 + ! parame(i,2) = 3.6511 + ! parame(i,3) = 236.99 + ! parame(i,6) = 1.84 + ! parame(i,8) = 0.5458 + mm(i) = 88.1060000000000 + parame(i,1) = mm(i)* 0.03117 ! 2.74626402 + parame(i,2) = 3.6493 + parame(i,3) = 236.75 + parame(i,6) = 1.8 + parame(i,8) = 0.5462 + ELSE IF (compna(i) == 'ethylacetate_SF') THEN ! Saager-Fischer + mm(i) = 88.106 + parame(i,1) = mm(i)* 3.564165384763394E-002 + parame(i,2) = 3.447379322 + parame(i,3) = 226.0930487 + parame(i,6) = 1.8 + parame(i,8) = 0.849967000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_JC') THEN ! Jog-Chapman + mm(i) = 58.08 + parame(i,1) = 2.0105 + parame(i,2) = 3.6095 + parame(i,3) = 258.82 + parame(i,6) = 2.0 + parame(i,8) = 0.3979 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = 2.1341 + parame(i,2) = 3.4739 + parame(i,3) = 252.95 + parame(i,6) = 2.0 + parame(i,8) = 0.916 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == 'acrylonitrile') THEN + IF (pol >= 2) mm(i) = 53.06 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.168 + IF (pol >= 2) parame(i,2) = 3.575 + IF (pol >= 2) parame(i,3) = 214.83 + IF (pol >= 2) parame(i,6) = 3.91 + IF (pol == 2) parame(i,11)= 8.04 + IF (pol >= 2) mm(i) = 53.0000000000000 ! second parameter set ?? + IF (pol >= 2) parame(i,1) = 2.45403467006041 + IF (pol >= 2) parame(i,2) = 3.41276825781723 + IF (pol >= 2) parame(i,3) = 195.194353082408 + IF (pol >= 2) parame(i,6) = 3.91000000000000 + IF (pol == 2) parame(i,11)= 8.04000000000000 + ELSE IF (compna(i) == 'butyronitrile') THEN + ! mm(i) = 69.11 + ! parame(i,1) = 2.860 + ! parame(i,2) = 3.478 + ! parame(i,3) = 253.21 + ! parame(i,6) = 4.07 + mm(i) = 69.11 + parame(i,1) = 2.989 + parame(i,2) = 3.441 + parame(i,3) = 234.04 + parame(i,6) = 4.07 + IF (pol == 2) parame(i,11)= 8.4 + ELSE IF (compna(i) == 'propionitrile') THEN + mm(i) = 55.079 ! PC-SAFT + parame(i,1) = 2.66211021227108 + parame(i,2) = 3.34032231132738 + parame(i,3) = 294.078737359580 + IF (pol >= 1) mm(i) = 55.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.50958981615666 + IF (pol >= 1) parame(i,2) = 3.39806320429568 + IF (pol >= 1) parame(i,3) = 239.152759066148 + IF (pol >= 1) parame(i,6) = 4.05000000000000 + IF (pol >= 2) mm(i) = 55.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.54684827683436 + IF (pol >= 2) parame(i,2) = 3.41240089912190 + IF (pol >= 2) parame(i,3) = 218.299491580335 + IF (pol >= 2) parame(i,6) = 4.05000000000000 + IF (pol == 2) parame(i,11)= 6.24000000000000 + ! IF (pol.GE.2) mm(i) = 55.079 ! PCIP-SAFT my_DD adjusted + ! IF (pol.GE.2) parame(i,1) = 2.61175151088002 + ! IF (pol.GE.2) parame(i,2) = 3.37194293181453 + ! IF (pol.GE.2) parame(i,3) = 233.346110749402 + ! IF (pol.GE.2) parame(i,6) = 3.74682245835235 + ! IF (pol.EQ.2) parame(i,11)= 6.24000000000000 + ELSE IF (compna(i) == 'nitromethane') THEN + mm(i) = 61.04 ! PC-SAFT + parame(i,1) = mm(i)* 4.233767489308791E-002 ! =2.58429167547409 + parame(i,2) = 3.10839592337018 + parame(i,3) = 310.694151426943 + IF (pol >= 1) mm(i) = 61.04 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.191475020685036E-002 ! =2.55847635262615 + IF (pol >= 1) parame(i,2) = 3.10129282495975 + IF (pol >= 1) parame(i,3) = 256.456941430554 + IF (pol >= 1) parame(i,6) = 3.46000000000000 + IF (pol >= 2) mm(i) = 61.04 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.394323357988009E-002 ! =2.68229497771588 + IF (pol >= 2) parame(i,2) = 3.10654492320028 + IF (pol >= 2) parame(i,3) = 225.973607468282 + IF (pol >= 2) parame(i,6) = 3.46000000000000 + IF (pol >= 2) parame(i,11)= 7.37000000000000 + ELSE IF (compna(i) == 'nitroethane') THEN + mm(i) = 75.067 ! PC-SAFT + parame(i,1) = mm(i)* 4.019977215251163E-002 ! =3.01767629617259 + parame(i,2) = 3.21364231060938 + parame(i,3) = 286.571650044235 + IF (pol >= 1) mm(i) = 75.067 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.928506808347654E-002 ! =2.94901220582233 + IF (pol >= 1) parame(i,2) = 3.23117331990738 + IF (pol >= 1) parame(i,3) = 265.961000131109 + IF (pol >= 1) parame(i,6) = 3.23000000000000 + IF (pol >= 2) mm(i) = 75.067 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.117677400894779E-002 ! =3.09101689452968 + IF (pol >= 2) parame(i,2) = 3.19364569858756 + IF (pol >= 2) parame(i,3) = 246.676040248662 + IF (pol >= 2) parame(i,6) = 3.23000000000000 + IF (pol >= 2) parame(i,11)= 9.63000000000000 + ELSE IF (compna(i) == 'acetonitrile') THEN + mm(i) = 41.052 ! PC-SAFT + parame(i,1) = mm(i)* 5.673187410405271E-002 ! =2.32895689571957 + parame(i,2) = 3.18980108373791 + parame(i,3) = 311.307486044181 + IF (pol >= 1) mm(i) = 41.052 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 5.254832931037250E-002 ! =2.15721401484941 + IF (pol >= 1) parame(i,2) = 3.27301469369132 + IF (pol >= 1) parame(i,3) = 216.888948676921 + IF (pol >= 1) parame(i,6) = 3.92520000000000 + IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 5.125846581157176E-002 ! =2.10426253849664 + IF (pol >= 2) parame(i,2) = 3.39403305120647 + IF (pol >= 2) parame(i,3) = 199.070191065791 + IF (pol >= 2) parame(i,6) = 3.92520000000000 + IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT my_DD adjusted + ! IF (pol >= 2) parame(i,1) = mm(i)* 5.755347845863738E-002 ! =2.36268539768398 + ! IF (pol >= 2) parame(i,2) = 3.18554306395900 + ! IF (pol >= 2) parame(i,3) = 225.143934506015 + ! IF (pol >= 2) parame(i,6) = 3.43151866932598 + ! IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! mm(i) = 41.053 ! PCP-SAFT dipole and quadrupole + ! parame(i,1) = 1.79993 + ! parame(i,2) = 3.47366 + ! parame(i,3) = 211.001 + ! parame(i,6) = 3.93800 + ! parame(i,7) = 2.44000 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'dmf') THEN + mm(i) = 73.09 ! PC-SAFT + parame(i,1) = 2.388 + parame(i,2) = 3.658 + parame(i,3) = 363.77 + IF (pol >= 1) mm(i) = 73.09 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.269 + IF (pol >= 1) parame(i,2) = 3.714 + IF (pol >= 1) parame(i,3) = 331.56 + IF (pol >= 1) parame(i,6) = 3.82 + IF (pol >= 2) mm(i) = 73.09 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.375 + IF (pol >= 2) parame(i,2) = 3.667 + IF (pol >= 2) parame(i,3) = 308.42 + IF (pol >= 2) parame(i,6) = 3.82 + IF (pol >= 2) parame(i,11)= 7.81 + ELSE IF (compna(i) == 'chloroform') THEN + mm(i) = 119.377 ! PCIP-SAFT + parame(i,1) = 2.5957 + parame(i,2) = 3.4299 + parame(i,3) = 264.664 + parame(i,6) = 1.04 + IF (pol == 2) parame(i,11)= 8.23 + ELSE IF (compna(i) == 'dimethyl-ether') THEN + mm(i) = 46.069 ! PC-SAFT + parame(i,1) = mm(i)* 0.049107715 ! =2.26234331 + parame(i,2) = 3.276640534 + parame(i,3) = 212.9343244 + IF (pol >= 1) mm(i) = 46.0690000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.048170452 ! =2.219164566 + IF (pol >= 1) parame(i,2) = 3.296939638 + IF (pol >= 1) parame(i,3) = 212.1048888 + IF (pol >= 1) parame(i,6) = 1.30000000000000 + IF (pol >= 2) mm(i) = 46.0690000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.939183716945787E-002 ! =2.27543254655976 + IF (pol >= 2) parame(i,2) = 3.26584718800835 + IF (pol >= 2) parame(i,3) = 206.904551967059 + IF (pol >= 2) parame(i,6) = 1.30000000000000 + IF (pol == 2) parame(i,11)= 5.29000000000000 + ELSE IF (compna(i) == 'methyl-ethyl-ether') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0442404671 + parame(i,2) = 3.37282595 + parame(i,3) = 216.010217 + IF (pol >= 1) mm(i) = 60.096 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.3971676124088D-002 ! =2.64252184835325 + IF (pol >= 1) parame(i,2) = 3.37938465390 + IF (pol >= 1) parame(i,3) = 215.787173860 + IF (pol >= 1) parame(i,6) = 1.17000000000 + IF (pol >= 2) mm(i) = 60.096 ! PICP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.4580196137984D-002 ! =2.67909146710834 + IF (pol >= 2) parame(i,2) = 3.36105342286 + IF (pol >= 2) parame(i,3) = 212.871911999 + IF (pol >= 2) parame(i,6) = 1.17000000000 + IF (pol >= 2) parame(i,11) = 7.93000000000 + ELSE IF (compna(i) == 'diethyl-ether') THEN + mm(i) = 74.123 ! PC-SAFT + parame(i,1) = mm(i)* .0409704089 + parame(i,2) = 3.48569553 + parame(i,3) = 217.64113 + IF (pol >= 1) mm(i) = 74.123 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.0103121403686E-2 ! =2.97256367 + IF (pol >= 1) parame(i,2) = 3.51268687697978 + IF (pol >= 1) parame(i,3) = 219.527376572135 + IF (pol >= 1) parame(i,6) = 1.15000000000000 + IF (pol >= 2) mm(i) = 74.123 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.04144179873E-2 ! =2.9956379 + IF (pol >= 2) parame(i,2) = 3.501724569 + IF (pol >= 2) parame(i,3) = 217.8941822 + IF (pol >= 2) parame(i,6) = 1.15 + IF (pol == 2) parame(i,11)= 8.73 + ELSE IF (compna(i) == 'vinylacetate') THEN + mm(i) = 86.092 + parame(i,1) = mm(i)* .0374329292 + parame(i,2) = 3.35278602 + parame(i,3) = 240.492049 + ELSE IF (compna(i) == 'chloromethane') THEN ! R40 + mm(i) = 50.488 ! PC-SAFT + parame(i,1) = mm(i)* 0.039418879 ! 1.9902 + parame(i,2) = 3.1974 + parame(i,3) = 237.27 + IF (pol >= 1) mm(i) = 50.488 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.035790801 ! 1.8070 + IF (pol >= 1) parame(i,2) = 3.3034 + IF (pol >= 1) parame(i,3) = 229.97 + IF (pol >= 1) parame(i,6) = 1.8963 + IF (pol >= 1) lli(i) = 1.67703*parame(i,2) + IF (pol >= 1) phi_criti(i)= 20.75417 + IF (pol >= 1) chap(i) = 0.5 + IF (pol >= 2) mm(i) = 50.488 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.68559992E-2 ! 1.86078 + IF (pol >= 2) parame(i,2) = 3.275186 + IF (pol >= 2) parame(i,3) = 216.4621 + IF (pol >= 2) parame(i,6) = 1.8963 + IF (pol == 2) parame(i,11)= 4.72 + ELSE IF (compna(i) == 'fluoromethane') THEN ! R41 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for fluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 34.0329000000000 + IF (pol >= 1) parame(i,1) = 1.94494757526896 + IF (pol >= 1) parame(i,2) = 2.96858005012635 + IF (pol >= 1) parame(i,3) = 168.938697391009 + IF (pol >= 1) parame(i,6) = 1.57823038894029 + ELSE IF (compna(i) == 'dichloromethane') THEN ! R30 + mm(i) = 84.932 ! PC-SAFT + parame(i,1) = 2.3117 + parame(i,2) = 3.3161 + parame(i,3) = 270.98 + IF (pol >= 1) mm(i) = 84.932 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.2687 + IF (pol >= 1) parame(i,2) = 3.3373 + IF (pol >= 1) parame(i,3) = 269.08 + IF (pol >= 1) parame(i,6) = 1.6 + IF (pol >= 2) mm(i) = 84.932 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.3435 + IF (pol >= 2) parame(i,2) = 3.2987 + IF (pol >= 2) parame(i,3) = 260.66 + IF (pol >= 2) parame(i,6) = 1.6 + IF (pol == 2) parame(i,11)= 6.48 + ELSE IF (compna(i) == 'difluoromethane') THEN ! R32 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for difluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 52.0236 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.814700934384165E-002 ! 2.50478075530028 + IF (pol >= 1) parame(i,2) = 2.79365980535456 + IF (pol >= 1) parame(i,3) = 160.893555378523 + IF (pol >= 1) parame(i,6) = 1.97850000000000 + ELSE IF (compna(i) == 'trifluoromethane') THEN ! R23 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 70.0138000000000 + IF (pol >= 1) parame(i,1) = 2.66039274225485 + IF (pol >= 1) parame(i,2) = 2.82905884530501 + IF (pol >= 1) parame(i,3) = 149.527709542333 + IF (pol >= 1) parame(i,6) = 1.339963415253999E-002 + ELSE IF (compna(i) == 'tetrachloromethane') THEN ! R10 + mm(i) = 153.822 + parame(i,1) = mm(i)* .0150432213 + parame(i,2) = 3.81801454 + parame(i,3) = 292.838632 + ELSE IF (compna(i) == 'trichlorofluoromethane') THEN ! R11 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trichlorofluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 137.368000000000 + IF (pol >= 1) parame(i,1) = 2.28793359008803 + IF (pol >= 1) parame(i,2) = 3.69013104930876 + IF (pol >= 1) parame(i,3) = 248.603173885090 + IF (pol >= 1) parame(i,6) = 0.23225538492979 + ELSE IF (compna(i) == 'chlorodifluoromethane') THEN ! R22 ( CHClF2 or CHF2Cl) + IF (pol /= 1) write (*,*) 'non-polar parameters missing for chlorodifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 86.4684000000000 + IF (pol >= 1) parame(i,1) = 2.47218586047893 + IF (pol >= 1) parame(i,2) = 3.13845692489930 + IF (pol >= 1) parame(i,3) = 187.666355083434 + IF (pol >= 1) parame(i,6) = 1.04954264812860 + ELSE IF (compna(i) == 'chloroethane') THEN + mm(i) = 64.514 + parame(i,1) = mm(i)* .0350926868 + parame(i,2) = 3.41602397 + parame(i,3) = 245.42626 + ELSE IF (compna(i) == '11difluoroethane') THEN + ! mm(i) = 66.0500000000000 ! PC-SAFT + ! parame(i,1) = mm(i)* 4.109944338817734E-002 + ! parame(i,2) = 3.10257444633546 + ! parame(i,3) = 192.177159144029 + ! mm(i) = 66.05 ! PC-SAFT assoc + ! parame(i,1)= 2.984947188 + ! parame(i,2)= 2.978630027 + ! parame(i,3)= 137.8192282 + ! nhb_typ(i) = 2 + ! nhb_no(i,1)= 1 + ! nhb_no(i,2)= 1 + ! eps_hb(i,i,1,2)= 823.3478288 + ! eps_hb(i,i,2,1)= 823.3478288 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.96345994 + IF (pol >= 1) mm(i) = 66.0500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.949665745363346E-002 ! =2.60875422481249 + IF (pol >= 1) parame(i,2) = 3.13758353925036 + IF (pol >= 1) parame(i,3) = 179.517952627836 + IF (pol >= 1) parame(i,6) = 2.27000000000000 + IF (pol >= 1) lli(i) = 2.03907*parame(i,2) + IF (pol >= 1) phi_criti(i)= 26.5 + IF (pol >= 1) chap(i) = 0.4 + IF (pol >= 2) mm(i) = 66.0500000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.093647666154238E-002 ! =2.70385428349487 + IF (pol >= 2) parame(i,2) = 3.10437129415885 + IF (pol >= 2) parame(i,3) = 170.464400902455 + IF (pol >= 2) parame(i,6) = 2.27000000000000 + IF (pol == 2) parame(i,11)= 5.01000000000000 + ELSE IF (compna(i) == '1-chlorobutane') THEN + mm(i) = 92.568 + parame(i,1) = mm(i)* .0308793201 + parame(i,2) = 3.64240187 + parame(i,3) = 258.655298 + ELSE IF (compna(i) == 'chlorobenzene') THEN + ! mm(i) = 112.558 + ! parame(i,1) = mm(i)* .0235308686 + ! parame(i,2) = 3.75328494 + ! parame(i,3) = 315.039018 + mm(i) = 112.558 ! PCIP-SAFT + parame(i,1) = mm(i)* 0.023824167 ! =2.6816 + parame(i,2) = 3.7352 + parame(i,3) = 308.82 + parame(i,6) = 1.69 + IF (pol == 2) parame(i,11)= 14.1 + ELSE IF (compna(i) == 'styrene') THEN + mm(i) = 104.150 + parame(i,1) = mm(i)* 2.9124104853E-2 + parame(i,2) = 3.760233548 + parame(i,3) = 298.51287564 + ELSE IF (compna(i) == 'methylmethanoate') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0446000264 + parame(i,2) = 3.08753499 + parame(i,3) = 242.626755 + IF (pol >= 1) mm(i) = 60.053 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.366991153963102E-002 ! =2.62250919768946 + IF (pol >= 1) parame(i,2) = 3.10946396964 + IF (pol >= 1) parame(i,3) = 239.051951942 + IF (pol >= 1) parame(i,6) = 1.77 + IF (pol >= 2) mm(i) = 60.053 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.492572388931002E-2 ! 2.69792449 + IF (pol >= 2) parame(i,2) = 3.078467837 + IF (pol >= 2) parame(i,3) = 232.1842551 + IF (pol >= 2) parame(i,6) = 1.77 + IF (pol == 2) parame(i,11)= 5.05 + ELSE IF (compna(i) == 'ethylmethanoate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* .03898009 + parame(i,2) = 3.31087192 + parame(i,3) = 246.465646 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.825407152074255E-002 ! =2.83382336418509 + IF (pol >= 1) parame(i,2) = 3.33160046679 + IF (pol >= 1) parame(i,3) = 244.495680932 + IF (pol >= 1) parame(i,6) = 1.93000000000 + ELSE IF (compna(i) == 'propylmethanoate') THEN + mm(i) = 88.106 + parame(i,1) = mm(i)* .0364206062 + parame(i,2) = 3.41679642 + parame(i,3) = 246.457732 + IF (pol >= 1) mm(i) = 88.106 + IF (pol >= 1) parame(i,1) = mm(i)* 3.60050739149E-2 ! =3.17226304235232 + IF (pol >= 1) parame(i,2) = 3.42957609309 + IF (pol >= 1) parame(i,3) = 245.637644107 + IF (pol >= 1) parame(i,6) = 1.89 + ELSE IF (compna(i) == 'methylacetate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* 4.286817177E-2 ! =3.175631296 + parame(i,2) = 3.18722021277843 + parame(i,3) = 234.106931032456 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.228922065E-2 ! =3.132743176 + IF (pol >= 1) parame(i,2) = 3.2011401688 + IF (pol >= 1) parame(i,3) = 233.17562886 + IF (pol >= 1) parame(i,6) = 1.72 + IF (pol >= 2) mm(i) = 74.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.298900538E-2 ! =3.18458252 + IF (pol >= 2) parame(i,2) = 3.180642322 + IF (pol >= 2) parame(i,3) = 229.3132680 + IF (pol >= 2) parame(i,6) = 1.72 + IF (pol == 2) parame(i,11)= 6.94 + ELSE IF (compna(i) == 'ethylacetate') THEN + mm(i) = 88.106 ! PC-SAFT + parame(i,1) = mm(i)* .0401464427 ! =3.537142481 + parame(i,2) = 3.30789258 + parame(i,3) = 230.800689 + IF (pol >= 1) mm(i) = 88.106 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.039792575 ! =3.505964572 + IF (pol >= 1) parame(i,2) = 3.317655188 + IF (pol >= 1) parame(i,3) = 230.2434769 + IF (pol >= 1) parame(i,6) = 1.78 + IF (pol >= 2) mm(i) = 88.106 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 0.040270267 ! =3.548052143 + IF (pol >= 2) parame(i,2) = 3.302097562 + IF (pol >= 2) parame(i,3) = 227.5026191 + IF (pol >= 2) parame(i,6) = 1.78 + IF (pol == 2) parame(i,11)= 8.62 + ELSE IF (compna(i) == 'ethyl-propanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0375692464 + parame(i,2) = 3.40306071 + parame(i,3) = 232.778374 + ELSE IF (compna(i) == 'propyl-ethanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0370721275 + parame(i,2) = 3.42272266 + parame(i,3) = 235.758378 + IF (pol >= 1) mm(i) = 102.133 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.687149995200072E-2 ! =3.76579690459769 + IF (pol >= 1) parame(i,2) = 3.4289353421006 + IF (pol >= 1) parame(i,3) = 235.41679442910 + IF (pol >= 1) parame(i,6) = 1.78 + ! IF (pol.EQ.2) parame(i,11)= 10.41 + ELSE IF (compna(i) == 'nbutyl-ethanoate') THEN + mm(i) = 116.16 ! PC-SAFT + parame(i,1) = mm(i)* .03427004 + parame(i,2) = 3.54269638 + parame(i,3) = 242.515768 + IF (pol >= 1) mm(i) = 116.16 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.411585209773470E-002 ! =3.96289737967286 + IF (pol >= 1) parame(i,2) = 3.54821589228130 + IF (pol >= 1) parame(i,3) = 242.274388267447 + IF (pol >= 1) parame(i,6) = 1.87000000000000 + IF (pol >= 2) mm(i) = 116.16 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.442139015733717E-002 ! =3.99838868067629 + IF (pol >= 2) parame(i,2) = 3.53576054452119 + IF (pol >= 2) parame(i,3) = 240.154409609249 + IF (pol >= 2) parame(i,6) = 1.87000000000000 + IF (pol == 2) parame(i,11)= 14.2000000000000 + ELSE IF (compna(i) == 'methyl-octanoate') THEN + mm(i) = 158.24 ! PC-SAFT + parame(i,1) = 5.2074 + parame(i,2) = 3.6069 + parame(i,3) = 244.12 + ELSE IF (compna(i) == 'methyl-decanoate') THEN + mm(i) = 186.2912 ! PC-SAFT + parame(i,1) = 5.8402 + parame(i,2) = 3.6871 + parame(i,3) = 248.27 + + mm(i) = 186.2912 ! PC-SAFT from GC-method Tim + parame(i,1) = 7.716 + parame(i,2) = 3.337303029 + parame(i,3) = 204.250907 + + mm(i) = 186.2912 ! PC-SAFT from GC-method (tightly fit) Tim + parame(i,1) = 7.728 + parame(i,2) = 3.334023322 + parame(i,3) = 206.9099379 + + ! mm(i) = 186.2912 ! PC-SAFT from fit to DIPPR + ! parame(i,1) = 6.285005 + ! parame(i,2) = 3.594888 + ! parame(i,3) = 236.781461 + ! ! parame(i,6) = 2.08056 + + ! mm(i) = 186.291000000000 + ! parame(i,1) = 6.28500485898895 + ! parame(i,2) = 3.59488828061149 + ! parame(i,3) = 236.781461491921 + ! parame(i,6) = 2.08055996894836 + ! parame(i,8) = 1.00000000000000 + mm(i) = 186.291000000000 + parame(i,1) = 6.14436331493372 + parame(i,2) = 3.61977264863944 + parame(i,3) = 242.071887817656 + + ELSE IF (compna(i) == 'methyl-dodecanoate') THEN + mm(i) = 214.344 ! PC-SAFT + parame(i,1) = 6.5153 + parame(i,2) = 3.7406 + parame(i,3) = 250.7 + ELSE IF (compna(i) == 'methyl-tetradecanoate') THEN + mm(i) = 242.398 ! PC-SAFT + parame(i,1) = 7.1197 + parame(i,2) = 3.7968 + parame(i,3) = 253.77 + ELSE IF (compna(i) == 'methyl-hexadecanoate') THEN + mm(i) = 270.451 ! PC-SAFT + parame(i,1) = 7.891 + parame(i,2) = 3.814 + parame(i,3) = 253.71 + ELSE IF (compna(i) == 'methyl-octadecanoate') THEN + mm(i) = 298.504 ! PC-SAFT + parame(i,1) = 8.8759 + parame(i,2) = 3.7932 + parame(i,3) = 250.81 + ELSE IF (compna(i) == 'CH2F2') THEN + mm(i) = 52.02 + parame(i,1) = 3.110084171 + parame(i,2) = 2.8145230485 + parame(i,3) = 158.98060151 + ELSE IF (compna(i) == 'naphthalene') THEN + ! mm(i) = 128.174000000 + ! parame(i,1) = mm(i)* 2.4877834216412E-2 + ! parame(i,2) = 3.82355815011 + ! parame(i,3) = 341.560675334 + + mm(i) = 128.17400000000 + parame(i,1) = mm(i)* 2.6400924157729E-2 + parame(i,2) = 3.8102186020014 + parame(i,3) = 328.96792935903 + ELSE IF (compna(i) == 'h2s') THEN + mm(i) = 34.0820000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.838886696385162E-002 ! = 1.64918936386199 + parame(i,2) = 3.05478289838459 + parame(i,3) = 229.838873939562 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 536.634834731413 + eps_hb(i,i,2,1)= 536.634834731413 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.000000000000000E-003 +! PC-SAFT from Xiaohua + mm(i) = 34.082 ! PC-SAFT + parame(i,1) = 1.63677 + parame(i,2) = 3.06565 + parame(i,3) = 230.2121 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 275.1088 + eps_hb(i,i,2,1)= 275.1088 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.E-2 + ! IF (pol.GE.1) mm(i) = 34.082 ! PCP-SAFT with quadrupole + ! IF (pol.GE.1) parame(i,1) = mm(i)* 3.03171032558E-2 ! =1.03326751316478 + ! IF (pol.GE.1) parame(i,2) = 3.6868189914018 + ! IF (pol.GE.1) parame(i,3) = 246.862831266172 + ! IF (pol.GE.1) nhb_typ(i) = 2 + ! IF (pol.GE.1) nhb_no(i,1) = 1 + ! IF (pol.GE.1) nhb_no(i,2) = 1 + ! IF (pol.GE.1) eps_hb(i,i,1,2)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,2,1)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.GE.1) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.GE.1) kap_hb(i,i) = 5.5480659623d-4 + ! IF (pol.GE.1) parame(i,6) = 0.97833 + ! IF (pol.GE.1) parame(i,7) = 3.8623 + ! IF (pol.GE.1) LLi(i) = 1.2737*parame(i,2) + ! IF (pol.GE.1) phi_criti(i)= 14.316 + ! IF (pol.GE.1) chap(i) = 0.4473 + IF (pol >= 1) mm(i) = 34.0820000000000 ! PCP-SAFT no quadrupoLE + IF (pol >= 1) parame(i,1) = mm(i)* 4.646468487062725E-002 ! 1.58360938976072 + IF (pol >= 1) parame(i,2) = 3.10111012646306 + IF (pol >= 1) parame(i,3) = 230.243457544889 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,2,1)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1) parame(i,6) = 0.978330000000000 + + IF (pol >= 1) lli(i) = 1.2737*parame(i,2) + IF (pol >= 1) phi_criti(i)= 14.316 + IF (pol >= 1) chap(i) = 0.4473 + + + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) mm(i) = 34.0820000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.806418212963168E-002 ! 1.63812345534211 + IF (pol == 2) parame(i,2) = 3.06556006883749 + IF (pol == 2) parame(i,3) = 221.746622243054 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,2,1)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol == 2) parame(i,6) = 0.978330000000000 + IF (pol == 2) parame(i,11) = 3.60200000000000 + IF (pol == 2) parame(i,7) = 0.0 + + IF (pol >= 1)mm(i) = 34.0820000000000 !PCP-SAFT D&Q + IF (pol >= 1)parame(i,1) = mm(i)* 3.974667896078737E-002 ! = 1.35464631234155 + IF (pol >= 1)parame(i,2) = 3.30857082333438 + IF (pol >= 1)parame(i,3) = 234.248947273191 + IF (pol >= 1)nhb_typ(i) = 2 + IF (pol >= 1)nhb_no(i,1) = 1 + IF (pol >= 1)nhb_no(i,2) = 1 + IF (pol >= 1)eps_hb(i,i,1,2)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,2,1)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1)eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1)kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1)parame(i,6) = 0.978330000000000 + IF (pol >= 1)parame(i,7) = 2.93750500000000 + + ELSE IF (compna(i) == 'methanol') THEN + mm(i) = 32.042 ! PC-SAFT + parame(i,1) = mm(i)* .0476100379 + parame(i,2) = 3.23000005 + parame(i,3) = 188.904644 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2899.49055 + eps_hb(i,i,2,1)= 2899.49055 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0351760892 + IF (pol >= 1) mm(i) = 32.042 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 7.213091821E-2 ! =2.31121888139672 + IF (pol >= 1) parame(i,2) = 2.8270129502 + IF (pol >= 1) parame(i,3) = 176.3760515 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,2,1)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 8.9248658086E-2 + IF (pol >= 1) parame(i,6) = 1.7 + IF (pol >= 1) lli(i) = 1.75*parame(i,2) + IF (pol >= 1) phi_criti(i)= 23.43 + IF (pol >= 1) chap(i) = 0.304 + IF (pol == 2) mm(i) = 32.042 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 2.0693 + IF (pol == 2) parame(i,2) = 2.9547 + IF (pol == 2) parame(i,3) = 174.51 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2418.5 + IF (pol == 2) eps_hb(i,i,2,1)= 2418.5 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 0.06319 + IF (pol == 2) parame(i,6) = 1.7 + IF (pol == 2) parame(i,11)= 3.29 + ! mm(i) = 32.0420000000000 ! PCP-SAFT with adjusted QQ + ! parame(i,1) = mm(i)* 6.241807629559099E-002 + ! ! parame(i,1) = 2.00000000066333 + ! parame(i,2) = 2.97610169698593 + ! parame(i,3) = 163.268505098639 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2449.55621933612 + ! eps_hb(i,i,2,1)= 2449.55621933612 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 8.431015160393653E-002 + ! parame(i,6) = 1.72000000000000 + ! parame(i,7) = 1.59810028824523 + ELSE IF (compna(i) == 'ethanol') THEN + mm(i) = 46.069 + parame(i,1) = mm(i)* .0517195521 + parame(i,2) = 3.17705595 + parame(i,3) = 198.236542 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2653.38367 + eps_hb(i,i,2,1)= 2653.38367 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0323840159 + IF (pol >= 1) mm(i) = 46.0690000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 4.753626908781145E-002 ! =2.18994838060639 + IF (pol >= 1) parame(i,2) = 3.30120000000000 + IF (pol >= 1) parame(i,3) = 209.824555801706 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,2,1)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.349382956935725E-002 + IF (pol >= 1) parame(i,6) = 1.69000000000000 + ! mm(i) = 46.0690000000000 + ! parame(i,1) = mm(i)* 5.117957752785066E-002 ! =2.357791957 + ! parame(i,2) = 3.24027031244304 + ! parame(i,3) = 175.657110615456 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2273.62670516146 + ! eps_hb(i,i,2,1)= 2273.62670516146 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 7.030279197039477E-002 + ! parame(i,6) = 1.69000000000000 + ! parame(i,7) = 3.63701294195013 + IF (pol == 2) mm(i) = 46.0690000000000 + IF (pol == 2) parame(i,1) = mm(i)* 4.733436280008321E-002 ! =2.18064676 + IF (pol == 2) parame(i,2) = 3.31260000000000 + IF (pol == 2) parame(i,3) = 207.594119926613 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,2,1)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 2.132561218631547E-002 + IF (pol == 2) parame(i,6) = 1.69000000000000 + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) parame(i,11)= 5.11000000000000 + ELSE IF (compna(i) == '1-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0499154461 + parame(i,2) = 3.25221234 + parame(i,3) = 233.396705 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2276.77867 + eps_hb(i,i,2,1)= 2276.77867 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0152683094 + ELSE IF (compna(i) == '1-butanol') THEN + mm(i) = 74.123 + parame(i,1) = mm(i)* .0341065046 + parame(i,2) = 3.72361538 + parame(i,3) = 269.798048 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2661.37119 + eps_hb(i,i,2,1)= 2661.37119 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00489087833 + mm(i) = 74.1230000000000 + parame(i,1) = mm(i)* 3.329202420547412E-002 ! =2.46770471018236 + parame(i,2) = 3.76179376417092 + parame(i,3) = 270.237284242002 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 2669.28754983370 + eps_hb(i,i,2,1)= 2669.28754983370 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 4.855584122733399E-003 + parame(i,6) = 1.66000000000000 + ELSE IF (compna(i) == '1-pentanol') THEN + mm(i) = 88.15 ! PC-SAFT + parame(i,1) = mm(i)* .041134139 + parame(i,2) = 3.45079143 + parame(i,3) = 247.278748 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2252.09237 + eps_hb(i,i,2,1)= 2252.09237 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0103189939 + IF (pol >= 1) mm(i) = 88.1500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.138903382168521E-002 ! =3.64844333138155 + IF (pol >= 1) parame(i,2) = 3.44250118689142 + IF (pol >= 1) parame(i,3) = 246.078034174947 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,2,1)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.040067895187016E-002 + IF (pol >= 1) parame(i,6) = 1.70000000000000 + IF (pol == 2) mm(i) = 88.1500000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.161521814399406E-002 ! =3.66838147939308 + IF (pol == 2) parame(i,2) = 3.43496654431777 + IF (pol == 2) parame(i,3) = 244.177313808431 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,2,1)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.049516309928397E-002 + IF (pol == 2) parame(i,6) = 1.70000000000000 + IF (pol == 2) parame(i,11)= 10.8000000000000 + ELSE IF (compna(i) == '1-octanol') THEN + mm(i) = 130.23 + parame(i,1) = mm(i)* .0334446084 + parame(i,2) = 3.714535 + parame(i,3) = 262.740637 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2754.77272 + eps_hb(i,i,2,1)= 2754.77272 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00219656803 + ELSE IF (compna(i) == '1-nonanol') THEN + mm(i) = 144.257 + parame(i,1) = mm(i)* .0324692669 + parame(i,2) = 3.72924286 + parame(i,3) = 263.636673 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2941.9231 + eps_hb(i,i,2,1)= 2941.9231 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00142696883 + ELSE IF (compna(i) == '2-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0514663133 + parame(i,2) = 3.20845858 + parame(i,3) = 208.420809 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2253.91064 + eps_hb(i,i,2,1)= 2253.91064 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0246746934 + ELSE IF (compna(i) == '2-methyl-2-butanol') THEN + mm(i) = 88.15 + parame(i,1) = mm(i)* .0289135026 + parame(i,2) = 3.90526707 + parame(i,3) = 266.011828 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2618.80124 + eps_hb(i,i,2,1)= 2618.80124 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00186263367 + ELSE IF (compna(i) == 'acetic-acid') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0227076949 + parame(i,2) = 3.79651163 + parame(i,3) = 199.225066 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3092.40109 + eps_hb(i,i,2,1)= 3092.40109 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0870093874 + + + mm(i) = 60.053 + parame(i,1) = mm(i)* .0181797646 + parame(i,2) = 4.13711044 + parame(i,3) = 207.552969 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3198.84362 + eps_hb(i,i,2,1)= 3198.84362 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0586552968 + +! mit gesetztem Dipol-Moment + mm(i) = 60.0530000000000 + parame(i,1) = mm(i)* 1.736420143637533E-002 + parame(i,2) = 4.25220708070687 + parame(i,3) = 190.957247854820 + parame(i,6) = 3.50000000000000 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3096.36190957945 + eps_hb(i,i,2,1)= 3096.36190957945 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 6.154307094782551E-002 + + ELSE IF (compna(i) == 'propionic-acid') THEN + mm(i) = 74.0800000000000 + parame(i,1) = mm(i)* 2.359519915877884E-002 + parame(i,2) = 3.99339224153844 + parame(i,3) = 295.947729838532 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2668.97826430874 + eps_hb(i,i,2,1)= 2668.97826430874 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 3.660242292423115E-002 + ELSE IF (compna(i) == 'acrylic-acid') THEN + mm(i) = 72.0636 + parame(i,1) = mm(i)* .0430585424 + parame(i,2) = 3.0545415 + parame(i,3) = 164.115604 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3065.40667 + eps_hb(i,i,2,1)= 3065.40667 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .336261669 + ELSE IF (compna(i) == 'caproic-acid') THEN + mm(i) = 116.16 + parame(i,1) = 5.87151 + parame(i,2) = 3.0694697 + parame(i,3) = 241.4569 + nhb_typ(i) = 1 + eps_hb(i,i,1,1)= 2871.37 + kap_hb(i,i) = 3.411613D-3 + ELSE IF (compna(i) == 'aniline') THEN + mm(i) = 93.13 + parame(i,1) = mm(i)* .0285695992 + parame(i,2) = 3.70214085 + parame(i,3) = 335.471062 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 1351.64234 + eps_hb(i,i,2,1)= 1351.64234 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0748830615 + + mm(i) = 93.1300000000000 + parame(i,1) = mm(i)* 2.834372610192228E-002 ! =2.63965121187202 + parame(i,2) = 3.71326867619433 + parame(i,3) = 332.253796842009 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 1392.14266886674 + eps_hb(i,i,2,1)= 1392.14266886674 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 7.424612087328866E-002 + parame(i,6) = 1.55000000000000 + IF (pol == 2) parame(i,11)= 12.1000000000000 + ELSE IF (compna(i) == 'HF') THEN + ! mm(i) = 20.006 ! PC-SAFT + ! parame(i,1) = 0.87731 + ! parame(i,2) = 3.0006 + ! parame(i,3) = 112.24 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2208.22 + ! eps_hb(i,i,2,1)= 2208.22 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.71265 + mm(i) = 20.0060000000000 ! PCP-SAFT + parame(i,1) = 1.00030000000000 + parame(i,2) = 3.17603622195029 + parame(i,3) = 331.133373208282 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 348.251433080979 + eps_hb(i,i,2,1)= 348.251433080979 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 2.868887975449893E-002 + parame(i,6) = 1.82600000000000 + ELSE IF (compna(i) == 'HCl') THEN + ! mm(i) = 36.4610000000000 + ! parame(i,1) = mm(i)* 3.922046741026943E-002 + ! parame(i,2) = 3.08731180727493 + ! parame(i,3) = 203.898845304388 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 245.462773177367 + ! eps_hb(i,i,2,1)= 245.462773177367 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.256454187330899 + mm(i) = 36.461 ! PCIP-SAFT + parame(i,1) = 1.6335 + parame(i,2) = 2.9066 + parame(i,3) = 190.17 + parame(i,6) = 1.1086 + IF (pol == 2) parame(i,11)= 2.63 + ELSE IF (compna(i) == 'gen') THEN + mm(i) = 302.0 + parame(i,1) = 8.7563 + parame(i,2) = 3.604243 + parame(i,3) = 255.6434 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 0.0 + eps_hb(i,i,2,1)= 0.0 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.02 + ELSE IF (compna(i) == 'h2o') THEN + mm(i) = 18.015 + parame(i,1) = mm(i)* .05915 + parame(i,2) = 3.00068335 + parame(i,3) = 366.512135 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2500.6706 + eps_hb(i,i,2,1)= 2500.6706 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0348679836 + + ! mm(i) = 18.015 + ! parame(i,1) = 1.706 + ! parame(i,2) = 2.429 + ! parame(i,3) = 242.19 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 2644.2 + ! eps_hb(i,i,2,1)= 2644.2 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.153 + + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* .0588185709 + ! parame(i,2) = 3.02483704 + ! parame(i,3) = 382.086672 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 2 ! no. of sites of type 2 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! eps_hb(i,i,1,2)= 2442.49782 + ! eps_hb(i,i,2,1)= 2442.49782 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = .0303754635 + + ! mit gefittetem Dipol-Moment - Haarlem-night + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* 7.0037160952278E-2 + ! parame(i,2) = 2.79276650240763 + ! parame(i,3) = 270.970053834558 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 1427.8287 + ! eps_hb(i,i,2,1)= 1427.8287 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = 4.335167238E-2 + ! parame(i,6) = 3.968686856378 + + IF (pol >= 1) mm(i) = 18.015 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 0.922688825223317 + IF (pol >= 1) parame(i,2) = 3.17562052023944 + IF (pol >= 1) parame(i,3) = 388.462197714696 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,2,1)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.040614952751225E-003 + IF (pol >= 1) parame(i,6) = 1.85500000000000 + IF (pol >= 1) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_RPT + ! IF (pol.EQ.2) parame(i,1) = 1.0 + ! IF (pol.EQ.2) parame(i,2) = 3.14540664928026 + ! IF (pol.EQ.2) parame(i,3) = 320.283823615925 + ! IF (pol.EQ.2) nhb_typ(i) = 2 + ! IF (pol.EQ.2) nhb_no(i,1) = 2 + ! IF (pol.EQ.2) nhb_no(i,2) = 2 + ! IF (pol.EQ.2) eps_hb(i,i,1,2)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,2,1)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.EQ.2) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.EQ.2) kap_hb(i,i) = 4.162619960844732E-003 + ! IF (pol.EQ.2) parame(i,6) = 1.85500000000000 + ! IF (pol.EQ.2) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.0150000000000 + ! parame(i,1) = 1.0 + ! parame(i,2) = 3.11505069470915 + ! parame(i,3) = 320.991387913502 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2037.76329812542 + ! eps_hb(i,i,2,1)= 2037.76329812542 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 3.763148982832804E-003 + ! parame(i,6) = 1.85500000000000 + ! parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + IF (pol == 2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_0 + IF (pol == 2) parame(i,1) = 1.0 + IF (pol == 2) parame(i,2) = 3.11574491885322 + IF (pol == 2) parame(i,3) = 322.699984283499 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,2,1)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 3.815764667176484E-003 + IF (pol == 2) parame(i,6) = 1.85500000000000 + IF (pol == 2) parame(i,7) = 2.00000000000000 + IF (pol == 2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.015 ! Dortmund + ! parame(i,1) = 0.11065254*mm(i) + ! parame(i,2) = 2.36393615 + ! parame(i,3) = 300.288589 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 1193.45585 + ! eps_hb(i,i,2,1)= 1193.45585 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.091203519 + ! parame(i,6) = 1.8546 + ! parame(i,7) = 0.0 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'MBBA') THEN + mm(i) = 267.37 + parame(i,1) = 12.194 + parame(i,2) = 3.064 + parame(i,3) = 270.7 + e_lc(i,i) = 13.7 !Hino & Prausnitz + s_lc(i,i) = 0.176 !Hino & Prausnitz + ELSE IF (compna(i) == 'PCH5') THEN + mm(i) = 255.41 + parame(i,1) = 11.6 + parame(i,2) = 3.2 + parame(i,3) = 270.7 + ! E_LC(i,i) = 16.7 !Hino & Prausnitz + ! S_LC(i,i) = 0.176 !Hino & Prausnitz + e_lc(i,i) = 8.95 + s_lc(i,i) = 0.2 + + ! mm(i) = 255.41 + ! parame(i,1) = 11.6 + ! parame(i,2) = 3.2 + ! parame(i,3) = 290.7 + ! E_LC(i,i) = 7.18 + ! S_LC(i,i) = 0.2 + + ELSE IF (compna(i) == 'Li') THEN + mm(i) = 6.9 + parame(i,1) = 1.0 + parame(i,2) = 1.4 + parame(i,3) = 96.83 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.008 + ELSE IF (compna(i) == 'Na') THEN + mm(i) = 23.0 + parame(i,1) = 1.0 + parame(i,2) = 1.9 + parame(i,3) = 147.38 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 8946.28257 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.001648933 + ELSE IF (compna(i) == 'Ka') THEN + mm(i) = 39.1 + parame(i,1) = 1.0 + parame(i,2) = 2.66 + parame(i,3) = 221.44 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 3118.336216 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cs') THEN + mm(i) = 132.9 + parame(i,1) = 1.0 + parame(i,2) = 3.38 + parame(i,3) = 523.28 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cl') THEN + mm(i) = 35.5 + parame(i,1) = 1.0 + parame(i,2) = 3.62 + parame(i,3) = 225.44 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 6744.12509 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00155252 + ELSE IF (compna(i) == 'Br') THEN + mm(i) = 79.9 + parame(i,1) = 1.0 + parame(i,2) = 3.9 + parame(i,3) = 330.82 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 4516.033227 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Io') THEN + mm(i) = 126.9 + parame(i,1) = 1.0 + parame(i,2) = 4.4 + parame(i,3) = 380.60 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 1631.203342 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'OH') THEN + mm(i) = 17.0 + parame(i,1) = 1.0 + parame(i,2) = 3.06 + parame(i,3) = 217.26 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 14118.68089 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'NO3') THEN + mm(i) = 62.0 + parame(i,1) = 1.0 + parame(i,2) = 4.12 + parame(i,3) = 239.48 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 4 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'bf4') THEN + mm(i) = 86.8 + parame(i,1) = 1.0 + parame(i,2) = 4.51 ! *0.85 + parame(i,3) = 164.7 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'pf6') THEN + mm(i) = 145.0 + parame(i,1) = 1.0 + parame(i,2) = 5.06 + parame(i,3) = 224.9 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'emim') THEN + mm(i) = 111.16 + parame(i,1) = 3.11 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'bmim') THEN + mm(i) = 139.21 + ! parame(i,1) = 2.81 + ! parame(i,2) = 3.5 + parame(i,1) = 3.81 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,6) = 0.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'hmim') THEN + mm(i) = 167.27 + parame(i,1) = 4.53 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'omim') THEN + mm(i) = 195.32 + parame(i,1) = 5.30 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'sw') THEN + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 100.0 + parame(i,4) = 0.0 + parame(i,5) = 0.0 + mm(i) = 1.0 + parame(i,6) = 0.1175015839*2.0 + ! use Temp. in Kelvin in the input-file. For dimensionless quantities + ! (P*=P*sig**3/epsilon, T*=T*kBol/epsilon, rho*=rho*sig**3) calculate + ! P* = P *1E5 * (1.e-10)^3 / (100*8.31441/6.022045E+23) + ! T* = (T+273.15)/100 + ! for rho* go to utilities.f (subroutine SI_DENS) and write + ! density(ph) = dense(ph)*6.0/PI + ELSE IF (compna(i) == 'c8-sim') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* 4.095944E-2 ! =4.67883774717337 + parame(i,2) = 3.501769 + parame(i,3) = 163.8606 + ! mm(i) = 114.231000000000 + ! parame(i,1) = mm(i)* 3.547001476437745E-002 ! =4.05177525654960 + ! parame(i,2) = 3.70988567055814 + ! parame(i,3) = 192.787548176343 + ELSE IF (compna(i) == 'argon_ge') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 100.188975 + ELSE IF (compna(i) == 'argon_ge2') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 0.8*100.188975 + ELSE + WRITE (*,*) ' pure component parameters missing for ',compna(i) + STOP + END IF + + IF (pol == 2.AND.parame(i,11) == 0.0) THEN + WRITE (*,*) ' polarizability missing for comp. ',compna(i) + STOP + END IF + + IF (nhb_typ(i) /= 0) THEN + parame(i,12) = DBLE(nhb_typ(i)) + parame(i,13) = kap_hb(i,i) + no = 0 + DO j=1,nhb_typ(i) + DO k=1,nhb_typ(i) + parame(i,(14+no))=eps_hb(i,i,j,k) + no=no+1 + END DO + END DO + DO j=1,nhb_typ(i) + parame(i,(14+no))=DBLE(nhb_no(i,j)) + no=no+1 + END DO + ELSE + DO k=12,25 + parame(i,k)=0.0 + END DO + END IF + +END DO + + +DO i = 1,ncomp + DO j = 1,ncomp + IF (compna(i) == 'ps'.AND.compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.0075 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'ethylene')THEN +! -- 0 Gew.% VA------------- + ! kij(i,j) = 0.039 +! -- 7.5 Gew.% VA------------- + ! kij(i,j) = 0.0377325 + ! kij(i,j) = 0.0374867 +! ---12.7 Gew.% VA------------ + ! kij(i,j) = 0.036854 + ! kij(i,j) = 0.0366508 +! ---27.3 Gew.% VA------------ + ! kij(i,j) = 0.034386 + ! kij(i,j) = 0.0352375 +! ---31.8 Gew.% VA------------ + kij(i,j) = 0.033626 + ! kij(i,j) = 0.0350795 +! ---42.7 Gew.% VA------------ + ! kij(i,j) = 0.031784 + ! kij(i,j) = 0.035239 + ELSE IF(compna(i) == 'gen'.AND.compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'vinylacetate')THEN + kij(i,j) = 0.019 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'co2') THEN + IF ( pol == 0 ) kij(i,j) = 0.195 + IF ( pol == 1 ) kij(i,j) = 0.06 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.021 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'hexane') THEN + kij(i,j) = 0.012 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'pentane')THEN + kij(i,j) = 0.005 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'methylcyclohexane') THEN + kij(i,j) = 0.0073 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'ethylbenzene')THEN + kij(i,j) = 0.008 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.181 + kij(i,j) = 0.088 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0206 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'argon') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'pentane') THEN + ! kij(i,j) = -0.0195 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'hexane') THEN + ! kij(i,j) = 0.008 + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.0404 + ! kij(i,j) = 0.0423 + ! kij(i,j) = 0.044 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'ldpe'.AND.compna(j) == 'cyclopentane')THEN + kij(i,j) = -0.016 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0242 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'pentane') THEN + kij(i,j) = 0.0137583176 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.1767 ! without quadrupol-term + kij(i,j) = 0.063 ! with quadrupol-term + ELSE IF(compna(i) == 'pba'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'n2'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = -0.04 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.051875 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.0353125 ! PCP-SAFT + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co') THEN + ! IF (pol == 1) kij(i,j) = -0.003 ! PCP-SAFT + IF (pol == 1) kij(i,j) = 0.018 ! PCP-SAFT + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.095 + kij(i,j) = 0.021 + ! kij(i,j) = 0.024 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.042 + ELSE IF(compna(i) == 'argon_ge'.AND.compna(j) == 'argon_ge2') THEN + read (*,*) kij(i,j) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.115 + ! kij(i,j) = 0.048 + kij(i,j) = 0.036 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.143 ! without quadrupol-term + kij(i,j) = 0.0 ! with quadrupol-term + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.125 ! without quadrupol-term + kij(i,j) = 0.0495 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.11 ! without quadrupol-term + ! kij(i,j) = 0.05 + ! kij(i,j) = 0.039 ! with quadrupol-term + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.128 ! without quadrupol-term + kij(i,j) = 0.053 ! with quadrupol-term + ELSE IF(compna(i) == 'dodecane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.12 ! without quadrupol-term + kij(i,j) = 0.0508 ! with quadrupol-term + ELSE IF(compna(i) == 'benzene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.087968750000 ! without quadrupol-term + ! kij(i,j) = 0.008203125 ! only co2 quadrupol + kij(i,j) = 0.042 ! both quadrupol + ! kij(i,j) = 0.003 ! both quadrupol + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.110784912 ! without quadrupol-term + kij(i,j) = 0.0305 ! with quadrupol-term + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.13 + lij(i,j) = - 0.00 + ! kij(i,j) = 0.045 + ELSE IF(compna(i) == 'chloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.04 ! PC-SAFT + kij(i,j) = 0.025 ! PCP-SAFT + ! kij(i,j) = 0.083 ! PCIP-SAFT + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'n2')THEN + kij(i,j) = 0.035211 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + kij(i,j) = 0.023 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + !kij(i,j) = 1.722238535635467E-002 ! PCP-SAFT + !lij(i,j) = 2.815974678394451E-003 ! PCP-SAFT + !kij(i,j) = 1.931522058164026E-002 ! PCP-SAFT + !lij(i,j) = 0.0 ! PCP-SAFT + !kij(i,j) = 1.641053794134795E-002 ! PCP-SAFT + !lij(i,j) = -5.850421759950764E-003 ! PCP-SAFT + if ( num == 0 ) write (*,*) 'calculation with lij only possible with num=1' + if ( num == 0 ) stop + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.015 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.02 ! PCP-SAFT + IF (pol == 2) kij(i,j) = -0.005 ! PCIP-SAFT where DQ with my=my_vacuum + ! IF (pol.EQ.2) kij(i,j) = 0.0 ! PCIP-SAFT where DQ with my=my_RPT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.0288 ! PC-SAFT + ! kij(i,j) = - 0.035 ! PCP-SAFT for co2 and PC-SAFT methanol + ! kij(i,j) = - 0.035 ! PCP-SAFT + ! lij(i,j) = 0.3 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.00896894 ! PC-SAFT + ! kij(i,j) = - 0.015 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'h2o')THEN + ! kij(i,j) = -0.134 ! PC-SAFT + ELSE IF(compna(i) == 'dichloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.06881725 ! PC-SAFT + ! kij(i,j) = 0.05839145 ! PCP-SAFT + kij(i,j) = -0.00944346 ! PCP-SAFT co2 dichloromethane PC-SAFT + ! kij(i,j) = 0.06 ! PCIP-SAFT + ELSE IF(compna(i) == 'h2s'.AND.compna(j) == 'methane')THEN + ! kij(i,j) = 0.0414 ! PC-SAFT + kij(i,j) = 0.0152 ! PCP-SAFT Dipole momnet (d with Q) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'h2s')THEN + kij(i,j) = -0.002 ! PCP-SAFT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'h2s')THEN + kij(i,j) = 0.0 ! PCP-SAFT + lij(i,j) = 0.0 ! PCP-SAFT + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hydrogen') THEN + ! lij(i,j) = -0.08 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.0251171875 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hexadecane') THEN + ! kij(i,j) = 0.1194 ! PC-SAFT ohne QQ + kij(i,j) = 0.0588 + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.038 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.037 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.072 ! no DD + ! kij(i,j) = 0.041 ! DD non-polarizable + kij(i,j) = 0.039 ! DD polarizable + ! kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.063 + kij(i,j) = 0.038 ! PCP-SAFT + ! kij(i,j) = 0.036 ! PCIP-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.035 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.059 ! no DD + ! kij(i,j) = 0.03281250 ! DD non-polarizable + kij(i,j) = 0.028 ! DD polarizable + ELSE IF(compna(i) == 'hexadecane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.07 ! no DD + ! kij(i,j) = 0.0415 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.027 ! PCP-SAFT + ! kij(i,j) = 0.033 ! PCP-SAFT with lij + ! lij(i,j) = 0.13 ! PCP-SAFT + ! kij(i,j) = 0.042 ! PC-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.042 ! no DD + ! kij(i,j) = 0.027 ! DD non-polarizable + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == '2-pentanone')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.031 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '3-pentanone')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.055 ! no DD + kij(i,j) = 0.027 ! DD non-polarizable + ! kij(i,j) = 0.026 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.036 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable 22 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanal')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.025 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'octane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'dmso')THEN + ! kij(i,j) = 0.025 ! no DD + kij(i,j) = - 0.0105 ! DD non-polarizable + ! kij(i,j) = - 0.019 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acrylonitrile')THEN + kij(i,j) = - 0.05 ! DD polarizable + ELSE IF(compna(i) == 'heptane' .AND. compna(j) == 'butyronitrile')THEN + kij(i,j) = - 0.002 ! DD polarizable 11 + kij(i,j) = 0.002 ! DD polarizable 22 + ELSE IF(compna(i) == '1-butene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.04 ! no DD + ! kij(i,j) = 0.004 ! DD non-polarizable + kij(i,j) = 0.005 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'dmf')THEN + kij(i,j) = 0.0135 ! DD polarizable 11 + kij(i,j) = 0.022 ! DD polarizable 22 + ELSE IF(compna(i) == 'ethylene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = - 0.0215 ! DD polarizable 11 + kij(i,j) = - 0.01 ! DD polarizable 22 + ELSE IF(compna(i) == 'nbutyl-ethanoate'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.016 ! no DD + ! kij(i,j) = -0.01 ! DD non-polarizable + kij(i,j) = - 0.015 ! DD polarizable 22 + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.066 ! PC-SAFT + ! kij(i,j) = 0.061 ! PCP-SAFT + ! kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate'.AND.compna(j) == 'decane')THEN + kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'methanol')THEN + ! kij(i,j) = -0.07 ! PCIP-SAFT + ELSE IF(compna(i) == 'pentane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0498 + IF (pol >= 1) kij(i,j) = -0.01 + IF (pol >= 2) kij(i,j) = -0.027 + ELSE IF(compna(i) == 'hexane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.05 + IF (pol >= 1) kij(i,j) = 0.0 + IF (pol >= 2) kij(i,j) = -0.03 + ELSE IF(compna(i) == 'octane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitromethane')THEN + kij(i,j) = 0.14 ! no DD + ! kij(i,j) = 0.07 ! DD non-polarizable + ! kij(i,j) = 0.055 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitroethane')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.03 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'nitromethane')THEN + ! kij(i,j) = - 0.017 ! no DD + kij(i,j) = - 0.021 ! DD non-polarizable + ! kij(i,j) = - 0.023 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 ! PCP-SAFT (no cross-association) + ELSE IF(compna(i) == 'methylcyclohexane' .AND. compna(j) == 'acetonitrile')THEN + ! kij(i,j) = 0.09 ! no DD + ! kij(i,j) = 0.033 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable 22 + kij(i,j) = 0.04 ! DD polarizable 22 und my angepasst + ELSE IF(compna(i) == 'ethylacetate' .AND. compna(j) == 'acetonitrile')THEN + kij(i,j) = 0.007 ! no DD + ! kij(i,j) = -0.045 ! DD polarizable 22 + ELSE IF(compna(i) == 'dimethyl-ether' .AND. compna(j) == 'propane')THEN + ! kij(i,j) = 0.03 ! no DD + kij(i,j) = 0.0225 ! DD non-polarizable + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'pentane')THEN + ! kij(i,j) = 0.012968750 ! ohne QQ + ! kij(i,j) = 0.004921875 ! mit QQ=5.6D (gefittet) + ! kij(i,j) = -0.006406250 ! mit QQ=7.45D (Literatur) + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.01328125 + ! kij(i,j) = 0.0038 + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == '1-hexene')THEN + kij(i,j) = 0.0067 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.04 + kij(i,j) = -0.029 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'vinylacetate') THEN + kij(i,j) = - 0.013847 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'ethylene') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.061953125 ! polyethylene parameters + kij(i,j) = 0.039609375 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.06515625 ! polyethylene parameters + kij(i,j) = 0.04453125 ! param. by extrapolation of n-alkanes + ! --- kij and lij adjusted ------- + ! kij(i,j) = 0.045786119 ! param. by extrapolation of n-alkanes + ! lij(i,j) = +8.53466437d-4 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'eicosane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 ! assumed equal to eicosane-C1 + ELSE IF(compna(i) == 'chlorobenzene' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.013 + ELSE IF(compna(i) == 'chloroethane' .AND. compna(j) == 'butane')THEN + kij(i,j) = 0.025 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.0070105 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'hydrogen' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.1501 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'co2') THEN + ! kij(i,j) = -0.08 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'propane') THEN + kij(i,j) = - 0.07 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'ethane') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.028 + kij(i,j) = 0.016 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.037 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '1-octanol')THEN + kij(i,j) = 0.06 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.0508 + ! kij(i,j) = 0.03 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.034 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'decane')THEN + ! kij(i,j) = 0.042 ! PC-SAFT + ! kij(i,j) = 0.011 ! PCP-SAFT + kij(i,j) = 0.000 ! PCIP-SAFT + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'isobutane') THEN + kij(i,j) = 0.051 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == '1-octanol') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == '1-butanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.015 + ELSE IF(compna(i) == '1-nonanol' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.076 + kij(i,j) = 0.01443 + ELSE IF(compna(i) == '1-propanol' .AND. compna(j) == 'ethylbenzene') THEN + kij(i,j) = 0.0251757813 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = 0.085 + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '1-chlorobutane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'aniline'.AND.compna(j) == 'methylcyclopentane') THEN + kij(i,j) = 0.0153 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'nbutyl-ethanoate')THEN + kij(i,j) = 0.027 + ELSE IF(compna(i) == '1-hexene'.AND.compna(j) == 'ethyl-ethanoate')THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == '1-butanol')THEN + ! kij(i,j) = 0.075 + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'acrylic-acid'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'bmim'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'bf4'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'butane')THEN !K.R.Hall FPE 2007 254 112-125 kij=0.1850 + kij(i,j) = -0.07 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-butanol')THEN + kij(i,j) = -0.12 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'aniline')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methanol') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = -0.027 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'styrene') THEN + kij(i,j) = 0.1 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propyl-ethanoate') THEN + kij(i,j) = -0.205 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethyl-propanoate') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-pentanol') THEN + kij(i,j) = 0.0165 + ! kij(i,j) = 0.0294 + ! kij(i,j) = -0.082 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methane') THEN + ! kij(i,j) = +0.06 + kij(i,j) = -0.08 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'hexane') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'co2') THEN + if (pol == 0) kij(i,j) = 0.0030625 ! for T=50C, according to X.Tang + stop ! very T-dependent + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'caproic-acid'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.041531 + ELSE IF(compna(i) == '1-octanol'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.07 + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02132466 ! PC-SAFT + ! kij(i,j) = 0.01495148 ! PCP-SAFT + ! kij(i,j) = -0.00735575 ! PCP-SAFT but non-polar benzene + ELSE IF(compna(i) == '1-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02017 + ELSE IF(compna(i) == '2-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.021386 + ELSE IF(compna(i) == '1-pentanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.0129638671875 + ELSE IF(compna(i) == 'CH2F2' .AND. compna(j) == 'co2') THEN + kij(i,j) = 2.2548828125E-2 + ELSE IF(compna(i) == 'dmso' .AND. compna(j) == 'co2') THEN + kij(i,j) = -0.00 + ELSE IF(compna(i) == 'dmf'.AND.compna(j) == 'h2o')THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = 0.032 ! association: eps_kij = 0.16 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.004 ! PCP-SAFT (taken from simulation) + ELSE IF(compna(i) == 'difluoromethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'naphthalene'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.137 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + kij(i,j) = 0.09 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'methanol')THEN + kij(i,j) = 0.03 + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.05 + ELSE IF(compna(i) == 'PCH5'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = -0.047 + kij(i,j) = +0.055 + ! kij(i,j) = +0.036 + ELSE + END IF + kij(j,i) = kij(i,j) + lij(j,i) = -lij(i,j) + + END DO +END DO + +END SUBROUTINE pcsaft_par + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE init_vars +! +! This subroutine writes variables from an array "val_init" to the +! system-variables. Those variables +! include some specifications but also some starting values for a +! phase equilibrium calculation. (val_init stands for 'initial value') + +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(5+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE init_vars +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +densta(3)=val_init(0) +densta(1)=val_init(1) +densta(2)=val_init(2) +t = val_init(3) +p = val_init(4) +DO ph = 1,nphas + DO i = 1,ncomp + lnx(ph,i) = val_init(4+i+(ph-1)*ncomp) + END DO +END DO + +END SUBROUTINE init_vars + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE converged +! +! Once a converged solution for an equilibrium calculation is found, +! this subroutine writes variables to an array "val_conv". +! (= short for converged values) +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(4+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE converged +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +val_conv(0) = dense(3) +val_conv(1) = dense(1) +val_conv(2) = dense(2) +val_conv(3) = t +val_conv(4) = p +DO ph = 1,nphas + DO i = 1,ncomp + val_conv(4+i+(ph-1)*ncomp) = lnx(ph,i) + END DO +END DO + +END SUBROUTINE converged + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PERTURBATION_PARAMETER +! +! calculates density-independent parameters of the equation of state. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PERTURBATION_PARAMETER +! + USE PARAMETERS, ONLY: PI, KBOL, RGAS, NAV, TAU + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, no + LOGICAL :: assoc, qudpole, dipole + REAL :: m_mean + REAL, DIMENSION(nc) :: v00, v0, d00, u + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb + REAL :: zmr, nmr + REAL :: eps_kij, k_kij +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- +DO i = 1, ncomp + u(i) = parame(i,3) * (1.0 + parame(i,4)/t) + mseg(i) = parame(i,1) + IF (eos == 0) THEN + v00(i) = parame(i,2) + v0(i) = v00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t))**3 + d00(i) = (1.d30/1.d6 *tau *v00(i)*6.0/PI /NAV)**(1.0/3.0) + dhs(i) = d00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + ELSE + dhs(i) = parame(i,2)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + d00(i) = parame(i,2) + END IF +END DO + + +! ---------------------------------------------------------------------- +! combination rules +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j = 1, ncomp + sig_ij(i,j) = 0.5 * ( d00(i) + d00(j) ) + uij(i,j) = ( 1.0 - kij(i,j) ) * ( u(i)*u(j) )**0.5 + vij(i,j) = ( 0.5*( v0(i)**(1.0/3.0) + v0(j)**(1.0/3.0) ) )**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +z0t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + +m_mean = z0t/(PI/6.0) + +DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO +END DO + +! ---------------------------------------------------------------------- +! dispersion term parameters for chain molecules +! ---------------------------------------------------------------------- +DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +END DO + + +! ---------------------------------------------------------------------- +! van der Waals mixing rules for perturbation terms +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO + + +! ---------------------------------------------------------------------- +! SAFT parameters +! ---------------------------------------------------------------------- +IF (eos == 0) THEN + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr +END IF + + + +! ---------------------------------------------------------------------- +! association and polar parameters +! ---------------------------------------------------------------------- +assoc = .false. +qudpole = .false. +dipole = .false. +DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + IF (parame(i,7) /= 0.0) qudpole = .true. + IF (parame(i,6) /= 0.0) dipole = .true. +END DO + +! --- dipole and quadrupole constants ---------------------------------- +IF (qudpole) CALL qq_const ( qqp2, qqp3, qqp4 ) +IF (dipole) CALL dd_const ( ddp2, ddp3, ddp4 ) +IF (dipole .AND. qudpole) CALL dq_const ( dqp2, dqp3, dqp4 ) + + +! --- TPT-1-association parameters ------------------------------------- +IF (assoc) THEN + + eps_kij = 0.0 + k_kij = 0.0 + + DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) THEN + nhb_typ(i) = NINT(parame(i,12)) + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1, nhb_typ(i) + DO k = 1, nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no=no+1 + END DO + END DO + DO j = 1, nhb_typ(i) + nhb_no(i,j) = parame(i,(14+no)) + no=no+1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1, nsite + DO l = 1, nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + IF (i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0)) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1, nhb_typ(i) + DO l = 1, nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN +! write(*,*)'eps_hb manuell eingegeben' + eps_hb(1,2,3,1) = 0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1) = 0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ass_d(i,j,k,l) = kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + END DO + END DO + END DO + END DO + +END IF + +END SUBROUTINE PERTURBATION_PARAMETER + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE OUTPUT +! +! The purpose of this subroutine is obvious. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE OUTPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + CHARACTER (LEN=4) :: t_ind + CHARACTER (LEN=4) :: p_ind + CHARACTER (LEN=4) :: char_ncomp + REAL :: density(np),w(np,nc) +! ---------------------------------------------------------------------- + + CALL si_dens (density,w) + + IF (u_in_p == 1.E5) THEN + p_ind = ' bar' + ELSE IF (u_in_p == 1.E2) THEN + p_ind = 'mbar' + ELSE IF (u_in_p == 1.E6) THEN + p_ind = ' MPa' + ELSE IF (u_in_p == 1.E3) THEN + p_ind = ' kPa' + ELSE + p_ind = ' Pa' + END IF + IF (u_in_t == 273.15) THEN + t_ind = ' C' + ELSE + t_ind = ' K' + END IF + + WRITE(*,*) '--------------------------------------------------' + WRITE (char_ncomp,'(I3)') ncomp + WRITE(*,'(t2,a,f7.2,2a,f9.4,a)') ' T =',t-u_out_t,t_ind & + ,' P =',p/u_out_p,p_ind + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,'(2x,a,2(g13.6,1x))') 'DENSITY ', density(1),density(2) + + !-----output to files-------------------------------------------------- + IF (ncomp == 1) THEN + WRITE (40,'(7(2x,f18.8))') t-u_out_t, p/u_out_p, & + density(1), density(2),h_lv,cpres(1),cpres(2) + ! & ,(enthal(2)-enthal(1))/mm(1) + ! WRITE (40,'(4(2x,f15.8))') t, p, 0.3107*dense(1) + ! & /0.1617*(0.689+0.311*(T/1.328)**0.3674),0.3107 + ! & *dense(2)/0.1617*(0.689+0.311*(T/1.328)**0.3674) + ELSE IF (ncomp == 2) THEN + WRITE (40,'(12(2x,G15.8))') 1.0-xi(1,1),1.0-xi(2,1), & + w(1,1),w(2,1),t-u_out_t, p/u_out_p, density(1),density(2) & + ,enthal(1),enthal(2),cpres(1),cpres(2) + ELSE IF (ncomp == 3) THEN + WRITE (40,'(10(2x,f15.8))') xi(1,1),xi(1,2),xi(1,3),xi(2,1),xi(2,2), & + xi(2,3),t-u_out_t, p/u_out_p, density(1),density(2) + END IF + + END SUBROUTINE OUTPUT + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE neutr_charge +! +! This subroutine is called for electrolye solutions, where a +! neutral overall-charge has to be enforced in all phases. The basic +! philosophy is similar to the above described routine X_SUMMATION. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE neutr_charge(i) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i +! +! ---------------------------------------------------------------------- + INTEGER :: comp_e, ph_e + REAL :: sum_c + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + +phasno = sum_rel(i)(2:2) +READ(phasno,*) ph_e +compno = sum_rel(i)(3:3) +READ(compno,*) comp_e + +sum_c = 0.0 +write (*,*) 'there must be an error in neutr_charge' +stop +! there is an error in the following passage. The index i is an +! argument to this subroutine - I guess it is INTENT(IN), so the +! index in the following loop can not be i. +! +! I have commented the loop until I check the code. +!DO i=1,ncomp +! IF ( comp_e /= i .AND. parame(i,10) /= 0.0) & +! sum_c = sum_c + xi(ph_e,i)*parame(i,10) +!END DO + +xi(ph_e,comp_e) = - sum_c +IF (xi(ph_e,comp_e) < 0.0) xi(ph_e,comp_e)=0.0 +IF (xi(ph_e,comp_e) /= 0.0) THEN + lnx(ph_e,comp_e) = LOG(xi(ph_e,comp_e)) +ELSE + lnx(ph_e,comp_e) = -100000.0 +END IF + +! xi(2,1) = xi(2,2) +! IF (xi(2,1).NE.0.0) lnx(2,1) = LOG(xi(2,1)) + +END SUBROUTINE neutr_charge + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_sum +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, j, ph_i, phase1, phase2 +! ---------------------------------------------------------------------- + +phase1=0 +phase2=0 +DO j=1,ncomp + IF (it(j)(2:2) == '1') phase1=phase1+1 + IF (it(j)(2:2) == '2') phase2=phase2+1 +END DO + +IF (phase1 == ncomp-1) THEN + ph_i = 1 +ELSE IF (phase2 == ncomp-1) THEN + ph_i = 2 +ELSE + WRITE (*,*) ' FLASH_SUM: undefined flash-case' + STOP +END IF + + + +IF (ph_i == 1) THEN + DO i=1,ncomp + IF (alpha > DMIN1(1.0,xif(i)/xi(1,i), & + (xif(i)-1.0)/(xi(1,i)-1.0),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 1st alpha-bound' + alpha=DMIN1(1.0,xif(i)/xi(1,i),(xif(i)-1.0)/(xi(1,i)-1.0)) + END IF + END DO + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF (xi(2,i) > 0.0) THEN + lnx(2,i) = LOG(xi(2,i)) + ELSE + xi(2,i) = 0.0 + lnx(2,i) = -100000.0 + END IF + END DO +ELSE IF (ph_i == 2) THEN + DO i=1,ncomp + IF (alpha > DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), & + 1.0-xif(i)/xi(2,i),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 2nd alpha-bound' + WRITE (*,*) 0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i) + alpha=DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i)) + END IF + END DO + DO i=1,ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) / alpha +! write (*,*) 'x1,i',xi(1,i),xi(2,i),alpha + IF (xi(1,i) > 0.0) THEN + lnx(1,i) = LOG(xi(1,i)) + ELSE + xi(1,i) = 0.0 + lnx(1,i) = -100000.0 + END IF + END DO +END IF + +! pause + +RETURN +END SUBROUTINE flash_sum + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE flash_alpha +! +! This subroutine calculates all molefractions of one phase +! from a component balance. What is needed for this calculation +! are all molefractions of the other phase (nphas=2, so far) +! and the phase fraction alpha. +! Alpha is calculated from the mole fraction +! of component {sum_rel(j)(3:3)}. If for example sum_rel(2)='fl3', +! then the alpha is determined from the molefraction of comp. 3 and +! all molefractions of one phase are calculated using that alpha-value. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_alpha +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, phase1, phase2 + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! first calculate the phase fraction alpha from a known composition +! of component sum_rel(j)(3:3). +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF ( sum_rel(j)(1:2) == 'fl' ) THEN + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( (xi(1,comp_i)-xi(2,comp_i)) /= 0.0 ) THEN + alpha = (xif(comp_i)-xi(2,comp_i)) / (xi(1,comp_i)-xi(2,comp_i)) + write (*,*) 'flsh',(xif(comp_i)-xi(2,comp_i)),(xi(1,comp_i)-xi(2,comp_i)) + ELSE + alpha = 0.5 + WRITE (*,*) 'FLASH_ALPHA:error in calc. of phase fraction',comp_i + END IF + ! IF (alpha <= 0.0 .OR. alpha >= 1.0) WRITE(*,*) 'FLASH_ALPHA: error',alpha + IF (alpha > 1.0) alpha = 1.0 + IF (alpha < 0.0) alpha = 0.0 + END IF +END DO + +! ---------------------------------------------------------------------- +! determine which phase is fully determined by iterated molefractions (+ summation relation) +! ---------------------------------------------------------------------- +phase1 = 0 +phase2 = 0 +DO i = 1, ncomp + IF ( it(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( it(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO +DO i = 1, ncomp + IF ( sum_rel(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( sum_rel(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO + + +IF ( phase1 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 1 is defined by iterated molefractions + summation relation + ! phase 2 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + IF ( alpha == 1.0 ) alpha = 1.0 - 1.0E-10 + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF ( xi(2,i) < 0.0 ) xi(2,i) = 0.0 + IF ( xi(2,i) > 1.0 ) xi(2,i) = 1.0 + IF ( xi(2,i) /= 0.0 ) THEN + lnx(2,i) = LOG( xi(2,i) ) + ELSE + lnx(2,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=2',i,lnx(2,i),xi(2,i) + END DO +ELSE IF ( phase2 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 2 is defined by iterated molefractions + summation relation + ! phase 1 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) /alpha + IF ( xi(1,i) < 0.0 ) xi(1,i) = 0.0 + IF ( xi(1,i) > 1.0 ) xi(1,i) = 1.0 + IF ( xi(1,i) /= 0.0 ) THEN + lnx(1,i) = LOG( xi(1,i) ) + ELSE + lnx(1,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=1',i,lnx(1,i),xi(1,i),alpha + END DO +ELSE + WRITE (*,*) ' FLASH_ALPHA: undefined flash-case' + STOP +END IF + +END SUBROUTINE flash_alpha + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE SI_DENS (density,w) +! +! This subroutine calculates the (macroskopic) fluid-density in +! units [kg/m3] from the dimensionless density (eta=zeta3). +! Further, mass fractions are calculated from mole fractions. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SI_DENS (density,w) +! + USE PARAMETERS, ONLY: pi, nav, tau + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: density(np) + REAL, INTENT(OUT) :: w(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph + REAL :: mm_mean, rho, z3t + REAL :: dhs(nc), d00(nc), t_p, pcon, l_st +! ---------------------------------------------------------------------- + + +DO i = 1,ncomp + IF (eos == 1) THEN + dhs(i) = parame(i,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 0) THEN + d00(i) = ( 1.E30/1.E6*tau*parame(i,2)*6.0/pi/nav )**(1.0/3.0) + dhs(i) = d00(i) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 4) THEN + dhs(i) = ( 0.1617/0.3107 / ( 0.689+0.311*(t/parame(i,3)/1.328)**0.3674 ) & + / ( pi/6.0 ) )**(1.0/3.0) * parame(i,2) + ELSE IF (eos == 5.OR.eos == 6) THEN + l_st = parame(1,25) + IF (ncomp /= 1) write (*,*) ' ERROR for EOS = 5' + t_p =((34.037352+17.733741*l_st) /(1.0+0.53237307*l_st+12.860239*l_st**2 ))**0.5 + IF (l_st == 0.0) t_p = t_p/4.0 + IF (eos == 5 .AND. l_st /= 0.0) t_p = t_p/4.0*parame(1,1)**2 + t_p = t/parame(i,3)/t_p + pcon =0.5256+3.2088804*l_st**2 -3.1499114*l_st**2.5 +0.43049357*l_st**4 + dhs(i) = ( pcon/(0.67793+0.32207*(t_p)**0.3674) /(pi/6.0) )**(1.0/3.0) *parame(i,2) + ELSE IF (eos == 8) THEN + dhs(i) = parame(i,2)*(1.0+0.2977*t/parame(i,3)) & + /(1.0+0.33163*t/parame(i,3) +1.0477E-3*(t/parame(i,3))**2 ) + ELSE + write (*,*) 'define EOS in subroutine: SI_DENS' + stop + END IF +END DO + +DO ph = 1,nphas + mm_mean = 0.0 + z3t = 0.0 + DO i = 1, ncomp + mm_mean = mm_mean + xi(ph,i)*mm(i) + z3t = z3t + xi(ph,i) * parame(i,1) * dhs(i)**3 + END DO + z3t = pi/6.0 * z3t + rho = dense(ph)/z3t + density(ph) = rho * mm_mean * 1.E27 /nav + DO i = 1, ncomp + w(ph,i) = xi(ph,i) * mm(i)/mm_mean + END DO +! write (*,*) density(ph),rho,mm_mean,1.d27 /NAV +END DO + +END SUBROUTINE SI_DENS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION F_STABILITY ( optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) +! +! ---------------------------------------------------------------------- + INTEGER :: i, stabil + REAL :: rhoi(nc),gradterm + REAL :: fden,punish + REAL :: dens +! ---------------------------------------------------------------------- + +COMMON /stabil / stabil + +punish = 0.0 +stabil = 1 + +DO i = 1, n + IF ( optpara(i) < 0.5 ) rhoi(i) = EXP(optpara(i) ) + IF ( optpara(i) >= 0.5) rhoi(i) = EXP(0.5) +END DO + +dens = PI/6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + +IF (dens > 0.65) THEN + punish = punish + (dens-0.65)*10000.0 + rhoi(1:n) = rhoi(1:n)*0.65/dens +END IF + +CALL fden_calc (fden, rhoi) + +gradterm = sum( grad_fd(1:n) * ( rhoi(1:n) - rhoif(1:n) ) ) + +f_stability = fden - fdenf - gradterm + punish + +! write (*,'(5G16.8)') F_STABILITY,(rhoi(i),i=1,n) +! pause + +stabil = 0 + +END FUNCTION F_STABILITY + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE p_calc (pges_transfer, zges) +! +! This subroutine serves as an iterface to the EOS-routines. The +! system pressure corresponding to given (desity,T,xi) is calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. This +! routine is only used for one-phase systems, e.g. calculation of +! virial coefficients) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE p_calc (pges_transfer, zges) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: pges_transfer + REAL, INTENT(OUT) :: zges +! ---------------------------------------------------------------------- + +IF (nphas /= 1 ) THEN + write (*,*) 'P_CALC: can only be called for single phases' + stop +ENDIF + +IF (eos < 2) THEN + + phas = 1 + eta = dense(1) + x(1:ncomp) = xi(1,1:ncomp) + + CALL PERTURBATION_PARAMETER + IF (num == 0) CALL P_EOS + IF(num == 1) CALL P_NUMERICAL + !! IF(num == 2) CALL F_EOS_RN + + pges_transfer = pges + rho = eta/z3t + zges = (pges * 1.E-30) / (kbol*t*rho) + +ELSE + write (*,*) ' SUBROUTINE P_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE p_calc + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL ( only_term, type_of_term ) +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! + character (LEN=9) :: only_term, type_of_term +! ---------------------------------------------------------------------- + + save_eos_terms(1) = ideal_gas + save_eos_terms(2) = hard_sphere + save_eos_terms(3) = chain_term + save_eos_terms(4) = disp_term + save_eos_terms(5) = hb_term + save_eos_terms(6) = LC_term + save_eos_terms(7) = branch_term + save_eos_terms(8) = II_term + save_eos_terms(9) = ID_term + + ideal_gas = 'no' + hard_sphere = 'no' + chain_term = 'no' + disp_term = 'no' + hb_term = 'no' + LC_term = 'no' + branch_term = 'no' + II_term = 'no' + ID_term = 'no' + + IF ( only_term == 'ideal_gas' ) ideal_gas = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hard_sphere' ) hard_sphere = trim( adjustl( type_of_term ) ) + IF ( only_term == 'chain_term' ) chain_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'disp_term' ) disp_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hb_term' ) hb_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'LC_term' ) LC_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'branch_term' ) branch_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'II_term' ) II_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'ID_term' ) ID_term = trim( adjustl( type_of_term ) ) + +END SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + ideal_gas = trim( adjustl( save_eos_terms(1) ) ) + hard_sphere = trim( adjustl( save_eos_terms(2) ) ) + chain_term = trim( adjustl( save_eos_terms(3) ) ) + disp_term = trim( adjustl( save_eos_terms(4) ) ) + hb_term = trim( adjustl( save_eos_terms(5) ) ) + LC_term = trim( adjustl( save_eos_terms(6) ) ) + branch_term = trim( adjustl( save_eos_terms(7) ) ) + II_term = trim( adjustl( save_eos_terms(8) ) ) + ID_term = trim( adjustl( save_eos_terms(9) ) ) + +END SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL + + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/in.txt b/applications/PUfoam/MoDeNaModels/Solubility/src/in.txt new file mode 100644 index 000000000..c6f3172fc --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/in.txt @@ -0,0 +1,8 @@ +380.0 +3 +co2 +mdi +po +0.1 +0.5 +0.4 \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/main.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/main.f90 new file mode 100644 index 000000000..523c5d814 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/main.f90 @@ -0,0 +1,125 @@ + + +!> +!!THIS CODE WAS WRITTEN AT +!!UNIVERSITY OF STUTTGART, +!!INSTITUTE OF TECHNICAL THERMODYNAMICS AND THERMAL PROCESS ENGINEERING +!!BY +!!JOACHIM GROSS AND JONAS MAIRHOFER +!! + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This program calculates solubilities (Henry coefficients) using the +!! PC-SAFT equation of state. +!! The input parameters are read from the file "in.txt" which has to +!! be in the same directory as the executable. +!! +!! The input file must have the following format: +!! Line1: Value of temperature in Kelvin +!! Line2: Number of components present in the system (ncomp) +!! Line3 Name of component 1 +!! ... +!! Line3+ncomp Name of component ncomp +!! Line3+ncomp+1 Molar (overall) concentration of component 1 +!! ... +!! Line3+2ncomp Molar (overall) concentration of component ncomp +!! +!! For a binary system, these molar concentrations are only treated as an initial guess and may be set to e.g. 0.5 +!! +!! +!! So far, pressure is set to 1bar in all calculaions +!! +!! +!!If you would like to use this code in your work, please cite the +!!following publications: +!! +!!Gross, Joachim, and Gabriele Sadowski. "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules." Industrial & engineering chemistry research 40.4 (2001): 1244-1260. +!!Gross, Joachim, and Gabriele Sadowski. "Application of the perturbed-chain SAFT equation of state to associating systems." Industrial & engineering chemistry research 41.22 (2002): 5510-5515. +!!Gross, Joachim, and Jadran Vrabec. "An equation‐of‐state contribution for polar components: Dipolar molecules." AIChE journal 52.3 (2006): 1194-1204. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + + +PROGRAM PC_SAFT +! +! ---------------------------------------------------------------------- + USE BASIC_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE + USE EOS_VARIABLES + IMPLICIT NONE + + +!> ---------------------------------------------------------------------- +!!Variables +!! ---------------------------------------------------------------------- + + REAL :: tc,pc,chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + CHARACTER (LEN=50) :: filename + INTEGER :: compID,i + + +!> ---------------------------------------------------------------------- +!!Read information from inputfile "in.txt" +!! ---------------------------------------------------------------------- + + filename='./in.txt' + CALL file_open(filename,77) ! open input file + READ (77,*) t ! read temperature + READ (77,*) ncomp ! read number of components in the system + Do i = 1,ncomp ! read component names + READ (77,*) compna(i) + End Do + Do i = 1,ncomp ! read component overall molar concentrations + READ (77,*) cif(i) + End Do + + + !calculate molar fractions from molar concentrations + xif(1:ncomp) = cif(1:ncomp) / sum(cif(1:ncomp)) + + + +!> ---------------------------------------------------------------------- +!!General simulation set up +!! ---------------------------------------------------------------------- + + num = 1 ! (num=0: using analytical derivatives of EOS) + ! (num=1: using numerical derivatives of EOS) + ! (num=2: White's renormalization group theory) + IF ( num /= 0 ) CALL SET_DEFAULT_EOS_NUMERICAL + + eos = 1 ! eos=1: use PC-SAFT equation of state + pol = 1 ! pol=1: include polar interactions (use PCP-SAFT parameters) + + p = 1.000e05 ! pressure is fixed to 1bar in all simulations + + CALL para_input ! retriev pure comp. parameters + + ensemble_flag = 'tp' ! this specifies, whether the eos-subroutines + ! are executed for constant 'tp' or for constant 'tv' + +!> ---------------------------------------------------------------------- +!!Start phase equilibrium calculation +!! ---------------------------------------------------------------------- + + CALL EOS_CONST (ap, bp, dnm) ! read EOS constants + + dd_term = 'GV' ! dipole-dipole term of Gross & Vrabec (2006) + qq_term = 'JG' ! quadrupole-quadrupole term of Gross (2005) + dq_term = 'VG' ! dipole-quadrupole term of Vrabec & Gross (2008) + + CALL VLE_MIX(rhob,density,chemPot_total,compID) ! call routine that calculates phase equilibria + + + + + +END PROGRAM PC_SAFT + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/makefile b/applications/PUfoam/MoDeNaModels/Solubility/src/makefile new file mode 100644 index 000000000..8926c29b5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/makefile @@ -0,0 +1,31 @@ + + +#Source files +SOURCE = modules.f90 \ + module_solve_nonlinear.f90 \ + getting_started_subroutines.f90 \ + Numeric_subroutines.f90 \ + VLE_subroutines.f90 \ + VLE_main.f90\ + main.f90 \ + + + + +#Object files +OBJECT = $(SOURCE:%.f90=%.o) + + + +#define target for non-PETSc files +%.o: %.f90 + gfortran -c -fdefault-real-8 $< -o $@ + +EOS: $(OBJECT) + gfortran -o PCSAFT_Henry $(OBJECT) + +clean: + rm *.o *.mod + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/module_solve_nonlinear.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/module_solve_nonlinear.f90 new file mode 100644 index 000000000..b850209f2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/module_solve_nonlinear.f90 @@ -0,0 +1,1622 @@ + +MODULE Solve_NonLin + +! Corrections to FUNCTION Enorm - 28 November 2003 + +IMPLICIT NONE +INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +!> ********** +!! SUBROUTINE HBRD +!! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +!! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +!! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +!! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +!! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. +!! THE SUBROUTINE STATEMENT IS +!! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) +!! WHERE +!! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +!! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +!! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. +!! SUBROUTINE FCN(N, X, FVEC, IFLAG) +!! INTEGER N,IFLAG +!! REAL X(N),FVEC(N) +!! ---------- +!! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +!! --------- +!! RETURN +!! END +!! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +!! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +!! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. +!! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +!! OF FUNCTIONS AND VARIABLES. +!! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +!! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +!! FINAL ESTIMATE OF THE SOLUTION VECTOR. +!! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +!! THE FUNCTIONS EVALUATED AT THE OUTPUT X. +!! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +!! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +!! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +!! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +!! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +!! PRECISION. +!! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +!! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +!! IS AT MOST TOL. +!! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +!! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +!! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. +!! INFO = 0 IMPROPER INPUT PARAMETERS. +!! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +!! BETWEEN X AND THE SOLUTION IS AT MOST TOL. +!! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). +!! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +!! THE APPROXIMATE SOLUTION X IS POSSIBLE. +!! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. +!! SUBPROGRAMS CALLED +!! USER-SUPPLIED ...... FCN +!! MINPACK-SUPPLIED ... HYBRD +!! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +!! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE +!! Reference: +!! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +!! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +!! Breach, London 1970. +!! ********** + +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 1.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0 + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0 + alpha = delta / qnorm + IF (gnorm /= 0.0) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0 + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0 + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0-(delta/qnorm)**2)*(1.0-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/modules.f90 b/applications/PUfoam/MoDeNaModels/Solubility/src/modules.f90 new file mode 100644 index 000000000..0aa1d08f0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/modules.f90 @@ -0,0 +1,366 @@ +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains constants and upper boundaries for the number of +!! components and phases in the system +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module PARAMETERS + + implicit none + save + + integer, parameter :: nc = 6 + integer, parameter :: np = 3 + integer, parameter :: nsite = 5 + + real, parameter :: PI = 3.141592653589793 + real, parameter :: RGAS = 8.31441 + real, parameter :: NAv = 6.022045E23 + real, parameter :: KBOL = RGAS / NAv + real, parameter :: TAU = PI / 3.0 / SQRT(2.0) + +End Module PARAMETERS + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables that define the +!! thermodynamic state of the system as well as simulation parameters +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module BASIC_VARIABLES + + use PARAMETERS, only: nc, np, nsite + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture +! ---------------------------------------------------------------------- + integer :: ncomp + integer :: nphas + + real :: t + !real :: tc + real :: p + real, dimension(np) :: dense + !real, dimension(np) :: rhob + + real, dimension(np, nc) :: xi + real, dimension(np, nc) :: lnx + real, dimension(nc) :: xiF + real, dimension(nc) :: ciF + + + real, dimension(nc) :: mm + real, dimension(np, nc, nsite) :: mxx + + real :: alpha + + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- + real, dimension(nc, 25) :: parame = 0.0 + real, dimension(nc) :: chiR + character*30, dimension(nc) :: compna + real, dimension(nc, nc) :: kij, lij + real, dimension(nc, nc) :: E_LC, S_LC + real, dimension(nc) :: LLi, phi_criti, chap + + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real, dimension(np) :: densta + real, dimension(0:nc*np+6) :: val_init, val_conv + + real :: h_lv + real, dimension(np) :: cpres, enthal, entrop, gibbs, f_res + + real, dimension(np) :: dp_dz, dp_dz2 + + +! ---------------------------------------------------------------------- +! choice of EOS-model and solution method +! ---------------------------------------------------------------------- + integer :: eos, pol + integer :: num + character (LEN=2) :: ensemble_flag + character (LEN=10) :: RGT_variant + + +! ---------------------------------------------------------------------- +! for input/output +! ---------------------------------------------------------------------- + integer :: outp, bindiag + real :: u_in_T, u_out_T, u_in_P, u_out_P + + +! ---------------------------------------------------------------------- +! quantities defining the numerical procedure +! ---------------------------------------------------------------------- + integer :: n_unkw + + real :: step_a, acc_a !, acc_i + real, dimension(nc) :: scaling + real, dimension(3500) :: plv_kon + real, dimension(2, 3500) :: d_kond + + character*3, dimension(10) :: it, sum_rel + character*3 :: running + + +End Module BASIC_VARIABLES + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables to identify thermodynamic +!! properties +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_VARIABLES + + use PARAMETERS, only: nc, nsite, PI, KBOL, TAU, NAv + use BASIC_VARIABLES, only: ncomp, eos, t, p, parame, E_LC, S_LC, chiR, & + LLi, phi_criti, chap, kij, lij, ensemble_flag + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture (single phase) +! ---------------------------------------------------------------------- + real :: x(nc) + real :: eta_start + real :: eta + real :: rho + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real :: fres + real :: lnphi(nc) + real :: pges + real :: pgesdz + real :: pgesd2 + real :: pgesd3 + + real :: h_res + real :: cp_res + real :: s_res + +! ---------------------------------------------------------------------- +! quantities of fluid theory +! ---------------------------------------------------------------------- + real :: gij(nc,nc) + real :: mx(nc,nsite) + + real :: mseg(nc) + real :: dhs(nc) + real :: uij(nc,nc) + real :: sig_ij(nc,nc) + real :: vij(nc,nc) + + real :: um + real :: order1 + real :: order2 + real :: apar(0:6) + real :: bpar(0:6) + + real :: z0t + real :: z1t + real :: z2t + real :: z3t + + integer :: nhb_typ(nc) + real :: ass_d(nc,nc,nsite,nsite) + real :: nhb_no(nc,nsite) + real :: dij_ab(nc,nc) + +! ---------------------------------------------------------------------- +! auxilliary quantities +! ---------------------------------------------------------------------- + real :: tfr + integer :: phas + + character (LEN = 2) :: dd_term, qq_term, dq_term + + real :: densav(3), denold(3) + real :: density_error(3) + + real :: alpha_nematic + real :: alpha_test(2) + +End Module EOS_VARIABLES + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains variables to store the EOS model constants +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_CONSTANTS + + use PARAMETERS, only: nc + implicit none + save + + real, dimension(0:6,3) :: ap, bp + real, dimension(4,9) :: dnm + + real, dimension(28) :: c_dd, n_dd, m_dd, k_dd, o_dd + real, dimension(nc,nc,0:8) :: qqp2, qqp4, ddp2, ddp4, dqp2, dqp4 + real, dimension(nc,nc,nc,0:8) :: qqp3, ddp3, dqp3 + +End Module EOS_CONSTANTS + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables for the numerical +!! evaluation of derivatives of the EOS +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_NUMERICAL_DERIVATIVES + + use EOS_VARIABLES, only: dd_term, qq_term, dq_term + + implicit none + save + + character (LEN=9) :: ideal_gas ! (yes, no) + character (LEN=9) :: hard_sphere ! (CSBM, no) + character (LEN=9) :: chain_term ! (TPT1, no) + character (LEN=9) :: disp_term ! (PC-SAFT, CK, no) + character (LEN=9) :: hb_term ! (TPT1_Chap, no) + character (LEN=9) :: LC_term ! (MSaupe, no) + character (LEN=9) :: branch_term ! (TPT2, no) + character (LEN=9) :: II_term ! (......., no) + character (LEN=9) :: ID_term ! (......., no) + + character (LEN=9) :: subtract1 ! (1PT, 2PT, no) + character (LEN=9) :: subtract2 ! (ITTpolar, no) + + character (LEN=9) :: save_eos_terms(10) + +End Module EOS_NUMERICAL_DERIVATIVES + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! Module STARTING_VALUES +!! This module contains parameters and variables for a phase stability +!! analyis as part of a flash calculation. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + Module STARTING_VALUES + + use PARAMETERS, only: nc + implicit none + save + + REAL, DIMENSION(nc) :: rhoif, rhoi1, rhoi2, grad_fd + REAL :: fdenf + + End Module STARTING_VALUES + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module DFT_MODULE +! +! This module contains parameters and variables for DFT calculations. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module DFT_MODULE + + use PARAMETERS, only: nc + implicit none + save + + INTEGER, PARAMETER :: NDFT = 4000 + !!integer :: discret + REAL :: box_l_no_unit + INTEGER, PARAMETER :: r_grid = 200 + INTEGER :: kmax, den_step + LOGICAL :: shift, WCA, MFT + REAL :: rc, rg, dzr, tau_cut,dzp + REAL :: d_hs, dhs_st, z3t_st + REAL :: z_ges + REAL, DIMENSION(r_grid) :: x1a + REAL, DIMENSION(NDFT) :: x2a + REAL, DIMENSION(r_grid,NDFT) :: ya, y1a, y2a, y12a + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub + REAL :: fres_temp + + REAL, DIMENSION(r_grid) :: x1a_11 + REAL, DIMENSION(NDFT) :: x2a_11 + REAL, DIMENSION(r_grid,NDFT) :: ya_11, y1a_11, y2a_11, y12a_11 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_11 + REAL, DIMENSION(r_grid) :: x1a_12 + REAL, DIMENSION(NDFT) :: x2a_12 + REAL, DIMENSION(r_grid,NDFT) :: ya_12, y1a_12, y2a_12, y12a_12 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_12 + REAL, DIMENSION(r_grid) :: x1a_22 + REAL, DIMENSION(NDFT) :: x2a_22 + REAL, DIMENSION(r_grid,NDFT) :: ya_22, y1a_22, y2a_22, y12a_22 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_22 + + End Module DFT_MODULE + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module rdf_variables + + implicit none + save + + real, dimension(0:20) :: fac(0:20) + +End Module rdf_variables + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains the variavles that are needed in the core DFT_FCN +! They are not passed directly to DFT_FCN because the nonlinear solver +! needs a certain calling structure: fcn(x,fvec,n) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module DFT_FCN_MODULE + +use PARAMETERS, only: nc +use DFT_MODULE, only: ndft + implicit none + +INTEGER :: irc(nc),irc_j,ih,fa(nc) + REAL, DIMENSION(-NDFT:NDFT) :: zp + REAL, DIMENSION(-NDFT:NDFT) :: f_tot + REAL, DIMENSION(-NDFT:NDFT,2) :: dF_drho_tot + REAL :: rhob_dft(2,0:nc) + REAL :: my0(nc) + +End Module DFT_FCN_MODULE + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module Module_Heidemann_Khalil +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module Module_Heidemann_Khalil + + implicit none + save + + real :: error_condition2 + + End Module + + + + diff --git a/applications/PUfoam/MoDeNaModels/Solubility/src/out.txt b/applications/PUfoam/MoDeNaModels/Solubility/src/out.txt new file mode 100644 index 000000000..3a68e692a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/src/out.txt @@ -0,0 +1 @@ + 2.2654943032705011 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/Description_SurfaceTension.pdf b/applications/PUfoam/MoDeNaModels/SurfaceTension/Description_SurfaceTension.pdf new file mode 100644 index 0000000000000000000000000000000000000000..81a10a39bf8c6bf1c84ceff4b2eaa57e4096d37c GIT binary patch literal 80494 zcmb5WbyywGlP`?By9R;>x8T7cxNC3%1a}K|2<{HS3GPmCIJg9Nm*8#(=Wx#D``g|3 z?)&aOd+$4cOwV*zS69{4bbqF*pP^TimSy8&|AAf)~RNb}kR1{h<^geAex^5KEf@jO~kx^yE5z9iVa@Xbv?|mlnbK2b( zwA#7zU}gnv+{U@z5~HeXm%#2(owhtiv!M3i1qOluBDC4|Pe*qQNu;)@jrBwpLTsFJ zU0cBdt!RV7I7+2K<@lXs?lZ2X;L?Lwh<@S`KD*PZ7yw&(eLGi`4*mpDJ_Tt)Rx$Jn zB*36ZmCEJQvKeA_^r>kgv8?8Y)4@kV%-X$hgC9i$$-jrK7%Z*92Udy*xyP@Rj{YB$ zq-7-iT2qUTpAROix%VfEjQn24;xC(ldWal9tGe-$?m{+ekvFs^AWhbS%xm3%u}nTQ z0$<(H@U;XhlZS_gR0f}|q_uYVjG5|CukzEDj?>F#d8Mq#oPQd02mZD8Mb|9{-I2m~xCJhO z{X2nju|4M)FN_QBLJAtJ^zPR!*o-|KscIqH2qP)Y6iHY_X1veb=B3{qBphK+%9{w7 z+FEEjf6WblCTl@^1>vpKsaM8Ic;%O8(Ho44Y52(WlaXnCP;=p%Gg~Qbi_1| zw+rEVIJ>%eDgVAw)+fr%^KJwslGP~UlRrB)>IpngnmFMl_Q5K+i@)=}CA?rqUm#be zaK((8*UR_8(n+s>7k=s7;cvQ{c ztMois=ev>9DLtY0-p8V5iM9-XD|Y|VWlIrj>xsWKH{R7-jyCLaT-pgm zc~QUklt#PqH>T(KIukp7{hfcs?Kdp*UduJXeafSaOvGr|0m9<7*F{5z*tvWd=JG1i9OwOjoj{1?3itcf(P# zTc6>w(F~}@$hPPx@~V(9ely7*vnnfUO6hC|UZ6#c?)S7VB;fweknfF^+yj|L_)?fE zvp$8Y>PF_3a`zJ(N6p6DB-CmpWZ|*;v_700T;dS824Aq zgqSj)_0tmD`TKEkdLSXcrI*k2`s!#v^zgg7tv^Q$wPO5X%VD@W-utDvR{RKY4N6d< zJUECX!S**Y{jRa_tHDOK=$kvdfJZIHIm}OWRSdas?%z17&$XKpj}h=f3i+!Vqey9Y z6m{DYt7dGYG?&e@f3BKlG7rR}R0qEQVoq*PN?Z=w&?#-$>_DyfwT;m zM_iu?p=W>g+c8y{i}>sTe^r1`3gQ=c5-~;GKB6^=q+yD=8L28d~-7mub&CN*W9ct{o09Ua1X6X+e=MpErLAmrbgxz*Essn%Qql zR)1yJLLO*}CRMHWR{t0#?6pn+B!r<{z z51y3$<1#tL8Mi&n)hy^Jh|0j8cQgy<#(BG6^pwaGB6d

    4N zg@mKimT3`zTXv?KcJE)8TgdKmE*z@JVB_NfU>!s+Hx9?Ny@L@WD_s8+&p&hhcx6`%Nmw+KI}mAUD&#z5SUHP#2t?RILevccGw_nlgkv+iJ*3XfJz?28eL#y8_BG>}0D1+wN zRbc{O6X5$L7n=EK{2@|=@c{zMpuvkRNs*^ST=W{Ul{VWt9h$4u5awq;gK_`v1_0{Q z(&DFkL@=_rOXIWv#<$Gj;5#N-V!>D6_rm~=))=}r4t(pJ2Ap;zLECBL&W-Lz@(MHx zL^MlBi+=|gZ&z>N1dZ$Ce?=*Ly!`(LQmFsWC?!-&(P@qIAC&UQEskXM`G)1jk-Qyd z!$I894*N?L9UNGWzIX%jDyOcJ!`5TkQ}hUyi^4+Us|`-|b2WK-F2`~3mab}VFMt(~FjU4l>@n_|fjRz_5g z#GYDi;jj-&W{4pgD=AzG%}*JOt6w>SG%3oguw@WLc|}7b8QebaS;fn3$&=GrqVB z;!Aw|Ac=DiQD*@qKAQHmVVS~D%D@zin~&)n6b5`oojgYK>b4da?O#5=E6lp4^Xcym z3+RCjGx|=&jDQdGkl1Rstm11~hv+rE$y=Q^&--hs1ePij>DHcc{6(Qh;#Wk>b8NcG z6H@^9> z!0rNxbsCOE?nu=(yY0ySZcJu);#97Qg!bKpnWsdVVxHHFj}28d!H*)(64;BJ73xVn zWh$jDnsrYk)cApSY1{2b5}+x1$?^=7oQSf#{<0&_E)9~~9Z6VgPF&2NF)8mDaU1he zwS&Xz;>JxcFRKwY25zjr{{2pR^geiuc=M+;uY)n)M}Zd0?!=@{^!e)U3mpIqt6$ik z|HiHVlUHkfcebSF&{H+HwfyRi#-Zt9?*6YDc?Yv^mS`NhHWqKloR60ijYH1T=9{%U zHLt+iwWN)^o0_Gol#_$AlcS}hJGB5Bhm@1OldGn)*;h+y0}gpd3rlZH3u+E&OHZ4x zmKvWWsku10sJZywhSo6pe;_|EClA;EE#yDnKu;?WA`n;C+hKmCoD#tC{P?v`%-(zA(Mwt~z(X)>fu_If zRT2;Kmy)2q)iBQN_lWalg4_)@hXBaZqlJPUTleQzJvQ!jVOBcQT++<>h77f658F{O zB_WVD{&v*f0etw_e#CoHQMT50xoUuio;|#o_B<|EEus>L^B_SC-0yslg`%SaG>W_Z z>%~vRdXcvxGY|qu_dKYDTi1h5qRaQ4=M>h`K(DmwBCnlVd7|sj+o@`HrU)Lr_8$4a zf|ta!z70r#`^Ui#Q`cK}wuu*;X7AxV_U&1R#%!#X)u+hs7Y*@cdT_TlPs zo8{zHj3rLM5SyHx)#vVT+zd?WgA8~;Zhf=h3` zkl#4|rvZWAEx2MWU$;aYBEbEbkbQkQNo_iL!U3_W3zHczS|VWCQE%~)_$fRVJl3!Z zY*6^x`%jbl0=xm(YL%%vCn(bx_TL7nf2FM-np%(pp^dFX_l~q;3i`l z-pP7``+Z+K^wn^fArg=uv`@qppj$L(-46g4`VJKzh{Nbqe0!_$k@zwE9L!Rg1X!K~ zGC>2u@Hg0R^srCJ&^isU;y%?|^(zI+n<0(MWKxNL0G3%KCZMM*8tq z18I+@+pj!)c&;U&d)@@QC#i z5Uv>L1>qhwbZ8JLbBetR=0BdtN4oBF*{Fg?4Nl+Q67B|^%1W3e0037dmsBFC!C>;A z{+;J9x}g$~SnezTEitzDf43HqXYoN!yKh~@2thtgoY zn**M>od8jSk#8^i|5buG!s2f@xH#Ncp+vfY0g45MjG{{5m-*+ZzU}wmm!p4V_=kTI z$3tz^EU(TWaaDbmw7aEm3$-j*?FYiAd<1!aDm`&)211KglEddPj8zXf(91_2C0do|CuK5+4m z0Au^Mj}P7R61PFGinZN8d|Du%=;-=>J+?FhMmJi-QG&q+n!q9`5lSAxoCaqp?DuPw0jXa;2Ij+ z#01iVp4TkpokTsHn&3t!h+6$dzI)Tk2cn+4^y@~IWW5J?dlC)+3Nc}H^Fz){A*nTw z=)(ZvN13j2xFRvyYaGbAF`Q}(tn86m=CnnF7cT3G4 zSDy*puP^c2%^}xLjhtm@LeOT6;EG=$r@6PAXQD4xPR?qC?ht=H**-By_2E_{^N|>M zcT3^2!X?U%pQp{B_xdv^WXDX)ju^%Wo99#rKZ&<*2F zYVX%;lbL`P$+vajD>9G;L*)swMW?z?MX^5cHr2=}yh%lhb@OIfdPuRZBF^Km#5J}m z#U2&3SxNq$1c`A1SO%zN*&G2@u=v?R^mRKU0mmA#Z_9je2Wl`r5IXw|kL9>yqMrI5 z^(6k1gZ?QA+)`EWyxX^J1vx(uUrr9br*d&7hO7W?DY1;h!a8oIAcY+A@}gBJzh6Ip zK973X&wKrBvcFwkE#bea3l<(0hxq>pcEH`n9+5i}6DkWnr0FsEHh51ZFW>Aw4F;*d zcCf*9rUn--ZGkSwZhcwdIzxjCnwdSMyo&RdQ24&5Mc*tYyGor(22fX6+ws@ zJ@m_k?g>X`=a6pugDd^)*2KX(ohX3Av$_sA_?jwiXNyyU%SNb)Rjd-GC*06zVW?f4DU=PZP^TSR}5d$*?p+A1-5vA zkq5fgL}*Hm<`g-**S0d_bHz`Enb!T^KwlX7)fpa;O{NF(d@*D{s?+gI4Ngl6wuFxH zBp-y7L~jmnZ-E&a&io=7`MG|OL&M0Ev*bDewu+hFy_Irl)m-GcoG;p}PJh86Rn}Xh zeT{8rT3Y)B46>g0zxQN3E&zG#%9IPzFJH0%4UL(tpB}*sNn%UOaSjE(pWQM^zN7>A zIvD;``0jui%s-Vl4cm{siFG8xHstY3+x1=5fgAQb-%JejyD`=X0QN#)_Cqp1=?;|<^Zm=>RtpXEb@iMncza(y_zh+ zV~rLzV8v(HnILoxW0@VVN8;6oHtW3w{+Ud?IOxO58VwicfH8al;bx3-<{xH*({G=SRN6|@S zm~ciRxz+UbE6SV{gzLKvWLg^ZW$g)gtc)?I{K|94pE$nx)j6Y!B@BhLI&%04D05lp z%LvLM83HJ>%c+wab~+3X3H}MMBz)5Rd0>)RrkU>e$L8h)0{*+*n59=Yyj>H?*%kTM ze=mA#c;969j6re}U{${zbW0VzQvV;0_V507g~nV818lq!)`HmSW;{f{R`#t7X(Atr z-2vCSCh5^^Us;uhO&~dA{DYq4Qm>U8nj1^VBvHa2vGX33_Z)6ThFjdd&zdo`76`LY zrHTo+GXVZiB|{yoe839O0mR#=n0bOcv7%rFJ>A3s>gdE9zmfXm|3zDD_NV?a)p_%a*DYZxJ0w;29HSrj{N98v6#BGeUt*u4kjzs2EL`ijE_%5L zJoOCwYr^KDa};n*1)a3Hss;pq^H1`-=ZJQB+!BU5&K`T>=-(1%2X29*`MEcTf!pwd%v8+VmVDh?sDze^+YlBBis()$*Ih3 z(*RmgX*>6xydq}dg9}rIP^I;|%7zl82Y+Fs?9O>lI%>#GZAOdY%k1>eN3W02C6(H2 zmY@6|x1<&=n(J9ksNVRAU=l-7BEDO}z0D~9X7t<}?5R|HrT-=f@lPn=|C<361@5GD^ispR|!|9VDqxD7(Co>LKLty_-Jj{gCME}VV zOOy-E_9!1yHDcS9_-9(J-PJYa#?Sd?fZ1SLy#z)JAQbf;m(>!qJuR>4{f&D0#rFH)WG1k zaHflp1beyKxSxrPgtl#59RaX4%S$RH35+HIBi9!KfFEA5zsxgSNl_ zbAyvspmM?JcNuAI`Ad4k=TQ}W_sg{RB04JL-F4WT_qx+6qVD)K&QS4!zd4}`!PY_Y zbn%C3WGge)O@{1tzrVDsO;~X6Ubkv7zrrF)mGb^K78m@l7U$&`_`kNeLz418(af;R zC&G4RIA-nnaLe;%0=qENexED0Qwg_h*}!k5Nsakyd3hFsy-|1OV{~^(e#W&~3+JD- zipog~^ z3#Amns}LMEkS%Kpf$3A#^UQJSPi`@bu5xtbCC~bS$r)@_-9Zr{xQUdH5pbN99;9t@&5UFl zW;9x)(ZZ6jQ_t*EsX-ryck?@U_e$aj@%q5Qa3N*|K_M244jQTzRXuCh6bBnAsWSA4 zmvI}|TX>kQ76<_X-O^h_P~6}K)~u$ZO}ZX6vxKWyJ9clMz85imP=FRm@;FW{KS8#E z&W$dNyfN!>j-H4CV;%tsI6*&dSoE*rL<(8wL2*H*RSe^Ci2i2GL||Bes9~ z?$sa=K})G~h*tX~%@nx+@ttbMXJUptHZ2X}FXdLdJM<|AY1)F{!p1BYD#`-xr;hWy z;R_H-n%a4%=9nXaOdoQAF^u^~BQ1 z>=h!m7%68j8`f4~iJ%Sy>`ig_Sl;Q@4rFYsAKUD`lu6>w4>*Rw!V**&8Nxgd5Ws@( zg7(JNYIC>8{buQL`NGE)I#!Bt@dhj$Vm@|H6|=yUsG@ho{DH~I;W^34faBNW$VFP{Q|!h_FVv4zuDv55)7BtxYi{uTe(*F!8#t4V+CxuA*Yo^YNWAYI0%8{Y zdl61yEuIM(3Pfx&kbr>Lkl#2r4*CaVUtgSoLDIX27y00PYS5wE!`@?MTQd%_SHuG#fu6+N?8zW3w30TQ z58-SNO(OxqaTOULyhfb7q^A*B{%MuShgW>Vv5YKi;|K8 zHf@SqyxUZ98iZZZ!ZVGD;QXUK$gc}}{^%6)XArRtCaVKxTwKQ#CP`3F1qC5*n9h|)Zy5V^ zKSLOH_IK|CVW=2;9)PD{e>kW*G+dh!1#)^W04*DhemB1KPd$F?fevFg zA+LRh5MGN+)v!->X$e9#ayO3tMC^Cq@%YaPOzg)H z1VIO2w=%xdoBOG&*(&%|RVxaWwX7SNOC)sjxpKW8Xw?~@W$hyDl|22n*+;X-WCu&N z^EPc=S)DEu#Qq^l6C;|vp@=ir0q?X2PUw13!;38<1v9o96ZbL$K_S)5K`CS~1E^p6 zlVZ7XZv2>TXrdaQDc5hCd-StMz+4+h{D{y=v zygQ3~SWGo(X^CZze^f2+aStkFmb-RV7%dUcKMlWIhp)1IFz;orgcWqtyDfQoo}a!b zfbj&w=A1B=DRfAfbo>{21JcdB&S=1;*D#xoDnOt0ca?CEonyR|qk`&wB6yHER;C%y zB^z##<2JkMikZ>E!~>%|V6}|Gaxab(mU2;G-S!b=i?Mn6V5OM(Hws&~tOrRj#1F5G z9TpB{KZqXHxC^gU|@JsX}s1Hqr6c**_P4O*?bia*2RO|!GZ zhAaCb?eb3>iD&)0helCnAz(M{IRYA+FLccC$h?^5@72s@lh77^IU!JKOfLo7@C;_& zI{4I7fsn}bW}B!sD)UtM)hE^S8~FGvsILr7gRX6_(kqMKmMJ0ZjGTBYC~NAL?*}+hG_BS9H~d0Cadv-fGZ`H zpjk%yYrYdpQbEXJ#WnIc$P|^HOF;~c>1Z55lzP%}|3vh+g)NC0uLY{V%>2?+QQZR< zqbmw(Z7engiUwyBwq__QD7Xj+ZS#l-NLB2!k-IT1kI6-qNzap!bHvtqdEN_ec>KD@ z$=BFGj!pz2v`5*c?%(0lHnoknbl@EN^f|xH(YDTgwFNl|Phxqy*C19@R;nr~VNtzP zB%~HS*@*PPJ&w^^etwsiK=Dx0%VN{iszUg9FTdrbSB zaTfB8%1)U_cl1k-qPvv}O`nR{QV-%(4GQv#nfRMbaeCA8xG@T1AWQiMcUN9_bt9>1N`I=N^P>oY9(C)6Z~0 zctE)EWm^>6c8zmL7}o~9-%b58b&ez5u%tJIy$WZRBZ%6gw6DuXXdJm(BTkrjl5w+& zS^&@BD64_<>P-9WdT8CM23NPJwb!>~Up_pJ68JD#0D&s5#= zPYeEy9bgZA+|V_v#7S*VnsHoj^tuA8L1@@&{T?|87c{{%hT4D=AIJZT=SewcAU zFoVd2qRM@};WG@4ojRv$FytG-_nm?5%!ZB0#3(7;ElsR8Z=4{#I!Ax4O`PogmBpgB*TwHC&gD`C_Qu&&VoI z2~JW|%`w1#?tYf;&pe|z+YuJ5Rq1Ij$ofmi@IL|@;%KY0oe5iGT)(mXPZ1N{0 zO2$AVy8tgIR8}|KnSEydt#LC}50dge!W8)fCaQ0dZS(Mo#iD7^3hXC6f6{m8lt*fV zHZjFkNdWj12b{D~*qCA4__jeNQMB7t5~caPzA}Ltlsyf!{C&y#AY#^%OKmzmmGCXf zWdy}0*>BJfF~#o9M*gx4@$-XE1CMcj)DM{`__ zdhl2lfXCS>WmP6YE@r~|k?a`=Vt@x3AK}2%VW_6;pFQkDj+I$yhe}N{)kOKwyx*K; z@L>~niDPZpctOYTm!FC;wNG4lL-!6{%iUe*A(|YZ!*D&b9=+29&=rz)I3MjGP5Q=pJbC%kv&#zB zZaV}N?oBjN3&G)6uxvQKUpx>;du}VsJ8n%-Lc=nHH|x?-)e7K_29>uKct{uhz0`>6 z)hf|gBL8yD-Ou`G2Ae0Z^WGm##G-&vBUiUUYj@~bov^hV%~UI=W+|@LsuKB=hxn`8 zW=>myT}q30_guqoS^_&uy;nMbKxj8BFYds7?y>GtjvbqA3k!O;QP;q>jl1uj$ipA zpUs%zZ=-lz;0?9!sS+0|)>8Ll6(|iv?LUxF9II^xy>9qRrmiIs^pU2I3+j78AzyK* zq^f2z09^qs&nU%T#q7`44Zq?xed#p$^p1o(@MA^xKo64YVziKzN}wiDm-__mp+Om< zVncsI{UaCFtn!)@D-tn(hVWRzSlUVqP8~%Zo$uUnO+g8v3EO#9I^S(r)o(~M<1+cv zppj|#qU*OgM6XmVdCAlY&>xGl4bn6KW0%EM!Cgn=rTd;+mEEDa;M(7!Lo8o~@@U?h zm9Gowb9!xo2d)?D@@IJGxUfirUxtQu`J$XM@V})V7@nYs?JU)-oV#u*^{--#%&zUF zlr0syQvUv);exHTaDv2IS+~scF|_H{ztN&te`ou84Ep8uZ|0IbKEakx6-v|cS-)IgyqiW! zLN-K?ESR{-6im|DYd=Y|hP^pi3M&pPv9crQao1IwQ7OT__Ku^OwaeE_R6-V!cR0&? zL5I^mYx656A4rNNCqoOoZI^scjaiTNadSu!4V!|!@_gqNt(14oVkV_7*vlTqzvjL! z{p6nN25DHEG^;`UQAfFDDfwx;OZFj0UUd~YI)<@zN^00_`F1jxB_Jd0>X%6(zou+V z{cvl_q1frMNRf>DgPz^05p;)@@}E&}C4k0m;(2yW9+m>0Qv(5IDt8zm ziLV(%4QG$VxmkEX`s2!4IFRe7#G?81^iuDz%uyItb73dui>@ml*XoRMm6|wp6y4pT z$x#lTMbk`YdSrbS^hR%Ln^V})Ip@g+`r7Pk=THZl!iUM9xPR%jQf|YBEou1@%;!2u zZEh02Z^sBoI846Q-SzzDLBFuh13m2VGm0sx}s1pB)r^;!6emuZ=TOZmD zQA!Kn+eGW&EOi!qw#<#X1V1DN4sV3k zR0GpNtL1|&4PW_ebJnj$9sray{Lo|*M4vez{nbFYTy;2CuUheTFJ4P&_clRxgLH-U zBNmAt;hFoC0u&Z}ObK-JFOBP;m0_-vG`6NTQjeQY&|zr&?5tlqW3-}zHit+kfK0R) zsw>7LgKV`r62QW(_6?1}O#Phw1Lv=khMZ9}B=B;OkL(muY1zh4J5&9_Vn)u1UKKLi zcPb>55e2b0y*>_X&a7og!@~E;;LxR-gsUOvjm(L{PxI&8ny)lzL{h9=#DlCoyHyVT zd+pWMa!-n&B?{iDo4SUg?aXK{(JIu~C5p|o7pEc>|1mbC4)y258t?)CFAv}Og{w{n zY(f0%pAMI-3n0o&EckY<61^Bwy*bYKM`eNTQy+t=cnk_`XK57+Fh%o9`P^-epNJO5 zgJhO7R&=J#dd!!s-|v0Y8w?K*Q_IiJ>C8|Hxonh&3E0kxE6U5j{mJV?kNryzTX-MH zOm|;KK4dWb9(o;0z5Pp%;nXG6)V?Gzs`%=y|HoA5b8HDtl&eg0i%` z_8$Ltm~IXRT!r}*fVnvSucTp~ht$rO23Pzo)b0IRe3TTR0`+=nfQXY?m-kWqsDbWo zG1GC6$r10%b(8iq9{lNz`u#Y_zQghK=61jSq3wknp6Hcna6qKgN-Hhx_mcH6`901e zAvs}0Ofg*hr!SFV6f(d0BrRVJ#%+72Nck)BrRkqkR}_}j`z&Nl(CNy@d?K|5;R#R+ z;=D)>=$32kJGx}%U&KnIoMv3o_Z_CQ?B5PidGm_p~7dXVXOF&WXB>m-75M!UH(evARf~?dp~d#9wfCzLUv~| z{}7W7b6m~J30?*7PVjlAx|fbU{C4Z=n>4MxDL~e4?7ykeBZS%gMSB%ZDIi=w^pf-E zBPbSJ=O|5tB|N&0D(2^1J8jo|ZrG%vJ-})NCt?KRvtAe2G`6Oj5q5!22~`on)`hv( zMllJ z7TcVNkve#BWku7UG}@{wx@FvDq$*x{(r}t~m&@^$zV**4JAvfjS5rdt<~7EtB`;SW zqpu1i@-ZBQMs5R9qpA%@ZY9bMFQb7k2IUXRpsU5^hfsOS@ADw%HOm%qcOK&swoxtn zkfCo~Rk{UMhwdw1E0|)2n?>5PGen8yWTSp(1zMD~Ivqz^N12G#&B|IEKSr1}m+&nwjZg{(}@)l@GIN2euC z+DvWS>YDuhY=lz@bvF4Sfm+#l@1jRNzmy_Xua|^O>Jk?+9b2NuO!}M|`=o=ytak5magSoH6IL^jZPTo;MFC4io< z;>8xVk5PYaQImGW<3Um0HazA$X_VaLIOkR~!LYc-pYaA8HWW3>_m*;!ejIkP;%Z#g zC?~K#RY!>szB#FPvPSx)e7(*-|FlB2T41}^Ncha}AilO|_mHDWL`!^m7u~}AXBju< zoo`IUjdU3~YE?!Utcf2t8|EJBpR=?+?`~u)vZ@f@JF|ONn1rbK;4M*tmg2gLFG?Zg zxn9@814WcNs#9K<%?W?}h(Z#xxO#F2`kSga?)@mKe|<}cj-$kk?)>(na;#^ogh}0% z(W`vKB}Vp;Q3hAh2zZedU5^|1t3WH9VWx<~FI91NB{(r*dplapkpAUhx52sTK)A1n z!NX43qHpG0rX?*L&z?9kiQZ;{E}NK}I5v#eiy~pXN8Fj~1&Z z*29*2i5R=V;%Az8{#JD8ql9qC)2y{_@trn<8$O_K|FymT&!PO3uwZnWqUDWwz=`T@ zio#f2C2AEZInMAqNd-$WBO4;BLkV;vK}dyauHlH){^N*GXM}=lXr49j9jemV)p(r* zYJEMvw+%H(A>N0mL-bY)xlubUgxcj-)7_#}E7R~ailE!*A(Q=%tnb+^m-tAUTj73- z`*o@ik>!QYY0QnQll!hp5gammRv~}ztGV6!%*O$r#5^5d^IMYJjpt0vwDl|7BAAZS z)_5W&$PlsH?AtTDu-^BLRQFOP9JGEpWr zh`f4l$4KsZ9dRz81Q%jd#3QS~YeELcN|fA?VPqN>RsVxh!mUTn{D^p)!Hf}(Py?cC z5_f*-BRv9t0X*Xqu%@G}^uwJY+2XftZ?k92yCXZ5TmE?t*K$-D7h7Slyd0w?^>Y0! zo_v?fJ(Qxln`DLMu-mV!Oe|#7KU0fL{Ru|a&*LZ+k@2T#8zg$~bCa)av}O?DJ^$wJ zHOp-Vc>b#J+G)rByFq$~2#cLUb!PHs``dRkgvp?|fs$6`aR{i9jl!&4P^Wk21Az&+ zz~sUV8H4B$Rg!OQkbRO>P&cbo%AxET#cDG*xAm%&3Iu0jnQ$JDm~9@vBGAcjOt&qp z%Fn?_A^zYA?i41%{Sg+;BChFBz@A4C;$9*Lmf-(6l}!+O^^@tWTe7P7S$=vd-q9JU z*cDtHXpZm&@01p<$$I=JrnH8r!QJt?^S0~LDOI|YW2ojn5BfOXmUapy)#~Yf-xS)j zTvTlKFBKy7p~+pR6e(7(-zi_CmTIiJt6cmFe`49otRRbw6<-Rvxud2u`jx+HkwiNUzjKl6GO{^NJ!9 z>IoXEM!n?S-y#Jy8*%h8-MF8t z+KT((%KVS$dC2d)4$)Evhp{rPfgi#$XLBuPQcQnTjA2~Zaya3+n3$&IcYGLFlbB

    #3C|^5W$mtlCobtjy~m|C)8Z8$-maRHjqW^ zKxXD&DfsKlx|U5?^YeN5UCK^fFDpMU+YVB0=gE$KW4d-$sQ6tl9Z&_@s+k`4>~f1c zl4SHb*WDo?Q`?lakG%yDxH?nti^6)rKasPMC}muEigTA?s}b8JslW<4C?A&W&vYQ*&@5sUCN7 zu50gl&zh^H)u(p_bx36E@Z|}{axUyh2P6GUc`y|RMrTV!%+Cqi!tlF_mfTG>{6@Zx zi&6Ca*vE{4dRA>H2AjnS-s!{w&g8BRkrI;DE~TpCv0kXnjR&3i_~9DVw8M+0Pfcd1 z#H1tcM2tl1VyiR9LyH}k9_6e&%nVi1#a*!{ChY~3$OJh}IRC`(F%K4cqJo64HNpeL z&g28ae>sBE67@gp&#q?u)dlJu5${(kxAeyl{18p0<3DZayENw7$fz;Fb4`swBu_9| zHfmCTyuXWN{!W|yy8aIB-kb!&s(K9PkApYG-7XE$8a+sU&jFqLs}oQ24 zmP;ZRU}Jh-mhsqkVIO^YP21WeV=~TKZ!RxK=M?@*2VjR>>N?b;_ge{2xO>?U4OXda z+aaWr#eaUMPk2R*DrAglxO;smR$9@5F4+a6Gg^6c1kYXUdI)s*9-3K4@iciHnkYSP zM(F|qD-Ry59TX}3Lal9mnKa)?*tRkcthXnQvvf?ju2@cGiS=9Y&I}OJayc^(MpCtb zozY*(`5-@SZSA}#F0b77o%G~ zCR7G-3AIYi%1BcCb6zKFHB##;k)kLjr3R=K=I;W+rF#yah3(-_Wj= zEa&1NFlNx|bhYyyYjFr~6kK*u-?-o7*WXyvLC z{7qEib2?jFKAl2(9pQ|uf8;4AD>3Kvk^*VGf-Y*l9pkPgr;E_EkuBjHYw1EzB2dNTBbVpuRTOTZOEOv0Qqm%Ge3argy-!?DoZ&4(wQVfp3t+OlC>=H{|)qOxg zamnMvcQW^!S+L?gh4l?u?$TAaMpYfz9ASYUt31OsFL$Pj&yc^0dWF*}<$M-5Xm-Hui;ed){8L&*ZMK zzU7d;hLV^QNWl}cCwp?9{jo4M=f6V|%U(SErUVOG-I z3(YEU`ONXx8PWZyw_gjiowsj4bKI0}YekwSvobb(a`&d);w{Dr?K-N;=$WRZtM|IA zlFE24s+wQV72^RPTqy~8ER+988_IGDdn zA=%4(q1`*kd9?H=fsyyx4K}e~_wZZZJBvsvVBZmN$e**7mZi*F+tHrazjF_|Q7KYe zSv_xuRsU0#X32)>7yXB%#OTQ++XKaH@^|Tv;WkEX4&MWVY{f6tOI6}2k#~gaPwiQM zS+I4h#*_Cs7Bf3lW2%yeHqdpLhO#%Qk{xvo#WVuBL+&w!iS^o9X%_7Dh!1y5ou)H6 zRnAQoeC$T0e8MSc|M<4omg#(h;b^ff6!x3(w=fKq+Pm)9|1`Y|uioISA~|x7!1qwY zKC9lD^gfd^MbW3sHJo4QqlV6c5S6*_1CD}@+o^Z!!vA9IoMJ?Y`Yqq)Y1_7K+wMMX z+qP}nwr$(CZCi7`Oy=e$caoX?P!Bu*R4V&z*IMhhrl9TP>ru>i5+AiBeU`a$1mc*? z#Z@bYljYF+x~u*+w!d*G?A>Tp5)ODI_yLDLkUo2NBo|c1kVhMU?C{K(KS;;*R;wKb zE}o#V+JXhwnWzjgZTD+?1{Z*c4q@Z3)|~6_-Y3ic=?J3mCyNMbbHjXhc1JD2W;EFy zd`s&z_714POd=r^Y6dU#94G^JR+EXHA&+TA_xJp6V!ZEjHZH1cUV-bdobizpWs_D7 z(S1(Po7G+SfzcA$#OS>?dCl;c4JfDqep=%wc0cjPGS_Zly^UK_fTmWODnmfR1Mlvk zz}R(GAQvhrXO>Z19)wSlNG5$#7s z@JQdha+mn)+}WgTu2>uI+*ET=K{SjNjeK%}%M1iq6t`3an~2NzV{UG6rdaiO$f4K;N3$xQEfspG9B23n_OfiWXq*Tw0oUyEYb!J<)3&3^PA zFxK4Ft@rH|Us5t=E~qfOHt>vYL}AI!-yAM}-6LWKce8TU1N3h2B=ECDw025GQL;@+ zY)NkWka_<#h;ORX4wn^PXmsy|CQByqGIWFIK2;S3dP1VHF8(2}L;6wu2OsRqoobDwDq9D_< z>wKw_YFL%R>{6TCJ}C~HJ{Gb)X!|@NJWG={wctoxzL^PjkCcbkUH6H@mzOxQsyy_B zraxe8pnBt5%^`J|Zg+658Ym!_wlOf?JpjwNdhKS-2)nNefmP?AbA+8XoY1w#M`&$}bxre~;10;U&$cw>r#yLeRt;WEpi z(1OH|{>;N?f!kBwYC=&+VSg#0I>qx)J$`=0pLQYZ;5>?y`q*ZXDp_?v^D_yh0Yk5& zb4Y?`K26u7V(gKTJM83FSZfMv*S1FCL4#M-p*$<2F$a@*!LHqgG`qKC4E<`y>4L=g zNdTAf&9y*XFO3}sh6eCPwdbvpG`H8BVHJ@Y1nM=`^Z=YeNZGwU1X<^D2 zWg6eF4MqMI2KOprWJ)4|;~=6;E)%~?CiO8a*Vi}4uegNRDL*hL2NR`rkurmodv79N z<^GmR$$2|IWBNgmeb0`Da9r&@DopeoIX*4!laBU|2y$7COjzs)*#RK=P}Lq&PeRn% zDs&>h5XTCziolBv^CMYXEU?dvwaH`G%BJa_O^wTD0o*4kmJFbC`_{{7t}`^ox{DLj zYhkGLza(T!`zo>YtKrc{h1C!ss4{ zerDj&p?Q76hD}#eH3)y{w6Kdq-51psbMiOhlFLreY6Tjg201TY=!KWb3^)M$S4(rz zEjV|MF4Vco7NYl!&{2q^2-EW#rp{SPrbobs3?i&C)2J7ZQfl5@&V)C8lrWhB0AT;R z*>H(OfZ)z=LPJWX13n<~2uuoAK=YoL-6sG;Gpg0=pcmeN?L>4#B3~Y=5izOn>C8iArHaAM?Ld`9xN1kAe$Wqx&hox%ENnI$s znq5E3+=YvmDCER;SCDb$)`btBLs;(74>gUBhxcW$H6jFk_m3FL5Yhl>j?t}a zmVWd~a~bqmQamwP4v}1Hvrb!oWoawV=HgAF9+l}}@&Y|YZh{;^(kvWb{^QZq5A9Y; z-wQcW+tU$E9jYzt%|+T`4N_1e$aApgJ*|RW3ADW!94V3_{_?#}euU#<95O^q8|7^? zqq@B|_kuFUuS&3YzgX|3meMKw;|JLEQe!>3;>rrNzl=iLzvv?IgPzTVbHI;cn>x2S zM!D5MyTW-Z8ZI5lKCG`xRq2g3^QKm{`3aKSXSxdRA6b^eA=?$fOfa~n`hhitw}B!u ze3H;lIP0rlq*c+?e_?u<_^Q}I{0V39X^~m|JLLNaV{Jvc@SFhN6(_MYd;Y&%6yL0j9)e3 zcR1LbKTW^4v%Z_50zS`n%Av!6f(Dr#$;73J;ChY{8$_mZ8(sS_T=2unrgqjyk?}3u zC&n~7g~{sd^1}zy!Bk@S@bBMU_)P$7l#nsFOR8tENhD3=izs)o#7v2?=B9=c1|OM>-vs8Eml0f+YOSGgXa<0>f9^W0Lgmf|_F^OdNR#HEG+4X*aGQAE8JH;3jE z1W)ATNdm?o7gtW_!z|jx-Z0s8y%DK)r6kSc-t-;<#$uT=0X~TYK)z?d8E`MnM2z#lfZdLV zRsR=1G5h~;pa1g{GjsfxftV4Wm7SU6|9FW1yPcSgo#p=<3>NJQs=Rpp$)<=%Ng+Ni z&o8(p>gvi?u!If_78q^4fWJ+?U0mekN85&v+HKEM#6uJ_pp zo0OgzEXFDRO&2%93>_qLkwT!3UCg=&n*Wdi2mlqtPlULy01+Ra9{>dLcM~Bz1%O;& zYp(^s+Q$!U0W^f*P+quzd*03yoVsRaHx_`FoDG1Qme%9fm7RYFBP2wKfEK_SVg>Ld zsuCg?A0R}W96RLsOAU&a0-PF^1Q4X7v-43Xi{VSWsr%2Xw;vbwB>=sjzMdId8qFS> zkss_3#tS$m9|m~e7+}o%q+VFlV298gJ%FsgpO8K+y4IK>nkG7?UnMNP@+#0-fgY_d zhvoON9p2rk9e|$C9pCwn@UJ9@>pRXLf5G?}@~}v?rHL zPA~M-{OH7_l;os;{Mv!^aOJ`GYJo&^$k%L%-cm6``&Y4og#oYZ==FN+xX^Dxr?7zS z0|D#KM(K5Lf34qIg~7mpt@h=q`@l@#TnRqqT(U4tUQ?qo`7mz)-9QHB;r;-8e|$X} z`5UIuEP(F6}+{93Dw3ff5#-WtRbapL_A!y|r5#f?$$_w2KJ-uqiNsB84$iP?q; z(FQFI7w-St;by0RKj*t{*9q=CpiPUuHTA1h}KO^{_F(?c<0GaO5grU{3&mZKCUkgDCT2IY&4EkoQHmteXG< zP<9tfObP;k`AxK6BbvuEw2tu*EBf~jfbc$PWYf1C5IsPc06#r!FU#)*@&|hKh`_rH z19nvJ@va)=pA*2q1n&$%L6Sfm%Ye<8ilg+ccU94%uolHwT!_2qBh3Uo&*af+)I*p? z#!?n3W!`5$6>1zVXJoC|hEv`v54zQc6?Z6{yZVZ%^~Q}MS#4acbm==@qaG%a`JmS= zX7&9RVT2Aexmc2jhDha=m7dkOz=2a8nb%PeSJ@2%6ou$G*6f&?iUVmHP80h?Tiri( z)2zUvR0E!^H^*M~KB!H|*0}Kni9TXV6^CimJKYHm`M!2~Ar+y=D$0H#ntKzhp5!T# z>JEPD5@#00<5Q7XrW_(RndeJ8tQE`-nJwMLk6YtnESy}hlU$joR$AfO1+XjOF7tb~ zI-}IeWf&U4%1$;r7Dd;mSM;g@BR=UtLQxW~m|EA*TJLD6WYKl-GPCF7H}%1dqZt$z zv7(;=?KhUAQo2brzK_+XX0i5-(8IRvYRS^gRZ~)_XCg3|df@pLuT%5@4rP@@5S_Wl>-KZ9( zUJH-8xmN!EwikKk%kvRBH#3poyvewcs2blhV?etOwXCN5x6pWHIif@)09EUBY@9@a zhBo)D!dn!-T}wzkzMX&gR#0pIlC?e=(fQq2<2As@#Z6VS<9`?}UV0(%;p7R0R6G(= z&UaFnGwztvE&LXwV(XqPeoy8y(ol5#U<%GWHkz{#&oJp+#72V?#xsc{H2*1PZHdy~fZz_>m3h+fG1r_zYxZit{cH zT8K4@la)4GZ%kFUc!gWNsKJ|0+E{zk*(>wFK~=L#eJ;BB+F?<5I2eKdd4M&Pt(O^d zA{~tw7V8`;BppAEbfb1-BA_`ZmW4k$be#e2R*)n1V#Hhy`zIutfQ~&p=S{JY_HBgi zs)QOaZjpkjL5DObE_M9lCL^-{MvyF0<&ShtLkjrrBpC zk{_?Gufa~Y8rZ>xDNzGZi~^rI?tIbFpZMTzPhWI0oF4tvE&S%|GWQp!fbDWfd-_rR z=F=$~fppTIp;e@$PQhD{c}$N1cE>CW<_ho^A2j|!@yi6P`zP;~iKf z+xFuf1dYSYtbJ{5qd>TZp;RzvG+9{RrP;|busLbERg7aFZ2lj5JGtDyN%+v6*?^Wi zgupj(qD@ux^t~M-r|uu!=OMOsHs~(SAN`SeDO?3VTs3QZpq)s&v=__u!Z#K241z*| z;ouTEPfLpFX`Fzg#M+ZB!+EHZF*TO6QH>gcs9naShJNkF$#f{$@sCt_2r-Pir)9HG zExO$}XF*1U_+$e zX0M7Kk;gQg)yvb5j>Ul_vs5h8a?89Yo_N!QTjm!S&1{b#w~tG&!X1#G52?suXbWn` zTL}J5%L?0m>D8s5BZy&L$al+sfWGS(%L}l~qkBHw(f<-J9J3(Bg2{El=O`Y6ezAiX!h z4*JW#gVfL2Z|rzoPZbw(%Y`(5yQTR^IKxn=?W>LF`%!*hj#TwWkY_fxIwXi~N4Oo- zIm;%CX(<@d%?QRA#zGs5*$n616ZV$2H2=L;3DPRYY+WQ_$o35FRnAiSdP8USL`ORW ziK^YJLf+|pG3k11`}r1I@U!S~r(sGAC1KqS!ZqT<1mnSVDN0nxajLkl)%Tp+EJoR! zw|na1n_(}$z&C`zBrXk_U~06GD;n(t8;!uDz;$N{xh@Ae$$8$QeQKatC$;qd zM;C344R==uPs_q5XpcSXG6}g>to$xl;$16$oZ@XTj2l@kDM8BGJ2CrwZwO%QZ!Rhj zNR2F8%(^AeWFEY}l8LrqWU(=6`Vp|=iR`%(*g-1PWYy^5Pe;%vyRdDAEq>nCJ<|zW zfXofvHBJ!!u=@?JN6AjfvC{JX#qW+W7_P{F>GynF`Mg|Ylwd3S5QQ65tEv7%K6>AC zTW#W!G8eLZkv14yI53u*vpb}WPfK0FUX$ax;6q0giT?bel)pVKx ztFdGbb;pdg8U9?CQ9umam7_%|{}!|b)j&6#~UsAWp3cX=o2~*{MX>?%n@h`98*>!qYsx*tB zY<6C{sK$b4IoNa+pXz>?)l~u-C9?si;>v(`H}xlS=^qpjU6vr#I6WN5Daqi~`8n*A zqS)kJgjuV6kAZ5rBp_Wt(a8lV?Tjj6{@PH*TXtH~?Luqfb)D?yZ_f*isx{9{OEJQ} z^DSmL9IPoWu2D-~g>W4Dk@K%(GZC zYpB8>PQ_ujM$&5HLHWq!MOtFybY;wZ;_+JAl9oqD_I1XQKpC*vIT5S#fRL2U=Cj#b zkE)Elx17`U@JCxfxW1l#=3jI}uqGHTD(ahZzKFjSE-mA;@4R**iH8@+hZ?A%?=N`V z@GZ%EQ7f^X$|B_P6qXVBZH}Xt=y+B6Qnhl6Y(u|>H9Vz zZY13e|8y%((Uz5gyfRJKes10)ZRv&iY*#EX|KkN5!UXO6`{1~b<>fJ~7$iOiFVD{4 zhUrf#+DI@qHyNSy37#t!vML%<$zc%~o9a`+x&lbd@sGCm<<0gQypG#Fb{C;;p%G)} zy%pk|jn*7jQ?xph<+#J2dv5`gAI!>ZP6vsu z2#qKv+*j^ztsZ;@43`}}&>Vj~aC(Hmn(e{4r%(kxY^qdcvuKlz9qry( z*mWoa<~J?pfO@H_$;n@{n=3eHAfiflwcNNMnA#bnk6y(ch{pAZj@rNb9h=h_9zT92 zN<4Ihwv5T}+crP#`_6lrlXRtE^hM2@Uk1<{DYzt`)=mutjEgtj2V*h^7pY3qCBook zbK}}%2WSFBzz^+JNm{woO{o~X@(OW^3%FB58emDW-K#PcqEj(Fk4YvwR4q@4sxh#7 zcLu!>*a1Gdz%U#bq6In4leULk$oULM1lRj3!kD&5v{?lk8KEl4IHVk_M*lPlfCn>F z%CxG)hLoeB!ZpSC69)}Q_(Ei8VCr`^sM?tc&nWI%*k}@=_oPvDH9^Fp7hgBrt4phl_L;K|X!C@^ zX34%Lz`Ryj) zU5yPD;tnN`^A(Kcrdv0GU^Jr43`a&L;#tP|Hp(g8sQ9zGGt&fRq%sKe+ISJCm1TbO z@>IIJCn(t0H9cbYT(-Bmy;3~?sJ_;oMY;B*HJ7+xAN)7KR)qD3;Vdy|Srpa!?Ggi@SvHoWMPTBUtgm$f`KT6IvsTQs21GoStQ!|xAvRb=L|dd?j^Sc z)I0df$h-OocYt8%BW@qMcOHaz?w&kD`lyA5w=Y5UgUr#ex?{yF6~}f)h46AcS+TG{ z*lFO04tB&Zz=_f%cfp)Oz&@LJ<}#;P%x{l1UNf*Z?Ot3geK)EDkH;~7(qW5-lq4&0 zO`^zJ6NWftX6}uRtRd>{kWpCR%aQSHiy5@IGQM>N-Gcdb*g`7_ksn8DG6F46kXZ_z z)URUz$P_5?C=;|CCu=DOOw8rtWIpO2YJNNnpdeRE5|WIn4OM3K4#&U9o|6p$|IkcE zhP*4ibAHM%2eopBe8prAOQ6|Pj66`Ri28?KCVHKjwW zI?w_}uFo*zpev=EXb_gA9A{e1vqNQhy(Mljk~*J)UCU5f^6(8xshUr(OQ|0ps>qZ? z{h86&*$(4w;^+jR_$-8*=Z~dG(gWW)L1Q{RHLej5e&&8#X*cVe6moxf05PoZ`Oz_= zhJ$j9et+w5=m#7q9}}Gs$#r%8yMRx-LBho=*yqUHltBBY6nJ~R!ZQ6Fn?Win;3_qY zj#k*1C_jOSa}%h(Zs;^2Z}AY6b<<#D{`~zMMi}jLdCe9M*9ODga&oY02z>^nALUO-nSv4zJ^x=M;u_Vi}N-QxFqZ;y!pa zQ&IJ>oeM^L7%Jh)ikf{hb8i+jC|v zVXwO}Nco{s&Y*DFSo3~L*g>ox1GOk+&_K}8ud9|6reSz@kcP*z{irPYwdB6M-ZXb% z( z-xp}Q#vtkd_fWL$y`#^GJ0C*RtWZhhUEZy!#}-xN>linmyfG_#8?0o7rze}RoTCc9 z&Y4~ytfs{SGgACvOXm?Mb$f5z5sZ{m9<%VFn$Gfj7f>Q|qZ0FAKX~uUnJGQ(m~385 zMwh-J*4^dcj~frBs^sJlpc3VkOyko6$(u{Zc%*l-Wb+U;&ZIOYN8HSzV?i0UPm=7~ zTb?fFvIeV18#_rnt%Ry>B9K-vSQHja8`A_{jZPCau=sUT+@aEtHF4pYz(E_-H94az z?e!4By&PH#RUsmQ-lb+LES~&0IBDw_0mb*2AaNPQpzPF;r z1POO)=NE5Qp0=AuQjVM&v9S_= zjG(?H=IKafooGqNO8(U0rr=ix?iKDmu5P&xFOSFEP@E>K5nV~Sq~$ZP@+2yK@YW+G zGt34qZh+JiQfABj4Sb2&N{e%j3Hjn4P^ME^|;X237u>>$yO#R|NSaG56 zMTT_I*mH4?58sWl;xEM5FEO>ZWS2N8`i+hDrG@q{t4PClhJIc7t zkJCwH@9&=w=bFaKP(jFn)&vWh$bgdoVDsivs`!0s;(-e8l?GcF<)+A5I;T(FF1!|9 zj}HHfhRmE%SAw>_OZXdLrL~k}wo&iZtMwwEB9W8zBT0?Yx#hkc8rN6?FL|TvX(va2 zE8-X7cN3vpkH?g;`EMoXLbWS>1~j4^jNAbqVl4$J(f&*|I+;A!b<|e)tlZPw%75t` z=H8N}XNrF!Gj8OrG;XES;5^|`r4_LiKaDQC<=jM)Y*- zz1ZO3>s!lfoVd#?59NKb#&@O`R_uF;zy_oGD_;kj|IlOPT!1W3b|3EcQ+@FjC~U-BJfcIi+;uCca4FGg$k4ta=_b%>-sSpkj(9^XMvYY-Ij zzZl>|C|jm-Ue#h23q}b#e47=IyoyYvD`Ia+s(7p*k<$!+oXEsb%xdNuhN4{P`Ny5H zNP%plM#!-1;5u+~)UC z6!&96A%Q-A`E}7v?56Z_z!QQT&z5wuai_Tp0L>_EIuTi~w3g|?*#pppu=e8sU)4p8 z$Q#0<(OcI_m-T{&O(&m0hnR+!lX+7BQb1o>8 zsKWWX-f>X0&#s1g@s*h(1>yLW)o%v&C3c`N!qW0O#X0*8S)hB}c(^T<$ZV{rZz4T( zYK~ague$yBrG|UyM(#y+!>Iu;Np!2~h|V@SzNS-^)|1p5vPte}3hS$<9**L@?#12& zkMZ6x%Q~EDo{}>T*CCcES`2}BTomxK9DyQJ=1%vAi>t3i7y*Dp-?~GYX{4L$I&%AMG zl0(T%T_I`WMP5h?V$sb8qJ!F0A(6hKOckG7SItjU^oQG@S0CdWf}PoZu|zHYQs_FB zdV>-Rdr5Vh^ww+W`cPtOo|T%v3`&RdN#VZ~C;M+cZMCJimJY3e3a>%`axYslJ$Z>j zA1!1P4M#hIGbf_3I{_fAR|*CU!N~W6nN+TQ56%%K=Rse$0mo7#k#H3`%&aNi^)VhZ zUXtobl+dOegoOLXWd(V+u+D7C1*MJ--2LR{Z@+(ZES*=x!PEG;c9nutK;;&^&I`?q zrRP5=DsbumPqN{(c$L3bDsX+-Ewu`!PE@9~zoSb*=5h7kvl`B22Ds?v|xH9%9hhiHEkT9vH+Num14qX6v0as~KT;C{^wFnEmi=D6^dZPm!F7{{JG9 zGqN!KH<6r?ftmilNL&A1C1+%0XZhdwy#F_JE9wPQIVtu93`z+opvehl`#)%-R0Kw_Pa+&D8FWyP#>lqWJ0j- zh8nx-Dgb~2MF!RdfQt)_ii?X33MQI$Y#ZUN7Cl%L?d$?9zz_77KF$GDqfN+o0rf_n z3k3o_?`$7pZx6`s4$9#UvY`=}eSIDD#}L9E1w>raEuadJvI;;10{tvRkOy*lGCjzjK0KaeatCfp?0P+l~p#cC`nR@HmPj)U!6*UHcCJY7Q?Bn}~#)?b2}mV!T10CaJkIQ&RwU{22<8o)mm=y?|VAYY|Ss>qmrEjVM> zcJd?ORT==8up$6$T^6ZgAz zzaGCR5FkIB>jM)|2S-+bFM$5mfUNjp`1~@e>C4-j*%*3&EkBcU1M@II&#iY&02~^B z1z~<_wt(=d@&W7oSl?_tZB%RUOeb>HBWw zhJOi>VPXAP#wKv|Ae%t_6@0`(Bm7x^_0I0J1$F?4T+VLn0oHy$K5yBO&OFqG`eJx{ zr+;(kG6Rxw@{@QM`EY*K$S5H1!QSfa8iD_^yRQLa`_f?GJxTTbhP=}O{+j>TmUn=j z?H>Gul>xN)1AzRT14{1re%yVz(wzPBV1V`gn#c$9yJA4({dRwhTybBi&cVg}&Vt{y zPX6|G|58o-ZeINE1{m>Ru3sls3O!p0_sqUr5lSnLM^;qV~e1AMXPp;^E@ z{dhJ5T2<+VaV>!YSknRM0o#kbTNZS21F(ko3jgBk0AwE74uR_>enh_kS}pX(1Nh0D z^oGUa^pSpI{X5VjA0kVJkO|1r!viz|bZf#E-5 z>g|7NPCshDawFerfi$|7eG%Z8(@=&GI$(a|?Hqqe>>WO`?`m1}8-IWWm4JMOWX(v= zGXA!$f8(y`qSE5d9e!Mc91owc1!1mz0sblm_z0N^XYTfJ`jb@==8%o;-;i%QO0jo&1Bm<%d3o;%;Cb zxiZL`j{TP9PqY833I%cq?I!H~rsMppELix>#ztdKWtv0zVEr0QdbP!Xc<|)il6T0$ z;o15bgG_Gwf(16790opsZEA7);)4YFS^la`3k1Hn2mi#DXY>_2eTN3*`PIt=x3~fG z9{zIiLw)DMeoCJ@u{nkMl7V_sA3V7MeIEqeC?Cax=Y*f-!*7zV<#PeQ_!eW7HFL}T z_u00)yIcH3??BqW63=|IEdOlanopqeFv?38|U`1F-ZgR*(eoxSu4@~9PbD-G zh2Qqm|!WgOU7HLatQK-olFTtOon(LN78yaat3C; zf23>D`hpPckSA5HOxs2?SsHbx&wjyBuGMtft97xWo@GwESY_ubI96_4KL_Zu6(U81FAjy1Jx?w{0V z@&I}i8vq*+x9DI;F}jG(Pf7)(7n##dY>Vx8Jo`b_GNhyND82c1*M-5qK=Y(_ksYj& z8%VUHPL;I z`1Tv=bhO3Rk^aTLy;gCgH`OlPpy8RSq@GG<~KaieUU**DpKBqNkCpt;@zqTFRk z>uDdKmx-`N%3Sh^Q5h-T`lbOO$Z!OlJ%H8w)6w13S%mOY~^2OZXD-8c0?kd$fAF1{&!#e zo0>T+@CW(UittG&zWSxkAWok(*z`;XZn;~IXLU&7G-13H!W5xuxL{Dj6El@xZK%w| zyM9iWte73F@Jt6*X!CS56n$1RQV^wpYlm&eo1KY@PbkX?VNmr2McZX&B~mek?7e%n zT@|_6_t_CbSjf%Fl^O=cd4Ri4f;}@TuzL!R<6FJWd-uF4|J{c7aa+u z?#hwJ=uEu73&41fWvo+eSwk~e1nio_fejdHHBMS_xwfWkv(%w@M-8f^Lya{C~ zYensM;Jd*PMQEr;QsZ7pfRa;V1{MYm_0BdQvL{xmqXKY zfj`_?J$z3uEk6`P_ogx-S0pJZzer1#3<{%s7LmuJ2~pb!uN3n$$!3F02h`cZVl?#o za{@Jm_=}~`CScHf@62xM8Xti%e_;%phAi5;!MOQ06Kfb@z{vzoJWrCul+XVbE_Udt zi*2zh3gbG8#0T}2UU#@qF z_vu1<<2-MsQI#ddVw@UNQ@Jzen^vc4^jxNA^j0w6is#)t5#0g3Z8(4O#YS9Fxa;NN zCoO=deiR??z*EfIi_M1#U3yV>`CrQIviZj_dl5u&rxohW=!LvQ?-gdykWP2uTo@HW zw=NzS$DMZ>v)yVe^p&*9^B&w!8THzb-JdZ{?6MTi8e?)_S;jdg>-JjA9~dZ}pks*U zBYqS%Sl6ZE6{gWg(_#(a2@d;iB1e@;wvCQInq<34D2Y-GT=x55+Jh-x1w=$eb~1(e z3K~y`ekaouoACLRteUibUF+GH%VnW#((VL0;arm5OoFoU8Y1;D`))5u>R24PX2*yN z%KPDSC0bH$nYH#8h&nP&JRBSN5s)-%SI!YPA#8cEHd?ONxWpCAl;R$_=m<_hfMqZ} zTXJzw!<$gzO!#qKaozI-re>^?<+`ihZk9j{Rqc>{%5*X$o`+1%=HP*#P;$3vKwcpo zD;100ON$}EwZhBh@%u-X72=+x#qeDl)VQ|bj0}IEtLDg)M5@@cA$f&w$6b4jvq|zkqPPK&Y<(XEmx41iXHsYE1o%t6f zxtD@tBb6&Ckx89*>5D10!{<>hXd4*VuZ(zp{@}ilNE>^pb8!az`RS$ow!UdjTBN9( z%(=iQWtBEfVs@#5tV1a?#879|n+Qy8EqUCNa>{QGQIQxqKMetlC*e$D23x5vSeK(` zfA7M#hwdtkLplB8)XmU~LJ9-_nmA8Ah1xf|9UOsiRzIhv^cGnyFN(0LcM zx=?b!90+@+HGVn)=tNvP8pkk?V)-}lPj8Z=NK=P)Jq547zL>}Etu|F{j^b|0$)>#y zDQ`0tL)v95v*zc?Q%0b6bX1%Qpoj=-@#3*d)p@Y;B}#FiHYyMd_Z(Pg?(RqiSXN{C zX*G9aUYOcDQUk-J<1CssGRc-*>U^7UC1i~OfEb%ht zg2!0majF+r?~ULznaqp?-yS}DM3t3AeVP_pc9H(d$;hMLy`JsO?90<)K56#g%WR7b zk}P%ZN`k@L;ENJ51P!lGVP%iE%5()%dci9zk=41Bo_I0(NR{-y)r>B}(7qJoa_iWA zkfRi#u9vh3@HR=Fv7{u1xcQyBdaWxQTXKPw@yw)}e-v)7cGLQxpbKbYZ;P__4lddh z(9)3D8Kaz$+<>J_d(=fjT#h=*T*=BZw7i&)Se;qYwxnre%#dCvCzF(INdi(5H=#SH z=Fyx(Ju;MTkxOSRNe(9CGyIMn_gRZIBxq+=6}ovv)vXdyS`Zy`A6zk;=?X&k7naFt0t9SxI_cm&c?t&Kt!){C-?_yg`~qWXUV0?!d2k(8%NGtGZOVxHb28qwysF8LP%T2!& z>Gf_}#-zx=dN((C_$rb%TIeIASU6VROyf}F#fM({`W3xa3Yba6SiP{60K$@_9+Aur z4A*9FI=dTA{HwJd(u`TEe=?-PUDot>FjbJ{9d;QXjTB{LeM>we)%=)bwAF$!adK5C zl*9TelyI;CrXdJ8%2)y-?W#2|yvg?BW$?pP^N}@M(5JGaS;+FRM5-o}2q~82~um{>F{oI>3Umc=Z6$g}o3N^`d^gTGAPG z0gY5ZAk|Wfgazz)*VBa-!9rGv!S_=}{C+ZuL08vXZkpc3nGY($ z>^@sBHON7bP*#9%7Lm`@K=D~q|3;=+1)qRQuuZkNLe)>>3NozWc^|mCgYvA;_;lr< z8$7aMm&&ZQcQ65#h|_egG3!7d>=1OQ9oGM-iA!)3Gogqr@$n6iqfo$%oEp^blRAC? zUtgVOuM0~-Q(}`K=p56-&$vgQg?dU(sTOQdF>$bZhb;E-ST1T|)WEt|H^Q2k*hm?R zh*z~kM8A=nZ)^S&D$?X-v7DiQsm#(URwc{7%KvM#dn`7z%IOCgVOtJHAqGzGio93{ zHMR)0iC5|XnQZn_6=7VV88e2E#U5isa4B2rKTq!%!HR~m$U&fZY+GNcD#(qaf}DW(@mk zFGo&L1Aj*TDlP4ub6|e{!%n@=mNHm8%#IBf+8>#?$}k9e+Fp$KfRR{{x44}Yt_G)3 zE9J}6;U^nX&r7U_2j3Mzhgu?VC$!-CR-SX9$yE@J`K0SBtiw+|aB35dQF1!$A{2mc z<_Z2j@)S@>J5nqsyl=6u_09T>XHD)R%p^V~x?^Pr815L(Y0wP24Ay>CQata}iusI# zhA}SV$%>3*(Y#122%TKRE@SUaH)hH)vSr)e>Z;s(zELZ6{zz-Li{JCtL)JN*8y=kB zLl(JdF{F?8ko8>i3a;wc1bkoRjMf1oCjF+rs?!wshW{jD$kQ0*DyzOeCQh;w=9m?a z?r88uX6Y?`xcA!rl@%`O%4eAN%r=~Tw?SuYvfq_a3TU=XsOM$wuh_t%k|ls6qVdo<7$=NFm;@mvEA*2>hA1J_+p`i6|mZrx8gqnVE=1<aS2I~g(L}bY36>ASPx=gAEH<9HvA_O@JVu<0hB~`NenUbyhIxHDWc`$}`pZh3$ z=bsRi4}9{uQeM|J!w2%z6e=f87O=O?cxNTDH%Z&QGq2m|R|~c<&yDj8W`Jul+z^&G_EfN9N3rtm!ZBQ(*v+eP_rp%{sc%6vqoxP_TL;v5okkEe z8)Y8Un2TNyk73fX`n6~Zvynv5j0bA(JzROY6R7)dYk)7hmM)>gcu<9{z+eGg3@)5C!`^z}Oa-6$YFrT*DepQ%MP9=(2-fSze59@>3ORW=lwN*(DvW5LX>49a z=PYtG?CR&3E>viik6$Z4!%J_gnj^wn>tfNhmv|~P)`V#(oV>pfv;OiuQQG9o?(6$p z_WGWBTo&~xXt(qDnQZa2TcL%%w~Y&mIvlXBvul8CMxNhOG$pg<3s|$?3cQ9*_>MQG zA?CAfk&N()sm}tZZ-jTtGWG@s?73$MgQ*3P|4MYdV6`?!DIs|$y!p<>W%OBPU&WIB z`zN_tuM_sb!2viHGXE{uHVn?2wzcFke}#~$LHHL$dWPzQIFYaEQV(~dQZf=pi1 z)W@WnX>6e&#jOeVo>cPW8pU^9{6L(OJh7IWi(J7Qudz>Gn=?bYO!Wkw{x1MSK)k%{~MSp?WC;E@?M%22gM26tQv_Okj0 z)c`eC^98Wcw|DybjH_eP7^P|6{rKt0V4cVOJ-%$9S*CYSY#6*wj(-fDeq!U`n{YXC z44qj_UIkQR^7QcCF8%OGlT zR)-q|jipsQ5k(1Jj_>^@WtG3i_#3#L^80Oo;ZI*T|A^3l!hYqM1}&WEV!>dW@)@U& z(q0L!)AzGyTBw};B7_OEM)lUs^GUxHvy7MP@yM!3e&SgjEfNI(y2J2C{O11Io@3%m zro^u6Q#9_U?uk!Ngd>Wcz06AF{;)59Hbi_+(ftu0pM~<_SEfdIgVFL2VVxd*K@x<} z#U(K-rfZtD+Lyp^|pK3`yDG=rj})T1IUO=^mUBX zfOlSqmA88gxY6&DHX}@5t5UdD^%?jU3l~Sy;=85^NmwgL5u39`g#@6m*aKjBeT~04 z{=^u0jLuTxCSn{7QDPySThS}l+E$Ml{UlK?M;F$Q*S~y^Uq3!MB6G?)KQ6D%*Mnb8 zc5JYvH_TEeJB%%(k}zkIF(mnRBbOQ*#^junMp&bDXCrV2-p+KLY;%9)s3xdzkZN(z z&$`6fYa*N!26PWPAcr6exF(J2_6&h}zQi>XDg2hFGj zCm(=z_{w2SUXsdkiXDYKQ0@*@MkubFY$zQ;HEmM11GoEf%NlZfXEz`{?*l8j>GPGFLTdV$#`3s-imy|y8mBbHY?ArFJd=I3{;Z5E zIQ&}UoU(IfkosFN6`$d0IEO}>Xj$jpLr|C;`+AP-7b29a>)E;^{Oe*1gX0ek>cQY) zOcaTz=D7`3CW3o3L%;GC7S6Qcv1P!W4XuNPJ1qJp$O(&qoK*~wC%0}DWigP2+%Zja zmj`_CzGaPfYsY1qCTbnu6ee|cHq=NR*?{8J5ZaxnpS#~|@hhrCsop$ZC%cR&Gp2wb zRWHd$;ad)ex^|&51>xlRH9hOo-Ig!U)hVWsT6W5!S+SBI=gFxhOgoWZm*u__kF9q+ zQ?WxvQ3rTnZR!;gJtM0q39;7v-w+R>+az)%MQ4p4t4How=`Wa!Yd3}MhO6{-BEALM z(v~#5?8bo3+%#x7RRXhBpEab*gARw&FRhAlaq+w%F(Z!r zr$X%1_ z_&VVp*AM1zyI{u2qEvFjzg|ny(d)lw@Ym2(_Se^w>@*)2)}(uKpCSYU2GXF9$Pox&yHpu!A*P zG@n!iog^iH0}rQ{k9CrBBd}WWBIYE{u=ubp=W;)tGn~R)TGmf12l-6E=QPDpA1%&9 z(fVtT^Lc;djwY7xh6JBUN2uT|$r^o&2#(kKOh+*c=V+io40{oo?dEI}Ew=Bu=3@2_ z>bW1LAN0Vz8GYVw_hC*P;G=lo@*!CRKL&P?iRjknU7>SVdlr)^OnnI0E?J1F%oiH% z#7|M4778xxiR)Jv5o7WW{0t+1Y*R^`)W!g-V}Lw(H@4wmxr;vh`L;9Q1zYbAPP`)u`6Y~sdwf1L zGhHgO+QXgVB2lHP`A5FMjKI09iTc3As>>kA$X<{ac#~4?GPPFi`2T4Y)sStT>cY-Z=1UBML1 z8MC(t44e=B1kbkm+P=6d@=oQT!rX=f-Dp=XMvM}DbOUDP$9^&wy(_B?X@&#uL^R8A zs!p8Uc=Vvaqg0-&XiatUHaE#BHibCRvx&e~lQxpT6Vz+RJSGq*0b=Ahs1LZN+s+qH zQ8_O7g-ipUu+-HSkvn?Bf*+N^>5w`{&#mqCN;1P2Rzoe9dIWrasUf|x*tL)zB#@~& z_zkz+m>Y$nLCg08cXwlu0|J6TG^W64oixLiLEhHQroq}kTp4{KIZFgznsYATtKd%s zlJDu$oK9iy;P4ZUNGv={?RX6FPaInecM zal@0ga9hi{lQ&f8gBdYlFV@48G?FxxRU^vt7P>GMI?(*4>R}R0)TbVjVeHL6SLzrQ za`5gByDv?Yv$B!CCQ|)`;2I}`SRGs&h^&Lx!c-;7rSFR&&&=ZMti?9l1!9i!w~Q<# zwfH2$gBc5Yx+BBk6#E1&?_Jkd(&*F*J81H6Z-U1I@VAemy>crP6{;ChwlH zSVq;9GV-H4p9WmcH%{Ew^cEkCupswNBo7Zk4R<zL|JSH{L6wH?#-2O{We`PA87i7f*~yUR7e)V>rDY`^z>n!?udaZ>>L#% zo0v{7kA?ypmH9&$ST^!>c5u z_tgl5Ab}0FK4-Ly>Oc>)HBT1-5R<9VUT18?@(L#fJORYqUaFazKu<7J8V z@Jl|`=jcDbVG5=AlQ#n+5aF6aOgr4LK*$tvAGTd-`f?508?HVZ@yjp2n2N&bkh$2} zBg19O!N=AN7*^H4xvOwhP*02UzyE2^Ru-ZZ%SYtH?(?m}Q*~oV!Sa+z0)KX>lS5XO z&*Lua5apdsNVF^AQGBIdAuB&SWjL+z$ei*M$c0rtHC4Q7lKb69{(1_Agyi0)?>+M% zmiuHtuaVTo^9MCJwsjT}S#zZ>mD}L9!WNGe_@j=3#EWI5dC)$-J;UhKx8A%1w zF#svICYY2mEqb={6yy-8-z)@=CzyFBacG))K8uOPo}kW!F6Eunn!mXi$dL-2^Dh|L zelB+tr-8AiD8(okHt#WY`iP~^{rx4$k5v=r1NSOf<#CB-q0z15_D53#EHzP9o5-=E z-Eg)=db`GTvepcRc;Kwl$ykAqC4c&kpGa55iryw)3*6ZOwzLS+B0{#0H@j?P1Y9N? z*}KDfG9VV$izMcy(`%|vEf%t_FthXK(j6nu{S+fJfG{%{aAN>iyvXWL}Ihhm(^SD-!B9(oJVvMV98I8dkW-6 z@J>s2j?}XlFZz{B>-UL^{_VQt#`v3!~T5uCVK*c~Un zx5t-R!~HEy{s&DRGKtDgxUH5-qCvoUJKOVyr#j`Ec*(^`cVrT>o@rU@p!;*tAf~B% z7~s!jg{2ww%c+lMhZT4qL^7)p$cKd!pD2^?&r`gvw_t8}x|~Ucq(mm`VXp$yVoGi8 zknQhyZpcuH)mD~2EVV619J+Cf!BWx2PskukrtN=HM97mJqX=l+TJ}r{I|L!$#G36l zYW8_@QllVAlFk>CE__TucE}1y!(Q;PRcMi^VE;4|`QyM(2W#8yB`5$bc2_D^Gc2B+ zihaVw@aVzzt*K5yrh%xf<6~&7KZH3G*o(G|A0R?wK_uZsEFPo-Z)X3FMmyhM^dNQ-~q)S15BH?zRQ z>);J0S1?w@*50UT$v;1hYk&3B+ARQ9(6avSO{hLvYVRf)vG<*_S%SG*=B|rkm?^uG z98{evA$0u(1K~AN_)Q$svL<#g$visk;*hrD#iK3P$TzoIN8jY0jnk@!L|m_5!@L*o z%J1u)c#SJ-0_k6h+LVR)HNwU_S4$_pV%oF=^u4g-$})x1FqeN0O~Tu4eUmxem=O$V zK>~?}d0H(nid>*vp;~TjX;7-0QBll=;(Sm=#}Co@!rs3|QP-!Kor*t&hp}?1;W*7D zL=#Bs>xB!_a)|G7T7HD}Y;3?+-PA{sKw3c`$-=tI{TRBvcunfy?_ZOiC(<^{TZUB7yA@ZNtu~>Mt z55(Gsx%Y2C@ssOBr?}*HWi#t)*;Bg>*_{1CTDXOjx&tkFo&J%+#2)gzIP%1M<@^js zG~#E@Fsw}@xuPjN=?oh9k9J-coF2OlS&KPl2zlLOHp8b@LXLzT-&Jj$QM8|y1R6it zV>&#{m@k!Ef_C0-`xd`>`rM{wssN})ei!AfW69vg+lOCNykqsDV-5f`vZSHMSCAF zd-`6>_qTcKpE?d;6SyFEtHhe$durB8_A-+Y7015ib3(GKVGsk*am+cjaL_l~9p48r zm|8o?*_*0)lQF!EbDdkr+A^&N{b++DUEkCfQKKYfIwkc!c?XfWXLI0)@8`_28!7jhfgwek@jwdap-jo`<#SI6UX;RTd5w8M)m8Wpak+lp5f> z$)JJ9psxkiB-@SQ-Y4dL=7N^U-xXbJSWC+k6w24jz6w^L(8{X@EXz>9b|=3;n55v? zcHMFM0cymnGg)a+PSFzXtxS>H!RZcLQ8IbnXK5pEZF@J)TeYb2p4`)Q=P2AzTXE)V zlWeX9CO;=$L;1|WL*6lXlvkLPqHzaEMG!2K$>vMX*YHkp7gl`y^Ls*Asj zyo%fd?~8G{)gXT-jaP=p2qQ6CYs{^e;*w1rot6mOSbj8>cN0ywf`yA(1_JxGter4x zMZV*TjbN8BRa^<6fb94s&57ycZ5OqFqu4v6`;hL}j0FMTosVV0d6gUc#3bzcF8uBg zoJJf|?HFy=lsYSKn9=fTZLEUv5t#|iK}ojj+rifQWnh&iQ44J0x6VJ_k`>ZjZN-sG z+yB~VC7OD%ozOnO*LqdZeMmr4cL#)vTDx?aWZNZQ9pu1QcV|G_P_`D$cP#cZlGi_% zJ*Sji&8>r<{gyz8-ujKU`<}XEd_3mU;TD}XV@Ju9mH|q5j)P=ix8$> z@HL?$*r>J)^Op1aqvKmLk{8IUJ7f=G2b}{u`-iXK&bhYkU`|yyKn&kJN<+l>`det& ze~L=_UZ5i*tO>OHv>la>%D>~`ua*(DwP&fXYbqHv&U)TTDD>j*y-vuf zaPy@XEp=nC;hK#n|L_e|B$-wG7X2kbHj0kgd-YGw&&hE3WzkKXvhnX`_dYy-?rdVP zi`JmLrzfJAGkx>QDKC)-U^zptdW$2*YM2V^QApYjmNJA;CBBs~bdTUpu6TFd$p!ljr=M!l**QSL}@5 zL1ul8KM}GP&alQYzizfsX?_DQNqYjTnW z3vqfJ&2_G+k;)jyri**;uZ7NypRCs=2xaPuBs%Tml#f}!F60-wg~@OZ7PXn7t5uhY zj?=xY#_NBle5rW}N6Xt0^HFqBr?_@#2n8iykI3JEBvS=;T9WA-0*TXF*~8?!Q{+#m zY)0$?h45CZ_}K)svP(&Y%I5l$Xs;Tygn=0~M@4V1Cs#I8J+YA007A@C%4Sp zu@ju`po}gt8Ei08QD`0F9~zS4~Ds9%ty>NF$H->tmyg)z!77K~AsUjS7y;>D{>C5o)qbJ!jm`_f7_S zxUT^VBrBIMvK#|3wFpq)DXD5?UNs#VvabOBe(JwE_el%uwNlr2`lOL^`0063DjBAz za?k#ak#-T*OkYAeXDYDQ5=|xRLqJ5#w+*x-(qi*p#+}h$y_m|ze*N@4S4{7rz^FW) zkPS;>2vJY0A?DaA%NgIO)-8s-iI7%GV`lXsU;6Uk`exM*PY;<$U`O3xz^{fK6}8*@ zjGZnQ8J6exBc>2-rsrx`UM0`ht=kPl#oqNtTK+zn;q(;?%F7C-#EALZXf6=G*0X_Cbf$>Zl0GAVz%jaQh28 z*SnyDWaCD3!OpE)Hj2cm>p-2o>!a_+LYq&auw2Hvc&odjMy#42k7a8(x-r?pAk0>+ zamms62-I0wL0{HK>}z!w-`NW|do0(EW_6|NX8XFXJgf?iN#6+!q9F#ohOAkF2BMVx`W_v(w5EaQU z(%{|luje7utrz|rp58AlHPVv!#e{pwgqK{B!ZY3CcTmj;?+?nIwQK7i$>bYAsg&7;^E+dr*kXAkQQ?XWD5|q9Odiz zChHhjNT>uq+8H$PB~O|BY!lacTFXW!DV=U~SqaigQ10IA{2@S4uszq9^w7AdD7){g zHA}_ncXN1aV~d>q;NIo#OW?s~YN;0+Ysp&1J=B~9lbh8wms#nK2lG7h7?c{1*#YRz zBqU3LiNpmwPz11F$VV?mk@A^_sr@P_Ucs z&AvShCI_=~hPq{HfIa(<7!MLZs{;P*Ry?X`MGH+;Ns4XES(@8te(zwyJP){PSqpcQpPwr zF{fYZzOY2spjeH|oOH>EyDUfgHjm4(zf?KctK>p;{9q|I0BS1i@RO+c#<&5WwO-OS zd;mE{zkj(5ulYa(uFxHHxXenZZ;5}a;P0$LNYiBjn~ga`kT!*XeoN~y^3#fDw(V}` z%3<5USzXi>59ZDCLB;H&atLr0x5(^?=DcIdKFzX2gxp3oqCqDnh-W^gUMW>kiA*@ktkol@wc)pA zbRh?kjKuq=EerNd$qa725^Ch!vzVqruxXV7HR-=V&c=#g0;ucZo+=ZX-LF)B1Z(4w z)tFK55D{C^#_jm2C-c4)a=(fX3F#V$U5#I480`bf1jewn0YpBkg9bGn45 z+Uzwc^EESqSxO*U$3LiPE2+R@kM}dcaHGLSBmgtLyAn%Q>n(Pc2<3n-V>P2hR1UEB zK>91&+upCjB|fX7f*UBGUW=E$!;ybes;-2HgC=#N;o~Rwet%=mO17Ud`$l99F*amE zAma7m0D>s}0*K_2ojtlNEbbB`8+ z_$Vi)t<|w+RvlWt34h1w9jFU$0-+31QEjt`5aaq_`Zgf*7CX9z?OXa%=gY-PAC;dI zX)BNUzP;PHo%Jqtp5-zX9ED|b67tbVz9WqZ56m^Qn1}C1oOd~2U;oaKTXSP;_6E?iZ^kdQIAuR0X#LBWe*+6w)gV43K|_O|k6j&gk^1Cz3u*!YhR z%-TOVDR(pChga+`6R%XgU{@EC!7_5K5g$)EDc=qXG;0`A1rnga0`6lMv4!A!JFVnf z!Au#EeJN`Vsk_Im18R3=PX`H%hQv0PpzNg<#@Ah93JF<*x@&?NYjaCkAu(VpsS3MN zRDMLg#rpoG8LH**#_!)=pOefP+aL&dw4W-#s>0eFbNHd0WaOkIoZZ*sgnwVbf~%-u zkiw>IzI3m*${_x39}45HUlIWpfe2x}tfKC>JUU{KeD?t2+YFJyS~~Qboaxfe8nPqO z+Fm837|t>;c}xk4sGNfNhkcEQ%^ z&PCbOMy1u~DINHBw9;o`>5Z9@W{TD{bv~xQCDDZhzXb>)}I|f7+;^bO91rSmYLJ5k7p8jk~m78PjD5k zs$y?{%50K9Xn+c22*0r2D&gdE zekEDnaRlj6DZlT`0&5I|RhCWS#nLx`5fn$9j6q~slX^5r-kesngtNEfo=3)9^@9iQ z{c~J9`7aTPc>&&|>(xaog`#>NA3r8l`d!O*$Qz4vHJX?k z({U5Jzs(CZ0qt2d`3%=uL1PwJUiX$B4 zn>KSk1vY&(F50iV6zlH$S=1hZeeNlDTRIZl`8ZKZ6*x{T;4;ns!$6iL{AUWL(2^QgC%yJZ2hDyy)_A2Z25;AD2>D0V20 zHG0}uT7IP$;p@U+LTOB;i)J*IR>J!*uvGI=rhTBadt*X`gW*{-wT<*xbTM%WYlJCq zwGfH9J7LAZI~2v-^_$eK{?Go*&x9&0Tc1~4xN&8_aRqh*w3A;57=77amJ6B_H47GDVL*@I1F7RBA7gnk+EGm_88SKYq612hDSJ269QPk|wfhaRy2xw+lL@MfyAh?4;MBA zCBzUyC65oP+ghO&Ukt?#Naz4VdFzfN=WK!7e*)mE7C&znu}RUtJUMeWTLR9|UpF&9_oIJrR5c`sY|2@I2?|Z+5@M20J-8u-V|8;aN{6^=3+3Mfq$N#YiL?_`;IFm7onShqUrCYvx|{WdkN3*ib>VbHpe&x&1QiaTR@yCPP-6F_{OvfgDey}wDN!}4{X?{)B5 zI19%$<1Us$f1%m)_X=Ow;rI5zhi0o6r@4dqZS04J@!D>PLaHGr?k9xjCT<3-eQB+t z=8)n9VoYReHYQs$$h3WIW%7B{3Yu5_wgh9lQ%uKZkYB?(8OI*EoUpTDoi4X7y;b*+ zu)Fm`zZs^SesSIPEX8M~m;Ua81_)l?8(uRNzN2fECC8BnpMsx;iJtL*6jI*?I`;kQ zfUGybiSd5U+^Gpc5O|WIY~_|~LJ)k#C8woUDA@`+C#+u$3^LI;*}N?D>DgE^FV^lQ z6Y?j~hiN~74K*`6@;%k>opC8M53ooXY=ZDN{JPyx@wTInlM~?319JER(9n z7RpCjlhV92#kMiS6dUcE>;vPdb&#_INiUBR$wWM6iha5(X=6K?zjui^6yd!zb3BSO zBbJhK5^`!freM{2X-!BAiX-m!h%Se?R+yR1`pCyRs=1*Ze!)txMid-n$-&)XSdTmH zI!@6jq;!c-+vu&N?D0A2>?B`L(p;R@>Fi{=wMvAYPcg+BNN?c#`jayA*ju~0U!tS; zfLF7)u=Q9H{wYv??$(|(@Qel352tQJUO!NFJhEZK^w_IAmi{K%khfZ_9L92=sZ!WK!fA|^lP2k! zJQ8g^@^*UAAMAkKU4t*9)(1%g?~uC))V5&01`^8Wz7_Xp7g>oSHbjr$pkBe+kxxlq5NH#|sz5ldFN(yi;#6&C~K=ighEo_Gk%e5UWebtI3~3(yY4 zLfu$$lQ<%q|M~v}dKZQ0fze_P3dbRB)u}`F8F;Hmc8Av_TyuN)9Q5!Y2!NA5ePGiZ z(tzt9sirITdQbKY9O;DQ=<5Y~GHHt`u*N3a7uGClh2m>t}QAXF5~EOg2Q_sj~JkXh$@ zp^1MzC=8^vRWxKnb2kAF5iyei_lYJ5G}VVx%Fk|CfSgXKd2mbpR!_u14*e*k^_Rtp z#Jl-hXwSVg)^W+0sCZvWQxXx(;_G4V4?y&_Ju4LbP_$}S1o>ssa4$g;h~9a#6d(=U zDW|8=H{H#rW_)r>W|vG)H1ktZ_|fTOvN@}CjLCJDL?XK}(*ByaN{~BH1!978K_cIN zl(RQ0dWA*L*U`paZ{0K&w0LqmrZN6Mo#r73XuX!B&E2h8TA${7-OJuIaqhxhB4{{E zXy33BV!>TlSULPn0S-^G9sd1Yxgw~imz841uRADrv?MTB)Sh-{=Haz{a7Txm0^m6= zTKU}mai$>y3UnBCr-&EANF!NDn=+#qO=j27aG1Rg2Mk%F4$(Q~_PPgXF;Ii z0E3OS`Sz2+rP-ehU2RR}@K!tzno%}EJp%_KEPIi0f2AG0WN!UWb_hO@6^UG0l5<+* zB|P|0{WqT)F(0YK|A)mtn5A|f7g18(fU9sOH*vQR6CoaQu^}e{| zFVwcit1*3xU%NUdGCr&M59Z#ejG$wt&!|~iScy*X`hna zdO&Ad1dcGFoSAT(K}s~IHWNvt^p&`^|T===~DTg5V5i#Ob5`w49cV%wR5 zm5OYu9A#P#>x3K@pmRFKC1*qM@_>x;QuARk`!@6OqEEIwBL0gBen1!kEPQ zE!^-)-=WU49xR=#_6Gmj{Y}5<#3UoJby@fA;wDV4S@RY2_gbx1Il76U`_EzVLgIWn zgdcZ8bNdHoD(wyNN7qUJ$B29D*aM!xGbI;QA&q5iuO#m?Q^D2JNxO=`o~|F`n5o1s zrDHRd3ivr7V!{mCC1rK4P(tJ>xM7v~Fu}4OJ;{WlK)kIZJ+U{UADZeU!mAY| ztHsb7BeV-g2Jekc0a!-UY#K~zBVK-H{%)i}g@h&s0|i^)X8uTsI4cFukG9wD=gHh3 zFM94kzVV9{{C1IQ`&JN+D|{CG`%%;Tz_Clj>#79xH2U4uOCxQE*vfC(q#JWlkU-?+ zd*}pVzKb_nC>tB*>s>FQNSQ5NN@tWcG2Lmjp-q>;Xu|1a12%nvGhHfG;xG40D&8AP zq;0fB9U$G8_sW);U-^sZGo_uV^E5W~FQa3Pf1W7)D>NWUloeSzyik+OTY%VS%085iS zk?;ILkojtan-S}NrH)VX63}NSg|T}wqc6NFQ+Z8i(iEf9@_b4^@X<v^lm8u-=RmBFX6>?4{2mM86!=x+#9DWe_r&hK$o3t-;7Qrj>>f9 zODQeBk6`-H=FzweD)(?YbubO=0>3Qa!l3zstw$bJ6o@pqR{|c2*?K$t5PLTzUy-od zva9<{vk^MPcxgW$UWUGC58ZORR@Y5Fj>(W7t~l#c9XA%Z5x`q&^6U5we^qC>Qb>1@ zavv;*s}@8c%Pd8D*vPPc@h+t%fR+PUv@@GWDqyg-1k$IOq~)>`Q+v+v0EqnhnsXwX z91hfkx|7(WS@*a5RI+f>4cMsK*#T7!!clayJa>=<(P-HzQKQJ8;C#mZQ2XbSpy_Iq zF>Y3;P2ozY8AQ=7A2k41Ju%M!)45M!zB`nULM)Ub>%~Y@uk^P=5ryD}0qe$Z+>`<# zJA3ypgTe3b?m(AJkC-i!P^$$HC1l?35Mhel`Z^C|R@5ga4?w60gofywYCjZpOk6pj ztC8oS#`A?nEJN!V_PmZ2Dh1B|ktj?E2^T0q?UQ0$(O!2S78es4`wK7%4lq9pKmy`T~k7gZzh=s7w}L1ZHI^>W3ds?684<&9HJ0t9%sM52yVj= znh_b!xv}uA6a25k!V*PgHAfnyADj)#M^iOo&3Z}C=2E$zGB;T@n1{Xi4}+(hUn69u zn`x|rLAyabAk*Cp#6m{>@&WRofLxmt4U9~)qqlqzIIy%&2N+k-zM(68%I6h2^x~BX z8Dq)8fuA!f80?AKBg`TA`2t}Y916iFB`?nFR{Y>LTB0=p5Il_3P>t>#5husV=@)x- zQMW%ROFhfDKSgBa(oh05fy}gjVx4x7I>%i{2k`4Az%1C~&_G6hm81)dOyI30HW1$o zxtrP`ilPF$_)1JlvuwtFI~~;pCM=68uHAg$p!PW5+Q}mEbG?ShLea@Vt{qs$WSaK+ zB;iU8ff-OgbLveT2&UXr`D)a`48b^=1%I?Q`%6M`e^lxw&}Km2V8HY;nHMdK;0WTr zSx7_`cWv)e<^t~89yj2dDxH$--=_H$s{m?B0MDM_f*B!Vq_qY02?#W_8i%VCFVI=J z6>>jycLqTNDr~QC%j`JUUWz|1YuU#V3>mcn${;6J5W+y}EIDG%#$Z0oCpty~bEUPe zJC|o46zV_Fklj_?3}#UDfsIe#hgW?SmT3s1wkMIdRk{}X7VH7LvT`ZOpObI2_MHu4 zSBvPMY};_Z?Oy&_AO_#>72BwTglt{J@=V|B)_57c1(dByEvm{HE;1bCBggXr+=WN( z>?8Ie=-Bf2HzWXOs}Lj5Z`SafOQ@&Imz;b;NG%BCB>ZL4zwxkz9FJt6y%x0WkEWxQ zQwoK2U%)vb>J^CtR5Htd@2#N+;M_o-o=`mYI?koYk@-m!Gj=7Da&PEt5`r9mv~Xe| zZQ=q}9$5QpMGn=*fDrx4;5y)SOx15~hS$V1Wf2*5i7l7x8zhowj9RsUR@v^h5uYe@ zv0;wAWTbh%8Om}bqeu0K*=HW%Uwa;Snw=M8?&Y@ubuJ={GZU$3kN&MSye^zTU(}#- z8Y%Wa?9WnHNdu=Qeda^E5zlfocsaZU4)%&v{RB<-DlP<&-B{1>W5fYVNh9#&J<>+c{&x|6tlEc%|C<1p`i*$B zz&f|j+^cakKB{icXI{;SCf*rmk)Z>d0Oh;jY9pgJ)ZdECGtq}>b38*Odx9rT*&XG1CC2-RBjCNX640k|A&d=r*3<+$Mg`G`+j_{@vJtoOE zKQ42RAb(7(AP#|5nk#X0gIH+Q=_Cs{;;+(ZSr9Yd99!g2?EiYGM#IM2u~?iLv$ih- zkaneiiqq^fLmVDrg|*|8>~x7#RiGY5Woe0^O>}d4r?N}oMkVki{4ps0IZTN;{-nRO zjK@9OFALzseF-Eo^HU>Mc5sts!yT>sF4*LDf@IrY-6yP8olfv#nCgn!4G49s+@<*O zyiP%Lw6HXVQ4=%aP|307z`LHSCz567c)P8k&dqk(m&bNjCi`(Fy)}MG)2UM4+AJ!w zxqDQAUxaE3|MC|GB3rN!hBPZ@HLRLr>0;t2rnWKfCC!tAuK$;^fCE1;k%;d_%ZOUQ z957AfElKJU)fa@CSYc>EZ7I1MX$A!&+Y163M)m7(AfAa9^02b{0aIB*ZT^v1fVF!@ z<5v_Jb!%dld-j+?rMs>U-ZXhF z-9qK`+1m1%RJ%KGXu4K${SrdSTJ`7TmtE|RI5)x1o#;)(TyEvLl#7txR9-coDKguK zHz=$y^FGSeh_>Yiq4VF80#e+LAw>wd9WLWR@*TH_-1p{hL;N-rSom^l56DOQH-^{l zFm*%=X3JhGWAx4{Ew)?3hy=uLgf@virE$&GHb$es;3|ysmzia)u=@1Hr?i43 zs#3-NckBNQ5&L>i8+dC_%VD@OhpWBq zia@#)SzGk2$@$VHqmv!<(;|5r(_~4y2sJBlzx_6CYl-C^$vt5Y5aU=P|MG`I{6$a@ zRYnyMtSzjEeA7+=rKoa4>y6e-8b3F*a(HqLuX*ivt=(Lco)at+he=Oe1A^7$qv)>X z4vqt@9txA5u$x0cwbkn%DF2v}_$*uCHliAL9YkiZ+AQzAs)Lki3RYOa-gHVcfUpgA z53G!mqB-P!W80hR2kfcyh&6sHbD0K4)6?0v8vrqLiZ1D8ps&{Z*fI8I(aP3yZp}94 z*d3QD)T?1|`IVg#j|#gZ!xIcpWb2W#HfgJSm-eH5=+|_yD+yH-QxB~FekCQqi)msV zo=`X_ki(}=S*}-&{zr@!1*Zwynv@WxY5&yA^)Jt_Y@_x=>W%0+#XPba9z1mNQUG-U zFe$D?VPElSDO@%&og0ZYPs5g6LR0SFY#K9H$F~0{8w*Ub4Ee7II7rRy)!~>j*)<*T zTZgI;fph`1WW`VI_!hGwN*(wLCHMQa0T5S3`+Ieo8t0juLeBjq9sWa}azUz7dR?yI zK`RjAgeDXHjTW+(w>Vm6%739J^qbPPtZ2j6%QBoUix&?IE&P{cwg+A3Jl31|0Eu-= zDY=0?8%{3Jt<=;eQ``D(2&v`gb<79Tt!KPsJxD1oj&3XGZE6XayC^l5vE>CeX z2Utq7f!|Tx;s}o`{Y^5-25ZK;HzydYKHN9tx_?&u1f#=|JUgl0MX#Zqhi~4_W$(AU zaXfE(Bo>{s`7CB{prc$&g#$<-@C!G!s^KI^Sd-SO%jlWD+(Dp`802U?eUK#!|J+-j zSYf6mw0>52Ia|yj)3#I(kTb!0ZL*=Q`NA3An3v{cqJ`CgY#jeCC+k9wP0l&b?=z84 zck9c>yZ6>*k3edb3a#wmYW=@Y7T|ox$b)~GZzKxKOrn^4Nl3F3oA>(mV)X1lr6R3~nHd{RxY zVGVB%0Ttf~f2@C6nEUGI9&8@&p#&hdv)~CJGuJ$vl!+n+XV+yn8wHF;5DZPS3$(T} z^8lx_(YmXBl9Et3<7u5rUreZjMs>_{SA*1>j^t4 zC^dc|6qSS-!mUHAN=VP~bJohO4)hvDEEaf&vBU`Y-96>)EpD1lCC)T6-kGp@*d;yY zhk>h(u8vSV#C&Vr2l*Un)%^zW#H>1yGx^Sh^RXRUv~(5v+kG3qO@sh{WH7(j)oF z6uFyZZS{NN@|b!XYr$7TziZ>GvhC=S#npHevP)2eugSQ#r>_9E##E7oO}o6i-<^J9 zZ4LNE@30ALH@IK+$gexO00m<#t9Jhj@oA36FUdDwF=FUEA_9|DU+R79nV0`ePdc_z zl}F_V2FJs;AckTqVBJ1{N|)oP74YNAti#;v|M!0gn%J#cM7wI2NaOL|%TzTgfLBZy zS!s`B_k)tsr9?7<3B-w0xl`k;XbhaEBw5DYi-Y~c(Mh}I=pc7X9I%#ElDr(gvVmI1 z+(p|302HXEd)+aZz45tgc-|=$AQ(!2hX?)up|W2q!6DBI1}p^8iP(#7vBI|WbfH?t z;W$VH!1@apyQz@D%YsZL5L{ZL00X2H?FoVHBlT30p_Y@N^Fm*XAk<(98ziUf&< zNi5i1Ud65KV9>rqTk2~orH%nAEo69lw}lQ4mJ9g+A5_B)BoS4nZDR9;^+3JfC%^2$ zqt_oLeNI{yWtoZHXf#U>%g#`ezMWoN#n6`nxM9z1Pf>u>pL64*y_1e=_`d$UIbGrF zg*gP{GO)mtgSQV};bns=v&b)_qz?>c=ardI zj!f%GBaF7EXc6CL_J1Jy*Zbf5+F80=L~x(|0?qc zBPw~3zcLKjJ~5O$m}zUO1T{io`ea4u;G}qi9%^8rlIxONT1Ytp31^1p4j2);PfzxI ztRLv9rB@Lz5Go1$i|Eo5J8Q$<1+T)1%h#Df)o?72?HGH97AQ@g_W=+vFF8pbftLXS z>qH$0lj?0R8}&H$8cv?ut+JH8V{@im)UF%bwr$(#*tTsOcha$Kc5K_Wla6iMT)kG+ zyK8-Ts`lR3hwB&2syW9v#yAfusR~7}FSZF7$$-ohQYUq*fv}F#(V+U*^B?2Phzz&? zNN#5NkK|@%R&JL65gPx~8?!S1x89hAgOlk0eE;vk%`xtfib)sC3?RxPnDGb+BspZN z!rnLCGO)x#0c1!b@N$Y^zksc1BvWd_N%VN2!r7>mi#*Du6J`jveDWUhTyCbiAEpm| zGz?}tbD!j1?Xj{VD%$dM_A)Ke)X_*FQb8-Q(oZu(_GAs1P6~zYoGk#(@9+`G&&G z55!W$jQRZm^13v)EsPbM#fxEZlt-!vL;)2%HZc+Y2@P36w1))-7YTwRRDbPA)%`m$qMgJ%Lv-vD_lY9cIDWzgJcPUt25LqV z@}a%-!v9bM6Cvfpf`o$e3~nJ&_4PI${B>OEHT^tf4j0O})nTwq z)|l(v`hmkNvahfzsigUYyzP~(s5liOl2_G*prT;_hxj*dwJ(JIN&G0-_zC+XxcXxm z^C!I52lR)x5McrxKKTn4g&x224f%nEcW?51tdmn zcnes&?Syz30!aJbCB2*cKF~N5l(Eh?v`pLKrDPz74>o3+BLe!TLy>|B586#z1Sfb6 zTM>%Kf{7Up1G>8v39PY%+kN3Pvj-Lq?NtMiLHSb<9TMINR`h)`VSOHd83Ff%01gFh z5W*k_i~=H<*)E^?<2+sj@YKrcz{43{XyG2{b@u`? z?rSKOwo=UXdhiH)b(TiF9wmVBwF6UfidFIoM^ok0wvQzw#{Y;S^JX$S-8CTwh zsaQFo)sur{PuJ~-Rs=;^xXTBh)R zL9PfOZVi>!6rZv94WnaD9mcJ`p^r%W+7Q>Rz~Jf-r6nMWkZpNaF3Gu?4BLILn6rx6 zF-rfUE%9Z!I+|#g)becS{IfK1j{Qp1$(!wt%Q>RtUHy*l@vtU?-CX!Gi-lQaLh9;e zUq?fQcU$UsWlSLd?m{i^Y<1OGl(G{Jq2!dIXr+wXg?Ql#PRzX)?2L>E-q7YiB(2>D z?2WAa7@3^&W^u?cPSSy3ruMR?87}4yc}a?Y57b{ND_dm{ygCL@haUCpNP|Q5#saTm z_kUO;BiniEqE77EFGIV#d=OKBi%#OjE_T&i6|_cAqDxQ7=6H{f>IrGi3o48MOtA1- zm)5OVTqfOEVW+;z{{m~YQAM*7@sloBBipM(S}0C7tCZ(-RatOfc%!-~z4w@@4%fMM z+$k)9LB$yw@6Pp>5}w{HGV%UdR|uOWji#n=O^d3Hqipdc^bh2@zph&BDLKDW@h}P}Nb|H6aZj(A zFt$0yIi!?oPgTQP<8G{oER-(=7XvQ;H1m5z4 zX>$PFsWnkX#wrI_0B5W(Lz-cw%1gW2_kEdW`4)n1I)*1D_fugB<+9!zT6$J5;W;a? zNif$mN$8DVc~Xa#SzajfGbZ0ptZ;^&Nn6}20&>^ODJ`4w2#(IP>wiJh?{NPb>QdU| z(gqG(DmBBBU4Jw!yZGz!9@<1T$n<(^#Wt-hW2|^%EL5(n$`M8dW#pI}+e|$reB{%H$xuATJ>~ft z#}&aW<8tl_^&Fkkdg{ct`*6rJT-NFH9@i?r0S7FfcF(~a(mYx0Y&O))L#q;Bt~Gk+ zeI+)1n5r^6DpyxGd5KzwbJ3UqPQ-<->;5g(9x)GkO7#CrCIOoNjxP$g^e5}O8V%bE z^<^QCx4PUn?^rN-k|u0Zu+hfdijpw9G)*aJ=N>i<#L?Lh+75D1Ak=MU=K0MWAludf{`n(U7cr4lW5{vA@dsq`XlyeS z{1co|H>DGiX9iCG!WTz)c9SX278o+q9l4F#3)H9Vw zu}gVjNud<`NMVBalc;Xzno8*}UPzqf$&=Cn@Mo>AIe8m@6ZW`dDSBn}HYTCv(6r&V zrlxnBAH(xSeCy21THMQZT6+V%Sy$E828w)*Q24*{j%h}d zZnpj`XSN_t-J~Y^y>#)Q?dgGSQSwi7!yJ4s!DSbDoRO8fG|l4tF5SPMQo%PV(fwG{ z!vF9{f+==r(Tr-iHpDR5c`hZOW=NTLl-ed+JXak+TMd!4KvNOCSjG&7Y(i(D^s@m} z&_rV^$pu%-n;l7RIy^y|7R_#X{zxN4KbXuzI<}m^S2!lhdj;?Nl2zfULQB6I$iikX zvTmRuxpo%znW*EJ*g%^Qq4khF52<7(^ROKpdd+=y+jq}p;6%2P`Y&F z!q}4?RQT>tRS{p2+=!QOe9U`sTejo6yTl|><=Ia`*OgMf{~MX*%$8)OP^jxAcNbvx zbWHonobza~_Agi%kUujkEhiAZs5f&R@izYmTay5dIvoVk7VB~8W9(j z9yOb1gl)C;nx)Aj0r5+Hmj2t2Qm-IFP#b!2wpl*vy8lM)Rm(xGFhM*#R3I#H=3Bh2 zFZ34*2{$F@;=Lh{A)2*2L7UOX>!saig7inohs-Dv?P$3IiPQXps=9>xyJf2ypSrj1 z>WJ4_cR<@3+4PC0vVVL?D2R1?W5M%MmpmW;+=ldPj zPI+~9gxGs#cL{uO7yQi?mULEVTqRH2&CWuBU9q~RS_O;iEwhJt9gn;CMDh`24wHKk zd!N)kQZK)HPj&l8uvLT96jYhc<$p3zN*g<7u*Yyxw&`@YgZdrfru*`V&H8G3d2QQp z&+YXn9D*4oQt$c})S(=7nU=emAc;1cKb0HTYgi2JjO2V&Zq00e{p%7&PRrumXoNt& zhq9*bU2oXHUMUV`N4J-c{#sMCRlsaD?HiX*R_YQoJj6FLXHw^iocb`^sE8}}T|c>K z^GJ8wW(ML4K8Tn1AKBodNc2W2ICP>m)LIvfPs#y5;W)km-!d$^dSX0E`yswwB^Ps#>cXbs5R`SB_#in`zXq=YOf zShxs)K$0`9Cq}U$*5#WHo4uPb@(X;{x}C_F0xzShYMwA4*ltsH*`xjnb_+AEWqmRq zbt9h68;`tYYqxKOQk7{;$*Wt#kHmCTz1;aCcdC0-J${R}mO7+t=_m%1xSQa4wB7}+ zzeDa(qMUn?Y$uP(`O{F*Vp^TWy=$`{p}^(i`Eg$v_37Z%sMraT9S;nW^>Am^g7A>< z7Yl280u@VBWKTHZ3AB{AtQT(=U@w+B*wTyT#;9UZAYWPwTW>3l$Jt`%i-=>vikqXF zdJ~sOSTHB2hs@GiZg5aZ$1|H!XBU_5ZICDR13&HoL=GrHfB{w9I1uDsD$VHT-@M&R$wPXhj1+91GBWSd_fsm!G?1Aui3eGO=TWC zUfRtaT`zaKwXjV#4pvZD|2BEq!Ym^D<+ZzPavn^a%UF@0bCD&}n-~V3**dZedtbDo zM5VyED%AM6@EuA7FRONo1)G-B)r~51`t|$OzZ}S_MgSw}4C+_MTmLn!P(IwCb4Hole#+_W*!!R&c*Cw2pNNg8G9DRcVL2$sl!04%KG9w zixd40K>83bKA1t&;8MJ;9w{97Bvj9Tz?Jj3W`CkdF{mVfXcE-9#;%ewAt!bhi=9Zt zQm91Eh-06J4V+2*bR#~Gi15jW7*2*S+FsJp;3-W74U-L*Wg_1fYF3oc1RrZXSxcdM zgo!q>$?+InMx2joc@R^LizuE5p6%*m05D5H_n9-x+|j`UBYq;H|J)0aUa9>&a^3gl zbL1~zOMH9M)HEnJ5Y4{Ui3559HV?nFZ_N!#iT*x953FFE&Rw@@Wy;x;&9csaz0f0z zHGP>}4#RMmQ{mW-3TGMRo>fM%sP|7vo1oX#ddzA@XJYL-kj`gvSrL z+5LyltvEwFP@U)55fo!&{NOPY%WhY-lC|~mmkfO@_%e6t!&sACU&{4_k2F-wg2;JC z0aJMl0d-a;{h(jZ0-6DY@C_qquQ`YZB4cw*`jT94$IhZ4d2|ebNvu^-xd3bq?ajZ8 zPc7-St8z=mHIOkrvuDD3#^I?@z$nVgTV6XFj;&MyrjBoD!4LVOsxCkP$J@8N1?!oL z6~h}?vma~YRdvO2uC={^**s20vk$gWwunDB{(atlbi1rTnr0}JapN@V*3!54Htrms zx3;?&O}LPcs#o44LX~FCs`thBPxZ5J+nPCVPPv%*Qa{LN{zX`z%3^Ty*sodQOs2M5 zZtkPxKYp%v!>uYP*6fX2d=4k|+k3~?GM(4Jx>HV+jcrh-96O&SHD|GzJ976f@$aO$ zFrF#^XUQ8Ys?zJT?xzqVrAOG~Xv0E(+y^%H5A-2P%+tez7nOX1C{eXNP*fDlRvbza zOiTsmkBQI8M4O_Q>_`IJEeI+N?Q*%7@B3)<*7@8*IjN=nt+||2E-Wc|&I;uv)E=2( zhAQr6O7Z^E7dzUU`^vv$@K1;D(J5DI6RLt(ozQmMXJuz5p#wu|4{7mL6={7|!}wF$ zOGe`B>bjqH)57xA^#z2VCvtesH#{=;dRUybI)Ye2A*a4vbvLv#h>yV4ETUrs*?&Js zVBo!Sx)(`$JXgkaxCjHhyc4CH*g4(fXx}<}^y-bIJs0_@l$WxycAUOcOtZX*f2uS;_&xQOq(MAx zSnPU=wEr}^(d{bQGHtguPP^)}#gI}!EwE@ZvtH5c&{CZl94i0Ql`L*nNTCQO^tAg} z*tCvYfiO`rpYJ%M0eE53TE<84M!sx8neS~tI2z|itFF#CejZ1YLCQSzb6~EbNq4)? zE{G0aUp=c)9_Rcf?BCxJ7*X#_syp}e7B-4f{_@?ZH5I9)RJ8MS3av2gA#h^ZW1!?* z!H)8z+9DLGD3r13Tm5CQ-QqwjeS?KtpailL$3_#d2gF+tY5XL4#2NU>+UAoEo2ZWX%=kbCKB$6p|?HO;XoCJ2O zI{Mr_I9s~@M&LIcFLa#0=DA`gdEs%6B1XIixuWgHCx@oyc~77)v50ft0$&+`|M-Y1 ztzk?(r&bQAtP6>aQWcRG7c+HMCZsZk=V;7j45bLcqu;>c&~*Ls?s5vUNS!#8A&t=% z(@vFV&1bL$pMH)4!AcavYwfFq{3GEO0ybg3JZc*=(UVR26%m9(sm^U+wqOF%zCau% znJ(4`Ep1WLusuAc6H&0x--PkCHDw>XW0eq;lZE#Pf=j!^$?ggDRi2N!X6LKH1|cNCy7^SR-MikF zfzz&x@8hiFrUEKOS)=fXKA}eE)>+1uN1+-caTE9mW?soZ%QSz^!QzNn6~uM}7=_vWV)nAC5ksvbi*N!q7Iuk97 z4VL1ces*Wp-71*^BWb?sMO6oQ8d+$>tyq^uJ$)}j`^v#YL9@`8WODJGr0p2`lXQB` zT*tf-t`lNeB>4*GEnFZ`eDE(GC;G;jS2d!2zbat)zH^@nwn1r)BKziF(Q7;=M~kYs z7V@VgCL$hN`LAI`%9Dj`Y*5CXL0)Z3b>sqElGP!hr*{>ct*>YSUwdAiUkc4V7g)q- zShu#Tf4XD7lD~mFV`!-wE4&q}S_2M-aoP13&sO%9?t1FY=vh7ocl2`=>V?uft0oDr z%R($NRkDZB?^d~}LEIr8arcDGX*Txoimj{mkaQ4D#v$<9bt2&)Oq?; zKmwgM7K~AGa0AL&F8MIH!RGaJ<~@oT&4nS)MDd~rpG@FNQ*+4QxBV}>!K!EiYOO>m zS7{_{Wy@{Co-Ar!&k#09$FQu#&Ob0gzTmUbQahgOQMiQd@pC7}DN>qllfLt68Q(^O z$*bePZkBZzIt#b1#+RTp>OO>LbPR)i-;U@*H$PN`l@17j8<@M@38O9IIR6%2;OTn^ zKUxsw-K=e$kmpw`+AO$kuRX9ZwWEAWMpyQD5PN7?oWlzb|6@*o36}YYZ*GyE@hXtQ z&cTY~RE6-2CYci3^kAJXH_>UJM*f@lZMhCQl=)$Pj+fa#UOmZ+Yj#6wBIXnv?@tvY zu^uGN)!}NjZs~39H9$G;S*wGqr;&sX+t8nUV#z=x6ma+YU}SG6L{!%3{}zTp1od!l zw4ZS=pWII^mHkH!Fqx!VM3wY;jdGmgp--l5fj4ZT-{9rH(V-a_?;xFIvbEoUa`n|I!r{{@pb! zTQ3&K$fp}_gY>0d>t|V^*tb|tvVUj?&k|iGa&5^Bv+4EM2IGaxtVcma`w_TXV=WwI zace7r>O&$pxln^==VmK9D)92}(^+^1HeVyF^zYs+BN63%6&kIymSs0xHr;FsWaVQT?Hl3{7%xJ>14BDFN^NsCCnpL~-mYls#5Z1P69dkSqz&cwH7G#m z;IIA)y+uk0QVELe6XklW1BF^g(^@lf;1UaJ^1Y330hcF)@@qvPLrH@drh&9Ci4O_m z>GKu?<){lc@k(CeSmAOyZR%bc!6UJ)Z?whC&~)BQiyCnh9czdp6elFjD5Aq^B&m;m z6h3`{`tk_du5OvLO`@I(nGeRllnR;RgPe<=Fg#^o^sZMCgM?SC(;@_Q)GoeFHYcdQ z-C<{fC~To|UeYB?JN|>7-96`pz7eu7u#HW1J%s(ohvf9X2cSu$*clm{#W64@vBipI zZEl|6x$;HmIGO;6GRV{=C2j`hU2<1$d1=!uIi)*K>*RjA2|F=48aw38*6 zO$ps6-e0|OI#EdXyp`b9qWVuka&NvMtVR15jJqJD+0$hr=>BB$|+s|Qw!$uHn8RO_q?gIaMq ze3lLD4n~*@B9>-Mh)3pOqZbD0AU;uH2yIkWRKYhXgijVGNi>|)E9tk~OP!S*@IF!x zb6tX_&ynei0VNSAFrEk+zepp2rW<-8Dgf<_N=>N475oez z83{?a_w;VlXZGu-xyQk*I_GPKkM%*|hOaTHnR^W`8aySR$|s!%CIT4@8n_skreh?P zhzJM@4IKnTOp=RRZWjye(t#Jc6nhFEUV^yz2lUTA0;owHhZ++E?2;HU@CzRjP&^e7 z83TM`JOl_ZiBSI1j!<$Zn-KaXbQp+h2+)h7Bvxjy%0D`FfZ*XeV0iKA2fG`13nHYf zi~`a-2rOO0{{Ii9VqBa~=^ahiD+6=-_XV-^i9|90Zrpp`?A!nteCbLBQwIp+HQjdxZX$;k=vh zK^P)~$h}-JKhi<`=Imsu;78{$qQ-M%z0ajE9$~_DC)cE(rR@xo$(Rc_Hz}Za&~C3{ zpyzuOwvoYtj{#QY-~EPiWIrw3157~7`N?f5|fL?*0j>ZuhxJVHa-*5PzEn_2eI~7q_{%^tLpCeUuaWBwMFtH+_ z-^%+!Ku};Pkdl(&z#!ilCkB+aoF6;tpiG~$*WaXt7z@DQ@$XS!&yU{}`)?B1e1MTq z%-dNQZ>p+XBcNQsae3E3O^ef{PVMd~huxlJaU-s|R z;BMJd4Gkg8F`_T8{{fUqNC6hU1o=XNM!5hbPJ`mA)}D?NWtM_LsElibea|XY*SV0x zcG^048%U%A^_p@9lR~mHue%eWPJP0 zbL1q}=j)xFyMaUIsZyZ3N3*9I82q5zj*o4-sMHr+Q^eYf{vW5d_}bG zHjKMVGK_z-X^+hm&r#lNT<7IrJ9B`?n)yNmat`{mjb_gw+s;(8d%5&Wbrt2NBq2GR zFcu4Tv=djRFPCO2l3LunSac!9mHJy14-_?JZ}ajX-W@ENS1Q#dbCb*E_N}C;U-98? zk$55vKZ`DAPM~0w8}UJJpT)K?0ig*=BSNqWanoLFCa19hb1Ns^w=hu~<6}wHC9QTr zdI@1vv7i|15xZbf&r@5uIYS!S#-%sqQ?E-y%+2epW%4@PubZ#qLWNzrzCp_f@EISG z%8e$Mcjg6XZxpJm6g*j6XWm1p3wzSSNy&$743K7YjK{RYJN!woR*5nRa3BKOSiD^& z)@_&yTAkj5br&0MSztadqDIIhxK~}VAM)9;mx9ozQ7I6RD{EVJM4HUK4_{ zpmtW$g#2SJp7;FM7spbACw#EQ9c3Tkr=>Zlft4+@JM~RFH&G_?0REPht(lyLv+6ZR zr$~ULiC`J=)+~W~aG7N^rj63ussyf`^nInVnTG*dSU7Z3W?Y4b|q zo5qco`>=@$AZwWGHAm|CzcgD!4Ag?Y3sj9lY7MoCOQyT^p-2f1+TEXn4PgwWyJKEL;l z`w%=VvLJ&1w2_yej{~|l98pRo>x+f^U(v^}QkzLPx(XVL$gO_?3;a+^e+Jl{LAnjq zW}APMb=h(H2qTD8xLYC6FzH?IkV2S!cx3;Gyy1&Gm|a|7@6^C@iBd6%zG4)vB39Uf z#L#e7P3n;@Q|%1O3^YwXK~n6mHrWsLWc$APJuGXGRuHzNOSxo3&v+OteDI@rT_>Bo zZl}!2ZZr9%UY+#5KUEq5X}aolqXnidIMJQO7>xhY`W_~Q+s)AnOeNmZvXSIkT>$HBuB?bT&3+{FEL$+!@V+iVN;gM zpdXm!P<10QBFa;3LLa*-#hoaz^!QWaV|){^s=C0#S=UcrJ9(QqSwtOb4R870aVs?Q zOSHR}vTg(p>;@Y#6UXu|_p4Q0GJGNSpcG;#edWgeOUMh~&QP585hoze%x+B^i`PZZx?F4z1cGSIY<>rgtn1iBOJ0AnVTt_FWcONu#;PU1JL;i4h_s@Ht}~|oS43?PILL-zCvhZG+YZ8hd#T^ zk1b%9caEUc-NL;RYC>CW+ep8I-^LLecZ-OJ*b& z1mAgleudISfk<=|zOXFIr7eY7izid;MyE+I8;|q&z63z-n?5Pn2vq+lb%t+GKQY-M zE@D#o!SFmGuUH?8Bxxt^I6UN+$gj=ot{uwEfKOEvK;v80oIhN;2i*(@f5YuE&+1U; z+g&R_+gXgKnAUNn+&U-MX4*8%D#&h4$}%YhJ*3vrweA9MGaP~cXI1>QGqiwW=Q?G} zj7itwPc_Ws%lMx=h1k58F1fFaA0-hZ0-ITtW(dj6k2DugsSdwR)&aFrI@iwhHODR) zIZgAS>_F+SmeTEhiq23^AgeoqHDDwC8aGfXg9w2=w@VfOpJ|-jX7k2!Mj2+D;uNR| zBs)lohpe8cYp<3M=N1ToE1kVr2c2e;BCabNRW^l!x#t`puri++Mrz1-SQ zI5sLd|}yBUmFJBbaid(qEGaDZiB59MZ7Ovyzu{IeM)|iFm9f*lO>q9c6!a z&y#k5)9pdb`##MY)-}8uhwUTaF{ZtZ=~SI$66r%1EO>H#B-LNf65|P_t`YV>p>LVP z+{#;@TkagljrZvP%#e7UDp(LEO;Pr5!JF57;aW|?AU_mlG;$>ZM{r4`#=Gfbwnidl_$ueM8=yerEsT& z$9XG8LQgxls8(i}y#rOqSzSr6ql>)Zt^l{V?{Jy&5$?X}{}>b-R4XGLf7Q2R6djFI z*lc(c;$S-@7FlFg;wIJWY%bz4pO2H@{_f)QAn%L-ii_8B+1^AoW^9qMq;K>ydWD(6 z8*4j$esAK8b&HQj$_b`DCN)LIi5ul({`~zi3E>hb^(`QOM~zmLqp_>3bjL9AW@0D? zjEstMDq~P{_uK64dGJ)@u5*{gWzbH3r*2&5MW16<8;u3SHNv>bH-I01HsqG_=GTih z`3|)yv|4xJvjExnbhUO)ZNa0>m2t<3g~ylFDU>pZS7E$0$gD6;a&4y7tjN2~Xo)XC zr-W_iwg4dt^!gTc-M*ZR!7;HBPB4nlj+QAg-NRO&dc3|uOW*jg|LioTgF30DRCNm*8kUDt=J3T`kkD?UY(S>ADiX1HzJZ%C^H;}e&!#S0 zOxNw~fK<2Wt=try?TXPRoB7EfVaL9;qu}1n*;U!gp9}_OKR}TEZ+h2~r8Jb~wt(g* zQvnnVe+kZFqClKLPUr6#bP{7#8c<>sErU|YB!NE`;JG80}M(>?2769aU@2B zz^n74WBC5_!o~1iCwwq-RYC}~31mJd1VZaJss;h9Ebhy3L|#>ko`wIhzNT@?>s?Ig z7Ue=q==zPqsR9pZ_beNi|1on2`c*Ux_#tQ9rsvC}8ueG$Ji^mnbZLC%`qU6oyN;Rz z-s)-X)-kR%BPI#b_9Mw@1V^Ino>F#}PxhG%gq5|%jzsO^lzkz8oBtqkq@@UN2$ zF^?D}Ic{~atk)}wKbsk}Cjc1YS{Uo(X~5y&RYzFrG}9JBskT)0ifTph3p!gWBY2|>Y20EutAa=87TkWC9|JPiI$L29fUsM zv&?iBiqKATne+}k%*G80etKNGx?EK^*XoP=gd%vE_lyDmD(G>cvAt2p*(L2; z;#lf}G8~&@;UldE48`c~ygkc~pV4b%Z$@G7ZDc)Han$4$Me>IXF?&7(dEhncPX4+* z|JqDB?O^>i5|!$X5gvuEPn~PCy^as_di+gLEbXCu17j?5!yS0gsMN_3Z7jFP2r)d_ zY#KMEbhT*NADeqx)h!3vFSHf~bVfF;rqdV@&VSOnvJ~(*QfOakOE(Dt>N@YXA=r5y zODpF7#;@52zYmHxk=NxlL%^X3!qc5GeEP11MZLO-9_6YNBBt z-<;o{fIV8>LviNhPAd7_Xv8OGs3f^E!IK(l`~6x9?unX*V=#LoUy^qvTCT2SD?ql_ zsdJB`stQ7JJ38pe;N6T&5kL6aaVjBaRa2M6o*Z%9t_v@^Wa0QeQO@S<=nL6TAll>J zz+EaP?&Sze|5gCl`8f?8{t`rl@77vo)m;Wi%~1i-dMe9D>?%@}$mV!sOJItWb1w0v zYX63=hw8*MKs3E9vE<}T9tmeFzA)g^X<0I@ha~5$YO;R*VD}1n#$D5lwP1;djpsX1 zWc16cDChAo9Vy#&|8>fmyX?DYn4qFp!(LR`tH7PO>w3**AnLQ+SALzK->rt)vz&h= zuNn_C{|7qfWpNHgZtSA!cRrWm^UeqQn!ffgW%!y>+2>d1?i zIGg3GV>oi^iRoxVYG|GugY8ZPVp5w0#>L<#5*Zta|_k7sGgvJIn1(%}fbvHxb9 zG)g4^AN7!+C@SG4p)z(?2fjt4|H9K$bUF6SOxd}1TEdYt_XVR=m%zZs(U~KQv#$y@ zx)V3kA%2QHuwQXE*W2=S!jgA8N00z8K=UvWl;+ndf4m>$ByF8$@iDh|q>&=w29xt5 zq7#y|v^FdkVjXaw1=dFSN!SEWIT!$U8I**6;N017Ft-u)@n^ftXL*wK$o8g-VfaZ9 z2AppOe&7-TJW>fCBfT0fZw#01JKUWG_X}AJ))Qr3s0c`(~~2%_jVYPiqjp*(Y)W3vXGe({q%7 z%SlV%`$_-Qr*OAg;%nXqoxS(Qh-jsnLy`K~g9?O*m@1yr(FG;%h8YizaDT@z+vldh z3QO~GgGsQ>5-vDEK5jZ_#&JS!$nXkHcBn+v!scw-WCi{aR)oQFr`oDoiGTI>k`7N>aF|Jm?%35FLx&2ZaVF0g@m&7sdYz@+hXp#3ibeD+46X; z5D$?$-f&1fPrW5aJfSF0E|N{TgEXzHQSJ-{5?0oEoY4DNj+m-$b)rb9w+LR6^{m@(mDg<{C*TVb%3mFfmTnF*d8Djp#+a{&GjC4* zD3#P|j+JMXp*OV2g;Lw6KaoMjq=7heZ?i;k*SuN*#2h&WbTo zJPy8oqbd&I;`=HJqj{0PJW6^n!ti1;2h2j6d{hv)ou`bw4zC|Wy!`WQwi4?dUp7Qf zy;W;ft}2tQPp%3td+P4W8R{5u8+FJAv*}0a~W^X~>5x3IxCYAGaQu5G? z@m7)5oiP;G%U#J=&SI5~x>k=sp_B^VE0f~U@5y9MoFz%C+1OG}-FZgg>yEf~-xH&y z%ug}nr;@mR@taxm#Ut2)om#XGcC&Y4|MIW~fr)1nGbj#*o7dFAi%7GC8^KZ}Xpx6I z%ys@{cYJ zERy2IdQWKE4z2DH_7d37C^??gys_jpO?ub{&Bx~Tv&p0lmxu~}W|=mN&AufBWz)I< z)+W@eWBv02nRn>~p?cVnr}qp?X`TWfCL9yrmifVPl&;xM@=Nn2Ko8eTNA_2$WDulO z2M(RoWp=Mc4TPTaPk2_sskxoY_{yU~*0WM5Benv9O*Hb7*GzY502qY0frtVG-o$Wz zibS>u+jxDlX$m_pK2b`HEX8ljhn;JKHH_p)a;m@1}AgT4D&s=J+6BHV|sQHhp(>%mSgtA@~? zsM&8CeI`!lqy4UG#fkaz7MDL2{DQ*oo?aHrc)`yt5pK_X)VXNBg0cDim3QNB3I4*~ z_OgCCd*7{BMQ{FK`)b!KI(0EP=Y`peQcCUjZkTs%VtWi0uzY_jzxEvb*boc~L2Nh! z(YEL563bleY$lxt`Y%$mW*Oa{=GW>^aTf=M*1`M)N5ZjgrAcwAIU^BM3N$@?r?K82 zD|hTfZkuVa~;x^X>S zy!lEf1+4u2A0&JF|#spvHyQv5^Mrj-PA%kjp^hCvm%mo z^nkv;CgXxurQBDbpaLH;N0K@1zhy6zsJQ5gon3ji-)Ic>FT;pRK|b1*pJcNxKW!5eDYI@zV>BXb;F0SSvjcn8sWYH-Av(7c8q! zKx!d46x7ovBW5%ShhkY05^rZ`CvR2;Xz=v>u=XW9Y#%;YGq5EHu@EL_KKX83B5;K{ zLSL`6iD)6H` z4~rr2ryDnrJjcvW+sDNtVXV-uAYzu5CKnG^Mj*eip-lk#7y*=GlA3vtw~!W)x#6TB z-1H@JEaS=a=9JL0`7t8|pu`>`K4lIly<7EF!w(4-GaeOf00MaJM~U=<&|ber3&NKA z=yVqdOqAFXa7YR746NO?*-80fFx?Ew+Y!|LBd1POSNxaIOtXWh{vtqlrbY<-tk+im zmnC4bDo_!K5fU;CC=Cec6b{H+bG7aVS!iPs`n5Fi0r5@-zGquLRvzeI?HkZTM7ujF z$mS59fr|v><^=xk{iAZX6Ff2wT?eKm1bi%HgM@YEaKmVv|F`$G_=kZAv5z-4?d|}~ z@$>E_kFhWfy3rME!{^)X+ahYMnC;Mw{V@H9=1ovqN=gDTfRmP!F(4%>4YY53d>C{W z@OJy3?zXcil^CZ51%zqFWe^%~(cA`!7uC9KTSidKCe+oHWfYyAz&F)xc zYv$6n6rFt6kZyl6&w+oM=V*jv;wuM#tkLt$8F@*7Tl_Oz)a3~{5OM+I!bn>2kaNoa zPDb6^3f)&HHY4+;uwi}&DcIv^=Yw-(&;h`evC_im<-SEoU;7`_d~MMB!PkJW-Lrff zg>k;S2cFW^o#LC#XH^sX}PjuaNgOM!v4G4KBF zl`aBQCs!q;XIv?I!gB+7{m~SNI{{e>f&;^y{B^n$Ah7GwUT%&7XGN|V{zT757Knry ziDzVnq4up3p@-kBCc9=nw~*p4V`Zsa)sCS9*N5$&Z}v^UOWYbicPV@UEL}^-7MY83 zsu6UEE}?cNMkVrR`^#g+zpg+S?e#+!avNBF)68dvwMTj_2Ye^P zLV4Sg$q~AqJAB#-zszH>L$g?7lCZm$^-ye_kfmy#^i9$kAG_=>syV6sjK_=mr_@5N zf+E9C{o;fN>4 zF%J(B8wCNFfI5u$;NtF!+mDllqB}1BRMaiFl-!ZLBIY|OmPrd(rxzQ&_j{L(F}szp zK{|3J_Y=sw^cll_KgG_dz!S)6hksa|CXsnPyFpIOY_A(6c?>fQge#;=RA{Gul;qF$ zE3VGN`D0o|DHM^AqM40_^G#_ox_nV6WK77|=<5-@pjuX>Bu^~r;t|tXI5Rr@k(@;i>81rbSCF0b4ir*%>)!b z1;)4<81Z9F&?ni9E0t^kY)qQ#U7Xe`mA;c#J7Y1FGZEZ@ViKX$#1iDZ7FO_YHsOj?#gHsA)0(qb`7sJf{%0P z^#0*MZGFz1a-m0BcsVycd@9hGh)SkkS=(Z&#oAiH`K0ExLi08AIh%6$SkPZGfwtUx z)}9sIojLQR47Dg^8VGsgeMJ7bw`Y3&N^}(Ova5wIV`+<}!j^8Fl?sE`jOHC{lrhaE5rhh5Q;@hBHx64C;so_TipWN78Xv)xj9@_{E*pN}Kk0~gy$IeqfK z8hgheO@gjlw5M%O+qP}n?rH0J+O~Vzwr$(Sv~6qJwmG-o``vTnM0_XWJ5lwccGj+{ zRr^Qo%*b4O!6U#t%RV)hizsnmPk1|8SrW*R5)#%bMYU;w#K6&OE}+9(L(|y8-v`er zOa80FRrWBy9Elzn>bauSQznJSr!)T1J9oQPZ4TNu{%V)Qgfj^8O?r!fE11SG+8Dwg z%A-8miKLIgUR3rf7PsTuUyTyKQ7%Dj$T5qqR=;!!o<$OGj>hunKL&agE}^tGEEp{N64f~BAmg=jsfJjUXa zNB#cg_}I5ljndE4zsx(IbPBAN_OKN6-4s!qG_LbN`zcCqV}QVwxbjTjLo~biHo2vk zjmDxy2JLrr{*gHoE7wa=%B+h;I-&tnJ6ssvAvWr=@?uYbJuPsY91;q)=uQpE*}2ZV zq)`TsdZ&bYW!UvbH`V;!<;G(vI&aX>$}?lqorwSZ3;Y2GWR{$3Mp}d&61Bc^tvv@E zL_6rcd}l)jaWy*8jLwCeS!p{RVfTpEbBTR|(%#!~YLy(mEPc^Z+u>u>)-Yny@G~UU zu+7=v#K$EM!8JuVAaYalY!E}y-*75RwicmEe0avQ5z?x5ejGt^KAf?3Cj=KJ?>NQG z;);D-x58jK_jGOXxt}h^=aD60h*(W)^7KKw{QXtbV>47jreu9f^G?$9-%7xzOpJ`J zXDM7OG64edif}RGl>uXVze=O8ZT8B&l4ROshfuz0BM*k$j8Mh%Xb~hC=!ik`kGSjR ztx_~Jbur(;6jHqx;mdk{h2Vm}Mh;{a!>m!Oddl?-|30Zh!$4NaYw^^#L+#c08oc4F zPT^AGS9CAfB$-yhF*Ux#e|dAOIoq+FhD@!1r&!B21ir-Wm*FWuFW_V;OPI206_+uM z5J}6(H_prx(oExSr$R+oI-((=Z2yW-#;uAP!Gmon53*V$iKc8gpZ>LMqyDF$>XAuM z`l|X5ipJJi{5%wORyKG|0c)19GL8-(C+-FGv4$?eJ1P?ecy` zYT-Wugl1aPmN|3}J>vo!y&~_n)swd{dy8FiDqmw=!TndI0V>^`0rf^tXM67Pj+c$t z-hj3p=;O12)!(w>DBTi!pd+0zP1G>xg>seLpM-nS1QJQgc_};8f(rdS#%`2^j+&<- znS|J-9Zf?f(t#?&tI$kST*)Y_XIr?E!oYmu^E-5a;yY)P%3M{+a)IgKXtIWt-E7mo z72rVR^Lilcw*_ns3%GF1UPEowoSD072XR1geePL(85jfQA-t|9n8D2P2S}Ew9@Vw$ z<3EZQ8e}_CXLH#fBJ!zUw!#DyhLY1y@2g*B6;K-^+fbOC7==YK-51Z66-=VAq^TY8 z&}SGgz!KmSXU6BdKzZnpzkGhzV0G*%yg(IeoX`yN9}j)4ztdsP%An}T&-xU`##Jd^ z+}M?QOsRagZiJEyb|h&P&18MmA{S_A&Ez0xFi-vE@#%23i+1;>1q*1f;KYy8MLJo zCKRFkHz+xHob$55r#4!Kez}zorjsVj!1pxjZ}SX>f>~wL2A- zDQ)1b`LhmG@isZ|4VO(LA1s(B3)AxPcQK~Ql+OI9Vv>1&+co6~PxM{mv{&MWX?mhbQeJQ*ctn;tzsG2J+*vJI;SPr>4Pk3L{S` z?}Ks@yUucpcM5*vw12DTi<{z2&xWjc!QTzwrpRB&U}-p}bb5 z!+g+S-N6xJH&?3fbR0Q!(X(-H!VSEN_t4Y4;iod;Jdzam(c5rvT#(=#7g(E{0ObC* zB3^f5Bw|;AJzSM@zNZS2DTnTUGjxRVk4J#hYvy?O6kKwrBK?xaJ1D;vm|k9|VPkM3 zyG!)!YmO|HQvbNLsdiIJ$$BqFu3%#slmbq@zu>#T#RW_(O{vcAhO7@u!?;BV-A~)6 zrxBgP*E8WCDf9(hD$JqF6`NvRy9KXs+!(uTO?vIUtTyO)zPc<5vR*iv{+29uYr1q` zQ?F{eE~yw`6_dMi-L3Ll-i(ZK=~br7)Qj7-{3G_dVt!3;=PvF=Wi`^qNxk<>Pe!ki zFqC6bXr(3rMZkHX{LS(dKeUKJ-ylUz_V~-|0pe%B9+c9|#htUfbrB?WF_mOsq$}Vt+;8 z=_DS@1(7;MA_8~+0^Ilu7rBzU;agiaHf=6;Kp3pF;EuS_!Tx}+A67y%ajG3HjJN#LfvZdK{i+^fUVs0wD zY02(v3PCxytPM39g6#!AKeW+(SYgpEzT0=mv26~SQ%2`s(yn_ai;J_>9sZMQ0*`W$ z$3^7%421*_Q_@=WR=7Tt+AY>PC0(tHYzer7%}9(UJSPr=ApgD+-~0Z(t(!F)x^UpJ z1Y4FQZET84$>9avaBXW$_dTnUPXwEe-7Z10k;AMXDiRh-o3!-mhd00f)M(~DH5G+D z6*19YcmFBwJ6^)djt3nvv6$t$bxwE~PKVpFgP@D(7Vfs}6fHg8u(IyV*EcZ&x~#r9 z#mm<1X9M|@F2&Nw^TCtT?osqOn1$Mk`iCp$UdyfD&SV9O&i836hQK|2zr?5L0rTF3 zPS2P0A3vK_p85$umq=2qY7*%nM0iu@AKJnn@< z--0uFZnuh~nLU<4O2eNcJu7fcmHK)dzuG_!Y>61vsV?vPdoo_@dIqXd1fVzG0|+wG zh)Dd{X*OyDOZLX0PV^OZoTJg6U?$t&onV_Dg5|N8F@Teudoy86`r@mVba&PmkzWZq-%c-SB z?&XuU0`~@9x@VuT2!iAOR)N)1r)A=Ng6MeiwN}ZelH}A4P%fKiOSYlJpsZE;;m;Tl zm#Matwn>PU^{4I_t!g}XeoQe>OMDRbHS@30Y>;*T^t~?-BPl&=cz^y%l)&ceNwngN zO``fx&wLBd_i)l~^4_ZCiV9EWdS@Y-4&=JTKFM4I@wmNbLB25=yX}5}N!}fBkLS&%9D*I4nhh zBrhMPQ+rL%Wlr&A9ogui$Q3DWzxp_9jo0rTW29t#o?M|?U}_&c(Ze1bfG?EJA3Ykn z>CU8cHzhLxAM=xY)R+GWXczGm?BI4kho{~=CF#OUA4+~ zMA@r}1KkCsq<5kspAZqqA-B=brdMC;prv+^&PQsicd+SS+UugpmpSV2BK~EHyW)HA zT9}gC-I>!>MI2JsqJ@t3NXXuYI9_3|M>+q|U_n)y7w3rh7-R9;vPHPd~@d{b?S?!DskjQ5@W?SUVZr3+fVSJCq-VbLSi zf%Dn0@W&4zguWXXsR!rB(t7P59=1S(GKN47!HR?g=US4z=B&G{(qM%u=4#?cy>L%l z;K%&#`@v|H9A^u~o7N|8ob-;yF~`rK^D~_z_;SPx8sOY&O-eQD%0-+LldR;$M>p&` z*?SK4Rrv0!y*a@FvqiCJ)yHchLCvuIm(GP!wz@`-%-``Z6vc)L5Ijun~!SlUNM zu$i51`?Q1axSEj(B%>ZDY}kkP7BWB1J4(CFQxDd#EncAWXN7;rbf!=;+%lnF{tPln z;f)pvMH7_RWBEV9V!R=O=%zdj zG4*V|{(QUC#ST4yW1<#e%PiTPzE2aQs%v4x0@exo<pn0p#{*02*y)KnJFI%!v<=P~1k+)NHFmRjz|6T$7JI^&qQR7wLIV zH6F@*;J-a|e}{k~L5n=cxDQq9dqo;6f{Jo&0xd6q{gWyRO3@y+6EsaK5GU_?75Z?$ioWd$|3 z`G7r@V3#wEhC%U_a?-L&YoMfbl*(cxZr%LRmL}Cfp@kF+If1Eci?igEDx~BmKc$Rk ztV7nZ#oW2H7xx9E>uf9jnsvZe*Kz9=NjDA%ma_&Ny}Ms-X_Alu1AH2dCVrw~A;yqT zH+oT%vt8U_Cu7h=Frq>c-hrwVE^b@##<-KgBiEpyi9FLb>9ma3GyO`OFA;N2z}nQq z2>L)mE_d8z-HDDyGDQ-PUT!Fu@}=lrse)SoE}FFEz%E4v{4F@y3o2?7yt=hMIrr%1 zDEFz^G|=GMG!wct{<1>_xlvU9gm-SkigxE3oWjg3tXR-3u4qW`S8_)$3n%J5vyU&4 zB0hdX@Wt2`n+)R&(EZv|9*EW)$>o#bMeckyBg=PaZX|c~a7(*nx%lV`mS0UXoLv6e zf;PnZ$KS?u7Q1yjmOPlb%wXEo;a!r^J$X;C1tqs+Rq*39K7=%J0b)ucG zj@YV4QI-8;vdP}{h+ywm&Hx(!s_qp>Q{lViz8hU`pRv+7w$kq<^{46vq}|Gjr=(j( zTAuB|qWq%ToC4OOVBTCehymbMblv)X`kg+!WqA2xEBQ z4x)W>dQ&=Xo{rm6kV#B1ef7E7v)M8${-N1P0sv?J+l`oVvkpaik1;z zZUdV6Z40qtO?E_g##wX|TTg2m09cRn^OCS%74_IZs=!j|#=EsMS$qY5zm(loIuL?C z+|%FI!-~RKWt903+2kOc5Ln7KrH8_U{xI(HDa+w&_A5>h&=uq|5m_h{Aw|Mc?91fcfkEYyhQTt#5I}hEOPn z1mg#rBkF`Gx$XOrAnb}q>X)g*gJ;noO zV5RlvWhEf%N7AiIBtI&H3QM``83I8n*&HJ`TziQm#JVd9q_`H%D{hsigAz@=q&*+#r6YDG);zg-6B)1CX79!i=}*VZyqMO$yL53am;(HGEL6^XZvR z*+k3PTkza9mwJUII-Oe`O=^&Rs5D!NkFewdlH3wF^b-@E-&5d4r^7&h1QZ=mZeFfu zu1Mfa>~yYsqIJbh$KW&Ygr=@nOD)a#I1Y_j=Iw^~k&*adGu%m2GE(d&Z0y<)r?lZe zlS94IO@Wa7q%UxlxYD~qHVN~O@X`<0iP`Hm)Qb!)!6PZfq4Hgz)V#kvQ3<`;6h-KWmdHTXgbCeCtE@geRo2`~vsDtC3p-WnLUz z^nQZX?l`OXBTrV;up*jvBd??5T0!^9t9q=g!p8`sxWJ@@jIA-#cUQCaTCzB6n$_w8 z$OVxY{_LZ2Gws(Zceta+y{^M)=01cH4Gj{KgTKDhTMQD_wRNPN{(^Kiyr{Pol8u7H zjcxTTSiYBW2+AHZhJYPYsv1DBU4EGlybD;ubz~$MxIdA=Ht5vV> zVIv;5z=%^BSD)KDbq$jvU8cjZ&72eTWPhheKVWsL&cH|?)e2j3$V5z$`?H~VkZ#&r zeud$EsCWACv8qehj47wUe1b7WL~%{rx;DyKi$U-lVeq%6NJs0^R9We1|Iefkbaz`4 z{4!QjeUXvJlcW-4%A)G6iSPA@#NZ{STOko^Hjp`C;@M`;BLwbsW(K80J{Wtk;6`w> ztd|(iud+*ltHtz^k4^Q!)W-UaPw{G=_A3&Ux!xlRqxrWh`6v{kAm%DTZJ92~ao-gZwbcBUh(ubz9U>HF_9pEwnk>xe#S_@nkij)F&329UJ zUcAgG3X6tHHq&4MjI1?Q;E{4glu+1ct62u04}IIy+LL1q)zWiVC%Uch2hFHp<;p1% zso~z54R0GPTs7Pf?x&rczKe{)^YfCqx)-gqw1Hmao=c%ZfRudJR8Q8l27>pN`5vg+ znHoAiK1o7-dWc_WnMUl4MEAEUg2iG+2 z?O!b!cUD~llVAeFNG6Gj8wT7p>L;DeCI>EvV9CWvsK3^m_voqD*YVjA0vsh^a zn_|J{y_spMuBq^}PnzpsmA`!#s53{wz>_C!ac+~-{p3Yf2J(IhYZtytFStUYU+?cL zDhIGsXq+M++t437=Cgc9-U<7qf*G4WI~x1rz)>x0=(T9HBY3QQqSvlu)Jxrg`oNpt zO7`YBwH5X!XxWN^K(bvusQivIG1WW zeDrjpY%l$jnWMf!JkrkC^+w!T0}c)-3yA+zgv@7$F5C_OsKAsrm)pO%kn03)y~J}B zyK7aiIUgt^MVF`m2KOl9QUPLPDqQ2crGB0Oz7g}zV>a%t{IlS{e}}V_c}6m)sKE?_ zc^T*dhou|2xGZLp&b05?DmXWNNYaPpM;RoI?Js*6{4wk;f9(JnB`3P zHHNO4L}I`R^%RX_}(Bu=o0fHMDI;N)gbi5Ac(+=sx4ro9E}VkB>5Fomh=u@*tXQ%ZN?Z%<0Gu&tLkk9Nu#J;E+zB3<1UTSY zNk3(xX~=vOZHk1afBe)i1A6FDY*p}?Bx=@3iu5Q(6kNtS(fso?_L))@s+MMzG`;br zHC8TAVQtmj4cAlnx5kNmzVdtpLdy9vj*|RVFCgQgkoNmLvDrtR`#t!i@UxU2hB_}H z<(`wZr0m%Ox3=-gmVxDW$TCJG{2N*C-^;-zx8#(e z8CWlo!aKExAdH;%oqsK1-#tH98er%gIl`9|W4DSm2FOdB1oEzKzk*f^Dx5e92#dcS zZn;{d29{~$`hbd8!x+Ekh5kmdv)tBV;y(2&c*Zt!Vj0oEMfqH~QkZ2q97lnjY?*jh;N?KCC)1fSFvwbiik-HH^{p zV$eP{p=ia#^s<+FY7u;jr)qTkT(g#pjvlOs6=itfB<2=<3@bKt^OJ3lc_g~n_BsA^_J5 zjq%gLVO)`HEL%^Z7q!k0-ph4FKicCZg3v@0T(|`O&9DFtO0FVeM?b@zGlhYGi0u>^ ziYx*9E~gGNP%p~!h4llKXd2Pyfa9GVH~?jxLq|ZX$qR2%J=9VaD*pSN%?@o@X>2xe zEw!XoIV!zSc1Lw#SIGWDY0~vEV_*4?(gv_m0AiC*8-4lk5kaw)A{hwxf~fhzG-V8B zo`Mow8^A*!I~K+v06o~w&^HZOL9Ma2p}Swp0Q#RPNWP|taP*v91+|o!l{wIn#WyTr z+t*xRrtOru++-ufLW=$hCY0%^^PvV=uC2V2*9pd{oliGe4HpCbDYqPmr-5&{k z-VNys6N5c&4n&2n7T?Idt&@U@c!#T#X6C7c7Ae$Vhji3!Z_q-nog3|oBOF#?I}83; z$lwts`_WoL(~Q0^1FeU1G+wASZ-8W9D1C z(S|bdtEifV*Rn{{M2QinqzQ`f3*x`$NmTK3EByyavPgdDMWO?7s`>qJMM$AT~`KO@_AeodMA0)9r zM>qE0rlq(N3+lXQW!rAzN9>@#Y~46D`lSuqtU;wiXke4@+1S=&y5D*@6176FUFYj{ zUxt3nU)uG~Z;=azC02zEmSY=OTxyHW<5Z7&S){)ANIV&@y$Ml}`H0Hb9|x#`dzNY8g=KYLgDYxdepp_!jAD9l5;_M)nH z2h zJrs0GLvcDjOdD8iNhA^Uo68ZAn&qIdt->X9e;guA(FdKn({qpY&?84X&)cOS`u;I^ zp@^7HTX~K|FF)#TN6qVp{~I)k-_(>g?Q^VzESp6nI37-weS zN&bL0UcT=$s?`4i)(6fx4zH1kWd}T>mOa8sWSb&wL?tvNWAiA}MW z*;NdR(rCsP%;#pk9Tyb(4jy#h{tz0kiw$8d`QC^lCvo_I+g$;f{-)-&4?s-m#^H-MBKJH!c6K z`eH`#H1h`ID$zoo!j`Vu1Ui&SCN%*esbguCC2~g0KLsM$e|x@~5ira6$a8o2F~Vr& za?kSFmd9Ut2rE;W*12$Kjc`H#RS_3Q}IM?z~UCtd#5t`ux?35Nys(n0#y-0V4No^#ihg5yQOmb@TA z!4|d`W&hRf8Em@6-tAUP34@4ZH4}qLYQAq`GX;C3_fHJVVmXx1N=5|BgE! zq3kG?I24e|Q6-o|<5;%ti#d#dNaIJ&Q|ixYC9AXddXoR!v2WDlw+C!z$g@Lw(Py;2 z=1olL2{M=e-Ey$7_4L z{~UXCO>}3c^SvI4pf#DlCizW>`yw8$8ICei`;Z7wNJwgbCaj5{m(-^*`kqP70#`(c|>C_(px23k(70j3ZOyk(oqaemLBsxNV05y`V`a0 zX4b0c6%&ZmqBG32kc#<{rn1gN&&m3ii_I8j6A2aiwQ9H~!i7c3shpX_gcUS?Z}G;! zZB>lYePNgjYkIcUm;5`cwzoNi@W%m+RDQnmB}$9w;!2jdu?0_5>u8y(Ra4`aB;)9W zba|qvR&f_h-&w95I{agMXPx{YeWM5Xkc@|}+3Z|?PmV&u`1`p&O03f4_PQE7M};-K zwJOnx`w11jG@S)hd<{<97i&~&%UFh1sDcCrY0=`WCQI-j1RflTmWq32ueG{(C*3IM zSbnK&+-|<5?5A}w_$@(`SX~l78uhLYo0;j7(H$BK4#WZnm9fV?xeC6*5ya=9VXpE% zNSYvwQ%cF$U=c7mJU*k3xM0*Y8dx8># zYd~FIX?MK&jy5n8)L=DWqDvjCxQe+?1v2>N+<{5vTV%nZ&uC|{l|@mEmD1>#<0v$? zD3^^`?{(Ht;zbH4H>#8jy+m6#R2w{Te`4X~iWOp`|3SNSnWeHy5&GCBqS_}kNka1> ze@dxXx=T7MXs#w4;kfdsJm9f3mbMbdQ9m~p_>U6RVr=nHOlmHY?MxkyKY4YH0%#%Q zEA~?BEQvAq!h(SVidi(R2EKlU_1bx-Q5JeF?*TQQ01Q8>B9e;`CXP$~#Ei z4xRu;fmiAw~wZD-khvP{$mK`tiX*lDkp~EV(x0^KFi{jZMN|d zhW+cjBX5kCPY~&}hFp7L-|Z5P0Jbf4Y~XM*_FRF+f1p$@7I!=YOAM+8!kHpSOH%UO zm9@ppsJE$MsSQCeie^Ee_2s8_??Ck@pVMc$$mf&5$ply~Hs$Q-?Vniy)Fx(D@0>cJ z56TLb!jTUvojzP9eS7);Zu zD*QU}@y3A9bMUm|0Bm}kRFw1UN{%mb@=(a0fb$h2=x zb{>I>=G{8%mE|L7b8w{C#3BKv!veE$>nihJvSfTh!$(l_Rk&O;cXu`VN z12{M`3^D$SrKzX0pIGOIT4dU^t zmh?ko^u;UyQvP7fiDYt;eqJGh?xiFZe5+OVwYpF5@1591YdZOB7ax ziMWrh(e5!aNu^aQE}i)@{$A_nJOGu1u=akeC=rBeVh&dsnb_rVXu3M5AG|3J#&{@+MBN{)7>E+zm+A}V`R zpc+7no|%D-iGi7w8kSMi5n$wO_kHKP`G1)fcD78I{z;wHPE^tgVfWY;FI8Ma|s8iRkE3(R)%j7?A$CI^ehZ){|o#7iHDs9^;Jhyb>xcE*;l z%*_8=tkgX00Yr?7#+ItiHn5BeL@eJW03|FOot%l7x&MDg6A?2f%m1~wS+mwJJ2Yuz z-{;zs5xwfY9!3~qav<0)yfl|9DFMZF92VZj>NLa6`E%u2IKQiL-0$RsoSd_>inp_~ zC$0P-6mHndAY}z}+NuT-%3U>79@ttEj37mAtY}G$Vd!f39787_H+WYFK+vt$yt{EA zr!=x`)GsZBcp7N9IR+e~?mA)~qry6B(GvT0+8@yrZwkoMM|1`DIX|g(1K>#DFu^XE z{}jV>8%{I0U2UC@CNd^!j}Dv_T#atKv(-x8r`!9xEXGSdT6^lZmm0=?t8FsUu@`|Gjv>m zA%y3`MF>tD$&yycL}jzG7HO<89!q(W(*^jKIGOOE%s1v}P20$437dHNuhKbz8KfScY~qD(bXmd(`3ZO@dS zmz}PZ)^wNpPetd26EwQ0FvB35_%e?E0)Hyfchp}wRl{MfvcDj__{ZrJ%@RP#B_XDR zHjBJX@x^*fRuzTBL~+b*k&L z8eXS8GDQL$1eB@ifGPOBx^}M2>{P+^N-UeZ)E->ee3Ss}L_nlFT}?}b<~1~Qdj}ao zFE&G?I9CHnt3`2pk50XgL~q%z>2+NW2Z)=tD5u6{mTO7YvTRANG$T)JxZp-92TJO? zwj&u^wr*-=SCm|Y;($~xWqOkH*(y%9?F}hO@$=!`Xm5kf@XjF-{x7iBVDj0=UlR~? zRpAm=+Ytn+n#PtXEE!5K>Q{e^SewZ*f9bsO*29eU4-<3ehor1=l z%*vg*^36HC^Qw3813{o@y5`&o{4#ER?r?)YnL%vo!0liM&#o9Rz7}fT3Fs-@LU=LP zUaht@*@1XN^HA2)Q+HHRgxYuF#?@$?Ko7IP4TI|D^n2b0-J7EbQrIF=do@F52*ADL zyj6Dom-K#@?@fkuVDc&^Al{TafqADyKzv4dm+VcyWB)KyqW;f>pK$s5nDd@`OkDe6 zWZ)K>v^_$lh#-4Fx#7!M4N;-GiL0lW! zYhT3UHW|-oiEY4_MVt90vhfQ#D#R7_F3aR2{MHw>FGH4LA6Lwre91{3uGAYd{Is`u zbTs%R2zg#g&%X?LG85}xT;}5yE04r+M?G1&at)?WHb$4nS32J_?z(DpH&X5nQaYxd zI#$-NDl9AQ%9m-|zH4%A=s#NqYN^_+sE;ga$RFQDTXuGzJx1uOUfJ#1p6gp`2BKA-?442){>Vf#H;xN^f)pOAc>_n~sftqAQr(P><~=cqxo2@Sr$ z?0Iil{`<&+jp@H-ODz=u5SCHe))e4Qq{BqS#;ga+sA}N}_`ZT=)FjejCSoP}Pn(LJ zoihBQ-YIQf|E;_jhS1VnNw7Pom+&1iG_)a zm4lmGfargA`TmL=z}C#!oamcc{9p2;ME|q?DEJKAi@m(h~z7RszZ8c>Q?sW0h za6KuTJ{EA)*9+0L0Nq{JyQR}JTmM=qOcp5?=y5Dbpm7P%`UpsIdCv7KZPT=%?Vq2f zI$cHy@$xa2PKgcd0<&J?;1LETzXMqXqryhn@3LIwVt4)mn%l9$5FqtsjZ`S7VBsKQ e;eU^^le3Ydv%BMWT)CK-nb}~;$;A~VVE-S99*>;> literal 0 HcmV?d00001 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/README b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/README new file mode 100644 index 000000000..7d428701a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/README @@ -0,0 +1,35 @@ + +Example simulation with Surface Tension model: + +A simple macroscopic code calls the Surface Tension model for different temperatures. + + +How to run? +----------- + +# Make sure PYTHONPATH and LD_LIBRARY_PATH are set +# TODO: +# Make this easier to use +export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig +export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages +export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + +# Compile project specific sources (only locally) +cd src +cmake . +make + + +#Compile detailed model code (PETSc 3.4.4 needs to be installed) +cd src/srcDetailedCode/ +make DFT + +#copy executable of detailed model (PCSAFT_SurfaceTension) in src folder + + +# Initialise the model in the database +./initModel + +# Start the workflow +./workflow + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/SurfaceTension.py b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/SurfaceTension.py new file mode 100644 index 000000000..566484755 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/SurfaceTension.py @@ -0,0 +1,54 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from modena.Strategy import BackwardMappingScriptTask + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# Source code in src/twoTanksMacroscopicProblem.C +m = BackwardMappingScriptTask( + script='../src/MacroscopicProblem' +) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/initModels b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/initModels new file mode 100755 index 000000000..dd47b9cb2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/initModels @@ -0,0 +1,62 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors +''' + +from modena import SurrogateModel +from modena.Strategy import Workflow2 +#import flowRate +import modSurfaceTension +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from fireworks.utilities.fw_serializers import load_object + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +initWfs = Workflow2([]) +for m in SurrogateModel.get_instances(): + initWfs.addNoLink(m.initialisationStrategy().workflow(m)) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/modSurfaceTension.py b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/modSurfaceTension.py new file mode 100644 index 000000000..3a9e890c4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/modSurfaceTension.py @@ -0,0 +1,184 @@ + +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +import os +import modena +from modena import ForwardMappingModel,BackwardMappingModel,SurrogateModel,CFunction,IndexSet +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +# Create terminal for colour output +term = Terminal() + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# ********************************* Class ********************************** # +@explicit_serialize +class SurfaceTensionExactSim(FireTaskBase): + """ + A FireTask that starts a microscopic code and updates the database. + """ + + def run_task(self, fw_spec): + print( + term.yellow + + "Performing exact simulation (microscopic code recipe)" + + term.normal + ) + + # Write input for detailed model + ff = open('in.txt', 'w') + Tstr = str(self['point']['T']) + ff.write('%s \n' %(Tstr)) + + + ##TODO INPUT SHOULD COME FROM IndexSet + + ff.write('2 \n') #number of components in system + ff.write('air \n') #component 1 + ff.write('thf \n') #component 2 + ff.write('0. \n') #molar feed (initial) composition component 1 + ff.write('0. \n') #molar feed (initial) composition component 2 + ff.close() + + #create output file for detailed code + fff = open('out.txt', 'w+') + fff.close() + + # Execute detailed model + run_command = '''../src/./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx 800 -rc 9.0 -box 300 -erel 1e-08 -init_pert 0 \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol 1e-07 -snes_rtol 1e-07 -snes_stol 1e-07 -snes_max_it 20 \ + -ksp_max_it 15 -ksp_gmres_restart 50 \ + -snes_linesearch_type l2 -snes_linesearch_damping 0.3 -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 0 -pc_type none ''' + + + os.system(run_command) + + #os.system('../src/./PCSAFT_SurfaceTension') + + # Analyse output + f = open('out.txt', 'r') + self['point']['ST'] = float(f.readline()) + f.close() + + return FWAction(mod_spec=[{'_push': self['point']}]) + + + + + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void surroSurfaceTension +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + + const double T = inputs[0]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + const double P2 = parameters[2]; + + outputs[0] = P0 + T*P1 + P2*T*T; +} +''', + # These are global bounds for the function + inputs={ + 'T': { 'min': 270.0, 'max': 310.0, 'argPos': 0 }, #check if boundaries reasonable, from this range, the random values for the DOE are chosen! + }, + outputs={ + 'ST': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': -1E10, 'max': 1E10, 'argPos': 0 }, #check if boundaries are reasonable!!! + 'param1': { 'min': -1E10, 'max': 1E10, 'argPos': 1 }, + 'param2': { 'min': -1E10, 'max': 1E10, 'argPos': 2 }, + }, +) + +m = BackwardMappingModel( + _id= 'SurfaceTension', + surrogateFunction= f, + exactTask= SurfaceTensionExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [270.0, 290.0, 300.0], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 30.0, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/.gitignore b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/.gitignore new file mode 100644 index 000000000..0c66e77c1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/.gitignore @@ -0,0 +1,20 @@ +# Backups +*~ +*bak + +# Various intermediate files from automake +CMakeFiles/ +Makefile +libmodena.pc +CMakeCache.txt +cmake_install.cmake +install_manifest.txt + +# Intermediate files generated by SWIG +*_wrap.c + +# locate results (executables and libraries) +*.l[ao] + +flowRateExact +twoTanksMacroscopicProblem diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/CMakeLists.txt new file mode 100644 index 000000000..b55e0d37e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/CMakeLists.txt @@ -0,0 +1,31 @@ +cmake_minimum_required (VERSION 2.8) +project (tutorialModels C CXX) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + + +add_executable(MacroscopicProblem MacroscopicProblem.C) +target_link_libraries(MacroscopicProblem MODENA::modena) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/MacroscopicProblem b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/MacroscopicProblem new file mode 100755 index 0000000000000000000000000000000000000000..f6d49c5ac9edb19b61fed8953457fab6b19271a1 GIT binary patch literal 13630 zcmeHOdyrdI89&)M9Zu=-`76e_%&vl<_fE$8nHRx}`|{LuZNzQ{NpBO?YT64?8NXzwg}hB_}tD z!}y1P?b*5aJKyhnoYy_)Yn`J75 zPXc5|bv=2BWI@MehUqC)4-ZvJCZD_$Om=6K-5F)aR46;9+&*$cS47DpO$IpP4I*Mt z-Yb-g9e&Y@Q@*d&R_JRrWQOUrHY}L3-3_p#dcM=7x=HL*%~{xg8fh10-MiVr==U?rks3 zexq~CCC}aTg&QKTJxDUrA-nT%9c(}75tm-D#M9i|a(A;ZNcJvVYjEAVWZ=2SUU=Z+ z14GZgvi#}?mu;N*?W^DZ& z_<}>r2VmMT{REPgb)-pP7uLbw2h3Lozor5HV{}eE|1USdzXU(^^e=3n|Az)Rjf)SL zGu_re|9U9;oXX%ohO1tE)-~|+OauM-2KYA{;9qOt|E~@7!+3z&M29%!8;3?EwMqOU zaq80X3W(fW@K5@WIP`Zw-&e=aPT(s=OL@IyXV(E=AzDS7n!h|xZ&LaPy@pgxD1&C; zZQ`Pua%tTp|HI2|{Z8NBVMp-q)5Fz=@_@kBaGbG=8Hp~!YKp2#NlCUaII8`(aP%A^yK=tL?ZOmpv4CT-@d zXx1`KVQ$-R?o@gMsc0^j$l2y~jqO6rL^hkrnlY3p6hb6rMzec|GdVLhnTXw1Er};` zRyK2h!A#!Tm$!0eI&nKg$+Scqind=Rv)!|SEz&%&Q-=#>tSQ=-v1lqq9hbA>u`8~i zj@u;65AWDz^(E1UiD)j-8%igw!JeW0z;{`_F%%$ksa$B6)zcH3jAl(M8%xqjab6$utCCB|S5mohLGNlMC$EJ&*F(}Q^07Q9UPHJ+ERFLG)DV+9dw?yn4&olaMbE$@RsQE{GAWuOO`!rnlvrfbH z-$~sXuK!Nx({L(-lcC}Kn}%dT4Mzu+)3Ap7%BT>d8oo@!$2Gh~!zVS|tKs`JT>UhX z(rFE+ao{wg;VT#fy<5Ze{p+BHpRef$XJ7FI?^*PVcAp4-X3knvyaK}D?3143w$l7n zPe3$(*^{`pt~HP&ev*Wx)ALA|Jw`kYUFoFczfU|p5~VrGf0KAO@kb>8RpRN9EghEp zL&VcimJUk(0pe*0OEZ%H9Pu=CrG1kB6!A1CD^n^MM<)|sA|t!deI3P9 z&Uq&;3I*tz%2puc(Cxtz>leWiY_uM{4rGc zX>mWYk6#SGl7FhWg+(WdtC2n1+IGp!un8Uei~DTrijQ=9LMQ}iq|*~FoDCQL3cIuY ztt;C5ivL0-?JDGVKfVSokIrG}i%$ZE!CH%0@pqK?GEgeDv=|C|_U!SuuKl!X{VSfM zPhW}}JP(t{4x=uQ6MK|4WO~j@OUd)Ap~BO*1PjjxXa96&I1)NBNBev5#4-9A5j=5% zejOCQ2M4b|`dxS!33fdK5}ZBf4HjO!y=mt>OL*7hVb%-W-IF`S#xhXOFvr zn_teqL>;L;V_N^ec3hy2nB!_n(>gzxNavE)0TB@q-*u>aIi22T*!fPwwc33Ry@Sz2 z^q>-VgLYs5j(`R+VzgMNK}W%lqG=uAe+D{ED*+O{zff}Bu~WFF+gz)cpXWK~I}^+ZJ!fw$^30duGH3S6%boD?8s!F2cA5agC#{ z@;79^x9$F>t=^9N-2GnPz0LjJb)R1p@OIy|IN=z)bESm=R;9$4ssg&tVwfrTDe=z)bESm*&q4~*l30Hv80n;MFj zAa3gQvxd^QO-d}MZ=sau{AqQLO7E_e z_#5LJZ_j6lKh$IpDWCOrFShyew@bIp(}yfd_pAExH^vSd78fYW#LXFe_MpV?mNTlo z{GQFPU$p6eZyQh{@EJ8}7VeUawDH6}LB?_fO=LIP*@%g`c>|Xl_#Y;|J34XHzR{OZF$S zxnw3?#h8#~6R9W}sNBAkCH(Td!;eE32UoOEbc&t`jqW? zT^v>RL8Zv$vpu)}(++!HXAdj;8P#C2r@hB%e;+VX;eElU))^lS3KH)(HfPtB^F#}{ zbbCYD8_K?X?yZb?A7lDOhdrOu537yx``j@Od&P=}9QM4AHmi+Sbpxx*zAiJ!9L7cU z=VCbCpiSAYgG^7{e~dkXjBd|yMjU^1Eh{QYW38tjg3;}#aV|k=T9tn-3AN-be-1J) zE;UWGxGdX<``P9y+heWqO zr0fs*Y?DUiv%`NPL%z8EbeKlz5uYT2&OP*G=nV1{|3fO>4xH_`J8*W#l+Jd!Y+dyY zpUrt#Q3)NaESu+!Za=f$=8mWzeDpZbUc>#y>le+>dgXVMGLqLZVVvdLTJ`U4)UL0| zs1dsHP(|wEZei8Mo6Enab!Tqc72Jjn$-Em+H19*Y(2bpz_m^tiBY5Aa#+L}*532E{ z<=@lQcx^lr$=z7_d0np7uf#=F4wx3EoR<(W`;w=pwl6f~Gpm;sgg>FQ3@cT_Q ze!k%Kry6g^dNQs&RgKriw~^ef#cx&XJ9kBU4mOLw z({!v#6zkZ8_%nW=yj)4?Y|;h)bXHA?pX<%Y*Yh(db!z+J2H@oXWQ&1ZCGA0$aN#v7 zAaVy3?tHJkA2`+Lq@z9$OT2bmeyaS8JN!Q_^=rqsQM=Aa{T1R!n}J*ahyHC zDX!ERhZ>N0ZAEWxfKN5R?{0v91$ezU*Kak@e_ZK1<8+TV(0^I#*Up!-4fNgEpX4@GQS@w1a73&IAy_hF?oDMTqA4?O zWwJRlnx7VUli!z0Sc$lQ)8_YINfDK`N;3A+{z8CgO)Gmq*xwZ5`KhS`Fwr=Kj3%ur zRny$EGq8Qg9NIBRA-uBYDzDmn{gy4eh9YJp&>tQm4TJ!fwd1*rIT=mIWiW7+Z;JlZ z02w1J%)y&>1h$6;gccWShmu0KDrUDPveb5)S_&w9n^`?rJ!I(CH`B;H6FVEA!gWFKy{cdmB&w{Bfwi5 zsB+-4!g0Oy(N*. + +Description + Solving the two tank problem the MoDeNa way. + + A prototypical macros-scopic code embeds a micro-scale model (flowRate) + through the MoDeNa interface library. + +Authors + Henrik Rusche + +Contributors +*/ + +#include +#include +#include "modena.h" + +using namespace std; + +int +main(int argc, char *argv[]) +{ + double T = 270; + double Tend = 290.0; + + // Instantiate index set + //modena_index_set_t *indexSet = modena_index_set_new("species"); + + + // Instantiate a model + modena_model_t *model = modena_model_new("Density"); //muss das FunctionModule genau so heißen?? + if(modena_error_occurred()) + { + return modena_error(); + } + + // Allocate memory and fetch arg positions + modena_inputs_t *inputs = modena_inputs_new(model); //How many inputs and outputs is defined in the function module!! + modena_outputs_t *outputs = modena_outputs_new(model); + + + size_t Tpos = modena_model_inputs_argPos(model, "T"); + + modena_model_argPos_check(model); + + + while(T < Tend) + { + // Set input vector + modena_inputs_set(inputs, Tpos, T); + + // Call the model + int ret = modena_model_call(model, inputs, outputs); + + // Terminate, if requested + if(modena_error_occurred()) + { + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return modena_error(); + } + + // Fetch result + double rho = modena_outputs_get(outputs, 0); + + cout << "T = " << T; + + + T = T + 10.0; + } + + + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return 0; +} diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 0_initial_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 0_initial_profile_global.xlo new file mode 100644 index 000000000..a3e56c411 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 0_initial_profile_global.xlo @@ -0,0 +1,1603 @@ +Vector Object:Vec_0x84000000_0 1 MPI processes + type: mpi +Process [0] +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764801 +8.60376e-06 +0.00764801 +8.60377e-06 +0.00764801 +8.60377e-06 +0.00764801 +8.60377e-06 +0.007648 +8.60378e-06 +0.007648 +8.60379e-06 +0.00764799 +8.6038e-06 +0.00764798 +8.60381e-06 +0.00764797 +8.60383e-06 +0.00764795 +8.60386e-06 +0.00764793 +8.6039e-06 +0.00764789 +8.60395e-06 +0.00764785 +8.60402e-06 +0.0076478 +8.60412e-06 +0.00764772 +8.60425e-06 +0.00764762 +8.60442e-06 +0.00764749 +8.60466e-06 +0.00764731 +8.60499e-06 +0.00764707 +8.60544e-06 +0.00764674 +8.60606e-06 +0.00764632 +8.60689e-06 +0.00764574 +8.60803e-06 +0.00764498 +8.60958e-06 +0.00764396 +8.61169e-06 +0.00764259 +8.61458e-06 +0.00764077 +8.6185e-06 +0.00763833 +8.62386e-06 +0.00763508 +8.63115e-06 +0.00763073 +8.64108e-06 +0.00762493 +8.65461e-06 +0.0076172 +8.67302e-06 +0.00760688 +8.69807e-06 +0.00759314 +8.7321e-06 +0.00757486 +8.7783e-06 +0.00755056 +8.84092e-06 +0.00751833 +8.9256e-06 +0.00747569 +9.0398e-06 +0.00741944 +9.1932e-06 +0.00734559 +9.39817e-06 +0.00724916 +9.67017e-06 +0.00712416 +1.00278e-05 +0.0069637 +1.04923e-05 +0.00676022 +1.10861e-05 +0.00650614 +1.18303e-05 +0.00619499 +1.27397e-05 +0.00582284 +1.38175e-05 +0.00539012 +1.50496e-05 +0.00490317 +1.64009e-05 +0.00437499 +1.78178e-05 +0.00382444 +1.92346e-05 +0.0032739 +2.0586e-05 +0.00274571 +2.1818e-05 +0.00225877 +2.28958e-05 +0.00182605 +2.38052e-05 +0.00145389 +2.45494e-05 +0.00114274 +2.51433e-05 +0.000888669 +2.56077e-05 +0.000685182 +2.59654e-05 +0.00052472 +2.62373e-05 +0.000399729 +2.64423e-05 +0.000303294 +2.65957e-05 +0.00022944 +2.67099e-05 +0.000173197 +2.67946e-05 +0.000130552 +2.68572e-05 +9.83223e-05 +2.69034e-05 +7.40243e-05 +2.69375e-05 +5.57402e-05 +2.69625e-05 +4.20009e-05 +2.69809e-05 +3.16877e-05 +2.69944e-05 +2.39523e-05 +2.70044e-05 +1.81538e-05 +2.70117e-05 +1.38092e-05 +2.7017e-05 +1.0555e-05 +2.70209e-05 +8.11816e-06 +2.70238e-05 +6.29374e-06 +2.70259e-05 +4.92801e-06 +2.70275e-05 +3.90575e-06 +2.70286e-05 +3.14065e-06 +2.70295e-05 +2.56804e-06 +2.70301e-05 +2.13952e-06 +2.70305e-05 +1.81884e-06 +2.70309e-05 +1.57887e-06 +2.70311e-05 +1.39929e-06 +2.70313e-05 +1.26492e-06 +2.70314e-05 +1.16437e-06 +2.70315e-05 +1.08912e-06 +2.70316e-05 +1.03282e-06 +2.70316e-05 +9.9069e-07 +2.70317e-05 +9.59165e-07 +2.70317e-05 +9.35575e-07 +2.70317e-05 +9.17924e-07 +2.70317e-05 +9.04716e-07 +2.70317e-05 +8.94833e-07 +2.70317e-05 +8.87437e-07 +2.70317e-05 +8.81903e-07 +2.70318e-05 +8.77763e-07 +2.70318e-05 +8.74664e-07 +2.70318e-05 +8.72346e-07 +2.70318e-05 +8.70611e-07 +2.70318e-05 +8.69313e-07 +2.70318e-05 +8.68342e-07 +2.70318e-05 +8.67615e-07 +2.70318e-05 +8.67071e-07 +2.70318e-05 +8.66664e-07 +2.70318e-05 +8.66359e-07 +2.70318e-05 +8.66132e-07 +2.70318e-05 +8.65961e-07 +2.70318e-05 +8.65833e-07 +2.70318e-05 +8.65738e-07 +2.70318e-05 +8.65667e-07 +2.70318e-05 +8.65613e-07 +2.70318e-05 +8.65573e-07 +2.70318e-05 +8.65543e-07 +2.70318e-05 +8.65521e-07 +2.70318e-05 +8.65504e-07 +2.70318e-05 +8.65491e-07 +2.70318e-05 +8.65482e-07 +2.70318e-05 +8.65475e-07 +2.70318e-05 +8.6547e-07 +2.70318e-05 +8.65466e-07 +2.70318e-05 +8.65463e-07 +2.70318e-05 +8.65461e-07 +2.70318e-05 +8.65459e-07 +2.70318e-05 +8.65458e-07 +2.70318e-05 +8.65457e-07 +2.70318e-05 +8.65456e-07 +2.70318e-05 +8.65456e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 10_initial_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 10_initial_profile_global.xlo new file mode 100644 index 000000000..eb02ec18f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 10_initial_profile_global.xlo @@ -0,0 +1,3072 @@ +#Vector Object:Vec_0x84000000_0 1 MPI processes +# type: mpi +#Process [0] +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196548 +0.00192565 +0.00132796 +0.00196548 +0.00192565 +0.00132796 +0.00196548 +0.00192564 +0.00132796 +0.00196548 +0.00192564 +0.00132796 +0.00196548 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196546 +0.00192563 +0.00132796 +0.00196546 +0.00192563 +0.00132796 +0.00196546 +0.00192563 +0.00132796 +0.00196545 +0.00192563 +0.00132795 +0.00196545 +0.00192562 +0.00132795 +0.00196545 +0.00192562 +0.00132795 +0.00196544 +0.00192562 +0.00132795 +0.00196544 +0.00192561 +0.00132795 +0.00196543 +0.00192561 +0.00132795 +0.00196543 +0.00192561 +0.00132795 +0.00196542 +0.0019256 +0.00132795 +0.00196541 +0.0019256 +0.00132794 +0.00196541 +0.00192559 +0.00132794 +0.0019654 +0.00192559 +0.00132794 +0.00196539 +0.00192558 +0.00132794 +0.00196538 +0.00192558 +0.00132794 +0.00196538 +0.00192557 +0.00132793 +0.00196537 +0.00192556 +0.00132793 +0.00196536 +0.00192556 +0.00132793 +0.00196534 +0.00192555 +0.00132792 +0.00196533 +0.00192554 +0.00132792 +0.00196532 +0.00192553 +0.00132792 +0.00196531 +0.00192552 +0.00132791 +0.00196529 +0.00192551 +0.00132791 +0.00196528 +0.0019255 +0.00132791 +0.00196526 +0.00192549 +0.0013279 +0.00196525 +0.00192548 +0.0013279 +0.00196523 +0.00192546 +0.00132789 +0.00196521 +0.00192545 +0.00132788 +0.00196519 +0.00192543 +0.00132788 +0.00196516 +0.00192542 +0.00132787 +0.00196514 +0.0019254 +0.00132786 +0.00196511 +0.00192538 +0.00132785 +0.00196508 +0.00192536 +0.00132785 +0.00196505 +0.00192534 +0.00132784 +0.00196502 +0.00192531 +0.00132783 +0.00196499 +0.00192529 +0.00132782 +0.00196495 +0.00192526 +0.0013278 +0.00196491 +0.00192523 +0.00132779 +0.00196487 +0.0019252 +0.00132778 +0.00196483 +0.00192517 +0.00132776 +0.00196478 +0.00192513 +0.00132775 +0.00196473 +0.00192509 +0.00132773 +0.00196467 +0.00192505 +0.00132771 +0.00196461 +0.001925 +0.00132769 +0.00196455 +0.00192495 +0.00132767 +0.00196448 +0.0019249 +0.00132765 +0.00196441 +0.00192485 +0.00132762 +0.00196433 +0.00192479 +0.0013276 +0.00196425 +0.00192472 +0.00132757 +0.00196416 +0.00192466 +0.00132754 +0.00196407 +0.00192458 +0.0013275 +0.00196396 +0.0019245 +0.00132747 +0.00196386 +0.00192442 +0.00132743 +0.00196374 +0.00192433 +0.00132739 +0.00196361 +0.00192423 +0.00132734 +0.00196348 +0.00192412 +0.00132729 +0.00196334 +0.00192401 +0.00132724 +0.00196319 +0.00192389 +0.00132719 +0.00196302 +0.00192376 +0.00132712 +0.00196285 +0.00192362 +0.00132706 +0.00196266 +0.00192347 +0.00132699 +0.00196246 +0.00192331 +0.00132691 +0.00196225 +0.00192314 +0.00132683 +0.00196202 +0.00192296 +0.00132675 +0.00196177 +0.00192276 +0.00132665 +0.00196151 +0.00192255 +0.00132655 +0.00196123 +0.00192232 +0.00132644 +0.00196093 +0.00192208 +0.00132632 +0.0019606 +0.00192182 +0.0013262 +0.00196026 +0.00192154 +0.00132606 +0.00195989 +0.00192124 +0.00132591 +0.0019595 +0.00192091 +0.00132575 +0.00195907 +0.00192057 +0.00132558 +0.00195862 +0.00192019 +0.0013254 +0.00195814 +0.0019198 +0.0013252 +0.00195762 +0.00191937 +0.00132499 +0.00195707 +0.00191891 +0.00132476 +0.00195648 +0.00191842 +0.00132451 +0.00195584 +0.00191789 +0.00132425 +0.00195517 +0.00191732 +0.00132396 +0.00195444 +0.00191672 +0.00132365 +0.00195367 +0.00191607 +0.00132332 +0.00195284 +0.00191537 +0.00132296 +0.00195195 +0.00191462 +0.00132258 +0.001951 +0.00191382 +0.00132217 +0.00194999 +0.00191296 +0.00132172 +0.00194891 +0.00191203 +0.00132124 +0.00194775 +0.00191104 +0.00132072 +0.00194651 +0.00190998 +0.00132017 +0.00194518 +0.00190885 +0.00131957 +0.00194377 +0.00190763 +0.00131893 +0.00194225 +0.00190632 +0.00131824 +0.00194064 +0.00190493 +0.00131749 +0.00193891 +0.00190343 +0.00131669 +0.00193706 +0.00190182 +0.00131583 +0.00193509 +0.0019001 +0.0013149 +0.00193298 +0.00189826 +0.0013139 +0.00193073 +0.00189628 +0.00131283 +0.00192832 +0.00189417 +0.00131168 +0.00192576 +0.00189191 +0.00131044 +0.00192302 +0.00188949 +0.00130911 +0.00192009 +0.00188689 +0.00130768 +0.00191697 +0.00188412 +0.00130614 +0.00191364 +0.00188115 +0.00130448 +0.00191009 +0.00187798 +0.00130271 +0.00190631 +0.00187458 +0.0013008 +0.00190227 +0.00187096 +0.00129876 +0.00189797 +0.00186708 +0.00129656 +0.00189338 +0.00186293 +0.0012942 +0.0018885 +0.00185851 +0.00129167 +0.0018833 +0.00185378 +0.00128896 +0.00187777 +0.00184873 +0.00128605 +0.00187189 +0.00184335 +0.00128293 +0.00186563 +0.0018376 +0.00127959 +0.00185897 +0.00183148 +0.00127602 +0.0018519 +0.00182495 +0.00127219 +0.00184439 +0.001818 +0.00126809 +0.00183642 +0.0018106 +0.00126371 +0.00182796 +0.00180273 +0.00125903 +0.00181899 +0.00179435 +0.00125403 +0.00180949 +0.00178545 +0.00124869 +0.00179942 +0.001776 +0.001243 +0.00178878 +0.00176596 +0.00123692 +0.00177752 +0.00175532 +0.00123045 +0.00176562 +0.00174404 +0.00122356 +0.00175306 +0.0017321 +0.00121624 +0.00173981 +0.00171946 +0.00120845 +0.00172585 +0.00170611 +0.00120018 +0.00171115 +0.00169201 +0.00119141 +0.00169569 +0.00167713 +0.00118212 +0.00167945 +0.00166146 +0.00117229 +0.00166241 +0.00164496 +0.00116189 +0.00164454 +0.00162762 +0.00115092 +0.00162584 +0.00160942 +0.00113934 +0.00160628 +0.00159033 +0.00112716 +0.00158586 +0.00157035 +0.00111435 +0.00156457 +0.00154946 +0.0011009 +0.00154241 +0.00152765 +0.00108681 +0.00151936 +0.00150492 +0.00107206 +0.00149545 +0.00148128 +0.00105666 +0.00147067 +0.00145672 +0.00104061 +0.00144504 +0.00143126 +0.00102391 +0.00141858 +0.00140491 +0.00100656 +0.00139131 +0.0013777 +0.000988594 +0.00136325 +0.00134965 +0.000970014 +0.00133444 +0.0013208 +0.000950847 +0.00130493 +0.00129119 +0.000931119 +0.00127475 +0.00126086 +0.000910864 +0.00124395 +0.00122987 +0.000890117 +0.00121259 +0.00119826 +0.00086892 +0.00118072 +0.00116612 +0.000847318 +0.00114842 +0.0011335 +0.000825361 +0.00111574 +0.00110047 +0.000803102 +0.00108276 +0.00106711 +0.000780597 +0.00104956 +0.00103351 +0.000757906 +0.00101619 +0.000999737 +0.00073509 +0.000982756 +0.000965881 +0.00071221 +0.000949317 +0.000932025 +0.00068933 +0.000915955 +0.000898253 +0.000666514 +0.000882748 +0.000864649 +0.000643823 +0.000849769 +0.000831294 +0.000621318 +0.000817093 +0.000798267 +0.000599059 +0.000784789 +0.000765644 +0.000577102 +0.000752926 +0.000733498 +0.0005555 +0.000721565 +0.000701897 +0.000534303 +0.000690767 +0.000670903 +0.000513556 +0.000660585 +0.000640573 +0.000493301 +0.000631069 +0.000610961 +0.000473573 +0.000602263 +0.000582111 +0.000454406 +0.000574206 +0.000554063 +0.000435826 +0.000546932 +0.000526852 +0.000417856 +0.000520468 +0.000500505 +0.000400513 +0.000494839 +0.000475044 +0.00038381 +0.000470061 +0.000450486 +0.000367756 +0.000446147 +0.00042684 +0.000352356 +0.000423106 +0.000404114 +0.000337611 +0.000400941 +0.000382307 +0.000323518 +0.000379651 +0.000361415 +0.00031007 +0.000359232 +0.000341432 +0.00029726 +0.000339676 +0.000322345 +0.000285075 +0.000320972 +0.00030414 +0.000273503 +0.000303106 +0.0002868 +0.000262528 +0.000286061 +0.000270304 +0.000252133 +0.000269819 +0.000254631 +0.000242299 +0.00025436 +0.000239756 +0.000233008 +0.000239661 +0.000225655 +0.000224239 +0.0002257 +0.0002123 +0.000215971 +0.000212452 +0.000199666 +0.000208184 +0.000199892 +0.000187723 +0.000200857 +0.000187995 +0.000176445 +0.000193969 +0.000176735 +0.000165802 +0.000187498 +0.000166087 +0.000155768 +0.000181425 +0.000156024 +0.000146313 +0.000175728 +0.000146522 +0.000137412 +0.000170389 +0.000137554 +0.000129037 +0.000165388 +0.000129096 +0.000121161 +0.000160706 +0.000121123 +0.00011376 +0.000156326 +0.000113613 +0.000106808 +0.000152231 +0.000106541 +0.000100282 +0.000148403 +9.98862e-05 +9.41586e-05 +0.000144827 +9.36258e-05 +8.84151e-05 +0.000141487 +8.77393e-05 +8.30305e-05 +0.00013837 +8.22067e-05 +7.79843e-05 +0.000135462 +7.70087e-05 +7.32571e-05 +0.000132749 +7.21267e-05 +6.88302e-05 +0.00013022 +6.75432e-05 +6.46859e-05 +0.000127862 +6.32413e-05 +6.08073e-05 +0.000125665 +5.92048e-05 +5.71784e-05 +0.000123618 +5.54185e-05 +5.37841e-05 +0.000121711 +5.18677e-05 +5.06099e-05 +0.000119936 +4.85387e-05 +4.76424e-05 +0.000118283 +4.54183e-05 +4.48687e-05 +0.000116745 +4.2494e-05 +4.22765e-05 +0.000115313 +3.97542e-05 +3.98546e-05 +0.000113981 +3.71876e-05 +3.75921e-05 +0.000112742 +3.47837e-05 +3.54789e-05 +0.000111589 +3.25326e-05 +3.35054e-05 +0.000110517 +3.04249e-05 +3.16627e-05 +0.00010952 +2.84518e-05 +2.99423e-05 +0.000108592 +2.66049e-05 +2.83364e-05 +0.000107731 +2.48763e-05 +2.68375e-05 +0.000106929 +2.32588e-05 +2.54385e-05 +0.000106185 +2.17452e-05 +2.4133e-05 +0.000105492 +2.03291e-05 +2.29149e-05 +0.000104849 +1.90044e-05 +2.17784e-05 +0.000104251 +1.77652e-05 +2.07181e-05 +0.000103696 +1.66061e-05 +1.9729e-05 +0.00010318 +1.55221e-05 +1.88064e-05 +0.0001027 +1.45083e-05 +1.79459e-05 +0.000102254 +1.35603e-05 +1.71432e-05 +0.00010184 +1.26738e-05 +1.63947e-05 +0.000101456 +1.1845e-05 +1.56967e-05 +0.000101099 +1.107e-05 +1.50458e-05 +0.000100767 +1.03455e-05 +1.44388e-05 +0.000100459 +9.66826e-06 +1.38728e-05 +0.000100173 +9.03511e-06 +1.33451e-05 +9.99068e-05 +8.44327e-06 +1.28531e-05 +9.966e-05 +7.89005e-06 +1.23944e-05 +9.94307e-05 +7.37296e-06 +1.19668e-05 +9.92177e-05 +6.88965e-06 +1.15681e-05 +9.902e-05 +6.43794e-06 +1.11965e-05 +9.88364e-05 +6.01576e-06 +1.085e-05 +9.86659e-05 +5.62121e-06 +1.05271e-05 +9.85075e-05 +5.25248e-06 +1.0226e-05 +9.83605e-05 +4.90789e-06 +9.94541e-06 +9.8224e-05 +4.58587e-06 +9.68385e-06 +9.80972e-05 +4.28494e-06 +9.44004e-06 +9.79795e-05 +4.00374e-06 +9.21279e-06 +9.78702e-05 +3.74097e-06 +9.00098e-06 +9.77687e-05 +3.49543e-06 +8.80356e-06 +9.76744e-05 +3.26599e-06 +8.61956e-06 +9.75869e-05 +3.05161e-06 +8.44806e-06 +9.75057e-05 +2.85129e-06 +8.28823e-06 +9.74303e-05 +2.66412e-06 +8.13926e-06 +9.73603e-05 +2.48924e-06 +8.00042e-06 +9.72952e-05 +2.32583e-06 +7.87103e-06 +9.72349e-05 +2.17316e-06 +7.75043e-06 +9.71788e-05 +2.03051e-06 +7.63805e-06 +9.71268e-05 +1.89723e-06 +7.5333e-06 +9.70785e-05 +1.77271e-06 +7.43569e-06 +9.70336e-05 +1.65637e-06 +7.34472e-06 +9.6992e-05 +1.54767e-06 +7.25994e-06 +9.69533e-05 +1.44611e-06 +7.18093e-06 +9.69175e-05 +1.35123e-06 +7.1073e-06 +9.68841e-05 +1.26259e-06 +7.03868e-06 +9.68532e-05 +1.17977e-06 +6.97474e-06 +9.68245e-05 +1.10239e-06 +6.91514e-06 +9.67978e-05 +1.03011e-06 +6.85961e-06 +9.67731e-05 +9.62571e-07 +6.80786e-06 +9.67501e-05 +8.99476e-07 +6.75963e-06 +9.67287e-05 +8.4053e-07 +6.71468e-06 +9.67089e-05 +7.8546e-07 +6.6728e-06 +9.66905e-05 +7.34012e-07 +6.63377e-06 +9.66735e-05 +6.85948e-07 +6.59739e-06 +9.66576e-05 +6.41044e-07 +6.5635e-06 +9.66429e-05 +5.99094e-07 +6.53191e-06 +9.66293e-05 +5.59903e-07 +6.50248e-06 +9.66166e-05 +5.23289e-07 +6.47505e-06 +9.66048e-05 +4.89085e-07 +6.44949e-06 +9.65939e-05 +4.5713e-07 +6.42567e-06 +9.65837e-05 +4.27277e-07 +6.40347e-06 +9.65743e-05 +3.99388e-07 +6.38278e-06 +9.65656e-05 +3.73334e-07 +6.36351e-06 +9.65574e-05 +3.48994e-07 +6.34554e-06 +9.65499e-05 +3.26255e-07 +6.32881e-06 +9.65429e-05 +3.05013e-07 +6.31321e-06 +9.65364e-05 +2.85168e-07 +6.29867e-06 +9.65304e-05 +2.66628e-07 +6.28513e-06 +9.65248e-05 +2.49309e-07 +6.2725e-06 +9.65196e-05 +2.33129e-07 +6.26074e-06 +9.65148e-05 +2.18013e-07 +6.24978e-06 +9.65103e-05 +2.03892e-07 +6.23956e-06 +9.65061e-05 +1.90701e-07 +6.23005e-06 +9.65023e-05 +1.78377e-07 +6.22118e-06 +9.64987e-05 +1.66864e-07 +6.21291e-06 +9.64953e-05 +1.56109e-07 +6.20521e-06 +9.64923e-05 +1.46061e-07 +6.19803e-06 +9.64894e-05 +1.36675e-07 +6.19134e-06 +9.64867e-05 +1.27906e-07 +6.18511e-06 +9.64843e-05 +1.19715e-07 +6.1793e-06 +9.6482e-05 +1.12062e-07 +6.17389e-06 +9.64798e-05 +1.04913e-07 +6.16885e-06 +9.64779e-05 +9.82344e-08 +6.16415e-06 +9.6476e-05 +9.19953e-08 +6.15977e-06 +9.64743e-05 +8.61668e-08 +6.15569e-06 +9.64727e-05 +8.07218e-08 +6.15188e-06 +9.64713e-05 +7.56352e-08 +6.14834e-06 +9.64699e-05 +7.08833e-08 +6.14504e-06 +9.64686e-05 +6.64441e-08 +6.14196e-06 +9.64675e-05 +6.2297e-08 +6.13909e-06 +9.64664e-05 +5.84229e-08 +6.13642e-06 +9.64654e-05 +5.48037e-08 +6.13393e-06 +9.64644e-05 +5.14227e-08 +6.13161e-06 +9.64635e-05 +4.82642e-08 +6.12945e-06 +9.64627e-05 +4.53135e-08 +6.12743e-06 +9.6462e-05 +4.25571e-08 +6.12555e-06 +9.64613e-05 +3.9982e-08 +6.1238e-06 +9.64606e-05 +3.75764e-08 +6.12217e-06 +9.646e-05 +3.53291e-08 +6.12066e-06 +9.64595e-05 +3.32297e-08 +6.11924e-06 +9.6459e-05 +3.12685e-08 +6.11792e-06 +9.64585e-05 +2.94363e-08 +6.11669e-06 +9.6458e-05 +2.77247e-08 +6.11554e-06 +9.64576e-05 +2.61258e-08 +6.11448e-06 +9.64572e-05 +2.4632e-08 +6.11348e-06 +9.64569e-05 +2.32366e-08 +6.11256e-06 +9.64565e-05 +2.1933e-08 +6.11169e-06 +9.64562e-05 +2.07153e-08 +6.11089e-06 +9.64559e-05 +1.95776e-08 +6.11014e-06 +9.64557e-05 +1.85148e-08 +6.10944e-06 +9.64554e-05 +1.7522e-08 +6.10879e-06 +9.64552e-05 +1.65945e-08 +6.10818e-06 +9.6455e-05 +1.57281e-08 +6.10761e-06 +9.64548e-05 +1.49186e-08 +6.10709e-06 +9.64546e-05 +1.41625e-08 +6.10659e-06 +9.64544e-05 +1.34561e-08 +6.10614e-06 +9.64543e-05 +1.27962e-08 +6.10571e-06 +9.64541e-05 +1.21797e-08 +6.10531e-06 +9.6454e-05 +1.16038e-08 +6.10494e-06 +9.64539e-05 +1.10658e-08 +6.1046e-06 +9.64538e-05 +1.05632e-08 +6.10428e-06 +9.64536e-05 +1.00936e-08 +6.10398e-06 +9.64535e-05 +9.65502e-09 +6.1037e-06 +9.64535e-05 +9.24526e-09 +6.10344e-06 +9.64534e-05 +8.86248e-09 +6.10319e-06 +9.64533e-05 +8.50488e-09 +6.10297e-06 +9.64532e-05 +8.17082e-09 +6.10276e-06 +9.64531e-05 +7.85874e-09 +6.10256e-06 +9.64531e-05 +7.5672e-09 +6.10238e-06 +9.6453e-05 +7.29485e-09 +6.10221e-06 +9.6453e-05 +7.04043e-09 +6.10205e-06 +9.64529e-05 +6.80274e-09 +6.1019e-06 +9.64529e-05 +6.5807e-09 +6.10176e-06 +9.64528e-05 +6.37327e-09 +6.10164e-06 +9.64528e-05 +6.1795e-09 +6.10152e-06 +9.64527e-05 +5.99847e-09 +6.1014e-06 +9.64527e-05 +5.82936e-09 +6.1013e-06 +9.64527e-05 +5.67138e-09 +6.1012e-06 +9.64526e-05 +5.5238e-09 +6.10111e-06 +9.64526e-05 +5.38593e-09 +6.10103e-06 +9.64526e-05 +5.25713e-09 +6.10095e-06 +9.64526e-05 +5.13681e-09 +6.10088e-06 +9.64525e-05 +5.02441e-09 +6.10081e-06 +9.64525e-05 +4.91941e-09 +6.10075e-06 +9.64525e-05 +4.82131e-09 +6.10069e-06 +9.64525e-05 +4.72967e-09 +6.10063e-06 +9.64525e-05 +4.64407e-09 +6.10058e-06 +9.64524e-05 +4.56409e-09 +6.10053e-06 +9.64524e-05 +4.48938e-09 +6.10049e-06 +9.64524e-05 +4.41959e-09 +6.10045e-06 +9.64524e-05 +4.35439e-09 +6.10041e-06 +9.64524e-05 +4.29348e-09 +6.10037e-06 +9.64524e-05 +4.23658e-09 +6.10034e-06 +9.64524e-05 +4.18343e-09 +6.10031e-06 +9.64524e-05 +4.13377e-09 +6.10028e-06 +9.64524e-05 +4.08738e-09 +6.10025e-06 +9.64523e-05 +4.04404e-09 +6.10022e-06 +9.64523e-05 +4.00356e-09 +6.1002e-06 +9.64523e-05 +3.96574e-09 +6.10018e-06 +9.64523e-05 +3.93041e-09 +6.10016e-06 +9.64523e-05 +3.8974e-09 +6.10014e-06 +9.64523e-05 +3.86657e-09 +6.10012e-06 +9.64523e-05 +3.83776e-09 +6.10011e-06 +9.64523e-05 +3.81086e-09 +6.10009e-06 +9.64523e-05 +3.78572e-09 +6.10008e-06 +9.64523e-05 +3.76223e-09 +6.10006e-06 +9.64523e-05 +3.7403e-09 +6.10005e-06 +9.64523e-05 +3.7198e-09 +6.10004e-06 +9.64523e-05 +3.70066e-09 +6.10003e-06 +9.64523e-05 +3.68277e-09 +6.10002e-06 +9.64523e-05 +3.66606e-09 +6.10001e-06 +9.64523e-05 +3.65046e-09 +6.1e-06 +9.64523e-05 +3.63587e-09 +6.09999e-06 +9.64523e-05 +3.62225e-09 +6.09998e-06 +9.64523e-05 +3.60953e-09 +6.09998e-06 +9.64523e-05 +3.59764e-09 +6.09997e-06 +9.64523e-05 +3.58653e-09 +6.09996e-06 +9.64523e-05 +3.57616e-09 +6.09996e-06 +9.64523e-05 +3.56647e-09 +6.09995e-06 +9.64523e-05 +3.55741e-09 +6.09995e-06 +9.64523e-05 +3.54896e-09 +6.09994e-06 +9.64523e-05 +3.54105e-09 +6.09994e-06 +9.64523e-05 +3.53367e-09 +6.09993e-06 +9.64523e-05 +3.52678e-09 +6.09993e-06 +9.64523e-05 +3.52034e-09 +6.09993e-06 +9.64523e-05 +3.51432e-09 +6.09992e-06 +9.64523e-05 +3.5087e-09 +6.09992e-06 +9.64523e-05 +3.50344e-09 +6.09992e-06 +9.64522e-05 +3.49854e-09 +6.09991e-06 +9.64522e-05 +3.49395e-09 +6.09991e-06 +9.64522e-05 +3.48967e-09 +6.09991e-06 +9.64522e-05 +3.48567e-09 +6.09991e-06 +9.64522e-05 +3.48194e-09 +6.09991e-06 +9.64522e-05 +3.47845e-09 +6.0999e-06 +9.64522e-05 +3.47518e-09 +6.0999e-06 +9.64522e-05 +3.47214e-09 +6.0999e-06 +9.64522e-05 +3.46929e-09 +6.0999e-06 +9.64522e-05 +3.46663e-09 +6.0999e-06 +9.64522e-05 +3.46415e-09 +6.0999e-06 +9.64522e-05 +3.46183e-09 +6.0999e-06 +9.64522e-05 +3.45966e-09 +6.09989e-06 +9.64522e-05 +3.45764e-09 +6.09989e-06 +9.64522e-05 +3.45575e-09 +6.09989e-06 +9.64522e-05 +3.45398e-09 +6.09989e-06 +9.64522e-05 +3.45233e-09 +6.09989e-06 +9.64522e-05 +3.45079e-09 +6.09989e-06 +9.64522e-05 +3.44935e-09 +6.09989e-06 +9.64522e-05 +3.448e-09 +6.09989e-06 +9.64522e-05 +3.44674e-09 +6.09989e-06 +9.64522e-05 +3.44557e-09 +6.09989e-06 +9.64522e-05 +3.44447e-09 +6.09989e-06 +9.64522e-05 +3.44345e-09 +6.09989e-06 +9.64522e-05 +3.44249e-09 +6.09989e-06 +9.64522e-05 +3.44159e-09 +6.09988e-06 +9.64522e-05 +3.44076e-09 +6.09988e-06 +9.64522e-05 +3.43998e-09 +6.09988e-06 +9.64522e-05 +3.43925e-09 +6.09988e-06 +9.64522e-05 +3.43857e-09 +6.09988e-06 +9.64522e-05 +3.43793e-09 +6.09988e-06 +9.64522e-05 +3.43734e-09 +6.09988e-06 +9.64522e-05 +3.43678e-09 +6.09988e-06 +9.64522e-05 +3.43626e-09 +6.09988e-06 +9.64522e-05 +3.43578e-09 +6.09988e-06 +9.64522e-05 +3.43532e-09 +6.09988e-06 +9.64522e-05 +3.4349e-09 +6.09988e-06 +9.64522e-05 +3.43451e-09 +6.09988e-06 +9.64522e-05 +3.43414e-09 +6.09988e-06 +9.64522e-05 +3.43379e-09 +6.09988e-06 +9.64522e-05 +3.43347e-09 +6.09988e-06 +9.64522e-05 +3.43317e-09 +6.09988e-06 +9.64522e-05 +3.43289e-09 +6.09988e-06 +9.64522e-05 +3.43262e-09 +6.09988e-06 +9.64522e-05 +3.43238e-09 +6.09988e-06 +9.64522e-05 +3.43215e-09 +6.09988e-06 +9.64522e-05 +3.43194e-09 +6.09988e-06 +9.64522e-05 +3.43174e-09 +6.09988e-06 +9.64522e-05 +3.43155e-09 +6.09988e-06 +9.64522e-05 +3.43137e-09 +6.09988e-06 +9.64522e-05 +3.43121e-09 +6.09988e-06 +9.64522e-05 +3.43106e-09 +6.09988e-06 +9.64522e-05 +3.43092e-09 +6.09988e-06 +9.64522e-05 +3.43078e-09 +6.09988e-06 +9.64522e-05 +3.43066e-09 +6.09988e-06 +9.64522e-05 +3.43054e-09 +6.09988e-06 +9.64522e-05 +3.43043e-09 +6.09988e-06 +9.64522e-05 +3.43033e-09 +6.09988e-06 +9.64522e-05 +3.43024e-09 +6.09988e-06 +9.64522e-05 +3.43015e-09 +6.09988e-06 +9.64522e-05 +3.43007e-09 +6.09988e-06 +9.64522e-05 +3.42999e-09 +6.09988e-06 +9.64522e-05 +3.42992e-09 +6.09988e-06 +9.64522e-05 +3.42985e-09 +6.09988e-06 +9.64522e-05 +3.42979e-09 +6.09988e-06 +9.64522e-05 +3.42973e-09 +6.09988e-06 +9.64522e-05 +3.42967e-09 +6.09988e-06 +9.64522e-05 +3.42962e-09 +6.09988e-06 +9.64522e-05 +3.42958e-09 +6.09988e-06 +9.64522e-05 +3.42953e-09 +6.09988e-06 +9.64522e-05 +3.42949e-09 +6.09988e-06 +9.64522e-05 +3.42945e-09 +6.09988e-06 +9.64522e-05 +3.42941e-09 +6.09988e-06 +9.64522e-05 +3.42938e-09 +6.09988e-06 +9.64522e-05 +3.42935e-09 +6.09988e-06 +9.64522e-05 +3.42932e-09 +6.09988e-06 +9.64522e-05 +3.42929e-09 +6.09988e-06 +9.64522e-05 +3.42926e-09 +6.09988e-06 +9.64522e-05 +3.42924e-09 +6.09988e-06 +9.64522e-05 +3.42922e-09 +6.09988e-06 +9.64522e-05 +3.4292e-09 +6.09988e-06 +9.64522e-05 +3.42918e-09 +6.09988e-06 +9.64522e-05 +3.42916e-09 +6.09988e-06 +9.64522e-05 +3.42914e-09 +6.09988e-06 +9.64522e-05 +3.42912e-09 +6.09988e-06 +9.64522e-05 +3.42911e-09 +6.09988e-06 +9.64522e-05 +3.4291e-09 +6.09988e-06 +9.64522e-05 +3.42908e-09 +6.09988e-06 +9.64522e-05 +3.42907e-09 +6.09988e-06 +9.64522e-05 +3.42906e-09 +6.09988e-06 +9.64522e-05 +3.42905e-09 +6.09988e-06 +9.64522e-05 +3.42904e-09 +6.09988e-06 +9.64522e-05 +3.42903e-09 +6.09988e-06 +9.64522e-05 +3.42902e-09 +6.09988e-06 +9.64522e-05 +3.42901e-09 +6.09988e-06 +9.64522e-05 +3.429e-09 +6.09988e-06 +9.64522e-05 +3.429e-09 +6.09988e-06 +9.64522e-05 +3.42899e-09 +6.09988e-06 +9.64522e-05 +3.42898e-09 +6.09988e-06 +9.64522e-05 +3.42898e-09 +6.09988e-06 +9.64522e-05 +3.42897e-09 +6.09988e-06 +9.64522e-05 +3.42897e-09 +6.09988e-06 +9.64522e-05 +3.42896e-09 +6.09988e-06 +9.64522e-05 +3.42896e-09 +6.09988e-06 +9.64522e-05 +3.42895e-09 +6.09988e-06 +9.64522e-05 +3.42895e-09 +6.09988e-06 +9.64522e-05 +3.42895e-09 +6.09988e-06 +9.64522e-05 +3.42894e-09 +6.09988e-06 +9.64522e-05 +3.42894e-09 +6.09988e-06 +9.64522e-05 +3.42894e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 11_final_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 11_final_profile_global.xlo new file mode 100644 index 000000000..222875201 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 11_final_profile_global.xlo @@ -0,0 +1,3072 @@ +#Vector Object:Vec_0x84000000_0 1 MPI processes +# type: mpi +#Process [0] +0.001997 +0.00189502 +0.00131238 +0.00199685 +0.00189393 +0.00131183 +0.00199673 +0.00189286 +0.00131129 +0.00199666 +0.00189182 +0.00131078 +0.00199661 +0.00189081 +0.00131028 +0.00199661 +0.00188983 +0.0013098 +0.00199664 +0.00188887 +0.00130933 +0.00199671 +0.00188794 +0.00130889 +0.00199682 +0.00188704 +0.00130846 +0.00199696 +0.00188617 +0.00130805 +0.00199714 +0.00188532 +0.00130766 +0.00199735 +0.00188449 +0.00130728 +0.00199759 +0.00188368 +0.00130692 +0.00199787 +0.0018829 +0.00130657 +0.00199817 +0.00188213 +0.00130623 +0.0019985 +0.00188138 +0.00130591 +0.00199886 +0.00188064 +0.00130559 +0.00199924 +0.00187992 +0.00130529 +0.00199965 +0.00187921 +0.00130499 +0.00200008 +0.00187852 +0.0013047 +0.00200052 +0.00187783 +0.00130441 +0.00200099 +0.00187715 +0.00130414 +0.00200147 +0.00187648 +0.00130386 +0.00200196 +0.00187581 +0.0013036 +0.00200248 +0.00187515 +0.00130333 +0.002003 +0.00187449 +0.00130307 +0.00200354 +0.00187383 +0.00130281 +0.00200409 +0.00187317 +0.00130255 +0.00200465 +0.00187252 +0.00130229 +0.00200522 +0.00187186 +0.00130203 +0.00200579 +0.0018712 +0.00130178 +0.00200638 +0.00187054 +0.00130152 +0.00200698 +0.00186988 +0.00130126 +0.00200758 +0.00186922 +0.001301 +0.00200819 +0.00186855 +0.00130073 +0.0020088 +0.00186788 +0.00130048 +0.00200942 +0.00186718 +0.00130038 +0.00201003 +0.00186653 +0.00130035 +0.00201067 +0.00186634 +0.00130032 +0.00201124 +0.00186618 +0.00130025 +0.00201128 +0.00186598 +0.00130017 +0.00201131 +0.00186578 +0.00130008 +0.00201132 +0.00186556 +0.00129997 +0.00201132 +0.00186534 +0.00129987 +0.00201132 +0.00186512 +0.00129976 +0.00201131 +0.00186489 +0.00129965 +0.00201129 +0.00186468 +0.00129954 +0.00201128 +0.00186447 +0.00129944 +0.00201128 +0.00186427 +0.00129934 +0.00201128 +0.00186408 +0.00129925 +0.00201128 +0.00186391 +0.00129916 +0.0020113 +0.00186375 +0.00129909 +0.00201132 +0.0018636 +0.00129901 +0.00201136 +0.00186347 +0.00129895 +0.0020114 +0.00186335 +0.00129889 +0.00201145 +0.00186325 +0.00129884 +0.0020115 +0.00186315 +0.0012988 +0.00201157 +0.00186308 +0.00129877 +0.00201164 +0.00186301 +0.00129874 +0.00201171 +0.00186296 +0.00129871 +0.00201179 +0.00186291 +0.00129869 +0.00201187 +0.00186288 +0.00129868 +0.00201195 +0.00186286 +0.00129867 +0.00201204 +0.00186284 +0.00129866 +0.00201212 +0.00186284 +0.00129866 +0.0020122 +0.00186284 +0.00129866 +0.00201228 +0.00186285 +0.00129866 +0.00201236 +0.00186286 +0.00129867 +0.00201243 +0.00186288 +0.00129867 +0.0020125 +0.0018629 +0.00129868 +0.00201256 +0.00186293 +0.00129868 +0.00201261 +0.00186296 +0.00129869 +0.00201265 +0.00186299 +0.00129869 +0.00201269 +0.00186302 +0.00129869 +0.00201272 +0.00186306 +0.00129869 +0.00201273 +0.0018631 +0.00129869 +0.00201274 +0.00186313 +0.00129869 +0.00201274 +0.00186316 +0.00129867 +0.00201272 +0.00186318 +0.00129866 +0.00201269 +0.00186319 +0.00129864 +0.00201265 +0.0018632 +0.00129862 +0.00201261 +0.00186321 +0.0012986 +0.00201257 +0.00186321 +0.00129858 +0.00201253 +0.00186321 +0.00129855 +0.00201249 +0.00186322 +0.00129853 +0.00201245 +0.00186322 +0.00129851 +0.00201241 +0.00186322 +0.00129849 +0.00201238 +0.00186323 +0.00129847 +0.00201235 +0.00186324 +0.00129846 +0.00201233 +0.00186326 +0.00129845 +0.00201232 +0.00186327 +0.00129844 +0.0020123 +0.00186329 +0.00129843 +0.0020123 +0.00186332 +0.00129842 +0.00201229 +0.00186334 +0.00129842 +0.00201229 +0.00186337 +0.00129842 +0.0020123 +0.0018634 +0.00129842 +0.00201231 +0.00186343 +0.00129842 +0.00201232 +0.00186347 +0.00129842 +0.00201233 +0.0018635 +0.00129843 +0.00201234 +0.00186353 +0.00129843 +0.00201235 +0.00186357 +0.00129843 +0.00201237 +0.0018636 +0.00129844 +0.00201238 +0.00186364 +0.00129844 +0.00201239 +0.00186367 +0.00129845 +0.0020124 +0.0018637 +0.00129845 +0.00201241 +0.00186373 +0.00129845 +0.00201242 +0.00186376 +0.00129846 +0.00201242 +0.00186378 +0.00129846 +0.00201242 +0.0018638 +0.00129846 +0.00201242 +0.00186382 +0.00129846 +0.00201241 +0.00186384 +0.00129845 +0.00201241 +0.00186385 +0.00129845 +0.0020124 +0.00186386 +0.00129845 +0.00201238 +0.00186387 +0.00129844 +0.00201237 +0.00186388 +0.00129844 +0.00201235 +0.00186388 +0.00129843 +0.00201234 +0.00186388 +0.00129842 +0.00201232 +0.00186389 +0.00129841 +0.0020123 +0.00186389 +0.00129841 +0.00201228 +0.00186388 +0.0012984 +0.00201226 +0.00186388 +0.00129839 +0.00201225 +0.00186388 +0.00129838 +0.00201223 +0.00186388 +0.00129838 +0.00201222 +0.00186388 +0.00129837 +0.00201221 +0.00186388 +0.00129837 +0.0020122 +0.00186388 +0.00129836 +0.0020122 +0.00186389 +0.00129836 +0.0020122 +0.00186389 +0.00129836 +0.0020122 +0.0018639 +0.00129836 +0.0020122 +0.0018639 +0.00129835 +0.00201221 +0.00186391 +0.00129835 +0.00201222 +0.00186391 +0.00129835 +0.00201223 +0.00186392 +0.00129836 +0.00201224 +0.00186393 +0.00129836 +0.00201225 +0.00186394 +0.00129836 +0.00201227 +0.00186394 +0.00129836 +0.00201228 +0.00186395 +0.00129836 +0.0020123 +0.00186396 +0.00129836 +0.00201231 +0.00186397 +0.00129837 +0.00201233 +0.00186397 +0.00129837 +0.00201234 +0.00186398 +0.00129837 +0.00201235 +0.00186399 +0.00129837 +0.00201236 +0.00186399 +0.00129837 +0.00201237 +0.00186399 +0.00129837 +0.00201238 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.00186399 +0.00129836 +0.00201238 +0.00186399 +0.00129836 +0.00201238 +0.00186399 +0.00129836 +0.00201237 +0.00186398 +0.00129836 +0.00201236 +0.00186398 +0.00129836 +0.00201235 +0.00186397 +0.00129835 +0.00201234 +0.00186397 +0.00129835 +0.00201233 +0.00186396 +0.00129835 +0.00201231 +0.00186396 +0.00129835 +0.0020123 +0.00186396 +0.00129834 +0.00201229 +0.00186395 +0.00129834 +0.00201228 +0.00186395 +0.00129834 +0.00201227 +0.00186394 +0.00129834 +0.00201226 +0.00186394 +0.00129834 +0.00201225 +0.00186394 +0.00129834 +0.00201225 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201225 +0.00186394 +0.00129834 +0.00201225 +0.00186395 +0.00129834 +0.00201225 +0.00186395 +0.00129834 +0.00201226 +0.00186395 +0.00129834 +0.00201227 +0.00186395 +0.00129834 +0.00201227 +0.00186396 +0.00129834 +0.00201228 +0.00186396 +0.00129835 +0.00201229 +0.00186396 +0.00129835 +0.0020123 +0.00186396 +0.00129835 +0.0020123 +0.00186396 +0.00129835 +0.00201231 +0.00186396 +0.00129835 +0.00201232 +0.00186396 +0.00129835 +0.00201232 +0.00186396 +0.00129835 +0.00201232 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129837 +0.00201233 +0.00186396 +0.00129837 +0.00201233 +0.00186396 +0.00129837 +0.00201232 +0.00186396 +0.00129837 +0.00201232 +0.00186396 +0.00129837 +0.00201232 +0.00186396 +0.00129838 +0.00201231 +0.00186396 +0.00129838 +0.00201231 +0.00186396 +0.00129838 +0.0020123 +0.00186396 +0.00129838 +0.0020123 +0.00186396 +0.00129838 +0.00201229 +0.00186396 +0.00129839 +0.00201228 +0.00186396 +0.00129839 +0.00201228 +0.00186397 +0.00129839 +0.00201227 +0.00186397 +0.00129839 +0.00201227 +0.00186397 +0.00129839 +0.00201226 +0.00186397 +0.0012984 +0.00201225 +0.00186398 +0.0012984 +0.00201225 +0.00186398 +0.0012984 +0.00201224 +0.00186398 +0.0012984 +0.00201223 +0.00186399 +0.0012984 +0.00201223 +0.00186399 +0.00129841 +0.00201222 +0.00186399 +0.00129841 +0.00201222 +0.00186399 +0.00129841 +0.00201221 +0.001864 +0.00129841 +0.0020122 +0.001864 +0.00129842 +0.0020122 +0.001864 +0.00129842 +0.0020122 +0.001864 +0.00129842 +0.00201219 +0.001864 +0.00129843 +0.00201219 +0.001864 +0.00129843 +0.00201218 +0.001864 +0.00129843 +0.00201218 +0.00186401 +0.00129844 +0.00201218 +0.00186401 +0.00129844 +0.00201218 +0.00186401 +0.00129845 +0.00201218 +0.00186401 +0.00129845 +0.00201217 +0.00186401 +0.00129846 +0.00201217 +0.00186401 +0.00129846 +0.00201217 +0.00186401 +0.00129847 +0.00201216 +0.00186401 +0.00129848 +0.00201216 +0.00186401 +0.00129848 +0.00201215 +0.00186402 +0.00129849 +0.00201215 +0.00186402 +0.0012985 +0.00201214 +0.00186402 +0.00129851 +0.00201213 +0.00186403 +0.00129851 +0.00201213 +0.00186403 +0.00129852 +0.00201212 +0.00186404 +0.00129853 +0.0020121 +0.00186405 +0.00129854 +0.00201209 +0.00186405 +0.00129855 +0.00201208 +0.00186406 +0.00129856 +0.00201206 +0.00186407 +0.00129857 +0.00201205 +0.00186408 +0.00129858 +0.00201203 +0.00186409 +0.00129859 +0.00201202 +0.0018641 +0.0012986 +0.002012 +0.00186412 +0.00129861 +0.00201198 +0.00186413 +0.00129862 +0.00201196 +0.00186414 +0.00129863 +0.00201194 +0.00186415 +0.00129864 +0.00201192 +0.00186416 +0.00129866 +0.00201191 +0.00186417 +0.00129867 +0.00201189 +0.00186418 +0.00129868 +0.00201187 +0.00186419 +0.0012987 +0.00201186 +0.0018642 +0.00129871 +0.00201184 +0.00186421 +0.00129872 +0.00201182 +0.00186422 +0.00129874 +0.0020118 +0.00186423 +0.00129875 +0.00201179 +0.00186423 +0.00129877 +0.00201177 +0.00186424 +0.00129879 +0.00201175 +0.00186425 +0.0012988 +0.00201174 +0.00186425 +0.00129882 +0.00201172 +0.00186426 +0.00129884 +0.0020117 +0.00186427 +0.00129886 +0.00201168 +0.00186427 +0.00129888 +0.00201166 +0.00186428 +0.0012989 +0.00201164 +0.00186429 +0.00129892 +0.00201162 +0.0018643 +0.00129894 +0.00201159 +0.0018643 +0.00129896 +0.00201157 +0.00186431 +0.00129899 +0.00201153 +0.00186432 +0.00129901 +0.00201151 +0.00186434 +0.00129904 +0.00201148 +0.00186435 +0.00129906 +0.00201145 +0.00186436 +0.00129909 +0.00201141 +0.00186438 +0.00129912 +0.00201138 +0.0018644 +0.00129915 +0.00201134 +0.00186442 +0.00129918 +0.00201131 +0.00186443 +0.00129921 +0.00201127 +0.00186445 +0.00129925 +0.00201124 +0.00186447 +0.00129928 +0.0020112 +0.0018645 +0.00129932 +0.00201116 +0.00186452 +0.00129936 +0.00201112 +0.00186454 +0.00129939 +0.00201108 +0.00186456 +0.00129944 +0.00201104 +0.00186459 +0.00129948 +0.00201099 +0.00186461 +0.00129952 +0.00201095 +0.00186463 +0.00129956 +0.0020109 +0.00186465 +0.00129961 +0.00201085 +0.00186467 +0.00129966 +0.0020108 +0.00186469 +0.00129971 +0.00201074 +0.00186471 +0.00129975 +0.00201068 +0.00186472 +0.00129981 +0.00201062 +0.00186474 +0.00129986 +0.00201055 +0.00186475 +0.00129991 +0.00201048 +0.00186477 +0.00129997 +0.00201041 +0.00186479 +0.00130003 +0.00201033 +0.0018648 +0.00130009 +0.00201025 +0.00186481 +0.00130016 +0.00201017 +0.00186483 +0.00130022 +0.00201009 +0.00186485 +0.00130029 +0.00201 +0.00186487 +0.00130036 +0.00200991 +0.00186489 +0.00130043 +0.00200982 +0.00186491 +0.00130051 +0.00200974 +0.00186493 +0.00130059 +0.00200964 +0.00186496 +0.00130068 +0.00200955 +0.00186499 +0.00130076 +0.00200946 +0.00186502 +0.00130085 +0.00200937 +0.00186506 +0.00130095 +0.00200928 +0.0018651 +0.00130105 +0.00200918 +0.00186514 +0.00130115 +0.00200908 +0.00186519 +0.00130126 +0.00200898 +0.00186524 +0.00130137 +0.00200887 +0.00186529 +0.00130149 +0.00200876 +0.00186534 +0.0013016 +0.00200864 +0.0018654 +0.00130173 +0.00200852 +0.00186546 +0.00130186 +0.00200839 +0.00186552 +0.00130199 +0.00200824 +0.00186559 +0.00130213 +0.0020081 +0.00186565 +0.00130227 +0.00200794 +0.00186572 +0.00130242 +0.00200777 +0.00186579 +0.00130257 +0.00200759 +0.00186585 +0.00130273 +0.00200741 +0.00186592 +0.00130289 +0.00200721 +0.001866 +0.00130307 +0.00200701 +0.00186607 +0.00130324 +0.00200679 +0.00186615 +0.00130342 +0.00200657 +0.00186622 +0.00130361 +0.00200634 +0.00186631 +0.0013038 +0.0020061 +0.00186639 +0.001304 +0.00200585 +0.00186648 +0.00130421 +0.00200559 +0.00186657 +0.00130442 +0.00200533 +0.00186666 +0.00130465 +0.00200505 +0.00186676 +0.00130488 +0.00200477 +0.00186687 +0.00130511 +0.00200448 +0.00186698 +0.00130536 +0.00200418 +0.0018671 +0.00130562 +0.00200388 +0.00186723 +0.00130588 +0.00200356 +0.00186737 +0.00130616 +0.00200323 +0.00186751 +0.00130645 +0.0020029 +0.00186767 +0.00130675 +0.00200255 +0.00186783 +0.00130706 +0.00200219 +0.001868 +0.00130739 +0.00200182 +0.00186819 +0.00130773 +0.00200144 +0.00186839 +0.00130808 +0.00200104 +0.00186859 +0.00130844 +0.00200061 +0.00186881 +0.00130882 +0.00200018 +0.00186904 +0.00130921 +0.00199972 +0.00186927 +0.00130962 +0.00199925 +0.00186952 +0.00131005 +0.00199874 +0.00186978 +0.00131049 +0.00199822 +0.00187005 +0.00131095 +0.00199767 +0.00187033 +0.00131142 +0.00199709 +0.00187062 +0.00131191 +0.00199649 +0.00187093 +0.00131242 +0.00199586 +0.00187124 +0.00131295 +0.00199519 +0.00187157 +0.00131349 +0.00199451 +0.0018719 +0.00131406 +0.00199379 +0.00187225 +0.00131464 +0.00199305 +0.00187262 +0.00131525 +0.00199229 +0.001873 +0.00131588 +0.00199149 +0.0018734 +0.00131653 +0.00199066 +0.00187381 +0.00131721 +0.0019898 +0.00187425 +0.00131791 +0.00198891 +0.0018747 +0.00131863 +0.001988 +0.00187518 +0.00131938 +0.00198704 +0.00187568 +0.00132016 +0.00198606 +0.0018762 +0.00132097 +0.00198505 +0.00187675 +0.00132181 +0.001984 +0.00187733 +0.00132268 +0.00198291 +0.00187794 +0.00132358 +0.00198179 +0.00187858 +0.00132452 +0.00198062 +0.00187925 +0.00132549 +0.00197942 +0.00187995 +0.0013265 +0.00197816 +0.00188069 +0.00132755 +0.00197685 +0.00188146 +0.00132864 +0.0019755 +0.00188227 +0.00132977 +0.0019741 +0.00188311 +0.00133095 +0.00197263 +0.00188398 +0.00133217 +0.0019711 +0.0018849 +0.00133344 +0.0019695 +0.00188585 +0.00133475 +0.00196784 +0.00188684 +0.00133612 +0.00196611 +0.00188787 +0.00133754 +0.00196431 +0.00188894 +0.00133901 +0.00196243 +0.00189005 +0.00134053 +0.00196047 +0.0018912 +0.00134212 +0.00195844 +0.00189238 +0.00134375 +0.00195633 +0.00189362 +0.00134545 +0.00195414 +0.00189489 +0.00134721 +0.00195187 +0.00189621 +0.00134903 +0.00194952 +0.00189758 +0.00135091 +0.00194708 +0.00189899 +0.00135286 +0.00194455 +0.00190045 +0.00135487 +0.00194193 +0.00190197 +0.00135695 +0.00193922 +0.00190354 +0.00135911 +0.00193642 +0.00190517 +0.00136134 +0.00193352 +0.00190686 +0.00136365 +0.00193051 +0.00190861 +0.00136605 +0.0019274 +0.00191043 +0.00136852 +0.00192419 +0.00191233 +0.00137109 +0.00192086 +0.00191429 +0.00137375 +0.00191743 +0.00191633 +0.00137651 +0.00191387 +0.00191845 +0.00137936 +0.00191019 +0.00192065 +0.00138232 +0.00190639 +0.00192293 +0.00138538 +0.00190246 +0.00192529 +0.00138855 +0.0018984 +0.00192774 +0.00139183 +0.00189421 +0.00193026 +0.00139523 +0.00188987 +0.00193288 +0.00139874 +0.00188538 +0.00193558 +0.00140238 +0.00188075 +0.00193837 +0.00140614 +0.00187595 +0.00194124 +0.00141002 +0.001871 +0.0019442 +0.00141404 +0.00186587 +0.00194724 +0.00141818 +0.00186058 +0.00195036 +0.00142245 +0.00185512 +0.00195356 +0.00142687 +0.00184947 +0.00195684 +0.00143142 +0.00184365 +0.0019602 +0.00143611 +0.00183763 +0.00196363 +0.00144094 +0.00183143 +0.00196714 +0.00144592 +0.00182503 +0.00197072 +0.00145105 +0.00181843 +0.00197437 +0.00145632 +0.00181162 +0.00197808 +0.00146175 +0.0018046 +0.00198186 +0.00146733 +0.00179736 +0.00198571 +0.00147307 +0.0017899 +0.00198961 +0.00147897 +0.00178222 +0.00199357 +0.00148503 +0.00177431 +0.00199759 +0.00149126 +0.00176617 +0.00200167 +0.00149765 +0.00175778 +0.0020058 +0.00150422 +0.00174916 +0.00200999 +0.00151096 +0.00174029 +0.00201423 +0.00151787 +0.00173117 +0.00201853 +0.00152496 +0.0017218 +0.00202287 +0.00153223 +0.00171217 +0.00202727 +0.00153968 +0.00170229 +0.00203171 +0.00154732 +0.00169216 +0.00203621 +0.00155514 +0.00168179 +0.00204074 +0.00156315 +0.00167118 +0.00204532 +0.00157135 +0.00166032 +0.00204992 +0.00157973 +0.00164922 +0.00205455 +0.0015883 +0.00163787 +0.0020592 +0.00159705 +0.00162628 +0.00206386 +0.00160599 +0.00161443 +0.00206851 +0.0016151 +0.00160233 +0.00207316 +0.00162439 +0.00158996 +0.00207777 +0.00163386 +0.00157732 +0.00208235 +0.0016435 +0.0015644 +0.00208688 +0.00165331 +0.0015512 +0.00209134 +0.00166328 +0.00153772 +0.00209572 +0.0016734 +0.00152395 +0.00209999 +0.00168368 +0.00150991 +0.00210416 +0.00169411 +0.00149558 +0.00210819 +0.00170467 +0.00148096 +0.00211207 +0.00171536 +0.00146607 +0.00211579 +0.00172618 +0.00145089 +0.00211932 +0.00173711 +0.00143543 +0.00212265 +0.00174815 +0.00141967 +0.00212576 +0.00175929 +0.00140363 +0.00212864 +0.00177053 +0.0013873 +0.00213127 +0.00178185 +0.0013707 +0.00213362 +0.00179324 +0.00135379 +0.0021357 +0.00180471 +0.00133663 +0.00213748 +0.00181623 +0.0013192 +0.00213895 +0.00182781 +0.00130153 +0.00214009 +0.00183943 +0.00128364 +0.0021409 +0.0018511 +0.00126553 +0.00214136 +0.0018628 +0.00124724 +0.00214146 +0.00187452 +0.00122876 +0.00214118 +0.00188627 +0.00121012 +0.00214052 +0.00189803 +0.00119131 +0.00213946 +0.0019098 +0.00117235 +0.00213798 +0.00192157 +0.00115322 +0.00213608 +0.00193333 +0.00113394 +0.00213373 +0.00194507 +0.0011145 +0.00213092 +0.00195679 +0.00109492 +0.00212763 +0.00196846 +0.0010752 +0.00212384 +0.00198007 +0.00105535 +0.00211952 +0.0019916 +0.0010354 +0.00211465 +0.00200305 +0.00101534 +0.0021092 +0.00201436 +0.000995216 +0.00210315 +0.00202554 +0.000975017 +0.00209646 +0.00203653 +0.000954764 +0.00208911 +0.00204732 +0.000934457 +0.00208105 +0.00205786 +0.000914103 +0.00207225 +0.00206812 +0.000893704 +0.00206268 +0.00207804 +0.000873262 +0.0020523 +0.00208758 +0.000852781 +0.00204106 +0.00209669 +0.000832264 +0.00202892 +0.00210531 +0.00081171 +0.00201586 +0.00211337 +0.000791129 +0.00200182 +0.00212082 +0.000770522 +0.00198676 +0.00212758 +0.000749895 +0.00197066 +0.0021336 +0.000729256 +0.00195347 +0.00213878 +0.00070861 +0.00193516 +0.00214306 +0.00068797 +0.0019157 +0.00214635 +0.000667344 +0.00189506 +0.0021486 +0.000646742 +0.00187322 +0.0021497 +0.000626183 +0.00185016 +0.00214959 +0.000605675 +0.00182587 +0.0021482 +0.000585241 +0.00180034 +0.00214544 +0.000564895 +0.00177358 +0.00214125 +0.000544658 +0.00174558 +0.00213557 +0.000524554 +0.00171637 +0.00212833 +0.000504604 +0.00168597 +0.00211948 +0.000484833 +0.0016544 +0.00210897 +0.000465268 +0.00162171 +0.00209677 +0.000445936 +0.00158794 +0.00208284 +0.000426864 +0.00155315 +0.00206717 +0.000408082 +0.00151739 +0.00204973 +0.000389617 +0.00148073 +0.00203053 +0.000371491 +0.00144325 +0.00200957 +0.00035373 +0.00140502 +0.00198688 +0.000336358 +0.00136615 +0.00196248 +0.000319396 +0.00132671 +0.00193642 +0.000302863 +0.00128681 +0.00190875 +0.00028678 +0.00124654 +0.00187952 +0.000271164 +0.00120601 +0.00184882 +0.000256033 +0.00116532 +0.00181671 +0.0002414 +0.00112457 +0.00178328 +0.000227278 +0.00108388 +0.00174864 +0.000213679 +0.00104334 +0.00171288 +0.000200609 +0.00100305 +0.00167611 +0.000188075 +0.000963126 +0.00163845 +0.000176078 +0.000923647 +0.00159999 +0.00016462 +0.00088471 +0.00156087 +0.000153697 +0.0008464 +0.0015212 +0.000143305 +0.000808795 +0.0014811 +0.000133437 +0.000771971 +0.00144069 +0.000124084 +0.000735993 +0.00140007 +0.000115235 +0.00070092 +0.00135937 +0.00010688 +0.000666802 +0.0013187 +9.90043e-05 +0.000633687 +0.00127815 +9.15955e-05 +0.00060161 +0.00123783 +8.46394e-05 +0.000570602 +0.00119784 +7.81211e-05 +0.000540686 +0.00115826 +7.20246e-05 +0.000511877 +0.00111917 +6.63331e-05 +0.000484186 +0.00108066 +6.10279e-05 +0.000457616 +0.00104279 +5.60912e-05 +0.000432166 +0.00100563 +5.15046e-05 +0.000407828 +0.000969234 +4.72469e-05 +0.000384591 +0.000933646 +4.32994e-05 +0.000362437 +0.000898916 +3.96474e-05 +0.000341348 +0.000865077 +3.62731e-05 +0.0003213 +0.000832161 +3.3156e-05 +0.000302268 +0.000800192 +3.02805e-05 +0.000284222 +0.000769188 +2.76332e-05 +0.000267132 +0.000739164 +2.51966e-05 +0.000250967 +0.000710128 +2.29578e-05 +0.000235693 +0.000682081 +2.09067e-05 +0.000221276 +0.000655025 +1.90314e-05 +0.000207681 +0.000628952 +1.73134e-05 +0.000194874 +0.000603858 +1.57434e-05 +0.000182819 +0.000579728 +1.43108e-05 +0.000171483 +0.000556548 +1.3005e-05 +0.000160829 +0.000534301 +1.18155e-05 +0.000150826 +0.000512969 +1.07321e-05 +0.000141439 +0.000492531 +9.74527e-06 +0.000132635 +0.000472964 +8.84613e-06 +0.000124385 +0.000454244 +8.02671e-06 +0.000116657 +0.000436348 +7.27988e-06 +0.000109421 +0.000419248 +6.59941e-06 +0.00010265 +0.000402921 +5.97988e-06 +9.63161e-05 +0.000387339 +5.41604e-06 +9.03935e-05 +0.000372476 +4.90383e-06 +8.48573e-05 +0.000358306 +4.44143e-06 +7.96838e-05 +0.000344802 +4.02481e-06 +7.48503e-05 +0.000331939 +3.65047e-06 +7.03356e-05 +0.00031969 +3.31479e-06 +6.61193e-05 +0.000308032 +3.01395e-06 +6.21823e-05 +0.000296938 +2.74281e-06 +5.85064e-05 +0.000286385 +2.49624e-06 +5.50746e-05 +0.000276349 +2.27006e-06 +5.18707e-05 +0.000266809 +2.06057e-06 +4.88798e-05 +0.00025774 +1.86438e-06 +4.60875e-05 +0.000249123 +1.67995e-06 +4.34806e-05 +0.000240936 +1.50927e-06 +4.10465e-05 +0.00023316 +1.35158e-06 +3.87737e-05 +0.000225775 +1.2e-06 +3.66512e-05 +0.000218763 +1.05864e-06 +3.46687e-05 +0.000212106 +9.45199e-07 +3.28168e-05 +0.000205787 +8.55887e-07 +3.10865e-05 +0.00019979 +7.77761e-07 +2.94697e-05 +0.0001941 +6.99805e-07 +2.79584e-05 +0.000188701 +6.26693e-07 +2.65456e-05 +0.00018358 +5.64428e-07 +2.52245e-05 +0.000178723 +5.17878e-07 +2.3989e-05 +0.000174116 +4.71723e-07 +2.28331e-05 +0.000169748 +4.15409e-07 +2.17515e-05 +0.000165606 +3.5756e-07 +2.07392e-05 +0.00016168 +3.25266e-07 +1.97915e-05 +0.000157959 +2.97552e-07 +1.89041e-05 +0.000154433 +2.72834e-07 +1.8073e-05 +0.000151091 +2.50293e-07 +1.72943e-05 +0.000147926 +2.29408e-07 +1.65646e-05 +0.000144928 +2.10144e-07 +1.58807e-05 +0.000142088 +1.9247e-07 +1.52395e-05 +0.0001394 +1.76178e-07 +1.46383e-05 +0.000136855 +1.61058e-07 +1.40745e-05 +0.000134447 +1.47176e-07 +1.35456e-05 +0.000132168 +1.34724e-07 +1.30494e-05 +0.000130012 +1.23867e-07 +1.25838e-05 +0.000127973 +1.17197e-07 +1.21468e-05 +0.000126045 +1.13814e-07 +1.17367e-05 +0.000124223 +1.05745e-07 +1.13518e-05 +0.000122501 +9.69907e-08 +1.09904e-05 +0.000120875 +8.92414e-08 +1.06511e-05 +0.000119339 +8.31828e-08 +1.03326e-05 +0.000117889 +7.77179e-08 +1.00336e-05 +0.00011652 +7.22022e-08 +9.75284e-06 +0.000115229 +6.62106e-08 +9.48928e-06 +0.000114012 +6.09797e-08 +9.24188e-06 +0.000112864 +5.72356e-08 +9.00965e-06 +0.000111783 +5.66647e-08 +8.7917e-06 +0.000110765 +5.49652e-08 +8.58719e-06 +0.000109806 +5.15828e-08 +8.39531e-06 +0.000108903 +4.81733e-08 +8.21534e-06 +0.000108054 +4.50364e-08 +8.04657e-06 +0.000107256 +4.20585e-08 +7.88837e-06 +0.000106506 +3.92201e-08 +7.7401e-06 +0.000105802 +3.65529e-08 +7.60122e-06 +0.00010514 +3.40577e-08 +7.47117e-06 +0.000104519 +3.17419e-08 +7.34946e-06 +0.000103937 +2.96175e-08 +7.23561e-06 +0.000103391 +2.76683e-08 +7.12917e-06 +0.00010288 +2.58781e-08 +7.02973e-06 +0.000102401 +2.42523e-08 +6.93688e-06 +0.000101953 +2.27551e-08 +6.85027e-06 +0.000101533 +2.1331e-08 +6.76952e-06 +0.000101141 +1.99598e-08 +6.69433e-06 +0.000100775 +1.8687e-08 +6.62436e-06 +0.000100432 +1.75061e-08 +6.55933e-06 +0.000100113 +1.64086e-08 +6.49896e-06 +9.98148e-05 +1.53856e-08 +6.44298e-06 +9.95369e-05 +1.44309e-08 +6.39115e-06 +9.92779e-05 +1.35445e-08 +6.34322e-06 +9.90367e-05 +1.27281e-08 +6.29897e-06 +9.88122e-05 +1.1978e-08 +6.25819e-06 +9.86034e-05 +1.12846e-08 +6.22068e-06 +9.84093e-05 +1.06397e-08 +6.18624e-06 +9.82289e-05 +1.00403e-08 +6.15469e-06 +9.80614e-05 +9.50376e-09 +6.12586e-06 +9.79059e-05 +9.09902e-09 +6.09959e-06 +9.77617e-05 +8.85535e-09 +6.07571e-06 +9.76281e-05 +8.6467e-09 +6.05409e-06 +9.75043e-05 +8.43129e-09 +6.03457e-06 +9.73897e-05 +8.21296e-09 +6.01702e-06 +9.72837e-05 +7.97959e-09 +6.00132e-06 +9.71857e-05 +7.71277e-09 +5.98735e-06 +9.70952e-05 +7.43832e-09 +5.97498e-06 +9.70116e-05 +7.17371e-09 +5.9641e-06 +9.69344e-05 +6.90939e-09 +5.95462e-06 +9.68633e-05 +6.63409e-09 +5.94644e-06 +9.67978e-05 +6.35794e-09 +5.93945e-06 +9.67374e-05 +6.10238e-09 +5.93357e-06 +9.66819e-05 +5.86228e-09 +5.92872e-06 +9.66309e-05 +5.63724e-09 +5.92481e-06 +9.6584e-05 +5.42947e-09 +5.92178e-06 +9.6541e-05 +5.23945e-09 +5.91954e-06 +9.65015e-05 +5.06591e-09 +5.91803e-06 +9.64654e-05 +4.90675e-09 +5.91718e-06 +9.64323e-05 +4.75977e-09 +5.91694e-06 +9.6402e-05 +4.62334e-09 +5.91725e-06 +9.63744e-05 +4.49614e-09 +5.91806e-06 +9.63492e-05 +4.377e-09 +5.91931e-06 +9.63262e-05 +4.26614e-09 +5.92096e-06 +9.63052e-05 +4.16432e-09 +5.92296e-06 +9.62862e-05 +4.06978e-09 +5.92527e-06 +9.62689e-05 +3.97934e-09 +5.92786e-06 +9.62532e-05 +3.8915e-09 +5.93069e-06 +9.6239e-05 +3.80665e-09 +5.93372e-06 +9.62262e-05 +3.72498e-09 +5.93693e-06 +9.62146e-05 +3.64664e-09 +5.94028e-06 +9.62042e-05 +3.57177e-09 +5.94375e-06 +9.61948e-05 +3.50062e-09 +5.94731e-06 +9.61865e-05 +3.4335e-09 +5.95094e-06 +9.6179e-05 +3.3707e-09 +5.95462e-06 +9.61723e-05 +3.31237e-09 +5.95833e-06 +9.61664e-05 +3.25857e-09 +5.96205e-06 +9.61611e-05 +3.20929e-09 +5.96577e-06 +9.61565e-05 +3.16439e-09 +5.96947e-06 +9.61525e-05 +3.12327e-09 +5.97313e-06 +9.6149e-05 +3.08508e-09 +5.97676e-06 +9.6146e-05 +3.0496e-09 +5.98032e-06 +9.61434e-05 +3.01715e-09 +5.98383e-06 +9.61412e-05 +2.98808e-09 +5.98726e-06 +9.61393e-05 +2.96301e-09 +5.99061e-06 +9.61378e-05 +2.94256e-09 +5.99388e-06 +9.61366e-05 +2.9268e-09 +5.99705e-06 +9.61356e-05 +2.91581e-09 +6.00013e-06 +9.61349e-05 +2.90992e-09 +6.00312e-06 +9.61344e-05 +2.90908e-09 +6.00599e-06 +9.61341e-05 +2.91234e-09 +6.00877e-06 +9.61339e-05 +2.91826e-09 +6.01144e-06 +9.6134e-05 +2.92598e-09 +6.014e-06 +9.61341e-05 +2.93495e-09 +6.01645e-06 +9.61344e-05 +2.94456e-09 +6.0188e-06 +9.61347e-05 +2.9543e-09 +6.02104e-06 +9.61352e-05 +2.9639e-09 +6.02317e-06 +9.61358e-05 +2.9733e-09 +6.0252e-06 +9.61364e-05 +2.98262e-09 +6.02713e-06 +9.6137e-05 +2.99204e-09 +6.02896e-06 +9.61377e-05 +3.00181e-09 +6.03069e-06 +9.61385e-05 +3.01218e-09 +6.03233e-06 +9.61392e-05 +3.02339e-09 +6.03387e-06 +9.614e-05 +3.03565e-09 +6.03532e-06 +9.61408e-05 +3.04919e-09 +6.03669e-06 +9.61416e-05 +3.06415e-09 +6.03797e-06 +9.61424e-05 +3.08066e-09 +6.03917e-06 +9.61432e-05 +3.09883e-09 +6.0403e-06 +9.6144e-05 +3.11869e-09 +6.04135e-06 +9.61448e-05 +3.14019e-09 +6.04233e-06 +9.61456e-05 +3.1632e-09 +6.04325e-06 +9.61463e-05 +3.18752e-09 +6.0441e-06 +9.6147e-05 +3.21289e-09 +6.0449e-06 +9.61477e-05 +3.23903e-09 +6.04563e-06 +9.61484e-05 +3.26564e-09 +6.04632e-06 +9.6149e-05 +3.29241e-09 +6.04695e-06 +9.61497e-05 +3.31913e-09 +6.04754e-06 +9.61502e-05 +3.3456e-09 +6.04808e-06 +9.61508e-05 +3.37169e-09 +6.04859e-06 +9.61513e-05 +3.39725e-09 +6.04905e-06 +9.61518e-05 +3.42207e-09 +6.04949e-06 +9.61523e-05 +3.44593e-09 +6.04988e-06 +9.61527e-05 +3.46868e-09 +6.05025e-06 +9.61531e-05 +3.4902e-09 +6.0506e-06 +9.61534e-05 +3.51041e-09 +6.05091e-06 +9.61538e-05 +3.52927e-09 +6.05121e-06 +9.61541e-05 +3.54677e-09 +6.05148e-06 +9.61544e-05 +3.56294e-09 +6.05174e-06 +9.61546e-05 +3.57779e-09 +6.05197e-06 +9.61549e-05 +3.59138e-09 +6.0522e-06 +9.61551e-05 +3.60379e-09 +6.05241e-06 +9.61552e-05 +3.61511e-09 +6.0526e-06 +9.61554e-05 +3.62542e-09 +6.05279e-06 +9.61555e-05 +3.63481e-09 +6.05297e-06 +9.61557e-05 +3.64333e-09 +6.05314e-06 +9.61558e-05 +3.65104e-09 +6.0533e-06 +9.61558e-05 +3.65795e-09 +6.05346e-06 +9.61559e-05 +3.6641e-09 +6.05361e-06 +9.6156e-05 +3.66947e-09 +6.05375e-06 +9.6156e-05 +3.67408e-09 +6.05389e-06 +9.6156e-05 +3.6779e-09 +6.05403e-06 +9.6156e-05 +3.68095e-09 +6.05417e-06 +9.61561e-05 +3.6832e-09 +6.0543e-06 +9.61561e-05 +3.68467e-09 +6.05443e-06 +9.61561e-05 +3.68533e-09 +6.05456e-06 +9.6156e-05 +3.68519e-09 +6.05469e-06 +9.6156e-05 +3.68427e-09 +6.05481e-06 +9.6156e-05 +3.68257e-09 +6.05494e-06 +9.6156e-05 +3.68014e-09 +6.05506e-06 +9.6156e-05 +3.67703e-09 +6.05518e-06 +9.61559e-05 +3.67331e-09 +6.0553e-06 +9.61559e-05 +3.66906e-09 +6.05542e-06 +9.61559e-05 +3.66437e-09 +6.05554e-06 +9.61559e-05 +3.65934e-09 +6.05565e-06 +9.61558e-05 +3.65408e-09 +6.05577e-06 +9.61558e-05 +3.64868e-09 +6.05588e-06 +9.61558e-05 +3.64325e-09 +6.05599e-06 +9.61558e-05 +3.63789e-09 +6.05609e-06 +9.61557e-05 +3.63269e-09 +6.0562e-06 +9.61557e-05 +3.62774e-09 +6.0563e-06 +9.61557e-05 +3.6231e-09 +6.05639e-06 +9.61557e-05 +3.61884e-09 +6.05649e-06 +9.61557e-05 +3.61499e-09 +6.05658e-06 +9.61557e-05 +3.61157e-09 +6.05667e-06 +9.61557e-05 +3.60859e-09 +6.05675e-06 +9.61557e-05 +3.60606e-09 +6.05683e-06 +9.61558e-05 +3.60395e-09 +6.0569e-06 +9.61558e-05 +3.60224e-09 +6.05697e-06 +9.61558e-05 +3.60088e-09 +6.05703e-06 +9.61558e-05 +3.59985e-09 +6.05709e-06 +9.61558e-05 +3.59909e-09 +6.05715e-06 +9.61559e-05 +3.59857e-09 +6.0572e-06 +9.61559e-05 +3.59824e-09 +6.05724e-06 +9.61559e-05 +3.59809e-09 +6.05728e-06 +9.6156e-05 +3.59809e-09 +6.05731e-06 +9.6156e-05 +3.59821e-09 +6.05734e-06 +9.6156e-05 +3.59845e-09 +6.05736e-06 +9.61561e-05 +3.5988e-09 +6.05738e-06 +9.61561e-05 +3.59925e-09 +6.05739e-06 +9.61562e-05 +3.59981e-09 +6.0574e-06 +9.61562e-05 +3.60047e-09 +6.0574e-06 +9.61563e-05 +3.60123e-09 +6.05739e-06 +9.61563e-05 +3.60211e-09 +6.05738e-06 +9.61563e-05 +3.60309e-09 +6.05737e-06 +9.61564e-05 +3.60417e-09 +6.05735e-06 +9.61564e-05 +3.60536e-09 +6.05732e-06 +9.61565e-05 +3.60665e-09 +6.0573e-06 +9.61565e-05 +3.60803e-09 +6.05726e-06 +9.61566e-05 +3.60949e-09 +6.05722e-06 +9.61566e-05 +3.61102e-09 +6.05718e-06 +9.61567e-05 +3.6126e-09 +6.05714e-06 +9.61567e-05 +3.61424e-09 +6.05709e-06 +9.61567e-05 +3.61591e-09 +6.05704e-06 +9.61568e-05 +3.61759e-09 +6.05698e-06 +9.61568e-05 +3.61929e-09 +6.05693e-06 +9.61568e-05 +3.62097e-09 +6.05686e-06 +9.61569e-05 +3.62264e-09 +6.0568e-06 +9.61569e-05 +3.62429e-09 +6.05674e-06 +9.61569e-05 +3.62589e-09 +6.05667e-06 +9.6157e-05 +3.62744e-09 +6.0566e-06 +9.6157e-05 +3.62894e-09 +6.05653e-06 +9.6157e-05 +3.63038e-09 +6.05646e-06 +9.6157e-05 +3.63174e-09 +6.05639e-06 +9.6157e-05 +3.63303e-09 +6.05632e-06 +9.6157e-05 +3.63424e-09 +6.05625e-06 +9.61571e-05 +3.63537e-09 +6.05618e-06 +9.61571e-05 +3.63641e-09 +6.0561e-06 +9.61571e-05 +3.63738e-09 +6.05603e-06 +9.61571e-05 +3.63826e-09 +6.05596e-06 +9.61571e-05 +3.63906e-09 +6.05589e-06 +9.61571e-05 +3.63977e-09 +6.05582e-06 +9.61571e-05 +3.64042e-09 +6.05575e-06 +9.61571e-05 +3.64098e-09 +6.05569e-06 +9.61571e-05 +3.64146e-09 +6.05562e-06 +9.61571e-05 +3.64188e-09 +6.05556e-06 +9.61571e-05 +3.64222e-09 +6.0555e-06 +9.61571e-05 +3.64248e-09 +6.05544e-06 +9.61571e-05 +3.64268e-09 +6.05538e-06 +9.61571e-05 +3.64281e-09 +6.05533e-06 +9.61571e-05 +3.64287e-09 +6.05527e-06 +9.61571e-05 +3.64288e-09 +6.05522e-06 +9.6157e-05 +3.64282e-09 +6.05517e-06 +9.6157e-05 +3.64271e-09 +6.05513e-06 +9.6157e-05 +3.64256e-09 +6.05509e-06 +9.6157e-05 +3.64236e-09 +6.05505e-06 +9.6157e-05 +3.64213e-09 +6.05501e-06 +9.6157e-05 +3.64188e-09 +6.05498e-06 +9.6157e-05 +3.6416e-09 +6.05494e-06 +9.6157e-05 +3.64133e-09 +6.05491e-06 +9.6157e-05 +3.64105e-09 +6.05489e-06 +9.6157e-05 +3.64079e-09 +6.05486e-06 +9.61569e-05 +3.64055e-09 +6.05484e-06 +9.61569e-05 +3.64035e-09 +6.05483e-06 +9.61569e-05 +3.64019e-09 +6.05481e-06 +9.61569e-05 +3.64008e-09 +6.0548e-06 +9.61569e-05 +3.64004e-09 +6.05479e-06 +9.61569e-05 +3.64007e-09 +6.05478e-06 +9.61569e-05 +3.64017e-09 +6.05477e-06 +9.61569e-05 +3.64036e-09 +6.05477e-06 +9.61569e-05 +3.64064e-09 +6.05477e-06 +9.61569e-05 +3.641e-09 +6.05477e-06 +9.61568e-05 +3.64146e-09 +6.05477e-06 +9.61568e-05 +3.64201e-09 +6.05478e-06 +9.61568e-05 +3.64265e-09 +6.05478e-06 +9.61568e-05 +3.64338e-09 +6.05479e-06 +9.61568e-05 +3.6442e-09 +6.0548e-06 +9.61568e-05 +3.64509e-09 +6.05482e-06 +9.61568e-05 +3.64606e-09 +6.05483e-06 +9.61568e-05 +3.6471e-09 +6.05484e-06 +9.61568e-05 +3.64821e-09 +6.05486e-06 +9.61568e-05 +3.64936e-09 +6.05487e-06 +9.61568e-05 +3.65057e-09 +6.05489e-06 +9.61568e-05 +3.65182e-09 +6.05491e-06 +9.61568e-05 +3.6531e-09 +6.05493e-06 +9.61568e-05 +3.65441e-09 +6.05495e-06 +9.61568e-05 +3.65573e-09 +6.05497e-06 +9.61568e-05 +3.65707e-09 +6.05499e-06 +9.61568e-05 +3.65841e-09 +6.05501e-06 +9.61568e-05 +3.65974e-09 +6.05503e-06 +9.61568e-05 +3.66107e-09 +6.05505e-06 +9.61568e-05 +3.66238e-09 +6.05507e-06 +9.61568e-05 +3.66367e-09 +6.0551e-06 +9.61568e-05 +3.66493e-09 +6.05512e-06 +9.61568e-05 +3.66615e-09 +6.05514e-06 +9.61568e-05 +3.66733e-09 +6.05516e-06 +9.61568e-05 +3.66847e-09 +6.05518e-06 +9.61568e-05 +3.66955e-09 +6.0552e-06 +9.61568e-05 +3.67058e-09 +6.05522e-06 +9.61568e-05 +3.67155e-09 +6.05524e-06 +9.61568e-05 +3.67245e-09 +6.05526e-06 +9.61568e-05 +3.67329e-09 +6.05527e-06 +9.61568e-05 +3.67406e-09 +6.05529e-06 +9.61568e-05 +3.67475e-09 +6.05531e-06 +9.61568e-05 +3.67537e-09 +6.05532e-06 +9.61568e-05 +3.67591e-09 +6.05534e-06 +9.61568e-05 +3.67637e-09 +6.05535e-06 +9.61568e-05 +3.67675e-09 +6.05537e-06 +9.61568e-05 +3.67705e-09 +6.05538e-06 +9.61568e-05 +3.67727e-09 +6.05539e-06 +9.61568e-05 +3.67741e-09 +6.0554e-06 +9.61568e-05 +3.67748e-09 +6.05541e-06 +9.61568e-05 +3.67746e-09 +6.05542e-06 +9.61568e-05 +3.67737e-09 +6.05543e-06 +9.61568e-05 +3.6772e-09 +6.05544e-06 +9.61568e-05 +3.67697e-09 +6.05544e-06 +9.61568e-05 +3.67666e-09 +6.05545e-06 +9.61568e-05 +3.67628e-09 +6.05545e-06 +9.61568e-05 +3.67584e-09 +6.05546e-06 +9.61568e-05 +3.67534e-09 +6.05546e-06 +9.61568e-05 +3.67479e-09 +6.05546e-06 +9.61568e-05 +3.67417e-09 +6.05546e-06 +9.61568e-05 +3.67351e-09 +6.05546e-06 +9.61568e-05 +3.6728e-09 +6.05546e-06 +9.61568e-05 +3.67205e-09 +6.05546e-06 +9.61569e-05 +3.67125e-09 +6.05546e-06 +9.61569e-05 +3.67042e-09 +6.05546e-06 +9.61569e-05 +3.66956e-09 +6.05546e-06 +9.61569e-05 +3.66868e-09 +6.05545e-06 +9.61569e-05 +3.66777e-09 +6.05545e-06 +9.61568e-05 +3.66684e-09 +6.05544e-06 +9.61569e-05 +3.6659e-09 +6.05544e-06 +9.61569e-05 +3.66494e-09 +6.05543e-06 +9.61569e-05 +3.66399e-09 +6.05543e-06 +9.61568e-05 +3.66303e-09 +6.05542e-06 +9.61568e-05 +3.66207e-09 +6.05541e-06 +9.61568e-05 +3.66112e-09 +6.0554e-06 +9.61568e-05 +3.66018e-09 +6.05539e-06 +9.61568e-05 +3.65926e-09 +6.05538e-06 +9.61568e-05 +3.65836e-09 +6.05537e-06 +9.61568e-05 +3.65748e-09 +6.05536e-06 +9.61568e-05 +3.65662e-09 +6.05535e-06 +9.61568e-05 +3.6558e-09 +6.05534e-06 +9.61568e-05 +3.65501e-09 +6.05533e-06 +9.61568e-05 +3.65425e-09 +6.05532e-06 +9.61568e-05 +3.65353e-09 +6.05531e-06 +9.61568e-05 +3.65285e-09 +6.0553e-06 +9.61568e-05 +3.65222e-09 +6.05528e-06 +9.61568e-05 +3.65163e-09 +6.05527e-06 +9.61568e-05 +3.65109e-09 +6.05526e-06 +9.61568e-05 +3.65059e-09 +6.05524e-06 +9.61568e-05 +3.65014e-09 +6.05523e-06 +9.61568e-05 +3.64974e-09 +6.05521e-06 +9.61568e-05 +3.64939e-09 +6.0552e-06 +9.61568e-05 +3.64909e-09 +6.05519e-06 +9.61568e-05 +3.64884e-09 +6.05517e-06 +9.61568e-05 +3.64864e-09 +6.05516e-06 +9.61568e-05 +3.64848e-09 +6.05514e-06 +9.61568e-05 +3.64838e-09 +6.05512e-06 +9.61568e-05 +3.64832e-09 +6.05511e-06 +9.61568e-05 +3.64831e-09 +6.05509e-06 +9.61568e-05 +3.64834e-09 +6.05508e-06 +9.61568e-05 +3.64842e-09 +6.05506e-06 +9.61568e-05 +3.64853e-09 +6.05504e-06 +9.61568e-05 +3.64869e-09 +6.05503e-06 +9.61567e-05 +3.64888e-09 +6.05501e-06 +9.61567e-05 +3.64911e-09 +6.05499e-06 +9.61567e-05 +3.64937e-09 +6.05497e-06 +9.61567e-05 +3.64966e-09 +6.05496e-06 +9.61567e-05 +3.64998e-09 +6.05494e-06 +9.61567e-05 +3.65033e-09 +6.05492e-06 +9.61567e-05 +3.6507e-09 +6.0549e-06 +9.61567e-05 +3.65109e-09 +6.05488e-06 +9.61567e-05 +3.6515e-09 +6.05486e-06 +9.61566e-05 +3.65192e-09 +6.05484e-06 +9.61566e-05 +3.65236e-09 +6.05482e-06 +9.61566e-05 +3.65281e-09 +6.0548e-06 +9.61566e-05 +3.65328e-09 +6.05478e-06 +9.61566e-05 +3.65374e-09 +6.05476e-06 +9.61565e-05 +3.65422e-09 +6.05474e-06 +9.61565e-05 +3.65465e-09 +6.05472e-06 +9.61565e-05 +3.65506e-09 +6.05469e-06 +9.61565e-05 +3.65544e-09 +6.05467e-06 +9.61565e-05 +3.65579e-09 +6.05465e-06 +9.61564e-05 +3.65612e-09 +6.05463e-06 +9.61564e-05 +3.6564e-09 +6.05461e-06 +9.61564e-05 +3.65666e-09 +6.0546e-06 +9.61563e-05 +3.65688e-09 +6.05459e-06 +9.61563e-05 +3.65707e-09 +6.05458e-06 +9.61563e-05 +3.65722e-09 +6.05458e-06 +9.61562e-05 +3.65734e-09 +6.05458e-06 +9.61562e-05 +3.65742e-09 +6.05458e-06 +9.61562e-05 +3.65746e-09 +6.05458e-06 +9.61562e-05 +3.65747e-09 +6.05459e-06 +9.61562e-05 +3.65744e-09 +6.0546e-06 +9.61562e-05 +3.65737e-09 +6.05462e-06 +9.61562e-05 +3.65726e-09 +6.05463e-06 +9.61562e-05 +3.65712e-09 +6.05465e-06 +9.61562e-05 +3.65694e-09 +6.05467e-06 +9.61563e-05 +3.65672e-09 +6.05469e-06 +9.61563e-05 +3.65646e-09 +6.05472e-06 +9.61563e-05 +3.65617e-09 +6.05475e-06 +9.61563e-05 +3.65583e-09 +6.05478e-06 +9.61564e-05 +3.65547e-09 +6.05481e-06 +9.61564e-05 +3.65506e-09 +6.05485e-06 +9.61564e-05 +3.65462e-09 +6.05488e-06 +9.61565e-05 +3.65415e-09 +6.05492e-06 +9.61565e-05 +3.65364e-09 +6.05496e-06 +9.61566e-05 +3.6531e-09 +6.05501e-06 +9.61566e-05 +3.65252e-09 +6.05506e-06 +9.61567e-05 +3.65191e-09 +6.0551e-06 +9.61567e-05 +3.65127e-09 +6.05515e-06 +9.61568e-05 +3.6506e-09 +6.05521e-06 +9.61569e-05 +3.6499e-09 +6.05526e-06 +9.61569e-05 +3.64916e-09 +6.05532e-06 +9.6157e-05 +3.6484e-09 +6.05538e-06 +9.6157e-05 +3.64761e-09 +6.05544e-06 +9.61571e-05 +3.64679e-09 +6.0555e-06 +9.61572e-05 +3.64603e-09 +6.05557e-06 +9.61572e-05 +3.64251e-09 +6.05563e-06 +9.61573e-05 +3.6394e-09 +6.05573e-06 +9.61574e-05 +3.63634e-09 +6.05619e-06 +9.61574e-05 +3.6333e-09 +6.05669e-06 +9.61576e-05 +3.63027e-09 +6.05717e-06 +9.61598e-05 +3.62727e-09 +6.05765e-06 +9.61623e-05 +3.62429e-09 +6.05813e-06 +9.61646e-05 +3.62134e-09 +6.0586e-06 +9.6167e-05 +3.61841e-09 +6.05907e-06 +9.61693e-05 +3.6155e-09 +6.05954e-06 +9.61716e-05 +3.61261e-09 +6.06e-06 +9.61739e-05 +3.60975e-09 +6.06046e-06 +9.61761e-05 +3.60691e-09 +6.06091e-06 +9.61784e-05 +3.60409e-09 +6.06136e-06 +9.61806e-05 +3.6013e-09 +6.06181e-06 +9.61828e-05 +3.59853e-09 +6.06225e-06 +9.6185e-05 +3.59579e-09 +6.06269e-06 +9.61871e-05 +3.59306e-09 +6.06313e-06 +9.61893e-05 +3.59036e-09 +6.06356e-06 +9.61914e-05 +3.58769e-09 +6.06399e-06 +9.61935e-05 +3.58503e-09 +6.06442e-06 +9.61956e-05 +3.5824e-09 +6.06484e-06 +9.61977e-05 +3.57979e-09 +6.06527e-06 +9.61997e-05 +3.5772e-09 +6.06568e-06 +9.62017e-05 +3.57463e-09 +6.0661e-06 +9.62037e-05 +3.57208e-09 +6.06651e-06 +9.62057e-05 +3.56955e-09 +6.06692e-06 +9.62077e-05 +3.56705e-09 +6.06733e-06 +9.62097e-05 +3.56456e-09 +6.06773e-06 +9.62116e-05 +3.56209e-09 +6.06813e-06 +9.62136e-05 +3.55964e-09 +6.06853e-06 +9.62155e-05 +3.55721e-09 +6.06893e-06 +9.62174e-05 +3.5548e-09 +6.06932e-06 +9.62193e-05 +3.5524e-09 +6.06972e-06 +9.62212e-05 +3.55002e-09 +6.07011e-06 +9.6223e-05 +3.54766e-09 +6.07049e-06 +9.62249e-05 +3.54532e-09 +6.07088e-06 +9.62267e-05 +3.54299e-09 +6.07126e-06 +9.62286e-05 +3.54068e-09 +6.07164e-06 +9.62304e-05 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 1_final_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 1_final_profile_global.xlo new file mode 100644 index 000000000..a96b03920 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 1_final_profile_global.xlo @@ -0,0 +1,1603 @@ +Vector Object:Vec_0x84000000_0 1 MPI processes + type: mpi +Process [0] +8.53993e-06 +0.00767819 +8.53423e-06 +0.00767285 +8.52913e-06 +0.00766694 +8.52432e-06 +0.0076603 +8.51976e-06 +0.00765335 +8.5156e-06 +0.00764689 +8.51213e-06 +0.00764185 +8.50956e-06 +0.00763885 +8.50838e-06 +0.00763824 +8.50905e-06 +0.00763941 +8.50952e-06 +0.00764083 +8.51025e-06 +0.007643 +8.51146e-06 +0.00764595 +8.51313e-06 +0.00764977 +8.51516e-06 +0.00765444 +8.51728e-06 +0.00765954 +8.5191e-06 +0.00766413 +8.52009e-06 +0.00766694 +8.5198e-06 +0.00766675 +8.5181e-06 +0.00766314 +8.51541e-06 +0.00765692 +8.51234e-06 +0.00764963 +8.50953e-06 +0.00764294 +8.50747e-06 +0.00763809 +8.50635e-06 +0.00763561 +8.50613e-06 +0.00763531 +8.50659e-06 +0.00763661 +8.50753e-06 +0.00763884 +8.50882e-06 +0.00764157 +8.51048e-06 +0.00764471 +8.51254e-06 +0.00764833 +8.51497e-06 +0.0076525 +8.51761e-06 +0.0076571 +8.52021e-06 +0.0076618 +8.52248e-06 +0.00766614 +8.52417e-06 +0.00766962 +8.52517e-06 +0.00767189 +8.5255e-06 +0.00767281 +8.52526e-06 +0.00767246 +8.52464e-06 +0.0076711 +8.52379e-06 +0.00766903 +8.52284e-06 +0.00766659 +8.52187e-06 +0.00766404 +8.52092e-06 +0.00766156 +8.52002e-06 +0.00765929 +8.5192e-06 +0.0076573 +8.51847e-06 +0.00765562 +8.51787e-06 +0.00765428 +8.51742e-06 +0.00765328 +8.51714e-06 +0.00765264 +8.51707e-06 +0.00765242 +8.51724e-06 +0.00765267 +8.51766e-06 +0.00765349 +8.51836e-06 +0.00765492 +8.51931e-06 +0.00765696 +8.52047e-06 +0.00765949 +8.52175e-06 +0.0076623 +8.52301e-06 +0.00766509 +8.52411e-06 +0.00766753 +8.52492e-06 +0.00766932 +8.52533e-06 +0.00767027 +8.5253e-06 +0.00767027 +8.52484e-06 +0.00766937 +8.52402e-06 +0.00766773 +8.52297e-06 +0.00766556 +8.5218e-06 +0.00766315 +8.52065e-06 +0.00766074 +8.51959e-06 +0.00765853 +8.51867e-06 +0.0076566 +8.5179e-06 +0.00765497 +8.51723e-06 +0.00765355 +8.51661e-06 +0.00765223 +8.516e-06 +0.0076509 +8.51537e-06 +0.00764952 +8.51473e-06 +0.00764814 +8.51414e-06 +0.00764688 +8.51366e-06 +0.00764593 +8.51338e-06 +0.00764548 +8.51337e-06 +0.00764567 +8.51365e-06 +0.00764655 +8.51422e-06 +0.00764804 +8.51501e-06 +0.00764995 +8.51591e-06 +0.00765201 +8.5168e-06 +0.00765393 +8.51753e-06 +0.00765545 +8.51802e-06 +0.00765638 +8.51821e-06 +0.00765664 +8.51812e-06 +0.00765629 +8.5178e-06 +0.00765548 +8.51733e-06 +0.00765441 +8.51683e-06 +0.00765329 +8.51637e-06 +0.0076523 +8.516e-06 +0.00765153 +8.51573e-06 +0.007651 +8.51553e-06 +0.00765064 +8.51536e-06 +0.00765035 +8.51517e-06 +0.00765002 +8.51491e-06 +0.00764957 +8.51458e-06 +0.00764897 +8.51419e-06 +0.00764826 +8.51378e-06 +0.00764752 +8.51341e-06 +0.00764685 +8.51313e-06 +0.00764636 +8.513e-06 +0.00764615 +8.51305e-06 +0.00764627 +8.5133e-06 +0.00764673 +8.51372e-06 +0.0076475 +8.51429e-06 +0.00764851 +8.51496e-06 +0.00764968 +8.51565e-06 +0.00765092 +8.51633e-06 +0.00765215 +8.51695e-06 +0.00765331 +8.51748e-06 +0.00765439 +8.51793e-06 +0.00765535 +8.5183e-06 +0.0076562 +8.5186e-06 +0.00765693 +8.51882e-06 +0.00765751 +8.51897e-06 +0.0076579 +8.51902e-06 +0.00765804 +8.51895e-06 +0.00765787 +8.51875e-06 +0.00765737 +8.51841e-06 +0.00765653 +8.51795e-06 +0.00765541 +8.5174e-06 +0.0076541 +8.51682e-06 +0.00765274 +8.51625e-06 +0.00765147 +8.51576e-06 +0.00765043 +8.5154e-06 +0.00764973 +8.51519e-06 +0.00764944 +8.51516e-06 +0.00764955 +8.5153e-06 +0.00765001 +8.51558e-06 +0.00765073 +8.51595e-06 +0.00765156 +8.51636e-06 +0.0076524 +8.51676e-06 +0.00765315 +8.51711e-06 +0.00765377 +8.51739e-06 +0.00765425 +8.51759e-06 +0.00765463 +8.51772e-06 +0.00765497 +8.51779e-06 +0.00765531 +8.51784e-06 +0.00765569 +8.51788e-06 +0.00765611 +8.51793e-06 +0.00765657 +8.51801e-06 +0.00765701 +8.51811e-06 +0.00765741 +8.51822e-06 +0.00765769 +8.51831e-06 +0.00765782 +8.51836e-06 +0.00765775 +8.51833e-06 +0.00765749 +8.51823e-06 +0.00765706 +8.51803e-06 +0.00765651 +8.51776e-06 +0.00765591 +8.51742e-06 +0.00765532 +8.51704e-06 +0.00765476 +8.51661e-06 +0.00765422 +8.51614e-06 +0.00765362 +8.51563e-06 +0.00765288 +8.51506e-06 +0.00765192 +8.51445e-06 +0.00765072 +8.51382e-06 +0.00764933 +8.51324e-06 +0.00764786 +8.51274e-06 +0.00764647 +8.51241e-06 +0.00764533 +8.51229e-06 +0.00764463 +8.51243e-06 +0.00764451 +8.51285e-06 +0.00764507 +8.51355e-06 +0.00764637 +8.51452e-06 +0.00764842 +8.51572e-06 +0.00765118 +8.51711e-06 +0.00765454 +8.51861e-06 +0.00765827 +8.52011e-06 +0.00766208 +8.52148e-06 +0.00766558 +8.52257e-06 +0.00766834 +8.52321e-06 +0.00766995 +8.52328e-06 +0.0076701 +8.52267e-06 +0.00766865 +8.52139e-06 +0.00766565 +8.51951e-06 +0.00766137 +8.51719e-06 +0.00765627 +8.51468e-06 +0.00765092 +8.51223e-06 +0.00764592 +8.51008e-06 +0.00764179 +8.50841e-06 +0.00763888 +8.5073e-06 +0.00763731 +8.50677e-06 +0.00763698 +8.50676e-06 +0.00763766 +8.50724e-06 +0.0076391 +8.50816e-06 +0.00764118 +8.50954e-06 +0.00764395 +8.51133e-06 +0.00764753 +8.51344e-06 +0.00765194 +8.5157e-06 +0.0076569 +8.51782e-06 +0.00766182 +8.51947e-06 +0.00766588 +8.5204e-06 +0.00766832 +8.52047e-06 +0.00766869 +8.51975e-06 +0.007667 +8.51846e-06 +0.00766373 +8.51689e-06 +0.00765968 +8.51532e-06 +0.0076557 +8.51394e-06 +0.00765252 +8.51285e-06 +0.00765054 +8.51208e-06 +0.00764986 +8.5117e-06 +0.00765036 +8.51181e-06 +0.00765181 +8.5125e-06 +0.00765401 +8.51378e-06 +0.00765671 +8.51543e-06 +0.00765955 +8.51707e-06 +0.00766194 +8.51818e-06 +0.00766314 +8.5183e-06 +0.00766249 +8.51722e-06 +0.00765967 +8.51504e-06 +0.0076549 +8.51216e-06 +0.00764896 +8.50919e-06 +0.00764295 +8.5067e-06 +0.00763799 +8.50512e-06 +0.00763493 +8.50468e-06 +0.00763424 +8.50538e-06 +0.00763593 +8.50708e-06 +0.0076397 +8.50957e-06 +0.00764503 +8.51254e-06 +0.00765128 +8.51568e-06 +0.00765775 +8.51859e-06 +0.00766369 +8.52091e-06 +0.00766835 +8.52228e-06 +0.00767104 +8.52253e-06 +0.00767135 +8.52161e-06 +0.00766923 +8.51974e-06 +0.00766505 +8.5173e-06 +0.00765959 +8.51479e-06 +0.00765389 +8.51276e-06 +0.00764913 +8.51162e-06 +0.00764627 +8.51157e-06 +0.0076458 +8.51251e-06 +0.00764756 +8.51401e-06 +0.00765073 +8.51546e-06 +0.0076541 +8.51629e-06 +0.00765644 +8.51617e-06 +0.00765689 +8.5151e-06 +0.00765533 +8.51341e-06 +0.0076523 +8.51159e-06 +0.0076488 +8.51008e-06 +0.00764584 +8.50917e-06 +0.00764415 +8.50904e-06 +0.00764405 +8.50975e-06 +0.00764556 +8.51135e-06 +0.00764859 +8.51376e-06 +0.00765297 +8.51673e-06 +0.00765841 +8.51976e-06 +0.0076642 +8.52216e-06 +0.0076692 +8.52334e-06 +0.00767215 +8.52298e-06 +0.00767219 +8.52129e-06 +0.00766936 +8.51886e-06 +0.00766461 +8.5165e-06 +0.00765938 +8.51483e-06 +0.00765511 +8.5142e-06 +0.00765277 +8.51455e-06 +0.00765269 +8.51554e-06 +0.00765453 +8.51668e-06 +0.00765735 +8.51743e-06 +0.00765989 +8.51733e-06 +0.00766074 +8.51605e-06 +0.00765879 +8.51355e-06 +0.00765362 +8.51016e-06 +0.0076459 +8.50661e-06 +0.00763747 +8.50388e-06 +0.00763088 +8.5029e-06 +0.00762852 +8.50417e-06 +0.00763166 +8.50752e-06 +0.00763987 +8.51211e-06 +0.00765105 +8.51662e-06 +0.00766205 +8.51963e-06 +0.00766956 +8.52008e-06 +0.00767109 +8.5176e-06 +0.0076657 +8.51274e-06 +0.00765444 +8.50685e-06 +0.00764034 +8.50178e-06 +0.00762767 +8.49932e-06 +0.00762079 +8.50062e-06 +0.0076227 +8.50576e-06 +0.0076339 +8.51359e-06 +0.007652 +8.52202e-06 +0.00767226 +8.52861e-06 +0.00768889 +8.53128e-06 +0.00769675 +8.529e-06 +0.00769285 +8.52202e-06 +0.0076773 +8.51186e-06 +0.00765329 +8.50075e-06 +0.00762619 +8.49109e-06 +0.00760209 +8.48477e-06 +0.0075862 +8.48281e-06 +0.0075816 +8.48519e-06 +0.00758851 +8.49092e-06 +0.00760439 +8.49835e-06 +0.00762454 +8.50552e-06 +0.0076434 +8.51059e-06 +0.0076559 +8.51236e-06 +0.00765894 +8.5106e-06 +0.00765233 +8.50617e-06 +0.00763901 +8.50078e-06 +0.00762413 +8.49645e-06 +0.00761325 +8.49483e-06 +0.0076104 +8.49662e-06 +0.00761672 +8.50134e-06 +0.00763016 +8.50752e-06 +0.00764638 +8.51325e-06 +0.00766037 +8.51683e-06 +0.00766808 +8.51733e-06 +0.00766772 +8.51484e-06 +0.00766004 +8.51028e-06 +0.00764783 +8.50506e-06 +0.00763475 +8.50051e-06 +0.00762407 +8.49746e-06 +0.0076177 +8.4961e-06 +0.00761581 +8.49604e-06 +0.00761715 +8.49659e-06 +0.00761978 +8.49705e-06 +0.00762175 +8.49696e-06 +0.00762171 +8.49617e-06 +0.00761915 +8.49489e-06 +0.00761461 +8.49366e-06 +0.00760971 +8.49321e-06 +0.00760687 +8.49424e-06 +0.00760846 +8.49711e-06 +0.00761576 +8.50166e-06 +0.00762808 +8.50707e-06 +0.00764265 +8.51216e-06 +0.00765567 +8.5158e-06 +0.00766396 +8.51742e-06 +0.00766642 +8.51727e-06 +0.00766426 +8.51622e-06 +0.00766009 +8.51528e-06 +0.00765649 +8.51515e-06 +0.00765501 +8.51603e-06 +0.00765609 +8.51782e-06 +0.00765975 +8.52034e-06 +0.00766608 +8.5232e-06 +0.00767453 +8.52558e-06 +0.00768249 +8.52618e-06 +0.00768526 +8.52386e-06 +0.00767868 +8.51852e-06 +0.00766272 +8.5114e-06 +0.00764251 +8.50435e-06 +0.00762505 +8.49875e-06 +0.00761422 +8.49499e-06 +0.00760847 +8.49292e-06 +0.0076038 +8.49269e-06 +0.00759933 +8.49498e-06 +0.00759946 +8.50025e-06 +0.00760907 +8.50773e-06 +0.00762677 +8.51546e-06 +0.00764366 +8.52159e-06 +0.00765065 +8.52584e-06 +0.00764731 +8.52965e-06 +0.00764195 +8.53499e-06 +0.00764322 +8.5429e-06 +0.00765243 +8.55307e-06 +0.0076626 +8.5646e-06 +0.00766572 +8.5775e-06 +0.00766236 +8.5929e-06 +0.00766115 +8.6118e-06 +0.00766821 +8.63395e-06 +0.00768071 +8.6581e-06 +0.0076891 +8.68379e-06 +0.00768489 +8.7127e-06 +0.00766861 +8.748e-06 +0.00764979 +8.79245e-06 +0.00763729 +8.84737e-06 +0.00763021 +8.91327e-06 +0.0076191 +8.99161e-06 +0.00759711 +9.08713e-06 +0.00756994 +9.20739e-06 +0.00755037 +9.35979e-06 +0.00754594 +9.55014e-06 +0.00755383 +9.78325e-06 +0.00756263 +1.00644e-05 +0.00756076 +1.04011e-05 +0.00754448 +1.08049e-05 +0.00751873 +1.12908e-05 +0.00749481 +1.18769e-05 +0.0074672 +1.25855e-05 +0.00742647 +1.34442e-05 +0.00737955 +1.44833e-05 +0.0073315 +1.57304e-05 +0.00727546 +1.72113e-05 +0.00720159 +1.89539e-05 +0.00710352 +2.09981e-05 +0.00697734 +2.34148e-05 +0.00681323 +2.63093e-05 +0.00663935 +2.9832e-05 +0.00647397 +3.41763e-05 +0.0063046 +3.95489e-05 +0.00612369 +4.61259e-05 +0.00592686 +5.39887e-05 +0.00569188 +6.30401e-05 +0.00539067 +7.29374e-05 +0.00500171 +8.3065e-05 +0.0045172 +9.25713e-05 +0.00394654 +0.000100518 +0.00332955 +0.000106078 +0.0027124 +0.000108691 +0.00213329 +0.000108193 +0.0016205 +0.000104846 +0.00118996 +9.92489e-05 +0.000849471 +9.21626e-05 +0.000593958 +8.43389e-05 +0.000408923 +7.64039e-05 +0.000278055 +6.88105e-05 +0.000187106 +6.18449e-05 +0.000124963 +5.56556e-05 +8.37297e-05 +5.02898e-05 +5.67227e-05 +4.57271e-05 +3.88538e-05 +4.19063e-05 +2.68089e-05 +3.87472e-05 +1.86365e-05 +3.61638e-05 +1.31273e-05 +3.40726e-05 +9.41029e-06 +3.23966e-05 +6.8703e-06 +3.10671e-05 +5.10435e-06 +3.00243e-05 +3.85822e-06 +2.92162e-05 +2.97799e-06 +2.85986e-05 +2.36392e-06 +2.81335e-05 +1.93942e-06 +2.77889e-05 +1.64549e-06 +2.75379e-05 +1.43877e-06 +2.73585e-05 +1.28749e-06 +2.72327e-05 +1.17018e-06 +2.71465e-05 +1.07534e-06 +2.70887e-05 +9.9784e-07 +2.7051e-05 +9.3473e-07 +2.70271e-05 +8.84074e-07 +2.70126e-05 +8.4515e-07 +2.70041e-05 +8.17756e-07 +2.69995e-05 +8.01144e-07 +2.69972e-05 +7.93642e-07 +2.69963e-05 +7.93059e-07 +2.6996e-05 +7.97246e-07 +2.69961e-05 +8.0443e-07 +2.69964e-05 +8.13294e-07 +2.69966e-05 +8.22909e-07 +2.69969e-05 +8.32578e-07 +2.6997e-05 +8.41714e-07 +2.69972e-05 +8.49826e-07 +2.69972e-05 +8.56568e-07 +2.69973e-05 +8.61789e-07 +2.69973e-05 +8.6551e-07 +2.69974e-05 +8.67878e-07 +2.69974e-05 +8.69119e-07 +2.69974e-05 +8.69511e-07 +2.69974e-05 +8.69357e-07 +2.69974e-05 +8.68954e-07 +2.69974e-05 +8.68554e-07 +2.69975e-05 +8.68327e-07 +2.69975e-05 +8.68358e-07 +2.69975e-05 +8.68653e-07 +2.69975e-05 +8.69163e-07 +2.69975e-05 +8.69807e-07 +2.69975e-05 +8.70496e-07 +2.69976e-05 +8.71144e-07 +2.69976e-05 +8.71686e-07 +2.69976e-05 +8.72079e-07 +2.69976e-05 +8.72304e-07 +2.69976e-05 +8.72365e-07 +2.69976e-05 +8.72285e-07 +2.69976e-05 +8.72096e-07 +2.69976e-05 +8.71834e-07 +2.69976e-05 +8.71538e-07 +2.69976e-05 +8.71238e-07 +2.69976e-05 +8.70963e-07 +2.69976e-05 +8.7073e-07 +2.69976e-05 +8.70551e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70367e-07 +2.69976e-05 +8.70353e-07 +2.69976e-05 +8.70378e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70499e-07 +2.69976e-05 +8.70571e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70696e-07 +2.69976e-05 +8.70738e-07 +2.69976e-05 +8.70764e-07 +2.69976e-05 +8.70775e-07 +2.69976e-05 +8.70773e-07 +2.69976e-05 +8.70761e-07 +2.69976e-05 +8.70742e-07 +2.69976e-05 +8.7072e-07 +2.69976e-05 +8.70698e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70661e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70641e-07 +2.69976e-05 +8.70638e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70643e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70656e-07 +2.69976e-05 +8.70663e-07 +2.69976e-05 +8.7067e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70681e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70685e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70682e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70683e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70693e-07 +2.69976e-05 +8.707e-07 +2.69976e-05 +8.70708e-07 +2.69976e-05 +8.70718e-07 +2.69976e-05 +8.70728e-07 +2.69976e-05 +8.7074e-07 +2.69976e-05 +8.70753e-07 +2.69976e-05 +8.70767e-07 +2.69976e-05 +8.70783e-07 +2.69976e-05 +8.70796e-07 +2.69976e-05 +8.70802e-07 +2.69976e-05 +8.70803e-07 +2.69975e-05 +8.708e-07 +2.69975e-05 +8.70791e-07 +2.69974e-05 +8.70778e-07 +2.69974e-05 +8.70761e-07 +2.69973e-05 +8.70739e-07 +2.69972e-05 +8.70714e-07 +2.69971e-05 +8.70517e-07 +2.69975e-05 +8.70284e-07 +2.69979e-05 +8.70066e-07 +2.69984e-05 +8.69852e-07 +2.69988e-05 +8.69645e-07 +2.69992e-05 +8.69444e-07 +2.69996e-05 +8.69248e-07 +2.69999e-05 +8.69058e-07 +2.70003e-05 +8.68872e-07 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 40_initial_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 40_initial_profile_global.xlo new file mode 100644 index 000000000..e62eda62f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 40_initial_profile_global.xlo @@ -0,0 +1,2052 @@ +#Vector Object:Vec_0x84000004_0 4 MPI processes +# type: mpi +##ppcess [0] +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +#ppcess [1] +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307903 +0.00115798 +0.00307903 +0.00115798 +0.00307903 +0.00115798 +0.00307903 +0.00115798 +0.00307902 +0.00115798 +0.00307902 +0.00115798 +0.00307902 +0.00115798 +0.00307901 +0.00115798 +0.00307901 +0.00115798 +0.003079 +0.00115798 +0.003079 +0.00115798 +0.00307899 +0.00115798 +0.00307899 +0.00115798 +0.00307898 +0.00115798 +0.00307898 +0.00115797 +0.00307897 +0.00115797 +0.00307896 +0.00115797 +0.00307896 +0.00115797 +0.00307895 +0.00115797 +0.00307894 +0.00115797 +0.00307893 +0.00115797 +0.00307892 +0.00115797 +0.00307891 +0.00115796 +0.0030789 +0.00115796 +0.00307888 +0.00115796 +0.00307887 +0.00115796 +0.00307885 +0.00115796 +0.00307884 +0.00115795 +0.00307882 +0.00115795 +0.0030788 +0.00115795 +0.00307878 +0.00115794 +0.00307876 +0.00115794 +0.00307874 +0.00115794 +0.00307871 +0.00115793 +0.00307869 +0.00115793 +0.00307866 +0.00115792 +0.00307863 +0.00115792 +0.00307859 +0.00115791 +0.00307856 +0.00115791 +0.00307852 +0.0011579 +0.00307848 +0.00115789 +0.00307843 +0.00115789 +0.00307839 +0.00115788 +0.00307833 +0.00115787 +0.00307828 +0.00115786 +0.00307822 +0.00115785 +0.00307815 +0.00115784 +0.00307809 +0.00115783 +0.00307801 +0.00115781 +0.00307793 +0.0011578 +0.00307785 +0.00115778 +0.00307775 +0.00115777 +0.00307765 +0.00115775 +0.00307755 +0.00115773 +0.00307743 +0.00115771 +0.00307731 +0.00115768 +0.00307717 +0.00115766 +0.00307703 +0.00115763 +0.00307688 +0.0011576 +0.00307671 +0.00115757 +0.00307653 +0.00115753 +0.00307634 +0.0011575 +0.00307613 +0.00115746 +0.00307591 +0.00115741 +0.00307567 +0.00115736 +0.00307541 +0.00115731 +0.00307513 +0.00115726 +0.00307484 +0.0011572 +0.00307452 +0.00115713 +0.00307417 +0.00115706 +0.0030738 +0.00115698 +0.0030734 +0.0011569 +0.00307297 +0.00115681 +0.00307251 +0.00115671 +0.00307201 +0.0011566 +0.00307148 +0.00115649 +0.0030709 +0.00115636 +0.00307028 +0.00115623 +0.00306962 +0.00115608 +0.0030689 +0.00115592 +0.00306813 +0.00115575 +0.00306731 +0.00115557 +0.00306642 +0.00115537 +0.00306546 +0.00115515 +0.00306443 +0.00115491 +0.00306333 +0.00115466 +0.00306214 +0.00115438 +0.00306086 +0.00115408 +0.00305949 +0.00115376 +0.00305801 +0.00115341 +0.00305642 +0.00115303 +0.00305472 +0.00115262 +0.00305288 +0.00115218 +0.00305091 +0.0011517 +0.0030488 +0.00115118 +0.00304652 +0.00115061 +0.00304408 +0.00115 +0.00304145 +0.00114934 +0.00303863 +0.00114863 +0.0030356 +0.00114786 +0.00303235 +0.00114703 +0.00302886 +0.00114612 +0.00302512 +0.00114515 +0.00302109 +0.00114409 +0.00301678 +0.00114295 +0.00301215 +0.00114172 +0.00300719 +0.00114039 +0.00300187 +0.00113895 +0.00299616 +0.0011374 +0.00299004 +0.00113572 +0.00298349 +0.00113391 +0.00297647 +0.00113196 +0.00296896 +0.00112985 +0.00296092 +0.00112757 +0.00295231 +0.00112512 +0.00294311 +0.00112248 +0.00293327 +0.00111963 +0.00292276 +0.00111656 +0.00291153 +0.00111326 +0.00289955 +0.0011097 +0.00288677 +0.00110588 +0.00287314 +0.00110178 +0.00285862 +0.00109737 +0.00284315 +0.00109263 +0.0028267 +0.00108756 +0.00280921 +0.00108212 +0.00279064 +0.00107629 +0.00277092 +0.00107006 +0.00275001 +0.00106339 +0.00272787 +0.00105628 +0.00270444 +0.00104869 +0.00267968 +0.0010406 +0.00265353 +0.001032 +0.00262597 +0.00102285 +0.00259694 +0.00101314 +0.00256641 +0.00100286 +0.00253436 +0.000991977 +0.00250076 +0.000980482 +0.00246558 +0.00096836 +0.00242882 +0.000955602 +0.00239048 +0.000942198 +0.00235055 +0.000928146 +0.00230905 +0.000913446 +0.00226601 +0.0008981 +0.00222145 +0.00088212 +0.00217542 +0.000865517 +0.00212799 +0.000848313 +0.0020792 +0.00083053 +0.00202915 +0.000812199 +0.00197792 +0.000793356 +0.00192561 +0.000774041 +0.00187234 +0.000754301 +0.00181821 +0.000734186 +0.00176336 +0.000713751 +0.00170793 +0.000693055 +0.00165205 +0.000672161 +0.00159587 +0.000651134 +0.00153954 +0.000630039 +0.0014832 +0.000608944 +#ppcess [2] +0.00142702 +0.000587917 +0.00137114 +0.000567023 +0.00131571 +0.000546328 +0.00126086 +0.000525893 +0.00120673 +0.000505778 +0.00115346 +0.000486037 +0.00110115 +0.000466722 +0.00104992 +0.000447879 +0.000999868 +0.000429548 +0.000951084 +0.000411766 +0.000903647 +0.000394561 +0.000857622 +0.000377959 +0.000813065 +0.000361978 +0.00077002 +0.000346633 +0.000728522 +0.000331932 +0.000688593 +0.00031788 +0.000650247 +0.000304477 +0.000613489 +0.000291718 +0.000578314 +0.000279596 +0.00054471 +0.000268101 +0.000512658 +0.000257219 +0.000482134 +0.000246934 +0.000453106 +0.000237228 +0.00042554 +0.000228083 +0.000399395 +0.000219478 +0.00037463 +0.000211392 +0.0003512 +0.000203802 +0.000329056 +0.000196687 +0.000308152 +0.000190023 +0.000288435 +0.000183789 +0.000269858 +0.000177962 +0.000252369 +0.000172521 +0.000235918 +0.000167444 +0.000220456 +0.000162711 +0.000205934 +0.000158301 +0.000192304 +0.000154195 +0.00017952 +0.000150374 +0.000167537 +0.000146821 +0.00015631 +0.000143519 +0.000145798 +0.000140451 +0.00013596 +0.000137603 +0.000126757 +0.000134959 +0.000118153 +0.000132506 +0.00011011 +0.000130232 +0.000102596 +0.000128123 +9.55787e-05 +0.000126168 +8.90267e-05 +0.000124357 +8.29114e-05 +0.000122679 +7.72054e-05 +0.000121126 +7.18827e-05 +0.000119688 +6.69187e-05 +0.000118357 +6.22905e-05 +0.000117125 +5.79763e-05 +0.000115985 +5.39556e-05 +0.00011493 +5.02091e-05 +0.000113955 +4.67187e-05 +0.000113053 +4.34676e-05 +0.000112219 +4.04397e-05 +0.000111447 +3.76201e-05 +0.000110734 +3.49949e-05 +0.000110075 +3.2551e-05 +0.000109466 +3.0276e-05 +0.000108903 +2.81587e-05 +0.000108383 +2.61881e-05 +0.000107902 +2.43544e-05 +0.000107458 +2.26482e-05 +0.000107048 +2.10607e-05 +0.000106669 +1.95838e-05 +0.000106318 +1.82099e-05 +0.000105995 +1.69319e-05 +0.000105696 +1.57431e-05 +0.00010542 +1.46375e-05 +0.000105165 +1.36091e-05 +0.000104929 +1.26528e-05 +0.000104712 +1.17634e-05 +0.000104511 +1.09364e-05 +0.000104326 +1.01673e-05 +0.000104154 +9.4522e-06 +0.000103996 +8.78728e-06 +0.00010385 +8.16903e-06 +0.000103715 +7.59421e-06 +0.000103591 +7.05978e-06 +0.000103476 +6.56291e-06 +0.00010337 +6.10097e-06 +0.000103272 +5.67152e-06 +0.000103181 +5.27228e-06 +0.000103097 +4.90113e-06 +0.00010302 +4.5561e-06 +0.000102949 +4.23536e-06 +0.000102883 +3.9372e-06 +0.000102823 +3.66004e-06 +0.000102766 +3.4024e-06 +0.000102715 +3.16292e-06 +0.000102667 +2.9403e-06 +0.000102623 +2.73337e-06 +0.000102582 +2.54103e-06 +0.000102544 +2.36224e-06 +0.00010251 +2.19606e-06 +0.000102478 +2.04159e-06 +0.000102448 +1.89801e-06 +0.000102421 +1.76456e-06 +0.000102396 +1.64051e-06 +0.000102372 +1.52522e-06 +0.000102351 +1.41806e-06 +0.000102331 +1.31845e-06 +0.000102313 +1.22587e-06 +0.000102296 +1.13983e-06 +0.00010228 +1.05985e-06 +0.000102266 +9.85513e-07 +0.000102252 +9.16422e-07 +0.00010224 +8.52207e-07 +0.000102229 +7.92522e-07 +0.000102218 +7.37049e-07 +0.000102209 +6.8549e-07 +0.0001022 +6.37569e-07 +0.000102191 +5.9303e-07 +0.000102184 +5.51635e-07 +0.000102177 +5.1316e-07 +0.00010217 +4.77401e-07 +0.000102164 +4.44166e-07 +0.000102159 +4.13276e-07 +0.000102154 +3.84567e-07 +0.000102149 +3.57883e-07 +0.000102145 +3.33083e-07 +0.000102141 +3.10034e-07 +0.000102137 +2.88611e-07 +0.000102133 +2.68701e-07 +0.00010213 +2.50196e-07 +0.000102127 +2.32997e-07 +0.000102125 +2.17012e-07 +0.000102122 +2.02155e-07 +0.00010212 +1.88347e-07 +0.000102118 +1.75514e-07 +0.000102116 +1.63586e-07 +0.000102114 +1.52501e-07 +0.000102112 +1.42198e-07 +0.000102111 +1.32623e-07 +0.000102109 +1.23723e-07 +0.000102108 +1.15451e-07 +0.000102107 +1.07764e-07 +0.000102106 +1.00619e-07 +0.000102105 +9.39786e-08 +0.000102104 +8.78068e-08 +0.000102103 +8.20708e-08 +0.000102102 +7.67397e-08 +0.000102101 +7.17849e-08 +0.000102101 +6.71799e-08 +0.0001021 +6.29e-08 +0.000102099 +5.89222e-08 +0.000102099 +5.52252e-08 +0.000102098 +5.17892e-08 +0.000102098 +4.85958e-08 +0.000102097 +4.56278e-08 +0.000102097 +4.28693e-08 +0.000102097 +4.03056e-08 +0.000102096 +3.79229e-08 +0.000102096 +3.57083e-08 +0.000102096 +3.36501e-08 +0.000102096 +3.17372e-08 +0.000102095 +2.99593e-08 +0.000102095 +2.8307e-08 +0.000102095 +2.67713e-08 +0.000102095 +2.5344e-08 +0.000102094 +2.40175e-08 +0.000102094 +2.27846e-08 +0.000102094 +2.16387e-08 +0.000102094 +2.05738e-08 +0.000102094 +1.9584e-08 +0.000102094 +1.86641e-08 +0.000102094 +1.78091e-08 +0.000102094 +1.70145e-08 +0.000102093 +1.6276e-08 +0.000102093 +1.55897e-08 +0.000102093 +1.49517e-08 +0.000102093 +1.43589e-08 +0.000102093 +1.38078e-08 +0.000102093 +1.32957e-08 +0.000102093 +1.28197e-08 +0.000102093 +1.23774e-08 +0.000102093 +1.19662e-08 +0.000102093 +1.15841e-08 +0.000102093 +1.1229e-08 +0.000102093 +1.08989e-08 +0.000102093 +1.05921e-08 +0.000102093 +1.0307e-08 +0.000102093 +1.0042e-08 +0.000102093 +9.79575e-09 +0.000102093 +9.56686e-09 +0.000102093 +9.35413e-09 +0.000102093 +9.15641e-09 +0.000102093 +8.97266e-09 +0.000102093 +8.80188e-09 +0.000102093 +8.64315e-09 +0.000102093 +8.49563e-09 +0.000102093 +8.35852e-09 +0.000102093 +8.23109e-09 +0.000102093 +8.11266e-09 +0.000102092 +8.00259e-09 +0.000102092 +7.90029e-09 +0.000102092 +7.80521e-09 +0.000102092 +7.71685e-09 +0.000102092 +7.63472e-09 +0.000102092 +7.55839e-09 +0.000102092 +7.48745e-09 +0.000102092 +7.42151e-09 +0.000102092 +7.36024e-09 +0.000102092 +7.30328e-09 +0.000102092 +7.25035e-09 +0.000102092 +7.20116e-09 +0.000102092 +7.15544e-09 +0.000102092 +7.11294e-09 +0.000102092 +7.07345e-09 +0.000102092 +7.03674e-09 +0.000102092 +7.00263e-09 +0.000102092 +6.97092e-09 +0.000102092 +6.94145e-09 +0.000102092 +6.91406e-09 +0.000102092 +6.88861e-09 +0.000102092 +6.86495e-09 +0.000102092 +6.84296e-09 +0.000102092 +6.82253e-09 +0.000102092 +6.80354e-09 +0.000102092 +6.78589e-09 +0.000102092 +6.76948e-09 +0.000102092 +6.75423e-09 +0.000102092 +6.74006e-09 +0.000102092 +6.72689e-09 +0.000102092 +6.71465e-09 +0.000102092 +6.70327e-09 +0.000102092 +6.6927e-09 +0.000102092 +6.68287e-09 +0.000102092 +6.67374e-09 +0.000102092 +6.66525e-09 +0.000102092 +6.65736e-09 +0.000102092 +6.65003e-09 +0.000102092 +6.64322e-09 +0.000102092 +6.63688e-09 +0.000102092 +6.631e-09 +0.000102092 +6.62553e-09 +0.000102092 +6.62044e-09 +0.000102092 +6.61572e-09 +0.000102092 +6.61132e-09 +0.000102092 +6.60724e-09 +0.000102092 +6.60345e-09 +0.000102092 +6.59992e-09 +0.000102092 +6.59664e-09 +0.000102092 +6.5936e-09 +0.000102092 +6.59077e-09 +0.000102092 +6.58814e-09 +0.000102092 +6.58569e-09 +0.000102092 +6.58342e-09 +0.000102092 +6.58131e-09 +0.000102092 +6.57935e-09 +0.000102092 +6.57752e-09 +0.000102092 +6.57583e-09 +0.000102092 +6.57425e-09 +0.000102092 +#ppcess [3] +6.57278e-09 +0.000102092 +6.57142e-09 +0.000102092 +6.57016e-09 +0.000102092 +6.56898e-09 +0.000102092 +6.56789e-09 +0.000102092 +6.56687e-09 +0.000102092 +6.56593e-09 +0.000102092 +6.56505e-09 +0.000102092 +6.56424e-09 +0.000102092 +6.56348e-09 +0.000102092 +6.56277e-09 +0.000102092 +6.56212e-09 +0.000102092 +6.56151e-09 +0.000102092 +6.56095e-09 +0.000102092 +6.56042e-09 +0.000102092 +6.55993e-09 +0.000102092 +6.55948e-09 +0.000102092 +6.55906e-09 +0.000102092 +6.55866e-09 +0.000102092 +6.5583e-09 +0.000102092 +6.55796e-09 +0.000102092 +6.55765e-09 +0.000102092 +6.55735e-09 +0.000102092 +6.55708e-09 +0.000102092 +6.55683e-09 +0.000102092 +6.55659e-09 +0.000102092 +6.55638e-09 +0.000102092 +6.55617e-09 +0.000102092 +6.55598e-09 +0.000102092 +6.55581e-09 +0.000102092 +6.55565e-09 +0.000102092 +6.5555e-09 +0.000102092 +6.55535e-09 +0.000102092 +6.55522e-09 +0.000102092 +6.5551e-09 +0.000102092 +6.55499e-09 +0.000102092 +6.55488e-09 +0.000102092 +6.55479e-09 +0.000102092 +6.5547e-09 +0.000102092 +6.55461e-09 +0.000102092 +6.55453e-09 +0.000102092 +6.55446e-09 +0.000102092 +6.55439e-09 +0.000102092 +6.55433e-09 +0.000102092 +6.55427e-09 +0.000102092 +6.55422e-09 +0.000102092 +6.55417e-09 +0.000102092 +6.55412e-09 +0.000102092 +6.55408e-09 +0.000102092 +6.55404e-09 +0.000102092 +6.554e-09 +0.000102092 +6.55396e-09 +0.000102092 +6.55393e-09 +0.000102092 +6.5539e-09 +0.000102092 +6.55387e-09 +0.000102092 +6.55385e-09 +0.000102092 +6.55382e-09 +0.000102092 +6.5538e-09 +0.000102092 +6.55378e-09 +0.000102092 +6.55376e-09 +0.000102092 +6.55374e-09 +0.000102092 +6.55372e-09 +0.000102092 +6.55371e-09 +0.000102092 +6.55369e-09 +0.000102092 +6.55368e-09 +0.000102092 +6.55367e-09 +0.000102092 +6.55366e-09 +0.000102092 +6.55365e-09 +0.000102092 +6.55364e-09 +0.000102092 +6.55363e-09 +0.000102092 +6.55362e-09 +0.000102092 +6.55361e-09 +0.000102092 +6.5536e-09 +0.000102092 +6.55359e-09 +0.000102092 +6.55359e-09 +0.000102092 +6.55358e-09 +0.000102092 +6.55358e-09 +0.000102092 +6.55357e-09 +0.000102092 +6.55357e-09 +0.000102092 +6.55356e-09 +0.000102092 +6.55356e-09 +0.000102092 +6.55355e-09 +0.000102092 +6.55355e-09 +0.000102092 +6.55355e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 41_final_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 41_final_profile_global.xlo new file mode 100644 index 000000000..06e3e5921 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ 41_final_profile_global.xlo @@ -0,0 +1,2052 @@ +#Vector Object:Vec_0x84000004_0 4 MPI processes +# type: mpi +##ppcess [0] +0.0030982 +0.0011394 +0.00309711 +0.00113882 +0.00309609 +0.00113826 +0.00309515 +0.00113773 +0.00309429 +0.00113722 +0.0030935 +0.00113673 +0.00309279 +0.00113627 +0.00309216 +0.00113583 +0.00309159 +0.00113541 +0.00309111 +0.00113501 +0.00309069 +0.00113464 +0.00309033 +0.00113428 +0.00309004 +0.00113395 +0.00308981 +0.00113363 +0.00308964 +0.00113332 +0.00308952 +0.00113303 +0.00308944 +0.00113276 +0.00308941 +0.00113249 +0.00308942 +0.00113224 +0.00308947 +0.001132 +0.00308956 +0.00113176 +0.00308967 +0.00113154 +0.00308981 +0.00113132 +0.00308998 +0.0011311 +0.00309017 +0.00113089 +0.00309039 +0.00113068 +0.00309062 +0.00113048 +0.00309086 +0.00113028 +0.00309112 +0.00113008 +0.00309139 +0.00112988 +0.00309167 +0.00112968 +0.00309196 +0.00112947 +0.00309226 +0.00112927 +0.00309256 +0.00112907 +0.00309286 +0.00112886 +0.00309318 +0.00112867 +0.00309348 +0.00112866 +0.00309376 +0.00112869 +0.00309409 +0.00112869 +0.00309437 +0.00112867 +0.00309426 +0.00112862 +0.00309413 +0.00112857 +0.00309396 +0.0011285 +0.00309377 +0.00112842 +0.00309357 +0.00112835 +0.00309336 +0.00112827 +0.00309317 +0.0011282 +0.00309298 +0.00112813 +0.00309281 +0.00112806 +0.00309265 +0.00112801 +0.00309252 +0.00112796 +0.00309242 +0.00112791 +0.00309233 +0.00112788 +0.00309227 +0.00112785 +0.00309224 +0.00112783 +0.00309222 +0.00112782 +0.00309223 +0.00112781 +0.00309226 +0.00112781 +0.0030923 +0.00112782 +0.00309236 +0.00112783 +0.00309244 +0.00112785 +0.00309252 +0.00112787 +0.00309261 +0.00112789 +0.00309271 +0.00112791 +0.00309281 +0.00112794 +0.00309291 +0.00112796 +0.00309301 +0.00112799 +0.00309311 +0.00112801 +0.0030932 +0.00112804 +0.00309328 +0.00112806 +0.00309336 +0.00112808 +0.00309343 +0.00112809 +0.00309348 +0.00112811 +0.00309352 +0.00112812 +0.00309355 +0.00112812 +0.00309357 +0.00112812 +0.00309357 +0.00112811 +0.00309355 +0.0011281 +0.00309352 +0.00112809 +0.00309347 +0.00112807 +0.00309341 +0.00112805 +0.00309335 +0.00112803 +0.00309328 +0.001128 +0.00309321 +0.00112798 +0.00309315 +0.00112796 +0.00309309 +0.00112795 +0.00309303 +0.00112793 +0.00309299 +0.00112792 +0.00309295 +0.00112791 +0.00309292 +0.0011279 +0.0030929 +0.00112789 +0.00309289 +0.00112789 +0.00309289 +0.00112789 +0.0030929 +0.0011279 +0.00309291 +0.0011279 +0.00309293 +0.00112791 +0.00309295 +0.00112792 +0.00309298 +0.00112793 +0.00309302 +0.00112794 +0.00309305 +0.00112795 +0.00309309 +0.00112796 +0.00309312 +0.00112797 +0.00309315 +0.00112798 +0.00309319 +0.00112798 +0.00309322 +0.00112799 +0.00309324 +0.00112799 +0.00309326 +0.001128 +0.00309328 +0.001128 +0.00309329 +0.001128 +0.0030933 +0.001128 +0.00309331 +0.00112799 +0.00309331 +0.00112799 +0.0030933 +0.00112798 +0.00309329 +0.00112797 +0.00309328 +0.00112796 +0.00309327 +0.00112795 +0.00309325 +0.00112794 +0.00309323 +0.00112793 +0.00309322 +0.00112792 +0.0030932 +0.00112791 +0.00309318 +0.0011279 +0.00309316 +0.00112789 +0.00309315 +0.00112789 +0.00309314 +0.00112788 +0.00309313 +0.00112788 +0.00309313 +0.00112788 +0.00309312 +0.00112787 +0.00309313 +0.00112788 +0.00309313 +0.00112788 +0.00309314 +0.00112788 +0.00309314 +0.00112788 +0.00309316 +0.00112789 +0.00309317 +0.0011279 +0.00309318 +0.0011279 +0.00309319 +0.00112791 +0.00309321 +0.00112791 +0.00309322 +0.00112792 +0.00309324 +0.00112792 +0.00309325 +0.00112793 +0.00309326 +0.00112793 +0.00309327 +0.00112794 +0.00309328 +0.00112794 +0.00309329 +0.00112794 +0.00309329 +0.00112794 +0.00309329 +0.00112794 +0.0030933 +0.00112794 +0.00309329 +0.00112793 +0.00309329 +0.00112793 +0.00309328 +0.00112793 +0.00309328 +0.00112792 +0.00309327 +0.00112792 +0.00309326 +0.00112791 +0.00309325 +0.0011279 +0.00309323 +0.0011279 +0.00309322 +0.00112789 +0.00309321 +0.00112788 +0.0030932 +0.00112788 +0.00309318 +0.00112788 +0.00309317 +0.00112787 +0.00309316 +0.00112787 +0.00309315 +0.00112787 +0.00309314 +0.00112787 +0.00309313 +0.00112787 +0.00309313 +0.00112787 +0.00309312 +0.00112787 +0.00309312 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112789 +0.00309313 +0.00112789 +0.00309313 +0.0011279 +0.00309314 +0.0011279 +0.00309315 +0.00112791 +0.00309317 +0.00112791 +0.00309318 +0.00112792 +0.00309319 +0.00112792 +0.00309321 +0.00112792 +0.00309322 +0.00112793 +0.00309324 +0.00112793 +0.00309325 +0.00112793 +0.00309327 +0.00112792 +0.00309328 +0.00112792 +0.00309329 +0.00112792 +0.00309331 +0.00112792 +0.00309332 +0.00112791 +0.00309332 +0.00112791 +0.00309333 +0.0011279 +0.00309333 +0.0011279 +0.00309334 +0.00112789 +0.00309333 +0.00112789 +0.00309333 +0.00112789 +0.00309332 +0.00112788 +0.00309331 +0.00112788 +0.0030933 +0.00112788 +0.00309329 +0.00112788 +0.00309327 +0.00112788 +0.00309326 +0.00112788 +0.00309324 +0.00112788 +0.00309322 +0.00112788 +0.0030932 +0.00112789 +0.00309317 +0.00112789 +0.00309315 +0.0011279 +0.00309314 +0.0011279 +0.00309312 +0.00112791 +0.0030931 +0.00112792 +0.00309308 +0.00112793 +0.00309307 +0.00112793 +0.00309306 +0.00112794 +0.00309306 +0.00112795 +0.00309305 +0.00112795 +0.00309305 +0.00112796 +0.00309306 +0.00112797 +0.00309306 +0.00112797 +0.00309307 +0.00112798 +0.00309309 +0.00112798 +0.0030931 +0.00112798 +0.00309312 +0.00112799 +0.00309313 +0.00112799 +0.00309315 +0.00112799 +0.00309317 +0.00112799 +0.00309319 +0.00112799 +0.00309321 +0.00112799 +0.00309322 +0.00112799 +0.00309324 +0.00112799 +0.00309325 +0.00112799 +0.00309326 +0.00112799 +0.00309326 +0.00112799 +0.00309326 +0.00112799 +0.00309326 +0.00112799 +0.00309325 +0.00112799 +0.00309324 +0.00112799 +0.00309323 +0.001128 +0.00309321 +0.00112801 +0.00309319 +0.00112801 +0.00309317 +0.00112802 +0.00309315 +0.00112803 +0.00309312 +0.00112804 +0.00309309 +0.00112805 +0.00309307 +0.00112806 +0.00309304 +0.00112807 +0.00309302 +0.00112809 +0.00309299 +0.0011281 +0.00309297 +0.00112811 +0.00309295 +0.00112813 +0.00309294 +0.00112815 +0.00309293 +0.00112816 +0.00309292 +0.00112817 +0.00309291 +0.00112818 +0.00309291 +0.00112819 +0.00309291 +0.0011282 +0.00309292 +0.00112822 +0.00309293 +0.00112822 +0.00309293 +0.00112823 +0.00309294 +0.00112824 +0.00309296 +0.00112824 +0.00309297 +0.00112825 +#ppcess [1] +0.00309298 +0.00112826 +0.00309298 +0.00112826 +0.00309299 +0.00112827 +0.003093 +0.00112827 +0.003093 +0.00112828 +0.00309299 +0.00112829 +0.00309299 +0.00112829 +0.00309298 +0.0011283 +0.00309296 +0.00112831 +0.00309294 +0.00112832 +0.00309292 +0.00112834 +0.00309289 +0.00112835 +0.00309286 +0.00112838 +0.00309283 +0.0011284 +0.00309279 +0.00112842 +0.00309276 +0.00112845 +0.00309272 +0.00112847 +0.00309268 +0.00112851 +0.00309263 +0.00112854 +0.00309259 +0.00112858 +0.00309255 +0.00112862 +0.00309251 +0.00112866 +0.00309248 +0.0011287 +0.00309244 +0.00112875 +0.00309241 +0.0011288 +0.00309238 +0.00112885 +0.00309236 +0.0011289 +0.00309233 +0.00112895 +0.00309231 +0.001129 +0.00309229 +0.00112906 +0.00309227 +0.00112911 +0.00309226 +0.00112917 +0.00309224 +0.00112922 +0.00309222 +0.00112927 +0.0030922 +0.00112933 +0.00309218 +0.00112939 +0.00309216 +0.00112944 +0.00309213 +0.0011295 +0.0030921 +0.00112955 +0.00309206 +0.00112961 +0.00309202 +0.00112966 +0.00309197 +0.00112972 +0.00309192 +0.00112978 +0.00309186 +0.00112984 +0.00309179 +0.0011299 +0.00309171 +0.00112997 +0.00309163 +0.00113004 +0.00309155 +0.00113011 +0.00309146 +0.0011302 +0.00309136 +0.00113028 +0.00309126 +0.00113037 +0.00309115 +0.00113047 +0.00309104 +0.00113057 +0.00309093 +0.00113069 +0.00309082 +0.0011308 +0.00309071 +0.00113092 +0.00309059 +0.00113105 +0.00309048 +0.00113119 +0.00309037 +0.00113134 +0.00309026 +0.0011315 +0.00309014 +0.00113166 +0.00309003 +0.00113182 +0.00308992 +0.001132 +0.00308981 +0.00113218 +0.0030897 +0.00113237 +0.00308959 +0.00113256 +0.00308948 +0.00113275 +0.00308936 +0.00113297 +0.00308924 +0.00113317 +0.00308911 +0.00113339 +0.00308898 +0.00113361 +0.00308883 +0.00113383 +0.00308868 +0.00113407 +0.00308852 +0.0011343 +0.00308835 +0.00113454 +0.00308817 +0.00113479 +0.00308798 +0.00113504 +0.00308777 +0.00113529 +0.00308755 +0.00113556 +0.00308731 +0.00113583 +0.00308706 +0.00113612 +0.0030868 +0.00113641 +0.00308652 +0.00113672 +0.00308622 +0.00113703 +0.00308591 +0.00113736 +0.00308559 +0.00113771 +0.00308525 +0.00113808 +0.0030849 +0.00113847 +0.00308453 +0.00113887 +0.00308416 +0.00113929 +0.00308376 +0.00113975 +0.00308336 +0.00114023 +0.00308294 +0.00114072 +0.00308252 +0.00114125 +0.00308208 +0.00114181 +0.00308162 +0.00114239 +0.00308116 +0.001143 +0.00308068 +0.00114364 +0.00308019 +0.00114431 +0.00307969 +0.00114501 +0.00307917 +0.00114574 +0.00307864 +0.0011465 +0.00307809 +0.00114729 +0.00307752 +0.00114812 +0.00307694 +0.00114897 +0.00307633 +0.00114985 +0.00307569 +0.00115077 +0.00307504 +0.00115172 +0.00307435 +0.0011527 +0.00307363 +0.00115371 +0.00307288 +0.00115476 +0.0030721 +0.00115585 +0.00307128 +0.00115697 +0.00307042 +0.00115812 +0.00306952 +0.00115932 +0.00306857 +0.00116056 +0.00306758 +0.00116184 +0.00306653 +0.00116316 +0.00306544 +0.00116455 +0.0030643 +0.00116598 +0.0030631 +0.00116747 +0.00306185 +0.00116902 +0.00306054 +0.00117063 +0.00305918 +0.0011723 +0.00305775 +0.00117405 +0.00305627 +0.00117588 +0.00305474 +0.00117777 +0.00305314 +0.00117976 +0.00305149 +0.00118182 +0.00304977 +0.00118398 +0.003048 +0.00118622 +0.00304617 +0.00118856 +0.00304428 +0.00119101 +0.00304232 +0.00119355 +0.0030403 +0.00119619 +0.00303822 +0.00119895 +0.00303607 +0.00120182 +0.00303385 +0.0012048 +0.00303156 +0.0012079 +0.0030292 +0.00121112 +0.00302675 +0.00121445 +0.00302422 +0.00121793 +0.0030216 +0.00122152 +0.00301889 +0.00122525 +0.00301607 +0.00122911 +0.00301315 +0.0012331 +0.00301011 +0.00123723 +0.00300695 +0.00124151 +0.00300366 +0.00124593 +0.00300024 +0.00125051 +0.00299667 +0.00125523 +0.00299295 +0.00126012 +0.00298907 +0.00126517 +0.00298502 +0.00127038 +0.0029808 +0.00127577 +0.00297639 +0.00128133 +0.0029718 +0.00128709 +0.00296701 +0.00129303 +0.00296203 +0.00129918 +0.00295684 +0.00130552 +0.00295143 +0.00131209 +0.00294582 +0.00131887 +0.00293998 +0.00132589 +0.00293393 +0.00133312 +0.00292764 +0.00134062 +0.00292113 +0.00134836 +0.00291439 +0.00135637 +0.00290742 +0.00136465 +0.0029002 +0.0013732 +0.00289275 +0.00138204 +0.00288506 +0.00139116 +0.00287712 +0.00140059 +0.00286893 +0.00141033 +0.00286048 +0.00142038 +0.00285177 +0.00143074 +0.00284278 +0.00144141 +0.00283352 +0.00145241 +0.00282398 +0.00146373 +0.00281413 +0.00147537 +0.00280397 +0.00148733 +0.00279348 +0.00149961 +0.00278266 +0.00151219 +0.00277148 +0.00152511 +0.00275992 +0.00153831 +0.00274798 +0.00155184 +0.00273564 +0.00156568 +0.00272287 +0.0015798 +0.00270967 +0.00159424 +0.00269602 +0.00160897 +0.00268189 +0.00162401 +0.00266728 +0.00163936 +0.00265217 +0.00165502 +0.00263655 +0.00167097 +0.00262042 +0.00168723 +0.00260376 +0.00170381 +0.00258656 +0.0017207 +0.00256883 +0.00173791 +0.00255055 +0.00175543 +0.00253174 +0.0017733 +0.00251239 +0.00179147 +0.0024925 +0.00181 +0.00247208 +0.00182885 +0.00245114 +0.00184806 +0.00242967 +0.0018676 +0.00240769 +0.0018875 +0.0023852 +0.00190776 +0.00236221 +0.00192837 +0.00233872 +0.00194932 +0.00231474 +0.00197064 +0.00229026 +0.00199232 +0.00226527 +0.00201432 +0.00223979 +0.00203665 +0.0022138 +0.00205931 +0.00218729 +0.00208222 +0.00216024 +0.00210538 +0.00213265 +0.00212876 +0.00210449 +0.00215229 +0.00207573 +0.00217591 +0.00204636 +0.00219957 +0.00201634 +0.00222318 +0.00198565 +0.00224666 +0.00195427 +0.00226991 +0.00192216 +0.00229287 +0.0018893 +0.00231537 +0.00185566 +0.00233733 +0.00182122 +0.00235863 +0.00178597 +0.00237911 +0.00174988 +0.00239866 +0.00171295 +0.0024171 +0.00167519 +0.00243431 +0.00163659 +0.00245013 +0.00159717 +0.00246439 +0.00155695 +0.00247698 +0.00151596 +0.00248767 +0.00147424 +0.00249637 +0.00143185 +0.00250289 +0.00138883 +0.00250713 +0.00134527 +0.00250894 +0.00130122 +0.00250821 +0.00125679 +0.00250484 +0.00121206 +0.00249872 +0.00116712 +0.00248979 +0.00112209 +0.00247799 +0.00107708 +0.00246328 +0.00103218 +0.00244563 +0.000987525 +0.00242506 +0.000943219 +0.00240158 +0.000899377 +0.00237523 +0.000856111 +0.00234608 +0.000813525 +0.00231419 +0.000771725 +0.00227968 +0.000730805 +0.00224268 +0.000690854 +0.00220329 +0.000651957 +0.00216172 +0.000614186 +0.0021181 +0.00057761 +0.00207259 +#ppcess [2] +0.000542285 +0.00202541 +0.000508259 +0.00197674 +0.000475571 +0.0019268 +0.000444249 +0.00187577 +0.000414314 +0.00182389 +0.000385776 +0.00177133 +0.000358638 +0.0017183 +0.000332893 +0.001665 +0.000308529 +0.00161163 +0.000285526 +0.00155833 +0.000263857 +0.00150531 +0.000243492 +0.00145271 +0.000224394 +0.00140068 +0.000206521 +0.00134936 +0.00018983 +0.00129884 +0.000174272 +0.00124928 +0.0001598 +0.00120074 +0.000146361 +0.00115332 +0.000133904 +0.00110709 +0.000122379 +0.00106211 +0.000111733 +0.00101842 +0.000101916 +0.000976074 +9.28758e-05 +0.000935096 +8.45647e-05 +0.000895504 +7.69346e-05 +0.00085732 +6.99391e-05 +0.000820533 +6.35337e-05 +0.00078515 +5.7676e-05 +0.000751156 +5.23254e-05 +0.000718533 +4.74434e-05 +0.000687269 +4.29936e-05 +0.000657332 +3.89419e-05 +0.000628698 +3.5256e-05 +0.00060133 +3.19059e-05 +0.000575197 +2.88635e-05 +0.000550264 +2.61027e-05 +0.000526491 +2.35992e-05 +0.000503839 +2.13306e-05 +0.000482272 +1.92761e-05 +0.000461751 +1.74165e-05 +0.000442235 +1.57342e-05 +0.000423686 +1.4213e-05 +0.000406067 +1.28381e-05 +0.000389338 +1.15957e-05 +0.000373464 +1.04736e-05 +0.000358406 +9.46043e-06 +0.00034413 +8.54577e-06 +0.000330599 +7.72028e-06 +0.00031778 +6.97538e-06 +0.00030564 +6.30332e-06 +0.000294144 +5.69707e-06 +0.000283262 +5.15024e-06 +0.000272965 +4.65708e-06 +0.000263221 +4.21235e-06 +0.000254004 +3.81132e-06 +0.000245286 +3.44965e-06 +0.000237041 +3.12341e-06 +0.000229246 +2.82905e-06 +0.000221876 +2.5634e-06 +0.000214909 +2.32361e-06 +0.000208323 +2.10715e-06 +0.000202099 +1.91172e-06 +0.000196215 +1.73527e-06 +0.000190656 +1.57593e-06 +0.000185402 +1.43199e-06 +0.000180439 +1.30194e-06 +0.000175748 +1.18439e-06 +0.000171318 +1.0781e-06 +0.000167132 +9.81946e-07 +0.000163178 +8.94929e-07 +0.000159444 +8.16145e-07 +0.000155917 +7.4479e-07 +0.000152587 +6.80143e-07 +0.000149442 +6.21555e-07 +0.000146474 +5.6844e-07 +0.000143673 +5.20262e-07 +0.000141029 +4.76535e-07 +0.000138535 +4.36822e-07 +0.000136182 +4.0073e-07 +0.000133964 +3.67912e-07 +0.000131873 +3.38054e-07 +0.000129902 +3.10875e-07 +0.000128045 +2.86124e-07 +0.000126296 +2.63569e-07 +0.00012465 +2.43006e-07 +0.000123101 +2.24245e-07 +0.000121644 +2.07118e-07 +0.000120274 +1.91473e-07 +0.000118986 +1.77172e-07 +0.000117777 +1.64091e-07 +0.000116642 +1.52117e-07 +0.000115577 +1.41149e-07 +0.000114578 +1.31096e-07 +0.000113642 +1.21875e-07 +0.000112765 +1.13409e-07 +0.000111945 +1.05632e-07 +0.000111177 +9.84831e-08 +0.00011046 +9.19064e-08 +0.00010979 +8.58532e-08 +0.000109165 +8.02785e-08 +0.000108582 +7.51417e-08 +0.000108038 +7.04054e-08 +0.000107532 +6.60354e-08 +0.000107061 +6.20004e-08 +0.000106624 +5.82721e-08 +0.000106217 +5.48246e-08 +0.00010584 +5.16345e-08 +0.00010549 +4.86806e-08 +0.000105165 +4.59439e-08 +0.000104865 +4.3407e-08 +0.000104588 +4.10541e-08 +0.000104331 +3.88705e-08 +0.000104095 +3.68427e-08 +0.000103876 +3.4958e-08 +0.000103676 +3.32046e-08 +0.000103491 +3.15717e-08 +0.000103321 +3.00495e-08 +0.000103165 +2.86291e-08 +0.000103022 +2.7303e-08 +0.000102892 +2.60639e-08 +0.000102772 +2.49056e-08 +0.000102663 +2.38222e-08 +0.000102564 +2.28084e-08 +0.000102474 +2.18591e-08 +0.000102392 +2.09696e-08 +0.000102317 +2.01358e-08 +0.00010225 +1.93537e-08 +0.000102189 +1.86194e-08 +0.000102135 +1.79296e-08 +0.000102086 +1.7281e-08 +0.000102042 +1.66707e-08 +0.000102002 +1.60957e-08 +0.000101967 +1.55536e-08 +0.000101936 +1.5042e-08 +0.000101909 +1.4559e-08 +0.000101884 +1.41028e-08 +0.000101863 +1.36715e-08 +0.000101844 +1.32637e-08 +0.000101828 +1.28779e-08 +0.000101814 +1.25127e-08 +0.000101801 +1.21667e-08 +0.000101791 +1.18386e-08 +0.000101782 +1.15274e-08 +0.000101774 +1.12319e-08 +0.000101768 +1.09513e-08 +0.000101763 +1.06845e-08 +0.000101759 +1.04308e-08 +0.000101755 +1.01895e-08 +0.000101753 +9.95978e-09 +0.000101751 +9.74098e-09 +0.000101749 +9.53247e-09 +0.000101748 +9.33368e-09 +0.000101747 +9.14407e-09 +0.000101747 +8.96319e-09 +0.000101747 +8.79062e-09 +0.000101747 +8.626e-09 +0.000101748 +8.469e-09 +0.000101748 +8.31929e-09 +0.000101749 +8.17656e-09 +0.000101749 +8.0405e-09 +0.00010175 +7.91082e-09 +0.000101751 +7.78721e-09 +0.000101752 +7.66941e-09 +0.000101753 +7.55715e-09 +0.000101754 +7.45017e-09 +0.000101755 +7.34825e-09 +0.000101755 +7.25115e-09 +0.000101756 +7.15867e-09 +0.000101757 +7.07061e-09 +0.000101758 +6.98681e-09 +0.000101759 +6.90709e-09 +0.00010176 +6.8313e-09 +0.000101761 +6.7593e-09 +0.000101761 +6.69097e-09 +0.000101762 +6.62616e-09 +0.000101763 +6.56476e-09 +0.000101764 +6.50665e-09 +0.000101765 +6.45173e-09 +0.000101765 +6.39988e-09 +0.000101766 +6.351e-09 +0.000101767 +6.30501e-09 +0.000101768 +6.26181e-09 +0.000101768 +6.22134e-09 +0.000101769 +6.18351e-09 +0.00010177 +6.14825e-09 +0.000101771 +6.1155e-09 +0.000101771 +6.0852e-09 +0.000101772 +6.05728e-09 +0.000101773 +6.03169e-09 +0.000101773 +6.00837e-09 +0.000101774 +5.98727e-09 +0.000101775 +5.96835e-09 +0.000101775 +5.95155e-09 +0.000101776 +5.93683e-09 +0.000101777 +5.92415e-09 +0.000101777 +5.91346e-09 +0.000101778 +5.9047e-09 +0.000101779 +5.89785e-09 +0.000101779 +5.89283e-09 +0.00010178 +5.88962e-09 +0.00010178 +5.88815e-09 +0.000101781 +5.88838e-09 +0.000101782 +5.89027e-09 +0.000101782 +5.89376e-09 +0.000101783 +5.8988e-09 +0.000101783 +5.90536e-09 +0.000101784 +5.91338e-09 +0.000101784 +5.92282e-09 +0.000101784 +5.93363e-09 +0.000101785 +5.94576e-09 +0.000101785 +5.95918e-09 +0.000101786 +5.97383e-09 +0.000101786 +5.98967e-09 +0.000101786 +6.00665e-09 +0.000101786 +6.02473e-09 +0.000101787 +6.04386e-09 +0.000101787 +6.06399e-09 +0.000101787 +6.08508e-09 +0.000101787 +6.10708e-09 +0.000101787 +6.12994e-09 +0.000101788 +6.15362e-09 +0.000101788 +6.17806e-09 +0.000101788 +6.20323e-09 +0.000101788 +6.22906e-09 +0.000101788 +6.25552e-09 +0.000101788 +6.28255e-09 +0.000101788 +6.31011e-09 +0.000101788 +6.33814e-09 +0.000101788 +6.36659e-09 +0.000101788 +6.39541e-09 +0.000101788 +6.42455e-09 +0.000101788 +6.45395e-09 +0.000101788 +6.48356e-09 +0.000101788 +6.51333e-09 +0.000101787 +6.54321e-09 +0.000101787 +6.57313e-09 +0.000101787 +6.60304e-09 +0.000101787 +6.63289e-09 +0.000101787 +6.66262e-09 +0.000101787 +6.69218e-09 +0.000101787 +6.72152e-09 +0.000101787 +6.75057e-09 +0.000101787 +6.7793e-09 +0.000101787 +6.80764e-09 +0.000101786 +6.83554e-09 +0.000101786 +6.86296e-09 +0.000101786 +6.88985e-09 +0.000101786 +6.91617e-09 +0.000101786 +6.94185e-09 +0.000101786 +6.96687e-09 +0.000101786 +6.99118e-09 +0.000101786 +7.01475e-09 +0.000101786 +7.03752e-09 +0.000101786 +7.05948e-09 +0.000101785 +7.08059e-09 +0.000101785 +7.10082e-09 +0.000101785 +#ppcess [3] +7.12014e-09 +0.000101785 +7.13853e-09 +0.000101785 +7.15596e-09 +0.000101785 +7.17243e-09 +0.000101785 +7.18791e-09 +0.000101785 +7.2024e-09 +0.000101785 +7.21588e-09 +0.000101785 +7.22835e-09 +0.000101785 +7.2398e-09 +0.000101785 +7.25023e-09 +0.000101785 +7.25965e-09 +0.000101785 +7.26807e-09 +0.000101785 +7.27547e-09 +0.000101785 +7.28189e-09 +0.000101785 +7.28732e-09 +0.000101785 +7.29179e-09 +0.000101785 +7.2953e-09 +0.000101785 +7.29788e-09 +0.000101785 +7.29955e-09 +0.000101785 +7.30033e-09 +0.000101785 +7.30024e-09 +0.000101785 +7.29931e-09 +0.000101785 +7.29756e-09 +0.000101785 +7.29503e-09 +0.000101785 +7.29174e-09 +0.000101785 +7.28773e-09 +0.000101785 +7.28302e-09 +0.000101785 +7.27764e-09 +0.000101785 +7.27164e-09 +0.000101785 +7.26503e-09 +0.000101785 +7.25787e-09 +0.000101786 +7.25018e-09 +0.000101786 +7.242e-09 +0.000101786 +7.23336e-09 +0.000101786 +7.2243e-09 +0.000101786 +7.21486e-09 +0.000101786 +7.20507e-09 +0.000101786 +7.19496e-09 +0.000101786 +7.18458e-09 +0.000101786 +7.17395e-09 +0.000101786 +7.16312e-09 +0.000101786 +7.15211e-09 +0.000101786 +7.14095e-09 +0.000101786 +7.1297e-09 +0.000101786 +7.11836e-09 +0.000101786 +7.10698e-09 +0.000101786 +7.09559e-09 +0.000101786 +7.08422e-09 +0.000101786 +7.07289e-09 +0.000101786 +7.06163e-09 +0.000101786 +7.05048e-09 +0.000101786 +7.03945e-09 +0.000101786 +7.02857e-09 +0.000101786 +7.01787e-09 +0.000101786 +7.00736e-09 +0.000101786 +6.99708e-09 +0.000101786 +6.98704e-09 +0.000101786 +6.97725e-09 +0.000101786 +6.96774e-09 +0.000101786 +6.95853e-09 +0.000101786 +6.94963e-09 +0.000101786 +6.94105e-09 +0.000101786 +6.93281e-09 +0.000101786 +6.92492e-09 +0.000101786 +6.91738e-09 +0.000101786 +6.91023e-09 +0.000101786 +6.90344e-09 +0.000101786 +6.89705e-09 +0.000101786 +6.89105e-09 +0.000101786 +6.88545e-09 +0.000101786 +6.88025e-09 +0.000101786 +6.87545e-09 +0.000101786 +6.87107e-09 +0.000101786 +6.86709e-09 +0.000101786 +6.86351e-09 +0.000101786 +6.86035e-09 +0.000101786 +6.85759e-09 +0.000101786 +6.85523e-09 +0.000101786 +6.85327e-09 +0.000101786 +6.8517e-09 +0.000101786 +6.85052e-09 +0.000101786 +6.84972e-09 +0.000101786 +6.84929e-09 +0.000101786 +6.84923e-09 +0.000101786 +6.84952e-09 +0.000101786 +6.85016e-09 +0.000101786 +6.85114e-09 +0.000101786 +6.85244e-09 +0.000101786 +6.85406e-09 +0.000101786 +6.85598e-09 +0.000101786 +6.85819e-09 +0.000101786 +6.86068e-09 +0.000101786 +6.86344e-09 +0.000101786 +6.86644e-09 +0.000101786 +6.86969e-09 +0.000101786 +6.87315e-09 +0.000101786 +6.87683e-09 +0.000101786 +6.8807e-09 +0.000101786 +6.88476e-09 +0.000101786 +6.88897e-09 +0.000101786 +6.89334e-09 +0.000101786 +6.89785e-09 +0.000101786 +6.90247e-09 +0.000101786 +6.9072e-09 +0.000101786 +6.91203e-09 +0.000101786 +6.91693e-09 +0.000101786 +6.92189e-09 +0.000101786 +6.9269e-09 +0.000101786 +6.93194e-09 +0.000101786 +6.937e-09 +0.000101786 +6.94207e-09 +0.000101786 +6.94713e-09 +0.000101786 +6.95217e-09 +0.000101786 +6.95718e-09 +0.000101786 +6.96214e-09 +0.000101786 +6.96704e-09 +0.000101786 +6.97188e-09 +0.000101786 +6.97664e-09 +0.000101786 +6.98131e-09 +0.000101786 +6.98588e-09 +0.000101786 +6.99034e-09 +0.000101786 +6.99468e-09 +0.000101786 +6.9989e-09 +0.000101786 +7.00298e-09 +0.000101786 +7.00693e-09 +0.000101786 +7.01073e-09 +0.000101786 +7.01437e-09 +0.000101786 +7.01786e-09 +0.000101786 +7.02118e-09 +0.000101786 +7.02434e-09 +0.000101786 +7.02733e-09 +0.000101786 +7.03014e-09 +0.000101786 +7.03278e-09 +0.000101786 +7.03524e-09 +0.000101786 +7.03753e-09 +0.000101786 +7.03963e-09 +0.000101786 +7.04156e-09 +0.000101786 +7.04331e-09 +0.000101786 +7.04488e-09 +0.000101786 +7.04627e-09 +0.000101786 +7.04748e-09 +0.000101786 +7.04852e-09 +0.000101786 +7.04939e-09 +0.000101786 +7.05008e-09 +0.000101786 +7.05061e-09 +0.000101786 +7.05098e-09 +0.000101786 +7.05118e-09 +0.000101786 +7.05123e-09 +0.000101786 +7.05113e-09 +0.000101786 +7.05088e-09 +0.000101786 +7.05048e-09 +0.000101786 +7.04996e-09 +0.000101786 +7.0493e-09 +0.000101786 +7.04851e-09 +0.000101786 +7.04761e-09 +0.000101786 +7.0466e-09 +0.000101786 +7.04548e-09 +0.000101786 +7.04426e-09 +0.000101786 +7.04295e-09 +0.000101786 +7.04155e-09 +0.000101785 +7.04007e-09 +0.000101786 +7.03852e-09 +0.000101785 +7.03691e-09 +0.000101785 +7.03523e-09 +0.000101785 +7.0335e-09 +0.000101785 +7.03173e-09 +0.000101785 +7.02992e-09 +0.000101785 +7.02807e-09 +0.000101785 +7.0262e-09 +0.000101785 +7.02431e-09 +0.000101785 +7.02241e-09 +0.000101785 +7.0205e-09 +0.000101785 +7.01859e-09 +0.000101785 +7.01668e-09 +0.000101785 +7.01478e-09 +0.000101785 +7.01289e-09 +0.000101785 +7.01103e-09 +0.000101785 +7.0091e-09 +0.000101785 +7.00714e-09 +0.000101785 +7.00516e-09 +0.000101785 +7.00315e-09 +0.000101785 +7.00113e-09 +0.000101785 +6.99909e-09 +0.000101785 +6.99704e-09 +0.000101785 +6.99499e-09 +0.000101785 +6.99294e-09 +0.000101785 +6.9909e-09 +0.000101785 +6.98886e-09 +0.000101784 +6.98684e-09 +0.000101784 +6.98482e-09 +0.000101784 +6.98283e-09 +0.000101784 +6.98085e-09 +0.000101784 +6.9789e-09 +0.000101784 +6.97697e-09 +0.000101784 +6.97506e-09 +0.000101784 +6.97318e-09 +0.000101784 +6.97133e-09 +0.000101784 +6.96951e-09 +0.000101784 +6.96771e-09 +0.000101784 +6.96595e-09 +0.000101784 +6.96422e-09 +0.000101784 +6.96251e-09 +0.000101784 +6.96084e-09 +0.000101784 +6.9592e-09 +0.000101784 +6.95758e-09 +0.000101784 +6.95599e-09 +0.000101784 +6.95443e-09 +0.000101784 +6.95289e-09 +0.000101784 +6.95138e-09 +0.000101784 +6.94989e-09 +0.000101784 +6.94842e-09 +0.000101784 +6.94697e-09 +0.000101784 +6.94553e-09 +0.000101785 +6.94411e-09 +0.000101785 +6.9427e-09 +0.000101785 +6.94145e-09 +0.000101785 +6.93505e-09 +0.000101785 +6.92945e-09 +0.000101785 +6.92399e-09 +0.000101785 +6.91859e-09 +0.000101785 +6.91328e-09 +0.000101787 +6.90804e-09 +0.00010179 +6.90287e-09 +0.000101792 +6.89778e-09 +0.000101794 +6.89276e-09 +0.000101797 +6.8878e-09 +0.000101799 +6.88291e-09 +0.000101802 +6.87807e-09 +0.000101804 +6.8733e-09 +0.000101806 +6.86859e-09 +0.000101808 +6.86393e-09 +0.000101811 +6.85932e-09 +0.000101813 +6.85476e-09 +0.000101815 +6.85024e-09 +0.000101817 +6.84578e-09 +0.000101819 +6.84135e-09 +0.000101822 +6.83696e-09 +0.000101824 +6.83261e-09 +0.000101826 +6.8283e-09 +0.000101828 +6.82402e-09 +0.00010183 +6.81976e-09 +0.000101832 +6.81554e-09 +0.000101834 +6.81135e-09 +0.000101836 +6.80717e-09 +0.000101838 +6.80303e-09 +0.00010184 +6.7989e-09 +0.000101842 +6.79479e-09 +0.000101844 +6.7907e-09 +0.000101846 +6.78662e-09 +0.000101848 +6.78256e-09 +0.00010185 +6.77851e-09 +0.000101852 +6.77447e-09 +0.000101854 +6.77045e-09 +0.000101856 +6.76643e-09 +0.000101858 +6.76242e-09 +0.000101859 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_000.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_000.xlo new file mode 100644 index 000000000..b46b35607 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_000.xlo @@ -0,0 +1,1734 @@ +Vector Object: 1 MPI processes + type: seq +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.53993e-06 +0.00767819 +8.53423e-06 +0.00767285 +8.52913e-06 +0.00766694 +8.52432e-06 +0.0076603 +8.51976e-06 +0.00765335 +8.5156e-06 +0.00764689 +8.51213e-06 +0.00764185 +8.50956e-06 +0.00763885 +8.50838e-06 +0.00763824 +8.50905e-06 +0.00763941 +8.50952e-06 +0.00764083 +8.51025e-06 +0.007643 +8.51146e-06 +0.00764595 +8.51313e-06 +0.00764977 +8.51516e-06 +0.00765444 +8.51728e-06 +0.00765954 +8.5191e-06 +0.00766413 +8.52009e-06 +0.00766694 +8.5198e-06 +0.00766675 +8.5181e-06 +0.00766314 +8.51541e-06 +0.00765692 +8.51234e-06 +0.00764963 +8.50953e-06 +0.00764294 +8.50747e-06 +0.00763809 +8.50635e-06 +0.00763561 +8.50613e-06 +0.00763531 +8.50659e-06 +0.00763661 +8.50753e-06 +0.00763884 +8.50882e-06 +0.00764157 +8.51048e-06 +0.00764471 +8.51254e-06 +0.00764833 +8.51497e-06 +0.0076525 +8.51761e-06 +0.0076571 +8.52021e-06 +0.0076618 +8.52248e-06 +0.00766614 +8.52417e-06 +0.00766962 +8.52517e-06 +0.00767189 +8.5255e-06 +0.00767281 +8.52526e-06 +0.00767246 +8.52464e-06 +0.0076711 +8.52379e-06 +0.00766903 +8.52284e-06 +0.00766659 +8.52187e-06 +0.00766404 +8.52092e-06 +0.00766156 +8.52002e-06 +0.00765929 +8.5192e-06 +0.0076573 +8.51847e-06 +0.00765562 +8.51787e-06 +0.00765428 +8.51742e-06 +0.00765328 +8.51714e-06 +0.00765264 +8.51707e-06 +0.00765242 +8.51724e-06 +0.00765267 +8.51766e-06 +0.00765349 +8.51836e-06 +0.00765492 +8.51931e-06 +0.00765696 +8.52047e-06 +0.00765949 +8.52175e-06 +0.0076623 +8.52301e-06 +0.00766509 +8.52411e-06 +0.00766753 +8.52492e-06 +0.00766932 +8.52533e-06 +0.00767027 +8.5253e-06 +0.00767027 +8.52484e-06 +0.00766937 +8.52402e-06 +0.00766773 +8.52297e-06 +0.00766556 +8.5218e-06 +0.00766315 +8.52065e-06 +0.00766074 +8.51959e-06 +0.00765853 +8.51867e-06 +0.0076566 +8.5179e-06 +0.00765497 +8.51723e-06 +0.00765355 +8.51661e-06 +0.00765223 +8.516e-06 +0.0076509 +8.51537e-06 +0.00764952 +8.51473e-06 +0.00764814 +8.51414e-06 +0.00764688 +8.51366e-06 +0.00764593 +8.51338e-06 +0.00764548 +8.51337e-06 +0.00764567 +8.51365e-06 +0.00764655 +8.51422e-06 +0.00764804 +8.51501e-06 +0.00764995 +8.51591e-06 +0.00765201 +8.5168e-06 +0.00765393 +8.51753e-06 +0.00765545 +8.51802e-06 +0.00765638 +8.51821e-06 +0.00765664 +8.51812e-06 +0.00765629 +8.5178e-06 +0.00765548 +8.51733e-06 +0.00765441 +8.51683e-06 +0.00765329 +8.51637e-06 +0.0076523 +8.516e-06 +0.00765153 +8.51573e-06 +0.007651 +8.51553e-06 +0.00765064 +8.51536e-06 +0.00765035 +8.51517e-06 +0.00765002 +8.51491e-06 +0.00764957 +8.51458e-06 +0.00764897 +8.51419e-06 +0.00764826 +8.51378e-06 +0.00764752 +8.51341e-06 +0.00764685 +8.51313e-06 +0.00764636 +8.513e-06 +0.00764615 +8.51305e-06 +0.00764627 +8.5133e-06 +0.00764673 +8.51372e-06 +0.0076475 +8.51429e-06 +0.00764851 +8.51496e-06 +0.00764968 +8.51565e-06 +0.00765092 +8.51633e-06 +0.00765215 +8.51695e-06 +0.00765331 +8.51748e-06 +0.00765439 +8.51793e-06 +0.00765535 +8.5183e-06 +0.0076562 +8.5186e-06 +0.00765693 +8.51882e-06 +0.00765751 +8.51897e-06 +0.0076579 +8.51902e-06 +0.00765804 +8.51895e-06 +0.00765787 +8.51875e-06 +0.00765737 +8.51841e-06 +0.00765653 +8.51795e-06 +0.00765541 +8.5174e-06 +0.0076541 +8.51682e-06 +0.00765274 +8.51625e-06 +0.00765147 +8.51576e-06 +0.00765043 +8.5154e-06 +0.00764973 +8.51519e-06 +0.00764944 +8.51516e-06 +0.00764955 +8.5153e-06 +0.00765001 +8.51558e-06 +0.00765073 +8.51595e-06 +0.00765156 +8.51636e-06 +0.0076524 +8.51676e-06 +0.00765315 +8.51711e-06 +0.00765377 +8.51739e-06 +0.00765425 +8.51759e-06 +0.00765463 +8.51772e-06 +0.00765497 +8.51779e-06 +0.00765531 +8.51784e-06 +0.00765569 +8.51788e-06 +0.00765611 +8.51793e-06 +0.00765657 +8.51801e-06 +0.00765701 +8.51811e-06 +0.00765741 +8.51822e-06 +0.00765769 +8.51831e-06 +0.00765782 +8.51836e-06 +0.00765775 +8.51833e-06 +0.00765749 +8.51823e-06 +0.00765706 +8.51803e-06 +0.00765651 +8.51776e-06 +0.00765591 +8.51742e-06 +0.00765532 +8.51704e-06 +0.00765476 +8.51661e-06 +0.00765422 +8.51614e-06 +0.00765362 +8.51563e-06 +0.00765288 +8.51506e-06 +0.00765192 +8.51445e-06 +0.00765072 +8.51382e-06 +0.00764933 +8.51324e-06 +0.00764786 +8.51274e-06 +0.00764647 +8.51241e-06 +0.00764533 +8.51229e-06 +0.00764463 +8.51243e-06 +0.00764451 +8.51285e-06 +0.00764507 +8.51355e-06 +0.00764637 +8.51452e-06 +0.00764842 +8.51572e-06 +0.00765118 +8.51711e-06 +0.00765454 +8.51861e-06 +0.00765827 +8.52011e-06 +0.00766208 +8.52148e-06 +0.00766558 +8.52257e-06 +0.00766834 +8.52321e-06 +0.00766995 +8.52328e-06 +0.0076701 +8.52267e-06 +0.00766865 +8.52139e-06 +0.00766565 +8.51951e-06 +0.00766137 +8.51719e-06 +0.00765627 +8.51468e-06 +0.00765092 +8.51223e-06 +0.00764592 +8.51008e-06 +0.00764179 +8.50841e-06 +0.00763888 +8.5073e-06 +0.00763731 +8.50677e-06 +0.00763698 +8.50676e-06 +0.00763766 +8.50724e-06 +0.0076391 +8.50816e-06 +0.00764118 +8.50954e-06 +0.00764395 +8.51133e-06 +0.00764753 +8.51344e-06 +0.00765194 +8.5157e-06 +0.0076569 +8.51782e-06 +0.00766182 +8.51947e-06 +0.00766588 +8.5204e-06 +0.00766832 +8.52047e-06 +0.00766869 +8.51975e-06 +0.007667 +8.51846e-06 +0.00766373 +8.51689e-06 +0.00765968 +8.51532e-06 +0.0076557 +8.51394e-06 +0.00765252 +8.51285e-06 +0.00765054 +8.51208e-06 +0.00764986 +8.5117e-06 +0.00765036 +8.51181e-06 +0.00765181 +8.5125e-06 +0.00765401 +8.51378e-06 +0.00765671 +8.51543e-06 +0.00765955 +8.51707e-06 +0.00766194 +8.51818e-06 +0.00766314 +8.5183e-06 +0.00766249 +8.51722e-06 +0.00765967 +8.51504e-06 +0.0076549 +8.51216e-06 +0.00764896 +8.50919e-06 +0.00764295 +8.5067e-06 +0.00763799 +8.50512e-06 +0.00763493 +8.50468e-06 +0.00763424 +8.50538e-06 +0.00763593 +8.50708e-06 +0.0076397 +8.50957e-06 +0.00764503 +8.51254e-06 +0.00765128 +8.51568e-06 +0.00765775 +8.51859e-06 +0.00766369 +8.52091e-06 +0.00766835 +8.52228e-06 +0.00767104 +8.52253e-06 +0.00767135 +8.52161e-06 +0.00766923 +8.51974e-06 +0.00766505 +8.5173e-06 +0.00765959 +8.51479e-06 +0.00765389 +8.51276e-06 +0.00764913 +8.51162e-06 +0.00764627 +8.51157e-06 +0.0076458 +8.51251e-06 +0.00764756 +8.51401e-06 +0.00765073 +8.51546e-06 +0.0076541 +8.51629e-06 +0.00765644 +8.51617e-06 +0.00765689 +8.5151e-06 +0.00765533 +8.51341e-06 +0.0076523 +8.51159e-06 +0.0076488 +8.51008e-06 +0.00764584 +8.50917e-06 +0.00764415 +8.50904e-06 +0.00764405 +8.50975e-06 +0.00764556 +8.51135e-06 +0.00764859 +8.51376e-06 +0.00765297 +8.51673e-06 +0.00765841 +8.51976e-06 +0.0076642 +8.52216e-06 +0.0076692 +8.52334e-06 +0.00767215 +8.52298e-06 +0.00767219 +8.52129e-06 +0.00766936 +8.51886e-06 +0.00766461 +8.5165e-06 +0.00765938 +8.51483e-06 +0.00765511 +8.5142e-06 +0.00765277 +8.51455e-06 +0.00765269 +8.51554e-06 +0.00765453 +8.51668e-06 +0.00765735 +8.51743e-06 +0.00765989 +8.51733e-06 +0.00766074 +8.51605e-06 +0.00765879 +8.51355e-06 +0.00765362 +8.51016e-06 +0.0076459 +8.50661e-06 +0.00763747 +8.50388e-06 +0.00763088 +8.5029e-06 +0.00762852 +8.50417e-06 +0.00763166 +8.50752e-06 +0.00763987 +8.51211e-06 +0.00765105 +8.51662e-06 +0.00766205 +8.51963e-06 +0.00766956 +8.52008e-06 +0.00767109 +8.5176e-06 +0.0076657 +8.51274e-06 +0.00765444 +8.50685e-06 +0.00764034 +8.50178e-06 +0.00762767 +8.49932e-06 +0.00762079 +8.50062e-06 +0.0076227 +8.50576e-06 +0.0076339 +8.51359e-06 +0.007652 +8.52202e-06 +0.00767226 +8.52861e-06 +0.00768889 +8.53128e-06 +0.00769675 +8.529e-06 +0.00769285 +8.52202e-06 +0.0076773 +8.51186e-06 +0.00765329 +8.50075e-06 +0.00762619 +8.49109e-06 +0.00760209 +8.48477e-06 +0.0075862 +8.48281e-06 +0.0075816 +8.48519e-06 +0.00758851 +8.49092e-06 +0.00760439 +8.49835e-06 +0.00762454 +8.50552e-06 +0.0076434 +8.51059e-06 +0.0076559 +8.51236e-06 +0.00765894 +8.5106e-06 +0.00765233 +8.50617e-06 +0.00763901 +8.50078e-06 +0.00762413 +8.49645e-06 +0.00761325 +8.49483e-06 +0.0076104 +8.49662e-06 +0.00761672 +8.50134e-06 +0.00763016 +8.50752e-06 +0.00764638 +8.51325e-06 +0.00766037 +8.51683e-06 +0.00766808 +8.51733e-06 +0.00766772 +8.51484e-06 +0.00766004 +8.51028e-06 +0.00764783 +8.50506e-06 +0.00763475 +8.50051e-06 +0.00762407 +8.49746e-06 +0.0076177 +8.4961e-06 +0.00761581 +8.49604e-06 +0.00761715 +8.49659e-06 +0.00761978 +8.49705e-06 +0.00762175 +8.49696e-06 +0.00762171 +8.49617e-06 +0.00761915 +8.49489e-06 +0.00761461 +8.49366e-06 +0.00760971 +8.49321e-06 +0.00760687 +8.49424e-06 +0.00760846 +8.49711e-06 +0.00761576 +8.50166e-06 +0.00762808 +8.50707e-06 +0.00764265 +8.51216e-06 +0.00765567 +8.5158e-06 +0.00766396 +8.51742e-06 +0.00766642 +8.51727e-06 +0.00766426 +8.51622e-06 +0.00766009 +8.51528e-06 +0.00765649 +8.51515e-06 +0.00765501 +8.51603e-06 +0.00765609 +8.51782e-06 +0.00765975 +8.52034e-06 +0.00766608 +8.5232e-06 +0.00767453 +8.52558e-06 +0.00768249 +8.52618e-06 +0.00768526 +8.52386e-06 +0.00767868 +8.51852e-06 +0.00766272 +8.5114e-06 +0.00764251 +8.50435e-06 +0.00762505 +8.49875e-06 +0.00761422 +8.49499e-06 +0.00760847 +8.49292e-06 +0.0076038 +8.49269e-06 +0.00759933 +8.49498e-06 +0.00759946 +8.50025e-06 +0.00760907 +8.50773e-06 +0.00762677 +8.51546e-06 +0.00764366 +8.52159e-06 +0.00765065 +8.52584e-06 +0.00764731 +8.52965e-06 +0.00764195 +8.53499e-06 +0.00764322 +8.5429e-06 +0.00765243 +8.55307e-06 +0.0076626 +8.5646e-06 +0.00766572 +8.5775e-06 +0.00766236 +8.5929e-06 +0.00766115 +8.6118e-06 +0.00766821 +8.63395e-06 +0.00768071 +8.6581e-06 +0.0076891 +8.68379e-06 +0.00768489 +8.7127e-06 +0.00766861 +8.748e-06 +0.00764979 +8.79245e-06 +0.00763729 +8.84737e-06 +0.00763021 +8.91327e-06 +0.0076191 +8.99161e-06 +0.00759711 +9.08713e-06 +0.00756994 +9.20739e-06 +0.00755037 +9.35979e-06 +0.00754594 +9.55014e-06 +0.00755383 +9.78325e-06 +0.00756263 +1.00644e-05 +0.00756076 +1.04011e-05 +0.00754448 +1.08049e-05 +0.00751873 +1.12908e-05 +0.00749481 +1.18769e-05 +0.0074672 +1.25855e-05 +0.00742647 +1.34442e-05 +0.00737955 +1.44833e-05 +0.0073315 +1.57304e-05 +0.00727546 +1.72113e-05 +0.00720159 +1.89539e-05 +0.00710352 +2.09981e-05 +0.00697734 +2.34148e-05 +0.00681323 +2.63093e-05 +0.00663935 +2.9832e-05 +0.00647397 +3.41763e-05 +0.0063046 +3.95489e-05 +0.00612369 +4.61259e-05 +0.00592686 +5.39887e-05 +0.00569188 +6.30401e-05 +0.00539067 +7.29374e-05 +0.00500171 +8.3065e-05 +0.0045172 +9.25713e-05 +0.00394654 +0.000100518 +0.00332955 +0.000106078 +0.0027124 +0.000108691 +0.00213329 +0.000108193 +0.0016205 +0.000104846 +0.00118996 +9.92489e-05 +0.000849471 +9.21626e-05 +0.000593958 +8.43389e-05 +0.000408923 +7.64039e-05 +0.000278055 +6.88105e-05 +0.000187106 +6.18449e-05 +0.000124963 +5.56556e-05 +8.37297e-05 +5.02898e-05 +5.67227e-05 +4.57271e-05 +3.88538e-05 +4.19063e-05 +2.68089e-05 +3.87472e-05 +1.86365e-05 +3.61638e-05 +1.31273e-05 +3.40726e-05 +9.41029e-06 +3.23966e-05 +6.8703e-06 +3.10671e-05 +5.10435e-06 +3.00243e-05 +3.85822e-06 +2.92162e-05 +2.97799e-06 +2.85986e-05 +2.36392e-06 +2.81335e-05 +1.93942e-06 +2.77889e-05 +1.64549e-06 +2.75379e-05 +1.43877e-06 +2.73585e-05 +1.28749e-06 +2.72327e-05 +1.17018e-06 +2.71465e-05 +1.07534e-06 +2.70887e-05 +9.9784e-07 +2.7051e-05 +9.3473e-07 +2.70271e-05 +8.84074e-07 +2.70126e-05 +8.4515e-07 +2.70041e-05 +8.17756e-07 +2.69995e-05 +8.01144e-07 +2.69972e-05 +7.93642e-07 +2.69963e-05 +7.93059e-07 +2.6996e-05 +7.97246e-07 +2.69961e-05 +8.0443e-07 +2.69964e-05 +8.13294e-07 +2.69966e-05 +8.22909e-07 +2.69969e-05 +8.32578e-07 +2.6997e-05 +8.41714e-07 +2.69972e-05 +8.49826e-07 +2.69972e-05 +8.56568e-07 +2.69973e-05 +8.61789e-07 +2.69973e-05 +8.6551e-07 +2.69974e-05 +8.67878e-07 +2.69974e-05 +8.69119e-07 +2.69974e-05 +8.69511e-07 +2.69974e-05 +8.69357e-07 +2.69974e-05 +8.68954e-07 +2.69974e-05 +8.68554e-07 +2.69975e-05 +8.68327e-07 +2.69975e-05 +8.68358e-07 +2.69975e-05 +8.68653e-07 +2.69975e-05 +8.69163e-07 +2.69975e-05 +8.69807e-07 +2.69975e-05 +8.70496e-07 +2.69976e-05 +8.71144e-07 +2.69976e-05 +8.71686e-07 +2.69976e-05 +8.72079e-07 +2.69976e-05 +8.72304e-07 +2.69976e-05 +8.72365e-07 +2.69976e-05 +8.72285e-07 +2.69976e-05 +8.72096e-07 +2.69976e-05 +8.71834e-07 +2.69976e-05 +8.71538e-07 +2.69976e-05 +8.71238e-07 +2.69976e-05 +8.70963e-07 +2.69976e-05 +8.7073e-07 +2.69976e-05 +8.70551e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70367e-07 +2.69976e-05 +8.70353e-07 +2.69976e-05 +8.70378e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70499e-07 +2.69976e-05 +8.70571e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70696e-07 +2.69976e-05 +8.70738e-07 +2.69976e-05 +8.70764e-07 +2.69976e-05 +8.70775e-07 +2.69976e-05 +8.70773e-07 +2.69976e-05 +8.70761e-07 +2.69976e-05 +8.70742e-07 +2.69976e-05 +8.7072e-07 +2.69976e-05 +8.70698e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70661e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70641e-07 +2.69976e-05 +8.70638e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70643e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70656e-07 +2.69976e-05 +8.70663e-07 +2.69976e-05 +8.7067e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70681e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70685e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70682e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70683e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70693e-07 +2.69976e-05 +8.707e-07 +2.69976e-05 +8.70708e-07 +2.69976e-05 +8.70718e-07 +2.69976e-05 +8.70728e-07 +2.69976e-05 +8.7074e-07 +2.69976e-05 +8.70753e-07 +2.69976e-05 +8.70767e-07 +2.69976e-05 +8.70783e-07 +2.69976e-05 +8.70796e-07 +2.69976e-05 +8.70802e-07 +2.69976e-05 +8.70803e-07 +2.69975e-05 +8.708e-07 +2.69975e-05 +8.70791e-07 +2.69974e-05 +8.70778e-07 +2.69974e-05 +8.70761e-07 +2.69973e-05 +8.70739e-07 +2.69972e-05 +8.70714e-07 +2.69971e-05 +8.70517e-07 +2.69975e-05 +8.70284e-07 +2.69979e-05 +8.70066e-07 +2.69984e-05 +8.69852e-07 +2.69988e-05 +8.69645e-07 +2.69992e-05 +8.69444e-07 +2.69996e-05 +8.69248e-07 +2.69999e-05 +8.69058e-07 +2.70003e-05 +8.68872e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_001.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_001.xlo new file mode 100644 index 000000000..9483ff66f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_001.xlo @@ -0,0 +1,1014 @@ +Vector Object: 1 MPI processes + type: seq +0.00309313 +0.00112788 +0.00309314 +0.00112788 +0.00309315 +0.00112789 +0.00309317 +0.00112789 +0.00309318 +0.00112789 +0.0030932 +0.0011279 +0.00309321 +0.0011279 +0.00309323 +0.0011279 +0.00309324 +0.0011279 +0.00309325 +0.00112791 +0.00309326 +0.00112791 +0.00309327 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309327 +0.0011279 +0.00309327 +0.0011279 +0.00309326 +0.00112789 +0.00309325 +0.00112789 +0.00309324 +0.00112789 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309322 +0.00112788 +0.00309321 +0.00112788 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309321 +0.00112787 +0.00309321 +0.00112787 +0.00309322 +0.00112788 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_002.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_002.xlo new file mode 100644 index 000000000..9e3e3ebdf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_002.xlo @@ -0,0 +1,1014 @@ +Vector Object: 1 MPI processes + type: seq +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309322 +0.00112788 +0.00309322 +0.00112788 +0.00309321 +0.00112787 +0.00309321 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309321 +0.00112787 +0.00309321 +0.00112788 +0.00309322 +0.00112788 +0.00309323 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112789 +0.00309325 +0.00112789 +0.00309326 +0.00112789 +0.00309327 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309329 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309327 +0.00112791 +0.00309326 +0.00112791 +0.00309325 +0.00112791 +0.00309324 +0.0011279 +0.00309323 +0.0011279 +0.00309321 +0.0011279 +0.0030932 +0.00112789 +0.00309318 +0.00112789 +0.00309316 +0.00112789 +0.00309315 +0.00112788 +0.00309314 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112788 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_003.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_003.xlo new file mode 100644 index 000000000..7b6b66d10 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/2_final_profile_local_proc_003.xlo @@ -0,0 +1,1012 @@ +Vector Object: 1 MPI processes + type: seq +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309322 +0.00112788 +0.00309322 +0.00112788 +0.00309321 +0.00112787 +0.00309321 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309321 +0.00112787 +0.00309321 +0.00112788 +0.00309322 +0.00112788 +0.00309323 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112789 +0.00309325 +0.00112789 +0.00309326 +0.00112789 +0.00309327 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309329 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309327 +0.00112791 +0.00309326 +0.00112791 +0.00309325 +0.00112791 +0.00309324 +0.0011279 +0.00309323 +0.0011279 +0.00309321 +0.0011279 +0.0030932 +0.00112789 +0.00309318 +0.00112789 +0.00309316 +0.00112789 +0.00309315 +0.00112788 +0.00309314 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112788 +0.00309311 +0.00112788 +0.0030931 +0.00112788 +0.0030931 +0.00112788 +0.00309311 +0.00112788 +0.00309311 +0.00112788 +0.00309312 +0.00112788 +0.00309314 +0.00112789 +0.00309315 +0.00112789 +0.00309317 +0.0011279 +0.0030932 +0.00112791 +0.00309322 +0.00112792 +0.00309324 +0.00112793 +0.00309327 +0.00112793 +0.00309329 +0.00112794 +0.00309331 +0.00112795 +0.00309333 +0.00112796 +0.00309334 +0.00112797 +0.00309335 +0.00112797 +0.00309336 +0.00112798 +0.00309336 +0.00112798 +0.00309335 +0.00112799 +0.00309334 +0.00112799 +0.00309333 +0.00112799 +0.00309331 +0.00112798 +0.00309328 +0.00112798 +0.00309325 +0.00112797 +0.00309321 +0.00112797 +0.00309318 +0.00112796 +0.00309314 +0.00112795 +0.0030931 +0.00112794 +0.00309306 +0.00112793 +0.00309302 +0.00112792 +0.00309298 +0.00112791 +0.00309294 +0.0011279 +0.00309291 +0.0011279 +0.00309289 +0.00112789 +0.00309287 +0.00112788 +0.00309286 +0.00112788 +0.00309286 +0.00112788 +0.00309287 +0.00112788 +0.00309289 +0.00112789 +0.00309292 +0.0011279 +0.00309296 +0.00112791 +0.00309301 +0.00112792 +0.00309307 +0.00112793 +0.00309313 +0.00112795 +0.0030932 +0.00112797 +0.00309327 +0.00112799 +0.00309334 +0.00112801 +0.00309341 +0.00112803 +0.00309347 +0.00112805 +0.00309352 +0.00112807 +0.00309355 +0.00112808 +0.00309357 +0.00112809 +0.00309356 +0.0011281 +0.00309355 +0.0011281 +0.00309352 +0.00112809 +0.00309347 +0.00112809 +0.00309342 +0.00112807 +0.00309335 +0.00112806 +0.00309327 +0.00112804 +0.00309319 +0.00112801 +0.00309309 +0.00112799 +0.003093 +0.00112797 +0.0030929 +0.00112794 +0.0030928 +0.00112792 +0.0030927 +0.00112789 +0.0030926 +0.00112787 +0.00309251 +0.00112785 +0.00309243 +0.00112783 +0.00309236 +0.00112782 +0.0030923 +0.00112781 +0.00309226 +0.0011278 +0.00309223 +0.0011278 +0.00309223 +0.00112781 +0.00309225 +0.00112782 +0.00309229 +0.00112784 +0.00309235 +0.00112787 +0.00309244 +0.00112791 +0.00309255 +0.00112795 +0.00309269 +0.001128 +0.00309285 +0.00112806 +0.00309302 +0.00112812 +0.00309322 +0.00112819 +0.00309342 +0.00112826 +0.00309363 +0.00112834 +0.00309384 +0.00112842 +0.00309404 +0.00112849 +0.00309421 +0.00112856 +0.00309436 +0.00112862 +0.00309447 +0.00112866 +0.00309406 +0.00112869 +0.00309373 +0.00112868 +0.00309345 +0.00112865 +0.00309315 +0.00112866 +0.00309284 +0.00112886 +0.00309254 +0.00112907 +0.00309223 +0.00112927 +0.00309194 +0.00112947 +0.00309165 +0.00112967 +0.00309137 +0.00112988 +0.00309109 +0.00113008 +0.00309083 +0.00113028 +0.00309059 +0.00113048 +0.00309036 +0.00113069 +0.00309014 +0.0011309 +0.00308995 +0.00113111 +0.00308978 +0.00113133 +0.00308964 +0.00113155 +0.00308952 +0.00113178 +0.00308944 +0.00113201 +0.00308939 +0.00113226 +0.00308938 +0.00113251 +0.00308941 +0.00113277 +0.00308949 +0.00113305 +0.00308961 +0.00113334 +0.00308979 +0.00113364 +0.00309003 +0.00113396 +0.00309032 +0.0011343 +0.00309068 +0.00113466 +0.0030911 +0.00113503 +0.00309159 +0.00113543 +0.00309216 +0.00113584 +0.0030928 +0.00113628 +0.00309351 +0.00113674 +0.0030943 +0.00113723 +0.00309517 +0.00113774 +0.00309612 +0.00113827 +0.00309713 +0.00113883 +0.00309822 +0.00113941 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/AD_Routines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/AD_Routines.F90 new file mode 100644 index 000000000..d4e6d913f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/AD_Routines.F90 @@ -0,0 +1,234 @@ + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +! Differentiation of formfunctionlocal in forward (tangent) mode: +! variations of useful results: f rhop +! with respect to varying inputs: rhop +! RW status of diff variables: f:out rhop:in-out +SUBROUTINE FORMFUNCTIONLOCAL_D(rhop, rhopd_nogp, fd, user, ierr) + + +!PETSc modules + Use PetscManagement + + +!DFT modules + USE MOD_DFT_FMT + USE MOD_DFT_CHAIN + USE MOD_DFT_FMT_d + USE MOD_DFT_CHAIN_d + USE MOD_DFT_DISP_WDA_D + + + USE BASIC_VARIABLES, ONLY : ncomp + USE EOS_VARIABLES, Only:dhs, rho + USE VLE_VAR, Only: rhob + USE MOD_DFT, ONLY : fa, zp + USE DFT_FCN_MODULE, ONLY : chempot_res + USE GLOBAL_X, ONLY : ngrid, ngp + IMPLICIT NONE + +#include + +! Input/output variables: + type (userctx) user + PetscScalar rhop(ncomp,user%gxs:user%gxe) + PetscScalar rhopd_nogp(ncomp,user%xs:user%xe) + !PetscScalar f(ncomp,user%xs:user%xe) + PetscScalar fd(ncomp,user%xs:user%xe) + PetscErrorCode ierr + +! Local variables: + PetscInt i + PetscInt k + REAL,dimension(user%gxs:user%gxe) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! + REAL,dimension(user%gxs:user%gxe) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 + REAL,dimension(user%gxs:user%gxe) :: phi_dn0d,phi_dn1d,phi_dn2d,phi_dn3d,phi_dnv1d,phi_dnv2d + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_FMT,dF_drho_FMTd + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhobar,lambda,rhobard,lambdad + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_CHAIN,dF_drho_CHAINd + REAL :: Vext(ncomp) + + !DISP VAR + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhop_wd,my_disp,df_disp_drk + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhop_wdd,my_dispd + REAL,dimension(user%gxs:user%gxe) :: f_disp + REAL, dimension(ncomp) :: dF_drho_disp + REAL, dimension(ncomp) :: dF_drho_dispd + + + + INTRINSIC EXP + REAL :: arg1 + REAL :: arg1d + PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) + + rhopd = 0.0 + rhopd(1:ncomp,user%xs:user%xe) = rhopd_nogp(1:ncomp,user%xs:user%xe) + + + +!calculate weighted densities + CALL FMT_WEIGHTED_DENSITIES_D(rhop, rhopd, n0, n1, n2, n3, nv1, nv2, & +& phi_dn0, phi_dn0d, phi_dn1, phi_dn1d, phi_dn2& +& , phi_dn2d, phi_dn3, phi_dn3d, phi_dnv1, & +& phi_dnv1d, phi_dnv2, phi_dnv2d, user) +!calculate averaged density rhobar and lambda (both needed for chain term) + CALL CHAIN_AUX_D(rhop, rhopd, rhobar, rhobard, lambda, lambdad, user) +!HIER DISP!!! + CALL DISP_WEIGHTED_DENSITIES_D(rhop, rhopd, rhop_wd, rhop_wdd, user) + CALL DISP_MU_D(rhop_wd, rhop_wdd, f_disp, my_disp, my_dispd, & +& df_disp_drk, user) + + fd = 0.0 + df_drho_chaind = 0.0 + df_drho_fmtd = 0.0 + df_drho_dispd = 0.0 + + DO i = user%xs,user%xe + CALL FMT_DFDRHO_D(i, fa, user, phi_dn0, phi_dn0d, phi_dn1, phi_dn1d& +& , phi_dn2, phi_dn2d, phi_dn3, phi_dn3d, phi_dnv1, & +& phi_dnv1d, phi_dnv2, phi_dnv2d, df_drho_fmt, & +& df_drho_fmtd) + CALL CHAIN_DFDRHO_D(i, rhop, rhopd, lambda, lambdad, rhobar, rhobard& +& , df_drho_chain, df_drho_chaind, user) + +!HIER DISP!!! + CALL DISP_DFDRHO_WDA_D(i, rhop, rhop_wd, my_disp, my_dispd, f_disp, & +& df_disp_drk, df_drho_disp, df_drho_dispd, user) + + + vext(1:ncomp) = 0.0 + DO k=1,ncomp + IF (zp(i) .LT. dhs(k)/2.0) vext(k) = 100000.0 +! If( zp(ngrid) - zp(i) < dhs(k)/2.0 ) Vext(k) = 100000.0 + arg1d = -df_drho_fmtd(i,k)-df_drho_chaind(i,k)-df_drho_dispd(k) + arg1 = chempot_res(k) - vext(k) - df_drho_fmt(i, k) - & +& df_drho_chain(i, k) - df_drho_disp(k) + + fd(k, i) = rhob(1,k)*arg1d*EXP(arg1) - rhopd(k, i) + !f(k, i) = xx(k)*rho*EXP(arg1) - rhop(k, i) + END DO + END DO +END SUBROUTINE FORMFUNCTIONLOCAL_D + + + + + + + + + +!------------------------------------------------------------------------------------------------ +!This Subroutine calculates the Jacobi-Vector product using derivatives obtained via AD +!------------------------------------------------------------------------------------------------ +Subroutine Jac_Shell_AD(Jshell,v_in,v_out) + +use Global_x, only: x,snes +Use PetscManagement + +#include "finclude/petsc.h90" + + +!passed + Mat :: Jshell + Vec :: v_in !has global size discret (NOT discret +- ghost points!!) + Vec :: v_out +!local + PetscScalar, pointer :: xd(:), rhop_loc(:,:),fd(:) !for dof2, xd and fd are twice the size as for dof1 + PetscErrorCode :: ierr + Type (userctx) :: user + DM :: da + Vec :: rhop_local + + + +!get the user context and DM which are associated with nonlinear solver + call SNESGetApplicationContext(snes,user,ierr) + call SNESGetDM(snes,da,ierr) + +!get local vector for x (needed because we need the ghost point values of x) + call DMGetLocalVector(da,rhop_local,ierr) + +!copy global to local for x (then x_local also contains ghost points) + call DMGlobalToLocalBegin(da,x,INSERT_VALUES,rhop_local,ierr) + call DMGlobalToLocalEnd(da,x,INSERT_VALUES,rhop_local,ierr) + +!get pointers to the vectors x_local,v_in and v_out + call DMDAVecGetArrayF90(da,rhop_local,rhop_loc,ierr) + call VecGetArrayF90(v_in, xd, ierr ) + call VecGetArrayF90(v_out, fd, ierr ) + +! Get local grid boundaries (dont know why this is neccessary again!) + call DMDAGetCorners(da, & !the distributed array + & user%xs, & !corner index in x direction + & PETSC_NULL_INTEGER, & !corner index in y direction + & PETSC_NULL_INTEGER, & !corner index in z direction + & user%xm, & !width of locally owned part in x direction + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction + & ierr) !error check + + call DMDAGetGhostCorners(da, & !the distributed array + & user%gxs, & !corner index in x direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in y direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in z direction (but now counting includes ghost points) + & user%gxm, & !width of locally owned part in x direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction (but now including ghost points) + & ierr) !error check + + +! Here we shift the starting indices up by one so that we can easily +! use the Fortran convention of 1-based indices (rather 0-based indices). + user%xs = user%xs+1 + user%gxs = user%gxs+1 + + user%xe = user%xs+user%xm-1 + user%gxe = user%gxs+user%gxm-1 + + +!--------------------------------------------------------- +!call AD generated Routine + !x_loc: x + !xd : direction which the derivative is calculated for + !fd : the directional derivative in direction xd + + call FORMFUNCTIONLOCAL_D(rhop_loc,xd,fd,user,ierr) +!--------------------------------------------------------- + + + + +!restore arrays + call DMDAVecRestoreArrayF90(da,rhop_local,rhop_loc,ierr ) + call VecRestoreArrayF90( v_in, xd, ierr ) + call VecRestoreArrayF90( v_out, fd, ierr ) + call DMRestoreLocalVector(da,rhop_local,ierr) + + +End Subroutine Jac_Shell_AD + + + + +! empty subroutine for shell jacobian; probably should copy v_x to x, as they might not be same +Subroutine Jac_Matrix_Empty(snes,v_x,jac,B,flag,dummy,ierr) + implicit none +#include "finclude/petsc.h90" + SNES :: snes + Vec :: v_x + Mat :: jac,B + MatStructure :: flag + PetscErrorCode :: ierr + integer dummy(*) +End Subroutine Jac_Matrix_Empty + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Function.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Function.F90 new file mode 100644 index 000000000..96e87d653 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Function.F90 @@ -0,0 +1,240 @@ + +Subroutine FormFunction(snes,X,F,user,ierr) +Use PetscManagement +Implicit None +#include +#include +#include +#include +#include +#include +#include +#include + +! Input/output variables: + SNES snes + Vec X,F + PetscErrorCode ierr + type (userctx) user + DM da + +! Declarations for use with local arrays: + PetscScalar,pointer :: lx_v(:,:),lf_v(:,:) + Vec localX + +! Scatter ghost points to local vector, using the 2-step process +! DMGlobalToLocalBegin(), DMGlobalToLocalEnd(). +! By placing code between these two statements, computations can +! be done while messages are in transition. + call SNESGetDM(snes,da,ierr) + call DMGetLocalVector(da,localX,ierr) + call DMGlobalToLocalBegin(da,X,INSERT_VALUES, & + & localX,ierr) + call DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr) + + + !call VecGetArrayF90(localX,lx_v,ierr) !only for DOF=1 + !call VecGetArrayF90(F,lf_v,ierr) !only for DOF=1 + call DMDAVecGetArrayF90(da,localX,lx_v,ierr) + call DMDAVecGetArrayF90(da,F,lf_v,ierr) + +! Compute function over the locally owned part of the grid + call FormFunctionLocal(lx_v,lf_v,user,ierr) + +! Restore vectors + !call VecRestoreArrayF90(localX,lx_v,ierr) !only for DOF=1 + !call VecRestoreArrayF90(F,lf_v,ierr) !only for DOF=1 + call DMDAVecRestoreArrayF90(da,localX,lx_v,ierr) + call DMDAVecRestoreArrayF90(da,F,lf_v,ierr) + + +! Insert values into global vector + + call DMRestoreLocalVector(da,localX,ierr) + + return +End Subroutine FormFunction + + + + + + + + + + + + + + + +Subroutine FormFunctionLocal(rhop,f,user,ierr) +!PETSc modules + Use PetscManagement +!DFT modules + Use mod_DFT_FMT + Use mod_DFT_CHAIN + Use mod_DFT_DISP_WDA + Use PARAMETERS, Only: PI ,muhs,muhc,mudisp + Use BASIC_VARIABLES, Only: ncomp,nc,np ,nphas,xi,dense,parame,ensemble_flag !nphas nur fur fugacity call + Use EOS_VARIABLES, Only:dhs,rho ,phas,eta_start,x,mseg,eta !letze 4 nur zum Test for aufruf eos_phi!! + Use mod_DFT, Only: fa,zp,dzp,free,pbulk, fa_disp, ab_disp !letzen beiden nur fur elmars version + Use VLE_VAR, Only: rhob + Use DFT_FCN_MODULE, Only: ChemPot_res,ChemPot_total + Use Global_x, Only: ngrid, ngp + + +Implicit None + +! Input/output variables: + type (userctx) user + PetscScalar rhop(ncomp,user%gxs:user%gxe) + PetscScalar f(ncomp,user%xs:user%xe) + PetscErrorCode ierr + +! Local variables: + PetscInt i + PetscInt k + + !FMT + REAL,dimension(user%gxs:user%gxe) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! + REAL,dimension(user%gxs:user%gxe) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 + REAL :: f_fmt,temp,zs + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_FMT + + !Chain + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhobar,lambda + REAL :: f_ch + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_CHAIN + + !DISP VAR + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhop_wd,my_disp,df_disp_drk + REAL,dimension(user%gxs:user%gxe) :: f_disp + REAL, dimension(ncomp) :: dF_drho_disp + !for Elmars Version + REAL, DIMENSION(user%gxs:user%gxe,ncomp):: rhoi_disp,mydisp,dadisp_dr + REAL, DIMENSION(user%gxs:user%gxe) :: adisp,rho_disp,rhop_sum + REAL :: dF_drho_att(ncomp) + INTEGER :: fa_psi_max,WDA_var + + + !polar + REAL :: fres_polar,fdd,fqq,fdq,mu_polar(nc) + REAL :: fdd_rk, fqq_rk, fdq_rk, z3_rk + INTEGER :: ik + !association + REAL :: f_assoc + REAL :: mu_assoc(nc) + REAL :: lnphi(np,nc), fres + + REAL :: f_tot, delta_f + REAL :: Vext(ncomp) + + + Do k = 1,ncomp + Do i= user%xs,user%xe + If( rhop(k,i) < epsilon(dhs) ) rhop(k,i) = epsilon(dhs) + End Do + End Do + + DO i = user%gxs,user%gxe + rhop_sum(i) = sum( rhop(1:ncomp,i) ) + END DO + + + + !calculate weighted densities + call FMT_Weighted_Densities(rhop,n0,n1,n2,n3,nv1,nv2,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,user) + + !calculate averaged density rhobar and lambda (both needed for chain term) + call Chain_aux(rhop,rhobar,lambda,user) + + + !weighted densities for Dispersion +! call DISP_Weighted_Densities(rhop, rhop_wd, user) +! call DISP_mu(rhop_wd,f_disp,my_disp,df_disp_drk,user) + + !Elmars Version + fa_psi_max = maxval(fa_disp(1:ncomp)) + call rhoi_disp_wd ( ngrid, fa_disp, fa_psi_max, ab_disp, rhop, rhoi_disp,user ) + CALL a_disp_pcsaft ( ngrid, fa_disp, fa_psi_max, rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr,user ) + + + free = 0.0 + + DO i = user%xs,user%xe + + !FMT + call FMT_dFdrho(i,fa,user,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,dF_drho_FMT) + zs = 1.0 - n3(i) + temp = log(zs) + f_fmt = - n0(i)*temp + n1(i)*n2(i)/zs - nv1(i)*nv2(i)/zs & !see for example eq. 30 in "Fundamental measure theory for hard-sphere mixtures revisited: the White bear version (Roth) + + (n2(i)**3 -3.0*n2(i)*nv2(i)*nv2(i)) *(n3(i)+zs*zs*temp) & + /36.0/PI/zs/zs/n3(i)**2 + + !Chain + call Chain_dFdrho(i,rhop,lambda,rhobar,dF_drho_CHAIN,f_ch,user) + + !Dispersion + WDA_var = 1 + call dF_disp_drho_wda( i, WDA_var, fa_disp, ab_disp, rhop, rhop_sum, & + rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr, dF_drho_att,user ) + + if(WDA_var == 1) adisp(i) = rho_disp(i) * adisp(i) + if(WDA_var == 2) adisp(i) = rhop_sum(i) * adisp(i) + + + !polar as LDA + fres_polar = 0.0 + mu_polar(:) = 0.0 + dense(1) = PI / 6.0 * SUM( rhop(1:ncomp,i) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + xi(1,1:ncomp) = rhop(1:ncomp,i) / SUM( rhop(1:ncomp,i) ) + ensemble_flag = 'tv' + IF ( SUM( parame(1:ncomp,6) ) > 1.E-10 .OR. SUM( parame(1:ncomp,7) ) > 1.E-10 ) THEN + eta = dense(1) + rho = SUM(rhop(1:ncomp,i)) + x(1:ncomp) = xi(1,1:ncomp) + call F_POLAR ( fdd, fqq, fdq ) + fres_polar = ( fdd + fqq + fdq ) * SUM( rhop(1:ncomp,i) ) + DO ik = 1, ncomp + z3_rk = PI/6.0 * mseg(ik) * dhs(ik)**3 + call PHI_POLAR ( ik, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + mu_polar(ik) = fdd_rk + fqq_rk + fdq_rk + END DO + END IF + + !association as LDA + f_assoc = 0.0 + mu_assoc(:) = 0.0 + IF ( SUM( NINT(parame(1:ncomp,12)) ) > 0) THEN + call ONLY_ONE_TERM_EOS_NUMERICAL ( 'hb_term ', 'TPT1_Chap' ) + call FUGACITY ( lnphi ) + call RESTORE_PREVIOUS_EOS_NUMERICAL + f_assoc = fres * SUM( rhop(1:ncomp,i) ) + mu_assoc(1:ncomp) = lnphi(1,1:ncomp) + END IF + + f_tot = f_fmt + f_ch + adisp(i) + fres_polar + f_assoc & + + SUM( rhop(1:ncomp,i)*( LOG(rhop(1:ncomp,i)/rhob(1,1:ncomp))-1.0 ) ) + delta_f = f_tot - ( SUM(rhop(1:ncomp,i)*chemPot_res(1:ncomp)) - pbulk) ! all quantities .../(kT) + free = free + delta_f*dzp + + + + Do k=1,ncomp + f(k,i) = -(rhob(1,k) * exp(ChemPot_res(k)-dF_drho_FMT(i,k)-dF_drho_CHAIN(i,k)-dF_drho_att(k) & + -mu_polar(k) - mu_assoc(k)) - rhop(k,i)) + End Do + + END DO + + + +End Subroutine FormFunctionLocal + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Helfer_Routinen.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Helfer_Routinen.F90 new file mode 100644 index 000000000..a13e61d5c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Helfer_Routinen.F90 @@ -0,0 +1,51 @@ + +Subroutine PrintGlobalVec(GlobalVec,filename) +Implicit None +#include +#include +#include +#include + + + Vec :: GlobalVec + character(80) :: filename + + PetscViewer viewer + PetscErrorCode ierr + +!Print global vector to a file + call PetscViewerASCIIOpen(PETSC_COMM_WORLD,filename,viewer,ierr) + call VecView(GlobalVec,viewer,ierr) + + call PetscViewerDestroy(viewer,ierr) + +End Subroutine PrintGlobalVec + + + +Subroutine PrintLocalVec(GlobalVec,da,filename) +Implicit None +#include +#include +#include +#include +#include +#include + + Vec GlobalVec + Vec LocalVec + DM da + character(80) :: filename + + PetscViewer viewer + PetscErrorCode ierr + + call DMGetLocalVector(da,LocalVec,ierr) !create a locally owned part of a global distribued array + call DMGlobalToLocalBegin(da,GlobalVec,INSERT_VALUES,LocalVec,ierr) !copy values from global array to local arrays + call DMGlobalToLocalEnd(da,GlobalVec,INSERT_VALUES,LocalVec,ierr) + call PetscViewerASCIIOpen(PETSC_COMM_SELF,filename,viewer,ierr) !associate viewer with file + call VecView(LocalVec,viewer,ierr) !every processor prints his local array to a file + call DMRestoreLocalVector(da,LocalVec,ierr) !Free memory of local vector + + +End Subroutine PrintLocalVec diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/InitialGuess.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/InitialGuess.F90 new file mode 100644 index 000000000..700f86f4f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/InitialGuess.F90 @@ -0,0 +1,249 @@ + +Subroutine FormInitialGuess(snes,X,ierr) +Use PetscManagement +Use f90moduleinterfaces + +Implicit None + + +#include +#include +#include +#include +#include +#include +#include +#include + +! Input/output variables: + SNES snes + type(userctx), pointer:: puser + Vec X + PetscErrorCode ierr + DM da + +! Declarations for use with local arrays: + PetscScalar,pointer :: lx_v(:,:) + Vec :: localX + + ierr = 0 + call SNESGetDM(snes,da,ierr) + call SNESGetApplicationContext(snes,puser,ierr) + +! Get a pointer to vector data. + call DMGetLocalVector(da,localX,ierr) + !call VecGetArrayF90(localX,lx_v,ierr) !only for DOF=1 + call DMDAVecGetArrayF90(da,localX,lx_v,ierr) + + + +! Compute initial guess over the locally owned part of the grid + call InitialGuessLocal(puser,lx_v,ierr) + +! Restore vector + !call VecRestoreArrayF90(localX,lx_v,ierr) !only for DOF=1 + call DMDAVecRestoreArrayF90(da,localX,lx_v,ierr) + + +! Insert values into global vector + call DMLocalToGlobalBegin(da,localX,INSERT_VALUES,X,ierr) + call DMLocalToGlobalEnd(da,localX,INSERT_VALUES,X,ierr) + call DMRestoreLocalVector(da,localX,ierr) + +End Subroutine FormInitialGuess + + + + + + +Subroutine InitialGuessLocal(user,rhop,ierr) + +!PETSc modules + use PetscManagement +!VLE and DFT modules + Use BASIC_VARIABLES, ONLY: ncomp,t,parame + Use EOS_VARIABLES, Only:rho + Use VLE_VAR, Only: rhob,tc + Use PARAMETERS, Only: PI + Use mod_DFT, Only: box,zp,dzp + Use Global_x, Only: ngrid + + + implicit none + +#include +#include +#include +#include +#include +#include +#include +#include + +! Input/output variables: + type (userctx) :: user + PetscScalar :: rhop(ncomp,user%gxs:user%gxe) + PetscErrorCode :: ierr + + +! Local variables: + PetscInt i,k + PetscBool flg + REAL :: arg + INTEGER :: pert + REAL :: tanhfac + REAL :: zp_i + REAL :: zp_middle + + + +!normal or perturbed inital profile? + call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-init_pert',pert,flg,ierr) + + + zp_middle = (ngrid/2)*dzp + tanhfac = -2.3625*t/tc + 2.4728 + + + !default: no perturbation, start with bulk density + + +IF(user%num_procs == 1) THEN !if only one processor involved + + Do k = 1,ncomp + Do i=user%gxs,user%gxe !proc 0 has to calculate values for ghost points out of physical domain (from -irc to -1 and discret to discret+irc) and its regular part + zp_i = zp(i) + rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 +!rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + + +Else !parallel simulation + + + + IF(user%rank == 0) THEN !watch the user%xs vs user%gxs (first no ghost points, second with ghost points) + + Do k=1,ncomp !loop over dof = loop over components + Do i=user%gxs,user%xe !proc 0 has to calculate values for ghost points out of physical domain (from -irc to -1) and its regular part + zp_i = zp(i) + !perturb = (rhob(1,j)-rhob(2,j))/2.0 * i * (discret - i) / (damp*discret)**2 + !rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + ! - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 !+ perturb +rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + + ELSE IF(user%rank == user%num_procs-1) THEN + + Do k=1,ncomp !loop over dof = loop over components + Do i=user%gxs,user%gxe !last proc has to calculate values for ghost points out of physical domain (from discret to discret+irc) and its regular part + zp_i = zp(i) + !perturb = (rhob(1,j)-rhob(2,j))/2.0 * i * (discret - i) / (damp*discret)**2 + !rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + ! - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 !+ perturb +rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + + ELSE + + Do k=1,ncomp !loop over dof = loop over components + Do i=user%xs,user%xe !middle procs have to calculate only their regular part + zp_i = zp(i) + !perturb = (rhob(1,j)-rhob(2,j))/2.0 * i * (discret - i) / (damp*discret)**2 + !rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + ! - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 !+ perturb +rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + END IF + + +End If + + + + + + + + + + + + + + + + + + + +! If(pert == 1) Then +! Do i=user%xs,user%xe +! arg = zp(i) * PI / box +! rhop(k,i) = rhob(1,k) + 0.5*rhob(1,k) * sin(arg) +! End Do +! End If +! +! If(pert == 2) Then +! Do i=user%xs,user%xe +! arg = zp(i) * 2.0 * PI / box +! rhop(k,i) = rhob(1,k) + 0.5*rhob(1,k) * sin(arg) +! End Do +! End If +! +! If(pert == 3) Then +! Do i=user%xs,user%xe +! arg = zp(i) * 3.0 * PI / box +! rhop(k,i) = rhob(1,k) + 0.5*rhob(1,k) * sin(arg) +! End Do +! End If + + + + + + + + + + + + +End Subroutine InitialGuessLocal + + + + + + + + + + + + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.dat b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.dat new file mode 100644 index 000000000..8ac4e3c34 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.dat @@ -0,0 +1,101 @@ + 0 3.81476879119873046875000000000000000E-0002 1.9167311725546882E-002 + 1 7.08925724029541015625000000000000000E-0002 1.0836690899012666 + 2 0.103237867355346679687500000000000000 1.2806490342739463 + 3 0.139061689376831054687500000000000000 6.5940382426207811E-002 + 4 0.170719385147094726562500000000000000 0.24470442484251823 + 5 0.202053070068359375000000000000000000 7.5699804616868427E-002 + 6 0.233716487884521484375000000000000000 2.9935146336645967E-002 + 7 0.266644716262817382812500000000000000 2.8517064587568634E-002 + 8 0.299265861511230468750000000000000000 2.1226271363242205E-002 + 9 0.331297397613525390625000000000000000 3.2229032075324938E-002 + 10 0.363489151000976562500000000000000000 1.4409028319962571E-002 + 11 0.396240472793579101562500000000000000 1.1938199301249447E-002 + 12 0.428606271743774414062500000000000000 1.0061916564162688E-002 + 13 0.460750579833984375000000000000000000 1.0450622302202749E-002 + 14 0.493036508560180664062500000000000000 1.0482425070118429E-002 + 15 0.525337934494018554687500000000000000 7.2030360826592236E-003 + 16 0.559576034545898437500000000000000000 6.6769113322842156E-003 + 17 0.594073534011840820312500000000000000 7.0437254531792006E-003 + 18 0.628280639648437500000000000000000000 5.4357998400072867E-003 + 19 0.660691738128662109375000000000000000 4.4458668714974893E-003 + 20 0.693190813064575195312500000000000000 3.8788899742853997E-003 + 21 0.725594282150268554687500000000000000 3.6409716238687390E-003 + 22 0.757995367050170898437500000000000000 3.6865362002240182E-003 + 23 0.790662050247192382812500000000000000 3.6814362166097446E-003 + 24 0.823435306549072265625000000000000000 3.4901569956928068E-003 + 25 0.855906248092651367187500000000000000 3.3574723884623832E-003 + 26 0.888554334640502929687500000000000000 3.2940926700628292E-003 + 27 0.922744750976562500000000000000000000 3.2635523729511342E-003 + 28 0.956001996994018554687500000000000000 3.2482281898823036E-003 + 29 0.989588499069213867187500000000000000 3.2304252753728806E-003 + 30 1.02266049385070800781250000000000000 3.2042967415078041E-003 + 31 1.05561280250549316406250000000000000 3.1760638230831483E-003 + 32 1.08916354179382324218750000000000000 2.6457666806156584E-003 + 33 1.12364792823791503906250000000000000 1.0082364203677448E-002 + 34 1.15826272964477539062500000000000000 5.9982827208021998E-003 + 35 1.19197607040405273437500000000000000 6.6747262482266612E-003 + 36 1.22450017929077148437500000000000000 2.7084035605368221E-003 + 37 1.25709438323974609375000000000000000 2.3565922114504490E-003 + 38 1.28959250450134277343750000000000000 1.1716157985450606E-002 + 39 1.32186341285705566406250000000000000 4.2006166011576357E-003 + 40 1.35462236404418945312500000000000000 3.2385624754675286E-003 + 41 1.38799214363098144531250000000000000 5.1127523380772181E-003 + 42 1.42280745506286621093750000000000000 2.0104539401779968E-003 + 43 1.45606207847595214843750000000000000 3.1863352886919638E-003 + 44 1.48914194107055664062500000000000000 3.8145741584364569E-003 + 45 1.52246117591857910156250000000000000 2.8978851599061658E-003 + 46 1.55622410774230957031250000000000000 2.0314208240652045E-003 + 47 1.58982396125793457031250000000000000 1.4916462262275464E-003 + 48 1.62329626083374023437500000000000000 1.7158181848659960E-003 + 49 1.65646409988403320312500000000000000 1.3182946385892061E-003 + 50 1.69007468223571777343750000000000000 1.3060534560984771E-003 + 51 1.72560310363769531250000000000000000 1.6036940364319251E-003 + 52 1.76056408882141113281250000000000000 2.6792379034752899E-003 + 53 1.79407477378845214843750000000000000 2.3866749839249139E-003 + 54 1.82702112197875976562500000000000000 2.2827864862889681E-003 + 55 1.86016821861267089843750000000000000 1.3909295078892131E-003 + 56 1.89312934875488281250000000000000000 1.9013031251392041E-003 + 57 1.92628431320190429687500000000000000 2.0159091682661161E-003 + 58 1.95966291427612304687500000000000000 1.8630591172467837E-003 + 59 1.99260973930358886718750000000000000 1.2357315673359509E-003 + 60 2.02576398849487304687500000000000000 1.3411544737972523E-003 + 61 2.05865955352783203125000000000000000 1.3885701672690153E-003 + 62 2.09150886535644531250000000000000000 1.2585764876761546E-003 + 63 2.12424826622009277343750000000000000 3.8510755951043684E-003 + 64 2.15704941749572753906250000000000000 1.9774769364787684E-003 + 65 2.19120430946350097656250000000000000 1.9398772043784835E-003 + 66 2.22409176826477050781250000000000000 1.5448347759751041E-002 + 67 2.25706124305725097656250000000000000 8.3198794014145722E-003 + 68 2.29224538803100585937500000000000000 1.2828626127386325E-002 + 69 2.32933902740478515625000000000000000 1.0037861486634421E-002 + 70 2.36444735527038574218750000000000000 9.6339139883187350E-003 + 71 2.39814281463623046875000000000000000 8.8494631809062519E-003 + 72 2.43165779113769531250000000000000000 8.0006047030193317E-003 + 73 2.46501588821411132812500000000000000 1.2259175012800532E-002 + 74 2.49842572212219238281250000000000000 1.0481899515214407E-002 + 75 2.53221726417541503906250000000000000 4.2168736312156348E-003 + 76 2.56626939773559570312500000000000000 4.3869079478197027E-003 + 77 2.60000753402709960937500000000000000 5.5337875080241862E-003 + 78 2.63379144668579101562500000000000000 3.4587309132970518E-003 + 79 2.66746735572814941406250000000000000 4.0981342426075831E-003 + 80 2.70127940177917480468750000000000000 3.6711438721485539E-003 + 81 2.73489165306091308593750000000000000 2.2651549246537122E-003 + 82 2.76860332489013671875000000000000000 4.5317581922638657E-003 + 83 2.80242776870727539062500000000000000 3.7009675876052707E-003 + 84 2.83616971969604492187500000000000000 4.8083299811888308E-003 + 85 2.87218594551086425781250000000000000 4.3778135761167311E-003 + 86 2.91212081909179687500000000000000000 2.6654328383714401E-003 + 87 2.94773960113525390625000000000000000 3.3361037433498495E-003 + 88 2.98277425765991210937500000000000000 2.7285610168273624E-003 + 89 3.01725769042968750000000000000000000 1.7102257723570899E-003 + 90 3.05120515823364257812500000000000000 1.2301916644188592E-003 + 91 3.08512568473815917968750000000000000 9.5262926064714638E-003 + 92 3.11896014213562011718750000000000000 6.7252753873397993E-003 + 93 3.15312480926513671875000000000000000 3.6638553854348105E-003 + 94 3.18717241287231445312500000000000000 4.4371287673171346E-003 + 95 3.22239208221435546875000000000000000 3.3345545843416809E-003 + 96 3.25672459602355957031250000000000000 9.3686951766994275E-003 + 97 3.29098415374755859375000000000000000 1.2905937279128693E-002 + 98 3.32508039474487304687500000000000000 1.8428935540252375E-002 + 99 3.35754752159118652343750000000000000 6.8753675149365112E-003 + 100 3.39160776138305664062500000000000000 1.1164950460488118E-002 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.eps b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.eps new file mode 100644 index 000000000..6afee5dbf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/ItsTimeNorm.eps @@ -0,0 +1,732 @@ +%!PS-Adobe-2.0 EPSF-2.0 +%%Title: ItsTimeNorm.eps +%%Creator: gnuplot 4.6 patchlevel 5 +%%CreationDate: Fri Sep 25 23:58:14 2015 +%%DocumentFonts: (atend) +%%BoundingBox: 50 50 410 302 +%%EndComments +%%BeginProlog +/gnudict 256 dict def +gnudict begin +% +% The following true/false flags may be edited by hand if desired. +% The unit line width and grayscale image gamma correction may also be changed. +% +/Color false def +/Blacktext false def +/Solid false def +/Dashlength 1 def +/Landscape false def +/Level1 false def +/Rounded false def +/ClipToBoundingBox false def +/SuppressPDFMark false def +/TransparentPatterns false def +/gnulinewidth 5.000 def +/userlinewidth gnulinewidth def +/Gamma 1.0 def +/BackgroundColor {-1.000 -1.000 -1.000} def +% +/vshift -46 def +/dl1 { + 10.0 Dashlength mul mul + Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if +} def +/dl2 { + 10.0 Dashlength mul mul + Rounded { currentlinewidth 0.75 mul add } if +} def +/hpt_ 31.5 def +/vpt_ 31.5 def +/hpt hpt_ def +/vpt vpt_ def +/doclip { + ClipToBoundingBox { + newpath 50 50 moveto 410 50 lineto 410 302 lineto 50 302 lineto closepath + clip + } if +} def +% +% Gnuplot Prolog Version 4.6 (September 2012) +% +%/SuppressPDFMark true def +% +/M {moveto} bind def +/L {lineto} bind def +/R {rmoveto} bind def +/V {rlineto} bind def +/N {newpath moveto} bind def +/Z {closepath} bind def +/C {setrgbcolor} bind def +/f {rlineto fill} bind def +/g {setgray} bind def +/Gshow {show} def % May be redefined later in the file to support UTF-8 +/vpt2 vpt 2 mul def +/hpt2 hpt 2 mul def +/Lshow {currentpoint stroke M 0 vshift R + Blacktext {gsave 0 setgray show grestore} {show} ifelse} def +/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R + Blacktext {gsave 0 setgray show grestore} {show} ifelse} def +/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R + Blacktext {gsave 0 setgray show grestore} {show} ifelse} def +/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def + /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def +/DL {Color {setrgbcolor Solid {pop []} if 0 setdash} + {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def +/BL {stroke userlinewidth 2 mul setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +/AL {stroke userlinewidth 2 div setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +/UL {dup gnulinewidth mul /userlinewidth exch def + dup 1 lt {pop 1} if 10 mul /udl exch def} def +/PL {stroke userlinewidth setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +3.8 setmiterlimit +% Default Line colors +/LCw {1 1 1} def +/LCb {0 0 0} def +/LCa {0 0 0} def +/LC0 {1 0 0} def +/LC1 {0 1 0} def +/LC2 {0 0 1} def +/LC3 {1 0 1} def +/LC4 {0 1 1} def +/LC5 {1 1 0} def +/LC6 {0 0 0} def +/LC7 {1 0.3 0} def +/LC8 {0.5 0.5 0.5} def +% Default Line Types +/LTw {PL [] 1 setgray} def +/LTb {BL [] LCb DL} def +/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def +/LT0 {PL [] LC0 DL} def +/LT1 {PL [4 dl1 2 dl2] LC1 DL} def +/LT2 {PL [2 dl1 3 dl2] LC2 DL} def +/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def +/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def +/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def +/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def +/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def +/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def +/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def +/Dia {stroke [] 0 setdash 2 copy vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke + Pnt} def +/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V + currentpoint stroke M + hpt neg vpt neg R hpt2 0 V stroke + } def +/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke + Pnt} def +/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M + hpt2 vpt2 neg V currentpoint stroke M + hpt2 neg 0 R hpt2 vpt2 V stroke} def +/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke + Pnt} def +/Star {2 copy Pls Crs} def +/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath fill} def +/TriUF {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath fill} def +/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke + Pnt} def +/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath fill} def +/DiaF {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath fill} def +/Pent {stroke [] 0 setdash 2 copy gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore Pnt} def +/PentF {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath fill grestore} def +/Circle {stroke [] 0 setdash 2 copy + hpt 0 360 arc stroke Pnt} def +/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def +/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def +/C1 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + vpt 0 360 arc closepath} bind def +/C2 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C3 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C4 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C5 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc + 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc} bind def +/C6 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C7 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C8 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C9 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 450 arc closepath fill + vpt 0 360 arc closepath} bind def +/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill + 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C11 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C12 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C13 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C14 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 360 arc closepath fill + vpt 0 360 arc} bind def +/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto + neg 0 rlineto closepath} bind def +/Square {dup Rec} bind def +/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def +/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def +/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def +/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def +/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def +/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def +/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill + exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def +/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def +/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill + 2 copy vpt Square fill Bsquare} bind def +/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def +/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def +/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill + Bsquare} bind def +/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill + Bsquare} bind def +/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def +/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy vpt Square fill Bsquare} bind def +/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def +/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def +/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def +/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def +/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def +/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def +/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def +/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def +/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def +/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def +/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def +/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def +/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def +/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def +/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def +/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def +/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def +/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def +/DiaE {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke} def +/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke} def +/TriUE {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke} def +/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke} def +/PentE {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore} def +/CircE {stroke [] 0 setdash + hpt 0 360 arc stroke} def +/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def +/DiaW {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V Opaque stroke} def +/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V Opaque stroke} def +/TriUW {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V Opaque stroke} def +/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V Opaque stroke} def +/PentW {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + Opaque stroke grestore} def +/CircW {stroke [] 0 setdash + hpt 0 360 arc Opaque stroke} def +/BoxFill {gsave Rec 1 setgray fill grestore} def +/Density { + /Fillden exch def + currentrgbcolor + /ColB exch def /ColG exch def /ColR exch def + /ColR ColR Fillden mul Fillden sub 1 add def + /ColG ColG Fillden mul Fillden sub 1 add def + /ColB ColB Fillden mul Fillden sub 1 add def + ColR ColG ColB setrgbcolor} def +/BoxColFill {gsave Rec PolyFill} def +/PolyFill {gsave Density fill grestore grestore} def +/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def +% +% PostScript Level 1 Pattern Fill routine for rectangles +% Usage: x y w h s a XX PatternFill +% x,y = lower left corner of box to be filled +% w,h = width and height of box +% a = angle in degrees between lines and x-axis +% XX = 0/1 for no/yes cross-hatch +% +/PatternFill {gsave /PFa [ 9 2 roll ] def + PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate + PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec + TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse + clip + currentlinewidth 0.5 mul setlinewidth + /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def + 0 0 M PFa 5 get rotate PFs -2 div dup translate + 0 1 PFs PFa 4 get div 1 add floor cvi + {PFa 4 get mul 0 M 0 PFs V} for + 0 PFa 6 get ne { + 0 1 PFs PFa 4 get div 1 add floor cvi + {PFa 4 get mul 0 2 1 roll M PFs 0 V} for + } if + stroke grestore} def +% +/languagelevel where + {pop languagelevel} {1} ifelse + 2 lt + {/InterpretLevel1 true def} + {/InterpretLevel1 Level1 def} + ifelse +% +% PostScript level 2 pattern fill definitions +% +/Level2PatternFill { +/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} + bind def +/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} +>> matrix makepattern +/Pat1 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke + 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} +>> matrix makepattern +/Pat2 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L + 8 8 L 8 0 L 0 0 L fill} +>> matrix makepattern +/Pat3 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L + 0 12 M 12 0 L stroke} +>> matrix makepattern +/Pat4 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L + 0 -4 M 12 8 L stroke} +>> matrix makepattern +/Pat5 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L + 0 12 M 8 -4 L 4 12 M 10 0 L stroke} +>> matrix makepattern +/Pat6 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L + 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} +>> matrix makepattern +/Pat7 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L + 12 0 M -4 8 L 12 4 M 0 10 L stroke} +>> matrix makepattern +/Pat8 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L + -4 0 M 12 8 L -4 4 M 8 10 L stroke} +>> matrix makepattern +/Pat9 exch def +/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def +/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def +/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def +/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def +/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def +/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def +/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def +} def +% +% +%End of PostScript Level 2 code +% +/PatternBgnd { + TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse +} def +% +% Substitute for Level 2 pattern fill codes with +% grayscale if Level 2 support is not selected. +% +/Level1PatternFill { +/Pattern1 {0.250 Density} bind def +/Pattern2 {0.500 Density} bind def +/Pattern3 {0.750 Density} bind def +/Pattern4 {0.125 Density} bind def +/Pattern5 {0.375 Density} bind def +/Pattern6 {0.625 Density} bind def +/Pattern7 {0.875 Density} bind def +} def +% +% Now test for support of Level 2 code +% +Level1 {Level1PatternFill} {Level2PatternFill} ifelse +% +/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont +dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall +currentdict end definefont pop +Level1 SuppressPDFMark or +{} { +/SDict 10 dict def +systemdict /pdfmark known not { + userdict /pdfmark systemdict /cleartomark get put +} if +SDict begin [ + /Title (ItsTimeNorm.eps) + /Subject (gnuplot plot) + /Creator (gnuplot 4.6 patchlevel 5) + /Author (jonas) +% /Producer (gnuplot) +% /Keywords () + /CreationDate (Fri Sep 25 23:58:14 2015) + /DOCINFO pdfmark +end +} ifelse +end +%%EndProlog +%%Page: 1 1 +gnudict begin +gsave +doclip +50 50 translate +0.050 0.050 scale +0 setgray +newpath +(Helvetica) findfont 140 scalefont setfont +BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {BackgroundColor C 1.000 0 0 7200.00 5040.00 BoxColFill} if +1.000 UL +LTb +686 448 M +63 0 V +6198 0 R +-63 0 V +602 448 M +( 0) Rshow +1.000 UL +LTb +686 1044 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.2) Rshow +1.000 UL +LTb +686 1640 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.4) Rshow +1.000 UL +LTb +686 2236 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.6) Rshow +1.000 UL +LTb +686 2831 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.8) Rshow +1.000 UL +LTb +686 3427 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 1) Rshow +1.000 UL +LTb +686 4023 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 1.2) Rshow +1.000 UL +LTb +686 4619 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 1.4) Rshow +1.000 UL +LTb +686 448 M +0 63 V +0 4108 R +0 -63 V +686 308 M +( 0) Cshow +1.000 UL +LTb +1580 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 0.5) Cshow +1.000 UL +LTb +2475 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 1) Cshow +1.000 UL +LTb +3369 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 1.5) Cshow +1.000 UL +LTb +4264 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 2) Cshow +1.000 UL +LTb +5158 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 2.5) Cshow +1.000 UL +LTb +6053 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 3) Cshow +1.000 UL +LTb +6947 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 3.5) Cshow +1.000 UL +LTb +1.000 UL +LTb +686 4619 N +686 448 L +6261 0 V +0 4171 V +-6261 0 V +Z stroke +LCb setrgbcolor +112 2533 M +currentpoint gsave translate -270 rotate 0 0 M +(|F|) Cshow +grestore +LTb +LCb setrgbcolor +3816 98 M +(Zeit t) Cshow +LTb +3816 4829 M +(Zeitverlauf der Residuen) Cshow +1.000 UP +1.000 UL +LTb +% Begin plot #1 +1.000 UP +1.000 UL +LT0 +LCb setrgbcolor +6296 4486 M +(|F|) Rshow +LT0 +754 505 Pls +813 3677 Pls +871 4263 Pls +935 644 Pls +991 1177 Pls +1047 674 Pls +1104 537 Pls +1163 533 Pls +1221 511 Pls +1279 544 Pls +1336 491 Pls +1395 484 Pls +1453 478 Pls +1510 479 Pls +1568 479 Pls +1626 469 Pls +1687 468 Pls +1749 469 Pls +1810 464 Pls +1868 461 Pls +1926 460 Pls +1984 459 Pls +2042 459 Pls +2100 459 Pls +2159 458 Pls +2217 458 Pls +2275 458 Pls +2337 458 Pls +2396 458 Pls +2456 458 Pls +2515 458 Pls +2574 457 Pls +2634 456 Pls +2696 478 Pls +2758 466 Pls +2818 468 Pls +2876 456 Pls +2935 455 Pls +2993 483 Pls +3051 461 Pls +3109 458 Pls +3169 463 Pls +3231 454 Pls +3291 457 Pls +3350 459 Pls +3409 457 Pls +3470 454 Pls +3530 452 Pls +3590 453 Pls +3649 452 Pls +3709 452 Pls +3773 453 Pls +3835 456 Pls +3895 455 Pls +3954 455 Pls +4014 452 Pls +4073 454 Pls +4132 454 Pls +4192 454 Pls +4250 452 Pls +4310 452 Pls +4369 452 Pls +4427 452 Pls +4486 459 Pls +4545 454 Pls +4606 454 Pls +4665 494 Pls +4724 473 Pls +4786 486 Pls +4853 478 Pls +4916 477 Pls +4976 474 Pls +5036 472 Pls +5096 485 Pls +5155 479 Pls +5216 461 Pls +5277 461 Pls +5337 464 Pls +5397 458 Pls +5458 460 Pls +5518 459 Pls +5578 455 Pls +5639 462 Pls +5699 459 Pls +5760 462 Pls +5824 461 Pls +5895 456 Pls +5959 458 Pls +6022 456 Pls +6083 453 Pls +6144 452 Pls +6205 476 Pls +6265 468 Pls +6326 459 Pls +6387 461 Pls +6450 458 Pls +6512 476 Pls +6573 486 Pls +6634 503 Pls +6692 468 Pls +6753 481 Pls +6579 4486 Pls +% End plot #1 +1.000 UL +LTb +686 4619 N +686 448 L +6261 0 V +0 4171 V +-6261 0 V +Z stroke +1.000 UP +1.000 UL +LTb +stroke +grestore +end +showpage +%%Trailer +%%DocumentFonts: Helvetica diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Main.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Main.F90 new file mode 100644 index 000000000..92e77131b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Main.F90 @@ -0,0 +1,234 @@ + +! +!THIS CODE WAS WRITTEN AT +!UNIVERSITY OF STUTTGART, +!INSTITUTE OF TECHNICAL THERMODYNAMICS AND THERMAL PROCESS ENGINEERING +!BY +!JOACHIM GROSS +!JONAS MAIRHOFER +! +! + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This program calculates surface tensions using the a Density Functional +! Theory based on the PC-SAFTequation of state. +! The contributions to the Helmholtz energy functional are calculated +! as folows: +! Hard Sphere Contribution: White-Bear Version of the Fundamental Measure Theory +! Chain Formation: TPT1 +! Dispersion is treated in a weighted density approximation +! Associative and polar contributions are treated in a local density approximation +! +! +! The input parameters are read from the file "in.txt" which has to +! be in the same directory as the executable. +! +! The input file must have the following format: +! Line1: Value of temperature in Kelvin +! Line2: Number of components present in the system (ncomp) +! Line3 Name of component 1 +! ... +! Line3+ncomp Name of component ncomp +! Line3+ncomp+1 Molar (overall) concentration of component 1 +! ... +! Line3+2ncomp Molar (overall) concentration of component ncomp +! +! For a binary system, these molar fractions are only treated as an initial guess and may be set to e.g. 0. +! +! +! So far, pressure is set to 1bar in all calculaions +! +! +!If you would like to use this code in your work, please cite the +!following publications: +! +!Gross, Joachim, and Gabriele Sadowski. "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules." Industrial & engineering chemistry research 40.4 (2001): 1244-1260. +!Gross, Joachim, and Gabriele Sadowski. "Application of the perturbed-chain SAFT equation of state to associating systems." Industrial & engineering chemistry research 41.22 (2002): 5510-5515. +!Gross, Joachim, and Jadran Vrabec. "An equation?of?state contribution for polar components: Dipolar molecules." AIChE journal 52.3 (2006): 1194-1204. +!Gross, Joachim. "A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state." The Journal of chemical physics 131.20 (2009): 204705. +!Klink, Christoph, and Joachim Gross. "A density functional theory for vapor?liquid interfaces of mixtures using the perturbed-chain polar statistical associating fluid theory equation of state." Industrial & Engineering Chemistry Research 53.14 (2014): 6169-6178. +! +! +! In order to run this code, PETSc 3.4.4 has to be installed +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + + +Program DFT + +Use PARAMETERS, Only: np,nc,KBOL +Use BASIC_VARIABLES, Only: ncomp,t,p,ensemble_flag,num,parame,eos,pol,xif,compna +Use EOS_VARIABLES, Only: dhs,mseg,eta,dd_term,dq_term,qq_term +Use EOS_CONSTANTS, Only: ap,bp,dnm +Use mod_DFT, Only: box,dzp,fa,zp,fa_disp,ab_disp,pbulk +Use VLE_VAR, ONLY: tc,pc,rhob,density +USE DFT_FCN_MODULE, ONLY: chemPot_total + +!PETSc modules +Use PetscManagement +Use f90moduleinterfaces +Use Global_x !(snes,ngrid,ngp,x,r,timer) + + +Implicit None + +#include + +! ---------------------------------------------------------------------- +!Variables +! ---------------------------------------------------------------------- + +PetscErrorCode :: ierr +type (userctx) :: user +PetscBool :: flg +INTEGER :: i +character(80) :: filename='' +REAL :: zges(np) +REAL :: dhs_save(nc) +REAL :: cif(nc) +REAL :: psi_factor + +!external subroutines associated with Solver +external FormInitialGuess +external FormFunction + + +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +! Initialize program +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + call PetscInitialize(PETSC_NULL_CHARACTER,ierr) + call MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr) + call MPI_Comm_size(PETSC_COMM_WORLD,user%num_procs,ierr) + +! ---------------------------------------------------------------------- +!Read information from inputfile "in.txt" +! ---------------------------------------------------------------------- + + filename='./in.txt' + CALL file_open(filename,77) ! open input file + READ (77,*) t ! read temperature + READ (77,*) ncomp ! read number of components in the system + Do i = 1,ncomp ! read component names + READ (77,*) compna(i) + End Do + Do i = 1,ncomp ! read component overall molar concentrations + READ (77,*) xif(i) + End Do + +! !calculate molar fractions from molar concentrations +! xif(1:ncomp) =cif(1:ncomp) / sum(cif(1:ncomp)) + + +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +! GENERAL SIMULATION SET UP +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + num = 0 ! (num=0: using analytical derivatives of EOS) + ! (num=1: using numerical derivatives of EOS) + ! (num=2: White's renormalization group theory) + IF ( num /= 0 ) CALL SET_DEFAULT_EOS_NUMERICAL + + eos = 1 + pol = 1 + + p = 1.000e05 + + CALL para_input ! retriev pure comp. parameters + + ensemble_flag = 'tp' ! this specifies, whether the eos-subroutines + ! are executed for constant 'tp' or for constant 'tv' + + + +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +! Start phase equilibrium calculation and determine critical point +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + CALL EOS_CONST (ap, bp, dnm) + + dd_term = 'GV' ! dipole-dipole term of Gross & Vrabec (2006) + qq_term = 'JG' ! quadrupole-quadrupole term of Gross (2005) + dq_term = 'VG' ! dipole-quadrupole term of Vrabec & Gross (2008) + + CALL VLE_MIX(rhob,density,chemPot_total,user) !user is passed so user%rank is known and only node 0 prints out the reslts of the VLE calculation + + !determine critical point + num = 0 + dhs_save = dhs !needed because subroutine CRIT_POINT_MIX changes the value + CALL CRIT_POINT_MIX(tc,user) !of the global variable dhs! In cases where Tc doesnt converge + dhs = dhs_save !dhs can be NAN after CRIT_POINT_MIX!! + !chance to overwite NAN results +! IF(user%rank == 0) THEN +! WRITE (*,*) 'Give final value of Tc:' +! READ (*,*) tc +! END IF +! CALL MPI_Bcast(tc,1,MPI_DOUBLE_PRECISION,0,PETSC_COMM_WORLD,ierr) + + + + +!------------------------------------------- +!DFT Set Up +!------------------------------------------- + + num = 1 + CALL SET_DEFAULT_EOS_NUMERICAL + + !set default values (overwritten from makefile) + box = 45.0 !box length [A] + ngrid = 614 !grid points + + !overwrite box size and ngrid if options are set in makefile + call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-box',box,flg,ierr) + call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-nx',ngrid,flg,ierr) + + + dzp = box / REAL(ngrid) !grid spacing [A] + Allocate(fa(ncomp)) + fa(1:ncomp) = NINT( parame(1:ncomp,2) / dzp ) !grid points per sigma [-] + + !FOR DISP + ALLOCATE(fa_disp(ncomp),ab_disp(ncomp)) + psi_factor = 1.5 + fa_disp(1:ncomp) = NINT( psi_factor * REAL(fa(1:ncomp)) ) + Do i=1,ncomp + if( MOD(fa_disp(i),2) /= 0 ) fa_disp(i) = fa_disp(i) + 1 + End Do + + + ab_disp(1:ncomp) = psi_factor * dhs(1:ncomp) + + + ngp = 2 * maxval(fa_disp(1:ncomp)) + 5 !number of ghost points (+5 kann eig weg) + + Allocate(zp(-ngp:ngrid+ngp)) + + Do i=-ngp,ngrid+ngp + zp(i) = REAL(i) * dzp !z-distance from origin of grid points [A] + End Do + + pbulk = ( p * 1.E-30 ) / ( KBOL*t* rhob(1,0) ) * rhob(1,0) !p/kT + + + !update z3t, the T-dependent quantity that relates eta and rho, as eta = z3t*rho + CALL PERTURBATION_PARAMETER + +!------------------------------------------- +!Evaluate Initial Guess,Set up solver,solve system +!------------------------------------------- + call SolverSetup + + + +End Program DFT diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Modules.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Modules.F90 new file mode 100644 index 000000000..c04ed3cad --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Modules.F90 @@ -0,0 +1,545 @@ + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module PARAMETERS + + implicit none + save + + integer, parameter :: nc = 3 + integer, parameter :: np = 3 + integer, parameter :: nsite = 5 + + real, parameter :: PI = 3.141592653589793 + real, parameter :: RGAS = 8.31441 + real, parameter :: NAv = 6.022045E23 + real, parameter :: KBOL = RGAS / NAv + real, parameter :: TAU = PI / 3.0 / SQRT(2.0) + +real :: muhs(3) +real :: muhc(3) +real :: mudisp(3) + + + +End Module PARAMETERS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + +Module VLE_VAR +USE PARAMETERS, ONLY: nc,np +implicit none + +REAL :: tc +REAL :: pc +REAL :: rhob(2,0:nc) +REAL :: density(np) + +End Module VLE_VAR + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module BASIC_VARIABLES + + use PARAMETERS, only: nc, np, nsite + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture +! ---------------------------------------------------------------------- + integer :: ncomp + integer :: nphas + + real :: t + !real :: tc + real :: p + real, dimension(np) :: dense + !real, dimension(np) :: rhob + + real, dimension(np, nc) :: xi + real, dimension(np, nc) :: lnx + real, dimension(nc) :: xiF + + real, dimension(nc) :: mm + real, dimension(np, nc, nsite) :: mxx + + real :: alpha + + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- + real, dimension(nc, 25) :: parame = 0.0 + real, dimension(nc) :: chiR + character*30, dimension(nc) :: compna + real, dimension(nc, nc) :: kij, lij + real, dimension(nc, nc) :: E_LC, S_LC + real, dimension(nc) :: LLi, phi_criti, chap + + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real, dimension(np) :: densta + real, dimension(0:nc*np+6) :: val_init, val_conv + + real :: h_lv + real, dimension(np) :: cpres, enthal, entrop, gibbs, f_res + + real, dimension(np) :: dp_dz, dp_dz2 + + +! ---------------------------------------------------------------------- +! choice of EOS-model and solution method +! ---------------------------------------------------------------------- + integer :: eos, pol + integer :: num + character (LEN=2) :: ensemble_flag + character (LEN=10) :: RGT_variant + + +! ---------------------------------------------------------------------- +! for input/output +! ---------------------------------------------------------------------- + integer :: outp, bindiag + real :: u_in_T, u_out_T, u_in_P, u_out_P + + +! ---------------------------------------------------------------------- +! quantities defining the numerical procedure +! ---------------------------------------------------------------------- + integer :: n_unkw + + real :: step_a, acc_a !, acc_i + real, dimension(nc) :: scaling + real, dimension(3500) :: plv_kon + real, dimension(2, 3500) :: d_kond + + character*3, dimension(10) :: it, sum_rel + character*3 :: running + + +End Module BASIC_VARIABLES + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_VARIABLES + + use PARAMETERS, only: nc, nsite, PI, KBOL, TAU, NAv + use BASIC_VARIABLES, only: ncomp, eos, t, p, parame, E_LC, S_LC, chiR, & + LLi, phi_criti, chap, kij, lij, ensemble_flag + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture (single phase) +! ---------------------------------------------------------------------- + real :: x(nc) + real :: eta_start + real :: eta + real :: rho + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real :: fres + real :: lnphi(nc) + real :: pges + real :: pgesdz + real :: pgesd2 + real :: pgesd3 + + real :: h_res + real :: cp_res + real :: s_res + +! ---------------------------------------------------------------------- +! quantities of fluid theory +! ---------------------------------------------------------------------- + real :: gij(nc,nc) + real :: mx(nc,nsite) + + real :: mseg(nc) + real :: dhs(nc) + real :: uij(nc,nc) + real :: sig_ij(nc,nc) + real :: vij(nc,nc) + + real :: um + real :: order1 + real :: order2 + real :: apar(0:6) + real :: bpar(0:6) + + real :: z0t + real :: z1t + real :: z2t + real :: z3t + + integer :: nhb_typ(nc) + real :: ass_d(nc,nc,nsite,nsite) + real :: nhb_no(nc,nsite) + real :: dij_ab(nc,nc) + +! ---------------------------------------------------------------------- +! auxilliary quantities +! ---------------------------------------------------------------------- + real :: tfr + integer :: phas + + character (LEN = 2) :: dd_term, qq_term, dq_term + + real :: densav(3), denold(3) + real :: density_error(3) + + real :: alpha_nematic + real :: alpha_test(2) + +End Module EOS_VARIABLES + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_CONSTANTS + + use PARAMETERS, only: nc + implicit none + save + + real, dimension(0:6,3) :: ap, bp + real, dimension(4,9) :: dnm + + real, dimension(28) :: c_dd, n_dd, m_dd, k_dd, o_dd + real, dimension(nc,nc,0:8) :: qqp2, qqp4, ddp2, ddp4, dqp2, dqp4 + real, dimension(nc,nc,nc,0:8) :: qqp3, ddp3, dqp3 + +End Module EOS_CONSTANTS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains parameters and variables .... +! ................ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_NUMERICAL_DERIVATIVES + + use EOS_VARIABLES, only: dd_term, qq_term, dq_term + + implicit none + save + + character (LEN=9) :: ideal_gas ! (yes, no) + character (LEN=9) :: hard_sphere ! (CSBM, no) + character (LEN=9) :: chain_term ! (TPT1, no) + character (LEN=9) :: disp_term ! (PC-SAFT, CK, no) + character (LEN=9) :: hb_term ! (TPT1_Chap, no) + character (LEN=9) :: LC_term ! (MSaupe, no) + character (LEN=9) :: branch_term ! (TPT2, no) + character (LEN=9) :: II_term ! (......., no) + character (LEN=9) :: ID_term ! (......., no) + + character (LEN=9) :: subtract1 ! (1PT, 2PT, no) + character (LEN=9) :: subtract2 ! (ITTpolar, no) + + character (LEN=9) :: save_eos_terms(10) + +End Module EOS_NUMERICAL_DERIVATIVES + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module STARTING_VALUES +! +! This module contains parameters and variables for a phase stability +! analyis as part of a flash calculation. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + Module STARTING_VALUES + + use PARAMETERS, only: nc + implicit none + save + + REAL, DIMENSION(nc) :: rhoif, rhoi1, rhoi2, grad_fd + REAL :: fdenf + + End Module STARTING_VALUES + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module DFT_MODULE +! +! This module contains parameters and variables for DFT calculations. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module DFT_MODULE + + use PARAMETERS, only: nc + implicit none + save + +INTEGER, PARAMETER :: NDFT = 4000 +INTEGER, PARAMETER :: NDFT2 = 4000 + +INTEGER, PARAMETER :: r_grid = 200 + integer :: discret + REAL :: box_l_no_unit +! REAL :: pbulk + INTEGER :: kmax, den_step + LOGICAL :: shift, WCA, MFT + REAL :: rc, rg, dzr, tau_cut + REAL :: d_hs, dhs_st, z3t_st + REAL :: z_ges + REAL, DIMENSION(r_grid) :: x1a + REAL, DIMENSION(NDFT) :: x2a + REAL, DIMENSION(r_grid,NDFT) :: ya, y1a, y2a, y12a + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub + REAL :: fres_temp +! REAL :: free + + REAL, DIMENSION(r_grid) :: x1a_11 + REAL, DIMENSION(NDFT) :: x2a_11 + REAL, DIMENSION(r_grid,NDFT) :: ya_11, y1a_11, y2a_11, y12a_11 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_11 + REAL, DIMENSION(r_grid) :: x1a_12 + REAL, DIMENSION(NDFT) :: x2a_12 + REAL, DIMENSION(r_grid,NDFT) :: ya_12, y1a_12, y2a_12, y12a_12 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_12 + REAL, DIMENSION(r_grid) :: x1a_22 + REAL, DIMENSION(NDFT) :: x2a_22 + REAL, DIMENSION(r_grid,NDFT) :: ya_22, y1a_22, y2a_22, y12a_22 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_22 + + End Module DFT_MODULE + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module ........... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module rdf_variables + + implicit none + save + + real, dimension(0:20) :: fac(0:20) + +End Module rdf_variables + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! This module contains the variavles that are needed in the core DFT_FCN +! They are not passed directly to DFT_FCN because the nonlinear solver +! needs a certain calling structure: fcn(x,fvec,n) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module DFT_FCN_MODULE + +use PARAMETERS, only: nc + implicit none + +!INTEGER :: irc(nc),irc_j,ih,fa(nc) +! REAL, DIMENSION(-NDFT:NDFT) :: zp +! REAL, DIMENSION(-NDFT:NDFT) :: f_tot +! REAL, DIMENSION(-NDFT:NDFT,2) :: dF_drho_tot +! REAL :: rhob_dft(2,0:nc) + !REAL :: my0(nc) + REAL :: chemPot_total(nc) + REAL :: chemPot_res(nc) + +End Module DFT_FCN_MODULE + + +Module mod_DFT + +Implicit None + +REAL :: box !box length [A] +!INTEGER :: ngrid !grid points +!INTEGER :: ngp !ghost points +REAL :: dzp !grid spacing [A] +INTEGER,allocatable :: fa(:) !grid points per sigma [-] +REAL, allocatable :: zp(:) !z-distance from origin [A] +INTEGER,allocatable :: fa_disp(:) !integraition interval for dispersion wda +REAL,allocatable :: ab_disp(:) !integraition interval for dispersion wda +REAL :: pbulk, free + + + +End Module mod_DFT + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module Module_Heidemann_Khalil +! +! This module .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module Module_Heidemann_Khalil + + implicit none + save + + real :: error_condition2 + + End Module + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +! ! ! Module PARAMETERS +! ! ! +! ! ! Implicit None +! ! ! +! ! ! REAL, parameter :: PI = 3.141592653589793 +! ! ! Integer, parameter :: nc = 3 +! ! ! Integer, parameter :: np = 3 +! ! ! +! ! ! End Module PARAMETERS +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! Module BASIC_VARIABLES +! ! ! +! ! ! Use Parameters, Only: nc +! ! ! +! ! ! Implicit None +! ! ! +! ! ! INTEGER :: ncomp +! ! ! REAL :: t +! ! ! REAL :: kij(nc,nc) +! ! ! Integer :: eos, pol +! ! ! Integer :: num +! ! ! character (LEN=2) :: ensemble_flag +! ! ! +! ! ! +! ! ! End Module BASIC_VARIABLES +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! Module EOS_VARIABLES +! ! ! +! ! ! Implicit None +! ! ! +! ! ! +! ! ! REAL, allocatable :: mseg(:) +! ! ! REAL, allocatable :: eps(:) +! ! ! REAL, allocatable :: sig(:) +! ! ! REAL, allocatable :: dhs(:) +! ! ! +! ! ! REAL :: eta +! ! ! REAL :: rho +! ! ! REAL, allocatable :: xx(:) +! ! ! REAL,allocatable :: sig_ij(:,:), uij(:,:) +! ! ! +! ! ! character (LEN = 2) :: dd_term, qq_term, dq_term +! ! ! +! ! ! End Module EOS_VARIABLES +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! Module EOS_CONSTANTS +! ! ! +! ! ! Implicit None +! ! ! +! ! ! REAL :: ap(0:6,3),bp(0:6,3) +! ! ! +! ! ! End Module EOS_CONSTANTS +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.F90 new file mode 100644 index 000000000..8a8866c10 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Numeric_subroutines.F90 @@ -0,0 +1,1671 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_derivative ( ya, x1a, x2a, y1a, y2a, y12a, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(OUT) :: y1a(r_grid,NDFT) + REAL, INTENT(OUT) :: y2a(r_grid,NDFT) + REAL, INTENT(OUT) :: y12a(r_grid,NDFT) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k +! ---------------------------------------------------------------------- + + +DO i = 2, i_max-1 + DO k = 2, k_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k+1)-ya(i+1,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) + END DO +END DO + +i = 1 +DO k = 1, k_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + +k = 1 +DO i = 1, i_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + + +i = i_max +DO k = 2, k_max-1 + y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i,k+1)-ya(i,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) +END DO + + +k = k_max +DO i = 2, i_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k)-ya(i+1,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k)-x2a(k-1))) +END DO + +k = k_max +i = i_max +y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) +y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) +y12a(i,k)= (ya(i,k)-ya(i,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k)-x2a(k-1))) + +END SUBROUTINE bicub_derivative + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_c ( ya, x1a, x2a, y1a, y2a, y12a, c_bicub, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(OUT) :: c_bicub(r_grid,NDFT,4,4) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, m, n + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +DO i = 1, i_max-1 + DO k = 1, k_max-1 + y(1)=ya(i,k) + y(2)=ya(i+1,k) + y(3)=ya(i+1,k+1) + y(4)=ya(i,k+1) + + y1(1)=y1a(i,k) + y1(2)=y1a(i+1,k) + y1(3)=y1a(i+1,k+1) + y1(4)=y1a(i,k+1) + + y2(1)=y2a(i,k) + y2(2)=y2a(i+1,k) + y2(3)=y2a(i+1,k+1) + y2(4)=y2a(i,k+1) + + y12(1)=y12a(i,k) + y12(2)=y12a(i+1,k) + y12(3)=y12a(i+1,k+1) + y12(4)=y12a(i,k+1) + + x1l=x1a(i) + x1u=x1a(i+1) + x2l=x2a(k) + x2u=x2a(k+1) + + CALL bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) + DO m=1,4 + DO n=1,4 + c_bicub(i,k,m,n)=c(m,n) + END DO + END DO + + END DO +END DO + +END SUBROUTINE bicub_c + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: y(4) + REAL, INTENT(IN) :: y1(4) + REAL, INTENT(IN) :: y2(4) + REAL, INTENT(IN) :: y12(4) + REAL, INTENT(IN) :: d1 + REAL, INTENT(IN) :: d2 + REAL, INTENT(OUT) :: c(4,4) +! +! ---------------------------------------------------------------------- + INTEGER :: i,j,k,l + REAL :: d1d2,xx,cl(16),wt(16,16),x(16) + SAVE wt + DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4,10* & + 0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4, & + 1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0, & + -6,4,2*0,3,-2,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2, & + 10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4, & + -2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0, & + 2,-2,2*0,-1,1/ +! ---------------------------------------------------------------------- + +d1d2 = d1 * d2 +DO i = 1, 4 + x(i) = y(i) + x(i+4) = y1(i)*d1 + x(i+8) = y2(i)*d2 + x(i+12) = y12(i)*d1d2 +END DO +DO i = 1, 16 + xx = 0.0 + DO k = 1, 16 + xx = xx + wt(i,k) * x(k) + END DO + cl(i) = xx +END DO +l = 0 +DO i = 1, 4 + DO j = 1, 4 + l = l + 1 + c(i,j) = cl(l) + END DO +END DO + +END SUBROUTINE bcucof + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE BI_CUB_SPLINE ( rho_rdf, xg, ya, x1a, x2a, y1a, y2a, y12a, & + c_bicub, rdf, dg_drho, dg_dr, i_max, ih, k ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: rho_rdf + REAL, INTENT(IN OUT) :: xg + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(IN) :: c_bicub(r_grid,NDFT,4,4) + REAL, INTENT(OUT) :: rdf + REAL, INTENT(OUT) :: dg_drho + REAL, INTENT(OUT) :: dg_dr + INTEGER, INTENT(IN OUT) :: i_max + !INTEGER, INTENT(IN OUT) :: k_max + INTEGER, INTENT(OUT) :: ih + INTEGER, INTENT(IN) :: k +! +! ---------------------------------------------------------------------- + INTEGER :: m, n + + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +IF ( rho_rdf < x1a(1) ) THEN + dg_drho = 0.0 + dg_dr = 0.0 + rdf = 1.0 + RETURN +END IF +IF ( x1a(ih) <= rho_rdf .AND. rho_rdf < x1a(ih+1) ) GO TO 10 +IF ( ih > 2 ) THEN + IF ( x1a(ih-1) <= rho_rdf .AND. rho_rdf < x1a(ih) ) THEN + ih = ih - 1 + GO TO 10 + END IF +END IF +! write (*,*) 'in ',ih +CALL hunt ( x1a, i_max, rho_rdf, ih ) +! write (*,*) 'out',ih +10 CONTINUE +IF ( x2a(k) /= xg ) THEN +! write (*,*) 'error bi-cubic-spline',k,x2a(k),xg +! DO k=1,NDFT +! write (*,*) k,x2a(k) +! ENDDO +! stop +END IF + + + +y(1) = ya(ih,k) +y(2) = ya(ih+1,k) +y(3) = ya(ih+1,k+1) +y(4) = ya(ih,k+1) + +y1(1) = y1a(ih,k) +y1(2) = y1a(ih+1,k) +y1(3) = y1a(ih+1,k+1) +y1(4) = y1a(ih,k+1) + +y2(1) = y2a(ih,k) +y2(2) = y2a(ih+1,k) +y2(3) = y2a(ih+1,k+1) +y2(4) = y2a(ih,k+1) + +y12(1) = y12a(ih,k) +y12(2) = y12a(ih+1,k) +y12(3) = y12a(ih+1,k+1) +y12(4) = y12a(ih,k+1) + +x1l = x1a(ih) +x1u = x1a(ih+1) +x2l = x2a(k) +x2u = x2a(k+1) + +DO m = 1, 4 + DO n = 1, 4 + c(m,n) = c_bicub( ih, k, m, n ) + END DO +END DO +CALL bcuint ( x1l, x1u, x2l, x2u, rho_rdf, xg, c, rdf, dg_drho, dg_dr ) + +END SUBROUTINE BI_CUB_SPLINE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE hunt +! +! Given an array xx(1:n), and given a value x, returns a value jlo +! such that x is between xx(jlo) and xx(jlo+1). xx(1:n) must be +! monotonic, either increasing or decreasing. jlo=0 or jlo=n is +! returned to indicate that x is out of range. jlo on input is taken +! as the initial guess for jlo on output. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE hunt ( xx, n, x, jlo ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(OUT) :: jlo + REAL, INTENT(IN) :: xx(n) + REAL :: x +! +! ---------------------------------------------------------------------- + INTEGER :: inc,jhi,jm + LOGICAL :: ascnd +! ---------------------------------------------------------------------- + +ascnd = xx(n) >= xx(1) +IF( jlo <= 0 .OR. jlo > n ) THEN + jlo = 0 + jhi = n + 1 + GO TO 3 +END IF +inc = 1 +IF( x >= xx(jlo) .EQV. ascnd ) THEN +1 jhi = jlo + inc + IF ( jhi > n ) THEN + jhi = n + 1 + ELSE IF ( x >= xx(jhi) .EQV. ascnd ) THEN + jlo = jhi + inc = inc + inc + GO TO 1 + END IF +ELSE + jhi = jlo +2 jlo = jhi - inc + IF ( jlo < 1 ) THEN + jlo = 0 + ELSE IF ( x < xx(jlo) .EQV. ascnd ) THEN + jhi = jlo + inc = inc + inc + GO TO 2 + END IF +END IF +3 IF (jhi-jlo == 1 ) THEN + IF ( x == xx(n)) jlo = n - 1 + IF ( x == xx(1) ) jlo = 1 + RETURN +END IF +jm = ( jhi + jlo ) / 2 +IF ( x >= xx(jm) .EQV. ascnd ) THEN + jlo = jm +ELSE + jhi = jm +END IF +GO TO 3 +END SUBROUTINE hunt + + + +!********************************************************************** +! +!********************************************************************** +! + !SUBROUTINE bcuint ( y, y1, y2, y12, x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) + SUBROUTINE bcuint ( x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + !REAL, INTENT(IN OUT) :: y(4) + !REAL, INTENT(IN OUT) :: y1(4) + !REAL, INTENT(IN OUT) :: y2(4) + !REAL, INTENT(IN OUT) :: y12(4) + REAL, INTENT(IN OUT) :: x1l + REAL, INTENT(IN OUT) :: x1u + REAL, INTENT(IN OUT) :: x2l + REAL, INTENT(IN OUT) :: x2u + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: x2 + REAL, INTENT(IN) :: c(4,4) + REAL, INTENT(OUT) :: ansy + REAL, INTENT(OUT) :: ansy1 + REAL, INTENT(OUT) :: ansy2 +! +! ---------------------------------------------------------------------- + !U USES bcucof + INTEGER :: i + REAL :: t, u +! ---------------------------------------------------------------------- + +! call bcucof ( y, y1, y2, y12, x1u-x1l, x2u-x2l, c ) + +IF ( x1u == x1l .OR. x2u == x2l ) PAUSE 'bad input in bcuint' +t = (x1-x1l) / (x1u-x1l) +u = (x2-x2l) / (x2u-x2l) +ansy = 0.0 +ansy2 = 0.0 +ansy1 = 0.0 +DO i = 4, 1, -1 + ansy = t *ansy + ( (c(i,4)*u + c(i,3))*u+c(i,2) )*u + c(i,1) + ansy2 = t *ansy2 + ( 3.*c(i,4)*u+2.*c(i,3) )*u + c(i,2) + ansy1 = u *ansy1 + ( 3.*c(4,i)*t+2.*c(3,i) )*t + c(2,i) +END DO +ansy1 = ansy1 / (x1u-x1l) +ansy2 = ansy2 / (x2u-x2l) + +END SUBROUTINE bcuint + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE spline ( x, y, n, yp1, ypn, y2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: NMAX = 1000 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(NMAX) +! ---------------------------------------------------------------------- + +If(n > NMAX) stop 'Increase NMAX in Spline!!' + + + + IF ( yp1 > 0.99E30 ) THEN + y2(1) = 0.0 + u(1) = 0.0 + ELSE + y2(1) = -0.5 + u(1) = ( 3.0/(x(2)-x(1)) ) * ( (y(2)-y(1))/(x(2)-x(1))-yp1 ) + END IF + DO i = 2, n-1 + IF ( (x(i+1)-x(i)) == 0.0 .OR. (x(i)-x(i-1)) == 0.0 .OR. (x(i+1)-x(i-1)) == 0.0 ) THEN + write (*,*) 'error in spline-interpolation' + stop + END IF + sig = (x(i)-x(i-1)) / (x(i+1)-x(i-1)) + p = sig*y2(i-1) + 2.0 + y2(i) = (sig-1.0) / p + u(i) = ( 6.0 * ((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1))) / (x(i+1)-x(i-1)) & + - sig * u(i-1) ) / p + END DO + IF ( ypn > 0.99E30 ) THEN + qn = 0.0 + un = 0.0 + ELSE + qn = 0.5 + un = (3.0/(x(n)-x(n-1))) * (ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2(n) = (un-qn*u(n-1)) / (qn*y2(n-1)+1.0) + DO k = n-1, 1, -1 + y2(k) = y2(k) * y2(k+1) + u(k) + END DO + +END SUBROUTINE spline + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE splint_integral ( xa, ya, y2a, n, xlo, xhi, integral ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, INT, x0, x1, y0, y1, y20, y21 +! ---------------------------------------------------------------------- + + integral = 0.0 + klo_l = 1 + khi_l = n +1 IF ( khi_l-klo_l > 1 ) THEN + k = ( khi_l + klo_l ) / 2 + IF ( xa(k) > xlo ) THEN + khi_l = k + ELSE + klo_l = k + END IF + GO TO 1 + END IF + + klo_h = 1 + khi_h = n +2 IF ( khi_h-klo_h > 1 ) THEN + k = ( khi_h + klo_h ) / 2 + IF ( xa(k) > xhi ) THEN + khi_h = k + ELSE + klo_h = k + END IF + GO TO 2 + END IF + + ! integration in spline pieces, the lower interval, bracketed + ! by xa(klo_L) and xa(khi_L) is in steps shifted upward. + + ! first: determine upper integration bound + xl = xlo +3 CONTINUE + IF ( khi_h > khi_l ) THEN + xh = xa(khi_l) + ELSE IF ( khi_h == khi_l ) THEN + xh = xhi + ELSE + WRITE (*,*) 'error in spline-integration' + PAUSE + END IF + + h = xa(khi_l) - xa(klo_l) + IF ( h == 0.0 ) PAUSE 'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0 = ya(klo_l) + y1 = ya(khi_l) + y20= y2a(klo_l) + y21= y2a(khi_l) + ! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & + ! -y20/6.*h*h*(x1-.5*xL) & + ! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xL-x0) ) + ! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & + ! -y20/6.*h*h*(x1-.5*xH) & + ! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xH-x0) ) + INT = -1.0/h * ( xl*((x1-.5*xl)*y0 + (0.5*xl-x0)*y1) & + -y20/24.*(x1-xl)**4 + y20/6.*(0.5*xl*xl-x1*xl)*h*h & + +y21/24.*(xl-x0)**4 - y21/6.*(0.5*xl*xl-x0*xl)*h*h ) + INT = INT + 1.0/h * ( xh*((x1-.5*xh)*y0 + (0.5*xh-x0)*y1) & + -y20/24.*(x1-xh)**4 + y20/6.*(0.5*xh*xh-x1*xh)*h*h & + +y21/24.*(xh-x0)**4 - y21/6.*(0.5*xh*xh-x0*xh)*h*h ) + + integral = integral + INT + ! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h /= (khi_l-1)) GO TO 3 ! the -1 in (khi_L-1) because khi_L was already counted up + +END SUBROUTINE splint_integral + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION praxis( t0, machep, h0, n, prin, x, f, fmin ) + + IMPLICIT NONE + +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: x(n) + REAL :: f + REAL, INTENT(IN OUT) :: fmin +! ---------------------------------------------------------------------- + +EXTERNAL f + +! PRAXIS RETURNS THE MINIMUM OF THE FUNCTION F(X,N) OF N VARIABLES +! USING THE PRINCIPAL AXIS METHOD. THE GRADIENT OF THE FUNCTION IS +! NOT REQUIRED. + +! FOR A DESCRIPTION OF THE ALGORITHM, SEE CHAPTER SEVEN OF +! "ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT +! CALCULATING DERIVATIVES" BY RICHARD P BRENT. + +! THE PARAMETERS ARE: +! T0 IS A TOLERANCE. PRAXIS ATTEMPTS TO RETURN PRAXIS=F(X) +! SUCH THAT IF X0 IS THE TRUE LOCAL MINIMUM NEAR X, THEN +! NORM(X-X0) < T0 + SQUAREROOT(MACHEP)*NORM(X). +! MACHEP IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT +! 1 + MACHEP > 1. MACHEP SHOULD BE 16.**-13 (ABOUT +! 2.22D-16) FOR REAL*8 ARITHMETIC ON THE IBM 360. +! H0 IS THE MAXIMUM STEP SIZE. H0 SHOULD BE SET TO ABOUT THE +! MAXIMUM DISTANCE FROM THE INITIAL GUESS TO THE MINIMUM. +! (IF H0 IS SET TOO LARGE OR TOO SMALL, THE INITIAL RATE OF +! CONVERGENCE MAY BE SLOW.) +! N (AT LEAST TWO) IS THE NUMBER OF VARIABLES UPON WHICH +! THE FUNCTION DEPENDS. +! PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. +! IF PRIN=0, NOTHING IS PRINTED. +! IF PRIN=1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR +! MINIMIZATIONS. FINAL X IS PRINTED, BUT INTERMEDIATE X IS +! PRINTED ONLY IF N IS AT MOST 4. +! IF PRIN=2, THE SCALE FACTORS AND THE PRINCIPAL VALUES OF +! THE APPROXIMATING QUADRATIC FORM ARE ALSO PRINTED. +! IF PRIN=3, X IS ALSO PRINTED AFTER EVERY FEW LINEAR +! MINIMIZATIONS. +! IF PRIN=4, THE PRINCIPAL VECTORS OF THE APPROXIMATING +! QUADRATIC FORM ARE ALSO PRINTED. +! X IS AN ARRAY CONTAINING ON ENTRY A GUESS OF THE POINT OF +! MINIMUM, ON RETURN THE ESTIMATED POINT OF MINIMUM. +! F(X,N) IS THE FUNCTION TO BE MINIMIZED. F SHOULD BE A REAL*8 +! FUNCTION DECLARED EXTERNAL IN THE CALLING PROGRAM. +! FMIN IS AN ESTIMATE OF THE MINIMUM, USED ONLY IN PRINTING +! INTERMEDIATE RESULTS. +! THE APPROXIMATING QUADRATIC FORM IS +! Q(X') = F(X,N) + (1/2) * (X'-X)-TRANSPOSE * A * (X'-X) +! WHERE X IS THE BEST ESTIMATE OF THE MINIMUM AND A IS +! INVERSE(V-TRANSPOSE) * D * INVERSE(V) +! (V(*,*) IS THE MATRIX OF SEARCH DIRECTIONS; D(*) IS THE ARRAY +! OF SECOND DIFFERENCES). IF F HAS CONTINUOUS SECOND DERIVATIVES +! NEAR X0, A WILL TEND TO THE HESSIAN OF F AT X0 AS X APPROACHES X0. + +! IT IS ASSUMED THAT ON FLOATING-POINT UNDERFLOW THE RESULT IS SET +! TO ZERO. +! THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS AFTER +! THE INITIALIZATION OF MACHINE DEPENDENT NUMBERS. + + LOGICAL :: illc + INTEGER :: nl,nf,kl,kt,ktm,idim,i,j,k,k2,km1,klmk,ii,im1 + REAL :: s,sl,dn,dmin,fx,f1,lds,ldt,t,h,sf,df,qf1,qd0, qd1,qa,qb,qc + REAL :: m2,m4,small,vsmall,large,vlarge,scbd,ldfac,t2, dni,value + REAL :: random + +!.....IF N>20 OR IF N<20 AND YOU NEED MORE SPACE, CHANGE '20' TO THE +! LARGEST VALUE OF N IN THE NEXT CARD, IN THE CARD 'IDIM=20', AND +! IN THE DIMENSION STATEMENTS IN SUBROUTINES MINFIT,MIN,FLIN,QUAD. + + REAL :: d(20),y(20),z(20),q0(20),q1(20),v(20,20) + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 + +! --------------------------------- +! introduced by Joachim........ + idim = n +! --------------------------------- + + + +!.....INITIALIZATION..... +! MACHINE DEPENDENT NUMBERS: + +small = machep*machep +vsmall = small*small +large = 1.d0/small +vlarge = 1.d0/vsmall +m2 = SQRT(machep) +m4 = SQRT(m2) + +! HEURISTIC NUMBERS: +! IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF +! POSSIBLE), THEN SET SCBD=10. OTHERWISE SET SCBD=1. +! IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED, SET ILLC=TRUE. +! OTHERWISE SET ILLC=FALSE. +! KTM IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE THE +! ALGORITHM TERMINATES. KTM=4 IS VERY CAUTIOUS; USUALLY KTM=1 +! IS SATISFACTORY. + +scbd = 1.0 +illc = .false. +ktm = 1 + +ldfac = 0.01 +IF (illc) ldfac = 0.1 +kt = 0 +nl = 0 +nf = 1 +fx = f(x,n) +qf1 = fx +t = small+ABS(t0) +t2 = t +dmin = small +h = h0 +IF (h < 100*t) h = 100*t +ldt = h +!.....THE FIRST SET OF SEARCH DIRECTIONS V IS THE IDENTITY MATRIX..... +DO i = 1,n + DO j = 1,n + v(i,j) = 0.0 + END DO + v(i,i) = 1.0 +END DO +d(1) = 0.0 +qd0 = 0.0 +DO i = 1,n + q0(i) = x(i) + q1(i) = x(i) +END DO +IF (prin > 0) CALL PRINT(n,x,prin,fmin) + +!.....THE MAIN LOOP STARTS HERE..... +40 sf=d(1) +d(1)=0.d0 +s=0.d0 + +!.....MINIMIZE ALONG THE FIRST DIRECTION V(*,1). +! FX MUST BE PASSED TO MIN BY VALUE. +value=fx +CALL MIN(n,1,2,d(1),s,value,.false.,f,x,t,machep,h) +IF (s > 0.d0) GO TO 50 +DO i=1,n + v(i,1)=-v(i,1) +END DO +50 IF (sf > 0.9D0*d(1).AND.0.9D0*sf < d(1)) GO TO 70 +DO i=2,n + d(i)=0.d0 +END DO + +!.....THE INNER LOOP STARTS HERE..... +70 DO k=2,n + DO i=1,n + y(i)=x(i) + END DO + sf=fx + IF (kt > 0) illc=.true. + 80 kl=k + df=0.d0 + +!.....A RANDOM STEP FOLLOWS (TO AVOID RESOLUTION VALLEYS). +! PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM NUMBER UNIFORMLY +! DISTRIBUTED IN (0,1). + + IF(.NOT.illc) GO TO 95 + DO i=1,n + s=(0.1D0*ldt+t2*(10**kt))*(random(n)-0.5D0) + z(i)=s + DO j=1,n + x(j)=x(j)+s*v(j,i) + END DO + END DO + fx=f(x,n) + nf=nf+1 + +!.....MINIMIZE ALONG THE "NON-CONJUGATE" DIRECTIONS V(*,K),...,V(*,N) + + 95 DO k2=k,n + sl=fx + s=0.d0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + IF (illc) GO TO 97 + s=sl-fx + GO TO 99 + 97 s=d(k2)*((s+z(k2))**2) + 99 IF (df > s) CYCLE + df=s + kl=k2 + END DO + IF (illc.OR.(df >= ABS((100*machep)*fx))) GO TO 110 + +!.....IF THERE WAS NOT MUCH IMPROVEMENT ON THE FIRST TRY, SET +! ILLC=TRUE AND START THE INNER LOOP AGAIN..... + + illc=.true. + GO TO 80 + 110 IF (k == 2.AND.prin > 1) CALL vcprnt(1,d,n) + +!.....MINIMIZE ALONG THE "CONJUGATE" DIRECTIONS V(*,1),...,V(*,K-1) + + km1=k-1 + DO k2=1,km1 + s=0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + END DO + f1=fx + fx=sf + lds=0 + DO i=1,n + sl=x(i) + x(i)=y(i) + sl=sl-y(i) + y(i)=sl + lds=lds+sl*sl + END DO + lds=SQRT(lds) + IF (lds <= small) GO TO 160 + +!.....DISCARD DIRECTION V(*,KL). +! IF NO RANDOM STEP WAS TAKEN, V(*,KL) IS THE "NON-CONJUGATE" +! DIRECTION ALONG WHICH THE GREATEST IMPROVEMENT WAS MADE..... + + klmk=kl-k + IF (klmk < 1) GO TO 141 + DO ii=1,klmk + i=kl-ii + DO j=1,n + v(j,i+1)=v(j,i) + END DO + d(i+1)=d(i) + END DO + 141 d(k)=0 + DO i=1,n + v(i,k)=y(i)/lds + END DO + +!.....MINIMIZE ALONG THE NEW "CONJUGATE" DIRECTION V(*,K), WHICH IS +! THE NORMALIZED VECTOR: (NEW X) - (0LD X)..... + + value=f1 + CALL MIN(n,k,4,d(k),lds,value,.true.,f,x,t,machep,h) + IF (lds > 0.d0) GO TO 160 + lds=-lds + DO i=1,n + v(i,k)=-v(i,k) + END DO + 160 ldt=ldfac*ldt + IF (ldt < lds) ldt=lds + IF (prin > 0) CALL PRINT(n,x,prin,fmin) + t2=0.d0 + DO i=1,n + t2=t2+x(i)**2 + END DO + t2=m2*SQRT(t2)+t + +!.....SEE WHETHER THE LENGTH OF THE STEP TAKEN SINCE STARTING THE +! INNER LOOP EXCEEDS HALF THE TOLERANCE..... + + IF (ldt > (0.5*t2)) kt=-1 + kt=kt+1 + IF (kt > ktm) GO TO 400 +END DO +!.....THE INNER LOOP ENDS HERE. + +! TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE IN A CURVED VALLEY. + +CALL quad(n,f,x,t,machep,h) +dn=0.d0 +DO i=1,n + d(i)=1.d0/SQRT(d(i)) + IF (dn < d(i)) dn=d(i) +END DO +IF (prin > 3) CALL maprnt(1,v,idim,n) +DO j=1,n + s=d(j)/dn + DO i=1,n + v(i,j)=s*v(i,j) + END DO +END DO + +!.....SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER..... + +IF (scbd <= 1.d0) GO TO 200 +s=vlarge +DO i=1,n + sl=0.d0 + DO j=1,n + sl=sl+v(i,j)*v(i,j) + END DO + z(i)=SQRT(sl) + IF (z(i) < m4) z(i)=m4 + IF (s > z(i)) s=z(i) +END DO +DO i=1,n + sl=s/z(i) + z(i)=1.d0/sl + IF (z(i) <= scbd) GO TO 189 + sl=1.d0/scbd + z(i)=scbd + 189 DO j=1,n + v(i,j)=sl*v(i,j) + END DO +END DO + +!.....CALCULATE A NEW SET OF ORTHOGONAL DIRECTIONS BEFORE REPEATING +! THE MAIN LOOP. +! FIRST TRANSPOSE V FOR MINFIT: + +200 DO i=2,n + im1=i-1 + DO j=1,im1 + s=v(i,j) + v(i,j)=v(j,i) + v(j,i)=s + END DO +END DO + +!.....CALL MINFIT TO FIND THE SINGULAR VALUE DECOMPOSITION OF V. +! THIS GIVES THE PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF THE +! APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE CONDITION +! NUMBER..... + +CALL minfit(idim,n,machep,vsmall,v,d) + +!.....UNSCALE THE AXES..... + +IF (scbd <= 1.d0) GO TO 250 +DO i=1,n + s=z(i) + DO j=1,n + v(i,j)=s*v(i,j) + END DO +END DO +DO i=1,n + s=0.d0 + DO j=1,n + s=s+v(j,i)**2 + END DO + s=SQRT(s) + d(i)=s*d(i) + s=1/s + DO j=1,n + v(j,i)=s*v(j,i) + END DO +END DO + +250 DO i=1,n + dni=dn*d(i) + IF (dni > large) GO TO 265 + IF (dni < small) GO TO 260 + d(i)=1/(dni*dni) + CYCLE + 260 d(i)=vlarge + CYCLE + 265 d(i)=vsmall +END DO + +!.....SORT THE EIGENVALUES AND EIGENVECTORS..... + +CALL sort(idim,n,d,v) +dmin=d(n) +IF (dmin < small) dmin=small +illc=.false. +IF (m2*d(1) > dmin) illc=.true. +IF (prin > 1.AND.scbd > 1.d0) CALL vcprnt(2,z,n) +IF (prin > 1) CALL vcprnt(3,d,n) +IF (prin > 3) CALL maprnt(2,v,idim,n) +!.....THE MAIN LOOP ENDS HERE..... + +GO TO 40 + +!.....RETURN..... + +400 IF (prin > 0) CALL vcprnt(4,x,n) +praxis=fx + +END FUNCTION praxis + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE minfit(m,n,machep,tol,ab,q) + + IMPLICIT NONE + + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: machep + REAL, INTENT(IN OUT) :: tol + REAL, INTENT(IN OUT) :: ab(m,n) + REAL, INTENT(OUT) :: q(n) + INTEGER :: i,j,k,l, kk,kt,l2,ll2,ii,lp1 +! IMPLICIT REAL (A-H,O-Z) + + +REAL :: x,eps,e(20),g,s, f,h,y,c,z,temp +!...AN IMPROVED VERSION OF MINFIT (SEE GOLUB AND REINSCH, 1969) +! RESTRICTED TO M=N,P=0. +! THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q AND AB IS +! OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT U.DIAG(Q) = AB.V, +! WHERE U IS ANOTHER ORTHOGONAL MATRIX. + +!...HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... +IF (n == 1) GO TO 200 +eps = machep +g = 0.d0 +x = 0.d0 +DO i=1,n + e(i) = g + s = 0.d0 + l = i + 1 + DO j=i,n + s = s + ab(j,i)**2 + END DO + g = 0.d0 + IF (s < tol) GO TO 4 + f = ab(i,i) + g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + ab(i,i)=f-g + IF (l > n) GO TO 4 + DO j=l,n + f = 0.d0 + DO k=i,n + f = f + ab(k,i)*ab(k,j) + END DO + f = f/h + DO k=i,n + ab(k,j) = ab(k,j) + f*ab(k,i) + END DO + END DO + 4 q(i) = g + s = 0.d0 + IF (i == n) GO TO 6 + DO j=l,n + s = s + ab(i,j)*ab(i,j) + END DO + 6 g = 0.d0 + IF (s < tol) GO TO 10 + IF (i == n) GO TO 16 + f = ab(i,i+1) + 16 g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + IF (i == n) GO TO 10 + ab(i,i+1) = f - g + DO j=l,n + e(j) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(j,k)*ab(i,k) + END DO + DO k=l,n + ab(j,k) = ab(j,k) + s*e(k) + END DO + END DO + 10 y = ABS(q(i)) + ABS(e(i)) + IF (y > x) x = y +END DO +!...ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... +ab(n,n) = 1.d0 +g = e(n) +l = n +DO ii=2,n + i = n - ii + 1 + IF (g == 0.d0) GO TO 23 + h = ab(i,i+1)*g + DO j=l,n + ab(j,i) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(i,k)*ab(k,j) + END DO + DO k=l,n + ab(k,j) = ab(k,j) + s*ab(k,i) + END DO + END DO + 23 DO j=l,n + ab(i,j) = 0.d0 + ab(j,i) = 0.d0 + END DO + ab(i,i) = 1.d0 + g = e(i) + l = i +END DO +!...DIAGONALIZATION OF THE BIDIAGONAL FORM... +eps = eps*x +DO kk=1,n + k = n - kk + 1 + kt = 0 + 101 kt = kt + 1 + IF (kt <= 30) GO TO 102 + e(k) = 0.d0 + WRITE (6,1000) + 1000 FORMAT (' QR FAILED') + 102 DO ll2=1,k + l2 = k - ll2 + 1 + l = l2 + IF (ABS(e(l)) <= eps) GO TO 120 + IF (l == 1) CYCLE + IF (ABS(q(l-1)) <= eps) EXIT + END DO +!...CANCELLATION OF E(L) IF L>1... + c = 0.d0 + s = 1.d0 + DO i=l,k + f = s*e(i) + e(i) = c*e(i) + IF (ABS(f) <= eps) GO TO 120 + g = q(i) +!...Q(I) = H = SQRT(G*G + F*F)... + IF (ABS(f) < ABS(g)) GO TO 113 + IF (f == 0.0) THEN + GO TO 111 + ELSE + GO TO 112 + END IF + 111 h = 0.d0 + GO TO 114 + 112 h = ABS(f)*SQRT(1 + (g/f)**2) + GO TO 114 + 113 h = ABS(g)*SQRT(1 + (f/g)**2) + 114 q(i) = h + IF (h /= 0.d0) GO TO 115 + g = 1.d0 + h = 1.d0 + 115 c = g/h + s = -f/h + END DO +!...TEST FOR CONVERGENCE... + 120 z = q(k) + IF (l == k) GO TO 140 +!...SHIFT FROM BOTTOM 2*2 MINOR... + x = q(l) + y = q(k-1) + g = e(k-1) + h = e(k) + f = ((y - z)*(y + z) + (g - h)*(g + h))/(2*h*y) + g = SQRT(f*f + 1.0D0) + temp = f - g + IF (f >= 0.d0) temp = f + g + f = ((x - z)*(x + z) + h*(y/temp - h))/x +!...NEXT QR TRANSFORMATION... + c = 1.d0 + s = 1.d0 + lp1 = l + 1 + IF (lp1 > k) GO TO 133 + DO i=lp1,k + g = e(i) + y = q(i) + h = s*g + g = g*c + IF (ABS(f) < ABS(h)) GO TO 123 + IF (f == 0.0) THEN + GO TO 121 + ELSE + GO TO 122 + END IF + 121 z = 0.d0 + GO TO 124 + 122 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 124 + 123 z = ABS(h)*SQRT(1 + (f/h)**2) + 124 e(i-1) = z + IF (z /= 0.d0) GO TO 125 + f = 1.d0 + z = 1.d0 + 125 c = f/z + s = h/z + f = x*c + g*s + g = -x*s + g*c + h = y*s + y = y*c + DO j=1,n + x = ab(j,i-1) + z = ab(j,i) + ab(j,i-1) = x*c + z*s + ab(j,i) = -x*s + z*c + END DO + IF (ABS(f) < ABS(h)) GO TO 129 + IF (f == 0.0) THEN + GO TO 127 + ELSE + GO TO 128 + END IF + 127 z = 0.d0 + GO TO 130 + 128 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 130 + 129 z = ABS(h)*SQRT(1 + (f/h)**2) + 130 q(i-1) = z + IF (z /= 0.d0) GO TO 131 + f = 1.d0 + z = 1.d0 + 131 c = f/z + s = h/z + f = c*g + s*y + x = -s*g + c*y + END DO + 133 e(l) = 0.d0 + e(k) = f + q(k) = x + GO TO 101 +!...CONVERGENCE: Q(K) IS MADE NON-NEGATIVE... + 140 IF (z >= 0.d0) CYCLE + q(k) = -z + DO j=1,n + ab(j,k) = -ab(j,k) + END DO +END DO +RETURN +200 q(1) = ab(1,1) +ab(1,1) = 1.d0 + +END SUBROUTINE minfit + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE MIN(n,j,nits,d2,x1,f1,fk,f,x,t,machep,h) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER :: j + INTEGER :: nits + REAL, INTENT(IN OUT) :: d2 + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: f1 + LOGICAL :: fk + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN) :: t + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h + + INTEGER :: i,k + EXTERNAL f + + + REAL :: flin ! function + REAL :: small,sf1,sx1,s,temp, xm,x2,f2,d1 + REAL :: fm,f0,t2 +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +!...THE SUBROUTINE MIN MINIMIZES F FROM X IN THE DIRECTION V(*,J) UNLESS +! J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS MADE IN THE PLANE +! DEFINED BY Q0,Q1,X. +! D2 IS EITHER ZERO OR AN APPROXIMATION TO HALF F". +! ON ENTRY, X1 IS AN ESTIMATE OF THE DISTANCE FROM X TO THE MINIMUM +! ALONG V(*,J) (OR, IF J=0, A CURVE). ON RETURN, X1 IS THE DISTANCE +! FOUND. +! IF FK=.TRUE., THEN F1 IS FLIN(X1). OTHERWISE X1 AND F1 ARE IGNORED +! ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. +! NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT WILL BE MADE TO HALVE +! THE INTERVAL. + LOGICAL :: dz + REAL :: m2,m4 + +small = machep**2 +m2 = SQRT(machep) +m4 = SQRT(m2) +sf1 = f1 +sx1 = x1 +k = 0 +xm = 0.d0 +fm = fx +f0 = fx +dz = d2 < machep +!...FIND THE STEP SIZE... +s = 0.d0 +DO i=1,n + s = s + x(i)**2 +END DO +s = SQRT(s) +temp = d2 +IF (dz) temp = dmin +t2 = m4*SQRT(ABS(fx)/temp + s*ldt) + m2*ldt +s = m4*s + t +IF (dz.AND.t2 > s) t2 = s +t2 = DMAX1(t2,small) +t2 = DMIN1(t2,.01D0*h) +IF (.NOT.fk.OR.f1 > fm) GO TO 2 +xm = x1 +fm = f1 +2 IF (fk.AND.ABS(x1) >= t2) GO TO 3 +temp=1.d0 +IF (x1 < 0.d0) temp=-1.d0 +x1=temp*t2 +f1 = flin(n,j,x1,f,x,nf) +3 IF (f1 > fm) GO TO 4 +xm = x1 +fm = f1 +4 IF (.NOT.dz) GO TO 6 +!...EVALUATE FLIN AT ANOTHER POINT AND ESTIMATE THE SECOND DERIVATIVE... +x2 = -x1 +IF (f0 >= f1) x2 = 2.d0*x1 +f2 = flin(n,j,x2,f,x,nf) +IF (f2 > fm) GO TO 5 +xm = x2 +fm = f2 +5 d2 = (x2*(f1 - f0)-x1*(f2 - f0))/((x1*x2)*(x1 - x2)) +!...ESTIMATE THE FIRST DERIVATIVE AT 0... +6 d1 = (f1 - f0)/x1 - x1*d2 +dz = .true. +!...PREDICT THE MINIMUM... +IF (d2 > small) GO TO 7 +x2 = h +IF (d1 >= 0.d0) x2 = -x2 +GO TO 8 +7 x2 = (-.5D0*d1)/d2 +8 IF (ABS(x2) <= h) GO TO 11 +IF (x2 > 0.0) THEN + GO TO 10 +END IF +x2 = -h +GO TO 11 +10 x2 = h +!...EVALUATE F AT THE PREDICTED MINIMUM... +11 f2 = flin(n,j,x2,f,x,nf) +IF (k >= nits.OR.f2 <= f0) GO TO 12 +!...NO SUCCESS, SO TRY AGAIN... +k = k + 1 +IF (f0 < f1.AND.(x1*x2) > 0.d0) GO TO 4 +x2 = 0.5D0*x2 +GO TO 11 +!...INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER... +12 nl = nl + 1 +IF (f2 <= fm) GO TO 13 +x2 = xm +GO TO 14 +13 fm = f2 +!...GET A NEW ESTIMATE OF THE SECOND DERIVATIVE... +14 IF (ABS(x2*(x2 - x1)) <= small) GO TO 15 +d2 = (x2*(f1-f0) - x1*(fm-f0))/((x1*x2)*(x1 - x2)) +GO TO 16 +15 IF (k > 0) d2 = 0.d0 +16 IF (d2 <= small) d2 = small +x1 = x2 +fx = fm +IF (sf1 >= fx) GO TO 17 +fx = sf1 +x1 = sx1 +!...UPDATE X FOR LINEAR BUT NOT PARABOLIC SEARCH... +17 IF (j == 0) RETURN +DO i=1,n + x(i) = x(i) + x1*v(i,j) +END DO + +END SUBROUTINE MIN + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vcprnt(option,v,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(n) + INTEGER :: n + + INTEGER :: i + +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 + CASE ( 3) + GO TO 3 + CASE ( 4) + GO TO 4 +END SELECT + +1 WRITE (6,101) (v(i),i=1,n) +RETURN +2 WRITE (6,102) (v(i),i=1,n) +RETURN +3 WRITE (6,103) (v(i),i=1,n) +RETURN +4 WRITE (6,104) (v(i),i=1,n) +RETURN +101 FORMAT (/' THE SECOND DIFFERENCE ARRAY D(*) IS:'/ (e32.14,4E25.14)) +102 FORMAT (/' THE SCALE FACTORS ARE:'/(e32.14,4E25.14)) +103 FORMAT (/' THE APPROXIMATING QUADR. FORM HAS PRINCIPAL VALUES:'/ & + (e32.14,4E25.14)) +104 FORMAT (/' X IS:',e26.14/(e32.14)) +END SUBROUTINE vcprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRINT(n,x,prin,fmin) + + IMPLICIT NONE + INTEGER :: n + REAL, INTENT(IN OUT) :: x(n) + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: fmin + + INTEGER :: i + REAL :: ln +!---------------------------------------------- +INTEGER :: nf,nl +REAL :: fx,ldt,dmin +COMMON /global/ fx,ldt,dmin,nf,nl +!---------------------------------------------- +WRITE (6,101) nl,nf,fx + +IF (fx <= fmin) GO TO 1 +ln = LOG10(fx-fmin) +WRITE (6,102) fmin,ln +GO TO 2 +1 WRITE (6,103) fmin +2 IF (n > 4.AND.prin <= 2) RETURN +WRITE (6,104) (x(i),i=1,n) +RETURN +101 FORMAT (/' AFTER',i6, & + ' LINEAR SEARCHES, THE FUNCTION HAS BEEN EVALUATED',i6, & + ' TIMES. THE SMALLEST VALUE FOUND IS F(X) = ',e21.14) +102 FORMAT (' LOG (F(X)-',e21.14,') = ',e21.14) +103 FORMAT (' LOG (F(X)-',e21.14,') IS UNDEFINED.') +104 FORMAT (' X IS:',e26.14/(e32.14)) +END SUBROUTINE PRINT + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE maprnt(option,v,m,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(m,n) + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + INTEGER :: i,j + + INTEGER :: low,upp +!...THE SUBROUTINE MAPRNT PRINTS THE COLUMNS OF THE NXN MATRIX V +! WITH A HEADING AS SPECIFIED BY OPTION. +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM... +low = 1 +upp = 5 +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 +END SELECT +1 WRITE (6,101) +101 FORMAT (/' THE NEW DIRECTIONS ARE:') +GO TO 3 +2 WRITE (6,102) +102 FORMAT (' AND THE PRINCIPAL AXES:') +3 IF (n < upp) upp = n +DO i=1,n + WRITE (6,104) (v(i,j),j=low,upp) +END DO +low = low + 5 +IF (n < low) RETURN +upp = upp + 5 +WRITE (6,103) +GO TO 3 +103 FORMAT (' ') +104 FORMAT (e32.14,4E25.14) +END SUBROUTINE maprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION random(naught) + + IMPLICIT NONE + INTEGER, INTENT(IN OUT) :: naught + + REAL :: ran1,ran3(127),half + INTEGER :: i,j,ran2,q,r + LOGICAL :: init + DATA init/.false./ + SAVE init,ran2,ran1,ran3 + +IF (init) GO TO 3 +r = MOD(naught,8190) + 1 +ran2 = 128 +DO i=1,127 + ran2 = ran2 - 1 + ran1 = -2.d0**55 + DO j=1,7 + r = MOD(1756*r,8191) + q = r/32 + ran1 = (ran1 + q)*(1.0D0/256) + END DO + ran3(ran2) = ran1 +END DO +init = .true. +3 IF (ran2 == 1) ran2 = 128 +ran2 = ran2 - 1 +ran1 = ran1 + ran3(ran2) +half = .5D0 +IF (ran1 >= 0.d0) half = -half +ran1 = ran1 + half +ran3(ran2) = ran1 +random = ran1 + .5D0 + +END FUNCTION random + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION flin (n,j,l,f,x,nf) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN OUT) :: j + REAL, INTENT(IN) :: l + REAL :: f + REAL, INTENT(IN) :: x(n) + INTEGER, INTENT(OUT) :: nf + + INTEGER :: i + REAL :: t(20) + + EXTERNAL f + +!...FLIN IS THE FUNCTION OF ONE REAL VARIABLE L THAT IS MINIMIZED +! BY THE SUBROUTINE MIN... +!---------------------------------------------- + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +IF (j == 0) GO TO 2 +!...THE SEARCH IS LINEAR... +DO i=1,n + t(i) = x(i) + l*v(i,j) +END DO +GO TO 4 +!...THE SEARCH IS ALONG A PARABOLIC SPACE CURVE... +2 qa = (l*(l - qd1))/(qd0*(qd0 + qd1)) +qb = ((l + qd0)*(qd1 - l))/(qd0*qd1) +qc = (l*(l + qd0))/(qd1*(qd0 + qd1)) +DO i=1,n + t(i) = (qa*q0(i) + qb*x(i)) + qc*q1(i) +END DO +!...THE FUNCTION EVALUATION COUNTER NF IS INCREMENTED... +4 nf = nf + 1 +flin = f(t,n) + +END FUNCTION flin + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE sort(m,n,d,v) + IMPLICIT NONE +! + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: d(n) + REAL, INTENT(IN OUT) :: v(m,n) + + INTEGER :: i,j,k,nm1,ip1 + REAL :: s +!...SORTS THE ELEMENTS OF D(N) INTO DESCENDING ORDER AND MOVES THE +! CORRESPONDING COLUMNS OF V(N,N). +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM. +IF (n == 1) RETURN +nm1 = n - 1 +DO i = 1,nm1 + k=i + s = d(i) + ip1 = i + 1 + DO j = ip1,n + IF (d(j) <= s) CYCLE + k = j + s = d(j) + END DO + IF (k <= i) CYCLE + d(k) = d(i) + d(i) = s + DO j = 1,n + s = v(j,i) + v(j,i) = v(j,k) + v(j,k) = s + END DO +END DO +END SUBROUTINE sort + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE quad(n,f,x,t,machep,h) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN OUT) :: t + REAL :: machep + REAL, INTENT(IN OUT) :: h +! IMPLICIT REAL (A-H,O-Z) + EXTERNAL f + +!...QUAD LOOKS FOR THE MINIMUM OF F ALONG A CURVE DEFINED BY Q0,Q1,X... + INTEGER :: i + REAL :: l + REAL :: s,value +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + +REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 +COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +s = fx +fx = qf1 +qf1 = s +qd1 = 0.d0 +DO i=1,n + s = x(i) + l = q1(i) + x(i) = l + q1(i) = s + qd1 = qd1 + (s-l)**2 +END DO +qd1 = SQRT(qd1) +l = qd1 +s = 0.d0 +IF (qd0 <= 0.d0 .OR. qd1 <= 0.d0 .OR. nl < 3*n*n) GO TO 2 +value=qf1 +CALL MIN(n,0,2,s,l,value,.true.,f,x,t,machep,h) +qa = (l*(l-qd1))/(qd0*(qd0+qd1)) +qb = ((l+qd0)*(qd1-l))/(qd0*qd1) +qc = (l*(l+qd0))/(qd1*(qd0+qd1)) +GO TO 3 +2 fx = qf1 +qa = 0.d0 +qb = qa +qc = 1.d0 +3 qd0 = qd1 +DO i=1,n + s = q0(i) + q0(i) = x(i) + x(i) = (qa*s + qb*x(i)) + qc*q1(i) +END DO +END SUBROUTINE quad + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/PCSAFT_SurfaceTension b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/PCSAFT_SurfaceTension new file mode 100755 index 0000000000000000000000000000000000000000..e41cc976d87506e02e16066a74cdf532402584af GIT binary patch literal 1037955 zcmdSC3w&KgwLgARawK45POxZIgs31bj}mIZ6hTuUcv@44NF~A2rnG5O=p&>lLqA;?DH4}C+yQo$S3)QfA!{7 zpMPF-goN!gk*JX{(^1xuRT@9CYNf#KbBoE|_H(x!D-k9g#bdfLlWxqUv(E%G!awu0 z`D5PryTs)0l1cRlF#@vqmR$X_ev8v56^YxeHot2>jzAj zkMr?cj2}z>aQyi9HvAg#I|sjo_$|VZf35hn@dbY@s!Q>^9KSmJ-i_Zo@w)`S2K@L( z8@UL-_4uvEkAJK1TY=wl2JojPrtdBKcuD_Sn>d?r&BuJ^fp4$<{%<~U-G}jP!SCFLM}9XO&)4Gj-2LBP`v`u6_gU zF*@IZ6DS71vqZkSO7MLQmADw4=S$$;23QP!L<#s;OVEF) zg#LeAB41xBk*`mb(Er~`$Uj&D|BWT&-&_K}uY{cRO~v%Hr3C$tl(3V}l;GQ00)Bc4 zIv*{e=MziF`JEDa?kGY3gc5qVxCH!?67=sX0e`%NoadCle{%`=4JGWbss#S$OUQqH ziE=!%1pTK=(En$Na#>Y^ep`uhp9%fc;8*zf%M$o^mdMw#67b)Fa4~zXEg}C%2|M{= z3H(e6zF#Pzw;z;E{^Y3pAe!ZdJ zWZ-!)N`Y_Fb?m{0f3G(9!=I1R|BJ!zxI^JK#SsR-#?ZI&ya;_#&iXG#={zBHUKiv0 z7lYqlkgumLynz1W7G5CdqXs@)K<5DiPZ)WonGD=*;PnRI!W&Jwj1}-b$HEOhvLk;p zEWALTJj#)Js40-=ID0+tnOI3_==@V)^#nG*QIM$ zuU@=v<%ildcx~6p)p%Vz@0!IIx2;&YuB)x{yj4rqt!rBsVs|cCbCqIuwk=z~l<0FW znZI~hTc=5J$^7$HtzFZ0$&xEpwIvoWUa@-Zn#Jq7mUMP4HmF4ruW4I)&C0fGfwFSV z%C5w+)vMMnU9zfc?TS@vuUN9`3eaA&7*Gv%t(8~|FA}<+E#N z##pwk0bPjE)+G`k3GktgC0$B=U3=TARel(^0jfE_ zb!~``=P#xUWF68AA(lp4=Q1dybL|IJPVjYdcsNVeEnT^CZATjlNT4jhl}lEMRj~+= zj76|)wb5=wa|H!0`ZeWt<&vdquUNSRWMQ?-m#)6zboT}w8Q9z0+bs8XhI>2Hy}jMN z)w#FX&P0}Xu3c>`0hwYVDL#cA_4%5vS0(evPmC6l9S$O*o*2|vVL8WGNET((z#-thv^I^W-hcf*y_sFV%J&$+PXUu ztJbbyEm^xFv8r?J`ZdcE>#pwXN^~t*)1H9s3NkAcS|p~?3U&4RCClI_+6k$Z1XmOJ zYGN;2Md(bIFif?!V~GSbO3+T{duNveuUNWtG3(xp)6sgbM=Q0gYxzvPE?ap`*K$<4 z#miT%g@anzwH)u@xN@09ccEC9b}iSyy7gBm?viCl%|vLS;MNP@-1} z0D`cW0vEBmZ8bCtAG->z1w*UXUV}1TObpYTSiNNBn#A(XHh|lfE$Lc<*elkp(@21z z#nal?u5LT+%C&2jtUK+(^{d-DS6+2mQ^O_iTY8%Ku~XkRW7dpWr!DDR+OA77Gf!Q5 z>aw;g*011F%~}7W)Mw5*>$LUjI?b97RC*egdlsKL>(q6yBIS14tQmER6psS`#CsRa zIe-3~OVW!^NBO?HaqhY2EuJ}J=8Q8E?>_Im#j|GA5-M+RLI3Qt+tLH_4m+Gw#8;K4$+WJox)9 z5YPP{e3=KI+M)CzGBg$b)p&50kNunG!L2nguGWLI-0feT2WLszzj_aD?S*k^4^Elv zUy}#-t)tn48aIQ1izbzgd3qS6! z*Mr-#XXI87ZrAPz@Au&T{Ka+;?ym_Bc%G~*te>z4L!!h>`D*#7PJ;C8)I;;s(uRwh79f(j4Lbx!-2 z^58WVi04!f{$>wecRcB+jbA`ukm(x@KZfH-5#84wDzyZgP&%Bcy96F^q2Op*MpyKfp~89;4?jV zzX#`9zWv+o!MWCJ{{}qx85W4=4iA2&2Osv}TwAt(BObiY0`VO6;AeU8eIEQB9(>G$ zbG_L9jeGEOED+BL56(RZ_HVxjkF2A2hW1}?k@2kX;B!29%7dTl!KZrg^E`Ns2S49~ zPxIgn9=z6rU*N&(Jovjkc)bTtd+@XepXgZFE>XTm!jCb`u28;1!VfXbE>ONz!uK(J1j9`d-o-GxJo$PFe~)2yb@H_m z{uaaR;^b>2{56KzwaKR>d<(S|Irx<3J zA>S+ECm3c|A>Sk6#~5Z8A>Se4hZttpAm1wC`xu_iaFc|0G0d(&zFxxLW0+lle657P z#W0)xe2s*^#xR@wd`iN%FwCYtpOElp7-kcnpZJHAKf`R=^J5bJH-_1y=SL;HkzqFF z`C$ovh+#J2`2h)cGR&qs-!I`S8D^86@0IWs46~`u_el6MhS@~tJ0yHD!)%)KtrDKc z@N9;gBz!KzY@+k^5(|Q!Y47zrZ}IH@S7QC6P!;-`1K64>CI34 zUCN)~dWOd&d?dqcYV)HKp2RSl*!-}B|JH!;c?=Io_*sV8q~`l2{1n4%O7p!Eeu7~( zq4^#OKgKYd&U}Z2A7YqIX1-Oz_c1(|;U)?1Vt5|I^%DLb!)!A1wG#do!)z+^H4^?B z!)zk+DGA@gFq_7FLc*V6m`!4S;%`#^46`ZBk4gC77-kcgAC>S%hS~Jxhb8?{#EGd&&#WhLn-gL6bq#b(x-C0G`(s6 ztJ2vgubp)H-8(=}8k|30{zFE+I97FB4`DkPviLjq9|rt%c2|1mQ}0Tbjiw*mzaELd zN5pjIp{_q)p3dH*>7Ov^d(OFYKAge&>IFzSegg!#{GQ}j04n>_-E6QWU-~1z+XAymXNShW{o;%1 z?BJL@`u52q7{#M8n;DTuFic>O{M)G~C31=M)^xUEM>^NA!$>}yu1fEko82|%`;wDf zhBR{ZlLc`gZNn)EZ{NYjHGOi!02PsI*q$!iWn_OST{RbUcF!47IzV}DUpkxFLGG4{ zQtfwPrMlHp?N_Q>p{%%J~N%y+2lHOuT_bTZvanij?dTU6! z7o?FBM@mWexUi7UbfZu#^&X)vpg4mbWw0e=&?5}?ID*0;!!CsbDUbG$helKD8A1!# z%+202=ZB^Mg${FYkE5mx*hg_7Wzg&~kZ55*XaNJ1L5Jp}+vOu8DadKBB`fxoY4RDB z({eItkC8+RBSIsL=8mSbkHV~_yo2NgCtI7%)DtzkKV5Z)ycXC;tIF0M$|g);fz$Vc zyOeQ|eC{NY%Vt<2dmDyn%d;DXt8V%xx>$QN<={Y2u3;D=2Tjz~7%+3?y_<%U*eHo|JgDDpfv;e=7g`(Fz0>?R>VXI#WxTbD41xNt`U{(z!kf z9+~SSnX>z`4ZCMA*j;tgv*-q z{#v4m_=rKw&ELIgXPLvAJo0SS!kx>jrs0_qQI=QD*jaVsH_+cj`Y*WjeFtWAjYC`& zGKz7TAsnhUUI^+rQ6+Vleo?(ccJl*?-$Drzv1xxRc_a`Lkz8UJmY)zB~Gt(b-+?*Y|M9iS*0sIqUkl((3aP?^h#5YIZ44F@JJ#Ki`a>tJg1{9+-- zKGT$M^DSbZQ$S$RE+ih+gu&#gNHL-*jwkixOq2#F?|!zb8AwtMgu=N>L6MF&NJ3>^ zFu4X)hC?bgHDp8NG_(>akk+J+{nXN5_#^Ov5}QXM(0!IvEwHDG{D{pkuf7yN_@b8& zBptEIkn@HbBx4R!$?KKLE=vNKQd(0>sFbSqRJv)njHX*!ooD!B7sP~YNV>& z6e)TYA0?3?3>7d#&BG4AyyTn50$f4&h+v-!E}V~o6KfDu)Yr`qOu(Y@dok7q=AVG6 zPBAZUS69R;?x;h#$DqXhX6O~v6RuS1ltZcKicp_S&(Y~n+DlR|M;@9(KfCdjpl%%A za9LJ06C|fOO2-yqCO#aNc5G8#8Uj3^aCN?rt^p!e zZ{9;!%;KScg#A+Y_@#uDs|c1Pe7ICI=VxZY9-N<zuQbb52Ga5Uj7V{bN-+hI zi(u!@&oJleXN1Yo%B0ZGsOdr-gNxLzveNjRw%A(P3Gx=TVX?Bw4rP)-iQ902mECx& zw&o8SUP0wvc@yffCg|%9>x%{}&VZKHEKR3YlJi}I4u9axc!{HQX~-|yl)lrU%sL=5 zX`iJGptB=fq8Be$+b`(VNDcXo#If)5p9ZUVK9n@Q6iENOOZ4TEi9+on!Syb|I+MWn zI<5vbj5xRVFRXrt*tFmF8Lvq+ZIQHIewAb8PG0&ztjbB#zCtNzLv)rwvJI)3% z$Dml#{^I?Xe$gs7*;P5x@vEFj@%X2`e0Wukt+3a$-=a(ktDI>y;vVg#Htm=BVjQe# zPr4jOoA#rXh-!2ko6o7Zm)*2~)et~CTG(Z>4Rlnsg-!d7TjQ#=DWlpwUs=7Jrv2WQ zuxUqj+0Zmc+j0(aZXT}s?(n9D-DR2K^~wCJ{)Bp&%dj;{XEPH|di@7fq;yUjDn#vf zQRmcP^8SYEyEvtZ!NZsC#o%H2IIDMN;(k8**!ZP`LG~Wf!4PTB&F*Xrk^?}6zqkz# z8Ip`Y`}4y9=p*fP5Rf~PY3d=;Y7F{Fq%qhg0tT51QqGnik2$Bg*^zYinRNDVjoF_y zW`C^&Pr^2RZ4EI*?I-`-P_KwF1!^{fK-A5$U4F-F>oHO~^d>1`0qyOC%}+y1T|SzV zp(@9yMs>rgx{ICx`H$@89MA{mESz)soJDgMUw(Jt6w&r?LQC19X%|uO!5Vq=O_fKG z!UI!874irY1m+sj-n2!?nJow~JA&&v&u_NTsN_*F7q#!x;IyVv1M0if- zc-$mR_F>Ha?NbfvTvJ-G!u-}FZ1XE|GXFy;=6^7$V<%E&IuiQpS9!Kud9wRB^CKyr z!yHjYbmHl^u7Dr=ww9m72|q#$rYu3LS9xuyA>}A~@%T(D;6ra~`AD4bAvDgX zNBL|C`A7=kBl-3C$dJh^%aq4Q;)D;OaXuZ&r#s{$DTI&Y)#Fn^3Lc+?$4BCX520~B zt;(l85z}45I&OE9Q<4E`t6wLPtSf~!|O3je+B0A=vd7(SNVPEP4|>N{di-}`YX7- z>oNZsNkA7IPcT95Ik>0X^;-%O&{@Y5jA;TmuAy$0Pm~EgdqJA{m_E%JPc+mXPr_Cp zmSh4+T8Wz*Y7UdUR`b3f6~+IrJK+R-(m`_Pd%t;XBd0Nw|ADu3uDb%S-A9WPSvv7O zSw)!r?1tB*gYvWHT+QBw zA28|pv)g`9b<_jlI{VmlVbnSd!&{IhL#A+!n&qT}&MxfPK=Qv|WEngoZ*d0y=`eocFgR@)p*|x+ z%2gYW1=XCCtxiE7#}+#{XWI|ai>&#TWGU&RN5DD>8z+Hgub_y9My7U zzFDkTsBU~1u1K{mlQMKyVIee`cMhVqrtvQ_y?GDq14MKRP^<+^KhtO{Sg*XrGu!Pj z);J6&mR4WS+;_dl=%14!luC^h-bqX_tA<1y(YhYaJ!&Dg47+3^_rej_5%S(5>1m03 z>V1RL%$dj*sdS1Y?sFJ9 zhY=A~r_oqK|6`kT#fv7JW>DavHqI@mzs^IsNriuzOZvR1?Lf_wlUWm?JS!buP-zk#O4- zTDM>CKv>oW3Ws;ZBwXY&8;l50buNM3p^0;J~*9EUenf(%Lc`D)$dih}vF^h_d< zl;J^i0`sSTdhtaWiWu+@baJj8;JeH?=+5&w4x*E}L*DB7+EJn7p#8j9D3PB1{D$M^ z1?6QJ2Yn=HD$9;?@Pmyev+t>DoJeC4=jmS{W9Ya|pO}-~WhpOqloy1QU-R-P*O#9k z9AA5Wb^!)KZ5RX%am`0pAhxN6OqpuRIh`x#^vi&#kDf5MO^s17WO7k4wtE;_Aq0b_ zY-sd*7-}(sK_f62TP=oHf+nihixT57@GXGTG6%UYNr3HaAckHXEf#XPGs-3G4D z5Z(bevdm=2E{9v7D$nt@hm@p@!Lap#RVbTjH-z{^Cr!d1b~DwV{x-bu4<4k=snQ0d z;!WXZhrlFF{sKtLt1d;A;wA`A{~F}}5IIAwVPLD0$=ZmA*y|x~7eS_>!Yt~ux!1%k zhDa*dBE(wE(~ZQES3nZ@ADNW4no%j6jYc_|Ol?!`rYg@;d@fJ~3Tp{89Y^5J+$yLO z+L$g;8B#(Ay}L1_!LRyORi}_N`5x>+b{d0IYN>i!oDM1$1vWd(B9hze^wB5~?$c~> zw6Mq&a5J(}EuD!UqU($yP+vW0lP;g*M?E3|D_i9i-;(^_$NUu05uK39XDWGt;!+=y z2Uy)01jSNWs`9aKk`6~1EjGWRQ(70`!-N~X5(jjv`=|#aAtA8p&Rz4s^SpY2= zC6tmx$SpV1umLgMChNr-YM(t9_B3wosRJx9@Tc)*G<#}K6!}t6H%3?|Mo1)L9uZZ1NaQF(1ZlUK@~(WViv1(d`A^W|^xcG6PwUG_9f}v*ih_ZuC^5{#;BdEs%D;Rb12(;^w z{Qe|61AgG`v!vlIqhvIEs4FS4?Xy!UQqEA(ji{JXj8HxJVoJF9VHQ(TajKYij8Hw; zk_ud24XNzSOv3|pDuF^VYbzCT@|dOc$shU(%S4Yb*^h@|Vpdor!V-<_p!HP#lGa(q zl-0OnW!G7dSBZ;qYn55iNUk_TYG<`2T4tMN-ZZ*V8WcyB+rE&Sq>$NWiHmY;igQbQ z+$37K5gMP{9#(E6AvZ}O+@u_%-0I`p>O5`|E!+r=a~n`@J3?-f!fqAT0@5<8jdPmj zagu1^L};8-zjE3ha*`CfZWYZ_O`OwIkCQ|TCqm<#dX>}Gkdve!r#;TNHBYHHrwWgg zL<=WEA|mc1xu}Sv09jo~w1`M(OvHQ842UrW$#&L8e1o5g`X@MlbkOiV5d4r`#aSi!eP9|j1~88(O9sm^pH#A@&;VjDA9Nu(;hn|Qx)nexnQ!-tQ-t$P+jla^( znfu>vS^PoXO0gJqc=s4Q?d*8d^6Zr}pH&+-%GOM35n^H{O3EOO*~t!>=4J#}2vWTq zY$blkf5uh>R4ew;F!hLfy5Lw;D{vErwU6YPgmC1 z8ie6tV=fpKn)fNqCSY=o$gNn|0Z&o=L%e;!wWkC6q;;1S!g?(Njw?g4R`_Bet@iKD zfSY|^Fc-}xufJ8)?;j43LOek!C{n9Il8l&%8;&zX>;Cq^DcrF;%@LpGh{v|M$plah zurVGfq1#)oF3_#8=MV?U(nzLLY(M(4n0@d3$elqF5q&?{-Sy(QcRNqJ_gYQx3~SfA8@Oi|0deXUpM#&RWTG2h=s76yp!_ zR;0b-%Gg5V3fXfwOljZcQhvvzETsK8hw+I6(QdZ1cUEou>MObMDjfvwhLZn21@<)ll4lx%SxEM0lFxU~Th-tHc^34h=<< z8!~Nk9b9V)#-RSH^$SwJVot3>sVLHU21yGdH^jCXPMVZz45i{N^O2fRTV{yBmf0k% zMM7t+Jum1iVO_y!ioE6hIH$ zC>JRRadX{8ZN;73CZ(WG?kxt{aI(y=> zx8la#I`G)wQmzkat2Yk4(`62+>5$07JGHs72Z%WjQtb#G9&)peP&~*VPqL2iNqH;c z2%{bZTKT?9^G%Zmh3@4+2!GNceeB?b+1P;a6)sJ4sWhQlfj`sXPc!&hrM%IZ41xZ| zUhfb`AuaPj{?RQBT)mkR+QgZ4`2>COz0FB;xH3eH7BY+;b+Z zhrYl2`lmgA_kVR1@_3sk)&YIob6bo1xGyLL^>L3Gq?hXBZgIq4j*mOW&qQe-*Pu)a zecZof6!Ph1aZ|Qk$ml5Kj!zXg<4cu-n(-$Ll64!0I12fICi@qULWY)lHeyXzd%vmV z#3!BUN`4!&|CdG~C;CzyY!q^qN*NnMKXHX*O^x@B2FWVDR2wb%L}av?{&kA(M*ZZ+l2~C6N?1HA$))xRnDm`fW|dq{p0#pebwn|F zl1&Nr9-QCw;ZeAJJYq$T$3(&}5 zzdZW3$|LB-1M9V0#)A8W*t_jBCY{97!^+{3?VQ-CcAos)@Ar zW}5MULK6_cEWb*G6*aQ_>Phb{zmiX1hb~vO7iCqitkRB^xBMz`QEshD%jeb%kS_NK zH-kZFfznW*waTq7U#fb5JgE!@ zp_u2GTXo0okfJPn)u?3CjAV`3vFOpaf$yS7g5*h|bal#<4@b)$$@43M-1y)G)84t}>A^fE!!=NIpL^7iSAEndJzpPF0rK==FbIv8QbM^^ zSZ>&CNIWT}R>nnbA{FOW5#?qu2#s@_pl0`G_T!PjABYROa2sJ&?t8!}( zxe2;(lej3i-Z-}{QEmo<&^Wgy<<=Z>6LjGwaZzqPac=gu8O_md%uSCI02^ogs8|Qtxi;?bX=zTs7wZf(4sP>RHms1k?CzJQ=Re? zq9T*DHBp&r<1$T)%49GIEhF=X(m_7>f$nFkPLhT8QIrU01I)AX z%^6Nsa0}8Y!`aOJh~-SCT8>)qkl1JRXgh5!Dkcxyvv6U7YC=O|LeXS2hj=pM_gbYk z3^nr+P1XcZJXuN=DZVNN+-iy@GZkFj$dI^^XfnEl0wFPF zG4KWhjqN-e$QwJ4$5>k{j7i@4$aI{+pXScsuf`etWw>14KSuMqCYi`8$68ye^88J< zbgMJNP`-6h*kHz@mJMd&40sZskn?qm+4-`^?AdB=b=!@5zq!>7xfz~cDmTNwDH-$4 zk}(@f#@tsjW_ih&twm#Ueasdn(DYot33%uFe~*s?`1;HK)XbsC{0j$%oXnwRM-Th= zqm-ax>RHeA?+`xR)`KA%CIxZwiMIgAzMt)i96ft>oN@{&3VOv>4n>ifLy_hn zVr*A21piPa=~G6bB>fkXNKERei6y1|@nYqT%<&cVqsbzzm5k^cESMFT+@he3`A|kl{&;<)`Sr~@L&Ht94bP1Aga%^Ag*m{)< z7%zg3O8*ymE2#Z6l(16wD%BskG&^0IDAn5>#uprh%dRe28>-msa~7zop5f21nHp6i zR6B23koq3kmczP&r3|wzhaqHTmScL7W9r0`s(+NjsBjogtXS1wcqCOLn;?97(7e)m zxR1H8dLc?`6{Ap7Slcw4;nrO(QC`4cTtLAE3?xnK+rt|5atPSEx@Xw0dFBQO!(B3< zTznfhNXGcY11b_M3i|!&5!O`hlQ%K+&{G5BTMlEp!*Kd7DE1rA(-z_em!`|5i8d}E z+~SZfa!ADqk5p}ZO0Ri1!KHb_fzp8b-z#j!o{_hLj5)Ur)KQ0ePaIWj?B5;6mmP)^ zHELtVvR}T@J0mjJJQOqyvikSQ!=tNz*1%%MTcmBcERxo&{#gSP6Za+fmo)}gfvx(a zCGu9(qh8>U&UQ#n&xhprMLpNPB6O?pC@;zL-;J~?=biFaRL;*kq?;X55jhXw`G1=9 zMbuI-a-w3!FSB^{Ur=3fV47YLN67tdg;{?!Q9HzM2I7cf_)3&S7Y894YuNl7a{FNMS7GNKJC2ZctL!I#TUXQgBct zB`(NG#ZjSIq#YRLyGZpmC3T7;^+u4wRTs=4R)r-mK_J;Ek==22%gn0qgn8$xuxQFM z6usJ2;fwB$uwWj+g4qL$Vrtmuu^2lf7QfpSVZpqE1+xtn#ndz6u^2rh7Fn>s@CnX5 zHzZ@{f?FjxT!w#$4sC9p<2H(mtBGrfmv1aK0wS zVW!Vvwa0;F<8jc$9tW8=DB!@E0^tyfm`bJ`Q4v*fJVG6!?dT04y;f8bQb|(Dz3XiL zg^=QSgk=7sK%yp3q70Sh4^hvociMF~fM|k{>Yz-q+50;Loy9gAS-7+EY&{RFapWPIwP4@oRH99lWMP4O-se=@x<$61t6i1M+qrTNN7kV zoeCt{Cp{(ISkXt5C!r=s$R5g<=}B~B%14ZW57x$|lCNRtr6;T~r1XjyCA}@ek{Ocu zvjUkWJee|-$=Cg|cSdyY1k^;Hfb~TLM8DtcA)$ai*~;Q%xoI3UWs)blKj&3{;C(8X zR*K%I^10v3v|uZloAuw^(9{>{5an7;JKZ@gIsx`ym=he)IYC|Y9g;=gXqvisnqf2j zNCvr~{V=ZrKIwRx9hzo>$ho2Mc$)Tjntn|)rfK%Y(=^A^^lBQoSn?T(r|B+8V{eN& z{e=N@56y}4Cil>c@6_qrmvRq{ZYPLdMf1~tTH^P~n-I^vY~uChWfSNgAgjEQW_AP4 zn|>VMxHPq7Ta6f@TopsNlh*5IdST!eL!FOc(1jR`EgnWHq(RSWFnTd*v(KFVOUdKgV1m!6PDvxlM8U1+ev8X8R=M!loa zkTTI}FIs(=5TNTa81)`TZAf6MiLOI5YJNaj>6Lm`>$M@M+nHJeyACjp(Of_)E+xZPkN8?%yJv{-HGWa%5ajP>G2ClL#GQ6uZ3Bci1 zh=x9C4U7)Ck>~jJ|E6LSNXNqmE~6JOCq0sFtwt|Y1PM_Q*RFE+r%a=x)AN+LCaH(% z_0pAqM2I{uM6MBJGN&vitJbG)6Gx_rGabUoswmahuHin-n%sKBZFe{=>2dD}xo0$i z>Hvtfg`D@H2ZLWq3eHO6g+~#OU+PvZ*i`bfS4ne=ZLKY)uv?_ykai5PF)w^#;FAo(qAWx?SH}Ox(gfNIy=wry5?W_GT-i z#2M`wrKAQ84f9-h4`}QsjT(;zU=!#=4z>y`q@R#*^F7G(Uc_7e$xT;^ekkLq8@%_o zxpz5LJc4wA%9=9r;CdkC;qs>Pxx6J$R2m1$r|>=8@k*Wg{gon*q|rRsa%&#eytND( zo%J!_fU(cae1Vqs4^Teb#*Awsc)-@Pv{tW>yEQS4Wl`TW%}8O!0?km1d4_jTU8q7r zDWQT33J`&UVfM2T+- zE7+ppz|=~feV4+t`szVEU??P9;3T-%OKfOpt)*MWeN=`{ojkePkP6ZUR_|cyH5g}T zSen}m?lzNN3YnIvQ(%iST29T7t-8<1maJSM`Oj!s;jS#fPX+o^gM;i3lAp@n5~wWA za`6{=6~-(75YNO{esQ_*lFO+8gB+=#S@|XVG>&;5qJ2Q-{lI~TNL9W`;+oB88e41{ z(_HBVVaDi*^Ec?(*`>WCO!JqLe2%BLNXudxg;ZsQ6U^2y`;?jny9x#UU7IzS)UC8s z2z24s&{oZySRvfNFpb8*ZZ*%NKd1C?Qc5pwR)xrsqfAQDw@7np6lOBrB5g8g z(&d0I4XEXAJf)Ck}mV4&*wvKBIgnXpw2*Xc|QbjB9M>mU*mG5>8t*xevw!>Tg)Rygdy`f38kH)5WA5sRX zrVpup&iQ$x%a%wVQp+Kgymg7|(Y8asVUM<+WoZa%VQ8PyCR`OJY?XwCk}*t6KmsU5 z`jj>d#}xKK@eW6jI^k^~hr;^#n34j%~?qH&)~KFOAntCGT#P97>_F zb$~qMplkYEVP8zO=K6I9?N@@1R6kWttPhDw(L7|FrK6P)>uyHt&;obicqK1|jDSgB z?j7Fy9~WDAi+tM^IDOO&^kq93$u}7M!h9*7I$=84W=W?!9(8n6r{?q>I??h1F3Lk4 zzRjbdwXH_=M~7|ui{@5J_7|P4b~}S0QxFjYumgo!uOPMHqLy_O1mY!?5XknmD$i6Q z-Tjhvssz)aZZTu7X4AyB=>3w5M0s+*q-J1|G~sY%9ct<_55YNz=v39(Kl0QPK5Gsp z>CAA~5xv}7`|}$VIuU{HF;E%dJKQ@AROSvG^wS0^vl0%v$v|bk1JEOd+iF62bc$!A z4s>)1`=@YpN@u?Y<%~hLPv*6PP~E??6RKD_`x$H7%zLtJJF|M$s!-`>nPvQtWe<3$45*hx~7eVJMe zl4pdR+GT=LPFRIpDAA*ks4~RkUe89oWsk2Ru9Zk;6Zd8~16fLl=~zc9DN%w5uVIm6nZe zmEjnhzk88d@{9b@tAu$RB+qj_p7qM}_sH+~uW&J_Q6vpRYocGt+3(s)GTfH=T{lcDzFrd5*sxSrcmsKq|x|Xx%ngfaBS5bKf;H3PtVQ2Up^!IWAhSx5F{&i zogl?H`FVq^&~GTT{CQ+yX9WKf8Z#w|f1Ra*tU@=qt0*^r3j{BJW;TSmd1uvk@7)C9 zGWX)+lvuuek+R>stLnQCZ9-l$4*~ji&EXwi<4#z7jcPY@qIaeT`k|Mb5tU2ezF26` zSHY$3N_A|BfRg%w2i?ljPV(dyHAQXy6yYbwYnItAN}ZSn-af)2pF+MlP9g9q_$j;m z2o_vT0qOSvffklqusgl

    !}05+D7C+g#O6B|oVA#JXsm*1BkEv@Sl!fAB%IE+UW( z*KBeP_v7xC9JV;vovK)byPunNct0OX!`#!u+JT%8qm89mNaPN3b7u0`%~K z_L;c_uoZ}Rb~TzeWs<7=?@MKPgi-yXzAz=s>tTFPz$PhsFr8aKX2-w|QkCCF8ZeVt z1!cTQzJLrG=GhE-)p9Qox+-I^AN;CsWnHp4@0Uzs7bBkIyShaUf&e0B6x}RpL5@0* zBdp&Ty_D}iusXmIdTtphR0WP&4vnfR&N8Y%zOr(MCd+{826OwFZy3@cYb1Hw`$Z$@ zh2w^Fp`$%MpC%m!EeEopx2Jr@T!B78tc7QG$sfjf(&E0BZ*SU<5d`B zAhk^irIJ$>2F92)51Ph_H8MG(%iM(z-37(n3H zVCkJQ`^Bg@4oSbE3x~vS=-!6Q&WqfEzK(aGE5ERJdQO-2PR06M-||F-;#|4w zSWY2GI+k#62k2Oi+#nsx?YtiWXY%FIw^bfNFCILTFOQ&yKwKAQ59IIAfS#Kl&|bsI z=z*e##BVH?jk;cn>(;&FR%w^fHa6e`jMA<1dY5VR>B2MnJ9q?X`aU$H?PMGzU-+_1 z+z$?3Pt$fwy9*>_=Mv(oguUUhsRfMa)uYk(I4RMs3{UrGpM|#p9#7@nlSUUZJJ?Y` zeTz@M$D_`O9zXw8ddNITzQbj~^f7-6E`!}-m=jS!!V3Ym=m%WqPyekjOu+85#;%#W zatX5|8Hx}+qaPLo1knz>UWbwV`j@Oq_4APEr=wo9f|f4~*flZlxIq99G?r*rQ~(~x z+MAw^&nXTG2KG{h6t&7qeF>@AzU}EDUK7|gW?!Ht_=FW7;0P>y-RN%ay`b|1zV1A>#;!3VaNNoeo* z1FM)43pRc1?t;EZ0u#;tdVJ&=fe7mCeO;C5%+I?j7*PRlffPNUVYU`bg7E+TMQTN> zmw!EV$EzS?ki7es1F}ImIQmX`n^%!rFwCa9>^@vkoy}ms9y$Wt0Nh{aufZ3MpdI=VQsijdce@W* zrOViuZ-u2u>u)-Af!YhIfrqRor=s|_k8=>hQ`k#1ohCV%G3&7b^TEqS^8HH}EI66* z2pYD<#SA_ax+WIRT%0K>- zqRgv^Q|DQ+=FrSHeuJYcHAHS&r~7avg0025K0-DmjASc&L<$|b)&Ri{lcp+>44>nly-H-bl?dqZ+Qml0Y2h|f1}BcoSTQ&M z@+DR^QHU9%$afAli>afWzxb%N@=wWI)XK#UZ*VAG2IZi3c;oTvZqIW`XNS~%cP)nW zMu+w4k_>1_&88$~;7HQl@VF5FiJw{V_sQFV>j)Bj(@K(f&2IBj`mxNIT$ihr68#~xP&n^E0{W%T zD}ah=wGZGSsvQ5X_w$%UA8BI`Ke?kDMW=~mq}3Sokw{~(O&w*X0!;=_H_XjGI2Udz z`%F6fx5n(x8neGvg2yZ(!OR$HFz6~J>6b<1c&tI>co+{&w(vl5fEMKd=TMHsLFBmk za>!x(eQ43GKP}mpqo3qVL-HO7#kT937HlM@hi=Tx?@wdNp)t1r3k!Q2XFs~(oggjl z8IJkF;FyGb(6Mp$z5Jl#tkYt?Vl7^&jv76`SYrJDsg z`H>J=ly{7vAFR}o-RzeIRXoV(vs=&yUB`?eBn6Kam6&C zxw3l)nYIYC>hgVf?@`9JP~adl>u2(Xo4rha{5;h(=#3zq6F;}j6#w0gMKuiGk}FjI z>VU#|iRWg2361PYXaA0YR_W5IQ5ofHYvcLFs+%$+4@yaj4cTzku&^^jGS9E zBPvKSDPlPYNx#hUJ;CJR93x7Yhm;fo%1JiMxbmq+->w~6h+iJrtHV|q$hsM=1xs|E zi#?ohQtMrWa#D-4RtK2WnyQmp6&sN_JD8A1-+pk%pnHOkAUW^}J14+9WclD z=TucVTVW@Y{_t^^gDrZ$V8fOWD>|9B6>~_9)5mbTpJO!{6*r4{st9YDma=*45$*zt z3BVQ8)lLAJ4KgdHm}`hkt<231n{`^fcCvB$cp7b^mcmIwBAfXIg62+=*$udoWa|+e zx`+2z-1tg2xzJ9F2$IJ?V0%xmmp69)exO4fOi##J?`6a^*~4`u8tju|omZagV>mdb zI=gKjm}Aml_T@OFa2Ocx&76W}(o9{{e5d#{L@-zjBx&$slNvQ}R7GNPA_Dqs(|2V@ zm49yj?y~!`4a2h+3|HNB>?@dQ9ZGVdLM$bijOhot1%!T2EILEcE-ag3KoTq48N*f+A5bm z>CzXl_}!1J6i>(-rNB7p-gFtIu=MfiUC^%Dc#%v_usC#b0yov5M{>^EbI?ngd6^i( zXC1+h7a=Iw>UJn=97-sb@}$!hXA>mnI`nrr^oSOO=vy4t>l{`A(SVtt!a$r863hoD zB+{<$`vA?$kAMzj;T)-?gi$Cn?~`6=g)Aoo$+x(mcZWu^Fsk1C0FBb8CuWG-1RkJG z=D(t+;@d$&rUxn)$y>AxBzFxCN+1x+$cue$%FC31XcSb;lmPV$w%0hes~p=jGsBsnri&L``UeZ7UXfB6cGUNos%~1^)U=zP7%RMYI z$o@UUDX1Kfw`gfiX1)ECLkS#8D0?|7t*6x+`?a!O;Sx2wL~%1e+hNUgSRrZFon|p} zF@%i`O8Rh@=%0J3rc$L0(SIQb9LPN6P{WdObyEhl0}l5qMR27Q1BbH7p+v=%+9*~1 ze{NZ>2qRS*#pXv8snUz@39B@UTn3h|+{JL%Aeh~1!@5fN#PhHQoM56sXEQ0^Zj^_uUkgV+4WB{Zra^;tgp#3N}_hJhXl%+215yU$+%R20dJZ^t9MSBG_( zG)7@a$=;MpsW$4Ryq`&e$~}I{_aG%s%2P0$l&9#RqpbT>5NS+}1Q=X$c_y7b`*_Fu z6BiwTf(SI|NdgMeoAfC(fr2!oXe%+P%VCsUlz`Dk%B*asl3#$-C=XP_MN(~{Z}uAD zzA#`#Y}#^nTJ7dg4DQxMP+t!nPKj)&osl_lZ&9^%6JT7rS~fZX$G3iyq@`M;yA}>|Yu}ei-l^S0Oe~S&f$E0*@6-N%N-5Nb6nep`*UuvAbG@cc+tfj_Don5i3B0a7 z7jY@uICrQ9$=_z2QqW@;*}UzITtUs$D)l-`-O4tm6u#^zXlGyVkq;##L;RnqQ8Lpk znG!dgPN$18OVmN~-63(-A5)Fu#1l%q;vmHDf1eO9ATXK@uAbCoN zuKtRJCo8&fsYY2;*x-2(scyem)Kg3K*ix1Z19YJoj&$cb=L8-wJ3e?(NVG`s-dtaNZSD#v>%=oX|v^TNdtgwg*7Ho`hfhxiU; zm+j1iOljgU1@;2xWJiijgQjOcv*GoIl%h(D!-b}uWluj2N|l>xZJViEPQm1om`E2M zK%~neBB_|4{JV(BNnCz@q(IEuUxt{!I4u-&AJrHnZ|^D89M#7B{%m!aVgIdawVopt2=JsYUu#--!m$G9NTIQ!`h>(asdsQba^ zrzg_6$)kyKX2Y$SH+_IPJ5}h+uajG5Cjbz$Jyd=|WF9W3`?jFQbf3JvA(&>GG~+ zH2m_)=x3)`a@Dds9odrok9Z~@LL4MS=T|>EPS}qHUq8%B_;#>`I@etfb=KLf(br>l z_+EB-g5+h4sIa@k=VN#HRz%3wSk6&tzneQHaY?Z5sno@YuRLcemhPfe;KvoHzRJh$ z)(C!voLi6;d#NRX5h?13Y`sj|x;Pu6n4T>5hI7*;E6Qw0ZlGo>=4?RIx$C#zMSD%p zeu2*KLO}XDka07Y65c7kEd?l6lKQc#wDpH-;y>9i8zwoGdXn{|@~J|rarVzPydHZ= zUIALIaaw6ECGEmD2J3}l9~(b>yN?Z8gl^M;=(6c5kkQetQMzomKz9O<2;JHP(PgVs zlr9Q<<%e0Zw2?Ji>E*JQyY&0L^Gr0Wur(JRCfI~%e>eO4fd_ljMZ42aQX};dGJkOh zx*wq*Liq?&d}M-&#QW2q4f``H61*kdp`ZrYJiZ=xy~JSFdqg ze2%Z1r@ny*T zp3=%}5#6=e5~AtcsyVE_mFY||Y*RdZ?;Ei3-@jW`poCL{EM_SF$8ehXwU|2_Qb+&t ztzphtw1qj>f@{``tZ`vKl_D+OLG&ulTto&%bTuXSuA~zn!+rc|w@__2778d7;4 zB!Z+k!?8#{TYnHn{N#12@->xME-ZEYAks@6hGXD?kx)gYZ9Q7&jip$p5^)|c!52Ui zTIXpwxbcKl-W64o6jfh6A7#6wb#4q!VM&?KMA`#sT1%i@>Ll5Byx5hw6=>082hoF6 z!(@{tqF;L|WT1yxXz_qk$zm3a*OJ!wUc@8LoQ~5=4iM(GK1g#&rgRETDfy$fh~!Xa zF$S7Tn2-4aEYDv@nZ9I(m%VI;Rv4RGx#S1xuimC!y(KVyLaMv%W@|N1$rUT(d(Km} zbxYk(4XR1C$jM*i1im75^qp@GeFQ5Ea_qdL<~9|uEv5GQ6c;9)+NQ;mO13CWj{j&e zS;1u=2((@;SE~OI>!O%X+onA9ew*>*ML>J!y1h=JIioq$8}`9$NWEW++_MLv9tA8= zW~t=9H%SKI%A;+ACuHS!6h}OWu_c#Dq!S^$upz ze&5H@u$eg!bKYBWz)Y~yCqut>$5iGG;-~Je{}Wm>nMQ~&ft-stl(!VU+mf{FY~7MX zeTE0}zG0v;sp)V(X`oW{4%%a&?5Kwnt~Air2=o#I?J!WiF5;bpasw2XSPrlPv*o|& zF^9Gu14h}wUU~Fwkw?&j2UcLZocm}{73cRF$X1%Z;M`Xb-0L<*|wTvKv=<{ zp6cUqrET?OeDa_?vV#=`V)XlBYz_oZjXsY}-0{0pjfDDb58%1+j}z*}owU zs9a##nSPFEf72?=tDG=;*iPq@LMmKLph)dek<7xSD?~ZY7b>ui6CV&vtW7=+8xbsx zvwoz9g)BVKq`{0Rp(gW$6s*v0%<@afwFzuIuFcAoP&f;nO~^bnH@l~?YVK3e{F|<_ zg=bFi<-ruI>Ojwqgn8E0EETZM3TU=mJhu-^d-JFN!Lw#L=jWGDT~w-im5R`aRC^)S z-yl`)N+%U-a%1*+O2yZ>R5dEqv`{LcP9xjdIQ@B)Yb`OTGN~)FuGEn zxtObxLyhsgC1ryo*^_i`xfp7$JTzCNQdR*AFgPD4*ro(v1Of=346M`#c~SHr z@E(=O!F_xL84c|ne*<{SiRD2SCZ;oJaF_)bo!|%qLUXgv$oUgAe%P(>tH$hqkKgu7 zB1r}sXODGN&d>Z;R|O-^ew#!H^~fRTw=g0YOkjOTnwQwF+{7D8#3aAGj7q^K3`p*u zgs#O|Sn8~wd)O-Qc89!$U+~G5eF*ti8YQ!NP z?5Zg)UHy|KW4>K724{OpPy@?iG1l%*7OCaqjbezYoB+y3vzZDgAv<5MY@dOn;5q`y z1+6Sr86|B?O9@BLMQm1b~x*Rp*Kv_p^5b5EV)FF zU3=u)qnLYvS%PLOFi~h9`hqRK4tZ;;2&*3i;doNMt#q-&OB+07T?O(!7YOX22ZXWT zair?Tt-A5`wJvGp0a^U<^H!86<&BmkyU-|ve!dBG#cZlJo(7(Pc1Vc@MuD)vWrO=hD=NR6RWi;S(Iv8xBZVbmeVW64g;lixXG zozQ$1MAXB)i$|cYgb^Ib>!$fVSYL!Kh(>ulst5MP(&fYUfv4o8|Yl_Fy3b{Vikm+ zmRl%wQtSLbajgVWzQv_{T?yJ{4&%AcP>!OGhci^hpWtZl7kOoc)_IOGJP1bdWwdZK00xxqImz5GO<{7qsn%TgJPaw?}4b z5S)v96ZFhH8;=Wv@)SFcz-4E1UU2qQb3XI&s++PLp4z=mL9!YGNp;6Rl~X2j>Qe6j zMy0?x&I}t7`q@#qi6anZN5tT_i~v>!7@H)(j=|oKDO|`O@Nh88C==7HvSR`_`=;`1 zIG_oV3m2+J(7)5>E;mGtMDs1z0WfQgL3ypo8uOhl+v`rAF7k5q4iGg`rYhh0N|&nw ziFKERk=o>plVP$~Xu_BF>1`lqY%V;NKE6#1>jWqwIgK`nTx1!!qq_nnKhHYeH^M#8a~J0d$I%s0ke4KKm=|KU_)SJ z+Fwj2&0b`GlaUFuO=~?Z5B~U7-%kF7n;bt5IDXZ)Qif9#^hgtI@7OKU zFMB!{dE*V*<@&Nq`I(Tm*Gm!d8ywR5Ln4pwdmg9c8(hkF96Tk&Kic8H(%?t3N>2pc zir;+dW~-Gkd5bhk;+sbt#$5&@rj@8~HtoX8Z!$t7^Ezh#@ASV4D@(DCg>hd0@Ab8$ z&{u!r|4*H*AAa1I*1PyZdRI7x3Ktq*HF-!6a`*r^1g6Q+L%49BX()fwoq#?8mcRu1K4cYm~-jy$$*-H5f*`_!I4rw4@ zLnRkqdO*87q|MG)E0Y(}w!12~AkvH}?G8=d{V2|ZBTi80MV2Ig5swn_u8{#8+EeMU z>Lyd2twMUPrRq?}A4SH<_~SY(N6Qc^lV(?msf|eeFI^<*j?_CkDAE1sVxUAP_|UsY zTq7#Ws+L`l{M~!K?&Kd6VRzD(-t^2tkp)s+5@{R)>>;Uh!HD&A%57qbo6t*jY%R$d~wEx1@@k(q0d5C34l23y=z z!1~U2SX2#K;Br%($f2xDSsmK{x=&c6TR;WDsbm#~7`@j5K9O=P&lbd>3L zX80U`Qu~D5Vl_l6pe9dWCv$wZ=X-2P0c@!XI9hfukyGtM2O6k68t72j1hW1Np4_j~ zM+bsu@=ZcY?_KE;b;__t1Vg-$$9^XU=NUs4PNfR>fi)zE-{dj+l&+AomWAuv{{}aQ zBX2U(8$!DbbRdGe$Ur%O331Z~Iu?P>G|&kH)fMt%2;~Ynm%tCOLSFG3j2*E;4s@=N z%cF0LJc1rPxI!+Epo2i~-rE5U=nDCEU9meEmxy5Q8b=M$X^pNH@L*6oNd(EWFO1^8BvRX2zb@MNc8JSi?^{ghi)|-kvzkK)2#(J4SH`MKNL@${t@FWT%#V z_h#zw;L3}+@kCOJToUi`YbwZo+T$m2l6^u8%m&MAu$ReU{_25a7XA2IAXkmbHO9K%|t4G&K}Ss8gf~ zXp#~)<}OEFx_mqD;$W3u~r^C;QDB#poz+Hc`s;g ziO>}LFHW6oXKEo7jVA)N?vF41N5-X z0@MJywxYjSeuhgfKn;{!fEqx{P=Xp*7KzFAQA!Mrr;lcLxpHp zoY-B-1>#I}#i<^7(yoN4gSE7mAYE}v2~F*g;U4&*TE(t2$|LsH5W7OLbqwj2nu^g) zc$oACke~!jPD`Qusxr3xlJXWG+W&sD#rTc95kv3rL3KmpYsd8|x!h1EoGbN0%5S-( z+g(z(cqH=%y$<6>he1_(l)1b_W2@TuAFzm=m_}@QY2Q(jn>mi$+vDVf;c*V*XoulM zvRSFN`zfB;Wb^*t@>ZC4A$h+;+U1aAT)3LS5SZ@x zh|TQ3%UdL~Vl|(17$0*OPOO+Aj`fh9tYi4{z)i5Uxh7dy*ob1mNfgSBWv|%`C(zjq zg$)fmin2fxUh88GX%C&|%OPMbXAk``v~r8&f^(-^&~6PIO3bbV$VsV@CBeO88G3Y$4|5EoP7UArer(*J1w9VR}~Rsyp4Qw9 zJ4tq8tiPS_GBNh=cMKuYc0kzxyOCg}RZIktcNQAqs- z4<&UYNa3;}N`)Cg5g-VJcL^EyvF$c9f-=IyJ7)wXdzPUn!_Elqct?bV^fm&KDd;OI zy9{Ryi&4Ywz$_Mkg?3*!7bBgQZS3D_CrAt!GfJs|!sD5okNmR*L$f8G2?fY*Er;uv zt3v07yXy7$b(omBW#Uvkakov3ei%KSlSTUGm~x>aB>$P^%%zce8v#|9!y5n6k|$#G85+=3e!KlswmSfj;Yv?nK>N? z<)XTSa#cTOqLheeM|WOR`uZi}M`u2B(ov7kqR;;`-9ifZ@#~lF`V*&8KC+vW7YCTz znARY38+G5OVGq{Iqi>o#f*L$9w=q>7L5jd2`K5F0s199kbVv)vatUJX%~asQVJ{MN zh6#2c!H$9i6W@~r`|*$jxrTaszJRkQ2pq!fiTi3$GGtbC+5}!|Oc{=c4Bh+*W@tn1 z7*>Sb%@=`6Oq|G8^HHU{FQhAzB3Rv^N<6}xv3A)q9|JlW-(!+Vq2eC{nsK&Ox=e+b z(S0{6TY)x*Rfv&L2!0X>*SR9&qG{YE{|-m1gZ-4kvjUt<*)!*^g2J#z1+3uSQGt^+ zP9_6dNztFyip*3gA~%q0DeMS-KiL1=Jp=CqpqVLy0-7{O_okqgOJSPg6$C=bW*gkZw|TSx0F@NlHA;&x1s| zEMO>cO504*s}hBM%3$(anE!{nFM*D#So%+5hRwv8AOTbq+(8skL5Uy&GBO}h6r!Mj zC?dF^2m}#9f+3o59EeL47c?R$K2hU>FCs`-6A&>h0&Y)G(L@lzg+*EZzpCo)yC%T< zzH`2F{v6G{bGvSJZCzbm-M2fBT2U-HKf0y`2Hts&@)1^fapK}=W;q>5ICZNG-u@b+ zxJ%u}ceEp7xqW9<+N3cAYKSGAZ;LB=l;9&%@qUcugl#KY$sI@2Bs!45JV)~eRhhg< zUJgpCZZPjz(DA@MhK$=RGR*F)yo2IZ2BfnBfhT50>l#3_EhB$mAw-cdA%b|Io7ceXfS88zqo!DW%BU%h2VNhot!X;nRbx#Nwx<5Z zn#P1(_G7We4T|7th(qeJ7nu<#32a+KK4?=;uv43~M>BTp=)Zm#{>(C+gj0*vhP}ve_4fSPty-*u3 zj4#U@gje3+BBHD{=QP z@O?Ool@2@Y86Qa=BTk5L4czym6)tnY!ToZAO1^%-$^)nf~Av9V7I#&tWXjb&L5Mx zdcj{z^Td&bb3>=+=tP!DODQ6*Az&_{q#BN&{f9I=x0o-5v-uJ)!UX~IG`_?O=pkxX z;jH>HlYVnV%fXPIQQ}C9BPfh~-4PU8W)9&h%ge_F;wKa0H#n3U=BkHdFs@hXp#VYG z!)06#$6NMDjppU(>`JaG9{BhI6DCUBz~?>Ett;dlA*7A9NaIRqK9FW_xY#BI?l^4J zb+S<>oeJgP>8UG@1g>6ERbQ(reuJgJWwv_S5e8d5t!?#i8B2klI_l9<7(`WJ@441S z3e5>L%2J?PyA-T_V$~sw%siiBC^F@9^ca2XRsPhAAbwxlgBNvG7b(i6C5V zVhgz0(4r3XmMrU()&@5p@24tHE;o;3ajsGh|5KzPwC6nuNWLl~qbh>vFA5#JJ^I4=VP<*`78_^k!=Y`LCHzrKb|Kw zm}S}Rh(R_Q)$_C#>f>~Uaj2hst^DclgWU6Q8M;0%2qNb^LJ8vIq-Z^|qI(j!a?>+q zH@=4@iK8GxfqTBy>8w!doqR9b9ttLnF%-C-%VhLNlQCpYG{r^t!G~$t8ibkg4F{Ly zpa!R~;_tii`~i7hXFoj;;V-^+L#SB_h=dT`EybM*I_V+Bj+cS)NStAG(AkC2lvO^w zhl=84@*2VxbheRFVnCN-1dLvXL(&hql+jWxXYW6#XSu`Wy4{qNg^Tb;Lhgj3TEVFo z(fBT06q$zY2P1=VAYl5)f3ZdzK%=3+WgrSx7lz%0Qd{#6nTo(-pmKf%r~LJ(jn~@C zYsq8?7#j7ZkEIyJ-(OoO(tqV2vY`+FHc=g0>;S850Kl}w)Nvf@*eJ)&6KOQ`;xYE* zWh0;@Ckyx5Sr}(SpE_L7a}eWUpTw+6!evXYo&B7^mfVwsS4-4ykS=dSHjIk#Z zh9Q?ZUl3zx=Wmhy$0iiH8_ylwcue!ignM9#U~K6^^}!cZ0Z`4Y2GuDpR3#c!30sM3 zWJS`*J_9aoOa=NT2MuIq3%57?0M>P&zqHJ`8V(e_IX*g0~rfFwi-k{><*5Wy6U& znmot9>yXO_y37Ktk%F4>^Z_2(WU{8(rbumke&c)7teRlYn?W!BPn*T2!adp1i(W5a zJTgHSoo(aYF6c+?1te$^t`>B2C1|=<4uIn$L5uXQHj$&nmeVx@R;LVkwixmR7_zqy z>B&t6+w9>=E&^zEgTmZ_>NyJ4HE_m8@@}+8Q9tf2@J1!>@xQcN=q|8#1H+IL6&CQ& zAlSx*O6S~dv25N`py!$r15p3 z^c>S2FJ8be(zbRX1>Ao#US4X+Z=mXOWyuBLSQscTg=e8Y5sx$jsa+J&s2eEFM73~B zMx=;Px=}4-&RTL?7m8S_b~ zkLI=jO8!v8Q;*ayTwntn#(*h}!O%3^0+f=G+}2WaPzNFaqM>l7aGQDt*V~VJ9txuR zWx_@F%giwtacY)@iVo5p2v9y_uz=C?{Mj7iLf$%qO`e=if5c+Cov1a}iXaq9xIz;{ zj$XSF{3xg+8DpgYb>H|ECosIiotx=5sc(LH2G`bv`s391)^mSMT!hlY{G@=;r1gJium3`O{ma&I)9|l1OjRH&7Ph4P z>~tO1&Y>_?BGwB}XJK>zM`;VlK94wBZ3kn}O&H21UlVZ#v=EePI-%6x*Ai=FdHDX1 z??stvwv@MvLm7W(NAJn=zGSt9?L@x1+38p(j0P5p6Z7=qUcNeCEKz0Ro=lJwE{6G_ z!&O1wK9~;}ARy(^Ow{qXiaO2-7l9}clNRTWAghSa%06c?EQOAZ6Gy8WbJO3BTrh@S zVn(`7ZNM)oyTb9(+yX#@)HYpw8crp}^U8O3NNw~3T<|5z7m|vA>Ykvl_GC06Sq;My z8yywHtrQ7t0*A2#i{WB7!*iC2E^(@AO$?X*`rj~I?9)JM!>)A1malGP0X5ElY3h#N zcB-+gBWj`6WkR%{aM-vcB-OyNFb9laL&*_ziT+Gyjvvu5aylx9_IUJQj81oZA{=FF zquADTNQG+cA(ex;H$WV4O8kb9YQCO?=p(E>?~{8<`F z%<{5ZP8QNMn5u~(*|?wtGa~=uc-(9P$Zt8x%=itkPcezsT!(u;Mh!;TL;_ekzY-2u6hzF9? zeJHT?Q#J#^pxU>wk;XQX8t{F8Qm-Z{P|h!N$gHJKJtSaou5xu!Z_m__07crcslBkN z1yXq$UsZc@b~j1Fh61#<>ZZm_QZ5&Ps))3oj#T5+pQ93dZPu?)!KesL@0-kDm~nh? z95|AQ6SFXak9UUwOZ}+Tg~A26qaL#_#rY(Sz}l6T;#T8czh9yhtRmOIod%8-7RoHq zRFM||rpz3wr5L!OWQkWEvf(Qhd=&780w>#$;WZ=_H8MrE3flWARxOk*Z7630rFf9o z+(8f{GLCYlhmM02X*i@#7U`=t&*;nhvqkWk0;Eo>(cpn(LDzx^;h;tJ*875<@ut|G z^Jfmgom_5UvBw6#p3)j^rGS;nV}bsQERgBL1jH8O%WwhYG!}An)s7IJwqLkm1+Tz( zY%-dN{*^t>hFet++=W!V>XwsNY8LWHM7-wC)Ik~RtdJ8@WHDFC!b);*dONGJ1(ul|Jn(lzgLpRJW?OJ{Dz^PwuW%8{Lwcc^+CjD@o{7{sE_V!-_AK! zQvngpGhr*!r4jo|Dr)kO)8FZokZWyLQe|T$)nmvbGfgx#Lt0T&Ga;Fpktbc_9TKBi za2H-710Zy$u{hFLnrapupxG^OA29k1UpAlB-tK_nI?j1myMx@wMjbq3$j>Z+yA)m22N^%gB! z!jfOIcI0BY>G3kERWu&JGAeGmP^fbymDci3`(h=nHiTK+-SD^nxK~%($|@2M%=OSU zn$N%Zt{RPy_7Qyf(5qqdz(sCrtbv{WY!mx>qM$RR2#GJ^Sc zKpD(xof4r$QNAg1u2b5vNT!lto|sC)-|OMOFlB_h9KKtMJ3VEDTbj(Nhkzo2DI@&U zQ%2nu^V*uqYrf?vBQ`SyAyF<*3MFzWzesrMe}B-vPAT`hgBJB=yk1DH3d%uEuuO{U z@`;ABJX%G>PvV;QK~gXb7y4(!AZxA^qGJ6T_8k@Y+4@O5k5wGaE0BU|xVR9Jcod?| z`ZXM3DDa!~lXzay0v0*R2c(wcLjSN%iJ!#gat+x0fy(2BBr92`^j;~17*BnZE_$8P zmd|OO63dg;DUHB8|9=Uk&?^+IQzCQ4Iwdk_%s`4cE$B;9w69aj+yLR&R=sv2iJDbO zh~?H{O8qqD`QshZ(B(G<2z&#tAjCDWd?ClK9I=N`rbqg91df-8S4Lr(^b!H+v?lya zYy5-<5|nAldxaEU*4dz$TGolanc?ty3U5Ou4!RaOTD|cw)_gaf1>+sQw z>LiaqXk!o(kc)SK@?IcV!RqJ?=$lsV3`qFxSV?r+HB*A`byjlBprT2&-g6;VRdvlk z@Sz^7)APp2Vk-(4UD0GDI$>`lnvJzXS(TA!=H{N!@TQ*8%!&a^vLex~M_;Pm%Uz0i zY68N{Y(!<5(_*|r8J`m4N2x4!&sz}*M&M1$IZ{++60X!YoAu2meN&-tFn5FmKXiFc zDFzB*9!1@}fR#%>(y-$L1C)jTB-fe|{xdi=lk7C>Po1-lWnuKkD^o&&HhA^+U?12> zT6i{|1}@?Ut-`ZMVO$gn&xWOki-Qk;3taklAPAT-1NF~v#h44|z5@0|IQoIGe&I?y zO5HJ^2$NalN(?b(L(mmfQ#CGn0dLU@p-jA>0IMF=091MTm{x?n+<|=)VK1;@-=wgY zZ)<}=Q7OGRdt9oy%}(0Zmau@lfrLt`1Qw}s)3!#cR0=lhg3Tnqr^Vd=6mx$cgH4UM za@?`zc628~fj5~a{E>lmUt;W9jIvvmj;lp~N7qHcqRMR>$s6?}{?o#HtNsAX8r9}; zL310NJVyy*GYeznHB<`=0}puQ&isVIi;T6$eJnDU(teqs$fx?dxq8&h=m_=ZF(VBF zH06UjxT1c9TBiy6(JYt`x|21!ZReppyvfFHec0nBjJWa%Uw-8u8-#D*LG36*15{-z zxYc#Oq4V{fvpVix>UUG_hjMUK%Y*X&v(lfnlSC@O*q6 z#sgdduy97RX#4Dm9aSHI<-W1365|v^uCWFy;iW=2PH0zdxFpf-?US~diW3l;M)O94 z`rHNd7pvw!rw^;A(~q+72kdO?CjtV2BhMw z5SQ7wpeG2?>^S1>n1@2DrMgBPsJaZL8EC62Zu&rmrQNXh&~R&=qC0VvrlN--+|ZNq zJLv92Eb-@Y@G85 zgPvNgld`+jIE`hzVvIIe5xXWy0a)BclMg)Zf>DXDIQTx7Dqrz4831pH<3Qx_68y5& zWc*yj3Lw=kVgcV*(`1T2x0=k040yCIqNC7{sLyf{UHBQfh!4RJ1QBR0xV4LTnb|ac zPf6B?af{7CB2v|a#WQ^Wp2g+{zORPO6{{^a=Q7}7J;Q&~NOjxtHdJZAXs8?{@>ioZ zSbp;Fs<}&-YHz?PR3t6l*!X|fNNv6@3mv<0O>QH$b(0NrHpUjzzhZqk0CgyzJRjCsjv3 zOp|tv4S!ti=7sr{`N64+DeJ81Xi1@9sm&iU-^R;b{EiM4LaAN&9=ipcRV{c^fT$n` z{hH-uok+L5Z6W=Y?}79p)X4*tQrx6&z+?1(=z)DApfxLLgn)r;wKYt%)ew^!%11VK zgHsL(;X?Ij+S$-_)o7T|VzgH#^gKMSmeA&k&~k{IOf8mRb&|oUr}Lm22Mo{$5GsYm zxtB!x`ayL7Dn`HqGE(U?tB01z0mSi&fN)NYuTiL?>!vJ{)J<6=UAGAWC3XO3lZYNSp(K8_JpW5;zdOYgB` zM-Bge(;|Bb-?wtvF@gKpu>;Kr8=CPNjnj^Y;BmEfJg7_v{U6z}=|;V_WNgA~`LJcl zz|?HZUYs@A=V2{h`eSZK|C@H~?m#nP$Gqih&7D0X1WArcTu?Ff1%##MUdx8kx7PyN3PDTjeF&}TzHG00x-Yy& z>o{os#G=ObLO%LCS1QHY4g{M?BCLs$o2xdDLX@a&ak#S=;dG@+l+6fM5>VXr z^rV?k8SFsjqE39|T2@(!Bs&~|C`Qg`0X5BfM3aA4eU>^xLk1$@X58XqS&e1fsm7zW z?k(I{K{O`_R7Um@OTYq(h6W*?(uy6lg=m9(cA;u;S1L{x>%S=QAu=K7SRrere#YVn zNl|RpNjaRZv9~0ZW0T~s*ay>AUvP3c#DqGLZ<3+0C^wolAG-ui49BwOoBUE%WB6Zd zaLU7BdX$2N;_%kB02|FJ;mw64--_N~E%LS>W1&X-aA|Pz0M??S*xu8=4b9lwywl&X z!YCY#a>wTjh|WsI<363QK@f}cExIyaVCnG$S_PYao!)gMajZY#beEq}mD+tEn%mWG zdsQ@@T)??MV=jz<^IU8Q4bVCn5cXi|H&!wqPmMXW9uQXgaJ;PY>7Tr93g|5H4%A^kTH71(CvjQS#N2O|`u_ERnlsf@>@4Q;lwi&)8+a9Jg zlOMdwSM!0GIusc5Ds}f1rSbldQ~{+dc{#{!Bt+ebw9liT!N0L zX&6y_fM&d0JU5T$82)RriTXv=qptL}uW-Cbb6Aq(dX_fUfumj#e4f4Y_lb2Y z(BC9e*vII5VwsG)9y*OHZ92sxz5~6=`8*Y*`bALI1$K)0cPFt<@|%M?O}-4#-YX(f zW#P|Qumd8?M+K^W=k8kd7A?_3<@HCQvT^0m&^i5II5ZFAGS`iDl!%_3hMYWn^!kcxh}xWn?hLdV8^{L!;P)?f8`$PifZ^ z0V++IBwQ8kP!7mW!KceQ1wTBLi+A%5Av{?Qw0O824|nH=D--i}=wPSCF8<#k2rNbh?*=P7Bk>LmhxkC%cnBPFv|0@s$RVs5dINnzM&^%J!}*aKPN1rghs?Q4>vZlf zYiX>t02S0sq6?_ULVziupqkd=EH0c+1ZBwSb|Mf*uC^3z$h~`LYl4!Y9x&6WhHxss zRe~4XyN9x?#`17LsTZgs^#bg|wmjTqgKa2ht8B1sak$@_1T(I-y;=n1R;roP!e*Fk zryAXwJK4Ng?XIJyiibxV zh@Po6T!hrQfTWL7wl=JXI8*^dNJ!+B2J_zmy$T)8CyNb=Q&YonQC(ShJ+YP%UO#bI zEUUsKV<|#jPrqoOz&AV}n$;SlAtPXWRM-nt;3?&+DCIklDCQgmQH-T{>-E~C^)gnT z#&T5se}xS6-$YZZ+6EVnl;EyB)H? z2knJf?G$tPuKt-L)hC4-S(_|0`feO_!3dN8hC^jZQQah|-xD({qKh$elDBqrpsF{k z_6U{z9-Cx!GMa$W8e}vO#YZ5ctag|#gMh^Ls+UoI;nB&+C{|ly)_SbQA?wYCf~fcW z0|ytM70ZSZs@{{AT5*g(@d0$!EOv2hLIw5v?X%ZU9EvB6V;%8+BK;nJgCC|y;vS9i zO6VlJHT74?%k9tRvSCvA3kqE^+FsD))%SH`P*j%Hn1J5;Vby~i2DjZ)SNeMw_nP%F7N>Wb709SqV;lvj(@Z<$q2-;HHqOUerVfb4FP zV^(>KtW{VQ%|%Ovq-a*Ld8>UPfsMZ-7N@Iu9L-!0Lz;M<`VxgsUN+m%+-76mUCz}6 zZ`#q)svnz!Zw`@@^r(;G%nKH2@!BNrp~`g+g(cdwSiC;jv1JC_`DcVHCf;esnb}zB zm@=(Wm8((;-cTv!Vk}au1yM+RWi?ZMWQC>x{UPO(pP@2Ef*NvnTg&}~G-FAPp~3plD5sNNw+URx5f+k=<-NB4(au%JdS1OnJ`~?Kb}%|>t%@O#bw~P zf9|6fUQ()-Zt%i={)0~nw5~SUbOoyqmjoZ7a0r$ww#?34X+GJn20clyuA&Z^C=Qut z)Xd27T9uJArq9D^%Oi5ga86bswL|*QVIY0Dz6k(!Dz!zaI(V3>K5*wvx7?NoxC)>^ zW7I|ouOaAZ`>ImM^MSJzsowx*2#tV$0By5EOn>O)q{lgB`W0}l!~b6aD1ArFN}~cF zwt25+t=qS+)A-38>*dd|lOhOWATMS@W!MxTlsZW&qouD98f|Bw6bdPUC&i15`xMb{ z(G{v)7JQbny414-pXaV_OJd!Xh?avYxB&+Cj#SSHQV-=VEbVZg1BYlFI_5_FJh$>W zps^gUXU^78W&x=zqXTa8YHC5N+x=i}gyz*LitF6J^MK9+JKyXK@#x!u#u(ioUyx57 z4t5&mOW|0)#7E$Qe8Dij#0SyCSRR2$$fjeO5s;350OWuk1~9x&7bmn8T-k7w5doSm zPG~D+vq6&s12kPMX!@v}R*u==dI3Nk)j_v**a)@=#D2!aB({df1!BV&ipe~qJ&)or z9BCT~c3n*KYRND}K$ALqMt_LxS?8>#6Q1J8QJ8VX zjYtJZk^%s&9hFk<1pgJbmP*^{N`1BwZY>oyw^f+Hh?~h1x>($3#LWb8^BNFuoW-0p z_8<<)6S{a2hXirs8W2Aui0gO|C&&}Jco8QE;yN`TK2s3yB}grD7R63^LKiP$+R=&z zAGomX_{ezGOcq5Yp|Rzf^xRHF)^3;O%>e-8h=qH}GfhXeHW1BwQHT=@K?-Kd_%!N< zxc$N-QJ5_sf;>D}3I^c?PS#AhjvwgMO;`EVSQ0rG%dd706pu8Mr>*G(kfiJjHF*h< z!F$bK&rSHN_gH502n$O-!Dz6Hw|V|fnB;a9j}yNXL-S?sSiUSEMu0aT7fvie5(FM& z=}?O4#SrnQ-r|;_y4mSv(vkNP41D45X}}=_h}@fG-S9F?%Pi>l1}~K1gC10a?WIWr z*gaJ)MRIvjF2xMOl)!-|;Iw-}gv2$u1O%VLi8xa1f-Q6qCrD1Sy++5M(VV`gC2-s~ zL&Cfn-89AxmNtyXA!e}&A-cgCfeTnZ@-=W}3eM>U54~ccSRTh$8a==%#7hp+Z zFzs88Qi$sLakr3LdhRm~}2^Ay7Nk}r$rkC&+RlF=It2t^)`CaUmwMRA6x^#52 zg(NK+KdfX6#z`^!MB!AXciJ)^(^IJeoOFO@2xKa?nx^*H3Gr1kHLkI~%RUZrZ6~2f zG24#r%WRG84B1+ObF5-@jy2^>>PEx2T_IDTIFTQ|D8`A^DJLpv@&ZJ%7pK^5Uy@yh zSH%HFvvOiId8Zl@CKNNW=1&|*&jzmm-c?w|asp<`c$16OYS>LeMrMH@O1^=*IjYSh z7jkrRAqV($VgYltlvtQ?SgL6Wa3~BMH188ioi&NF1H3|o7wGv=e2+zrzT;7(B89-aLT0N{f20KCpH1E+kf)volIL2%gw2A~`aLk|Xn@ znRC26Knt?Jr>ikbKhH)e2wm-&%1PB$d$xUhArc_x>Xi`AOCk3u_?bdqx7IznmqN7h zo7qijxAdM(s3F}7vf!4;U&X>7&}<5|A)4}`W3D(71etubmCH%84v^{8zhF?Xsrtkd z4G;**2O%AVMe~B7#ra*?P-YkB(qTH~p*~hjfGIbg_d!XWXvK4T_C>M8B>T+Bk@TWg zA2Fyd^$~G$E9kYz%GrU&3nhvWTaefXGS~eC^$qN-xnI)#M29m-;0tN<6&)>U36taB zC}yj2Jj%z&w1=_cv=ljDH-W7I6pB~WJ!rF+f#*&{53DVCra60 zYbYlc>cS#S-GZ65a8^ZM;0SP+qmiO+!BMqr8NW zs%UlRLQE54Od1N)GAG_EZp>LkCjrq=x)j|T{>S)tJP+#CI2$Vi%ffsjiOodjOFPHf zIht;<^(XUf{mBPt856VMiA)+gPHqKNP!~d8O_I}btva7BBo|e41C#tTq5kDh@btfuATV0H^at1xAYWRHR6E4k@l1 z=aiz^`9GiD#yqryL}P;V6M7j)TNYxcQ2Y#(;aw;xoImDV70l-1C;*gjt0#y&#?I*p zw#X{lML|Wpxj0^hkmdtLpg#ad)ykbPGx4D?9_qLyPDYL2=^Yr+K$U)1i{M=5OpD;q z8=IhqiA??d0cMc9>D9QGPqIU)^@RBHkxi&RRZr@AhL%-})PxLyKcFD^a54S%9Z}4*$^af}!5u(TAxGIw-$CZsxm3bYD%)H7HdgXy- zHScmh3oOm$SjMs+;s%Jei6t>5iMin-)*TvOt3bur+6g0TmxYTU1MEayoG>~$H~gYi zUZl!-WCQ696P^;RI8_V=xE75vlOCnx(qVk$1j42K$t1?E)STgK5U^qtl6R0YOFT{i z(m_BPOUPI}p1!UGC=Hq*IAe(?fe4DS=@}^-crlOTZ%B0jWGv$Q`}swfeuziWnrfnU zq^b;gaWMX3K+}nJ&a@?WJ^dSV6gIlA1Z}w!W+w$FU&0)ynA_f?^#iBIT^V2HjJ#@! zw?M2b{w2e})1!)iX=io2fvWKduY=&=m#2(bQlQaen$DMfteYRv*XaITET>MD9=NX* z2aHY|jELLF90Suk!Hz(EXsJhh8JXz ztb-H@M!rN-0S58Q60+1V62{P0MU7uBB}YD2-jikbvcZ6IE8U~Jx?|OSJhfIfjf$6J ze7t{j?S#r#@LpNC7>1Nk)onMHl6?6a3|@`MA4rK6@(3QL9}QWN9GZeecSjby6@UhI zAXrgcw}3*fU!TAhpm@sUnx`ApQ}%4;=_2)%g=(I@sh&0`QJbfQ>S;U2(~0V7L_L*l zNbjJhlxL<)vU~ljwU(fi+L+$$$+-{~Ytcp!N=)agwE&o`2yc=Grsvd6+SdS80LZau z)_gN;!&Hv@awjG|JCBu0I<-bPDPeYu^dDnE4Q#lMa&U`+kN!f`%h$rrf;C(~?;|C9 zM=5=99mR%?0?H$Inxx=z`Xag1c8`U%^T`b=v*{VnT-q~E(3v?%>E~lf2vm!`PU90k zAPeuL^Fi(K1k+mM&u9(f%N}uGP;P^sNJV!~-oBHRpramXhbs7=X<@hr`$Mj+L}FP2EHS z0KE{P5M4^Seh5+mC(A?LRr3{`ZU_L(Y7L}qh|^Dah#Y%g+;e;~`HRiipG?23Z?OI? z9@tpgJb~B0#nU@s2_*u$G;vEuq2RPIUPS3aZgO4(aQoKKX|C}R{Wu0 zj&LiMdPFC09fYQ1-Y_(Qi22K?2yZN)H>4!al5V`vCh3+uYG6qh;5b3NXe8YXMU=#; zyq~KMr8ZTt07~8VAZbWTx}T6052R!O2YoNGxr)wUbWs-XMOHBF6Ry7vG%ZrM6ZfDL ziWyAdN|?AmS~-c!MG+JC6@*CyJ*;5q{%U{X?ro=u(=}?jM2M~gR4us(oaqeNQTtLE z0<|IPQ}|{9fUm;R`J69qhB$Ev?QkA!9!2?FGEA4@?z$+rFTxnj$_0;){=za{hG zB%b~cY#a{xE1&OX#$uj~jn!$?SK={sys)R0^T>rq2JcieN;@aEl2m>ApVV})!zUa) zl6LX*t{3xfb7qnpCHfgaQg2Zs3*g(pZ>3Q~CG>ZB(05Vj3SH>8wzZ*GFz>ceB*2gn z@gm`b2w>YsROJpClTdeYm$S;fFjOZ;S1NS33OeQh84c#@I3c5n=5nBr!3Qy}b5uK* zs=eQ;cK;bw6H~EksE`pwD4SD=3lIPR>K0Z2D zzkd|!`0GOqwbI!1bnlceZ7Pqhl|9)0`Y9U~OT!Cd#JNinw?#o}U=;=iU_hS616hh( z5OSf^OxjI-jiKbzjRKU-D}nToyp?c+_6}bKHc;>i71U85vu9*tAB^ej?cpNj9@#kOsaGg9%-b-#uxo0kzCj|{0(6clO*a2(- zOTyxTMf@x+c_-1MOk90bKA60@XM5{5c#1(L2*>dA0~`|i3Y0{d=fU_g5r5$a13ksg z>7=tzU=Ic!D&rGM{e^!>2S_bjr>t=hS)if3rN5=I4hfxW!;n5(FsP3i<&e;GG0M?Z zq(5o{fLNC3DsX67;C*G9AdJR^XbtheL_W!py8{Ok-Rw+UXd@x@OsRo$hHfU(s$*j3 zC>xDG@DJxnr$cR3q%XDsxS4p{hlvw8-UAb?6K970W*U6P(+@$@DyfHlJAJR?XCUw) zY!inSTQTzO(l>9PtGaEqaljCmt$fi6v-R(rA=F=hof@j%KL+!s@${`|y|9QBq|5QH zK634Ic`Ba_JK)nL)@Emey^d|~{3GG5l<0P=8@i*Txh0SMy)+7nEH(4^qO+}5*j6QI$Ny<> zQJ1G0I62+GbBbEDAa)1*aI!{(x3oLpf=?w#rA_~-z&81PM2cpaVQ`6J=}@TJ?m4vG2Dy?2EXri zt1|$Kf*w@haI2%(B~id5=Na6s3~8rg9s3vHJPLW3ywfHuE_g|T<`h-H!s3EFcR@97 z8_55q4AkJL9<-?)6wSkN47bI@Yz=1T;VF6O<>4zidE3jwB6mUcg#Dy!gLxprW|Qs1 zNW!zdodpIvKAputJjI)Ik`tCMLN4PNXBx5z)F+qd9Y$rLKU!k?QAqPEY#JT zdgx;VQ0Jl}Y1{KvUs|%|G}dgumn9ciinD1_ncCzpM0GrIiVyb#!KqIHUaeTe>~dh@ zy|ihK6+To@TUqoybg?EvNAW;UcvKN#U10RjotYgx-XKxw0%L(*%T2{BXH=lYSwf#p zCT)9ysc;H@I0@domLt^raI8>E55W~*B$c9< z1uzN~)x_zF(-$2<&M1X~9s&hlaKMd{iCp!d(Ge?6x5HF!htGo$X9;-&H$w)LY!}(4 zi2}L#vXRrU569bc775lIkt~u=5oBVl0ylx_LrJ9lX#trepFb0O;h=#H?4Prg+mJO3 zSfV!de3e&&d2(pDi9pC#a`qx4vm`imH~aYc?eUGsWcuov+v-j|LdA{4Z)%@v^PAe0 z5@+z0Zoi3^@5R<)dG{#dGbgt0iKQeM8+iA48`WU|b8h9OED&n-)~iyhB2uB%RSJ=e z)u!@G1KJe`saq69{ORXi?4O>BrN1rc9xWFY7SqO)Ij$35xX z46K&21_yt4jh%t8f}0A)FK8=Y!T9lZ)oaulG&dffb}*gI?ZR^9Pw@L~@IJRA$Oa9G zHzA?G!lyAKhYi$=@tO<}VWFnG#?7M0qAkhj3nS6hY}s7K){C?=A`Kw5fyYy7DF;%H zt(#oM+yy6i%a5T<1+Aj4v&h&zo&Po( zj80lg(}wOTVm`qnhf*T=3W>n*6_N~HKb@%(B->#UH1ORXocfYXJl_2Z%nt1U%g-hL z+)hzJU-&A%;hwq_uR|&4R=~5oMagDeNYi_-N}7$0H8{>hty6KG`Lgm-hM#IgU2HPmh zE5hGy`1YhMuK;&BG&0G18h7eQMS4i1?|$=KH=_c*tLO4q$-Q0)T_rLMN{sK)`+Z{u6ml-yA|+Skpzy3Yc!4-!+nf{PP0;L;>Mk7ZnJ5tOgh0Tl-iXkU?ac=KJmcJ7nS(4 zFE`-UVOgc4TL5M+tRL^hNMBws#mOMGf$KA~xJBC!yq$+zE|l1QZFNI9;K9^^>oakKHYD;W8|Pae(j}cr(z) zs%n-r!Ty_372oTF*d1v9fXxtHr<)i1s+Nc^vB5+|-T!xH=1;x!xCk0(mzf2ZPIs%Z|wEF*i@Zh-d1j1fh&*m8paI4A%=n0 zvkB&fxomN#+RyVkgs}>e=AZVbGNuseu=pkx5e8WN60h>(Uet=9BPWl6ZM8!^M*eQ0hUlX8l@bNsNe^?9F}6+j$3JTi}^Nc)kp?@ z1BGB&)HlJYt>Hg)x^T0;A%XtpJH9Kr23G=f4a=iqjhh>?;IN?|~i0KG#m z+R=yTNIS_YZx%4hbi|%sMiOK6Cd@?~%jiK6C$X+n=rIK%sv)NC1EqwXW;*bH8h3y? z#&xvSZfwl>$W7b??W8Gm-~emHa88jO4{Cr`w%eTBSGPLaNtlU}RL|&V3~zieAs>4| zG@}@A(}pVj=up8>>V^F@icsnlMn@ZTVp<|#XGWG&1WDT_k%=g&d?SWbL2h%>QVNR^FRQQi z`Lw^>?ZX_)DA9*JN9|o(TlgE=B<36Qv5nl}yM}oBI{?Ix==Vsp&u2vnMh-#k`b81e zO9wjMfCDSBTvxxXKif@!)5j|rVUQ`Cj)P3uBqkm>ld5+Z`!^C=q@aM8C2gW+0M%~_ zPJI(aqE`tmdoC-YV-NMppsve`ph)U;WIKCJ0Hv3*a>z__u*98i!a0@AZf8fXAk|kX zu(eR?f3nC1WWy{nRqE>a>xfY5P1oz9e)LosQwb4KO>?7K>HWZFepR~1Z}^^esR(72 zP~kc$l&Np5+GJa+9xLw=$XI9Cu)f6i{dHzfFh6m0n2$5`4zgkH&-XTZdmkNEI`>ng zaGDM4DSY1_?dxz1N19=i~La==3KtF z31-~UVYS5F-G(*H_biyhkQHe}YkgIZP=jDtfEFCQ*jt4vcf#8zVt~G0FCQSkSX1+g zh1c65TrJL8XXa^fZ{J#7i@O`~do?Yt%3XxUw%#@if$d84c6n{b6ixcW=wL z|IYWA8pq;lrTL@6YALSRhIP*W5NiuV>zy{NxBt(uM!LdA^oL($BS*t%I)n0%xl4y}7RT8yjYYqdkHehdq6^2OS2tk}WWr}! z(H}aG6S3NpN7!ZU2cYh<3S3gc&;bEn+VR@J3^ zFOHtEUT}0+xd&vd2{x?zSqC<(fA9mf1djH$u30S2z#r}56$&ht7g;QyD9t*g@b1xJ z-fuAH*f5XhdmFu@99Z?f6o=I$lYF@iaeKbELKhZstD{D4>F)2VEfd|%_cp43l|p3^ zM?f`ovv#L+n4Z=N3WwEcinp_^LU4X~$KdR23w(Wr)#cXcE6%^EW?%6$yqNBU*%y$O z#8=#Ql`eAmilgaDdT~$8jd(Oh$=ZR8;CqU;l>-^79%%FBH*S1DMk?Bi)#XY z$Y8E1W~Z(_2eEFBJ+klw=&3hU7odN7rFH;n$XiOjfm&v2q?;}}>LKyB-7PopCEtr} zayzMzLfz`79i}U^hQu%1u)g5N`sC4JwZi;cY*+`lvGzGStk!V&bQ{*Dd~Z1emO}lb z!`zJ8J?SQ}1vaf+?6-VxlkIvbJW|wvs{J1sYI4gTqr0GW3Baw7HSSdx)luW}>STvknl(W9qaq@E{_J_oZC__JWtE>_ zWr|3p#ZbO&if#>;1|G>Fwv`++!ux|$+o94})_&_dsWQl%TsKWPrp~yGR;ys|7^KZ? zFs}*>eHRr99PBJGW6sbpG{2Ji@=gd#=E?JyKv)fSRrP`PGz@>Kb(5}(l2;!BkE@>c z_Ih6Pujdl0o=#Jxp6!r~qn~xovCe0JzcyKz2qO3aUCzgrRM;WU4j@wZ1}W zXCSf9g1p0XVSnrp`OwC5sTYGTS|0&iU-NT5lVQJ}?AkA9GL*wru2_;4iEi!8GjWr) zmtYS)G{VzSzjGil_P9hnT8PvE*0z8!O+gJKBFCbj2?`=5C8y+VySC&L)%qy$9gn~v zrXPgxJg;H&k-pWhpaBY2`4u!m!TWv%B)sSS3Qk7BB)8et-Y@%p zJ!n%{WNG#n<5>Ij)m|tttfO@A&}4i(J?F4Qv_M{NEFMNmW*4un^UClL%#%E%l#-Xb zkxPk*gyIogT9sZ`Yo9oBdF(r1)HEj(&FCmCns;=of#y@~G|z{ZqWBOre+hMXXkLnk zk&@@1qkqSGXnxHqoiti#zNJnLG=KPlrn%2~pc!+x7R{Fm%{ObAkiM^E{3H_mbJR}q zY|f?EvC-FZl#)E_S?~55BD5{5T?1_=8rl||3)--1&7$q4E2Rgd@6hb@Z5T_^5$ayH zQ$SnRh-$$`;2nU$K*UO}>tG~4lr`b9lI!p=QgS>0JI;=i*2Sc^;Zm+~vsj6$s8<7f zjhESL+}z&O_}2pt9b1iuOkNPkv({)XCt1%*lhDYV&+q{ZMl3BNB^S}ZEw6&q$zPP3 zRwl)P>WclEsQcv$P2;snZ0|)%?%h58?Cd(D;qIh;SN#~MLBSc%Y2*9u9Cw3R(6xpJ zvvZ71eJ@;UggKjq>{8!TY!aOx{=RJ5$3c(!vbpq@CF@!ax#b=%t!iBp&3V%_&F2%% z4#!lNX%6O988z`vNtW5Qv(vpT!_d9+euojnX>nHi*LWBy`D_*a^E#&mT*_vbbC;bf zr=c&;wn=J|RpUc`HQvEE#n8PqUS-wTOlqvEm0W{%Z+ccss&)&vq`vD?gLdoNY5t;} zk(6MKvzogtvSm#)4;*ci zb6tz(hJG|B)=2XYU|+eg){5qrl4_v&k3voJtg}J0!%g1bxdu7^Ym|-V>`RQCZ)N$r zI7u_v#{w1*nnlCpr|9KW@Msha6bni<#)j;#^kv5uFTx@85o8|AK z`8hn)LmaPdJZP1cjue_Nu8HQ@(^}5mh~`u~%|W4gg3aTnUj5$a+mibX7%r5L#}1vr8&2V%3%e<7I z%#?4x7O_)p!LRLsWd1p8a|6qg1cJAUnfw?_!& zS0AiF=C3}XDSzm6P@ZD9^Rs;@AAB##JhEk6gSQ{O-a#8tp3b%ZwIONL*Y~D5O37OG zFxU0ZJ~XF)hdPc@lKGchy5N!_zi)VTm{9)off^{UD$tZyoaVOk;T^m(f8(B-D8Gqo zua5G|YNWiWm-4Un*FgFChVsTlxxm_Kcr8IOIk$e}y$N>5AFc zy)%xr}=( zHT!gpy}0!9H@^6K>MN;^cgba3$fd8p^YdK|7daGW89w|@;8?qfv_iH)WjS6Q=4#GF zPe(S92lKDIKXix$>Sd= z#MIczs`06zKJsYAHKzBT_iNICOFcCfM@b&X9rJAc-a~7sF>0@IX-mW7seU!iXRUVW za$wXujj!<3*pX{|q2iuX=k2dz9;^2Kr47!u9II(i}`B@WbskIqt@wTxsqFx8|txdjt<7C6^2-x$4|=QtUX{^$g?E`AEJEa zc*iS7rVakxYuHn{^pU;?(jGbHPX8Lou!q@AU>&jv$^;Sy`xy2MtV$UNwzcDA!#+8W z3|mSaV@Qifs&TiS$2+VVr`+mOV+*daDb1)1Y~!i%&B;{bi%Xjoj~w=;wwE#MRZ|M) z_1k4BnL36CSqm-DEdOeL0%NPX*ns$GI!5@}g+0{}ns$tff~`r@*^W{4RbU}f!u?J# z(?jh6h%{32PygY|4!)PTs9iNr5frj{gI8{4lrY*?;^XPEanuq#Sm9@neHE-d%4XeZ+f}f z#_~Eb_S*Z$f8)rPST&NxEM?13ZmOGAWB)-u7PE(S{B}1CPVc$IA!TwK4?Ij3^Yy-m z?wmh*owk^+YmLR6{hJnQJVF-Johg+3Xfv^xWCP+O_kM(*EoM{$w{Q6NJdyh{*Vrf> zY(z>Z((GIJIy=Rd6iDtnZnnw2J2DJP?ys>vT%(95SeK1Hs<&ZxEAIrxC@$?j@Als_ zf0EoC@ONBeq;TpErxdPW_y-$6s(+s@QaFh3TC26b-jlQxMj!9CzK!SlTVD|DMM@fd zxq46USXT8?s2pgM!d1vtC@B=VZGo&W#*#hdmD#ube5+Rq!?`s3rqdd|IBmFpjbwdS zGG=9cTQF8vHU4LSkM%vk_QF1}sFNKhd&qw#lJ&_*W~H{i<)0h5zk!*5-N}*leabSC z`GB)U?vEG{AM5*?@U!(L)puLp%`N@q{w&ytl*|Z!_{V`1S{L9GER*$(U~ZKZe!#e2 zNufDgrOWz`XSzQ>zemN*BfN6|3o1mUvTI_u^{Z--`)a$UAFyh?y}ys#6WKypQYqfh zHTNNs`zJ3`@?^P|`_-$B+%MSXlzVTckOye(T8i9{Gax>4A58dJ?oWi=_WpAVf4MgW z8wkL>*g*5#g(HwJBb&nx!{TzYcxn=97!y~n>s zviIxlnohH7+;O9i+@q{%&IHyD+i|kJA3K5MPUH4^8<%LgZ&+pI{t>3l?DqaO%S7z` ze3APz2E<41+s13THx0Vwes6P;yE_y0I@r+JjX`#bo!&NwxmEUlJaQ*W?(N*xM{+-% z={{x3InQS-_R2lLrMa2YyM+rx?p39gnsFbl(hXPF9OvfhxwC~UcYL{~A8|!t(kUw( zxnw6-{{oolyThj#u5M*3bG713JdBjQ`~HP3&z$S!>U=J}=CZY$KYXwTYpP?n->;Fn zP;xBl>tjvr*+Q9%us6P3FpjM0u<_+HcFo;q)!53f#ucm^#+l=Y%h`Uf;u>Z6W$d@% zN@KtKe$r}`XyGKbEuJwu;Ucl$4F<$V(=7=<`;EI&plR%em0;$?-Z|6Xet*7!v=Z%% zd88ggs<+=#fEi7XYGUL*mMy@g>A`G0*%KN~UvZ9irZ3E;ogcb*!1v3i|Q0|z)Y08v)Gut;@PxR%Mu6!kYwZu}& zqd8k%Yk(PjY&+5DqmuRH(#JZMNWXh~t!*{a%hg;iy?R2k2ZnA?T#fj#2CkOfuemzS z!&Udw#me4-lC&qLIC)YQamDSTLh7)WUc?lf((umAKdwI6qZ85Rd#&zyHF3U|`aLW! zZd1p|+!Xqp#mh~bn)QQ43B^EV7W_q$5~_OGfcWTe;~33t$GYw|b<=77ZR)8$#BEZ` zM;m@QTe9lDI=mZTMu+F0V03r}>(-^iAk)3(lSlJ1wtA(oi{(4=k?*JMIZ4gX&G}w4 z?!#50;c7%3cbm#P)t{>cy@{)X>&I4|HGG_1OHRvt24IG(TaeLE9{OsK=$UiLV7h-A zxbe1?wL^BCoJ>23OK-X4?wg*zO>wnhOATDL%+|V^RU2G6#@Fv)mAKzb($Ci!%Pbyi zr@+ZoDZmU@u||fgv8+Rvt_HLItK%xnr4FtVYT_zuwC3vTT5hhsZ0gTd8gs>w&$LO^ zbM?!$Hm(*RC!usTgLUZQD$e@fd$888Uo`US>Rv9rVBPL_=1fw$I%jhYx|%pjbCpJ1 zVX8p;ZhO71<*Eb*H)KvpJSHB@&p}1PbI&^XMZoOWEUYl76J>`Tx{F`EU1W%AZaK<=7s}(#NQi{jKcHYl!;8j)Ro&5cYT|?`=T-D{$lTtUIS1?k>dR0rmt%0i(3|F5W1Fq8S zTupD{&(#-K9}!n?1I%#s9P$#1tJ|SckDt4i^<2Bf*m@t$@OtlyxU}EG=cctWUFsS9ORhN1Ru7l5jQGm5n=;NnFW@)-m7jY&)9(X1MwkqkhFz0qfAEs|Q*C zUG8Wy`=+VhRU-qq^qfnd{PfUqx3dpI&)j^W>Y1HWY!@&rr?ZpH#Kitj2p0K&|JjD~ z?4&lgNZrbc0ja3&BaOl_+pvT++~ny-FAW_dbOUsX2b5+TrZH%s^&M69`xqt$dq8Qn zVK{@1xxaqlu_x}+qtkW_n!7hCn0M0GTBQ=*U&iouo~!nLr9pi9?96+#)=x}?)*T*m z%?bXtT(>7_eaCpr6x0h>-w%9$l}+ngk#kU5f1X9`(s~|S((SvtFa0^6hiT| z(05o;16DlJWbYZ?%<>alx~zTaQw`NhJXlQs`6kM|9OpIYh?b(vTNs`eG-hN{lm%jht z@5Q~gc{zQZOF08`Nc9`HZqm&8Q2y_`H03WH1mzB2)SfB#j&VkHC+a5^UJ<+d>>6^j zJppEX(ap$RD633ny}GROH6UJRo0ET;@qXv(wzN95x@*rOOSm~y6Ve1bm{5}rh8rA zd!O7e^CQhZST;!YPTO;Ir0M^;X6=253=h@;%XU9^wq7w z0#^deaP=3m4~naYS%)sJhO_>QH%0@~S9x`H4VSi=JouRfx5$_f9^}Ll<3SFr*DOl! z(3Ighx4+;_@uOcE5TAB<{xB_t%l?5B91D8hKi*#o+rlJ;laR%(RaaK(`HoYU0?bHZ z561jT3gcPlE-4IUdwHq-ihJA4_v*Ggmo95J@%VaQ8!0sSw~@l0bxtXq!0@tWT+LXl zHy}PzXfaevq2u4~cKcR+e+%E*m89_63z+tO>_)pUbz1l*05ek9hg^V?!Wgy@mlSSc z`}(KrzHdKI@!G-_T-v``=UuNZ6e(04#9>Mzd>^iQ->$hDvCqxb#x#Gff=9+xDie!j5niq>j1eDj*PnlMCjHDfQha;#WQR9wA) zfL-^ilt;<{xtR0*bjOM%wH$Ms-0y8;p8xo3>+xT%JjSj`9xr{yrEe#GJNDQn-niu* zF8%SwThFaJO?0B`r8R?3a4Gk~IHb(xtI4Szc=wz5GanNG*p%D7gKYOFOTt-}2S7 zhHxo-(j)KJ7Ve`4jlvOiXL4;TAH6;J)kAf4ZH+ykMA&Hz8VbF& z@r^rg)1be;rwB7xDeB(CQWFo6ra>2LQ18frrlgkGMR+yR4@!hLbt2v%LcmPaC`@f+ ze^qP;tM57QsVyH|plj>n3p(&tn1GsIFzd2fFencPQa;!ABM!e6GctkK^weh5RaL7s zh>ug~NccI~f5%@iF&I;VNuVrF6%(VSxZvgecg4Xb@~-?_f3F3|yvT0aJE0f;4#jt- zWqF-&mjfhad0lbG%j@F&kUpP3HOODn6U@95sHS+^zy2gNWtF$5m?HYw4J{W{b~054 zZJ*uW$gqLaxzN6_i)1_CaU+BubL>v(X$i}8VGgueZ4w*w%;cC#oxUU+=T-6u#81FVZYpyVq)Wl;IJc&{Fz zKchkYeZ{kO5q7b7IKPACD|%}bh6l3e1#AanUz~CJN84rg4umyVpus6ApIT-^;H?H) z{$i7uP1Q;b;$t=)37*^kBfH#Yv$(E*Q1EwqG8N3ub2HCJm=(@pN72oEDAH(l~u_xnDUZbg@p%{|Pe zuRVFyd9z--%w8jhAy1>CNQnz_|K&yR_Cu3H>YigEPFYZmdz`P*V^gT z(QGc|DemXh;Ct|Ltrj1dm-N$=HzCR$L3{@v%Ew+pGQYPzCb&D_>Y@A`uD#3lp0E7z zl{bJ-;nHK?+xYS2FL^27!7|~+yKN+9ta<~9Lt)*A@`HUfs!A;bdtW?oXNK zT};%!^xNypuX?n%oqDIIc?w|0f1ZV;gz_|3fkaP==VGS&+p+iGHm8+$z}%QiFBr5U zYtCQy={EDj>+X(_)PAyuI5e*k4eIUP@J^trt&P&jNE|3iUxAu*B%G~LnBI-dXd){z zY0#Dx$EV6z5a@b%K&jpLVbIJ_cGHAgWMBx;rV2DT<(Q>fOYsQx(q}UGX$N*^Z|>ia zS+3f=M1%M!vh598k+1#&MLM!tA0>$*-5KOvZAg)a9rLdQm{H_#WE7Nm9%co*I>O;B z{}tDrcj5`Rct^+AaOs!*+kXCprN|RsGtTe8V$Gt;|1i9aYt9iVd}Tm@NeMI?pOY58)>K(0eM3a2?Q1(=b-y~sc)DU4_1aYrCup?=h9J=J{_Ezq;dqwHF4E1OLMik5?mc;=jz)8f3DJ*t6uSE@2OwraO+O4 zc3f!V>J?-l6j!gY&RtwR!S-@d@gpNI|HsSKC@%eU&*NR2zblQjs?{Q`P9I(6_R(B5 zCaxSoPVH*Ax*X)H(a|F{aMjq()jH%J6jv3jLl;*cv!qUaVsGl-hrC=(=h6-Bzd0`T zTD1{S-_jbmdaJkQs>jdZ$}!h^!Jz}bdDuHHAg(^&)BA^6vA)$?U>ATH3k+CX{mtCE zxZ28+y7#sNzdV1?+clSQ>8+(tzS(z{ai~wuFzqmVp=MFq;j;`cYxd5Oc6glu@zL$; z*J&wa{RAoS5q5gNftCkF3hs6|xHUae(e0ls9hVfoW66H{%AyI^ zJnz-*A};-4YWn`&PpEEwJjUtOc9v_d)m%NX6I6^^beu+%Qc&ymJZ zHTG{sl-T4*T#)#rLd*|o^8dwvMmo#Fr~CumUr z?zsn3q*e`|XHlBO9Dq`w*zmHuHtL=?v+$oD{b-k>3+l1(0s5u~l)C4+3_3E@A~Lt> za1EN{0i`tPV>Xq_=mc1^G^m#clJ@m>{oaQRhm!V=bCt9KQ(vPnAqI(lJS%(5<`>gu zoo5n4KfmN=mq2%2O?r5DOI6`}DW7RQ%x6$+I_mtg@h?>DQAB}(^>Tp<0;No?(!~47 zpeZiKYMTK}PlLm-L8{1N#kX0NxH_%MWSW|JVM!M)7&fEdz`<9&DC>=Y_s{9#oosxN zG7g+)@nMuvu3#~odK0@%>h?%;(w{NBL=@_4wR{8Oh_jK`NX%(%^@ zuv&OPN$VFe=Yjn2G*b9jV){p ze~+wzVt6X6OkB=jgTuk`-K_ix8>?2wPcTBbWV91%(|bAwvA6oR2j7k}vzg+$1bdk}62E<2372UOr{`IX}Mt%Mg z84YqdgU8RVMn;@p>Btm(vU}m4ZokxH3N$|?i)LJ!oO|Ze6+d}pk;J7Ru045Er)Nx~ z|7@DO!H}YAdx$`Tnc)jMhjrRv%+%2{FBOUaO6N5?KSC$+CNbzo8$NzxdNY|z1ZYnW zC|UaT3_5*DQ1 z4I9im@V?VPn=-t^K)*5|J_dSzH*KH|zJ`H1$G^XefvPibXFlUrDGBsHXOKX-dyL9Z z1Ok1)7c`e;|G@05b3mlne1ZaT|2Y)Hy;fZjo6*ZIxf9?+QCO3J5lUkmy+D)a%tqW{jrhbO#{t&+AVjo zk$I=NiGUEYd_iw!tP5YrufKa$vexD~9#FE8HVis_dD|N=>M7&_>!GLI1Q4xt88jnp z`cDP7n{IQx2b65&KP)iWHN+U{8w~1+6uv*zhp!3#u#Yg_lmB(&jJB%`-fO+E#MzAu zyI@a7t4IGac6z24mRM`WurpS+`YQIpU0PuKo+K$a=w&{r_0|>VPVm?|o3P_1Ya^cXy(KUK_g=Td}ZPF;Ee~?(Xiw#sc*%}Mh^$_u*&sJ+?k zIF-^(-rKb26051yu~Tx<<5vVGQfa@xS(2X^fq5@oCiAiYNId=%&^+n zd5NtyQpSiPTy1=Up6#%jl1NF32>*< zUawPLYaN%p)r$LKhfEi{Sl(xFh$WLfmi3u*#54;ITEjh$et#JCRU6A7Dm}C5b%*`` zu<428!C0D8DHFHYrRsQ2C6`I&a#?EE!~sPv<1aF~Jb5O`rpNJwH!HR)+9VFQZN}WowOIeH6or3Y{G zADhNS5*JRjd#E(3PMP4U54BUpJSwGkXcS^siX4d^Mx`W7)yF(gdabE+tlOz+#fFIY zsdYWAB6__!(JP+{HhJHl^bhO%FCK{^B>FU@#DQoVlsYB)XK7CKJg7`2I`FYR(c!6$ zi1w#6q{k<6Q@U!1u1lru=hsa$^{iIWg{hS8&0DG+Mw3&iGonAHK~z~8sL1bHI;pZG>yR!GI zK)t?NTjZgoJ#Tg%aw@j4bsv8@pNZIVJ0ICQa$$SAjGO38R^>`?WyM6Pm38<&Qx@E3 zD^1^Dk|T%o7O9#IrA~?ruOo)x?Pc(u3+?$}FqPt~%?nJ@cHy2>N+%0d+3t+vSXqxs znI@8R{iGkqatB=eSZc?KTl87To=sxPWsIA`M2Cw)#W@!?==pLl+i{O^q28jmS&)l7 z#S(1JJf)6?i$y80w7$PzfJsT4Icib{vL_`mobo=7T1m9(c)n|r2l)$BKYd6UPrM1P_Hj}L?wjqiw2(;B=S)e1yp6=)U zlAh|el@TU70-aif3$*D;5U6ycUh+Fkpy~_C)}+WGEkANJ(I7rsv_Y*~ zG^UvJePqfuM1+{ek*P+|2NUbW+f3N%2Rsp+M8LP;oLmXGGNlX_{Qxbcs6&c46ANQO zP`Q$~Ma0iXYB~jm{El)_viGgCd8)7z0;u*_tlt7z=(EV4-d8%D zy`RcfUzq3!eN{m&^r6Q<=+Xt{JU8`)-aZj>OHY5Dl%8yqg#>1)J}QWz{Lv z9m?1A2a_{Q*~2!`9EElipLYG!2!8#xv75M!@x%%{QxJ| zO5SU5q)^Vb=d6))MvDT-9%x5c)}tDJJ~_nX;Eh zidq+tsYd9R6X?X-TiEIcyab#?zzOUDH>H#@q308IND&t&Y%9WcWtlrwVEZ*pSLpG` zHrcJb*;ZZ?JM5RVwixqm%9|?YHQd$`HhHcr^o?XsOWbP8T>)K$iH^_@)Y<)V0cEah?$~Skoym z<`0xNRm_LDttD*PELrHs$ex||rC>{!k-|hr=$CSHp&vd7LYE$MX?j_IZ5`@{+|u&M zM;g&-Po@eXz)y-S%cyXDy1u0hs1TK3xm{RKtU(afB-?S(ly;e zTKJ47KDpy?H4fF7;tF&enbJ!t_cC};D}LWkRwHJyIhoQs^26C(y|F|IxR-N*u7g6LBKEOlymgttVS{yRV3BfYug68%ehGtW*s# zuGG}pVr;%-tBNfXx3z@*o-Pa2gY4NoZ^{dV?g$edffmil1)6O?2voZ6wEH3xsQN_s zwJUN+k4@fW&*Sms0W!Rl7_NV5Mw{O!*ck~gMV zGA~6gys4CZv4lMV3AwWjV0nh~jE~b~E>e>{b)-SciSR{XqQgbb9Gr_R;lPFT(8&4= z`m@qQ7v!P_p7$rHN!n8o%ge9*U?zq>Z`g8BhQ5Ar@VIJLY6AzY;dRS>Y%r~KBF8%E z<(8GHwDm#j&u2^gx!M!ASths+GxzQ&CP9uYZ%EId@05ts{ zQyB>8YU!Ia@(wL$)s*owo;o%>7e@H~8n*LDzr#fc<_I_{P zAM|-ihE6)X;`hQyetJ?6>q zeire@SL7ByoAV^d;K7FNU?zmV2u}VLp?4=)spf~ql&{HYQw<+`SvxJfXj2%#8wszB@J(c#u75sW}O(B1GbuU3VcZOD#?@KD+K+b={rF6xN1 zfE{TJ<%OyF5U)ZKb0kp_b8GYWHoe8DJws!PT3$q^w0(3`?5TFun4**e$Ta!z(wizb z|IMef3fxp119U6*iiA~prmpWH!S>b9_95t7S3Sl$l4Pzd`(;gWjD5xpsynZ1dLu28 z%TE5pYq(aDsb-$N0}X2uF<97YqrmmYT0*Ntu>*Dol%CLzGQ=`bT+|_@q5>tpY4FZ{ zvrC9n#M9bhE-Yl*qwo8mGs(oba=VLWe8glt`GRq%lCf2>g>hxZINrV31iFjt*-efq z*|^e2nCSGt6KSA+nn2@hQun}`$5;;xfIC!xow6JuJ(S?THlB;s@zrBv;+Z~_u=cpP z?||QuuxKMz6BYC7s3^ie&q3#hCQo%%NEzt(>aho8>%N`})mI=Ne?-Dwx|K{(+N~-P z0QHR0HJwBnY1X%T%duJiaG^KSnBuh2hD@tp*!yhlQE}^A9*rqxw-}ig?3Vdr!mM35 zfS;Y1_AOx#1MLaJ1jixsMOQt>_3>h_nzkJlCOQdAnVKgoYy%|B0^LEp9AYjIgEwHP zFAZP#fSk~y`4yyzfVQs!KVfM_+#VRsHjDU@A0zKbrJu6F8;B=q2YhcTr3>Nj#HPJP z308hqx0VJ3B<5*Hy)oe}<*@dM@kQ#|x3BhVOcCA*GCe+VUGuX$MZd%EMQT?t^U0LD z#wCHZlg1R2(wj`#o}&Hz-(;#8Y5KialM8Vr(YH-Q^$zGh(e{B)kWUVd6HiK+cv9(cbVMM7i+AdJMccBB>zlP68 z1-(+9HO?$dbOhQj1sCW~7$RhWemTShs=Unbxt|g_jVS3?sz#J~<|9gzBVyP%P!zjD zXsHD>Fh#{II4Fv6L>V4IBgz2Lq~nMZO1AFJs8BtkOn-|BrjIkkt<5`h0dA^4le7UJ zv8L(^XY|TUk{ZOqw`^kCt5u3=|M(7DD_Qta1OJxdS&qXRQ_Ol4nGXNe-*tZG&K%fG z#T4#;A8Ah{CVoDd!-v%2at#~qY>kD9P9oP^cp?X{fkY;E9BB#yVK~w#Q$rSN6uJf_ zvcYmyBA1ybG6a;t@4qa@5}6!Y#mq(T7e)Bz4obQE#&%pgj)^=;w(g-+s7_?mYozvS zfi4*y2eP|`p!apuHSI+?-{CUw*9faSr?!m76cbjJOv|>OztFZqBrJ)>6cd(~OarQC z`}25vM_%irwoC?=uv5e3guQr!coWv$Gr+rF2+dEnmBK_PVPBK-gvDD836u7aMgTFG zF!edYu26B^l0b!!^+bGJAT7N`{-wW$1Q5 zXzf55CPNzyOHnbk_K6~tVSW;HSB8dUpyES380%>Lsdeu!nsiLqRI+t%N`>l#O^d;V&200#`u8Pl z`2>9B*EKCkx&4!^Q-_36;`-E|mg?MM!V;2c=BUT@re$L1oKWjkjVUJVz6}AqYW*y# z(V%WzF&h+9OIYY&Ibqw#y#4s*72cd>7iDbz!bB%wM-%ddjfat2-dm^+#ORG1BVHgR zxX;}0nTIby(j7ONfSDLK@El(mHRv16Tdk>wVZe*YNf^{Oq( z-oorbJaC<;YzcT&`(gf(r?1|-SyVeZSk+! z&Z1Jk(&gS`jOrMCcyn(K_Nrpt(P=N3iKtxdQS~A1sP+h3!a?{pb)MzH+aGD8sz9Z5 zb89_z0|Ad2GoOV@Stft*orajkBJ=+QZ~|E7-%wWA?Yjk8=GO}o9gcp*<(dDs5IB+^ zav!@*KlA$^VLa3W6B>LgVa96l9t??I~uS%q&(tdT)9xl0F zS@~V=%LCVmDvyXNA4VmefNa{zqEg>v{Ny1<#UALZPt56N{t%dnsM6V^8c2#zMb)0v zl%)Ug5T9LaJm9%SJy)gD76StPk~LxT5{y1c8mY&49LQ>Dz=7$bhKi~FIF`~8>7aFj z|Fe`AHjXXjRY=3wdP?y8(0XeMKNQ2*0F5ceFp5kYj>tN1!y~c7ZPl2flpB#Ld#g2j z9uH#3LZ+Ink!BCn$pG6AzD)M6PQC@_2~Hw4Q{iM@8ES435iH;>q7EtIy~OXpW#^CV zS}r0UtF^_Dr;zQVS)cr$xr>mSYHcy*c4VuHIiF$+19y_%T*a*W7AAYveU*XR){C3y z2)(ik@4mjU=OJ&I9N)x*u6}><_j|}KzRECJkik{VD_|zrtN~}#3Y#IsvP$TKDPP_4 zp7-B4QoGmJf=YXB519G1?i*v7y--s9$tl% z_M>0{FQQ&tHCNVkVyA41#uT$Yn@lsstG4v+G!a94#T35((359L`Thf$v)y!dDa7U> zOmq@C=yz^q2A(@dJ!1X0K|hhj?%F$v!6V3tz)U1E6wZVddX5uqszh!f{%gFN)Mi0b z?MiwYm9D8h`|uijB3sqdOXTc3YH*OqBHUDe#PS0lf%FxeJu67lbEHtk>$>XJaN+PT zQPDWO%)C>58Eh~;rZL4t{zImlsxFz`ZMR6|T*cH9HoS+N$i-yN?!i+M*<6_DBy#gl zp2&N%Ad%9dqv(45si*txSoO%NU?%9f3g@Z{J^vAHszg2|{?~ZVZ_s;;_QGT&mG*tP z{Cm&pVho#6M@=nGJ^$QNg9B>2a#Q_8&I2ETw74B<1CA7`$ib_SdSoF2*0cH$zjuqo z$;`LfYG9biIAr>$l7Ga~Tq1_^8dDsGZxF%k0V1)AT1lpwsprm3op=WeTm697f|Cfi z7Mu$!scABoN3)y<#U0gffMsY3nb}eK_iUVVQ zLU~igyj8Kq>wjJCLdV_uU1ZN*_>qaN9Qz0p9igB2j|<&(1_)icub}1{eW8!Jp&k@; z*H|sUOt2Xj&cPKnlas7eLjOVeT3RKnY`s;jClvbQ>uPYI z(ox)0Kkr+?MJqAEE-eHdImCG)GEdFvr!_3 zr#00vVA9_b!R#R=vBug@rjkG~-jCOG;tdtH`T-vXClT;a*e6v|Gl){g0>tfITyu$*=T6n){zIU6P25Ys$Hl$s>v(#7aS2+VinZ_ zFcVRAUL>MwNZL_FRgrL)yzn&o) zrI=d65_aHOVk^f2WbPm{<41{@^vOEtqp z=5|Dy(2n#zC7300C$BEKJL+u3^uejNn?tMoI$3xjxWwcSw#$OG^RKv zbtO}F>H8PowkbxYnsL}aTAd6);4W7ndpHiCC4Nh+ zNqD7VEfMh?tu2PUlx#~L?)mz?n+Umw))r&#PqwOw z9Id6&gj2G0dV5A)o)ABhRiuo|%waf}W{f=F{W?qE9kw!?=dE z*p(ZO4+pz=gkVmW$(`D^NhftSL?1(uXI&R#Ej%WvREjx0OQm#EVgmUcGg$N8^G5B4 zk?#8xtWwR`ZUB`|ELh_0KgumN95c4th)U1D%+e?RPEetC00nNgWqg#0l2|M9ZPHL}?i5gk&m>OTvmO z-0*OzqU^(%JV7Y@XOy5Xci_Q_CbRWh@h> zWU`Z{34%;mM;|V&cZ%`#q?%bUoykr0SKKGSM`$^6s?hQX$P&NGfZz9%&rC5FEh&$+ zmk+p-(*Dk#oElS9d0{f`o_BaRhpnFfN-4FbW*L?x56Exo8gTuC!9KNt)EU5FE;q>L zD1GP|S%+3j@uAu{kxa1l*R_RiqGMZ`+bZW=&e9CkrsAd<9U;g$2ea2D6*6)NGI%f4 z_9n1D#O=jdAD*j3k^tgXZ?v@EL4|6*R;@67>vU+C4E?E`trLR*tZf03_ch?C<6|L>;0%l)FEeSi@hh9@*Mk8G4|- zQd(Qodu6h%HnmBUr~7(xW)ccpXM%rGoD(8hI4J&<#zHOmRl-88`MF8Fhc|Q$a@71_ zePa;4j&Utvtngx>`YgiMSoU9v@rYxo`;)>!BnO3m9`b4pR|$W<))ub_tRP#uQ!kpG z-asOI30p~vgTU5Ni#}wgz8`YTQ5`8}m$6N+RP+4dB90*T6xARn!J*5oYBE zY7Ktw{Ptn~u9F=#__2r*q+|;c)Ul1^w&n_4#7&I_IFOsgQh(muUZe!&SDyr+l3xbJ z)Drfq4qvXZ5iT2_>h!H#iBDaRxgv14K>n`vpgd_UH% z6~b{W2Ce89I~$-Jo#mNWL1JG5!(GM&`s`Q`XQkunt4bktzeL7|9aJ+8sY}gG^+y38 z@DcO}zwKpNdsI|^XlC?SB&;Y$Al zo9O&%0ifKQPGfA{%^o?OW(lJgXjLl_xKQHISShstHot|)8 zyZ?_ZL2Ma>iOvMp=O&-P z`Uk)SCf$zvaXg#Aa;qk={CiOZrf;o^3ua;jEj?Ovpo9B#Ca|?|&>G%jOtS`y{k0R= zWGXG_Jt<;FRCkh{m=6B;y_lD;I|rORuo|k>-9FGS{wot$eDChnR?S}SD1*_t^+uHN z-D<|6i#Fz_+VKm93-<}&Bj`UmQqW(K(!wUNFV5r(aJs33S2I{fk`0)x~EXC}}1R@IP+QLwv zWBVtk9Hp}~L$z1AsqsLtg`4S(1JOTLls=hkzM}v}aeI*x90n$l091G7HzHGMjK+B) zWT%c;atm91wKM}Kp_T>1g<6u4ikMm+=ippwF}!Tcl}iFl7T`ld$qQxm!o7G zdi`wtxS!aiF<^3vuyrPw?)nxEim9QoP)jDKuuyAeSikhg+E$P>^EEpURWb(A=op_B z#tJV6s#z**jb$@f*y-tJLg5vQI$WRQs2d;QAd*ApKO_c~a54y6>6AJ<*gBq4fAmyH zumoMJEKf6EcVN!xvR8m|+xSjlqBG6Jzs#qZl>RWyNH2;E8O5dz!SpyZMzNsgSg4+xHI!w{ff{8v)d_unOX1|=9MQpE|O_5bErkvtX5 z?EPV&AlVyor0EYuC~;kCRcMkYz4pRh3Mx&td)mu?p8R!^do@2;Zq{w5BI9_H2iCV+i8*|x3F59hgT@EFAjFcXQ)JwPOK1SMG2Te^}s3N#B2F1v``9>`n7Y1c}n{@-5*zKZEX%QRN{ zS9(kJ$64zXneTL9(=Yxji7fqR*~@I%gG3@>Em1j>yntgDHivFdGY+PyxT*e%$QyhF z{oDEp`hQYd*or7Rqq;R5xo%T_J7oP}sXT?{0$N+6F~!7eBh!dwdI%0XA9!Wr3eYKC2DA!R>~ z94+a_T{wv3;Czsb#Gn$+t+WaimY_o=>|;CbzuaFd#Iqn5jkLA}!bE5OcpJ&*kF@R8 ztF8Y1^%uq)S7RGAN7XdA!)H902}%C$B_vq^AZiu@xe0fds2U#a_GwpJ38=KumBMRp z_5AA#fwwz8uLucR<7{E9U;J0*kEfq}Mg;%vAm$I-TX>(7m>JdAda9q|sT$Z;ovNq+ z{Z#!~iK(jJ5uWl+(9vPyg_lV4`5E_WZi1OeRqLK2RnsYjs;PbirQfyb)taNOX;amf zO5dl7A6;blUr!a@ByjVG(`!BY#eXGLUZ<*O$=RW~Jyq3<8l-Ce37)FUt<|ft%zgD! z)no;x%Jg)z5SWQnh4&DtdPXT!r7D`z->L1dCa*VYcQtoX>4HUly@w=an`c6M|NA-2 z-Ot^sTwY`!lv&l{4m17Yzmlp3eNL`!EYWD%LVSG_sLQ&p@Lq)NI8xnFPn zRBc#>sWM$aj{`H2sx)vitLzMvrxdDEm5b89wQai%KPy=rdn)Y=#HZ40GsF59UH;d5 z)#&t|6&DU#?Q8(lFa9g3`to-1<^dDh*;DnVph2ptMetP3Zvm;2?naI5$x_wGjaR@{ z-oKY%s!U&UaRbams`_^oshUP9RHbS-r9bF?y-`(l?#OOKrJh?CA1?9YuU{(|>$$1* z`Mm3$rAoi}ucWH~*T%J~)UaRcbeKNUELa>XlKX?1AUO@3t}6W@|57}zA~_8lw1&U? za(_$LsmV3{;VY$eP_x9ZcYI*`xT1sq??czv*I(Xl`{kTu-QvGOa)q%!^QTC#RrCi( zl1na%70F4#OpqMjNsxSs$XAiPof0?e@|Ky^;;;`w@fLBhKa)zMu6RYRxbJw|277F8 zAeGYPOc!>u)L%@&&i1A2?l0;z1^UH*B?S*!B{(~C+%}N{TdTZ$M8W!9Bc%IpwjJa{ zQt~D+BuO9LDbY=T_UO3)6Um-aH+UV1H<*b;e(fL<`E#L8Z+QU+t>M=#n^z3^sGU8| zP-)!uC!XgU!`>$J7gKezoaMpiTTW*W{o=ops&wzJj0-(%zyHRzEw@3c+z#+m4QK?Z zk{;im+(kcC5%ZANRj!BJQ@RXzzOAp-DH-Tng%Sxq% zYCy~-_@L8@AY^Hg2+ zRj2A+Czh%kF!J!h3U{Z|%*9mcJmE{v4n$ERt4vLvwf9KvR(y!$TL2_lF^v!+q3eD-L|ZO*-k@pWgJbr=6GAIe1uT=PHjjRrhgTPB#Ev zq?;v9b!5C`fyY@KdHFRPd7(RItOjqbyAEbT!VBR1Qkk2>fL6`iJdC(5K607+&n4P3 zz}8e+CbIs};IHg)oWD5QtlKr~*o>@moJm-}*nx88`l43T`+=DtxndhZa=tk_B&UXh*6@)Y1xrQl){^`$r8To#%}~q9zfN+wS!dGCjBrY_ ze(_%+d3Zn9QvbMWNye?PxD+z`uGlw713dz8A+Fd8+u>nXK5m6wp`@^_v%EBv+QNj1 zPVaiMi}$X6b)k3R(^cZaW4HFKci~IC9TUH71}14eJRKSAT9VpuENw^#@VUBz++p2x@%9)(@^P=A0O&u-}%=Q{O8Dy`|c+PIqOCG#eXHibB~qrTx29?g9gx@Imz{Q)w zRfzX<79J>jS3p{_XVaNG;j~>6COTZ?-od%pUrWu!#x{%#t4h3&!;lLg$i?NMGcY6i#t*+@6r|r zGckR*HxtvxOUR>Uj=o08Jy3d^Pghs%nr0uB7OOUNcd;1uE#1GCAZs{$G@wQE;8hTa zcAAANF#5%RB~>XG4eway_6m_I*xKImD-XNUC@!nuYVk#gnsG24r)xTuk~7#P-M)Tw{uzq63+38D8e#rfzIRhgu72OmVa*O{OF3_sQ3#=1@vGn7VRPXV=jl{#1gI z3>+?_9aS5suc9sG2I`Awd3};B*ZOt#CW#XpBSI|EHP-4}) zfR=A%$i?CN{2UW~lG}?!5BQZx!#QS)egZ0j8_Sl!ikWanE`mGSyt8T^FpQ zpKAKHbsXwts{r6Ot=1M5l#Og}lufuf@f+4_!S>~MWJ1D#68ba+F$`}Sp1ni?wn6~g zBf?gah{H2ni}fuWL^NDup;l1~VWF1Mnkt`fjEjCzV&B#_ICQoi_335xz=MXmE=O%l$ zSp7<)jO`J;Rz!@-R@Vq=VYO~nmGdp`3eOGy^j-7Fm!MJ z9>X_nkjinf{+HNquK;)fxZ8z z0F8O}@Ir-E=5J_)FL^02DUva9171^NH+7YnD7c<8amGu{#P-JeOvD6X8?*)Y#&LbZ zm{>RoOIa@RIN%JmA`>I2l)a8$yKHY~_cdUm?09T}n0W5Ewvzcu`4z2LOJ^7p=TjLl zk$oL!;zSi-LOOw2+lVo-NTrGUloQqldkH4bIx1#5DF)N$;-Wo)=})CBpZ^j*?u)}y z6DlQ+OSO<#%m}5WH8tBlz_mB0S+22`$7ZXnj_qti7F$Bq`Zf;5#?Z6ppg2B^Z8vFv zm1<*~OQkF}_7+_3i?I!*(l&StM6ZsT*jhQM8M3Raex(f~IEI5Sp1#<_SKhN>4fp@o zt3b|S$Dk3%#gxOS2&bQ!4mS31YYiD-uhg)uOW|0RYlJj%{9MhMTv18QWT3A;li}k~ ziFE2cwYn59GU@NYvzE!aR7!6ptLZNJB9n!wl#Qu9rBYN$awj$ae=&I`CNSsbHtV4g zr%e7_wc~BPKK5mWtu4Gs-<}i|lRH;&CRt*PoGKa7-W)0<^LK>@gkGo z?L6y@%6F-h&0g9|K}V>RM&&Jz+e)EUWOBJ<&HpQtEyAXcO|W{05tEw!_69D?IAyZh za?a$tvT7zH>*zE2dz4^ue|rs++lgn#Ucnk?GyP0^78Yo)jt;b!o*5$5j7&CjtoeUs za>=sCWur$f_&+hZ3T}^Z%H+4DoXK@%)J%@7t;X1?n!)r^`v?vTOv#H4K$JYM5e zC6^cT*d~@z$JWfMA6wXPjEzR0T}>qfs1h$n1Xb)KHS2HLsg%ucDJ5TADY#K7t;ptf zmP#?U=MJ1Iv8{l&VK|NL-$gvOEhW{l4X>#m+sh(Hrt4Ju{t;7%=} z$Jp{xDXp(EYv;E_jy1Eqoq}tBPGid`V!K)bVw27dm)6ja?fOuRjkrJCTEd61O{T1} zk9)}d7w2w&DrJh*YO=1q)Js0s!n_r>mnw6a%_biA*6DAR7xKLQEUu32xDShMx0u=4 z`P}y*7#qE5vTFxTY?~>otVbo2N-?%Dd(K_7u?5&mRk7jTQzIx~1{h z&*B*!ouF$i;6W$W1byCHKcVgvG(901BX<`}=srp}QIb{eY8dnaDs`675%yA5(3sG+ z_EH{OdZXBS&*!m~D5g&6hwA#Vfc>T8OC;pB4-PrG*T(Xc9=??#kR~|suSB- zdnu2tqPX8sCvP+6@z`1yh1jGM@-#|p=T&0OqG^Nmb2dc&p~x9}d78yx6;MzDTkYayOC)yeUeIXtQ{g&`{G4NS$V>POXM03x_j4{pokTGeeu&xom#M;FF*E1}(%ilWjZMHl2xpM)vHHcsr8=tOm6HjipY zA&5$P2)DJDepIvi$118`U?!q!04JA9u5#){WigEE1Mzt7)5Eu$6E>lqZrhBi3U&XQ zGaiU5$olV}KT$!x@bexl;-Z4Q;I}}qhzjzC-$;R>bP&IKTLQAhzmJ=Tswovw5UYub z8Cv<5^1Or&SDR)5SD{H@aG|OWz$I&Nx`2LO;HMnMKRuz(AAwSrqxd7H8kM>yexhu7 zTY~PvVWo@t!YvH$$(aJ&qPtp}pXq8Te9SWC0GNosf|PI*sKb419zF!`f+QDv*`LN`$zmHEEgiJUU06S|iRz-m!E;plmq9IiK z7!@*`-lQAla}&4Z$~C=dnRZbspQ@B!rSf`LEz=fIdGz>*WY$jat-Iz>1aJO~)^XCsnpd7u)juwNXf>iI2)sFFc zm+NwK%;*pw7EH7?IGTbvt^^ZZH?%th1Aw(ffXoe2gd3NTqMKD9MV&y-+7#6bpcK7C z%-Eg;FV3rRuj)qmT*aF)$B(+2VN4a`PN%t0>rY6d3sfeiFm&Lx5e0Ex9V^%NE7#t^QXau-+LM7aQVfFv?+_0~0fcbcPAC$bsn7ThO#}VYr(>IV zswZ`?3OFW`$&2Z}VOi(`cIxa{C8J;D%|IhS(AIHTZKPaI|GWI22^n{{gpFo2s> zw7AOyT9i%(W|TL98y&`DorAGTlUoz!Yy!7F!A(?bUX$Ks@VdO)S=&6L5A(JYEq=?U zhWogj30zO%d=#Bw*$JIK@+c0-F>9E!3EXA=$ZoR_HJ;C?(w&`Z#Tb2YcUveYs2beV zA)o%2FoWA)I496J|67(~HG%uS2f|gZ5HYyrjNrP67T0D~vpa#c=v=!ert(;ACp39s~^fkR32AiqKy`1sJ;@f@z?yWusaF<(frI`0m$Anux(&IIl!@;R>O>_Xaa(6ETeMg6uA< zSn%q?=c5?hbG;12Fl#brw}1w2Iy1P_7~CdK$1>O0@VWy&CTR;wEDF zHj&5rA396g9m$+c#4xxMvYU*~D3y`nsJ{W+iK4~g8n}tf;MNk(ZP8g88O|4rjToXj zB3#zh@N)^kZgL~IH-b1p|D;nB)S9*ETnr0^^J|1FEkm-#3T}EW+zveq*v%_i%&dXC zxu}U4UQOV!{zGbGnq1bfv`|S`eTM_R+N*z6q5!|<9Io!pmphfBQs6T7bxfpf`=k*w? zG)a|;72F~OmrYXB8Qh^=4A`wATC}Bv7NwqZqM(Tw;t1!s7^~ECCNgIeF$A_ncH!}d zagU?$t)VcCp6P4=cX}Xax4Z^!YBRWvg>!Fomf+qf5F0UEYJ+fxZq4f1sL)gfH=_~U zM`JkLkQ8cmyHJakpp{1F8_PunrxCKW49LkKcQHP_$V!k0#aWmj(^7W#qp|(l))-=w zCu8+66#Xv25&5W^otAhdD<)b*e&#^_Rd*);i#A@_(C%bkHKBTGLp^+?)_mL?sgo(r6H~(wFoaGHj>m5QNa+bK)Q0~sZ=l< zDgaqEN)!*y!5uDAwSWbW`XUvbJ+LcFcnN7MsM1-2U`rnEV>|_wW9?U)LgWsYrC2C* zS!zKJ={ik*NQ2F_tw9n`59O@f1*l09I8S1TaNd``E2Eru}JMJ4UF-qdiAv|6e4dgad!5}|pSzz1r&6*(O7e8?O;dm^% zRc^2sS2k<|jXs-OL4a$MP@RmU*-eu1doYhIH&P?@sBz5MBpD+cV`TJQ)fO9AGENzN zD|f1BaaRI$GLoCYZ6KV7V5}0{E1t0#0M0i;xcTT_{X-0HS|hmk262MYAzW!l?!a1f zF7@TY`7}C9aC62AZdQWJoLI!hUu z$(&8}KGhe)lV*@>M&Ha`Jb)9rF`gQ(hZ)@V!g&%pOK_iLjg8*#H9)utHfM$}d@o}H z%54PqO@9vey*sohopSf17ER81Hj4_bVg(Z9q71Uh5+pxCrpKRGMZ`itt;imyIrtYy z(?NBk@BJnc2rHrnl7g4Ga21xtL_p{JaeltIsl#i?oJ|B&r#@zcZAmO(8JXSGK<}+Z zivq{%@ z#yd&&-FLkluqRDOEV5XV?CCr7q4Q#4-&s>XEOJhO6zHm57x*KNYdm>9HCbmpMFYBh zJyjV}$nSzFgu)0dl?i4VTxyNaD2njU&d_(Ek%qiQi^HugL&4N`w6Q@_C-&tssu5S6 z)I^zBQa?ibPLt{*D(D?Yt-~|WJg#YWC>1zQ>d`uwR5n(J5$O=plq0b`y%|g1Y!`j@ zQS5l&U03mrV|MMcx`X#X^0rNFWI$QtKAf@!I2KA%+l>s=ZJnP?rxnhXK^5|-w2+)F z6OtLVeyule{Q~kWz1giLYu))eV7_pUa8b9OnK_#b8fj}|q6#d$ezbnOag-=q`-TQ& z?3SJ*1B`DdJ5-R@TCGd zRqxUfbQ7{{RwOHZ;FBZinvZA7DsBY#zn(nakJuTdDQgsK(K*~h!g>2IfGZ8pUa^8( zp5UIER%}QiPy8whoX(7IV8Cu|(PBGnQCgB-NJ|7chnrM5$J4|*gE^b98&VV5WqZ_q zjNPmC4d5>F=j_fyF-ZM38?|T&nr}4JwGtIH#tNkL+)qRCwl{3enk5 zynfU(2<&(d9@xvDYN6I(xSS72LBjbWI!ml1BxlQnQAVwMiwe5@P^;i{Y7-U27tZyt zb!kZu!kkT15afd@kj|qn)HNV$PIpe$-0#q$)J-y&!EGU&mtw3E+`Fk_GbCL1M!0OE zQx;v>jNm@+#^ENz7A4L3vlgBAu?@oc=YQY~_ukrvze2Hsn}^`S2@&l3EB6Hj)G=VU zjA*eqwkQn=2UD7e;d@se>j6z_Ml)vk2#x&p=VW%7zbXA^eYRnf4! zu7&~JKBC2G@CcmD?#HAiaEl4&Zy2jIr|x0SCUCb^M!5LS8@PhX*!|{X0QYDIPSEpD z(4y2^s+++bC!A|(;Kqv;To-~X?M2lxf}32lSVjYPb`leIulVs;S7K_UouTH;*@WGO zm5|+kR`~4w^h>#SWTCeKyB$P}<36gz@GLRG?d|jgIj3;`jj>8_*E466TYFblbX*F) zuWo>JUwh8Yr4MQyRA7xcpCN_|=Q)T}lI`zA6s8HW-zsQiTh$0|0?}e(Bv#^PDz#{` z$rsg*$NLy7kRaD#kWDuEdqN4b$za8Du1vKv?&^IwKnrnn*pSEf0_Q zk-Bv+=4_IYuH`jS-&WNC?qJd4ymtUsnpM6hFo9c6IJd)CrN!!D=4=9YUpa&;-6`#2 z1UIS;C+N#tHQYL8aHk08Z5XQrH(9LUCeXrd=w-ledeLGd4cx`?P1wEDn#by*f!m%r zo3PumtcKl{RSe+v5G@WtxRU(d#4~|gP&hY3xY8YL+nKWo+>K=rE}KIBr*B|zy^Y`|7A+P>xDvb5+>u?A!S8HK z9`7(rj|90sRbY0B%u0|Qw@{2XCDJ?Evt>z#N(LFpD-iyE1qh|#d9#~|fL^uW;oW!x z&Qka6%bZOF)T0z;M0${6XGH_J!$gZC5w0{H{fZlljFc4>zC?`WMl}PFA!P^XCG9ol#zRJD4ix5xlzKNkqNAi zco@Nb(Tu}wh!RikxP#G?wdfq~M&Udc(<#9%94oka39fQkg2C-q-hkb*qQxGVf2l_v zay8NWkET4<-!b4Usc#H(Heq*Iab&k{8N5ud+;n-|=p((sqQwK4PYG^PGq`ny^TZe6 zEUgrxU1B4Kv&9fDq!j)sa8nt+)O0E;o)gIg@BX&dTE^q-Su>LC)}ypqY0@@>WhtS#Ri6#(=T>jd{N6JX0%V>u<)` zYa_;Njd%rXP+}5ey_E_!DHS+ptWyzWOqrLfC|3syuT&T-U_9gH24}Gi4`ltjLb)bs zM%J6c*eV-3mNK$Rmo^~lS3@3afv0M+#{NRG201^+j1bNvQJWG`-ptuV8I=L9h|@N; zlmXJlqOoR(R2rvl{3N8#$K0!pA~e_0fSrE2=12#9PS>3D-AQlSc}ft4HwR1F*Opq z6=MarG{I$S?m0}hV@epXTSK%MPXqVtcM~xr6wb@Ae@hc|D04PpcTxd+-#)|OMi)1L zJFh-xx8!4JQF_`mlNsDr!nr)gDzSV2zu1W3W`2ar#$RRQ$$q5lllAXCHT1^J*@Ucmd66vkHZpdiVVhgTfULHn#gm$NAN^~RTMywJADyMe z*J|c$0(WU1gxh$oXV{>ABbXFl6gGgnwKgYc01_m%Se#lkIl1mFDwu;6NMqB7FBGrI z&f=@w>dtPw)Hq1?8QhvBE3|V78_V2`Lj0!|4{`ckb%+fZLg#}+m~h^W8IcBul+4*A zBS{GEit&XXMYo>H;5IE}kde%y#gIGDqBNB*|7;?l2UZ^IYIK&;*@-!uz-^lgvmsrt zT3gTnZg0`z-P>xoA3mADEh?OIqO&xX?Pks|P!NxT~vkf_7n7li=nxgWF9wPrjyR_to3jh~Zf_gv+*= z1DF`#R1`OHcw+a#@jSRzBi_XOmE}U;&Rl}_qE4ZZz?xDHUEyGKnU~u8t zY3Fcjh!$&WM*6dFh#=={$b`bV7_uv^F+$1NGQriT_0v^3S?4qZcU{)HbFxB&^VBQQ zx->~yn6rr#6K2KSvQzOLN9l&qM!5{g${?!hr3)j`&0$*p1;JfRuU}AZ)obNpz^>GGVLlQ;}XaO;}E4H3?}&{=|Oi51+01Xp?Phz+@ovKp|P zL9|#{)8dk6ChXoV$76l}55Sdl;K!Uz*lm^8J}9t*SGO|1^Vy(We*1qA$!lkYomvShO&%A7=0CY zQdv&wOdPtTyHXP~gw6+&+QK;;Ga{Y0TzEq1G|9;6)EHik)6LRsjZ&TlNMQu`W*H7Q zYot2NM9kTQ zST{h*FRv?awyS3ZH??T-GLD+keS!1uo9N(1aUQED!j(kSnmL=m-D9!CeZNE1dhEQp4TMoK4`y)53k1#y|{vi*bVL;tV0dEpG;Qm~aj~ z0nXC&^6M_eY6ACbQe;=!5%4mC8(*}z1V>E?ZU}49xpvPM<*`1%5k=}{^T6kensCo64$)J!*I48qFL4rGvIh*vd8Hwy;*nT#K-G*Bk zoWfmEh_hQp12>l$+|I)J$Vq@JtrTKz#zqW}6Czypjk&W-37$(6j$DB=iSqXq^zZGgM)Zmm@t7z;#aw8!1-F0$+}VuXfp8Y$l-&xV#Y@N4aF1Ry5yS6% zJl1RoSDJdqF=rDojErYzcQ#}96kPdp3U{h#F}ntCax=IMg!7tX09V@byK*%)VmR-P zaN*h+{tKk3H?0xedwDrQ1F%I&3>~ONOHeRWh5G}#pSW2pDmZyiU4aLKTo-QeOatEu zjLr8pk`n&fN#els&^<^U4)5J@x$@KgaU-j1g!F0FR04=60+Bk>Ja9DpP|x)|oQ8rC zYT{clXA_+?aYN$S%|IgO@g~(c(Fa6*OkvDOb5!GvfEs=*byfI zY0kP6Z6bz@!g*}CI@YDk*+dNUU6I`bUjxqcTc-@kk6?A`6z=+*oS?@zs!DJRn!)WU zoGlG`w{b#j4%r1QN(-1{=S;-lBAn;qKqkSR zz?@CQF!~p=E4>CN3Nq{zZkPvWw;lEt=`Ob}*~R+h zY??@K1ouHU4tE=hL4w{N|(c;0~(4w?m zyZfw(7(Qj?v5v*mNbC+_&L(2$_XF9Lb|0`Br*OxL7W*Q*(rVV7S~R)Pmuuv31&~V7+>fLBYSqQ`#vV18?FW+F3rM8t-4K(Fgru&TtFR! zb6Xtzr2U|0r(>h{2mfJs%F|E`ZeAm}?=o|^GqL$cUdwwcI6q|yU!c#ebL`m{Rz z4r-_`e3;a|8&(zK29{~s;IDK6_5ZW35l{hsAUPU-xL1aO4?g#M4BF^K$5XhSrjL}$ zUwN$`0^feseET#D9JP);84fGW)>Ye7ZQJ%lQ)}=u>)6-Hp_f{N4=4By<-vPg;J@HG zKYzg=q3(w_xkFJvpI#ypFt4=+d?BP)Q$WrHR46}RfM0|NEB7#!YmMLh)Xav;ZXez z=vua!)TH~5jj9N~fh(&dkg7v?G;iABl>xyh)gADpYDzVM=@pTWJPAc1p%g!JI6$GZ zFFd!yQhPmB0Eff*sUMV{VWbC-`eqFt1Rn!#8e?{f-NA>7@j#pb znFicGbmgcuxLR3uWWm!K8zvXuhera~k#sIidgN>U6r8FhU`J;4Ot*e+bQB)(Vn;?* zY5&Uq`&~RTlpXo;XH3PCqujmVNOE@M&%)u&^TczDfFo9RWNW|E|E*5_1iZ!}OYGqL zKSw`in_3>t(kn+scAY<@XDO`8mmLXTJnpjB+#g55ak6my^{4N{xdAQE%!8RFZ*i}e zpRX@g)q)-Qb)`mzW}f zJYC=g1de%t1EWJz_Ics|7y_a^z>&Le2E51+XFr%w9^go-{Xbv+e&LF(VIJT}=T4>X zbm;gTZ7>gT8xVUh?>8mgGKr_q(9QmGcSNs0u zJA)bJ0gg=G?v^4;_vT>3^8g3q*DvU`s@z~S!#u!|Dld-oTC5I&;y<1Oj^oy|G{V8x z5#@5!{xuIRPm6=~K7}>jon{tV#)yNZ_Vn7aZN@OPOh5x4HbfuBnH>)fl6>Gu_ZPPs zR!x)&e2Hv0l3_;P-J8ef#v`Z;I5PCZ=)0rm`=VC>JCc0ct8}j$Gz1%-a4=(cn_NTv zqQu}xg_SQ3x&$Uf$Fl6m+ih9DZW){xD@W~sO~kCUg*TPWi#9`**(KC{=<+-+U87w3 z^o5bW7yKUO6~_bqb&c|h=iw3QmB0gzm&4;O)f-o<2Y(bKBR4csiW5+A6W=Dqp!ml! zti!SRBOY<_tzM`xRO(i>Mxf!40K|%$iZfs6Pqp$HZ7glL^{|UaALE`!DgAB4dcEsOzrb=Y7g~UZarAI zNRK`Ng9f&@2B)_k?AoJOmm;<5`&xrrB#81#-n2>KTEJ9lIDod}Bhp$ABK`P}?AfpQ zM~eiGMJS@M9BUXsLRe*;KjoD=i_0ufjiry2FAZDkuPc&Y=m|4}J>-g+~Q- zhTq`+JzO8)L7Zi;N6uX9E9;}c1uWkq zx>^eRJRF`_{5r4`F79hVzhNa7{Ifj&bD$42_YlB`xL7-VBQ)Wpv~u6Z@@4d7=;5NaYR5aD#;UuXji&3OJ_T0Xk31050F#VMWM=i~l#Q z$aV^TwL2F@XMU1L&dKf0hwaWTEy;PZ z?pZ^4x_C{a;8R0=MeRpj-oum_2N**V6~^*Wv6`_|aMXb@BpSPbru9s$b!6-&eNPh! zQ!%DE|6Z$R?0&eQdy(B)W=wHDh0c77kLX^(oRP71!r75A#WPIf+0E{mQ+PTumdt*X zF$M~L+=lv70{Ha>`xVsL0#9X6)1N7D1W5Xt&UVr0fG}!_MxS0`NeY*kb=`ks|GNl( zhq%D|a|ZdtUul-8dgFD`8v}t()*JJ}Z^~eY<7z`-UitGtK`JV>b`4e&6*G6QD8fI7 zz>sE31T{iS&6RfJP`gVOtJ=L~-tH}6kGD(xIJ8tNrQNJ@yMLfV@blOQFIl{CEkPI& zAn{bUeb>D0whnE>P3TZfsRyfB%q#cUVZq)1SoA_Enq)6RI=TZa*hs*&MQgFl+tnJn zJB(1FX%aric@7q(q3%oRpckYw&8KI06b29XV0IA7)7+P6aKt;*3-vSxon5M0wnacW_=LJYLKq=#@N22TFR*d9-{tE4 zv?yCGKV9L9ahz965P)*%8y<4E^@px5Xu10oJVU%N*c2kHC_0E-{c4G!5&=7zC35wG z9R(-%&G;+PdYK&rg4|!kV5R7Pm>mRy+>gUSnU<-HmNi)5NJ|G1JIwIlIROn^EZd?m z@^4N#3&5?dUYJ})N>yrGkCbIvQU(fAa9J7-1Ccd!4jW*6BCNsJQCG>TQ_nuuf(8nl z3*GC%X5R3$_*-@OZBUXZpY0wUJM_2F7D1@{TnE#g8^AObny!c61|66gB)f00$w_t|^?W&^V5cR<|b{zb};}s0Q?06mNI8;`3K8-Cce&WK}4}NBW z`(UDieBrl1$ZS+l6ZlQpxx#};;i%oziSbXq9Iv*5_3z_5L=jr9qM^q9?mSf^S)ma? z^3WO_v>j@R3W5>i4^7iiLDS(^Xjy3*e*>7Qss5n(WV~E4W-wiR(Si_TlMiwV71j7W2%q~(w*0cU3irDz;fp{Oc{}MQmL|MYZj5vFmf8rG77CDJjBQ zO%J0WEbEZWYfafCiAy+a)r+;t{?oMDp0&DNr`4<5BsTYuF5KVFQDxhcu{nSMIpi=F zY^L0aEx6Z&VJjp(oRZL>+xGPs_!x_m_4;%-7(3WENPR&k%95Q($^~#kD8BIzt1MR4gSB;^~6C2bVo#JsT|M{ z_KUn*iOFA&^_dKX(~;n4n!%1E0oeGl$8mv4m>@Kor~{S#-yz@Bh7?h*goZGbS(}K;?hj=uEz?4vBPgfPk}%yH-lwHO zG=Q)|_l6OT{*SRiBQ%1-L2C#d1C#X>UMTxdqv9ZFU8Ul*>hZwcHi-3G983^$Gzr5! z;S3e~x$Nu*LaUBKp0-fUeg*2MbI=gjpAP?lko$m{6Co#N{TdDbuk1&YS|#=iLqix! znvKN%OQ6(oaJ5XsHJz@Q-7nwOr{5n`tfe2X*}?7=`%goEJZRpWeq7Tzh`%8l#->dB zf7E>qe3fPS|Au=MmE$=xR+MOzZ}=Liq$nmBM-K#s%5*D45;N3H2{LS@o}qM z;R{A3MkR>`HW6e)a8uEyiA}>=rgi2p(MXq){lDMqy6@-hoU;w9|L61L^I^|(?w9Mn z-tX&veIo2XLfG$Ibep96J@$bh#l#84dhB0{5{5W5T)?#E{=SkNn$&C%2zJJ)pD_zz zrJF)Dok!eJk}b((_3hwK3i1C-U^T~+@$~iR%8=4>ON5YPl#taLm-&S7rk^MwW~^yd z^Hr7SAMn*m)6@T5U%mKZmI_24c{tA#YMsA9#-{!+y!sj`U{nk;Tz%x#A6cARACs)2 z+QCUJ9Z=2y=EXezueE}&vKYU*B8)NgZFR# zUZpW0p1we)u$>d#h%`=AX?#ipL|+<6?n@dMiUv3}9t#uBRtVLGdefDa`Up_2B)@i# z=*#D{atZ=WIJX39S7~j111q?FdzM_&CMD@c7ovwKFeiYn3rk{tl(#_FH<6zSId+-sO? zRApX%_K)B7^z6d?+&bo(%BT3*)U%&K`dxoj8_z(MY4w;@*`_H^emkOPpHV&AcB`cC zk)FL_#K~Y+=Fi>OAaL8*&X4ZSv#h`IJD=_~Lx|>$`PskG>=DeKk)OR)9iEo$##b((u&A$E zc8b>5M_&DJN&SLacBNz$)v}3_EdWW#2D%vRdBJ>xovQNoyYz6eDVyd4b16#^6MAtr z1H@9ep#%7B&eHbygC$G2%!2=zO4p(OPnL*23HaW2P)U9SwgF+z(aUcNM_BO=V(ne;hyU+Eot_t&U>zMPSn^9H{YlX6898 zj7A^ix+72sb984)*w>nS5pxg*3G(z|;1$?|vmLqI_B6I~>=e#KodOB9Cffl5kF9(F zqdD8)6)?ltA!FLgj>VVj`4+Ajxg)EerPpec0U7=ZU!ftRKRvIkHrbBlDsB_gqQ@60 zdIF1XEgeP+{TK~s$;*)ZvrzP7t+mzTa_;ImYFPJNR6Fon zBGeA3b8EU2e{U8xw&Se^Wm?nE;mxp-iDb?>KNeo`=el7i1nLfLAQ;5|KlHNrb1oDv zz{W=8)-HSw!O|{lPe$uwh!>^-I0s$Ay=V33peMg9e)Yk(V?c3PeDShoG@^U|XlT&S zv&18mwfl+wDA#!f9~gzd;I=n)7)_|2`#PjIc0HQ_WS0Q}BjC zf?ptj@d-Z0iHe0<@`(`ktHHDg_Ad3fSM1;WQ9rQ10FW*AVD0bTI$Y+5GeVn32>hGdJ`Dbc3FHl*B)=uPLdZ^Zrwg(n{H5-n#-IbwmT^9X z+@aO*nakW>h;zT)dPK>DOxerbpN}+vt_YZ5OPRMG&3z6b988f0fbdrAo4IQ_Uk=|v zc+hqGJ|!ja{urD!;00X6FR^Xcw7!&6mt zwfRLJ(;|bpHzQV_^(8`$5`R7pOp5s0H*XVNU0l4UsHczUOPgN<7^}@es%})Aic$3; zpDK1}iP#r0(4dY1WtS*Z*K#g^N6W| zs*1PIE@HgbR7j0~47iq$D0Qe;D%3?>FQrTu@hL?me#-(`KXg96Fw#Z*wC^tBOJrxb zi&!85DCQ%+?`5%zxPfG0AHwyKMppLS$lFBJG@=8)k*AqPet|}UYV-Nido_mbqx&?5 zhqQ5d7MxTNv9r3eTR_CnxUHBFc$(5f2AAp>E+gkR7qF7l~o7`n^Ea zuJ-`)w*X_+IVj&N6{lj1-F>P@l`{5oigws7%m?rY+K2XucFPZhu-?%g8bI6Yn|}%} z<@e1uVKqA3H&KqI*~X;XvGQCaMNCeHdJ*IN9 zE4K0a129y}Thc*1RB-^m1ZYy99LdF3N}Diwjkr%t?r+_~}YB zfdVkec7GD$l4~P=^(FXKDUwN#kVyzm4oQ>d%nw@CQ7m5YMweDIhIQnX?&Ypq>1`%; zT1O-czv}Ql_q~uK8i$`*Ox6V1EE;hoNQMH^UOU4uK(^8nt*Jm+dVJB<<7o)uTvn|5C`3n zH`Ndf_LtNL+2%T~wqA@|hgjUnEqatT$PCfGJTgT)r<+2p1Z?hUd|I>@;oPU$%FO)c znu_#ML(p76i84@)u3MpEFaY<@@Oiq4wWRY5-IVsTxe=EBxo?)f+Tb-|_ZptMSXp}X zEzByYvww8GT4erCk&E-sm&L)65wQx$MTQmJr`m}Oi>&NZg(_^-!ULh8%~FuNd4G*W zyEip|RrM_lwOW%oF|y<i2R659&(hPiJY)xLNZ9^OpXxQ)F`isdjV<`?~F zk)kpw_6m!RYS(G8?4+%=Ev1=BTM?5F=xzWSFSPWI#zp)VXR*1tFd8QmDcT=2&LbKn zqmsFJ`g{#VFa47*l$u2F~V5GKhUT@a&SfJJ~U$>uqn~MQ>2oD{Ahmv%Ah%=q7=>VJ#3s{Qd$_>nF4UOb=fK z_Y;sG9$iD9FPcRsknR9@owVII?saW2w1Shix83Y{1wAzHj{Mj+2?qOLGU7|NhP=1- zf8Rq^gz{8v4t?}sZp){Me`h@q)a_Z((Zbt(Rz8VeDJ@+2AwkOPqv`K}$S5=Qovqwj zyQwr&NgH>%27(b?x;xZ)9Soz9y%JBKphot4rbH~ILc$Mg7HRD3F5Z)jJ zAkO-i#1(6q;iH#XTCzQG3Loq%$Q4FMDbDEeArro`cJnaT-QMNH+ReVfYHebuw3@~(uPt+`))tEj2WL{@}w z34%RK`RYSOEoEz8b@xB6sG&3nN`WD?8;kuO{e>FvY(JN#{^xJ^Vn*Fqah64)e_a`2 z+R(n4Hfo9QUp^_WVdV3;goceSN_$!Sc`N=!bO?l0`tejeg{986b#zB|eXtWIyYKs}4r%3qe`r{;CcGW$ zUZnbik8E;@*g5_6KG-f5I?W!&b<%0<)|;ei+*X`w&nS8)f6-Z8+!#Utk5HA&VEp&Y{|qK zoez_|iKG6!_-iTme1wC}Tz&(c28Ew!apJb+DfjcpsMsG>hyo_>t7Vd47Qk+V69j|P zGYvI-=KdtqRHs=0CvAi(kGk4NOS|g<$C&}q0+h{7!qp{`=-7{U_C=>M{~Gy;Ke2b! zTVl{N9PK8YPs;CV&SeIU$BBq=PHiWX+s!$(ojj+;pe03GraZNr^?$DQG0!dwd|(;J zhTYGk+)B`jv4I>45Jkwn&{YayUfAqG_W+M3P_Sjqr5f)%!G-`{7$!OIYR*tFZ0eJs z6i=KwVpAKzjU;K|K*YI3%MH|_%2Z}lB|BLJ4$7%}k4ngYz+ov^9aJ1BJvH1@daNt& zgg|kp#t;l)Q<=31K3wPHzoxjc$80VaY`;8HY;(Abbvfc~65AYxw;DieO&^9gvtY|a zTHLZaF+l#blFo@S5Neo@*dr&lEU9NNd18{8E z4B=MHW$Ytoa4vh0Rd6uG@Vsa7aVa@)2<~Q{NR>XDDuv7{PUM$OvxC9^*n*Q-ckr9S zO#@cu{8)oihzIu%cYh;a=MPYpyo--hZ{PN>!;% zRA6m09+}4V{OdL`$#qWoGFatS#QDhXm&y!`KX~52C6jro>R`=!0Y^b4E48oYl_QVm zMN#b+UfzM4_c7$X%0#zfsh4+<<{gT>$2IR3FYhqTI~IAXH1GRf-f@~Y5_#Xzyc4{< z&uHFfkvC8CD!sfjH1BNWRcqdnUS3M`CL`}4Bwl7N7l`A%(DD847yD(}@m{FRJ%KW} z7b%kslv!M)%r^pMuKEwk!~$?ii@+HkC^NK3nYVBX)$->rc+aODlQE)2u?1IShRg4+a4K4 zlu-Y4poj_Ebn~Kefq*?7viLT}25GB7 z+WH`AFM#aqMeBp4tqzcO70@L?R~(`UUX-Ww1xm_HB*(eBZ0q_ zT7#1I6_Yin5NRo921vUJC}xv)8qyj((#{}ip41$Yrn+XN_Qp4rw6>5!)_A1-1}p<< zH7R#3gPxR|zMhYOS{_USmr1J8%wcGdg>6evvLAm*$sB{i-D5>LrHE2mXL3JDIYfo{ zRb~b#T?UM^f(3{jY?|`u{Q~jz=so0Xpcm`u&>lnYzpqnzpAOP1hwnX-w}X{9NjY7} zT{~H+o*JS0NLtAjbYxd|w2sTO!*mCH@;u@q61>RM(7sQxMN&ZgO( zp<3Wr1+FH_9@U@12qjGQz6Gh~5jcr2zjJO^AV8sr)faTBsD-a3kRs) zQLVC`g2I++fhSZyZE`X|5PsTO!b^$R9<0tFSNdOb4(RBySKRI@!pwZO4dUrUrd zsxL#FAJ*_AQ9GaNPC)ahE>o(R2CCcTk>1Wnfa))RyV+%u8lakm1603pfl@sig)P+r zPpE#zG8NKqt$rN`^yA=%p=Mi`) zOS^@G2lB6%;Nb{^^Kulk-H-_$_BUB+vM)-`-*C7#NKOgKDG)p~K|DYioqxqktm2-x zuZQ;6B(HE_&`eV(9vDm^EEruEidnQxU@*#LJx!)W(Hd;C12ogWyKD%#6|_7RHq zfgajxL29v1e_uhnXs4f@qG+EGK-+ZsvrN`U3ZZ>IGXu)=-MK_Nztf)}sPTfJimO@0 zJ?|h7?e{@y?;ZL?5Zz~o{>=GG!qq5jO<)%NiI~8zOzyelUzGXZXJ&wkt#i;`(GGo) z;A^hOsaVds?szDH>1Eu=jtWu%(Dal%iuy?(fOLC`AV_Ga#c2uAz+Bo}ozKSc(QJ zMcPAF9IX_c;ZgJu*wJSPS|${+Lkr4iXSgeQaI#W#WPlC!WKccxR?^JGKDeeiht@iESQZ znxUT-F>gEW;ASrc|coVQ?Qa9_DCRZO?#s-QSRcm&FcdD!UKlfx)_8LYB2X zW%0TNYzg-T>3r@$=(KKF!pJ6&o|5#*_&XY~TIGC`URA;~VUhDqYe9;|GkCei1-jh8 zFDBZB+iY5B)3w(UfC?TcJ^gD`N~ZR9ug1?)u9Ts-%EBtZGsR_#5^&?1&B%StEnaK5}glR95^b1Y*NjkT0lH&g*l74W- zo|5z`^rK6Limr3HPEGq1VUC#;9UZ0UpuQ=hzWg`zZp-C+O3{Zv5qB=qY>kH;dx1Tr zH%x7r+azGi+?|lhG|KjijGO`k%KT+ax{cn&GwIB4Q}OX|U~+iElxR+6I#TiblFeQz z82}TY4Yr4lnt^O6%Fjn7*SK8i2=mAX8{w#rdbzg!uZi=?CLEET_wt=r$ z_tnOi!fo8C0++qmB{*=naFEBT47{syZCrMkIoXHH=5e%d2N~izJ7+{lZ&9?IC|ZfW z(b`OfNj^6&dsTZT*)eX^RUN#&jVCGN_dPnn9Xvv}<#I2oS%%N*juQ2IWLePfCBI7j zW2)!(1`}xHxaG0{x4#R&BIKFd+_vj&Zi5kY)h3^FJhq&cd~V@@?kjQB(*X~5ToU2I zW6Fba6`3!7B=;qn=9wY!mja=#>Chio1r0#<^NyWnu9nLzY(hW28vXc6ETk`o%C9cg zqm9pO8f&_=WRoex9=#)|{i$r_>g<838P5VDdeu$fdu6+rLn{3&`o(9)XWG>~nEB4L zSh-)F-M99irP#IeYmV{tcNe$oVc(vA3tzl`DYCQkc4y}8!r#=4w^QySIGK4XQ`wW= z2Msx-);?C6nb($G2-BUnI{O)1k3VW&&*I5hT$4Wo7qFa-@(WkKbtX3Pv|<4-nd8d- zoT13hEZh|?G$A{>m0=a?kBQ&fIwt-g#D|;t{*4`ktF!ZVoi=ZG{1*1+cn2;M-Lw8( z04uaMA#+lz=CBOg2W~m0DvtI7!g;uW@Ginz2-^M)w)ISO%RZt=jW6v%#pM>KLPaLI zgHFjV1S-X=PRu5ke?BuB?8z_2>dZ$oIhM&M+v&OlDvX;8!H&nkj<;)ZL1OxCh;1fx z%k0wdJndxew90H~+by29Sssl|@^Dwwv#ihu_CW1`z z?ri0H56?{Hno-F$i(yRbX-e_?emlV(^vP`H8vepMdA5<?SKU{6<8M5G&BxS!+P z+ojU}U&kYPq6%l#nR?Lu{FS;ATJFGbS!$c4pArj86>D*3pp&-fx!mVcU zsYwt}o@_3NiYbWA6b302#hw-`)zgx9$8Y`$y+h^QUZS!vUOx%xDrPvO>?H8GQFP(J z%%s($DpxPQl4;mQ6uax`4vX1(Qd6i2f#k=s$zB6f9EqPx4!k z^y-zDy&1*T>7w;T70K!P6*N~R#O*TKMm1iD1zTvXjxF^>a9VQx+{O7a0n1g9J+&4k z532Q`C;BWRnlCKxP4gQqRs}SFA)`TGht|(M5~RTvy|e+LsV|woKL9cnJ=7BEhfFNGUSrWK|0x}yxIxZd7{~AF8+)rk_+E;1GU2Vi z!7`jZ$kqv3>hUu30=S=n(1Ljj}~usVZ1N+Vqo9{;*ilt*Spqw@QEh zhwAv5N(Br%f48NC;fVumxa0`CJ=eT9SjSY{-)iee- z2F{NejDdf#GG&hi?7~o0&I_KS2s&N7`wxN&G1lo?Pvgj!=8T}&C`}QYJNf{FpJDr; z_X|qBK)GnkxQ9C$af!ycCt+KVgaavYZ6$IW{oprE;o8?=2)9aD$N5mCW-9Nd%9|*x ziBXu-Rf1t8?UVr|8MFjit7|;k2}$gDFVv?5HhXWp{zq8Y_YCQnFmu5L}PM2V8x zSMHy4tpR1;Fm9Hn5-Rz} z*{lgTYjS)`{H9v)+&azn>xO!-bMdu}21{^r*IE>7KyCWTX%caB#864(VsjMWGeEo1 zgz~Ygk%rC%rO(BdS1;n7gBVB12!h?G)~w{i-}V9boz#V{1WfevDmwx~h4zuW;E z@vICMNgXtzs)7ETmRudL+bILRyVVlIWtN~W`$|2a609zrw3i#{PqoExBGEPd{nTWQ z*+Op;s**KeKRHiIrzV?`O%d}~72`PWO0Kf|?wL@o zpg;6!uxJqsXdybp7&4kBjuVrLqTuR^F~b-9MXRQ_lp8Q{0WHj*LaN^jvuFA$k|I1_QZf|d;ns8q>7^m{#9ScN^fgXb<9qeiF zQM4O2bFMqQsB*&&@&d~Tm>8Rfh@}#1ER$AG%p_M%)HRkivwVV)RdQ$HNod!ZxdodU zIOWV;kIr@St0sqA!m)Q^B7gClrm`b)n*6%aLbX%))8yR;RT)UjHB^ zg^dw5ss?^Ma+Rs<45Ydh`w;96Eq9}y$Qd>LzJlrOGxcnDU`hRo#meu7J4Ne9p~ z-BnAx_5chIkoo$fg8LF8;b*=ni~_S0%JTSq?V0w{W;q^x2Wn);3>~#8UjGD(xz5j! z0y;!!SgTCA*iqxo!%h`!W`)GS+vTau#KVT;WhGyRacPV%n0Y7LCmx1oCPBL<9)=@Y zu>mQL>INM)KJ(A<_)wMXu=&f`NW*6>_`o1;8;~bg(1vqNfC37|#F9x!NWPP{zvefP zd=%fk$tM`XLIge>TX>vTO)^WNA_ir0jP7YkF0W~pWQZL_*J;rjEvj)Sl7C{7RSOc8 z)DXm}g2PRkXK`4dKZWUm#=b1cM`J?i!eC41EEY#}eo zYueFZ_r;*$k4UhRbSv)XFCKZUXvLc~M6v=!*Jx4wRdJ6Ly^)xs_)`7~gt0fW0o19{ zI^+;a&DJ_1mpsFMGi=yy#W8V+uIW1-P*TrN(1YBVgJXe7hBIH>=4K zeX_F??8J13LJ^nHgyg|*q3DxZRA@sfZ|D&y?N;1_LdH$ldfzkkNV}~ER|B{boJ4&> z96mvJrRfRrPVu`Nbn;Wrv1A%kbQ~FcpH0>sPmzZ^f{8j!YMk+EnBD5a&N!PK0R)Lq zGo8swlpGsqOP?t|{1XI0k<52Hc4Qi4Fz;+<F-a@ax7>3IJ(jy{66OfEbZnsVw`yROTh+yPgIR_qGH$-?5 zruC|`l{0LbI4b_lwF`HY%*9PZ&P9)qCVc)*E_-s$!B3Kb|IP#BBwjQQY#JOQ&L3<3 z7!=UOE@F{CmGRD59NqF5Iz|Ji_Ra1#sH;_+Az)#U`r z0HS>GDmOujTphdda~S$BH04<$jQxkk3vvsJVt*s>D2#mqxUM2Z;Jzw^``5uX*jW^J zV4A?rshy15jt5P&3gAmEPIg{96e+%CG?{#B2~rg-`=lv_dIRy_nRBL9A1pz{YwPJh z0zQ~a00NceZBIY{0I$eKY9#V>hN8_YTwa3R6zs8K+Kq~pdLy$i5bBxZ6tXT=EQPYTXDy53TbFiWeX#eAj`>?89hFfMsy=r}@IN?4|WcMmXTj5Se=^5F2 zDy0~ZX|s@RK4|Bc5M^C??dN=}QxpMY$~Q6%@Q`SF^Re*<1m9fLukfTd5@8t`Dob;QSDj_~;9tO@0}4To^?0(1{26pKB0 zx;ihsPg+UV$7}28z!cdpo_Kt1}9O1`zl^>N+ejL^}Kh8a!NUB5(TZAyBXfL4%H&o?kUaMi`0bC|s*oIF+*KL-=KPtmD{QZ2b*rR^;}gEB1{JU)I@OQx-~In&be zr$KmaKdMdE>36g`Z9iXi2<6$D+(kE2yKvXyc>TM0%R2WX3kxF|XC+>2Fgg9vRK~dj z39U(9`-BQR_wl~eczOGFtS~ATpC~CShy})Q*-1MxZ7rR#quP$zl))DG9f$|r$sY$T zsZA|CPKNV4NApi2_Gz@lF^-w}ah`!qn6AvJAbxD#OqEK=t-Cd{&aR&UXN;G)Ear6c zhdXE+@a61;7Rga|b;Jel3~Cu1q3MEM9V?^f)2{9hzZClYt`01$`v-fXtvGL$2Tan22OavkK5V6ZsIC0S=DgAMy2 zfx}%|*WzF)zA4$`>YhIF z(-^e9bP~JWWK$3jLl~qHI1EI9Q~hL)9VFm9E2b+=1%YlVG@A-c3suNr9(9NxidPN~ zybrVQ@E6z(fxc&VN&J>ZI;(7Q2wSleWjl@In2a$?67c29Z z%WHTz_{)Ze1qnA08S+clC%9_kcZ~=)Zg`|c-v=O)6-HpEkAN2Ymnr5UfyT=zhf?D} zuQCqwN(Ac`H#|XBzJ6%F&piAF=~6DF7DyLbjhY7zbyLL&y?EDSPC0solqs|U9?kHL zA^trxzl_9Y_E3uw^2WaaKWfvWgZSIK6%%O^LG^SwP(Raup#%}9PyoaB$cjiSI{%Hs7e0kU-fp-4yC%9dg9Ubn3i z&`_whxlAcB6(k}eGH6L6BGamEDo}A?enp~hD@Je(R2-CFkp!cn#87fytQHq~!V%P= zV4_cLB3^$Fs5SmOne#^*iN%*@le^GTOJ^AlTPk@t`C6O9wVi{vpc134m**c2$`DO! zSp?tsRkwxAQQpd`y{>oU5Y{JbJSSoOfbKgzK11R;@^w1!1KM6eDy$o|^-n^E$ELp#yHN9X)v)dUCqEgqRA@Lwt&PA;iqB*xZ4PA;?I9>phY&31>Bz zB7>OD*qOp|yG#V_Ot~is()^lhOXps=&%`htIZY=6;eJ(sg94cV;jU&KvXzQ~PNg5M zkvsX72cf&+NARHRvJZ6@p>|U2fVx}j@G@Ra9L&W>NGTITl)^FoFDdOstocrHL^_i$UgrA`4 zL39BdhbgyD#yG=S#d8pDxwD~dsEC~4{NvmN41;1+9V;& z0*>1aeIPbLV*N>g|Lep?=MzY*P>GOfx5$>!j`h?OZ^nA+JrU5JNOVciO}F){rZFNY zQ?T+NxFB)U@T79UR(&);S|2UT5;Uv9EE@9B+CS_ejkLY~s(ldCGLk87tDg-9D_b(H zWBF%o0S-8IEm->N#hS?E5djR@}L{S*QK&n4lWvsPt0TngXXs=qpRMEXk z*VdlG*Rf>0gF%@N()d{;36lIlruJ)lQlTN(i?;Wxrm;)l5vfaBG;T(-c(*es{>&=As?(`p=y{*a0^2ju25K}Ph5Hh#IXR-=@+2lM9EUw2jB}OqQ`>M zB_EtG0VrIZ>MuF@d2itkVRuFcoADp2OLe+ob`{5b05LT}5!^J6983 z$xpd%C(&`u=ZMzQVpFc}ICnRU;jhf-!?;Q43xDNo$}9AnwF_Ut;sQ_4wI(|?p%V$W zAc31bmZmOmFL`bR-e2K+bIHg-m|^G4dhbrw9gI0|>t&am{PrfO6QP;tO2Ns*J+6H!h28-FiT@W?NuV^w)&xzkR$vI7a4|f6Oe`D|o-Vk)dX7)ecmPEfl zqWz&iYL-W1lRRXJhPV3R7Zz+(*78j#2nXw4Rw`J>J-%f=cJEh?Ff&-#@mYCF;C;B= z!Xw|F?m7{lvOx#Nealw#tI-Ca;zO+1)Ti$PcJ>HAflFsb>nM5~su}(^1YpZZDJ8z8P3)SqKFN3Ms z;dER2@Jqu7pbuNOJJ|yhV3!92)_cTG055jGQ)t9Sl5=0iaq8YK*^)d1JvOG z`oNs>V0G>>tRmFqJV5=@^#~Lk^${Mi_xz7|WC8VffIc{nEUXew{QZShggOSLpf2i< z4ec|%Tot|VNlk(29v*FRyaS0iPZqF?vaETEUS80~a@O_H%O!Suam zMSL8RC*pcI&_7XoGK3|h5MhaM!d)xua?Oc|g{P!4*Yo)I!V!FdO)ebHmw_pF16#Hc z%lH?(L$Md?<>%!oWj1U7oqbdfPfM z*1uo(v9TNFcc@$w$~A?{nR|G{@K&Q-v6Hr@-P3bewOLgD$Vb_zd-|yTuuJZ%`^)BZ zVvFvdUA}Yd{`j~s*xyK`Z4hCe>FJ%=YPysFG~Wgmog4L72zdcOV;G*8_ko-`!Vn(w zBnhV#jdH>kzuQrSJhR2kyA=0prvi|M=;&S!iW!WhG&iX+N+oh0R}gmKFpBIgzzN#= zo4I0Dx!v4;s286Z1bMlOe-O9Pqz;l}Z+4gSbqCnDc-?nEexVuyCv>w~VNm;7P;)2r zhEYEtEwYg2@vFt}IdZ~b33%F?ZouC*#G0+?8obp2<<@i^-Y`J{;Y%Vzq`y-B`g0wx z!B4p(PaQ}wt+`|O^|JUgc0lMuxW^;+12CZo!MvPydm(}cQwp*s2LUHnMoUpep+9VwSyS!39%!RSITC zea(_gEBJ5~lRB7Hgr>p(3C!Hj7i>wZg{pV}qg71CP`312kZN>UZSYINg6dw84k6$* z6TsUPzyqwkc^gd+W;h8vHoOH>>z-nA^Z+}~JjkMz_(oI~r}OK*;dDM?yiC&W0!X%X z{gX;5=_Ms{0D*49^P}3^8T=3_*sS1~!{q7|w)I12pgrS`6 z^TC_)D_h1Du55A-<(8t{ z(r`KN7W~SDQSkw-$!2(GbfX3pY?wnpkgb$MM%a(KXoCI>Z56#Wo4i#Sk9s5)@)xZq zad?-V^799x6u@=gC(q{YpSC79N7~w&O>WLsZsma{(-wdBuPt&g($-ef*5>Y?0x=@P zST=+2UL?1kmTX&eFm||x@Ydii+0=D2c%X&mB~VqR!>Uc)?9zt+y9__l3jh%v8U7vu zLAR!7;jIQWThnv#X1X*cvZEU8NWaCO>kcA|-H~;r+ND(w@UmF))O|u-+Aqp@18W#j zVK5{S!XAn0O=zS`&<8goZb~lkZwp<5vj`uSrcXZ%P3O)P$YCIc1vSwYP1wEw!Dq1D z>7-5vLySv`-FZVm7=mN6e0 zPGgC9QoVZDBu+xY!gpz5`aro*&m78TM_#Q6jnD?o zUB8Lgou~mP*9ounC*ZYWIPy30pam3Wm?_I=ZVnUzP|_>_yj%q|75>j&9Gs{)TY=>O z>@@)0hP;aeue}v7_+vpMv5bPj59Ur~DlnFNhvg6Nhb%V@*jq&tvA3Yb0J;;vac@`o z+5o1@LYO`dJpnj_X;s>g>>2@8{0M*mL~dQM7{)G@#A+^k3EwY*loUO)5>~DE5-tJ4 zxSOo;3 zs0!RB6b$b{TqJnyrFe-7Fu_v+{OGR= zyzwtl0qR#5FkKbEG^_%T!A13^0(SurfOslEgkoQoL{$MMs0t9h-c>+G#wJ=86+qXO zKz+1O75I%aGw7{qlWnDN(bN!i?QQ7BPfKo%r$78Il5W_{PS{-9=k?LD<~ki?FZ9j> zVSgAWm&l{Bhe2S*-H8W!=bSv;PK^wiSiE=kdegL)%cO68AF%K-JvH!w{woNPizJfE zK^6a0^AARfsDKow<2}_}Cd&18uFZKwb6_yISl0lQPE9WLM%`uYKoWN#1ux0t^;DXi zkY_IUulG;}odmCJLQmmc{EQg~-lPyNz0Q=bu>miq>xJR?;u#zp`#W%7`tqi44*uoY zf4Z&?C6djx3!f{QiyL%qzm5MMlC;)j8>^&TXU<%le;zZ`{Q8Rg8lnM#upiVZ-?{VO z`<|m7>LWGCmxo(%6zb}Q5g+FpMC4YClr+64F`K50!JL6)?v?LS=cj;$Rm$~QDkga# zI6&o&IRukjp30ob?q76*k%KHn0fx)6g!OB{QduV4rAU({4_^P_m1y)zl$(VteYh2K z*huC~s>Mz!)4bv zgU#@DkMH~gY3|6ml7-t1R*O2O*|42^xpunMAIzHS?I+;>=Y1yHHw@<8ioHP!)K+g; z9R;xLfsy{VSxlD;`Je%MNhdUb_r0w}c?pMd`~LGi-t493XqI?0@|`ahX#=Bkf9YY7 zt7EqSbnc^4{%S;BSF1l-f?V7jw&;8hGcDRKQ{qG~(dLzoWt_eH+ZaUVbRE5zc2G+qfS{&K>?PyNsio*;lR3eMD>c z?7l3l0^|qH=~kE%)JJpxm{AqbI3J#7Y<*iB9}Jbw#iMZlhTPnE2$xXA-5alu4hYil z{TLzu{N|ywVeH5YxX$b8I$fMxyr53UkB;hua% zrDzfSKx8O$1qw=T{fRo4Z`mq}BM0EpG zgQAWf%cO56i{$U9j(GiS)q?lFW|S*wKNhE~!}o}7j`%aJXhxW>I{B8D_rf-Z1h!Tf zk0(rb*RmnQbF64A<*&>Xy1GVnbyMi-8nuU=!gY;CF$9!B|H}S-3YRu2R=!17H~6qg znU?XH9wfxyWI}7sxtC_}T**A#%i){~G{Js$<{S{n4cJ0L_gNm!b}EO;;EPIzZOwUw zX!_cVmm8Vlra4J7ACA0sFo+XUGq5*dC@fH4z*!M&wvkMbuc7coZos&ODMWh`>XQ=& zZD%nEWs3;tv9Z{hd8JTfLy1@$$kq@AM=}vpw9Of0%)bk64I-r{!Y5_t9Rs*IXfT%9 zF*k#&)@xms6=E1&c+}MY7QZ4rUF#K|Lqf|Q z13Az6|3@=!*%{G{fBa1~qx)wTpWXy<97qM9OFS|-bcKGsaXIPIMYqfVOLPrrL~7Kj z$LoJVJ{62YaPhaz@B$UiMdM>Z&Ek(t-_9GfC5o{#)XWVkGQPJOXn@y=Ye!+qRLji~ zvI*1u~)_ z)X~h_Wzzf>Q0)f(#k~@*l4J5=AlzR|H5*k4PxKq6;;yAhTY05Y2A7;(olZYIN3?f6p9l63|asXmA=tuc*n2vbbyMT#P{e6KDRV?uf}g zjjylJnV)ixsFLWWjaK6~Jq(=)D44SbrR_A3AePU^c>TAiNTPm)`)639C71c_ z{)+fw9`HywpE5{**RM!=fjj-2uIp%PuJdE9sh0{jBjGz*1p$}qq%||eUdvF9-Ejw6 z6Ll*tMFBG$RF95$xc9NjBlmejFpOIB{ng^rg04h*Tr}=q=8UOAU65QIbsqz|w{T`) zb!28>b;|Q38n-WhovuQr810DHKtw}2+jUG3W}u9e5!AMUclh3N8}>!E zohI`L@%n2KRI9ugW1HSpx;%bsj4#r=*5Pvw*bgDmMpox<%y7zt7s?WIO@0bIM3EFq$3@R7Hfw5f( z2ij{q3+ItxJG+285X3RlxoQBVNMT}6?y1la$S7K1x?=Ide#}brSw#HwqD$2JFe&ZD z*YtFkNxB>Z4+qi%x@)8J8&20K=oA1r4LSM{y@oYj`v;8OQdvx!>DZy5@UKB1Wk*&` zwnT_U;&L!3=)-pd=Lf!QJc*DVJUwfN7S=t9ho^05_2w;1!HeDzZB#?U5#P zmqc{VaRBICp|#8+LpdTa>38K=wwYJ1drFA#Ro{zJ=J%=B3($}EF=r>LUwg5rOBqxj zQ6BVXwj_woM~9{t3ARo6Ef zKC^a^S?&gj&s>>Yw?ozJT88}yk?23sb--o5cG0RsI2=XqQF?D`j1Pi&n(2UB>Q&sH|Z^;Mg%*b0jpBR7C`3>m4#|qwaacfOq{8+#X z=JmyIy^`kvjawq7BBRLQjQSB|ASR(~kLb-1ILEwfx^>J@72^d2+sEt@BGkT$NH1~G zmrSP;#0$$yQB!~`A0&?R+p3NEERt31K$2T5F0pW**RyJ|(OQ^STKK9R+;rNq>C`KP%GiD)9;>Ug2%o8|y1X}N} zB0DgqOAlcekK1Lnrw>jiU;&ovtlrt8vHm{gVPg@GVf}R@NmyGVkH(%y_{-gi2iITa z;dU|+E(Q-Yw-jrOh|R+LkAXxxOSPsu@PHP}Ot@bG1ElaqWK?L@3T*`|tVD&P`>z6+ zET=+*_f`4(uL9+kqFk~4S3)PWg2Afu9%McrUyTUe;OTA9vR-!tcGsocwL6>5aAqBM zQKvHR;B#PqPyM2+0uDL~!Y=9Qrs$$|!DxyE=*V_y^Nw+=-7a0-h9Z=cEn?nbEK|*` zoC)W2Pyw%jxp4{9(nPdR$O&g}sU{n-*$S1ywqo9;6(7>%f&TjtAi!;<-111xK}{(Q zJQysdg=bccVEe7<>;G+5bQ<}_PqzIY+qSauE3_xuZ~^;qCC~dlQlrTzzAbwPmQRXQ zve3+?Ro(sFC%`*AfW2Y3XE4w9VCGTQHx7`JwBN2_Sr`iq29^`bZfgNaq! zLS$IA4dz8DF=g-or*Gay&jL9)t3@Wio;U7s797Ud23uqulZ! z7vPr3Q*K2odXNiLGM4Z)A-HBdUu6x|`MPd0KCrF_jxI#3$b%fBNlnk> znF9=wiiTl>job?{Omrsi7{k|o_n+u`loHdf3gKoe1gq=tI>LO)MhQe0Cc8AUE<3c^ zmeP#8$X8Vl=TUFOa@sRWtWp0wVvS*T!plG3U{jjAmNSr$pMir8URWd3LN;8GE#I2O zz*?3<{LVRe&_N=I2oUQC+fgMSh{@Fx4bXS^)`auIHet2I7jJ+?zTa;!!kK$FvdS>my?O6QW;Z6TQNpy}u zp^}P0ZAb|mNb#A+4AS7Sba1pN>kC#ugjW`s*$brJY((bWs$Yg%HUwH21JYF-g9u3F znSew+ISjMiI}Bs?0}h6}>G~m^1-^&%3>W&+LpE}M!7%)-1|wS23B1+F+hDwz;}J~c z(EK02#eOYU%B;gk24F_sAz*MG;u&U%AG0NNKRq{v=61Bdhs9U%c5=-KU5~xD<*GVbvG=X4MnVdXVhl$T_hnl*kF*Tsd=Z*vxTv@iR*UWgIDc)-fvAsfb1$*t-dg?=dRpZd%;@ zQKEx>KFp|mWhydeh8DkQSHz9=G+KBmF?3!39Ec)367_&Q zo4bGRABnOJMUF(Fp}ZqeMH`}<2sX6UG_<+<=R`xMZn$#ne;=gK!6>3`P6ah}WgrrB zFp8fw#7Yw^-JFVg_9@Y29=5?J=J5CDDBLQiMQY^jB%~R$=aC7T!TY}vUFJ`FDr&QU zY0Z7^DKCp94};bRbh!}~gQtx=1_#d>nMChYlv((ZgHiH+-Nz9tG-K99e)-3vz62a{ zCrA_i@hG1W@-fb6>*g3#^sJLkjY04kIU*E9Zy1@N$Dp_$DF`r7YjPwjP>Zv%L4X5& zfMX(AG+ooyDG`8yS|cJ^fm*|n1${CHpv-A3F>XX3yETuKn&=ig(LdvV`3jRRr?iA; zNHm-Jmzj;1MkK>?sDuCIt4zA?9yoHV2GeNRe27zzqM{K70a*K#hV`u0yHDD1aH?sn z+8iL_jDR_=)d5sDn&VjQ25mlbuRz);l_ulRTx^X%~@=B+H`NC4vUm>PGy%FaXaT~I|82) zH|Z+UDUzvYuV^deD?=$OQd)w?=OeW+xaNzLO0SbVMx<7gsMqA!yN{C;|6E&9k-rHK z1O5o#QPJ>APv99~70VP@5BT*ifc_5U^aS3`$UtTP1fCKTK7nUgP;H(ndW)~IsMrK; z0v4ku1_St-(>!Kp-q;YnRbolR+W@L~vrXj-JfE?6#$J&`{~X>jqb71v(4NCG2O+EN zfk@hmh)t!EaJ~g7Ry~F&pFQpKD9Q-d|WzuE8ZXcdtC+gsTxg5;^ z8Qceva1K^7#2l5=VYRWIKnm|{?cEay#sM~mcS^kYWY`n@T%hH90%KYz;Pcu>o);j7&N-6Vw-=DYpU}cZy#NYnw?cHS7udB$yg(1EN)BNb6?gaJ zeS3i)C@`96_z>o|kYT+5aW$VAujUa=?+|9cyudhZ0@k8OF$4I9y})T9eDl3P_vWw{ zAX>3MNTPof)AItvvrjJo2(DVaF3a;B(cf^SgZe7HOVNB_4C%vcx+#a>p|hH_Uqp>K zhTn!kl$_P9{Rfh6*v!F4^sHv(SUIgZM8_o(tQ0z}iNVzC?;Ku|EtxnYhxZjTj{s^3 zj#nGGa{4farX>?cb;s+od~s)B^mRUlh0YFCLP5^WluJ;8bO-6rX*y%ag!3C^AH2^r z8JHj~_9)Wm5_6|MMg>a5HhF~-u}9?HyEj9F9@qKJHNXnn|H?X3wU3s{ZBb}yq~M*J z(bGgEQ=@topClJ%@jE?k><-q!(BVz&!2!at(+pxbvn@+&$7}Kf?-+EMa{-tN$UKi|S|;>z$F}VyJA-;k=U#7ocXrHBehv3^tOo%?^Clgg zB6h?;9)FJmFbw4JRwHkN@n#3|cx9Y^>}DOE;^(?SY}+0AEdkS-yQamsZ#C^%zaf@gl~8; z!*zxL0$J7u)5QOB>Df2Rv;w}XZMrBvbAQ{S#;<*Hl@V^aJSn2?8h{)Brhp^J*z2GL zP+j6m0f28*Ni;$-UdMBlA>-nI6eHvDs|^{M4k4ifb3N~)oliu_I2RE5N5+x;A>+oK z0*?EW6S2dK(jnWGf4qyxLnS@>5(7Q$JQ3$aAy>>#Wu8ctKAS3i274ney-d}V{SCO% zXt+}LmMAAAz~enJ3mPPzKsPn}l? zs`t)w{zYXtA7o$FS~7P&-WR`dI1~uYR5bD}LkDoBq><{18cD>FTvuWg&rptT5p!_= zZkXb6;%FWx3v%KKp7>yd1w$S1Defm3{HEXu7CDooKKzq)MvJE#M+8o`iz?9Dtl6R= zTKQVlq`~-Vq9~aezuEYa&)ljIG z>&j-&cGsPtX1z(kwB~N#;APRQzqyG&ow{fv6Z>vt=SC0Gx+ArbM$^d1a3deqMm`>G zWK!RaWCM+ezja4mXc}o>@3l`#?iYXMtlJP_*ExMRazvmJeB2mZANh9y)0(@|Z)BZJ zN4l||FT)||SL8PYa-23 zzwXHE4BQtV4pIHENZQ%FK0@^u`lfmWlo7TgZ5ygTY8sj6H)5$i;S!JP)!6G_3<&Syy6@eAezq z6pV$sxEL_MM2__}nMhVEl9xOj;qbYABl&bdj0VZ=0;V5fq04pKUO_<{@EY2_uDkCOs;-GCK^9T8NE5 zVhNv(2P%>WMUgzeZzON>wPu~(J2~+9c7OT(gPZe1rI4>wm{2QaV8mH!U$; z?l|CN{V$5^9mB4E(mkKXKPqq;X2VBL?)G|Qof-%?#)H}+XWuN<{U~LibTqC$@=Sg< zN(b2WXLTPtnj$it(l@)ReC@F8`pH8C)0$iMYhhRA5)dzewzY)pm|;=$OC#u)DEj)y zL;qI_nHvtumxUQKJPP@zQr2fo&-+v{S08zht5G_@m?x+VH*DqrL&hHY_qeS*PWsL7 zXe0uacHX{Rq8)@%auDw(8ExPz%&xQ9g8?}}PisSXipg>lV&DF|`(l=%0Y!}u;c$@Cz z-GK1-OEq9b$Wtvx`0#8-;K)7Hw!Z8hmnh$_-VfQ(e>gQz^wp7ipth zLQcd!0RU)}!(aKx3ILhi=k{3z;N^`=pOtCt9@shlmv3mmZ#$Y;f_FLtK6A^(86>0t zfc0Potd-7z0LU|Gyu7TVe^d&>Pt8y+0b$D}Ox%J+fGWrui@am8SfQe) z`k`P#MxiFa#`hp5m(lASepUiE`0US#g+{SrKCQYY%FVr>bnV)|cUa0#s#4ZC2D( zSvETC;xo%aW^kJV6m-oh4kAS+#ja8swqLe=UC- zE6*xH!|**Yr5mSv@(jxo>=wN#D4VTol{>U85F<7Xg5U_M#Tf)`uArPm>I}KT_mI?Q zE9BS%2#@wu>JMHVkoq?SKrd1^LJCQJ*BYTKYGj^}$^@ttLdf`>gf?i5EwRj4dqoa0 z6!?O@If;We%X`&}zTm43>?-c>;q`}{3729= z2sL|VnFlI{YMHMiUIN(xCmFF!PNPLFbF#L+)>vkqAyO%cFPm3*qaBXOywR2(!`|->shn7)dSrVq4FZ6j9R8=rnZ-a%PcXuzg~@alNsCdm zRe~T@ZWANP)1+Kjtt`pLDm{xnTFP2&G5%X8MWu5P_JXS13#&yN)*1>#?bPK}ZBRE@ zE>9sp>ecSl%CYSaT7|cK^c7xsr;G4m-d(Jf3kFa@-pvg1ZWTM;Fbl0z72AXuKyHA+ z>{P)_ZP^s?_<4kfb-oHk`T5pbQW)WT{Dl__r-S=s-evA{o4vW_QV?Ut1#am zl)V1w@fA`w!go?NF%#x{xi%cq<9_kIW0kNYHp0WIZ@xeGE75o1dxyM7FqCzYNThVN zHq@uSSAp+lPj7B!5=zGy-UZ>Yts&8~A= zm85g)b;9|}1Ef+Gwz=@K_(I7W$ezusrh6&V5C{i~H)|30f;fs|M}aJZ6XpPU^A<+u z1b`p%g%pTLJS+(w|YLINs2 zg^Kt;mF6%@;U!Qfw)sBm52l&1TtLby!CS5BKT$wRw_5Rn2t7#^D&(vDG1{ow=QL?` znmNE|&ZhH)`eOR`Tg@iiBJdcvgCm3oRjIZ?gnWHb)5_(8j3LC8^j>wa zT3c3^@gM8p{sx-ppoNBTp*I!$-FaN09U4%qsKy6%vo}aCAVD2OnLX`i{Nw9v5Hw9X zoa5WYnF@+WO~sg?$-Xuhs}u{g?~Pfh!hQv{nO&+z`NnjbLQrG+%e|ieZv!t~T86cj zS!x(*K68!tXcxLoD$q9};zb7ZZo;|3l7TeN2ayd{;`my12Z}74NqA*YhF*3U5FDLRxqkV8q=$+UC* z9yevi)4T8;3>#2!JCb=%uCy;p>`SwKS#DqKwW-OaHf6PaX=s&8_t^W@Zm0s>z2o(B z5SpR`<>(=+AA6gDYpyE>PZG%-22PcWFT(A*QW@reY47lW^rq$1R2{MbRs$FiDPr}O zd?7)WFMKc1`e%~TI<1{(;>atS2ZMFH3=N<+bb5Zc2k7wQOA^o}aXciC4Y7&;2_jeT z5h6=0A~^Mthsa^$qKL%r6W&A_V>rgs$4B!hT%NFAylYRm(`=E#+D9HzZ%p`aA(h-C zq?TKxmKQ+k-7||Im6b1o)OMA|@5Ag+Se-1_1{CAk-OKibYfToxrUD2)H2!~q;9h%# z;8Kg=(gFxJjqL}5mYV~5;pSe&xOu^yd&14t7Fiqy%G1FsQ~zsZe|E>7AlqP(ZLluZ zOdZmZ>C~b7uK4>uDdy-bxv;30Gr1K{YU+M4-9I4*|JDD(C$C1<#Ox>Wb`RcC*^lAv zPAz^Q`}&f*CHj#bl#@;XfzPH?%coPsC%Y9_1&Z%0#o6I<{m9=8T7#bpx95A+d3 zPQ|E5mk#Y5l<8k}*t1nMDG?iLfM}&Ev$$g_nz_7C#qUW)S)nt9rb~7>933GCpKt2HVqMaxp_}G*9qXTWDAPuC;(B`$l9oLjbbEmEY$@Zd|vx|i36{Q zAbg|zmZRaFKzao=2zW?PVq*Jcnr7B#AG)3PnlMp|KcA^YVB%C68T&K<+e0HMmE<{! zM*&Hmgq(?4Y^ba_THa`d!?ZMIO3d)zGgU{kM5dQ77qeveVwT49WXk5%3~?8kyiW_s z*UB9&!6d5JQt{B5ohbN$1_#pGq0*Ylejk1JWd8;EEv$qnt2Y=+-$3?l)CoYbDmF)B z$$kAcVWkv6OfT{`ymqepp^)WSHY=F1(W+U>VjXK8r9fhrO9i#_wRk5n;J?^6D_G^3 zX)5!X+p$zIh)wY;uT|(`u1^D1r$+OF3YGqxn42h+Y1iYzm!-I`Q0f+pLKSiqGZlwC zg;Gv<6ANZ~daBtFP@Wz`rNWo}L|AILpg9N5s6j+1d>>*4NQgVszVN_Gr6(KsPihp$938?{uoHK*L&a+ zvB~-_^HtWJ-7RS%OaWz7T4b@2Yl#yx8$y2nj_(VeMp)BC5@a_U`{|tpR9dI*jnXAl zr7ut*v0tJBL`q|lQ#_)^IzO-~q{fGv3jdN8xm=!w^}kWsy46$!nx@iJ zuJ!+hXg6t|>2t-QrpNgD|0B)z^#3;bov;5?8oOa4#Il)+!wMFF7wAO0vOuJ4v)yGP z(v9Lvct-K5L#WdMF5!Pd3rb)fit`wls-_D$p}uC z*l1El?{7lUiP=+8X`#H)bmqt#P3LlXqv>3XHy{vl;HrZa<237&{aSPU`gr zBL=Y|bk)avR(Lj$j5%4cmbl_jeGeJu8IqRY-%xBDxm%jZQD!+uk@HrXAWZX){eQQG zty1(<_ahinFjm?8UFAi)RM3uQBHqatbTkqN3tx;$&qT|_fX`g5seFfD*|2IVm|8CH zB7upSuxU>)6|XQA(OM^Xx`HjCqC5+lcDboI%5TwBno1MfN)8{cc_u0o)BgEr-?R_V zY|pg!mfyZNB&)1lm=4~0dky8?@2EG_g8ps*N(jQYEXT~<5cxoMQoQUP!Q-{5oidN>~Cl`xQ(kPUFV9xPYW2yGdv;^vDWYV?BG@3 zaW7BVfuxhXq(p4FDURgVmDgyi+I(!&V}+~!tXk&(Q1sD)KSkIe z(gFU|%nnaNiP&f*STu7r^6I=iPZU4%k`l2BQye8P@sjgJLGuNFttc*39B5I(ZIx6a z_S5eb5QUY~?SV`yiWOE)R|PUDmXMqpqH@{^bh=(bZ)GN`9Qx-n zR5m*@EIfyfjaBNGp-eg(59po_>lbyfqKeFBZNi&0pkC)Xm-O9)-J*;O#Klx}Hiz#z zowcv|xR9&`=ycY%Aw3laPxjhk^{xuzx2jtd#_D5w6UMV6ePLYiT`FF$!Z^_s>5nkZ z)>$tuP4-V158l)_rwR)rB!oiJfwC2r&YAsa)00l@r0-Y`B_`F-Z$NjFHJ15#Q;u^W zBWpb-a|&dt0(<~RFd?3EPZ9xu@%BOx?Luh+Q~-5ivNnH&UzB$|O29z}XZu%~rL~<4 zwVE!|8h2;ly)E$G5qNLMyZmVKRcJ7?xAbY zlIGK(QcJ%Mx`kh@jMrt36^C&?;V1mVBBL7htVkOIMYG9WFT8V|U7$QWXh{GUmm4SI z^))C9CJrPhoI9CL?h=8ue2dp7{~vQ-0v=_Nyq|=8ipZFW5@kJ6QNe>n0VRrx%D5v2 zWnH5|0dE&?M1m(K2;(viBe;U1g3G$Fi|d7}AfjkE6I3)FDBe+V{bJCKcT|M``&M;- z$7FK2>+b)@^N{JUySlo%s=B+n`Vv$Ob4SxPxB(~(d zs*)tmr&N{XR-KTnI$>E|J|7?KX?7}^wvRN@6h!IKvHXOdW+O)i9f-|BM_#xXT<-2n?Wx7&S4qR<9{RP7 z++xsjq5sXwD#b@u=yy9~<{{OEy z_XYe{B|dlG<`tjzajS*?PgI?o7yhdie_)^H6|Z~`x7llFX9gqb0%g;E2fQF^I!%+t zzC;JAr?7BVto^M?W8bT3l}yuq+oZ7%*R=jza9ez#{QKw8@noV0hL`x_r*JKDh$uk$D&ZkMvSMgj_VSI7nrw2{A>&`0!klh22H37(*#+@)~`91>zkUty< z2AId)9}Yn7c-klTKGNZp0jBioM0XG+&m>^)+oL)lN%c62$Us*x^%M*#-gY(KaDjPS zFEb!XbqSl+!K;(NGHhNr;z339{=~_Hj*S?G(AW3dA2qR8D9dx|n@vZp?;H&V8 z**DX?QsZ|NI%dQr%&)*uF$(UiDp*uy9=CqCDWJy<8Ti z2f`rb5|BbWM_QDq6+;D6kH)12I%d;25w+?JLd4GTjFYq)C*Scc2EjmBUN7R5Xio0!=s#kip+9lEC(4bi81ZG0y`H=$BNFS*whC za0`FC2%EJ^`}mA1{E|fB)^}~BBnqBUaW1FX@!?xMEevO<$RZVD`x@(AG}VlXH1BXi z;!vG(Y2y438Y}I^pVwGHRphM-apFDSOtF4Rso=DS>Mt8^J9`tV3JEO!-wT=?S{|SLVzp+u5+1OsY{(nN?&u?rr;Qy;#RQAS3%h(Pa3>T}JYvu`T`#Oc( z2Ax&$4BC;_0nV_dEfdmp7F65HT^KogN@K)Wp)XES9(}K)JUj=g(_OyB^F3)@S`~Xzwqh3_KVg7q&QuGpQN<2_8@?D`sJag3%}ZlS2@dt(Ko@_-zxjC@)wQ7u950^ zYo=r;KwjKkI1J_wvnCGLFwil{0_UW)qubPw46(vuY)zj4jVmHo1qIgPB}W!hb^t9` z*~1!Ma<$g5ow-zCIC-elwq6Fg0JeZNx|+-KejFzoKd`%SBy9acIc05Dd1vTu2eb9$ zmeE}6@wSDUB{p4fx5Z~~)xj#Z2NFGy63W{)f2X3wnrk$27-$8Z=B2b@vuVKsq;^+d z`o<`LpT zV`D{THNd9F49(6_-S%U4B=r(tZyQZy-*U-hmvLpYlqI8e9rIP(p0;hH8G}Zz@j0Jg zCFOFuWOoT-^80fzykju5GnY1BECjWy45%?E19h_fp?DWjd+8VV(PF)Rk<9=tW6`ht zmSIM4_KR{TQ2ItLC4Dm*c&+=anN#pl%vY=@u9;WxLL^$>8Qp#;^4GJnyJX*&#k#Si z%lgi0ySCtx#g-xX&XgsXeZe=C>5>h$uGS%S>Ur5t!U#IYbbJ4BFzmvDQ^kX&4$Cr6 z(rpw8nYCV|?eEn2z(WerqK#vuJj$+}^Zmna1ce{0fAg|Fk zpd}AWb77$MT*~)viiGc7!1t&#dNfZbP5=BeDKv8@r)NtP65yBOA-aV2%i81N*X*F8&L1vsiH89Ag(zgF z_46s@?1>b9d|3+=5}>8^k&C$GrYlU%dcr-CR=@e5sGhgDF=ZR9EXDDL^=s(!lCqZy zMVl?6zg>-`k*e#q;@`1d{AAsOyxsZsD3C6v$TG^!Phu$oJ?t^(%hj**F{oE37U1tC zg%W?H#=8>Vh`(5Yz-Ev+2<1c>nv0N}UP((N?|qG-Al#u!7<*NBo}j6AZ#joaY3vflGe#l-e0MOHqoND zG)>;5Z5^>kf-J5KYv<%shc9ndCObFn%po+<-1A({9JtrpUWMpw=aUP$ZS!D933k2ihxtRhj|F#5YQ80of%O)D>tKCV1_giee$iElHc1Lm`2lx9<16gSM()QdZM=B}bW58F0);P&L;T@H` z>215?;M?MKae5PFJQg6F=E+`-b5sX9(@R>kjR?$?H_X0HmgZhpi=W{P6uSpdywWj@ zf;Ix`l;##$i-O?{6mP4l2o+N^P_QQ<3hu16C>YK_F*AUoBm)JRLKNJPYf&)V;?z0v zolKYW6;DS>MVUaKcJtbRcW-X36}Q6}qE>5E6giyz&l8QJC6O?^NN9zkMcZkbeQ(^b zTMvH_2B@w#*pa;opO@lO&w@nWJU6VWiriLpI1c<29i^G&VD%prT<9%$C7{5v+u(voy~CQRxQn60#|)9D)dnNcf03)jm}qE3F6&gW0^ zhVDJ$>7@%yxEsQYO}HzQeC`K%P}*pEw8%H=%sq!p;o@VN zT;<5$9MJ(h<)$!clAtirG)c8#mZ#yuL|27PjFR87#C-GXnqSLo*2?B*?QNL#u(+ZI z*V!iTV)NT%epMO}oRoyU=0F-0`Pz0(3=W9U|S{r9WXtsB)>RJ*&j`4|bMko!g7(sfE#RBdn*X4%#o=XF^_-mam1-TTRLVX<`P593PifQlbG+pqvjm> zi(@(RBtk)sPz?B^*ZPvhkB8y>`%R*2|reTW4a z5N9jI7g}kwbm!I#h%$wE!-u#u17fH`%vK2UIg%V9{Uo}CLRkR>-hH($?A@I)lB|91 zK+WCZ5AcjE(5&zceBovV^f$isQ7{@1ylDyFcq5;dW|DCmmAM8 zu*y>$qjH6F`L$GbRsp|NxRRZvNzQ;Nr8#R#(xc=Nj&;MO@5OyjBU=N#>& z>GK=+Au9^vii=zv1r%l{n*A*U+QJ#vsIgjyc7Xpl?~8A1B8@^AJWBA_-BVNucLPeK ze~g|8PqQrb2awwh=n6Yq?($ooQc|3r=1VZlnOv@ zmTM!;^U;L~mT8DgC_PxQAdxqqIkNdu5BN(S+h24+SUf3P%FL*#{2C;)Lr4zGK%&To zo3~nV(;{n}65R2mFvnxk4MSP}Fhdk9K`G0wmyh&N^aowWn?~V>!&l#yA(MIRE>!KRla+R*IU2ZGuDR&W z1^p2Ej7pHLcm7@GpMUhP?weK}t3*9=CXTPfU46OQiso--`8lc5%DCLs*HPb-+?DH} zv$gR3W0f2*z}*mq?+JH30f-#JAmqKJf2JAeVz79fJ{g66wMjUq7X-Fi=tV!P&}p{N zX;NpS@Rh3YTd449=Wjnr*=(NZ2UL&JMYm~eCsZ8AO?i@4xdA(F9Fp|rtVm|1CW*5}fur*4?tTh2 zB>Ir{3--8uG}22D>Xt9lXE-}6O=i#vVQ~f; zDQ?0qGqmv6{o`+imdJ;vYd3*Rji}H_Ez=(T$w7BImN5YFj2U>y)^M4Ms7lObAP}SnuK9J8rfU3iRg$Gk~dqo zhYgtqex2#Tdb8Nr;`%$$l5F>Z6L>cuBVurPl_4B3z5rindJ;Fj5=V;;v;vgM z;D`ENDQMR!k#A5&`AHY$|0sZYByn<};tD0LRN8Og3^9uiogtp44xR(qt{-AXp86#e zIT{bQTergyinD!9Tl;@tv%N&P`(9kqepK@QxhQUIF&eBr9t_sWxU~ii)-u(sEeNkA z@g5|CKYXU!YdbOT`qBl}v6bxl!0N|tWG`v$iP+qVLsF%4$tt}Y_-ydnJNCJfGAoW@ zs9avK=#`1EK@zW&=QX@Iar{ag_*@BxJP@8sgi(vI6b4Ez&MupQLC-%BC(e1sCJVkH zlMANuKxryAIk4G!wdUYa8rfX_zS@)dyw++B*EX&@+=j|~x0qE<;mk$W@F^US`P6t2 z(Yso$rQ&iJOTC1KDfB_e8PW@2Uep12IZ&3eKY*N-En{uQqHaX+G<}w&j zL2x-V%8}Ea7!4%zxTu#TXGI4$LDTiDXbYvvvB74gE^l6HUH~=EhhBjPZ;3j1J~Y|{ zO9=He1H&ZMvu)8T$RHDItfp6>V8sxfiJh#l{TU0Hn^czc@Jb4i643y*^V(zY^)w zHr7KrzX$6xlynI|>?+e})*$Va6HiEs4$RP^J%}f)MPG>)LD5QJ^a9CPs&+Fei#8C5 zM~g)p-k~kxi7cpx&0%|!KY|k-0F>~T(pjA2)#E(W6{1EbgOf@O>k!Lua~+B>wwVsS z25o7v=}N2bsbZ!zBJVP@%O5e6gQ~x+bBKKFw$5)xL+H)b^7yQ389}U-XGc^AqL_DW zre2(yp%*7Z2pM{@i-2VBysWpMbhTd9&3Gdl)$_NTe1>}2?ItA8a+u*3QDHkl3*Bgt z5;YsJB?Dq<30}M1QA(9=#`x$YG364>28qDQAe)K?2@E!4G-v$BSsDKzVyQP;D@@_Q z95(f<3R1CmaLf`H`m zA$t-+W+9uA^v~T8lZ9-4F6n{NaA5NsK~wE6J60C5RVxw#fziz_WbbgCE^~uyEQDvK zej|A$nx$O$n;*B(SQ>ma6el!sza4th;M8-AfVG!uZJ@>snBon88?T2CN_C%RMoi3M zF=XahtqZJU=?vY@?GHpYY7}N=P|g;?5?>0K&eL*+h=|31guFxG7f=hN4J1{Hq%Yvr zyluVALV#zR=Dm3g%_D!B1mjkVuaQcJ2b;}Mqad3OG%W};L}UC@G`NJd;VM*F45*~H z8nVFRT+n>#I2I`JtbCJ5Hr=QK&SBr6Zz-2d%q2?`{iOwz#pV+;Y^<^vu;L0NubD5FB?_oc^hL-tDMnJ+d#dj9bID;sMZcp2 zO|^UZ(bC#1!Q%n_{6H*2J{Ec3u6>*qe0ME zvAY^N=wMRQ6*f72ZEu_BUF4aGJUm?;6T2S`aAm>NFQ5ad*h-j5^xLE+t&&o3>K_tE z<>c4>>L_*bUNRUi-oN4_o~SCg^XPUl>|l-T-)?Sdw1Y`sT&s&pkMNO-&jd6duW z0oIf2tH?o2Og7+So)m_+zR~tlIVI=0Pf>U!#SIl##M8f{xv>PVfJ--sPvDxePWYcb z5otxwY!t=L=jT@AbW>vlJtCILW*RL-mG#1**>Q&_j%e4_`+Cb@e3bmhADB%ig!s$C|GF{ZT zF#kEx#@9?Khqt>FkhJG#WJY0*yJ)U-euescI{ollNs{Nw7mwu`8pq^Ml#T2zq{Yq2 zF2*U+1VDKy#29rZD6_=ELAjn-Kf}jEMy%If(UMp{s&84WpWyXul+X^b4iS~bdUva0 z{S7P@)Xj?3MbTswYX0WsVX>|;-&SJ(saTf^XEVimUb{;HiGz(2y6@j7Vm(}_k5X>G zRtbA@!@SIy=u17Ckvz>4E45F0C0LZsHpl1Z6x@6t+`nFWsP$%u{T5{=#BLprzUaRN zTNfJ9-*{O|qIW-OS@av-_KN5@(8j zRJ%)oEKfFy>TZ}LqCZ-w7t!}sE$~Fo@oTcL8ATb%le3G~cFe=W9Wy$m!lg!xPh8TH z829{V%VOL|DQ!m!P94!6F(zP^1X}REDB6f|C!x>pn720Hzmyn%6ot$b~?O^+Khv9pZbTxIN-qeRN2CzZWY}I^Z&)&lg|Ze7DWm_Km9pl=m6q>W8C#hWOS9 zGcc}>oGs#e@*_`t4=bOn_~e>GNN|fU;3*jpqcP-rvI}*?Hx10s88;%B#))Or`S2*= z9R}v;5ZE}w@jqHRlPNWtVg}&hoM`FL9Jx_bU>2#%XVp*?+Yk#O7Zfoc`HXAC8i_`F zdYQSXE@(%Z{()%3#x;}7mFm$fptArr(TCJ1&Xaa8n$}fK^=p0)PGd%|Zt)SYjvHy5 zrz6Mp^CucForjEens!DXnP`*=u_ahd4pKc!YJ#ReTe>Hi5tzY0D!=YihfpD-k`C(E zLrwU|=vdGOUteK<9m-zQ*Dw2b!Lr{&W=wK$bGx(R1CcV9e8iPLW*?;ko==Y;wmq^0 zHSWT?C-a{xMis-%i4tJKO3qG$lh)IZIqeuTaqWl+qS)x}R`WIiS!BNeeUF_R;LTA= zUnlp^2l!LiAN%;VNd%#z3e73(Pjyx_4Gduld)Rf*2u@)KBYQlV=!!easuSJtx6d}5 zxJD7Ggs7?$T@W%;SVoG!1~P(Iho5!|`KX93w(&Y3<$GV83tcsuHxPKC3|k>f+a@ycg;-6l{a8WT_7s!Fu60a!N5vRGD;BnS69EC++>K z6T4#C!1-oMLW7E%3Z^dE(|&T9LtKkx?+N`p-4S(u?5`DI!Ciq)vwE-x24P<^uo*Be z-kk<2;!{boi^zc4@U91gb6?r<%n9Pj$UiBVMp`>IFXL>$&;m%!ARqko%u%Ln3?ETv zTP?c=IMUQ$JG-WyAzk%twMb%^NP>km!Cf09$Pdfn=GIz3K9CMi^j4Xir;LL(=#aIp zZj-1tn`udEAzM>P>LLA_N7o{D%kwKh{B`J?mfBWEo~mO6FJB-`TI2FNOn4D=oE&zT z%2eS;ipwAHGZa4R?4;=!Xz?J8;+nxK;u~=zjj!MS^2Lm(?DoR1^Y)>FJCN6wKhk(e zZ9e;}FK&>(me-Aj*Zg(QK;r`9v>`wWBR^Q!n{fRf}w z*A&2C_j@!pAbUtlwVOoBOb-L$DzN3M^F2m#)nv;ZTSL4dB7}tsdni=c6e&zLbJ!Zu z(pjj5+l?I|1oJ`&PE=}5hLP~k^jJ-`>KZ5+y(IM~j(awP6`i&}D>_U#foye9iFsPN zLisi9pRKe+1ETPp8DHM`#nDz0Vmlu=t8hpnXA zr=5W#)o!X{_f$Nhs$l9G7!XL<4+-LMoW&FvW3vjT&O}lwHY>b-QH4Iq+rl_+y>utK zg;7;lwlI<^$r;?jC^@|?jN8K)0l~6`u@!K$g>iruq+1x@hfM$m%N9m0)V3}At6Lb^ zW>G{F_=Eq2O9Q$;BgFiX2Z?G50EA$+vzO@zfcG(2xNKo;of~()VYs1!;EQ=PTB(}Z z%xT1_%@jG&eUEG{o8id*T9|OeS$l|ZWIa^e^dzGC^Ngn8T%Okpm|jZX^il2c(ol5a z4DIP`?^c*@k!w8;6s`#X3XmS7qo`xl8KeYpXp`;~zs^97<7u|phA@P^!r7HUrIqVs z_oUD0gAr9Urtd7B7mPwQb=SmJY3yN$^#_EZc3p4Mx;d))u`@Y2tB$Ga$DsNza)=HN zQvQcJn5RqLRB4qAVq?&NijI3z2hcAO-ddG1kA#PSZhT#UcKs4njr4>Cgr0-iYN7b{ zc)ITl6pyA?RHt@XXF%iPA1%y(oqWnV^+XA8z$4r{#0nLo0%j`^>i3KZAVHe)3mwFKn3iIx3@XXdx+b6 zTYFAOKEH-H7i`)5icCIIrH~F@1}Pf(oap-i?&vc^&i=7!>;>Z)Gl;&T9I98@CmGNX|*N(Yv>ikqI3IMizB_W?JkG=Hov1J!S3khyhF+yyaL(xi~ z)^cZ|Y&(lc!CD4~f?CxVKI*o12-&O4?v}LI-%q zK&j}P8o?L*FI*TN4`n8~^hISQ+O(Vk+fC7cU~cH6G<2t8KT|Qlg%fU21Tt`V1F2zT z*!KKTw9Pg%ukUNVv9FoI^D30tOhHOgcJ6AYY|rKl9I!qtCy?UoFA&2+ z06R?KDB8J{HnU1+aV%O@$pGp&0;Pa>iub~3TS&-9dNokWOAX~J z>|yg%;|k^1w5r*mf~V{u)Ehvnh1S{NwX#S)5W^LZ!lBaKfM%xjDY>lBG%HZ}`TOh2w%)~~J2~wkmDnFHD<}_o9IHgSMl+!JyMR^UOpOoHK>%@Ch6a;Q#qclT$ ze8cX-kEO~aeeqg=VbI|%;c#m?S%D*e>Mm1s)=?fAB}Usy)|-0q*WFz*Xe-fTZ7cCa z9=Qd`fXGuy+ivm8CqZrdcFs^Zs0J0)wyvn5TwVvRrUDxl8T|}+bRb1DELcbDerld_ zVf0iDN+*ENm`MRbv)ySJ_bBSaV2G6ch2BP}KPYL`)X4LDTg8daP}xQ!SC}fIN^olo zo55}kg)C4@u`7b>G}sZT&*O8oN#Q3l@p#vWIlyi@|6y{}j&lxhZ8&aumBCK7e*s9R zJGLxCL%LDsCBw|@rp(+h7>&FNdWi_7cGFU$=JS~F=OKYlK#&A+a!*=U1#71MUi1~# zq&XY)vr~x4HnJ=bS&7nKJP}3?&ZOwHyA;#zM)f!?WJ1U4m^hq@hrr)-EoOgabmiVU z=M5zVSAxR{1z}3$a*Z@^PUu)H3ENbwRl{)|gS4Ncadk$5|6&GCx`=7jXimBm*%B>| zmO*c+31Fqn$PHCm9BM;2Sd)mw8>FjAF*L8q(U}C>y6>Br&@y=^W{@{zvY{X%DtVahOS@Is6@!d$<8qT8TEtu~CL4Hzb^ZUyJS0w5y5ZtMaie9SzI0 zr-|cd;dI|yXi#WJ`zf^y=07Q7?WmTwniClFIC{bS-*<(i=8?$1E0IEiB&$v0ja?<_ za|4Sc>Mwg*`Unhr;si*Q!gcH)1XRbC_mb!>>T=TQyBZez$Ewhs(Pv;fclmX5ia2(u zl>u6rmH`4*nQ5vTrks+`QdHp?@4_x^qrwu1jBPU7%6bg=wyUZKyHM_Y{%M&o3SH<( z^E5IFWEwbE)PFaMw~Sk-K30Y@o4gf?sJj(YS7coQ65+B%wUG{2sD1Y%-~#=aLKb0$ zTkO723K4o()iy)b{H74ll^i7a2M-TFo-R1sC&#LI@KAl6G7J15J7mI}KqsDYv4a@oEiOArXTw;ghhd4-gZ*;`Y-@PG$$)JQ@0twQSz#KKUi0?l^i|!Y6K0KloS-rM z>SxT-W}hAlbS&qGAX$tZ8h!#n6Iqi~fwT zP#P0EQ?>FL#x@&K5{SixN2BE@&E*groViAR7IFfDJv1~GPe?X#ugq)Qf@=q0Zau(h zZo)#j&qnW(ktEoV)UA1vl!v5&!6c}oHzt^U`BTK_fO_wp(VlnXPB5(rl~G$|&s| zX6u@{0i}3-!PFl(DNIMYZ|85vSug;-rrjQQL}%Hec8=8s*&%0@#=1|*F|bZNX3(Nh z=rZFO4*uJ>m5HW+pfSk0IoMG0l(Z7vC->)wPs9O1A{HStcz%E-f?hT+3?jHOjx@kj z`Edz}&&Oq!)O6IaMfq(-DzP8!X^s&xF-H4CL{Beby++LJoUvoAiyXRYb;sJ{V4K~s z#;G*UG4@C8*zCUFhDm9qSNF69&M}_Y$S{ke|xWd$$Adgq7UTmvI>r z&Zl+bAd_6mYog-Gg>rdUaz>Lh@N^@7O0YeFUnz++)3iK%GBNN;Ap2Pz+l0!%Lik#L zn)qW5kNk9`YP5fxX=lg@t7Szy9R(q)Um54^*aAMV+Z?aM^(DIDk#AUU;s|NbJ)9L? zA<)$zrCsR0Cc25^H|3T`CXW9)w;Uxj*{Fg9FAjj_&)wEnx|5y=X#O#f6O^u-VNg7k z79OS&%2AQWQ4NCQ>;R5VK^#AIl+A3Dl3Lc`0k{tr1U%8Qg2EG3Qms=vW>jlK+tnHk39t{LRCm&99b~Gt(D9Ne|2rW6H7iQv z$&YQjPdnE^57DhzU)NtAmqx?ebIn~He#^T7YIkB7{8S5$q~5e-@S?BW@G+Es%LgO+ zS6&Wr40K}6WjA(L-01v>!Ih~E~VyoNZSUh<#>QD35BR@DR9rScaSsk0l~D4%I(h(VW( zHBO9e#3qcQJ`xja)NSQGi&+o!2A$l?hrrwQC9$NP?Ijvp77+icj?wOp9hDB|291mY++y3DSNiY)v%P?vr>j z8fsx7?}nB%u;ci`$tWh#b}^AaF?(n+d8U|C!o~CvWpwgY7g+f{QAw(Wx(uR`VK5<# zPcX(g?ib*os?F(`zT^Gin@eSOv+;=7I|bnf9x(AuU2i%c0}bjo1YXCe)2o2Ah}$OCSbqYN3}CFb;N}ms+W&wa zhuKxbYTx>kRD15D!D`>Au$00*hlZ>DDvXt2wSVV>j?Ms`Z$Rk~v4pegC>H&ELNx(i4dI6*iPVN_ENg;0;kh=#)GE^ADQfD-Vt$e+lzX1^| zeD_`acRwr4MCVS#lZd83;Z=ds4>m>|=7E=;0{JcFZ1v0)qhQ(;p@&h55A;$Gf@Z9UF3| z)qkYEz?~nVCfbg%Gro|Y>~boRecV3Cyaj@^$nn`ja78)v^m5Jw(ACEx_7#mqWuwkX zQZVin8iIsn;oP4-BqeZSsci!+?KJfkgxm~Uwmcj3 zCLd|qc}}5u^~dnGpe+dm_4*f-fKf{>+lbYU5UYUKRdm$pfJ^|;pZ!`#sN907XEGt} z9D4|2aB^xRm9u!nM$b!iFhrax-I$C*i#&5;!$D+rK1cFG;dUNS{CKd){k$fDQi-s_IV{BsuTGLnGsbdKGp7CTYliM$40oFB2=BvO+mGV%d3 z9Q7;8Kalkk8!aXT!GV!YYQDt!qJ~6LbeAB3)KY1kO&YJpi&PrprP}CwsW?A{hMlRJ zs8^@-R+W2+N(hyEfhvawcZ%0noR1%)WXW22FN`X7{2WlrW*4~^{8}OtYB(tP>)wqj zgXNeQA}8v+2y@cBLt0p4e%POMW}Kh^CTE#oiF@}VjqGvG>KZGEB!J<-Bz{NLUzVy zR;sDL@89cF4Q69Z@~EEvV+PenDb={a=-;M#fsi)joh($BsvcXaPm@pQPv~?~=!RZ^ zDwugqFA}NpU$5L#}Zk#_E8Mg(SHQ)U}@1cCeQ~HxGTHbS?oWaTb59{G# zK|^Z+vDEBNfEu&);-)HAuYQqa%F>nmcn@HuD>>~4bS2WxtgrKA5CU;+V+KJvu6j>X zhT@Nu4q6%^%Fu>sh8nA`Pc%s{%+Dn{3+>nNJ<(LVo4)aq`1$S+KLl@F+Kg1Fx97DC zbX!jSC~@FNo&_fD0de2?eyEJ?2ygpVsPCjI{>G`B;py0zGuC`BJa02yh3t9ZD%8%H z&H|7QCn2}|Ktd<&PYEFc7DReRtrR$9Bbp8j3h7Of`>@|}ZvIY~!ZkIFy08mf^f;K? z;=59q@-;$+DY`6M?cN9GqNVebmo@@Tzwd;%)$S)>dr4$U&G-Ct_RK7#zU@Me3>0Dp z`P)q)H-!s1kA1qPx6g*OmYgIW0o5VqS z59NGGJ*ME1DkST654@wftS&E(Z#<_7$G29Y-3i+E+hV6VdY3Fk*=`jOylMc-1 ziSN7U8Rijv$(g*O3JmBEicdh1Xq)^$gtMDv^19tJabu;w$q@W^ZOi0-Re2HoAu9OY zMYPrK=U;{d|B^`0sex992^dT=$_IhCnMg}T5lA7BWZ;(W`{Z0$opa5>s|V&CjPL8@ zdtira4p}|WIT*qc-G*A_;801!v4A)mS=Ax5WV8zD{5$u_nM`D7B5+~#z}#-#;Pur; z!KTn}-nZI(%b>Xir5;t8^uA)~qBM)S8iz4PYaIA~+Lu)+R9>P^&REzlChY@BQ@7eU z+Je2m&S36V($%!us!DvVUb4M1H`ma5+ZQ3`jzRYzA|)B0{p68xMu3c~o%(#JcHj=U zO9hED7Wx`HzvHb+POsb34l%tf?nih@~Y6Ta~@7-HH`&{-Cu|;-zF8CKd~ww^Gt|kX#luu5csEmiCD;%9K;ta%EFe) zK<2k^53r?5GJ9+({33%bXa47GIY>I7tZaEjb<{HORr!p(3fWk;^a>KYgVwYQYWnqF z?9tOh(Z|ovtyK=q4&?jxkAX_Q{kg}X_Yj|zLuUsvKN-w?uVnT(^sj$qaA@Rz&Y^8Z z9kOz00jeBOu}9@I@)*QqIn+5w>=&O&O+$(^IRO0rZ2`8dRA4GjHR7|f<-|bd`+}MO zAelY3tp7ZNE$95_Z24L$o0TnhK_~&X+%2DxdmDYWd^0Uj)3-JXTc|isb<0qk>ey>^ z0wZaTBw@5B&tPT+I1c6-w)dN|~u~BWd<a{k84nV6|G$*)@h zR)IhP2F-exPOEfx1MYbt+zsTdPBKEc_g35j4BYUK_E?#PCw}$r^AWKC(3Rk?`xcao zvlV^-f&3(6Rc6irAIii=*jNRLKVZm6#U4cOpTu8GEdeZ}7<%J!q?u1OBNB7Svb6K$ z?#8@%oB>#c%hAW;wkqRCYpmE66S>J#S;a2P(eeJoV6uxYs=p5elO&%UqNNl-^$>a~ zoxU&%%*EBEb%==Utr6Hj9xZwaVHhRY6W(jt)t%t+%_~U!1G#l3vGt*wx77bdk%`MQ z@&^oLz7pY$CR1o$`Hn!RFy{qfMDmz47Yz~8p)cxs+L$&vQ{G=d=$}QJFcp}T;lt{i zGdx|?L291=mf?G~HUm$^Hr#5}05ff@4rCO>=CRBJ377YML-X>Iz~U)17-^PJPqU%& z5+K~&7BcoIAD9*)*B$h{%0u9a5kur67%1R)O~K6t7|V@Ms=fol*>Z>C;SS| z4YF~aEh0{`pnpfiUMoo4rP}pUeMUz(4IN>%jQo{=P!qyT+p4JEP}K%--x>`&3YvcF z8i=Oa?fnUphCFDK#YWP3;>Z8=auM=duoM-b`d0&oU)v%O2?nW-PJiD$B5iO4Jh_~12AgA#c=76jJ6i-!_l<(XlYT{7 zELIjQbTw=nPomv-Sw$j~jYyvnL^x-bE@#Vc_Ea zYB{xSB*EQ|{0E?Kcl^K8GA=3d_Vlf~giT&i~$TBbAw;yJe z#3Ldg>0cmUi?x{~`U8*q7-4aFfAXd!QlM%%uuz&Xi4B-=F zujOJXnEpX*I`$Sr(nXgSqDJEEF8UbL58-$3c2{?zVw9oKp zFG(NBrK}B;gm|D&=I}P*yj=JZ8OdT0D&l zFVySgXGllR$-rwSYkZg@2zGb|m{)v30&Ch-!pZNW)niNo?_ez8?}bn-DHLzCN#r&7 zi{Xsp*-!)#f(6mV3q=vC9LPKg203WXg}z`@beXhUi4D4_jt92`z`wy~kmNsXmyM~z zf*|K-fOxekKO~z7(|vRGol%*7aRzbwO;o6SSe5x-1`%(Yfmpa27N{EulV{65q!oca z&OB`hbXo@976f`x2AEg8C(tL}%@F8C|G7Y4eXlivmcJVk=s0`^nYyTRm}AOR>+hbQ_+zc)ki3>$oso)6Nr>*=76dj54ywwsQuEC8JL(vR%Jz z+p>L}FkU0~HXUR()^rA#SG*_Nx8Kf??WO;@Y`=S_HQCo91S@{(~ zkS8)gyjqpVTbAvO5y-Y9q*=~DPHs&zG1uPciJTTS-c3E#{T?7S_=tE&He?uAOh(k9c+v})sIGevYdvx|J zf3aDz(vi?qy8hHx@H9p+Ok1(fvxi($&>dr{aYPJRY&R|}uAkQ;iG3&&^{a&j)aT#w z2h^;j{IHFeu?cHS9Eths{!ubUXDham;_O3WWcv(Culpz)rOoAcsTwgdYe>xyE& zk|o`t7irF5K>Ut?2x~)QOWLrdW2RW!r42RBvbCuVGi;WuBDh*peQkKSF02hZg6CEn7Fcaq zP|x?5vm)HrM;LXUl+4_n_p;HRkR3{{e!I2Dh+fWZfG@bYWldWH;B1<9&iXbqZJM7k zq-i}QV|1R;v^u(escG|J#{}C%^n+|%Xs&5dY8w29`BEubM2j>ShqF(c+mH;@3&C(@ zaA9l?GOW5*@(zsJ-eKI)h<(JwvKRY{hU0KaDas$-3sZY;0A)?XHsZ>_;vVsI=icB#7rMG4MT!hzb3p4II+14DZSVt+rZX+{H6K`a5Uh!+ z8|n5PQiVTGchM}}_FV;#M#zNz83mb7kUs}N=Hr|OlnlpE**Y=J;_`+(3W~gEckmco zszIN@8)32pWp^qVZZ)`yUe$3|qpa9`1Y--vUBd8Ugq_C$$8FKJj7@o78DD77FJp2> z8I6#DmVrC>xM`lXc}xn1PtqcVL`gub=DKaY;Mjfu9WsaT#|ct;0Nf;%5MgjuPS?s07L|D#xdRw^8rsFW{ehFPVQ;&Om z@$jk3zv(gjUu?>A;)~b5z<(S0H9z+P^STOYsSsdfOcRfN}vT6=?K6#&~u9CL0^;^=& zmPRFE1*Hw3k!fVe3U(+Y2x;fzgI^ z3=+(ioL+v`y#o*xZweiBigZ>8ctt=D!ZO7VuOHq2Vm8PAS2+NdUE*uTG8_FW;e1zS z&G(e#I~L^?Entws>2}tfJh+;%T`gU749(3HU4Idu5 zGb8CbFJvSJg>=yq3?*5HQvx1q8uZ7IL2sz) zpmU8ZSg+%U`}?)p$G#7}a(BiDovXJ#sMszx*r2Ph*oa~!RN7Q=IwWLvG|Mi+8pH%W7ETPj>WDi>3$qS&ZQ_ADIq5acp%@d_j5h zDwySNe%|nAS`c|gjT6utsc|I(zeJ7q8{M87OHXE0QFdB7^*y=R7VP+js!UIN0YjYb zde$9X9ot@b9Ro(#mDQa^ar^!4C8DWzpIGB1@pC3R4(Q%(P-d`NI=fZETG@hlokXKM z^j0|qf`hN=_1GSmQF=#iMEu+H8RT|qo7@!?Ra(}P?MB3F)+)Ij!{pXe;lsp?^oe=i zC<%$d^5#Np7Y=Mke7EL@E%kp!9H>kKQss_-=zhfyfz}R)E9BeT3X1!wFAF#E&*j@T zaqqYori0~Z6s3#fSVop6fo{cgvV+#u0&}61ZFlvSZYr2M1EVm9u)uX?UT*Kaz>Am5 zkOeQIMQn#Z?6l_$s+eQBO~bu*ZDPCu7^QJ02YrJB1DlfQQzbu5#vSGE1NQY!pyJpQ z%UW50ymA6;xHQO_5I_e3SP=l|6ULA)0QUs|`i21<0hkZ~=w|`)%6AeXu_Ei7EdZXl z3=s;E#{)jjQ9%eeZnYi?(Lo?~4MKQyDn!0O{BVhE@zwpo9-#{12*mmzghy$I0Huo* zVykQVtRC3WrPG5D9;FJQl#U5Pc$6xHQaUsU;Zdp(N@=ekM89I_VYolKgl2lI z3B3mgr{QQ09L9AkI+YfkE|vC(*w+P<79tFeR;6-|h;1sE^jG~fiqc1fbP&=Pr#fO} zfJUQ-$8j*YPB@m=z?G8w9men68hXYLMdO*ps5YR&Dmk$anPZckzIg!0@razFo#S8r@s#}0N+soTS~bU3%iH7&a>uALmt z?QuaBh!ln!7Eoz4~>i-X7OFw2Nyq{M=}QKG!sNTe^07IJd_&&D|E)eihE` zaZPi##kIG;^6E{>J+5i)wzxJsoV(vdG{xr4z9;;v_TcZtjb*ewr_*#uJHw!>7|_nE zH5&?REB4WYxnIO{*Ti#i@HR3S)uYAs1xBQrtM-p$A+h20c;b~CJI8U|3I8=!G<1qT z39B3b{#6lA(t(UO8REsY6-Q-a+XR9=Y}mKOyIPZeVee{kXT29|DIlFsUld9ofp%q5 z3Nw{dVjgxSyylTPnz;)pUEY35V}{ZUY^MaVfzpiRKDHvlkfl0Y-wtkot6P5=wmZK2 zg5Ma(4#p7_P9;7BPh|(djU2_+Yw}i1?$`$rD@<|+Nq$n3w_)Hqv|UpECajCbBuB>~CJ+{C*j*svnrQ zEyI83p0!+N))<3urn&hl$}~R%oY>LW0=JiBh>k#h-A#<>NKaU|oN7RXvATkr&uXds zV|;X`{P&l&T7J~eV9I}3GDI(6`E}OqeE)M=K0T~;e$CTP4g?7T53EJXWi8b4!A6fM zri{T_#$_zSMH#DzS8{U>hSsJhm&ws9nq`id8sU6uHjWh2za{m3&AGVkdYJJ6# zYG*vhn*-8)I|aUSU#9=#U(&(w&5ANuAw?k9&f;Owa_BrjM9F6J;- z6U5VlHwQk(pra`|%#?wLn52yTOc~Ef8PB4Og&Qdr^aVwioC||INw14DM7d*Gi?M#5%MeY$P9^%sN;)>hl z1$DcOAwb|vA$zRd_*^uq5pI`9NSYiW%sjsgx62FGwtOMrcA2=c%MgEKqphJxkj1+fYv62cxwxp^8u++D{M z1i8bG{~*sDpfc>lW$C7P#5)C3e`Ic)(UwVp383%6Dk_g#bJ;ju^o5+3<#s56vt3h3 zx_dMu3O9rx>z~guS#|p>x(3+>>z?qW`d7P>n3QgfO&8tX&|Qv;6IEbnz^U}j8BypJ z(WsqcTR{Km;%w;q8uYBKnPa`9?Z8oZPR-*ZrSInw zZPfX0rTS*vk4@Q zdMj4uhWdbAcvbIqSea?khC<{wtF1XLh_kt^d8H-?ZOt3OXsE(*S?J9$|N3fXV{85# zdX-ON8)x9GbA<7dT{<>wFJgNlp7{1gM>dx>oE9%`toSW1Pac9RlzA<3myRWA=etjU^f>VX zCzl#A&gL)5SU+yp%ra^KZp)Ao{+=wYVbxw*E>)WjS%`Y+X4Uj)TOZD5d>#)t7;}Uh zSTw5hJ*)Gx^en5~1ZR&R&XC+Bc^gg6|6XY4oF=j_2nPW;>N5(`Lt7lpCW*Fm)*`MZ zU>h0?6Jw{D9k}Q*FBZ>E(a6j)*TPcB^H=Rj>D$xFWY<4IVWL^^c12`XyX;3Wjdq#t&K|O!cG>!%UG^3M0(Kepg0*OuE#KhTWjjgP zTn-CwT9f6ltah1a1IQYA@(H$^eqH6~$S3im#>B~BneF1CjFpdzVL)L(nqY=CBxFfi zWCW-)GN2}`tOKwtNgp%PT=I1KF`hNJn100M(re(7h$k1yRT{||qvQ)0#vn4VvXAqR z5HBso?w}zhfB#R|dnD)IvG-O#Zdv{K0%5i6R?lYd{S)q2i0EBpKrej!BAf5QN0G0& zy>|g6*Y+8s&w#~Y_=fh64+k2PvMYCl?Z$9rh& zfkpc~bT~IjoPWU_yRJkn=gnZuO5F8yCh6$Fb;su+I6`6E z9?p(WVHXsxIeI~i2y8c!DJHOd_O9(OJFs}!ukfbCp}S1R7F5TcrVIdC@L^ac6(!C1 z5od?}$p>uFc+8}V17SZQO1ElY6qvO3Y*Z+dEqM)(bLSK?|6MW%&p-F|jfIJy<^koD zbwnXvfppP(?+ZV;r){LamkrN?MI%q4*Rz{MP%<{X;Lc-%z6k(B<{OVgQ^gR!j5Ox| zN$VNV0`WM4U*Khd0_6rq2(JDV*?*F+9*Bog&PR3Rfz{tw4ekIch3>$gF<2~GO4Y{5 zW76LWifBF@4qU@6`Zld7pR-Vd!|<;o9Vf!Sj3=kBT|kb;plHhr7QHeNZ3d4(=QZ4F zI9ev8KyOWLYbtia$Vw`vtYc1^31YW!(2val@%x$_jbzdsldZ90KV`XOon*3(B&~&yZ;ERbJe|Z(EIi2_Y;~jU9&;WrwwO4^oSq$4$~`+m|7o$F!ys&8lPL9Q@g1s@W zPAxj=t#CgQ>NBR{I%pJ==Bozyb$%-?LiPxJ`=+!T+j$fMbJ{rwJpgC4+Ut%$uX_)g zzSqS`bN9?vYoBdAnbN?14~nNsnmB8jc~DDiJkEvLUz!IT3^!PDa)ZC_i2HRiF5JMO z4aDgLII|<=D?Qe=)amGWGBKaR6Xi2I*($3O8xe;ppsNkImUvtcv*$)qnHCVto;l#h z)1{S|Ju@A8BKXqdC)?Tc`#2r7Meh19kAdtk^=o!Td><{Ioj)!7lH5jPNpXP~^8=SYRFI#4wB?ukorVhMsLoPiXJ6ZI)GcNgZSXaR@{PKVJ zWB4hLVGQT~T2&dLSU+TMM?vClL}98Xift4CchRGV;Eb)w^jAMt9K-$!jOuejYS1cl znj#JmBfsv(`OO+2`kCYZpm#HhgqJ{FzJ-=9B=zVwzCmZgBI-;LA61Nz?lA3~MLS5G zfhPj6C&vBie^7W z!-~j|_{LzOEi@KEP5l&@U0~D;>%k}}h_ix$oZQ+YVow)L*-H~2k+@>SOud^NNISCy z-1f(%H5F%Ox46nBr)(@zqpRv+^1&Ki*oU}4_=0_REgE3+Qn)SEcS>mQzW74<_c^*( zHG=BzQ_4EDld`wpU_Aqr?VCZ_$aYW$PTVedQl(G#T#hle8JW9XJ$UPeE!^m=WE!!L zkX%8rw{A?{wys5E^74m*993g-^Xse}Y#XTFzh_K#3lwOL$yxEB>O4FV_ILf?zu}c1 zFXZ0%8?^pw&>rj*=rHi+#8-4mfKJ8P3GC%|=b}Rq3DaePm_*(rq5|`>`u)F_u|ozF zvm5@5zoAP@_p8SiAk0O#pKs@)-Ts2vm_1Wf?f!NyJ_ECNZ*zZWH~aw^P!m?tBVgPG z$DCyx2KGu4bXjl~$Y7ORsDqr0%&BeS=dHm`16;N~q*nF=;>MA9K^&Ko)`*7yH6IW5 z1wHTuQ+e%;_}yvZf^y2A0Q;9lfNwbi{Kapmp;hifaqe%qH&efnZ`_VN$d(L*IywR^#z=>8XWtbExhgD2PEn!l{_ z&p1w$zY9zS4AiE=U@~T{M2JxyA7~WHuQKT8WI^u{sx`RM zL!XgwP0Q%9Jm~b4n()5gvRD<%oP)?N8aWVq#ml&30%IJw9h<}E2P%0ifr2AUOFA!X5jUOx)YcO^(eaeIl3aa6uyy5=CV@09I44#1R0Dz*FwL-%|&f+ zeSHv>mkmAUu|TSy3sm=*Ok!fWrnhLS*k2kNcNTiN={b}B@4*wvO6!e!S*26ZS-eqI zl19ZJCg=yMtwjm+Lr_K4havGK?IWebM(X57Vt4~g-}G~~lW6Xy-`af;N+~kA;O-2W z+}^fKCfw~Yen~%-$+!2aOjh6NB~d1SgY*J2sX;2(`U>hf!&RnVDGen!2gA7zxTIjC zi84iZg$-0VyH23Jc-?K6Sg#=R>%I--5J%+t`=pt}%orw5kD;Z@^N~QK&q&febq65l zkp#qEPzOH#q~?LLm|aO7%`gQ}P91Sq2B&7X&8gFU6}8%%Z#XsUju5BD-xK20y-c03 zl6r~`$k?8ux|N7B=3i{R3CJa1HgcK`%(Q{|Hn7+R7T7?I4OH4dl?~L|K%EUtmVkTR zHdM-@+kfMo=i@5Cl+dSh7aLQkXS@)EgVB{p7?kQ(t$V@-6<^>MOznpxdB4K*(k<5x z$6GqnYV`CH*;OO? zYRE8Ch$fsR##*$qN$_(VA50)4$uz@AdEXfvk++-O2WKiHmAlGN@b2_#W|uU zW<^R~Dsk$c2ju|TtPO{V%es(!gh$W%XWR8bbv!JF>F+s&z}7a6S(cB}W- zPb|?y@gH+aBN~Bz-71FV;cEs-h_QR94QCnKnlLA2a+C$c7njPvRd5{$i^0}3IT=sR zP=-b&+P!(Yn#q!uk~lwy$*H{etDw3aY-mwa2Q;)m^E*S$IBjTXju#&$s@91En#Gp2 z4Lyp^t$l6ilNGdG{WfIyX0;}9bf<>k`)1582_hA*scWc7M@S4~f zk$%w|OxWJ^Q+y~#+*>KUGJ*+y`bub7q)Elt`HR#Lh|tDEo>!aWEA#-&a}u>hUL|sWd)1Y@UrH_8cbF%WGrYmQ&>D|#VPDz zG-}h%b{RFSI0C}@er33J6+2{N&1?896J=h*D%AR_JMA5Fcuj;yZgJV&HsG22Ho*g{7Cx!)J7WC;twjZ*%MOq3A~~ahoRJsCTljHWPNv?{>Q*m_kbB(D&&WokF2M;|c5eFy3E2X0*o&0h zV!}6VErhQiJo-(-f6McmR&p<8!0(tR@G}DNs|`G}yMM}nPkm0Dk>3-ZsssGx!%8Ne z5ctoh`%F112>)r?V+!n&YWMoT3H&O;t0bK5g78ZezAMOr8=B;m8}h2%*KmsvXqy_y z`}So4hTiCxHJN4Q%@p_x2yg20KoI^Ug{S8H<<<<%*)H0q<~$2lWN6M$x2xvlPw|pS z$j72%k$aG83E3-1$SQzCb4bX}nS>O!O~|3m3F%`9xjq#lWH<;x$2epf{={a|YU0;? z8(3@u3v2+kiNaLcK$Q)^B-5nH41n}4Vw)90L`B2#X1f_8@?e3}-1aPRP91B|e&G4- z--L#$SGiZmHb8}u*O~upcf8j_jjxW?_0YIU2Sd!5KqjHSXm!1VrJ0BL)X-^(P@IBy`BoMmDAeZPU3=lZm@ABwh@2$x|`lwFa{05uF0Y3A5j!W5YpKw zK|O#!e5QJr$MDM6H;@otyvO3#24DAix}VM_S1?YT0Z%fNJhme+JZvJdlOK$LB;?mU z{T4Mh7#YW|JpQDM{`@qZ2q4?JTC#D6PB`BlS@T^a`Ht=AUV1C>$n$;F$yZY_#CJv$ zq|t^&m9(>mC1=vQfhbdrxpYy}5-}gP2Ms^{T8$F~w+C8Kj6FHSU?CTMq$y{h-4=ZZ zwj$}+u1H%!-B2%5)Hw|N>#QtP!X@~}6V2$VSLAZij`Tn$|q!bo66Bi`rB3NK8*H4&5NVEhDg{(nA387mIaSAqM`s7C1HzWwkn7h z**qX;g#t;l6o5>;fQ~#2GYXhY?Qx=yUOX(G#cIdxF)_9Qg4%$Ivrxc&O{^W3(bo3H z+9WG)W|-zt*l&ek-7x|@^2Ymhm)cPIxhOE3?4mN4-E_L}Vdu0;rW z(4?Zyx~U{ocCeo-(S^8YDV3061(M);C*;5q`h&JCB{VO6sD&zL>CA@G9k28s_xDRb z-7kHELpnhE`kOEmOx-WcT6)95p!`JUmD85w z-I0O(clr7EwfWunWYl-UN)FG))yvVk36(+a>c=_B6L9Td) z$0kWs+(hZC%zvFE#$QKhs=mS7r){U?@=0P?iA#MiDW~5~x2W;A^-W$92U_=Lemd(G zDfjZq3j)sEA1Cm-T;GGVHyI;#!k*-ozi1$?qfTvW)hx8!X;cRyQ) z*g+mK`+~GZ|BwNfM{N9>&mE2#wmrC6`b{Q*V;)EFZ{FJ~N73R|GW z@XN_*gj*%%Hk7dL3M6gzw*cZo{Fr@^@N^*e+38^J?gJ(Fb{3m{BTLd+DYCZ67Q_WR zHxEqbMTS2Bz1vSdDlA0Ibw2{1k&GqTD-?cvfVh`UR7;B((B9-HDF@g0wx!4c=U5#E zfhv^6M_P1`H7MC4hC^YFJGY*_gnX-!N^5GEkt8n8Lq?(*E|}NYT$gJuerv8OIOPRb+uTN18^-{#c z6{`eztPUdXX$%)w?q?@ojS> z6mbK{L^I3Ccnwg4>36CX$ksVagehxS;Ho;ZJWlQ8Q4kbFuEu5&MD=8$*bMW-tS`^q zOImakcq93qtkj{_S-!c{=G2QVD>I=B1I_zbK`Ib`3LtvQqe2m_kZ*Nyjxx-q4%9)^ z_+L0Lqyv$Z z(V59l(l!+Nb>Ee80=-~oEhDl4;&3aj4^g4bZ~4u(N;Y`q;<&m1`&XgQw44}v}}`qq4pmm zvEQl3Y7}CdR(cP=>i2t$(yBiy->7q4sTj8P1k4stWI#;$=mk4S%oP#Bxrge9 zv;cy*{lf6t0u~!(b*r!QTY!M?XcWz&uXX2Uf_x+q6;g9>!0QFCf+?lKY_$cPnu)K& zwL(MW5)kE%GsuThlW{+x*su_uElv3y4d5W8dvrKkx81GUMV$c&pDfl2?L&StP%c#} zd@Et2A!{Xsw$@@*P4#r)#uBZ z9v8JWohRQqzL|TzFb6%oR@N9u>)@CSt9 zwc$UjyjteIIL=pSVsv*CCGuJ|hQ0?fK|YlT55&2tQtB=PTc)Prtdn6Of8Db(acx(w zjs9j3*;1HzGja8!8dEF6nR+)LZdwlXEI2ai?4yz4xNTJXd z=5jJ=9#20VRgy{alFP8K=`n$bbO}J;8-(tu(7OQ3j(e+2(na|UVUjTP>CIbY2h@4x zGKKC6Zw(%a!rvXR!iUK;LX{{0&p{!i>pc?5iE#z^9LJkbNLg~2P|@!NL4yOYW4t6n z&I7xj0YuKT{Nt{cRHs7iOV)3La;zi$b@(jrP9BSG`VW(W*s~H{~ymo?m1_#z4qE`+H21~#1^o|mv3AS(gDOkgqma&48J~Zv z>6@(VJ`kDk~BoqKMAuXBZW z2XyY=$cl~dN7)?pdIA-@_Sz<{Z(Y&z)FTy4rwg!i%DgSjo>^bJ`Ky;oKv-APy6aE z_`F=hUfqq*OVFtVdIOzi^E41Q3!d#&_~li9{&<>vwY=VBc+KC;1Q-_z zNE-sAF!BT6oEyBt+}sKBT*QLmF8sn2HeOC-Qb2yi;*2SPznPv|z(OsxI0LTWsKP?y zVbt%C09(VJS||#!+_5!GnHq))TNo;AJ}ldGy=;wu$X%?3+mj1J2>!mdL?FH z*{?dKTr}xUo#9-v(x`2`>{~f|17m-+IzHb(_mnrP0n4%w5WxQqMS?8go5K{W3!IZv zH5*Bli8+A{c33~!0MqlT`ZaQxlyMv9xs0r2Z2-G+pC)4gb}BjDRN>=p(7kQUJDbB zIPXmqjx>WiMhx07F~*EOiRT53m*PCU{bqj)Ih-L}^En&x7-6m*`#a&9xD+50kI~I| zj8RGu5Zca~>!kD>3U=oj!U9Ba#-AQVxlVSMeb8T8PpG1qK%Aq8ri{gB>aO|PpkIH5 zuYQBzo!4Ksu2!b(oZ`8hZfQ)Y>L;N3&#{U2{XBNIc`v%TZkFV&#F``S$CLeTMcRME z@uKP6{;HH+NO%b7*51;B_QfUyH+CE%AT&tSRtv>R>GYwz#RI07yG7%&9)K#( zFXyH!gkZ=*ow5hZ*=m2K?s3RtHVlM}>D~*~{i!h-af0mEjT~;CtyoLfv0Ww+k2OLl!ycJE1@-esARA!|*IP)4R<>@inZ#zaj*tH>N@GDk z*E>RKr*2J!! zXPzBn6FK_*;5~b5>D(UjyrW27L8J$nl4 zxpAPd0q@tUfpiDsY_p<(v!TlHe6rm%obrY*J?)B8-E4P3nP$3X!$ghMRJTd-RZ5As zXXn=Kg@A5s@IZ(xL^f6@eA*_$r%+Yduw!`DI?Ob2`vbtgC6jL$4g%fHNf$rp?f|7ZLk>M!nYtc4qW}feB zy*r^*!1E%M*>pktzN_uBy>qcN;-;sRl8y>0jW}3G^wnXyX$!wm;OWG$G)meuMv%6r zWlxbynU>kq#|+>HJx1mLsgEl?9mv-k5}70BA0JwAX?LBjLYv6 zTAR6{jH4u@1k(oCp0Tg}JJis$R^cw#2q{Ph^g4l^VL5>m=XilA3JHjcLcw4R!pKKX zZKNEC#3m!V$D(1TM)>BjsAa6w(qoYh9lEh@0!tA@kyMLw>7mAt9gP)qsPZZtQpRE+Z=tc51$A zTwH#QRm}|*JpUY_-T+!Hw1W+vmBso2G1m8?5U4a)LYXdoHKTn(@qf@i+4;$)HxE#ab)zL>{{b z$biUGN^7_H#bRd<&Y7TaPz@@owJz6CUbGqTIM2~qpKJ6pFrot~di@05SwB?6Q!bYo zr;p+U@LFtAfY6NErDV=lS|NPo$p`*;UagWQ8u`u`t2l0r+NK+uZmI|pG5(OMp<6>C zPiv&u8;>9AV>hJoD3Ui#3SW`w75t8>1v8BEPsu(E_Bp^cEbz6RyI^<6mSt#=!*Y

    lzTvtiJ=k!iF@XQ9s*Z&`r!qy*R*r zEJ11SrxE1f>{jh|7ogj{Nk^QXV*(CKmI0@{5g2c}8oj?tZC$aKANwhklpdQn?1Cm& zKK@HTc4hNz+hR%BYe$W0OoE?d$7n+6%w-vs+63erW*THmROA@?+LZKfD-D6((>+ie zWkznO(#B4vt%bn-eppmIaVW+Vby zyF(xXGF6d;vkc;<0RJW7Zp~pgFJsIk5S3Zg^)^$lFhcRrv7+^M^J=@T@ zY?rpEpBqFJtkydk9CncU?Sp7Q&xjJs-I6@0cz9sSl}?A7fCN$v0FDhlhqfpKX7W)k z+dx8%s!*x`*z5p1e0oSYfpIO`qp_>fsSRCos=C0ij6Ic3owH+3)vGWlX!TH48$R~? zS{C+pL-Eq)vDreKCqL=jV;m7Whn-?iDv<#wiAlV+D?fd1tMRhO#7D3JBf`o8*bm0d zddNVR86fKn4>bI1^iJ;4At&v=YhW=j(ExYG9&;$7-1SVhT^eP8R;EQjz*rMg+6H%E zVveE;_jsQ>W80`O1tM*mw6-!I1HK)m>H)FI)ziCl6-L2@7R%+-90QocG;l8W)Uzqx z!ZpbDoidc!?2$+hE2iGa`XoqfX4VFzV<V;>C_dS za>_7>Z<_<$#c8cvo83piq{_b4jfq);V$>{qfb6Wc$MoogcU0ycxP~!@C{kh@InLaU z-9eo96CN?h>~R{!?L~V$v`EL3n({!6Vco3GSo+|s=K->z3dreLW$VZ}5Y_*NXfyVE znH}-_g3o}6${y1j6SJkdBWCAR9j7hbJJ%!cVB6A7LQA)^f;CSK5^0Sy75Uio$)cZ*lo4Hoz0~}W5X%9^khei^Xr(?pqM3Mv>lKQt! zlJbx=G?;{7)N2!xwm(xs2yb{wzv@H`Eijrg(=;2|Qpm#Wc}RQq6q24jg_JV|o~3MM zClV=);tCDnyHZxVymN&RFOK1aH^@+Dk5U+M@95f&yyl#$uf(aw-X7_%bot%1z)F`b zr^xE6b1b9fL`mx^HI`o_#DFRpjDmp1!W$(c-t1K1fu#!w^h}l#gRt)3i2}yEwqUu< z*#RQfUlSl=q7rd{C4vK3-ZO~cwmmWgE%PI|+gkP+35}>>o2=QMRHmJ7TaiK5BDFxZ z@!@@tq#v630VjoFp;z?CPw$41{^+n`g++#nTd}xBerlTeQz<{DH^J>{cYI?I%klj) zuN9H#l>~XC9?PlP9nBF>u0>~IB6SFXRDupt<0?oVl5CUo;Sq{k4s zFv3BO*p6q>jp}$Pb89Mf-NrUx+AK;z$5dVC%|gv#Aa&IBI?yf<@DCZ_lP+}=@R3ll)TWC7Bx0UHiRbxR1v98YNAoTZO1AYTpZ;8;_4X^`k>Y^Z8;}e{IE*@- z`xD%bi0AG$A|&!B%n*Vpyqv$8-x!L71(tcpIdi2RzzqfoE!^~JX^DfDK8BWLh2ees zGT0y@j>;gN>VOPfC@u)%xVGz@b!HYBeD{?vgBHl(EtuSVk%1Wk3&~*gufsB!?#p1I zk%6vak$P_elWe^ygT3ej)Ni@e*KY%HsedFT$NMnk`*-})pAAz zRjW`fgQEL@h5tzU$>SeE|3#SHg-*3ge%ASV#1NncEKSD8(lcqW| zD}qSW!Qtb^yNEQdI@zxc8s8SNB`%bu(+>)Vl>Mm6-M^9wi^_=u;fdTj?$Kf8TIJ6; zb+B@`4ewy(NSWA>@fvmNH6Elu5&uk~a~RN=SftKj+@hSSccdG$$T$b7Ll2xe5wvdf zf_ve30JgQ_F+TM?#wJ8|m5CpinPVy;vzM-xm_0Cx*>9Vr`RVbW3I!d6hl7a0Fcz&O z>8%Y6y$$++9xLgL)Kvs&L0adh+V>uxg3l+b_O@$%jY(gmAqD-Ml&OLSi*Da-{XjO% zTS+0bw$uL(8;1EKY#r3|hfegF(w-52PO`J;IlEfJ@}Sm6{THeF>k4i(h30d;e$H&p z*24Y+Uz7EZKD6rb!%yhjfR#11$@(`Ek3W6n(!Gb`%{w}@*^ZDm*$3}f&<5zh!&gRI z=z-nYs+DKhn&4~%jC6RnMS7;ij`_k*gFy%HmqLiQ0GG8xZ+Xu~?xg_0GluxMD1ecP z>9oySH&{G(jg-;TPrwQD;<9jFO=YXZIg%@c$b-kkg*|vLE)CohCdi^I1`Qfkex0D$ zTxo0(gPIMJ@kF(ar4X<>FHO=K;P`*b1BUoadQ_AA10&gL08D=5Y5=|er-mO;P+Ahg zv1sP+$B_u7(&oi|JOJkg_7v9Jc;#l}z238lK?dy))#DOFWW^Al%VGE8XFHO6&Pr{z zxvbT)%^iU;FdebtXyTlSt>d$=+mFwX>ox@VejI94qUIA{B~sc0Xsr@6MYyUd@aY)J z6?ID4yi9>g?dtU)s8RxG#{rDy$RINLo>c?394{KMR0U*L-^LRqK@C_t!Ds+IsFnQ_ z`tirfe#y}GWe+lf4H|}ojKxKyzWm=2skfgmySy!dKQzLohH)GpzfD#f7>vB67<Y3p{Ax zc|M3^j^Jnw?O}R0h+m$)?S*^#wg{zd^&L z^DMNr#@U+MwrDdv6r8V~`ruR}DGrS~R>8Kz_&-!Dv6v;%Rf z272gKON2wbE_ceRX|jcmUxpSMv)U32=M^9pK1*U@c#772PO}y*jvL~Es0TFJ24{?w zj3Rp7$N%6ma)8-Gj3c08Cx|j-SHu$vs*{!xJCQlr2eimu$lzR|z(G3^m>Cv^h5@+Y z3MY0#O5tn;?%W96UI91`9tHKJJ$q7|s*wtp-I9XV64V7!WNjp^vlzQ@j+eS zi_iLPcMnXsAJzi6BGm#s7#;h;cr|{GY8SOB9D>f5$h1`m>SPT;U&7^3AkCR@0vD(Z zN;KzO&-=r$$O)6HgAz?sa=gc!vXVf`nkhfADQhNPY#$r^uMHDVXPwb9;j#~C8)B0b z{^N^LJw_`o4>yvfgFGCgNVtR?sf00~6!RA^hfQ*X7cmz%FmnXh3=e0yKpIgahKCC| zQ(dtbgOK>CK?evyp8S{ynnP~WaJ{ySJL9Neto6A>qi9~rfW1!l=Tyz(oLb_3RiMDQ z@5{Kx9HevOjyaC*GW#S)u--akJCIO57KJvJW24sAt8x8qWBF)2k%NupSo3K2GV>#6 zT^=4H8nn%z#4l2n9?1dI^%rZvh7u8)P?+YIgVwEy zUm{nObHMcez@T-}FtG-Syog0pBZJm&A}i4Afa$>FG>3uISZ}q4vb-zGAGAizyhv`a zp^(3sgHaR6x|{&O8$0uOON2XLs}dZv9*QQHVlm2ozjmyOIK+~6>Mn{3Z;cL8-iibn zq+DPIDHr5a-6=uvf^ffxoQe!my5a%04Ob_@z_#HUWRP;(aH9pEFX0_fhp@iwWc4kl z>`}~>RAPR^s>7>e+X222z>SGo=of}RYyIKR*~AcPii90z_%mw~++9}?wP+=|#L*2= z8}wi!!zsbcX82Qan?`B4uD#I#3~EB<)LK|HP@$ zpV6h;?b3h3uiB!Yh5sn}=dGkxfqt==%J0wrXLQX8gMxw5d&NUMErLkYqT!U`&yX}G z|I)7w9P>!E-fj?(41bE{if~BTkE-1LD`^U#XWG>jm__GC#dS&7VX6CFoGg}|= z_w(EF5vL(C4fzN&Rtg(K@!_%0HjP^c2|EsNf~Q3*Snwn+_K4aZ8S zsj9bYs<;2bmp>vC-_?9h%2b*@2eK}iEV7v$r`IY-%_qK(|(vX_Q?kK_57hO7O-KC?H_of;n{H|;s z+VZ-*i$4ues=Za<`(*6xjg%)qA{aSi(Gkz9sOdo+W_dHzMIsAEB98SLR zs$eSF%U1FoCCY5c3WI@|Hj2hhfl$kFbhzjz$9K>qiZC=0yugLLP(VOEDsHcnHIo~8A_Ogb$|a9f_sDG zW)qwY78j!I=rDf>!JL&E#Y-KM3 zt5^-{dMncLjQ;@x3Rv`)n!YUyqsmze8-Qn^Eaz|LOi@j2n!*c;YsQU#NE0=;kvhK* zH6)?qD<=_k(qfI_lZ#=-j5cHmyvH424qKl`7OXEsR)eUcN7k_cvOGfyTA#_B<}a)- zglp0Ms@jrs4tuL$j-X^i5CLXe>Nv zdWzjO-ocu@{APL?`ht1Gre}x=Mqd~Y4w=m?>Dz#$T~-O5A-fY53{I?tvSzn9xa`1a z5FJ2=sE{}s>vf;~{#0oE+?L&Ytw&&R;fC|4EWN9g`uAs zvWjBSI?ux1d|J?X?HiTR?0Z}q%D127bC;?{>y(x?33`fMOdYJJcu8-5Z_`u!($u5l zo?>x`o?GxnZ@(E`%ClW%5jsKyZ2SyApnZo`zb-^>5k+Blc94)z z`&&bowcS2ik2Y<0il(b2caj4C?{3NG8pmXP zkd7IUAvXuOAx*dSFaYhRf-IPWCi~CwuDs$)5V~WKU>X$D8b_ z^Cx@ibh4+3lRfpp$sW%9;A=`w4wn7V4R}l7k52Y5O%7H@)l-}dlF6Q=Sf)(&)Wgw7 z_W}e?tzCfR4o>$}BZ~8+*F6qPMv@D%`He~f zh0`%EIh3k(15$}zf-VONP8aPv(9YE0Y;Iu5I$cz!9Sof=`ub;@BQ#xfheotAU9=hU zm%|L$1GRe`v_ZxJU-*{k1Wo|Rn=WcFC{cy^T9s{27xmTYqHBL06~37+8jFPg&C^BP z#nOCAR9^#K^x$+6f$wV%_`g40gjJwAT_h6w0n-(as@fk2PZ5{Voh;KuFZT;7N?;84 zga7x_MMpG?aM~S%{%M=^|G%FuI>Hz=_}{_lqLbjytl6RiFjAdPH+=dZH(g}pl z{8D(=4ppxG>7tK^|4*GRqK~)%)WOLH8o+=<`Ty^9(Iy@BY1dRQ-PM;r!ZvM6Ir;g2 zbGm4roi2(v)&I_P(R$NJciiI7?Cmq9J&XT8KV8)Opkb$fz2}Y%I$iX_4yT>_=Tisr zt)tULg(n)rl$j#T<6^4lQXE5?Eg~C@E=v1TMMndoqfF44Z4G2Icrp=J4Wlo{g#69ixQhys0Pq7j|FFfiH&yhA64kMx9It2$ z<%EjfIb8ItzxzdVu-eOq?q4Y1zj8^kD+>nNocQ^BLa@nlIo+Lu4gaH^3yVA584aWDJ_^DYe1cwHo{lT=hXO6NDL!kA;OnAY})^xF-@5Vn^$kP~#v*zes)$20zCpY-WsVM74O5gz-cEVJ6m zxjTn!<=+oWaWG9Tbye=rhE6uc*x{g`C|SmY2^VI}C7N!BQ4B!aWJT@hSy4qCiLWM{ zA0W$WsHslaj{Ye5Tv^rC-W1Ly$0>_LQ#fbn#~)`zr{-+Sh&nWRVx~?{dr0UES&%5y z|J5m+)qnf`RDAy_oR^o{K06FXHf+I~?D64CkO*tSK7|@_eRk_s0OVH5-}jkNU;XCC zRnXiOb_M{Tf@TX42L>W5MHef8Ju=opP;KQn5ZYKo{cN{hTb^ES$eL>Eq(IM_vUxn+ zJo2x{luX!H*zjI3Bw53|SpnNLyia^YbQs^;@O~re>lxmQ5BfD|-*am{cJ_;xLvLe; zWr z(I2AB@U%r5`%t8N6`rw}^@&v4S-bQ9o*4^HNknEWlGko@v8*;(pZ;KR?Uzs09gQw% zb7Nxd?il)SOuU1?TuJyPf-{|<$UxA%D%^E`kwdqy;rb?iXW=HPWxwRqZ z?+vA!uzE75{AHQMc;|@3+MM*WcrH!6gT;!uvjlY_!&^Jk&Ws_Pa+WLn{+a*X*7cug z`4i+b@44@uIpaE<-ukM3Kg)dYGU-BOe#DXKj?I{{YAo-B@$}1kaZd~PzLfyJvHUYU znVb6fk&_tf9GTPL>yrM0^ssxk*XfQv+j&WZ{CbD4wr&`MVtx}XX5zMs`CXuxJ+zqf zOfe642^BL7#h{R>i!8@C;q7d^fxB>gZUStUMTrT_OSlOfBRt3%jRo9S;y(G`_j=&O zx2DWG1~O!#GZNn^h|Ph-Crn}jk}M)voKJ27OA7`$XF{fg1%>$6LPYqk8?G`Fob|b! zq^N(aqWRW`UYK(vQ`dKqd5c`ekI70Ae+Z_)VB!rw&e)y2$um%phf0{6c~Di} z%ri)<`a1Z;Rh?KpcP3Y8t~T#Ya@_x?XWn+j*cd-?W_yB6&(h8eY-$?bdoTLYZ0pi!d`w z%zHLw*3sYk%;dqIQ1@+f68VIay+Ll6lRc%h{PQxzbsoCPz?h%D;+uS6eUvttpSNM! zh-5`GPR~qsZayWw&k*lrc)HhM@ZiaLQ660WU6=>U1}hJerB8O=@IbP3MPchkr~ze( z+sPbpIq!IN{-7}>Tc5WAeJonzX6v9f(LvEa=G-IpME~fNcDG8LqOXK|1Hgy8u@gF5 zp;x5C><{;#qc$A%Nk!`{Wu%MLhimZvq zOqB~0El7Lwu3%N4zD%k*C4%s)`xGd1ry}ILB81WB&H)Noa|_ySm0PJ|IW&T0k;Rfy zEPPii^&sTWPz_Kgf}7Dz1t)$Y?HnOAx-OEPGc{?sNCC<$BBN}f*)C7Rb)C=9oNDL2 zDA9lq1!Q6D4gHFJ)by)`+_UQzfE750&`Z(QbOAoHv6J1QfQTlulBo*A%l=}gr$L$7GYUQ)1{6f!ocZo+ehJ*w zd{h{tIY-=eRwFpEV;HOed)xfc^XySadCfc!#W(7!En71~z7@mO95y4j-nl$I-*xJN z96q1M^1)wKaCp4=PI-i&iiOXVAE5^tc>?4z1?d*142Onccv`uveEJorK-SntJJ?zj zDluuN%;*uY?Wx#U&jjh>x+HtCiyOPWEAtk4mzUmSa3N#n4y$dltow4%lw8)uoO-F)T^BK28UGa*bKL?` z2^VweRbt4$z1L&)g_7ih{#2>xjRJFjp^|?QT!Edqxkt!*F`j*MsU~GD)u>*)z-&i5|R`67jsN6kWc4^uPUP@_)n zqz!keE)sM#Y6H6^6RNKL)uBZ9$7>z<2+ zKc`11TC34Xr_AG%gg^JIh`K@D9?^KiBmSZQMdjOxhI{-;%X^4Fdgezu_Yhl- zl4rE;9{S;yl0%h}y?jazj!^RE?LKe5?h>YCyDXH9rwf7oNc`Z^O5j~nYw&5Ea-G$E z#-v(xn4*RB2VeW$qJ_MMG+vw8?+$q{=Czqkc$e{V8Vt~sDjLX*$-Z4b*@<+ji-CFA z;XB?~;5uJOB8P5^>^7zXs#olFP4F53T7WhH_joC~$BUyFD88!}FY>!hxI_j6amtKy z;Ql(}C7M`&L_a|3u>{Xz|NRaWHWrzq@m;5{3Y>ZFGI`WP=uQjd+xM-lU4W~w1!dK6 za1zD9dJB2!scG;EpG5YHCD@5~GX1QAV^2Q~z4+PaSYf&0SPWu_Jtr&VLL&J8A*@)1 z-ta3)ojOV2RBgj3cPQebW?=57gmnWk&OV@5dKc&pu3p7|pE24Z*js^U%L#xXgu_3< zjUj~l`2y$%2WYUqLc4e?a;mPu6B2Ggf~;sW2QiMp;WHzURGCSfy+;rwL-Fj3-UR0&ga@J zDq8s#$swf#=WC>tHK+tnBA8_kVs)LZ-%`SQB?dUqv^Q#nH5pwIe&cwYEC{rlQA@bc z0C9J;HBVDKyxG940093?&(xgw_b|HVd81a?uPZvsG2qwXYw6Vcack+R*yjc+`atTH zoiMnPQ+|wo>3_+6yK@vKr+g4TU^GZX85|_{z0bWgsoKuhh)yY25fO=b`t_5u7d>|ARhGzJ;V`J4GdR0XcWs$QEiUA3pF93(LE7I}8*-rCoMTWSQd z7i$lnCSlCE(mP-b4dUc@gYghCwl7EZp*E{NT!ycpq1(RH0`HoP71K_uELdU2E`rMo zX02{P20zU_@euLKS?idVteCaB6MRly0;;z>=kG6+;_eNMA9UHU5arauScB!{R6P$p z^09!GxJC?UD2y+^=^{?(ihVj#UAc2WE4*|)QDL=7t1nTv4vUGiCmL;TyK9y+= zgHT!_W4Y`^$gn5w)W}jzXZ^wWTAEmk(M{(eST2v(Qs-9y=l2q8D;^HIWjuA+>IM}; zDZz1-l%B>l0uJ#eAAB;LnemJyT#nZ;S}ONO%}_1vwMkTHQ{cWQ@kX1BH!536^?t3LE=DHNV=*eM_41KttH6T*fM+BIc`cDg*Hq)qQd=(2s!`-`5ueZQ53M-AJHr zT^UMz%vaWu-PlQ6DE%{+Wd?to#Q`VkhgFU#!`ZngfoFWz>4+OWQXT4H!T=sM;{tnR9VFJ z3rH>`E(AQVtrY$TWN3rU?1V4;!Y6!xB}v@)T=}lSW`#T#A)3?^wADFhtJM3#2DvcF zIZH8!R-C99D8Xf!yFUz8GH%v-7<3VRFpey&4{^bkMIQ*=zCNsu7*5$r<_WV#4O#D- z++GB5I%FxsBsyDzOM{~Jy9Vxh}5lBE5rbE)@s^L>mrw+NS^67C^7xY*tJvF zRzbybZY;+=Sa_+%iyVViy`c+YfHbN9< zww3Yh*3H2wS(}4B@D%}gpfkeBz4?8kZfcQNU!9mQ6NhAD+bMpOI~is{Y~VwGIFtFl z32Rh%qjuE}L|lY{I{VQq_%OfX&5-oL`4Lztl6xyszydD3FcSf9F~ZsODIy$n1ipcSG6B1tSQxh&mw>Xy@^|oLEQ}v%H^bG8_-c2ao%o?zSk=2?VHR@yf3|FW z9B4W{!9SUskgAlT~2qp5%C+`a+m1wJ$kz;$ZPJ91hwbIU$r zxxCCT_pJ&chXw6BPC-|opcZDe?@YT$(uyPv+3xkT9rR1hwi4Mg%yxpjr&gi_3|Gh< zfHcLL1(ZTM_cA|g?$^pMbKRip?5tTa_m`Vgu%5u!Z>@s8h!S4Kd+ulEU4w8pccZ-P zg|aBAycQ*yE?N0(W9aAq}6YZ>0qakY6z`LUV$oTd~& z107?mM83(4Z8^U`q1O$~)uLP}GV^caXf&f=z6{HYx#^gR40L0$GgaDHq4uIHYpBZs z!yNTf`iI~dQG3Ji{WX#H=?b`w-17mflfbi9*D_X+(>2Xm`MAmqpR)Md{Vk5+HbeRf zxbWOv0@&D;Z1|}U7-_ZxODo$f20lv`cXy1afqq#a<@Q-3xULN0&6z_I-U!oVhq3lO zaU3V-u3rbWrBfGRkmDYVX&{fl*{bJUpT<|i<3xjf@J{NggB8D*tId}Tx5zQ9r;zP| zbFRu(w!zMy+coQGm$;KvhZSD=qt*a^pxAU*;$`a^$ktuF42Bf_9xTju0L{)=)JTIt z=(@Dp4QwNz=n3?IvcQDC+OS@8*4v!*UQV{6ly^u_i-cAbu~?L!D?8v;)xKQ$&Aj)H z8lNhEa0hwo15+OYe#(X2AyfkN7n?!eVzCXR#ZK9%-V@^3tz5VVzpZ|GB(hn#G3@$P zudtO&n-)@^qMIdq54)CFmtd%-l7*p~&J;Tdd^Yz{R2dwW=YdFxTigQ**k!}Dpy?mg zk^$poEU|eSnq6fw9##YI*od&>ceq-V_x=5_3fd07c?rOKk4awo;3somIL6{#4zcm2wAFyhd7*aUK_7&V2=punnd z=<7dc`t_#Bw<;fu$cq!^jAqk{*zvk;8I8S6gN_6hP>yVTFU*nYR!OF}_Tk5YBUaEQ z_JO_0lig@VC-^O*wQN&tL&&mc8OwHKkN!t2i5f^ZnBsEQBJ3*~z(}Pjl*x8~Qwb63 z{#pf$4%qQ;j5=vEt7^1K+1HDUs~0J2$x7>b6zHr<;dw9U2BR8v#U+*-B@qH@m51SS zrrUBtrFT)pvRa!I9HJB;%F=Q|m_1plbWV9UES)AxPg85@q}6|O?VNfy>SjMdARe0c zpv+_AR|x5!nkWhQyWW`JEJ;>~D?u*#&D{1cu6dBP1mv@XS!J*HhYplZo!5ENE&voF zogKvol40>g3(~qw;`#111Jr&*MzMFrji}KPnVC?Nsq(aetRZfsf%~lh6?5lFdjWG= z;aq0{DrXkEI;xrHX^bWCb;*tZ!Z5?6x3m*9quEO$V<{qZt&@bl& zjpAK^V}0U)=aD>u-Rf6B%P1(28yhJOt5{5pE-+=H>O$PFp%FcLMGSgDIXK|d_FxQK zGM)SgD+%Bmh;b*uDAOU^O%*#r@osDnp^zv=1It}d4tyeCvr3FP z1m0OIB;boBSqkc-Y)PUdG1fG(>oYc3vLta)cD5CTji_dcJ>Mp0*%Auv1^gI$7edBI zP^yg#7(kI3{Wq&*lq!BVJ&ka%bv1Mc`L$ zYv4+7odUb^XPJu>WRkmD`}Wg87R30sK-X<uyk~ETzZKT=2w&3MD=M zchrE`*my=;!g^NDHP8bC(0})#*PsmN0rL)>vSjAo{HCZBd;A|=E#yd#|Mv>&_4w^O z(CmAaq#)T~~Qe^1TI9{(8%CO!VQm91Wn zzl&zW5*bd%xVc|Ry7~ty-guN`-Pu??14c&WGM9^HVqJxNER=CxW>C_cwX?rh|j;;>Yu9jay&h`HWH9;c2-JUL54sX(GyE3p&AE#j9;-4#3@XCUN1>houl8Nj_b4z#cTB;B#(1mQh5*nnPPitCJJ=15^D~E z<>dLh^gR#?+0Aaa^4UtHY#o!mujV0%ffna$N2-Kl=*!lP_kirUHow@xhADwP>f3p& z4l^jGwe(pY%=BD<`E-QUQQ(~G?+bvCx>2AG^_4X;jBMT5r{W%@<%)eI&-7?kTo8Of zZr-^KS6(M*dPy_B>@{INmMnPs3#uW5_VOs2Y<`Ovkx zc%>@_hfAk!M3l2LjxsBqx&}`>;>mUfyo)KD?3V@hq1HZdh`mqOs8yXAv8n?B(XK+P zY2+$HxD!QLIq!903VKb>)f0sWF1cNUSP&q>io3jLa@=L_U;D+l$UxPN61#7^sKk!- z^)_~tJVzvkT;EQgw^?^?;P-sN6S7+@uYukd2c~!U29f?oo9hu&UZZ-W`>(6z;&m3(2vXk-; zalg5L%GZ}+_|||vU!vAOoUwM|ARn!LlD$hywa#6!FR7R-(BoyRLqu>ktfC{OE$~ZQ z&}M1B4weRSqO?HW?6^gU0FH)tvjiAb9Z_#Jq25%+W({CV4`!2DHq|Ro= zzAJb=9Xf>9Nf4eTrqc#g+?w5j!tbx-1+l*NwdwsL(TOZH3&}@1$~afTw}C_}$!xG>^oR zw`d-DzAfJ(4+5Eq&V&3IDIU10}& zDAUhOrk{D4Y{XQw392K}lR2|^ZYbl2tF*K)JRS8*Gvn7@RbTaBuwUl|$}+5P%Qd}S zefx6&$8Cy(^0RD>-KgmtUkI?v>YH}g0q@atK>*)yAD_qmQ#3uoemAzCz=~J*Ul|2kp`Iq3E|p8V@P1kZr!C=}}%0#+f1Tn)gO|4%2zJ z=0(|V?irF!Iy^daXJ|UNESS34kuuzMqBiQ$c|m~A?usi!=PB*bd3Yf2hig3B_V~G% zrVE`9NP1z2pWQV*AZwqWW~9%fGw4UoRa_xDpYv?o`VoK8@e)m=o_VxApx=bHo>^$S zMbop=)<43-D}4O1r~cX6E`F=&S!I1fAn$U?8Ff`eM$y8XQO}BD3jjX$v|f{-b>(B8p~(l$qaPzBZn`Go|4f_zAo8KqQt{$R_Q?J zT~B&RguJc^uh^MtW4&PiGE>gPv{O7u0uL9mi1mDtyt0FSZmbLHXML{@(aGJOsRklt zhRdIm3=m|Bb8R>ohdw!-yQ3oI;6yAYPTeB46O(RiKJr@RBDLyd2*LryJ|~H03H$wV;uj z)oAG{^IOFEqPNH#79^8{7z8h2<|F}@UwVr#U0r30c6Xeyq<7c8iBmu}gLy<$1wt8%R|vwT2jW*HjD@}G+XSzdpPS#ruM z6m_2f-0~pYVu72;sG~Dew^P!J=NrcRA;C$$37#}pXy#sKzwg-$0kiM6YB(+uLXw1C5tJL zMu#12YVnUpyd>6QHl!OpJ?Pqv)8oifv2^l>V!z|%r)DgEuulr;sJ$nD2m{2vBiRd- zH>z&h2?&d1f}}rE&q1mg${met^lJRgY^kRdxr1^MZ3Fr2XtV6T>9S!->C{D7OT7W> z{ek8`W2I^1u@#P*>D3>N1DJ2ENw`iy+lb6t^&YeCb__I~nxkz_8|`3P1> zym*`$NiM;+W;lGXC|2NaK|_Q8@%e>#H*I6hNF#dwW=?@l z0;>Q32?A{12UaM00j?a(l4WBq_GDoppB!U`eYUcJ_ANM{sIEBcIl_mW%Qi$A?V>pf zYU7K5$fk{#{9S#@$HIN^P0y_I)%dnHG9H4A6_`wQ;!x1zDtgswX@U79Q+#r70G+N_ zWSVNzCK^#Kbl;1Pjg> z^mZQN;i=@Z_qrx4zD(}lC}-MA8gDh~yeZikpXx&3=|gu=QjwaT{1h(XC~ep&0D&)} zPe>iltBhme>mV9yH@*B2}sgJ zBbYrC(aGXztZH_0s{ROgBMvMBa;9AtKJRf2&)8b_He~U9a)0dpu@_2-EY>7D;}c{7 zC_Lk&CoCH1)!A?x&m*7m3Kl-20LxBca+eJ^2^C=$k0awFPSshz36UBYG&@7bgVVjm zXAjGpg#DX`W5pAarb^NfZ)5vZ_@r(~0zF4yS#8<7-NO31>llcxYc(6>XCz6MSdU~W z-<|IzJ?P~kKbN(1f&I^1Nj`e(HO<#D`3gsapcupB@E7@&3;ClANsr{bd=C%_3_OuQ zi{r;H-`7!n#M*vlj`bq5jnVmxjM@Y}^$+dG@uPt|sbWR2oOy~eTuzl=jz1nX5HVM{ z+__40c2AD836ePXfCY zo&c+A1<;LGve@r)h9UAn!^*BX)uL>*YL4$f{&;T0f#g&jiRjg+hj`8L1POc1?F3}O z5x7aMY&V&L7L2mF?^uF&t>eiIH*S?yK{QR$_6?-{ThhL#=LG}A8PnR~PothUE4KZg zI;jG?%i%jDtNQViIyX>X1K3VVA8OhYU@pxZE-aErg<=EZIJ=AAtDtmS>T~9 zTS>I0TN!%<0WTVJ5s$P7;sOJ;+-7qWD(^=#C4{X_ra;do2lVW?LH6^a;LlTaj#Eq&e>gu{*tWe2P&>oZ*7dC*1ki`~^QF zSTdi@IT26cGvbfq-$d^NTg|l}T!4^Dm-0!QBCFI200Dp873<$y4MXj&afgJPx{%98 zebU$g|G(b=e(YG+EpQ_cmoZE=;mUZfTKXIi#Lu%~<$$8VChk*BTPT35+5sFO?X%~& zLt(!q>2tQfc_1OopYamxN7?h0cFy)enbO%cF(=OqfsAYgBw}3kTOLewpzZzO7^X8vvMnXJ&Kiob|8r)`9b`f(gMpheo z^Gu7b&xo>x`%u?o2s+ETFvB@~U4Mc6dk=YaGkg7`OJ9EF%|HC>D1Lx>fRl%vVL9nK z&x3(jfVJ$(c(T6c{Hx!Z_U-%t4LN=D44-;#W-sUPs0;M?e z8U;1I8g)JIi_)v>At_g&z7qXPuQhK3?CJr47=xCTZly$mKB4*-n%925c}*sggNWqF zdOPsI>oh(P7X){lpB_q(>!{Dip=*ZNWM2Mx4fz$2TZ4qD1nS%XICjzhQ=o8N8yM5K z4|_D3BRHe5z=tU4Bv|B#ie)FUYkj{d6QA<;N4fa4z#{|TBhp>9YmH}w$3rDNrd|>? zUIObud0mLn2Q!$lGyPjDJ$=>cX?CB9${wZCg>RNQZZ|gZL0XgFdpuv>HF*Afy!h7W zkjZaQN*)@OaMQCZz8V>p4`Cyib{=bv>Ovpi%Sun^0`NYf3vY>}gJG8M_pJvaUExT; zhtVOS+|xzhd18tzn2L3+qteR>IBAlnodv9{!E>9aCZmVAZAvg`2w#{=kA+Oyf>)}h zohDTE0#&Z_)k5)OcJfjtEWxz11SZ~fbNi?cRa8CLz&6mDuTVFWP4bhW=7(*E49WUE z>emjR@?rWgxS8+TFW|-B2(4X7YwQ%zDlTIih1`KmAz$_#?K|ws_QV^KhT2GaF0v*RJ4{Q{;?#J!Lg`kWV_c=K@T!p~p>S{DMo|F@cJ4 z%1)Vo-pR52N!KLP1r5nGR>)MmM71~=_j6idXY2z2oI6zd641SHg6Tvr zUB1T-M#W(N9O)>R(}XI`j~w`eBiYyg99O+y?D@LC_!OQVr0^i2FsJ--iEKkuR`iex zeT^7Q4{C2AS;PJ+N|L}!Tuy=gg-Ra`#y(3)l*U80q!UWkS8)k}Z2nx25BMKnNOG|v zrv>XTh&R?%@tQROaH$^y6940ic{&jw3Ir@yz__r7%OLCmB-sETFK+;(U3gWmxyt#Q zx$tfY9p@4NiXe*xSm;#{oNWj+&2`R`Z$+d(F1dwt{Biy&Da!fz`kZDpK@J81jnC zl|_ZZ0Bwz2=XQwPjDpFL0mth->Y`hJ@oU1J1EO0SyjWXn_#*OCx1e_2G^4lul zL;$m)j;Woq8iSmE$S*UwF!|+zU_7%eOvHe2Mlt zSs{d>X7ZakN}P~d(-SC{1J_0Yh0B?~0^r7m{h90)R?SrzdTW)yQP=5lzn32CCeK_k z6&Hm8U1LB4z<|PyZJF;$O3D!Z!EIkgBSos2c`#H0uMl8zHf6-_3QlVbR{Xs{pK%Rx zHsr8;@$@481wQSb_&1(x(^dRyQBJ$A1(g^%M;c!LbgvKlu(@pk-%22w#%!m1T?+Z2 zStZPpfg-=dw%n}^@8AC9B~jcr-?3%u2JW9uw$DF421l>eCDV(!98Ovf zJs|*NU=`1Qn!FFB9lzQPaI6BwJQQ_RPStx@k&2`Nk~E+((WFV^nsTZZY0@K8v_ch$ z1_0iNH`Ib_5Nh?&kb?EAs8C`}qpV5?ehB(VkWzprWN`KZ(TLm<4O4dJ>(2Hyr|d8- zC(kRV831gei)2|@ECUH4XVVot(?Oc<*gAYNjznNQXr5;z1mH3t-EPiXda(3RqNb-# z@WLOt8%I9=O+RwAg5Tfy#;};{S3`pyMCJ|4?01sEXFciyLt!y*hluN;>S^bnC_&mv zS&0}7gk@#CZR)wiRyuVR7VbO_LCgcFG-<_{t{EaK zboxF+lj$0AJy~%&?&3-3u9^(t;dwA(jcPs&z{7Mt^atc%1KAspw{1RpdwzHE{NX{L zNG?b@_w8|8cS~0E+6Rv>ub$lJB+L+Ff6`7>y-&hqa5{IpX)J)>9*JGw4+bi=$sBOq zw}|&v9g%3tDf?ao@77_0*I$+DVF^BJ-D$h>nFRkl_nf|l;Qc1OY6$LIX$ii$%o5yf z@%ui(Q?C6MOQcqH@i>jA??w2zS9O%rgTI{6(-L0xhs7S@lOJ1d2_M(@$la9F=j~8! zIKAr(OZcygPTJk$^s74D@QeCbv4(*b+zkiMhk#D-?*9?HC(}7Se8J!vGmyrNpFjca)-e4z4VOEn7`E z)O0rd+?w@&#Zf945Noo%$R=HVlP{m)*i7fr+``repRopsF4|Zd=i`6Tr2Q{(hjP8# z9U30=L4u3~8*exU-f$d}+Ny~T_VrHC%(2N`3qq9!f;9`tR;cBx!^Br~Cs&U)T(x(t z$*pbcksXP05D(551JC4UIAr~2IAxWel6!nxdA>d_kV5gZbul4Cc_%!hDEZBtb1U^j zR}Hsc!CSQo-tOUl{7T9|@WA^+J0fHT5xRgF0UV_P%GeM^#rQ`K2DG|M?_BMEvAqo( zpsHOjmy)Yknk2I;qz#0CuYZcmZ16n+SLIBWx1qf)7w9v|1^#Bvx`k1ObEq;DRU)an z`w^cPPk`-7ym+5Hd5wAq$4`NSnfTE*>U6Ozguj_DY6##i)LccfX~J4sPee_oRM~gJ zKPmn}lNM^@>p{=HpaO{C?wmgQX!4pI86-s(WsI2iK3B7%@4p@|%&B!{#ds~3Bkx@G|OK9>Z;)zW@AjWE`;H688)&aLqrJAzP zJC=h8j)OTle+*m%I#wci=YZCk(XrIi(4}o>ktpQT%as$R5b0#U)PYmG(?R(FDNaMknx+CYeBS$V=sgpLcU}|3ucR&-e0S*?y%t z;z;i}olX>Nrih|T1jP&JLIzN1<3bczVOxPNFYXz|Z_E0#*nLdrK6x3H8lzzqY!Oz= z8&0yP+x`WHOENGP(0v0;p_3MtL^8F|{$JeO9g2JBf<`D0Ts)^zzZt?m*0L?8#e1+;rBm59{m(Hr?pRyapU-TE@MW zQ+0~Elwp#D`J-k{n$(WD*68piK zhi}vho#(l4H})&ZXGfvpiCQRFZDql0+HOP7azA)Nis5N~@q${@ATaPDIB#|`vs za1EagS7`FJ)&mzC!5E|k!l3goj@l&4QxS|%qMe&?nBX^txdn!n3BnCaOFDP&Bk3o* zzKZGHW*am%Yb?n_$VGunEcu##eh8n9SND$sMp4c?OLbmLG%v3Jig!1IlC<+I6R<8q z^e%4%)K1QyRJ9w=R_uc#G+NtaBrPAC^&_WRH~}e2DhYe!8E8!q-H?RsqY3`9JIsU$ zPd1sw(FfQPEsnN9YYz_;M`1NU7-Db@L8|t*7=v}_)m9yNH#cx`CXSW!>u_8&p>4u0 zj1mUFtb{d@%SLQQnmm7!LJ14A7+Ehmx7a_dzVVmxy$cGAo%~1NZy_BPgaVPU7jzm1 zZ%$L`QG?QOeyzg}2hujj&90n^=^kl<6V;hnmFhcSOYD?QT?@NH zi;ENYGFSUaFeSEmfI+2D2g4I{ijrJV#JZZ#YgF%dVB;aVq`ii>H7Iap??^Kp;-AJ> zx^cYm*3TbiMn5D7e-dw?2fT5eoSVo484ecSZ&lGVJ+`6R=Z`l9=FN(8%*Z;_mLIReYCyoruUbc=dj z?ZE=mdX}Ss!mc*c1af>=VtQsq1uN=O`u@zu+$wTa>rAz9X3B>m>OVp?d?5j@vray1 zTk*U;kD&M63~_NnW2&|YaPcJoPn2Z(YH6`cO-8`BpdhvYP-jEhC7XLB7FFlT!P>$h2m(h})HqymE|; z;;u>7=dYdl`DYKlM@Tj;ufM!kCymw@^>yf5-izuR#^fOAP*TkK%Oy4+D6qY>L-_O=>oqR6heV0A;b8lpm z9pU)2_2*I+3)uHbg z+(bHu`E*|EXX|&6Pv^z@IY{T3KIFc;`E(A|&mlVNAt#T{T2Qf@0+CMFM-zLj(&Oir zP(TO^A)Rw1y^#ETMbpWpe&w2t{9LY|gLFRVL+(34A<56#`Z+{rU64+Mtj>!E`~H3p zLmagjrAm7j>!}oRZ#OpS6-k^Xp`nnJBEqMk1Sn21#I9EiOyHGOMY6^UB-#_23Sm%j>1rd31f;Rk z6c@uFu_zFi8RS>>P?MY~ohF7RFhH;4065MX`PgRR*X8eY{6eE(2qsN8y297giLY5I zeS6$<9VlZ>h02<$yBU6t<~#afgqoqtfezQ}Bywk{mhhBuuCdB}RWWh65%O15+&+nS zb9oT!mXL)+K)gdM#J@9$ey)gnSj5*VV)ku{?YD9MH@9DJEsQ4x+4K>?bT^Rh5tAk{ zaG?Qb3l|!2sBobH*SjWJKkTayHZ*Mc2_11$$PqUr>reUcssY_k-f+i0%hin%#gM?dW|fa|h9m-g3?z z;4G>K=pW7KP+kITy#Z>1a^&E|HK16#0W$R>pQ+1M=Zec%F}7`ZW^3w z%>ZF@Uz|(nIzt4Sw_Qn`;mu?XTV2hP%^{8$Rp23xSBohWOt*bb&^l{jR0Tc|Im8LFJ}~_;bNP z5g+$D_)PxW&*Y;l9CV75Ja{m31XGB_bgy!tr!(n+Oolh1xO?JNO0arGYO~P7#fDLh z-I*GT#fCr_ob8fDC#4$;P49ZbenK6~Y*uZsuI(aWvADKBn-l<@ri_Ph)j83%Rr$$> zMw02;Ci}^`kz|G(=lIEAD62f=;@bAVRwU}Xw#V*`>h&S&+U`L@)U|cqrfb`CU*W*_ zb8WLqI_%n(?IZZrwVjWAU|n0Ttv2A=#>}=ukJWS})tSv#i$@zXJLt}8!NE6KLR;=^ zYgTvm9F-$5LbJ>lZQl-n~_}RC+`|bh7)z2{A*OX z=}{48vO&e1BP2uB?}LxhMUk_roB;w$vy-_qj5jh|Umg%m6xYL0u=0lX6gG1lCrK_Mg|1e$*QFRD`; zVTEu}8*{4e#Y1IcqfAG@Im?6W*%+wo>A`Ft8o3!KGi)7(xnuy$MOg(6UVeanYOD*C z$46m_I}uXD;O#lA3F6Q+XO0r`-Pr4Y5Oxa-!Qnzg-GZ3DejhXLZ=QWa6O(Iy37W8n&x57p@61Rr9< zUW(DMpnQlz9Oy$l9f26E5Iuc}zeFGgC`7YYIM#jso($1;nulajC+p=~Q8~fE)p8!8 zmAUf~EE7sQ2P#U`4)MuU=GD7xkhDHmD29k!$I+za_`H|qz-JDU*d8%fE-EqqQqIx5 zGJ7ZjJbqyK$xL{?QBn5>>fC!pggo|7r+gohcLqm3ZaG#AF|Z=+r23y?Q&r{{ceSSW z#@B27;y8q{hZff##q~Qvi+c^lArN!>9k0dVS-U4JiXk4d4KN6igk(F^<;KQheZk#Kr3a$q2`vWB(B90jlH@Ls(8-v|tR&d*Fy zK16yr=*fNaZsCTme8T(LN=J7v9VVDNGVn@$mKxa-F(twY)j2*2*LiueGA>%qRX&jN zW<2U+heyYgQH#0*0&0+$83R(U^j!cCMhc<2kqh%8U(<997X$o1x8XsmT0n=yn z3^R8Il7zXJk5}euSr{Q=nZjfje9KdX(zyjyGdX7JPJb4%eEfIbjAZ%f!1G8vqvZU% zprcrt-3z~-K>Hh_x`BMJBQ74r2&dOy*gV6P%3SKTzpfl1*ReFr@I z(0a2&r?$#CF<1tTGMaPy-Gm5L6hAQ=5#)m%=QTD`alu}BTQapD+Q^4!BU$~d?O)oUKzM@c9X zT;~oS^t1@*CIhNexXuJ0bU*}@3;OMHrm-N#J{Ja_lX!;8y>dr(l^a607}2bcwV2i_ zH$-{ZmdepOw8CzhMK0mzfKw9 z={~oRQ1_Lyu5-5!dS(QaJBSFXRA9Z24|-q()a+Io3>xz*7x$K*h59ys0N!v%1K;2l zK2Zfg}{f^D1336!T8;%VFHl7*<`X5?AQXQVA1{kUnI^D7n?;+c%%Z>H{IZ7>Odj|PcG zk3iA_g_^I8Y25s}mebC>@ygL4$F$}+Ui&*KSRw$43i2x!nlj4yoB5R#9IDw;t$}wK zdoc6-Q0A{LBGv9f%}|^{73CQ#-^i6DMz*v*TGq*9w2}lzr4VrxnrH-rY4~QsmbsRL z{LS1VW%x4G8oBAA-?3&kqP1eNGRCkOGLs{!qjA|mhV_F&mnt?WUu^iZ*l6-n)u#AT z&F#)t;l}41lEge%OH;48CVj3EW{t^TGg3--jdsV=Nxlz*v;|-oqKKj9OIk?4m-GX0YPQz&5gDdT<$W9muXhXL&Wb}!yFHU0f~v7T&yJHaL#|*= zo30?9?yvPt+x+)ves&>3u0(Y&wODD0FYb+eM)zu5!!!P7`dldbEdYU#*%TD^Kf7yT z43VwRYd}HGD15Fm!U!M480Mnckp5>|{z;k>iW_(^vFkC|;)^Z6R2cLu(s|YFT&tWBmTpE6fRU5#uqZ96i+PUi6t#q+}P4fe0Rq(krST8 zmnMOkiIqeeDwGmq2~~;!;$D7bXfwJK?HvgnUrs5LB{Pkyn6A-;`d?gGh;^|2SX;#){=QZBYF zb|P=+uQI!Z%Qa3hEH6{8;gipsoIq(o-mv*Ll7ZBUJqH}B^-z{R_dMkhY8axEV)OVj zgpd;i(lzat(uYbIJ{6gsuCKAAL3Pn>C0`HoU}D}?Fh?7oA{iS4U1IE%AD-boy_8|*vs^UWO7ZzYNtYdnIW?u6Ch|&gvMyE z)6B8u7y2wRuAsH5P^GcfKUDg$iXfsfVH@;=m{8f*7qPauW<+XZhBoj%z|^<_qB6b6 zMCj_lKUH%kXox>%F)VMX4y={nkPI~ClL1iKsX}~aWBI)A%;=juVX7QJfngc8{m*vS z-a1Cy2(9DS`2Mhdm)WCbkvz9*8b|3ud8S!haKh-xX?$Ogx*zNmKXaw@JHrKU?`KRkc^PzX^M7{Kj;Bv7hS7njOc0?2cD$lBT-+*?BAct< zIS$Dd5!?GLb(%i4jeKMLe4HaIe#XnE#LNlTNK>eEiESmV? z_EPzMve0R&$E71QfCeaKtFewbS>>uDKgeUID)gWZy2fbnmuc}FsNxWdWtGzQ8%@+P zODb3)Fi6{w#L3oprkm$)rui&-OPpFQANAB~NXGM?Qgql3KX;_!tvuB0`knSmiz=2r zaw}UDJ+kItZIK^MrIAzCzm+e5Es{)a-fYusf8*t~NH(+NGPI*ySd&Z588Ul?cxEgA{uKTTWRU0PDRloU~9j0CB)jklk zGi1*gg1!JbIkpf*8?9RqBK^u|<}bZC!l+nrC(7G8*Q zprB3Qi`Pe^?=eg6=Z1K3r6LRk#Sn%>9#qZhFfZ1KtgJljuO}Cy4#8NloyvSw7_JP6 z#)Wad9H#qaqsLA@2iV=L>;#)r{~vo_0$){e{U4C0xWwEjsnj(pTHH}VMO;96?Ngye zE0WZJREuI;D=t)iwkVc7OAOD@mQ+-1v6U8EsHue(5i}qnaV;(=TC{QPb8F+;xS;>< z_net~=iYZ;cv-Cdef~c_pYZOzvz=|uoH=u5#*i_XIO3ZO7O0GD@Fh)!HjuR2Cs^sR znAqO{qqdlK@=5L`S|8d}KbGy&A&U1=tfl`!#JQ9YQCG3WGn9OVnJV~x6f+}M5l0?D zT65e)E|LFCeEu0h)J9*_f>ftPvzE%Uq+GUf^(^P&S?i}@E7})dZKgD zJ~g}fP0%p^h0?a}KOe-+p9t}}3c$R*m0I6e`)N1>N0Aa?* zN^@eDc4kq3kZrBcu;U7CL^zJlD1m`4#*_qBe21x6hYTyn_SfjRM2tLtK^qWRK?8O& zZ6L(THTYxfPd8N8j_Ej8NY6x(0hN%=Q-+FShVWE3H9T5i4OFMBLAwy9Uh<9_CQ1#{ zfa*{g`c2e~JZs?0nzy;{Rp(nd>&`Qfh-p*%kK*GVj^b8p?SZ7^A(i4~h0N%DKWaG* z*{pF8ur$0xUt|W)F**0jc93UAg;;l_Ro3>G${rh>fJd~_){mu9YmS-F1m0MW<(d05 z(VAmk@l6$Mm2)`TlKnN3BquoH#AMSQ_?tcC3>8J&MoY`s1S7Gx+v#oa zoPdPBpJ7PAj-1#$j=< z^J$%-8imS&#%BW>#{8(@T-+9caJ}@zE)Z|OPC!_Zrl?Z}Md^v8a>obahySJUpqu(5 zW-L={rI5_@4x|wwT&5`7gx+tL9LSXza5=oP_`_3`lxhWuGKBcMI+1OwItb^{L(5NrMQ zvRVpe+70L8zqhNQD%B`heCz2l=IGigG(mqg?| zJV>8KU7=3cihAfSyNPkahwZ?N6_Db4r4b3QXhY98V}OnYcK%#}O3;XSZL&v6K~8u* zli4nqR2m2|%t`^BQv(`wF)y*dG^Bpw$vSG=g&p?OV9v6Ts)o(+7p1dE#h<^NmU#DT zN*B$C>!KyU9hPp<#^L#wMzAkNel;1@S{^3elWNq|x>28vv&SpGU*2Wi#V5b;R4rc1 z3i-_r5P=SslK`t(DDV=446If#$irBE{5@r(M`Q+{_>w|oMpHuKLteaZ1lnN+S`e!h z#9C-32@8GZN9UZEqA^q`8DOoLnTGX&SRLjSzlKwTG^Q5P*AdT_kQb&~Ijn<3>BNzc z;Co^yDuig-j+&2k+Lk(1^cfeKhuJ9aD(RK0Oq!*-&*Ha7vpHq)llttlcuxUE=FI3V zm8%SgG~`B(UB-q?1zQFG_^$}j%v#n26bhzcr%2^hzO1mInSO=mc{kAl{Cmm{r8{Td_`vG{}2MBur9 z<4{dvEs2}7a@u|yQSug*75ESU2fnSxxBBH$d!TlVDTOrqP34*SQ2o^}3y|gLewgG} ztw%MS=rMG^TJ2J_Ov$x_3nG9N>v~NVtO+l&wXhLIPontu(aKQ+XOCWeqhceFaDA5t&zeFcT3q#K~*-CEK!WP65C zl66s%sTe4E4A}_wLL(k!ADtptK7p!*%&2;}!bUwklk(2sHI9{Pzlj6I}Dh14Dhwnx`Eh@W1q|MjFYB0 zM*}cRE{%&7zIs@6T7NpM+}eKEr61#!+;T8$e6(oq*PC!qGA`zRcVDT0H0$?*rR1Tq zI95`($=RZzM;Rpk$&14K%;HtCcQQEM&eS;r&*+_J{R{sN6el?#`({9~Mk}Q{NwexNx#l$IeO6Ir##9r;V^k`kJz%F+x z`;|BQX!L5wrOVvvefTAUa{H+@)lEf@!7`O%y@o1`#y%CuWuw9{34^xU)@9ux`gD396ZQvsX#EyeZu=)T zH|ky5Yy3vk{hQLD7JHCvD~^Y{4cL zk_aA!O*H7~%u5X_{R6T(G{dKox(h^Av)nLAE2$nTUznQzs$0`{p}E_%@3!%tS8Xyl za6*ZWOCPymT-Kl7vRwO?)>8w_?%ePTc|3GsZ*LB^`F$<0e@p9PQ zau=5`#UqCP~<)g+OP?q~by zUgFbXRz-WoUq4Qz;y*w#2!XFi`E6Gg7>bn~<#TG>O!sYSS)7V!j2$ZzB!xo%<~)ZO>8KW~z5YfyJO%?23 z@EX1kR@(Qkgx!kw#o|g>Y1S|oh2?|jzzAJf-Y6Qr`f1R_93NheU?W~16TPrpbAH3g`N@zV zXX$H)Tyx_Mm&k?X$l07e7){X^2|c#Yg!u8}E+kv6XJ(`KfjKeb$JJAX`ZD;1VXz>6z5J(e~tTXe1+zNJ)mrGL6c3o=qE0~t`1i~DYfbgRoGeRen^P9BGaQOJF zIS@LfgOY4H!RH7k4pWILj1xO4VTBVI1|qoFiM1oI-&CXfGv-8f6Lmf~;X4iD`;c-1 z<^|LdNMgp!&xjlIn~Zp1S*fBRz~(nmPv(%dCuO#}$#hZzB@2a6JsB!EDm0w1R;S(uAc_Ic#rGY;Ibz^`{*%0`TW^CWUUt&JR& zE84=Jx{)kk9XXz=r81Pvq9pz_#=paoqcApDH$})de)9gDn(O+kPR~8#;I3RkKBJX~ z0rtm_3D{h>)(`_)-0yin-VT#F_R#(9GTD_8*Cg^;C%ac6(T=0-h^s{t>9O&~$<6NC zin_}82Q)FpNlD$;C9ks9?cZ!z$4FNYEXCq;>S%i3dNcH@Kfo)#^I&rSOh$KP2swxc zHCITJuBgN}sldUK7Ujb*X|L=gZ4b|dwnMHI0uf}=Y3G@P1TVG&+)C5Lt>ap-T-tF4 zm)4M@76?y>ap7Jp)fOP_8*$jVB4y z%E(7vi+<2va!We%tQd$)smu^>e^%3+ow7TVq%)?pz>2=ifi-NTuF+J27L$6Lr24It z?H#%m{U}LIygnvgGvP$C=(K6}!+A6ldY6+|4BU;67}c@`@fEB7?uR6^HE=tUCKb%t zMvHJWLr1x_yKQ>V>2BjdSa?K5{XG69kr_NogiwZYE>=bGx#P;M1}LBl2$o|N3{FMl z6#DgO7Iu+Q-#Rb26(okx(Hh+{Ue#KmwMIKCps-p4tD~GsvfCdJI0lG@8nB;`3^7UG zehY+rRg6z!xR6h}a))$$&e!8MK+EOpaT%o9ag%4P+h-oa-kfZN*mItL>{lU$F^hYT z%et|p<``SLdc%73j)2T#c0?Tqq7Gow2hnTe?q{dIa!31AQvGGOB8f%uPli9kP&~HW zjwlB(Ia7}`clT(Cx`Fj30Sjo^{L)r45QiJ80sVP0w;xBv!&yB40tFn>412>Y;+(NLqnp?)2vT>0bY49Et z1~S=zhT>(WR@7kjz?c(hXg<9hp?bgpB3fJB#B>B+ZD_-9zLkMPK0yf0^u}H#>0|d2 z-k&fkpV#A3PcrNw8R8ae2P1=-`sH7KH4=vt62w3d??VB(XFN;^D>QfG`p)DY)Tz3s zbgJ&whd4;h1C`mgbe95dNxT>%3{H?6i0>Awc#9o3batFU)y~Q$k`uBeVxrqsOk5Vd zESbT5b811HRW$61?w=#H{|$h(Wse7R_g&S8tpD^blvmyHnc6~RjKA%r`dPx-lh`kA zqIj@pX$TR?-8Jkl*SXqYVsDNC$dCPxztAP@32RSczp{zq4uHGO`=jnxoy~3dVr^%| zU=DBGVt|6(57jH!4;2=S@0N9mG(@B)Npo8h`!-0ku)BhBwoYLCbe}Y*_v;dAh=?H# zMgzO?8^%Mhi^6WjGiowcp>QIfqYB{WHAAEyoU*uydX8Nx;CI)$)br~iLbX0dsHj!q zgi3c0n8U$#*;y&akI**q6F$v^W2Y*p@QDmoA;LUZFVSq79Xv|~`No9^Y!wWL#;7-G zZv#JUNxQ45vJD*sTPlK%5rQ31P=CmVE1S?e=qcf-z>{_=L>$z$VvrKw3E7h?57>F4 z#~QFePs+p6CXQslO0=S-r-)c52bfZwnFl?o%kr>I>E|I2r|Yy!?twB!StSpL_-oI| z!x3KB3e#mfAL?u;dB->D z=KPhtSf@T+uchIUo~UI#^kt0Ubr!={tl_1Qc2bBd-mxfluHejUF*L}^CK3t#D0i^d z0L07=O|%r%WQza@?abv;wSs;19%IP817>f#R`hORhTO{HLZnV(6CFd2xO|?}T--!q z;V6|ezV|RS?_Lub#ky=7oxVetNKHg@^?fV!J^s|b@%4Q~Yzndd5wzMZxnA1D4i`H< z^e`t5Umf8@m&cFh?RsSVu(pHgx3nxGDiEfH4O(;Vpp3CM*l$m7RQzafh}lXOV|;n2 zXU3Puwk<^ba_o)GWN+T_<#$+_vtvolLe6a;$SM!DR_5@$2c3i@?FLI&U1)?G8bP@DRp zRIl@DORO%QG9rHi!F3zdwraK#li-gbOU!1Uc7-%S*-o@WiR;JF=i3L`^ys zf@WoNlxE=zMtJYg1wn;@L2Lb1Iu@AIUyhfaWaHEYEQDc5V9XJwc8D{>N&GZkw6wKB zMbe-<#APQ9U<*#DflVT{_5c|tBet)HGX6<2+S8Er3@e}D@QZ;iv&AtM0w@SZhPNe`ED2#*u=d+c_q)CvygMMd1GWCED68h#I?HSDR(4&7QirljdsEM(~` zlO<2&8z2i*fTZen+a)AKf3)*z?E`;a6Wu`t5@6|$E|^TBpB6*_vzO7PCOlY31@n!^ zMQN@+2ZLaBqx@*#UCbnnGe&Z zWG^!u>fFJ-yZ^~EB%W|zA@$;bUK!@}v|wO)i(ydlw~Iy7Fbw=&+zN;!8x`K*ycX7m zdb3DdKZcyQQ7dg1poQ_MGF9uvQ2AtS47ySTW3cmTJD7#RHy~rC|FdQKUr5fm#{1+Y zrtBaTSOfT0{YEGN0J#cOg(W0qZbwb3Oai6E(LqI*I~AecNzNJ|291#d$3ZB_l2L{C`lPpu zL5R*T9w8WnPB7*U-Us!&oIuV6sIm|H%3zP@&}rn%`^%sXA3%QpakP#$o&jhruN}z8cAuz0LsM9gz)$(GpZ%MQYv6rdahBDPTqoFB@HQ7|@1~3cJm^aygRYB- zf2|OIrGhqB=EU8p0db^)oR_HIT2vuV0C{bJ2%;TCu{lE}C}%i=$a_#i#2XKZmlBmpBQ$!`GSGuj zF98l7^U3Uu_GHy)*35Il@uwE%{Zcc&@}8pcY=Rjp^*@eij7^pX(X!v5enE020rEdf z^OeaNq^d$K2Lc&bSjZa-NUO%89oft`mOza~6|`(L)NP6rNRb6C&0I0vif05U;eSp5 zz|$8Fj*qK23zT%G8l}kkI)2_1x&<<$iaxhvn_rgYCR90wxc)yR?uY-7o(JJm#8s>mF za|p1+GfZ)#NOS-|Ffl&bz>zDrvrm_Ar-Y@Mk}tI3cOd-CRU|*68?GxC4op0VHcs50 z4invQqGafS=!O>RAhmkq?K7+{89}MuFk@|JayK@2CikFD)jg$Cb+;lYImXHU8ALaL zoKO+DPV-JKJ}qq#Enb*Y{I~B@dOIK809bvexJp3$yr;m}4n#MAg#aYi$=ylp-+xrF zFD$y@_V>DkJz?!h>=E4nk?aZHFJC9v2Mdo`u^NL#Tr`rQDzj_0y@EB{aCF1}9 zTOd?jUX2*~wo>jt8{P2h`?OQ6$B_IPtY&}ftwO{>r#+$QhM=neFdOaC3VFa^WVNdY zMx+V`~Pu|rh6Wvg~w^?qa*K7k|7~zKbDOxYgCYSP?`wKv+P{T*I%2sd>CvbMAh0<7KaR ziPS_icl^&n-{Vj5_s9P(aH0pI8`RRujehH4PWw{w__Z$`TIKG+c>^u5=ZX}SCxN(tau3N zYLSqKlDheN%j`}j6E&xE6qL9Ptgx2zw$$W>jjQ4z!Y3n@c~%*y(geh;D|=o(C!T_SE&gmD?l;wOL( zc@XzCP`YLFMn!yimhDQi_1Pnywq1|NUdBr#}Rwvr!Q;OoXB$GVG1k zRjkiBu@M<<5IR5rzskHqFG7L}j*Y;asSq>~8zJ5_iH+FVM|A=>8*)Xx$p7T8s23U= zq1f}_2dXeXHsY&qh@N6>#ILWlq?Hr%<~py1z>c^RpTd4@M233JQkc(ZXBaAukC50~ zo3ymv$$5pTA<}0diFeznus}&T^zJApA|%Aw;3dBLy3k<_;JZ03bntW?q2LG!VVsvJ z3o1IpsR;F+?7V^`4Mwa#lHRK(rZ%1=f} zv_b%%2M^38CARN*iKDbV=<3o;1(b+c;;kQpXULh}*Lc^9)MuV#099$q+IX`(`wJ~2 zjYvUc?d^_Mr2+&;wD=4hci&luMyjMBSYoKm3`^>cmq>au7KJtbE^|VoUT^|>FaROK zTZgsR>o^1+XNSP(2>FmC4@RLp2t8V+Px= z0x^(2?_hfsiXpv#!IlH8SxKrVr^#LZX8-m)xofWx(hHAFu!gyz(`39;GJ4B&sMh5r zBZ)R>4XwtQ1X!3lD${}7 z;Yv1?SF5Kq&1ebMsbyqRYs}>;>9J_XhJIKxn$aK9F47nPa*LMrOgir8llm*|$Zdl` z42&*Z3a^gvh#`}5Zn}jPmq{BgD&86)qOePZNWJ1$Rd4VB_q}?BqpDu(4WdO_QJ0-~ zAA>gS^B_DoC)YwVGF0R*+r@{9+z0L;c^;E-(hUb_iGh%(tFH`VJ2I!@6ppgnkPpD{ z9#eA)M-W0W*xf*Yn3J+AI>?MWh1LcQmCRjJ^5@6w{W6c?ewl0iIkd)y9)!AbqETGv zFheZcS{n@Rc(wN;sw>uPE@*vPhkgpZ--?|l^K1)9fga)eas%G{EDFf4wk-gV>Bs~! z4M6myE-u9aGOi;)e3yZQvdjS>`QlQJ2hV0sUyGoW@p|OOgMIS_rR-BG-2RIvRo_%l`g z-CxuB<)d994H4-{(kyMF)&OZFbTG8I*vW2j{rsLHP4)UNk%oxmE_bzIAj6;H=P!44 z(4`6ucUjp)4T_pqabWEZ<@)_3Lb)!7H=O!cr5xuFssGqv9%rhjLc$wN1Zqzn<}vk= zLd1cF46J26Pb2^6+0 z$b}c{Fnp;_gKkqDSBkUV0@Y^a;6EBfv$BaI$gxl7kMl75a(0Ho-`-OPuFRVq(S=wOQa^ExuZxc*n+=E(4_XrPI02UK{Sh-*o`UIIaWvy%k_@65l(d3O1W)akBmw^ z97J>Ib-}3h83bwG(Nu`|#ef{L6(RSk(0r z!=Df@Fjt_9M?R7hM01H|g}+CGXhuA0vxkFdCOf{lG0yWu=Q-s(S2)kZ@eHWmet)0X zb99^Zf|6C?Azgc9EEfP-DVzW2U*}@c#EtDy{ku2l` z+$16yKGuT;JZ$0c36+sUI{x_HKJ?|~grnT3--B=zHim&re%x>r6>Kjf3E}N`*|}@9 zYq(|ehNJvtk`+pc>R9BwcI^AI;V9x-$s{h;f?WtlQBO)Z9EEaiS0wZ~CmiLIZ-oH= zmwAQv8+LM`;V4^n2r8PmD@8mW5{^=>P1(gOhA&*=fAYf@3Jgb4cR}t^9rxZZJ)Yqx z{rt)$93|nr7Q&+W##a?Osv|=UVJXaKw6pj;b|(*V89mA6r%1tPXf6?wna->25f+k; zf=p)16u*$1bB%||OWfNcbYM8j4%#dL?9723$~Z4^ZBWsD=L$Mf5$av)yn-a;=dJ!H zpPvPWqv)hHHymXfZJzNbBmK%J@O6muS{QAN%rG1!i`6gxxNfk>Kd|Gs%|bW274sk1 zao}odimn{kVLGjZqo@+}5A4Wrkg=l0XW*D=<0yi~0h)ANqOmus)a@t7cJ%bD>CWJO zu?|O&11=ItpdMCZGw+H6kofq!l3A5=Tmdt@@sQRr4Euag3up|7F3a(z0viJ=M^F7l zAqbtFL5lrSze{5fJwqUk+?;94U`WC;o^zIl4#QZq$9QFA$qu(T4MGR82mIRH+^7o2 z8-*4mux8ysH8_GP#5Jt*YyDWv^!Avi;?9LltXJv4X^zH7oEO_@oW zSzf#59uZU%jNKDQW9al%<1T19S%Kv<$iHAh=Yia`N_&%z&D}j9qw7uy8+V~7dWp-i z9t$2Y?&5x27YM@Jp(_-3K|9e>fzQZ(6S8-fRZp($Nh&x_l`b7Lg0rw>W)1zn#;3x4 zxWUk+LZ~lyGJ*$pX^11lOAHAbIM-Z_SaTb*PAf0bPoCR|;&Vpan!qPYkem9EE zSQH3!l)M_ZFj3246vD+h@?4otX*z}uL@>%Thx5`j;|!Qj%V?a1rdL7jNjrX=g?_J) zI1Am{crIng5M>SdS-@+0xCXyhbmq*QMl%^v)v583jw=S$1z znU!hQfluEMi?6gOyYSZ&cWB?UnV#{VS;Gar}`1WuCl~@EUYW zR9Xz61~`k_LaD|ASGT_aH#`@(RbsaRxV{Qpz1rn{0oOOiYnol*zDLm~hUi2<+yfMHhu z%vlsl1+AvHNPG640YbBjm0NBjZ%i~G9Sx8uwFb?^4_4ZKP?cuQNUJyeDLzNjVB|2= zzrqSty^_W&-pfyydmPh?1hT|%K!$3h`F5?c_&8*RvR(}yT_T`x!c}EX{P7a26mPNU z&D7pQr%u&`O{FIrWc)3@Ub72Ol0B2y*9Zj~Xv9T?k@hpJ&300x6%W3fXa@isXKF<8 zYqU7vt0cGw8p`4E0#mUa71|UzqpYY6tmgC*udhcZRl)7eZ%ZQ?)vqw~o7(Zgdh;zo@ zH#SxC@`$rWj2&_2*HhQLF%h?=rD|5qgTjVGoIfVYjz`&5y(nHe=fdYb5szG(e27;E z%iUGqLk@HJ(j3wGURr-~_>yFUb??NAp9mI7tlQX!a7&cEM(Sx_vP-3Ot)xcokouMi zqn^2RhY$e{G|j2rvon-p;RBau0V-?E&oB`3H@oysN@!)889?Xa%T1MdUZ^OTSZ#?? zBc(0gq|EnUP`niYBI1L>aJ_LzMn!!vvo8DF8N$fzI7Ol$v2q(UXBrnEvilf_n87C= zYMI@{)+yw;!yT7dwfgCqF+2e4wdXsWKZ&GA@O4y3Jg80s!$2NT3@# ziFql#50hF->dvE+Alc%acD_cLuM>FF8>=_aXe%UNxi6{K8{P_7?V7K9wcKOUms`-6 zZBAkpmva$vHYXbaa}jPp!=+rm2K>Nh_&3;{Jps#cxe48RwT#M4{y0w(TI>U=Vx3D2 z!&2dPZL%?PZw|@g*9)bHTewW!X7A4(>Vwc_S&CWh^u|<8{R}*z`ZRyD5B|XwvI=3X z2-KTw99Uc_R%F+)SlL9HL(o@g&+Rl82V5c2c`ygnC3&z&0TgC4dp-B?c{5m5%4)!FT$$PjWf(eM|E}rRrkf;AJ*%X|lm+spLlc0GUbb z`M0PVoULjwfrO|UJX_Qt4GXJ`LSp5_A@6DwW{|TnkJ@T83eI)D1|m)0=p7)fgnir1_Hzppmr?Ol3lW!ZZkV6cD;^p$&g`3eKQ793Q(ht`Un4xy!S-* zU?Q}^6kG>UNiMSH1~-Ur^Nd}ogS^r9;>Wk2)&Xw4+Xf~Yl;Y4?`Z|<)8A+&71&HSP zntk&(Y+kJrTegPhih6Vd;LOi_V~$;UGfMQmQ$&Zsr|0o3Q=E+-(kH=~rsd`vof%qi z8x0#+Pj24`^!~mP;^W!P6l0;c%6YSINU4Nmq|>Sg)`kwf{ur}5GQQNQiI44?e%Gf~ zh-RCt+03rZXjXE}-xqqkt&vQ#vjoHH6#L`BIw$LgCWY1VaTon44SRG(xqao}nBI}1jB*N;C*osjVR(}g))!*g#3b+zK zY@nVyG`aEnDGXhWd|ZF!_WtALM-X_lIw1+^^okcQCVuKeQucXFz=|Y-L(x9^66ai; zR+%}MnQ@H^=3KaGg>$YfvSZH0A7{>$-Jn_%b0VA~GJa)A9k24OO|F!FPkaAENvw?rkoa;f%KXlHu(wTEzbce6LrF89BrbgymZ8~+)IoGfyTEgViIoETz zup0n`FYVn3sBCP)dIKSUv%?qaIL8bm=Hx$EAiRZ&f;;DGLoO1)aC4;&W^ZGR0})m~ z5hc?VI=C!Cf($Mg%f!ZBUQ+jE88ViKZER91Vq?>(T8q&xG+@N!^8ka(k;!Ni_{87f ze5Z^;%YF6@>nL+tEbRuhv>O6T`^m2wYY4!(+Dd>kmUe8Cv9xb%QipM=(786*;21Kz z^omIP^%_fC>o%75!b^qGYH5>ywbL75X@}VR&0o9hg}0Dw=9KkKHV&qF-NXWS_k!{? zq*!$qu-NN|g2nDM#%{@j#m&FUhXos-IUQUv64{^nn6b2dDGMy^i6Ui7eZlFC2J%Xon$eEn7&H2oQATh8gm1cb%yBiN3(s%N=($Y< z7=*14GbhH3cI!4~bVu?>GrCFTZvZ*BFc0URUyz4$?-8;X&KWa$sb%O=W$3BMjd5hT z{k&X1uaI#hs*h^aj82Xg$r3aAc^M;QyefY4H-Ql8ZQX)q4J^648|?Blszk>MZW7|SN4uysKhV>NImF8%S1#o z2o@UZFi)E?$6y5L`3FigpC$z(830)xIB+~w2#zm>;aGG+0EdO&E|bY=RiHI z(~XYGVSQY5Q+T=osZm>!{`M&kX*VNe%}LSWLz7V9b7c4qwD1p+53R5sEf@!uP{<+jjCA{D)+8PlDAA{-<)0}gwsCzlEM|~l8#-xb8H5*9qzL};5f7< z1i)nifDib)dP83v;7dZ~hAH5y4B)&Fxmo$8fFBfw%V(r7OyBs5kjP?YGIRv^!Vmx} zZd9d503i6o@&OLT5-Rs2Dd*K2z)jdrDX%Bdn@EzgM7Ba(phDd;Z0p$Roth0gy=$~x z5_fm7C$b9~Ys(DIQ{ZFAVydJ?M`+v^i?miri;mOSnMI?m_gaGaUSlxdYt;E3 zz?hJPM0>@{e!=lMJl{it%=fZr2)dK=Jx=MOYi!PpZ!$bTnDNa*1Px|<{IN4WtP;@J z$C3blQqCnP!G0@zT>$kZ88V6HW}W${iW(0Ub&0Q{!UOW*N$r~8lsVGkV*5085;*_X z++KhxJrCfZ1^oZXZrtWI2TwE5SaW(Vo-o+M)h{1YHO<-L`gRD7yskK0l7{R$pVc&H z&-kgI#MdKlXorcOE50|6j6(HAAF7gjP-W4*{4cvNs7*;9V59gZ0&Q`?#<@w`e=m>^m}m$|sMABWIZISBb6?SYlImzrc; z8q9+^ma$ep75pkYN&zyOfL6qYF*AujwXV0B~cDUjVAthagpp9VAFe)l_d-kKdu_V__Xs$J9*X__fiV zNRKlT1|UIv5b!OD52B%@js%w(s}tNSVjJ;6l%uB?lCKRgG$$9atIV9fDDV_4hV3Zp zCU%N%>;&?{uF1tF8Bf7tyPCB`gebWvI&X9f8&84OZETR;w12CofRa=@eGxnbp&oJc z&s;&P(2gvg0-_HJz5@HMJ6K>JKj;IgkPcScc`WL6+M#Q5d9b(y8Y<{6E*5NDxMJjH zkKopV%Gx=X|oS`D> z4Nv~_GEpc0h37Yu|D{cY!B;&#y<;Z-Zrx_`pBEa46es_aRitzcEe|tZnv;ha?-8;X zW|+zUV%xVDE03;#0AljrU_Tot&j@fdR}pyl3iwhw8-Zf<5=(Ee3dSpL`*|?=Ux0k& znh%4EPW~5R-gy}DJ-E!+x$)RPcq|Vd+pI~@EQf}fyhTBV^+AS>!DDOi z*bqD}4;~xMqwj;T56gkUsrTkOxn9^&l-^;IG^jagl-^V*y#^$yUezO}PDCCZl)-X) z;pu_+C>NpH5f;H6Wo7sXvTza3$@=L%I{CsNN1g8#A6ice>QsUH3TJ`jjD63b7nrKd z5RU0=+0vjYMvs*ZK1_1?VLGhF4w7a(lyNcpgX>k$R6RDxC`ci=%rt{hkiG~_;Kcb< zZAtBQygzWL9YzDVr6qU;LM@d#Eum|PmNX#U63Up(5F{@{kU$NY;>q+6ALp83k?^Q* zLd4Y z=HLQFwxu>+WE+P{1$HJGuFY)pmRlzF2 z)_FKbj0Xz5+{IZ*usRZ(xneY-L;Ul=Zi}0-BVf=zOQa1wQXzWGZKC#%gV{^$Y%nSm zc3p}G>_;f<<)HUyc9n-Z#`!keRUSg`zw~J?sa^ik(JKSOLC_750Rvhk}G0H<$&_-_d<`^|+V1XU}DM&adCMs2> zM14zt9g?TR|K=}7k(16qXMb&J%N_orP)m#b(Qs0@B~9Rvaa^ROm0uE&a$AD?Db#DX z3bjP}P&NGep9OTTJE#I9JD${!RAAit=anTgqFeDy*M3lXNl;p0Wa)X)(#^Bo(m^v9 z$Cds@v~-PAnlS^~zUrEehi8K1<^y*M9<*zdL1`V_QQ95K&6XaI@fn!&i>`s3hTV6r z)(cNStou$4e=%Z5FSi5ba+k)ZEQ{$IgYhw^Z|o&GoxZ^#Z##UHUV!K8_badmY^aX! z0S_OMrw81&G~5FQXiK?r8MV^B6KY9?i1y%l;g&RkJ>b|#ODhHx*aLcnS_)+N)j!4b zfG6~0&;z!*&XwVy^zVbx3L|^K&!eTAFhND%G5sg#0T;!Uu85ZYu~V96!IWTN3lH?S zHF4I0EDMcsI2yv~CB7!*D_f9|p;GXBkYfQD2g54;J-s<%0fhVyzr9+eL+c_o(UITn zJ=nAy*aHUkZgmuAh$p(HuY`wq40}QeZ>&&Y^eob!y+43fb%%Zp`g-t{-C8Lff_AVM z9!S}(5m-%$5c`=iu{iob=JWOl0SxK{2L)wN|6RU8Jp%O|KekY_cB{!6l$yZhKLhp1 zp%}4^C&tY3M_@HzwYWLP^&{tE*aViWAz35&+JNpBD7kn8GXXQyp?n6_)`sf2EfhT4fnZFLaW&Vgy0eBC!;zyf%rNN)2th zdKBgqtP*E!DP8V|2b%MRcbQ8Zfc8MM$4%z>W<^T&c_Tx`>eS4}Ua#K)x0Pyl zMl;}}eU$}ct_VjKjIkS&5$;$g=3dWK&9Wl-sc*+foT|yR;b# zBC^+|{;nW4uVVP(?P`h#w0u5(uJt-+aGU(F(AMWHXo(WDpecgIKx{URdRM%*G$2j>~_jcNQT=HE$32+RYDhv7j z!Tshm9iLD2=kmRWrx~cFIo%IWW+9&+xja8|s;t)Ybw!ypHRP{SO>?&9Qa_0~zkNkJ z)=%EWEe!7~NGp-glHe3fUVIV^7m%jzjgHzsRl7`OR3tW4^C&)gtnQQj1^+9YO8U5! ze1z6r{GEK8_H`P2T=FUYmq+k_p#c2BE(9_N{#<}gWrn;W)d2rX{3OBu`^3K;_%|v3 zPa&Vhe~8PH;R4cB;6C~opgSm4J9S{HHd)SEYPIamPT3F29d!Bx=u}=7LFbJvqcatx zx9IGm=p13tSuw>=A|N+|@%Kk|fw%Pq0cuta{I}?xa`~z6FFzTNKehEtTaJp6uQy(q z$9ZL5=apsrSKJ>(MCF_gdKnW0s&B%gd0%M0@l_W$3?Y z{pC=^Y#b~zeoWLWWP?O|%yyzZW?UtT8s=-Ml&&4i)JU|)_UL>@J$Q+;eyAl(PTl12 z!Coc@3?LXkl^@UmDgsp20BV0?oNYzP)IrI`Ws7Vl=N#Pc#m!EEx9(SHtdDMISa z+T%9sE3t_9pwJic$*)D1$;R>@^%JnR<4nS0Xg8Ld#s!G%{g4ep#MXV{0UXS01x6TM zYGnE8y0QExXsi=FI9IsLh#Lz!(eE?803Q4pMUhz}ZXUZbh6hvk%*O)^q>#yUhzC!h zGr2tY^amD*I35gg@TT+Q#$R>FgDa5?V1);t>{K8Rk_Mt&9lakt@B-@_Q(%3xf(pT-sKELb6j)z_FJSa@&t3dJTtr*c>R(k6-oG>WLJ+T@IA z@Q7R3L;z{sCIaY-y1=dB8q`Fn0~T>jbE>93)J+Fn>~_-%)$mkBZxVv;<3W+_1|B~- zS~~ZZ@tFL*e0UIo?&HBO)eSsqboG|;+vEf8k8gy+5ofA!XZnmNV{W)8A3_ABy9ljp zV&4Zst5h3yTEN=P;!@!Vt^001ga}G^5kmA+_c-(qU3#?~D!C&$BZo`iT{flEKUnveH^(etIn3)cilZ*fha!RNE{aQ=IQ(`)H(sR6 z&#_z-TzltZ=T^DwoH#iju7t9?xUOuX3DJ$dxOz}dU-a48XvWtaV;cD!1;iB#o zE|+D@E`mLr8(n~NU?GNV$b@(Z;uaE00LONAUi0$+#8=UL+|ixQ|ahTYI_=A#rL|IblsWfS%2XVuUC1eau-D3MbB zup8I=;ta*DC*~s=QHU9BPXr|q$xv+_N!2cz`{188w#a_*4^Eh8zsvy;zqmf?EgMYlNG6d+LeyKf6_Q-vXnya^8ZlN1@y^UM zIYVLUz6Hbc#}3=xbz7Uwg$F9}7z=9M)gXQK1`hFb6xNQ#h-Y^qZbl81GAwTSDfav^ zj`reNH12PECQryYym&k%%af@%*rgj0QDCCDkO*x?P8+Mv=qeflPKdjHyjVX5q5f1k zSm=}=H`JdW&`L%Ua1D^Y%5V1D-yj6)p|@pg(iLbQB}Aftgn`F32@yYJh-qW~#cPyF zT)0_4?av0a8ixIMR1{(V=oo0mIk(Dljw9UHm+Us&f<( zA3!ECt_y(Z#6L_C_>2?~Jai5ana^etk9^d5ig2D7Wlf_61P`49L}p@{M6wHjG-!Vc z$;fgG$Z~Y&gRg_e!I5<`wHZ1VGn;zZ_34`6?8Uy*x6_9DVN#!K@gka8dVxIxV$;_C zuw!jyj{MPV%QTxkwjq+0J={MM;yPO+bqSWhzj3}O$5{_jy*@9kL&!NEzWP`#gTOZ9W@`m;>fz7G{T(om4*Tc zN+S@)XQj8trRU0^ytZUCgS#wZLq;h@vLn;1?WY*-I5aBIAIfV-J;8RRmkN>_1P%$HiM0XH*KK5aKCkZ(PKJ(7MFh2Mqmx1+iAV>@PdmwIz?24y5;Ts{EP&FWF%Na3^2*V3kPnhq!Tf-10>wJ$FKj=ty%hF^ z!1NguwhWtuHmW9(&2J$8LY}mRnqEc@u$nB+F9_Zw0y~MIAg?!R0pCa=DTx{hK2H@k z!liXr@asYqCogf?cp*D3vhXGWuc}ET7Ty?-8VDC-K4EFCQ}e9|NupygZx|?w8o`yB z#3CovG-Y#@2f2P^aw*9wGsg(RZtswwO@=l>qp;pFkrE~VwceCW%sI=d5Gm=|lGm(d zfK}e}U>9*(TC-{zvLot~CJfeNC(BP}B7d-;j~_F)W%L#EIIqm>yt0h{iu=<(WH<|B zWN6I*jr7$rF;4#wuM&WD3!h5r_QgxBe3c0v&zij+SxpE~1!@Iv()x=qESobNiB*NE zhD2i3vr;D*>mwCj&SRvGTALvfkM#qct7t6HI;ALX$~Co_Ir90y3BZK!`k+x~=eQ{Y zEq}8uUsdl3GoVy)+c@D9RrNAO#|_Dvfm}nCBx*M(q2!vgXSt@DNt}FDJO!WXCk}=I zNT!29TqL^8v2dD@_$Fk)MY=*6XY;xxWh69bJz6U~cWZlRa?j{g-E%rs_n=PIJ-kzO zw=&$OU<$T@mxbq^)2X@_NZlfr^oOv!oby8w%lN|quVFxzLT>XP)=~b`k-u5|9}?fQ zY6_$VAwCapD@!x%%N8>y%Ey-^4fHXDip^lceOB5ncdOVHYSo1op65hs(V(B8DHHc| z&8{*J)RTYM*R(Pl`V;DsLr!zMWQA%K3H_naL&fzVe(V^~I^D+ad0iYR2*0tX=EINB z^elet$~}SK>i*VsAVLrc6%vMu5Mp!+@$$k`^5IIzdJ@;AO;kj{Rn&HOWVOs+$LJic z(^L6yC1gE`>&hmo(VpPzt6zxnwd4-L+FgBc`l|^u3h_Aom3(*;%AUj}$|eqNJ;Cn}G%y^Cm{zt8-nAKyA-N$+F7I_+JjDB&WIh@Y z;+~`dg0e7d^hEz2V&cVniU#SC`Dj3hdy)n#n`nmggdDu3!RZ~#ft879oRcdP8tN31 ziK!>&qX(hyNqQ`9qM-$PEa|R&viI(J^q{2yL-*`+C+RWiq@zE@9?lN!=)}OUma+bX3#?)&MErCc~?9Kp=PAcfXePh-2t} zEo}^Z>NZARkJK_q4h$xx{Tc84DIJ*bx5B?0W0GHo&%Ve@ZJo29C2Y!&Bot}2MZ??1 zPw9~gF=kP2)JL=(jiTCOOL`LH38m77G$h_p5sfj!#u+E(=@Rb|+Ru|-i<>CQu_~p9 z>9wO5Q8~Ty*jy&$Dx_mePsm3=g8z9E5aTrZU+g&D!vuVI#}EM-lNA^>aNq=S)*_9u z^OO6J%ST6I@p;k_7uqNtbLXZ#OviL_M|AAGT|9MIKAIAv&y%K$o2b?Q6P^2T6R2Zs z%!q7u&*m;WHXnV7U0!?Q`$)95gE2P5q!8!jQdlA*hc28(!@?x;SuK(CU(fILJOF91 zQoi|$42^x^Hcf0!S{LdBaVyiU+G}_a2*&Us6ggCjz*lRtX&~5+C)?t11|zF+S0}q0 z_GRmtWglh$i2BL!*5U>o+Kv&(^K*>+)`i8~H9p!J|&Z$4_P~ZM#I@EEzoet4v=d*tW&KobuIcktWX-y3e zDv#AZynZA{Bl61S9@b3Mh>W|?0x;n`!FV$T0>6n@QH+>!K_{qH12$$i(Ou32^td#K zFMG?!aQTkq6#Qnte6)%)Gk_z_PgzMq_=m+yk0?CY0K>JUAT3Oi3I)iVTWZU92oO$f z3jwt3s1QI$IRIHiQX)e|MRMbgDV*UiP9_Z1b^DR5t5h&e)#^`;{D5lqcbN|DW}yMO z$3QrIf@?Tk`T5F-fY5dQ zE~Y6|DoXJS6gJpS{Ir?G#~TFZ{-^}f#7YosXJoOX3g$P_5sD_AxEqhl=uUuH=YbN3 zV4K3ltu@LMic(WfG6+#eZF(lsd%1KrOdG;h`%)iR%V;7<3t^HV9Re zeGL{UJah#p@f~3O_VKRD)PfkG7FnPcLG#p{t78FsL9_9ckLF>_P9L^B%& zfK0ra-%IklO4C1);>^E?)OLq@c_8x2#ZQhZ!)@njuKNJyZ6z6ZKeqs84QMuKg5w4f5Tqs1}8I4{lLZ2!Ym zIg7Hzc?^$AjeVh7WR#I|2!!OFP@!_IgILa6#SF+SvCNU-g1Ytl91 z2hXa{BQ8j>=h{#|L0q(A&$Xdb>1fy@I3<=b2j%Y5N~f9H#w@E3@z9fP=(J1Qm|@$P zp;pRJQC)V{5ll(yFj=fk)8;mocFw%y+IN|wLUK^i+B*2GGnW&Q1DGW4JW3-pTfz~V z3xa6N1>p$I#vldfZMhMe^MaIlL4+nWT2*oZx+E0?{xpycU(E@d3xISZ-jeuFgZG%m zSplJiHm`@`#S@USt>_=$gONB&eB4Sh{G?7{CBNJ=L@!yZoT;Me51ev*? zrTI!;wdh9+N`&Sy(jQq!PMWP6izkiHBv4~fMG&Dm2ze2q$-HvvWIM9rPgmB39w;Id zYC{VCN|%wfOaT$9>`9dxp~(^0Mrf+KGjoMq56X?u1T0?Sl*4U!m5^9N_Lw3Oi~3)K z65AshUhytkLLxLluu2{^uMwIQC{Wgq&?J0*geHlP@)DdW7XbL&bco9mwsHL|MMz-# z+0cBJL-UL!2=e&Cr)#b*P|a14B*aN-0mmP!m7b zEE1t9Xv{*LB;@EB$OkPDj?hH4ju2cZg?%9~eFlZohG7h;teQkNON6EhNjO52IpPGt ziK&zb%{i=z6beOX@~aA$5x|YWd!dSxmw5C@!CxXYffr&$Q9dU^vz$r-ccAHQ)kOrK z6<}gKO+-;5DYte~O;a}4lpt5D8h%AU7lo>A#s+IgA#v;lprubq282C{PSQz z0Rkf>C)$$NtYr{p?viR#%S(yh|n}AMstmtj4?5qwB1t?_r!qx)ZR4u zvG^tB6hP@>jOH)TjHlpNG)8jeZ zDu!|o9e|veo5I#8_bboG%bt#*M0^pbXRY?`#86)HjQUC7O_~B86dW%)bgz8460)A< zYfr^cCjT16wexGHBlgUP_kV8;WoBdd@jhjbe0XzM=~;gFR1D?Vhx6cV;}WY5xI#BTX$&<5i5tQ_=I4CUwt3!s6OiB8509=>Zn zdh~P*C639{nNGLk=BMj=ku$!<#5r`49(#W=A3X?t-k1jyLwQFkUkv5${})3^6Ui9$ z!O3}a3U|!~@5YwW?Hglaf8H^XI4$wxJZ4T0hgLmszo>{@lQt$M@`Nws5%JGGCKB7g zG$!&h4@JAFC8AP06BD_)Up@l<{}U5g*&HHZB<`%R`Np!H^U;yZQT|vgD~CF_lJ&X4 zeXSS3pH4+L19mr<8F&2x0?bcxo4N@4vZIKAIAv&y%LuOQtcApLyqA zwYC77TKk}rHgvDjeDv*lOyo&o&rY!l4Bj@J@iU2!oO+_MoMcTEzF9<&^0B1ue-M@k z5A&IlVNehjIdbT-X_8@>8@H%8n4FEw>Re_PJ*f`2YLuOf?{eX*vz4FU55jj)569if zwFN;k!U76OA~s%Rtd-18EP%ZDJ)+fx<&q*k_^<@A!RJ zDMb%L6euiDDo}Xn3Q#5*an~*brIYS3r50JB7>)SRP-@;|fB0cf{{OuLf!mE3;(}m>bwb3Dl3bq5vr6>&LxuKO)|@ ztRE+Dn^!-MH;u*V$HTQfUqAj)@BQ1der)gSwkKFKT$9VrZw8mIQy=?jz%Q}-7{SMH zZ$!TK5YrY?v$I0&2{qXsnR1cV>4fL&_pw1+dI5d)jxu;56on!0p*ju->hR%Z-KEhw zhKK5q;nl+N^3j4D;Rx07uzn}b3dhIAF>n+-RQR<=OHh|HOpQIQ!f0>4cg?@>e<6OU zPKQJ4tm*Rz@v}-RXT#AjcoeLum=oC7^qy>0Vo%78>H9GfAxeqoAn`mh@&97_5Rrtj zH5`rhzbB^e%Uk7%>6^N(OnMNIQ)o=z$y(ySKc?@eeMQsSBmA7GrT>jFeVeusM#aSR z-KiPj%_JV(5F@0myAcRpE7t?oylbS!KZwHgB@R+`5)J*fE0HZN|yCwvMn3z5W?L}ky z#*R4i>$quqp5C-QnTM6sESo52mZbUC%n&y^J$5^YJB4PpZ&h;r7kR!zCNcWZeTtfk z%-zq!@lxyI>ydb<;lmLqaDH>qw8Pg8?|nGl_mTJETTMG+-S7lI{P7n-h9mHPtGt^G z_<)-h?;dsPIbT0>#2II%YWk<{KIg0vqYgdgt0$*wD*8(D%tkMDce(i|S%Md2agr)R z87umq-#i>yS;>kc1iv9S^yV$Y&Ei?gzIen(w4VR|p#2ekH&8kU10QMBD$0wAx|& zH-E&UnaQvtV%k~qZ%L&?Attp>Qhg}O6^f^E)px2U9Z(_VLxBg-BZdkaShUuhuvxYX zI4k!g%lsTutF7h3N#J7Qqg%vM7mwjM@Bo3dtMU0I`CK}@Kb|*gmXzc(t zrFhne(F*WH%x?T<#{(nrtKbFjFb&QB_5g(kciu~};eAu^$GGM8i!FDtloPN=YQg@| zf^WPZ*WgiFkjQMW13u^mz@3 zk#96MaB`z=YT@K=C}35y8L-O^{;yDsA!Xz$`qw!noB2xZRXcolT$-N#-44J^Gf;Qo z&hi%&*TlagGCdLBqdgmH4s`Lm!`?yf&|aM>-ti{#Lpt~4?@E^)1x`cy_*dMw55?Iy zH>JnP{TrrAS2O%v3OfoTQ~Y93^|aj7CZ=XCf!sD{D}!XdK0sAsaV8NK>W==Ma9ut4 z5Om{jZW-l6A(R%}GNHzh%Qmx`=Imwf_(^;{6Ro~F3@tS$*CQk4X$WMORPQ}?8+@cp z;bXb~u^4YV;Y~*vJ&3@RJQ~=Mi2lV8+u5hfw+l`z2>kD;X~6!08kqsQW0thKo0L|YEEtvksrIMq%MP&YLlCI8Ue0nsA);b{!wI|#;jwqjc$kV#1 zl)iQ&8!7G6!lFTlC6@eBpCI|TP}%FkWp}n^hoXHW#+y`(FB92FYz7KKuafiu093sq zGux1-q`E&ofDz*30JXQiAS&sQXJUHDyZCXL%uTafkn2+d`C0Krsb$w=F!a!wty|4( zCH^}P9Umr0@7Hfl)n=qqn+o9k131#n9)f4n)Jp)Lg(6XRp|o9_5z{48FHWC~`ju+d zr839AfuS_J;KV4|W-7$*za1f49lmdYY&!)VV8x+Q&5$}7ubZ>u1jvj5g4nKbP}nw% z!mdC8x_lc3q%t-`X}x z%%!A))jR^&uavwuycHpD!cbfsr%nP#dqv^9Z_DuQ;lOvK z!ndn|@7yp1Ckq559>}>Xr0-W8ax+7IDL=>0#ZUI(0Tg2=&$XK82byOZ^W2U+*}om` zWZWiu?mw3mGEW%jPUyDEz|N*M~sc$?L~0GzAwDtbJI%r&vy4Ed~$B;RHhmUKP5i=ti>@n1sf<0a3^91CQHl|Gy&ZjUqmtU4qcW2}#@OWAtG_`F#$II!oOv;a z2M z#PmH$sG8(MpwT6G_UHB!O+t&K{Wrh!aYU+aM^z~K`#O=T0sQ&ArRw*40Hd)Fv6Clm zmgkll@6{g>(5Nze7X(hZhEp%FWeXO7_qtD2OYrgUu$t!V*sPz#*Q1~t9fFTT>dfiu zi!P@PydwZJq`qb?{V?L98Gql{RL#pHjC*DgKI2LZ*F95HFO%7t%oxsoZ2yKqTayHz zk}WI9+EltRRgzkBO3j)P9DIm2>%i?7%-4u~jp2NaBkp28%nl`cCh;vO7T5GEsoM(I zIL^cjEY1WhJN}DcJGZ|TzXSE*6odj!S4+qw;_x9Aj%JoTQg7n2q*_zqx7Pw

    ^85d z=HN#lB|n+65goK#=C?cuf){Ri+l~?X@Yub>bjlPr??N1{A>ON{yd3%vLThh9}2B2Dh~=|ibqB2m8MJ5H1OPP`$e+( z&6lJ(LqRvV>>m_yXL|Y+^&%UsNv{W8o6{TdKl(vYsyW?&M+&I=p7e=k_Ke{yBSs^; zU7hs8(TmL|*9adBB0D*U;MIk9>KEcDTIpsvBa+2OY3dQR$;F&m`ZAosIW96l7wtYkg-24^GY=N6sMe5DN&2f=ze)B#z7rq?f<}=;r z=IU3-vRH1O|8j_%7vR;U=x_VQQ8dKO>PQwJCFN#dYCyN8KFPz)uL)hk+&m~!v5+*} zH~U7i*tU=CfSXV3yk%}SFpuA-jataCSae)B#zpL#LE&1bvM&36!LnunY7UJP;b zM!dS*e0rxCw5Eo*`R7O$AEh{MqH-FKIeqgQp-Z0!qW+1*tDD=Q=QD{>U^m@Li#g1p z&ktQ+QpXvB>HcBI(vheQ14bYClE&Rn@6`AAjpoY?hC{q~J7hGokv?xRORl5oA3!gr zu29A)@JJQkgN$xnfKXgdwWAl$T-~c?^kQ+Nj#B^APauY1&5vbK?z{98X6+>;lb9&0T5AG5?iY^Z(0P>Le*e-CQ)hZn&0uu3DO4smJxPZ=}>p zd^RUdHePB<^&Px70b{AnN6KTg)GPRG&!=oXQQNu`bfo1X-t3{{;mrP`NNu7X3DGG< zR@fGqQf!1&=vIETd|9c0&d4Dz@dua-LY_k?n1OP@Jj51C!T(*hXF8z&1Fv74C$pKf z#Md*1e)RV}P(`OKA;aVP=i>~IMWA7xDNBE_nzS$uNaJ1q2k$J&Bz_2K5jXi&iR_#g zVBcqSy#^!czyJO*M&K%xmJt}T&%BOHu%zy2xO%fMuudf}u3GT#NX@3O)H~{mg#KWe7I5VHX-F&}qt37U|bg%8vw z`n6CnGZ19_7N=oN!D;>a`6Xw*ia!KhoW-Mpil3EqMnzSu^&2Yfvp!eH9Zs3RIWQo% zGa%do`Q?@HLObkPVJffAkCP9oY$_? z&0oyKFOADk(K!oS|TBrERlDw3|uHoW+((i?Wxbg%Nz$iZ`-i)+Y__7OE_v zmHk=!pkLWhwz2_Q8Q--s4j-(nLMnS?x;Cl=T7H@k=)y>4um0FT_Efb%#&@lZUEZQx zk!%GP(?bYHjZ>{CA>j(x{HkDv!*jk2b zEqvEnmIIKHJ4kM@)=Lb0Ng2l&7bHFXLrL{j4 z_1WT$|He6ZSKHX##CM*zaOx59)ZQ{EnfPLjGtQ2R*7wnde}9^N5@3pJlO=4y zr9tw8_wjmigS7NwmL1wk3It$`2*9{j3kn#h=PHl=E0Pi-IT|Rxt@FWmU|- zz9JoYfnXN&m~t_Bp<=$XhjirjfYb>|3bHQyAE88lv{Uw|;9dDRz(+sv%AS^Y9z&@M z(}ZjeA#0@!Qz>2{r7bkyRA_dJK=ad?Yy!|cySqU1?Eso9Bq@OAOAa(AN1!<^2AWw0 z8dY+yPSb`|n>_wyp-uI*f*>GJZPLd=^EHKLlM;kt`09_sS#Om3JfY39ze}(1X|qb+ z!?c+}Xbjg>OO6XcG(sVITk-cHx>TA4eOB!z^f@(vXj}xMZ5)X9jX-ozE=0PFpD9~^ zMMTs7B`LI-9DyVYLr6Gvq(aiD>>+I)mZX4F(@`bR724bg`vv6nX>+T*hiD@Q6``7I zO*QBx7@#U?gI^XjGC9&ne{G~34ec>l8^N)Ol{|TKkK?ovJWoJ>^P~ZG7}U78Rs+~3 zAX!IeWGVh8j2wJ3s=Ua3+YCBoqe~a4NvuLOy&g;(E zSdWA8RCc92?RxLKItuVyEP#{dZ}ycZRNwREUTn68iF?a5lYzh4CduI4qNS>M={yl4 z%M#B&BXT1eZ&7M_LO`0rHBqwl1CkCgSOI5s7* zZyz(`UJG2Xop#dNlDaGm@Y>{BoheDNR894U1*ij9zP%L-3~Wv|YJrOyOX?P&0Fq|@ zQ3+7P2)M*lya8r1_1pRgLaT|mh!3=kjpExiYs;lyFyFo6pW_pUC^j9+U7B28D*(u>l#uwi z1N0w@)#mMhxo)Ep1RpQekK9)p3{n^X?mVg zd5&0m;9+_WKM1LcifDVM8}Y%A&gzJrKnEbI#47pGklt7Zn!Xkxb<04>nbWbHkp4ZM zAP8E$R+_0NvZcSRFf57Ss!oCZ_#Zk4_RW77w}S=yU)!JYMLrYk7f(B9cLVmu-)}Tv zKeF0_J@Re~_KMeE4!}MbV1w$teX8TBQ{eaOB>0;SxpXHB{-8ho$p?SHJB=3nFMj>l z-IVGjCtPo+-qdKp|LCV*+0&=`MSnqDHDgz6$1jgnT!*aRg5ugiGI$G(;%bG`T5A>8 zz$XL6#o<7t80tWG3PJqkyzkN^#}A{MbJAwy?OFeix-Wr?viklW%_%GmG%ee7EKMvW zz$G#D8I-ZX1|=4kHbg+7*kUoP3`!}cag<8STyn__OUo9^ObwR=&C2?f*=}VurWI)= z+2Z>>=iKL+X9kphz5n;~`M-R0p8K48@44T5?z#K9_i@6op!rHCpMaV51~rY;6oCJD z2Xz|U26TSx1A=8-8$Rk_;(zA5)wKW*=&;sKe6lAt;o*SJKmGd7G4F0tYyC#s&&dIQ!`zQiTpkkv59CaUI?Z5sHmm1vTxlaX>nV&61vIlqYN5#-3sYTRUvErP_WOQwc zyj{p$K-N2Q)IoN`wfa}#>PdDOvst$+X7U6!R)pO=L`FB4v;&e@-kmfApn zR|LnUF#!AbO=P}brZysTl+IEkLQt{2Vh$KkY=6nnubE=|+U!HcMmnMw8x@5jIvsJk=e}hj92gND`dBS=Cqf}~ zqijzl1%aWxp*(F4dZrZ;PW=)Y7yp_MiF4WS|6`3KaX}N zO~7$mJBjT8^?WK&LwO`i*}aPw(J|oR7$PWY=a9WQx9|j`%`T4prqf$VU6Ii{cih1f z-E`JyG)bMy0R#{M>j&g*jS_Qe6L^;fB^E3WK;4IYg($`{yhL_byuQb_%L?0;53$0w zn_tS=2T|5!>oq>i`aJxlb)FC?ZjVUat*BxA^bHrby!b|?F3_LFJ~(NsoyB z(QCc?m}pOf(w?K`<6Pcbp%u^|eG?s+UsBzChjk*35zw!hZ?Gl@S;uIkjqgIiKHmTyC z%nAQjwdy+_icEmYajhB;4*#rHMeO(owaWc7v*TJ1oR}L}r-CH4Y8JV;Rz3Tx2u!b4 zkE?gR!u*fbs+cLKtW_Jga;-Y6i24btRlNa3YSjV2e^QD01eybCHU04ZVXb=MHenp3 zeIvF=t-2K>0pC=9F>2MgEPt)KL5&n>AVp9BiJ#C%Mix}74%aeUf2~^hI%?HaR`sBW zT&u!4TdoX$t-8LsTD4lQRjQFWd9CswJ#(#^`2$ZFsbVdICagdD-&YgVwcn6!RiUk= z%;LXN_}^4_t`vR>IQ%n(AG+-yDE#~%nH^V1;KbzFS_zV9(?W8w!f!efsPJplyI-UJ zhq@7G<|!5a&DUAsFDTFzeh`3&!oLUj^OVA$-2~o0RQN3zyi?wT6h3LQDEu85PWdYN z#ZdUk^3_7Lb79t7c(}!DME^wL|JW3y@K0}q!dJ2uHmC4cp#h>nh+pBG?M4>q3anXcGGz>xVQ$<*?R05x=1 z$LXfwvJ{MNX%MSUy9XLmhfs$K({8}WFp-=z3Q|rQDY6s$4u`s1LSL~=cB@m%)_ox0 zM0?3pnt?p#LJ=YrDkH%Ee11+-i;%86I&rnDBNU}-ubdn1YYla zZsUR@AKoHn0-Ya9gL~a>&h^L*{gpc(a~}I0Cg7ou*M`1a>kmhW4p})kiWukW^cdZoF*`yZJ!xQXe_*yI zF&3RGoiJluht6{17^OM{=x%`jJTs#XID^-)OE(4h_ElIOs9||<$Zn8J+c!y;1J2;b z&_Q^}s@>-s5YN3w?8+-)+a3q}b-qVYMVxLm%9jVYvR3H1Zin=3;Nx3JVe2Ysz;-^C zFyRb?Qx($GAGn6VIKHwAsPGKYJ?nU=hBuo1jOK9vJIZ70VZ!`x%46bAU9Mx-b9r!2 z+FW^@g_1*g+>Qv4V~r7SG?io1@;Ku)E)Qm>zNpb$c~pas?<@*i=ctgva8#?3IE=c6 zHXbG6m=EtNCd-LmRR+5_#Q%;m7{*xsO&NSzr+gd3!L*729v zRCx@eaIgr}7q-eLyF5?I#G5DmylCR`_95%hj?5FMtm}`2UWd6(L@gVR)|RwIU$n({ z9TZLQ@G{*9^eu;j*D_ikT7a%cQt>vT?FRF82MI9d$IzZun1fieuU7+xHoI_! znOk=jo$Phc5~{KVNkdw&mLovc47jB&lq1-cf1}%&G5ynXLg)NKE*yrYcvzYWvucbH zlX9>1@BtdD!Sp~b^#wQ+E?WB+qe6E(Y+1DL(YCuK-n|p91rsiTtDg2M&?@6Q zW)xa^wouw#-p(msQ@4yM35Lr5uxQ+8=tXm4Twu|R`A#pIC(e)@M)vr<`5g8@&{Gx0 zVMsbKhg2B9foc@S0xUTO6vk3ywuQndeaR4lUKmx(2IoPaKS^Os`}WjOW1B#w!k}Rv z3PT>O4Cae1HX$)nVMMTwSdU$zYcSP4*-|A}``@52vL-JUU{p76rfvBM>mhhaeZ*UB z=z^`GFTXeAt5$9IU<49^xYk`9w*wmv@lX3&P!PEOl+hNNqoFq6NO7@o44tukY3R(s zeYm^NKVm8E2Jg(RC>QU5q;2#VT8xJ@$T2S<&w7Qg^W8%Fh~m-*mPUujOr94e?S)B% z!Q>YboC=D{)l-;IkBY*FChILaGr3Ke)bnHLK|BP>bHapMATZfaz)YiEul01~F!U9+ zb)HNEQtNayU)aH6_jTP@b%kJAxDF_f-ZI_>cj$e~2?h-Ex8PxJDd+%13(C3AuN3-) z6X^sU5HEfX5WUvDHhG)P-WX2u}1Bvf}JnZ1M{piEQ; z$)R+4t(8#ps)VivNF0jY;PrrnGK%J&?KHtKt*gTbc4BMF-liI~q*zd2N)On>aFYZ& z+n*jyp-w8y=}xV7dJ;qMoR25HFU1pE*r_#m+VEV9XE>hNMNN#vvlh=mcw#}%Zs*ND zZ|AJfp}On)@!vL0)(6s){i{CfAa7br1&mQlMvvun9Ef)lCH%5gUE|%g=###!r9$rf zH9rRI=ZE!tL_k@IiuHMx3oQ1l;I^Ze9DJrjFtQ>I8{rh1J+_}fIn@n?-}j{-VQFkj zqWr^y?S6lTVg@#w!q2TwNoRbIc3k+i4dmBB_!S%ceCQ!r@*c3}m6H1@2ObC-dhUUo z-H^8ja&|-B9?01Zd3zvdH{|VsoZXN&?Q6OrZx7_`hP*wgd+@YFT=7k?+SH-%Zj6Bs zegE<)bs5Tn{S(AG=cKU?UPtIS*5kpk-eNzx6|3_@AU zACa#j%b0P%7b@atzZWHO!N$!d=`SYnjW4?$|$rCigD_*)TVH?7+f@emKw!zDX;`;b9d8@7&ixM zM~oX4-VsBz!>GjiKvqttNl@Cy>iqB+DSof@4GxC&N<^6sD%xxq>U3CKg zA!C;}10|JABk=8rgn&KJ<8^qlg0k&Rrc0q$3tf&mJqiiSj?2xJ#0?SJdqBfjZi}xY zN`wdx7=gmtpUZCDv~L36nMa$Dao_OP$H5{rrHIVCNyHEdo}tk1S5Ut$FLQcnH7xE8 zG#0#n5T3}HqFuQ#s|U&>Ef@R!`B~6XE9FJsu`3hIe5ly>9^+M*uwy3~>cCH4P@4fX zeLrG$NI}mrEVn>UM>1T3fRM0Wt&ugBqfw$0PT1J=w!c?I-{xnL7&cS5W>I0jZ$1h_ zN2#qHh#w|P?^A`Li_PXFky?7Kji~XIP=m1!*Hu&n>3HS}OYEHPA>k40&*bnT?w|Ig zzE6f1VyZEVLjo*+IGp;YhC%VNMIkUTI#;?={yy~*);N?c_ITuuO_#kVG*xTUj=R~4_8yi zxoovWstA~~-lBF2dhVY?{)d>%XI1r7Qfms8Yf~SS8km9Bhi0h6!&Kt_%?YH$JJzzW ztX^iRRc3Qa$kThMrlyt=klHVNmD&Y$=Eo0V51PuVb60ic(Teo`^C&V@Lh4>B>Rwxj z23+qV52ys2G{hv}rkRgLS2D;WQrDGI=*ly?uAqNuBwcZN+YDkkGJ$lZG2S}_`b6do zts0&B74B55LX<1xXTG6CxkUu1UnK9R(%Ix-D!{(jSsx7?O=%kxg_iJFGEy5UF{jC?W9rF8?0b7{E% zYj;Z_D_UnwM3Tx$b(Wp5=Y3zTvOCZkSxfPzFR}mpAr-P4dWG|TaLW>Vonw{^GOTa0 zzg$(Z32t6dfB%@R$%?w&iLNqeMST`W{@<~BXkje>X7%v#7xk&$+~pVq8MDH`wfAnQ z1Fs+?CadfCF?1wsc4hoN>j}hbx`OL?lE^Kt9=;8BzIY0Ivem;Ld#Mmv%+? zR?(>uSH*A<=Z)(@8A-m5kGV);@JTpT9*yro2BvfMyo%049M3!&jd9~-rz4~0RrJ8_fL75lcVKpU_viSud^F~KlC)Y{?tDE38I0rjt&Y=Jv(;WW z+1mFG2z?$m`<_n6X`UP7KoY!0hwilUz0%f)UT}I6pu+R08_-)SSr1Q`<&?$n^N!fm zVz_sB;EL;K@6z;{7Q@5ZpyV)K-F!ALhS$TxgL?<0&j#p39a0fN68M{BWxV}D1dj8x z@+5p3hmC=Zoz7OjW1>xmm!-#Q4)$84+2uJ(vvLsn?z&1len+9;(Bi>Wfo`m>5?62P z(`h0SzN3#r8@wDw?j7%VWFUs z9gM?pqm?Yk*ZD5u9IzNDLwzMfb!&n$l+bd9mM=C$Bm2MJ0WY##>U`fVU@>ichce{K z*ssQztNGnLm%=@ibio2^Dh7=-qf~n!Ut+vk=|lF6X=of<{z;w@md@ea%poWw?+$yt z@{mF{Z9&u#97*#x40oaS^TX&1*(-M&S9w9FQQGHbkeW=M2&=y33V#^W` zkJV)fXqC`q31}`q(&VLl6#!B!ub>WV8T^K*+h48~` zp$FD~>$#w5wR$a@v$g)_EFN1F|H0AUM%lciXdZhz8iYD(&M-P!ZoyUL^xzV&f?C0ww3a%{0BZwz*w4Y>JSLws! zRLr{wbGxwO{L74=426s`;1cFFWIg-r&DrP1$DI9m*!69L=B^dp`sxis5ImIUlIPXw zrl4yDbbSk;GpH&WD;x|3rP!MavW7UQQj?7EI8QG}$q02gdPdlrGeT6{VCB~*JtIpc zBj@`w!abm5gq%$?QY{&o-$F(fJj@xfh^!fko)PAt!{&OgFUgy#KCjv9IpGz1&IzyN zn{$GifxG^;8wDZf!B`{7*%W_;;IC={|Hlt8el{Qp#LCOys)WOcJbXLDI3ZH)ADgFjgRgk+DF? zZUMqG53;ywBt7QKtq)5(5Yy78nC6=>u{UEPYO|OU1=IKzFr6ouswF+<%a~ZIftaeA zVyZAdd!zGv6urf*_&b-WWvPW zjEShtVhR&XU0T3YH=E@YDd{oaWBcOWbwPD5yeS@=2@iWS9-=mj$0B$_TEKIa;OSyc zPpW;GnIzRd!~}u883Iw8h0uWOS@lY&5bDh& zflzCLz}^gjsLevC6$te$K)6C6tT(485Z0PW0-?qPfxQ_5QJaOZRv@fz0YZ(3rLfeT zo3+7^x}mSKzea$C^k1 z1S>h4VyzIYRV`rM=w_@=Vi$R*v36?BTYan={Ke!bPm~+%Nyo? z7@0K^KhNR@X4|QY$FUJ~+y;vUJH)^`ldMP$UqGu*xSBeq#mMvxGS57oJM)O#Vp%)H z>Bjx+ItJRv!6)Jg5tbd??7(J)^tFv^w;q5zn(u zB;P3#0jX4YMMS(Q@snoiR={_8aD6>JDkpMR;w|IHylQ@|tKo+%H%RuJ?l@f6Bu0kh zrbO41D!>h^NM%11hwGYfNrR%pda{yxDuf{g;Eoe+SXuIYyeNYnz9YQG>?L8MkoHUZ zs!qysN1gAqo{cAHKLM*o)}&u*y1FnM#(6uqoSw1}ICs7xQf-heftVxZ=U~o0IM&mq zB4$gdtKKgIAeOvaM%erLwniZ*woULBq@%7y|>9L+xqx!ur_}&M=Cb%f_>g zi$z`5>yd>d?^q~1J~hTH=A-&1s_Kid z6OlWk+CKaUujH{AcR0&P_LpRp0l|2+!MFMzT2jWb0%GHl2WIJrpr_&TteXf=m-{!= z71Bo0U|gQ2gYb5u9H`XW?7<%BKCEZre}~1y)(D3(6R=PNzO9VG>fV6~z>9W(=-BYh z3|tT9^sK88E`){ZkIM1{FQLZb();2uQ_{Zc`67TBM<*-O$QHYAoX z#8=jhUJKj^SV>RcFEjn6&;)rWAP;MQJ{l!j*VW+!rbl5;?ME1BKUt3t@tfq#X|QC# z$9Ree#^a2z+^V#AE@2=Ox3Kn)8E%oNE?Ii+=e&*Q{8GNVKn5-^Z_`4TZCusl6Ol&K z!EJ`2%iOF`GjphYBi8l%K*PC>^;#eJiK;{wR1Qmnv<4op^lf?@K!Ke>oTTC7B`($Q z>GhZzKB>oXxTj7(vLSVy8v|9>oydaJb!k#Qa=G90buVp%K2m~o3;6YhXg!PfK>}Eu z@8Tz|i)0e(JTYb^F}$TPs1X8PR8@h2{Mw+)*hMTK{;ST60)38wsjmfy>(? zOy9>U$5D1%$>OzM*9Y4wo_2en$Cm;Xl|PF_c_;N{t6>%ejuCb6p0w_)=Qd}8Qnv9* z`BWQ3+qiDGpqB7=eHV#gETPH~zY8S?D z)#F68f3ezPxg8%th_J4LEA+k`v3q{$8SHa$&wL!;m&U;i=5J`mm(TrQj-CMMdFTt5 z7-XTdGX`Gx0>N!iDnpL+6#{Eochay2^0g$$zT>kpDcN=s2eev64YN0}(ehu^o8F^o3_3t}bk*!sJ@nyl z(YWBa@rDs78?Rg2_Lh1ifedm-lmqz7p!?U^to&S$sLtwr5Y;IJ;;Q2-yqo&&2}b>~ zv1~T&;fJ@DAM^I}W1aXhtaw<^>ifU<6#R+ykiY_mSiO2F2Bkp^$X)|(FYy#N4BM%x zF>fHBT_Z?N6T+T z>wbm5HS3Soq{BMWy1-VSc7!`!hy-W7Y16g#<}JRPZx;iFb7ztI(h%wtt$Z~pStIfU z#S$A4y{*=JV;=9Q-jC`9>Ed|$C;{KY>F+o~AlSh6t2>%E*^JkDHrM_~1kV1b;X#9h z`+>i$p_7=Dq;3e0CipG*lzzuPIHPIYi?4R*WxQyiL5J7+wlIJUCW!Ht*V@mB$@b$t z_!Zq5cs|XIhnmpegb95K+7NTIwTHTE&${*Wz!;oo>L@jQyOE~s-cH2jv|U^fL#V(u zkzOcIIxk~=`5T6fn?^YXWU*9OR_iQvG4cGLCMGKX7)|R@)=HF`W~0y$F(?YPc5+Z9 z$V0cTkL0q~Q_!iTi)zB3(ol+hZDm`d7K)9mq=smD%KgUX{$gZjCmW|LYN)OtmwL8YJi zf}$=Bpe|BWo)a1z?o(8r9U9a^MfC-6xL#3tCTfI@Q&e6mFsKoV$~yrDwTq(C49btU zwW89z&rdyEDstdSqQPOWqVlSTL9JC(UIa0yPb(^q@eS%+Mcp5e+TDsu3hT#^t*E4v zerl4U+5@OV6qRQeMrxNSDz!bt;Y=>$Frrq|N19+HqOLlMO;eX0r6l9r@gDR!upXh^ zeHg=WO73~Q*X?ElDi`db$WONpG#%0qb7PpP`bdkI0a-9fcQvpCtCB_tRC#=Mf(@L+ z`~G6`_A+a4>U=a6oHRnI3oh_Yx%&v2Vs|@=u7&VUbNE+~aU;AK6nje*3Vg3AAoZn4 zopa0>>wLG8uU9O(QBQ6xJaz)+9>~E`sx}FDCCdYqH`FT5IbX@){@msM&UeG7ke66d zx?=X1bW^-s?r$l6UvN*TJWvusK?@lO7{}}@xkys@oC1Xqz4DWi5U2YK-?bb_$*M_S z`WBgTN+-bs@)F9vY!{A#YEle^w~_AOvz@d6>Y)_FWLz|eZ?D+IEhvtqQ$vcQu>9~+ zOAPg>qBop>T*3X6JsbCI1A;G}Fc8!ra*eT~j}TD<81nd|SoGVYkKr;Spk zw6U;E)&N@!F8r0`ZN{kYHh*epMIF`taFk!zE6SozKz^%?G$p?kdYV;|W`(4=!_SLM zs@{lY3otrz2$QNRF=i?=2~!NV#8N3BQ#=n>X(&TVS}f-_qKV&3fdx|Ls|fB6VN;a@Q7uV zu1m}zpi=B>nvp%GjIcLngs9Ex5-SGoMtR)GNIiloT_R`Gj5Np&A10TltQ6z&So%D| zQP;ley2Q$%%U?Eh*AqaUBpZ)wLDGway*VdD4akX8H8B6s;Gi~_Vbz$^69`MqB!MvB z1cAL70#Sn@c&!gFHbhuW0nqB9T_I;v5$+KY?rTAWodjzYvD0Ov_P@;}!CD5AF0Kml zW~@YQiuJoi2G&9j%2>(S6ze}UVaUFf<(f_G0mZPHtnAHLiP{wFoP~y5BPoDjC1+Et|IjER zOt6L%yFjcqGfA*^0ZGTo-i(!~!C1LZt`>34Z$Vt%92QrYIXzLs5Hm?2SWFPun;{Uj zSqT5oV&P1I&`6WMKq)ksNdkeUhPo8kn<4Oo(cG5n4M(9!p{xZd+@H--*l$ixq_EFS z5(qSB)giDqL*SWga}Xv9gzOd|v=IpP=JW(Yt(hbcXfmxsU~h&%)Mg7JQ6P+O0m3~~ zSPE;+=?R1yGf5!OEMJGf-VA}L%|fsX1ZN8n{+`Sb=9|+K2-RkiK&Uc7U~h&%)Mg<> z3WPx|K)6#NRG8Bf2xVrHKqxdpU~h&%)Mg>r1VVTV5E`>s3fboL1j0l!Ng#|jL11r& zK-6X-gb9Q$EkGz02#MzO1cK8{5(st^1ombKL~Ry=MIeN<0O3d`OJR^XJ%JEuCJBUa z69o2V2t;ibLIXasgTa3z9;X`o7YGEKIX!{U#Y_?iVI~Od%@By%EQI|6!Pf$W!x=1v z5OaD0!D1!}1X_&NDnK*%;hU~h&%)L;mh|2}Ap@Fr3K z8R3z$=?Je-u$HxeHA1kCCw75VC(%q2tWJ=0y=8C4O4O!UTlultDS%)lXH%>b1#5N- zSno|^xeg+BfmkEWB*7XEl8%+V87onnVoj|!jkHDpTSR{X4Mf301RiGQ z@mMYl%#%+7R^tKNQS6w>2C|+f_U1h8r+}^Y#D_j-S~QGTljul+JE#S?cizOJ-3L}` zset((!cJzy{fA50Z+Q3!Axuv>Ls;R9 zd8d2;F3zHijrO+bvYBiYTrqpgFBs)*cRCi|39Z_zr|(JZfW3)xMqR5zJL27+0rY>o z1R57T=z_&DXY5QHtIZkvkhuO%C-{0Jw>VMwp)=--@-grzq^yQMS2x<*E_{@?&3QTy zWm5BHd5=-v{;jaZ+!leCQed(I!O{phbt{k$8PaOlqt&D9Mqc-G5AJQ`$2^&XiHVg* z*4PCh8Gjan8Mk5pFwc*&<5^E zxOt=ncR1XMgb8jN+}X-ZFu$TKe+Q$u98il>rZ zYFUu$@dU-wY(B}b^<6S^yLl*VSyk?F`v#;4W$4l*B3(L55q9~$zMCTO#l%Q3ToQD0 z^7Cr=Z5?rOdUR7|s!U>C#|c&N;g$w3BStaNvOc?3+W!2M^#V+R)IEQO8-7L z^lv^qo72Co;F-ug7t7l4Vp{n{UT9VKb_i%>2^>_p@x1XGOEy6a-9HQbCS_0{eIZmcsbf<)umR$7+KeM^?m#U<&0_&Ma za*gxc(#Bo+5?mhsjf?Sx&bf*1;epM_4&A_*Rm`)FwaepW#ggbSrKGsvO5jKfNt^d8 zH)(U3Nt^YWK-#R=1kz@`CXhDoQ{hRQ^_oE1tk(q6X1ykmHcL$~8!bP0-!T+hCFw4t zo=sRh-YR}@;{%1RAgOagBe3T_lhG7|%=9&vh2iYVTX@pA}PDw-Q z{>jszVj;ei1~0j*G$u0LNTd8twnE=p#jSWoqhYy&;)UgoXCAf0dhs3+D?F6iLkJ(| zvDGpGnJ=xZGXIEl~6gpbbRK#wnGxNZOpI^S2qsDgIcL10$9JK8#R% z7F(JHPa57dO1MO^H5-MrDJY6qt&j>B9t3(l;u{%;EGmR8HFzvWDWi*ElEZmmlbphp zY?8wkv7BpSRLBvTpA&aEU=ojX`00yG6@wQFqNhbYCHh6&bxC~LI%gle4QxSCMdkL&px&ma+;SPz8x(b4 z0AGiqa%*OUy;4!RT{EcXD=N2e2K6*W<+jeC{*WYc;KtdYeyFJ2RvXkUipov5L48J1 zd30b<=P4?W6AWs(qSn*s!Jy_S>iz&~vZ6KyP=_ii51tGTy%d$(P=ne*QMpMqsDE51 zInJhr)}Vf)s8s>fcNDcIfcmPUa&KjDctTOR-!iCPMdjw&px&;i+;AJzbVa3>$&c(> zMWw3mrw&lmiHdq=H5ra{BPv;Rkl{wK!B1)|oBV{MMTg0ckFw-m$7tR1$-QQbd`zD} z@TM+u>feKXbWg0|`YRdhmTr zLk;9~H=+9CCHq{;K62E=>qLLJj?0a*MuKps(3gBVUyQy269Rn6r*lU*G2Eq`c{^K~ zj*swm{$s02j-vyZcG3mzEyU-^0vT`TXw3LkI1R?DnNEzCn;CaTCgofVH>3m=CqD4Y zujG)s5HXg9yVV{TH@Yi(Fqu6o`}@g}Z~_^N67m~-Em=st0Sb!`lyIgPHdE*0m29T` z8iXTrPJBti{V}YfT<)KIGe2Ru6GvB!&tx<8BNfo^31l<%1KCXdLS$%IL?|ZgW zO*CCl=X6hpl}Tv>zSIF@xrF^L+-&S}C+rC}%bIbx3_)QtREp`!yfQ8f>z8-y)AS(w zE7)Fz#_w}texu*)v|e6#UBU6sY_0;Ybt0Q9GKuqeCGpg`P|oVQHa*V7STXk1MEt7i z>&7980T-lE4Ynq4G3oihcoLoU(${Lb;s)ofTfXnsYR|ikxT&-j)YuKW&9a!D*MRoM zk9@#{zcusG%`}YUZm2nm zw#};#opX#DMI|FoYE_)4D9r8H9T!uIaW8$Z3<&xGm3&dPH@ilKcv5%sC8xL_l#Kix z^YvlhHVlAlxDU`d-{l?B8bcq)d>9BjYM6w9F@0Yl6DZW6h@ek!EX7;qFI6na2&vpuwunU;7LV|XtRrpEpS*l1WiO-3`$y&>t(dr7UY9l=uUDj`-^ZP zaOD6g?&>?KLMbJQaX?4TV;xDY@{GdCZak9OxD$5Aq(Vc!qbakueTVg=A#I`ZXRzz; z5Kk#I!XXxGt9^__HpzJ6yV}ba=CIIHBD$4&qM9U<|^}oGRsP?v~J(ch0~huyQBPyq}NK zB}u4jdm%$Q34f4eIGw5%$uRLE5v2_!6|>cl=I}dOlxA3vG`GF1OY>EB{aa}+eC+=_ zXgWSMD*eQ zxR1n5bvf*ORZ3VIgvaq?G(bWiWhsu(O#hrB z>z3l(8DO)CoNh|r!_Bk~!5C{Glg<4xeMt|7>)ufpk(C={=C#(p3N_ZD+)BCf8lh}PsO9ER^M;_yRGY zS;};Cpa#1hh}Pr0j{USCj6h|t&;Xjwz|KZQ{<4|1x|Hr!CEDH0j7BomV<94(Su^we zl(Oc@WECRHB5Qab0ELDrJ|Fwo_C9LZEpBT~|xI==)(ZiP%RCpiCm( zg3}o5*D{^P`Y*Ffv1{vRhZ%$e?0EVRz_QZM@(wf0JcDJ1ndM%H7k7TrWWll2<5y>0HS!1v`mF#gbgAu5uS| z-+V4yC1Wnu-`1KmB%X^kf%NEoL^p!xG?`S57r^JteceEB@ubqEf9DPuNuzHFr7^co*hi-*eKW4DmujK(&h_m=`J z_BFhnDpl%hpk|&nt>xn9rKEGM_MF&n{y+&$1&#dfLw<3-r`6=eu(#Wi|l_#XE$&xheGRVJ|}tvHoJM zmjdthoC)be9GXgAZ{w@?y5`Q1&QDDAM>!JLNv0YJX7V1uf4wc{{6paIaPp_d~G-%#dnJyJ+R1Dppr z?B>tnd}VsaY|Q!|y@$cEWeueq`rKCfOt#m$L8q_s)3NX|9slWgkj&)J1fl6Ep(e5v zQtyu@asaMDhG>80qu3+9S^osO;VW@33%H{a$`GD+X0lQ<;5= zhLD#;+BY^(13}EY0Gz@64@5iIfPs&{%)(H=oaXB3X}Qd1`gITYQIS9g#0Way&cOj? z_B2ZOV0l1-OE9MmNRX~?YN3jpV@mKMN$?=!uJer#OfZJk$vQYVkw;oiGx>6 zrIzlmu&G*l*)ygRZwv7pYE_MTjb(;fr^i~);ixZumfL;mM8f$?Qlu^4KW&OToe@xf zOJ47oy*hG%=w0zI>_vf|HV4}FD=Dt^S=`I*G;7#%oKfp+48A_0mH%u zEK;`7;9dJG+>a`9xEXEsV+x+y!OWD7-isF`oHOYjeyB`$k zqDOK=OwyUfG*yL9NX+U487Cr!=|6V#@GI!}UE?|xWZesnc^IdjTfOO7) z3hL7N!_Cs^VaBq#K72vF=DE|m20{2*t1{S+2g%%b z(Ky-VZ66LyF0}mw&D;JGessR`T6(j#d5V%JAjemlfNUa}c;+!fFTS0~A$;cc-GdN3 z01K@=gX*-``q9U{NX2V?Z$Z^)t&f(tcADI8C^v#Xfb`&v;IdrUh*gkU(BICXKGOVk z7hIpv4heLwLir;GKI}uEEbw;Thmd%uuf6EkC*ZpobbZ3j5>l-%c5pO+HrNDjq#s6c zK+v%E{rqTC8wmd8LZCZYI$y?ax}QbXExXD)FZ03Qfu&Gh%EPD!`|P727JNt(g(5A@ zpR9qjT~@)a18}L2_3|DX^kkl>4ZUuF5+K(DrgCkl^L^ZpbP-EW-b(fkA#WL=UD=wMpwEt}G}mi73IMv-PL@Y?d9?2K<&d*W1(|==(tlAbc21csrQzMlfMxFyX~u z!qdToWgyg9m*AJ6Os=yoVCN3&JbLO4#J#MbL;Hb7?UcoLSsu3zyPQE{ZG}F+j%8AT zV0D!w)(p6mps4x{8*ozD9gPluFkP-R1Xx#~uRS$FS%D@iM{j*TG3SnUL4pz89o$ft9Cd`WRiPF~h%=*Wv0lGjGyMhVD!Gv3a3F*Ov@gVH5PQb4X8GB|V zGGMNCy!eK1F3bQpz4K_Nh5({A7A{*-n?8YRGeyKXKA0sfDFb7^m6(tmRZ7v;yHvl$uUcvEZ8Sh%_Qn$d{pL>MPi$%UZo0kP z%&Xx*HLE;LEYy;cX$_~1xjTA_ftUl@jAfip%pBh)SZHx_^3mXwKx;m`H%JxU4<@`B zOxPMscr}=?Hkj~KFyZlF!n|O@ED-b-Ci@zwig#!fNK$XNXLAdaLUcFVP1f;+nUlE6 zS3^N6*fkd}wET!%Nkl4%Kcl!{=vBUv=54#gmM528w#vp0?I?}I4OS+`b#*}$`GQR+YZz)1v)Py+}`;C_!Rv|8Ux4+i|O0N&sT zDw*t-0Z)Pu{D8fk-ar(9v_4J6W5R0cPt*DY6juXEuPN3%T8{QwdjV@5u_T@s5O93y zvgAxrsCRQ&p`Gw0_tB()rhk0Ks7`Y(Upq;w}7)&HpsSql^3s5zT|0R2k&A z+D|STvR#Gm&qJ6J=dLN7))N@!AkH;o;s5Yw>>hOu+{K@;do0{?l>|>6dM=_?hl=j3 z3KSi4?anU6)s~G9cVTZAIE`GcMG|zUpPMc&NescW#_55KQ5i^WyK zaS@R|Du;M(#P{H%{yk#_mo^AaGhvrNVy2@4Zw z${dS=)(_R>=n0BTIUI1`2ri?0xuI3r`{oKNX(Rq=C`NrJT*bdim(YMw5`VZke$UG( zzI7N9LD!Cz7wZ`a&mZrs#aOT&JE}B8yNvxikc#|tGpPt0;$tz-xs^WQRk>5@fxC9b ze(Z3ToWXfL)YrKlI!1rx&c~d`euo)R=;OHAy4D{K9g*dbm4hRXsA+l(%^9;J^wE`dQp%RQp&bk3B|ZM~d+Sxr9Bp7`g;tUo({W`WA7OwZ1{&>g-`{ zAs9q^Szc`~#yNiWO*Dh}`tFq~dg##r&G=Mab-;k85daWBPTDgt28dK*@%Oh*A8#eP+v@C z-Lxw2<#MC~J3LP>u&>Be=x?Tm1(1H-|11d)H3 zOVG*249>p z({r)bAJWK$F&1djYoDU3&l#-O*P)ki9Xl7CPu6RvT+LPe3B*BFkH?!-^=RmBGgbXi z4`6NmR z>dGDDth4L&e<1ser(XJ2j&f`tL!3k}L``LCt9p0pZm56xC@5fSisPXg*Z3g0{59@v z)L|Tt@U|ZZ4=8q9U9XP>SDn^}UIz0nss05~7qUyi>Ar7xt-<#K!66L)tuf+7qFY(Q zE1V!tz}5Q3@Ntfid8rhk#&hx=RC!$gaHCpwy5VzFSG9T^dt>ZPu{Z0tMmlF44s%cc zlg(5;sSO?noO|7Mz8&33{sZR3V1MZh)JmTf1>#%%lR8_pbKB(5ZqyKAR6H)$eIj;j zy!*G<)Ohy?u_-QZ&)N)|CDrNeOV4Ci?{A_$ac=qRG^7>cThkScVf))vkMDASkIxsx zfyaqXpVE-W8FQ%gdzk-(+;EeQb=&005qkKe+n{#fL?Pg`w6e5j9QsdIQBgsWEhpbL zG9e``b7W>wc0nIozO6XBpfoqrHYv*%Wy{Vg%IY4UpHY;RUYuncoe(=dFuW~1y)+}6 zXt8m&BrKNZQ_G?}G#-;qxy{%oI z=PP;xI_QAEihwsui2bz}c5fa$@gi9toBF)~}B( zA|k?8lyzHaPEl57cU_+0=>rD#$r;#Za#VE00MwP@X~iX3dA5>*0$V03MV4(cswJgh z%P7b%Dax6IYE_VL3%A{JOCMWSNjj%)>pd9tHAhF%1VRxY6ithwpXeYQf%yzk`rg(q zbX{(GxmXmvzj|J+p5f|g3#u={^481Kslvypr-lD$fFgel+VpL6d#;Ip0hT-RN0UeV zmFw@3*4YOlPF!(?yzBV(DE%<>qCyY9;4%7JrOESEt?!774t+K70`1RLKfjkSDN&n} zRf6_vN?LJAdJ(lq#if&qqzNnLqP97blEx%)X*k9t+lJZ(2xniJ z=NL_v0rZ!dm7Y9-X&D8%eX|g?sMs~iH7Y7PazJ`!dR}^dNqT-( zRR6xvuk`%PoPylKg7loCyv&@!(vrd{d58gj`7JCeD8vhg%u36IV~V&7fdd}dS!MiN zNG}B$^qXIhkKfF!4EimQXGs7@E_lBYqY*ovN0Tp$48 zP#B{7669&Q`fIQ|#ho8r5S=|Ov#0vVfM;}H zp~KnF@APv3o%A=qzy^GM3k!17i)@^$2+0wNg++mYq8aHTM^<=FpFzECs1ErBx7$jKQ8}o+n*>$O$cB{k*vTVV4)lr|1ZDxR$s?np3kyKy zNAk$@jG}3|1^GEpom|T2v?Be50HXO6A9@s!e4twF7N?{sK{E3ubCDDP73zWrvoFGB z75UxMRE5gSVN~KhH79>suEHxUC<0QNoLgF8BujD)5UQw((h-(LK={m@0A86n0lp;P z7WoCmfs6upv=~1)0&89XDuhr%3(P9PYZ+hjv4vp}_J72$*_c9<0*Q*!*{b)x;>#5z zOSz?%6+@M%vU530c@{t)gI=YY`n@H%(ghA{cK4M^LwqD+Uxq>N`CP;O@4~1rH>u>W z-nqRrze@vaqWGIy6VYgNO*EtVCE5sQ^vLM^^ulcDEj5wZ(Z!TvdVWE!dPM2qbGi8> zACR~gAeR7z14>1HXll6YAeX`(EgcS86;$na7HJ+1zXhGN+YON-3itEnM3*G`0^7BT0J^htnIGEHyZRcoJD z7-1tVrFJhjqck_22XD9Mlw_m-zr|LNpF0f<&>>99#bAKQ`K5V7qgYA$8hSwSZ6n9H zTw}(?kG{q>GT!B|jffp>8$Bk)Hr!zwljs=jh(nmJ_@9-ZIVrs;5C0Pq({D{ox7lnd z_)mX{^1w(jEz0kV7H4*vYpl&y7L`_*9c3$vmPbE+2$h6_Kk2BcG%)=w%e5}-f$sj2CYmYMw?>NI4wS90ul?qihL(W z4T>1lyLWh0G`(FDH9+1X#gE^p3&^tNl@^!K-vr0>f(lWB4P3SpoBVDn{ z&a~vzgu$kn=;Yk=;_SW|G>2mOw)4K@^g2^_dK~oHjq)0I*=cd62#G%oCXOwVMIE7KOIgxOQ zX(M7?BL>?r(i8QDbig!M_3SkCfvR)5#T3JqoH{&dOlnH}XopSWVkm&@PfgFsO{ZEx zpfM36NA@IsVE9aLGMZp#e7rp3 z_#uetSD!!V^FYI=LU*n2T6yTY^_$iF0x{-)dBzQQdJc3O5_9&#n9+7U96u{s>F*Wq z4v$;c?IC^MWN8>au4DYUe<$eviK+bemoabA=dX&N{qHRgf4%mxuc>*|bPQECl);hc5%ewncXpWx0 z4<6R3m3_tsUC+Dj`_Hted)+g5?-7eVecP?hhBqy>8y?QQe0||T&2jsPK8@SXs~z>q z*?X_;a+cls+=CZ9^7W3_lcx_#>yiDr_VKu`E1s&~sjVs*9a?wqkJ@`be%R)YJN~0h z>-y>9b)Wp9t^9UeujvmTd3{jdvUkUY{iv{H%9(if!wQqj)dO`M*0|l*iYg)e!tww!w zmVHgutrKVcaa2nj`(vNFkfYig?Jjg5f4^_-rEgtQ`l)08>ur+mUY54ti1u<+|CQ4= zN7x_Ix|IDm^gXTCH6p#@_8+yc@A>TD^Rw4#H9M}o%DttP{k7ZApYeCd0qygjpE-C} z!x{Dm`kndigQIq8S^avtkFNPe`@CZPlDacbt95sLa5B{Qsc08k|*V{+6)2c4-Qn2n%t@zKJ z)3biOthSx=zK#d)Jk5T|$8WZKe~C|ftkuPfhMhamK5y{GvP-)k*Dl(d_hQe`i|tWw zz5Hg@{)_Dcm-Vmvd*|=kJ?9TT=dvZ^>_w}-i(D2RReR%~Z`MBOyU?DHTAf-EpIrO# zRX==l;hEpRUfTEVy*oR8rfr)4WY-I)U1;BwIA{e#+`wNaOSnf=Xk?d%UYPm8#FXjE`kdR= zzOYsM4QnpBuy(rVsnN@A7ucsQ=yT})zb>->bwyszMU(p5z0)Tzsy{8#KJb%Q-484b zv0v0VGJEr`p0%sT6>jVDaUZFFFv8$^SVjA{_^TKzPx~Bs)=rYAWrCs?*gyIG?prpN zJgjB>c>VBUzQ?r4%U7MVCvLuWTH6P@W&F56LnF}oiu)hYLOoa1by@JJwxDOLTWDg<(ykoBRV))_ZzI&EvpWohY&R>02YBAyID}P9HYt*U?xcN8j zv4)!X^V_zzckbWt*qOiot&M!xv0?g`ZR{O>KJw`4H$J0H=D**x7y6X%*gWAG?XBJP zcR-u+z_I1dVNa>|KQ&IS({W8(QnulsdxdK6{?vZib#}_&bDz*Q_q=t%{L7bXhp(fS zwv~Nb-h1sP?p~(ix3;f5S{eQ3Ma#4^KYXHa=$TggosN>pf4sR=tBGj)%`0_FHENx^ zR{o{kHk3kG?PE_|yYuF6mS|T$z2c#p!XDQ?`1#&5@Azqv7E2pRLdaew`fhQrL2>ym&zN;~kf2QA;Z)KNz=6oBLPmiQZk0YpJtFTz{u? ziFSO`tgmBUdtBRbYoDawwa2x4j#h_uy0}I=d-+of?pd%*`|j(H6QgDy(+-cj;p+E? zJ*{;*_vkO}LRM-Ao_lHFIjJi&>k|*5rESzk+?Mp=iVK%(`%XKS@XSMdv=z&DUv_W! zQtk9L*Hm8|^0+oPbm0rB>lSMl&x(z_;I2j5>PFXjpKn~Gb!&abcUezArj=%F+VK63 zh1%HU-aX29Ez#bKyY0@GeyY)!eH)8Cv*V@lS4G!oRT(#ZI&y}^zI*M6TRi8l(yAK& zc((TkPik>&4MYoSSZ3N7;9YkKy%c!kzJzGy_Z&QEFsKmFjHU(Z^j9Xt5^xW(T+tqrMO_|h!Mr-OCR zolo{yrOhfn(rfps8g1-3PoMd9{3`9-N$WO0w{oS?KbLIzu2aF#Sua(7_i6l9*~hi^ zF<<}G;qrDH8|r2k^~*c1UHEX#?vBS-Xt6);D$S}|p*23!`NQbvS7?r_Z&{Ol`4d{| zE?1YABUWfdAIv*(Me=g(*h4$AFaF@T_WhLNuDd>8u654{^S-*WM*F3-)1SxRo~=D^ zarAlS*fMR}McsYh4O*c+({}lfrzKkK2hTe?Xz8yjvon9CH>l51SRYO;_edG!4 z$oZjL)<3yi`}j5ATd@VpwS>X*dcAw(N$uRql)4{RKB-kblTq_j>y=vCp9eafGkb*= z<|?;8pSD8V9bffR!s9EnH+yTZjvVrY_H%qrMAtu-Yp+y&GvvMf%e9IZ!Zv*9S*CS8 z(BaJGw=dJS=d_7_cF8hr#CtcLu`gtymYUS>NbZgr%{yiPg@bmXd{>ONpOgNJwy5XJ zDW5N_(aw9Va>$wqE3|LlxwCHE#2W3-_M88{;`SG`Zp)vJ`ty#bwVaUy?_E8%Moa0M zT{B=vjn=wX_uFR9UZrjOYjsBU)MeU7LvH+SoD`OgbyCyuXHNJXXV#UJ6+J^9t7d~fyRQq84 zk_oRYen|7&(EEc!bq{L8J05C1uJ?THkvBg4ar;>-wF~=wGk!wsVy&n4`0z_lU#ur(!R!aU21GxQUvCdNeMR0nrw+l@uNq?C&s#LV`E*Z4o+U?g-v)8 z!|{x;Pge9m;L?-Dd`abPv|}7HmgE?b55WVs%}_Y2 z!yS&%HV0)hHU*3WVyDC>IFchUW2OR1h;_Lf$tfZch$&;V{JJKf65i zeXK$1eS%%aDLh!g&);fah&PGw^M@u9OpAxWluXhxc_S#tR@R*0{=HNMVIXc}9;)yf za;uQg`mdfZT@HHwES9k@M_L{x#*7(@_jt!tT3=1D{EKxONi)fjoa#!kjTvc^1r^72 zsqwD(;YsnS30RYIjYxH&g&8y2hSkZ!EGQGLqS>xR1;wtC%~m+nhLtI-GUeuA9~1=s z!#g&s3W{jMldS-VD!ZQ&fL~~J?S@;YT$$JJCPlSnWMfH>mn;gfT3V8mo?Fa2Vo@ja zP>WdDr&kiJP)|$X{Jud8n1`buAbI+C_he5nJiSjeEe>6UMj$Z_%M*ib3F&2N*m=vf zO~n=()=)ET;dy1fZH}U%v}CO8*(@XfNjS7GC50tZ30tBwUSgC*M|@o>^3C@)~P+#a-7oqX;XSDvo7DQhZ806vKv2j(QtfvqWFxN{w^G*(Nwr zRJLeEN?#r=D3mR3EQR*AjZD2Jb_CYu2BX(-BqygPIczCo#-Obohvh0Pah2xf$)aje zmRen<^_myjdi5;sMe$^3x?le&Vm}!> zXw-Hz(fwFS4c&=yyu?HW(PFt%8y)tn;$H0hJQ3{!63BtD`}DW1^!^&DXS!O3T^2 z4121jRK@>a*(D&ZdEIs-5^OQOX<5Z1l7}axB&I~+f3&mIl~c+;X+;^yi7EKkq-{tX z(Ki`myb;$Xrcksrm?{;f40je5<>VzK$L1Fn;Wr^Uy|gfE%vcxxHDLgp=oYYhRX8mz zt0ZGEG$o?|JvI8JESr-ljilXRo_1?V6-9$!NwiX}7zCHl)!6=25qVt(q*f zYNb#$Ubm+3ad8qpZERBPa0eE>PaVxQ!j^-URGKSd5Ay}o@+lFN{_WYQl;|sSV0%4B2%s#v@Mb{=n1#b&~2Owc6-!MyDn?lBfx8 zu6G)0gJ4k{i79Cb@#E=Njhu{qdIDOKjVkrT8udFcN}{?h@q<|TSTa&MnLjrN16&E%;;bA03bH05W*WTUS?Ft-h)3zB@a+A*<((>M-& zJVN(wCfR)UAY{$;OR!(!nN8DP@Sob@>H8S^xHH;LX<01cc79m&@n@2HcdDmNJugwu zVEZw{4y?iw@Tc#q6sdT3%d?_Ty_c%zo$8sdo{!73_62z^eMz47Wy*iJdVgBI-z?9H zN91YSEziR5`JJo_}rGi0w}=cd~kUis0xm$rG~JGCDAt@hfc4?p_iu1|)Fz1dDR zznQ7sJ2gIgYtJD=y+5p5dThtqVdswh?(yeNdv8ed^QHZozP_*^>FDX#4$o-pz46D_ zXT~iw)*meD@A98Jblx*5;@X_NdpGaz_@$Z;MF?I?5Bt2mm-)_$=rC;i>StHf&;Hx6 zdlP&=t991HY96H9$*p=_=YLaGerWlTM>{P0yyN_7=YOd6E-r!l0U(KH8 z81{4a*H!Bp4-9iYw{gLd5APVZsMJz5uBv-i<^LOkUq=Nw<+9 za|X^H?-}!>gsXbdE_e?ryq_9&e3Qb)$GlWOb@P%7uKcXW>A#+2KG{$%`Ds+o{D>rr1`$ie4nV|PhODxq|4a+XDhl$y(;v1Rdt?zZayrj;&zNo zs%a3PD0oJJ$eyR_aT+E5A4ll(<)_lDW%IIaeBZj^?Waz7<%)fW9dXhVPYm6gbNJg` z2bC}X>rql3p0}JHPfWO>wodb~dnf0g+vbgqC+#V9y01L8)3M)`o_kKkiiKZ2RNC{S zITufD*j@Vgi5J{{$-4JS*Ia$&nSXx%i_((I&bs8s3GbBttK|PF&piVMH{EAXT`+s$x%1~?)9l;}XD{JahCKIM`25??KR=h5 zccUeDapZo?o{POXyudJTehViFA5BhH!#wBx%g<8-h7R$bBmTuIfd;Lsqe`@_{Gc_? z-2dPf5CkgRPUD7;`Kj%gl+B+*$0k%N^ZYevz|enM{_MFReSpu-R|~v!gPNWLf3Dux zj~R3>%8jfxSkC4WF)Q;j{F-Dd#6znN-p@f##b90?ng=2kec|Txy>V~&&uCFcEeYrk9qu2W%^?LKq_PcQJ zY#y*QcP5c&y2rIF^S*`Ihcx*erPr5?q-meI?~!(xecIH#lqcEJkF9B*YFV zlHX6=a`xEG-u1IWr_;jJ$4YWO_C5c+si(}FgRwnj`ocx?)z;?;vYAAedT`=UV&5E` zdpxjk8*LFONx2fAV;E@k3+651B*#P5#r^tXoab29sRtw*13LPY z*_bwl$Jcs#JhDxnbLfG|@y?XVfe(Zu&12`q>QM`OVN)>Uc#_S-GK42hZ2zE2Q)hKe z;MJ7Exic5co>n|}YHy*W;Vl!?yaf52GHd#rIejJPzT;IZRfZ$Sj~s!sVKFxM)QQ2Z z60o%9%wEQayQwH;8u|riL)Sti9*3Q!IXD6EK)j&Gk_+)+wh6rGC!<=~$?bI!ae=gsN2WX`++=OO{9 zWe0k&s2n$_-yjeU2eydecAH8u^;~9wIq|6LPJhsKfAf&*&e-6(f5Cq=g?%-VYvw6< zK%ENAXGU|rC$E2UN$1Dfjbxk!zK7hO|E~18&X?~P^Vo}}Lvw4+N{o2C^stXkxZ&2h z3-tM1S2`Zy{SRD6XPk$;|HJ)5vs|ZMX1r>$iT~1dbB4Uu(zuTP!xvs+=cP->N{Jhm>$g9uaS@ zVQ@|_K+C*;7#kS>gO27lAwCLrH>vcXM49=WN(oea6@*#@@) za?)#PC**f;HMpB0@BM3oyA!hb;|AA>Sk~5^NC!DKeXlzUvbNn`w-R!Bx4mu+u!SV|HWQ+JLJHfd)<1-=fB$P zCZc#}vkt!*1o{3hq=PKQ-{q}@%x>T4Zh}0gbECT*vQI&yTMv12QKOrPS=QZy8{N^6 zZ;xzrmq5NbrqQi}{N=btcQfSiCp5ZskXz4ebaUburzwqY67rYR8r@ltofe=R$Um-a zbZa0#d9=~p3HjD$#J9DqD?Ud4kRN=Cc*x++Mt3db$nQ}v$Q}C|-CD?#tbMN44)t^P zxrLBZ3-`GvLgp6lbLT^D7`4x>f~*?1&)p2!Yr;Oa4zkUe``n!Nmi5fJ``jettyA{7 zvmpI5_qnSehn~OBT@TrA-adCLmeW7hj_@tGF`VG^89Sq z&FP5r?Ob;lWC#2ismYLgid=UUu8*G=T2ohP|&67sW) zU3Wg@zD2IP7V@22U3W9&;yYZo4ss2o)5)@4z6bG;Q}1)#S&-WvbKOeF#wSq@WbVtZ zTMIcE(#pelLXL*y2i>ne_Og>Ldx>Lr%5D>^wA(neGi23{-ENVDsAKE#n5#N|bS>6G ztXWpr85PbM6Un+HSYegs9#%A{pc^wN#(%E0oxj-acE{YZMueTKd`E}UPrS*0V*tOS zn|?(be>jF(z=sdx7vjJ3({48pebj1vn~u%m??YH)bdOuz`Dfzq=-e!R8^V_3_t6eJ zlSm>VMAR zjflS|t={GPFJAs`#KNZvn~`RpI=X9Vjz z81|=v_3p5rt8e$F`Z9hR;(r&bcOT(-Wb#WrKh~x<>yI^vKdfWDy4JQD|8P_OJWpRj z{A=Co-PwVZ{6}5y_n#B+@@3pNh|4alcgLpIHw3OvyCU5`jJ04~TjbNfU%mS& z?hU;1PcY}R|IG}YyCAMuUWplZ~OLwdbcQbevY}`e?`FG$;`|GWc3Z=>K50#Yg5~Q+ztNg z16QQ^uaz-iTwC1BO-@E5u(Z&jJR$+ z8eIO2t5;ut%&W%)_&eerv0XF2;Ge~b!Yy(Yka))@`%?^4$Xw(s%g=k0RDeUE$K&X8XH8Ry8{ zfmQYQeemx%zrkHVgP9+`3ssF+pO@ethF^O8s+s@uruM_{!!K#RjPu`1&vKqoOBz$D z{>;X>SIuj1^HSrQ)`tv6tM(&q&4LE^_-5@tuBrX-zpxPFhI=lryrz71aaCYG%Mo|? zb(qhXmtLHIei|#zeq0Ct?#c%DjnsaW@%X*zNyfc|xOI0lxJy&(&GyY{Y9Gt{262DK zGs4-;>OE1_oBnL9cSU#O*&#I_{}U<``itRz;l2j^lV#2Pi#-4J@R#73<-XMO!v8CEQm~yH;NSRsgZoR&XRp7cKUSJ62`Rfoj8qZqmQqSAe@~<{$ugu>qh~F67 z>n=%+H|xPniDkQXAuf==*S&XYO8Kez-Z+(0P<>e60$f)vxg5`SsrP#(-@nMco@zhh zhTgo_eX_On=ssDGSpGu9y@WsIUDpf1oX@G{zu(I%pW}HS;#aiH_;Tc%E0#Id{yi2Lcoz3wjp0H%Go%V2>lZz22_e7e`2hI)B^mUp_jT1$Bx z_Xob+>%NX>Lod$s`}6Ho{aM~ih#MDZbWd*9{_#!ihrcYV(S1Gjyzy^Vr;KVp_6YjK z8r}0#{l}m_lg(MB+mE;la~j=j%pb2lP3ziE=DuhG;!f(;=nhCdk5k7tujx9+@>e4M zSZ>e33M)N>o+UL4-&K9@S4GEN)Jh%&!M z#GQ6{qkDPkI7r;ZW+WI_fcac~Y@_>VYX7p_yIY+9h#P`EhIXmtGA?LJmHI72T=$b2 z-Bl>RSvxKbdGo#)u62mJ;+#hJp`Iymsr`6!PcNSJ+=BRhD;wR;srREz+Zn8{OhSN`B+b{WYGKbJeK=r@sCpe%7BG-NUhNd*%Cwa=NMW=_UAAe$eRNliHtV z{;ZZhWxc*Z-2N{c-3wCZkAH@DUzUyedfeBI?t6&y%HjCE&J`IpeAv%}5x2LY(H)lB zA2M%xo1S2KlMt5`-{(HvY~A{eTDRB_%i+JL{XX{>d=NA1L~6gT$Zb~c2E+#j>~nXe zo+nc7=Vtw3{k9=)>yUl!)v5E<^v7bEvy5v*T>m5YxwQx8_f~3t1=wTz;^=+uZ&KsN zde2SwFqZj^L)=Bj?Q=g&9rt6^bI9A~3}C-3L|iZIeerq7Yqx)94o`AUhhc7_+ z$+$I$n;CWg%lkOi>v_aI-Pv`oZg!qr?wuzez~7~->rQHI9T?lR4g_$2adM&SUXfZa zQ~w20f0kE_xJL%M?rQ-6GoN%E$8j9|6R{UOvRjHjb=>=RYc`I{5kKb)*X1uXd-=(F zmMLea?2p}txUp$|~Ge_tDs% zJX}YY!#^;!|5C40i5Ay?#Ft&|x_73oBfNf8HeW{;BJRgku6t4HeFx*FnY#|T?yW=I z;cHy=otoD_{_g6gjP-jS{*kw%{#eI7e`>#EG~H)${Juf_Kzvtw1avQciFDman6mM_ zIuZWq^dA*=Zt@)y&biTlOgM2v;FxgX^=YHSC0C`74iCGc&G>L~PI%aeaLI^p;Zfnl zQQ;iK9~BO&{r3sTrvmwKSPy;<_Q1g&IM@RRd*EOX9PELEJ#erG4)(yo9yr(o2YcZE zA3adhFR2<*rKM>VAA$L4Db?Omiv0@iC8S{Wok1f79T&;GLBP{TlM^G zo-k;ns`#%$NFldjUE%5mbc`7X~ska+H>*X*om7#adpaGB}K`p5ou|xk!9>o3%l|E zyE51!pKdjhLyoa)ELQ#=vS>~VyYc^bWw)f{VA|O-KV$#7_IvHAX_@k0!w0m#MY4al z{r_}+w5Vsx{QqhC7WMmgVcqYWr)b%K|J&s^FCBLaHQJJF=@HzreyvCSy!D@@|4-+a z*H1N4wugVdD$P8m-Ddm^_JWe4dFP$Rp8vn8n0_(sH`vRzMl|od)7bO>4=JYI2b6E} zPim#c7@A8npa0$dH@TQ{O+Ad=lQmjPdX|4l@#<3};T|@rwf*P%*NgwT^d_JGP?~-- z*BcM({QkGgH`O-fv@GBA>-EaS8T-E~O};;yKB;r6X+6iL^yViK|EFZj^8TmtHTnE+ z=YQeRl2&mGoR{yYT! zGT-9a{F$%BK>SU#A%o9uQ9*vcEYEB~@#yFKq84!m@_Ex|Ey7X98;6#MEB}w4-#q7< z=SK6K8)%WvK*|3sJa)I9zxWs9F}ZcWv}aAO@&8@7r?ihLp}Ca!PfAUE@tH{#@b$^f z;|!AcC+C^?4v$FuBZVfSxs>?#)|>d3-jVo< zY~3H9oFMV1H4pQU#Q$`;i63^N#8;2?LYgTOzx^H)zw-`>@7Kk9(r+dHZBRF5eA+*I zwDM1~n}vBm@^6b*wIqJQa}q!M1}~(UBJr;#d^-O9(Ib_A04GK(ABn%Pr-{#=F7b*x z{j>3(7Mb{!7fF2g@4cOlW~n6qbG|e24@?=Y{MQU<7Ulto|E#@V*S}v z0Up_Z=A7A6ruN0JmJjbg_2Na=vB#g9z^{uB>^E?5zY@!?ScW13iV_pFW6|h#HpRY|1ia;Ay-4|3FUp_m%jq;^^1EW8XhTr6YFD*`EuuUF?ogRh=>_&i{ zvjoQs|9sO4#{yc@@ZV=~y$aeZX~5^eW=>tOaQ1(%l^w7L7*M4J?MG3iu&+agWmRCJ z>_mya#o4G}xB;sFCG2Y2xm1JZ_aFju&s%KS9hJ@eCRf_rsg@m2M^^qc{D!LCR;lS% z1d+NO^|SzX73~fxk@-P7|A)*xN7>AemjxD{x5%)Je+iMaf=IG&uvPODfx z8x_La*Nd>{X?K~1qd2OJ;{iH4-{LuHw8ILzNS6@|{2qfF%tFO70%`n#1YcX0@vGlK z&9v`%MZ|UyUx*-w7d{)ALhub^h!^Sz2iijC4wCNO#9xYBKYeHSyy5&)&A%r z9H*c`S%caW=HsZ~mpB3KkKVzNu+12b#%DutRCV{Sdh>i~eNT`j?ayO4&O>W5{FTPB zBm&2lX*iZEN0o6zG0OHk`!Fh%%28_^=b~2j>wL>nQdob{Wz^8|>;@dA@L}4KUCzGq zCr#WR!if9$5gcVCPBe}UXoCImS{%hO-#9K0!12jk9K}(o9ieHnF1GBKu0bWmQEgIW zu-E?b5486%WS8Nu)sAek_cHv2+ojGS{HT&;Z+HSRQs)xwXfuaB`S3)qCx;owm8|`5 zF2Ye#Bu!Q`XPR`qx5aUMRi&smjz3~0vR{21N2yfs zJ)Ko89j|Ti9FB3k$(gtDIUFTLj&a;Z$5U5&j)ZY+q~qx-&rxU`x3S?*UWub*Rbm`} zVRirZB97{O^AFRG>>Jgv9j;*rzo%u{j~t2HOUWQQl{KCtJANpR?A-A5c{q2LjmJW+ATl_Sui!A}FqY+$*JzMMBC0Fl6uei% z@CEF^8P8#)m{k~mQxb3?yej8US?==Jaa2p)51cC3f8Y(n=oPbNse6Ny>+DV5F-I%`O7;IAT-p{_`d(2#M z3^O_NHUSq#19`iEh8xIR12p_x-H*F4`|KM(#Br>uc&&DX@Rtj4B0uOYn#tF7is_v2 zD^9?1l1eesIIiK4{NiF9`O-^<|9I`l<}C_pVB+?30l#4CLmwA;qo}*fsFphm((B^%Cqd2OxBeVpI)oG`oxiXg$`j!Xw8J0cK z@12G7wZn?oEORhspTmP+9XsNtG3~2NOMBUMDPF%7Wg4zwVzpwv_>*iy!2SbfWm`Ml z<_!}iuX>ccX=(QzW1{w(5Mhj5hJSR%1?miIcQ4#_$mZ`Wi035ZIg@vHVf#=B@tkQq zr5I^D+vb3aXR7gJabbipXA z8O}c5-h-ZdOloI5zX!BWwI7Aho@=i}6vl1|C+`{dObC;v3S$jVB}esayBxx#c@}Me zCxg@XIGe9UOAV?r-%)&wc8l3_qwMJrvY@Otp1-j{$JtvTBu%yPWYcrBy%*(3noZi1 zGi@1efJWP|cqem>NplqY^aOhVgygo_c($SPsKJX6lG|33+l4c*svm3Lh%|pzy|c}D z7T~dOw0(isob8@tCLK3>j#^X7Sl0Pi`%nnUYp3xn;aWJ_o(Ul}t23EhG8H%U$J*;L zZjz?nc$N%+XRMuxrR6B?=jWWGC)?W~#FLC_58qj~PqX>cBI2p&pgp5lgEQ?z zAjDJCSv)yQ2BMsCb|XArNjU{N&32x1r`Ugj(4M=sr;eV}?T?x~UEYNoVye3-$H0l4S(1RbLtCvCfe^dd1l=%p1y3)Bs&j6 zr*RsUCub@9ZM@wdx}sxMcboTcoy@pd-)T6-pbCTaTd?3rM9hR_~sl-l@fH;SH#_90E4^$&<=JWupV z_TdmZ&50R`m6fwp6*ITVQGdR2w7ZAP&IEfkgicbmMLf^YGtpk(TVKGJ9g-Cb^t=AsI~Tc@yz0hJ;pvALOen3v3$q!irx1;q-n#~MeV`UaFlCr zt=^Uh&Bu8(a0f+<}mQbX{vc=BDH=7v3~wNz);G;7tiZ@m#9j^Q@-*O?gYS;1!!w+ysipe|05t=p^_nCY4Uwtu<-M`?%klXhIfi{wvJ zaTG_baV*ZHV+xMqsA&E0z(ZEn)1L zRy@L9FR*#_ZubdhiQUKE0wE`xW9|(;?UtGrrQk z4tGcGhH|N`w0lFaP}Jo%S%h=&8^e};jlBXVq>R*w#xo5+!E0Y{pX}WaO*9_-l(2n+ zeNrZVa~7Fr_$O;eyBpA(_Dyy<#AC`+WjroVu+{eW5K_!mr zisMA%_>x&A-t$sS){ZnxnU04cUW%Tt%~l)vUZ9OU^|f&V(-C8h>A~JP6Q_acotN{a zcUpcseH7~DtL~4VBCub*7b*Qqurv2IHK^0I8t^Z{vahT`|4c6;8@dT`pqrSse(n{k z@SMQtzG#rr^8)@NqbKl9i~2$%O)8$wUyQLc=A)Kv{#XL_)hBQ~1eFWY7F^83bv&%* z;ZYu5;^93W>Uc;`;E;zyhW++Hh)ny9q=@5{c>Ojdw!9$XEr_hoam#4e)hatxlY zNMZb};JxYi*bzH7_RSgIywr{lKM*H8IE zHY)oii>y?*lz0qtUZZf5jhV>gw!3H9Wt zKC3`x=s~7guYesop%CCz1>&LZSj&9BQy>&7V|AWaAUkwaAAlMK!l62xXud}k2t*>P zr5qA`0+HX*_d7xxKk^Xjz;qv~P&<-^8S8sqhmOqd#Hp04d|fy?U-bkYt#A=XXA=Em z6fVYSWIxX4jZzrDrasQO0jGlRMpaZcr@!wmws(1GA?J0rf|q8`COBVZk;NJW*ll?VcS8-sZP}c~ z3SU-HQM)AjELN$TGVm`JIA=5S(JZyCb4N$$%c-|>_Hr6cqMq$^XC^(VAL3--=sTQx zd*^l5asu^!&Q&aU3U%B0ExVRHZy<}-u(U}r%` z=v}DiIBi+i6RCG{a(PA-Qt#-DV$5Rdxz2dToKHRIJkBnhNImLoI6pC_ zh3^tKHNE*T{n#SK<9ndCrQ1H^DXDyQPg`oC$JkQQy=7f z#C&q77di7eG;^s3obIgW9O{|QE6lSS^{~^OQ)Mu9zf;CGE~FlEHZeXyy^nJ{^<~tH zonAa;j;G!?@-g+T)bVNSbmlC|AoNF$W>%}TYeHlXYjrK5ZCMkXCQ+X4B%SjY-c5|SKi2W z_WL&KsKKO2SDtlm>x6mP=Q5wks*E&LB6~2)yj*zFa5(5#!o_x%YK^pP=!mF{w3nW z6&`@{LYq0ePF6S&siyNiwj~{{&fd*gXel4^E{IISeT#2B-D$i?U&oH9CCp~@^PE!y zRkULv=Z&0`?G^qi6yOBPQQ+(Bn+Uon(3y2=!?R|Z!fn_Ge`THKD2$)A8y8-}Szo5` zN)BZBadjFf!{urz+=fc{7AQjobGVCmu7@M9tLrkW+J-eRVZ*8kGYB7MeX0mCq7$8R z7T-Wvo;8t;_?EiscNVgRy9oAYt!Eay#gP?aeHs6ggMLioOW}nE8{X|vQ!p}-&f6mNn4K9xSk=4J4;Xc;)6)GDEvj9V4Y z>9|_~J9Hzb?GFk#q4QbEdIgfviJXSp6tDu(t?YpJ1SO*HvCZ2BInhC!6YmNNMiWf; zfuLmQ4G!El3i(2R;Hmhn0>Nkn8`~&xc4#y!wM(HyXfd;|Qy>u8&bVjUlrTHu9-frz zly4+w=O|9G;}s4@PGbXJWh_29p+h?Y27JWBLhD(tbOnZIkK{QqSf#?V%(!qia}6k5 z9(jS_ex?er#HV<^CX_FabFn?EI#S_2yf1i%;Yo#i(f@biqZICq8b($zeiO3`acJ(~ z0{R9aKE>g~Sd&Z@y&`%G2OUEI=b66f3G7#&LX&*aXE=uYRUm%TIG**r5oMeWidul*`8KRKOP+ z&SF24l0vIEOmFM37uZ)@b=Y!F!8a7Jv+rb@5(T1IO0xH{g4Zg1I2W}$SitoPAHhM% zVNN$Hd?Zi*ZLHcVg%3mb#2Q(<{jB-r6=hB?C)F>A{E;=Be;-oMn9hu+ zG2ujoeOzt-O#cjp@kf2eWxvV3p0996;?FoP=O`RNMMISwxR}EJ?7P_bGZg^8WL)G= ztmS7c+hGnn%&D%jc2jMh-MoldOLTIzmhZ%632Qx8Nk z*(Kjl&tz^_a#4DT5TAteFyT5vJMtBC*r8Ifps_6XE<#^q1j9a{9z^d%mcZqIfRLA> z$ZCv|Ulq;UPkGYqPjABSY(m5RrxIj3pJLwo)q-d{7s29JOK8w}5xM)nXH3BP6vOXV z3uVB00IQb&AG8NU%TPJLU-g+CnvOR42=F75_?&yNzW7h3-p2VA z`qV#xdPZmHLL#He)V6Q&q1ISprfXHvIfAxs*7N9yJAW3dMK z^H0SnV5HQiCRWT+^XM;&-ND94taCH%>ZaLtM&gwBpTd}+!!NV^@iUQ!<@^?t(0?NB zX%2rU(BF-^)=uX{^JFLs%a}n>rmGY@8b=t$~A1i52Wv8mUDt~+(>wLAU=N*0S zzUq#Z=|{w;Bw)Kt+038$jh}>B?7uwKw%_@LWzUkbFJv1kl;1E`ogGYb0{wybhpgK* z%5VOpU_74_V3o3&KP&89$M(lAKy7X38m6Dk^ggGWbs9V$_Kl>H)fyF1LqjKJ_^UE(qTzc? zMf=qsl%bl2p(-Ma1G(BtZ@(11X1`jXU@*P?-Z3A>0e!AlubsdM&L3pa8tPsTwjjOZ)EV{y(--X zyVE5V*0YOEVti4^aVa!!%A4Wla4~pE!bdhwf^ssGVj616r!!AXbs+A-T~KF4 zQu)*$c7kTFYd;g`kezcKdM|DD+PhYyx0_o6{FuU(3J(C@tney@(Stc3D_o)QAm9dt z>+fXx#Y_;#gil*tCkCb{=3>mLu1=PmV-&G^}ZV%_QGdltQbZ!v!*TmFB?mlcUY7*}8DeWYu0 zSoudVzR-6SPBwh?e7D4R?tu7pF!{n?t9awE@<%bgw=YA**XaC@M|{^Z-nz8+-HV#w z3s>#2@-5z}7x|)Coxs7oO9~))s4KtM_YxS7l|P9k^zqGs7YV8)K{XTfpvRP8JXU@_ zODOiehHDoR=z?q6gu^k+zK9S0CWn=ODYNP8+XW|jLN}RTSR{VHQtWeLD&9D{?qa|7 z^z~8J5jxz;U&&nh`6ecqOF~z34s)5yj*A|q;*F#0K%B2$E?spva^Y=Qe_ys5t{UAt zcOsXri`hFJOm}LJ)$Jd=(rn4WbqRIX*=%8{r(p{CpB*c8H~Dv~?Fj3(5oi}Gsk>$` z!#5+)|C9`taai5X=k@OOd8#KZ9bSYi61ixm|2YXa4y)T@-d?=%E(RWRN0)g9!~5gR z@V~(Iv&ms~E9M=@o1ds2tI)agFV!XP<79qb!i~e~b|}NQZjr9hxj)VDx7Y_SN_dUe z)X@xo>nSx~YjuC^VE8c@K>thp`D46K;C18;toz$%sgA7Gm1&1bn)oBS$NyViLJ+PU zRyRMd(trL6gAS`Mb0ovlP=x?W;riQIwh_|xGZU~p}fN_T;B#sHrto;D%DSl zcz*eRc9rVz6Khf;*PH4wI+K)(R)-`ejRXW%SFgpDkxS}esY2BXKrE0Nt|i3ss9_}` z)>92vt?1CBJMz-7Vnv6d6j*N>@LyjZ@4#?*wb@~=o9m6@-6O0umP(_nGD?L}>dlqC z&L}&LQfrj$M%ikV8k0Qb?xVv)n4|U~(kYu(bhwRureXC8xu&Z=Mi*`@lZ(2V41v|_ ziFsAmxN2irhhMQ@25?LQtE(+tJTymdu~T{y=*|6MC`mR*SNC-tnTTi)Rix;5On zyu&7(5C+yRS2qQE&aPk4Y5u4r<|{T#)e%HntWJ4Lv=OsXKAmpY7To8l&lH9|ctF@| zEyAv0*n0A~MsEt^usf;^cMad&HcISTKH4aGRNFI zCP@C}X;MJmAG86BulnS5IyI>jW5_*Q8#V=W#1p4WM47D(GtLmhor2Y|d+=V!g5YxW zU=OPN>bK`Z^mPyNzNR2}D_uNm_`jEOS!wcuUqNuAaq>HD?JNksYOMT{+q2dhE5G&j ztlSM&*{3H`tl0p{nwM(rW~>97tc9dU^d^604vaM2NGj?w?*`W%vilO_d4I2Bb3TL1FbK6#BcTHJ3}7>_fu~SZQ&b3 z?9YDcMW8Kw5r|%^zs=I>p-Mt^>}Zw9F!*taQ_beL_g)uuG**6{?^*jBE5G0Otj8ED zzwr00XBjIQ0G{goGJlAsuEqZ zssw0Sm4F0J+h)9~TToNG%?o%$XtRVnR|WPoi1Tf1CcC2p9#&K{QS$+$1Fo275FqelC9!Bv%=1Fh?536{%i-(Ooyvjo@54(BD zF2bQ355ssko`-2XEaRb)2R1%r=dspd>~@G?oq@(G(SbD&+wEC#2-Z8ISz4?&Sy~az z(jq2HE23Fis$ImIrA17ZmZMo(#KDMWX%Ud671b;);Yv$TjO$AqOtJ(J&yX_gi-Sy~az(jq2HD>8;TuTg`P zWMec-i+-}SBATT|to)j#MSN5OjnynIVqZkFv{xTErJY3v$P1Z9L>@q2s&5cN(Pn|LAs+^S_Em1W@!<$ zaWqSdAk%q}Y1XSWwxd~E^u!&_(jo{snx#dM?P!)3LD% zq@!6{3de+{r9($XG)s$^EUk!UX%Um9711m$;$n*w5aFAg{4KkQ(RbD)H}vUv7U>m=f;JlMLif7 zmKODBTv%Gv^WwtNqTV?!EG_E!abamu?-Cc57Ih~sEG_DZxUjUSm&AmnMV&0IxUjSc z`^SZ)MZIfWSX$J(#f7Csy&x_uE$ThuJ8>uDn@_!aTv%GvGvdP1q8^D0ON)9eE-WqT zJ>$aCqTVYmEG_EkabamuFN_OIi+VhMJ?5Kl3H4!dVQEnx5Eqsf^+V&r(xN^zE-WqT z!{frzqCPM#EG_D7;=}MdU0G>TGac-gr!9tpSE#fX%YHk!qU>N2{B=55n^qb5Eqt~@d(JU>E zi(`M}#p@nIAM5)HTep!g3((OlE#eACv$P0oN3*mD97nUX2$ETvrA1%`vNTIep+uHu zX({AnX_l5k!7R3V3uZSsW{uwEG?phqgh%6ftawgsN>tri4o1x zA|^}A(JU?EVC*z5ey>u;C&$q&E#hI0W@!-&kBr0-EG+`Ew4$1&MO+>emKJq9?@Wwn zmKHHtS`p3CA|^{KqFGwRWNAe-ON*E+t(dU12(iO7F(xc6LVSv&ycGvai+DwrW@!C4hAEuu-jEX~p)n&^vYmKG6NT2al?B33M|$hN-7_cWC+Sz2*nY0;0%F`j398Px5# zu(YUWI$b%5V!rp$iV8xuE-WoV(75oh;d@u&C((!ORJr*vgM`A;BE%EXjJUA0 zRB&8aTGZ{hu(YWA<9m5CbvyMyOjugfGnt#PvcP0Mw5SK- z!qO65SXwH^(JUHSX#;v7nTC_hOUf3Omhu~xR$N$G^at7tOH26;ORK%Gw3N-TwBo|j z+Ko2YabamOy)RzPIt|_ndnhg}Eergq?6|PB(x9isg{74VJrEa`Rs=fktV@vgkhajn zaban7gx)4DEUhlk)8oR@>JB|CE-bA==$Ub0Y4wGk5f_%$K^D9j6c&7M^6)s8dsMucx_Av?%OYc}G`JV$ESY3k(C_Y$$ z&CMcgDZ{W$BJNOztyX%jqKF-9|AgxVIASYuk6{s`HLhHdt2krEU%wpGrWAk0icTbv zC3X1v6?q%ch5pr>jZ$NjO-89T%66k{MJ6CqnM^j7>rB>{cTx9Os={5ss=tz$Zo<#x0R$8Pu9a^PteehP@`Vc1cYdu;+;EE&SEu`IWN zeeOkEUe<|BI5T)vD{>VT&fv8xI%CMJ&hv5TQiVe$&d1JMq2!lMO+w)I7x(Y{MydmGH|}nKa7j}64m(5%EIr*7VJ@~6T?xY6cgxbdk7U=yb}2(8 z3TMh%4n}WHE8Go~a z!SwEG4U0Xhpp)KREnu-fDVUSqU9DcRS_Kp7-PO_+`$@sV^zLfqip8)Z`d62vcUKEn ztdD}j(z~m5D>f2PEi>KKx)nQHVXQLU)w&g1tS}at?rPnN-K6k#V6|?=)+<~Ktk$jA z9~9mRtkz=|j{NJa^d7Ae^pd!9>L~=h_Yj&w(Cg7EL2o|eg`oG9iuVY5Jz6E`-HrHO znxOXxs**y`>(MGf?``a&sJo@ zD#Nwv(JDc2DdUBp7gh0wpw~+i^oo?#Bk1*Lm7vGpIqE3{JwDVlG530Df}Z5!5%hYj z4{gXCgeeQePctmI(1_Ez6)?jWj6mTQqEFVB6KsVpnKEK_bIiWH?# zWr?r)KP@ZznB8geeB9hAtTK64AkRU}bG6E|{?hc`iiCKWbXEPbqB2(MaDf$F(bX|(KZW+9oBHFusSy3qq*J*3%#q~>jH!mx?GR3=fS&iJdYH({?a1F>(t)LON&lU@vgnJNZr?(p}Av4Z*^a*mIV-ahMZ;5qtB`ZkvbyThK8LJK zVo9|uBvGFMpd#gu)JEv?=`*867`KY^7ab6GYl|?xK$U<00b!f9Ww6fveulkwKv-jo zu-6$Dy)vm%fx0E1J|)^>a@)nQV-5(LrY$Gybe(Xu&A(O~6WVC?*`_T+wdE*=eW{Je zSw4NTu1YG+gw1AHLK~aHj%pEB$*|K82wU1B>}iJGctBWni?9zF_QwOlzGxAaR)Da^ zmSJ5iJXJgfSLYHaohS29i9?qf98RFU4od#;o1~#5q~TWnvK9vHiT~}F5@Q};<{@>; zBTS#dHO>7uHTNejZsAW!%ToJ%eVe2=Bm6GX=Ucanv1uaYYl{in$FRW%gq_kNtN^=O z`LhlPyShafDOCCE4hVa$Mc4v{Z9O3DyB1-$F)VOL%O-T!mPt{x8=o_KBJ4PA1ph~U z^6zh9NPMde*E>4m&vzx2c9LK#fBdh+Fv2I6{Gs=VVM>}d-1dMN3@3+&B0oU0nV7zeKqVKe=x(y_a^98m66ngL%eEu9#;XXsjfUdDhX!N;a8i zJ;zu{FY~Mmjg@>e&w8z~l7Qw}tBjS5G|&2!v67APD zeVTr2xZ0!R&aos_$Bx#aGD~*Bu3Aavo!53U)|8c0JkOdiR&w(^>kwllSxTwD0H_Vz(Gn(0_JN3k`Sd4`X^EcB=+*&;D?+ zfeft})Y5Wp-D`(OfmSKFgRdRnOCu|Aij{*~`P$)eqm_eu`X(!;07qF;aC2WfJkqpE z!Ciin6;pt`EGf9%uN@wnTBYE=zsZUzz-pEh`~pBbJesvi!EXXgRwOio?kp+zjevG| z{A)Q$`PG2-Y-W<073sP^HzBda@IKm<#~6^MbqpEPs$_0^9>G3O_;n)gdzz6cOV`Ok z@0PxjjJX%8V=z)W#-pvPjJZ8(5*wDja*SzmG#?snnCcYGM}Qlr+R?nDxrM47&HIy^ zsoLRnn<|{!s@hS_9$9btfg7yaQQ2&ixz(y2RZOwgq~N}%c2qPQWp2Nkte9ezNx_X+ z?EuF;Wt6!iYqFxFez_hUZp~^3MhssKnXI@+YqDC-tV{}S)@ldn@@mLspt);n989s@ zq~NBkc3=+StYaCEU`BBFRb2owF*9i3UZxn-(UvgoSZX}nE(G9zF=+FVc0by@zHKqTyL8uOHBU}D?&6_i@c`84U zdiA}?O)>g!qy`m)ex(YZU#XhTuXN4kSGp$iD_yw!O4U?;rE4a?(i4WrpT3{ZqxR6j z_(t{#s-5gFQFf4q;F&y3#v#Mbx6766Vn3+mGmuv1^=OxU^%5K}j3M}A7=vH%u#bm0 zz8(qo=Ao2_V{pi_ZyXDeZC`hWh?yc5D{(DL$+oXyArLGhq`B~~BY<4^kmkY@lM5eu z4HFE%SW28A)?9dEa^b_83r`#jjmG%l7fT7qg^y@1JaJh>bKwcf9pS=LCl@}fx$tiT zTTb5ua(RfpbWm^{;ldMQ#3zO|7oK>sBV2gunec@)7oM10_>ktp6O#)c8pE8|sQM+@ z7|n&JpIrD*DVA0IVkxomYc4$TQ6NEwH5Z=P7t&mK0&?L)nhQ@%E__&X;feiW&4nk3 zgf$nQz!%nBc!FqHbKwbMVau;#)O#KW2kPY?=gE<8bYSaabC!ePyYCkQygg{O{Bz!5GyA)c^D zhBX&nVMn;|I&@@6bK!}}g%4>iJTbZOA7e1u9@Wew#%;|7fT72hBX(SU|B?S;R(Qn4{I(w;iVzXg(n~vKBT$u#N@(9G#8#&ap6On z3r_>dNKxU!6Sj>C7oK{%sBqz_XGet#PyLW+2K(!9>g}V#g{R&xDqMK#c2v0V)YGCD zu+8JBcZgOpZF}mzsBqz_XGMhzPknGyxbW0-qQZrz-YF_vcyTzKkTqr!!!-YqIzcanPB;i>nG z3KyPwuc&b0si#MU3s1c;DqMK#@u+a&sSk?^7oPfnsBqz_9~u=dJoTYb;lfiN9u+P; z^?_00!c%V(6)rsW-cjMgQy&x+ETM}-ToypC|;siOvy9O1(2gn1#& zg(oH#KBT$u#N@(vQoX}UPN|Os8(p-4@$%PMTE<7;_h#}2|Cngs@WaHT% zTzF!9vO}5+PfRX+NOR$dOPF4B;fcwG4{I(waljESJauy6Lz)Xuj8B0hTzEoks!epR z<9bj_NG^OxbK!}xO*byAx$wkag*6wR;Omg)!V{1SAJSZSVsha_nhQ@%E__6D;fYsr zAS0R!PlMvZhqfh9l?AF7GMK|%#B)9D2p3)zz?useo)9;S6CL5g6JkUsMuiJcSRNBD zJayL}6)rr%{+Mv##Ss%OyaM@A;ldM?M}-To98uxIE4w3Hc4@dVkto~uDS38AQx&b zyh4e%=E5uF#5EUQpX+)?9d^L|Aj-2?CCA;i-q& z5t<86OfGy_bK!}Dj&R|rAS6)rrX&k-)X(s}=`x$wkxSaac3y0GTLtH`kC z!V_3w&4rgR&4rgR&4nkhLz)XufG50hp?$32wW|H(!iO{$o_=!SLz)XuOfGy#bK!}} zg>NfdctUXDqr!zJ@;kzXr%o<>NOR$d$%PMTE<7>0@FC5GCl0b8&4ni>7e1u9@WkZ8 zhcy?T*dNkdc!Dr8cZ3U1h_iZzBV2ewJoC(OgbPoIC!!fq;liunsBqz_+fm`dQ};)O z3r{`Z2p66@o|0xb!i6WqClM7cJfZCf7ha`eLBfS6^f@ECq3K#wm=owMr!XFAfXk~uKeVfSpIPyk0SW4@uJY2woY`S!iO_#WA zy2NGEB`%vTG1+v9a?|DitlgH&(13%xEt}P)1gR|OZ&gS#!< zXUk((9Nca3Eo46&+-<>(xLmF72X|XkHyqq;DL=T|Qm3ZE!QB@1mCXOEyDiu8e*55V z%P)9wI=I{NKfT-1lihl7w*^zHBYUF!pX|0&@?`usc3W;n{QvE{Ew`f$t?jn_3U;&G zavyZF+wvfEv)l40bhF#?1a!08vI)A`ZTT&9v)l3lbhF#?C+KFkWeaq(+wvB4v)l46 z^q|%LNsNkN@tlF(N`CBhx!A_;a52d+o$U7!sOWkf`ibE?WdK>LLoYG-hcaU4iu9au z*mJ>~_~lx`Up>iai%g2_ZYrc6zh59B_`P^hDveTCrY$?ma%axQyKzN!sY(PAoAzus zA^5u}C$Z=vdy)#-T$Y}Tm-Y(ndr^D5!dIS)^agDz&&A7i2I23yNWu6UFrrkI=Ptvm z%)RYXROM^Ra+l#PF$3{q?iaEsgV(~1*Tf90F6)?^>c-zsS%&w-j2pi{{|L9U3|<8{ zf0Nzdsc)aUetBos-@jGpprwvHB=JBKgpJ>xeCVWI2U(!a; z@Pszxy{sc{)&_`9i+__;XnjD8JDAmKZRD@T^5Yp68$-2@I9VI=#y^o%p)=JH{q(Fh z;0r1B$$MpEQYmw_fgrET(_(C|Trdo7X&9ponA7rUPj=aSZG9&uMtfZcY!h_Bgj5_j zygz?MS$e*Dq5kTnn6GK8D``j!!o;}xPGwj{!{N&C2W6*}Tp8-|6CL?K4P+9| zQ~c2x8q~YySEDq{dMiEA>Z|74aV~e2SIsjppHf~mPqg}~c@SS}ca>MoJF0l^Rr5rv zubK}>e7DyB7EGemSIy670{yBvPgwk^7V{2pqSaT;`89ku{i?Z6U|y$AwEC*~YixqN zYF?t6P-Wg4PPF=}d9*j;9r^PXkSoH^&rx%0l~WT=a&xv19#sqe_t z{5q(Mskx{JrsfqpGBtkz>SAjC+D<4;U}|2mBU5v@0O~HL<`@`4rsfqpGBqCn^&Rg8 zBjd_u8?8daR^_XBg0DvDqx6-%jzAksSf8%!fM@>N)9Fs~r~W-)sD7j9ugmn9aTE<@ z*WgY>>u*R`K8Vz=UqQ;z`nrjgPa`fvawNVoQ#l2gBh&bOMW*sms4L!jMWzQ0l2=Ju zYcoA4VFk3ej9kGsD_3Z2?m^b)tQV{Q=n7K|jinm(hvR!_Qc%gpw5#N*mZdA%dRF1m zbS0b1>SfSwWj)wjmV@a7ZD5$oDyE(4Dv!Zs-hf&lCogxVD`$rBS#}ML=}MlzTzd;E zl2JqtSgUH?)}@Q@y|;$y)p2g;Gfm3+(GYO>eKibom2`?1DD$g4p*|zEuFI7?UdiHt z_e;EMlcH4%ts|5?LCLOntrx8t8<#dKF<)ZgT-^CFQKDghkEaWY>{GYeupcq2G#;EJ|N`v}z<9 ziU_S4$)+PhYeurmC_-ySvNxdrlSeXqhW*n=vI8iU){JClAlH_UWQ|a7`AGIBsJDD1 z%Ns=MEg#87L%roA*=(q{d?bTAiB^ncPeHxqBiTQpzQd7BhN}wcs5hl~FzT`WU{oms z$jj*-G~X?^(WLSL^uel1J@2g{xH^r2M^zhn;8Cz9Q|UpmT1K>06Ll~N4IRPAgmFmo zZkSm4JVrK-Mtf_lv|%YUY-zk;OkQO=p@B+HZ%%eD_M zx#eYvzrf=2|DMUwq{kJA`9yD=$VxivgB<*eJw&62sPs(EFvU|z=);OmUzqYPBixTo zc}v-p7g&;9MN)sBr#O9K%KH@I0c^_KjZJyc6bG;=Z#OpOMYuDNU-DtrBT@NWL?7cq zyJzxa3gGg>+((PiGa03^mRZ>U1ZI^mOXM};->4(DKb2dh|0(*8;+k-eq{W4&rP(&<&H!eA0K5Gz$2 zh)sf6IJPMe%L2@uVS(p01!9SyDX$SyP};_cCiy|uST)cPT4W=~b7?Ey7P8EhW{-sg z)uC;pXm_IE60lj6=wO9FbKrx)4|76tgZ$)PwP@QN)2pIuSIi?rf_?jZ#5 zCxp@?-Cp4EuFMQ=XabPod?Od zOfL&_PrVMhYP~?ZY8owqOUHCnL#Xy>Ju|36stIQo?m0BvDqoYN8h4!KdriDV?nq8LfCs78`3tC1wjY9z_B z7)i3IMv^S6ktEAyfstgAo*_5u+flT5`~{WKJ;dEcc_%?6%XXnt6;6F|8jRC;I%T_u zyT|hX!`yoPe=YrYa$q0n-uMEY&!-+e`6Q9a=W%)ur>}7;7)_^YoJQkxAWpMz%Frq0 zt~s0jdG0Nj$iHjlUnBopjZ8iFX5>l#kfnXpml(6X2_!^-pqWrYHWNz7WPy&WcD1r0I?#WCjfddmt zfZ(G(fUpTAaM*+rIBY@*yd-Qw31T}FN)TZaO2cYG37Ek2LQE(*6i`ek0qKsK2_>MJ zP(lt&C;`lbQUcV3l7X2}0+Ye) z2^^SE0t6YGn8nNVJfB^m#GIwxrvF?kx;U*U8kPWR#T0#1LyN!DOG${I|eticq@8cdBQTlwTXb*&(=)Na$$&6A$Hl>U3 zVWvCB-6nB@5Hds&mGx;c+&tb*)u61ji-CraO^B$_$F(Am1*Zt~nXU+p7PMMTIgfXH zax$xeWXSeKW2-6W@$R0ivNTYsGnH+%Mb#+pZ1-qZAP6TI@i2v*W;@bIAlH$13R*U!=?)%4~w#6-v^&p&Z38C^Joo@1gcbC8q>xJH1)MvZYp4 zO=>ktHl?;unVA~#2vY01M9Ha2mRzL7L?vj&esi;kD-iLc<`KX6VZ`x&tl?Dl)3hE! z!46cisbH5YW95gBy^`yGp!T{l=W1%DJ*gP)D_N^#$yOy!P=d;T%v&`KEaDVIoTFqA z@iZku5kFGO%AcW#C0{DpRQ^$alJu?oH$iQjl1*xND6^Rh<2aw77*8wtu#y4sTO~@~ zRgFuOpnt^|Z?0iPDe%#`7v;EI$)+6dRptOy+n?0BKB=UYw&W!xsJqjn*!y!0i`K@@ zL&WY%1`+!x5sEmiS;R*W@wDa<&-!7+`<415y;$Kmg*xr7Zzy?>k^ym@5nriBT8Wa& z->yM)X9l0CR-*6Ju=s35n39d}36Y>*>~WO5_I?cu17iHoDT#k5#B9^};v*rx5CuM$ zT=6#{J1SZ7o94u0&51Xf6Q49E5`S-&XjdgVX)aDjd@wpr+454M-G;NMn}*#pf7VLd zg5R@P?VfLJpcJ#}>p<{E;y12mV%s_**bw^0cbV7<;zNviHzs#Olr13GGWy28Ol$@* z6XU^+lZb%bvlvR>IGSJO2yQvQ6|ov6`0MPw{@-NV+fS zi)q<2tp8(1(xl%i)3W0bp*5yu*!rkdre#m#62wUQ9lnGgGm`E{`eIu452>PNM$+Ey zsJI_9l13_GBwfP#&5fibl^-*brc_#ET6Q;b71Of5oNLYhY$Of!mYbG!ptjWt(=zOM zq^4z}(pfEc$l7_mNmWle07)e82Ov^<5M~tMQE=JM?V^EkMF_MOTp_rCoj`X8O z(oo-_X_-#3w$xVgEcKQCbX#Kev^!H}6i@FanQ1jHt~?0v4+7UM)@Yk*D|rh0>TVp3 zwt=!KThpXbnXNWQ3{5#Th-{779{W*AeXFIu!J@3M6?^OrlQ|pO1WIEzn#Std%J;#&b(e9MeC^a7yF zI;+soq+WworD24}NyO?epxk()<=5oW*IQ-&a9T|!caqx=-yDJ&HyP@Q&L$H!ny}4; z;0=U~?bxFHamjk~;!570`3Zqr7K?$ohHhM3$=fq)=%&SD*r%0VccvQlu{OP=ouP(( zinpGj_U6yZP22i>Z6!9Ba-UOtRjt^cTlj~IE60b!@3DGWQ7iW78?NEIzbt55OKU6n zrSHi*IG~Q26b#k1No`nM{MRpNsH9_>%m18f2h;qadRq;nT;XWy-HdRm$|9skWvQM- zLRB4|W>eFxZX}`j?(ZdfJ5BRlr1_s&?n($v7XQr}m>QYZ&kpI~3m`^RekETyN1@r&PL>&m8VEMUw zKx5mzHo@`-F|ic{PtyE@nAie>Cu#m^Ol$_xWW)cjebK-wvNhAJInZy#G;0;EJZ`N*2*l!F6%6vrSKh~?N@=}en2t#7Zdjb1Egw~y--`Z z0o5>2@in#Lj=;h{UR+ra4!>_P&pGr4Z>}x=x4{ zzT)vpO;&0@L_EBC#OXhXSiPC1CDr*+I@RDbmrhly=yVw+P`#0ak~=#$%l?aI1kGz6 zDi$4^2;51r!xM#^lI_D^**?5vRaXf=O^aVr)J=#}f=h(ZI~k=eh93_!;l4OEb9Epp z+n$#f}61Nq@``okH*9fSw5Glate zX9$DX8Ny-g3<2TJU|xWRy{<&%bCENIogws2zCrtUg04M+6mjs-vajv zjM%-xEpV@ZM{Xy$SGWc472Y9LXPCKHKp2>vf9PHz(7B!>BxttTT!-8%3`f{-yh^Kk zh2gj@ObkcTA`L>gxK|K@mHxd`?_`Ej<2!|Ke1lrL%vgN%8?d(;i?4tK_V>oV5N2O9 z_Ag=fV`K60t)>vV2wZy8MTP?Yy{qHv!tY}v5MLZLFo&PWl!Jo?=I|?-a&V2n9DXQM z4sH&l(c{N5CCPYSC9?Y0VEkgHB>4wWiH!awMf_?u5~Vp8?1l7U2m4<9U?Datn($9pdgSA@KX@t(|K!<(&IrIvJKOvOf#q9$Q%bUzZ9mZIAG>u8zYOr|4 zH)#MZlSxCuLK9OnK*{xCX^FW z^m;E8-U^x89h78<7el=h)I7A>sEyE8>%q;#yQ1n)^H7~F(4n@a>EQKIL+Jj~Y%HjB zx(BL*H%ir^$C#!v!3~CI4k-^_GF4|i(xGOiSyS6`#_%wv;pUk`!?#hmGk$;SILOYB zex29t%O}x$4Loy+J~B^sD2JRwVX1gGirL=8)kAj{Jo$^jCd?obYp)p zu{_zK95NlTJlUZf(4|Mv(;dng=gAJ`sya5MJCp;%y+%qcJb+>0k(x@s>_#SVh4!Vp zkg+1QH!y~Kjg;+9r>AC>Q;Ck_62ZMjN_QwnAlz%@>JH_=>|P_KJCuWfeWNcslmoW+WruRe9emlL z9J1%j4&{({^0QH2yFl*f%MRs``}?v(Ib_$D9m*kR`LaVf!-@kW;?w zP!4&hFFTY&?(EAB<&cYg*`XYAkuN)xL+;|s4&{)OzU)vAxxkkl$|0BdvO_uKuD56qJt$|1wOhA%sm0}k+IhjPf>ec7QLa=9-% zltZrcWruReJ^U>dR0(q-SNO6+Ipl0#b|{DJ`?5nhJ5fYChJpN)^iw z5Zr6z>JH@yWcM1L?oiH=^JIr|j!83!yh#{FHYiNy$qwa!aIfLZ4&@x0Cp(lwrV>oe zlO4)6Vo6GOC_!pCqpRh^g89m)|7_ZlhPp&S_QHB!1mIWXL7c)CM5a4b)DD2EL98Y$hO z9GH&EJlUZfFbjjU>`)HqL0fky2c};pCVIL2Y`Exl{v*5C`)H*`=~EFlmmR1FFTY=K)&oy&Y;wn9m)YRzU)xW0lw@|&U~Ki zP!8Fn98}-%7KS_xRtmF?ln@nLpdkfaIfLZ4&{I}93yfzWY?D+$|2`?-O-5JMfN1%c)CM5 zLLC2-GK8?4Cp(lwj#5#4*`XXTk|#TqvyAz>?obZwdb&e7$MbZDa@O>8hjIYN(;do1 zP2FpVn!48ja8tTNIRL%HO-y}@0-ne90rwgy-Ju-eaIcZl9m;{>UL&PDlmo-PMmyP| z9FW{=__9MeP&7|=D2EL98Y$hO92o93Qqyq%rf|k^uaVLn$`KCt8Y$hO92o93Qo2Jq zFx+c+xJPJrhnJ+t(1G;&#LpjGnM&e!rFp{?$V!a7DNwt$F zJCp-rD9Wp+1{GZa$kR{RlpHX}mrcnbyZ%XZ^P-6b2-hUM&Z$A z6mkZ0=24?iHYE>p-}$mBx#TS#H8|WnYWT7#Il^OwZ_(>h^jr=%j~a!tDLHfIQNx!_ z$&bYK__8TE;z#^OlxgU6l5>68l>9i7Jzq8@pF?t%FPoCjCpqTJrsSuQOq1z>6nCdI z$$7qPN`4l}3IBDP!bSTnB{}ZPrsNlrobqK;@{38%@nuu;%Sq1mWmED7l9NvR;q;w= zyP!LrU!*oF%P!Xnt7IbT|6hjQ;iIf3;KP-|_Nq5&v6^ z6_^h0;#`VF|GLn>j_zr_>ED0Wa?A!QZQF9p2JU3qmSg_QmSdi!#@n_WLm&J`>d?)$ zEyrMyuLM=mwj2|gk9ufZj-eKDCim`b%Q0LHZObv4w&j?u+!WfDV|a1q|8zO#Ma;L` zmSZl);MBGp)3zM*f4v;@8lJyaEXTY_`v2|AF@L6O*wJ##`^4LF%!ee~a?DneZ8_$1 zl5IKWE0S$F=6jNDIVQGm({fBU$+jGmN3t!)6q0PqF`Y@a<(RG{({c1XUL%w^N zhWU2eLQC61OQZp7O>N)3{2zb!G7HaND;8Q#B>n&Pg_e`)8g{hMvXFRNXsIRH7Fy0E z*%n%UNwO`pTtKodwA7Pq3oXk@w(nl9B-s{PR*`HAEjN;E3oXAU*%n%ULvqsT^f=uW zvyvJ_pOfNn8=fO8>CUsr(VJLFW!10#A{{SEiGk8>q>@#?3JkXJCY`mER#yEAF!lJ3 zrklHgnPp&(rO$GRd6Su?U>*{kkC>?ggYC{qCu=`i1SWrPMOToo2ErW}C*wtbl<*#m z^W#P91dn0dIbL*);G-Fr#f#E{&tcp%Uc|0Ty1D(SNK<`LF7tpJ&mI(hq1od4a5iG>%G8H-WiOi*b zSleLXY>*r)P6n&;M{rpd5*Icn*d9nB|$(a-maJp_TBK4Pd zqYr1PkXki!pf0{kr0y-i>3SSKetUKf*QBHBS3|uEU1sz?QMUl6>#0=w=yR{qjc;;M z@+{QFcS#N{TQ&taU3cUn?i;9!?-Eh3(`=otBYRWo8=sM?(M#*VG&D8^I9)G9*&yPD&>^$r5&y>A`USX7rDxuxqZ_1P&M}AB!d|gIMvC4!MCM?U8 zo=A?+L^D?Z?oAfZXu?tx>N2GZXFBdKn#m^0WZ~>4ypix}>cd5~LHY5}mV@D!)vL4z4gODCtUk0Lmw);@8y@p{s^h z{Gq21*JuhA=k*fe;UE{M6O3O^=`DOIbt^dBhNs7pv6V+3GrJ4WjL71ALA(c#KMUTU z0KAIublhPUaTn#C!0tvfy%t z$#@SQMHa{)lK(FTk(M}D#GBye)2l8= ze`}$qS06*&>*W|BqU5WzY5@XQ3S3uP^;rn6udVu92sYO0@UhGavebmSbk$U7UMA_R zIK65E;1vQl)>hAI%5z<&Y7L5er35x+s%Oz~p#@rkrZ5gP<rCkOI(O*aN;d@Yq4-XcS+A<#%xkI)mobof2F|Xw}QM~RemHdq+77$k( zai?mem8dXcCs(ujV5nq8Cal3xvF|V;$xQ2;g8A?F4;`lv<)Rsf$-mpHoRM~xLwu8fMkcm%wJj+@2 z8|aN$W2k{3~g)=Y5LL;ojFaN>JW zDnEIGvoodAnhDMfFjil8bEX=vzg!IR({&R;db?Ff zujJKu`Bmj*U#F|_?%PMoyg6OPuf7VmP$0eeD%wN{FTQ$x8`ItU>?J+tjY;kzo$lk5 zIJ-GN7_Vfdl1{~~6GZJS$;l}ny|)nd+WRYt7k=$M zV4{Qvuf22j5#oGJq5FRO3b9#4fZfAbc#{g)Lyd)dseqkhEc{Ic?AgY`0ad_W zX)HWa1uRP4i+wq=8^?_lHUMrMD_r<-1atid0UR35r*5Y9 z@08j~gq|{s-Z5%-jR}-OAV8Cm6+Qkp%!z!6&yP)DL^U& zD}x$h{tq?P6@dVlNFUt8&DQj3_@k3sqKcc&BA4(9QiHr*dl!&F{5 z@~^37!gSsWk%?Q*>ROXr;-QTxTL+fzq^i^Hq#lx{-!W%d0sT0rz7)%MCciR--`-Eg ztb?gYI5u~rpI*e5;&NGIUr4*wUBRLgT{zuj@ueud`cf32z7z$hFGT_3OHpL?r6@ps zDGDevUy5;ff_GzEYv|X|H?hXB+O#d&;>|fZ4yUO&&BJLaPFLY{ zJ)N@MmF^w%KZh>m5&CcD`5QcuNE}Z;6m|D9pSi0@G`F;4Kk2>@5+v1{b5=5`n|s z5`*yW1E~?LaDjI(qmSRzTOx4aEfFB>EfF~EEfF~ImIx4dO9Y6Rw?u%zTOvSUo(~Xs zO9TkKB?1KA5&;5li2#AOM1a6sB0%6R5g_oE2oQKn1PHt(0tDU?0RnG{0D-qe0P~gz znGW-o2YHgAcL&08X5^Ogv?TD>Jg zHgAcL&08X5^OgwNyd^?5Z;6o2TOwrhmI&FrB|8?*}Nq}HgAcL%{(8nc}s+B-V!03w?xQvn72eg^OmSV<}DG>ZSt1Lq2?_SAnYv> zcsp;299g|3a?B=gi3-hIB4Ef{B8RHCM96NFw?vH?d^HZ71%F%WEfF|uo(~-MmIxg7 zmIxg7mIxg7mI&Mr!=2lc9>Fm@T%lt!Z;1#GdrJfkdrJfkdrJg1Z;6n@-V%Z7FmH)~ zSs0|nTOwfCTOx42)AZFiaNsQwATZAd2zyHe4tq-k4tq-kUV@%4SG^^I*v?xbh_JUr z!|E*&FoBYbw?qyF6mN-uEd> z5g_oE2;kE*V%`#g&08X5dc_aCB?5=NB?5=NB?5=NB?5=MB?9K+)`+)6Kso|%iNL{E z;{Z+G5`mh`^MRVYB?5)LB?52fEfGY>TOy!&ON4CR5+MiP65k>ad^L^`^Onf6dP{^H zrJ|^}L_qVF$a2VAB5>d>k>i=SMAkHKi2#AOL{U?3iK3?75&;5li2(GP7I;ep4tq-k z4tq-k4tq-k4tYxiZ1R=}Wajyh!`>2s!`>2s!`>2s!`>2s!`>2s!`>2s18<1{A#aI* z^i-R-L_m7yF>i^0^hRXf5?NWjB|zKDhfWTWKK*YQy0+_c% z4p482kj+~nYHgAa>LA@nHHgAdVkW4p+5A&9YaPyYPy6PBzG08NZhL6BoqQntziIB}(BA2t7w?yWec}om) z<}Fe37H^3h-ppGf!p&PEhd1+<$XqjTiT}j)sJBGKH*bmGk!)X$M`>Zmz8X)GY+sG% zl5Ag%wxb{y*fD(>?E9K;ItU0i*Z_w)AdyD4(@qaRO#sc@)7#?pS7m)AQiH0O=Sbmirdyy z)a4-_y#IzZl}D)Ywyml3r(UuSx2$bVrHZPe1Xa3nu-&-7ZuUArV{y%pO63LHI)sRZ<{4PD!y$^NLw^QV^h$mhq_R9+ z$+o8QImx!B@)gOprt&?>wx$x>qiIbgn`B#4$s^g;R0>I^HI)OfrjkE`&W{WwqBGe3 zIE}^WFq~v1rBGH<+WqIPq|Bv4wymVJt)%={ew}g(HQu(Bl(vB-={LRV3R=%5@~$O3KY7 z+e*qBl5HjBw9r6B;#-!T=GN4J`L4c zseY#VCS2}5Me(BbN5+fJ!5YkR_jSfo;zeJIHPHu*C&i1dlkl$?kB=8!Bsga*;@8BB zW()4ZnEV)CCio&ur0dC#;leN`KZfj4YPtF)?EEi0F5E_z-Rg0nHzoX|ehJ~!N~i#^b^T$W=Tptdz0`&iZ!bm+(HQ zx7_2x2T*Uh$AzLMzl4Ri@G}!keHj9v5EZ!fXy4 zJnqOZ;VV!Vj|-ltTchc=Bfo?@_O{@3g4v)mi4vfrsrSexr)8zwJuGRUyA-9~qx5go z>f9x37#a>p*8)$LPThd=atnIp*8)$-=P1K`+=dO zC>8O%@)P=j>6A)q`hiQ4Ys>qAN1)#Fe&AE6cPXRx)gu3--Qku{Jg>B*AD9Gn@x0QK zejo$&miGgZGsxYP%X9Yk!tM^@9A zKu8afU&4_30PZ33`!b|HfS>YwdCJHCi_!i{ct>o-Q~oscTk({CL;9^6?fa2a!d5-y zzd(f6JmnWrgw{OeFGK$)KjmHEQt&4~<$F^qt$E59A=j2a<+nh+zMhwq8<;PwF-~h+z2`4wba9O=DZBi#Uy^sPEy>OW#eTr~#aw7yQ{d=eK zWDWiB%_W8@Kyb|m8w=ZjfSqkDj0FPrOk-g^5U?wZg*idM-fk?u-&Zzt5xDfGiwp() zyI0qZUi$dz@S}WCilN5hSNedRVC-RG_DEy#JNf^5iMgzJlhvFU<4rb<@g^I_IW(?? zahGNo6Hg0A3&X^+H)=G;>BF8s@VX`hpIxT{YIrGA+{ax=0DnR#-Pf%EhxryWQHL?! zh)iP=Uje4uRsu9+%(ufB6Yem^j5~}m@uT(RC#Dn9GfX~W zK18^rAE}?2AO~_oII&3mw8Y8eUrkga^-~fjlcP36lM*MBXLUp4lYgT8qV?pRXe+&3 z27FC?RXF!`nfPsCydsl*pH{>%bRjsdq5nBAC^=rq)PVhWQF)@2WDOLZvXH5^l@?@2Rl0J)B~j; z!)Xk_;Wm5{qdP#3b4O>%9Uyl=xFH6~F;Et{z!{zO72gnY36wRPv1qR%dZ{##_?3 zyGyyC(fYNS1o`PQ)JP}<*JKjphR*_5XA&o#Kuy8$yJ^B9?He+B|LZb|lV{P@TM1TV z67!D=;f-m+biEc%ex&xIrz5}{(wfj#6SkSKG?V@CWU2fqQuod&^cbYxRB{(3o$L_@ ziQ4n}l)O#pyZxbrehA63go8DwL^O z$)KLRduCD1pO?k0-wNu_-KiP3c~^h#;O6AUUHv&Hk~gRAVsG8m$=wz0?Ty&&n%Qk+ zd5gns_>d$#CU3-~;gfeTJSGOoyH?gwfcsO+WKo<3cq2BK!#Bu-@kVS3 z!}aO7wwqy8qo z4VvyN$m}vDZ@0{fFx8|Z$n4=}M9$|*1exU>BT+(`$(?T>Za28|{cz{|#}1z+5!MGC zCX4pJ5SEeaOVw@$1~jd{;?H&E4S5B2Z=jx;pCz_@6cm8ZS;DyNe2CsZh`A&d^spl^W*C+p z^(?+J^r%7ag|5|Tbggr#_cZ)+I&pjxT9b*tOy(9rD2>PwWNF&(S_g=}^%SZ{%iCI^ z;Z3HvEuDSWbh!%yT)yGXZ^`C5=LIFnqXQo)BbE!MbLzbr60w_7+0kQ#$Wp8A9J-r1 z#Y%1=Um!TL2P<)?V8lilt(A?7J@ zBH~pkIo0Cj{6m>Hv_H+sKVIV9qeOO*5*dwiHxlZn6W%BV0YwEERgxzR*_%EI9*|BDw?Lg{Sm0WoRj$5>2-AX>T z*;cNcFO6}9%JHyRK*s?}WOq=)Dxn?;^;GgGiA4oyROU)$Qcoyh1z=uU>zC2(TPu(F z+mYz^U&VaCJi6p$DbU`*h<~zA4RgjZ)E3L5^QmoNQzx{{a&4#>(&<&DJeuK#M?-qv zAJE9lqn9v2gL+=R5H~YHGwZxOA*Ag#67hv(ZykTu2{dh$9MJD)oj{XKgZc41Y_UaH zI`htG`P3-OqmOg(%7Ez=r#$*PUZ(o=>~QCAxX!x!RVD<@bXg`rF0VzA z8Z(}#U+EJy7EhFc8azP)qO==Td>qPW__MS;1eV_x>)=;geoIZD$KsFkvYfuz6MlFRY1v_;32R)m9C6hNugs zXUEXmOuRar$wn(p(CX>ktt_lT!vW7vte7@GF&sP`!7E)bZ>D# z^^=sGX`0!6)1tObnKEivIeRMkx{^7+P-3nUsd-9Ji?JiSJ|jt)(q5EQ>Lw*^GDR<$ zb)shN|6=6WT}hk0<@8pH6{5#il#I9M4xi&j>+|F7 z`GH>f5SOBJy!{PDNEs&xQpUrSp?(fXe8_U~Y5(a?eM_9axW28YMnzZ@#XdM6&g z2Y4S>h89|h;hw?ps#<-P>DlFH*#b6NK(O*b!yb=%2f8nD4Nx}~KOmeot+D+wj8|I{ zw75d!%+Fl89(u3fvC(itZ5#`?K{!3Gvlh@>(BAG=u8w837?@1^hD`jAxcrH(EH%;W zj^}Y9aZ;-g*OEd9z!{OAk905E*FXe(v z{H^d6H`d1Q2;-njYD_0inm@yF4|JVUv?l7qwcb~y6I8$h-9qN6=Z>#O3j6B)+Ln&< z%9>s7(pu@uEPSgD#fH~goi9r#cn)!(Tg53a4RWkQ$YA6-fdi;?YGrPAg}9Q`a(=Jmxk_edT_B0g(`ct6u_7gd-YDm8WzJN!)YD1? z6KX2hp%+S8`ITtEn9dzm%C4$^2soU`j936LPtkTYu)Ducxs$|ND zvy`BS`O75YR;9*K#8fXOUo^ecPW7TjeJmfT_{BolUCth&gvI$CN-$AL8#QtcQo=^h z)GQ?qw5%xmiI;4jcIq=F=r;~NvM;$*G#*#t8)+|^ZdMUb0m2;BtkVUhEskZ)%pw^n7t5A9#qupc z2`K!$(-l90(OwX=?*eo9O-DJZX5sL|j&fAF!r|8)<>&?ohhbMaTG650BZt!>RyQ86 zum-MSG*pJPI9Du*D@OyZq=vOsQDcEx0jQPf(63P|Jr!043?wMWx`9uq2=ytCYXUKN!K+Qy6~4!5SXj<8e~OXnEW8j;HCQcrYw5^=dum|ttc zo2*cn7%R8YILtzoqo-Z#3RA{PRC;B575b6jl;GZA>eT~bu4IHM7wgW#iXG>Txe`-n z1r#PpOuZ3Mm>n_oc|c)W#FUSoozudkg{fYky5PAfttU<@gr&<3ZeJnS5nY~KKxa+} zJsw|ZlvW>wLNBINP28!%bFNi^hUwM}!1~+LS@e3abM8s)5PNMVi>CXA8Z%k6 z5M^jhCRRi9wIJr!bZjnC-X-@|PHF3$Eb6sQdvylO&xUTu#CYS_5t?gVChNo#XzD#$ z@e0Con$$1N#2ggTE^=80KZggGI4A4W&=ofVhVZgES&PDH(?j@;R{S}-;{PTMfr$8eAdcWj70v(JFlzX^&9yC?x}8k`a?tW1tdABNCc$^6=G?a3>{@ zU;N=)guGA5Qu?JO@rIIDDH#wKD3Sb3HBM9lN!@(wZhQ$3^VxC6QBukEO5UI(Egjq@ zYQ401MroRnC{;40Wc>F^e6I2CM!DWq@>wMVB52u(+a+;(4I#z&UCN!UvED+tUQu$I zl1}2B-$>Mplu2Hqgw5!Y)__J)8bgJ~aWe`(LCJ1P283tCbk+EXvc{3TS&5HbArc?o zAqgK~_cQ-@LiBD<6xj_Pq8guQ8j_Ne`0h@L+23Mzx=V=s=EV0JGqHR}&5LMOM@B|aWBc?iiGS-^E?=qJu#K91 z)IFL@Bh#H(5t;5Zo`llP(9%uB?8d-&Ol}N}mATAu5t++uo*P4&?##$FWt4RNs=2Xh z>T=yx%?N*HGvX+GQ%y%uj@~CWBYr!#8FBQyX2h9)72+yRiTdi3KG>d! z-vD=Lbo^a44n&=h1}z>zSgk zSXu-1#}yu$=qwlio$Nd5@rir}{j=R#YS{~p6aC}qal+v?tfnqI>i*Kj0~Y%bn!j=n z>yEZalVNJo=eyP)kHd4i%>5$=(xiMp;0yT4j@EBU$EJkw=5%Z;o+JrJfBikuzR>*> zN2j-kbv1-9a{tWu`E;xu)Gd5{I@TH3!XHY<|Dr|j%mt@wqk3`{0?%}6O#=#xEN{Llc z5GOu*foSZj^|Z>Trg5v1HL8{DzEHG`aN_4HW6R=ypm>S5l(Z%N0J=;x|2q$s-S)yVy z_2j+qs6j^!pDCNKni151k49tOGw*$B{TH4s>h|G*+kjRab@$4{Gnh;5dQWcG^xO35 z@z_SRR|FY%Ax* z=SWEcqU@JK1UENd)}SMUk?_L2q%s?Oi2h7@|4KH_*g%r zVQ_5h$#EfA6ML}<@`p)xXf|od#VIJHihV-KW0j;8i>2F_IR2gz$Lf4CP4N=nDfu%c z17f%m$(_&NKAmKP5-YXcQI7G67mCtS;_e)}TCA5vnnrd&hm#J^IqSdwwN5?T0OcS6Yy7fS-c1JZpH(jE*>k@jG4a(tQQN*lWIaXPJmCT>v@CJ;E1oi3NM zS%Z$(t`K6RUdl`?oxY@`^*hNCSBTaeNrqH5DpO~S6Mt-_C|T`Zhos(A@8%6CI1l-GFfu9XnkeLJMjtE2sKb6jzYxgO6Dt>-0ND= z>KNR@FYO@UHfaDtxZFyA5B`yIKeLWd9Iq$WeEm4;*z*k{AD@ zB=!g0`NcmS&!wOE=J1<5@5$cr_vn1i@Gl~@?C2!*gz_epwiAb(&ZFSclD0#Ehc-+51)UH=%4XGunl{{6+etoAy}1%q2>R5f%T=U-X@0bRO>LJs z6e?hKZG6M8CF$Qu%1(6=73R2Gg`^Q)j`;P;nA*Nj+Y?Tm=x9<)D`RS>K&|Yy=4yv3 zvq4gK8laYYyQoq3D@Xii$~>pUBT$R}rn%a#%9z>*Q2XZ()OKo=h^AIR)s_6al1-WR z`R(>CErjYP;rX0Bm0b?JCl`PM-Ac~RTh)lTS^8O z68}^gn}hESwZ^+7wI;Pkl`*w>P&@PP=4#88F|{k8HhEohwVBG8+Ipx}-P24hF;W>* zOKxkf;^fN@@3MY|AN0fPXDnyQ*(rGf_p5$2JuNdI*^Mh@1wH;a+=f%S(octV)Ni=; z5ZO?->kyilyY=$5JN*dUbs}R4ryqN}(eQkgyi!fAX*umt3x7FiS}|kIL12u2Z8# zkrJ;pCmuIqsA}A#MAC>uHLJwJCnV9}=bB5D2!5_HVzx%ne{v^KY2iCjh9QUiyh-TY z%|b=fbV{y7HN3Qe&dyU(itdO_huhGvly21Z^q%Ox6x@ieAJaqTz9ct_esS*_$11yq z(=YnCQGW{ED3$p}sZ2KtcjnJ>XIAT-QMgL)jKaoD>3t~SW?Q8%{WV&ahSGf-s-?F3 zb~XJPpZuAUP5140${eGeM&cPI_H0fJHR3O-(O!w95hqFgIEnY3lNyUfg-JNi3-PWF zen}&iXcYYySv86-qMQ3`y0q>uN}M+}8@B!K)eT0@7>(s3Gv>h4kOT@ zM+7t2-nu@7c`$=ATxEUx^%u00oo>A5hBAFxlNr>Ku>k5P;t6bq*sAE^bl8qcTV zCihdasmAY7W`xz}i%JwXCvuGVST#P-t|GbDOHwz%lk(21LcFaNocKG7)MN4zRYzbc&` z_g+JT{D>=_rkAJ3yL>=5SEdCYogN#2JN=1^A&OS6lJ{$(zmPPYWcOnvm!BJvR^lur zoZ`XVQTFobNGb6rI=7o9asH|=7jDDtRI-Yr=trdlBsgEIIJyZP8LyajB7K*Tc$@>L z#I_rpF$PkjF`tH6f%ltK0WN*mwJ52<9WGWM}hv?dcI01w>V-W&T zINrZ;;w(4;miUAWesapO$0#i~Qcq{Q{&|!x4!7Yns->)_Sb?v%eo8!x8&m`#(fUd8 zI9gACQjXM5Obn$P5vh*cTaFi%8uiw99@S=Y2-;Kb=@h9cz)6gTe$U7`bVstI=GF3E z=!*la^I6{loWwZj_ljh*{(4RSL(_~MQtXpw3uLUI@C*(3gS zdU6i@I%-NB<%N0-;2Ut?~W#-f|=Qv6?`s^I8Nk`cypx%WpGkTw> zTY!^uDwRI^+^cls>B2S7FQ6_Cu<$rG1voihCBqa>kWl|FUV1EAf+3t7CswtZ^#jE8swfLuYi6PWXCI_#v2{bNMh3a zYafya-b!+|w~QXg=%AZO&he&~l05iYl2hL6-AL}&Kyuvske=~q|I0~Ec>f$o@=h0% zoagOIcO*LOLXv&2S2f9fmXaLvuE$$@-?K>0@(x12L((LBUSk=_Lr)_)*E<*bv!tBo zqbawWPrRF3ioBK{LUPi!?#_J+jqzOOY>RL2eZ=1n@ngBNML37s7UAC8)E7i&BHYd0 zAG&99xNbZCUGC9k#GMi5(zy+!9{nYAwq?0@Pz7=OBAuw$5!bsnWG6QtWjb{xiS)7& zKDO@aoq)V6IB#zg^$yW;j^jN*kA8F#0O3gG%`nvg@rwLpTU>j#q<5-4U|mRYT5$9QD3M z1ILwB4?LqY_5m z1WYw}t!pQrO>8YRL-3m>#9CB58HsnVk(@~b6LlqPG2rvhlUsDA} zR&qqI7>RK1QSUoyR*_3N1#d<_l9xk{%{Y$QxfEmATgW>HwbO;9$i;xsyl)WoJIH6&r3+q0A(wK*QAnsWYUCouW0296 z)Z;`hU_6=L@Og}PK|!ygn-m$ynATM$`irR%MV@2q`VS+qjSM3GQe6Lw45I!B zM0=Nk<99(GTU5@a>nZq{x|7K6oMkv1;za1a0%NO z)%X`-GWscleE&fd>I(+0e-LisR}AX%pDZJ=7MGHuOUZu>P3Stn2yV@LP~FU`MD;D0 zgy#0P;o153;-23Hb&u4&n{c_?05e_$GWWONdq<*Q;(j&LJ{N`j20GuDwuiM+E- zZ$7lRC;qPe6kPP*G$4bC?^m2`{;jzFRghhjcOVjI1k46}7R6r!m_YHbE+cp%7dIO% z>t*110dDtOlw~2~Gtu7LEd-HfVhKM0e?Zo=nefo|61Z#A7$=b8uTY$BjJr}>^kcxC z8Gq=n#YJ>v@Ik@-xVpg%@~JDyKc7k&*^Huk^t|U!L(Q%R%tFb(z;!vSO;lxmBbvnP z2#%AszX8QMfP-TNk0NXr27^$hyMaeC9*F1Xdf?%V2cT1P@l1?ijNA*BBYYU+e&{5x zM0h1*j70_a<1wjYyfec0M=x;>NK7BG?d4C?qs4l5&KCKEYS2(JLo;^UIdmq_S5$W(&K`Fo%QOEuleURNZ=oo6)v z�=68r0sa2IR?EKW`%4}K!#PTm7( zDt#emdFSAk9Szy_o<%y7A@}#P%She@a!0QM*IosAC+}_w2;>Fov}FJ$V@H(pGI>tlM@0^W5B8ZTXbb^B5gb6Bw#>b$dh^TQuadC&J1)cpl`|LV(hJA)QRdqGRdDIAQ`e>@_PZ+^ZpF=tLni1mZ zQL057j1W!#m6Ef`2pQ>bkhN+fG)upO&hxSnGSl~wQ&?++Q2LeTT8)sN9yL9)5yF{I zliHC+XiYuJHY%y%Mz*QsCQ^e+Gjb@i6V-|pMi@w?F@Thp899eaYb2#}xsgw#(m9<< z`sRl4Z|P*EMjk*Xb17Lz895blMqi3gRgq>%Bhx>odL1&sqcf@~>>&#C5th-FOs^%; zCDm^zAF@JyAzK;0(@=6$Q?}49rS=5$8)nKLPHBt3BW8AL zr);6WGbwdeN*ev$jQ+M$+72KG!+c18{O$AKtBA{t;irE1JB@fKWir`s$#MS#ciPh5 zZpy`o>lm->q&!bLrq>FkTtR=gBONd0Gty~8e@CqBycV=3MT@#E2jh>J)ygJ7OQa0U z|F&h+XdzVOR`zBH^pAnyY`X<9TI)0dD!AOeT`gtiYR?b(!0|d-reGxo4p={5R{|cai>ovCjPt^#7}M zZU=4tzgp++O%eW^b?ym>@ZYR+KS28b$Lribl9m7Cb?(j>eE&D=+-E}nzgXukA@%=! zo!jjCXx$N2@jqJU{*0{u=j+_$nEs1(?tY~HpRaRICH4P&o%=RY|IgRCHo8{q%1t(9*^nltb(>G-eK$~RHOf7Z(XSu6i%t^EH#Yvs?IM*YuPIaX}{Su3Zh z$vX-++ZGw<~#;P|Dp{ns&`CKRczI{yu`ZmGTAY#Q5*E#N+h0oidO9 z?!bTlOgiRPqm{BAYxl0X6=t(i>*Cqi5fKipoo~K(bCD78?5ck=wD7QM zv|f_&I$O3r#Bc2QXE|+C1;+CP3>Sbw@H2umVlxA4LfBE2Esk9OUBa$awtpd7jVE zHq6&)mwy`4d|oX%S&fWEKCg~YkW*F#5zk*}=mySq6)QR0*GaYyp?A-#kn2sm6mJN5 zNWunrb7tbX4i$4u3DL(6dj-a(t5lY^W+)NOMjwvD{V zXBY})I`BRk2Tch%cc{xXbPettp~9+&chkD#NhCddF%lwj{ZKd8hw?~(-HGG z^7Y&#Alg;H7*?>-k@g}KYiVv^aQ$>7U4ki7mxd=R>4Jk>)R~}H(8hDTSVwXzzro&W} zyo&gU!&JPJPepvX6EAsH>1IfHWKP9R32$1mjPD&yqY9?sc&iV4mD&W=A5H3#;tccQ zM3wPLJG^^brM(F+zd^!RZ3-HsU5V(bm$(2caSxr2Di77|S%IYjqhAOZ#Yz?h#C{cc ziom#n-U8sZ4}OKsPmqcmBJ=$P=4x#|RY0*s{1oQn7YLl9)?)7osSpzXUcgnVf-^o{ z&1Y0whvAIzHv|T@qP@1TntGQ!Qp*)MMD4|v3&CCmbHpAJ&{@;|qyRnNN;34Sz~Fqb zV_xO+T_dLBrwdRgXn6GD*I4aUN*qvyTF@eY-Y%8epT(*>prj1PR9wJ-uQ zNBoW^0JZ4!_gIJC8cWB=WND1RZ{Qc{h=<>AV(FqLAiD4a)}UL1beK;g-XZW)W-#~DO;s6b-HzYs7^&ES_EH+f3w8Sx;s{6+5>H?E#MqcD0$xnYCAGRe7Q zVZ#c}W9PX?pJ-Y4f6V8cBiUe=f0hFGj*c@=`cc|}0gsyJev1I}scQJ1JohI^@a+hM z^UE_G9lrI2uO?oXV~n$_r*0NLSHscGHXDf{uRX!N2`7(+N6W)@r=nssp9sTajirWw z=F`T*zS7B}o;3im13FV^^BG9z7?bR1cwPYEjujRPw6f9POmHu|7)dA*)*cts97BTf zu9r$lQ{MctZUiY$@l4x8KengBXnq;Iw!(@4VjIhNxqzI9RTDj(!rTC&J5!h!!13lx zlylMW$OdXo#dLH)>9KgVFj=TYJ=%rA*aa7Uk&Zy9JGoedybQN9vQI@Fm5h$|`-CgQ zYjlY?Zb6pB&Jy?tGb{d_fL;QS+HIe5#7TmlM#L8Fk&R}jrTNc_W!JHijwRzq2-p!A zYDrf~^{f?kqvPiQpK7D2zf>qPLK*E!E1)xQotBy%IuInxubyZ9EUpYp9MX*nsfy=*hP@T(K)5&qEQYyaqBA ziOLluW0bJPF-gJ~KBy6Gap=4ud|?q)eT(xe1p2-fH6e}|F2mOqO$$=FqiH}Y9s2*# zeio-m`}xwOuW9>H+PM8FZPb3gFd5RM{V4q3wV#X9x&3_Q{7w7$%K4l2qp(r?`AROJ zQTtKYsQoBx+)Fw8`C zP+fe`cp`?x9Exc$HN=liPSUg4s0S+Kdeaf@C$WO@-}GJ$;u14!V4HZ^vp1V+l%Arb zIOEHMQ6p8xKyxYVl^gJ%WAhHPhWvucbHP!w1(j=;Ep zI8r3t8af)w`SMs~M{#65+UX97mLKMLc6o6#Zs5gcI*d=FVtha8*!+C zYdEIik-u^b;1-UF_}}+cdyov%S6vqor>tF#>8q4BZfi;#wY6(a+M2XAg+W`Ry0qA6 zQYD-Qr?teK7!x6xPv*t@?cjWTPV;fd_Y7`VutPwJfY=Q?S>tsDbpmum82?#7)7209 zjH0+=tbVll>jLE3Tal}B_}ioteqg&7%4p0kzo|LaJkk&hE%LUsz3ROjSmEmo*3@=@WGtGAd*LVS(Xjc!@;Lm`zQGm7?K= zN{^>Ry&s_j;tc{q+rA}Nf_5BxU9RS5q??ZTegO@GVpBKoh6&RN6

    Ik37fG7Ude zL04xwAM$oC)}HZW=W+ zJzs_!*_s^Q%Bfy&PwHkRtyhf`Kvq@ldvZq%F68g=9T8pr9^G*+ zO0&XjTo32Wo`Q&YGz;0Q=8HN~L5TH{@t*tmx@(Oh++n9b7_1U-BT^MVR^V8HR_tRT zd;+M{3&>R!&TzUYsUxN#QNoOzVR2RZE&zhtug<~cN5-OPa{uJC+=GD!9dafK1{Aod_}jS+LHP#TnTsK`__6|FP9yqj&Ade-^DZX{E7Q>*H{ z2Q@=Q-=(6+)}lc6%ioiu<0YMSVUtYjn*%UVDiZjjzyLfVAii8QZW4gV(ZTj0W8-VK zWToLk;$sB9D$t7d2{l&hO=?30HmDsEX0^NI4D^!9c#gn@dfM3AZez9hb^(Ek6c**O zDW>WJ$@SvB;-*k3w;8ki6l7KCa!?NPFz;mizay1TbCb*0VV5t%#&1)cc~qR}^3X6$ zdFIiX@P%-asmSu^6zKIJn-UfM5|T|g$KPA%a*;|nK9=0s_vrj|CR3!Qg!8zBeJNoP zGu)17mE*WoRwk&p$8d3vqShvVkL(EdB7YC>2sb8w=XEqbe=N7#TuAVwBIR^6{@zHm z9t}|gX=SA&+{{>VGt|p>BrhY+C8VqMZWM~6v{#!e8>y(#FZV5DeR z0^;qPvyCxQxniXPf{Fhs0oRBI|8Vnt0{PmgMi@c6g)XbmitXxm(Ts|-_%x5BIOwp; z=VC>r^UxepV7Ew4bRO32MI;|eO}(1SmVBtG8`WGl$cdV|QO$LO>W--!qEB_l)D0t> zvNx?=M3lX$8P!}fGTaWc#$!BX&P}uN&gTXxqmNy8?wTYX>awG#=4#ZVVU zg4;V#zfR%wSEQ`|S&U1Nn)~g)j9f=DuJV4HE;&+GYr^Tq$Ni?WkCfFgF*bV{*(F#>s9A9-%E zlr~n_nNhh2!!kRw6B^hOuy#e1X@f({kT+BaqmN+Y^V{*+?D8c?q9R<5%NQIY1-!LV z@8&Alg`2gLlN9P9qaqA8TTQS{1o~!OML{jX;Ti^q$TZenAi}*44wXX;m07&z!p6f` z7ybJsmx%|;l1rIMRy4S8z_$mKHePa3+Gxq8R9>vt==OlZV9DigrqCyJ;VJaW(BCX? zt_=On@}|N@Q)o?8qvcJ7ji%5F8&9E?Hl9K&Z9Iim+AxL21_(|S1{g&i^>eHfDjVsI zM=7e52MKL=naORMOnVbil{qwAhFi>NB`Pf`BCpI@2(O&6km?wVXt)SW3eC;94OP#+ z(X7*l$_9B;ro*l(qs?Ptqn2{W0ccQ3kvA26fr@_=dQ;IdRfId}oqSf@W}ljD_+7~G zEvmkO?%1OPR{6_B#$gm)FBiAlMm;BWt{B3q2Xqt)X>=W`$P+D~kC(j>@%#8HXmH3Jb=AlI5C0 z@j!5M=$y48RL-Xj11gmkw7ndW*hMcXi2m4>UBuJuA*`nlMwb^mieb6H0AMB19PtjK z!Fq;8w+Opdl(xcD{Bwb`1zORkj^;?kLfk`e8)+51Mbf>b=;_^9X|yPHg;M-tfu{ww z^18Fy03pLkZGyl<1GO84+=;u8bUbqyF7i=N0?W~U$1oDVZ;hrXM^SimvIPAo+V{{ouNL@*z}Vda^qego2+ju^i;rdV zn?(Ip*oapMyjP$VeY+2LiF>eHvRJ@I`^K3IWRm#McX$F91K$DFgT{ z^on3QZX#1x3Y;b|cAWstkoY|Ug3N%aJvnUZG>P>YnMyg4;Sp-;b^+J%`K)-QfXfBo zC)#fy$LcDv4m$#-&Jl<=%9$fJM!;@~8J{cQ0|EGnK6w(G`cT;AWU5BsGXi7v0)o8y zQ$TWFl@1b9l7PKr>VARG2#l^5aH-gShqSf`94Roa;8X$7dEsO>AEe=Z0m*5YatbTG zBk?+**2b?CxL%D#e>;`cv}N~gsN7w08wZ`!5Hw7Jw93s4f@0S-iN!UMhnF;lOB#ln zJ9XT(n+4k7KkLp2#(vfVZLDC|@;fJ5X4mq^V!k`p59ru33By8~CF-u_U!Z8W+=2g9 z^_Fy_iIoHTh;;;m%a-Pkvb}%eu049Tmh=(vNZBqUV#w3-RwLJwj6qIIo`lw!V48%s zEHvS@3`m1PjR6>Tw0r;xv~m#1??LvSH=^&l7}^|c5?i(-;bORA1Pp@QnU;MB83~u+ zy9YCA-ziIY_dZQcO&DgT?rfTwie^c%i;3wW@0e&6Iqn>aMiNHV3lOI9XqF18!6?Qj zb4(-*7x)j{NajB6Em*GEF6#ENK=ZbJX=c5(9crb&%TqgCX(y^-qzAw-}?F`n^ z+ra*d0)E5E`S4er#X1it=sBE$3zKw2pE!pBy<&lm?uhKaDexO+AXVqGnz|2v`v?X) ztB#w=ve{}+b7jh2y1-QW4-1Bv?Z_MAWm~q4b%L3_PItZ zH6luM_9aGMLNZOaXD5tYQsAaPYs@b*GR?|R9q7YQFor2v#7w?tQ<_XYHB)a9eK*}q zyhY4#(^qw;l(KRwv%lnO7OjxXX0|5JjefTtuCa zi>UK)5wSu+({VXV9d2l%6^euru~t+pAOsj$PIGZlLZQ%9TqNw>$?t~DlVsLFY_Nxo zJNexk0;?d>G+m;uNn|t|*l>lF6xtAXMIxhRQfP%H4I_R|BR1mlA3=jFE%u*0zj00V z%SSQTE>+%Nd=Y~VC@wnudq*?)Mm262%b<;Da8;$s(zL2lg%K81X{t2B%u)aqA5|P- za6(olF_GbT@JNV*s$^XWH>?kqbREbpI%NWx9uI@!uV-2!9H~ zJqZc3?JoGgY0~WSudxc}*=YyiYJ5AD_WJvFN?-hVcAR#=`*v)k`H5VJpXf(EnW9K$ zsUvDW&uXV2$TX|yooN)#GFCdG)pJRv!I)X*N^ojsSRn9TDQWRZthGpBYPNtm0&v2o1#K2IfFi!#G~y@!GvZZ~+4yjYI1v$3ZxeWeo*?A| zA?FFXfz*Bwcw(ToVhUT!5%M^x-6OD9pjIp73Lzhp+Lr<^QMJ_3mo(0v)R&rq!>2aZ zNV!qKFJh!Osz_@4X{;4oPU<2d{}#2>fzw%KwSsR1+@;`}8I3hkj=Ge=(bD+ozF_J? zffs7DtpcVCu+lD^$?*=5c&U#G(0)BN^)l8_fR_>35y!Ij;|v+}UnrCQx59W2UF5qM zx+s2xsTnD?#XqAIwwnJN&4k)g)`?lD(rHKHf2!qHHhrc$dn3f=S%^+8tHt=qa0l^g z5QA0vw1mp+R(MgIIX9aW!`9qQpbT&rK_R$#| zPq!=$zk8es#%OSL99LrZ%HZFg8N=YOoLOff#&H=3ccM1=Y_T&P70>RQanvy+Zzy(F z4~Kku#zdqqT(+XnNnlQA4-~no&}oa&P9Se6bY4F#Nvt=7 zFPAv-!l-Ub;S5E*tPmOCT@T;4;) z&O4N2CrJ)f7CRr2JV@j<#m?4b86UAOIVVYfMX}?efP?s@#ZD^88h=T#la(x&6gzJx z>+elC?~^?)G2Ev>f)39GI9U>a&%5tVmg^Jrt*bs#0ltKU@w}$KHW9&sqXxd4h+uf5 zQcWU)@rFvTB_immRH{xmzxKvS`{_vwou4R`TF-7Sbj~^jGUq$8?ZILiu4(j538#HS zu^@O|v2##ExdA+Yd~XES7CUb?igJIkGmc6|tL}z`GdWqVOgPh%a`Bbhha_W=isv>6{+0*b1 z$kxf&$}m9UR~9*)$sek`rpP%oS*|E@UQL!)P<(jv{t~~g&>2qtN#&YC=lo>3y3nak zmTQsz>4>lGq#iPTG42dw53@96aBsQ*1xowgc! zSMMHy;{^s_h=P|y<6r^4f)3Jw`d`jw!9hRr1@zNshZV8LJO!%~je&bw34?U>uykDR;UX^)_^n<-+5*-(QSA)7lEK0dNAurV z$Y8R=0QdLayN1z>2%`gG%~zNZHUI2uS?d}FpELy%u49c`RO9!i;Ku7&W0h)jyP*kq zOTdGwkyy$a3h-T^8<_-!kXgoHi(d4{%NU%a7v1d^1{m3x!|%3&!N&?7`4@vVV#B?* zg28E`L0Rms5_p+ty+k>s@H~N*chp@RcZnuQ!Aw=L+*$Xq4*ZEZGElDm4FZo7Xt{3- z(GRTO4K?pafg7d30puR1zZ$oI}6Cp zhXVTw48VZ`{K!Lm`rS~M!@ubnX8SeWW&dW-K`H_%y1!J3mc#MLf|vaQ!;b_8V50#4 zMA29#0FnKXFLSJ?*plUDzQQ02`AP>pHR<&bxKmoXH&(!H@B?&sr2-}i@N=u#PTl`Q`u0YM9lo`;mtXgXHX0>1gxX4CM~4}LplzQp@# zvkn>f1`WwW@CU;C;KziUFO!aK_6(|+k)MMRdu+3{_%ZtCyQE{Ay^$s1<^!^OGH*;5 z*?d5DPv(cJZ$2QqCv!JsvKKd>s_d2VYc}rL%|ZI3Gz&Q>4Jla!llHpI%ka~+6Qz_= zzAm!^evJGrrF329d-yT(2gnlpg0zkJp}9gFs}Vgjs3e{~5YmLpu@=`e<1xrIQ;1EY z>*yaFi60}InSTG+RAjW#H*=u=F`5J!xu7R*^oXU5NHPR9HsN)E~r_DpgPK`uaUj-S#QNX}jug8U_Z=zOu4P~{*$ zf**7Fbu7Ooa{LOuyahO)u|Ef6=bjmZV9uz|!(~ApkDr}az}&^?zabCCkCCrLwxBF# z;D>Sp@8zdKNp;%PTzvfEJ+7_w&A7VS<->3lVf(c-p7y<()-dh+AdQL=3p37nG#dXX zjn0l$cV`w1iD)K)W>WZm8czxzmr3D=MjeyF1WyXz5g8+AGpVah<4Ik~OrDac{@zO? z6KU}JiRkYl8G{~`>o0ZIpzhl5N;p2FJCO!?8oz>M4B9k&1<4phsk|l;nMi{uwO4m3 z&2VbWwT8=XE{;s;j&~`D@g)#3&Q`Icm?k```-hqEsI=EicvSkyOn6kntjbJy-WIc% zZI}rU=P=Hi;0e!%X*@Bln?ds(jlClgnN3wdudpt`a|M-aXPBwNTVfouGMXx=h=~|Y z6;!N-h^c~#RS;>2sVTz>Zs+&8id-rly%LSdJ6_e6r2SAs! zy}v|bqiS68xtvbHRRRuc3h*g3bNKg)#x6|^|GJa6vZ)kF(vy^=1p;@fIR!cr_wEsm z^{P=R;A91x1su{8v=HF$(6cm2Qpp#bB;AA&f)nyq3LK{96!cef&x(fHhgHARS8Phh z11a4c*xDy_vD!-gn$YDl+XG_kIs3^YCd*hV zx+qz$OE}|`<-G~#l4Kb^%}mZu7JFE_$~z7ARmR5O>m>^(a1L5-=sV8S5dz*rN9uPG z*ju3Go+qT2kUvOmg1|!qwHt(_pkJk<70Sa~BXEa|QQghk`JC%m$+`f80B@_ne1ZOU z0aFB^!Oz*j5oZay2@(A=fhYoV_)iGvF2HiX5zDoy4#|aG5wM0Nex}FlE>H3c1ZEh0Ja>xGII9&%~u;&#B4AQkwKvKHWb~jGf z1&HV$E-*;fFaZteDiNaTx{~6RHi>7so%S?N*E5u^;{*ojI!QoMx?UHg^=l8=|5jj- zuC$-ne2^}0fDlcWKTLqeLA~=H{F$RgZLWp>%L2A*J+-2A-@yzhCp&1jIk6G=G4eoo zW60g{L$Z~|w>3h&$+tPtX>dE6eqsB&4qvO;VNU7NZtu*4MA-0yqiUfC*8oxB*5Brr{Q_xWk{GGw4 z(x#6^Bl0E)Trbc+VIONv=Qe2hI|ckIBR%)4{j9M~zzuC-XTQKr0t4`vf&>2IXg3M) z73f&rKg2?QkF3f5ZCGHMVQ@B>t{N4_0DZu+h zBTNntv(71W+f(5jjaMOB0m!C1W;j~P>HH(T#sFh`pUEk5y``}1T_;fAmE|i4tD&V) zj+PZ_i$uXPJ^3}Fp^NRfLVq;f z{KGN8{Ew{OEZ|RxHIi(9BrsTnSD=#*MBLtjEuoQ{qZko=t0lvR+0MyAUJ$i=No}gY zrh8O?H^Df|G5E088>4uh-f2eN`;#J0b`GYl;RzAPyInf) z1r3u6dbK02yO+Q&dX?_%CThD$?W(3~{-qt++60N{&*;l zw54ZT);iH@?y(`ed>^tXjD<5Axun|Xr#YRGLq8(b_87CYg0~1bKhnTK#mP>08Yi%5 z#xXfGZqeWzXTa$YM@!_k{&q!^rzpz)b@DVMp=hEs{8XBn2UEU& z;Fua@HY2|0u&1n@?b2$?XGSC+H9a%A?U7@Dg%%6Xcc#^=sc=t;0J zGuLn4vvIooc};+OP%qYa!X(hLnj>Lee}O9m24JxO|7_8iDF8oyO7F%ebAJ=iT9gLB zb}M@$=}tMOv99kN+Zb4(J7_FB(E9{_VX6dnrl=|Sm-XRn zStMELFQK(J906F{w+VRR_{PAU)}O(NV&iS(oxfNhii8h;OAf1*ClAv#BHwm_844t-U)ORhnq8(CY%*Ci$6ocu~>Q`y6r&5M0>9(Qwc}yp?)r~ zhxNai&1~j=2$<%wBK6bjRGw<{VZ0ChFGl?%Gf_tpx#cf zyhn$#TF?j82!K^R(r5R<=ip5TnM*nSm|KOKP(G4lo+Vdfmm4=`uXjx&H*WATH)!M; z#`Qhsa`mD{Zk*p^F2%xw8ffIE)jwx6FfwowxEA|)cNUkjS^v<$X;hz7m~4EkO5@!N z&f|o=E#7-MPT+l>fFsWDFl( z#f6R4{7nJ^70W;ABG#E8k^J3FfDDgna0=7^$ISn!R-3zE#aqJb5Y= ziG+=J3gBt%sxS@1;2hno(VUQnq{>}~WcXbLmI}1I&0|?@SD4f5Zxisg09d<|TI@3C zK`hrjGm+IV2`;b8QFM7Xo6eXLyF&WjQB*5b80qY!q2o&Fi1VCRD6uN$IyK2+j;TT% zm4-a-COK(|qTin!m7vgsyeGla@Ug$!9X7SLZ~8_K?`+ z3Fq+B0&R1vjNZbbX)aB81Lew}it?5FH_za#z)8&EHoKI8uI9`-8l`fCz+XfQU#gkO zYF7$bNovOnoEoSdei^GRl*;iIsr46FE^7YHCIDV&7RUQoRQ6K5w*@{Pn7?K=tM!zM zJP^g`-zBg@)I56*Yds^tKSTg>T6Hq7V4c+p4i^yAG6g{`8z36VwaiLSZ(&(&`MIV? zL+RZutKB@TdagHfMf{D&miTX{9X+86AK-!P=ZDXkA_BJAklp;Usrcbi|Me-X@C>9p9%HGZ>s%t==~J_<>}?qA)a17 z9pdTb)1j{s9=4wfansmfX3Jru;(5f+Oea6{XozfLx;f9yJa1SMr~|ljumS9$YXQu| zPmhL5QB>HIJYL-(4t zi5o7a^=bGgMb1gogVcxQR&xv_I_Un5|dQG7>O^WupbS_$d;XE#DZOeYUdh)N}DbA^l(a0jU^7T7;f`$))SA)82TyTB2F+CUoMRY@@Pt5Zi4ZNiXGrZ1f#(Hkofok+Rog~t#|msv+ayHmS`_8)zbi1PYu+JOvo)=2 zejforJ;QxmCv-vBvZD0V89A}oeIAksdMv)-=D*PDvd^9-7 zeeq-DIIKaYn-oUA6HAhii}7RR6%ixP!;g`tH8=7Q{E%#=({pVda>*AQ>U@#MtA}G3 z^OgLGSajIs^H45f`?7ZIh-bDl6A|N)rnlR&(Kz5DHv z9s&dJ?k#Ad=9e{9u|jQea(jsT2HfYxH?Y-BXeD&uZVaw7Y!7pJ3&c>KIGY}Fh)eac zVSV~snH7)nW{H*i#EN&FfNKP}UkMn(r?HyhEdDP7F_PfJuUN{-nVWzSznXd?E=v`@Zt9=ZG27c8UfmB+T$AhDuI^<@h&QB z9M1~fLaDwfee*EO`b+}#D@%4c`J`0%ul}gx^gC33FOuIG=66MULVlOZ@4w9N%Jhfu z8@89H^A?y}(#?jzOOZ7DzI5^eSU`(R9E+v7dqm8OOdN+@7k7)8!#khvGNPHpn4Qlm z!@roF&#NR{cRp*l?tIp8ta?tMH2^kGD{#CMTEnrSWa1R;v{o6rnz8p+kmseNB|M9_S|GiD zhK>N_DX0>SZUTG-o-_;pm7CbG-rgrWZu}O8?Iqgfbha)6^?8l}{Ge@afM~p_#ufZq zfHB_tRyMwkBpmeNQE#ZgP0Sj=V*>n1qH&7={J1SwuqkwX=7^yNdPfS>wiAFuMaw@? zG%^L?$A5Muo0_0Xzuevg6qh#!R9w1~9T zY#>|erCokv4&`x2@xC35_cg0l2L@fkkrL@Ct)?dnptlUt;a)00yN0egNPdaHhOS|c zkO?N1`7iVy>59 zchhXOrwOMHVJ_7y4aU;XZ&Y9$Oy34_E~oLCs^>cQQY}((B=4K)?UlcY zzHYBnS+`fJtlKMp7Jc1bsj_ab!~!Y$Jah)Ky;5b}Ua7KfuiWGDaGbYS?v%TJmAt+3 zS2-EV#%!-tS+-ZIh@vvvD^*69hh9o;@%G9<;_a0x^7cxVczdNvs6l3X<$jN+6S}=} zm!t|a2D80#w}k8V${$76?UgF)_DYp?d!_BO{TkU`sdA-kuT;5IwpRx6WqalClAgV? zy;5bgRD}NC6D%oDCvTUzZaf58HR9UuHs#q!8D^-^5 zl`5{0?UgF)_R62+gZ?R|v;12;h{_>l@#C8i z*j{<+mL}kbR~ZD`EBn96K(|*;#|*$5Au!lpsUX;1Ia4%}w^yF}Hk-oWz#ML+0Nrs& z_tCr;1nRCsU%^J{9MECE{VrRAzBxX_AO1H2y9u=1Bj01S7lcGmPyMq5E>|@#@;<8t z+bi1(2)0)$2)0+AC>px^$x{$)uRLEg^p=;WKrhxW5)HjjO^@ZdA8~?or=x#}fS&`M z(0m%;z0%CW&p98ndb<`Jj7P07mPo~u&=1A=_c{4}!~AY(_6wHgQ|&FyTnts{w}t#3 zEWf;zzoi*1?bH6pSDNv{Q0-jV|M*HX>YT6)4`6mTDyW|8Mkdhnw;vb{ngux)MsD`| zB4c!MCuWawrpoA2C;DiO#f1y0-K_?7w2`4q19>gG{*sAt3c z5xbUDy2m_Fpc2MZF-qr$&A3OZn&ee*Yv@r*0&!PiX3nd~ z&A!4aP0^e>juwF4TN!++8qKyf254blF!@WymtH3UpDS1=KwG%4AecEn_9ffs68I%^ zK6lpF%ukB(`42~9^sWJ!N2vgvUW1KTtQa>=L+x@+|uZ>{InlAB5EZcyhD}Vqrh7*`TtI|)Qhd|9GYkn z+E^zv3iZOisM((b@%~3K|HA=n-7c?$8%V|58a|8j?@syMZ+^#!4;v#sY>fD@G0oVA zjcLX{Y)s(8E)pMBeYyCsi^PXj0hle@3N~CWK5T~gEVM4;!={Uj)@OW}%J6ZiH2Jtx z!Z9N%CcmLFR-T$Ahhr3e61i^;r%||NPZckQje56`ueeOSSV_XEBwwL&Ws$Rne9J8H zVm0%fzbIT~jIJ-m2qDm~$ae}zU*p#pFQ#Y1tx9+?mGJyN?i#Cv;lJ@pGsTNx9BsUk z<_pHX#w)1|FJ-)v%C+K^RHkR?;gvMo@WRjyQtY}wv;|#*_m;prr3U(;-CXx3NY(Qv z2~Z~lpEG9<>wGJXqZ;nfTPpBXbukK_R&c*)=zC4v$A4lw>T{;Sj<2vv6L9&@tQCM> zzc2`VPUf$Tf#pT^GC5Mbnb%Q3ih^1JfzMG8_?*vwV;fC<&cF6CchWh9|3c&O{w=UB zjiImLOU>9-e{!^|<+{8l_A{tKBcsE6Pry0>{?UK2#vZlN*+ylEOR+sp4!=681{k9u}z@~CHbCXae{XR^oGoyi_!cczYdevqd=0*~>7JoP~y!#wq& zAn+J}84a_7Ydpq&k=0|U43DuDUeC4~JjR`@sWgRVW0;V~+Z?}5x7;}4TSv$gl7 zlMote@E99ujHNO>#%1JD!VMl{7L6WMhR2u*PaWvPW1K;$(fI5!^la=gRAP^z5=M7s z++#QK7@9BYF;rHMp|W}mmBnLdw!vfEC&jMA=s)24yefg8Yo+{Azyz(7%Tu_vBzcT` zQW>eo_#M^E`?tWrV<-qbMy+TB9^;ENwxb^7U$EmVtkMMBO*>w2RGI&wF)o8a;4yMC z8w1Ph)r?8tF@^~UJcdV;SR8@JP!M>Gv@F(W>M>r=X1+L;6I6r7m!DB2XkCB%}@Ahckg#*u%IClAs810Acv$JS5Fx5UQtKpHQ z^RncQ6F;(~;$+7>qNL(zene@cD37FWd_)$_l|p61`4J@*2l;h!`k+ppdJv~affd?D zt#+MPJ;bu69n678ijTC*Ge=TlAL54v_R{!aojeMFH)_+F*UOq8wlFJ~0v`&@-*On6PYC&*)E*HSn6DKOnD?3=&hf6$6dW!< zZ)l^~mXIG@-h3rWV1SB zlwi6wcrm7TD$}jOi!l;X8Mg)}Ufioe#(?u}a_FlhKHTO(Kow{;4v{r|3Vh;v4Yr!1Ulfi=mtWawjPp7rI8T?%dyi1&v zT|W9EYQ7n*_<^^KR@|XywBimuqZRK^%xuLSe`c%qQ?RUI?$xHX;&lw{FYNpR-Gc4d zYAH5%M#Fil__OaPoR1qjCZt0vYS#@Rma`qB5WBUpK9WFx--$$N7Wz6oe4x!pudB75lN*EbT zrMuAWS_Nw$g=C8pV#W$R;0x`xtz<18FO5x>aXaDxx-Lx_s?Gum*Z4mroQtVyX?%<= zI??PyuM8ubg;X{5{CH{WD$-YbXelcwT;o?2x>xk#(!N#d!?p|172PN>Utjjhq~wiL`)aGz*gpvD!PCVbs|2FH^5I7Zur=*s-MIpO7ma>!9bT!x zPXq?wRkd@!XgnwYKVC@=+YT~orGSS6r4a3*vg=zu2m^d z-!7*&@}=6{Te45?E*IIoAP#dg$xPZK{mhZWxhqT8z_OhAI$T*@lEOiL7Zjrc`j~D&35? z&Qph~`2d$$PD|(mU!M`cX99!*X= zCRwxSZ8d7YGT}Txd7<{uC45R%M`gJD36%QdBt7WNhLJrDFD>$?oWzwxZ-=B7v6sy^tq_42GKLp3Z731o{dVYdp)X7o9f*Eu@I{V2)U+5f$9o5b;OR z`9RPEl(5(kj`)=7xgQD9KI><)zek|@d0#=`l&a2PL#1j6yIhAcnjpyEDIjonPvx-& zI&O3L3(jPqJ(#TTo{7etwE7#dLSd>X#VxWC^BMXG0ggVw0?qJA$GU|+DH1v|b4 zE!gobXmK)p0)_KJ&4L!RK$B_q;1##vaoS!y_F>xLwFa1-Fy>_%i(9al8|B!}Ah z*VCANsiX`Z;#!KVa#g}vKqEwz;RB8%?{=f;S0tSN$?^(#ka5^vsQPG?9jH~ReksD~ zMXwr8UVuEhhA$Bxqshx*r*fT~4r|orovKSjhEp*sH=1*}S5`qzL-nzdWY)!S5;ur` zjW`j_NjQOL20~xM;XqUA@>Q-)INQmd%5bPxQ+DY2DvF$$RC0PgOks@E(eM&+IvS3( z>3q6;mEk0f6H@)ULjQuZxdH}GX#F`1vcslgT74#>3B4gucP02|pUYYwv6AKQ8NuK# z0T^G!&to(*#Ox-r)J5P~0(}Jw)Y59vSg4@je72M14l+kEdRScG(=hEHF0f3X>|)|?`fjekJKJ-s^;G~ zjjaV4UNpT4IB7;>V1*tBuwTwT2Q`1K1TJgMC$`J!W!I^8bvC=f>g;ojJFL#0AirOm zJgd%T_gS6I?z1|Z-RI_PUeDf~J;&&8&R!(Hx5zIIxl--T*{kuJY4%mWoXu{vew3SO zb|5RL8-=`{jMqXds2$}x8&Q+&_e~V~bToh5=&fvWyylTos@y?122|!Pg{lvKV7AfK zWFK`5>EBb#@3DS2`^ZfsSIuZk1YvgO^;qa!o$wsTd-^w)goMw5YUZstQX zD%XxSZ_@ifas>-L^zvvGvCcy;k5&=A4c-4zu^uA5*-m9_^ZrOGg$`t%yaZM62Z3l% ze7O7Q1|NCP6KLxR2PRnSeu?H^AmF+NYp!{#3FNn=%b9?@@Y)u0%tr(U z;7$c6iUxf>k`7OS`gw1ZXw+(Q6zIkh== z)Ox-AzJ%XQ^JvTqt+_wIdIP^R_H_d=^)|2df6YiVc{VR)RS~Y<3?)@L$9OrF^4Q6# znCoA1EnkREWc(f1Gl*)|oVJv~1j!n|vI($4yM`iT>^A*RvaD`5vNk=2NrzqT&Z3NQ z+Hl5%+i-@2+i-@2+i-@2+i*sN+t7M&svT~_9cZ`>%|AFp>^7VsOA@X#3I5m4G{C%z zylW2R<|1SGTsAmK#zdoL;NgnF-3iHwcGr%KMxHu;X0zDV|b2l-V#4$M9?wc7tsZA<=3xkzS!4d@ri^gQFSqjb-U@V7*=i;hU+pQUB zSx+u!n{`1e+mEXY+ZpY+GNrfU%9P%YD^q$qu1x9es4``qO6xSK?YPq5+rOD5H0M!( zuR}Pd)^so$^mT6M+#D#h6&aJLH8gtGaI6baJ!xegybYIqDfOg{QKtnlQ%_hl_Z)`O z3YZ4xIl~)7^E?`=k=nw7m01sLC$@69=BSv<6^BJL+Iy6iw^Xj-iqu-tjlrGyW=wmL zrDAC?D%KAtBeu$ztC@RKP^nQK7oh7bR_F>k>B{V@;Y)5UXYEIWa;Go)q}t`#{f%?DT}Iuv%c%Qy8Fk+- zqxIXf*_qs){hslvw`cPr#_ic(1>SX~jJB~Glg6@lnUOOdr>3E-3b_%qPZb8SU%guf zmuQbz)ziQnekHU9qUoF0D65PG-IwK>^dXwQxFT<>KwZ2Kz_B_O_(L>WYOkjtB7ic~ zJ@HP?uxF$tEh6LR3%o-cpn|~H&lU|`u!1S?s8ww0Cn+g!fPmKo_zIpDfFIsq_%_aJ z`bx+AAGJc=sQt{%z6M2m+Ffk-GfB5yPT%)QwezJc^QA2Fr3~}4e==p4pY5cv9`}&> z*$qA9+=epb9+|Q#- zI9)3C=_a!|jyGG?VgGm2)5^DO0Wo zrp#DwY_hEq1Si?T9F?-2ZJ8n*mu!qmCCL~HZCtW3%zwuv8AG3Az7op`rI*>6kHo4t zlB@n9k_D697bIh`?ZO-{AzS^o1P&5txvkf7{@);E2dNz{5S5q@zvDVqTdgFNGX!P0 zBkMr;|5qgNv!MD{&8ITlnZtK<2e6TZ% z2bVvHogcF1nD8I67U7p$&kkMj!tmgE8jAdq#jDpS3-l8|%leh+CsfEa%MQQF#v?cl z_#T!_kU{GvIG zU-zqr*m#A&ax%VO;FSV>1sE{O;gvni5$WUcbogrp)JpgjfnnNJS|j6}5y^MhQ)MlrK)#b|Sbm?@EDPwLlcKRd9!B{J}Yh*XRfc?&Bc9 zt9p!$KdD+D3Ro!s8GRr*%(Yqj(P3QqIIAy`v)JXonv7m28M{t0cAaGGI?32|lA-HN z24|W#9ITa$#QPPwYf*q}HZ}Y)$v^l8)NqwBr$hx;2{{cPq>^-?EE;cq%6d+4FnS2} zq_OPMtQ%2#yeBwNM}>BI0rr)p+NDxmN=<4r%$pvTN@~$5Q^Q;?#XgE(&vmP5wV1tm zSz>deW@uLdf$OnCwDa2jJa#|2-p^G1Mb@{=Z@rb~9AB7EVukH(<`Y@G-1?h*z6yK% z4xy3GUol=TEt%>(MHi*=u2H<)`g@F*TQS65O+{$OX>Nj-1Oe z1`m3n5sU1URXvJtkkjy74X(&{_K~|*gZ24N4~n4Sb@|RLx&RHw$F0vH=kUGxo|jWr z0fT!`)Bz}Yv^X-Jo>beXU*MYWd_bML$`$jSd+CfSubA(=Na4-nJZr}n#LTV7u*g^j zF?#^N6?--L{3KjVvV3nouW<7vp_Wh)-qA%PyfjQyIgi7{yl^iyA$X!?CEb znDSJ^F@1F?M;x(_>FW`+aG^5#d-H5xD+$LvgDeVH8TSw~$iB+e34Yp7<*J0UoGPKp z8!&#L^Q&B$aNebnTb9^glW?9T`zlu?oPSZJ{Z8^{L%#DDolj*v-?x)WSmibO&Wp+V z*a!a=^~bv(S0tR?lz%FhCY(>Gj_%U)&v!1M{8G7cK0h~< zDd}I5aQ0E7R=EU^ev`h+dyDuvB9(U)Ilt5SRK}|X60|O+GVXqlCwr-y|3%JSlwOr< ziXxMyz>)nR>BFl9?j$GjhsdS#okz*upCa!qaAr~c(eNen9iPfW!|^JF&nUk%ykx%9 zAH%dD9IrC?kkY$9M$2Gmlc?~ED1i!U?lL2u9pdC(!~J!5{h#FYxFtQB%&WYi$jM5U zE1`~VL4(&6Imc7!s*F3#F)BTkR}?wssR=jEsVTXu*g1oImV(Mv#m>`o{R-;Ppv;35 zUi>fkcBic5&SGa9X(*_;qu6MQ6*JS0q{}sS!!0wW2`MS zVF1}wZVD>VkguR93hHjf8`{a8w$y|z$LqW)s})q>zSp%>77D7C74yTcYGYSfvGWuq zT|osv78SRG8u$zIWLml=4B!RQP*8azR&uDDQBb!OFI}Q4oS_N30ZT=cFa;IY6+1^z zrBhIKO))>erZ#rLEp4F7S5N_Pe)3sr7Mt6F+Be=@MC+w0m11K7-44_`Rsv<*57gl6 zi)e1HHEu}}-yPJ@@&dj)XvOL7APW5IVrM56X8;!ALl2Y%0a%C+OH!i`z*WVLML8dU zE3syqj~Q7cPQ!estZsqqy--jEU>+CF7LAGpSo*@Kjt==)6d^L_Jgee5VuD?_Wh7 z&pfuG>u`ai1p2+6W~~Xq6v_SY8Afjiid}=L)LwzQE8230 zJjZGy#8h`un<`Lmli_QlFR?mo*AGhUH%^AWM^f+xx6hBY+g$ zt{*WxN8o6>gdqaEYg7fEp6%t2Ia-CB4VJck!l+i36+VF_Um@lh=I}56l(hozses#6 zW8P=15rF2OGdNXGetunJVENB&Wm2gsGrnN(xPs1KG3Y0kz$Ucd;2WsB00zXh=XKiO=x?XS}X(a^yD#ij(C%|7T8V~E~kc|a9*c2RyIo_aj z-6gQSDtdnjc}$4k;(Lx)tSYeeja;TTRlTDo>8vZx|x+?BX z-o+XpOZIv<3(!Uu0KF;fSBb`0i6Y5#(`crGV||3l88;w}T?Lj23_yW`3q<48rr>A= zg`yE{3VzfJUn?5V>2)gDr?qDF&z!giq@X#8$k~m1IiO06*HNms2`tw$Dp;f-?Kh4# zyeT+AL08c@peYCm@Xr&Cw{^_DITL6CCkA*!P zXL$CFF!iIrn+3WG?)F$KMq14*^aePJ1O{M&f*jH4A;29k;2^oeFDctWG&sv#fzZ4o{@*4@nEU+6OUQvm&V6&}N<#k+dX3s~M16s!N;E*e7xu=Q)>Y-p8O zcl)L=SSI!51q2{a= zfIJ#m<7lI;YHD^9aCHj?8G8N8TQvrjx3M*oBA3tOeJNmsg4f%y#+lks6b#k#wrR&2 z`dEs8b$bRn&|uS+zq%9iqXoFJ&J4DuFgb7;a_|U&&j<{_-3o??Mv(wt!2_D4Uk_x% zSL>;-KbV2`$KKXM8Pupl2pz^?tzM^s#hQE99Kjm8)7C%qNCp^~o5Me}D}!kQ1h+bx zF$Qp~H$}h(0q#lNSYwVvOi)IQ6?mqaSCCW(U!wbOIJ6Evd=nymEikBq3W7T5_26hh z9qiGQf!4u+u;VKXs$92TtQCNxdNT;>;AzJ+0ppKl5Y)lTk82DpZ`JWkf;#x3fS?XO z(2q5OI;bG1gTI}?8bKW#KY&5gI(XGU<_Bul?-cNYj2iE|89CUT-W84GR)GO1P|!y- z@&xz_^j%zj>d9;)sDlrk%HRTZSkcoNjMcVwlz=`0dH6M+jJQGIb7IX^fIxG!z#sk^(Q3F;*7p+JAna+C@2?=&((i+I+yKe-Q7<~QW#X#4kK7A z0PRLH2hAqx z88ofC)f1Qpb+_k424Bk9VH_6yy|V;X2@Jsf3TBJORRa9i1-z-HRX&LgU#;MTOBe)o zcf~XY|BJmh0gtN4{)X?p-S>9)O;_lIge-mg(yWOPc0@o$1O^d7QBhGrQ2|jA1rd?} zNkl>1qoWL?sEpg-jt(+WQ8SL?;LbRx=!{NWMsdd-(b4bxPMvB(|9QUe{r>O!E${Q# zJfzR>SEuS$)vc<#oKvUAn)UNxA+l!u>~OZ$Fj1i5x6Rc=ZtNafkvDda zo3H8I*!{B*X6(lQS*tb7Z97?;CeqXLBf-W=mi0TlU7^o>nX2}h6g>nf`|&^rw|hL$ z!R;Ooba1=J0_}M7SfCBJj|JMR@3BA|W*-Z*S?{p`23@_O;E_PQ{1!{#r>B|VAKl{@ z@P84!P69s}Oz#8v1@~V$9h<;8TAhI$&H1UIXBSvp$YR66>7EJjx{-G`@+-S%1H4P5 zolHyg`#6){yaawhCO5hF&^s-IHn7*9L1cK~tvj0oZ8j!b3%@-wm|m9f+aiP4FV-)M z45rt-9M;LSn%*vQFgb%M>dG^67EJWGYsoYidq>C$x&MnBVy78+Z`A9Pcex>EE!IR% znNXA+HiLM^I=k{=^20#z{hW9}01ktbQd_PTY`Bn;PBU zppRw<+8o}fnXe^Z?Ds-!HN>x)w1)8pi5o(RhAI4&3$$WZh*)fyCT=&i&I)mHKC#dc z`-{f0Ld35U!k9DThhC@)B`Yj{Vq-7T#4vNMI$4Ocxf0zk#P0V*oYOg;?sDwe!L#&o ztmDPHkS}u+ulgoTyg7l6$Tla?5!vPhIwIRyGV#umiFcMvyt8EDoh1|RESY%o=HW7w&0u=*%n{elm-H5iux2n>)XAoh?MKe4?WvE*Fi@J)I@~z7Q`b~o>7(T4#Y4@SxL+2m*j6DfGb@;V zwbuAjCW_S0Sx#@B?Dx{&(RIniZ(z`8K&TV#HT`bIyx5-BamTi&b=9WDmSicabZL;9q{otW7)Q5(%b4VZ%uBRn>23?qCH|{=P`(!;MfF{>(@Gc2{o83zrQ=0>Sg+E zM}wZ%2GjaanHi>j-Fj>N{YJZ-Z>Y~TdnwmRr^aFP%$vC=H#@?%IX*w?wa*i30 z>x7u82b&e2xJnN{voOSe^&3t6MKoxo*uGj*37PW0`yCZ+|5lS9OVK&v4MPN?VO{}w zONB5i#j#XQ+>lS38jZeQ7iY{4oXx=}B z_)no`7TrQ^`&P&|h0GDp8KUSWUC!M?#0{}UsuX|wX02gXi}+h>HDO-P#18zH1R=M}S&N?}MD8){10l|n(&GC* zpvy6DGU?nO@}Q=sNr!z;MaQQKNkdY9Vz&v?WQYwym{_G;fF(Ux}74L*!`mT-SLF=^IS9pL0jI!*u)E&>que)4}15K3yJ8J(TcZ zDUWVAXSc`Xs5G}drpx%@7-~kpg`>v|;2#%{T>WE%esUaIsh=Dv9?N?;vj)>ebUfyY z!Rwbqk8F?WrgTbsOwW7#Zop;S zAi6B`lka|&;xK)Ve)2WAZLWUuHMn)IzFjwX?Oc6XH=}NgT*eJ<)mz@opxfTyb#2j; z%sdF+xQ2@xKCz)yYrJ7J zuKZITG5bkPylXTL`*R-A_bE+$Vl*oMvL|81GEZw}c}(lXh6*v$5YPTqYiyG1Y1|MU z%+>w%%~~U4h;N_KgxNbBFMCcCy^O}e&ue0k5T=68i<<8(gm3lTq6h}nBoI==5~T8|bf z{=`=Z(PD@Z+qA}J(|qp@O-z%U4a+IVq`#)(HCju$y{Qv#+ehcO*Q6i782uM+Pzo8={Z5$IT7VQ?XQ}xlhG#0WsGx1%%jWhqs8C}Awx5{4AIUQ z_|98;N_|_Rr&QPVl+pf|CSMjZM?7kXuA*_B5Z=tUb(YNuUCyuXr`6t&ZJM*J?0%&Rz04+*(R$Q*IAA>I&;^M!~H|3(-5m8n6W?=-POjucz7OB1W) zsuuf`5Od6B?h7G$MmpiX_i8^7GxWRi%V{C_ ztEUsUR&lX3c@lrbYX3vIe&zK;xqjvKL%DwCwX0mO_PZqF?yhpZ+V7Icyt^ba?=Fta ztDg!)F{`(%_Ksk)+8a!(J-_90jecYFORTmA z(`p}L^)#4P`yTBvt@btTF|GFe7R;0KXthtH_Y9`he(bN>VOs4Aus)e|TJ0ydPp8#> z2Aw-QD&^5?e`b43tNpp{F|GDLwa0q3w|B4h{1z>~d$oTRtGmIp+CPle8%(QxYkN$q z{a@Q-TJ8BQoWFauuf^5CU|Q{OrSX!(wA$a*9@A?7KzmH9J-@|E>|X7!M(-F*t9>J` zjRw+)qWtZ4klf%_NMiEwKqtw_6D`d<3lWOwKwC)to8=WYHx-St@dMLdS;l_ zzHS382B!&`TkQ?eZna+#*BNKYvYpyU8E+SIlv&&j(c2JDi-s$Ncc-t*F{}Lr57BCG z$TmG)t@tGcS}RAKk<>(PaX&`o5eFA)BDc5?>ySqbNNFOs+V5MGM+__0L~gY|wBw!x zg#p424*DDz=PxVv8zIUJk?f>3a;v=|a;yCTWm+S*+Al5FL~gbJONAzKt9?aU6Zxxs z=Zxm})3vd@^+H_lYvw7Or@slgK*$_1)ev8b#txRBM z?dBp~9L4N=)UtZm-7f2oudY9I!B^)ehFDh50Ivzy$QHeNTfNtF^CIA8Qly`TtM{s| z#S6N=xQ)lw@v7gpgXru#LK z$5nNpmzYLvdqdSCEKN1~zP6>YY9LkyftwnuDcqpRIi~7nYMn`Yuc7MiQ03#%p3Ul7 z#Os%;ZfhV&+Xn=0Y4C3Br#mGheLR}_wtQ4CLh(l=sY#OJ!~1Jpb7teMLQr%0<6SjS zYrHJPpQyChIw3a*nImo$BK~L5xKIfC@~$1Ei+V@6?Nn6!Qy~vDit&pFYqgoec+2+H z#2rFpAEtaa2)WYa^XA~S9eutN=6F(zJt^b@A>*$JVct1Yz0TfGXY4LI3n*jxk#wr9 z_^py;n&I^vs&y+x_b%w7b9eu-ypefIFYQg~l02oa_oj4fo>B!F(sv(8&Z;v^*Xb71 z#+^c#TE|xp*BZGljqSf@Gv@83T(5VY(yF~FotUTe=-!mh&r@pKi&FeOQ8LZ&x*w=3 zX@=ebG`C|13Yi;vhR6-QDWYLokMsDgaJ@|z4IZ&)kHl|3Xivg&CXS~$H_ASOChhQ% zI`QhH&QI$Mz4%b}6LtyNXd?FGHddOV9iu77CL0r+*O*it;ITB4c!??c8YOPB&tzhA zy;qdRos`MYTJJ?CV`+QN?n5QezGrp}c!tYE=p9;FG~giJjSi_kYs+ia1{ceR(WRgv zIF!+Tz9ISv7A%uICi_5Fz05@)K@AK)Qh3@k{+P5li0Kw@rj0AHSB3n^(`3BoXx%T% zO}BnMCXaY>?4ATox7YDDfj%!urq8M9_}4<-FQnxyI#jC-v^6!HdOX%FWQmYDBKJ$O zcZX#HMGUuDEMjl#;c=<{gTV$WFR{I1sA6-diBaB9{oa>E}zB^e;g`3 zo)OYq-|4r9gfSyKzCYf?(`P3CrItPOzv zp6@99%8=eA|Dn>?M0zmbUGg6Z-qxTuy&FsqF1+d8V0zGa3Afq?(}Mh;;4cK)4pp&6}(82X;9AGmnw3p_>9m7+_N;+gPxXP zL>)Bh^f1i9;0z|$j9Lo*W(r@ql;5yjD1|pIjZc&ld7hkQ&pBS7*@&#GgXp}*GD5y9 z>uPL}5RV$-a3O9mD{t{MUC!xJaQv#1G%;G1H1J;GbWPqTWHXLdC1kT%4Gqy~h*6?( zvJi1YOcVlz$2Og!3x5-cKCxGXpe2MqaYN8+Mf1_2&_1Mkw2Q?bVcFGxC0d&OXQN^w zfU$jYALln-^fz9AzTNFbI=!O5>6Rs`Teau?rdzo;G_>~6IsAV>Xa3%G_$MQlnR@tp zmV3wE^Xzf#XZNnd<-SR2z4c{yq^HB3eMXdSY_-MFRq=+}5W3^=Ya;)p<03jcVpDUP zBVCB6m3GRyf2FUj;(?WTeBrv_hJ@=9CF`?i)nM!krqFy8MW>1`23F@RU6gDLr9x-e zahBCoM5g*v^%%HhfIh)@(Q@WoMv3-s?PrhOo!*vP$Oc5QklkpXL*G$*jon1w?le-R z97vc& z1>!y`etmn~)EK|HJ#K4=^Uc(qTpE6?C4SzZcKLTKjq}ff-D%_Sw0I?6k!If_%}VSL zVwn)WAm-%rGsU^-A(%e-QGzxLPnMIc0WrohUSSZ}d z6dWjI7a z3AwwKe-OsBvX;~m&k31pciXbFFL@wTw2XYb%PFgU%55}rFP1~XTMHlhIbB+%O6*zsYvu=xW}vLn zFBTN+DOw1ev!JJDjq$HedBl?JmY=Xt0?3o0&XYGt#fo|Q#1He@Xon;#H{&y68;B5n3dvPm(J^tLe7wKEdQhh zI$xEose`Bw3zi7EkEkX7AcT1&PbALQ+05W7s1m|tp`8B5!kMyh7gLZ}sB;>{#7H4> zWv>zA@-{Q(J1iL;!(tW2LQfxD1K=Xgq{m4>x*A7Gqd`X5~hI$X^3%y6VV zh%}n_Qz||3QFr=s8adWZsQeIzY-W5A@OYGbE#r}B%oJo_#rR+}{vg!%n%(JL`V(Hw zcvO}eJ1Zbu$k?fT2g;Kf*eLuF9IS>hJ+e(mC%O~9hjApm3^jX_L5K7Y(7cO*lfDrt zPctY=zep`{HZv$re@AE9d5S?Qoj_Gv7$nl?qv+=u6r`tD5!lEeo?cNw;6Vmn`dXB> zo`IXL!f`e*h^2ettUkiPPv40=>loPSBdQ5J%b;Vr8{LvQk26r|22^JggJgOXU9+54 z28HPzGz^{l7(_E2xTQEH^oeF3N800nv?z>8mm%LpD@LuaG%0W@zc<7(0mub}Ikb0r_DawN|5O`P^CN=rY3lQoHP zymB_WZ!H6IcA8MR90$6M@xD0F8|Z^u7!O88hM}H!Fdjk&&g_q2@x0VK89a#2OgUFm zb#`5O)vWZHsAr1RBk46LJMKWaEmJqI2^SkyaDHT3FOl72MnXBkdt9I z6w(v&zF`9WbpYf};R~qcWXOHP6*%yzknQj>bW06nH#`e%o&dQlY)0Nrke#prd=un? z@F$cr3-aJ_KI#xcE)Ppk*GZ7mVI^i%HROtLEOZt^t_&wa=S;})@Bwt;6v##41`PK3 zkc03ItTrb=&V&gJ&hC&qhu>oy41pYmyHKAMkW=B6IMx`**>D%y-WPKJ%+Zi%K>qpX zpAQOe#UUyI`-RtZBe_51F5z)F#Bj)6!xHf0A$Je&MX}2u_XxLxKNoVh@Xx4r067u9 zixF1>xkLCpbb3K94y$oGW<%~7-h)+P1mvo4B#zYp*$Xeh=sO8=b$AYR214!_UXGbn z3wdbxZ#45*$OFQ^;*^brJUr}+x?Kc$ziL;8{E z!4-^$W7coNglJ;CAJ(ZGP?7G8)6idqo*Kfq57KRpv)ne2) zFun*UGI)Te0Tau3Dcp)vKc9&NO1KGlZVqQ&;OjD~8bi(dqhad-6M%Q4K5GH#j7|v~ zarj+;jh&~U5uZW+IT9{F3%>^Vsq;D%@vTnitWcjH8FUV(L+eX`#?Zn1+rbIp9guf2 zpLqngLK`6`>4=q+(6R4ub*ZE0RQ?-v%b7-EMrj%SWV1D=I0eah3rF;k)r@X+)+)XQTqta1$I#9+=v&e0QsBub4k zZp=Iha0hZlam0<7uUSqDFcv#ef-{D3Z`>EW0`-xMtC0RF@F>RnPz^IHq2Gey6i&?z zSU_KtI@SdHqb5FUFU_vPNvFw8x+gf2i$Bym;E-v)~KB`{^ziM8(c30#^DvjJOgmzzV;} zB84lR`8{&n2023Q2~S0zb74+qC(ib(d=T8fcS8Ta&qdhj4#@TqgGjm(joHq?Ne{ze z-_u7*uf%D3S=63HUu_Y!B^ZJ)GO#OeM4tW(=w;!A%KxB(mola}ZnP-k0GBg95GSP^ zC0)sQ1g8I1RBa_=ilj85%a5qtPpJ8_riQQ*gX$V?V&+9ZKeaiEvb*XJ^>0DceWI|G`~d}C4>_9g(IuZi z_EFk$EJ{xS(kC0<4Y&r-&U}Ot-sfC6&|x_4O@L13V5t2Qa-4c6Q%gya-vi=Ol)0MD zQiKo9x1TN4*2pnP^}}~*s7H7Ww8MFH@*=!y#=}2Tfsrqu6Aj;`Gali!F&h4!7OKcM ze4una)h80+ZnD!esTmPHb)ED*01l^E;R)2($XCeXgtyR=5;+QTEWDYzF)|r)B0UgA zC3J@LVW_U2i+0$bPHf~zXnEl~$T3luGz?8V9kSI$(Kv}zKyK`M2u=G)=Nm|-lf$3Z zE;TqR-|RJXxdDyQy5V);`99eW$IvW~9E~#K;cMuWj%!hN_!y15$RzM?xDCzf3fT(J zMn`mmYobIi(M2{_Z#^>_kH#a+uC@3_6u>q#|9{pw1U_J#Xm!yA?NF@c z)GToqFt_G>Yvlp&?bp!tNE*12W$n42!gp}&+4|ULqYX`*UfyTS#_uM}(K5{l$1{v%^b}{|w}J!u6=r z;Eg1!@EE$@Mg~1fax%OXeN@v*vK#IL{oa2eIT{{>_6~WLWV)F~U+?=8$%Wy^IA-6i zB*(%xXep2Md7Wf0oJlK0WZ+vQ7lh3i1q0qC*$+QNyZUb@IT2RixcxpQIo@pn{Z5I4 z_j}Q+S1k+nDJ16+m-32IL+gGsS^OvMp;J9E(T$lA3!18z2}dLYFd!K7F{I^zg6 z&T};IDT7q$6ExufTrxY%;wG2`tH)v#)5rOm5~(Mo$(VpWzohf%q!#Kfl7y3YP7DPLfYotMtyD zR7%xC^iG-SPD!z<^ zBNdg1v`K$`3H4vmpU6{}@^~@{R`nIA`^zVCf3-sf>f)2}d~ri*;E> z&8K1tMhdxGtxcFAl5YUiJ`s|-SW4@(M3-jNra-N$kU6!2^Mtuc@)Z;<)%j+cl8Vox z{_cgI>V;EO7_2NO%acu1f$r@2_5`ZQ>uxu)VmyIYKfLO8XA{R0e__0mR%Ld36YZwOUMU-Q zx1c33ymVsY?@MebrnB5>2K|uSiyE~xz_Rj!9yk*^kp)=fah=FNMC37@*f#vK9wyBV zrGG(N1hy_MJ&fV&n9EnUE$)pDg2!*C`Lii%xzu7^V=3FDr53G=OHV^Cfon~!mPX%c z&}VEv-8KWE~2k@F4DET(AR19n)B(35w$C97&xPLxsACOwac{k1UoB~81IQX&z+@< z!i1uT{dHcPO_{yzZ+Xl&H^$kP+1LICS2>zu@SW(B^POOGWiN)<&mU)drAZza=gHjL zuB<}d)`l2O_1^XfM$HY0aJjDfmV~Z)!EGxvFtVX~JxR+G9da$f-@cOqXVs)OVpaU&zCaTEUaTGzsI6x?Jb`n-FO_ z1qG{xoMZAOI$ojGeh?;ch7hZSC|E8;ccbxu5a!?oj|wrul!|Ys2hL(>ucEJ+SLuU1 zM`sitd(GeI)J5%6WFSn}1A$lJX?*6$ue9Ft=-f=RPo;B1zXnn7xqRxT+2=E{lLiVe z#3sWI8YsLHpUw7ptcfvRiq8>0nr6bZ7S9#9qaj8M@L6Wu#ApRJU|jqxRDO;Ww7sE* zhor_aUY^etXPdPRvI5gj8S+3jM{CjvWSH09H>R+iOZ~T{JIum^yPASeg{;SwBWUjP=i-md36o1k+ zI^R`7Tuk{A=LuOWWR5sph=NN*;{YM(%l}k3v$WlZD*Q)Cx`WoAg5!Rzk2up1oAL;& zkMW|z5`k5q?|=28>qid(;%f&j_$2H_YY!bfJ?%v&iR(3+B)9;gyTh6Gd)=Ti) zg>ikUJ>*Wk$V>2J4fiLd6<&#abGZ-_z}rJx9asb;)Z^ zBzU@pE9;X3rx27@?5s=9971prkI}2&t5dTOd26v&-d2~Kcod~B(Qpe=DI%7nZmvrn zdg$)dR!T+0ElF*uOMXvN!sK0Fmt0;*@B&>_Q+;w0Y9-3+8x`IEoT4jnPn|l0E@VqJ zT34qCoGMAC&D)nsFSHq9+tOqfeS6jr?l5vkO|nPn1vNB?=qaN%`B${N2^;F^rl~gh zHfF|R4cFF6ahpwXtwv~Bnrz`=a2%JrK6fJ48I83|)m-{{rkS;@usWyEY!p_K0__%@ zc@--((dAVfzwuuG@^lHd3It5i=iSg)KRS%|@Y>6c*wbTUnze zr?K8>tb+y)@-b_y&1tMQ8qG_R9qBQ}p5@Tn3*HoCMw-#sxj30-jSAMFFl?f+eX$5_ zi<4i_3TV&j&l(hUO%k>kjm?Xb`*9hEutsZ6qs3^fU!1I?G<()btg$YqvDRp;UYuOU z8t1bHy;YQ>tTY-;i<7_IkIFdza@N>cZ!~t)n<^Wjtv-1G4;+|#dC!=sveDRVgx31x zojev``K3!*uGF<=T&^}kvk}&t%%HV59SO_CY_3lhw3~@*YLoY3 z7R%IYu2uDP0TJER^@absWgHf9>r4J?SzA4Nox4-WtwQFAKMRrSe5=m(8zJbc@NdFB zAzbGe74?IV%|hmgxk98WZ_`E58)Wk-9Cf?q4i#oB6_uJTB)uEapTdcEXthdO5%AfN zpd&63@_m}G_@u`FUTfKoCJM{$*2J?KTN_c)5kjsMGBsI zpRgawJ8W4#(I=l6olhK}Pn?raEYBxy$R{4iC;pmGyqQmYl}{u#=C!4BKCy2;ahMQg z=483r^SmfgPOd(55iZ`B1pAnt^cNR*tLU+~W#MvMd~gXROs=87fL2G`GAyV6C44hy z6&*s$#!XOsgL2qMKTm%FY0C{XHyTZ+6ZFaUUUUW(RY7;1WwU4_*-=OOf@aj8OYkUK zZ;-F}=M5?4!2QUxrsi0P$l+2U1DJ`$Ylwp}(gPw93tM8kz!yioB<} z!Qq}d$n}4wgJUk=iw^CrDuR>#HcBhwR|7|0BK=mzZ%>aLQL1ZPM$ZaIE~8?&Pb=v> z*hhNw7qD#R0_uq)|3D%RWEH`?A2&+H6KQF*C+$an(UP)Sx-FY@H1z=|wo%dcq-W_b zm$?b&Y0@3^cQmrTi!Pb;0{uOKpqve)=<_CLPoE@cw4*DmN+SJA#LV;4OM@ znx8;ecGuxzrf1>G?mmb#njKRzaAkM< zavEIOGjL^hn;FBEJu@C9U(0wT8Ut5$cNJr}vS;AR?q0Jy9j@%|YR03o)L6K(yM>IM z3|!gW$qeAio`Ea7Tf-Qx>|vri;d>ZILb$TKPcrBb!j;{VFFccVUP&n%I-eTpdg%HMPMU?cnDW^_dy0;2v>G@Jp(s{E4#aaK`iWv zv-$`FKZGm0yN-b!9#Ku;Sq2?LxU##CGf*L1+1*VHk|A8#-Bt#L;f`Je?qd+m!j;{9 z5~qYd(JWlq-Nymx;yfmVE4%v^tJ+z(vb&o^bxa1X>~1Beg*ZEKWp~FhhAVppuI%o3 z#x-;{GH{A;$1<)a{Q$1)?v;F~%t)N+n>g)PlorC3-JQfZo|%pATgw2h?3v{_&~1$2 z%ASEMyL$`c!Kesa+1)!B51|8R;mYnlFZE7#hAX>EzaT{C0j}&JT-n_et4Bh(vb%8y z%5@=J*a;A-JJlwENDjFPLQ1duIz3TAXIPJvt$z?I#d4><_n%I=;3ITOH@-R%y! za{yO%cL?M#fGfMZ0&*&VE4w=eayEb~yW1CX|14bD-5HSK${xU#-Q`ueUjSEjw?C4) z1aM_{hePffz?Iz{54n2)S9W(9AGKY%N{+ZA$Q09ST*Fyu%8S9W&+WEH@b-OWPo9l({{t%qC_ zz?I!S9CDv5T-n_%km*wrz?I$Qi(Vu<8bz&?q{&&hvb&c8+T_X}z?I#7no~10PpM;h zKERc|GhEr-1&rC1J%lT}n`FYy!j;`^m2$^r;mYoA78uXokH%~Rge!XhS9bSuPR+uV z-Q5bAYA`hmS9bSh$rxnd%I;3*W5AU?16Ou;8DqGzXW+{2Uc?x#>>0SSyDJzE$E=5U zk=w)=uI!l`P?7G8*?$nO?Cuc8aAnWfNFTwNx-OZ)yA5|JW4N+s;L7d}XAD>N3|?rs z2QVH$#|z=g?jFTBnuRO7`v%$qSN05C*aAkKN zK~oCR5pZR9*KitK*~76IVuv%1XW`23J_}v?l!tI-ccTvQ&~P2<$JCG}iBf^#4&2k!C*)woucgHY>D|-g6?Cwa$aAnWHmE9f1cps`^ z7Ow1W3yM=zTo$hE?u$~#n$G*9CO&H~?Fv_R*Wx;!;BU4!GyZaL>PH{4D zWp}4Cf-8GxxU#$TjM-F=^nu)_|>_7Q_f z2v>G@I|C<#E4%xiK2o?6r|D%;gDbncMbzNR?!L&t&cK!3?a!cymXgeWP{B(X!<9V) zS9bSu#&BiNz?I#-lJN*kf4H){D;dL;z1xqd-A|}Fxv~dvWp}UPCT8Kv?!E;XuIw4O zvb(2pM!2$PW+3Af#&BiNz?I#d#W;=w!Ij-TmvIF!T-n`|7{ir4ge$vS%s7&PE4zCF z1Guth;mYp5r~A{Im4z$2`w?KA47ORgvb);>J%RyT+1*vF9Ke;`y%w?^z?I!y4LK6P zmEFA_ax@E9cJ~v=K1zctyZaO%eX;>u+1)jOb{4Me?)#hz2ZAfRdlR6OJs4{LgbY{q zEL_>W-vi=Ol!Yt1$A{+I&qqg479Xir@FV07kfXso$nvyY067WX3I1~+{pF|ANKkbU z$%Wt}!AQuRbUAR3_l|+=2XK$~cwM!Fd0CQqC5{JhkN3WSPBegfyvOTpG=O`&_YL@X z2={m|!d-8NaF6%&a^Qq;kM|r-u>v>`dtV`o6Tm&*I|_0vfP1_*8FC_ocdnPv8A7&kM~Z8Y;}WsyvL8>joslM?{)TR2+;}WPir^0$9sGO z+0YH{@uC~RJ>HvuGVB2E@!rvp;{n{`y^b9)rvtdhdy~Ms0o>!gu6)b@?(tqX&f6XC z@!rA`(oe}T!g!*m|F$9sHp7U>T6c<*Aar*V((erlGu3z#$R@!jDb?=5T3 z{S?4G-kYtD4flAjiPMdHd;s@&?+BzvyTd)+yM)t?dwh4e$9pT8Gw$&L+~d9CEakKV zxW{{EAioo=N1X=uAVvjnkM{=kA~_krJ>IM7N3t8hJ>Kg*nEplsxW{`#hLKD+=;-Tx z;Z#rwg@{i2&~LUcad% z$Ai@v;5~JJ&cL9q*7Zz4?xp4akgFiu!C>g`1341hdIBAt7jY-}@i>xsVnu?n$CJ#j ziLBsh$UK?cV8Mwb^CXJ~mmx1ttXQ|}rjX1_`;u;Vqns4VZ|L?hba;X`cB?|(Qt)-% z?uC8{bG+6+19?x-9yZVdK^+z)aj z7=*liAltzf==X;l4Ys2EzL1?@DEJ!4Roh?=0P;S;G@SSSA$Lh^ETf}1cTsi7>e%4< z^lDcSxf{SELeRPf@rZC}a+2;^!t4>@+{$=$gWiAP=I_7wiUvLJzi`!$G>`K4U%2`E zFS^k}!22)U!X&L}zj=k zy#K=O=}cgD&;1u}{{D;kCreN~Q4r3%AU4=N|hn zyuAGvFXO1#f8jkcN7vo-4e!73^7dcYv^?|v3vc7CG;Z?uUwC=@FZx5hGE1dDs?{yi zlf3`J%iDi(GSspE!g~_Nhy48)Uf%u-JgxBl3vZKFZ_1U9{TE)|{)@+;j{O(jpS5~x zuBq66;pOeW_yp?Mf8jm#Jxw**I+5$hD{$e?+kXKUJl=odJ$4uO%%1x%yuAGv5)C@AfbVL~xb~8DT))KqZT&f>_L^^pREg^Op5+hfyY)q~O>~uS)wl)-g zFP0FxHt`2;czk`Z3itWrIHpX}Be|pw*GW>dc~|(qQ1S zdJ;#kP_zQQyD^0hF$zZ#cY;wkZMVX4MqydRvhWMCe28mFkZQqyh!61waqk+1PoTin zy2_-}8zkC=VrV!G>6#JMFGu4QEz^e(H7Q5KKZxnsM9s_5a0+7j5~8lj(eMOf`fj2& z76Fb!kht2r7zKTLm4)Xp3YM<1q(Tza2N|8;ZV-NW=Cq7KN>aOq+C7@|(f(eUG8 zdJ$1gIU4V^nEowMw}9581Mjn#f0VeV=s$P%3%eEIgu@E&6Zg4M*a-#hY+MC7y~d;X zF7)5(cq{$E#g6TkJ{<@IE*+ZSzqVGx1wwGCJ)QvmYeMKsyCXPU1DJ_ejIlZ!jY<7% zV^zjv!~D;;7!M7>3`OkCk%+z7AF((4?~(0)D2vtBM3c?hzX#o*N_ff7&!m2)$LuR) zRrn31;q&)LY01)#tqF7hJGLrFB$C%Ei`uc3MR9CpSsYtg7ROeWwPP!b;@HZvIJUB! zr6q_1bQ#Ci59iaOn0T9(MpHvP+~8xcd4q1rV|MTnf2BKSfzn<0tMUT=s(6sU%AcdJ zxLx`W{witXua5ubui}sRtLSt7QeV?o0wz+5_Vqo5uLZW@;(qST{XkWmivea0K_66)DU?QbxUjQ(XCM4PyFifOAOr#X;3pnCSv@d`T zzC`;1aD13ZDcTo6kuTA{0E&Hy_63mgVIrkyUjPYTqJ04r_%M-Dv@d|TFVVgLJYS-H z0k}R)q!jH7Am+nFO3}Umd|#q{0oXoFq!jH7prbF*z5tXj(Y^qZzC`;1DD-#GJa+Em zJkg|%_JsucM3Xw&7a(1X#`qHLi*Zs%`x4bL35oUv3=?TWqJ06wM4Et!l%jnB*U;HW zz(h*XzJOsORXW-ipq&^=e<|7*08FI5MEe4cCtxC_XkP#@ktSdwrD$KkFp(xC+7~cP zqzRZvDcTqC5IS%YCQ|2lK>8#LB-$5VM8QPr!$eBazK|aACE6E2oiEY80O|`Q+7|$s zNPUU+1-LjN(Y^p+B27rNFJPER3nbbXFq=pdFp*NUFA#V~rF66}z!C)$sj~!fse*~r znF=|nbhIzX`>F)}bq;{sN$F@`kozhf?F+K4aQ$^^AiD}CQfC6>G6fT<(+RSpbhIzX z1xiQzf;?F1XkU=am5%lWIjwZGFUS>2NBe?YsdTh2$Z@5keL*f#Fp)a*AqPrF`+}TN zI@%ZH&Pqr7f*dLx?F({B>1bb&vr0$%g4{o;qkTb!iB!Qv>Qn;uQ##rg($T&k4_7+c7v%kvj`jt4n9|X{AP-b9 zkvbzG#}rJY&M3(HC>`w!@*t(7eL?P}U?O$qLXIk!NS!&5eWjy)K`vAm}M3 zFifP08&Hw%Tpr#_CnVYz(qSS^*hnA2=@w1!ghcy7I!vSqiS`8y6KMjsloag?7$#C* zqJ05JlRDZLWSB@3Fp*NUFJSs~PwHr2fG#f5Fp)ZKfH09JB-$5n%A%5CBBf|wz#sV% z?F-=JghcxSfQd8#6DdXe0)~k+0TU@j`vQiEv_PVL0bc|YX@Nxh0>LKI1WcsPe9i$A zY2qf}xjCHF(Z2WqsJV{z1(*QT(Y^rbj80KH+81DBp^o+i`R9m&iPZTT;HN?z?Mo*V z>S$jKIx8LR3!qWyXkVP5bhIz#lQ5Aw8zCp@hzW`I1x%kg37ANoHm*M5nj}o5&Mio$ z2eB#1XCQ0CE<{I2v@c+oNPU<{DcTosJgK97L8ec+4-+Xx`vM;7!$eBaz5s?LU?QbxUjQ(X z7D%)&;Krnm_60eLBTBR{V366736^O{58! zNGaME2$)C}Or%aTAYG1e9(eJz6-=Z~0eIilCl879(%MEe4Ui8KKdDMkANhKV#G(Y}CTB2BS$kpG^=MNpGQ}J1Q-X@(Y^pZf=WmGVr2yrsdFu4Tj^+D zkRu8vQs;We(IoCnolhY9C=D;7ou>fllT|v}7oeTg(Y`nr4y2=f0Xj*TNS%K|hKV!@ z6KUl4fVdPTVIqyJ2ISjM9qkLyS1@NrzJzS6dGt5Jt7crmoEiB7d{pUZUs{GaGx81O zxG&MZII|CPCPn)KaD13EDcTo+rC`pCe8mY$NBe>tQ##rg>1bc=xu2Ad_N9-lqkVC@F=r|r?F;GABA7EHmvFi< zXBO#bU(6YErqa>AdQlr}1#@QP4CHqd%$bqF{fJjeNBbH~a#F#Z8L1gYva4XujPxEs za#ZPPU!zH;n`!j*zT-$PR65$%M3Q4lNBcU8WKY4I85wvS$puPB`$D)YU+HLHr;wab zFlR>k%_2Eo%-eGlryN1Yx_b2@uXxT`RO7^Q#?6bojn7;pMCwh1 z**e89lIX?lLazjk`7hDIT8imuOh*TMfl6v;ohsRDbg=Ev*U`b=Wc{3Vs${Rx!76AU zUMGnTb}Ln_opq{YuhGHABZEW-(;0Hssgk`$2V0B`uuf5QFv(!d5+!?$4t6(XDAm!y zzUC(6tWzb6QB1yd>I>-W=wQ)F+(lxL>m<>^GR)?zQzd(i4z?fd-i?FZW64ry+sFG26Y`BOsnUtQ)PRL4)y@lb#$-@o%MFssWMon@}q-ce@^LNun^>1 zr^@yg9jpWG>nYXI!Srd$S*OZJ52jgs5ULotdflS(0|7^BxPDQ^T{K4`S8s0+q0I=} z8p`MFN18(pqSHvfx7gr`#%80@YJ`@Ca^4C*a5}4!8Cz7>8I83@Slv*5FOEO(0#>D6 z^P;-4q5L`=ZrClH(3DHqxwO0%3Bw=a1ll|=Ikqnqq0I=}mX`BA`~I6*m9~wG#%80@ zYJ`@hRoV$Is_Tr#+NI@J;Q2+B9SxPVwW>GzJ#zJJ ziz;c4dyNL0jBc|jcBK)TmX`A#_W@nFeERt~DR##a5w;tlZAtmZgQzM4MzQL)oaz>% zvDpZ%OUl2atylJt(^!@Ej!R+djmA17tX)!m3mUlJMY@4G)n=oya!DmN!}qzJ6`FDi zI~SX(F0RC8_&%FhVf$ipur{NxjTC5~dY`|u!j_!EW~0zb3bYx%&qu7#l2cf36xNXf zHpBO^kHTqKo6}frG@7A-gOsxd1w@nDH5rYa_2s-7zHdL)*immZw%3blTYdR81E??h zjb#n`J!47OVl+0_m-BY{zSCHPeq2;ET8zf}`tl82#sbz@m(y5lG*;J_e?hB@-S;xq zXwGS@G#X9y<k-A26C#H|JDajYf+R*4LKL#sV^62CJ^isjkjVH6yGv z!djDgwGowasX3Gs2cdAh0$}?y?=V@8wrFXqJj#d)OI)?v}^_A|>g5sAnd7zM) zN+J3QL60Lx2=!~B29Wn*aG8+DnT)>{;?Uh07ynHcK3S+Uk?~3)4>lQB2{CAQ#+QVe zCe*FS_;G&5Z-k(}kx#njWqm}G@t?>zPRQI5j}oF?#!G~v*J}KU(3^)$vye2o^e4SR zm=#e?oKI@On?gn<`eJb6T9+>)Ejwi>6uR) zAVirADcW(!Klm16cl|E9pXjUhr2eh)dtMjvDv*EisE5v5`{)D??vwZqUUl8`n zr+-T?T_;nT)y;S&;GP9ccXC0t4;UV<)@@h)!{07y}uEbt` zK&yw1Tz8Vl^>TWmcJyW~#OC)WiSEjq-zzSWW?3P&u)~hunYXZ)n=R~C)!npeSH<_G zKdb2aRD~VpRoG!(bspU*SEB*dxVaV=r)nICiE7k9OWlyJU7R$*O8>n--e)IMOB-K1 zmtqRa$@*P{j!7ST&Bce)Gqt_!>nuH%+ZQwwqOTk2OT9IMu9<1P18@~~xJNUPV+uRm zqventb^aVmT?E-u*zNA|t4Uj7x4YL->tMILSEO~Y+ubXH98uWq?)A_-cDs8$A=?VO z-Mvur*zN9h);xB*d;EgbR@m+C`C4ZU_}*H^Zg;On>tnaO*9Wqrwwy>c@1W(`GfC$9 zMAge@phY_GSn8ix3UWlaztTOWXf(GRe{>BhDe2--*RiKSRG1^<12K zY$3@!2I^DiEhd@I-ICNW@O)ktrrw-JGLMbg)C*^m%;$Y+>ge-G=JU8H)i9rA?zg(s zM<28jrz(R3|^@* z^(4!9z7u1f`zNY?L^(2^=TbdgIj6JgNS1T@+vy~?=wrQ2ltW|B?GHJj zegkTnag%CN3qJEz2=A5%pOC-c=`@LVquW?5Ghq*UKSC)fdpY2y#RnJd1jR`@~ms zF*a6#w^S?ooYx0WHIa_{JMgxOqyMWpZ>lGaTemmlrK#s3_kvuP8jEwyYgc0`h5GY2 zT%1}zon#(|_3C=`$yn&8Qs?3vb>qCM6y^K|vYmR1=9=3ba)UYob(ja)Q4d3B7UYP! z2IuiK$dl z{SUGP>N!l4A0emJrx<>pLQeVvAeVE7{roNfhcKAsPeR9NzqdpD2xebrP8s1B;)vQa zptnB&2bs(%=lMNwlnjFd)ZIw=3Wq87_r)329zXqj4?{k}T3yw_7$;vqE9Lh=Ki6== zVg6z0=rRUF{Hri3r!iRKKY*^&2CpOhKcMfl&7+%tJ5E|Ds}1(QKxrp2Sn7X_JV!D( zS5>3vFLBHwzZJ(nh7%U}7Eab621of@G4r+A@O=N}S^`r!WwGA@=lTc+bJc?=;2jiZ z`xdfv~TsDwGj3E8Tmv1D0KQ^oN%W97J5UQZTIo7LqDI)DGmM@ ztT#g#9OEZ2+4o~`tbY@_V_yc7{aa9HZGk>oU5h+yiYrjdvHtvkLslveBVZTg3jZYx z&EcH;c)t~s>Hr2O`iJ5m`!hJfKO1V=9)7le9R}@4PC411h9-|@K{}bex z!eEh~z)?2P%^di-l7 zbo9$G|0+3Qn7zZH43x5~c$4s^_MoU%}j!6AEU@Vnz!XSSHx_lyoIer$cEM(Bf zzYbN?4lI}XC*d-)52uXtf5KSk!(f8{0rGTXFiI^#mw$)Dbn^d$Nngwf1N@aps9-Qu zjYT!zhL+_Inoe?WP8jc>fj&Ex!3BO9s+?vp++T>U9m?Q1zYmVzoxx~-D~9Z$3}&kt zI40Z3Gkz7?-+>eQs%bdPb{sOMe2nW4A;zIqPT z`V6x27h$|;|18>Yi7|dU=U$<{!$|%dT7~`!jF4HJu-tzbZ9k2{GXIR}1ZFb0$iEp) zoWbBi|4+ytGB{8rF-Ufzurf6h4f!5&x&HSy7doUPNFaneEX9kT5v819E z$P)3F)KY?S04#qvmX2Zp3sFm#f#bi9UWrIbh*@38!1ljIw`jMNh<`H%Pe)0)4^@sa zi2BVaK)bTo{_7~Zf>RuS4LZ4u0mZ4uNUCHI@jGFWPD=qhP(V2Y`~P3=-S-|&efNud zHxI5~+`IobbMJnT2JbKK-F@lG*Mv3j7x(U-)D`?B|BHLKvj9Wl7x!)&5zBaW|HZwV zyWto2?#5r-yLa$V_{F`O@5ujOb?^Qo?zew&@4f~Xr(fK={};ME6SEBMe zb=03NM-g=xJ<2E9LgA?6=p{&!-;i6XXd21$Q3qQspjSmnu@+6CR|m->!AI1?^n9N@ zLhCFcW3&8uaz@>Ue(ML> zSI3~QctNz(!{{qsXga9lpwkyRrF+>HvI*Di{~Oyv{zUpI%F^!h|IM}#e-JG?Za2Qu zvHY*7v)mpG9RFOH0lG7=|0i~jJWWmAbN7fxr$5F+%~PG}w8i+8CsdLS7~`RnQbWP> z(21z!(B~l=R|#4RV?11lFg2qf01l<)VxP>p?VYTWs7}LLuBI>?UthL#ey z9&$t>=wOul-%(K?kGU=e9!7!6^50L>)^@Px1tmV<`k6EaYX; zQ3ya-$WuL{5P-0dmn};n0AV5Dzqkqk2n+eT7gY#ASg24=EOp%!l6eVRl0pE&LS9}Q zQV2j;$V)(D3IPZUd8w*P-3xtQcI#80LgwXWX$k=d3wg<|O(6hbAuqLy6#@_zUWj8w z6#@_zE`uCV2tZia2$@!Qlz#zaM;$VSWPVj=D+C}cdu|2?%Q`Jb7v-#nMpEvzi09$ga9D~h&%%X z3{OJ{A;Itv0)$s421H;{2_ga_BDyS#$fAqL24q=8mzRi&z_R=l5m-P(Ktu!={^xs6 zSKsPR&_vw-x}Q&OGWVWSb-KE`>eQp_RDDk;=*0*RngKvqW!>&i06#) z!sHRivmTZb01#GLKUFdd;oKgB1OSB9Q#j280EE?3L8}A+gw@rc!vp|?)fJ$10szA5 zu_6Ni!Ya>wf@INRqL+*O&1aHsJO+AQGML(9!%soaP4hK>ed`FKxnG+YR)0iecN2GbZ-mMHG@v%|gdnJH1kJtZ3p!bVq<9n!tDmFh+Qi-H zi@Nzr3OY;xC|TnEfKF(F z=6)hb04Q1FdF{9afRZJi%MNQ%)E|faH&T-1@$Q^*%U7uG98YIpS_Yg^=kGh`eU9br zwPGIzrY1sb1biAFS=lBj^)jx3%2H1-UX2Vz{m0)Mk*ip zSl)Yh*sVC0*Sj~}b<26dn~ULppl=sky@?Vu%HtsYcGE1KuVTi5j*%G?Wev% zaeBkW{T-S*_3+}Mi@@H!w&P)%`-GR^N=*Q=9efJ+)4j}IvbK|ETj9kAv+UF7beaEL zKoPX@qPoBRlw9?L^s2#Q{+|RSF5rM-!0CkmdOxvLN-%s6 zCxqLN??4Q)Je1*YKmHE`g-!QlBSto3WB2x0Y|;L}d$YX+IMKge%Cesw$D$b?lg>)_ zms9vk!n7oBs|0MB?s>1vkbmq{<_5?R7G^4gQ_yKT1bLat5bh;83MTN&9%um$KJ(W3 zh^|2ZjuA@$e}^K5!@?;)D(oT#e-e-ePYinyhV#H2q66k}QrAf=l$_%zCu1f~YA5V3 z`s+mvaK~&t!p^bgGs9SYR*_avz+p=Mx2k%Bf`)0v7*2uxfQqW0RFwQb^@P!m~X%>tF zj2!$m3c585#;HXP{s9F&mIdReA_wEN$6Hx2&L?v4fKGZnqd&+ak;iMV-}WMUM?YN850+jTe@}wi!}9yxheES8cWAu zHj6wl^&lFHw_=LB6!Kd!#r-VFZ`Bm{URQ{3O-f~}e2jyjkgVJna)J_`8{JjMM6 zQu)AB+-E42t(oEu_%Pjd%cr<=A-?5P+!G<**+c5KMaUD^Kzz%mxIcjSmQQi9TC){X z+zE?Ge9Nb}heCYIr??kFe6v$r|1CB5_UgaY`ft1bTd@CjyvLgQTeJT*?Y(9DZ{NAs z^4$A+?nT~z!}nkPbBhB0YJtCskXv5JFFfRyB>cq+e-*=D-SAgEa;qW!Dv7^(;;*Xs zt1bR2jK4aQTeUf|zMA8&^7yMi{;H6_T6Dp2bZxqd&s*Kgt@`<^f&MC?zk2AeD(*q*?^YZARY-qz z(qFaoRx|xo&fMy!zbg85q@S*q`m3n^>Z-r$`Z>tUYOKFXn_Ip0S9Sf>UVjzXUmf;W zjs4YRf0fx^efC$S{nhHiX!O*5h>lYntOZ1u(^dOjiEhlT=KHJsf~U0;$y8IEt?h|!O7XX*6J1KJ z2z^91LWx{;nT?H;}(e$lpEW?<(?l8~MAC{M||Zt|fmrlfTQ! z-~Ht8it=|$`Maq6-BtdsD}OhZze~&Cz2)!f@^^dryTJV2Vg9Z$e>a)G%go<>=I=`L zcdPlk*!r@2+^CUJTkM7 z*<8SL&OtpFP@rE!N<6d9Z!LD1(gS$l_Q0ldAk?pprK>OD+!TSUH$}ECKwsy9u?wKt zmv>OYfkMiMsvOpK0f)PQ(p?1c-UQ^keJ~|Fp9_#dzzZPZ1q|^VzIYLQJcmr4!z?f2 znfqAhMIiJ7PI?YQJ%_Gd0ABYo*>h;^c_8-!$a@|DJ`WC`1CGyO%IDGMb2#)qLVW?f zzJP6CguX9A;}?!r_@MeZuze4NKZnkr!|l%j`sa}TJr@84?*K*L0eQ~?MaKh0#{`>r zF4)AkLDBiaCe9HG&J%K;6>>foiVhhH{u&D295!+GkoN_V^Ak~YBC&~+iJ}vVqLYfE z6N@jPhmce0U4UILI>9J9$tXI}C_33FIN>Px=qPyb$T|1O`~4_-1iLXM>8ReY2_)cGZXE45# z7~gq}?^MQjHsd>?@txB=N7j0EFz!1g=gh`;a^pL{@txxM&T__%qI7tt*yx;d9pCAW z?~KQH(&Ibt@tykk&VGC+K%R4;qTe9TrBL405FYb?R?(A|?`13Rf6MpG<=l2vXug7T-36~+MWi4*GM1kUFCax1gasFc1rLUK?}mBL zhm}c4`bKmlWpc;jd?q$xzFqLAnDe!m^TJqk(U|w&cy=G%VLWFZ&K);#{#bMlS#Ta1 z`OqVIP?8*6Ne;*)2XT@EKgq$Od(8EMD{5Lg1sk4G7l#LH^lS9ApVR3SRIX;q34q?Yb-pNDqcvw9? zhEE>c$4C9~;ehf$K{*Ja9Jo*pc4!)&Hw7fhAr<)$Mmcb!9O{t|hm;3O%0VdQz?E{a zOF2L$AF3&b;pBrmK{%ORzC2x>WKwLIvWrQP5e99s^kEeGM219$Ub-*R|xK2Tg9LM{g` zcRLCrg`Lac(fL4ic?i24xLpqRE(eI0gUV|~%W@!kIe5Js@Lmp*F9+7=!}#U!{e0lR zJS1QaEHDQn=mQMqkOzH8!aP`E4#qGCaF~NW%z+~2;1Ycx#T>$-551TJWz3;9`Y?`p zfX5v4V-6HD2N#(GlJp@aeeB5`CZ&f}nFF!R!&~~mmp&q94k^<|(DaZsbBLQB5@+Hg zbo$7hSHlX;XE2&_NS{6esE-WlBZhiNqB(?7A9>VAB=wO>Z-M&qIgm4R$fiExsgH!} zA*A}qsX0VdA8GZ3lPLYm|IibVRmewX^$}ZrBv&8d)kl8y5n+9#SRX;wN0#*wXMH4E zAEDMquJsXZb4a%*Q2r+)|2FZFaec&GA4%6o*!7WjeMDX#snzJ8k9|aBA1T>KQ1+3PeZ*xSiP=YJ z_K}-?L}wrA*++o(k)eIWXdg-1LzwoFr*nwZK2o)hVC^GY`-s;*61ILZT(NaQ|3xsP1# zBbu+EbR5#TkAUtYqyOU(v~#2?y5u9N`v~hk^16@6?jyDP2<|?zyN~$pBfN+F6r@(?jb14h7}Fe@=e1_5f#R7D1YIc zzP0rnPHmJNhF8Bcj%qmEJ*KN0!`(*8&s6@|^+fqu%Rjr^EI;3op9kp2ggd`RKNcmW zy51zR!J-7!V9<>gC966>D~l4>r-LR4dy+4;fDSEcs8kaf)LdzR$e>0`t)R6uRtPj#k%TKocxJ!Ye|fl{Tc$i`LtaJ|kLnLn7CrwU^U8 zqZcTrc}DM0ZibAu=rzh*o@I;Pq|Etgu;^vVoM&Uv`;^<|zUY<8e6Ny4Z&hwWxU%TQ z%7Z{RM(EwjZJ^JJ(Cd}C9?y)>85yHL2HXqp}d`hW3(vG z5_yawn^mI&FC4BuUgD<^mURZWvnYLq$YXY; z$AK^hnTaEoSrjW1yAAEMG4Ntu1E%`e@LB#an@120FC=dN$F=h&%1Uc&YM%$#K57eK#`O9sSvZPy2J#OfF? z^m-aI2gG>Q*9S9mYW(9h#2n7dSuvIe^nT2oVBr@)KZC@=7z+xz#t~EF2cdBZGZSMh zLg>-V>=t8rLN8?I#25<~dJHqW$F0!by_xxFjKvOpATuY&SO(EYF|#hl0*SWFjE%8$ zqPv;dA%h8ry&W?L$Jd}Z zW-zlThF<_ZotXnIR<-oYxJ_)~7eK!Qy3@ihfPNeFpcuZEW_!!%zPxq0-c`6%uz9x?({CqEQztGr+b*$ImU9I9?r}zG5iAP zVa&{p;TJ$3z|6-i`~v7_ku`1q9VPP|=u(WuM%~Lo`@~p=)Qg!pJ;nm1K8%?&<6okc zAIi)b@v*pm3Ns5W`~v9bkywMpDyaT1(B&A*qq>iU_OxhTeBuRe~M3u7z;>phuS8N)At zZf9mjjHP4!VP;OV@C%@SiQK3di_N-~Bc{bzhSvKqvns{{wXQNVDaO*ZUd7Dc#YbY8 z8OO|m7=8itBxd%Gu@J6DFf-4>FM$3%ZqpvaFMw|0h$%4^)%74|W?A?J(7%9G5KlwP zn!piz##o@&OPTq2jHP?s#mwv&i~4#NGaruO7eJ3>X4e>o0R16mR#;dF^t(uTa16fy zx``ut?Gd=m3y5g6ur=rxL7NzU0rXTB+TX%Dp`JVzW{m& zGdo)N1<-FHv4IwT0rVe0cf{}upa-zfwzsF3!ePTzd=s~zd$1o+4 z-y$$U3?q|nNg0@*bOSRghG9zUGzKOsU1cVWVa(EHW^@cQm#(ETFo5YsW=b(kW4e^a zz-XoiF{5Ib)AT@Qg7^k#QYSMyhF<{P#Y`!NaZYzI6DF|SSsCU=G?PIZmOXnmKVCZw z)DQL&FCBLe__O#OghlDl>~Q^QM zs+Arm2`RI%x!Oxuc4zQ=BIV1NhfOwt&DLJd{4RKS*mUis^?2BP?G?<=Bb#r$yqkDw zw<>uC!ZPxQNPHu1CZl&J@i9!z_9nhq$1pBNFt^)Vm}!V%h_|;g(-^}< zZ#Oa%#W3F68<+`WnDy-g%+z8S{Ow)LBr&!E*gKi2#PcQ)b2l^9_*JSKdoweoY7;*x zw*ndjs@Qm7?*bbJ!Tfk2uKO8_hShi|F?Xh-^Aqf6u+n=ELG56_gI&O~<54?@BVM}T ziBua2_Dk5^Iesk3+fNN6{?mM`WG-s@8jiz0i}-$2mP|QJf*l(6T8^BCn!^qb`&H&= z;6_iP46b8-Ix@07@_9Y;GwH_F9iSEurTMN@zKOzYR*m#%*gq0ubBS$caUEZcv<)}5 zGh%E=u@N(8R{D^AY5P~cb9THMdR^hTvyzoyj^iX^2RgRzA{~B(m~OEL$?~gshsE9` z%dgyB7JHT~zv>LK*vn*3!?m3jdz|cXppC`eC%YK*0E<0Q_GHlA7JH@ap`Zs_?4h#! z8Z*@X0eZl%7DMdY$j|wZX||unz2<}NvDl+!`L%Fz^+3@4O7q@(@9k`{v&(iutj}V{ zm*uz3VHP{V>}-S&x7Z&1^SlYq0~(@>@Egd_iVB z!donMtl1TyM_cSRLu#XOLheExe9b-v6Ija2VJ$;VQ8m=))qSt?P}18#g0VV1A2nJ3iO$v zCtB=awEKddRK?~-`v_?IwA#VYB3{hW)m@R)1!>fx>hF=Oi@=8DsnrfZ#eJV+6Kbba zu-qOZY}Nl)q_Ud%b!ag0KDc{@1Hvk{aN4`mbQe??LioOvHC1f?v`>I7(O6}lKqfBc z*y23uZ6B}bw zy?vXd*TvXwZ{K7lj6V&veVv)+_&AccZ!t5s8N2uGqs#=QX6)>@PYT!5j9vfs3E`TX zr$Hwk6V5dE;JT-Tn;SojihG$k72}A3eT5m*ybcfhN0AHT1<2GJ%=N^lA^BICDOI0< z+(tY~6$Nn}8s*g-Hy_%GqY!pq=1uirJir5xrB6pZ8!biV#IxcXkT01>Z=cLZo0!g5 zHBlR>RFGobZXid*!ml7d~sp?y(?Z@~gn7`u)k$s+%2;(MP_7XEX z#<3&&0y8Scfh7B^+$qLUCHv!442PKPBdHjUH`#}o2@{-svXhw^KwU}l-^k!a%+Eom zhO<-lV&->5rF0;rPcy$0n*XE7+6Bz-K*baN5xIL8IbXkSt?h(TUCNJGy$t&IGtd$G zFr4aHAihtWRQo5O|z6vqv&tqKw9upyFDX*U2?_ z_(PegQsPw{W3$gnc?Qd?522`E0&4g_Cm~h4q=OTZ@!=wmlan!9I<&=!$~d)>;G|{TD)Kmi8M9W07AG@f zwkXjw3^Lu22`x@?#%xh4S)A~Uhag;AocxU0LZK{9gvPu=PR^~5Ao^sv7AHt!p1+Wa zoJsWlaxG4r#`}p3PNK#OK`VF}K~o;sk8GOyqGg zHa-@#wm2~xA1~n-f<6JXvN&NIrz`U~c^fYmd7Q|N)0KRj)Q#teJWlY&vq1+ICwt=^ zK!+A5e&gNcTAT!qcNH0&5RT`I3{DQmyMa~~CyHaP>(Jt)am@9rEc^n*Y!T2FegWdK zkS|%BSdK^YwGsRR#N$ApZE?amItX-Re@R_s^g8I!eyoRR9(9eyN$Kb{gqQ3usmF+T zY%N)wtd7`fU}7A(j%2AljE|va5J}gs;+w!IZh+Jfsj)=7RIluH)F(y4-p`A~oM06l%V}Xqj)!HdGu)s`+Sg{)H6L>71 zga;NF3(*L^ma!P3)4E8$IlX84^XksFow|@{FUSQJSPl^@vK|1ehv<`>&o4~)^7&sl zue>8;LPQ_uu&YlEE|~M|c54R!J0e=|hrMfoEfKAddjoqSTF3DnljbjaXPBKE1DryS z;1Mr~fe)`oF{5JO!|RdEg!XwP&F!beNEp$DoXj2HdHg?qe)fOv$cP!y1st~EpYFWs z^~cZL$pTR$Y8gW}4K0v1qLs*ovbXdQJsky|*n?_lD@44YD?62G||Qa%5m0$5Z3sUj0$NXn``|Mpp!ie< zApD#N*ya`P%hyCrpt;XJ%K{CkaxP>_7AQfL^`Nx{dQhbwG!-J!|2Sx6_duHKK!+A6 zM3uDZ0iCFlsx(lGDrpk}no;Etkza{xxqOrb`cY*uryl{^yfOiFzXe)Sr4O{WKvAkp zl52skRGAFAWP!R==>@GU(3mO{LDNbG!cP$z=uMSVMFyx&mDQj_3$&*SHxq3S!@an> zP!{M=74E-jB?f77{~cPONok&Tt+RuVCHkjGXRZbMlzv#!2P&0*6f}+P2>*fH3n*6l zN1%-bx|MzebjbqsO8*#i#RA)0{}8mcK*`cS0o`nYo~74-4lNMM)HI=iT&AXirWaMv zJf4iRM?epG3>ntKfV^|4FCjc`!f|amb_k_1XYg*|3DUKN(S3O@Qfb2rYs)o&71}Xs zBPKR_?w4L8@gR7II^0%(720GMy0RV-)OLjYSam)%ORIw~i~I!Ye_F3bP<4NncM(Bt zcgT-ZmgVnG(?6W#+tyMGw(aUGcpB|uf?7avcDw?lrq$P8BRBXIF0g~W3tUW4I~;eI zpjIJPUwf@wa2GBBSYdVt7ZcQm;tmtlgWY^Vnx$7LuoYm1wrRy~ene0^3&~7UZy-|7 zO&@tW4L7X-E40mPSl&gny@7HYtu}DzE~$7>I}fS!s>MA>r68po zO{HNbOJ!IpPN~r7XZuuztLyHxbiPKZv;mLX4s^wt#suxZL;w6x2T4%g(`25+T>(}Y zZTyDh-KF3D^dJg-bQe6A?n#Tr64wf_!ss@sEEf^9A4e%gKRA&~GDyW|LA;Y5Gb(}= zwx5Qv`{Bn>@j6KFc`U>MRv6ubooMxlpnW1~di29*xWv|_sb3CpfE7k}inxmi+Gj)j zk%y#c($v2Pao}-B-xcw@vqxP3@gLnrNm>1LT3&BJ9AJgfy#a=hEFx(C6!QM#!?+-y zPBVjrx7P1ItaoiKu}g%# zpub}t*rSBKqQCRRpD&=4XpvO$PcWD+>$)fnd_9!FEa2%hp!@n%;$PDMlI#53FC?kS zY1j%Rb#ofn;*xR!WX$1D_kF3vGs5G$^Ow)$llo^Q^~W?YOUeagNwxn{F7uM=>UdVd z`dkL4qyYnp0a%K{r+d#-!b^rW_m%#&1xw&m>0P8iLuL>W?mn8nQ76IRm8}G(Oc6uR zJShlwyRwpU%a}cYRw_{BL63vV1-G2UhY{v&Pno{Pmdl?X(NQL-+`)TPgWyxR$CHNc zvFk(h4R+{i!l~W$!wqRt!$YL;_Y^VWMoL+Y#5XM=44ySG2%e**V!fh2}4ot&8F??J(+Q|S3d1q( zZ`R{U%O!w?{<5!f2b5HW^nLJiQhi@cD<{1AuK6^yh9&vYTf7T(+s;#&KlnROJ-hnf zmWBGeRL9#a)c5gw^EM0h|1k^oeWbkGEYvj1+-9N1c)HC(Jsl&@HVZZP=G!dP+bq<0 z!+#ZR;=OGaYHk$UEY#43|3wS+4=~@}W}&{62dZrr>c5_a`hUVIz0GR5MOMonqfKvx z)$(zY|C_K{egJdiQ}hg*Ge`b{!ksztd7_;;@>fJVbL6W;J9Fgkh<4`4w~2P<$oGhL z=ExGQpgVJ~WfHuEC-=g|INH!p6jX^-8PsT-*|v*~UO zp#Y@Z)6THR<{xsz`+kPKN9U3SVk-=LrCmsVD-3%xNPepfd&_ab))@9aj|;ZOu=nqH zgsm{_CG$xB0~_`ZL@FQHuy-D%vNeXif5u(6+_3iy#JAkAH(*y1-*Us=T!?SEVedqU zZ@FRb8i;SXVebbJ-*Us=A0fWwhP??i9=wlX4~}*RqRpxei#xt}81-9S!Y%B$0$k@m z(|Djatn2R>2V+O;OU%BtwzJ`Rv3TrB*W&YcbdT#9PO1P7y9V9bFX$1~tC3)_tsfqaU{)=*+X!nT2NxU95+e9xvHW;5Tj6TU(**eSsF zrHIT<2!P#P0{A-&SPa(nlph{`h8X-wKpH$ToPaPG&^bg0%)_+pBo_{b+NVvd}fOc>sB6H<2R03ZU8G$1a`rBtw_=zGT za3n$t90_O#M*><|fg=I!;7CAgD{v&BLo0A3paXm55{kWD!Uc{*14vqx0gCha$;7C9V97(wmw1Xo7?chj2(+;8IDL)Zt2S+0G(JLu@251LI0$N#t zBLVH;NI*L{63`BgMC1jI1hj)A0qx*OKsz`R&<>6Sw1Xo7?chj2J2(>14vqx0gCha$ z;7C9_I114vvJcP2osDJ2(>14vqx0gCha$;7C9_I1DI5uC2S)s5-xBgA}??xpdB0u zXa`3E+QE^4c5o!19UKYh42}d$21f!WgChas;7C9_I12!9WN;*492^Pg42}d$21f!WgChZx!I6N;;7GtYI16Sw1Xo7oxzcS$>2!9WN;*4 zGB^@285{|i42}d$21f!WgChZx!I6N;;7Gt^a3o+H90_O#M*=#7BLS1ak$}nINWf%p zBw#W)5-<*q1hj)A0iD5-fN^jnpfflUFc};Pm<)~tOa?~+CW9jZlfjXI$>2!9WN;*4 zGB^@285{{12S)-rgChZx!I6Mj<={xbWN;*4GB^@285{|i42}ehgChZ*!I6N;;7GtY zI16S zw1Xo7oxzcS$>2!9I5-l}85{|i42}d$21f!WgChZx!I6M*a3r7|90}+Qjs#2wM*=2; zBLU;!NI++BBw#W)5@Av}5-=GYiNvIEBw#W)5-=GYiNvIEBw#W)5{XISNWf%pBw#W) z5-=GY378Cy1dPCun6V+4435N{&3pz&Vn#FHgF|+JBQfKd&)`VR-pmUeiMfiI435N< znHM+`W0(;*67vl1n!%BnR&@vQvf0brh`2INbpnpW+zgg>KMEX)QJjpxk(h5HE}}Sw zBQd=km%)*kOPJ5#NX%u-&&9(4j>KHfdKHS{Jb7&gMcG3Rpteb#4KVa zgCj8$na|)z%uUP-9ErJy8G$1)H!>q|B@uG9z##W+O8KM`CVZM&L-y1I!2?@G9z## z=5A&Lj>O!|jKGnYdr&3x5jYZa7ue9jk(i&csKAk!J5y1CBQc#Em%)*k1KHcOa@0{zRG+CM`EsHK7%7M*E2tp zZp?5b=Aks-0!Lz+)xXm-W}CfCGm8rxi7^Vo0!LyZW(1DJRGD#bB&Ncwz>%2aIEf67 z#B?*C!I7BLnEyDRNd_E=8O{M29En+gy9ykMIUBUVk(k3l3ml0V4O-wx%pA}HM`9L% z7B~{K6tuvRn2DepEZ|7Y-k=4J#I%DJI1;lCw7`*=<)8(Q#0&u~a3p3SXn`X!V?hfX zi8&3lz>%2aKnom+Sqxg>NX*Hg1&+iV3R>Vu%t+7zM`C7z7B~`fK4^g>G4nwS9Es@# zEpQ};UuiNp64Qw&fg>@KK?@v-nGIUtNX(v~1&+k52Q6?U<|NRv*~@f;7B~{q3R>Vu z%y`fOM`Bih7B~{K6KH`WF>65!9Emv+w7`*=sh|ap#H;}=a3tnn&;mzdb_XqRB<4KO z0!LyF04;DNW)^6HBQbM93ml1=2U_4r%o5N7M`Aia3ml0#0kpu8m{p(!j>HTHEpQ}e zI%wJKWmbb0I1m)M`G47pTUusk<4dsBxWY_861h( ziFqnIfg>@qn9txy%xvZ}I1)35`3#Q49KgK5k(ej(EEyb$2{?|@7B~`f1EL!+NCS?< zJPkI3BQaB1nhePTM`GHU7dR5r!HmF>m?6w$a3p3K^BEk8S;c$?M`G48e;#^1h9fa+ zIG_$kVov6O435N{kns#hVs1iK={SVIk(gV+TCjj4G1r2n8WlJa^EOz4BQdXlPT@$* z8(;*E#JnjH3`b)A$c(^|nAgDw9Eo|ABY3lyd5gmtj>Oysnof!c9Eo{`vr7dna3tnw z#|s>ZxenqA`Mtk~@_Q>-TH_Ts67x1o3ml1glNo^{F|RWta3tm}W(1DJJjzT8M`E57 zPT)w)6T%4`iFr&ofg>?b2`6wQ=4Ivtj>NpejKGnYKZ=~dk(f7_lg(b{Rb~W^#B9W) zR8bIsBQaNV+F&v56mwACBF%LkNJ_1K#N(#Kdk(e?w0!Lz|^Hmufi77EJa3tn> zTvfsy0Y_qbI4*-DG4q+v;7H6|<})}FGmrTUj>O!K-yDVj`9nI1&?Z z9@EWUMlqMdk(hT`Foh#AhclPKk(e`?ufvg;gE=6BBQclYwgN{You|N&m>A&#M`Bvk zPl%DtUZ#~35I7Rk!kK0`67yBinx2Q@NF*_VBQcNhO&lDFd7hIHI1=*`GXh6qUSLMx zNX)ZxCx#<2KTgE}M`9jH#Q;ZQ9%e@1NX%qr$iO0SB<3RKGdL1+G4mN5iTO11861hZ zfcXrL#Jr1~J2(<^DL*1__A);MoxzcqrF>xqM`9K;pTUus<;-VrB<3XMGdL1+B=Z>@ ziD_Y8;7H7&%w%vR=2KF6THr{` zRiFiq#Jmie-jW24#M}#(J_1K#t_CZcz0C7`6>bDL5_1h$fg>?bfzIGa>_33b;7Bar znx~(#*$c4_f&{dKAOYAhzffkXo0A(wP%Tz&0cmP!Udwj4hJm|6?Oz)%Mcazv==Fy#%TYOLR8qj-3?sIb%Drf}I4W~aSJwCoA96H9b}SN4S2 z2{-{Qd&2C@D$%kh%+9D0EqlUjZwJw`C(KS7OtkC?vr~r?EqlW3lrcoho-jLkBGIxZ z%=S$o+N7`)k~e{+0PSEYKs#6pkr7x5p#_!#w1cGptr?0U;t8}sQACl11BxOV2%13r zKvzHu6h*}2gg{Y5Y}FJfiik%Bfue|-AumuAQ4?r^qKMi+3lv4v3R<8jq5+@vw76j9n# zuvaWPMC1WQ5gjV&0E!}73_4&aif968fue}|KnoN_GzoNQ0Ywo_1}#t&Q7>qLqKGDf z7AT776rlk{5uGYBfTD<2gBB=?h?|2zQAFG=2oyzhj9d#SifFmW3ls%t2SoweK~aEK zR-h_9WgHwj9`gO+Fkw1g=_OMDLU*nwuM_pp2hEztsK2~&iY_&x=; z0$Rds0xi)3XbDq_9V3|G|%NZ3-U{v;bPd6rm-6R#w9fG}HW|6j2Hy(F$k@Gg_&+D7Xw-q6N?rrU)(Z zEK&m7L&=R%)EpZCOu>;K(p(WY?Eny4L64ybzvxg#z&=PHcmaqkAi6226JJ9Ss z{|~8Um=i%8pe1YpS|S)p;@E*^?-cP2TA~fm61D&>(FbwtK(pT!@w>A}1+;`MKua76 zaqK{|_ukE!ahMZ98=xg@0b1fy5XTNQ`<;hG+$l{Ppe1YpTH;QK16slsp(Wa}18oq} zP#YEw{N7q>$%Bz!wPC@)U+qBL@U)`NBI7=N+8K&s2=b^l%pb^jF`Zwb2(@8u`*A_o zjimI3+xrLJg|vnuN^iKef8gF=dqnc^fs8}bMT#Kk6DR%G0wQUlhQDdKgzB7UKSAfE zFG|!gX;f$bOA@fo1)TG%g2c3!CE#`R$oX|;n`I2@%L^OZ zEMwa&V}N=FQ2#c|7z6chvy27XEMwa&W0-^gFIvWyV!q8V2-_@UdYffzn`Mk%vj4AJ z#*RgsW*CGmvy81G`M(Lv*at9qeT<%Ab0)9TDBPL6&LY~Gyw(xzOkSTL+L^pABHEd} zK0~xKd0j@dGkIM}v@>~KL$ot_eT8Ue^16X&XY%?w(GCUy-Tl^^w&eIct|f~rtsngv zb3_jxpT8gLS)~p4omC#Tay1>zydUe8r44tVRqpxBT1x4DtcaC1+)jMgZr~;U7UFp& zH05tNtGs#h#{Ai|4!afRjn$Cf3iHO_ll)ehHy*-t$b-tJed^rsWx&Stf4F%l{HvL0@O@kc_u<0KHY#Ied2lep- z>%s_hq-rF-X@i)A&vN0KV+RFYK*MG;$9puEh7Y|)-<(cEbLki|Yj`FGm?`Qe2ruF< zGeC?&jly8eIdKRBFuzIwe}@5!!N{8O!^2=MT}XctkOq$qM0^VLr=6c$-&!wRa=^0MV* zKI&C2dqdLfg;%Sqsd5^_9pq>BmzmrCdipWp%vdNkqmsq(Xn{4A88 zBjsn6{G25}7xB-uX`Q%k+Ai|5AOB4Ky!>1*Ki`s{d--R|&*kS8`FTfvOczp_GEja- z%g+q?nJ+&F%Fj~zvGBsI#)e;@9~^tK@WQOlW**0$?1Qvgt41^510Kho)OhA`>?wj5 zX0;DuQ|gS+C`Qv@%}s#RS}Jb60lA?8NJ zm1(zS1;?J$&0wh=E{@=ZSt(9tNd;b*)i)7G`m@-=3$yCwI2?Pj@WQMvVIIex?4C&Z zGUn&vVQ}n8UCum?Jz02RR+rY}aqLN5!TdZr?-JqIld3YWEW9wQMa43Ej^Kq^-NQ^%^bRC%WJX0_M9lY@84$q>v$~I&mIz*$)xFF#NASX|ZfC|u z@WQMfVkVB@g<0LkjEUfdS$&h4as)5T>K0}iB6wj|w=&Zh!3(q6$V?Q$3$wa`nK0UK zEHMu-Q;Xn*S>44<62S|zx|5ko1TW0$Zf2?xyfCYqnJHD^g<0K$DxpuQ0x!(!F0dgT zdy3$NS^bPf!wS4Gt2yVNGdT8S;e}a!m3bU{vhc#Ju45j@o-DjD ztLvGcNjI+S0JV51&37e+7iQJ0;6)e4od{l-RWpn02ws?#Q4l^Of){2LF>_`NFU+dS z3>|xl;DuRLm_5tF3$r?olfbbj3op#7n|U02is6M>oyI&Ld$Kt8q=s_<_MIm1!mJkH zuB{2YFsrjcwZ=S&aofD1jGd zbsFf-1YVfcaiC2CFU)E&=m815FsqY6cPH?|tPTY|IDr>tH4^mD1YVfcOwdCTcwtuO zgKkdXg;~u9-IKrzv+4ysxdJcDY8hx8drIJiS#^T#OW=iBO$I$Iffr^q8}#r5UYOOM zphqU~!mQSV9+kX+@RLA~NZ^H8b%VAEyfCX)&`k-vFst#PTavM;juoIsC(s|Y6X-Ds zyfCY^pvwuoFsma$k4@l(Sxp69OW=iBtpPnNffr_VFz6`>yfCZXLC;R$g;|{kdb<>S7m$&W z%ww;)g%@TulX)C_vLWJkVxEeQRx%Jji+LP-vhc#JW;2gtPZnO7)g0z=>?wj5W_1Ab zr3$<-t0(a+IQC@Ugcb%IM`@3&zzegw0nrT@q;c#?Jq;Geo-DjDtEnvA98k*e!mQev ze<^|&X4S#WuPnSUt0Bzb*pr19X0?oY9DB0x!mL&?k7G|UyfCY^%%6v2PcghOt2G?J z$DZt?sQQyR0LPx}HQ-Ok_zJu*tDBJ3M&x`l9_$vd7A%fEscXSfjV?~$g;~7~w!aE5 z%<2`;@96|ynAIC#-mTt%B;J&WYJ&Xyk(r?hyfCZR!SpBa!mM89hy-4k)mt21ffr_V z8|Vt%(ZUO}dWN%01-;6`3$uFK@e?cGL-wzOxI%vK$J5;kHYPTL7iRS~ORtOIg;~AH zOc=onvwEGG<_KPx)mzNWZNi>R^(ZqzsR>?~)sw>YG{FnAdP2D7CU{|1j|pd*;DuQ| zCEVNyUYOO(%&F+#&=g-`#x%hTv-+dRg%P|kt2dbIiQt7;Oy{d`>?wv9W>sRo zzXC7J>UvyN!X0t!N%e3Xjy+j;VOH~*$FV01FU)E#^Emco;e}bvV;;wzD)7RrZbxzn zs^$ymKp#%?I5FMMoF;f-RsrYnP}Kx4%t|qLxN3qIX7w%$E>;#^nAPFT;n-6Q zFU;yp=K0u@eH6XQ!5n~NPsyve&n37m4ac~cJI^qA0O2vh33Lcb)S|vYOc22fvufo8 zg5RxdE4 zB6wj|&&r*m3s6lzPQ`HSNj;K^;nRi5!Xy+hF%}{w*QR`Uc@|(Jz02RRu?mm zV^0=dnANA5$FV01FU;x!=5g$)8D5yxyT~~mdrIJiSzXGHSb-O2^)t{o_GFJou`J~a zaqP)1!-b2P$FV01FU)E=^Emco;e}b9#5|5YS$JVqM>3CNPZ7K@s}|<9#lB{BC^IenDsO5jCTbKh7> z;6+#ej&Bsfi>}sOOksrW@>-g%if#gVP$v5%w#FS`0z&@_1@J<)?e%Mm3#^fscYa` zp6sn{{sJCGWD|JN)qCT*Fo73ceIRI)z>BV~-9dDaz>BV4i13C4UUc=^O-xMq(9DKxg$z?y&v{&@(k|1 zLhg+tN_ri~yCX^o+~ex~5HDws^o1OsJA0%r;4pXgD1m!i-SQBgCxLrhy%N`}J}qly1XbVCC7xO&3VM3)k{$JH~RBbp}DDC-$75nWB-9#{AN zhUmrw?s4@boDnD|aF45}{(GRA9_d1CD3;+*yq*mHb%^RXnS4HKoGF3^mXd zr*i|!XEk);tj2@5D~uU><2jOdS2lcBLl@3!ybW;}GxTjYQcJA+2MzeFhAy1d7}rMP zolx^TL_Ek2FyO3)E}Yd^3~?AU^gWMK8z`RD(1o)apM*G!8Tw8U&!5%Mg|iyBK^$i_ z^mj!(e^x^m&T2ddaTqi7y?;;Nw(bU$&uZwxS&i0q5{EHEe}_sF;@P9(tcEU})z}r{ zFlOj)Ny$9z%Dr9pQ%AA)y+~@qCH?JuK4VX*oZ#%0ls2tB@cE1d$d}%5F}n)=5R!qb z&~~;_?k?;F{p~+lOUdnvC)NbR+se}UPk#zxs{xJ>sMk=u#oml9&Ck_0pyUYcwPXp+#hrS~z-INBM zgbPne13&F9bOGmN7j`XpPcGa$4I1=cX@C?|5Zpj1b#(sPcgy+AcHG=30jD^L$I}2Q9S-frX_RgpC+Ws#fq z@}(+i$jpoA8*DHXx`MwRD6*ziJaKml>(Btw*kLdS&44)wLgJWo25d!$9CC6(iOpC> z-<;U+5JKZ9hEr1`kR~O{K2onjYD-TfW5x7yNdF)?jGd%Thm%xhm(#(e>H9}Pz_M_l zIvxI0@4~GZImpV2UI`KW@o)#*d( zGPnY17G=mIYc3t!s3=oRXZ&Vl;Mw&MOF)biH|!{SsA(hU`I%b^?opL;%T6Gp&a~fC zS9Cgwl8FsD11aTLPOC`5KTY8rP~vYJ3~r@@dldIrwt~z`Q!jKi{t4>F!>J#mZ^RCH zk>*z6)SuEfv(r#=Q-`ADC^i_a*p2MT)CY(g*(o@Agkl^ zDr3qI=$r37SQ*F=#}KrK}uQh_n=_tl@x+M2@OUM8H2>epv$BeX1J~$16AaJG04AA z-$T5deUbnc`pdqC;*OXEaUNiQL;$7~62RYKz+#vJQ>@ky=aN`zs6^l@V#=LdtEBm>2o`H}tK- za+SiWNTzAKb##x9EJ*sMeJ7uEyb$va`q19<`;J|;a_P~NruI(RzVGN$P7U_h_n@9# z4(yrQJ9T>RufN?1! zpdl9!Q)TBap@2r0nG>omJ4UiYc1D-^$PjYr4si$FGtSG;pu|GZ4V3(JA{k~s) z%+89bG$gGWs)KwHprFd>W5o5xXsnmE(;~SGX;>rcQjKapj!_R>_eoaOv*;;G#HKn0 zwxOO{+1HrH-f-tZB6vb|&LAXY8d&*kJ@0;P*VP3@Td5aqcbV$jW9g=Z+QCUvO?1;Z z)#P1E!p$B_!ems*gem0~FP5$)&=2=GP~+C#aE}@aVs6Lf^ElUS4cX(PK--B;A0O;M zSH2%&y>tpdT8G#{)9Hz)bIa?Dsl~QXN7^L>3Zy$Gbwn5;jG$Q#$=#f~r%q{tq)udQ zAc3Cx-K0GaO9NOXamV55B~;&X32ljpDK|82YD$Swt_6&SKGJY08cN1FXcF4ZI8>z6 z*?78v*U%6P-dS>vAbNhim%kEpf86`6(<-IiAY5rxrj~Iu4^cnl5eg zQ3S)HmU6@jmwDf{QulL~h;>dAe8s3((gUWqE3YIjms>uS9dbE*kV^;8pVK{ZJi zebppkUo}a%)zefeqc)GFYhC9=bqzfpm{TR_PDiT8bZb`4RF6}(v#v;p?MkaXjqR@M z@n9N@X}lSNA0#`}>2Qxz@L{6N!*e;Hd2YVpj7+nWwvNynMA6r!Q zacQR0B%!)qOPx?}cN1NknB>|-uWJ*1P{AOW%t}dxKE<_(sr5E7Exk|L%R|4XyIa>) zeum#nX4ad@cC6%-^sF?0UNYO)o5^fxCOfb+)yN#q5jPV;R-v(sRA47*COdOft&j3O z7tc`~J^tGLy7Z>`MpGX+qfMJeTyGkcdeiXxbkcUePp8uH8xE(im_BFm1A;GOMSj;0pnZ?7!PftUY?bT z%64L1@h7?Gt!sHN>mrHux%}1RCfBujifeIGU3+qkD4m#aBl26!jCzZiDNR8d4mE{Y zd{4^b_MAs<6SJi$NOPe&pCk9)))eyN*0!cV`ZL;%U1MY{8!Js?T%l=ziCiIaBmE= zq-k(Nzzk}(YZ}}TAVp0g_wLXBshs_hf;wIinEp7DytGzyqZT0l3*uP_fm3uR%DV7^r zq<MVbpe@Skcf zu1W2@t=;fS65hD~3hn0e@_PMeUQ7NO?Z$6N^um(Y{GPgQQ;ui}+v)aj*Zq%h-Tz2v z0{VS2L1P>kUGM(0my^1}*59V3kLGz5mVszEajQ}jrE8w_Cui-rOSTq6!+F{;X$guF zEA^&J1Ru(;S~R57&9qB!%RniMr8sZmYU(|Ut#=ub>qcmqOqMD9Zkc+^#N8XQ*?LJe zE#LH3=$+GBp@(gjA$LIj(o`2({8xuuqO|1co*VsBYrYO?MvwZSnS8zX&MyD6Yc$?_ zG-a?;YOAZhtkv!6e=zq1bo(Lo8XVdd^1_TPZEZ$*L{(UI@Pfvw11%W+C+j?W5_&nz zo&-12^)b^e?xqFp7XMt0*DJEoRitqhXKetcgw+f<)UHNS3L~9-l{?mo?S+jVWK&-?orgj^l`BQk~Ur_@kr4C z(Fo$-XSGXGb&LA6zE4fQc!PAQ5{=%=TiJi?#$xGFqj$nmdNvKniZk*%PAFftA}`Yd z*Bzu2FE>j|=TiPGjYbSNOQY0_vo!C09|wLKq#D>< zuVUn7fGeq%qH@$oFwLbXM{E5`3238Bq`NS(&`b-EXv_oK(w8M{p9luIL9~z?xPvz*m=-dvoEO_fngoV>+?KQwkBq6Z$9l^wh#ig=Qx_h=O7xWZ9!S#Df0@tC^vAS|%C zqVj^MxUig`)Zfah^+B8tLduFnbJ~c~K5Rf*At~!Dss6JS8Zwun(_ES|xvr|+^*~f^ zvc^Kd`{+gndDBLkS-4r5e+wD3T~CqeBClEu&Kre>q&7>+FlW#1d(%@=VhAJw4U&HFE&|II24seBA zZ&xi&6>C}D6?@LsdO17eeOjwf@Az>)Tpj1~ zu{2R3JFXi)FpU}Fu~0jYrB1oWyOvlon`PHhQsihNW9hY|ICsn|(qF}TCJk@A%r__0 zo54g^8&EcSRjn%}E&e;D?2}0t+s&YxQ~soG<}1KiaMKe16B`WPx9+!W;7EJ1R4b@A zbS<6smAJyjG$7kuBKndJAD96*xsjyVjV%M}YTM#csjF?xDSxZ$=!%`6j68Ui;bFdh zDa~H%B~80XTuFCINq4yh;Z%^G3KMImg48s96$I<4AXri|r-Hba^wn2E(nzO*5GHnn zr;&6mEhM@!!;Ag@fC_Svp`YV^nAfsp>77lTVtJxE;k^Y5JN8TW)3DV^*!S%l|Nqjz zw20EWh&-0+!rxLr<>|joQC;|NQzY!aO;KI=Z&SqjYu=QUTk}S>Qq{ENJB#94N^$P* zb)GV`q5H(Fm>xp{1{PlovF*j1H~ZUOoMKB;@?WrAQyT1=(vW&n%HFc;?V-mtB_5Ws zgaVUjq0!JGbG`4*ED*sUyV`8z?KDTd8AJ z+(iF2t9|G%rfk|{r4tsi0O4M|<>hZhPtz{M=_y#!CSOmf)SaHDU5L}uRL6ZiB`tP( ziljU}g)p&yMo){1nN7u=9y(3U6w@sc(bPbuX<5H2>h~w~v_5l5b=2RURaZ=`2C=5s z71J4Gyf*~W)w&vzzB)A=UROhTx1{n+SCygAqntjD7JVF(AF!OA()Ek1r%0ODlv5L> zj1DwR+qkZkz3w&qecn(1`u$;jE=DIy-8-H2h75Y#|1~`;Di&5d((X$-IHzfuVqvu- zt@d=a!}UGsl(L=zCJ-HUZK4+$wDV5a$#vCr$(j5-#To39t*h4%rxZg)DSGm~`LMi> z{5cJCo#<%MllRew`YWK$s|My~>2d^b{>;yn%e1P`vBwRX8E0#%V9*yf{z;uk`wyoR zU`a*%zUO~-jQlIPds48CqTt?+t0F0Xx=0oW-L_M@Zbi+j@Bvld1R z*r|Ha2K9#ejm8Yhz0mXGb-ENs3lvxn2Qkp)sg=2UpFio6LIIeS`F-?|L z+Wcg&&O(Jz++KeOg{ojO;=*^T34Igd7BTdHlM@3$aLVeVPF_uC1|ULUy+Q9>5OkO_ z2z7Jsyb(L?Gg4Q3PCaeSVJf7gMo^pz2GjQ@i3clBSh>3QXj~mEp+6PSX@yP2Hj@WB zwy?6Eg-6EBrRyjQJBNFpx?`Vepfo6F%hGcd`iDWNN)$GhWK=MmzBkRvJ|`|ab=5Ja z^zObr%7Nxt^rzsaYcsOPpSbKJ3wK*|;L(}%JPqk@Z%$f{RvdTY2}hmMx9_RPA9M1` zkM{A!eJ35W`jn$5P3xWBJH79ylaF38Y1PUTPF*u~($SNa9kcY*WBXQ~aP+EEmmQNH z&iHdFq|$xM-DLr?Ie+&>AK87MMJ}VqpR{s$?+R2M-<%GE5Xa|EtopU9$os=k?bM=& zs&mVs`HwHDQ8hKLRZVOKut!;~Y$>ZFYvx?$ZYrCaT2fPsYwEC8^%K>mex_QrRR@uV zL-sNxs`rpnmJ;->Ex-OEKn54_!rJ5JOKO)IrBjbPq*Wc%N>L;+Q0+(cpcfN5UA?%b7E6l?Ol{Yy zcCPXNHnp^dOdZVMb8Gt6esy4abx-*~zK`iC>*oSIRpCJ&Ly(&3J^Ev1bDkPr%l?}$ znbXXv_@}5(Ljsf-RoWy{p_=-~uuZ*7bv&b0uTWofnWnpSFIFwo&S)*2l<{BwW?Rum zmTgHpnt143dIIW=zM{~M)Y_W5K-bg>%>?vQQ+JVmk5aejkaXlS^Tf5>x@wBd?_AtR zQ}rL-X3qV(ej(`5SM@(j>Ve8Sq)n~UZR&>vF7N`ivR_asE~Jolk4u_}`-sFHLhY0#@`=?*%k;PU{bu(#n%$SwUah)G9UZFuYx*<&)a;~Asloj= zSUf^MbT+p*^;10G0Cl^nsR#IP0Dko#`VMu6daLX-j4uC6+vDo=+G8aPd3H1H@eatF z`}5LiN8m30Ky2E~zpTa$R8w1BtIyg#H?Vos{PCZ2p^iY?ZvVRehp5Py-E95*MX|ccESIPBdt2#*w$FD$Ph>sNri6K%!p!65>(njLpPF2g{)u}f>X`PY zzGY=w|GkNH`*EQx?q97#jg0 zu27#LM3Yyjhuxv3Pf}-O{aq?g3V+gKJ$j=)v`3F#&)+_MNgDp`wPp@xBAx0Q8Zci8 zJNa&;MaWcGegNOk({0Dp%$KC&_$-Y8YDP_sPuo7vvV`Wz0!^Tnpjn@*{@ryCZf-RV z)2}Dw4tsD3@PtGiASFOZtLQ6~nwKVx>yBzwM^NWOvxsS!LM&1L>=c}yaN;IY2x=lU zi`YL+U@j+YuE8x0rb+2M=&|xjYB=qBW54>E&PqeIdY#x*Be*GMO`6q)XxSqcqJ+DXav{B=GJ%4YG-n~c9 z-l*}tUhmeUci70^>-8Vc;oeVulBT=;1O7ku-UU9ct2*?a*~gilggiYX*-6`rY$wDC zv24jsNFYuK1e(Ml0rEh$lT4(Uku+xuT@?|sghha4xQ!1w*W#F}%?KKrru+H0@Z zUV9(2xGWp2H(yrT32NrSG^&4=ze}Jci0VNL6^gNr(^DWJI3k#^I)>Vr)__CdS}-q* zSf*%N`{5MAHidJ_KPi_nszk3i9Q=1w=wCsFzCULkLeFBv-etZHQX&?rT633bSoeDt z`VM8%=JAaANzZ9-^Az-uYhZ&UG|{*z*;j4E1k)GRVa%Lo!>$h1%Dc?=E_8M=_kix5 z<|(Y_TViI+0IA9*dblZM?JpMht+tL(bRna7N>bG^PgQ$6zJ5G2YJQ3lxGiTsO>;l@ zcJp~0H9C`N?<9uwJ7CrOP;dSP^=4n10pt z??D)!g)mwba23qx=!l9=ink(3-zHRU8Mu97Ki!#>CYwc?sFvNODmLg=IWm(qjcn*h zK!nLBI}4LP#k^9R_|>WgKKX+wO>VvYo;T*-a_cQ;qY2*n(p%^RX7SI%2{4O?vgXlC z%+_qM%6y2kU}RdGJF@QIt8;UU3t_i9j;^!VI+igrj_i9f953HxZp<#CyuC9h_v*li zv*FhI93!6cgR??=7oq_6-2=3);0gmX=cs2|K?|RfakABp={~VT6@GYT< z+?<_#(hfQyBoS5097j=IK<_AL&5b$p`Sb<0k>#1ZS({Y}q0N}jq`PNlf#>tgH~HJb zzYA^No=l!s`=F9vhb8@niIN?2rZ?vfnD^6%pG;@NY4eNeZgW$Py52!O??_+lYk9zY zoP-^83!hm*M{%MA{; z51^%Q$eJ}WcY+VU-K=w5`ie+(25q&0;9r^6dzs$A7=7 z3GM6DW$_E+>dsGA$EHg8O0|O9xinbwb69-(*T2!V@}Be4r-EzD73o>|Z!uiO09XU`;nqdC#8$Je8x5Yx&u_SDL30QR zgrh#~Cr~WH=@CqQoSt_v9bfOO35KjvAy8dC5N8qmj{3B9M_xqN=ABd zF5F@jP=kDc=557tzcIcK8_8tmcs{H8)|D4&y0pB<^_6*W5q*vGpKX;W9Pm*SS9y=E zn+ne#xIFldgZk^756yhz!W&&{c_-edcN>4CMVlxc)Q~3_bS>$MbtL z{Q_=pHrz5Bt~VTLrx?01(}&U%j+mWMLPP^prA8jB7_Fhj+KL>iw`)e(-o3HwNYgY z%l2lDiVU(7Arnevy|&9oG7p6dc2b{3DX3(v9Wq=%;$X1*%`@&W8BO<85-m7A+vym4^N8Dtzz9vf*Tfw+t6M&=4{&1DO9mqTp z>@XW0Suh8Gn2AT7uXaE!XXLKQvQipiZ4Iai34OjUZm~buV_qE>KYxJivrLn}1j)BW zNbaMg5OxAo3M#&o={yW(!yU8XLn1U`v7!{b;ZgH90PbU3$Q zuIaYvV%oW>ze8??g(ZKcr{~N>Hr)I*Q(Q5($k<-#Cgjy{_g}JgfYWmwg;^TSh-Yd& zv)aBtlz|<|vXg&%Iim}r1YL1Y`%rR7*dAdtnDLbgvz!a}jlelpQFT1X8<}%jwE>)9 zO1)po;V&96z1@IoUk)Yl`%(vsu)n!E`!JjVD_=Kn?gp;wv*z_#^V$T9TW@hCes5#? zmS^52I9yyX>$~lwIDtgycEf*DGu`w>bn`F>nbp=byTASBVq;7AY(pf0$p{6cZ8Mvf zXB_Y%Mt>#j2Qv5zQZC7S*JlskZH35*j79cv#y?MMmEkF=li57?HMz-zy&2nQquzR> zBx6=1A@%ieeEs^zgrJkO*e6c6A&c-6nP5ig%}P`z1u`1cUEke!5dNr@9mvevS`P?% zgTHyCC-|T_5`0^)d)+mD{wvZy#Cv<)>#i^S`4``c%cF03@V6;bO@B-wQrkS-n+e~A zCNV$Xm@-qgJBKoJmxrimzki*mX#BMM2~#7bdc9m3$!n}dshFQ^4ArU)k`fUL=xN{l zS*NExL4;6Ocq0Rc8ygEm*NC2E+P{~-pFw;6FdTjgJBd7E2!o;AoLC%to9CEj=^eft~lq<3$`x8rK7>0HU^>b?n|P(%9Nv3mcO2w3#1 zocUe4@w;g&CPbrn$-pABjy}8_1Li-O$RLV~y<{NFs*Sae@4RKre~wL{D9=OTn;Q-0 zlQtzfh|{akiv$!P)%`1GW<;&$?_wOep@nJ)WzHwii%^ zBOP}p90`wx*`pC#>dB~%sOnS2$uLIlG95XEL~v=s1DWt6=C1=5iM6RU*?Bd6e=8mF zm8i)`AxMt%@`2-snd6K6d==2qAvEUWE9Mey1YEoF?KgmP{y^{<6ZQm`gomK0RbW}j z4_jNDOyO#C)L2|0AXYg!i78*o@WAaz52)k4M(S8(=u6q4 ztV~PsfneRo(9Vf|_7i?wdom9o(iVhmZ!u#IdSTWvbH8{X_@$vE0K1ng&XNfq&v53f za;)WW0Gx7ve|!|v%$34>?Ro`Iv!~r@d&IQ z2+lnu*qS}L1PG#be8lXMx}Py`%bA_N`fWKGVm$EtzMOwKAbkuZ3#hXoi;PwIWu_;9 z*x3Pys~iwZVL?D}yn7vn2hM`6Igb(BRl!RxM$lS85U5~1bxd+DT1e#g{uX$~I>2+~ zK=4%h5Qtf@ttutRPjD=AoS|RTpKz6%lea9-EHGE(|AV~!mY=_u11k$geq51$XMPHw z4Ug-q*I|1lKeFNuu0E*l<|3Ep%okiiP@3UZYk z;nU{297W`RT=pc)!lo&NtL3`1WWJQlQP$QvS2kDQvC$RMsE6gb?sHV=^DK3r0NZ)t1 z)zz56;I!>Lm2p)ilcIO=jb-~3vo~1H^f4YZH+KGFfya@k!|l;0u`>=c{_=-$&Xvix zadL-3E>gu--&W-kZ=0|SqZZJjvP};jw)W1fXf6>GMu)0wr{jJkx~Hvq8fj|!%x})v zo(^+UWp410CQmCEXEoIAm`MQcYIJ#?Cpev8Yi%vrK%(8IqVD18j#PE_9X%5^BCxbN zmBH@LTDWI5dzd0ka7T0LtR`GrCan(M;%88E-4QmxnqzNCTnhh;@zwc0LEI6j(M=mT z5ek;*W`sgFo0`B~`k@)Gc?@($`9{KH{sfQzhp{0ov36{3Ho~qvYQA?!q<+g z1c`qSA!TK)X`I79M1OlGW&jqHh!BF8giqNFmquyaB&D1!Av$6L>yo&1l4E-gS?zT2 zVx>g%^y$xk(4t{{ULb0FqF_ciY$b3%Pow(VZxSu~+=--CTqe3mZt4I3N1KG8 zoi=O-xwV_^9dAuJ0~Xs~CGhHrN?S~%{{Z3pL2Kc+6H}Cu=plx!b|sPY14vaZyr*@z z{nUs$*y(2JOo_hxOo^l=(c$n0$8&dW8eJ>VMPPk@!~neLxncGgh+vIwBA}nUlC$YJ z4SAvRVpRBI)ZsWa)P{%P7VDOXy8nGv3Uvy2OD|&WtsLmPpC}2+_oR?WT5>YH03jFA z)AzV+G@^-q{X2K{MQZW|kFKIRVez%kPmh2I()ODdgs!B4D5{YD?@UZwSo$1X7(Qk1 z#O0MN@qF)ZSs72^q~_J)1YDDIfE;ap5iIx71&Q9D5i>T7g52#l3(Apr72QPI*sOcS zc=}9d@~g0DE`ECNFgx3Eupp7U{l=kB4N{PSOEglo%b9bU6 zwOas_)NTPx41yyq9e z-5_DfwY*#-n#>Y-rL$)&`Td+p2^4=XvEHh*JU?WgaU@>&%Qam~j$z_W8(B07)fTci z8(^Fu+AL&p#{43)mZCAom@Qs|3)I=;D^{5N>KBcm+csselO!=DO$BAUhg&vVlKg{p z9i(Qvh7qSkyrTUkVj9tn=SLm5M^t0*(snlDUM5I9PHATzQA)%-qMNhgA`up2Mr-j% z*rco)N2<@4NMN_n%k5g8%d^HVP&mx%!d`+N&X{bzi?VhJ@rAV{rJ_znzCqs~efK2? z_`b8qYxP21^|hN1M~;+7$|cB(%Ig!y`-S zV9&9B!dCQ7m*3fxnXz#h&#%U_Xr3b=V&KmJ+;dlTi{0K~A#AU<>jhw>rBOi;*e0Oo z>|yp$MP)l;Ro`0pTM-@=60Wu>v9Cp^7H*)85OZFIRUM#?QMRG$FA4}*^AlE8N!Z#ZQV zbxl>BnG|BQXw5t(K-%2$*bY@Pb4x?<`1&5T%%biXEy5sLs%m~r_AUXH4t=f@xi=SY zB8(O|TOM1w9KT(f%v`^g$k2k}7PL_R($n6LV>5+8hf8q2wtO!?BZq84Y6~DOP%nuU z9oz0`Dtq!wqQAMSTh2V}XU1hb8or?lL<`-c!&Wfg*<_$#AZSKqlhu&tkMG>lRQB>i^3ceN$1RvUQEc`PLoNCD7 zAZ-15CV21LdV}*%u`hE1UH z&?#Yta%tG$PW@#wD`B5Gc2flx9x+9E`7Q!t|7$vTw6UKp_!18vZrK7;B{p@AAl)@- z;>XRa>|~b+WM?)>Y^t1Padp?x`NQG1lhV+>=tnj`hTFoMmwrP#9M`sO!R*K$=a1Os zS6xC_?A2Ytf9yW+X6+c8Zuoy6!M|^eLX=&g_wvj`L9Vwo+g+Wq9ZUBH7aReYh52xS zgAw?*pJQ$o_}h+B#Rln|x#tqu4sg)xh@%>AZ}c<+yLHFy#&NUc&+W+v&z<3Rsi;#8 zCtMBhvRCi#H9q~_$#i3WBi#jpfbty-(0@s<2-lcSGI4#)Y<={HfFP&PZPv@AO^1xObwCqh1dVaf{Ts?7at=RDk7Gu zAd`6VpWyOah8SfA!*V{^yJDRY;T@S^(#77xDsls$+wSJ*i0*o(|IDv9g;!XFGDJ9q z<^*Flfo&Hc&E8AkIh|nR?VwIm0?g$_u-p7on%T>4%KQ=q&q)6#+W|Cxu8eFfgmT_o1b=D5JFHjB`ElNOq+ds?s%vx=Vlj*24VCNr~Wp%0l zala?*Ma)sQt=yum=mxqYEv;04fO9bBC@aH*Dmv)w&c@uwUtbr7x|i#t^+ z*kf_^sqD_k)raDEaWFnIxBJLz=`CNJWg_>=rrRgNsebnM42Oqh2POYVI~@M99?9@9 zpGV}hi1y`VR z;Qmj|i4S$V73aq?>$k8CbbIh;sZ-&N)Vs?H(?gl9^WplDaI5UuUKk1Qv*mg-8|6p} zHi2yw4=u+(T<-S3vFp9=_8oD%d?0wwTYF*2LAUvjoH(&c_X)C-oh@aX&9#xf)i+B; zFwb7g;7`bo>CHINDbQ#+Szr;BvlbPM_SqpW*}>nKU7%dz90KZ<)Bl<)X7e0-`q|bU zRnynj46lcx*H_tI(*`HSZ1FG#Tjbbdw%M@Odi{WGhMVI!1wfv~ETnv58+3E^y&2jw zbyt0F=AK0LltZ4bP3&V|2bzN&vV+)e%e_>#y0ZbWv4vq_%)|BJ`dJi=5wkJYO#}~i zZm>`}#fHOh`!$!(-gh|~$a?ArPgVKLZY4;R!fP;cW&UL56b3#vWm+*p0}gv43r z78W=^VMLl>st&@hx2N%=&2H{gS;kdUKQzV54D$@Q#ckG`{1rH-gUT%lT2u; zv5jLFID}%0d2=)t9B$>@^`QNKrv_;7$>0OQDYIrdhn%fX2jx40mB+vjc!4}w65ua* zn2nP?C&G9jO9R2`W5Gk_rgX68*p}dd$Ac@h`Cz-se*0wXPRR@hjmQpM6I^j1*uFP- z*|9BVBpVD21Zz(O1L5*uZTM6$u$QNBBzVg}aMg+6EqnF%so*N&TtzHmnTy1>kY0sHW%Cz_6EJj7J@g0^L+F;}Iz{)?xA z2ZJxXt=C+?oHJwAas-gfz~1b_0`$KSo|GNl{s;`t_>ebRj#J0}&727KK5{7dSJZKC zj&Q@ml-zN^gv}%!jnsulZErfe-u5D6VWq8wFdO`~ImW5whYkZn^On{AVEqwv zGmcALn>L^0Am1umMh^wm1Htk`!Z&_4o!u%{lWku*e9ZgKm*&n_1{)6qFG1OS1qY>Z zc9!hZeU&s6B59|#thqmM*w6*;ZBrL=#zYy3JN{8FX`?3?kHfWf?ylBNUv_>T%TF!L88LR^t|~*z zagKa1lI0?d0Dr*4fz0W-`E3oj!op#}PIh)*-|WKNJPF*nJd52YNEs24A4o96PO9pETdXWcwC``a}@1GNn^JmEv5E7uhO%(B+@&H135?iFuA8 z!$h~0eLSx0VM&)pPS8jqopZ}HyCnZykh>NkdVLy*=H$o-&a>cjhS%rL<{pkd$KOGY zT2^A*?dT`5&paqOsU4*u?XJ*6D_<(eJPJ)-6`f6ppRkF>+|AV<&!?@ssP1tv^y+D?~K8BRdjvdBEx zj5(WgXTX^)R@3=0z_}xfop#dHg8k_O4OYoTPMhoF zYHS<#fWUjeN?6ioCjUk>JaS$c=XCH4XBx9Vy%7A#qa3nxIDLpuD+ms@m~xc!<-U%5 z@cWNSmp+|7@MWr72!0PZ<^_(&IWOb$j}8Z)OCJhRO}KZ*DeUyRCAabC!!+3V~-95|Hkp1KmI6!{vAf_RtA<`r_f*BzWIXETG+Ey3*Dts*2RxIhF0I8%i|j94lVZ&BoKvj_7L z|93UsQ^;zI*%8(5j=rJ}PW9Lds8UG`?RI9X?ckA&KR!wifKji6V{MdR@E1^`P{yde z5Y-;+>GkN5Q_uFz!vr}7^Z^|B5fi*W%5mWUhsc1ieOgNg7$1@vwwND_>hF_768prc zOZF)`^@?6yAdwo2D5D#*XnN~|>BP}B7Yv9-`GH69U7;CT+#bp-HiGv(@>K9_jBEu^ z6h1yKk_qSSV|;@<*<$#q3@TE11oi2_lv#}l{z^5$JAOqcbyT-38xSNaKy{#P6G_37I}U}SNNrQ%qvV( zTZeDh*Xf@hz6=;xBC!8B8`^x9zmN0BQSo~HWd`6so0XhNnoj>Dt_P!^LuxzDJS9k3 z;%K7Bb~$Q#q9=`3ccXYJS4aPH;X-h6cnqfZteN8s(q}nw|0pB!m7pt_G~e*2$JhPI zGxbc+Jz)ME>U)yh|Db;>AK%-4UY3-kabe}`!CaBvyN zgpE-1SN&Nz^~`n-qWl|w8c{uSuN@02gx$^Iy16Yaa3hrMivyWSdo!HrJIKNoCanCJ ze*vg}Z2EJ2f7s)s(~a;vgo>>Zj@^pG9S*^z(km7|d~sK=gnj`N6_7~ehI`7`O2;b{R;I`*5iDFpV8W!;Q# z^dTCCgXKTeRs9!?o7cuv(={Mrk`D<@TxMo2m2X#}7Ro=45x46l?+2<6VU_*j9_;rY zKGja!`1O$jbLKyKx=5<8=M9*DPOlWP_Y?79R}Y7)p;0*<+B70wn1=*`J$;g-9YsDI&&}Af%7%zEf+GGdf}U z-{?@^Lzt2GIE+RI1|u6UWO%huHOpC{kt!Iqnzw{I;H+fE^E2t}6+u2cz#+0&9q^Db z&eDqT^8hsAPdcJ{f+W9%=@H%(e5!FQ=stz0n&U6rJO!`&E5E-K7M+n3Vz(Z*$hp$< zMHkv*-KWUiKMW6IA9GGs?yH^nvaVHNaJq?nirU<<<*F4v&a<#(cZi`~=u>8|XJDGl zVaXt>qEQEg(W8ir|B8aLb$3qMi{BEioSWJu&5PfT^zPpqci~qNEHs20G9gf3yuR4l zjaiLRM_>eB1A3h!Z9IK94}`Dr3(7)Q0~Qje2H|6KVcs z8v_ZyF5FK$g&Qa%58Yonl5v?^C9BA-v=X%blB}k zyp`b^7|Jif$9~DrL%csCD;*D#BlYAj@>k^H`TNX15JYv_xpShO=`ytK<{xJrR$IZqP`P5UL*j0-xjJs}L46wQml&&rd|m;Ispq3$r?G ze#AaM6+UZ+OQ>Klq5{4Y7}*2tBwy-425^_p%8Zj zVUl$;zY#{mse>~IqozX}h3?mN1(?#MABkU|w6|-O=P4&FU79HEUTd-L;BTghF|msY zdKNXy=`4o4%m&+ZFEqlZ8{gP+{OH^QhrEuk3f*O19)%8AqlF_t!+k7uIMym5v0-b&dI7uGRvkY3z>;#IUVW|{P&039tan#_wR;o}Z^Ra8 z?8BGW9hCP55A-l$E!(%AbF>=r2N>+5piygF)b)&`$)?$=|PZTc+d!LUt6?{zpKnxN{B(Z_wk!QjES9z76Ta18bF zhU~ms!4f^OcM8FCWzGj@*cc71iM2JH*g4E~eFW;nS``jjn~7s%MT0?f)g@rl+>i?{ zd>jcF47imH8d+yGCZPa33d5O$!T-WZaY5MgHNKu9wn0waLFy91+Kqh>>uj$GiU{w7 zC6e!Oxazb_>$8n1H?s0%S53oXe#Z1K&&-?6IrLf_|3~M= zo_w;gPYdH_#989nqU`#v;9fj>@{X^0jVuIjt_K?jg4xLfoDw@6{-c}mmJ5huCD75( z$d8Or#t-SUezi{zZa+_NUm{u07ly#B;P*o1ju)we18a_yw0VVgQ3UZNMptQ;OQEdR zmy_FWsegq&uaxIY<@qwL|A*!IN2LBA)%yQ~*8ftizo)JKRpw!7Yqb)lkd{qLWb1EFI?IxqUua2=!uMa> zP_6qQBHzMw9Y7MWHNkp;KdG09H2mf5Icx!Vyy!F^kH4VuFrRV2X?Jt(rxIOtinY4L zl*1YkBl@GmF8vti?r6;Y7jeA_|i4y=?hAX8oP~*?7_pfuiDd*m62Nd^*gj z7|kfSf&^8(JuZ{5&6<0DYciTiSiGs?y#Nni%X9jn(%4vVq{I2}nLq z)zgeJRGqTtDES-FQ>|PP^3%1FWs+47Z-0sAIbRE%D>>8OP5I0mlqZ$QDHW|ZnvSA! z=NaF zpe@XWc37+;YUC;+uY~`b+kcXJ<+oI_oT+qw+iSbc7XZBf* zgRrpgW*nC&pBZWFZ&*fc)(N_mo|Y-QK1cUhD^>lFNO$Gr8DUcv5R4V>&sR^mQq;Mb zn@B*}TpiVP2FhFtqHxusIp8I5;*-P%&CG1Q?70RWR;)n80t4sK{x}H%@QZK5)75V_ z5Tbm@nmXSDy6CbNne4^va&r7sqCxL8goyIKS3$2qnGa=T1EgYiRh7i!|Ur?}0? za~f-zW5T}_UMUY&bC53HV%b>IyXC)}V71Hy%B`*0iZvEFKd0;JiEqg8nO#O9nb2=p zQKGgb2Qa(EEvT*W21^Nuc{k}9SmA~6hfR6?Ysk>&%+;*YutlhZ4N9b5W zB*5v~IN81zEIBPuaV3}+bYfnVp?UrR7z#6ij{m}W5xY=Bucm!+oYTteJ0daY+dzsGeYvj5r;_gI3!DaeJNV;%YuyKNsGF2S+^Q z-?W8f2rVW}$#&~$vs(8U1g9=J60A5j`=nn}o1Oisk3YvpI9Nf)oAFuikxQI{ z3x(6s>(54aFw*EA{!&V_gXLuK^Ti{<^02qjczS99b)1Np%}hZ54J;Pxp}2AhvMz>y4Ew$>(fES z9fKl(by>Mbrk8aG-@X)|*AZ+ITP5Az^6YUlymBEtP3Uj9CHlc9xUjHwA;=yxcW}N2 z>xK~F+X>X_Hh;-_?0YjS%<)W@xv7iRzA}2?|M#j3hXC6@$X@kdO%I%%n>-hMJ&TKc z1sfgs4(vYj53DAepJNkI#h$Y{_;^+-qwG6EVm!CVtps;yBUTS>0g!0We|JN0fBguVzm3 z<{e;0w%@*sPuBiIM$xjscRtNWxgU^KpaI9Vi2U{q4g2i|r2U7^xY=s%?IMs4y6A+Q z2vLimDWR{nP{{WXO$W`dCeUQ{R*$CNX+hJ+E%opLoo@3n?m^Q`gr=tPxF;H;mv%;z zlF&Z|py~WW3sa3hCBJe0X7MXN*|cJF+)djV!O4DVZKB4~4ZT+gbwM*i1e})JV ziRri}Yu?mtOPRY-k0npjjg~cU&PnNQ@)_C>5?{hs#1E&tgP$Uty*nJ9KkmO@xz~B_ z@!B27BMi%U)@`kofQ$*-yCkb|L8Yp?W`aMPvilo?kDmMZV-0Hf9CaMzds>bMBuYN4 z3o(ALlYB1MA~eL1bDrgpukCJ)xyN19Mcku#Yh=CMZ{g7`%=lklBaXmf`Oxiu@qju$ z3G+ICKo)tonmsc9Uj%V?WIy3^Jw%+%YhtZLvTh0g)>q!QD32rY=NzxoH%BtonM&MT zsaxvaXMQeT-Hlk#L(yjzWoPzu1pD^z<3z?EV}IC{>4t5pMfFV|$V{Q~I6Wh+=6SuU}K5|AtZFdVJJQYMbASnh~!xjOFQOYAg6JKHA9 z=lf)7x-SPO$Krftmb}~Jyaa&qO>rb!Jmwrh8kJ2m5J5VrXGJlxAPq@FIvsbO{ z5R{pd5U^iEsC>TDtLbgjxYVBx{eFqssf~)124fZ-sF&pR1Pqc-e z*|QEf&g-V{;dc%{rr$X%=n{xKC%}3f#CqYYhdKFZpzX*ZR!b$sSpJS`bm!67Sc*7G z^jYMHn<8v~gt!xnYlshq5j~J-be~BaEFZDW;9}xC1#|lG#PLvp?#|gD4DdjOaT`W+EqJ?%dQ6ebRe8WctQiHR6KKUCE5H z#6vV5k+RPbjdyzlfpCzcAzH}t@D3s?*bF+$M+D_7f$L?T$uFDtp#uFh(};IB@i|5F zlMK|oSq&t~ehbqxSP>4J$?WlPKR$|s$IazkszM!P<}TPFuETOqo-`HNGlDkDrdmxu zkeQPx=6U%^By^b(iQpQ^1;xF=l+&G(=)ZBmeoypR2U^Fo68wB{444iraBK{4EdmjW z&WdLi7mwSo79M1EK71#e!q^jmZ+{*U@Ci;h;YbD>X1Xufxi`3U;2Y*sFpdRIH2L)j ziMQxw*Ek(C?_Aa@*s)qfpfKiNfV+48eCZa6&Ci-6o+1(*dN6!L@EdP`Dmeed0zf>W zp zmG6i*oe45}=>SlQu|1hX&N_Pl`|c$J5}r*wp@!rWmCtro{&MDvCWpTCMZar=Do~g{ zg}?aIL>E3OyEO>4VLZFduLp$xFBL@3iLD!n{1qC`%7;;FmRJ)(;}796nDnXB#F$AC z|A?c9WI*~Z$0vY##Q^zE+d^uBgoJ~9iD|1*nZ)g{GN19fd7`Q4D1cn*geNY7_DQs6xve(24fM6GhbjTeGqe$cx^n3yf{9bFhEMn%F7-xJ5nE zbIpKAqGtpFIrAsb&Abm&O*VfKRMueHIO#2sCPY|4k2xltKa@#(H75g0w_5%|68{Qe z%HPjI#6Jsjczl@<=;O=Wl%*4#?r>T{8}uI~{(zi+Mb3AeBnYee3y|>jWhAqC z1S}xeQR{LjJf}Psj$kA>!-T zV0**Yp#2SA6M2;jCC_%G%>!xm6~ZO>wDqs0FAYxqC<9 z9VWFlYcY5=y0San~XBl(s5)Z{rPp9AaI$-@;}2m z$2Zph$oE-T4E_`Te$#=5yX;9U{g0V1oRc#H_^uK2@8LaLCbTm!ml_Wa4$h3F4WE| zKEQDQJbxdNVOOo;*Sxr4Y-b{-5sXH+PRD|OtRIj-*q1x8uA;q_k;txFSt{{+QWIA{ zdmLx^CJ=Cvr~lXNQ{3I5^_8CRK$BlxdOXquRw4(V3ex5q=oLrBT}g<~E4zcQK5~lD z*`UxY97p6#3GkAGJK%5fL?ut%f65Ct3Xi^G5z;sO9f5`XYZ!HfaBGk5Qx! zBN9tTr&DQFpCbG3@b?sd9EEBA+&I2OAwLY<`e8^)t=_g_Q1!xz1qIfwS&6>oHw7oJ zC?j|YKbg@@SJ+ni5B;m?ChZc6N2lez=Ny1zk1(HCyxdcF&kuTzx2B1!qD z!|$+@)#@WjhM!uMNU_tH)jz9QKF1`ym$1k$-r z$!VK5NI6G)?B(%`majsvV9Kr0MJx@oCeoUq3^Jx>Sf3 zTX(5$a9zc+^h$Q#{PZ(hKQcGPhjKnhtfCL>0HBYi-6k&d_s zikto0eJ!VbcA$}Jz>KVZ3w!qNlLQuQ448mVbT>*om2)QZiTR^Xf*ywCeJJ0-Ot@Ur z&y_gKbY?j7<)Hsq@J}h?@F0;l;*?Hoo^YX0vPU9uYi@B9IFX##647D*11=G5&4upD zDh^z)E$QF8BsxQXEbZB^>{QFOfaA}-743YDv%cBituV^zDzCQCvL(UqXll8=S%-za zNi4%xogSJP98XtlQ9Fqy;v_TM`Xf!6IMziop5Tq|PN?0%7k@~6VLjpH#8g_KlnP}5 z_iXmUHJ9ONtaa(&_(kltd!DPcIaX`CzMIuru>v{hA^4@sdV`hD#XO6X`5?{>aWiN4 zck(kY#(rkbl+pf+pP9o<=H(}mVExSM1;*LD@3G)v^LbWr2rp4 z`Ng5z?0GXE4$@enoHu1BgJo{A$CedTOK6FZM0Ze1xSlu0O@y}KPjMAVKmghUp}}o+ zSXPmVg1LQ*<}EqT6nxV60f=o~7GO8Kyvy->hy%ZXYS(wcxB8mIX|lIoW1A;ErFk63m4sr@lvX-4?b|EotG}$h)5N$QzQfPr?vfzvwNfH@+))4-R`ic z<)fHSSYMAe_e6qc5##$fmN=q_*r@a}MEz6VQ?OQ=bOGCX&$g1=U8g&^4qO(N8>DBl z;wjC2s6%s6yLq$vvfw;f{Cq0>gM}yOpC)eL|9ul&)Kb5T*hcva-K{cj5&V5GCpgnR zKH|BbXfhHuN2A@RmdJne;V--6(X}fex~D`{Y;&t6HX9d`oQXQ?-9A*^G1asURm0NU zUWLw6PvY}3Shja?F6+&rmv^_#2e)NLx5>zS^I<ldySl`Dm@MzOSh*xjVQdu1y1 z`bMQ7hwOP(NRN-VC(CopT=Fn^|ELGe^We^=H!j!Yj2uAkGfh^|uJloKs0|-r~UfFd}BD1s(qOi7EhAwwR3ZB+v&M@WbsLAh* za;DX7@hdxl^e6x!*-cryk0Y^P$K{AUtv2BRr!`wOvO|9lD+r;^MQU9qr~O)}+Hu2n z4x=jN&(!};>bKXu?)u_AKUaVMmG<}2zP;`Z_JNOo z0U!3dmy>gQf@gWQ*LM6_yvF$Y@S~hb%?U8+@LHjP<5)6g!wQsxFWDhcH;~i2WY)=H zLGPB(*6{c$b3QEb{mK$Ko0$85zVHHmaeec^zwe&6om~xWOf_}Ot^PY4&uJhgxTWWV zSTFOsrg-p)QRNxK#H}& z-H8&8A$ut6?rR~!o!|ePmOEd@sVK1Kzk@X&N?&O92bXfr0<0JAyg#^%W$bf?Lep2TDohmOwDoIls)%G>k1!tZ9T_p)kv`Z_nWJ_<>-4; z>^4QKdV5ZXgVQlZSqFQX(A%8(b>!U)QAVz}n58wxzK}z~HuRVy!7UvBv^TiBC+It( zzk7q%^#rdvqQ85CTYG{VkLd5-;J28szr%dB*Y@Yn^8WL@x7WSFlRSTcXM5f2(tmK@ z&jau80{mHRP}po2d~_Z|^KsOo`_g9Xip7(BxZqrs z&CHaCbf#F7S7cnUh?-Gob)H7|fQXIbPwEa%nzC*y2) zJlq6--4rniXX3&wE;(=#Lzr^~`SPySHQD^m@?sR&m^e!?xZnUgv(GyBMF-TxKC7BP zpBe~$?$HxCrcb@|s8Ho+!{gz{gv_vgV0NDhKdMA3I)Qw1>)lFL1e0_Bg5>12bekH|7O+mp|e?||If#qrc~2M4%2ZSLuw zon1JNGdi5rPX}(!?rsFvvaLI~m(`r(K5zhwgf&Fg$q#c1jE)%FwB-;zz2_)Uchn0@ zId-X;7JWvtV9i2rZtYJ>%1KL7GG5$~5PJh0iQXOze95 zu&6-~SFQ}c$h-;zWFAq z+WY>&aS>Lft`2V`T9ES~uUaYLKCBIoX8DIzjA3oDxSV6Y_Zk0f5XSBN0jrrml{v^M z?>8M}{{o>)^Yc#<=*9UBY^b^@eCp^&!p&bYoN)nz@+V@hRdG_6QBlR{g`UADTQ&U| zeD-V!Rixyr845Bhs9eSDb!T+GXpZ^LEni}fw0{v!|C9Q?->$u9x`zPfc%OC;zY|_n z7x62Ls;`d*%r2yIjGjZo8YdExUWp!gmpRTaHQs&pBV)gXu++*$X9Qt*7ukcwQEm~4 z{ie|Uv5#^VZP;^y58|cMKf`1)scjvnRAaKXeylun-KO;;g~Iyj>#xgSw`tvEW3ptW z{rXM4*T;gMk07oqBkX$%)Rmg77mKA~Y#79b5dYucFP8sMY13@iSsqmC!SWvayLnwu zxg)sfjt2xa;`B3L+#miYo$wD*#H2cYY@)Y!J#MRFX=2hrmP!?B^-AwOzRATaUo9=B zf-BQo2mwNEKi7<&>%e%qOB<_JMtT~R$?{00RP14WG4*42-PiNl9=g`Mv8R7S-=+=M z^}nKLI|x{}DS!RCq1s@jFxpcqO_e9{y!G_=^>4Ut(}O+h#_NqrY4b>_QmT~;JPN1T z49eDBx2b2{NYA>v`+L@bl+7cR#tk?0tQ+Qf{S6>YKA6Gd;N%ST)~c0iV{%=ivb$U< zuB#6Yjg=;OIbN!bl-3Q7jjbzGE0guXO5LVTP7abjR;rBDM>lUEW3Ae#6w8$nny-)Y z+*DC&aH%}mR~4$urXF&S1S#U zt-GECdW+a zGPU#hDH>!waQmQ40K}s%7jODT?#!k%_M$3Y#_QrSZn&{_6%h*o$4d(m$ zmPnWUo!XeRqkd*E;g`kyUbwI67(;H=E8)9|IBzU z7h%Qu5k-yUY{qi6hRl%hUECKOpV8i2sl}di+=-^m+Ovyym7OAd?pSM~O%1r`ZRLGNj$>}>Co11iW+zIc3fllf5 z)XpK*0$Z?9+*3={tiQ{PLc|(I_xyJ1=R{wwZOQ$ z&_Rix>03%b>kFx-9TaT;d?%G1t+6vacG5{jEr9NtkXh7;+8TLGSixCKF9hH-6%p)r zst>d;@n+`|#9Q3u2P27dC{I+67O0?TksEF4ir!A5PZaDW89#_>uc|)S$QK&kkFcX! z8Jt{yYqfwA0O!W~H&kye-8Hzr&tCKQO^j6`t8oLI6g5}x_kIO zaf7U%tQF+%R=8|=tW9m=~m_ zivOA0C>K2mb{dtjPIGWvHL6b8@d_;^5pb#GWy3%RwR^_VsQ}u{#f#+~`9V>bJK<1< z#@mleaA?cImnz&ZbS2Zw4Ma=Z5n=?cW~Q=pX;sl`5o!fks&$n&SAdSN6ju_rg1Brc z*9pa=`LU%u4iGXbK*!F2t0n3a$*+1^r^afHN(Je)R8g6*BF9=dl{XjEy6;r2v?+Wb zsew#*^{g3D#mYEtYt*w?h*GefQg%h0v;`P343-3BTBxyoc#GCy(cX&s|2oe`eIuL|C~j7dsX9;rKLs#ifO5BiTcGKQ0XA285QPP>A97Nv4UqA zBV*Me$aPxv8d+nd$)>cLPO&$>?%sO}&TMUZtr}FmULF@}XnsRlE#;F^!#8ZOvq@Z5 zDsbAGsyM&3FQYJt^3s$bZPoIkoW)$a@4Bmeyh8<{CDN|7SY>2F0u}O;rP5ABWXD|~M>`QL^DvGbi4om03W{E~HWyd6*)c~&) zC)eGj^2lf%5QNbo@|YLNR`Rl#ld6b8D9M7NXz(%c384^GDz#@%e#b$~r>y61gt7cU^pEj@3-%u4>tf{Ocytu4%saD#Bjbg_D;5;F~6j)~& zQ9$}>QoPpq2MfB^rm0eRR|9KEpM;umQ80a_ch1M0mjwq+kk03AH8y+Rf;U*4#PpLQ z5k*0bnjiy)mNz!0PtuywbZNRgS+}TF@W%)9tU-;GQk9L;tn0B`H*!t3KweP8U*@GF z$9_vwr!IyH0NfLkc5rDy2)TG9&Bo7gYIbWeDa8u~_JbX5tFQ|c}GGLMwSrmmmuFqrB9wXEE3F0}{1fC8H z@}KOEXsg<(F0H7nPy#1vq|eefl^1e@abr_9Dmr8oy^xXD*E$qL z(4yA}Rk%X0@Hcikqmz%+8lo4;h&VZ6r(+Z9;;|>2L@5-;Wa+{WmCZYh2dXwWk%xaa z;o*ju^gTf}lzRxgytJhS-vWe^a;2(Ri`5P#OPkRR2cF+C7KY>D5Pn#x;=?OgHl7eg z2|fTLvYadKMRK0+79po_SZ&J%dUOfBx%2a<-51kYkngrANDsq05d8M`J@RVv( zWyj}5CvYlGf{RKn5i=7a4l0$YKKXG?=xF4{c5s007F9Q2o^<-JL!VNg;t$%ldTCx1 zH;Yq0mzjo|AYeo+Q(Kp;GyQp7%JOSzOBI-s7`~2Kj}5uj9CcY{=*dsHVXa!V<7oSY zYs&*63BsVf2#7d5L|8A6G>FAf*wB=eFSDA`n3zDBbX4F}UY?KP6PWlh!+nW|Tgf;7buf@9;%eT8)l-mCWXjwp%E_wAO=9c-gE#)xG6qCF{dm<>USKL-xs7}l{hkKL<4QRLwg(L^b%K=xT zHZDG44T`YHf;gNw@aU386MQ0~4}}_FtP&pe!)X|bzgkg6s0DIz9Q(vJVihN+)}iL- zJ$X66ZqRJ1@$<$#vPo}YS=A&lsqnod2HJIxfM?KU9_OI?5;tztMa1!HL| zWUsHBSr)NB;W(BfCTVK2JYM#!n|Q$z5o!+f!D11hCu0jLSxn{%b3hyNA`v^?4_!$- z2?C!=W+&jiKD5zJH=$4&w@SRHK)awzr^?{)lhIn)SAViE@mK z-9)@PRbP5O)EFKX8Ku2W$~vNx>da>iDAdxz4Dy1>#w3BFn&eSum6^DWN_B#TCR=B- zKO@%EfK=pqte-f1cqB{RsFx*OyT^MlloC_K4jFznwZM`nmi*|Wb+HYbfQ!9M`F>x4 zQpKcrM9?~%>_mtN^?`fus}sT$GG%^(QB|aDpIQu&c=DpZIhhdgEAj3)hAZ?aU|KsU z0@B+0RZ+{ZD!o@oGS;g^TUJM`x(4i#)gUkNhFIFPv)fk=2;(Ko7KAdLo{2cB7Q6-* z(+*R=poXkO3Pu3IIla;)UIjEi@mTo=l5dmVL>thp?oQ1c@!wboL=B5&ov_V{_?z6Q z5z@V@;k6k*YrGJ%@>r0hEm$9o#l9UFWkQ1b*hM9%Lb>#QH{Xk5*;)HSGZK=mbYp87 zhYv7Y^8~t=nfTh4s3GDi5&yCHh-=U-)G5nGU;?Zcz%XaLG6tx7H z(tGEf$`{o?Wi1ft;s$hS`M>{+S<|`5Q_HM8-of_soS`N|V)Y#y-D?V14N$u&E#w4vcm@1M| z#BwTBYid79vWyt!ZG>)H3BglRE`q5~Ft0!TsXcx2iej=Bx)gApkR8%qd)qCy-=#>4 zs;mu3o%}{A3Jy1R>D7uGp(!Nl6aR9}J0=A&WU3QYjf#qXkYsTc(}H%(QG=ACa4SmeM2SWWLhyvGX^HwNO#2qnGu0AJ zxR`{fmA=IkXPZ+R_B$N>K&kD!yEv$XWOr)hCkm5;1U1z9Wht=FUHelzMHfm*yrUFK z2?y)b-+ukwm@4$;C1lfg2yGXIO7kM+5U3J2FSJq|)K(!qp&FZGkGeW$G&iXeIAzAQ zE%NWshGhau^;%elVPmSS)J(Hv;&&XiWUwNy`ce{#Cdtw@;xc?EB*|uzyBMtskVk`b zKwJVUFiDK&`mML$^TzyJZoNe*mwheLEn(gcQ&MGFVYTm;sz2&=emCQ-(6q&QM$b03Kk zmMLz<)bvJyw^+r&$ipDp6%gyPPK{0}7gdJ=qcKq=aD8Hu=%iFd!N9mnO~gR-(S~@c zD5#0kbq$(L0%P$vqX-m>23^wz{w6b(25U;wv^9Dp97CxuSI8U2n z&QcR_-C~OM8f2<&uxoxVzM~pzkwdEC$MNqeu?Z+wuJqTT5H!M}@|Z|K&?=hr2xuU> zkq7)DGN!zU+mP-+D@nQ=E_` z4MJ&!Rs!o%J5l&|oGD+bQfkyu`e}gWVqK|VIl@M@pz;;z8|G;~wMX`cP2_QH7C;1@ zNfnE(PXcHmMc9#c5oaWkIW!8}VkTR3M46?muw+3WsuZY@XdzhzsZ5G#Ox-?1dpj``@;&oUynI@W9YTWV+nQBk*UJ#*BMVJI8 zi&S_Hk^w$HuuGCn3ipRHbJv=zhu|!LlTYU3mh&l9=hbYE(Vk+7YXUS4PC^50wNy>Vyf;hA$O)7d4Z8r@gR3Y8(%i|eEZ}tecgUON=%Scdz>}MAlDp^Gm`D||N zd4W9%M|T6;jI{Bx22c1hZY=37gk<{@(F?4C<|^F&GSb!#Ln zxQM$J$CT#HBYIhs#1}^}q->qUOCb7{?ANv#vBr0fRr6R`gA+9Y0KZEmpMnuHn0-Zj z*_tl(6sw3Laj*~zH&GiT*ocmgvFlhW@a@O@;$4?gqr@HLQ&ViAlA>;h8@*7BlF zp)OhE#K6OeJ)^Z<~DPoF;eI#aTCys#8=E2l7;>%>b^VmErX}7joOx2 z66h-+>%jAjfW=+Knvdk%xCcm7_7G$TauqnZESro`*-K*>bdb2ON1zgwjeeJ^@O;IQ zOaWCQcxjEv(FO}DjeL#yA^oCzx)Pmd5lEjg&UR^Xc|(DX;>F^oJ*nZsDE()Xp>#*O zn?jWl$jQ2i8uX$CH|-Iu(Z|BIq90k?AvImzv2z&vQiCG#^dPRR-&pPtPANtJla*DO zX=wqpOFhH8cF`KZ2%aUU1rXB|#LB)tNGT=z!u#~MUrcAlN%2r+f*_nF{FXhrP^Uw7 zYP={GjqETI#Y=Pz7_;3!FS{8f3|hCE%g}3Gf((TMh$8QwxX#g8%QVLM1%N4i7DUJe zM94+5S74W_Ldv)k*(=L=d@TWHSgurybXu_4zel=M9b;L9eU4%{6wCdfP%j(ph05qN zoJyPqaJ^|y-D51Ib7sZ(3{^ucu;GH#DdQ?o2-(Whrj#gUOcw(GSSvv}_ZY#;D>=q3 zvgDkPJhsdj^dk6`Ka>Zi`1ttbpyr&`iPx%;PVOvEB+9q~sC?2FI#}L;X+162VxnwJ z?ZL;tGu2@KhfX5343(yo`W)1$G3K(3*Rivj@m5k)5|JrM1$1|GNJdJxj}suxDzXeV zDw~kNIK8dc;KpcAI6ac{-;%HTDmJ91MGD!l7>@$1fId|EVJHm5&9MG6*kJih7!jH{ zQI!%hh;buJQPo1(QZz*nT#N~X#bTztQPLz`EO;S5HfQpKP$yIZ#^vdZ9ED9fZH7l# zqE(K9pMlvRIU;JpN*FBG8mg1F&1w~TdTN1C7BymjvEvJ$$gccUZE%SBpbUnTNqpTh zXC#+JlQg5VpGn-u>=*8_fet457kdTp(n*lw@Gygi=K{WsNu=vAQd+8Gx2Mx9(6A@) z!;o#4^rRnapWi(=PleJouCC8sWZq(y`2!rlGoTKR1Bv3Nc@&^TJQW~irZ}D2Q``l) z%kM^r;abZyNP(X*Rg_mN7HL~XXLwYW!-p*gQ^Ek(^Z+j`(2Fk?HP&)ri!mv@Q2~b) zFst0;685Z5o0P#3!wxd@qZnf`!qkY6JuJkiI{suq#{*K{K@shTG8mZlO5YV3B9TKX02H&#L`NHp>PAb;v?Bh*h-s@WgqnyQ zMn(K?l3p<-bVA5E9|}wJ7+4M-5u(mr$LukQ;H0v*SX`X3aEZ7-Y!xC^kVP1Je}(9e z)6k95f1_1)s!>=dK>i*Hc^N<@AiO;&Ei%P*ieNPg8LhKpuw6$eiD435jbs52s%_RO zQpE|;dc(eH@c({y2awBHwl>?|gAuBb4Jz)uQ5gLotE1f00q8FlHkp=Or5>wR~nNtYf zJkyDjZ^U;q8Y5Ty0Xr;9YL}3Vt0V2^Ju`zY8Q5@>rQ2wxHM&U^2_Ap7mB4PdmKyf$`(D7$td1K z>7`sY3X2f#T~sM94U$8dIW0C3giua`f(dklzgEWqlXwGc1g!6>=SEN=P{^S(%5_9> zRzR6p)-n)vdQZMwmY$-xiM}efi#%?SADvG+n{+O1vc;tP3O16aRSYt?Fup1@3&qG1 zXN5khfx!$?{gwG39aR|`F(VyInf9XS#4`gPHCYiZh!A7lA6JV=2y9W5V$mX)fO>)a zRSR{7P06xEVOnH!@^-r6m+YK3I;82r-E!-;JqVEY<6jZs8sRlV&EdN=gM5c|<#c4*JEgw^M--6-KVxD4c}>!fM^UsPQ){dXhaf$A z$m0IgE&{;yxHon}ON<<{yUi4Um4FO@ZPAbb&Yp!AsZ@EH4#UhEXO8I%1#4EUi=NlQ z(o{AvTu3Mpws0fCoJ>e$4*Nf0!Q=GAF?W5b)yZUpF({vu=@3sK@RKkSQn-4>Bd8t` zN?4Oh;PJF(NexlN_)40ksA(47R4G9y=IbnutKr=*2B&ypTqfCW4+#*?!fuL)^AcZz z_qw5)tEw+Do8T$-9*v|7Df1(o2*Hd2EZ#-Es4?Hij1x3s72y>Z4TSA5Mb7ptvRbJO zR?S820lq4na0IoN>gumiCxgr?P^cH|`ZmoK{@JHwOjpFMqZTG)p@RriXJ9HO2#tMt??fY64=_ps+Dmns?|ts(mP>-x)Ma+3BrQ)Qk``{p`D4% zXIBe_mZv$53i{-iHieZqAqE)>16SDP2fm2@Er><^NaChxZl%E0RB9JKCmcO+7^p{% z15su}WC<*1!-iDb=}A}%)&SXHFTg|aw3HjG45J-YhWq5Fzr7>}-6lVWDJ^f1ADjk| zCyq)zMbOsOsafXVFjlP0wi1o|^C7iu7bjL1Yu&qyTw0VMkT-)6f045}Juj%iJwj#t zh-a!XMsQvcx2|qSPc)P0fPb585WAMONNCrt_{zR?{q_|CRCeF#%U!bRz)q!TJwd2d z95X3dulI%Q3WS#NRKc!4UF1L=&@~iWV`XHV8YR41)CFDCV(k{~O3P{iO|*}N5f+3d zB3M}Wz@0=;VFiby&CyhyEKf|bp3X9Q61cXW+GYqK&^jUv=<0?mPcPLclz>ZEFRY4X z&x-guCCs|LJT{Xq?l%F@30C15#2v`ou|1ImA&*X*6l2n{Z^9RBUhpD*f+i3xCj4-< zR?kRU>?wAw%o>hsE6y~3`%Ifjwh!A7YKf{Ls-rqYY(-qfa0iNL#k{afM1t)^Gr);a zZ+;OGo(I5paiaQvTKg6-yNW8^N*Y3VwE~0Q zx=*@K_sQv3I=&*JL>&Zt4dSa2m4J>Dm5YpCp|7BLK_uho73A@?IF2Ab03QP==KgD~ zzxJcf-lN}l@BWhB`>b8Hs%q7$wN|aFy=t-#p28tS^NlL!-^JMCMqtx`w%ZcNaAQ;1 z38E#$>>#UZ@WJ~wN(Xr!$mo6FclZE7mNeK%^b}%FT7v}vH);e$RS^=Rkw}$bF_}4X zz9uHyp7TYY*B&<0~P-}#;z_(yva*Yw)kB>D<*pSZs zKf1jE<~=ulVB1Pxk>4ICN0#D~^&jjJfnw;zVx6wNrMCuS9Sw7E7;!ZiaX4)R!yfg6 zX@)9WkUPk))b?4+p&N}cMU_21byx=5Mi2;4tRcSzms^i5HL8!;ZV)wyW0r|b{CCzy zS%;shA$~04V>7LW0qK|6B9>Qw*AR4KSRx}BWujHtVq;{IKy34nUr-d=5ba2bC^f_! z%W4l}Evorswb6$!$?@Gd3&AJI|=3INviFh!nn$6p>|$0 zKE#`-EB)A?)awucpbyj8667-sFqy4mQ#_Qa`WzRLS{TbUggM|ZeC3bmU49?Aa5bbS zKT?TU6gAYZ|BB$yRJT&$p}{cdh03-5B6cr8M$6|bAVcy~LixfY>hj{~WFOXrBTiId z0R-?8)%+*7MQCIo!GP!;fWbaGI7PAw8iYp#<4FF97`9zKB7U(tG%h5G2c@jWq70qN zNPOD3u2EA<<&u2003`C&p4bZFutRX|(V7JtVvTz6X`Jlgpr%RmE~?pseJ5!`+3=`O zjSXP<#RGLKY$FVUA#AqOc8chfy=KDASX(n7#Dj#ohV=@6yEHg%P(${+K@EU&!7gYH zv%rOI3>Z_&aQUHvk5Ay&6tjQ0AI3|A`Ql9vz*U8mQRK)f2AD?kfS8Fz6rUqOC8kmUsGmDpBx#WHOw)rR{|{G_4vIf+xr@jVk48IVfX2Rr~mvP+ZGTusDx!4oJ)W) znx?oH@+p3`ZXjtyI7k68|LBHG*e>i;Vc58zm0zW%DpZEIOMD!Naybg1K;U3tmKOT$48ysgKcqG(ZV~a8bQ;De6FC50P?*n`k4Z<|VA`yTW%xLPx%5)hK|NYANlNul4B6!p^1JdqK;TIBV&jYgTPrjgO@HzNZT?# zPlKvT&`SoRB(k_ZF_%HD=nkhuTI{UHJlFs!#Wpd9uvKE|)G-y1ZI9(qD2;d^qBrpQ zqxOk5IBqO7Hb{r7{b@@G|!ECW$&W0N=WN z;;ijQ3?wKD`F1K(uU9L>SS!F7w$#+@Hs^$D*A2UHXQYc(!86pKP~T>k6|rGiNvb$kL~1|%2CE`E z3{sq|QcvnJJ}lqlMLnXjOnhc=GYBzE%-M&U_@!TwMTxyUGomH52DUlN7dXhEW+|yE zwk98|;;z8%OuR-A$TSlxhp4>tFFe;nN(vcM#({DNu?pER?8j@^4Q{&);h&Hlh-M+k z1i%YP*#RbIGzO(AL1L)LzGTWLeJk*!TroK=qa(>{LlUSAIt**hu!=KTSK6Y;)D9F9 z2HZs3pjTs;D9?H=EyiSm4a{aVn&VS$bc#2F43?mRP}~Nutf9r^%n@H=7#R+qRQ5lT zv1H!iO-VE}Q~s$TVi<%Q%orw00gMlu6taPqq^rnl@pVk}ZS(pjRvEyk_5?9W1HIkt z=Mgf95+fkP@Wsb|K$EmDyyUkE3s&E37KDw?L&9yoMiqR!np9q

    {Iw;gXG=!@*Msm@X z=yys$(EV`Bs^9GO*`JOf~ImC*dh zT#C&i*Q}X*x&jL^vk>EPRnY>YFCmFx!$6}0?#+NRqfV)w|9n2q%6jx4{fQ*IbN(ZW zVLgspdz(rCnXmjZxi4#^7z9eg$Xx!X)kVgh+;8SJaLTp3 ztl}`gP|n$%7|ruL#a#dy7w+jo`=rEEZ~d`^A!N$Y5He6ir(9h^>D)EGQ2Z&pe6kMD zHF3zo8SAEW$WfQMGxZ)z2DyH-lXjCsdF`RPJ(_Y&O-TO)#XZh!m*WS^0F=+e&#?>_ zs?e%i^C-K^VN-R&{7;GGC-CKtQ}t35Na!;c3O`?1a{RN2@mn4BA)p0G9^|@J)>lw0BG6I_&(I99} zHmYh8FvH|&!VF>YFnbWZw{V%vUTtj_xPJs<1qH{=j=SytibIG`9Flb*USj=w9|7V@ z=b;$Z2kDpDE`=%e>`6gfu|umO~w1It+{+eI4CKeP3NsCz862Y?!0&SZv*}P=V7L6fam|e|IxD?;dA65xU;6{ zjq-m19%jx>11~0OlRt-oEI%u{*a^|{jWP{Mn}B%Fq=JSoBG5mgvN<|f5!6)*{mUcRnMP&TWcsV{cSvD6LhR{{rO78vrFJO7Y z+23*D;xS-4HX6PGJIeDU0BZR}u^S?t;avP83n2?gGo3}$evmVb2uNpjJ0U&^2&tnS zVjn+_=+uF0SAS3>1MgDn`8h(uh)~*}`Sqr!fj|Y%WXgKKO3ERH3}I_@0HyO_=d-_= zVp{oqPVSV)tuhq?6u_4Q;;r*WFlPXo9sb&cG4w63UhRrlbrydbgq}m#hqFx0?`^Gv zpy)_J9WcP-`5SOU2SteuH11iSq~l-ZynuoooV8XMpz6rXK#48flEwNUlY zl><|3ERU&9^XFYCm`wn*Ohl=Vpg08wCzM1%$Ps%0=BPb%!0S|gHyySoTVTnE9;a-K zr;Qk2V8wNy?lJ4VF+%|z%F2XVM8xaJ2|{X+fu)_faLl}pr2f_-DW}5-cz7e$M@>k} zX0As3peQ^QFMyX>ZU02p)ye1t5MSzuPO>TskdH*~S)0c@*@w22D7#!O;Y4@rQI zd=m=+ei%4YhYsWZc_=U;_s^_?>h7rF2f!y_dL!opwQz}3JPCP5rOU#pvj|7Kql)kI zrU|uBxrG>)AwQL>3E-uG)FKqv*+`HFJh@z{YPJWj;c$=S);4%;K6VZVTZ)~jv0{^q2PWiM9Cc|JNkCX3Jvr*>PYKLCiqB`rIo(cuDjN#!WE@kS=b zL`Ma<4dlVWL>npq0tezy%N-|)+bp%OW1o1I0{n_Z$BuHPtTo|@ULEEJ)AE#t*P&p? z2*|#U3aQjF0N{havqR-#nJsy;<1R8}#S#)b6mU|CVkRzNhjmyYn~gRBh8t}pnDX~d z&?eRiQ;I$yRz=i6Y9ly1htl7+8Ad8Igh6b4Z}Ezb!7FxLoug_1z#ni&J8l*MhZ0F| zP##FdT?g{f&lixnYUUj>P9OCHH_7Z_SwUT`e%fFU+;BO@*gnIDlH4K&@0|f%e10-m|FQ zK}VW&7s!nelbFf(6L6e#7Ivg+Gwa!!Z7NQD2s~UFTxUlK%5?3JD5PD5VkwkLO6C|uYt``p z1`Xg>i%wRk2urm~|1D>wP=x5V)DfC?8k~}P0&zFZYbQp&>x+SGShX9G9}Sq1`bA)z zAt+hW3Xhi#1dP}^U|q-Ik!~RH2c=#0Fb5IH@q$FNYcScBO0MdXkZ%U26&)s#Y7>w& zsO3z{VA~lPXmB!-HVf-a?$IrDIqqLk2b%7OV0E2;p1wW24+jXa-?+aF$kmoF3;Pl6 zA6Q{ja)2m*_~=+^I7#K7cRP;8-RAYX_Tx^CKZg>I1xF40LJ3#MQh|am1b3()Gl(YM z7m7dh-W!7}!G-^Poz)ISPK}I9fb5{08aXQ75ZdyJzKM(a`dNPJy=J`AF&38C8JU!<)HFDBD zJU2#jQo#s!YGj0|+qi6~j4*Vs;nc{;lIkm*8aXM~={PlzXi42~P7P0Gbf?B?`{5uc z=G2Hcm{Wt_*gwao!F)>0i}^HiVuqHxG%}K+YW_Jcjg0s{cQCmNm?YGWON04&FD?zw zu5*`!rz`lb8EX;yDi>>(^NXDKUzbya%gxQ-of_naRZlOnt}jL}vo1TIQ+CeE>2t3J zo%vLh@@kM{x!t%|BY4`p8o~4C)p(Z*-pI^~T;Gyn6gz1@ZGxfrNt{I?IiG%3&siCc zewu&A%EU@P?LTd%Y#e{UGe2F*P#yy&8`a}c;C!zAG8?cek5?k2kS~qOX}s!d=aJ84K(>MY$B2}LawPoMqWE^jf_;1 zl+R>)JC^8B6`;Ht zM;qHTWTkzad2+rsuf~xCW~RN0g;Hx8E+dy)R)S)?N>d;=b`@;q`QB6vp(QpIL#ByM z1)br!Id&BsCiAvk1)BHTRSXj8+Ewr#DrDPLFuyrG<*c~=va1xtlUMv5NTbJ7o{7j% z?oFjw6wWslKwq@8rx3n=-g^r0&*@~dJ*6lQG4>Q<0Mu(w$t+ekVozb#(Y2?Xc8G{m zY)^?d_@07q?0j!3#iqqK6`-=`YggeN_HyqkML&3t4-(3>3ZgKSErd$J z4p+yl|8xA%4(}BT9rO9Rt5hiLYgYjuw`ESVy9r$z(~hawgl`m&iE9b``vV4mjIY{2QSy z(TOpSIwg`=IlBr*(T_KcIu?Yl}y0#w(V zSlF)e^pbXZ#G0KF$DZ5-?DK^Z@m}J#tooG_5#YCP{jZgsQGc9U6iO(ukPV9OVr)n! zG0JaHJfY(EUk%~ww!cu$Q}1v7e-x<4n})rqEcLOgl9MREL9w(2>(HK`g!9b%d;d>G zi-}8xgBs+T^L8jou*8*XXfDVUG7cYQL8B0r_;|Chbp54cA3};2G7+IefP8@$RAv}= zR6b>r>qFrs^^U55$Smt+=>>(iqY8qin}5$%co1P8^r@(ZETTe?B?4!xpMs)P?6cY^ z^0x?mcz!XNyxg&uB5e#FB?kM8M4{lef6wYPvOjURKie>ITZOoCL(`(t%XkHBU2Lud zRwm{8O+o0N_6ibA;nQM|nz_RZN_r1ciYkHv$))L&$p3_sVB+tP0~SYw9v}J4H1XIl zib`L~)7HKZd>W$i6~tgUZXec`5n~FMkKnaULmC%H@?9@&(T)PUzqLKp~k^bh1WhhP;@5wC2LTR5i`Ut#b%DKqr*O( zn)GTnx%n;%FT0&L4CO}RmU{nzNxKdM>5nwgp$N)R6s$MLhf%p!UYK7+= z;T2#c;d%|x`L^22cs{EaOU04k)8@o3B`v};3wwdZsJ8ft0IeOH8M)!vFmQ+jBn)r@ zz_T#$fnrBAPqKKY2`)*5UBJoQCRfjEI1uIv#ABUCpFmF}P*DFg}JskS?yrD3-~^Am5^xC3Sn{B|XL+amxmpn>I={d$1t+ zq+0B#-rEBE5*qWsoG=Kuecfk+h{Z7S&CskyA}O zR|-ZV+nPRq+Kh6z{=cmz-!rtkahE|pKCo0eccE#ekzt9EU~C(P8baCcmK@FXf&dk_ zf0;p#c{hBkGQ)`Z{_B`lsPx7yK!y@NyQi5-W}WR!2L-G*tSQ3Vm1as(guEd9yt)hm ztdO$_v?*RN5>ScQDZnjF**qvL$7#_Z{!|LVy5|EN6Th?@Evz3@@To7Z_>@dz% zMp#p_x3GklVTvchezITGEROd#R9?irzX6MKoKBchH^Z_ZQ=TSW%e-h_hAb^o4>YR4#E)Is=gfk!{Md zdQyg@r{k_4b=c6OTp`>59+I9gnGs&qVTC%49c$7!m}bt_mK&00Y(Y+n*xv;N^F6N9 z2@Cs!i;=lVU%*&M($t5Zc|RDeD6S? z$sEhPoCUR6C@MHvVcf8DkBL3klD3>%$sZ4;NpvPt2V*Ls_;D1O&cJarKn0mOUzYHN zH*lVRUZZqJ48D_HoRGP(u&sdUAj~rsY+DXnuHG|cchZ&jw2N%k!t*P8+V8;0)7NEj zkQr}tpFSj0E>pen$ZeE3uaK`>RYvs_iK3XpZegqKhS z=o-&yrV4g0b_$a!*vLsf8Mb)hvAT5{nZ_xmYE2dFl;kW9RS>*ossQD`>UAPQj!oLP zDsZkosv!701b@k@zbQI6gepMUFa}15*WO(WnYu*O029A}l@5A>+?QnG9Z4z@gBFV)(Tp^MhxOJ_T)2 zab=yxr+l^*NF+Q%$ir9x%pvQOegHhtrz|;{KNYwee4@}>QvrBG6IsSTo~Y*3EEJWB zOr3eGok!#>YU|cc1zgd-ytP}0Lo#(@JIO>Y!Z|7cH=vWrEHGTJrt7PkIL{=hsMA%( z=-RlOiNH`ioq->;`!=(2ntx{dz=y8rqjY};Jx$tlz zhuI7Vy%N<;%xt+JM3fl}be{lw!98+G#1=0jUMqDhH#ctaw=R>pVKEXTVsW#}7bCn( z6$wWaZT|(FwC#FBtD*93`MSF@bn6N%Q&)77OvRMyV#&p1yUVg5TgtMdXCfFkX39C+ z^z~tUP4&BIAZlBY2PG99;^LG|zN*Lsp~4lvRY1ka(`erD3N)F1?qF1)&x{>A4W%Jn z7XvEpAiKM2qod7yCUTEeq_NTdIdg$i@wv@V0oTG#AjkAtAT}v1oRj!FOxO{RhwQ`$ z%9iIfJapUa2kRnvXkKF|fD%dPDoO#=h_0&WghVisYnBQy)Z~JZQwJDp5(JZ9Zy!-{ zii|G4f#+^xV|@XR3~fi&14t)(u#${!ox{u40dBf(bqmSjCY!FIa4&>_bMr7UbZ*xizsrN|DceFBM@XFFqP3@@%E_Pzk}mrl+04n@$kJjpn>u&t zMs}0}+tOkcNJP?FQV?19azcRsNT`-u#pG(9NmD{dk4l#sL-y0Yo#ho(jIPX_io#0O z+87qfWTe|6Uy*M(?IIE|6;OFVwk{7bk9bsFU#Ux23l)_I*iXAQi$YY>{Kn6>pLVqa zl?@!VJvdOAO;39(9xtD5Md}YlRWr#?bafNC-Mmk|t2U8LKYK-GrENJ&(2RN6ajEF0 zz(bI`$Syxs6j+e%rBCZ=7fUPf+rXF_rr61Jt4P%>b}w+^6Ela(88+GS0GbJ3vuk|m zD6GziCVuZ~)BcVbKN=8=o%5|Dv)wOqEeb3u^-x+ii_?x8&dQ+(J)QH>Ur%Gu@eo=b zz;5;EuL@|4cJ$Y2yW|{-$yTNdJw(sG5TcnC{Rr933T}jK18Xa-ONG^}!%rAyz|x|{ zW9lO-@N_Ad3`WjJharuX2R_qK$N^lp3PY8bk*^<&WlE09FeD~o#TB(Ya$e~MeH8F2yXMO(ipunbx7quSIt2U8Z$x2WDEwh7qQ9Y$;}1pDjnG_4}rzor+f>&!GV6GFevw z?07@S3isCsrSxfb8@f`VMd_VSvy?%?2E5wxmyVYac0I1lz8 zk3`q@oG!(0ASxabpDHgPk54G|DTkj2Mtx(;y z{9J8%;VaI-iU`~7wik;3V%{(C4Bz;|P)e}kmTdF7ucDR}r|=n3OFrQHksxc(uGb8# zD%I}+?TSX?D?vsB|&Qq`bQ74h8(CaM~PC2ha`Gmf{QsU(ZH<$K}VqsJ~ z)#P3HAjk`RKl4dZ>JPu&%{2a?#3a6rN<*F4hh7wbQxJY$NU*vn+!n7kjn&hpIraDT zfN|4l%bY@6*NV)XIs|$n*`Aka5^eW$JrqmJG#N!(PIH;ZxR!Pj9{7NwjHeGtCqD0E zk(M)e9-b(=u#mN_;;Nj&9@wzhOn2PA;_h~OnQ>eId{uA=@vZZeQHEX0!d8Md&EKT` z5pggMJ#n|kciOgFVVZtM%Jz>Z7*t&7W>6>>6}clNT^bXSM~agiYHSxxh5gz4SdgX1HiC5Fj z9#B@y+-cITik9WmIpJEXVrRh*%8~h4&qG;e@pL90lVXOjwraL{1VzSi#eIH8L_CeI zqJ&_w;OgS9MlXKla(9Fzf>YGxowAAr^<%3i_)YpPeArzMUgnqxvX97 z7Kws9PWc+4rBP-IX?3kubnl);W1vz zjxOdgUaMKcgAOKZE?Ix!F<#ShE6rmJkU~CT9^=(LM(rNs)!pos#~2mt`eoFvM`PaM z@rt{(^ZI+Xkg3_UE1CDjjoP^_hHpkKg0!m~qju`vz-81T_DP4L8MTOX?skk?Mho|C z)J`9^8MTNowsMTxXvZNkDCTMLH@K(8zi~V*h)I@9uOI@M_qCPSVudxvsJp@EV0|Z1 zEyB^V(u{j&HnY!x*>Wymy2T4l~1)nbDZh43#BGwjz`zp`ry9p~y}uq>`nSB3qUsUzHx^_ZjI~I?wrif4_5{ z_aEau_kCaY-uGSS%yL|HF5SxB6!3j%7bq%s{krm!TJdssqkcW9gNMB(m*3n@=>j*V zyvi9f^+4ttbdPw>3=Y2u%bvj9$*WR0Wc~R?ifqwYdEZ76o1?qDqcJr>M=t~F#%H#>L$m3Y7V)r?zq@DHi4Av& z!Zz4uzx2FrYh@`o81+nM(|;rj$%5iajnBS)R~UX-O__9rS4Ev|RkP`9#3pq+SK5T! zI+>%_ngi`Pk{8ZZlFX@-elPbSrpDt`MdR$LJ05V5^1`cE!*AD>WW20ZJ!lnpHn_@H zcgmLQaj5WB=J0myyHGc+J7;Hpv-xfjqHtYz{Ov+iUFSDHF9qiS4}7AEMKiK=1n!L* z;0P;S(pJkBnboeD=$2V$;3<q0p~ zm;HHJ7RSSR!eNB&KJ+TU3(nXN%#ez{Jy%Q8vnIC!7&We`lV-~KNaAWClQuOO> zgabhX@ov8Q^d;gH@YPS-bF5FEF4H{xE$NZPi#E=3w-@KgQ=mf&VM}daIv5*77kw2c zZ$ArhT%>hvJ$`7|S~f(K?fts315Z{6D0L$y?t^=M2*vt2P?Ih>^nab*MdqF^R_}=*)J8VfmDU|lO=T2j?zTXv{KgcxR(3gg z5gKIXRgtw`F~z}r@x`So9;lR+GsZMDB%-Xd3S31TeIdE$I0KiqXQZvF%`A2!w+%jxuV^>TkEW{h~7FEQ3pTh(UQIA?NG6*CuG zsw6*`u(? zA79E9s601wpWVA1vSj}LBhPsM;lT+L{qr(4rsos0@3!A#5W#QFFUAy~Z!RV(KYA3< zlr!XvelKQvem7x#%AA!X(^&066Cze%F!S2C@q!K&TOUDhnV~0!T4C{-kCGI>oKDSd zw7=(gKJ8XIee(PfAoZ`S$&W)uzrLS}LtCeXANM>*(jUDG8bvln`)D3JQ#p&jt@;%Q zO0lZW^}9H98cwSk>^kJIy{n-fqV-W+J@zYhJ5SY4L8~hK^1z0uD9)#F97kDz-oNzx zs$)*2ZvAPabYsV5ba|O|NoEJ#L`bqs%%$i2HLb%TFUC^DA8t~(8uxxNi3LrjG_AQ* z5SZ<|R7Cx5r?}oYsJVlRz+Ft9cq*&?^vUQU%{b3)r%XL@x?mKCxp{hO%PU3zCU#B=Tsk`8xuge%5JL7>~Jk6?3 z<30a)EU&~e1{7Rm#@i0MpM0_Q(KD6iqL^Np!azPD5kkkI{>3 z>?;+7k2{}8i$TgZ&B)l+*xZj1*Q1D~#2(b`eLtbofVdv|QLHcjF(@ugA|qzXFy)G$ z`p}n{x_DN>JR3AXaW1tQ^~US?My5$_9za~8Y4&!h@3qw0VbYgzDzwVK(03qT^lM@! z8H!K5GIeCz3n6CLj$@L~KGq^cw-us`(V?t(ocg^E?V$#gaIS6mUt9aP7;b%9(lH&_)=$b1G2#|1 zekPGGyezKGicUBb_xn?`Cv@8jP6|GrL#;~IjQu*7P%M~6l(k8Zp=;T*N?S)%mTj1p6+cTa^5GV?_#c{B3%L~rt zEcITiC-2oXXwN_mEzNl%F85y)iFC(+BGC%zHUf6tk6xX!Aiq(%Hkm~D&E`0V`8Mim z;=~s-D+ecMjLP2A{*rQ*-5cr8cgP@GUM(AEAFJ@yej^h2(fpF~NvyxrrrIs;AA(q6 zLQjoCOBZi!C#}DiDeIY&TPZTHK!f8T|!s9&+mJ~Dsp%;n}3wXLd!D0_<# zBiV*3v|za>eGN_V$-Ry0wcl066<@W~2x(;Nh#k|B%ua1ktuR^YW0?!CyW@V#`@t7) zqjN-*z~%tnTIZ{!kuyU(uPGHfi!8};n(d}VjQmoCp9?-A0-xqIX0i5f7CQvqb2=&~N#9vUdT^8E@@9mLy46#JsCcUpHX5NW z(eHLj(Is*Hc*TCyq=^{hx=;CZ#>+#tW>++MV)RyWco>_Qx9wr%vi}@5B$xr!`XNUg?|? z?Sl$jEEJ2~-Euhi>SN=}NuY}yqWuVG4R(jNkBlv9y3%w_f|-i4BUU4-;X&%Un#AF; z<-L8dtWuBLi3Pdj+%t(nZ(?gA9|XeQiD}Mm`~*EOAh6eh5Jf)SE^RA>?(iT)(M{^3 zPe5kTm&E@nQ ze<7ff>t)|5)iqeYNh_7;b7EVrvbbzSZZ$>fqz9{IL9o4hPB+q3GrZRj|y^7}U5fA;yoMENnf$e!L~;#>BDd)q1+%A-Mf zEwD6(3=H0QhbY+k^!lELXf0PrO6MFh-j67}RbxZ@LyQEk-bUte`3uUYh2t06GT#MO z7wa_!5edYBn~O`rZDaGgw>vHLO54Yp6+&z2#I2Y1S8Q>~ny#~h_gHC2|8{>GyTzfq%G(s_B<4 zdP8T2)J9or1JBJ#?|`efG=<8x8;SS1+9eP84a>OKJG?A%eK+vxwdT;Xgpp>L%;(8- zMMSOlJ>hlUoyp62Emvmfo*5TtG*s^c!{ezjW8V@QDmR4I+c`yj{~R`XdV_Lxlcx%%oxr%_TxIgIjY=C|D^7;V5zo%mEnIB)y#9X7r^<74^;Vct}^ zXqmmV+F+8DxV#wZ|r|(A*UohZT>QE zE*{>c?p|NH??56R9jBcncuY-kBphi<+EX1H-2PCyXLgP7$uRV0mwmND>Ra3mQZ|TM zxu1vSUU9oJ|H#@bBEl)0$G(Q9AMKqA2=p{lI{h$$OTN65mK53%Avn=1sc@7Z!*gZbf)dy0=}iUc@kJl<^mP)B0)_W4Vbza5}W?Xi`Q_ZG2= zI!QA5=n~H;Vk?;3wLJP@UU0_?81;(wvUFisDz5MDW%}HjZ@u1WXC>H&8Wkur^oaGjR2}^k6!0YcQ7{#0b&n8bDSc`oNw~hC#q9EbRRT5H}k; zFq_E?+D~JHk-B(Y1QdbN0aIBdI^`gfwI7Vo#X%(9N z4<6J#h|*=U0$>O{9uI>fVMrtt;DCnk7;F+3$_Uv8=vy&_=Jp4S5u&?dldeCL4x_oj z5V~;KPerD{by&1uHjT*u^A(f)m>jkNgu|hc^>JuFG8G5MLeU5;8Hzwq;ZQiRpa?x2 zLJz5jMPsPcpX!4DV&>oU0SACW6yOJ7rw?Q=nd47k89*%Tticw6%nsKH><^;^QTVon01-w2 z7L)z;sZ17~1f(@7I5>#rPvU1g3`j=^kpLXBY3v{hai#2b2C;u^f@u6Q(hnjr0t_Hr zD49Yfae~+oB7@1G{D?#ljre1;f`R=h=O5yIUg23SrfDI_W z|H83a37Wr@34nFtM^BR<7p*^L2$w~ng5Y2T9K`QeKNc8^!Jsf;D)1}59DG~8eK*ent) zh{9T#+>W#`3UD_t%z?=ShBSXdf?<{nDih3)4DfQn(iH4LFhlJ$(K9tcWAJdaIUa{H s!|udkF(|Aa))btTG+9%>qFfcG^afqwVK= z25%{*BnAWXI|1dz7~#GA!9`6*90oK=di-9XG?i6Tf`Re=34h0^;z_@*d zfjKdPf#J`9fgy0rX;T$^XHEL9s3G<5-#<&se^yrimEMK_YxA`Z%@O(wuBLzgoBUlEkqJ!sG3al&ZD)R;qxt_~{;u=?5^{0<@67+d zkaxrX#rD4m|I@Gk!SJ8jA3xUF**z5%+l`FQrKBoJNu|Dgu@n~0=YQgrKdci6hQx7g$M zYsu8jc--HUqeE)R(8%`nObaZIO3m?eWsmI8N5^UC!O-r+W>m6dySE;2aQ%uSKX|$3 zWV?I2y;1Wzvb;L5$s)bd=9k zxxWy{-ID*^_|lJDcu`{+V;WIr_?{P@R-bh}1{j2bN_)-U{`o2`-@_{P!u}9M9On6) zx8mTK0V4ZnP+Ty-*z&($#9O9dp0-}tJIi+QV7AP%@!CHjTF(DET`{+Qf4<%l zXFceCRDU`}bcB0+UW3%kq2wB{|4NBVIQ&7sol6pT3VYqh@Xiu_&t)Rtt>^V<5os={ zmTZ`NJ=Y)&hHLS*Do6x-7+pUz&A5__WfK*V4(>+{(|w6}oGU%<(y6G{D4K@EdN*z& z+3*+r>?CN=#nTGQvIcy;?N=QfD_{L~29iD2Ff)-9(L9Lxvzn+hq_4$X zFnWQjQ_DO+AV_*X);2WG?GPI8>m6v%OKMmo5OBV0x4fxeV9@5S z&)p+*3yP!g0oox=ztHmk%mcx-HF1-R#DU`ck%CU=Iqpr!qN8N{LugB2^HykUk7Q$hiqYDH zV?YpuC@4Z++}ZT??;t$ls$W)$QVp^n?;`!$vS$g6H?aCHQtRKH2o|9IUGq3mYy z7li}RWtTCckxSB4$e;MV;snG?ilYucFmf)bCikH<1^Ha3gKYp^d^8e`f!*1^?fFHP zIU9#0lF`I8i#-1Bn7if2i^=XIp?yS>XEj{N8TT>b)NUnZSWi~Dz||+A`tN2kr6#&? zjK4qNIaLzoP{@@miw*F$x0#H)nOQ$1+-2yVl#^uRXIWR06=Jl}JjbB+L#xp#M77vU z8AIH~VPdR}e5pq1Y@JbHG>xox<%VtLIQo{t%XK&qU>wo&Y7?(rkk36-VFl(epH3-3 ze>cg_Lu!NrBnz9-T9x8YW$L>}L_4(FTF?5UV5C4qVZ8bxhItUDZD%q$Xv%{Xf!F2M46$j z;A*I-Ip+tSgfX2s<>S02x@sSm0!v&)eE>{lzRFgOS8TWkHs#*-7`3YyLgq|GwW5Dm zIE!M1WScyjtm8UQltiXXOtNiniswNk$}TTo!SNYH%9|_5>L^cptrBvcKxj~}dv@FC zhHFYHC8bM-I8?v?-%awOqN0Z|FV+is{f^tPm|yE#>Klc*9Y@DRxIB5-*{z6cx&a1i zb9*Ci2DHRp1>fTe_sEsrTl`n<&zam>%IkcbSWjA5-gY(+9o-qM*eN6}Ltb)+~)j>XELwR;;g8fjTG zO^Ky=;OTo8rS&f&FQGr#(}x=@whuKHdu%aw+IR&a|I8X|^FR)vrIWxPE=AeI!#@YN zh!b;1wlC9s-K{_heJ-ymw>?A_8Cjzb4-6-6eiGbl2C9%8X^DUQ%g>SGh?!@sbxk4l zT8~u!ZoD(*uD8p{yz`+6=GQxTnMXV)_eak`RyuUG9#V}VJK?X&QUuC!g$#0rAj`qm zx(|?Y>CfQ!qa9c4+*hs*y8cJC7Xdy=SFOg&sFy9?O%aas2sE%T*OR4^qdxYp((O~& z!yJZJaJatYxjuHqqEr)y=Wsn6#FUK+-_g&8(;*mWOiG%ihtLO#`*wH8PqQaAGc$%8 zKxG6{b$JDM3ExGS1JW^=7EV-aPz@GOJhh8ALP>PutbW>&av$-@EPN4^U9BXYL)5$F zw+V^zSuY?csLi_N=c~}I**O@QnXuBZDhqO8+Vb{1rXM3rLcnCkiZph_5X;&(V%b~h zcq8q~Og{JZ#ug|M`xY$K(aU`(R82L0R_DDN*W^QFUrD8~iXUR)^F#E!H}Cq%0e@*e zK1_ts)v=i%c?4g@0BjgnK7tm1ko#R!1WZ00dDZka;|@_qM;3yBswCaIpPT;TNW*Ut zrv0{}#S4*JR?sCBJydnoN~(Cs28kNNt5&7jj4&Ek~J(d&o{B~Pu^jUbP~{1a3NK5qSzAJEv?*xUPQc3uda_i%~;j(ixOAHTWLych&s zk4+1o?zH*n!pIktQQ4W4UV0Yuz7`-sk|ZmieT_|EbL}wywsEE)ls+*)LYJI7&Bxsu z2OUWN#Bqm`oWK(waC7}h^(LZl_ATK?bn*)hP>!(C3(L0K`SUCH+jf>6@5C)(Tl2-n zcqhtOQjoVN6>i(4Q%_u-W3R!hZrUV==bcM#e9H>wdV&jT~Y`Jm*c--q(mui6wpchwpS25~0ou884T&FR^oH3LfT$X+7}AwyOY0t>l-?pK4O zKRTN7wNqh}D`+i9qY;wSK3cwN_!!n?y&^aZyY`@}?_@?P195Gm;uJl6pMN%BN+a+y z-e3-LscP=FAxu^MG9TyqS7ij)MLW~Dck;7iG*g{vAF%dWPi|S)q12g|Q1D;#eQEn4 zB32k_4^o+TXCXExp-%*C7_?M$mh~nhIx7(OYaW}{7TX!k38XR{wAq@~W}i1h(zVlS zUQGxb;wjLNDoA!W^E-8$%S7|-0c8uSXs?MlYfSwl;6Be-W?o^Ce5ai#`HA{sg`XYj zMQu>kM)ijVbUjdAH;mh!n)V}__7lXzp=QYhCS9WC%vmnYEM(R2UgY~?h&C(e z%pwM6Al3r~p?O3ahiKQiTw)xEKn^LKWd8$N7h6nSy7333FN~^^v;a(nX1J|lo%PQP z(B8XyUzw}fd*0!*n77(>dN7)TQLA&q$Oy^M`^XgQPHMcmZvAyvpMLin{2u>`o7$i< zoZx+;Z6Qwu3)^mhp`(wu&kfTLz656;183mP=<(Ly3ceB1oP;`-&*yAtKOOh?qljkw9t}Xk^#>?WCT=@Fs_B%xv8aXnrpQ z&0#w*geVsX_y!BEeG`r8Dx17xcNGprb5<^&-O}T&q=KsG+ELBbCPZ8aiEp`TESrzw zxo)?)yB_|k5NTrM-VuaopE^~>HTjN(t89%TSe&mlU*KH54mxM9T1hI&30B*lmvj*~ zqm{P`H+*~3=3TodtKT4N{mq=c!#bh+#26yDu#~Yy7sC(H3yoqv8N;WKFNFo5T7i;AQw}Ni%?|$$k z3i%9%voUS0lpILZcmEqEBMJ7m+)R2YJYN=b>uLHShf3+lnD3GXvX5+{oSX88R9;GT zJ~^+SXcQ@ZLr~2){b)(ExHK?YU;)8zVb!|sygVed19(r10o@K4gX zZg;k8FwmqL1%TKYY-lN~?E58k_CSV_F^u$26%a{KUGDcEcy&DJ2^gG`fH>9k$8p}_``@uhxsjB1k^h!g?k2yZJrrf zpG;C8SoT^Mw0el!8{M>O`NAP9+13*=^0||`(wtcqd2SwBkeT&0BS1=`_w$UKm=d8qz>1C$15) zFV%aqh@bTlS%y(%o(8NcBND?8p}cQnEeYh*`O{1as-1DNi~~k z`iq8^V+OP({TR{}M zB!`2BBs~V!34dUuSKs+O`R(sso?ZUU>v1g~%x#}_jI-)<1qOs`4|2ENHWL)(3ky+7 zzVjdzvM`8r#QzFue2|sl8gtX8E=U2ms4Frg5igQLPF7Dp6V@%q1Ih?)kyq^4C`a+Tw^AYQSUF&05i02aAjDz@LQE0wqt5_qous;rla6dtVL6$OQ}YqPafZ@3jd9~6 zszqG}I}Nxl2?<|aCDL9=6aWPkh>5vC8{*HorqBv7#8FGdN-{y_&jac(aIzCaDw~sY zK7;X#OaN;={&j_UEc$Ic9{z$wY@rscs|1tK3V(pM*WaF=?syY6scQ+HQqq|utA

    !O*7k8i=MpOu%}={QNa zA8@{QdOC1ik$I0#`q2|L5&2&m1?1~#?=1;Y0&E7_H}&e+b*E-k7XgR^w2N0mjWzcW za*o^j*=>Rg6esUSaP86_6W!qd}#o(O#t-z(7K#UFGodRF@5`kti<&{LOm!#RDF)v%8{Qw%UFA z4rnapfebnCKsHarX#bi(!ST4;j!z7iiM}QIxFPYSC^aQM^Bx_)$(j`7EE;+p8pHWo zSISqdXds6^SQS=OSV9n|BUJ_omt1Uu9eMXuJ7)J5b2&1B?n*;{*_r_ATvMC+QMGvI z&iU+N&g+O`4-K696-a6G3YSe z2M3wP@u`FU&lgk^j47_hAzRdjKrIUSiw{!u;b{yp!W+~XZ$&{-x$9+1#x#5i`>iyJV-wlGWfv4g^MNeFK|{kSx>OY%=?U~)L1xUNYo zCt(8Z>mD&nZ_xoRf)cCjoXDrgoa9(bW2@h0-x**1mT$n?n{UGwuh;H|TLRodL?Ne< zU~myh?A`n29IFby{)9?Ux?t;_L#CWgd3cCd5{D1-krc~%<>Oda2-fYNz~YP|E7iT& zA{Z1>dbqt80l6FWT`}Kp5Dr5B&vlR={uIhIzvA-%J zk#KpJoEx#?KqFldSaih(%hM~VuRoQ`VHRgtmU-BVScfeZV{N~@lK-luTvUBWDg}Gp zrk#FLhTgWFwi9aBC!vAeD=-&l?3P>DE6r$t@^?x~81oW@P%E7~zt}I!!&$Sjr{%6E zl67~s87e$*6;Uhtk*oH8<-d46n_|KrTw0?+iBixt=s%9(2J+Epgm-8sS=rdyp(EMAF4Qeh94q zgJ8bOA2L}z`T{aT6_ZNO7^`#g`TLuA5!R(;njRya$kP1Sih&vC#3;Od{330;g6qV4~j8*-K2kQ{bbm&=CUrdSN{NUph$%Z^!mECH!+I7TD|h^ z5GAra4-U>wBWA;K(&1ZC<1uRfenDeo7Nmy!9rYLXhv1ib`w5V40CvBDJj^y%be
      2nY-=N>@NKv zih~vi=XZ+hI6PpSAUmPOZ-W>0EMC%zs>m}7_O)fUytVH7E?Y4d^CnhE3bOltmwh1S z7;rOl1)0xx3u}7snO4((4%ahnO`uQ_Ve-qYT+7&zbfDK6}3Wg?w^2kqk z@Ld;%lWFcrLZ+KKb^T6`e_!>samU863_d>Cmea;vBR7^iu{3VCq8|h-SD#tkRA@6X zX3Tx{lR=-ZJ~9F(*?`8~s1umV&?j!CmN5qY>Rvaw#Bsqdkrvc#ebKIoCA2YWj?qo6 zzlq#EatF1Ld^|}i=TKFW*Q4I>&BD39 z*vd0iFkAb(nE_YhtnHmxZ0_et*`sp0WsG+{*n^c-B1#J`if;o=$=G#@1;l5SSvVn! z$J7QkoRhhOoJP`1SLVwJJGfRH#D28T{1*T^3${5wA#H;Og-}FuE4`_PW zQhw*f`OW;FxTNHH4_Fr^H=jWhL!ZmafWxeA@CQW~tGgVs!2$(Cy$)Wk*X=)g5}0qi zUm-c5PKx@-vw=jz2t1Ki(ogz{oCfW@1Z{0b@#j4NsOx=aCd%QE*8@abJpGlo7kD-3 zQ#jzU2g7pocG}K?!iKoUa?YCn$wB3HgfQP^?-MS)&-cE)dl*~k(`!lq-hwLiVA3}iM~#@hSN&Bes?7eBV( zdTgDobr`>DYmLJ)~UZvMxcoK4Qn0y z%fSi0sMd~R*(vvT=;vl@o(RWoR8tF@tKU8|Nh<(j{MPY`3!-gH=Hn*r%3w?L71B4- z0+{Ni&`nb+<;rUJHsA4jw@eXf6?U0}hU?DXc3-nSIbrrnKPEz%c*x`-ZfgHFbMXwr z4bGA`!Fk=cqTIpF$05@k%Lx#UD*}k&efslE&HjCGJ$~694d`zd^f%?LmF`Q~Dbg9j zV>ooo08JgE7Q;gMIJT5(4+HeqAQf;sYQ6p}c}L^X`qFcoi3ce?T&`W#tEXtM+V=z1 z4p+KM;l;q=jg$Tel=(bPYAuc7mnmhN)G^7$$WT>>eN)PeNY7fmA!D=JpnLmB`XiVM zq}i%66l$8OA=ZX{k6bFNt4Pq6z{aS1yswj`G0(QGKydLbQ`WlK6<#-235yL`B+^mc z)%0%s0b{!SiW_pRen`U)I_9T-ZPhyd!ta!qKRyi@y4Ej`89HRFC3>4ZLXTN-i(cWk zle?H@h9nJ}VBT@0mAAefcs(h>Vb@6WR3$O&)p4$*jL(>tw6(Gh za3Q11UCh2_45tFXrMWz^YxZIwJdf=bGxjv_D(0Gaa+wr8kguHfixGONjilm3bG*I018H9G8J1Z~6) zKPza|&eNBCT}kUJWPZ88CrAQ&4D+65sK&@43o5&3VpK2Xl>!AV6cIwgNS(}{U2@@X zhC=(WKkd(OLOvaG-17=Y1qkyU2w%4-1n7ObkTKblNiFXhaRkVKkc?2SXdyn*k;htk zWVnY4ct^&%yeu;z(2h&_v`^hj9as?LuxgoFhvXOP;ruje&gY|mae{9X30T@D{{#7Ga`5LU~P(gykrDYf31R#SbADJDD}=1E_KT*pxwiIQs60z=S+WSo=2Ig$7>8jb8N$}aOtx0P@dKri7!hAd6~yJO(C#=x+A(CwSl+X4L*Cp8+* z?kqKC6sp|O95}vr($JOxqKaFFbwS`QGgLMh`@WV~MYq?7a z&z{H_s_(P3F4uo*Y`FHJYVtdxuYS3TOZelq$FjVcB(TQ_GQ4}?e!P?pYg_nDs&uZ+ zNlEykzx&OGbrInoC8!DbYk;#AB%GhXyLd@0^oqnvqY9`rE!5n!13O4llpx6|ga zkWD!DOn`lALc|+en51JAF(ZWBOuy)dnJ0xwP&&1xKs%!obs+lD1;b=bix~w&@e>*@ z`2I1Q@-I;rKF`g!46z26r|93_QBZ;;(GWLE;l_o-)p92~b~dL@CK4i*BhveR@`(I` z)P8QW0Jr!t1wa7sh3ysBDpRngCO59!_4T;!w06?TD+;(ACN4<*@GJ4YkdgVh$^~Gs z^K_%JMWT@Z{jbE_J@=pOrY6m0!-9}c;Je(nQW@1w;Uc!YYKMqE0bqi8Kx*?l_tfa; zL6SD^OP%X#Hvosw^2b`ckvDO>pXuPdB&ArM(7c8CEyDn|_otWvvk3RaXBY7*xj1Z2 zuWVzV2XS<1Re;b|MCXiCpN{7D^>$3Ch(5;iG|MG6q`f}rGV~4aET|?ts%o8U1KfsV zaJY6MvrV>a2pYJ;hFq7|jo)5)(+M_k?b*~42~X8DT_AF-tMItL>^b;EL8H2%v=o^? z8FJ`TzpK5hxlwas=rEu#YneHIKfHD6ZRT$Aag1v!3u|k6O_AAQ1kvZh_ZR4}EmbTa zDF5~?g-`!rl`(%<(q(?JriG+q5-5yZAb5qcoVVj`G9V_p(^&SQq8Y+?Wrk z$0IM}6qflVd$NBwGbinsB?g*Qem<*uFO%KnDDyt5i4Mi&q8i{C#*ukHAbOG22}(pi zQ2fT;|A7y=AM|WX;HfJoyZf-bvD4Q6H9rMF@Q}&s2#Z<)8dCA4rwcT9>J&7{?9vp! zb6MWJUb-TLOeU1Nyiffn@(4zpDE%H>cpN~ zO(6N@V)MO=p3u;3f9>#&ZuNuA@&W-$yoYwSvpfMalj$94)+xP#GT9|L1U+Ou9ZLP_ zwKWu4g|Bt!gE~Z&@4Yl~M+w1k5I8pV88qky9&>Dbl88Ceuj?GX?O#1KcO>K3kmUk6=V@aU`9_$F?XZ!wnVjC@j{QNTHDFe`GB4fbPX z6kVV-k+x;4zh_^3#0zOK%X2olD*3**iODwHP%Hje?q^xvb_QN*r>3f3m9JU9kBJ;S zzpdS0!B}x)X9oZCc6fbwR8V$78-oRER$E^JK__hFp|JwvO>s;?b~oee?!OH#F@|E8 zcsrU-nIUxvvPi~8opQ--NQN_Rz4G%V0zw#1ne7d|bWS;yad9-hMmp zv#*m$v!nT6=uJg-g@12&5TU8iy@6sVAN7WtMC5@3%h=}$vGpIVJ6jEYJFPQBCy|~j zXodVPs@(SI){jD#6VqAuZSnnBmtYccF0YY7cG*nt`@ei|03Jbz8*O~#;W}nni{<1P z;*_%fOIvL1sE@wPY2?EnG~+hksq)-mXv<)>t#Dfh#7#0jQe_RZ?6EZFU#0CwmWZda z6n&}Acb4~xfHlm@$K|m?XuWEqqKB6Kdg`+vq$6z!i3}^Cl}fhO=;~~}l&?JI+fo6v zP{mAS0y$^tu;R;d?dxH9fr?Z(%jCG{vMt+`+%Y||6;ze;X;^_hNxREcf;x$3WiT_5 zfB?|e<-DlGcL^ldTX)?^upd_F8Bj2uqUWLT9H#$)+R4UrGo$Y4-mpF~#TaXtZXKcx81JJ7>V@O&OT@$~#JYhBy%4d{)tO@<|=&8ou2Iu;Jm zY2awVCk@azXnLBLuPZkbIlJ6{=-5g>s`qw2fc_0E}M++;b^Nxn8y{9lA zj=ypj(}QzmZU~`#Ae2i_(g}{}ff3hY&ky#ZNsJ|b5c$QIOjr`{u^&Dbh2HTGqDLVk z$xtJo>A#6?YrG|6gUeDwBTg|z^uU5-Sq&aFClN6|bJ_%Jr&9NjGINAbB8b@_Lk>&j zv^aCgIh7igR&xP~*@lQgXY?c;UW*Z*CE!=)7xLpQ>(Mf8dZ!<;I>c;YQu1b7c$+3z zT|@|*X_6p}VK*5xBjt0}_aL#W5zK3eJoXomv5pcZ4B*|Jc#T!P}GPJaiX*a+jq z&?#VYl0kkL(Q&}6@U9P+%}CRh;`drKM{bW7)+i>arE6W&nOG@&X@+dwQ?3B<2= z98tWu(qo6_ZU{aQ49ahFX+NmbxpbaUx_mL%7Q5W^v~L&X69CzvKIa@b8U-dKXkt54h7 zDxyN}Z=V}&YQ)56Nf6HY{u8%{`7>D(!B?#=k5PavgZN$XMdU8$4p>n!D29M!3AiJ) z8%Mn|{Y*t?c8ez!^eiTWDV{OJ>PaC259Z926(;Bf0R2A>xs7Z355v99-dTE6*U|W} z4LOVeR{#mvjWSX3M?)m+hH_{Os9vO|3OtxPUf9KOL#amH?1RSTzvzbDknc&KopOf{ zlefG-o$$=wH!vuk4f^kvI3B}2vptw#7@piR)y9#>*Kmou-yBN^H1@6k#R1_A6b-tC zdlG(RFzLXPWLTD^>8qR$Gjf@Zn^arD=G6+$91lNJT(7VF zeZ3)%kEkA;#61Mc3tT%LtzuNRmTav)brdrwFQ6@K`atJjNphPme#7RL5)vdC2e*!% zmT^2&#!riPpVvztA-|cAu4nd@c78nRDg?u_g`z#c!9-Z6W~rip14eB4Ew`&sCn$}n z|9&BIWid;4;&AfBK|Zs}+U?J;1ny}#qH%Wn_{beK-OZAh!&Pd3^bfIYLQ!$zTf)If z@c082TpJdxbuj(YM|wlcO}JMPPss-`RXXqD*ID5h@L=og?db0RY5I3Pi2UL~S0BYe zB-$P7^JlU6!lvg|HhF|=POz?P7@MZOLu99K^_k`B&u?#tDe%n8)8`dg<;npn7Eu4_ zFkChp11OF%vaeL@vDThbI0z-}*dUSZ_UQTS{l2Un41IryA+qwoW3GNI1@hPjEK+yE z3~x&R@*%Y?bDPoWOElbyh^2IJVew7gyn$OHg{)@tE)h5i1;6w)@%o-<)*VL*@SO4z zLzXpcORhNwz+Bxpycy|Ac+xgsw!B?gq7r6{jcV23m+Z0tdQCd<&uF+;j#>DmhEY{! z79U8%qJRy=c*e2_Xn61Av9XRhm>BJFZ!Su?xS3_9KOSi+Fo00=M03 zI>@(k2yIs8&No?~>l1`FUBX!Bed@ZA9B&G=$|-Zj{CQa-&C8Zd9*H=oe!_4b2j7Rx z28~KWP4WKl@Oe84=?%sQ7j!A;0%KMb`TH}#GWx5k4JCvq3yE-ywjVBqhUj!|;MQ`p zLG|Aj#mnU1m-t+Qz^8Sm!@aDTj{pKpKNwjf$5!NzMo3v{you1ptoe^k-xDp+;>bYDBVX|M zr}MgC5S(rH?F`XN>ODt&siW(~ZKnfdUUEY-VY^5ROo zmmM7`2(vc7?)Ag;iSdusp7KAd&LR*ZT>tpFiUaE)poWQ==!=en6wh)-U{oFIAPHl!Y-vZbjvM; zm*WJ#5;g=!97L=NBczq$v~G+P;uqJfTf+q`@cPIt+*Z@vgyvhx1CFQqiQEc4q8)N8 z`t@n|NS+50`HGzYrFG5}D>(h+S1RSln{3DD~UcH<<5tLmJ7yq~A?_%BZd+vyp>`rE-p zw9|r8_DE|5;sU0hDs1H5;uu>svQED+9BZIY*^fI8u)%@iN_Vq5xVPHI9XPk8vrT+Z z(XNq&DrP8c7vn3sXR@I-<9O6fmm!St&S~%O5MK1ZQ}YwlDlin<^?7s zNzH$aQ&YnHF-TV1rIYEn4F}MT<&La!GK2_#>n8EsAOojtTGek*Tu_WEk=ZJpHj~Bx zJSugF3t5)r6@)?|W{?4G3zj0ZbB$WZTte#(pTtkPRAYhAyxAS!xW3}}XnyPP%S2_C zO1nnYl91gtF)&Et=49B*s(12eh7uH15k8S71sb#8eHx!eFufwA~?Ku)CLKWjeiN@?`{Ol zVKLDesT4be%i@d=L;}0#3~tuThSvY>!50JV(?-7EnVE9dZLQyK*?ZG$DLG;mAO;bj$Mnao)mxm(rpSQm z_vAPupST}?y{eSIOBg@3%=F}9)Kn0Qhu*-r$IAOZNQ*xe-MUrDlx=u2rC9GJT%^_i zWj<@+0YI))GyNB=Xs9?t?|D~;X`xE6F>)O}e+Y@yP-$?Rg zo~`#=qWmI0E80=N8TVlrIPKdOp(BenJoMM;bDhi;q6I9dG}`1<<1TKAhV!fGzpFUJ zPvEpKy7^1_+rX#~r-8uCm4f`WW2ywz5JJB8o?iQ=we1 ztW(Z4#%Fqyd@(qB%-0 zV0_UI2a5`2@Nfcx8EccbJ%fO(e^+-EZNvWgJrR*7Y-R}{#6Y{!9QBi+5+<6z6@trW z-JQ_htckj~ce3ajibkn#M0u}&SI@S5IiVW)3A$>pDko zUG^e;-zXlkfb&j2ziP_twMo1f@X{BAoVXu>!ySI@p}jQ?Hf5w};N&7+#Z_W)7#cly?PZaKJ?}uw@l|a?k_nCEH@-fgSBz5n4`DID8J^Nx z<|1sWq#$3t!*scqZ- zgm|1}GTHYrLT5O5lbZ!a#w@8MhUb$V-75@yk=P6kTRa0Dv0WLDh9$2|xZI zeBP7Hy%i8aTA;ZXH80xG!&@b@BGyQ2?`H3zk2FBxK0_t-#uLX(yf`7h4VBl_K(~QUMOTJ z zL9Y`DL~pp(pIBIby-!#iS|R`ls0Vh9UjXU(s?MKXh#*ytYx^_Tb4yaErErHrNk-%u z1L6zW$^)`Hn89t_dQ}HmGTAI% z(-!VF?}Ql{D3n(b8(qZE^vbr!48@abwcg=RQ`Su>%{QvFAok*Nm?tz+lAnIigGRLT zeb1>#m0`GynKn!psKj$mgK+<~x?s)e%ZF63|4W;sxRR2QTAhaO}~@-gN}(-iXK+#rGNj*qhN~P&iPg@;?r$s)5Uh_^!)tz!1D5d%OPt{!dD?d5BvYx>+!ZZ znZ21`Mo0;}gRE`swHvn3)#z{W**PiLWPZF|*8vlGe-$7gk{%F`0MX@M4^uh1?qrHI><1i%d0j0chcV-AF&S*39Gm}a#YxO@Ovu}bI=;?p4*QrzHN`EWkTp~0qfl@Hx!6bR2I1Jq2$58 z;(t1@^E&@V0=y;ehVFy6u;u-8*-cYGq2~(4#K+q#%LzTNpAcsw=Hp_V3#HpQTs&S> zc7X4#EDigyEUVt>BX!r{*aQoTnEt^ugfq10YSiF^LMPnWgo0}(f;Pa?ySe9NO81P_s#x17v)i}N%RJiw{T(kkIqENaKHG6;2Fp{DzQMJ{fHlRC=^12? zztho37Ix0D%kPBtIi(%I~q{(2R(XUrw+aWhlC3vo{0NF2gOExP~iA^oxBd(aJCePBQK zwyt3KY2?5*mCfQ&dEtjo)d2=Utg^7WM}qFs*j`qhRFmuo9g1i>{Dc9Rl7l37=9>|E zZpAVAw4wQ@)V%LdYIFaE-dnCW(eiW%ug#6z7qw4=!b89tzE3os;%;DmlDVp z=Xc-l0~M2o8Vm4|oXAFC`c@NwMsclg=Eyu0Nc42zv0snxFJ#d;jQMMUW`(^!_a-9< z&1;GkilTkdsz%v8Cp)$enfUOjPQ~SKpa@dy$19}=Rx@G&j&~=t&p%q_87kO@y-o_( zS-o+wc;RB(-TS4S-2l*vsbcjQlNcvOA43qFOelf;3Ca_xkn7^d?ckY7e*vqOsYIaT zFU*w5!j_wIBf~N_Nbf18*fbWhbDlQ?C!sM8fMCJb0pylO)V*N7bE*2;ijMv4xsJY; zxRJ#@(Nv}ZQC&ZD3_S5k{Rte{s()=YNPKMsl#WmyRmuJu1)&0rk+Ghr=3 zf8SERH?qS1-wGy6PuZWJGksY{P{VS!H!k-rxPRWZouA&_+O(kL#m-z92mIr&@c05R zil;9KFRm=^LAdl4|z?Z&6+6u|-Td|6DgtSJlmW$A}&iSMiKlgYyn>q_gisfa)LLap)U zYLzoEr7%`m2iH=`bQWbzzFm@^Rf=g|!TyGKDa2YIAm7Xr19A_pYS|s60l-Jdx(*aZ z3JqVKk)==|IF55^k4@rR_ahOq;>K7v`uhsM`0*R=s#>x!GkKwtzFMq>{V{4Sw_$if zlUdxs*v-~T$hA2vXn)kxp9WRq`kG|m9;NL##@kIvW1dSkTQ0a$&e-1+GA_%EG3kH` zPOCB!ZWDSB9I6ZaBU#?_nu3iKG84eiT!jf^suUc+%!oS$mi5OclnFX>685tk4SrBl zqKY-gzlL9#iqZ1h1~NwoYWy^2?<)sNs-g2tt|f>h1fTR1b4~TFRjQa z_W6q|`J@<&tYux{6~y?Cykym}hU6}#$sK4#MFbFbWvuf2sb!k2n2~d^`$W@>GLQqS ze$gcXxrJzxWFX9Y+X&IFIxQbnG_Rc+3v(+YjkTs+gxH-H59r)v(k-DCYM^URM1OQ@ zI_Ef^9WPnNb?ThNDslqJ__Er!Q+!jRMm#^NeTfjsLzqs;E_aYpvR1lhz(J zT1rbw)fOs2P_w92o1%8rUa?i|ReP`4n;`by{`uYi`^o*_ew6ci<$Il6$vH``^Z9;0 z?~?>k^?F=evSG`&<(_@WI9qtXK5K>cU%0sR{Pco_QVX>`UHYm;B$}kHf|QQOdN7%ld~f&-~MQ5{HP`CFTC2(X%B1=^|8d6a*h0G2FWqB~yfLGavbJgt=e znX@S)CCWZVscVs z@QG9Ydq1B(0lgns>bQ@>A+}?F9U*CCYoj7^FRrq$zZU-Ru z^p>9BeEoAG?$6IdJPw9w)eNE;p5MzvQYF6($2u2uzPXGazW8PlVC?O141jO{HV@`B zc;%KEC7HOaZMzoPnmladnm>l5&vd@yz(L8FA+Dpc^_CDJo1Km48Z*+HW;V-*9u)c3 zTtBJ3Ba1hvme^AJb|jXig@w}VXXxv`;c4!N=Gzi@iQ>O-@@M+Qa7wI7!p$19f)dJ_S}J!RPayMw>_#ojVRDDNY@FOkV%;2z>*Nupy{EKv0&;1l$8~ezi9IqMz??7+T2*= z{}5}n*R=m%g$7>H0(OYJNu5lSq^!H|ukLDZ^YgLO8xmYK%I(T?7WYbA_(!h#TTt99t7!0W?WXJfR8(->AG+-TbQlXFF-w;QlnCcwFBcNw?azfSw5PDy&*g9+ z_Yi30%9iAPi_fa9uRPAVlA7~Hpf6)p*I-gTikd1&X^TEkbEJ8bLFE$Edd79(fJxL@ zrmit${rDQmTd*#_VoVV=()1nF4VhJE*Uf)Mtubawz@j2X*xSP8_(U5w{O9qe97QH% z(ERS@e)=wW*lno_Y?{0#gHIn`h1c-sD||-dLpv;SdWBk&{MTKo@>JvZr(XT8lPebh zWQqx6Ea*|DOS#W}Nay!zIq~e)7fAflU~Y}sj_pzrg%5hEyzxpd7Kc|?W4x=^5*J}y zE`v$k_BSW%yVbkrK|rLUpd++U$*FNu)6OueDuLSNyW!Ya{RgdE;$JPnLCl^BJ^SMh6# zY3Zq;*uD~+`}v}bu0rhYC4*}@t6WD*m3(xZ{39fNBv>NV(1RC3ir&dT>0xfWOq{@j zi>)TVIxT^9@}0kv)i(}{L7`d?c-yGy*af5CzimP>fCCc|DrjW)sTLC?5{(LH)sdvS4G z{#??_%ZpIGL0x{!M}XJCE(#nkh@DTz>czrKJF*Lq9|YuHx8jO~(3X*%FP=UK6734P z7mD3e?k9|rOLW6HGDTr&L83ky2hQ?eZva`d2^lp<@-1@jXBodsPTViH?JYD&A(h*g zIO4Co^QzD<^!c3Zt4E75=4WG$D;3i}DGd(`3r0O8Uz-RgSzU=;oCb#Y_1-=gsZuXE z3>89TEa5+ohIKY-z{oM3_+d8)mK4%Q?Iy~v2O}w{FdPmx{Wg>KLt~DVjHdki_=dma z=l3q>8qB&IkLqew8x~edG)|Kk=*oPu=N8R8w>h;O3vl<>WSFUmF;9DetO95ouuz2Z zPM3p=V{QE8oxrZioMl(pv=au1W0+f8q};cXW;T&1!M(L7)9}B++1;^2y>91$!?UGJ zXE5d)v#VhM6~vPX`1 zayHn1qgoxP$?u;nh0hc`9JgGTJ)}NN4UxQ*ciYlv6J2R`7w5hklfV8Cd(e@^jjwc4 znGcu|90IAGH|>7(!cY#FJu%Rhs@<}F>p}3xdmktF=a?qh4*qqm{B6=q1ev!YCgEzg zQZ~O7MFc=9^bC;HN$@h&%_m{PP(`>cddv_u<|pPuwRli0E3W|JJ4!x?>|%Zb-{*}hHqp^ zeQ{f-w!XQf40;k~PzkJ+c97-5BTd`%WcPWO%_eDl;zF7F}eKI14E3r=?t>VWoZl*El0|@C!T=7fb?8x4rFQHabn&F z!py|3noVv-X90(aR#hcOF%z@s#F?iR|J3Z)p3omRgW}CP-VoM$_bi6ED?hx(SJTa-Nk$VCt^BNgxknr>{->KIa0Q;o2&tWtr` zz00XrwI!`}E~s4wY{QNc=#d^uvhQ$^^8t2aZ=Eo4Y6@CZ@w-{RoeKIcrKr9)j@fUY zA`E$vTOTirNcRp!*vrY08$)lzJ)J3O5DISe$TEZzDl%}1tn3@woGYqdoNq)M6WZ@) zwk_Qz_@PI4!+z$;j2Hma;PM*C2HrkdUJ^HM{YP;ZQ{QkK^K}IsyB>-MBImsGSPSd> z%=ruS_=+8plpOL_?UUVISIUSJR||pV$GPdei#3Lq9|@6EH<4=lJCeaAzO z*P)efN9*A6Sc_pr($BbUU#R@`C+GirCB=HoZW|qYI~R?%y~+95CLn1*i2}E?5^r4V z`KBGz9G*2opuBO7Xi- zaK5xEUc{DH-SjegGaL)mCNwf;$_nAz{cPA<_qvqHaYA;sZs3T5K4(-Xx6C98dWU1E zk`Z90-E!R{fuVKKy@B`VXuS^-Bw|ZM^VtiQ)loRExX4U9NZOKolU$9`=T3ua|2rcJ zBMdZwuaNvjKwWEQN784h8KL&3*qUxGhpD6C&~)Ccw&@Lpo$B)ZNOT8CzqWPlrE zdD?3-sw3$@N4$eG#`OvBw5IQiAI)?mvb{Maspq$ERwon88bue}^*0b@$X?)K<-%or)e?$9!K8jI(PB=2ePtoBKTJ-cy z&i4X?Rtb|~7(4#E&?h>?QFLTCujE z)OxU6Nu7?&X&vGxJP1waG$mfIC%VA&t+dxTZ!X!7)GMg{9XR1L&PR5OXL^m>A=O3Q z9ZZ9Ru-&GmtpdZEr+_m3UcjlVRtb48#@+Q;WZ_$_Y=82C1D8f1D+Yg5Qx^6L#Ba|| zDia)o{;8?>efg2d-WEs83O&3(ohq(e&4$^Yo=N+hOa}!vSSHfS4>&g1Hov|b6`fUF z`)TRGLh6>tKhG8N4b0IFOM?p%Bn!rkQl1K_BEC&EK4*mD`6>>^V<*c=3C89_!9?J+ z7x-x^^4-m#Zi8w@=kzQ;o)P1Jr&}*tR+!VOCEISmXRHrV8aa7(Nx| zVSRZf_$!^~I8dBOZaSGiSCg-**q$Qe-D}FUqXVulBTnn`HV`Y@I|^hNWh3OxAopmh ziic8NM_;Cuhq7;^Oa?<*9A_%cTH)_t?q(H08maYAESr z&aIPN4RskZ3FpfiMK_vdlAxwcOVr3K=$N7?c62T{@9C#cf~q)P&>%jYRDaZ;(#Kz< zlL=^tp4Vl^fBf%CRnleQRWtUplY-2qsl2h@jojx^b(wh`ZvogS8fU!pS5F~>)axgt zoa3OskYEWx{IQa3E;%{gJmWn!c&};#MCW~}GbsE9T_i~T)`)*L6L&l-=^MDLCjlgh zAdV2voO}c~*sM^?w8nTHUxSPIn6li%q8l(68FdR9dq zPAra|E77jM-)r?_fIaevuR;wLXyAh`j9&3Zc;r>AYJTn%``8OeDIALKXS!fe3z1z> zR(WqlnDpUyPyqJyt*`3@F~979i_f2wrqXZdd(Cw%uCGE#Do5Z(|EjB2@Z-XOV4X@x z4!&B4{v-EKe2MMZdlZKpvAU72oL@E=LKb(pa25iDwp2-ntjhGW(l?BojLQ;^l9dl( zfpfZ1MOBtDs_BOA$agm+bu7tf0|kQaMSWZ4Cs8b2D_d+UGVr+5n4drH3FEO&T$xy) zkwdR5D2{%nL~xx2?k;ZD&ljdBxPjgckoQY<1Ja0|7l+Pt7J#y2kED77_*O`Ry#9uc zKd>S32Rs6_{)}m-L|Bfp7v9=tgvuhKSjb|lMKX*xv)Rd91fT(HwxI0faHxO@SKgXT zs@k?+4A?$|#2cTG9V+CHdK_(E{;>~MJx0&rUuZv_^RCKJ4rg)bsQMDg zCFxp2Y8(ZyAuSnl|4JKMtOe1FPOW zEciVDr@j1#6>ehnqx%R!jF-rsj!+Rer)6R|Hj-hGWqH=H)KQJqvA3DH{}jhpveGcA z;yW5A!p0R!ijq=AdAmKv~i#Nc<9`8M6mZy0B?~KMZ>qD(Y z&NpPtm^N83Vui${UU8+zi zQuJo9CIn%+@I5KN zMGQ}oHVv&-=``fL*Dj)fnsRH65W@67vZ44B%nEy@ zX6eK#pTd^KS9**OUw3%682ykvNc)Sl_a3LAnqfaoTznBd*ZRW=UMk!5=x|O1hE8abNNm$EshzE$c7)`{j<>G#lvazQL!@WL;y|xD$+TH^*L2c5X^gCh zuKF17J6&zBqR>fYb|vl6`|nsW&FxEmFT2ORrW^~#BKoA&e)Teu*i!+wotO_jYhBwZ zJ`3`#hOIZ@X~_hMd1t55(Bvn1;_|0l?yaN7O{<8EpFWaN_We#&h^|SJLfojQ=mY!r znUy+gQLOPvU2)y)9u*`otm^9S4`}@5RD?UUXWR?2#(JNh8KY&_y96d^Ut+Gzfqp3R%_dP1JeXJzj`fWGv8#U|4Sl^uPb zGz`4Y-nX0(Qn){6^*I|=Te{yBdl-C5r)o-c%KW4wLi-r2=@^=S)Sc;bJ(&a)`IvOk zKMY*B9OaF)A8r7$1(f?%SxzCO4lVMb=&CY>heEsGFpr0$%v-(lJ6R#3$i}zU&+$S` z&dI&OfrLBVe#eu;zCOx1fV=yAvvk4nz4M6Xq>(~}8Uw$ZaUcVuT^{gmhW!5ZIid6G z^7Z)6ntcLd0x6v(Z^0Z^Ka>{wSKf7RCb{H6YnAiY-%hNb_Rb-Z%-7vZ5AB`>Va-Rh z`D{t+xy85~CtsSS=T4I{Q^-9d@`U^jU1nIvtg~Kbf^F*d`%1!j)rK8I7|=Gr%b?w8 z`(hCD7Ov?Sc;;fc!1t3m5E^rT8htk(`5kuxZiT7|_j8#-(`Md}Nf*T`+}G|7JEVfr zuTD3q5lFu?6q!=wX?)AMop{>{hhGd<&g>Gjj$K~-7FGc5p#p@n(~)Y^I_;^Ow_!{9cZy3pN#jS_&6 zOnO=p9{e=P5zBaDwP~asFcUq|=zD~4NCVs*W8y-jT0yE~j<9l+(?H`*)Sj|SeG8q; zP3jZYHJLF032_PPzba$8Kt0oLae?>XLl7lR`6d$y}CGF zlyLX`MJzsMk27BGmQ-M4!b`+mHZsWw8g`%-Q8JJ_48{f>_+ex?NCZC+5Q1n)`r5qDDh-o)A zaZT#R-$AB(?8nJUtS-Pow@95i^nEcoa)9oL)*H0;0dv@bXwd$ZQ#G30b;B=O(2k zq>InvSRpYgpFco=F>b!$NHLY$g0tG5p3xTLqAnKPbf~~` z7dQd2>fc29QZqZpMS))y^fB!p6Wit5dDw@Wo8_AlO$?_gk37Zv-FVc6hLSq~5&|Vm z7^6qUyd5&odbFZx zJ0lkNQLX8%hgo)T#)10J*u^IMn+&(awvbdBJaMTSW&ovhed$+rJ>b!8iCT3*{uQP8 zK_pOQ^kWLF)6&TY6Q+N(DBKOx{!7SNyjGvpaZ8u(>abj*22c|4VAsnSrcMswuiH(P zyL3e6q9e;>^~vNmV57PtpGRA@ep@$ayxaa)^RlH2K~#BPEsB33WzXZWZRlPwa?&r7 zm645j_M-V&>MJkTg>%nNzg$8LJ@T=V6QEL8&;7Q(h~8bk{SFcJ77nuzkMLR!NLyay zFB`UUk%oV=d!`S&-eip+i7|oQr%C|VhG8I=BKlo)N6oiPc4Rkh9X!^G7(X#dr5l@yq#tH+|k-mkb0&RT#gLcoshXuGWXK?^YPkc1{B5b zBHw+{6kj9xV{!uLvarTM&$=5-s&j5a2uYZjoJe%vf8|vFB89c5(J1?!hrjUyw zwD~j)9nln%v8y3GFO-r-%)S#56>pH!1x(_>ZS~%Goo2|M#?$8RLq&c7N zQG9cmIgonluO;{l;YLwyc6Ov=#^DNNXlDQ4nUIx*baM>%n8l>^5?MFhmH=bM-taYq zRLLFE_rngpQuk<4?sK|Q;0M59HrcFPVG;s!m38=Pul@~PqY1dOg2{wOt5Yh}$3z0G zvr|txe6E{q81DJZXA*}nL3@8MYbh~u<8oHTthfy?5R9^_+AMIO^QdM5cc0477#Oor zcS;bQFNhH$4uCj3rz3|5T}stW*UhJ+3pH@YWGH28s3YB4c`~pFc@ieVcT`hGmR%`?)(W#$pPX z2Z((!mN~=&QuF<{+I=lQiZk2?O4P;AUt!&EP5E@JoBi(Bk-#+ZajFP3r2fr40fM_ zaP!u_?WGZL2$w$dM|0V1jgr5L+-5*w;X9!aL(eV+te{#1+7X>KlV~GC-%#%+HVa`d zLd%6sGsYk208Qvro!~20u0cKgg0_cBIi&PpTD;Qff6%NBdh6df1PtP_+h0D5!$V5* zL|+0EwNYEgDlHV~Z$3>oW!UqZsBI2a8cm+H`fo)1!UpU}3VS3mvK8km&qc#*B+DngYL zeSFk)T(aDPo==GunnCXW8JP4fAdWD+xgF@KVU^pw!`6jFY7M(;&*1h$+~A)YPsD|_ z2ZOko^bjhhf9O`O!yn+4QE7U-t9UwfS5{2e~rP~ctxM=Tsk^^(3s+*$f zW=x|Qw!~KJyBz=84F)*}&3PHrMu1t@3mNQ>H;OmR5y31W?R5mQC%icv6$RhH4#*EJ z6Gw= zHGgR(#x1Eln+5@6Nq_q=h_WcYwu*30-`vxVMadBCd8Ww-C>jYDUi`&>S@l^t`c_3f zOymIPOFIp;IV{X93YRvMX~6)&i=e5Wewm(n{;vYJa;DYyg6T)q$DTZVkXQ4NBI{suE8wx)&nHOnl*sQN@gvbVebix8 z_nJR7f8i!fNDkpXqAJ-cdltL4`r;oBQrX%PURoB~bcUXS_!RJOhVus+{A*{klG9qi zfj61WHATM`A}@tT>fgM*ZgnLYHzF4us{^dglEMXAyrC@b4A}{=t zqPOO;&?Bu8~^>;JM+gn!DvyEYV9sULGJL)XrL z%}U}Ibu&J`bLUzpN3r`_;Ui&65A{VSWx6kp%32N)h>Tx#{EPr@t20abqS8#`*0Tyh zmH$^}PKerbj@p8$r zAbnGK#??+xR#d3a-H$y`WnE>SN5m&rkY~LF1KR&0IzagnIw3L&6ny0T?q0n%S&!(Pz+CJa7w4Il*)0Kn-Mf$Zj)6@4K*LeNP-;L}Bt26QB zFQw$YN!ZBI=lqU?Pg${KxZ-Um$Vh)hw4Djbw>YmosmFkgWm9P?1*rdQN2@N^&rb|m zIZQ0ez^+xYOhO=Kwf1&OEo1&)@0Kb*xELV41z*^SML2L@9cb!yy&IrLa=1#RyXWyA>-KRX*4UU01N zkx%*^t#E4A>U0Fp);&Z488a0cP6_jA&|zT>3TTBzzu_ab%R&cluWd#@-c-Tl`i*?O z^MCx58Ot^nG^XX+nVA_YbV>`PS3$e~`kgbDh32QdZb@c9y~vsv*7@BTd^>UoI4!xc zb}PIkjx>SabuZ3=uX~cPh3^deenr2u*nXUq>YWzV)QsgF`r>%`<5w9bn;N~(O z`14MDKIf{6wWrHPxl~HLaoWspJ5lePx3`u>ktDBwvresFtoF4u>njsKu~iVR)>&?J z|6wGYf4sl)6|*KSvj#-8IMa_$cKzb0@YfOG$L5mRk>>ot^*j2No#r^Lb5?wVi^&`Q zee&BTmvNXLXKB=%$M$k}>lc=OZWrKtH0?sfc?Z3bD@|n0^&~B2!Tlv`|NXq_XfnN# z4hZN6?LB_GX9(_CneGv4c_5i#ozbuNLi;xioS(&LC-jy~Mc+?L7x`UF=F8DoQV(XP zBbLc(mp&lQUZ0QCDYjhtbMlq|uTBxWx;q~i>JXJL61HbXZoUxflV_QEcU$|dhXcuf zvlzuEDTRwZzUV+)4E5aaW`oa!R7*W1^niCKzl&`Xp3^FlFG7E8$%cz*v8bllqp#FB zlg#!CG5U&l0zOooL@bM>b|_K~=q}_slYX>4dTO(DHD8aN>g0XuIFs2u>{$x|Un5^+ zsMR(~i8Zka#m*YuLDq_+A6#GOJY*jDU4MuP+=+0b9ST+?x9;WvdZXGgv;i#=Cxn8a ze6!)hda;n&iDvWd%tgShK5q)JN*HGMA9>$taA@e9c^rXDRwoRgNg>nzXj*RmOa?=s z$4EKbN!Ixs-d9)ojKD_`)oAgr7T9P3-X!-D^`XPr>rtD`yR&@OyWJCvJapObr!0N% zH#(KX>T}xgpFYIz6_R)-aqm~eqwc*#6*+{tht4xsmG`ce=B`#U7S2|f2P{!x5rBZO zq=2ZTfvAX#u&|66fL~Y?vq7g_OY#2t zbb@`cwEJSC=;VPVDJtm!kd)vT<`)i#-v6(Z`Tv%_wsNy_z9>iT^0$AA7mAOH7%`}iM!(g*(cpZ|tu@zB&0#UA+c|Ngf> z&u6W3jbvpJfdjB*s*0Gs?gI%b)-FNcJO7X+D{2 ztzO5T(UCsa%#}Tuz3J!Lr~TKad<6xwmmZGa-+HH&xg`t?6;2ekHlwzfWUtDh++``V_oWZlczzSd^@thry5k*!y@OyyZN`}3k) z&$RN{YWan-e+x4?Kl{iRrOoo0`bTa3v(MAM9(d`nwun9T9cZ2ESq6FxVFKK2c(bn*c4)ZZ0{uN`drJVbbM6n z`18zMU@=}Dzw<9xKoHjAxID$`~b!?uZT<0DnuMRP>k z-Y{;9UY;kqeXCjf`5g9BwhYGJY?W>C(&%`jJ@eBhqt5X;YyC*gdS_q2GOuA@Xtvp= zwOcYyQTRqRN{XFg?ScMQe5llDmzk{({)Q+vg~k5m7i=S7AJ4J$8^%2_A9eBtTRTj# z?V$PKg{R|%Jo=|C5QZ^6?Lg(;_D|GqKcRzw!)FuGjm3Rr<4kRKO%=|rxADefm(!u7 zGHmMbh4$HuL)qlp!r4Kx4_kk@92KnJdNDso#~ZnE*_Zuhs#wqdX}v9}@p$45>vyp| zP{hV!PuN5(EYHgx`D=&Ob^(qNX-{k1H%_rxoS43X(_21DwtblKm7c(a?IdC4@UzxK zyNNT_)Q&(Zw%nzkj$<-PG%*(q*Z=vuEk2&#?{jk`{=n)@yQX4+(1mG3O<--dp9&^( z)zh{;Fp8E`lxl3mZc!|$jZcRmCG4{YcarTY<8f=TQ#P+W9%4Y&i)w!|_F|LS(H=IOOJxt>M=QEr6SwZP*8m9%oq{AX%jIxv-T;Y~?QyZH zy&X2Idf6UiRoDRY2dmnY&8k+Zyp}hsTDC0D&8n7l8Oyd=&9W=bq>kNh&c(P`l}(n- z!S#0&9mZi*HrsYHT%5|5qikjgPL)mcvN;M)746_uo3c5TeZdri!>O#Duv~{zkChJ-u%4=u!31#LZQ}(OsP>y&WM>23 zzWBhVY(`L@p#$QKz?49&*&In$& z2p9o3finj&f}l7fFkzhgcQXR(X$MCOM!=C6Uyp;FyKUdoZ%jpNHzQz|>v;k-NON(!K8XP06uG5IyeA2 zXAw+G92Q_R(t*63Cn{O`W&t*(w#CcE0yycWQ*IWp7iF`6 z*JTq6sMI?z^=ng(-jtz6{7|_!B^xKK1)5y$iIUJSlu(mie~W@h9>)Ayial-}FfM=# z6AU5^{@hFy=P$}I;rux#tUtjZfghu+jt8$qrG9GDR%SK zhh*#C>MxWtdv+uW`|(Dh9=JMtuHU+zd8D3Q>#}U0md5ScN53fdGe2jN(`%c$?PFgu zkcObxKF3Pg;cFDX0A=7T+Uus$QX`qzv?ZHZKkTTOWSH?H4npA`#;z{7EO0e?+g>Pz z!q0gEXaYW9vx5&5FksvC#!JZ)?fH!DgyWr{omDOij{!lE-G)*GRucr{S-=tP19k+l zYIgIX2{vu>XOc$a_i?77tr~{}&nptrGr%^gy|#D2xlC=do1br(Mn~|+zR(EyEHDRb z-8oVWdbcr4F4XTQa4`_cuurpXf8ga~lftXRCcaSU_vZk!2S404!Vn^dBqJJ&NbZ(}m@>;LcbU$RVqqHt^lSyY*HnN zKjQFx@)|F^q|0f$T!a@kg+sFUDf8JXi`VS7F*%^Y9K`e459JG#MA6h%15CaEZ>zX& zz~C?}+ZqI_!1sohW$L<4#E*?5B{K7U=9+C|z@X<;_Gc0f+fVGJr|f`!L!iTT-?UL0 zc<{agZQ7De5HG-~X}otQc@028be7`r;EuJ2G{>Z1#{zw^&slFx57cLIK5SqxJ=xDz zV%GQ>?Y|D(?>d9su1}~l+#9yqJfGSdwhq%zE~W=Z8ok48*oLJ%h;OC6k!+;J#ORI# z+$t3kbgV<@d>M=m?zDx&o}elPDcRH(st8!P3OwIbh)HN*K{^IUYPhv*Rv-0*_7><6 zm^8aE6E%(|O%6g)y-wq>-aYd^jkJJ`>j@hMS;^!9G_@*YnM|1C@xvP?Vflds`d`Ka zi^DmPyKPG~8auTqCaq3e3;O~E-9kB#Om}e&DJ$uXEa5nD@vIY&*i9rbDiu`p*4lP| zjiOOV`>TmEgPr|}3w|F_47>a|#6B_c1m+Exx1AuU2G%tKE)|%GPBAPKkAw#7Xj>O< zJnR4eLt0)Xk#p`1zF2RAatHKDrr zjvTgEW2+A8Uj7HDW0M=apl74;&};^Xr?EEnIml5Hmy69C=gFiJiap+rOC~5X1@HqE zQfie%hM#yA*@-iU;c6+jf8Hw+ykgiK%$u3ar{9;pjl5Ge-V)P<9xDJl`+`7K4z-oD z-5`S5;IY|Wjuy|GvEX!D@V*bl`}t)Q`@(?6jH}LizD%Zu@Uc&bX={{?&ly_n`S}Fc zG0srpRGVPga^6-{lnQGSg4Jalf?$zR!w#)_L3lBkNsJ3jC(LVC-$Y zVgLE#317hY0qLbzN%6h1lL_Jg zt}7_=c*7?6!4011_fY|uK~HU!x`7R|LV4Tp7Y3fG_(F>_=?|#T;`QrBY@0foNnn*5 zys$Xk5H~Ru{3iA&WI?-J7OtK7$=ld2-@*+9%373a^~v29<`!)e3r4H=8-CkVoVY15 zbaMS|KVU)}@5CEZ1~(#qyl!bRz@<{%F0Sjw)_zf>cH4hd zh^MyCsTJCa^S8-l)EeKyYe>g>PupaF4o-P$3gJb|xvJV&9f>Jz@Pt zXCSEqScmFI~Cn_ zVWss=8(2T?N~ayyi&Jo52d%AQK$$Cuv+sNsjy=gw*p#$1C{NfRhSX^1s~LU@>5}4Y zgXPbQ@d9?B__aS^oCih%!r#suGM~UXgV_n};~DH^T4Y&e4`UxEXpAXDj#w?1$f6C^ z+o$U1dg{Idi)-nY*_?7+onT@({qGb%CZIq;(b3|Nf!%9!5`ncgkrnU*+&$JE{wbZ~ zO!eYu{?%P;E{0IsqD?NIkh2Y5gqxPVkobd>;(dj`0;~qGyh`{4RNuhP9s(}*p^8g8 zPP;p?>^8npAF<;7L~(wxzu?1ye65QC1NV#Ifs$1L5>T)u=3l|d`(YS(!#)la!FC6{ z3@W&8mKqKOH`){xmfp~5z0UW~Wz^bsaIGKmxKj?MZBv+`s$CT5kNtRU)scs+g|ZG- zQzC)L(2uEdCE@LtWP!vS4MC&Twj15ihVe04S{A+X@WLc+4@(M<`7qrSvkE;ER$1r> zHOwgXf*pRM3j4N!{=z$NP{rEqt@H8?QML#Gl@z*_D_!;*RB|_0#v2dKJ0;;(8S0b^ zrj(Y(qL{H&A`XLQ2fC2i;=wfF{L|)O5sx9Ts7W%`3lY$j5Suij=HTMoS(sKB2r1?0 z4O7SgW4p1D3sa8y!IsWN$l&`g3l3jIn^WBdez|;W$uA0){E_p*zJP}DTj)Ep6VIxE zDey}Y;n6j_ym93?z{SDP+d(jjwL7o3rh_{GbY?=KT)r`+#?b2wuN$L;Fa-_1>Ibl& z3$2CluC%Ep^0M)rXww*`}fm00b(IwawwhS@{Xwr)=1$L*x?-AX#-!#UW#O)R&S3qKe zY6{ylq&z&j)-G}gm9G?fRfX`@MDq{kVi3N#DDG~vodrOF)=&bYwRRfe-7=F0{lo`+{nB7lkT26oEA zTzM1E4_v|L?;U9U2UNQWCi}8GiS-z-e{TEacTkR$&>o?>Zv=;VL6}(rx-RXuU4i_D zZwc3HxnzKr%A(L8PgMFCY$>88$Owf>K}vc9KRT}8FeMf&#KFgwCcR8?Z$pp988@wz35cDofE+9AR)kT% zxjWu&;|0iq=YePGY&t$_OAO0RAi4Ge9Q5Gf2mFFh7{hhPsP$ZJf+b6DkaEq<%l0E1 zZ7?g=3zTWFD1+HLDAS;*z|$^>N}!{Sy22W1)t2*5u;nFduhl>lWLRP!bC zWh>h}px!(@^!y72p&p=2%XGH5KpD;$0TqEVjbKk4OipmQAep@@4kTj~u|9`n8t{@a z0+MODiV+4R(`c3o8M#5y1QO$jOq2F`Au=3BJCF<)Z5+c+gPPse&3);lHm)a3WV&>? zhW${>1sS=Yvgw8f@F-MSQJ4rY{J#e zHLPd{BomZ?WP;+5OoN3J=hnrvhAjo?)FBybH!1@T$uu}8&f{XzU=F&RetaT+guXNg zvp}RBld-nqTpW{mVP}A3;*bO+vsYk4GOftewjmi?(@E|SkW2%nfWz*POrw-v1C?o+ zx66gf?9IGUnU)!n6sSytb@V_od*f|LrUCsJ$7pfd8c9)tLpZ%k%WE>Q~DM;pIUWYq;>G;$Cwlg(;HfZd==F2t{9 zqNd`CI`{lv1l(m|unK!<(7F#I(;DJ$ZbYWpzLyPaKheCO{(=64=LVkcG%n%n!&KB7 z_En+e#bs`T0M&tCT3fO_!>b*O))SG@_&xZ?v>P;T9XIdAp}Nfqp`{jet+LYx+ zfeQ`sn(~66XcKJ=mMFod+!38ED~{roQYc~kpinWhL)5D9NV^CjkhaQm3+Ts%Hf+KY zT7@+krnJY^5DdERkpsy}m&A%lsCf)C4RKI7H|Y_tuhVCuNv4A~Pe%i-mz^_OM7I=< zH(jno4+V|vyW1SRKy`69xv~ov5;DpnF?yQRy z&Lwc_utJ}hcw#wry;L~4m&yKVO;C+J78f*3YC=rKBv$&{-x{4JFkM*7O`v4FFti;oGtoWc%1~AGUmX;c#s0xZ*Yd zJI8I=CTDz(%Lm6MPd>(uIJYGW$#%kdJy!x|5YPoL+=qJm_aE!qLut*$u`f_E&2$Ja zv@uz`Z+ArqX#F8n0$|%cxch_aMb3vNG}{w6-!(?k0qpc^s2wrePrn|3{CvV%D$QYb-U68g(VSoTU#~}pwM)VvYm?nOK8m)?RX9L!iTAuk7rRu_WH( z{n>HAgKo*z>m~>e_BxFN$my}7TYGF%{^a8G55b8zSH$B0z;Fr{JPWS(apH}_P^&!`)~@7#&d#jO zZ4XsX78m=~F4%6;9sCOv2K5yps!jVA7DKlw?tNWp+0ZuAzS`J8j5J{nF-}GNtRsnm zxUK!c_$a&DseJGR(j9Wca<&Ll(1paF{$w9a;svwYaFE5d&o`W6C#@Boa)@sTXPSIt zN-8aWQTB(LLBNY#=vu-s$zBquldR@^0lxuNKl5V*x<<-sd7Yj7Da7bLt<>0C{CFXM??1)wb|I?<*$?Qc{u zpGgt0BN_-eAb{UBwRL(A=WF(A(g$NvQLt_=ssRvw(+F-vI8dtr=m%J%@raD|1NL*g zx%NyQv4w}KT@PsaHnP}ZYJkZtkVQM$kDQ6+-EX`=_QLhh81Zs5@V4jx1rggX=-+M& zMse6n_?F$v9ZzE*_UrKX?>n4C!k7JO-bPT}C77aIBg!S(anS|^(kIv=wE7`~Ii!w` zYiJ%@ue||W3O7HsBKr;EQW2N8$8Z8%J3z*~f@0^Gu|>4{Fh-@rXJ*jm$FQ1Cl^n5r zl~MfohRH>AdKi>QJJ61Lv}bk#ToJHB(yt~-{g4{bt;App20>z{?{>udY|4%Y**^)N z8OT?A7-6V+SuG0JrYcs&>PgbfsPQ~3I3GZQVA$$)2QVq}HrhT- ze4#15OH3uC=kZRsrq&6-;MprT8+vpUGFb5xa^LVSWHOM0J$CGK=p!`77EHsS`;mL` z;tg=*MLZ0!NT+MXq_)JH4xSkFFM75V(DK^)l%7DuN(l>pN5n;zv{m&R0Bh*tJar@c zJ}b0auG2n~^|BMSJ%M#xitTq$jvCqfVkqe^l&}=`@i1n6Tk$$v6zWlTI)WD39j4d^ zanvbakj`bza3klZ3MyBZY#95 zk_5P|Fxp`&+>~o}Ubdk2CEO`+A#5aN6Rwjzh55fz0yug33Xqgdx;FfN=xp!(oj1zW z>zD5+`PqXTQN|S3d_5955_W>gRxavLf4D{TvC}WDWImB%!dbTn>6X-@$VuXU318 zCjg_I>?{Ko(m5~nbHE=3`K(<1954YhFpTQwZif091Xn-peQi{!p99vqCtd2Nb%9^n z`saW|Mb}p9p95Yx^e%Dzb0F9pF@>&w4*23D;>Pt)n>A`kNB^{eWTrxL(Rn2J&*jiR z2gG7{>xTY0lHl{Le-4Pbd4~QO?a)6DMf#_;WfE}xbHF`gwM+jT@GzkFw)C=*l+SYO zpVsRpy>9ED+%cEQ(AqPfA&U0N3 z12%RbNUnd{`XzFz&_9P`Z-`FqkyQX7{nJ3a~rTFLh}jr zbHGr~AjGYH8l}pYU+O3KZCjy!?tOjK&%Ld-`WXXF=)oiOEootFt4l8(aDmC8ecA*U z+E9Yk5BShH%mD4v+CCO(pSyju&qI;+$wLmf#kEg<5w0qseGcS7adSSdEG~0dp?$KG z2)YgJlWf5aySbcY-`Xen0wwUReGd3etdFrHm zauLhz@jieD))dO;fRMI&D4)>|<#SWEoH`(+F$Pu2CpQl6`%pdyOvDUullD2_ztL7` zpPLzl_Br4q0&}TrpX84x*l17GQ9gO1>IpyE%eS@9fixFzj0x>?BnrHteGX;;TcLfv zTnyAc2OL0+TZHyGkkA8ZtG0qOV5Nqf>MGHI$pp^&t}^ZRQL2K1d`%c?aUj=u*eLZ! zk^sC>b@tsX$=@WtH7KDE*u8OtV5IJxPUwR4Y)1UPjTOQ?>~V~u$C_&xM#bRkLFzGkG)_Z#I4*~PexmRy-Z=)8&wWD6#TNirvz zv_Sjh7g8PZBo$^RgS3lNU35DaT%t&HHkx}v^k#%90VhR6he<#lQ|fUTX2S%fFa?+1Cynj z4Zl-iDFjN0d;=iB6#>|K&E%%Y@0dL{F%zo;WlxaO7LaeJaO5=0pvTlRDj4AA^S zqBml|1q^|UnV+P5HC1O8l(o}w4Q-{Il>DP0tLEh12Yb%+aZlP@8Td{mW$4#)mGEv8 zSoS_f`V(AP593*p=IPNCHj^~?Q++DXr{#zH9DTqWnQ}F|_(fSDMma~6oUl@#n!9u`Q$l}Sioj6voMSfY^F`Qa-YcEVx} zQII+n86l7|lRu4McIHE~!_CPx`DkzfTB9(^6DRX4D9T*%MyUYe>D0L2s#ubGeYoO; zta|-;B?Nc%k1T!L9DxPj{w-dN~B!_Oepn?9IG`9hmG zEKD3`p$ti=`-B zcmUBg8_7U`O4Y?cPB5QBV6y;i5`%*BT98q#E1~z|ekxFho6NzJsVe5DwA`mBIjiZe z1N#!tUXZi;q27yN1L--1tfFjtIyN1D4ARsLbj;JxVC4zAx z#32H{<}Y`7Mi;nTCP7S@23+Q^Vn*&hwrd>jN#e*b3(MHh#4$P|92m5(`y7-Z=EN{g zW|4;lZ86v=iH8ip|4cyk(7A;wIDvI0H0qu)eNorKbuGRPpHQ;@ku|IV01x{J>WK2J z!;gJ(in7!DiET0jSNf^G(iLtb0r738$9|R3J4%9PjRCRJ-9U7ew38D29zcc zIqge!z(t6ze~k$VjMCkngN0`Qy019wb?R~NMM0e@>i~^DnU1s2WXt}IC(Hahi;rO> z=7C$fHO8O}01=>ROAj16^bS@l-mn8vN^LJJQR zDZT%sD7cI164brch3z*#nETiBD$clf4>Pvqil@abi;MAmz}|&~ zPGuhJq@{$tb*9bA<39m%^9PyyynX%5U?Zd2Ih zbzcB@2~ud^cSJ>aM5jp)_eg)xELvAyG|(#>qw4)G!U&NmR#hKp=D;(xODEWOS_Z(Q z-|>4dBNJP`@5W3E(7f)?4CzkMzJAAMTodG|5w-{f|Gud+T%L3>`)!_qQP+LpW8VSh z=FxVUfca{V*uY#J$<-Q47KzVnxdGA#Lgzq9E}{*)o?yDcMn2h1q8V}@pkY(ueS zGc*uxioL5%<}j?A)6F~arYrh;BWmth&!SDIjpI{eQcfM zY&zrebTfY96AjMw;tB}}n3BhcaU|H}7)r2tOLDk5*iZ6=9*03CoFQUFn~9|dSr^;I z=oTHq`^605X}M(9b$*H9LF7a_JQY_6AkT~K0zV{|-JBWOMj3dunRg$Z;O=4Y9akSw z{Cx*tFquyN`<{T+GPV0IfdtEfEOFm3e3x+9zLJ!`@xHbyLnhO8wc$#FcSYQOKv8Hg z-4`Ss1MyB=qFDjr=bn{kL%;4~#Df4ZJ@+**UMNB5PKP3ulql3MeTZc#--5wLL5}dS zfs!L&0A1l)g%E;t!?2(nLFFBR`S+l0Rq6YU!un04`=LNDfz|ya(E9U_%NgOb53}}8 zngre{0)!F*ITpS3G|mQ%9Nu-g`&_gpDXwa|1PoKq6CY5vOn51Bw-F9{C@)T(O~64V zxj;#Ik)b^_c*E+u@gM~Mlob3Jx(Txo`-g!{Fh5#?`|gH=T4M%H?=RpWY)IRtO=2?G zB@>e&#Fl%YvhD@Gqu6}GK}-q?(4Ja*1IElS9NqYWgJ4H37%}B!z(I{V1DMgqg9i1A zCPoi9r~|?VdQ2o|5dMRLFtcQRCc>klv5FK8l z;93y0#5jGRDX`IfI3&cxVc8W8LPCiNZ64hQ2?l4@ekmIy0wlzwH+4DyG@GJ*QKG2u zI}kpok#@%xGTbaDb>XC2CBwyWG40>JEGZ>G9fq38joiB9KUqi)Q~RL3q@!l|hcjX3 z!;mcELA;0x^K&@Tsc|z|w-SL*rP9aML`*OvCkN4++#SP$e|cj9*GHT_6Q68_7O0)I znv|)J6d3!6%)k=IOMVcD~GfVzpksUK!=m zuO3ziCUj)nqp0ox6$7nZprR2R?KXkbC(8xaN`R%wP)nhfu0KHGTwH#V_Ejsc2sb)H z3(TWh-oRCn_!Hq;LT&)-avH?H^Gx@N{bLTEp_;q+ZqBfAf-vaVi6jgmCkboHfDQlFzv7(_>TMt7!)nG z0*ZJ@3UdonlcW0!j#D1u3G}_<0ZY0}I;1ti#?$c}xUm&xu$r zdrSdEib5&yP9P=#A(@FT7x@q|fx`2XwnQ;-lCXG59%RH8l#UX%esZmWK)yweNEtf2V>J14Lh6_f=uBngS{ou8ikheJvf>#AQd|^e%k=Uw{$=G7^^LrLoeBP1 zzj|mpyl*gzgUGmaRlL&2nGyDrucB_Uays)R#Bvv;u`K;$D<1H7aFs;nA zpWeVwQ(!Ff#9Rw(;_m)1HUX;!HQnK3m#2UinL6xSDPxX!uDIO>BXajlU`uufhP1%N z{T6WsRihL>I}kg^v)6MQx8eCEY%op6{pUXYzN4QC6_CCh&csoJs?&zR=|Kl;rfTp( zbO_R{dRL0}5)bvDo3{>ZM~O)4KFNQnL&p`-1-2=rG>aj3T-sC>(?-C+e)-Jf zyUkd%V;&S;#m0vx!gxNVn<-6at{af$WiSX2`Oe{eQAv5i%s@L6b#_YBymts8$pMvj zlOV;a>(j3n)^Kd;0a|f@9I{UoUM<&G7Ca?|7msdldVMJOgFjg?Xl;AbaDuXN!=2 zTGw=zrxb_ae9Fn>2rBJm$uy~4E4MksSzJ4{%BLS2fY1jgd2bT#O#al~NEwb2d}eR9 z4C6JQ*&8y$kPav%Hf>HD)7%@|G*Ci3vG)^jx>l~^L41fwtM(B}2>2Y=DN7DnoRgR^ zDrO|!rc!Gq`#zz0v)p%1WhijF?j?Xj52iToE;#6|F|X^5 z1~lfM*jHfTMx56*2@$RlLE2X-;Gx#)b=v|TN_=bI$dJ#T=f1Up57pex#ZGwWx$l0a z0B-3L4;&IX62wMLj+8-kD3wbR0Xl?XhOqLE#{4rys`p!4rFy6Qlf|wfPE|*?nFQ~Z z^1oB;Iz6_EEXh$BUG#k@2x@66EUfGDqTmpeASC##u{7JmOnM1-XOf9_vSeyfVuk`E z2L9e*elD57eryV-;Ww_)w#)YknA(L76=B7j`;q_yD0? zu={hG0M1i?+A4v_H=NQ~i6bGKA3c=|uki4=NeW5F8;{q~eV8+oy($b8SH4qO{LaA`#ojKj4=`|sPDW4|O6JcUlKBEpuHXo#BzSub)|+bh z*M3;ZtWe2Ig;(L!OouZ$lO_0mF`{tNp*kfMueKS?pY(@K@CBo58RJ|Nom~kn!p$ww zrFjZi)JB=K=L=WF63iSLlpXog)&lSiQE;qLKNJ=K`gmo^np_g7Q<=%5*`r7LU!zix z5-ambXMFGh#)hfV)l{dl5CI^END#PJgr3d=E23P>-u`=L-zi^j>!DJ(h~Q#bHZ2^p zz2Fx4k#s-N3uEc2%B9>CoL60-a6ccv5bz7UC0K$ur{5@W#nXl$PS$^=^haCky!A%$ z{(ZgmSc9b<_#TB5qR*a}^qp|J+>^l0cgpE93iPe@vru1A^jyp1BfGkFCBJ>f}K_h8c`TWB;Q;_Z+vFIuC5Xfto;&x8*x-6c!G^$g>ykA+F6qf}z z;gE9=^oeK5RSAj@j@qoz{(C$_peUD_!8bb!hT5%( z$*2pRQ1wR6Ix9czs9=J za#@8iqI#^Jd$eFipusp4B(S}5XjI#X-n39B(As+(bJYI9ba%tWq4PH z1jK8$$!F+6=kj$YTBqcN25VdY2v1=o8)ACr<`N}+88~dE|18YJ46t^&8IGBnw+PEN zcT>J88D3JlBRR$l3v1^Obe~t)6Xkg*UnA64VRmk>QHRL2GTmUvA$TQR+7zJ|c`iy? z9Wk$26~s!`X5nuPB`M90)@O*Nja7Yw`7r=a^+|aM+z*%)8#OQ=NS3E~hUmj?4)~a7 zh`W8a{2Z=y{+yJFBFptP4l?6=ywJVZT5A0VFNl@h?b20j=}liFcOlIi} z2##}$a6C&$WQ>Q=3DP<6h9GG>tmG1OOh+&MJ~{0~|D3;n4h5SkN{*9Dvd(eUF2#BC z^)Jfyit`1&dCF0<_8eJQ;?>OvVGJDNJ+ERio(zeYaZ|dgGx!3T+`i1SBb(=mw7iU( ze?dO<*KhEip0W*O@&~^OJ7X_-mQ< zzLNDc0}5=esW6WE@iL~diGjV+p18cUL+7@ytxQI~|ERC?Wo4 zfJkJ!ZJsMs8zrRQ*WRcMGgBhvYw?2O*BgGWctWX|C6rS8A;grO zlLzs6a>9Fx7uVGWD~Q6DUv`z#3sw2~Xl-_3Y~FBNGG!d{y?0ndPfc6eb6U^@wAI)r{)-yYew@aV(B;h-0Oc#j)Z!g|;}x^*hp-yi?XC zjdA&?v^e*H1p?x^OJjvKkoqN!*>Y{wNje)$=~QdH@LaUFGqkYQ2ROhDT@_Sb`f&?8Apn*j z@H4w!vg20P^nwkJTNN6#+P)sjfaCQD+={Mj`NpkEpIO4OaI1oR(evO|1x^~N-;>)F z$`?rS4Gjt0bQN;#$xQespPbs}2p1q+^Qff0F8qpx)QKw!z+#2@66n;f zoPO}Df_&U-UQfvHYvWf1;kEt7uOevG@vGQlj$fU2%+<>-l(d9=Q~g*pz7OS0V1yeU zic0=&N&yN=8`Dx<@Fkw@HY!%|RZ(}AC}naHcQKpveJ^V%S23huv83fX0#YWcCPkJD zTBTptX_q9Wmel91Rd_Xu-Fxmp$P)s4W?#|$mpCM6a(#LP~e$J;WJe+nEK=*1u(>1_+YG`l-ecA zx#L=apifXSQIvq1L12rv9cyOQLMt?$pjU~ZsdR-yFA^h*DW@@kN|pK^Vj4oVrYrE! zkWsa(R@sI+)5p+-)7nEOL52|#L}=2&X{P5lWwx8+@i*9J`EOZdobq)jXW%c}73Q|{ zo=)ZWANK#5LE#qGz2uZAVx3&1_X6Mag>PCn-4Xj9F3ayJ*t#BWajq+_aSeEN)i-Toub-QCPT)sU50$e<`!m5h~_n=5xo04 zSzds;IWn@DKv3ey*KIw#C@NIogqoAI1m^)2`Xoo^JfOnBOc78#V3(iXJb(pEx0Oug z5g9RYSO9X(P`Gjy5ba#2XOrUOSZZLtm z(}6h?sDR7Lj3Zug0qYHC0+kU9>0$ywIYWQht}Hnj?`RaufY4`5|->JOU- zMD23t0a5MTk9fsKzS`H61`~LlEU(J@Y{i-%{yvnfAo&VK`aXZfwfs;EE6NG+r-puh@DVXW&3gx$1of2q}zk5laC4rxk4Tu?>F9%xKfq#43#Y8$+& zNr|W`!a&$5hPc@it$1o?WqyqI#wQO&um!(Bi~$Z;{u^W?(%J9^;2C0FbQ`M7bC{*= zFzcf7BJWfItQ0I%3<9{a!YSd5i`Sg0e%g5Bk><3YKxES37wD|Q7-7M4ocfqJ%{idf4OE zVbqg=kHYXQNL~|tGPUZ4&?+3_2!DCcF&j0S+&4@f5q}>WF7x-7WI+5v*DiP*CrZkx z+>%nWB&C}=ZCwQ1Xiix)e^mHYCZ25uvQ#7!Rz?d(Wbij0;TcRkKbP>0)|85K(5C@# zhI)hmynTD0LeM2E6-b;FZ~F$A*AoCd(n+#Z0S(ETl!Q!i;wh8Jw<{I~K3}Zr{&VT5 zt=5s0Brs`beqR(gB`TLpmhSdWaXbc->a@+T13C{(l+vQXyj1PeA`1h=i=sEO z+x!IpXh4_0J6XH9q?=UMe76OQ^9`poCJwVUHoD{x`+=&IIjO1k54%Lbi6*&<+#&?Z zCVeI=e5-YGm?Z))%&Hh^xR%&N%Ik0=8gCgb@_yWnXXH&5L2zp%;aQeWQkQcex~a05v_7+eK*rJBjk> zEl`@kmy41g=@;^RW!dN~hmfEkqJo@mzxCQ5O1Mj@<_pW|7FIugR6oWk>|_3%A?biH zWWC)R3*kjPg?>m^m#IH*pH8F5*sztZD3pv88Ax61 zZOC@9L4Oo~KxsCDGx9e2i(+lctLO)`jrmC0MAq}+dBl>ug;@_vDFII>rjh~tLODa8 zT{))TDYzCGz7W54o)?ArVt+(bB6xW;@PE88MsV$fN zf}+LB3!iJzSkJL$Bb=1`nYdn-ZyCBmaRB-==r0C;?&{gP9J?K zPEm;`6sHb*bs8b%bzTM`1bW`7BPDitGmPu+OiUYE6K8(TOKWOykvOVH11v}GETyR- z`ANQ&Ce}o2GnA&YAEY$B?hjVg#TMx0Qko7$N>c+bPbHM5wiFt4l%`!qYb!lA((YCt z_FSnCkCNntqEyXIPr#kA9nXc%5#&p4Vq&k+LT&2c^6RKgr@hstLy_9lF$Tm~1DK4qbn=urpU8U`4PMtv_TXE{pI8-W_0$QAv5aD__wCpF+kme=D2~~_P zp^`ICYlgI@SQ*!vUe``ljcDqg7mp1}@UFfcPcBN4Zu*POp)o#A{7+}OZYsJI*%$>ZuYRJb zr@iBU4n^@lyB>{)|Mcn!1tR>X!?-UK8^eFtDFv@E{HG&(!T~BcipL$4DX4S=T2fn7 z^iM|`c)}?gr|r;=TMO;4d%C3^{llphr0PIz-+mU(8n`&+Ts0kV$#ot4eOq)E;{XOd z}4rbgoT-8?_=tO zb0+)fKP??WIbUY(+g}JF;`QDsDZUf7fETa463#|}k^cFevNznzcr?b5$L%TieJE#4 zNGLk`ZIs>W~>c20{-?yc5A4=VH z87Wg9=$b)672K)d<2E%FL4hMBT=9XB6wky&`QO&;5n`1Uzu(=Z**z=il$+#`BNrWe zLMofP_t_VeIR=pSWJ=b@{U9IKy1cp}KgV~159UjbWbDQpWx|h(J>S0*kL+ZXhl0u| zOpIH$U&N+d&-|Q8O>gC*YSF%Tv&y&zl@6ZcP_~-q&svNX&$^zO4C`U6c=v2nLuK+F zc{8}P%5KvgrGH)z^sEpHV0yqJal#nZK8Dagx}#ucf;Yn%s4LiDl);ND+7I*7;034j z$t29yu1aG9#DszQ2-$B8W#jiBW{l`X0#PqYxdK#c&|gMrY7rTj^oF7sm@5DpB}&C3 zCa6C$|Lj3~8`IR3Xd|8|$})o@^i1?+hbt-XP4!186m3&XRH z`3SsCr!b8%p71${4``CkFYH;|eTaF_ay5EchwX4j9qHmycPgc4p||#SoDSlxZqFa0H>1#j{~|?wSb*kG0BF77~dSnSKJA{?*J5{s-l- zF{acQzfndcD-DYACm8u-uvPjS(vu(^F|tuLdHf`ZNkKxgaWAqdVbXX0+Yrz^7*x_9vi- z)yOMcmZFw2ve4^>TF;{^#RUuCi2TBo3(9VT87f{PD7o^OtnQ3RIW-Z4%%otA#Z~ze z%LTZ{-LZIk@#^O4$XzQVpZ1W?SS{L)i{6Jr`SG23>`@=~!rJXYuvt?Y^C3HEMI_I3 z?pxfK&?!p^pW4((|Jn3g_@+EG6I7yZTxtj`-a3XAXtg}i5OUYlxQ%+g@SKn zWwwX2uWVh6E?2x!bWTDDyC zskS}R;@}vJt_r0;k0S5$<%y&q)2zhf>6Bd=Vksqbh9XD*JoyY}nD>g-r_qConXAFi zmZDa2ca8{Tk+-qhTv3HOJH;kPH97qY6&1HB_9%^jP)j zFEr@BtcDyD01lOONzR8N;km+No2izZn?aw;xA43@(6;bgfj?h|uA|9v|bi}ExyRN9q z&ef|i9@)7fUiUe&b4^QWC0#O(F^BA20sG8yJ)w-eTXwF9Y_7NPT!HAfBRt2-xcvOO zc61!_Y&%DU4vLG=73%AAMCgk6ly=Ft6<(L?h|qP{40H+k3~h_h6(D9i4=^*)5uqy+ zUELyd%_>0@ePHUxA`vpu@&=ur~w{lu)c|@d6%)f^a@%8zZFx`33(%_A$7@RnH(Q0gp~l zv@vC5L4mIXs&`OghBpwrrY7BIGA!b9OrQytg=MZsYr4?vM`7&FChfO5p>@T_XNxJBomTxWhMd5OHU4f!(pS8HYn9&@+q@9PZ)g?Y5PYI^7 zjntbhVj9P%7)a6Bw%Q$&M9Sc%iVa z#$FMx>rjyjdYocOf6wek<%iexkmCvxFlz1hDczKFCLt-L@`Hl(N(VEei&OI&5@7E` z#=ZDfZB0+fAsN9L!Y<&oIYM_>_;7@mjYW>&zKaxX z3h!&+ghJSp2O(hCr3HmsjYmm2Yv`-U3G8+Ieab{dr61bikV$aMj<$>}+d%m$X*XgM zVc8}v^A!m?dA~`oy4uU5JT?V@LUAuY-a7P4m0_AFy$&DCm+Cl!i*d1Wq<|oo@)lGG>>Zb^s4SKnTI&G+;QuWku;;L z{c4^gvnh)>RRs_w5t+uuiaKY!z*Q*6d*qo}#lIFMo~)>Y!NuQbRz(4zoI)b=i(^;# zsW_NTAvC5Fk?t2(v z_KKl~*{kB&8J4m-dk-sGMfNtL8r#lRr)=@t5?3cHbboA1-Dz(LG$>nta39HS4Yc1- zg~YHI+RVt<<`%^Y#0J=_SpN|Mg$zcm3CY`7d(GGIrkhH;%O3_OzL? zg3?EZ)r%J|GRYQJm9W`{J-k&u=hqNQd<#lNmH7ceSF-2Vm;Q;$M-?1)et;uANzCJ+ zk3~kA_~E^&NXCr(O9;S7;^{@T6H#N?tIdM*;>Yu&!osg_{S)13h(ELA-e8pN^j=lr z!Ghvo)4S7HPpL$~Ts#J;w&1ZY#@HezI(d=J*SC}}@&o_-&wqsnqa8)Pux85o7*1!Mu?cbhy`TF-SzsDXMujtRRqiGwj%_rG5wE{kFS?x+!O5kaoa(FUnNF z2$F8IP9Vc$aQ~cVru=|@p`0$kr~;YfokA}}o=%vwbQA1nUJzJNkm?0I%}K3W*gl()f~6np8St z(vO|_D(RiB*Z_Q~WI3qwry2RdAL>`L2qHd&tZ*=N4AKye?dstuUy%V_Q62b6bXED` z=_e0e5o!1lZ~^pQSJ`y229BZ-uIFmJR+m!XRM-_p(bO-#k=<~z3a==m2&h}ifWpfV zk%}wPF1Oow<9Tk%*G19#e7&uhf(iU7KWX0=C3zjj3L6SXdMKF|iA_1HnwYPnF8TTK zOzJ7R#@dRDUC4FJ7b<<@_*2@|P1BntokqJP44e@XtW+4N@Ro5P2J&S<^(ypqe3z)fqNz1Y-_=-BPQZ_}%jvsStJ%lDzg zIce@n{~Kk0id9Bd`IWMHV%rg(@08$)@zyVt%@f<>;Y7bsf=#@P%L70XtG}MX2IUM5 z{?N~l;X_F1=hA5Ko-cq@P7`gLr>d-r;i7n6 zIb`?bHH77Hx9D)3c9Cb~A!Mpcjn!?Y&SK^-N{v{_)rZrihw-=#k$~JT4@2o1oaA|^ z9iMNA*-9fAMPs=65@RSyqb`(zrvS>9RdA3}ahcYMhfcwE)alsV5H^koeE>Q|!%)Vc zvq&vz*>B2ZVuFg)9IA_h=rKn7O{QdEAPw(`$xyA9=+juI(xhT2T`D3t*x&=;w`6%0 z%{F}#x?gWgs_VqDSNuXtewlL)8r;)(m#K|6P}RK#^jm@Zb2YKAN4=R{7n%}DwWJbmJa`N3^@xw@p5baM))XeLa&7U< z&YZT?Hh)2sp-ErK?+;p-8k5vc-6wPGPOYSCmEW8U$pimF;0;FAYVb3>Fa-SVQ-OJS z>ecR#IOFDUXEuWgz09u%S+(W7fi;>DWCepr5D>AH6~zjTPE`QmmOp<|R0!>Q3;VhK zq|E21eA|%eFaM<;$@Lf)6}QE@7`){EaiUOy0l17pQAUvF>uXji+%tnWiP(^TYJ z^BX0)iTdBA|4NCsYG#W4Unu7oy!1z%te!Z+KmLuNHU;}%Kes85=kX89)P820qRC{i zCIjO#dB>6wqM>AC;VLqezrhHyg1I!52PgQ@cic^rV*u|OJ9`MX=bCpqmbWHPg5Aao zGHjnG3L=5x{i5^^EHYa7d`&`KI_($@MKCE{4|-6s-Ius1aYLgt{la8~3ftfZV0Z}R ziuPh^K7V80!f=Bp%}T#glvnwp%t?DI+vH!UvxML6elZVuy*AY4ZYl2N2KSwg$!fsZ z8XO;ZgS4u&A*_N%8F29qf_nyef5((J)iFZ5#K<3EIhEBR?Rkb4RKObxi;;Dmu*t=f z>16-?d0cJO>vj3PP`T>Z9&-q6Qrd$CLmzYo09+m0MTxQM+&4F@Fqw!Loe*19@-CYK zhAuQ1intb9-M?O6w47PoJAcn|oP@{2CSK2m4h(ABUP{>ap`0b{D#~+HP+#CMpN5QX z6m49TfwiAkO^7luCvM%wb|=(Y-Zd`D0JrVs5@iNFg%6JgT3U`EvzuFv*=-kNpzKob zaWSUDd+U~BqBkzZz$DL~cPXYTThJxO!1$@VUt)|$Plgx+qXUJM5M$sd&I9RU43JuG zLlf zM~ndoN!Au(OjiZ25MuzM5rlLx2A;GOq(Y2A8R&Hco3D!!LwVVGysq|BM~qR4+)Ik- zZHuUqVlX3A$6boS)}#OtQVbT8VzNsyKwYV(xfBDdj?}a*#ULbRh7c2*+l82DhY)ip z5@PUv%SVX8FRpP5F)$yDBg4S{+b$udE4|Yt#K7AATnD176xeB3m&-$liMfnB^ksI% z0AQc^p~^Vn9QK)ubkKK7d>Rg=b^b~TB@IaYp7)=WqonP(exZbthGZ;+8r~_fxqgo7 zpMY=^v7)Zp%N>w%nzF=Ic$G4d)IVJ-Z3%!b)O>zAvQ4AuA5xR#jOuqCoI=#7Rp=94(*hz63FoZ zuU?Jv=w!>vd(9NK>ciOeE?^pDJ1ONlQsKi6C*6i&OE$-_#LeU>Ts044Fh|dxD0o@( z@WxC6c%1bAVfjF|A9{4FQ{Mi2mdhz$ZwmW`BNelzc(V*o{kRErcv1*|yQyT({ydUN^YP6Ql%5kam|gN! zv1nUiUXocx(hPB)66l~8cV=#$8L}`IuoI&gQx{lfZk{TMf70#3{y9s-6g;g(`|sQ0 z$t@n~+yTVyonafrCKxH^O)T?r42bbsbOIUl68k=s*c?zm61BZIO8g$Y(Vnt?rN}Rd zaOr2KCi70o!-3Fv>y6?){CexN!(vFPGOvLICA!UEE#6~ql;}1z6@cCEgxzVTBz}IU z>`uo^uY~CGYkw79nq^)H#tPr9l794fQxF=*BsYg5k%InSICFj?a9P*J^FViyzkeXb zG)jlU)8K1@%Bnnb2%CmO&GIu!v>9?uub!+5G08-)ckwkX!uz(15XxZK& z>uT=vdQoT%g7=gr3n}ZtV;XfPS$_VqO0$F~odvjG4Qg4)6jwg*An&y7o=Xrmi#$1K zW}1Ze*k)`A4=Ihj&_b{va1d)eu3RCOfu?;;*Xp>8oAxj~k-K9gwlm?Wr?U?Iv0Ux$ z$!ZTpdwvk5oMOv3?F^_tnkIe&9x?~o$5wX%k~RWtWL?x7P{IMEG_!m!Fy_#$3w9|% z+(@lQ8`HElH`WsXTpzbTG&!h@JVKkbH;^Eez0yIMNW4J!XfRD8+G8Uvd;!@`=M0KU zZZ`r_gZVcmrQpH*G|{1{B2HS#MZ|tGZ6fwiuDs9aTY!B(xs}w$hL_DmZE&eZc*!Rk zTxz*=LRU|Cjn;nT862sn9<1-QB@y9`pimS)U+DBFiiHUL5e`?0z(J!&8A3|L%p1du zus>(!1}a4D6aYy~ix?M9%%YGb!y{z+Ng-^bWWeL}6O~~Dcre6&+i4TkN4wv%G>1YU ztOPNo4k-4s1kbwKkJ8;7%0pBGUl5;Ntj>kb=G1gI=pe%4%4CU?g$C*5wp<;s7m#y+ zx2V=%M?JeJRKa|F`JK}rcD3&UOl`fMz?YUjNibQFxLFw@i9WI1IvJdLIRJ2yIrvTe z!iVYp1>u(0=06fXfxngOq3=I%Z>afZ^orxV?`XtGiG_EiLrsXRlo`+;Nhn`cZps1z zRm!CVz5cjV-lxil`H#BILgG)mx*e2|8WW7mWBf)ry=0c`{2S%G>%IoPPAt^Stw5F&%A!!t&!TPRJM2e!iu^EB;h!H|6yDrGsBy z6?)Mkhf~;86xs=b*G){_mWBuaCM4{UrNXi4gfvb(xP!@YQ<==2w=E3`Wq`(wBqY=f zlT#BtR}x|dh{!K`lqaO{;eELQ*@S{QRX2yR<^=l?Az$4KsY*6KH;2g>k09s$MBgZ; zipy7KM&mU>ztDuhiR%JP$kt8KrZK0|X>UFDP=rn-q_5!`ppbRZPfUuL4id8y&6B^P z&U-K^a*LKWQ!Gm!Unsba@1NMq13(1D=wmr4y1XnmLf7n*-9^8l z9La~mVqOWcG8E|&oyro@C5=!Nyp!ymH4ZA=gN$C)a;;~(;p6sZ9GQ3l^UVYwrql9Ap+Gka(M7#|{&e{<69290)A-a_u&ijQTd5&plY!dUY zlz0mqsLtOg{_9_F{Sk!2QsC|CWKhn}brdV>zfy1u(vb+IH){EnvfrxoA8Wr+qD%4C zI|bh2lvmHMzft0?*KxV0D-eTn4K^szB^AEvzf$(xRys|!UnxLz3H~!xLI0JKihH)k zTW=H=exbw^y^Kppk1Noi(bsbmVql#PGWW*nwEm@_1TfI)_JkM?W?G+B zo}Po1p!qz~y#a_Q3{e_%eFbt+ndE#Vd3qxFjKV+CY}*UWzJWeL>b{z=8}ac?DD-4T zDs+NCUDqG7P&a0a&t1km{3O>C4hN=jLA=uD0o*`rg!;SBxUiAjm`jp=>32>xJLvqU3q4?r_y{;CM5yorUW#1QNvm#71 zW$i;@v9T1Cv!nnx0F#-70g0@uMg_(L5hH6-?MWp-;UpJm`v|Ba{!hCoUs#{8GgZW0 z+nqA#x5sSv87k-1?owGUqWzZ z{=s*G5@$HxdZz^Aiywa_#5=EJ;y~d9+xs=nO+c0bmf2&lP`W#)x?=UFAn9oLp^LJU z=EozD7@vFO@Y5xfh@Z+oDAB{0?z!IdC@2wjb>`+wPnK}m0dh$x%W@iPGy#2>l19js z!4fuaRN6SBas~VgZA=bq&Rx^v&NL0O=cDb(2A*~Qb^Wc&sjE?KPDq^J{mV4VC#2<_ z{Oty5C?T;n_IO(?*LJn5oUSg)z-CX#jmwZl7q9U}tjLpHt3WUfre6l5gxvc)x8h6I zMJ0X-&XtgunY=*Z3&~T)koOszr*4{CY$v=?6sFn}v!5i-KSKUmG43P~9t=3EQ;*y( zoqJfjQJw0->P{Onpw=KL6Ehadw(bb~i9}($hmL@(Mr3h=8KV-i8u3Untj?M$5k)T@ z4Wg=(dmBhBp|fW~1@@Jr%~@g~!+BzIr}Ek}=0!Cdh#TA@nmV-P4@JM4kCYxMXJB5C z-95hstATXAFeEBFJl-@dEhhU6Bt3tePKg8hVu~j+my@+0kBNkL2glXxZgQ&& z$k~4{N+7Xk8E3fb`&oT-uQ3}1{)|8`GU(c_W>wt&AuyxydACmWZLfe|?CEg_Kc+9l zn!D>Ad~u+RKC+-!Bub&=kWfrpmk!;Ccv^-ot&R`OE)J$5?Oc?spMcjCw#6F0by+|w zA!{jrGBsrzPsj?Mi;f30e`FZtC?4juh&GPw^f#OWO`lK5Rj$!mh2LapP~#G1AHgM` z=|+1Oo?te`ikx1Pn~i#ZYfI^=xiKE{Z-_{->Ij!x7mH$(6D#C>{~bsoT6Dlk2*@J? z>|HQ;LPjSsHTEzeebB=ZRrT*D+x_eClz&DH`gaVAWh!#8C%{8f^@EyfbQ9^3uOrwd z5Cs^b2iY-wx$PVBhHBiTe+3qi&(b9_p+HR@G1^@CnKK(G;e}5d_f{^f)jnecyP4ycx>z zIEKPYaHL$BB@UEuJ z#@bHA<))(k{Y)dJ`_m+=7yM{@bXxl3te+(kQV3xQ#StkEbUGJud3Z+E#v56?EuQf8 zaxRxpA%|aVP4IO>^aOh)&Y4j6ujgPCrwv0?)*DWdpGADZFW&eKKf}Ijz-yTS6K`aJ zH%*@Q90!C=Z{rP>fjm#BR;9HU!8a_R_(Dz9o?lx$JNJWD{@^FQPRSJ8k_&33WNa)11ueowDW2 zmtPWmgKWagi!&Ja4j;57?<}VPWLYx5I0c#hsa(MqnblO>v8XEcMy^9oA!T^MPuqm} zX7_?BO{Uh`%TDsVWCBFCC6%KzF55l(4r>8Od`1z%zJ0_V?B80Ix{i*WU8!yI-7aLN zcq1s3ybHta@lBS;aW^>RS(aa%$wOdJ2$xp9Ra;HWLh_oND7u9)K3*aveCyy?!;)Xd zrn)CH%BMpFd+9P&6uk=E9N8DQpIlKS?r9H&`CWwk!;ucj_gP-e9qCHib6?P{{AE8o@~(sYQVXg)#!_FxITPRz()*qCf?>Wx1mk3-t|ps+FuJ zb5^P@J{od{r1rAa=nx!YtdCd2)(L*6`1~@Ff?T+Mq3kpE`df|^ zXL*~zFej(Qpuq8-0*EPtUAtS5sjyGq%S?15CxluR&^Z`hP+_Q}+lVQLya~jCm<7cc z_y|s4k^YBVvwK{%tr8Dd_v$+h<&=1UaNrT+Se2Mf@@&i1H}{rr8#4*j^91t@7F|Cr zA+*HK6Gqvpu7-vJ-()2SjbP2;7DxQFA0QEU+6k0G@B-o`hjwgT{C?+=XkG3F=mF=A z^2Ydp8zaF*6c4bTAVqj##oXd4w2+|hf&A4r`-`srb`VV0wl)S>Vqj}Oq6-1rl`5sD`+WJn!1 zLuJ+-bdhL0b}(vX?J;JpKHIY4Ia<%nUZ9+O=J3Ci{_M7fwH}Ta5Tk_l6T)){*cj3QF`coQ;CA zP=yY%GtPx$zD_yM6nBGqr$jH;Lw~PmE6F`sWs_S-P|hzA-3RoDuAyAr`N^rBBgk%f#w27m1 zeNz+w-+9Y&){8YAPcL=IKNT6m6DzYfX2n`40U(Kj?qG|h{fe%3UMP!cRk;~iPX#$j zcpso#)76Xve<;fAx>zR951UQ4Qe0QbTa;OmIfcGiP$sN1@PyJCfs$`;On17f-4mxT zRJ7~o%mkY2Hw>5TY1bV@FfgaaCXjGQ(5&93-WynXsFOcY-?w0`W_x(d; zKeh9BWuK?)n%hS#nv15Kp!F$f3!XLUaVZB5Hw7Qiys<~g50z7Rn!jF;w>y>f{JA;h zlZYA?Ws!3VUC6S_wU7JfA?E?#I+RXi>v{{Bl;=;%^lh_wSz!_T%i**oQMIC6w`I9wUN7|!9aYWZex zd@vmbS1OaO2ZKX#C;mh*IOy>F-JmDd2fE##OBV z_hD@qeOuQry7Yd|+9zWv__4$|I7q+uf8#JERkglkBB{`&r4s%jS&4qI_uoOQsN;iYX60Djq0^GuSqiL zMGRpH=S67+;Oj@-qA0&XVeuWMUbLq^Dd(wwzP$U}uioGO_sjR59{)GN2Bgs`v_ zKHqc7@1ZajmC9Iu>XQ;r{qyDB-+uM}_P<}g_g_wZRW)uuLVtsRI5Rqz)!b-ZzbS(} z*(nv~P}s`h=*%LPxOE%a7OGXVvWRB{dtm<++)<3sK?T{wNSBOg6vbN0Ar=%`Tx%&Z z6(YMkK7eFWaL8eS3>h;jopCdq4OvSX8aX_XS@Ghu6Foopgeb7DvfOfI>{Nz>32RMP z1`uSZ42pVHxKA>qc9dZ(O0u7aOrTF&pn|o5^o`8qEg9KFSi+fkuQR+8Sg#ossqp8L z?E%yhfge6xZz^YU6U&XP;%1mxxRS$>ih=K{<2|r|n-%M@HXKH>f})*eHoX1wzT(_Z zS^v*|j>Yn?jh=%};iAh+!zdNy=Q(=ZdE5k(-a%l`R(n-R>+?{Bl`|Nah%uP0jIHoFz0=NS@3`Pb0@$}8liqb_f+HfqiLa1s(NciBB<1vh1w~DrDPl>vt{jA$oO6Y&e5g{>0mbL(ib^f%8IFHW9M-c~-(>fqZ#{JbJR==u>@ z6A*zZ8qvXk2tf%r5KnzlE@1Kb?r*<(fBWAr-}^7&M>E%rgFonH1>rvKr`8{y2>}cx zR<{g#uTQb-$Vb<}{fi|iYDg$ZkdQqSy7H&{PkuihGCLp&1H5!egaAMcOd}Wnq&OF+ z%jN$-$z8%11Kz;EJ}E3&Qtzj}Q2c&i{sb`2FO-D(MJa!%b%#`+oLU5)WGPYUjuEyhm^u@|7o@ak6XH{C{E z8;n7fgC}NtSq+$@msq_A=ZJNG zKDoyFX+fqp2d@*_m~DA%QI#{YM*HVu*(LLpte!kQWt9uB$Kez%JR*Laz|tprq$&;Z zU^*&ZgjN(}bn&^|Eh{zc=6+u&VJz0HBr6rfz|rZ4 z#(3PWRgFxb{bk*qLfoWKK|+K^1(X#-$(^=(^~u20u&fFSuI*dpIT7fX*)DS5<$=gs z?4Q}kIztcG-b?8M+G+n>voFf;$9fn?ZOCK>Ci;jFe~{O)kd2}OHWFEMWM14XSi$sT zIVit}0%*@57Jul25YPPc?akkQ_4@9=pC4oGmI^lj)NXl@JRIVHs3tsfke;r=68;~n zwjl2+ax`?Xlr;1yX0~<8@1bNE&}qT-r#>n1)IZFH_y7F$|G)RV_3)G8@AB4#Eyx6M%l`wb_Cg0b6@54*}?k3}* zNAgB{hDvxckU`mRyIhhN68S!y15#47TX)A@r&P&~Fd%gJw1DpdHl?mi!wRv6E0;Va znw+A$97wF@Bz?s(50(M(N46b!wV>!ASP|YiiqhBSdAbCDn`~-o=JxF<;mBda`ibnc zt;#Xm+hv6&+$ed-uUFNiI($uFrdSMb?{KIZ_n@oF7-nSKd#0n)K^6}T%0nHNF0-=? z>I6HK*Yxe~S+5+3ipeN3JN__HwW4RBx+tVH`E_UQHrp{dGjXdoe?GPpO<*W0yXZ5* z%Zw(l#LUgfyx%fX=_A*#Q8JS6^NA{x01Dut>DHDa<$+R3)604(vvZb)sWhtOJH(hF zuj|GHf7}zJ%FDVg%Xhr4cFPuObSPVM1;xMiAX_wnK3mjW8r`qE1B`dN=Cf{i?{+m6 zX>WSh)%2sIgsiLB_}q1g`HnjLsBl*!y*pC;TKngk%5^N2FO&N+;dFAVnsBX?2xh$G z!io}IsjMbMt7+pKx)fo;gb1KkZpURmIlf||fNA6`GTD8wfE+0I4G@mxcB6{8OOybb!wL=-lNms6T7)HlhShls|D?#OM?lalX#a( zDtDOiT8)^H-gH%4&_UlyIt}9y=51M0YUJ90E()o4t$i(#QGP#`!|WcJVb0D*VfbiW z8FPcxIt3QMnqMe&NHWAeC&yrglZ={YYiN=c`33#Mj)lxtBe&B$MtK^+G96Z%rYszb z*p3Gnnu9@=TBmUs(2u*KS#HQo*Q;{+(9voo6^t+eA!vzyD zIP(SuQ#OqN1}q(V?){7){Jw5v@V2RVQ6U(-)EgO?@$!NO%qww_f!R9)8d&YJ3mYKO z1MgwO25`efntI0uRt)&U23S+>JHrO3!3o^u*dW@04Gu-vfHl=tfCGG@mm3^RI6(CS z4sbZe!3I-?stX&yo7DF{_noS@1~#y&suwnh$qa1pHoY%Xey~9-Re%Gl3>)CU`(ogL z)za$?4v>bltpg5bod+4P-1@$efzOsh1MId`4>W+?n^@bS0qiIQ*S>@ZmTmzJPBRXS zQw$n_)3Er2K?7usBXkI8fHKs)WegfX`&Y(+2G~`&$qqDN720v20WzNOpc^zm;)!&C zz_mgL8oaHB*e`2oyohB^Im~vm+~*6WPsv@zeqrTq{jgu8Tdyy28QlKL2=-gx^*4@O zRuYOxmy7)t1kaZvmlgN{)+3jlw)5XZ5&z{Ida&Q;6RPPE?6)AscpUD#HR_|Hc$iyj33E%4S{M=&dizUsk$PusWCp@{z$WI8Azm=*Xxwo5RJ zZyNtC2&G;}Fe}J=&~Cx3Aar_Og4y0huM`8`u;1SN7u7}PC78ioH(!DoO5e?V^WV2! zMP^|7)QkVBB;Lh-QI_H2A=qYz`JzhW3-3j>#d^tQdr}J-ymv1qdboJ+X437$dyyJ( z?ZbPc9lZBY#C!3E9jq5$7%y_!o?ADBv0l1=Tyhzlsnd&GwjqgJavACe)=Mr!F^v5p zm&HT|?|qxvm+3ydH_o52@KysAJT z{vRlQ0^h%7vBaxN4u}po<$Ml4Vy%3m#11S~d6mCW5>2FdY9!&74+`d$5smTGC*=&S z(f9u=B?kL8E)8}n?Pf;|nSv#QB4LNcI|>2HCk4TWMIo!TOU6b5SyU)rj5&kPC!%Q+ z(+9IG9PI^Vs-Sg;xQU|ah|HmAB|)}8Sm6^c>XuoOL|OX<1Rx2@4FfIkCP`bLq%FNL z`N2M1ANfj%dZ?iO~z1JQ8};yPi;T&VtHLl>(S$6e(7ms>8uDGZ2~C7dsN6AWqp=%i5SHIl-S_ zOlInN+H`X+boN4}q%?Fe3-Twk_)ww~XF;BDLfcI%UqQT2HDIgYXXJpSwpT2j#px?h zgWc$`BIpvaGQ$Nq*f%K&I|n-kr6X~RFd0)pN_JLyLsn!onYEJz)@a=?$U07yqHIxR zE-NlKnGEL{=axcHmj-8I*|kA)PC*)RN|tMA&)M8rn|sX0<-Y(t%GVo^1bp6z4D!;l z%M44t#A3SmBo`EN9m4sB9vDnD@{E%iwhQuaV6I!!9_?G#eeFueR^X>9@rjP#1x{9c zL1MYxXtz~kml;LOyjUHsP9Jl0Y8X&1UFj+cN&;kFIVdVuSWt{7g|09~HOro6k}F36 z)XsKo0*4}X-`=4pd1m(LRq*q^q>AxB&nj&w^e_eP0WPmlQB#l!pUP3Gatew%B;q@I zj+dqIhPWXQL0s(jgRhC%p$;J56P(>C!N)6NZCDcRP+C%1D^Y5aKXhkeF2r$R^= znZqHj6>d!(+EltL?a zMK+_%Z9(%;d=q(q<+X(rWz`A*!tD-`b&`e{EmRRz)p=tlE0KgatV$Wok_2>VrA>YH zw5_CIU&>Sayc5Ccosrx4!5qTrmEk4N#B_m#Qq5Z}SJjG(OX>N|lyc-y;7-Hko|e)y zA^$BkH1sB@@cRXiW8ekag(dttGx@4xMTI4qd6|WJhOzdcH)J;!ZGXa5c`_4MfGX;h z1&In^ngr4z@7IFBE|oiEPP4M5CS-dv0DssMR{Ei!NSlP-Y1h9~&b9rvY2|I~&utd# zhW9T5j&@KmM~pTNN=34%f;rk-%ir{lF8wJ++`E}FXk>a8vzV~Jo7Wc?P5@q7Ns6?t zVr~_oecNOQxX?vAc5P6YHC|_j78al6k;E^BD%mM%WpP&E&Y0*N)Zqih9hObGw9JSf zb7Pd>kJ*x6X6}OJh(J$;uCqpgR|q{o+v^crQ&v;w{q$pH#mPh!ScL&<+09Fzxj9q^ zQSIYt8NXn5mblz2Qtj~e5Z`606uT7{t4G$V67#BC3Lm)ToivD1tGr)$(Jr{*ZC0cq zU%*E9c3asU`J5t@QyIp!gn|mcVbVg*#;qzHD+r|Eiz%U)&<_b>5TVpVlBOGuQ4UF;|`i4BXtCo^{7OY)4m&KPcpV8J;fG3Os%>o}F zbl_R&Tw~MOK1a!_=SkmTFs34@&o;4NJG;o_FSn@UJp~^N`M0Qc+?bYT5B-Wk)KE z0xu|P_BZ*sDuMNVt+T3BzbOznj=`VlUZz!D9%Mzx&q~BDU#|*WPJP%)7Ob#Rf~!;#HoCv zoTuO#x5qb%ef{^NKk^H;gpg+|2PGDw;R1buyg|XeUzzINLbSh7&Qow1c{vh6iFu2s zJ}F4BlluMjPs(}fZCn~GL1evFBq%X&&7x($P-6aDH!%50IZs(dhA)(u|M&i=li*D+ zFe4~}8O-H*!3^fxyirDjR^dV!Os2RFs$jZzu>eCE4H>)l^$S>s4$5e-oxPxp7A9Ar z3>N#jP=*R&+=>jAt$lS^lv~#~p&$bSO83wWGtAH>Dc#)z3=KmJ64EItD%}mzASFnL zl(cjy4I&{3QhuZ7oF~rvT;KbB*Y({0%$~K^Z?AQ)wbx$zn%Mzr(ZIqzHf3X62_YVsM}=-#fP|vU`>c4*$#M8^A^OhZ895s zVsr1=Kn267M(iw7CIe7q`L)I%3U#_>5I$t?Jz45RF0epLZPn=>^*akW>Xaag`+EsG zRpw%B*C7;R(=+<1U4tDK@?7yBgg~9Bj7F1AN-N-wrdKdS%7VQE+w{Oc!mCa@ z<-)HaDIwaXB7(Y9o`in3n-%Nmd@KG$T%NUthPv~5WIZ)k#growb720~5{=DIp+m$9 zt@c4I`a5SlI5dODPYCl~G#Cwt;X6W!`KZW=gDeEog3USm8*YqB>!=`0!7`pjwNyjq zJ(}0c_S6&KGQaxM{KW5@D|NdTb?+xMaNtp2d>*KQycRuG_US!7)X*IN(HkH5xcJ0B zv502I(TPU%c4_pEiQDyZ{pNeR86g*a(WL;{(c|~{2H!64I*ojz4onU-KR?#rKrQDo zr;xlsIGz{y_J-q!VyE3@KGJ?%=#sX|2AkPEl0r?b;^S62ib4ilneOP=>?xD`ia032 z++*s?5+N4`6UmXjsqf2;?TtiMCkEPjy?_hjtkvJpo)SefZx%wjp^sy2P2BlLx6I|9 zs_+tjOgkDsEga|6Yg1$>z!R2;SVPdT??R(YCp0rXjb0Tw7WKUZFid3vB^jMv3pgYd zAG?_4i-(ope5xN$U{$^=+I6#*9ZCGdZXi)2lQu@Vtsr_L-T4ArHs~_*`TTk6d9nk0 zT$kR~wpC?)5aHRDb8_Lb{i-EL9Q(ffuJx%kZV~%PUO`K|->iWCUAL!5@kRFlTDeAQ zk9%?)-JicY%hbtoZ*2e^rLZU2wu#0t(agRjYm53NTn^93$9K3PCeP6wrd?wTw2bhZ z#!8n1K3W@h5BI#t3AUj5__RcLlkd1lYtmJ8GCZ$wRpGvG3ZMne+nR z_|lthY0x2)NuQ)*}+5`Izhm zKhiy&XSGV;Fn07xh6w#}+cmk-!^y9dsg^2t8yc7&>@5Tr5pIutF{BB>gq37OHm@wJ zP|e|JGqWv!Ea-WkXcYWqSMU>&l7fDHbnJ;_^xjl_Fm|{ZH;t!eAOFTMUsAzO?_6Xm zV-tmH7eDNT)>vMbS}|4BK0=k$Y7VAHLdr=jZ6UkNjMtQPhWG|w*t9lFY}ZMfRBavG z+exS9Q}DQfrpdH3`|H0tZCtr?nExau!~dM6gW|2D=S2r0K{uUvIrr4pmsUhx_uoD_ z;E-AkR=%2SSRUt&VrXuVS{Yn^T2{nx7MvRXmX~>EZ<&kj-p6&S>Beu(`)4uvknwQ- zb=h-!e!;iTFK}0*`bnI^3n-jK*>uxMWz8q`F>P-0Nj9?`_*_nFGHmUUxLuK=B^&4Kg{@aBPEfH zIDBr4J#cBWLN_K>7_>&?PVmGl=oEjDtzn-Gp2qlGJUhmx@dA5|tJ5x(UhrY!LJKvT zPxheE1LrQE5Z~Z;gwzKVm93hfZIMM@vKMuWMhj%VJUn*{@nWENI6GfO*8tH z!E0CYnmL>)!M<1mCMWK|k#Nh-MrCa2(t>YOv~mY+{>?UK*o{7^^8-pUpPi1=a$Q8! ztuisY(#lObQsoc{IDtUg_-k8Z-^092eivCkQs?q1Oxu7O9=^kv-i$M!;MVyQX`f`8 zVyw}Sjg9SBC*?^Sd`q-_xG*w==-_3cu{D#ZA+Y&Q8Yx04~<76JLJBzj) zL=>*qX!n+`@oSm6nYAtm2$-mxZP2^WyXl>`5JyV}hubS!rkuh9=sQw4)1q9jf08Mc zE@1cKnlaKPej|Q&Wfl~mfg%20J10@2;r*;6>L0i!x7QZzYU|GT-K5zDB43sU7KG*d zv%${=hkO7HyWh#AOXpWF^Ka?t9v`MOi{|p0HEHm#g%0>LN;#p`fp_FZxfkdMX@)Gi zmxCQ6^6TDx!cLsiQ5QL(zIQ(#T{<^-wc;iJd}a^zWjUS!W~cVbq;56!i9cU2Y0o_h zp$JMoP%Ak8r4`zx>tn?#TGy2PlxF1>OhE@z`t;|zF|x)7F;h?GZ#9^l#1I-6*}GU+ z;|~t`XKC^5u6LmvH{C(2WKSw~=~hy{JbsIvZTcql>6&Ek)X(>LcSy?ewj-(wz|-F~ zd|yr;ro6Z!L0z4E`ocz*6981@D(1+@k{yjXxlAmgl}$h_jFmlFF=3Z14^|0lUPwEY zhNJzwEeF0tS7eOCz+O>VEY=2i6WnLb`bv5C>xwg5Mx+>%n;c{otN8kdl(uHqNBd_y zTyH`on_TW1t^JJSYAK&QAc)3EeM*Wq9=H>QS9!~!y05tg2&W!lo4p+|4(16rRX|q6 z3QX<~XhPYz4#{~_m99qBk!ep((f7NiQvr`S>jpZl!=u4MQ3_QUkRU%l@PMq<-49e? z>{5A?lQibur?p0!BkMYbmZRVH9D1tj*%{mU14k_>HqWho?7R#ge&(Z`nsRnX4{UZA zW)=n8-G=9DSLJE5QS;|P}q9)s<%HEegv8fGpI9J1v9EP0Hv=6>OL z$qGyy?3og+1w62o3gYspBffrTP?bAmfQWCYjozN*Ahp9cJZyiG(NtA0=BY%=S?tIJ z_t3=&clH6e_!f&v=&3CA)#8!#Ob1y(QLn#Tq+@`0!h*F5XV)ntw#W z(X~?!{uPlq8#t_K#Rw>q!`E>~xq&dWwMRa!bba28ZK@kT86dj=V@sgI6`tm^^+Dp< zga{9a?zUB6vNw(_y*9>1rmwdg6Oj0DH)BKQgD&{QR+XWq&Gc;>6MqO)I)mVuMdNLMIu~wCn#hpG{OXW(H_7@#zQLxwWJVt zigPtLCQVd4fjReLJRk9kUf=^adZ0Zk5^mVXxFa}2TNhMo#gA?c%XPt!O^ntcDYUuR zCtumPFe7Q2$OVX09)oHb+0fpli&2q58{w-)1l%=mr>7JU+PjOZB_a!K0x-1;UToPC zEX8_@&_Yu)`xv66^82AX#`ptuLZecxa`R=*UpS`YcQk73C@T|X?#)9)LOM@#}f)%!i z8e_I^&y@qInbOZJ&?vV5>=`Z0I&3%x16ENRxxUwZ{s3!EY zFIT58%-h18%}GXR;tg+(*!KKb?CVWzPMO4sao`5&aKnBGZvM3cf7iWEwg&^DAEAXY z-60bN4(QCrMBP!+3Vfesg-hj`<-o&HO~-deY-R~gCb6B1-4yC1G@yke`K z*%S^QyUn`L50HJ@5E9i-_v3HL-dvbbZOPW00v(R9}IyUY%9h-eHmS)aYP8GYY z7VhQtwffxE8Gz`>Sx^SqYWlcq=g%T&bgEz2`Kn}fN$d{05SvgaSg(*!sTn%Wx+)_; zx$L0);ls%5hH-+d8Ou6>=4D1@4msvoMxBepotJB^oTp0DP^3qAwcLrhpue`9Y{Cch zy7YofSehH7j;`dpuXvYk->{C%zf|GXXW4LybPJji#zjrNh{{<~);A9)Tb)*o>ZEXt zz@xfj&yxM#xm`4L??(Uti!U|*aYonv{UlsM0nEG1MGxJ=0fF?1VYuy@FSx#RCzI^j z^$C8tpI~V&0dovh6Z__)r(e41-$0R{Pnk(cA^3=p)Z?D6wRP5MLt$4-St|S9+_X5Tu{v<&~E!#>ASs?^3(jpr`UebcKTf)Lsuhcob}Qf zQ4>~v9Z@w7aGHj#nROy7#aZ5dCA-cn16CxNO+2mb&44Tk%6v3!xBI z{+4G7F|!SX`gBLtOM&sFG>IP9J}+XciMK6DUmb^ArYCwHh7ne-qlRR%%GE2! z^cPCp{-M5kUVFTodLLUHCX5&`mtLA~QoMG$L-YtK_DCdCMdPYXhe*SMuP790vlXIo z`6z7^JAs5feSF?&lkz)V=M+{54r5W?hSarS_V@=i-IZygxYuF0fM?~+*WZTAg;Uhl z^4MH?&Cr%{gBT^yN3qG+TO#X-wAFga8#vPmzhHbIC+uh{onz3CmlPyvqK+_IdlE`T zK&vlDfJ}!`?Zxp-<*Es>FQ%r!Xuf{poDRh8B%)}g>J!!dWgSSsXsLTCIuh3X%gldl6;Hj-#afY6=!#b`^^ahvxfcntLQZmcg&_z1;P; z8m9Epz-slHSj@@ZnErCrh)&h1WGrgT7{ipr_^9^W``E2d;zA{^9kgSF8Vat-iWcH6 z%hJaiLv$<1`dF3}5_|@1GtjF8R|rO**CV1kolQfaI?rB}+l47VpVe)CkjN$eUQSV@ zb(>wt@PJIIsr!XY8McP2ZHLB6OF{Y`#uAWBm0{J!45k0w5o~Bk8X>* zx(^23TR_gMbVCmV!GLd;I*n<`!G<88onm4R`<%hOJ!LTFW6-0LUN(SM z@z3ou3&vK~V9UOd@}*G0S|-FEz&KFUmETS0I$)Z70^3IVj!GP;&Q0pR&s@g}1sBJ% zmYq^IQjbR!7wX~;bxwTNURp8%UQS&!_WP0qMBoslZeXC*Jl*XLaZp*xQ6?wCXNTxkL(txdZs2n?)15I=a$|=Adg!C&C~ga4eap;i?=j3r1Ft$Ee!f#b6ko>!m!HSZ=7p5@nY8mNjnuF~mz?M! zhd%ob8F!TfHe~}pa7kJ>#nrCgE#9%N3*POHc@#oFfYBggHs6@GIUN=?RN*RbL2DzS zh9;6K6hTLhcTq9aMviNJ@eGe!-_)m1ppUC%;)}+Q#^%&!CHT`AJliJ+;s;E~J6~fTE9J^-i()#sa)_~J^wL4O?sZ|6Bn=Bb zpd{HEL^n%5=#FCyO-jJcd=@3h%>GuFo{8PA+DkH!F1F{sFrJ&mdh%4lu?Bs+%nZd{ zqTb^ZfvG4%U%CR+sIKiH?mUF{$MmxvhZD+W$ zX9xTDD|C>7-TM8^3kHgc_0^pB?>>lAx-NalciqM|kjeULjHS_$&op(gmUdfp`-O?4^p^H%SHl`;2}D@(D4 zdqG!q;s-EbT2P#D+9baJv(3d%Vnu~v3a_!|4!ssX%0}`Dao6FJiidcuHynf9z=4h0~{&569jq<&}Q7tt_4n zUaCl<)&?1zpykY2PE5Af02wA|hDE@XovK zyBWJ(pNUu+Zmu~+V4Wi|0WZ~oW9ph8?Xlgfqrv`=fS;s6NBLD8I3lt7E;+2 z(_MPt4QxN#suN~qCA1cm>GUUa0VmifP++^OR<1eBq zh{S+Bsf>})TnWOf*yIkaFENG3i3Ko(biBVujo}FC6f0)qQ*(&1;D~uQ=~z>hPV|l? zH4EKJSl{Dc)5yRWAaE~z)?db)AR|XYIFulbKOymyg{>c-az9GMwe*=E*Lmfr+7V!; zVN4>Px+W-8C>jy}Hodfv&LV#A41=kpSe7E^NEf{3s`sMvlXH^2q4dRJyQ>VLH>iA!^e1L~;%rjrJSW(L&eSH&a2Q|5Z=9P*)gi`=|!Wpfil zn$zOY2$=_V&&bH_*2s+BK9YeGFH7D3V%5e&Mkkkx6%U!+Co|NSdq;ntXvmVA{{)u==VidlhSNe)NTy~%imcY_kfOKdz z63ax0+dv$PU<55GU#XsUzElm3;q^SUae44PS218^4)be*DBTxyTUkTdaPc)qnPX55 zw#|!69vH!ez7i(umj?&Uk3%fy7|kr^dL-RyBE7n6u|*WY%Qe`U(oxx%PsbY^Q1FtG zCH(KH9Ng}~1kFaKN_irVt-8H1FNw8v=Lg(fv?@eDY%JA;ACtNuDg%oy$~mZm&Tr+x zrc~KV#TnOy3R1q3XNpn&4IWoc{kQ&96Niq%uAEj&WnAfjKR;?p5?sunR;Rx{Qm+_^ zvqi0c9o7En=X2g<-qvw*m~wcNve_vLs9*DDLO(*SkK7r&T)$uClTg#4Ap#)+d&c$V z@)8G@m5f@~{Bw1BpBa{X2^u&lQC;_0+zC};G~p}jCd!=4!pxG}A1D8^wzj0byFN;` z!xhG3O#LD;*;sS)7+~vymJwr_5~9hWRb_=i=!y4}wub!wD%i%D&4%z zU5{EuG%WK_bBcvjzh`)EhW;*W6lm`)q|pS1PFSm5&-;d0NWS(E$t>{R@m@~~b+}1R z{Bcy)xV55Fo4aV?JFGG^`R*}MZ3K^`q7vzc)}eB(me(1RJ3 ztwlmv^8_up+D1+n^Sj1D&hxXG%F;Ez?=RbRGc%IfTY9Iv#YbF;rbUB7?@ot zz6HrGH7o3jaUnxt_701G5EUKhVJQEv~GC9()KD`ILB@}IS<4^xYm>N`5 zL}-rVgu73r!*4M9q)8OP%@e7~a^JU|dMrK|@__74a({j6CSiZbqmf4;{v(uJ)Z^tF zDhWEU)K9D5K(&~hbr-mW4Y*;+%6ud56I>BLdpATk&;5mwZ3n@(+{G`Xc6Q4aYKNYO z4qM?UYr)T8ryY7f{Z6qmviUqrF{GquP<(V#6=_;qC;fe?p{3I6WH1&H^4+yueE4 z0ZxH6CFBQ|iEDUqUCYKJ-Ceh8#y8HK`bN{7T-dJkva(o{F*3ZkI=C^NH89ruO@cI8 z-50jBA|Oc>;%mLiI95tV)UmfB+yQ==1b(xW4Mox9YuGAw1pMw^0bMR$q5@EJv7E0g zlosO0Wm?GCKFCpYI`Rp2+_B%?>T8$QGMCUy4Or-hPX(9WvsCGg@dz}>^{8}c#w{*+ z+ju2QTbEuZdwW-o?UsNw*+9|D+PFG?7#md^^xont#qwuIp$qk+U!*PR_sb9V4~f4p zySIm}1v%t#;*W6PsSSm+kwA@Mg%~lt{lS#*u8mL@L{$rFk4pLKm)m(2#�NA=Nl~ z&Vwxex8FCkkG+Zp*Vh*XaQfpRK)onp(T2T^nXAIlya%R_%`rqn`ZQs|SRoY}NX;6w zBR@6wtylqccV zqC!z`d5HL&h@H7g0SPeKR-^c8d$I!;XG5{t$g1#{2V^InSZe0_5I99bXoyB(x4FiB z6LBVtoKm^+%FJRm!tPd2kbmMh2APIhe<@fqE`}Z9K=}?obBuqZN7w{p!*Nk)n=8@5 zcIwSk5{^&h!y z)OE~vi-ZFm6$G>$k2*XQGG*L%9p46^w;`swLh%KYoX$11kGPLj7>F{{y^K?`HrY=b z-G{I;!P=1Kq1BjtjQ0ac*^L4xtVIwx@FJEK&PtMeIBW1M7>2Jup3KFG{xJ9(%a=Tt zPlmOH#H<9-wT^Rm!*3O4gTCE+MYFTNmJFW2gx|r(a_2S351Z1?Wq5k^E#_|{C1u!?!pV=R4+hhqB zqTAEimFM9&XNeLmy$I1^094l5^Thj7N4zJMMHLy|<;pR16Vo;Q(GSyC_>KRB$sH;{ z$&mv>rES=G&<(UdYM;zA7pPg6{FEa<6#bb&hOj5^Tf!MapdOy8t2@c3KxcA2Mp5j3 zK|GB8hqJE?av7)_wZ|K1nk(42XI~KpdoDI-YR4)uR4_)^lhMow<|t>inqd?<85%fa z*wW1AJjc8)gAEjLTs~}U8?1}gJwct}7^=0qjBOf;%4foV+vns!&R6zXbL7B6XQi+# z2riOM!t3QRDD{zjURq-!fHK@u>a~Fdzs|F8F;G$@AB6O+Qgu-JiL&CYcP=?jV#?5S z&DtP_CS^t8JOgh^ZNaL~sfJH$PiJx2HrZx!u{Omjm03m{ZQQO|tXy>#WWK1K=Dt{U9#Cx^G< zu=4dJr!a*@b+^;^oL=p6P0`jIlm%ue=rs@&tBSJ#-oZ!}6W4QpY zM6ivu_bZNIYzfG;t3pyxUElD_@(i1udQ&eXo7RKNhlGiEv9IsT)ZDC=nV0XG=rHGU zfKRF3(Ra;(*qjK~KSM)YNuH!|1XoYCO!?t58DG8MUcu=&jG^ZV4Z{n0BlbOz zpf5peSpKREOOB*0t6Ql*bn=m|{SG}p%|=!+pX)3J&3lb;C_KyY zOp!5qfJbJyEt4sG4gj`e^b(MB{;X0}Y&P#D2E1yCIHq@R=)gjrmqiuqR-oR4q<_th zw)Z3ab>qW06AIsC%O+*Y5`7KmY3Z0s((Hoo_CknmOs#Xt0mH7`Ydz@GllDn;n_aKZ zH?TpwvB#o@WTFj910d?H#H#l(b`UQY)3Vqt-IAy~+Rqsls&FlXx16-%_S_}Wa{IFf z$4yS{ZvC7%+%ZgcO^##}pT*61V~U0^a^PylbRTNGXQ+RFIj_CXU*YZx_Ew3C3NH*N zC<8nmJ`cX2w>SQgzE$*tZV|~YCZWH0^jU6x;q@)n;+c&HY$be=0lSX(0 zjX|htL18G6Uzpz%fU0zdyC8uO6j2Mns|EK!c)DA`Jy2K;cZ8KT9BIs}AuEq!l=DVD z)<(jRaG=m{UI_^RuMENki9&k-`TrvQsn@UOe(5D92K=o9@V62kKwf2gYY(6?;FpS8 z08=2U1y7W8FaXuspHT2WpnoD|U`Ut~!uGEw{?t?zj)YmGYJkFj6D|1f_TR~fjSy@IbhT-#So$I92y zO4yoJQUV|*2}3y)&g~6z<+ibRLc-lWfN&2haRwPJ6?ukV4BjH%&aTd=w+4DUJGpp> zc#E_ChKQibzsS6-z~3xLM{!mIRSh5#fpBuPM*{hHgn7W+UWk0>L~2 ztf(g4t!+fKWaa;C5cN%*)eebt72)Oe^77*Gg76^RZF#}M!os{DK3+aPZWIT%hmQ*q z=FRQm!HAOgTM>JMf52Qkcz)}|V})?$wKw1e^MH8&5+sXy9d~m~_)9R%65)vy zXZ7^7w-ynw5dguggao*uU;%4xFxUpf4MIKKe8O-D6ap6%wB{4~OPuS!sQGX5P!%YF z5R@HIB@tBbwf3}vyNk0v)=&XHM$J@^f5-=-%mHHM{qyzzTUw!f^PjDNa_FCC5JT~Z zs3NTGZG2==VI;u^0`qf&1h_$bI$&WDenAm_Feivl1OyV}{TnCB`6#FiD)5o;{}<@L zaQ+Jv;jV+~5)vx*mhNzM8ykBoI1tLi_lL0Gh(8&`cz?O)Ukvl#HWkcORrUXFENACm zz4;fPh%Ca&(-}3!D9Zl-^p*d%d#$bhp|Go`yVLK$u(slbJHdbH=7I7s7^Shbm52?( z-5G}J)-YFBCwnW{uinm!>W-`uVyH@_J<Tk-+x1FhOB;etD1WmtWZbkwd)Q;Whve5DWtR8n6C%fCBvd5PqNy@DCc4 zPe1^b(|$cbm%nIGJ`gJX{5y>grSJcsK?VPgMS;Mmbo)0flpmGW|3(w!`=5M*0;nm& z-}!|9g%9Ztvv-2K|IXan_P%h`y8(H%5C~L~{*@ttyoxS12;eWzpr#9ovOr@osGt-C z1eKQ-mJfL7`BHAPB(BET=9H F_&>1URL%eZ diff --git a/Content/Figures/PU_exercise_2.eps b/Content/Figures/PU_exercise_2.eps deleted file mode 100644 index b3dd406d8..000000000 --- a/Content/Figures/PU_exercise_2.eps +++ /dev/null @@ -1,1193 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%BoundingBox: 0 0 794 595 -%%Pages: 0 -%%Creator: LibreOffice 4.2 -%%Title: none -%%CreationDate: none -%%LanguageLevel: 2 -%%EndComments -%%BeginProlog -%%BeginResource: procset SDRes-Prolog 1.0 0 -/b4_inc_state save def -/dict_count countdictstack def -/op_count count 1 sub def -userdict begin -0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath -/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if -/bdef {bind def} bind def -/c {setrgbcolor} bdef -/l {neg lineto} bdef -/rl {neg rlineto} bdef -/lc {setlinecap} bdef -/lj {setlinejoin} bdef -/lw {setlinewidth} bdef -/ml {setmiterlimit} bdef -/ld {setdash} bdef -/m {neg moveto} bdef -/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef -/r {rotate} bdef -/t {neg translate} bdef -/s {scale} bdef -/sw {show} bdef -/gs {gsave} bdef -/gr {grestore} bdef -/f {findfont dup length dict begin -{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def -currentdict end /NFont exch definefont pop /NFont findfont} bdef -/p {closepath} bdef -/sf {scalefont setfont} bdef -/ef {eofill}bdef -/pc {closepath stroke}bdef -/ps {stroke}bdef -/pum {matrix currentmatrix}bdef -/pom {setmatrix}bdef -/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef -%%EndResource -%%EndProlog -%%BeginSetup -%%EndSetup -%%Page: 1 1 -%%BeginPageSetup -%%EndPageSetup -pum -0.02835 0.02833 s -0 -21000 t -/tm matrix currentmatrix def -gs -0 0 m 27999 0 l 27999 20999 l 0 20999 l 0 0 l eoclip newpath -gs -0 0 m 27999 0 l 27999 20999 l 0 20999 l 0 0 l eoclip newpath -1.000 1.000 1.000 c 0 0 m 28000 0 l 28000 21000 l 0 21000 l 0 0 l p ef -0.449 0.625 0.812 c 254 18287 m 27684 18287 l 27684 20826 l 254 20826 l -254 18287 l p -254 18287 m 254 18287 l p -27684 20826 m 27684 20826 l p ef -26 lw 1 lj 0.207 0.398 0.644 c 254 18287 m 27684 18287 l 27684 20826 l -254 20826 l 254 18287 l pc -254 18287 m 254 18287 l pc -27684 20826 m 27684 20826 l pc -pum -1845 20103 t -0.003 0.003 0.003 c 97 0 m 97 -910 l 220 -910 l 698 -196 l 698 -910 l -813 -910 l 813 0 l 690 0 l 212 -715 l 212 0 l 97 0 l p ef -917 -1 m 1266 -911 l 1396 -911 l 1768 -1 l 1631 -1 l 1525 -276 l -1145 -276 l 1045 -1 l 917 -1 l p -1179 -374 m 1488 -374 l 1393 -626 l 1364 -703 1342 -766 1328 -815 ct 1317 -757 1300 -699 1279 -641 ct -1179 -374 l p ef -1862 0 m 1862 -910 l 1985 -910 l 2463 -196 l 2463 -910 l 2578 -910 l -2578 0 l 2455 0 l 1977 -715 l 1977 0 l 1862 0 l p ef -2745 -443 m 2745 -594 2786 -712 2867 -797 ct 2948 -883 3053 -926 3181 -926 ct -3265 -926 3340 -906 3408 -865 ct 3475 -825 3526 -769 3562 -698 ct 3597 -626 3615 -544 3615 -453 ct -3615 -361 3596 -278 3559 -206 ct 3522 -133 3469 -78 3401 -40 ct 3333 -3 3259 16 3180 16 ct -3095 16 3018 -5 2951 -46 ct 2883 -87 2832 -144 2797 -216 ct 2763 -287 2745 -363 2745 -443 ct -p -2869 -441 m 2869 -331 2899 -245 2958 -182 ct 3017 -119 3091 -87 3179 -87 ct -3270 -87 3345 -119 3403 -183 ct 3462 -246 3491 -337 3491 -454 ct 3491 -528 3478 -593 3453 -648 ct -3428 -703 3392 -746 3343 -776 ct 3295 -807 3241 -822 3181 -822 ct 3096 -822 3023 -793 2962 -734 ct -2900 -676 2869 -578 2869 -441 ct p ef -4338 1 m 4338 -802 l 4039 -802 l 4039 -909 l 4759 -909 l 4759 -802 l -4459 -802 l 4459 1 l 4338 1 l p ef -4824 -443 m 4824 -594 4865 -712 4946 -797 ct 5027 -883 5132 -926 5260 -926 ct -5344 -926 5419 -906 5487 -865 ct 5554 -825 5605 -769 5641 -698 ct 5676 -626 5694 -544 5694 -453 ct -5694 -361 5675 -278 5638 -206 ct 5601 -133 5548 -78 5480 -40 ct 5412 -3 5338 16 5259 16 ct -5174 16 5097 -5 5030 -46 ct 4962 -87 4911 -144 4876 -216 ct 4842 -287 4824 -363 4824 -443 ct -p -4948 -441 m 4948 -331 4978 -245 5037 -182 ct 5096 -119 5170 -87 5258 -87 ct -5349 -87 5424 -119 5482 -183 ct 5541 -246 5570 -337 5570 -454 ct 5570 -528 5557 -593 5532 -648 ct -5507 -703 5471 -746 5422 -776 ct 5374 -807 5320 -822 5260 -822 ct 5175 -822 5102 -793 5041 -734 ct -4979 -676 4948 -578 4948 -441 ct p ef -5797 -443 m 5797 -594 5838 -712 5919 -797 ct 6000 -883 6105 -926 6233 -926 ct -6317 -926 6392 -906 6460 -865 ct 6527 -825 6578 -769 6614 -698 ct 6649 -626 6667 -544 6667 -453 ct -6667 -361 6648 -278 6611 -206 ct 6574 -133 6521 -78 6453 -40 ct 6385 -3 6311 16 6232 16 ct -6147 16 6070 -5 6003 -46 ct 5935 -87 5884 -144 5849 -216 ct 5815 -287 5797 -363 5797 -443 ct -p -5921 -441 m 5921 -331 5951 -245 6010 -182 ct 6069 -119 6143 -87 6231 -87 ct -6322 -87 6397 -119 6455 -183 ct 6514 -246 6543 -337 6543 -454 ct 6543 -528 6530 -593 6505 -648 ct -6480 -703 6444 -746 6395 -776 ct 6347 -807 6293 -822 6233 -822 ct 6148 -822 6075 -793 6014 -734 ct -5952 -676 5921 -578 5921 -441 ct p ef -6816 0 m 6816 -910 l 6936 -910 l 6936 -107 l 7384 -107 l 7384 0 l -6816 0 l p ef -7730 16 m 7994 -925 l 8083 -925 l 7820 16 l 7730 16 l p ef -8527 0 m 8527 -910 l 8708 -910 l 8924 -266 l 8943 -206 8958 -161 8967 -131 ct -8977 -164 8993 -213 9015 -277 ct 9233 -910 l 9395 -910 l 9395 0 l 9279 0 l -9279 -762 l 9015 0 l 8906 0 l 8643 -775 l 8643 0 l 8527 0 l p ef -9533 -329 m 9533 -452 9567 -542 9635 -601 ct 9692 -650 9761 -674 9842 -674 ct -9933 -674 10007 -644 10064 -585 ct 10121 -526 10150 -444 10150 -339 ct 10150 -254 10137 -187 10112 -139 ct -10087 -90 10050 -52 10001 -25 ct 9952 2 9899 15 9842 15 ct 9750 15 9675 -15 9618 -74 ct -9562 -133 9533 -218 9533 -329 ct p -9648 -330 m 9648 -245 9666 -182 9703 -140 ct 9740 -98 9786 -77 9842 -77 ct -9897 -77 9943 -98 9980 -140 ct 10017 -182 10035 -247 10035 -333 ct 10035 -415 10017 -477 9980 -519 ct -9943 -561 9897 -582 9842 -582 ct 9786 -582 9740 -561 9703 -519 ct 9666 -477 9648 -414 9648 -330 ct -p ef -10279 0 m 10279 -910 l 10391 -910 l 10391 0 l 10279 0 l p ef -11017 -212 m 11132 -198 l 11114 -130 11080 -78 11031 -41 ct 10982 -4 10919 15 10842 15 ct -10746 15 10670 -15 10613 -74 ct 10557 -133 10529 -217 10529 -324 ct 10529 -435 10557 -521 10614 -582 ct -10671 -643 10745 -674 10836 -674 ct 10924 -674 10996 -644 11052 -584 ct 11108 -524 11136 -440 11136 -331 ct -11136 -324 11135 -314 11135 -301 ct 10644 -301 l 10648 -229 10668 -173 10705 -135 ct -10742 -96 10788 -77 10843 -77 ct 10884 -77 10919 -88 10948 -109 ct 10977 -131 11000 -165 11017 -212 ct -p -10650 -393 m 11018 -393 l 11013 -448 10999 -490 10976 -518 ct 10940 -561 10894 -582 10837 -582 ct -10786 -582 10743 -565 10708 -531 ct 10673 -496 10654 -450 10650 -393 ct p ef -11702 -241 m 11812 -227 l 11800 -151 11770 -92 11720 -49 ct 11671 -6 11610 15 11538 15 ct -11448 15 11376 -14 11321 -73 ct 11266 -132 11239 -217 11239 -327 ct 11239 -398 11250 -460 11274 -514 ct -11298 -567 11333 -607 11382 -634 ct 11430 -661 11482 -674 11539 -674 ct 11610 -674 11669 -656 11714 -620 ct -11760 -583 11789 -532 11802 -465 ct 11693 -449 l 11683 -493 11665 -526 11638 -548 ct -11612 -571 11580 -582 11543 -582 ct 11487 -582 11441 -562 11406 -521 ct 11371 -481 11353 -417 11353 -330 ct -11353 -242 11370 -177 11404 -137 ct 11438 -97 11482 -77 11537 -77 ct 11581 -77 11617 -90 11647 -117 ct -11676 -144 11695 -185 11702 -241 ct p ef -12339 0 m 12339 -97 l 12288 -22 12218 15 12130 15 ct 12091 15 12055 8 12022 -7 ct -11988 -22 11963 -41 11946 -64 ct 11930 -86 11919 -114 11912 -146 ct 11908 -168 11905 -203 11905 -251 ct -11905 -659 l 12017 -659 l 12017 -293 l 12017 -235 12019 -196 12024 -176 ct -12031 -146 12046 -123 12068 -106 ct 12091 -90 12119 -81 12153 -81 ct 12186 -81 12218 -90 12247 -107 ct -12276 -124 12297 -148 12309 -177 ct 12321 -207 12328 -250 12328 -306 ct 12328 -659 l -12439 -659 l 12439 0 l 12339 0 l p ef -12612 0 m 12612 -910 l 12724 -910 l 12724 0 l 12612 0 l p ef -13327 -81 m 13286 -46 13246 -21 13208 -7 ct 13170 8 13129 15 13085 15 ct 13013 15 12957 -3 12918 -38 ct -12879 -73 12860 -119 12860 -174 ct 12860 -206 12867 -235 12882 -262 ct 12897 -289 12916 -310 12940 -326 ct -12963 -343 12990 -355 13020 -363 ct 13042 -369 13075 -374 13119 -380 ct 13209 -391 13276 -403 13318 -418 ct -13319 -434 13319 -443 13319 -447 ct 13319 -493 13308 -525 13287 -544 ct 13259 -569 13216 -582 13160 -582 ct -13108 -582 13069 -572 13044 -554 ct 13019 -535 13000 -503 12988 -456 ct 12879 -471 l -12889 -518 12905 -556 12928 -584 ct 12951 -613 12984 -635 13027 -651 ct 13070 -666 13120 -674 13176 -674 ct -13232 -674 13278 -667 13313 -654 ct 13348 -641 13374 -624 13391 -604 ct 13407 -584 13419 -559 13425 -528 ct -13429 -509 13431 -475 13431 -425 ct 13431 -276 l 13431 -172 13433 -107 13438 -79 ct -13443 -52 13452 -25 13466 0 ct 13350 0 l 13338 -23 13331 -50 13327 -81 ct p -13318 -331 m 13278 -314 13217 -300 13136 -289 ct 13090 -282 13058 -274 13038 -266 ct -13019 -258 13005 -246 12994 -230 ct 12984 -214 12979 -196 12979 -177 ct 12979 -147 12990 -122 13013 -102 ct -13035 -82 13068 -73 13112 -73 ct 13155 -73 13193 -82 13226 -101 ct 13260 -120 13284 -145 13300 -178 ct -13312 -203 13318 -241 13318 -290 ct 13318 -331 l p ef -13603 0 m 13603 -659 l 13704 -659 l 13704 -559 l 13730 -606 13753 -637 13775 -652 ct -13797 -667 13821 -674 13847 -674 ct 13884 -674 13922 -662 13961 -638 ct 13923 -534 l -13896 -551 13868 -559 13841 -559 ct 13817 -559 13795 -551 13775 -537 ct 13756 -522 13742 -501 13734 -475 ct -13721 -436 13715 -392 13715 -345 ct 13715 0 l 13603 0 l p ef -14394 0 m 14394 -910 l 14707 -910 l 14778 -910 14832 -906 14869 -897 ct -14921 -885 14966 -863 15002 -832 ct 15050 -791 15086 -739 15110 -676 ct 15134 -613 15146 -541 15146 -460 ct -15146 -391 15138 -330 15121 -276 ct 15105 -223 15085 -179 15059 -144 ct 15034 -109 15007 -81 14977 -61 ct -14947 -41 14910 -26 14868 -16 ct 14826 -5 14777 0 14722 0 ct 14394 0 l p -14514 -107 m 14708 -107 l 14768 -107 14815 -113 14849 -124 ct 14884 -135 14911 -151 14931 -171 ct -14960 -200 14982 -238 14998 -286 ct 15014 -335 15022 -393 15022 -462 ct 15022 -557 15006 -630 14975 -681 ct -14944 -732 14906 -767 14861 -784 ct 14829 -796 14777 -803 14705 -803 ct 14514 -803 l -14514 -107 l p ef -15294 253 m 15281 148 l 15306 155 15327 158 15345 158 ct 15370 158 15390 154 15405 146 ct -15420 138 15432 126 15441 111 ct 15448 100 15460 72 15475 28 ct 15478 22 15481 13 15485 1 ct -15235 -660 l 15356 -660 l 15493 -278 l 15511 -229 15527 -179 15541 -125 ct -15553 -177 15569 -227 15586 -275 ct 15727 -660 l 15839 -660 l 15588 11 l -15561 83 15541 133 15526 160 ct 15506 197 15483 224 15457 241 ct 15432 258 15401 267 15366 267 ct -15344 267 15320 262 15294 253 ct p ef -15934 0 m 15934 -659 l 16034 -659 l 16034 -565 l 16083 -638 16152 -674 16244 -674 ct -16283 -674 16320 -667 16353 -653 ct 16387 -638 16411 -620 16428 -596 ct 16444 -573 16456 -546 16463 -514 ct -16467 -493 16469 -457 16469 -405 ct 16469 0 l 16357 0 l 16357 -401 l 16357 -446 16353 -480 16344 -503 ct -16336 -526 16320 -544 16298 -557 ct 16276 -570 16250 -577 16220 -577 ct 16173 -577 16132 -562 16097 -532 ct -16063 -502 16045 -444 16045 -360 ct 16045 0 l 15934 0 l p ef -17070 -81 m 17029 -46 16989 -21 16951 -7 ct 16913 8 16872 15 16828 15 ct 16756 15 16700 -3 16661 -38 ct -16622 -73 16603 -119 16603 -174 ct 16603 -206 16610 -235 16625 -262 ct 16640 -289 16659 -310 16683 -326 ct -16706 -343 16733 -355 16763 -363 ct 16785 -369 16818 -374 16862 -380 ct 16952 -391 17019 -403 17061 -418 ct -17062 -434 17062 -443 17062 -447 ct 17062 -493 17051 -525 17030 -544 ct 17002 -569 16959 -582 16903 -582 ct -16851 -582 16812 -572 16787 -554 ct 16762 -535 16743 -503 16731 -456 ct 16622 -471 l -16632 -518 16648 -556 16671 -584 ct 16694 -613 16727 -635 16770 -651 ct 16813 -666 16863 -674 16919 -674 ct -16975 -674 17021 -667 17056 -654 ct 17091 -641 17117 -624 17134 -604 ct 17150 -584 17162 -559 17168 -528 ct -17172 -509 17174 -475 17174 -425 ct 17174 -276 l 17174 -172 17176 -107 17181 -79 ct -17186 -52 17195 -25 17209 0 ct 17093 0 l 17081 -23 17074 -50 17070 -81 ct p -17061 -331 m 17021 -314 16960 -300 16879 -289 ct 16833 -282 16801 -274 16781 -266 ct -16762 -258 16748 -246 16737 -230 ct 16727 -214 16722 -196 16722 -177 ct 16722 -147 16733 -122 16756 -102 ct -16778 -82 16811 -73 16855 -73 ct 16898 -73 16936 -82 16969 -101 ct 17003 -120 17027 -145 17043 -178 ct -17055 -203 17061 -241 17061 -290 ct 17061 -331 l p ef -17348 0 m 17348 -659 l 17448 -659 l 17448 -567 l 17468 -599 17496 -625 17530 -645 ct -17564 -664 17603 -674 17647 -674 ct 17696 -674 17736 -664 17767 -644 ct 17798 -623 17820 -595 17833 -559 ct -17885 -636 17953 -674 18037 -674 ct 18102 -674 18152 -656 18187 -620 ct 18222 -583 18240 -528 18240 -452 ct -18240 0 l 18129 0 l 18129 -415 l 18129 -460 18125 -492 18118 -512 ct 18111 -531 18098 -547 18079 -559 ct -18060 -571 18038 -577 18012 -577 ct 17966 -577 17927 -562 17897 -531 ct 17866 -500 17851 -451 17851 -383 ct -17851 0 l 17739 0 l 17739 -428 l 17739 -478 17730 -515 17712 -540 ct 17694 -565 17664 -577 17622 -577 ct -17591 -577 17562 -569 17535 -552 ct 17509 -536 17489 -512 17477 -480 ct 17465 -448 17459 -402 17459 -342 ct -17459 0 l 17348 0 l p ef -18406 -782 m 18406 -910 l 18518 -910 l 18518 -782 l 18406 -782 l p -18406 0 m 18406 -659 l 18518 -659 l 18518 0 l 18406 0 l p ef -19119 -241 m 19229 -227 l 19217 -151 19187 -92 19137 -49 ct 19088 -6 19027 15 18955 15 ct -18865 15 18793 -14 18738 -73 ct 18683 -132 18656 -217 18656 -327 ct 18656 -398 18667 -460 18691 -514 ct -18715 -567 18750 -607 18799 -634 ct 18847 -661 18899 -674 18956 -674 ct 19027 -674 19086 -656 19131 -620 ct -19177 -583 19206 -532 19219 -465 ct 19110 -449 l 19100 -493 19082 -526 19055 -548 ct -19029 -571 18997 -582 18960 -582 ct 18904 -582 18858 -562 18823 -521 ct 18788 -481 18770 -417 18770 -330 ct -18770 -242 18787 -177 18821 -137 ct 18855 -97 18899 -77 18954 -77 ct 18998 -77 19034 -90 19064 -117 ct -19093 -144 19112 -185 19119 -241 ct p ef -19280 -197 m 19390 -214 l 19397 -170 19414 -136 19442 -112 ct 19471 -89 19510 -77 19561 -77 ct -19612 -77 19650 -87 19675 -108 ct 19700 -129 19712 -154 19712 -182 ct 19712 -207 19701 -227 19679 -241 ct -19664 -251 19626 -264 19565 -279 ct 19483 -300 19427 -318 19395 -333 ct 19363 -348 19339 -369 19323 -396 ct -19307 -422 19299 -452 19299 -484 ct 19299 -513 19305 -541 19319 -566 ct 19332 -591 19351 -611 19374 -628 ct -19391 -641 19415 -652 19445 -661 ct 19475 -669 19507 -674 19541 -674 ct 19593 -674 19638 -666 19677 -652 ct -19716 -637 19745 -616 19764 -591 ct 19782 -566 19795 -532 19802 -489 ct 19693 -474 l -19688 -508 19674 -534 19650 -553 ct 19626 -572 19593 -582 19549 -582 ct 19498 -582 19461 -574 19439 -557 ct -19418 -540 19407 -520 19407 -497 ct 19407 -483 19411 -469 19420 -458 ct 19429 -446 19444 -436 19463 -428 ct -19474 -424 19507 -414 19562 -400 ct 19641 -378 19696 -361 19727 -348 ct 19758 -334 19783 -315 19800 -289 ct -19818 -263 19827 -232 19827 -194 ct 19827 -156 19816 -121 19794 -88 ct 19773 -55 19741 -30 19701 -12 ct -19660 6 19613 15 19562 15 ct 19476 15 19411 -3 19366 -38 ct 19321 -74 19292 -127 19280 -197 ct -p ef -20524 267 m 20462 189 20410 98 20368 -6 ct 20325 -110 20304 -218 20304 -330 ct -20304 -429 20320 -523 20352 -613 ct 20389 -718 20446 -822 20524 -926 ct 20604 -926 l -20554 -840 20521 -778 20505 -742 ct 20480 -684 20460 -625 20445 -563 ct 20428 -485 20419 -408 20419 -329 ct -20419 -130 20480 68 20604 267 ct 20524 267 l p ef -21345 -910 m 21465 -910 l 21465 -384 l 21465 -292 21455 -220 21434 -166 ct -21413 -112 21376 -68 21322 -35 ct 21268 -1 21197 16 21110 16 ct 21024 16 20955 1 20901 -28 ct -20846 -57 20808 -100 20785 -156 ct 20761 -211 20750 -287 20750 -384 ct 20750 -910 l -20870 -910 l 20870 -384 l 20870 -305 20877 -247 20892 -210 ct 20907 -172 20932 -143 20968 -123 ct -21004 -103 21047 -93 21099 -93 ct 21187 -93 21250 -113 21288 -153 ct 21326 -193 21345 -270 21345 -384 ct -21345 -910 l p ef -21653 0 m 21653 -659 l 21753 -659 l 21753 -565 l 21802 -638 21871 -674 21963 -674 ct -22002 -674 22039 -667 22072 -653 ct 22106 -638 22130 -620 22147 -596 ct 22163 -573 22175 -546 22182 -514 ct -22186 -493 22188 -457 22188 -405 ct 22188 0 l 22076 0 l 22076 -401 l 22076 -446 22072 -480 22063 -503 ct -22055 -526 22039 -544 22017 -557 ct 21995 -570 21969 -577 21939 -577 ct 21892 -577 21851 -562 21816 -532 ct -21782 -502 21764 -444 21764 -360 ct 21764 0 l 21653 0 l p ef -22360 -782 m 22360 -910 l 22472 -910 l 22472 -782 l 22360 -782 l p -22360 0 m 22360 -659 l 22472 -659 l 22472 0 l 22360 0 l p ef -22888 1 m 22888 -802 l 22589 -802 l 22589 -909 l 23309 -909 l 23309 -802 l -23009 -802 l 23009 1 l 22888 1 l p ef -23301 -197 m 23411 -214 l 23418 -170 23435 -136 23463 -112 ct 23492 -89 23531 -77 23582 -77 ct -23633 -77 23671 -87 23696 -108 ct 23721 -129 23733 -154 23733 -182 ct 23733 -207 23722 -227 23700 -241 ct -23685 -251 23647 -264 23586 -279 ct 23504 -300 23448 -318 23416 -333 ct 23384 -348 23360 -369 23344 -396 ct -23328 -422 23320 -452 23320 -484 ct 23320 -513 23326 -541 23340 -566 ct 23353 -591 23372 -611 23395 -628 ct -23412 -641 23436 -652 23466 -661 ct 23496 -669 23528 -674 23562 -674 ct 23614 -674 23659 -666 23698 -652 ct -23737 -637 23766 -616 23785 -591 ct 23803 -566 23816 -532 23823 -489 ct 23714 -474 l -23709 -508 23695 -534 23671 -553 ct 23647 -572 23614 -582 23570 -582 ct 23519 -582 23482 -574 23460 -557 ct -23439 -540 23428 -520 23428 -497 ct 23428 -483 23432 -469 23441 -458 ct 23450 -446 23465 -436 23484 -428 ct -23495 -424 23528 -414 23583 -400 ct 23662 -378 23717 -361 23748 -348 ct 23779 -334 23804 -315 23821 -289 ct -23839 -263 23848 -232 23848 -194 ct 23848 -156 23837 -121 23815 -88 ct 23794 -55 23762 -30 23722 -12 ct -23681 6 23634 15 23583 15 ct 23497 15 23432 -3 23387 -38 ct 23342 -74 23313 -127 23301 -197 ct -p ef -23982 267 m 23902 267 l 24026 68 24087 -130 24087 -329 ct 24087 -407 24078 -484 24061 -561 ct -24047 -623 24027 -683 24002 -740 ct 23986 -777 23952 -839 23902 -926 ct 23982 -926 l -24060 -822 24117 -718 24154 -613 ct 24186 -523 24202 -429 24202 -330 ct 24202 -218 24181 -110 24138 -6 ct -24095 98 24043 189 23982 267 ct p ef -pom -0.449 0.625 0.812 c 713 10472 m 713 10472 l 717 10422 l 729 10371 l -750 10321 l 779 10271 l 816 10221 l 861 10171 l 915 10121 l 976 10072 l -1046 10023 l 1124 9974 l 1210 9925 l 1304 9877 l 1406 9829 l 1515 9782 l -1633 9734 l 1758 9688 l 1891 9642 l 2031 9596 l 2179 9551 l 2335 9506 l -2497 9463 l 2667 9419 l 2844 9377 l 3027 9335 l 3218 9293 l 3415 9253 l -3619 9213 l 3830 9174 l 4047 9136 l 4270 9099 l 4499 9062 l 4734 9027 l -4975 8992 l 5221 8958 l 5473 8925 l 5731 8894 l 5993 8863 l 6261 8833 l -6533 8804 l 6810 8776 l 7092 8749 l 7378 8724 l 7668 8699 l 7962 8675 l -8259 8653 l 8561 8632 l 8865 8612 l 9173 8593 l 9484 8575 l 9798 8558 l -10115 8543 l 10434 8528 l 10755 8515 l 11078 8504 l 11403 8493 l 11730 8484 l -12058 8476 l 12388 8469 l 12718 8463 l 13049 8459 l 13381 8456 l 13713 8454 l -14046 8453 l 14046 8453 l 14384 8454 l 14721 8456 l 15058 8459 l 15394 8463 l -15730 8469 l 16064 8476 l 16397 8485 l 16729 8494 l 17059 8505 l 17387 8517 l -17713 8531 l 18036 8546 l 18357 8561 l 18675 8579 l 18990 8597 l 19302 8617 l -19611 8637 l 19916 8659 l 20217 8682 l 20515 8707 l 20808 8732 l 21097 8758 l -21381 8786 l 21661 8815 l 21935 8844 l 22205 8875 l 22469 8907 l 22728 8940 l -22982 8974 l 23230 9008 l 23472 9044 l 23707 9081 l 23937 9118 l 24160 9156 l -24377 9196 l 24587 9236 l 24790 9277 l 24987 9318 l 25176 9360 l 25359 9403 l -25534 9447 l 25701 9492 l 25862 9537 l 26014 9582 l 26159 9628 l 26297 9675 l -26426 9722 l 26547 9770 l 26661 9818 l 26766 9867 l 26863 9916 l 26952 9965 l -27033 10015 l 27105 10065 l 27169 10115 l 27224 10165 l 27271 10216 l -27310 10267 l 27340 10318 l 27362 10369 l 27375 10420 l 27379 10471 l -27378 10471 l 27374 10522 l 27361 10573 l 27340 10624 l 27310 10675 l -27271 10726 l 27224 10777 l 27169 10827 l 27105 10877 l 27033 10927 l -26952 10977 l 26864 11026 l 26767 11075 l 26661 11124 l 26548 11172 l -26427 11220 l 26297 11267 l 26160 11314 l 26015 11360 l 25863 11406 l -25703 11451 l 25535 11495 l 25360 11539 l 25178 11582 l 24988 11624 l -24792 11666 l 24588 11707 l 24378 11747 l 24162 11786 l 23938 11825 l -23709 11862 l 23473 11899 l 23231 11934 l 22983 11969 l 22730 12003 l -22471 12036 l 22206 12068 l 21936 12098 l 21662 12128 l 21382 12157 l -21098 12184 l 20809 12211 l 20516 12236 l 20218 12261 l 19917 12284 l -19612 12306 l 19303 12326 l 18991 12346 l 18676 12364 l 18357 12381 l -18036 12397 l 17713 12412 l 17387 12426 l 17059 12438 l 16729 12449 l -16397 12458 l 16064 12467 l 15729 12474 l 15394 12480 l 15057 12484 l -14720 12487 l 14383 12489 l 14045 12490 l 14045 12490 l 13707 12489 l -13370 12487 l 13033 12484 l 12696 12480 l 12361 12474 l 12026 12467 l -11693 12458 l 11361 12449 l 11031 12438 l 10703 12426 l 10377 12412 l -10054 12397 l 9733 12381 l 9414 12364 l 9099 12346 l 8787 12326 l -8478 12306 l 8173 12284 l 7872 12261 l 7574 12236 l 7281 12211 l 6992 12184 l -6708 12157 l 6428 12128 l 6154 12098 l 5884 12068 l 5619 12036 l 5360 12003 l -5107 11969 l 4859 11934 l 4617 11899 l 4381 11862 l 4152 11825 l 3928 11786 l -3712 11747 l 3502 11707 l 3298 11666 l 3102 11624 l 2912 11582 l 2730 11539 l -2555 11495 l 2387 11451 l 2227 11406 l 2075 11360 l 1930 11314 l 1793 11267 l -1663 11220 l 1542 11172 l 1429 11124 l 1323 11075 l 1226 11026 l 1138 10977 l -1057 10927 l 985 10877 l 921 10827 l 866 10777 l 819 10726 l 780 10675 l -750 10624 l 729 10573 l 716 10522 l 712 10471 l 713 10472 l p -713 8453 m 713 8453 l p -27380 12491 m 27380 12491 l p ef -0.207 0.398 0.644 c 713 10472 m 713 10472 l 717 10422 l 729 10371 l -750 10321 l 779 10271 l 816 10221 l 861 10171 l 915 10121 l 976 10072 l -1046 10023 l 1124 9974 l 1210 9925 l 1304 9877 l 1406 9829 l 1515 9782 l -1633 9734 l 1758 9688 l 1891 9642 l 2031 9596 l 2179 9551 l 2335 9506 l -2497 9463 l 2667 9419 l 2844 9377 l 3027 9335 l 3218 9293 l 3415 9253 l -3619 9213 l 3830 9174 l 4047 9136 l 4270 9099 l 4499 9062 l 4734 9027 l -4975 8992 l 5221 8958 l 5473 8925 l 5731 8894 l 5993 8863 l 6261 8833 l -6533 8804 l 6810 8776 l 7092 8749 l 7378 8724 l 7668 8699 l 7962 8675 l -8259 8653 l 8561 8632 l 8865 8612 l 9173 8593 l 9484 8575 l 9798 8558 l -10115 8543 l 10434 8528 l 10755 8515 l 11078 8504 l 11403 8493 l 11730 8484 l -12058 8476 l 12388 8469 l 12718 8463 l 13049 8459 l 13381 8456 l 13713 8454 l -14046 8453 l 14046 8453 l 14384 8454 l 14721 8456 l 15058 8459 l 15394 8463 l -15730 8469 l 16064 8476 l 16397 8485 l 16729 8494 l 17059 8505 l 17387 8517 l -17713 8531 l 18036 8546 l 18357 8561 l 18675 8579 l 18990 8597 l 19302 8617 l -19611 8637 l 19916 8659 l 20217 8682 l 20515 8707 l 20808 8732 l 21097 8758 l -21381 8786 l 21661 8815 l 21935 8844 l 22205 8875 l 22469 8907 l 22728 8940 l -22982 8974 l 23230 9008 l 23472 9044 l 23707 9081 l 23937 9118 l 24160 9156 l -24377 9196 l 24587 9236 l 24790 9277 l 24987 9318 l 25176 9360 l 25359 9403 l -25534 9447 l 25701 9492 l 25862 9537 l 26014 9582 l 26159 9628 l 26297 9675 l -26426 9722 l 26547 9770 l 26661 9818 l 26766 9867 l 26863 9916 l 26952 9965 l -27033 10015 l 27105 10065 l 27169 10115 l 27224 10165 l 27271 10216 l -27310 10267 l 27340 10318 l 27362 10369 l 27375 10420 l 27379 10471 l -27378 10471 l 27374 10522 l 27361 10573 l 27340 10624 l 27310 10675 l -27271 10726 l 27224 10777 l 27169 10827 l 27105 10877 l 27033 10927 l -26952 10977 l 26864 11026 l 26767 11075 l 26661 11124 l 26548 11172 l -26427 11220 l 26297 11267 l 26160 11314 l 26015 11360 l 25863 11406 l -25703 11451 l 25535 11495 l 25360 11539 l 25178 11582 l 24988 11624 l -24792 11666 l 24588 11707 l 24378 11747 l 24162 11786 l 23938 11825 l -23709 11862 l 23473 11899 l 23231 11934 l 22983 11969 l 22730 12003 l -22471 12036 l 22206 12068 l 21936 12098 l 21662 12128 l 21382 12157 l -21098 12184 l 20809 12211 l 20516 12236 l 20218 12261 l 19917 12284 l -19612 12306 l 19303 12326 l 18991 12346 l 18676 12364 l 18357 12381 l -18036 12397 l 17713 12412 l 17387 12426 l 17059 12438 l 16729 12449 l -16397 12458 l 16064 12467 l 15729 12474 l 15394 12480 l 15057 12484 l -14720 12487 l 14383 12489 l 14045 12490 l 14045 12490 l 13707 12489 l -13370 12487 l 13033 12484 l 12696 12480 l 12361 12474 l 12026 12467 l -11693 12458 l 11361 12449 l 11031 12438 l 10703 12426 l 10377 12412 l -10054 12397 l 9733 12381 l 9414 12364 l 9099 12346 l 8787 12326 l -8478 12306 l 8173 12284 l 7872 12261 l 7574 12236 l 7281 12211 l 6992 12184 l -6708 12157 l 6428 12128 l 6154 12098 l 5884 12068 l 5619 12036 l 5360 12003 l -5107 11969 l 4859 11934 l 4617 11899 l 4381 11862 l 4152 11825 l 3928 11786 l -3712 11747 l 3502 11707 l 3298 11666 l 3102 11624 l 2912 11582 l 2730 11539 l -2555 11495 l 2387 11451 l 2227 11406 l 2075 11360 l 1930 11314 l 1793 11267 l -1663 11220 l 1542 11172 l 1429 11124 l 1323 11075 l 1226 11026 l 1138 10977 l -1057 10927 l 985 10877 l 921 10827 l 866 10777 l 819 10726 l 780 10675 l -750 10624 l 729 10573 l 716 10522 l 712 10471 l 713 10472 l pc -713 8453 m 713 8453 l pc -27380 12491 m 27380 12491 l pc -pum -3445 10256 t -0.003 0.003 0.003 c 98 0 m 98 -910 l 411 -910 l 482 -910 536 -906 573 -897 ct -625 -885 670 -863 706 -832 ct 754 -791 790 -739 814 -676 ct 838 -613 850 -541 850 -460 ct -850 -391 842 -330 825 -276 ct 809 -223 789 -179 763 -144 ct 738 -109 711 -81 681 -61 ct -651 -41 614 -26 572 -16 ct 530 -5 481 0 426 0 ct 98 0 l p -218 -107 m 412 -107 l 472 -107 519 -113 553 -124 ct 588 -135 615 -151 635 -171 ct -664 -200 686 -238 702 -286 ct 718 -335 726 -393 726 -462 ct 726 -557 710 -630 679 -681 ct -648 -732 610 -767 565 -784 ct 533 -796 481 -803 409 -803 ct 218 -803 l 218 -107 l -p ef -1037 0 m 1037 -910 l 1158 -910 l 1158 0 l 1037 0 l p ef -1374 1 m 1374 -909 l 1987 -909 l 1987 -802 l 1494 -802 l 1494 -520 l -1921 -520 l 1921 -413 l 1494 -413 l 1494 1 l 1374 1 l p ef -2149 1 m 2149 -909 l 2762 -909 l 2762 -802 l 2269 -802 l 2269 -520 l -2696 -520 l 2696 -413 l 2269 -413 l 2269 1 l 2149 1 l p ef -3514 -910 m 3634 -910 l 3634 -384 l 3634 -292 3624 -220 3603 -166 ct 3582 -112 3545 -68 3491 -35 ct -3437 -1 3366 16 3279 16 ct 3193 16 3124 1 3070 -28 ct 3015 -57 2977 -100 2954 -156 ct -2930 -211 2919 -287 2919 -384 ct 2919 -910 l 3039 -910 l 3039 -384 l 3039 -305 3046 -247 3061 -210 ct -3076 -172 3101 -143 3137 -123 ct 3173 -103 3216 -93 3268 -93 ct 3356 -93 3419 -113 3457 -153 ct -3495 -193 3514 -270 3514 -384 ct 3514 -910 l p ef -3795 -292 m 3909 -302 l 3914 -256 3926 -219 3946 -190 ct 3966 -161 3996 -137 4038 -119 ct -4079 -101 4125 -92 4177 -92 ct 4223 -92 4263 -99 4299 -112 ct 4334 -126 4360 -145 4377 -169 ct -4394 -192 4403 -218 4403 -247 ct 4403 -275 4395 -300 4378 -321 ct 4361 -343 4334 -361 4296 -375 ct -4272 -385 4218 -399 4134 -419 ct 4051 -440 3992 -458 3959 -476 ct 3915 -499 3883 -527 3862 -561 ct -3840 -595 3830 -632 3830 -674 ct 3830 -720 3843 -763 3869 -803 ct 3895 -843 3933 -873 3983 -894 ct -4033 -915 4089 -925 4150 -925 ct 4217 -925 4277 -914 4328 -892 ct 4380 -871 4419 -839 4447 -797 ct -4475 -754 4489 -707 4491 -653 ct 4376 -644 l 4370 -702 4349 -745 4313 -775 ct -4277 -804 4225 -819 4155 -819 ct 4082 -819 4029 -806 3996 -779 ct 3962 -752 3946 -720 3946 -682 ct -3946 -650 3958 -623 3981 -602 ct 4004 -581 4065 -559 4162 -537 ct 4260 -515 4327 -495 4364 -479 ct -4417 -454 4456 -423 4481 -386 ct 4506 -348 4519 -305 4519 -257 ct 4519 -208 4505 -162 4477 -120 ct -4449 -77 4410 -43 4358 -20 ct 4306 4 4248 16 4183 16 ct 4100 16 4031 4 3976 -20 ct -3920 -44 3877 -80 3845 -128 ct 3813 -177 3797 -231 3795 -292 ct p ef -4703 0 m 4703 -910 l 4824 -910 l 4824 0 l 4703 0 l p ef -5294 0 m 4942 -910 l 5072 -910 l 5308 -249 l 5327 -196 5343 -146 5356 -100 ct -5370 -150 5386 -199 5405 -249 ct 5650 -910 l 5773 -910 l 5417 0 l 5294 0 l -p ef -5901 0 m 5901 -910 l 6022 -910 l 6022 0 l 5901 0 l p ef -6463 1 m 6463 -802 l 6164 -802 l 6164 -909 l 6884 -909 l 6884 -802 l -6584 -802 l 6584 1 l 6463 1 l p ef -7263 0 m 7263 -385 l 6913 -910 l 7059 -910 l 7238 -636 l 7271 -584 7302 -533 7331 -482 ct -7358 -529 7391 -583 7430 -642 ct 7606 -910 l 7746 -910 l 7383 -385 l 7383 0 l -7263 0 l p ef -8138 -292 m 8252 -302 l 8257 -256 8269 -219 8289 -190 ct 8309 -161 8339 -137 8381 -119 ct -8422 -101 8468 -92 8520 -92 ct 8566 -92 8606 -99 8642 -112 ct 8677 -126 8703 -145 8720 -169 ct -8737 -192 8746 -218 8746 -247 ct 8746 -275 8738 -300 8721 -321 ct 8704 -343 8677 -361 8639 -375 ct -8615 -385 8561 -399 8477 -419 ct 8394 -440 8335 -458 8302 -476 ct 8258 -499 8226 -527 8205 -561 ct -8183 -595 8173 -632 8173 -674 ct 8173 -720 8186 -763 8212 -803 ct 8238 -843 8276 -873 8326 -894 ct -8376 -915 8432 -925 8493 -925 ct 8560 -925 8620 -914 8671 -892 ct 8723 -871 8762 -839 8790 -797 ct -8818 -754 8832 -707 8834 -653 ct 8719 -644 l 8713 -702 8692 -745 8656 -775 ct -8620 -804 8568 -819 8498 -819 ct 8425 -819 8372 -806 8339 -779 ct 8305 -752 8289 -720 8289 -682 ct -8289 -650 8301 -623 8324 -602 ct 8347 -581 8408 -559 8505 -537 ct 8603 -515 8670 -495 8707 -479 ct -8760 -454 8799 -423 8824 -386 ct 8849 -348 8862 -305 8862 -257 ct 8862 -208 8848 -162 8820 -120 ct -8792 -77 8753 -43 8701 -20 ct 8649 4 8591 16 8526 16 ct 8443 16 8374 4 8319 -20 ct -8263 -44 8220 -80 8188 -128 ct 8156 -177 8140 -231 8138 -292 ct p ef -9623 -910 m 9743 -910 l 9743 -384 l 9743 -292 9733 -220 9712 -166 ct 9691 -112 9654 -68 9600 -35 ct -9546 -1 9475 16 9388 16 ct 9302 16 9233 1 9179 -28 ct 9124 -57 9086 -100 9063 -156 ct -9039 -211 9028 -287 9028 -384 ct 9028 -910 l 9148 -910 l 9148 -384 l 9148 -305 9155 -247 9170 -210 ct -9185 -172 9210 -143 9246 -123 ct 9282 -103 9325 -93 9377 -93 ct 9465 -93 9528 -113 9566 -153 ct -9604 -193 9623 -270 9623 -384 ct 9623 -910 l p ef -9947 0 m 9947 -910 l 10350 -910 l 10431 -910 10493 -902 10535 -885 ct -10577 -869 10611 -840 10636 -799 ct 10661 -757 10674 -712 10674 -662 ct 10674 -597 10653 -543 10611 -498 ct -10569 -454 10505 -426 10418 -414 ct 10449 -399 10474 -384 10490 -369 ct 10525 -336 10558 -296 10590 -248 ct -10748 0 l 10597 0 l 10476 -189 l 10441 -244 10412 -286 10390 -315 ct 10367 -344 10347 -364 10329 -375 ct -10311 -387 10292 -395 10274 -400 ct 10260 -403 10238 -404 10207 -404 ct 10067 -404 l -10067 0 l 9947 0 l p -10067 -508 m 10326 -508 l 10381 -508 10424 -514 10455 -525 ct 10486 -537 10509 -555 10525 -580 ct -10542 -605 10550 -632 10550 -662 ct 10550 -705 10534 -740 10503 -768 ct 10472 -796 10422 -809 10355 -809 ct -10067 -809 l 10067 -508 l p ef -10865 0 m 10865 -910 l 11268 -910 l 11349 -910 11411 -902 11453 -885 ct -11495 -869 11529 -840 11554 -799 ct 11579 -757 11592 -712 11592 -662 ct 11592 -597 11571 -543 11529 -498 ct -11487 -454 11423 -426 11336 -414 ct 11367 -399 11392 -384 11408 -369 ct 11443 -336 11476 -296 11508 -248 ct -11666 0 l 11515 0 l 11394 -189 l 11359 -244 11330 -286 11308 -315 ct 11285 -344 11265 -364 11247 -375 ct -11229 -387 11210 -395 11192 -400 ct 11178 -403 11156 -404 11125 -404 ct 10985 -404 l -10985 0 l 10865 0 l p -10985 -508 m 11244 -508 l 11299 -508 11342 -514 11373 -525 ct 11404 -537 11427 -555 11443 -580 ct -11460 -605 11468 -632 11468 -662 ct 11468 -705 11452 -740 11421 -768 ct 11390 -796 11340 -809 11273 -809 ct -10985 -809 l 10985 -508 l p ef -11745 -443 m 11745 -594 11786 -712 11867 -797 ct 11948 -883 12053 -926 12181 -926 ct -12265 -926 12340 -906 12408 -865 ct 12475 -825 12526 -769 12562 -698 ct 12597 -626 12615 -544 12615 -453 ct -12615 -361 12596 -278 12559 -206 ct 12522 -133 12469 -78 12401 -40 ct 12333 -3 12259 16 12180 16 ct -12095 16 12018 -5 11951 -46 ct 11883 -87 11832 -144 11797 -216 ct 11763 -287 11745 -363 11745 -443 ct -p -11869 -441 m 11869 -331 11899 -245 11958 -182 ct 12017 -119 12091 -87 12179 -87 ct -12270 -87 12345 -119 12403 -183 ct 12462 -246 12491 -337 12491 -454 ct 12491 -528 12478 -593 12453 -648 ct -12428 -703 12392 -746 12343 -776 ct 12295 -807 12241 -822 12181 -822 ct 12096 -822 12023 -793 11962 -734 ct -11900 -676 11869 -578 11869 -441 ct p ef -13193 -356 m 13193 -463 l 13578 -463 l 13578 -126 l 13519 -79 13458 -43 13396 -20 ct -13333 4 13268 16 13202 16 ct 13113 16 13032 -3 12959 -41 ct 12886 -80 12831 -135 12793 -207 ct -12756 -280 12738 -361 12738 -450 ct 12738 -539 12756 -621 12793 -698 ct 12830 -775 12883 -832 12953 -869 ct -13022 -906 13102 -925 13193 -925 ct 13259 -925 13318 -914 13371 -893 ct 13424 -872 13466 -842 13496 -804 ct -13526 -766 13549 -716 13565 -655 ct 13456 -625 l 13443 -671 13426 -708 13405 -734 ct -13385 -761 13356 -782 13319 -798 ct 13281 -814 13239 -822 13193 -822 ct 13138 -822 13091 -814 13051 -797 ct -13011 -780 12978 -758 12954 -731 ct 12929 -703 12910 -673 12896 -641 ct 12873 -584 12862 -523 12862 -458 ct -12862 -377 12876 -309 12903 -254 ct 12931 -199 12972 -159 13025 -132 ct 13079 -106 13135 -93 13195 -93 ct -13247 -93 13298 -103 13348 -123 ct 13397 -143 13435 -164 13461 -187 ct 13461 -356 l -13193 -356 l p ef -13655 -1 m 14004 -911 l 14134 -911 l 14506 -1 l 14369 -1 l 14263 -276 l -13883 -276 l 13783 -1 l 13655 -1 l p -13917 -374 m 14226 -374 l 14131 -626 l 14102 -703 14080 -766 14066 -815 ct -14055 -757 14038 -699 14017 -641 ct 13917 -374 l p ef -14786 1 m 14786 -802 l 14487 -802 l 14487 -909 l 15207 -909 l 15207 -802 l -14907 -802 l 14907 1 l 14786 1 l p ef -15285 0 m 15285 -910 l 15943 -910 l 15943 -803 l 15406 -803 l 15406 -524 l -15909 -524 l 15909 -417 l 15406 -417 l 15406 -107 l 15964 -107 l 15964 0 l -15285 0 l p ef -16477 0 m 16477 -910 l 16658 -910 l 16874 -266 l 16893 -206 16908 -161 16917 -131 ct -16927 -164 16943 -213 16965 -277 ct 17183 -910 l 17345 -910 l 17345 0 l -17229 0 l 17229 -762 l 16965 0 l 16856 0 l 16593 -775 l 16593 0 l -16477 0 l p ef -17502 -443 m 17502 -594 17543 -712 17624 -797 ct 17705 -883 17810 -926 17938 -926 ct -18022 -926 18097 -906 18165 -865 ct 18232 -825 18283 -769 18319 -698 ct 18354 -626 18372 -544 18372 -453 ct -18372 -361 18353 -278 18316 -206 ct 18279 -133 18226 -78 18158 -40 ct 18090 -3 18016 16 17937 16 ct -17852 16 17775 -5 17708 -46 ct 17640 -87 17589 -144 17554 -216 ct 17520 -287 17502 -363 17502 -443 ct -p -17626 -441 m 17626 -331 17656 -245 17715 -182 ct 17774 -119 17848 -87 17936 -87 ct -18027 -87 18102 -119 18160 -183 ct 18219 -246 18248 -337 18248 -454 ct 18248 -528 18235 -593 18210 -648 ct -18185 -703 18149 -746 18100 -776 ct 18052 -807 17998 -822 17938 -822 ct 17853 -822 17780 -793 17719 -734 ct -17657 -676 17626 -578 17626 -441 ct p ef -18526 0 m 18526 -910 l 18839 -910 l 18910 -910 18964 -906 19001 -897 ct -19053 -885 19098 -863 19134 -832 ct 19182 -791 19218 -739 19242 -676 ct 19266 -613 19278 -541 19278 -460 ct -19278 -391 19270 -330 19253 -276 ct 19237 -223 19217 -179 19191 -144 ct 19166 -109 19139 -81 19109 -61 ct -19079 -41 19042 -26 19000 -16 ct 18958 -5 18909 0 18854 0 ct 18526 0 l p -18646 -107 m 18840 -107 l 18900 -107 18947 -113 18981 -124 ct 19016 -135 19043 -151 19063 -171 ct -19092 -200 19114 -238 19130 -286 ct 19146 -335 19154 -393 19154 -462 ct 19154 -557 19138 -630 19107 -681 ct -19076 -732 19038 -767 18993 -784 ct 18961 -796 18909 -803 18837 -803 ct 18646 -803 l -18646 -107 l p ef -19446 0 m 19446 -910 l 20104 -910 l 20104 -803 l 19567 -803 l 19567 -524 l -20070 -524 l 20070 -417 l 19567 -417 l 19567 -107 l 20125 -107 l 20125 0 l -19446 0 l p ef -20286 0 m 20286 -910 l 20406 -910 l 20406 -107 l 20854 -107 l 20854 0 l -20286 0 l p ef -pom -pum -10797 11780 t -297 267 m 235 189 183 98 141 -6 ct 98 -110 77 -218 77 -330 ct 77 -429 93 -523 125 -613 ct -162 -718 219 -822 297 -926 ct 377 -926 l 327 -840 294 -778 278 -742 ct 253 -684 233 -625 218 -563 ct -201 -485 192 -408 192 -329 ct 192 -130 253 68 377 267 ct 297 267 l p ef -517 0 m 517 -910 l 698 -910 l 914 -266 l 933 -206 948 -161 957 -131 ct -967 -164 983 -213 1005 -277 ct 1223 -910 l 1385 -910 l 1385 0 l 1269 0 l -1269 -762 l 1005 0 l 896 0 l 633 -775 l 633 0 l 517 0 l p ef -1524 -329 m 1524 -452 1558 -542 1626 -601 ct 1683 -650 1752 -674 1833 -674 ct -1924 -674 1998 -644 2055 -585 ct 2112 -526 2141 -444 2141 -339 ct 2141 -254 2128 -187 2103 -139 ct -2078 -90 2041 -52 1992 -25 ct 1943 2 1890 15 1833 15 ct 1741 15 1666 -15 1609 -74 ct -1553 -133 1524 -218 1524 -329 ct p -1639 -330 m 1639 -245 1657 -182 1694 -140 ct 1731 -98 1777 -77 1833 -77 ct -1888 -77 1934 -98 1971 -140 ct 2008 -182 2026 -247 2026 -333 ct 2026 -415 2008 -477 1971 -519 ct -1934 -561 1888 -582 1833 -582 ct 1777 -582 1731 -561 1694 -519 ct 1657 -477 1639 -414 1639 -330 ct -p ef -2273 0 m 2273 -659 l 2373 -659 l 2373 -565 l 2422 -638 2491 -674 2583 -674 ct -2622 -674 2659 -667 2692 -653 ct 2726 -638 2750 -620 2767 -596 ct 2783 -573 2795 -546 2802 -514 ct -2806 -493 2808 -457 2808 -405 ct 2808 0 l 2696 0 l 2696 -401 l 2696 -446 2692 -480 2683 -503 ct -2675 -526 2659 -544 2637 -557 ct 2615 -570 2589 -577 2559 -577 ct 2512 -577 2471 -562 2436 -532 ct -2402 -502 2384 -444 2384 -360 ct 2384 0 l 2273 0 l p ef -2959 54 m 3068 70 l 3072 104 3085 128 3106 143 ct 3133 164 3171 175 3219 175 ct -3271 175 3311 164 3339 143 ct 3367 123 3386 94 3396 57 ct 3402 34 3404 -14 3404 -87 ct -3355 -29 3294 -1 3222 -1 ct 3131 -1 3061 -33 3011 -99 ct 2962 -164 2937 -242 2937 -334 ct -2937 -397 2948 -455 2971 -508 ct 2994 -561 3027 -602 3070 -631 ct 3113 -660 3164 -674 3222 -674 ct -3300 -674 3364 -643 3414 -580 ct 3414 -660 l 3517 -660 l 3517 -90 l 3517 13 3507 85 3486 128 ct -3465 171 3432 205 3387 230 ct 3342 255 3286 267 3220 267 ct 3141 267 3078 249 3029 214 ct -2981 179 2958 125 2959 54 ct p -3052 -342 m 3052 -255 3069 -192 3103 -153 ct 3137 -113 3180 -93 3232 -93 ct -3283 -93 3326 -113 3361 -152 ct 3396 -192 3413 -254 3413 -338 ct 3413 -419 3395 -480 3360 -521 ct -3324 -562 3281 -582 3230 -582 ct 3181 -582 3138 -562 3104 -522 ct 3069 -481 3052 -421 3052 -342 ct -p ef -3645 -329 m 3645 -452 3679 -542 3747 -601 ct 3804 -650 3873 -674 3954 -674 ct -4045 -674 4119 -644 4176 -585 ct 4233 -526 4262 -444 4262 -339 ct 4262 -254 4249 -187 4224 -139 ct -4199 -90 4162 -52 4113 -25 ct 4064 2 4011 15 3954 15 ct 3862 15 3787 -15 3730 -74 ct -3674 -133 3645 -218 3645 -329 ct p -3760 -330 m 3760 -245 3778 -182 3815 -140 ct 3852 -98 3898 -77 3954 -77 ct -4009 -77 4055 -98 4092 -140 ct 4129 -182 4147 -247 4147 -333 ct 4147 -415 4129 -477 4092 -519 ct -4055 -561 4009 -582 3954 -582 ct 3898 -582 3852 -561 3815 -519 ct 3778 -477 3760 -414 3760 -330 ct -p ef -4408 0 m 4408 -910 l 4721 -910 l 4792 -910 4846 -906 4883 -897 ct 4935 -885 4980 -863 5016 -832 ct -5064 -791 5100 -739 5124 -676 ct 5148 -613 5160 -541 5160 -460 ct 5160 -391 5152 -330 5135 -276 ct -5119 -223 5099 -179 5073 -144 ct 5048 -109 5021 -81 4991 -61 ct 4961 -41 4924 -26 4882 -16 ct -4840 -5 4791 0 4736 0 ct 4408 0 l p -4528 -107 m 4722 -107 l 4782 -107 4829 -113 4863 -124 ct 4898 -135 4925 -151 4945 -171 ct -4974 -200 4996 -238 5012 -286 ct 5028 -335 5036 -393 5036 -462 ct 5036 -557 5020 -630 4989 -681 ct -4958 -732 4920 -767 4875 -784 ct 4843 -796 4791 -803 4719 -803 ct 4528 -803 l -4528 -107 l p ef -5321 0 m 5321 -910 l 5662 -910 l 5732 -910 5787 -901 5829 -882 ct 5871 -864 5904 -836 5928 -797 ct -5952 -759 5963 -719 5963 -677 ct 5963 -638 5953 -602 5932 -567 ct 5911 -533 5879 -505 5836 -484 ct -5891 -468 5934 -440 5963 -401 ct 5993 -363 6007 -317 6007 -264 ct 6007 -221 5998 -181 5981 -145 ct -5963 -108 5940 -80 5914 -60 ct 5887 -40 5854 -25 5814 -15 ct 5774 -5 5726 0 5668 0 ct -5321 0 l p -5441 -527 m 5638 -527 l 5691 -527 5729 -531 5753 -538 ct 5783 -547 5806 -562 5822 -583 ct -5837 -604 5845 -631 5845 -663 ct 5845 -693 5838 -720 5823 -743 ct 5809 -766 5788 -781 5761 -790 ct -5734 -798 5688 -803 5623 -803 ct 5441 -803 l 5441 -527 l p -5441 -107 m 5668 -107 l 5707 -107 5734 -109 5750 -112 ct 5777 -117 5800 -125 5819 -137 ct -5838 -148 5853 -165 5865 -187 ct 5877 -209 5883 -235 5883 -264 ct 5883 -298 5874 -327 5857 -352 ct -5839 -377 5815 -395 5785 -405 ct 5754 -415 5709 -420 5652 -420 ct 5441 -420 l -5441 -107 l p ef -6232 267 m 6152 267 l 6276 68 6337 -130 6337 -329 ct 6337 -407 6328 -484 6311 -561 ct -6297 -623 6277 -683 6252 -740 ct 6236 -777 6202 -839 6152 -926 ct 6232 -926 l -6310 -822 6367 -718 6404 -613 ct 6436 -523 6452 -429 6452 -330 ct 6452 -218 6431 -110 6388 -6 ct -6345 98 6293 189 6232 267 ct p ef -pom -27 lw 11089 18038 m 11336 12779 l ps -11345 12583 m 11440 12798 l 11230 12788 l 11345 12583 l p ef -16813 18043 m 16248 12783 l ps -16227 12588 m 16354 12786 l 16145 12808 l 16227 12588 l p ef -18288 3048 m 17798 8259 l ps -17780 8454 m 17695 8235 l 17904 8255 l 17780 8454 l p ef -1.000 1.000 1.000 c 26160 14235 m 27292 14235 l 27292 15760 l 26160 15760 l -26160 14235 l p -26160 14235 m 26160 14235 l p -27292 15760 m 27292 15760 l p ef -pum -15804 3908 t -1.000 0.261 0.058 c 149 0 m 149 -378 l 14 -378 l 14 -455 l 375 -455 l -375 -378 l 240 -378 l 240 0 l 149 0 l p ef -435 0 m 435 -455 l 772 -455 l 772 -378 l 527 -378 l 527 -277 l 755 -277 l -755 -200 l 527 -200 l 527 -77 l 781 -77 l 781 0 l 435 0 l p ef -858 0 m 858 -455 l 995 -455 l 1078 -145 l 1159 -455 l 1297 -455 l -1297 0 l 1212 0 l 1212 -358 l 1122 0 l 1033 0 l 943 -358 l 943 0 l -858 0 l p ef -1388 -1 m 1388 -455 l 1535 -455 l 1591 -455 1628 -453 1645 -448 ct 1671 -441 1692 -427 1710 -404 ct -1728 -381 1736 -351 1736 -315 ct 1736 -287 1731 -264 1721 -245 ct 1711 -226 1698 -211 1683 -200 ct -1667 -189 1651 -182 1635 -179 ct 1613 -174 1581 -172 1540 -172 ct 1480 -172 l -1480 -1 l 1388 -1 l p -1480 -378 m 1480 -249 l 1530 -249 l 1566 -249 1591 -252 1603 -256 ct 1615 -261 1625 -269 1631 -279 ct -1638 -289 1642 -301 1642 -314 ct 1642 -330 1637 -344 1627 -355 ct 1618 -366 1605 -372 1590 -375 ct -1579 -377 1557 -378 1524 -378 ct 1480 -378 l p ef -1811 0 m 1811 -455 l 2148 -455 l 2148 -378 l 1903 -378 l 1903 -277 l -2131 -277 l 2131 -200 l 1903 -200 l 1903 -77 l 2157 -77 l 2157 0 l -1811 0 l p ef -2236 0 m 2236 -455 l 2429 -455 l 2477 -455 2513 -451 2535 -443 ct 2557 -435 2574 -420 2587 -399 ct -2601 -378 2607 -354 2607 -327 ct 2607 -293 2597 -265 2577 -243 ct 2557 -221 2527 -207 2487 -201 ct -2507 -189 2524 -177 2536 -163 ct 2549 -149 2567 -124 2589 -89 ct 2644 0 l 2534 0 l -2468 -99 l 2444 -134 2428 -157 2420 -166 ct 2411 -175 2402 -181 2392 -185 ct -2382 -188 2367 -190 2346 -190 ct 2327 -190 l 2327 0 l 2236 0 l p -2327 -263 m 2395 -263 l 2439 -263 2467 -264 2478 -268 ct 2489 -272 2497 -278 2503 -287 ct -2510 -297 2513 -308 2513 -322 ct 2513 -337 2509 -349 2500 -359 ct 2492 -368 2481 -374 2466 -377 ct -2458 -378 2436 -378 2399 -378 ct 2327 -378 l 2327 -263 l p ef -3102 1 m 3002 1 l 2963 -103 l 2781 -103 l 2743 1 l 2646 1 l 2823 -455 l -2920 -455 l 3102 1 l p -2933 -180 m 2870 -348 l 2809 -180 l 2933 -180 l p ef -3227 0 m 3227 -378 l 3092 -378 l 3092 -455 l 3453 -455 l 3453 -378 l -3318 -378 l 3318 0 l 3227 0 l p ef -3488 -455 m 3579 -455 l 3579 -208 l 3579 -169 3581 -144 3583 -132 ct 3587 -114 3596 -99 3611 -87 ct -3626 -76 3646 -71 3671 -71 ct 3697 -71 3717 -76 3730 -86 ct 3744 -97 3752 -110 3754 -126 ct -3757 -141 3758 -167 3758 -203 ct 3758 -455 l 3850 -455 l 3850 -216 l 3850 -161 3848 -123 3843 -100 ct -3838 -77 3828 -58 3815 -43 ct 3802 -27 3784 -15 3762 -6 ct 3739 3 3710 8 3674 8 ct -3631 8 3598 3 3575 -7 ct 3553 -17 3535 -30 3522 -46 ct 3509 -62 3501 -79 3497 -97 ct -3491 -123 3488 -161 3488 -212 ct 3488 -455 l p ef -3946 0 m 3946 -455 l 4139 -455 l 4187 -455 4223 -451 4245 -443 ct 4267 -435 4284 -420 4297 -399 ct -4311 -378 4317 -354 4317 -327 ct 4317 -293 4307 -265 4287 -243 ct 4267 -221 4237 -207 4197 -201 ct -4217 -189 4234 -177 4246 -163 ct 4259 -149 4277 -124 4299 -89 ct 4354 0 l 4244 0 l -4178 -99 l 4154 -134 4138 -157 4130 -166 ct 4121 -175 4112 -181 4102 -185 ct -4092 -188 4077 -190 4056 -190 ct 4037 -190 l 4037 0 l 3946 0 l p -4037 -263 m 4105 -263 l 4149 -263 4177 -264 4188 -268 ct 4199 -272 4207 -278 4213 -287 ct -4220 -297 4223 -308 4223 -322 ct 4223 -337 4219 -349 4210 -359 ct 4202 -368 4191 -374 4176 -377 ct -4168 -378 4146 -378 4109 -378 ct 4037 -378 l 4037 -263 l p ef -4402 0 m 4402 -455 l 4739 -455 l 4739 -378 l 4494 -378 l 4494 -277 l -4722 -277 l 4722 -200 l 4494 -200 l 4494 -77 l 4748 -77 l 4748 0 l -4402 0 l p ef -pom -0.003 0.003 0.003 c 6858 8683 m 6407 3397 l ps -6390 3202 m 6512 3402 l 6303 3420 l 6390 3202 l p ef -pum -757 4152 t -1.000 0.261 0.058 c 46 -455 m 214 -455 l 251 -455 280 -452 300 -446 ct 327 -438 350 -424 369 -404 ct -388 -384 402 -360 412 -331 ct 422 -302 427 -266 427 -223 ct 427 -186 422 -153 413 -126 ct -402 -93 385 -66 364 -46 ct 348 -30 327 -18 300 -10 ct 280 -3 252 0 219 0 ct 46 0 l -46 -455 l p -138 -378 m 138 -77 l 206 -77 l 232 -77 250 -78 262 -81 ct 277 -85 289 -91 299 -100 ct -309 -109 317 -123 323 -144 ct 329 -164 332 -192 332 -227 ct 332 -262 329 -289 323 -308 ct -317 -327 308 -342 297 -352 ct 286 -363 271 -370 254 -374 ct 241 -377 216 -378 179 -378 ct -138 -378 l p ef -500 0 m 500 -455 l 592 -455 l 592 0 l 500 0 l p ef -682 1 m 682 -455 l 993 -455 l 993 -378 l 774 -378 l 774 -270 l 963 -270 l -963 -193 l 774 -193 l 774 1 l 682 1 l p ef -1071 1 m 1071 -455 l 1382 -455 l 1382 -378 l 1163 -378 l 1163 -270 l -1352 -270 l 1352 -193 l 1163 -193 l 1163 1 l 1071 1 l p ef -1460 -455 m 1551 -455 l 1551 -208 l 1551 -169 1553 -144 1555 -132 ct 1559 -114 1568 -99 1583 -87 ct -1598 -76 1618 -71 1643 -71 ct 1669 -71 1689 -76 1702 -86 ct 1716 -97 1724 -110 1726 -126 ct -1729 -141 1730 -167 1730 -203 ct 1730 -455 l 1822 -455 l 1822 -216 l 1822 -161 1820 -123 1815 -100 ct -1810 -77 1800 -58 1787 -43 ct 1774 -27 1756 -15 1734 -6 ct 1711 3 1682 8 1646 8 ct -1603 8 1570 3 1547 -7 ct 1525 -17 1507 -30 1494 -46 ct 1481 -62 1473 -79 1469 -97 ct -1463 -123 1460 -161 1460 -212 ct 1460 -455 l p ef -1894 -148 m 1983 -157 l 1989 -127 2000 -105 2016 -91 ct 2032 -77 2055 -70 2082 -70 ct -2112 -70 2134 -76 2149 -88 ct 2164 -101 2172 -116 2172 -132 ct 2172 -143 2169 -152 2162 -160 ct -2156 -167 2145 -174 2129 -179 ct 2119 -183 2094 -190 2056 -199 ct 2007 -212 1972 -227 1952 -244 ct -1924 -269 1910 -300 1910 -336 ct 1910 -359 1917 -381 1930 -401 ct 1943 -421 1962 -437 1987 -447 ct -2012 -458 2041 -463 2076 -463 ct 2133 -463 2176 -450 2205 -425 ct 2234 -399 2249 -365 2251 -323 ct -2159 -323 l 2155 -346 2146 -362 2133 -372 ct 2121 -382 2101 -387 2075 -387 ct -2049 -387 2028 -381 2013 -371 ct 2003 -363 1998 -354 1998 -342 ct 1998 -331 2003 -322 2012 -315 ct -2023 -305 2051 -295 2096 -284 ct 2141 -274 2174 -263 2195 -251 ct 2217 -240 2233 -225 2245 -205 ct -2257 -186 2264 -161 2264 -133 ct 2264 -107 2256 -82 2242 -59 ct 2227 -37 2207 -20 2180 -9 ct -2154 2 2121 8 2082 8 ct 2024 8 1980 -5 1949 -32 ct 1918 -59 1900 -97 1894 -148 ct -p ef -2337 0 m 2337 -455 l 2429 -455 l 2429 0 l 2337 0 l p ef -2634 0 m 2472 -455 l 2571 -455 l 2686 -118 l 2798 -455 l 2895 -455 l -2732 0 l 2634 0 l p ef -2939 0 m 2939 -455 l 3031 -455 l 3031 0 l 2939 0 l p ef -3222 0 m 3222 -378 l 3087 -378 l 3087 -455 l 3448 -455 l 3448 -378 l -3313 -378 l 3313 0 l 3222 0 l p ef -3629 0 m 3629 -192 l 3462 -455 l 3570 -455 l 3677 -275 l 3781 -455 l -3887 -455 l 3720 -191 l 3720 0 l 3629 0 l p ef -4075 -224 m 4075 -271 4082 -310 4095 -341 ct 4106 -364 4120 -385 4138 -404 ct -4156 -422 4175 -436 4196 -445 ct 4225 -457 4257 -463 4294 -463 ct 4361 -463 4415 -442 4455 -400 ct -4495 -359 4516 -301 4516 -227 ct 4516 -153 4496 -96 4456 -54 ct 4416 -13 4362 8 4296 8 ct -4228 8 4174 -13 4134 -54 ct 4095 -95 4075 -152 4075 -224 ct p -4169 -228 m 4169 -176 4181 -137 4205 -110 ct 4229 -84 4259 -71 4295 -71 ct -4332 -71 4362 -84 4385 -110 ct 4409 -136 4421 -176 4421 -229 ct 4421 -281 4409 -320 4386 -346 ct -4364 -371 4333 -384 4295 -384 ct 4258 -384 4227 -371 4204 -345 ct 4181 -319 4169 -280 4169 -228 ct -p ef -4589 1 m 4589 -455 l 4900 -455 l 4900 -378 l 4681 -378 l 4681 -270 l -4870 -270 l 4870 -193 l 4681 -193 l 4681 1 l 4589 1 l p ef -pom -pum -757 4914 t -149 0 m 149 -378 l 14 -378 l 14 -455 l 375 -455 l 375 -378 l 240 -378 l -240 0 l 149 0 l p ef -436 0 m 436 -455 l 527 -455 l 527 -276 l 707 -276 l 707 -455 l 799 -455 l -799 0 l 707 0 l 707 -199 l 527 -199 l 527 0 l 436 0 l p ef -893 0 m 893 -455 l 1230 -455 l 1230 -378 l 985 -378 l 985 -277 l -1213 -277 l 1213 -200 l 985 -200 l 985 -77 l 1239 -77 l 1239 0 l -893 0 l p ef -1494 -1 m 1494 -455 l 1641 -455 l 1697 -455 1734 -453 1751 -448 ct 1777 -441 1798 -427 1816 -404 ct -1834 -381 1842 -351 1842 -315 ct 1842 -287 1837 -264 1827 -245 ct 1817 -226 1804 -211 1789 -200 ct -1773 -189 1757 -182 1741 -179 ct 1719 -174 1687 -172 1646 -172 ct 1586 -172 l -1586 -1 l 1494 -1 l p -1586 -378 m 1586 -249 l 1636 -249 l 1672 -249 1697 -252 1709 -256 ct 1721 -261 1731 -269 1737 -279 ct -1744 -289 1748 -301 1748 -314 ct 1748 -330 1743 -344 1733 -355 ct 1724 -366 1711 -372 1696 -375 ct -1685 -377 1663 -378 1630 -378 ct 1586 -378 l p ef -1918 0 m 1918 -455 l 2009 -455 l 2009 -276 l 2189 -276 l 2189 -455 l -2281 -455 l 2281 0 l 2189 0 l 2189 -199 l 2009 -199 l 2009 0 l 1918 0 l -p ef -2494 0 m 2494 -192 l 2327 -455 l 2435 -455 l 2542 -275 l 2646 -455 l -2752 -455 l 2585 -191 l 2585 0 l 2494 0 l p ef -2775 -148 m 2864 -157 l 2870 -127 2881 -105 2897 -91 ct 2913 -77 2936 -70 2963 -70 ct -2993 -70 3015 -76 3030 -88 ct 3045 -101 3053 -116 3053 -132 ct 3053 -143 3050 -152 3043 -160 ct -3037 -167 3026 -174 3010 -179 ct 3000 -183 2975 -190 2937 -199 ct 2888 -212 2853 -227 2833 -244 ct -2805 -269 2791 -300 2791 -336 ct 2791 -359 2798 -381 2811 -401 ct 2824 -421 2843 -437 2868 -447 ct -2893 -458 2922 -463 2957 -463 ct 3014 -463 3057 -450 3086 -425 ct 3115 -399 3130 -365 3132 -323 ct -3040 -323 l 3036 -346 3027 -362 3014 -372 ct 3002 -382 2982 -387 2956 -387 ct -2930 -387 2909 -381 2894 -371 ct 2884 -363 2879 -354 2879 -342 ct 2879 -331 2884 -322 2893 -315 ct -2904 -305 2932 -295 2977 -284 ct 3022 -274 3055 -263 3076 -251 ct 3098 -240 3114 -225 3126 -205 ct -3138 -186 3145 -161 3145 -133 ct 3145 -107 3137 -82 3123 -59 ct 3108 -37 3088 -20 3061 -9 ct -3035 2 3002 8 2963 8 ct 2905 8 2861 -5 2830 -32 ct 2799 -59 2781 -97 2775 -148 ct -p ef -3218 0 m 3218 -455 l 3310 -455 l 3310 0 l 3218 0 l p ef -3690 -167 m 3779 -139 l 3765 -89 3743 -52 3711 -28 ct 3679 -4 3639 8 3590 8 ct -3530 8 3480 -13 3441 -54 ct 3403 -95 3383 -152 3383 -223 ct 3383 -299 3403 -358 3442 -400 ct -3481 -442 3532 -463 3596 -463 ct 3651 -463 3697 -446 3731 -413 ct 3752 -394 3767 -366 3778 -329 ct -3687 -308 l 3682 -331 3670 -350 3653 -364 ct 3636 -377 3616 -384 3591 -384 ct -3557 -384 3530 -372 3509 -348 ct 3488 -323 3478 -284 3478 -230 ct 3478 -173 3488 -132 3509 -107 ct -3529 -83 3556 -71 3589 -71 ct 3614 -71 3635 -78 3652 -94 ct 3670 -109 3682 -134 3690 -167 ct -p ef -4266 1 m 4166 1 l 4127 -103 l 3945 -103 l 3907 1 l 3810 1 l 3987 -455 l -4084 -455 l 4266 1 l p -4097 -180 m 4034 -348 l 3973 -180 l 4097 -180 l p ef -4316 0 m 4316 -451 l 4407 -451 l 4407 -77 l 4636 -77 l 4636 0 l 4316 0 l -p ef -pom -pum -757 5676 t -47 -455 m 228 -455 l 264 -455 291 -453 309 -450 ct 326 -447 342 -441 356 -431 ct -370 -422 382 -409 391 -393 ct 400 -378 405 -360 405 -340 ct 405 -319 399 -299 388 -281 ct -376 -264 361 -250 341 -241 ct 369 -233 390 -220 405 -200 ct 420 -181 427 -158 427 -131 ct -427 -111 422 -91 413 -71 ct 403 -51 390 -36 373 -24 ct 357 -12 336 -5 312 -2 ct -297 -1 260 0 201 0 ct 47 0 l 47 -455 l p -138 -379 m 138 -274 l 198 -274 l 234 -274 256 -274 265 -275 ct 281 -277 293 -283 302 -292 ct -311 -301 316 -312 316 -327 ct 316 -341 312 -353 304 -361 ct 296 -370 285 -376 269 -377 ct -260 -378 234 -379 191 -379 ct 138 -379 l p -138 -198 m 138 -76 l 223 -76 l 256 -76 277 -77 286 -79 ct 300 -82 311 -88 320 -97 ct -328 -107 332 -120 332 -136 ct 332 -150 329 -161 322 -171 ct 316 -180 306 -187 294 -191 ct -281 -196 254 -198 212 -198 ct 138 -198 l p ef -506 0 m 506 -451 l 597 -451 l 597 -77 l 826 -77 l 826 0 l 506 0 l -p ef -875 -224 m 875 -271 882 -310 895 -341 ct 906 -364 920 -385 938 -404 ct 956 -422 975 -436 996 -445 ct -1025 -457 1057 -463 1094 -463 ct 1161 -463 1215 -442 1255 -400 ct 1295 -359 1316 -301 1316 -227 ct -1316 -153 1296 -96 1256 -54 ct 1216 -13 1162 8 1096 8 ct 1028 8 974 -13 934 -54 ct -895 -95 875 -152 875 -224 ct p -969 -228 m 969 -176 981 -137 1005 -110 ct 1029 -84 1059 -71 1095 -71 ct 1132 -71 1162 -84 1185 -110 ct -1209 -136 1221 -176 1221 -229 ct 1221 -281 1209 -320 1186 -346 ct 1164 -371 1133 -384 1095 -384 ct -1058 -384 1027 -371 1004 -345 ct 981 -319 969 -280 969 -228 ct p ef -1453 0 m 1344 -455 l 1438 -455 l 1507 -142 l 1590 -455 l 1699 -455 l -1779 -137 l 1848 -455 l 1941 -455 l 1830 0 l 1733 0 l 1642 -340 l -1552 0 l 1453 0 l p ef -1986 0 m 1986 -455 l 2078 -455 l 2078 0 l 1986 0 l p ef -2168 0 m 2168 -455 l 2257 -455 l 2443 -151 l 2443 -455 l 2529 -455 l -2529 0 l 2437 0 l 2253 -297 l 2253 0 l 2168 0 l p ef -2836 -167 m 2836 -244 l 3033 -244 l 3033 -62 l 3014 -44 2986 -27 2950 -13 ct -2913 1 2876 8 2839 8 ct 2792 8 2750 -2 2715 -22 ct 2679 -42 2653 -70 2635 -108 ct -2617 -145 2608 -185 2608 -229 ct 2608 -276 2618 -318 2638 -355 ct 2658 -392 2687 -420 2725 -440 ct -2754 -455 2791 -463 2834 -463 ct 2891 -463 2935 -451 2966 -427 ct 2998 -403 3018 -371 3028 -329 ct -2936 -312 l 2930 -334 2918 -352 2900 -365 ct 2883 -378 2861 -384 2834 -384 ct -2794 -384 2762 -371 2738 -346 ct 2715 -320 2703 -283 2703 -233 ct 2703 -179 2715 -138 2739 -111 ct -2763 -84 2794 -71 2833 -71 ct 2852 -71 2872 -74 2891 -82 ct 2910 -89 2927 -99 2941 -109 ct -2941 -167 l 2836 -167 l p ef -3695 1 m 3595 1 l 3556 -103 l 3374 -103 l 3336 1 l 3239 1 l 3416 -455 l -3513 -455 l 3695 1 l p -3526 -180 m 3463 -348 l 3402 -180 l 3526 -180 l p ef -3941 -167 m 3941 -244 l 4138 -244 l 4138 -62 l 4119 -44 4091 -27 4055 -13 ct -4018 1 3981 8 3944 8 ct 3897 8 3855 -2 3820 -22 ct 3784 -42 3758 -70 3740 -108 ct -3722 -145 3713 -185 3713 -229 ct 3713 -276 3723 -318 3743 -355 ct 3763 -392 3792 -420 3830 -440 ct -3859 -455 3896 -463 3939 -463 ct 3996 -463 4040 -451 4071 -427 ct 4103 -403 4123 -371 4133 -329 ct -4041 -312 l 4035 -334 4023 -352 4005 -365 ct 3988 -378 3966 -384 3939 -384 ct -3899 -384 3867 -371 3843 -346 ct 3820 -320 3808 -283 3808 -233 ct 3808 -179 3820 -138 3844 -111 ct -3868 -84 3899 -71 3938 -71 ct 3957 -71 3977 -74 3996 -82 ct 4015 -89 4032 -99 4046 -109 ct -4046 -167 l 3941 -167 l p ef -4224 0 m 4224 -455 l 4561 -455 l 4561 -378 l 4316 -378 l 4316 -277 l -4544 -277 l 4544 -200 l 4316 -200 l 4316 -77 l 4570 -77 l 4570 0 l -4224 0 l p ef -4649 0 m 4649 -455 l 4738 -455 l 4924 -151 l 4924 -455 l 5010 -455 l -5010 0 l 4918 0 l 4734 -297 l 4734 0 l 4649 0 l p ef -5208 0 m 5208 -378 l 5073 -378 l 5073 -455 l 5434 -455 l 5434 -378 l -5299 -378 l 5299 0 l 5208 0 l p ef -pom -1.000 1.000 1.000 c 17272 5537 m 18543 5537 l 18543 7062 l 17272 7062 l -17272 5537 l p -17272 5537 m 17272 5537 l p -18543 7062 m 18543 7062 l p ef -pum -17522 6634 t -0.003 0.003 0.003 c 238 -1 m 238 -579 l 22 -579 l 22 -656 l 542 -656 l -542 -579 l 325 -579 l 325 -1 l 238 -1 l p ef -pom -1.000 1.000 1.000 c 10558 14224 m 12701 14224 l 12701 15749 l 10558 15749 l -10558 14224 l p -10558 14224 m 10558 14224 l p -12701 15749 m 12701 15749 l p ef -pum -10808 15321 t -0.003 0.003 0.003 c 71 0 m 71 -656 l 297 -656 l 348 -656 387 -653 414 -647 ct -451 -638 483 -622 510 -600 ct 545 -570 571 -533 588 -488 ct 605 -442 613 -390 613 -332 ct -613 -282 608 -238 596 -199 ct 584 -161 569 -129 551 -104 ct 533 -78 513 -59 491 -44 ct -470 -30 444 -19 413 -11 ct 382 -4 347 0 308 0 ct 71 0 l p -158 -77 m 298 -77 l 341 -77 375 -81 400 -90 ct 424 -98 444 -109 459 -124 ct -479 -144 495 -172 507 -207 ct 518 -241 524 -283 524 -333 ct 524 -402 513 -454 490 -491 ct -468 -528 440 -553 408 -565 ct 385 -574 347 -579 296 -579 ct 158 -579 l 158 -77 l -p ef -pom -pum -11473 15706 t -22 -188 m 22 -233 27 -269 36 -297 ct 45 -324 59 -345 77 -360 ct 96 -375 119 -383 146 -383 ct -167 -383 185 -379 200 -370 ct 215 -362 228 -350 238 -335 ct 248 -319 256 -300 262 -278 ct -268 -256 270 -226 270 -188 ct 270 -144 266 -108 257 -80 ct 247 -53 234 -31 215 -16 ct -197 -1 174 6 146 6 ct 110 6 81 -7 60 -33 ct 35 -65 22 -117 22 -188 ct p -70 -188 m 70 -126 77 -84 92 -63 ct 107 -43 125 -32 146 -32 ct 168 -32 186 -43 200 -64 ct -215 -84 222 -126 222 -188 ct 222 -251 215 -293 200 -313 ct 186 -334 168 -344 146 -344 ct -124 -344 107 -335 94 -317 ct 78 -294 70 -251 70 -188 ct p ef -pom -1.000 1.000 1.000 c 15490 14224 m 18805 14224 l 18805 15749 l 15490 15749 l -15490 14224 l p -15490 14224 m 15490 14224 l p -18805 15749 m 18805 15749 l p ef -pum -15740 15321 t -0.003 0.003 0.003 c 6 0 m 558 0 l 300 -632 l 6 0 l p -71 -47 m 266 -467 l 439 -47 l 71 -47 l p ef -pom -pum -16303 15321 t -73 0 m 73 -656 l 547 -656 l 547 -579 l 159 -579 l 159 -378 l 523 -378 l -523 -301 l 159 -301 l 159 -77 l 562 -77 l 562 0 l 73 0 l p ef -pom -pum -16917 15706 t -41 0 m 41 -381 l 172 -381 l 202 -381 224 -379 240 -375 ct 262 -370 280 -361 296 -348 ct -316 -331 331 -310 341 -283 ct 351 -257 356 -226 356 -193 ct 356 -164 353 -138 346 -116 ct -339 -93 330 -75 320 -60 ct 309 -46 298 -34 285 -26 ct 273 -17 257 -11 240 -7 ct -222 -2 202 0 178 0 ct 41 0 l p -91 -45 m 173 -45 l 198 -45 218 -47 232 -52 ct 246 -57 258 -63 266 -72 ct 278 -84 287 -100 294 -120 ct -301 -140 304 -165 304 -193 ct 304 -233 297 -264 284 -285 ct 271 -307 255 -321 237 -328 ct -223 -333 201 -336 171 -336 ct 91 -336 l 91 -45 l p ef -pom -0.449 0.625 0.812 c 254 287 m 27684 287 l 27684 2826 l 254 2826 l 254 287 l -p -254 287 m 254 287 l p -27684 2826 m 27684 2826 l p ef -26 lw 0.207 0.398 0.644 c 254 287 m 27684 287 l 27684 2826 l 254 2826 l -254 287 l pc -254 287 m 254 287 l pc -27684 2826 m 27684 2826 l pc -pum -3790 2103 t -0.003 0.003 0.003 c 93 0 m 93 -910 l 434 -910 l 504 -910 559 -901 601 -882 ct -643 -864 676 -836 700 -797 ct 724 -759 735 -719 735 -677 ct 735 -638 725 -602 704 -567 ct -683 -533 651 -505 608 -484 ct 663 -468 706 -440 735 -401 ct 765 -363 779 -317 779 -264 ct -779 -221 770 -181 753 -145 ct 735 -108 712 -80 686 -60 ct 659 -40 626 -25 586 -15 ct -546 -5 498 0 440 0 ct 93 0 l p -213 -527 m 410 -527 l 463 -527 501 -531 525 -538 ct 555 -547 578 -562 594 -583 ct -609 -604 617 -631 617 -663 ct 617 -693 610 -720 595 -743 ct 581 -766 560 -781 533 -790 ct -506 -798 460 -803 395 -803 ct 213 -803 l 213 -527 l p -213 -107 m 440 -107 l 479 -107 506 -109 522 -112 ct 549 -117 572 -125 591 -137 ct -610 -148 625 -165 637 -187 ct 649 -209 655 -235 655 -264 ct 655 -298 646 -327 629 -352 ct -611 -377 587 -395 557 -405 ct 526 -415 481 -420 424 -420 ct 213 -420 l 213 -107 l -p ef -1542 -910 m 1662 -910 l 1662 -384 l 1662 -292 1652 -220 1631 -166 ct 1610 -112 1573 -68 1519 -35 ct -1465 -1 1394 16 1307 16 ct 1221 16 1152 1 1098 -28 ct 1043 -57 1005 -100 982 -156 ct -958 -211 947 -287 947 -384 ct 947 -910 l 1067 -910 l 1067 -384 l 1067 -305 1074 -247 1089 -210 ct -1104 -172 1129 -143 1165 -123 ct 1201 -103 1244 -93 1296 -93 ct 1384 -93 1447 -113 1485 -153 ct -1523 -193 1542 -270 1542 -384 ct 1542 -910 l p ef -1858 0 m 1858 -910 l 2199 -910 l 2269 -910 2324 -901 2366 -882 ct 2408 -864 2441 -836 2465 -797 ct -2489 -759 2500 -719 2500 -677 ct 2500 -638 2490 -602 2469 -567 ct 2448 -533 2416 -505 2373 -484 ct -2428 -468 2471 -440 2500 -401 ct 2530 -363 2544 -317 2544 -264 ct 2544 -221 2535 -181 2518 -145 ct -2500 -108 2477 -80 2451 -60 ct 2424 -40 2391 -25 2351 -15 ct 2311 -5 2263 0 2205 0 ct -1858 0 l p -1978 -527 m 2175 -527 l 2228 -527 2266 -531 2290 -538 ct 2320 -547 2343 -562 2359 -583 ct -2374 -604 2382 -631 2382 -663 ct 2382 -693 2375 -720 2360 -743 ct 2346 -766 2325 -781 2298 -790 ct -2271 -798 2225 -803 2160 -803 ct 1978 -803 l 1978 -527 l p -1978 -107 m 2205 -107 l 2244 -107 2271 -109 2287 -112 ct 2314 -117 2337 -125 2356 -137 ct -2375 -148 2390 -165 2402 -187 ct 2414 -209 2420 -235 2420 -264 ct 2420 -298 2411 -327 2394 -352 ct -2376 -377 2352 -395 2322 -405 ct 2291 -415 2246 -420 2189 -420 ct 1978 -420 l -1978 -107 l p ef -2705 0 m 2705 -910 l 3046 -910 l 3116 -910 3171 -901 3213 -882 ct 3255 -864 3288 -836 3312 -797 ct -3336 -759 3347 -719 3347 -677 ct 3347 -638 3337 -602 3316 -567 ct 3295 -533 3263 -505 3220 -484 ct -3275 -468 3318 -440 3347 -401 ct 3377 -363 3391 -317 3391 -264 ct 3391 -221 3382 -181 3365 -145 ct -3347 -108 3324 -80 3298 -60 ct 3271 -40 3238 -25 3198 -15 ct 3158 -5 3110 0 3052 0 ct -2705 0 l p -2825 -527 m 3022 -527 l 3075 -527 3113 -531 3137 -538 ct 3167 -547 3190 -562 3206 -583 ct -3221 -604 3229 -631 3229 -663 ct 3229 -693 3222 -720 3207 -743 ct 3193 -766 3172 -781 3145 -790 ct -3118 -798 3072 -803 3007 -803 ct 2825 -803 l 2825 -527 l p -2825 -107 m 3052 -107 l 3091 -107 3118 -109 3134 -112 ct 3161 -117 3184 -125 3203 -137 ct -3222 -148 3237 -165 3249 -187 ct 3261 -209 3267 -235 3267 -264 ct 3267 -298 3258 -327 3241 -352 ct -3223 -377 3199 -395 3169 -405 ct 3138 -415 3093 -420 3036 -420 ct 2825 -420 l -2825 -107 l p ef -3552 0 m 3552 -910 l 3672 -910 l 3672 -107 l 4120 -107 l 4120 0 l -3552 0 l p ef -4266 0 m 4266 -910 l 4924 -910 l 4924 -803 l 4387 -803 l 4387 -524 l -4890 -524 l 4890 -417 l 4387 -417 l 4387 -107 l 4945 -107 l 4945 0 l -4266 0 l p ef -5887 -356 m 5887 -463 l 6272 -463 l 6272 -126 l 6213 -79 6152 -43 6090 -20 ct -6027 4 5962 16 5896 16 ct 5807 16 5726 -3 5653 -41 ct 5580 -80 5525 -135 5487 -207 ct -5450 -280 5432 -361 5432 -450 ct 5432 -539 5450 -621 5487 -698 ct 5524 -775 5577 -832 5647 -869 ct -5716 -906 5796 -925 5887 -925 ct 5953 -925 6012 -914 6065 -893 ct 6118 -872 6160 -842 6190 -804 ct -6220 -766 6243 -716 6259 -655 ct 6150 -625 l 6137 -671 6120 -708 6099 -734 ct -6079 -761 6050 -782 6013 -798 ct 5975 -814 5933 -822 5887 -822 ct 5832 -822 5785 -814 5745 -797 ct -5705 -780 5672 -758 5648 -731 ct 5623 -703 5604 -673 5590 -641 ct 5567 -584 5556 -523 5556 -458 ct -5556 -377 5570 -309 5597 -254 ct 5625 -199 5666 -159 5719 -132 ct 5773 -106 5829 -93 5889 -93 ct -5941 -93 5992 -103 6042 -123 ct 6091 -143 6129 -164 6155 -187 ct 6155 -356 l -5887 -356 l p ef -6450 0 m 6450 -910 l 6853 -910 l 6934 -910 6996 -902 7038 -885 ct 7080 -869 7114 -840 7139 -799 ct -7164 -757 7177 -712 7177 -662 ct 7177 -597 7156 -543 7114 -498 ct 7072 -454 7008 -426 6921 -414 ct -6952 -399 6977 -384 6993 -369 ct 7028 -336 7061 -296 7093 -248 ct 7251 0 l 7100 0 l -6979 -189 l 6944 -244 6915 -286 6893 -315 ct 6870 -344 6850 -364 6832 -375 ct -6814 -387 6795 -395 6777 -400 ct 6763 -403 6741 -404 6710 -404 ct 6570 -404 l -6570 0 l 6450 0 l p -6570 -508 m 6829 -508 l 6884 -508 6927 -514 6958 -525 ct 6989 -537 7012 -555 7028 -580 ct -7045 -605 7053 -632 7053 -662 ct 7053 -705 7037 -740 7006 -768 ct 6975 -796 6925 -809 6858 -809 ct -6570 -809 l 6570 -508 l p ef -7330 -443 m 7330 -594 7371 -712 7452 -797 ct 7533 -883 7638 -926 7766 -926 ct -7850 -926 7925 -906 7993 -865 ct 8060 -825 8111 -769 8147 -698 ct 8182 -626 8200 -544 8200 -453 ct -8200 -361 8181 -278 8144 -206 ct 8107 -133 8054 -78 7986 -40 ct 7918 -3 7844 16 7765 16 ct -7680 16 7603 -5 7536 -46 ct 7468 -87 7417 -144 7382 -216 ct 7348 -287 7330 -363 7330 -443 ct -p -7454 -441 m 7454 -331 7484 -245 7543 -182 ct 7602 -119 7676 -87 7764 -87 ct -7855 -87 7930 -119 7988 -183 ct 8047 -246 8076 -337 8076 -454 ct 8076 -528 8063 -593 8038 -648 ct -8013 -703 7977 -746 7928 -776 ct 7880 -807 7826 -822 7766 -822 ct 7681 -822 7608 -793 7547 -734 ct -7485 -676 7454 -578 7454 -441 ct p ef -8512 0 m 8271 -910 l 8394 -910 l 8532 -313 l 8547 -251 8560 -189 8571 -127 ct -8594 -225 8607 -281 8612 -295 ct 8785 -910 l 8930 -910 l 9060 -449 l 9093 -335 9116 -228 9131 -127 ct -9142 -185 9157 -251 9176 -325 ct 9319 -910 l 9439 -910 l 9190 0 l 9074 0 l -8883 -693 l 8866 -751 8857 -787 8854 -800 ct 8845 -758 8836 -723 8827 -693 ct -8635 0 l 8512 0 l p ef -9782 1 m 9782 -802 l 9483 -802 l 9483 -909 l 10203 -909 l 10203 -802 l -9903 -802 l 9903 1 l 9782 1 l p ef -10330 0 m 10330 -910 l 10450 -910 l 10450 -536 l 10923 -536 l 10923 -910 l -11043 -910 l 11043 0 l 10923 0 l 10923 -429 l 10450 -429 l 10450 0 l -10330 0 l p ef -11814 1 m 11814 -802 l 11515 -802 l 11515 -909 l 12235 -909 l 12235 -802 l -11935 -802 l 11935 1 l 11814 1 l p ef -12300 -443 m 12300 -594 12341 -712 12422 -797 ct 12503 -883 12608 -926 12736 -926 ct -12820 -926 12895 -906 12963 -865 ct 13030 -825 13081 -769 13117 -698 ct 13152 -626 13170 -544 13170 -453 ct -13170 -361 13151 -278 13114 -206 ct 13077 -133 13024 -78 12956 -40 ct 12888 -3 12814 16 12735 16 ct -12650 16 12573 -5 12506 -46 ct 12438 -87 12387 -144 12352 -216 ct 12318 -287 12300 -363 12300 -443 ct -p -12424 -441 m 12424 -331 12454 -245 12513 -182 ct 12572 -119 12646 -87 12734 -87 ct -12825 -87 12900 -119 12958 -183 ct 13017 -246 13046 -337 13046 -454 ct 13046 -528 13033 -593 13008 -648 ct -12983 -703 12947 -746 12898 -776 ct 12850 -807 12796 -822 12736 -822 ct 12651 -822 12578 -793 12517 -734 ct -12455 -676 12424 -578 12424 -441 ct p ef -13273 -443 m 13273 -594 13314 -712 13395 -797 ct 13476 -883 13581 -926 13709 -926 ct -13793 -926 13868 -906 13936 -865 ct 14003 -825 14054 -769 14090 -698 ct 14125 -626 14143 -544 14143 -453 ct -14143 -361 14124 -278 14087 -206 ct 14050 -133 13997 -78 13929 -40 ct 13861 -3 13787 16 13708 16 ct -13623 16 13546 -5 13479 -46 ct 13411 -87 13360 -144 13325 -216 ct 13291 -287 13273 -363 13273 -443 ct -p -13397 -441 m 13397 -331 13427 -245 13486 -182 ct 13545 -119 13619 -87 13707 -87 ct -13798 -87 13873 -119 13931 -183 ct 13990 -246 14019 -337 14019 -454 ct 14019 -528 14006 -593 13981 -648 ct -13956 -703 13920 -746 13871 -776 ct 13823 -807 13769 -822 13709 -822 ct 13624 -822 13551 -793 13490 -734 ct -13428 -676 13397 -578 13397 -441 ct p ef -14292 0 m 14292 -910 l 14412 -910 l 14412 -107 l 14860 -107 l 14860 0 l -14292 0 l p ef -15503 267 m 15441 189 15389 98 15347 -6 ct 15304 -110 15283 -218 15283 -330 ct -15283 -429 15299 -523 15331 -613 ct 15368 -718 15425 -822 15503 -926 ct 15583 -926 l -15533 -840 15500 -778 15484 -742 ct 15459 -684 15439 -625 15424 -563 ct 15407 -485 15398 -408 15398 -329 ct -15398 -130 15459 68 15583 267 ct 15503 267 l p ef -15987 0 m 15635 -910 l 15765 -910 l 16001 -249 l 16020 -196 16036 -146 16049 -100 ct -16063 -150 16079 -199 16098 -249 ct 16343 -910 l 16466 -910 l 16110 0 l -15987 0 l p ef -16533 -292 m 16647 -302 l 16652 -256 16664 -219 16684 -190 ct 16704 -161 16734 -137 16776 -119 ct -16817 -101 16863 -92 16915 -92 ct 16961 -92 17001 -99 17037 -112 ct 17072 -126 17098 -145 17115 -169 ct -17132 -192 17141 -218 17141 -247 ct 17141 -275 17133 -300 17116 -321 ct 17099 -343 17072 -361 17034 -375 ct -17010 -385 16956 -399 16872 -419 ct 16789 -440 16730 -458 16697 -476 ct 16653 -499 16621 -527 16600 -561 ct -16578 -595 16568 -632 16568 -674 ct 16568 -720 16581 -763 16607 -803 ct 16633 -843 16671 -873 16721 -894 ct -16771 -915 16827 -925 16888 -925 ct 16955 -925 17015 -914 17066 -892 ct 17118 -871 17157 -839 17185 -797 ct -17213 -754 17227 -707 17229 -653 ct 17114 -644 l 17108 -702 17087 -745 17051 -775 ct -17015 -804 16963 -819 16893 -819 ct 16820 -819 16767 -806 16734 -779 ct 16700 -752 16684 -720 16684 -682 ct -16684 -650 16696 -623 16719 -602 ct 16742 -581 16803 -559 16900 -537 ct 16998 -515 17065 -495 17102 -479 ct -17155 -454 17194 -423 17219 -386 ct 17244 -348 17257 -305 17257 -257 ct 17257 -208 17243 -162 17215 -120 ct -17187 -77 17148 -43 17096 -20 ct 17044 4 16986 16 16921 16 ct 16838 16 16769 4 16714 -20 ct -16658 -44 16615 -80 16583 -128 ct 16551 -177 16535 -231 16533 -292 ct p ef -18070 -319 m 18190 -288 l 18165 -189 18119 -114 18054 -62 ct 17988 -10 17908 16 17814 16 ct -17716 16 17636 -4 17574 -44 ct 17513 -84 17466 -142 17434 -217 ct 17402 -293 17386 -374 17386 -461 ct -17386 -556 17404 -639 17441 -709 ct 17477 -780 17528 -833 17595 -870 ct 17662 -907 17735 -925 17815 -925 ct -17906 -925 17983 -902 18045 -855 ct 18107 -809 18150 -744 18174 -660 ct 18056 -632 l -18035 -698 18004 -746 17964 -777 ct 17924 -807 17874 -822 17813 -822 ct 17743 -822 17685 -805 17638 -772 ct -17591 -738 17558 -693 17539 -637 ct 17520 -580 17510 -522 17510 -462 ct 17510 -385 17522 -317 17544 -259 ct -17567 -202 17602 -158 17649 -130 ct 17697 -101 17748 -87 17804 -87 ct 17871 -87 17928 -106 17975 -145 ct -18021 -184 18053 -242 18070 -319 ct p ef -18343 0 m 18343 -910 l 18463 -910 l 18463 -536 l 18936 -536 l 18936 -910 l -19056 -910 l 19056 0 l 18936 0 l 18936 -429 l 18463 -429 l 18463 0 l -18343 0 l p ef -19489 1 m 19489 -802 l 19190 -802 l 19190 -909 l 19910 -909 l 19910 -802 l -19610 -802 l 19610 1 l 19489 1 l p ef -20092 267 m 20012 267 l 20136 68 20197 -130 20197 -329 ct 20197 -407 20188 -484 20171 -561 ct -20157 -623 20137 -683 20112 -740 ct 20096 -777 20062 -839 20012 -926 ct 20092 -926 l -20170 -822 20227 -718 20264 -613 ct 20296 -523 20312 -429 20312 -330 ct 20312 -218 20291 -110 20248 -6 ct -20205 98 20153 189 20092 267 ct p ef -pom -27 lw 14092 8128 m 14092 3305 l ps -14092 3109 m 14197 3319 l 13987 3319 l 14092 3109 l p ef -pum -8266 4300 t -1.000 0.261 0.058 c 46 -455 m 214 -455 l 251 -455 280 -452 300 -446 ct 327 -438 350 -424 369 -404 ct -388 -384 402 -360 412 -331 ct 422 -302 427 -266 427 -223 ct 427 -186 422 -153 413 -126 ct -402 -93 385 -66 364 -46 ct 348 -30 327 -18 300 -10 ct 280 -3 252 0 219 0 ct 46 0 l -46 -455 l p -138 -378 m 138 -77 l 206 -77 l 232 -77 250 -78 262 -81 ct 277 -85 289 -91 299 -100 ct -309 -109 317 -123 323 -144 ct 329 -164 332 -192 332 -227 ct 332 -262 329 -289 323 -308 ct -317 -327 308 -342 297 -352 ct 286 -363 271 -370 254 -374 ct 241 -377 216 -378 179 -378 ct -138 -378 l p ef -500 0 m 500 -455 l 592 -455 l 592 0 l 500 0 l p ef -682 1 m 682 -455 l 993 -455 l 993 -378 l 774 -378 l 774 -270 l 963 -270 l -963 -193 l 774 -193 l 774 1 l 682 1 l p ef -1071 1 m 1071 -455 l 1382 -455 l 1382 -378 l 1163 -378 l 1163 -270 l -1352 -270 l 1352 -193 l 1163 -193 l 1163 1 l 1071 1 l p ef -1460 -455 m 1551 -455 l 1551 -208 l 1551 -169 1553 -144 1555 -132 ct 1559 -114 1568 -99 1583 -87 ct -1598 -76 1618 -71 1643 -71 ct 1669 -71 1689 -76 1702 -86 ct 1716 -97 1724 -110 1726 -126 ct -1729 -141 1730 -167 1730 -203 ct 1730 -455 l 1822 -455 l 1822 -216 l 1822 -161 1820 -123 1815 -100 ct -1810 -77 1800 -58 1787 -43 ct 1774 -27 1756 -15 1734 -6 ct 1711 3 1682 8 1646 8 ct -1603 8 1570 3 1547 -7 ct 1525 -17 1507 -30 1494 -46 ct 1481 -62 1473 -79 1469 -97 ct -1463 -123 1460 -161 1460 -212 ct 1460 -455 l p ef -1894 -148 m 1983 -157 l 1989 -127 2000 -105 2016 -91 ct 2032 -77 2055 -70 2082 -70 ct -2112 -70 2134 -76 2149 -88 ct 2164 -101 2172 -116 2172 -132 ct 2172 -143 2169 -152 2162 -160 ct -2156 -167 2145 -174 2129 -179 ct 2119 -183 2094 -190 2056 -199 ct 2007 -212 1972 -227 1952 -244 ct -1924 -269 1910 -300 1910 -336 ct 1910 -359 1917 -381 1930 -401 ct 1943 -421 1962 -437 1987 -447 ct -2012 -458 2041 -463 2076 -463 ct 2133 -463 2176 -450 2205 -425 ct 2234 -399 2249 -365 2251 -323 ct -2159 -323 l 2155 -346 2146 -362 2133 -372 ct 2121 -382 2101 -387 2075 -387 ct -2049 -387 2028 -381 2013 -371 ct 2003 -363 1998 -354 1998 -342 ct 1998 -331 2003 -322 2012 -315 ct -2023 -305 2051 -295 2096 -284 ct 2141 -274 2174 -263 2195 -251 ct 2217 -240 2233 -225 2245 -205 ct -2257 -186 2264 -161 2264 -133 ct 2264 -107 2256 -82 2242 -59 ct 2227 -37 2207 -20 2180 -9 ct -2154 2 2121 8 2082 8 ct 2024 8 1980 -5 1949 -32 ct 1918 -59 1900 -97 1894 -148 ct -p ef -2337 0 m 2337 -455 l 2429 -455 l 2429 0 l 2337 0 l p ef -2634 0 m 2472 -455 l 2571 -455 l 2686 -118 l 2798 -455 l 2895 -455 l -2732 0 l 2634 0 l p ef -2939 0 m 2939 -455 l 3031 -455 l 3031 0 l 2939 0 l p ef -3222 0 m 3222 -378 l 3087 -378 l 3087 -455 l 3448 -455 l 3448 -378 l -3313 -378 l 3313 0 l 3222 0 l p ef -3629 0 m 3629 -192 l 3462 -455 l 3570 -455 l 3677 -275 l 3781 -455 l -3887 -455 l 3720 -191 l 3720 0 l 3629 0 l p ef -4075 -224 m 4075 -271 4082 -310 4095 -341 ct 4106 -364 4120 -385 4138 -404 ct -4156 -422 4175 -436 4196 -445 ct 4225 -457 4257 -463 4294 -463 ct 4361 -463 4415 -442 4455 -400 ct -4495 -359 4516 -301 4516 -227 ct 4516 -153 4496 -96 4456 -54 ct 4416 -13 4362 8 4296 8 ct -4228 8 4174 -13 4134 -54 ct 4095 -95 4075 -152 4075 -224 ct p -4169 -228 m 4169 -176 4181 -137 4205 -110 ct 4229 -84 4259 -71 4295 -71 ct -4332 -71 4362 -84 4385 -110 ct 4409 -136 4421 -176 4421 -229 ct 4421 -281 4409 -320 4386 -346 ct -4364 -371 4333 -384 4295 -384 ct 4258 -384 4227 -371 4204 -345 ct 4181 -319 4169 -280 4169 -228 ct -p ef -4589 1 m 4589 -455 l 4900 -455 l 4900 -378 l 4681 -378 l 4681 -270 l -4870 -270 l 4870 -193 l 4681 -193 l 4681 1 l 4589 1 l p ef -pom -pum -8266 5062 t -337 -167 m 426 -139 l 412 -89 390 -52 358 -28 ct 326 -4 286 8 237 8 ct 177 8 127 -13 88 -54 ct -50 -95 30 -152 30 -223 ct 30 -299 50 -358 89 -400 ct 128 -442 179 -463 243 -463 ct -298 -463 344 -446 378 -413 ct 399 -394 414 -366 425 -329 ct 334 -308 l 329 -331 317 -350 300 -364 ct -283 -377 263 -384 238 -384 ct 204 -384 177 -372 156 -348 ct 135 -323 125 -284 125 -230 ct -125 -173 135 -132 156 -107 ct 176 -83 203 -71 236 -71 ct 261 -71 282 -78 299 -94 ct -317 -109 329 -134 337 -167 ct p ef -913 1 m 813 1 l 774 -103 l 592 -103 l 554 1 l 457 1 l 634 -455 l -731 -455 l 913 1 l p -744 -180 m 681 -348 l 620 -180 l 744 -180 l p ef -961 0 m 961 -455 l 1154 -455 l 1202 -455 1238 -451 1260 -443 ct 1282 -435 1299 -420 1312 -399 ct -1326 -378 1332 -354 1332 -327 ct 1332 -293 1322 -265 1302 -243 ct 1282 -221 1252 -207 1212 -201 ct -1232 -189 1249 -177 1261 -163 ct 1274 -149 1292 -124 1314 -89 ct 1369 0 l 1259 0 l -1193 -99 l 1169 -134 1153 -157 1145 -166 ct 1136 -175 1127 -181 1117 -185 ct -1107 -188 1092 -190 1071 -190 ct 1052 -190 l 1052 0 l 961 0 l p -1052 -263 m 1120 -263 l 1164 -263 1192 -264 1203 -268 ct 1214 -272 1222 -278 1228 -287 ct -1235 -297 1238 -308 1238 -322 ct 1238 -337 1234 -349 1225 -359 ct 1217 -368 1206 -374 1191 -377 ct -1183 -378 1161 -378 1124 -378 ct 1052 -378 l 1052 -263 l p ef -1419 -455 m 1600 -455 l 1636 -455 1663 -453 1681 -450 ct 1698 -447 1714 -441 1728 -431 ct -1742 -422 1754 -409 1763 -393 ct 1772 -378 1777 -360 1777 -340 ct 1777 -319 1771 -299 1760 -281 ct -1748 -264 1733 -250 1713 -241 ct 1741 -233 1762 -220 1777 -200 ct 1792 -181 1799 -158 1799 -131 ct -1799 -111 1794 -91 1785 -71 ct 1775 -51 1762 -36 1745 -24 ct 1729 -12 1708 -5 1684 -2 ct -1669 -1 1632 0 1573 0 ct 1419 0 l 1419 -455 l p -1510 -379 m 1510 -274 l 1570 -274 l 1606 -274 1628 -274 1637 -275 ct 1653 -277 1665 -283 1674 -292 ct -1683 -301 1688 -312 1688 -327 ct 1688 -341 1684 -353 1676 -361 ct 1668 -370 1657 -376 1641 -377 ct -1632 -378 1606 -379 1563 -379 ct 1510 -379 l p -1510 -198 m 1510 -76 l 1595 -76 l 1628 -76 1649 -77 1658 -79 ct 1672 -82 1683 -88 1692 -97 ct -1700 -107 1704 -120 1704 -136 ct 1704 -150 1701 -161 1694 -171 ct 1688 -180 1678 -187 1666 -191 ct -1653 -196 1626 -198 1584 -198 ct 1510 -198 l p ef -1857 -224 m 1857 -271 1864 -310 1877 -341 ct 1888 -364 1902 -385 1920 -404 ct -1938 -422 1957 -436 1978 -445 ct 2007 -457 2039 -463 2076 -463 ct 2143 -463 2197 -442 2237 -400 ct -2277 -359 2298 -301 2298 -227 ct 2298 -153 2278 -96 2238 -54 ct 2198 -13 2144 8 2078 8 ct -2010 8 1956 -13 1916 -54 ct 1877 -95 1857 -152 1857 -224 ct p -1951 -228 m 1951 -176 1963 -137 1987 -110 ct 2011 -84 2041 -71 2077 -71 ct -2114 -71 2144 -84 2167 -110 ct 2191 -136 2203 -176 2203 -229 ct 2203 -281 2191 -320 2168 -346 ct -2146 -371 2115 -384 2077 -384 ct 2040 -384 2009 -371 1986 -345 ct 1963 -319 1951 -280 1951 -228 ct -p ef -2371 0 m 2371 -455 l 2460 -455 l 2646 -151 l 2646 -455 l 2732 -455 l -2732 0 l 2640 0 l 2456 -297 l 2456 0 l 2371 0 l p ef -3005 -455 m 3173 -455 l 3210 -455 3239 -452 3259 -446 ct 3286 -438 3309 -424 3328 -404 ct -3347 -384 3361 -360 3371 -331 ct 3381 -302 3386 -266 3386 -223 ct 3386 -186 3381 -153 3372 -126 ct -3361 -93 3344 -66 3323 -46 ct 3307 -30 3286 -18 3259 -10 ct 3239 -3 3211 0 3178 0 ct -3005 0 l 3005 -455 l p -3097 -378 m 3097 -77 l 3165 -77 l 3191 -77 3209 -78 3221 -81 ct 3236 -85 3248 -91 3258 -100 ct -3268 -109 3276 -123 3282 -144 ct 3288 -164 3291 -192 3291 -227 ct 3291 -262 3288 -289 3282 -308 ct -3276 -327 3267 -342 3256 -352 ct 3245 -363 3230 -370 3213 -374 ct 3200 -377 3175 -378 3138 -378 ct -3097 -378 l p ef -3459 0 m 3459 -455 l 3551 -455 l 3551 0 l 3459 0 l p ef -3622 -224 m 3622 -271 3629 -310 3642 -341 ct 3653 -364 3667 -385 3685 -404 ct -3703 -422 3722 -436 3743 -445 ct 3772 -457 3804 -463 3841 -463 ct 3908 -463 3962 -442 4002 -400 ct -4042 -359 4063 -301 4063 -227 ct 4063 -153 4043 -96 4003 -54 ct 3963 -13 3909 8 3843 8 ct -3775 8 3721 -13 3681 -54 ct 3642 -95 3622 -152 3622 -224 ct p -3716 -228 m 3716 -176 3728 -137 3752 -110 ct 3776 -84 3806 -71 3842 -71 ct -3879 -71 3909 -84 3932 -110 ct 3956 -136 3968 -176 3968 -229 ct 3968 -281 3956 -320 3933 -346 ct -3911 -371 3880 -384 3842 -384 ct 3805 -384 3774 -371 3751 -345 ct 3728 -319 3716 -280 3716 -228 ct -p ef -4089 0 m 4244 -237 l 4104 -455 l 4211 -455 l 4302 -309 l 4391 -455 l -4498 -455 l 4356 -234 l 4512 0 l 4401 0 l 4300 -157 l 4199 0 l 4089 0 l -p ef -4556 0 m 4556 -455 l 4648 -455 l 4648 0 l 4556 0 l p ef -4737 -455 m 4905 -455 l 4942 -455 4971 -452 4991 -446 ct 5018 -438 5041 -424 5060 -404 ct -5079 -384 5093 -360 5103 -331 ct 5113 -302 5118 -266 5118 -223 ct 5118 -186 5113 -153 5104 -126 ct -5093 -93 5076 -66 5055 -46 ct 5039 -30 5018 -18 4991 -10 ct 4971 -3 4943 0 4910 0 ct -4737 0 l 4737 -455 l p -4829 -378 m 4829 -77 l 4897 -77 l 4923 -77 4941 -78 4953 -81 ct 4968 -85 4980 -91 4990 -100 ct -5000 -109 5008 -123 5014 -144 ct 5020 -164 5023 -192 5023 -227 ct 5023 -262 5020 -289 5014 -308 ct -5008 -327 4999 -342 4988 -352 ct 4977 -363 4962 -370 4945 -374 ct 4932 -377 4907 -378 4870 -378 ct -4829 -378 l p ef -5194 0 m 5194 -455 l 5531 -455 l 5531 -378 l 5286 -378 l 5286 -277 l -5514 -277 l 5514 -200 l 5286 -200 l 5286 -77 l 5540 -77 l 5540 0 l -5194 0 l p ef -pom -1.000 1.000 1.000 c 17273 5538 m 18544 5538 l 18544 7063 l 17273 7063 l -17273 5538 l p -17273 5538 m 17273 5538 l p -18544 7063 m 18544 7063 l p ef -pum -17523 6635 t -0.003 0.003 0.003 c 238 -1 m 238 -579 l 22 -579 l 22 -656 l 542 -656 l -542 -579 l 325 -579 l 325 -1 l 238 -1 l p ef -pom -1.000 1.000 1.000 c 12772 5938 m 16118 5938 l 16118 7463 l 12772 7463 l -12772 5938 l p -12772 5938 m 12772 5938 l p -16118 7463 m 16118 7463 l p ef -pum -13022 7035 t -0.003 0.003 0.003 c 71 0 m 71 -656 l 297 -656 l 348 -656 387 -653 414 -647 ct -451 -638 483 -622 510 -600 ct 545 -570 571 -533 588 -488 ct 605 -442 613 -390 613 -332 ct -613 -282 608 -238 596 -199 ct 584 -161 569 -129 551 -104 ct 533 -78 513 -59 491 -44 ct -470 -30 444 -19 413 -11 ct 382 -4 347 0 308 0 ct 71 0 l p -158 -77 m 298 -77 l 341 -77 375 -81 400 -90 ct 424 -98 444 -109 459 -124 ct -479 -144 495 -172 507 -207 ct 518 -241 524 -283 524 -333 ct 524 -402 513 -454 490 -491 ct -468 -528 440 -553 408 -565 ct 385 -574 347 -579 296 -579 ct 158 -579 l 158 -77 l -p ef -pom -pum -13687 7420 t -313 -134 m 363 -121 l 353 -80 334 -48 306 -27 ct 279 -5 245 6 205 6 ct 164 6 131 -2 105 -19 ct -80 -36 60 -60 47 -92 ct 33 -123 27 -157 27 -194 ct 27 -234 34 -268 49 -298 ct 64 -327 86 -350 114 -365 ct -142 -380 173 -388 206 -388 ct 244 -388 276 -378 302 -359 ct 328 -340 346 -312 357 -277 ct -307 -265 l 298 -293 285 -313 269 -326 ct 252 -339 231 -345 205 -345 ct 176 -345 151 -338 132 -324 ct -112 -310 98 -291 90 -267 ct 82 -244 78 -219 78 -194 ct 78 -162 83 -133 93 -109 ct -102 -85 117 -67 137 -55 ct 157 -43 178 -37 201 -37 ct 230 -37 253 -45 273 -62 ct -293 -78 306 -102 313 -134 ct p ef -407 -186 m 407 -249 424 -299 458 -334 ct 492 -370 535 -388 589 -388 ct 624 -388 656 -380 684 -363 ct -712 -346 734 -323 749 -293 ct 764 -263 771 -228 771 -190 ct 771 -152 763 -117 748 -87 ct -732 -56 710 -33 681 -18 ct 653 -2 622 6 589 6 ct 553 6 521 -3 493 -20 ct 464 -37 443 -61 429 -91 ct -414 -121 407 -153 407 -186 ct p -459 -185 m 459 -139 471 -103 496 -77 ct 520 -50 551 -37 589 -37 ct 626 -37 658 -50 682 -77 ct -707 -104 719 -142 719 -191 ct 719 -222 714 -249 703 -272 ct 693 -295 677 -313 657 -326 ct -637 -338 614 -345 589 -345 ct 554 -345 523 -332 497 -308 ct 472 -283 459 -242 459 -185 ct -p ef -1060 -45 m 1060 0 l 808 0 l 808 -11 810 -22 814 -32 ct 820 -50 830 -66 844 -83 ct -858 -100 879 -119 906 -141 ct 947 -175 975 -201 989 -221 ct 1004 -241 1011 -260 1011 -277 ct -1011 -296 1005 -312 991 -324 ct 978 -337 961 -343 940 -343 ct 917 -343 899 -337 886 -323 ct -872 -310 865 -291 865 -267 ct 817 -272 l 820 -308 833 -335 854 -354 ct 876 -373 904 -382 941 -382 ct -977 -382 1006 -372 1027 -352 ct 1049 -331 1059 -306 1059 -276 ct 1059 -261 1056 -246 1050 -231 ct -1044 -217 1033 -201 1019 -185 ct 1004 -169 980 -146 947 -118 ct 919 -95 901 -79 893 -70 ct -885 -62 878 -53 873 -45 ct 1060 -45 l p ef -pom -1.000 1.000 1.000 c 5774 5939 m 8175 5939 l 8175 7464 l 5774 7464 l -5774 5939 l p -5774 5939 m 5774 5939 l p -8175 7464 m 8175 7464 l p ef -pum -6024 7036 t -0.003 0.003 0.003 c 71 0 m 71 -656 l 297 -656 l 348 -656 387 -653 414 -647 ct -451 -638 483 -622 510 -600 ct 545 -570 571 -533 588 -488 ct 605 -442 613 -390 613 -332 ct -613 -282 608 -238 596 -199 ct 584 -161 569 -129 551 -104 ct 533 -78 513 -59 491 -44 ct -470 -30 444 -19 413 -11 ct 382 -4 347 0 308 0 ct 71 0 l p -158 -77 m 298 -77 l 341 -77 375 -81 400 -90 ct 424 -98 444 -109 459 -124 ct -479 -144 495 -172 507 -207 ct 518 -241 524 -283 524 -333 ct 524 -402 513 -454 490 -491 ct -468 -528 440 -553 408 -565 ct 385 -574 347 -579 296 -579 ct 158 -579 l 158 -77 l -p ef -pom -pum -6689 7421 t -39 0 m 39 -381 l 182 -381 l 211 -381 234 -377 252 -369 ct 269 -362 283 -350 293 -334 ct -303 -318 308 -301 308 -284 ct 308 -267 304 -252 295 -238 ct 286 -223 273 -212 255 -203 ct -278 -196 296 -184 308 -168 ct 320 -152 327 -133 327 -110 ct 327 -93 323 -76 315 -61 ct -308 -45 298 -34 287 -25 ct 276 -17 262 -11 246 -6 ct 229 -2 208 0 184 0 ct 39 0 l -p -89 -221 m 172 -221 l 194 -221 210 -222 220 -225 ct 233 -229 242 -235 249 -244 ct -255 -253 258 -264 258 -278 ct 258 -290 255 -301 249 -311 ct 243 -321 235 -327 223 -331 ct -212 -334 193 -336 165 -336 ct 89 -336 l 89 -221 l p -89 -45 m 184 -45 l 200 -45 212 -46 218 -47 ct 230 -49 240 -52 248 -57 ct 255 -62 262 -69 267 -78 ct -272 -88 274 -98 274 -110 ct 274 -125 271 -137 263 -148 ct 256 -158 246 -165 233 -170 ct -220 -174 202 -176 177 -176 ct 89 -176 l 89 -45 l p ef -390 0 m 390 -381 l 440 -381 l 440 -45 l 628 -45 l 628 0 l 390 0 l -p ef -pom -gr -gs -0 0 m 27999 0 l 27999 20999 l 0 20999 l 0 0 l eoclip newpath -gr -gr -0 21000 t -pom -count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/PU_exercise_2.png b/Content/Figures/PU_exercise_2.png deleted file mode 100644 index 5a2afcac63a6da378d2652ecdfb6ee0aa357fc18..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22600 zcmb@tWmsE5_b-Z5Bsdg;7m5}S?iQrQt$2|_@IrB?6emDSk>W1F-J!*ugyQb*?i}9t zf4-dOIrl#I!_Al3v-Yw*Gntw7n>7*YstN#XAT|;b5(h0@p_ z_vNKPvzAtoMnbBJ#d$D8f2kvX)l`r{Dj%iVeW}n{C~B%8A$c<)Aq9R%Lb`h)1@0gr zxp5;Q?R`Q*5=llvdi^D>SwrkaE?ND9w*2#de*;t7!ZwBSt`*`AFqh0Rjlf22w`9YB z0*lC6f%j$~Y$I)d{bd#ai|aUXN@>Y|@}p%JLPka=r)MJ|qr$?)mv$~QkLyC__it-!YZwg1z`zh59=^D^I6OQI0)go1>BYpvo@d9N zM>?L*jx}frpSPBu-PE3C@t;!zo@+CoW1ODVX`gK*pN+Vl3u8x8p=q{8&wncBHP{a= z#Gk*JKF=ebTZ)K?h|Xn+rKt#?Gry;$rHzb?93CE~rl!u#&1Gh0whphxmyO24M(pF- z&BB_DzBlLv)~R||@qf+}w=XgYZS+X)D*rpbv3DMtH>l)Zq2^Pg>{+Gzy~Q?Zz$(61 z(Y;d4t|+@wO2A*sWSvXJ?TR!4>J7r%)%|MI zYX7PGRNKU~`J{HsyOb)pmMOSa$bT)jif&bOEiZ1L^-u4Wb}G^It(J8u(+zH_?_d6! z*s0`MO+`fofj~@5Ogub1RA8ZU|LI&;O;xQHDxGTc|5VK1E65>*qf;xsRIt7%>VJJH z|MRSf1Rk)HKtj?HSCW&~_MAIxyAEFHt>3=(_HDofxS}=tu)3hs+=%gIY+3poRP~u1 z^1sF4`6}n~RwIv*DWuS2`RLMQe*eO$#YH9?HPDfSd;1=B7Bx#fr1MrgJ@O_D_zEp@ zpY|zxha^x+6&sEeREh$UqANiH5cIQ2p`um)mqY}47bHc;NDR$?KH#Dw*x`D%9gth+ zawB-9ZHn>2p89{X|6erx|3rdugTz=5J-g07X zE76d-(?8Mt(dN}}%O`h-k{|Nm!R1dm5A{Nm4lKoxq4y^am}g^-Bmf7SH){4nScgGk z@1>kWn2GofQVJF*!WDLuWC29HvbKRl8~gZ-GUGz6+^kbzkNz>VvTl}HKFoS%hC<9K zA{$N@R4B{dSHlz{z=ba5m1uFFRt|#7Ru63;d-B!A^=yI}BMyg)a^fVaz16u??xe~G zt2Q2WH2|gUU0-{3AS3lZhnelTe>tE3Ru+cUbqlit+cy(NRm!vIBZG?(;h|-BdF#9I zEUtps$KraMt*$tmPvpi?OUM$b-hLai@RqRg zWFJPiE`nR}3s}b4%=*&DU@JK_Ka^8#@gL5?m6WwMrJa=dyA)YMHr_&%H90{gvtU1I zHX^`N24!1NZATU4grFU09=R^Fn)kD6bP2};)8Maq%C`)GJ+Yg?bcQXqS`k@fA6XuW zH7V9>2yBMny`Fe&1cXt7w60sq?^`?YJ?LaYVW)qaCW*^0WoAmfiBf~ICB#ixq=N0C zTvPD}8s5$CdP@c@Xt%=ENaHrkYq->`IKj)%fK(E+Z+b5Kr`ceGDmm~IraUZIma2Z& zOSzDeSxUSwnyf7@N%VkPjGm? ziZ*h)0oc5*+hMLc%Wh@OjfEQ8elfWxoU^){*zcJIp67QOC%hF!hQ=-Dm@VY=X<*g$ z+1UKf<rb?Ayt8#EB(95Y8r=CVr79EAD6Pum6eNzIlp;IVXt0 zR2|dN25~}Ui^*kChJcz=bEhLyE>&hrFF&a_kkOE~|KI{JbWdD$=c|arTH%$+k^;;0 zPm*w(4Ftx+!i?|g4-e3VuLfC&x9lIBnXDeVMB&4%*=n#b1(a^dLyTGY8#r!fj5(WL z_Jc?3=&=M1R2RgwKT?auaADpiPzzyX;v*1;b;q8Bl+chD{2~U9G~N>1IgYc3SwS3| zED#V@q1xK-{kVPk%7PL{D{l)#0YIoHf}go52&^{Mqm{EdK%hlk5!Di_&}Fq@3*m5Z z@OK{mT*Myd=2gTbZ}!JxXCG@A2Ox~Z+%u1vh%J9(`l1x}Hoy?wp3Z<=VmAp2_-<&+ zb~!OaRWEi%cj_oyq6liXeCT+M=C=uj%FE&))Ecz{IvYbJ9{;cec_YY8b>AD7P(*Hh zp10CzrI=f1MopnRA}T`XNkoTAXW1%)N^i7O%g{Z;dPK>fQhu&=Cbn#9h+I^HF89K0 zOcl260fu7W2e7Qu!I(xl?rkx{=s&=11Wi9rUm^J!pU|ruo?zv@INBN%gjA%xUi>#* zx<3YSD(=qzzBs;vbc5akPgSV~i%9{o6n7s%7zR@MS}P(7-XYXH&`&d@@;-vM?e*Dh zN)WVDt3}@pY@n|cBsAhp8ha+>V6YWV zJ_pZATVpZrLP<-ig2-V3niKsMB;&r?W2hMJnKz}QKqGSNn~D@c7<0d(Y`|S*^yYnC z-S+8tfMu7u*Z7M`CTXbzOoK&vV;5Q%FSr>tgZXrB*us?}-Ju zt)oX0P3HntX_}@~W?gzu+|;C!nxc6=w%5$R*@=<~H)p-<{Av_|BCe5X{g{ ztoQcB966a{wY2zC3DT(grH zy+RL~Dj{A;Ac&!6arJq+p4c~wE3fU84*G+3Myhprmp3KOmME`Ry z(-pF^5{#BQX=@gdlnYJ9#gpYvGNv)0I5cR{Rmyqq1>8Q=xhbEKZ&oS2^@|pKX@6*@zI-ERt5Kh zKPkw5EtYv7r9hV8Szk66+F66JC?0ZZ123N(`JDX_3w}s!bteMe1uEi8#tPVUrQvXG zFOZ)OYspsB{>jsTh@p!(Zpw~Y=FyDVyEhsdbS3Ix;MUu0X=XmaK!M~t zo;B9pwHbkdW~Kqtr7^3R4jYPp5tpj2fQ4JFdY>KonUZy#*T$fw^V1m7ygZF5aEcl) z7W66kHnV9kA>z&8`PIdG7g#g=$iA_5dsW&*&{UWJDYpY&*ys5>IhQ3Xae8J(b~R31=+6AY{Wtof!n;tWK~rnx`Qz;W?-M0&dojj9)xg%eZGV*SMig+gGN+kpI>pH zo@n*p-T7vwe>6XNa&Wy)t@rL&nu*3TXAr!ZwP-5>NCd+c?Pk|;Csinizo(8-1#CEK z-o~|1EuFgu`3N!P(~Y=Puf>ZSoBIab%}+ScOeWhAi)Re~{ujBnU%SN^hCmX|Kgvnz zu$a`JkYSQS1(iL72;Z(xn10Mhh6EPqcxXgb_w^eZ{ZGyAqi-D#w{_TvMj!^nfd6$v zvDG*4sM1Cx0DQuht8%!$nE&I%mHo$;x3+by+KaPqp|t-GJNN&$eK$-9_DK{wwCaErtGKKvRIiIE-Ob@lU@)mVFXv6Q>HRw056U^Dz3w2aMY=+Mj3L5m2 zy}&F&En!3>(3o8W>l}eCll$smnk^+$Ut1ZZo4e!v))?k?_Bj^?22GGL5OOT}1zC`~ z(o(`-*%Gl0tynhl?G6MR<;$&$a2j^J6Cpj<&{iyMi1fF|)B%I0a`&HaGEK{hJdALG zJ>7ftgW=$^LA*c1;O44rTGt`#)DYqCRP+2>U>9mDx>G17 zF{jQo$11XXrl*AX*rMr*y_Ii-5R%%yc145h=z<#Ej;l z?Yns%QPzF^;iXR=Z4s==N!2;@*r$j?1U>J9vHAYmPw~)DmsyAC-l?ZUS>LCXt0w{H z=E~mes={fYy!AYlwk`-J62Zm??7UQf9MFGVZV?A!h1pui3hCc{-ud=?*D+g2))Dk9 znhiLW1K}y;62dI;ChNh7Spm$q+1Zzf;x_l0{KYSd+?z{e!Nqv5vvc{ zv*A*F<4C~DzWNu6ZE~(FrmSo>WPrAX{qgb=h0Vwz_5JZ9gKx0-0?F*Aqb3San|Z$O zJOU$NCm8xMBRV>hcixsV?BaxML~SEB<3w!ft=^zx?6YI$mJigkTU+%0BE$hfw|*y~ z8a3MJ#i|yD-2}dAV}TrG9`tgywAGw1FE25VL~$5-9UN3L2`gC4OIdt3>pH&i716F1 zn@OVqq}AMG)&|F=%`p2hc0V-Wf&^lV-up0$87iT|V9ePXv#aw|sjCbNE>a2;^`V=* z7xw{;Dyd5?YnKF?8I?Gh*2IGh_hCHQ3ypQFhjDU@1bjt3d~>Uz;}--3~!6kzmm zwdSC0d~eezS9*V`7$IbyD=#Yg4o48;RTJ!2Kn|qzoPflxNV#_UYt}MlRaN)ThRn~3 zg#xDVQkC@)Gud-Y5UO~C>Hqe;SPMamB0oaVO^R~ufjTQ5v!#zYFL~h?!#B!_mN#?h z7FVzHlpt}DpA0|(m3*~dOVflbb5-x_gn&Z0CCL$2zr)@i^J76leDcZh?){W}sj&I_ z;>V3mlsk{$U-_1A(D7<=qbZNqPzM`NpA~z-&l50EgVrKy%Nhw*rDXV#5?s6C> z0%Z`Eq{ZGxzoI7pd(W^~NF{GfM=;dS{kH0=6Q88P2c+fwK3fT54}+Y1fCsRRe6h8; z_c44x8?awf(}&Nz0W&lg$~~P4^^Hh1rXT|l$-l9o9FDIQK*LuKA}CVo0`M6zLIF}c zsl&;wu-;Kf_p|k!RELK0)ky^PX>6-elf7JXr-wpro9q;*TXEIg_O)qXowJOIpz38W zM9%PlITx`N+Ngp42xEl{{icD=onjqM&zUm|d^`bA0yiXh)vRSK4#AOOi}b{_?)c&9 zE})o?rqCUS*(rq38)K`!yx^bTg|mcc*IQOl2Y*GDaqtp$L8K1t9ape`eah47)xkP) z&z*IHqa6J?zipx70u}nt#W_J?OjlRVSVO9GqB03xW+Rap0;D#K_F{?T>*d^Y-v@+? znKY{8*q{_W4mF+;456sIe`uifb!3w?0`4>>3t_H}`apHcJSrL$8YC7J=-#N}P>vGh z6HaZKCG0qzfUMw+w5@Y^1#|3a z97eUbq|9Xsys^N_LGEeedQhhv&2i2TR7{^n1N}moiorOZ5$)!Bl#9-YY&Q^TacB`h z2a0wRGSr7V3L`_ceIieN2HVl8n7<~>;)Ww)f-uT&D$g6)9i>ViKJJ?*7B4oI31mgz zDq8CHhI{S1lLmp^^g1jNL)YsW-<>Q;PU=7Ftzqp1^+nQ>LwX%M+njO z7_lT%p#so4Kox>L4i4A9xx}K2AiM*L8^kG~P}Ck5rmP>f&*pYzRejByUbK(p5n#X= zu4pUABNy*`w@f4_>0I|BP*%Np9R>wD`MG6Cmc~GOR5cqGV2Yzbp?O`2c`5V)RX{uG z6Xo^o;W5Ih^C#g?D0vn z%(QF}iZx$}b_texMiHtGR6z2ubQLjw51Huu70<68nU^e1)#rEba^*lLEaw9}G&0uf z!1(cxfxmS|Q4gr@n4_`iX7<~a z20>0;B}s%RI{Yd84s&DSiY8sQ?k(0I@mj+*raEWHM7`S8EhCN|qUgYO?E@PJ(C+-` z%ggNTILz%fl~YD>HP3b?hD!W)i-egqd9(f$7%Z@^^(Q;>my)0I3WgIq?;kVy1pIt4)#y?mb5{}Vzb{Iocl{ic#rDaWXZ5r z9~tp?V^F_>E$$&IHu|>3fhTXHvlDfe+4;})RTdi(G}1lT`o&IM0>1bbf9QvoSi~LcSYkJnPZkT-!BneZi>>bsZyBvRlE$8vd z!2%y3>e2H-)h-$lwp{?w_<^A--Y-4ARUw+QN|>v~i*b$@gL$xG&fjbSbK9v&ELWbhpV zQ)~MKV&=Qu9px>OaIQ6OY)o3w|}J7 zrPQtIA=@)UOT(7dGES!`xaVlYoMqzK9v21^PqVH&k)bZGf2G(3svJA&#(zoop2e|Mmf=)?zdv z-LMDG*OQ%yz`rMG3FJ^v&Du>bmf;y+;e5la2k!|j!xaK`)>voWJbwV&0DCf=97PDe zI8a8+tkM1=d^fR!X|o}y-yQ8r4B$0=*~8jiiEvT@$Z^%+_i)ppqjd2xEf}d8nOJ`8$+IsVOMHI7`W6G_v%lYe1_+I`wYtMq1zS`%FQH2Wj&?u8(=N~=JVv||I`@AbA)A!6NOKd>T z=`KqU+iXKM1hldaR01yJE-%gs>b6C0P8u%!^4MvhyT%L2Uk~U9+3VZwK(bN~936kg zs#J3+!>H@!?5AU>U7pcEY)#P997NI9jyg@s1g<0*$1ApWVEBkpPfe?{&&tMC_QBTX zGePN&n_+6I!WxrHDjJVqnyVCa_+_T%q*0N}jSSX_0BbM;nXoY*yjMt72(zCbns)_^2^bESWl0O1=h=B(c?iT_=gGSDr&Ws^p{{EDh_`T& z-O4&m-kCzn<$-7;UL%2w5F3aS)JuFcWZDG@x?m@U`hB80ds0C4_msmmX3-W~{w9@9 zrezxSn8es$$t*xm4Yn*~gI1=|?78`Igw!Nb=(?1MLigx(_X5FgKmkQ`V{ zJ#K7Lv;sb<{_YUr4)fx|-Fg3S$mFN)0)^x(d^#m>Cu(KwvLp0x=-ZPQ%q; zO5UFeFyYy(L$dlGDjDFxap=y?G6H{_Aa#$}%^Eu7PrW#j?)3 zucxQ$sIFRWWTKyqU*m1z0Jy8berfq|J8G|wuHtY5eN3c?a`1FTxm;m*@MOXc*}d2K z1&R1VLX-Sm$HROM?fmBiS^#dhfos_Ur1XbG2$x#LdZy>AlOe-GK|8%u^Rl7BuTgc8 zw7x@XlTsGczqN`HjjH#>jz%VJ1I@3e2;b@PaM_(xo^$Qnf9okCf|Q!b%iI4(d`zN7 z>_707*HpzO{A-fOfkbQFBIpd*Jq#_3ji-nF%jFJ^n^dX{j0gN1}LfC`o>=x7pEjbHhFIu$gJ1&qkf4`X#UEQuRXFT@>v{WqSGUN9BkHlO;j#gX+Ss2DJ zF-65$uEuy!G$RKAG;-5uiA@}+lX_Sw1cK=nZIq4YYSan4;K=3L%E}18G@$mdg$Wf< zk9{iWM}u-Kc=Ar4EDSu^+;*?)h40y|5iY-*zuUSu$Ba>OPHB;5}-q5>vG`D^#-_=DI4TJ!0$Z)buX?u#q)g#-SUvo$hYk{8$3`hX^73Hw z<&%(8fraq9$-00C)9KYxv!j6$HP1O+1H!wW4>a`RXT!Ga4FHX|n-qP;Nnxd*m4GP-WFmsW6TEVlKzJqHy# z(EzASj+8}J#$P_0tFa$mF7E@r1MYe#{xz7s zd*9Yd@UP^q)SJ3v;QiZ}&49k#Cp_j2%HDC~U!B`5`8BzyD4?J6rMo^xdy-8au?Ei` z-FN;sG7Yzae3W-@E+X?|s?Hgd?r^#R-Xxmmt)Kgi-rWJ3i?OqQjOkh&$3ew<$QRnK ziLabqp)C{T-U%BEA6J?vS@~Q35$mkO?cMY#GAV)uf?-cy_DIQSMzmtSH#pU?w89t_ zQS}Sv7onmyrk@OGBz&J&n6(>PANNLu%RY|c1IL7Lu76lxAh-FdeoH-y!|@)0B|0g! z$-ok}lYe>0cbtV3p+F{x5RKu6Lu0JCT#&kx^QJPA>U}_oj=zxTeK_#0Ncr~e9{Z~% zI_N^f*hrX;%Kr|-M=3KgNfH(JE1_-0!v`U+pgGo9LMFAO#0*jgY%dr#WP%%Ct)t!b z`ZQR9R%!F3$$Z3W`ZCn~+he(te{+kxI69_0o3EYM>`mgxSXyZjsnUxo(#dsq+pEYYI|(AH}2e&UZ zYK-a~AD>R5k@UP-!)<_N#}uWUgb(0bb26;a0LK#B1N@WTAScLO_7FCC?E3VDDpJXy z@;L9F3gZ7*N2}{@`j?6$$rT`SfAaK1tQ|q(5TVVPCx`_eXNPEL1+rfFQxt-5uY1km=r9qx1}&i{k_jE-!LxbW}cp8 zE>pjtntv)6?N@nJt<%%6&CKk4z@V`c=euVSJ&CQ5-kukaCDGWV&PmtS!(uy3y+vZL z`o!R#*N^en9lqYhp6UQKSiU5c$XYyYyEWS_B>1rc437(_dr7{+`(`DUkr=MpltOLs z%r6$@I~M)J1R{pptk3sKhNRBr1>}fC^*{JK@&3SC?qG+oMY_UFbo#9S{QBXB)pQ7H zzD7V%wHrT0--;=U>Yw?AsB{ChYpbVXVlmJA%AUFE&oxX3rsB=d0>@7!t%#4__cw&F zchOVs;m9Aj7@=?O)+o#7s;m88H@-RxM$t=<>!N?(3dn zbEj3Mrxee#5`-x|^on(STH{19oHVSG46m89_2IPZcr0_P(UDCJl(@9?e6#=FaIEwe z`>tSMD?F4Y$D%t}rHiEuBRcT~T1(x@%*K|nBMA5`&ha6O5h4PLBjw*C9*y%1Rk9{X zf6Pl`DrUlz$FP)TfX4u8WuZYp-gIYTpgazj9g-8GQs9QCU8gt(AS`w zPz;_i`ZJs6>|TthLJFUJp?x1>1l@-^!2Og{ckWS6QP`j%Z7f*Q(!5|nS%krkMR^5D z(!x|w?829EOIlFs&6M!O%+AhMG5{LnU6j2zOL;a;aB)doW$1A(i@HBDMjk6FETrd^ zb$Zkw+55>XrCPz{x2FXVcp7(=I{>LA(K^M_;}FjXI#u2`HlZf3KiUnThvNYW!w5 z6d`5TfQ);ClrLyqiT;XW`=t=v1eA`^2UfD^4OKmxPq^}q6g-5(ZBkaSPb(laIkM7Uwg=1Q{Us4N7TdUF#uP)79=$c6Jrjb|#XQJ#y8{ zp0exz1fn?Kb@Z!y)O76v8z|;QFZrHhf!SK?@CrFVv3>sstJ1zcVQ&F^+ z^ekbgLb+MHpFFHeI#^1;zCRsxidGU8m@WtMevlG$oKbng9cirCz;6*Rdpu(2%)2VB z$yu$NoX_&9_pFS0OF;!0(*>ffn~#KosRf56{T|kL4-U^j5IWAM&lsG0WLk;-UZW7S z<|OvF)Mg{RBB!CvXUfrfJ;tGQn%*IG)_aEFSt}_9Z9CxoZ|MbU*g0oVJzgQl{1?t1 z%C%zn4(p^7@ir^|R2^gPSWFMVxY74q1{LQYkKG~uG}p^CeRmOcoPHE0q(UjH9LP(hbGB zp9`n05h%&#jsp_I3HU9Um2Eeo(%_%nh2i`83i1!E8A0tF6k>vh5Kjy95qvjmySalkA(fWggC+^HT#ULP&$`idl*!%s}Ld5BS$Eq zoaoCm^=eh=GMdCEh+qg6@kn|-IG#-}&bFp@id$=)MhT&Nd^nVR7SKucHF#;pFek}E zHB~C;>I1xJJ%*JBy>tBMpNe9JQh88Xp>*)~@DVocO^@yaiO=I?)coH+J(+Y@ z&ht_rEFPbP8Cr@h4li9HuVP{H55-lGn;-0uEZBOK{sWibO7zAj35j<$EJ%ea{Z&xfVbW0Xc;pAG5pR`C!${2dMR_10SG5|r$pY(CCkp5m?K=-%;TNh=fBYgyT7 z&CQq0)yPnh2<4$0Zm#-CulW!MOQ^;eReTmz|1a<9C$Xl9gNZO zo&Xs7FIL#`-9umo?%K7w$-p~ER*{>C?A2&nF+8g*Ig}{MKlFJr=9(%>*Nvd(e$>+v z5Rc2BJD!7Je0PPb03+_fI6z0L8jdqY!2zTGJ>7jwzkobkZ4ZeNndM{;S1W~t&XSWZ zCOXvou{A`T3=G-rWT@(bex{IA5ek?kdV3K6j$MEmj;?eF;kU5}RMLk-J{nQPfb{}q z+OMn)KzrS}=1;!_g8wOoCgTzDUC>32L@9>b;dwuDd2kiTuFtO1p3e#n%E|t2Ou+`! z?2CCFX+Y#rJ4TR9OB2s25b*81=?I?jdHhSyJU*M!LG={MUW&RV9?-TEzooE+zE?lr zry@~v>cd^l+#qq7?l1%P$Xt|Ipi@Ng(R=1fB+%YvQtVNlw8gF;rw;ffd80W6L<*e2 zAi1X#R{JVKc>0CajzS!PO`alf4@6_|@71BgUb&R_UeC@i5?$oldc zQM-$EY+g4Kuh*wM0OW*n(ddZ=#8n&TVbNpjVwW zIfPLLA4{Fmc37_?%cki@6Wx9gA79zHK^5$OH-x9xT^Iv?ZD)djj*0VUcLi(6MHE)U z<~t=kHb4+lHxP$sV8&|Nnw?S!^1#t2!Vn6c*Yz3;1-E58vJtaA)m4B64!YOOG)r9e zNm+aOT~l?YAq@%Zs19MU8{9+g(`ZE}HHtiP@<$y2e|gb+2NwcbTlMLa0)!uo7x(@{UgcbU6U|DA*|dJZ|C9X+wUM;47>wZ0u- z`i?n9g2=gUH-m{W`QB!cvwRmW50A9lXN-jUTXKoNM55|Z=)PRyhZ3W2oE9iD9^5k} zeEubd#~s!D+lu%zX0H0VPjJIe7a-ou%_+_^c)2s_{+XKtb=O@Xxc+y^hr_JgMSl9J zP_Ie}%*PvdThP(x-AqqKsY%*fhqk7j>C-uW528c1i! z@14i9A{q@7l~K_K6=*Y6!g_Oah_O*PbcfUmW!4w<5m@L!WF?tgDj~h&`0~soXa=R6 zA0jX&fLUJ)UIcHlcfNmcwgnEw&g0?YYu}` z8-HQVAf*$xJ;er;jC{i|NA+cczbuZDWtP$N0;_9_Y4vl(FmGwDdzCFtC%ls4lDwqY zrAaIKT;2P-Br12#(o(VJ{!~u*MAE^IsO<)uLr-0Ew1y$e9DcV8TYymEFKrp8r^WR= zmAT$ylbfUKXH>Qr#>-s;2iu=_XXAg(;c&8!RJ)=c*gjqR2vhj(dDt=$G@!FLS(R!1_4b=JdCux+vQp*mF|! z?KbD{74pT5wHP^yIp(j#zWTqKR~Nf^5wJDy^WDd1;nB0goA%!EW#pK~Io}ov`=6+b zHyBY;!9~o3a6!yY($~u-m;s;xs0sT!Y}jk6L@l=9CV6?nG|>2NJt+xp*faU_-KY3&ANoNT zid(I{uyfz~!t9w(9DlZFFuo6#+qFq7>XmH{EJ6&eX2^jvUv1A_$ssq&k%Qc5HRS)@ zW;mp%{TV%3Jh66qe)u)NwEH$`O_~s-9Se(a;2-w@Oy5Ow16^>`9c$JUI~d@vHmsV0 zZV~9^67whGN9qG9Zz_E^4}AAt;)AC~zVx=SKyaD+sZ+o+yEgU5?9#WdfG~y0o-NLU zUmtx1Up03r-jWkPHA*YSR*~`Ej+e|Rn%we!rlh6<*B|!pKRB+jdkrSmRDrz^`di=p zpDrKgBTW5OLNLZ#8jb@(e#A7d^%H|8#!!C7LcR`lL-Cqb8XpF+ixuXQUsbErLRjJH zlcFeqTY8E$J$;Gkf#co=l_PI$%WdQJD6Pa1=dmP{fK%r=Yz9)GqDRKV?QUAbK-UX z+&_!Ia0h+!rh=A>yrN+86}$6&_4RaqB1T&Pq+YW=8sL4gzkRN(Kn2*KYR z)Aw)op~whcw5of%ESV-d%?4@@)=Q$%Ni|@s(OUdrgOmCibN0C2JKg%PJh=xh;K>Y< zd#;NYUy?l*|AL`hK1z;^AC0~SydH#?Y5qfp)1>-mIdkKk;osxJd-6SAsf?_B*K#nzyI(-GwnxT5Dr2)uH z%4)Ol*ZvP6G~{?V`P5jD3Bx=80DtDs`{pJPMKRd&)vL9UFW;p9JhD3erLGH$R4c8{ z%J%z~paGAb*z{5o*QW0nl*=uw?+X43_wqp&){xx%F8>4}5Ni)OdrDH9JZh?TT_Q3( zxQ>?I58a)tbOsOuBohBRkyB3ZoQ{4(MdFblmzAaFo=Cl&{8y5hG)5yn`Zpql3;6N% zackQ%fex+CqVROo#TX)p4Gw~t*FL$6^wCV|HDagI3Nk7ZwFzyamJU8UeT-k0e5!nC5;=^`s4@wD zl{B(2_HzkZZ6Zq(k*nbZuTw!(vc_JLh$ijxYlqCiLtsI?YK-c_tW73n_cgj&16WS<xSj(`B1LZ->W!s?_ZHI|JpKcM7I*W9 zXVzTPV7SDN`Y$aiEuL`#0%Ws2A0Bqofb%ig(wET_bX@9`ZPBtj!m0C8$7h3eqQyFc z%IlXQn_Qz3{$CrASg;j>_twU*lW02nbQGIjot{(6;q=@nSR{LRXsVYhuanwpKAa5Y z-mA5n7-ZdV&;dUjC$_Uu(BA^7c1`y%M*e(+{0LUA+2(*Ta}!I7d-)V*MasmpL%7?z z-1-Ia$Nc31ZqqH^_f5^L)U$^o!wu2L&Fxxu{~O#r5{EITefl=Q14`!P6!*K|C{&&$eD8f2xro;HGPxg6Y>1xnu&;Yx{4*U|6z_xqmNlC*S-RkRFW<4 z0ly|79J02??`V47xV^?>_^X2l`o6>={&+XuhKVnk=GPJpJSZ1bkm|RSf$pmn#jxNI z%Dk18-I*Ovui#v4dmia}Ju`dfo6Wdruq|J~N?=V(YgVyq^E>?IvIbQlKh|3`0hHS0G+W!^{$QEe4kj_R)s?k&CE|7IJUo7Lq7h|={jq$F5-WD zrH7Z)?roq#rJarma?SQ=zL=a&;#_QbUP%pWRK88fUE7;k`*yj7BD;$7OPH1bM{?2U z8w>-tOJ+)`G3PuilwLbOO9VaFJL(?vGb;1#f-k=RLt!eGVzxDbZ6lj1OOC#nP z4GY;e&DISLmYu+vXi{J(_sBE3-Qy_Od_tZ0NZ-h9VnXz3Q15SR_AV2FI`-(xNz2X3 z-(a8c;P<9}Zq~c4I@rW7r{MWfGcJi4{vj#vlF7CIt^l`IJ*>5#r+JAPFm1APe>ln2 zW_l@q8A94eS7w4?spG6J8KeBY-q09z^W#oOf|eSXH=j@H{i2G-vppluX2aZ1s%d;W zOWI_;>@jVJVg^VbKb%k!jrmbA$J~!kvyiHJrDOs7>7*=vc-Q|jmY3{mBK)7b9hOtx z2rL2vV-68?9iprsIwggIQK~4@2}AOQS;{D&YFmzG16QI(-5fi4=4=@h5bvH9iG0ir z4-0Ey3}Zg_3&9pWyGqyfP0`eXk}@e8#PXlW((Z~kqByHL=HHrXq0}t;3$3oME}*q} z?Yp=?McKph^VrKNWxNIjGEl#+{pIFF-omHaH!sEp--4#H!q_BV=$j-!IQE!YAXv9d zl&@5y#26WLM*QO6KHl$j5!|qCW+{deN1^Y%NqE8@`LADIsNP=3L|1CdyhsR#fVEvw z*ce|}(qz`jhO-A%{-dV}G>l>4e~Sh0hm~;Z=W0c;Hodf@3oOfhu!a4>B$}NX9z0Lbe*l8e@w@mdX+a%~-Qn6d|c(PxmwZzW3heF5l<5&vXBp_j5k4 zbKYlppEJ*AIY;xa2{vFye_Ug0cK&4mBh`}1=8?QC1~AU)c2}9lqW=&FKa*mR4ph6U zJi@_G&H4c~kQz_*=&;>EfGwBOaOa*ieX3suoH(cgn=>}g16+0AmDCVG2aN#Kl$g?j zv>arSWZ)u%8?%d_npWwpkbsERNztYcLkWR{fTn~(#EHHmG!VK=wZ*iv3!g-(U}gO& zOW8UaTq@cdk(nPkPxq0N3fSLK_>`MVC4<4QKLuyoP=#R`K)%aVu0kGznD<+SKnU*# z9j9D5UwHpIaJ`7Dh~~;jM7TRu!pOdS{TDxTs=^vDry+Uq|IsS+zjP1%1Ia7c9rt-K zS6^II!|&WJ{fhD)I@l;ml)dd^AMX~=(4Mah1ULfsN{Ep@b+%D9k7oV>V`ZN zM^ZoLX%}K?MgqPX?Uzhg6RVQ5wjiLg%fT`I`T(p7H7C=SuqNf_hR5!K^Hu*tBf`5X zVYTbqjz~(#e^Bua82eNS4np(##%tM`(~K}`ypc@MYs@*m`r)50-db`f&Q-2OjwuQ zwPdpaPB8u4ze{&)MBDDCEjDMb=Q2NtJ^a`v_oLtYi;2<>qd;jMa4@uO)8!VQg{;kp z%X?y3p|W3~Jc1t%&JXmC+_TKm;g%8TOB ziZFj&J6GU~@%>fJhn>N{(3FAt#NwN+d$%l%f%Frw*ZHzlZJu_a&OmK)s;(w+I2?Y3 ziQI2ceT`6(3ll{ZjR@XU@-qkaHc^{$HYHvLj`HWHU|9w_MS~jxG8;ADtEio&a4kk^-(z7OK2x z_5n)nHWlFvDXz#lo3@Db>97-wkd&(u4W z8~#CW`&$6zt{#VI5_@e zmrNe&sEma!c8x^s{yg({_vb&<@Bh{#`u{+=8+89@$40zRJKphNe!qJs6hc3oBifeZ znb}VMdXDku9YJ44K3V@o)50nwWM`=2Tk7-325}{JE!P~6E<|^}#t$oO;*o;yq-2ZHrZt#3mWvOt2(9426;&T*}O}P_Ea7 zLGD(zuKg4RK0W{78-ud+1!$$4(CP>)Zc<_Y=Q(Ks7)%*@<3>d$ei5oLj1FE{VG}F}E_pvBTii}w^TDB zV^$KQe>!97(Xgn-CnCF~yY$t@lEK(jqF87;*{sYxS^(RIi8mP492clqSBDObnZCa) zquXgX?TdosZ^d-zDH~fmpd=K1qW7NN-Vz~hn6bRi}^5S8tDYYsNOJA1on4;;WmgYHx9*h=z(R$`xfj5hAa(Q)G@9rJE_!moMUx9sE zzHa0%F*Gv#YxB${QnXJPDwsUc7?kf2xB2*RRIHj`S{-UDulxm8(SX-uy zO2||B5u-#Nzb_AxX@3)W*TLa-Pu593i6&~6%vc+h$qKQzSA)hX_V0Xs*Kqi>*Dgyj z9{g?jsLeS&?15f)xjN~Af5`O!!LWe+VZ!b94@_=q21?MqXs#kdGl)-@6f19fgJ-C; zxwSSbLsb{gZ@J)qF9-Z``E-ZG!oAaar#hGqX205KVPp7sY-YZq_HCG?SAgg8TJnVn&@#3yT{!oP3OsY=IxtYN?{MM2x ze=u;QRK0w3!(m0Gr#t*e=9iE~z3F9sMF%u%Uoh8W6l`cb717P^>Jyr-Bn}%_jZN0c z?Pz>zYb%Of?JE?v<+HJ~JeUozGo2&o_=T_~4IXF@CHTBf!$(T-b9%jt_a1YHggZQu zbtqBr{T}+<><#lWvwx%OaK=Q5E9C`kH$Phb4sEp9WTeJvdzPm|nGvyOm$cZJd%TOy z)5BZs*~aj3F2WslLec2)nzbFw-ZaCiCwb%U9V36ta>oa~Q0~rW!v_Antd-xh)wH?5 z!T0>hAUE$myfaR*uvO^c8E8na&Sl^0<6LIVJ%%8*8Sf4W|A#p(0yCHh5y~zfiPM3Q zYC!O^;q9sb9=$2P(~^CAaJX%s=uhkX_5>}xoDE_LQqA|e_&uoxb@Spqd@N!7!af9g zWJW*AbgQ#Upw^*`Cb zN@8C>Dro!UO0MsN49ywjo`ojIad_!V`M83X%u>Qn`WRT;-!d(pZn9unn_e3ou>!`$ zY$|41Qy-)nmzMDjsB-Sow>t0MciUR@PNIloVJx_`%RM{ygD$n-;(23~qhsvpoEs~q zC4iY?FgY8&Rqk@MftUYPnG=gN0bVaLi)Dm_p0~c$k{z4|m|W@sf?`s2Ud@Y3sliI) zO7WDlaC&18acuoe*aLpBt@>=fP){l5Opx#Cx?YrRyn+7tp$J>6Dey&y=W<}X>M04v zSBpJs+ucrDPzUk^^rrUV;^iu_5}|vsV^hlP^G??%PTr}7j$Zi+kN)n-Js7q!@ssX_ zz};92TNns+u`e*%7B-GRiA_Q~%QAJxq%^e-?)v9&b=-CdeFL@&T5p5ZVHK|h=(1*?UYY+;+M{eREO;rC z*%4{>K(t!xFYxVoxQA&afr8U`>K3J92uZoN#Gitk0x2?peNr7_Q70KCN2L@uX}5c6 zg3*Z}ma7+qP}jDzKIab>uU)4bZF*`GzjDRI$t&~N)qWwLTUC;WPHtzCz=48kL2r~e zM=TAX-VK&?D|M0HR1U)<)ErZc%zPog2WlJJbteaAzg#c(HpL;Gu#hQ)drAZ6ux4YX z2y{*-i?w7pG}~wl5k9lTGCbQ-aYVP>?{>374qLDsI2I}FUrkB4&5)N%+jnb5q_$=pbNg#^MEF92T;*o>HEV zo;O9|`~ULj)ADx2J$LQ=W%*h4;VHnw@g*;L&rLW&vAS`F+Oqv7A;Cq%k4OkZw!=phFB zXule+CWQOtE67GaIh(vPpJJD1MoU+LL%TTZ@j z$3mK%*w=H&SKYjcu?$sG2lH}yWhCz! zH(0RO&#-HX=cS>gG3zY@F^hptkmy@7P~T0V;aIo^JpF+e-{XnA0MK1Yxkc0AK-oU5 zXi3$5VCq#F(|B62tU#c?3l@T6jG9P(KCoHrKG$4K&j-~hI1%A5s4U5i!*&SVD8Kqy zD8nn0V0NVB{=yvUE0Gg<*Q2DzB`%Z%M;Q6W2^<6UQov&Z|Th)y$Q<1PeYer4CAVJRplS>-hA_*JedCh)|kdJN;Y z*{>fSFsO?iVWNJu!8;X>uV}1~xpUgTH$Sw`|BX``VARZde4gwlHck}c za?Pl3a!z%6GaDq~Zb=9PkNUEyJjXr>;GsnUU!O_nu9Pq6j*gl_)%iu>OGi~Ik@ter zphKDq8OSdjkziWriplMiZH}R~=Y71{9=lD~KbB1wvyjytUFHoot)QiKUJKwy3d7c) zWBT^l`Lc>`ZuxY6PxxV;uC`ukCk$VTI<@7RSv za*f})D7f|{(7nw65GrhGd@jHsK;0oQNYl{kvU`wjK#0Gam%pcOKsb$>1}t1f zLq%FaT0z@T=^_B-`x|QN9_sE(qvICf;x4N!ry!_rc?J1r!Q^)C)GGi;W2A4cSF7uE G=idMTNC~q5 diff --git a/Content/Figures/PU_exercise_3-eps-converted-to.pdf b/Content/Figures/PU_exercise_3-eps-converted-to.pdf deleted file mode 100644 index 72f80afc60ff8789b07a6b0f05df006616278087..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 39226 zcmV)JK)b&sP((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;U^jv-||NQ+|@4fz(9E3lcP=03{>kWVQGoO_G z(7%1Y_{(qJU;X#X$NsPX?O*-3wARwkfBRSZ`M=jt^3$KPM)+H1pLJqPwc4Wm$N%uJ z|FT+h&XFr;ApJhilSa%&S&z)8vJYkYaP7CIP5HAa^*7gj@vTt#3bb_2H?%&-kf5{pML# zyDpxryS<($Yk;X>vk8#Vv7zQ(ZTlHbUyvrk&> zIxyP$w6&l3fDKI9Xur9yFVt4nr+&)%=P7pDWsR~nKH!v;eiOg2)?>|NUX#`g?b_E0 z{^WL^SZg}@u3uX_c=a*;ax{xe`OOENT{DKgsd10;Th{{2-=5ZkrDaTQelUMo6ZN#+ z#skTI=QzK}b4}d(MZ(&y&gI4635&A6{P2lv#zig=C#w^=rr)|cQRnK*dUCyT_4X(C z^{JsJ@bG$Ks+*eu)qLNp-#J^t&uh?tQn(G{&CqU#zt~&(~)yU*QLO?p&TUxjd^2Hn4z; zkyjVMou#MKUMv79NhT9zu@06suK|y>5!NbaJf9W={49C&YtEBv71pBEwVxg=QhnA5 zv)b7ghs?KlcD=O^j=A(TJ&W)0NsJ9!el^z;jePcrnq2+$g0}yj=bC`U<7)!igZ3KP zdOenBaE3VeMR_#Idr^8U%ImWILjh3NTk*D;ep`Z^%eLeUm~HXeIzJ#w3`1CxI~Fg2 z-K=EnUoa6E-qv^)b#Ze~oJgyMOtU6^szFJLvT2tB{&V5@S=f19M?$@i@+9;4#6Yh%#I#wI##E=6rl{$NIpWzoSropa*5i z`6aU;XuX4505uF{apMvJi5qWG9`fg6#K|6E!aK*H)HGCS+iS}q-SC339zUCYY zu`o_q?eV*YhXqRH@wHyPu~U{O*rAv+v1u1!Ph@o8*1E4_>US6?$)1jFiqk?1w|3WD zzraxgj)^u#-PI*gYRXHzq6=&LH0+u+Oz@#WF45v) zui=QY-_F%rPp-YWezrId&B?8JPRWLYWW8~n+y>Te*l^gaQ*vwah+o_?vvbG9yp;8` zLddr$!XInON5Ui6Re0lr{w1sfWR1Ap`@d$fW7)7>24u_Hu?@>O7nVr7%`Mn?itk^n zp+dUhgj~`q_HbSN(Mr)S&y-hSKZtILfwQn`J`fe`lL#2%)1CKlLa&{lu}04RYvO9x z`t)&;89R3|>e>@LY3f>;#d&LgCvI1;%X)n6|CacE zEE(SK2f$jPOauU7SHS~ga(|}9UM8V48~Ca`&g~r%f33t~r}EfoFFDyJXEi7-)@;2Y zNiueB;U(y>{A(%!?8ztV6d;IbgHmSkhw+4e$TsUq%m(PC62!98Co3xd}UP`e;VhZOumIZw?s-%tNS ziLd|p=nvuY0uMZ>HeB8Whs%o%I{V{rxjbt*p(JfVP?nSfrVF@S(mG5bDjW>2Lw`^J zZn#|1k`4V(3f2bibhumqiOPkR%MzKCh>n&^hJsQyT3!c4!@<4La^aC>8!i{D45Yrp z<=x(Jc~ktf;v1}OxXe#Hc~cxNul8bwjh0tGjs4zenIo|hh-nS9{2nOGnW*Ig%WJMG z`yIc?>r}06Kaa^C^FqrduS2wLuv~zH@UMgA-QHk%QwWw>unl1qlgb)DuIgmmKfC7cA-vXelNya%I0svF8K*iqP6$2@^ z005A=MMPaa$2&s+Kmsp#d`SQx_O%XM0vP|}NB}b&IF|$fWa{Hc03gS8C~OH3?IQt# z5)uG!upRFITbjZj|iv`W%c^Sq~RuBfZ28#<08P;j>PjHiqx; z*e6>8;7!BM-+@B~hF&rci%b?Ywc!KvR|l!5c$?36zr@8QcUjze(& zHU`wRW(x+hZ46ixs(fJ#Sa?6tv?F7{YBs2t#~M%paBLd`DllSL0%|g@$+iSk*gmQG z3u4!_Sip|vUx9@HDYqqHExHjf`ww8Qf=qBjz|yy<`5a3?#h);8w**xDhoAYd1XLV_ zG;4$@pyG7nZj>pY;!kB;0(LVD0YPv(K*i9px!n{{@g>+Owkd#Js9_0+4u)i1L*U7G zECFkfgxp~XSaVP?jbRC>F#h6b*_MDc(GA9eSLX z$F>EmCl~IpZ3|e#=+yMLEnp3tCXTQLEC%agjmF+sQ$@^pYyq6icB};z2NK$D3s}oz zn3!z~;Ccd|yDgwXrjD|W0jn*jvmrnQIzG05CGj320NDa6wiYDzHU^L-n_b3$ic=Jw zabv)0Ct3n3j?=LX0lV{V2;go354xJahTo`5Y(v1BAj3&=eql08x*>r3_gDeej3@rw ztpKtA_nJm~+W~?Sh5)i2hU=Dq)fW42OF#wOU4L;)!0O>cvD~6ZONoYn-^PFnxZCG8 z22@A~n5o$NB0yCvWeX?RI{wSugc%T)V1ERZ^`8WTn^G4~;WSwy=~>cm zQA(F4bWwa(&r@%mfg7;`pg~?jYcXR7*J{D~>J)a6X7a$)pe*rA#ajqy{h(70Ecsrk zuNPSj_rXwo`_dDN2Nq+?%{3d%cawVid>r+?_e;mRfwjhES_#TAlGKisuiq%!NU|he z0*ii90F>4q<5TOjUr6H%1*1&&L+^xRYI*OmhA|pVV`mg1T-|}g*XB3M8P@Dmrri(9 zc?xjpE9L6qYj4;?OA8^a6;ErK)7tcZ7p2l^lT2d4AnewPr2$(;UF{`NrW6$8X<|@R zfv?~UTsvyD35x@5L>sEZI$HIFC`B;VaBNa%>(p7+H>ipL{}N;wbmK`8UHHbDc%TV4 z#~_aWX;8gK+LS+wvi=jWp$cWKXJm0&=fcAMtG&L>(^gvs?=VO)o&&&zoET`L)avoX z8ZQ(sm@;za6HE9^YJKZSZqwikxxr8zG2^ZT-57W`I1-n6O>qqn(4;$O;YB*cScfzRa2^>Ul zU1VY|!{O41!(rAi{0EG0rb8RQ$FU6?k`SaVyhYQt>&4NINx~DNToajFl2CuATvO|m zI9LrRJlTfZhV!(t8-=LSFzN8TnZU2%m-NTO+>6q*Jkp6F6u`(S+n$QvGk z#ejMJ!l3d4zKx?o6qODFdR>I{+^FD1Y&Dz=wm~+?C)|?r4 zx0Ez%>z6rSN}9ppg9ltmGx$^Kba1)3+o7gyitA~710CPe)A$X$)HL>CL1Nd_qKl!Y ztw9jM9X)MP9vE#xPct|k)7W~N!KVeA(bm%pZZPU)&L)c&!R?`^8H_5o!Q>VX zz89XzQq!zXg^q1CZQ-Or<XwB6$gL$%DTAIN=2@vdB+TyQqYh{K2ftfBXZB3=@#qkSZ2((>GGx!6cwuF{u zaFIegb1lu<+M7`CTuU=}ba4u9EzRK12k3G&&EPPk&P6qCH8Y{sR?`fwIC{H7OUsU;&T~&*He6+PS@mU(S zw6%~0du5}&wY8vxwnhfD`r+!@8iqogwlcK_`uwJ?Z5g6m+I6ZMw%yCA z4p;4EwBxqf>Yl-%-frLUntDblgtoRe>X5rj+M2mr z9|m9IgGG3ANuJfm$&HtUfAGL!r>=m8r{RGm+|#kz#279Z?Bl#(aBl{iZ6N2q*k|+u ztozIa;v0CcV`la4AoKAE;s$b$_QCc}*{9feo}(J{(Zj##$^+D$bxdsaqBrXETm5)j zDz4xEXB0Gk#psdwU{VnS`$qY*D3vR)ID&ygpbWC#nxc$vEefoggAj$TlSMK5!1HX} z0E^HnS2eE_2u|HafwaShL)hw58Niw;Xv_0pG8p8Ft%U~k{9!r3`~Frk@HOYJeC6Z6ry!{Ye|6g zZ?xMoKmyw5ps*;=`g*3~H1!&ov=VnlgXo2@!WyB+?HP2LmDGF;h!h(D8ml)6gpTRw zL-3h^u(%xvqh#P`fe#%4%7n7!DT5$Zu)`%>rU4dehoiwm4g09&Sh9vY2T823qrbqQXuKz%}P>{ z;iRkFQX|3KNdk>w3ne`OiHkx@z&A>LFiGWls-`uO^LlSh3nrCueS1lCt?uq$1-9j! z#~7Bx%fN+aoG>|E6Hx*72ts1AYHw9ABqnsh;tpfzne+v=rw*xD7<;M=$$Rk({xD8f ztnUJ4S<4VSKn;|W9!z4@as6f_gLix!R$IV|F&~E;4Kaj_L2!np_@C+G>2(%1r#Ro+ ze6+fIZ>&wn7__s0+S7<5&K_%N$%}k#!^Sa;+iBt1+quE`3c0(te8ZB_PajfY zA-zIyxFttJ{8}rQbXkhg;5fJVS&PRgxFe!k?}}I1Vyq3Q`{@#OYvc9bTN<_rnS2S% z{v?5rEmZr{n5%FEZ->hi>#$`rJSu(O;v0{bc}e&V+dkyaJ_Y(Z)CgJkNwKt&Ol$8x zO**W-;NpGabOM}nCiQArz&DPqzD{EHW*==G+8Hg1ar||Lc3vlBN3aLuqx=x z?sK+7*X79@XK{yq+^^$$ZJUY3uhD`@D=nbg@c7cb!Ru0ip8(%C! z!zMl$q$ApPrVFQ#g4nQ|(ipHZlP@j;KnGJkpgZf^4Q#kL&9^iAhd7I2u?83dtOjE# zBPshZe;AlJVipiiiUT>vL}3>CbpGwOHW;migRTe8w{lAWdUJ^-K~OnQ`V`BCm@sT= zy$4H+hhSr_vHF!}NUHqK9|~wAkar$p1U=$3M(`O!;zz6jcoFY`My#a-zcL-h7+B^! zjR4geV*uMTWVO&9$DLuc`ath_O6(rSOD~~Q_YSk_5z2cLGBSLG_`yD<@uyQk;$HUP z)dmw*?03G$wm^8OzG+z~Gw=#ThlEstW&_YMUGijE#gZ>RrISTedzS>GIiC@&GlU#a zD}-~(AqZi(>Wp)zsFY5H0G%4r6bu1-2PNs!AGO%^pk~$BV##69I`k-VOYcgMNZ=(n`w8Rk_hV{ev}E+eY;eIs&~eS_`>is zFZ@jg_VW|JlJemAa8y8}Bn{Sq9GI}y{MaD4pb8JDJOh9*imLfxO^{Of6oWKhDDj(t z1MPkf@lZ8UJh~^#8H=ye$3$FZ>fl6oh&`Idz$GR+LvTLE$=yo?$CcvgJo42 zR|JBMVy%S0U&2+nSD1EokATv4Qk6r_Cu{Y1&=HnCTww=i8EBmAKnv-QV_OEPDS^-N z@8jHbATq-MlM7hfe?k=lSebP8A_YSB@#6r*w7(8 zxG)K^UI_3)oLzRcDRY=sT!JUK(Ekd}lw>2AMn!+aAy+WQ>W2&fwO3vTO+G17&0(zN|X9$P&=VnPu6xIYLas6Bw@JsS;{1zeSK+7~vLQT5E9%oX4D1X|#z2=`uthu&ts}>>tR2)5 z2Z4j9ib-fWT)=>fjXts2V)=`*CI+YDN0t*j71@AeH@fv;YLaVoJxx>@U{Y_A{VFz1GFaG`UH<8AzQ+1 zauGl^z;8{?X^qgfPgh-WVgRl`Owtm=P6pm9xkfzQ8KsWsNauPB(@*NYF>g1nOA{NoaV@G&k%( zS|ZpSS{{`LN>n(?pb3^5LKo`-Z84RQ%ahT#$?b|X{?Hu6Fqkm@KzYRxFyaWHjRruq z#4$nrHuI>H>4ya8M;H9UWMHyM z@WJvUt4;F5ho`L3I3NX%2Qgoh;s6~0IWz|q@d%ASHOUT|oy+i#us|+*@a9 zDwBq)y}gz)L;e43!Gp6TyEtC{0bA;-tG;nDo==o%{x_&dy9>wqER8+ zlBL1J*4ia}*3!vFw*}PF0~H*)h1k*+r(PU_Ztb~2Q|}gr3mGvt|l9S)^=9X1^- zrUW-Xk2-UKt|P10LFMF}YTXi5n{)DYlLmQC$BxJjyU)*#By-Ex8QbBvp7%N2k*JPg z@3Xoiw1U=`IM3IXQsCP@^ZQctE>N(V)P^>0SP-VlXB*gppeEG|e{_h?d_xreX3kei zr_K(;kIi^9LYGFT!{0v+3j^Sr+oc5F2b~n&e^mDv2w{mKLKB1G$K3KWp*!XA%y@0$ zo}lTc?di-#c(hndITQzA)~Cd>02kt*?{4~`d6cG~=B6K|48r!)-1bwb_Vt8_h~Scd z*{KF2L7xN^FK%O0X$B;)bJuk^BfHl-a7&L-Hz(%T(txXJ#;HYcy_3JYbcfnwcPJIz zB?UK7%ThsNlO=u&;X*U^A@Ww>3Lh4GwYst+`w;B7z={?|y0z!s8iXk*As3WoUR)?a zc9bFAt8VcE?ZMn~N7FMCK~mMmqm%+O+fQg zex%j$Jb`tu!fGL_(4)#8(Awq3z`4W()Thdv&$Ek}I19t*Q*dm+j0qbMHx_L`4D*_g zcvqgVtAC&P9&k`$F18dbc*9dX7pHhnZq-ixr4oGSMyv?G?paUtaoS3F#JoC$6;x%s**K+kanx>1cs zmE46{7NERciqOHZFio1$pzWE9$2~)En%&430CxD2Pt62DZgWPl4TPBzfWMFetPI%+ z9F(^wm6e}zlD(TIpy?){v{5-tm3VqPZB6V?^bcg;l6Ht~^iR{0`N2pFkQ;!guF(F| zwHIyc8DamCjfe)IE(1{B79iF)DHtU1y6ko2ZnYlvsz6SAaX6#<;rhSt^biq z-Ksk#D37rPin$F)ZsvjjhOR?yh7HI)Ak%qvoq6V767eHUYie!^de!CYZ1i9J-4tSN z?ZC=~{zieL(_|mOdVZyxryAqrzEI-p=c!N1+Q9Ax++Y8oTu;4?ix#$oxI~EAGgzlw zT^e=Jl<-Mm5eN1fb!Wb`leuYx5aYQ6neIoC{jLk zR#xUS=rM@ubE{2RiwB;n2jr^Da1*LJl4^~3@xtQkiYKx$P5E*6PC@zvxYE2+aAtug zN>iFlhD8HqdCqzx{xiRD0HEnZPLhK?Gl&##p?)8g23L1G{SGQofv-Y;N8P-kFqFqZ zQPuzoKslHV!Iz9p?b*A9S~i&!`d4z6*1Fn?uVs|*iLqc^M$g(Bk4n%~V&v84w=+x+ zV>j0WX}Wek+}{zDYvgYX3pu=>OE4+1G-I3E4$0#mk#drvo#C*~EaQU1PO(iWeXpKJN@vAh!+LG^L0E9|GduN&qsHt~9`;*Qh4F(TnhE~Of#?t4cN|ntG zbQr*p)svas;CCj^^JGLfr<@x2Xkk8f^Ak^La~K$|&TYF4W=SWyw5|XURGBf%+ z_>xs-n(DYbZc2rOWd5UI*4XSqC=R^??7`#*nNt|!se(+8Y8MhpO$t}%gf_)@FN~q$ zcc_PkmoR0B#qWaBv@|dhnxj6IP#oG=3RT2syQ;{-pAZmro_=$M%C!%8_QDXff6m0LIa34(J>#GE+CqcAs&<9EMh!3Cz-@yv>>o1pOQTh z7de`P`6DJ33_K+!O;!I;cW6sVLaHMqW0PzdNd{mzf&T#LwDA|pL3nIx^qtXJcmic( zSy^aE8S|w{#h2!F@l*f{`O`d00w@LLK#fxIiSdmRO6)>?Srhg_2raf$RYm(k*?R1L z>Vt9=*@CP#dY?Wi0dw9*rD9u_1BH+){%*=~43_>BIT$}EEVrV_zE&hlJ}F6-;31*# z)`YS}|IYsX2POLU=cBh8La$?wR6}se)!~`F^6dxZbQs53%U>z#^L&cf^0j$79KZjd zTtj&4t%d-f!O{5Ore|Uk3rFOi|N5U;93-XU5$g2opmZ5ZZ}33&41}6gG-K^s}P(!R~WQi=v6+AJC{^QK9`Jtb8wX-TdB|#)M zS&S^KF8X_wx(>@WiZ5lQTo6VVJ<#Y5rzmFiWu!^&Bb{}M6cojc$Ff6N4`jyUp29_$ zhx2I{PVZgXsHzG|hRK;hQ%T9gs)h70cAwR(icABIkr}6pEz-nkVn6yb>sghfiBuFR zz!=$^JQ2%b+kMX{s1vK82Zd7uiPk%VKPlCt1*ROEbPlnkv=>7hQ#Lrll(jZYseBZ0&q7w*sGU*;i|OGgaK(e? zkupz-$T}}qyHHE#6Hdu~8wFhdE+WCxFd$Wr{m?FBthHOc*I7))9XGXYD@u`AHbuzz{Q2T`ux zj=@5bC5El=kQvfv($D*mqsnEb5?_IQP-{z(&<6``id#x=ie9zaw9!FEvsSn<%R>l3BuX&nn4ts}2=4GiW=BNkwI~{l{E%V(CP# zs9nYt=vAht$^x%gB86wM1liCL#=^(YLx{DxPw+qs#YnQ7Wmx;xDo$I|!zV;JQwWFi zcgmU6O>t&s>ZI+Ht|G>+sT+wMi*jmDGF6#O&Cgn|!~tJ4+evCeMX3$?fhN!GHFHx8 zH?yi!H`QJBHl7$$Ws>|CDBlw&JOngMe~NRCGk|F!rURV!EIEfg)oWiydr#LJ52|`v z%gmHMustZ(9QHC_ZH5(P73@I!il6}buY`zD;(+Kkyc-Ky6Cj3nqmIOMq|nIg$nt({ z??y!!3(dFkZd921>b4&2W*Ce&L9UJUxT1jFwXr|AT^ki;7uu1EOtT{pCEwS+w4ZUi zHrA-S#G>O77!!NlQ@q-aPr|iPVcSW^wXx=9NG&n%6sk1+9M47_mVMK?zENSrvfH!4 z;&tU`J2n)DI)B2mQM=No!m|+-`?hDJc0~__XQRSk*^g&qwTq84Bwo)R@F&kk#T{(v zcs43C2|YMo?1|7SB2IZWYJc1aAjd^*QxW&!*{IA)zC9a3xkmoRtSq@0&xL1$g$2j< zWMF;(D`yZYOupvFCzidr`Wvo|3j1q1u8p;b%H?&}#$HspHrATD5{{}purIRMlcU4k z-fX%l@@rI>sQdA2RA@gu&BL!jHlxi_ehm)b*?x^Ryu`ro@N1kInGw4DGDTiBaoFuL z{ktjGE}zKxyA^nYEodG|V6bA=zW2RBsiORieQ)3~8bY-1ms~3fkL9*Eum@3HYRYd89fy3e1m#0_QsDd?tQqHl=TS1Jt7Q z(Y9Y*SMq^xdwY`G?|j=EOpJY;ZI9*U7WHk9qgf-3ZO??$bhbUSLCV?oz-kmEd)wpu zr<2sTJSM_N?6WgF@@#SQfai%2bJ&q1v& z<7j)vNT|Fm_00Tz`nJRy^1u~h9kut=>v?uc~bI#yS)I zCv5e`5K0PCx78a0L8-pUR&Riu+Y)@5+g5)lGD#RfDVj3X8v~j0&oR{-ijm3WOiP?0 zzk!fh)_OyDL~EC|-jE|-=C;-wih3U$&53$0&Bb8znEm`60Nu8^-XJH56T@6@NVS^B zsBKg@-J64HOCgQITyH4y&Rs2FefWXq`git#xt0@$FYhTY!WR0cQ3&a=*BeT|P45ME6v9H-3)$;W z+wJw6;P!e$kpm`c$X;)VMIm+wd%YnJftytJdV}W6kQ&+R*-2WM!d`EA2DGKY-VjJq zj?;2)mTj^(nE&W>ieIE6$Rd-y!QMm04wF5npGE_j?Dz7x$^Lx-RiVuw;D`get{pxU zxNMY+hzQefgvWEu4RJGMn;&zByP1@A#jt3WW*H64LHIMs|P}ptV zvdSvGZmMET>(71zlXLR<#F0#u75Tz;Ww=F_F>R_2W4O_T&c&3Y5U?tvZt;llS(fCI z0dFtVHt`t@|GiwlP^H2!@v+EgZ8GuomolVYwT6`^i~FoHsvn|YNZHiI%IYGDe4(c z1q7nLKe~y5Dz1ly22O==Ym(=SWkavHfjxO=!@);VuMHPTQ2PyFp6mQW><-0*LN*K~ zR+2~Jp<*8vl#ZJY%Mcz=PREuSumETlggYxPhw#uH2|vW9^UPIv&}t`z=COwRX}hVL zPdKHsbB6i`WNZKsd?E|#qFO|XPEpcl20s|;W$?U9G}Eq8y2tmaa`Urha4$P_z$>V{xC{G@ay)|X{b45? ztnBqDR)06;=(G*_rz3x(gb%v0uKoN*2p4pN!8?7WY!~!?>VtAz&dZ{O8;^3)OxKT~ zNcHeL(iud|8$?tX?=VDA#XZXH!!Q^AnH-ljj)W6cqaQyKZMzkf3gZ^XqyUW~lpnhpgh* zbb$FiF|#kqjAYoVG!G~Kj9#4c3%HWALK~5uhwv~~2}2f_;=>f3wLYrqGovy%JtN17 zl|?*242CjewBPU;Tl6L|@J@Aqm?e8P8(HF?Qy2)?55Yxvf!IhP^}|d_O>;j{btk>` zth#4PTh1s}4J`nIZR(m?1-EyPQZtp^W2TN)q8(znVMPq3DwFH}-(ywD0$BN{;<| zQL+hwRu{1A>=V6Y?B<;4G4a$~XjMW_Fg_6rHdFeULb?;(&_*iaecmyu3bd`6nDuN7o zj#=B>^DpYIV8r`_S>ebNev-CGb=`LCG4j$_VA(Z2!~G*H0fepoT+K$=&7X@?`h|*g($vZ_eN{n@Rh|PY)1&O35)!`2Wtu%@TdP=LD}0W;|L0?!nMHw8b(9&6 zu6aZ)K6G;gg)5zIN`VQFshX|%y_uC#0!qqI-%KVSh{oy8qQ(=p%ORx*z>NDdl0y0v z&VtCFg&A4)l@g5iJ|+#c zLTm5$K!b9|#gcdJ8|8e?x+9%W%I?71w>*T<==LTcd>TUt%T%R3XcoBg6_SR9F_oYI zcp-4+Dr@PFZXz%hO=**&$yC%gnl5VA&x2r1cSTG=(dI5QinJ}+@cJ|qQePCviemnZ z^4Afuhp^FBfp`_OM4d#OJ3Pyjm0h}Nb9FPl)3o_|jd*TWTfnSml|#nYC(Er8F|T&j zy`i&uU~LbYq}U{|sDs>$5H+c|>3g8~%JZ}>M&H+t`J_~QKYv0Q#_tk<7BOca#E zGNV5_nl=UD|18}XO2eWcMw#W|!hlxdDgq%y2FO4uBY zp+0`W;O<0ybRp#z%I4C_41@WNvNeYI)M56So6eR^p;JCx3d5#czj>WWIa!m#DPOn0 z7X`)`#1hL`8VP@_U2WbW%HKQTX^P9laYO~sFPLmYm!fo9#TcHN z2x{A-t4z%yLFKB}>}rI?rOi8{3)9J~Iv>^a0lKf_4BOj&L8*j`|DuKzQ?L|pj4EcD zVr=0DY<+7adud$yye}T$JTH=c4*L0fQ3T&BY{1xNj^7!~*^=f$H(xT<2wmsR=rt+s zk&2MnH8P7JEnMVc{rti&Z;cnAz9HYYzYx)J(Fc?=Z(V)l`b0Y`EA9}?qlf(kC~w4w zLjOb?XMNO%Hj4s`y^j#di1>_Ac$;C48t49nPeZ&RChB}6rZRf5r`lL^>wPi&icr7k zc}uiS={c#yW-Zl~?+*$O7*%eB(;ng_DJZveoh`npP{)MwXm2}KZ_C#&2wpPH-W65k zSgT3ySO(KoX4%C1VZ3ERTB5_I!tA1Z%8Ca};?62fVD}rUbUh%-E?^VE>_VFZ3##$~ zT>;lR8M)#btxPqCmbTMYbQ+%+u0w~sQ)D)tjOY?!mG|GY8MwDy@5hWM#p; zBX2lUGBs3I#XGo@^IG&{#m&TxuT;_)n+m&T-)&xYs^Z7{7amF4bZu$Y1@};^_-iXt z@^lxo(vw55@Bv;{8V~r=Z@x)XutM~L>x#t&G%nJ|LZ2pVx#x|x->}HrID#}~a>{AKZD!e^o%F2UF z(QQbxDGsI><4Utk{Gc$WK1v~1e3?eU=H8z*^+|P)g)J(4H-uXcqbp83N2fNW>V!n_ zCCk|~#?@AqdMAqv9UYcwtP0UZlan9X5T6*F%xNX!Y>nkGDRIDOrdxrxu<&6YX@ZhE zc8+yMzR|*x2&F5mQ^VzJ(n|Pc0r~=>zM6_8d{X=vz9~g_y*4;wS)Pbt+LflPxw(?T zWvtD}I%e38xV%9{%M?A^bggf$atY#zG*w4Tb?hteGdn<(j62H(RVxoRyM9sWFowXx z5sT^Ot(u)Iz$I7Ze_SWUt>;W!e%?1CPjU0`T)%?g??rh$YMR(%OzkWe&DMu(A{7^| z)wFf`iURsns(4IR6PSxOms8d9;ukGd?JR!*N`6r|AT7ez)AyQpqA3P_W_PUj&c10x6b*~w9It9ylD-668*xQ zGsC8&mbW#~;mr+HZoIrHj+eVnT;OHsQY@6X@iLG-?d1-b5#KqlbGfU&__fzyn`~$I z)!`EvfEmVYYS9}o!~8wdKEMW|pUXKlb~^y`CivnZv7J!U0rT)We+Mv+rn^=HF%M(( zd;n(n1<`>6m|26o9KejQVP22na5#p20CR8ccU(WH4&ogzLnkGV2VQn*w()W-P2lCX z#p6!v-p_-VH^uQXsw2>P?N}A%5$X$?g#no6F~Qy5FDSf6wZZa`^1pvEfbqtDdc={o zUq5R0wNMA(&SiOf2g|!1V0jZ9EXNB1rp6}@kc~dXc@ce#ofM-ud#(2iOUDGn<1t0& z12Kuwg+0lRl;4&?n{5jHUPw78TctK+XS|rU4UX4*j7$uYw7w15jB&(~zYW<2!yrv6 zGGrSEN8WGkb#A&yr@I5%oX@NyWn8PYn>irS+a-j7lHea#g}Yvwz|joMuG zdfOxo!GkoYi^90?e$FpLXmg=X>qc#Z`M3OpO*>+q!=}xk>_(@6+q4ZvY{E7fwIdEZ zjM|29#CF-V4Iyb1sxoS?_M}frHtpREllCS^v#>|iD#N19^?2rG(KdKo$~I`*)7*b# zz8rG0ZG*P4Fn-X(*$ZeOn>~s#H^Vb#J=CydCCx&Sx>EL1adU@UnB3ih{M% zPAj{MaTBEP@@YE!gqeADJ+;{x;n=7qE(^Qj+Y4VzH4^bpxP2W?A=YKr7pkAiN?c>G z?&I#edOGNeE8~Ub6_NkeP%D*kH+z6_v>%7Eo8tGS80)Q`JE*Ma(s{@L-6rdw#DZ#& zZpgj3~gFY<&-(Thj3 zb@SPNSUj2sk8Y3Wy zrk#H_g}>9n^e}MlYVRErl*HN!d;|An)($9Hp2|`qf*Z+{bWJ90!Ynx7s&`UXU>>6t zGYPcKv%;%YRhoJb!dj6IopnAn0XSWmu=%FO|>3Z<6WqP#Y*<3Lkm2agjO!e+94#F0=0L z!b0Sz4`X}1_E5Lii``(%Q1bxS?&YiGNi&u)x69YYh~+2$gfq?z+7e+hVcKa22Hg}_ zAPjb>=AQGpqfw8yFoI~qpU41LOWWW0zG8&ADC)Q{>d$}s_v_I9$N%u})VwvMc7w$L ze^^X}=}x%bV@{RFM!{PqJ?VN8zl^C)zpTM@r#+LCbQLM8{xzlQygsEWsz0d5`OI~c zwo@NB@-}v5O;6k6G54e-)dHI;W*4!UntpwPHEbL9qtR|Jf(~EzEJ$@ ze?I!-Mo?%%c6Tx;=W|Ut>E9^(bBy2qN}(d%^c39(-zZjf_rZDUlOnr3pPI}z|D>G3 zzKzQhsVymab`Lfv*U%<2P!GYgWNC7Ebg4{XQTF>cod)kOl+&Xw`^y)~P`(5xnQ=My zZ=R$~=S@LW@_2bFDA#XZ2kPmhPxAE-ML#H~+oQ4|%uP`?U{GiWiD#%E_49^HM-n?ePZ zbHO$0wBfC`ET2Q=`T2>$SHWll8}%5x;e+>B^4~!@6@2FgAsAU;*0JDYm?xC16$Yk? zn$Iejg6i$qy0AX*>(<2G)lEuzyeUv^$G@Q zRyq`Ast0ASiwobtf2Zxv!LALakOu>+2#f5L9A0f+kx@~os!R=w4E5|f1F~?CGPGpl zNXLqDjJ56dKd&?UXPaJnzhy;G_TFGRZ?0b{TMW+Hm1X-u*<#R8fdzTyUnpA)?x#K} zAqJTljcxx)IilfhT*6V0^yf3!O}U0Pd6~vVNwPr%#gN0<*p@cPqDp*6aU96{_!JEZ z(`2lv4`Gs6^xsfs2|H#g;RsJu6|3>-GrzS;BIBj~xXQ69P#=;27nu$ztx0+Z`FxbS zO9O`CDbtmXBsxooC-^#Z`DVyH#?j(}!H|258HFH#jswFK_hF4>G-UV<6W=9#qnO^H zZ(H)o9xB;@CtNJ;RpMm65_sW6MWs>R6=JBM#dC^6l(Iig{( z#-DE5r`$XXbQ;vh|t19Lm zQn9Z#t4Y%Q=oBTM@dY}?8jfdv5q?1&R!R#_@R=>v&U#}?&gzUq4jZcrF(} zgDYIh)gBDkK4NXp;}$+|GppT?vQFkuvB|PvbFYc+oXcWvR(wf*S%~x3p`fTkx}Qqs zE}-)sC?hXIH2Y?_D6jpILaq`H++=h+84B`I*eMN@@2>P8=qGgeki+_MJL)f%6?GI6f->xbQayh$v-n@djS{`9 zP1#pW6$uxmx;x}i&TH;+T}h@yl59oEW*J*})nd~L12wfKO|WXqtoG0YYP)7kj2pjb zNe(=JfmCaLp;Rf~Q-`{011*IzvAWX8Q#qEh=TUYlyT0loQ#st2sau44s!92dHcYoO zo+#~QHU*}?P=>a`O{q+GG&tM|c?!c-A{CRfS1xrsj$>w|CLYhI&u6G71$Irm;1a(d zUKR<}t*F31?u*J&=%vZlE=~4WD#$%JNT5~g*nmUOSkr1ZxqJ*s-G4{jlyW^T`x8GP zgP-5?#4dCuUOzgio+e`oF5$%(l&q@6(8_B=VbqZIfQ6%&>aPpOVr^jTkJsp&@pr%3+H)S%+XX6)7Yu@+;Y0o9!_@yQK6*qqIbnJ~^ z5S>HZx$z4xR6KgI@j|A2@XKije%X}4RN5i1?Dz$-IpqG0U!qHaUtrgJ+QBcdgZFad zm$qTE@Cz^TO9#L3s>5{S7dUkCJotqdjn9K$nost@FOA9cmz?ty@{3~AeX|?Dn7of0 z!C=Lxt2u%(UF&s07??%#K`@N*s0YHBlBX{S!)krwKp4-+-w*~?|2}RA1K;1lG=DbX z8ptd2@wkeo0>4;DvA{2gsNs1k{DR4N+QBafvgSV9_{GF98^5&20~s8@FgT=L_@zl3 z+5jfFI{?gS2Y}fW2QXk10Tuxmn2@=B1HkYSJoQQ0 zY8k=*cFfDD+|-Ew!M2D{62v|hVjnsjD+3Xn@@G@ZeEec&J@ei^PyE~GYrp*F z?Y)0LKeRgfKXRW~MYRwh@<-Ks{~ij}Vo7D!vnPr?rGs8j%tvQz#X3WC&`kq{4k5cV_w_T|mre)ab5 zzn>qYS-rHjCIn{n{Pd^5QoRn`xiADm2Vo=q_YLYeD<LAdJ@ITSa9``;;l4h4CG zoV@+iCuKkNKXQfL=hy$&-t*qWPs;z)Rd`QHa$oYcjK7CqaUWPQcohYRxLE+-D2$7S2mbzJ3(8>bOCtimL3U_Tn(HNGMQTW7Z z%cjf+M8Vxbiy8O=LfOHrp#+U;(6#g^1SFv>GyPSK&@N#|QQ0u62nnU2>5QsP7&W0F z1PRDp!jH7Iwa8|qINfE_A3m1)N`ctX|;t~NDwqQ?aoPFtn+`Gixte?qr@T4@Yx zTHl}p-f(pqBOUfv;mp@SyNXYtl1s;2PxntZhM*^um5~Gc(P|AH)NtV%7PG6WOhFo+ zo@jiv73J0@6l}8`JdpJ5DApW$o%$)`TlJAt75SQ8S~Om{1R=yS72^CfAg{Jd`xYFLb>uZyzrCYEQSe zZ;B~&Jf-e+fD|aO+T_wlbp%qhE6wyFEEN2lWi)-hw8Zgf$9~MP;rs7$xEvY zA*&C%n0RSbwEsDC>6AYov->jR@QIJi8IN@mh5OiJ8AREA0WWc18-v&x>q2uhS%JRz z%BfGu3u7^*rTp+VS=K45!#O%8tQhY)BDt(!Pm;wk|cJ>@o<<}ac6cR47heE<~ zdslOBnN695YALD2H&r-p09~Z6TC znVMrp2PW(p#zAQz6Y_sp7cpz6z!<{LrKxzRgqyi*(;i+dk)Qw|Th zzKlAG9~2t3_=0s-B#IY><zB<0Fy+F+~X4z*fn=Ziv;Qn<=4azhb|j z7$jWz&?!x|x1#M6#Ro(=lZoo{J$<8`=?zMmRNfM&0JBSJ2eCL!ouKNL5a@$$7_a(H z7!Oy+C<+pa`o$K}S%qM?<}qe%Z8O}p$xTye?n)5;Hg_9OOa(H=FJR0lUF!+Shnv;8 zkuCcZNR#3&;?Wd*Runq6+h?lYI8p2g*Yk}HynQCG>HdzJQirRff(FQHVeKu)2JrB5 zNj5k@1Xs%k93b@yg(3qSASX@YF2Dh@)~s)E&{dFrgM;1P;2(7ni6AOi%$-M|2`s{DWh1H{%`xBxLjwcoga6-(;D1&ErW zlo2jq1)Fr?f){q;A%)?8_Q)M1lzzUJ`h6TvpU_m*D1&CA6 z2Nkp~uz64cR+F_D9To73a671Aw>K&XN}z(Ki?lZ?KoTU(&IcGEF$Ttt00t}wlnyXJ z;1VrE8yH|GUAUl?ms3B%T2|VP3w$yUEO?#Wd%_PW*o(A50b=1&JD|Y(5tsmRY~>s! z&IUYy9TOlT)(#{i) z#{`JYXOTk31W2W6c4GqciAT6&0&sh`g9#wV$O9V_fbnWSm;m#}GL(p0=;Dq=iclB26URk9LU&d_ zIk(WAUQgVG?lc-Gx6s|~Ep&qtLKiO>N9H0(jq27Gy0ftU_ZGS{^HQHJba784;r^Do zxKkU4O-SA8rIcOj?jCHZJH0Y*NL|#lOGoHNbMsLUT;$H?(ZMcrdEackWo~>jWG*5b zsL#2~oyDV*L+H+uwf|h`BGib>?@|}`cZQR1sf&Q2XCA4Gcof@07jZ35yM*p5KT!z4 zD?{GiVs|uN3U!HH*ahtfkA#4wQjgdjvuY-{*oEnov+ZJcKGXFz$z9yYO0m46N={xh#wsh$W zFBA{?Eq&1^2Iac+1=sg^J4qJr(AY;v4bpOZqyjIdfiL55oBtG_m@P5Zsp$;gI_`%Hqc# zULpR3z2K#pJxbyH{)2MH1BYp`uap?!>u9{JrLHWd|CK85q0~nKguJ#`X!@N3)hUaj z3VqBY7+#o=zsN~x7lm;%OHA_OKUC~XS&aSgzABdAkc#VBzTK7J&}kVqZ+876d+ttp zRP*8C-Aw!@GijNdLu-fRJ@X-Co%2dq5TDvgD!9oUTVfYV3RW5@oF01VPP=%V;-R#x zoIrmAeC~DbPaybPB^}WR+HVneP?SViynb?KEl87zODTUCx2|MYwe+S^1u%5d_s3cr zS}||qiJ62S{1=GSr_WaLnk-F1c+j$67LV9|nsDXaWsM|yKH{DYEvo;bl83}Y&)Wv1ZFk%b9ZGObS;z|5=SM!U#I zdkB)?Otq|pR$Vn8rdymwQbzcqa3iQ92daf|XW{C1?lhCIte)?;5Jal~kwkaVLvzK3%<* z65yp?iLZGkdk_e(^ivkmxzO)9M!nT;uBTNm-HY1Q3g98GOHDaKm+$-KE!Hlr3@(okBEztPLTSLrI)f_HFQDu%QXVVqywMp_M z)kU85@e3b9>Q3+}DRg6Gz$gw(ASeTv(IJxE$d?hkLt98Ly3t8hMA_yyaUhS~_S(w= zR;2tnls)!WW@RPP{S;~eG*+RlQbL@92|^L(zA3yiLpKMQ-yw7CIIKg+dm?L+3eo%u zcsb;n?q7<9MVP&6mp(~m%i%@%Ros;d122h>_TgBk*n{1|O+&j(qEVXcNb#@8Pj*V) zFVn?a97d+>9jc2C9KD;@j5_7d$84$g;S+pZb}`qWblSUF1XUWfwx3tFJyO5mDjh3Q z<9Uf23|m8oF0WeDmA=u&1@U>xc@)2pq8bPL(n5LJB+URk$aw|1#0IZ)M!F+Ek!iLs zP($mu&_yYJX9#oj)*8U2P^V-9VkvgJ@ZthK;S@m}zJW^5AZHXL%2M{X{lpU&>U0*l zM_8@=R!LVyHkMEdB^tv(D$53HYaY7q_^LbRR0r!oJ>5?*&M%VgsSho?q$&{Q7rV1m zadOq(3m-q8GisE`tTRmQqCfIqu#9p#4vWJ9vPQh~2x^)Xxc?|2bw~H#i}G-VlH4a0 zOw+H0VaHMYhqH&F(C=4^ZYak6wDoixu5qes#iQibf;_Gm`7d~k`s1v(SoDFSpAU1( z^wdQ&vq(^(BJpmN5pNHQO&!`&MV&aRR$Fd?>LJ3VR=4nW6;oyg zFP_)z*XjxNm~Q?a1=?!~TQuuwSX4YUhbl2_9(5V{~&IOY8b%%-X>oL;;#ffqN9oOt<4{~ijy z+%>$(9Q<#T*1a(9m>zEWN!d^F>I3^m@vr~+=#M(-b$Ac=2H`9LF4_7{sVvEglDKnz zC+uffm3F3Yl$f*q&<6o={?B;%@&{!v#p{TaELS|Qe=o(R>+xWNSL zD_&rtwuR&_Fj1pc$_5h^uG|AAYFB3hOw_JQRR>H|C}00^({qD~+GH*WFcCS(2TW9`ng>i&c;YTF!I^pi6P0E34w&H0>KB-(rlK$h zOjO!t4wztG`~@bWXygGCl~#@eCJqM(OuX}mN)cvz1rvutFu_Z^FEFvN`|}DWIFt)a zu=?NyCMs)K-C$x(*SNt1syv>@TW_ymqQaAYfr&^PCzv>m027BIFj3p=H<<7w_yZd6uT%paDcsi^Q)v_k|OO7i4Q)IDrR z1VE2u@XHnfbI9-N5@0G9d`p1o=_E%2z)MF2<04?Db4Mui3UqbxB?3mPidBkVplDt` zBETysULs&T)dR%5R^e1(uMh#aqJ|c=Edo%)j!(D<*bLwz;EhEn0>A|0mH3b=ulNh5t|h)C07{dLBLHx_Ed?3V zk)p8$z^1qWnAkJr2!N?N0G9;7tAh z0PsFBx+8v3tA~9`0(hqBB?89dcR{)ch-K-%EcdGEK2=<_`1FIvHeutYsA~6xvYj@p zMnp^OC&gjW+m|A-QzO6)!h?n4N{1vwFV1~`z1BVbdhoIfIXBu^>j$k%0$VhcDL- znYQQ3CSN&|bcE#QMLI$if98=gT}CJOLPT9R=7&DY9c)wKX0>^2Ax*tCJ2LSmG8dIO z*u0`!(+B*6*{xYI249 z$gRP{B}o!WCub&<#II$!=5=jn_yTC*?rDF5iG;#BryEU|uHGGM^NKe6^FBP!uhMOl z5jl%%IX(Ze%*d5u$u}M!yvolIcSp}fSBwM@Ci%G)PxS4&lbCJ-tXHpgM?4uWL!oP; z23w*`u!JI=T?Y3iZyhgkYBG(r@Af~siZh=dpvbHFq=G3&bSeS^Y}DkDDAMndNf^Ej z=HOV-vX}=~7&24&M3c6Kppa`j?xq4uc6;z7=hO6sPKJLNlE#>c`#fGV4m~I`h8(_FO}g!9vYk> zjrsE|k;HmZxV|LeU_d z6;;xo>24X1CNUO*9@@g&Fwst{FLp%o0Gl!V0O2nB_ zmJOnoXhNEF`0*QIyw9pgX3SKrI;bJ7hwm$MoetTx{U`j|WEhP@E@SQ)ie}YfF(4|X z9l2G>fS}}?^%yruLo+o+7WC&ZI}Yj|d#fMK>|+_MkD1PdKId`c02qGtaskN{@nE z)NWyMCfCK8g4o189@Jq->{f1)2Xz<{x8=TKP{&$x?H2SihC=FGg>zSVRSaQ#& zPfvSt)gr|&o(MqHrkkije`aHi76_ZpQiRa0ADBuUmrAA55a_96gg-7O>&ui$9!}0C zp$~)|%^H;?g3vf3J`VXib%?>KN(DAOUbS(CEL3EKLAR3$N(bj0j_<6gYGZr+R54Xt zZYZRTGsK1Cnj)!}TY5H>YQBP98jO$J^K#8MrffOz;UW};y1I+7A+zoAw6P_p8q%!j z_?@1w(@=n?rhTsPnra0rxuV=qL8pzav^3U4G6_SjJW3qV)k&SDJxxcNBVR5&1As$k zY0TQI*DrK2Hf144setylrhATv7NA3XO*F5^3)8nj598S?I~4h3C?Hz?T$_G~0KJ35 zcDwGy42lB)ghUV!D_(bf!?!Z3fT~l;V;ALngG-r6lVO7mp#j>dP0(!(a(Lh#h1!~g z;=%6}y$yGJKF2PHC)&9FJgVm`P4Uk3=*tKQZYbYm(rz({tfbVWU@vI%w&^7Z@{?Yo zMK)oB-G)j-FA<2F5_a_loucP2g!2p(tJk*#B{1`T=!3A$>gUTJl>N}_h;&&xqPU9t zL1<{-lx+@gEXwnp5@z)V>s+(1l>HPmjMlzUwpsnXKk6i`i8)o-s;<-WQONA95BMAjMi!hF=J|Mz|Mv`=Ivkxev|6YQ@pLvMvrUw2R$D$ z)>9rdoH$%+0k%Dit@!StZpD|~D94D=2%pzFhymm*g$DyKvCY$0Su!I2m=S z9E)o5l8Ul&S%oDcfT1F4NUq0>cx`*3+|T@X>+z=Cn5|I}S~yTbY*SFLNTK9;9kBfi zp*L4_6JQsLP<~R*L)`B6jpEF*@Ol$g0;- zI+RI?!E19^33^k`Z(8yKksp-PA9&__dZARFToq{}PrWJEZ(e$=Q9$UG?fERSj*L3J|0?Z)ll z@xjdUMUAX3WX}w|XR6(kGHO%ZZD!=9Jxxpk*pxGfH?Cuz&3=x+=kHDibOJ|ObO{v+ zoC&U2V^Ll*C29n#xB}?-KEiA?IF{} zp^V4}F7EYV1-Ar0HjCX#BVeZnZ>Unhb^=5warIWys3?wRq|ZYzjUGGUVUV2~p83nh zJ@XQouM?{6j_p=owtG;pA@krg+mKJ_Y^CG_85GK-FBOG56VqR2!De_fwc#vZd9D2^2$S1F=)JExgx5S zbquV`o^=hP5~;Gv-c(dPTSzBC?+4@YCM1+E$nNG= z8v`h+wYYzwViJ}2)MQK=uc_dreqI}*@luIu3ajQcqZT0Ve#bO30HwK#m0&lQpL__4 zCtztrci=Z2pQx&v&Fe-`T%s@(g)gL^GQk*uvkqY`9V@rQa^e$|oeAa(48q$iN?2Gdt0DH zYHRn#fetXIwidP;Ze`K!l-#(dUEJn+D2eY#kUP9&cn*DY>JrJb_0bC)EG`?+Nv@uY z4h*BETe!gSQ7++vnZiKh1rHbL`a&#E2p6qo+W%GLD)~1o0%P1b9^<-i3gRTN3cjTt zZ6G8M4z>f9)DVtS+Zds!yu;bK72_%8=4V8GjEm#<48$8ko}F(DQ>PvV;iMXy&O5m` zrQe!$C`$G_FK9f}*C%u%1H2==1&f^+Lz3aaC;XHM$q~aivIYD{mX2SPs!bJd$O=}# zH=2eKli6qqKXYy5nfKNB$LqDIekXG3XI8})QB0RCvz|s)XFn-@1mthJx#bI``c)kX zxsbVkr6Ab;<)L>1Ts&Ra!jbJ4ipKEgV^pqhApOgK)&%pMas~$X-}p}115=TcF9fAL z{t>>%mij`;ChP2e=$+ub`}5IXul3NHHvAq$P)?Uo>zP;Deo}UyJ7e|Un!CHWn8WNV zW%pN)yf#ng-}>ng5a;4v6*|c?;mj|}GXB^9v)U_!NyW;VHU0(L#Iz3bkV;?WDbmwy*C3snY=Fb5&=TNk%C~H>ohFojP zRK0vdu8ed)ph|~aoMZ}PL9Wc?Kf6#@epIjFpstKiylxwHt+o!AKwZeDvT~!Y39+0G z>VmiBx#S*JX7*b$B0i9}n8z=Cr2=(%iH!?(Az+N~!C}|pHjTt#*KP;w+60GP`vnfW z_9r&(VshVsT~mCv44EHLS|jjYp6lF24)h?n}B;4$qmJ83k2c(B8N)!PC5MnG#@tsNl3)G=GN3rxqkE7 zUk#!R-5PNQ5tK9YEFX}*Qg$EV>!0H*Wj}>jn_j+Au93a=N1a4X9`2Du>%!_Jq%&jN zlc{)ZCRhdKp+PKHm6fOnhCzNOBG!f7{NAXHEc|g!e_pj$nqt>kEg{w2K*o6Ht=jvq zS@D~Ay7CfIX&(5F&I!0KGk>9+aa?B1O{U9qcXKFUVG~l)jl_kg1%*B@2ITstrlKXh z(sUlpD6_no328E=KD!E${nGi2EDW$U2EzL`Q4H~i$r-$d^>H;>4|0NZCl%@&XIxP@ zjzW%XWU6ay-5C%({4?%u!kZgCd1E;vlt8lIYcI?I=Cdc zcw|!d(kKzOLP<3>2ylV$W&hO!u!48#Vn|X3REM4&2N_tZTqhmZ^|Cl*j89+m%hs#w zhtng5dBZK?G_Q0PV&297txw;KC`R+xHa^mXm0QZ z*EEyYU7=<qcroQAX*N!OO^2;*&&T)?W^#aLXm$9{JZjN&iB0gfqMSOw(d#9pA3 z@{+b20iKNS(A3zc=jLPY(RQOgW)yg-Ci4J#_$Gs;@`c+hTh(nsn}VoddFoOhGQsuqlhf>_Is#>lU_9~kE zmh^+&3f4yks3pV;vpdH5N*FJsEsVJEU?Ahw*xn|;DX6ED(A@!?G_ZdI{M5w&b)iA;}p|CyXr|zD{{eHnKB}dR1&OgkVzLX>;2$TFMI;PI<(ZLY@GcQ+hna%p7=Q zJ1Gb+p`sWtGH+n#NadU4HRDqw=j;!Us!y%3Sb3}mOihn&;5if&VT=l}rVF`t^^4J&2aFtn1q#_8g-t1i&;(E24!kiDqsL7B|cx>v51BPYPa|G~- zhsK$rkf{Vi4@4B=3NzdJ*UxX6!HF`<*$_m-S5sxVqkS*Ih5&D~8|7)Ij?9O4B|3g} z^&TX$%!NZWDT7H^97RJh)@84-P(*M~6bZ0f01=TNa1#4ug1$%q|_ zb3bB#4l;-khW!gw?OttaOI$uIFai>X&$nh1SOK=;nC%d>Z~I4Q>V$i!-yj}YvsQ1| zj1s6ov$(#~t@xJwy3)nPNrH>+~=m^wF=nr zC1ihOB=g_=`FKha1QGhR-vA;g(F0aSrOe)h?8gTQ+j#8&B0rVIn>K)01Xm6OATnb3 zdGHEAthNJ^01z29;l|N`^3xPW=m6rh13(;#0K|I3a6lpb@G)KH`TtgSB}tO&I&%L` zktcX25)?%q<69pg7F~v48ADsYw%Qbtl7b^90*+K5Rfzq)6s-3*6rQnB zDvKbd{=hpKums=M^jD9b`a?xhMPKRzZ)_;9q&`&QvZeNLHyMt-X%7GfkUk*=Vouj> zr9c1-QHS3(2q5;=R4|^4ur!FbjmLeRuZ0Ftk?(TuQtuv{Nji(d%a+g-x%>RSDpZJ@ zFmyDeLfor%Xx*hk)I*rxONHQuhSSVdh_%7RwYRpb5Q`!ef;(lDR3Y+GEmerSS2Oho z_F3Cq?vl7bN(G{#-nv+}ABdv6`fMKxU|t$T&Sh#4Z?o$F%R^BRI?K48Fjp<(w3j$1 zI_(ASimuZRXAsL#vF#~#6;+m|OU=nARGiUNys4rP6y-9QF<-!c&Yv*+D06(Q2l>}B6{r~J4i(L$rVH>i+K{29sSV1Y(oyF26b zkd2BeT9;cm*v%+NR!5%fTJHUJu9N;)n{H!iFWZnXmnd6)xeDBQ$&nOXEpTi4#qJ^m z4=3U7iCY`dM4gz1C@i^KO9&!k%oF!^s5zV+C>*pdd}F&WNWPz1RKI{uFilOgLnfnin~@xicuxnq&o_#Zwt=o zG2 zCHtVFM4?Pk-M7>#ojKjCwT2es+_strwZQrhC9; zbFvpSjb)Xxm)wjpS~(86!riRB2ksj{M4_I=6WX1%|v zc%F2#E{YtO_mUiP5X;Sax25f;3zR*j^&ux|1wU^~5O8d-f}w^ah$mt;;tL)+uzrI% z$d*T~nr>>dm)Q!L`g<`>+}%HIgXQ|S2B1)6(F*~?|i<}lK>zP%cImFUZ#?IjkQ zRV_kN?jw|nX*9RLzV`E(mr|It(lgZF?@gS7%cCl%kW&gJCZB+gmJ!|Hr8LE%`r`C~ znKnk9>tdy-rcnVq!fZeUT)GeHM0#sQ)!>V%EMi0PM#iaouzykQcV1aA`?n!0m$A>t zl0@}oPe;o3;iXZ6a0s&^KL8|OI@B-1+PC96qgbGK;_%cFN<@5taq-Y=DjHSS%p4^` zeqcI|pPYn)2qrm6M_aM^n#IG@Yzz$PU=mINq5;_M5ji=rOd>o#){PdDC+b1wH(ty+ z0p@Sfbz&h7=?g`-txn-uH*fQ1&Le}5?)V4nH(W1=kmRFiBB$w?D{lShF4zk&53t^c z>PKZ9`{5}zIBeiHN5E=iWc%SMHBg$MkRQsB$u`O;cgAbBgbEAmAE+ss=sBg#gDfafqOaZ_4Ru?~j#E1m%>!Z>Z+ z^7sN}{)V?7?<*LIm5Mji(!WNMogPV6kZg@*E5b7Q-6(~ne_9N;(hj-X*WVnyml!Aj z)~Q9K<4q*2)1f1YjeuJ(XkY8lB9@xtKZoCw>E5ge?dDdfPiGsM95BoohhN%GLKHTX z;)N3y(LONyy$x5lr?lh~rrghH!g9lQj%rzn?nn(oY^ue^;9WZ@g@dCook!Gya9<9C7`I zuMav=8Gf(TJUr*@ZM_xs@AuWLEnc_>oN@@{v;ZRvKB(jJEQX7qBs`e9qC)5c-{`u! zM_45GG<Pc^dKqn0mDf)Mp)lzp zKLFbi-hTYV$)kGt-T$e(ewKH&3k!fJLeP40}|p3O?4;v6RIQ@bBRuX zCFSfFPv>}D4Zo3v{hVwZk??+121NR%!29^66u;dsgExxbCxe@LV!%1ypMkaiLhyY| zI1*(6Op{0qp@MRph*e$$V^CECLW%C^0QU_?M?Ug8B)@rr3(;O!R&Vbt3s7svi{=qm zBCF3xB-|7afS^(hkm51w@TqdeV^|19DIP%bg#H(bM`SE69tI?+)RO;hU_s!_OU9mA8HUF(P$ zaIGU|XlWfWg`sr}_YS+_F^=x6%N37UrCjf~WuxM8d4}-PJc6uyc zndGA`)nlmo-KKgB)xS&C10Z7KTB-+zd+nMB@=ec8^8f_ZSc(Tw$aQ`=N70I&A11!@bc<=fDV$x^#}=xy7M#VEN!%UOETz z@9VX64kXx?wKjRfyOfT%)$^2*(OqIWrwYP4oZ&M5LWwU$O~Y>#+^mq`*KQw#W1hn4 z$alU_ayQLE-RhGN8~1fYa8dFfK>Pjf!|mDqWNt zF$EGEIYTKnatd8+RM^IwQ34nB%$0hqWy-aDTQ}}(7*rIMAvThdr??UitiDisktHn( zSG&&?8x@AUM30M&3e(?Oij9i9C8?+?97WILE;p*lv*cofc^0(%B{wR7RAn)^;HU^# zrIeQBV4K@rk|WzGITl5dBflWgkw1~LBRk>3gMBPDg@?R7DLE=izH-7PIV$2(sA)DI z16WqwBu9mpthAIIT-0N6^U52|Wt~1g7VyQRWJ3Yrzl(xwF0x|!&c{xu{AnkIrEOCc zSqfcR{Igfk3-jJs<7>H?Y&H)dh8Bf(AQ{tpGf8omQfKtMp{DNG+l6SMe8VY+yOeM@ zaE}YV&r8?|_d48dH^IWMWn;)Mb}~!AfX_(>k1XuFeR%3Sy^Q$er4S)^l-N*Zy@Fe3 z6wMkNRswwvH^seHl@TFq)A<4}kj?Zc1mU>|TAk;|dTpL0n<`lJyWT>XVEK&>*5TVJ zi1b{PT+^X!lfXMrotqfTE>TgHb3V`))J%I~+@fYSpqe;gi9P&f|1PB%Nw^+YvmX zUD7F+6k1CBLcuq^hBtPaVP~Ppo_l!;n7d5@a|RlPF;A3j)6S|hTu;Ic;cU^p1#7e9 z>=nAed$u3%)9Y@YK^#ObgUJ!=lsqMrEA1QMV0_C{N%*IIrQ}PBt^XwWFK_RBp(yur z`|U53eCusY4x)u)Q1^i*MX9JTDv{z?wmzN&iP+i-isU$}f=3nXxgP0)<=Nf=gTQaJ zv6|V}w{Cgrx;zU82wsB7-8w_lkd(;d>Eb-*rz+FK6hCoRPB}oj0?}-!04bss6-j6S zNd_nBihDJhtB77?glIG$f4v7tEgu0T*jv5p~gvC|sVnIrerWvM1%#l;8{G zGSnCO6NNm(GfoLpHt-W>LX9g!>WEVL3W{x!Z&jDi*cN1n)NgXlQO^K@!oj6#i6bsQ z`g%aVH5!E9Gf zl5PUr$;ICk0LBRB>+mrnxVtmsY^%I7-*A=X@P7LjCag_&q@7|Bf|o-l&Qsbmj>wR5 zEuMqFhOAn)nM$=tqa^*(*p{VR*f5O))R6RKJf-lZ% z^Ct%HbcbUwifCf*o$hTNp?%x<$=6-*<`4K8_U$57K>8|Af+RoEGw@<)3c5_eAggUp zT!i7LZqZIolT?rC)2vxUl?WuG_#_X9E_ypPfn`x326*5OhM*kPWS5A-z+0kr8Oo9= zcVY5@)l_ivdZl0?Lj`jRVr-Ve#!zD$JK?n_bRqzrgJy?v$Z^mI>m$Unu`epP>(4wt z-tutQ-leI9W||ZjqD3#x;zItN;@aFZV;;XzLb-hZt>>O0Y>ryQU<_8pbpkEr!BXi? zp@|4?2*hXIl*@$le3nPT9-60A&HRfkZS5#96;Q zD8;R7sFK%ijZ^cm1cgf)cZv;e0&7>3tM%&(IO#-&f z<6%q-I0z3Mz7OnxE*B7|c1D^m#tweY+%E-{@CWAUQ=|5EgaWiEN)L?5qqWoY6PIbz zN=}Bq0cgFoFK+>g4^4VsSfPRwQxnv&_U$0}H2BmNWKCQp+mH9T-KQHm@%b{{RB<%B zyvx`rF~6cjl#W4#QaFoTYF+XDn`;C`GP_R)=hL$(4aGpXnZt5$5CKDVSwVX;=H}kR z9xIgX2r5~W=?*Tr?VuV0KN7zI&O+0v?~Bv}82~k2cxn%iHtO0}y||3cebZSXD#CDL z`U+BZ`f5Mk=Xb%E&pa5vivY$dWK-aXbANnLe3GAu0{M*+2kiBi+$VCdYT?ZtXy^TI z6wkv}WDIvVxE*SX;5hhRW*i39MZ0vuBQE1^dl*ZZ+PgLK-w1Kj7Mn*H1=+kntqZVM zz^g8ci9?zxRA|T1E~m2Z4N%gGt&x|=+js++6LouHUOF-67W6SCu4=djBDphdCDL7w%Cl_0cs5#CjF|qh+LHO5(23e9lqw6rN)YNls)oi0M&(W zFu93~(`yQ!beSz-q(tNOfX{=!uH@?d`$~n5pLm=$lg)c`Oix;2Stl_kV(0^3P{va2nqX*Qa$fBK<}(8GQ1u$ zm<08mir_X|Oyi*_g5gVqdrU+V*y2O%2PIuFqIxKkWIdrwlF#X`bC8&@0kV1!@ z*od1*kQ9m^TrVQe@pQYy^BR>X8C!tkuQP>7B*-pt!vxu0w>?&C!iAqSX6e+Y)NM*@VmZTySZ-YWr zuIs)3nS0LtIm>;{ea?BVYvy`xsSKlm`Q^$?_bS@GO7TPblVA6wmG-W#Vn&1v^eCwG zJ()*Zb*`KTek-pNITl1&N8yjn0}|V~&qRKti;mvP$@|pzSwZ25-@UMxF#1}F8#~o7 z+r~QK^m6afq96hJs)?S6@X3|=Tmc6mA&HX*O&Rq@S3ZgBF>crkL=IpJjDMF+(toD- z`N~`W%ETK+?Xvmy;@?oLVl=)k5vTgX7|Y7EJ7Y%qllmx(@OB0Q)BWCbJJ)d0VU(lf z8_V?e2}vu}d}sA@os`3h%8cC1_FdiQPhP*;YVjHEX@0zY#OxwdBDzei{yJxp1*PM6 z@t)7>6JhN!)zC@*VVzZen78WdtQIN%WQCgxjr$TFktGR*vnTG1opr7t`(Jgu%6Dhf z7nP{GOENC$$ndU$aj(o4sZk@zr}}mt?hi($t4|LK`{9gj(HSmRiul%ZBkrt7@V(Am zk9%&mo+~m%Utyi1FQ>Q$uP2(%@y|C-ll4bneEo zI?TPo6F#*V;n|sv@ytxcj~_xcAc{l8i!AHPZR5DB;>zDlpEZp=<^5xh*O2zxZRY*> zMcq>*zv!u~9l@v)JvE2DA`UNJcbpGk8*TdZhObS%O5S3ulcE8AUDQ=(su`f-N4yIoOCgNQmrx`wIyj)k_Ig^vA zb@amthsL`t8>?U4_{H7sN;Lo`v_S_ccWKS6)=K$@*FvYVGU010t8;l?ueH~{O>}@AmK`19yj9U-`8ln-Cp}}@#~e1sFhpMn5jfQ zDc#`DGjBtzBt@3@@Cg%U(2&-&i>G%A>VW@gxYdrCd@s=+9U1XHt0&=1!^R(6lv_*c z%I3*Z@izY2e4M((2QzaLS$VH5EG45zrvlE}84EV=Z1Z{Q%FWVe2YXq30^xJxkwmhE zR7s<7$Njn8(%&lAbV^Li7p8x?Uy2el)XQ)Kf_G#sKuE8gpkkjEW z*j!b52^vySR}oLwCfV4>BqobX?|ti-$&*$*w@*UUfjxmWd+!2m&;qzso3$M+z0^K> zZ{Ndv@>l#6Z#VwF>~d9m-k>NwtNm%i&EeIw^jXgsWuQ27Xo=IYHp|f{Ta5F4oDN?T z%cw-sru;l$GHg&5rTUZTnk0yqZ0|*yCZj$4zGsdQl+AHHg<3zo>JKrlgl<{P(x=>r8j|h$P*D>1C)?Tg$0d+>rX1N0_GLdUl!!aSNEKvIGdh zmH*gnlaW+1L3<$#o3?+!^>OW5^q&2?k{u7;--sxew9oQpTykpipotkq9s9;^lT3`_ zoDRku^RVhGnK|GT_ZDHB4=qezFqxfp3bs$_p)NTe-_E1?qC;T;y#Gygif84X=qW!B zT)utV>-vkW4D;r)+q&kHP4}-wxM2fWMA9&xb2%d?fS8)YFx9@QHPcf9wdY(Eyz=}K zAg_li9fTMqQWkF7IIzW9KUsj?1X_iv%DHI|O&7GHr__3ohFnemJjJclsKNr`Zd<%OYGxblpZ( z-Am|pR*?_&sQ9ibPUm#%w3{;Lk8|zJdspvFb6Gl=Hr1II3Nw_EDSk4Mf-Fc2w8Df* znmAPMx_X)?QvN=oIkt~0sXGBZV_>}^5I_z1c9tM;oe&qK6td^#csH7B2lGmDtr(yD zV@VfOurR(@>k#c_xWqQ&Ch1T<`Cqc|or*nE%{#@~3F?bxgFCDZJy zIs1?1ip&fxdJ#fVUCn~021aIjAC2W?emc|g#517;#%-`-7e;?Iw0gAlA+C8`l5 ze}_@W17l&{0Xmtt}I_vHD6Z$E7w`0$t< zv8lnO+=XLEzxr#W_$1spo$&zgJ(8{|J`|i6jNvRf5zVcfd6(RE>{wTPzr0`M zzHokvsD;zE3oE!!QR0q>Ncq*$#SvY*Q>7gm}C zKjJ@kN#P^zM;bhddQ*M*Azj3wJ&w;J#OS7nQfwP_bVf6VPfs;@DE)!9SuS52=qU$Nh#2Zy z(qozF3ZVO|Yk>O3TKvm`Z$N#~oAnTS?VB4@EF00Q>p^>Rc&>^q{f>mai7)W)8SY3!XX0HbH=>GU7Bc&|R{a3-rTqUXO|V5!m|s?vv}yZdc5n!(i#) zJ5Apen1t;sXSrYcxycS5DcG+Ojn`hCIQ5=@@eSlDfOzJiu5{XAXG6~-mFy`hm6uJQ%_I=n4bEXAWglWONx70Q!iV_D8Q z>mz1jl|F#eIwo&`PUAYNip-w_U$_fn$coE~JPO<<0&&*`(soseoPzH|-rA|)+j@JS zULLal&HOVJ^vtOT+g5Y**0Km!dhgL*jlAG35oniB^I)l=UV59&`sy4ITelzkv46;E zD5gBVGRkzfN0`jcmFK<7=5}>SO@Kss@fq1>oh~0oJ)Qyk>)jPcdkp7KMHY~JYizo> z*At5uk9ccw@y;R@B#%UAlosEZj|%|rO2LYLyo+{pxz>8<(`=(P|0qk*2JSiGYs_^|N zeXxMI##b_y8O-H;&&c2bt9^kUFw%b<$0IROs#mmkx|wy;zr~8N->k}AbD!VUC6T4Ez2h<>maGd&C(Fb8wI2!H@5m-NnU+IN88`K@yLgrOsKfLGfe+DD3Qcw# z{3Mp1b{@qHZQu6ZsDm;Z8rd6ekY2k_r09&2@wYR}lJT=QM=ghX6IlG$TeEpl1NqyA z$|ulb>%q`BvTTdt zZ0K{|0u#O-`Z_JGgj7!Z;;s^50$gO$RouDyu8)H=;PLzF&I8>w;43XJ-MaDi%JWyo z^#?z97fbS$D}7e{9MfuHovPrj2g4dG@SRm)Ibf8|J$etpU1{@n-hT1xN$xE;1El+WEzl&8|2b}f2s zNqcB0FalggqcMOQM#TjJE;1-ICZGZmts!u0N+3OmL81hLyp{|)$%eu_47W5e0)d91 zOk*1+kx2nCTUb0E0@tV0m>_o`p!SpW!>&znn|5hx0$Vl!TSf!|@PkxxAaEG6X`(g6 z1pp-kf!dJ}P}&bxL75NAP?rIR~-pva5D2Kq%Z;jN+3x~THo5tNO}_xiVOAg_XBqgg!=i?0&$^Q&@C1mINv10 zp}-b|>7xa8Bv=AWI^EZY3SL~Tj8#S|AypIsPX^JC5<+MA07zwZC@7La_QY8m82u0k ze$#?_GnxK4I6NdIL^(u7na=QnBe7U49D#zPP)Z;|DKL!2B!(){0%bsbTZT{_|74>D zDsS1OOrrb2sg7`@G6McnkpZ|J2GyTQrPF{-#Y7K!5K{{p6htNC)IB}1swxO|B~_$4 zSqX{sL?|J^p@i{J$DmY6XsoJ-+D~=3wR`oINHp$g~+aE1dEZcR1yVHRYrYR zw#D%Spb6g$&)*#LZ@Y@I@q%|2SEEt!=RC18~!H^B!O-5pEPwW`d3~MfCSs^uQ)Z(S^uP= zQ7Evf{Yp~@+upALVKjo&D@0fcs)jNy z?1E$}A}<05R~3!+_yrlp!+(WHiNckSknF=43PUhN9uCf(4i3&Y5DxAhR^+<}2j}!2 z4({MH930;dI5>Q}v?k?`u=`Gx^_OfGKktL;w2_v?&p>D}$Z+EDB%F<^`}?{I~R@RS~~sk@(jNA)69j^8y~T z7m=7lIlpBgOeA1c3_Htt)bg0-gI%hmU4P2D*9ck{!!$oy7QsX?g5RQ0*sc_IhS?Xe zE*7#ag%QHGrLaJ~6u#IjfZYPqSMsTsaIAnm0v0`o%+de2{qXQ`d3pIC`swKjM!+0^ zNwt0QRh@oVeD5?2t08CPVG&l5`0T|c`vq1zEIbl=F3Hz#FbOCb1k`NhEW%(>YGy-& z-8(ciBq1S@oSfX;-0bS=YHDgqO-+r1gL86n5)u-kuC88OT)e!z%)!AS?^&zt+h7pW zZ4%#Wku(6SnpQ}gUPPyQV6#o?5X?{KtGZXPcf!>XqM!nI)p4|n%`RSS60+P}uu2uu zY{E`8yjSdkt(Gi)vfSsAJT#m-sunGLGK4MeG@N^MbJ0f?QqXrwC2kUuSx_^)aQX+P zJAQqA9(~7tewj40dwY9%ci!u}S$4G6Y@)LEbW+m}l9qm(pD~t>1c$mH`Eo00vVd4f!XS!Qz7Sz7IG7Ml23`d2|3M+EkheAf)uHz_2lYYJWQY&X zZpS&NBtWdZxNpTVXP5B!@1%hZ#Evs1!`-Fr@V+OJ!BCaUb_`y_iE?X1L%Fuqq3$dq{VZX5&JG$WTY+JKW}`|-0^8d&#OGG6J4MR5T#+1T!g?8X_8JwD*7X%DAQ zuOFl`n80p{0lAMR?!&k3#4~$hfm>Hj!Y0OF*K3zD?5BR)*Jh4RiO4^VTp4(_N=T0_ zA;uiVg5UDX27ElGv7uvFl-e~!-G1(`Y03_#*K(rh1kIYYHBL>&@DEYa z`Fto?9jVL)@ModuK~0lW%w$_{D~nCaifHLius8KydsQ~7#qNNRukq5NIEw!{wcikC zWk>7l*_)W5_MzIL%-qs(S_+x{%(yUPD2q7e@+)|Xrm6gPa+izd`9s^K5=dM>*4xF+ zJY8~WUF{E_{8tT&w_zbW;M3ksQ?bC*#HJ3P8n|XaaBAE4{LV zG_WLKfj#;iGIO_CpRv&|=o+zvM}pUS8>cm=8=3{Vq@MJpf_jB@(H_whO*YME$4Gv8 zc|fgF!Yk!8Af()lR_R4~xCS+wAAV9od{0eCvQ1WM3d$JEk0pkt@TF=>+ogzkn2VB|YD5VQ7$9aT=NEm! z)R8f2KXCjkzMhipcT*FrrW2^EZM6)VYOQP66id5Xp@Ihive{$|aVB6<$ljpE&i}Bl-k>yw5=>?Oc6ukJ zN5(4yi~021=v-3q`LMRUEI@B+$+%vTTWdDaocz|tBIWhX6&HL0L^gkPW|q*}R6{}z zH3?x@A!WKTCIWcyGoP&(Sc64Psu7ExD9TJQrf+JQalawe09eGQZ>H)MB#_tDTO@s4 z?n@A5pI98gnVXe@;}8$!I$OTtnCFU+Y&^iR6dlzTe`Dh*DHsfFY2-|cj}Z-U7Iaqq zwrvOEXekF^<4U!>rwekW##g4XBGd3BB*8c=&TRJ{Oy$iCb z(J8s8T(=M$+d4H`Yqr1ksOS88^*x(=4jgni+agMNye!b%m4;9S5; zeZ#hP`%26zo7>v$PSR}N=d`}I6R`w0bRnKv!TD2<1UQ%6LSGY#^#ur;%Sf&NBCt4l zxAX&5rgJPNL%%^wEQ>A}pWk};GzWKeg7hY&uHuWzr5t$ZT$K2dWc)lwkS4z>kK(zo z=&0BRb2)xo@`Hg>%xYd|ZuvP?H)buJDF|6l{8JDM21cB}A&M$#ccifGk3B)sWsy%4 zA<<^Cw%i-HY}7bkTlUTpr}v`pNh|n{ZaecREYQ|VNM+5oopu-6>W=g_642%`=e`Vs zxxcr{D+9&{=LUZy0zF&zZKu2sTI=LWwWFUfs0DMFTTfb=RCZ5YMFi+NdXIi-;`N0q zy*hRka`Z%kQMme75B()#kUifdBkrr=4H;zTXR?QJy!=sq5q~912d&|q21sW;_vtn@ zW}LrmhKjMsU>x0Fr|wt1Yk&!n)Zyv;W8G2zKt2_7+B#|m%AI)UdWyHjHzdF=3qQD)5XpCN6c8sE64(L2ftn_kkcyweyzxZ0Y8J*kZxA8 z`M%m(Tv%>exsZTve+jPFz`Ep_Z`V4*EB(0$v~gk}?ER>`uHsP!z5j+>guH5it(8O_ z(h-{g*zs8Z_P|*{i_HCDsgI~B;|Tn-J)RQsekj?5$LXea!@<*TE}yk$p_OZanoI`7 z5omme2f9TR(~NpZ-0V;Sjg=?bk(tCJ9P$D)%gDtgW3OUq3yIA0G28HMTq&%yAn&C* zRF@))o#2!)P%vZt=V{iC)1%x^+*i5jUx%JB494h}9R87V>lOnc-?{JvSa(Z{{1rH` z|9v*TCE>fwrJaJ~6vl4ZHr-OuT!99#G@yh+90IAsZg>@t- z=<%9jUvVq+V;&jby3E@!G;F?=a9$Qe;xv{Y<)77^@0~$YwG23AEQH?Ub`UZOd!l?r zM9Cv}3y7V6%!9eSGp(<8WJ@#Y8xs1d9FD>FTK&n??O#w;c{64)_oF3ei1x8D>9EOZ zP}RfM2vLVnEvq#a>}mmx*j*Zw8wNxw00RrU{-TrHHT`jHn;{#Xy7C+C2*+7Ur))C4 zr`#^)uH}!D@d%E#p|QQey!AL&j5DQnqLXTytMc5Qw(nYpFXFE=f6g6ba3#NXz^|`p zP2DkzCfE$%$Q@cMcmLJ)Z zFc@&Yi_qbn0R(C^!7aXO#*|Y8$e}T@>28wZbVvrMPyU%dcuzW<+TYQjQ4>6p?>w99 zVjao`R>OI}3&oR;UL0?~CV=c|H-(vs89?lY=erYGaqwY}qn6FqIwaEQ?~$RRL!G8t zjuh&R$)YVu^)5_7kW&UQeUR?c5tP=)mn;FJe@DQraQoKwm(^^XsF=W>`v@;5W|? zs-P;qTM-&QKO6zQn*=iO$t*%|^yK+o8`?9a4oE@kIKLx& zkk`v=9yI!?>3W>^VjxT-`e~hf$kVt^okVjqdZZ8KpuPNCB^3m5~6R|d6wA2y-} z(d9z=&3?uL<9+3EW&L~nA3rg5oYFdYD?ds5FyjMyjj85Gb8d1>zCMhezxnb;1~qn+O{I^%R!l|KjhEn zC~7!glFf^i3S%a>EZmhf0f$=@cdeAq6ioC_JF(wmmGV*vTkn&eR`T+j#jO&Pg#^@A zpnX>_cUN&I-c?bxdWvN%Zuh+bg$OZRU?RPaX8>7!uv~rz0=@ql1zsQ4`29FX2cpS3 zp=OPW?YciX!I6OvrL_lH^{X@S)=3xhsX9Qp`=DqC0}d;;%|8y%)w+B|#MDP&vTi`ynn>Kt+qX zU+^y+US&$AgJt>mGs46uC3fGnpYf&%WWJzi_TB8WU3f4%8ss%J>1fgkeRfsl0YC$~ z^C&*|g~*?>%tNzS3?aU46vZU2^EDjssOWUa(=~eEXWDB9`*2kaNs<93 zPirpRPf)Be}l6Sw`(r9w=ZjM;G050}T zqA2L#xy!vzZLA)BGOm z^*(8OIOR8q2qlD}Lca|zC}q~M==tiqBe?K64>gEB8H%C53;LC|xAZ|A@cHSW7?%?p zKkq%SP}eXnL_DY>xl)tqXAd3$uA4zZrmxU%&(I(l1V-k^0Y#MaisxZPNxFR(mQF9p z82j4+?n$bB`q->ht{`f2<*lHFC(Lps{y&hkVs6+)Mcl(gC4# zVlw}VF=()|Hpdq6+ab>(#=hxMdVQM-18pbyf{*E9R9#2Y-));%;+~&lU!OP_BNALK zy-Qqz{3|pXx%3P)wiW2?IomP`-ckf4lTePb$r3N|7136_R#|3am_ej4=1rwz@_=BSHYzGz!Kn<$RKN(+EuDCUkot5_TasWzq6@OWsvwWM+dEB zL4aJY8a3rORs7~dlc(=0OG2|G_DqP!?#~2{ol>bWU8qHd)r8UDIf86us&~xVe+jAK zni(pSfx>)o)pQ85!&@o|yx7@bpIeo%rQ@a{d}BjB=MqPOI_$iT$dsPXNeGh(*eU8g zGqV^I!by+@@6BF$^O^h8A!&Hj)JbvaitK)g1qR97EU1Y9{x2a$D^oa;!m!@z!(k{bFOhdUVbK9COV zI#tTU6ULGS6mSpQ0zg)~WN@YqK|73xCP=MLf9PPZwdgJ$*5uGIiIr!S9F*4I&sm1( zsQV)R7Smzh6~zIiUp@!!loV8unt(nR#ju2+sLwDkTD=AvWNC*dOh=A2bX`z@Is$h& z`94=FV`#)AHUb&2L1Vptw2ZA~Pe%E^FG<5cu|Rrp$Qgr~+qTBO4iH$gV0`x{vDORc zNDbEkRH8*?Q93RUMTKmlYfvmBFA{!WU-mhCt_{0Lc zro#e^Kp6e_;!R8yjI|3yCyf5*+&^ihDi|NP)|u-|V*`YNC2?Lcn61^styWVjDFY|m zK)@RNb!kH9vnH+~u58bQjJ>>0eK#W6$2_R`@x|?WM_-lf@y{ceY11V**8Ww@Ao# zh1ye8*(}bo8_~4y;6vQG8u-aF;iP)loj{(%o-WUwPv2am&FvT)s$8D_{#yIXz521m z!{?OiDOLv5;ukQy-{n}&*cI($acD5%*CZ@gT~u0`?(%u&BGEhY$8SU*-}8!)PZqR| zDHHcsd1n+2oqz96QV&bJ98X7@5=W} z&Yled62924L8Lejb)6sJnR?ae5E|`#HN^}WKajesqJY=6Gp_Z0gaJVwrM2-ociEw8vYnLM7==gE|jS! z2^vOAWL^A2JkVGdlt&h{v?lZeXoFIpn>6}BnhX5kH=`b+8Z)zh5S=Q!kY{!M{`MKq z5oqm8k)=@6|)qRbBYHPLFSN>Y~qD5&{p6_p~$)>;O(M9Vc~!ak&zOZbP% zma%kD8Og~zwj9(*bNQDUTRN08rET%O`&y_4H1krO!PX*iPwLhHU`JzAD(95Oh;m3h| z8Sl)8^?$(FppK6>pBF?e`45;VI{QOba1ikdF8s#9hzEeiJ-=STxX{D^jF zQ!w5gpZi#V_>uRg5Tkf>%2HthL90G!H92jDy~q!K z_tFyfh#?r<{|T*#M8g#PV9)i$eX(7iVMz_J5tEc3ynGFCjFiHTxZer|@6{Twr`9(y zod|bT@-Qx;SMbF0uXGQ+G)zp9|NmJ1_C1pQGK!Sv8zFU*_qqH4pTJxcL_r+@(-4+f zUs+i}G#9-;t&#P!r*8Nn{Z@vumc;0E=q_g2{O`LUxek;7Sz1Gb9lq-nxKpbG8WGev zynPx)>mFBJ-`wERqFl1KIOGN8g`c(a#_?k@VOCATssxea{g-Tw@+k0%vND_##&%w7 z8#e>Hb-WpZbWggnkrzMqi(c@(LpI7kd*X5`m|!-jD8cm(`CALPw5}91vVw_)j| zE|I#eH~);k-;rqC)Eb!UOS7eDpsL`s(qeh14m@X8A+-9L*9AToJ(LLsCT>~n2EZb0 z5*FjH6Pr_6BAwmM`XxRE9TWoRkN`)xO2o)k2n=(yrWFGO6@k}B(BWZ|9UNtlRgg^3 zcBF1zXdzIu`V$MNMcTBUxw@CF(O=;}e=2}kQ35c(kcgER^SY+4E60kl@+3>bq!k)h z-RUmz%Q|SoZEGQAsFNfXRLdzeh?l$OK<_lmf{3$({50qKB zFAT%|iVda8oFccdjz+G-jY;mp57WUOd{7rgU`)7Jzylk6dQ+b89XN9hS2+Zo^J|o& zXH)rH^uF@1F$kHc^j$9r1_sP;kcA}@??OvmHu{?+3ZH@tP4q~vONTB^d539D8ENZ< zEM#IAP53w|8LwjOXzdK z{M@(g?~rK<-h4-3el@43g6V(i-?_*I>m^p~ssO9pbnVW7=6clBqya`GX3ODdq1SZ!ep~|`FCF;LEh`nh%s+%J5QTw4;G4yNR#C%=1IIzy99^= zRpO7xM4s@ohEe+${>$aEiSjxi9FL*x5g__7Cv71!2H3XT>~@GU-F5ug*7o#-^gDus z(ycqI_WcoJ48pRTbuu0Xty}C|b_>Fy)r5R8SHtLd{#CUs7%=8@e|EzC=hidB@2Tk0 zyARfrDGvA@aI{6N#^nBLfo%N|5BT^+7SJrzBB%mabau06-QZ)PKpUi0&q3lbMB793Yq@i}=WN4-`$ zll_Zp_1(zz;S&1hj<8Dvbk!}}?r0h|_!E!WY1extE5hs~@;ivRsxqh%2nUBo$6Ou! zl?u{;s_mjvpn&hGd#uf^!W=~266XkrdF4r)i`#aaG^4)O*!tN`8IQDB^|RP3ZO4S9 zjr_S3x4#e`3hDMs(RI%6qW7knd!TBQUn zqFN|Q^bCGV-D=^95?%Qc8Bi>mbU2#dV8}b$qJhVw90zHepOx>HSU+3%IPUkG$I^oy zd0?|8Wjxuuyt7k-(8VepyoMGTd<4BBGkoT9E1M27J_*8K?nN~%nj64^^a&E_^_Mjd z_&DR2oaYu8AjFplt29ptYtcSM|TMmF19eYjG6ri`4iz1q$%SHy4+`)c?@> z-qAE%f{Xdv=(hgqvTmF<^O-K*RbgGtv_9T8gur0>&CYy%$(`w$EQ6&jj@3^>5`k2t+ zNrEriRAMpQB2xBC^6np5VyigzN@!i$!bZ<8yd&Ad=EL)33|z0pB}CX?8(pBbkDChf z1w!fN0PoN>5m)8%LQv#9!%m%5sxcjM;s6?UWx&Ni|#YLiijpYWYZ;@X#xg#c&;Q&AC^qzqQ)mKiGZ-fsm5y@3Q)&ahdX z>g1d(f0Kf>Tda&xwOgJQ_zP^n0~nqRr}5CILTS~BQv*3zSjX392RSDOdLfQ2nNY1M zhwD*$wJYFog95_7fdRHO=?L8jnLF+9gDqx|xd~{cLV_{_&TA}bCYyc~E>1nI4`z@; zf`{=$Grx|+uC;6WX-jAlKtj{{bPW75l?koGqSQ=i6O_SXmKUMqqY=w;2>R&@U3#d`@YD82Ksg7kn3IM4%Dg zBev5(E~$Hu=ms+1t3yz(kDLmv<+jFfFxg ziK@?6qvz+jmET7})w)v2X`?^8GvyX^mAd$v)o$|I4&DiodbU;@(;S5A531u01UoNFVpP*k4jQJ ztoNIKpa~+UgMC_NjsA6Sil8py3etz@K0T3H)vdA156hqLnU@lf3^wH-FBe-EfcOrE|UAyG?f<)Y%(%3}YRL;Z0> z#V*xl+ABKx$5c|)aD-e3uZhiW=(RFC4c#4C?I@{5B|aX{sZV=_D{#Z!i7F#-bJC{v zxeeSY0m}LV#xa)>a(y^{%XGXO=lu;_$1}p5v2`G|;`VJ0SXG9Zoctu1HsX zJWuugG9vHJ;|7U5?i*z^lEk2Nd2Do?_a>MKuGuFkMWEIlV%rEtN4dD!-RJ%@V01yk zalz*G`5oAdQgqAjfQLjl_!*x4G2Jo~i}6-7#fzoP+ffhfHnuQ>tmWP!)os6je5qOg z8<}Gfb+KJe?ir!p^L|{P#@c;J8RWd6mAQN~Ff7~u}??H{y{kYmDUhQr1#Ift+yvO*ldI$M!uc<0N zw1Z;!&36fdG56=9$M=N z(i9RM1CvQYt7hSvJ=YIDL1fZ|hL#m}&DiWrb~g|b5x%AOMT5~EHfnRF6f$^>!sY~h_WP49@rCGm z;G%*k-zq+gR`U8r zAQf@yW=nMEUAo!Be;g6FGbTqv*jgK-GFU$-5XVYpp)_-PCE+WFf!+NFZFVHho7=-W zWOFeoDvj0}p%jC1a&w^iX;hH+LBa$OvboFJTL1O@_ho>GjBDE|A*$!9OLy}74gZyQ zl=qz8ZBozgPY-U_7ZD=$7LRL|Oe)9(RSp}MDeQFHv-Qd3vkiq-LIf;wPdJy=$DC5V z5-_AbdT;gcN~Q_)dCEKxDy-7~*>5=ByNnaRO4*7X7(C0N-w!VzX!k@@I2t6xd`H2O z`7!nYuba2nA34YWJY$>|#f0RQe+Ry4R|uN_Uoa)#kzM9rjyBU)2@DCrh{+jIqS@J+ zAG)|Bq4{I=*Av6u8vRgWMh$f%hgV)Evr!)-u3b7A)H@dM+1}D$NV)%RZHC{nn7gj!P!+d~`56sq~RV$o_seQ^$=jVdh*I z)KG`T^lcv#bA8ZitdvUR`khtq)kb1S&G>XTg0ZM};0>Qlh=Sb6iRRaih7x(AtC23f z^r$!Nnt*%jri+tv(;pZ7T`7lc=Q8{Hq~`UJ&Y#<6iO{82)Oq%IjwL;oUb~8heXA~5 zl`p>*HnO|f_*-3c{XL2ixeVbgu|E-8$pn!ajrMgv+i&2};E%wx^su4C%U?kIwdR&V9B0okT|uP^z0fu8oc zou;Cke-g2jgi_q8sW7jm*kxE{MR(|s0SSoa{6o1sJm;A%f*ykL>zn6LrO6U7^>;vN z%%2|A!=TM8>auSs1t}TXtXlYld!-CuEtvzS$`E4pb{to&K4GbiMlTA7GL6-F^41`eI`nu zyOJ1jY?K%l1#l?Zd}`8?OhWLQP(LDc{o!6ysDf~+*)+>R^pVkAYU+C>@Llwc(A~EF z5E#9${c)TAq1q8jpaM`U3j^Zk%#627W;y|!ekB-TOEhamHfnE0yaSm~BD+>*d~yW)M3*ETogULS6wddOW*HLQQ5k&c1G=^dmEY9Pt3Po%D{lUIGBv6SV)ww$(6=$ z?^d@BZ6}Qxez{w?vt4u=;ot@$2xFg52+PM3P9z?4wZ1geS&_ zg{3f3>mAcl$QpX6_xtzUE=GDd<|^WO?-vk95psg{y?IH$%^d4{dKt5PjqXeIFQ)1V z-up4UDOimXemGA6IV-7-LvUJBSrK8WuR{cP&ZaJ)4D+yJ*pIy)=nj8_%Wb>}g2c})xBzH!(mCL7cMfG}>@ zVcm!m>;;eQ)w)R(<$kz03$K>WE)&Rf>pdo>r?RPPQ9ZkI+4_c_j90ed75G2|Q4xvz z_;7TTCmj~N>2rOZa3|kPSU<00T(MFcY&O=_{MP*K9G`-y{er({-ur5k>YSN?uFe%= zBXh3V&S}-=D!^O5$?y^iwSw4ltd(*D?r;>s`YcU_k`>snj zmQfx*U{=^v^*7%YYF0tBtH5i$*H;wDU$zV*rUH;!rDTq(OiSerlZr;(Q4+7`G!YkH z1$wp7c`PNLU3G2SFKI@%fBmAzNj*XX@nwMgBI~MF3pU7GlVlt{CYzFL!fUT~e&1{# z6l^$k2t@=#6%3E%f==iUNxn7dv2a-R7-se2Y9)Scdu5iB$CU@6xQ710WD4Fa*kukJ zfOeFCZ?M)Zw4%{1aLU+1)_G-hbFhbOYIrZktOeI_UoTfhF$x>1O}*J1Z5SWNHLT%X z8p6ReYVdlHS5YoX5Usu6t61d)?;bQ_ws{Lai!0C|t4sX+=4(|+NCP6g<`{N0>|_rkxFcdi37))?>bKtP?N&p zj_CeS!YIwOE|?699`J2fKT56$^}u_e*%^yt zcoG@$aR*cN=Zx6%Hq85m%dK<$=UHq(@a8jfELApN70@*)m{YtJmutWk^n<>uD`OZn;xnm|^oY=G z<_WdS9#6%2@P`#|c}%V?`?n^~CE27U%{o)-OnL#hx-c~b>kd1dBZ10tq*{Chf1aciaz4rL{T$ZfN{1{wW2-`k%SZp1!`eW zhJB4)SX69H+g-N^z73v}@$7;5FH%;f5wfql=RVJBS_$tPfon|!pdZUeVo;^)DN-?Z z6rzO*@!w)LT#)y(^dHoF#&qIqf>LrYB&bkBgnr>byH~@QoVE@_m8x5Q>B_nnh~hzo zYu;z+@cdDW^YA7ybNblV;5#`c7U(W`|J!K*k3%j}^_5QjzSMGq^pds1Z|<4cY9=`P z+0O8lf-l;bqxIzz8i(VljmLVo?x>J;qAyg3J5`RHR;C9#Ii8VZUMqFSZsvP*tw~y> zqg5Y;+qsYJ9_IOVeiN)NVAGOYnUace;01F0D9S zc-!g8z&UkHgN3%GLXC{|65@VZa@|E6r}>?ITLp5*%%HFB4Jq_&@0+ETqQb z*tWN!ZSG>ZrxrosPJJl{N+6DIa~5QQ&EsKpfW;?y%?2?h%iPTUL(38VDi02mczi|H zG%{0DF31PZ%v3H!U60vP%IkTe63?KB4xQ(3DMo`$_Xg}Y5k?`v6e_|>)x=L?u)+DL z7(hHGWq{c9bM5xN@1M`>nxb%Qo^ChQX;*aE)lQ3&=%Jd>1*=kHZL!&=(UJvt zFF6p0(K=G|0s$u!MOV^B5b~K(jFZXq%B!HIVL0?>UoIp6TWb+Dp65lh2e)@bg}{%w z!BdnyzPEdNHR__5l7|ktPM^k!6aj5DEDc_=6_nUtuHJxnGFGnyiV{#9ow?k5I~lGJ zxIHS7l4n*AJ4DoGF@N4@b{4*J==IFJ zOhJvUY+gThnddw=QKG1>O)OS|KNIER*HwkDC?6j@celQC*{%paT_;3nd@lqRyQ7EB z%;f?7%`TP7ajkW2YD@)w5xzq%GxJ}Zts#O$F64jrZ!;=hNSo9+%)2lhS64b70GbcB zh2d^e(`GK&%zvDms!zXQ@=!7kms<7Vxl^c>l-Lh1NmfS$XID(efS>y3^w}r;R<`k_ z&;`f1B&wG!vw$g*&u<#N1~n~e3ZQW4R~agY^~QY#nDS5Mr&qPLt3?J&-oxu9jlU~N ziRy|RfwBG-+ekYZ=?f?5BKgE4(SL;Qjw|x3eHwck-@-;ywAGxnF`{Z}3Rwd0pr4nk zYKMm{DuFqJP>fjr8If)qm>XI(1}xCEq7_}m_S`xRCNr61oSraL?5`R@wQ2#y3nytD z?thW2y@XzS+pN`1fOh8pkdFwX=2-ExUd~_2)#W4uRTG!;)!#wa7NHb3qTw>xCB*rD zL-~ezV`B@9M>oa6ssRkiF`}}T?Hsj%P1&ku#NYTt0p*EFi-`@O? z&Cb>?zx{<7A`V$ailn)(VF7=RUQ6^l&IX4&aG;J_t|$ z^XKhS=$AJQ>mfvOsFLqh0W-RMP$zLxR*POY;tXd-?}v=SPT?moxRZUNJ9p~s@5$}` z<@86*)py$qEpr6#kWXAYTV-pu`Zz--esAt(>OLJOsT{BpmD$~f4{8W`WRUXOfkKEN z#6zB+wMFJS98-tg3A`Ur>TT79a3JrgZGZZMh5CJ@oQ=wZ|1{!iy!r0Wx0(DfV=N6& z%+R~r+NH;AlDgxVYZKq9%-lMm$^DhrVF@nvHoBsaxS6v_E*6Dh-H*C)>Q8?X z;gpb@L(B*}yPPX9itJzaQAJy@DgYcb=RYE5;G;j~H2RdWxjv@-UVF6CMitvSTTGAs zlbP3M7%J;G8>9IIUNE4pd_&{3ap9eu90fwwhz`M*(QTmQh))3KOaq&NQ&>%E0KGJz zK`$PW&R|kF(!dHU#7gzIW8X5Ubbu>)j(=P^Vzci2g(eTb-vANFE zvgZMCVBOVid00zi!#Gd^(E0-axk|(a)pV&udY2y>NuB*Wmlais!wH`ns#A z*CrYEt>&f%01`$o>SV-)0Cp;IC?2S(QC6|>IHG_b!-1OU(mbVFd0CvPwe$d2n#eIW z)-fIWtv&nqIhb*vpsPAuy_l}GU+e`6L)D=lKai*MIPF;QT~izq*91>(61LU!NYWn# zZiS-wIsG|37f>Nh1!e_Lt>cnvsI3@11gWp4s+9mEey5j2fsE^K;{)Hcm2;8StH!u5 zSWnC*%c!2s(`RP<{U9GC5Ero`^tM;b#M_UON@hW)@4UIUT(!jb^sZFrnn-H7-jLCigc7Fr5{5|R`IxYW zVhn{#jkfDINLq*|EBkFM!IsN}TAM1LAC)gi<%-iz-xn4TBxxr3`qlwYOrS39Yqxz*ZhPT!EhAR^~&-2NpZy6e&3T}5t&*H5W*_>bha6YoDGE& zOlRWfper)78P*!HwXZlc97Xz#*iYoUk<21?bc25UVLw?5angA?iqAa3-(lh;qza2r z9p8zk$O6G~3#2NRn^_sph1(faoy7hL*p0T)UoeZ;w(9d;F0&*~R6gOk33&USv9D~O z(rKZ}R5IRw=el%RkMm0cu$a?$GovZj+l7o)5nPgwLP*4bEjneAqt(XNKI|%9HoisA znR_{qyZb=y^Me(8kAz+=pPe6nm0qGdjTk%XbdXcqC?SvXsrXJpJ_XrD_cBX;dY^at z2fI7+02(Q~7vDnh>nxkovn-~XH*4c}=FGDt8q`UI?T0im8ffTioaT(3YO+7}r7wm; zmn1DBGisuGXpQSyD3CjM(PpE_c-_3Of|`H+ZajWVA5GGl7)S;2W&g#{H{~JN%6mg@ zkM4QDQsh!!y-Y`-g3XUFv;wPhdB*Jgh5~o)v7=hL^+Abo4fDt+m0h+Xv{oM;PAr3m z$2^rJY5t9`5HNJX%}|DCvdp`Ar>3Du%f>K2a)%yDaO=I^HIh6@uL$k*d&fyaAJo0i zZd$?Iq9_}>)vRwS}V}N?NrViFY1?w&`yoR;~oe^ytBoO80FQHX>qw) z2nsrtW{Z`QpUUTx!tpHDwuyI2Q*e5d#Wo!%NEg)cw+~8%lm{oX2Inar7OIj|L?^hq z>XTT|6fZPABP#ENP@m6FG?USF(8)>``(e#PsUud!)^@kr)X~OMd@z(+N_sgI2yDcX zaA|t_Kt?RS=RTRPxfY=>;4X?RywKG?&kKu9{AmtC{>aVEYpO8zOxUKwns?xMs@!5T z9+lJ5Op()P5fy0w90d7(xvQ(TS_f_pF9Wf!zJ67}?I1l@6_-5z=f-}n7>{@?3Ymbr z_=h}wRvnrfpS!Cf%n`%aF(kWn^`ky^VKp^HOnBa?c@kvWi$&{fTYsVV)ppjq@66%H zU~BE2MTQ<856AHZQ95)@6!K_VdNI8c>W9kaep8-i)0taOX!s%5Bvx?M9F0#x&qhyt?nG3%ZmkmD}(AFlScsk?6#tqhmxSv|!Q?DwaNs82}+ z+!OJL(8wnbfFYaj-Mj-`sorGn+|w+!J74V)#+|Y+_647=`+6Q6U#gN6NH^MF5fvJ) z&(`eu-bntH!E`M&J@ag*R`Z&ep^aS5P3k;b&9g;3{1~#v6W_O3P$&rA7g;2k^{&n` z4=mYI=4&q13+WaxHGf*JpgeAGlw|jS3>K*S930p0s~AK@NBrV_pK<)wcCrpNVSqoW z$b393F$S>ywEAqbx;9VEPhGedL_5dMezW?lw{(jj--`j=yWl@f%a{ImceA)#KfV=v z_tjJToXbw;9OK*mF5HbAls6jFB5HEY}U@dljbu2iqH8pacu4b1cq=?F zId2^iv>+=yv_2T7gv0G_u4-+riphDL{6QI(<-U-VeAv|=%<+y@eZf0Xk&f+KN1pu6{!1V%K?4KGa{HMkR zQ^Vk*RzZbrFBXPbg4O9URvu);J`FA&$X7Q0cZDjq2IA5f9T-9W<=r!_WY$q(NbCXf z2fkJ;LQDac~DCVtR9cC(x68;SeCCSUix1m(Ca5CDCs4~Z~yluHTG6| zVxL5k?m8U$`UU;M8~cJ>j*ol$PZi|$kA3@J?0-q||4AwTi~T>8U$CQ~eBjAyQ|&j1 zFa|A*MCy!$IRnhjcszl83O3Pan#9`)7`yzYFqoWACa_b(XGJxBvS61Od~%c-#< zK&Y$J#0cUDTB51VJru{7e*xK2yv>ze|8f>nmqu=)^e+)jb7=x_E81^9rw)q>ml^2Z8!zEBEts{ zzEOryBsJ7doALFD1o6oJ3nG^y{<41JzBUw4@78W%@{&7+ zK_*65e~TawquH{42%ukvWsA{_92$URN5}hOLmnO;pZ;SgKHU883(!J=GRzBcUFid9ZZvIBnx;p{a!=&LjTt$c8WYZuju%lASz`* z|4a5ZNf~zXI`p?B@TJ*tJrojS1`Y|Erek3~MS`!;~A^ir^ZW z0YeoIMM{JyMWrQy07@c?fG83Ip(F@Ih=>IUiV(U;5fw?$fGh%niWEVVz7%PK^ehs= z0I|^2-9z@?ANRS>{=C0to^!sL`R1JY-e=C7_j|M2DxqgF=IIzSNvsd0$801ScQ`Cn zjh^4NgNs64Oao1zeaz4wg%NF=ysbw;&;h&}u^n-ns}0X1KX307`TLq>7WV3Rv|?@r zI2J!8t2rhFc)Vb}EX%s0yq5`0zKNquHY9>`QNT&1$AZcN%DVB;V7+#bM`jzJ*1Xm6 zd+-%rUad0vb9Lzz`llM#PW_#xC+<4GBWPTEHUDq_Ga}Z%eo%B3*{-jOnWm~k9>LWlNT%W=xi?hf;Xh%bWbku5e)q^l9sifVv?G2aD>$~Do1^H0hKn92z`cGoXoQjL`_|DXkz|@vu*mtQww;sL(d0)Nt z)QUv%Sk%Vr8sy-1kJ&kOu7)9)2rJPaSb7Pq60+{`u(tfvq_k%~jDZL>5cVuqRJQW+ zOl-nr&^)DeBvMe{8%9_ewvNy8P66%q>%GNN|>j~w1&EW1{gNl4i?u;y^aKbe8 zsT+!Tha1mdjRN-BxSCZTy+bR}U~0dI}@(=*c2V+S|K^mHnEU|>cJ_Rt!5yO^m1 zyQ8FK8n7E+k4HpQDeZwE=X1pKbZN49ba}Gun5N9o?lq}hZs_k!UHL}a)iOyyCQalr zp7SGzQZkWv{9~o#9p)K|cP;AD>7wQ-F}sE$;;U|VymYJdOvcUllDB;}=BVedO5`jj zmDTCBq>-bWN896SaXpsrwErZ{FfK#lD7+i)Gc4H{yff9IJWnRf5Hi_T^<1SYc@*KC z$T?q-KJ%^HLtamF1TsJrsXynm)bzPq4L6@J{4QkRR6v)<+k5DRKoyNQ#;hrf zQF%revc;kpnum*B!AaBuN93qq*2Pwn{1WQ0O-UnrE)F-W6{?g|y`GxcyuT#7zTxZx zE5PiLr2evIYA00|+E#qh@xTSX@-r|czdZ^U@UYUK0L)W55RiNy{$6^GYp2kz`_;X$ zp|tAOamJ9O^6pIE#0o$vzbP{58y1CC)WGE>WRtJWIy9Yd&WZw}R!HUIG_GC83#fUv zQ)y?T(Xqv`SFPCYXA6bDgvgsy@G#IH4Ellt?zlyee8ZlWgL+l#v4?3;jpr}u;scyWhWf)cw zu#Aj2nW9Bc*i$TAz_!ZHD*nTH-P&aX|5=kx9$0El%oN$=gzbA8RDskW`>9*yzh0Tx zJxr88dxrcN+I)(Q;(JZj`JTw4hLqt|!KfjA`IaA@7bPxTv0gzbftSS+Gc6sOS`@CS zj8%U>)2LOxv~NLl=6L$rIb7(zor5HXI=!L#R4=|gXkC{kU3AF3d~#kfG5N*w2{X7R z|rVw@rC+F;q zu9hVr$pb6R0ij2%rQANI=wT_Js}(z0S_wkE9R$OFSElvy$|sQIGFRnoGFH$=CYM>st+l ze)nFB@{fOJU@J!@!=8|SH6zi2)1agBk_Q@GPnRamMQZfxf0Vum8MH>ibs*{fb`x2B zq{XxBG~JoSm;GM>F)?+Tx6>ZQ6wmE&Jv+3^ct1J2At;V{W`+9gRWr1`D3!xDb5(6Q zm<^4v_>B&Gd0%Y@uy|o3Kd=yrv%jsf@BSNZ7@l{nYI!06#J*6*72?RF?EYlUBEtn! zQRbAp%UAtDxn5MK{`}}n?KxKOfMGw}DT_+H1+#}UUJ}DQu2;vMU&F4?h@y}6rzjz% zTR$Zj*g8}1DU}+J-`Z&6n-H$FkJRFVd|t0un%|DZmNB&GH9xnH&Mj(jO+*@=6^fI& zuCvcbX!-pcJUxx^bI6OOEK$BUv^Fe?Q(C@l~dcKy5xc#meZ`$>zAssD0LboGJ0gPJQuIBrskVtgNqgd zNR&4XfD)JvHVXuC9He~K*ayGFMa~a+KgOFr?DFTl2$}qpV%btGVv}VgQfeT3)IUiy zBEO+0p~y?EJe03&WjUwea5>f=?^QGc#8{hY?-H|=OI52a<;LADJ50} zj3z=^1bFOmgUPx%=Z!vu$eV>E^-GMH>gvzw?(7hnW%VZK9vnve=6@kP4%1lLDOJ0| z?A_;*(@6~o|2i{yENDIrgWA6hcQ44Zy?i0J%EGiUkLY{&y$`H3+T=_`t}z!m&{q!! z@%crto$cqtXFsXDGVruKCFJ%U>sua)-ymjq#$YGV{sg5;Q21 zHT{oUYVhX&C}>Ru`1lK3r_m>WUfx?{6BO<{LFpB{J=uU#K_px zzzAtzf;?toY;I&^jzH)cnShn(f;heZY7jypkchN@ZXos2;uhEdzBNKGs^ TXi7GNhC&YZE_T1!oQeGlEDm2E diff --git a/Content/Figures/PU_exercise_4-eps-converted-to.pdf b/Content/Figures/PU_exercise_4-eps-converted-to.pdf deleted file mode 100644 index 6ecd5a363aa2ffc4f9e33533c7beabe7769ff53c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 93023 zcmV)KK)SyrP((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;Soh*P5k${rt~={vUt++gGyjlcqm$*)O@qV{?7d_iA758RNT^FN5?x zzE}P#t>o{~zJCApFJJ%k_uusI|7v&IGwhC1?QczdR+-wo<>dt0q@4ZNUd{C}p*SEThlTk2oUUiqD;y<&_tzen1T-v^RX`>w+v`>s#O zzUyy4Jo~4s-k<*GhxgeG#&;QMP1~pEJ3r$owvpduja3&WRckZI-`ySifY$rM2lVf@ z^fG&N-H_i0l2ZTfU6a#YpOAgm-?*#)*|-1Kp7Z{NpOARYKZ0fL$=`UmA&}t(wyD|2 z%w{-T?WYG{)$;lt_S{xR{eFtQr`rzMcb8^3-M^~sShiEtis9#zzkdBy2d8F`T(H%( z*)s?3uuWa*s~Q65T=v-Ru$R>XDE5F+Gait>+x#j$f2W2A+A&&qMXA+36OXii0Cu~If9zcX<%QZ2HhDr08_BD24ZZ>sW zR$FIV3@oqzZ0~NE1@>|_yP~dT)WUYZE_>F(OA@J1o%K6CP0v`>J_1O9XI5Ky?tZr= zNmDPiU9NT5AB>E;6`R@3>RwppJOgrwjX!i5^E?B$Xzt_M8 z_N;D;-HepygpcgRAHz)G7dGqRZdSv>zPH;yUah&;$_U2#T6Sm?P8?9#WQX)Tq*%7ES%ktM z#uBkAs{*UjW53{|>M+#H*VwRNcHR*XJEOK%_5^!2cDmx<4cKOgJMn%#->?UGXBcXy zZP{yP2bS5#8=YUaOch@Qw912Xur+;%$~L`bv!rliXjyPZRH;dR>@)-nz~+RFX=gX*vNg(Q{Oe=C!2~Cm1?VA;#{hG~jxVwW zL9pZY#=bUW8I{Xxh`HJMUiO6~R>h`(wOwWS>a+=Zhq*NJvTnT2)&dL!G9V~ES=DOG z=VC~dfFt%KGP6n9a2cWC9grRyD8mAJ6&}q7YGkC&Xi?REVm0Za>9LECk(2vAHTfFNhs6C|QQG-gKSF{ErD7bY%^xBAu58=begJIR@%}aX zL~gb%7AUYS^PdYcDJLY5`+~)>RkAY*wor=Js_>LmV@>4t4-RwUlcspNEx++`yYGzc zhV~dWJQrY}>Lx`A55}1Tq3MIy+rJ30oh`UxLdwF18ZE;E)~zzsEWN3vl1=6AI0h_`^C2^1ygEkW`t zi%XDINMkEB(v~0-s2I<>^-vkd260?KJaudsoxy+UkSwJD)wf zV+^{aulN071I=$LkFhaPVsEhfoTc|Ax;OTp$#<`rvtN7O}yy99Qx*<0~3h94jtIzO$Ro_ z=>VQk4jGvCF)viWG)gS$rUKKpnhf8mz=X_nNWipnhW&REFeX)teZsLuCEql_xaBt= z5mzK3NYH=|ay)Mu(4ow(b5y#aZ7+uibVI#y(|~TD44Efrz}|SL0dJ^58qje@@=XIa z#A!gcCE{yE1iDFsrQbwgB&T3l< z8Zb<|p`Pg{d>@oe1AqkWy1+!8u?`97tMlhg0kHNf9SX4b#wozt?ui0GC6H;u^@O*)CRG3PSI&)gmoN+1qq1E?YIh)}LqOH> zyMBK>M-PV%N9M zD;f}q>*t=OJghq1jlh*Q6x~u69z0^ z>3+v(u*2_<7&O?4u-0+LApX8P0kI`YUvYnht~t*Oa6;PD-slrxVXf$^wHXcvOahKM#)OIV1ocoSTL^>%PL?O+HDHAw$!Aie!pRoSQ}-ctfRy zH_s%Z~5j?6WJG6qFP!_G~=ZCRMa*{y9mcAisIt7fhwmev-# z^=%Bwu(oK-)49amh=Pkq3CN%%3@Wd-OIoOhlnoYYW8)bz zs0@%rD`$8AEX7PIUN=n=37G;WQwYkR&-fq7vr zxZ|NoFvCJwnq+(~Z4;{FvaAI#Eg3BWWHSP|&8H z@q?2})OARY<047~!{TJ z)iilTi115S*xqq%VH0sRtpU~Q;|kLwRnQ(zaxRps0`q?}v|2;_8wVjk6%abLD zZXtg|U}4E14dnqj$v;6r)6ycuwv9Ff+b1|FpYBdYJAAh4<$;1QB_S3$9VbLD)#R(C~m+?y0TBlW|wkZC+$x*u5xq@w_g`i z#lGbwBu<%J=(?M~GSe`8e^joNYxf1THRAyt0-&9?N~&rKSx&s325-@J`)lLn&R3F{ zGnVYmI|SKh+1@#Y2_Fy%S2sY85*rU~Sc69rV@cDs%hqoI+VuGyMnp?4ORRG=O{`FM zxYjCzuPt$<;%h_pY|7n(G2B;Uk8uYGb2(QeBgB*;2IUZwh_b))k#EHIqqr(%>y8au zPFqMXl zaJ383Vq#Bq*)*p9z+rt|@yy|iMWMis$I|fuf00vuWH&s(bZX~G7Ex`O4U2@Q)*TUX z04WW@duw0)H0R)jNPfm9e(41cI4ko;3q&9wZC$$hp94AMfZXo~z#$J1m&Q2c0nTW0 zUMCOk%sJ$t>J;f{)3tMsUE$w)A46Kw%XNj(hH*UsmXS7Y;y{~WKg6Md?;P3y*-L3j+2oNb=c!g9RhN8 zu}f$B0kWyX1~_%-5N{80=rX4r;?Rva@ZdUe=tdkEV&KF92EnJ@i`DaVp;p8Ji&OK# zfB3eacAt>`TtCBsv)Z8y%?-ncGPHrHgiRS*m)7KzVGlQD2*_C#c>j9&334dIhB##~ z<}8Zkq=BC7ag&CYt3)6t4G7a9n#IhFG}M=gBbKFKbhAR5D~B}r8eF77Bq1mRzGZAu zULfboj#$kBc z5H~#8SZaeCo(dFniR*57DiCVd+J-0libMfk;<|m~`0kh4smwyRhFhHq48;A|l=iH* z1;EyY1Y=(@Kweu|o$SLV6`yT&vV||-#|N?Z#f?tyI|pIkHV3f}Uv6~TLm8dyjrp4~ zXtMX1Z0$CPFbLTLFnhh<0YN?0^A)oV z3E8qb?eVrc9SBL^et;W%_A9nYXn%wojrK>nF21L+we>yGxFQxJo)AlQ-Vuu#U$K{7 zW~Y~}pxLQDAZzPl!Us~R^!_$T>F!LXm|UMEfjW?8iOXDQwPt#~0$p)=o)Saaz|}?v3;FToH=34rH$h z;t3bl2>fP=aFRINw^u*URLwb;b;5=A7=Dk`b%#S_X0vgTSPZZ0(mS%-k+rBfT(&I5`hUW%{SN$m$t4+6ue_i>^x8$gUCCtv1}x~ zJRq6d0R4bw6%wyHW&aamc2_k_c%Ll%#c(M(E$r< z3~uyuw6K+>--j>TQm=Vk5u0CiFme$A^EgJLixi-uH8+HML|XJUZzu{GffFHNRdC)P z;qjUq0<>+e`%2p6W4m;Vg7t#gc3cNE7q=PeeA$OTI&VS>Zn?zcjU+M!?kkcMYtnpM z%jq@+*A(odC6k2~N?nNZ78B|=yPur>MO$f6&smwqHHYX z5bsg!e(UlkCn6ZvBs6W#P(hX4GCBt;lX@r+4F=jHeutANyz-2Lgl>ov$9QFV61FWS z;rsIIW2dOV7(z%|*=+Jaq`;VR$><*GFBN+6vn~b3RIfye<_e5$f{-_;(Rj+6ATbce ze_hZ#Y}3ir=!$jR3QR>z)Jj`{v11}bzAG?i916^axB_EO7&325fvIrC>)^WrQz5eE zu@xBmiY!hd4W`1qKj)>wR0N=q+(?J1!~T+UJ12>WA6~A?=~U{8Gjx^Hi8$<`HLYJA;UdsP0*9 zvWt0_bzM86?-)3F$8%m0+#~-Gb(lTgI?RDkhuIHs?P0%S>lgbYf~3Yr z2EmMJ9FiInjVody;t8=-=N++_@fCaNrNg{zg-9w?cQ6K+rtPf!Igo8PtW?+XPY@WA z<|3q5$^VEhM3&A-Zbg%z4VP0LS45UUraK1d*QxN$q;o1wO^_?|oKnQXU#zE37w_FXGfQ9r76uG^hhd!MzyXntms6XfS3e| z;4X&t} z3jf?oWDfD>3VO8hlm_mHKgOO7!8;sMlwlT60IPhK-l4#m>8uf7F^+ShE{{M0OKF_P zbk{?VnXjrCB)?+Lq7w#;s$bkSie&rrV>Qchd!O}pwd`#_lyC*HS6NxE^t3d|47bi> zfKU;sIHVC8q#Q$V;4$GObRH8ihWy9Uc}$qn(RO?^>1fFO5EyGT;L$ev6>x*_RFDxF z(a6+EHX~~AiYSqWjHo?n$`mH0XOBbcIRJOh#sggK;Vb%0e)$b@xl-+EkGuSw{Mam- zhm<;jYVb+*bX@@z;}}A1rMeSzS9=2b;W8o46u&UrJAd zV~?8|N>8JcxNfDVK^c(2N(lRgqmU{%k##9OjcW3^lpcdLnIWX~a67~usrB%+r5~-Q z!No|aO$^q)Jbxel%MD-U1w~A#t0&xzD3XufW2-4U+tz#RvzPN6>OD5D?jTg8$Lq9o zM6)tLkDYNtHb-vMf!a?H{}w=CG@*+ykxt|#O+V1JAinIzXYim)(I*2?bdNj&AgO%7 z(?qn0H%~jSDBVStFmu|1P%MD{&J%#7?n{)QNs^|45s{@!&bQuWZ6X#hbW6crJo1cT zY|k|)47%p!&JV&A$LNliIGhcsiln(ANZeg#s%}prGAnqvNY%b?8Wk!Gm=M{ ztft~u81*BEv>z!PoUd>>*-*i`;ghoc8n@S~<*6w5@I_?=M$s?nd6HCklY8pH@Uvr` zt0`xUC;{D&oN~v~ydfWTG|H3pj!)STkA|}wL6rLV336~W?)m`&RX@K#iarDaHx=FK z=?)KL;96^nHzb8uMhdg4Aj>f-x-Xqx@Ms2a2r>2yh3~ZmQqSy_hm{d;UPyiHQUv`Q)2?Y8vCEvneq*t{6)n(dgI$ zo_T^|)3in;Fcc9bB!n{ML5U1|oU5PS4cXhllU;s-T-)k*eL@Zvy&;USsHNK)?nCML z-2dJ}$!Gc!H!qZY?rz#TzINi+AR7_|`|bC)>s?!jD&S=b=RhNI zit#0Wc=kAS{0(s(-=07}sH^xk%x*h&6~7^HJ>{+9H^v^6t>W7^KAu_-o7#(F`&`9u z9WlU1Zi;Ci$%-g=WGxzuBGs7*64~8-Az2v>5aD&nireD){mYh-4a1Dob13(FDCM4q zavZg~A;E&Oc*x!?9U+^lf*+8;dD&FYgtmBr8DAPeLzqK8F3#2?p>w~ZBQ9>7ujuwm z8C$;J6A(u@LcuSgP}mSj_l}z4TJ< zU$(-FDKyXBin#cOyf>ah#l_pHS=xTa#W(m>6@BD!@kSEe`>4Qp!zRfW|i1dDmz(|uDFCy^3NuTG6F+68T+<>dXU}O)AZ^%L#9w-Ca zhj0_h$daTQ!YIVpS8Sdm$PSBd$aI?9U(sk<^N>;QKUVB^FWGK3X+|=@H&hJanNeK4 zebk^Dq`3GtXdntdGI#Dutg=;DuK}mFPVEjeYe=*pwRK5()`+Y1i0U>yZ_?x98;vd= zdxzziNOPv?%H!f2!kfp5_P6o8gFhQWV5r_iTzrG^H)O}f zABf`OZS09nii>YBON0khHGk%GE3`8)gke)#5EE<2t!YOf_qFIRB06&=oGyVeBEX!C zLxJ({l#Q%tpO*-X-@6d{F|e8OoD7U_s9PnUpa;eqGJ6P)0^=KUK7BPH7>?mqiinHf z$n0_PZFoeb2gVzoNsQTn@f-6zFuuWXOk1@Aub2>5=XnD1P^!P<5jK{x^MbjyMX|CT7~hasR6W3-f$>d~M4lx^yB}`|}i+hj`xmlf;`hMd(jnN*9hRsuHR86JA~7xTCoVP_eK5>7JUU z;MWe*42=yD&)J_@+%V7J*PajtbzYh5@LXPayCGGHwEKz{0zX69I{dUsLiO0!4qtzG zC5-TQWbK~f3ws!muL0O6xxiK*hkRAJaAc}qMPZ2Bf*w>Cw8`_m4_LYeE96OMWAJ262 znLX2EF~ZJ(AfkD$u(A8%T_`{>4i8VnzBVLaQ8!l%?9!R{9czqWJGPTwI(~FEyJe2y zJLxNeU(eWsUpL@zh&M_=^3cnpw4_K)@1U}DW>< zQ=SdkabO)PCZ&J_sjfr`(&?K1ijsRB8U9rIM^gzjQ$j_|5lL<2w4-nY6>wQE?1s>! ziemZtNK}cb*kM1BlH0v*fxQCdJ(w3z0`W!`H$x!;qhTGgG4+W=ls@CfE6Z(&BS1$W zYx7LT!jD?JK8N0cIui7cP$A|#l_bjgFSbxc5!xEt4TxVLYZm19ft=IuwgvDpo%^H| z{lO+w;kO{zgx2qb;*J#L+z)-}Gi`$ieUtY2kAzy36&YWgj^ay)=Hp{`4fuo=6wUfp z9i{*-qAfpY8hp8AO674{jJFanA^&waciXYn7^bLX8FD11UeQ$m1Qs6b8!CjT#2u?! z?M2=7ulC~X`d9DECDev1o3t)WF$W^L-XR`Kh=(<%BX)t|E@6%7kRMoPPUe`7sxb3n zMYFa$1Os;r>1_LoC4Is9VTVIZAw+JEu@&_KC$h(MxYTIels)E*!ydCCZjb3m=A$Q7 z2AK{gTv?YvrX$R?Y4t1bfh}(wCX_t@hj>(4Meyqp25pQ4oHk`YdZrTN=5(C=XAy}*LK|?$hLWpl!{~1 zJLD{5-1P%Qk$-@6_qmPy4%v6bI)6g0xBFe65T|}O1c5|cSuX+Ch*Ty?c>Gs$@x&m> zDJD7pKq{!TK>BiR+`PyMEp)tNexK+IZtrw=vTd4;J>pDb+yK=%U01B?kEB2I9m#$P z^O9Gc2o`oAVqpV`u~7md*|3hS0Fs3bBn7LK0a@5Ur1x#k48x$7V4 zjPUvP|Jrljzwi_CpX#uHno+2qf-qY-0UZL95sI__{tNb<2ce}O5C*aEjiAwEuIm~g z+3Q^h!RqRkP#8v&?TDgsmA@Nx01>j%FGzw?kF?|hZdtB(XY_Tb`G)Mf-e=`yQ&0{m zZD2teMI%D5;x&x<71i$cf&}DDq@o~ry#UBmKzVNn33ezi$hoGY_SwsN1myZ|)IKfu zcfj_YZb^l$scvSp?*~o>emI_z4mnKl&n0eF8wI>%!urJIG>^{0Aft z6+GNGy#r9MBvbB(!=`>c5@X!)(6+FzKoJ}Jbnqy< zG2zv~an`I0@%)=VGD0Zvh`B$3VT6CCK1{PR6QToJ#}!gLy{0~j^qL60C5UTxPvUy)QTWa z#*Sj|Imz-2C1^k{=~^YE|M?iJ)R-N1t{4oFr9^|`vhe;Pfy$Obyk_%Jh4tN zUTX3k%F`BB3xT5mjY(3;u>Qu7d(ZX``+^L^GH*v?n*^C2Ia+Y6KU!(X5J=>+Z|qpw z#xw-@PSJb8#&p3#AV>QnVoO)!5p=pq*c=*=v7R75du+SE7y+>%X|n%HVnL)q%8!#~ z@1Qj`!)>GD(pd#{@Nt<4(3#?d3(>J4F+Ud=YJ6ttj)j6$nf17_u!*f_GFxdhEEEOe z7-OYu8W$uL`5rQY3Kq`QVAv&6D4(jeom52;Jehch>bpbs2DN=Z{VL=O2^{C$m>V__ zBw;PD0%t-XX#&G&SsRjvp0(%)OQPCAwFg7IL>X4}+tJ6vh>sF($oE8V4g~k%Ew-=& zRilym2*QkLccD9s!>~cc0=3S-oQ$F>KrHws@Krv>9Vqdb&J|w9A5TEXn$#03?4Sr& zS9$CXG{&w}h^aQz`uGZ_UT7@OtS`?a)eBulxjQO(@oNwo^kq6@B%X8P0h!`We8OP0 zNjv^i?^uI-u&VCJs>AW{xW_jFKhRCeX2lvlZ~|qo*ZeT)Z)0miV8ddsr>C*C00T3D zQ6sA*LZ#|~XseE5_VAm0p-q+cA~De(R;Q`5=4|eSiZ<$Rl9)|}LP?XoFjAG*v2-yP z(4NUi1x8J0)Z`y3p5T-v#t3K-4+ua)w9Qfxf8?Ml3p}BMcF!RX;Ch%i7n>+8c0=gQ z++m_1Yv(ih15VGPy+(LxVw#@58R4lQpFvI`IF)o0T&&{-v30IYqD0a#KC!FT1VZMg zV+Wm^pz@P_B7j$4Fr(niCq#BqrZIl)_-9muou68RnJPazpfBZ*Gji_u~#(o{>hyb{L61HCUz^@30A> zJ^~~IrzkL@lBi>1?3a;=ft4K{1}o)*8;PX1g*utVJ2G+a8k>~%GY*R*Fx zH<+M0S5dW1kasY-^Ie=1VTr?clA$f&;%%{heHP7ht`uXK8O6r}f-}P_I`a-$6OhQ$ zX$=NNT#{jsMTwe~MGX>AnHwwzeOb`V2-FK=S7k3IT%TBDFMIPQTY`>a${}UJ+1tl0 zhoQ$hixSHY5;#K#p|%{yi$Jjyx`qNGw@l zt>=IYb|K79VSf;G6&nkS+?YmvsDUjrBb?#>g|LB84`z8M3bD58SvlOvh1!g~EhKmD zD<(6T5Z(ZlIHT|b>Q-P|Rl^o~E+7bsLjhv&La2r~ODGNt)(5H6#Xa27`PpUC*_Tlv zqoRfzg|8Tv;c`#_oLTX1mQ@`T)H5XX#+vc+ujefHKSZ<+i6Ljw79bFKR|YOZbw-<# zsYy>}JLX4ve`a0IgS1?xr(9^AQCMVMS3HZMzR)kwqbwsr2IHI*GGkj~2)_lbjIuG< z!K!|b8O3_A7Kk+>r^pX2MpT*#@9?d+Wq{!DjvTC)i~XPC!4MVx90;8Ec-qsM69-|U zfHEM93mP~o)iXgYKMZFGp(&%XBxH;Da5$94EkkA$4{7bX0^M2ic>?@mS+5{V%h05- zfrDO(oMp3wMWbFrr<2@IK@d3!d6#-2>sFtcEB#(1aTrhOrA4bqNh(pOdX)*t$%FjqNL*HK=10AtjPL@pBrKUa_vW@+`yjP+i+Q zGbGQx@13f>Lq4ACrT_tP3IK@?`QbqUpbNozb|?UwtMyF*Xl}jEH*}s>Zwi2ejK$km zbcUR53IHz~Ql$?CfG7t@Pym)3oQDE{t)iI4p#T)k^QHhOzd>2gNkEJb4G2gO0X%?3 zznuuQEJbA#fks*O5CPb$De5~BfG~*#J4667S8s<1AX1n|(~me-D)*ZRK!ze2_bb@t zB^@F_&tbZV0QM1dB#sK*y5mp*D6YNURG>W1Apx=XK?2^egCu~KkbaYZfCLGEOs)C$eDpzs7CP={B-iZV>bc(!epANWf(~5%ogd7v3$wI93`UB+H zt6$$F5ro}_Hin}BdwQ`cp|E=uJvflr)q=tA`u+YGw_x`vQF7a+9dag880EWufE;6e zaoP2{Cch5h`Uj`nrussWIp20?RHquZt-2t7c-G5SAFn>P`VBdEy-i9p1(D7& zp947`32a~ECy3wm`{OzEH#zKDMTfw2H~RggPssJ*Z_n`$pDYG+KU|ROQLGP=eu5yv zBB>g4rWFPDvzgcdc&ZKaqk^+a$=Ql~@d)hw`(l0=EQwEn!u7Cv;!$A>seL{#Kq%tF z3Z5qEu}3kBSA$?cF~S`(@1p!*q2aDD0v#-9lwH0Vx}CqFus{tXF<7m+u$(-J=@~(0 zQ;AK7Tq{g-Lizy$qYB)U7X-d=2m>+G+Prpe;k1wi%MN#i;qao256f8lQaL9rRVhn_ z2F|IqE#Q>MRRFy&9`{*P?Ynq~C?B#GFM~Dr?>Oyjv5o$ug;B3qr^U|HxIR;|#W!Yt zdQ$mDNF>~QAG3j4jBZ4H#krSCzp#LsC>__isS54E8dI7WP)Eo8#LvNPWTa zTUW){hf$W{6etK>eMF}EJ$tm429ng_v{-Rf)mQmI+E7*de> z2()l7LX68J`Hgj@1wo`X>o@BO;3j+mUeRQv5bNSc@Juofvvh@e#o_5Fx^r2@Y?eUT z_<1}`90=N) z8W7Y6PmctILbn2|b+7GcGD_aH)x&6(>Xw%-BSEK)zaU_k@-TS=ce3pvtCrJ!w}1DY zFEURS_6AI3ms6|oFg6|g_<$}T5*;iXd8#ak{EDC~XpBjKCO{f&s!q+Ax_|&@lMbVu z_r+4Zj|#{leTX=#+#85!jvfe-N9ExjOJNG!I_SXdrdn~(L%CAtio%S^AkU@CD}W|bE#0?LtucGqFh1oz8-8SdRqi!ZO8>G}8A>3vn^6rtHZ^xl&B?LkWL&mwV9$2ek|5IhK7LjF~qkd)SV)o$f_d_Yb$#6 zu+AcGD3WoQK#^9 zw}37pYfpt=gtP`m!7AJ!i!Vg`ieUe`NfA+FIVt__tn$3*iwpXbm5O@k6TB2gW`rNKA6mD=@5iD>D^2Gxef*aLugB zC-hEqTOLFueYUbg7j*)|P+Hu*?@gx>c8{xz@&_P6qbBb_06~l!HQ16mLKk=kLySW! z=U&6AP_iNnk=TJ)2PC+T*n7MJLK1z{+I!^azynCS0M3@Ptkv9YT!4rct`iRU+~)2o z(zcHfcT+7g?3lqMT6w11HcoLjq0zv3I=t-sQ1ev=L!oT^U}IhKyFKoECj!!BN~j1o zAvG-V2D;BfXW}C86AbwA_Af!{wdWRQB%=#Y@Ub*+%UXr5sC)Ti^Nhv@kVsj>ht=dUU@Y3@9G1) zr7T)h@-1a`wPoE>77CbC8iz|ALElFz%1&7;Z-HX)`vbd!;tj*e%vhc$B=%pRz z!gBsCZG!7)SdYQC!vD9<#2(hjITNRia{tUcbIH7rR~Y1#$U~}VBceN&xXff!XJ_DK z>{Nw+a`v#1;)edne`Jck<1N@6Yi=ZFPJE`Kg-9g9t02X2au#gVRTU(1e7PQNOP z7R{q%AdkCl^J@&B<^i1!05Rucq1hNDPB#@)R9ZrNUK;IGdRZm3w|wq}t-;zs_v%ze zYDR-1m8qsJKqnTVO%-Y3IUO?YlfDQ&`i-rAu0WwI7=GN&T1QdL$2PQ9W0?X znTVo%-#b?8hb8hUTiN-uA>kWkse8=Dms5~{L(6IMRpGMI-p@hB7RJ5s{ky7 z*3R#UYFg)Zm_^dMUjU;STf_S&pt3cT6b}cD@g;8u#ED-#0S7veu6L5^$uUk{S~qJArrlAhN}9p+tN!yPe2f}sH$C0k+FnT zM^U>vt=ra7Y1(+fE?75SuIN*SM+IM1v>n4PBPE{ZuPCIBP$#NM?CXAZ4PD0u%{8^F z7=NMxFhaL0+Eix+cP}K{`1oMsh9Jf?vn2rAlZO+$qUjhIvCG~pvyO6@n_r+q01fzy zksr|^0CfVV8VRxec;2!3tk?hKO;uPsa|4CXhUKgdiu4evnk3!2NgLojOp-$Y|Fu{NC(7vgwey6gN6K#S)@JgaCgH=Lscx; zRXW2QV+et->v9H{qSzi%R&h7h+XJY%+~f8PGIKe9a)|O+Gx)e zgONY`5HCN$G97J<5~JOVo)z@_z6oB>+is_6CLDJSrUV#ow&SkR*wD7)u0f4pOsX7r zEvum8aon}6Eb?&NHP}_^IpU2$is?G?4QgXKngc7S!%*W4rNLl8M?o-@hF)Qyv(8W& z?0vItgJ+D7=WavXa~DsD734eCO+_0mBRM>G{KzdkH+<_#*LlRp&2fHjilTH;APQg~ z*IlCy*tYAgL8GG`g|53j+^)L=(VRGjFyOAcGY;3C&EQe5_;B5^@;nZTyY8Y^efaJg zjcon$-8Gg?Xxn$!(3N{z&A6BIK6p8?8_oXR_ukdemem1byY83}yte1AkxJ+7xqHV@ zmRIzm{Ks|2tKbFSuDh01STdwcJ~!3vy5nmpHtz$Pz1^)JuZFm=%Q4p&DEWdOYJspX zU^BY9ibRq<3L(klw0V)G%R^T{LyOM_CCNqxX0d(|~L$>F=be39GGX#QyyH z*fABAL?V!#Ce&hq`tfH&jv=G`9 zM+Y-Kly1O*dl5P>dAomxG52`dSR|BPj^&YH5zrp857aEyGHn+t95abohVayes+%zm zs<2EbYoovj&BpIBcJmtU5G2pacrZQzl8GWtqXIHB1&iwN4(4};K*8FjjG&hc+0c1y z)=SE4qcBF?#n8r7`oppi8{k3d&eZy1Ny~jjSK3YHsX?*tsq|``nx(?e-MOoV~-^@yW)mBiTM z6Ker(HOb~aMC5}Bcp2>dyRxLtTBBC(xWqdm&80>)_B7jCln=4pOI2bW;Q4KFJ7gb( zZZ;_PPu-M=n^*6sw}xVbpjAT++Yx6&dwlc8K?pIS>rTI;7$R-ylRjNrA2u~S3KUnc zD}|1&>SN7ALVVi;FN==NdQqSpa-DAIi*@`2anlwcopoK*kAwx7nOYj|hlbj4>c<@7 zE{Y}N4iDOElb(}(s3+mqp=Vd9t&KG5Kh#xFHH;-N!7Dw$57#FmdpI9ZCey=I;6FsM zqV*IR>@*8|C8HXS!LFfMSj*QHlV!E`6Jl18@zr4a$a$yvHblD8TB(o?R<_0~eUESl z@P4}r8oG%wkCHjvdx)?u-zoRFGYIXx0 zmrxyLgpW|&A8Nx}sOEF)5vn_40}xZPg=+h4v!J zs#BM)+jPYm)`&6M(pQJKoz_CxuIwv|c%^JtJt+_W*seMPEo$AitB#DWW31|MG4{)B z-XXytTR46%9_32oRi{-Z9phD}dbb7G4lih1+jiA~$D}Y}y9&rv|AxoA{s6fOzr0}u ztNOx+$>@l%T?Hg;SDg_Sb=$5w+|B70ZaSRibjA9v;str@%$*5H*I{Rj-T76E5u#TI zQ7P@RTy@|AG(@*taT<_p-E_6bVY>=Ih$egh*4vF&dhBlU^)IGhOEoV-cVP`a{JL$XEdI&wXd*Ov0W7yds?F9Dpst|-A zESPb*36C$y{=F8ZuE+u2o7&YM2Y82?{*+BydK)_&8(}%zB)C6!oMA`vqoc;Dhpy`0(vXYR&k~BQzMeL=W=ZD?gf1}7-YGaz z?q96Moj%pH0}VS0684BQjL|mrI3S`7c{i`f6kC(5v+8hPG9hFtZwc97xw0Ta3C=}z;~@Q?*mR~Y>#$RQN>6G$a` zy0g1Dyr_Xc;1hDuhx-X44jnewe5LhuB+s;UCGkZa^a}!=JfEUlzdxSiCDxZbvFDo| za?KmcV7XmCeIesx1Nvg$``Q)H*U=Xmo@2!Kh_I}xX4~unZu_^I!s}2Ami5m&_x~h9 zcZkrKVy+bQIvQj%{!4QD9zPK=6_8Lm`Gk22hV;d+-NXcUbap-|UDbZ{3)>!~5k(9DtJ5=6Luw%_+|vLW zxzenGe!@AZx>Vyw6C)6OgIu)3tQA@L!uI(pZE6GBZyK&VHJBcjFyk$YlON2SY~^7~o= zUlG4UTtf_VD4(zoz)ImEEW}Q>=*{r+L+pSj6Iu_<#J!yHb!Hr5NQdySj#l;ch#mG0 zg^NAYn_}RjfOv`e6%ig$si6~ro*{=}Cx{a7YTZ#9TsO$Cd9tEoXDhL^$7hQI^7~^y zRGA)b`*rfJ{`@sy2tu3#0;e9;Vh59GHw4;5ZdbO}z(46S-4Hra>z4vaS+AX@lJNq8 zz;kDPy?>8N^H1i6MXkg?s?QEJ+#&qN^u3G3uzq||ID#TvN6Iw7$C$qF<#fvd^HI9R*R)U9Hk_80>n)$0a~Igk##dfg~2 zaH7(6QM&q+t{Ww(42zep8^Du!bS~CgAN?v_H;VlKQMzu>_Efg8J`hgl=~F6Q#|rHE zzG8J{x~X*CKsgQ+ZP-U~pbqCqk^45lDWAFd!k}n=RjwN>b&z-Ex&h*m=XU6waa69` z5U*S}z@BOPQZfO{Qm1uQuH#3*)TYXH@re-_J*xVYpUQPMO&0c#%5|(8Khv&UH$eDd z&DoXf1_Wtj)(XEyNh*ft@!tczshKeoan9WAId|#0!H|YcDF;j?uzc^zbpx6*rDw(2 z4(MR;Xt}*1##@Wn0A~j*Z4TU4<+=eU)GUX357Z!~o0HnifLzVepsHLq5E9Ce)u>!I z&>wV9=1J-BC&Sex&gM5@-AFApe)wo*BC^_a{L&B`a<3@y#rvnquDbSSgsvLD=%KR$GdplhIsKhJ|XYgbu4k8`&GMc zu-o}IVh`4&?Ynl}Alc7XWw`;?F~+VvH(>uOM|~Mszj?}(uqPCk0ht6r5U%L5H3tiUQDuMUJ!(n-b^U}Z{t3V-LO0md ztNjGoMd${D6v_{fNS(o5@OS+P$&&1^yFMVNnBChKi>(^)d*v&lWQ@$by%Vu8&~vm# zjKiQCfBUn1cAP=7D~tj0~0A zZjZMuB_Nv*PXu1~9e6WP#xV6OGG`2xV2;?G!LF)#$M(GM)qmVv0Wo2aIP!W}ROinJ z1m%7it!jLWU0wh{xgC^+K=mW&8|ZyBoQs%#m!>EGa*l6JbQ9#XflNSWn(fW(<6v$Y{uo!Cb`!8q{P*)4c z*;IM?q8U)r$2H5NdgW@sdc(QOFi;g_0i-katjIeF2qGaN|40ENWHFVtDAFDfuen{6 zY6=J_3aniax3~uhA}l2}qrbXFr9KN2=Y&Np;#NQeIE94jD72>(e^FP5>mrj2Aj9*p z<>4b*H5EwKp%YpqH@Y$@4QQ3JhY+!lF%eBUqDc6vL>eqVT!oXhYk#Yj5_Qk0X3UlSDDnO4f1Pgqz8WE|6@RjIZP;RWSoEK_euu8x2qNciBE2*AR zW;GNb^_1_@t?npbHHcI!?8D}i1^JQ>V;W#eAnteed?_lH21tpxL*?P3VRC?u2rq*Xg=nib$s)@@RAW(^x_8Y z?kKyB-t1c~q0o;&!!d#2xQ|JHl49@nQ8GbEnF{;3MK9)aBs-WqtRwr_b_mui{1zv> zQx|CG@b}7u{zDyT)Td|?6r`h4HFLp&%Je>z`?4ufA4QeNH?`{E$&8x~iWUtP57q17 zWb3Ak9YGolZwTT!9*+Rt1lCUNq!=AEcrcSa-EsHnpe5Ne&SlVZim; zFP<@wF+FasLe&|ha&w-6+Fo$vZ|*cu9E@R*!NJ(33A*p*as&B-a8PYdIGP$XJF6Vb zY)ls~9jGAAbmm~U1Id*0;>e>jTHrA4fm+t^ByPSwfT0lAH}4-^4*eq^n1IKB9T{RU zl<*QW2BJ?XRD>vE5Jq_&X@%FU@(Mu>BqOQRy!^R|Wr-Qv>hDf0)8C+|`u8FE3mI8Y ziaF43gmQ5)O=vMF$fNbeN_3X_PC9m6EEqh|PF3wMv7ir=!m95s79DwM;B7571z*D! zsv|ZI4>r~6n{^SR2UkYvv}Yp#0(nMSzBoV<7T0*XhzSu1;w2cXUd|pTh#{Ft`#rPdD-G-6BcGRf8Q|u8Gn&+1xR!U9xXVzTVs@2({_^ss<)CehRS~HfK29ZJ10dD0vMIJ zKe#P|p5Tw+p*M~!Qc>7h-dMK$mI%J(?vt%EVrCRgkgPxR7K9JDbfAh>OAYENK@dRo z%7u)?DCQv=KtY6Y%za$K3UBI{JTvYqAo3`s)Sp7JD4sH0bSetSgWp~12Qu05xvU}U z5?Iyuv$-mTwBmEDDwL{B2CjoDjzPuJItlA24`z0RNg{NV8I!MfQ*~G6sc=u&HH)$* z7h)wbI?AW?3OUN}8nxJdA|}OL_OpTOo+37cESCCDL~ECp(-fi+9nz##1r-HAd4v<-UhdpwrCy?gjaBWS3p{xj;k;cPXx4urtz0y2lQPUc6oCUq}-Or;9s65*I28C(jgM_E)wmq3GJUR7!SDri}S z7PI!P9(51wu_9pP98}ht6FDwA+*XUkX*g$t&X-tZ84jo~sfDdNJ(W3UP{Jh1mHd(E zAs|&INp zCk(~kYZE`3UJ*|d0M8;3glhgU8x-O<(K@>Wur_&@@=}E*vPU5e3Z#k$SCE(JJxQL~4Kt_d>z?wCZ|83ltZ$fKxBY?Sbb)*gx% z!y6{iW=#=<$cIRkO0i`~y7)A^{B6TRS^DzTgF$wKhU6(pF<&xFh=Lr@Iw{Pvf5_QoG|L&sIeB`yzYh@6p z2GSO~u^^0Q$LkC$9(YHFWiyP_rKgkb zvP2UToSZbPKUH<=2x**FAKzQjcgEhdN2fWl+y)_2(m449Bh(dG?YyK=EzbHpvKuO| z!!@f6&pAuA%qH=dY)cBa>tmVis#&3CTPwuRTvkOm1SZ_XhbWF{bW7cuDhrP*gnJfoIR zn~F2+g0{S4sc!UiI}qnbyNhHD2s6d4K11@3auPw2WNw{|(-UNFIZ7Rth6IyO2&J!7 zuDeV^OKz6(CsT;a^}M{oH?J@D@2jw+yv(6S1A;wIij?_U35uMYRIFBoaz>+FtY}4k z5h1ba6mMCTJ9ehw46S?jn8gb+5F6aG+z-t>NrKKU$m@G z)g?Iet|KQ6OlH$W(>w>?p*tV(+=$&sd%HGO`elPe!!8+ zYl0ID`oZSKE$GdbXTdp&sqR|g&2jcO07W4wZPq_<^4cvP7+rr< z3@>(SKw5n2C1wnk-Y%CYA`{Oot`O433j|5IRYF*I`w~sPd8)b!zlS>2RQVPEKnSR8 z44h&T2(5)gs9AN{LLfBytUQJdg5}z)1&6uQcdjVIx+tI)?aW;2qB)XOpTQb$MS`x7 zfMw%~gkkw8vBM0yFF9;HL%~Flsc9@{K!6GW54XMnnVv4uJg-2w>~4maa9Hb* z<|8X_Q@J!+%1WI1?g~_|K^Lg1)#hXiv?CYkVX`fOy1;bPV(&=>ooYc%wT?M6;zCY7-=3bq0f%sNeWN9yMh_R%ZNZDT` z;=_$XZgy@%8NY0V!_^=&2qTbJN`Q=-qGTr_JnLIf7$lD*{w11e)?`3pryN~`SHTae`yK?qM6fx@l#4HGQMI}Jt9U>`OhR6Hx_gMI4b zR-i7S7_E80SWw!KClq9Kh|@G3w`j0`wBgY}igFWElcLVzrAdr0l>0>f z*`^~BwmZ{};@is3%uU9?cl%;QEO#Lx1IiW(tF5(*di)9CWIzy9UxpZ-DPP3Tge zkbmqsbetupdWLqNka&(^rOAP77DN*L^v{3)*ByhC8IDxgjx3^bV2YGIW+{l}1CoK) z;uO$ASUfqdL53?eo6AygaUh*8-VSb37$$xoY@G)aA!rDk))yDn2_wX1q9NkGn2;G=5&p6-ONl9=?kjn@I!C1o-6^AmEu z65UoNO{4)~%VM@3Z`CEHfShaIKAE#cmX5rWJ`D$)*QbXk`Uglxf<8T2NRz4mAIS4W zc+#Li^8;j}rgppU`h<)bbpCO##}AObK(DjnOjA}9F9O-2aYOLcJlDy)V!Z=6_bwAy zW*3D|$hiqxC{3yF0DtrEk8jZjqI&I`e+Ti{gq|9Ts(AlF_i2g(M$(EKVY^y<7@CpX zr{0(q2C)oHzkvzhJcu@IYDb-hT+)p@n;P7s_yKKiNq(3{S;e11>Eb(;d#p4jvg zn5Ljw_K?r2IX0-Jr79+4#G5ry6T;3LNjEi7+`-Zam=!KpA+L-AIjdh|9d}&r5Tuzk zT+!4_6Y&NQUy!A)Hp(hj_iEIUz(=DXa+ZRN8z2;5xajL;lX8}c!^U%tWL^bLH`34& zwKHay^2&<8egW;EBo8c^zy|Y^FQ7=np5PQ+Q6-f-eMi2^MQ-`*?aX zGt=bAgu3FfGIBI0wmqw;Eef@uBRBg;5iyyyusf+|WFiiPoho-fBiC{Hq@FY8#;cI^ zzQP+2;R(sxii0UHy6o6hTy0BW6iC>Y)x4A;+@@?Y&NmjXQf=E%wUKCMiyJ0mB8=CP z{G9P*D!bzrA)TQy30(}E2tP(Esk4UMK)8N+s0RX6vC;IcXGG_se|(cO%}&ew9_oxP zRV<^{SmV~KCMl{VcdQcKd_KhWXdSl!37zBUteUh1B-md_nblGZTbYMiYd_G^xwD*5 z=An2$^6I1xdxxA^>;q$T0D6iV4Ga&bg#Vf`EsR@9gB?W>vXU{7jtv^Yox<5Cm4YH{ zpE-nh8G+KE2?(GbA%GDX26DvCvM}(GrN@Xh32$QltHyQ%Kg-hTPi}5(?n;9GiY1-_E6fRBq(@9oFy~dfw9NrNS_*8A! zJtL7CPC~scX7$z}8~6wiPpBvfSNKQHMzeLIMh{A+Mj^PPDl9+nlftO`7)^^zlP?@R zf>_ltMfe7lAKM2Vu{r4vwS7`WH&hIt+PR{t$MQ(pP!bzH=Lbx@Zko$cVF4h|AugUPCSb@T1fc4tC32h3BO>N~Sv9!`%G?vZH{0Usy#&cEBD`^S?y>rDyd>7Y@~3k+HkT!)2rVC24izU!svFxh! zs07NzROi|BPj&WoeIl9aY;r@kc)|s&)8{kw;l|*4vM~{>aO}xn8jbhA z6!AjJ3b#C{qNkBaxSBA^uS@uX%tS)1-?7)Eo4Om1CDq-JM;*_yg|UQW83as%o_CHP zn&iRnvLAMa1{oF2A_t0(u_d5$;+^%VU-ly__TfkQ@v2yxA7wOuD~BPO!Y<5ro|F+& zNFL=pDL;%h36_-6_qnIdl5$GbS+%pIoN`xHJMpB9xW&8~PDZ5LsuxSj$!jd_D~5V# zgC*spwlIe!WporGYZpt(s2xn5N-QZex2In$DYKK;+$<@hjPg@AOFH9VNf!hxi4UMo zJ0rsx{|kNg3tJm{0Bv&&%dW+|1GsN3xfyTd;Ga%(&6HIZ}qP z4F_d&q>RdbMDyhp{#N%fITDZFniogn=24axN6M(>_>9ewGP42u#gej2o0}zNB>q#m zB}+QPU`Yo;mXz5&wr`e{QI_J#7fZ@4Jvui_$|x7ZE5wpW#mJ(9XJqDym0&6vz1jEx zvYedcm)k5U!?T^z`8_Fo*zZPumMm)VcxEy5&6Bb_u!AS@AWIi;o@9_mVzzive!Ok1 z^Q3q7Bc6mj+;OaH#*^5$eO<<^fMi4!%ojlM2AfOL)>KnT=#yj^i+fRLckW3Rk?FRt za{MxiwR=bH&h5t?Rc$vRKV^o?R=J9`c8JS8OKI0LNO+3_89Bk}7?Uz`&Sll(vBV9z zx%Fkrzm(`}Cr?y$LgBKfqvDRoH53I;=B(5zT9nE)>{99jaIIodp`1_1S=S8^S|hmR zDVy(Q)P0bu#=v=eRTUN~GdCk`iDuxH)c~X|O&lCY3#H!R(6edjhHU7}zR33#oSr8Y zp*gZi@%IRN_MF^Y{WuQwB*zV1(fDBH^l}NkGAaerEf(Wgr#JkgnJ>2{s&tI$4!IVO zd89APiL%xG7|Js`nCERx%4mQ^F7+^V&E7q{Jr9@)gA7y)WhoqlraCDdQwFz;4q3Dg zfoZz&PRv!s2lp68g`_(ik|iRucK4L&e$MkwPuAf_)g7ck0+Q4)1ofTS{Yu$awt`E0 zgb0#xbY=RP=0?Sg=-5Ki$*?lqkd@vttBb)UNeV$S2!&>+Bbms7J7&n^;TAwqw($Z` zl4sacxgBD_z~00U*D=S5VO9)~Xl?JqFKp?MPzF~KoN9wH;El-vc6 zcx|pkQI(~Z-0IcT%rbX*h!pTbXI}_;op0_X>}1_f7@8N91NnU*XYOz43cu00Z;`|N z!N*Dtb_iBzCXdjOTed4whn$oc`?$>Vc%{HRRInqsuZ@RfGuY`c_N{fxAUB)k4OUi_ zGiWvxAYEWQeCHNKYAA-_Ks zOGE&jzAjt;pAET=JWSVlyg-x^v55do*Gv<1Du4=equx|t`D%*_@Io~W_Mk8&1Rg3- zo}ApU(`8!83cPVDaK^Ew2O=s^9`7>eRA9gJPyu$lnuiKtad~*03P6l){h|WcA0Bh3 z0+8?P<}H*VDTHk*uw)$GRA8+vldq@%vm04aE2u!BJaN0!?3yAq{J0Ad?vZXXu-c+r z6l4Ixv@~NcV^$RibI8Cd%*P2TK>t=bWME~5OC2%*;gyP)lL27=yyyVz6G0(G2VkNQ z8}e#dkJO8x1CU)uzUjb>I&7N`%w4H1CjW-9qyziDO$SgQPwxmifQoz1fzU(Atq9EQ zilsSpU@5I<(*YnS53SRI*xW-0mZa}Z2n@Xs74Sij01b8imnW>n`Co%s7T5VlSxDu& z^8E7@oa4VdzU&w{6D@)UL-PldGc4u{BAVb641w(`OX>iSfvI>c@T4^vE|d7)%49>n@C zY}{5QwslfZ+))(NGdv_dr`x`!jPE_f!gk3R@q2BK_%csp-Iv?*mUiNieMSBrCT(XI zRN3!zQi_JbhX#W3cpjI;>w^p|#q#xz94O+??dO?QgU&w}q|!W8pmSxHr%{HPb_xos ztRIHYtZL@z*0KWASD*W{u@024-Hlb$KYITTn}fVDx}A-<`~}+mtY9~Of=VhXt_xI{ zmHJ~Wy3frN1SE=$yGNH$kRNTP;#D(BfBGF=249?D)4=QCsY< zaB>zEMEnXDrXQ5!<75;b6Vu~@I^3rzX+D)lzjrSi$F--eq!zUg_q{>U&1>kJN8Pj_ zoj9V7xS;_+FBHa2O}SD(0B(B(MD-tXR9Hfr>C(4eUy!*()iMyyM zs@Ey+$UX`zlXH#=GAI;x;;9-oZ>nIZ+ppscGhp3{d_im@l?hc_Vrl}7nTa+&+|guv zKrd95S89(6lm$VE@$g`U4FP|Ev=dKQ*?UX*J1(+>WZL6lVWI`e(&R}m)nlV1C1Ku$ zTEeD{%IOV@o^RDL`4!p-4#bvOxe#viD=n-3FwBbDhbrR&?2d`;B)hyuONk#%=^kNh z!yQ9)cqxRi$hfZpYRRFb94whK`7t8G9x1&Iv{;EcD5Xt~SXC#539C!;7JG0P78|$_ zyQ!uL*yM;5?EQZ1@;4~tt&Q1$rhVrpfwUDk;(v&!XojsjTUkJf>2t@5oqbH zES%!13X#~yZu{m94r!j-!@g?_GK3IK(*yk;MHV@J6VCQCm3EZ6%x!CUO&eC8A(IoI zWGdDCiXei5corU28ZU|$C)mb~g5b@T_wNXDSaaJ(Y$J;zq}+H?noPxEU131;JQ=nH zk*wK66f}hmX%W}?O420hFju*4YnRbEDAPJC3gRxKs$b^@%%y3>e6-B+t)ydEq!`)r(%ong+o;f9Kug@JeOR*u1Xdl#&YQR91AHkY|<^H7jd`lTRM1R&M>0u&tCGC-YEBy{UX6^iyc`cYj<6%GBUF6H|jL8OA^w4)zY zlt=1EKicE1A03FqAwHpO^~jr%AN8oh3R8}HRPp3|)T4@0%11Yq9R3|HIT&hup z!E7DXsKQLuk9g)s8%`swi$eu4u5m@f z9quZYjKf~lvY8@Eh^?lP)=Z~aX0vf-WQ~2`I1g{2GpW4UM62u{2qVWbbQMDGYcG@v z=eU;F(1Dg$;IM0DN%Y;C*bp&63yg>Yx8~6IhLDT2hrd2HoQ-WC`LlvE|1rpXJP6l$ zwLN!uzcxY|I&msChYq~PX6f;sXChx zC(>_QI|W?0y%%>x0&(TvhD>q#sk;_qk0X3}Ltx&F{h*>(h@XwE1F5dG*bUlC8zml_ zg9tpB4x5#G`E7Jd)E6Zu12kdAZn${Glf>I2L}oAj7Qo&&LuoQFyu8Rj0l5w(w6{5b zfLsqpPl78(=Z1uI*I4+u{sh_5-M;G+axjJ^N9&J}z`gf*c}~!JUPN05ToY@uGJQg> zm%(KhC+`iiU;p|hy?v@?V(w~4h-Sh`1@XEvJ==Ve0^^Y8jke0uk6aONXk!euU8WDF zu{z-iLOWy88Q$QKL6c7dqhqwE1c1g`OnuWfHtKH9enhL_$e)Lq#4L`$)uxOd0bx3H z4gJ0snh;wuXgH$(1Q@mvhTAAReGxVo45B6}Kp(9>r-nh)>q+|X7xzfwf)n)z& z**e31*SY3-Zf@W?@>ks11v%Het)=>(C6&d9o%?e^SojOADwEI${yQ|gObVS@EYkhO z_N6qTF`TR;u8LuJiZ^8MQQjW$haCxoSA^m@XzuR_2kIU$ zq-jLMR4ivfo6xBo9SHfjBPQ-+wheWUdtBjxbPxj23JPIykEidd-4p`K#H^{8oV^hR zdfz<=_8pFzRyI}ob3ugVY}HG_UV?l_q$Gs|`7-#W3MQqficM_AP3A>iSYvJ)Z{y}qC>}U@-ob(q^Lz!0ZCqI5jIp}qAwpm~%`fK#G|4k~1TtXs z>ZE$5Hk3vFv!xITHusblnmGv_7W{Jj*xtC3sRhV5!v%_4g_XEnL&b#gdO;2`ggHI0 z|Hs*zV`+{wTVi^xB3DocJ_9SD%;pkO;1eixk2Fo=4ONMS7wKpPRx{i4wJwqGxbk59c58o(SGi?;7T9$ z@rvH8F~%KJS($moP+SRO7i}d0S|iSDD`X>)SAsT2c8xchJPU z%Y=frcMt8Zn1sZpUxvxY6X|L9_OMUXno_6HnBN=~!M>uf1PPuKyb+PSTqc1nb_>KQ zbc}IVW!rqBL5!nn=qN5PIR0LRiew~l&Ndd95L)W%`v@(WTMPY@Z)2Dvl=bWDN&KyrxR2Sqw6SCRe>70bNiNAAeT!F?A^B}6vzCoQN<;+;sNY`-!LHi4bA<6@IQ^~c>f zqPKH=ucj5%QHwWNhD#3pE61pI$UPv0SUS=81d2&BWc0ocC0_~QfsX&9JP)=KccIVndfrePCb1TqLpeQh`9>dER56ae)&8x z>4LHVJw+@>xw%(q;fAuCdlmK;OgHy}%aRFG@^de^gX`(&UgaJx7FO?1)I0@*1N&@V zHBT)a-E3LQS~59<7Wz$JcRIRroR02Ik)wOj6fZeN3l&Mvb2z$RN>RqW9Nq6*sUqEu zZi02vD;=H~FKwAEg%6)XCQC>6g6n(kbf#7MKIlzz%X*UVbT8D8Ne88K zm#cFGQWr|v4)5acZ>z4RyiL6Z)7Q;)zfaJcXeAt!Rh(pPLADATLLR4sL6}n(-t}X$BHj8XNMiFCtmHbhxDS8p3Aq5rg<(E_gTUN|H`i!CuIF6LB&Xx-y z@>f$!hLG26(`#G+vjTxwCMRe@THT!B>y{!XsDd7j8tK1idwWaOyRxItY~r<|yg$_C zGDkfPnqJ>UXX3J(eKi9Xx<3IMQrE42vKjAfEvu@->opARz_9!R5T}|0@XBNSNQK-K z!un)uBG>LNB8(O}?uVK`J9y`OsfCnGom|h~?R=9p{?!C8^~Q0k;R0ILz0Yzs>fUEN zXEV?Cm-+pe^UZy8t&;m1`7^n1yh}(HG`#8N#?#y3c4iSnXA9nn;oMyu{`T0ye_ZvD zQ-)o8KiY9Z$fEaPv2XF#TirIiyK1wr6ZGvWPHxUU-X|w0jerj59W4&u=@O1c%@qlF z>b&Y^Ws%s(jn6tSRiBWjQD%f!YZP9;0ZA$gGjMl2VFdoVxL*OqScMp>BS`#}+bS#|cibi1x`?0Ygyy&D((| z^sI$y)Qtp_V*yV#`Epf%e8-N5`BQf|jIVK|sxPEma*r#-MzrsH>s@%n5^$Tt zbPG72^hqj=x5uH1Zi)xPz~1Zx8i5K+h~J`2dEi*kl;$$?p z9{BU^E&=oX!hdM6Yw(vsedAH-F45V8@@G>@cgwE4>pLay`mZ0J{nJ%npZ@oU-(!p5 z{~pw{P>X27nHzl61ycbaNYNm&x*5emK}G}+_Al?6B_<)Vo}kfVS(aI*Vos#Qbi}Lih%1^0&5^CtqR4s)_Doq?;8c~PIUx9 z*oIJidUqtx3N~uwkAh?S0q#(UBU}LPAhf@+RPJK{nivx=hQ$YY1x%@H>Iq;T z6d~fP=WjSs2;>1Iw*u>|;X?!nOcf8hld-4CJ^4`b$!} z!t42jp@4S&#&noE-vUslgKtHwjsng@q!xuS3;b(BMnH;IC1n`*f=y-Lu_}CW#WXgW z2UjevKwbfcDkvdrK6dfTEGg37^%C$D9H(UpoMZB(RQ?U@4giOt!v7Iq$Y5q>L5oJh zeK59N;Gu;Z5PBkjs^&0$A-BZv%&5i^`1F950+=(t9QZGVGo$n+AcF82v&U;T3O*r) zHldWvCX`9oWBAT?>otv1B9LpMjY88yuyAnRd@J~ zo4ygQ$1TK|xA^=-sZmk)^@~1PdsSzmgS7*jmr6^7P z3ACK7oxZQNSv&U3H8yMa_+agEMX>g&SY)#HD#-hTx5rxrSFH|h1>eOkTPJG=@8b?P zaLhi5E$_OiM!{y^GnDWO4i;41rwaTT|=(BOpI%toV}^~KRG+VbI3x?+0pd+gRxh6B$KmO`RJ0fS9!({&W&EdjZ?DE( z3eH^(ah2on*ldbgk|l4iZub$qy()9y;O%HEPH;if6!!dVAI3b z2Ed30&OdO-iGT@5TD(U_~WimE3Css1g;I! zyMY}KrgV&?{MnQuKi;2x*LOhnXEGW!}=To=c|e08T!&)lFermE)!_ucKW2hc!Zi1+B5x z&q#`2u^BX)y-eR#9Ws*OuVbz~9ef2IubbKVOmZklUA|N|pc0J&x6RFxjjCq?9tN52 z@?H^FmYVR_H*;co6;EViW^Rw5u+B{>=IfGzd{78;6qG?(wAJnb4om%WG#3+qn?Y58 z8jcSn1Em22pFB?pC%e0}X~6G5i>9fV0D=T(ok;NI7z4TC(H%iySvj9Tom)!SI~IDr zTi@`d9xJGj7o#eBrXYP|pq}Kpq{JgXv+0JV@4i^!#7Fj(pyl}r&=pJ3OR-|0pws=p zOUaG=s-LQh$?-CX%0Z#18AJ)8g~~di0YJLjKsO>#hcaheM41 zs~3)orlC6*gkQ-n2ipCd z1#AI~7iM7&*`FH!KBiKXKi?+zW5T^L{{FKUN)*ockaxnHC*B3)Q8nYuAQ!-pq*5W^ns)y^Ht0DT#PrZ~oNYLarZ z$q=6ab_geo7Pi@HyJQh_VR^1(T<%@}FykjS7LM}tPSf5)6IJecCRr9_+M$%F&RcCE zG(Hx|lt14VL@fB4bjdly^*0G!s23Dh4?C0mK&e&w!$3zpDE;3l&E2`9`t1ior<>ut z=NqL8BN`upM8BUY!;K8TeAB0>u><-LHF(lJPEm7GBx+1aQDZwGMNL)y(IINEKz(gd zQy0qvQ`Ug_u%0z#4d8O#XC*_$>r0ZvxLKAarL$ZhWsQ}>lr=~rr*)dLrmE9!3LEIC zPv3k6iRSG&g-xx@)ktAeu{-kx>g7VhkTfuJQ8^fL1j!<(Ny_onU40i6Y$jAGg`|OI z-kvRKs4cbgvkTjbrJw=UF*%(DjT=dCK?93)&VBNc3h~T+=3rfneo7joI*{R8(sgJDJa97(ogV4%-?_)ubjdL?GZUY7B&zWqinTHJtbpcA>OBmv5lMC zouwl+MGUOZtDho<6+&yv7>uO|NXB@4u8t^wzAl9UG~Z+S>f!(MwF{B@d_C{P!R7Uu z6YoL)Z=;AEsSC)p0cQ9bG~tSp*i8A8lmZkd3aPm3J7wSXpS0)u{_FpH&-wa>-zo8& zA7=^nCt!lH1CVOVoa_Pf3mvpfVXsK~7J|YO%IpQWAH+z4gk4BxHly=qZmXCwM~L6VBZ586sJw(MvWKewuj7&d)A##txu{nSMAqHexJIhE2Hkl~9ySV5-bg<|qp5eR@TuSxb-3|c zkl43MBl1;{zKmDbMnN98)~pVPO@`l@QPn3c} zl#HfL{cy}?8Uxe7g}iTz8O#6{>XBK2gb66Ds9<6Zc8>3V^$R9o1L7TG29XuZg6Kkg zf&yd@7Y<)604Yd2VW}~6FicOWDyarG{G+i9<(Tt01ThVsyg^)(mE+&vruSpYu`93k zG3AxQm{Y#AJvPNtEW$t{Zl4-Mjm0W+W7j**pFqeMcrX1|PH3Z?8_4II+~CdnBDU(o zK4H^Serpw9X8Dw3+`Bd9O<|wufsj5PFqo9Y^6<)Ww?&hyCMXmx%5+;V{sfXRFqV7s z+&GhgYSz7zYiRNYx-7D}na01rO|R?0r@H&-Ec{IZn5e`L0F#;j@r~jsMr}0IsPQ8u z583B0>DQ5z#Ce*4SN(esZh`|3B%NGts08H^*%@nZ=J%@r8pF+cF@tX)NePl2HGr^z zk>>=-j|6?$r@(#2%$Uc|OR2|&1>P8{;~#_uqghexUVw3fN(_YbCa+MQ{iR;rF~%LE zos5l0-{W-&k9kv+SI;MO@7nh?PvVqd zK?>vGd;@a)>rsLJP!Qo(1s%U()g1Gy$LAH-Wj@O%45S0Ed;dhP4P+*eY;r9-9f@BS z8>J!RQM8BOHF)BaGU$b!mzzJ~Y%RXU?X$QfviY9;*~+Az02&Ah#4qD_ghZO~EDQ$L`x@p!eOnhdw$CpuPFOViiG%nf-nQ#F;|kE+aCP};&es5zb>q3 z7n4Bc@0$BNJSL<m&8^U0S$+YH?lYJAq^y_k{LIfW4X8>zJl)oJ; zVxkJ*I#sjD*h%@I2t2Xe-CgA;Oi^z7yav@3t9?)^`DLs&TZR)&^}Gg|AM1nCt1_#C zwM>}m(h`D#cIjiK8V1Vj?t7Tme155Fd1;MqZ2?>6e(0om->YUHX2-wwBn4%^CQ_zx z=cXWa78AgplPBT0L|q$ypzQZX{_OQZVOFwL%IlM|ulamsS1wm8YojU8byL=m<7xup z70dqvr8WV#&#`W0>=lBhPk12trG=?lbIeQfPRs;_oPdAyN8o@k_qA>IgG|?Jvm@M5 z6n@VuSWq6CAq(@_wXjqP5xB}f9R?71^-2W4p`7Uu@iuOZf;yd6BzBgNO%`|%s z78T*D<3Z@4SpUH+3^qPQc^o1jeMsq?k6;LzrFPRZdXbtc6>=iex!#+(<%cEv8)bf8 zaZ$<2*SzTOJ2-6a2=ico9QBpD_8!Y<;vJ@_Bx^rG6+rwAs%bKYxIRh|30V>^8M0;w zLg$c1K-*l0G#Y9FiQ!Ga2Q8nqRnC-KzBV!f%(dkH!_{4uT|(5|1fA$V-_E!+u`q$0 zz4doffDp?(<$>H*JZe+ef?_2laE}Umra+CYRb76|2y3k>SpkiM%9GGag>bx3jho~o z%9S6f#{E*X@!=T>aHis3H+y`CN|+QSH;!9f7s{MtTi0{kMxu*XnuAb>G&vW8Mzo=6 zFF-$Zz8Ec$6EXm zzSR1pT&%-j08VH`u!ERYTIpQoYBA-r(a0beSNBWFhfLJvx#MXt8QKn~0i?NqgwtTg zF|6xw8Uf$$9Zo~xQg3HCEo_b*P7BKZlrLNF!xVI$CH+CwsiLItgF7=dXIRcv`$XBL z+?)KmIbzvt_@O%g{g)1->Xg@c%MfIkdKF_1VxhTNlrEb48)>xMy)jmrE$;}*pqo9c zNuY1sC5=r07);x7j}lbjNBtGJUCKT?=lOyf||>91oUU7dG)r!b>{KisvwzY>l! z^7%!^=eh_WK;odLb}i?j-!9O4mGh=WD~~mtt4MSolq>QL0x%FMI%|A9#|nB**F+Y7 zKUwJ4_rdO;Xee5u<2qll$^6GI8UidUkM=Sz`SbN2f9rEQlXw|Up(=%=0MUZAO|w?z z-jMlB6huGH!+?maYE|jbECIA4I9q_0#Y{TJf?wHFmK)P^h>J(_0_g9J!anl#Cv$JG z*RP>;h<7cQvlJk`Cc1UrW}FaiIgad?O<7D~+YfjMt;?UlbYISM<~z(OiB#|t!>y{T zgemLLSB`N9D$+M)5>A!bJ`-<09R_53VrdP`ietlKrlxR;nL(i5V-xwaOzOFtMLHJh zx|6S9TRg-Eh?M?!?97FmZjM=Qv)ZQ_SPE%@lyYJfv#9TJK|$1NTAh3379Oc43)E|mDsZ@S^4##$na%gtsV?9DaqPq zl`#E*vQIdW@LKtavhPCZ{Hi}ul6if7A02U)dvC7yzc5cx__}m%8owk6@JhUD?bVcu zvxuBNSw>5ClZFa5dG5B^RU7z@AHkv(S=T_2GEkP7F(9PyKwy_x>!U5zru9N6fK6mz zRF`G}x(U_Q?KqdPt?qK3OF*$5lvg)*UY<|(Ko0gg&;F>Fia8{F-?4N})rRcha1>=z zR4VX}rMMMlPV*P2C?@~HJM^+S94yX~{IAcRsWU5Ep~r)rJV9u0we}YbNeXro34E> z`;x0vf793JefOhO#Qo$)5j^}h7yYp=6z>+};hw{rqGGH4gj;qde#3QA&pd5@@HE-r zUAc_rdHMdy74doVxS%_~G9J+GEX5LtPR<}A?Z5T}1JGmq`nm+-Ekn3X2X6_=<`QFl zuo0LG>#XBT%5lw5md|&}W+TYryiToXjm?SKc6KZ6+d@9Mh1K<2SER zyQ6q5M$VbSHmz_lq}N&eL|;OhMg+B}X{Pj^wv$6v*#4cil44@u>~$XFT2$DuDTRe8 z`w7Zz3Sj0}AsfyE3`4sKAB8q<xe1KF2a`jByr*MkBJ z%vHoZ7jkrR$nU*1L2-f2*sk6yoFJ%Py)UC|V+wD+1ly79DQ@&+eO-j##yO|{8k_3x zrtD+Ru-o{Nq7(FIyK!*Fn6)wF^X!~VVF?xZh_%s}i*fH`4`>=5Ngry2&E`6fJst4J zu}6AH_e;^AakCpTeh>?dJK~DYj$n96v^u<_>T$65EvHz?lSmlh1ZvFJq+{c_0??lv za$m%EMYEXzCg-X!zCM_~4BmnP+FQi>@an=vS38k`43vl4Oq~w)xH_97C|<2U-`3BO z<{?mlu5PXjH7oiAt?4OY!1Fvk#OE34@5=*sQ~w$O)u?>13seVC{5rV@K{N)dbDqsz z*qODQ{O76V_%lG_SS`w`hQZ*}tpnQRfO-^JX@c+?4(RYR);TVZxldAJ1|MM_#Pr8+ z^kF1BzQrgKKu9@x4&gEwC79=~d-_z}Y+Ny>cb#vaOmgK9D8Cbd-`4Wz4D1gQs z8uIuY!coqj9gw_` z!H}7(GS@L!DZv@n{(G$Z&5Fr^R!ftd_KBo}A?rN%)*uXQ0RRz_{lDx_MaQqDnN-`x zzuLw4SyP;6u_%X?35nIaiNL+18dLUH?Q$?x{!7j(g{-{%oC$8{Z z1>eSO>Njrn=NV2MVp@IS{3`}Qn6L8d>xYT$Mm|9o=odnwixugwGV~sGTe7IWA_ItX z%&2WYj`0K>8yp>;YWje#mdALaAq#gy9OH@JB&Fps&H%U1=>*zGJ=F-NSIl)>F$qBx zC;1(hl)bG*O2}$?k|$73*2t5*$8nN3MJG8E1bmY7H*%#i>A*)Z-_l2Qq9rg_E)Fxl z^x4P#oeARj=MxC*IFG}O+0B!j5py5qJr4NtlK|@}$2!d%&*wPJOqAHi`_In3@L}du z>m+d_zaKr0lN^aJKFIG-(nkk%ucQz1I{}O$#ou$~b&%ORLMo^a@>q94|QWAZT&eF5dJo|y@2QcY_Br0&NKz>n72P)C(_9%UEYhdNt1HC z^LVUgexrmgbv2$Sj(|GdJE zUfZNx4JspHlybdTUnZk;qDZBsO*(=3L9Q4!>86AQ`gJSO=Yox*18tjhQ)H7))W?YV zKK`YEM3GH834Aa%|3#TmP4XXpfw12>Mo6rQ9ytYFWV$YQb{LR< zE2rr)2V2U#bG8`9L`-{UUP_z%Am{Z!xQlJ?)dhF<$Q<;3luj%ws#0{HtBqrir z=JWi@Vp}ZScU(Go1f?P6(pmqBe8#OIA+zt)kg%3g${26Y9LlaV7OqUV0Eu8RfefHf zLe)IXAr>qr9PXH5B~0bW3Jy1ws>sX5@+z8z&<_d9iNugzNeinSs~L@N7`EG=8PTJ0 zZwoD=Nlmb}@3`985^+t2x(FG~%e%q=R&Ibzu=Q(C!zUX9AV;;6o`Kq->WF;gCr6`E zmfO5K$tLH&5J7hDo{f|SBh~#6<`lAa@$hwKlM*0#hw~#APJ|vra zLhUQAN8f8-5#UN|`IutN%-FsnU~BM**;ka~Eq8)q)5m?Q-tnVmYmb~{UFdo4VnvqQ zrut~f4J3OIc&XgD(}1FEyfwCk&e(I=>?}Wfv$vR-yh1IK$j)GUVQP7J0;+l<9g%F^ z%nJE|6u%0sx$MvjZO^XANM-e5vo?~1uH6qv)Z+1Vxr-MJh{S_A1 zEVta5Hkx8(Y*Qg!;Lf1m?|N`!jm#krP?u-7)6rUS0C}1V6*LSFzBwhy991O-V`j3ZQ=#Mf*lcr%c}U zo$?r8jh{=~Fr&uns~KY|5Tuc~mFb1= zM44ObQccSiF-QU{JGjDiy*=(j>wY~s{;j@(_j!SAw0ywl=JJl~*XeipUs%ZKlgYPF z+lGBI=eBK74RSr(xM9)#Y1<&|+79;&+bbRX9Zd;7{5uQ;m*avytgXnjL45-CrL=8O zBTtcO8HtMVS5B#tojxIByy^?7lF!af7#L+qOXw#X3dIZNNsG zHi&nxZQCHKOK)A;Hb4@PwIkaGh01H2HiRN*r)k5Ui_f-g5XqzlZQF)bi>GOm1X(sY zlwp&@uxo-~(SX3{eWz$Zg1Ou{VcDRKmQHc^#*pL>&W~mWAEJTz=JmK>D&sbU3uc6o z(ll%k{$4v;J`w${Wg9jGyf3F=6FXyDHVAhgA-;)n5`LF0o4bFQH7Ko=pq5#~>Re|f za22VJrdfkkD~IDZm(5Zg`2$Dl5vNVqjd=ywS=(j}TK3T7NVA4TVq=>%=ozC3v& zc*|+lu-JQtrPyt)AHfjRfX#ZEHEi*FZ@Y$A26NjrIZnGKDQVXPCF~mFAB=6+5X+#R zb`2=bsZ6u0%GzcPb2{2KYnah-S~Yq2ZPl=G%e}1{dciROhnT3B4O9`Z}*zciKjsqM+HiZPSL$HSdEj<7Mt` z+7Py2e0;_;!~<;F#A;dDi{W02b2Vkxu(9RdHGel{D*|Xx+1HPh5lNm%L8$g7R5X;F zvMhaW0jwa0Mx5;D9?Iy8D}m6$Eo ztd~?+)>STrjRv8(7XXD61(GF0!rE+ou~Nq@^PS*h>^8?q*=G!$&iap(u7+?Q6g5Z2 z#||@)o0B1r=ME=6Pt&SMz~pR6z)W;H+?iIK-u@wPp1b_(nLsi$5?}6~W8APVN637| z>^f#LMVKto(|p1W!&#r~CpxN})|Qt!u3dd9l5$MT=hjner0bdX<$6DEicTKd**!jc zi~R@IrSMs(M2n&3ZAD|1X8XJXWy{;?^NugCq62TQ;wpSDhvwGR95RvC_>PCI>LCo- zmm(Z<9LA3A*_<9HC25btI6Ej0TOpwb3&TMY&~>&LKsUYe;{&urhtOp{aKu1m(wzT!5w)vqHj`cO^Pbbc2Sw6iA@8NwA2hkr-9DOVYX*Q0xtP4N za~z4S?}Sv_8!~xcLYT<P>M z%D{^J>H>fkL0&zw)PR)%0JTUocWKsOH(fyD4RJy?(+AqeEvRLwyDw3OL3kYP^%8 ze9@>cuIl~HvT}Y$>tD*q-LW75*No6Q*gSfkh^;7a80Qt^F(RlC*D*1p2qDyHVb0@5 z9|>i8%M%EQQchi$r?AS$bnFonye=otWB;Kzb^J;Q$1>a(n)C1^;ZK$+ zxSEw%bl2Js{KD0kS(}?&<;{c_(B!K@P440A5`NuekC9*pM^Sx%oGviroQZcB7^owb z&*widfU$)ItI8AymLiZx31*f14-=(Y)`1S~5ZM9iy2njPBAc>qy^$FZAc6IR=CiA2 zb;QWUSaqMn;Hxf;(U81d@KN!1Sg|>;3DDpQ>falyFB$VAe=go|6qPB#H+y`;!ww}0 zO&jav+`VI*>+rdfhB6SoRosTe>B9E5fw=tVpUk}nq%uyQk!cFcq;XmvNl=JB6&k=# z_@t~GGzJg3MdR^9vfWar_7(E-PS|yQ0R*$e-Y~1RqsTW-vKbSIm_-%B-$X`Wujxk*0ntFF1KteDvmOF)euo z9PUMo?AEkil~s?(qIkI zoI`orc|8fS)8lrZ4gLUkmkQsxG<^4hCRN-WUK;EsbT)}n9*k@*j{%R0 z<-bObU0Aioc?AQv`GC(Y=6&bNAYgf`hfz|Xq4HxNR(F0I>yAI)p214ZpjqQMpS$PY z5Bf^jTFRHF$dz|>XPk2R9Ex=G-h_dKeYJ!LqloiHiqB!7q3j>ZG6lzHEd0)THh%`KI+rlKshpanp ze&Vq_D=o}fx?*E#VMboO4NPK;5dL05meoIpSjG)C1h=nnwT}% zGbY9|Fpsef%!8sbCQQ3DlB(Y{>`NM$lU#qLf%%S=onm49zO}p2g|v>Eu)F}k8ZE^= zCx)#7!@%U^QQ*tKWR2MMq=A{$IcZ?#9!Uf9rF5wwGBDrq^oJ=(g<7Kf-UcR$deXWi zauH2j8JH9OtmzF11Cz^lZ3}ZRpERv^8sr5_UF@Bxsx1>&jK{hdOiUu6&T`n8ljpLf zjX7<$g^f9FOKcl6QHJzU)7rFcOjhxX!^E86H#D+kVovj)FfsSoCT0@S#M~5}K8|Ng z6LW%I4-1n7sRFM5lk#Ei>K+~#3o?%9`( zxwo;5%!J2E<0dN^ZDb~3mM3GPRUM7QuriYg*vjNSmaL$anRRDrW#+!Kp~<>4GGG~+ z$Jj>NrpVAtM&!-0`EAI5zGr#T(9H7~{MAK)VFwW?>N)=2mp)t5%WW;awMH?Vgu&*} z)7qUZ&52g8+#~xVW|!tFOEZ_tn(Q&o#rRxM7i2X%KttCh7%?TQb=`@hFjCc>;4n1m zq{>d7ggySfG1~HqVzYd>*vIfQJ0Ua1+A~_Ot?7CY zYOaQ{#Ike$ZbD@dRF(;1 zPE^np{)lGwjb>VunoRm;8Q|I;h}oJ{t1b0fR}FJs5e<(KS9*t2$+eJJH~mCOcKZ{Nk(J*R9t(c-bzaezjZ;5iRQE+&4x+aq z{}NsTAJXP!ONJG=Ij%};@NDO@4=D5|-SaZvW5?UxMkA1LjPy1p{3rryRcbE_;LCxp81 zj{}GL@Npc;s00i}6$uS86+@Lpz6W~?#&5XJPhP>SQ-dsZ9iSku%<5SOsE84>M6%#6 z{hYHeWd?_pfia^eYUj1bWn>YbD4U^0ed2eDJ87R3wHo8MGN@CDK1?(@D&;aH`0a8P znAzlH$=sPpY>D8P3QP$B@NDx3>F>*vL9|A-C5iEGVf@X0Tv1hi9@`D6VC-uyCoAqK z^1!g*9V<}ep$Qh4<9A=)i3mv_PEO934d^0_>z06(dinRC%ulz1NklqpXL3)l)?mko zvKWDeqB7E5t`HVH>Lu>O2N3-THgiOsQy<3_uA~a)h`P3|k^WY3)^^2bHv+rjbIb;v zs=x?}TF@nKyFJ4B3!5oK8I$EwykeXpG+eFw+_7jwj<>jCs&hj;062?xnqn+fC@I%2 z*KE)ksr2bRmPUINH@G$5F(xz@$9?{aR(`)#cq6aGW%Vwa0ocUgXUcIZdkyVt*H*#s zj48u7xVj6zg6ZdKrdU9=%PAIe{RI;HjtP<*N}G2KpAlP3O(N3&^<|s7KrEWxH)~ud z#nAC@)~9eEdsV(u?dp#3ZNOfRpS4SXuf800rh$y^)qU>@E_#1HcFD3f6IXb$%&@b4 zgWH{QIxh!-1k!?HxI^Rm@>vodr~+9ZI$%(?sEAsqA1En2qJAnEJD^qPJhrUP&#|e2 zd*04X{kSczg@?-%w(MA9LHQG_*g-1U;nIN=9ZRmN6di!Zj3%3vMJ5ibr|5|4f)E`` zonTXR13u@zaar3z8i$|1KoJutgsgdK98bR6f@@3~q zYA|!*6dLH%IL0Y7?z$b?6CGX3Au^ELa6PBUK(<7^x5z-Gx$fBPBywasMFwL2bd1Cm zLk(y`WFVei4vDdPH5Ze}K+4dwC5DGvUqlcAic`x5^gHc`bV0s;**l&I`ff%YSKM2M&7mToR#TWb zrC&0w84m|nYs4BCIU?yLso`@0ltV8O+3PMyv^3NUo? zZqI~LckCtS9oO0LI7>7laFgR}W)a$B1{a+7%QCvS0N5)yj{ULQ8X;^XjT5cEs163F ztuy}d4($Gd_Zr1I)fr!q82DkdS;W~xVGaJ?)MbmlZQS34rs6Sf=tI%sxMB#qD4#F{ z<*cH z7nXAPWuA8H?-@Q|U&(S@p`su7pizIr4433yzcuA_gD5tVMLpq)j`4O`Bt-?YtP$!q zZVP7Yved2yVV!LDy4B98m$H|QYrK5)goE@{XKm{IPUK6R!X!R>A2kH|+i}#eD)MR&Q>;ml|3OF&5fvxjDfXJ36iel23336!FIIxBac)OeNmwp7VVeQfmB|KGDpBs1 zI*e2Fj3FOyEh^LMDnCW=gkKU{w&e6ydvN0lR-fVtQqlG!6*cr^Kfv>J{6rjxc!`*MRU&^~i{C1Qf!Z^)Zzva8|HP?iw24s? zadqt_2on@QDZdWG(p2um+0~fUO3fQOu2B2FctE+edz(-0Yc;5~A`>G}8&Inf9UEO9 zi`{F<&x>?`g^sDqEWM$C0Wpt99KWGFp;|o}O%2IOS#-E`zC?Y_L`RNq^GJ1$iR!34 z+N|5^{e#l%?0vZ#5wu@QvxE84x3|#3=&f34i=^!05w%_IaRO;o^;dT+Qecn^nKBVh zo~qArWySFx$g*D_l-_N%Oo45^luJw9iJ!XPq>#igcd^Q>+f;>h+}jNlIZU9;PSm`cBz*{ntPL*RTKc|M#!| z?>*=18-Az6bILEI%3RMouaI~5d-@)9gQ%!VVH?GpWq^M-#eLJ?c>n@Fw&!<>`$xW% z<@!&z0P9N;+06K8oi;j9tzU2lyPg!M`NlAt zZYH5HhF{$Vgw3|!&0XCWuRL;U|x+8%Nhkz=Sk9(DYB)RU;P<2+tLJ&P(T64*c- zVy5$srAqLpE;)N@oCtSat*DD)cV|UYD(VSf0zADc_qM_ih89A+b$s{`Kmi2u)AomH z$hB{u7gYBfj@N{fWF4(xb30%$UM^Vy-NB~R>`T6f*NB-gC1roz4 z&4Q4kt92J@ey5}`Ykdeo!NRN|mI>x=Y1R-beok@L5SgUBkvwa?C>$br)lgyEbNF75 zm?F2B{*Kb_T2h`hWNxU-yyRI!S_M0HOP;kx1vSK3YY4U;((EO$;>NipM2}cdM7kgCEr_uaiy+P zqBVqf>v4e#9eqw3;>TRc5NHjU17oB>YY4}auSrrgz%x*igh1mnsqBP6YuyEw7HAC> z@!Zl9Xbms|Ya9Ztp?;5#Fpt+n>A!Rb3$)x17HIEe ztB6YiZ4X1BCB*`5Zzu`021q9E@DONxi6`Y*zN5v}`xT0qraWtaN#UW0D+=QSA<$y= zQl2#+B8?~HSwqQoFDcI&@EY2E$g@oe>GkD!i^n6>gN-&T^_{<)Ld}ArX*Dh4K^fXS zrch5|W5+=TTj61b`ySPXQ)-A2fmWxHU0F(rJ36ZeE4oZ0^p5)5A|3Zux&q3ysa^^9 z3HnPvh5*y-p^uS*Xlts_XxLZg*582i_I$h%zIXDSmwPf7Dcx48p{ici5#?|NY#Xc% zYvFUTUY{yP%?^Lo_t+9~vP|L~Kk8;j4dzzmFOc<^u9{|nmjcr~AGbzL3OE>kWE9z) zsVYsJPAr9C!{#IaXGI@veg?XLNFme_L=bO|)Qr*QuVGk~Z;Tjiw<lci6)*%?0V=fp*w*FJrp<9rvmq$N7vdAx_P27Y;3qKX zGOX)zv}0Aa1*vEohd2u+{aX5_HZ*?p0|q#XQ_uy|6hpw*j2IqsFT$U%vuYK#DD!Hc z`Jn6*{@7{o10^1PcNOk_C#b_Q?zxBv{*5pfL3NLNexRro0e@Lpkv~v!M}7IG&>t!9 z3sQ;bC}{AWupP1}(EEf}Re)zH^Bf2{oU%oL_IUvih=CHnLUY<@almjtn&$0r}3aMXa+V(`g7_ zsFgOM=o@nAp|{LtJit~IhAUGk(v6DGDammIPUl>?B+nQir7;Fn$L)B$2k*H6u8}cW*RyLEp<*FBZqL+RL`*pi^_K1j^vJahs5Kv4>5n9 zUFSPX*BXl5xPN=oRx2ug^B8wjhE1m*kI030Bt-#kku~ggor^R(9$Sl(-2&u&4e&NG|sEU3Ais4&OHWgIW5tZ)T~@ z8n^5Iy9p1=`Cb!5soxY4G*UFX$bAYUMY#&zakQhz(HdbB8`9T1$4jWd)RfusyEApS zAtnB?+Bcz`-^$U%L6WNd2y6?p1pDABo-}E>^26?P3FNhP{JpzlxQ{hV&$iBkkDOrM zAQ{}y8-#i$(lFK@!=>4znFnQ3O@5z1t&IUj{s8%YGB3OW^{X1zt?){N{Q(}4+EOw| zeDZk(=4jsg32o|}@85`(2?iMpY5w@R(1;2)AgZyoz4}rAJt(WnYG`*4;^= z2l!V$01n_a^%M8e5WWF_i(K_R9JR=>B4-y5jE_hjiLXqa$+gn<(cPG(!slPgUCViN z6Z@QJykD=szOIBg3|ffHQv*xN<`(Sw@qAE>KLLB<9w+6v=23sF@086`(0Sqcq?9dB z>j!0D^W~kziDp&xBFw7E4+)AT-FqWeyF5QpeAl0E&!J|Nw49`*U=Mse=o=wl`^!`Q z<4)gWx2m+cZ~dg5NdXh>u@FgZq>>`==6t{!+Fjkih3aF) zTxOyvx{NSl6iVJMjV!u99Q*?8DL4-Pl$<98Dal<{y!o&Hx3}nj{ zsgvpi!d>-uQ}zKz@?{x6QG9rg056Ug;-z;$S3h(~R%Cn-!>?e8+`-F|xFR=J zm3t+|W2$0%Q?z7%zAd6dS(j45jr;yrF)#vPH|7=Erq`)rD}#z`AD%lwWLLn8^Uw(J z`Zu0hjbKd((0T{9uX)Uk?CWxJApoVH7mQo5t`{L%DgqRIO)NLB??t^#IJw9$^G9%7 z#W=u%H^uXZ5DPaR2l4RR4F&k~Jo*o^)#K%IN8M_2ca;}8%^XZ;ID+CN(!T&c%8=V<$60u3@YHn z>`wRYs!q@17qc6U_#iTextYu+bN!N$A`iIFzN zt!9I{I{^5#jw@oa%(O9``i-g%FWgV$AB!ns{1DFP;>r5@VPd*K>7sBKIPyn_?`Y7` z(C%4ndwqV}b+>=dBVn3UP!Q!mS6|v|# z!S8q-y&Abol$xIVYW8fZh4A*5tx5CyD$$tJC%9dT)9n+?`*;|5g8A5efcLM)0cL^% z7h4Co0T6ra?ZDM0c=O&K&1y$nAtj8bw;|zEKj72L-9%}o)BBEx=2EBk>qp6w1xUDB zG+1S7fKj4M8$-Q>8lbOdKUAg$)T&xODD@T>Sa-Op?cB3+(2%J;a=PH4r6dWz08(9- zdCf!5p28JYLL1=Scf1we!dCep3Jk*PZ5`lYtPyiya#GIa{ zkC8vw{RlV(<(#-b-=@+|{YUPKv_g}zU$Vk#Z$DAe3T;69VtY+mp{*7-RihQ!s=`;> z3T-GFxLYcu4Misi#s%v@abdYn-Vzxuc?Dd2dyN}_KnRi_R%k=Z<86e#!=dgU-r%o} z?&iX_LmQhY-@n2ReaG#@$=~C!LpP=Ka^EgHv;ppfixPGyUx5m-?9he=*=&X(L$sla zLCqj-h&I$lu+f_qjhQxmt9%XRJhaVHhM=yCaw)E`hu4NE*Md;~VTp3F)M65rXakN9 zSsV?~hB8XZj4(u#l4j@ET}1Z^lGN3b)rRP%$PjG+2qI&v`k~k}VTU%<8PO&d^F>E>~{zx9kQI0P$iJMHQ)uzr=sXrC%V#*jk;fg!#r8JDwmXPmcMcMY9)Il;sbvSy-gF$CrBn9h6v(aHD^x>}8F+exRg)`LbaoV9-%}Ss!{W z2)d%p7S-sfL1dWwFw^MvA&bV2tsCPzI2d%8c4)~E+5I$w8ycO^l#44ym8oq_oNy=P z71b$u;7K(UYo-v2Pg8;2<5uGOq=?r;n^j6juKnW0sHY@iMaGL0QZ?W9xG3`;ggiP*DWmJ(2{~fB>6-;k5fc zZITAY_k1X!eF@nvub3)=^G4;Y$Q3vuBhVc$>_f^tL~CxG=+H~&I5)>?P6399pxGtu znNgzKZYpkRWYzdJW$9pY|3pcE)*!$uT`f^mOcDb>2k~ zss*9>Q0-y-fW1wi>UAZP0_NRpu@M284;{ zV9vl%cz#7s&jvBJ=J^HK`D(LBducC}712G8b@;NB4o13ZfNw*)F5soiMs}Do_eV7<8}kL6mCNuw)Pd!N-5mrBtob2 za?UV%qpN)w&a`@lg_CHHL+&KOMh_a&%P3+Nd;`Q((|Km){7Yb74p=t!_@E~y48bwn zS?`$^I)D!9b=z%-F<*z%C_Z@ewV0B;0z6V75=^LIT)S|?zmK4X2FGJyi_Neg3En5LT~{Tt4eMu5okQ&5S7>&x8Q0+Ea9uha|*7At>+bU z$**xwaXBQz@E3XYP@6Mt9hh*yDbH4h5fneHdF~y3?QRrC63Qrv^-p z?bpH$@riN8Q!{FKahax_-v*y~XZ6w~RO!$Fs-k_@h#&FwfXP@vKXyHqHZxA$x*UvM zwm+G%U>g@AoJl9Piopbt6y5h2uQHTMl2>$hn7w3yFc;LvQjB(XE7|Xn6mgyeDrC8z)Qqrq}tjPKNMA^QWxa$W>ZGza~*V0yD-poPR z_js1SQ;y%(P2UO4P%}xWY`wiFS-#XZ-EkqCJ(42-b<@Hj;LCd2$0TShhcM9fgy!qgD9-b6mfR+vD%^lHz4?Wcz@6)t@tEB_@gL6{kFrdL9~*> zQqmQz^Xk~LGskJzY>EsU6jIQwV#|gNmp&{TlvdDiuw{dna8wPP26YqjkS~iqI2$#H zZF7U$szJb3e-En$a7AjmEUO0n#Av0+s6hz%Xe`Z1jpmlJYi_q{2)pL)juD1glLT2c zIh0Wo!?bCVAjxpM4M0eSTUZ*0NyApz&#$y;ZsU*#wnrO#=X{Bc#_*K%x(mO@n%w`;5Lebkb6IM>Y*A zl<%E}&=8I1howz}#k&r#Z>(NOb|eg3XGr*+yz|dZuoE_D03}4-Dh(R6YwivhV|$}L zGX;zd8U}Q!jf6pSk9o$V+AXBEG-z(a=Wm1No=%RDL311QJq(&0r$LjHG-#4yg9c-| zSZ&bU(+%0vpt+}eTig6#sQFjeGq*wFw?Tu6Slh(GZ}xR|%O?9eETk{ojP^|I^fYH; z{==NfoosXFcE5_PN3#>(`jz$!^EX<~MPv5Hufv>424HiB{RgcQ+#Fl^O>-u9oy{3w z9Vm-I_RJoKIgk`vG|7Z)(j=Enslx;tF9=MUJdon5IImAKS@IzD0*k-9^GB!xcT?8* zwrOrRBM80>F4Fvpi>oDQ@BII*P zu}}M@u(EOeid>+EI`W-C*wAX~Nb7iC2IZUgaj;RoN$;)s!qZ#2D#SSefW`1){KRl9 zS!#a+JQwx1r>NW7OCdgwwUvg-S6KyQ0S#3+)J4*c0Yy0u;_Qzb6Gp@@$FmENW>fN% zp-8m-OqoqtQJb=uyuy#|jv|1KqIR`ye-uByI15TLCZ@|W<{giJ&9j(B)gGh&hsb%V zl}OYmAnRrI9OLrhkWpMw>@Kw_!t@YlcCnd2V`kD$v}!<-y4IGOIUY<7<{hSNj`X?v zxFtJ4Z~E4~{vH&ay+1Fd`Se{3rgVVXJX>w*3^bp5QwK!Nk$KU9hg7z|ry(ywp`?hr zp_A4;B6H8}kcsrh=WaHsU0vA#5k~$BX^%Nv&W4kow8v?oC1uhIddGHaIr{kAf)LyB z$>%;71+a|UIoHrCo^H)Y?KV1#xVDndNjMUFJCjRJVcQY2@9nsvirM;DcA^PcpcmZ% zpoI}X+5u3cq(H)@bTmgF+g*qoOc|_6>L|1---o#+zU~J`76I!tN>1h9gJLOx^}Kdy zuLFXpH~?rsm%qjJ_T((Pm9U;2s7B9DY3-NW8l<(`0Z(J)ik_{L1S&u7J6` zT@IbuM8Cr2kQ*xaQcSWsx_?~;r?@(m+F-1Il}b&JYqb-~Y;tvZt0+~CUO|R?as99H zx3U1Zu<{$_Y)b>@MBg61137-s{|xDaE?C*HTNSm}guA^ccq?#+3DI^@6WHT2;*OvQ zj<%wXlz8bc6YVICx(z5+EohmPO;|($+E!N;2J~|U81mdOaQujtV9`M70iZGgmpkj{ znBlKZ5432Qecat+*$MKO;-hHm#Y*s^)<mDFV%|7TLQ-VahA6 zr6v)oL*=v(gKtKTVWer-sYLE5pQw|ki&L#mvqS!Zy+y_{nhmh0*tS(AnD4mzyO7bJ zU{!c27GPBrnW*^?t&n#-)c=u?3|vlr*KOQiE+1a|9;%Lr)w>ypV!Aq4`*tHmmLqV- z#1&284S2$2MFyQ7_=V}UQM4NG@azJJs$`?YTc}I2g9Q^r1=mNhu$US+o{=&NuFpRS33 z(LcmXgbaq6xRdZFs}bD0EJ2y_iJuIO3ADM>8$mtE~(_)I}k$sBZ43`At*?{Dv}%S96C!GieAE z?nO0_WH}OdNqz^mKluQ#Uk+9!Amd~Cay32|)G!9!O`>!gU<`)Q&w+2Hba3U@S9Jq; z$1VG3;^Y&O=+KJ(CHiN=y8 z!lH#c1=k-HL2wINaKX)S3N9Gu1o&3Xz2B1O*@EXb5^o5mJD^=tbm7bAalz&O5R0B4 z7OrTnd+;e&{nYWOYU}CZFcQ#v+^EI#4pU;A#}jleSPa9-Mkv+r>AAe|E(W>w8hHpwb##t4xV!&kcNc$D7 zZH@Fn_*fzMvm)V6$kj?G#fD&IfkHJ*v9Gvq_gZBA9js9uRlCl!J|!dr8kzHvQYS0W zn%Kkoc`W$vB^x1l8OGv{+)#U5?${PVS%m4vW}J%K{Xo$n`g7d%jnXbE*?;u8Sp5e4 z#eP!uT{+F)Df`#suJ07&rnOHBGP!c5-2oUyEI9{U2$_J`BhbN6^}`c;O;0JMVmUVZF8ZJ`GV`TvVYxhqC z-Sg+$Q&^K3G%Fp)laHC#gT4{AqVnY_EX8 zxj*{z`<%31y1=|`V-ng!mL9i1;aBbzHfFn?<&L$sF*6t5HYTw}ikQPMR{DfY#}$BqxUP0cHQIGHZVEI zR0d>VzDuy&L5c?EyJpQz0IxuoNeT?iW7q^XlVcm0n<6>Q5(iqnlG6$B5(Z{NZ)|>~ z49xc(-2hQi_#Izr@f~71s=o4qwbV*Ta{e7#Sk0_~Sr%_HFjE@t=blh8SGJ*9!!(9oHk4`pCBfPG)v!fXH-=RDZLOe`UPRYQ{k zs^GFPS+Ju?v4u$r4Q*MN4VdOU1hO!XaR~&VpoE3FDLQ-{tD~MW6xi+D8joNuL7Ceg zBtR7#b;!bOz*=XIx3Dld6>K;fEbFBhWnG#C`B#_)eC7u~W9%*WdYG7d4P;{O%`6); zaj?>=$%;kWn2C(#>EH<`tWVgOn+wRsWKE;Q0&UE!GD{nCZ#@~AEHhKXF&df2*v8pG zDLyggL^3jy-KO~Gd&Z)W2gj)l4(l4gG=+!_#qWqKo}n+-40C@=ZMBg}R>3o2E)8D7 z?Ik3AMJmgCEkT9n;#f2O9}pr1acs@sYVZK%2pEnC=B zN1ALa%YEWQ*G*uyykg2Mm#&*&VyWvAsEy4>Vuud(9JE+#Ma*jJx(!_k`Z}g`$k`w@ zFNdM&CLz>FmcD(czMGQzK-~0|kZNuMpQW0cl;ftD_9U(#%Htmcrs!xWg;fQ71-$l7~E_=2wiAzvD~Y zQl48tXje<)b*ebdMPHuLhGyF()Y|xLtGt-Lr^esL^5Uq935Azz_m=DyN~G-EM~{wG zQD>;H>qY^G$>{TAErViV13#2a5GZf1=G;>Nm22#+4n?Aw$0K~7D;dse$?Wf@8KE*-VXBG(K&-#(Fn7#xG zk{)hpg#s&UR#bhKZabLsv;h#UpQp{0fT6ge&X27eQ?*6%k}Irc0;>&(Oo(|8-l)+^|m}PrZzCB*zIw@6Lwsb&C#Ml@jC_n*ZE07Hj6%1 zJ%JuoI$RDK$hhEi$!idtCT5Ek5MjcpGOnmDZBMZpE{mu^K4>P0RBse`kADl+Z}j7e zrPA}*Z2%LbOq076cT78DX4M%PclM7K45Y`sI;|lnduG1uKUWf>13*hv^Y1^Iqi$uB z&~w+}r(mstb(D4#BS5QB=8KCJ!kR~=gc>p<1HKh^6mwmY(lzuqS55^_L`KA+lKxgP z*7nA;s`2o~?{V~R+?2s@=L0xTatZIBNJbDS;v_SMg^>`6J5ZIQsH)dFH3maPw!SvvUzG`fVu>6(6NMz{k>Z-W#R% zjOME7&a)*(&G~$Mh>Hv2?2?jQ!1A}Y)vPZcCZU1)k9oQxld?rblt2AINud!XQ^C-I ztVnOAH!aE=_7Exlz1nW@1!%rro8P zA|oeDA_H|V;f9gOK-~)i`xY6%^6pzkyki+TDKdaF+n(cs>KqJT-@#U<74P%$L0}LJskw#0W>kt=6dU)2qfwfZG z=8zK1G#ICp041XF!;{RNZ7H!z)k~$6SaK4ilt5z5Tw4gl5^gbpypG5?;T2l&kP_}T za!3hwSZI4o4WT54lsLB}MFcasP6@%**Y_zQ(2Gopfg}Wzb;gzu`I9Lj(4eo@Eg_hK zx7j}ye4U9^oQQTGSHwhFKwv6cJp}|d)!6a@pE1`K5TBnV`G9nR{^1%3%9aL57?|xx z$_gBN6p`>{mT>Iv_vMyzn+mHC>{(8JkGcf1ZwmxqTed@@AgX~@CAF32PL0N9G zw5u!C&=Q1q_=-8rnh_hnEhJb;RF&Ln*4o$;?c}sk2$UBTYs%>O(vA;Ptbrfa_OVB; z1<#QADCUWJmHgwl{8Gp}7)MlNM9gN7uPitdWpmmutLQ?4Zg-(tq@s`jaAVY@DS-Zn z0+k+4XuRE|6o=D{KmC3q+fS?KGJaaEehYk;h)^N?PRIM4D!jS{p5ig?Kpf+|;t@_! zJb^*skKX{wA={y@rlNq$eyBwYup#S!4U*N^m8tS5J$ebM*u(JISpzu+gOF<{Y9ru? z;VyUtmK<&vbW18*$os>4Ij&HxPkDy6;;?uX6Z@^%H;>^qaVbxDqH~;1ilnIVHfw{L z%~_Pt0LgQCCkYG(iB0#;|I0Ed`_;I(eByl>`RHEG-qcBM=vRNrl=$xB%sm1Xiz~1= z&1Vcwu?N|o;!({wy_5Dm1&-=;cv!NJY*FmC_Sp$1KG!H}?A-3yK zUKrZFz%oITcp3?lh??k9PM;Eo_|z$o#`rrRf#z{L;6$1@ppGf}{gK%$S6;14E#Mcu zW({qJ)XaTEZPAkP4MvWg`@rx0h|{yq#R(DjbWj5n>gFg$!b_}`X^k9&jibeK_0w^P z$JaCwRL(pOWD*g(J+~9`n3>7)oVC+e8d@GHk@$|%t$WGOSX4fTJQK>=+O&xtAsg3f zAki$I$k*r>a_T=kpiHB2Bu+?L&#ee*k@U(p!F)eQArV$6ihM3FVbx(+g4ikI2=AB} ztBAiTc9%;wSQOCE*`ADot23qRndjt&;opY9OxxNW&`FF#QcTfJ$|Gufg|M)-t zyT;lmzj~)-pw#7oP4@m$7krkIO#Y}H_UMn=T;5BqWdvu|1hmAO!va6j5^Poz;qxXc zChs)9|NX!J_df-G_x7s;G-Ya7Ym*%+3c9_#8|nwbpwWz(s+|6xC~*@peC{6z{^37g-{jAK(AE8Z z*f(M?|0@BMzeHTH?&Yscxp)MTR+)&043#cq9|BFhr?v=h>Usp{`t_zS%MVO~_ZWBM z=KcLAppS#{Cn@a_#?qg>>pNxN^0 z3GYb;_%0VTdFW7JA_EsFg{+|E+bgg-d?C~c3pm63uASMzUF}Z!Bg%{^Ph)agjB!U{ zd30X!>TkGRd=t9PyHuSyZ2SQTQ4ktmwGa%RA0cmFj+fzEH^ttOd$9_(BeV(c4{}~F zY}z7>NA}ZwcTsOBDVTT%=Fh*ISYB_~0|kFa`Rw8+TqT2+TMu=ABLbp>0K)<9DT=h_jW{;nOj~U!XKR1%LZ0q znK7PGgp>s(;K4+csphxnREeK3hR6GoLmyt1@bl<{`4a46FF!|&xt2`2*;f?$6gmRa z(8;0JqKL6EiGc0EZ@#rs)0pv##eLl4JjTnYPn)7Wn@<2hDyHG0QqePEu|Tz6+(2$o z?WL(4pyF5mk4yb|`V(9-*p*e_{LrAViJI|G*#enILHgu7-^}Cbs)G1>xF`e*(qCUy zy`z8O^YFw4WvLwoODEr-MXnAyFQDz?dnmfizTYnotCtTHQ!!qXgnE0AENNtc_MT(h zG3XKASICa-Q3wMBdK7-r*ko2N(-$j#RV^jhBM(gaVTQ)bN9i)_un~Cd>!r$+j@*>@ zFO`{5@3a?M>w75O;=Lg$!XK!YQf@oov%7x+(_56%z?Z_G3nS+Bk|o{IDiA$xkx|LZ zui@4{%m>3AYI0JM{)pPtM>R+>O&;Th#^CI}qOze;XaB!~alz8_C;Uc*%h-|BwYYe! z4e7|-8yq)HN@Z*Yo8}>4en+++;(odOUD2&C8-!J2?EJYzTP%f5N@Gy167d{DwbCr8 zz@FFdMq$z=Fq@7HK@{q-%y=Dd?%D9zo95}q6_Zeu`w3d;^EYluLc9gs;~t{J+2Ti2~QsyfnZ`APv>$4Ex_k1HVMk9pI>`vWGQ`JJXHvwVE@}s4j&KOrM`9n5`wsEf(~hvhRY&dDWjN{`K=Y-zlTGT}}S_cgnu&^Se}8 zfOvFShn7*HY>j(s85MC^NMLIjmB@=vY8e&SjrTmXjEd@Yut{qfl^~}pb%=^u^1ihW z+|h`wvadkPm!6771)A1#=ou9`5EK+rG%7nlu2eMkI24Udk)lzVHqlbis7SJ?b1NF} zZ*~}Sp=eaVMo8zTqEUhCBJJ6VMg`JOOFg3kKb8-W7QxS6<8EhoSV_2a}3cbmE02#4DBK(QTIq%vQ6_}EbL?i35(TA9VPu-x1 zr+7;N^bNC!BL|=bBHU%Gkbti!Tcsr40TUJX6>4waqdL!p>3!FLx`AYmI!Jdu?2tW+ zh#p1SmAvY#5?|7uq_F<^CwdNsA{tFByKy|Mj-^ImWDou%`q~>)BjtUp|JDeA5jxK+ zX0s+NodUp-FlSj3rad;QPSQ;)vCeK$DvhiCqLZq|9`Dr; zN>_a~Q!S`DFRw16F&&L*itnIPlDc%8T5oXAQpB+)5UVg8u5l&0B{!|g_~s&VZYqOw zv5C#0F3x*M1&u4-je-jQT-t`)O0GGcKMB z8&8O6^B|=0WaNi5o|wyVm`3opkTK@IcD;OF;acZB8Nh5??KGYc6{c=&;|V~L)QfFA z0nW4RJ?nOOz(oqqJn^CSsm3Uu)lAmonVdBR;jVJeZ%^l;|UYHPTL7HKg+hAa%F5geObHT|GjIt!XNpb ziC0Typ4wkk`uu;4y-AMcJP$26|5gzz_+eSHn)M_Kc!SJI?SD`{4JpNqK;extrSNql zQEU&%%5vaTfaMylMGDy^{;J_# zr$(&w1g8KtqyOvGt6WUCEtg0&ZaX>o(o-BbL)EdX(Rcf?89E5DX8b8w8 z;dQmwmW@DHm4~%O*zaQ~Pve)R_<*&>O)U+||z{tOE0GO)AFEX&{ zd2Ol*4X4^g@3l&UejK$wu1X;D64H6;_|bG|gf%Gr_$qp}JyWcQsyr`emKe6=95bou z4~5$XLwkWjOCSeCwZ>ANd9O@rir34T)l_8LWAJ5Z(>|1ZjcyZm&rBO>6jPjNc6lzR z8V<>^DuPGMyN+)!wl2Gd`PJ+a*Um3nI>dM#0o0IrHNLHw+o7E=w%FU-%lub4kk7Y? z$JU~Bd(Mos4_I5^=?-0yT|_c#Bc{sftq%hrPI#?_`05rQEQHMIPz>{ddE!)q@-4oR z!~aEmv?AKX<`P$x2Y?pvyMoW911=#*eg8rnbQe)!XS1+}-0;Q^t6DaE{_49> zj+R~x9pVORPd8MIhbrcozd2LEAez#r^sApU`&a+xmwW$q)#u&+{qns3Tfq#oef6ZJ ze|yHcjqKSFu^l%;P@jh|vI%*=TaJ;Uv4+lpuXv`9xts&_8B-Cr%yD-vPje|I_5hKf zRwrCHl4*w3Fz4k~6t`VUt5Iti`cm2QBgTnH%^3j!c?T*Oiw0XHz=Us=Z)N9cQ3|u$ z+cf0BB8B%EEHN9N%|B{9QYe!I3PGb0UQt!GpkG5?LyehXpwpaJ+_(I#7K3oiFy>ls zmt5|ZCDr4p?~YyRsC=9!@ih5Yo$(PflSn>x&=_){{+KZ({QW^2Bv7YJ#j5^0W*TdU za!u&ER7$|RB8?(53&fxujqG7ug9j!QpU{oD4(h@?%$?8H0_gp*7aPe=G5&6c%BGhlZ*lALgc6J`C55@* z(XyerAOdU9H@exDYj2?6fFBb-37PaC?z1Y!&$_lhR59(r#qPlDuLz|AM+GJBx(wOYAz6PpBOe<*dAch7|4Y?ka>J zpz5XaUgi>wui|dZw3d6?8Ele4jr$r(i~y6xBQjw`i7X77JWQ2g5#`_$m1R=zlW(9P zX(L{7{14_k7#%hGo;u3`$`Xu5`ad=Go1GF zjD7fHZ-P017{|#y;xqGt!K&xYuws^$WcZ{;o=hN?6ntTqn5%9>^!pLhv4iJ?8kHPq z|Be|o%!q~*;b@LF3Un-1H^z{AJJIy|B~Kmt15Ke?V@xn`w`BGeYe%CivkI!B7po?m z*`6pl#93Zn*pQoDpV#ex`-tjE0HV{cq(&ZrQV-|x9=E84l{2;K8TVu7VKtP!P~n2s zXQVG`7*Ij&#OVq(-L9paGbcwhl*$oq7cgm71z&1bZTNb-rkh}RsXQhOn%MyRif5?w z`6`C2FXAazk0gOs{7&>XvJD2EUyA%hqYOGgon`~vdKwv<0GPJ$oj!zsS5KxehW;Hh z^-_~1{H4pO&eR@gFi-l>|74Gt#u`Bh)!#4eb?}%ZBX2}ru~1?-evg%2=lub7V!-59 zT_)h$85gS3x^k?*k`eF<>KnPMw39psz_rPE8v()==$@|Xn^aq5i=n7x7gaMvGizqk zT%s`1f2Hs07F9#*%FmwBM_egA`+~<&ABD5Hu#A`p4Du&?n1t_hZ_VR`r|+9**nA`P zG!}2W1)J~2T2Tf8b=@zY$saTF#=}A?OxXTyCVthfdg&8>%=qcYuYS&y#zJK0(|^q5 zuRgyk+F=x%vXt>?hq0_AP4-}*Vb`Rp<_zk?ZPnrLkK5?pw{)a!mgG#DC5)b2EzOdK z0*m+7Lg)gX`%!=X<6d6RaYerr<&aq-9LjT;CGVoJ+enxtil=Vj!(%{1UzjBg9uH}n zmzm!EzmZl+4nt+j3E3oK9zAUm`tF~@Bw?U}B3B}q&U|?j)lLE~5Go#Fk~DzxWl#t@ z0$2E<%B0;(o%Op!8`@buO$|I7Bjz`$zR1f z|1y(L&tLtRVfK6bK2zjfzlcq1u9i!?s_k{)UOZx((x6E&wC-+&cvyFee=qKNgfKy| z0l&1piia<`LQ0oP9@spRXz#}r2y*s);68{<$Y`)H@X!Zrp6M^1=%Z>GVO?E_Tl_Nf zN~}xy3NNdIdh*Lm{HhR4R)3q(!~cH1jQ~kV2F41(6~NFUsu(ngre`uP4LAz=cp)w~ z2=hhZk85#U+~wtcV~kbp2)GI8#E+iTfwx25Ik*skD*+S^7G%ru`-@vJ*SO$a{`K(P z*#HQBfD5WGD;Novi_GbT8LkNgDw9f(`R4z3X?4sR&;(2ipjY1m`#znZrL}Jkj|)Tc zIQt;~t~{D}Irdv6sPZ*4?i~LC*6U@N#}!@NJARMU417LaI<8;;5>M4DAgTks5&%TF z-hi*l@imNg*)s%Y9^4SA~$}pOAM>6;WeM}xN!%Rv33v_K)*P; za7F=;`az(CKR~5}4%C%!{EuYJ=XwSxJ}6KND=J(7Lbo96elIl$@pDn2MUggGlic+x z{1`Hb0Ra_RVAluaW>N`&DOZwBE*5;D0Br#Qqz63i8B|yXrvcc8s4N0=(3{}QMpX9W zt6X*+5_N74k`wF={3y=(F3j&UdKJvTTLgMTMQT<9enkx5U7kQ#za$n>EQ3uisp4%O z7Im)FBUX}lWucLA9D@2jtb+;16-0y`cX(hM)bklAhry@%Er>dsdP_Lf-cKI4Hbf53 z;GW2BX1`uv?*Yb9b@ep zl^D$gTSZ;E(w<)?;Gt!E$vtyZu_eB5ia6f`=VVIl0)CVQ+x4 zxz?gxxbq#zzcf->j_GuI4@%ir3}C5wN4oe?B;+~BxdLQRis*U4 zWqSLib>jB8G-2IxCKd)HGI{tvC;IJJ(=j6#Gy-CIGjV!KH~~Fhc4fN#e0Y3AA6XqbS>Prj~>b(GAR1V{i<|Zb19;kHFP|Z zD!hw;FTC?y8@iqL_?lT@UNf;YADlo&Dk_UkrfD{TT5=|t0eeZe{_9L*S~zCVMu5b@ z@;bnCQ&I%P68Mp&lS|HoCX8ZkP%^&S=%;{0Bg}rB%lCR(?VEcv!Vg!z6k@vT8G0ao zfMg1-d85(63}>=)5jbkJ@%rir^TTE=Md$K;mj~>Z<3c3G9;;g?e&LyCv2S$V;X$aL zPq-)bprVNVLp&jrlEF&Mr~*fcfS6oGuol$_NX<Q&9(dXQ^i&^^A<;`s<$%2!%T_1eUm!?(?HM%6lrrEu zsD%I$r?H=rxlgVaudAATq;kM=*!N^cGp?;yd-|V>754K=JE!9I89i z+iUhib;s|YT2i}0@j&uytM0g8=L14@M~IM8+NwKlKA=mOBDwUv95joc)^=Qhe6-P0 zcYjcguhv6%M@hzZ_0-*;YJCODdk#{2-!oL-pBl_n>U-Wl6f?Yl__-8~d_glGJXI1P z*c0Nxhi=o6Z%=JfH$WhD)OqOdVB6%2A`-k!t3?q@!ESC2N1_-9Y=ESzVvq- z{k85xe+ToVUJw+9>VWtV>+hdb3jG})qV){@9ar(WslQ`JVq4k-?t96GqyC=HP5u2r z^z}JJ1nSn*9(2J~Sf!kV?bLX;DM5@Qgi|3Ucl%>Z6K-Xbn231ysTTk#$0DB=sE+m3d=r9yutK zRQ@}Z`?a;K{Z-Pj@KvbZdFR1Le#er*#=g{8q^S)V@(UrYNp2Ey4iq+}5G|~}ki%<9 zNsEclus$}ADi?9|-DhYZz=8sV4}BBxIev{M6&~{V<*aCsDT&^T=!lJ8>6ejAN5|iC zZ7pCBWqKbR7H9zpQeSbcr%Li$w5`k0+ zV-{&amdkyU?>J?3UcocP!E6-kj2ITkkB0!+e6r29+y((=*2=)*YfTHhEFdQc=gK$fY!U31wXa3 zJ)>ywF=mwS+qi%GL1h*KFc{KmYtthie?%Q>gMx~v`pm|jL?}J^%;ZS`67+WPB)0cV z9|IsOk8C#Da7Z01GBb$L0A*NV@*zP(QR&f@;Q%Z%RZ?rk2X%BNJ0hR0ifNLKBGZft zCv)qtvn^}|i#}$nk%2V^P*D8R%09Uf^4-jx%#Db=nKii4-a7FboCm4;!Hw92_Sp_L z=CaVa^$@Hx)W3^Q;44Aj4tf2)a}QffZiRtzUgRY0QN{(JGBa$z_sYS>Roi?X07!&; zj*2E`w6n|(AM6#hSzGhXwcvqsUCQaP$gO@=zZyJ~C0{#}Oe=)IT)37iR=u<6U zl9&NDJghr}SKjBSw_Pj+j<#HW2;!KEd2Rqz?4V)eG<)6aZYXQSf@pnmcGGP7)9@;1xd?C zj*1?SSp(3-!Ir^1WV*~tL_SO&`3Rorz1c>?w2~E~H-Ad5=BFI^~wzC8kupXWs^F903x;_@$@vI=L*GrPw?6y5%T zRQseA_Vl}dowpHYO?!q0uzsQ+b&Bdgd`rAy%%@1-V<3t@X34|cwnArE}Edqx>X2O(PY#!BR z${`Vt+Pjq}R11}w8_E+)(~Z!bQ2p}Mosg;5&wvMd*NWx)f^`IkP-Fj67pHB=?JL5N zL;8wBWisSY40MdN+)zAE%99N_ycFFz{`;`w)P~&trZD92)pP{fkXy*SkRDA#j#XC~ zU=2eKh2x}I(~v_APbsm|_4hbTxtz%z{l0rjsJZM`Ob=QCyo{4Df zBKUn>&CcJl2RrXOOVNW(VB($OK>H+8 zDCy-=hW&P+753ge9ccU=ZE`u#cwYt5=s?TorUR{9a#;kgD(IV>#wa&^JSUYj)p3fy zd#UU|<6`RmcA$~0p0Dtq@gwBnqyOylqlBPAsf~5SzxTwLu62vlPlXkJ%mnf!Cmz+h zEYx3+*oxA@_Z0S|IUBm5I0H2pn5HPd45GvqR5uAM>{QWiuEA zlE+V!HQ&@k1z=`SL30hCf;?6_R#9BO>5)>gn<^sTtXrO@-p9h2pWRZk5$>-d3(vIb zHl29&0t5e-nfpJij_ z`x-g?gPOXpJv8?Pux+6H`LzJ`XZ_(?eG=ir1XFB)?tLMJf%;FoRUsNRuOY$Ft?p7y zO;rm-1vD%mQd9WO7t1o_7(L&bDyqiJB(f`RfH*j6kq+R$h>1geH@uOt1b{7Il~8D! z!$oy)xTPf{}8c7O^au8Wog8d-Id30i6f+{3zdwkGMSP2c@O81!%)eu1OgC(hcfG3m zSCUNSGVsk{%dlnuHN8?DN&pH3jXIixE*`(XXa*$275L{q?g0O9^D}gc(4y$^Tc8gg zB9L6+LC?b;FL@brqFw535H~oftIH0A$zmyX5iZr~8^JfA>6-K88SI5BT=MF6b86i|){;s#n_t^`1D zRP(Tyoh5zboN5;V#W^N+Ma5lWX3~)aJnSSr54PYyM>6_Ik^<0XmddFMO`thUyGdot zm_pBvt~2O{o`8Mn7dn-IeGv=cGnZeUrxF>0jIP8L1torX(p6LOvXxU+;7?#hS}k}_ zoc!3Wq5c=&H%}0^Te0!n&^m!F1mCIGAkCG=>bm@(!)2j1*kE;0k#f z@+H9Ov4ioFD250~VN#~X0OsjCeQbs@Z7%szlbOG4 zk6p?p+1mg6|L~%~#DSSA!3utLra&rN0thEZWq~_d2f_(sHg!cGg^^?6=Il<3D*&)7 z#~lEhkNPfZyuv0&>uV=y8(IhK(_-#01K>!XaB8vKZ2-zMzq!dF=Ng{qYpS99KVYJh z|2G-}l?4XxJR<~>-kAJ|0Th!NPlNnLEw#fmu^- z1HQ*;z(cAE{*KNS$TWeo8oy`q*)6pK|KX`gXkNYr*wrQFCf*A*HHLYFGM1nnD9fIR z^L&w;`kt|L*q>++<{iYf0c&)gEDkWeRDh8wqb;|~iM5Zz^iGUOXywk_PNMM@NWULW zr9e9L2Vp8v0##~eJD5(+Sd2g+q>D{rKxI`vLsBHiDMj{-q{sub9#fqqMNs^e9+~8vC=bh! zhNVb?f-FVwmh`fu6hR47`gzO_8tcYw`p+*@O`b0c5zv~1Ob8LIF;xo- zk-b~P`Ci|5?+@#ApwQDPM)r)v2wH~dR}v%W7(!fqE(XffP9AMZfrhii0{fB@`_n>> z;N$C|%As;DKg~Bl`xgoxixD8Kv_TRh4RC$RA&HSa4l$B579)8FbMQpkC6AAHun@>s zw2;`88B!!aGp>kbh&#kW?MK8?#!JLfTa0{e2G1O7ok^wn|C1wh*FRg@{5xh;d-pH# zFES2(&gfU?j1ubre41mkEqGPM7H%7+@Fz3o=u!pnN-#89Z#oibba$uhGq8m>yN>$L z?^B1GXCOu9T`2+tr)10fEVz0p2vCQM&LKoQh%I*_5j`PXxXL&b#x|5(Bkgm2zMI1? zg>{(2u2l7R+dsd|=vRM#+~==6Fq*?YUG3YwfhPENqt6Nd=I@WY=(SPrk%^cOMHKt{ z$hvkTHMXRY0K$J@RDd{{J?vg}VNS#FrtN8-!CcKRqSjQ|#CKsEH+{#{Z#aQ;d z@HeY2JPR4ByurinR>L8XOzTEc$R$w zV`+|cA#0miURa^2x~Iga7m;X`zS=`)0LO&tnBdp+v^XUYMljVISEI%oQFB1{FB)*Q zF8kDFOR&6D3~nZH&^|S-z@oz{h0zSPx5;R(GpSOPK|h6idzJ2#3Fp$GgAq47t5aYt z2ttl4P+O9f!*8_^hTvscWj#`xP4A2fUceY7kju%d`1q!j)Z*g7tjAt+9Wq7Bnbxph zsd(VdA`V05Ku2tFgap|&GsP1$ON-alph44gzOXqhS32kk4}-fQKhr&b0AS-v7Kcty zsCuYGl&a^2a6U73x2tqsdJkg1>4$OpE*c!h*lDQvMb5CmNoMuoi@WxBnch}E zy-fIG_^px^%thxVP;{#LF%{5F3UF=bqyRUm+w37KZx>c*@5<ZQb+DEW@6ys8 zJuaLqtCN=d>;70+u&L9|Ed4**-1X^3@|rfdvr)_*KaY0fm|+YDcOYgFmHlelG$bC# zW+0O2aM7T!=DP<~r2>fSSZ_wFgb=#*2; zg-USV?FIv*0ACCjpzC6PN(W_$-946*Y0&?U8Sx>c(sD6e!!NVhuxd*7i*z?9u%h~Y zZ#$}7x(FUv>os-ER zipo;3rsot|0gPMiFZq2XcKMFF3Y9$$PzIQEtD1}Wh)0T~B``cn)J?r%@zuLrGpd~& z1)NdSiqTEhVZcHg?C<@9JK|D2)I}`!)~Jrh=jPGh z7jDjBh}Jzbi3*!6Z_pw6z3Au)P zgffXxKQcF;B#Bl*DE-Wx2uZ3%YLj7;v2e?AOS6HsU+FnB5BISgu#M4gY z&WXlonw5G`AuOru*;H8BqIy$ddYO_6pVbPDvMg-DMxpJyY777}!kl{Rjbr zceGkTB_jMlrb!sM(!PRfGbb{x2-l9O79NLd&7+J2{DTafSR<%x%~5o)>M;ze-7})u zeS?RQt@Iv&G*sUiQT)1DNA8W717kd-SM!eeO8*&EZ&bNf1V62U?g~xQN~mkwV&Q4f zxeoltA+vL;$S-%%`NA?QOMZ6L>~cY#TNbwK@w253>x5pelHx{K(Gj4*Rm>;(g6gD$ zxIrCq{h{QRQu=CW5f>w!aDh>;R3Te*$&u1gZl?z~=iwt@iz6Cd0(S&JN6w`d5%!F> z=JEqB9<#0r=_W3?4SaJk zs!!6CV`msR>Uz%q{sZc|u#y=HZa-hj;T&Jl(j*g%EC!Hrq)NfoH_;B5ei0J_`W;C@ zwODxA5o7KPBBj;p=2IS(ISXy`xg3(SoOmwdtXvIykE2<^F*B55Y3C{I3JeYAcdb5n zUmdfvYX21HX+ZTy7A;DA*Kr7*=XTNr)WG?Egn`kBz`ru@xmVU^Q}!Ov%GWm1A9fC* z9A}|Q;5xdE6{ps91qGqNV_72i%Y_h$UX+P6SX};?SdeXdEXDO0mvDmR3xn}V8h30#u3lB)qKkWqV#D{?f`aXv>wO3gAWf(W#}#n7&n{K7|T;tBinNdiUze3>4}lLXon5HUZDZAD^f9iE8s&^?qHZ=MdANCPyCt{LKqZu<_ps!F z4Bp!AVE5L^0YD=ch$~>qjgrd?JgC?=erhK1$b}*H43xKwKDNpuZk;#GuR!g{>F-=8 z=aOo5jAJuC_LDwoX64=6O#ZiLLX@MD3BmI}C!(_+lBb5MYEgG0a4=kt@5v>2R9%dH zwvqBlQ5;uvi)u56%xq2W(TBol@rbb$u(VZ>NviM;aTEHqLSd&}Cbqf+Bhoyc)6D79 z^%Kn6F>b*&-zDDT`3SDNXX2ps;ZV>oGjg(>Gjil1Up75~7uF(tX3I5SdY^9EMIo~n zOF{-s-dGawawxTT!%{4CkpKFymgGfE3Ltc?uEy^#fK3>6Ujgs8Y5~$(VZPi<3k!Mg z%eKH`lJD)ZH5QzEJeHGub0$~jgZ7k$J6ymhwJX$E_HmX@N^H5k=S z{feo-sauVLRcv{Bk=4fNgj6f!)p37QwL(&x1UgkKq_x@gMAd5CQqNPhLat_4_d=>x z$a2#nO0`0ko0@G|waR2@t5(QJ6ibt8g|{vh~!h2Bai4 zmEex}kWh`@^BLP`?#jl3GS|$1Gs8Kq0Oc{lA>ArdYg4yEqAaTyTDL+8_@TOqP_8m% zHI*yWjDOSynO}uM|JT)0y+SE;T1BZ|VP+5jA@vI5r6z7vul6|9t34Cy)t=G88#8ni zsaF`!Q@a|t7j+b=LMVnWDwKMKTtfTktX^djaq=xxzwbS@EATKY1Wo|{&eNEVo5UX4 zRc?W`tE6UYS4ht_!>~k0$$YzJsa~Prz*0AFt_G-?Mfy^`NLPM z!n1lcZo@3CUL9jACVNKe)n-LfuQsm@^(u32tzYG#4BpzDRh0S_l5U@^aG^EhIvUKg zOh4JT)hjRx8ItDCP-L%`>J>XCj&EPlml%Q7tG!)Pua0qS#>a*#Cl}w$NEC`a!`(lD z-|7~FEa8W0;7#I)eYw~!^RY8vAq~@^VUPd(H<8V<=Dy-K64`#EOa{#WSLBzPK+#%J zUS`R&S#0^ZsTF=e%g76ghMRKZLBl_W5u(c(>sm;!HTdzD8S9bzM?WT7Q&U5vq{>&! zK2+yK{3cfT=R`g@fAeF;(WY-R1pDtL7VZLL0XmwJ1W=-1F&MTc$Xr^xz3{#Op(+GhkG=ogjtM2f{L@l*Xl)4);ihIwl^bGsa^ARcZ@e);i-x$Blm$dAgD8V>R>9~qr zsGeE(?Er)BfR1HchZNYW8eERIcj`)LvxOg0tLeWq6>Ed;XOj?o2P1=nxu16bqkDp|Joq z!!B>D8pt-D*ON4X9jAr0X@oucc8oFB$tErqQcrN#MtP`~WV`^}czc!tzsXtImXv<=4GK;#aWzU|~cpNk{J zTu~jf$^&_`y1=`!SXXw#97=~|h-y!OIDo!hFVVG|Gjh4rh2lAc+1+xwy)z8qM($3< zIexiLNV+1Vg$zk^oik6^qp7D@$bVP0Vz3*QVNl&Vrz z>MEpc9Tmi^pf2XkT&RmnM(@Y_j0^u?E_n@Gkl*ky1r%*m zCpVWE7T`f(gTG^%*!YA(n~F_N#!Mu~JHAzS8ip`;sP0s&PBQF_!~?6Ubwrlroi(#L zc75?qGn~7OWiia9;zYjBMlo4vp%q6`saAWY5TWwOJxAwao01c zeZRw%9o}h&SGGJBpaYi6J8tX-?p&=H3(^5QJg;#1@QOy6j4Xc;oI1H(uH4_gyCF zdC=Rhi}BwCogf9jsaCuz4WUtO~DHHhcRp9atrU4<%zkq?g2b#gI83bsO-l~ zd%8lbu(@)M@Bf_zkT=uYGdg%tqr5`7tT)FzS9f(AwQHHcm~8r0%Vh#YS3TA=pW-&R z>K?liPImSxUyVyL=SGbfp?=Ut}hvHD^A(bu<@&t;@x1=zuRpFir zgNsif;wsh?*%He;h{wec7<1k|CRSAz0n-Do=a-qSQ}{=}Ox%?5??k|duF7WJ=S==6 z(gT0Y9MATzew(T6z4C2_sKdR)u(Q`!WJbmsU=wbl&(IMNA`*4~DW314uD$}HZ88t+ z6MF`-d#uXHa@^TZmj-x@*+19I=qsGRmv{IeF2R|gxs%je013OSl{m0K$3W4jmph}l z_o3Q$3gkk{P_ri2@D4>NkWHZ|0i)8kW(9QIup+1#bQFLMUSSnsDcvw&ALqbzak0UR zP!Wy%7=;V&V~jj6Wnae3sOlcbPz=S$RgOo5z{g9_28ZAR0l8+CB_Fa5pK;1Y)Q6x6 z9#;g~$~Q1JDCKp)i}(sEIYcNA)tq{c#T|Bmbt-Uhq(KpNvi)dGQ7-d03CX>{jPXY{v&7xzw0 z14yeWmPC@kj?Z2X62VfmxrruM3Rx#lfNd*^R;lxXJ7rK!C37VRky;>6(D!fB;hZ7r z!k~{*!MP}p+oRUi| z`R@5$)WTJyzpj$U{<%sR3akr?9A927)$vcD1cPftvxqQej&YGcanFRJ_ql`e6FAX@ zEq!k$1R}w-vPtlS8Viegh<;gGw`KZMMFryvg=spogxKU+g=U;!Q&C!%WlC6Udz##q2b$2T3E2DtYV!lLW^<-6_QcS6`tnd6nxm0X_ML=e*W87~2V$Yyf zeEC{}MpaaLy}u&eup*E#U8{^xor+?#ENn!mR2`E9T8gsB*?n974Oc5+GiWSNRSbb0 ziIJ`nAM7!fN6Qfxg#Q5nwKb#A4_imiDD(p!&*srcU~^K4wdt z8xuBP)oe;Yu>x9Afu4%k3o2hZ35VUN8E3;gQnIlI?_io;Rioyqw7-j$W@3yqK6`%R zid!WYDx!YMGkEb&n(z6qBK~k1#lliySv+f9{zo!wxZ7mZgCIveBhcxEk*7{pk{RJ^2ef z6l?^a{AF3Vn!oH#0V3uc2TA@Px*;zTVQl4|sdR!yS{=!Bpgc}FzrR?oFp1vkyBYMi zcQGh55~}iwaO1=c>|r52mT2UrO}SaY3tmLjKH?_P+KzFn>gTj)o~A-KaR)eO9zH|c z*caq2nuDF1h4cn zT-_vOK%~UH<4b{>Xf;Ou3~r_JGi2a(WwDtp*P`4^NB~&#g{+`oGRb26)X2l}jF;~( zEk_0je$GI;_K%sR!Ys-58;z<*mGtUh-6JlSirfT`*~7AU8AKWsblX? z=v%O<>C8-ht38+5r%oFZmUPD}Z1O2>%KBE+4GMh=MxfqG+>v!B$y0)TBD0I`jkuyH zgdH@EMvjY$Z|Gad_LJTyeG8RhZtAkqxAr)g=$;X|?mI}|!ZWnkp>N?W+SvNm-X6&+ zY!7KQrP=;cU*TM&r1z%QJX_yF=9boi`W9B7o&f7xA4g27M*`TBZ0k)#{%x*)H}$(_ zVSX}5q~oxc6dkR2Ep$I>YI#`E4`fBUNns(c)oExNlh30CEA&>*rmR?nfpzR$swa+J zl;+vT4t?NgCi~dAn_!%}9JV62}BlG1uWwJz-+v`;}#6TGNX=;=bGk;0Y4CH|2U~O7xDbS{o zBNPv12=PljZXX z=JUgJG^Z7W)Y5V$l`^&lXur>dp2prQr z4m~YrQqRDP(c+;^)&W`vL|Jr zpBtPX+ zz&4W#cDdzGu|33AV8lziUk-l=RQBcgWM6D34Q5_+<0jQ5dW6LcpZHj1M5@SgxC44z zSDMVyd16zl^%aRW6hi3N2KS+K!={RB$lXb4ii{WM@>C{5JjWRLuYS(Rsc_C9dG;%p+MFI^23EZc z*bMdSrCNc8Nh~G&B;SrMawGv3Mv2B>AuFP#8^_r1x%C!qcL_6Ge@8}oU;F1DG)86! zd%Ru!V1_xf7s%bFewz_%|I0)k(gn){6X%U8FIA}n*_Lf{Hl7&nuy|i&hy-s8;P>X9 zIE1pLeFaYWv~B$=3RK|x=9OvyrYi{OApBol$H+neV25)^rXP7oAp18@alfv-;7K9I zk{bKNMo|Y- z{M)54x>eNy&=z#4`^w#ei&*BNh_zOQcCJpg{)F zS*jw5tndw_zpz;GJ08U2Y(w%DKK6ki#~&TBRM7ApcS7+m^{gdxXHp>;k9?7+HvO(g z|DUWG0=&@HNs1YEoS19p2gJ?-7EbX4hod?fq1R=YM*vXg%s>G67*pOHW5;dwjHLN& z;VPC4MN)&TWy(-M*9BD%p^0}~*LIts?-+51simQz)w9*O$Vdo75{n{#%y766oyJ6U zIwR3)EF?V^T8a~}(e)c~^jo-Ma0xLKsh4A=%LP&8u`-BaV_+=h;Zjq=LR{h15l6yq z>brs?Vf*CO5l7nlCw}8Rg3XYS{vm?#1uY!)c-hHDQ_^UVDE=ipyfnheZZAO8S9t;$ zd_-?7#a)Qn#4oxE-oxCRQR^=8>mx|B?e#RK_GB z%O;T99X<2fz0E=VBB)N*R~xtc8%Vju{q5Lw+_MRjYoLJXXZ2~k&EJ>texh@%zS zR){0xB*_x!7^%AyWb=KQLcSCVF&eIou;8(tsBA^GMVjCqheEt(LfxG6j_~M@nb5)Z zuYSy=LL80PwnCgU`K!IsKWF0U`&U0_LLuHWRETq_tq^0pEZ?1YP{N5Rg_tP6_7(at z5P9tzp#v4An2Z!!?C(R55cORm-h2H@eHaiu8c6>8ZPZZw{DZ`l_~Bfhs zjiHa3p$@;y=vRM#+y@1Vb1rr5oY`w1cltS#tn%|dIxr(t@(2p<8976uM_j~rqfgzA z?-C<3=U2pc%cV4w1P)wfsf1c03oh2_+!wIZQn={KrA|say8F(sJ89wo-0vzBnmvy2 z?w(P2_Z?ddi}2n%j{i-&*i_c|LXeqc!SHT$&5H0Yn`W^;LWFmtZ&obm%MzI1DU3*b zwDBW=1qFU&k!`GWtVWx@&1(Uud2|enABjy-eD`zPAlCrt8PBf?_G_8P0~(vYhvTpSWkMYw9ESxN)tki^R;~UDzafX~^cxl=sXp6p$gy3o zXn`2R@EXQMGObeR?)+^gorcE@ore5SGE6xQ3(_4aRl;dlkgs}egJ&-l4IZ|kJAH-) z31yFc%wuWs=XMgZD_n0mX4|(WLX9h~Ww)c~6v=wkUTRVPT4Gu902GwPBNGg!7vu06 z=FDE255jZO-CzOg&?eCnY#BZyeUo`(^p#VYNB=UE4y`NYazSEdw_BLhFZ|ID|733E2%TXQzSEy?Q)p?W#$9GVDKtND$MIYQ(*b4>KEClW=Y8kkc zE4P^%@HzAVFbk|8i%=#%Jpu(aTe@S@;+x1kBmtx673dKupLYuBW8735eoss_J{&58 z%F-2n#I<<~-$^}e29uU>MI&28O9%d7h^?Z^hj>L0&FpG)xT?rX+=L{uwuZ=s68aSU z2fQ5RQ4UME-0GWla4?iZIaLX^gxc;uk_eA!axf-(eTBVVkY?D-z_{P7s+-VQ?mWkY zoV^kS2|G_l(F@XP`VLr`2+1mXRn|m7-zutvDD=;&(fupDhlNRrr(k%34o zw-z!*6mUiLxBzbBgXgZ{y%kiRJF)t)+3VK2QiL7D9!)TF#t275EGhF?n5PsWwu4La z7mvb&!C`|R$Q#L5r04E&%HH1mhw$ya`I4KPKZuKSogQ6*lq#Ox>T`t(MDNgQrcM#J zl2GY5XnSiFnB`v5b7mW|03ODLinINw=M}gE#N8g(*ol}yTS0sUEAM>KKDp;XJ>r6V zsV0&|8ZciQgkwR_~F{(`1uWD`S-cmJD!s4_LBy&E8XTndkJL^3+qt zNYO0pyfMU2p}BuZ1}ZQ8VM|a%>){>w_f7!MGT90OAq_M-MfUlCJ&n*IpWbjp85m^W zig!HSX1OCk4pas#h{50@TaPr5H-n8sWw#+2r$dJ@4jY8=O9&lh9T&&!ebXQIt;jKc zuvGUou0Tw#P2J%_fi=MOF>LZI^$v-GiO%X~y{Hr|*aSkZ{ideWzztcVx_7|>`B{}$ zaLMws_qe(O+n!;PP2K@3`QAI90pAT1n)nu2I(ToM^%XBU*+WAg0npB5zXbl^cy}iD0(-zaOgYFq3P-Zh6Y^3J8SYA3fsuN#upBEvzvJ$bcu%y3Vh%3$ zmoV`Le^AFAP%eC6JpZRhG&N3!N2uZl?3Ri#{F{6Dw0NhOd7oW)$EJnpj4$*@eOVhE zgj26{vtaNX>~7srw-VPwbm6PJGHKBEKIn-W#XB?g&VwL_HW#&>jvAdn9(hcH@=E#& z^s+9;9lBPW&mh8x+sUs$qcm>s%L(z0aJThtq|zKk8CM+@_>cwzXYJw@UGIb}1&@)n z1jm;G>UaWxMDU$4xY%La@DhZZ@KS8G*WeFk4aUMM9Sxq>X@Ws^5nh8JJ)RqU6>EWM z9p)bUB%ZyF@SI2f4d3W=u@m88e819W=-Q*0G=9tmY^~ zbdM&^ppZd>lQam>07|OzEo;R5yNfbR7KA(Y?_N4vg^7!#dnOlg|1Q#fC6NJ^F?5tr zp0dmP%cJMDCEOdQce3IopbLEMi#@4xEWU{!!~|&Si@$%0cn+&Zsy+dEl#e^X%D`En zx&=s#)?0(FQt?En#TX`y71e)%2?729FbYc2Kqk*ejFdOj7%Mx4pvxsy#Z)i(digua5ggl0rD+0ynq3fzHR{`%V5xCUxn-Z4z(|p_DT> zwX)t772=jJY^b|VY@+Gx7@`ApV=>f3Cm2zOqX)3c&6tKtkLDFajhB1?J8TGc$!oW~ zQ11-SZt}*##9_Q7A(?y3t~&gMXFwD$1$WpGTs{;x?RdtN5E)ZlgWeew$i)mw{o|#k zv3PWxbhugyH^kg>sCQF?>h`W{AF2S_pt^y*#&>(n>ZDyS6;}*e_1yHzwVonEhFIRM zAl8fThzG>hP-*}A+&lQLdRL6^+)vL~e!kiq>A))o}yrf+n2d_7I!2hWm2l74uI1!WA8?c-LTg+&Y9q+Ce-6 zbay{uIFLx7d(r#=za{CQe3nPc384~WOG;kvnOw|?1|Rje858K=A0(@S*t1`sbnKbqR?u$huQSwY zIWZxf8iL2r_o3!dW<(f!P{6J?2Q|FgldHFU(X@2d`N)Uf1hMr{5_DN`CX|>QNb+| za)rOR#IWk6l^9E^ZkiBtC>H1)h7}su!(TklQ?ZEqAt!@lAok*lvf+cfjSB?@xYj4p}N4@91K5b z-CC8esPto`xI|3)>Zim+%(0a%F%hGb79e9X##8nkei1XsXuvayl^0ZF#V-(8@2TJN z8BH233LoJYcgPX=milt@23TdXS68c6!+8igO5R*2HTuI3diB!e6>cAkJK(F>{grw= zuU?e86k7}X(5Rb&booWzC%`Wxt`Ulq)Ve|T*vqkG;8<%%X#gG=>s!b}FZ||i+XAmh z`viC{Y-aN-Np!A9**aUe;;Z{{L3?~0BwJDPL+f0XVb9&>GZ78MJ0X!@3P2ru7@{>M zOtSfN^U97QFw4qR_rA3M9j=VnmQZ3Adk>syPJCouF)shY6hBxu~5+#jd` zQKa?2N$_#Z1PQ(1OQGySd0Rk2(WQs#)f{q^jtlnWkn)d;(HFtEX&k)w=vFLkZ@x2X zERAE{31%&)1~CvTuE*gUmkV>`1+K&4!#A#?R@Qm=#s&O#%fmNNfPvCXhcCz2G65-b zM*Qo&=VgVf>JENJQqlVs-6sQprd+w@!m^poZu^JAbsY@e07j zV(oc2<=5F``7QqZcg)azdW>lqbIh-H^3MAWa@(cnk27SIvedZN{g&D^h)oVnV#*o7 z4=-CsABg<-O}x3CLA&pS>U8D>vH#NL-thyApUQ~K@OQiROk(3E_nv&vCzY~N_vOkf z5I>73`pb>kJ@Z%8ZNqKprWA21w;j)ff~_+27Z7+W)P(`GLEkz%_j}ZD1k#igmRHp9 zV9*5NQc{S*OVom-$jNR&8!y$83Iq7_t8_@=wjX95%@T?;;)F|T~%;`m-?0v^Pp+mHdV&>0Q zQ8~WuR5$ndeKW0Q%z(?cDYX7AN%3?PJo;&?o{1l$C|amd8cjiER()dypsPHol3E6aoJN{*vg6!NE3z+pxq z)4pE_{$F9HWERr^6QMqj59N%ct{JY>sAm>tvUv(wUuN=$Tk8$u)E_%ubykjA@8k2 zIkNv?dn5cM=5-`u5U{_6+?Z9@(cK zkuNpWt2nQitOH@2cC>ZL4yR4~4j)Guz<~!6ji>o9nvCRFhmk+f%-%(`UcG;vu@Cv2 zk+nZiG>tK~n{d5>%zE+tB2dBm8A}?dtm}6yx1cTKcie0_D{A{r+)_AcD8CD{(pbN^ zP>*A9MN$3HgwfqsJT)Cn;QAx&>2O|g6|XLREj%2I z0*GPY^e$_b;u!-4M_SJv8>p};6LZ9QpYj^n`!P_#gd7@gcMPu)EX6YigZR!1#2`>4 zuxxegWe|^Gqah3bVn%^u`@`RHwRn{}`qY3+xM0CR44*zOIgJNU0b^Ts<9XT{oWU=E z3OO!t$-t24=!dxGDbXJn{)9+Jt1kq71vI%R3--80i?f`8+nG0D;8DK8!Pw?=xHSga zGV;6S=O2hXQw;~ghWV+IfMcoB!$5rlGJat?#v>RhF&%{qRjf2RKs3-kPr`qX7? zJVF*zu5&Z*DHj)WQ27g!%v74{KqF8I@}h;R^nQheF@c0QV1{fPx~KUp3Uz$*E)K#1 z&MQ zJ~>O}If44;l`d68J5u)`Omrx^$% zj(qNYSz;%#_Y6NKZ!l_!>(qS#oH<-~U2yr}I0j70h20k)p`~e#w_>_6>*L!rQYt(e5D$-FcnyKbIu1sZ4w45A zLCaT!L6bS!dQI+`_AN0}<+#GT76vlv!7w-`4+{_Zl7Bh&!7|s3nS#Oe$KS6Mk;&e0dS$CxC|UstRvEdGlR7Zphq*1giWm8 z8AcL1SO~nTy)y=s$TdJgs)1u@d(^r@$_Xq&cs#&OHHSn$$*jx^rrZ!6j9|m-a6d!Y zW_4*U!a?y>*n7^fW7~U6S5JGm4Fu$Y55;_K?=g}+jGyw%-VP(;ewo?Z8o&B6WAga>gJ2Yp<9a8*LF&?(XY^wP3) z;-wp4R0ISKYVi%AIYK-=#>?Jn`q>VO@1&` z?7a&N-5zB@@hc?tyr4vh!DYZQU;DE)B;>2>mHc-D{#2OhD}k~QHEP`a5T(OcB%m+$ zY6#-;v3El6C{BOuXU+^pLI_OduVh~(5baoq!d8O~@L}S8Bu(0*w7mUc8Wa5{lR2+o zAC2Piv{Hw>6tMa!FvJ7#dgRhtGK zjK}@!3=~3PSkz*X2N5XM!QL(S4Q+IS%a)JjBSf1KPFM-R9)~*E<}n<%tgC%ck$Lmf zCSJ43sOxtT(C$@lZf{E=4D0bWBvkKa37UOHaZ$xv zkkb6H68)|L)PkM^_CRP?VJcArN*h3dp-$V}r$^`=HJfWdqvI3=vh=X$@0Lv_T=0%h9 z9gEMS4A*lG z_Xi0f^PB_%g$kUclB!|?nMVY6F^7?Cy>EJ91w_9YZPj4OFoZ_mEE{GF znqQ|id8eMh&1-wi?Nb^?UIBM+*BvfypyFG}(y@-@iDDJG&S2>TVSU>O<1v>?wr-&t zGoeHUd@PhG6jP9b6G{|NLwt2BQ9vfugEt5GWFO!4FdcAT0pVJ=5{0&OWt@u<7@g3f zfC8e&;$oN# z))S#b#m_^5!2>9q<2b|{gbEaI7%EbdWhznem3f6%A@AUI+K=!;<~w+yLy7v>3PYT( zVqKd=14Ru*bqaN%{`LRP!ebp$I#f}k0QS9lz7S5*Zt?${Ud?y>h+qW-e8+>w z%wqy!)S))7c+6|#4hG7=cW124BWVqf;zOv^lD>SiFC?KfszW>+9l5$S$D4m$!;F*TG*qXqG5C=2UbWj=V+lx(G zBuFw^dNX-7;ol(SCf?+hPZMu?dzXz)8@78yeq15S;iAC7#U>n}ooP2s?wXLj@0e-l z@A%;oKMMJ4NFb3Z$A524FMY}X_d%RS1>Hg(C*R2#i;__kxC~J;P(WdoLzE2k&z(I* z$*V4pQ_oAtPl}R6sN@yvwguk=$#})rAw>zWm~y{Jl)NfClg>hvKc^N3t1au1&y8Z#0kqbLn31j##IK2)(3XtvY0709FbJ7!eS z=&v9!xVuid0@Aas9C~2(XoN~B7>(7tnv3Ic* z^{-=jfPZ`9=_(Y*{NVokjDGa@^DZ=pJVoF|KW_}&!u{H%%KDAG+A8gYFU8in z4c%p!&IbCzOLgY-r^5`rWrkkL$-Pyc^NuR){Ln%5gG&i1T;*&3BmXnZO!U2E34&SG z&O(|)romPOz!eE#ANhBptD?GaWestB=BVfRQNZ(UqwQD*7+#kw%=}HjiQfh2J zENCXLaEtXsiN zGoYe4&pf!oBr>Q&Cb4hJ94e2P6u^!+eNzA+VDdkkOUxQ&DG=`F6_*NE0NupnHGP7W zxbDMrgkF5$a*F{-;ajQE>2$(MSE1v5!W{(xi(uu99Jknum{GPl??8qM^|x;tGAnc( zQ3$%Gor|Q2hEWoI~ll@@UNm;znI3tb5Mw8 z%sk=Y@J|j9`Q-8UDy_X0x{f+(?ZkPu54%ZgCnyRDyN`78mqd@jcp|?yW_ndV??aUx z{hv`j0>yuZq~3DIyj1p(a>$T}%8qu|{6Uq5yB(7if{n-tGs-0`S>mNqRmCi`+7d*km2ig-SFWgalcYs9mY)jOIZPUrYdM*!%wv!swUukL4M^pNO#YOZucD?#khd= zB$2gl&2XsQcJhJPo!}GLp8m~xh%e16ZdKh0!grJk2Fh3w9g?vyv?0~X32KVgug}Bw zC-e8A{=tN0^-6{i`E5|Nlp8MWV7;1N-7!Usv0MlMkx6Ro7$e1bTmc}*af2cJ8MPv80H;^Zmp8noF3-AdIL=P*sGBk&U5GSJf>> zI-2i*(8wjsOGOgVrcOm7YkYPJ&X6)bqfTl zy8%nU;^4^KE2=Xn#7jSjD+*}G?sX}|rl>L;A-w&NM(DAlhW)&vt6mqz3S57qOGgZf zQ1mzwU9o_x+r+MFzjVnD1oZ^C0~Ck8X9xpE!sCD@ys}l#)dY43)pM!a8#f)_nqvg-{fn6CjDRCV!=u}odGL;f`hW_r&v2T$wfuLi z^beQ-pfeOK=ZQ%Xw7Swkpc+o+>O)-AG4zOTMQ=>`{TY0O$O)?*QHRQk;?Fi+zx*WZ7?j6$wDtE$~HNK-Kew2wWQ1UF^5G zRd*p1to>2Ub`LS#IF?q{6iaf7HdQ@zfxuh9;Aqk~pLUGrFm5?#6l(i>%;@NGTq!e2 zCmc_680UpgG4R^lFl^cDcWEhVk!MlXkC&otdk7CLRldebY%SRsC2ZXDJ6ls0eUSPf z^#9*~u?INe5OG1t;gwtSG0OOr9V2aWg zkWJ9Vx=zj|F`o};?-$RU1!kZd`;4zGFFtTWuvq)zhKe=irMwRyuR<@)Y+ z97XA^ar;uHU8#zFm;17<5V;~n=`-QId&dIif;00Gh+&)t&pX4Uf?(}Mxt!sP+hf$x zF7X3-4dR^Pz1QzE^0u8b^5}6)AN*o~w@_f&Kw)ie)LQ3`OQ? zgGt7Y)| zY$yeRmR1Av>EW_GkkD!9IDkZL)GdX3u|Q6YM>_r3Ban=`%r;fd~#XY zV)az57;={4WYy}OQFftKtM{|2y-_3UaghIqYV|I~C3{7x6>EI(o>Hw?eu6wNbSthl zIh1v)2(5>1b+eV)sax$C=~g)gog9ORH|C5EAkYC%+q4gIpaPM)66tyn>XYA#PG7n%~xy45C+(5)C=zDMd- zqbQv%bgK+Ur*4%{3+qvcrQG{>G9=8-fQbt z*a!MyQnx~p^1E!^>P9`Jty=R)g+aDbJx=A*R1J=kiK?V`ZrAKeu9amrwY{iO|U1;B>BnKmthjxf6hoI|T3!ZM8-=SD-4j{$q9kcO5 zC{|e+Cl#xpI_p(LQIPpcuR6w|kmQW?s?CI?S8ZNvy^2tc*bku1;xr~}by1wut60-! zoL2x?pQ}qS3C+D!tH2>>L7F>*hbZ7JwF-bCIZop%usifES*^<5vRbvrGr7>W{j@Zj zEj7Hma+47t66vS{Lx3Y7t=bX-ym~j;9oN3DyXuQ^fV?^Z_FT)>|EUI>YvUHCT1%gtr za*V7BQ+vQ^?0?M)HC5%Z39b>TUQVeFcuihGfgL~pPGGM4(wo#39acgm?lYD3q$?JfYp)TxS{mCe+TvDgF)I>by>6`35ak~-20Wm@5h@}N`v9p@IuxVv5UJxqz8J9^(AUUuF5-`}qEEewk0rETKH?(P z7emlxCX6Q>Y>rY9Oo=B%_QqRXE;j@#n|t7*VIp?o#M= z2B1z7twDEsoSLlS+sBMsRluNXO*8Vo0skD=$p2PqQ9lD1w-sZBQXgT=8q|2BevB>K z&k1PAF;m2TXv)#Wio8QCTw$wBPN+!2ez`!^9JhJo<~U|>@6{H zF-F~H{lF9LQm(l=@-+f~fvM@sd!7iUp@I-F#fc_!VmSIC-d%tZem3%p-D82cga*@m zZlnj4WcQ|kB1V^l6y?F*D-D`aGo=>2v>6}ai|C_Lt5ZRsL_V8MEpv843lipysfbWDZfFMtH(xp zKr@Id&?5^b02O;SN8rD$%tYx;rMSVkzuX)F202K(d7;5>;Lzyb$zw2e8%M?%Di~Ho zm#MEBpE4iy!{~m`Xs|GKdPS`7Ei0poc>T4(DCivMW+V%->qZw=+q;L7k_1x}HfoPC zw^KoxyuumHw^Fvb8FlFq!`t)FDo4+-s|hFt0$IX_qSFW$0tkDd3>rJB#%FajS|gb+ zrXamzh1amZVs)6AT$m~%Y^+Ao(0%YJ=eR_Bf|yChmoq$l972(zx3y`!%wnn^I?bA< zUrY8CSPWONG`_?@j0td+$6OefUG4&aPGZ4)yxIS5&L z%)jp_V6d3@(%|7y!xH*$Vl8;Yq2Gb6XbY1KwBb%4ssay};W|2hlvW+AH{l@#p^^@7 zvERyA{T_DJ?K);|9~bkXd-{pywfAGxL0?yH2pjFhku-P3k>wrl66yMGIFna6k>1No zu-Cfv3>7p1pMd5O96D+SKnRa2{1}NOzXRJtMoWRwp3%a6H68j{{dRl%q()mLA1GEhc;n9YTSWK|tcBt3!-KeMd0PAR ze$Z6+>{GKosSYel3iy(xBdndnrTD2>TwM0*k;0ft&Y<8lf9&c>)@F z5eZHF%y&$o#hk~>%y|gs_}BJ_Ev$rxas4?rP7ESG=AESulZk9)$#I7!57E8oL4=Pe19N4<>~#fx zIKPoi|D_ljd%vf#nenSj5OJ;$5?MY}PIg4N|#7lh}K&^HF(Dp0~V<(fd|n zqX*&|6{>+M+2l1T{l5l3aVd(xCfLe*lRvBT9($aoZDXCS)l468JJf1_oB#Y|PDf`Y z`z}G`2)PthQHib=>9>AqBAEx}ekSnXD>L@dl^@in+qHJ-nga*W^?fc!!R>K`N;}^K zBZsX%Q4?;(B$fPfQIv0aIkhA8%fN_j*`QcfCe2SsKi1FJo~dML<{{gK!xeZH1*S54 zfPdbaqVnyBkLs&F%&DB7n^wt@OJXl~W~2;fQ{YcyTC{|^70IrNJkX2Q!#!VRmJI5> zBg^sRY%)^pCtk|bXz(w33#n18P%HgN-?pMazRq)pTZCrv{=@Io4X3^xH#8ppNcT1e z{Hi218Oxsmd6Vuek3qM!DQuz?G0>~kRpxiohiJNJh1+~q9+t?|NMgNOA4>W~YR4{y zXZ*MyLVko#BW^-uvi{?AJUxiV{qm z6Y*wtjgPF;H*E)%-C?Lfln{9* z$>s@GLvw4m%#}J#Bi;8StK0k=c{+Bp)=+@n)XNI4Jqn8BfbXAFAFQsV%`fo|r)je> zCSIF|y^az>(_ERSEuLL{(dc2|QI!1Uk)%hGp68*cOt!Xub1inor1-7!$m82(r?1l3 zTD^A@D-zdEB9-9DEgxx!M4de8W}k6j6}3ADpX<`z2%f~g*$Z|KkM&R%Kp5uHt8=>^jJ3+~r?)&!<74lJw4^pD(rXp8OixZQgkn4K2qvZGQ#z+r z=E>8^b)=ugw5+J$zwKRmOU6#6LzcJhM|^o%n-z2aiVz^HRH?!+Yk} zHb#bE+r`-oXllX9B9-|WOz==G*%RrKXy^3u*?UPF zrR_WV*yKc8xA^&AL?K_b^~uyl$K1-`NzGZ#|Y_ak)RNtcbwF5K5kFUFpa`}k(sgC#D?^x7-SQ(E~cJa3JVU5h6 z8B>5#ZKCs!H2n^$ct?Dnm^}8SzLo9r^oD9vYzNWnNQzo|9g1H0?^0O8(&m`-InFI%oeRic|cj-e1WtwRpK1D%Y`6dMJo7$W9_o+5N z+|XKm1gY@!(w%sPjtJ_oOPyxKGa8F31hO* zdR$btBMY4~(`sVrVSe+=c|9zuWA)+8yJOl_0@MTDS&RJRxIj+Pk0?OuPJ(XSBB+B# zO=l{YJUh@luXVAYrq~Jo-QY;g_vgIFXFr;qjGM-(S;vZurW*6-+?f{J9i#+RQa05u z5avBF-bCZ<@2 zWUcL0Yjs_0Kjv}h=5x~HoS(eVS>TtTjd|O=CL$0o9dP@G_wy%T&64kn?^~YvBT=8quv9jSn(uBJM-sHEBDW z)!Lt;8WYCkMxrV8jadgRbQTe7;t)eYyd zD}##Z`mB$|Mbk3L=_;e6v`cOK!hX21mnGKIV7xgndcY7(wla~$gF z9W30i^qEC*Z`^tSLOZD;+dI`W-kgpttG`xr>21o<)FD$1$!8W^uCz$Oy%`l=7DMXF zbso5RynxE@|DKDnEF(ly^4q0`ytq4FTH0MT`ZwSloa{(IMl zpq;b|&y}vudzMTX?1QdZq?~B(hN)N7DCBXQTvId;ysw}%k)k`UTlF4QYSArQmmTU> z;d_*0-S#}|#`MQ?hTgb{4Sl!0_fJ`(?8e1Gx~23Y^SsM-Zp9wsurd+0Ex6Kwp50GI z`C8CILdyhA3d=r3-$241n;-x$?##jlbbv}V7Ua~L{joL+W?}5rdmsBMJWJ@4Vsbb7 zxuoR|V{VBMbi?0S1AEDDQ+h}@sriPRWIj&vhCe!dGD6pvwlzjCjk+rTprr0XaCJvD z+qg6{3{we=L!iYx)5ZwB1Nz_frVCR+cVb=j)jP06&sW-C7x!C>GF5*ja9U7!AXeel zu2InZOA9W$u`b|>G-_x`_P)6D-l3lPv;KK)Z!5l>4F(< zqj8;d>($7kA+u%LLLo$RSDFbSt`gT*z0&pYi1G^#`kMYQ0rP&B*ZY){ezV48-vxIN z0qal_j@-aNW3v5h7_|ZCa;DbGDw+YBOU$)VM{{kDs^)~;PMj)t|5U6?;7-s1>o3uC zT@B(>rQ61{ZWdMS&r1Oc;VA-$QE1Y=IRQQ4LOyP(S()p2ae9H2)O?~1ixghrcp8+n zKNHrNnO>Puuq845=tNy38|LALO6!djQ#6hmydphA2E8BcJV}`qN_kQ*+3Om3ar6!6e?4XIf%%O$aBeGZ>KJ(0*=fm>8a?8R6{oPAD(lr$U9mYO z{d{f?JE!6A7f`xMVbkbAADRlD~0?a#x)tk$`G((u4 zp_;!UCFm(_*_b5gX|B!-pdUQcU3I*6quSZbAYs+8niM`x`0@*-+hTV{5=@luk#T!b ze-7=n`^o!5yL+IinoXS)I>IduCPV0N{- zkG30s7FvCIXKW!MCN94A_-2yi`g~0gOZLboH^>tUE4mSK5vM)j!3SMCVmtSQ8>cl4 zn_zPJkK8z$eoUAf$30z6Z5!a9uxZL6R$*x0o}p&ieb6m1HCRw_ak?F>l{lc{W;D*y zbZnw^tcbd~fL*qInJ{tH}(oIGpJvtkzp~gqX7vB_WeEd!v`beiwb~TNVSd z6BZ_M?5&)o5-u4dh^#Nv8jM~%5a?{vwSdoH zu3WUgB7Ode;MuR0;6|zDAEz>VmMwC7wXDsv%5n?@qtsl}_Aqvv#Yln!x_1Y(th1o> zU9N8T+1^nht@ZkExKp+P5jP9gz_&}gII=H%Qfq;-{XdSMyEFk}4OwdiOhO6_rz_;- zjJ~{63Vc}FyUrb~fX|T*xpr(S-B7w!_gK6q5fGzL(LVL2a#G(`V5(RD z+QKGguBotcji*c}c-g_}U_$I{bV;Sn^r_0)50F>X?I&(qeFj?z*ky)q+ccV_=GjNd zSVEbbt;#1&O;RDWCTBaYGpfHt@#Di-n(ngo4ssS(Sb*?zVg|&11umB_)$$SEY5j65 z-^+91xGNSUrM9(#sU!51+=M(L=5U~wY{`KIRD>%i?Hi25PvG#ndU!s_R~WK_>K8}z+6Z7;rFtWNiQanP;q9f*i^ z9j%=_(p9mT?38}B9pFjSb@V9}GL5Ckx}Ft;Hu9>aVu}d!N;8TTEY#4J*hgX=ZZD}c zt{vjtvcN>`fIf}$`V_`1j2&u{KgHX;E+5}Mz*+EZM%P-;RZsI^!qru81G}6cwg0HL z3RM-)y8l5$9A(q`ibRF{H5s6)YCJx={klNg2XVu>Ma)fJ`cZn3!d&OKu_aS`=_S9E z30?#)twlvYN{`Q+jA+)#|7NlrT~f0Ud?#@$C%meuwz_G)ob_#REAiXAso%#Z(LK>I zXDL&Gc#+b`w(H$$gS2BiE#-dviewdn3lcA85E0&uwY#75sw&*}+ouTb5Q!ys`z3U^ zSq*7eKBV+Ivz;g>Ukm#nA;J(pmeDMAT(6e>Va5B)*Hu}Dv}ty>>jRZNAAhQ_)NnU? zI3k}gx$v5MHr9_1OmdU=<`jXKm2WD(nV8F{41M_6*FZwk#JGm`Ca8B*JDc&ekI7D^ zReLh!EB1iX^R`1u%DEyd`0=t_+{|6CN1wd=<0s9XJye(< zcr`^!5b%G=PtLE)w%TvZ(R?{r@p=jGNAfDE{trFDmkCrO6wm<#UB&nqR)yW11Sg8+I#@dqd!iDRS@4aKe zuc57u7QN+cxqqF7>R^a_wvv5fJc;FsA=ZV^Bx%uv%9L8GNDae#wPlVtN|_w#7$=FJ z{uB&Tkf2}h$Sd+cXY8h=LrOk&+s;1%eS=t2-7*iX(r?@e+En3tMB3uJWAFU7adeavRvpOGZ$nB~b6a5wO+FOi2?P2^_< zzPpY0zdhe}XiOxd>Z1u`?N61?F?l|o*A!#b!g?gPKz^2>*!rau=%0~uyc{S`Df`rn zDmbV=c#?;J2V9f~G)boP*}|WrA%8@Ua&4R7=IGUJn{dJOwC0G+#(or<4EDM!#`|?B zs%p=<4iCEwvHqSbZclo{>|NHk#@y=!L=`@Fw8mpp_*i#jA2pWbAm<3PO@sO1r_^oM zQYssHg6ft$QGtXM)uz~;w}m%`1uNdxbt!Y@CTZz=|F$F#WjJC%-)Z2*175M|z#HhmSJrPi!#W(4RvzUFU)*>~yrRVQ-Z z#zWFH8bgc7HW&xI)9u#xl}P|83S>j>#&Q-)(T1Wgb~&JRygm96UKsXehTlgq4mJreQa$MClhl0X2h5=VLCbtK0W2FFZ`l(O{eB1|K zEqV!*2oiYi>3+bzf9%=yF0cgOPIv=z+dbLV-aIzMoFdpDAwK?dVCBqBYM#e6!0?Z3 zTi3TFstRTr@6A7Nw!kmFSui;f!}-;G-2#G7HjK2aSjm^mX@4yJ)cfww!$T57u8NKY ziC7RP<=t`P5oKm=M#Pnw{seG7&^>i5RCjb-evE&#rJqTE1UVl){w(i14`e0{Wf81c zfSRq}ZiF+~%Md*e`3~H>Kk+Is$Urzx_Zb*LpG{R1DL^YjKWsL}@c!nlY5HrXhb_Q7 z?d#SJGq*zbF)2$=?0Fuy-j^19>o|b-X10}8>#Sp_3a(T{I${J2*;{v{Go#h^s1j?6 zGIPY8rb0K?h*P+JWz=q;g#%Htd?j&eEfkd40r^veA7(ml}F3~3M83rv3B^dzA{2U>_sIHK%T*eU}>RFae!C<6;Rhx+Ivo& z@QWNmle|cizA|gfIgHZc&5g8M0q_eES;`nLXBOuMx)Z|~g>NK?DS$9gC1vI@RMd6m zoxAP%4PyFCRhnDi^=Pr5@K-jj<}9q^jm&0szj`SG-cm9verycwnWVH-$fdU(*MKiL z7f?xXEM44OAsn`qqEmc9b`5`xP}ftzSW5uSG3^zX!o6?XWcRIqDDcD{n_(3_k`GEj ze3au{I+V zA%qr#yb?f7&1VNmZ>gBW(j@lj&XgW4$wRboL;~y7PyMcZ z(@LIZcu-41{OT3~AGy2GgN$3lR`nr8B%_|?wW%(s9JXv6bJ^`-LSDLr&%v>8e*RtCKDyV9+u^jffSI0@N;E7p*3CX>rtqoI zO84REt~v9C*{Ak5UXDgaH?VN!@BGt0KAoDxDOVZSi5pcPtXB+z;emiOlVpXhtlh$Q zhHYOmhX<+{$YE8&F*Gq#+)s_a?(0K*)2TJqzY8iHe%*HvSa}oN zN@xywDb~d8!T6WKO%o7aTOPSj*P)K4lLtoQJDB7ynM$$aJ+w)ySSxY-;|6Z z&80KBzyZ!Bix?kY-z(i?vvJHbgg8q?eU0YWC@t+cI0w1v)7s9p=2+dhVoyZyRf+zW z8P&@b3G~Gi4$UgE(0YDu7t>WY{JH2C;nFm0;-OE|+wKdINw*D>DCS##M(&H;N(5XF zJYJ=o+d;_nmAhA-((hR6^^@AMQ`l=%hNXCqt&*ibpY9<07~Ry^epa2S{n9E~hw z!M8n{&6EA>F(yk&wM&s(S4HhYGb_gPPNnH_9|XOBgZ%d9%fl$2^-NnYHUyC@ z2e9UsLK%Ke@ZI$sNviR4q4zd+U}FB~+U<39w|=Jonp5UAaLcHqWaL~AdIqve|5YW} zdqs)is&93TO>DI9IFjSI+9VT$?$7OxY^ALIsc1`^smwI(Nzj=+e?e zw*Y;EGGc=cBrC{~;D-d8C~|c~puyvVXY)~&GHWosYMKBkb`HT_0kq zUn(jlu;v?k0`-eb>Aq1KMQdJ}cvEDvI9H|-W;gKVT}3^Yl$fxV_w5ej998d(Eb$`1 zrY{pVMb2v5FF}S>lk+;>ofzY&4>lVl1&ml;pWYRbO|l;^e^wFDCi2K@RsgEujcCQiR_f}3m6-&Qu=3Q|V%fRkvNP)@5dK;YJd`*Q(IhnDrTN_OS*Pv$b|UFNf8T`w2RmQt(zwi8<- zXRB5R&5KqTP60n*G&4R&-T6X~m8tRdTYV0wJ->ZNh7J?7qsC0ozPzGAI?ra-E7_ii3f;57T=8C_Xmt$Q_rRvVsnMt7^h+r z6wRyGVeE))A6{>yC{_x~(XiZ=Zxk&RmI*|!H7tiO#YJye_&JFmFvcC)raO9*SG*U( zp^4|r9vBm9**CjCy_z`YW%^=$IuRA4iiev?VEYFzPbI@DaON7=3G4WZ1fQb7?tQL~q>WQKQt9Nelz> zu{VNIq{7*04Ro{cZZLELPf})r>^aPj7>-8trMuCim02w}BxO3jo<}(Ll_v?X)T={V z*&Xpyo~#eAiFKH;`EUAu+?~;SY#{YRWXZxh1d4q<)$tYkjuJxNMg7VJ8yU7RZ6#O2dOuo-m;Yrl`pplLL8k+`VWq!n3!}umt+Oqzb2aZjf6@YDi0i3 zUv&_?$RzPy1$~+iW@Zp4>&aNcu$t{6t$&{KRTJ-thh4D7!VWyA_jNy&M0{;>kM*#7 z^vkiksrSuk)WWIP*L``5U$cAW$&hsgnspyw1m``iZ0B~oaPY#J&xk3T7l6q5Y z9od}zB=Pv+-?k1oGV=n^@~j;r9ZdSX{3n3P#YNr*r;#Z1#;pH2#VKBpKLTlm#-I>z zM*yzpWbp(b0)zlBpD>7sh|pg^p+A9=l3+bgX9QRqZi4`8Agt`*a!wvVV+d|oR7?aY zEGA?Mzzw1hNDNRA2h;(8br5JLSCl0Jjic2@Ia%r=FvehQ1tlD!q6bD<7X!y2fMUOK zrKJI2c_$$2>Y98(SN7^r``atmbL~EDlPq|pv!6e zp(9vF6mUtV^G_`HPlcCt0Ry$7+WAzP*7A_`cKbD-t%yV zTiPQqKnsM89a0Lk`MM1Rw6l@|83=1YG@RuTwstCBD1@$;rkFbWa)}c@K_r zD1y%e?#yRx=YT<=&_D#*Qi@exM_q~a62U{NVf;`&s30%U8U=SmxI3Zjflz)C5RN6v%354ULFrG1 zxL;BrTMWio91M1McjtE(xG<6yfIx-$ zaC3$T=s{uP!lL5BLOc)waR@{b{5MRT^Kqo|xWLCC{$EJ{1@m7>olttXB_XYDXMsX! zSzFs#B7j2t0)GhmP4Op!B>2)j|6-W`wyEIG8XEt1V>voruI5WTaRnz!S4Z3)qpI-# zvsV7w?zOV~hr-UTD2LyHVPy$MI3O-{L*qOQ#c6D1DQ@kAa)jfSHQd?R!OjwXx!S?F z)ZY#2=n;u#^6y z^P2|zPd@*_PrpI9kjA+T{ErPo8UXw+wf`QYf9{gF-B=3bez^zYdjFo?1pc`R{}s-h z|0$ZeaGB^bIB>?k3=d8P@ypnPh(H9OFk#W(VFiLfKsYp9`28;!e?|i5-@*h(t9R)= z&P%^={Ue8Xpb*vo2oMSZT<%wYG@yvEu%Ix|8u$kc27!s-Qto8~BL9L32t#lQ=igxv z7zCI5{st2j{W~oV0g6kvf5#KTWvqXPK_LRTH2Zg$$p1kLg~0v=4}*f+IUrEKGqXZ diff --git a/Content/Figures/PU_exercise_4.eps b/Content/Figures/PU_exercise_4.eps deleted file mode 100644 index bd76c4ed3..000000000 --- a/Content/Figures/PU_exercise_4.eps +++ /dev/null @@ -1,2345 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%BoundingBox: 0 0 786 584 -%%Pages: 0 -%%Creator: LibreOffice 4.2 -%%Title: none -%%CreationDate: none -%%LanguageLevel: 2 -%%EndComments -%%BeginProlog -%%BeginResource: procset SDRes-Prolog 1.0 0 -/b4_inc_state save def -/dict_count countdictstack def -/op_count count 1 sub def -userdict begin -0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath -/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if -/bdef {bind def} bind def -/c {setrgbcolor} bdef -/l {neg lineto} bdef -/rl {neg rlineto} bdef -/lc {setlinecap} bdef -/lj {setlinejoin} bdef -/lw {setlinewidth} bdef -/ml {setmiterlimit} bdef -/ld {setdash} bdef -/m {neg moveto} bdef -/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef -/r {rotate} bdef -/t {neg translate} bdef -/s {scale} bdef -/sw {show} bdef -/gs {gsave} bdef -/gr {grestore} bdef -/f {findfont dup length dict begin -{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def -currentdict end /NFont exch definefont pop /NFont findfont} bdef -/p {closepath} bdef -/sf {scalefont setfont} bdef -/ef {eofill}bdef -/pc {closepath stroke}bdef -/ps {stroke}bdef -/pum {matrix currentmatrix}bdef -/pom {setmatrix}bdef -/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef -%%EndResource -%%EndProlog -%%BeginSetup -%%EndSetup -%%Page: 1 1 -%%BeginPageSetup -%%EndPageSetup -pum -0.02836 0.02835 s -0 -20596 t -/tm matrix currentmatrix def -tm setmatrix --184 -243 t -1 1 s -27 lw 1 lj 0.003 0.003 0.003 c 8655 2932 m 9593 8380 l ps -9626 8573 m 9487 8384 l 9694 8348 l 9626 8573 l p ef -0.449 0.625 0.812 c 254 256 m 27683 256 l 27683 2795 l 254 2795 l 254 256 l -p -254 256 m 254 256 l p -27683 2795 m 27683 2795 l p ef -25.99889 lw 0.207 0.398 0.644 c 253 255 m 27683 255 l 27683 2794 l 253 2794 l -253 255 l pc -253 255 m 253 255 l pc -27683 2794 m 27683 2794 l pc -pum -1210 2072 t -0.003 0.003 0.003 c 747 -319 m 867 -288 l 842 -189 796 -114 731 -62 ct 665 -10 585 16 491 16 ct -393 16 313 -4 251 -44 ct 190 -84 143 -142 111 -217 ct 79 -293 63 -374 63 -461 ct -63 -556 81 -639 118 -709 ct 154 -780 205 -833 272 -870 ct 339 -907 412 -925 492 -925 ct -583 -925 660 -902 722 -855 ct 784 -809 827 -744 851 -660 ct 733 -632 l 712 -698 681 -746 641 -777 ct -601 -807 551 -822 490 -822 ct 420 -822 362 -805 315 -772 ct 268 -738 235 -693 216 -637 ct -197 -580 187 -522 187 -462 ct 187 -385 199 -317 221 -259 ct 244 -202 279 -158 326 -130 ct -374 -101 425 -87 481 -87 ct 548 -87 605 -106 652 -145 ct 698 -184 730 -242 747 -319 ct -p ef -1023 1 m 1023 -909 l 1636 -909 l 1636 -802 l 1143 -802 l 1143 -520 l -1570 -520 l 1570 -413 l 1143 -413 l 1143 1 l 1023 1 l p ef -1791 0 m 1791 -910 l 2104 -910 l 2175 -910 2229 -906 2266 -897 ct 2318 -885 2363 -863 2399 -832 ct -2447 -791 2483 -739 2507 -676 ct 2531 -613 2543 -541 2543 -460 ct 2543 -391 2535 -330 2518 -276 ct -2502 -223 2482 -179 2456 -144 ct 2431 -109 2404 -81 2374 -61 ct 2344 -41 2307 -26 2265 -16 ct -2223 -5 2174 0 2119 0 ct 1791 0 l p -1911 -107 m 2105 -107 l 2165 -107 2212 -113 2246 -124 ct 2281 -135 2308 -151 2328 -171 ct -2357 -200 2379 -238 2395 -286 ct 2411 -335 2419 -393 2419 -462 ct 2419 -557 2403 -630 2372 -681 ct -2341 -732 2303 -767 2258 -784 ct 2226 -796 2174 -803 2102 -803 ct 1911 -803 l -1911 -107 l p ef -3280 1 m 3280 -802 l 2981 -802 l 2981 -909 l 3701 -909 l 3701 -802 l -3401 -802 l 3401 1 l 3280 1 l p ef -3765 -443 m 3765 -594 3806 -712 3887 -797 ct 3968 -883 4073 -926 4201 -926 ct -4285 -926 4360 -906 4428 -865 ct 4495 -825 4546 -769 4582 -698 ct 4617 -626 4635 -544 4635 -453 ct -4635 -361 4616 -278 4579 -206 ct 4542 -133 4489 -78 4421 -40 ct 4353 -3 4279 16 4200 16 ct -4115 16 4038 -5 3971 -46 ct 3903 -87 3852 -144 3817 -216 ct 3783 -287 3765 -363 3765 -443 ct -p -3889 -441 m 3889 -331 3919 -245 3978 -182 ct 4037 -119 4111 -87 4199 -87 ct -4290 -87 4365 -119 4423 -183 ct 4482 -246 4511 -337 4511 -454 ct 4511 -528 4498 -593 4473 -648 ct -4448 -703 4412 -746 4363 -776 ct 4315 -807 4261 -822 4201 -822 ct 4116 -822 4043 -793 3982 -734 ct -3920 -676 3889 -578 3889 -441 ct p ef -4739 -443 m 4739 -594 4780 -712 4861 -797 ct 4942 -883 5047 -926 5175 -926 ct -5259 -926 5334 -906 5402 -865 ct 5469 -825 5520 -769 5556 -698 ct 5591 -626 5609 -544 5609 -453 ct -5609 -361 5590 -278 5553 -206 ct 5516 -133 5463 -78 5395 -40 ct 5327 -3 5253 16 5174 16 ct -5089 16 5012 -5 4945 -46 ct 4877 -87 4826 -144 4791 -216 ct 4757 -287 4739 -363 4739 -443 ct -p -4863 -441 m 4863 -331 4893 -245 4952 -182 ct 5011 -119 5085 -87 5173 -87 ct -5264 -87 5339 -119 5397 -183 ct 5456 -246 5485 -337 5485 -454 ct 5485 -528 5472 -593 5447 -648 ct -5422 -703 5386 -746 5337 -776 ct 5289 -807 5235 -822 5175 -822 ct 5090 -822 5017 -793 4956 -734 ct -4894 -676 4863 -578 4863 -441 ct p ef -5757 0 m 5757 -910 l 5877 -910 l 5877 -107 l 6325 -107 l 6325 0 l -5757 0 l p ef -6672 16 m 6936 -925 l 7025 -925 l 6762 16 l 6672 16 l p ef -7478 1 m 7478 -909 l 8091 -909 l 8091 -802 l 7598 -802 l 7598 -520 l -8025 -520 l 8025 -413 l 7598 -413 l 7598 1 l 7478 1 l p ef -8191 -329 m 8191 -452 8225 -542 8293 -601 ct 8350 -650 8419 -674 8500 -674 ct -8591 -674 8665 -644 8722 -585 ct 8779 -526 8808 -444 8808 -339 ct 8808 -254 8795 -187 8770 -139 ct -8745 -90 8708 -52 8659 -25 ct 8610 2 8557 15 8500 15 ct 8408 15 8333 -15 8276 -74 ct -8220 -133 8191 -218 8191 -329 ct p -8306 -330 m 8306 -245 8324 -182 8361 -140 ct 8398 -98 8444 -77 8500 -77 ct -8555 -77 8601 -98 8638 -140 ct 8675 -182 8693 -247 8693 -333 ct 8693 -415 8675 -477 8638 -519 ct -8601 -561 8555 -582 8500 -582 ct 8444 -582 8398 -561 8361 -519 ct 8324 -477 8306 -414 8306 -330 ct -p ef -9369 -81 m 9328 -46 9288 -21 9250 -7 ct 9212 8 9171 15 9127 15 ct 9055 15 8999 -3 8960 -38 ct -8921 -73 8902 -119 8902 -174 ct 8902 -206 8909 -235 8924 -262 ct 8939 -289 8958 -310 8982 -326 ct -9005 -343 9032 -355 9062 -363 ct 9084 -369 9117 -374 9161 -380 ct 9251 -391 9318 -403 9360 -418 ct -9361 -434 9361 -443 9361 -447 ct 9361 -493 9350 -525 9329 -544 ct 9301 -569 9258 -582 9202 -582 ct -9150 -582 9111 -572 9086 -554 ct 9061 -535 9042 -503 9030 -456 ct 8921 -471 l -8931 -518 8947 -556 8970 -584 ct 8993 -613 9026 -635 9069 -651 ct 9112 -666 9162 -674 9218 -674 ct -9274 -674 9320 -667 9355 -654 ct 9390 -641 9416 -624 9433 -604 ct 9449 -584 9461 -559 9467 -528 ct -9471 -509 9473 -475 9473 -425 ct 9473 -276 l 9473 -172 9475 -107 9480 -79 ct -9485 -52 9494 -25 9508 0 ct 9392 0 l 9380 -23 9373 -50 9369 -81 ct p -9360 -331 m 9320 -314 9259 -300 9178 -289 ct 9132 -282 9100 -274 9080 -266 ct -9061 -258 9047 -246 9036 -230 ct 9026 -214 9021 -196 9021 -177 ct 9021 -147 9032 -122 9055 -102 ct -9077 -82 9110 -73 9154 -73 ct 9197 -73 9235 -82 9268 -101 ct 9302 -120 9326 -145 9342 -178 ct -9354 -203 9360 -241 9360 -290 ct 9360 -331 l p ef -9647 0 m 9647 -659 l 9747 -659 l 9747 -567 l 9767 -599 9795 -625 9829 -645 ct -9863 -664 9902 -674 9946 -674 ct 9995 -674 10035 -664 10066 -644 ct 10097 -623 10119 -595 10132 -559 ct -10184 -636 10252 -674 10336 -674 ct 10401 -674 10451 -656 10486 -620 ct 10521 -583 10539 -528 10539 -452 ct -10539 0 l 10428 0 l 10428 -415 l 10428 -460 10424 -492 10417 -512 ct 10410 -531 10397 -547 10378 -559 ct -10359 -571 10337 -577 10311 -577 ct 10265 -577 10226 -562 10196 -531 ct 10165 -500 10150 -451 10150 -383 ct -10150 0 l 10038 0 l 10038 -428 l 10038 -478 10029 -515 10011 -540 ct 9993 -565 9963 -577 9921 -577 ct -9890 -577 9861 -569 9834 -552 ct 9808 -536 9788 -512 9776 -480 ct 9764 -448 9758 -402 9758 -342 ct -9758 0 l 9647 0 l p ef -11057 0 m 11057 -659 l 11157 -659 l 11157 -567 l 11177 -599 11205 -625 11239 -645 ct -11273 -664 11312 -674 11356 -674 ct 11405 -674 11445 -664 11476 -644 ct 11507 -623 11529 -595 11542 -559 ct -11594 -636 11662 -674 11746 -674 ct 11811 -674 11861 -656 11896 -620 ct 11931 -583 11949 -528 11949 -452 ct -11949 0 l 11838 0 l 11838 -415 l 11838 -460 11834 -492 11827 -512 ct 11820 -531 11807 -547 11788 -559 ct -11769 -571 11747 -577 11721 -577 ct 11675 -577 11636 -562 11606 -531 ct 11575 -500 11560 -451 11560 -383 ct -11560 0 l 11448 0 l 11448 -428 l 11448 -478 11439 -515 11421 -540 ct 11403 -565 11373 -577 11331 -577 ct -11300 -577 11271 -569 11244 -552 ct 11218 -536 11198 -512 11186 -480 ct 11174 -448 11168 -402 11168 -342 ct -11168 0 l 11057 0 l p ef -12073 -329 m 12073 -452 12107 -542 12175 -601 ct 12232 -650 12301 -674 12382 -674 ct -12473 -674 12547 -644 12604 -585 ct 12661 -526 12690 -444 12690 -339 ct 12690 -254 12677 -187 12652 -139 ct -12627 -90 12590 -52 12541 -25 ct 12492 2 12439 15 12382 15 ct 12290 15 12215 -15 12158 -74 ct -12102 -133 12073 -218 12073 -329 ct p -12188 -330 m 12188 -245 12206 -182 12243 -140 ct 12280 -98 12326 -77 12382 -77 ct -12437 -77 12483 -98 12520 -140 ct 12557 -182 12575 -247 12575 -333 ct 12575 -415 12557 -477 12520 -519 ct -12483 -561 12437 -582 12382 -582 ct 12326 -582 12280 -561 12243 -519 ct 12206 -477 12188 -414 12188 -330 ct -p ef -13249 0 m 13249 -83 l 13207 -18 13146 15 13065 15 ct 13012 15 12964 1 12920 -28 ct -12876 -57 12842 -98 12818 -150 ct 12794 -202 12781 -261 12781 -329 ct 12781 -395 12792 -454 12814 -508 ct -12836 -562 12869 -603 12913 -631 ct 12957 -660 13006 -674 13060 -674 ct 13100 -674 13135 -666 13166 -649 ct -13197 -632 13222 -610 13242 -583 ct 13242 -910 l 13353 -910 l 13353 0 l -13249 0 l p -12896 -329 m 12896 -244 12914 -181 12949 -140 ct 12985 -98 13027 -77 13075 -77 ct -13124 -77 13166 -97 13200 -137 ct 13234 -177 13251 -238 13251 -320 ct 13251 -410 13233 -476 13199 -518 ct -13164 -560 13121 -582 13070 -582 ct 13021 -582 12979 -561 12946 -521 ct 12913 -480 12896 -416 12896 -329 ct -p ef -13980 -212 m 14095 -198 l 14077 -130 14043 -78 13994 -41 ct 13945 -4 13882 15 13805 15 ct -13709 15 13633 -15 13576 -74 ct 13520 -133 13492 -217 13492 -324 ct 13492 -435 13520 -521 13577 -582 ct -13634 -643 13708 -674 13799 -674 ct 13887 -674 13959 -644 14015 -584 ct 14071 -524 14099 -440 14099 -331 ct -14099 -324 14098 -314 14098 -301 ct 13607 -301 l 13611 -229 13631 -173 13668 -135 ct -13705 -96 13751 -77 13806 -77 ct 13847 -77 13882 -88 13911 -109 ct 13940 -131 13963 -165 13980 -212 ct -p -13613 -393 m 13981 -393 l 13976 -448 13962 -490 13939 -518 ct 13903 -561 13857 -582 13800 -582 ct -13749 -582 13706 -565 13671 -531 ct 13636 -496 13617 -450 13613 -393 ct p ef -14232 0 m 14232 -910 l 14344 -910 l 14344 0 l 14232 0 l p ef -15083 267 m 15021 189 14969 98 14927 -6 ct 14884 -110 14863 -218 14863 -330 ct -14863 -429 14879 -523 14911 -613 ct 14948 -718 15005 -822 15083 -926 ct 15163 -926 l -15113 -840 15080 -778 15064 -742 ct 15039 -684 15019 -625 15004 -563 ct 14987 -485 14978 -408 14978 -329 ct -14978 -130 15039 68 15163 267 ct 15083 267 l p ef -15251 -329 m 15251 -452 15285 -542 15353 -601 ct 15410 -650 15479 -674 15560 -674 ct -15651 -674 15725 -644 15782 -585 ct 15839 -526 15868 -444 15868 -339 ct 15868 -254 15855 -187 15830 -139 ct -15805 -90 15768 -52 15719 -25 ct 15670 2 15617 15 15560 15 ct 15468 15 15393 -15 15336 -74 ct -15280 -133 15251 -218 15251 -329 ct p -15366 -330 m 15366 -245 15384 -182 15421 -140 ct 15458 -98 15504 -77 15560 -77 ct -15615 -77 15661 -98 15698 -140 ct 15735 -182 15753 -247 15753 -333 ct 15753 -415 15735 -477 15698 -519 ct -15661 -561 15615 -582 15560 -582 ct 15504 -582 15458 -561 15421 -519 ct 15384 -477 15366 -414 15366 -330 ct -p ef -16000 253 m 16000 -659 l 16101 -659 l 16101 -573 l 16125 -607 16152 -632 16183 -648 ct -16213 -665 16249 -674 16292 -674 ct 16349 -674 16398 -659 16441 -630 ct 16484 -601 16517 -560 16539 -508 ct -16561 -455 16571 -397 16571 -334 ct 16571 -267 16559 -206 16535 -152 ct 16511 -98 16476 -57 16430 -28 ct -16384 1 16335 15 16284 15 ct 16247 15 16214 7 16184 -9 ct 16155 -24 16130 -44 16111 -68 ct -16111 253 l 16000 253 l p -16101 -326 m 16101 -241 16118 -178 16152 -138 ct 16187 -97 16228 -77 16277 -77 ct -16327 -77 16369 -98 16404 -140 ct 16440 -182 16457 -247 16457 -335 ct 16457 -419 16440 -482 16406 -523 ct -16371 -565 16330 -586 16282 -586 ct 16234 -586 16192 -564 16156 -519 ct 16119 -475 16101 -410 16101 -326 ct -p ef -17158 -212 m 17273 -198 l 17255 -130 17221 -78 17172 -41 ct 17123 -4 17060 15 16983 15 ct -16887 15 16811 -15 16754 -74 ct 16698 -133 16670 -217 16670 -324 ct 16670 -435 16698 -521 16755 -582 ct -16812 -643 16886 -674 16977 -674 ct 17065 -674 17137 -644 17193 -584 ct 17249 -524 17277 -440 17277 -331 ct -17277 -324 17276 -314 17276 -301 ct 16785 -301 l 16789 -229 16809 -173 16846 -135 ct -16883 -96 16929 -77 16984 -77 ct 17025 -77 17060 -88 17089 -109 ct 17118 -131 17141 -165 17158 -212 ct -p -16791 -393 m 17159 -393 l 17154 -448 17140 -490 17117 -518 ct 17081 -561 17035 -582 16978 -582 ct -16927 -582 16884 -565 16849 -531 ct 16814 -496 16795 -450 16791 -393 ct p ef -17414 0 m 17414 -659 l 17514 -659 l 17514 -565 l 17563 -638 17632 -674 17724 -674 ct -17763 -674 17800 -667 17833 -653 ct 17867 -638 17891 -620 17908 -596 ct 17924 -573 17936 -546 17943 -514 ct -17947 -493 17949 -457 17949 -405 ct 17949 0 l 17837 0 l 17837 -401 l 17837 -446 17833 -480 17824 -503 ct -17816 -526 17800 -544 17778 -557 ct 17756 -570 17730 -577 17700 -577 ct 17653 -577 17612 -562 17577 -532 ct -17543 -502 17525 -444 17525 -360 ct 17525 0 l 17414 0 l p ef -18147 0 m 18147 -572 l 18049 -572 l 18049 -659 l 18147 -659 l 18147 -729 l -18147 -773 18151 -806 18159 -828 ct 18170 -857 18189 -880 18216 -898 ct 18243 -916 18281 -925 18330 -925 ct -18361 -925 18396 -921 18434 -914 ct 18417 -816 l 18394 -821 18372 -823 18351 -823 ct -18318 -823 18294 -815 18279 -801 ct 18265 -786 18258 -759 18258 -720 ct 18258 -659 l -18387 -659 l 18387 -572 l 18258 -572 l 18258 0 l 18147 0 l p ef -18431 -329 m 18431 -452 18465 -542 18533 -601 ct 18590 -650 18659 -674 18740 -674 ct -18831 -674 18905 -644 18962 -585 ct 19019 -526 19048 -444 19048 -339 ct 19048 -254 19035 -187 19010 -139 ct -18985 -90 18948 -52 18899 -25 ct 18850 2 18797 15 18740 15 ct 18648 15 18573 -15 18516 -74 ct -18460 -133 18431 -218 18431 -329 ct p -18546 -330 m 18546 -245 18564 -182 18601 -140 ct 18638 -98 18684 -77 18740 -77 ct -18795 -77 18841 -98 18878 -140 ct 18915 -182 18933 -247 18933 -333 ct 18933 -415 18915 -477 18878 -519 ct -18841 -561 18795 -582 18740 -582 ct 18684 -582 18638 -561 18601 -519 ct 18564 -477 18546 -414 18546 -330 ct -p ef -19609 -81 m 19568 -46 19528 -21 19490 -7 ct 19452 8 19411 15 19367 15 ct 19295 15 19239 -3 19200 -38 ct -19161 -73 19142 -119 19142 -174 ct 19142 -206 19149 -235 19164 -262 ct 19179 -289 19198 -310 19222 -326 ct -19245 -343 19272 -355 19302 -363 ct 19324 -369 19357 -374 19401 -380 ct 19491 -391 19558 -403 19600 -418 ct -19601 -434 19601 -443 19601 -447 ct 19601 -493 19590 -525 19569 -544 ct 19541 -569 19498 -582 19442 -582 ct -19390 -582 19351 -572 19326 -554 ct 19301 -535 19282 -503 19270 -456 ct 19161 -471 l -19171 -518 19187 -556 19210 -584 ct 19233 -613 19266 -635 19309 -651 ct 19352 -666 19402 -674 19458 -674 ct -19514 -674 19560 -667 19595 -654 ct 19630 -641 19656 -624 19673 -604 ct 19689 -584 19701 -559 19707 -528 ct -19711 -509 19713 -475 19713 -425 ct 19713 -276 l 19713 -172 19715 -107 19720 -79 ct -19725 -52 19734 -25 19748 0 ct 19632 0 l 19620 -23 19613 -50 19609 -81 ct p -19600 -331 m 19560 -314 19499 -300 19418 -289 ct 19372 -282 19340 -274 19320 -266 ct -19301 -258 19287 -246 19276 -230 ct 19266 -214 19261 -196 19261 -177 ct 19261 -147 19272 -122 19295 -102 ct -19317 -82 19350 -73 19394 -73 ct 19437 -73 19475 -82 19508 -101 ct 19542 -120 19566 -145 19582 -178 ct -19594 -203 19600 -241 19600 -290 ct 19600 -331 l p ef -19887 0 m 19887 -659 l 19987 -659 l 19987 -567 l 20007 -599 20035 -625 20069 -645 ct -20103 -664 20142 -674 20186 -674 ct 20235 -674 20275 -664 20306 -644 ct 20337 -623 20359 -595 20372 -559 ct -20424 -636 20492 -674 20576 -674 ct 20641 -674 20691 -656 20726 -620 ct 20761 -583 20779 -528 20779 -452 ct -20779 0 l 20668 0 l 20668 -415 l 20668 -460 20664 -492 20657 -512 ct 20650 -531 20637 -547 20618 -559 ct -20599 -571 20577 -577 20551 -577 ct 20505 -577 20466 -562 20436 -531 ct 20405 -500 20390 -451 20390 -383 ct -20390 0 l 20278 0 l 20278 -428 l 20278 -478 20269 -515 20251 -540 ct 20233 -565 20203 -577 20161 -577 ct -20130 -577 20101 -569 20074 -552 ct 20048 -536 20028 -512 20016 -480 ct 20004 -448 19998 -402 19998 -342 ct -19998 0 l 19887 0 l p ef -21212 16 m 21476 -925 l 21565 -925 l 21302 16 l 21212 16 l p ef -22013 0 m 22013 -910 l 22356 -910 l 22416 -910 22462 -907 22494 -901 ct -22539 -894 22576 -880 22606 -859 ct 22637 -838 22661 -809 22679 -771 ct 22698 -733 22707 -692 22707 -647 ct -22707 -569 22682 -504 22633 -450 ct 22584 -397 22495 -370 22366 -370 ct 22133 -370 l -22133 0 l 22013 0 l p -22133 -477 m 22368 -477 l 22446 -477 22501 -492 22534 -521 ct 22567 -550 22583 -591 22583 -643 ct -22583 -681 22573 -714 22554 -741 ct 22535 -768 22509 -786 22478 -795 ct 22458 -800 22420 -803 22366 -803 ct -22133 -803 l 22133 -477 l p ef -22804 -329 m 22804 -452 22838 -542 22906 -601 ct 22963 -650 23032 -674 23113 -674 ct -23204 -674 23278 -644 23335 -585 ct 23392 -526 23421 -444 23421 -339 ct 23421 -254 23408 -187 23383 -139 ct -23358 -90 23321 -52 23272 -25 ct 23223 2 23170 15 23113 15 ct 23021 15 22946 -15 22889 -74 ct -22833 -133 22804 -218 22804 -329 ct p -22919 -330 m 22919 -245 22937 -182 22974 -140 ct 23011 -98 23057 -77 23113 -77 ct -23168 -77 23214 -98 23251 -140 ct 23288 -182 23306 -247 23306 -333 ct 23306 -415 23288 -477 23251 -519 ct -23214 -561 23168 -582 23113 -582 ct 23057 -582 23011 -561 22974 -519 ct 22937 -477 22919 -414 22919 -330 ct -p ef -23550 0 m 23550 -910 l 23662 -910 l 23662 0 l 23550 0 l p ef -23836 -782 m 23836 -910 l 23948 -910 l 23948 -782 l 23836 -782 l p -23836 0 m 23836 -659 l 23948 -659 l 23948 0 l 23836 0 l p ef -24363 -100 m 24380 -1 l 24348 6 24320 9 24295 9 ct 24255 9 24223 3 24201 -10 ct -24179 -23 24163 -40 24154 -61 ct 24145 -82 24140 -126 24140 -193 ct 24140 -572 l -24058 -572 l 24058 -659 l 24140 -659 l 24140 -822 l 24251 -889 l 24251 -659 l -24363 -659 l 24363 -572 l 24251 -572 l 24251 -187 l 24251 -155 24253 -134 24257 -125 ct -24261 -116 24267 -109 24276 -103 ct 24285 -98 24298 -95 24314 -95 ct 24327 -95 24343 -97 24363 -100 ct -p ef -24429 -329 m 24429 -452 24463 -542 24531 -601 ct 24588 -650 24657 -674 24738 -674 ct -24829 -674 24903 -644 24960 -585 ct 25017 -526 25046 -444 25046 -339 ct 25046 -254 25033 -187 25008 -139 ct -24983 -90 24946 -52 24897 -25 ct 24848 2 24795 15 24738 15 ct 24646 15 24571 -15 24514 -74 ct -24458 -133 24429 -218 24429 -329 ct p -24544 -330 m 24544 -245 24562 -182 24599 -140 ct 24636 -98 24682 -77 24738 -77 ct -24793 -77 24839 -98 24876 -140 ct 24913 -182 24931 -247 24931 -333 ct 24931 -415 24913 -477 24876 -519 ct -24839 -561 24793 -582 24738 -582 ct 24682 -582 24636 -561 24599 -519 ct 24562 -477 24544 -414 24544 -330 ct -p ef -25251 267 m 25171 267 l 25295 68 25356 -130 25356 -329 ct 25356 -407 25347 -484 25330 -561 ct -25316 -623 25296 -683 25271 -740 ct 25255 -777 25221 -839 25171 -926 ct 25251 -926 l -25329 -822 25386 -718 25423 -613 ct 25455 -523 25471 -429 25471 -330 ct 25471 -218 25450 -110 25407 -6 ct -25364 98 25312 189 25251 267 ct p ef -pom -0.449 0.625 0.812 c 197 18286 m 27882 18286 l 27882 20825 l 197 20825 l -197 18286 l p -197 18286 m 197 18286 l p -27882 20825 m 27882 20825 l p ef -0.207 0.398 0.644 c 196 18286 m 27881 18286 l 27881 20824 l 196 20824 l -196 18286 l pc -196 18286 m 196 18286 l pc -27881 20824 m 27881 20824 l pc -pum -294 20102 t -0.003 0.003 0.003 c 93 0 m 93 -910 l 213 -910 l 213 -459 l 665 -910 l -828 -910 l 446 -541 l 845 0 l 686 0 l 362 -461 l 213 -315 l 213 0 l -93 0 l p ef -965 0 m 965 -910 l 1086 -910 l 1086 0 l 965 0 l p ef -1295 0 m 1295 -910 l 1418 -910 l 1896 -196 l 1896 -910 l 2011 -910 l -2011 0 l 1888 0 l 1410 -715 l 1410 0 l 1295 0 l p ef -2217 0 m 2217 -910 l 2875 -910 l 2875 -803 l 2338 -803 l 2338 -524 l -2841 -524 l 2841 -417 l 2338 -417 l 2338 -107 l 2896 -107 l 2896 0 l -2217 0 l p ef -3292 1 m 3292 -802 l 2993 -802 l 2993 -909 l 3713 -909 l 3713 -802 l -3413 -802 l 3413 1 l 3292 1 l p ef -3856 0 m 3856 -910 l 3977 -910 l 3977 0 l 3856 0 l p ef -4836 -319 m 4956 -288 l 4931 -189 4885 -114 4820 -62 ct 4754 -10 4674 16 4580 16 ct -4482 16 4402 -4 4340 -44 ct 4279 -84 4232 -142 4200 -217 ct 4168 -293 4152 -374 4152 -461 ct -4152 -556 4170 -639 4207 -709 ct 4243 -780 4294 -833 4361 -870 ct 4428 -907 4501 -925 4581 -925 ct -4672 -925 4749 -902 4811 -855 ct 4873 -809 4916 -744 4940 -660 ct 4822 -632 l -4801 -698 4770 -746 4730 -777 ct 4690 -807 4640 -822 4579 -822 ct 4509 -822 4451 -805 4404 -772 ct -4357 -738 4324 -693 4305 -637 ct 4286 -580 4276 -522 4276 -462 ct 4276 -385 4288 -317 4310 -259 ct -4333 -202 4368 -158 4415 -130 ct 4463 -101 4514 -87 4570 -87 ct 4637 -87 4694 -106 4741 -145 ct -4787 -184 4819 -242 4836 -319 ct p ef -5065 -292 m 5179 -302 l 5184 -256 5196 -219 5216 -190 ct 5236 -161 5266 -137 5308 -119 ct -5349 -101 5395 -92 5447 -92 ct 5493 -92 5533 -99 5569 -112 ct 5604 -126 5630 -145 5647 -169 ct -5664 -192 5673 -218 5673 -247 ct 5673 -275 5665 -300 5648 -321 ct 5631 -343 5604 -361 5566 -375 ct -5542 -385 5488 -399 5404 -419 ct 5321 -440 5262 -458 5229 -476 ct 5185 -499 5153 -527 5132 -561 ct -5110 -595 5100 -632 5100 -674 ct 5100 -720 5113 -763 5139 -803 ct 5165 -843 5203 -873 5253 -894 ct -5303 -915 5359 -925 5420 -925 ct 5487 -925 5547 -914 5598 -892 ct 5650 -871 5689 -839 5717 -797 ct -5745 -754 5759 -707 5761 -653 ct 5646 -644 l 5640 -702 5619 -745 5583 -775 ct -5547 -804 5495 -819 5425 -819 ct 5352 -819 5299 -806 5266 -779 ct 5232 -752 5216 -720 5216 -682 ct -5216 -650 5228 -623 5251 -602 ct 5274 -581 5335 -559 5432 -537 ct 5530 -515 5597 -495 5634 -479 ct -5687 -454 5726 -423 5751 -386 ct 5776 -348 5789 -305 5789 -257 ct 5789 -208 5775 -162 5747 -120 ct -5719 -77 5680 -43 5628 -20 ct 5576 4 5518 16 5453 16 ct 5370 16 5301 4 5246 -20 ct -5190 -44 5147 -80 5115 -128 ct 5083 -177 5067 -231 5065 -292 ct p ef -6522 1 m 6522 -802 l 6223 -802 l 6223 -909 l 6943 -909 l 6943 -802 l -6643 -802 l 6643 1 l 6522 1 l p ef -7008 -443 m 7008 -594 7049 -712 7130 -797 ct 7211 -883 7316 -926 7444 -926 ct -7528 -926 7603 -906 7671 -865 ct 7738 -825 7789 -769 7825 -698 ct 7860 -626 7878 -544 7878 -453 ct -7878 -361 7859 -278 7822 -206 ct 7785 -133 7732 -78 7664 -40 ct 7596 -3 7522 16 7443 16 ct -7358 16 7281 -5 7214 -46 ct 7146 -87 7095 -144 7060 -216 ct 7026 -287 7008 -363 7008 -443 ct -p -7132 -441 m 7132 -331 7162 -245 7221 -182 ct 7280 -119 7354 -87 7442 -87 ct -7533 -87 7608 -119 7666 -183 ct 7725 -246 7754 -337 7754 -454 ct 7754 -528 7741 -593 7716 -648 ct -7691 -703 7655 -746 7606 -776 ct 7558 -807 7504 -822 7444 -822 ct 7359 -822 7286 -793 7225 -734 ct -7163 -676 7132 -578 7132 -441 ct p ef -7982 -443 m 7982 -594 8023 -712 8104 -797 ct 8185 -883 8290 -926 8418 -926 ct -8502 -926 8577 -906 8645 -865 ct 8712 -825 8763 -769 8799 -698 ct 8834 -626 8852 -544 8852 -453 ct -8852 -361 8833 -278 8796 -206 ct 8759 -133 8706 -78 8638 -40 ct 8570 -3 8496 16 8417 16 ct -8332 16 8255 -5 8188 -46 ct 8120 -87 8069 -144 8034 -216 ct 8000 -287 7982 -363 7982 -443 ct -p -8106 -441 m 8106 -331 8136 -245 8195 -182 ct 8254 -119 8328 -87 8416 -87 ct -8507 -87 8582 -119 8640 -183 ct 8699 -246 8728 -337 8728 -454 ct 8728 -528 8715 -593 8690 -648 ct -8665 -703 8629 -746 8580 -776 ct 8532 -807 8478 -822 8418 -822 ct 8333 -822 8260 -793 8199 -734 ct -8137 -676 8106 -578 8106 -441 ct p ef -9000 0 m 9000 -910 l 9120 -910 l 9120 -107 l 9568 -107 l 9568 0 l -9000 0 l p ef -9914 16 m 10178 -925 l 10267 -925 l 10004 16 l 9914 16 l p ef -10710 0 m 10710 -910 l 10830 -910 l 10830 -459 l 11282 -910 l 11445 -910 l -11063 -541 l 11462 0 l 11303 0 l 10979 -461 l 10830 -315 l 10830 0 l -10710 0 l p ef -11548 -782 m 11548 -910 l 11660 -910 l 11660 -782 l 11548 -782 l p -11548 0 m 11548 -659 l 11660 -659 l 11660 0 l 11548 0 l p ef -11832 0 m 11832 -659 l 11932 -659 l 11932 -565 l 11981 -638 12050 -674 12142 -674 ct -12181 -674 12218 -667 12251 -653 ct 12285 -638 12309 -620 12326 -596 ct 12342 -573 12354 -546 12361 -514 ct -12365 -493 12367 -457 12367 -405 ct 12367 0 l 12255 0 l 12255 -401 l 12255 -446 12251 -480 12242 -503 ct -12234 -526 12218 -544 12196 -557 ct 12174 -570 12148 -577 12118 -577 ct 12071 -577 12030 -562 11995 -532 ct -11961 -502 11943 -444 11943 -360 ct 11943 0 l 11832 0 l p ef -12989 -212 m 13104 -198 l 13086 -130 13052 -78 13003 -41 ct 12954 -4 12891 15 12814 15 ct -12718 15 12642 -15 12585 -74 ct 12529 -133 12501 -217 12501 -324 ct 12501 -435 12529 -521 12586 -582 ct -12643 -643 12717 -674 12808 -674 ct 12896 -674 12968 -644 13024 -584 ct 13080 -524 13108 -440 13108 -331 ct -13108 -324 13107 -314 13107 -301 ct 12616 -301 l 12620 -229 12640 -173 12677 -135 ct -12714 -96 12760 -77 12815 -77 ct 12856 -77 12891 -88 12920 -109 ct 12949 -131 12972 -165 12989 -212 ct -p -12622 -393 m 12990 -393 l 12985 -448 12971 -490 12948 -518 ct 12912 -561 12866 -582 12809 -582 ct -12758 -582 12715 -565 12680 -531 ct 12645 -496 12626 -450 12622 -393 ct p ef -13488 -100 m 13505 -1 l 13473 6 13445 9 13420 9 ct 13380 9 13348 3 13326 -10 ct -13304 -23 13288 -40 13279 -61 ct 13270 -82 13265 -126 13265 -193 ct 13265 -572 l -13183 -572 l 13183 -659 l 13265 -659 l 13265 -822 l 13376 -889 l 13376 -659 l -13488 -659 l 13488 -572 l 13376 -572 l 13376 -187 l 13376 -155 13378 -134 13382 -125 ct -13386 -116 13392 -109 13401 -103 ct 13410 -98 13423 -95 13439 -95 ct 13452 -95 13468 -97 13488 -100 ct -p ef -13597 -782 m 13597 -910 l 13709 -910 l 13709 -782 l 13597 -782 l p -13597 0 m 13597 -659 l 13709 -659 l 13709 0 l 13597 0 l p ef -14309 -241 m 14419 -227 l 14407 -151 14377 -92 14327 -49 ct 14278 -6 14217 15 14145 15 ct -14055 15 13983 -14 13928 -73 ct 13873 -132 13846 -217 13846 -327 ct 13846 -398 13857 -460 13881 -514 ct -13905 -567 13940 -607 13989 -634 ct 14037 -661 14089 -674 14146 -674 ct 14217 -674 14276 -656 14321 -620 ct -14367 -583 14396 -532 14409 -465 ct 14300 -449 l 14290 -493 14272 -526 14245 -548 ct -14219 -571 14187 -582 14150 -582 ct 14094 -582 14048 -562 14013 -521 ct 13978 -481 13960 -417 13960 -330 ct -13960 -242 13977 -177 14011 -137 ct 14045 -97 14089 -77 14144 -77 ct 14188 -77 14224 -90 14254 -117 ct -14283 -144 14302 -185 14309 -241 ct p ef -14469 -197 m 14579 -214 l 14586 -170 14603 -136 14631 -112 ct 14660 -89 14699 -77 14750 -77 ct -14801 -77 14839 -87 14864 -108 ct 14889 -129 14901 -154 14901 -182 ct 14901 -207 14890 -227 14868 -241 ct -14853 -251 14815 -264 14754 -279 ct 14672 -300 14616 -318 14584 -333 ct 14552 -348 14528 -369 14512 -396 ct -14496 -422 14488 -452 14488 -484 ct 14488 -513 14494 -541 14508 -566 ct 14521 -591 14540 -611 14563 -628 ct -14580 -641 14604 -652 14634 -661 ct 14664 -669 14696 -674 14730 -674 ct 14782 -674 14827 -666 14866 -652 ct -14905 -637 14934 -616 14953 -591 ct 14971 -566 14984 -532 14991 -489 ct 14882 -474 l -14877 -508 14863 -534 14839 -553 ct 14815 -572 14782 -582 14738 -582 ct 14687 -582 14650 -574 14628 -557 ct -14607 -540 14596 -520 14596 -497 ct 14596 -483 14600 -469 14609 -458 ct 14618 -446 14633 -436 14652 -428 ct -14663 -424 14696 -414 14751 -400 ct 14830 -378 14885 -361 14916 -348 ct 14947 -334 14972 -315 14989 -289 ct -15007 -263 15016 -232 15016 -194 ct 15016 -156 15005 -121 14983 -88 ct 14962 -55 14930 -30 14890 -12 ct -14849 6 14802 15 14751 15 ct 14665 15 14600 -3 14555 -38 ct 14510 -74 14481 -127 14469 -197 ct -p ef -15501 0 m 15501 -659 l 15601 -659 l 15601 -567 l 15621 -599 15649 -625 15683 -645 ct -15717 -664 15756 -674 15800 -674 ct 15849 -674 15889 -664 15920 -644 ct 15951 -623 15973 -595 15986 -559 ct -16038 -636 16106 -674 16190 -674 ct 16255 -674 16305 -656 16340 -620 ct 16375 -583 16393 -528 16393 -452 ct -16393 0 l 16282 0 l 16282 -415 l 16282 -460 16278 -492 16271 -512 ct 16264 -531 16251 -547 16232 -559 ct -16213 -571 16191 -577 16165 -577 ct 16119 -577 16080 -562 16050 -531 ct 16019 -500 16004 -451 16004 -383 ct -16004 0 l 15892 0 l 15892 -428 l 15892 -478 15883 -515 15865 -540 ct 15847 -565 15817 -577 15775 -577 ct -15744 -577 15715 -569 15688 -552 ct 15662 -536 15642 -512 15630 -480 ct 15618 -448 15612 -402 15612 -342 ct -15612 0 l 15501 0 l p ef -16517 -329 m 16517 -452 16551 -542 16619 -601 ct 16676 -650 16745 -674 16826 -674 ct -16917 -674 16991 -644 17048 -585 ct 17105 -526 17134 -444 17134 -339 ct 17134 -254 17121 -187 17096 -139 ct -17071 -90 17034 -52 16985 -25 ct 16936 2 16883 15 16826 15 ct 16734 15 16659 -15 16602 -74 ct -16546 -133 16517 -218 16517 -329 ct p -16632 -330 m 16632 -245 16650 -182 16687 -140 ct 16724 -98 16770 -77 16826 -77 ct -16881 -77 16927 -98 16964 -140 ct 17001 -182 17019 -247 17019 -333 ct 17019 -415 17001 -477 16964 -519 ct -16927 -561 16881 -582 16826 -582 ct 16770 -582 16724 -561 16687 -519 ct 16650 -477 16632 -414 16632 -330 ct -p ef -17693 0 m 17693 -83 l 17651 -18 17590 15 17509 15 ct 17456 15 17408 1 17364 -28 ct -17320 -57 17286 -98 17262 -150 ct 17238 -202 17225 -261 17225 -329 ct 17225 -395 17236 -454 17258 -508 ct -17280 -562 17313 -603 17357 -631 ct 17401 -660 17450 -674 17504 -674 ct 17544 -674 17579 -666 17610 -649 ct -17641 -632 17666 -610 17686 -583 ct 17686 -910 l 17797 -910 l 17797 0 l -17693 0 l p -17340 -329 m 17340 -244 17358 -181 17393 -140 ct 17429 -98 17471 -77 17519 -77 ct -17568 -77 17610 -97 17644 -137 ct 17678 -177 17695 -238 17695 -320 ct 17695 -410 17677 -476 17643 -518 ct -17608 -560 17565 -582 17514 -582 ct 17465 -582 17423 -561 17390 -521 ct 17357 -480 17340 -416 17340 -329 ct -p ef -18424 -212 m 18539 -198 l 18521 -130 18487 -78 18438 -41 ct 18389 -4 18326 15 18249 15 ct -18153 15 18077 -15 18020 -74 ct 17964 -133 17936 -217 17936 -324 ct 17936 -435 17964 -521 18021 -582 ct -18078 -643 18152 -674 18243 -674 ct 18331 -674 18403 -644 18459 -584 ct 18515 -524 18543 -440 18543 -331 ct -18543 -324 18542 -314 18542 -301 ct 18051 -301 l 18055 -229 18075 -173 18112 -135 ct -18149 -96 18195 -77 18250 -77 ct 18291 -77 18326 -88 18355 -109 ct 18384 -131 18407 -165 18424 -212 ct -p -18057 -393 m 18425 -393 l 18420 -448 18406 -490 18383 -518 ct 18347 -561 18301 -582 18244 -582 ct -18193 -582 18150 -565 18115 -531 ct 18080 -496 18061 -450 18057 -393 ct p ef -18677 0 m 18677 -910 l 18789 -910 l 18789 0 l 18677 0 l p ef -19528 267 m 19466 189 19414 98 19372 -6 ct 19329 -110 19308 -218 19308 -330 ct -19308 -429 19324 -523 19356 -613 ct 19393 -718 19450 -822 19528 -926 ct 19608 -926 l -19558 -840 19525 -778 19509 -742 ct 19484 -684 19464 -625 19449 -563 ct 19432 -485 19423 -408 19423 -329 ct -19423 -130 19484 68 19608 267 ct 19528 267 l p ef -19738 253 m 19738 -659 l 19839 -659 l 19839 -573 l 19863 -607 19890 -632 19921 -648 ct -19951 -665 19987 -674 20030 -674 ct 20087 -674 20136 -659 20179 -630 ct 20222 -601 20255 -560 20277 -508 ct -20299 -455 20309 -397 20309 -334 ct 20309 -267 20297 -206 20273 -152 ct 20249 -98 20214 -57 20168 -28 ct -20122 1 20073 15 20022 15 ct 19985 15 19952 7 19922 -9 ct 19893 -24 19868 -44 19849 -68 ct -19849 253 l 19738 253 l p -19839 -326 m 19839 -241 19856 -178 19890 -138 ct 19925 -97 19966 -77 20015 -77 ct -20065 -77 20107 -98 20142 -140 ct 20178 -182 20195 -247 20195 -335 ct 20195 -419 20178 -482 20144 -523 ct -20109 -565 20068 -586 20020 -586 ct 19972 -586 19930 -564 19894 -519 ct 19857 -475 19839 -410 19839 -326 ct -p ef -20443 0 m 20443 -659 l 20544 -659 l 20544 -559 l 20570 -606 20593 -637 20615 -652 ct -20637 -667 20661 -674 20687 -674 ct 20724 -674 20762 -662 20801 -638 ct 20763 -534 l -20736 -551 20708 -559 20681 -559 ct 20657 -559 20635 -551 20615 -537 ct 20596 -522 20582 -501 20574 -475 ct -20561 -436 20555 -392 20555 -345 ct 20555 0 l 20443 0 l p ef -21320 -212 m 21435 -198 l 21417 -130 21383 -78 21334 -41 ct 21285 -4 21222 15 21145 15 ct -21049 15 20973 -15 20916 -74 ct 20860 -133 20832 -217 20832 -324 ct 20832 -435 20860 -521 20917 -582 ct -20974 -643 21048 -674 21139 -674 ct 21227 -674 21299 -644 21355 -584 ct 21411 -524 21439 -440 21439 -331 ct -21439 -324 21438 -314 21438 -301 ct 20947 -301 l 20951 -229 20971 -173 21008 -135 ct -21045 -96 21091 -77 21146 -77 ct 21187 -77 21222 -88 21251 -109 ct 21280 -131 21303 -165 21320 -212 ct -p -20953 -393 m 21321 -393 l 21316 -448 21302 -490 21279 -518 ct 21243 -561 21197 -582 21140 -582 ct -21089 -582 21046 -565 21011 -531 ct 20976 -496 20957 -450 20953 -393 ct p ef -22003 0 m 22003 -83 l 21961 -18 21900 15 21819 15 ct 21766 15 21718 1 21674 -28 ct -21630 -57 21596 -98 21572 -150 ct 21548 -202 21535 -261 21535 -329 ct 21535 -395 21546 -454 21568 -508 ct -21590 -562 21623 -603 21667 -631 ct 21711 -660 21760 -674 21814 -674 ct 21854 -674 21889 -666 21920 -649 ct -21951 -632 21976 -610 21996 -583 ct 21996 -910 l 22107 -910 l 22107 0 l -22003 0 l p -21650 -329 m 21650 -244 21668 -181 21703 -140 ct 21739 -98 21781 -77 21829 -77 ct -21878 -77 21920 -97 21954 -137 ct 21988 -177 22005 -238 22005 -320 ct 22005 -410 21987 -476 21953 -518 ct -21918 -560 21875 -582 21824 -582 ct 21775 -582 21733 -561 21700 -521 ct 21667 -480 21650 -416 21650 -329 ct -p ef -22283 -782 m 22283 -910 l 22395 -910 l 22395 -782 l 22283 -782 l p -22283 0 m 22283 -659 l 22395 -659 l 22395 0 l 22283 0 l p ef -22995 -241 m 23105 -227 l 23093 -151 23063 -92 23013 -49 ct 22964 -6 22903 15 22831 15 ct -22741 15 22669 -14 22614 -73 ct 22559 -132 22532 -217 22532 -327 ct 22532 -398 22543 -460 22567 -514 ct -22591 -567 22626 -607 22675 -634 ct 22723 -661 22775 -674 22832 -674 ct 22903 -674 22962 -656 23007 -620 ct -23053 -583 23082 -532 23095 -465 ct 22986 -449 l 22976 -493 22958 -526 22931 -548 ct -22905 -571 22873 -582 22836 -582 ct 22780 -582 22734 -562 22699 -521 ct 22664 -481 22646 -417 22646 -330 ct -22646 -242 22663 -177 22697 -137 ct 22731 -97 22775 -77 22830 -77 ct 22874 -77 22910 -90 22940 -117 ct -22969 -144 22988 -185 22995 -241 ct p ef -23201 -782 m 23201 -910 l 23313 -910 l 23313 -782 l 23201 -782 l p -23201 0 m 23201 -659 l 23313 -659 l 23313 0 l 23201 0 l p ef -23401 16 m 23665 -925 l 23754 -925 l 23491 16 l 23401 16 l p ef -23845 0 m 23845 -910 l 24186 -910 l 24256 -910 24311 -901 24353 -882 ct -24395 -864 24428 -836 24452 -797 ct 24476 -759 24487 -719 24487 -677 ct 24487 -638 24477 -602 24456 -567 ct -24435 -533 24403 -505 24360 -484 ct 24415 -468 24458 -440 24487 -401 ct 24517 -363 24531 -317 24531 -264 ct -24531 -221 24522 -181 24505 -145 ct 24487 -108 24464 -80 24438 -60 ct 24411 -40 24378 -25 24338 -15 ct -24298 -5 24250 0 24192 0 ct 23845 0 l p -23965 -527 m 24162 -527 l 24215 -527 24253 -531 24277 -538 ct 24307 -547 24330 -562 24346 -583 ct -24361 -604 24369 -631 24369 -663 ct 24369 -693 24362 -720 24347 -743 ct 24333 -766 24312 -781 24285 -790 ct -24258 -798 24212 -803 24147 -803 ct 23965 -803 l 23965 -527 l p -23965 -107 m 24192 -107 l 24231 -107 24258 -109 24274 -112 ct 24301 -117 24324 -125 24343 -137 ct -24362 -148 24377 -165 24389 -187 ct 24401 -209 24407 -235 24407 -264 ct 24407 -298 24398 -327 24381 -352 ct -24363 -377 24339 -395 24309 -405 ct 24278 -415 24233 -420 24176 -420 ct 23965 -420 l -23965 -107 l p ef -24597 -1 m 24946 -911 l 25076 -911 l 25448 -1 l 25311 -1 l 25205 -276 l -24825 -276 l 24725 -1 l 24597 -1 l p -24859 -374 m 25168 -374 l 25073 -626 l 25044 -703 25022 -766 25008 -815 ct -24997 -757 24980 -699 24959 -641 ct 24859 -374 l p ef -25503 -292 m 25617 -302 l 25622 -256 25634 -219 25654 -190 ct 25674 -161 25704 -137 25746 -119 ct -25787 -101 25833 -92 25885 -92 ct 25931 -92 25971 -99 26007 -112 ct 26042 -126 26068 -145 26085 -169 ct -26102 -192 26111 -218 26111 -247 ct 26111 -275 26103 -300 26086 -321 ct 26069 -343 26042 -361 26004 -375 ct -25980 -385 25926 -399 25842 -419 ct 25759 -440 25700 -458 25667 -476 ct 25623 -499 25591 -527 25570 -561 ct -25548 -595 25538 -632 25538 -674 ct 25538 -720 25551 -763 25577 -803 ct 25603 -843 25641 -873 25691 -894 ct -25741 -915 25797 -925 25858 -925 ct 25925 -925 25985 -914 26036 -892 ct 26088 -871 26127 -839 26155 -797 ct -26183 -754 26197 -707 26199 -653 ct 26084 -644 l 26078 -702 26057 -745 26021 -775 ct -25985 -804 25933 -819 25863 -819 ct 25790 -819 25737 -806 25704 -779 ct 25670 -752 25654 -720 25654 -682 ct -25654 -650 25666 -623 25689 -602 ct 25712 -581 25773 -559 25870 -537 ct 25968 -515 26035 -495 26072 -479 ct -26125 -454 26164 -423 26189 -386 ct 26214 -348 26227 -305 26227 -257 ct 26227 -208 26213 -162 26185 -120 ct -26157 -77 26118 -43 26066 -20 ct 26014 4 25956 16 25891 16 ct 25808 16 25739 4 25684 -20 ct -25628 -44 25585 -80 25553 -128 ct 25521 -177 25505 -231 25503 -292 ct p ef -26396 1 m 26396 -909 l 27009 -909 l 27009 -802 l 26516 -802 l 26516 -520 l -26943 -520 l 26943 -413 l 26516 -413 l 26516 1 l 26396 1 l p ef -27224 267 m 27144 267 l 27268 68 27329 -130 27329 -329 ct 27329 -407 27320 -484 27303 -561 ct -27289 -623 27269 -683 27244 -740 ct 27228 -777 27194 -839 27144 -926 ct 27224 -926 l -27302 -822 27359 -718 27396 -613 ct 27428 -523 27444 -429 27444 -330 ct 27444 -218 27423 -110 27380 -6 ct -27337 98 27285 189 27224 267 ct p ef -pom -0.449 0.625 0.812 c 713 10586 m 713 10586 l 717 10538 l 730 10490 l -751 10441 l 781 10393 l 820 10345 l 867 10298 l 922 10251 l 986 10204 l -1058 10157 l 1139 10110 l 1227 10063 l 1324 10017 l 1430 9971 l 1543 9926 l -1664 9881 l 1794 9836 l 1931 9792 l 2076 9748 l 2228 9705 l 2388 9663 l -2556 9621 l 2731 9580 l 2913 9539 l 3103 9499 l 3299 9460 l 3503 9422 l -3713 9384 l 3929 9347 l 4153 9311 l 4382 9275 l 4618 9241 l 4860 9207 l -5108 9174 l 5361 9142 l 5620 9111 l 5885 9081 l 6155 9052 l 6429 9024 l -6709 8997 l 6993 8971 l 7282 8946 l 7575 8922 l 7873 8899 l 8174 8878 l -8479 8857 l 8788 8837 l 9100 8819 l 9415 8802 l 9734 8785 l 10055 8770 l -10378 8756 l 10704 8744 l 11032 8732 l 11362 8722 l 11694 8713 l 12027 8705 l -12362 8698 l 12697 8693 l 13034 8688 l 13371 8685 l 13708 8684 l 14045 8683 l -14045 8683 l 14383 8684 l 14720 8685 l 15057 8688 l 15394 8693 l 15729 8698 l -16064 8705 l 16397 8713 l 16729 8722 l 17059 8732 l 17387 8744 l 17713 8756 l -18036 8770 l 18357 8785 l 18676 8802 l 18991 8819 l 19303 8837 l 19612 8857 l -19917 8878 l 20218 8899 l 20516 8922 l 20809 8946 l 21098 8971 l 21382 8997 l -21662 9024 l 21936 9052 l 22206 9081 l 22471 9111 l 22730 9142 l 22983 9174 l -23231 9207 l 23473 9241 l 23709 9275 l 23938 9311 l 24162 9347 l 24378 9384 l -24588 9422 l 24792 9460 l 24988 9499 l 25178 9539 l 25360 9580 l 25535 9621 l -25703 9663 l 25863 9705 l 26015 9748 l 26160 9792 l 26297 9836 l 26427 9881 l -26548 9926 l 26661 9971 l 26767 10017 l 26864 10063 l 26952 10110 l -27033 10157 l 27105 10204 l 27169 10251 l 27224 10298 l 27271 10345 l -27310 10393 l 27340 10441 l 27361 10490 l 27374 10538 l 27378 10586 l -27377 10586 l 27373 10634 l 27360 10682 l 27339 10731 l 27309 10779 l -27270 10827 l 27223 10874 l 27168 10922 l 27104 10969 l 27032 11016 l -26951 11063 l 26863 11110 l 26766 11156 l 26660 11202 l 26547 11247 l -26426 11292 l 26296 11337 l 26159 11381 l 26014 11425 l 25862 11468 l -25702 11510 l 25534 11552 l 25359 11593 l 25177 11634 l 24987 11674 l -24791 11713 l 24587 11751 l 24377 11789 l 24161 11826 l 23937 11862 l -23708 11898 l 23472 11932 l 23230 11966 l 22982 11999 l 22729 12031 l -22470 12062 l 22205 12092 l 21935 12121 l 21661 12149 l 21381 12176 l -21097 12202 l 20808 12227 l 20515 12251 l 20217 12274 l 19916 12295 l -19611 12316 l 19302 12336 l 18990 12354 l 18675 12371 l 18356 12388 l -18035 12403 l 17712 12417 l 17386 12429 l 17058 12441 l 16728 12451 l -16396 12460 l 16063 12468 l 15728 12475 l 15393 12480 l 15056 12485 l -14719 12488 l 14382 12489 l 14044 12490 l 14044 12489 l 13707 12488 l -13370 12487 l 13033 12484 l 12696 12479 l 12361 12474 l 12026 12467 l -11693 12459 l 11361 12450 l 11031 12440 l 10703 12428 l 10377 12416 l -10054 12402 l 9733 12387 l 9414 12370 l 9099 12353 l 8787 12335 l -8478 12315 l 8173 12294 l 7872 12273 l 7574 12250 l 7281 12226 l 6992 12201 l -6708 12175 l 6428 12148 l 6154 12120 l 5884 12091 l 5619 12061 l 5360 12030 l -5107 11998 l 4859 11965 l 4617 11931 l 4381 11897 l 4152 11861 l 3928 11825 l -3712 11788 l 3502 11750 l 3298 11712 l 3102 11673 l 2912 11633 l 2730 11592 l -2555 11551 l 2387 11509 l 2227 11467 l 2075 11424 l 1930 11380 l 1793 11336 l -1663 11291 l 1542 11246 l 1429 11201 l 1323 11155 l 1226 11109 l 1138 11062 l -1057 11015 l 985 10968 l 921 10921 l 866 10873 l 819 10826 l 780 10778 l -750 10730 l 729 10681 l 716 10633 l 712 10585 l 713 10586 l p -713 8683 m 713 8683 l p -27379 12491 m 27379 12491 l p ef -0.207 0.398 0.644 c 712 10586 m 712 10586 l 716 10538 l 729 10490 l -750 10441 l 780 10393 l 819 10345 l 866 10298 l 921 10250 l 985 10203 l -1057 10156 l 1138 10109 l 1226 10062 l 1323 10016 l 1429 9970 l 1542 9925 l -1663 9880 l 1793 9835 l 1930 9791 l 2075 9747 l 2227 9704 l 2387 9662 l -2555 9620 l 2730 9579 l 2912 9538 l 3102 9498 l 3298 9459 l 3502 9421 l -3712 9383 l 3928 9346 l 4152 9310 l 4381 9274 l 4617 9240 l 4859 9206 l -5107 9173 l 5360 9141 l 5619 9110 l 5884 9080 l 6154 9051 l 6428 9023 l -6708 8996 l 6992 8970 l 7281 8945 l 7574 8921 l 7872 8898 l 8173 8877 l -8478 8856 l 8787 8836 l 9099 8818 l 9414 8801 l 9733 8784 l 10054 8769 l -10377 8755 l 10703 8743 l 11031 8731 l 11361 8721 l 11693 8712 l 12026 8704 l -12361 8697 l 12696 8692 l 13033 8687 l 13370 8684 l 13707 8683 l 14045 8682 l -14045 8682 l 14383 8683 l 14720 8684 l 15057 8687 l 15394 8692 l 15729 8697 l -16064 8704 l 16397 8712 l 16729 8721 l 17059 8731 l 17387 8743 l 17713 8755 l -18036 8769 l 18357 8784 l 18676 8801 l 18991 8818 l 19303 8836 l 19612 8856 l -19917 8877 l 20218 8898 l 20516 8921 l 20809 8945 l 21098 8970 l 21382 8996 l -21662 9023 l 21936 9051 l 22206 9080 l 22471 9110 l 22730 9141 l 22983 9173 l -23231 9206 l 23473 9240 l 23709 9274 l 23938 9310 l 24162 9346 l 24378 9383 l -24588 9421 l 24792 9459 l 24988 9498 l 25178 9538 l 25360 9579 l 25535 9620 l -25703 9662 l 25863 9704 l 26015 9747 l 26160 9791 l 26297 9835 l 26427 9880 l -26548 9925 l 26661 9970 l 26767 10016 l 26864 10062 l 26952 10109 l -27033 10156 l 27105 10203 l 27169 10250 l 27224 10298 l 27271 10345 l -27310 10393 l 27340 10441 l 27361 10490 l 27374 10538 l 27378 10586 l -27377 10586 l 27373 10634 l 27360 10682 l 27339 10731 l 27309 10779 l -27270 10827 l 27223 10874 l 27168 10922 l 27104 10969 l 27032 11016 l -26951 11063 l 26863 11110 l 26766 11156 l 26660 11202 l 26547 11247 l -26426 11292 l 26296 11337 l 26159 11381 l 26014 11425 l 25862 11468 l -25702 11510 l 25534 11552 l 25359 11593 l 25177 11634 l 24987 11674 l -24791 11713 l 24587 11751 l 24377 11789 l 24161 11826 l 23937 11862 l -23708 11898 l 23472 11932 l 23230 11966 l 22982 11999 l 22729 12031 l -22470 12062 l 22205 12092 l 21935 12121 l 21661 12149 l 21381 12176 l -21097 12202 l 20808 12227 l 20515 12251 l 20217 12274 l 19916 12295 l -19611 12316 l 19302 12336 l 18990 12354 l 18675 12371 l 18356 12388 l -18035 12403 l 17712 12417 l 17386 12429 l 17058 12441 l 16728 12451 l -16396 12460 l 16063 12468 l 15728 12475 l 15393 12480 l 15056 12485 l -14719 12488 l 14382 12489 l 14044 12490 l 14044 12489 l 13706 12488 l -13369 12487 l 13032 12484 l 12695 12479 l 12360 12474 l 12025 12467 l -11692 12459 l 11360 12450 l 11030 12440 l 10702 12428 l 10376 12416 l -10053 12402 l 9732 12387 l 9413 12370 l 9098 12353 l 8786 12335 l -8477 12315 l 8172 12294 l 7871 12273 l 7573 12250 l 7280 12226 l 6991 12201 l -6707 12175 l 6427 12148 l 6153 12120 l 5883 12091 l 5618 12061 l 5359 12030 l -5106 11998 l 4858 11965 l 4616 11931 l 4380 11897 l 4151 11861 l 3927 11825 l -3711 11788 l 3501 11750 l 3297 11712 l 3101 11673 l 2911 11633 l 2729 11592 l -2554 11551 l 2386 11509 l 2226 11467 l 2074 11424 l 1929 11380 l 1792 11336 l -1662 11291 l 1541 11246 l 1428 11201 l 1322 11155 l 1225 11109 l 1137 11062 l -1056 11015 l 984 10968 l 920 10921 l 865 10873 l 818 10826 l 779 10778 l -749 10730 l 728 10681 l 715 10633 l 711 10585 l 712 10586 l pc -712 8682 m 712 8682 l pc -27379 12491 m 27379 12491 l pc -pum -1134 11132 t -0.003 0.003 0.003 c 93 0 m 93 -910 l 213 -910 l 213 -459 l 665 -910 l -828 -910 l 446 -541 l 845 0 l 686 0 l 362 -461 l 213 -315 l 213 0 l -93 0 l p ef -965 0 m 965 -910 l 1086 -910 l 1086 0 l 965 0 l p ef -1295 0 m 1295 -910 l 1418 -910 l 1896 -196 l 1896 -910 l 2011 -910 l -2011 0 l 1888 0 l 1410 -715 l 1410 0 l 1295 0 l p ef -2217 0 m 2217 -910 l 2875 -910 l 2875 -803 l 2338 -803 l 2338 -524 l -2841 -524 l 2841 -417 l 2338 -417 l 2338 -107 l 2896 -107 l 2896 0 l -2217 0 l p ef -3292 1 m 3292 -802 l 2993 -802 l 2993 -909 l 3713 -909 l 3713 -802 l -3413 -802 l 3413 1 l 3292 1 l p ef -3856 0 m 3856 -910 l 3977 -910 l 3977 0 l 3856 0 l p ef -4836 -319 m 4956 -288 l 4931 -189 4885 -114 4820 -62 ct 4754 -10 4674 16 4580 16 ct -4482 16 4402 -4 4340 -44 ct 4279 -84 4232 -142 4200 -217 ct 4168 -293 4152 -374 4152 -461 ct -4152 -556 4170 -639 4207 -709 ct 4243 -780 4294 -833 4361 -870 ct 4428 -907 4501 -925 4581 -925 ct -4672 -925 4749 -902 4811 -855 ct 4873 -809 4916 -744 4940 -660 ct 4822 -632 l -4801 -698 4770 -746 4730 -777 ct 4690 -807 4640 -822 4579 -822 ct 4509 -822 4451 -805 4404 -772 ct -4357 -738 4324 -693 4305 -637 ct 4286 -580 4276 -522 4276 -462 ct 4276 -385 4288 -317 4310 -259 ct -4333 -202 4368 -158 4415 -130 ct 4463 -101 4514 -87 4570 -87 ct 4637 -87 4694 -106 4741 -145 ct -4787 -184 4819 -242 4836 -319 ct p ef -5065 -292 m 5179 -302 l 5184 -256 5196 -219 5216 -190 ct 5236 -161 5266 -137 5308 -119 ct -5349 -101 5395 -92 5447 -92 ct 5493 -92 5533 -99 5569 -112 ct 5604 -126 5630 -145 5647 -169 ct -5664 -192 5673 -218 5673 -247 ct 5673 -275 5665 -300 5648 -321 ct 5631 -343 5604 -361 5566 -375 ct -5542 -385 5488 -399 5404 -419 ct 5321 -440 5262 -458 5229 -476 ct 5185 -499 5153 -527 5132 -561 ct -5110 -595 5100 -632 5100 -674 ct 5100 -720 5113 -763 5139 -803 ct 5165 -843 5203 -873 5253 -894 ct -5303 -915 5359 -925 5420 -925 ct 5487 -925 5547 -914 5598 -892 ct 5650 -871 5689 -839 5717 -797 ct -5745 -754 5759 -707 5761 -653 ct 5646 -644 l 5640 -702 5619 -745 5583 -775 ct -5547 -804 5495 -819 5425 -819 ct 5352 -819 5299 -806 5266 -779 ct 5232 -752 5216 -720 5216 -682 ct -5216 -650 5228 -623 5251 -602 ct 5274 -581 5335 -559 5432 -537 ct 5530 -515 5597 -495 5634 -479 ct -5687 -454 5726 -423 5751 -386 ct 5776 -348 5789 -305 5789 -257 ct 5789 -208 5775 -162 5747 -120 ct -5719 -77 5680 -43 5628 -20 ct 5576 4 5518 16 5453 16 ct 5370 16 5301 4 5246 -20 ct -5190 -44 5147 -80 5115 -128 ct 5083 -177 5067 -231 5065 -292 ct p ef -6263 -292 m 6377 -302 l 6382 -256 6394 -219 6414 -190 ct 6434 -161 6464 -137 6506 -119 ct -6547 -101 6593 -92 6645 -92 ct 6691 -92 6731 -99 6767 -112 ct 6802 -126 6828 -145 6845 -169 ct -6862 -192 6871 -218 6871 -247 ct 6871 -275 6863 -300 6846 -321 ct 6829 -343 6802 -361 6764 -375 ct -6740 -385 6686 -399 6602 -419 ct 6519 -440 6460 -458 6427 -476 ct 6383 -499 6351 -527 6330 -561 ct -6308 -595 6298 -632 6298 -674 ct 6298 -720 6311 -763 6337 -803 ct 6363 -843 6401 -873 6451 -894 ct -6501 -915 6557 -925 6618 -925 ct 6685 -925 6745 -914 6796 -892 ct 6848 -871 6887 -839 6915 -797 ct -6943 -754 6957 -707 6959 -653 ct 6844 -644 l 6838 -702 6817 -745 6781 -775 ct -6745 -804 6693 -819 6623 -819 ct 6550 -819 6497 -806 6464 -779 ct 6430 -752 6414 -720 6414 -682 ct -6414 -650 6426 -623 6449 -602 ct 6472 -581 6533 -559 6630 -537 ct 6728 -515 6795 -495 6832 -479 ct -6885 -454 6924 -423 6949 -386 ct 6974 -348 6987 -305 6987 -257 ct 6987 -208 6973 -162 6945 -120 ct -6917 -77 6878 -43 6826 -20 ct 6774 4 6716 16 6651 16 ct 6568 16 6499 4 6444 -20 ct -6388 -44 6345 -80 6313 -128 ct 6281 -177 6265 -231 6263 -292 ct p ef -7748 -910 m 7868 -910 l 7868 -384 l 7868 -292 7858 -220 7837 -166 ct 7816 -112 7779 -68 7725 -35 ct -7671 -1 7600 16 7513 16 ct 7427 16 7358 1 7304 -28 ct 7249 -57 7211 -100 7188 -156 ct -7164 -211 7153 -287 7153 -384 ct 7153 -910 l 7273 -910 l 7273 -384 l 7273 -305 7280 -247 7295 -210 ct -7310 -172 7335 -143 7371 -123 ct 7407 -103 7450 -93 7502 -93 ct 7590 -93 7653 -113 7691 -153 ct -7729 -193 7748 -270 7748 -384 ct 7748 -910 l p ef -8071 0 m 8071 -910 l 8474 -910 l 8555 -910 8617 -902 8659 -885 ct 8701 -869 8735 -840 8760 -799 ct -8785 -757 8798 -712 8798 -662 ct 8798 -597 8777 -543 8735 -498 ct 8693 -454 8629 -426 8542 -414 ct -8573 -399 8598 -384 8614 -369 ct 8649 -336 8682 -296 8714 -248 ct 8872 0 l 8721 0 l -8600 -189 l 8565 -244 8536 -286 8514 -315 ct 8491 -344 8471 -364 8453 -375 ct -8435 -387 8416 -395 8398 -400 ct 8384 -403 8362 -404 8331 -404 ct 8191 -404 l -8191 0 l 8071 0 l p -8191 -508 m 8450 -508 l 8505 -508 8548 -514 8579 -525 ct 8610 -537 8633 -555 8649 -580 ct -8666 -605 8674 -632 8674 -662 ct 8674 -705 8658 -740 8627 -768 ct 8596 -796 8546 -809 8479 -809 ct -8191 -809 l 8191 -508 l p ef -8990 0 m 8990 -910 l 9393 -910 l 9474 -910 9536 -902 9578 -885 ct 9620 -869 9654 -840 9679 -799 ct -9704 -757 9717 -712 9717 -662 ct 9717 -597 9696 -543 9654 -498 ct 9612 -454 9548 -426 9461 -414 ct -9492 -399 9517 -384 9533 -369 ct 9568 -336 9601 -296 9633 -248 ct 9791 0 l 9640 0 l -9519 -189 l 9484 -244 9455 -286 9433 -315 ct 9410 -344 9390 -364 9372 -375 ct -9354 -387 9335 -395 9317 -400 ct 9303 -403 9281 -404 9250 -404 ct 9110 -404 l -9110 0 l 8990 0 l p -9110 -508 m 9369 -508 l 9424 -508 9467 -514 9498 -525 ct 9529 -537 9552 -555 9568 -580 ct -9585 -605 9593 -632 9593 -662 ct 9593 -705 9577 -740 9546 -768 ct 9515 -796 9465 -809 9398 -809 ct -9110 -809 l 9110 -508 l p ef -9870 -443 m 9870 -594 9911 -712 9992 -797 ct 10073 -883 10178 -926 10306 -926 ct -10390 -926 10465 -906 10533 -865 ct 10600 -825 10651 -769 10687 -698 ct 10722 -626 10740 -544 10740 -453 ct -10740 -361 10721 -278 10684 -206 ct 10647 -133 10594 -78 10526 -40 ct 10458 -3 10384 16 10305 16 ct -10220 16 10143 -5 10076 -46 ct 10008 -87 9957 -144 9922 -216 ct 9888 -287 9870 -363 9870 -443 ct -p -9994 -441 m 9994 -331 10024 -245 10083 -182 ct 10142 -119 10216 -87 10304 -87 ct -10395 -87 10470 -119 10528 -183 ct 10587 -246 10616 -337 10616 -454 ct 10616 -528 10603 -593 10578 -648 ct -10553 -703 10517 -746 10468 -776 ct 10420 -807 10366 -822 10306 -822 ct 10221 -822 10148 -793 10087 -734 ct -10025 -676 9994 -578 9994 -441 ct p ef -11318 -356 m 11318 -463 l 11703 -463 l 11703 -126 l 11644 -79 11583 -43 11521 -20 ct -11458 4 11393 16 11327 16 ct 11238 16 11157 -3 11084 -41 ct 11011 -80 10956 -135 10918 -207 ct -10881 -280 10863 -361 10863 -450 ct 10863 -539 10881 -621 10918 -698 ct 10955 -775 11008 -832 11078 -869 ct -11147 -906 11227 -925 11318 -925 ct 11384 -925 11443 -914 11496 -893 ct 11549 -872 11591 -842 11621 -804 ct -11651 -766 11674 -716 11690 -655 ct 11581 -625 l 11568 -671 11551 -708 11530 -734 ct -11510 -761 11481 -782 11444 -798 ct 11406 -814 11364 -822 11318 -822 ct 11263 -822 11216 -814 11176 -797 ct -11136 -780 11103 -758 11079 -731 ct 11054 -703 11035 -673 11021 -641 ct 10998 -584 10987 -523 10987 -458 ct -10987 -377 11001 -309 11028 -254 ct 11056 -199 11097 -159 11150 -132 ct 11204 -106 11260 -93 11320 -93 ct -11372 -93 11423 -103 11473 -123 ct 11522 -143 11560 -164 11586 -187 ct 11586 -356 l -11318 -356 l p ef -11779 -1 m 12128 -911 l 12258 -911 l 12630 -1 l 12493 -1 l 12387 -276 l -12007 -276 l 11907 -1 l 11779 -1 l p -12041 -374 m 12350 -374 l 12255 -626 l 12226 -703 12204 -766 12190 -815 ct -12179 -757 12162 -699 12141 -641 ct 12041 -374 l p ef -12910 1 m 12910 -802 l 12611 -802 l 12611 -909 l 13331 -909 l 13331 -802 l -13031 -802 l 13031 1 l 12910 1 l p ef -13410 0 m 13410 -910 l 14068 -910 l 14068 -803 l 13531 -803 l 13531 -524 l -14034 -524 l 14034 -417 l 13531 -417 l 13531 -107 l 14089 -107 l 14089 0 l -13410 0 l p ef -14601 0 m 14601 -910 l 14782 -910 l 14998 -266 l 15017 -206 15032 -161 15041 -131 ct -15051 -164 15067 -213 15089 -277 ct 15307 -910 l 15469 -910 l 15469 0 l -15353 0 l 15353 -762 l 15089 0 l 14980 0 l 14717 -775 l 14717 0 l -14601 0 l p ef -15626 -443 m 15626 -594 15667 -712 15748 -797 ct 15829 -883 15934 -926 16062 -926 ct -16146 -926 16221 -906 16289 -865 ct 16356 -825 16407 -769 16443 -698 ct 16478 -626 16496 -544 16496 -453 ct -16496 -361 16477 -278 16440 -206 ct 16403 -133 16350 -78 16282 -40 ct 16214 -3 16140 16 16061 16 ct -15976 16 15899 -5 15832 -46 ct 15764 -87 15713 -144 15678 -216 ct 15644 -287 15626 -363 15626 -443 ct -p -15750 -441 m 15750 -331 15780 -245 15839 -182 ct 15898 -119 15972 -87 16060 -87 ct -16151 -87 16226 -119 16284 -183 ct 16343 -246 16372 -337 16372 -454 ct 16372 -528 16359 -593 16334 -648 ct -16309 -703 16273 -746 16224 -776 ct 16176 -807 16122 -822 16062 -822 ct 15977 -822 15904 -793 15843 -734 ct -15781 -676 15750 -578 15750 -441 ct p ef -16649 0 m 16649 -910 l 16962 -910 l 17033 -910 17087 -906 17124 -897 ct -17176 -885 17221 -863 17257 -832 ct 17305 -791 17341 -739 17365 -676 ct 17389 -613 17401 -541 17401 -460 ct -17401 -391 17393 -330 17376 -276 ct 17360 -223 17340 -179 17314 -144 ct 17289 -109 17262 -81 17232 -61 ct -17202 -41 17165 -26 17123 -16 ct 17081 -5 17032 0 16977 0 ct 16649 0 l p -16769 -107 m 16963 -107 l 17023 -107 17070 -113 17104 -124 ct 17139 -135 17166 -151 17186 -171 ct -17215 -200 17237 -238 17253 -286 ct 17269 -335 17277 -393 17277 -462 ct 17277 -557 17261 -630 17230 -681 ct -17199 -732 17161 -767 17116 -784 ct 17084 -796 17032 -803 16960 -803 ct 16769 -803 l -16769 -107 l p ef -17570 0 m 17570 -910 l 18228 -910 l 18228 -803 l 17691 -803 l 17691 -524 l -18194 -524 l 18194 -417 l 17691 -417 l 17691 -107 l 18249 -107 l 18249 0 l -17570 0 l p ef -18410 0 m 18410 -910 l 18530 -910 l 18530 -107 l 18978 -107 l 18978 0 l -18410 0 l p ef -19621 267 m 19559 189 19507 98 19465 -6 ct 19422 -110 19401 -218 19401 -330 ct -19401 -429 19417 -523 19449 -613 ct 19486 -718 19543 -822 19621 -926 ct 19701 -926 l -19651 -840 19618 -778 19602 -742 ct 19577 -684 19557 -625 19542 -563 ct 19525 -485 19516 -408 19516 -329 ct -19516 -130 19577 68 19701 267 ct 19621 267 l p ef -19842 0 m 19842 -910 l 20023 -910 l 20239 -266 l 20258 -206 20273 -161 20282 -131 ct -20292 -164 20308 -213 20330 -277 ct 20548 -910 l 20710 -910 l 20710 0 l -20594 0 l 20594 -762 l 20330 0 l 20221 0 l 19958 -775 l 19958 0 l -19842 0 l p ef -20848 -329 m 20848 -452 20882 -542 20950 -601 ct 21007 -650 21076 -674 21157 -674 ct -21248 -674 21322 -644 21379 -585 ct 21436 -526 21465 -444 21465 -339 ct 21465 -254 21452 -187 21427 -139 ct -21402 -90 21365 -52 21316 -25 ct 21267 2 21214 15 21157 15 ct 21065 15 20990 -15 20933 -74 ct -20877 -133 20848 -218 20848 -329 ct p -20963 -330 m 20963 -245 20981 -182 21018 -140 ct 21055 -98 21101 -77 21157 -77 ct -21212 -77 21258 -98 21295 -140 ct 21332 -182 21350 -247 21350 -333 ct 21350 -415 21332 -477 21295 -519 ct -21258 -561 21212 -582 21157 -582 ct 21101 -582 21055 -561 21018 -519 ct 20981 -477 20963 -414 20963 -330 ct -p ef -21597 0 m 21597 -659 l 21697 -659 l 21697 -565 l 21746 -638 21815 -674 21907 -674 ct -21946 -674 21983 -667 22016 -653 ct 22050 -638 22074 -620 22091 -596 ct 22107 -573 22119 -546 22126 -514 ct -22130 -493 22132 -457 22132 -405 ct 22132 0 l 22020 0 l 22020 -401 l 22020 -446 22016 -480 22007 -503 ct -21999 -526 21983 -544 21961 -557 ct 21939 -570 21913 -577 21883 -577 ct 21836 -577 21795 -562 21760 -532 ct -21726 -502 21708 -444 21708 -360 ct 21708 0 l 21597 0 l p ef -22283 54 m 22392 70 l 22396 104 22409 128 22430 143 ct 22457 164 22495 175 22543 175 ct -22595 175 22635 164 22663 143 ct 22691 123 22710 94 22720 57 ct 22726 34 22728 -14 22728 -87 ct -22679 -29 22618 -1 22546 -1 ct 22455 -1 22385 -33 22335 -99 ct 22286 -164 22261 -242 22261 -334 ct -22261 -397 22272 -455 22295 -508 ct 22318 -561 22351 -602 22394 -631 ct 22437 -660 22488 -674 22546 -674 ct -22624 -674 22688 -643 22738 -580 ct 22738 -660 l 22841 -660 l 22841 -90 l -22841 13 22831 85 22810 128 ct 22789 171 22756 205 22711 230 ct 22666 255 22610 267 22544 267 ct -22465 267 22402 249 22353 214 ct 22305 179 22282 125 22283 54 ct p -22376 -342 m 22376 -255 22393 -192 22427 -153 ct 22461 -113 22504 -93 22556 -93 ct -22607 -93 22650 -113 22685 -152 ct 22720 -192 22737 -254 22737 -338 ct 22737 -419 22719 -480 22684 -521 ct -22648 -562 22605 -582 22554 -582 ct 22505 -582 22462 -562 22428 -522 ct 22393 -481 22376 -421 22376 -342 ct -p ef -22969 -329 m 22969 -452 23003 -542 23071 -601 ct 23128 -650 23197 -674 23278 -674 ct -23369 -674 23443 -644 23500 -585 ct 23557 -526 23586 -444 23586 -339 ct 23586 -254 23573 -187 23548 -139 ct -23523 -90 23486 -52 23437 -25 ct 23388 2 23335 15 23278 15 ct 23186 15 23111 -15 23054 -74 ct -22998 -133 22969 -218 22969 -329 ct p -23084 -330 m 23084 -245 23102 -182 23139 -140 ct 23176 -98 23222 -77 23278 -77 ct -23333 -77 23379 -98 23416 -140 ct 23453 -182 23471 -247 23471 -333 ct 23471 -415 23453 -477 23416 -519 ct -23379 -561 23333 -582 23278 -582 ct 23222 -582 23176 -561 23139 -519 ct 23102 -477 23084 -414 23084 -330 ct -p ef -23732 0 m 23732 -910 l 24045 -910 l 24116 -910 24170 -906 24207 -897 ct -24259 -885 24304 -863 24340 -832 ct 24388 -791 24424 -739 24448 -676 ct 24472 -613 24484 -541 24484 -460 ct -24484 -391 24476 -330 24459 -276 ct 24443 -223 24423 -179 24397 -144 ct 24372 -109 24345 -81 24315 -61 ct -24285 -41 24248 -26 24206 -16 ct 24164 -5 24115 0 24060 0 ct 23732 0 l p -23852 -107 m 24046 -107 l 24106 -107 24153 -113 24187 -124 ct 24222 -135 24249 -151 24269 -171 ct -24298 -200 24320 -238 24336 -286 ct 24352 -335 24360 -393 24360 -462 ct 24360 -557 24344 -630 24313 -681 ct -24282 -732 24244 -767 24199 -784 ct 24167 -796 24115 -803 24043 -803 ct 23852 -803 l -23852 -107 l p ef -24645 0 m 24645 -910 l 24986 -910 l 25056 -910 25111 -901 25153 -882 ct -25195 -864 25228 -836 25252 -797 ct 25276 -759 25287 -719 25287 -677 ct 25287 -638 25277 -602 25256 -567 ct -25235 -533 25203 -505 25160 -484 ct 25215 -468 25258 -440 25287 -401 ct 25317 -363 25331 -317 25331 -264 ct -25331 -221 25322 -181 25305 -145 ct 25287 -108 25264 -80 25238 -60 ct 25211 -40 25178 -25 25138 -15 ct -25098 -5 25050 0 24992 0 ct 24645 0 l p -24765 -527 m 24962 -527 l 25015 -527 25053 -531 25077 -538 ct 25107 -547 25130 -562 25146 -583 ct -25161 -604 25169 -631 25169 -663 ct 25169 -693 25162 -720 25147 -743 ct 25133 -766 25112 -781 25085 -790 ct -25058 -798 25012 -803 24947 -803 ct 24765 -803 l 24765 -527 l p -24765 -107 m 24992 -107 l 25031 -107 25058 -109 25074 -112 ct 25101 -117 25124 -125 25143 -137 ct -25162 -148 25177 -165 25189 -187 ct 25201 -209 25207 -235 25207 -264 ct 25207 -298 25198 -327 25181 -352 ct -25163 -377 25139 -395 25109 -405 ct 25078 -415 25033 -420 24976 -420 ct 24765 -420 l -24765 -107 l p ef -25556 267 m 25476 267 l 25600 68 25661 -130 25661 -329 ct 25661 -407 25652 -484 25635 -561 ct -25621 -623 25601 -683 25576 -740 ct 25560 -777 25526 -839 25476 -926 ct 25556 -926 l -25634 -822 25691 -718 25728 -613 ct 25760 -523 25776 -429 25776 -330 ct 25776 -218 25755 -110 25712 -6 ct -25669 98 25617 189 25556 267 ct p ef -pom -27 lw 7111 18039 m 7847 12681 l ps -7874 12487 m 7949 12709 l 7741 12681 l 7874 12487 l p ef -1.000 1.000 1.000 c 6909 13875 m 9192 13875 l 9192 16789 l 6909 16789 l -6909 13875 l p -6909 13875 m 6909 13875 l p -9192 16789 m 9192 16789 l p ef -pum -7159 14972 t -0.003 0.003 0.003 c -1 -1 m 251 -657 l 344 -657 l 613 -1 l 514 -1 l 437 -199 l -163 -199 l 91 -1 l -1 -1 l p -188 -270 m 411 -270 l 342 -451 l 321 -507 306 -552 296 -588 ct 287 -545 275 -504 260 -462 ct -188 -270 l p ef -pom -pum -7773 15275 t -219 -150 m 219 -195 l 381 -195 l 381 -53 l 356 -34 330 -19 304 -9 ct -278 1 251 6 223 6 ct 185 6 151 -2 121 -18 ct 90 -34 67 -57 52 -88 ct 36 -118 28 -152 28 -189 ct -28 -226 36 -261 52 -293 ct 67 -325 89 -349 118 -365 ct 148 -380 181 -388 219 -388 ct -247 -388 271 -384 294 -375 ct 316 -366 333 -353 346 -337 ct 359 -321 368 -301 375 -275 ct -329 -263 l 324 -282 317 -297 308 -308 ct 300 -319 287 -328 272 -335 ct 256 -342 238 -345 219 -345 ct -196 -345 176 -341 159 -334 ct 143 -327 129 -318 119 -307 ct 109 -295 101 -283 95 -269 ct -85 -245 80 -220 80 -192 ct 80 -158 86 -130 98 -107 ct 110 -84 127 -67 149 -56 ct -171 -45 195 -39 220 -39 ct 242 -39 263 -44 284 -52 ct 305 -60 320 -69 331 -79 ct -331 -150 l 219 -150 l p ef -pom -pum -7159 16297 t -73 0 m 73 -656 l 547 -656 l 547 -579 l 159 -579 l 159 -378 l 523 -378 l -523 -301 l 159 -301 l 159 -77 l 562 -77 l 562 0 l 73 0 l p ef -pom -pum -7773 16600 t -219 -150 m 219 -195 l 381 -195 l 381 -53 l 356 -34 330 -19 304 -9 ct -278 1 251 6 223 6 ct 185 6 151 -2 121 -18 ct 90 -34 67 -57 52 -88 ct 36 -118 28 -152 28 -189 ct -28 -226 36 -261 52 -293 ct 67 -325 89 -349 118 -365 ct 148 -380 181 -388 219 -388 ct -247 -388 271 -384 294 -375 ct 316 -366 333 -353 346 -337 ct 359 -321 368 -301 375 -275 ct -329 -263 l 324 -282 317 -297 308 -308 ct 300 -319 287 -328 272 -335 ct 256 -342 238 -345 219 -345 ct -196 -345 176 -341 159 -334 ct 143 -327 129 -318 119 -307 ct 109 -295 101 -283 95 -269 ct -85 -245 80 -220 80 -192 ct 80 -158 86 -130 98 -107 ct 110 -84 127 -67 149 -56 ct -171 -45 195 -39 220 -39 ct 242 -39 263 -44 284 -52 ct 305 -60 320 -69 331 -79 ct -331 -150 l 219 -150 l p ef -pom -18880 18136 m 18382 12735 l ps -18364 12540 m 18488 12739 l 18279 12759 l 18364 12540 l p ef -1.000 1.000 1.000 c 17721 13977 m 20004 13977 l 20004 16891 l 17721 16891 l -17721 13977 l p -17721 13977 m 17721 13977 l p -20004 16891 m 20004 16891 l p ef -pum -17971 15074 t -0.003 0.003 0.003 c -1 -1 m 251 -657 l 344 -657 l 613 -1 l 514 -1 l 437 -199 l -163 -199 l 91 -1 l -1 -1 l p -188 -270 m 411 -270 l 342 -451 l 321 -507 306 -552 296 -588 ct 287 -545 275 -504 260 -462 ct -188 -270 l p ef -pom -pum -18585 15377 t -39 0 m 39 -381 l 182 -381 l 211 -381 234 -377 252 -369 ct 269 -362 283 -350 293 -334 ct -303 -318 308 -301 308 -284 ct 308 -267 304 -252 295 -238 ct 286 -223 273 -212 255 -203 ct -278 -196 296 -184 308 -168 ct 320 -152 327 -133 327 -110 ct 327 -93 323 -76 315 -61 ct -308 -45 298 -34 287 -25 ct 276 -17 262 -11 246 -6 ct 229 -2 208 0 184 0 ct 39 0 l -p -89 -221 m 172 -221 l 194 -221 210 -222 220 -225 ct 233 -229 242 -235 249 -244 ct -255 -253 258 -264 258 -278 ct 258 -290 255 -301 249 -311 ct 243 -321 235 -327 223 -331 ct -212 -334 193 -336 165 -336 ct 89 -336 l 89 -221 l p -89 -45 m 184 -45 l 200 -45 212 -46 218 -47 ct 230 -49 240 -52 248 -57 ct 255 -62 262 -69 267 -78 ct -272 -88 274 -98 274 -110 ct 274 -125 271 -137 263 -148 ct 256 -158 246 -165 233 -170 ct -220 -174 202 -176 177 -176 ct 89 -176 l 89 -45 l p ef -pom -pum -17971 16399 t -73 0 m 73 -656 l 547 -656 l 547 -579 l 159 -579 l 159 -378 l 523 -378 l -523 -301 l 159 -301 l 159 -77 l 562 -77 l 562 0 l 73 0 l p ef -pom -pum -18585 16702 t -39 0 m 39 -381 l 182 -381 l 211 -381 234 -377 252 -369 ct 269 -362 283 -350 293 -334 ct -303 -318 308 -301 308 -284 ct 308 -267 304 -252 295 -238 ct 286 -223 273 -212 255 -203 ct -278 -196 296 -184 308 -168 ct 320 -152 327 -133 327 -110 ct 327 -93 323 -76 315 -61 ct -308 -45 298 -34 287 -25 ct 276 -17 262 -11 246 -6 ct 229 -2 208 0 184 0 ct 39 0 l -p -89 -221 m 172 -221 l 194 -221 210 -222 220 -225 ct 233 -229 242 -235 249 -244 ct -255 -253 258 -264 258 -278 ct 258 -290 255 -301 249 -311 ct 243 -321 235 -327 223 -331 ct -212 -334 193 -336 165 -336 ct 89 -336 l 89 -221 l p -89 -45 m 184 -45 l 200 -45 212 -46 218 -47 ct 230 -49 240 -52 248 -57 ct 255 -62 262 -69 267 -78 ct -272 -88 274 -98 274 -110 ct 274 -125 271 -137 263 -148 ct 256 -158 246 -165 233 -170 ct -220 -174 202 -176 177 -176 ct 89 -176 l 89 -45 l p ef -pom -101.99568 lw 1.000 0.261 0.058 c 17605 13462 m 20003 13462 l 20003 17271 l -17605 17271 l 17605 13462 l pc -17605 13462 m 17605 13462 l pc -20003 17271 m 20003 17271 l pc -pum -20367 14469 t -47 -455 m 228 -455 l 264 -455 291 -453 309 -450 ct 326 -447 342 -441 356 -431 ct -370 -422 382 -409 391 -393 ct 400 -378 405 -360 405 -340 ct 405 -319 399 -299 388 -281 ct -376 -264 361 -250 341 -241 ct 369 -233 390 -220 405 -200 ct 420 -181 427 -158 427 -131 ct -427 -111 422 -91 413 -71 ct 403 -51 390 -36 373 -24 ct 357 -12 336 -5 312 -2 ct -297 -1 260 0 201 0 ct 47 0 l 47 -455 l p -138 -379 m 138 -274 l 198 -274 l 234 -274 256 -274 265 -275 ct 281 -277 293 -283 302 -292 ct -311 -301 316 -312 316 -327 ct 316 -341 312 -353 304 -361 ct 296 -370 285 -376 269 -377 ct -260 -378 234 -379 191 -379 ct 138 -379 l p -138 -198 m 138 -76 l 223 -76 l 256 -76 277 -77 286 -79 ct 300 -82 311 -88 320 -97 ct -328 -107 332 -120 332 -136 ct 332 -150 329 -161 322 -171 ct 316 -180 306 -187 294 -191 ct -281 -196 254 -198 212 -198 ct 138 -198 l p ef -506 0 m 506 -451 l 597 -451 l 597 -77 l 826 -77 l 826 0 l 506 0 l -p ef -875 -224 m 875 -271 882 -310 895 -341 ct 906 -364 920 -385 938 -404 ct 956 -422 975 -436 996 -445 ct -1025 -457 1057 -463 1094 -463 ct 1161 -463 1215 -442 1255 -400 ct 1295 -359 1316 -301 1316 -227 ct -1316 -153 1296 -96 1256 -54 ct 1216 -13 1162 8 1096 8 ct 1028 8 974 -13 934 -54 ct -895 -95 875 -152 875 -224 ct p -969 -228 m 969 -176 981 -137 1005 -110 ct 1029 -84 1059 -71 1095 -71 ct 1132 -71 1162 -84 1185 -110 ct -1209 -136 1221 -176 1221 -229 ct 1221 -281 1209 -320 1186 -346 ct 1164 -371 1133 -384 1095 -384 ct -1058 -384 1027 -371 1004 -345 ct 981 -319 969 -280 969 -228 ct p ef -1453 0 m 1344 -455 l 1438 -455 l 1507 -142 l 1590 -455 l 1699 -455 l -1779 -137 l 1848 -455 l 1941 -455 l 1830 0 l 1733 0 l 1642 -340 l -1552 0 l 1453 0 l p ef -1986 0 m 1986 -455 l 2078 -455 l 2078 0 l 1986 0 l p ef -2168 0 m 2168 -455 l 2257 -455 l 2443 -151 l 2443 -455 l 2529 -455 l -2529 0 l 2437 0 l 2253 -297 l 2253 0 l 2168 0 l p ef -2836 -167 m 2836 -244 l 3033 -244 l 3033 -62 l 3014 -44 2986 -27 2950 -13 ct -2913 1 2876 8 2839 8 ct 2792 8 2750 -2 2715 -22 ct 2679 -42 2653 -70 2635 -108 ct -2617 -145 2608 -185 2608 -229 ct 2608 -276 2618 -318 2638 -355 ct 2658 -392 2687 -420 2725 -440 ct -2754 -455 2791 -463 2834 -463 ct 2891 -463 2935 -451 2966 -427 ct 2998 -403 3018 -371 3028 -329 ct -2936 -312 l 2930 -334 2918 -352 2900 -365 ct 2883 -378 2861 -384 2834 -384 ct -2794 -384 2762 -371 2738 -346 ct 2715 -320 2703 -283 2703 -233 ct 2703 -179 2715 -138 2739 -111 ct -2763 -84 2794 -71 2833 -71 ct 2852 -71 2872 -74 2891 -82 ct 2910 -89 2927 -99 2941 -109 ct -2941 -167 l 2836 -167 l p ef -pom -pum -20367 15231 t -47 0 m 47 -455 l 240 -455 l 288 -455 324 -451 346 -443 ct 368 -435 385 -420 398 -399 ct -412 -378 418 -354 418 -327 ct 418 -293 408 -265 388 -243 ct 368 -221 338 -207 298 -201 ct -318 -189 335 -177 347 -163 ct 360 -149 378 -124 400 -89 ct 455 0 l 345 0 l -279 -99 l 255 -134 239 -157 231 -166 ct 222 -175 213 -181 203 -185 ct 193 -188 178 -190 157 -190 ct -138 -190 l 138 0 l 47 0 l p -138 -263 m 206 -263 l 250 -263 278 -264 289 -268 ct 300 -272 308 -278 314 -287 ct -321 -297 324 -308 324 -322 ct 324 -337 320 -349 311 -359 ct 303 -368 292 -374 277 -377 ct -269 -378 247 -378 210 -378 ct 138 -378 l 138 -263 l p ef -503 0 m 503 -455 l 840 -455 l 840 -378 l 595 -378 l 595 -277 l 823 -277 l -823 -200 l 595 -200 l 595 -77 l 849 -77 l 849 0 l 503 0 l p ef -1337 1 m 1237 1 l 1198 -103 l 1016 -103 l 978 1 l 881 1 l 1058 -455 l -1155 -455 l 1337 1 l p -1168 -180 m 1105 -348 l 1044 -180 l 1168 -180 l p ef -1675 -167 m 1764 -139 l 1750 -89 1728 -52 1696 -28 ct 1664 -4 1624 8 1575 8 ct -1515 8 1465 -13 1426 -54 ct 1388 -95 1368 -152 1368 -223 ct 1368 -299 1388 -358 1427 -400 ct -1466 -442 1517 -463 1581 -463 ct 1636 -463 1682 -446 1716 -413 ct 1737 -394 1752 -366 1763 -329 ct -1672 -308 l 1667 -331 1655 -350 1638 -364 ct 1621 -377 1601 -384 1576 -384 ct -1542 -384 1515 -372 1494 -348 ct 1473 -323 1463 -284 1463 -230 ct 1463 -173 1473 -132 1494 -107 ct -1514 -83 1541 -71 1574 -71 ct 1599 -71 1620 -78 1637 -94 ct 1655 -109 1667 -134 1675 -167 ct -p ef -1944 0 m 1944 -378 l 1809 -378 l 1809 -455 l 2170 -455 l 2170 -378 l -2035 -378 l 2035 0 l 1944 0 l p ef -2227 0 m 2227 -455 l 2319 -455 l 2319 0 l 2227 0 l p ef -2390 -224 m 2390 -271 2397 -310 2410 -341 ct 2421 -364 2435 -385 2453 -404 ct -2471 -422 2490 -436 2511 -445 ct 2540 -457 2572 -463 2609 -463 ct 2676 -463 2730 -442 2770 -400 ct -2810 -359 2831 -301 2831 -227 ct 2831 -153 2811 -96 2771 -54 ct 2731 -13 2677 8 2611 8 ct -2543 8 2489 -13 2449 -54 ct 2410 -95 2390 -152 2390 -224 ct p -2484 -228 m 2484 -176 2496 -137 2520 -110 ct 2544 -84 2574 -71 2610 -71 ct -2647 -71 2677 -84 2700 -110 ct 2724 -136 2736 -176 2736 -229 ct 2736 -281 2724 -320 2701 -346 ct -2679 -371 2648 -384 2610 -384 ct 2573 -384 2542 -371 2519 -345 ct 2496 -319 2484 -280 2484 -228 ct -p ef -2905 0 m 2905 -455 l 2994 -455 l 3180 -151 l 3180 -455 l 3266 -455 l -3266 0 l 3174 0 l 2990 -297 l 2990 0 l 2905 0 l p ef -3377 -242 m 3377 -329 l 3464 -329 l 3464 -242 l 3377 -242 l p -3377 0 m 3377 -87 l 3464 -87 l 3464 0 l 3377 0 l p ef -pom -pum -23893 15231 t -pom -pum -20367 15993 t -0.003 0.003 0.003 c 42 126 m 42 -330 l 93 -330 l 93 -287 l 105 -304 118 -316 133 -324 ct -148 -333 167 -337 188 -337 ct 216 -337 241 -330 263 -315 ct 284 -301 300 -280 311 -254 ct -322 -228 328 -199 328 -167 ct 328 -134 322 -103 310 -77 ct 298 -50 280 -29 257 -15 ct -234 0 210 7 184 7 ct 166 7 149 3 134 -5 ct 119 -13 107 -23 98 -35 ct 98 126 l 42 126 l -p -92 -163 m 92 -121 101 -90 118 -69 ct 135 -49 156 -39 180 -39 ct 205 -39 227 -49 244 -70 ct -262 -91 271 -124 271 -168 ct 271 -210 262 -241 245 -262 ct 228 -283 207 -293 183 -293 ct -159 -293 138 -282 120 -260 ct 102 -238 92 -205 92 -163 ct p ef -392 0 m 392 -330 l 442 -330 l 442 -280 l 455 -303 467 -318 478 -326 ct -489 -333 501 -337 514 -337 ct 533 -337 552 -331 571 -319 ct 552 -267 l 538 -275 525 -279 511 -279 ct -499 -279 488 -276 478 -268 ct 468 -261 461 -251 457 -238 ct 451 -218 448 -196 448 -173 ct -448 0 l 392 0 l p ef -830 -107 m 888 -99 l 879 -66 862 -40 837 -21 ct 813 -2 781 7 743 7 ct 695 7 657 -8 629 -37 ct -600 -67 586 -109 586 -162 ct 586 -218 601 -261 629 -291 ct 658 -322 695 -337 740 -337 ct -784 -337 820 -322 848 -292 ct 876 -262 890 -220 890 -166 ct 890 -163 890 -158 889 -151 ct -644 -151 l 646 -115 656 -87 675 -68 ct 693 -49 716 -39 743 -39 ct 764 -39 781 -44 796 -55 ct -810 -66 822 -83 830 -107 ct p -647 -197 m 831 -197 l 828 -225 821 -245 810 -259 ct 792 -280 769 -291 741 -291 ct -715 -291 693 -283 676 -265 ct 659 -248 649 -226 647 -197 ct p ef -934 -137 m 934 -193 l 1106 -193 l 1106 -137 l 934 -137 l p ef -1393 -107 m 1451 -99 l 1442 -66 1425 -40 1400 -21 ct 1376 -2 1344 7 1306 7 ct -1258 7 1220 -8 1192 -37 ct 1163 -67 1149 -109 1149 -162 ct 1149 -218 1164 -261 1192 -291 ct -1221 -322 1258 -337 1303 -337 ct 1347 -337 1383 -322 1411 -292 ct 1439 -262 1453 -220 1453 -166 ct -1453 -163 1453 -158 1452 -151 ct 1207 -151 l 1209 -115 1219 -87 1238 -68 ct -1256 -49 1279 -39 1306 -39 ct 1327 -39 1344 -44 1359 -55 ct 1373 -66 1385 -83 1393 -107 ct -p -1210 -197 m 1394 -197 l 1391 -225 1384 -245 1373 -259 ct 1355 -280 1332 -291 1304 -291 ct -1278 -291 1256 -283 1239 -265 ct 1222 -248 1212 -226 1210 -197 ct p ef -1482 0 m 1602 -171 l 1491 -330 l 1560 -330 l 1611 -252 l 1620 -238 1628 -225 1634 -215 ct -1643 -229 1651 -241 1659 -252 ct 1715 -330 l 1781 -330 l 1667 -174 l 1790 0 l -1721 0 l 1654 -102 l 1636 -130 l 1549 0 l 1482 0 l p ef -1837 126 m 1837 -330 l 1888 -330 l 1888 -287 l 1900 -304 1913 -316 1928 -324 ct -1943 -333 1962 -337 1983 -337 ct 2011 -337 2036 -330 2058 -315 ct 2079 -301 2095 -280 2106 -254 ct -2117 -228 2123 -199 2123 -167 ct 2123 -134 2117 -103 2105 -77 ct 2093 -50 2075 -29 2052 -15 ct -2029 0 2005 7 1979 7 ct 1961 7 1944 3 1929 -5 ct 1914 -13 1902 -23 1893 -35 ct -1893 126 l 1837 126 l p -1887 -163 m 1887 -121 1896 -90 1913 -69 ct 1930 -49 1951 -39 1975 -39 ct 2000 -39 2022 -49 2039 -70 ct -2057 -91 2066 -124 2066 -168 ct 2066 -210 2057 -241 2040 -262 ct 2023 -283 2002 -293 1978 -293 ct -1954 -293 1933 -282 1915 -260 ct 1897 -238 1887 -205 1887 -163 ct p ef -2204 0 m 2204 -64 l 2267 -64 l 2267 0 l 2204 0 l p ef -2557 0 m 2557 -286 l 2508 -286 l 2508 -329 l 2557 -329 l 2557 -364 l -2557 -387 2559 -403 2563 -414 ct 2568 -428 2578 -440 2591 -449 ct 2605 -458 2624 -462 2648 -462 ct -2664 -462 2681 -460 2700 -457 ct 2692 -408 l 2680 -410 2670 -411 2659 -411 ct -2642 -411 2630 -407 2623 -400 ct 2616 -393 2613 -379 2613 -360 ct 2613 -329 l -2677 -329 l 2677 -286 l 2613 -286 l 2613 0 l 2557 0 l p ef -2937 -41 m 2916 -24 2896 -11 2877 -4 ct 2858 3 2837 7 2816 7 ct 2779 7 2752 -2 2732 -20 ct -2713 -37 2703 -60 2703 -87 ct 2703 -103 2707 -118 2714 -131 ct 2721 -145 2731 -156 2743 -164 ct -2755 -172 2768 -178 2783 -182 ct 2794 -185 2810 -188 2833 -190 ct 2878 -196 2911 -202 2932 -209 ct -2932 -217 2932 -222 2932 -224 ct 2932 -247 2927 -263 2917 -272 ct 2902 -285 2881 -291 2853 -291 ct -2827 -291 2807 -286 2795 -277 ct 2782 -268 2773 -252 2767 -228 ct 2713 -236 l -2718 -259 2726 -278 2737 -292 ct 2748 -307 2765 -318 2786 -326 ct 2808 -333 2833 -337 2861 -337 ct -2889 -337 2912 -334 2930 -327 ct 2947 -321 2960 -312 2968 -302 ct 2977 -292 2982 -280 2986 -264 ct -2988 -255 2989 -238 2989 -213 ct 2989 -138 l 2989 -87 2990 -54 2992 -40 ct -2994 -26 2999 -13 3006 0 ct 2948 0 l 2942 -12 2938 -26 2937 -41 ct p -2932 -166 m 2912 -157 2881 -150 2841 -145 ct 2818 -141 2802 -138 2792 -133 ct -2783 -129 2775 -123 2770 -115 ct 2765 -107 2762 -99 2762 -89 ct 2762 -74 2768 -62 2779 -52 ct -2791 -42 2807 -37 2829 -37 ct 2850 -37 2869 -41 2886 -51 ct 2903 -60 2915 -73 2923 -89 ct -2929 -102 2932 -121 2932 -145 ct 2932 -166 l p ef -3288 -121 m 3343 -114 l 3337 -76 3321 -46 3297 -25 ct 3272 -4 3242 7 3206 7 ct -3161 7 3124 -8 3097 -37 ct 3070 -67 3056 -109 3056 -164 ct 3056 -199 3062 -230 3073 -257 ct -3085 -284 3103 -304 3127 -317 ct 3151 -330 3178 -337 3206 -337 ct 3242 -337 3271 -328 3294 -310 ct -3316 -292 3331 -266 3337 -233 ct 3283 -224 l 3278 -247 3269 -263 3256 -274 ct -3243 -286 3227 -291 3208 -291 ct 3180 -291 3157 -281 3140 -261 ct 3122 -241 3113 -209 3113 -165 ct -3113 -121 3122 -89 3139 -69 ct 3156 -49 3178 -39 3205 -39 ct 3227 -39 3245 -46 3260 -59 ct -3275 -72 3284 -93 3288 -121 ct p ef -3513 -50 m 3521 -1 l 3505 2 3491 4 3479 4 ct 3458 4 3443 1 3431 -6 ct 3420 -12 3412 -20 3408 -31 ct -3403 -41 3401 -63 3401 -97 ct 3401 -287 l 3360 -287 l 3360 -330 l 3401 -330 l -3401 -412 l 3457 -445 l 3457 -330 l 3513 -330 l 3513 -287 l 3457 -287 l -3457 -94 l 3457 -78 3458 -68 3460 -63 ct 3462 -58 3465 -55 3469 -52 ct 3474 -49 3480 -48 3488 -48 ct -3494 -48 3503 -49 3513 -50 ct p ef -3584 0 m 3584 -64 l 3647 -64 l 3647 0 l 3584 0 l p ef -4139 -41 m 4118 -24 4098 -11 4079 -4 ct 4060 3 4039 7 4018 7 ct 3981 7 3954 -2 3934 -20 ct -3915 -37 3905 -60 3905 -87 ct 3905 -103 3909 -118 3916 -131 ct 3923 -145 3933 -156 3945 -164 ct -3957 -172 3970 -178 3985 -182 ct 3996 -185 4012 -188 4035 -190 ct 4080 -196 4113 -202 4134 -209 ct -4134 -217 4134 -222 4134 -224 ct 4134 -247 4129 -263 4119 -272 ct 4104 -285 4083 -291 4055 -291 ct -4029 -291 4009 -286 3997 -277 ct 3984 -268 3975 -252 3969 -228 ct 3915 -236 l -3920 -259 3928 -278 3939 -292 ct 3950 -307 3967 -318 3988 -326 ct 4010 -333 4035 -337 4063 -337 ct -4091 -337 4114 -334 4132 -327 ct 4149 -321 4162 -312 4170 -302 ct 4179 -292 4184 -280 4188 -264 ct -4190 -255 4191 -238 4191 -213 ct 4191 -138 l 4191 -87 4192 -54 4194 -40 ct -4196 -26 4201 -13 4208 0 ct 4150 0 l 4144 -12 4140 -26 4139 -41 ct p -4134 -166 m 4114 -157 4083 -150 4043 -145 ct 4020 -141 4004 -138 3994 -133 ct -3985 -129 3977 -123 3972 -115 ct 3967 -107 3964 -99 3964 -89 ct 3964 -74 3970 -62 3981 -52 ct -3993 -42 4009 -37 4031 -37 ct 4052 -37 4071 -41 4088 -51 ct 4105 -60 4117 -73 4125 -89 ct -4131 -102 4134 -121 4134 -145 ct 4134 -166 l p ef -4275 0 m 4275 -330 l 4325 -330 l 4325 -283 l 4349 -319 4384 -337 4430 -337 ct -4450 -337 4468 -333 4485 -326 ct 4501 -319 4514 -310 4522 -298 ct 4530 -287 4536 -273 4539 -257 ct -4541 -247 4542 -229 4542 -203 ct 4542 0 l 4487 0 l 4487 -200 l 4487 -223 4484 -240 4480 -252 ct -4476 -263 4468 -272 4457 -279 ct 4446 -285 4433 -289 4418 -289 ct 4394 -289 4374 -281 4357 -266 ct -4339 -251 4331 -222 4331 -180 ct 4331 0 l 4275 0 l p ef -4840 0 m 4840 -42 l 4820 -9 4789 7 4748 7 ct 4722 7 4698 0 4676 -15 ct 4654 -29 4637 -49 4625 -75 ct -4613 -101 4607 -131 4607 -165 ct 4607 -198 4612 -228 4623 -254 ct 4634 -281 4651 -302 4672 -316 ct -4694 -330 4719 -337 4746 -337 ct 4766 -337 4783 -333 4799 -325 ct 4814 -316 4827 -305 4837 -292 ct -4837 -455 l 4892 -455 l 4892 0 l 4840 0 l p -4664 -165 m 4664 -123 4673 -91 4691 -70 ct 4709 -49 4729 -39 4754 -39 ct 4778 -39 4799 -49 4816 -69 ct -4833 -89 4841 -119 4841 -160 ct 4841 -205 4833 -238 4815 -259 ct 4798 -280 4777 -291 4751 -291 ct -4726 -291 4706 -281 4689 -261 ct 4672 -240 4664 -208 4664 -165 ct p ef -pom -pum -20367 16755 t -257 -41 m 236 -24 216 -11 197 -4 ct 178 3 157 7 136 7 ct 99 7 72 -2 52 -20 ct -33 -37 23 -60 23 -87 ct 23 -103 27 -118 34 -131 ct 41 -145 51 -156 63 -164 ct 75 -172 88 -178 103 -182 ct -114 -185 130 -188 153 -190 ct 198 -196 231 -202 252 -209 ct 252 -217 252 -222 252 -224 ct -252 -247 247 -263 237 -272 ct 222 -285 201 -291 173 -291 ct 147 -291 127 -286 115 -277 ct -102 -268 93 -252 87 -228 ct 33 -236 l 38 -259 46 -278 57 -292 ct 68 -307 85 -318 106 -326 ct -128 -333 153 -337 181 -337 ct 209 -337 232 -334 250 -327 ct 267 -321 280 -312 288 -302 ct -297 -292 302 -280 306 -264 ct 308 -255 309 -238 309 -213 ct 309 -138 l 309 -87 310 -54 312 -40 ct -314 -26 319 -13 326 0 ct 268 0 l 262 -12 258 -26 257 -41 ct p -252 -166 m 232 -157 201 -150 161 -145 ct 138 -141 122 -138 112 -133 ct 103 -129 95 -123 90 -115 ct -85 -107 82 -99 82 -89 ct 82 -74 88 -62 99 -52 ct 111 -42 127 -37 149 -37 ct 170 -37 189 -41 206 -51 ct -223 -60 235 -73 243 -89 ct 249 -102 252 -121 252 -145 ct 252 -166 l p ef -608 -121 m 663 -114 l 657 -76 641 -46 617 -25 ct 592 -4 562 7 526 7 ct 481 7 444 -8 417 -37 ct -390 -67 376 -109 376 -164 ct 376 -199 382 -230 393 -257 ct 405 -284 423 -304 447 -317 ct -471 -330 498 -337 526 -337 ct 562 -337 591 -328 614 -310 ct 636 -292 651 -266 657 -233 ct -603 -224 l 598 -247 589 -263 576 -274 ct 563 -286 547 -291 528 -291 ct 500 -291 477 -281 460 -261 ct -442 -241 433 -209 433 -165 ct 433 -121 442 -89 459 -69 ct 476 -49 498 -39 525 -39 ct -547 -39 565 -46 580 -59 ct 595 -72 604 -93 608 -121 ct p ef -833 -50 m 841 -1 l 825 2 811 4 799 4 ct 778 4 763 1 751 -6 ct 740 -12 732 -20 728 -31 ct -723 -41 721 -63 721 -97 ct 721 -287 l 680 -287 l 680 -330 l 721 -330 l -721 -412 l 777 -445 l 777 -330 l 833 -330 l 833 -287 l 777 -287 l -777 -94 l 777 -78 778 -68 780 -63 ct 782 -58 785 -55 789 -52 ct 794 -49 800 -48 808 -48 ct -814 -48 823 -49 833 -50 ct p ef -889 -391 m 889 -455 l 945 -455 l 945 -391 l 889 -391 l p -889 0 m 889 -330 l 945 -330 l 945 0 l 889 0 l p ef -1119 0 m 994 -330 l 1053 -330 l 1124 -132 l 1131 -111 1138 -89 1145 -66 ct -1150 -83 1157 -104 1166 -128 ct 1239 -330 l 1296 -330 l 1171 0 l 1119 0 l -p ef -1561 -41 m 1540 -24 1520 -11 1501 -4 ct 1482 3 1461 7 1440 7 ct 1403 7 1376 -2 1356 -20 ct -1337 -37 1327 -60 1327 -87 ct 1327 -103 1331 -118 1338 -131 ct 1345 -145 1355 -156 1367 -164 ct -1379 -172 1392 -178 1407 -182 ct 1418 -185 1434 -188 1457 -190 ct 1502 -196 1535 -202 1556 -209 ct -1556 -217 1556 -222 1556 -224 ct 1556 -247 1551 -263 1541 -272 ct 1526 -285 1505 -291 1477 -291 ct -1451 -291 1431 -286 1419 -277 ct 1406 -268 1397 -252 1391 -228 ct 1337 -236 l -1342 -259 1350 -278 1361 -292 ct 1372 -307 1389 -318 1410 -326 ct 1432 -333 1457 -337 1485 -337 ct -1513 -337 1536 -334 1554 -327 ct 1571 -321 1584 -312 1592 -302 ct 1601 -292 1606 -280 1610 -264 ct -1612 -255 1613 -238 1613 -213 ct 1613 -138 l 1613 -87 1614 -54 1616 -40 ct -1618 -26 1623 -13 1630 0 ct 1572 0 l 1566 -12 1562 -26 1561 -41 ct p -1556 -166 m 1536 -157 1505 -150 1465 -145 ct 1442 -141 1426 -138 1416 -133 ct -1407 -129 1399 -123 1394 -115 ct 1389 -107 1386 -99 1386 -89 ct 1386 -74 1392 -62 1403 -52 ct -1415 -42 1431 -37 1453 -37 ct 1474 -37 1493 -41 1510 -51 ct 1527 -60 1539 -73 1547 -89 ct -1553 -102 1556 -121 1556 -145 ct 1556 -166 l p ef -1819 -50 m 1827 -1 l 1811 2 1797 4 1785 4 ct 1764 4 1749 1 1737 -6 ct 1726 -12 1718 -20 1714 -31 ct -1709 -41 1707 -63 1707 -97 ct 1707 -287 l 1666 -287 l 1666 -330 l 1707 -330 l -1707 -412 l 1763 -445 l 1763 -330 l 1819 -330 l 1819 -287 l 1763 -287 l -1763 -94 l 1763 -78 1764 -68 1766 -63 ct 1768 -58 1771 -55 1775 -52 ct 1780 -49 1786 -48 1794 -48 ct -1800 -48 1809 -49 1819 -50 ct p ef -1875 -391 m 1875 -455 l 1931 -455 l 1931 -391 l 1875 -391 l p -1875 0 m 1875 -330 l 1931 -330 l 1931 0 l 1875 0 l p ef -1994 -165 m 1994 -226 2011 -271 2045 -301 ct 2073 -325 2108 -337 2149 -337 ct -2194 -337 2231 -322 2259 -293 ct 2288 -263 2303 -222 2303 -170 ct 2303 -127 2296 -94 2284 -70 ct -2271 -45 2252 -27 2228 -13 ct 2204 0 2177 7 2149 7 ct 2102 7 2065 -8 2037 -37 ct -2008 -67 1994 -110 1994 -165 ct p -2051 -165 m 2051 -123 2061 -91 2079 -70 ct 2097 -49 2121 -39 2149 -39 ct 2176 -39 2199 -49 2218 -71 ct -2236 -92 2245 -124 2245 -167 ct 2245 -208 2236 -239 2217 -260 ct 2199 -281 2176 -291 2149 -291 ct -2121 -291 2097 -281 2079 -260 ct 2061 -239 2051 -207 2051 -165 ct p ef -2366 0 m 2366 -330 l 2416 -330 l 2416 -283 l 2440 -319 2475 -337 2521 -337 ct -2541 -337 2559 -333 2576 -326 ct 2592 -319 2605 -310 2613 -298 ct 2621 -287 2627 -273 2630 -257 ct -2632 -247 2633 -229 2633 -203 ct 2633 0 l 2578 0 l 2578 -200 l 2578 -223 2575 -240 2571 -252 ct -2567 -263 2559 -272 2548 -279 ct 2537 -285 2524 -289 2509 -289 ct 2485 -289 2465 -281 2448 -266 ct -2430 -251 2422 -222 2422 -180 ct 2422 0 l 2366 0 l p ef -3120 -107 m 3178 -99 l 3169 -66 3152 -40 3127 -21 ct 3103 -2 3071 7 3033 7 ct -2985 7 2947 -8 2919 -37 ct 2890 -67 2876 -109 2876 -162 ct 2876 -218 2891 -261 2919 -291 ct -2948 -322 2985 -337 3030 -337 ct 3074 -337 3110 -322 3138 -292 ct 3166 -262 3180 -220 3180 -166 ct -3180 -163 3180 -158 3179 -151 ct 2934 -151 l 2936 -115 2946 -87 2965 -68 ct -2983 -49 3006 -39 3033 -39 ct 3054 -39 3071 -44 3086 -55 ct 3100 -66 3112 -83 3120 -107 ct -p -2937 -197 m 3121 -197 l 3118 -225 3111 -245 3100 -259 ct 3082 -280 3059 -291 3031 -291 ct -3005 -291 2983 -283 2966 -265 ct 2949 -248 2939 -226 2937 -197 ct p ef -3247 0 m 3247 -330 l 3297 -330 l 3297 -283 l 3321 -319 3356 -337 3402 -337 ct -3422 -337 3440 -333 3457 -326 ct 3473 -319 3486 -310 3494 -298 ct 3502 -287 3508 -273 3511 -257 ct -3513 -247 3514 -229 3514 -203 ct 3514 0 l 3459 0 l 3459 -200 l 3459 -223 3456 -240 3452 -252 ct -3448 -263 3440 -272 3429 -279 ct 3418 -285 3405 -289 3390 -289 ct 3366 -289 3346 -281 3329 -266 ct -3311 -251 3303 -222 3303 -180 ct 3303 0 l 3247 0 l p ef -3823 -107 m 3881 -99 l 3872 -66 3855 -40 3830 -21 ct 3806 -2 3774 7 3736 7 ct -3688 7 3650 -8 3622 -37 ct 3593 -67 3579 -109 3579 -162 ct 3579 -218 3594 -261 3622 -291 ct -3651 -322 3688 -337 3733 -337 ct 3777 -337 3813 -322 3841 -292 ct 3869 -262 3883 -220 3883 -166 ct -3883 -163 3883 -158 3882 -151 ct 3637 -151 l 3639 -115 3649 -87 3668 -68 ct -3686 -49 3709 -39 3736 -39 ct 3757 -39 3774 -44 3789 -55 ct 3803 -66 3815 -83 3823 -107 ct -p -3640 -197 m 3824 -197 l 3821 -225 3814 -245 3803 -259 ct 3785 -280 3762 -291 3734 -291 ct -3708 -291 3686 -283 3669 -265 ct 3652 -248 3642 -226 3640 -197 ct p ef -3948 0 m 3948 -330 l 3998 -330 l 3998 -280 l 4011 -303 4023 -318 4034 -326 ct -4045 -333 4057 -337 4070 -337 ct 4089 -337 4108 -331 4127 -319 ct 4108 -267 l -4094 -275 4081 -279 4067 -279 ct 4055 -279 4044 -276 4034 -268 ct 4024 -261 4017 -251 4013 -238 ct -4007 -218 4004 -196 4004 -173 ct 4004 0 l 3948 0 l p ef -4151 28 m 4205 36 l 4207 52 4213 65 4224 72 ct 4238 83 4257 88 4281 88 ct -4306 88 4326 83 4340 72 ct 4354 62 4364 47 4369 29 ct 4372 17 4373 -6 4373 -43 ct -4349 -14 4318 0 4282 0 ct 4237 0 4201 -16 4177 -49 ct 4152 -82 4139 -121 4139 -167 ct -4139 -198 4145 -227 4157 -254 ct 4168 -280 4184 -301 4206 -315 ct 4228 -330 4253 -337 4282 -337 ct -4321 -337 4353 -321 4378 -290 ct 4378 -330 l 4430 -330 l 4430 -45 l 4430 7 4424 43 4414 65 ct -4404 86 4387 103 4364 115 ct 4342 128 4314 134 4281 134 ct 4242 134 4210 125 4186 107 ct -4161 90 4150 63 4151 28 ct p -4197 -171 m 4197 -127 4205 -96 4223 -76 ct 4240 -56 4261 -46 4287 -46 ct 4313 -46 4334 -56 4352 -76 ct -4369 -95 4378 -126 4378 -169 ct 4378 -209 4369 -240 4351 -260 ct 4333 -281 4311 -291 4286 -291 ct -4261 -291 4240 -281 4223 -260 ct 4206 -240 4197 -210 4197 -171 ct p ef -4509 127 m 4503 75 l 4515 78 4526 80 4535 80 ct 4548 80 4557 78 4565 73 ct -4572 69 4578 64 4583 56 ct 4587 51 4592 37 4600 15 ct 4601 11 4603 7 4605 1 ct -4480 -330 l 4540 -330 l 4609 -139 l 4618 -114 4626 -89 4633 -62 ct 4639 -88 4647 -113 4656 -137 ct -4726 -330 l 4782 -330 l 4657 6 l 4643 42 4633 67 4625 81 ct 4615 99 4604 113 4591 121 ct -4578 130 4563 134 4545 134 ct 4535 134 4523 132 4509 127 ct p ef -pom -1.000 0.261 0.058 c 6432 13462 m 9191 13462 l 9191 17271 l 6432 17271 l -6432 13462 l pc -6432 13462 m 6432 13462 l pc -9191 17271 m 9191 17271 l pc -pum -9605 14352 t -258 -167 m 258 -244 l 455 -244 l 455 -62 l 436 -44 408 -27 372 -13 ct -335 1 298 8 261 8 ct 214 8 172 -2 137 -22 ct 101 -42 75 -70 57 -108 ct 39 -145 30 -185 30 -229 ct -30 -276 40 -318 60 -355 ct 80 -392 109 -420 147 -440 ct 176 -455 213 -463 256 -463 ct -313 -463 357 -451 388 -427 ct 420 -403 440 -371 450 -329 ct 358 -312 l 352 -334 340 -352 322 -365 ct -305 -378 283 -384 256 -384 ct 216 -384 184 -371 160 -346 ct 137 -320 125 -283 125 -233 ct -125 -179 137 -138 161 -111 ct 185 -84 216 -71 255 -71 ct 274 -71 294 -74 313 -82 ct -332 -89 349 -99 363 -109 ct 363 -167 l 258 -167 l p ef -541 0 m 541 -455 l 878 -455 l 878 -378 l 633 -378 l 633 -277 l 861 -277 l -861 -200 l 633 -200 l 633 -77 l 887 -77 l 887 0 l 541 0 l p ef -968 0 m 968 -451 l 1059 -451 l 1059 -77 l 1288 -77 l 1288 0 l 968 0 l -p ef -1357 0 m 1357 -451 l 1448 -451 l 1448 -77 l 1677 -77 l 1677 0 l 1357 0 l -p ef -1741 0 m 1741 -455 l 1833 -455 l 1833 0 l 1741 0 l p ef -1922 0 m 1922 -455 l 2011 -455 l 2197 -151 l 2197 -455 l 2283 -455 l -2283 0 l 2191 0 l 2007 -297 l 2007 0 l 1922 0 l p ef -2591 -167 m 2591 -244 l 2788 -244 l 2788 -62 l 2769 -44 2741 -27 2705 -13 ct -2668 1 2631 8 2594 8 ct 2547 8 2505 -2 2470 -22 ct 2434 -42 2408 -70 2390 -108 ct -2372 -145 2363 -185 2363 -229 ct 2363 -276 2373 -318 2393 -355 ct 2413 -392 2442 -420 2480 -440 ct -2509 -455 2546 -463 2589 -463 ct 2646 -463 2690 -451 2721 -427 ct 2753 -403 2773 -371 2783 -329 ct -2691 -312 l 2685 -334 2673 -352 2655 -365 ct 2638 -378 2616 -384 2589 -384 ct -2549 -384 2517 -371 2493 -346 ct 2470 -320 2458 -283 2458 -233 ct 2458 -179 2470 -138 2494 -111 ct -2518 -84 2549 -71 2588 -71 ct 2607 -71 2627 -74 2646 -82 ct 2665 -89 2682 -99 2696 -109 ct -2696 -167 l 2591 -167 l p ef -pom -pum -9605 15114 t -47 0 m 47 -455 l 240 -455 l 288 -455 324 -451 346 -443 ct 368 -435 385 -420 398 -399 ct -412 -378 418 -354 418 -327 ct 418 -293 408 -265 388 -243 ct 368 -221 338 -207 298 -201 ct -318 -189 335 -177 347 -163 ct 360 -149 378 -124 400 -89 ct 455 0 l 345 0 l -279 -99 l 255 -134 239 -157 231 -166 ct 222 -175 213 -181 203 -185 ct 193 -188 178 -190 157 -190 ct -138 -190 l 138 0 l 47 0 l p -138 -263 m 206 -263 l 250 -263 278 -264 289 -268 ct 300 -272 308 -278 314 -287 ct -321 -297 324 -308 324 -322 ct 324 -337 320 -349 311 -359 ct 303 -368 292 -374 277 -377 ct -269 -378 247 -378 210 -378 ct 138 -378 l 138 -263 l p ef -503 0 m 503 -455 l 840 -455 l 840 -378 l 595 -378 l 595 -277 l 823 -277 l -823 -200 l 595 -200 l 595 -77 l 849 -77 l 849 0 l 503 0 l p ef -1337 1 m 1237 1 l 1198 -103 l 1016 -103 l 978 1 l 881 1 l 1058 -455 l -1155 -455 l 1337 1 l p -1168 -180 m 1105 -348 l 1044 -180 l 1168 -180 l p ef -1675 -167 m 1764 -139 l 1750 -89 1728 -52 1696 -28 ct 1664 -4 1624 8 1575 8 ct -1515 8 1465 -13 1426 -54 ct 1388 -95 1368 -152 1368 -223 ct 1368 -299 1388 -358 1427 -400 ct -1466 -442 1517 -463 1581 -463 ct 1636 -463 1682 -446 1716 -413 ct 1737 -394 1752 -366 1763 -329 ct -1672 -308 l 1667 -331 1655 -350 1638 -364 ct 1621 -377 1601 -384 1576 -384 ct -1542 -384 1515 -372 1494 -348 ct 1473 -323 1463 -284 1463 -230 ct 1463 -173 1473 -132 1494 -107 ct -1514 -83 1541 -71 1574 -71 ct 1599 -71 1620 -78 1637 -94 ct 1655 -109 1667 -134 1675 -167 ct -p ef -1944 0 m 1944 -378 l 1809 -378 l 1809 -455 l 2170 -455 l 2170 -378 l -2035 -378 l 2035 0 l 1944 0 l p ef -2227 0 m 2227 -455 l 2319 -455 l 2319 0 l 2227 0 l p ef -2390 -224 m 2390 -271 2397 -310 2410 -341 ct 2421 -364 2435 -385 2453 -404 ct -2471 -422 2490 -436 2511 -445 ct 2540 -457 2572 -463 2609 -463 ct 2676 -463 2730 -442 2770 -400 ct -2810 -359 2831 -301 2831 -227 ct 2831 -153 2811 -96 2771 -54 ct 2731 -13 2677 8 2611 8 ct -2543 8 2489 -13 2449 -54 ct 2410 -95 2390 -152 2390 -224 ct p -2484 -228 m 2484 -176 2496 -137 2520 -110 ct 2544 -84 2574 -71 2610 -71 ct -2647 -71 2677 -84 2700 -110 ct 2724 -136 2736 -176 2736 -229 ct 2736 -281 2724 -320 2701 -346 ct -2679 -371 2648 -384 2610 -384 ct 2573 -384 2542 -371 2519 -345 ct 2496 -319 2484 -280 2484 -228 ct -p ef -2905 0 m 2905 -455 l 2994 -455 l 3180 -151 l 3180 -455 l 3266 -455 l -3266 0 l 3174 0 l 2990 -297 l 2990 0 l 2905 0 l p ef -3377 -242 m 3377 -329 l 3464 -329 l 3464 -242 l 3377 -242 l p -3377 0 m 3377 -87 l 3464 -87 l 3464 0 l 3377 0 l p ef -pom -pum -9605 15876 t -0.003 0.003 0.003 c 42 126 m 42 -330 l 93 -330 l 93 -287 l 105 -304 118 -316 133 -324 ct -148 -333 167 -337 188 -337 ct 216 -337 241 -330 263 -315 ct 284 -301 300 -280 311 -254 ct -322 -228 328 -199 328 -167 ct 328 -134 322 -103 310 -77 ct 298 -50 280 -29 257 -15 ct -234 0 210 7 184 7 ct 166 7 149 3 134 -5 ct 119 -13 107 -23 98 -35 ct 98 126 l 42 126 l -p -92 -163 m 92 -121 101 -90 118 -69 ct 135 -49 156 -39 180 -39 ct 205 -39 227 -49 244 -70 ct -262 -91 271 -124 271 -168 ct 271 -210 262 -241 245 -262 ct 228 -283 207 -293 183 -293 ct -159 -293 138 -282 120 -260 ct 102 -238 92 -205 92 -163 ct p ef -392 0 m 392 -330 l 442 -330 l 442 -280 l 455 -303 467 -318 478 -326 ct -489 -333 501 -337 514 -337 ct 533 -337 552 -331 571 -319 ct 552 -267 l 538 -275 525 -279 511 -279 ct -499 -279 488 -276 478 -268 ct 468 -261 461 -251 457 -238 ct 451 -218 448 -196 448 -173 ct -448 0 l 392 0 l p ef -830 -107 m 888 -99 l 879 -66 862 -40 837 -21 ct 813 -2 781 7 743 7 ct 695 7 657 -8 629 -37 ct -600 -67 586 -109 586 -162 ct 586 -218 601 -261 629 -291 ct 658 -322 695 -337 740 -337 ct -784 -337 820 -322 848 -292 ct 876 -262 890 -220 890 -166 ct 890 -163 890 -158 889 -151 ct -644 -151 l 646 -115 656 -87 675 -68 ct 693 -49 716 -39 743 -39 ct 764 -39 781 -44 796 -55 ct -810 -66 822 -83 830 -107 ct p -647 -197 m 831 -197 l 828 -225 821 -245 810 -259 ct 792 -280 769 -291 741 -291 ct -715 -291 693 -283 676 -265 ct 659 -248 649 -226 647 -197 ct p ef -934 -137 m 934 -193 l 1106 -193 l 1106 -137 l 934 -137 l p ef -1393 -107 m 1451 -99 l 1442 -66 1425 -40 1400 -21 ct 1376 -2 1344 7 1306 7 ct -1258 7 1220 -8 1192 -37 ct 1163 -67 1149 -109 1149 -162 ct 1149 -218 1164 -261 1192 -291 ct -1221 -322 1258 -337 1303 -337 ct 1347 -337 1383 -322 1411 -292 ct 1439 -262 1453 -220 1453 -166 ct -1453 -163 1453 -158 1452 -151 ct 1207 -151 l 1209 -115 1219 -87 1238 -68 ct -1256 -49 1279 -39 1306 -39 ct 1327 -39 1344 -44 1359 -55 ct 1373 -66 1385 -83 1393 -107 ct -p -1210 -197 m 1394 -197 l 1391 -225 1384 -245 1373 -259 ct 1355 -280 1332 -291 1304 -291 ct -1278 -291 1256 -283 1239 -265 ct 1222 -248 1212 -226 1210 -197 ct p ef -1482 0 m 1602 -171 l 1491 -330 l 1560 -330 l 1611 -252 l 1620 -238 1628 -225 1634 -215 ct -1643 -229 1651 -241 1659 -252 ct 1715 -330 l 1781 -330 l 1667 -174 l 1790 0 l -1721 0 l 1654 -102 l 1636 -130 l 1549 0 l 1482 0 l p ef -1837 126 m 1837 -330 l 1888 -330 l 1888 -287 l 1900 -304 1913 -316 1928 -324 ct -1943 -333 1962 -337 1983 -337 ct 2011 -337 2036 -330 2058 -315 ct 2079 -301 2095 -280 2106 -254 ct -2117 -228 2123 -199 2123 -167 ct 2123 -134 2117 -103 2105 -77 ct 2093 -50 2075 -29 2052 -15 ct -2029 0 2005 7 1979 7 ct 1961 7 1944 3 1929 -5 ct 1914 -13 1902 -23 1893 -35 ct -1893 126 l 1837 126 l p -1887 -163 m 1887 -121 1896 -90 1913 -69 ct 1930 -49 1951 -39 1975 -39 ct 2000 -39 2022 -49 2039 -70 ct -2057 -91 2066 -124 2066 -168 ct 2066 -210 2057 -241 2040 -262 ct 2023 -283 2002 -293 1978 -293 ct -1954 -293 1933 -282 1915 -260 ct 1897 -238 1887 -205 1887 -163 ct p ef -2204 0 m 2204 -64 l 2267 -64 l 2267 0 l 2204 0 l p ef -2557 0 m 2557 -286 l 2508 -286 l 2508 -329 l 2557 -329 l 2557 -364 l -2557 -387 2559 -403 2563 -414 ct 2568 -428 2578 -440 2591 -449 ct 2605 -458 2624 -462 2648 -462 ct -2664 -462 2681 -460 2700 -457 ct 2692 -408 l 2680 -410 2670 -411 2659 -411 ct -2642 -411 2630 -407 2623 -400 ct 2616 -393 2613 -379 2613 -360 ct 2613 -329 l -2677 -329 l 2677 -286 l 2613 -286 l 2613 0 l 2557 0 l p ef -2937 -41 m 2916 -24 2896 -11 2877 -4 ct 2858 3 2837 7 2816 7 ct 2779 7 2752 -2 2732 -20 ct -2713 -37 2703 -60 2703 -87 ct 2703 -103 2707 -118 2714 -131 ct 2721 -145 2731 -156 2743 -164 ct -2755 -172 2768 -178 2783 -182 ct 2794 -185 2810 -188 2833 -190 ct 2878 -196 2911 -202 2932 -209 ct -2932 -217 2932 -222 2932 -224 ct 2932 -247 2927 -263 2917 -272 ct 2902 -285 2881 -291 2853 -291 ct -2827 -291 2807 -286 2795 -277 ct 2782 -268 2773 -252 2767 -228 ct 2713 -236 l -2718 -259 2726 -278 2737 -292 ct 2748 -307 2765 -318 2786 -326 ct 2808 -333 2833 -337 2861 -337 ct -2889 -337 2912 -334 2930 -327 ct 2947 -321 2960 -312 2968 -302 ct 2977 -292 2982 -280 2986 -264 ct -2988 -255 2989 -238 2989 -213 ct 2989 -138 l 2989 -87 2990 -54 2992 -40 ct -2994 -26 2999 -13 3006 0 ct 2948 0 l 2942 -12 2938 -26 2937 -41 ct p -2932 -166 m 2912 -157 2881 -150 2841 -145 ct 2818 -141 2802 -138 2792 -133 ct -2783 -129 2775 -123 2770 -115 ct 2765 -107 2762 -99 2762 -89 ct 2762 -74 2768 -62 2779 -52 ct -2791 -42 2807 -37 2829 -37 ct 2850 -37 2869 -41 2886 -51 ct 2903 -60 2915 -73 2923 -89 ct -2929 -102 2932 -121 2932 -145 ct 2932 -166 l p ef -3288 -121 m 3343 -114 l 3337 -76 3321 -46 3297 -25 ct 3272 -4 3242 7 3206 7 ct -3161 7 3124 -8 3097 -37 ct 3070 -67 3056 -109 3056 -164 ct 3056 -199 3062 -230 3073 -257 ct -3085 -284 3103 -304 3127 -317 ct 3151 -330 3178 -337 3206 -337 ct 3242 -337 3271 -328 3294 -310 ct -3316 -292 3331 -266 3337 -233 ct 3283 -224 l 3278 -247 3269 -263 3256 -274 ct -3243 -286 3227 -291 3208 -291 ct 3180 -291 3157 -281 3140 -261 ct 3122 -241 3113 -209 3113 -165 ct -3113 -121 3122 -89 3139 -69 ct 3156 -49 3178 -39 3205 -39 ct 3227 -39 3245 -46 3260 -59 ct -3275 -72 3284 -93 3288 -121 ct p ef -3513 -50 m 3521 -1 l 3505 2 3491 4 3479 4 ct 3458 4 3443 1 3431 -6 ct 3420 -12 3412 -20 3408 -31 ct -3403 -41 3401 -63 3401 -97 ct 3401 -287 l 3360 -287 l 3360 -330 l 3401 -330 l -3401 -412 l 3457 -445 l 3457 -330 l 3513 -330 l 3513 -287 l 3457 -287 l -3457 -94 l 3457 -78 3458 -68 3460 -63 ct 3462 -58 3465 -55 3469 -52 ct 3474 -49 3480 -48 3488 -48 ct -3494 -48 3503 -49 3513 -50 ct p ef -3584 0 m 3584 -64 l 3647 -64 l 3647 0 l 3584 0 l p ef -4139 -41 m 4118 -24 4098 -11 4079 -4 ct 4060 3 4039 7 4018 7 ct 3981 7 3954 -2 3934 -20 ct -3915 -37 3905 -60 3905 -87 ct 3905 -103 3909 -118 3916 -131 ct 3923 -145 3933 -156 3945 -164 ct -3957 -172 3970 -178 3985 -182 ct 3996 -185 4012 -188 4035 -190 ct 4080 -196 4113 -202 4134 -209 ct -4134 -217 4134 -222 4134 -224 ct 4134 -247 4129 -263 4119 -272 ct 4104 -285 4083 -291 4055 -291 ct -4029 -291 4009 -286 3997 -277 ct 3984 -268 3975 -252 3969 -228 ct 3915 -236 l -3920 -259 3928 -278 3939 -292 ct 3950 -307 3967 -318 3988 -326 ct 4010 -333 4035 -337 4063 -337 ct -4091 -337 4114 -334 4132 -327 ct 4149 -321 4162 -312 4170 -302 ct 4179 -292 4184 -280 4188 -264 ct -4190 -255 4191 -238 4191 -213 ct 4191 -138 l 4191 -87 4192 -54 4194 -40 ct -4196 -26 4201 -13 4208 0 ct 4150 0 l 4144 -12 4140 -26 4139 -41 ct p -4134 -166 m 4114 -157 4083 -150 4043 -145 ct 4020 -141 4004 -138 3994 -133 ct -3985 -129 3977 -123 3972 -115 ct 3967 -107 3964 -99 3964 -89 ct 3964 -74 3970 -62 3981 -52 ct -3993 -42 4009 -37 4031 -37 ct 4052 -37 4071 -41 4088 -51 ct 4105 -60 4117 -73 4125 -89 ct -4131 -102 4134 -121 4134 -145 ct 4134 -166 l p ef -4275 0 m 4275 -330 l 4325 -330 l 4325 -283 l 4349 -319 4384 -337 4430 -337 ct -4450 -337 4468 -333 4485 -326 ct 4501 -319 4514 -310 4522 -298 ct 4530 -287 4536 -273 4539 -257 ct -4541 -247 4542 -229 4542 -203 ct 4542 0 l 4487 0 l 4487 -200 l 4487 -223 4484 -240 4480 -252 ct -4476 -263 4468 -272 4457 -279 ct 4446 -285 4433 -289 4418 -289 ct 4394 -289 4374 -281 4357 -266 ct -4339 -251 4331 -222 4331 -180 ct 4331 0 l 4275 0 l p ef -4840 0 m 4840 -42 l 4820 -9 4789 7 4748 7 ct 4722 7 4698 0 4676 -15 ct 4654 -29 4637 -49 4625 -75 ct -4613 -101 4607 -131 4607 -165 ct 4607 -198 4612 -228 4623 -254 ct 4634 -281 4651 -302 4672 -316 ct -4694 -330 4719 -337 4746 -337 ct 4766 -337 4783 -333 4799 -325 ct 4814 -316 4827 -305 4837 -292 ct -4837 -455 l 4892 -455 l 4892 0 l 4840 0 l p -4664 -165 m 4664 -123 4673 -91 4691 -70 ct 4709 -49 4729 -39 4754 -39 ct 4778 -39 4799 -49 4816 -69 ct -4833 -89 4841 -119 4841 -160 ct 4841 -205 4833 -238 4815 -259 ct 4798 -280 4777 -291 4751 -291 ct -4726 -291 4706 -281 4689 -261 ct 4672 -240 4664 -208 4664 -165 ct p ef -pom -pum -9605 16638 t -257 -41 m 236 -24 216 -11 197 -4 ct 178 3 157 7 136 7 ct 99 7 72 -2 52 -20 ct -33 -37 23 -60 23 -87 ct 23 -103 27 -118 34 -131 ct 41 -145 51 -156 63 -164 ct 75 -172 88 -178 103 -182 ct -114 -185 130 -188 153 -190 ct 198 -196 231 -202 252 -209 ct 252 -217 252 -222 252 -224 ct -252 -247 247 -263 237 -272 ct 222 -285 201 -291 173 -291 ct 147 -291 127 -286 115 -277 ct -102 -268 93 -252 87 -228 ct 33 -236 l 38 -259 46 -278 57 -292 ct 68 -307 85 -318 106 -326 ct -128 -333 153 -337 181 -337 ct 209 -337 232 -334 250 -327 ct 267 -321 280 -312 288 -302 ct -297 -292 302 -280 306 -264 ct 308 -255 309 -238 309 -213 ct 309 -138 l 309 -87 310 -54 312 -40 ct -314 -26 319 -13 326 0 ct 268 0 l 262 -12 258 -26 257 -41 ct p -252 -166 m 232 -157 201 -150 161 -145 ct 138 -141 122 -138 112 -133 ct 103 -129 95 -123 90 -115 ct -85 -107 82 -99 82 -89 ct 82 -74 88 -62 99 -52 ct 111 -42 127 -37 149 -37 ct 170 -37 189 -41 206 -51 ct -223 -60 235 -73 243 -89 ct 249 -102 252 -121 252 -145 ct 252 -166 l p ef -608 -121 m 663 -114 l 657 -76 641 -46 617 -25 ct 592 -4 562 7 526 7 ct 481 7 444 -8 417 -37 ct -390 -67 376 -109 376 -164 ct 376 -199 382 -230 393 -257 ct 405 -284 423 -304 447 -317 ct -471 -330 498 -337 526 -337 ct 562 -337 591 -328 614 -310 ct 636 -292 651 -266 657 -233 ct -603 -224 l 598 -247 589 -263 576 -274 ct 563 -286 547 -291 528 -291 ct 500 -291 477 -281 460 -261 ct -442 -241 433 -209 433 -165 ct 433 -121 442 -89 459 -69 ct 476 -49 498 -39 525 -39 ct -547 -39 565 -46 580 -59 ct 595 -72 604 -93 608 -121 ct p ef -833 -50 m 841 -1 l 825 2 811 4 799 4 ct 778 4 763 1 751 -6 ct 740 -12 732 -20 728 -31 ct -723 -41 721 -63 721 -97 ct 721 -287 l 680 -287 l 680 -330 l 721 -330 l -721 -412 l 777 -445 l 777 -330 l 833 -330 l 833 -287 l 777 -287 l -777 -94 l 777 -78 778 -68 780 -63 ct 782 -58 785 -55 789 -52 ct 794 -49 800 -48 808 -48 ct -814 -48 823 -49 833 -50 ct p ef -889 -391 m 889 -455 l 945 -455 l 945 -391 l 889 -391 l p -889 0 m 889 -330 l 945 -330 l 945 0 l 889 0 l p ef -1119 0 m 994 -330 l 1053 -330 l 1124 -132 l 1131 -111 1138 -89 1145 -66 ct -1150 -83 1157 -104 1166 -128 ct 1239 -330 l 1296 -330 l 1171 0 l 1119 0 l -p ef -1561 -41 m 1540 -24 1520 -11 1501 -4 ct 1482 3 1461 7 1440 7 ct 1403 7 1376 -2 1356 -20 ct -1337 -37 1327 -60 1327 -87 ct 1327 -103 1331 -118 1338 -131 ct 1345 -145 1355 -156 1367 -164 ct -1379 -172 1392 -178 1407 -182 ct 1418 -185 1434 -188 1457 -190 ct 1502 -196 1535 -202 1556 -209 ct -1556 -217 1556 -222 1556 -224 ct 1556 -247 1551 -263 1541 -272 ct 1526 -285 1505 -291 1477 -291 ct -1451 -291 1431 -286 1419 -277 ct 1406 -268 1397 -252 1391 -228 ct 1337 -236 l -1342 -259 1350 -278 1361 -292 ct 1372 -307 1389 -318 1410 -326 ct 1432 -333 1457 -337 1485 -337 ct -1513 -337 1536 -334 1554 -327 ct 1571 -321 1584 -312 1592 -302 ct 1601 -292 1606 -280 1610 -264 ct -1612 -255 1613 -238 1613 -213 ct 1613 -138 l 1613 -87 1614 -54 1616 -40 ct -1618 -26 1623 -13 1630 0 ct 1572 0 l 1566 -12 1562 -26 1561 -41 ct p -1556 -166 m 1536 -157 1505 -150 1465 -145 ct 1442 -141 1426 -138 1416 -133 ct -1407 -129 1399 -123 1394 -115 ct 1389 -107 1386 -99 1386 -89 ct 1386 -74 1392 -62 1403 -52 ct -1415 -42 1431 -37 1453 -37 ct 1474 -37 1493 -41 1510 -51 ct 1527 -60 1539 -73 1547 -89 ct -1553 -102 1556 -121 1556 -145 ct 1556 -166 l p ef -1819 -50 m 1827 -1 l 1811 2 1797 4 1785 4 ct 1764 4 1749 1 1737 -6 ct 1726 -12 1718 -20 1714 -31 ct -1709 -41 1707 -63 1707 -97 ct 1707 -287 l 1666 -287 l 1666 -330 l 1707 -330 l -1707 -412 l 1763 -445 l 1763 -330 l 1819 -330 l 1819 -287 l 1763 -287 l -1763 -94 l 1763 -78 1764 -68 1766 -63 ct 1768 -58 1771 -55 1775 -52 ct 1780 -49 1786 -48 1794 -48 ct -1800 -48 1809 -49 1819 -50 ct p ef -1875 -391 m 1875 -455 l 1931 -455 l 1931 -391 l 1875 -391 l p -1875 0 m 1875 -330 l 1931 -330 l 1931 0 l 1875 0 l p ef -1994 -165 m 1994 -226 2011 -271 2045 -301 ct 2073 -325 2108 -337 2149 -337 ct -2194 -337 2231 -322 2259 -293 ct 2288 -263 2303 -222 2303 -170 ct 2303 -127 2296 -94 2284 -70 ct -2271 -45 2252 -27 2228 -13 ct 2204 0 2177 7 2149 7 ct 2102 7 2065 -8 2037 -37 ct -2008 -67 1994 -110 1994 -165 ct p -2051 -165 m 2051 -123 2061 -91 2079 -70 ct 2097 -49 2121 -39 2149 -39 ct 2176 -39 2199 -49 2218 -71 ct -2236 -92 2245 -124 2245 -167 ct 2245 -208 2236 -239 2217 -260 ct 2199 -281 2176 -291 2149 -291 ct -2121 -291 2097 -281 2079 -260 ct 2061 -239 2051 -207 2051 -165 ct p ef -2366 0 m 2366 -330 l 2416 -330 l 2416 -283 l 2440 -319 2475 -337 2521 -337 ct -2541 -337 2559 -333 2576 -326 ct 2592 -319 2605 -310 2613 -298 ct 2621 -287 2627 -273 2630 -257 ct -2632 -247 2633 -229 2633 -203 ct 2633 0 l 2578 0 l 2578 -200 l 2578 -223 2575 -240 2571 -252 ct -2567 -263 2559 -272 2548 -279 ct 2537 -285 2524 -289 2509 -289 ct 2485 -289 2465 -281 2448 -266 ct -2430 -251 2422 -222 2422 -180 ct 2422 0 l 2366 0 l p ef -3120 -107 m 3178 -99 l 3169 -66 3152 -40 3127 -21 ct 3103 -2 3071 7 3033 7 ct -2985 7 2947 -8 2919 -37 ct 2890 -67 2876 -109 2876 -162 ct 2876 -218 2891 -261 2919 -291 ct -2948 -322 2985 -337 3030 -337 ct 3074 -337 3110 -322 3138 -292 ct 3166 -262 3180 -220 3180 -166 ct -3180 -163 3180 -158 3179 -151 ct 2934 -151 l 2936 -115 2946 -87 2965 -68 ct -2983 -49 3006 -39 3033 -39 ct 3054 -39 3071 -44 3086 -55 ct 3100 -66 3112 -83 3120 -107 ct -p -2937 -197 m 3121 -197 l 3118 -225 3111 -245 3100 -259 ct 3082 -280 3059 -291 3031 -291 ct -3005 -291 2983 -283 2966 -265 ct 2949 -248 2939 -226 2937 -197 ct p ef -3247 0 m 3247 -330 l 3297 -330 l 3297 -283 l 3321 -319 3356 -337 3402 -337 ct -3422 -337 3440 -333 3457 -326 ct 3473 -319 3486 -310 3494 -298 ct 3502 -287 3508 -273 3511 -257 ct -3513 -247 3514 -229 3514 -203 ct 3514 0 l 3459 0 l 3459 -200 l 3459 -223 3456 -240 3452 -252 ct -3448 -263 3440 -272 3429 -279 ct 3418 -285 3405 -289 3390 -289 ct 3366 -289 3346 -281 3329 -266 ct -3311 -251 3303 -222 3303 -180 ct 3303 0 l 3247 0 l p ef -3823 -107 m 3881 -99 l 3872 -66 3855 -40 3830 -21 ct 3806 -2 3774 7 3736 7 ct -3688 7 3650 -8 3622 -37 ct 3593 -67 3579 -109 3579 -162 ct 3579 -218 3594 -261 3622 -291 ct -3651 -322 3688 -337 3733 -337 ct 3777 -337 3813 -322 3841 -292 ct 3869 -262 3883 -220 3883 -166 ct -3883 -163 3883 -158 3882 -151 ct 3637 -151 l 3639 -115 3649 -87 3668 -68 ct -3686 -49 3709 -39 3736 -39 ct 3757 -39 3774 -44 3789 -55 ct 3803 -66 3815 -83 3823 -107 ct -p -3640 -197 m 3824 -197 l 3821 -225 3814 -245 3803 -259 ct 3785 -280 3762 -291 3734 -291 ct -3708 -291 3686 -283 3669 -265 ct 3652 -248 3642 -226 3640 -197 ct p ef -3948 0 m 3948 -330 l 3998 -330 l 3998 -280 l 4011 -303 4023 -318 4034 -326 ct -4045 -333 4057 -337 4070 -337 ct 4089 -337 4108 -331 4127 -319 ct 4108 -267 l -4094 -275 4081 -279 4067 -279 ct 4055 -279 4044 -276 4034 -268 ct 4024 -261 4017 -251 4013 -238 ct -4007 -218 4004 -196 4004 -173 ct 4004 0 l 3948 0 l p ef -4151 28 m 4205 36 l 4207 52 4213 65 4224 72 ct 4238 83 4257 88 4281 88 ct -4306 88 4326 83 4340 72 ct 4354 62 4364 47 4369 29 ct 4372 17 4373 -6 4373 -43 ct -4349 -14 4318 0 4282 0 ct 4237 0 4201 -16 4177 -49 ct 4152 -82 4139 -121 4139 -167 ct -4139 -198 4145 -227 4157 -254 ct 4168 -280 4184 -301 4206 -315 ct 4228 -330 4253 -337 4282 -337 ct -4321 -337 4353 -321 4378 -290 ct 4378 -330 l 4430 -330 l 4430 -45 l 4430 7 4424 43 4414 65 ct -4404 86 4387 103 4364 115 ct 4342 128 4314 134 4281 134 ct 4242 134 4210 125 4186 107 ct -4161 90 4150 63 4151 28 ct p -4197 -171 m 4197 -127 4205 -96 4223 -76 ct 4240 -56 4261 -46 4287 -46 ct 4313 -46 4334 -56 4352 -76 ct -4369 -95 4378 -126 4378 -169 ct 4378 -209 4369 -240 4351 -260 ct 4333 -281 4311 -291 4286 -291 ct -4261 -291 4240 -281 4223 -260 ct 4206 -240 4197 -210 4197 -171 ct p ef -4509 127 m 4503 75 l 4515 78 4526 80 4535 80 ct 4548 80 4557 78 4565 73 ct -4572 69 4578 64 4583 56 ct 4587 51 4592 37 4600 15 ct 4601 11 4603 7 4605 1 ct -4480 -330 l 4540 -330 l 4609 -139 l 4618 -114 4626 -89 4633 -62 ct 4639 -88 4647 -113 4656 -137 ct -4726 -330 l 4782 -330 l 4657 6 l 4643 42 4633 67 4625 81 ct 4615 99 4604 113 4591 121 ct -4578 130 4563 134 4545 134 ct 4535 134 4523 132 4509 127 ct p ef -pom -27 lw 5140 3047 m 5630 8695 l ps -5647 8890 m 5524 8690 l 5733 8672 l 5647 8890 l p ef -1.000 1.000 1.000 c 4769 5024 m 5901 5024 l 5901 6549 l 4769 6549 l -4769 5024 l p -4769 5024 m 4769 5024 l p -5901 6549 m 5901 6549 l p ef -pum -5019 6121 t -0.003 0.003 0.003 c 238 -1 m 238 -579 l 22 -579 l 22 -656 l 542 -656 l -542 -579 l 325 -579 l 325 -1 l 238 -1 l p ef -pom -6850 3047 m 7668 8489 l ps -7697 8683 m 7562 8491 l 7770 8460 l 7697 8683 l p ef -1.000 1.000 1.000 c 6488 4894 m 10769 4894 l 10769 6858 l 6488 6858 l -6488 4894 l p -6488 4894 m 6488 4894 l p -10769 6858 m 10769 6858 l p ef -pum -6738 5991 t -0.003 0.003 0.003 c 371 -174 m 450 -164 l 441 -109 419 -66 384 -35 ct 348 -4 304 11 252 11 ct -187 11 135 -10 95 -53 ct 56 -95 36 -156 36 -236 ct 36 -287 44 -332 61 -370 ct 78 -409 104 -438 139 -457 ct -174 -476 212 -486 253 -486 ct 304 -486 346 -473 379 -447 ct 412 -421 433 -384 442 -336 ct -364 -323 l 357 -355 343 -379 324 -396 ct 305 -412 283 -420 256 -420 ct 215 -420 182 -405 157 -376 ct -131 -347 119 -301 119 -238 ct 119 -174 131 -128 155 -99 ct 180 -70 212 -55 251 -55 ct -283 -55 309 -65 330 -84 ct 352 -104 365 -134 371 -174 ct p ef -pom -pum -7199 6376 t -26 -186 m 26 -249 43 -299 77 -334 ct 111 -370 154 -388 208 -388 ct 243 -388 275 -380 303 -363 ct -331 -346 353 -323 368 -293 ct 383 -263 390 -228 390 -190 ct 390 -152 382 -117 367 -87 ct -351 -56 329 -33 300 -18 ct 272 -2 241 6 208 6 ct 172 6 140 -3 112 -20 ct 83 -37 62 -61 48 -91 ct -33 -121 26 -153 26 -186 ct p -78 -185 m 78 -139 90 -103 115 -77 ct 139 -50 170 -37 208 -37 ct 245 -37 277 -50 301 -77 ct -326 -104 338 -142 338 -191 ct 338 -222 333 -249 322 -272 ct 312 -295 296 -313 276 -326 ct -256 -338 233 -345 208 -345 ct 173 -345 142 -332 116 -308 ct 91 -283 78 -242 78 -185 ct -p ef -454 0 m 454 -381 l 504 -381 l 504 -224 l 702 -224 l 702 -381 l 752 -381 l -752 0 l 702 0 l 702 -179 l 504 -179 l 504 0 l 454 0 l p ef -pom -pum -8583 5991 t -371 -174 m 450 -164 l 441 -109 419 -66 384 -35 ct 348 -4 304 11 252 11 ct -187 11 135 -10 95 -53 ct 56 -95 36 -156 36 -236 ct 36 -287 44 -332 61 -370 ct 78 -409 104 -438 139 -457 ct -174 -476 212 -486 253 -486 ct 304 -486 346 -473 379 -447 ct 412 -421 433 -384 442 -336 ct -364 -323 l 357 -355 343 -379 324 -396 ct 305 -412 283 -420 256 -420 ct 215 -420 182 -405 157 -376 ct -131 -347 119 -301 119 -238 ct 119 -174 131 -128 155 -99 ct 180 -70 212 -55 251 -55 ct -283 -55 309 -65 330 -84 ct 352 -104 365 -134 371 -174 ct p ef -pom -pum -9044 6376 t -41 0 m 41 -381 l 92 -381 l 292 -82 l 292 -381 l 341 -381 l 341 0 l -289 0 l 89 -299 l 89 0 l 41 0 l p ef -694 -134 m 744 -121 l 734 -80 715 -48 687 -27 ct 660 -5 626 6 586 6 ct 545 6 512 -2 486 -19 ct -461 -36 441 -60 428 -92 ct 414 -123 408 -157 408 -194 ct 408 -234 415 -268 430 -298 ct -445 -327 467 -350 495 -365 ct 523 -380 554 -388 587 -388 ct 625 -388 657 -378 683 -359 ct -709 -340 727 -312 738 -277 ct 688 -265 l 679 -293 666 -313 650 -326 ct 633 -339 612 -345 586 -345 ct -557 -345 532 -338 513 -324 ct 493 -310 479 -291 471 -267 ct 463 -244 459 -219 459 -194 ct -459 -162 464 -133 474 -109 ct 483 -85 498 -67 518 -55 ct 538 -43 559 -37 582 -37 ct -611 -37 634 -45 654 -62 ct 674 -78 687 -102 694 -134 ct p ef -788 -186 m 788 -249 805 -299 839 -334 ct 873 -370 916 -388 970 -388 ct 1005 -388 1037 -380 1065 -363 ct -1093 -346 1115 -323 1130 -293 ct 1145 -263 1152 -228 1152 -190 ct 1152 -152 1144 -117 1129 -87 ct -1113 -56 1091 -33 1062 -18 ct 1034 -2 1003 6 970 6 ct 934 6 902 -3 874 -20 ct 845 -37 824 -61 810 -91 ct -795 -121 788 -153 788 -186 ct p -840 -185 m 840 -139 852 -103 877 -77 ct 901 -50 932 -37 970 -37 ct 1007 -37 1039 -50 1063 -77 ct -1088 -104 1100 -142 1100 -191 ct 1100 -222 1095 -249 1084 -272 ct 1074 -295 1058 -313 1038 -326 ct -1018 -338 995 -345 970 -345 ct 935 -345 904 -332 878 -308 ct 853 -283 840 -242 840 -185 ct -p ef -pom -10649 2950 m 11312 8188 l ps -11337 8382 m 11206 8187 l 11415 8160 l 11337 8382 l p ef -1.000 1.000 1.000 c 10352 4860 m 12239 4860 l 12239 6758 l 10352 6758 l -10352 4860 l p -10352 4860 m 10352 4860 l p -12239 6758 m 12239 6758 l p ef -pum -10602 5957 t -0.003 0.003 0.003 c 371 -174 m 450 -164 l 441 -109 419 -66 384 -35 ct 348 -4 304 11 252 11 ct -187 11 135 -10 95 -53 ct 56 -95 36 -156 36 -236 ct 36 -287 44 -332 61 -370 ct 78 -409 104 -438 139 -457 ct -174 -476 212 -486 253 -486 ct 304 -486 346 -473 379 -447 ct 412 -421 433 -384 442 -336 ct -364 -323 l 357 -355 343 -379 324 -396 ct 305 -412 283 -420 256 -420 ct 215 -420 182 -405 157 -376 ct -131 -347 119 -301 119 -238 ct 119 -174 131 -128 155 -99 ct 180 -70 212 -55 251 -55 ct -283 -55 309 -65 330 -84 ct 352 -104 365 -134 371 -174 ct p ef -pom -pum -11063 6342 t -108 0 m 7 -381 l 58 -381 l 116 -131 l 122 -105 128 -79 132 -53 ct 142 -94 148 -117 149 -124 ct -222 -381 l 283 -381 l 337 -188 l 351 -140 361 -95 367 -53 ct 372 -77 378 -105 386 -136 ct -446 -381 l 496 -381 l 392 0 l 343 0 l 263 -290 l 256 -314 252 -329 251 -335 ct -247 -317 243 -302 240 -290 ct 159 0 l 108 0 l p ef -pom -14046 8484 m 14671 3136 l ps -14694 2941 m 14774 3162 l 14565 3137 l 14694 2941 l p ef -16973 8585 m 18105 3234 l ps -18146 3042 m 18205 3269 l 18000 3226 l 18146 3042 l p ef -1.000 1.000 1.000 c 12421 4928 m 15894 4928 l 15894 6735 l 12421 6735 l -12421 4928 l p -12421 4928 m 12421 4928 l p -15894 6735 m 15894 6735 l p ef -pum -12671 6025 t -0.003 0.003 0.003 c 369 0 m 369 -60 l 339 -13 294 11 236 11 ct 198 11 163 1 131 -20 ct -100 -41 75 -70 58 -108 ct 40 -145 31 -188 31 -237 ct 31 -284 39 -327 55 -366 ct -71 -405 95 -434 126 -455 ct 158 -475 193 -486 232 -486 ct 261 -486 287 -480 309 -468 ct -331 -455 350 -440 364 -420 ct 364 -656 l 444 -656 l 444 0 l 369 0 l p -114 -237 m 114 -176 127 -131 153 -100 ct 178 -70 209 -55 244 -55 ct 279 -55 309 -70 333 -98 ct -358 -127 370 -171 370 -230 ct 370 -295 358 -343 333 -373 ct 308 -404 277 -419 240 -419 ct -204 -419 174 -404 150 -375 ct 126 -346 114 -300 114 -237 ct p ef -883 -174 m 962 -164 l 953 -109 931 -66 896 -35 ct 860 -4 816 11 764 11 ct -699 11 647 -10 607 -53 ct 568 -95 548 -156 548 -236 ct 548 -287 556 -332 573 -370 ct -590 -409 616 -438 651 -457 ct 686 -476 724 -486 765 -486 ct 816 -486 858 -473 891 -447 ct -924 -421 945 -384 954 -336 ct 876 -323 l 869 -355 855 -379 836 -396 ct 817 -412 795 -420 768 -420 ct -727 -420 694 -405 669 -376 ct 643 -347 631 -301 631 -238 ct 631 -174 643 -128 667 -99 ct -692 -70 724 -55 763 -55 ct 795 -55 821 -65 842 -84 ct 864 -104 877 -134 883 -174 ct -p ef -pom -pum -13645 6410 t -26 -186 m 26 -249 43 -299 77 -334 ct 111 -370 154 -388 208 -388 ct 243 -388 275 -380 303 -363 ct -331 -346 353 -323 368 -293 ct 383 -263 390 -228 390 -190 ct 390 -152 382 -117 367 -87 ct -351 -56 329 -33 300 -18 ct 272 -2 241 6 208 6 ct 172 6 140 -3 112 -20 ct 83 -37 62 -61 48 -91 ct -33 -121 26 -153 26 -186 ct p -78 -185 m 78 -139 90 -103 115 -77 ct 139 -50 170 -37 208 -37 ct 245 -37 277 -50 301 -77 ct -326 -104 338 -142 338 -191 ct 338 -222 333 -249 322 -272 ct 312 -295 296 -313 276 -326 ct -256 -338 233 -345 208 -345 ct 173 -345 142 -332 116 -308 ct 91 -283 78 -242 78 -185 ct -p ef -454 0 m 454 -381 l 504 -381 l 504 -224 l 702 -224 l 702 -381 l 752 -381 l -752 0 l 702 0 l 702 -179 l 504 -179 l 504 0 l 454 0 l p ef -pom -pum -14436 6025 t -0 11 m 190 -668 l 255 -668 l 65 11 l 0 11 l p ef -623 0 m 623 -60 l 593 -13 548 11 490 11 ct 452 11 417 1 385 -20 ct 354 -41 329 -70 312 -108 ct -294 -145 285 -188 285 -237 ct 285 -284 293 -327 309 -366 ct 325 -405 349 -434 380 -455 ct -412 -475 447 -486 486 -486 ct 515 -486 541 -480 563 -468 ct 585 -455 604 -440 618 -420 ct -618 -656 l 698 -656 l 698 0 l 623 0 l p -368 -237 m 368 -176 381 -131 407 -100 ct 432 -70 463 -55 498 -55 ct 533 -55 563 -70 587 -98 ct -612 -127 624 -171 624 -230 ct 624 -295 612 -343 587 -373 ct 562 -404 531 -419 494 -419 ct -458 -419 428 -404 404 -375 ct 380 -346 368 -300 368 -237 ct p ef -1002 -72 m 1014 -1 l 991 4 971 6 953 6 ct 924 6 901 1 885 -8 ct 869 -17 858 -29 851 -44 ct -845 -59 841 -91 841 -139 ct 841 -413 l 782 -413 l 782 -476 l 841 -476 l -841 -593 l 921 -642 l 921 -476 l 1002 -476 l 1002 -413 l 921 -413 l -921 -135 l 921 -112 923 -97 926 -91 ct 928 -84 933 -79 940 -75 ct 946 -71 955 -69 967 -69 ct -976 -69 988 -70 1002 -72 ct p ef -pom -pum -504 4754 t -165 0 m 165 -401 l 15 -401 l 15 -455 l 375 -455 l 375 -401 l 225 -401 l -225 0 l 165 0 l p ef -618 -107 m 676 -99 l 667 -66 650 -40 625 -21 ct 601 -2 569 7 531 7 ct 483 7 445 -8 417 -37 ct -388 -67 374 -109 374 -162 ct 374 -218 389 -261 417 -291 ct 446 -322 483 -337 528 -337 ct -572 -337 608 -322 636 -292 ct 664 -262 678 -220 678 -166 ct 678 -163 678 -158 677 -151 ct -432 -151 l 434 -115 444 -87 463 -68 ct 481 -49 504 -39 531 -39 ct 552 -39 569 -44 584 -55 ct -598 -66 610 -83 618 -107 ct p -435 -197 m 619 -197 l 616 -225 609 -245 598 -259 ct 580 -280 557 -291 529 -291 ct -503 -291 481 -283 464 -265 ct 447 -248 437 -226 435 -197 ct p ef -707 0 m 707 -330 l 757 -330 l 757 -283 l 767 -299 781 -312 798 -322 ct -815 -332 835 -337 857 -337 ct 881 -337 901 -332 917 -322 ct 932 -312 943 -297 950 -279 ct -976 -318 1010 -337 1051 -337 ct 1084 -337 1109 -328 1127 -310 ct 1144 -292 1153 -264 1153 -226 ct -1153 0 l 1098 0 l 1098 -208 l 1098 -230 1096 -246 1092 -256 ct 1089 -266 1082 -274 1072 -280 ct -1063 -286 1052 -289 1039 -289 ct 1016 -289 997 -281 981 -265 ct 966 -250 958 -225 958 -191 ct -958 0 l 903 0 l 903 -214 l 903 -239 898 -258 889 -270 ct 880 -282 865 -289 844 -289 ct -829 -289 814 -284 801 -276 ct 787 -268 778 -256 772 -240 ct 766 -224 763 -201 763 -171 ct -763 0 l 707 0 l p ef -1236 126 m 1236 -330 l 1287 -330 l 1287 -287 l 1299 -304 1312 -316 1327 -324 ct -1342 -333 1361 -337 1382 -337 ct 1410 -337 1435 -330 1457 -315 ct 1478 -301 1494 -280 1505 -254 ct -1516 -228 1522 -199 1522 -167 ct 1522 -134 1516 -103 1504 -77 ct 1492 -50 1474 -29 1451 -15 ct -1428 0 1404 7 1378 7 ct 1360 7 1343 3 1328 -5 ct 1313 -13 1301 -23 1292 -35 ct -1292 126 l 1236 126 l p -1286 -163 m 1286 -121 1295 -90 1312 -69 ct 1329 -49 1350 -39 1374 -39 ct 1399 -39 1421 -49 1438 -70 ct -1456 -91 1465 -124 1465 -168 ct 1465 -210 1456 -241 1439 -262 ct 1422 -283 1401 -293 1377 -293 ct -1353 -293 1332 -282 1314 -260 ct 1296 -238 1286 -205 1286 -163 ct p ef -1812 -107 m 1870 -99 l 1861 -66 1844 -40 1819 -21 ct 1795 -2 1763 7 1725 7 ct -1677 7 1639 -8 1611 -37 ct 1582 -67 1568 -109 1568 -162 ct 1568 -218 1583 -261 1611 -291 ct -1640 -322 1677 -337 1722 -337 ct 1766 -337 1802 -322 1830 -292 ct 1858 -262 1872 -220 1872 -166 ct -1872 -163 1872 -158 1871 -151 ct 1626 -151 l 1628 -115 1638 -87 1657 -68 ct -1675 -49 1698 -39 1725 -39 ct 1746 -39 1763 -44 1778 -55 ct 1792 -66 1804 -83 1812 -107 ct -p -1629 -197 m 1813 -197 l 1810 -225 1803 -245 1792 -259 ct 1774 -280 1751 -291 1723 -291 ct -1697 -291 1675 -283 1658 -265 ct 1641 -248 1631 -226 1629 -197 ct p ef -1938 0 m 1938 -330 l 1988 -330 l 1988 -280 l 2001 -303 2013 -318 2024 -326 ct -2035 -333 2047 -337 2060 -337 ct 2079 -337 2098 -331 2117 -319 ct 2098 -267 l -2084 -275 2071 -279 2057 -279 ct 2045 -279 2034 -276 2024 -268 ct 2014 -261 2007 -251 2003 -238 ct -1997 -218 1994 -196 1994 -173 ct 1994 0 l 1938 0 l p ef -2365 -41 m 2344 -24 2324 -11 2305 -4 ct 2286 3 2265 7 2244 7 ct 2207 7 2180 -2 2160 -20 ct -2141 -37 2131 -60 2131 -87 ct 2131 -103 2135 -118 2142 -131 ct 2149 -145 2159 -156 2171 -164 ct -2183 -172 2196 -178 2211 -182 ct 2222 -185 2238 -188 2261 -190 ct 2306 -196 2339 -202 2360 -209 ct -2360 -217 2360 -222 2360 -224 ct 2360 -247 2355 -263 2345 -272 ct 2330 -285 2309 -291 2281 -291 ct -2255 -291 2235 -286 2223 -277 ct 2210 -268 2201 -252 2195 -228 ct 2141 -236 l -2146 -259 2154 -278 2165 -292 ct 2176 -307 2193 -318 2214 -326 ct 2236 -333 2261 -337 2289 -337 ct -2317 -337 2340 -334 2358 -327 ct 2375 -321 2388 -312 2396 -302 ct 2405 -292 2410 -280 2414 -264 ct -2416 -255 2417 -238 2417 -213 ct 2417 -138 l 2417 -87 2418 -54 2420 -40 ct -2422 -26 2427 -13 2434 0 ct 2376 0 l 2370 -12 2366 -26 2365 -41 ct p -2360 -166 m 2340 -157 2309 -150 2269 -145 ct 2246 -141 2230 -138 2220 -133 ct -2211 -129 2203 -123 2198 -115 ct 2193 -107 2190 -99 2190 -89 ct 2190 -74 2196 -62 2207 -52 ct -2219 -42 2235 -37 2257 -37 ct 2278 -37 2297 -41 2314 -51 ct 2331 -60 2343 -73 2351 -89 ct -2357 -102 2360 -121 2360 -145 ct 2360 -166 l p ef -2624 -50 m 2632 -1 l 2616 2 2602 4 2590 4 ct 2569 4 2554 1 2542 -6 ct 2531 -12 2523 -20 2519 -31 ct -2514 -41 2512 -63 2512 -97 ct 2512 -287 l 2471 -287 l 2471 -330 l 2512 -330 l -2512 -412 l 2568 -445 l 2568 -330 l 2624 -330 l 2624 -287 l 2568 -287 l -2568 -94 l 2568 -78 2569 -68 2571 -63 ct 2573 -58 2576 -55 2580 -52 ct 2585 -49 2591 -48 2599 -48 ct -2605 -48 2614 -49 2624 -50 ct p ef -2895 0 m 2895 -49 l 2869 -12 2834 7 2790 7 ct 2771 7 2753 3 2736 -4 ct 2719 -12 2706 -21 2698 -32 ct -2690 -44 2684 -57 2681 -74 ct 2679 -85 2678 -102 2678 -126 ct 2678 -330 l 2733 -330 l -2733 -147 l 2733 -118 2735 -98 2737 -88 ct 2740 -74 2748 -62 2759 -54 ct 2771 -45 2785 -41 2801 -41 ct -2818 -41 2834 -45 2848 -54 ct 2863 -63 2874 -74 2880 -89 ct 2886 -104 2889 -125 2889 -153 ct -2889 -330 l 2945 -330 l 2945 0 l 2895 0 l p ef -3030 0 m 3030 -330 l 3080 -330 l 3080 -280 l 3093 -303 3105 -318 3116 -326 ct -3127 -333 3139 -337 3152 -337 ct 3171 -337 3190 -331 3209 -319 ct 3190 -267 l -3176 -275 3163 -279 3149 -279 ct 3137 -279 3126 -276 3116 -268 ct 3106 -261 3099 -251 3095 -238 ct -3089 -218 3086 -196 3086 -173 ct 3086 0 l 3030 0 l p ef -3467 -107 m 3525 -99 l 3516 -66 3499 -40 3474 -21 ct 3450 -2 3418 7 3380 7 ct -3332 7 3294 -8 3266 -37 ct 3237 -67 3223 -109 3223 -162 ct 3223 -218 3238 -261 3266 -291 ct -3295 -322 3332 -337 3377 -337 ct 3421 -337 3457 -322 3485 -292 ct 3513 -262 3527 -220 3527 -166 ct -3527 -163 3527 -158 3526 -151 ct 3281 -151 l 3283 -115 3293 -87 3312 -68 ct -3330 -49 3353 -39 3380 -39 ct 3401 -39 3418 -44 3433 -55 ct 3447 -66 3459 -83 3467 -107 ct -p -3284 -197 m 3468 -197 l 3465 -225 3458 -245 3447 -259 ct 3429 -280 3406 -291 3378 -291 ct -3352 -291 3330 -283 3313 -265 ct 3296 -248 3286 -226 3284 -197 ct p ef -3608 0 m 3608 -64 l 3672 -64 l 3672 0 l 3672 23 3668 42 3660 57 ct 3651 71 3638 82 3620 90 ct -3605 66 l 3617 61 3625 53 3631 43 ct 3636 33 3639 19 3640 0 ct 3608 0 l p ef -pom -pum -504 5516 t -42 126 m 42 -330 l 93 -330 l 93 -287 l 105 -304 118 -316 133 -324 ct -148 -333 167 -337 188 -337 ct 216 -337 241 -330 263 -315 ct 284 -301 300 -280 311 -254 ct -322 -228 328 -199 328 -167 ct 328 -134 322 -103 310 -77 ct 298 -50 280 -29 257 -15 ct -234 0 210 7 184 7 ct 166 7 149 3 134 -5 ct 119 -13 107 -23 98 -35 ct 98 126 l 42 126 l -p -92 -163 m 92 -121 101 -90 118 -69 ct 135 -49 156 -39 180 -39 ct 205 -39 227 -49 244 -70 ct -262 -91 271 -124 271 -168 ct 271 -210 262 -241 245 -262 ct 228 -283 207 -293 183 -293 ct -159 -293 138 -282 120 -260 ct 102 -238 92 -205 92 -163 ct p ef -372 -165 m 372 -226 389 -271 423 -301 ct 451 -325 486 -337 527 -337 ct 572 -337 609 -322 637 -293 ct -666 -263 681 -222 681 -170 ct 681 -127 674 -94 662 -70 ct 649 -45 630 -27 606 -13 ct -582 0 555 7 527 7 ct 480 7 443 -8 415 -37 ct 386 -67 372 -110 372 -165 ct p -429 -165 m 429 -123 439 -91 457 -70 ct 475 -49 499 -39 527 -39 ct 554 -39 577 -49 596 -71 ct -614 -92 623 -124 623 -167 ct 623 -208 614 -239 595 -260 ct 577 -281 554 -291 527 -291 ct -499 -291 475 -281 457 -260 ct 439 -239 429 -207 429 -165 ct p ef -744 0 m 744 -455 l 799 -455 l 799 0 l 744 0 l p ef -881 127 m 875 75 l 887 78 898 80 907 80 ct 920 80 929 78 937 73 ct 944 69 950 64 955 56 ct -959 51 964 37 972 15 ct 973 11 975 7 977 1 ct 852 -330 l 912 -330 l 981 -139 l -990 -114 998 -89 1005 -62 ct 1011 -88 1019 -113 1028 -137 ct 1098 -330 l 1154 -330 l -1029 6 l 1015 42 1005 67 997 81 ct 987 99 976 113 963 121 ct 950 130 935 134 917 134 ct -907 134 895 132 881 127 ct p ef -1181 -165 m 1181 -226 1198 -271 1232 -301 ct 1260 -325 1295 -337 1336 -337 ct -1381 -337 1418 -322 1446 -293 ct 1475 -263 1490 -222 1490 -170 ct 1490 -127 1483 -94 1471 -70 ct -1458 -45 1439 -27 1415 -13 ct 1391 0 1364 7 1336 7 ct 1289 7 1252 -8 1224 -37 ct -1195 -67 1181 -110 1181 -165 ct p -1238 -165 m 1238 -123 1248 -91 1266 -70 ct 1284 -49 1308 -39 1336 -39 ct 1363 -39 1386 -49 1405 -71 ct -1423 -92 1432 -124 1432 -167 ct 1432 -208 1423 -239 1404 -260 ct 1386 -281 1363 -291 1336 -291 ct -1308 -291 1284 -281 1266 -260 ct 1248 -239 1238 -207 1238 -165 ct p ef -1552 0 m 1552 -455 l 1607 -455 l 1607 0 l 1552 0 l p ef -1707 0 m 1707 -64 l 1771 -64 l 1771 0 l 1771 23 1767 42 1759 57 ct 1750 71 1737 82 1719 90 ct -1704 66 l 1716 61 1724 53 1730 43 ct 1735 33 1738 19 1739 0 ct 1707 0 l p ef -pom -pum -504 6278 t -42 -391 m 42 -455 l 98 -455 l 98 -391 l 42 -391 l p -42 0 m 42 -330 l 98 -330 l 98 0 l 42 0 l p ef -160 -99 m 215 -107 l 218 -85 226 -68 241 -57 ct 255 -45 275 -39 300 -39 ct -326 -39 345 -44 357 -55 ct 369 -65 376 -77 376 -91 ct 376 -104 370 -114 359 -121 ct -352 -126 333 -132 302 -140 ct 261 -150 233 -159 217 -167 ct 201 -174 189 -185 181 -198 ct -173 -211 169 -226 169 -242 ct 169 -257 172 -270 179 -283 ct 186 -295 195 -306 206 -314 ct -215 -320 227 -326 242 -330 ct 257 -335 273 -337 290 -337 ct 316 -337 339 -333 358 -326 ct -378 -318 392 -308 401 -296 ct 411 -283 417 -266 421 -245 ct 366 -237 l 364 -254 356 -267 344 -277 ct -333 -286 316 -291 294 -291 ct 268 -291 250 -287 239 -278 ct 228 -270 223 -260 223 -249 ct -223 -241 225 -235 230 -229 ct 234 -223 241 -218 251 -214 ct 257 -212 273 -207 300 -200 ct -340 -189 367 -181 383 -174 ct 399 -167 411 -158 420 -145 ct 429 -132 433 -116 433 -97 ct -433 -79 428 -61 417 -45 ct 406 -28 390 -15 370 -6 ct 349 3 326 7 300 7 ct 258 7 225 -2 202 -20 ct -180 -37 166 -64 160 -99 ct p ef -478 -165 m 478 -226 495 -271 529 -301 ct 557 -325 592 -337 633 -337 ct 678 -337 715 -322 743 -293 ct -772 -263 787 -222 787 -170 ct 787 -127 780 -94 768 -70 ct 755 -45 736 -27 712 -13 ct -688 0 661 7 633 7 ct 586 7 549 -8 521 -37 ct 492 -67 478 -110 478 -165 ct p -535 -165 m 535 -123 545 -91 563 -70 ct 581 -49 605 -39 633 -39 ct 660 -39 683 -49 702 -71 ct -720 -92 729 -124 729 -167 ct 729 -208 720 -239 701 -260 ct 683 -281 660 -291 633 -291 ct -605 -291 581 -281 563 -260 ct 545 -239 535 -207 535 -165 ct p ef -1066 -121 m 1121 -114 l 1115 -76 1099 -46 1075 -25 ct 1050 -4 1020 7 984 7 ct -939 7 902 -8 875 -37 ct 848 -67 834 -109 834 -164 ct 834 -199 840 -230 851 -257 ct -863 -284 881 -304 905 -317 ct 929 -330 956 -337 984 -337 ct 1020 -337 1049 -328 1072 -310 ct -1094 -292 1109 -266 1115 -233 ct 1061 -224 l 1056 -247 1047 -263 1034 -274 ct -1021 -286 1005 -291 986 -291 ct 958 -291 935 -281 918 -261 ct 900 -241 891 -209 891 -165 ct -891 -121 900 -89 917 -69 ct 934 -49 956 -39 983 -39 ct 1005 -39 1023 -46 1038 -59 ct -1053 -72 1062 -93 1066 -121 ct p ef -1165 127 m 1159 75 l 1171 78 1182 80 1191 80 ct 1204 80 1213 78 1221 73 ct -1228 69 1234 64 1239 56 ct 1243 51 1248 37 1256 15 ct 1257 11 1259 7 1261 1 ct -1136 -330 l 1196 -330 l 1265 -139 l 1274 -114 1282 -89 1289 -62 ct 1295 -88 1303 -113 1312 -137 ct -1382 -330 l 1438 -330 l 1313 6 l 1299 42 1289 67 1281 81 ct 1271 99 1260 113 1247 121 ct -1234 130 1219 134 1201 134 ct 1191 134 1179 132 1165 127 ct p ef -1701 -41 m 1680 -24 1660 -11 1641 -4 ct 1622 3 1601 7 1580 7 ct 1543 7 1516 -2 1496 -20 ct -1477 -37 1467 -60 1467 -87 ct 1467 -103 1471 -118 1478 -131 ct 1485 -145 1495 -156 1507 -164 ct -1519 -172 1532 -178 1547 -182 ct 1558 -185 1574 -188 1597 -190 ct 1642 -196 1675 -202 1696 -209 ct -1696 -217 1696 -222 1696 -224 ct 1696 -247 1691 -263 1681 -272 ct 1666 -285 1645 -291 1617 -291 ct -1591 -291 1571 -286 1559 -277 ct 1546 -268 1537 -252 1531 -228 ct 1477 -236 l -1482 -259 1490 -278 1501 -292 ct 1512 -307 1529 -318 1550 -326 ct 1572 -333 1597 -337 1625 -337 ct -1653 -337 1676 -334 1694 -327 ct 1711 -321 1724 -312 1732 -302 ct 1741 -292 1746 -280 1750 -264 ct -1752 -255 1753 -238 1753 -213 ct 1753 -138 l 1753 -87 1754 -54 1756 -40 ct -1758 -26 1763 -13 1770 0 ct 1712 0 l 1706 -12 1702 -26 1701 -41 ct p -1696 -166 m 1676 -157 1645 -150 1605 -145 ct 1582 -141 1566 -138 1556 -133 ct -1547 -129 1539 -123 1534 -115 ct 1529 -107 1526 -99 1526 -89 ct 1526 -74 1532 -62 1543 -52 ct -1555 -42 1571 -37 1593 -37 ct 1614 -37 1633 -41 1650 -51 ct 1667 -60 1679 -73 1687 -89 ct -1693 -102 1696 -121 1696 -145 ct 1696 -166 l p ef -1837 0 m 1837 -330 l 1887 -330 l 1887 -283 l 1911 -319 1946 -337 1992 -337 ct -2012 -337 2030 -333 2047 -326 ct 2063 -319 2076 -310 2084 -298 ct 2092 -287 2098 -273 2101 -257 ct -2103 -247 2104 -229 2104 -203 ct 2104 0 l 2049 0 l 2049 -200 l 2049 -223 2046 -240 2042 -252 ct -2038 -263 2030 -272 2019 -279 ct 2008 -285 1995 -289 1980 -289 ct 1956 -289 1936 -281 1919 -266 ct -1901 -251 1893 -222 1893 -180 ct 1893 0 l 1837 0 l p ef -2403 -41 m 2382 -24 2362 -11 2343 -4 ct 2324 3 2303 7 2282 7 ct 2245 7 2218 -2 2198 -20 ct -2179 -37 2169 -60 2169 -87 ct 2169 -103 2173 -118 2180 -131 ct 2187 -145 2197 -156 2209 -164 ct -2221 -172 2234 -178 2249 -182 ct 2260 -185 2276 -188 2299 -190 ct 2344 -196 2377 -202 2398 -209 ct -2398 -217 2398 -222 2398 -224 ct 2398 -247 2393 -263 2383 -272 ct 2368 -285 2347 -291 2319 -291 ct -2293 -291 2273 -286 2261 -277 ct 2248 -268 2239 -252 2233 -228 ct 2179 -236 l -2184 -259 2192 -278 2203 -292 ct 2214 -307 2231 -318 2252 -326 ct 2274 -333 2299 -337 2327 -337 ct -2355 -337 2378 -334 2396 -327 ct 2413 -321 2426 -312 2434 -302 ct 2443 -292 2448 -280 2452 -264 ct -2454 -255 2455 -238 2455 -213 ct 2455 -138 l 2455 -87 2456 -54 2458 -40 ct -2460 -26 2465 -13 2472 0 ct 2414 0 l 2408 -12 2404 -26 2403 -41 ct p -2398 -166 m 2378 -157 2347 -150 2307 -145 ct 2284 -141 2268 -138 2258 -133 ct -2249 -129 2241 -123 2236 -115 ct 2231 -107 2228 -99 2228 -89 ct 2228 -74 2234 -62 2245 -52 ct -2257 -42 2273 -37 2295 -37 ct 2316 -37 2335 -41 2352 -51 ct 2369 -60 2381 -73 2389 -89 ct -2395 -102 2398 -121 2398 -145 ct 2398 -166 l p ef -2662 -50 m 2670 -1 l 2654 2 2640 4 2628 4 ct 2607 4 2592 1 2580 -6 ct 2569 -12 2561 -20 2557 -31 ct -2552 -41 2550 -63 2550 -97 ct 2550 -287 l 2509 -287 l 2509 -330 l 2550 -330 l -2550 -412 l 2606 -445 l 2606 -330 l 2662 -330 l 2662 -287 l 2606 -287 l -2606 -94 l 2606 -78 2607 -68 2609 -63 ct 2611 -58 2614 -55 2618 -52 ct 2623 -49 2629 -48 2637 -48 ct -2643 -48 2652 -49 2662 -50 ct p ef -2942 -107 m 3000 -99 l 2991 -66 2974 -40 2949 -21 ct 2925 -2 2893 7 2855 7 ct -2807 7 2769 -8 2741 -37 ct 2712 -67 2698 -109 2698 -162 ct 2698 -218 2713 -261 2741 -291 ct -2770 -322 2807 -337 2852 -337 ct 2896 -337 2932 -322 2960 -292 ct 2988 -262 3002 -220 3002 -166 ct -3002 -163 3002 -158 3001 -151 ct 2756 -151 l 2758 -115 2768 -87 2787 -68 ct -2805 -49 2828 -39 2855 -39 ct 2876 -39 2893 -44 2908 -55 ct 2922 -66 2934 -83 2942 -107 ct -p -2759 -197 m 2943 -197 l 2940 -225 2933 -245 2922 -259 ct 2904 -280 2881 -291 2853 -291 ct -2827 -291 2805 -283 2788 -265 ct 2771 -248 2761 -226 2759 -197 ct p ef -3083 0 m 3083 -64 l 3147 -64 l 3147 0 l 3147 23 3143 42 3135 57 ct 3126 71 3113 82 3095 90 ct -3080 66 l 3092 61 3100 53 3106 43 ct 3111 33 3114 19 3115 0 ct 3083 0 l p ef -pom -pum -504 7040 t -103 0 m 2 -330 l 60 -330 l 112 -139 l 131 -69 l 132 -72 138 -95 149 -137 ct -201 -330 l 258 -330 l 308 -138 l 324 -75 l 343 -139 l 399 -330 l -454 -330 l 351 0 l 293 0 l 240 -197 l 228 -253 l 161 0 l 103 0 l -p ef -714 -41 m 693 -24 673 -11 654 -4 ct 635 3 614 7 593 7 ct 556 7 529 -2 509 -20 ct -490 -37 480 -60 480 -87 ct 480 -103 484 -118 491 -131 ct 498 -145 508 -156 520 -164 ct -532 -172 545 -178 560 -182 ct 571 -185 587 -188 610 -190 ct 655 -196 688 -202 709 -209 ct -709 -217 709 -222 709 -224 ct 709 -247 704 -263 694 -272 ct 679 -285 658 -291 630 -291 ct -604 -291 584 -286 572 -277 ct 559 -268 550 -252 544 -228 ct 490 -236 l 495 -259 503 -278 514 -292 ct -525 -307 542 -318 563 -326 ct 585 -333 610 -337 638 -337 ct 666 -337 689 -334 707 -327 ct -724 -321 737 -312 745 -302 ct 754 -292 759 -280 763 -264 ct 765 -255 766 -238 766 -213 ct -766 -138 l 766 -87 767 -54 769 -40 ct 771 -26 776 -13 783 0 ct 725 0 l 719 -12 715 -26 714 -41 ct -p -709 -166 m 689 -157 658 -150 618 -145 ct 595 -141 579 -138 569 -133 ct 560 -129 552 -123 547 -115 ct -542 -107 539 -99 539 -89 ct 539 -74 545 -62 556 -52 ct 568 -42 584 -37 606 -37 ct -627 -37 646 -41 663 -51 ct 680 -60 692 -73 700 -89 ct 706 -102 709 -121 709 -145 ct -709 -166 l p ef -973 -50 m 981 -1 l 965 2 951 4 939 4 ct 918 4 903 1 891 -6 ct 880 -12 872 -20 868 -31 ct -863 -41 861 -63 861 -97 ct 861 -287 l 820 -287 l 820 -330 l 861 -330 l -861 -412 l 917 -445 l 917 -330 l 973 -330 l 973 -287 l 917 -287 l -917 -94 l 917 -78 918 -68 920 -63 ct 922 -58 925 -55 929 -52 ct 934 -49 940 -48 948 -48 ct -954 -48 963 -49 973 -50 ct p ef -1253 -107 m 1311 -99 l 1302 -66 1285 -40 1260 -21 ct 1236 -2 1204 7 1166 7 ct -1118 7 1080 -8 1052 -37 ct 1023 -67 1009 -109 1009 -162 ct 1009 -218 1024 -261 1052 -291 ct -1081 -322 1118 -337 1163 -337 ct 1207 -337 1243 -322 1271 -292 ct 1299 -262 1313 -220 1313 -166 ct -1313 -163 1313 -158 1312 -151 ct 1067 -151 l 1069 -115 1079 -87 1098 -68 ct -1116 -49 1139 -39 1166 -39 ct 1187 -39 1204 -44 1219 -55 ct 1233 -66 1245 -83 1253 -107 ct -p -1070 -197 m 1254 -197 l 1251 -225 1244 -245 1233 -259 ct 1215 -280 1192 -291 1164 -291 ct -1138 -291 1116 -283 1099 -265 ct 1082 -248 1072 -226 1070 -197 ct p ef -1379 0 m 1379 -330 l 1429 -330 l 1429 -280 l 1442 -303 1454 -318 1465 -326 ct -1476 -333 1488 -337 1501 -337 ct 1520 -337 1539 -331 1558 -319 ct 1539 -267 l -1525 -275 1512 -279 1498 -279 ct 1486 -279 1475 -276 1465 -268 ct 1455 -261 1448 -251 1444 -238 ct -1438 -218 1435 -196 1435 -173 ct 1435 0 l 1379 0 l p ef -pom -pum -504 7802 t -257 -121 m 312 -114 l 306 -76 290 -46 266 -25 ct 241 -4 211 7 175 7 ct 130 7 93 -8 66 -37 ct -39 -67 25 -109 25 -164 ct 25 -199 31 -230 42 -257 ct 54 -284 72 -304 96 -317 ct -120 -330 147 -337 175 -337 ct 211 -337 240 -328 263 -310 ct 285 -292 300 -266 306 -233 ct -252 -224 l 247 -247 238 -263 225 -274 ct 212 -286 196 -291 177 -291 ct 149 -291 126 -281 109 -261 ct -91 -241 82 -209 82 -165 ct 82 -121 91 -89 108 -69 ct 125 -49 147 -39 174 -39 ct -196 -39 214 -46 229 -59 ct 244 -72 253 -93 257 -121 ct p ef -339 -165 m 339 -226 356 -271 390 -301 ct 418 -325 453 -337 494 -337 ct 539 -337 576 -322 604 -293 ct -633 -263 648 -222 648 -170 ct 648 -127 641 -94 629 -70 ct 616 -45 597 -27 573 -13 ct -549 0 522 7 494 7 ct 447 7 410 -8 382 -37 ct 353 -67 339 -110 339 -165 ct p -396 -165 m 396 -123 406 -91 424 -70 ct 442 -49 466 -39 494 -39 ct 521 -39 544 -49 563 -71 ct -581 -92 590 -124 590 -167 ct 590 -208 581 -239 562 -260 ct 544 -281 521 -291 494 -291 ct -466 -291 442 -281 424 -260 ct 406 -239 396 -207 396 -165 ct p ef -711 0 m 711 -330 l 761 -330 l 761 -283 l 785 -319 820 -337 866 -337 ct -886 -337 904 -333 921 -326 ct 937 -319 950 -310 958 -298 ct 966 -287 972 -273 975 -257 ct -977 -247 978 -229 978 -203 ct 978 0 l 923 0 l 923 -200 l 923 -223 920 -240 916 -252 ct -912 -263 904 -272 893 -279 ct 882 -285 869 -289 854 -289 ct 830 -289 810 -281 793 -266 ct -775 -251 767 -222 767 -180 ct 767 0 l 711 0 l p ef -1277 -121 m 1332 -114 l 1326 -76 1310 -46 1286 -25 ct 1261 -4 1231 7 1195 7 ct -1150 7 1113 -8 1086 -37 ct 1059 -67 1045 -109 1045 -164 ct 1045 -199 1051 -230 1062 -257 ct -1074 -284 1092 -304 1116 -317 ct 1140 -330 1167 -337 1195 -337 ct 1231 -337 1260 -328 1283 -310 ct -1305 -292 1320 -266 1326 -233 ct 1272 -224 l 1267 -247 1258 -263 1245 -274 ct -1232 -286 1216 -291 1197 -291 ct 1169 -291 1146 -281 1129 -261 ct 1111 -241 1102 -209 1102 -165 ct -1102 -121 1111 -89 1128 -69 ct 1145 -49 1167 -39 1194 -39 ct 1216 -39 1234 -46 1249 -59 ct -1264 -72 1273 -93 1277 -121 ct p ef -1605 -107 m 1663 -99 l 1654 -66 1637 -40 1612 -21 ct 1588 -2 1556 7 1518 7 ct -1470 7 1432 -8 1404 -37 ct 1375 -67 1361 -109 1361 -162 ct 1361 -218 1376 -261 1404 -291 ct -1433 -322 1470 -337 1515 -337 ct 1559 -337 1595 -322 1623 -292 ct 1651 -262 1665 -220 1665 -166 ct -1665 -163 1665 -158 1664 -151 ct 1419 -151 l 1421 -115 1431 -87 1450 -68 ct -1468 -49 1491 -39 1518 -39 ct 1539 -39 1556 -44 1571 -55 ct 1585 -66 1597 -83 1605 -107 ct -p -1422 -197 m 1606 -197 l 1603 -225 1596 -245 1585 -259 ct 1567 -280 1544 -291 1516 -291 ct -1490 -291 1468 -283 1451 -265 ct 1434 -248 1424 -226 1422 -197 ct p ef -1731 0 m 1731 -330 l 1781 -330 l 1781 -283 l 1805 -319 1840 -337 1886 -337 ct -1906 -337 1924 -333 1941 -326 ct 1957 -319 1970 -310 1978 -298 ct 1986 -287 1992 -273 1995 -257 ct -1997 -247 1998 -229 1998 -203 ct 1998 0 l 1943 0 l 1943 -200 l 1943 -223 1940 -240 1936 -252 ct -1932 -263 1924 -272 1913 -279 ct 1902 -285 1889 -289 1874 -289 ct 1850 -289 1830 -281 1813 -266 ct -1795 -251 1787 -222 1787 -180 ct 1787 0 l 1731 0 l p ef -2204 -50 m 2212 -1 l 2196 2 2182 4 2170 4 ct 2149 4 2134 1 2122 -6 ct 2111 -12 2103 -20 2099 -31 ct -2094 -41 2092 -63 2092 -97 ct 2092 -287 l 2051 -287 l 2051 -330 l 2092 -330 l -2092 -412 l 2148 -445 l 2148 -330 l 2204 -330 l 2204 -287 l 2148 -287 l -2148 -94 l 2148 -78 2149 -68 2151 -63 ct 2153 -58 2156 -55 2160 -52 ct 2165 -49 2171 -48 2179 -48 ct -2185 -48 2194 -49 2204 -50 ct p ef -2259 0 m 2259 -330 l 2309 -330 l 2309 -280 l 2322 -303 2334 -318 2345 -326 ct -2356 -333 2368 -337 2381 -337 ct 2400 -337 2419 -331 2438 -319 ct 2419 -267 l -2405 -275 2392 -279 2378 -279 ct 2366 -279 2355 -276 2345 -268 ct 2335 -261 2328 -251 2324 -238 ct -2318 -218 2315 -196 2315 -173 ct 2315 0 l 2259 0 l p ef -2687 -41 m 2666 -24 2646 -11 2627 -4 ct 2608 3 2587 7 2566 7 ct 2529 7 2502 -2 2482 -20 ct -2463 -37 2453 -60 2453 -87 ct 2453 -103 2457 -118 2464 -131 ct 2471 -145 2481 -156 2493 -164 ct -2505 -172 2518 -178 2533 -182 ct 2544 -185 2560 -188 2583 -190 ct 2628 -196 2661 -202 2682 -209 ct -2682 -217 2682 -222 2682 -224 ct 2682 -247 2677 -263 2667 -272 ct 2652 -285 2631 -291 2603 -291 ct -2577 -291 2557 -286 2545 -277 ct 2532 -268 2523 -252 2517 -228 ct 2463 -236 l -2468 -259 2476 -278 2487 -292 ct 2498 -307 2515 -318 2536 -326 ct 2558 -333 2583 -337 2611 -337 ct -2639 -337 2662 -334 2680 -327 ct 2697 -321 2710 -312 2718 -302 ct 2727 -292 2732 -280 2736 -264 ct -2738 -255 2739 -238 2739 -213 ct 2739 -138 l 2739 -87 2740 -54 2742 -40 ct -2744 -26 2749 -13 2756 0 ct 2698 0 l 2692 -12 2688 -26 2687 -41 ct p -2682 -166 m 2662 -157 2631 -150 2591 -145 ct 2568 -141 2552 -138 2542 -133 ct -2533 -129 2525 -123 2520 -115 ct 2515 -107 2512 -99 2512 -89 ct 2512 -74 2518 -62 2529 -52 ct -2541 -42 2557 -37 2579 -37 ct 2600 -37 2619 -41 2636 -51 ct 2653 -60 2665 -73 2673 -89 ct -2679 -102 2682 -121 2682 -145 ct 2682 -166 l p ef -2945 -50 m 2953 -1 l 2937 2 2923 4 2911 4 ct 2890 4 2875 1 2863 -6 ct 2852 -12 2844 -20 2840 -31 ct -2835 -41 2833 -63 2833 -97 ct 2833 -287 l 2792 -287 l 2792 -330 l 2833 -330 l -2833 -412 l 2889 -445 l 2889 -330 l 2945 -330 l 2945 -287 l 2889 -287 l -2889 -94 l 2889 -78 2890 -68 2892 -63 ct 2894 -58 2897 -55 2901 -52 ct 2906 -49 2912 -48 2920 -48 ct -2926 -48 2935 -49 2945 -50 ct p ef -3001 -391 m 3001 -455 l 3057 -455 l 3057 -391 l 3001 -391 l p -3001 0 m 3001 -330 l 3057 -330 l 3057 0 l 3001 0 l p ef -3120 -165 m 3120 -226 3137 -271 3171 -301 ct 3199 -325 3234 -337 3275 -337 ct -3320 -337 3357 -322 3385 -293 ct 3414 -263 3429 -222 3429 -170 ct 3429 -127 3422 -94 3410 -70 ct -3397 -45 3378 -27 3354 -13 ct 3330 0 3303 7 3275 7 ct 3228 7 3191 -8 3163 -37 ct -3134 -67 3120 -110 3120 -165 ct p -3177 -165 m 3177 -123 3187 -91 3205 -70 ct 3223 -49 3247 -39 3275 -39 ct 3302 -39 3325 -49 3344 -71 ct -3362 -92 3371 -124 3371 -167 ct 3371 -208 3362 -239 3343 -260 ct 3325 -281 3302 -291 3275 -291 ct -3247 -291 3223 -281 3205 -260 ct 3187 -239 3177 -207 3177 -165 ct p ef -3492 0 m 3492 -330 l 3542 -330 l 3542 -283 l 3566 -319 3601 -337 3647 -337 ct -3667 -337 3685 -333 3702 -326 ct 3718 -319 3731 -310 3739 -298 ct 3747 -287 3753 -273 3756 -257 ct -3758 -247 3759 -229 3759 -203 ct 3759 0 l 3704 0 l 3704 -200 l 3704 -223 3701 -240 3697 -252 ct -3693 -263 3685 -272 3674 -279 ct 3663 -285 3650 -289 3635 -289 ct 3611 -289 3591 -281 3574 -266 ct -3556 -251 3548 -222 3548 -180 ct 3548 0 l 3492 0 l p ef -3822 -99 m 3877 -107 l 3880 -85 3888 -68 3903 -57 ct 3917 -45 3937 -39 3962 -39 ct -3988 -39 4007 -44 4019 -55 ct 4031 -65 4038 -77 4038 -91 ct 4038 -104 4032 -114 4021 -121 ct -4014 -126 3995 -132 3964 -140 ct 3923 -150 3895 -159 3879 -167 ct 3863 -174 3851 -185 3843 -198 ct -3835 -211 3831 -226 3831 -242 ct 3831 -257 3834 -270 3841 -283 ct 3848 -295 3857 -306 3868 -314 ct -3877 -320 3889 -326 3904 -330 ct 3919 -335 3935 -337 3952 -337 ct 3978 -337 4001 -333 4020 -326 ct -4040 -318 4054 -308 4063 -296 ct 4073 -283 4079 -266 4083 -245 ct 4028 -237 l -4026 -254 4018 -267 4006 -277 ct 3995 -286 3978 -291 3956 -291 ct 3930 -291 3912 -287 3901 -278 ct -3890 -270 3885 -260 3885 -249 ct 3885 -241 3887 -235 3892 -229 ct 3896 -223 3903 -218 3913 -214 ct -3919 -212 3935 -207 3962 -200 ct 4002 -189 4029 -181 4045 -174 ct 4061 -167 4073 -158 4082 -145 ct -4091 -132 4095 -116 4095 -97 ct 4095 -79 4090 -61 4079 -45 ct 4068 -28 4052 -15 4032 -6 ct -4011 3 3988 7 3962 7 ct 3920 7 3887 -2 3864 -20 ct 3842 -37 3828 -64 3822 -99 ct -p ef -pom -pum -23209 4052 t -29 -146 m 85 -151 l 88 -128 94 -109 104 -95 ct 114 -80 129 -68 150 -59 ct -170 -51 194 -46 220 -46 ct 242 -46 263 -49 280 -56 ct 298 -63 311 -72 320 -84 ct -328 -96 332 -109 332 -123 ct 332 -137 328 -150 320 -161 ct 312 -171 298 -180 279 -187 ct -267 -192 240 -200 198 -210 ct 156 -220 127 -229 110 -238 ct 89 -249 73 -263 62 -280 ct -51 -297 46 -316 46 -337 ct 46 -360 52 -381 65 -401 ct 78 -421 97 -436 122 -447 ct -147 -457 175 -462 206 -462 ct 240 -462 269 -457 295 -446 ct 321 -435 341 -419 354 -398 ct -368 -377 376 -353 377 -326 ct 319 -322 l 316 -351 305 -372 288 -387 ct 270 -402 243 -409 208 -409 ct -172 -409 145 -402 129 -389 ct 112 -376 104 -360 104 -341 ct 104 -324 110 -311 122 -301 ct -133 -290 163 -279 212 -268 ct 261 -257 295 -247 313 -239 ct 339 -227 359 -211 371 -193 ct -384 -174 390 -153 390 -128 ct 390 -104 383 -81 370 -60 ct 356 -38 336 -22 310 -10 ct -284 2 255 8 222 8 ct 181 8 147 2 119 -10 ct 91 -22 69 -40 53 -64 ct 38 -88 29 -115 29 -146 ct -p ef -444 -165 m 444 -226 461 -271 495 -301 ct 523 -325 558 -337 599 -337 ct 644 -337 681 -322 709 -293 ct -738 -263 753 -222 753 -170 ct 753 -127 746 -94 734 -70 ct 721 -45 702 -27 678 -13 ct -654 0 627 7 599 7 ct 552 7 515 -8 487 -37 ct 458 -67 444 -110 444 -165 ct p -501 -165 m 501 -123 511 -91 529 -70 ct 547 -49 571 -39 599 -39 ct 626 -39 649 -49 668 -71 ct -686 -92 695 -124 695 -167 ct 695 -208 686 -239 667 -260 ct 649 -281 626 -291 599 -291 ct -571 -291 547 -281 529 -260 ct 511 -239 501 -207 501 -165 ct p ef -1033 0 m 1033 -49 l 1007 -12 972 7 928 7 ct 909 7 891 3 874 -4 ct 857 -12 844 -21 836 -32 ct -828 -44 822 -57 819 -74 ct 817 -85 816 -102 816 -126 ct 816 -330 l 871 -330 l -871 -147 l 871 -118 873 -98 875 -88 ct 878 -74 886 -62 897 -54 ct 909 -45 923 -41 939 -41 ct -956 -41 972 -45 986 -54 ct 1001 -63 1012 -74 1018 -89 ct 1024 -104 1027 -125 1027 -153 ct -1027 -330 l 1083 -330 l 1083 0 l 1033 0 l p ef -1167 0 m 1167 -330 l 1217 -330 l 1217 -280 l 1230 -303 1242 -318 1253 -326 ct -1264 -333 1276 -337 1289 -337 ct 1308 -337 1327 -331 1346 -319 ct 1327 -267 l -1313 -275 1300 -279 1286 -279 ct 1274 -279 1263 -276 1253 -268 ct 1243 -261 1236 -251 1232 -238 ct -1226 -218 1223 -196 1223 -173 ct 1223 0 l 1167 0 l p ef -1595 -121 m 1650 -114 l 1644 -76 1628 -46 1604 -25 ct 1579 -4 1549 7 1513 7 ct -1468 7 1431 -8 1404 -37 ct 1377 -67 1363 -109 1363 -164 ct 1363 -199 1369 -230 1380 -257 ct -1392 -284 1410 -304 1434 -317 ct 1458 -330 1485 -337 1513 -337 ct 1549 -337 1578 -328 1601 -310 ct -1623 -292 1638 -266 1644 -233 ct 1590 -224 l 1585 -247 1576 -263 1563 -274 ct -1550 -286 1534 -291 1515 -291 ct 1487 -291 1464 -281 1447 -261 ct 1429 -241 1420 -209 1420 -165 ct -1420 -121 1429 -89 1446 -69 ct 1463 -49 1485 -39 1512 -39 ct 1534 -39 1552 -46 1567 -59 ct -1582 -72 1591 -93 1595 -121 ct p ef -1922 -107 m 1980 -99 l 1971 -66 1954 -40 1929 -21 ct 1905 -2 1873 7 1835 7 ct -1787 7 1749 -8 1721 -37 ct 1692 -67 1678 -109 1678 -162 ct 1678 -218 1693 -261 1721 -291 ct -1750 -322 1787 -337 1832 -337 ct 1876 -337 1912 -322 1940 -292 ct 1968 -262 1982 -220 1982 -166 ct -1982 -163 1982 -158 1981 -151 ct 1736 -151 l 1738 -115 1748 -87 1767 -68 ct -1785 -49 1808 -39 1835 -39 ct 1856 -39 1873 -44 1888 -55 ct 1902 -66 1914 -83 1922 -107 ct -p -1739 -197 m 1923 -197 l 1920 -225 1913 -245 1902 -259 ct 1884 -280 1861 -291 1833 -291 ct -1807 -291 1785 -283 1768 -265 ct 1751 -248 1741 -226 1739 -197 ct p ef -2348 -50 m 2356 -1 l 2340 2 2326 4 2314 4 ct 2293 4 2278 1 2266 -6 ct 2255 -12 2247 -20 2243 -31 ct -2238 -41 2236 -63 2236 -97 ct 2236 -287 l 2195 -287 l 2195 -330 l 2236 -330 l -2236 -412 l 2292 -445 l 2292 -330 l 2348 -330 l 2348 -287 l 2292 -287 l -2292 -94 l 2292 -78 2293 -68 2295 -63 ct 2297 -58 2300 -55 2304 -52 ct 2309 -49 2315 -48 2323 -48 ct -2329 -48 2338 -49 2348 -50 ct p ef -2629 -107 m 2687 -99 l 2678 -66 2661 -40 2636 -21 ct 2612 -2 2580 7 2542 7 ct -2494 7 2456 -8 2428 -37 ct 2399 -67 2385 -109 2385 -162 ct 2385 -218 2400 -261 2428 -291 ct -2457 -322 2494 -337 2539 -337 ct 2583 -337 2619 -322 2647 -292 ct 2675 -262 2689 -220 2689 -166 ct -2689 -163 2689 -158 2688 -151 ct 2443 -151 l 2445 -115 2455 -87 2474 -68 ct -2492 -49 2515 -39 2542 -39 ct 2563 -39 2580 -44 2595 -55 ct 2609 -66 2621 -83 2629 -107 ct -p -2446 -197 m 2630 -197 l 2627 -225 2620 -245 2609 -259 ct 2591 -280 2568 -291 2540 -291 ct -2514 -291 2492 -283 2475 -265 ct 2458 -248 2448 -226 2446 -197 ct p ef -2755 0 m 2755 -330 l 2805 -330 l 2805 -280 l 2818 -303 2830 -318 2841 -326 ct -2852 -333 2864 -337 2877 -337 ct 2896 -337 2915 -331 2934 -319 ct 2915 -267 l -2901 -275 2888 -279 2874 -279 ct 2862 -279 2851 -276 2841 -268 ct 2831 -261 2824 -251 2820 -238 ct -2814 -218 2811 -196 2811 -173 ct 2811 0 l 2755 0 l p ef -2967 0 m 2967 -330 l 3017 -330 l 3017 -283 l 3027 -299 3041 -312 3058 -322 ct -3075 -332 3095 -337 3117 -337 ct 3141 -337 3161 -332 3177 -322 ct 3192 -312 3203 -297 3210 -279 ct -3236 -318 3270 -337 3311 -337 ct 3344 -337 3369 -328 3387 -310 ct 3404 -292 3413 -264 3413 -226 ct -3413 0 l 3358 0 l 3358 -208 l 3358 -230 3356 -246 3352 -256 ct 3349 -266 3342 -274 3332 -280 ct -3323 -286 3312 -289 3299 -289 ct 3276 -289 3257 -281 3241 -265 ct 3226 -250 3218 -225 3218 -191 ct -3218 0 l 3163 0 l 3163 -214 l 3163 -239 3158 -258 3149 -270 ct 3140 -282 3125 -289 3104 -289 ct -3089 -289 3074 -284 3061 -276 ct 3047 -268 3038 -256 3032 -240 ct 3026 -224 3023 -201 3023 -171 ct -3023 0 l 2967 0 l p ef -3474 -99 m 3529 -107 l 3532 -85 3540 -68 3555 -57 ct 3569 -45 3589 -39 3614 -39 ct -3640 -39 3659 -44 3671 -55 ct 3683 -65 3690 -77 3690 -91 ct 3690 -104 3684 -114 3673 -121 ct -3666 -126 3647 -132 3616 -140 ct 3575 -150 3547 -159 3531 -167 ct 3515 -174 3503 -185 3495 -198 ct -3487 -211 3483 -226 3483 -242 ct 3483 -257 3486 -270 3493 -283 ct 3500 -295 3509 -306 3520 -314 ct -3529 -320 3541 -326 3556 -330 ct 3571 -335 3587 -337 3604 -337 ct 3630 -337 3653 -333 3672 -326 ct -3692 -318 3706 -308 3715 -296 ct 3725 -283 3731 -266 3735 -245 ct 3680 -237 l -3678 -254 3670 -267 3658 -277 ct 3647 -286 3630 -291 3608 -291 ct 3582 -291 3564 -287 3553 -278 ct -3542 -270 3537 -260 3537 -249 ct 3537 -241 3539 -235 3544 -229 ct 3548 -223 3555 -218 3565 -214 ct -3571 -212 3587 -207 3614 -200 ct 3654 -189 3681 -181 3697 -174 ct 3713 -167 3725 -158 3734 -145 ct -3743 -132 3747 -116 3747 -97 ct 3747 -79 3742 -61 3731 -45 ct 3720 -28 3704 -15 3684 -6 ct -3663 3 3640 7 3614 7 ct 3572 7 3539 -2 3516 -20 ct 3494 -37 3480 -64 3474 -99 ct -p ef -pom -pum -23209 4814 t -55 0 m 55 -286 l 6 -286 l 6 -329 l 55 -329 l 55 -364 l 55 -387 57 -403 61 -414 ct -66 -428 76 -440 89 -449 ct 103 -458 122 -462 146 -462 ct 162 -462 179 -460 198 -457 ct -190 -408 l 178 -410 168 -411 157 -411 ct 140 -411 128 -407 121 -400 ct 114 -393 111 -379 111 -360 ct -111 -329 l 175 -329 l 175 -286 l 111 -286 l 111 0 l 55 0 l p ef -199 -165 m 199 -226 216 -271 250 -301 ct 278 -325 313 -337 354 -337 ct 399 -337 436 -322 464 -293 ct -493 -263 508 -222 508 -170 ct 508 -127 501 -94 489 -70 ct 476 -45 457 -27 433 -13 ct -409 0 382 7 354 7 ct 307 7 270 -8 242 -37 ct 213 -67 199 -110 199 -165 ct p -256 -165 m 256 -123 266 -91 284 -70 ct 302 -49 326 -39 354 -39 ct 381 -39 404 -49 423 -71 ct -441 -92 450 -124 450 -167 ct 450 -208 441 -239 422 -260 ct 404 -281 381 -291 354 -291 ct -326 -291 302 -281 284 -260 ct 266 -239 256 -207 256 -165 ct p ef -570 0 m 570 -330 l 620 -330 l 620 -280 l 633 -303 645 -318 656 -326 ct -667 -333 679 -337 692 -337 ct 711 -337 730 -331 749 -319 ct 730 -267 l 716 -275 703 -279 689 -279 ct -677 -279 666 -276 656 -268 ct 646 -261 639 -251 635 -238 ct 629 -218 626 -196 626 -173 ct -626 0 l 570 0 l p ef -961 126 m 961 -330 l 1012 -330 l 1012 -287 l 1024 -304 1037 -316 1052 -324 ct -1067 -333 1086 -337 1107 -337 ct 1135 -337 1160 -330 1182 -315 ct 1203 -301 1219 -280 1230 -254 ct -1241 -228 1247 -199 1247 -167 ct 1247 -134 1241 -103 1229 -77 ct 1217 -50 1199 -29 1176 -15 ct -1153 0 1129 7 1103 7 ct 1085 7 1068 3 1053 -5 ct 1038 -13 1026 -23 1017 -35 ct -1017 126 l 961 126 l p -1011 -163 m 1011 -121 1020 -90 1037 -69 ct 1054 -49 1075 -39 1099 -39 ct 1124 -39 1146 -49 1163 -70 ct -1181 -91 1190 -124 1190 -168 ct 1190 -210 1181 -241 1164 -262 ct 1147 -283 1126 -293 1102 -293 ct -1078 -293 1057 -282 1039 -260 ct 1021 -238 1011 -205 1011 -163 ct p ef -1291 -165 m 1291 -226 1308 -271 1342 -301 ct 1370 -325 1405 -337 1446 -337 ct -1491 -337 1528 -322 1556 -293 ct 1585 -263 1600 -222 1600 -170 ct 1600 -127 1593 -94 1581 -70 ct -1568 -45 1549 -27 1525 -13 ct 1501 0 1474 7 1446 7 ct 1399 7 1362 -8 1334 -37 ct -1305 -67 1291 -110 1291 -165 ct p -1348 -165 m 1348 -123 1358 -91 1376 -70 ct 1394 -49 1418 -39 1446 -39 ct 1473 -39 1496 -49 1515 -71 ct -1533 -92 1542 -124 1542 -167 ct 1542 -208 1533 -239 1514 -260 ct 1496 -281 1473 -291 1446 -291 ct -1418 -291 1394 -281 1376 -260 ct 1358 -239 1348 -207 1348 -165 ct p ef -1662 0 m 1662 -455 l 1717 -455 l 1717 0 l 1662 0 l p ef -1800 127 m 1794 75 l 1806 78 1817 80 1826 80 ct 1839 80 1848 78 1856 73 ct -1863 69 1869 64 1874 56 ct 1878 51 1883 37 1891 15 ct 1892 11 1894 7 1896 1 ct -1771 -330 l 1831 -330 l 1900 -139 l 1909 -114 1917 -89 1924 -62 ct 1930 -88 1938 -113 1947 -137 ct -2017 -330 l 2073 -330 l 1948 6 l 1934 42 1924 67 1916 81 ct 1906 99 1895 113 1882 121 ct -1869 130 1854 134 1836 134 ct 1826 134 1814 132 1800 127 ct p ef -2100 -165 m 2100 -226 2117 -271 2151 -301 ct 2179 -325 2214 -337 2255 -337 ct -2300 -337 2337 -322 2365 -293 ct 2394 -263 2409 -222 2409 -170 ct 2409 -127 2402 -94 2390 -70 ct -2377 -45 2358 -27 2334 -13 ct 2310 0 2283 7 2255 7 ct 2208 7 2171 -8 2143 -37 ct -2114 -67 2100 -110 2100 -165 ct p -2157 -165 m 2157 -123 2167 -91 2185 -70 ct 2203 -49 2227 -39 2255 -39 ct 2282 -39 2305 -49 2324 -71 ct -2342 -92 2351 -124 2351 -167 ct 2351 -208 2342 -239 2323 -260 ct 2305 -281 2282 -291 2255 -291 ct -2227 -291 2203 -281 2185 -260 ct 2167 -239 2157 -207 2157 -165 ct p ef -2471 0 m 2471 -455 l 2526 -455 l 2526 0 l 2471 0 l p ef -2626 0 m 2626 -64 l 2690 -64 l 2690 0 l 2690 23 2686 42 2678 57 ct 2669 71 2656 82 2638 90 ct -2623 66 l 2635 61 2643 53 2649 43 ct 2654 33 2657 19 2658 0 ct 2626 0 l p ef -pom -pum -23209 5576 t -42 -391 m 42 -455 l 98 -455 l 98 -391 l 42 -391 l p -42 0 m 42 -330 l 98 -330 l 98 0 l 42 0 l p ef -160 -99 m 215 -107 l 218 -85 226 -68 241 -57 ct 255 -45 275 -39 300 -39 ct -326 -39 345 -44 357 -55 ct 369 -65 376 -77 376 -91 ct 376 -104 370 -114 359 -121 ct -352 -126 333 -132 302 -140 ct 261 -150 233 -159 217 -167 ct 201 -174 189 -185 181 -198 ct -173 -211 169 -226 169 -242 ct 169 -257 172 -270 179 -283 ct 186 -295 195 -306 206 -314 ct -215 -320 227 -326 242 -330 ct 257 -335 273 -337 290 -337 ct 316 -337 339 -333 358 -326 ct -378 -318 392 -308 401 -296 ct 411 -283 417 -266 421 -245 ct 366 -237 l 364 -254 356 -267 344 -277 ct -333 -286 316 -291 294 -291 ct 268 -291 250 -287 239 -278 ct 228 -270 223 -260 223 -249 ct -223 -241 225 -235 230 -229 ct 234 -223 241 -218 251 -214 ct 257 -212 273 -207 300 -200 ct -340 -189 367 -181 383 -174 ct 399 -167 411 -158 420 -145 ct 429 -132 433 -116 433 -97 ct -433 -79 428 -61 417 -45 ct 406 -28 390 -15 370 -6 ct 349 3 326 7 300 7 ct 258 7 225 -2 202 -20 ct -180 -37 166 -64 160 -99 ct p ef -478 -165 m 478 -226 495 -271 529 -301 ct 557 -325 592 -337 633 -337 ct 678 -337 715 -322 743 -293 ct -772 -263 787 -222 787 -170 ct 787 -127 780 -94 768 -70 ct 755 -45 736 -27 712 -13 ct -688 0 661 7 633 7 ct 586 7 549 -8 521 -37 ct 492 -67 478 -110 478 -165 ct p -535 -165 m 535 -123 545 -91 563 -70 ct 581 -49 605 -39 633 -39 ct 660 -39 683 -49 702 -71 ct -720 -92 729 -124 729 -167 ct 729 -208 720 -239 701 -260 ct 683 -281 660 -291 633 -291 ct -605 -291 581 -281 563 -260 ct 545 -239 535 -207 535 -165 ct p ef -1066 -121 m 1121 -114 l 1115 -76 1099 -46 1075 -25 ct 1050 -4 1020 7 984 7 ct -939 7 902 -8 875 -37 ct 848 -67 834 -109 834 -164 ct 834 -199 840 -230 851 -257 ct -863 -284 881 -304 905 -317 ct 929 -330 956 -337 984 -337 ct 1020 -337 1049 -328 1072 -310 ct -1094 -292 1109 -266 1115 -233 ct 1061 -224 l 1056 -247 1047 -263 1034 -274 ct -1021 -286 1005 -291 986 -291 ct 958 -291 935 -281 918 -261 ct 900 -241 891 -209 891 -165 ct -891 -121 900 -89 917 -69 ct 934 -49 956 -39 983 -39 ct 1005 -39 1023 -46 1038 -59 ct -1053 -72 1062 -93 1066 -121 ct p ef -1165 127 m 1159 75 l 1171 78 1182 80 1191 80 ct 1204 80 1213 78 1221 73 ct -1228 69 1234 64 1239 56 ct 1243 51 1248 37 1256 15 ct 1257 11 1259 7 1261 1 ct -1136 -330 l 1196 -330 l 1265 -139 l 1274 -114 1282 -89 1289 -62 ct 1295 -88 1303 -113 1312 -137 ct -1382 -330 l 1438 -330 l 1313 6 l 1299 42 1289 67 1281 81 ct 1271 99 1260 113 1247 121 ct -1234 130 1219 134 1201 134 ct 1191 134 1179 132 1165 127 ct p ef -1701 -41 m 1680 -24 1660 -11 1641 -4 ct 1622 3 1601 7 1580 7 ct 1543 7 1516 -2 1496 -20 ct -1477 -37 1467 -60 1467 -87 ct 1467 -103 1471 -118 1478 -131 ct 1485 -145 1495 -156 1507 -164 ct -1519 -172 1532 -178 1547 -182 ct 1558 -185 1574 -188 1597 -190 ct 1642 -196 1675 -202 1696 -209 ct -1696 -217 1696 -222 1696 -224 ct 1696 -247 1691 -263 1681 -272 ct 1666 -285 1645 -291 1617 -291 ct -1591 -291 1571 -286 1559 -277 ct 1546 -268 1537 -252 1531 -228 ct 1477 -236 l -1482 -259 1490 -278 1501 -292 ct 1512 -307 1529 -318 1550 -326 ct 1572 -333 1597 -337 1625 -337 ct -1653 -337 1676 -334 1694 -327 ct 1711 -321 1724 -312 1732 -302 ct 1741 -292 1746 -280 1750 -264 ct -1752 -255 1753 -238 1753 -213 ct 1753 -138 l 1753 -87 1754 -54 1756 -40 ct -1758 -26 1763 -13 1770 0 ct 1712 0 l 1706 -12 1702 -26 1701 -41 ct p -1696 -166 m 1676 -157 1645 -150 1605 -145 ct 1582 -141 1566 -138 1556 -133 ct -1547 -129 1539 -123 1534 -115 ct 1529 -107 1526 -99 1526 -89 ct 1526 -74 1532 -62 1543 -52 ct -1555 -42 1571 -37 1593 -37 ct 1614 -37 1633 -41 1650 -51 ct 1667 -60 1679 -73 1687 -89 ct -1693 -102 1696 -121 1696 -145 ct 1696 -166 l p ef -1837 0 m 1837 -330 l 1887 -330 l 1887 -283 l 1911 -319 1946 -337 1992 -337 ct -2012 -337 2030 -333 2047 -326 ct 2063 -319 2076 -310 2084 -298 ct 2092 -287 2098 -273 2101 -257 ct -2103 -247 2104 -229 2104 -203 ct 2104 0 l 2049 0 l 2049 -200 l 2049 -223 2046 -240 2042 -252 ct -2038 -263 2030 -272 2019 -279 ct 2008 -285 1995 -289 1980 -289 ct 1956 -289 1936 -281 1919 -266 ct -1901 -251 1893 -222 1893 -180 ct 1893 0 l 1837 0 l p ef -2403 -41 m 2382 -24 2362 -11 2343 -4 ct 2324 3 2303 7 2282 7 ct 2245 7 2218 -2 2198 -20 ct -2179 -37 2169 -60 2169 -87 ct 2169 -103 2173 -118 2180 -131 ct 2187 -145 2197 -156 2209 -164 ct -2221 -172 2234 -178 2249 -182 ct 2260 -185 2276 -188 2299 -190 ct 2344 -196 2377 -202 2398 -209 ct -2398 -217 2398 -222 2398 -224 ct 2398 -247 2393 -263 2383 -272 ct 2368 -285 2347 -291 2319 -291 ct -2293 -291 2273 -286 2261 -277 ct 2248 -268 2239 -252 2233 -228 ct 2179 -236 l -2184 -259 2192 -278 2203 -292 ct 2214 -307 2231 -318 2252 -326 ct 2274 -333 2299 -337 2327 -337 ct -2355 -337 2378 -334 2396 -327 ct 2413 -321 2426 -312 2434 -302 ct 2443 -292 2448 -280 2452 -264 ct -2454 -255 2455 -238 2455 -213 ct 2455 -138 l 2455 -87 2456 -54 2458 -40 ct -2460 -26 2465 -13 2472 0 ct 2414 0 l 2408 -12 2404 -26 2403 -41 ct p -2398 -166 m 2378 -157 2347 -150 2307 -145 ct 2284 -141 2268 -138 2258 -133 ct -2249 -129 2241 -123 2236 -115 ct 2231 -107 2228 -99 2228 -89 ct 2228 -74 2234 -62 2245 -52 ct -2257 -42 2273 -37 2295 -37 ct 2316 -37 2335 -41 2352 -51 ct 2369 -60 2381 -73 2389 -89 ct -2395 -102 2398 -121 2398 -145 ct 2398 -166 l p ef -2662 -50 m 2670 -1 l 2654 2 2640 4 2628 4 ct 2607 4 2592 1 2580 -6 ct 2569 -12 2561 -20 2557 -31 ct -2552 -41 2550 -63 2550 -97 ct 2550 -287 l 2509 -287 l 2509 -330 l 2550 -330 l -2550 -412 l 2606 -445 l 2606 -330 l 2662 -330 l 2662 -287 l 2606 -287 l -2606 -94 l 2606 -78 2607 -68 2609 -63 ct 2611 -58 2614 -55 2618 -52 ct 2623 -49 2629 -48 2637 -48 ct -2643 -48 2652 -49 2662 -50 ct p ef -2942 -107 m 3000 -99 l 2991 -66 2974 -40 2949 -21 ct 2925 -2 2893 7 2855 7 ct -2807 7 2769 -8 2741 -37 ct 2712 -67 2698 -109 2698 -162 ct 2698 -218 2713 -261 2741 -291 ct -2770 -322 2807 -337 2852 -337 ct 2896 -337 2932 -322 2960 -292 ct 2988 -262 3002 -220 3002 -166 ct -3002 -163 3002 -158 3001 -151 ct 2756 -151 l 2758 -115 2768 -87 2787 -68 ct -2805 -49 2828 -39 2855 -39 ct 2876 -39 2893 -44 2908 -55 ct 2922 -66 2934 -83 2942 -107 ct -p -2759 -197 m 2943 -197 l 2940 -225 2933 -245 2922 -259 ct 2904 -280 2881 -291 2853 -291 ct -2827 -291 2805 -283 2788 -265 ct 2771 -248 2761 -226 2759 -197 ct p ef -3083 0 m 3083 -64 l 3147 -64 l 3147 0 l 3147 23 3143 42 3135 57 ct 3126 71 3113 82 3095 90 ct -3080 66 l 3092 61 3100 53 3106 43 ct 3111 33 3114 19 3115 0 ct 3083 0 l p ef -pom -pum -23209 6338 t -103 0 m 2 -330 l 60 -330 l 112 -139 l 131 -69 l 132 -72 138 -95 149 -137 ct -201 -330 l 258 -330 l 308 -138 l 324 -75 l 343 -139 l 399 -330 l -454 -330 l 351 0 l 293 0 l 240 -197 l 228 -253 l 161 0 l 103 0 l -p ef -714 -41 m 693 -24 673 -11 654 -4 ct 635 3 614 7 593 7 ct 556 7 529 -2 509 -20 ct -490 -37 480 -60 480 -87 ct 480 -103 484 -118 491 -131 ct 498 -145 508 -156 520 -164 ct -532 -172 545 -178 560 -182 ct 571 -185 587 -188 610 -190 ct 655 -196 688 -202 709 -209 ct -709 -217 709 -222 709 -224 ct 709 -247 704 -263 694 -272 ct 679 -285 658 -291 630 -291 ct -604 -291 584 -286 572 -277 ct 559 -268 550 -252 544 -228 ct 490 -236 l 495 -259 503 -278 514 -292 ct -525 -307 542 -318 563 -326 ct 585 -333 610 -337 638 -337 ct 666 -337 689 -334 707 -327 ct -724 -321 737 -312 745 -302 ct 754 -292 759 -280 763 -264 ct 765 -255 766 -238 766 -213 ct -766 -138 l 766 -87 767 -54 769 -40 ct 771 -26 776 -13 783 0 ct 725 0 l 719 -12 715 -26 714 -41 ct -p -709 -166 m 689 -157 658 -150 618 -145 ct 595 -141 579 -138 569 -133 ct 560 -129 552 -123 547 -115 ct -542 -107 539 -99 539 -89 ct 539 -74 545 -62 556 -52 ct 568 -42 584 -37 606 -37 ct -627 -37 646 -41 663 -51 ct 680 -60 692 -73 700 -89 ct 706 -102 709 -121 709 -145 ct -709 -166 l p ef -973 -50 m 981 -1 l 965 2 951 4 939 4 ct 918 4 903 1 891 -6 ct 880 -12 872 -20 868 -31 ct -863 -41 861 -63 861 -97 ct 861 -287 l 820 -287 l 820 -330 l 861 -330 l -861 -412 l 917 -445 l 917 -330 l 973 -330 l 973 -287 l 917 -287 l -917 -94 l 917 -78 918 -68 920 -63 ct 922 -58 925 -55 929 -52 ct 934 -49 940 -48 948 -48 ct -954 -48 963 -49 973 -50 ct p ef -1253 -107 m 1311 -99 l 1302 -66 1285 -40 1260 -21 ct 1236 -2 1204 7 1166 7 ct -1118 7 1080 -8 1052 -37 ct 1023 -67 1009 -109 1009 -162 ct 1009 -218 1024 -261 1052 -291 ct -1081 -322 1118 -337 1163 -337 ct 1207 -337 1243 -322 1271 -292 ct 1299 -262 1313 -220 1313 -166 ct -1313 -163 1313 -158 1312 -151 ct 1067 -151 l 1069 -115 1079 -87 1098 -68 ct -1116 -49 1139 -39 1166 -39 ct 1187 -39 1204 -44 1219 -55 ct 1233 -66 1245 -83 1253 -107 ct -p -1070 -197 m 1254 -197 l 1251 -225 1244 -245 1233 -259 ct 1215 -280 1192 -291 1164 -291 ct -1138 -291 1116 -283 1099 -265 ct 1082 -248 1072 -226 1070 -197 ct p ef -1379 0 m 1379 -330 l 1429 -330 l 1429 -280 l 1442 -303 1454 -318 1465 -326 ct -1476 -333 1488 -337 1501 -337 ct 1520 -337 1539 -331 1558 -319 ct 1539 -267 l -1525 -275 1512 -279 1498 -279 ct 1486 -279 1475 -276 1465 -268 ct 1455 -261 1448 -251 1444 -238 ct -1438 -218 1435 -196 1435 -173 ct 1435 0 l 1379 0 l p ef -pom -pum -23209 7100 t -257 -121 m 312 -114 l 306 -76 290 -46 266 -25 ct 241 -4 211 7 175 7 ct 130 7 93 -8 66 -37 ct -39 -67 25 -109 25 -164 ct 25 -199 31 -230 42 -257 ct 54 -284 72 -304 96 -317 ct -120 -330 147 -337 175 -337 ct 211 -337 240 -328 263 -310 ct 285 -292 300 -266 306 -233 ct -252 -224 l 247 -247 238 -263 225 -274 ct 212 -286 196 -291 177 -291 ct 149 -291 126 -281 109 -261 ct -91 -241 82 -209 82 -165 ct 82 -121 91 -89 108 -69 ct 125 -49 147 -39 174 -39 ct -196 -39 214 -46 229 -59 ct 244 -72 253 -93 257 -121 ct p ef -339 -165 m 339 -226 356 -271 390 -301 ct 418 -325 453 -337 494 -337 ct 539 -337 576 -322 604 -293 ct -633 -263 648 -222 648 -170 ct 648 -127 641 -94 629 -70 ct 616 -45 597 -27 573 -13 ct -549 0 522 7 494 7 ct 447 7 410 -8 382 -37 ct 353 -67 339 -110 339 -165 ct p -396 -165 m 396 -123 406 -91 424 -70 ct 442 -49 466 -39 494 -39 ct 521 -39 544 -49 563 -71 ct -581 -92 590 -124 590 -167 ct 590 -208 581 -239 562 -260 ct 544 -281 521 -291 494 -291 ct -466 -291 442 -281 424 -260 ct 406 -239 396 -207 396 -165 ct p ef -711 0 m 711 -330 l 761 -330 l 761 -283 l 785 -319 820 -337 866 -337 ct -886 -337 904 -333 921 -326 ct 937 -319 950 -310 958 -298 ct 966 -287 972 -273 975 -257 ct -977 -247 978 -229 978 -203 ct 978 0 l 923 0 l 923 -200 l 923 -223 920 -240 916 -252 ct -912 -263 904 -272 893 -279 ct 882 -285 869 -289 854 -289 ct 830 -289 810 -281 793 -266 ct -775 -251 767 -222 767 -180 ct 767 0 l 711 0 l p ef -1277 -121 m 1332 -114 l 1326 -76 1310 -46 1286 -25 ct 1261 -4 1231 7 1195 7 ct -1150 7 1113 -8 1086 -37 ct 1059 -67 1045 -109 1045 -164 ct 1045 -199 1051 -230 1062 -257 ct -1074 -284 1092 -304 1116 -317 ct 1140 -330 1167 -337 1195 -337 ct 1231 -337 1260 -328 1283 -310 ct -1305 -292 1320 -266 1326 -233 ct 1272 -224 l 1267 -247 1258 -263 1245 -274 ct -1232 -286 1216 -291 1197 -291 ct 1169 -291 1146 -281 1129 -261 ct 1111 -241 1102 -209 1102 -165 ct -1102 -121 1111 -89 1128 -69 ct 1145 -49 1167 -39 1194 -39 ct 1216 -39 1234 -46 1249 -59 ct -1264 -72 1273 -93 1277 -121 ct p ef -1605 -107 m 1663 -99 l 1654 -66 1637 -40 1612 -21 ct 1588 -2 1556 7 1518 7 ct -1470 7 1432 -8 1404 -37 ct 1375 -67 1361 -109 1361 -162 ct 1361 -218 1376 -261 1404 -291 ct -1433 -322 1470 -337 1515 -337 ct 1559 -337 1595 -322 1623 -292 ct 1651 -262 1665 -220 1665 -166 ct -1665 -163 1665 -158 1664 -151 ct 1419 -151 l 1421 -115 1431 -87 1450 -68 ct -1468 -49 1491 -39 1518 -39 ct 1539 -39 1556 -44 1571 -55 ct 1585 -66 1597 -83 1605 -107 ct -p -1422 -197 m 1606 -197 l 1603 -225 1596 -245 1585 -259 ct 1567 -280 1544 -291 1516 -291 ct -1490 -291 1468 -283 1451 -265 ct 1434 -248 1424 -226 1422 -197 ct p ef -1731 0 m 1731 -330 l 1781 -330 l 1781 -283 l 1805 -319 1840 -337 1886 -337 ct -1906 -337 1924 -333 1941 -326 ct 1957 -319 1970 -310 1978 -298 ct 1986 -287 1992 -273 1995 -257 ct -1997 -247 1998 -229 1998 -203 ct 1998 0 l 1943 0 l 1943 -200 l 1943 -223 1940 -240 1936 -252 ct -1932 -263 1924 -272 1913 -279 ct 1902 -285 1889 -289 1874 -289 ct 1850 -289 1830 -281 1813 -266 ct -1795 -251 1787 -222 1787 -180 ct 1787 0 l 1731 0 l p ef -2204 -50 m 2212 -1 l 2196 2 2182 4 2170 4 ct 2149 4 2134 1 2122 -6 ct 2111 -12 2103 -20 2099 -31 ct -2094 -41 2092 -63 2092 -97 ct 2092 -287 l 2051 -287 l 2051 -330 l 2092 -330 l -2092 -412 l 2148 -445 l 2148 -330 l 2204 -330 l 2204 -287 l 2148 -287 l -2148 -94 l 2148 -78 2149 -68 2151 -63 ct 2153 -58 2156 -55 2160 -52 ct 2165 -49 2171 -48 2179 -48 ct -2185 -48 2194 -49 2204 -50 ct p ef -2259 0 m 2259 -330 l 2309 -330 l 2309 -280 l 2322 -303 2334 -318 2345 -326 ct -2356 -333 2368 -337 2381 -337 ct 2400 -337 2419 -331 2438 -319 ct 2419 -267 l -2405 -275 2392 -279 2378 -279 ct 2366 -279 2355 -276 2345 -268 ct 2335 -261 2328 -251 2324 -238 ct -2318 -218 2315 -196 2315 -173 ct 2315 0 l 2259 0 l p ef -2687 -41 m 2666 -24 2646 -11 2627 -4 ct 2608 3 2587 7 2566 7 ct 2529 7 2502 -2 2482 -20 ct -2463 -37 2453 -60 2453 -87 ct 2453 -103 2457 -118 2464 -131 ct 2471 -145 2481 -156 2493 -164 ct -2505 -172 2518 -178 2533 -182 ct 2544 -185 2560 -188 2583 -190 ct 2628 -196 2661 -202 2682 -209 ct -2682 -217 2682 -222 2682 -224 ct 2682 -247 2677 -263 2667 -272 ct 2652 -285 2631 -291 2603 -291 ct -2577 -291 2557 -286 2545 -277 ct 2532 -268 2523 -252 2517 -228 ct 2463 -236 l -2468 -259 2476 -278 2487 -292 ct 2498 -307 2515 -318 2536 -326 ct 2558 -333 2583 -337 2611 -337 ct -2639 -337 2662 -334 2680 -327 ct 2697 -321 2710 -312 2718 -302 ct 2727 -292 2732 -280 2736 -264 ct -2738 -255 2739 -238 2739 -213 ct 2739 -138 l 2739 -87 2740 -54 2742 -40 ct -2744 -26 2749 -13 2756 0 ct 2698 0 l 2692 -12 2688 -26 2687 -41 ct p -2682 -166 m 2662 -157 2631 -150 2591 -145 ct 2568 -141 2552 -138 2542 -133 ct -2533 -129 2525 -123 2520 -115 ct 2515 -107 2512 -99 2512 -89 ct 2512 -74 2518 -62 2529 -52 ct -2541 -42 2557 -37 2579 -37 ct 2600 -37 2619 -41 2636 -51 ct 2653 -60 2665 -73 2673 -89 ct -2679 -102 2682 -121 2682 -145 ct 2682 -166 l p ef -2945 -50 m 2953 -1 l 2937 2 2923 4 2911 4 ct 2890 4 2875 1 2863 -6 ct 2852 -12 2844 -20 2840 -31 ct -2835 -41 2833 -63 2833 -97 ct 2833 -287 l 2792 -287 l 2792 -330 l 2833 -330 l -2833 -412 l 2889 -445 l 2889 -330 l 2945 -330 l 2945 -287 l 2889 -287 l -2889 -94 l 2889 -78 2890 -68 2892 -63 ct 2894 -58 2897 -55 2901 -52 ct 2906 -49 2912 -48 2920 -48 ct -2926 -48 2935 -49 2945 -50 ct p ef -3001 -391 m 3001 -455 l 3057 -455 l 3057 -391 l 3001 -391 l p -3001 0 m 3001 -330 l 3057 -330 l 3057 0 l 3001 0 l p ef -3120 -165 m 3120 -226 3137 -271 3171 -301 ct 3199 -325 3234 -337 3275 -337 ct -3320 -337 3357 -322 3385 -293 ct 3414 -263 3429 -222 3429 -170 ct 3429 -127 3422 -94 3410 -70 ct -3397 -45 3378 -27 3354 -13 ct 3330 0 3303 7 3275 7 ct 3228 7 3191 -8 3163 -37 ct -3134 -67 3120 -110 3120 -165 ct p -3177 -165 m 3177 -123 3187 -91 3205 -70 ct 3223 -49 3247 -39 3275 -39 ct 3302 -39 3325 -49 3344 -71 ct -3362 -92 3371 -124 3371 -167 ct 3371 -208 3362 -239 3343 -260 ct 3325 -281 3302 -291 3275 -291 ct -3247 -291 3223 -281 3205 -260 ct 3187 -239 3177 -207 3177 -165 ct p ef -3492 0 m 3492 -330 l 3542 -330 l 3542 -283 l 3566 -319 3601 -337 3647 -337 ct -3667 -337 3685 -333 3702 -326 ct 3718 -319 3731 -310 3739 -298 ct 3747 -287 3753 -273 3756 -257 ct -3758 -247 3759 -229 3759 -203 ct 3759 0 l 3704 0 l 3704 -200 l 3704 -223 3701 -240 3697 -252 ct -3693 -263 3685 -272 3674 -279 ct 3663 -285 3650 -289 3635 -289 ct 3611 -289 3591 -281 3574 -266 ct -3556 -251 3548 -222 3548 -180 ct 3548 0 l 3492 0 l p ef -3822 -99 m 3877 -107 l 3880 -85 3888 -68 3903 -57 ct 3917 -45 3937 -39 3962 -39 ct -3988 -39 4007 -44 4019 -55 ct 4031 -65 4038 -77 4038 -91 ct 4038 -104 4032 -114 4021 -121 ct -4014 -126 3995 -132 3964 -140 ct 3923 -150 3895 -159 3879 -167 ct 3863 -174 3851 -185 3843 -198 ct -3835 -211 3831 -226 3831 -242 ct 3831 -257 3834 -270 3841 -283 ct 3848 -295 3857 -306 3868 -314 ct -3877 -320 3889 -326 3904 -330 ct 3919 -335 3935 -337 3952 -337 ct 3978 -337 4001 -333 4020 -326 ct -4040 -318 4054 -308 4063 -296 ct 4073 -283 4079 -266 4083 -245 ct 4028 -237 l -4026 -254 4018 -267 4006 -277 ct 3995 -286 3978 -291 3956 -291 ct 3930 -291 3912 -287 3901 -278 ct -3890 -270 3885 -260 3885 -249 ct 3885 -241 3887 -235 3892 -229 ct 3896 -223 3903 -218 3913 -214 ct -3919 -212 3935 -207 3962 -200 ct 4002 -189 4029 -181 4045 -174 ct 4061 -167 4073 -158 4082 -145 ct -4091 -132 4095 -116 4095 -97 ct 4095 -79 4090 -61 4079 -45 ct 4068 -28 4052 -15 4032 -6 ct -4011 3 3988 7 3962 7 ct 3920 7 3887 -2 3864 -20 ct 3842 -37 3828 -64 3822 -99 ct -p ef -pom -1.000 1.000 1.000 c 15494 4928 m 19495 4928 l 19495 6735 l 15494 6735 l -15494 4928 l p -15494 4928 m 15494 4928 l p -19495 6735 m 19495 6735 l p ef -pum -15744 6025 t -0.003 0.003 0.003 c 369 0 m 369 -60 l 339 -13 294 11 236 11 ct 198 11 163 1 131 -20 ct -100 -41 75 -70 58 -108 ct 40 -145 31 -188 31 -237 ct 31 -284 39 -327 55 -366 ct -71 -405 95 -434 126 -455 ct 158 -475 193 -486 232 -486 ct 261 -486 287 -480 309 -468 ct -331 -455 350 -440 364 -420 ct 364 -656 l 444 -656 l 444 0 l 369 0 l p -114 -237 m 114 -176 127 -131 153 -100 ct 178 -70 209 -55 244 -55 ct 279 -55 309 -70 333 -98 ct -358 -127 370 -171 370 -230 ct 370 -295 358 -343 333 -373 ct 308 -404 277 -419 240 -419 ct -204 -419 174 -404 150 -375 ct 126 -346 114 -300 114 -237 ct p ef -883 -174 m 962 -164 l 953 -109 931 -66 896 -35 ct 860 -4 816 11 764 11 ct -699 11 647 -10 607 -53 ct 568 -95 548 -156 548 -236 ct 548 -287 556 -332 573 -370 ct -590 -409 616 -438 651 -457 ct 686 -476 724 -486 765 -486 ct 816 -486 858 -473 891 -447 ct -924 -421 945 -384 954 -336 ct 876 -323 l 869 -355 855 -379 836 -396 ct 817 -412 795 -420 768 -420 ct -727 -420 694 -405 669 -376 ct 643 -347 631 -301 631 -238 ct 631 -174 643 -128 667 -99 ct -692 -70 724 -55 763 -55 ct 795 -55 821 -65 842 -84 ct 864 -104 877 -134 883 -174 ct -p ef -pom -pum -16718 6410 t -41 0 m 41 -381 l 92 -381 l 292 -82 l 292 -381 l 341 -381 l 341 0 l -289 0 l 89 -299 l 89 0 l 41 0 l p ef -694 -134 m 744 -121 l 734 -80 715 -48 687 -27 ct 660 -5 626 6 586 6 ct 545 6 512 -2 486 -19 ct -461 -36 441 -60 428 -92 ct 414 -123 408 -157 408 -194 ct 408 -234 415 -268 430 -298 ct -445 -327 467 -350 495 -365 ct 523 -380 554 -388 587 -388 ct 625 -388 657 -378 683 -359 ct -709 -340 727 -312 738 -277 ct 688 -265 l 679 -293 666 -313 650 -326 ct 633 -339 612 -345 586 -345 ct -557 -345 532 -338 513 -324 ct 493 -310 479 -291 471 -267 ct 463 -244 459 -219 459 -194 ct -459 -162 464 -133 474 -109 ct 483 -85 498 -67 518 -55 ct 538 -43 559 -37 582 -37 ct -611 -37 634 -45 654 -62 ct 674 -78 687 -102 694 -134 ct p ef -788 -186 m 788 -249 805 -299 839 -334 ct 873 -370 916 -388 970 -388 ct 1005 -388 1037 -380 1065 -363 ct -1093 -346 1115 -323 1130 -293 ct 1145 -263 1152 -228 1152 -190 ct 1152 -152 1144 -117 1129 -87 ct -1113 -56 1091 -33 1062 -18 ct 1034 -2 1003 6 970 6 ct 934 6 902 -3 874 -20 ct 845 -37 824 -61 810 -91 ct -795 -121 788 -153 788 -186 ct p -840 -185 m 840 -139 852 -103 877 -77 ct 901 -50 932 -37 970 -37 ct 1007 -37 1039 -50 1063 -77 ct -1088 -104 1100 -142 1100 -191 ct 1100 -222 1095 -249 1084 -272 ct 1074 -295 1058 -313 1038 -326 ct -1018 -338 995 -345 970 -345 ct 935 -345 904 -332 878 -308 ct 853 -283 840 -242 840 -185 ct -p ef -pom -pum -17891 6025 t -0 11 m 190 -668 l 255 -668 l 65 11 l 0 11 l p ef -623 0 m 623 -60 l 593 -13 548 11 490 11 ct 452 11 417 1 385 -20 ct 354 -41 329 -70 312 -108 ct -294 -145 285 -188 285 -237 ct 285 -284 293 -327 309 -366 ct 325 -405 349 -434 380 -455 ct -412 -475 447 -486 486 -486 ct 515 -486 541 -480 563 -468 ct 585 -455 604 -440 618 -420 ct -618 -656 l 698 -656 l 698 0 l 623 0 l p -368 -237 m 368 -176 381 -131 407 -100 ct 432 -70 463 -55 498 -55 ct 533 -55 563 -70 587 -98 ct -612 -127 624 -171 624 -230 ct 624 -295 612 -343 587 -373 ct 562 -404 531 -419 494 -419 ct -458 -419 428 -404 404 -375 ct 380 -346 368 -300 368 -237 ct p ef -1002 -72 m 1014 -1 l 991 4 971 6 953 6 ct 924 6 901 1 885 -8 ct 869 -17 858 -29 851 -44 ct -845 -59 841 -91 841 -139 ct 841 -413 l 782 -413 l 782 -476 l 841 -476 l -841 -593 l 921 -642 l 921 -476 l 1002 -476 l 1002 -413 l 921 -413 l -921 -135 l 921 -112 923 -97 926 -91 ct 928 -84 933 -79 940 -75 ct 946 -71 955 -69 967 -69 ct -976 -69 988 -70 1002 -72 ct p ef -pom -20674 8593 m 21806 3242 l ps -21847 3050 m 21906 3277 l 21701 3234 l 21847 3050 l p ef -1.000 1.000 1.000 c 19195 4936 m 23196 4936 l 23196 6743 l 19195 6743 l -19195 4936 l p -19195 4936 m 19195 4936 l p -23196 6743 m 23196 6743 l p ef -pum -19445 6033 t -0.003 0.003 0.003 c 369 0 m 369 -60 l 339 -13 294 11 236 11 ct 198 11 163 1 131 -20 ct -100 -41 75 -70 58 -108 ct 40 -145 31 -188 31 -237 ct 31 -284 39 -327 55 -366 ct -71 -405 95 -434 126 -455 ct 158 -475 193 -486 232 -486 ct 261 -486 287 -480 309 -468 ct -331 -455 350 -440 364 -420 ct 364 -656 l 444 -656 l 444 0 l 369 0 l p -114 -237 m 114 -176 127 -131 153 -100 ct 178 -70 209 -55 244 -55 ct 279 -55 309 -70 333 -98 ct -358 -127 370 -171 370 -230 ct 370 -295 358 -343 333 -373 ct 308 -404 277 -419 240 -419 ct -204 -419 174 -404 150 -375 ct 126 -346 114 -300 114 -237 ct p ef -883 -174 m 962 -164 l 953 -109 931 -66 896 -35 ct 860 -4 816 11 764 11 ct -699 11 647 -10 607 -53 ct 568 -95 548 -156 548 -236 ct 548 -287 556 -332 573 -370 ct -590 -409 616 -438 651 -457 ct 686 -476 724 -486 765 -486 ct 816 -486 858 -473 891 -447 ct -924 -421 945 -384 954 -336 ct 876 -323 l 869 -355 855 -379 836 -396 ct 817 -412 795 -420 768 -420 ct -727 -420 694 -405 669 -376 ct 643 -347 631 -301 631 -238 ct 631 -174 643 -128 667 -99 ct -692 -70 724 -55 763 -55 ct 795 -55 821 -65 842 -84 ct 864 -104 877 -134 883 -174 ct -p ef -pom -pum -20419 6418 t -108 0 m 7 -381 l 58 -381 l 116 -131 l 122 -105 128 -79 132 -53 ct 142 -94 148 -117 149 -124 ct -222 -381 l 283 -381 l 337 -188 l 351 -140 361 -95 367 -53 ct 372 -77 378 -105 386 -136 ct -446 -381 l 496 -381 l 392 0 l 343 0 l 263 -290 l 256 -314 252 -329 251 -335 ct -247 -317 243 -302 240 -290 ct 159 0 l 108 0 l p ef -pom -pum -20919 6033 t -0 11 m 190 -668 l 255 -668 l 65 11 l 0 11 l p ef -623 0 m 623 -60 l 593 -13 548 11 490 11 ct 452 11 417 1 385 -20 ct 354 -41 329 -70 312 -108 ct -294 -145 285 -188 285 -237 ct 285 -284 293 -327 309 -366 ct 325 -405 349 -434 380 -455 ct -412 -475 447 -486 486 -486 ct 515 -486 541 -480 563 -468 ct 585 -455 604 -440 618 -420 ct -618 -656 l 698 -656 l 698 0 l 623 0 l p -368 -237 m 368 -176 381 -131 407 -100 ct 432 -70 463 -55 498 -55 ct 533 -55 563 -70 587 -98 ct -612 -127 624 -171 624 -230 ct 624 -295 612 -343 587 -373 ct 562 -404 531 -419 494 -419 ct -458 -419 428 -404 404 -375 ct 380 -346 368 -300 368 -237 ct p ef -1002 -72 m 1014 -1 l 991 4 971 6 953 6 ct 924 6 901 1 885 -8 ct 869 -17 858 -29 851 -44 ct -845 -59 841 -91 841 -139 ct 841 -413 l 782 -413 l 782 -476 l 841 -476 l -841 -593 l 921 -642 l 921 -476 l 1002 -476 l 1002 -413 l 921 -413 l -921 -135 l 921 -112 923 -97 926 -91 ct 928 -84 933 -79 940 -75 ct 946 -71 955 -69 967 -69 ct -976 -69 988 -70 1002 -72 ct p ef -pom -0 20596 t -pom -count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/PU_exercise_4.png b/Content/Figures/PU_exercise_4.png deleted file mode 100644 index 4524928b5d4a1a43034514eddc51d50c893b9943..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 31995 zcmb@tbyQtH@HmJTw}-nvc(@d|;_`5J_u>?a71sw8eYm?9DehjhxD+Yw?p~J9?|XL7 z_wU`!$+>rCl1wI(xw%Oufv76WVxW?s!oa{_$jeEo!@$4;U|`_nkm27ceO@%H?=J)! zaV2pWn7TN$7c<0n9QKR4tOU%D-(-jH2$hALx)KbG4?PS_U?>dC(>p2f00zc`0|w^E z6b42x4F-nLC96$M_?@eas-mX!+uIwDRnh;BpPVaU|KEmpZtua?*7kpZ@bGXmGqeAJ z6B85v2Y7!D4Goo*mAwOphliu1qfbvy{r&y_Po1JpmEtbd!VVRJpUd81KAVzvRKo4Y z{|G7UQ2riO{F_w+nnfHc-id;CrC{%$B90XTcBL|3Yu{7fOZ`{Yu|m$XPQj-^$i7U{ z?T4ao<0q#|Vf%7^o09h=q0eRS`QJ0YKi@O|4=VMgM&7IblXKNO&vya%ZA?nY5lb>AqbkJ;*KXnOMF* zII+e_oj$)`pgBJ}iaXnHxIDYQyuN(6+O-kO=sjGUgQfRZK1Du7Tm(6J2DP{J zt+27k@!_iRveBc8qX&OFLFSK!G9Bz&orLrs(^JoMb#+ZUvhuxl&whl34W6xiOaTxO z09b%5EO@$LU0qNuw6<2&l+nyAzel~VPa>!|G%O5G0R;^W@xP3y|37669)Q|5u2gH` zRm~0^gs0@MDW@4XubovDtTMzX+ZMCNM1If{K1?3Qv*b2G2B;Ox9@7SQ9nWK2^@mk; z=7wxe&3DvBb8oo)bw#=vvL*8hyYm`AolYXLjhy1BKjHsWj2F~VSeT2j8Yv-;czlL6 z>k~&&e(TR<=UFx-$4<@BH}eq^HC8N>l5;U7$(?49K?jX5_M#gVhy!T;)mMW&GH%B1 zl#P-$g}YIAL}e*JU`ZY;-Ow1PuMsQ`t>kMGUCQz6D4#M)D8-{-fNgB3Sf>oRn3s&x zX5{zr_+CfJcA~(JjV{3j)q*juBP_;`GJx!5TG5-S?vJ9X&`KbDgN217Jsn&6DSzaZjoD`C++}tmn|}&r&%Ia7#z^qZbCnp&mZ); z*&oRM&h0$E*}MA?FK9IoW85yKftx)Ls#>&oh01vlr5^)5EboTF)?vJhYWRa7r;K8V zc1Wb?h*#*#^TEmK%|5az9Xr`<4kJ#XoP$hViB7T5vZsGQc%G3L7}#o|R?8S^5s}KM ztLI1;w_z0jS5401aeET4(ZQ2NOU|YUq|Qn;sffp(2;e7f)LwKmR82?&;6fLuVE+_b zHA&XZPs=(g&d7#e;XG;%3P54R)6QgQ*nmEA)n_>%Yjm(`FQy%<$xHd%ZFE`ADzllq zl@fO&(ZKM!fCDWs{JIfNavZlodR>FHsfJSs)b~RL40-IAG6dhehNQOOL<6veEfwzv z&nt)EtErgoS$8PS3<~P^R15GymUuux5}oXY)0L}^#A?t_UalB7Bko<%0`Sw&Nj7EIffG?-KY5PHu@{l~X z!-D+GK)~!&uZrIkCMLrcK@4G63U>3JD$M}|r8ra}rhQtM_vqK$h;DnVoo-MEGLaFPZYig)-{vr=!rcM3+}$_T*TAMKQe{I-R-`Mg$xCm?q#i zO6P7eOdlt$(~`C4hk+WdBKD<{p-nNLHMaWMn&7m;&cngkL1u?r^MU&Wei~ zD{$VGO`&57qkp|++{op=e4s*|J`z_1+ZL%YX`qAMC8brrpMRFYCF0*W2l4MUdYuSB ziJlB=^Py=s_><{g-t)IX3Wv&%)t6`PbZlCnO+$7vmA2De`hutn_&C5S%D(ixY5{F? z!cG;%SMQkoRNmBtAB3@E7%k(^;5z8I(8tR!JwG$S#$Qs%@xoJmrf}Hv>OiHUgjG3! z8~hM&+QDtQzu_I3i!OdDUP899STyv&4}8vX>fk{-4?z))zCe(q-I9pR#f;)cUPmDcW`-#auqIlKsV-Ks z)udNFoiCA=2Jccdn*n8m_Yg(XJ^MFAR@)VyqCH_y94ZXvSOog<$rDpPRC`mJtHXsU z7%GD0LQFKj8Ob;0O3>ubLcoaDq zlvRCmFqOtuqGGdFk2(BtP>)>V#-!mIom^6A*Y~w{FnOq`M2ms$+y(4jq+G)golN@U z5__Ofia7(o6<)BX2+E%*6N&(wu6aWbkg~nn%smrSN+ZC(2r>*ag8>>fFei_6R3%+5 zBJ5V$2x@!0zN`0V5Z-Kg5}cd2P9t)lAOPb@9i8pYv4|ccjAG1RN|}*yHB{}_m=pc& zwUPCzndINuB|4nlSNJP%NW&P>i}sP~(T_4MNmSm29dc!qL8em$Zfth^V4lKI|CG5x zsSPz2@PT&IL6nHv&~4X(Apz9Z8-Mixm1&%JeFJs*DH%6C_t9Fqf*+pIo@cM73h2RpUroi4<^yEh?0i|y zRl%Th-elV;nQ5n`VvzE7PaCoZ*xiG;aW4k2wk7~Qu#3SiVmq+C9Ds(a(Z?(gpi?}- zHHnZMGE#>fGi_=H6$pY2&U%SpH*b9l@;<8c%y%p^?Jxh60C6sf6rZ-F(5aPf6LNcl zP#fHuMSvw$;eZ!6BHO<|hPLk1g1rs3{%m+hs7sJ$bW6@{EhlFzRzF@Ql!Pxg%w`^d zdRI6T0UswW3VdmG(vPopTBXT}|GI49-fmb?p(ybu2i~N*IZJ#&W6Pi0BPaUD&++Rhq-oCQ(*rGS)vUU7K=(;^s4DK})?w>|>?=@1!e`$2 z-HN54@dXu@_R&YApnG@5=C4Vr62f;WJXkL@ZSSUJ@tszEJ*~H+w0#qb9B#}74EFm* zc>6193OyJqwx{8-I>v?SGZ{KY7X`r0rq$P>n70}jiXk|C{qV85dI>O-`GLK-83lvS z6B-ZNWLnDp2rgq(IY^sMc`ho?8_<>4TlnqixsO6}UVexzNYXZ|%*P0n$pFf_f;gR_ z7v-{7X?0{^1Yg@a30ewZ3CJN>>U$06PS{dhh`Z}!w5(d+e7OU4l*Uxb0dAN9f?NW? zZ;*@HV~7z)mFTu9)Us-z4%h}N`iWdDrJyFOD{7f&x~%mxRvwa~>~r(IyxAgg1<-EG z*c6%uOo?VCn;J8|EB%mlsT2P?QO5W+!EGzXB?+shm0ZfVeHU+?m?7@(y^{ zgB3oeOXm_J!{TBD;sQC%x(wT`dFwdc1eZoKaD&KIw4Zv9k563Mt)zdP7NwpfUVWa$ z9wfC{Jqpi8e1N))0G;v?m3Zb;`l}C~iWy|$ zA<>r`@Di}k`uYgB@y}&^Z%N=-f-#@Q-P451KUIjMrP3fuFyHg(C-H4e)b7YX6cxsi zgs-H@DFFBRV=qD1!BJJ3xPJNe39OSK)3JPnTcg-g$3)Vk3KYg(OE4iX)}RQt`=KFq zb*uoh*+^S~UX7AY=hqH;;?~oghSjKX#hXi!@}%ezsp#Y|r<=5kMWRj2_>&GI#9tZ6 z;Fv}NYa$@GHxfv^KhRiQrV18QL?g^r{(X*TeWk`#Xv7hBCyK3%UGw1+Y7+wJ6RpnK~g z8v#)N>5OTW^6e5qqOhXrR)V`-MseImsvo*e*UaADSoZ32-}tK zugY3zX|=n{@6Sg&%3$_2jGYhXXUgz35svlpH?UBRd9}ZToJHS%eXBEbK2j+baV;H* zZKAWfEajB<$CDWIz?DVaJC&6c3@XF-YToRi6+Gb_F$ndCdUDQ7^70~Ox0ZV8gB@^6 z)b{!Hz}PJcLcd1Lai`+=2`1IyrpTq8%U2qqOKei)_cn~ME`^JHuq?nP)SoU$g~bDG z>6K{{XcmlhS_k2Lt?#(rFP_ClYsNYw+g2yJOwXi%R=ekow(H~nZ%al5pt0XXUmx7| zZcNz!9i&0^v33KiM`LYQWUR`xSK*ggeH9A&+^iL0(f}yBukSB+FHUwweE~Gq1q}J( zAG(S;vVW*B^J+hX`H{6|ep^^oq|d`*s3|Xn5LS*{yL`5`VouR9Ak^dE zzKeVBkgR&|1`>N<#K-!KBw~QCN5+SYuyWhXokr}@!zi^Mp%MAXL~u{^l7ndefJ5p1;!-WqK@i)3F>If47}Vn4|EOJM@3x%3r6EGg31k z{-v{)?tl+as2quR5R9p5sZm(VQaKsdeU53ufe39y1wEIUgY2y&&#S4`J)bfb`k$;D zzRR(A&@YFT%hYc{AVp|hfWii*sLbC8dY0%#zX$v*>vgefxpINh%RbAa4ux6SNxCqQ zTPobKYBPST_V*$Uz=Z}I-SwCzz=%zuk`GnCG4rL=mW14z(oe2%hS4&$30h4z^yH!W z*llLtQ%3ENGve;}GYq|B@aG`avzJ#?s3$p<~Y~r`@rGY&j9#m~X&V;so zuI>sR0{I0st%Jlr6@NzmToI_#v@YAx{4JSjnnC4TdnF_+A<(*tNxY#`Ec+Q5GmIFa z{2TA*%epzOf_}#te*^n~_&{2&BMqRwhk}3v2?2*)hb>bi@M} z_xqA2y#C>U)Uwa_L-iW>j}>`QL>l#$7Sv^`P^t^|iY)_-ry@85@{ztT1jR8mV>2QM zU*$tyqDL(uJ~(bY!_L1I<=N_LGg>|>uEjBDr^yNZY>=h?8B@y|RGix7gWJFmf!$k( zP(g6CBmX1#C=G!Q`J7;cNFzKK6Z-?);zf5dSqX}@IEL2cL&%7_;fQDgkh;#vydiRO zYPVtLUC9`!$(KTUGT%{e4uLF((%?|8Q6}iHYh#7l51Yf^Mf9m8c?h$u8T?ctzk^;B z?2_2GHL1aV^DDgsVs0L5QoVe55y{GmMUE|1=Uht;)hI%yxeWmM#V~wr_eB= z$(lF!m%1VXc^b7^@F<`CCv!>;Qdk&h{F(Q(u6Y{3foM4|EOO-88TaFy3v(aSyIKEc zeqAG?C&quYbJA_G*K{J6ZW_TS1s?s$nAA~_MM=m{0T5pZ?D8E9#P2{kIB}JB9m8;O z?antVt6Y-o;5hUqHr0ZO5rK1gB&uqv1-<{Ot;^F5nNU)3mjFe{qmSV!0FMH30oyMz zkey6~m^LBFXP^HVtgtd0WG^euQ7+Hy zIvg2`$fedkzB=69?ylNTanG6p`ad;MK$2axuF#(OtO-fv`gnwi_jPPsHBdMQ@wH57bVJB)YGQMf8>-WthID_I1{c2!xrxh zn0Eo6Q}U%1yv>`E$r&ce*mTEi3%EpTLp}|`?M?9nn7$>h{840r+D=&=;6s6wG9?9y zJDFLp8ZrV+5P06sL@JB|on5M!T!5)*og=xcsIE2Dx=cphyOl|QwHvLxTKJm8SS&@p z%bYCikWGuJT44aKQ{RfuoY{5@f8X=o4j6H)7-z`^NN;)e4Ki0eYwH<%xqPvW>{z;l z+Rc%XiA$nnNF;s8t)b6A4v|MAtq@}_kZL21T=?eR=Zo9~;7TMTQNQsod5P!zY63NeU zTglR~D9u=Ro0bJHVwPe3gmVs7Rs7HbMH#f0jyxx^>MeiXhzdj8a<9%Cw;oxPe@yyd z)3DLY_vZV0AY_)3Fab$=U$;3;r*=sv2+|m_m^0Gk7XKM-J68u*ac%~8E)HLJO#991 zs+jlfaIj-?6vaA2X3ZV5ahP!lCnk&4awpY13oaByFTi=Kx zE2bTS^a8pIAQ1Ob;QKej?JDCB_UfBpR3n6%GI;JNq+5$_tI;H@!Qo{~;50RS0I4zI z4O2TjP=~s7s1-yuGJ;V`15eLTpGPK3nFw8_>hr%U+mm+0PT$%8%+6w-5l~+fYiLu+ zqnngd%fj1a+yA4KyM?gE=@D8|&R=({oNO2fP)f6c!Q5wx%nslF19&7k@U?tn{=;(o z9l*{1M^z{nFd`&J`xcY#Qe$gQqm?>!l+sJ@OlWP)XG$TIs{w))ah2q)Np~@eCc&u| z$xU*a%`P7EBR5K>Z5gmo+umH0^vQTu_qDH9QQ9jk>{2*r=J)*;dZh9>6R7$pSeac9OOJs@W6sqa za}bCQ3$3UYLk?7}Gt@Q;@s{)cHhx9#YkST*5g2bzuaVv_Euq|D0k_67Rky8T;)pk$ z?PKA^ZV~>eyN(?XRM+8;mvEYD-*6?7hNSPSJuZtjQaQ;bL^P-#Ii-DsI~34rPJXyR zAV}(N_)mEJQ_~(+OsIQf9wN^m6MVm|TOk4Si=yWvPcKG6JJ z=zY%olC^F)&gaV)4qz~f{N8_zQ=NlBJojh6sfqYnNkIYPIC%V}cpJK*qWOZ`wH|QQ z{B4sJ*o03i4v8P+RWJ(qSX1z?hw!huxj`KcRClne*c;!9(N*7+v6rK!fCZ?GW^9s? z`DsudMFHjGfDb1crLjqhseppM-L&r#tK&j|)fXWoXUR6-(Wae2Jg0lUPYM}={c=znU$w0CmVxsOR@O=j98HTr6 z-fF?{CO#(S)b>RgkpuQDPp`ID5L;bvS|F41 z&a7T>RR?^Kze8nsar`%RWUYfcczzwm5Hfz=@{#U!LWwG==pVkiJ(DRzk0Ry#_1MomWzzbTJ%q>6f}NSm3U@@B5cI$sW&sorHw z_q==n3bG)GR%$?I7_}_MBly;oT=V@W&kaavsjUCj{Dt6ti@0Q)MFypQGt<%Es@`Pu=UO!) z7y@*D$k9<-k%V-6M4p`YV?{G%G}I+e|97KZI!a(^7XXOK`+u zc|mMOqk{~Yd62L9`8RazE*7E0dR@GpHbc6xGanYH<;J8WmywE0#*x5!#i0-u&7wTF zcT&LX%V&EG5g$A;KYXB93_?(6R0Cc5LILP#X-iV}V|`+hU25m2PJ>^0R`X<) z@l(6nJ&dKZmBFjBaUGN~0A$uA02mWVI6|87Qp#VJWb+>mSOSGb-@`$fuR|?Zua0U( z2|B_DkrNy=l*yM$SRM0*>b^Koq`8;vT_ZlppH{f1n5LgORTqA1j4?%8SNCl8nPBU; ze`(Ag=j>DoDLTTd%=8SITq5?5@=2B!J@Hcamo7lj7seHx867wJ?X5gHuHX;#H z8hPHrtfbygR3In}H4DJvQ{09PMBQ}@d-7pEiBhgzO#5S8wYBnnJn_Fua&bn}Qi+i%eyGIs4d@A$~VfJ`>!aOF4qMVzn)tw)4377=WHj^SIW1{^EEXp-D~mE7M5B>~icxipeHLi2=&m9?ccz^k+fcPuT_s9E z26IN;pu*MxMlT)cmxYQx%kMk~4hgj7QvF_RFpI;?5f+J^@A3zqhz!m74KrS1lm7gY z_7X2o>GJO{yac2ZzKk?1J|g}Ep1M4Kth0qYG@~DOa`SIc>=jlH1)16SOV{L+Z!DbbGKS^pdaX)qbQhs}ZgDgB6p;&}#oc(3B7WoF&!zs8k=75>xY$hC9P0IuHZ+Z) z=X+DVgZ$j3_KD2luI+#yQ%&2=<6nM`VRk@m<&a`1$tsL*%7mHCp-o`@jc&2vz*rp? zl2!e+G8hbo#IIE=tgKedfdOE#^ZuhxON@dO47TL0x-!3?;(Uzu_~BQ+6!Gghzy3K;>d*E}XHDS%EW;tE zx6e3U8`7_5*YTofY608OR8QKL7wiKZjp{R6yy1g*%^LQ;D^P;uK;n|m!x1+x&}ARr z*9Ch?h0B260v1f>S{Y`QnC_hm3GcbJ%Ixg|==@=2@I;<7*9A^%qAB`@DE=5~Fr#Pme z{9E0aN+6t+{(Lsjn60z13|6^!zRZ#-m|sD^1vE@LUm`(ItHGNllA2# zP^yq|H^0T3wk&N=T!YH9{o;NbP|8d)aDdo{PSp%I{M7Z2I=)5T_0#uZg?j2GN`C^L zm46NN@_GTuIEL=!H3BKhiR*4CkxCH%EbE(uP83Uh75F&~NiY7-erpB7BjOSj+eHdK zIw9%T_~7;U)d$qZnOl`~ENSdzc#CD%{)(aYC5ihEqVuMqSBdq2diBwrQu~dv?)K|C ze*xfdVXL4lcI~rDpt)6JH;2z)l*q@+-P*%DaOc=@grC zSh^*?H~8n2VX+$Dv=9`HPQ3rU*8Jh7{lzILXgOHGgQVihCVP$Fj`S_GS3nqLvX}Wy zQhzNn<&81=2yJX};fY2#az!j3s=IIrClC9$kUwq4$+C8enw!I5pgY3lk#-Td8|glX zQiaE0a#TP`ws%kEo-Q5r%TdcbNj127Ai5EIGU-Fx8TH>NZIikFkW#V8=jW+ok$i&j zE@dS(lM@sUyEo)%Z5#2#8_xV zlAX!!QAzY$-iTr~s4V1@BN-f(TS}72<4{fWSDXr}7r<6xN7q^v#4vrA3H#Ak!ObCl z7H;Poi_iSC zWzbY1gG0z9j=Ev5yVk759n=H+SH_j_jmguOrBt`6aryIU==~B&Dg2wc)d%NWw&)AZ zc%Fs47r{qUhlDEYiusKS!yi4VZD3^jyf4bF>a;7XQDGH7qh_x-fl*Q?$2?8v_+8hT zw7x($AOrju=1A-;Q-b?I_mhG)b;_Vf+j+7S`yfrTIO zOs;jvqhrRvx+})0`5Y>#OCUs9lk`1%Cq9VmUuo>sF1^Ew>lN~t4lfoMMF3hTpBh;c z3?SxTsfr)-Ds`Rf@T=hv<31=@a+od$fT8?29lr637~R3}5fX!SOUe42B?GXHguVMX zxq!LvX!TxkAN)h-w|~j96kliyQ~e&6)J1En;Xw{&CkTF)l|_n33sA8F4?u`8w4=o! z3@x6YR)vC7m-}DuHfOgBcar|)^LQyTWoXX32Hy_*bSS5^?wPIAe_Ip5GPwg71iK&^ zSbnMl|J5DwY^GZO@Jv$UDHkCNA^TkKS7XXow!&xXU~vyP_tlcN{IroCBMphD(g^Un z0l@A=m{X#O8V#wvc-Msw}93qgRJIn-1tt4!54^phdg&o!9 z6tCoBO~cUW>DSbb0eHwj98$h9VBOhpt5SSZLj~4@OeTE>JrlEX-WL_-Y7%8PaX4LF zvYxaPr3g4gEYbI!b@Ci`pUe@F==%zPwJiF%nB>YEg2}kD|G}m#6{~Lra=>bs$7!K2 zlwqdXyR(lm8%oO51}?xU`=m+ zLsKFm`#g-Y1W=8Fs|YO9XyYERLv&A~=k{R30VHWS?s-F>AZYz&+8hKstkc&MzIJ+`8gq zA6EH<#Z+=O7Ww&&`Rf+z$aqF4&?^YU6?#b&$_=m83Jia<-3O)#Ky7=>;4z3=Ms0Y%DUZj1{UYh{ z{`dL_78ZeH?0Ma`==_SG3P2LZs)AAuSh=BZEW&2Tt4eqqJ#i1c_$mtfhccgRO0E_P z>kCgWx|*PpJMqMo2U%5&Wbrxp2bM8k7!7Hu2me-x|7kY%ZM%YdaHIBjuA-i%csXtp z0*WSLsb==L0=Kuj%@2mJ#?pfY1Mq*xe?c5jI7DM1tm4woBmew*V+)bLT#C|I-}V;L zcEY_Il;Vn4L$~E1gb3#d)GN?6u4aw}%UnzF=z_AmbiCB`+XAgUe8ZHa!aGtem_j~_ z8Kuqu_ThwQMM}s0;iR#pLZeV9saim9y-SBAGV2t|TDv~bU%$@4Lmj*MWe7 zv`T5WTxq5$x4QyzeX=lVR?^tQgwWr2gx~u}{U?yhF%4-`VAYq!0m3l$6X?%MxySE{Y=hXs{cMBv~hvQWd)qY8eTd)$gi20D1a1!eAgG8 zM)nz@0F$J(7p%D0oId{p_$@*|R7UA1y!7ZhkW^5t0;DGW9;qSAN(0Uqy?X;k&%l*3 z&Kv9C+n;{fv1|UIV|>9R$(tpY=7N~T^d$V>PJM3+S1v~;h$c1)p+w$W7)F%foeHHS zzna_DXXAY>&GEtsiq-8>8M>l@ep)xWwJv`5;PD)C)*{1!k^$-q=eVj8V?p4-&;r8& zPHw6fYN|>cIxlVb_Fo)V4l-6rVllqmx^6Z}_sn86_M`9+b?^JGNBBCjFyJE^z19=zbN{Yo^bRm_3Sty6i)) z0T7=UiiqX0;tlFk5egPsBL$T3_Z8wTwAQp1YMS;xtK}2``Zd$2`c^}aIt|{S97AUD zK$E!!DB+8CJ*JM#g8G)`J66}AQb{Ma1D5@7|3Lye9JXfo4^qn@4jI0^NCB)wNrTiD ztE)ggO4qGtpLyW*g;h~81wycJda+7FGnDCPT}G`U-tAWPM~Mi8sMTfQzugIBU;_g| zeCA#u!nez8{|^xVdl3`1{e*r{!UXM064@y1`d9f(K*BQ%Z#WS|Wq{U)6I6URiB9Nmu4tItm>e#tPEvo%{#XvF%MTjW zy)!#Ct4lL8$wdNB!P^i2K2ARIt*#ORnmZD5i+w))F-l>`L8}X6JZ1s;qWUxZP&`xw z3(0_=*oQsW`6A+Ca81}BIoEsOjbHjfkFED#qab9=Dbdemg2Y-n8;GQ%_pMTNAB}DP zTS>TSr3VU`s5BBLx)~I7hD`oP0n*VV3d&Fu9V-cor6%O#RgHGY_*_c zPQ`HhalClZ+Z?r6sYFjfn-&*drX6nWFn~0PS}g3y4)b)zXI#xHIJk=G`gwjJ*TA2K zHouy|3O(VEN((&-Hu^nD@?SmH*$p`g3uGZAuNwEcaFS<&(!p6NfbYT;f`hAuU`w}K zFoks77-kkz8tsQ~@NrCt9IKGQ?Ld{3Km3*Xp=R_a%p)jfQ@f=_kRt8}%Z&18Wa80i zD`@euT$ka_x?ieg+L~lCTxXdO1}pG$sE*zveP^=WD1+_XNO}F2E9&exJ;&0kSU8%rr z*;wJCp?WDumLkMZt1F#$e|0f=_5q{>W)?8`O3dLPDLL5RQ>G+4%yh_KKf|S#l8d8= z!Z#vdwnLMfTugC%bAi2JmuH>smD&-3zl1b_&yc1a9>PfO|5N$>cmt6@mS(G^TUO6V zPi-^joDF!yHwuv_v{rLAUrPT;7nQiTkJ`<&OIKWK0{4o&OQ+iE2J3y=IpjaXjjGFe z<<$37q_6y4jXAYaCgTp$GnZ;31B91Xv@xdvQaV^^VRYBWC{ru8kCh}?+vfF^7T%U} zYv}0D>#;MB9pLpr0oIr39f#!yG$qDi-XkU44_SsXr8p%*kK=;Q@Rc0N#G%mfjRtEW zWwyduI(24)519+*!%71) z_nib7VYD`T6p%L_OAoN1wTM$I)^ z8)FlgGG%1T{Xv;;bY{}an{T8`XW&!vW-ZZ8X3s9NdKx$)KP*GIo%`K8rS>$d=UXsl zdt7CY#B&@*|1E}sZL}7y8Qp$hWbx>-QzBoUZ;)VVKY`=puol63gwmf!FtO+}@^d!R z3%y>v7TcU2`juU=en}86qqf?Bm^~ADxc|7dc``6eAQY;dRdYl;T{&iJHJmiLo&P!3 zA#egZ?5Pxeq6+6$6GWLYy5Y6co#uc$L^|%IL43gQ;%|WqsegE9F-@)@re=OU=vDGJ=g8R>@fSz_nARufa4e z>0GO2cme7?+kKQ|uv}**H-mn3UsC>4|IJjc4h~+5$9%ogHO{W-by*BUzYC^xyY3H^ zHfsUL>fpD%Zs1tn>-(f37;uvxf=EFo<29wqJE%RF(+x+4mc|^C4!ieZh07q&JyShK zkW3}bUM7pxzABBxjj^@V?eViRQ&M;4&k=WwX;8j8%6o&aK_)cM#vc&QOB=W&Ofw^pG1UjoTI7*zO6G0S6fKt!%i-)&VInHQS7D!hzkjOx< z{>Q17ab3SI67~ywXa1keRWI?uWq{+TruET({%9@YZ1XgQ$jyhuDI-0)bxDIQnsCjp z8%s(h1_)okL^;`snsl2TVOAAycKmlbO@bcJyy-t^V~mKx-Qv0RY2#9!P%^oBu^p%W zkI>&hyeI8RGL;GNL@D9idu=Dp+D)i?V94fHp*mZVL#3s6d1cmk3iEII*>~ybq2Hwk zin=H8vuD=DN2=n7)EmR_(C4zU+y649F$3sDuMEG8U>5Bl>iTC?J}*Qy{?LKFJ~fr; z%5)TC*Gts`-(v#Y_t=vJDhbr#;f3Os4#1$L}}a6 zzXCa$`Hp3LlEMZvEP@&r=TD!>Vh77*dl}yplxDqySHW6&AIWOEBrb;ZV)!OGUk-SJ zuRVo3?mXEC2JJm}yzqo~zr;`KW$a6Th!hn><8bSh{rty@d@ z8zbMZw~t*;d?a2!V$bx-n+nY61s3w&nlHE4XLGx4=2SdY-R(V|_^eX|o=%i!YQ_#TYe~qu8Y= z6L?>@Cy7iomyL0BH#^vDh~pa(OTUjI&z6v|b0r@gf+*v$IkJ-q8HpCSVB^)OTYj@B zIWmA7K#1Q#{Lw&Z5w+TSokVFiw&Q0$n%m%zrB1{O@FI54=M&|>KU0aszrZ9%WI;*^ z-gm(3#ed$+z7M358WXe=uR{);+F;R+h~y2;JP}d|#)mE~X{eJ!1c|Ya)>+cGA0)>I*$+LearTgoDYhkyqDpUW8zK!HA z=l9aE3j1FE4ih@>a&?9Gx?HF{x8OCEJ}f#OH-EkqY2rBR@I9O#V_?0__j-I+;PYXw zKCf;SV7=RGKk2&rTfixqx^qy)&2_uBMm;}{aQpMNO2F;VGCE-@d)H+&*4qtfyZg$P z)a7Y(T)@*Y7F!NC>)*DAOp}0{OSEIndR;W(x3e>b^K3HK+WH%21*B*X_^GYM?$(y8 z*67rL=eyE?&xfXUIbQ$Peo?+2&7dls=>%LKtDNbt^qN;+p7MPXed}fV5Z%o7@9JgJ zSa&jUkba{*?vvkhbE?K(e<@{v=ghgC84l(8`s;y?T^-!@X1`}un`ND=90b4S-%u`S?tQ@PPeO)QZ32SmcP^7}f9kbSx}NrAJ*(U2&9^UK1{u2b`&2I% za^ETg%<$=>S$pp(bGsYTOzx`hCj%UikfT}qnms?g{v1QY-sFW(N7*RSGau1z7ELIv}wB;`I*Gl6ejKSaL4`|IFs}H9hB=Gsit`kr?L*4;nCQM>L-{N=Qwlc*!lU$o1?8w-gqq+z4L#i%UDZ?Q9oHs z%KV_wnuYED}ib5r`6~ zDSJ`!J_jpZ{hWZ_xt@I)nd-lMJGg^oeU(&e`1+j;%A=osV>RbwI&R?g7(XTuZz5&a z9>gqI9jk7!{_l*>mH0Aq-Sww_ap*7PWWXpIdl;ZP=*FFUetoe?y|M-kCljC=QoR;` zbzl6uNeIoi{+RGOzb20UoMSpd2@DbESkLbwQfGadA@{zu1w+n|CpyUHl}#H+z@VA~ zXCXB&!tXocuiF8vImxe?amnD@zog4ySV>Xb@ALKwhH$IhkBFW%UvB0W`L>5mkpxDrhV4iIFXh@ZS65b>I+OH~HFLwDJ zSLHKRe?ZFd`w4w-)R^_FqWE+*wic$s<5*$|Wgal^7^SQ1%$e)O-#_;VMU~IX@qv zMWz#p7d)?1$#LO2?UEUoGj(O8wpX@D2dKt$+3Ymr-{2Z47m2<$Olq zQ!fc!L|ta9WtB%I_|cU(^vikNVqo`v=MQomfQc3kdhygd$jEu)@y7NhqJ|$L0ukBWREEzNOhdMSiM9+yKA3|5qB7bQ|PFX>`S=?Yp!iPW%P<#aEre)l0cw<-l=V+eo z`6K)G98F@}9a8$7&iC6s=ZyCJEs>AJ`Rc(-4IR^jC84B|d=#pso|B8?KaQWW1b!?# zesztEZDOH^+Fmlu=7qYqNc_FUC9#;hU+pDd{v48blCIj9%)<~bN>N=n&Gc+Y^fGu4 zN2*q^?HV|&U{WA-_FJZ1UAid^_R}_B_(hfM>0A1uyT(z2OS@x@)ExhSvoH$tLTGbv zIKbHcVer^MLG6846$(AbuCaF={6PB7y#Xlb-U5_hUh55hISBOR=&UDi;$|J#*`# zVSd8@A1!#E0i^N}9lTD6S}=!s6><<5VkGaO zp9aWqN(p&#D=0C4e!@nXusi(;Y=;!U4F-FB?n*%9f6^YpR2k^&Q0 zm2{=b!OTsRls|``eq=AaH)$*)Pbm9h!+?O+;4D>hO%4Qv3-B{KzeV;`$VPuhTI2hWB*rKOUykujwMmcz2>j;61Ih>8O&~TD` zDE@P?im#UE-_*&Z#Z4Il94_;)3+xA0jzthyy`&!VixnuhEgUeQ(btZ=!AIdA)a_=W zQglY{$IZOD+Sfq{daG3kW%Tnn-AcMxxHUiS&y=(;#5KIy=mj}@-MzCNWd2CxGSSes?c^1wJUlmKKz=GM} z$z6e0D_aNgUc*(@>E@xrp%RXw`Q9uYTdg}a`*?DMv)#i2OFl()Rs6RdaY+^l|3sdQ zmzlqh7w{UDle(BU#1GfD#A`EpXxsiG!TuuWbPOZ2-dAOaozDZ#EkbaW&R`2CaofaF=Sr6GjB zK?NMG=c;R$_Uugk&_epLYQ^Z|i_>JM!mhzopb-Qg^8-_tWkGR0-@Lsx*vlG% zGR?@n@|j9b*qceiQbj9~~*9N?qB8CwBU-65_g zeLb1dkLDA7Ca5g9SCn9$d3y>?!;pskG;Iq3J_Q*nPwx^Z*0{=T7PCms2vNLNw>Aip3Dd|(Iam~_3()(|H#CHul!99CJuvg*BFidi=7Nph@1AiZkmS!t|p zC_vBiZ(W6o2zZ~ErOC2^XAt(l@mOCrZaND0eeN(6KYV`t^Jq@=d2$iWc>L5gi&Gu8 zKEQ4wEObs)ymDu&_?9J=I6kN?LBPIMx=SS=9dOqsYBA|T!6Oif zhukC)E+)Qge!AejK~kVSL%CuToW3Hh0|Z1F^K8ZM_*RJwoH!$Rr4Q*!S8-q+!D$k} zj)(W7)&Txott!}NumWRt1KaIcd zR#HG;uSKqXn&1$zW?4XzE?s1m#QsQ67fQ&B>)=|@(?!kNc^9KrW{up8ZXvM4Af7Dx zp~Vy5*W_Oi)m&8AJmeEWP)e!5)fLqD7R*|%+0DYK>diP-zO(V+h!+zF;7w(gSsqTa zO=WuT@rz0qCDqyUfM_P4j^fTcy4%OycZzCB9klTm6!tUcni_*uy8e4zqYGJxaJH+ku=Wr@)>UX>= z7*C#1h~=O71L?BFSYhL2#{N6-3wN8l#E$PEH@=u8k4cudJf;fAqiw%X^B=wCRsgaF ztE^J*`ri|nF^+vm!Y5sWHAz=F*!s~m*A6RP+dw#;y+%;F8X6eZz~M;RYaQ9OznwzdAhWW$)I||AkgQUxdFD6v%hJjZc8i3@5f_Z3 zTtT)8X_d4wGK)5nJrCwM25I=GA-;>;XGFxlL>4g_U`%Od!nl0Y178`_B`N=TH8v|^ z!wX8v!ovWbY08;L8k2UGdg%)Bw{apDj@1sVtu?EQ^LVywXrPT~?)uiBvi=j%B<}=l zJntk~->ZyTwJ9|g@$qh`%4-22gkd%BzxZV%-U|Q9>&&bVN*khy>cm(aTPe^|*?js< z))UgdjdVU1^6%kAm&DgPCV`k_S{c*$LXowAR+1kcB~vo-`jhQu0mB@+HH{&p>oYGh zwp17?N$`H|cwK?3a+XIko;ZxHbt*xi>uiBsw~xO$ut_AvQCrMlD6?9x2eD+h`=>@g zkn8`8a>X2%?*kTxeNfeQQL|n7RiN!`XN-qSCXSyz3RnNjwQC;#)9vU^$Pmk!f*<*j z5+uAaso78!#6aULq&Ha4x$rcBGUPdq$-99bl+f8wEfD_4is+L=&ZMhY?0?pOQ&c_vpuugAZ zf3T&qm(ti9iqpq@p;I$Ci-9yrkscMv7y_1yQ?3ieqp_a5tL<)?;$OubW0PGliCJC& z1%sAzOJuLYR7bSy7a|$qV$#eQtE)ary43km$N|=_;A5b~OAq1w4Jke9`Zu*b>EH~P zbYmx>mG8?ViqqL`YiDa(3N3!O|4yP`q~xyASi{`UfBy-2*CSv>7;DuFHpUqC6hnQ> z!4bO0{fu~`f5InVv!y`W~MwCD#eZ05M>2;PT z)k$BhcvW=JS8gTs__rmq9LE6CU8ewcd)ry-6B&u0wv+2VlH`*rMQ9y!$}DBWrwDZz zvqhcH5B7Yv`?EB)WCYr8i~G38Cw5%k@%85RE-p#>X-Cm7qkX;jJ4WwVX7KrpS*4s& z6>oRXL&r_<<=@SETDnZ`|H2NZQsM_>Ewvb%53a%g4mx@S%^K>aEzf^h1mADDc3V7> zaByTqx>^K2&L9#f>#g5u=lH!iiyIqOp?AORa!cP2Qq_E_ayJv=41O59Bs&SVqtPa1 ziMIO~@_f*dIa!5FBVyit`<+|r{`RvSiy1#@8UCN1)`yXRp2uTVHZ?2X!+AB=t&Ppd zCN7S*P}iRRi2kItR^Pi~TWPHSqA({kW7u(xvP)-i_~v4mL#fE-KRQK1zW>!GEk|+$ zlZE0Qeq~eK{4XXHcv_T)h!^3JldAPy+I^IM-hS+GHC;`vla1r&{xTRlH}o-YS&*I- zd;PA#^=$eq4S&sorEC_ZHE{O{KUg8gN*N~(N^f&pnb+xeFt0&N*#|p6xzh^vxfyIo zt9~D+(R*X4(Z|&PHdXeAiJiIs*71#0yW1ij1u4TVDL#($%l2bZ?I*9h;vH{q-@EY# zyFbA3+mmJ0me9fWP>+qtq_s{jcQvQi{O>!T*2Y*rcRArobYq|^UoTv>Ar*gYaN#c@eE5Sb;Pi~7Km(X zVQo-6?zVVMm(R&WgDVo|kzuWO@4un!%v!XI?`hjR|bXD5GTftLN` zUImv~D8AIbd2YQcXl1xOv6iW(eOtqb(5o&qo_T$2Q)0PvIeG6Ya)0b8XH=RNWo_^s z5>qH5{_KS`)4MB1tA6$&T#$=gE5<1NJX0_Cq}%sLt-1V|r+F1wRZfU%Tu}7Yli}@D zkQ=Ef77A`J7E8|0LUx-JjMp=X5VD-a|rOICBLzUvs@!IcAlAiyi=+ zFh=iQu1-Y~uf?3DbslmK{}mWY9RLigQ09p~mH(141n1zvzcCO}Eno()g=)4VQK6a` zlp(jxs%Bb7Sa!{qA-|Q@M5?sOeN9}2FC;a(K;n+IZU`QTe#h#L1*!W+P1pP)f(!bE zHg#^r>P~6-1%wG{go~in!c~wCbH&kW6LL_EOiX?y75267(mh13XdE^A3hVm=IiLd%-;QI>|JMoWsN0ukK$^kourn9`Kr`GF8 z_opAKJyDVIj?x?yd3je<-v|scbZzs#Tm={ox3)QfAKhkM8|6$bG!x9E4{mCc!&uMn zuG?;>UgGYoFf?g^K8^Ed7C*k#94>z3050HU0mLumMX$3)zKDVM2SvZzym+g@1mz{b z1OM_3!2|*vKq0bo&`f-X=d4aR<1?G88qE8@qvrXRtg?h5iqRzl?F^(qk2?G}_3-?d zkkqvQ^M_57xC{XCd07o7Z~?atMEDY8qlSs42Afdi01sGDy8Kspr}lr#(xo^d_Irrx z;D*Atp!1ezh3JqoiziieLoj3xVF9TW`0@K<+;=S))uMECNvKU-SqtO-o2s52wf7}s zhi5Tk!`>Nlb{6a8E!EXq9y4z4i9NiFI@Z6Fxq#I{lPYI}xak0eTh_-+f+L?O-OV3~ z@V<72a6ny%NfN9{mMyh}A{-U^& z4TEtq#H38-dGUq5y5jDSA-IY{r(}SHV|cpFg6S8Cc{xuRM%Qf(Zykw>rpnSk6jmny zcXk^lJcaN9T^e@k43?5Uo0~6IpB|ZZ;q~uL9BxmMP~ym?B;V%M@U3l)J1_n5x*kZDhtdg4*@2lt!Ud;Hc#MM;e@snT`L^~oe_gxZh>Ooh)fI8=bFL4$ zUg4C2m<$YJDPh6@25qGh(Ev+1m7)RrBGePiZU~5BRcBFlwkA9)|J}lzp+M{*x|WF&NP=nRnVzX=iqCMk{9Gn_1mpRWYet#F@ke_fF1ptCDeR z%aPk|uaQ9VT%O#n)g+8f!>~5t>sV#Ri=-pTY(S|ru@)P6t9x9o(-{f(nsKwc|L(Qs z4=qd|w4_=JcbX(T3$ud1JGip2nyfxQe)#}`zrDsi{wA));@n|q4}Y6*8Ug9oQ!aqj zf7La2T%w**@1ld&!``D)$G2!=1Ev1l<+wA#0hZG1_ibV2=hrrE>P~s7-@27_ono{c?e=gQh;%j3}ObKAdyJDAd-Sj zAmOYz#elj#zXXwT4qz%nDj)!ZhFbx16{L_e!dQm*Ge1(>pMbytv0PZ@C%+(F@(CTK z(8__)+j#G1gY2}CB2;}5SAVQM4K-MCO!0t}+`bzF*fOQtZ)aD~XVCpuNB3?=r|ir3 zR-ZI`u&@HwVbmPReO?&6`d(`OaG*>f>4QxgK2Q0nc6j~Ho9y9;;g+68xJoPtEFrT` z=-){XY^IdG+VTevR5zMGrWY>WT=gd5m$>|Tn3J+<+SwG8!Zb}M_E9c$fp zjIsfyD~#t=EgQ>9__{7$U~X90PT)_I0{5+5JFme~;g9Yb>gublC{#nf;eT@mNBXod z#cHLLlrbM`|7#Wkwq%n4k`1Yvg4loq0|HLMzf*!@=ZuDbGZ?s>)4W^5xxuqo>UTMp zmm2=GC%A01U54syB&}*=X#%dIl4Erbl^Af{AOMHbKY)t~GloSrankz<-@}8@x>o6Rfg8 zLxd-6-T=y%T8~68dOA%$zKi*Fv(G=u z<}&s@b7Uzy{ge%sAIGbD-Si`s5C8P{UAk}Mfww^RgORuMuNmS2sR>!dkxlT{Anf}W znr`m!v8M!+tHyBdrTyLlNH{)?b@~yfAy6|Sr**VIXR|<}_J>fdJgJu{J_IEpJWp8 z9<6a%84wrrCe@PF1Mm?Z%8wz%(g9pYrr>Oi{00fXgyx1S3D*6J2mFJSiA?KmBGcj( zzwc=2d09sW_FFZY71RM;rWs5N1`O&aJNqY_JHhzm2CQ}cErusNtQ+s9R1K&Dq>}*X zsbrf3gKKsG54oYeR8Cn+436r?XED6Bt+az^5xb7no!Id@Z(+;pOXGIpN4HztV7@n! zr3ap~!fTuL1rQY4V9iAL`;9jSFjqcsRXWi>SpC@!QgFdLby!i+2TjzE^H1v(#G4?I z)Oke0lXbZECR@RP^Vjd!`|?64b*!?Kk5a9_iF7w#^Rjd=lnP_pY-g8<^y2CP?q_1~+lcHXC( zPF!(^fSfRQ+n*Uu)V}x+l%ax#+@z3WwJ@K<3OL{c^gQnMwnRsh3{4 zDH*92XoNe4Zamf0J#I8h^V<&i&st%aZQBmq#9itIcZl|TR1 znQXt`xOcABH)kSy{2E3l5Su0(@O0;_iK+E-RrG-E7ZRdc|5i~Meot`gM;lfK0z0@! zRs%cl(T4_;79iM^OnD0O>OqKiT%g#9DR zTKtu0*gPP6Rju$70YmzhMZ4%y{l~t5DuUUrPs-Q-%xm(Kp&BMGknwQ*B-2p1`0@AQ zu@d#*!9mWBCc*{3R)e7tjCHOh(Hj1@T+IMrTjBvN%`e^7&fom!p%d~I3QT>xZafow z&%bzxrMFzA^>Z#DeU^c7$Qgr)F9v-v;o4&9h{+&f2^CD7>=QpMGOW{QeV~#KSY~|Y zR;#Y3@JL}N_4N36^s#7(Ub>zjS@FDAp+}p8RFQ+aTU%Bzok)}vW$)Lz)yC$WHlu-O zj^d{9+*>g-L<_chvW5rW=S{eT3E3<+eth+v*9aDGQzuM6n_#Q39i8BdV=M{R9#4^0 z&@Zgpr@J#7P6(v2?zNQ~I}!X`mH=q2zx?#8tyKXg`Ru}^Q>xIN>kY{^6`eQ56+~b% z^zS^;1>**>9(`(K7S~bGIRuL7$&JWyJxKIeH(P2)I2-oM19qj!Hr_CmFVe z*C=R4M#GugLLmciNvH%vN9VK7o7*WvJ*np>fe#v>1*T8!ExE=@#N*x?F{L>cirwkI zNkDFqNPb-*v;nw(02HT=89d?c3E1aKSYW7mIOPa|p|I`}1!}1FCPXR>_$)gT4DRi* zq{-CAlTdCAh_3E_{a&_Cd%(<>FbXDi&c@3pLmWLUfbN>_^nHYhW8L;o5dJbF)H1$L z)%L)xfwx(qE62G|;zP!@M;E-t)+1fQVWE?n3NieqgJH3@=;$2qGXf5>$~A=&56K8+ z9cYCSY326x1K3;tQUG|-()|WnV)olrYdARN}s3Rv+s!%^gFi8dEqu=jz zj>A*ZCJoF-kH^^oJkG`gfO@PpsJVdq1l=ajghq`b=4kMQv`xoNIt#txV zzh#9Kj1%_gl)l~V)>GK-c{?c=VS9NORdzYdiBmWggY*t5VSfAp6y^-R)$PN?09!gn zuBnw>=z*z0uPPaUGAd!ic>LXb6n^9IU_0$xJe--blIG|9Y51=*6T`Zmbu3WjRtQ>GZ|x%a+o zq2tj(Amy@h#6YkJL32IjC8e(Qp9lt^ib1GF9$0M8AbUT{_Phh!m+J5JwUb>+ObO^|aS9zgZXjp>hlJS|T&)B4|f0p(8F8bHx-A~po3`|dx))4Iv8 z`#ci9$rth`8;W3LZMSAiI#NXsM+hN^q9)!~#R6UnmKG==AowE;U+uqiW&F$$UT$!LrvuMj86<-wS#~mrgmdIVVzJ@2MlN z9=w!3o9}#>7Q>s(&&+?j9#*VW+DTCxsWT-T!;#nj=4S zyZ;>f95v=XDSeam$0@YeA)Qaz&L}L*V_^g7=M1~)Ox}aE<-GWGOHr{MSsCbctu3-* zOD!1qcpQJ$Lv>}b;GjKAn=LtGt4Wb+D*v81!!ZuXq8^EpUDhwcFRuuLtXpj_nK{wl zc(nRWWVS=jUAIZV$+gT2<%%3EPLETM#$XN=OuY*D*A)b*f%m|hXHJPK!>f&tXk7Jr zKcS#`01iM=U$!E@G~#9GilKb_T=CT}rseqBD(b3e{R<%P8&N&>NW_{Kg%6k*Sx#;d zSr0c%23$Kd;JlOTQg46E(RIn7(VA!OIXojLE-`J(@q~OcW{c=fCrQII!U&JZ7`=YI z3LRr}S5J4ZxBbqOYM3~FW9yfjEMM|=ax&z>S+SydpqZ&}i}*qJy%d=FXR_Q{hP8>VJK`r83MJS~7rQ*v@HH>%FIU`cD)bDrS8wj4O z-*74UYIlf%Ku;-j4sO_3Zz6Rc23|4OhwbTvf9+90B>^CX8}KobdP)X^$_&Rg^}2XA&C(MaEIgy{ zdY+v!-j7vyQ}kXX>L_!ExAsl+fbscJeLhb`TD{muS|gF2IqWk6X}5as;YjjaP02J; z6nJvQ5whg5>zY-_C2Pu9EUZIeiUWu6K_oor-HZ+fMKr}4PUg%(UMMp}DZvFPw9P^L7pG3YO z*6l}Hp~V>uq`Dg_Dtd>W0c2?+pTtaSS|Ft#i`Qek|9h)gn?Dtwv0uUyIhH3?47MyO z^`KqJOrHZRckGBzY#EYkfy3@7Hgt*yZQ0HkkK=A+hF`^f(n6HuOJqul>E<) z?4T}9FIwRG_Sq1~e`Z?(OaPAdH7?3E%3@q5)4<<#PSj@ArWaE)I)e6##S;WDR+OYt z$4EP#DL#1n$IC|L^$!S5irQon1oR3`$#~dEQvJ5bkbl$*59Cjy)B{UEye7~$FB4{h zU`c?4Lf!nhO;1IU)G}>(5|OW*L(F-PR$&AD9z8!ML&j_l(GCLBObcjzr$KYeVV-R$ z65|UDLCp%%X$v~{8nS`lBV8~x%N>tF(JuTFLsi@q6__7A1~}hAG*NmO^9~0}RuR+0 zjbnJj>Rj{wCKmqD>6eg1P1-mACUu9H%aQcxeR~wJ$fj=;r77Iw>QTs)AI&&YL&EEA za$qx6xuA$_C@2X}RAcg2yJo7r5FDM^yzM()PUX*c)D@=Lz^6HTB?K*ll>hKt#4Y?Q z(^AVkPELjFHpOD+tKY2{#Ge5>^^NY;KTd5A5_#IOqg~4TnG{G$zP=qVLcJq?EJDq5 zttxV0G6}U_^E8q>*#2oHmjszjphI zx;3Uq=pf9KWW3!$DDIfAnXEgx@VtpIMgzuj^e}O=saq&}0~d;9)BDH_o`WF6DY=vL z0D`zc6|LoAw5gJ?0A`|vLK|1sg;KcW$e0o}c>ME-_M%AoU9ONnn{v~*Z~`go;)r54 zErG#RZu&5u82ZhHS8~FvZEyuSbkAVd^|%rw|hiVzy;nC($NBoU+pX%7~_2t`dTC5l7F@9F7&FL zHq8{Y(d_8}8M&5_oTExyw7f7a`<+HM9PpZ$AzJJnB%8{hoTP>yV~-h@Z8-=2YP5Hy zqR*YE2n!;%R|mnr7CNNRE-NX+q67e;wSbZz*u?MPXFk*JU|;l@*}r4{MW`Qi=O68F z4oV+K(xZe~r!n-ksXk>#Oiy2;G(<>>0Cf<{nRjZ`Q`wcepzoT_OtB1-7DXG{jF~mN zmEinP&W&4ES-QC~?<9aar}yYluju{fB|v@-YuTS1uv4Ew3?R%WT#!$~Mt31@4-)S3 z=96b9Ob&B8YX86q?JQ@3AZt(tG~r=_bT7)H{FRZ*6s+sp{+9jyKpAnoq?FZ)7m>(U|zhbgVBy$QEA^0jE;E zv4z&eeCRR@FDFna2_SlAohdWqRPkp*q6DK1nnD|l#d-IE`z|s|AoLC62)l!zv1_1@sOMJp`#SN|ahZXL#+&(Q)YUO2+G79Zu*+W$?_` zl@TuJReNsswYjm!p(O*emcG>ygZ|(DIjKRvY%aehKDKHbi!j5e#jQ0@1@^#J+QNQ? zzkNCa0Q2=eBH6JYDB_TnSTtejH`eeExY6>We^{R-bL!*FX#4cB*a~r8xix(ZV!fz( z&jg*xE7w^)#wGmjMCn^r&gD#)0*s03k{L)8r%zI9fO#!mcNrmZ$$9KR^%uO%#oB)m zu)axX1C>PlyzkubT~Xs@(;_H2_@^|R-|UvU!+m{ z{y@tbg`tSOjg$cYgjde-(OeAKYp7a<*JyljLus2rhc+;vy+cId>5ds3{%8{pNfJn9 zRApmrr{@Y1#4Tw<>t8|sZvV4GZnzOnpCF;np2$3(iB*pfSF!u+sl6dpK!}dMTqowI$&}!IS5YPjz!Pc6ZLUp(YcBBL-|ntkT;9`cDj|^>DH$Y zGY_LMb<=>Jtrja}SqgVrtf^qpU^G>&@D_er9bY_=*Zq)6U4P#Kj-ETo*JNYiYjA3>9e^ObaG-h+5sYs@hyFB+3}G|b4RP2 zi^UMO=S$7mlFZ8T&M)+yQ9x>MLznSan5@qbb{G5&$F1RTG2iNOi4#wW)R-fYN=y0s zm1>l6>0E9G&XOy<@`tnWdy5DFKTzXzn7o@+un8HYhv=5EU{Sk zOT3=z5TeFY=r{z;P|QFS+D)norbB;cp^nPd=hrK>%3~^;)B?){|HUSXyH1Li+q^Qa zufu4j3OuMzbq!HpOZAsO??Nuw&YBm4Q~Cu_h43o@(*ewZA^U!*#PyBg2?9#9#SDAO z_^PjcqKipPNeHW(u8kbo;936Htbz^du(gce={!XEpyin^v|WJ6$5d$1uAm1(hyBho?f2~G5Ow# zHO~RVPAVizfMleO(@Dkyf3*J%R3U;OC_SD{vP9y0=GNV8XkUozX+nTYkK&k&1k9`k zo5XeZHLGl2%TD|GwomVxu}kqk^>Tkrw5C5r2oXD&15%`}_4qzW*SaFni_uDyRm)ok zG=pEYhf%uzLNi#*N|*VtWe?RL%U7V6eXriy9=i^Nl|m0azq6(9gy<##1n_)uh9yT7 zQ7GXb-lqeco22tnKU(YMzHYB<7B0o_;%G}h@OM_tLYiN?Jed#yikauSrFnHzf^oVa z2(6y}32CkpvvOCDmZJtbk>5!ir`1_T9*Iut zhA$S#VM<_4CI219x%d2~PCyKf|HXH;75^gq=`j6N^NxK2p(w%J-i~TQ3q)xM>fDPh zR^a{sjTxn^yvk&qNxxXScC6)RrjBC+LVDHYaJ72mIx7dPGdXvvE9_>hK_zb9bMEE7 zXsis%&T5j~Cur$DS+jc=k}u(S8c%U^N~S-er-dQvrc=tY;TSL)^v`Yc@34!OP43CO zz7{1QD3dc&fst010B3i{jA}p50{Lj^px2-bPF@7e%uJP$l@}Y2+uZg#Wh$R)^Z>jV zHu&E3vks_$_o=<}^XF@^b`Pj|#k^*S26OeOU&T^_Jm$G&VF@%Ak0E!l0hM*bRhYK# z^BaAt^5bv&Szx{si^AS%#<-jhw=sTl3t0f*K1x2O&SUNWRKKlz0=AzI>rkC^M z`}#oUmVR|lO4O{xot|MGJ<2NDH#X9G1C|^Bgy<6@nzsJ=R!2t;LgTLuK4N^?Ci>{{ zKy)-v1l|6V!Ozr)J&R^;UHr|N;?+dER~y@Kv6Ge!sS=EImXrHTSI($(nz9`nCL2VH zHcIGE!L$F+T|IbxF=uS~_X{4DaLq&akrHKOF!5q%?t~>NG7QMyx$u}U5D=8tEFr&U z8a9jOkqFfd?(w%>Q zb_}&FEOF9Qw<26!qUrVls*R%1$8OXkJtuC3uA}M?xf-dJK4U3?GhNlQh;wI{w;uR01sU8`n*gddCy9#$gC=FU=?-F!m{R54T0R-FL%Df==8cXO!&-F4vx75V~{q~Q8)Gj6Y*H~h0WY}xTbsT)Y$ z(RfPe*l9U`I!*&NQi53bDyc~VV}y7%4@sL;+s5)yw@{;7T>3wLQd*)X4xH1ka49y# zx2{2Q)=4oE0j{i6dFvzN602g`I#{y};1H@h9?H$Exl+f!$z=Mg6U(-LS|Uxlv8{w* zM!lvu`q*md#DDQ7vP4%+>6v&ZKn_OiZfx%BFfhv^Urzk2^tUC8{9%s)IAcso z1X-AA5l&w$S3ju=q};ro3S>PA$4)SCMSzSN81Op~qA~TlipPJK{62mPf1A8Nz`lsdO)z~K(-RMM*{dM#4_ZS=R3)ISivUvKkGzX%0ia;eT> zD^|#_<%>m%(>NpSwl@x=dBs((2c({B5_dlSJ8Mb6*pKn^U?dW20aI05qhzq~tk#1X z5X|V)-j|lq+0$C$n3t%8l+T=trA+4EI5%Vr19T@|ix4eXznadRKTqQtpPeCO%PN5? zs;e_`BuqrJ6Ter(jBDNJPr7=GSS1{J{kNB;5~r%w&M_8sIAMSYC=C4I@M3iRIYZ+| z6oydetqVg_?!oom+5qoq{&#f91|v;bjO_S*5qn1f=l>Ul-*wI1M>K3~?68-u7j#w6 z(^}>74LgL2G0;oV(96ck%U0~2hb`g@iI0a@kdsH4lTTQWk5`O`M~q*9ore#x(Jj_h z@_(z~>}q5G-tYgt!jv5v1)>7oe?7Q)imBM^*m}yjdb`-zyV%LO`XUL72>A+%AX;bV z!IX(hMHHp^-=gZaKDJIsvNo>Pww(N2JoJhXU8Vooz_MY+>_ZepQdQJcsFt$~|33ig CmErvW diff --git a/Content/Figures/PU_exercise_5-eps-converted-to.pdf b/Content/Figures/PU_exercise_5-eps-converted-to.pdf deleted file mode 100644 index 57a9df7cf7d2a51db07567b690238183e944fb1c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 48821 zcmV)jK%u`SP((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;H3JZlNwSLaMBceTx_jVje^dLfujebh9{kV${qz0LfBcv6`p^IUpXaOA zxkj@;^^E_Y$^Q9o|M{Qt)n{qz)$ISj@_c>&GsdW2CGVcUrzfTMRfqNLw|@5QxBm5) zZ~ykx=hwe~`Mv-DKm0SkN}tbq{f~dr>%Z81@-v=d)BGxHthz90kf(e_#L4zxSvA zufFm*yq`VsoyT6xYfZfS>wnq_sIz~i+Fq?DI~LfbmhAx5WIa#*vL*lfPqWWH&7LW? zGf#Q7$G(y6-_r8e=&w4{SGOlyDbxP&`twii`D-PcSjh!DU8`*wK44qA(yQ7Bdm6j_ z=btj$*KFsB(#uz}f9(V5tIb!bjYrph!oG~3D0zOBil36^8-xwEEgNHN9WONWqS*&l)?OITSHra17@X!xU%A*A+st-ZxKPVh zG}^YZW!Zn!^F+7bw)xo?Y$I(i#KHEF$?>vmaf(HWuJcL7j9CsrT!{5Ia{~> za8fn|%%a+tlWnU#Z@-o8095;S&h~7x36^3%Y74=6+Ba-|)uv}>4?kgR&jVnaGG@|` z+EJ|IUsV$;rSG;a#j;&_>h3AFA`cg<&ad8iB1Xf~*a{T9&_LGk6WNAoi*0NE zaIsV85i%k(QqpccSczhTuw!Ern-yohBxDfo@? zl`>AgjeZWiQSE3~-j!iLZ+mXj!hV!)G_Tq;>=X|Cy$wxc+B60(ldaT)BT(&tXSACw z>I=U#X4`FBTN}%;71>YJ=9kS@q}gV0#q9@^@8`&NLGVTUkDhp4xeR6Eth_!+z#kCY z){O{*3Kx)r4!RIMZQzuHP}=O5&fbrnI*iGHcC4u%``Lq2G&|l(HsUpY?XeHG^7ht` z9v|V~A7d8h!2N%^IxER#^kCQ(pPIOaGv7VS&g*KsXMvootcz;R1d@T{Y!q?eY%RM9 z#+1-wt6N{If)u0Oxk;~2i)5{Ji4oXW|#9}RM zCN~lVZHjR@M$*zS?#UX6GBxgVEVftSsVDZMW9MVuJ|VLU#VZ^h;UnKkR^E zM7?8$ZB7Xzv_tMG&`HYe;$O?xw^E&q%iCkg)CZt%hho&qY03o^jtu;H_p z-D4Zh)i^!Nhz5xuc$|@=g}cF_+7!9A8Ke%AYZEjNQz^XISQA@{0$$0BKgF?DwR_m6 zNCP&&2wR=JhXYU8=7W104NW-V_Cg!t4i%CR9#~i3*=Vs)&M91x( zuiBl$CNe;5hwV$|ksDx=%Q&G9t^L8?G^%3TODdj0%&;FVI2=g+-VYFITOF+HllpG| zIcx7de}C)-Z)wWLlzA|M-0YrBI8rjI@ciBr1Smn^z!CkWXTOytru@>g3CHJnG)S-* z5ZY>!x1asKdgcVTO)e4Hf|}@H&0#!9i&d~1iFb`;#pXU9~;zlOo}2AcppY$pQFv0nTF8IB#Z%%4akTxCp2AT|cl3tpAf>B3UhX>8s5OU zqx_igMZEFgWa`@6B*3D086_QZoggM{`7uGlEY|}GcWaZ4gt1Y2bZH}j?dH09Xaaj4 zYm>HwYp%PQBzW0YcfNt^Iq^npy`8VpU!RBLj}ac*|IUenMN_#sJ-Axa-U5{$;>EU> z_&CRH+r*D>CcG@hKkRwPf9ddkt^~9)kJEsj$xnj@bR*B4`X&P1t`27QGBE8$3J*>O=0n}?A_GH$NRWYHvR64IB04ouwhap=H&9x9AJ#spd z_BLMn`}q}p8QSb~3uC)yi&eSVAjfYVAynmRjOHo7^=v&aw>p0|L&H1I|LECb+2>d_ zfwr1nG)Z@GZFUa`-+JZ#h<$*(C2QK+`_r!B5&5&x>yujiDsf7rtd}7vL*(#M8!!ZhAvK#WXoP z2-fZtI*O@)_U$}ul+=Ep3g``EKg-2|g(qN|0s(9|2sTIwbI`!3bmW0GBMGG(k-Lek zgG9FTjhMK%u~bGv+x0-?J<1_ohIQyxP8dAfUEEE_5dF z+}#wpw4clxqsXOgUePh{BupG*`J%FG`)_0BUIlcA=DpbsQeggNSP3?^a0V`i!uRX{*$=3EX zyp3sSp8Ek`hW!CwsPhxClrf0C@P)VdZ6insGc;ey`%?OCcUBr&331sB@*3gwvG$bYFlp1s5LPIQtSXbI^>pws+Re+)M&FuKq2#5um7!0{w8rA?Cy(|9xNAZw*a=V1J_MYpBxTKrzL za5&~J%#61qQtgT?xScY@>h5Mq?4J!fA7=pU82o~f^CxLLr3kxy&VD0FA$ddqrmZNA zhL1*QQ=q1f?_x-hqSE0Xb5icQILz`P#uM1fIrW9ct*KOE8}6HY9z_Dc1CzczP-%9f zkZ-Ii!z3gNkqftZ$(R(g%CK98O=;mLn}jPD`S^x}JSb!X-!!V8vj|8^SKAos@;B7u zhR45G4^E7~GmcD@m*4;DJ`L+gl)OGCd@CLDEpj>DG1~2TGw%mLELmEZBls9<9#Mrk?f#`olN8r^j^>C4w2` z;ZYX7wc8SesJp&Vu!lU%w8%Jtosj9;Zj;7`hT>1y@VUqSh4nmQ8uEiUm7s0J&LEZ+ z=3z2vc{Xe_k|Yb82Gu`afX1GANLw*&WZb0gA#?fjV>c-~mIr>YV`Bb3JupgTy1O4c zOuUFcdO*?AVh?sLNu-2-^09e=f#B}hqL&Av+K_liN6^zHXu(5g3sRo3+yTJbULKSA za=z$6Nyc#w!6*rIwwwN~a+a}aKY?3EiqvsNO(bljp^GEK3!oBNbbY`DCms^?<+LTY;|=fG7ukMv z>YV)OkzjRq$Tec^p=)U~T=<#XoQTP~Zyg~hJs`p+SS+fDbu>-Pj!b`BtPC=q#gU3H z4&N}@=E3ePXZC8-TbxBI;)#(!#wnZ)Y*3eK<7424(AVAIU&jmWp=le7Q?8~FGXDkd zIV+Q3PF%nBR0$h*Pov6E5QsswzEdQ!_M@4Y(m@5<4r0^DCn8L6REI|HGka!pGkMJY zF;YaqC7$ThpP)ow?MD*ApiqT3j4!7mj$Uz{hO{Z}m^CXEpDO-@=Z)V`LcoJI>IV`| zm*8XM{Iqdv_=0zwrTHKQq7U`y_ha9u=TL)c$G-g1ai{~iVL#M?X0>&wLv3!L3+ezL zH9aeSxp7GHbr;FPZ+)~t3TPMofM1-J6#qiYO>b=S04r_1CKA7 z(jgE{o~Qkj9dbv%2i5a)tIegCDld-{h+bVU-xQ+TnGc-?6oQKQI22;HH-(6vvym{# z=KNdFrVzWsDFpPKXB`UBGsT%hAz(7lc@%|!o=f`f6rv|Tk$bT^7JeQIfz_$kEur2! z?^^=H&C{+YC;~fqfM=)O)By%BJ|OAJU9=RazR`>-FAqsKf4Y>VNV2c8ovNGV&P@3!u63DUx#e}tP6ZNZ=x2yhg3{Pr z!^64U?Jzs-9ydE#o7TcGI~ADzXSvKy*5ghW;_r!X8-Oj1+%x-$;$|e;oyssSHs@t`vbC3k-R(}XHEwqL*gA;&W%wv%b=pl? zoeJzVm$R;nnsp$;BxFM@G8)KeRA8>F$INsl6=o-!_K*+6pMb%9wey9EShI5f288`} zTm=Q{!IQVyX}7o8>GY8H?GL!cXaB^u3GG3+)o2gWmGM1|t*-Bh?k9X9_7{Aq&TqtG z#whmE%kK2H6|_5<7(d<_@##VE4Tx2J>})6+guJjU7&DLIsH`F1z&TY=HD|t_Fai;* z!&q6NMvV<|gdN^ZRJEnCvYsaq{>@?37E^%ybQXr^pQSgmO9qj-7> zO=i}fZiJyPrYw;QD&dvv2>~lyVdoZzS1Ho;3#JA82Pw~z1JHh3bi(5R3!+JGy0V7U z%tLt=IPxW6tR$5^QH>BzHzRZ3(q$tq2>Z&n@vR`ttK3h(NOY{oTqqgWru=;8c!}Yj#V@=ypPQiz z4P}w*KN$>Q7dm%J!!%qpUg!*=hnxm;soB{6@gP@tz)1TPUWQo7EX~8?h--#Oe%MM) z(>-fJ0BV9QYFks$X2CrbkXs=PLC@GYR4vM!*`QnTuPhZymfM00GH6o`)Y=gKVHXbS)otUWNbQtHC#`I z(|BHOSxESJ^ki;8SD=lXzpi!zp~d*&20J}}F{6hzL>R2f&_5+~!Y+>c-qp06Rr?cr->dFKPL0xr;ud*Oiv0d<=%Cmj6-G1a<}Fed`F56RHOX)`$vur36jx2Ty*ZDUH8N&KQ?7Cwa&Ga@ok;0-_UPb9KGq zoDf^Lem~J<2XcAa)>CTi))aWA$bAz&WzD>eEI1?|^V01sk2^#}QxT()Z7;I@*fNRr zzx{uF3eH~KPn@&CJIruaJ1`lM&-P=`7qGC1uE$Ed3yzqVju}3XY7n&UNYoS zP}}Y5k4IC+ZKS$LL6JSpKBwR$S>^2o@+Su9Aavab1dV1Mm>v_@!8a9QI(c{4mLi0g zH?mQtuZZmF3~^4lQx(yYiP70X=f^(%)#e!kPq*9r^hkZFaGQ_qHaA7HN|Fry zrNV8Vj@!IK7avDzsPIts+agfmHm^sDsBoLti(yy>X@~x@ zdt8615Kr@Qn^$OA>2{l2Pj=2u{iV`vzPA2SA&!pQZ(iXypT}=r;hUYuZ@y=KI8A3( z$aw&?WBbi3>Un^Cj=VW1WxNyuznFZXKyY@XyC>Uf~qyETzBf_SRoc5A~P*0oNS% zPi);{4|;BWVU>z&{h{u( z)Lm^2b;o+LmXK`SL?`LbuJ70w)4q zJLEzQ8u}_17iy2m@lQWoXqglvE+mB~+FRq<9UlG=A8?h&ej?ohE`FjYs>M|vjpG7uQ}vMGp~C{jtZ$v?^Mpd6uyH3hl)KKur^r1+=dqsZ#GE=0 zzf1lroyUIH*{SP1Ok8e- zkF~RY!$Yb*CZ;8jAkp(;n&^MmTc0H}}%+f!igOw;m5oikZ44iF8TSqe#{u zsgrqYd0?v6%EQg9?ZjEmNv^Kqq%d==5fi(QYrbXUk?VHVw`^xV?fUpmhDjCX$N z$w+5@>nX<-#Nh7fW;?mcTWbn4;4k&%U2|& zGYXUfDw7A}i6&tIU!)Nye?_`;^Jz_`64WA+hZI=603w;McCLPLchA|5sl=L}J!e1h({MLJxfl61pkLM1IKkd-)caLlM_5qhlq~SNDc!<@xhTo9Xv5tms zgUE6?O2cnVFQHB;O8^ zhTN#PsCe7za!18mdrIAxh`-xgy+1uv@An5>wcbCmrSCn6kRD=?AsfUrj`ZO3+z+%! z2JsL0LY<%Rm5edOqD#BK_dsF;eDH4}@kXOOAXOpp4Z-5`!RBuf@eLV%a&9w_ zyNyw9>rsOZEUo*jArWe<>j~W39TVSZp29CiOne(AUC$GcX{37GG4ZDzG4ZEIDz>#H zW_wJ0gM+=hA9MI`xX`8WSB`=XKgGn`AUzBt6eH{DcT9X6MX3QE6W`!DCMAxTcMM-f>36v!lAthI_Z$+O^a6i1^dv zk`fZ*iqkVp2B)E(Bx}5p9=)Lmmxl0%a!x2b?Dh7r+W~kx!U%@A;^Da{lBg9A&vjEk zoqTmLqA8w9PR~(1cqjtm_xacX@z&G!)#H(Ru7LQ4yt|QZEep{tS3rD&rH;X03W&Ec z$(pQyc+PEAig0ZBHz+MLrw&Z4GM^F2nrX; zU_ksQRU`X}%M$VMdkaE0#z8*u@V2MzJs!RdAGycFH-w5%#Zf%G9g^`L55JGH2gKX4 znoemT~=LHbK-gM0kfP3d6 z8vbJ|B`q$a(?>1&-W^9Yg+cBu6n^*YVAlpiYkNhkYg<5WDzET=HCltONcaZR?%08< zZO!M7GcopF?$Fmi|8xZEKF2`apEU1C_>Opxw@CPoc>U$^w)WfosoA5qc~7j}-h<&g zB9gCQ_>S=W>nGDg3E_+>VK3740Pfq|k**zH?mHB|rzU;IgI_vqR97hcX-A;z?%7wk zCt^eW))RrQr$d3R)}CUx3Uuwr8W8zXplgSfNYW8aDIFmS4AN1cYlmIwj&tpZ56`Zf z6knQk;#&JdM6yf0?$0cD1gNcTz9Zpn?dy9ae18CL;~F+zXgdtv|2v{w)jaF*B(dP1 zJv+qp^eDu&BZ}+_fVXyf4}iA=*cF1~<|o9NJ(opcL05gVC?LwFwCf2c&>;XI!$}Yu z9^%>vA(dYq;@Suwv{M!u!nYVI93igOlcdMF6%MKAios!s>uGz4>+U!l;r;rPB$!&{ zf@I{Kcc?4Rv?&qu=vntPLB;_`7!k6Yy>#kkzu`eH`F2l zWV|>NVe$>l#M^HB_qno1uvPX2xzK>G0s_`S9EQRzM0)X~RMSB7@Ec7wQ8&tTsQN-) zYcgrrG~9Mn>4&p3<+dfER>gX5SgTl?jcWC=RyxfP8s-Vp_`Z5X!#gD4=BcqZwb9*8 z8n%``#&VgMDpenG+?=aSX^a=&K_=|Q9Xlnz6A#|uw=16ENn=Y#S}FHX)|QUEyME%q zPdltFyT`39U5INkwRFU$GT0(aE!Gp+*P^FL?`5Qegw+lwX}yEN`)pzeZffc9dbZ=Y z+SA_ZZ>LUoT(KR3X3Ak}=}-z~?Qvs^Eq#%1SH_mTHEwMA+&oCT9ZFXnVQtw>nOpks zOX;SL4)hw@oWdAlgLK(e=8_I8zy&*SrWFPkPW(yN6D`S75MSs?@sRsBkUP&ed=&6V zbDlD|?DjUeoF0k@`vY;M<0rN?WDmmaC3}#rjP7Y{ZFNsHo`{8rFT_%v--yMGQS7Cc z&E;(?XmsgFX3j^&`8_~wP!y!emf>dKS5I)10e>TnxIcUJ*54oBA(nCU9jM9uR7l6? zOFw!x<^BAQa4gg49!bpHX#04YqQ-b^aF}Uip`cCpP)6D?X@v6|2nf#Pw zTfhPNUy;l%nT+I)USP%+J|TChJ8W(HA_9YHxp>3%K&J)+vC9!BYcn4RAD}@_ZM@Ny zce$T{acsRJ%H#8t{n61|E^G%MJ3ZoKBR@_o$;U>{)eYFr$40Jh@h2M_S-c^b)W|an zxgglsC=fl5LS-7fOghfS1`(mx#l{AdVCtP>V*^_7bDVCc9c*m(I2#)P=jDacCJqnE zKb&m9XPP%78zsQP#K;D5OzXwSMgf9z-;8WzFvpX|v?sn9nJrCs{2hOy1ojgc*+3$4 zsTU&~fT|Rv6dBpx8)syny9Y)#kpIjBED{(^F*5tfEYq=Ah;3exK_!@s4YGWlNGi}- zj}jr5Ike$u}{fVMmIa3H3o9Bw*5P&iHTvEAN$?DUY2?GHEy**~#) z%pQbup*=|FQhOSkkL`)>C$tXx1HMq_Ct@jM5PRXp#@;qUmyKrXJA!(^bcS2LV|7P$ z&@&J39dJt$%7S4+ySaD#^b|_GgQ+3R`69^~Fb1@<5_kjTscr)af08O)s%jUBs!eh7 zcq1?8hy(#2z+dbhCXJu;S?s{-J<}ao&0!GYKoomazmSO39?%#V!4QGm1G}(1@5JUg zKyIWbWsNb~T-@D^i^06pSA?05Dj>WQh(2JxPj!c?58}V29m@W>RouV-W32_Ie2%-) zLG+wj3!oWusL+7k`q^{d`qy8+{o7NYU;qB)_iP6Lwju`juxVgd`GM#;6%-H!lq=J# z{jHxp=dFKF35E0P|99W{9O2KNe_s)WL|Ay_-YkACdT@YOR!|hk`n-DJfCeNuK>FG< zub%4}z{4Wu@JCPlmi538VRFIg!5yv46$13=-E*G#9J33V#64DLZbuPT)Jn=bVN9R_2DI7s4vhsa;21D^vmT=Ev1-7XP6cVW|)S(GS zYA1wwRS>Cwubh~7ijXPnIq{Z}VB&3{^A2Xd?Wsy=Yq|p7x56kYTvo7sBwoNL z21L~=F}f1e90pm?T)Rv8Sj#V!yQ8j7A-LK|RbTXfJ*sb)I3I zhEyeQBWC!Vv!0s|chX`^;fxlSeR zHr^-Y@}jo|$UHQir#vV$ATbSvKN1B_3{qt!5=IM1yoUhzc%clT zhXMW{FZkXgyxZ=`=jkBeEtbIe3XfRy|-IXCk9#gyaER7919XHip|6o62bb z4$F4abbXsvA*{q6H63wzw;j@Zo(EXIrkxKsBzRVSH_r>Oh%khX(<0Fgp@H>kB2g~j zrPTx5VqQYx1|A9OlyEO?6+nd`EBG6k!I?pH65_E6a}lv2f%Od`VigA^rxsovmOnxC z#igi-aUbWBc-uF>rR#~Ld0tjoAF&gYfo3^JhXe4rKHF>;WYZts!J${jKM`H3S*_vnPK2?~n0_L;OR2Jx-(e0phKRM%hmgRdmy+ z44^U)B_~ogMjB>@-1jzh6WQvCC zb(1N~1Q2^cWmY1p+aCA=SmmKn^lV>L45|0ep>i3HY(U)wk+RKjfKpPajG%SEH;78@ z=B84+$Ej2XHUJjb|plvFZflyG|rcw*+qu*3&4f;wpm4c@d_abOe z+>=A4u>JL-V@MQ2R$Nf2IhDJ1s1z2S+4D}NVq=0#eQce8XyI4Bg_P(J0kFfyERrAq z8ClLqQ`!U|6J9L^0mw+MXYQx2cjgty7Xipn{GNP0(VOxjod9HLnB^t_Ma9Q90f6Ck z^+N!VdxlK2LjYJ*ZEOMnGb&~t1R&an07Op^09s<#ApkH=L4?=@0G6g%4gn|vw%-H* zW)S`x6u{-J|LZa^{e+n*sE;!^nC-j`(Gep>=1XvPz1&=3^2 zKhtPEuiMXc2W$4*zxTy&|L4x>_A{|+U8+{}92F@;XL!@WqX+pHnLd=vIvu}sY=!9a zmjpQv;JWJyd;_eTz~^cU zfe4kB)kA9IS3d)s25cD!dl&`kg<*#f*E$5jiV&?AKst>~+Mz?(B+%1s(K6c%wFPOZ zEFo5qq=o~tM`1URLF+$z&iWO^|D^UyPtBoC@83H6fDoEG-+F+#DUrJSjMZ~J^RbqK zZA*&H#LY*+tMAi;bjS&DO3|E%2W)`*BMb)^tCoTQpn(u&-)MpiCE^cZ*m%KPG>KzM zKhXX=^0HU}vf(2|h?=OlIq0e@Fkg3Z_6Hms4iT0)H1?IQHnJ;Oq#}CkKC=p3fy<8A z_ldlwKnI6ph_ETuU@Rzr0dj@(B|Pyki>+R42L1vtu zf}r}G&!J^X>AVjuJO!YvacIFVvy3Vb6r)`p$)d!UR8LW{&iDe>SzqW$Y<%w&L;I80 zjD2yC_0SunZRMNZAYLua^Y^}@;w%YHgGZ~8;51cB?Z_m>2v7r+aHWeCObe4dcGHC= zzTiEY6!(h2>Vs7UPrH(}64Z84D)b(JY7Um-AzdL3?qFU+oQr}mG19Ezx4kfmIP;>x zc24}!b1_SEqPOoUYa3pF_uVguMnt>OK9YsQ$>UPpgopE9ShOpVB@W;NejHJfA24_f z1t>nu?B`QJG4vk5r~*!pMQTZ#@!87xvJP@#{2>;<#Q|}2*L@KkoOfSTW)#-@fH)HC ze!@$8A*Udvp|xE2?L})nkCb!`B#&SeaEamSGFKfqs_zriRUQHd&A1euE}5wiX>1~j zcm5TuC78ERK?{uK*ms~5ksJ+{K+TBgE5hpRL}|b!g{`O{TC0_F1&7dguS?pOTP6Gn zl+eP)r>seLM#JKc!qSfyxTW0Lf}@7KGswSjN4*Um*j3&+dWd6zH)@iBcu~NzHaID^ zMj`d3H=@sB#mPT=XOM1T;6FYvm}rcU{O*&WCJamyRI)9@5mx-tV%9ZXm)e(Q|Gl%S zA!`WZcM(K|9foH>w*@&ge6q4|t8Gl>8^|vK*>Pyk0w1pCfIutYiYlued)cWaGeU$e zfJQlY3nr*I1W;H!CcI0?y*!B2X#%KqpG#z_wKpa-gp|CWKnX9fDHEA8Ye72}v=c`x z94=U9opA7xf~a2L=OUxIpXTO4(SuXlDmf$tu1wU+q@RG%8{}aMh?@AYpfi=D*46|a z8JVd#ht6P@P_yIjfU!zPv>L67ZJ9*vwZJ=55JJV}!h=r{truT-zh}C9$fbC0&*Sd# zasCAuqcgllwZlk$dt-P2{F(K>OR&d{OGM?FuydvF>!Zs9M7D~>Y2@fr7hC`)LqpGW z&*EO(I0*z1Dil~20h^sxdK+k(4>Rlb6S0Bu1r*!?({!EH@i%dlDodgl)Lmw!t%ttb zg4BT4_F*UbYvtnN%mEA;!IX<-k8HaAv~dxazrmhsHGzIgaL>=4ORxJluYWg^@1;=x zFQ5e-IWblNXp4#T){REMc!bSHj(1oca=ngdKz+s`u8A_nKI9eIG-X}apr)FxKj$Wn zBb!%ELT;s&Ctxk)xxl97ET#gFr5_K}ZbJqq&`@+p9k(U}X5#Gedy{3MNUQk^su6<= z3ur^)ra*C*wUFqcMJ%f{y^*_2T3t4lLbDN^YtZ;@hE$KkOvX7g;}CIcaC{REwH>#1 zMUe^+@1#{E)TS_AlP`>*H4!li;ke?;R}$h{1vr|e4;0_EXv#Eq+RZ)dyT=($&B9I) zJ_*`s62I3?qQuaA_{JcavJp;7%Fa$I3UBmVRH{T?x}Ru_@L}O|B4SqNUzV7e|n&StE?UQ^g0MG18cbTFP`e z2o^FG5b1R7_=gI5N4#>B!C`xTkzR&HYG(xOI5vQiga{AR*|`JiM3YV>R3+7yYK#8cOvc!Ch3s=ve}a zEhmC$w>MuoJ^QZ6ZVmB($Cy41DLovJgmzRyoPH16JS3GsT=kOTD}vx@hmI#qp(QW$ zFJ#cd%HL>X6NfcOmU(k>k_HIQR7qYCM9+iccO%pJ=z@mtRES~G1ZHjPL9WhD{&nzN z24-IYV%~F@Wrc)I@$5&BUlH_F<^bYa!T42?58jCwFX9P_7-Yo`iKNy_s+i7AhAy)9 zJ%?A|=off=ieALu*A#xYA0cFQvt-1g(Gf2YT^F>lWDSukfx0XPPz;!FEt+8SNbVVpV`V;5X*_5$Xc`;&I^R!OB^MwgPJ|l}3|oXSYijHFpo9pK&j- zBQQr#snGU|U6BORrnnSv| zBomI)IaE-_?79;gWGpmr_8V1-?wvs$DJLKT^%phRa7&{a!* z8`kh>BAR^A(X;B!Gdw?r0g*Qgua)9H97%0BUMqJV0usa+ga=oI2sWBbxYCR`CDY^H zX|IZW3>CN=4A8?l!d?o3H`+WO6#4cOw6mdIB`<#*N?}4Ho-CJ}n|RM96D(Y^{#%cm zb%8aSlmY2nnrNhJGyV2}-CVALhLEw8&fmw-9!O*$(kQHy3&@Lv3PCi*B?dI;H)U)) zW22rr8FPTtU?O~G#UaU<)sm2vA)O%E2_*;9F`PDJ71F68m5=R7jjHViG8=@>rH(89 z{h6xK`=h7u61KaC7^mgTvNkP(AV))~!=xvnV8YJ1m&w&mYs*99ZqR!c12N+qz#Xl6%Y(QfKK;oVL`LRRaN zX+92|Fki?a`ekQnPzY)ZJ4?$tE@5hE(B#T(4Qz16wPR{&EP`7U!iC@#-o}=O+nkOj(4g;LkvO{@#+Kb7V@pGA(^0pvh2LB2GPV%aHy;J7 zfl~LfjV%py85;REwpfo$VluWg1OwrKxUr>C$6lAQrD1;9VK=rkS~A8qwlwSkl!R?; z;abBk>2g;9lZLgWfmp-TvCS>)8Qa`)nliVXc9>gsPuxA|i+yf$3r_>RA7O53aGA`o zwzMon>9D0VY{|II`wi7t>4b>qRxmxvpj+!&IZTN;?pGq$;|!1fbJPP#q-lUlnh zE)7vA&)gQ52HVM;+v3u&AT?bk7we(FJZvtpTVZtB?QM1W+)uGGu+Et;fhu~A_|$M^ zSwinek9%!_r2AxfE+<8f#u#EH4kgwB$&WlAiSi*(eaoZ!ikso}Q=h&syrUf-g5Yq+ z`|pDY4(IhL3x`K*{1Iv|{Zqy{mf&*e{fGZ131#fEx&Xp7vxp;Pwp=|;H=kc@LOMPp zLRRjHPqQEC5(?#7Zv7#C{c$a~o>aouUCXU!uRAOPv)d(HfYEbZW8&aMpKNySuBcd;j!l8lr5K`{?jU# z+y-2sb^Z((#pA3dfHLB{c9=y&2`oA=9y-&AaR4!ZwJpYJrx8D(j%!(vsNL2tJ;;;F zW86JeZbD*#J_=7*N_$USIMbdU21OI#Y}TzxG*qE3M<7K`c&*pO5wz6%`Fmc9A(9{f z$ks_SUZsJCsrr?HK@uDha;z8}?i4X1OAiqoFFdR%5m7S4h|H4W2{{yPXo5od_nvEA zK4^dlL$^+tDm?G=`}CZIU7&E~`CE^__4mhjU=E7Di|BaIMPmF*KYOl$e|$#+hwj_z z6>QUh-ULJ14z_8`t_eet-HxSbe#P3fDFn_FYeO(m2CpmDrlAN;JyD!QuYKk%t~;pb zeget76weuJ6Of)4%W!bah_z`bb6ie5T(nQD&F=A7n*jaXw;lkuxWijz1l}fOCa2ns zF%%wX(*UF8;#>C_lrVO{ZQo$e$wy#wz}`a*eNFb?iNCsuA)NfUNrxED=_0KYLlkgL zYwK>@BiOWeoK0h;pmpMG0>X96;jpDV{pg>LOnc&N+7t$0P%T!SIZ-qY271Zi^P$6e zKLE2=KZFZ5ioUKWo5mdZv7>B=(A!5u+3e%y(8wD^Q%Mv&9RTL;|v@d~s?%nWN`?9bL!Ei<*Nk^vFBXfBZJSfZwjFm*>5kNA_REU#8*mrxUvz#79f$$3qi4$$1qpUav*EOfWWMF<1!xlF9*743)^glY&xEDqsTv%1 zLu?DKPAJVQi%Fr3kcuEJ9+EN4sKE1(oSNa0h^9;sd#E|3_Pd#$~A< zNAE0zO#*&!QbfHN-UU!qg!N#JGu10%@{X}RhjE@EF37|aXDQ4AG0RP^kiPO3 z5=~ImD~!X|m4#jKh2Ez?Rr773TY`}d5vZX=TvA{mY&yGLJsS9QG#Q1KuT+(4$q!Ch zBb=ZuU%9X|Vy_Vg;jTz)&n>k1&L;&mB%-!z>m!<;7YYllI%ixZ=8;gn=PDH?rg-`v zk&ST{{rU(Im&XHW{Tb-UO_&2q31GID1e7|OuJzD2fm==F<3!Rn#O-#w$3E z;~TdvjH?no^s+E69ngsCZ%FNJa?vgB%sW#M2qCh1OhXL2|F`utqI@Gw1xKp0JQQ-C zrMh;^8lsR(Up6_+Q?5Zk2X$Cc5p3xRFVQ|+cJ~xHK6_@0D=l_#9d=9#8i^aT@J3-~ zBg!s7zwQvsAl`V6UQFYpx^|jW>h1x6FVqRVGZ-1)!8I6CvuJSYOcF&vhKnaX3*ef{ zbi>5j6Yv|*qB#heyX7+LG&D>SYRCc|L6jf>0Hl7_Y46mZ=!s;I_{lVxh8dGMewxqy zaui~(n(LB3V2BH4u^YTcJ+z`d?drjAAmgV)4`e=1;?3=ij!(p|;)k1OSh_sWQL@0ZI zs5NmO@KQ71R&Bh|JRv)t7<6ZcN52D{3@Q(*tkGm+TPoB7yBA!3KW3S6sdcxnwfZ=S zemW-!{?RX^=V+6?YxuwPY%gI)5hjlvg0rai_FOT6y^sEuKtv$yBV!=^VjPn-F|5<= zB_){rV0f&;cjg| zVf0+kSx7X<{gq$Ak?Z@8nd zBLG)GsK0k*ZAW1sUT?cgN5D`j=kG$14#mxOw&MP5KVd+mho7*cw)7m^Pq^D6qTad| z<>SaXy7gqG%40*>Jr`J+5Nvr$YJ=cl$Fa7Mfck}%_8aSfiPb|cD zbR5i?fS>-QXJgk4ICI?V81~agK_8jb*kI@K*4FXZQ)Xf3sG;u*f-5hXV*S7V| z@hneZmA*LuhmbFIb0o)wa&>bcR=jTgav(BcrK4^J`t1I@fH_0m9Efbm=~6cbe6#=@ zaCLJehpuvUbGNs;d3vO7@(U0%UELh;z?NGVC!#UjNv>`VL~uY2cXgBa#b8)l-5dx! zfTZZ^=0NBI-8j-WZ5@X~|3cri>n#_73(Nz>D4ye_9gon;kG?se4B@)E!Z}zfWNn3W zx3|K%dtBk<7s?5^vo>AoN8=nwtcTq1Dw(w@6T8M~(@4rB3yqUUhAcoTCl3gXkkSI} zJV=AvO6NcfI-ii%NoeQ3T>=AzLvDs(C!_?F6#p*ZTGu*xK*k-4YTK)Yb**zC2pv;$ zt#iQJMF&D?oddq!b`c+C()0U%1WIx4)xJF<3NSZ z8FLJcawGw69i5Ya*H6Emc<7xBopYd;ZMmtv?F5y7*Ey}p>hz&=?sn*$r$aiYwPpBo zos-|Al{|FL@%Xwq%OWutC;WAwG;nH{+R44AWnF4#?0u-6BM~fZYn_A=hYsml=SV`r z3$2sbQ}Cp9a&PBWItN^%2;SUE=YVoIvMZeD@u6L41_M>O|G99&(>pD+XYV2L8 zodZ>bU?AOUC$By+0i|{l9)4`C^Mf@AGB^uF`6!(u3wrLTH3MXKgd#LRQeixFJt^8p zliEFuLBeW+-jq$l2Gr4h(vck-newDulKe%I2Lky!R5F5)ha-ZMzYsN8IM>9}gO5o= za`e2dg2ptD3d%u1jditk!1Z3|R%-_$1y;Wl-+|a1roT%y9sta1eXGv9y_M_e3H5sb zPX`)~tLKBzh2_%U2e=coOxN%SLUN5}gazPpyZ-mE!HISG5Qp%Pyng@a`TGxeH&KoN zv{lqI$z+Y~(KGQE_=VImGAxmk&on`!u+k780ds`~dJXy!0KPXEfMU0lvie_Oc~O!p z4@e5|R8U=+QBH~SFz|8U|EC*Zg7OhUhxEGuYOeDw=(5aIQ#L%{t`gJK=9dyNSwsv3 zWHNRDKo3)?@nB?h%U6(pnAS*gmy!=03N|hMG#%-K*5agS(MDqk;bP&`g`+L=rWG)- zN-2#{NT6n&ICYSKnQT)K^W_C0=qfHuH(^f`=OsV}Cxv2d(Bp~%<b}SRbnlX{xZ$ZN1W_{LLy-uDjbMM zd3*?O;TELg>=-m!&kzM1kz$>t!t8()sR`L9Ku||WIsk#t&meCa`vh*pOPNr>4-8Q# z0_XwsA~ZeSI-a7$Z0Q2$Rnxfw_7L%Q2v2B71o4%F@d5<4z)=&FVSx&{@avh2glE>H z14XN9Ye4tSvpJ#C~zIE@eM7#4u}>NGa!iJ}^4cB7JfB{8uN$CdkD@GT1I*?1K9 zgczTMiCPE+$4kV@;-PM=N>_jk%A!kl!XC;7EQgI>E}-imn!?lK!7r>-Q-no~o=T1d zKYmgn&VtfXf?V-!DA4e5EtLg=9>7nHA|MgZc24Bs=pacb3p5KqRU^0mM^6R%V=dQP z6~e^2zFWb`X{L+cuAqrT>xl71UeTFDW$lc9&C_VcxE7-JA;`wPSQW?vblk*(R#e}_ zMcs>D;f5m+Kx|BVJb-*}UP}a7x%QW#T-=5@1FRa)MUO+WgAMjUVpPsNN3FFXWQ2Vh z8;Xt9d7an>#0DmZ#;I-yE?@V_XW2EzWXA1iKo+HiH*Qdva z!z8mWbf=(O&YkZ>CQKJq=uHsdhjMhp&-8Lpmk#6$>O?_)IxGG5i$rz!ez7x~j78m` zL+Uzm-*0Nz7sZ`JFb6FC{7Mkj0oPM+7vUWUE@uw&Ce8=|9qXdsh}DC_wJH2SxE~16 z<^rR*)Etaru-t09c*#J3LGKs884z&V#gYafpz)Q>wpe$79+_Zm1MuurIfMNTlocw$ z9tY}GBOHG7&w(H)A(c9h9Vk&ot{Z%Kpn~~0oO*P}W!=nt^hS8M&F=?dPUs2>nP9*a zMPSts8wTKa(h=$1YPOoc055(;}5Jbm?a#DGtPZfdyG(^nC;l=R!(11cMI z10Np&=NfBN`4nUUKx&F+i3rQ)ON&K-?`Wo^`^JUBG9ZXWwVc{ybch|^>igQdtOST( zXt5uF>p&f`G-A(~UsZ_<;QLC{o2;5}+pu&{e5@)KCzGUS5 zk;?HP;yalA9C27HlfAmi&GA4ZV6qaz&yPGpB)h8m@>(=T+9K>O*SI=BQU-F978ut{ zFep=1V0i;+$DRbe@=KZ-6XR z;7e+>M=))Sm<#fRRY!ayH?K3=g~*^RRN_>QImR>Q07^*EsO7(uRNgfc(5MAHrS%Hd z`7D|%xGJv#y31i^FM8yp8>bpvtp#;w2TO@N1ArM$wa3XL3OAwVtmTZ@&J34>D(IG_ zBz5?2dN3nK@jhAx@+-ojK93f>CB^q=FO%$ikItLr41v6n2(Y+}n|~67Wmf0+ME9X1 z8Q7d+xU?ihy_sPi%A1Gg*raW1RCxg4>5D4gA=}R?MDKs!JTsPX~3ITZy z-G9m+2w*89e=eUCzSS=oMm_NiQt{UP9g0GXNbbyRptz)j6#P0@f+7`zmKkK_Qdid$ zSSpNy8LXAN#21CP(zFzUFN1(rxKuiM1-Vv?zMDy8&Pc0JJ+S1$sDvy@?B7Z3B^Ngd zZoiV497WQH+w13^H*_Q&0Ul4vwODnW5-u`j-^ULUWEEk~}C6u$4D+35+ zb{*QfMRAZ-9P72k_39^|OG=R*Ta4Sm-=f%0U_LsMs2K=80C#LF4>Zw?B;FXP@fn45 zxeruAc=qR%_(nB_;Cd?B?y3x_jcO~qx`S{^5Du9Q*f0bxiHqt$BA(tjv}@bsaWErD?%{3h>tx3&E1?h7U9`$rG!)F2x@i&Ayk;mddJqY0-R&4A)Ad4S@`*zU?5>#4R zQgi!E%fcBc*{SkkHVGXFLAVF4K93YNT7B3-1;VNSpvu~%WZRk*YB6wxcjqF)M+Da$ z&S@xL7eoc<7_o+BkqXTvC&z-X3u-n`M1~`qF?OqoKauk>Ddb5SPX-z$lM9|MvI46Q zzl?H7vJ7>7v4A^LE6hVio<~wbo+?aVfJ-fmZ9oPT86X}ZS2x8{GGZi2C`gW5z; zM~V*LlR~%=H~NJ5A){ZF6h{fg%~s57loaDQC$;E?6`*JgHvebIBczX`sO~64QQib_u-*!;FCPGaj+WzAJ(`Ie}gPbduv>fhWa3-Uzeyq z!k;}CtpnDH&%|A1Na394y7nxE!mo3O1WS8t-1p9Xo)=B%O~r~1-7xK}xR={$3nPX| zw1WPak|$u!O`}-AJg19}b)qfYq^_eL2=T0g9QNgz@|$FuVp?bj3aUysJYm+I@Qx(c z(nXtT+{rin&QgI7jUNd7&-3B~bnuXw1g~JNS=hM6Oa_&uadDdgY6DicIT8zO-b`yi z%VV~9Ft*VWm88S`Msp0e;E$sbtm$yj(UvSwo6C+al$^tfM=y*W-^_Y+p6knUCT``g6kk>P z@N|8tPZe0R}BYeNk1W6#&NDL{6BsJmT1``reYOp;! zsb?{!A%l#ghhlm*V)=qi5jXq6sX%Lvg5j&vKEey5VQIpA2GEb<-3Lauht8&qBr_ zh-Zk}!%U?RLxN*k+Hf}nrM#52VlC%Nr@)XyPp+ad!99(%5=-fvIU78Q;hEQ6_2{8O$;^wuD;yv!&6zR zDV zpEYIqdE~tZ5o@A~G~UznLs+}%{vX+Xs;FysZw_@_5?~6DwEl=hhu+y(XR5f37^a_z z#p%^I0{SbhLqbuNidz|p-=~DS>fp;@DLvHW#`M1BCM5{BgUsrYjRe=UGQ%%T_ZlO1 z6=v|U^_d6yY!w%z1sGnx*{c{O87_l;aIgoVVQ~Bq7N6x~Nnt~v^#wdx@h6P`8{*p} zUTH8NJ$pK?Y!wYD4PgG;@Ka&Wf`H(LpF;E;3K26bKMy1AaawqipfG}(K^D;&g_(_( zlgGvSAJ&$COJV7FDRilyJ^#i6)sUVTkK0+X{b$d=r$9CDKKHp%F8JO(CMGUj6|JxIdo-;8f=ZoTaPeKwfwZBKcmFT!15gzEz zp7Z;OK@sihiP*f1)a+jGp7YGdkX3mYxPT-Mg%NB<@!@Ev&I$-54iXV5b&8Q86qJaC zJntNQLUDn{3xcYbf9!=Kd{{6?P0uaa&UN~l8GBsRCH(5g+Ih!*^!0Ey6F@J?~y zsh?P0SxIe_g7&41C!kKkvt?hfhK~rBo~8W~tTT1!+N(~uDxLsJ<6#YWRWlfi*`{~{ zyqRRP6AU$bD8Yo4tzPX+m>0egJurOm14J+{!t12v7xDm*q*!1b(cPeNQ`N2ZAOZY< zBJj|eux`+KvIdnLnOH@;5(CeZ+(alX%Pa*y^2FRrNg>yBFxDb5wibIi>D5Zii@@KF z%1v!v>N*khE77aSbZXwxl>F#Hxm2~|XUPtN02)BVB1pW`i9W`VZrv~qlRSbcBX{m1y)~o zo5v}8@d-VFnD*jdP}%sRK&YpB1$G2NGZlx1@&RgQ5CD?R}G0L^t(LQsOOm15K4t>Xs5l7)?nssUMID0Az7#_d3hr+As6;*$_d(5UX26!m=CqRMH*b{i5*DTN0w%$?XuK z2pXzurzUrLxj|5WuTjB;Z`0$@?#~nFc4`1zbV`x3sPGcA=FTMK4X!z6>vAUvfi7JJ z{%{4McxOG#BuMZBC{#@;VIYL5d{om(RW3a~rQ+w&gLAHM@KpUOymyeXcDardEw?{= z&P%ZLwV!SO-M>FZBBnaB>P2tiVD~uP#!qENB3*nQy6-dY9_X=*O@t~f_jdLgIsi!l z{C4+HMR73?=d&X`rEl!070_>cG6CHxK7gAy6!sJWkt{~9axZ5X)I8qC)z-&sqUXpc zA8Vk60ep^FqDvbY+Sk)AX=7KBcWEOtX0~r>!`hueEg@|f5hI#}N5^}kZ25v;rfd-MMaC6QTfEpqbMYcW(v$JQ z#S2!Mr)1|fL78^Bws>JnwY(a;ix(MaC-|1j7a1T+)N~|YWB}vPZ4&YY_jj}{Ux0u1 zc?1mL;*4?&7)!CXAzv&vxrcnQ+grZaJJ~vgHfg8&zoD@Ebj)x;Qgv`~FA4qU~aF(UVy+@vTE& z%1F_n=9Q3Nk%1H>docH+rXr13d?6#-kNPcQijzmnf^R5V)!v|YhO(OqX(H{LORcp7 zO5vQ>+9DOXZQ(9cmh4*&$&ei7{pHQH7qaR_*iY)DL42fvU@D`4@e7zh|03c`&Ux)P z#te;`oT0F)#%^+X_%J)J6@)@G=Px~HO?QWmG@=#ZrT0B3c z8-aDxH>Q)7;b^7nF50n7A4iW;QHF&v-?pUaxz?`B_;~kZa znr%Ohnl+?jf>`ZC0pQDFixFg7Nz8fD@xq*5p;1x}JpME?$#EOavi$x=M<#E~NRnYJ zCM30ae$caKIHIieajFOp5wGuH!Hob#H;B7ZtwM0&@)%Z@~a@yikRj zGZ84x_=6=S1gE{p;Y1$|C2V^EnI7quTQgD!%6jW5T_GAz^C);o^F&KmER79Zq|{Bo z)+T;nMkyQpPDeOEk#I(j-*UmJiO<36$eC{842eF)rEXQ?Ecy)uq%)&s`t@pZ9b}~R z$yy|E_|~T{r;7fyMnTe>cp;1PdC%X|b0+_BT49(!?=A9{Z@77j$m8nQaM9jC+t5HYs3x8U1^OFsdES6}%s0>!Q zXn^-zHy($)zERXURaY};0M>4;Lj#zpylxt>BrXIEfaFJ;l+ys#*1bu zcySuA+j~iOk5d7}VbKERR3LuxPyq;HjHGfZfc-A(Pyxogw~Go;y)B0dU?pV*B^AIb zfZ87_07>rYhYGCZr8b=kKs2QMw#fhlhkP6T>3OMdgkdgSt3w8$<>Y?I09>}u@dQQU z^+g7FSq~LJXeg5foC-iy<4iXd;FIN00bo1xC!7j^ms0fHRA4IaWm5q#CoQL_0Nhrz zgl#gQgz<|Cc*mLg$8jYQh_^Nk0PGaW&87j^L9UO}0BDJ%|4su?%sZEx1|W3nNrwik z$F0py17c?n4Opq_oH-GIrGr@pP6SSSpV;UT5x}J(3ZN4K7*}S#i2#PLoC6X8oLl~) z69H_^x@mx~%pn2qOC<`h;t(qy_51XAYASCvS4VfRJo5M+4X^hxP_6>$ z)g9KvQYi=*$`ZFZ&#FqS5~mp*OTp2_?E;vhv2~jQSS^X$3M|LMFSpIAfcxWm0&+P+WYOCK&y(H)kbiTA#Z| z-LxS6agyLOz3=<#L2)nm-4PqMezx7dv_fhyYCIE&z}$Uss9ohV>P}A$TFlGU0lBf$n-mTofkQddPDZ$%tcA z1b>0@Myp%|A=*l}#~a=QM!}RJ|H4xJ*!>%aER{GBov<-ed`7W71@L#ec2W%qUcnm_ z@D@{t(d~J$O~>HJWR6y@Cu$P(adK#orsS4~0d#l)#sPP0A~~S?Izu=kzQ)M@5cZN2WDm(+qOx+V^nk$mN6yq*2-_O&}>@?lL+@Rep&x@?bKGJ6|1R5OmL9K?h{r_15zU_P~ST@Rdh} zDNautf(|=xeGEpiX0W1Ci5SjXQInWPU-fW=N#_ErQ)G8w~* zxT@v`a4A@&du%o=@I()GNB2I39|O~J5(=SQ4$<8cu1i}zm)kx%j{CEKmDQge=asn_ zM*Fj4yFWiiqTzvxo_MA2=(wUa5r?qSFFhv;tinz|=C3^w1y*4-&%gHUD6sw3&z=)T zh=3!qte-uh@_fun^_p4j>DJ?;=bBkz#lg2&)hZS{^YCN@#4V1#Mcm5p)wI2w6*QQ@ zezHLRu{V0TuV$^vy|FLQ&RcPHlV1&$`9+}UdW)h3hRIC7^qfi7R;6J6>;XUEiQK<+ zoGyAvqDkYJ+3J2dgZPt?fT@KT~xpT&8;V~T6=3- z3#zEk#B~TgslrFn)AfW>33fEGm(V_XlGkAlHK{_}ZEdSb1TUd!Dddrg8cJk9q9&E* zkG|EU-QH@_>5){#FYp*iPueA|x1Pk>(Y&wHlj>x;U8qSFXN8wH)TBC;<9<>2ofi7glWcFAj_nYReiL9j*l+C8o&MTzxLlUVngig~C>6_y?u?Z}<# zRK4<0lPb$sU0PBF^`l-TEs43zb4z7$O^)2g?H}cO;&G)(N>T-q7B77WlLY9=TSwX( zBOU2;=e*Lma-c67>ph2VH3-#Df9uKZrn(K@NM^9=1~+(pnZFwO0IY!BkM*=6yAlK0vfjKEUqre1N3- zWjh}rIl9ux2S_TGyYm4ss^m^nmTrAy6Fvz6fM6c4lMk>S4?}~d*$^PZ=-S8!u$3u# zKq_AYB6xG}W6{#~J0GB-R+mV<0^pzQ&T4IG!zNw!#Xmnb9Wq*lj8snW_P4gZ)QfGm zN2t%y!!qS`)XJx4$Dj#NE%E^xY$Q2t?Ua)t<5xaFBX}W$xIG`hrmyJ3oewaTu)7li z2&MCu50DjF==lJ!E|u3#2Z-j*2JnuZ3^0|^;mH6EY1uTesn8uvI{6j30PWG?i(CMk zv9drT7of4ARtau-7gBH0P6F@3rBm(mL3Bml1ruIc_wt1v ze0JI*Ehu^$J%a+%F8t{_u(g+)7n%aZ8eo{H+c%M?p}LO2Az~Uw)M`v3t-A+V%Dqd^ zl9#G6rJbq_AR^jm9#7u04DL#6rm=_q9oFMq$LhgB@Qsw@A+jFX@KJEIqUL5+!Z3xh zt651K@PhZSNC)QSKM9a2)t{7g&$s8#j}7yZs99Bw&H?hC>%_oowBC5x60FwI7uxdT zhc4wE8djpzOJ88ELR#^pFR(b=*y;i+zfpY%b%8bR`hAo;lJVPbJ?Esdl-|g{ z^=x%v|JIdqlRfZx_ppY^i9Ne|u4mpCQw38Ht3@M=w(k4tnT%WSiTQ8hxhQf*Xf66H zxD+;Z#NLe)Qr44Kzx0^Ho|eosI|dO|%gQSg_?*+pS58j@%!>e*ANA>;u=WqZ64v-URDsgE7-#V2aeFokmfsK z!j8c6ef3Cs?}&^o$IH=C7emQDNoLRvHy4AS1`{YcvEn%}hQghxsm(HVlg1~1AZJ-g z;{zxl&kydOV205d1G9f#5!gODXi8>=GNl@8 zJ^S*p;$eqbJhXGv_ky{FGN4@9d}At{4K?-fz@lIS^KiSGog?S->N%8>aN_B=o((E| zdXzA~XNnk!D6B`D^CJ8>ey1cKxoFK^E7=*WowlgSrS%MIQ;XXxyiTLfd#vjeIDj$c=E6pVZQX)s9 z^CUKcY8{Bofsl%2`vzF4wdYcMz z@iyv_Js$MxPaqPE1`hv1)GIr`(X-6lD$Uagp$QV1si<@WpHT=c%}G-i>U?pi*TB5nP5FN+JF?D+xrt1TP|1!`olPF&iZkapFdGOv8XekfyE*D_xbQ~VXlW{ z(VIXCGT3vgS6dibEEVWIotS23~3`39zszq-~s{UV~u7qz_2}z{NZ~y?37^m^dm}!ZMYd!WJ!T^yoJL7&H|4@!8=# z`0A*P@96+cVw^&z`?16RLHn9cB&+8s#2)sjiruSVRN9+x^4e96%Bju^z10yh*{=9rPMu%S-%(bQ zSIb{#6sP~dqZjqzc9ia#mb=`N`CYwdY13ozkr1*`iZ5}A1gVvF0s(V@9+Coh?5iLz29>4?s2&p zn|q1P<4W2T?Hiuw9bz+#$LZqIgDAe&orA%IvVuPVn67yeR5}dWT8a>yr%K0cW(Mv` znZZg0VP_xKj#$$m-B*f^>%TXKe3hD6^bXDA+wB6rCd?p#7jY{?l|zj++V8CqFx zM=th>AHjJz^x1wu;B{MY9x8Ww3C;s-c^=7mZ;ngOAKS+(H+-N+a^5{IIRh1k@j@=O zj;4_DBh~_K>k^!ClVtanTpTmoax-kq{SurJVyU<&eE>$Ww;!0*o#H+O>>RyyE;;Y^ z7M*vG%g*}?F1Pwm9Kklm5Zoii822g8<-Tw+%l&{BA>NNwI=`^j(TA|tS)%jDM(D!f z-dvjU_wKo{GM<#)4c+7Mntt9hkdSxc_gL05um9QDnqvt0SjAnz6ZXvtYFxPm zmy-H}>yw<+_RCZi0C}2-eBu))uJIU+EeI$SmsLA5LYh^3rX^&XS+zYO-?3`Xtn5o} z)fQLf2&?vFH21iy+7mfys4UA2#LRM1Ik|I3Ijq`8BCGby3beHjng|dd>oRIjgj}%; zWz-f`;0mMm%pUygM(qhRcdB94W-`sX+^X%lG>=uA>FxM{tlATX-|a?i^z3EPp0FeH zeX?kCT*?{EiOeSBX!n0U#+#{Q5!E)2De$jGeB7?-iL5DOhGZfXai3G{X_!(GghhM8 z0!)mEEZP%coILkr(Vl>^DT>N0+7qE%3T&Z8dnQuhx6t=Y0f z?nT^@+2F;XhzS!nwFdWTPh6Ut+0~dGa8&CuUKCEbRmGegiSEGsh3QK4#Iytz-AM;LI~ z_Wv?;@>?;J&SEmHMc1K$yoOATLEKW+u^;ckV0Jvw&6Yo{Z3z9MIc({UfmAj>?g^h& zW?etyC(vQKgz|u9a>i|7B+Ynm4`1$sNq&!UZ2<36iNyQPifZA|$c8zyMZI`N9ZMAH zl8Goco=%C3HDX`2IErRzAT6#%sR5qy)*W050KsQC;ON zmGMZBO$$G{bQw~dE?*&-c(Hu9XoNtz#71#VXvL}nN!7;%*=d5|BI2!1xWb9t^W%7i zX0fc!v8GRN`kH?4-F(qndFLagQj5P*l7LM=j^ejwK4}66zScjut6=gJohZo+j729>w2} zkN3M|JLLCVmtal!af%S@iEDr zHj!9{t_F9wO(d34)TIvlp0aT^&|PxMu6rJdt`5&Hbep+!3r^sWIV$cqoXld2nJLfW z1eBT1E_oi`hfIln|ACd@=l}aZb3XpB|Lgz2FIkwAwf{gn>2)(=wu=PV(%1fyT~hSO z2;@~}bw<`ILsTILGvm62P$|n;{@*M8i(Dtw*d8YNg0X`rOrqdtn|#t}PlZ1O#}-#1 zL8Tybg?h&wM+q0Q7+C;dpGv&>TI=65Xep2p7oA2T&&rLe=tbGvL(*%+MT>Y06|)RZ zWg4A!h0zacGm=+#!{NTv`WNka78|WpP{s#|8v(h^3R`CuBs8aWV`#v()*2rhihtvC z+uxpg`}MzH z-p3XrV(HQA2i9g^DL>!zd_V{5aRIhZtm=P{WP2jh-a9vfZxUFWiD-a+^jU^(*p!%} zks;@sq&us)S9%v%+kQVb2_wf6b@WPo+sO0?3EqH^-})u3d^qLnx%;LaqP17A$r zl@&&FNCk_H%a9cTv|YlUb!7i(%+O0P1>Q`MqtKshSOpqTNm$wPamxHsY8mH=M6Duz zp>M`iTWBpxTVK^N@sFelS%s*4bRnW>0j`6$W^LhQbM=<8 zMqy}phqorPENlwCt)4P!H1eRGC#*N(7l1EYFYg%JFrbU$KAC*-G}6nX=^}R|F!BGK z`Uo6inM(XqUb1Vm4V$a43;6>u2xkIrc<~V`;(4X{jlXAVs;7FUQivq*QUXs$B98`Y zct=k<@7{;vkH9dM!8+H@!V~^p&g9!BxOFR)Ab~d=q9dtP#O_*&Z1K0GGn?YIK~2s3 zOY+tn?42D7rQq91Cr77IJF9c;r>hX(dgS+`k|BQ@Dbx7tn|qK;t`;nsy)FrT3Sj0(&=b`}><@W=rML;j02V{!?;lfjb`*;GYtE`|n44?3`G1kzS2-$$1@; z0gU=ha$YwQ)t_$?FrX;$#^lZVn?$@xcdbuJvb-u!EwVIzk(`fx`z`|%VuwFp%HsJb z#9HBayCg$_CGcp8#ow3EdB(W!zerAFV0C=Xm@g8f*lBv#Bt-dohLH#JMWPfscP*1# z&s^VV%djUKcNh-;9>LY*ofZ2K5-2U>eAcrnSJWZ;t}v~{Q%>^0b=XbNSqxAE+O7_D zRid@M1E_*Sfk9^6LBX5RrsfQ5G-ilm=t?VB8B7)V#}Iv#3`RV4WWDA9b=vEnGQH~! zL1@)5fCSUEA?B|RcnnF>MJ-62;XLyVH406~46y;6)AtBQ@1ZB2Lk=eccv2Xz)}d~2 z5yK0Ez7fM+Lw*RL&%px%+I1`c!45KR$?uV9kbd7sjXQJH(i;1FNkF2ZflOjUcLDCm zm_!o9u)@b)(P4_zZ9`er`7ykBHpKO5;HPHlU?46h!e*JSYIaysmkwU4IW=%x;EaY= z7UfxF7Q7_10P`0HSA#Ascqg_~#L@`73aCw0aK)HvHuOZ~UcuSBWn^y1!B8|C6OlHQ z0K7`Y;OtLv?pXQHNADWh`(S3aYtwK^ER}&Eiq^kL&StooY2mBHH^TugIUM0%B(WJr ztxt(>hDeqDQ9S#@+ZPE*lx*6>XNKf_6z=G0yh!@G_lN<8Kc0e0{WB1k2n`94X(Bsd z4%QYyJl4oeJb-c$K#wH<=%s1s1c3bJIUk=gO*)(zSAXSfi|Eq%^WX*rz(6&CCYp^EK{|qF!L)Q^~(b0yc zU&!0ODk&x_@q{K8v-3A&lm^KT^NU0n+eWAB=|5*!pS`gurB8$mJf+G>|vwYF}TpOUi*-rA!^GV|wAIAPhF$#&Uzok_4` zDQRCwp4AG-9Ie?@WSgM8GiwuskB=K|n^js(CW_)ID~i)Lmw|jMykI2b-5#(rf<1D*`U zlC&Y@?I_EV^@c)?jAd#+)nH>@ZrMUUTylC75ZRa8PDnspVA)q)QkW8fWo|2?Gbfyo zI%8(g!=C`+`ngPiDLadi&X2xIjC1Q-hOyBFYHlzK;Z*9n={7*+GQR||EDdPfp$d7# z6$qeO}{1dAui%nXKdi?0xh z6<#aur-`TNKxi0)p5^%*%{x*f{6`ah*VC200KBWC+?pffUzdnsqlJ^a7Pm{zxbi1o z1cXnAKEqqYQD<<9^meH;I3(sg>I`nPI4xbB0UKzUw>pD+YB?Lsz!|}hHFYM+q0WTF z)ETJE`DimZg>)vGHsft_Z3b#Q+aPUbc<+WbGk~Qz$_y_8O7rM;woh)=2Tm^Zmnl6JbDf8$u zn48oQLzm$YA5{hhP6hf)l>yH{o3|>1Ny2N1sWLXdU6YBTDKb%(9)sH4?@f;ZH>vJm zuE*exEeZtbF~j#f(__H&ve&K07_R@Uhib~Um#+)i-T!flzV+;{;d+UIzSh1=&Qgb^ zuB~s9^W%V|rukJ8S2Q?8$9IWe(N3*TN!-!^>Z1ntAvsg)?YsVsR}yqt48I-(GC?va zsa?^XzyCT(VS~enN#`eCK|q>-Ii)C5!e8;=U=0Fml-M2c zR^rNA88QXI)G|GSO$d3b;vl1hK8RM01O)*}SXWh9FB%ffLj6XPYBEkV!J?iDL}xSv zG%c19RMwgRA5U@Xm~KdpJnmM}3jHEbP*|(t{pKU|miyO2Qt8ILC5gD6R+P0EPHFUP zRR}K$aR_R-s=Rfg2yrlZV3jX|SpB^ujZl;Z{j{(epi~W@5oqZcaj}npGLX%kLy8rW zm_Eg2N;fMn^G`W((D`#Cn@eLVRcKLNSGFQr8RmZ^kiQjyYo9VH1{;D>sS{1A+O71+ zPsk{;hKyJE#mSt?tq1~j%0)l##jHIQwef2}BI(Cr1cLEnsWpRF{k*2OjKL`Or<|n0 z0rK#?B|ChDUx+V-HG@edyB5Jbn$w8a>em^$NW8FAeFQ1rLAT>Y>N%1@9-Ti2hpBcAHLs2k4<`nC@v6J$eV3-pB| z-1{jj7>;9UlFF3x4H0_KbbRU)cYvZ1C^tlcX$dt=rJj_6RGAXkNT?RY=_?yjtfGPv zXf))2(%h9-Pm9B0qYYP$w68zIM4+{X2b-K=4cW$&yA$2M*dVz8Vps&PeIGb+;Pg$s zf^#bC=rRcbK3&I+{BB<))zU;#|3NFiNKUOKoBpT7-hS2klrT_vy}bQHa%#PO*Z+t_ zA=NPUAvzt<2}hzRxLTMhsloGs++Ronhm{6muqxV6G7C4r%0UxZnwA<<=zulU_@Tf$ zAlk^%37~8Uh9DDZXOe>kiX^am7V-)=5d4ur5h*J$ACbj~M5fZCn92k!r7|(9NK#VG z8v8pkR1jGMc1Q3*R$>jGwFb zVy8_qiUNDOI6_%aBhWLSk5G|cy*01x?^8ODS4THtkKDppa@wmS(S*bSwT@PR z`c?W=*qhtFKh-7Y!+6_@ypGMV}oG^iqMbZzguiX?}eYV-WRZR2%!0ggianLtdYG+e)Q*i`XiH1S+W{ zvG}ubG|%S1lVz}bLdYA9re=tI7S9_Oi+ z7e0`v(Zl(RlLMx%u>+n+=2=F4QL@22+hr|4U!X#x2j7Z#UR1Ou_&tK_J6@-ph;+Rg zQHhv^eQ7tNKs35us;~ia#1zn9VNW4M5m*2X+3K3IvVm22y_>DG#xj}PpYqZOXF=5z zmwo1QW3viFW2Ujjjpb^$l|f znyDo)ra`Z)h$JA>i+9iaZu8owP652wO!R#vwj9BdJp|z9&0FBPMJxiK+%~N)iTHc3 zTA08*tB+*bX%oA~vQ=BmaED>g!QI_m2N@vf;1VFX1PSgE0tENqPH+$I1WAD48X(`~-S0m8oPEyo z-Fu(stUuFJUDZ`x)z!7u>eXGy<^sb8_TU8kj%U^ch5|_SUWt<21G+H}jMh+)VFu=V z?CmF%!um+ZPz$7vd^UzS0S#UCQU@sk=|&Vp6c=9TXA;a;BU-)~LaB*iIL4GTv9c9} zfrTv3vRPk8qV4O`XK2{ed%RG2-#IIL(^oXe+X`7u1+|6B)qv!}Ki*t~#t|N%lr}QA zVQuIi3DP={B9)xa=ogar6HpDznV6&^WU*PAb_g~Jph(=h8= zkH5t{q@q3ylirP_9N^+POkUec#HN%YtH6}9=97e^d$T^EFx^xgViL$|PXJ8_d*0Kj zuE~BaVrfGLdma~Bn2Flf5fZeL-)GBA3}1uFjZ8S}GugK9*sv0Gi#<8BZ5Z)d-tu8Q zqWUh0cSJ#*&9~yq>*stk?R@j}x2QHA)CQeOE_3dfmCRy!?LtIQ^6%zSU7u3+ zS}0U}aPfU=tY$3j8gPC!$R2Gx26==m=oxQcA??nYV+mY$IBYZ#`;u+|*7)h*2P8f8 zRu~wVr|%T2bf)9X^q@Ql6E4^=hMiD6J+t+KdQQhNYT`Fc1{N%j46tUReYwYby;=1` zB#)H!Q54@Wn}Taq=#}J~c$7J87~ZtltQpEs<<-vSBCUX0w-*ZeSqYu6+9af4@)v$G zbOqteI_;b9USo&no#uVxA#M2DQPquuQ5XHFuvz_ZiSCxE*$wS#s~Men;E31T_4P`$ zr4|p~A^QEaA?uH8A*{jjJ7ugU@wL0KC7uY&io&UgjRy)aOJCKRSyZN)wwIx7Eh8N{# z^9uH}l0ttZhO*OI4nL&n&GhuFk>N-Shu&>mYV{1O*;Ml#0ZwT3z=5D;X9z60 zlG%kD(k$+WH9EsL9YvgT4u@^9E!c*3HueK`zM0p5e@m{%yj+h;Z!iD6d&dLQAj+LE|kzc@|VacLr?wb%kT#+jQqSCEN=R3qFmTWyM#pz0^B%xD}u zyQa?&lbgNMj{zcF>?HOH1qH#H3MBzga@^4eh+>q6_$~B$xPj>Y@*Vx-u|==%bsHDm z-!U#EGz@f~d zo_Ew2xp8aqAM^7?V4SJ?9=vW585f997V@k%mj5<#aZMO)>Rm}Q9)lt(waRM#gA*lw z+nuQO%<|n@JGIc!^8Sx8o4Syn^J+_y#2#0B5nr`riN2 zY+5|(6PsLpOD}M2g9!x9U~Y}#=f}<;_kl$zklYYRbxXLsln{v^B6fCZI*cAhuF#;U zBWG>7nzb{?Lhv0{W?_>5Mhl2gaY#KIIX(eoDPFNu%QrhDaS&@fALj4O5|`*c zxxO$hajsu^UdpBEhv>_gFV#8#!r!12Flrr={zFt5z{1&R@?2~6DAr5%uch-)PpVHW=xc$}HnG37bf@`AO#BDtcAted^ruFbu(wPiCj<;W$fpC2! zs`9PLc!m1$a%a}}B<|bI#oT6uy|Isk219S~<>q|^R{S;=qX|A^Bz z=QR$i;8DqK#+TLIQ%GI%4{Q$dS7aa6ifebxmdCSf zYasU3uPB;?+C1x(pRe|T?km}OHt@(Y<%7Z zVwr6-%3-_Dl}>)twmIhm8Wb7-PAX%GfVOqHDbR1$^rY-^_&2qIi*Q zEgwEO%QXRNj$Sk%*2NW~B@^iJaJw@I-+%}xWLvLr^aiH(AdGiRPk>0g-Mc11Q#cFt z+^xZjFFxH?35=xMbsDQ_`-^nN4wk6m-AyC>2qm} zcG>aIZ-yW_$u)*Q%@m*P5(YB{(SGK59%joI;Io8BVSZ2f)+oQ4(p(;zsn{JRz9dzx zMvZ(FZB8qRszHY?homlLIoAtpPd-#eb&WCEeBS<1kD7lB=efx1#bWUWS393vIiV&2 zG<3scYE(zeaddWafOAA~5!G_oZ6k=cmqLU-&0c=OwtcL_%%bj?I`NC8s4ACOX6Qzy zT_l$RYQ}j3V%Oh*yMR!(iHt{3z}Gf>wHy zGI_SWF@;Admo(pQB?zPYr_Ponk&I6sCN~#pJ5gVX9nSM1L=t(73`$GI8W0Q5(&ToO zVrTRI%VNS1Rm(}%#aQ5GZx8*7x=eWOI^kAmJ;w+)tLKBfCz1L}VDJjBJ>d-Bg*P7d zv&v28l6)c_{Kseb=19#ri}uzbu=4pLv075V(<{)y2MHlWN8Y}meHo<}*Mi;4^^Rpa z-!;I`)g3(u?J}bK@HpPZ7d~R21#mxL9VfF)JNNw(ZH|W?X@5X}>e$clfk1_tjI2^I`|Gxe; z(6_USd@K4R$jxNsgVIDe`hua68GY?Hz1MtSMd?aXRjRytmR8pdcSxLC*Wl-juIfK_ zB9klQPp#0${EQwEmd=ir(hGx(7zi%B9PnP6+o5nEQlT}m4c(HNN0Y$<{A3{t6S!Dr zhyY)9VtXtgkWZ1QNK`GW7JS94xA@6m_GU$R)HV!M-FMX;&bP^$?KNvq&7MymDiJ5} z{`;JoLDtZ+-qL#;il`aX)0YQ_H8qy2>9;qFBU6#J6E@8$Hr#xD>@|~(CP)?2BUjQI z{=N?(67c+qi>J4qq`mnmN2=&NL8D0^pq*Xlba23BnI?_(I z>U9W;0Mt^QjqXUwnlC7BQ?qSNR~|U^ zxiOKmV+26yeu&qhW9bp}#g`jNHm4=syzd|?l^4yKVKWsR#PKt!F1T{%x`!z|Mcs!A z&x2CGN%(Wf_R?g0yOE!K((D zkDssXGu#!EkK<|_z9Uc!M)U#_sCbjINLi!4gyFwSwQ-vM#A{~$*yn9T%3BxfeJ0Jv z@oqTb4k;Svs9NWKjLLs8nS)N`c$%U#AYlRdj`0(yyMcv}+a9Pw&McYkZ%HhqYF8*= z-6azC;Ty~SPg;eBy&C1*2o(V%#7ME%XOh5~PJ~qRQ=xr^M4Z$l1Srbi!#g8N9 zAABckB1zUpN`oJLP1HzqaXO-TL^M2URpcAai1c?o3i*hYxRVIZyv-T1#TaU7vTzE6 z%IFskjp2D2eLvd3*0fFUn0ACefBABsh*b`_V?(dJh`sfrlidmu`H>A5od3^lD2Sbs4czM^5W3iIbnp zAGPFiXK-^)m`Bn2M*^Kc(Vz;|sJ)1)4YK)I zZa-_+w46Z|Gi(0^Ka%q53Xft|2J*PB^_vzEO_KJd%D(%-2ZL{~jH&M)t5JJ(G^-Rs zV9g3@>Tl&F2Ngc07!gyZ7IZ5Ox9`gH98-K`-x0Rp5wQSPKnb|#5UAsi8peKg! z(@f1MIp8l2JJIwKX#K+P#s`t8qB>#&x#Dm%pY#7nX8CX?J<;NNR^bXuEyRX-YM^Y-}xrZlNrCR z`p`1Vrlexm(Va%!~ok}p7;9^c#z6?0J8-vc?p8QiMuNFpBxvcG8(g3TW@eH3vDFmm0& zvoDj2V#!9B;pr?w@{nTd^oiwOYXwTo9Tbu}jb&tf-@T^}*8izj`(5`9N<98MF7FTa$%9o7L){dH3w4P?C3}%!lvFo)EL3PtYPq&m!1Kb#~Pa6sFwTUjpZNW5wJ_%m&1?o$)1? zf&1~Xe@Y5ka(q_kvnuW?X`_Ar{fjymeCLnMQTrGIn8xP9rv461@4e$)kfF9wZC$&;ENBrS>M{$~(sk0=P-%T@ zwy@OFl{M&Yoq2wU0Fro>Mamb)1AlyS43?{(uTClrE9cR|3Xq>zI$tKEU^f|dt!8MI zUdA)CsYu?xa##-B!B1Z;)y7IddG@)-^tsBB$Z?}Cy&3+xG+hps>idn%622G3l|;-; zE3cAz^^386_f%4H0ad~%4uDto?o$zoq?RgTwyu<|F0NYM%SmzshF>{|NH0fL$6UzY zJgpLig&r>W?qNW)vOJC1o4Igoc}Q6@NnJH30tHJk20VoZiYea6(&6b$mHB6g57&>% zX;Kzp8;f}03i09c7P6zPZj~GuzLq~KOe(2LpxHO}Mg9Ggv~~%@o-~J1Eu5h4wm0NW z?W8^o1F!mtam`fwnZ|A__wD4p-R8gnDY>xN-bVP#pJB1yxlU&F;BAJWl~;0aU4c#m+k@GB41lR#UJrZIDY+`gKC5!Rmzv4OA>t&^Xkxw7-13elc8j zb!~F5?}opj_cg;mvzbl*1w+0Qeb z_4@X;5)XVMH3eBK{pHO?zaX$f0)iOMse#(-?s%RKaGJoIn;n%p>|{u|{Kyk|02)_+ zODn<4m-g1QP>hd0soh$pG`_^oX=v@zzx6Gj|IQD;dyC*WN3p1`lX3lXpF;NW(XKAa z8g-{vY@Cn=tP;aWi0B&rqP`BTjhlALWMd&Tcesocq2PzIq(8^&@1QXo6r3CQ%P2@7 zOo0y{Td4A4ma4m#VIH@8XYx(3iIq)#so1hD2`Caarsw08$PkKh23Ff2;3R3(YcGoK zJ}TR)EY0!WvZG(6zlDF5Ye#&y)*JO}BVx~9yE&Qh3@KB}K8gYI?S5G(lVtZck`_+@ zM9Y$1${TP^dct+2uj0wcV{Ru~!Tr`i=(x!Fee4&p-ro8GiF$_I__HaW7j4gSp1o)I zh`om(DJW6e-TXXk;EbkMp{PCYbJJzHx9AuhiYal2MZ7p+y-FO$4*S^k_tyof;L(Gb z2nVwwsS?QhHNFzI5aQo{_|n}Dj9bv18@vbg0tEvsK7$dz2H=Qoco^jDiKNTC;pXi5 zMbJ_^{|i!>WCHz>3$nEfbB*2_doteLdNul|AUrh6{Nk!CKgj@Xg>Z&fb60-SLbjV0 z2hMM`)L5HwQ=X$|XN-+qM~LLs7vo^L7B}7me3BO#2CwwykNkQ$50=QMb(WGJQpq-> z+a@icIQ@)npxu87N)hf$m(KMR#zBs!X0bpILH{E5YBH1l?e|HS!=t`a(2o{nCl$`Z zkXWJp;4;UlGvv|JPw$2%d|EEFI$|Kvl0^g(Dt%hxTNV(UwJn^k3D9Hm`#$dxhiAr= zNwe`2cfXkte-@3ujCw9f#;PFcT%N(vbH1~vMJAv8b$O!E@mALfUq4R1a;o{2tx9-7 za>Mw6;roo&TS4Mbo5OIDnH(T%N~%?m`@8pYB`7m5-f8Uth+jKBNo$!l-J-to6ASGf z0VbbClwBmamy)z}RTX8BlHQT3G<=;L`-<5gKxoClZ|s-~=CACc&z_~tuR9U>&b{F$ zI3m<`x8w0z9>??T?C*-_n{xA`bx6AJvMjMhXL66~r`(PeRgA-;CUh=dwR?kFXliq3 z3Z|%TlT*mXr>G`Bl`p4dfitmdvc6TFzG*1fh}{i1#y;R7vyLYLx>~ zTsI1aXB{Rk?l+))dmGauoqJ&oI(;(Iz@LZr=pEJ~EB9Kd0kiwye9#;sMO$L|62Y)U zbX1UXEt(?51lt<)yrFoi-tv|mNO-6%ZO%r zOZqwF)I-IZ1-q)nEW|K98lj>dg2l#e#A4gGL7)~o8Ewr@if(H`9Gc5lg`|8inz6QB zxnYXMMVjKq%_t5K2vC~~PHyvZJ3?0`;YD2?_$U*L@+(q2PK!g~Ojs@nD%AI)=0&iS z0n>}%6A9{Kex@c;_kFMgw>Z%%M|14=Q+gLZ%$(tB`KB+^_Hv@4OeASfq}p;T-Jhvdj=jgOUq7c)rH%D+xBN< zUjf>-0>QZY+2*~q)@Oiv8Dn+t4pkdh*rxk@T>L=aK+yN52i%Z8qUv3Aa_fwRbH8Jq z`dZG>hQ_R!*04|wWABsm#fr*i$5A2Oj|tnPK6WFBy&}7>4F*0y0o&Q!0=kH9OD-C$ z?-=7NlIMc4bC+0mH2Bq?&R+xPD13w5m(aTic!DG{|5DsxLA?AYq5^n$hK&^A(5p=8WiH(x?H zF~yJ}kotQke)VZVt-}-P>M)`=m7_s*3Uo=z^~n_9nr(E*Y3cZ0aR*k*r268`2OZ%o z-@H~?TjLv4cm3>NA#F_Ch$mRT5lN4#`PtAEcbp=_cv5+koC}C(J6h` zOTUTG-CSaJU!~U2pxKvu=}S?EE&<|1f1z$B|6FnW-B4 zc#FMDnEU#$gNtrDNHR3wk-?(9*?#wRkKq#qFl+pQhLm_=uTj!XkW<*Sk zu4L(yaq>*ZGD5P4H@=KW3g(VG@A`UqVkSVx6I4@5neK5opt?9^REEdOZ6gp@}*& zaVThs)%dvrIna2(vTB{yLRca=M3~L9KqTDf)*Di%|_&b(ZK)RUIFZPD> z6sostT}AqmCvk;;|+P8vUMU z1#RXV_E*k~vV1>$5;DMnR25x_CO7d?vi1Ov^PQufQrX86@_<>NV?CdOO<`g%@XG^d z&je0&n1#ot|1%U`rii@GMc_bGL;4<$w4aS;q^MGYBL%{gOPQIw8w)u znqZ9cB8k{yJBo1lS=e_8@(t2-qjb+aYs}c6=9=?1qr{8W*P&v;0mKVot0W375+r@f zjM6eySm~m7~kYsUY~okj~Zis!<+TA=e)}FE3BEG1eeKjb;HIuH0P_} z5AALGrZs5wY**S0XnjZxh*p-sQkH{c8J`r(ME)uoUN7q#=*w6;u}7a7xL1`kp5eNY|GgXzkGYrTiBeV`PGGI(VkJXKO7#bJ; zXt$?m&@cnT7Q5iiDTC(*Sm>WnZw7PGgDDE`Cv`Qd^Sr3YKc0QlKOb=zkJ$!YF`;BN z_?iA9r2?DAq!ZR&UU}=ra$ck9vn2UAIiA!Eep#=}K>l^aetX;7QhL8d{{_q2MHapA z*`iL-TYk=h6RG@issyYkIb5sSC(38Uh$k8bco%8;oJOZg-^V50D7k75BD&Z61VgS( zlICR6erHP`>)=neH!iI5MD=VJUYERHkaz$rFw9CZKvC(>zbB@lihZE_-ZE4kWimm1 zF7v*9gycoFOyix*2Vf&2QRLFe@6|Usg;i>n9ph7cOSbG8TL`|f4CX{huYMFCbX_oC zb>Ft-V==VX-A=ZALxR0q>&>5=b$><}T#0iN`}PCDXQ%!%j4sW$;UFX+S&jx~RPqn2 z(XV#v*bvSd1_NR21k4mW-!tEpJt721s2549Aq30vb=PVdoe7m5*r+L7sSsy&N64*U z0A&1e(K4+?{+Zlq*1?SXG%SiZUwK$$Kwbk6n#fL%Y9h3+=SzobBF)8r* z*VLzmSXG)n+`$i&F`co-Y{~R0&y{!M2-R7aPF&J{G|3oUJLunIemzpQl>#Rn#H`5_^A+o^Bq0HXp!&S+OZpA+KYmY_B3E~i^<9t$+bjlB4E z3jLBdnuL@X5#}1XN4!K8U1`X|xZWT6)N>}rRd3pC7K2^GRP0{!8Rgz%H@m90Dd7EW z%d~vjm4PU)ZZq_W0~|4EWHjb#%fV0Z#NQbpAef#=E80iDAC`|X&$}tLJ^oYa+g4sk zsZ{UOm5Q6_w@O}O^n`w^%8hWH4s5)EU!%s|?L3DvpvXDzk=c*On-=I)@>Mr?$g}QS zJh@0e^{7W({8Ne-k&ax)?h5pSWoLC>1s5?>m6cmX(#vyVl53qOA4X9xLLPe6J89dc zI`KkZjybSA$N!{QEG5C+!ML(DsJ+gXU5H^J>66Pn6H~u90+N7zklGSM89Sdgqidp8 z_EDWe3)v;O(5PQ&4LVZLCt2W5M;X&ysX;)dT$K^%j&(#6){W`@I7CaAB5$rW1v?{| z=xetDoNp&hs1%@Lgp2V9Mg9=T>IaHB3TwpR1MfJ~#c;C{+8JChbdNR5DA6_XsVB9X zSfyMe_&)EZJD2^K3q5>ysh*<23j;%WVw~{eKiEYZnBDi^RK2UaOcXm&k{U&A37>=-*Up%vyePTIFjBvI(b`H_9efHs!8O(ZL$-9SpHV6E@Gaq_;)Oqs4RiWWoXxpI^ zFGt7Y{HlrzJau?G^GV3;H}*F}^g~T*Ve6Dh-g}j`d$Rg`%&Q}wbeg0VAFHLJf0jrS zMBpd#Sw#gAppaorYF8#8V^BB~^Mh?xKE(KuuEX{gleeYr6W;jbKGQKgspK%(#Fax(*_grTzzLwV_1HPevDZwtnIIclF03>MaaR1{X$68pM*jf82g*-(*SWkSm_h)vu+0(IrWY&cD4#%h0` zh6DvlgNoMB?Zqr4Lu6M2XOjd!=ujQG=9x0>w*$ZRsfM6~rJakg?#Sp;h5m#5xHwwL zugla6rh8t_AL-vQ3RWARVd>}&98$nf#gx0OjAz94Kim)KkNSXg;J%zzSvcCLK$a4O z4MD^(*DL^TOrDvu zC31P>c;79*Yp~3(!isVXhjd7i=H>&^CYra*PB`+sjzmcCK;`0TdBMW4dZyh&jb8k{1cHAcJ=e)hqnd}sH|OCs!Vr@-z$6_HpF?;;#gVRSJZ!D+A!8%n z(8*)7_+F6D*p1Bm2&q{*(qeDXLbrHKI{Ste5n(6AFj2KWhHk7Ih8vxsZul-l*qcPD-h>%)*N{ZN-y zGUqMa?0NXUqZvcqR|z`zxY9Yl{eSH`t93kGZ%n2=8qqAJrq$fVxX9uUJ4x+xx85+n z_m4C82i0N5(E~fpwPV0?M2O;;y360W<%NcpqKmv`NqK#Bl7q!8@)oxw{i7$r7{5s6 z`Q_VmKP@_Ndy}D0TVv}onETCZ4cbqqe3zG((20~PqKM=;>-A@EAOL&E2IVs-v(8L{ z_~=G?6bxrZkR!w8TyrJWGI&&Z8!_pA`G?$o3@OFug0kgIgl!RpE@5tHN6cnJ@Umz+ zlb9?=V~Ex&A)g>)GU7~&!XN?f0Uu>)-o!b%8SrB@s1nAxYhr4T4dMhVIqMqEmZU>o zW=}9Jhh~iq;nl_-HboD=6&J#qtOGH7v69L@1W#Y}($iQRk#xJvE|)PE4@T1>J0E}# zq=R}aIVg6zYjPV&En5tG-Wy@yPNcSV0MGM>g)>fdv-M=f>v%^|`bU)g-c2L+TakBD zbOEv{*gs?s?0Q<6$I6eH{BfEpn4&;|%!%TR*?Gd0Ch<7vF{b+!Dj^>&URC}lPJ~7?}k-WAD{ChqpQNV4YR&S^o>%J_d|^Ez33=P0PQjB z#jI^!65dSWDvgN*Ul1y|m+Tl!Q^^>GZNEAf`?Tqf;{|vKNLOfqa!1$gg0K`eAjdJ| zCDoNU)vUzNFFX4@*9OK>O{DrO+50#!K_Do%y`uHcBVwXmHOIh{yD$+V>;~+x?#cqy zMw*oTOdD3PV7pL@Zr}J91`%N4)pD-e*AJIqvpQ7xgrREvx&s^4oxG zMR@*{vB%p#Bl+>Kkv#go1%IT`>W5fYD9<5w>iGaJzPdbDuq!>2-JACSRq5|BL&uW= z;fD<~q$yTfpP(SA%cVw^AnntL0Rkl{^IxW6sNU&^@=zRZHpE5#yb=ovcAXWLG25WI z@n8O>>f5a?eJ;mACR$HG=^X9!*?K;PbyU{g#yeDs9#u7sRJ5dsujR&B*38co7-(9M z@-_%J!q}eIkg+_m8tlpGzs9SyZ-^$E|Lwt(s%W*}3CqMpW?sk>n@;*JAnY{ZZGZf5 zM`EE$HT1bs&ou3~DgI~8K!I#SiA#X4clqbvTTlIFVH%bWFZYnwXedx`%A^;*F}cIg zttz&oWV+s@<#qM)_C$7?u(vQyfj+pu7pv&S?VQ;295F1Yut@rNq-B99TZqyvUo1)Zc&G$k>K%M?4Y zI@`A{DpMxwJc*Mf<){uAMCm*)8j09k7Z-hVv!cZ*_IR_S^V{>ifseFy>c^GB9YOBU zVCL9xm`~WrY`3O>pMW`0u!c?vXU8xR_Pjyn!-ucI&87N8?orL>7350Bez|r=iXq+u ztQRv2>W>;l2{WfqtyJqGNQ?J49o}vxyPCN?*>B~;?Rp=!CEL-Y-+Jxm-tD^3?=cgh zB?=0>#I&X?d<%^MZ+7^Bu3NN#v;lX-k?7)vM>iVwjY@Rcu3G}7VaKvx)0=5&g)+@2 z#K4JUvU`g6O3x$_3Z0+NeM|k!zCz6AudRt&GhSrAOB3Ho__$xZy&bBUuFuebRTFj` z2RSXiyev^JfmGC#Nn0YKoB9GKLY&>Bg!zd5<^2QXieL0JD)`_1YYHD7|9}`Qbv(tJ zN{gp|3Efi|P@wxR^KvgdYs3jBhE zS5m2RIW8;b;FvLt8-6#=cThzGqRnTork6FQg6JJOU%$jDd8AwjpUD^7_sH!wK4jN! z2rrM?Fe$euymL5;!=cjiDuu>n5PoTFmBJsfChv9iPYl((5M>wGKmCp1>N*qF?;?~A z2+Q*28$7CNE70asjV-jev{XkcM4qkiotGc1`h~_=dURhKeELwrb5JT=@qv=Rz3tTnW~V>-;BapD zx#h+Z=O)jd!RGQ@hDoXty>A<-)ZL-COT>K_{L~lp@s?5nYbS_1%+1>3H72~|Y-x|l z2LJ;8{POVe@PYmbgXBDvHS| z{3uk`S(-lx-h$q*U0%a`4e);L=;SWwEyDO0i6FfE z2h7O`_zMN*Ai}7xq7HyLJ3Bf+VE_;Zn1hR*i<=E#<7V;N+RNF^0l>w<#|UrI4Pqmx zDJ}bVgYbVMjCL@Xiy$YbmzNiZ7dMBqn=L077!2kFf;d4Sb~pyRyN?qLo<_{cofgjT zFF~OC|3T*D&heK_99GV+IidQTTpU2oe=?GWcgGFt0)sj`0sb(yuypo-i7 zk6ws}m9?7)qnx@jK+ewD9rh3Y0Ju7UjGTXW|9?v=xNZJtEx-->w;F`uID#t95U7oh zG~A6uK|n5Eb|4=+5Twlo7Ubm@3_ofPo&On z+VCMEstmPsvsSaQfm&GucsM}+VD=Zq-w48-f6Vir6!X8WDhn4CmH&Tby?*^?H2=X9 zly)S;c_CK+A+U>wo8w=O0kPt=cC`K@n>*aXTyTjYR)RLpZm%ui z!`i~d#Sv;{@n^Ji!iOWHs4%<|28B6Vi~i+y5{|Hc6da*{+(^*T!pT;I(VHD&ZDZl# z2xAm=a(1%*hb0`LqW>uTMZ@{8cK!!D{RM)%G~8sI|1n{RVgmk`uK&G;{xwU&XJZjY zuRn7jy!2nA8|Yt?@IT#|>3{NOW_Tp};~a2h|8Wl{X~93f1>^&QxWK&pf4LPS5XcBe zgS+4V0po8^VEQ*VfzxXLu^!VOyD{(lt~`nv!C diff --git a/Content/Figures/PU_exercise_5.eps b/Content/Figures/PU_exercise_5.eps deleted file mode 100644 index 2920a2389..000000000 --- a/Content/Figures/PU_exercise_5.eps +++ /dev/null @@ -1,1306 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%BoundingBox: 0 0 778 584 -%%Pages: 0 -%%Creator: LibreOffice 4.2 -%%Title: none -%%CreationDate: none -%%LanguageLevel: 2 -%%EndComments -%%BeginProlog -%%BeginResource: procset SDRes-Prolog 1.0 0 -/b4_inc_state save def -/dict_count countdictstack def -/op_count count 1 sub def -userdict begin -0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath -/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if -/bdef {bind def} bind def -/c {setrgbcolor} bdef -/l {neg lineto} bdef -/rl {neg rlineto} bdef -/lc {setlinecap} bdef -/lj {setlinejoin} bdef -/lw {setlinewidth} bdef -/ml {setmiterlimit} bdef -/ld {setdash} bdef -/m {neg moveto} bdef -/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef -/r {rotate} bdef -/t {neg translate} bdef -/s {scale} bdef -/sw {show} bdef -/gs {gsave} bdef -/gr {grestore} bdef -/f {findfont dup length dict begin -{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def -currentdict end /NFont exch definefont pop /NFont findfont} bdef -/p {closepath} bdef -/sf {scalefont setfont} bdef -/ef {eofill}bdef -/pc {closepath stroke}bdef -/ps {stroke}bdef -/pum {matrix currentmatrix}bdef -/pom {setmatrix}bdef -/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef -%%EndResource -%%EndProlog -%%BeginSetup -%%EndSetup -%%Page: 1 1 -%%BeginPageSetup -%%EndPageSetup -pum -0.02833 0.02835 s -0 -20596 t -/tm matrix currentmatrix def -tm setmatrix --241 -243 t -1 1 s -0.449 0.625 0.812 c 254 256 m 27683 256 l 27683 2795 l 254 2795 l 254 256 l -p -254 256 m 254 256 l p -27683 2795 m 27683 2795 l p ef -25.99889 lw 1 lj 0.207 0.398 0.644 c 253 255 m 27682 255 l 27682 2794 l -253 2794 l 253 255 l pc -253 255 m 253 255 l pc -27682 2794 m 27682 2794 l pc -pum -1210 2072 t -0.003 0.003 0.003 c 747 -319 m 867 -288 l 842 -189 796 -114 731 -62 ct 665 -10 585 16 491 16 ct -393 16 313 -4 251 -44 ct 190 -84 143 -142 111 -217 ct 79 -293 63 -374 63 -461 ct -63 -556 81 -639 118 -709 ct 154 -780 205 -833 272 -870 ct 339 -907 412 -925 492 -925 ct -583 -925 660 -902 722 -855 ct 784 -809 827 -744 851 -660 ct 733 -632 l 712 -698 681 -746 641 -777 ct -601 -807 551 -822 490 -822 ct 420 -822 362 -805 315 -772 ct 268 -738 235 -693 216 -637 ct -197 -580 187 -522 187 -462 ct 187 -385 199 -317 221 -259 ct 244 -202 279 -158 326 -130 ct -374 -101 425 -87 481 -87 ct 548 -87 605 -106 652 -145 ct 698 -184 730 -242 747 -319 ct -p ef -1023 1 m 1023 -909 l 1636 -909 l 1636 -802 l 1143 -802 l 1143 -520 l -1570 -520 l 1570 -413 l 1143 -413 l 1143 1 l 1023 1 l p ef -1791 0 m 1791 -910 l 2104 -910 l 2175 -910 2229 -906 2266 -897 ct 2318 -885 2363 -863 2399 -832 ct -2447 -791 2483 -739 2507 -676 ct 2531 -613 2543 -541 2543 -460 ct 2543 -391 2535 -330 2518 -276 ct -2502 -223 2482 -179 2456 -144 ct 2431 -109 2404 -81 2374 -61 ct 2344 -41 2307 -26 2265 -16 ct -2223 -5 2174 0 2119 0 ct 1791 0 l p -1911 -107 m 2105 -107 l 2165 -107 2212 -113 2246 -124 ct 2281 -135 2308 -151 2328 -171 ct -2357 -200 2379 -238 2395 -286 ct 2411 -335 2419 -393 2419 -462 ct 2419 -557 2403 -630 2372 -681 ct -2341 -732 2303 -767 2258 -784 ct 2226 -796 2174 -803 2102 -803 ct 1911 -803 l -1911 -107 l p ef -3280 1 m 3280 -802 l 2981 -802 l 2981 -909 l 3701 -909 l 3701 -802 l -3401 -802 l 3401 1 l 3280 1 l p ef -3765 -443 m 3765 -594 3806 -712 3887 -797 ct 3968 -883 4073 -926 4201 -926 ct -4285 -926 4360 -906 4428 -865 ct 4495 -825 4546 -769 4582 -698 ct 4617 -626 4635 -544 4635 -453 ct -4635 -361 4616 -278 4579 -206 ct 4542 -133 4489 -78 4421 -40 ct 4353 -3 4279 16 4200 16 ct -4115 16 4038 -5 3971 -46 ct 3903 -87 3852 -144 3817 -216 ct 3783 -287 3765 -363 3765 -443 ct -p -3889 -441 m 3889 -331 3919 -245 3978 -182 ct 4037 -119 4111 -87 4199 -87 ct -4290 -87 4365 -119 4423 -183 ct 4482 -246 4511 -337 4511 -454 ct 4511 -528 4498 -593 4473 -648 ct -4448 -703 4412 -746 4363 -776 ct 4315 -807 4261 -822 4201 -822 ct 4116 -822 4043 -793 3982 -734 ct -3920 -676 3889 -578 3889 -441 ct p ef -4739 -443 m 4739 -594 4780 -712 4861 -797 ct 4942 -883 5047 -926 5175 -926 ct -5259 -926 5334 -906 5402 -865 ct 5469 -825 5520 -769 5556 -698 ct 5591 -626 5609 -544 5609 -453 ct -5609 -361 5590 -278 5553 -206 ct 5516 -133 5463 -78 5395 -40 ct 5327 -3 5253 16 5174 16 ct -5089 16 5012 -5 4945 -46 ct 4877 -87 4826 -144 4791 -216 ct 4757 -287 4739 -363 4739 -443 ct -p -4863 -441 m 4863 -331 4893 -245 4952 -182 ct 5011 -119 5085 -87 5173 -87 ct -5264 -87 5339 -119 5397 -183 ct 5456 -246 5485 -337 5485 -454 ct 5485 -528 5472 -593 5447 -648 ct -5422 -703 5386 -746 5337 -776 ct 5289 -807 5235 -822 5175 -822 ct 5090 -822 5017 -793 4956 -734 ct -4894 -676 4863 -578 4863 -441 ct p ef -5757 0 m 5757 -910 l 5877 -910 l 5877 -107 l 6325 -107 l 6325 0 l -5757 0 l p ef -6672 16 m 6936 -925 l 7025 -925 l 6762 16 l 6672 16 l p ef -7478 1 m 7478 -909 l 8091 -909 l 8091 -802 l 7598 -802 l 7598 -520 l -8025 -520 l 8025 -413 l 7598 -413 l 7598 1 l 7478 1 l p ef -8191 -329 m 8191 -452 8225 -542 8293 -601 ct 8350 -650 8419 -674 8500 -674 ct -8591 -674 8665 -644 8722 -585 ct 8779 -526 8808 -444 8808 -339 ct 8808 -254 8795 -187 8770 -139 ct -8745 -90 8708 -52 8659 -25 ct 8610 2 8557 15 8500 15 ct 8408 15 8333 -15 8276 -74 ct -8220 -133 8191 -218 8191 -329 ct p -8306 -330 m 8306 -245 8324 -182 8361 -140 ct 8398 -98 8444 -77 8500 -77 ct -8555 -77 8601 -98 8638 -140 ct 8675 -182 8693 -247 8693 -333 ct 8693 -415 8675 -477 8638 -519 ct -8601 -561 8555 -582 8500 -582 ct 8444 -582 8398 -561 8361 -519 ct 8324 -477 8306 -414 8306 -330 ct -p ef -9369 -81 m 9328 -46 9288 -21 9250 -7 ct 9212 8 9171 15 9127 15 ct 9055 15 8999 -3 8960 -38 ct -8921 -73 8902 -119 8902 -174 ct 8902 -206 8909 -235 8924 -262 ct 8939 -289 8958 -310 8982 -326 ct -9005 -343 9032 -355 9062 -363 ct 9084 -369 9117 -374 9161 -380 ct 9251 -391 9318 -403 9360 -418 ct -9361 -434 9361 -443 9361 -447 ct 9361 -493 9350 -525 9329 -544 ct 9301 -569 9258 -582 9202 -582 ct -9150 -582 9111 -572 9086 -554 ct 9061 -535 9042 -503 9030 -456 ct 8921 -471 l -8931 -518 8947 -556 8970 -584 ct 8993 -613 9026 -635 9069 -651 ct 9112 -666 9162 -674 9218 -674 ct -9274 -674 9320 -667 9355 -654 ct 9390 -641 9416 -624 9433 -604 ct 9449 -584 9461 -559 9467 -528 ct -9471 -509 9473 -475 9473 -425 ct 9473 -276 l 9473 -172 9475 -107 9480 -79 ct -9485 -52 9494 -25 9508 0 ct 9392 0 l 9380 -23 9373 -50 9369 -81 ct p -9360 -331 m 9320 -314 9259 -300 9178 -289 ct 9132 -282 9100 -274 9080 -266 ct -9061 -258 9047 -246 9036 -230 ct 9026 -214 9021 -196 9021 -177 ct 9021 -147 9032 -122 9055 -102 ct -9077 -82 9110 -73 9154 -73 ct 9197 -73 9235 -82 9268 -101 ct 9302 -120 9326 -145 9342 -178 ct -9354 -203 9360 -241 9360 -290 ct 9360 -331 l p ef -9647 0 m 9647 -659 l 9747 -659 l 9747 -567 l 9767 -599 9795 -625 9829 -645 ct -9863 -664 9902 -674 9946 -674 ct 9995 -674 10035 -664 10066 -644 ct 10097 -623 10119 -595 10132 -559 ct -10184 -636 10252 -674 10336 -674 ct 10401 -674 10451 -656 10486 -620 ct 10521 -583 10539 -528 10539 -452 ct -10539 0 l 10428 0 l 10428 -415 l 10428 -460 10424 -492 10417 -512 ct 10410 -531 10397 -547 10378 -559 ct -10359 -571 10337 -577 10311 -577 ct 10265 -577 10226 -562 10196 -531 ct 10165 -500 10150 -451 10150 -383 ct -10150 0 l 10038 0 l 10038 -428 l 10038 -478 10029 -515 10011 -540 ct 9993 -565 9963 -577 9921 -577 ct -9890 -577 9861 -569 9834 -552 ct 9808 -536 9788 -512 9776 -480 ct 9764 -448 9758 -402 9758 -342 ct -9758 0 l 9647 0 l p ef -11057 0 m 11057 -659 l 11157 -659 l 11157 -567 l 11177 -599 11205 -625 11239 -645 ct -11273 -664 11312 -674 11356 -674 ct 11405 -674 11445 -664 11476 -644 ct 11507 -623 11529 -595 11542 -559 ct -11594 -636 11662 -674 11746 -674 ct 11811 -674 11861 -656 11896 -620 ct 11931 -583 11949 -528 11949 -452 ct -11949 0 l 11838 0 l 11838 -415 l 11838 -460 11834 -492 11827 -512 ct 11820 -531 11807 -547 11788 -559 ct -11769 -571 11747 -577 11721 -577 ct 11675 -577 11636 -562 11606 -531 ct 11575 -500 11560 -451 11560 -383 ct -11560 0 l 11448 0 l 11448 -428 l 11448 -478 11439 -515 11421 -540 ct 11403 -565 11373 -577 11331 -577 ct -11300 -577 11271 -569 11244 -552 ct 11218 -536 11198 -512 11186 -480 ct 11174 -448 11168 -402 11168 -342 ct -11168 0 l 11057 0 l p ef -12073 -329 m 12073 -452 12107 -542 12175 -601 ct 12232 -650 12301 -674 12382 -674 ct -12473 -674 12547 -644 12604 -585 ct 12661 -526 12690 -444 12690 -339 ct 12690 -254 12677 -187 12652 -139 ct -12627 -90 12590 -52 12541 -25 ct 12492 2 12439 15 12382 15 ct 12290 15 12215 -15 12158 -74 ct -12102 -133 12073 -218 12073 -329 ct p -12188 -330 m 12188 -245 12206 -182 12243 -140 ct 12280 -98 12326 -77 12382 -77 ct -12437 -77 12483 -98 12520 -140 ct 12557 -182 12575 -247 12575 -333 ct 12575 -415 12557 -477 12520 -519 ct -12483 -561 12437 -582 12382 -582 ct 12326 -582 12280 -561 12243 -519 ct 12206 -477 12188 -414 12188 -330 ct -p ef -13249 0 m 13249 -83 l 13207 -18 13146 15 13065 15 ct 13012 15 12964 1 12920 -28 ct -12876 -57 12842 -98 12818 -150 ct 12794 -202 12781 -261 12781 -329 ct 12781 -395 12792 -454 12814 -508 ct -12836 -562 12869 -603 12913 -631 ct 12957 -660 13006 -674 13060 -674 ct 13100 -674 13135 -666 13166 -649 ct -13197 -632 13222 -610 13242 -583 ct 13242 -910 l 13353 -910 l 13353 0 l -13249 0 l p -12896 -329 m 12896 -244 12914 -181 12949 -140 ct 12985 -98 13027 -77 13075 -77 ct -13124 -77 13166 -97 13200 -137 ct 13234 -177 13251 -238 13251 -320 ct 13251 -410 13233 -476 13199 -518 ct -13164 -560 13121 -582 13070 -582 ct 13021 -582 12979 -561 12946 -521 ct 12913 -480 12896 -416 12896 -329 ct -p ef -13980 -212 m 14095 -198 l 14077 -130 14043 -78 13994 -41 ct 13945 -4 13882 15 13805 15 ct -13709 15 13633 -15 13576 -74 ct 13520 -133 13492 -217 13492 -324 ct 13492 -435 13520 -521 13577 -582 ct -13634 -643 13708 -674 13799 -674 ct 13887 -674 13959 -644 14015 -584 ct 14071 -524 14099 -440 14099 -331 ct -14099 -324 14098 -314 14098 -301 ct 13607 -301 l 13611 -229 13631 -173 13668 -135 ct -13705 -96 13751 -77 13806 -77 ct 13847 -77 13882 -88 13911 -109 ct 13940 -131 13963 -165 13980 -212 ct -p -13613 -393 m 13981 -393 l 13976 -448 13962 -490 13939 -518 ct 13903 -561 13857 -582 13800 -582 ct -13749 -582 13706 -565 13671 -531 ct 13636 -496 13617 -450 13613 -393 ct p ef -14232 0 m 14232 -910 l 14344 -910 l 14344 0 l 14232 0 l p ef -15083 267 m 15021 189 14969 98 14927 -6 ct 14884 -110 14863 -218 14863 -330 ct -14863 -429 14879 -523 14911 -613 ct 14948 -718 15005 -822 15083 -926 ct 15163 -926 l -15113 -840 15080 -778 15064 -742 ct 15039 -684 15019 -625 15004 -563 ct 14987 -485 14978 -408 14978 -329 ct -14978 -130 15039 68 15163 267 ct 15083 267 l p ef -15251 -329 m 15251 -452 15285 -542 15353 -601 ct 15410 -650 15479 -674 15560 -674 ct -15651 -674 15725 -644 15782 -585 ct 15839 -526 15868 -444 15868 -339 ct 15868 -254 15855 -187 15830 -139 ct -15805 -90 15768 -52 15719 -25 ct 15670 2 15617 15 15560 15 ct 15468 15 15393 -15 15336 -74 ct -15280 -133 15251 -218 15251 -329 ct p -15366 -330 m 15366 -245 15384 -182 15421 -140 ct 15458 -98 15504 -77 15560 -77 ct -15615 -77 15661 -98 15698 -140 ct 15735 -182 15753 -247 15753 -333 ct 15753 -415 15735 -477 15698 -519 ct -15661 -561 15615 -582 15560 -582 ct 15504 -582 15458 -561 15421 -519 ct 15384 -477 15366 -414 15366 -330 ct -p ef -16000 253 m 16000 -659 l 16101 -659 l 16101 -573 l 16125 -607 16152 -632 16183 -648 ct -16213 -665 16249 -674 16292 -674 ct 16349 -674 16398 -659 16441 -630 ct 16484 -601 16517 -560 16539 -508 ct -16561 -455 16571 -397 16571 -334 ct 16571 -267 16559 -206 16535 -152 ct 16511 -98 16476 -57 16430 -28 ct -16384 1 16335 15 16284 15 ct 16247 15 16214 7 16184 -9 ct 16155 -24 16130 -44 16111 -68 ct -16111 253 l 16000 253 l p -16101 -326 m 16101 -241 16118 -178 16152 -138 ct 16187 -97 16228 -77 16277 -77 ct -16327 -77 16369 -98 16404 -140 ct 16440 -182 16457 -247 16457 -335 ct 16457 -419 16440 -482 16406 -523 ct -16371 -565 16330 -586 16282 -586 ct 16234 -586 16192 -564 16156 -519 ct 16119 -475 16101 -410 16101 -326 ct -p ef -17158 -212 m 17273 -198 l 17255 -130 17221 -78 17172 -41 ct 17123 -4 17060 15 16983 15 ct -16887 15 16811 -15 16754 -74 ct 16698 -133 16670 -217 16670 -324 ct 16670 -435 16698 -521 16755 -582 ct -16812 -643 16886 -674 16977 -674 ct 17065 -674 17137 -644 17193 -584 ct 17249 -524 17277 -440 17277 -331 ct -17277 -324 17276 -314 17276 -301 ct 16785 -301 l 16789 -229 16809 -173 16846 -135 ct -16883 -96 16929 -77 16984 -77 ct 17025 -77 17060 -88 17089 -109 ct 17118 -131 17141 -165 17158 -212 ct -p -16791 -393 m 17159 -393 l 17154 -448 17140 -490 17117 -518 ct 17081 -561 17035 -582 16978 -582 ct -16927 -582 16884 -565 16849 -531 ct 16814 -496 16795 -450 16791 -393 ct p ef -17414 0 m 17414 -659 l 17514 -659 l 17514 -565 l 17563 -638 17632 -674 17724 -674 ct -17763 -674 17800 -667 17833 -653 ct 17867 -638 17891 -620 17908 -596 ct 17924 -573 17936 -546 17943 -514 ct -17947 -493 17949 -457 17949 -405 ct 17949 0 l 17837 0 l 17837 -401 l 17837 -446 17833 -480 17824 -503 ct -17816 -526 17800 -544 17778 -557 ct 17756 -570 17730 -577 17700 -577 ct 17653 -577 17612 -562 17577 -532 ct -17543 -502 17525 -444 17525 -360 ct 17525 0 l 17414 0 l p ef -18147 0 m 18147 -572 l 18049 -572 l 18049 -659 l 18147 -659 l 18147 -729 l -18147 -773 18151 -806 18159 -828 ct 18170 -857 18189 -880 18216 -898 ct 18243 -916 18281 -925 18330 -925 ct -18361 -925 18396 -921 18434 -914 ct 18417 -816 l 18394 -821 18372 -823 18351 -823 ct -18318 -823 18294 -815 18279 -801 ct 18265 -786 18258 -759 18258 -720 ct 18258 -659 l -18387 -659 l 18387 -572 l 18258 -572 l 18258 0 l 18147 0 l p ef -18431 -329 m 18431 -452 18465 -542 18533 -601 ct 18590 -650 18659 -674 18740 -674 ct -18831 -674 18905 -644 18962 -585 ct 19019 -526 19048 -444 19048 -339 ct 19048 -254 19035 -187 19010 -139 ct -18985 -90 18948 -52 18899 -25 ct 18850 2 18797 15 18740 15 ct 18648 15 18573 -15 18516 -74 ct -18460 -133 18431 -218 18431 -329 ct p -18546 -330 m 18546 -245 18564 -182 18601 -140 ct 18638 -98 18684 -77 18740 -77 ct -18795 -77 18841 -98 18878 -140 ct 18915 -182 18933 -247 18933 -333 ct 18933 -415 18915 -477 18878 -519 ct -18841 -561 18795 -582 18740 -582 ct 18684 -582 18638 -561 18601 -519 ct 18564 -477 18546 -414 18546 -330 ct -p ef -19609 -81 m 19568 -46 19528 -21 19490 -7 ct 19452 8 19411 15 19367 15 ct 19295 15 19239 -3 19200 -38 ct -19161 -73 19142 -119 19142 -174 ct 19142 -206 19149 -235 19164 -262 ct 19179 -289 19198 -310 19222 -326 ct -19245 -343 19272 -355 19302 -363 ct 19324 -369 19357 -374 19401 -380 ct 19491 -391 19558 -403 19600 -418 ct -19601 -434 19601 -443 19601 -447 ct 19601 -493 19590 -525 19569 -544 ct 19541 -569 19498 -582 19442 -582 ct -19390 -582 19351 -572 19326 -554 ct 19301 -535 19282 -503 19270 -456 ct 19161 -471 l -19171 -518 19187 -556 19210 -584 ct 19233 -613 19266 -635 19309 -651 ct 19352 -666 19402 -674 19458 -674 ct -19514 -674 19560 -667 19595 -654 ct 19630 -641 19656 -624 19673 -604 ct 19689 -584 19701 -559 19707 -528 ct -19711 -509 19713 -475 19713 -425 ct 19713 -276 l 19713 -172 19715 -107 19720 -79 ct -19725 -52 19734 -25 19748 0 ct 19632 0 l 19620 -23 19613 -50 19609 -81 ct p -19600 -331 m 19560 -314 19499 -300 19418 -289 ct 19372 -282 19340 -274 19320 -266 ct -19301 -258 19287 -246 19276 -230 ct 19266 -214 19261 -196 19261 -177 ct 19261 -147 19272 -122 19295 -102 ct -19317 -82 19350 -73 19394 -73 ct 19437 -73 19475 -82 19508 -101 ct 19542 -120 19566 -145 19582 -178 ct -19594 -203 19600 -241 19600 -290 ct 19600 -331 l p ef -19887 0 m 19887 -659 l 19987 -659 l 19987 -567 l 20007 -599 20035 -625 20069 -645 ct -20103 -664 20142 -674 20186 -674 ct 20235 -674 20275 -664 20306 -644 ct 20337 -623 20359 -595 20372 -559 ct -20424 -636 20492 -674 20576 -674 ct 20641 -674 20691 -656 20726 -620 ct 20761 -583 20779 -528 20779 -452 ct -20779 0 l 20668 0 l 20668 -415 l 20668 -460 20664 -492 20657 -512 ct 20650 -531 20637 -547 20618 -559 ct -20599 -571 20577 -577 20551 -577 ct 20505 -577 20466 -562 20436 -531 ct 20405 -500 20390 -451 20390 -383 ct -20390 0 l 20278 0 l 20278 -428 l 20278 -478 20269 -515 20251 -540 ct 20233 -565 20203 -577 20161 -577 ct -20130 -577 20101 -569 20074 -552 ct 20048 -536 20028 -512 20016 -480 ct 20004 -448 19998 -402 19998 -342 ct -19998 0 l 19887 0 l p ef -21212 16 m 21476 -925 l 21565 -925 l 21302 16 l 21212 16 l p ef -22013 0 m 22013 -910 l 22356 -910 l 22416 -910 22462 -907 22494 -901 ct -22539 -894 22576 -880 22606 -859 ct 22637 -838 22661 -809 22679 -771 ct 22698 -733 22707 -692 22707 -647 ct -22707 -569 22682 -504 22633 -450 ct 22584 -397 22495 -370 22366 -370 ct 22133 -370 l -22133 0 l 22013 0 l p -22133 -477 m 22368 -477 l 22446 -477 22501 -492 22534 -521 ct 22567 -550 22583 -591 22583 -643 ct -22583 -681 22573 -714 22554 -741 ct 22535 -768 22509 -786 22478 -795 ct 22458 -800 22420 -803 22366 -803 ct -22133 -803 l 22133 -477 l p ef -22804 -329 m 22804 -452 22838 -542 22906 -601 ct 22963 -650 23032 -674 23113 -674 ct -23204 -674 23278 -644 23335 -585 ct 23392 -526 23421 -444 23421 -339 ct 23421 -254 23408 -187 23383 -139 ct -23358 -90 23321 -52 23272 -25 ct 23223 2 23170 15 23113 15 ct 23021 15 22946 -15 22889 -74 ct -22833 -133 22804 -218 22804 -329 ct p -22919 -330 m 22919 -245 22937 -182 22974 -140 ct 23011 -98 23057 -77 23113 -77 ct -23168 -77 23214 -98 23251 -140 ct 23288 -182 23306 -247 23306 -333 ct 23306 -415 23288 -477 23251 -519 ct -23214 -561 23168 -582 23113 -582 ct 23057 -582 23011 -561 22974 -519 ct 22937 -477 22919 -414 22919 -330 ct -p ef -23550 0 m 23550 -910 l 23662 -910 l 23662 0 l 23550 0 l p ef -23836 -782 m 23836 -910 l 23948 -910 l 23948 -782 l 23836 -782 l p -23836 0 m 23836 -659 l 23948 -659 l 23948 0 l 23836 0 l p ef -24363 -100 m 24380 -1 l 24348 6 24320 9 24295 9 ct 24255 9 24223 3 24201 -10 ct -24179 -23 24163 -40 24154 -61 ct 24145 -82 24140 -126 24140 -193 ct 24140 -572 l -24058 -572 l 24058 -659 l 24140 -659 l 24140 -822 l 24251 -889 l 24251 -659 l -24363 -659 l 24363 -572 l 24251 -572 l 24251 -187 l 24251 -155 24253 -134 24257 -125 ct -24261 -116 24267 -109 24276 -103 ct 24285 -98 24298 -95 24314 -95 ct 24327 -95 24343 -97 24363 -100 ct -p ef -24429 -329 m 24429 -452 24463 -542 24531 -601 ct 24588 -650 24657 -674 24738 -674 ct -24829 -674 24903 -644 24960 -585 ct 25017 -526 25046 -444 25046 -339 ct 25046 -254 25033 -187 25008 -139 ct -24983 -90 24946 -52 24897 -25 ct 24848 2 24795 15 24738 15 ct 24646 15 24571 -15 24514 -74 ct -24458 -133 24429 -218 24429 -329 ct p -24544 -330 m 24544 -245 24562 -182 24599 -140 ct 24636 -98 24682 -77 24738 -77 ct -24793 -77 24839 -98 24876 -140 ct 24913 -182 24931 -247 24931 -333 ct 24931 -415 24913 -477 24876 -519 ct -24839 -561 24793 -582 24738 -582 ct 24682 -582 24636 -561 24599 -519 ct 24562 -477 24544 -414 24544 -330 ct -p ef -25251 267 m 25171 267 l 25295 68 25356 -130 25356 -329 ct 25356 -407 25347 -484 25330 -561 ct -25316 -623 25296 -683 25271 -740 ct 25255 -777 25221 -839 25171 -926 ct 25251 -926 l -25329 -822 25386 -718 25423 -613 ct 25455 -523 25471 -429 25471 -330 ct 25471 -218 25450 -110 25407 -6 ct -25364 98 25312 189 25251 267 ct p ef -pom -0.449 0.625 0.812 c 254 18286 m 27683 18286 l 27683 20825 l 254 20825 l -254 18286 l p -254 18286 m 254 18286 l p -27683 20825 m 27683 20825 l p ef -0.207 0.398 0.644 c 253 18286 m 27682 18286 l 27682 20824 l 253 20824 l -253 18286 l pc -253 18286 m 253 18286 l pc -27682 20824 m 27682 20824 l pc -pum -1845 20102 t -0.003 0.003 0.003 c 97 0 m 97 -910 l 220 -910 l 698 -196 l 698 -910 l -813 -910 l 813 0 l 690 0 l 212 -715 l 212 0 l 97 0 l p ef -917 -1 m 1266 -911 l 1396 -911 l 1768 -1 l 1631 -1 l 1525 -276 l -1145 -276 l 1045 -1 l 917 -1 l p -1179 -374 m 1488 -374 l 1393 -626 l 1364 -703 1342 -766 1328 -815 ct 1317 -757 1300 -699 1279 -641 ct -1179 -374 l p ef -1862 0 m 1862 -910 l 1985 -910 l 2463 -196 l 2463 -910 l 2578 -910 l -2578 0 l 2455 0 l 1977 -715 l 1977 0 l 1862 0 l p ef -2745 -443 m 2745 -594 2786 -712 2867 -797 ct 2948 -883 3053 -926 3181 -926 ct -3265 -926 3340 -906 3408 -865 ct 3475 -825 3526 -769 3562 -698 ct 3597 -626 3615 -544 3615 -453 ct -3615 -361 3596 -278 3559 -206 ct 3522 -133 3469 -78 3401 -40 ct 3333 -3 3259 16 3180 16 ct -3095 16 3018 -5 2951 -46 ct 2883 -87 2832 -144 2797 -216 ct 2763 -287 2745 -363 2745 -443 ct -p -2869 -441 m 2869 -331 2899 -245 2958 -182 ct 3017 -119 3091 -87 3179 -87 ct -3270 -87 3345 -119 3403 -183 ct 3462 -246 3491 -337 3491 -454 ct 3491 -528 3478 -593 3453 -648 ct -3428 -703 3392 -746 3343 -776 ct 3295 -807 3241 -822 3181 -822 ct 3096 -822 3023 -793 2962 -734 ct -2900 -676 2869 -578 2869 -441 ct p ef -4338 1 m 4338 -802 l 4039 -802 l 4039 -909 l 4759 -909 l 4759 -802 l -4459 -802 l 4459 1 l 4338 1 l p ef -4824 -443 m 4824 -594 4865 -712 4946 -797 ct 5027 -883 5132 -926 5260 -926 ct -5344 -926 5419 -906 5487 -865 ct 5554 -825 5605 -769 5641 -698 ct 5676 -626 5694 -544 5694 -453 ct -5694 -361 5675 -278 5638 -206 ct 5601 -133 5548 -78 5480 -40 ct 5412 -3 5338 16 5259 16 ct -5174 16 5097 -5 5030 -46 ct 4962 -87 4911 -144 4876 -216 ct 4842 -287 4824 -363 4824 -443 ct -p -4948 -441 m 4948 -331 4978 -245 5037 -182 ct 5096 -119 5170 -87 5258 -87 ct -5349 -87 5424 -119 5482 -183 ct 5541 -246 5570 -337 5570 -454 ct 5570 -528 5557 -593 5532 -648 ct -5507 -703 5471 -746 5422 -776 ct 5374 -807 5320 -822 5260 -822 ct 5175 -822 5102 -793 5041 -734 ct -4979 -676 4948 -578 4948 -441 ct p ef -5797 -443 m 5797 -594 5838 -712 5919 -797 ct 6000 -883 6105 -926 6233 -926 ct -6317 -926 6392 -906 6460 -865 ct 6527 -825 6578 -769 6614 -698 ct 6649 -626 6667 -544 6667 -453 ct -6667 -361 6648 -278 6611 -206 ct 6574 -133 6521 -78 6453 -40 ct 6385 -3 6311 16 6232 16 ct -6147 16 6070 -5 6003 -46 ct 5935 -87 5884 -144 5849 -216 ct 5815 -287 5797 -363 5797 -443 ct -p -5921 -441 m 5921 -331 5951 -245 6010 -182 ct 6069 -119 6143 -87 6231 -87 ct -6322 -87 6397 -119 6455 -183 ct 6514 -246 6543 -337 6543 -454 ct 6543 -528 6530 -593 6505 -648 ct -6480 -703 6444 -746 6395 -776 ct 6347 -807 6293 -822 6233 -822 ct 6148 -822 6075 -793 6014 -734 ct -5952 -676 5921 -578 5921 -441 ct p ef -6816 0 m 6816 -910 l 6936 -910 l 6936 -107 l 7384 -107 l 7384 0 l -6816 0 l p ef -7730 16 m 7994 -925 l 8083 -925 l 7820 16 l 7730 16 l p ef -8527 0 m 8527 -910 l 8708 -910 l 8924 -266 l 8943 -206 8958 -161 8967 -131 ct -8977 -164 8993 -213 9015 -277 ct 9233 -910 l 9395 -910 l 9395 0 l 9279 0 l -9279 -762 l 9015 0 l 8906 0 l 8643 -775 l 8643 0 l 8527 0 l p ef -9533 -329 m 9533 -452 9567 -542 9635 -601 ct 9692 -650 9761 -674 9842 -674 ct -9933 -674 10007 -644 10064 -585 ct 10121 -526 10150 -444 10150 -339 ct 10150 -254 10137 -187 10112 -139 ct -10087 -90 10050 -52 10001 -25 ct 9952 2 9899 15 9842 15 ct 9750 15 9675 -15 9618 -74 ct -9562 -133 9533 -218 9533 -329 ct p -9648 -330 m 9648 -245 9666 -182 9703 -140 ct 9740 -98 9786 -77 9842 -77 ct -9897 -77 9943 -98 9980 -140 ct 10017 -182 10035 -247 10035 -333 ct 10035 -415 10017 -477 9980 -519 ct -9943 -561 9897 -582 9842 -582 ct 9786 -582 9740 -561 9703 -519 ct 9666 -477 9648 -414 9648 -330 ct -p ef -10279 0 m 10279 -910 l 10391 -910 l 10391 0 l 10279 0 l p ef -11017 -212 m 11132 -198 l 11114 -130 11080 -78 11031 -41 ct 10982 -4 10919 15 10842 15 ct -10746 15 10670 -15 10613 -74 ct 10557 -133 10529 -217 10529 -324 ct 10529 -435 10557 -521 10614 -582 ct -10671 -643 10745 -674 10836 -674 ct 10924 -674 10996 -644 11052 -584 ct 11108 -524 11136 -440 11136 -331 ct -11136 -324 11135 -314 11135 -301 ct 10644 -301 l 10648 -229 10668 -173 10705 -135 ct -10742 -96 10788 -77 10843 -77 ct 10884 -77 10919 -88 10948 -109 ct 10977 -131 11000 -165 11017 -212 ct -p -10650 -393 m 11018 -393 l 11013 -448 10999 -490 10976 -518 ct 10940 -561 10894 -582 10837 -582 ct -10786 -582 10743 -565 10708 -531 ct 10673 -496 10654 -450 10650 -393 ct p ef -11702 -241 m 11812 -227 l 11800 -151 11770 -92 11720 -49 ct 11671 -6 11610 15 11538 15 ct -11448 15 11376 -14 11321 -73 ct 11266 -132 11239 -217 11239 -327 ct 11239 -398 11250 -460 11274 -514 ct -11298 -567 11333 -607 11382 -634 ct 11430 -661 11482 -674 11539 -674 ct 11610 -674 11669 -656 11714 -620 ct -11760 -583 11789 -532 11802 -465 ct 11693 -449 l 11683 -493 11665 -526 11638 -548 ct -11612 -571 11580 -582 11543 -582 ct 11487 -582 11441 -562 11406 -521 ct 11371 -481 11353 -417 11353 -330 ct -11353 -242 11370 -177 11404 -137 ct 11438 -97 11482 -77 11537 -77 ct 11581 -77 11617 -90 11647 -117 ct -11676 -144 11695 -185 11702 -241 ct p ef -12339 0 m 12339 -97 l 12288 -22 12218 15 12130 15 ct 12091 15 12055 8 12022 -7 ct -11988 -22 11963 -41 11946 -64 ct 11930 -86 11919 -114 11912 -146 ct 11908 -168 11905 -203 11905 -251 ct -11905 -659 l 12017 -659 l 12017 -293 l 12017 -235 12019 -196 12024 -176 ct -12031 -146 12046 -123 12068 -106 ct 12091 -90 12119 -81 12153 -81 ct 12186 -81 12218 -90 12247 -107 ct -12276 -124 12297 -148 12309 -177 ct 12321 -207 12328 -250 12328 -306 ct 12328 -659 l -12439 -659 l 12439 0 l 12339 0 l p ef -12612 0 m 12612 -910 l 12724 -910 l 12724 0 l 12612 0 l p ef -13327 -81 m 13286 -46 13246 -21 13208 -7 ct 13170 8 13129 15 13085 15 ct 13013 15 12957 -3 12918 -38 ct -12879 -73 12860 -119 12860 -174 ct 12860 -206 12867 -235 12882 -262 ct 12897 -289 12916 -310 12940 -326 ct -12963 -343 12990 -355 13020 -363 ct 13042 -369 13075 -374 13119 -380 ct 13209 -391 13276 -403 13318 -418 ct -13319 -434 13319 -443 13319 -447 ct 13319 -493 13308 -525 13287 -544 ct 13259 -569 13216 -582 13160 -582 ct -13108 -582 13069 -572 13044 -554 ct 13019 -535 13000 -503 12988 -456 ct 12879 -471 l -12889 -518 12905 -556 12928 -584 ct 12951 -613 12984 -635 13027 -651 ct 13070 -666 13120 -674 13176 -674 ct -13232 -674 13278 -667 13313 -654 ct 13348 -641 13374 -624 13391 -604 ct 13407 -584 13419 -559 13425 -528 ct -13429 -509 13431 -475 13431 -425 ct 13431 -276 l 13431 -172 13433 -107 13438 -79 ct -13443 -52 13452 -25 13466 0 ct 13350 0 l 13338 -23 13331 -50 13327 -81 ct p -13318 -331 m 13278 -314 13217 -300 13136 -289 ct 13090 -282 13058 -274 13038 -266 ct -13019 -258 13005 -246 12994 -230 ct 12984 -214 12979 -196 12979 -177 ct 12979 -147 12990 -122 13013 -102 ct -13035 -82 13068 -73 13112 -73 ct 13155 -73 13193 -82 13226 -101 ct 13260 -120 13284 -145 13300 -178 ct -13312 -203 13318 -241 13318 -290 ct 13318 -331 l p ef -13603 0 m 13603 -659 l 13704 -659 l 13704 -559 l 13730 -606 13753 -637 13775 -652 ct -13797 -667 13821 -674 13847 -674 ct 13884 -674 13922 -662 13961 -638 ct 13923 -534 l -13896 -551 13868 -559 13841 -559 ct 13817 -559 13795 -551 13775 -537 ct 13756 -522 13742 -501 13734 -475 ct -13721 -436 13715 -392 13715 -345 ct 13715 0 l 13603 0 l p ef -14393 0 m 14393 -910 l 14706 -910 l 14777 -910 14831 -906 14868 -897 ct -14920 -885 14965 -863 15001 -832 ct 15049 -791 15085 -739 15109 -676 ct 15133 -613 15145 -541 15145 -460 ct -15145 -391 15137 -330 15120 -276 ct 15104 -223 15084 -179 15058 -144 ct 15033 -109 15006 -81 14976 -61 ct -14946 -41 14909 -26 14867 -16 ct 14825 -5 14776 0 14721 0 ct 14393 0 l p -14513 -107 m 14707 -107 l 14767 -107 14814 -113 14848 -124 ct 14883 -135 14910 -151 14930 -171 ct -14959 -200 14981 -238 14997 -286 ct 15013 -335 15021 -393 15021 -462 ct 15021 -557 15005 -630 14974 -681 ct -14943 -732 14905 -767 14860 -784 ct 14828 -796 14776 -803 14704 -803 ct 14513 -803 l -14513 -107 l p ef -15293 253 m 15280 148 l 15305 155 15326 158 15344 158 ct 15369 158 15389 154 15404 146 ct -15419 138 15431 126 15440 111 ct 15447 100 15459 72 15474 28 ct 15477 22 15480 13 15484 1 ct -15234 -660 l 15355 -660 l 15492 -278 l 15510 -229 15526 -179 15540 -125 ct -15552 -177 15568 -227 15585 -275 ct 15726 -660 l 15838 -660 l 15587 11 l -15560 83 15540 133 15525 160 ct 15505 197 15482 224 15456 241 ct 15431 258 15400 267 15365 267 ct -15343 267 15319 262 15293 253 ct p ef -15933 0 m 15933 -659 l 16033 -659 l 16033 -565 l 16082 -638 16151 -674 16243 -674 ct -16282 -674 16319 -667 16352 -653 ct 16386 -638 16410 -620 16427 -596 ct 16443 -573 16455 -546 16462 -514 ct -16466 -493 16468 -457 16468 -405 ct 16468 0 l 16356 0 l 16356 -401 l 16356 -446 16352 -480 16343 -503 ct -16335 -526 16319 -544 16297 -557 ct 16275 -570 16249 -577 16219 -577 ct 16172 -577 16131 -562 16096 -532 ct -16062 -502 16044 -444 16044 -360 ct 16044 0 l 15933 0 l p ef -17069 -81 m 17028 -46 16988 -21 16950 -7 ct 16912 8 16871 15 16827 15 ct 16755 15 16699 -3 16660 -38 ct -16621 -73 16602 -119 16602 -174 ct 16602 -206 16609 -235 16624 -262 ct 16639 -289 16658 -310 16682 -326 ct -16705 -343 16732 -355 16762 -363 ct 16784 -369 16817 -374 16861 -380 ct 16951 -391 17018 -403 17060 -418 ct -17061 -434 17061 -443 17061 -447 ct 17061 -493 17050 -525 17029 -544 ct 17001 -569 16958 -582 16902 -582 ct -16850 -582 16811 -572 16786 -554 ct 16761 -535 16742 -503 16730 -456 ct 16621 -471 l -16631 -518 16647 -556 16670 -584 ct 16693 -613 16726 -635 16769 -651 ct 16812 -666 16862 -674 16918 -674 ct -16974 -674 17020 -667 17055 -654 ct 17090 -641 17116 -624 17133 -604 ct 17149 -584 17161 -559 17167 -528 ct -17171 -509 17173 -475 17173 -425 ct 17173 -276 l 17173 -172 17175 -107 17180 -79 ct -17185 -52 17194 -25 17208 0 ct 17092 0 l 17080 -23 17073 -50 17069 -81 ct p -17060 -331 m 17020 -314 16959 -300 16878 -289 ct 16832 -282 16800 -274 16780 -266 ct -16761 -258 16747 -246 16736 -230 ct 16726 -214 16721 -196 16721 -177 ct 16721 -147 16732 -122 16755 -102 ct -16777 -82 16810 -73 16854 -73 ct 16897 -73 16935 -82 16968 -101 ct 17002 -120 17026 -145 17042 -178 ct -17054 -203 17060 -241 17060 -290 ct 17060 -331 l p ef -17347 0 m 17347 -659 l 17447 -659 l 17447 -567 l 17467 -599 17495 -625 17529 -645 ct -17563 -664 17602 -674 17646 -674 ct 17695 -674 17735 -664 17766 -644 ct 17797 -623 17819 -595 17832 -559 ct -17884 -636 17952 -674 18036 -674 ct 18101 -674 18151 -656 18186 -620 ct 18221 -583 18239 -528 18239 -452 ct -18239 0 l 18128 0 l 18128 -415 l 18128 -460 18124 -492 18117 -512 ct 18110 -531 18097 -547 18078 -559 ct -18059 -571 18037 -577 18011 -577 ct 17965 -577 17926 -562 17896 -531 ct 17865 -500 17850 -451 17850 -383 ct -17850 0 l 17738 0 l 17738 -428 l 17738 -478 17729 -515 17711 -540 ct 17693 -565 17663 -577 17621 -577 ct -17590 -577 17561 -569 17534 -552 ct 17508 -536 17488 -512 17476 -480 ct 17464 -448 17458 -402 17458 -342 ct -17458 0 l 17347 0 l p ef -18405 -782 m 18405 -910 l 18517 -910 l 18517 -782 l 18405 -782 l p -18405 0 m 18405 -659 l 18517 -659 l 18517 0 l 18405 0 l p ef -19118 -241 m 19228 -227 l 19216 -151 19186 -92 19136 -49 ct 19087 -6 19026 15 18954 15 ct -18864 15 18792 -14 18737 -73 ct 18682 -132 18655 -217 18655 -327 ct 18655 -398 18666 -460 18690 -514 ct -18714 -567 18749 -607 18798 -634 ct 18846 -661 18898 -674 18955 -674 ct 19026 -674 19085 -656 19130 -620 ct -19176 -583 19205 -532 19218 -465 ct 19109 -449 l 19099 -493 19081 -526 19054 -548 ct -19028 -571 18996 -582 18959 -582 ct 18903 -582 18857 -562 18822 -521 ct 18787 -481 18769 -417 18769 -330 ct -18769 -242 18786 -177 18820 -137 ct 18854 -97 18898 -77 18953 -77 ct 18997 -77 19033 -90 19063 -117 ct -19092 -144 19111 -185 19118 -241 ct p ef -19279 -197 m 19389 -214 l 19396 -170 19413 -136 19441 -112 ct 19470 -89 19509 -77 19560 -77 ct -19611 -77 19649 -87 19674 -108 ct 19699 -129 19711 -154 19711 -182 ct 19711 -207 19700 -227 19678 -241 ct -19663 -251 19625 -264 19564 -279 ct 19482 -300 19426 -318 19394 -333 ct 19362 -348 19338 -369 19322 -396 ct -19306 -422 19298 -452 19298 -484 ct 19298 -513 19304 -541 19318 -566 ct 19331 -591 19350 -611 19373 -628 ct -19390 -641 19414 -652 19444 -661 ct 19474 -669 19506 -674 19540 -674 ct 19592 -674 19637 -666 19676 -652 ct -19715 -637 19744 -616 19763 -591 ct 19781 -566 19794 -532 19801 -489 ct 19692 -474 l -19687 -508 19673 -534 19649 -553 ct 19625 -572 19592 -582 19548 -582 ct 19497 -582 19460 -574 19438 -557 ct -19417 -540 19406 -520 19406 -497 ct 19406 -483 19410 -469 19419 -458 ct 19428 -446 19443 -436 19462 -428 ct -19473 -424 19506 -414 19561 -400 ct 19640 -378 19695 -361 19726 -348 ct 19757 -334 19782 -315 19799 -289 ct -19817 -263 19826 -232 19826 -194 ct 19826 -156 19815 -121 19793 -88 ct 19772 -55 19740 -30 19700 -12 ct -19659 6 19612 15 19561 15 ct 19475 15 19410 -3 19365 -38 ct 19320 -74 19291 -127 19279 -197 ct -p ef -20523 267 m 20461 189 20409 98 20367 -6 ct 20324 -110 20303 -218 20303 -330 ct -20303 -429 20319 -523 20351 -613 ct 20388 -718 20445 -822 20523 -926 ct 20603 -926 l -20553 -840 20520 -778 20504 -742 ct 20479 -684 20459 -625 20444 -563 ct 20427 -485 20418 -408 20418 -329 ct -20418 -130 20479 68 20603 267 ct 20523 267 l p ef -21344 -910 m 21464 -910 l 21464 -384 l 21464 -292 21454 -220 21433 -166 ct -21412 -112 21375 -68 21321 -35 ct 21267 -1 21196 16 21109 16 ct 21023 16 20954 1 20900 -28 ct -20845 -57 20807 -100 20784 -156 ct 20760 -211 20749 -287 20749 -384 ct 20749 -910 l -20869 -910 l 20869 -384 l 20869 -305 20876 -247 20891 -210 ct 20906 -172 20931 -143 20967 -123 ct -21003 -103 21046 -93 21098 -93 ct 21186 -93 21249 -113 21287 -153 ct 21325 -193 21344 -270 21344 -384 ct -21344 -910 l p ef -21652 0 m 21652 -659 l 21752 -659 l 21752 -565 l 21801 -638 21870 -674 21962 -674 ct -22001 -674 22038 -667 22071 -653 ct 22105 -638 22129 -620 22146 -596 ct 22162 -573 22174 -546 22181 -514 ct -22185 -493 22187 -457 22187 -405 ct 22187 0 l 22075 0 l 22075 -401 l 22075 -446 22071 -480 22062 -503 ct -22054 -526 22038 -544 22016 -557 ct 21994 -570 21968 -577 21938 -577 ct 21891 -577 21850 -562 21815 -532 ct -21781 -502 21763 -444 21763 -360 ct 21763 0 l 21652 0 l p ef -22359 -782 m 22359 -910 l 22471 -910 l 22471 -782 l 22359 -782 l p -22359 0 m 22359 -659 l 22471 -659 l 22471 0 l 22359 0 l p ef -22887 1 m 22887 -802 l 22588 -802 l 22588 -909 l 23308 -909 l 23308 -802 l -23008 -802 l 23008 1 l 22887 1 l p ef -23300 -197 m 23410 -214 l 23417 -170 23434 -136 23462 -112 ct 23491 -89 23530 -77 23581 -77 ct -23632 -77 23670 -87 23695 -108 ct 23720 -129 23732 -154 23732 -182 ct 23732 -207 23721 -227 23699 -241 ct -23684 -251 23646 -264 23585 -279 ct 23503 -300 23447 -318 23415 -333 ct 23383 -348 23359 -369 23343 -396 ct -23327 -422 23319 -452 23319 -484 ct 23319 -513 23325 -541 23339 -566 ct 23352 -591 23371 -611 23394 -628 ct -23411 -641 23435 -652 23465 -661 ct 23495 -669 23527 -674 23561 -674 ct 23613 -674 23658 -666 23697 -652 ct -23736 -637 23765 -616 23784 -591 ct 23802 -566 23815 -532 23822 -489 ct 23713 -474 l -23708 -508 23694 -534 23670 -553 ct 23646 -572 23613 -582 23569 -582 ct 23518 -582 23481 -574 23459 -557 ct -23438 -540 23427 -520 23427 -497 ct 23427 -483 23431 -469 23440 -458 ct 23449 -446 23464 -436 23483 -428 ct -23494 -424 23527 -414 23582 -400 ct 23661 -378 23716 -361 23747 -348 ct 23778 -334 23803 -315 23820 -289 ct -23838 -263 23847 -232 23847 -194 ct 23847 -156 23836 -121 23814 -88 ct 23793 -55 23761 -30 23721 -12 ct -23680 6 23633 15 23582 15 ct 23496 15 23431 -3 23386 -38 ct 23341 -74 23312 -127 23300 -197 ct -p ef -23981 267 m 23901 267 l 24025 68 24086 -130 24086 -329 ct 24086 -407 24077 -484 24060 -561 ct -24046 -623 24026 -683 24001 -740 ct 23985 -777 23951 -839 23901 -926 ct 23981 -926 l -24059 -822 24116 -718 24153 -613 ct 24185 -523 24201 -429 24201 -330 ct 24201 -218 24180 -110 24137 -6 ct -24094 98 24042 189 23981 267 ct p ef -pom -0.449 0.625 0.812 c 713 10586 m 713 10586 l 717 10538 l 730 10490 l -751 10441 l 781 10393 l 820 10345 l 867 10298 l 922 10251 l 986 10204 l -1058 10157 l 1139 10110 l 1227 10063 l 1324 10017 l 1430 9971 l 1543 9926 l -1664 9881 l 1794 9836 l 1931 9792 l 2076 9748 l 2228 9705 l 2388 9663 l -2556 9621 l 2731 9580 l 2913 9539 l 3103 9499 l 3299 9460 l 3503 9422 l -3713 9384 l 3929 9347 l 4153 9311 l 4382 9275 l 4618 9241 l 4860 9207 l -5108 9174 l 5361 9142 l 5620 9111 l 5885 9081 l 6155 9052 l 6429 9024 l -6709 8997 l 6993 8971 l 7282 8946 l 7575 8922 l 7873 8899 l 8174 8878 l -8479 8857 l 8788 8837 l 9100 8819 l 9415 8802 l 9734 8785 l 10055 8770 l -10378 8756 l 10704 8744 l 11032 8732 l 11362 8722 l 11694 8713 l 12027 8705 l -12362 8698 l 12697 8693 l 13034 8688 l 13371 8685 l 13708 8684 l 14045 8683 l -14045 8683 l 14383 8684 l 14720 8685 l 15057 8688 l 15394 8693 l 15729 8698 l -16064 8705 l 16397 8713 l 16729 8722 l 17059 8732 l 17387 8744 l 17713 8756 l -18036 8770 l 18357 8785 l 18676 8802 l 18991 8819 l 19303 8837 l 19612 8857 l -19917 8878 l 20218 8899 l 20516 8922 l 20809 8946 l 21098 8971 l 21382 8997 l -21662 9024 l 21936 9052 l 22206 9081 l 22471 9111 l 22730 9142 l 22983 9174 l -23231 9207 l 23473 9241 l 23709 9275 l 23938 9311 l 24162 9347 l 24378 9384 l -24588 9422 l 24792 9460 l 24988 9499 l 25178 9539 l 25360 9580 l 25535 9621 l -25703 9663 l 25863 9705 l 26015 9748 l 26160 9792 l 26297 9836 l 26427 9881 l -26548 9926 l 26661 9971 l 26767 10017 l 26864 10063 l 26952 10110 l -27033 10157 l 27105 10204 l 27169 10251 l 27224 10298 l 27271 10345 l -27310 10393 l 27340 10441 l 27361 10490 l 27374 10538 l 27378 10586 l -27377 10586 l 27373 10634 l 27360 10682 l 27339 10731 l 27309 10779 l -27270 10827 l 27223 10874 l 27168 10922 l 27104 10969 l 27032 11016 l -26951 11063 l 26863 11110 l 26766 11156 l 26660 11202 l 26547 11247 l -26426 11292 l 26296 11337 l 26159 11381 l 26014 11425 l 25862 11468 l -25702 11510 l 25534 11552 l 25359 11593 l 25177 11634 l 24987 11674 l -24791 11713 l 24587 11751 l 24377 11789 l 24161 11826 l 23937 11862 l -23708 11898 l 23472 11932 l 23230 11966 l 22982 11999 l 22729 12031 l -22470 12062 l 22205 12092 l 21935 12121 l 21661 12149 l 21381 12176 l -21097 12202 l 20808 12227 l 20515 12251 l 20217 12274 l 19916 12295 l -19611 12316 l 19302 12336 l 18990 12354 l 18675 12371 l 18356 12388 l -18035 12403 l 17712 12417 l 17386 12429 l 17058 12441 l 16728 12451 l -16396 12460 l 16063 12468 l 15728 12475 l 15393 12480 l 15056 12485 l -14719 12488 l 14382 12489 l 14044 12490 l 14044 12489 l 13707 12488 l -13370 12487 l 13033 12484 l 12696 12479 l 12361 12474 l 12026 12467 l -11693 12459 l 11361 12450 l 11031 12440 l 10703 12428 l 10377 12416 l -10054 12402 l 9733 12387 l 9414 12370 l 9099 12353 l 8787 12335 l -8478 12315 l 8173 12294 l 7872 12273 l 7574 12250 l 7281 12226 l 6992 12201 l -6708 12175 l 6428 12148 l 6154 12120 l 5884 12091 l 5619 12061 l 5360 12030 l -5107 11998 l 4859 11965 l 4617 11931 l 4381 11897 l 4152 11861 l 3928 11825 l -3712 11788 l 3502 11750 l 3298 11712 l 3102 11673 l 2912 11633 l 2730 11592 l -2555 11551 l 2387 11509 l 2227 11467 l 2075 11424 l 1930 11380 l 1793 11336 l -1663 11291 l 1542 11246 l 1429 11201 l 1323 11155 l 1226 11109 l 1138 11062 l -1057 11015 l 985 10968 l 921 10921 l 866 10873 l 819 10826 l 780 10778 l -750 10730 l 729 10681 l 716 10633 l 712 10585 l 713 10586 l p -713 8683 m 713 8683 l p -27379 12491 m 27379 12491 l p ef -0.207 0.398 0.644 c 712 10586 m 712 10586 l 716 10538 l 729 10490 l -750 10441 l 780 10393 l 819 10345 l 866 10298 l 921 10250 l 985 10203 l -1057 10156 l 1138 10109 l 1226 10062 l 1323 10016 l 1429 9970 l 1542 9925 l -1663 9880 l 1793 9835 l 1930 9791 l 2075 9747 l 2227 9704 l 2387 9662 l -2555 9620 l 2730 9579 l 2912 9538 l 3102 9498 l 3298 9459 l 3502 9421 l -3712 9383 l 3928 9346 l 4152 9310 l 4381 9274 l 4617 9240 l 4859 9206 l -5107 9173 l 5360 9141 l 5619 9110 l 5884 9080 l 6154 9051 l 6428 9023 l -6708 8996 l 6992 8970 l 7281 8945 l 7574 8921 l 7872 8898 l 8173 8877 l -8478 8856 l 8787 8836 l 9099 8818 l 9414 8801 l 9733 8784 l 10054 8769 l -10377 8755 l 10703 8743 l 11031 8731 l 11361 8721 l 11693 8712 l 12026 8704 l -12361 8697 l 12696 8692 l 13033 8687 l 13370 8684 l 13707 8683 l 14045 8682 l -14045 8682 l 14383 8683 l 14720 8684 l 15057 8687 l 15394 8692 l 15729 8697 l -16064 8704 l 16397 8712 l 16729 8721 l 17059 8731 l 17387 8743 l 17713 8755 l -18036 8769 l 18357 8784 l 18676 8801 l 18991 8818 l 19303 8836 l 19612 8856 l -19917 8877 l 20218 8898 l 20516 8921 l 20809 8945 l 21098 8970 l 21382 8996 l -21662 9023 l 21936 9051 l 22206 9080 l 22471 9110 l 22730 9141 l 22983 9173 l -23231 9206 l 23473 9240 l 23709 9274 l 23938 9310 l 24162 9346 l 24378 9383 l -24588 9421 l 24792 9459 l 24988 9498 l 25178 9538 l 25360 9579 l 25535 9620 l -25703 9662 l 25863 9704 l 26015 9747 l 26160 9791 l 26297 9835 l 26427 9880 l -26548 9925 l 26661 9970 l 26767 10016 l 26864 10062 l 26952 10109 l -27033 10156 l 27105 10203 l 27169 10250 l 27224 10298 l 27271 10345 l -27310 10393 l 27340 10441 l 27361 10490 l 27374 10538 l 27378 10586 l -27377 10586 l 27373 10634 l 27360 10682 l 27339 10731 l 27309 10779 l -27270 10827 l 27223 10874 l 27168 10922 l 27104 10969 l 27032 11016 l -26951 11063 l 26863 11110 l 26766 11156 l 26660 11202 l 26547 11247 l -26426 11292 l 26296 11337 l 26159 11381 l 26014 11425 l 25862 11468 l -25702 11510 l 25534 11552 l 25359 11593 l 25177 11634 l 24987 11674 l -24791 11713 l 24587 11751 l 24377 11789 l 24161 11826 l 23937 11862 l -23708 11898 l 23472 11932 l 23230 11966 l 22982 11999 l 22729 12031 l -22470 12062 l 22205 12092 l 21935 12121 l 21661 12149 l 21381 12176 l -21097 12202 l 20808 12227 l 20515 12251 l 20217 12274 l 19916 12295 l -19611 12316 l 19302 12336 l 18990 12354 l 18675 12371 l 18356 12388 l -18035 12403 l 17712 12417 l 17386 12429 l 17058 12441 l 16728 12451 l -16396 12460 l 16063 12468 l 15728 12475 l 15393 12480 l 15056 12485 l -14719 12488 l 14382 12489 l 14044 12490 l 14044 12489 l 13706 12488 l -13369 12487 l 13032 12484 l 12695 12479 l 12360 12474 l 12025 12467 l -11692 12459 l 11360 12450 l 11030 12440 l 10702 12428 l 10376 12416 l -10053 12402 l 9732 12387 l 9413 12370 l 9098 12353 l 8786 12335 l -8477 12315 l 8172 12294 l 7871 12273 l 7573 12250 l 7280 12226 l 6991 12201 l -6707 12175 l 6427 12148 l 6153 12120 l 5883 12091 l 5618 12061 l 5359 12030 l -5106 11998 l 4858 11965 l 4616 11931 l 4380 11897 l 4151 11861 l 3927 11825 l -3711 11788 l 3501 11750 l 3297 11712 l 3101 11673 l 2911 11633 l 2729 11592 l -2554 11551 l 2386 11509 l 2226 11467 l 2074 11424 l 1929 11380 l 1792 11336 l -1662 11291 l 1541 11246 l 1428 11201 l 1322 11155 l 1225 11109 l 1137 11062 l -1056 11015 l 984 10968 l 920 10921 l 865 10873 l 818 10826 l 779 10778 l -749 10730 l 728 10681 l 715 10633 l 711 10585 l 712 10586 l pc -712 8682 m 712 8682 l pc -27379 12491 m 27379 12491 l pc -pum -1322 11132 t -0.003 0.003 0.003 c 98 0 m 98 -910 l 411 -910 l 482 -910 536 -906 573 -897 ct -625 -885 670 -863 706 -832 ct 754 -791 790 -739 814 -676 ct 838 -613 850 -541 850 -460 ct -850 -391 842 -330 825 -276 ct 809 -223 789 -179 763 -144 ct 738 -109 711 -81 681 -61 ct -651 -41 614 -26 572 -16 ct 530 -5 481 0 426 0 ct 98 0 l p -218 -107 m 412 -107 l 472 -107 519 -113 553 -124 ct 588 -135 615 -151 635 -171 ct -664 -200 686 -238 702 -286 ct 718 -335 726 -393 726 -462 ct 726 -557 710 -630 679 -681 ct -648 -732 610 -767 565 -784 ct 533 -796 481 -803 409 -803 ct 218 -803 l 218 -107 l -p ef -1019 0 m 1019 -910 l 1677 -910 l 1677 -803 l 1140 -803 l 1140 -524 l -1643 -524 l 1643 -417 l 1140 -417 l 1140 -107 l 1698 -107 l 1698 0 l -1019 0 l p ef -1862 0 m 1862 -910 l 1985 -910 l 2463 -196 l 2463 -910 l 2578 -910 l -2578 0 l 2455 0 l 1977 -715 l 1977 0 l 1862 0 l p ef -2741 -292 m 2855 -302 l 2860 -256 2872 -219 2892 -190 ct 2912 -161 2942 -137 2984 -119 ct -3025 -101 3071 -92 3123 -92 ct 3169 -92 3209 -99 3245 -112 ct 3280 -126 3306 -145 3323 -169 ct -3340 -192 3349 -218 3349 -247 ct 3349 -275 3341 -300 3324 -321 ct 3307 -343 3280 -361 3242 -375 ct -3218 -385 3164 -399 3080 -419 ct 2997 -440 2938 -458 2905 -476 ct 2861 -499 2829 -527 2808 -561 ct -2786 -595 2776 -632 2776 -674 ct 2776 -720 2789 -763 2815 -803 ct 2841 -843 2879 -873 2929 -894 ct -2979 -915 3035 -925 3096 -925 ct 3163 -925 3223 -914 3274 -892 ct 3326 -871 3365 -839 3393 -797 ct -3421 -754 3435 -707 3437 -653 ct 3322 -644 l 3316 -702 3295 -745 3259 -775 ct -3223 -804 3171 -819 3101 -819 ct 3028 -819 2975 -806 2942 -779 ct 2908 -752 2892 -720 2892 -682 ct -2892 -650 2904 -623 2927 -602 ct 2950 -581 3011 -559 3108 -537 ct 3206 -515 3273 -495 3310 -479 ct -3363 -454 3402 -423 3427 -386 ct 3452 -348 3465 -305 3465 -257 ct 3465 -208 3451 -162 3423 -120 ct -3395 -77 3356 -43 3304 -20 ct 3252 4 3194 16 3129 16 ct 3046 16 2977 4 2922 -20 ct -2866 -44 2823 -80 2791 -128 ct 2759 -177 2743 -231 2741 -292 ct p ef -3649 0 m 3649 -910 l 3770 -910 l 3770 0 l 3649 0 l p ef -4211 1 m 4211 -802 l 3912 -802 l 3912 -909 l 4632 -909 l 4632 -802 l -4332 -802 l 4332 1 l 4211 1 l p ef -5011 0 m 5011 -385 l 4661 -910 l 4807 -910 l 4986 -636 l 5019 -584 5050 -533 5079 -482 ct -5106 -529 5139 -583 5178 -642 ct 5354 -910 l 5494 -910 l 5131 -385 l 5131 0 l -5011 0 l p ef -5886 -292 m 6000 -302 l 6005 -256 6017 -219 6037 -190 ct 6057 -161 6087 -137 6129 -119 ct -6170 -101 6216 -92 6268 -92 ct 6314 -92 6354 -99 6390 -112 ct 6425 -126 6451 -145 6468 -169 ct -6485 -192 6494 -218 6494 -247 ct 6494 -275 6486 -300 6469 -321 ct 6452 -343 6425 -361 6387 -375 ct -6363 -385 6309 -399 6225 -419 ct 6142 -440 6083 -458 6050 -476 ct 6006 -499 5974 -527 5953 -561 ct -5931 -595 5921 -632 5921 -674 ct 5921 -720 5934 -763 5960 -803 ct 5986 -843 6024 -873 6074 -894 ct -6124 -915 6180 -925 6241 -925 ct 6308 -925 6368 -914 6419 -892 ct 6471 -871 6510 -839 6538 -797 ct -6566 -754 6580 -707 6582 -653 ct 6467 -644 l 6461 -702 6440 -745 6404 -775 ct -6368 -804 6316 -819 6246 -819 ct 6173 -819 6120 -806 6087 -779 ct 6053 -752 6037 -720 6037 -682 ct -6037 -650 6049 -623 6072 -602 ct 6095 -581 6156 -559 6253 -537 ct 6351 -515 6418 -495 6455 -479 ct -6508 -454 6547 -423 6572 -386 ct 6597 -348 6610 -305 6610 -257 ct 6610 -208 6596 -162 6568 -120 ct -6540 -77 6501 -43 6449 -20 ct 6397 4 6339 16 6274 16 ct 6191 16 6122 4 6067 -20 ct -6011 -44 5968 -80 5936 -128 ct 5904 -177 5888 -231 5886 -292 ct p ef -7371 -910 m 7491 -910 l 7491 -384 l 7491 -292 7481 -220 7460 -166 ct 7439 -112 7402 -68 7348 -35 ct -7294 -1 7223 16 7136 16 ct 7050 16 6981 1 6927 -28 ct 6872 -57 6834 -100 6811 -156 ct -6787 -211 6776 -287 6776 -384 ct 6776 -910 l 6896 -910 l 6896 -384 l 6896 -305 6903 -247 6918 -210 ct -6933 -172 6958 -143 6994 -123 ct 7030 -103 7073 -93 7125 -93 ct 7213 -93 7276 -113 7314 -153 ct -7352 -193 7371 -270 7371 -384 ct 7371 -910 l p ef -7695 0 m 7695 -910 l 8098 -910 l 8179 -910 8241 -902 8283 -885 ct 8325 -869 8359 -840 8384 -799 ct -8409 -757 8422 -712 8422 -662 ct 8422 -597 8401 -543 8359 -498 ct 8317 -454 8253 -426 8166 -414 ct -8197 -399 8222 -384 8238 -369 ct 8273 -336 8306 -296 8338 -248 ct 8496 0 l 8345 0 l -8224 -189 l 8189 -244 8160 -286 8138 -315 ct 8115 -344 8095 -364 8077 -375 ct -8059 -387 8040 -395 8022 -400 ct 8008 -403 7986 -404 7955 -404 ct 7815 -404 l -7815 0 l 7695 0 l p -7815 -508 m 8074 -508 l 8129 -508 8172 -514 8203 -525 ct 8234 -537 8257 -555 8273 -580 ct -8290 -605 8298 -632 8298 -662 ct 8298 -705 8282 -740 8251 -768 ct 8220 -796 8170 -809 8103 -809 ct -7815 -809 l 7815 -508 l p ef -8613 0 m 8613 -910 l 9016 -910 l 9097 -910 9159 -902 9201 -885 ct 9243 -869 9277 -840 9302 -799 ct -9327 -757 9340 -712 9340 -662 ct 9340 -597 9319 -543 9277 -498 ct 9235 -454 9171 -426 9084 -414 ct -9115 -399 9140 -384 9156 -369 ct 9191 -336 9224 -296 9256 -248 ct 9414 0 l 9263 0 l -9142 -189 l 9107 -244 9078 -286 9056 -315 ct 9033 -344 9013 -364 8995 -375 ct -8977 -387 8958 -395 8940 -400 ct 8926 -403 8904 -404 8873 -404 ct 8733 -404 l -8733 0 l 8613 0 l p -8733 -508 m 8992 -508 l 9047 -508 9090 -514 9121 -525 ct 9152 -537 9175 -555 9191 -580 ct -9208 -605 9216 -632 9216 -662 ct 9216 -705 9200 -740 9169 -768 ct 9138 -796 9088 -809 9021 -809 ct -8733 -809 l 8733 -508 l p ef -9493 -443 m 9493 -594 9534 -712 9615 -797 ct 9696 -883 9801 -926 9929 -926 ct -10013 -926 10088 -906 10156 -865 ct 10223 -825 10274 -769 10310 -698 ct 10345 -626 10363 -544 10363 -453 ct -10363 -361 10344 -278 10307 -206 ct 10270 -133 10217 -78 10149 -40 ct 10081 -3 10007 16 9928 16 ct -9843 16 9766 -5 9699 -46 ct 9631 -87 9580 -144 9545 -216 ct 9511 -287 9493 -363 9493 -443 ct -p -9617 -441 m 9617 -331 9647 -245 9706 -182 ct 9765 -119 9839 -87 9927 -87 ct -10018 -87 10093 -119 10151 -183 ct 10210 -246 10239 -337 10239 -454 ct 10239 -528 10226 -593 10201 -648 ct -10176 -703 10140 -746 10091 -776 ct 10043 -807 9989 -822 9929 -822 ct 9844 -822 9771 -793 9710 -734 ct -9648 -676 9617 -578 9617 -441 ct p ef -10941 -356 m 10941 -463 l 11326 -463 l 11326 -126 l 11267 -79 11206 -43 11144 -20 ct -11081 4 11016 16 10950 16 ct 10861 16 10780 -3 10707 -41 ct 10634 -80 10579 -135 10541 -207 ct -10504 -280 10486 -361 10486 -450 ct 10486 -539 10504 -621 10541 -698 ct 10578 -775 10631 -832 10701 -869 ct -10770 -906 10850 -925 10941 -925 ct 11007 -925 11066 -914 11119 -893 ct 11172 -872 11214 -842 11244 -804 ct -11274 -766 11297 -716 11313 -655 ct 11204 -625 l 11191 -671 11174 -708 11153 -734 ct -11133 -761 11104 -782 11067 -798 ct 11029 -814 10987 -822 10941 -822 ct 10886 -822 10839 -814 10799 -797 ct -10759 -780 10726 -758 10702 -731 ct 10677 -703 10658 -673 10644 -641 ct 10621 -584 10610 -523 10610 -458 ct -10610 -377 10624 -309 10651 -254 ct 10679 -199 10720 -159 10773 -132 ct 10827 -106 10883 -93 10943 -93 ct -10995 -93 11046 -103 11096 -123 ct 11145 -143 11183 -164 11209 -187 ct 11209 -356 l -10941 -356 l p ef -11403 -1 m 11752 -911 l 11882 -911 l 12254 -1 l 12117 -1 l 12011 -276 l -11631 -276 l 11531 -1 l 11403 -1 l p -11665 -374 m 11974 -374 l 11879 -626 l 11850 -703 11828 -766 11814 -815 ct -11803 -757 11786 -699 11765 -641 ct 11665 -374 l p ef -12534 1 m 12534 -802 l 12235 -802 l 12235 -909 l 12955 -909 l 12955 -802 l -12655 -802 l 12655 1 l 12534 1 l p ef -13033 0 m 13033 -910 l 13691 -910 l 13691 -803 l 13154 -803 l 13154 -524 l -13657 -524 l 13657 -417 l 13154 -417 l 13154 -107 l 13712 -107 l 13712 0 l -13033 0 l p ef -14224 0 m 14224 -910 l 14405 -910 l 14621 -266 l 14640 -206 14655 -161 14664 -131 ct -14674 -164 14690 -213 14712 -277 ct 14930 -910 l 15092 -910 l 15092 0 l -14976 0 l 14976 -762 l 14712 0 l 14603 0 l 14340 -775 l 14340 0 l -14224 0 l p ef -15249 -443 m 15249 -594 15290 -712 15371 -797 ct 15452 -883 15557 -926 15685 -926 ct -15769 -926 15844 -906 15912 -865 ct 15979 -825 16030 -769 16066 -698 ct 16101 -626 16119 -544 16119 -453 ct -16119 -361 16100 -278 16063 -206 ct 16026 -133 15973 -78 15905 -40 ct 15837 -3 15763 16 15684 16 ct -15599 16 15522 -5 15455 -46 ct 15387 -87 15336 -144 15301 -216 ct 15267 -287 15249 -363 15249 -443 ct -p -15373 -441 m 15373 -331 15403 -245 15462 -182 ct 15521 -119 15595 -87 15683 -87 ct -15774 -87 15849 -119 15907 -183 ct 15966 -246 15995 -337 15995 -454 ct 15995 -528 15982 -593 15957 -648 ct -15932 -703 15896 -746 15847 -776 ct 15799 -807 15745 -822 15685 -822 ct 15600 -822 15527 -793 15466 -734 ct -15404 -676 15373 -578 15373 -441 ct p ef -16273 0 m 16273 -910 l 16586 -910 l 16657 -910 16711 -906 16748 -897 ct -16800 -885 16845 -863 16881 -832 ct 16929 -791 16965 -739 16989 -676 ct 17013 -613 17025 -541 17025 -460 ct -17025 -391 17017 -330 17000 -276 ct 16984 -223 16964 -179 16938 -144 ct 16913 -109 16886 -81 16856 -61 ct -16826 -41 16789 -26 16747 -16 ct 16705 -5 16656 0 16601 0 ct 16273 0 l p -16393 -107 m 16587 -107 l 16647 -107 16694 -113 16728 -124 ct 16763 -135 16790 -151 16810 -171 ct -16839 -200 16861 -238 16877 -286 ct 16893 -335 16901 -393 16901 -462 ct 16901 -557 16885 -630 16854 -681 ct -16823 -732 16785 -767 16740 -784 ct 16708 -796 16656 -803 16584 -803 ct 16393 -803 l -16393 -107 l p ef -17193 0 m 17193 -910 l 17851 -910 l 17851 -803 l 17314 -803 l 17314 -524 l -17817 -524 l 17817 -417 l 17314 -417 l 17314 -107 l 17872 -107 l 17872 0 l -17193 0 l p ef -18033 0 m 18033 -910 l 18153 -910 l 18153 -107 l 18601 -107 l 18601 0 l -18033 0 l p ef -19244 267 m 19182 189 19130 98 19088 -6 ct 19045 -110 19024 -218 19024 -330 ct -19024 -429 19040 -523 19072 -613 ct 19109 -718 19166 -822 19244 -926 ct 19324 -926 l -19274 -840 19241 -778 19225 -742 ct 19200 -684 19180 -625 19165 -563 ct 19148 -485 19139 -408 19139 -329 ct -19139 -130 19200 68 19324 267 ct 19244 267 l p ef -19465 0 m 19465 -910 l 19646 -910 l 19862 -266 l 19881 -206 19896 -161 19905 -131 ct -19915 -164 19931 -213 19953 -277 ct 20171 -910 l 20333 -910 l 20333 0 l -20217 0 l 20217 -762 l 19953 0 l 19844 0 l 19581 -775 l 19581 0 l -19465 0 l p ef -20471 -329 m 20471 -452 20505 -542 20573 -601 ct 20630 -650 20699 -674 20780 -674 ct -20871 -674 20945 -644 21002 -585 ct 21059 -526 21088 -444 21088 -339 ct 21088 -254 21075 -187 21050 -139 ct -21025 -90 20988 -52 20939 -25 ct 20890 2 20837 15 20780 15 ct 20688 15 20613 -15 20556 -74 ct -20500 -133 20471 -218 20471 -329 ct p -20586 -330 m 20586 -245 20604 -182 20641 -140 ct 20678 -98 20724 -77 20780 -77 ct -20835 -77 20881 -98 20918 -140 ct 20955 -182 20973 -247 20973 -333 ct 20973 -415 20955 -477 20918 -519 ct -20881 -561 20835 -582 20780 -582 ct 20724 -582 20678 -561 20641 -519 ct 20604 -477 20586 -414 20586 -330 ct -p ef -21220 0 m 21220 -659 l 21320 -659 l 21320 -565 l 21369 -638 21438 -674 21530 -674 ct -21569 -674 21606 -667 21639 -653 ct 21673 -638 21697 -620 21714 -596 ct 21730 -573 21742 -546 21749 -514 ct -21753 -493 21755 -457 21755 -405 ct 21755 0 l 21643 0 l 21643 -401 l 21643 -446 21639 -480 21630 -503 ct -21622 -526 21606 -544 21584 -557 ct 21562 -570 21536 -577 21506 -577 ct 21459 -577 21418 -562 21383 -532 ct -21349 -502 21331 -444 21331 -360 ct 21331 0 l 21220 0 l p ef -21906 54 m 22015 70 l 22019 104 22032 128 22053 143 ct 22080 164 22118 175 22166 175 ct -22218 175 22258 164 22286 143 ct 22314 123 22333 94 22343 57 ct 22349 34 22351 -14 22351 -87 ct -22302 -29 22241 -1 22169 -1 ct 22078 -1 22008 -33 21958 -99 ct 21909 -164 21884 -242 21884 -334 ct -21884 -397 21895 -455 21918 -508 ct 21941 -561 21974 -602 22017 -631 ct 22060 -660 22111 -674 22169 -674 ct -22247 -674 22311 -643 22361 -580 ct 22361 -660 l 22464 -660 l 22464 -90 l -22464 13 22454 85 22433 128 ct 22412 171 22379 205 22334 230 ct 22289 255 22233 267 22167 267 ct -22088 267 22025 249 21976 214 ct 21928 179 21905 125 21906 54 ct p -21999 -342 m 21999 -255 22016 -192 22050 -153 ct 22084 -113 22127 -93 22179 -93 ct -22230 -93 22273 -113 22308 -152 ct 22343 -192 22360 -254 22360 -338 ct 22360 -419 22342 -480 22307 -521 ct -22271 -562 22228 -582 22177 -582 ct 22128 -582 22085 -562 22051 -522 ct 22016 -481 21999 -421 21999 -342 ct -p ef -22592 -329 m 22592 -452 22626 -542 22694 -601 ct 22751 -650 22820 -674 22901 -674 ct -22992 -674 23066 -644 23123 -585 ct 23180 -526 23209 -444 23209 -339 ct 23209 -254 23196 -187 23171 -139 ct -23146 -90 23109 -52 23060 -25 ct 23011 2 22958 15 22901 15 ct 22809 15 22734 -15 22677 -74 ct -22621 -133 22592 -218 22592 -329 ct p -22707 -330 m 22707 -245 22725 -182 22762 -140 ct 22799 -98 22845 -77 22901 -77 ct -22956 -77 23002 -98 23039 -140 ct 23076 -182 23094 -247 23094 -333 ct 23094 -415 23076 -477 23039 -519 ct -23002 -561 22956 -582 22901 -582 ct 22845 -582 22799 -561 22762 -519 ct 22725 -477 22707 -414 22707 -330 ct -p ef -23355 0 m 23355 -910 l 23668 -910 l 23739 -910 23793 -906 23830 -897 ct -23882 -885 23927 -863 23963 -832 ct 24011 -791 24047 -739 24071 -676 ct 24095 -613 24107 -541 24107 -460 ct -24107 -391 24099 -330 24082 -276 ct 24066 -223 24046 -179 24020 -144 ct 23995 -109 23968 -81 23938 -61 ct -23908 -41 23871 -26 23829 -16 ct 23787 -5 23738 0 23683 0 ct 23355 0 l p -23475 -107 m 23669 -107 l 23729 -107 23776 -113 23810 -124 ct 23845 -135 23872 -151 23892 -171 ct -23921 -200 23943 -238 23959 -286 ct 23975 -335 23983 -393 23983 -462 ct 23983 -557 23967 -630 23936 -681 ct -23905 -732 23867 -767 23822 -784 ct 23790 -796 23738 -803 23666 -803 ct 23475 -803 l -23475 -107 l p ef -24269 0 m 24269 -910 l 24610 -910 l 24680 -910 24735 -901 24777 -882 ct -24819 -864 24852 -836 24876 -797 ct 24900 -759 24911 -719 24911 -677 ct 24911 -638 24901 -602 24880 -567 ct -24859 -533 24827 -505 24784 -484 ct 24839 -468 24882 -440 24911 -401 ct 24941 -363 24955 -317 24955 -264 ct -24955 -221 24946 -181 24929 -145 ct 24911 -108 24888 -80 24862 -60 ct 24835 -40 24802 -25 24762 -15 ct -24722 -5 24674 0 24616 0 ct 24269 0 l p -24389 -527 m 24586 -527 l 24639 -527 24677 -531 24701 -538 ct 24731 -547 24754 -562 24770 -583 ct -24785 -604 24793 -631 24793 -663 ct 24793 -693 24786 -720 24771 -743 ct 24757 -766 24736 -781 24709 -790 ct -24682 -798 24636 -803 24571 -803 ct 24389 -803 l 24389 -527 l p -24389 -107 m 24616 -107 l 24655 -107 24682 -109 24698 -112 ct 24725 -117 24748 -125 24767 -137 ct -24786 -148 24801 -165 24813 -187 ct 24825 -209 24831 -235 24831 -264 ct 24831 -298 24822 -327 24805 -352 ct -24787 -377 24763 -395 24733 -405 ct 24702 -415 24657 -420 24600 -420 ct 24389 -420 l -24389 -107 l p ef -25179 267 m 25099 267 l 25223 68 25284 -130 25284 -329 ct 25284 -407 25275 -484 25258 -561 ct -25244 -623 25224 -683 25199 -740 ct 25183 -777 25149 -839 25099 -926 ct 25179 -926 l -25257 -822 25314 -718 25351 -613 ct 25383 -523 25399 -429 25399 -330 ct 25399 -218 25378 -110 25335 -6 ct -25292 98 25240 189 25179 267 ct p ef -pom -27 lw 8196 17986 m 8907 12793 l ps -8934 12599 m 9010 12821 l 8801 12793 l 8934 12599 l p ef -11089 18037 m 11336 12778 l ps -11345 12582 m 11440 12797 l 11230 12787 l 11345 12582 l p ef -13835 17937 m 13589 12797 l ps -13580 12601 m 13695 12806 l 13485 12816 l 13580 12601 l p ef -16812 18042 m 16247 12782 l ps -16226 12587 m 16353 12785 l 16144 12807 l 16226 12587 l p ef -22829 3048 m 21601 8698 l ps -21559 8890 m 21501 8662 l 21706 8707 l 21559 8890 l p ef -1.000 1.000 1.000 c 26159 14234 m 27291 14234 l 27291 15759 l 26159 15759 l -26159 14234 l p -26159 14234 m 26159 14234 l p -27291 15759 m 27291 15759 l p ef -pum -19503 3908 t -1.000 0.261 0.058 c 47 1 m 47 -455 l 358 -455 l 358 -378 l 139 -378 l -139 -270 l 328 -270 l 328 -193 l 139 -193 l 139 1 l 47 1 l p ef -417 -224 m 417 -271 424 -310 437 -341 ct 448 -364 462 -385 480 -404 ct 498 -422 517 -436 538 -445 ct -567 -457 599 -463 636 -463 ct 703 -463 757 -442 797 -400 ct 837 -359 858 -301 858 -227 ct -858 -153 838 -96 798 -54 ct 758 -13 704 8 638 8 ct 570 8 516 -13 476 -54 ct 437 -95 417 -152 417 -224 ct -p -511 -228 m 511 -176 523 -137 547 -110 ct 571 -84 601 -71 637 -71 ct 674 -71 704 -84 727 -110 ct -751 -136 763 -176 763 -229 ct 763 -281 751 -320 728 -346 ct 706 -371 675 -384 637 -384 ct -600 -384 569 -371 546 -345 ct 523 -319 511 -280 511 -228 ct p ef -1341 1 m 1241 1 l 1202 -103 l 1020 -103 l 982 1 l 885 1 l 1062 -455 l -1159 -455 l 1341 1 l p -1172 -180 m 1109 -348 l 1048 -180 l 1172 -180 l p ef -1387 0 m 1387 -455 l 1524 -455 l 1607 -145 l 1688 -455 l 1826 -455 l -1826 0 l 1741 0 l 1741 -358 l 1651 0 l 1562 0 l 1472 -358 l 1472 0 l -1387 0 l p ef -pom -pum -19503 4670 t -149 0 m 149 -378 l 14 -378 l 14 -455 l 375 -455 l 375 -378 l 240 -378 l -240 0 l 149 0 l p ef -435 0 m 435 -455 l 772 -455 l 772 -378 l 527 -378 l 527 -277 l 755 -277 l -755 -200 l 527 -200 l 527 -77 l 781 -77 l 781 0 l 435 0 l p ef -858 0 m 858 -455 l 995 -455 l 1078 -145 l 1159 -455 l 1297 -455 l -1297 0 l 1212 0 l 1212 -358 l 1122 0 l 1033 0 l 943 -358 l 943 0 l -858 0 l p ef -1388 -1 m 1388 -455 l 1535 -455 l 1591 -455 1628 -453 1645 -448 ct 1671 -441 1692 -427 1710 -404 ct -1728 -381 1736 -351 1736 -315 ct 1736 -287 1731 -264 1721 -245 ct 1711 -226 1698 -211 1683 -200 ct -1667 -189 1651 -182 1635 -179 ct 1613 -174 1581 -172 1540 -172 ct 1480 -172 l -1480 -1 l 1388 -1 l p -1480 -378 m 1480 -249 l 1530 -249 l 1566 -249 1591 -252 1603 -256 ct 1615 -261 1625 -269 1631 -279 ct -1638 -289 1642 -301 1642 -314 ct 1642 -330 1637 -344 1627 -355 ct 1618 -366 1605 -372 1590 -375 ct -1579 -377 1557 -378 1524 -378 ct 1480 -378 l p ef -1811 0 m 1811 -455 l 2148 -455 l 2148 -378 l 1903 -378 l 1903 -277 l -2131 -277 l 2131 -200 l 1903 -200 l 1903 -77 l 2157 -77 l 2157 0 l -1811 0 l p ef -2236 0 m 2236 -455 l 2429 -455 l 2477 -455 2513 -451 2535 -443 ct 2557 -435 2574 -420 2587 -399 ct -2601 -378 2607 -354 2607 -327 ct 2607 -293 2597 -265 2577 -243 ct 2557 -221 2527 -207 2487 -201 ct -2507 -189 2524 -177 2536 -163 ct 2549 -149 2567 -124 2589 -89 ct 2644 0 l 2534 0 l -2468 -99 l 2444 -134 2428 -157 2420 -166 ct 2411 -175 2402 -181 2392 -185 ct -2382 -188 2367 -190 2346 -190 ct 2327 -190 l 2327 0 l 2236 0 l p -2327 -263 m 2395 -263 l 2439 -263 2467 -264 2478 -268 ct 2489 -272 2497 -278 2503 -287 ct -2510 -297 2513 -308 2513 -322 ct 2513 -337 2509 -349 2500 -359 ct 2492 -368 2481 -374 2466 -377 ct -2458 -378 2436 -378 2399 -378 ct 2327 -378 l 2327 -263 l p ef -3102 1 m 3002 1 l 2963 -103 l 2781 -103 l 2743 1 l 2646 1 l 2823 -455 l -2920 -455 l 3102 1 l p -2933 -180 m 2870 -348 l 2809 -180 l 2933 -180 l p ef -3227 0 m 3227 -378 l 3092 -378 l 3092 -455 l 3453 -455 l 3453 -378 l -3318 -378 l 3318 0 l 3227 0 l p ef -3488 -455 m 3579 -455 l 3579 -208 l 3579 -169 3581 -144 3583 -132 ct 3587 -114 3596 -99 3611 -87 ct -3626 -76 3646 -71 3671 -71 ct 3697 -71 3717 -76 3730 -86 ct 3744 -97 3752 -110 3754 -126 ct -3757 -141 3758 -167 3758 -203 ct 3758 -455 l 3850 -455 l 3850 -216 l 3850 -161 3848 -123 3843 -100 ct -3838 -77 3828 -58 3815 -43 ct 3802 -27 3784 -15 3762 -6 ct 3739 3 3710 8 3674 8 ct -3631 8 3598 3 3575 -7 ct 3553 -17 3535 -30 3522 -46 ct 3509 -62 3501 -79 3497 -97 ct -3491 -123 3488 -161 3488 -212 ct 3488 -455 l p ef -3946 0 m 3946 -455 l 4139 -455 l 4187 -455 4223 -451 4245 -443 ct 4267 -435 4284 -420 4297 -399 ct -4311 -378 4317 -354 4317 -327 ct 4317 -293 4307 -265 4287 -243 ct 4267 -221 4237 -207 4197 -201 ct -4217 -189 4234 -177 4246 -163 ct 4259 -149 4277 -124 4299 -89 ct 4354 0 l 4244 0 l -4178 -99 l 4154 -134 4138 -157 4130 -166 ct 4121 -175 4112 -181 4102 -185 ct -4092 -188 4077 -190 4056 -190 ct 4037 -190 l 4037 0 l 3946 0 l p -4037 -263 m 4105 -263 l 4149 -263 4177 -264 4188 -268 ct 4199 -272 4207 -278 4213 -287 ct -4220 -297 4223 -308 4223 -322 ct 4223 -337 4219 -349 4210 -359 ct 4202 -368 4191 -374 4176 -377 ct -4168 -378 4146 -378 4109 -378 ct 4037 -378 l 4037 -263 l p ef -4402 0 m 4402 -455 l 4739 -455 l 4739 -378 l 4494 -378 l 4494 -277 l -4722 -277 l 4722 -200 l 4494 -200 l 4494 -77 l 4748 -77 l 4748 0 l -4402 0 l p ef -pom -0.003 0.003 0.003 c 16144 2950 m 16391 8389 l ps -16400 8585 m 16286 8380 l 16495 8370 l 16400 8585 l p ef -1.000 1.000 1.000 c 15298 4726 m 17669 4726 l 17669 6308 l 15298 6308 l -15298 4726 l p -15298 4726 m 15298 4726 l p -17669 6308 m 17669 6308 l p ef -pum -15548 5823 t -0.003 0.003 0.003 c 7 0 m 180 -247 l 20 -475 l 120 -475 l 193 -364 l 207 -343 218 -325 227 -311 ct -240 -330 252 -348 263 -363 ct 343 -475 l 439 -475 l 275 -252 l 452 0 l -353 0 l 255 -148 l 229 -188 l 104 0 l 7 0 l p ef -pom -pum -16009 6126 t -26 -186 m 26 -249 43 -299 77 -334 ct 111 -370 154 -388 208 -388 ct 243 -388 275 -380 303 -363 ct -331 -346 353 -323 368 -293 ct 383 -263 390 -228 390 -190 ct 390 -152 382 -117 367 -87 ct -351 -56 329 -33 300 -18 ct 272 -2 241 6 208 6 ct 172 6 140 -3 112 -20 ct 83 -37 62 -61 48 -91 ct -33 -121 26 -153 26 -186 ct p -78 -185 m 78 -139 90 -103 115 -77 ct 139 -50 170 -37 208 -37 ct 245 -37 277 -50 301 -77 ct -326 -104 338 -142 338 -191 ct 338 -222 333 -249 322 -272 ct 312 -295 296 -313 276 -326 ct -256 -338 233 -345 208 -345 ct 173 -345 142 -332 116 -308 ct 91 -283 78 -242 78 -185 ct -p ef -454 0 m 454 -381 l 504 -381 l 504 -224 l 702 -224 l 702 -381 l 752 -381 l -752 0 l 702 0 l 702 -179 l 504 -179 l 504 0 l 454 0 l p ef -pom -pum -11607 3708 t -1.000 0.261 0.058 c 28 -224 m 28 -271 35 -310 48 -341 ct 59 -364 73 -385 91 -404 ct -109 -422 128 -436 149 -445 ct 178 -457 210 -463 247 -463 ct 314 -463 368 -442 408 -400 ct -448 -359 469 -301 469 -227 ct 469 -153 449 -96 409 -54 ct 369 -13 315 8 249 8 ct -181 8 127 -13 87 -54 ct 48 -95 28 -152 28 -224 ct p -122 -228 m 122 -176 134 -137 158 -110 ct 182 -84 212 -71 248 -71 ct 285 -71 315 -84 338 -110 ct -362 -136 374 -176 374 -229 ct 374 -281 362 -320 339 -346 ct 317 -371 286 -384 248 -384 ct -211 -384 180 -371 157 -345 ct 134 -319 122 -280 122 -228 ct p ef -657 0 m 495 -455 l 594 -455 l 709 -118 l 821 -455 l 918 -455 l 755 0 l -657 0 l p ef -965 0 m 965 -455 l 1302 -455 l 1302 -378 l 1057 -378 l 1057 -277 l -1285 -277 l 1285 -200 l 1057 -200 l 1057 -77 l 1311 -77 l 1311 0 l -965 0 l p ef -1389 0 m 1389 -455 l 1582 -455 l 1630 -455 1666 -451 1688 -443 ct 1710 -435 1727 -420 1740 -399 ct -1754 -378 1760 -354 1760 -327 ct 1760 -293 1750 -265 1730 -243 ct 1710 -221 1680 -207 1640 -201 ct -1660 -189 1677 -177 1689 -163 ct 1702 -149 1720 -124 1742 -89 ct 1797 0 l 1687 0 l -1621 -99 l 1597 -134 1581 -157 1573 -166 ct 1564 -175 1555 -181 1545 -185 ct -1535 -188 1520 -190 1499 -190 ct 1480 -190 l 1480 0 l 1389 0 l p -1480 -263 m 1548 -263 l 1592 -263 1620 -264 1631 -268 ct 1642 -272 1650 -278 1656 -287 ct -1663 -297 1666 -308 1666 -322 ct 1666 -337 1662 -349 1653 -359 ct 1645 -368 1634 -374 1619 -377 ct -1611 -378 1589 -378 1552 -378 ct 1480 -378 l 1480 -263 l p ef -2255 1 m 2155 1 l 2116 -103 l 1934 -103 l 1896 1 l 1799 1 l 1976 -455 l -2073 -455 l 2255 1 l p -2086 -180 m 2023 -348 l 1962 -180 l 2086 -180 l p ef -2305 0 m 2305 -451 l 2396 -451 l 2396 -77 l 2625 -77 l 2625 0 l 2305 0 l -p ef -2695 0 m 2695 -451 l 2786 -451 l 2786 -77 l 3015 -77 l 3015 0 l 2695 0 l -p ef -pom -pum -11607 4470 t -337 -167 m 426 -139 l 412 -89 390 -52 358 -28 ct 326 -4 286 8 237 8 ct 177 8 127 -13 88 -54 ct -50 -95 30 -152 30 -223 ct 30 -299 50 -358 89 -400 ct 128 -442 179 -463 243 -463 ct -298 -463 344 -446 378 -413 ct 399 -394 414 -366 425 -329 ct 334 -308 l 329 -331 317 -350 300 -364 ct -283 -377 263 -384 238 -384 ct 204 -384 177 -372 156 -348 ct 135 -323 125 -284 125 -230 ct -125 -173 135 -132 156 -107 ct 176 -83 203 -71 236 -71 ct 261 -71 282 -78 299 -94 ct -317 -109 329 -134 337 -167 ct p ef -485 -224 m 485 -271 492 -310 505 -341 ct 516 -364 530 -385 548 -404 ct 566 -422 585 -436 606 -445 ct -635 -457 667 -463 704 -463 ct 771 -463 825 -442 865 -400 ct 905 -359 926 -301 926 -227 ct -926 -153 906 -96 866 -54 ct 826 -13 772 8 706 8 ct 638 8 584 -13 544 -54 ct 505 -95 485 -152 485 -224 ct -p -579 -228 m 579 -176 591 -137 615 -110 ct 639 -84 669 -71 705 -71 ct 742 -71 772 -84 795 -110 ct -819 -136 831 -176 831 -229 ct 831 -281 819 -320 796 -346 ct 774 -371 743 -384 705 -384 ct -668 -384 637 -371 614 -345 ct 591 -319 579 -280 579 -228 ct p ef -1000 0 m 1000 -455 l 1089 -455 l 1275 -151 l 1275 -455 l 1361 -455 l -1361 0 l 1269 0 l 1085 -297 l 1085 0 l 1000 0 l p ef -1572 0 m 1410 -455 l 1509 -455 l 1624 -118 l 1736 -455 l 1833 -455 l -1670 0 l 1572 0 l p ef -1879 0 m 1879 -455 l 2216 -455 l 2216 -378 l 1971 -378 l 1971 -277 l -2199 -277 l 2199 -200 l 1971 -200 l 1971 -77 l 2225 -77 l 2225 0 l -1879 0 l p ef -2303 0 m 2303 -455 l 2496 -455 l 2544 -455 2580 -451 2602 -443 ct 2624 -435 2641 -420 2654 -399 ct -2668 -378 2674 -354 2674 -327 ct 2674 -293 2664 -265 2644 -243 ct 2624 -221 2594 -207 2554 -201 ct -2574 -189 2591 -177 2603 -163 ct 2616 -149 2634 -124 2656 -89 ct 2711 0 l 2601 0 l -2535 -99 l 2511 -134 2495 -157 2487 -166 ct 2478 -175 2469 -181 2459 -185 ct -2449 -188 2434 -190 2413 -190 ct 2394 -190 l 2394 0 l 2303 0 l p -2394 -263 m 2462 -263 l 2506 -263 2534 -264 2545 -268 ct 2556 -272 2564 -278 2570 -287 ct -2577 -297 2580 -308 2580 -322 ct 2580 -337 2576 -349 2567 -359 ct 2559 -368 2548 -374 2533 -377 ct -2525 -378 2503 -378 2466 -378 ct 2394 -378 l 2394 -263 l p ef -2737 -148 m 2826 -157 l 2832 -127 2843 -105 2859 -91 ct 2875 -77 2898 -70 2925 -70 ct -2955 -70 2977 -76 2992 -88 ct 3007 -101 3015 -116 3015 -132 ct 3015 -143 3012 -152 3005 -160 ct -2999 -167 2988 -174 2972 -179 ct 2962 -183 2937 -190 2899 -199 ct 2850 -212 2815 -227 2795 -244 ct -2767 -269 2753 -300 2753 -336 ct 2753 -359 2760 -381 2773 -401 ct 2786 -421 2805 -437 2830 -447 ct -2855 -458 2884 -463 2919 -463 ct 2976 -463 3019 -450 3048 -425 ct 3077 -399 3092 -365 3094 -323 ct -3002 -323 l 2998 -346 2989 -362 2976 -372 ct 2964 -382 2944 -387 2918 -387 ct -2892 -387 2871 -381 2856 -371 ct 2846 -363 2841 -354 2841 -342 ct 2841 -331 2846 -322 2855 -315 ct -2866 -305 2894 -295 2939 -284 ct 2984 -274 3017 -263 3038 -251 ct 3060 -240 3076 -225 3088 -205 ct -3100 -186 3107 -161 3107 -133 ct 3107 -107 3099 -82 3085 -59 ct 3070 -37 3050 -20 3023 -9 ct -2997 2 2964 8 2925 8 ct 2867 8 2823 -5 2792 -32 ct 2761 -59 2743 -97 2737 -148 ct -p ef -3180 0 m 3180 -455 l 3272 -455 l 3272 0 l 3180 0 l p ef -3343 -224 m 3343 -271 3350 -310 3363 -341 ct 3374 -364 3388 -385 3406 -404 ct -3424 -422 3443 -436 3464 -445 ct 3493 -457 3525 -463 3562 -463 ct 3629 -463 3683 -442 3723 -400 ct -3763 -359 3784 -301 3784 -227 ct 3784 -153 3764 -96 3724 -54 ct 3684 -13 3630 8 3564 8 ct -3496 8 3442 -13 3402 -54 ct 3363 -95 3343 -152 3343 -224 ct p -3437 -228 m 3437 -176 3449 -137 3473 -110 ct 3497 -84 3527 -71 3563 -71 ct -3600 -71 3630 -84 3653 -110 ct 3677 -136 3689 -176 3689 -229 ct 3689 -281 3677 -320 3654 -346 ct -3632 -371 3601 -384 3563 -384 ct 3526 -384 3495 -371 3472 -345 ct 3449 -319 3437 -280 3437 -228 ct -p ef -3857 0 m 3857 -455 l 3946 -455 l 4132 -151 l 4132 -455 l 4218 -455 l -4218 0 l 4126 0 l 3942 -297 l 3942 0 l 3857 0 l p ef -pom -pum -11607 5232 t -258 -167 m 258 -244 l 455 -244 l 455 -62 l 436 -44 408 -27 372 -13 ct -335 1 298 8 261 8 ct 214 8 172 -2 137 -22 ct 101 -42 75 -70 57 -108 ct 39 -145 30 -185 30 -229 ct -30 -276 40 -318 60 -355 ct 80 -392 109 -420 147 -440 ct 176 -455 213 -463 256 -463 ct -313 -463 357 -451 388 -427 ct 420 -403 440 -371 450 -329 ct 358 -312 l 352 -334 340 -352 322 -365 ct -305 -378 283 -384 256 -384 ct 216 -384 184 -371 160 -346 ct 137 -320 125 -283 125 -233 ct -125 -179 137 -138 161 -111 ct 185 -84 216 -71 255 -71 ct 274 -71 294 -74 313 -82 ct -332 -89 349 -99 363 -109 ct 363 -167 l 258 -167 l p ef -541 0 m 541 -455 l 878 -455 l 878 -378 l 633 -378 l 633 -277 l 861 -277 l -861 -200 l 633 -200 l 633 -77 l 887 -77 l 887 0 l 541 0 l p ef -968 0 m 968 -451 l 1059 -451 l 1059 -77 l 1288 -77 l 1288 0 l 968 0 l -p ef -1357 0 m 1357 -451 l 1448 -451 l 1448 -77 l 1677 -77 l 1677 0 l 1357 0 l -p ef -1741 0 m 1741 -455 l 1833 -455 l 1833 0 l 1741 0 l p ef -1922 0 m 1922 -455 l 2011 -455 l 2197 -151 l 2197 -455 l 2283 -455 l -2283 0 l 2191 0 l 2007 -297 l 2007 0 l 1922 0 l p ef -2591 -167 m 2591 -244 l 2788 -244 l 2788 -62 l 2769 -44 2741 -27 2705 -13 ct -2668 1 2631 8 2594 8 ct 2547 8 2505 -2 2470 -22 ct 2434 -42 2408 -70 2390 -108 ct -2372 -145 2363 -185 2363 -229 ct 2363 -276 2373 -318 2393 -355 ct 2413 -392 2442 -420 2480 -440 ct -2509 -455 2546 -463 2589 -463 ct 2646 -463 2690 -451 2721 -427 ct 2753 -403 2773 -371 2783 -329 ct -2691 -312 l 2685 -334 2673 -352 2655 -365 ct 2638 -378 2616 -384 2589 -384 ct -2549 -384 2517 -371 2493 -346 ct 2470 -320 2458 -283 2458 -233 ct 2458 -179 2470 -138 2494 -111 ct -2518 -84 2549 -71 2588 -71 ct 2607 -71 2627 -74 2646 -82 ct 2665 -89 2682 -99 2696 -109 ct -2696 -167 l 2591 -167 l p ef -pom -pum -11607 5994 t -47 0 m 47 -455 l 240 -455 l 288 -455 324 -451 346 -443 ct 368 -435 385 -420 398 -399 ct -412 -378 418 -354 418 -327 ct 418 -293 408 -265 388 -243 ct 368 -221 338 -207 298 -201 ct -318 -189 335 -177 347 -163 ct 360 -149 378 -124 400 -89 ct 455 0 l 345 0 l -279 -99 l 255 -134 239 -157 231 -166 ct 222 -175 213 -181 203 -185 ct 193 -188 178 -190 157 -190 ct -138 -190 l 138 0 l 47 0 l p -138 -263 m 206 -263 l 250 -263 278 -264 289 -268 ct 300 -272 308 -278 314 -287 ct -321 -297 324 -308 324 -322 ct 324 -337 320 -349 311 -359 ct 303 -368 292 -374 277 -377 ct -269 -378 247 -378 210 -378 ct 138 -378 l 138 -263 l p ef -503 0 m 503 -455 l 840 -455 l 840 -378 l 595 -378 l 595 -277 l 823 -277 l -823 -200 l 595 -200 l 595 -77 l 849 -77 l 849 0 l 503 0 l p ef -1337 1 m 1237 1 l 1198 -103 l 1016 -103 l 978 1 l 881 1 l 1058 -455 l -1155 -455 l 1337 1 l p -1168 -180 m 1105 -348 l 1044 -180 l 1168 -180 l p ef -1675 -167 m 1764 -139 l 1750 -89 1728 -52 1696 -28 ct 1664 -4 1624 8 1575 8 ct -1515 8 1465 -13 1426 -54 ct 1388 -95 1368 -152 1368 -223 ct 1368 -299 1388 -358 1427 -400 ct -1466 -442 1517 -463 1581 -463 ct 1636 -463 1682 -446 1716 -413 ct 1737 -394 1752 -366 1763 -329 ct -1672 -308 l 1667 -331 1655 -350 1638 -364 ct 1621 -377 1601 -384 1576 -384 ct -1542 -384 1515 -372 1494 -348 ct 1473 -323 1463 -284 1463 -230 ct 1463 -173 1473 -132 1494 -107 ct -1514 -83 1541 -71 1574 -71 ct 1599 -71 1620 -78 1637 -94 ct 1655 -109 1667 -134 1675 -167 ct -p ef -1944 0 m 1944 -378 l 1809 -378 l 1809 -455 l 2170 -455 l 2170 -378 l -2035 -378 l 2035 0 l 1944 0 l p ef -2227 0 m 2227 -455 l 2319 -455 l 2319 0 l 2227 0 l p ef -2390 -224 m 2390 -271 2397 -310 2410 -341 ct 2421 -364 2435 -385 2453 -404 ct -2471 -422 2490 -436 2511 -445 ct 2540 -457 2572 -463 2609 -463 ct 2676 -463 2730 -442 2770 -400 ct -2810 -359 2831 -301 2831 -227 ct 2831 -153 2811 -96 2771 -54 ct 2731 -13 2677 8 2611 8 ct -2543 8 2489 -13 2449 -54 ct 2410 -95 2390 -152 2390 -224 ct p -2484 -228 m 2484 -176 2496 -137 2520 -110 ct 2544 -84 2574 -71 2610 -71 ct -2647 -71 2677 -84 2700 -110 ct 2724 -136 2736 -176 2736 -229 ct 2736 -281 2724 -320 2701 -346 ct -2679 -371 2648 -384 2610 -384 ct 2573 -384 2542 -371 2519 -345 ct 2496 -319 2484 -280 2484 -228 ct -p ef -2905 0 m 2905 -455 l 2994 -455 l 3180 -151 l 3180 -455 l 3266 -455 l -3266 0 l 3174 0 l 2990 -297 l 2990 0 l 2905 0 l p ef -pom -0.003 0.003 0.003 c 9119 8387 m 9123 3238 l ps -9123 3042 m 9228 3252 l 9018 3252 l 9123 3042 l p ef -1.000 1.000 1.000 c 8311 4824 m 10131 4824 l 10131 6503 l 8311 6503 l -8311 4824 l p -8311 4824 m 8311 4824 l p -10131 6503 m 10131 6503 l p ef -pum -8561 5866 t -0.003 0.003 0.003 c 138 -42 m 161 -7 199 12 245 12 ct 354 12 449 -107 449 -245 ct -449 -376 366 -471 251 -471 ct 221 -471 202 -466 179 -454 ct 144 -434 113 -408 89 -378 ct -63 -346 55 -315 55 -250 ct 55 110 l 55 147 53 168 46 202 ct 132 202 l 137 171 137 169 138 96 ct -138 -42 l p -132 -296 m 132 -309 l 132 -344 138 -365 154 -387 ct 169 -406 185 -416 205 -416 ct -292 -416 365 -316 365 -199 ct 365 -100 314 -33 238 -33 ct 201 -33 162 -60 145 -96 ct -139 -107 138 -114 138 -142 ct 132 -296 l p ef -pom -pum -9065 6169 t -41 0 m 41 -381 l 185 -381 l 210 -381 229 -380 243 -377 ct 261 -374 277 -368 290 -360 ct -302 -351 312 -339 320 -323 ct 328 -307 332 -290 332 -271 ct 332 -238 321 -211 301 -189 ct -280 -166 243 -155 189 -155 ct 91 -155 l 91 0 l 41 0 l p -91 -200 m 190 -200 l 222 -200 246 -206 259 -218 ct 273 -230 280 -247 280 -269 ct -280 -285 276 -299 268 -310 ct 260 -322 249 -329 236 -333 ct 227 -335 212 -336 189 -336 ct -91 -336 l 91 -200 l p ef -pom -pum -3057 5152 t -1.000 0.261 0.058 c 46 -455 m 214 -455 l 251 -455 280 -452 300 -446 ct 327 -438 350 -424 369 -404 ct -388 -384 402 -360 412 -331 ct 422 -302 427 -266 427 -223 ct 427 -186 422 -153 413 -126 ct -402 -93 385 -66 364 -46 ct 348 -30 327 -18 300 -10 ct 280 -3 252 0 219 0 ct 46 0 l -46 -455 l p -138 -378 m 138 -77 l 206 -77 l 232 -77 250 -78 262 -81 ct 277 -85 289 -91 299 -100 ct -309 -109 317 -123 323 -144 ct 329 -164 332 -192 332 -227 ct 332 -262 329 -289 323 -308 ct -317 -327 308 -342 297 -352 ct 286 -363 271 -370 254 -374 ct 241 -377 216 -378 179 -378 ct -138 -378 l p ef -503 0 m 503 -455 l 840 -455 l 840 -378 l 595 -378 l 595 -277 l 823 -277 l -823 -200 l 595 -200 l 595 -77 l 849 -77 l 849 0 l 503 0 l p ef -928 0 m 928 -455 l 1017 -455 l 1203 -151 l 1203 -455 l 1289 -455 l -1289 0 l 1197 0 l 1013 -297 l 1013 0 l 928 0 l p ef -1361 -148 m 1450 -157 l 1456 -127 1467 -105 1483 -91 ct 1499 -77 1522 -70 1549 -70 ct -1579 -70 1601 -76 1616 -88 ct 1631 -101 1639 -116 1639 -132 ct 1639 -143 1636 -152 1629 -160 ct -1623 -167 1612 -174 1596 -179 ct 1586 -183 1561 -190 1523 -199 ct 1474 -212 1439 -227 1419 -244 ct -1391 -269 1377 -300 1377 -336 ct 1377 -359 1384 -381 1397 -401 ct 1410 -421 1429 -437 1454 -447 ct -1479 -458 1508 -463 1543 -463 ct 1600 -463 1643 -450 1672 -425 ct 1701 -399 1716 -365 1718 -323 ct -1626 -323 l 1622 -346 1613 -362 1600 -372 ct 1588 -382 1568 -387 1542 -387 ct -1516 -387 1495 -381 1480 -371 ct 1470 -363 1465 -354 1465 -342 ct 1465 -331 1470 -322 1479 -315 ct -1490 -305 1518 -295 1563 -284 ct 1608 -274 1641 -263 1662 -251 ct 1684 -240 1700 -225 1712 -205 ct -1724 -186 1731 -161 1731 -133 ct 1731 -107 1723 -82 1709 -59 ct 1694 -37 1674 -20 1647 -9 ct -1621 2 1588 8 1549 8 ct 1491 8 1447 -5 1416 -32 ct 1385 -59 1367 -97 1361 -148 ct -p ef -1804 0 m 1804 -455 l 1896 -455 l 1896 0 l 1804 0 l p ef -2088 0 m 2088 -378 l 1953 -378 l 1953 -455 l 2314 -455 l 2314 -378 l -2179 -378 l 2179 0 l 2088 0 l p ef -2494 0 m 2494 -192 l 2327 -455 l 2435 -455 l 2542 -275 l 2646 -455 l -2752 -455 l 2585 -191 l 2585 0 l 2494 0 l p ef -2941 -224 m 2941 -271 2948 -310 2961 -341 ct 2972 -364 2986 -385 3004 -404 ct -3022 -422 3041 -436 3062 -445 ct 3091 -457 3123 -463 3160 -463 ct 3227 -463 3281 -442 3321 -400 ct -3361 -359 3382 -301 3382 -227 ct 3382 -153 3362 -96 3322 -54 ct 3282 -13 3228 8 3162 8 ct -3094 8 3040 -13 3000 -54 ct 2961 -95 2941 -152 2941 -224 ct p -3035 -228 m 3035 -176 3047 -137 3071 -110 ct 3095 -84 3125 -71 3161 -71 ct -3198 -71 3228 -84 3251 -110 ct 3275 -136 3287 -176 3287 -229 ct 3287 -281 3275 -320 3252 -346 ct -3230 -371 3199 -384 3161 -384 ct 3124 -384 3093 -371 3070 -345 ct 3047 -319 3035 -280 3035 -228 ct -p ef -3455 1 m 3455 -455 l 3766 -455 l 3766 -378 l 3547 -378 l 3547 -270 l -3736 -270 l 3736 -193 l 3547 -193 l 3547 1 l 3455 1 l p ef -4124 0 m 4124 -378 l 3989 -378 l 3989 -455 l 4350 -455 l 4350 -378 l -4215 -378 l 4215 0 l 4124 0 l p ef -4412 0 m 4412 -455 l 4503 -455 l 4503 -276 l 4683 -276 l 4683 -455 l -4775 -455 l 4775 0 l 4683 0 l 4683 -199 l 4503 -199 l 4503 0 l 4412 0 l -p ef -4868 0 m 4868 -455 l 5205 -455 l 5205 -378 l 4960 -378 l 4960 -277 l -5188 -277 l 5188 -200 l 4960 -200 l 4960 -77 l 5214 -77 l 5214 0 l -4868 0 l p ef -pom -pum -3057 5914 t -49 0 m 49 -451 l 140 -451 l 140 -77 l 369 -77 l 369 0 l 49 0 l p ef -432 0 m 432 -455 l 524 -455 l 524 0 l 432 0 l p ef -979 -57 m 1002 -41 1026 -29 1053 -19 ct 1019 46 l 1005 42 991 36 978 29 ct -975 27 955 14 917 -12 ct 887 1 854 8 818 8 ct 748 8 694 -13 654 -54 ct 614 -95 595 -153 595 -227 ct -595 -302 614 -359 654 -401 ct 694 -442 748 -463 816 -463 ct 883 -463 936 -442 976 -401 ct -1015 -359 1035 -302 1035 -227 ct 1035 -188 1030 -153 1019 -124 ct 1010 -101 997 -79 979 -57 ct -p -905 -109 m 917 -123 926 -140 932 -160 ct 938 -179 941 -202 941 -227 ct 941 -280 929 -319 906 -345 ct -883 -371 852 -384 815 -384 ct 778 -384 747 -371 724 -345 ct 701 -319 689 -280 689 -227 ct -689 -174 701 -134 724 -108 ct 747 -82 777 -68 812 -68 ct 825 -68 838 -71 850 -75 ct -831 -87 812 -97 793 -103 ct 819 -156 l 849 -146 878 -130 905 -109 ct p ef -1109 -455 m 1200 -455 l 1200 -208 l 1200 -169 1202 -144 1204 -132 ct 1208 -114 1217 -99 1232 -87 ct -1247 -76 1267 -71 1292 -71 ct 1318 -71 1338 -76 1351 -86 ct 1365 -97 1373 -110 1375 -126 ct -1378 -141 1379 -167 1379 -203 ct 1379 -455 l 1471 -455 l 1471 -216 l 1471 -161 1469 -123 1464 -100 ct -1459 -77 1449 -58 1436 -43 ct 1423 -27 1405 -15 1383 -6 ct 1360 3 1331 8 1295 8 ct -1252 8 1219 3 1196 -7 ct 1174 -17 1156 -30 1143 -46 ct 1130 -62 1122 -79 1118 -97 ct -1112 -123 1109 -161 1109 -212 ct 1109 -455 l p ef -1563 0 m 1563 -455 l 1655 -455 l 1655 0 l 1563 0 l p ef -1744 -455 m 1912 -455 l 1949 -455 1978 -452 1998 -446 ct 2025 -438 2048 -424 2067 -404 ct -2086 -384 2100 -360 2110 -331 ct 2120 -302 2125 -266 2125 -223 ct 2125 -186 2120 -153 2111 -126 ct -2100 -93 2083 -66 2062 -46 ct 2046 -30 2025 -18 1998 -10 ct 1978 -3 1950 0 1917 0 ct -1744 0 l 1744 -455 l p -1836 -378 m 1836 -77 l 1904 -77 l 1930 -77 1948 -78 1960 -81 ct 1975 -85 1987 -91 1997 -100 ct -2007 -109 2015 -123 2021 -144 ct 2027 -164 2030 -192 2030 -227 ct 2030 -262 2027 -289 2021 -308 ct -2015 -327 2006 -342 1995 -352 ct 1984 -363 1969 -370 1952 -374 ct 1939 -377 1914 -378 1877 -378 ct -1836 -378 l p ef -2154 8 m 2267 -463 l 2332 -463 l 2218 8 l 2154 8 l p ef -2379 -1 m 2379 -455 l 2526 -455 l 2582 -455 2619 -453 2636 -448 ct 2662 -441 2683 -427 2701 -404 ct -2719 -381 2727 -351 2727 -315 ct 2727 -287 2722 -264 2712 -245 ct 2702 -226 2689 -211 2674 -200 ct -2658 -189 2642 -182 2626 -179 ct 2604 -174 2572 -172 2531 -172 ct 2471 -172 l -2471 -1 l 2379 -1 l p -2471 -378 m 2471 -249 l 2521 -249 l 2557 -249 2582 -252 2594 -256 ct 2606 -261 2616 -269 2622 -279 ct -2629 -289 2633 -301 2633 -314 ct 2633 -330 2628 -344 2618 -355 ct 2609 -366 2596 -372 2581 -375 ct -2570 -377 2548 -378 2515 -378 ct 2471 -378 l p ef -2784 -224 m 2784 -271 2791 -310 2804 -341 ct 2815 -364 2829 -385 2847 -404 ct -2865 -422 2884 -436 2905 -445 ct 2934 -457 2966 -463 3003 -463 ct 3070 -463 3124 -442 3164 -400 ct -3204 -359 3225 -301 3225 -227 ct 3225 -153 3205 -96 3165 -54 ct 3125 -13 3071 8 3005 8 ct -2937 8 2883 -13 2843 -54 ct 2804 -95 2784 -152 2784 -224 ct p -2878 -228 m 2878 -176 2890 -137 2914 -110 ct 2938 -84 2968 -71 3004 -71 ct -3041 -71 3071 -84 3094 -110 ct 3118 -136 3130 -176 3130 -229 ct 3130 -281 3118 -320 3095 -346 ct -3073 -371 3042 -384 3004 -384 ct 2967 -384 2936 -371 2913 -345 ct 2890 -319 2878 -280 2878 -228 ct -p ef -3300 0 m 3300 -451 l 3391 -451 l 3391 -77 l 3620 -77 l 3620 0 l 3300 0 l -p ef -3777 0 m 3777 -192 l 3610 -455 l 3718 -455 l 3825 -275 l 3929 -455 l -4035 -455 l 3868 -191 l 3868 0 l 3777 0 l p ef -4050 0 m 4050 -455 l 4187 -455 l 4270 -145 l 4351 -455 l 4489 -455 l -4489 0 l 4404 0 l 4404 -358 l 4314 0 l 4225 0 l 4135 -358 l 4135 0 l -4050 0 l p ef -4580 0 m 4580 -455 l 4917 -455 l 4917 -378 l 4672 -378 l 4672 -277 l -4900 -277 l 4900 -200 l 4672 -200 l 4672 -77 l 4926 -77 l 4926 0 l -4580 0 l p ef -5004 0 m 5004 -455 l 5197 -455 l 5245 -455 5281 -451 5303 -443 ct 5325 -435 5342 -420 5355 -399 ct -5369 -378 5375 -354 5375 -327 ct 5375 -293 5365 -265 5345 -243 ct 5325 -221 5295 -207 5255 -201 ct -5275 -189 5292 -177 5304 -163 ct 5317 -149 5335 -124 5357 -89 ct 5412 0 l 5302 0 l -5236 -99 l 5212 -134 5196 -157 5188 -166 ct 5179 -175 5170 -181 5160 -185 ct -5150 -188 5135 -190 5114 -190 ct 5095 -190 l 5095 0 l 5004 0 l p -5095 -263 m 5163 -263 l 5207 -263 5235 -264 5246 -268 ct 5257 -272 5265 -278 5271 -287 ct -5278 -297 5281 -308 5281 -322 ct 5281 -337 5277 -349 5268 -359 ct 5260 -368 5249 -374 5234 -377 ct -5226 -378 5204 -378 5167 -378 ct 5095 -378 l 5095 -263 l p ef -pom -pum -3057 6676 t -337 -167 m 426 -139 l 412 -89 390 -52 358 -28 ct 326 -4 286 8 237 8 ct 177 8 127 -13 88 -54 ct -50 -95 30 -152 30 -223 ct 30 -299 50 -358 89 -400 ct 128 -442 179 -463 243 -463 ct -298 -463 344 -446 378 -413 ct 399 -394 414 -366 425 -329 ct 334 -308 l 329 -331 317 -350 300 -364 ct -283 -377 263 -384 238 -384 ct 204 -384 177 -372 156 -348 ct 135 -323 125 -284 125 -230 ct -125 -173 135 -132 156 -107 ct 176 -83 203 -71 236 -71 ct 261 -71 282 -78 299 -94 ct -317 -109 329 -134 337 -167 ct p ef -485 -224 m 485 -271 492 -310 505 -341 ct 516 -364 530 -385 548 -404 ct 566 -422 585 -436 606 -445 ct -635 -457 667 -463 704 -463 ct 771 -463 825 -442 865 -400 ct 905 -359 926 -301 926 -227 ct -926 -153 906 -96 866 -54 ct 826 -13 772 8 706 8 ct 638 8 584 -13 544 -54 ct 505 -95 485 -152 485 -224 ct -p -579 -228 m 579 -176 591 -137 615 -110 ct 639 -84 669 -71 705 -71 ct 742 -71 772 -84 795 -110 ct -819 -136 831 -176 831 -229 ct 831 -281 819 -320 796 -346 ct 774 -371 743 -384 705 -384 ct -668 -384 637 -371 614 -345 ct 591 -319 579 -280 579 -228 ct p ef -1000 0 m 1000 -455 l 1089 -455 l 1275 -151 l 1275 -455 l 1361 -455 l -1361 0 l 1269 0 l 1085 -297 l 1085 0 l 1000 0 l p ef -1433 -148 m 1522 -157 l 1528 -127 1539 -105 1555 -91 ct 1571 -77 1594 -70 1621 -70 ct -1651 -70 1673 -76 1688 -88 ct 1703 -101 1711 -116 1711 -132 ct 1711 -143 1708 -152 1701 -160 ct -1695 -167 1684 -174 1668 -179 ct 1658 -183 1633 -190 1595 -199 ct 1546 -212 1511 -227 1491 -244 ct -1463 -269 1449 -300 1449 -336 ct 1449 -359 1456 -381 1469 -401 ct 1482 -421 1501 -437 1526 -447 ct -1551 -458 1580 -463 1615 -463 ct 1672 -463 1715 -450 1744 -425 ct 1773 -399 1788 -365 1790 -323 ct -1698 -323 l 1694 -346 1685 -362 1672 -372 ct 1660 -382 1640 -387 1614 -387 ct -1588 -387 1567 -381 1552 -371 ct 1542 -363 1537 -354 1537 -342 ct 1537 -331 1542 -322 1551 -315 ct -1562 -305 1590 -295 1635 -284 ct 1680 -274 1713 -263 1734 -251 ct 1756 -240 1772 -225 1784 -205 ct -1796 -186 1803 -161 1803 -133 ct 1803 -107 1795 -82 1781 -59 ct 1766 -37 1746 -20 1719 -9 ct -1693 2 1660 8 1621 8 ct 1563 8 1519 -5 1488 -32 ct 1457 -59 1439 -97 1433 -148 ct -p ef -1982 0 m 1982 -378 l 1847 -378 l 1847 -455 l 2208 -455 l 2208 -378 l -2073 -378 l 2073 0 l 1982 0 l p ef -2266 0 m 2266 -455 l 2358 -455 l 2358 0 l 2266 0 l p ef -2549 0 m 2549 -378 l 2414 -378 l 2414 -455 l 2775 -455 l 2775 -378 l -2640 -378 l 2640 0 l 2549 0 l p ef -2836 -455 m 2927 -455 l 2927 -208 l 2927 -169 2929 -144 2931 -132 ct 2935 -114 2944 -99 2959 -87 ct -2974 -76 2994 -71 3019 -71 ct 3045 -71 3065 -76 3078 -86 ct 3092 -97 3100 -110 3102 -126 ct -3105 -141 3106 -167 3106 -203 ct 3106 -455 l 3198 -455 l 3198 -216 l 3198 -161 3196 -123 3191 -100 ct -3186 -77 3176 -58 3163 -43 ct 3150 -27 3132 -15 3110 -6 ct 3087 3 3058 8 3022 8 ct -2979 8 2946 3 2923 -7 ct 2901 -17 2883 -30 2870 -46 ct 2857 -62 2849 -79 2845 -97 ct -2839 -123 2836 -161 2836 -212 ct 2836 -455 l p ef -3396 0 m 3396 -378 l 3261 -378 l 3261 -455 l 3622 -455 l 3622 -378 l -3487 -378 l 3487 0 l 3396 0 l p ef -3679 0 m 3679 -455 l 3771 -455 l 3771 0 l 3679 0 l p ef -3861 0 m 3861 -455 l 3950 -455 l 4136 -151 l 4136 -455 l 4222 -455 l -4222 0 l 4130 0 l 3946 -297 l 3946 0 l 3861 0 l p ef -4529 -167 m 4529 -244 l 4726 -244 l 4726 -62 l 4707 -44 4679 -27 4643 -13 ct -4606 1 4569 8 4532 8 ct 4485 8 4443 -2 4408 -22 ct 4372 -42 4346 -70 4328 -108 ct -4310 -145 4301 -185 4301 -229 ct 4301 -276 4311 -318 4331 -355 ct 4351 -392 4380 -420 4418 -440 ct -4447 -455 4484 -463 4527 -463 ct 4584 -463 4628 -451 4659 -427 ct 4691 -403 4711 -371 4721 -329 ct -4629 -312 l 4623 -334 4611 -352 4593 -365 ct 4576 -378 4554 -384 4527 -384 ct -4487 -384 4455 -371 4431 -346 ct 4408 -320 4396 -283 4396 -233 ct 4396 -179 4408 -138 4432 -111 ct -4456 -84 4487 -71 4526 -71 ct 4545 -71 4565 -74 4584 -82 ct 4603 -89 4620 -99 4634 -109 ct -4634 -167 l 4529 -167 l p ef -pom -pum -3057 7438 t -149 0 m 149 -378 l 14 -378 l 14 -455 l 375 -455 l 375 -378 l 240 -378 l -240 0 l 149 0 l p ef -436 0 m 436 -455 l 527 -455 l 527 -276 l 707 -276 l 707 -455 l 799 -455 l -799 0 l 707 0 l 707 -199 l 527 -199 l 527 0 l 436 0 l p ef -893 0 m 893 -455 l 1230 -455 l 1230 -378 l 985 -378 l 985 -277 l -1213 -277 l 1213 -200 l 985 -200 l 985 -77 l 1239 -77 l 1239 0 l -893 0 l p ef -1495 1 m 1495 -455 l 1806 -455 l 1806 -378 l 1587 -378 l 1587 -270 l -1776 -270 l 1776 -193 l 1587 -193 l 1587 1 l 1495 1 l p ef -1865 -224 m 1865 -271 1872 -310 1885 -341 ct 1896 -364 1910 -385 1928 -404 ct -1946 -422 1965 -436 1986 -445 ct 2015 -457 2047 -463 2084 -463 ct 2151 -463 2205 -442 2245 -400 ct -2285 -359 2306 -301 2306 -227 ct 2306 -153 2286 -96 2246 -54 ct 2206 -13 2152 8 2086 8 ct -2018 8 1964 -13 1924 -54 ct 1885 -95 1865 -152 1865 -224 ct p -1959 -228 m 1959 -176 1971 -137 1995 -110 ct 2019 -84 2049 -71 2085 -71 ct -2122 -71 2152 -84 2175 -110 ct 2199 -136 2211 -176 2211 -229 ct 2211 -281 2199 -320 2176 -346 ct -2154 -371 2123 -384 2085 -384 ct 2048 -384 2017 -371 1994 -345 ct 1971 -319 1959 -280 1959 -228 ct -p ef -2789 1 m 2689 1 l 2650 -103 l 2468 -103 l 2430 1 l 2333 1 l 2510 -455 l -2607 -455 l 2789 1 l p -2620 -180 m 2557 -348 l 2496 -180 l 2620 -180 l p ef -2835 0 m 2835 -455 l 2972 -455 l 3055 -145 l 3136 -455 l 3274 -455 l -3274 0 l 3189 0 l 3189 -358 l 3099 0 l 3010 0 l 2920 -358 l 2920 0 l -2835 0 l p ef -pom -1.000 1.000 1.000 c 21559 5537 m 22691 5537 l 22691 7062 l 21559 7062 l -21559 5537 l p -21559 5537 m 21559 5537 l p -22691 7062 m 22691 7062 l p ef -pum -21809 6634 t -0.003 0.003 0.003 c 238 -1 m 238 -579 l 22 -579 l 22 -656 l 542 -656 l -542 -579 l 325 -579 l 325 -1 l 238 -1 l p ef -pom -1.000 1.000 1.000 c 8156 14223 m 9288 14223 l 9288 15748 l 8156 15748 l -8156 14223 l p -8156 14223 m 8156 14223 l p -9288 15748 m 9288 15748 l p ef -pum -8406 15320 t -0.003 0.003 0.003 c 371 -58 m 341 -33 312 -15 285 -5 ct 257 6 227 11 196 11 ct -143 11 103 -2 75 -27 ct 47 -53 33 -85 33 -125 ct 33 -148 38 -170 49 -189 ct 60 -208 74 -223 91 -235 ct -108 -247 127 -256 149 -262 ct 164 -266 188 -270 220 -274 ct 285 -281 333 -291 364 -301 ct -364 -312 364 -319 364 -322 ct 364 -355 357 -378 342 -392 ct 321 -410 290 -419 250 -419 ct -212 -419 184 -412 166 -399 ct 148 -386 134 -362 126 -329 ct 47 -339 l 54 -373 66 -400 82 -421 ct -99 -442 123 -458 154 -469 ct 185 -480 221 -486 261 -486 ct 302 -486 335 -481 360 -471 ct -386 -462 404 -450 416 -435 ct 428 -421 437 -403 441 -381 ct 444 -367 446 -342 446 -306 ct -446 -199 l 446 -124 447 -77 451 -57 ct 454 -37 461 -18 471 0 ct 387 0 l 379 -16 373 -36 371 -58 ct -p -364 -238 m 335 -226 291 -216 232 -208 ct 199 -203 176 -198 162 -192 ct 148 -186 138 -177 130 -166 ct -123 -154 119 -141 119 -127 ct 119 -106 127 -88 144 -74 ct 160 -59 184 -52 215 -52 ct -246 -52 274 -59 298 -72 ct 322 -86 340 -105 351 -128 ct 360 -146 364 -173 364 -209 ct -364 -238 l p ef -pom -1.000 1.000 1.000 c 10557 14223 m 11689 14223 l 11689 15748 l 10557 15748 l -10557 14223 l p -10557 14223 m 10557 14223 l p -11689 15748 m 11689 15748 l p ef -pum -10807 15320 t -0.003 0.003 0.003 c 135 0 m 60 0 l 60 -656 l 141 -656 l 141 -422 l 175 -465 218 -486 271 -486 ct -300 -486 328 -480 354 -468 ct 380 -457 402 -440 418 -419 ct 435 -397 449 -372 458 -341 ct -468 -311 472 -279 472 -245 ct 472 -163 452 -100 412 -56 ct 372 -11 323 11 267 11 ct -211 11 167 -12 135 -59 ct 135 0 l p -134 -241 m 134 -184 142 -143 157 -117 ct 183 -76 217 -55 260 -55 ct 295 -55 326 -71 351 -101 ct -377 -132 390 -177 390 -238 ct 390 -300 378 -346 353 -375 ct 328 -405 299 -420 264 -420 ct -229 -420 198 -404 172 -374 ct 147 -343 134 -299 134 -241 ct p ef -pom -1.000 1.000 1.000 c 13092 14223 m 14223 14223 l 14223 15748 l 13092 15748 l -13092 14223 l p -13092 14223 m 13092 14223 l p -14223 15748 m 14223 15748 l p ef -pum -13342 15320 t -0.003 0.003 0.003 c 371 -174 m 450 -164 l 441 -109 419 -66 384 -35 ct 348 -4 304 11 252 11 ct -187 11 135 -10 95 -53 ct 56 -95 36 -156 36 -236 ct 36 -287 44 -332 61 -370 ct 78 -409 104 -438 139 -457 ct -174 -476 212 -486 253 -486 ct 304 -486 346 -473 379 -447 ct 412 -421 433 -384 442 -336 ct -364 -323 l 357 -355 343 -379 324 -396 ct 305 -412 283 -420 256 -420 ct 215 -420 182 -405 157 -376 ct -131 -347 119 -301 119 -238 ct 119 -174 131 -128 155 -99 ct 180 -70 212 -55 251 -55 ct -283 -55 309 -65 330 -84 ct 352 -104 365 -134 371 -174 ct p ef -pom -1.000 1.000 1.000 c 15989 14223 m 17120 14223 l 17120 15748 l 15989 15748 l -15989 14223 l p -15989 14223 m 15989 14223 l p -17120 15748 m 17120 15748 l p ef -pum -16239 15320 t -0.003 0.003 0.003 c 369 0 m 369 -60 l 339 -13 294 11 236 11 ct 198 11 163 1 131 -20 ct -100 -41 75 -70 58 -108 ct 40 -145 31 -188 31 -237 ct 31 -284 39 -327 55 -366 ct -71 -405 95 -434 126 -455 ct 158 -475 193 -486 232 -486 ct 261 -486 287 -480 309 -468 ct -331 -455 350 -440 364 -420 ct 364 -656 l 444 -656 l 444 0 l 369 0 l p -114 -237 m 114 -176 127 -131 153 -100 ct 178 -70 209 -55 244 -55 ct 279 -55 309 -70 333 -98 ct -358 -127 370 -171 370 -230 ct 370 -295 358 -343 333 -373 ct 308 -404 277 -419 240 -419 ct -204 -419 174 -404 150 -375 ct 126 -346 114 -300 114 -237 ct p ef -pom -0 20596 t -pom -count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/PU_exercise_5.png b/Content/Figures/PU_exercise_5.png deleted file mode 100644 index e6c6200b5767196fbe9a77ebc98e5c454ea15c63..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 24135 zcmbrl1yGzp(=fQmLb5=Ruz1j5i#r4-xCC3=-2x;?aAyhbF2QASC%6QH1cJM}yF-9~ z-|wyZ>ZVueFQ>jCab0d0C>^?0RF)MzypHhzXt%g zvI77I#sI*FQ~-eROJ<9z5JD@NiXv3%<>iIXsz~T_sf1IdsAHM%=Th-66-fVY<>e#x z|6@hS{om>TtIV6~l?EYNJ10g1JI0F?_TmRD1T&20)qh0(xA^J59BjR)QoWe+zRV2$ zFZuWH-+6g?PT8Y876t#UA`WFAY)cR=!hVF!2qI!2L@V?ejvyjhW#1+hza|7lz@`|1 zN`I@C_o(||Q;eYeN6@|$0VsIZe?&O$P{wanBxqM6>sBLV2N$$0L5Lt25Ur?VIYL&^ zs{uijbgn{B1nuC6=|Z4#?zISQ{MLwCgs6zw<1vVa$T^_^U!kC)3EP)Sxm5kH?=v$q zi;IgxLqn^ps}mCw`}_Nd(Gl*Lh1Ww}Q*9Hw_56yYjD0AW_z@znF|k?2)Nu&Ncoj?( zZNr5%9O-$biKrm|ov7jA;nvpHlarIs&`@`GcPS~U($Z2*O-&ja8azC_<>loUeYTej zKPxM%w6rvCZtfQqiWgVqmuSbAi_@3ln3wwOmz`Br|DT${t){WPwkdi-3}SU zmI=RU`INB1WJ=x*2=4%?&SZ!M(-i98fr;B z%ylxXu`F3?xok5s%1(KbQQ#TcD%l@%x|(9iMO`(EE2$BhJ+g4ShdX1LQa^rrOC7U& za&XFZe&Tk1etvg(xw+>5`{=6T?#uPTwQ=kH^5et(aPMvQX4u13@$Blt(ah!uezw;X z!V)A?1sO>|DDa&u0(t#KR>v99{|A-@NDtbH006pza+2au_l4v3uxwJTM)Dbx1f{sV z_h?ZLE@gbOPQ3J7Y>Qr>mh`8Jn%yNCE0U;X>SXiz2Khby{ty!6AO+@t#7t~z8P%w5 z6g;D|xZV2i(VcHA9Kb4FQu!+UtB%r=TGIxH-nT!TPnw%{o+}msfVG>N=6hiPpxTYB z1OPAwfDt<@2N@s+fC2!o{1LksNd*Z&34kCrt{4#D4?r;C{QqV`QP17*SW$(Rgb$rV zZoGKdd}vE+nzunoHSO;%BuY1j9;{bJ#M-%tzz4o!W7b2ZbqaVQ9gvsL_r7z{mfJvr zvv5s8p;?E5lO)Rs4Ql8En)rtiWY{gjj*acTBH0`F|vFy zmd$+ua*NQ9bDn}M{Ak+C%JJlZvasyPJZQ=N>mD6aqe-PC!BY29uY*h>@re?R5 zEC!@I#>&Qe8L~D!JeRNbW0K#-vs-=Txv<(?AYrfHqiaUv;&oNd{3;U8Oifs!eIKPl zrFax*oB!fgNP;jlp52v2VT+MW@T~hmlFYP0 zWJQK&wb*ByJ_gOi4-97mAEZ}GnAiUL)7XaZlX^@P)CyX4U%#7|mQfz!kyDKPQ6dSh ztD{d(m4%I|$k6mz;=ti56te~X5q6PvSq~*ucBVYcb`5v+o)p))$ms+RQ3OvV{uV|W zbzh!z+m1S*Ig+)zp9jpPhz~3#AdXEUA}&(J*ZF~t9YaEDxjd{2R5cKqe2ef9lSCK1 z$i#YR*XskXuss>rSSD45cP2$B=zV)TC`6H$M*ZsmeU9zN*udOyjVg#AL+-=$09l44 zEWEEttIh+@?n0MkP$}guv#=i0Y~E(cQdrS$Xgv3^@!OFOx47Lh(?L*CuLk;YZg`t! z*nY0OqzA8LXDLR)Olb#{U7?~cdXVg?WQ^0f1XZ}S4qF-~Uv5(R=RJYjlh2Ss7DLv- zKQ#(SJq@E7Td?wgwl_)&N6Sa{C?`oU^r*E@6aMmD z^GGKYDIXi0jyp{i0y1PexCDWX&?-nt{GM98|8D*@nr!)Xg1IfQ{{9U*V+B22W&b>4 zDZIA6iGU&M%9C@qw8U9vYvi#8l5HlixhokY>s45XJ=;p>sK z$vJG|LgP4%&pTc>{>&*Pn`bFa!7vXK&n`?6fxbeSJc3%-;y`+La{icGbHpti3G*;d zELs%a=1MSKyg7nePns|vq17VsABMzK@&p58K9IkRU&>jzk!%!?OC;783lS2Ho=-^W;RSM!1IS2b;O&i2ywXak8k9;HSJQJq9Z z?hdp4Prx-!7RiD!{1;A;Ezkf9Rx}C&#-;lF=Zsg*T|IUUh33ub7 z^v~{r{(-EGYdiM_PZ#lIgJil<%=U&43Kvgem#lt)qNSK7NDdk4o`S}T~qlMELSZ-5TWuN&)+Z3<$%_*nM_=TWnp39BGek1 zz&@)>R5KuPpIJq_Ph4p7n7w2_q*L?fQH4nI$~0(~?3i{%*jCVc<_&cw&%C=nNw%ZM zUyV%x6RMCQ24=OhOu=x=8T0E)%0&qi-xS=8 zEEZkG#^(}BF1NRrkl^6Zeh-9%d(ZPul)6JweJF#gvPs)T!Mf*7Xt@&hsE{jEF!fBx z1np~RwYEGjWY7FistgapwvYf;@s-ZD`e-P4ky%ln?peVYr2XN*d8AzgTHW~Z?Jx3U zTo$YBo$_zaiv`G5c_ldlVxIEY4cA(|!CmgKX=}w#+-G^@i>2C-DbrPprWiq2ZlD~N zF-`@sy!ZhvlPqq2MCVUQNIi>XIIg=mDlaC~N?LuicEdIFE8JD+Nhd+{T0-Kfx%5WA zpdKx$Jv=`B&lef!6d|>7;&j|RY+;R5eg|H7Z~50iC$p(|8k)jCIxJB6Juj%wFcIYX zM}a4F>`KxmuIa4;EV=^wb3-)cM@#3?WF4Y>Q&+UyK&f{PpAtOjE~<3rl6(a!HaC5x zxgtfZn3P&IQ)=P47WP$6eG6}t?b)#kLPI1;DneDn*GVfVAItE*J;`D-4#yNrOm3KA zhl+;h(fnv?gd~H$o=&_552r;v9nPdJVCEV8qEGC~+daz_tnp#_6G`+DxZVBckJ{IQ zCNlM0E0I#3px2Jebk&*=?mW@k;0FgaDxwgOXN|Y?`@iqQf3$z!fRBZ~dti2?pD+r8 zhTez|+f9sr2N5WBF7AEPo)2QJ(W#rUs3n)QH>>>W#u7b4aG3ob0%bnfTdPCXdw1aa z>l+Vdw3DWBk3upZ&yheTm|CDX2l;I^S~)o$15&EP?GfO=`69Gl z`Tl6~*ZI#&(Hb8Ey@Bshpcd=9o?@Dn2zAJwDXp+Vg%3b`)oj-z=CoS6CCgy*Oo9E`8RN5C%In zx?#%W5ZnTT1i3!jstZ=MR}+mV`n9ULr8}eLSDra@OP}n472FmEx$wlDvX|Njtk%GS zHZMIvZgjGjijiyPT}g;_!Z#Q}{%ZqyyT};&RFnbwz{OnRq-9ZK9QKX|<#qIaE#DlEHRh^!H4)D-3#G#D!wY(Y z?OjT)n&cYG8+yepR(}xd-iqnK#d-_rJgfe&)&!K1|13lfbC^)b$KBuZN#O9WwBzX& zc&$CPfy|aD>%;l_k2X3nSkg-J!8ZR85^%L-ADQH$iN}%MV&c&%1P1MGP1fr@^1O3y^Cs^`QpDPy2afphm(AZ zrhlvkagGdM4@v4ZT7Qf6g?~$8{94|yxTG#&H&zXACqDn7}H+I8!Po9U+Et+ z29w2tSPpv}F~OgoEEacSg8tmhkyYLz`Eh<#*agrVLL0PUmaDEnaMT@uAwtpid*|Nn z@4ciw_)0Pn1bXyVP4RtrJoaR-E!H-ORFzD%TP?jMa%_A%Cf8x7oSVD)8vRdNBs?x! zy|u+bb4nW6!1_5<)9aPqx2$$?IF7S~3>lcYB3vb)B55r-d*Qm>yexW0!S0zBjFeR)?h-pdHI6IG7``>`>SXwD5?ub5hWSu~4qJ8>u=D%R;LY z=_>DeENF9jynbZ&S=L4A+A7cpB#g(BA5DWSilv=SWPtM&)Pz6KPpAk|xQW0Yz8TOa zgT^(bM#b~CD*LWk8~GAO+la1mWD6LAkMsHI3pb{Jc@EzP@UUT`i{Ri2XPk&7LTvLo zkceh2^ks;p6=;sjWFCm7bF-FqTK+oFSV5RI5*t!JSm|ZCD&w5wUYV+5t7ngy9J193 zUo6S}X~lea=YiCZt}I%OOQt;Mdyd8xSUu_h%#mP?y-N=Oq2^}?p{63g|KSFNb`h;j zapy>okIA`@i@}6zxt9*C1dzc_NTR;F0LW3FGIe;r)?+uh6bY~NcKAX!@ZFYUdIB}%6WW)9YsyqhD!f!n zNLyUYxb@Iix>pw*ENudPQ1`>(0y_X@f`mvBj7xnflyCG?3z~m3-`~vprqN7+L%O;i z(;97k-CoggY)^aQCkC*<&fKY*O`+In6+y(Gt66z?FPEC{n@BE4rAk7XzQr}MA=FH` zjNRcQDydy4(&J;s*244ih5pxUvro?}dHM{w*%lXNp^l?zqUgWV_BA*^wTtYN0AA^< znt(Y>>}+i8{QTP4n`%2dgW0I%jJo4lEP*#(SFFNq3itf zN&(8ED-{Nc1glHKB%0SCOzdDzWH+d>LpB~qa9Bva)YN+uND8#h1H7!$3)RUBxh#Pa z-5!LRKIZe9l3Lk?)gd*QeH4LJv7Sae?|q+ijA`ESN8+G^7zcSo8NRi=4A1F#ppK)K z0DlNj1cUi=XJ_|>6(f1h@o%y!us^}vR>_=4kWhM(UQu}zi;nsKlwU5Pg-{k%RJU~h zkh;>5!OTUmxq(-!(ou37u_f_EEYa$(5c;y;*xCDifn<8P4fCL5zH+nVvILC3q+MG3 zF_{9#R$(jy(zbsH!j-9-#laXF<6gZGV^D{J39@p`Q^~t%9sUO)U8*q6MOKaDCDPbixI#>~ z+i+)nx`L2qaDycZlgytfR_YO5>AIDLoQCh!Q^Q^BIrWWd5SGgG&LMLulW56Vj`DEX zR-TJnYM)wv-=X56gVAmdUxF-wF%^MbdSBIZ*fAqg19hMED+Q z*@&rfV0zX0H9-IEZ&BXNah4;(#s9c@s&rX&3^uc`P+&`BJ51N!sQc{!stw zsUtuMJHF;u)DV=eX0~~8!xHu^8AAj}960Hws+o5;J7h<*6&#--h#b$A`Im-m1qN(9 z>Uswr>P=^!0B`lNR4UbVg$tBARMkCYnD<9(YqAdU>{EL{A)ESge4P6E#PUAgAC8sz zZ)rb%k%oagCW4zOXR^)$o#OgvO>zxQzuGbB21}`8jcS|KcpvFw%EM^;Y=W}4aYgg) z_LrzIcRS2q{r%L|Md~z^LE7sR*mRmA%Z*HMM2$h;Bhfy{>&rR``0LYxZXD%!y`)cf zJA2#2D;Il6o!=8a{3XfqCw~eG1mTZPAQOaHou#B2hJM6SgjW%YL@^59!Y-u(5Bzix z0QjSEsdSVRM9?P74}M9r&>lbnuPvo8cQ4PpBgt&nRLMFf-5{&BpqqLhN*r;up+8*1 z4!wwonA)R+&q#*oQU9XN0;zj!^+7NAn!ZTF0$WfE?OhB%#z(l>JE%coQ7+HO)Krdw zI7JD~JhIqfKVs@NdI)$w(Q@hMg=>68q5mKONd#(cpYnLVTQ#C}+v(-9#q($%uG1?V zZM$sR`dBt>Azf>r!KKTTF^IJ3fBDO3huZ5oZfk?9i%4(mry;{wF&2a&1E064SHv?5 zB=n1uw~q%BIs1_<(v!fkzrx3I*V#+fJ~&?DpP^CiJcn}6;e?I~gwdCGoo|kretgWsGF9Uqm$}%of9a2v%B<@n5f9mBC)bIUw{T-GR>t_f!wRwbV7!^z)cgYi1 ztXirH8Ngc8K2z>oP5~V$^5pd3b}feyPH8f**vGSUTtU>2Bg|Jx3Xw(7Kc}69$IO9f zZQoRF7>HaEX+lVV3L%FNnh)oWk@((FozdYOC8~?aW2sAyS`1IQ<-7LYzdk0TX;6kq z>f7&2hgh;${p9aG*ZPw6h39hO6=1NoODx{G`QaUEj}S-9l{F|1F)L>Z{$&*eO7s{< z_!X*MOtzv{!rsINVI^lO)%kqvn9~T}Yi4^5&1px5@{|0G&*Aap$4Lt1G(gkdI0W4p zusK7RO^NCBs9}N7ol{a})CftxoU&JXirk-x2@n%1nkt{$6Eb#qb2~^>UDH{hViKjH z?-R-G6IS^>$HW9T8~nIH%H3L^W1_HMG<}tXhWW+{uYTZa9;^J}l|c%5j0}Fh>&@R9 zL#1eW&d#!7#rks1M6?b8?K-5Y$rhZJ(}?P`oH?^2WCSL z0vzsNwgwNG1)0F+*qE+INR&MK{ggF9k~(5)#4oJj^ZvG&8Ni3q&VM=Xc(h|3iE{pk1^#9J$MY);!nXUH+hCdkxD^}yIbaPxP}fz{*9c|lcP;Tp^!#nRG6GiCN(=V(4{O| zsFr9*eh!s0G=dPke5;Yg9uT^um@uMN@__&B5dWiX!X-xRH>>M==SgA(oI#hKjT6x^ zU2c&k>8$B&Xd8UgxjFX>epdcmDplxAn8G&`@%}xMThd)TmJ-X#8$UBz{a*Q1LsWF@GtDK@E+>aXT?JqM<*m4eMV6N;@8zIZ(cUnFG0qn>|} z8^sAQ)A>Adib7M9oQ<^KZ=glYOxwe0rGa$y=0=2s#wHmowaa>XitJy^NoS&X2Mg6) zQg>4nA&I+q>;E1>heF<~`Z7Nvo|(gc3Z3ZE3zYY!#8W_qhnm?GA7;0trN5eG*W@VX z@sCsLQVQlPLe_MQ>lkP~(q8n#anF6BMAD(p%u)&G-VHGNp6h9DsIgJ$cCqdl*~ZAP ze=6%E#P?)WDZby@E?QL7#<0Aj7C_wPA)hy*)J&p!Us%t{nttNj*V5RgR6pcKW`n>3 zpua6elu5spfZTTW6=AX7e=02&N2xF05zJ3adZz7ER&II zDWl=XAuO=v&Jtk|=%8GsXXXOrb)2E_p3bWR zBA*8=xH+WU3|1BC1wjK+-)eQ{UtD%=7Xp=V?@$1!WV0rmiKeUmZ z+E@IGgz2MVP|9oOiKjodZ#V|9z$N_tZAt zYIFw+%i=;p1$|2V-~A2`DFfh*+He25jG=$m+J&4Tg$H|SQfTob?lKXTa zkh674yW?vlukYW1? zNAY;|#X1?7R3obPio62Qi4{}0C$JY@?l1xXuVkf-;@YA=CM5+u&(#3ETQ}$oNxQT_ zN7CW~v&JL*#MLU&*pmv$$I<`P#L3yTanRr7*=-t{{tBS#n+Q>fl_bi!Yd8J3H8rLRK#2`)adQG)N=C27$31W}jp2*-r%eR}w5}JB(;*iJ}Z3QtQ ze-LqAk6vAESF+qz1jr5h&B?xKQ8?%{Gs^|blK4Ka$4&eT#fujXDt6HqO?O94f;rCD zNubr2v$O7})=5Q}Aa>x|+TScM>>wFNdKk0H`jl5fWw*I1(LWT4WO|wBf3Xs<$L?Q% z^;Vmro=utVUtVs$l)t+;C(pCAHir#y~yI8=VwtX&MOpJ z$+JstbtJwuRojnLq|nqjXQNk$?QS-%sd-QT(;nKDUC0nt(P8n;BF#G-klo!@+ejz6 zHd4!a&Y;m)VIOtEUIf+NT5UG&eA#?@>ZHm$Lm`!mi=P_RmlX&4I)DX=<;YB>HsLd8 z-I|zXcM*1^wAWNl$oNrRJw|)X6VChN_IP4F%GWt6CH_ajYvY^c>g%Hq8oRP~Tu73ouXZBXwXz{ zOh|cH)}h`;1|nNMmiojgOqwH`y;|IwrgPvL1>&FaOQVQ{N(wP1U{mYB&$9n<1%c3? zz{f7oE?lr)W(9XwAm-kCqO4CCTM7aZv`)GYAORHHh+vb@Dn%By4fi(Jo3NRYW>g57 z@uX-w9029lC4$E0&PrMIHmL*v&r(u{>YF2*Yv4t!)<|PQGughauJ4}e3@1Lr^7uuL zM3+}zI=LZB&Pu?4$^qF=0z2HS71 zY7+@ehZzK-)kyvGR8p-dD*n6Lrbu%eGh_JB8wF*axcPHFa$WihZ9Z}X55=t;6_ykX zD*;5hrH#_)8bprPWjewGDG&E~J~UOfX8Zvfuod|!BUCB|W2UjuWH|e^#tbzs3iuaK z_)L_-QEcthNS*oV(RnL>C4zS3bCKXm@>$BoGx*T!6D(*=wR1MnP<&x+F>QPQcbR)^ zG5WXi^wqcOaLSBkML`=gj73=v=-rQDo4roaS~=6TJB*y3IBHuaN&^qqLVs*u+#WJB zrt+E~O{q6!8@DYcOtR^Tdm$e01!>DFszZLB`8h-W4Tns3gx|1RI@cI`%T@&g(|wKd zg^0lNE*DG=Cka3TQt+Mk8A`(wHaTVMI@PnQDCOeo5l4NY22TY@kL zvU5t7c(=I$gKsdC^4s_`J4YHQuclp8&iFMt{E@2j?y!$IsP?V3nSR`Cb z5hO{E`hf^j7Dl_I=YF8SLlFR8gSvOs3rdE`+>W8%p0x&@QmlPL0&}7r5K{?i-P|`F zg?YgoCswr?t5hf$^O1dh!mCvqi$?0Qvy!K-^IOzZDPZ*E_J z33)QzL66vh-+MPO$xR@=?zEE&Acdp45s02v@O0e}w!8RsKDt9jBeI^)T#lzPE*o{F z9{kJcn*aQt80?og*HRZl!3T#b4KpgX`%XuqDJAiUXgWx2>BJ zfkK8W>Lz;-CoW!bkKZ$&qLf4U)dDg(2xMSJ|CkD>pZ*9=eD26sS?_Y-D=0#a2F_2FRLiG~{DF384Y&5th8>_m{jYM*4U zrwiD=U;=2{1mt0l-#TqQtq!PlDAfNZvehWp{$+8FADiAO3GDqu(661o31z^R2Ci@` z0?~3Lc4|I&5`3hJ2F+>S3DA|Z2!r=#KjK3^pVt}k!A~T2nVxYevp`35_r1v%_i;!i zXWD6Cmv81U5c)08Kpf%_L+O&u3q--j6Rn5)^J$h3CS(tp#+wPUg0}mVI8M)7H{cf_ zBOkr|l&PTH9aDRt?Y{ZECQcm~HYF2N&kMk$k~Gx_e@?>R$=s*32V%@jgp>N{zGK<4NC@3XgrskNz5&!I#U`d6hHgTR3^0XUF`h@{+VSN@IuWR39 zCl=q;;xZw<-gX6!@MaYy63xV%)^qK89 zC*pHstszhTZm zgqULkEqMuVW>c!&L3Paof3N3pNQXnewtl+h`>kdYLGmjQiVHcz#F$bSv^oilkcsYy zal59FA^ubgk@aVMQMA^45f8$2E2?l#r! zV`8v#iQ=C2JsEs@gYNVE>Yq@3f_3+Z!VS)dHff#fK;sBZG5_WVbAktq*l`3Mj9TlR8bs-63ZUmOF z^92>{8t(+5HC1Uqr=*q;9wX|wNx z$dSqy9jMRqhG4FZDfV){vQ}9>nSdAF;#G4LNH0x-j3L9cm)!(UD$WEVwCXRuP-kkq zX}U9f=Mv$&;fzue>#s=eK@}(UbSz5=_m4S+IIu&?Cmp@2!is0+S1+sq4@jhKT4{C2 zPx>-$O*aZ+FjR9V=epj*gvzc0N_dX9w938ydgiwjZ}sG3X@+>N>*VT5>oAe93D#4> zxby1QP+74?_?a|;79a*S9@NWjI5D!LagLu2=DpSlaEMvi`mT^nFgV+W@gL0@pi|41 zZ<~_3dbz{PQZAD(d8uNcV36INVnmccjs!9%;^gScm~S-y9ZDr6duU#nmlf_|JeI14y(k{59e~)sA3Yh-GVgoU6aoUvfgjBP+J0=YV z5FKTvfImyD)n8S=|Bp#5_VbPV{h-amr7QI%i+g*=C&rKlrHAg5z@MLdYwGQsogdKK z-yv4Xz*Za~nNB1Ksbt_Sn6ud=VDnlXaiv2^+?*#t5YuMNFIl&QRR0JfM7O0*GW^QSa|4wRoh zSIiq2XOIBE(Ws6;5P=Hd3GsaruZ{12)F9N?bz>ECw%wr{4}ig(UR!;GZgd7HVn&Dn zM`xJ<4Pk@7w<=YcZ~74l2LLIjN7eY7TeT9dKS;)ZUij7`J(dY#emxNJe}#wBF9E>& zJPBzUAIsaN6dPof^;ZDROKwDpx^5bI??2;^fU-3D3B*2Dmc))@VWeS2A(spgf@_Jd zZ^$zrIk6Bh=R67jt;L5}xpm?<#mXJv%t2$smBu47ziH+h_S)T^@72&Q)lH?|U`z*0 ze`h0rOq6;Ry7Ve*4wyS&7i>VcP!gyaQ{pARRE)Y z*f|d`g>LyBXa)26+3Pfri$~_CBJlLu+ek@wuLwAr z%5j04iWWY|=A>YWt$CckhnW$Mk0~cT5vrTbed79|8kG5oXqJ`rDi>(1FLn`g^&CO}t!C$v ziStHTm)DZmrK9WS_T-U}urd=}Gm@0TFDz)rI+>rrmi|nsfNay3XAG66Vqn#o{`vhsEXi;)!oS#u-;r_9^!dM;x}lE(Mgsto zky>+=so5`1=y2uTQ6ze_-u}guDx>yBFH){GV2Rj$57$sw*7Do_N^dkYDNK>M=cA#T zw}RQje$nOrS_!^Z{^uLhle@BREzOrADiTPwFv3bI;XMMiAY;5#4k4PvJM-Ix>BAH* zu$EWB&tPsUZY=L`e5zES<-4jMA_9_Vyy@>PBXAdYanK!T-UtQQ0CJF(@hC>rr4@DM z`y&(6doFn;_u{kF-`+vN^98HR+iF^yp^v*i17 zaP550UOukqFU$UNPo;?JZ*q3Dzh1>oRpc3RcXyFwCz!p0j0ccLqwd}1`&Ma?`hgT# z8Q8g!ChGm>0H=$}P*^nc06-Su3AtARNF>*XHf%emJ=td1>;<)r(w! zv+ZHTPD$$iuyq-Eu^#k?u;bx^#u#ahAzF53#ZG}n=S{6qaT;Vr0Gkon z-&6fo5f5k2$DxKSwm01$&=m2Nv%Rmj!gSIWxLsa7t^SF zXXn>;f?_CQzt4{Dcdftif3Vn}*e(+^0$>5=d&}r4j-PKXaG90-yr0T4Iz2h|caQ;c z?w)u1ruM&(m6#Db`XfyFh z>M>fY-uKrG>c4JkGL*$Qkhf4q9W#k$LOQ%R^t8nQTd$NIpSCGN(r}+I^u{6q0>A1U zzfH!QJd)rb#mWe^UZ>cYCbIfG$xtFw7P~+6^##x*J|8aslG7pt5K;VCZ4;SGJX`e^ zoUsT_Ck%O4#aS6?w^=SIK7AN$vKUb&DU2DDgNLF~^WntF)`b6t^SA1s6u*b>D2kXA zFP}2-{)y$Se-B6fE{;mBJkDEtc7JMH*Z0Goar&cQ$PHOg&cqt=pQ7~^BK^`3&dqS$ zKH+>wK*dG-nEK@0smhesKTR&`vxe&K)>7j2mQh{eW34xSqY;Lf*ZQ*8Bo7UhdtRDS ztC~_3CLNyil~b~}X(f$;bY6bqV_|JH_X}AP$1TaLsvmUi#mgAI3cxNSia$Ct38zid+GkDIW40fVCM#pp@69Z+pUEW*R*O{q_njdF zKUvF&Y?So3TWdz*9qT`_)wdX|;?Ns@@4Ee%4Kh=vkuTBw425t{DJXTp;9wUE(BffL+2ZM&FaTDp3kC>S}! zvcO#$Cnp>=RjW}|n}MYsK0evO=`xep_-*c#1b2vt#$5TPC6~%oqnXZhq^Qp}3tD5@ z#x^zLswV1-cs{;R>+@SNpz?IA?QfzDymZ-zQrU27RjYV{3#wmS(%6BLtlrg+kVbu7 zcV!9@Gg}ht9!PCT*{=;lbx;Hq?~ijnR(SEYqoSMZv6PGC1rof=$@;qaW518UJFV7( z#gqLY9uLhlt_64R8Md%SPY%C%|FYS!4>_f8&duxNJoOqFTR%Ax!M&N95!r&0vQxG( zo`N%m5;3OLu`SsZ_{LYUPZ;7;s+UJq8~O3k!u#s1BdZEW3`UcDQ_Sg}ZVi$%J|$wk zkw$x{xP?esg@vLHgoo~sSi$Kn!L1ZavTqg!66*HnR~SnFw3t5dV||1bC1b@8{E(gD z_9`Y8WF45nl!GPXu>EUs#e$1NT=AhfL7!l=ADh*+(lwftFuasI!(GXrY8;yj7F)vJ z!PKooDh7H66fDPLK;|uln~a(l7pbpd5u$Qd{PV7@DqDtv_YbYDhpEguK97c!8a(IC ziXqXPB1$+U-qFim$)FcP<@~<2P=c#;H8}I4>yLULouq)7+w4D^p@Y;9}<`Kge9+ z(vd+OCa}D5&0a#8J{@&{_e%Li6%+i81!*1^()%Yeof;~w5+_BZeaHm>hlWp?u<@n? zi3yntl;M=~r!M!f}SW|sEZB?Cg-K}*W4mXJWG>NC5h z*{hDo+@9iOE1K=_H;M&;2akk0&^=0=2BQb{03|MWz@AjZ``@NzZwKAK1UUAmkC1n& z*VI(^d-CTAN|hO{PEKp3`Pf2ANbpLwT%lY)<>Mqz1i2tP(yyN9EkwC5 z$iIE6K|2*P(9DPKS^MbL5X|9dz>UMU(%g#-M%AJASv9ljCB{rVaiG%Q;<{B|P!44_ z8a6v@Wb+LZ2c$jL9Vvg2HA~Ja-1F=ZpOk!X8s3YfFkva-!#W&ka#0cjJLu|?F>0x> zIShsr#zNxbVTzL&cDl(=C1UNe0S&@l2b_)RUpc|v(LX*Y^{?PI!Wpd^h=`$MYiZm{ zmn`zYca2m5=D*O|-mq#H1~!EMsNj-x>`h9Sg@wogr9SpN#JL|U6{;B&=6TD7=*8xe z?FfB>sSx{0ir~iKqr{DajNZw3AGZ0>SoU95v6#4jR2MImwIygM@^0H@)VV2?h~i<} z8G)v&QQ4nIs+aTfeUK-4_s*c;vs2L^fG$z`~Y7Bk5S=f#& zG2dq-6!wraFVVlGo|c2g2EWX3nHn94yI8DmQgYk>3-bw z?S-rZpnIeYaLdoPw+~C#c}x4;!!`ZB{TR&WQ6rSLyt8S!xlxtEeGe+GGgR;{o`Pg! z>f*rZ+NO+=3S1%C1>u>AA79+Rd!>&sB)Aqtmf5eU&q#5U)+VW8txYR(XG}BXh77XS z#eF97sF;isi;spB;}kLZ1Z)+J47o=ydtTiNyw zGX0oEZbdo1exm>^qMBx?!pnktAH}$2yDxyjsUcH^K9+@ngbKhXfyD-GNa$?2dVv0E zDjY2I0$ES3RxnD#_&Y<(yAG^#jbCR!2*_?p>4Fz%cR@gGZ zmevCo!z+z!6h0Rbzhz+3u0iXnhUSo{$yx=hC(rff@M3~L5I|J0!uDmpL4s?bXHZ~~ zWd`_8kqCE?RoPZWyzQM~N-+0z34K z8DR(>w)U|V6On+8r87h?m%7M22(-{sY=u};pRy+}Sf7454nK$YiqJk1a<4LyYj}lc z*;C}p6iD>r`>X7eYM7LS5vz|z@Y@P{`JBYE&N5e};~bV+yan1x@r+dj674%LQpU`hZ_lyFxxG!o5~WC{Wq^LtQO&_%*4-TkBu zO+ME_!GoB+l@O5%_Mx{k;hs3x#PUbdx-RbXR(Oy(s)pAdWsOOWf_)5mO=L!{nvvmsd4t(udm}m2B zcI^}A!2#cR#)Bl;TO~LL^_(`vsY#(%k^6QB)_h;kSiB4;YTo*Nw;#m~)EsXU|M``L zQDr)o6e!GvQx5L^z^kT$6s8~KNTVLV{$bF*2rPBY^;u>6uL_4OR^NN@X_-tTql^3Z zR~G)*KoQc2&rlW3qrnf%%6}C0(UNKP2!>_kHREi;f&;8}|StO~#CD z@utmo!|>m`oga2%?mZ+17YU@lW#4&bk(}F1x+b74MwfcI){n?MnZ^ojq7v!|Ph=LQ zy}VjjFvnpgo{B%LY$TSTp!C(ccv7?Vx|A=wwJE&gQfVw>R+ z%`f6rCH=8Ms`#6vE=L|HuHb1Y@p_Fz)}CaKzE3v9{O5-w`~@{*EIZ`Pmjs$oTyC2ftEYU(DMx4TA#G{pg_|1iHV( zHYPXV#yt^J())8IA?haRhF98PubO_&E8EwF3u@LRo(8J?y^qux3SJUU*2o+2Con3V zr=u_%W(ioSQ0d3d;Zz!S=L68@w6O=Z1kDVK;Hf`Gg+jd7*n+EV^@)oUvw3Jafjd9W zxd~gxc%+LYj>71F+puKKwS^v#{a#u3(X}s~Cr&!DZo7o1^5#7&4HK`#{8G=QBQCU1 z!#dXBUeWq^!bB1dnigBFqRjaHp?TC7#sJ>h7szcZinQ?djv$oF@4(uAnj)4mBKLKo zJ(iJSHCXND3Swwle>C7pcQJ-c)qldrm1Uu=8;AQpWLPa(AM~j2=DU`uD-HZHGbQx< zp4Suebl{qo0b9spCJ)oP^jVG6x%O`E;S>TV-tl~#C+yFMvuLgmvaWD%sjCNkejn8) zYS9|m7!jpeQuYSmmAraPm&CbEqI@VbIuaIIP;QIOQ)3u4^^J%chx4DM8?(_8d~V~+ zAcrL7Yai4_Mv{fGwZvES_0&@1T;MmC7KO?fzPm|Rd!f<-c{?d!nbv5>y%Pg9j=spb z*Bv=kSG1<6qt=ID6PfGlW?>c-i@U1Mr)BF^v&Xwbf^G3EecI3KbIpfbrch~&fb z2))+mNINO2RTc-5*<;TMVGbkG`%;$T8G9Jp!rk#Wm)RxKb9fJYHpnfLGhi4?%hzY~ zY})+cU92$w%R%%m%#}X+MoZbZ(<{J7X)B7$Y6&g_61f|3>}Mz5gE(<1U){#_Aef1 z75p;($E#!?Cx0b;4X#B75VU#vx|{7bX*I@7NRkt!G*;;^HY0fhB8fwRmxA=HnSZ9t zar)4AEB}4F-KqFhTzv!h5}ks`pE#R=v?;&ZJo0JzJ#GJ6cTS}QM4uh>trPOO#Td;0 zAR%Bt8;pcg z5iPW}G$Dh(C$?Xpe_fiZyWvdkk8N;GM}5e-dnO@Wyh%Bo+wkF|cZL?FVq8w|Xw`!$ zG34giQ39=eo-Zlgh5vO6(XbE~h96k@$m0k+j&m0cw?^NbWp=6!Cz4_Ky?*sCOKy{W z5d-FbA}mBdUMDIi=nf?w$59MNEW&1Rw+19*Vsw@Ka$#M;SEq#fFSk88@c8o;B#CrN znm0CojV{m%e)t#^RG7XoSB_0+(Psjz#@4z*ZkBKg?}Y&;nzbK?JH@I_=5a z6aM|~5{)jJB5ry)7RDC~khWkNWsq0gn}PJj=h-*-lQPV5VyGMOijVGwetp}dZM20D z)P)glOrM>-KcOWMxOIJTYkul#33xCRQ}yWjQu0Lo#xL3G;X5RA(%m}IINQ4~?p`72 zy}|R8HJI7#O}&bUO&F^yu56i#0>kyr9hl@6n=5_NQ>K7Yn2FSUO}9f!BWU^XL(ui; z<>jRUGbPa`??4bIAmNsX`&!atP5xGXI=I0a9n-8JsdzScwsm4mAU;(d-dcSba5F+C zERD?qdH?SEcuz%d-UGsB}* z%6rX~y0Dvq&0*aqvhSLZg#_~I@`{7QCfpMR!#C}L6uPX#ejaNdJ<2-eqJu)3higkTJ`IlJE*R93F=tC&=zRy6qy&KON9HNIz3?&lmf0@xQ# zcp$z(25N*c`50%6dR3`Zw6ruuZ6nQ|e#VOv%IiO=6a;9AZTUXh!{N%~*)3{9-Gr%-j~yIfL#Y=zWPLG+3{yC zh_wY!h&ulV6-Po5;~hosr&ipt`}qUBiCUl-k0QNaG(B~FapaEiVA3ps9%6JWRj;&Y zP4?C^;hvH=px5l}dOWboh*1+l6T5rFFWd6zayXV(8>JKLUNDxn0#(+>oEb^zU{w+Q zzQTVw?nyq&;DvS(A^^nUZ3T~hCNiCGrh}betD(Txs_o6fYR^@Y-2G|;dKnnmj^q_WiU@lulDk#y z$+_?1mPgi#TjH1QJS$RQ$^)wtNe)}Imqd()GtDmoc+pU0b~i+rodJ*+t#Qi~86i`F z^OuXzIL1l3DZs+R<2mCH@HMFY*jmP<5UBxL?7F8OGt(ded{~@mu1WjO2S>lxbkS@Z z1sJZx4s*)5yb)no(}=t{(j*D}lk)px=q2s$3EKtF$e{vjlOT-dZrF+pTY$oJHyP?$ z?Qq3(67}(-#r~$?u`%ZU(dfg^7ozw9H?}<;D_-zdUOTTJv2f%Hzfe7_4^omik z*xTSz(J*iT9-Lj(2>>}JE>@18z}CQFY19Qk#3w9`R|d<3rRn=%nI-|y@*h~H!v7{f zUk|;$?ln}6xmXv3E8+Z=sjtUQaNv{=K7Wa?2qOHSrP|7DuJ(p|7?P?)1?epZ&_P!c zj2s?8W#y&X@exx%MAP%3-j{$)v>%5aT7F`)_gje!qO$$^-o$pA@NlAXR418wv?7Q^ z5oGRk6RCR9t8%(_I1Nrv21OR>v7{W3&XnkTu(E4xblm)i2d~+sZ^i>52mpk?!0S*C zBWmPMI`y#(4s<%sNK-R|t_0D^Ua|Z+u_I4x2P4(qk+z%&{&Nqm1cdia(>pK9vMHoS zi{e07zV+X|7#3wr20KSw6%t}nT=s1z(~N&$_kIssm`b0LgGq)(T@R&{pfGlrR4?VW zo|vjWvf$i600NG^vEEJW#6Lg0V@iA!buVwAq9TI5kragyEwb!!p9f$Q2t(bhtRUiy z%089r;{gH$c?{Z$KHY*TS$u| zDnz9qq_7sqr==yi%&*-PD9r0|xL?xiN^~{yRoW>JveFd*HIdouWV=8g6?AfXY-WT-+}D-@Wwz=H_rrf|bb4=EvI# zlF&46vhdK-KfibG&2y!XEBx7?^?f{XWF0%dMXv~AoaovTY@BI)|9PjpEEw0)FQ1hy z#eb)~v+GG*lQ*>MEP9g|C_Ug-^=&K50xI?WAzLE>)Ap7|qy?`Tj?;w91bM1Le&Di= zBhRGN$R}yY6GP%uE2%lviH>xs1;>Ls=Sb5b`A1l?;TR_jupLm$eGbUoU+&5p=G4S&P(%0vQ{YRJ~`R4Bh+mQF3#flzwjExrn zI;$c^U&;ZbBhBBk&-@z(DOX@&9aPpk*Ehq~A%JI~HbGd-#&#jNX$Vg}Y-Uq1U%&TK zB6^Lm6-Pyoq z-CwmMjVB?uNOve3uwl+Arf*xqJ{v$o187G6LU_>)3FC3lX6FH$k@cw$sox31|ANXu z-|rV|i3UI{YIq^*MWn_&i5qm!v!&P`AP)?@ocR)Msz|UWu(5uFc@#6t&<_P*aU}Mo z+gBv-2fO0Gpn`o_3z@I}3wU(x&#T)r#m}#A&|$KQ{HxD@I{VdxCx-vEOKkYbVPt2k z+z?wE^0h<{>F}_Hltllq;@{OTqE`}q_S#wRLDm-$Va&-Xok*=H;l+0BPI^dp($Se< zJE1(A_w?2=-XXm%sgraQu3pzRmWnUdpDeEE_jcQoxw!)#<}+66RQM793wzI{B((}O z4y9J)u&SGSyF1o1!JCT~fX+OiMEe@krqA$qy0gpv=4t@nN+(T$j_4*PxbK;0PqgG@ z$HbRvs5~h&(XJAxrLaPl_O*fye`A z>|)o|kT0WSam8EoV6f(!uo$&8O}l12CbuSwSbB1y>z1wX3k z=dS1C{O#)ET^nfWFkO)5T`b6Q&;^hmjQ&oWwQrDfx z0*>`#a$o8ncmg-N&d*Cd3DPUNrv4#LlSG4*f?{1Os&Hr?)caW7E%%d&;p^&^QEH;q zU|tWJ!s05cxPQ6gz)2X7ja0H}N)@Q`7Km|@-YJz!bEdEvkzZv`(OOp}XfYt1Dbcm0xup$lwKmB_gb1Mws461p zN=}&XH)Iwzl_1epV&Upg2qqNSBEV*2maIc0<)H`$CCQM%=yGLE3f}^-VX(2WNV@*) zE-EQ&m|-qM2G*jC=hHG6nn4&wJW)@ot+5TzbI$rcTVK}Oyu|%&!EW%JYBu*$#@Vm! zx7r(Z&=+aMlRaK2yR>J7$32D3?Eo)_;`( zC`7qHp(Y*odnI6^x_rLl(G?N;6a`@QpEBazrANFqBz8A7j3+TTWjpHA@6s|UgbiP7pSnH*q}Kh2L#DmT{T#OT6e>#W$gW7M53wb zol5;%eZPP4Rwz&~@rS;J;Nfeoj&BGTq{{&ZYOZHiL>SEg-Gvi%z8I=zyZ*-w^~uH| zAK{E2{aF%#z28C+*1@7uiPbJ%_=Zsn7&yk!Ef0%!@9<9=UbMnf%$V4Vl&=U}AO54% zKA8t?(IfSJD`-jeXKpWAqJO3T!)i8b&C@!x8_5f8UyWyyb;?n$Rho5dX#NJ99UI22 zsi%x@X9sGA5X$2Vv7~8!Vk(9#x3>VzN~Lx+06*V_NVHmt@f*r6FtdOHm&e* zPk5O}ywJsGS8ZKeg61N0am4Bu1Yxf7dtU9-K4A6G(%P76;; zH*})=z#-EtEX({nlt;UZ*cWJHz<%f%V;|CpEQTm zMktj#Kg3;J%u%BN{1#R|;F!7;C&mO(H*D{->wvkPn$?EJCp+Z24QpovPDarTVZIjI z=vlpXJ}pz`6X8n3HnExN58>Zawu(4xD^HE3L}4yo=mx0Xm?bdk#v#~5)|59(THj7} zTXH}hDWH*JO6KAyv+^K+Qj%Ql3aiJhQnFmQ2-#&bW|xG()+`hEIEsboy!sCoO5>c+ zQ!^Mz1`5tTXJ4?CX50FTR7GEDZr2d%17RNA&nso5+c*8`!dLXW@I*knewxzVn}oOf z4YtwKTW5`FatAXWJo-kWfM1X1jskDQV=0mQvEFt6i2D^;xrqjG$AJg7*}K()l`US7 z8CJ5qgTe%Sn~zP>;^*coyS2T0vKlVBs%$k~eQFYUeEbi@7Kvznb5Cw|_zNrzvQLgA z)O@_C^nd>t0e4%R9myD{I-dLfL8XyBho*c!75lp=#oR}b$5R|Ed#q7Q1iVY${ZiP% z&~PfS*U(v_>=PG{0CVS%P?Uf|2I%c8^Ec3D-VMhnAa(h?lw;I8)v?IS$Cr;!IV@l4 z6wBnlZi~(;ejxhh_c;oZp#_SLr#;IIqESjPO#Q@W_0>SeV%%mby;LD!#5qA`0LOFw zDN)5sgWfu<>78+PTI$sls@~4B-2^I4h47U)Pzla>SzD1fE=?vTB=d{M4}}pOR3l=-hVj zMx%mISPtt1$ zxdsiCerFi!B_NVe^Fn;JkDH`z2|xZ!MJ$%NxraLsr3Iv_Z<-_CQ|Eq!=4&_X4OA9W zl(`;Kc=sQ~i=x6}qy_TLKi9e?8`=_Lznw^;OOZ=aaYp`$U8txz&Q8JY!W|#pYEw7K zZ@fM<@1R(ovFhAQp<;>dMZpd1yuAjYa^s>SMU1WG{!o;>rY-ftO*STKVf>Y;;e**k zy~g2~iA)6MCL5)!R?(MM&ld|lA|g>auRS`a%8M|vI3lDf5O++QY9kI7cq}J^dz7^n zT}bkE-T%q*Oyv-w%&9 zOd!HYPs8=AMtl{H=~_*k?Vb;^N_*g5UP-x664LJ!hi^plc*AwkGcIWt-%uKYUoGjL zr~&FokXp%LpQdC!!%0lDBr>f_zsN3LAXcGy!0KnD6ba^E&Ee$wm`UZh#D7*Ofc#`_ zzx%ulGZ*;P=)G!D2KtS|ENJ1wm!mF;1|^j?SS+r@av|+Vci@E?$7xqbY-GQ5t8(LN zVu!HT!t-v|!LktQIQu!bYL(@Ig;dUWL}t2~vrXBVilCIYsBw;+rJoVT3u+;&FQS-c zJ-4odl{gX`vEiyIpS^7DL`LA((+b(&wg@Pkkg#5`06L>-t1tAUkDgW8!8FQah^O8~ z&GOXsY`T@X_j!=TS%9Wa&>KMw$m06_or2_wXUr`>;(dNBBrY^Wq9xl?0u-Unc~SSj zU9d_h&1jVB`M%Uw@+~pAt+sIgFcB|dIWo?;)L%XBXh^zOS~TNf$Cv|_rKzTRw8ZE3^>4j7bRQ@ajDd_)l%7JCAg=Ra~7HuAZ* zw1iU>CW&gBVs1tXFP8=>^v1ylnxUR-P_ba|9Aop)Ho@lKyu5MX(yWbE-c>FozP-Ey z`k=2{I^35BGeN2LaW}RL3^iG?rwGhg2K8=KF0I^cqq65EX|BTv1$<L#|>U?uFY3KAyHTsfj`xLt28#Tg$=^lR!cur&TdDUo_YX&BRB>(q=L9o{`S`)II zdywNK_|Qad>mx#o;hG201+W!aRDJo0TD@rh_H;1kc_Ap zpO6T4@Ij`#;=fIJ>S^!d81O$&m~;ZsV<)iw)qwPtQFqaI@K*Np^{{vGa8ma42S`dv z`HM?orSl01#StZ8S(*QfRSR3s?G8|~_q25o5ET?+Q-vGA{vCkrISKo)jDW|gI*%HZ Htt0*e>9oK# diff --git a/Content/Figures/PU_exercise_6-eps-converted-to.pdf b/Content/Figures/PU_exercise_6-eps-converted-to.pdf deleted file mode 100644 index f9f49bd9787f9862835b6e68d943041220491ea8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 77146 zcmV)YK&-zdP((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;-nyA zuF>pIJ>#D<*}wkRzy2!UeU`Sqn*H-T&#%9~hW+37(>LYMp`_Hl>oCgx)hA{D>K{M6 z`=_Vg-~RW9@BNSe^lN;VzRLRgKflt~|FrSsXFSD*`CZmnbzxw&HlzH@fBE%q)>>=L zTsaNt`+1%;V@k?*ee$a4ME!0>ADrK*ZOWfRNvVF%&H?(bJ}LWG|M>OazW(dK`|JO) z_q_M;lM?TF?1$OjQ?Two{ikh%I{SA?<*U_Xdjm_=vQ4dhx>@JGpJi`rseI=$zgijf z`>|&q+h@xbv$Xs@`d6Lld(33*GQXev_4`-t<@*`-j*<(OyVeI|wYDwnN?+C9IC|gh z-@nSV|5)dVVs9vD=Jeg>SE=oLRQ#ai?}bm4JilwlM{E7g{R_WK7480fkFWA{>w&eb zZ>!t$dD+%_IIQyB(pO&Des6=Qxnr-Lc1!jm{vs$gy$_xk-_2gxp7d?sdyLp@(wp_L zHuNaX?`(Z-HkWu1T^-4K)LO?6?7bbc*80G_+7E{9-H9LAw#Oh>`Yr>noZ0?hvt-j< z$8Ouami0YLKTmXfCz_*wCtHZIY@zUl{5>&*y88Eg(1mJ0w1u1Biytibl5H59)rl@W z)&Y#6+Ivg2C+b?pFl_Owy}B%P%7#~peR6#FXXzcbd8-XB4}8?tcyRG;K~|aisCB0n z`vXSNY{O5kJ-*;gn}%iFp|(vaHX9jh*XqRRuodP++eTmTgZ6wk4m(>XZK7?yb7B`e z_m1(HnWt9j!90`#K4?$WS+UDY_CeHcyQo}kTcoP(6%_l1F|J~xeNxsrDfotUk{i-` zZ=JJW)Y#M3|6xxwFg=`sZY;0bFnj}+HZ+WB%l|a&;Pw4r`J3%194p)G35UekK-o>3 zSnJA4^E^;}k7GV;A#8RQ4?yz892tYN4%uc&Jf^lGa3<_~_Jg;h{~O%4b+975#n?as zciEH%E>poHOKkK{N*#8?fM={}zgj<0u!G2@MzX23qxciWrk5P?{OW_^J^b_0XI&e% zlM|=kh_>{94+Y(>c-0(_@2pK(;I?y9*5h-8BWleQ=gBzXz|LB>FKhuou_IN#7Pt|Q zROcG4R&CO=m_WhKTDIjLaQ$YF8hcsxC1Wkx&34e1al&Vz3n`0FEbG)<5FxUJ3lb7Rk1M&4jg*KyusjTA;9dl$GU;mBb#7CK_S9vyYX0VQ*)GBg z7-PfjZWBK6z%o`r>8L)~P56QFh>3nzNJ92R=g#JO+GOlzu&Yh5rL+41>j80(Y}}6e zGETvrpLq9aJ^c0>xF47OD^IiwK5S!-Ltk-;aXqXf9Z%T1Y-8{B0GGCHinD|Z+nc}7 z)H~(R$71lDrfdtH#>H?pWwVZyj4#ykBPCc+f~ZmFkCgo@lVZNXv_C1Eb-edSox~N> z!TrH}I;wtH-96WBfP-fTChHE|;^%~rv5q+&~v$bEPnrfR!p=_a=YNEQ5I?za5^ zZ(fIznz89zgB2yP3v5C#nvO%6Fwwk5D=z8;DS#KZhM1ahi*zn>{9qPdAk`!rTNi6j z4!s(8vsa!r_NzV-6dUDOc!K|K7+mHzFnZfWQv!%}BH?`VsMyC7=7Tqw9SA(1$<-UK z*THFmjDnquV{e0~c0%&nVxdh_#r`~kV}fisuLqK5&Dln(&x6;ytdVf(j&rG|(jmTV z)@IAt!O$o-cKyP741R&LIq{2Fc-vie)ZVwoZ{s>#eQ*?$Ii%SfO2YkMzcMbL{VrbU zWm2zg{`eA(gLiwywn&it`Z)c@JV^R=;UHBzko7!Z$^b>fctOiNh5Q2Vp@jQ~Qu~59 zZ%?#B=^iX+&8uzVNoxE>P;3h)>@fQaZx!1WTuob5465M>=@-R!wH?=it6kMNi(x%w6k&p8S4(Kdj;Bc8~d2xE@il92Z)h1&$Qsy)!~Uva^nwK3ta zq_6kYqg<4FGJ&w&9AHzN19Ur(WQgJb-ENPZZw}ChcilO_cq#?FIN*bF?9Bp(4HmcN zeqw63It!SO4`j0dyH$9ef(OjvJj8jx#9Gdq2TT(iF+ITprfsa84iDJv%>y>YdBAK_ zN8EY9v?oiwnZU%Q(hd`t_RCog7no4V`ppG~Ed`IgxWEW)&=2{jE*ftxFp_S#c%m=O zT(E&|YsxEnbAsNq%5h+N73*?F&`nUG&bt{w$9UUe1bh9R5xngXG6HM@@W;alHpLl1 z?@1#SBj}X9Zbr~e=p)DSgFK+Loo-_)dc7HeDIpU3;|XJ-eVrFfoX&D{f@vp)ljodZ z+D?A@;RL(AIl-nlCz!c$wt^E(=)&vf1T*>Oc1|#%o2A1E(94u>PB84gYWZ-2(Wc(u z=X@WR%?U>GclZ;1br&1N3i|LXc(Ve`K6QF$1$%Xz6}+vVSOJs*%Fm%$Y|7Rn(y9{3 zJ}F!H$xl~zf1rc}`~EFTBiXtop+%eh@2{Ng<#}#gz+RQ@nRXNGRp0CU=+DP%^ls|2 z^Ag84WeZjr2u4poQbMrGHB*rMfwHx|41wiGLg;$uHy@NOp1t>2!)SK?7ZsiY`StHb zft0kqatHIAVsy!x#yKY?<_Em#_pjWcU0?&-?Vo#p$f9szHMFO1PPOgv@c^CJ4~*g~ zV!Z7^yJ{~&>&}ZmF!_uf=nH!=k3m5O?4#t<9L^Z} z)DM~jKrn)ZCu-Ju<5IR67&rz)IvBN%JW>^_utRE7n)`C8gOd9hwYM=zrl{0webrG>*s-C>><_jf?-!dFZU-#k(3dgAR^+z70|_KgYEn3 z1jYWHzV-_$RJVCPfy2?J7Dt@`%2(G{^s$;WQ|lRow=oDG=6=GbVZXp9>U<)mGCHv* zzVHygEChLBUUm^s0g&cztFw|+1ixuBI2bQ`;H+PHE(fhL!72ObwC?dPpSYg#91ceK zj+$L;{_MFK62Cu?B}PeB$TK-R0QA8vH=is4r4rfAWBH!dg?QR_5C@lkQzXJzTiPb{ zbs)hISlGu^g?SofuoD2y%TzC*Ki7wXR>l>}<+Vkm7-f{M1%}vwUlfTvHB+3mQTo** z@q*)Clxb=PP-sus5h~*#*o3pNI+-(xUo2@e4g=ZRG>T@m@N`n^uiApE3GyD=MAa8> zw<*(H?SVzUe_=-<6IQR-2;^!RZ?I)0@+x@}zc4*k8#O@yvrck~_BNeUZ0c;}X&ZFh zPXJKIz$bxCP7L7_;OLsE{LOD>Z14>EQyaZ#;tF{S<(cuaMXE^-3x=l**&6y24hMIY z4eyu&0A=tE#?7Ck<&^&K7@d7X+#SXeE{+{GqTr8uXhT?3l@{3^VX5o-5G=Vbm-TSl z>_1~6mww&2EREf_mkR*QtH59aO2$IvRm&FhZAWB4blk7Y#oN4EOgo2^fgw$Ylomc| zoW32AkH4Ub3RQIAm5uU0nMX=jTf#bjAc_Nze=Z7ki~okqLLyOKIQ&hFc*-baw`RXC zu?2KJ?Muws(r`8`Xj9R@10ALaWt1$qGIJ5E{e08*WXGaosIN?ochEj7lH1AXxCYhM zp!zl@cZFPm1@-+ShQM9y9Q}dq61x~6s%9f$$5fYWRxF}#V+c5qSfI?cBc^BAQY*S` z$D(Uj`KE)?f+d(Gi5Cy8>1jXc3V-309!JF$FI&Wiof5Bwrtf_k-?U=b-1MchNHpG= z>+F-;#@poY$$#NbtR&pQ-vGRo5`oMh&LO7wGiG*yLwv`Ten!6d23%gfQen{ieV;mTBsK3hhfjP{7O5BBi=iXNv^0oI0r;}%D9?NxtL0HI&(ck@nL$bT{COZHZHst8vf&YlmE?&Zl)ewY zaj%k~>QXRR*m>6Ox>$ze)poT$RF1*D>}=cJEIBT|neE+ICt)wkj{U?F#dR;c{wvzm zuOhpWGA+Kj3CsXjAF#o786};;oVEmZ{K6^wB->Y)pX7In#HyPhr_vCWDoS6a*zEP60Y_W;QdD)u(ot^Se_TZ@fah> zy3VWpy}A&}1+!+;2W>lPD?Zgb2{Tl~6WY9xdW@Z)w(%9c-w9`C-nfBS1Z27N!Xkol z7(y*wsQd@zu!vd(X$FhH&Wz&;7J;2PZWaMqiUxH*;h5`soyNL!pPkc)Q%9!aPXOR>4QZy+q(VgRJT`OowQ$cU~%nwqKNGT zi|Ei(>&+s1$RN%lpoOm^gPite5kWai30SuMK-df-+Rh)K{71%ho#8+R%YV|(5r zdzrX_%Y{3cxGM0?ai;=(n`(em{5|rG0hG}s6UGCO@oT_NHn-lVfSn3#E#=rDV{IID zdRsdP`~~RP_;SoCT7sMkz?x&NvxTdgl7NG(d(!qCFe(7+=EjrGcmiZOE7;gis=#yEUG?9_QL|5pnaLL*KSg?hgu;H5(EMR*lrSj9z3dl5~41zsV% zvE}_&;6!p^+BQ{=Dr|nUV5GVD&62bbD27e8?rU%`ZV6kCDnwEKgtlNVn?b9YXpir@ zFL?Ywgl#u5by^DLCuMWr_l-dxWGL~RkIj#Rfn2d$R zJ$Ieb1-0nq9K+LUohSB;6yPnGp+vI`m?asqb-lSYjw(5aB0QX~LAzZOFNfd14h6f9 zQ|OipXb4N6$nI6ADYZTjS%iD&7rU4aa9rT-B|CPUA?8h|OZ-an60YYTv;j{(#~~i%yd@xBBhCy{$`y*{dC|GPp=O zs_K5jH9u2~SckhNy9qhHar|p?X?s5r$UU!;nv5;VNz<>A3XO*dldh5qjVHUyh%NnY zSF%sce-PjyidXszeERr_Qm+MIALZXe$KE(uhq z-xs=vUv&SfF^QUO_wh2QbWu2MK_qy5Q!*FAR%#ve>uSTLSYvQBT9iMaB+973s|x0! zxEZE%TiLfHxw%^%*Tz|~ogPzt@d6%Pxg%U_H-n7fEu#=TlUaMZwMmI+wPX$@dZnZ-mlncC*Dkra8H! zs#9iNcLuI)!9{Pc+r*~hnb#9wjB5+qoKTAEp(a?z-EMC}^n(d4eur0j?!OOA=d?WI z)~Pr@Hr8wtwrqv}*MH|zFw^7g=1Mr&<^-mFDAC!troF5-2NU2}kJW5X7;dtl!U{!} zVFU1$w_S$aN+4EZ+HO~WJerlqzw)ZfI#|YKY7^2Ln7sX>$Yc|U$5yp9?O7w?d{tPi>F7}D&R}h6W(~WauPEJxc3v)wR0&PLLJb!%^nBAU zP!UbQU4h9(9|MpPgm>D(NH@hfWPGnY1a|ijd|7^fEYu&Z-m3ue_o7IBsU5D++g@&Z zrsLb8zL+H9lO^?~!ndMaOsh|c;D>3AB;X^S7)ARznAWJnl}A@!Djk8=R$ok4Oak4d zzMOWbFPq}(ONETOj@i6I$)fK|s4u3+YYAO_v0k{OE%n9J%n&wQeW`HCsmE+?$Bi=h zzEWc3=hErT?~Hh&I9t-C)59TWUpg?GlXv>16RQ&^qrD4|#-;kcbfLoRrgRwlWJo_$ zAZo9E8bkW2Kws)Ho7;lQloz~p4{LK@n55USn^%~u*Aa|u>VyfMZ$JZB$8K(I**IN| z+3l^y917K#{Q}n^_9wQIu{#lbH98qwGlp^aY7BHg;S;gnP!H?YH)1lQ7klcZ%DgOv zm?~6v3?o-wc7G3LLx*+x1^GzUcL`rS40=W2o5mU{EQzgz{8?es8{<-4j54Lz zV6skcZwi9~LUh#W3IUe8P6}Lw0Z=YPuHseL zoFbM0kyXoB(j_<6IfW|j6OCDX^7VktvLf8*d0D5!Rz(*PmWd|=wkX8nRM!&}-&SFF zBMT{RqTUqWFn>O_5VW4NLF8xf_fXs(R%dtt$$Yjq3>aV=+8|jzh_18HBjZR}HumxA zE>o9_D)GchMezj9f!f^fWpO!dg}GxaOTgeiCA@hfO8Nt>bfM0@K!n;^Yszrgh#eqkN) z6`v?Bfl2RS7cT+9#vr$c;7s-(FUHaa6@xJnk|1oFhU>bn_Sn4oN3mbikm29ep3@Gs z=b{h`OVZLq?YY{n_SlCL@u#i!7{%dFsXd%$n%JfGG}yDoxYVBZgja;r9%HjvztHjG zQqFlD!1gS$BY$A8y|f;i9p?d|_1JE4ej}}?rEqta*7LqaAx~Jxi}-qIJ$$Mj3PXjv zy9!h5;d>QWNv((9rE$--9)^0C0}@)-^X(1PU_VT+n`ETh8;G-|W6fi3^SRtq^OCO*xfa8&>GtfOC?TH6jz-6d;pTq2v(U4GNUX#N?gHMy#{aVW zkjnX~3v^OcH3jcS?{wkbbgZjU=x5ExMcIIy{g+ndlLEU-DlZfS39U0!N0o@_Qj(J& z7rx_2tm^}NvfSIu+WFffxQjXlbG4i5fh*-juU$7bSyN88VU4oo@*N%z^tPce9NOHx zOT$AW8yy|KXo!OcMTVF9R#0{`XL_nd`^?JQzN2;~Q`8N7Z;HFXVe+On`8(lk&iKs_ zluQS?n^N4RE=_mro&p`Si<7O%$B_Ps3TrP!a$P%WeQ6UGSF#5kitvM~o2|{q4fl<# z!d=z5mZg53sCO=3%GVQiaX);59znLzr{qycvRr1s%j{Hh(`7>-S@kG%w?!4p)_U0n2*NR~s=p`b1F9g3RWJ`<-&u zHGcI;IlJg>!}u;*!)<%6;~$E2e15ivir;`v(Bu#*K8Ge1rOGl17xtqn*n&vXKisUl zML3>7SWP~-Wa~9lEm!edhv0KgbRX`S=?7@HL&M(`*YNEH%Mo>I_||p=H#GbPN9fhJ zhToviakix4TPFpcZVlgt(Z9!5@LPYLBABYQ7-Yet! z{rlSSJ_g3rTIlz?Dg9pCu5Afhal7@B!IhWdXhl4-{a~kOR9nozxYLpRZCc!!-`@b& zi2m}8Uc$VgUUUSi965itw|;*p)bIBTT(jPv*dqAuL`V?P$&e3X7)OGLf$k@KBH|4( zRp%QqnbC_q_0sQOmO}Ca94p;0Nx%3u!zL}ic;kK{Zo@C$SeGP+?HAt=5k)%;K?(-A<#itC|pBou={edH+!xbC%i?@k$^Huo8bFzzv(}Nq$G~7>~#}m+ z!-FBWc+OmNM>?DkKxuN7DVn&_+;ML0#nT4ae(^?eQIP_C1GuJe(W&)M(}nX;xZvj^ z4n`2(K0^NPe(?=)QF4D(7u$4kSxbN*z;r2i1G!6XSGR_6#(Cf?t|h@LmzQT2lCyo| z8+39xx6(Jh&F~xbl+X|zlb9@6j5k4byj&CzS1HZ`Vt8+YU8lnu2w8^QMo@OZ| z2RMKeAD3@@gG)JqD*490@ipE<`?!Q_{9c1lld+XUP3EHd9tz)h+sV$=-C{GE)I|4< zw_U4PmfyrWcnT&`itM@r{pt=dST>xYFmY@mJej;}50BX(1bO&-lY^ z!!@3r)U8g(cJ5{2=i;sm;G4Tm7GJ25?k85@lzIc=jFP+GKQoww@+nl!Y;v_q&hZVw zP>dH1=Xmaa&divHvpE=emM)y*-xpJoBSUu9t$zgN2&zo+QhuUr&({VI3%40zHIn2T>FFq+#q-;*s$9@i5^La#f%cGzk8&2W6} zu;gav^~O$3{48#KBZE2ZaD3gAeUdxP?d2y*xV|2Od|x|k_QTPdh0kOuR^j_)TBuOJc2Owi19d*Gmg$$7L%i)E&+d@-?ZkBGYf7cw$rsCn$v2{5v8P_)dR- zk*+Uyezm4|iq5a68P2bpa%Ki@Nk0*`>+2@S^VMWbNpJ4?YVGjIb(=$fo^Y!n6x8X6 zb_U*q`@{qV*L$RB#1@}`V<^bQ4JrLPly-plOUxbBpczVGPsx3}oc z$XJvv#uJ3?4c0q?FJ1^)aeITCa6;yWx!E9FmHS<=H&NF<{$%&;lG6<FLrEpou4Zq7~&%6kO8*0tnD)LOW~_ewkF-=sF?;s4gm@)t=Fv@@h}b zPI>h{S=!VPPUK7FK+K_tpLa;b>&t07ZVs=wVjD6DKCSf49cmg~(N@AUCp6Zb}N}n>#2hMVa z6-W#RUd#1FEAE-A8lAZHMdAFFgH6Gi04(n$$*wHkoqU@CVtS}m>&4ZEDj(A=d z*}y!@Ba9c>C@$UkMRwY8k!^}!WP^D;$6mt$Wn1&_7ukS1KKDH~V1eb<);%_g$7St{ zY~VT~_tix<;I4UP*4YE!7um=P88}ZADWNc7_ceFBWyO?$9s4Vx^M&=umw|5%IcywIjzx(GXZ@gxuZ-+_d;|F z7xh8A{@70JqdGq1PVVoE#FhL17GZ$XstKl7351}WA`FNtnq1`g)hFfr>K{M6`=_Vg z-~RW9@7W0cxzYxBac@^e0w=E{GSdtvrJ=YfkW=%fq@+BXuppo+fQd^U0-z-RzwH-uD(Cu_$le7LMOU)Vw3rkY{2Ijz67mk(g^Xm{2`LuSpl*z`x`|i1J;7{ROr*B4J}g$ z)Z;Vg3@4a|7d|ZgfDoQ;OJZ$ggUWPAS{g#;`!mLB4?qOB2NDt-U=9X7%Q651EkshR zB{PTM3rN9&EK9y+5|CIV;PUqGk4=RQnFxgiVpqV5kmhM0@2HRTPg{psG%+y#MhC**Glmf{~V;_p~gFDZ_6O$Q9VG%|Z zhTUGBDd4$pNr5#8Y2x_?hIbVfK;Snj3LwC$re6$Z1%*X7**kbP;E9hr5<39$E?mC> zeLYN_3n?0Y*pR>mo+z9uX5+vo5>twK^Y@-gC;a)C+k3vTFHrLW^X=>86dvQmoLo+c zj-ZV!!3pj}w$Mo18e1VTWn7H|(y4Rd0x5&DK^-e&>1K)#+vY-cG{w4$KAXlIkfVC^M6nHC+ z5}jI&byy~zAKb3cK^K4DnOYDE<7nbuttuf;*O^3CqVxryKNKHG@D#=SynU7^D1ScI zL%G_k66XaUwM7D|_`+&MpmO`PL&%7HVAAPPlrhs*21^1_0{OF=60^ghsP83A$iffq z0B9G}k3EE}kuVX^l*p9S#&+S`m-&A1SL-*zq_LenTYR*Uqq;F~`gx)-14yP(0a?eB zQkNm5PAQYIGG&k{p?pMwD1C3DQ*eV17FI}b{6va5Aooa~ zUbr=~$)5Ak;Hz(h$)XTRr}hgnHirVu4SD;#&2;=)(s%-a26pLSQJ2#5ckI_}*H%ed zc9@jW&7vjneFj~i;$(aKny$B@4titxDT~U zIOvP)a|;KZ#ZYeHpewuY77m6AJB4r%JvhR_$i56N9KZ<*X(mHBi1uN1K?&htWC~te zK0sBP@**GjSGRls>(0330|o%z@3IQ@%xn&Kg2T zMCe25T91g}^R-0;Y`AoZ2z@du*(D;-q3YP2?L&}9FDAT-i}cQfmu#e)2_t1M*5xo^#M-TVnD9~!pkTt$g~Np5 z$urAg!bqGl4-fX{*-B0b4vYjO$ch^r7-?Z^xjC?Za&zFNH1nGSFO?CvSTK^l;<^qN zjF?0`5iFS2%bNouXAhWqaNw!rH=6?^G1ka82Y%aDe15CCu?hZKR`Wy%kP5|DHvVSa3!JYF1B@eG)5kGn- zT*Io&`TI#Y!+aZ&h6ynVIn2Nw`e5+{r&QH&wI9L>72@0n1)ICGKX5?7W<}Z1!b%bh zP-SLZ$iYb5fmF_536F|fB;Mr!&Y%os)Z?i~pUu!$07z_&H+S7z=LyvsU_9Jpy$%); z0{?ExUEQ1^JI~KZbwVl0W`?p3QXk+`ek)}py(~wreK`Jegb}C%+E5(mov1N&Xg0zsl3v}Qnnf0=NVxENELzTVn~f%IRu+{ z4*jBY?t_zOgr1;csLd2kg0&?<*uB(?>R-Sv{6#0ftUXkj-jY@CSkD4sJxGp4f@%^69L(keOc=w?_xAfpKEoepl=w9moeT9#-+diGar@6!<-J-sTR| z7xoji=`_a+B;_1wEJImBPN>2(Z@IG&GEzC&Wt+8{;83Z1y@j^uUJRpF#%^!AM=%Kk zs#%-Nk_Ag;@7geS)T%D(_V5Xg8r(vA*xP0Ly|O9d;nrj@b6&6~Lqu8xfU`X%!H1oq zU~hX)Hx8E{snj4l@Jwrhd&F0(hO{xWh#CjxSDk_-HUAuS<2zDX9=7K8&UFQYw~D;{?Ra$z+5qA>9s zs_zaY8um6Mu%7%Eq6|p{W~YScy6#Q%dG_ zUbG5G@u(c+WI!T3BQceCu@kD~LB-dAi43v6H5m$ri;PI@ zqKhz#UqWk&RfX&{d?!iLL#A;Uh#r>X{X*Ob7G$@t%_<6bAC5SW%)=ag95c2eZ$`x5 ztIESf3_Q4P=T_^gFV5^3Tr%-eZ=VSb%Ab#^@=6YZI^gAjWNUv91yvJ~KwcH~_Q6Yv zGdz61Bo)=eanC#rj7q|lTPe6b%&``2Q~;0}=seMg@Wi!lk{xry@hW8PdY;qD5F%Ts z;z$C0=n9IBOSjsBMJWmz#|4WV)x|5HcY*o4U0?tn`hh4e-0%gN<(2H9;1>|kC>#~9 zkWP&fw*Yj90wIYIXCh}PS#U_G&lp4{cM1V53M+&F$5|@3QKP_4Rn7yjfr3l9f?Z%a zg9IoOCZ5mKlrvxkz(C1iR(!aV@eh?}dR#cNm7c02BNN76dB-8%_XZO^qkaZpD%}2Z zAqdJN(4{1$=>s<^DovG|ye}%KaP-^+b5{y?jn$nHl6lt_jOL8G$ zGUrsGgFay+U55xgg6ILMv%Pc-*#Uc@G*#eP(I1LCdt?w~(P7l&WE!K=6_$H-gNXbK zA<@U{y4YEkw!ctR6)P|#FChTP6S4~}KZzlo0EM_Q(S}b8Ly=Y5AZ4YPmDF7j*o(wv ziC)eH?zj-m{1dDPz`BQ5H{N!H?ujwxwx|A86Dm+);6{PnDUY8h9UPLc1)x>(Pn7d3 zB~kw%#E1X9_Cq}b+*)oKHYnHZLzFA|2MS=_xtJC^Dd6Iha(-pAsARk!lrvfJt4|92 zTA_?zU;m(7%kVZXWgaaA$FG$L%9*ps3;hFSPkn{WKCPc9=T{V8`VW*d|L^@#C#yp? zTc+3)$rKgt$N9(<%&jSw=we)gMYeMQ4y9~Zn2^wFn1iWVlTdn74O@F*;hTc?-46D#l?z>q$2r<6}2f< z*byr@6x=v26;yEge&hyBJxbE%diR#bpfxR1A3QTx=scCn&%dDOaC!45vRSW#hru1Bn>$QYE47_kq^7Aqjp&U`y!#am8C#J#m^^RufS@=JfXnC_hX)`ij|Sw; z0~i3cHV;5r37#`Q;d3$B;Kc)AWEqE2QPz=;AGu6w@1g1mO`-xg_|A~qU<sa{t zM~pg@VL$&%dGoLHzg%RD^Y6)r_vwy9a?U@N9`D#sD1FmD|EM>F%j%qe7Nei%{QIKB z@qb-3<#T#eitNZ_K{=9Bd*=F?a_lxOD+&G&lr0s#e@i(yit;NX@(#$_-(O5+0(Uq- zkPON1KOL#=&x|1(WTy zA|XqzpG@_}yc~d~sxlk6oF&N=q)z)t?)G$Mv?)`b8b}L87XbJiH3Y~D;dR}g zT_`N8$rw`a;J&;)ztcg+nW>CkT37+57-F<$*a(=H?kTiZ`;kW`y0+bcBBfW@tRfc^ z;(TXhc&n-(_)uq$%yi+#5jo?KjCd)t)lkhu+%mBBwjl%~@aSlRqd%UxOaymVVJ0({ z3{o~S=q0yvU!#*JInH8|GJ)5K;zPb5mM$wasunG@CwGF`Rb3v{OCC^Mu+5bCy=}PV zJhpb8@Wf1ExNS%!{!kOt&CIogfrz)kP&O}!xm_#>$;!tqUbd-29iZZRXk0*OV>>&%7@zf#xSEFnP1`I^Kq1>~J>xqf)lshd9+$XhNMfd!qaPhSyTsb35t%jHoe@zc>F~YEy=>`kvmUM%4p$`Z%;~S!KBTN>93?SVPduy&525YBCAB6szL*K*WO7gd&`V?1C*gIBGh$LF zSqh$zub={C!OjoFCwf8xZMP{|yGbVzWnB{i3Ki}!{Cv`90a$Tc3a|%Lk=vtnU`k_G zF+6B@fSmw-BS#V}e}u#ug>8&Esq{qe9Aih${KG0c%RP^ab#fY?>j}V*#D-*^??^6D zSz(F-5Y|Cyr^8m*5rviIFOHa;j({-$8Q3;WDc5qAg-tgK79Y8p@>Z2Q%un!1m+E3W zwF7@czC5LxLEB13kyZUatJrX68AjdOA;}A!o=z@x8;K3JDDPD|NQla?yH9 zHD8kgO+eo^^PTR}b4zhh?#Sj`x&S5%Gfn)RjaKONV&l;EbJ3Z5{*ewOLCj{N$<`>H)&Bp*e1>0)=hkZbBWsvD zsPsq0ZjOI2)6PND0k_5v5EnV<$z(@{lf5_3 z^G)S8J}C!ZfA5L9$4H@hskbLI`D0%Skl2d>vEla7VV?MZAymA6tWEg=9}Bm z-P*oxA$Hm)=9U@wJ^J30QFL5Fz}}L3*LH}Ugf_$xI_@BrrIWzs12~FrjPWSG?7?M2 zWwI%-99O10-0bLp80vN(%6%9LITKpJsloTdZf})7D4}6=T~q73POKPZS8taO^DdlJiNAY&%ntmsBk>H1wgxa6V4 zjz|xnb99TUO1{QYFU>uxn7uebWQKp!12u`i!Wtz&-V#dTFFf6&OQs>X*232tH|E1) zq((7DLnApZ9-g|)cqBNJ09tl8Cu&p$*?LGQswa%(OR|S`xzo~JfCZdb4j88yk^B#f z-DYv-lC{~50##k{@Q9fJT*Sb>k`;Ii2!R!nO6FmLH5g)bkwic)vgnXs5E3e$!HQ0J zhp~BjU}58R!oDf1x5&Ia32$cBG5_-ms$}Qwp{kNbfukdW#~4e3U#;f7MW_Nx#3bBv ziB^T-i~9`4CMbsG%Y&#VWa)v`g0UM1!Sy-rnWPHyOw)@ElAIu4Fi_y# z21T^dl^A=bDb;|KFzy+6@_exhJqt?jfJ3APQFq}U4P63OA#E#UX71EyyEaII%N7;| ziBVePwt`khUnM3GfvftXunxCJfikBYy$Tb;V(Sg1IsoJ&Co-IL>dH!<3s>+;7tn&5 z16&5AtdP%nr!gJAl1Z+FP1W47VIR6U8inHnWhwX)Wi=8hP#6jIHt!%(l=dN)1HPu9 z8c$AgI_T(5VJ2EqhUT=eNXnGk0bg8@-3O>c2M*4iUsaZ@u+SkUzO)j*@@X!pqQ^i( z98nt60VGX61AjxA*X0oc3SYByaOkce3;YMAK9cPAk1ECZcD*+W%ktaY*%j!Otm|C~ zyDRo@xrR`&;Uoz7FlqMX$}Hx6;&GN=AuBkt$lp-q5l$(0L7gh>%4z4oE91l%#_7kZ zJ<3O2=pW2lE=lNAL88;FVno?}Ci>E@Y;XgEmfMtDme{L%mA0X;D-|-nrS!4{{)8JK zcV-nhh+O4g^j>)c=vC>mO-VBWEo34lMtQtD2pHl{fx1Ne&?Vf0JfGZ6A^8;~>Y1m%)?SrCoEuL97|tr)e25)`Fqu=i zD8`A>O?y060$xHALYi#krjiedB`P*#+^pzE>9f!ZP>__niQg_($tiNt1O$D()Uh-^%tPWS;o+~b$l3VB>XN&{cBL*G3mcJ(_CaWq4Bw|MIk%c)HHv)m% zKg{1$V4@>47)WJ?H_J#zisbyFh&fQIvTK+8I0GA1CWnGr#kw^-qf$X05%Tr{b345K zpyly3tuhf_;U&)`iY(9pkP<$(>`q(K&X7Ku`_!bE%sAy|J)VrQmn08yL2;l!^ulfL zXLi7cLI&=n^&3F7DG}r*_o_j^3c9>9)g364*=*@Hs}9oNeL+AWstSr*Bq79%8kACB zC{qA4(lD2JadT&5p5pj;#?jCOdIvLO(#AE2JV$H;jWbUf)6Z07*bi5}rYqwVa-YVO zW&n1|Rp`@h7eV*LkxjLl@<16lEd*|F28}qAixp;2kZ*#e+-%`_T43hD^4gZE-i;okD3~7AMEAlNSa-a;y0iH*mBiPrx zj1SM6?8^u#VwZUyq35wp{G|((=9@V2N}LKT@d7ncqKN##WgeF z;x&V_63oipS0XihCiO_+uWa9pHe+5)a&e+h$g3NSzB9o3Q4Tu43o-zOKzhHF6ml13 z+NRm0MSZG>7wI!Dna3SsRmk96O&NJGi(g+t0abC~+;ADDg>hYi8McRZUz8bEdCAXy znPzxM^Z3Mtn<3e@c3sMudEZ)G+zdFjyFik;U+x*HSaMwd4^c|Lm?$D(LLo$xxloKy zCaFj4kfH`tlOQx|hBN|q2~d(8=ZGhQGBu??P^K2``V}ImM!()%x}@dvb-Rq^#JzjC z-CFl3DBjO;23nwEw`(e>;?ON2rmH-XQqPoT#B}3m>}fatFe<~bWOLs#URW7B3RB>>L%zD_7NK@iHf zK7)RVY{ltFvnY&dpP+g(Bi%yVP|3B-o8U2Kmi9h z_iSd-+Iii@NFO&|?&~xL(U^0mL#<*=*1q;rlLg?21`diG>EYleAz=Vp=?tlIAtb3D z*%4Dd@tA*XTIfuFKPXHlNi$0lS8B{4`$qXEl1bvl426VQVU@2>iVp%u+MSOyP(HGf z;{n(((4xRiyPqms8c?7#O4+vwd?FN2)80JZNx%S>hD?T?5t=wXaUYoU0-r@%p?6d+L=OCV7RkO+`JL82TW zQKPDp9PR-~1Pl&rzXnDGz`f8LATT0^Dj~z!mk^>##Iie7LWJmXgoqw5M2Hv|#j@)T z5W)CbgPRZ|>P;BYhKMl3h$xO-BT%LaS#XR98Wk~GZ5v=jNf?ozGI?W_s$jEMjEE^l zg%K@bMC4?`h?X#-t|T7_B8O({Q%;D8fKXz(DTj!L5TdGN20#)75NR6$Aj%F9Q3oSH zG=vZFrpQGlNr(@z>JqON>iEs;#1kK)4_~j}9!r~8nS=NcQ7+;`y$L>Yf=>vE2q>+~F`TUTQb`|E(2Al9 zfHWxDp{v6MtCFe^8iH_ziM*O9(}OQ2vk(H;;l)odXgFn*A1Rd%uI>6&O|CERH&>)R zCDJqY$)py<4)Xj|no#dSR8;yI_dqL3*a{6=f(j~bHG14Fhm9+;F+`jX;f{*>b42$b zffBAlK&-M?*5Cr}_=7K~lwV@C!-7kDs(Q8RGY}r)UF(_ohz>dDc(NWrHZA$;EloSn zp)4mbNF)M>R8+XLE)xMgvH*Grl__wDKS9;8%Cq3GSc8De+*&F5HP2w?CTxgYp%Z(| z!iJ`5D8T(4dc0lFhL)KLsBi_8Ni9H z!iEGNF@Z%DHdJW!8%hX8Y)IvFhAI>nh?&yD;5EX0cEeGzj=V!SAVnG|bx|Q_z=pia zMBWzjICaC`M9oY zg_$0t=hy{6V}@eExKotac%-3=CU#R+$*Z&BD9@L5ZOZJWy0~#!K!C|ASU!xKo9Qd+ zF1;Zq-Yysj2ZUKYs_rv8LsLm7p5)8&Bni||Vt znzQFO0k!NJR|PhCQFVB~PMG5fM)-PNIaKJ${o-26biLEXCB(6)O8vguh#cg3U4KLu zxCC)UX1cA`>l!6Qk?yOOFb2OJ*KtNoWpX-R*@Oj>@A0_SGn{J2whSrktvKccXo#aq zNgSLKL`ec?WO8~O-FlWLl!8ch)MtdOLL3doy!3p}MZ!W+IRj$-N^94UKX(Es>$zuWe0a=-&B4 zhSqgDgbc0g1Q8jk`5ZCJx z7xv10ab^HRJqP2afdAZ#9iR}+0KxkqM>ZlraX$bPs*Hh;JEYR%F`sJ&jAj5m-Zv32 zp$g`{Z!2IzwbkoJW6qiT(xa=s@>~1Gm{~nLU6&`VY8dpsVCimyjkhmhfI<~x*cUY_ zKp^Yqxy-3dwR~Opbb|q|wS|H}Lblwnv67H1z$^=s;Dq!+U!Ghp3FQ-n`DY4i#IHh` z`lS4m1v(g5>YOi?uTRRqt3U@j@em0jPWJau6pP0r;t5nPid~Z}ZAwD)Op;v{Nh33p zUdYJ?xzZ<7@+iax>Dc9$fSl&cP;Q%?Isce;>x)UxU1Ej@(NbD;^S2^&EvO@Wh~dbb>=PQ@mpzF$MheJV`@UuoGi+h9q(%zQjA3 z;so}(t5?`Vo{K#bP%NkoT#&jx57pgEk9z6tXVDnJUpPhOuv1Z(EU|;ZH%M_tMLZ>> zjjzH}lnLT-+d;gq(aS_Y=0QwB);O5%wZPXHL2{lB-?o79L=4;$NadzVx?cZlM zo$}{neqZMN!Oh5&yL+uf;aMie7L?r=Y^Z`YXv%N(KuGlcKtGWJM{XXK&U8mYimz%3 zPg}mNW6Dr4ykJHq)3-rWPb|p5WNeQr?Qx4f`sSdaIl*DS2xrC~kLEr$PM{kZ-zN|# zC5F3mhcmJZ{x;DcI%i~}lmtj0x-4erXIxr=)Y@mQ>6OJ-q$+P1%Rx>R+Tk13zE;R7 ze?C^jiy%~${Bc%_A_#*p{l#vBlCq1bhw>0yO+>D+B$L-xYRZE4C~}ACz?lgqRx!2a zC_o`hZ9Hu#gJ7W~hhI2sfiuh}9^uT$YlmY1%$NHld2z->)F@p~6nO{Y4amohu;ba3 z5U{8$#N#^&!DqHFihNoNO3foRGt-N5qg0i1q(}!3EW|;eeh7tAS{#Vup0=inzwqm2 zPbUI4p79gqOz@^Cs~_QUVkA<^SR|upgDwpv#TI8-xTu=Jq<>&tj0&qdBw5o{eLGYl z#EH2O@Xkv2wHx zEc_xSKw^9@F<~YOn$S;<~rIU0)lJX5fP%fkBk#SL;$y0mxzG!+UXV%sIp!n!Wi1DAtGQ)jTaGt z(Ic0LfasBYB!rP)NdG69djqp^?-1Z+@!ycd*~grQX~(^J2@J`<`}i-$N1i&@V?3f}_jWfuRnF4k*n zn{*vG>qVxcrybUd$i<#+*88@n$Oe#JhAtJG^{(zYLpSS1${WV^IO|{{Fx!Msd^y}9pRkj;JHmP1+8(Z`Z5?z<_Q*JjqS&p%Q2t1^^g%1@t^ID_xs zQU_pE=>6_MP|oMz2$1TJl-Pju6lE334+@%;E^H>~oEkSc26u6^p&ocW45#EMvFfE}9;KA_A}+SevtKUESA>Jm zzh#1Q&yy}00&+ADH@sE6;))~IjiPKGO=zj(B%Io-&BajVka%Kx{Ha4R8P0K`t7Nf= z;@uRSlNs^LI}#yWwnx)_KeFju?9T^Z6SG^T-a^^mL)l!MIM~cDlp%jbrxc{slUUy+ zm_5D`2gL&<4o^bi{0xhIaO26958%)AfHw+l1qGsce2Qb|ssT`d*Hc=Hwz&GK5>Pw= z0R?P|(a`bQ`6kkwH~k`MYti8%Yx#+<)+C^!yN-_(B20e$3@=jwvssY(R(tuH_)5;Di={h? z^f;Q?b^oM?rwl!7+C542KWv>PazYL1es4v#eGR2}*9)Ok-YfE=&e{e!gqiZKngnp| z#vR6`U@6KFfP{rVGHXX0RVcawa-H($P|mgewrN?VWB;x*!w{-WAb(fh6c2*wn?R6M z`$4;wPR)+-kZn+sERNv_`%-u_q5*i;V{Ip$N3eE}OMFVQV{P6mNhukkdF@#zI98S( zhJ(|S&-WuQM%L|7kCc4g14B6mYO_p}D(*vGs`fRZPWkgORmyRmXg6R22>eSQuaAr?^K{tnJqqs#8ez~7$S>MooUYHEhjkR6nFyazG zok{p~I*w52Ra0u{S0Pg{5dn>Ks7c{b#I1`N^m4Vq+?4x2D3WaW1{#p$^kLtqE*nkX z-Bo&}hqKZdo?N4XL`uo#RZkJH z_=QbzgHgB0_cXNEc=Qkj$elSQX3peu3x1it!g%4UFDT+{3zp`<4NZKiHa}#WBF8-4 z>Q!85hWZ-e8Y)ww0GfiVQWPX+c9B&5E!@^>aI1)E?>{$J3;pNCO|70U1ix@Q-V(o~ zv#;~tb+^Uyxwo8xSPMMhAnTl3MwO;0ND1aY7`~w;u$1D7hN0clQ8)x32Rb5Rk7qD{ z?cy;mQ=J3S_9A*2vUmcOO+ZwDj=W3maPcDZ}iqmmXf6CjDWABPwg zUyP=OHQaCOLSaeu_Cm=nAPYQVpplZ_79GN#l>Qv$+8W!^ z6IfW0eNRe{ArYG)V6;H_&>weo(fcu@O_iNbAKvzY?u4nD2w^(?dnn54$^kCvy+2UK zjBwe-DnLI`_ODhFqx+=z*Z+L-y^hK&b4+E9b#pt4ULGSaAx z^!`tFJD;9tgsQ8u6t?V_s3V896&(jhQfjM799~#yn{?%)g*UutxJ?`!dgF^7{_)ia__QBW9e3@ z2v=mMC()f+R0A%g)7^&Rt(Dsp;n;iwQR%{A*6L;HHs)O6vM>abu+&@HWMv+8NaivK4^x`nh z8A6+?{n8!N2$8nZKbC?worsuifDlxEw8cDaP=0tl@*7HEiQ}$hL(S7b;qI;M*Obu9 ztf|;C(>doOx#EmOm{Jt6VXZGzP7T?gO`gQ8xz?ZKI)cM>Iw#q~OnKI)t|ypw4l{_w z-R)Gqz0OKdo~kr>S%QkEL*sHj$9Bf$RIn6-im*Z2aE(c2E^4II9eX)b@q{!gdV}SY zafjMOg|yIl4!Ul;idZ*FAd=vsDhu_0x2O<&n+ri4HEWLWdf+PZ#vw8Q zpzZ7Z0#X?kuc~rf$0~5jbxUWPvOSv)MX##J+)k}Uu462{L2)g7$11_ieNR+kn;t5T zB$>m7`0YAY8RX-aDxYY=K4ba@gr#!N??~b-@dTp6>J~RD@ja4A5(?KJq7hNt^1Qb~r6tKPmtgP_S=PfNTla;6_(gfUD;Yz|KjVFdG zQoG|=h4TX)IKy$Q!UCdh68PR*%{|9<`^?tcW|Z6n&--y?vcHG2A8Slo*$ z<(0KD&PEgax-ib>DrjJw?eWv&7$=L5Jo&;n8wQd##M#`&5>U%&2VAr%QRjkyRM`;c z{^W)@8;&xaO2sT2EVgrPh_ey1D;LDsSQj~OL4}c8XG^xHI`<8PvjJA)tssQ65sgk8 z;cSl=HQoqkgNb$AQnEdx`M)Th5q=|_?eQG)j&L>@Y+Km~XM3bIZGf{eW82&SCl^_^ zE8Kq#CTeDd*fQH%-g5z*bt!9k0GyR&d-DZwRv5->V9hA!qadGvFYD?d9~7r=Rz zHUQ2>^ZeWZXLH^bGURSwdp0P-IC*gBVo8jX8|mLn=NLO0 zjMZu0i~tG1b3dG*G&hqwC)n*ht3e4)P?X7jbAtHh;RMWgyACHPjuizb$O^=|I01^- zr(^7Bh+NOdLAe39nl~pX$@iCY0tAvg$JW8>Mb!N^Cy2s8=iD=-@Rjn2$sJCRJ;FRV zL7wvXaYg`5fQNE(f;_ycigN;J0(qM{8sN2bn>rf&&7NcGXfStD#uO)LIW)xJ1TBZ0 zDo)U#B9&w6XhcRYM$pn!rtr-OHsuWcZO4KUoZoFmKv4L$bTsVEbs+whrSWY>kR262 zjDX3Mj;Vv$-qJC3oTc5I0LjH#J)D41LWdD}^V+daa5jKrLugWL0MS*wc56rLRfVVB z+R-41(%vL%$7zSP<4^=(@C|tzI~v4Jiq~Q6uuc?rAS8&_h$?PlhpE)MYPPYXF?(g- z#*T)BW&OzCoTpp-ZtZcA(I2SuakCa8_|Db!+NvmMTW?JDs^AZ&e@Vs?MK>a;WZ;1j9pdS2Fr_u|Cfg zNx^bjGO|sT0DHuvwqI96?%U}H-ZY8^jc??OA4EI+x(-EtUHc90*R{WKxY9_ETdjz2 zSudN`RE}Mds`NN^HH04ssuyR3zx_OD;9jkb2C`mS8P^k4H=Uz_woR*~&G789)mf78 z&n^6P5wKBT#yMkg*NwcYURVwJGj4$DB$K3&P^*VW*y*uIWi zS3|LCde6$OizVQQ+I8Q=(GIt+Ly=n->ljiUmRnat1PMWjaO;XHh2hs_gGlaWOuw#% z1S4X#?$_0ZgI?~}WfM2<0J#RY&8z)eDS4R*JD#YTN{32pH3xa&22;o|Wa1#)V*ACd zNc8Kn=924JxOQ#I_T_r#Y!Y>rL(mR^{r%O!AhM$x%D?5coGuEJg|Gc9CZy@xPu3}_ z#Y78=QXs>XN8pT8+M2?G_pjdj197%L?oR^QyH-~Hdc5GFC`^B|+=X;_e&vTjecD(Z z8YcIy&S!tR^BtDg{6f8==GeIOs}9U*9%q)0rJ@8DoAJF{DuRQE+<6eezlXBTmNt8? z-hNWT{Mq4BklK%w{VQaUCY$=8Z1d-Pf7D5sfi9!u-$U6tZAY&0QGTR^V|FK$-+rQO z&unJOPCpUCG5h@HgR&j7?b|LHeo{j3c^{Q~r57eXhV0qtsqF+*9Cp8OWbL{MwYtY= zk0i&{GXi%-!saUTLWYzL_hZQW%yrVF7H3F!h%e}#f(NjCV@}-20F1cu3=B5W(UaxP zUwVO(9>{a^N%65TbL~_Stq%$uMY}xX^{Mj+L}C{E+7xD4#>bzjGl39jI`jXcHPhEMFE z9rZl1s(fK<(}X2@;N_`eZO11zqx>U1x#d5Sr}B^Hsl=hS)4PX4xnq6?ucw=|=e>pp zFVfKOb{aBjZVI#K;_F>G=CH(--%w&L-$L~5W~vXHGun%+mrU%DUC_>`c+IrVaLAT3 z|5C>5=A{e}nc2B06{+Rj#oe29vu3!;{<|uqWayH}FXukek=_}L(VKk!nUFPi`JzQ` zXY2c;V&`>vcmawQC`jP>+KbOZj_vDxdq7#DXMZYM=H9twoYDc4@=PdUIFd!<5Kemb z@Y`8l)Si94XTpqmC<-V#jUZe0f=%uh#^CI~FRD`e=hL%qb$Ro<&pf8h(^Y2_P_3G- zbedTDA|HDv$e7A~$GUZ@1)CvfVL*sP_8%w&KSOjymY?~k94BJ9IXSB--QP3ADSsyI zyTsT#?#t%x{E_eaYWv#r9r1)Bk$5_4Qve0M)Rpv_i%(xf=0KtYd@L2J7Ja?1+;91Y zC+*?GUW2mPR(U*<>Y`+tb%Ih5J<0P}U8+EWWi+#JFp6Hxnq4G!Go9DcRMS*8b@DSa zr_yH@A)j1ZS~3vY`NeFw@D_eJsnPpwTy3O}J0m01s)yURk+ z=K~0opev{HOhPArJWj8%T~rIVJW>aO8!$?9l)aSYk@H@(e}62te5#vnzC`W~m+GfE z7n@!J3MrC#oRZ7Dx=DJLBOwqBp8xDNJqo?#PgxSzLmvk68b)m`%VWJEhrh~_VxQr+Mv7p6QS5_;0@gC}*w ziaefuGlg^Q(xoG4XKGKwqO1iGm&M&!&U#Ss$Dw#U_50zIay|$5kX3)8oDRHwOC4Z|aTbbU)``FH0Hs$t1w80bL#5i8aF0HuxE!mF zA)$nV+;-glN#IGR1(=sH;J9d#+0ZGKZ2&2mKB>C1N73OKGH?WM`>h%yIL44BR6Sca ztlt!S3|r!&&ng4jM1ccm?}{$+a-4%<6THYWTDqaf;>M=h&qy-5#d1mtyVR(PqXSRZ z&8?t{!2%3l*(b}o%nYu$!vG(76A@diqP_`P_eXpX@G|uB=)bSZ?~iqIU)KCwlJeh8 zI6DPG-t%%$mV7Ucu3!}P#gpbBKObhwRRwE1_j6UDpg40mszO=PJ400{NavR>RiUyJ z@7=8m3}CFED0_2OK;kdwWmC4Q5T81Gd}VsUU6d)e$fGK3%Jt04Jj%fWZj);-+22h- zQe8OnBt>WN&Ml}C&&-wZ$D!G<0?=XU58ZPWpfpAHL6%CchtOV8I1Y(3Fc0#) zg1Jos4&5axY=~XDkBw%J%G;QShm|t-6R^EWRnZHwLJF==z!hGLp-up#pk&gBKArX~ z(#SRicaz<5`whel$N2`_!sM_Ny>LJO-OHi4xw9?R#=teu{eaIyydY-kd?MyDIuTRN z0v74(Z7t+*hity-z6Uo29#vK4b!u1U?@vng0#&uhfyp>ElU>vzXRv*yfVe#QK6S9C zJ>z;p?x2iJA9M%RwGAa+W}PYN#Ul3ysQ19wK6t7by|$-LX-C0~5= zIKSC*C6J*aA3u}bYKDGq*Zn-?abJ1DK;AqCB$^xvYvJxq?uzS%)x0pSu$N?4NhJ z8=Uv|xc*w%u9rB9O$8UiRWswex$`+&>+gyJ6T4UCcys>M(s%}?Ty2+^XV)-mO3R32|vdlu)JK|y2_d~V@z z%t-abyhW8oHOQW_K!A#D)9vstl&L}T7Tnwn%n&vMEvb22Mb{QpNwwOP;cPRE81!K& zEa-b(^*u|QLvFN%WmIfwcBvD;2#UVJ6!4Fv;17!5#1{n@CmmY*kmTN3Hl%hh!tUD< z-)Syqs%%^B)hh%P3Mbqz^OS1iiiadhnY(rsqz^eXe9DicTAMP$ohKODk`avcv>nNi zvG_}F>51+bxhX|04_?t8&R_4xkheLa4pvddgU*u~gsvIJNgZCYlfLl*hnMW)8LG_) zRC}}yMsuBxgVL?hlVjC zXH|@RL}uXR#0zV5J6f%w!n-uErDZU$9NRLmWN~5M_`8UgzPH*M5Xz5OU$^j*`+NpcSiIwPSf6)`@F?S z_Y*!7@rIbI^NpCz=tWF+NX@USp(D4lYJ(oBIVfAPZpg{DUMWS#%qet!FMWgA^pBqP zLbDkJKwF>C?1s>pFdX0ot9ia5N3)y9Q3sseSfj9RJi8^wls2H<;DfsAMtxc;eyC5-!9MnxY$1*FL@TMrM#XhJdN@!K? zbd#hc82n$#-Xz&_T-g@u=O|(X*NB=Jf%=-lF_~`TMCW%jeQ^~IU>8q6W!cDpAA%c1 z;qZFh64QTHoH-9BZs7I&h9o1{m#LBmrznqkE%4!z3VA;o)s%;deRa*FV{1o@=GqHaxxo8|VhlY>A@E+4UjJ7a z0@BxwR>^z_Dl4Ky%siI|5pw17EmUnvkC=H{D-iHj1ZZZ#kpb}8qUY3tWSe`MVuz8U zK|xX))ov5P(K#F>AiXwePq4VyBtjE^f|gU*3bcgEPRS@-e(PLx9b(KLqW)>>7Zx&e zKDeaV^*5vLHBoV_5j4pQFOKz^%5|*YC--H-H`|Sc+H5zw+G?;}4<)V?r-6_Q7w-jW z$WXj)&Nmx0vbEx}d(bGon>|?oChgj4a@00P)e}l6FJYClJ>_bw)V3P&YI!R*ZSQFB z0}~WMUz5p1g*tF~;9F4w!+ogCpX{3zf&qGD?N+*avhpzGWU~c}`)+QTtO0gHPPf5b zhujaEDb+rf$duoY<#1v|m8iD-TMVG52_ifxt*TN}cwZXKY4cAwXI3*r;~>DfgS;k$ zN|m;lScA1so`Ipzh6amZ<2|K0#t-5JcUDyQb6v6?-;4VCc0tzMvOJ2s!`=o&FY3#H z5Y2tP{5;q-Slb@rTd#jHpw0-(8+g2ou19dHAaEKA7blOWXX)e=Q8PGkN1|1W^jJlj zRw*m6CkdkRwbQ>C&Ojt$R4D6%2w_9p|B{hh;~C7V9}-9dN$gglD5_5gShdV0^54Q< zeeLxx1_aoW3waC3h%VScuovFM7RP3f@!TpmNzfOBOfyLV!PxKtG@|IC>>DDF5L+N{ z*w;?~Vl)YrMJD9r!FW^vu?da{2B|xC&qE}7B8zC{#>bk9KsDT!!jnrXSl6Z@{N8*0 zi}5hL1gQoNz(KH2637jl1$Av_#^0i-)L=|2dfrTsV|2f2Q&uWDbp1ESguQeUqQD>g z_rLz{f5=N=XhF4#3$H}s(*YBPDZh(SP*GbjpYHWZ*}eYz<=x+&dVl-hFTeMU_}@U; z!62E#&&pl4DDW2(Y_JIp>@Zf}m&fy;%%#NujA8vHA zOSb%jg2MgS48&p}fgUgV*3umm%ql|30q_I!OS)A(1#kmNR_uynI0cK=Xs~HxLgQHd%j1gcqaw%k8{lfetgoPc2aOL6qT5oq6mt- zBG{d`drC_4IeWd%ur?D)cfxhS?DCros`L0)sN7ZfmYp@`Ymrj%^toA1hAK&dQaHKS zU9KlVu`N6gGkLJORm=2)oOIT**_^%W9(s`1A2VWn?s8 z0H7-vA5ht<%;H^)W%hmqa!%>=L?B@w=o6(kZP(#c{^xm5qH50&#uU*~71(D4%&cN_ zMY!py2v>z)P31Eo4}m-N24Yx(ZZvT6=Cv0c4I@r+68Se(h>x?w<=1;$L-LuyMsEy$ z`x*l8yX-UX8?29mzr9C>Mklik_YAyxwhQg{UiP5KvcxyQvy9K+stQlALNgWS7B)B> zA4R%z!Vbl0hGLrt7%ImYzK;QA1lB}VEUbUI1^3yfc5)|}r@T3C6UA+s} zgeIu0+-ry>)ZVIN9oMqYCteMZqPG+OBQ`LmDn?aiw*EaRU0{G%3x3-m5?MkiIjva_ zHu{FScw|4#lyjYju=JJkiA8<5WPIj6zr3U(HPW4J6(eEm(9Pjzgzb}u(zu8hQIvB|7~=YB zG0U3M@wa5oe-mFMp_aD8znZx4^xy}>5B8EkHu&?tW;*|fWayi#{N0o+BMS7CSrn`H zh0-(>l(Rzf7Q7{@O%@%5tdlY&(yg_c1jws}PKktqiJYZ}bLdiPmpLlTpcQD91s!=9 zF|WWEjinS~9D*(=00M{!=#)%qV;5Xb)IdD+(f~^YUUO5Ggzi&k((vZnE}-kQB~}+CPS+FUJ#U`s(!?QqyI6yVT=D zk;D`iB!Yt|lK6sL?R7y`aEKXu`1e>G?WBZ4oy9*&v{x7=xG7yhIWb^G41eOovo<*@ zm)5E8nq{>;6R8|e)Tt|XGU+^_=wgxF#H_l6psMCu28evvmHbQqYuB^QpZ@u0Q###= z3E>~S5)>iCHo(Tx+QW$zc*@c!_V5aCtihuZrux9E_4 z$0rsj;9@r4&rnEEHk9*>%p>(kOtOhPox48dh>YJ%!2+v+W8cp2|DY%W=lZTMYMLlp zQ7p)GY=>6(LD+r%`|Zu&o_c-v-_IZW|EVM@4!@pCA`D4mo=W0Dk&=j{DTdC5l30-8 zZv9D0VnIDPpr=|%ET|xdDBDD9h83Ph-atQ3D!O`Hu3D5t52fJY8yqx+tnWx{QUj6eI(oatgmY6SmY_ zCP7w4GNs!;?|X_|0y-RuO~aJgXiO>wsWgQfO<0|#@OMU6`^KjjSqv*Stdk0w#XCAd zQs7o?j2unH09XiSxU6Y=RiAA^Rk;WrVs=UEyY1}UO&P){UvG$=7{39R$I|9g(%$6+ z0SmE-BXQM@mN*gKA%Wibo!$8 zJsSHb#-dW*oOSN{%i;5(wUTlt%{nsRrb@|kMjHQKRby$-84-12#{o@|`>B{er%Tb| zJc}Gd$}&n-f_F@ajz?=98WVEyQ5O>X%-w6sOZ{m(d!FL~p%9LKZFyi9jX!%=l^#D3 zJFg6_c~1NQMEYha`lxU0_PIQw{C+Hj4Rp$oKe%sD4rXhA!57L}L-=!Y{zh46@cp-5 zrHFPbvXo_$X=U%InGOBil;2IsOy~IBojwSw&wszX`P)-(@BaJwWB=C1e@X9qzCSaj zdK0Sa40Z&_L1+J@K*MXQYBQ&#G%5=Hy1T0IH^z8(RQtJ$#7b(|9a+ZLmMuFREu%~C z?5Ju}6i4eetJrkO{i3vqxDc8q8GO;Eily;4RZ?lHtYV124XCm-h%kMj@#Htj@HCA! z=0GZ21#x?`uvE`8H-!;At6h^zn=Q(-G>8d^7YrI$)-P1m!$1cO0q~tDO^E9lf)m8x zhaoqzr>YbQeFFSotRzn$g?=f7f|1xy2d);2`WF{N>rh_C^Ov4fK)Y7Ke0J2Vsw(o&i=F$y zI1wtabTb0vd4e%JQMjpAl}PD`F@$O4QM)w4WZVg&z;u*ZxSjR!%iM)QBO$Ps^rg({ zDxkRFpxjgecs^~$N<6dR4JlCWN;_TF4rY8dGrbT7H+z*<*;q_#HLDVJHX(Dd+f;4X z@aHsM!pw(@pq6Pc16UDR4^EL{kCI6fbpyH$&5$y6{;c9y6~Jb!Hh>Li(k^yijX9YDma9L@~0{P2QHVh`UP^@vz@_rsjHAiSd6G z7D?3)L$%hMiFjFFs-Ed~z}9(w2Pu=?ryZL*Cj&Ds89E|Une8a)1-rsC`%mLG z2o0@09U6#N=J}h-*AT?wS)LC4X%ObZ*7S}v;=a9FJyixukp~a9lYAu2VY?lrj_FTB z7!uwItpe@AkgDB=Nmm_Aknx%?Xj4cX&v)`Ch!2u%qGstdoGF#9dd8TAQIT2txdY{b z;14B9>guSamBqX&9vIzeBmlPJ3=w~VO*}re_xyL3AiRZ7bEBQePM+U0;&ey--I;{D z^UT}R))f(lHs`tW$yk$zi%3p!QS!x_!-PmqK}%MLT1x(ySS+oxZ0OWitDG8<({JJA z;BsT`Ea#!YR5K_Y|ol>0Oe>$$X5oT}YYFgqYi=)hn(*N#%$#6&?| zKs1@gzZg+R>1Ce4LVr<5P*N3+OG5Le-8|ZyRNZ{*i8*y#D@zr2pwnQpA!sgZ@e>ax zO$GaKHi-{!r~OAPfTJUOt*Uru!esttXIiy$&nmV;lT3otLF&Mrs5?`aCk8bHHWV8c z`uu%tXjq{3pW)ZM$36~_iuu>eb4(whw+WVw?k#T%u!-Va7jIScP_1NcXFbt%uTFCB z-IhOtJxm!efb#`uE?;@4ZovzNrAX1CG zz#L$3zL+9&#e4@C4`}LGX--FW0nL4dc>;CO1u+Iy-PFZgF4cev@5&3~B9V3qKUmG8h z17++dN{TyOZ=e^np1*_CUHq)*xp;+R9+#8k#a`T<_4>j(raWTS>H4`dBZj z(p_muM+ZfBE~Z$V<+hn39DeoQEDe4RGFr2|bv71L#MHbzG0g5Qc4BfV116W`=j=1} z_G0Dxy*d^<-_}ou9=oY*M)LQdWZ^4z8j;#J0wjcID6o$=-_H<9pkgo@r}Q|8of(OH z)jI7A3Du@6 z8InCcY<;!y8FyTUe&UwA7%za!h1X{?5>AJjdENUqEQm;7mtnNxE(DrHTbucJuZ=fS zM+gtI?lYaHo!GWp|KSfZ!{%WntU(tQO`${Sigwvq>4L8+ZGEl- zh?kkQnN~>dMSU7Ayt{ohPuHfvaNnyiZYpB`)S(IRY#PU^R}~KC<)5*H`I2xM+XQL3 z=PB9SL=2cq+O2g!tXdndJMO$g_9h#w;wQIwDU8r)B^|>@rI-2#Q63_^FK^DT#04%r z7nnRyXY}Xe)V^9@MmDhCxLFYE?>_^j4PhNM<#$tXmTB@|y*??c*MGmg``c4*Z~yz{ z_x_~?hQYj zNeF>F>;qRJU@HjUn4Tw~M&k_tpX^V&3T)nO^vDFR+fQ7oEQlGoK432LW$(_jYW4I?K_x9hIV7})NT(04Q>jo7I>pxfaLvW zvDObD(?;Lm5insNzc47zJWPS-Y#?Y1vADfCQG37~1ZcFbT5|&j4AX?V3lGQUa-nRy z+vw3Kxa}vp>i4^B>A-ZshTH|efgU$`P(jLM!P?ylGM1b^z|3Gm?llXOV1W6dMmEZI zJu^PQ+}HzIQw{AKk<7?eqkhQkfI%Zrk(<9VA3_Mc34@v{%!YcSH}{JwGP1acCPD`I zf^reh=?L} z;ao&K`okJWF;-$jNNqjZBS|{jl%}=D8!EA&p`s01F%a^Oh_k8@sp3BCVPMGA;|mt} zk+%nKT=-LPVz}XPr@)N{yV8wQt30}b1)koHv#d6^V}XlnJ87vur>0-ff$FJG&z&JE+{x$bk+|f4UF4wg5WI$t!*4yM|bz4w>} z*4AF$ZLtmZ2nv(5_=b|!UgK}@wB+J5%T!W4k)}qGnlZ2=AL!C4$3CCx(HVDuWBjn7 zfwKuuGB#*R$EYqNLJXW%lu<_#>hnFL%g9xbd(KftTgfKqu_y?N9ZZ15h8`HhV9Fu> zI*PeK{3gpGX-KF{+BzMl{7760O_jy{5kPoAY{}qfXY+K%3JsJK0x*WLP|@S!@hzyq zgU@a<48^t?OfFl^pO1aTE1I=Vz&#QZk+9cbZC(U!EaA19!rviN#Zkn!Tw-5o`YPx$ z2E}bM09J$B4U^E=Hvh>@uCTqPnXevL$xOb@y8cJog+~s`?OozG#7>Ogs5O2Ac1ZKh zI3L`3_12nSf_)&SC%GVM(vxp${}1LQ<4b8r8cpUIH-C<~B;ogCa$hD~8w2z0Wn!Dt ztrGvddG<5s-TT>BY(aUUOx3+w2H8`r!WVU;0!!=uY z1UUv&#hp5mH>C;I#y;BXxC8}|w%qSkyz%+CaqB0$Z;TmZ8k9&F*T1%V2PRnlv-i|x zRPwd$!0|axjRK2q?g2rEx1`$V>a4r{bt%Mqxf|}2_XcHiT5{C(jj|RI;Yz7|BgENz z|0N6WkS?zIoEoHS-&cD0GsIsM-+(C)^>mQx5`=bLw8Q`Y16$}_`WH%t_ks>cgw_t| zC|@Xb*bxkLM)vxopfJfxr+0#e_xnCxeH$XJVLFFH{AS$1qEuF9OB@wYI2-pi^Z22= z!vUyJYt&Y${D8`64%BiYZYOff%bx`K83xjcLV5JE1KS4{1jJ<_`J3g-Z?u_?2Y{Zt zvONUsjYz4hdm>SF1*qL+2t5?}u*kY(TA|v2dw94OK$zkQmT1B#5Fg2^6;x;8dljGr zQonDmOi?vy$VHflW=QF17mL@MlE}62h8z0o4crX=LWA~x-(8kmq@X0Y5$-`qF^ush zgl=bm17gM!yaI0PyCU%v^?Q*mFg!d2LD5#fWfH>kS^ zGdgxMQq$uj+{RZU5-{&4Q1}J*fOrFPe$&uz(8#f8QW30srke`gzO99;jUpBP-mIn~ zfM(qLEF;(A;<3CgC3mut3Tz{rf>LQ`AJja$PXZ$7+R4C}7E%ww+emPG(*K&d4p~q) zg}Odw1+d2~Sd3V_dq4C0(JM+=J_6d%+Y1v#O*uxuq>*$`;5)xzcbl>X0jv~J4EOmA z-12>Vp~P=J6hxcBMEFUWBMb5f9>YA!`3!Ib+u5r!wqzW=7G*#4_NC&+2Y||NL8DC&?hyiae^TzMg3*a##QiHJdZD0Ine7|JzyA9%9u4wV)bbvq3G2s@xR+Q% z?2{5d1_v~z@spr}j_8B$y1!BcHh6S;Cjdx2sSlFZ+E>c@%-1hcrSjnI>oXT+eHAMM z!PUJfh?a(h;g{vR|*hMZvNCjn%nsq2oFv0;A~1(()`gY zDEpbW4_)VQz)=jM>a+!A4}1CwSQMJ^_CACad^CPL4Slehx50Kcm>p0n;h{sdCe}*w z6@YRM6)3O>9ObT^E<6NN*W^Yjuv`(-l}pfQ*4yn`RXuf63Q>jehDo4%A>JY|0Cxmx zR|;aa`btF+FBEn|2|4~`Vg)?d_bBdo)3FxJ!+)?iiZ59_VyLbU44#_1KqiFte6fgO zRVg!srQd2(F2Y#)YO_4wLn({$yD46x-;YIO=KboYbN2V33NR2sYOKdt2}pOet6aGU zZED7H7dG z^6RJ)gSjx6RyfsFCNaoyUW_8;_5*cY zMfu&7^(pULkj9+VPsu=k{~=Zm&zC6lAeg6%GKfw$;!+q)18w49#iqt*CGgV1lnMfr za`Mk6EM>3?>bcETi05b4LZsgA4DI=58i_Uz%u7py8)AhqNip3drIpx6BHg@ID+Cm$_rbuP)63g12sE;6Wt5 zx=Lg6Gru3b^tEA0SbT3$)-*x6?k^L!DN8253IkKWQC6=ReCLC*w*32etV&b{)Wyr0 zW5=C${#;O0rt_p+gosR+Z0D3`k)Fb6cr>#sAt2;ct4bsB)28t~cuQgkY!!!68aGPu zva&xyDxU|Yh3`QxU_yaac2FBBdY6*0;|YZDL-q9w0BgfNGi>TkNrGEN;kO&5VU#!s zm_wur5j>8}Ey?MbfIH7$m<)kpyNcV5-9jL8Jbg;^33%>xe5I)N`bj}@SgNeN0xq7B zrC9fzX*^W|m2cz(d=jq0U@~+POJVhVTE`LsVySk(bAcZy%5CnASjP#4gd6wFu+1*% z)_N!vc{(V6Ogx3gFy4fuh_>5YHl=W{CuE3@7ckDf>KBxJk4X2T)DL9fUc_(Z2$A81 zqVLxxEND!-QulVCC{ zON8Nvk3)ia2+Vs33FaAt%5YeM;dhTyf?-XVlfChs>6KEmw}J(jggRA}10=w3$(Yh4 z0VcstC(+6ROv+hl@D^ZFri!rym;`$!E7MzmN!f4^7GM%gds|*fusq!DkY5r|thvM? zzbwlBlDF-rRKDmJ@=F3j{n*mVujOJV?NKjfE$0AXHsl3$*6Q?UZe zF9|4FEVCa1%tKLu2@5cLk4u0#+7@6oMFI@pASI0zY=8sa4gn^?yqdQFlX4ZKw*Zp> zaetoz43nyLASnCL*DDV72W7n+;i~ig zN(n73Atp`Q?*}EcwB752vb3~SE#?bl?XS1*(#LjTbyifrFIkEFQpoRQF(+}C!&h`= zd4aC1{WBS7l6cT8&B&+I?NAv)Q%`+iVleL`b)jZN8$D`1DG82d9wB7UK6@12cm8B{ z!5uhJ=~K9vd6VF6)Q6~A#%d$lTpdj4JV5&egIxCcg~15LdtM5%NjfgLsxmE^~8|qh)S;zV!BXmxuN_Oo=JJS*F4Kp{(f>)bcbfI zq+M6#LJdm86_E%>Hnn`1eehiF2p9mkz^u_d*NP=#NOXDiP-_H*nbYY!OGFzZrBlKq zbX!}_o&<%pYZHpu0$}Fm#+4L26gIH7Ee@f?N~;0L%rHUqe2kX#%BL*y-H4uX%E_2e-l6q0LyVobE_OnL0+Dx-& z2NM(;yk7u&hkl{9<&Ea1F^LG<4I}%39}YNl3VrXDoTu_;KR+TONWvH z_*zNOgaCcoOppyzdcs#y`Y1&lB;8?tFOIL6-s6>lKndkNxMQo+PtvVok(B&VWddiO zib0}ix0+Q&%~o5pwR%6Z2%d)b%Qa_P_#T0LEKge%0by~<9Fa6Lx6$JcZ=RpHEeXaO zZfgzuH*Rxc%YOImlPpga+x+U5truYG)BLl|H3{o~dE}hiKBeG6tHCH-ItQ#zwg>R0 zerR3yZ5ekk5QuA$cAIl?|EKK-Q0OB01t=v0-be{>#8o?!8BXV2yf&F-+SP8&)oeB; zvo;pm*Zn749eknoLsLBTLkZ1Kk~oZQ_aUjH+6MV%=}MDGsK!yYus<)=&K)una0^Tt zx4U$mo4!2|2n@g#=Nn^J-=Qboip@y3Qkv@!&*6^XL?J#IZ%~=LIDS7L2a=*`1~8M< z;;vNZe7TOTDRA+&kPEs!x|hqaE=roy+FbNX$VboRx>v(<{ zEK^mN_GWqae7QWTB_X~z3;HW-bjS1hN)#RFek&6-7G?i3OgOJ&NjI{89)#gBPBP&$LlA z7nNqO@bCa9Bc=haa)2GhL;*I?AK|Hl*9c)mnUP>?iJr9}yiK%!_ImAQeOp29?%Xw2 zu*Oumsy#-JD1UTAtW$jZJEYM~Q32)shDJWT ze?m$aduR-uR~Uzws>FIggq5XiI@L0x)+r<22E!RLDr`y^O4wgqLpTJV>yisLRRYgi z8<&)fPfL>trao8u=VS4#?q9l$5gxB{@OabCar6F1 z7`IjFDF%e9MRVIl5VoApF*RopCWwlx_|jP0l-fOW=_{i&b{koEl5ZD9RSZWGyFpwD zdt78Uh^ugiOE)6xi5_E06@_LTrT*6Dp$~JubqsaV2#Z?+tyYN^`L}A z&APFK3@e_cE;SyTJxV|HI= z92qJUJ~l}Qe1>X{x$jjR2RA}!QrOj8_S~#Do50T)+Q9+bjK+ohS zOwU#c7Fu2i#;g)5M|=K9?+-$ij$u;`0=j5!y5-YjZQA^@L@mj-Gj5f@Xf}!sZ&
      7?_=B2T9|@RVsUOx ze|K-x%mA>ZnDuPkLB0pfpEOi06tJ&h*MKZIR}-p(eKYHUBGnMMpD-C9OM=eD6pk(w zFBASdfzuMIO>wvRe6My_s^TV8X|&UxF=yKIC+=OP3q4AAWwENPhwM7}Q^*a|eh0Vt z-9;5l`~>vbd+s;Dp20)1ek0Z<6Nq3hWo2=P_r<1Z3TiWl)tjx8i_&Cn4z(F4tJ7rB zjWeHJq%qWYmO$=*mdV05(9$ROjTBn&dcuKpRcx1>uc2K6T zaji8}yTs(j;~7-XVo1lPq|3!N%vthvOR+mB!YQ#V214Q79Z$S|rd8pls@f*P6M*QJ z^c*wfD*dnjORA=8maiFFls!n|xV_8}Q+#wf2+wxvGWooJsf}CjFSd>9U@af3Bfb^A;ZaKSiwauDU^dHr)+IxVo)@KS)XX9Wa z$h3i(R)b+y%O%_$^POBQ(k{-Fi!aahgwg3O4`x(h&r=fRr5;TVcNZDVM8(Zw091Lc zh2wgsr8KkBde;7(Z7a#Rj`KX)apE_{7|D2p&Kmx$_!=aPR%vIIdF~ZSsZfYfU4e%o z5tSsPmI~F6++<IE-0KY{uR)KGYnXB3vI{0W)U zGivNqUzK>=ZXNTJj6z8~RnuYLeBsO?cVg{xR(+RAS@0Qw9XD2Y9g4#v8-gII4aZJfgOZc}ICZVB$5WPynnpoSM- zVA*$7`s5(kLl?*zq%W9^@*OJ0<0~kmnommm2^3ryyGYYoJIkkBP2abfm~Gj16$>u@k5P#U$1Nn5oQ@kJW?|f3~z)gy94urhPCqv zRb_eFEE=DN!qtrYN2k+;CToS$KTC9oOX3V7j0INHj9Xjc}Q z`T1v4dXb+|C99*nD1F4x>dPIzCWK`ZyU7rE;S)v}$UWr)W|7a!6|d+7hSA1*fxb7K z8lx~K0L}7dP}@#mq2K9=J41(MuOhl3VcLSrOW9r464 zwg`p@zs+zJSp~LuE4X5GqK8W5qOZ1_?eg~r!FWs2J4-|#ork=Kvsv-9kUHSWTO%_n z*ih+<10jSq)x4j8uUyDuMDdH|GKduy&@fiQ8c(oU!!UuO{MaP7f&mY(o<-3K{{1-9 z)-1IzdFF0L5d~#)n(1i2Pl{IyluOF)7fLSgqVFPs$zvuM`7yfzlL(csx_;+XCSL;$}X2nX;dG`%ry7 zM4~hfSs^#`$aP(37Bf19gLHo?)-yA!0DSzjouJ#tQmqrNxgZ8Y={HRT3uSs~Zk zD3l>9WY*IvhiLHLD?Zj}X_*Dz@UeFhlo+CHxQ@-S1aOf-Zez8yxp0><3&0dHIF{Sb z%@Gqm%29#z7W@fIv=Typ30@$>n0B{y(eNvbrb$55%7I9iumE#&(1no=avQ!}0{b90$G<>ehlt#4=>s2v2Wz#3U&bCm z=~}MtiPN%W6l1Am6O!d}a|8{lQ)&=0=0T6a%r*%E74o}kgAjw8+g7W`YCLJlEU4Y0 zvXUXyWaxbJKAtEtP(rGK2N>muSPq?W6X?*4Jt&N{+*=%PNFf>Vla%&k5aQw$aX(Rh zwVXLG!Gh~aVc;IxK^~JqF}~>HRoHL# z!?I`}DcJrzHk|oJ$IY`eDy5E!5>oV78;ZL$(@ol40UYp19TVL=W@M9Vnw(JpVZ7lt zy38Fod$k|!>@f08Nlk~ZU&85?oR#5G6^ltyFdmBJRD&vVO9|VPn0e24F>(y9^J0#& z`E%xe(CS-5SzK%BFc~%g-Bo%5WzhJO&r!=*{UMJ9-O4_`fk>Cs12JGt!XPY3Z~R#1 z$sRz-i%BCpjGKEgX}D_nVl!#DDAU+XdN4HN;L(T^A`Xjr^bi8n;=rRAY;p1EQ49bc zPas>MZXP|F5l4eXBT$TBdS=lO%=rSd=+#~9X}HaKrp=_`v8KMWm^8x0sUn$4 z!`UY3SxkDh7n9x;F=;sCICbV5@PZR;G?;WZaC0zexR~qa(Zc~*n@7Wk-Nxq8Ls3kN z0}n@0Z61wyx4R!tG?^cQM>D`~96XvqefQ?kNJJn=vv@Q@XI@zJXv(VFEE=o1RX;8! zS&cb#jA(P{vEaMKp_x51H~$@h`n)(aBI<}T8c!r6%zCCVPyP))e!U=uW@ICg8=6D! zc5vuLF^67nFo%wX*c^HUc(pn7Flc#jX!sS&eX{6L%@M?+8CiO777e=tzk0Fg(S6sM zMPsQB4viQlj(KtDp)(=&JnU=;_PpAQJuiyc^SA>{SnPQWi!F;iBg(jK?#%S+y16q8 zN8BfSMs)3+HhYex59S*TYqMv}s}xB;ap@<`ox4L6H+ROV3!q(c{4p)riaWnC;-8o3 z9)Ke?#x(~8m?XlPjAWfJl+kc2(Yhzo&=*Rj@$7f|=)X`G{5uY)QK^+^cn=OD6x^TsXH zbjmG);HSh%WHXmrJ#cX#u@~k-e0XJBL%QU0NAfhC_?OHD=_;}#*-Qk)EXPV0Sx>wk zzp_2u_Y1|b`*17XG8GMJ!bsX4%tO&0PViOH{6+2qi-N+05Z({|gmE*Nzw2D3d@1dr z5h$ys9H4|Yu;IfISHcMKrgmg>w7J@}lX`_k`Q4P`OI~-M@NT1DEsmXlF%O*1l;54T zVaiIYL7TB!;3`QV;WRzUOo0=`91rPq$N=xo@qk1JkQ--(Oc{)TSTxW5EoAcD?w2jL zo5B!2ZWP=}NhK;0f=(fM0m-MWL4i@FQIu_TOS1&<6LVD%o3HJ!;C{<4q%FMa5NQEIXT#s^^Ho(R zb4W)32pyz{t1D6v@X3r3%NJA5o*_@hphir<)tPReuPpbr+vs3nX_w1t`kVR674^CL){c-WSml*85Qp zB9+)LFuz?>LP><70D5tHhw<-fqle|k^@KvMpEnQ!jq`+5IObYZ&9xomN^ zx-|14_`YfV4npNxWYj}|ApkoODkDlPkd<~j1~c%7%HDYl6!#`#?cBj5j`R`9^A2%I zHxafO&VO4%syiwjr;$!5#<7ce-pYSSVw7?GkhFn)z7Hr$B_8LKnn79z91#V)l7a)| z;@C`IQkifE{AP+VyRCU<)PgCAu%dj!-6fh_{tcKBgOO#RoxuKTPRAkMn>A)=7wLsn zM)-a_5or(c2Gp{EM!J3?R>r(?ucUb8+fuUC;8060<9K z+0AJ-Qxs#&Bihr-m5B34@V1u|3hTvrLf2Hp3##sf{R@ry8-~F3Z<>f0;%Yx1;h2)3 z)SD_?yr4}L2d-xLy_-QtiVb8EMuZeuD1s5jM{HJ!udL~K;*uI0Z-^`u{Dw|ROk^XE z-4k7T>Ao+8*i0p^^}%IK*!+T^7B3v68cr3<-d_mok!C0MCuQ@LYG?gH$?*kQlFyh)X&XB0*VAL^Gx8{ z+#K{`CYBLv%zLg3$<3K{jID5kZz3KFb_|G8h)`SYUd?D1#f%f-^He<%jgO}CRl#Yi zEc#Wl`?CoA?kZajcz@@@%en|rN?fo(x^H6sTsB!17jH*&9=672{>}Ns@dP12xcxhH zMfx=g@1MCmAO2P8;PeUHS>jn9+ZSdbhwE1u0c6VW_Jx?Ia7DW>#mW^8;mbkd^dwSD zL?K43&n=@qOW-GcSxc*Z_^Q?u&QXrp?#Yru5uObV?nz_7;xxfT+K_Oxn*+=?MKWge zm$tXpqB)>uxz_-@nz;)VMFbX6>Ee-|FL96`ZC=2dk32@QT}Uy@0G?>vq|>)QF-5pd zyNttGWgKveAy|}nAv_pe1{AtBs1Rj_X3#mt<0-(%-A3A9c+ak}#7_EOeIFsE6Yg2@ zme`cxECC=mO2LP#jBNCHFa8ygOL9vuJ$Sr$lz{3;|eI`84K@zmc@Glhq7JE@UIw&l@m!4iKV0ciDXI{tbC?b_yI6fpO$hZ*H z1)}|O`AS)XoS7=#H_GlMyZsl+9^~72Y?r7ECp-ojl;h`EBKIo=yWbH)JjLHA(d*HM z5IX!xSOZ#pJ}Fb-Eaz{3Q1++3eU*(8gPVMR>Z0rs@owo~DKWD-DNpblMb&UX>CAll zM!BZSr|(`L6vSyY^%``}exvLudi^ddWUN4Xer!+x=b(r!=}w=7{bLO2{6<(m{`Nc0 z252uM`X4eMngaR?Qm7{Nfu@?01v|Bni!d+wX%kv5H`#3q@|Gpr5O5Jc|FH0p6+pxs z!-7~%_+yYs00=(RW}|Ag#?=_!!A5(x}E0fY7dlwkvWBx)f+hKcq} zBf{u|q8Qrsg4wF0==BpQ5>Xx5%`pIz2M(kd;S>_(^9c+oiZ(x(rnvotEcojUO;rGo zpJ+MQk%Kjq(YFS<+UqkG1(EnzCYAMEAHEhE23_@#>!KjT91kQqUJ7beB(D3*?xF?? zJV(BxK&*v^Z4(h8AURCBfEZSWxlEU5#?7@lCX}q@gJAYF zQS|f=hf{bR*j&A5T9}{QT^HsN!jRXduO>P)af9_hWq`xM0Td6PVR<$DS`_8?sMSl|L;gAOsl)*x#I1wb7%~p17YFm)Ra8d7m~V zH8LXaNk!om6d|hRcqg*au&Y%Ji@QS#2ae|Oj(|d0%cyqE>rSu1l)NpjKN@jE0e8gONX+Q(1`|pH^;#Xfjj`kZAZmhC4}y zi|_wYFd;4&%u#W?Qa$FdF~A|36cd{ckRNaq&Uyh+*phxiH5dqyc<)I@@{cBrp0Jp1(NtAv{T-tA?%hUO@3;EY#Y_RUd-N4oZgi zZ(5*XOv_}&rsrCkwo2TWW$8h{&U`C_uduB6KwC^?!ob50S$rng=`9~M?=i%F-9>XY zYgehKhvMz(o9!-DgFvy(vz;PfWKn3nS}%x;4nNV)BNStRM36Y9tlbS|AHR@<;kFhU zU&)2^PKa5+PC<-R%+n2}h0z?INYr!$-(%s^Etfwl@uJ=Q?A6+G;M@8!ni}rwzD4K1 zo3aJUA-CTPWgbE(2U9Hp!`4BF4DDLE1qXo=blWfhM|G_VT$Qcsb9r>u>AyqF7Guw> zWi7@)aSK4A^F zQn1a4ffy9)vJ##$GFK?KVHq(oljb2_{fv&fo0Y^{#nljbM23&`AZ*~EK_%8F50(Fk z_Rq%(3O)(}qb%8~8n1sBrCn(lTMa>z02DeXnb8?RDNwYZ+oqvZ8CWsm%Yd+RAzI=2 z?SdkKgD)jgZ$ZeKU=k-U9Yib+!z6OF1@ROx*TM709$hA^37PR|qUt)I4??Har;I3o z+a(teO#~&p+E7GC87>}zRlpuY&O!@u zp_L-3o%G!<9g89WK$JxxIu;fK)CWfC0#a^2J-V&^ru=S-m+1Fn(Fkt0`oU(>xR60< zw-Q?l;$cU7p(NGGG$j_6AexZ!5avn9%znu-$S=C9unD#Fl!EH)(w&BVG+@J3vxcOT zE|9&#%|S~)GMdKO94g_n2siVs*&V^GM&;yQ6Cmc4!1)XbmWSudv*t9*oQ2wYH`@d( zBxt8TA*qrirV6*}ut&yIR}cWlWmWs+03Z9ucoiz3elYH|zTz?WAM8DI+Q91mMkP6%-hziyXEgJAaHS06KXw z60-7P5f`PDi+&rhilQDvnZ3a(rt5}6v}mDzSD~AB{lpNzDwm|Lne~EP#Q7(oyemR< z7@A%$#KYFLB$#d|B^?x-*=GuzKPr=WPZnhOv_}m(Bd?33xhYNRf0+t?#mFTqUEVFj zdM7&9OI31t39?vaO_J}5qTgp_&TqlzrMcSZAwavJ{BFwrjJMq&onHe_5sOEK3f;)v##Gy=;xQh*5vHaY= zt34G#xhZ#%{o1uzu>OT@`6K6arPhLN+RWbu3~?etNbo1p{TIc4)R2o>XK zR(bn3ds|Z(?CpJW1-6LNDYYIvU{O}bdP%GNq-?H0_X^MOJLT+kduM%6)*g5tj|RzD z)lK~FmtY!lDhKnf1o)T-|EyU?-p#6OPG%gNa=F;z>cwcAm)B$-nd57LP14#)c^eK9 z5rH$z83^WGfhxhPHJEqJiY?u&`n{Ltq$H*k>~#|%*f0hl8RwG{K*|rLUS@(Hl)WUc zzw|0%vT$5GL`;^|6u75F%#&hC#FP**qiA@Dm@L+*vuhcXWyT?WTgI#iG{rfwj9C$* zJWmnRsGduNWC{9lw4)mIrr@S4TgZf{NRiP(=1{G&L&(H%YuQ33#3bl-A!H&0g8_U? z$aE#{C1ehjG+#pI5E#@UWMay|b3@1+Dp9b6Ot%kt#*{@q z#dAZ*JSY}2O<7Aj=!jf0CUTHwJ!MRUNNepSW4e&|k}+LL{E#tKOguzLEXUX_mA2jz zCPKPr-V&zKTbG21q6b$xBurP=UJ|Bj+Aayxph<^_iHU->Dnv|A+!8U}{`r_%9i1Vi zmTMqz-=OS+a>H2hN@vVh&PCRRU4_#8L-Cc2iQ&dr$#!%Li7pfRdRjj;Slj0oqs7jM1vUh_Ah380@ zl<{2A!*TC%c3?)ybJYjumye?yIL)QpNy(m_F$^0uWD>l^Qw$6BBT=NR6(Ml4qC^f# zCGV}sfU89mmh)pd{(^D25*D(mXi+W3{}3V^ex|rga%S{SxgD*AQ{U0f<}?8ZTu^9H ze4@!LlNpOJ?1E;xNL%fnE%}>r=mPsw-Zr4Lis*+-(ITzlR#|;f_`!*_{6*l5aOKP= zZ&!dB!s5VSnu2e^v}qt~K0qzW{?!!cWX{XAmeh_ki+1dCSL)yGZuF9aLK6aBaGBlH zqIL^ZVYo^$9ea5fXJ6VJ(+Z}2ihUh&^l(ncIu+IE0MX9Aan`Y4lNrbUeR{G2WB;fzjB5Ns*)NA!ko#APz_8d$WeC1dbV;4PJ}4|qtX_$kFyAO^f4zN|<;*Op z-EfbTGgU~!=Y_IgF;1blA94Edsfeax@L^Kbv}sI{dbtvdhr?)CR#BW;!LQC@a~nOJ zO}d^y5MdX1o8n_!(`*{}hgnL(pGCOL)dbpr^3d&UPucJ`g^-PmVH9k4KhWF$1pC)ADWE%XE7 ztyLsyOiMWQxL1VDlkezquBfNT+f+CnyDhW}_Ao^!?P+_~B!^X?i&BDk1T{wHJ->Ph zV^*kM^{RoF)D`a8IDszY&d;!9dgYZsMYtCMDAmg;iVIMQi%XCvKYSlwU2V5TY-tbW9EEnwjaaRZ4aeG`yk$ zha@f#W40*ksQ|yCy6S492i`r7CmwZC_^zJqez_q3h!wS7g)hlITi3qZce}e}@j(HY z$bNxX?^=x|NIySnR*L!*Me%NzU{$nB1tFXjWz9%5a)gH^F?sN!l4TaDa9M7_V$gHK zhVls}+cVZR{|TfKhWv57#n?y{SQ5Omv(%pCG+84~9&P8MZwk>@`2v=4oJ|qrSsD%G zI_*gW;36Hwz@W@6WMz6pUQ`FlqiLi%?v4$ox|SX#t*?17EVVtWEWR2~H2)$@t+x)Z z0JW3E3?4mbQ66QzT-3sNl<%zgM=G`xhBkjjoTxBTf^wH+!>QVnP+il#P164 z+fm^C7W{^}Gs15vku2_vL=-~im^&k5lN`p}d9@dJUKDd@2JN@aFPP3#PVUTD=Crvp zqvJMnMlkdNX2;Kv7!=$YLEVI~2;MvIlQoCgCH@SH3g^YF8So&S>BX7>Gs>SdZw5Xr z(bLSE(e5W}268DUajF&kR`DD#$UOFW4 z1l*&?Oy9C9Z_bQ}Z_2#p%r-U!V~*zH%Zt#J8s^?+%drfbEhF5Xx4YRg1~{|XGPWlX zqZV7v$&A2kIV%d4w%Ky78t&rCxeB(-Oc}_mROif;cRQH! zqKGM@|CKjW&dN_Xm~yTZse&g1pI6Gx&2+NlUul9P*A1WSJ7zGBH)fute(!&o?(ym4p)K{43wNy!oc^0ew!qyPSK#iZtXOLW^db9L=12wG{{N9=)8Ci7K1p z3jx--m$tVmnnY~7hKsrEi5vP2B|pXuh$1-D#bGv4Q4_+}Abn8Z-DUeVVtqxPVBpnv zwqs{j9}ZOJk@`j78B6={ba-o`oY0-m&5M#my&O+ml1JkWD0&;eQN($t7^%U2Sw%z; z*q5?zZpMyPpkP!Ts3FG|_B*+`4e^)=ygQGV_5IOiClm2p#^zsaA=@`K)VSgbEnl((Q)kqyStUYZTEyA!?>$K)9!x{^fQzMsQjX*YKUsO+zcKLFX zhR$N?vQmi0uXY&LHbsWDr)|kahPBFSiS^GmtnE?BuvSqQQATN%(qN=&{j&{g4~1;a zcD1L2bqLwj_~ATrVOV>9LaDVjtkr5zB^%cG;Vj-ChBelWZ>JrNZ!P_W(yfh#W$mF@ z^p|CgOU64+lIYX6b{dwoiU8L3Ck$(qwal$FcecYIZ^K$e1Z=iZ5gV~qb4813HO$9h zS*y=3*D8l)ZBdR-dD(sR_^fVWSmR*kX$z_-pjo%6jWfcflVy!NwAxfo%NiGxub3)v zJ2WvitUYZj{9#yorv0+AMZ?PlUB;?*lyE5Nw+12)3hN0_ycEtmbhIkln|8B}Y^vn~h-zfX# z%sWkADa(q+@Y(#85>~X`>w~hbXx%RKFO;>r-o8s8i$Gc4giCJ&U+1Y@dRtd;^U~Y8 zs!1=st*aK>p}MgK+rGE@48vR8`!`K@TXiGb-V{n3?T`?tQuR}HV=*!^kFaIYL@(8C zw?jx-6sc}F*%FwHk(muxyi_+{{B;Wem<|a55;ll#?>8lXL)brcrE+@4<_VaE7tO5) zzOFU5uE>K>+`3)%TXE}R+0xp2Gt05ow%SW;TNG<;DC@}CvM$jT1F)60t|DklY3q&@ z39XItt^KPK1|Sm?4&GWDz}N&0Z6RR}xM4AGTg1ABTMD^W%P4DZMUH#k z)}naAfj4Wm$F%1lG&e|PoNjAw-POC}T3_v@yKM@UxAg)mZ?PI%d4mqatIo<>chC}* zH!4IF5<+?7ahQLW^2Q6V?we&Omv!rI01x06lkUc?I{qx>jqcn2=g{7G2U%*k{7Y1K zEvM~vsBeoR^$jneh->u?KSAEI)Hf8{yvNqxhKdu1`ZjF7+UnbIe2Ue#So#of7q?m> za1YS0c*1Gqp}=(&uRIhu9KAfZ0>_Mnt)IMcVd-zEyv9vgh)VhQpx|bkg45-eg1Hu_ z&erGdC`e+XU$zZk#o=q>^52rx;bW9JLg5dDjivbsk{c1bc>J4u$1RCpA-`}E(6)m{(4*TbUUTlV6l9do){9A{@9Pdn_`;i z5R~Llo#OSL5)Y=0cwkjJBp8H@sNHzI5`SWO33=Mj4FI2VJB+HBsXUK2lp=Jl^&4KA zE>H1VNMAp1OO0H%=ba&tYwe?%OZnPQ)Q|X^Q)$lOZKQAkxqls8SaSZbMzniiI z!Uq3j$=@hjAVdu5i|ch$grJUI)dJxsB@@Bw?DawM2!B7uyyLKL!GRUJ?T3+rO<~ZL zR?HLz+7P_)rY^o>kx>19Dl(?Z;tUEBH-<{^Afv4uG4%vIT>(+>c>>6mG4xHb1IVJw z4D2_=63PH7PCo!G5s-ujB=D@a7hH9W6T!SXK7@+y zmEi(WRUQ@oLbV!ou>{mGt?@Yj4qR@#8Ax)KQq{~Pe4qACa=&Kn^ybhV|rhwJQ17f zm~trS_euw$ioYqIVpA9iH*GdZV~1s;?c=B5x++$^CKNUTp6@CPGHOfRD>sO+es}kj ztEf(O4%BW}CA%IJWsOJVC(abJSgQOEKo)cuW-QXhI?08X6q+<}abIBHq$|!~Y#e~{ z;j5*!dF~4CKp~#8{qr%q4&Sq#%}3$yrZgfvGP6TLsviVTFeta&TVE*ah`s$%%+9;U!<$}k(-Bd}wYU}6}`kyIg!2_qNnRy4(Pj4T>2L5%_V z*S*^OYE|i8PvkD}yLdxV^uX~OUYdHlpoNzbqpao6`(pnnMZy=npauUPlt`w{w{IU6 zTtM1K_T8iV8Y1>(qaJf(8!IIG_Tl>6=VdgN+`J!%xrqKZcg*nvGcY`>Ho(+WtRY4l zg_ZRaL1BjE4E*dt0c763HITebhJ@6c(!_6>-s5}B#W%&uHPMOwx49syoNX}=8rWqEz*y+e>9XRQ-7K%j zVo0_6%3M!m8Ac=rK7Tb-5s(zr;i5+fLxKSm?hKeo@XJE>(Y=A8$rT3Vh(xw3*tl{} zBN*QXUUECm`KBPg;}-S=tZq1HbPP|UuLiO`5hX{H@&J1ra6Nb&h76BDr5#pJWXY># zUq8f$bUjbqFBK(O`nrwih!8uAzdzSlZgG9n>qTW^41sqL%b0s~$coSc-Bs*_UoUxc zst5sJiM6uC`74JE6(D3ES{AES-_04d`viBiT~^i+BrwuRCY`Ejr~9MK@}7^T>pA{h zWFU{;! z($(l>>9hlx03VBslvV}3fpW>Ny(z5vcy?+|+BjY#XY0Yqy0bG6%Ij$8W+V<(Te2`l zSdw9m{bG7_{P*9F9{Nz|p=D3U--EJP8A@=Z`x|95H`v4O&D#+EPRFfz8+-+nhZl1L z7(oDkK!CrxH*;gw&6c*FVaQ{)nH#c#?(+!;F`KzT`sX%Y%nkBBF@4P4!d4#Kjo#*Y zayNRT=H_l;Zx8Oa+Kam_in$x!z~wY|8xEG=+$}sA!QG(lrn0#kG_QFwx3HH7b0gB! z;$1|LU95}~E1!J)ed@L5Z9wM8Cu>7eI%hZudT5=0H)Zo1B!pkzDO@w0_Yt?xJ3&So^eJMHUnnxGoxMIN zOHXDxKBd-A$`ae&zUtRD-&1Q>^Z2Cc3o6K|t+{+R>4^jm-bSrsqVk4J$E5elkrFdDPF#^O}O zSm_bBc?AZjYcfQ#TCv3k3xV&W8{MSP~HA{Q|544q2o_AVyK)tucn&yPimr=K+~;@hgM}kR`DGC@GI1 z6jj+{F%O7Mu4&Iyu3@o{xy&-1sz%yg=Vj1v`)4oLUe(tHQ~?ba_8@A)Pyr1OUTN+w z-~zkiK^e}N5M^0c&{pL{sbE<}Y&85o)Q9z}a^Cf0N)4yUWQjnoMVfzB9TKk%jZ^~D95y(=t)7ct z+yUjsvSELBj!71aqqRp_t=TpKM65HR!8U=2`N#fLxG1XIGdO->UHFg`CoVZ7#BKB_ z^Q15tib)jJnRHdZ=Zurc>oB}ZWWnLo9nIsE1_hQi1kw8iFx=cbRj)L|dI*lLDvFvg zL=Jr@J~^mMPux(of0Vz(c=LEdl78?nVghgrwGfB%G%%_%UGLw(p$N(03%aCF?;5}>Z0?u>Bvx%aUWZ|{{e)Kuo07Ho zi#M?@IL@0wH%m!E7|2qj44=E(SBu0uQvg~52{PUQEFa=K_&4&nWZ32?c)soCMScVK zV>d9M`pn!SAS5tV#$ItR{+4wLpXRJ43&7KW{An9u#Y;jeu*bM;XHLA zjJ)@9br>fSEb(Mf)(EOSj+;=V02kXfs@{v+o;H=*g$RlY8?w$Q#kX|J=q{9EC{|ji z0vy;jCbK8=H=4A>0WT>~(H2Lx(TkK^{7&*2T=sHMOL)Yx<(Dxb5}R?|@~UN8foudr zhJ&J6YEiO`aZsP9<#aR@>k1slE!6x2^eh-xl}6X8d#u{pKsi7kN{f`wO5EC<$JSmb zE{#IyEE%C(O~uT8~xrD8oNo#ZQs>&!g)x)Y`1prz|W#EE8fnKc6pxGiAai7T@P1c!-oix zZlL#O99bkaWh$i-Nb%h@3amu#6+IXodlwA+yKuuQAR zt$^6rSnc*2CuL5cs<&W}Z$~`Bsm+PFx?Op)X%gb=-h%>Dp?m$I$chtZuPJ6Q12%iN zhCvfIA<2m_Lpm2^7>vecUySS^EN7R#iUH*oUUe!7!%^+cWq)$SQw$m5bHr2hzVu`T z5jUgY<{Gv;Ib3|G=>yH1f&J{wcCfUU?MFTU+=t?=Jd~CZlw|N!8i(o&q0+i(LPbgJ zyPoahH{4Q8DnN^77DWMOirK?e-yCqp!-5zX?Q4~`=cegZmRSA<;{5y3UYF9Qba@ax zg~fFefrC`5_N|g>Fr{gPszB@K)x;O3{mw0)d?Dt19R<&W=8mZ#HLv#1$Lzk$IE0T{ z&lv}d4*&vMs+Vbb;HOQg(1l zj0_Z{v^T1GNwjapplk|`BYTLo;#85jgjM8rG3B*NmW#;ID8n0mycsDN_nFMHv3CH> z&VZg4DYRWSX;9q5$f$Mp8ayKOQ^81idJFYmib3+I1LA%H03BX1rjBr)~kHQ(A{wXbpv^U z{lDb!z_`NXtYxi{V$==ryzc{8P-!ZPCt@1>h7q=t_=)gz`E)URhST6NMjIMnUP(Wa zwx;q|{07KMmw$p>6%c>gEyI$K{5{NgZd*-_uh@#Llc&}L&DU(azzG=mg{0N-OvdHE z<{q--{PVsRKX!0hPF{LZP?liCT#8dw19TBhuwk}cl>NwQi&ksjg?AaJX^%hQp@+qG zQI2O`NBUZJll25{8L$O^Yl@3(_WewOJBxK6gu)lGoG1x097k!aV&S8%8k<0lM-jh> zjZWo`$V-P?8$6Q1%2gG3ildncshjSIz;(PcFfr$jj~2%AZX$l{&k-$+=qSbjyZhCt z&aZIkt6zT{D_vC?htb&0IHbl584iuO%209+zYsxy0(f5&a0%HlX6VWzhVLo7dno9OV)hDia%`%1e76nT!U%~;#0A|PY z65TuKE))3dxK}W>~BkOD z>pI;#1UQv2vJdNDSP_`zhxKZ&(6bs0m38yyV+q4KWcX&S{%bf~cR1WC@`-IfRDRtQ z!px;zYS6gStl}=y>m@5#fu}RsBv%bbL*Q582Cs65`|L)EMPO`B7vL1kt5Bp+J(H)u z`F;_i(fucYUx~g%@X}`d3I`m!4Lf#{`D;B9K(KYHqPAmNSl3w^#CYOVGl)3~?imtkUc14MHsEm}CRwJ9?x=0a z;#%tmVsQu{pZ@IS?W&Xiw%iQny?dZ^68!q_K^fH;F$xi4aW#Vh>8Lh44endEX&mk( zgevmJYUj*#xx8LA7K6jR*8?#T>W`>pa+mc3vnX8vk)K37DV_=sakcO1Xj>Ct!WXEV zUXU0o?5OCZVq0`$Giw^*Mqnvh zPcyv?{m=VC{K!FShmDW%-(8;ng2!vfbtX&mV(ayC)X+h3ZA2qL|EjiLd3ogSF6Ff- zHK5grY3*3teq1SH#`T3_SLZ_9rrYbds(wGd%1$O1xjZ@6!hi~n#kk|^KE#ijFZ0JW z?wkyLEXu06W$`0Qr*HY=k;cvUC4W%j;p$5MpcA#9JPZ|~*5cC+!WD1@F<9*HL-?Rv z%xi(d2lZB7ZK~?Dnif7bLBhxCZcg*OU!tpokM;AGK4^xaFd^v!x&=>L2p_EY&MJ?R zKGx@3`dAaR#E&(F7C$(}b?<~#V{VBbYoYeecw0K!2cj0)5aWTN_hr$%j7@g zVfmz7_a#K4)$0poZL4ytTE-X3+Qe_)72)`n1pdE-Er#14FZ;VGdjeYVTyBbuzc~BX zJSqE`?rf@0${skvH`5F61|B!p{vwRrK{=jz9kWApt%~mt3CdojDDd)yvIaR^RQ3yH z^@?c9Ps$$T+ju<4>9e&5Y0Cb&+oe;#P~df!COxzTzEF0rd4Dwb@Z$L|lxH)J^JhN^ z`y*e!#{q>dAG$v>C~Gtg;Z65<%9>LoCrO+Bpv0LX=-So3QTCaNUSBA2rW(Xqij$v| z^|5c?WtAou0}29@@b5tozNsVbYW_+=5js9=#|%P+@cFd_kF^u1nI0pz)!I2vKM=#o^u!sR`l3 zs=ZNIE2AMwH_RH!6pW)eiX5k#!i*mFCmgRpItvV6OuGciwFVTBt1?HR3P~A)Dg@RV z$~!Pht4LM93@cc8-!hL?V)|rqo3nkRO|5uZaQ73+9v80D&Zd8UaE4mUe0K$$;Q^&t zu+lqCN`vE1u78jBO#}H3nJn6+yuZt6A&Mp7H(zZf_XZ#@$Jm7(3QvDta3O)5d*G3eMbA^tzEHVk=Co56TzL1?;(+0^8-|BDA@8QI&4T3LAd{ExW=+0a90&u9*703_Rk7n-A^!mndkyaC^z_PNw$&6dO}c%YGfR#nO%r{x)wR6 z#{a8O9&Gb#ymZmvCcM zhL>zBL$Ypv1q>}GxvB&gA=Z?I0?ROY##f3 z_HB+jS4MOd&buf~IGY&qd~)LSac9`z<*zYfhfKtpS^W9kz=BO=AZyw za>_nHQx$Ij8Ux5!yd@ukvEGw0G846G;*9E>e8FJtjk38}GH=cRq_^m_xYZJ_Ftaoo z#}m!J2|F#ZBMl#&2z+Sc;eD@hYJVFYiAdkC9GHf;js!d6b_^C|`MW8w1u{&bBgld< ztREBzW_gg}@IbKd=ML;}=o1f6;iGDUN=ks)|y@#sAzGojH;GiJ|I-9Z8TJL`7BUjue`jU7W3=?XpwA;!W&OWs$|+ zx}OKC(ZX&PE7lk+=wG!&IQ!L{&5CT`&k{!8oFuS;onSD+Ov7h6KB6A(?gNAmMiiHb!s7I@Y z6=m90XU)(%q{;Sh3w#-A=Cr`gA-fd4u zL~alucvG699%4sAt%6q}_7}9OcHsYZ=zXj&*eDWpS7Be99w7^vhr&gpdla{g%@M_I zageTdw4p#x^)Mw>y%V(rcrtmQx+|uWiM5we;qC&9>W-9R)jWJwn*l}I)uAiJ7+2Tx zy&WYDg;GobN$v3b7 zr@*K?0}{Y?N|B?lce{qCFa$bd#Qp@%{nJ!YOv7EHLrcO=jssDZoUqzOzQ%c-FWo6#ho`-pH4SBC`GB9;1`#AU7Ec8 z%-e^OGYw!VUgy^@%3^7QCjR`DvWA^B<=-f~*KLvcgR+M7J{}Dc>321qgAB^?b1Iduv4k+{n*aL@3lRx{sx4`rWY=GXHi~pnQ z44!ZhB7*n8x>sA64D1ml_iw$^%4(nd|5A_^TF@F5>lbaWJuhJ`0%Fk=eN~iC80uo!S&I+xQHjGmQZ;eR|s>rWPB^(UJ>eGMupjwq+5{T z*F|e2eFP##r<$c|+np7jI|^=bYP#zIcT@>wg?4O{L;r-3GuftY*!!*cfJY&64RGWl zK&8D^Gz2q&O9Z7>h)C3pHqwEy!m9q=wVgL*eaYMYqqw-9ngkHSo_w?b0U?sY?=?!3 zC>;e)xN?)qVn<$qDtWt9WJjUFK(-y!Tr)*2Ky*lxReJFP>Ef;yc;%ET8@v3<+QX~e zmx^u*1H`yl1jEBpv{V7PgNFhGsVlQ0zl`)8H4%dZvB9q*vV-arP|Gxgh7ZLhDK6S5 z7b)=DER*J%OjCY8rdNC*^en7HxhbMsEi&cMP>>s8(KGOh76qwQ>7^I;bH88SlLAvA z_z5G;%M0aoJW?a7*Bk+t9AcKNX3zk>`f@TxrziTYk7Z+c<;uzPg0d&+|E=uJkt~Om zY(c$N5i58`%-}M<^%6qp5+a5F_b)Wh-~jH>*436u!h__+=OI`e?%bF?iir=>3zjehfn9Ylnie>g05|0azmKlM;1u_FJEn z!g^Y~|CKxVg|deFIx3A6mToeR#AO4&zIl?PA!3yAgfcmADy_RyLGVi zcC?!l&&t|AeA+#O7As&KG;NhnWLl;_?#tu1+5cj>ysNP|4uFiRZ z+I*wnY~4)y7MNQ=;Ny)tHO#>Y>kySVaVntKp*bbpnaq^x0B*&h!+C)914dD7aFy&^ zP1Qr-^Cpn#JxvP}sw~!FSe!-`qf>cFmafCrVOmt_71^PPot1@GCnFIIPCN)+xi$p? zrkXAN4!k}vzv zJT}G@ag7ZQ+YI66=H=?J8mKO;0iPVpY0fU~bHFnLmI~h~7DKudEP>B)d)nP)zl;P= zZG!SdXKA$o&kt`l*l*I&hQojGji5a2g|D+3RH02^X;84SaYsHBrFHep9W>xICMV3Y zjKEzsc)d+IZMZv%g*+a0EqzbS&)xh=ZBJ`E9;gx}kQsSlrHcX|yK-505Q~!^v))Lu z7SgPU-Sx_cf2FP6<&^ZH2vtcSaqEoK#H~#kD14lBmgW!D5LVDam2Hf407Qmmq6#s& zM;cN0iltu$s$O%KKYW0z3+x>hAVacOc^(KMM@gUqC4^gw4f(tP=w?>VL$1lw2gFzp zv#jR|-|gX$q)qXLh%dlcd{zAfIWH_*w>stPp|Xt2(`$>zsAGU}+l>VoWoX#9YR5s& z#4tS#9f4e9PZR-6`GV%LCn9Hz)V5^BX|4=pi}vqct984+uO6hRM>M_7a48b}+mv;2 zQ&r@N*%W!eOyHXP4Y0%1d>R;h{50cy(3Cw;&X?7>bUkyZ)feZbCGKL`5Z4+f$K{0@ zlg>vPp*D2|opJhjKoBQ^Zw?8Su->PmIj{JMMd5baA5g8$^%Iuv`G%RPG)#6<(mGk; z)2^=X*(7y56xGiXFMa4{jYysET0&NSmUxdBs`A(^;PY_ZdvQi8E?gP%{QL6BT#@rB z8~%e0;daJwoYJ5`wI!_5rofDiQ{k*d&+$MUe$I#dGEhfa9AjXL2H@Mc$EAi21oo4& zBkPL2CHPQULev023$;!-ukjnh!i3s*V`k~0@x&Bsj}P1y4eOWQ5>adhppB>&ry;BUV6r|% za607%fO(i!t$Sn;#BaB`hDFm6PXHNq9AB{M2EWn8f2*q}W};3$!iU_-!TOLGKv6n) zW6r@aB!6Y=(O@YT)-=DYG2gJZ?#c8Ch`ElYgxcTt6QWZCOtOQ6{@awjs<2O#{FM?1 zaFh`R!`~@Or5e>h1RsP@sP;Rbl*NUKoix5u7SDehmCby^;1Ud{7A z33-ZRbV6O!uatNxY=s{L|MK5QU+l7O(ym>R>EA&S#4oLT1QAw^j80SyKmx(Eo@DFw$Y|LQ8ds_HDVPIOic;{UV2k>QiY)=!<^?5&@ki-S?6x~{OG&?p#h{5 zllM7iaG46QM@{-zWs;7+*Wt1%%&4b-kO(wU7pv>~V$B}-G@_hd6&%}c3kRGpm{O%9 zhW8rS@w3U@&A%rn@h`VB0IXp2By0oH^>1QfaS&s-IcV{Wc!EGhWq*M{A?Hu5waL8B z_gdC$%k0Z)(`^L^ZIy4JdFtOmsZw5<143k~DT|%!YXjTLF&K(hdw!-s@_&{`st3@q zhKE*n8uM@evEEIOkQ_Q659qySPw`}XLYazE4OPS_% z`e8P^b$4ujFfRiti_(!Ka1FID`0SFvDO^VmUcD?a45m|h^|B1&t}M6wuP~Kr0T8;Y zvQs*=h(+VEe;6J;hgC}mQ>lHrF2X9NL~k1*&mr{hCK!nfznh}z!TYN54VZ+ESYd&U z-~TD6&$tSTva|Rlr&GpgjEMl&($_r(6`-R7oPE}&VJhXm2R=OL!S zlh+BQQdax-V|rhvyvovgPI*qkH)IsRJPB)tMd=8o^&7RT>#V|{QFk!;2FYYZ_v6FpE zUL1wE;aG-A9hvpSr9iom&BA!Pg|oFd7S7gUS~z=KZU|?zU*6>q&NfA2&(oF@%fi_* zx-P+qJ!LrviB<#Q`E_4F9NWu#Zv_m-C z6kg{00}{^o6SW+|*+WsSM+sN#Bc%<>UTY8`n{kvZAmP8~V9tI$85%WYvpta#KK4XQ zHhW(RnQ4JVQ|7@N1`ux~H~E%aM!kcg>Z`7mjpLaq zc6Lx~Oj?X(Ahn<9Z;Jx-aLs)eqVq^YTjY4=b)YtXE&YVV@5S>5up)^RyXGh;yPLq~ z%P(_;y~a+}tlZ*7Ii9ge;FGdDjteZGob~xF-F+(gx(UYK)vFt({8U5Uk}M}@|y}SL4eEP8`8%RGn3V;Sp{dAWU5Cv3Ka|@V+@!$c+=!6 zH{583cJzkeJhXimA<%!EcM&3$2xIEMcWrXr~X91Oq*)5V1O`0>!(oz8ZM^izm*usqI*%Y1VzmGF+ z6Iqvk7@noVI0+m$Vj76@$M7_v+wjyg&86lSid`}Lm0DziKPYyzTjzmmG>zXidtB#rwAjEen!~!9gsI@ks&hn=?bCxM`=v7_fjtCE6M(d_S+ipMXq_}%YNl1IHvuBlETs0`uG0~Biz4LVr>*Fx z49|C$1r7HyVDKH6IVJwMEKCPjb{h+vyQ2mpOT54b_L2mm&A@43RTyEXbFo-&Ky6N~ zuk3iDOXLA!c;!+U^F2^(JN@`ch~UhEm_~FJH1SF!g0EsaRYReA8F4KNAaeqU3IH%O zL-lb0J=@{>;pETZ*c`Zr2*z|@G6dFYu>P!GdR%UM1E}4oy0en^Di?J+2st&1I6dmQi_p=?TDoSC)(d$XMDxxfY zGZ%X98^Nn(s}On1Cnc&hbs(7B<0~aFV)t90l&cA%nnno%rF~F5hQE(dS${8zG2258 z${v|->P28N`6*Phnor7pM6%B(VRz?t^`A{)R$=)GO!0$qJoDOLn*(k|Z0$h=WzRiA zuzLDNi9S-9yT1|EJ4?6yq#Of#?Trg%4UDxHK>nM|PU6)kPV5MKT3_!XaKM|ck0tr$fP}r5^HUhn>^9gY$F@JJY7wO8%Dj(J0=a{gn;p&3A zrTPi)Kdz`zo9|5JY7bOHni9CG<{$Bty018!Jp@=r0_}Dk@e4s|1Or|lP&uRZ1JAnM z`hn=dprw>OR3y9>F-)&iNL8VcnklLi0Rb5&KWsJIB5c*40WO}Au85drf zQPXbxeyp5TkD~HYKyST^yz|ZYIbDTDB44M#vOANqZHS36vvX^@(4>Z|qIIgb&Dbx@ z*$`~?t!zW)u#~deze_V&Pv8`@_T!LLUl}sTpHwmp_5*Qfl#aN79j;{5g=oWqs25BC ziV^bu^?_$rZn^^T3q%qXL>v<=v_jX-A7vjoGq=PfD7*y!Rhu~+(lyo-MVH!jS9xEZ zBXmte{xD03H2`6nfakkq!@EoOz-kcfvtJh0U<4=b3eX0m8Ipm*dRdj4f=1U;IW@-6 zpX{OnAAnHI;ERh;uh;0(RW7*}-DWzGT-NbK=#a3dURBva1WbQ^lJ%9BZfZo*1<@cB z<=qs>>+i;JfMvOtpZ$TWt?v_u=3aY+$UV2*pGs&dx4eKH0&#ZK#+U_7vY(J>{j@Q5 zuG+1gWc4fu9uRYZG`%WU{(fM7&m0?;4=qQEjR`x$Mujw$Dt5t^k8%;aRo>j?|{elu8V>-n2%Nnqpg{qy~|Y zWZ.hS0rnbnv$uKSD$5_mw@8Ft6y3(3&gmt!qPorc%GgfigDZw6!P!-aX=#v4V8 zoDKGA!a0!F?I(A&->TU@%+X|%HRW$-f1C2mhk05h@b=SImiASPBYTET#Xy4RhE=q# zft;VV%rRhThA)^BhXHZV^!?c4WYb5}Rhu?N==Izy(|nXL4$~*Q-vQfzi07`m0cQfe z)}E)h#!+p~ZclTd(GP<#r2A;Ms7q0eGZJ$t!r%MkhOR5^z^56y?ldO#I`NUP7AGDM z7Tj-gT6Uz-6A1ZkhUE#}7k6c0x{;K|OUY9m$T6Is8Br}rP@jZ(9n2Js#0X@9GexQ} zM&Z)Q0#rviI7FmFVSal(+ePSYo6@G!m6UlJ5(E;c1k`La@0H*b`-<2~U>H-*^nAJ6 zN|W`TL*O(Zguz`V1fCGlb{7J^eC0^Rxw~sy7;J7_Re*JD5-9O?0%^2LankE~e$j!4R54oVhS9@308IoH(VP$3aoaSs8b z=`43ZXR;)M+P`a~9q0dT>+$>(*$L~~RJwK%Dod>4t$Do>?n}FxgboY`fv`vWHaiG> zoZA(bjSbuZR>M`OREIlo0Gg5Ri?_2p+}JFLhXPy;f1`EHZnW2hv?&DCj2R4Y{SN$_ zWP#PmZkOs`UC+UXsB&NO)VTTt!$erGVsQk|`MxGS5t_RWz@d~^`}civU*=l{$JTsP zno5cloUZDduY;=d26byv>M}i`= zpa}GjIt*vCJDzA!(xpXB#wJg!g-a9;%I1ky`E!XR5^+gXpWxz8Tw`7L&diE^BMih2 zFc(%t(ByR>G+n#>`#!t2%XKRvz~v#V$fBrFNeB3#L~d3lVg4X5YwacUWW-*eCeU$= zbrxheAcx;$pA!Rw;s;o*3r55^VFf*?C--8R9*hJ851eb!cEv?Pu#tgM9Kn z9%xF&vc@&A)m53mI@!Sgc#r5-WH65g&SSRQ#Q>(8k_cqVFA!ak5p4X4dTN#d8xpD~ zJ2}QuO~<7g23vV`Qt8rNF;Q)+u1G&7-&?w?S7+(2Yc;LAzO6Tds3Xh@T9cp?79|ax z{@XH&B6U0AX{Qt!N8Mc3d+_9nvx*yl%QNodMi^JAf+~$CVk-QB$~|-bLbD*HLpGoS zw$;VeEZHG6ZtDWwZzIiDpC?o8P1^E+d`6vpuvRns$NN^gX^dcNuN-4J9=LqJ>I0Y~ zecv})Okv#kF~zkjP4{&X9HDc0HA5u|%D$yWDsO5Ub0IIUdAVOG>lxd+J}LV~WHw@{ zFO;GhMiN99;e6t?#~Uw(z^@cx{w?^}D0vO^)7S?dKD%wf1~f}u1cOlPgvYNxueXG}o= zA2LV$1;n%7MfMjKSet=`7`;FV2x2)3--dP6<*+ z^8^jb!|+57MVxV-+Z6abaWn5BpmVi<*J7FQ_r7{3*h&Gw*bvyth^`myxqx3eD2R<= zxdBlEj)iT4U3v$iT7ivyf-)iUJppP2(838TeVJFFQAy}+aGI5a^Kntu{Ml|U
      Q5_ z|5~<8pnbCUvO%+)Tr~_T;f{q0{;NbOmfm_6qLzg?8VeJ4#c2P2ES*iYgFb~=^zX57 zOnbSy=Hu$J^_U{`{P61&{T{{_=IRvF72|iH4hW8Ha$UJWj4nMLgTgoPljy zM;~SnLp&0=eAs^+z~xL=iAaF}l_vOS+91=v0@@_Jyq^F*Lp8`WA_;~{of1u5nHZzy z#Xf{tI6dwzi$%28&Iw8|gQ4Q;sNtYkZs8)bGKY+@=*3WN4rG-X4U`23z+EtmzT3YG zt8zb~;Dq%BCRWe$Ct`WfiApd}EhjpOHlDw=f#Zoa4gLTjL(=&ROz?LXAbJxSBkdlp_A`R2 zM1`Q>GUNK|3rJiIWml%fI7{;hB`{*YWda}QuNTR52 z;sBVW5(Bpr#)j$}-1X;m6`X0+Ja;<7%(S8tE}+Q?BV;i1b?@5Hcu<^e6BR5#sh6rj z>}Q6n6>LgL0u)a}QNf)h6YujP0rd7PFO;O^hvi1r-1%}n{e29}W}?Y_mj4faWedk4 zcK{@$yo}b706|%DtOSn%5sF7YAVB7Sw%kE+{mx77VD>;cnAd{wqgr&)sa5<6BeEOt=Tr4%8tW1z$V&z!{$ zjR6Msq>eRvYSH1rVGtRe+HIax2;A5J2A6(DEy`McB4=FVD4H_9~yhP>bUpsa26{JMP8UnsGO-^azl{_h{K(??~mKiBi`;hWd9l>GnizyE5+ zkZ(A*7mQ#H@d{8*h>(Gg{9ix+>%X49U-|jUL-_vR|MP$2&B85#u+duhEf+lLO56N< zC`08s5WA?_WN&Y=)9Lwi?$@)t_>J~lrq7V^6G^4Q>NV-1e|{pV{!~z&4`vkz3QA)n z1xpn&y{KhFR-lco-WW?UWp2-SAd2)&PGid@9LG~qU&|#N79F=%%bKgOUpC;Q-ap~9 z!wUw@hE4uq(TxE&w#c`aw!`5!MH)N5kl0ROy!?sFUOnarHbi{T4_H`BrXd20UMf^w zZduY74e$*1+f(uNmd;p< zh9FXU`$mta39lYT_~;IcEj=B7x;tc>DhfPmsHsYuPNNz58KI5rz%k`AUUIQD2hcV` z(stFKdA4I?&`#8+dA@+KI6B!+=xFW6Z*yQ_W2 z;sym+XlwRp=I1X=xunAF$3DpD#Bhzqki`BIZoq~Z+~QfO>XW8>9fCCrnzx34ue|5+ z_kCht<~n5oqL{#%MU?6qqStB6TNKZ4P@b+{Di)D&;@PxCCz=TDQM`kY>{$8yOKJ(GD|5kTQu(V}AX!A)ApU6$)$ zE~PL5YClk1SSmgslysIu5(6$Zd_P>`r|rt+G9kCpTzO0(A9$lh!7cpw({w#pX3VD9AA+Gq!}n9J#tB6a< z3X|dHmQY}{C6kbd0$FtQQ$)ci6j>t?1)uD7izurHOGH8bBZHkRqO|Z{TSjTi`x-*Z zqCiS%@`ElZrG=}1F%tY_Im8rqX^APYiSn>5Ii=olUL>a=q?(Qn%PEKpZ1t2=s*M>T zrywzOZZQQW@@uz$*QPtfl(%ijtFso%1WQg?ln_j69dCrDY3CVUYYdC6&q!SxjM6 z{k_E$0N#{#iYc1ybq>}HSV|$}MmwdHw|RY?>m{d{a)>1eq%JR_i>G(pO10k(NEYX= z!-17cP{DjkbdjLq*<6AOqVrk&ak05N?e(>w0;7FSTTt2U5L7lrf(mm0`sR$lk|A%A zpt6?7f=YGC@eou9LA0I3=ccisQXM*AIi^8?S=8S`-K%Z zB&?N#@%C%VjUSA++v{q++l`?de76hEW3yejB*xfmx98ho%VN85NQ@V@3ozDvY`0#_ z^2~O3JJ{}`nC$|Qki{m=cTqHJzVKauG1js9E-dXlw&J@O6`jwE?_wDB;JdwqUtfH8 zbz$*cnEUU8?*d2lKKQQN2j5*3@Ld=i+QD~`gm=I2UHoJ^_^!LO_%2|K`wQRgIckZD z?;`mz9elT6_u|9iyZvf@LwvUp{e1D=rfmF!?|RQ2eD`e^k{7hDEX&Pz7bVy%K7E~h z7fG+15jP~}GFl{>eZ61ZbqDO3@AimbG2ca!Y&+R5Mo;^J*)GDS>%n$+JJ{}`i0yj% zg6;MzVhV%p_RD-!jJID(>z8*f|tyL@pjgKH`jF|SgxDmw+NO` z2fyvfdYky|S{L(MtVBQfZNI!F7r$Mb#rziW`uFCyZEoiK`!S>9w#Z%P-KCxXZ&AoQ zSq`Ih`NTdcF|7|}wD#Ftr|Ioi^wY3_j&%OCDF>rRJ;MB*qTPkxx*Z1gNzozVTe6{j z5XAV-cit(-sOYg7Uny&-Z==#sQ&9n88~S1G==N$&7PN%9qw|(42%>&g9|+K>N^SQ_ zOUk#WA66!L*}erGKJlTcf1+A~?Oauni?X z!LT=)Q{+eGeS5UWVQ?X3(lbp{9pgD>k%3f3T#kFnTqt`JJxw%5UJAp3k8u_m_ZR?k zyTDUpO5$8@k!2`??+S-Jx%fC7gt}@0ugxOUs7-{qm39E<7fx_$viZ0&GVO(9xqHEO zfdxd*Yi0oMZmTjf-!Mh)U)mQ_SzeQ;Jr%Ohs%j53KyZdoJTU zqV9A9cvP#$6F4;YG227=eE13R%G7CkLLX|<@uJ7JUfKfD2Hdf1Xp2%c+x`F~zx!t| z2D0C@Ix>aW=h_elhdu*PwP=&lWsEvZHlw;K`Lign&*13XJ8pt@Lyj6Zkfy0zisS*# zO_gV$@7OVV4(LDy9Ey%(wG;CuS9{tlPDu}Asz-aw|M-OMr=#&+fnOuc z&2p*~6n4DtZM{dm6PjC+-Nx0`QMo;MT#N1fUVNnA{s5_T!(tGDBc?%xzd-E(y6 ze;mTn#%b<%H=p*UPQfPi#*BYu9qqiEpKl8d{PkSdrQZ6SjQ(tfgO0OX#1Gk^BKE>KPl|r-&=oe*2>LO=P?9f|2W`p z>vzf;1R<~5R|;y}N`zLCk1rIUfade1Pr@1$kggQs^g)SXzK+R`NBo1Q5f(~TXhFSK zIz~~Yxh}%rB48(%p(QdJ&Ie_^^xxmU{OzgNkN^ApwWqiLGq3DrxSZxRhebi)ssx`< zs6Q#NCbt@kNnG4dN^^++`)|EYX$He$txZ^s5MNxFgSrTRi-0V9R-;_+d{Wj+|NZ65 z-=2E=_`lCz`yWneW@Yap;IYo13yLduJl#Y^=J}1FI*lM8r@E{fK$%%f_fOP*%&1Au zG85C8`x$kMSd`>u27iWmoHbBn9M8~&Ri~&Zf-XbiWYvOrVop~SWD-S&M(S0dX#<;bv8Leq0#w4r z-|RGZ12c}CwxC!M3=T~QBn56I!Wkj~VPYHvIIRFOBkzAk+UU(j-g(9oh@wI>!)%b@ zHz0zZ+ML|MFoE@iO2k*7%+0Rln0#Z%iIH6+yFx)K_=!^VMrQz1W}X>3-EYaoo1%^L z_pz0@o3T?^$O+Z0xx0dJu}I_dLrI;-jd$#vHj7*n+2y5UzA`H@u}z$p3@gc8O>Pva zQ0oB*O2_;27Ji^g2H}Of3$R={>lY+sY$W)2>(Sne9u$=kT_0e@am@EE%RQ>)ctxHc zV}Z=Ue7X!zjw-_;jxWPM#gaWkb)_?$N309tzpLmsU+-PBr0Sqa;Y6HA7BhiFjW=SR zA-w*)tpo4-=MpYL7(@&*nMe{|l)>QtK=57^EbsHmt+}mz2Q*w=*RUFl-ibDPH)C`` z^xj2_&J0Ew6GoIEdhfjl(Mv>0kRW;&fdL^S1S^|NH;7-n(Y4IkV4h zXYaGmKI`5ycfUcOVuN$Ds3PmnO9s$|tX|YQ8 zAG*f^m(vH5Edu17lpuG4u-r+2DdX(lN}`yK`)FjtME!Sw^V1 zb5$62?5o+h0UE9d2kZK3L%ATfGBzBi)0}X+s9M=E&xfQDm}Q$X`pD!1#hqWQf&$d# zIwmupCtnV@cnTSV0lQB&U0ksq`!1}@D1D|4c4E7?Jr-LP@M=Ed4)4SBX57_x<@tII z*h||aU{EY~>GUa~{#gS%KBHi*WqXKiLve`w;v0XHic)2EzcdxYS8-#sbH|d43D5hM z6p>Q7vIl1?mKI-(n- zPFJxUlh`zYJBANZ*R`rA3VLHFKnZP_44c# zMfUOxopH16+rWml+gGaI0}LIHp7_n8G_2>i3Tog4oZc)NW-w2i^DgUOJv|PGcW~y3 zam(+7-g&CaETKaNshOglqqxVt$+Z!wxY#U~);jU^psaEz#QM=yebw9`rlzQrl1xe( ztLHadH~LtbU2cr>afduJ`=?!Iw)wWsz3*_|%x<{!Y6J_KMG8@{U}rP8vR;zW4J+Ao zXrTB0c_tByVK$EMZ_9p%nFzn`-?t^RbEo&}75mZ;ns(>f=XQ2jqm1`kZ9gfBXKf;N zD*R!fz~O4QFvE1+=(&!m|3d7=rob=peq{H=G6u)^oyQea4{>ird@%%lhjn>=YnM+F z{vk(na>&V$<@%ZIR~1kI*C1EbdVrxfz}R^bw;QrK)8-QEp*7pDatr|P0Nxdv7nfl4 zCsOqEvLFkxsMft2hECb+QgSrBInn`J!OVVNTW9WYpB682gf&O&enMk^J8HyxT?{-yk$&IA~%jvuLU;w zJrz~rYvn11k>f4LLF^OQ^RQM7Q-(xrSr(ivJE}`YztD?TD(v7IW7!~sYvY*rp=O}< zFN3!d2mVn85YQ zUBgctQH+>)7#}VqtKP6Uo&V}bu1%>$ZOMnbw_+@5uvFx%r!`t%9)fJH&t?_}e+6DI z{Icoo_ZInd1h%A8@?7MVBM2OcYayb=d7E$Xv+ua5+PxRIykH4MFBA`JC!!r-wT>ig zA?@w=?};Qt#l0#brk(I8G$A~ao5SpN!90*UeR;nKyh&H_o^7^Q*=}P2(TiW8n-=ka zd3HDaj{71sgwXulFtq>{?FzUEFYJ$j(-?d8_tuqdCUg zcBZ^Yv8XF}(^0r!9xk*&Dr>xFyw|aTIeFZ^!y^wjsCahTF$DSJ{>v0BEG5}^y1_=g zGJRL{EiRlh$o+v)9a(1HvuZbh#z5S)Ty@Ap220m5ks1+2J5!T@05UOQH0MyOcA-YZNw4ghjm2d=WD0 zeffKZWD+u;MpM_f`m27<{nUh9)udiDGB+EYqL%&L(rST1fmEa1n8 ztD>r#8DHm$o3B1zbR)n~%GJx!`u!@kXwt~8O**_q|e-FRsjz@0v#UsSIoF2T#&qU3 zbAGo@!n-vq<{K(zALjUO{Q<-5WI!cv_J=!9Ibh%W6*m&@bBc1Rv{&#+1w44`OglL3 z20)_kxgX;W^Iu6^y1P4l!@}ZtL|u^(!!`k?>e0dvIF2K4p^J;Am5~Z6;TyFUdLi6^ zN~*`}xenJ#clPqCC~^}$P9+0McdYiOOfaBH( z!OU#oiLF=bn@eJiwCGpU&p2{9eP9}pKRT$cV@Y@8+48wQtCr%H-|Csi`x(EK#9WHr zf-9)kN`G(O$ROks_hB_&2oyNK;HF*Kpt+1G!S%UOrRY1c0ZMCV*HZtkT>IbQl`(6!LOe;$>aembnOuop$1U{1f^7~pQ+lrFsj}MS<8P>-j6$J;mtjG)AG6EWt;UY ztNjd?AQOHbvrx?{DV}+N0-KQcAkH+_6;bzxem60Q&Q`z!0s4IoS+^GkgDr#38ob7* z@2aM`x^_?kO+8sp&L&BdrMOKxw)ga*I$f{jC8J=gIFbYr9;>ey=F~8X)M$gJQ{OWO zPE;%o2IQWc3!5*U(P!P2Yd;g^3+Fgo)8HqqMbs6hmlSPvK-6;s&GrUZdlXUHhk3pYbfGllW6P~w3jR53+D#4z;jO0uez)9x%vCrl4QHizX?elGkW^(M){I^`fVT)=8KqR}B zRj(2io_4J){IQ&8FCt58U`a=#8Ms+Kwk#UqKmIX)Nn2_44!x==^XFmT;&{dhH9Ga^ z)PRHJ_;69TT7{i;8zRPaYN)nw zl}R`}!BBcsM`*w-;VvpAbxfh^Bu!QkTT9AIYVy;Fb5#6~#kjo8_d<|UuVeOolWmP> zRFRZyE8PV(`E3Np2WB$qW@~uOI!B7r%2?k%8MJz4WRJkRri!8mmGq*cO;O~rE5S^} z)UxBoB}l~~!G~VPJc`Z7kvf)%F!%ryj5l=cR*36EIhTZ7>v=F#cqIbO0~j@En4HTiwrx*spga+Ledzm}J|weaLU zO3Zn?oz4kl&Cd6e_H%4vk|&q(5o{tthKsz0_@#QDndeQdu>iaa##m3?`ySkN&%u-W ze47t|JCh~1G=FswwjNSsI%s^ZiOFYTGV#-5P{iEH!$`FvEunEapcq}HOZVya*#YV$ zlNUq!d-rTbxje0Wj32n9W85lgPwKnK&o$_##i(cR*zm}kmEUr8J^fQv$uq_0aY4U| zSzuyiokzMDGFsV&V3!Hw+ZZTZ($7QI;P6DJKLFHSvS(wzwtSt@7*s=6{gcpcT$&F* z?FwC$p?Og2Nx0Z&gyi1pR91Scfv8+ruhlyb;Jz zm59Ql=FO5&vU|)r!zvNDAtVhuthQo`eEzv8!N_~fix0-#VoOUx!^hgg*{)Y5p(Ru4 z@-z?wg=qGA&tc_=V{E@sWn9c#bwb6J&E!itiU#mv=Lr3Kbi;<3`u7%?7?YVa?Q2-6 zs5hgN9$H@E8s{zW-ab;hh#`vwl-Q88RRY=M*JZa#rfQW0+bTtK^cBH;(Ew)$0##fC zObQnPI_iN$!L}Xvm!OxH_sF#87FcOBxCXU`RLXEGvSy4h0s>l;g!rDZbZ(WX%!fT* ztQCD;f37HGe@+UJI0_#Y=ZV1l95}3kYoN0^b3;lsm>dV_fmA}(h3@me-b9b4o6gg~ z?iIqq^Btm|_%&~OoTia3bVy|>d0%dmO{h~;1J~6)?rlS9VUO>#WjROhVU@#EPN7NT z0wHqq3`-1pvIL4Teb_|QI%nPGu^d!R!Jb5K=W98Samd$*3&4XsTBwM;Geb_=&t~|A z{{j(-d|lZ{O&NclR_ltM#i_(eGF;xh-5?-%gMbruLTE}p#p6+41)T|{3?^U#R5-ZM z9*n0@KY+Yy(RdI&qCa+~a$JXufxS06U0tCoYjFI_)Dk_a*^d#ZyB%Nz$i1ol#$cPegkZ5?2!1bZxqW@iID~T05<&yhM+MtaQ)A1uT6fUYDHp zTn3kg@rj4y+yh1$wwm~*gswhDETNh3vOpVi}dBEK=K5Qh(}3K+2#eWjaz<+Lt+vb>y!0Ly5T*@ zyQ3-6R;Vxa_GiR4|1Fu3nhKqGR~>@oZGp}Ykw?8rkBDc9b?}W-ayLl4e^DGX+{y3& zsqAT*HKSgzYst{5J&oLJ=i$?Fo| z@8Z68jL?8z9~OAZA{<=Yn?hf_dM7lFs8tyjO{!%YI`M2Vp=8n}H;6LaPgh87WX^#0 z3aV4BX}8`!arKJ2&lzW>Se*Exx15XSd1zwmr>I24Y3~0Im!yx- zbDB&2TgoSOlK15yfy>WcQXv3*DEg$F*r%emuWxB9u-lyZvNaXb;9q!0%jF|I>-j2u zU@0;Z>w@x0p?t0_9y({$niV}bo+ZA9?|U|4vgwbVYQHUk&Nbe2A799gL6#``GfHe}b7F z*KTJgaf;$=PHNY7a5QF*j+`Zfu6^_a*wRbo5ee;gu;-n@yAf}I2cf59{E5^#t#>^$ z^IE5JAo*b!qMnE^qxOU$CjjdC%E@d26f8vQ%Olq}MbTOxA0y%)Z!RkP3mCRW6|o)% zoC#~j+wt?1st{9{VrLrE5`A7zjosdVU1hvR)MxS>dHGU|uH^Bk&d61Qaft-3D+WGk zn>8;-(~f>hZA56;E1QGN0GfK1L__~)6x$BBm$nfpNJq_Jp<{1T%oP^Xj0sNe%0!0@ z>&e9Jd&on!v8N=AK8BDIVX+Ds<1Gc;>r6)TkoPMiuSiP*=q|k9z3sraQcqkVzR-B0 zW_r6%n$g8;o?g1;iF0u+X?Nv}mMl)>*U26&^hpc7WS;sV?SZxcE0MxS5vEM{eaJGm z%|p03yC>U)eSA zE)~r^Fe6b*A9=37ZPbC%uPD9@U48?lfBUf5x_8$0d1~H4%+3eD8vaYyoYEqVY66tL zYa*bAnCJhFei?5$QSk8xTEG|HqcS#;K5jd`iP3D)x6i+@vB{3UT+R+oTRj_UbeGVO z3>HwQ^k`vSA@sW%QmTnxs z=~pgiTop9$j8ewGrpG7ZAei}Kw0D^@Ur-Gwg^L4m1D-FVnw*>oBzOTCQ8OW=l24fp ziDvG%v}K9L?Gn&ie87t=?QcGjYD+hxqdQz>bC9Kcm>PqicfleJY6{B|CMyC*NE;Ch zikcpXy_~O@+Blty6;R_2dxJwNDK8RK5832lH5Q@7!YeRfW?o6cbfysz#Wqv1{rb99 z$M@Uo&!>a1bL{M%K0OKzzXDrZu(O4CWSWf@r?*#dd6OX zgS>zLf>mc&qo00(=}B+`-qTmm1}||?QdF&iHc9nhj};F2rXTxx2M!?JPJAuI=oX)q zpsh$+S2X>HwDRfgPf?5oN4LXh*HgJ|zRY+$v}mXBz$pXNVA$Klso$-fZ?LBK zmllA2o6k5JR}c3h`LOz#wyu=1)Hu74~a`jS5Pff*_l|j0P=jE8*BydbS-` zOE$str8B1zwl%Dey+N-cbiSsxC>l$WweEh^_{3Ec?a`-4H4cOA=bYz#G8L+wdNGcw znu?%yl6p2@G?QbUdr2~#w0eM@#5JXv)<~4~Y7(4Y-xn8R1~gvK*NKmSVGR^XZUU#` zW9RTA8YKHTa@s4rE(p)R>N3pEQtBWqKX&*@I}+_^&seWDZ&JKhhToaki|eCh`w`ww zaFpMkPFCAc)74CZAd>cL+Ir1asjn9$E%Bo~{3euR4>VYA2Q`Va z&p`Fsc>((#Av=o*hwC%HhcO-T7!o5iIa_`rO6!-M?<>H=iI0BKJe&8&`j*TobyPSp z$!M1YKAJexglpk9s`mljaVgCWNG{&~emE$e-oQ|8(YTqN?%*)uAD^=MbE%G~;qEp) z5-8(K7_JzNOMwh;Xl->U29(lOghiL0Co-0*$0Eo6cTKUSH z26yEa>z&)}kZLK`nrypfm0jgYADdbU#78&n4*{s$r=AuRZ1{GQ& zdr116;xPnMeqs17`rlcGGj5q{#Gi8QeyVWQaJmXF+?jX*RCY2L8dA{EunGB9@2mi2 zyDh4@l;&@We8vW`{Akl7^BhF8M;@A_yM7x>k8rYvD1ixCfBvXd( zh`*d12*B2mE$Wit!XXt;DJG^gSavTLxc`uP>#(S{;f=f5R>pT;b_lq>uOyV`Er0hu zc_nc)?}1U43w??*B_Pfywe?pxe^)b~Ca8)xbU`aFx3OiqP~ZSMxW=!?$EvK;%J?pk zi6LBb0-Qu_uekQgWhLqPhS>X$_7yw3ByNNo&-9DlRev5qU1b{@UCVLtd&;%z(K6tp zOKZHHy32d+T|JV5-!T{5_>ok|)-(_tq9}TZuD?-Pw}MA1Z%!hV>nC3&{k$97-RZ%(qY^T+g>1g+p5ADJXgP zL{rG{a$;`Tho-L@mbWDUtZCm9uRSpSqNTGSkC{wuC-Fg^aI>{p%&=V;s%fRSQ}Kd2O6i(wW0S$>I=&myT6@=JkOP`(h{0L7FCc3~U8Ua)1aaVP1Lu>Y7Q zTMxQdWsECH*6cfT6!gMg3P_pI`24MJ>g{glTRNxHiGe+r5=%Yy+N(6PnRRib`OvRPt{;X*+XaWJ-Ne~kc{3HewyYT!Tr*qFBf(0( z%fPSV=@x9$1sN)D@ReRDNy>>xd=EFUNnykS3+|O>SXhh$HqB2u#{_ka(G__eGlG2^FqGhCpG`?@C?8%+ z_qW?r3()hAKow+Zz%A9M(Zshp^3FRO9(|B9Sd3%IB$7+n7^~4`oRNW)WbT(%dS*?k zs-#ob5kB1h?q?y6K2gUssy$0Y)yi|O|J;>+|0R*-MlCp4+efbM z!Gd_S&9*AUXK!4!$71$@k7oQLk)S?Lw|@^W&r8fq)}v8(Yyo__)HE!Y2O+MI=}Je@ zEBiBsOzi=^$skw}uL&Y+SbMHN)?IXf*?K6GB4Rn5Db1aOGW!tV15hqxbwh6olC*L- zzQ5~3X4cLhgesYDSo%fOVwsRi8&y<}YHtG#P# z1frYG>E8o(LZ~=wOyFt7SY&hNiHj^^lFs`5Ep6PW_jCn`3^^6qGKF?&F9c&?FC+w( zN{9p{wOr>eg{j~pflJjY%u%@~FBOsktEgasjpgHJv`mHdIy54$oC`HhrBYcPRQLpq z@Sa-npav*qoEp<*c72C0DPB?yKqqtb&EjFWsP2<~djfL<%oo;~4{1~a_720EG!|l< zQ?_yiC`Uq@bGid#WI`770C9+VA9?kWC#{8v_tf4Un=jOr zu=AVNG(mpOF{D7jJgCR%ELV4*n-ewSuhTyrSlnmvZDi$)CEdZ!`l?qKz}A!W4*M0) z)u%=>noffc6AIIy3w}<s^4E-B+3j|wTq*zDz9x(oXP@NiCYHZ$C5s$JICT@L3 zTH_PHJT2~Wo=9eAgRJ;VE~?yv)4JrV+F1SzA$uyn%?RJRWWUPd9&y%f@B*qc?6L61(amTy=nI(THGY>b-ia}5!^K) zmB|n9dt{!y)ae;ql@~fjj`O6S7OSIcsB=kvT#{qmTO;M9&v^S*w|9)e&~Emn#!mw90IRe@Y+v>7X;0mqx1eHqZ$SG{9?TxH^~;T_|d9FaWG81o6nTE>o;W|HUtCUV zBrur)7oRaqm%skmBa_FoLeI99>UJX7^lT3_hTf9+4)>UB12+MYxTzL*lWnWEKbvY#rdG+aotVz0OXMV1O~rpX6%_AFx5LMq6wz88u8G}DjnQz7jWu4r zOp^6f?TVjFUq-)FFYVqeNp&~CvgQDq$|@ zOgfBvFGZfe@@`0a+Nx+xq)a9qU8Pd+hTUv&Z&8&zp^5)};0GVdPpmlJ#`44pkpl>a z{){&-cye+TYVr7mjqC7;w&cIN-Xdq~BO*mVUH%{eV&MS|VCl_i>hM>po3EtIHUPoe zlwWFDGChf?z6!3Y=*NjH#qce-Wu3wk+zwmDD z-XDP>pk63Xn4LQS-SV(^0f+;^z?*LgQ3*+jzk#BEfHE?mdwxh5NZ-y02GW5+;dY81 zzCa5wx?4h06euPsY6U=ddcqJWpa>dh2ml$vyga-;9bjH)T76Fs2O}8D0;I33ibhoN zMX4E~>`*YE1A#(QdjZA%2K~|NhTV-`GBUv5Isktw;ROU~!J%G23&4$v zh5#!dnu9l5x-bCE?GLH&KS=*jD%qjz+&rBAX7NW;9T>_EitYhQ{fB6Yf2aSa-T;uE zz79}WPVSGOn_>K=Bgjw!a6@MJPc3e^{^|T}!@tD=Kt|s7s2i)A>1czrVF)LbGf-GW zL_$vPk7s1=`XcQdTwy4nJZo;WZ9GqwN=?}5PYS5-I4C-Q3HM5-4I^V zzOvlENu<&38!(6)_!|Y~D$8xAqYp%Rc(}R3Q9y{0l#sBXu!sQA(bLWy=Hub%3KSL+ z=SH*iggQzaDy#lsi2fzZ?TkVpr9mJcA0Htf5g`vxCy=m|loSXI0YM;wXbeFwKLpCo zR}kUFj+XaZ5xChu$PivazjYFF@Nfsg%|OCJV9?)!l+nZSgd2U?&A z+79TJGbT@_}e`fVn|`hX3Ev3hkT!*$QZf{xO3L8b?~k z0}6NaQ$~l890V*ZCI}W61Vio#OG%4Kpg;Uzh%^{11Nsk4wDZxVO6b5x!Tw)J{{{13 zNIg97p{InLHr(D5rswDgcYpy!g&=~VOyP54E^mOEwlRMK*0X;gd1G$uf}g0&_DV74}SU$LWeZkWuSj77;*sMf9d+~G5Y5!iC&FmxqWWd zKy>Thvm4}}i}2s!%=14*GcP(5-2?~P*f-(9qbz+BTVQc8L|95p;&)hagTdTrG<5j= zFBpF!f#*NM1WkMI#(O+Be&PK`4)OJbIRd~yVKCrkz543{ii?Sfhyfjef59Zgz>?^k zb#nm`f5XJZMbK&Z-(g~42s$nPJ4{qk>OX1G2*T)e`=59cXk-05OiWl5oz(slCW%ga z{{e#t{|g?<(+=(i^ZcE;jo|(;^w@wPLk|yhlD^51K#&H)(F1tn8T58RLm6lxBdiEf zmQ)c|QG`f|iYux}DkzEwgC!+|MMM?FMU}y-a{oJq)lL5QLfLtuej8LmTtW&0;N(=% HQw97VnNtFC diff --git a/Content/Figures/PU_exercise_6.eps b/Content/Figures/PU_exercise_6.eps deleted file mode 100644 index b8652e4da..000000000 --- a/Content/Figures/PU_exercise_6.eps +++ /dev/null @@ -1,2077 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%BoundingBox: 0 0 784 584 -%%Pages: 0 -%%Creator: LibreOffice 4.2 -%%Title: none -%%CreationDate: none -%%LanguageLevel: 2 -%%EndComments -%%BeginProlog -%%BeginResource: procset SDRes-Prolog 1.0 0 -/b4_inc_state save def -/dict_count countdictstack def -/op_count count 1 sub def -userdict begin -0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath -/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if -/bdef {bind def} bind def -/c {setrgbcolor} bdef -/l {neg lineto} bdef -/rl {neg rlineto} bdef -/lc {setlinecap} bdef -/lj {setlinejoin} bdef -/lw {setlinewidth} bdef -/ml {setmiterlimit} bdef -/ld {setdash} bdef -/m {neg moveto} bdef -/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef -/r {rotate} bdef -/t {neg translate} bdef -/s {scale} bdef -/sw {show} bdef -/gs {gsave} bdef -/gr {grestore} bdef -/f {findfont dup length dict begin -{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def -currentdict end /NFont exch definefont pop /NFont findfont} bdef -/p {closepath} bdef -/sf {scalefont setfont} bdef -/ef {eofill}bdef -/pc {closepath stroke}bdef -/ps {stroke}bdef -/pum {matrix currentmatrix}bdef -/pom {setmatrix}bdef -/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef -%%EndResource -%%EndProlog -%%BeginSetup -%%EndSetup -%%Page: 1 1 -%%BeginPageSetup -%%EndPageSetup -pum -0.02834 0.02835 s -0 -20596 t -/tm matrix currentmatrix def -tm setmatrix --241 -243 t -1 1 s -0.449 0.625 0.812 c 254 256 m 27683 256 l 27683 2795 l 254 2795 l 254 256 l -p -254 256 m 254 256 l p -27683 2795 m 27683 2795 l p ef -25.99889 lw 1 lj 0.207 0.398 0.644 c 253 255 m 27682 255 l 27682 2794 l -253 2794 l 253 255 l pc -253 255 m 253 255 l pc -27682 2794 m 27682 2794 l pc -pum -1210 2072 t -0.003 0.003 0.003 c 747 -319 m 867 -288 l 842 -189 796 -114 731 -62 ct 665 -10 585 16 491 16 ct -393 16 313 -4 251 -44 ct 190 -84 143 -142 111 -217 ct 79 -293 63 -374 63 -461 ct -63 -556 81 -639 118 -709 ct 154 -780 205 -833 272 -870 ct 339 -907 412 -925 492 -925 ct -583 -925 660 -902 722 -855 ct 784 -809 827 -744 851 -660 ct 733 -632 l 712 -698 681 -746 641 -777 ct -601 -807 551 -822 490 -822 ct 420 -822 362 -805 315 -772 ct 268 -738 235 -693 216 -637 ct -197 -580 187 -522 187 -462 ct 187 -385 199 -317 221 -259 ct 244 -202 279 -158 326 -130 ct -374 -101 425 -87 481 -87 ct 548 -87 605 -106 652 -145 ct 698 -184 730 -242 747 -319 ct -p ef -1023 1 m 1023 -909 l 1636 -909 l 1636 -802 l 1143 -802 l 1143 -520 l -1570 -520 l 1570 -413 l 1143 -413 l 1143 1 l 1023 1 l p ef -1791 0 m 1791 -910 l 2104 -910 l 2175 -910 2229 -906 2266 -897 ct 2318 -885 2363 -863 2399 -832 ct -2447 -791 2483 -739 2507 -676 ct 2531 -613 2543 -541 2543 -460 ct 2543 -391 2535 -330 2518 -276 ct -2502 -223 2482 -179 2456 -144 ct 2431 -109 2404 -81 2374 -61 ct 2344 -41 2307 -26 2265 -16 ct -2223 -5 2174 0 2119 0 ct 1791 0 l p -1911 -107 m 2105 -107 l 2165 -107 2212 -113 2246 -124 ct 2281 -135 2308 -151 2328 -171 ct -2357 -200 2379 -238 2395 -286 ct 2411 -335 2419 -393 2419 -462 ct 2419 -557 2403 -630 2372 -681 ct -2341 -732 2303 -767 2258 -784 ct 2226 -796 2174 -803 2102 -803 ct 1911 -803 l -1911 -107 l p ef -3280 1 m 3280 -802 l 2981 -802 l 2981 -909 l 3701 -909 l 3701 -802 l -3401 -802 l 3401 1 l 3280 1 l p ef -3765 -443 m 3765 -594 3806 -712 3887 -797 ct 3968 -883 4073 -926 4201 -926 ct -4285 -926 4360 -906 4428 -865 ct 4495 -825 4546 -769 4582 -698 ct 4617 -626 4635 -544 4635 -453 ct -4635 -361 4616 -278 4579 -206 ct 4542 -133 4489 -78 4421 -40 ct 4353 -3 4279 16 4200 16 ct -4115 16 4038 -5 3971 -46 ct 3903 -87 3852 -144 3817 -216 ct 3783 -287 3765 -363 3765 -443 ct -p -3889 -441 m 3889 -331 3919 -245 3978 -182 ct 4037 -119 4111 -87 4199 -87 ct -4290 -87 4365 -119 4423 -183 ct 4482 -246 4511 -337 4511 -454 ct 4511 -528 4498 -593 4473 -648 ct -4448 -703 4412 -746 4363 -776 ct 4315 -807 4261 -822 4201 -822 ct 4116 -822 4043 -793 3982 -734 ct -3920 -676 3889 -578 3889 -441 ct p ef -4739 -443 m 4739 -594 4780 -712 4861 -797 ct 4942 -883 5047 -926 5175 -926 ct -5259 -926 5334 -906 5402 -865 ct 5469 -825 5520 -769 5556 -698 ct 5591 -626 5609 -544 5609 -453 ct -5609 -361 5590 -278 5553 -206 ct 5516 -133 5463 -78 5395 -40 ct 5327 -3 5253 16 5174 16 ct -5089 16 5012 -5 4945 -46 ct 4877 -87 4826 -144 4791 -216 ct 4757 -287 4739 -363 4739 -443 ct -p -4863 -441 m 4863 -331 4893 -245 4952 -182 ct 5011 -119 5085 -87 5173 -87 ct -5264 -87 5339 -119 5397 -183 ct 5456 -246 5485 -337 5485 -454 ct 5485 -528 5472 -593 5447 -648 ct -5422 -703 5386 -746 5337 -776 ct 5289 -807 5235 -822 5175 -822 ct 5090 -822 5017 -793 4956 -734 ct -4894 -676 4863 -578 4863 -441 ct p ef -5757 0 m 5757 -910 l 5877 -910 l 5877 -107 l 6325 -107 l 6325 0 l -5757 0 l p ef -6672 16 m 6936 -925 l 7025 -925 l 6762 16 l 6672 16 l p ef -7478 1 m 7478 -909 l 8091 -909 l 8091 -802 l 7598 -802 l 7598 -520 l -8025 -520 l 8025 -413 l 7598 -413 l 7598 1 l 7478 1 l p ef -8191 -329 m 8191 -452 8225 -542 8293 -601 ct 8350 -650 8419 -674 8500 -674 ct -8591 -674 8665 -644 8722 -585 ct 8779 -526 8808 -444 8808 -339 ct 8808 -254 8795 -187 8770 -139 ct -8745 -90 8708 -52 8659 -25 ct 8610 2 8557 15 8500 15 ct 8408 15 8333 -15 8276 -74 ct -8220 -133 8191 -218 8191 -329 ct p -8306 -330 m 8306 -245 8324 -182 8361 -140 ct 8398 -98 8444 -77 8500 -77 ct -8555 -77 8601 -98 8638 -140 ct 8675 -182 8693 -247 8693 -333 ct 8693 -415 8675 -477 8638 -519 ct -8601 -561 8555 -582 8500 -582 ct 8444 -582 8398 -561 8361 -519 ct 8324 -477 8306 -414 8306 -330 ct -p ef -9369 -81 m 9328 -46 9288 -21 9250 -7 ct 9212 8 9171 15 9127 15 ct 9055 15 8999 -3 8960 -38 ct -8921 -73 8902 -119 8902 -174 ct 8902 -206 8909 -235 8924 -262 ct 8939 -289 8958 -310 8982 -326 ct -9005 -343 9032 -355 9062 -363 ct 9084 -369 9117 -374 9161 -380 ct 9251 -391 9318 -403 9360 -418 ct -9361 -434 9361 -443 9361 -447 ct 9361 -493 9350 -525 9329 -544 ct 9301 -569 9258 -582 9202 -582 ct -9150 -582 9111 -572 9086 -554 ct 9061 -535 9042 -503 9030 -456 ct 8921 -471 l -8931 -518 8947 -556 8970 -584 ct 8993 -613 9026 -635 9069 -651 ct 9112 -666 9162 -674 9218 -674 ct -9274 -674 9320 -667 9355 -654 ct 9390 -641 9416 -624 9433 -604 ct 9449 -584 9461 -559 9467 -528 ct -9471 -509 9473 -475 9473 -425 ct 9473 -276 l 9473 -172 9475 -107 9480 -79 ct -9485 -52 9494 -25 9508 0 ct 9392 0 l 9380 -23 9373 -50 9369 -81 ct p -9360 -331 m 9320 -314 9259 -300 9178 -289 ct 9132 -282 9100 -274 9080 -266 ct -9061 -258 9047 -246 9036 -230 ct 9026 -214 9021 -196 9021 -177 ct 9021 -147 9032 -122 9055 -102 ct -9077 -82 9110 -73 9154 -73 ct 9197 -73 9235 -82 9268 -101 ct 9302 -120 9326 -145 9342 -178 ct -9354 -203 9360 -241 9360 -290 ct 9360 -331 l p ef -9647 0 m 9647 -659 l 9747 -659 l 9747 -567 l 9767 -599 9795 -625 9829 -645 ct -9863 -664 9902 -674 9946 -674 ct 9995 -674 10035 -664 10066 -644 ct 10097 -623 10119 -595 10132 -559 ct -10184 -636 10252 -674 10336 -674 ct 10401 -674 10451 -656 10486 -620 ct 10521 -583 10539 -528 10539 -452 ct -10539 0 l 10428 0 l 10428 -415 l 10428 -460 10424 -492 10417 -512 ct 10410 -531 10397 -547 10378 -559 ct -10359 -571 10337 -577 10311 -577 ct 10265 -577 10226 -562 10196 -531 ct 10165 -500 10150 -451 10150 -383 ct -10150 0 l 10038 0 l 10038 -428 l 10038 -478 10029 -515 10011 -540 ct 9993 -565 9963 -577 9921 -577 ct -9890 -577 9861 -569 9834 -552 ct 9808 -536 9788 -512 9776 -480 ct 9764 -448 9758 -402 9758 -342 ct -9758 0 l 9647 0 l p ef -11057 0 m 11057 -659 l 11157 -659 l 11157 -567 l 11177 -599 11205 -625 11239 -645 ct -11273 -664 11312 -674 11356 -674 ct 11405 -674 11445 -664 11476 -644 ct 11507 -623 11529 -595 11542 -559 ct -11594 -636 11662 -674 11746 -674 ct 11811 -674 11861 -656 11896 -620 ct 11931 -583 11949 -528 11949 -452 ct -11949 0 l 11838 0 l 11838 -415 l 11838 -460 11834 -492 11827 -512 ct 11820 -531 11807 -547 11788 -559 ct -11769 -571 11747 -577 11721 -577 ct 11675 -577 11636 -562 11606 -531 ct 11575 -500 11560 -451 11560 -383 ct -11560 0 l 11448 0 l 11448 -428 l 11448 -478 11439 -515 11421 -540 ct 11403 -565 11373 -577 11331 -577 ct -11300 -577 11271 -569 11244 -552 ct 11218 -536 11198 -512 11186 -480 ct 11174 -448 11168 -402 11168 -342 ct -11168 0 l 11057 0 l p ef -12073 -329 m 12073 -452 12107 -542 12175 -601 ct 12232 -650 12301 -674 12382 -674 ct -12473 -674 12547 -644 12604 -585 ct 12661 -526 12690 -444 12690 -339 ct 12690 -254 12677 -187 12652 -139 ct -12627 -90 12590 -52 12541 -25 ct 12492 2 12439 15 12382 15 ct 12290 15 12215 -15 12158 -74 ct -12102 -133 12073 -218 12073 -329 ct p -12188 -330 m 12188 -245 12206 -182 12243 -140 ct 12280 -98 12326 -77 12382 -77 ct -12437 -77 12483 -98 12520 -140 ct 12557 -182 12575 -247 12575 -333 ct 12575 -415 12557 -477 12520 -519 ct -12483 -561 12437 -582 12382 -582 ct 12326 -582 12280 -561 12243 -519 ct 12206 -477 12188 -414 12188 -330 ct -p ef -13249 0 m 13249 -83 l 13207 -18 13146 15 13065 15 ct 13012 15 12964 1 12920 -28 ct -12876 -57 12842 -98 12818 -150 ct 12794 -202 12781 -261 12781 -329 ct 12781 -395 12792 -454 12814 -508 ct -12836 -562 12869 -603 12913 -631 ct 12957 -660 13006 -674 13060 -674 ct 13100 -674 13135 -666 13166 -649 ct -13197 -632 13222 -610 13242 -583 ct 13242 -910 l 13353 -910 l 13353 0 l -13249 0 l p -12896 -329 m 12896 -244 12914 -181 12949 -140 ct 12985 -98 13027 -77 13075 -77 ct -13124 -77 13166 -97 13200 -137 ct 13234 -177 13251 -238 13251 -320 ct 13251 -410 13233 -476 13199 -518 ct -13164 -560 13121 -582 13070 -582 ct 13021 -582 12979 -561 12946 -521 ct 12913 -480 12896 -416 12896 -329 ct -p ef -13980 -212 m 14095 -198 l 14077 -130 14043 -78 13994 -41 ct 13945 -4 13882 15 13805 15 ct -13709 15 13633 -15 13576 -74 ct 13520 -133 13492 -217 13492 -324 ct 13492 -435 13520 -521 13577 -582 ct -13634 -643 13708 -674 13799 -674 ct 13887 -674 13959 -644 14015 -584 ct 14071 -524 14099 -440 14099 -331 ct -14099 -324 14098 -314 14098 -301 ct 13607 -301 l 13611 -229 13631 -173 13668 -135 ct -13705 -96 13751 -77 13806 -77 ct 13847 -77 13882 -88 13911 -109 ct 13940 -131 13963 -165 13980 -212 ct -p -13613 -393 m 13981 -393 l 13976 -448 13962 -490 13939 -518 ct 13903 -561 13857 -582 13800 -582 ct -13749 -582 13706 -565 13671 -531 ct 13636 -496 13617 -450 13613 -393 ct p ef -14232 0 m 14232 -910 l 14344 -910 l 14344 0 l 14232 0 l p ef -15083 267 m 15021 189 14969 98 14927 -6 ct 14884 -110 14863 -218 14863 -330 ct -14863 -429 14879 -523 14911 -613 ct 14948 -718 15005 -822 15083 -926 ct 15163 -926 l -15113 -840 15080 -778 15064 -742 ct 15039 -684 15019 -625 15004 -563 ct 14987 -485 14978 -408 14978 -329 ct -14978 -130 15039 68 15163 267 ct 15083 267 l p ef -15251 -329 m 15251 -452 15285 -542 15353 -601 ct 15410 -650 15479 -674 15560 -674 ct -15651 -674 15725 -644 15782 -585 ct 15839 -526 15868 -444 15868 -339 ct 15868 -254 15855 -187 15830 -139 ct -15805 -90 15768 -52 15719 -25 ct 15670 2 15617 15 15560 15 ct 15468 15 15393 -15 15336 -74 ct -15280 -133 15251 -218 15251 -329 ct p -15366 -330 m 15366 -245 15384 -182 15421 -140 ct 15458 -98 15504 -77 15560 -77 ct -15615 -77 15661 -98 15698 -140 ct 15735 -182 15753 -247 15753 -333 ct 15753 -415 15735 -477 15698 -519 ct -15661 -561 15615 -582 15560 -582 ct 15504 -582 15458 -561 15421 -519 ct 15384 -477 15366 -414 15366 -330 ct -p ef -16000 253 m 16000 -659 l 16101 -659 l 16101 -573 l 16125 -607 16152 -632 16183 -648 ct -16213 -665 16249 -674 16292 -674 ct 16349 -674 16398 -659 16441 -630 ct 16484 -601 16517 -560 16539 -508 ct -16561 -455 16571 -397 16571 -334 ct 16571 -267 16559 -206 16535 -152 ct 16511 -98 16476 -57 16430 -28 ct -16384 1 16335 15 16284 15 ct 16247 15 16214 7 16184 -9 ct 16155 -24 16130 -44 16111 -68 ct -16111 253 l 16000 253 l p -16101 -326 m 16101 -241 16118 -178 16152 -138 ct 16187 -97 16228 -77 16277 -77 ct -16327 -77 16369 -98 16404 -140 ct 16440 -182 16457 -247 16457 -335 ct 16457 -419 16440 -482 16406 -523 ct -16371 -565 16330 -586 16282 -586 ct 16234 -586 16192 -564 16156 -519 ct 16119 -475 16101 -410 16101 -326 ct -p ef -17158 -212 m 17273 -198 l 17255 -130 17221 -78 17172 -41 ct 17123 -4 17060 15 16983 15 ct -16887 15 16811 -15 16754 -74 ct 16698 -133 16670 -217 16670 -324 ct 16670 -435 16698 -521 16755 -582 ct -16812 -643 16886 -674 16977 -674 ct 17065 -674 17137 -644 17193 -584 ct 17249 -524 17277 -440 17277 -331 ct -17277 -324 17276 -314 17276 -301 ct 16785 -301 l 16789 -229 16809 -173 16846 -135 ct -16883 -96 16929 -77 16984 -77 ct 17025 -77 17060 -88 17089 -109 ct 17118 -131 17141 -165 17158 -212 ct -p -16791 -393 m 17159 -393 l 17154 -448 17140 -490 17117 -518 ct 17081 -561 17035 -582 16978 -582 ct -16927 -582 16884 -565 16849 -531 ct 16814 -496 16795 -450 16791 -393 ct p ef -17414 0 m 17414 -659 l 17514 -659 l 17514 -565 l 17563 -638 17632 -674 17724 -674 ct -17763 -674 17800 -667 17833 -653 ct 17867 -638 17891 -620 17908 -596 ct 17924 -573 17936 -546 17943 -514 ct -17947 -493 17949 -457 17949 -405 ct 17949 0 l 17837 0 l 17837 -401 l 17837 -446 17833 -480 17824 -503 ct -17816 -526 17800 -544 17778 -557 ct 17756 -570 17730 -577 17700 -577 ct 17653 -577 17612 -562 17577 -532 ct -17543 -502 17525 -444 17525 -360 ct 17525 0 l 17414 0 l p ef -18147 0 m 18147 -572 l 18049 -572 l 18049 -659 l 18147 -659 l 18147 -729 l -18147 -773 18151 -806 18159 -828 ct 18170 -857 18189 -880 18216 -898 ct 18243 -916 18281 -925 18330 -925 ct -18361 -925 18396 -921 18434 -914 ct 18417 -816 l 18394 -821 18372 -823 18351 -823 ct -18318 -823 18294 -815 18279 -801 ct 18265 -786 18258 -759 18258 -720 ct 18258 -659 l -18387 -659 l 18387 -572 l 18258 -572 l 18258 0 l 18147 0 l p ef -18431 -329 m 18431 -452 18465 -542 18533 -601 ct 18590 -650 18659 -674 18740 -674 ct -18831 -674 18905 -644 18962 -585 ct 19019 -526 19048 -444 19048 -339 ct 19048 -254 19035 -187 19010 -139 ct -18985 -90 18948 -52 18899 -25 ct 18850 2 18797 15 18740 15 ct 18648 15 18573 -15 18516 -74 ct -18460 -133 18431 -218 18431 -329 ct p -18546 -330 m 18546 -245 18564 -182 18601 -140 ct 18638 -98 18684 -77 18740 -77 ct -18795 -77 18841 -98 18878 -140 ct 18915 -182 18933 -247 18933 -333 ct 18933 -415 18915 -477 18878 -519 ct -18841 -561 18795 -582 18740 -582 ct 18684 -582 18638 -561 18601 -519 ct 18564 -477 18546 -414 18546 -330 ct -p ef -19609 -81 m 19568 -46 19528 -21 19490 -7 ct 19452 8 19411 15 19367 15 ct 19295 15 19239 -3 19200 -38 ct -19161 -73 19142 -119 19142 -174 ct 19142 -206 19149 -235 19164 -262 ct 19179 -289 19198 -310 19222 -326 ct -19245 -343 19272 -355 19302 -363 ct 19324 -369 19357 -374 19401 -380 ct 19491 -391 19558 -403 19600 -418 ct -19601 -434 19601 -443 19601 -447 ct 19601 -493 19590 -525 19569 -544 ct 19541 -569 19498 -582 19442 -582 ct -19390 -582 19351 -572 19326 -554 ct 19301 -535 19282 -503 19270 -456 ct 19161 -471 l -19171 -518 19187 -556 19210 -584 ct 19233 -613 19266 -635 19309 -651 ct 19352 -666 19402 -674 19458 -674 ct -19514 -674 19560 -667 19595 -654 ct 19630 -641 19656 -624 19673 -604 ct 19689 -584 19701 -559 19707 -528 ct -19711 -509 19713 -475 19713 -425 ct 19713 -276 l 19713 -172 19715 -107 19720 -79 ct -19725 -52 19734 -25 19748 0 ct 19632 0 l 19620 -23 19613 -50 19609 -81 ct p -19600 -331 m 19560 -314 19499 -300 19418 -289 ct 19372 -282 19340 -274 19320 -266 ct -19301 -258 19287 -246 19276 -230 ct 19266 -214 19261 -196 19261 -177 ct 19261 -147 19272 -122 19295 -102 ct -19317 -82 19350 -73 19394 -73 ct 19437 -73 19475 -82 19508 -101 ct 19542 -120 19566 -145 19582 -178 ct -19594 -203 19600 -241 19600 -290 ct 19600 -331 l p ef -19887 0 m 19887 -659 l 19987 -659 l 19987 -567 l 20007 -599 20035 -625 20069 -645 ct -20103 -664 20142 -674 20186 -674 ct 20235 -674 20275 -664 20306 -644 ct 20337 -623 20359 -595 20372 -559 ct -20424 -636 20492 -674 20576 -674 ct 20641 -674 20691 -656 20726 -620 ct 20761 -583 20779 -528 20779 -452 ct -20779 0 l 20668 0 l 20668 -415 l 20668 -460 20664 -492 20657 -512 ct 20650 -531 20637 -547 20618 -559 ct -20599 -571 20577 -577 20551 -577 ct 20505 -577 20466 -562 20436 -531 ct 20405 -500 20390 -451 20390 -383 ct -20390 0 l 20278 0 l 20278 -428 l 20278 -478 20269 -515 20251 -540 ct 20233 -565 20203 -577 20161 -577 ct -20130 -577 20101 -569 20074 -552 ct 20048 -536 20028 -512 20016 -480 ct 20004 -448 19998 -402 19998 -342 ct -19998 0 l 19887 0 l p ef -21212 16 m 21476 -925 l 21565 -925 l 21302 16 l 21212 16 l p ef -22013 0 m 22013 -910 l 22356 -910 l 22416 -910 22462 -907 22494 -901 ct -22539 -894 22576 -880 22606 -859 ct 22637 -838 22661 -809 22679 -771 ct 22698 -733 22707 -692 22707 -647 ct -22707 -569 22682 -504 22633 -450 ct 22584 -397 22495 -370 22366 -370 ct 22133 -370 l -22133 0 l 22013 0 l p -22133 -477 m 22368 -477 l 22446 -477 22501 -492 22534 -521 ct 22567 -550 22583 -591 22583 -643 ct -22583 -681 22573 -714 22554 -741 ct 22535 -768 22509 -786 22478 -795 ct 22458 -800 22420 -803 22366 -803 ct -22133 -803 l 22133 -477 l p ef -22804 -329 m 22804 -452 22838 -542 22906 -601 ct 22963 -650 23032 -674 23113 -674 ct -23204 -674 23278 -644 23335 -585 ct 23392 -526 23421 -444 23421 -339 ct 23421 -254 23408 -187 23383 -139 ct -23358 -90 23321 -52 23272 -25 ct 23223 2 23170 15 23113 15 ct 23021 15 22946 -15 22889 -74 ct -22833 -133 22804 -218 22804 -329 ct p -22919 -330 m 22919 -245 22937 -182 22974 -140 ct 23011 -98 23057 -77 23113 -77 ct -23168 -77 23214 -98 23251 -140 ct 23288 -182 23306 -247 23306 -333 ct 23306 -415 23288 -477 23251 -519 ct -23214 -561 23168 -582 23113 -582 ct 23057 -582 23011 -561 22974 -519 ct 22937 -477 22919 -414 22919 -330 ct -p ef -23550 0 m 23550 -910 l 23662 -910 l 23662 0 l 23550 0 l p ef -23836 -782 m 23836 -910 l 23948 -910 l 23948 -782 l 23836 -782 l p -23836 0 m 23836 -659 l 23948 -659 l 23948 0 l 23836 0 l p ef -24363 -100 m 24380 -1 l 24348 6 24320 9 24295 9 ct 24255 9 24223 3 24201 -10 ct -24179 -23 24163 -40 24154 -61 ct 24145 -82 24140 -126 24140 -193 ct 24140 -572 l -24058 -572 l 24058 -659 l 24140 -659 l 24140 -822 l 24251 -889 l 24251 -659 l -24363 -659 l 24363 -572 l 24251 -572 l 24251 -187 l 24251 -155 24253 -134 24257 -125 ct -24261 -116 24267 -109 24276 -103 ct 24285 -98 24298 -95 24314 -95 ct 24327 -95 24343 -97 24363 -100 ct -p ef -24429 -329 m 24429 -452 24463 -542 24531 -601 ct 24588 -650 24657 -674 24738 -674 ct -24829 -674 24903 -644 24960 -585 ct 25017 -526 25046 -444 25046 -339 ct 25046 -254 25033 -187 25008 -139 ct -24983 -90 24946 -52 24897 -25 ct 24848 2 24795 15 24738 15 ct 24646 15 24571 -15 24514 -74 ct -24458 -133 24429 -218 24429 -329 ct p -24544 -330 m 24544 -245 24562 -182 24599 -140 ct 24636 -98 24682 -77 24738 -77 ct -24793 -77 24839 -98 24876 -140 ct 24913 -182 24931 -247 24931 -333 ct 24931 -415 24913 -477 24876 -519 ct -24839 -561 24793 -582 24738 -582 ct 24682 -582 24636 -561 24599 -519 ct 24562 -477 24544 -414 24544 -330 ct -p ef -25251 267 m 25171 267 l 25295 68 25356 -130 25356 -329 ct 25356 -407 25347 -484 25330 -561 ct -25316 -623 25296 -683 25271 -740 ct 25255 -777 25221 -839 25171 -926 ct 25251 -926 l -25329 -822 25386 -718 25423 -613 ct 25455 -523 25471 -429 25471 -330 ct 25471 -218 25450 -110 25407 -6 ct -25364 98 25312 189 25251 267 ct p ef -pom -0.449 0.625 0.812 c 254 18286 m 27683 18286 l 27683 20825 l 254 20825 l -254 18286 l p -254 18286 m 254 18286 l p -27683 20825 m 27683 20825 l p ef -0.207 0.398 0.644 c 253 18286 m 27682 18286 l 27682 20824 l 253 20824 l -253 18286 l pc -253 18286 m 253 18286 l pc -27682 20824 m 27682 20824 l pc -pum -3790 20102 t -0.003 0.003 0.003 c 93 0 m 93 -910 l 434 -910 l 504 -910 559 -901 601 -882 ct -643 -864 676 -836 700 -797 ct 724 -759 735 -719 735 -677 ct 735 -638 725 -602 704 -567 ct -683 -533 651 -505 608 -484 ct 663 -468 706 -440 735 -401 ct 765 -363 779 -317 779 -264 ct -779 -221 770 -181 753 -145 ct 735 -108 712 -80 686 -60 ct 659 -40 626 -25 586 -15 ct -546 -5 498 0 440 0 ct 93 0 l p -213 -527 m 410 -527 l 463 -527 501 -531 525 -538 ct 555 -547 578 -562 594 -583 ct -609 -604 617 -631 617 -663 ct 617 -693 610 -720 595 -743 ct 581 -766 560 -781 533 -790 ct -506 -798 460 -803 395 -803 ct 213 -803 l 213 -527 l p -213 -107 m 440 -107 l 479 -107 506 -109 522 -112 ct 549 -117 572 -125 591 -137 ct -610 -148 625 -165 637 -187 ct 649 -209 655 -235 655 -264 ct 655 -298 646 -327 629 -352 ct -611 -377 587 -395 557 -405 ct 526 -415 481 -420 424 -420 ct 213 -420 l 213 -107 l -p ef -1542 -910 m 1662 -910 l 1662 -384 l 1662 -292 1652 -220 1631 -166 ct 1610 -112 1573 -68 1519 -35 ct -1465 -1 1394 16 1307 16 ct 1221 16 1152 1 1098 -28 ct 1043 -57 1005 -100 982 -156 ct -958 -211 947 -287 947 -384 ct 947 -910 l 1067 -910 l 1067 -384 l 1067 -305 1074 -247 1089 -210 ct -1104 -172 1129 -143 1165 -123 ct 1201 -103 1244 -93 1296 -93 ct 1384 -93 1447 -113 1485 -153 ct -1523 -193 1542 -270 1542 -384 ct 1542 -910 l p ef -1858 0 m 1858 -910 l 2199 -910 l 2269 -910 2324 -901 2366 -882 ct 2408 -864 2441 -836 2465 -797 ct -2489 -759 2500 -719 2500 -677 ct 2500 -638 2490 -602 2469 -567 ct 2448 -533 2416 -505 2373 -484 ct -2428 -468 2471 -440 2500 -401 ct 2530 -363 2544 -317 2544 -264 ct 2544 -221 2535 -181 2518 -145 ct -2500 -108 2477 -80 2451 -60 ct 2424 -40 2391 -25 2351 -15 ct 2311 -5 2263 0 2205 0 ct -1858 0 l p -1978 -527 m 2175 -527 l 2228 -527 2266 -531 2290 -538 ct 2320 -547 2343 -562 2359 -583 ct -2374 -604 2382 -631 2382 -663 ct 2382 -693 2375 -720 2360 -743 ct 2346 -766 2325 -781 2298 -790 ct -2271 -798 2225 -803 2160 -803 ct 1978 -803 l 1978 -527 l p -1978 -107 m 2205 -107 l 2244 -107 2271 -109 2287 -112 ct 2314 -117 2337 -125 2356 -137 ct -2375 -148 2390 -165 2402 -187 ct 2414 -209 2420 -235 2420 -264 ct 2420 -298 2411 -327 2394 -352 ct -2376 -377 2352 -395 2322 -405 ct 2291 -415 2246 -420 2189 -420 ct 1978 -420 l -1978 -107 l p ef -2705 0 m 2705 -910 l 3046 -910 l 3116 -910 3171 -901 3213 -882 ct 3255 -864 3288 -836 3312 -797 ct -3336 -759 3347 -719 3347 -677 ct 3347 -638 3337 -602 3316 -567 ct 3295 -533 3263 -505 3220 -484 ct -3275 -468 3318 -440 3347 -401 ct 3377 -363 3391 -317 3391 -264 ct 3391 -221 3382 -181 3365 -145 ct -3347 -108 3324 -80 3298 -60 ct 3271 -40 3238 -25 3198 -15 ct 3158 -5 3110 0 3052 0 ct -2705 0 l p -2825 -527 m 3022 -527 l 3075 -527 3113 -531 3137 -538 ct 3167 -547 3190 -562 3206 -583 ct -3221 -604 3229 -631 3229 -663 ct 3229 -693 3222 -720 3207 -743 ct 3193 -766 3172 -781 3145 -790 ct -3118 -798 3072 -803 3007 -803 ct 2825 -803 l 2825 -527 l p -2825 -107 m 3052 -107 l 3091 -107 3118 -109 3134 -112 ct 3161 -117 3184 -125 3203 -137 ct -3222 -148 3237 -165 3249 -187 ct 3261 -209 3267 -235 3267 -264 ct 3267 -298 3258 -327 3241 -352 ct -3223 -377 3199 -395 3169 -405 ct 3138 -415 3093 -420 3036 -420 ct 2825 -420 l -2825 -107 l p ef -3552 0 m 3552 -910 l 3672 -910 l 3672 -107 l 4120 -107 l 4120 0 l -3552 0 l p ef -4266 0 m 4266 -910 l 4924 -910 l 4924 -803 l 4387 -803 l 4387 -524 l -4890 -524 l 4890 -417 l 4387 -417 l 4387 -107 l 4945 -107 l 4945 0 l -4266 0 l p ef -5887 -356 m 5887 -463 l 6272 -463 l 6272 -126 l 6213 -79 6152 -43 6090 -20 ct -6027 4 5962 16 5896 16 ct 5807 16 5726 -3 5653 -41 ct 5580 -80 5525 -135 5487 -207 ct -5450 -280 5432 -361 5432 -450 ct 5432 -539 5450 -621 5487 -698 ct 5524 -775 5577 -832 5647 -869 ct -5716 -906 5796 -925 5887 -925 ct 5953 -925 6012 -914 6065 -893 ct 6118 -872 6160 -842 6190 -804 ct -6220 -766 6243 -716 6259 -655 ct 6150 -625 l 6137 -671 6120 -708 6099 -734 ct -6079 -761 6050 -782 6013 -798 ct 5975 -814 5933 -822 5887 -822 ct 5832 -822 5785 -814 5745 -797 ct -5705 -780 5672 -758 5648 -731 ct 5623 -703 5604 -673 5590 -641 ct 5567 -584 5556 -523 5556 -458 ct -5556 -377 5570 -309 5597 -254 ct 5625 -199 5666 -159 5719 -132 ct 5773 -106 5829 -93 5889 -93 ct -5941 -93 5992 -103 6042 -123 ct 6091 -143 6129 -164 6155 -187 ct 6155 -356 l -5887 -356 l p ef -6450 0 m 6450 -910 l 6853 -910 l 6934 -910 6996 -902 7038 -885 ct 7080 -869 7114 -840 7139 -799 ct -7164 -757 7177 -712 7177 -662 ct 7177 -597 7156 -543 7114 -498 ct 7072 -454 7008 -426 6921 -414 ct -6952 -399 6977 -384 6993 -369 ct 7028 -336 7061 -296 7093 -248 ct 7251 0 l 7100 0 l -6979 -189 l 6944 -244 6915 -286 6893 -315 ct 6870 -344 6850 -364 6832 -375 ct -6814 -387 6795 -395 6777 -400 ct 6763 -403 6741 -404 6710 -404 ct 6570 -404 l -6570 0 l 6450 0 l p -6570 -508 m 6829 -508 l 6884 -508 6927 -514 6958 -525 ct 6989 -537 7012 -555 7028 -580 ct -7045 -605 7053 -632 7053 -662 ct 7053 -705 7037 -740 7006 -768 ct 6975 -796 6925 -809 6858 -809 ct -6570 -809 l 6570 -508 l p ef -7330 -443 m 7330 -594 7371 -712 7452 -797 ct 7533 -883 7638 -926 7766 -926 ct -7850 -926 7925 -906 7993 -865 ct 8060 -825 8111 -769 8147 -698 ct 8182 -626 8200 -544 8200 -453 ct -8200 -361 8181 -278 8144 -206 ct 8107 -133 8054 -78 7986 -40 ct 7918 -3 7844 16 7765 16 ct -7680 16 7603 -5 7536 -46 ct 7468 -87 7417 -144 7382 -216 ct 7348 -287 7330 -363 7330 -443 ct -p -7454 -441 m 7454 -331 7484 -245 7543 -182 ct 7602 -119 7676 -87 7764 -87 ct -7855 -87 7930 -119 7988 -183 ct 8047 -246 8076 -337 8076 -454 ct 8076 -528 8063 -593 8038 -648 ct -8013 -703 7977 -746 7928 -776 ct 7880 -807 7826 -822 7766 -822 ct 7681 -822 7608 -793 7547 -734 ct -7485 -676 7454 -578 7454 -441 ct p ef -8512 0 m 8271 -910 l 8394 -910 l 8532 -313 l 8547 -251 8560 -189 8571 -127 ct -8594 -225 8607 -281 8612 -295 ct 8785 -910 l 8930 -910 l 9060 -449 l 9093 -335 9116 -228 9131 -127 ct -9142 -185 9157 -251 9176 -325 ct 9319 -910 l 9439 -910 l 9190 0 l 9074 0 l -8883 -693 l 8866 -751 8857 -787 8854 -800 ct 8845 -758 8836 -723 8827 -693 ct -8635 0 l 8512 0 l p ef -9782 1 m 9782 -802 l 9483 -802 l 9483 -909 l 10203 -909 l 10203 -802 l -9903 -802 l 9903 1 l 9782 1 l p ef -10330 0 m 10330 -910 l 10450 -910 l 10450 -536 l 10923 -536 l 10923 -910 l -11043 -910 l 11043 0 l 10923 0 l 10923 -429 l 10450 -429 l 10450 0 l -10330 0 l p ef -11814 1 m 11814 -802 l 11515 -802 l 11515 -909 l 12235 -909 l 12235 -802 l -11935 -802 l 11935 1 l 11814 1 l p ef -12300 -443 m 12300 -594 12341 -712 12422 -797 ct 12503 -883 12608 -926 12736 -926 ct -12820 -926 12895 -906 12963 -865 ct 13030 -825 13081 -769 13117 -698 ct 13152 -626 13170 -544 13170 -453 ct -13170 -361 13151 -278 13114 -206 ct 13077 -133 13024 -78 12956 -40 ct 12888 -3 12814 16 12735 16 ct -12650 16 12573 -5 12506 -46 ct 12438 -87 12387 -144 12352 -216 ct 12318 -287 12300 -363 12300 -443 ct -p -12424 -441 m 12424 -331 12454 -245 12513 -182 ct 12572 -119 12646 -87 12734 -87 ct -12825 -87 12900 -119 12958 -183 ct 13017 -246 13046 -337 13046 -454 ct 13046 -528 13033 -593 13008 -648 ct -12983 -703 12947 -746 12898 -776 ct 12850 -807 12796 -822 12736 -822 ct 12651 -822 12578 -793 12517 -734 ct -12455 -676 12424 -578 12424 -441 ct p ef -13273 -443 m 13273 -594 13314 -712 13395 -797 ct 13476 -883 13581 -926 13709 -926 ct -13793 -926 13868 -906 13936 -865 ct 14003 -825 14054 -769 14090 -698 ct 14125 -626 14143 -544 14143 -453 ct -14143 -361 14124 -278 14087 -206 ct 14050 -133 13997 -78 13929 -40 ct 13861 -3 13787 16 13708 16 ct -13623 16 13546 -5 13479 -46 ct 13411 -87 13360 -144 13325 -216 ct 13291 -287 13273 -363 13273 -443 ct -p -13397 -441 m 13397 -331 13427 -245 13486 -182 ct 13545 -119 13619 -87 13707 -87 ct -13798 -87 13873 -119 13931 -183 ct 13990 -246 14019 -337 14019 -454 ct 14019 -528 14006 -593 13981 -648 ct -13956 -703 13920 -746 13871 -776 ct 13823 -807 13769 -822 13709 -822 ct 13624 -822 13551 -793 13490 -734 ct -13428 -676 13397 -578 13397 -441 ct p ef -14291 0 m 14291 -910 l 14411 -910 l 14411 -107 l 14859 -107 l 14859 0 l -14291 0 l p ef -15502 267 m 15440 189 15388 98 15346 -6 ct 15303 -110 15282 -218 15282 -330 ct -15282 -429 15298 -523 15330 -613 ct 15367 -718 15424 -822 15502 -926 ct 15582 -926 l -15532 -840 15499 -778 15483 -742 ct 15458 -684 15438 -625 15423 -563 ct 15406 -485 15397 -408 15397 -329 ct -15397 -130 15458 68 15582 267 ct 15502 267 l p ef -15986 0 m 15634 -910 l 15764 -910 l 16000 -249 l 16019 -196 16035 -146 16048 -100 ct -16062 -150 16078 -199 16097 -249 ct 16342 -910 l 16465 -910 l 16109 0 l -15986 0 l p ef -16532 -292 m 16646 -302 l 16651 -256 16663 -219 16683 -190 ct 16703 -161 16733 -137 16775 -119 ct -16816 -101 16862 -92 16914 -92 ct 16960 -92 17000 -99 17036 -112 ct 17071 -126 17097 -145 17114 -169 ct -17131 -192 17140 -218 17140 -247 ct 17140 -275 17132 -300 17115 -321 ct 17098 -343 17071 -361 17033 -375 ct -17009 -385 16955 -399 16871 -419 ct 16788 -440 16729 -458 16696 -476 ct 16652 -499 16620 -527 16599 -561 ct -16577 -595 16567 -632 16567 -674 ct 16567 -720 16580 -763 16606 -803 ct 16632 -843 16670 -873 16720 -894 ct -16770 -915 16826 -925 16887 -925 ct 16954 -925 17014 -914 17065 -892 ct 17117 -871 17156 -839 17184 -797 ct -17212 -754 17226 -707 17228 -653 ct 17113 -644 l 17107 -702 17086 -745 17050 -775 ct -17014 -804 16962 -819 16892 -819 ct 16819 -819 16766 -806 16733 -779 ct 16699 -752 16683 -720 16683 -682 ct -16683 -650 16695 -623 16718 -602 ct 16741 -581 16802 -559 16899 -537 ct 16997 -515 17064 -495 17101 -479 ct -17154 -454 17193 -423 17218 -386 ct 17243 -348 17256 -305 17256 -257 ct 17256 -208 17242 -162 17214 -120 ct -17186 -77 17147 -43 17095 -20 ct 17043 4 16985 16 16920 16 ct 16837 16 16768 4 16713 -20 ct -16657 -44 16614 -80 16582 -128 ct 16550 -177 16534 -231 16532 -292 ct p ef -18069 -319 m 18189 -288 l 18164 -189 18118 -114 18053 -62 ct 17987 -10 17907 16 17813 16 ct -17715 16 17635 -4 17573 -44 ct 17512 -84 17465 -142 17433 -217 ct 17401 -293 17385 -374 17385 -461 ct -17385 -556 17403 -639 17440 -709 ct 17476 -780 17527 -833 17594 -870 ct 17661 -907 17734 -925 17814 -925 ct -17905 -925 17982 -902 18044 -855 ct 18106 -809 18149 -744 18173 -660 ct 18055 -632 l -18034 -698 18003 -746 17963 -777 ct 17923 -807 17873 -822 17812 -822 ct 17742 -822 17684 -805 17637 -772 ct -17590 -738 17557 -693 17538 -637 ct 17519 -580 17509 -522 17509 -462 ct 17509 -385 17521 -317 17543 -259 ct -17566 -202 17601 -158 17648 -130 ct 17696 -101 17747 -87 17803 -87 ct 17870 -87 17927 -106 17974 -145 ct -18020 -184 18052 -242 18069 -319 ct p ef -18342 0 m 18342 -910 l 18462 -910 l 18462 -536 l 18935 -536 l 18935 -910 l -19055 -910 l 19055 0 l 18935 0 l 18935 -429 l 18462 -429 l 18462 0 l -18342 0 l p ef -19488 1 m 19488 -802 l 19189 -802 l 19189 -909 l 19909 -909 l 19909 -802 l -19609 -802 l 19609 1 l 19488 1 l p ef -20091 267 m 20011 267 l 20135 68 20196 -130 20196 -329 ct 20196 -407 20187 -484 20170 -561 ct -20156 -623 20136 -683 20111 -740 ct 20095 -777 20061 -839 20011 -926 ct 20091 -926 l -20169 -822 20226 -718 20263 -613 ct 20295 -523 20311 -429 20311 -330 ct 20311 -218 20290 -110 20247 -6 ct -20204 98 20152 189 20091 267 ct p ef -pom -0.449 0.625 0.812 c 713 10400 m 713 10400 l 717 10343 l 729 10287 l -750 10229 l 779 10172 l 816 10116 l 861 10059 l 915 10002 l 976 9946 l -1046 9890 l 1124 9835 l 1210 9779 l 1304 9724 l 1406 9670 l 1516 9616 l -1633 9562 l 1758 9509 l 1891 9457 l 2032 9405 l 2179 9354 l 2335 9303 l -2497 9253 l 2667 9204 l 2844 9155 l 3028 9108 l 3218 9061 l 3416 9015 l -3620 8970 l 3830 8925 l 4047 8882 l 4270 8839 l 4499 8798 l 4734 8757 l -4975 8718 l 5222 8680 l 5474 8642 l 5731 8606 l 5994 8571 l 6261 8537 l -6533 8504 l 6810 8472 l 7092 8442 l 7378 8413 l 7668 8385 l 7962 8358 l -8260 8332 l 8561 8308 l 8866 8285 l 9174 8264 l 9485 8243 l 9798 8225 l -10115 8207 l 10434 8191 l 10755 8176 l 11078 8163 l 11403 8151 l 11730 8140 l -12058 8131 l 12388 8123 l 12718 8116 l 13049 8111 l 13381 8108 l 13714 8106 l -14045 8105 l 14045 8105 l 14383 8106 l 14720 8108 l 15057 8112 l 15394 8117 l -15729 8123 l 16063 8131 l 16397 8141 l 16728 8152 l 17058 8164 l 17386 8178 l -17712 8194 l 18035 8210 l 18356 8228 l 18674 8248 l 18990 8269 l 19302 8291 l -19610 8315 l 19915 8340 l 20217 8366 l 20514 8393 l 20807 8422 l 21096 8452 l -21380 8484 l 21660 8516 l 21935 8550 l 22204 8585 l 22469 8621 l 22728 8659 l -22981 8697 l 23229 8737 l 23471 8777 l 23707 8819 l 23936 8861 l 24159 8905 l -24376 8950 l 24586 8995 l 24790 9042 l 24986 9089 l 25176 9137 l 25358 9186 l -25533 9236 l 25701 9286 l 25861 9337 l 26014 9389 l 26159 9442 l 26296 9495 l -26425 9549 l 26546 9603 l 26660 9658 l 26765 9713 l 26862 9769 l 26951 9825 l -27032 9881 l 27104 9938 l 27168 9995 l 27223 10052 l 27270 10110 l -27309 10168 l 27339 10226 l 27361 10284 l 27374 10341 l 27378 10399 l -27377 10399 l 27373 10457 l 27360 10515 l 27339 10573 l 27309 10631 l -27270 10689 l 27223 10747 l 27168 10804 l 27104 10861 l 27032 10918 l -26951 10974 l 26863 11031 l 26766 11086 l 26660 11142 l 26547 11196 l -26426 11251 l 26296 11304 l 26159 11358 l 26014 11410 l 25862 11462 l -25702 11513 l 25534 11564 l 25359 11614 l 25177 11662 l 24987 11711 l -24791 11758 l 24587 11804 l 24377 11850 l 24161 11895 l 23937 11938 l -23708 11981 l 23472 12023 l 23230 12063 l 22982 12103 l 22729 12141 l -22470 12178 l 22205 12215 l 21935 12250 l 21661 12283 l 21381 12316 l -21097 12347 l 20808 12378 l 20515 12406 l 20217 12434 l 19916 12460 l -19611 12485 l 19302 12509 l 18990 12531 l 18675 12552 l 18356 12572 l -18035 12590 l 17712 12606 l 17386 12622 l 17058 12636 l 16728 12648 l -16396 12659 l 16063 12669 l 15728 12677 l 15393 12683 l 15056 12688 l -14719 12692 l 14382 12694 l 14044 12695 l 14044 12695 l 13707 12694 l -13370 12692 l 13033 12688 l 12696 12683 l 12361 12677 l 12026 12669 l -11693 12659 l 11361 12648 l 11031 12636 l 10703 12622 l 10377 12606 l -10054 12590 l 9733 12572 l 9414 12552 l 9099 12531 l 8787 12509 l -8478 12485 l 8173 12460 l 7872 12434 l 7574 12406 l 7281 12378 l 6992 12347 l -6708 12316 l 6428 12283 l 6154 12250 l 5884 12215 l 5619 12178 l 5360 12141 l -5107 12103 l 4859 12063 l 4617 12023 l 4381 11981 l 4152 11938 l 3928 11895 l -3712 11850 l 3502 11804 l 3298 11758 l 3102 11711 l 2912 11662 l 2730 11614 l -2555 11564 l 2387 11513 l 2227 11462 l 2075 11410 l 1930 11358 l 1793 11304 l -1663 11251 l 1542 11196 l 1429 11142 l 1323 11086 l 1226 11031 l 1138 10974 l -1057 10918 l 985 10861 l 921 10804 l 866 10747 l 819 10689 l 780 10631 l -750 10573 l 729 10515 l 716 10457 l 712 10399 l 713 10400 l p -713 8105 m 713 8105 l p -27379 12696 m 27379 12696 l p ef -0.207 0.398 0.644 c 712 10400 m 712 10400 l 716 10343 l 728 10286 l -749 10228 l 778 10171 l 815 10115 l 860 10058 l 914 10001 l 975 9945 l -1045 9889 l 1123 9834 l 1209 9778 l 1303 9723 l 1405 9669 l 1515 9615 l -1632 9561 l 1757 9508 l 1890 9456 l 2031 9404 l 2178 9353 l 2334 9302 l -2496 9252 l 2666 9203 l 2843 9154 l 3027 9107 l 3217 9060 l 3415 9014 l -3619 8969 l 3829 8924 l 4046 8881 l 4269 8838 l 4498 8797 l 4733 8756 l -4974 8717 l 5221 8679 l 5473 8641 l 5730 8605 l 5993 8570 l 6260 8536 l -6532 8503 l 6809 8471 l 7091 8441 l 7377 8412 l 7667 8384 l 7961 8357 l -8259 8331 l 8560 8307 l 8865 8284 l 9173 8263 l 9484 8242 l 9797 8224 l -10114 8206 l 10433 8190 l 10754 8175 l 11077 8162 l 11402 8150 l 11729 8139 l -12057 8130 l 12387 8122 l 12717 8115 l 13048 8110 l 13380 8107 l 13713 8105 l -14045 8104 l 14045 8104 l 14383 8105 l 14720 8107 l 15057 8111 l 15394 8116 l -15729 8122 l 16063 8130 l 16397 8140 l 16728 8151 l 17058 8163 l 17386 8177 l -17712 8193 l 18035 8209 l 18356 8227 l 18674 8247 l 18990 8268 l 19302 8290 l -19610 8314 l 19915 8339 l 20217 8365 l 20514 8392 l 20807 8421 l 21096 8451 l -21380 8483 l 21660 8515 l 21935 8549 l 22204 8584 l 22469 8620 l 22728 8658 l -22981 8696 l 23229 8736 l 23471 8776 l 23707 8818 l 23936 8860 l 24159 8904 l -24376 8949 l 24586 8994 l 24790 9041 l 24986 9088 l 25176 9136 l 25358 9185 l -25533 9235 l 25701 9285 l 25861 9336 l 26014 9388 l 26159 9441 l 26296 9494 l -26425 9548 l 26546 9602 l 26660 9657 l 26765 9712 l 26862 9768 l 26951 9824 l -27032 9880 l 27104 9937 l 27168 9994 l 27223 10051 l 27270 10109 l -27309 10167 l 27339 10225 l 27361 10283 l 27374 10341 l 27378 10399 l -27377 10399 l 27373 10457 l 27360 10515 l 27339 10573 l 27309 10631 l -27270 10689 l 27223 10747 l 27168 10804 l 27104 10861 l 27032 10918 l -26951 10974 l 26863 11031 l 26766 11086 l 26660 11142 l 26547 11196 l -26426 11251 l 26296 11304 l 26159 11358 l 26014 11410 l 25862 11462 l -25702 11513 l 25534 11564 l 25359 11614 l 25177 11662 l 24987 11711 l -24791 11758 l 24587 11804 l 24377 11850 l 24161 11895 l 23937 11938 l -23708 11981 l 23472 12023 l 23230 12063 l 22982 12103 l 22729 12141 l -22470 12178 l 22205 12215 l 21935 12250 l 21661 12283 l 21381 12316 l -21097 12347 l 20808 12378 l 20515 12406 l 20217 12434 l 19916 12460 l -19611 12485 l 19302 12509 l 18990 12531 l 18675 12552 l 18356 12572 l -18035 12590 l 17712 12606 l 17386 12622 l 17058 12636 l 16728 12648 l -16396 12659 l 16063 12669 l 15728 12677 l 15393 12683 l 15056 12688 l -14719 12692 l 14382 12694 l 14044 12695 l 14044 12695 l 13706 12694 l -13369 12692 l 13032 12688 l 12695 12683 l 12360 12677 l 12025 12669 l -11692 12659 l 11360 12648 l 11030 12636 l 10702 12622 l 10376 12606 l -10053 12590 l 9732 12572 l 9413 12552 l 9098 12531 l 8786 12509 l -8477 12485 l 8172 12460 l 7871 12434 l 7573 12406 l 7280 12378 l 6991 12347 l -6707 12316 l 6427 12283 l 6153 12250 l 5883 12215 l 5618 12178 l 5359 12141 l -5106 12103 l 4858 12063 l 4616 12023 l 4380 11981 l 4151 11938 l 3927 11895 l -3711 11850 l 3501 11804 l 3297 11758 l 3101 11711 l 2911 11662 l 2729 11614 l -2554 11564 l 2386 11513 l 2226 11462 l 2074 11410 l 1929 11358 l 1792 11304 l -1662 11251 l 1541 11196 l 1428 11142 l 1322 11086 l 1225 11031 l 1137 10974 l -1056 10918 l 984 10861 l 920 10804 l 865 10747 l 818 10689 l 779 10631 l -749 10573 l 728 10515 l 715 10457 l 711 10399 l 712 10400 l pc -712 8104 m 712 8104 l pc -27379 12696 m 27379 12696 l pc -pum -4146 10185 t -0.003 0.003 0.003 c 93 0 m 93 -910 l 434 -910 l 504 -910 559 -901 601 -882 ct -643 -864 676 -836 700 -797 ct 724 -759 735 -719 735 -677 ct 735 -638 725 -602 704 -567 ct -683 -533 651 -505 608 -484 ct 663 -468 706 -440 735 -401 ct 765 -363 779 -317 779 -264 ct -779 -221 770 -181 753 -145 ct 735 -108 712 -80 686 -60 ct 659 -40 626 -25 586 -15 ct -546 -5 498 0 440 0 ct 93 0 l p -213 -527 m 410 -527 l 463 -527 501 -531 525 -538 ct 555 -547 578 -562 594 -583 ct -609 -604 617 -631 617 -663 ct 617 -693 610 -720 595 -743 ct 581 -766 560 -781 533 -790 ct -506 -798 460 -803 395 -803 ct 213 -803 l 213 -527 l p -213 -107 m 440 -107 l 479 -107 506 -109 522 -112 ct 549 -117 572 -125 591 -137 ct -610 -148 625 -165 637 -187 ct 649 -209 655 -235 655 -264 ct 655 -298 646 -327 629 -352 ct -611 -377 587 -395 557 -405 ct 526 -415 481 -420 424 -420 ct 213 -420 l 213 -107 l -p ef -1542 -910 m 1662 -910 l 1662 -384 l 1662 -292 1652 -220 1631 -166 ct 1610 -112 1573 -68 1519 -35 ct -1465 -1 1394 16 1307 16 ct 1221 16 1152 1 1098 -28 ct 1043 -57 1005 -100 982 -156 ct -958 -211 947 -287 947 -384 ct 947 -910 l 1067 -910 l 1067 -384 l 1067 -305 1074 -247 1089 -210 ct -1104 -172 1129 -143 1165 -123 ct 1201 -103 1244 -93 1296 -93 ct 1384 -93 1447 -113 1485 -153 ct -1523 -193 1542 -270 1542 -384 ct 1542 -910 l p ef -1858 0 m 1858 -910 l 2199 -910 l 2269 -910 2324 -901 2366 -882 ct 2408 -864 2441 -836 2465 -797 ct -2489 -759 2500 -719 2500 -677 ct 2500 -638 2490 -602 2469 -567 ct 2448 -533 2416 -505 2373 -484 ct -2428 -468 2471 -440 2500 -401 ct 2530 -363 2544 -317 2544 -264 ct 2544 -221 2535 -181 2518 -145 ct -2500 -108 2477 -80 2451 -60 ct 2424 -40 2391 -25 2351 -15 ct 2311 -5 2263 0 2205 0 ct -1858 0 l p -1978 -527 m 2175 -527 l 2228 -527 2266 -531 2290 -538 ct 2320 -547 2343 -562 2359 -583 ct -2374 -604 2382 -631 2382 -663 ct 2382 -693 2375 -720 2360 -743 ct 2346 -766 2325 -781 2298 -790 ct -2271 -798 2225 -803 2160 -803 ct 1978 -803 l 1978 -527 l p -1978 -107 m 2205 -107 l 2244 -107 2271 -109 2287 -112 ct 2314 -117 2337 -125 2356 -137 ct -2375 -148 2390 -165 2402 -187 ct 2414 -209 2420 -235 2420 -264 ct 2420 -298 2411 -327 2394 -352 ct -2376 -377 2352 -395 2322 -405 ct 2291 -415 2246 -420 2189 -420 ct 1978 -420 l -1978 -107 l p ef -2705 0 m 2705 -910 l 3046 -910 l 3116 -910 3171 -901 3213 -882 ct 3255 -864 3288 -836 3312 -797 ct -3336 -759 3347 -719 3347 -677 ct 3347 -638 3337 -602 3316 -567 ct 3295 -533 3263 -505 3220 -484 ct -3275 -468 3318 -440 3347 -401 ct 3377 -363 3391 -317 3391 -264 ct 3391 -221 3382 -181 3365 -145 ct -3347 -108 3324 -80 3298 -60 ct 3271 -40 3238 -25 3198 -15 ct 3158 -5 3110 0 3052 0 ct -2705 0 l p -2825 -527 m 3022 -527 l 3075 -527 3113 -531 3137 -538 ct 3167 -547 3190 -562 3206 -583 ct -3221 -604 3229 -631 3229 -663 ct 3229 -693 3222 -720 3207 -743 ct 3193 -766 3172 -781 3145 -790 ct -3118 -798 3072 -803 3007 -803 ct 2825 -803 l 2825 -527 l p -2825 -107 m 3052 -107 l 3091 -107 3118 -109 3134 -112 ct 3161 -117 3184 -125 3203 -137 ct -3222 -148 3237 -165 3249 -187 ct 3261 -209 3267 -235 3267 -264 ct 3267 -298 3258 -327 3241 -352 ct -3223 -377 3199 -395 3169 -405 ct 3138 -415 3093 -420 3036 -420 ct 2825 -420 l -2825 -107 l p ef -3552 0 m 3552 -910 l 3672 -910 l 3672 -107 l 4120 -107 l 4120 0 l -3552 0 l p ef -4266 0 m 4266 -910 l 4924 -910 l 4924 -803 l 4387 -803 l 4387 -524 l -4890 -524 l 4890 -417 l 4387 -417 l 4387 -107 l 4945 -107 l 4945 0 l -4266 0 l p ef -5887 -356 m 5887 -463 l 6272 -463 l 6272 -126 l 6213 -79 6152 -43 6090 -20 ct -6027 4 5962 16 5896 16 ct 5807 16 5726 -3 5653 -41 ct 5580 -80 5525 -135 5487 -207 ct -5450 -280 5432 -361 5432 -450 ct 5432 -539 5450 -621 5487 -698 ct 5524 -775 5577 -832 5647 -869 ct -5716 -906 5796 -925 5887 -925 ct 5953 -925 6012 -914 6065 -893 ct 6118 -872 6160 -842 6190 -804 ct -6220 -766 6243 -716 6259 -655 ct 6150 -625 l 6137 -671 6120 -708 6099 -734 ct -6079 -761 6050 -782 6013 -798 ct 5975 -814 5933 -822 5887 -822 ct 5832 -822 5785 -814 5745 -797 ct -5705 -780 5672 -758 5648 -731 ct 5623 -703 5604 -673 5590 -641 ct 5567 -584 5556 -523 5556 -458 ct -5556 -377 5570 -309 5597 -254 ct 5625 -199 5666 -159 5719 -132 ct 5773 -106 5829 -93 5889 -93 ct -5941 -93 5992 -103 6042 -123 ct 6091 -143 6129 -164 6155 -187 ct 6155 -356 l -5887 -356 l p ef -6450 0 m 6450 -910 l 6853 -910 l 6934 -910 6996 -902 7038 -885 ct 7080 -869 7114 -840 7139 -799 ct -7164 -757 7177 -712 7177 -662 ct 7177 -597 7156 -543 7114 -498 ct 7072 -454 7008 -426 6921 -414 ct -6952 -399 6977 -384 6993 -369 ct 7028 -336 7061 -296 7093 -248 ct 7251 0 l 7100 0 l -6979 -189 l 6944 -244 6915 -286 6893 -315 ct 6870 -344 6850 -364 6832 -375 ct -6814 -387 6795 -395 6777 -400 ct 6763 -403 6741 -404 6710 -404 ct 6570 -404 l -6570 0 l 6450 0 l p -6570 -508 m 6829 -508 l 6884 -508 6927 -514 6958 -525 ct 6989 -537 7012 -555 7028 -580 ct -7045 -605 7053 -632 7053 -662 ct 7053 -705 7037 -740 7006 -768 ct 6975 -796 6925 -809 6858 -809 ct -6570 -809 l 6570 -508 l p ef -7330 -443 m 7330 -594 7371 -712 7452 -797 ct 7533 -883 7638 -926 7766 -926 ct -7850 -926 7925 -906 7993 -865 ct 8060 -825 8111 -769 8147 -698 ct 8182 -626 8200 -544 8200 -453 ct -8200 -361 8181 -278 8144 -206 ct 8107 -133 8054 -78 7986 -40 ct 7918 -3 7844 16 7765 16 ct -7680 16 7603 -5 7536 -46 ct 7468 -87 7417 -144 7382 -216 ct 7348 -287 7330 -363 7330 -443 ct -p -7454 -441 m 7454 -331 7484 -245 7543 -182 ct 7602 -119 7676 -87 7764 -87 ct -7855 -87 7930 -119 7988 -183 ct 8047 -246 8076 -337 8076 -454 ct 8076 -528 8063 -593 8038 -648 ct -8013 -703 7977 -746 7928 -776 ct 7880 -807 7826 -822 7766 -822 ct 7681 -822 7608 -793 7547 -734 ct -7485 -676 7454 -578 7454 -441 ct p ef -8512 0 m 8271 -910 l 8394 -910 l 8532 -313 l 8547 -251 8560 -189 8571 -127 ct -8594 -225 8607 -281 8612 -295 ct 8785 -910 l 8930 -910 l 9060 -449 l 9093 -335 9116 -228 9131 -127 ct -9142 -185 9157 -251 9176 -325 ct 9319 -910 l 9439 -910 l 9190 0 l 9074 0 l -8883 -693 l 8866 -751 8857 -787 8854 -800 ct 8845 -758 8836 -723 8827 -693 ct -8635 0 l 8512 0 l p ef -9782 1 m 9782 -802 l 9483 -802 l 9483 -909 l 10203 -909 l 10203 -802 l -9903 -802 l 9903 1 l 9782 1 l p ef -10330 0 m 10330 -910 l 10450 -910 l 10450 -536 l 10923 -536 l 10923 -910 l -11043 -910 l 11043 0 l 10923 0 l 10923 -429 l 10450 -429 l 10450 0 l -10330 0 l p ef -11555 -292 m 11669 -302 l 11674 -256 11686 -219 11706 -190 ct 11726 -161 11756 -137 11798 -119 ct -11839 -101 11885 -92 11937 -92 ct 11983 -92 12023 -99 12059 -112 ct 12094 -126 12120 -145 12137 -169 ct -12154 -192 12163 -218 12163 -247 ct 12163 -275 12155 -300 12138 -321 ct 12121 -343 12094 -361 12056 -375 ct -12032 -385 11978 -399 11894 -419 ct 11811 -440 11752 -458 11719 -476 ct 11675 -499 11643 -527 11622 -561 ct -11600 -595 11590 -632 11590 -674 ct 11590 -720 11603 -763 11629 -803 ct 11655 -843 11693 -873 11743 -894 ct -11793 -915 11849 -925 11910 -925 ct 11977 -925 12037 -914 12088 -892 ct 12140 -871 12179 -839 12207 -797 ct -12235 -754 12249 -707 12251 -653 ct 12136 -644 l 12130 -702 12109 -745 12073 -775 ct -12037 -804 11985 -819 11915 -819 ct 11842 -819 11789 -806 11756 -779 ct 11722 -752 11706 -720 11706 -682 ct -11706 -650 11718 -623 11741 -602 ct 11764 -581 11825 -559 11922 -537 ct 12020 -515 12087 -495 12124 -479 ct -12177 -454 12216 -423 12241 -386 ct 12266 -348 12279 -305 12279 -257 ct 12279 -208 12265 -162 12237 -120 ct -12209 -77 12170 -43 12118 -20 ct 12066 4 12008 16 11943 16 ct 11860 16 11791 4 11736 -20 ct -11680 -44 11637 -80 11605 -128 ct 11573 -177 11557 -231 11555 -292 ct p ef -13039 -910 m 13159 -910 l 13159 -384 l 13159 -292 13149 -220 13128 -166 ct -13107 -112 13070 -68 13016 -35 ct 12962 -1 12891 16 12804 16 ct 12718 16 12649 1 12595 -28 ct -12540 -57 12502 -100 12479 -156 ct 12455 -211 12444 -287 12444 -384 ct 12444 -910 l -12564 -910 l 12564 -384 l 12564 -305 12571 -247 12586 -210 ct 12601 -172 12626 -143 12662 -123 ct -12698 -103 12741 -93 12793 -93 ct 12881 -93 12944 -113 12982 -153 ct 13020 -193 13039 -270 13039 -384 ct -13039 -910 l p ef -13363 0 m 13363 -910 l 13766 -910 l 13847 -910 13909 -902 13951 -885 ct -13993 -869 14027 -840 14052 -799 ct 14077 -757 14090 -712 14090 -662 ct 14090 -597 14069 -543 14027 -498 ct -13985 -454 13921 -426 13834 -414 ct 13865 -399 13890 -384 13906 -369 ct 13941 -336 13974 -296 14006 -248 ct -14164 0 l 14013 0 l 13892 -189 l 13857 -244 13828 -286 13806 -315 ct 13783 -344 13763 -364 13745 -375 ct -13727 -387 13708 -395 13690 -400 ct 13676 -403 13654 -404 13623 -404 ct 13483 -404 l -13483 0 l 13363 0 l p -13483 -508 m 13742 -508 l 13797 -508 13840 -514 13871 -525 ct 13902 -537 13925 -555 13941 -580 ct -13958 -605 13966 -632 13966 -662 ct 13966 -705 13950 -740 13919 -768 ct 13888 -796 13838 -809 13771 -809 ct -13483 -809 l 13483 -508 l p ef -14281 0 m 14281 -910 l 14684 -910 l 14765 -910 14827 -902 14869 -885 ct -14911 -869 14945 -840 14970 -799 ct 14995 -757 15008 -712 15008 -662 ct 15008 -597 14987 -543 14945 -498 ct -14903 -454 14839 -426 14752 -414 ct 14783 -399 14808 -384 14824 -369 ct 14859 -336 14892 -296 14924 -248 ct -15082 0 l 14931 0 l 14810 -189 l 14775 -244 14746 -286 14724 -315 ct 14701 -344 14681 -364 14663 -375 ct -14645 -387 14626 -395 14608 -400 ct 14594 -403 14572 -404 14541 -404 ct 14401 -404 l -14401 0 l 14281 0 l p -14401 -508 m 14660 -508 l 14715 -508 14758 -514 14789 -525 ct 14820 -537 14843 -555 14859 -580 ct -14876 -605 14884 -632 14884 -662 ct 14884 -705 14868 -740 14837 -768 ct 14806 -796 14756 -809 14689 -809 ct -14401 -809 l 14401 -508 l p ef -15160 -443 m 15160 -594 15201 -712 15282 -797 ct 15363 -883 15468 -926 15596 -926 ct -15680 -926 15755 -906 15823 -865 ct 15890 -825 15941 -769 15977 -698 ct 16012 -626 16030 -544 16030 -453 ct -16030 -361 16011 -278 15974 -206 ct 15937 -133 15884 -78 15816 -40 ct 15748 -3 15674 16 15595 16 ct -15510 16 15433 -5 15366 -46 ct 15298 -87 15247 -144 15212 -216 ct 15178 -287 15160 -363 15160 -443 ct -p -15284 -441 m 15284 -331 15314 -245 15373 -182 ct 15432 -119 15506 -87 15594 -87 ct -15685 -87 15760 -119 15818 -183 ct 15877 -246 15906 -337 15906 -454 ct 15906 -528 15893 -593 15868 -648 ct -15843 -703 15807 -746 15758 -776 ct 15710 -807 15656 -822 15596 -822 ct 15511 -822 15438 -793 15377 -734 ct -15315 -676 15284 -578 15284 -441 ct p ef -16609 -356 m 16609 -463 l 16994 -463 l 16994 -126 l 16935 -79 16874 -43 16812 -20 ct -16749 4 16684 16 16618 16 ct 16529 16 16448 -3 16375 -41 ct 16302 -80 16247 -135 16209 -207 ct -16172 -280 16154 -361 16154 -450 ct 16154 -539 16172 -621 16209 -698 ct 16246 -775 16299 -832 16369 -869 ct -16438 -906 16518 -925 16609 -925 ct 16675 -925 16734 -914 16787 -893 ct 16840 -872 16882 -842 16912 -804 ct -16942 -766 16965 -716 16981 -655 ct 16872 -625 l 16859 -671 16842 -708 16821 -734 ct -16801 -761 16772 -782 16735 -798 ct 16697 -814 16655 -822 16609 -822 ct 16554 -822 16507 -814 16467 -797 ct -16427 -780 16394 -758 16370 -731 ct 16345 -703 16326 -673 16312 -641 ct 16289 -584 16278 -523 16278 -458 ct -16278 -377 16292 -309 16319 -254 ct 16347 -199 16388 -159 16441 -132 ct 16495 -106 16551 -93 16611 -93 ct -16663 -93 16714 -103 16764 -123 ct 16813 -143 16851 -164 16877 -187 ct 16877 -356 l -16609 -356 l p ef -17070 -1 m 17419 -911 l 17549 -911 l 17921 -1 l 17784 -1 l 17678 -276 l -17298 -276 l 17198 -1 l 17070 -1 l p -17332 -374 m 17641 -374 l 17546 -626 l 17517 -703 17495 -766 17481 -815 ct -17470 -757 17453 -699 17432 -641 ct 17332 -374 l p ef -18201 1 m 18201 -802 l 17902 -802 l 17902 -909 l 18622 -909 l 18622 -802 l -18322 -802 l 18322 1 l 18201 1 l p ef -18700 0 m 18700 -910 l 19358 -910 l 19358 -803 l 18821 -803 l 18821 -524 l -19324 -524 l 19324 -417 l 18821 -417 l 18821 -107 l 19379 -107 l 19379 0 l -18700 0 l p ef -pom -pum -8388 11708 t -94 0 m 94 -910 l 275 -910 l 491 -266 l 510 -206 525 -161 534 -131 ct -544 -164 560 -213 582 -277 ct 800 -910 l 962 -910 l 962 0 l 846 0 l 846 -762 l -582 0 l 473 0 l 210 -775 l 210 0 l 94 0 l p ef -1119 -443 m 1119 -594 1160 -712 1241 -797 ct 1322 -883 1427 -926 1555 -926 ct -1639 -926 1714 -906 1782 -865 ct 1849 -825 1900 -769 1936 -698 ct 1971 -626 1989 -544 1989 -453 ct -1989 -361 1970 -278 1933 -206 ct 1896 -133 1843 -78 1775 -40 ct 1707 -3 1633 16 1554 16 ct -1469 16 1392 -5 1325 -46 ct 1257 -87 1206 -144 1171 -216 ct 1137 -287 1119 -363 1119 -443 ct -p -1243 -441 m 1243 -331 1273 -245 1332 -182 ct 1391 -119 1465 -87 1553 -87 ct -1644 -87 1719 -119 1777 -183 ct 1836 -246 1865 -337 1865 -454 ct 1865 -528 1852 -593 1827 -648 ct -1802 -703 1766 -746 1717 -776 ct 1669 -807 1615 -822 1555 -822 ct 1470 -822 1397 -793 1336 -734 ct -1274 -676 1243 -578 1243 -441 ct p ef -2143 0 m 2143 -910 l 2456 -910 l 2527 -910 2581 -906 2618 -897 ct 2670 -885 2715 -863 2751 -832 ct -2799 -791 2835 -739 2859 -676 ct 2883 -613 2895 -541 2895 -460 ct 2895 -391 2887 -330 2870 -276 ct -2854 -223 2834 -179 2808 -144 ct 2783 -109 2756 -81 2726 -61 ct 2696 -41 2659 -26 2617 -16 ct -2575 -5 2526 0 2471 0 ct 2143 0 l p -2263 -107 m 2457 -107 l 2517 -107 2564 -113 2598 -124 ct 2633 -135 2660 -151 2680 -171 ct -2709 -200 2731 -238 2747 -286 ct 2763 -335 2771 -393 2771 -462 ct 2771 -557 2755 -630 2724 -681 ct -2693 -732 2655 -767 2610 -784 ct 2578 -796 2526 -803 2454 -803 ct 2263 -803 l -2263 -107 l p ef -3063 0 m 3063 -910 l 3721 -910 l 3721 -803 l 3184 -803 l 3184 -524 l -3687 -524 l 3687 -417 l 3184 -417 l 3184 -107 l 3742 -107 l 3742 0 l -3063 0 l p ef -3903 0 m 3903 -910 l 4023 -910 l 4023 -107 l 4471 -107 l 4471 0 l -3903 0 l p ef -5115 267 m 5053 189 5001 98 4959 -6 ct 4916 -110 4895 -218 4895 -330 ct 4895 -429 4911 -523 4943 -613 ct -4980 -718 5037 -822 5115 -926 ct 5195 -926 l 5145 -840 5112 -778 5096 -742 ct -5071 -684 5051 -625 5036 -563 ct 5019 -485 5010 -408 5010 -329 ct 5010 -130 5071 68 5195 267 ct -5115 267 l p ef -5335 0 m 5335 -910 l 5516 -910 l 5732 -266 l 5751 -206 5766 -161 5775 -131 ct -5785 -164 5801 -213 5823 -277 ct 6041 -910 l 6203 -910 l 6203 0 l 6087 0 l -6087 -762 l 5823 0 l 5714 0 l 5451 -775 l 5451 0 l 5335 0 l p ef -6341 -329 m 6341 -452 6375 -542 6443 -601 ct 6500 -650 6569 -674 6650 -674 ct -6741 -674 6815 -644 6872 -585 ct 6929 -526 6958 -444 6958 -339 ct 6958 -254 6945 -187 6920 -139 ct -6895 -90 6858 -52 6809 -25 ct 6760 2 6707 15 6650 15 ct 6558 15 6483 -15 6426 -74 ct -6370 -133 6341 -218 6341 -329 ct p -6456 -330 m 6456 -245 6474 -182 6511 -140 ct 6548 -98 6594 -77 6650 -77 ct -6705 -77 6751 -98 6788 -140 ct 6825 -182 6843 -247 6843 -333 ct 6843 -415 6825 -477 6788 -519 ct -6751 -561 6705 -582 6650 -582 ct 6594 -582 6548 -561 6511 -519 ct 6474 -477 6456 -414 6456 -330 ct -p ef -7090 0 m 7090 -659 l 7190 -659 l 7190 -565 l 7239 -638 7308 -674 7400 -674 ct -7439 -674 7476 -667 7509 -653 ct 7543 -638 7567 -620 7584 -596 ct 7600 -573 7612 -546 7619 -514 ct -7623 -493 7625 -457 7625 -405 ct 7625 0 l 7513 0 l 7513 -401 l 7513 -446 7509 -480 7500 -503 ct -7492 -526 7476 -544 7454 -557 ct 7432 -570 7406 -577 7376 -577 ct 7329 -577 7288 -562 7253 -532 ct -7219 -502 7201 -444 7201 -360 ct 7201 0 l 7090 0 l p ef -7776 54 m 7885 70 l 7889 104 7902 128 7923 143 ct 7950 164 7988 175 8036 175 ct -8088 175 8128 164 8156 143 ct 8184 123 8203 94 8213 57 ct 8219 34 8221 -14 8221 -87 ct -8172 -29 8111 -1 8039 -1 ct 7948 -1 7878 -33 7828 -99 ct 7779 -164 7754 -242 7754 -334 ct -7754 -397 7765 -455 7788 -508 ct 7811 -561 7844 -602 7887 -631 ct 7930 -660 7981 -674 8039 -674 ct -8117 -674 8181 -643 8231 -580 ct 8231 -660 l 8334 -660 l 8334 -90 l 8334 13 8324 85 8303 128 ct -8282 171 8249 205 8204 230 ct 8159 255 8103 267 8037 267 ct 7958 267 7895 249 7846 214 ct -7798 179 7775 125 7776 54 ct p -7869 -342 m 7869 -255 7886 -192 7920 -153 ct 7954 -113 7997 -93 8049 -93 ct -8100 -93 8143 -113 8178 -152 ct 8213 -192 8230 -254 8230 -338 ct 8230 -419 8212 -480 8177 -521 ct -8141 -562 8098 -582 8047 -582 ct 7998 -582 7955 -562 7921 -522 ct 7886 -481 7869 -421 7869 -342 ct -p ef -8462 -329 m 8462 -452 8496 -542 8564 -601 ct 8621 -650 8690 -674 8771 -674 ct -8862 -674 8936 -644 8993 -585 ct 9050 -526 9079 -444 9079 -339 ct 9079 -254 9066 -187 9041 -139 ct -9016 -90 8979 -52 8930 -25 ct 8881 2 8828 15 8771 15 ct 8679 15 8604 -15 8547 -74 ct -8491 -133 8462 -218 8462 -329 ct p -8577 -330 m 8577 -245 8595 -182 8632 -140 ct 8669 -98 8715 -77 8771 -77 ct -8826 -77 8872 -98 8909 -140 ct 8946 -182 8964 -247 8964 -333 ct 8964 -415 8946 -477 8909 -519 ct -8872 -561 8826 -582 8771 -582 ct 8715 -582 8669 -561 8632 -519 ct 8595 -477 8577 -414 8577 -330 ct -p ef -9225 0 m 9225 -910 l 9538 -910 l 9609 -910 9663 -906 9700 -897 ct 9752 -885 9797 -863 9833 -832 ct -9881 -791 9917 -739 9941 -676 ct 9965 -613 9977 -541 9977 -460 ct 9977 -391 9969 -330 9952 -276 ct -9936 -223 9916 -179 9890 -144 ct 9865 -109 9838 -81 9808 -61 ct 9778 -41 9741 -26 9699 -16 ct -9657 -5 9608 0 9553 0 ct 9225 0 l p -9345 -107 m 9539 -107 l 9599 -107 9646 -113 9680 -124 ct 9715 -135 9742 -151 9762 -171 ct -9791 -200 9813 -238 9829 -286 ct 9845 -335 9853 -393 9853 -462 ct 9853 -557 9837 -630 9806 -681 ct -9775 -732 9737 -767 9692 -784 ct 9660 -796 9608 -803 9536 -803 ct 9345 -803 l -9345 -107 l p ef -10139 0 m 10139 -910 l 10480 -910 l 10550 -910 10605 -901 10647 -882 ct -10689 -864 10722 -836 10746 -797 ct 10770 -759 10781 -719 10781 -677 ct 10781 -638 10771 -602 10750 -567 ct -10729 -533 10697 -505 10654 -484 ct 10709 -468 10752 -440 10781 -401 ct 10811 -363 10825 -317 10825 -264 ct -10825 -221 10816 -181 10799 -145 ct 10781 -108 10758 -80 10732 -60 ct 10705 -40 10672 -25 10632 -15 ct -10592 -5 10544 0 10486 0 ct 10139 0 l p -10259 -527 m 10456 -527 l 10509 -527 10547 -531 10571 -538 ct 10601 -547 10624 -562 10640 -583 ct -10655 -604 10663 -631 10663 -663 ct 10663 -693 10656 -720 10641 -743 ct 10627 -766 10606 -781 10579 -790 ct -10552 -798 10506 -803 10441 -803 ct 10259 -803 l 10259 -527 l p -10259 -107 m 10486 -107 l 10525 -107 10552 -109 10568 -112 ct 10595 -117 10618 -125 10637 -137 ct -10656 -148 10671 -165 10683 -187 ct 10695 -209 10701 -235 10701 -264 ct 10701 -298 10692 -327 10675 -352 ct -10657 -377 10633 -395 10603 -405 ct 10572 -415 10527 -420 10470 -420 ct 10259 -420 l -10259 -107 l p ef -11049 267 m 10969 267 l 11093 68 11154 -130 11154 -329 ct 11154 -407 11145 -484 11128 -561 ct -11114 -623 11094 -683 11069 -740 ct 11053 -777 11019 -839 10969 -926 ct 11049 -926 l -11127 -822 11184 -718 11221 -613 ct 11253 -523 11269 -429 11269 -330 ct 11269 -218 11248 -110 11205 -6 ct -11162 98 11110 189 11049 267 ct p ef -pom -27 lw 9199 18039 m 9677 12958 l ps -9695 12763 m 9780 12982 l 9571 12962 l 9695 12763 l p ef -11199 18153 m 11446 12959 l ps -11455 12763 m 11550 12978 l 11340 12968 l 11455 12763 l p ef -13998 18099 m 13753 12959 l ps -13744 12763 m 13858 12968 l 13649 12978 l 13744 12763 l p ef -21898 8469 m 22376 3153 l ps -22394 2958 m 22480 3177 l 22271 3158 l 22394 2958 l p ef -26499 9399 m 27302 3089 l ps -27327 2895 m 27405 3117 l 27196 3090 l 27327 2895 l p ef -1998 2951 m 2978 8706 l ps -3011 8899 m 2872 8710 l 3079 8674 l 3011 8899 l p ef -4598 2924 m 5123 8174 l ps -5142 8369 m 5017 8170 l 5226 8150 l 5142 8369 l p ef -10649 2958 m 10889 7678 l ps -10899 7874 m 10783 7670 l 10993 7659 l 10899 7874 l p ef -1.000 1.000 1.000 c 1998 5262 m 3130 5262 l 3130 6787 l 1998 6787 l -1998 5262 l p -1998 5262 m 1998 5262 l p -3130 6787 m 3130 6787 l p ef -pum -2248 6359 t -0.003 0.003 0.003 c 238 -1 m 238 -579 l 22 -579 l 22 -656 l 542 -656 l -542 -579 l 325 -579 l 325 -1 l 238 -1 l p ef -pom -1.000 1.000 1.000 c 3787 4373 m 6298 4373 l 6298 5898 l 3787 5898 l -3787 4373 l p -3787 4373 m 3787 4373 l p -6298 5898 m 6298 5898 l p ef -pum -4037 5470 t -0.003 0.003 0.003 c 148 0 m 3 -476 l 86 -476 l 162 -201 l 190 -99 l 191 -104 199 -137 214 -197 ct -290 -476 l 373 -476 l 444 -200 l 468 -109 l 495 -201 l 577 -476 l -655 -476 l 506 0 l 423 0 l 347 -285 l 329 -366 l 232 0 l 148 0 l -p ef -pom -pum -4702 5699 t -313 -134 m 363 -121 l 353 -80 334 -48 306 -27 ct 279 -5 245 6 205 6 ct 164 6 131 -2 105 -19 ct -80 -36 60 -60 47 -92 ct 33 -123 27 -157 27 -194 ct 27 -234 34 -268 49 -298 ct 64 -327 86 -350 114 -365 ct -142 -380 173 -388 206 -388 ct 244 -388 276 -378 302 -359 ct 328 -340 346 -312 357 -277 ct -307 -265 l 298 -293 285 -313 269 -326 ct 252 -339 231 -345 205 -345 ct 176 -345 151 -338 132 -324 ct -112 -310 98 -291 90 -267 ct 82 -244 78 -219 78 -194 ct 78 -162 83 -133 93 -109 ct -102 -85 117 -67 137 -55 ct 157 -43 178 -37 201 -37 ct 230 -37 253 -45 273 -62 ct -293 -78 306 -102 313 -134 ct p ef -407 -186 m 407 -249 424 -299 458 -334 ct 492 -370 535 -388 589 -388 ct 624 -388 656 -380 684 -363 ct -712 -346 734 -323 749 -293 ct 764 -263 771 -228 771 -190 ct 771 -152 763 -117 748 -87 ct -732 -56 710 -33 681 -18 ct 653 -2 622 6 589 6 ct 553 6 521 -3 493 -20 ct 464 -37 443 -61 429 -91 ct -414 -121 407 -153 407 -186 ct p -459 -185 m 459 -139 471 -103 496 -77 ct 520 -50 551 -37 589 -37 ct 626 -37 658 -50 682 -77 ct -707 -104 719 -142 719 -191 ct 719 -222 714 -249 703 -272 ct 693 -295 677 -313 657 -326 ct -637 -338 614 -345 589 -345 ct 554 -345 523 -332 497 -308 ct 472 -283 459 -242 459 -185 ct -p ef -1060 -45 m 1060 0 l 808 0 l 808 -11 810 -22 814 -32 ct 820 -50 830 -66 844 -83 ct -858 -100 879 -119 906 -141 ct 947 -175 975 -201 989 -221 ct 1004 -241 1011 -260 1011 -277 ct -1011 -296 1005 -312 991 -324 ct 978 -337 961 -343 940 -343 ct 917 -343 899 -337 886 -323 ct -872 -310 865 -291 865 -267 ct 817 -272 l 820 -308 833 -335 854 -354 ct 876 -373 904 -382 941 -382 ct -977 -382 1006 -372 1027 -352 ct 1049 -331 1059 -306 1059 -276 ct 1059 -261 1056 -246 1050 -231 ct -1044 -217 1033 -201 1019 -185 ct 1004 -169 980 -146 947 -118 ct 919 -95 901 -79 893 -70 ct -885 -62 878 -53 873 -45 ct 1060 -45 l p ef -pom -1.000 1.000 1.000 c 3787 5799 m 6298 5799 l 6298 7324 l 3787 7324 l -3787 5799 l p -3787 5799 m 3787 5799 l p -6298 7324 m 6298 7324 l p ef -pum -4037 6896 t -0.003 0.003 0.003 c 148 0 m 3 -476 l 86 -476 l 162 -201 l 190 -99 l 191 -104 199 -137 214 -197 ct -290 -476 l 373 -476 l 444 -200 l 468 -109 l 495 -201 l 577 -476 l -655 -476 l 506 0 l 423 0 l 347 -285 l 329 -366 l 232 0 l 148 0 l -p ef -pom -pum -4702 7125 t -39 0 m 39 -381 l 182 -381 l 211 -381 234 -377 252 -369 ct 269 -362 283 -350 293 -334 ct -303 -318 308 -301 308 -284 ct 308 -267 304 -252 295 -238 ct 286 -223 273 -212 255 -203 ct -278 -196 296 -184 308 -168 ct 320 -152 327 -133 327 -110 ct 327 -93 323 -76 315 -61 ct -308 -45 298 -34 287 -25 ct 276 -17 262 -11 246 -6 ct 229 -2 208 0 184 0 ct 39 0 l -p -89 -221 m 172 -221 l 194 -221 210 -222 220 -225 ct 233 -229 242 -235 249 -244 ct -255 -253 258 -264 258 -278 ct 258 -290 255 -301 249 -311 ct 243 -321 235 -327 223 -331 ct -212 -334 193 -336 165 -336 ct 89 -336 l 89 -221 l p -89 -45 m 184 -45 l 200 -45 212 -46 218 -47 ct 230 -49 240 -52 248 -57 ct 255 -62 262 -69 267 -78 ct -272 -88 274 -98 274 -110 ct 274 -125 271 -137 263 -148 ct 256 -158 246 -165 233 -170 ct -220 -174 202 -176 177 -176 ct 89 -176 l 89 -45 l p ef -390 0 m 390 -381 l 440 -381 l 440 -45 l 628 -45 l 628 0 l 390 0 l -p ef -pom -1.000 1.000 1.000 c 20899 4399 m 23410 4399 l 23410 5924 l 20899 5924 l -20899 4399 l p -20899 4399 m 20899 4399 l p -23410 5924 m 23410 5924 l p ef -pum -21149 5496 t -0.003 0.003 0.003 c 378 -257 m 378 -334 l 656 -334 l 656 -91 l 613 -57 569 -32 524 -15 ct -479 2 432 11 384 11 ct 320 11 261 -3 208 -30 ct 156 -58 116 -98 89 -150 ct 62 -202 49 -261 49 -325 ct -49 -389 62 -448 89 -504 ct 116 -559 154 -600 204 -627 ct 254 -654 312 -667 377 -667 ct -425 -667 468 -660 506 -644 ct 545 -629 575 -607 596 -580 ct 618 -552 635 -517 646 -472 ct -568 -451 l 558 -484 546 -511 531 -530 ct 516 -549 496 -564 468 -576 ct 441 -587 411 -593 378 -593 ct -338 -593 304 -587 275 -575 ct 246 -563 223 -547 205 -527 ct 187 -508 173 -486 163 -462 ct -147 -422 138 -378 138 -330 ct 138 -272 148 -223 169 -184 ct 189 -144 218 -115 257 -96 ct -295 -77 336 -67 379 -67 ct 417 -67 454 -75 489 -89 ct 525 -103 552 -119 571 -135 ct -571 -257 l 378 -257 l p ef -pom -pum -21864 5221 t -313 -134 m 363 -121 l 353 -80 334 -48 306 -27 ct 279 -5 245 6 205 6 ct 164 6 131 -2 105 -19 ct -80 -36 60 -60 47 -92 ct 33 -123 27 -157 27 -194 ct 27 -234 34 -268 49 -298 ct 64 -327 86 -350 114 -365 ct -142 -380 173 -388 206 -388 ct 244 -388 276 -378 302 -359 ct 328 -340 346 -312 357 -277 ct -307 -265 l 298 -293 285 -313 269 -326 ct 252 -339 231 -345 205 -345 ct 176 -345 151 -338 132 -324 ct -112 -310 98 -291 90 -267 ct 82 -244 78 -219 78 -194 ct 78 -162 83 -133 93 -109 ct -102 -85 117 -67 137 -55 ct 157 -43 178 -37 201 -37 ct 230 -37 253 -45 273 -62 ct -293 -78 306 -102 313 -134 ct p ef -407 -186 m 407 -249 424 -299 458 -334 ct 492 -370 535 -388 589 -388 ct 624 -388 656 -380 684 -363 ct -712 -346 734 -323 749 -293 ct 764 -263 771 -228 771 -190 ct 771 -152 763 -117 748 -87 ct -732 -56 710 -33 681 -18 ct 653 -2 622 6 589 6 ct 553 6 521 -3 493 -20 ct 464 -37 443 -61 429 -91 ct -414 -121 407 -153 407 -186 ct p -459 -185 m 459 -139 471 -103 496 -77 ct 520 -50 551 -37 589 -37 ct 626 -37 658 -50 682 -77 ct -707 -104 719 -142 719 -191 ct 719 -222 714 -249 703 -272 ct 693 -295 677 -313 657 -326 ct -637 -338 614 -345 589 -345 ct 554 -345 523 -332 497 -308 ct 472 -283 459 -242 459 -185 ct -p ef -1060 -45 m 1060 0 l 808 0 l 808 -11 810 -22 814 -32 ct 820 -50 830 -66 844 -83 ct -858 -100 879 -119 906 -141 ct 947 -175 975 -201 989 -221 ct 1004 -241 1011 -260 1011 -277 ct -1011 -296 1005 -312 991 -324 ct 978 -337 961 -343 940 -343 ct 917 -343 899 -337 886 -323 ct -872 -310 865 -291 865 -267 ct 817 -272 l 820 -308 833 -335 854 -354 ct 876 -373 904 -382 941 -382 ct -977 -382 1006 -372 1027 -352 ct 1049 -331 1059 -306 1059 -276 ct 1059 -261 1056 -246 1050 -231 ct -1044 -217 1033 -201 1019 -185 ct 1004 -169 980 -146 947 -118 ct 919 -95 901 -79 893 -70 ct -885 -62 878 -53 873 -45 ct 1060 -45 l p ef -pom -1.000 1.000 1.000 c 25875 7474 m 27898 7474 l 27898 8999 l 25875 8999 l -25875 7474 l p -25875 7474 m 25875 7474 l p -27898 8999 m 27898 8999 l p ef -pum -26125 8571 t -0.003 0.003 0.003 c 378 -257 m 378 -334 l 656 -334 l 656 -91 l 613 -57 569 -32 524 -15 ct -479 2 432 11 384 11 ct 320 11 261 -3 208 -30 ct 156 -58 116 -98 89 -150 ct 62 -202 49 -261 49 -325 ct -49 -389 62 -448 89 -504 ct 116 -559 154 -600 204 -627 ct 254 -654 312 -667 377 -667 ct -425 -667 468 -660 506 -644 ct 545 -629 575 -607 596 -580 ct 618 -552 635 -517 646 -472 ct -568 -451 l 558 -484 546 -511 531 -530 ct 516 -549 496 -564 468 -576 ct 441 -587 411 -593 378 -593 ct -338 -593 304 -587 275 -575 ct 246 -563 223 -547 205 -527 ct 187 -508 173 -486 163 -462 ct -147 -422 138 -378 138 -330 ct 138 -272 148 -223 169 -184 ct 189 -144 218 -115 257 -96 ct -295 -77 336 -67 379 -67 ct 417 -67 454 -75 489 -89 ct 525 -103 552 -119 571 -135 ct -571 -257 l 378 -257 l p ef -pom -pum -26840 8296 t -39 0 m 39 -381 l 182 -381 l 211 -381 234 -377 252 -369 ct 269 -362 283 -350 293 -334 ct -303 -318 308 -301 308 -284 ct 308 -267 304 -252 295 -238 ct 286 -223 273 -212 255 -203 ct -278 -196 296 -184 308 -168 ct 320 -152 327 -133 327 -110 ct 327 -93 323 -76 315 -61 ct -308 -45 298 -34 287 -25 ct 276 -17 262 -11 246 -6 ct 229 -2 208 0 184 0 ct 39 0 l -p -89 -221 m 172 -221 l 194 -221 210 -222 220 -225 ct 233 -229 242 -235 249 -244 ct -255 -253 258 -264 258 -278 ct 258 -290 255 -301 249 -311 ct 243 -321 235 -327 223 -331 ct -212 -334 193 -336 165 -336 ct 89 -336 l 89 -221 l p -89 -45 m 184 -45 l 200 -45 212 -46 218 -47 ct 230 -49 240 -52 248 -57 ct 255 -62 262 -69 267 -78 ct -272 -88 274 -98 274 -110 ct 274 -125 271 -137 263 -148 ct 256 -158 246 -165 233 -170 ct -220 -174 202 -176 177 -176 ct 89 -176 l 89 -45 l p ef -390 0 m 390 -381 l 440 -381 l 440 -45 l 628 -45 l 628 0 l 390 0 l -p ef -pom -pum -447 3656 t -1.000 0.261 0.058 c 47 1 m 47 -455 l 358 -455 l 358 -378 l 139 -378 l -139 -270 l 328 -270 l 328 -193 l 139 -193 l 139 1 l 47 1 l p ef -417 -224 m 417 -271 424 -310 437 -341 ct 448 -364 462 -385 480 -404 ct 498 -422 517 -436 538 -445 ct -567 -457 599 -463 636 -463 ct 703 -463 757 -442 797 -400 ct 837 -359 858 -301 858 -227 ct -858 -153 838 -96 798 -54 ct 758 -13 704 8 638 8 ct 570 8 516 -13 476 -54 ct 437 -95 417 -152 417 -224 ct -p -511 -228 m 511 -176 523 -137 547 -110 ct 571 -84 601 -71 637 -71 ct 674 -71 704 -84 727 -110 ct -751 -136 763 -176 763 -229 ct 763 -281 751 -320 728 -346 ct 706 -371 675 -384 637 -384 ct -600 -384 569 -371 546 -345 ct 523 -319 511 -280 511 -228 ct p ef -1341 1 m 1241 1 l 1202 -103 l 1020 -103 l 982 1 l 885 1 l 1062 -455 l -1159 -455 l 1341 1 l p -1172 -180 m 1109 -348 l 1048 -180 l 1172 -180 l p ef -1387 0 m 1387 -455 l 1524 -455 l 1607 -145 l 1688 -455 l 1826 -455 l -1826 0 l 1741 0 l 1741 -358 l 1651 0 l 1562 0 l 1472 -358 l 1472 0 l -1387 0 l p ef -pom -pum -447 4418 t -149 0 m 149 -378 l 14 -378 l 14 -455 l 375 -455 l 375 -378 l 240 -378 l -240 0 l 149 0 l p ef -435 0 m 435 -455 l 772 -455 l 772 -378 l 527 -378 l 527 -277 l 755 -277 l -755 -200 l 527 -200 l 527 -77 l 781 -77 l 781 0 l 435 0 l p ef -858 0 m 858 -455 l 995 -455 l 1078 -145 l 1159 -455 l 1297 -455 l -1297 0 l 1212 0 l 1212 -358 l 1122 0 l 1033 0 l 943 -358 l 943 0 l -858 0 l p ef -1388 -1 m 1388 -455 l 1535 -455 l 1591 -455 1628 -453 1645 -448 ct 1671 -441 1692 -427 1710 -404 ct -1728 -381 1736 -351 1736 -315 ct 1736 -287 1731 -264 1721 -245 ct 1711 -226 1698 -211 1683 -200 ct -1667 -189 1651 -182 1635 -179 ct 1613 -174 1581 -172 1540 -172 ct 1480 -172 l -1480 -1 l 1388 -1 l p -1480 -378 m 1480 -249 l 1530 -249 l 1566 -249 1591 -252 1603 -256 ct 1615 -261 1625 -269 1631 -279 ct -1638 -289 1642 -301 1642 -314 ct 1642 -330 1637 -344 1627 -355 ct 1618 -366 1605 -372 1590 -375 ct -1579 -377 1557 -378 1524 -378 ct 1480 -378 l p ef -1811 0 m 1811 -455 l 2148 -455 l 2148 -378 l 1903 -378 l 1903 -277 l -2131 -277 l 2131 -200 l 1903 -200 l 1903 -77 l 2157 -77 l 2157 0 l -1811 0 l p ef -2236 0 m 2236 -455 l 2429 -455 l 2477 -455 2513 -451 2535 -443 ct 2557 -435 2574 -420 2587 -399 ct -2601 -378 2607 -354 2607 -327 ct 2607 -293 2597 -265 2577 -243 ct 2557 -221 2527 -207 2487 -201 ct -2507 -189 2524 -177 2536 -163 ct 2549 -149 2567 -124 2589 -89 ct 2644 0 l 2534 0 l -2468 -99 l 2444 -134 2428 -157 2420 -166 ct 2411 -175 2402 -181 2392 -185 ct -2382 -188 2367 -190 2346 -190 ct 2327 -190 l 2327 0 l 2236 0 l p -2327 -263 m 2395 -263 l 2439 -263 2467 -264 2478 -268 ct 2489 -272 2497 -278 2503 -287 ct -2510 -297 2513 -308 2513 -322 ct 2513 -337 2509 -349 2500 -359 ct 2492 -368 2481 -374 2466 -377 ct -2458 -378 2436 -378 2399 -378 ct 2327 -378 l 2327 -263 l p ef -3102 1 m 3002 1 l 2963 -103 l 2781 -103 l 2743 1 l 2646 1 l 2823 -455 l -2920 -455 l 3102 1 l p -2933 -180 m 2870 -348 l 2809 -180 l 2933 -180 l p ef -3227 0 m 3227 -378 l 3092 -378 l 3092 -455 l 3453 -455 l 3453 -378 l -3318 -378 l 3318 0 l 3227 0 l p ef -3488 -455 m 3579 -455 l 3579 -208 l 3579 -169 3581 -144 3583 -132 ct 3587 -114 3596 -99 3611 -87 ct -3626 -76 3646 -71 3671 -71 ct 3697 -71 3717 -76 3730 -86 ct 3744 -97 3752 -110 3754 -126 ct -3757 -141 3758 -167 3758 -203 ct 3758 -455 l 3850 -455 l 3850 -216 l 3850 -161 3848 -123 3843 -100 ct -3838 -77 3828 -58 3815 -43 ct 3802 -27 3784 -15 3762 -6 ct 3739 3 3710 8 3674 8 ct -3631 8 3598 3 3575 -7 ct 3553 -17 3535 -30 3522 -46 ct 3509 -62 3501 -79 3497 -97 ct -3491 -123 3488 -161 3488 -212 ct 3488 -455 l p ef -3946 0 m 3946 -455 l 4139 -455 l 4187 -455 4223 -451 4245 -443 ct 4267 -435 4284 -420 4297 -399 ct -4311 -378 4317 -354 4317 -327 ct 4317 -293 4307 -265 4287 -243 ct 4267 -221 4237 -207 4197 -201 ct -4217 -189 4234 -177 4246 -163 ct 4259 -149 4277 -124 4299 -89 ct 4354 0 l 4244 0 l -4178 -99 l 4154 -134 4138 -157 4130 -166 ct 4121 -175 4112 -181 4102 -185 ct -4092 -188 4077 -190 4056 -190 ct 4037 -190 l 4037 0 l 3946 0 l p -4037 -263 m 4105 -263 l 4149 -263 4177 -264 4188 -268 ct 4199 -272 4207 -278 4213 -287 ct -4220 -297 4223 -308 4223 -322 ct 4223 -337 4219 -349 4210 -359 ct 4202 -368 4191 -374 4176 -377 ct -4168 -378 4146 -378 4109 -378 ct 4037 -378 l 4037 -263 l p ef -4402 0 m 4402 -455 l 4739 -455 l 4739 -378 l 4494 -378 l 4494 -277 l -4722 -277 l 4722 -200 l 4494 -200 l 4494 -77 l 4748 -77 l 4748 0 l -4402 0 l p ef -pom -pum -5858 3989 t -337 -167 m 426 -139 l 412 -89 390 -52 358 -28 ct 326 -4 286 8 237 8 ct 177 8 127 -13 88 -54 ct -50 -95 30 -152 30 -223 ct 30 -299 50 -358 89 -400 ct 128 -442 179 -463 243 -463 ct -298 -463 344 -446 378 -413 ct 399 -394 414 -366 425 -329 ct 334 -308 l 329 -331 317 -350 300 -364 ct -283 -377 263 -384 238 -384 ct 204 -384 177 -372 156 -348 ct 135 -323 125 -284 125 -230 ct -125 -173 135 -132 156 -107 ct 176 -83 203 -71 236 -71 ct 261 -71 282 -78 299 -94 ct -317 -109 329 -134 337 -167 ct p ef -485 -224 m 485 -271 492 -310 505 -341 ct 516 -364 530 -385 548 -404 ct 566 -422 585 -436 606 -445 ct -635 -457 667 -463 704 -463 ct 771 -463 825 -442 865 -400 ct 905 -359 926 -301 926 -227 ct -926 -153 906 -96 866 -54 ct 826 -13 772 8 706 8 ct 638 8 584 -13 544 -54 ct 505 -95 485 -152 485 -224 ct -p -579 -228 m 579 -176 591 -137 615 -110 ct 639 -84 669 -71 705 -71 ct 742 -71 772 -84 795 -110 ct -819 -136 831 -176 831 -229 ct 831 -281 819 -320 796 -346 ct 774 -371 743 -384 705 -384 ct -668 -384 637 -371 614 -345 ct 591 -319 579 -280 579 -228 ct p ef -pom -pum -6811 4256 t -186 -47 m 186 0 l 9 0 l 11 -18 17 -34 26 -50 ct 36 -66 55 -87 83 -113 ct -106 -134 120 -149 125 -156 ct 132 -167 135 -177 135 -187 ct 135 -198 132 -207 126 -213 ct -120 -219 112 -222 101 -222 ct 91 -222 82 -219 76 -213 ct 70 -206 66 -196 65 -181 ct -15 -186 l 18 -214 28 -234 43 -246 ct 59 -258 79 -264 103 -264 ct 129 -264 149 -257 164 -243 ct -179 -229 186 -212 186 -191 ct 186 -179 184 -168 180 -157 ct 176 -146 169 -135 160 -123 ct -153 -116 142 -104 127 -90 ct 111 -75 100 -66 96 -61 ct 92 -56 89 -51 86 -47 ct -186 -47 l p ef -pom -pum -7014 3989 t -621 1 m 521 1 l 482 -103 l 300 -103 l 262 1 l 165 1 l 342 -455 l -439 -455 l 621 1 l p -452 -180 m 389 -348 l 328 -180 l 452 -180 l p ef -657 0 m 657 -455 l 746 -455 l 932 -151 l 932 -455 l 1018 -455 l 1018 0 l -926 0 l 742 -297 l 742 0 l 657 0 l p ef -1113 -455 m 1281 -455 l 1318 -455 1347 -452 1367 -446 ct 1394 -438 1417 -424 1436 -404 ct -1455 -384 1469 -360 1479 -331 ct 1489 -302 1494 -266 1494 -223 ct 1494 -186 1489 -153 1480 -126 ct -1469 -93 1452 -66 1431 -46 ct 1415 -30 1394 -18 1367 -10 ct 1347 -3 1319 0 1286 0 ct -1113 0 l 1113 -455 l p -1205 -378 m 1205 -77 l 1273 -77 l 1299 -77 1317 -78 1329 -81 ct 1344 -85 1356 -91 1366 -100 ct -1376 -109 1384 -123 1390 -144 ct 1396 -164 1399 -192 1399 -227 ct 1399 -262 1396 -289 1390 -308 ct -1384 -327 1375 -342 1364 -352 ct 1353 -363 1338 -370 1321 -374 ct 1308 -377 1283 -378 1246 -378 ct -1205 -378 l p ef -pom -pum -5858 4963 t -47 -455 m 228 -455 l 264 -455 291 -453 309 -450 ct 326 -447 342 -441 356 -431 ct -370 -422 382 -409 391 -393 ct 400 -378 405 -360 405 -340 ct 405 -319 399 -299 388 -281 ct -376 -264 361 -250 341 -241 ct 369 -233 390 -220 405 -200 ct 420 -181 427 -158 427 -131 ct -427 -111 422 -91 413 -71 ct 403 -51 390 -36 373 -24 ct 357 -12 336 -5 312 -2 ct -297 -1 260 0 201 0 ct 47 0 l 47 -455 l p -138 -379 m 138 -274 l 198 -274 l 234 -274 256 -274 265 -275 ct 281 -277 293 -283 302 -292 ct -311 -301 316 -312 316 -327 ct 316 -341 312 -353 304 -361 ct 296 -370 285 -376 269 -377 ct -260 -378 234 -379 191 -379 ct 138 -379 l p -138 -198 m 138 -76 l 223 -76 l 256 -76 277 -77 286 -79 ct 300 -82 311 -88 320 -97 ct -328 -107 332 -120 332 -136 ct 332 -150 329 -161 322 -171 ct 316 -180 306 -187 294 -191 ct -281 -196 254 -198 212 -198 ct 138 -198 l p ef -506 0 m 506 -451 l 597 -451 l 597 -77 l 826 -77 l 826 0 l 506 0 l -p ef -875 -224 m 875 -271 882 -310 895 -341 ct 906 -364 920 -385 938 -404 ct 956 -422 975 -436 996 -445 ct -1025 -457 1057 -463 1094 -463 ct 1161 -463 1215 -442 1255 -400 ct 1295 -359 1316 -301 1316 -227 ct -1316 -153 1296 -96 1256 -54 ct 1216 -13 1162 8 1096 8 ct 1028 8 974 -13 934 -54 ct -895 -95 875 -152 875 -224 ct p -969 -228 m 969 -176 981 -137 1005 -110 ct 1029 -84 1059 -71 1095 -71 ct 1132 -71 1162 -84 1185 -110 ct -1209 -136 1221 -176 1221 -229 ct 1221 -281 1209 -320 1186 -346 ct 1164 -371 1133 -384 1095 -384 ct -1058 -384 1027 -371 1004 -345 ct 981 -319 969 -280 969 -228 ct p ef -1453 0 m 1344 -455 l 1438 -455 l 1507 -142 l 1590 -455 l 1699 -455 l -1779 -137 l 1848 -455 l 1941 -455 l 1830 0 l 1733 0 l 1642 -340 l -1552 0 l 1453 0 l p ef -1986 0 m 1986 -455 l 2078 -455 l 2078 0 l 1986 0 l p ef -2168 0 m 2168 -455 l 2257 -455 l 2443 -151 l 2443 -455 l 2529 -455 l -2529 0 l 2437 0 l 2253 -297 l 2253 0 l 2168 0 l p ef -2836 -167 m 2836 -244 l 3033 -244 l 3033 -62 l 3014 -44 2986 -27 2950 -13 ct -2913 1 2876 8 2839 8 ct 2792 8 2750 -2 2715 -22 ct 2679 -42 2653 -70 2635 -108 ct -2617 -145 2608 -185 2608 -229 ct 2608 -276 2618 -318 2638 -355 ct 2658 -392 2687 -420 2725 -440 ct -2754 -455 2791 -463 2834 -463 ct 2891 -463 2935 -451 2966 -427 ct 2998 -403 3018 -371 3028 -329 ct -2936 -312 l 2930 -334 2918 -352 2900 -365 ct 2883 -378 2861 -384 2834 -384 ct -2794 -384 2762 -371 2738 -346 ct 2715 -320 2703 -283 2703 -233 ct 2703 -179 2715 -138 2739 -111 ct -2763 -84 2794 -71 2833 -71 ct 2852 -71 2872 -74 2891 -82 ct 2910 -89 2927 -99 2941 -109 ct -2941 -167 l 2836 -167 l p ef -pom -pum -5858 5725 t -456 1 m 356 1 l 317 -103 l 135 -103 l 97 1 l 0 1 l 177 -455 l 274 -455 l -456 1 l p -287 -180 m 224 -348 l 163 -180 l 287 -180 l p ef -715 -167 m 715 -244 l 912 -244 l 912 -62 l 893 -44 865 -27 829 -13 ct -792 1 755 8 718 8 ct 671 8 629 -2 594 -22 ct 558 -42 532 -70 514 -108 ct 496 -145 487 -185 487 -229 ct -487 -276 497 -318 517 -355 ct 537 -392 566 -420 604 -440 ct 633 -455 670 -463 713 -463 ct -770 -463 814 -451 845 -427 ct 877 -403 897 -371 907 -329 ct 815 -312 l 809 -334 797 -352 779 -365 ct -762 -378 740 -384 713 -384 ct 673 -384 641 -371 617 -346 ct 594 -320 582 -283 582 -233 ct -582 -179 594 -138 618 -111 ct 642 -84 673 -71 712 -71 ct 731 -71 751 -74 770 -82 ct -789 -89 806 -99 820 -109 ct 820 -167 l 715 -167 l p ef -999 0 m 999 -455 l 1336 -455 l 1336 -378 l 1091 -378 l 1091 -277 l -1319 -277 l 1319 -200 l 1091 -200 l 1091 -77 l 1345 -77 l 1345 0 l -999 0 l p ef -1423 0 m 1423 -455 l 1512 -455 l 1698 -151 l 1698 -455 l 1784 -455 l -1784 0 l 1692 0 l 1508 -297 l 1508 0 l 1423 0 l p ef -1982 0 m 1982 -378 l 1847 -378 l 1847 -455 l 2208 -455 l 2208 -378 l -2073 -378 l 2073 0 l 1982 0 l p ef -2445 0 m 2445 -455 l 2582 -455 l 2665 -145 l 2746 -455 l 2884 -455 l -2884 0 l 2799 0 l 2799 -358 l 2709 0 l 2620 0 l 2530 -358 l 2530 0 l -2445 0 l p ef -3385 1 m 3285 1 l 3246 -103 l 3064 -103 l 3026 1 l 2929 1 l 3106 -455 l -3203 -455 l 3385 1 l p -3216 -180 m 3153 -348 l 3092 -180 l 3216 -180 l p ef -3410 -148 m 3499 -157 l 3505 -127 3516 -105 3532 -91 ct 3548 -77 3571 -70 3598 -70 ct -3628 -70 3650 -76 3665 -88 ct 3680 -101 3688 -116 3688 -132 ct 3688 -143 3685 -152 3678 -160 ct -3672 -167 3661 -174 3645 -179 ct 3635 -183 3610 -190 3572 -199 ct 3523 -212 3488 -227 3468 -244 ct -3440 -269 3426 -300 3426 -336 ct 3426 -359 3433 -381 3446 -401 ct 3459 -421 3478 -437 3503 -447 ct -3528 -458 3557 -463 3592 -463 ct 3649 -463 3692 -450 3721 -425 ct 3750 -399 3765 -365 3767 -323 ct -3675 -323 l 3671 -346 3662 -362 3649 -372 ct 3637 -382 3617 -387 3591 -387 ct -3565 -387 3544 -381 3529 -371 ct 3519 -363 3514 -354 3514 -342 ct 3514 -331 3519 -322 3528 -315 ct -3539 -305 3567 -295 3612 -284 ct 3657 -274 3690 -263 3711 -251 ct 3733 -240 3749 -225 3761 -205 ct -3773 -186 3780 -161 3780 -133 ct 3780 -107 3772 -82 3758 -59 ct 3743 -37 3723 -20 3696 -9 ct -3670 2 3637 8 3598 8 ct 3540 8 3496 -5 3465 -32 ct 3434 -59 3416 -97 3410 -148 ct -p ef -3833 -148 m 3922 -157 l 3928 -127 3939 -105 3955 -91 ct 3971 -77 3994 -70 4021 -70 ct -4051 -70 4073 -76 4088 -88 ct 4103 -101 4111 -116 4111 -132 ct 4111 -143 4108 -152 4101 -160 ct -4095 -167 4084 -174 4068 -179 ct 4058 -183 4033 -190 3995 -199 ct 3946 -212 3911 -227 3891 -244 ct -3863 -269 3849 -300 3849 -336 ct 3849 -359 3856 -381 3869 -401 ct 3882 -421 3901 -437 3926 -447 ct -3951 -458 3980 -463 4015 -463 ct 4072 -463 4115 -450 4144 -425 ct 4173 -399 4188 -365 4190 -323 ct -4098 -323 l 4094 -346 4085 -362 4072 -372 ct 4060 -382 4040 -387 4014 -387 ct -3988 -387 3967 -381 3952 -371 ct 3942 -363 3937 -354 3937 -342 ct 3937 -331 3942 -322 3951 -315 ct -3962 -305 3990 -295 4035 -284 ct 4080 -274 4113 -263 4134 -251 ct 4156 -240 4172 -225 4184 -205 ct -4196 -186 4203 -161 4203 -133 ct 4203 -107 4195 -82 4181 -59 ct 4166 -37 4146 -20 4119 -9 ct -4093 2 4060 8 4021 8 ct 3963 8 3919 -5 3888 -32 ct 3857 -59 3839 -97 3833 -148 ct -p ef -pom -pum -5858 6487 t -47 1 m 47 -455 l 358 -455 l 358 -378 l 139 -378 l 139 -270 l 328 -270 l -328 -193 l 139 -193 l 139 1 l 47 1 l p ef -436 0 m 436 -455 l 629 -455 l 677 -455 713 -451 735 -443 ct 757 -435 774 -420 787 -399 ct -801 -378 807 -354 807 -327 ct 807 -293 797 -265 777 -243 ct 757 -221 727 -207 687 -201 ct -707 -189 724 -177 736 -163 ct 749 -149 767 -124 789 -89 ct 844 0 l 734 0 l -668 -99 l 644 -134 628 -157 620 -166 ct 611 -175 602 -181 592 -185 ct 582 -188 567 -190 546 -190 ct -527 -190 l 527 0 l 436 0 l p -527 -263 m 595 -263 l 639 -263 667 -264 678 -268 ct 689 -272 697 -278 703 -287 ct -710 -297 713 -308 713 -322 ct 713 -337 709 -349 700 -359 ct 692 -368 681 -374 666 -377 ct -658 -378 636 -378 599 -378 ct 527 -378 l 527 -263 l p ef -1303 1 m 1203 1 l 1164 -103 l 982 -103 l 944 1 l 847 1 l 1024 -455 l -1121 -455 l 1303 1 l p -1134 -180 m 1071 -348 l 1010 -180 l 1134 -180 l p ef -1641 -167 m 1730 -139 l 1716 -89 1694 -52 1662 -28 ct 1630 -4 1590 8 1541 8 ct -1481 8 1431 -13 1392 -54 ct 1354 -95 1334 -152 1334 -223 ct 1334 -299 1354 -358 1393 -400 ct -1432 -442 1483 -463 1547 -463 ct 1602 -463 1648 -446 1682 -413 ct 1703 -394 1718 -366 1729 -329 ct -1638 -308 l 1633 -331 1621 -350 1604 -364 ct 1587 -377 1567 -384 1542 -384 ct -1508 -384 1481 -372 1460 -348 ct 1439 -323 1429 -284 1429 -230 ct 1429 -173 1439 -132 1460 -107 ct -1480 -83 1507 -71 1540 -71 ct 1565 -71 1586 -78 1603 -94 ct 1621 -109 1633 -134 1641 -167 ct -p ef -1910 0 m 1910 -378 l 1775 -378 l 1775 -455 l 2136 -455 l 2136 -378 l -2001 -378 l 2001 0 l 1910 0 l p ef -2194 0 m 2194 -455 l 2286 -455 l 2286 0 l 2194 0 l p ef -2356 -224 m 2356 -271 2363 -310 2376 -341 ct 2387 -364 2401 -385 2419 -404 ct -2437 -422 2456 -436 2477 -445 ct 2506 -457 2538 -463 2575 -463 ct 2642 -463 2696 -442 2736 -400 ct -2776 -359 2797 -301 2797 -227 ct 2797 -153 2777 -96 2737 -54 ct 2697 -13 2643 8 2577 8 ct -2509 8 2455 -13 2415 -54 ct 2376 -95 2356 -152 2356 -224 ct p -2450 -228 m 2450 -176 2462 -137 2486 -110 ct 2510 -84 2540 -71 2576 -71 ct -2613 -71 2643 -84 2666 -110 ct 2690 -136 2702 -176 2702 -229 ct 2702 -281 2690 -320 2667 -346 ct -2645 -371 2614 -384 2576 -384 ct 2539 -384 2508 -371 2485 -345 ct 2462 -319 2450 -280 2450 -228 ct -p ef -2871 0 m 2871 -455 l 2960 -455 l 3146 -151 l 3146 -455 l 3232 -455 l -3232 0 l 3140 0 l 2956 -297 l 2956 0 l 2871 0 l p ef -3304 -148 m 3393 -157 l 3399 -127 3410 -105 3426 -91 ct 3442 -77 3465 -70 3492 -70 ct -3522 -70 3544 -76 3559 -88 ct 3574 -101 3582 -116 3582 -132 ct 3582 -143 3579 -152 3572 -160 ct -3566 -167 3555 -174 3539 -179 ct 3529 -183 3504 -190 3466 -199 ct 3417 -212 3382 -227 3362 -244 ct -3334 -269 3320 -300 3320 -336 ct 3320 -359 3327 -381 3340 -401 ct 3353 -421 3372 -437 3397 -447 ct -3422 -458 3451 -463 3486 -463 ct 3543 -463 3586 -450 3615 -425 ct 3644 -399 3659 -365 3661 -323 ct -3569 -323 l 3565 -346 3556 -362 3543 -372 ct 3531 -382 3511 -387 3485 -387 ct -3459 -387 3438 -381 3423 -371 ct 3413 -363 3408 -354 3408 -342 ct 3408 -331 3413 -322 3422 -315 ct -3433 -305 3461 -295 3506 -284 ct 3551 -274 3584 -263 3605 -251 ct 3627 -240 3643 -225 3655 -205 ct -3667 -186 3674 -161 3674 -133 ct 3674 -107 3666 -82 3652 -59 ct 3637 -37 3617 -20 3590 -9 ct -3564 2 3531 8 3492 8 ct 3434 8 3390 -5 3359 -32 ct 3328 -59 3310 -97 3304 -148 ct -p ef -pom -pum -5858 7249 t -43 0 m 43 -455 l 135 -455 l 135 0 l 43 0 l p ef -225 0 m 225 -455 l 314 -455 l 500 -151 l 500 -455 l 586 -455 l 586 0 l -494 0 l 310 -297 l 310 0 l 225 0 l p ef -962 0 m 962 -378 l 827 -378 l 827 -455 l 1188 -455 l 1188 -378 l -1053 -378 l 1053 0 l 962 0 l p ef -1249 0 m 1249 -455 l 1340 -455 l 1340 -276 l 1520 -276 l 1520 -455 l -1612 -455 l 1612 0 l 1520 0 l 1520 -199 l 1340 -199 l 1340 0 l 1249 0 l -p ef -1705 0 m 1705 -455 l 2042 -455 l 2042 -378 l 1797 -378 l 1797 -277 l -2025 -277 l 2025 -200 l 1797 -200 l 1797 -77 l 2051 -77 l 2051 0 l -1705 0 l p ef -2310 0 m 2310 -451 l 2401 -451 l 2401 -77 l 2630 -77 l 2630 0 l 2310 0 l -p ef -2693 0 m 2693 -455 l 2785 -455 l 2785 0 l 2693 0 l p ef -3240 -57 m 3263 -41 3287 -29 3314 -19 ct 3280 46 l 3266 42 3252 36 3239 29 ct -3236 27 3216 14 3178 -12 ct 3148 1 3115 8 3079 8 ct 3009 8 2955 -13 2915 -54 ct -2875 -95 2856 -153 2856 -227 ct 2856 -302 2875 -359 2915 -401 ct 2955 -442 3009 -463 3077 -463 ct -3144 -463 3197 -442 3237 -401 ct 3276 -359 3296 -302 3296 -227 ct 3296 -188 3291 -153 3280 -124 ct -3271 -101 3258 -79 3240 -57 ct p -3166 -109 m 3178 -123 3187 -140 3193 -160 ct 3199 -179 3202 -202 3202 -227 ct -3202 -280 3190 -319 3167 -345 ct 3144 -371 3113 -384 3076 -384 ct 3039 -384 3008 -371 2985 -345 ct -2962 -319 2950 -280 2950 -227 ct 2950 -174 2962 -134 2985 -108 ct 3008 -82 3038 -68 3073 -68 ct -3086 -68 3099 -71 3111 -75 ct 3092 -87 3073 -97 3054 -103 ct 3080 -156 l 3110 -146 3139 -130 3166 -109 ct -p ef -3369 -455 m 3460 -455 l 3460 -208 l 3460 -169 3462 -144 3464 -132 ct 3468 -114 3477 -99 3492 -87 ct -3507 -76 3527 -71 3552 -71 ct 3578 -71 3598 -76 3611 -86 ct 3625 -97 3633 -110 3635 -126 ct -3638 -141 3639 -167 3639 -203 ct 3639 -455 l 3731 -455 l 3731 -216 l 3731 -161 3729 -123 3724 -100 ct -3719 -77 3709 -58 3696 -43 ct 3683 -27 3665 -15 3643 -6 ct 3620 3 3591 8 3555 8 ct -3512 8 3479 3 3456 -7 ct 3434 -17 3416 -30 3403 -46 ct 3390 -62 3382 -79 3378 -97 ct -3372 -123 3369 -161 3369 -212 ct 3369 -455 l p ef -3823 0 m 3823 -455 l 3915 -455 l 3915 0 l 3823 0 l p ef -4004 -455 m 4172 -455 l 4209 -455 4238 -452 4258 -446 ct 4285 -438 4308 -424 4327 -404 ct -4346 -384 4360 -360 4370 -331 ct 4380 -302 4385 -266 4385 -223 ct 4385 -186 4380 -153 4371 -126 ct -4360 -93 4343 -66 4322 -46 ct 4306 -30 4285 -18 4258 -10 ct 4238 -3 4210 0 4177 0 ct -4004 0 l 4004 -455 l p -4096 -378 m 4096 -77 l 4164 -77 l 4190 -77 4208 -78 4220 -81 ct 4235 -85 4247 -91 4257 -100 ct -4267 -109 4275 -123 4281 -144 ct 4287 -164 4290 -192 4290 -227 ct 4290 -262 4287 -289 4281 -308 ct -4275 -327 4266 -342 4255 -352 ct 4244 -363 4229 -370 4212 -374 ct 4199 -377 4174 -378 4137 -378 ct -4096 -378 l p ef -pom -pum -13122 3596 t -46 -1 m 46 -455 l 193 -455 l 249 -455 286 -453 303 -448 ct 329 -441 350 -427 368 -404 ct -386 -381 394 -351 394 -315 ct 394 -287 389 -264 379 -245 ct 369 -226 356 -211 341 -200 ct -325 -189 309 -182 293 -179 ct 271 -174 239 -172 198 -172 ct 138 -172 l 138 -1 l -46 -1 l p -138 -378 m 138 -249 l 188 -249 l 224 -249 249 -252 261 -256 ct 273 -261 283 -269 289 -279 ct -296 -289 300 -301 300 -314 ct 300 -330 295 -344 285 -355 ct 276 -366 263 -372 248 -375 ct -237 -377 215 -378 182 -378 ct 138 -378 l p ef -854 1 m 754 1 l 715 -103 l 533 -103 l 495 1 l 398 1 l 575 -455 l -672 -455 l 854 1 l p -685 -180 m 622 -348 l 561 -180 l 685 -180 l p ef -877 0 m 877 -455 l 1070 -455 l 1118 -455 1154 -451 1176 -443 ct 1198 -435 1215 -420 1228 -399 ct -1242 -378 1248 -354 1248 -327 ct 1248 -293 1238 -265 1218 -243 ct 1198 -221 1168 -207 1128 -201 ct -1148 -189 1165 -177 1177 -163 ct 1190 -149 1208 -124 1230 -89 ct 1285 0 l 1175 0 l -1109 -99 l 1085 -134 1069 -157 1061 -166 ct 1052 -175 1043 -181 1033 -185 ct -1023 -188 1008 -190 987 -190 ct 968 -190 l 968 0 l 877 0 l p -968 -263 m 1036 -263 l 1080 -263 1108 -264 1119 -268 ct 1130 -272 1138 -278 1144 -287 ct -1151 -297 1154 -308 1154 -322 ct 1154 -337 1150 -349 1141 -359 ct 1133 -368 1122 -374 1107 -377 ct -1099 -378 1077 -378 1040 -378 ct 968 -378 l 968 -263 l p ef -1436 0 m 1436 -378 l 1301 -378 l 1301 -455 l 1662 -455 l 1662 -378 l -1527 -378 l 1527 0 l 1436 0 l p ef -1719 0 m 1719 -455 l 1811 -455 l 1811 0 l 1719 0 l p ef -2310 1 m 2210 1 l 2171 -103 l 1989 -103 l 1951 1 l 1854 1 l 2031 -455 l -2128 -455 l 2310 1 l p -2141 -180 m 2078 -348 l 2017 -180 l 2141 -180 l p ef -2360 0 m 2360 -451 l 2451 -451 l 2451 -77 l 2680 -77 l 2680 0 l 2360 0 l -p ef -pom -pum -13122 4358 t -46 -1 m 46 -455 l 193 -455 l 249 -455 286 -453 303 -448 ct 329 -441 350 -427 368 -404 ct -386 -381 394 -351 394 -315 ct 394 -287 389 -264 379 -245 ct 369 -226 356 -211 341 -200 ct -325 -189 309 -182 293 -179 ct 271 -174 239 -172 198 -172 ct 138 -172 l 138 -1 l -46 -1 l p -138 -378 m 138 -249 l 188 -249 l 224 -249 249 -252 261 -256 ct 273 -261 283 -269 289 -279 ct -296 -289 300 -301 300 -314 ct 300 -330 295 -344 285 -355 ct 276 -366 263 -372 248 -375 ct -237 -377 215 -378 182 -378 ct 138 -378 l p ef -470 0 m 470 -455 l 663 -455 l 711 -455 747 -451 769 -443 ct 791 -435 808 -420 821 -399 ct -835 -378 841 -354 841 -327 ct 841 -293 831 -265 811 -243 ct 791 -221 761 -207 721 -201 ct -741 -189 758 -177 770 -163 ct 783 -149 801 -124 823 -89 ct 878 0 l 768 0 l -702 -99 l 678 -134 662 -157 654 -166 ct 645 -175 636 -181 626 -185 ct 616 -188 601 -190 580 -190 ct -561 -190 l 561 0 l 470 0 l p -561 -263 m 629 -263 l 673 -263 701 -264 712 -268 ct 723 -272 731 -278 737 -287 ct -744 -297 747 -308 747 -322 ct 747 -337 743 -349 734 -359 ct 726 -368 715 -374 700 -377 ct -692 -378 670 -378 633 -378 ct 561 -378 l 561 -263 l p ef -927 0 m 927 -455 l 1264 -455 l 1264 -378 l 1019 -378 l 1019 -277 l -1247 -277 l 1247 -200 l 1019 -200 l 1019 -77 l 1273 -77 l 1273 0 l -927 0 l p ef -1327 -148 m 1416 -157 l 1422 -127 1433 -105 1449 -91 ct 1465 -77 1488 -70 1515 -70 ct -1545 -70 1567 -76 1582 -88 ct 1597 -101 1605 -116 1605 -132 ct 1605 -143 1602 -152 1595 -160 ct -1589 -167 1578 -174 1562 -179 ct 1552 -183 1527 -190 1489 -199 ct 1440 -212 1405 -227 1385 -244 ct -1357 -269 1343 -300 1343 -336 ct 1343 -359 1350 -381 1363 -401 ct 1376 -421 1395 -437 1420 -447 ct -1445 -458 1474 -463 1509 -463 ct 1566 -463 1609 -450 1638 -425 ct 1667 -399 1682 -365 1684 -323 ct -1592 -323 l 1588 -346 1579 -362 1566 -372 ct 1554 -382 1534 -387 1508 -387 ct -1482 -387 1461 -381 1446 -371 ct 1436 -363 1431 -354 1431 -342 ct 1431 -331 1436 -322 1445 -315 ct -1456 -305 1484 -295 1529 -284 ct 1574 -274 1607 -263 1628 -251 ct 1650 -240 1666 -225 1678 -205 ct -1690 -186 1697 -161 1697 -133 ct 1697 -107 1689 -82 1675 -59 ct 1660 -37 1640 -20 1613 -9 ct -1587 2 1554 8 1515 8 ct 1457 8 1413 -5 1382 -32 ct 1351 -59 1333 -97 1327 -148 ct -p ef -1750 -148 m 1839 -157 l 1845 -127 1856 -105 1872 -91 ct 1888 -77 1911 -70 1938 -70 ct -1968 -70 1990 -76 2005 -88 ct 2020 -101 2028 -116 2028 -132 ct 2028 -143 2025 -152 2018 -160 ct -2012 -167 2001 -174 1985 -179 ct 1975 -183 1950 -190 1912 -199 ct 1863 -212 1828 -227 1808 -244 ct -1780 -269 1766 -300 1766 -336 ct 1766 -359 1773 -381 1786 -401 ct 1799 -421 1818 -437 1843 -447 ct -1868 -458 1897 -463 1932 -463 ct 1989 -463 2032 -450 2061 -425 ct 2090 -399 2105 -365 2107 -323 ct -2015 -323 l 2011 -346 2002 -362 1989 -372 ct 1977 -382 1957 -387 1931 -387 ct -1905 -387 1884 -381 1869 -371 ct 1859 -363 1854 -354 1854 -342 ct 1854 -331 1859 -322 1868 -315 ct -1879 -305 1907 -295 1952 -284 ct 1997 -274 2030 -263 2051 -251 ct 2073 -240 2089 -225 2101 -205 ct -2113 -186 2120 -161 2120 -133 ct 2120 -107 2112 -82 2098 -59 ct 2083 -37 2063 -20 2036 -9 ct -2010 2 1977 8 1938 8 ct 1880 8 1836 -5 1805 -32 ct 1774 -59 1756 -97 1750 -148 ct -p ef -2197 -455 m 2288 -455 l 2288 -208 l 2288 -169 2290 -144 2292 -132 ct 2296 -114 2305 -99 2320 -87 ct -2335 -76 2355 -71 2380 -71 ct 2406 -71 2426 -76 2439 -86 ct 2453 -97 2461 -110 2463 -126 ct -2466 -141 2467 -167 2467 -203 ct 2467 -455 l 2559 -455 l 2559 -216 l 2559 -161 2557 -123 2552 -100 ct -2547 -77 2537 -58 2524 -43 ct 2511 -27 2493 -15 2471 -6 ct 2448 3 2419 8 2383 8 ct -2340 8 2307 3 2284 -7 ct 2262 -17 2244 -30 2231 -46 ct 2218 -62 2210 -79 2206 -97 ct -2200 -123 2197 -161 2197 -212 ct 2197 -455 l p ef -2655 0 m 2655 -455 l 2848 -455 l 2896 -455 2932 -451 2954 -443 ct 2976 -435 2993 -420 3006 -399 ct -3020 -378 3026 -354 3026 -327 ct 3026 -293 3016 -265 2996 -243 ct 2976 -221 2946 -207 2906 -201 ct -2926 -189 2943 -177 2955 -163 ct 2968 -149 2986 -124 3008 -89 ct 3063 0 l 2953 0 l -2887 -99 l 2863 -134 2847 -157 2839 -166 ct 2830 -175 2821 -181 2811 -185 ct -2801 -188 2786 -190 2765 -190 ct 2746 -190 l 2746 0 l 2655 0 l p -2746 -263 m 2814 -263 l 2858 -263 2886 -264 2897 -268 ct 2908 -272 2916 -278 2922 -287 ct -2929 -297 2932 -308 2932 -322 ct 2932 -337 2928 -349 2919 -359 ct 2911 -368 2900 -374 2885 -377 ct -2877 -378 2855 -378 2818 -378 ct 2746 -378 l 2746 -263 l p ef -3111 0 m 3111 -455 l 3448 -455 l 3448 -378 l 3203 -378 l 3203 -277 l -3431 -277 l 3431 -200 l 3203 -200 l 3203 -77 l 3457 -77 l 3457 0 l -3111 0 l p ef -3511 -148 m 3600 -157 l 3606 -127 3617 -105 3633 -91 ct 3649 -77 3672 -70 3699 -70 ct -3729 -70 3751 -76 3766 -88 ct 3781 -101 3789 -116 3789 -132 ct 3789 -143 3786 -152 3779 -160 ct -3773 -167 3762 -174 3746 -179 ct 3736 -183 3711 -190 3673 -199 ct 3624 -212 3589 -227 3569 -244 ct -3541 -269 3527 -300 3527 -336 ct 3527 -359 3534 -381 3547 -401 ct 3560 -421 3579 -437 3604 -447 ct -3629 -458 3658 -463 3693 -463 ct 3750 -463 3793 -450 3822 -425 ct 3851 -399 3866 -365 3868 -323 ct -3776 -323 l 3772 -346 3763 -362 3750 -372 ct 3738 -382 3718 -387 3692 -387 ct -3666 -387 3645 -381 3630 -371 ct 3620 -363 3615 -354 3615 -342 ct 3615 -331 3620 -322 3629 -315 ct -3640 -305 3668 -295 3713 -284 ct 3758 -274 3791 -263 3812 -251 ct 3834 -240 3850 -225 3862 -205 ct -3874 -186 3881 -161 3881 -133 ct 3881 -107 3873 -82 3859 -59 ct 3844 -37 3824 -20 3797 -9 ct -3771 2 3738 8 3699 8 ct 3641 8 3597 -5 3566 -32 ct 3535 -59 3517 -97 3511 -148 ct -p ef -4117 -224 m 4117 -271 4124 -310 4137 -341 ct 4148 -364 4162 -385 4180 -404 ct -4198 -422 4217 -436 4238 -445 ct 4267 -457 4299 -463 4336 -463 ct 4403 -463 4457 -442 4497 -400 ct -4537 -359 4558 -301 4558 -227 ct 4558 -153 4538 -96 4498 -54 ct 4458 -13 4404 8 4338 8 ct -4270 8 4216 -13 4176 -54 ct 4137 -95 4117 -152 4117 -224 ct p -4211 -228 m 4211 -176 4223 -137 4247 -110 ct 4271 -84 4301 -71 4337 -71 ct -4374 -71 4404 -84 4427 -110 ct 4451 -136 4463 -176 4463 -229 ct 4463 -281 4451 -320 4428 -346 ct -4406 -371 4375 -384 4337 -384 ct 4300 -384 4269 -371 4246 -345 ct 4223 -319 4211 -280 4211 -228 ct -p ef -4632 1 m 4632 -455 l 4943 -455 l 4943 -378 l 4724 -378 l 4724 -270 l -4913 -270 l 4913 -193 l 4724 -193 l 4724 1 l 4632 1 l p ef -pom -pum -13122 5120 t -47 -455 m 228 -455 l 264 -455 291 -453 309 -450 ct 326 -447 342 -441 356 -431 ct -370 -422 382 -409 391 -393 ct 400 -378 405 -360 405 -340 ct 405 -319 399 -299 388 -281 ct -376 -264 361 -250 341 -241 ct 369 -233 390 -220 405 -200 ct 420 -181 427 -158 427 -131 ct -427 -111 422 -91 413 -71 ct 403 -51 390 -36 373 -24 ct 357 -12 336 -5 312 -2 ct -297 -1 260 0 201 0 ct 47 0 l 47 -455 l p -138 -379 m 138 -274 l 198 -274 l 234 -274 256 -274 265 -275 ct 281 -277 293 -283 302 -292 ct -311 -301 316 -312 316 -327 ct 316 -341 312 -353 304 -361 ct 296 -370 285 -376 269 -377 ct -260 -378 234 -379 191 -379 ct 138 -379 l p -138 -198 m 138 -76 l 223 -76 l 256 -76 277 -77 286 -79 ct 300 -82 311 -88 320 -97 ct -328 -107 332 -120 332 -136 ct 332 -150 329 -161 322 -171 ct 316 -180 306 -187 294 -191 ct -281 -196 254 -198 212 -198 ct 138 -198 l p ef -506 0 m 506 -451 l 597 -451 l 597 -77 l 826 -77 l 826 0 l 506 0 l -p ef -875 -224 m 875 -271 882 -310 895 -341 ct 906 -364 920 -385 938 -404 ct 956 -422 975 -436 996 -445 ct -1025 -457 1057 -463 1094 -463 ct 1161 -463 1215 -442 1255 -400 ct 1295 -359 1316 -301 1316 -227 ct -1316 -153 1296 -96 1256 -54 ct 1216 -13 1162 8 1096 8 ct 1028 8 974 -13 934 -54 ct -895 -95 875 -152 875 -224 ct p -969 -228 m 969 -176 981 -137 1005 -110 ct 1029 -84 1059 -71 1095 -71 ct 1132 -71 1162 -84 1185 -110 ct -1209 -136 1221 -176 1221 -229 ct 1221 -281 1209 -320 1186 -346 ct 1164 -371 1133 -384 1095 -384 ct -1058 -384 1027 -371 1004 -345 ct 981 -319 969 -280 969 -228 ct p ef -1453 0 m 1344 -455 l 1438 -455 l 1507 -142 l 1590 -455 l 1699 -455 l -1779 -137 l 1848 -455 l 1941 -455 l 1830 0 l 1733 0 l 1642 -340 l -1552 0 l 1453 0 l p ef -1986 0 m 1986 -455 l 2078 -455 l 2078 0 l 1986 0 l p ef -2168 0 m 2168 -455 l 2257 -455 l 2443 -151 l 2443 -455 l 2529 -455 l -2529 0 l 2437 0 l 2253 -297 l 2253 0 l 2168 0 l p ef -2836 -167 m 2836 -244 l 3033 -244 l 3033 -62 l 3014 -44 2986 -27 2950 -13 ct -2913 1 2876 8 2839 8 ct 2792 8 2750 -2 2715 -22 ct 2679 -42 2653 -70 2635 -108 ct -2617 -145 2608 -185 2608 -229 ct 2608 -276 2618 -318 2638 -355 ct 2658 -392 2687 -420 2725 -440 ct -2754 -455 2791 -463 2834 -463 ct 2891 -463 2935 -451 2966 -427 ct 2998 -403 3018 -371 3028 -329 ct -2936 -312 l 2930 -334 2918 -352 2900 -365 ct 2883 -378 2861 -384 2834 -384 ct -2794 -384 2762 -371 2738 -346 ct 2715 -320 2703 -283 2703 -233 ct 2703 -179 2715 -138 2739 -111 ct -2763 -84 2794 -71 2833 -71 ct 2852 -71 2872 -74 2891 -82 ct 2910 -89 2927 -99 2941 -109 ct -2941 -167 l 2836 -167 l p ef -3695 1 m 3595 1 l 3556 -103 l 3374 -103 l 3336 1 l 3239 1 l 3416 -455 l -3513 -455 l 3695 1 l p -3526 -180 m 3463 -348 l 3402 -180 l 3526 -180 l p ef -3941 -167 m 3941 -244 l 4138 -244 l 4138 -62 l 4119 -44 4091 -27 4055 -13 ct -4018 1 3981 8 3944 8 ct 3897 8 3855 -2 3820 -22 ct 3784 -42 3758 -70 3740 -108 ct -3722 -145 3713 -185 3713 -229 ct 3713 -276 3723 -318 3743 -355 ct 3763 -392 3792 -420 3830 -440 ct -3859 -455 3896 -463 3939 -463 ct 3996 -463 4040 -451 4071 -427 ct 4103 -403 4123 -371 4133 -329 ct -4041 -312 l 4035 -334 4023 -352 4005 -365 ct 3988 -378 3966 -384 3939 -384 ct -3899 -384 3867 -371 3843 -346 ct 3820 -320 3808 -283 3808 -233 ct 3808 -179 3820 -138 3844 -111 ct -3868 -84 3899 -71 3938 -71 ct 3957 -71 3977 -74 3996 -82 ct 4015 -89 4032 -99 4046 -109 ct -4046 -167 l 3941 -167 l p ef -4224 0 m 4224 -455 l 4561 -455 l 4561 -378 l 4316 -378 l 4316 -277 l -4544 -277 l 4544 -200 l 4316 -200 l 4316 -77 l 4570 -77 l 4570 0 l -4224 0 l p ef -4649 0 m 4649 -455 l 4738 -455 l 4924 -151 l 4924 -455 l 5010 -455 l -5010 0 l 4918 0 l 4734 -297 l 4734 0 l 4649 0 l p ef -5208 0 m 5208 -378 l 5073 -378 l 5073 -455 l 5434 -455 l 5434 -378 l -5299 -378 l 5299 0 l 5208 0 l p ef -pom -pum -13122 5882 t -456 1 m 356 1 l 317 -103 l 135 -103 l 97 1 l 0 1 l 177 -455 l 274 -455 l -456 1 l p -287 -180 m 224 -348 l 163 -180 l 287 -180 l p ef -504 0 m 504 -455 l 593 -455 l 779 -151 l 779 -455 l 865 -455 l 865 0 l -773 0 l 589 -297 l 589 0 l 504 0 l p ef -960 -455 m 1128 -455 l 1165 -455 1194 -452 1214 -446 ct 1241 -438 1264 -424 1283 -404 ct -1302 -384 1316 -360 1326 -331 ct 1336 -302 1341 -266 1341 -223 ct 1341 -186 1336 -153 1327 -126 ct -1316 -93 1299 -66 1278 -46 ct 1262 -30 1241 -18 1214 -10 ct 1194 -3 1166 0 1133 0 ct -960 0 l 960 -455 l p -1052 -378 m 1052 -77 l 1120 -77 l 1146 -77 1164 -78 1176 -81 ct 1191 -85 1203 -91 1213 -100 ct -1223 -109 1231 -123 1237 -144 ct 1243 -164 1246 -192 1246 -227 ct 1246 -262 1243 -289 1237 -308 ct -1231 -327 1222 -342 1211 -352 ct 1200 -363 1185 -370 1168 -374 ct 1155 -377 1130 -378 1093 -378 ct -1052 -378 l p ef -1886 -167 m 1975 -139 l 1961 -89 1939 -52 1907 -28 ct 1875 -4 1835 8 1786 8 ct -1726 8 1676 -13 1637 -54 ct 1599 -95 1579 -152 1579 -223 ct 1579 -299 1599 -358 1638 -400 ct -1677 -442 1728 -463 1792 -463 ct 1847 -463 1893 -446 1927 -413 ct 1948 -394 1963 -366 1974 -329 ct -1883 -308 l 1878 -331 1866 -350 1849 -364 ct 1832 -377 1812 -384 1787 -384 ct -1753 -384 1726 -372 1705 -348 ct 1684 -323 1674 -284 1674 -230 ct 1674 -173 1684 -132 1705 -107 ct -1725 -83 1752 -71 1785 -71 ct 1810 -71 1831 -78 1848 -94 ct 1866 -109 1878 -134 1886 -167 ct -p ef -2463 1 m 2363 1 l 2324 -103 l 2142 -103 l 2104 1 l 2007 1 l 2184 -455 l -2281 -455 l 2463 1 l p -2294 -180 m 2231 -348 l 2170 -180 l 2294 -180 l p ef -2511 0 m 2511 -455 l 2704 -455 l 2752 -455 2788 -451 2810 -443 ct 2832 -435 2849 -420 2862 -399 ct -2876 -378 2882 -354 2882 -327 ct 2882 -293 2872 -265 2852 -243 ct 2832 -221 2802 -207 2762 -201 ct -2782 -189 2799 -177 2811 -163 ct 2824 -149 2842 -124 2864 -89 ct 2919 0 l 2809 0 l -2743 -99 l 2719 -134 2703 -157 2695 -166 ct 2686 -175 2677 -181 2667 -185 ct -2657 -188 2642 -190 2621 -190 ct 2602 -190 l 2602 0 l 2511 0 l p -2602 -263 m 2670 -263 l 2714 -263 2742 -264 2753 -268 ct 2764 -272 2772 -278 2778 -287 ct -2785 -297 2788 -308 2788 -322 ct 2788 -337 2784 -349 2775 -359 ct 2767 -368 2756 -374 2741 -377 ct -2733 -378 2711 -378 2674 -378 ct 2602 -378 l 2602 -263 l p ef -2968 -455 m 3149 -455 l 3185 -455 3212 -453 3230 -450 ct 3247 -447 3263 -441 3277 -431 ct -3291 -422 3303 -409 3312 -393 ct 3321 -378 3326 -360 3326 -340 ct 3326 -319 3320 -299 3309 -281 ct -3297 -264 3282 -250 3262 -241 ct 3290 -233 3311 -220 3326 -200 ct 3341 -181 3348 -158 3348 -131 ct -3348 -111 3343 -91 3334 -71 ct 3324 -51 3311 -36 3294 -24 ct 3278 -12 3257 -5 3233 -2 ct -3218 -1 3181 0 3122 0 ct 2968 0 l 2968 -455 l p -3059 -379 m 3059 -274 l 3119 -274 l 3155 -274 3177 -274 3186 -275 ct 3202 -277 3214 -283 3223 -292 ct -3232 -301 3237 -312 3237 -327 ct 3237 -341 3233 -353 3225 -361 ct 3217 -370 3206 -376 3190 -377 ct -3181 -378 3155 -379 3112 -379 ct 3059 -379 l p -3059 -198 m 3059 -76 l 3144 -76 l 3177 -76 3198 -77 3207 -79 ct 3221 -82 3232 -88 3241 -97 ct -3249 -107 3253 -120 3253 -136 ct 3253 -150 3250 -161 3243 -171 ct 3237 -180 3227 -187 3215 -191 ct -3202 -196 3175 -198 3133 -198 ct 3059 -198 l p ef -3406 -224 m 3406 -271 3413 -310 3426 -341 ct 3437 -364 3451 -385 3469 -404 ct -3487 -422 3506 -436 3527 -445 ct 3556 -457 3588 -463 3625 -463 ct 3692 -463 3746 -442 3786 -400 ct -3826 -359 3847 -301 3847 -227 ct 3847 -153 3827 -96 3787 -54 ct 3747 -13 3693 8 3627 8 ct -3559 8 3505 -13 3465 -54 ct 3426 -95 3406 -152 3406 -224 ct p -3500 -228 m 3500 -176 3512 -137 3536 -110 ct 3560 -84 3590 -71 3626 -71 ct -3663 -71 3693 -84 3716 -110 ct 3740 -136 3752 -176 3752 -229 ct 3752 -281 3740 -320 3717 -346 ct -3695 -371 3664 -384 3626 -384 ct 3589 -384 3558 -371 3535 -345 ct 3512 -319 3500 -280 3500 -228 ct -p ef -3921 0 m 3921 -455 l 4010 -455 l 4196 -151 l 4196 -455 l 4282 -455 l -4282 0 l 4190 0 l 4006 -297 l 4006 0 l 3921 0 l p ef -pom -pum -13122 6644 t -46 -455 m 214 -455 l 251 -455 280 -452 300 -446 ct 327 -438 350 -424 369 -404 ct -388 -384 402 -360 412 -331 ct 422 -302 427 -266 427 -223 ct 427 -186 422 -153 413 -126 ct -402 -93 385 -66 364 -46 ct 348 -30 327 -18 300 -10 ct 280 -3 252 0 219 0 ct 46 0 l -46 -455 l p -138 -378 m 138 -77 l 206 -77 l 232 -77 250 -78 262 -81 ct 277 -85 289 -91 299 -100 ct -309 -109 317 -123 323 -144 ct 329 -164 332 -192 332 -227 ct 332 -262 329 -289 323 -308 ct -317 -327 308 -342 297 -352 ct 286 -363 271 -370 254 -374 ct 241 -377 216 -378 179 -378 ct -138 -378 l p ef -500 0 m 500 -455 l 592 -455 l 592 0 l 500 0 l p ef -663 -224 m 663 -271 670 -310 683 -341 ct 694 -364 708 -385 726 -404 ct 744 -422 763 -436 784 -445 ct -813 -457 845 -463 882 -463 ct 949 -463 1003 -442 1043 -400 ct 1083 -359 1104 -301 1104 -227 ct -1104 -153 1084 -96 1044 -54 ct 1004 -13 950 8 884 8 ct 816 8 762 -13 722 -54 ct -683 -95 663 -152 663 -224 ct p -757 -228 m 757 -176 769 -137 793 -110 ct 817 -84 847 -71 883 -71 ct 920 -71 950 -84 973 -110 ct -997 -136 1009 -176 1009 -229 ct 1009 -281 997 -320 974 -346 ct 952 -371 921 -384 883 -384 ct -846 -384 815 -371 792 -345 ct 769 -319 757 -280 757 -228 ct p ef -1130 0 m 1285 -237 l 1145 -455 l 1252 -455 l 1343 -309 l 1432 -455 l -1539 -455 l 1397 -234 l 1553 0 l 1442 0 l 1341 -157 l 1240 0 l 1130 0 l -p ef -1597 0 m 1597 -455 l 1689 -455 l 1689 0 l 1597 0 l p ef -1777 -455 m 1945 -455 l 1982 -455 2011 -452 2031 -446 ct 2058 -438 2081 -424 2100 -404 ct -2119 -384 2133 -360 2143 -331 ct 2153 -302 2158 -266 2158 -223 ct 2158 -186 2153 -153 2144 -126 ct -2133 -93 2116 -66 2095 -46 ct 2079 -30 2058 -18 2031 -10 ct 2011 -3 1983 0 1950 0 ct -1777 0 l 1777 -455 l p -1869 -378 m 1869 -77 l 1937 -77 l 1963 -77 1981 -78 1993 -81 ct 2008 -85 2020 -91 2030 -100 ct -2040 -109 2048 -123 2054 -144 ct 2060 -164 2063 -192 2063 -227 ct 2063 -262 2060 -289 2054 -308 ct -2048 -327 2039 -342 2028 -352 ct 2017 -363 2002 -370 1985 -374 ct 1972 -377 1947 -378 1910 -378 ct -1869 -378 l p ef -2235 0 m 2235 -455 l 2572 -455 l 2572 -378 l 2327 -378 l 2327 -277 l -2555 -277 l 2555 -200 l 2327 -200 l 2327 -77 l 2581 -77 l 2581 0 l -2235 0 l p ef -2833 0 m 2833 -455 l 2925 -455 l 2925 0 l 2833 0 l p ef -3015 0 m 3015 -455 l 3104 -455 l 3290 -151 l 3290 -455 l 3376 -455 l -3376 0 l 3284 0 l 3100 -297 l 3100 0 l 3015 0 l p ef -3752 0 m 3752 -378 l 3617 -378 l 3617 -455 l 3978 -455 l 3978 -378 l -3843 -378 l 3843 0 l 3752 0 l p ef -4039 0 m 4039 -455 l 4130 -455 l 4130 -276 l 4310 -276 l 4310 -455 l -4402 -455 l 4402 0 l 4310 0 l 4310 -199 l 4130 -199 l 4130 0 l 4039 0 l -p ef -4495 0 m 4495 -455 l 4832 -455 l 4832 -378 l 4587 -378 l 4587 -277 l -4815 -277 l 4815 -200 l 4587 -200 l 4587 -77 l 4841 -77 l 4841 0 l -4495 0 l p ef -pom -pum -13122 7406 t -258 -167 m 258 -244 l 455 -244 l 455 -62 l 436 -44 408 -27 372 -13 ct -335 1 298 8 261 8 ct 214 8 172 -2 137 -22 ct 101 -42 75 -70 57 -108 ct 39 -145 30 -185 30 -229 ct -30 -276 40 -318 60 -355 ct 80 -392 109 -420 147 -440 ct 176 -455 213 -463 256 -463 ct -313 -463 357 -451 388 -427 ct 420 -403 440 -371 450 -329 ct 358 -312 l 352 -334 340 -352 322 -365 ct -305 -378 283 -384 256 -384 ct 216 -384 184 -371 160 -346 ct 137 -320 125 -283 125 -233 ct -125 -179 137 -138 161 -111 ct 185 -84 216 -71 255 -71 ct 274 -71 294 -74 313 -82 ct -332 -89 349 -99 363 -109 ct 363 -167 l 258 -167 l p ef -951 1 m 851 1 l 812 -103 l 630 -103 l 592 1 l 495 1 l 672 -455 l -769 -455 l 951 1 l p -782 -180 m 719 -348 l 658 -180 l 782 -180 l p ef -976 -148 m 1065 -157 l 1071 -127 1082 -105 1098 -91 ct 1114 -77 1137 -70 1164 -70 ct -1194 -70 1216 -76 1231 -88 ct 1246 -101 1254 -116 1254 -132 ct 1254 -143 1251 -152 1244 -160 ct -1238 -167 1227 -174 1211 -179 ct 1201 -183 1176 -190 1138 -199 ct 1089 -212 1054 -227 1034 -244 ct -1006 -269 992 -300 992 -336 ct 992 -359 999 -381 1012 -401 ct 1025 -421 1044 -437 1069 -447 ct -1094 -458 1123 -463 1158 -463 ct 1215 -463 1258 -450 1287 -425 ct 1316 -399 1331 -365 1333 -323 ct -1241 -323 l 1237 -346 1228 -362 1215 -372 ct 1203 -382 1183 -387 1157 -387 ct -1131 -387 1110 -381 1095 -371 ct 1085 -363 1080 -354 1080 -342 ct 1080 -331 1085 -322 1094 -315 ct -1105 -305 1133 -295 1178 -284 ct 1223 -274 1256 -263 1277 -251 ct 1299 -240 1315 -225 1327 -205 ct -1339 -186 1346 -161 1346 -133 ct 1346 -107 1338 -82 1324 -59 ct 1309 -37 1289 -20 1262 -9 ct -1236 2 1203 8 1164 8 ct 1106 8 1062 -5 1031 -32 ct 1000 -59 982 -97 976 -148 ct -p ef -pom -pum -22948 3796 t -258 -167 m 258 -244 l 455 -244 l 455 -62 l 436 -44 408 -27 372 -13 ct -335 1 298 8 261 8 ct 214 8 172 -2 137 -22 ct 101 -42 75 -70 57 -108 ct 39 -145 30 -185 30 -229 ct -30 -276 40 -318 60 -355 ct 80 -392 109 -420 147 -440 ct 176 -455 213 -463 256 -463 ct -313 -463 357 -451 388 -427 ct 420 -403 440 -371 450 -329 ct 358 -312 l 352 -334 340 -352 322 -365 ct -305 -378 283 -384 256 -384 ct 216 -384 184 -371 160 -346 ct 137 -320 125 -283 125 -233 ct -125 -179 137 -138 161 -111 ct 185 -84 216 -71 255 -71 ct 274 -71 294 -74 313 -82 ct -332 -89 349 -99 363 -109 ct 363 -167 l 258 -167 l p ef -542 0 m 542 -455 l 735 -455 l 783 -455 819 -451 841 -443 ct 863 -435 880 -420 893 -399 ct -907 -378 913 -354 913 -327 ct 913 -293 903 -265 883 -243 ct 863 -221 833 -207 793 -201 ct -813 -189 830 -177 842 -163 ct 855 -149 873 -124 895 -89 ct 950 0 l 840 0 l -774 -99 l 750 -134 734 -157 726 -166 ct 717 -175 708 -181 698 -185 ct 688 -188 673 -190 652 -190 ct -633 -190 l 633 0 l 542 0 l p -633 -263 m 701 -263 l 745 -263 773 -264 784 -268 ct 795 -272 803 -278 809 -287 ct -816 -297 819 -308 819 -322 ct 819 -337 815 -349 806 -359 ct 798 -368 787 -374 772 -377 ct -764 -378 742 -378 705 -378 ct 633 -378 l 633 -263 l p ef -981 -224 m 981 -271 988 -310 1001 -341 ct 1012 -364 1026 -385 1044 -404 ct -1062 -422 1081 -436 1102 -445 ct 1131 -457 1163 -463 1200 -463 ct 1267 -463 1321 -442 1361 -400 ct -1401 -359 1422 -301 1422 -227 ct 1422 -153 1402 -96 1362 -54 ct 1322 -13 1268 8 1202 8 ct -1134 8 1080 -13 1040 -54 ct 1001 -95 981 -152 981 -224 ct p -1075 -228 m 1075 -176 1087 -137 1111 -110 ct 1135 -84 1165 -71 1201 -71 ct -1238 -71 1268 -84 1291 -110 ct 1315 -136 1327 -176 1327 -229 ct 1327 -281 1315 -320 1292 -346 ct -1270 -371 1239 -384 1201 -384 ct 1164 -384 1133 -371 1110 -345 ct 1087 -319 1075 -280 1075 -228 ct -p ef -1559 0 m 1450 -455 l 1544 -455 l 1613 -142 l 1696 -455 l 1805 -455 l -1885 -137 l 1954 -455 l 2047 -455 l 1936 0 l 1839 0 l 1748 -340 l -1658 0 l 1559 0 l p ef -2198 0 m 2198 -378 l 2063 -378 l 2063 -455 l 2424 -455 l 2424 -378 l -2289 -378 l 2289 0 l 2198 0 l p ef -2485 0 m 2485 -455 l 2576 -455 l 2576 -276 l 2756 -276 l 2756 -455 l -2848 -455 l 2848 0 l 2756 0 l 2756 -199 l 2576 -199 l 2576 0 l 2485 0 l -p ef -pom -pum -22948 4558 t -47 0 m 47 -455 l 240 -455 l 288 -455 324 -451 346 -443 ct 368 -435 385 -420 398 -399 ct -412 -378 418 -354 418 -327 ct 418 -293 408 -265 388 -243 ct 368 -221 338 -207 298 -201 ct -318 -189 335 -177 347 -163 ct 360 -149 378 -124 400 -89 ct 455 0 l 345 0 l -279 -99 l 255 -134 239 -157 231 -166 ct 222 -175 213 -181 203 -185 ct 193 -188 178 -190 157 -190 ct -138 -190 l 138 0 l 47 0 l p -138 -263 m 206 -263 l 250 -263 278 -264 289 -268 ct 300 -272 308 -278 314 -287 ct -321 -297 324 -308 324 -322 ct 324 -337 320 -349 311 -359 ct 303 -368 292 -374 277 -377 ct -269 -378 247 -378 210 -378 ct 138 -378 l 138 -263 l p ef -913 1 m 813 1 l 774 -103 l 592 -103 l 554 1 l 457 1 l 634 -455 l -731 -455 l 913 1 l p -744 -180 m 681 -348 l 620 -180 l 744 -180 l p ef -1038 0 m 1038 -378 l 903 -378 l 903 -455 l 1264 -455 l 1264 -378 l -1129 -378 l 1129 0 l 1038 0 l p ef -1299 0 m 1299 -455 l 1636 -455 l 1636 -378 l 1391 -378 l 1391 -277 l -1619 -277 l 1619 -200 l 1391 -200 l 1391 -77 l 1645 -77 l 1645 0 l -1299 0 l p ef -1699 -148 m 1788 -157 l 1794 -127 1805 -105 1821 -91 ct 1837 -77 1860 -70 1887 -70 ct -1917 -70 1939 -76 1954 -88 ct 1969 -101 1977 -116 1977 -132 ct 1977 -143 1974 -152 1967 -160 ct -1961 -167 1950 -174 1934 -179 ct 1924 -183 1899 -190 1861 -199 ct 1812 -212 1777 -227 1757 -244 ct -1729 -269 1715 -300 1715 -336 ct 1715 -359 1722 -381 1735 -401 ct 1748 -421 1767 -437 1792 -447 ct -1817 -458 1846 -463 1881 -463 ct 1938 -463 1981 -450 2010 -425 ct 2039 -399 2054 -365 2056 -323 ct -1964 -323 l 1960 -346 1951 -362 1938 -372 ct 1926 -382 1906 -387 1880 -387 ct -1854 -387 1833 -381 1818 -371 ct 1808 -363 1803 -354 1803 -342 ct 1803 -331 1808 -322 1817 -315 ct -1828 -305 1856 -295 1901 -284 ct 1946 -274 1979 -263 2000 -251 ct 2022 -240 2038 -225 2050 -205 ct -2062 -186 2069 -161 2069 -133 ct 2069 -107 2061 -82 2047 -59 ct 2032 -37 2012 -20 1985 -9 ct -1959 2 1926 8 1887 8 ct 1829 8 1785 -5 1754 -32 ct 1723 -59 1705 -97 1699 -148 ct -p ef -2324 -455 m 2492 -455 l 2529 -455 2558 -452 2578 -446 ct 2605 -438 2628 -424 2647 -404 ct -2666 -384 2680 -360 2690 -331 ct 2700 -302 2705 -266 2705 -223 ct 2705 -186 2700 -153 2691 -126 ct -2680 -93 2663 -66 2642 -46 ct 2626 -30 2605 -18 2578 -10 ct 2558 -3 2530 0 2497 0 ct -2324 0 l 2324 -455 l p -2416 -378 m 2416 -77 l 2484 -77 l 2510 -77 2528 -78 2540 -81 ct 2555 -85 2567 -91 2577 -100 ct -2587 -109 2595 -123 2601 -144 ct 2607 -164 2610 -192 2610 -227 ct 2610 -262 2607 -289 2601 -308 ct -2595 -327 2586 -342 2575 -352 ct 2564 -363 2549 -370 2532 -374 ct 2519 -377 2494 -378 2457 -378 ct -2416 -378 l p ef -2781 -455 m 2872 -455 l 2872 -208 l 2872 -169 2874 -144 2876 -132 ct 2880 -114 2889 -99 2904 -87 ct -2919 -76 2939 -71 2964 -71 ct 2990 -71 3010 -76 3023 -86 ct 3037 -97 3045 -110 3047 -126 ct -3050 -141 3051 -167 3051 -203 ct 3051 -455 l 3143 -455 l 3143 -216 l 3143 -161 3141 -123 3136 -100 ct -3131 -77 3121 -58 3108 -43 ct 3095 -27 3077 -15 3055 -6 ct 3032 3 3003 8 2967 8 ct -2924 8 2891 3 2868 -7 ct 2846 -17 2828 -30 2815 -46 ct 2802 -62 2794 -79 2790 -97 ct -2784 -123 2781 -161 2781 -212 ct 2781 -455 l p ef -3238 0 m 3238 -455 l 3575 -455 l 3575 -378 l 3330 -378 l 3330 -277 l -3558 -277 l 3558 -200 l 3330 -200 l 3330 -77 l 3584 -77 l 3584 0 l -3238 0 l p ef -pom -pum -22948 5320 t -149 0 m 149 -378 l 14 -378 l 14 -455 l 375 -455 l 375 -378 l 240 -378 l -240 0 l 149 0 l p ef -409 -224 m 409 -271 416 -310 429 -341 ct 440 -364 454 -385 472 -404 ct 490 -422 509 -436 530 -445 ct -559 -457 591 -463 628 -463 ct 695 -463 749 -442 789 -400 ct 829 -359 850 -301 850 -227 ct -850 -153 830 -96 790 -54 ct 750 -13 696 8 630 8 ct 562 8 508 -13 468 -54 ct 429 -95 409 -152 409 -224 ct -p -503 -228 m 503 -176 515 -137 539 -110 ct 563 -84 593 -71 629 -71 ct 666 -71 696 -84 719 -110 ct -743 -136 755 -176 755 -229 ct 755 -281 743 -320 720 -346 ct 698 -371 667 -384 629 -384 ct -592 -384 561 -371 538 -345 ct 515 -319 503 -280 503 -228 ct p ef -1093 -455 m 1274 -455 l 1310 -455 1337 -453 1355 -450 ct 1372 -447 1388 -441 1402 -431 ct -1416 -422 1428 -409 1437 -393 ct 1446 -378 1451 -360 1451 -340 ct 1451 -319 1445 -299 1434 -281 ct -1422 -264 1407 -250 1387 -241 ct 1415 -233 1436 -220 1451 -200 ct 1466 -181 1473 -158 1473 -131 ct -1473 -111 1468 -91 1459 -71 ct 1449 -51 1436 -36 1419 -24 ct 1403 -12 1382 -5 1358 -2 ct -1343 -1 1306 0 1247 0 ct 1093 0 l 1093 -455 l p -1184 -379 m 1184 -274 l 1244 -274 l 1280 -274 1302 -274 1311 -275 ct 1327 -277 1339 -283 1348 -292 ct -1357 -301 1362 -312 1362 -327 ct 1362 -341 1358 -353 1350 -361 ct 1342 -370 1331 -376 1315 -377 ct -1306 -378 1280 -379 1237 -379 ct 1184 -379 l p -1184 -198 m 1184 -76 l 1269 -76 l 1302 -76 1323 -77 1332 -79 ct 1346 -82 1357 -88 1366 -97 ct -1374 -107 1378 -120 1378 -136 ct 1378 -150 1375 -161 1368 -171 ct 1362 -180 1352 -187 1340 -191 ct -1327 -196 1300 -198 1258 -198 ct 1184 -198 l p ef -1552 0 m 1552 -451 l 1643 -451 l 1643 -77 l 1872 -77 l 1872 0 l 1552 0 l -p ef -1920 -224 m 1920 -271 1927 -310 1940 -341 ct 1951 -364 1965 -385 1983 -404 ct -2001 -422 2020 -436 2041 -445 ct 2070 -457 2102 -463 2139 -463 ct 2206 -463 2260 -442 2300 -400 ct -2340 -359 2361 -301 2361 -227 ct 2361 -153 2341 -96 2301 -54 ct 2261 -13 2207 8 2141 8 ct -2073 8 2019 -13 1979 -54 ct 1940 -95 1920 -152 1920 -224 ct p -2014 -228 m 2014 -176 2026 -137 2050 -110 ct 2074 -84 2104 -71 2140 -71 ct -2177 -71 2207 -84 2230 -110 ct 2254 -136 2266 -176 2266 -229 ct 2266 -281 2254 -320 2231 -346 ct -2209 -371 2178 -384 2140 -384 ct 2103 -384 2072 -371 2049 -345 ct 2026 -319 2014 -280 2014 -228 ct -p ef -2499 0 m 2390 -455 l 2484 -455 l 2553 -142 l 2636 -455 l 2745 -455 l -2825 -137 l 2894 -455 l 2987 -455 l 2876 0 l 2779 0 l 2688 -340 l -2598 0 l 2499 0 l p ef -3032 0 m 3032 -455 l 3124 -455 l 3124 0 l 3032 0 l p ef -3214 0 m 3214 -455 l 3303 -455 l 3489 -151 l 3489 -455 l 3575 -455 l -3575 0 l 3483 0 l 3299 -297 l 3299 0 l 3214 0 l p ef -3882 -167 m 3882 -244 l 4079 -244 l 4079 -62 l 4060 -44 4032 -27 3996 -13 ct -3959 1 3922 8 3885 8 ct 3838 8 3796 -2 3761 -22 ct 3725 -42 3699 -70 3681 -108 ct -3663 -145 3654 -185 3654 -229 ct 3654 -276 3664 -318 3684 -355 ct 3704 -392 3733 -420 3771 -440 ct -3800 -455 3837 -463 3880 -463 ct 3937 -463 3981 -451 4012 -427 ct 4044 -403 4064 -371 4074 -329 ct -3982 -312 l 3976 -334 3964 -352 3946 -365 ct 3929 -378 3907 -384 3880 -384 ct -3840 -384 3808 -371 3784 -346 ct 3761 -320 3749 -283 3749 -233 ct 3749 -179 3761 -138 3785 -111 ct -3809 -84 3840 -71 3879 -71 ct 3898 -71 3918 -74 3937 -82 ct 3956 -89 3973 -99 3987 -109 ct -3987 -167 l 3882 -167 l p ef -pom -pum -22948 6082 t -456 1 m 356 1 l 317 -103 l 135 -103 l 97 1 l 0 1 l 177 -455 l 274 -455 l -456 1 l p -287 -180 m 224 -348 l 163 -180 l 287 -180 l p ef -715 -167 m 715 -244 l 912 -244 l 912 -62 l 893 -44 865 -27 829 -13 ct -792 1 755 8 718 8 ct 671 8 629 -2 594 -22 ct 558 -42 532 -70 514 -108 ct 496 -145 487 -185 487 -229 ct -487 -276 497 -318 517 -355 ct 537 -392 566 -420 604 -440 ct 633 -455 670 -463 713 -463 ct -770 -463 814 -451 845 -427 ct 877 -403 897 -371 907 -329 ct 815 -312 l 809 -334 797 -352 779 -365 ct -762 -378 740 -384 713 -384 ct 673 -384 641 -371 617 -346 ct 594 -320 582 -283 582 -233 ct -582 -179 594 -138 618 -111 ct 642 -84 673 -71 712 -71 ct 731 -71 751 -74 770 -82 ct -789 -89 806 -99 820 -109 ct 820 -167 l 715 -167 l p ef -999 0 m 999 -455 l 1336 -455 l 1336 -378 l 1091 -378 l 1091 -277 l -1319 -277 l 1319 -200 l 1091 -200 l 1091 -77 l 1345 -77 l 1345 0 l -999 0 l p ef -1423 0 m 1423 -455 l 1512 -455 l 1698 -151 l 1698 -455 l 1784 -455 l -1784 0 l 1692 0 l 1508 -297 l 1508 0 l 1423 0 l p ef -1982 0 m 1982 -378 l 1847 -378 l 1847 -455 l 2208 -455 l 2208 -378 l -2073 -378 l 2073 0 l 1982 0 l p ef -2844 1 m 2744 1 l 2705 -103 l 2523 -103 l 2485 1 l 2388 1 l 2565 -455 l -2662 -455 l 2844 1 l p -2675 -180 m 2612 -348 l 2551 -180 l 2675 -180 l p ef -2879 0 m 2879 -455 l 2968 -455 l 3154 -151 l 3154 -455 l 3240 -455 l -3240 0 l 3148 0 l 2964 -297 l 2964 0 l 2879 0 l p ef -3335 -455 m 3503 -455 l 3540 -455 3569 -452 3589 -446 ct 3616 -438 3639 -424 3658 -404 ct -3677 -384 3691 -360 3701 -331 ct 3711 -302 3716 -266 3716 -223 ct 3716 -186 3711 -153 3702 -126 ct -3691 -93 3674 -66 3653 -46 ct 3637 -30 3616 -18 3589 -10 ct 3569 -3 3541 0 3508 0 ct -3335 0 l 3335 -455 l p -3427 -378 m 3427 -77 l 3495 -77 l 3521 -77 3539 -78 3551 -81 ct 3566 -85 3578 -91 3588 -100 ct -3598 -109 3606 -123 3612 -144 ct 3618 -164 3621 -192 3621 -227 ct 3621 -262 3618 -289 3612 -308 ct -3606 -327 3597 -342 3586 -352 ct 3575 -363 3560 -370 3543 -374 ct 3530 -377 3505 -378 3468 -378 ct -3427 -378 l p ef -pom -pum -22948 6844 t -337 -167 m 426 -139 l 412 -89 390 -52 358 -28 ct 326 -4 286 8 237 8 ct 177 8 127 -13 88 -54 ct -50 -95 30 -152 30 -223 ct 30 -299 50 -358 89 -400 ct 128 -442 179 -463 243 -463 ct -298 -463 344 -446 378 -413 ct 399 -394 414 -366 425 -329 ct 334 -308 l 329 -331 317 -350 300 -364 ct -283 -377 263 -384 238 -384 ct 204 -384 177 -372 156 -348 ct 135 -323 125 -284 125 -230 ct -125 -173 135 -132 156 -107 ct 176 -83 203 -71 236 -71 ct 261 -71 282 -78 299 -94 ct -317 -109 329 -134 337 -167 ct p ef -913 1 m 813 1 l 774 -103 l 592 -103 l 554 1 l 457 1 l 634 -455 l -731 -455 l 913 1 l p -744 -180 m 681 -348 l 620 -180 l 744 -180 l p ef -961 0 m 961 -455 l 1154 -455 l 1202 -455 1238 -451 1260 -443 ct 1282 -435 1299 -420 1312 -399 ct -1326 -378 1332 -354 1332 -327 ct 1332 -293 1322 -265 1302 -243 ct 1282 -221 1252 -207 1212 -201 ct -1232 -189 1249 -177 1261 -163 ct 1274 -149 1292 -124 1314 -89 ct 1369 0 l 1259 0 l -1193 -99 l 1169 -134 1153 -157 1145 -166 ct 1136 -175 1127 -181 1117 -185 ct -1107 -188 1092 -190 1071 -190 ct 1052 -190 l 1052 0 l 961 0 l p -1052 -263 m 1120 -263 l 1164 -263 1192 -264 1203 -268 ct 1214 -272 1222 -278 1228 -287 ct -1235 -297 1238 -308 1238 -322 ct 1238 -337 1234 -349 1225 -359 ct 1217 -368 1206 -374 1191 -377 ct -1183 -378 1161 -378 1124 -378 ct 1052 -378 l 1052 -263 l p ef -1419 -455 m 1600 -455 l 1636 -455 1663 -453 1681 -450 ct 1698 -447 1714 -441 1728 -431 ct -1742 -422 1754 -409 1763 -393 ct 1772 -378 1777 -360 1777 -340 ct 1777 -319 1771 -299 1760 -281 ct -1748 -264 1733 -250 1713 -241 ct 1741 -233 1762 -220 1777 -200 ct 1792 -181 1799 -158 1799 -131 ct -1799 -111 1794 -91 1785 -71 ct 1775 -51 1762 -36 1745 -24 ct 1729 -12 1708 -5 1684 -2 ct -1669 -1 1632 0 1573 0 ct 1419 0 l 1419 -455 l p -1510 -379 m 1510 -274 l 1570 -274 l 1606 -274 1628 -274 1637 -275 ct 1653 -277 1665 -283 1674 -292 ct -1683 -301 1688 -312 1688 -327 ct 1688 -341 1684 -353 1676 -361 ct 1668 -370 1657 -376 1641 -377 ct -1632 -378 1606 -379 1563 -379 ct 1510 -379 l p -1510 -198 m 1510 -76 l 1595 -76 l 1628 -76 1649 -77 1658 -79 ct 1672 -82 1683 -88 1692 -97 ct -1700 -107 1704 -120 1704 -136 ct 1704 -150 1701 -161 1694 -171 ct 1688 -180 1678 -187 1666 -191 ct -1653 -196 1626 -198 1584 -198 ct 1510 -198 l p ef -1857 -224 m 1857 -271 1864 -310 1877 -341 ct 1888 -364 1902 -385 1920 -404 ct -1938 -422 1957 -436 1978 -445 ct 2007 -457 2039 -463 2076 -463 ct 2143 -463 2197 -442 2237 -400 ct -2277 -359 2298 -301 2298 -227 ct 2298 -153 2278 -96 2238 -54 ct 2198 -13 2144 8 2078 8 ct -2010 8 1956 -13 1916 -54 ct 1877 -95 1857 -152 1857 -224 ct p -1951 -228 m 1951 -176 1963 -137 1987 -110 ct 2011 -84 2041 -71 2077 -71 ct -2114 -71 2144 -84 2167 -110 ct 2191 -136 2203 -176 2203 -229 ct 2203 -281 2191 -320 2168 -346 ct -2146 -371 2115 -384 2077 -384 ct 2040 -384 2009 -371 1986 -345 ct 1963 -319 1951 -280 1951 -228 ct -p ef -2371 0 m 2371 -455 l 2460 -455 l 2646 -151 l 2646 -455 l 2732 -455 l -2732 0 l 2640 0 l 2456 -297 l 2456 0 l 2371 0 l p ef -pom -pum -22948 7606 t -46 -455 m 214 -455 l 251 -455 280 -452 300 -446 ct 327 -438 350 -424 369 -404 ct -388 -384 402 -360 412 -331 ct 422 -302 427 -266 427 -223 ct 427 -186 422 -153 413 -126 ct -402 -93 385 -66 364 -46 ct 348 -30 327 -18 300 -10 ct 280 -3 252 0 219 0 ct 46 0 l -46 -455 l p -138 -378 m 138 -77 l 206 -77 l 232 -77 250 -78 262 -81 ct 277 -85 289 -91 299 -100 ct -309 -109 317 -123 323 -144 ct 329 -164 332 -192 332 -227 ct 332 -262 329 -289 323 -308 ct -317 -327 308 -342 297 -352 ct 286 -363 271 -370 254 -374 ct 241 -377 216 -378 179 -378 ct -138 -378 l p ef -500 0 m 500 -455 l 592 -455 l 592 0 l 500 0 l p ef -663 -224 m 663 -271 670 -310 683 -341 ct 694 -364 708 -385 726 -404 ct 744 -422 763 -436 784 -445 ct -813 -457 845 -463 882 -463 ct 949 -463 1003 -442 1043 -400 ct 1083 -359 1104 -301 1104 -227 ct -1104 -153 1084 -96 1044 -54 ct 1004 -13 950 8 884 8 ct 816 8 762 -13 722 -54 ct -683 -95 663 -152 663 -224 ct p -757 -228 m 757 -176 769 -137 793 -110 ct 817 -84 847 -71 883 -71 ct 920 -71 950 -84 973 -110 ct -997 -136 1009 -176 1009 -229 ct 1009 -281 997 -320 974 -346 ct 952 -371 921 -384 883 -384 ct -846 -384 815 -371 792 -345 ct 769 -319 757 -280 757 -228 ct p ef -1130 0 m 1285 -237 l 1145 -455 l 1252 -455 l 1343 -309 l 1432 -455 l -1539 -455 l 1397 -234 l 1553 0 l 1442 0 l 1341 -157 l 1240 0 l 1130 0 l -p ef -1597 0 m 1597 -455 l 1689 -455 l 1689 0 l 1597 0 l p ef -1777 -455 m 1945 -455 l 1982 -455 2011 -452 2031 -446 ct 2058 -438 2081 -424 2100 -404 ct -2119 -384 2133 -360 2143 -331 ct 2153 -302 2158 -266 2158 -223 ct 2158 -186 2153 -153 2144 -126 ct -2133 -93 2116 -66 2095 -46 ct 2079 -30 2058 -18 2031 -10 ct 2011 -3 1983 0 1950 0 ct -1777 0 l 1777 -455 l p -1869 -378 m 1869 -77 l 1937 -77 l 1963 -77 1981 -78 1993 -81 ct 2008 -85 2020 -91 2030 -100 ct -2040 -109 2048 -123 2054 -144 ct 2060 -164 2063 -192 2063 -227 ct 2063 -262 2060 -289 2054 -308 ct -2048 -327 2039 -342 2028 -352 ct 2017 -363 2002 -370 1985 -374 ct 1972 -377 1947 -378 1910 -378 ct -1869 -378 l p ef -2235 0 m 2235 -455 l 2572 -455 l 2572 -378 l 2327 -378 l 2327 -277 l -2555 -277 l 2555 -200 l 2327 -200 l 2327 -77 l 2581 -77 l 2581 0 l -2235 0 l p ef -pom -0.003 0.003 0.003 c 19601 3051 m 19454 7996 l ps -19448 8192 m 19349 7979 l 19559 7985 l 19448 8192 l p ef -pum -18350 6883 t -1.000 0.261 0.058 c 47 -455 m 228 -455 l 264 -455 291 -453 309 -450 ct 326 -447 342 -441 356 -431 ct -370 -422 382 -409 391 -393 ct 400 -378 405 -360 405 -340 ct 405 -319 399 -299 388 -281 ct -376 -264 361 -250 341 -241 ct 369 -233 390 -220 405 -200 ct 420 -181 427 -158 427 -131 ct -427 -111 422 -91 413 -71 ct 403 -51 390 -36 373 -24 ct 357 -12 336 -5 312 -2 ct -297 -1 260 0 201 0 ct 47 0 l 47 -455 l p -138 -379 m 138 -274 l 198 -274 l 234 -274 256 -274 265 -275 ct 281 -277 293 -283 302 -292 ct -311 -301 316 -312 316 -327 ct 316 -341 312 -353 304 -361 ct 296 -370 285 -376 269 -377 ct -260 -378 234 -379 191 -379 ct 138 -379 l p -138 -198 m 138 -76 l 223 -76 l 256 -76 277 -77 286 -79 ct 300 -82 311 -88 320 -97 ct -328 -107 332 -120 332 -136 ct 332 -150 329 -161 322 -171 ct 316 -180 306 -187 294 -191 ct -281 -196 254 -198 212 -198 ct 138 -198 l p ef -503 -455 m 594 -455 l 594 -208 l 594 -169 596 -144 598 -132 ct 602 -114 611 -99 626 -87 ct -641 -76 661 -71 686 -71 ct 712 -71 732 -76 745 -86 ct 759 -97 767 -110 769 -126 ct -772 -141 773 -167 773 -203 ct 773 -455 l 865 -455 l 865 -216 l 865 -161 863 -123 858 -100 ct -853 -77 843 -58 830 -43 ct 817 -27 799 -15 777 -6 ct 754 3 725 8 689 8 ct 646 8 613 3 590 -7 ct -568 -17 550 -30 537 -46 ct 524 -62 516 -79 512 -97 ct 506 -123 503 -161 503 -212 ct -503 -455 l p ef -961 -455 m 1142 -455 l 1178 -455 1205 -453 1223 -450 ct 1240 -447 1256 -441 1270 -431 ct -1284 -422 1296 -409 1305 -393 ct 1314 -378 1319 -360 1319 -340 ct 1319 -319 1313 -299 1302 -281 ct -1290 -264 1275 -250 1255 -241 ct 1283 -233 1304 -220 1319 -200 ct 1334 -181 1341 -158 1341 -131 ct -1341 -111 1336 -91 1327 -71 ct 1317 -51 1304 -36 1287 -24 ct 1271 -12 1250 -5 1226 -2 ct -1211 -1 1174 0 1115 0 ct 961 0 l 961 -455 l p -1052 -379 m 1052 -274 l 1112 -274 l 1148 -274 1170 -274 1179 -275 ct 1195 -277 1207 -283 1216 -292 ct -1225 -301 1230 -312 1230 -327 ct 1230 -341 1226 -353 1218 -361 ct 1210 -370 1199 -376 1183 -377 ct -1174 -378 1148 -379 1105 -379 ct 1052 -379 l p -1052 -198 m 1052 -76 l 1137 -76 l 1170 -76 1191 -77 1200 -79 ct 1214 -82 1225 -88 1234 -97 ct -1242 -107 1246 -120 1246 -136 ct 1246 -150 1243 -161 1236 -171 ct 1230 -180 1220 -187 1208 -191 ct -1195 -196 1168 -198 1126 -198 ct 1052 -198 l p ef -1419 -455 m 1600 -455 l 1636 -455 1663 -453 1681 -450 ct 1698 -447 1714 -441 1728 -431 ct -1742 -422 1754 -409 1763 -393 ct 1772 -378 1777 -360 1777 -340 ct 1777 -319 1771 -299 1760 -281 ct -1748 -264 1733 -250 1713 -241 ct 1741 -233 1762 -220 1777 -200 ct 1792 -181 1799 -158 1799 -131 ct -1799 -111 1794 -91 1785 -71 ct 1775 -51 1762 -36 1745 -24 ct 1729 -12 1708 -5 1684 -2 ct -1669 -1 1632 0 1573 0 ct 1419 0 l 1419 -455 l p -1510 -379 m 1510 -274 l 1570 -274 l 1606 -274 1628 -274 1637 -275 ct 1653 -277 1665 -283 1674 -292 ct -1683 -301 1688 -312 1688 -327 ct 1688 -341 1684 -353 1676 -361 ct 1668 -370 1657 -376 1641 -377 ct -1632 -378 1606 -379 1563 -379 ct 1510 -379 l p -1510 -198 m 1510 -76 l 1595 -76 l 1628 -76 1649 -77 1658 -79 ct 1672 -82 1683 -88 1692 -97 ct -1700 -107 1704 -120 1704 -136 ct 1704 -150 1701 -161 1694 -171 ct 1688 -180 1678 -187 1666 -191 ct -1653 -196 1626 -198 1584 -198 ct 1510 -198 l p ef -1878 0 m 1878 -451 l 1969 -451 l 1969 -77 l 2198 -77 l 2198 0 l 1878 0 l -p ef -2264 0 m 2264 -455 l 2601 -455 l 2601 -378 l 2356 -378 l 2356 -277 l -2584 -277 l 2584 -200 l 2356 -200 l 2356 -77 l 2610 -77 l 2610 0 l -2264 0 l p ef -pom -pum -18350 7645 t -23 -148 m 112 -157 l 118 -127 129 -105 145 -91 ct 161 -77 184 -70 211 -70 ct -241 -70 263 -76 278 -88 ct 293 -101 301 -116 301 -132 ct 301 -143 298 -152 291 -160 ct -285 -167 274 -174 258 -179 ct 248 -183 223 -190 185 -199 ct 136 -212 101 -227 81 -244 ct -53 -269 39 -300 39 -336 ct 39 -359 46 -381 59 -401 ct 72 -421 91 -437 116 -447 ct -141 -458 170 -463 205 -463 ct 262 -463 305 -450 334 -425 ct 363 -399 378 -365 380 -323 ct -288 -323 l 284 -346 275 -362 262 -372 ct 250 -382 230 -387 204 -387 ct 178 -387 157 -381 142 -371 ct -132 -363 127 -354 127 -342 ct 127 -331 132 -322 141 -315 ct 152 -305 180 -295 225 -284 ct -270 -274 303 -263 324 -251 ct 346 -240 362 -225 374 -205 ct 386 -186 393 -161 393 -133 ct -393 -107 385 -82 371 -59 ct 356 -37 336 -20 309 -9 ct 283 2 250 8 211 8 ct 153 8 109 -5 78 -32 ct -47 -59 29 -97 23 -148 ct p ef -466 0 m 466 -455 l 558 -455 l 558 0 l 466 0 l p ef -608 0 m 608 -83 l 847 -378 l 635 -378 l 635 -455 l 967 -455 l 967 -384 l -719 -77 l 977 -77 l 977 0 l 608 0 l p ef -1037 0 m 1037 -455 l 1374 -455 l 1374 -378 l 1129 -378 l 1129 -277 l -1357 -277 l 1357 -200 l 1129 -200 l 1129 -77 l 1383 -77 l 1383 0 l -1037 0 l p ef -pom -1.000 1.000 1.000 c 18998 4385 m 20253 4385 l 20253 5910 l 18998 5910 l -18998 4385 l p -18998 4385 m 18998 4385 l p -20253 5910 m 20253 5910 l p ef -pum -19248 5482 t -0.003 0.003 0.003 c 67 0 m 67 -656 l 154 -656 l 154 -77 l 477 -77 l 477 0 l -67 0 l p ef -pom -1.000 1.000 1.000 c 10188 3674 m 12699 3674 l 12699 5199 l 10188 5199 l -10188 3674 l p -10188 3674 m 10188 3674 l p -12699 5199 m 12699 5199 l p ef -pum -10438 4771 t -0.003 0.003 0.003 c 60 182 m 60 -475 l 134 -475 l 134 -414 l 151 -438 171 -456 193 -468 ct -214 -480 241 -486 272 -486 ct 312 -486 348 -476 379 -455 ct 410 -434 434 -405 450 -366 ct -465 -328 473 -287 473 -242 ct 473 -193 465 -149 447 -110 ct 430 -71 404 -42 371 -21 ct -338 0 303 10 266 10 ct 239 10 215 5 194 -7 ct 172 -18 155 -32 141 -50 ct 141 182 l -60 182 l p -133 -235 m 133 -174 146 -129 171 -100 ct 195 -71 225 -56 261 -56 ct 296 -56 327 -71 353 -101 ct -378 -132 391 -178 391 -242 ct 391 -302 378 -348 354 -378 ct 329 -408 299 -423 264 -423 ct -230 -423 199 -407 173 -375 ct 147 -343 133 -296 133 -235 ct p ef -pom -pum -10950 5000 t -313 -134 m 363 -121 l 353 -80 334 -48 306 -27 ct 279 -5 245 6 205 6 ct 164 6 131 -2 105 -19 ct -80 -36 60 -60 47 -92 ct 33 -123 27 -157 27 -194 ct 27 -234 34 -268 49 -298 ct 64 -327 86 -350 114 -365 ct -142 -380 173 -388 206 -388 ct 244 -388 276 -378 302 -359 ct 328 -340 346 -312 357 -277 ct -307 -265 l 298 -293 285 -313 269 -326 ct 252 -339 231 -345 205 -345 ct 176 -345 151 -338 132 -324 ct -112 -310 98 -291 90 -267 ct 82 -244 78 -219 78 -194 ct 78 -162 83 -133 93 -109 ct -102 -85 117 -67 137 -55 ct 157 -43 178 -37 201 -37 ct 230 -37 253 -45 273 -62 ct -293 -78 306 -102 313 -134 ct p ef -407 -186 m 407 -249 424 -299 458 -334 ct 492 -370 535 -388 589 -388 ct 624 -388 656 -380 684 -363 ct -712 -346 734 -323 749 -293 ct 764 -263 771 -228 771 -190 ct 771 -152 763 -117 748 -87 ct -732 -56 710 -33 681 -18 ct 653 -2 622 6 589 6 ct 553 6 521 -3 493 -20 ct 464 -37 443 -61 429 -91 ct -414 -121 407 -153 407 -186 ct p -459 -185 m 459 -139 471 -103 496 -77 ct 520 -50 551 -37 589 -37 ct 626 -37 658 -50 682 -77 ct -707 -104 719 -142 719 -191 ct 719 -222 714 -249 703 -272 ct 693 -295 677 -313 657 -326 ct -637 -338 614 -345 589 -345 ct 554 -345 523 -332 497 -308 ct 472 -283 459 -242 459 -185 ct -p ef -1060 -45 m 1060 0 l 808 0 l 808 -11 810 -22 814 -32 ct 820 -50 830 -66 844 -83 ct -858 -100 879 -119 906 -141 ct 947 -175 975 -201 989 -221 ct 1004 -241 1011 -260 1011 -277 ct -1011 -296 1005 -312 991 -324 ct 978 -337 961 -343 940 -343 ct 917 -343 899 -337 886 -323 ct -872 -310 865 -291 865 -267 ct 817 -272 l 820 -308 833 -335 854 -354 ct 876 -373 904 -382 941 -382 ct -977 -382 1006 -372 1027 -352 ct 1049 -331 1059 -306 1059 -276 ct 1059 -261 1056 -246 1050 -231 ct -1044 -217 1033 -201 1019 -185 ct 1004 -169 980 -146 947 -118 ct 919 -95 901 -79 893 -70 ct -885 -62 878 -53 873 -45 ct 1060 -45 l p ef -pom -1.000 1.000 1.000 c 10188 5100 m 12699 5100 l 12699 6625 l 10188 6625 l -10188 5100 l p -10188 5100 m 10188 5100 l p -12699 6625 m 12699 6625 l p ef -pum -10438 6197 t -0.003 0.003 0.003 c 60 182 m 60 -475 l 134 -475 l 134 -414 l 151 -438 171 -456 193 -468 ct -214 -480 241 -486 272 -486 ct 312 -486 348 -476 379 -455 ct 410 -434 434 -405 450 -366 ct -465 -328 473 -287 473 -242 ct 473 -193 465 -149 447 -110 ct 430 -71 404 -42 371 -21 ct -338 0 303 10 266 10 ct 239 10 215 5 194 -7 ct 172 -18 155 -32 141 -50 ct 141 182 l -60 182 l p -133 -235 m 133 -174 146 -129 171 -100 ct 195 -71 225 -56 261 -56 ct 296 -56 327 -71 353 -101 ct -378 -132 391 -178 391 -242 ct 391 -302 378 -348 354 -378 ct 329 -408 299 -423 264 -423 ct -230 -423 199 -407 173 -375 ct 147 -343 133 -296 133 -235 ct p ef -pom -pum -10950 6426 t -39 0 m 39 -381 l 182 -381 l 211 -381 234 -377 252 -369 ct 269 -362 283 -350 293 -334 ct -303 -318 308 -301 308 -284 ct 308 -267 304 -252 295 -238 ct 286 -223 273 -212 255 -203 ct -278 -196 296 -184 308 -168 ct 320 -152 327 -133 327 -110 ct 327 -93 323 -76 315 -61 ct -308 -45 298 -34 287 -25 ct 276 -17 262 -11 246 -6 ct 229 -2 208 0 184 0 ct 39 0 l -p -89 -221 m 172 -221 l 194 -221 210 -222 220 -225 ct 233 -229 242 -235 249 -244 ct -255 -253 258 -264 258 -278 ct 258 -290 255 -301 249 -311 ct 243 -321 235 -327 223 -331 ct -212 -334 193 -336 165 -336 ct 89 -336 l 89 -221 l p -89 -45 m 184 -45 l 200 -45 212 -46 218 -47 ct 230 -49 240 -52 248 -57 ct 255 -62 262 -69 267 -78 ct -272 -88 274 -98 274 -110 ct 274 -125 271 -137 263 -148 ct 256 -158 246 -165 233 -170 ct -220 -174 202 -176 177 -176 ct 89 -176 l 89 -45 l p ef -570 -150 m 570 -195 l 732 -195 l 732 -53 l 707 -34 681 -19 655 -9 ct -629 1 602 6 574 6 ct 536 6 502 -2 472 -18 ct 441 -34 418 -57 403 -88 ct 387 -118 379 -152 379 -189 ct -379 -226 387 -261 403 -293 ct 418 -325 440 -349 469 -365 ct 499 -380 532 -388 570 -388 ct -598 -388 622 -384 645 -375 ct 667 -366 684 -353 697 -337 ct 710 -321 719 -301 726 -275 ct -680 -263 l 675 -282 668 -297 659 -308 ct 651 -319 638 -328 623 -335 ct 607 -342 589 -345 570 -345 ct -547 -345 527 -341 510 -334 ct 494 -327 480 -318 470 -307 ct 460 -295 452 -283 446 -269 ct -436 -245 431 -220 431 -192 ct 431 -158 437 -130 449 -107 ct 461 -84 478 -67 500 -56 ct -522 -45 546 -39 571 -39 ct 593 -39 614 -44 635 -52 ct 656 -60 671 -69 682 -79 ct -682 -150 l 570 -150 l p ef -pom -1.000 1.000 1.000 c 6398 13761 m 16241 13761 l 16241 17233 l 6398 17233 l -6398 13761 l p -6398 13761 m 6398 13761 l p -16241 17233 m 16241 17233 l p ef -pum -7417 14858 t -0.003 0.003 0.003 c 71 -1 m 71 -656 l 318 -656 l 362 -656 395 -654 418 -650 ct -450 -645 477 -635 499 -620 ct 521 -604 539 -583 552 -556 ct 565 -529 572 -499 572 -467 ct -572 -411 554 -364 519 -325 ct 483 -286 419 -267 326 -267 ct 158 -267 l 158 -1 l -71 -1 l p -158 -344 m 327 -344 l 383 -344 423 -355 447 -376 ct 470 -397 482 -426 482 -464 ct -482 -491 475 -515 461 -534 ct 448 -554 429 -567 407 -573 ct 392 -577 365 -579 326 -579 ct -158 -579 l 158 -344 l p ef -579 -1 m 831 -657 l 924 -657 l 1193 -1 l 1094 -1 l 1017 -199 l 743 -199 l -671 -1 l 579 -1 l p -768 -270 m 991 -270 l 922 -451 l 901 -507 886 -552 876 -588 ct 867 -545 855 -504 840 -462 ct -768 -270 l p ef -1232 1 m 1232 -656 l 1523 -656 l 1582 -656 1626 -650 1657 -638 ct 1687 -626 1711 -605 1730 -575 ct -1748 -546 1757 -513 1757 -477 ct 1757 -430 1742 -391 1712 -359 ct 1681 -327 1635 -307 1572 -298 ct -1595 -287 1612 -276 1624 -265 ct 1650 -242 1674 -213 1696 -178 ct 1811 1 l 1701 1 l -1614 -136 l 1589 -175 1568 -206 1552 -227 ct 1535 -247 1521 -262 1508 -270 ct -1495 -279 1481 -285 1468 -288 ct 1458 -290 1442 -291 1420 -291 ct 1319 -291 l -1319 1 l 1232 1 l p -1319 -366 m 1506 -366 l 1545 -366 1576 -370 1599 -378 ct 1621 -387 1638 -400 1650 -418 ct -1661 -436 1667 -455 1667 -477 ct 1667 -508 1656 -533 1634 -553 ct 1611 -573 1575 -583 1527 -583 ct -1319 -583 l 1319 -366 l p ef -1824 -1 m 2076 -657 l 2169 -657 l 2438 -1 l 2339 -1 l 2262 -199 l -1988 -199 l 1916 -1 l 1824 -1 l p -2013 -270 m 2236 -270 l 2167 -451 l 2146 -507 2131 -552 2121 -588 ct 2112 -545 2100 -504 2085 -462 ct -2013 -270 l p ef -2506 0 m 2506 -656 l 2637 -656 l 2792 -192 l 2807 -148 2817 -116 2824 -94 ct -2831 -118 2843 -153 2858 -200 ct 3016 -656 l 3132 -656 l 3132 0 l 3049 0 l -3049 -549 l 2858 0 l 2780 0 l 2590 -558 l 2590 0 l 2506 0 l p ef -3278 0 m 3278 -656 l 3752 -656 l 3752 -579 l 3364 -579 l 3364 -378 l -3728 -378 l 3728 -301 l 3364 -301 l 3364 -77 l 3767 -77 l 3767 0 l -3278 0 l p ef -4056 -1 m 4056 -579 l 3840 -579 l 3840 -656 l 4360 -656 l 4360 -579 l -4143 -579 l 4143 -1 l 4056 -1 l p ef -4455 0 m 4455 -656 l 4929 -656 l 4929 -579 l 4541 -579 l 4541 -378 l -4905 -378 l 4905 -301 l 4541 -301 l 4541 -77 l 4944 -77 l 4944 0 l -4455 0 l p ef -5067 1 m 5067 -656 l 5358 -656 l 5417 -656 5461 -650 5492 -638 ct 5522 -626 5546 -605 5565 -575 ct -5583 -546 5592 -513 5592 -477 ct 5592 -430 5577 -391 5547 -359 ct 5516 -327 5470 -307 5407 -298 ct -5430 -287 5447 -276 5459 -265 ct 5485 -242 5509 -213 5531 -178 ct 5646 1 l 5536 1 l -5449 -136 l 5424 -175 5403 -206 5387 -227 ct 5370 -247 5356 -262 5343 -270 ct -5330 -279 5316 -285 5303 -288 ct 5293 -290 5277 -291 5255 -291 ct 5154 -291 l -5154 1 l 5067 1 l p -5154 -366 m 5341 -366 l 5380 -366 5411 -370 5434 -378 ct 5456 -387 5473 -400 5485 -418 ct -5496 -436 5502 -455 5502 -477 ct 5502 -508 5491 -533 5469 -553 ct 5446 -573 5410 -583 5362 -583 ct -5154 -583 l 5154 -366 l p ef -5701 -211 m 5783 -218 l 5787 -185 5796 -158 5810 -137 ct 5824 -116 5846 -99 5876 -86 ct -5906 -73 5940 -67 5977 -67 ct 6010 -67 6039 -72 6065 -82 ct 6090 -91 6109 -105 6121 -122 ct -6134 -139 6140 -158 6140 -178 ct 6140 -199 6134 -217 6122 -232 ct 6110 -248 6090 -261 6063 -271 ct -6045 -278 6006 -288 5946 -303 ct 5886 -317 5844 -331 5819 -344 ct 5788 -360 5765 -381 5749 -405 ct -5734 -429 5726 -457 5726 -487 ct 5726 -520 5736 -551 5754 -580 ct 5773 -608 5801 -630 5837 -645 ct -5873 -660 5913 -668 5957 -668 ct 6006 -668 6049 -660 6086 -644 ct 6123 -628 6152 -605 6172 -575 ct -6192 -544 6203 -510 6204 -471 ct 6121 -465 l 6116 -507 6101 -538 6075 -559 ct -6049 -580 6011 -591 5961 -591 ct 5908 -591 5870 -581 5846 -562 ct 5822 -543 5810 -520 5810 -493 ct -5810 -469 5819 -450 5836 -434 ct 5852 -419 5896 -404 5966 -388 ct 6037 -372 6086 -358 6112 -346 ct -6150 -328 6178 -306 6196 -279 ct 6215 -252 6224 -221 6224 -185 ct 6224 -151 6214 -118 6194 -87 ct -6174 -56 6145 -32 6108 -15 ct 6070 2 6028 11 5981 11 ct 5922 11 5872 2 5832 -15 ct -5792 -32 5760 -58 5737 -93 ct 5714 -128 5702 -167 5701 -211 ct p ef -6572 -320 m 6572 -429 6602 -514 6660 -576 ct 6719 -637 6794 -668 6887 -668 ct -6947 -668 7002 -654 7051 -625 ct 7099 -596 7136 -555 7162 -504 ct 7187 -452 7200 -393 7200 -327 ct -7200 -261 7187 -201 7160 -149 ct 7133 -96 7095 -57 7046 -30 ct 6996 -3 6943 11 6886 11 ct -6824 11 6769 -4 6721 -34 ct 6672 -64 6635 -104 6610 -156 ct 6585 -208 6572 -262 6572 -320 ct -p -6662 -318 m 6662 -239 6683 -177 6726 -132 ct 6768 -86 6822 -63 6886 -63 ct -6951 -63 7005 -86 7047 -132 ct 7089 -178 7111 -243 7111 -328 ct 7111 -381 7102 -428 7083 -468 ct -7065 -508 7039 -538 7004 -560 ct 6969 -582 6930 -593 6887 -593 ct 6826 -593 6773 -572 6728 -530 ct -6684 -488 6662 -417 6662 -318 ct p ef -7318 0 m 7318 -656 l 7761 -656 l 7761 -579 l 7405 -579 l 7405 -375 l -7713 -375 l 7713 -298 l 7405 -298 l 7405 0 l 7318 0 l p ef -pom -pum -7392 15892 t -238 -1 m 238 -579 l 22 -579 l 22 -656 l 542 -656 l 542 -579 l 325 -579 l -325 -1 l 238 -1 l p ef -636 0 m 636 -656 l 723 -656 l 723 -386 l 1064 -386 l 1064 -656 l -1151 -656 l 1151 0 l 1064 0 l 1064 -309 l 723 -309 l 723 0 l 636 0 l -p ef -1301 0 m 1301 -656 l 1775 -656 l 1775 -579 l 1387 -579 l 1387 -378 l -1751 -378 l 1751 -301 l 1387 -301 l 1387 -77 l 1790 -77 l 1790 0 l -1301 0 l p ef -2137 -211 m 2219 -218 l 2223 -185 2232 -158 2246 -137 ct 2260 -116 2282 -99 2312 -86 ct -2342 -73 2376 -67 2413 -67 ct 2446 -67 2475 -72 2501 -82 ct 2526 -91 2545 -105 2557 -122 ct -2570 -139 2576 -158 2576 -178 ct 2576 -199 2570 -217 2558 -232 ct 2546 -248 2526 -261 2499 -271 ct -2481 -278 2442 -288 2382 -303 ct 2322 -317 2280 -331 2255 -344 ct 2224 -360 2201 -381 2185 -405 ct -2170 -429 2162 -457 2162 -487 ct 2162 -520 2172 -551 2190 -580 ct 2209 -608 2237 -630 2273 -645 ct -2309 -660 2349 -668 2393 -668 ct 2442 -668 2485 -660 2522 -644 ct 2559 -628 2588 -605 2608 -575 ct -2628 -544 2639 -510 2640 -471 ct 2557 -465 l 2552 -507 2537 -538 2511 -559 ct -2485 -580 2447 -591 2397 -591 ct 2344 -591 2306 -581 2282 -562 ct 2258 -543 2246 -520 2246 -493 ct -2246 -469 2255 -450 2272 -434 ct 2288 -419 2332 -404 2402 -388 ct 2473 -372 2522 -358 2548 -346 ct -2586 -328 2614 -306 2632 -279 ct 2651 -252 2660 -221 2660 -185 ct 2660 -151 2650 -118 2630 -87 ct -2610 -56 2581 -32 2544 -15 ct 2506 2 2464 11 2417 11 ct 2358 11 2308 2 2268 -15 ct -2228 -32 2196 -58 2173 -93 ct 2150 -128 2138 -167 2137 -211 ct p ef -3210 -656 m 3297 -656 l 3297 -277 l 3297 -211 3290 -159 3275 -120 ct 3260 -81 3233 -50 3194 -25 ct -3155 -1 3104 11 3041 11 ct 2979 11 2929 0 2890 -21 ct 2851 -42 2823 -73 2806 -113 ct -2789 -153 2781 -208 2781 -277 ct 2781 -656 l 2868 -656 l 2868 -278 l 2868 -221 2873 -179 2884 -152 ct -2894 -125 2913 -104 2938 -89 ct 2964 -75 2996 -67 3033 -67 ct 3097 -67 3143 -82 3170 -111 ct -3197 -140 3210 -195 3210 -278 ct 3210 -656 l p ef -3446 1 m 3446 -656 l 3737 -656 l 3796 -656 3840 -650 3871 -638 ct 3901 -626 3925 -605 3944 -575 ct -3962 -546 3971 -513 3971 -477 ct 3971 -430 3956 -391 3926 -359 ct 3895 -327 3849 -307 3786 -298 ct -3809 -287 3826 -276 3838 -265 ct 3864 -242 3888 -213 3910 -178 ct 4025 1 l 3915 1 l -3828 -136 l 3803 -175 3782 -206 3766 -227 ct 3749 -247 3735 -262 3722 -270 ct -3709 -279 3695 -285 3682 -288 ct 3672 -290 3656 -291 3634 -291 ct 3533 -291 l -3533 1 l 3446 1 l p -3533 -366 m 3720 -366 l 3759 -366 3790 -370 3813 -378 ct 3835 -387 3852 -400 3864 -418 ct -3875 -436 3881 -455 3881 -477 ct 3881 -508 3870 -533 3848 -553 ct 3825 -573 3789 -583 3741 -583 ct -3533 -583 l 3533 -366 l p ef -4111 1 m 4111 -656 l 4402 -656 l 4461 -656 4505 -650 4536 -638 ct 4566 -626 4590 -605 4609 -575 ct -4627 -546 4636 -513 4636 -477 ct 4636 -430 4621 -391 4591 -359 ct 4560 -327 4514 -307 4451 -298 ct -4474 -287 4491 -276 4503 -265 ct 4529 -242 4553 -213 4575 -178 ct 4690 1 l 4580 1 l -4493 -136 l 4468 -175 4447 -206 4431 -227 ct 4414 -247 4400 -262 4387 -270 ct -4374 -279 4360 -285 4347 -288 ct 4337 -290 4321 -291 4299 -291 ct 4198 -291 l -4198 1 l 4111 1 l p -4198 -366 m 4385 -366 l 4424 -366 4455 -370 4478 -378 ct 4500 -387 4517 -400 4529 -418 ct -4540 -436 4546 -455 4546 -477 ct 4546 -508 4535 -533 4513 -553 ct 4490 -573 4454 -583 4406 -583 ct -4198 -583 l 4198 -366 l p ef -4747 -320 m 4747 -429 4777 -514 4835 -576 ct 4894 -637 4969 -668 5062 -668 ct -5122 -668 5177 -654 5226 -625 ct 5274 -596 5311 -555 5337 -504 ct 5362 -452 5375 -393 5375 -327 ct -5375 -261 5362 -201 5335 -149 ct 5308 -96 5270 -57 5221 -30 ct 5171 -3 5118 11 5061 11 ct -4999 11 4944 -4 4896 -34 ct 4847 -64 4810 -104 4785 -156 ct 4760 -208 4747 -262 4747 -320 ct -p -4837 -318 m 4837 -239 4858 -177 4901 -132 ct 4943 -86 4997 -63 5061 -63 ct -5126 -63 5180 -86 5222 -132 ct 5264 -178 5286 -243 5286 -328 ct 5286 -381 5277 -428 5258 -468 ct -5240 -508 5214 -538 5179 -560 ct 5144 -582 5105 -593 5062 -593 ct 5001 -593 4948 -572 4903 -530 ct -4859 -488 4837 -417 4837 -318 ct p ef -5797 -257 m 5797 -334 l 6075 -334 l 6075 -91 l 6032 -57 5988 -32 5943 -15 ct -5898 2 5851 11 5803 11 ct 5739 11 5680 -3 5627 -30 ct 5575 -58 5535 -98 5508 -150 ct -5481 -202 5468 -261 5468 -325 ct 5468 -389 5481 -448 5508 -504 ct 5535 -559 5573 -600 5623 -627 ct -5673 -654 5731 -667 5796 -667 ct 5844 -667 5887 -660 5925 -644 ct 5964 -629 5994 -607 6015 -580 ct -6037 -552 6054 -517 6065 -472 ct 5987 -451 l 5977 -484 5965 -511 5950 -530 ct -5935 -549 5915 -564 5887 -576 ct 5860 -587 5830 -593 5797 -593 ct 5757 -593 5723 -587 5694 -575 ct -5665 -563 5642 -547 5624 -527 ct 5606 -508 5592 -486 5582 -462 ct 5566 -422 5557 -378 5557 -330 ct -5557 -272 5567 -223 5588 -184 ct 5608 -144 5637 -115 5676 -96 ct 5714 -77 5755 -67 5798 -67 ct -5836 -67 5873 -75 5908 -89 ct 5944 -103 5971 -119 5990 -135 ct 5990 -257 l 5797 -257 l -p ef -6133 -1 m 6385 -657 l 6478 -657 l 6747 -1 l 6648 -1 l 6571 -199 l -6297 -199 l 6225 -1 l 6133 -1 l p -6322 -270 m 6545 -270 l 6476 -451 l 6455 -507 6440 -552 6430 -588 ct 6421 -545 6409 -504 6394 -462 ct -6322 -270 l p ef -6952 -1 m 6952 -579 l 6736 -579 l 6736 -656 l 7256 -656 l 7256 -579 l -7039 -579 l 7039 -1 l 6952 -1 l p ef -7316 0 m 7316 -656 l 7790 -656 l 7790 -579 l 7402 -579 l 7402 -378 l -7766 -378 l 7766 -301 l 7402 -301 l 7402 -77 l 7805 -77 l 7805 0 l -7316 0 l p ef -pom -pum -9684 16926 t -68 0 m 68 -656 l 199 -656 l 354 -192 l 369 -148 379 -116 386 -94 ct 393 -118 405 -153 420 -200 ct -578 -656 l 694 -656 l 694 0 l 611 0 l 611 -549 l 420 0 l 342 0 l -152 -558 l 152 0 l 68 0 l p ef -810 -320 m 810 -429 840 -514 898 -576 ct 957 -637 1032 -668 1125 -668 ct 1185 -668 1240 -654 1289 -625 ct -1337 -596 1374 -555 1400 -504 ct 1425 -452 1438 -393 1438 -327 ct 1438 -261 1425 -201 1398 -149 ct -1371 -96 1333 -57 1284 -30 ct 1234 -3 1181 11 1124 11 ct 1062 11 1007 -4 959 -34 ct -910 -64 873 -104 848 -156 ct 823 -208 810 -262 810 -320 ct p -900 -318 m 900 -239 921 -177 964 -132 ct 1006 -86 1060 -63 1124 -63 ct 1189 -63 1243 -86 1285 -132 ct -1327 -178 1349 -243 1349 -328 ct 1349 -381 1340 -428 1321 -468 ct 1303 -508 1277 -538 1242 -560 ct -1207 -582 1168 -593 1125 -593 ct 1064 -593 1011 -572 966 -530 ct 922 -488 900 -417 900 -318 ct -p ef -1553 0 m 1553 -656 l 1779 -656 l 1830 -656 1869 -653 1896 -647 ct 1933 -638 1965 -622 1992 -600 ct -2027 -570 2053 -533 2070 -488 ct 2087 -442 2095 -390 2095 -332 ct 2095 -282 2090 -238 2078 -199 ct -2066 -161 2051 -129 2033 -104 ct 2015 -78 1995 -59 1973 -44 ct 1952 -30 1926 -19 1895 -11 ct -1864 -4 1829 0 1790 0 ct 1553 0 l p -1640 -77 m 1780 -77 l 1823 -77 1857 -81 1882 -90 ct 1906 -98 1926 -109 1941 -124 ct -1961 -144 1977 -172 1989 -207 ct 2000 -241 2006 -283 2006 -333 ct 2006 -402 1995 -454 1972 -491 ct -1950 -528 1922 -553 1890 -565 ct 1867 -574 1829 -579 1778 -579 ct 1640 -579 l -1640 -77 l p ef -2219 0 m 2219 -656 l 2693 -656 l 2693 -579 l 2305 -579 l 2305 -378 l -2669 -378 l 2669 -301 l 2305 -301 l 2305 -77 l 2708 -77 l 2708 0 l -2219 0 l p ef -2827 0 m 2827 -656 l 2914 -656 l 2914 -77 l 3237 -77 l 3237 0 l 2827 0 l -p ef -pom -0 20596 t -pom -count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/PU_exercise_6.png b/Content/Figures/PU_exercise_6.png deleted file mode 100644 index 9e750c0ce432ccf5cec08a50c06c54840e142d1d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 33636 zcmce7Wl$VZ6Clnmx>#^o+})kU-Q7L7yTbyDyIXJx!Gc2w?oN;dcL@#&gb+Bs`>L+) z*Hzv9xK~p>({I{d&+MCi{d(gx)Z{VINYLQm;4l>xWVGPm5J7No2nqnix1Q0Y+ugSl zlD(9w6dYW03i`7p@*58Cr6mu6YnUZFeM6|M6|_|0-~#F4;KHGBa8GYt;U{o#KAdoH zXBKd9!nts8gzkminxbz~J2g~vWM5xj1?;OJo(*EobrNnL;r}n&t2Fli;dm4Fzu!F( z!}>0Sc_o3RfQLLUfN>{@Rn3a_DuYdfhWILr{Zkz4&6u~gva<39@lg=S00>{W(f>$c zmoTH{GXVv#k=|I+8G!$j>NP7X%hJ;FHPh$SUhGvK|FtqN?6^E8<@VnqIHY zUgw8i^%&mhbqP`4paMSf8#E?DSzlj&{akz~iX{v}daX)&wcveCa`~^={{>G^PbViQ zb#--Lm56${&|kNf--J){VVsI#6*8e6iDJF_YP=^yb*DhhVgL^FV*J;0e6|(;`yu2| zE#>}6-1VcdW6hhN#a!xSeVR1FI@CiugdM6yoonB2z0tq%zLEWx@vT!S;IpW6opNC7 ze+k}r<$RmOUFsD4ng#8vq&*uXTtBJ=wTU>@h&t82sdyuMgGotAZ!{u~HE;A1ZuK%= zjc=WAsNnl55vN*3|CTq6vfhnvlKT!2>zFxU99AW35kko# z_+}Nmq&B~@CFmWQietQ(t{V^on}J`B2+aH+Kfk_SN?`T$^wibWZEkM*`}@nv%1%#D z)6me^+uL7WUgF~7^78V&exG~QpnP?Zc)h)PEeLy^`T81Z{_3L+gTY>_Q(lwZURz6E zkGA#n^z!oZUi%wgO*mk*0L}1DBUqnR>abnLsAJBAYr(Wx;(#8sM>V+ZZ6I%>P=KV+ zyuIA@-dbwfaQEjc+kQMay3{bc>B}COy3M@)WLQt0OdXG%AI|01&1q^~_tx{k>Xb;6 zaH>t7o^6@!lDYe@Ng69xFlwJxpXytO#=!ZNnXlu&G-iBm9r}MP?B}f9Y*(+0o!iZv z&m5f$Yn;z)=bTg*_!MkcQ_H|~aZ;*VXCBT@9J|r z-tC`%3V#^gsk;Al=Kkl`pUo$Wo~Oq+9Ac(g;y1hDt(4_u;9$t)3U3I|UBS@n?fjo> z1vt40CviBq&}2m!DINbG7hhsaY{uFsR<=y3S;I|nePd6HUHu*e$J3OB$0PJSGYMFY z+gW27zGr)-`r*9m!Tr*2)K5ZtO)(frs}dg^{K5JAt#2QB)sVkkAUEPQXYfH{F=|57 z+>3xom)fTB!|yMf%a(R$f8j+s-0F=Vf_0Azg?*TRKZrIpHThpt$$6C8SXyd!TL3LB z!Ip0T{y$g$UjQf#bf{FxonWQA;KgkF%B@p}<8~6%!4vIx9}i6MU>3Xo%YI)9N@Z{a7fuw)QK!8A5^dQgvs3SudYQT7X*{c7q|f<^;qYK0ouF{hac|1`7}9&bxP)XI3>qPjH&)KRLH8 zXW>F+o6Ew#XqWtR=36I`)A{o~#9gdQ5%2rB$aMNZe>AGMTDWf1sLirQ8MA#wULFEKc7jsg^9lS7#mmuq$)P58$EF%MFH(A zd;v_MI*419wKaxPhgV$^Cx)~#9MBl&K1RIqQ|_yc?JC?4^K$euV;{ftfRaIMW4hl} zw~k_|k%W}DkGla2x4fvgi|svE^;Wj^=jLd@6gy%WSX~un?Ww4*ZC4}Nx65ylvrD3% zlrrU4#~KC@PH6FKqfJ*`cmpjym3^;t_*ggpFjaK-Nge7vk~3)-Q{srC3) zH<+^NQB+MMqwVl4{OxMKhQ$_~Z4pGE_3@Y)esMG{LT;;5(=w<@q3oZJFLIX`<%!Vp zyE|Xl*g{XL02oU#a40(lk8e)jCybPen&4K?WjD$1JBaNZcDiRD^*JlO+fgw}0}9}* z8^noRJNWSqLMJ0z&aubvE!cIzR+Ll<&|y871L8Z~eIJovI?G*OuiuH+Eq^b67I3F$ zT)st+6Mshnua0-z@pG@JuK11@+V5*Be@CG*p)1(go(b*oo-81ofJT~W$ z;9pD6bh3N&P|y9xW$_2X09%XY@?|H0R8ODhkf~8ljv^VypUlh?l}#-W1gGrq@dq^+ zsQJ(nr37Gq29f_}`jM|zHQ`-_13d|1mQn{$w_MnLl>b`Jn7;I$%ib_HB*r)A5j@cW zE(l55mn>XeEoLZQ$x{EB%Fy8+_2ckLX1I3UneQ-w1k%r8TCU2|%fq7FC`;mHhrKBB zaMJTDnz2JMcK(nqS`2AH>xRHIfY9v7&Rpx=6?oqfO6$3_E-WAyTEPDIQ?IV^Csby$ zrdXS2kVGX|%%y89#m8;va^36BZ$H=v4haW(qv17 zp-=8oGDaEbSkUD@?)c;0^6&nD*3!LWK3;XF+mKDHFruL9;`cbwVwGT|Z^i4+qTH$9 zHKwSyqc&2onkPdJdf#oYa@3|cU9;4&d9<=UQ?+1?n_f?4DT+Yk?509y^y>o2OB>ui zPnuWF{fy|5g}RN{%Fsa@DxPDv@@)aifUlhI9u(S+ia1*@LlWZ$B^+FliHvUG!f|G@b>L5UOe{=r(ZkMR;LeIcK#(;g*+B zCj;|t9VhfT*!aY~}kh_I34*%o?$s>ubnc zCjEv2PqHEb3tmN=aM&2$3Nduh5<07FkSQhP{3Mhcd^ zF=Eu&QvJ`XNI$25;9)6W#<8xUDpB+krc;AF%eXQuzqj?QUoXeUiGVSYjk!FeM(H*i zFPIU$wdY}Kke$8n@ZK>T^epp_UVeT3+tctr!Atv`Hw%^vRW2v^WtcN^ zKo>yWs{A8}-wDdsyv+BjY*SgwW`v+JYV`ib1>CYDp%j<1;;QqX^VMlpGMS%Gagh!U z^SOb|x=$RxT@6+?{Mg~uvNzu>*YR?YTvjR~Iwn{(MF489gpmS{taVHDs&#)V1Lnmu zbv~(8cSsdtm3LQvQa$ZOqm@zCMif5!#4Lbw=3cvTHsLmGUUmM-j1Amd65%rW_l~d@ zf)e-fi)AXE1mv4&0bO*M73HCkuAluO+Xhr4TJeRsk>3_m*TfGMLwr)Tim?FyM9z}N@UW4if|c=d=p3FGb#5x6ja5`fdi~3%;>yVZNj>Y zglDmu;_E_t*{8N(=`R%ba0hcE1NlVi6njNm?x*Ymt zxP#kqdoi^XWoJYu;NB>!$9DL#lTe1>r`%G~LDF(?g2wRMgI$pQamH*asH?P-Emk`c zUrhuaRv?WuHT4QE1a67-@k9TjIY|2tDahlLU53(n+^v2*E0@MCD`Sx&f@l!%dP?{ZWD8+fyf|mx`%FR!w1nWo~ zDsW`%AKQ`;Oj2+^uWLr9CCwvlvDPy7KoTgr7F^dK_h!8G_aPH~py4GmY1r6HTQ-bVO)&40gKjuO5hlncUK z9hd!D5pTvq4Sp*9nxvDm=~kJk1A^4@)$Amq*tH2aI4-`q(guE|C3Be|K;T42TjTqhO zuAlk)Znj~r(~4_tde{(Zdf70RNPsO2bJO9BU2of{L1p!rV!yz{b#ul{bOihJ`RVb> zh+cG1S|m(FYpxjD`VNkSst|_DqpMbLZH3*uvtP915whkvr`Vcdyn*@AnK;H+?;phR zAo^`;$S##p-xWK5lhV<-7SS8lWUIVIHlL`A<%+ckJfwJ);>lbRt`vQrpsu{jY43fH zh26#hU*Biw`90Q#TopwDr6vdWIJ*-qO$T^Mwn-vDJ}x4s(g5OP*<&|ma|BQ%lVwXq z5&QXS;xKm>5sijo&@=;f2FCksMcFxZm%C)qYYc2vepl=oog=Iy`lOL_-)~MxB$J5u zDa$&-aXqJ>^dw~%^V*FXb*`t8w_ftV&`Sp$*MeVIQ|yr6Y2*E&A6t}sS4{nmPQp#e zL+x+LW$uw(7lmm@u!BgFI&?2ZBS96cnBKC|VO z3$e};GfrZPpz|Rycy^lnemf*cUuMcx7oYmjSws>KG7VF6jM=mB|H2Z5NrdliksAaD zzF(RQVg7>Usz#b`M0jplvJL|Csz-5fKz=F_Xn=hligt6}k<-*b`0@G%FBMp_N&s8Q z0-^)Za9hinwA}OX2j1RzeK>Hp(Q5hC0b42{&L^A#!pR|o&7wC)@8)bHj?|M=Gausy zjS6O9Dx6UZ*KH&%XjmE9NbmluC9IhgEJ+pe0zEmgulcJhT%x=9E~97i{L{J*g@;Wd z=yuD3nYd{AsFh{M@n&(R<#-lBjM1f7B!lIBcQd;`NzpQj#3=v*YZ;gEc&2#l`=}xU zl!e8c1>KZvO>Nh$dj_o!-_`tRuPgpk)rvmbgTt0(TiNpCY?|6yxlPM$Iiy8>MFR|B z_*UO)wBTu=C+0V1o42C8AJns5Y2vUfmLlD5z#xcYJz~qYr}fcV`*F^3GbG2TS~n%T zLhB0;hv_{@{Ig5zoNqabio(_R3rzc zgWgb^KZ$9Vyvnf8P@|8BcOxHpjGi3QG+o-{{>HF@Sy|y&|KEThnBAbeOq6KH_3|&(SZxpZAtWyLk3LgezIJv;Zf;s5 ze{d&s+@`gKzztB{T&-H2m8)DX)nk0Vo~rnKB2G}PT4@qppHwqaJ1SEvIm7B9N|Z@r z5pl_%^@3k1=KuaSnwjE5ME8Saf{~tSiieB?RuV_JPn>K<44G^!Mi;h+hbsfl??HQt zUQpQBKC)h^qDjdJ5zZabkCd?L1aHJwcF&tRNvxtk2y3d<+p4LIxcm$6pCTOl5ltsU zP6(jf^d{3X8FY^A=+e?9l{_gxcqjO`!1JH#4j!KSoQh>O2;D{)g?A!K3M?zxr^K$U zGG_RbfW?Xgf6dVUXWn@~23T!Dqph@z8!`+8YxI;%VBT^u9TBepx&RS%LVPs%sA;W! z?L^dOgJORBE-82q8pS!tH-oNQ>^%t-fJb~x-3(47!m=5OzGMEkcHW9w$1`df3O^bl zE4{gBke!RzrvBXM#QHHemju&<6?Anuk1ZTUsvRr9o3Y4R!qcH%*s69YXtDK$o>nFtF8=RmwrmzhnlauX zpV~V6`7_bMtK~Q4x1fQEq>kTSXaA*WT_Q<9yR-rDzoA6@Ta6y=Y2)}SaQ;98yM(I20_A*rV<|Iioc{N zQ<%QM;QP2BAf@vt{r)R4gf%&U4=tuu#7@WBMp9bgrzqdfwiZ}MlRs*t3p9A`pQitp z)w6m=iyds9);e8wXga9siK`F)qhu(sYU+v~3;g`0p+AN(UbU=EiH}Wn7NRp=zDN4s z5vT)NyCQ?oZ}o}h0<1vHl*H&L;#}-c>BK{v;9fDA!gV#S$J^m;5W}WS;yt>@UXJv) zw+U%NCHce z(4C2Y94JU++d^IG1MQ+rMuVwgSi>yLOu;fP=URkQb0nNAc zw`r5}x*IlMo4GL=|0yi;`*(j*H}?|Z7vqDmrr0mJ1j&9hhd|^Z==IrzhX5G&M)cRP zWplZCzR@S;;pKSauayWHl9B*tlj`(c37=HVj{tw>h^UF|_zI#wL}Bc0Wb+MSw}#SC z!0x7bDPP76mp$PrWA>L6_4omZ3d}?k7eQa$Zt=F5`tP=214+`#$~Rha^Ksl19Dxkn z`vl-!@tpFh;XktNHgO%{9HCt$#?Qy)(mIOB9y`lDwu?Z+_HsNCmCk z0>wfVZ*aoy-j`|wHRCXFtEsFmf2tyIoxZR~4@s~z^`3A}gZfco0?gpDM+(NiK06e10o_xtC`-uuJ|T*5 zSYtgcYJXZg#QHS-QG6xzJPd-f!`AFewRB ztYZaC3_lwbW5NCjDW)Aq#WSdrN}4Xa=KDD61G;Q`25&0z0>7Fhz>CYM%8DJr={v{eJb@d%D z<{1kdQZgK`cvfSY; z!hrr|8=pL#<=vV)7?ry^$DQ__ueLTM6(%SJb6)h30;oiT96&$SJC-S(gTV#yV*#=B z9e=1$x?)T_NmM=LAjLa0rzG)A2blU-MrVlzekut7qVMms*=r1*Y$Vh#L ztcr(*oP`d9-WkM7#i%lZTe>2+wTco*dbtQ7?&w^3$X+yiJ8(=Qxnyu1UBAZ*C(plR zer%4DT^=i}Kq_%=LQn=tMPcOffyk@us!1hNkqhFyDy*#VLXb${5=iL&WE6TGDjxFs z{^6z+SIhWv&+V%fzXd2^erSBwo>UCXi{2YR4ptP>9Y)4MPQZ=C-130XE;hq*nZfR1 zbV5z_xR6xAPp(eDw=iA-fMZWpR|7{O{0^+5W^DLDheb*)%T{XO%&ou?Kceqm;-;wl>@Fp2vzwQb={FPHchH=;rq+n!S>Tpkt+Cd{Da$&~= zi(d>P7$Gy%xK*-%idI%Ue0CU z=RC679hrMZ#?MfLOj_IVUTlS!D7^OzieAKA0a&OBx4v{^z_juRsn==S!&ap4?APz9 zt@f=t7?b%%>d=KJRAC5WnS>JK-d`9Qv2LRWlq!_VEF7UQuBn&=JFM4e&-`+!oeI0% z_83qDr86p)4_N>D?^0K8Mf~$jtOEujIe+m&b z;?DpN4BGruXum|$XGXqJ5d4S|wQ1qrLAV1hH9R2gh??z*Tl6v0X7|$Fcq}3_&?lQw zq3a-?w|TK_o4qrS5Ld3ck3&skZND5L_8AcIBgZxx)Tvdnf)jbg@$*~vTHGL=Pjq9th+**)PyQYP#mgyZ!h)KnBw=< z^8kA4K5xGg)iw7t(tMN8vN7~bp(gq5i<5K=taP}Fwd74vEYGMRrWTtmQ}~IkcC_Hz z!BIL(si~SGB{;|q_7P*XCImlkFFrPDX>jgT9d@qddOfFwoM(KzkjjPY`7`R2WH}u1 zkIM9+Co{d*Gi~Q5zPdXWuAE8}6D=7tu#Dp+bbfQX$Q$Y7hVs3tY@1{w;+!It=xG`E zBA5Ag)Nw5h>Hsa+rfAm=ki|B(=&aELPxvrtea(BbM#fXQWL2C)2_|~se8kc1=Hayo zRm!CX-zwJ+jNOUW{KcqKk&)Z88q{`WNOeZabKRhDz9S5Z{~1pT}FqsFtMR z^_dE(m?nqvdi)4}-3srx$zkeA8)=V=ao9t8pg<$gy?^LMjGXDqbadKe0j-SMTIV;h zOnRWihn(8SbG&O_IT%^d4@Cr4nO02@IQyk*s=p@rJ@$@b+s)}rMqU*rxT87pa~Xxg z7@o=GQmudFsu4*p=Ek5Iu|^cJNm2uqVehR)onf)-!MlN&d8SLM!julIVhy_GpBk_M zB&%~O($HT%0-c9Y`{uO&nj3rsZ+SotjJOyf4Bi!*!q>1 z0<3a$w$kM*X+p7pyD(SS6BTvH-jrxZ{e@B_cP1j)n-(m0yAccGs+*B47moRC6`1I_ zwZ8T@PwyFCiqy`)Xk(4TC|)W~VOl5VcA_fY zxAx#l%a$}#y}z=d&qysn4a=#tCF99wNtOp>EY~G$SZGITv05{)DDGYUk=P^9c2+yU zRUjKMNAs0PEhLYcbdD)8A`Zg>4*p%s8vK!fz6P!AQ_FpNU z6B5*6rJvirMCt!o+blo4s>`q}O%cj* zefN$YSemqvD#w>bv>^hp=c0n%3pY_x|3M35vJIB!tNT(nJbq1+f;m70VlbbOg{|>i zw?a=2at>J6$oM`6{JA|qFybAB7iLnznw|-DDTITAoS%!J_Mj$vabnTnLxv+f#yWEF z;%Lo{VEHzubllZNSk)01tnFFfzrlt2kgc2DIF*fgPIOD?ikzlpE|A>?qlv`2*NIB;lZBFW3u(@T|KQq!2Cm zA1O1|*WHn?2VG|$&9S2-ZsqwzUe_$H$6nVcDKTD#zdrwJ49hxbqh)7U#U*YiPO4w+ z?}kZcO&qhyqw3y7gbNZ)S%5<(CGc}z3EYihF3jV`UUfax(p+u#JRq<(^XFSXiI>NR z&}adPr|Ti}3{%Q7%=@U_a#^}z_V0q8zvqy_eOxQXrljSrMB>ygU`L{`-wAC_++Ow+ z+j`P4d@qa9&8V-us|UD;K=)AxOJNtA%-l>)J~D*Ws+(US@Ia}HQ_L~L4rne3cqLSv z==t&opSW7V2j7esknCA5;^*NtDaZCv*@ietNNzGX4tG?94I*Pm8bw8FDT9U^>3S|S z+e|ln54drv(0Sc-GC8#S`ODuKhNKzq$?KRYW=xzrWEL+9bY!Z_sr6sEHp0+caVvp> zHU=O6$iqPK(#*1j>_QtsEr}}A(@I($rb^Q?$F7cNAS_}X^e-yTPOLP8xNoV3mC(4% zsxVa z#Y>0DfJ8K&rR)aHCx`!{5($dU25D0bH+KDboWhoPUNtnK)8TL`u*AvV9^K^UT^9p;dDIw{|leX4{2oP+4JYcULMX-A5>I(ufg zkKL5&DO3Ovy0bFOZCU`KFF!tVe=;Vu5{8C%@_+2$Ek37$SWN?gQbs8QJJ!*lU?qdJ zN;;0FOOI$_FcSFDh=;lgT!2m}3jj6`2wY1Jk46wxh-`QihO~5b^?VL%bpd)f0xUya z{g4DQ;33awwRvdZ9d}gn#EJCjc@GljDPWp454NQ6TB;r&EfR6s`WD0Gskj}54yV`x5!u*4q8WS!xWMUt7Owd#1Tc(u#$xmfaJV+i#;8dm9xTt6~Cc?w+O1?KJ!kH5Slxvvyz9imqQuyxO;_(^7V=uX-YH$ zY&Qtk_@P+_CKZYf+3{hM#O9&^uOz3mw`0Y9Z)&57Zy(xdCY@fPaCC7sbuY2U=Tp>1 zoG-1!$37Y`0-wSmgWp&9NA~hfynL+BY-Szx^Pu9TSIS4q9Ed*EI{&xN`ONTiEc^?~ zDTaZQuxH0@sY4_8OnUt@Ze;A_{9=%54wiPjU4R>@8O}(}%ceTc+i1ptH?Weuc0i7x zU6gDHl?Om7HlgD;9TRt*&8*62l!UuN!7uWWBPSYHv~v?tnnVW%Ypn*x0k%SwU>WhC zOQ2;i5p{gQ1QJ->8;5$fx7y){Gp>W;=LsS%1wj5oRu$63s8#9E%s&7)2q13Jp%xe; zEk-E{?WcF1<>QlTcxE<1VzJ4#Dm0QQ1O){0!dDHzTjUeeLRu^8h2-AVTD9|Ba@h{f zSwL#sDB?h*J;oxl0}J33>@AV4A3sRa&4Xf%dwWbNDKJfwVNNG{->)57CR4 zhd`RsxQP28$`@zO#|-Z(@)=7dE!~FHEZ!z3yJ#l#Da2-cJQ^hOfrJG*WbWFmVL|2$ zqz-U7esp}e;E_6^}jY=_M{KBB0VCrzvUO(U*BJl z%+#f(X5$pNnNY!B5EDhE(a%uMDMTWRF<2A$7cn)X8JM65kpU#43#WEBRqW*IYS(oW z)f%rO?1j7gMFmbH02g~uDlMXnWU?*oM0voGt+1TqBG(=Fg`1`LBc_#8;#u!{O}3EI zUN9})oE+hyBw8rxePs?j7&ktaaja??=z_s&oqN1Qr}d38Czl?Kg@cC`Lt69C&){+O zori++j-0hqSdq>Tc)r2kzU}ys=YmOlWax)2E|+>p;WBA}r3pvCV*b1^jd&ZB89w@4 zM{7C;Yl{V7w031)z!UPO#lMp4Z>r-j*?18UTUoHBEKsUq{0es3y{j@YmpiA$C4=Kg~X%qdWTsCEkOCJTfqF zf`oI5w&+zuM>qMA7A9_&XogYFhzwNgwatIg^K|%nuy{@@d~WuI3UpwF{sVjD2PYmQ zJnyNO`kB*{ODK$V6&fWo?0nj~gja+3Wzal6D|!Z;BVnqzp{hPVc5o^=QTf-ZWnq$ARUAw*3v6 zT(KUB<1V0vY52`(>7W3;W#!;++(mo^dnGjYssWf+^Z7qKYbZixUJJz`GLfS(7N0~5 z;ZpuWgCml7L4@$G|FTQ}r~=cn%@8ZVH|(@1v@odZ5im^Te~AU&}M~Z{LLnH2mLGPR1I75 zIncx=81Ls&21_n3AgZS+D2q7tPgZU+sP+`cYFo&?m!y?XStH0r-q=g`N z4^2Bg^dS#Lu#8cXZa+C7K^J!T!9H1~UK!R3ckUZ@)XW4^c|UYOT4v_%;w*@Y<;ulR z?Wn>-KU~5m1Cu~^JHxs}{JJ=GQ(*vf5>nHyzuxF$?ZkGo4}dd&N1X4GR#6kJ{y~8-$HW$n zB!|=#I}Y*zjxk$U)f9ITq^IcKgEB#{D>^px^#!M-Ee%*6eAw70+fi)_o%~rj*F!o0 z4`xncFn=`AL$qRT*zd=t$+}2cNr<1Dix**uH&v3Gg|tTKWOR-YYPL!3-kpizK{MJg zPtIX8T8sYStOLoFiZwx%G%T%aZi7#yK8D=hI_D)x@b&!1v<$-j95MB9Nr6MHss%UX z90+l49_aE3WVwvSEBJXX_!cAm>C`eyZ2SAEsA-sS$ciAHRS!JyjGPYIsBWKb<7|DH zQ>i=}G@>tyNlCj2H%k42dGA-i@Yz5EQn+m!z@V46);Z&jz8kK}v#~+s+H{p9(A?77 zp#~3(7z1Z(8H(o49`m(aLosfcBMgv5d-2r?d7Q_oc~Wntt@3S592J9SZCI0P@7xML zHZ+>yJ^uLWr5Y7ZBKK+RiEAlPVZwr=rvY@wMop$*U6&5cli#ccl!=LRn4vad z*?h9?hWY16CTE&@Oyb?ty;rpn?p_Q7wTd7<3m_LgcsO&t8Q}3rK{s^4Y{FJ|-!Ka_ zosn(bjxr~%PMD(u7zlBceTqOQ&KLsW;UM^+i*!cDOfR*L$^~^?|E3_mqAL*WxyEW- z*&a$G%>;e>TTFSqP>F!OP>T4N39_h_H>|Ys1$~cViFtb979CSBv~xOI&j#(|BAgD3 zEQS#A@gP2pQ_cNTkTJF3S6;2)62joZ0k`MjL|-tG$R`QM|C+JJCGnONco10Sf52W@ z#m-H-K~Km3UESHB5>A~nyRw9^f* zm6Fz&itLd8J6a)v=888Ek;UY~KnepDLrWWn?$fVi>F$ku!m@veyev}!O5H;v26i6Y zP2;-6ly3+)z{BTxxj7&q?~ z@A-k3I8T*KQw`l)+<+=psoD>(-w{lYYx!)T*jA?{{)wuj{^F7RFR67NmloO|cx}wI zyB%b_GgvN57Gg>UxdyDNp1CZ|j2~!crqoQ{Yj21I!)DH$oZY#Hv@;M9(Z@c|FPq*& zC0mMBvCya~7@4fX41S|o4G&y6;7|+g+~!&MCX%eRvd$iuWs(v6s)UER+semV{E9^I zCnfnK07?i*mWSG?|PvsvkcBD+kOl85n9oCtC~KdEBGgPgZK=3qDf zyLNKcGxt(W@W6?DFB%F}$cVG@*v(PHL5?RgHB5JAZt*TRy^Vq5YGF{JnbZ-zM)?iAisQ6aD%wh zwVfTXnGTi4|NJKx{V>Jx5D9nf+p>2be&V7|Ey3eEh&HBgM;btO9W5vYOxx$Gw(_{^ zd>-himVsd`Ts%Hy)Fy4}aaT+Gpuc@}AfD#d| zV#L>RBp!X>QU<(x?(E>GX0-kcfg)RH3)fyO0uambD6S0WjnHbOgwQfHqMHvwrm+f zTTB?82UCW8tXo~FLn*?T(8pi$l>dxC)JbA=ydd!r&Ea($O0#z|m#FBWA1H%qX4u)& zzc6_~2j63ne1`T*dk+n<4Mv;xDr)hN2^%}d-!`7+k`WjEMgL}}GK@DE1Nz7}I#M4< z37J1fl=-};%8?h7H=Im&o1+%Wr9v4gGKz_&9Z(P!XF=Gk`ZI;#X{sdrD11gL_OP?%y^5P zj=B*}O%e=-#{2`+9n~q_c3JD3SXrH&e)=bM=WvD!6FvX+ZVo)NHHj!CrJm7P%mFo% z73hx;M%mD~2j5_BsQ15FMJ+L2>AsQ>tOCs&{smQF5ks<470)s{GK(fFmKqJIvmvnI zw&&fy1do?Z=4nd;(gXHap&;5l#yO&0YUp@P8I6nH79tdN3pTs8PWw5=yf$rb%W?l~XImK)%B1Tl)>0AnB~uGh zn@yqyOzgs_O|Eyb?g_~TzWKAk>ZyQf9Dby{LmGtd?^o!~^oN!%J2BHn{*knTZ|_0B zc?%IBJJ)2mGv1ginUA06b?3wsQI{J0-NQG+v2QpZ_!y9GmXBp9-VYg0+9?BIPW0w9 z_d$CV52*L#V+NM9bi&GzhMZiJ#u}(XK(C5J*#Losh>5Zyik6n+%Imr1ENs> z=?KtQNwlRol&>igxAD1c;e_zFAnILZK%q`l(ah+3DzMdu65fI+Io&*8@?-ak$$QFN z@Nn4sTRzBF2FsTLVM7MnLUDxnWKQ$`nx{p{Wa-pknP(d7ETIe|aJPohk@b`Z1iwo& zX$*WlkC+6TWn1z9T+Y#%7EIKyFCTwMUxEIbEHMnH20AXxaVHxgMuu~iq zZ=WJ4!6k%RFk$4>YNl6F_uB`s3W62MjP>_VXmX^(ttV1>EC7PcY>4f#-zg7MSlTW*S| zV0rbu%v}nTExMxyrlq?&mk)uC(?G}0yS@ZR zCfw?ewU@-%MTJNKwqDa_@u)Vt_qYg9$|i#>f-I1-r;zyP+Uq$mICru&Ky9T~&*Rrr z)#ZWH)Ge}A?HB=e7i(IYoDvL4ok;2}!xf4RZV`p%`jgA#!z;mpMb%aot&hcDS{Kmr zxxk^nxP}^6UJ#O&6le|kY!>(_ohGb05DbAd89T83PJ`go`hhg_vVCq`r*+`IW? z6Ks`HTVCTX4pusi85_o|i;mWvZ9$?|2-CF;P_CTB?dj0n#AHo$Ng1l)&)uwr#N=S; zD?6RFZoH6fMR&jLh&%H$F&>09_jdP(IeylVTzREL8b@>*3$u^_uH$bU{!4WPD_C_^ zE?&-`ug9rQO2%us7W-*}za9VffB!BF*R{DpU&V*g+7Ohh1 zF5B)SD&2SU&U_86)+FUPne0vXyl2}_H70$Jz&DTCtHZYcg7#@t0HU_M13~iXtOerm zDML0*V_Z@Q!Zl;yp_Pg8U74G_N6DHGtS!mxT#_-(*$7)+3ddnrMTn11!-aNq_Fd^?HI2L&O2m!{Qgq1nRwvd3S{_jO1w2rM@Ivh^bk?+h6q zl6tx`<@_NWl`8!ttOfm-tEe-VGtq-QahuHnm>pU9|D8Vvwa8GC!=qoG!F>$_7@_(FCLz1 zozX_)Cbfz>lwZ@?@07!dl-HweDa$kzmn*8|SIuV*a2{dvkis#+)L%#!qoVw(S6|a9 z@ENsJ9Ag^C3JpChIl4)xTiQxZ?pLhSVh#Ha3QyFCFk;my;t4R#3NcrZT3C4`7Dav@ z2nxMAHOnRp%JWU7Q>}`^=3_E~fFkL1_dh@1cD@xc>^es}g`N_+cB2(RTZw-L z#wy35rq52tn`(|)KD;JDWdgtKMIxOd zE-;J|Ja!bR7HPz$$qkv<-oN@RM(QQAMmE9%)D_J>SPOWGe%4 z4!ri!Ve`HwIsUOKI-YefIGagZ`g-%KmS!0ITaa8ZwkAaq#m@$!!66yRUN|uHSWP{$ zRn+9Dh*{%lr9xMD%JZM;(4FwDy{j+{AT$GnjjD$>G4wM*x3p1_6hv#w@jU#lyS!Bq z9H3scww6p1OWWe=Gwrv{b;5BRIS-}6>3p+WI;gV%uNS-A5D^%`rxAbA@=j6hn;<#^ zXy4N&0Q)AYsJ&2fQ`A(JVYcUx#Ga5Tf3<2Xio30WWtDry?=-(-zhG!Xrf)OBiS5)5nq{zMRPVy z1R*;~Ssp+sE7R;X8*g?^8zy+s5V4z*f2D#6KBd)ZlopeLCW&MHG++ zMSihW{xdA1 zA}bvzbBKLi;ok5uya8qI9}O758)FyHPm26*J=RtNJ+x`$+)MF1>e$3EKAHx43V#RG zsiGlKNE!>d*)HN-`1bYXq};q|=Ih|-W)s_UNy4 zi;(TdN z=MhTP$DhV)B=$PF%p3gn2TC}si|*T$jd9Kn`Lu?$B;*n{y?!B(K2Q@jVR$67ObZ>4 zee=c501(iuDCdt|R37pq03G%I4Ul3OJcw7xY@$6*S8R8R<4Dp;g-R0Q*KDzp?zeW5 z6GrL?LTXlrv|FARxctTGWi*rXL0iLPG|;fAbET4q41Df{c)Cr4qfN<3IoF0x9v zNYXeCIH1M&rt3~SU1wIy3^Kg`x*S$?d|ye7fSfau;oshA@z^n~tQ4WpeOEUAWo%0V zF?5G9hl~nIQ84P$xD^0GM2VFL1q~<4<>OwG{mvX=CQJco*D4*=l_uafpDH&W+EAy_ z-smV#Z{|YmZ6_=rkR8$0)hv@s>kX`Nw+iNnQ_W~hvB8^sf#oDDyqA>ExAT1_uN2g^ zAnKt{nXLzK9^+LfDodhVujt_*MQ%U9UquLL&_qyV=xs5a(B?+PJ^%G@`DLrcTUp8) z;?M^;Jfum*mIaX~m6>QtJ6GxNu@;VnxMXijitsiw!vC`?y$2DW zA)95#r|n;WTlPWJ3cBDbNb*}&?1|d2o{DY>xjx*|X~W#+k#BmX|0)$*3TB8@n&K!V z#hM|FddN>6%Rvr(9nsDV0o>eJNZJG6D%&70sAbU^r6u!e2quBf8A-+r@jEppWeM9< zrFqmIcEEwuYMfLdE2fGM`gJ=GG?)9`x6~Sb_6_ZVrjWwRp|pGxWoid!WbmywK56h+ zX5ty~ukO!}u<|M@cnDc@QxbW$Nik|lLkjiq4vjPv#4>#tF9n@fB@zD2jFG13=$3wfEu9y1`z*Z z8Cq=58=9MM_dB(}iGB-Rt+*OLZhi)pduF=fZt^JOFF>)u^NO`}rv2OBdF#I8pW7B+ zFyooWF9p!qVEuj_O19Z?AnwvhDy$(V)9IrU60qZDvCd>*aVO9cmkq!NqfnB7q1S4R zY6OJfM@zzYbS}dxmP+C8prFxMu(!X}FamxAR8nmCX5f9+seM$*zpNc0PGtIT2eISf z7xd6;bNihiq-KzDWHCCGVC{4(cdEkQvZ6?1{EDFiHooV^>Znx!OaHy2|Iyo9M#a?x ze}f^|009OFu7kT zJ9p-`RNwBd?y9c(RqKTUxz)!)>8kfA!Eb94cy|EsvkUu!qx7%fU|s~#X(ea~>;y~& znrv|}{|@98DemxT7}*3xwxn|(KME@@i*hi;i(0z;p3D1B0z})jSsLrTW6=j7n3_hR zuju0zfa6~}M(mgIk)1KP^FXh5bnM?riq#(}Ssggt31-{y2dOxSo9+)cAy0+sCAU=j z@%G*>Bq-o#ZX*mu?v!t@l-NBd3V=1;=A@~T=${;aXfy%c6?(CqUp+SEId~k?DF+oh z1wrh@2C)Yb(!}!;Kbp>D05&=*cIvZY^=9F$S~(`DQ48T0)MV*;Zy$9KtV=|&=h?2J z(Gv^(!d-(Hz|8WKF@Jz2kSvBEpc~7q(vQCz5>+qTDj5`msIe)7hrBL!Tbiq1W<3b8 zDYHz~UZ^@P0Ik_=I?rCx*ql9rEy;w}ld~ZlU<7`c+kgT-JeCy4c06_i$(WI(YM0mt z6^I-yXW_eFSPms}^$xP&s+WIG5Lw2pe`C)~A*S(wi4My9ts z0k{hK<4b}X6%BR*`T=Vgkm*9E)ntPH(Za-a_F=Hwx;H4ejaeWpgyaa?FwEabYxj{~ z$AP5e(ui15i$fCneH5J?mz6;}N;{2u_B=9ycr2LvYm{pA&)C7LaAZ2(btTL1IjD*s zSk0FrKVC9t$&j168uL?GkWENx@lVm1QvwrImjy3Gc|)pTJ4=Y|1NSfzW12TKsy+Lu zAA5UDPND_Re3h0!8Z~3`0&mRA$cysKC&TMBHJHby|3Tirvs$dOve|CWn53Ss}Z2jPyAqt|s!)6(M zPT=}HS|(=Flq_%VA|xT|@leZNOk)3rIgL*`L*WF`w!j=6UcE#>Ot?(Nm@225|3^tu zo*F*+jKc9F%UaxmAeMf&6OA1mdg+on|J4GWz>CUwc(NyzJ znhHH6AY~fV(lkmQ`fW|Ife4%pC=F>!NMQUd<7Af!A&@C1+kg`e1S_6wc0DKmC{RRE zG3b8QdK+OXHSVP5tbcW&may-QUg!BWm`&xl&8oH}k4B?mV_%F>%NvTnp&j-Dptv=WM z%g+5}d<#9lIVl1{pNytpfR;3Jr6@VSV1GEjZWb?y*6(nZUA=k}kz$i=z0>=;_$xsg z&_T5K!507B>m#4a@W|WEA{%|H#M#?B(IfNci8P0GKg6_cR;Gl$wCDN+43mWf;zXcC z{Q=9!Bhn90bG+0K9`_XM`XZ}1;Y-oCc{aAaM2*F^r5=}S+QjatG**yt=L_G*Pj9=R zfzskX+gz_klce$)J;704hci;@>sfq;erIi3mrR|!!#@pqxOhd6#c9Q%q^opgM!bWm zT=rnaUEP6T*C^m8&m7b@;nj7+PPd4r>o+tkUPkY{DeYal(w}s#7aL|m;@oZS$G2I0 zI)R+^;E6_6S1QPk-9Mnoft^YQFzHZ8>qCYk)+JHGo0fygWzWkdZ)&FF72X^7w}6jO zvcF#++{uL=?r2uyJ|~$AGzlG#qKiX?n^CzrX&3&vpd|y3p9E*mK(uJZPWk+@Z905yr`vIiBMxdEnbG=}*4BrctpT>rG%tH$Xo07FIehUUQg-nu zBE3~qeB6vlFm>u0|N4$N$-s^^mI;_|c2*kM(V*3N=ghUXGXRYNoD6T6eXeX|=cnw8 zS)jMo4WC3+;VlAdh-jhDT8G&Rw?+wy>$#{!Z=Unc@HGUnmF|HS)Ytj<&~8gjI(Eay zX@9#qi;c4B$cKI`ofs4z+rYsGp6Ddq?9J)>^%ej8d-o>G&k(|`h6qe@V~5Uvn={pE z1}G)N69X=ry{mnz01ngHLxDqdgJJFmyt{7!ypC9(S}1b$6=V25*E(wzepc%4^^_d_ zjcz7*aup_Y?_sF`{j*CXGYq%gH?-nt`g1cXBMzd2u<2T*+9j27xq4kc(MH$)DOOFy(8!wSRO3F|W)_A2%qM zy@6!Nc2u_2eV>;zMf8URvgL<7N{yp_$F=TX@;eqGIgy?(;y!L&ytozRKz`hvG$vLziYjrQCWwm)i;(ZT96xTZkn?zMc+iz5$dg zCgOn0U9QP86wTT-|G$4%&I67I+vAwu2PK!GwQP7k9>_P>h2YM zAkQzm_ez-)h9R$b`QLUTcgV9GuQ%g94nPL>4Oau7o^=0OFB@nLhPQ|iGMUWNAa!v9 z3A+d$^s(v!6~XE$v+b4LT0bQKk!Dd;!eMZd9yFF&vN!TcSOv34TDSfiYnSCx>g}^@;JICYqGAq^ATPJ`KJ;EV8|K%O`?j9r=+EKs+}!c_q`~0k z!*S6;Y4qj=DVwInzlA$lPy6344+#hhRRnEYhVE)vsoLjk&!1;E#V0%>{^2ac|N}SI9ADl;( zvb&?6mmW%|da)CvEHRU+K#k^n{o)fYHkhPbeU#^f^f|7sC>4IT=7p{^@WP)ET`$43Rjw~y2@%Hg)<7JE5&MC0o=Bs)D1*jL- z|1{!e4O8T#EOATlW_PhSalP86)O2XCy>#(p}oIk-Cr8gj0R*piA_(Mq(=4zcRH zOYiiR3am&4K4j*4RXoY6rIvy-omJImXq-~jlq+uMk?zHX&Z{drxKsXc&d^w0UcBa< zEAb)Et)2IHa{dU_sD6zt+lq(0+s1JSlneA^)5VzcQkc7%PeZ>>Cj|JXm3+ocHNyeG zFYBC*<79nrA&3JW)zs7bSb^h1?qo>%iZs_TW_x~q?8~iOVw4+es%$l4{b}L>5#zn1 z6Md{%%x0hewA%5)f)nakbA;bSlnSH~?aPY?wnjKscDd(8HSXK|C@i4I^25X`ZJ!fj ze2`WeYiXvG-vJgJw@I?yy+Y#SE=9k1{uKHnvC*>E$~N!|QWZty{nFjxV<8WKOewGX zSre@d#w>0Ka&V#hsKPLe2*RwiTFQHL4@8Bncq3hs^fmqnG&@Zn6^zhVg4r=Z%N5_} ziIws^@989AkW1ULU+H7s`@ilH$vJ$o|1&g$;WGbKw1EbpAJ%|Va$&L^iN2t2OW`SNzxE$i_=*-?Y{I$Fpx1 zT+E#8tPZ&XQQYn#gyg>{{ROy|2ck`>b1JW^MYRpq&bB4 zL{@Ig9KVt0Tdp3v|r`3UPylDfV~*Ty$afeZGFw z`v`(`SO2hH%;;JNXKrYr0TDh~OPkeJa8LOVS+EMLpwn+%6#$Qx<%xmFh4I;#!Q z4(k}NcV|ToXev=Q8_eQf^46DrR}$=|H~H@eAo!7#P;DAl0#Oyrr}>gQ630y<49ZTd zWGM5Np5HZA;o}ko8x0+UZzp<8@*T-h4r;s!mes? z2|*teWh$I`+GQLUU1B^B0MkJSHYmZYcDG?4JpI(JYykZ$q#!u+#%ml z5!dI{2aJRr>Dyya%|j^O5x1OnG#)ue+r+wbjR{0%zN(KDa!z}GcB~cMF6DGrs6iT( zfMS&W>i+3@Oamcm-}<3DvE4wvMx@}_e!1qTO!rdpI3~LrTDN&a_o$EM&~wIQ^t?awE-xPg*$34pWI(#!K%-(MSF6-j974r$m-Bw_3fj?0XzP{3lz z36>3W__sWz)@e_LUINGk1i<5$iJKQMqo`}C;pzKVc7wQmdK2?qEy{6ae~qm|p^=6? z4_+{^SS64^+`j#3kDF`Zsp%%9QUWcoWu-KNS3>aQd6D1 zPP(~{Kl}^dtjbE{T%!(2E8kvI!3qKH9^dyyRC)RXRFSUDY$}ekFT}mkq&md;Y<#1q zIR<+A?C1WdZdxdfIFf-FJV)+j_3_YGF%$z$n%?RCb_4r_;VE;l%}si$0a&Da)@fFygt2c*A z8a|1O%Itrst%!4~T;BnPh@|X|lr02jV`Eu_-f?4!D+S^d5NU+Qu_L>MuGc88D@O`s zfX7Q#7mnPH7;11GDf|bVV|*$wzmi@WmxMjtgCEkm1y8vZ*2Un=Jvb{ak+PaLNd6mx z)rk&b>a(VEO9Wb9SMv>L{RR>XG@&MZe}tYz)X!257ipI3J6KYFtkx(Q=$w_-!~3oG z0F|aXTbpYm|D?X4dJ=qVfp@j@PK5hx7~_JnwD#V8$v&2-oJ@Fe@uSGw)|*HoF!0H2 zx!5VnRw5E@$`JHdJ5Y*c`SmyC`|LLw$r)TsP*6X}dzZ1f6&t(Pwk%o@Bfnc!B~Nnv zaKYaZ{Fo@eiFHM_c{<0m zK!TzEe6)S4DQt}EmYnSeXJ9Ds#uG5d*xL43)`nGZb5M*0Y30A~Om33zYOyWb@B zfqH4y%`uW{4i7IXVrt_9^&qC5u5Z+JnCE-fIiYmVOJ-(^s3fgWfV1)XP(xihi?Tr@ zq^=Ig@68GYI!<ZGz{E zk-~?dlOxQkQ{j{0-4%J3@su_Y1$7AiMFm9*}*#H=6y zr~XOO1uy#hY`W90>QgPhSZE5>MO5}oxl`fAznAkcLx$~td{diH_n(4txx1!MTAzbtH{pk9u%zJ?fXVZ7xJtvP1hi za8l(^Vt%q5Yxj1@JG9>Bclaq({A-D$^fL=p9bU_qur_t##b5&X9P%bQRxN^i0u8Ot z1*mJOldSw&;oR^OM-)0jnkOp?TT)Met@RVr5)gDlB+A_MdW#gEBADT@a2p zOx$M{;*s&>N@(hE5tB!Eu)rGUmT^ie?)!$q%n~shm zZFm(%ENNJ+9PhcA5OYkjJ3kHk=)M>27A_9k+j~b@^w|Y!PD6k4ZHPZR`KFjFW<5Y?38t ze&;fdL8+RRuL@|l10Ab>4t{!|yG5=$nH;P*OuQNH@6K1=6;V=MUDQFPsgun0DMJ3V zX<+gCaVH7Wpj`xu6hL#9gC!3HAsV(s_6X2H1iLCa3yN?YyQ{XfAy#l_2_x@w%ELOy zKsjbze9S*_fAGtN@&1DXc-o9m3~@r-Q9FMYM(J;2MEsD;nqO*Arn&qSI(_|0IGrK# zZ*w8$+o2eP^V2I~9Zgxhe9pI46$%hzJChAfju)TU#`L|k0|L(b3VTTk+b@>=3Qj18 z2tN_N;i?*$oblR@h9Qk)H$R8@)HjM8<7&ZyDB6E#+gJ%qsYOhwp0n4mROb&qd9DlG zlF>01!Lk!2QGkEO0aFq&L6RH!#82pykor`zH3!$6a%r=;pDcP;@hyL6259o$^N^g$ zoCUk{4Mq+a+~f9SMFCkB!N<9ObyNsN1ihbplb94x&kX$TlV+c6l}XW<|!qA+l(k}$uhzoaxW2?9+O!H z&cho1_#9m(?M~{Wqa!itMq9z*+@>E!muOh^{c{YXYB27;hC5`l=e<3^3BsJO0-i?x^Q%$-s_wQbPnPhjjpQS0l|8x*9*6tYZrh0DfUS>y8j6#|Z zpiU@_0rn%r`>TjAK`vrmOd~K%!f>FX<rBezG;LbB>rrknYwABJg z!0OzP?*eKv?nv{vYh8a8pwqkvi!*LNW4<6KJ^?PwbEH!a8)QVECpX$ehBXV(OT zpfOBmqz_Yzdi=WdT9G2C_}VE)@x67QAL2wfuV}d~UKb$k-cm#(iIUkn!KE3VOQ%ZG zvh))d!~;2KBX`xkI4mR&xQ9ViMObC?OYt@Xzf^H?#GnB52b|GIn<0&@Lmj29T7}pJ zRa6Mm8SOQD%Wzza>?m0@!XTqoenU!q6wvFg!Q1{}efY?$A+T zYMfI~vYbR!J5bR9{C&nS0ziB_T=(dZnQWD2UFlYK_c!{ISCl1XhJAb1G41D_2i+C{ z@VmSp1fw2G*1t0*|8|>Y`#>fTv6gj@8zt}kUx!{=dfr~2m&7iYyUsg3U5JwDKt&py zHzo*8Jz4+4xHHA~fy}PW@EK4IJ`KAaZvwBGB4!0H26L8+r);5T+wH5%!%O+xo z#-sx7CF~hzc{t!Op#E(V@2&soY4dE8OrR8vDEEEL|4)UtU%YQ=CKcCv+p*E}GC5X& zxhw}7V#Ks9VyX%MX!(6>Hd0C~&Qoal4H|&(b$ZHpu$n?LMkwLTuJ@nJnr1OLtYsK& zf(>t_$k2)}iy6?_p9`+3Zv0qM4!qo1r`rT%Kl#^?)WfC)C&opSlb zYWT_dOqR-(L)h!O_X*8zjv9D^$%of$ubZ$}RZpQGipF>L@-E{~l+71e@H@5+m~-aB z3Rv?<fz zu6esA0rUHm4?O3>Yrjvm*eVr*Yw2kchLZ5-oFK_&bo@$xhVLog-t{NjR34a%g?DE% zC)iFD@A<$5-I>IK{iMg7{MWI`!$0z!>H9t9B&qSa@NpS=mX6J_#?Mxk=!0{t&4tq6 z<%zVvt+%Kk6CyZtzP$*Z=Q3BlavL^IJlgwgdiZblbGlzk!F*l0s|*B+%!Pi@uz+bwg&yFJ`M=Z?}TyYk_9C z^iYjLeS~J>`PBvs*B`w210fGLNl9oeDz+n=i1m!!flvB_s4H6R+|d?qx?u+F zh2Q9YUXv#e=y^F^rp%giK+F)2nAQcntxi#~=}o@;F6wBt=KX0fQ09P-i%GsF^U}}c zsnVACaU$~G@DZb)N#xTxqk7jgJEQfj=2RCT5-yoI<{!Ocp1(r%; z&8CjpPQNGp6&-D_%YOqhvQj=f#rKZcSiT@`C(FxWc*!U>JZFL_lRXM`ucwvT4d2%f zm9kXMu;UCqw)N&l{>6urtucQEL?}Kx%UP%A)^5Ul!6c4I;KSJ1*K2*p{~7)K{-bP6G+rVFmo2nD*$W zRKlom74m>!p28N#p3BEy`wrk4e9=10{@NfDY^ndGo`U0@wyvI@0I zcpLE){(FB*$VO>@gi$<9*SwgHE;6*&N3JKf)>oWn2rj8V#l*v`UGsWv%W7TpdV2q* zEFQ~YO)dNq*zk@)YE-~$XWIXx5_kS|-EavwhFqoP^cc_daqxa-Dv3N3bWkQ0vWbb(%vrw92#+Gl#D;T;$P} zjWVD!x;+jVN{;{f?%NR6L_8M>&()`Z9u;MJIM!#3BLsGM1Mjn%;-IkiX5O0^yJRM# z)qJe_K0z8)XiM%x?Fq9ZiBqyaoOj|#!T79x7w^8k6@Qg|brgx{cxQ{QEs2ntNjzno z*eR*)vfl@9S8DiuVHD;3^IoZk|9I{zBGaUb?AGUjI5%?Ur`iq4m^as{uZJz^v<6g? z;tP+iqm*sl*SB9GENQH30YT1in=)_b-|#T~FJ*mS$)5u+YRKdF{hqKB{(Wt6A~f)e z<$ct={Glz|=_E09Jtf!a!bQL~u4d@IHayA575QenjtGmA!H?Veti8*Wn|+fIH}zD^ z!t8gk%QYq4)!!zxMU_()*I1X1Tf;vkX;<4r@(&fCRdBM%KRRs4?Ee&1a8d&`+R8>{%*+HFXS)_YHlpZIv*yQeKI3`xZwQNi*fVmQ=wP+1Dm zdw2Faz!eRRCAafxX&y?{b!|4s^ii+N#~WO^+HYdhN~E9TN$X!i0~zYywsG6a9u4Vz zNQC_=Fo|C9F~OfEpoUR~UVyXxV+_R@d5;+nH;qbAY@|*gdZVx3M84JJzmOl!G%j`< z^K2@QiVA?JupzF5T6QDsuV8Iv#sW-6A)Zg56aJ>50?KwfA_C1UFRQ7369EE=oEAtO ze@7im#C_*Q+3qGo-geQu48%i=ViP!2GMUgNKJV+nZJx^&g>s zh6oC*QH-5EoN0XC$8fMZ@94m)9U3IS_zaKt1Fi$sE+T?ZAQBQ5t4iv~FpNqszv#Vn z1kg$Hrzn&Q;>D7%o}08n!v>LmragB&IAL!w-hud0pSFl?@re9P*EfbtlNa0GO%1i61?wKaqfRCaRDvoubN>RC~R8`wE_S`RQGWc$)WCieDa&%)%)`@WqN_Qf15CC6&4~NfNd_>1JRY z44${&m>Xne+tJOmOFFiRmulqker0)O={?DkOew$b6>aQ*Z=5~r+7;Om{Lnh+z>FS3 z;7E4HrF_P2y&>W<_JDNGeHWhn^Ej7S7p&b1OauaCI=?QtW5k99!NaYuV9`-ouO{2f zq`FcBe#prgLlK8OL0><8RM|i-Jv$YAdOo`KA2)|}YXU$8YEK(0I~VR-z!hY|Lh}G9 zmz9}}{dh%{&vnW#fddh{?`siF-v6#-^bfOGQw9V5KjJBbK>R4NKQ>QYUdE&V%Z~Bu zTiQ@^0U0-jm9i~fNoXj~l7taCHaq1VA}Nh842W2oQV7JGeqwLDwY-VWuAXuCZ!ALl zd3uTpwCk(q6fs$Y1!hk{5p``n?fO+>qxwPa92Vz>13Mojm<4jmv+#J0L>C}0OTH`OCC6p(ZYpX~(m`gAZlVHeH?{1Z9U_DC?wq!^s6nM>jg zM|R7zQG-p*=-@iY(sJ>3tnMRd`jf{2KfIb>yieoMU#!F1ug7-#;lL~X0}piMvliwYYmkh$;ry?8L@}fu&G0Zl>kI`>5Pg+kY!k1ExqDJpc;On&JM{9o%i7v z;hpA3IFD=I9oTI}F8nLvIdt~J2l_+MUjD)S%dx!t{yrQl@thk zJnYRw!W1BkT^N7^$SV-y*dEADox8ZkqotD*y0%p#1Y@E9m5`rak+oD64(Ux;l^uv{RsS2>h4~bXraRz`9mqgLaReQqW`);{Ncs(AzBbt`M_@Qhx#o#3{^3R@A zYYo||5LpQDTg(>lrF2knlj-5piH%#Dk`GUBN$WmGE1r@5dJu<+Y-svjtfw=kOIZd^ zJBK84ct2(n1Gy=Raejmn=l3w0LGLgc2;P5eBNeEt4bIlm23r}UI2#zF(_MDK<1QObCrO>06S()XGuE61MlapIdtc)Vy1goub5uM$!bDUHc2 zk)`Dnv*lHqV7aFb_P-OuSXqYX@SMAYpPI}LymOc6VS}6x<_!I5C3*7x10{mom+#p9 zaF>-MMB?ir@q*?LbGbVg48*W*pT?2}5Cygjs7*g$y@zZDM>*fzUG6PEUSeeFR?{H- z{N>hq44ojdTXfQr6&R!G{?XPVvWidLcex=L;q^XO)0zCyAn0)5-do6T!{#X*xD!&Sy0QTnYIJTd(Bbeap<_YEG|m#P`lmy1>zO;#=^bwHx{s~S6m-)68Zh(b7r%urE}TD zC@d*7LCsD%N3%LH!f%qKjjkA8O#wYS+G` zA{7k%`K=OX5!KjRzJUs&b|VypG0ze?Xp>TESbDKPDF;Sh_+oGFi@phMnE{oZ@H>u; zJ)KXZ@H*u0)FgDk+LFO2#NZx3?!I*-LK9j8N*0iZQ-#0Kmp(T41J=0?l2h+owtz@7 zu-VP9Xlo!!<`yc*W2=7&Mx24-R2g1xhP6i*Y)MVxMHn@hAab-*gPNawm-u!hL78z$ zOD;Gl>LGSsPnTx~V@|(ekao@D0z^K@_@IS%paqXGY%1R7*5?qvdfU~W#!^^pFt~An zxsfY5Sn2s3JYc)>@YBrpimB8nApgrzzC6tK>9^OcvpL7GZ(K5u%;Bj=@g42^Ojv^{ zjcp)7rIB#Ftnpb+e*pn}XXe`-k|8fFo6=HzAdym2WLhk0DafDLxWQQ%-}?_7bt##t z%!$~Oyvp>K7I)Y;CjA{C*t(yA^H13T(mC%%A3X2yk5AOnJR|{2Ks+c7MCxNY#o%XR ziOAxc126velZ&@#5{*P$^gP-pfc* zhi^=fr5WTs*vjjaP63%>hWCbe;zqcHL-gwKxsR53cFVSu=00lU6UN*Ry}KpTUPHrl zvul^g4L1Ob!8olIFa$Wj0xB5cbQC7TUMcBlo-4Y2zap`XEF8~7?Qo7gCIYkPYawHt z5})Zt^d$X8(-1pGu-*r9>#Yy&Azfz659y6Bt*+MhOh`#Yikr}ZaS%n}vEKDj(wz;P z`W3{!|F%{ZYyTg&SSHJVdQyUVl7nBV-9%VD`5$ zSHMDF5wcKLW@&?QN3#yt6!tU&_LLt_U^cda=_*NX$4j5OTnAaJZ8i+H22UW&(hZU= zW;EycGfvki4k70z4|C`LfU)!w4u5bJDaR$bK!6nDP%ygp*|D-iMr;`sI)JAWHt8DvV>m+93ug z;R40TsX)=e1pb&HU-AlNz{*8vy* z`X#%bNqWo3!Ra2A2}U?q9}FE)W?S})Jnghl9Mf<<)i!r)-SrR*+>zNLHUs!RivJL& zRdT0TDRy+UA1m%22Q7R1IgOjEyIyzkk(P8CUKB=ev?(v7*SiO|=Md@FrM!h`)iu}J zSc0&3^5T3Rtde04V(>+nOYvj_pIOx1mE!1^$025c|LKQu$daCA<^C63OH5Yv_HK?< z?Fh?uE#x&lLoJOG;oDLgNSN~yHT?hM_0Ca`E4tR-zVrC?%8*kV`pxl<`1+L<&k`|> zEzWZ-r4k9v_{IVc4`=f#z1|8Yw$O6aFdKN!7=dz|Aa&ZnXr?7CMLd&Lhw=V??p(ra zfe|whYoPV|ypgduM~zVy&0u$+GaM=I;4E-A#Qh@AB^d$4jef zwR)kUdQI}azJoTw8(*3Fa9R9ko-dUT8%F($87Gfc=^P+k^lzG_6(^o~OGMsbQ?IE{ z<+tI;JocAIUCp7>4jS^ybop7e?QGReOHxYSMfu6^H}cEzN|&!vzv*o=h%Osyk(IW6 z&Q-OZ>A(3(7Ott~yBlA)T6Xt07PbocvUyb|j+mrKZNM3BQQ~-e&w% zzL*tn(;8S%b9UmftD&)YP1NaD2vD_8y5c5nQQvN%%#l{A4(T?N)EDj-94mu}NgbqF zg#E!OSTi~J$wsIM=wW(>SvO99*;1uHu(Zb}WUOrtUgC4g>z%g2R^1`*QeF|U6Hh+2 z|2O|*4%JytV=!3uOR2ggV&A=O{izQF0%-ghcX_j#ar;vlyGB*H8!on{9PaIrc8TCF z?y|WKpSWR_)N%eEYxt(nnNU2Q=D>J>nz!l<#_jQgIFA=BQfGihh^==MH`PQgu%6ZF zcwCYx9vGk%y*|bMg@qoAX5>&Ib2Dy+?eI+22m8(+5Jj|IF<-L@mrPznnZM#bq*HfK zF&DfxFAMJFN@=0gmr+^GfKoZm`N~I#8{}hEIE+6J@_NCCu;N_cQInO&*E7fY(SG`J z?=RIlpilF#wZWsPdKv(R0Muyu1O8=WA=<)KM}0qhdKtfZy49c2#py!s z1fZ2LW^V=z15{7JW6aa*QHN|sNx4jN!UYbQ*;|!$QxXRkE__0@5>a1=KEBt*s|jg7 zXF|d;na{}37uEtNOPz+%Na7k`nTQTqfj5s= zu97@bYHg!|EY)8miphSK6i{Q|smm-X>D-`cEOy+rdR5kju0X@fP>Y3>l*EVAFOjgz`q!`To-cbG647!EKsL`3*m9gI{Xo4Ui2}UJ~gT35{C~tT3 z-Oq&w(U2FF6zae4i*-pgi?J3oK28j*dZr=U8k%Ci-$GJP$b3ScCk?|tjt(h;ET(b8rHS#YX+K10+^UuURHw5S%^>!SnhM|2y7<~1 z+P|nA(c2GKSfLSBSRnL3D}|nUMkod=7LNsKVB@@C1zid7Hxl^7APqZN!m`ifoIRH^ zE8jWQ+|BXP+hLrI@ch>%{9nP-SMpd46y43IUN5P_9_~hK>J;89zsHZF$lbS>ua-Jl z(tdGl(xU4O3@k(U4*?hXOupt)zH41zz~zdF4~Tu?&m79jb`@DsI^Ouuxx!u#xehj6BA z8vveAw#+>5)x*aKXj8F^?(DbhNd*Qc5WCC3&fd;Pd&tSJzZa~{jeQBd)hJLpR$VJU zTc7$4f*>0MrhhZws?RiLZ`YE@LPa|3nAd(iFkUvgWCezBnGIK5zdpHz@||o+@NMFXJdIFEDya>pp2?vb zkstv>4rOuIQ}4>(@xq|RVJGwlu;`!YIYHkXsGz_lcBDwuGj%Kc-_COmHM(h7`Y%L* zjd=)h5>R&2N@;dqu+wd!a#LJv8P)wa^gO1c|BR;d>8sDYEQ%w30}B*xs=5{Un{+v$O(ujlP5Sm~5yd1l~=Y*)rw)KTEprN6_;}*>5S@)%-lbI$nQIs*$#Usv?-IyHiDhCA%QGZXT1ZZmqK8D#i`DYr=l6eGD<|g_Q zgl7&NFZq6>lY&G`=0k*OKrR%o98pkXX!lji2CfCl^t2VOE;!!zGCfx#u1ObuqdBri zltK($1$@ysKMa_@fvScbduohOWec;;6~YeBSt^Tow8K2FqXRE~ps9EZJfgCMQA+OX z5zJE@O=!^7=ihcv?goSaMLN1mv8s>Gp@o^=Sx{Vhn%IaX0+s1B{R4A1ge>g_1QsK8gcj)aDjYdjxlE@79qgHj@@b-qk1GW z4kYLC6c`KDGQEs9P)7F+JD3^b8b z8C+3>nMW!8(fTFi&qjC3%nf~_J?E3kw|iQ{*d|o!pKu4FL!<79i%J`oUrYhun-`lt z?meL|Ec?~KX_vO5`1fdnNujHR=yfUqR_Ik z(Bs3&njU#r5K>E~VBp_pRpYJMymLvMX&UdXA3ydO8;<=$ShO{+B9jY>{UIZFq5kGbjH7v{kY5WPZ6#s|$gI z@!?jvlsRCm<)y&J;r-v!Wu6xrhcn;ZI>j1I4-MaO^j`J(iq{NNV1aA+zC;kw5ku^C zY}Jy%(0Qa!(Mtj#KlwWw)pM7;Hax0N6HS3|*19!Ir25ewfPhA_oO%1Coy9Y18B1ff zHnhq(7gn%n#=k%<$dZZ} zr4kd_!%ffpIHO#^Hlz42|J27hRORpWNB)J3z9P@nf-+;Le*-d)$&Rv)*1xaY6!ag| z(C<9lYL=Fqp;e@}mzuL4i;}*$RIVp39B?s>vz{|Cb_<+SwQ~`rHni!pgiPm}F9;dV zS^hPxhtvV2{Vm$%fka%#6fnstgkyljxSM{eCKR?$2S{6beCqd`PS0PrKrzOOUaz{+ ze<m46I zw-*mTtaK)Jy5_=K5aWh8~a~3XEb_yvNQuF`Zpqf#m^urRqlao@G JtN|N^{2vdI5EK9a diff --git a/Content/Figures/PU_exercise_7-eps-converted-to.pdf b/Content/Figures/PU_exercise_7-eps-converted-to.pdf deleted file mode 100644 index 6cec01a39d46efa50d309f38557cb71b6c75859b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 49960 zcmV)ZK&!tcP((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;s+JRpL)js&t(7nxBv1_`RcQ@^=kJ2UwOX%{xim?UnOtI_kpC;zUnZ@e(N`6zxA&V z-~RN}``7<|_`U!8fBR>Al|G;K`tSdw*Z*Vd$}KF$3^@04bHP)wn!==Qku?`qw}I=j;FYkN))k z(pTQ6_Zt%5dF;i!*2KFX|I;v_&i<8Zd$pPjEpSRL8v@m2kSBlHmVf`#?6Xg^XNsN7 zQ(o<{Z)E$owEQ*ttIqV*?a5Zkv_HK5{8M}WTFDkxa=}U0YDb0-*paUEs`kO2#vcFq zr_A;>+j*k&@|Emg`#}0?^Hpji>e^4(m+=!N&#zMP6SaQj{=$nuiB|gaHD2Yh?{vIi zlUv6XR=P>zd8c z{VFD)%9hce&!c$QnRi8Dz-S=xBhTZ zHU+Gr+Lx0Zt37YOl??%^eLH7+w%Gzpu^+XK;5zLaw!Ui1Gu*>Z*xnNX>`=x``cXrb zS{|Laz4BGHuu}RS+g2<)m8Whf1)jq#!xyE)-RY(>P`wiPwd|@uXEd{?ZzETF} z+wAAS8`V&|@~#Z~c{_7k7S5w|qj}YqVOTiu_cpYQY0DV6Otw=GP@o!uXN;R|>I=U# zX4_-iTbs+U9obLR=9kTOq}gF`$L$A`pXbPSLGVTUkDhp4xea9kS6=TV;139H>qdk@ zg$u|*2VDqA8^Cf9N?ZLB?)`$)VN3?JV@>_oZwRnxcD$8r#%p|p*autr@zyVh&+z-# zoW(hC|DP^kCAka;rd{!=iEB9X4Oxb-t8K^vIayg3)rJWq1L$lNaR9fL-2`JwfY|QV z*Qy}J7ci{Tgw(Z8WFtOZ@rd%d9@;Zwx3>xq(GFGvWUf6I8YE~LlHaS z1xzvCXFF@im#?wm!R&k^Aef!~#L6Nb)lO?oY&M9nZDi*UOuv-H{=*OqGwK~XY->uG zp&|W~gj#uU4MyG*u-k5oF_hIB=w8Duu&cQ$?l6erp$QmnFSH@!I0>gi zsoDF>sZ7U>Ojr~NR|7G$Crl2&FBEdrTCJty9Xqc{92{q>Fo&1fk_5$> zL?z=0jOVI^07(>}fEZ6CY^i;q5iOz4KnlW@X;nDTzMjKj&)L|Sl=ON(J<3JNq*#b) z7Y*1DrvW{ap9T%+MxMF!O$54KEsE$)1jfUwy6^bFLe@Wb!)O0#9jS@+E z2s$v0t>i-nroBkv!O6gUsM}p+U`P-NGBAvmVQ1r(W230@Z89)Sg2)#g=q3TxeCR+o zf=s1x6M_!iWt{8M9e0Be^up_Y5rU3s&qE0I`8y$a!w?dJZWkt}n-FY>6M{~)HRwRM zgRS|d16WBa=Nb=NVLH>sRy^gV1H+JE-cK0We%krKG!6&Z@Xye=OyFu|MhAp?87 z$-ss<8JKpfp~?gun6?wrmxB&W-1BkhzD0s1lf9CZgu`1hK6^Z{{`7%+523zfVP@mG)Z@GZ#D#kZ@qGV z#6CdYk`3+dLd~eQKNIxOcJ86>0^Buvkb7HVAI44_#*mxF9@`t^nb3ju6T|elLi+>d z`aFO=_({X@y!eLE7)nxo;afI#0lrd4JY!&V(;I>m)8q^hY}_ey6jK51+j-b5sr^6| z&>O~nmWu-mPrx(<0@#2EHc1I{(7>p4h_&PI^=4K?R}B#B|fmvra+Lq#(sJrpmsnmbSCiJJrudLpUj%0$fX@#5t?@r zCeE>ZQQ5WgH!_mDuobK)k84pHEIq zCb2iZ@D~3#2ok~!&6o1Nlzuy%m43XIolSCRQjVr`CJCb( zk0egf!8VoIAPH>UAs7$R$@NatYuv`x3I?b`fav~fUl7iPu}6sdMa7Tiu5Vs&@3 zB+kz!osTmBb_{;O$oZ3WoKl3{K4-s?q>wx!0MmAqM#D!lv?Wke$9FL$NKxtVk2xuK zT^wfl6yph;<(&FL+;DJfs9;h_CQOGw|m0=Q+g~)~5ykty@Rb|*M z!=|+GlTE^vi+p@TLLL;dfo~dB&shW{rE6>qb@>~DxZ&~pf&gRuopEHMy!`%G_h}d) zksAjaTlV9W;>E^nJS8oMUC?%-Ny!ZnD#K(uho}-b<1&6Ns!{Rnce+M4w6BY#cG5bX zK?O=XDnlNvb_P6DDZWk=h{?|MA^PHyn{Y{ed~wQ#C0+XaibHf%riTPCNE!+`-Nvrt zKq(YvIpRTQ!4b^zXm^GV^^70TAHLy`9@j;b2xgFns4RMGwK`vaBV-=Z zR!kciH>rEbT>ktzP0EhtfgkLcnExIKj8d8I?#Gac7x5Pa6fG@6aB4{+CH#|*tqTkU zch5GxJP_4}#6voQo-RQP9y;5Q@{HvU0N(cUn9P^+MGs0cj&le`Nuaakd?5MqTmZ!j z#Wj5U;gV_+xiT5b5YNW4BKTFuJB>d(2!Td;8I5Wyw#-{xQZXGF72acLZ z*hoVcXNDI*C9>%HfD2AMB)=ZG{UzlbaJU zS@#VPg3<#bY=Xt2idaX}!VG2lkIl*;<5?W3_~!5plWiWH&T?k2F}=lEq#~Xe31pnY z*}wsHsWv_b9teHi4gPh!&>ot$u{q@$8X@yvaLC!21asp01gR1>Zb+lbP!NbgwZ2m% zvhkypn9@N7+7Pj6<`WSnK-Hm{`^ui#+)N&8e~c7SaET}S^d~40*!YozFep^v4dctH zh@)3rry*^MCuYM+#ixot;d$dXlo0Ts&H90a(1)byn@Uo-}-2Q6wogE0lzpc zDgK3)o8H*u0an_2Q3zOJ`aBc@hT<}Aq;GbA(jgE{o~Qkj9dbv%C)M+FtIegCDld-{ zh+bVU-xQ)7&WBC|3PDAD915|=n?eNS93)J#Ie&s|3b6rBA)x0x>rjZEDb5@U0h597 zQ4|7tF6p~dh@KoH_hxl${5%u_yHl@QLcMq1w*-cpr(I7_1a|TO&rZ9k0}Nh#K-2*i zGu{wUhdtcXAs}a0S{mEy^%HWa!-hC@KmdtUNKprv@}G562bfSq2}K=nw)LWW`1hiN zK=vVpaX-;rsB-GSL#a1)sF0%OrVdb6);_HQU531PQwQ8X9;Z_W;6Y7?I_z;!hX9fDn4G?w~*!pXEx!tJ@L!$9IW~VYBXw_|YDlq8K^6&R$0C(zrqo!fi z&2nd^{1n%^Ot9SYI%cN=2{iOGL@7aOY_8z}FZVdiP8;H8CmYjR7-pve)Bh}&*~uX8 z1eDpSK!&CGErH!;IV3NJ-N|ItA}bQjPKEmR+A98D__hJq*2q1xpD1odqTQ(s<6?7O zb|>3=IoRFq6i4G`r?;bnxL=0PQdXxul+~%gUUNC?%BWcg5hfvXf^R^q>SMT} zXb|$kvS7?ShNH5Ed;+f_M)Fu0idm-q;}$mX+Li4e~CJ*QJc*7yvgJOEMtVzEin-IUF2E&n8R$#;-%>lu6247mG$U`>7 zWne8?$5^Q;iT#HzV`h(q$tq2>Z&n@vR`ttK3h( zNOY{o+$b5>ru=*dy~J?O<`>?Y_ruVIhO)^0p9}`D3!OWqVHz$PFLZ{`Lr#OW)NE}3 zc#tbRV5EHtFGH+kmgeDc#5F@CKWwF@>7KP905!oDHLoXZS9RgRR%$Yo>K9k3>5bgaWtmB!uLjfTL_A3dp|2($}r#S9=SJQG@!U$Wd>lFt>Y~T9*M3WuJ!IIAH{M&z^o81w~fETZdi zmeg?F8${k-!J`;Rg2)-eF|135JPK-iT>bGF%D9bG7bz&Rr`hKeoFuEfy+HoN03C#` z8-bwF%mdS70Xz7nB1|W5fE_79czGimW%`Q9p3V^GggaFcEtwb{Z#RoyC}I;0z85Un zw&Yj>IR$y~o-euvDsnK0M%Y|T5<1rsg-68q9tZi{5T}dri-lpVuULbh%Aa57^sU1) z2A*!W`GH7%sc@T*?KU?>vr3W-{iVWfo{rnRLKh!LYN+r~_S+&*;Wn>Fil}g#*NbAo zZQgFTd4=129JhIeQ+yq_`5A})vLUX&REVefxXmlHtaQ804U(O+Q-7&+o3E|EREVSF z_M2Du&FAr(SNLY<@tg0JA5PPm6>=T`?bv?v3VTAn{pPjDO>s^WhZFbW?f6Kdy3bP@ z%pOXEsc`ll1*XCqoNu>zg}-U_yN@L1>LHm~q$k6TBo5d8CT zn^!o+xk~9Td%X3R1EK!1Kj50f{)w$y>`4SkjY$T>g(JO_%`eh_(q+d@STh~ z>}{9!^5YmpPNy-X!YfH8_xC`y)vzK@Zk10En2_coq-F^ai-M8O_z}Bx5qmmn?-;BK z*GzXyq7mjg2g7gn1%zYfxlIgqyNRLu3Fs1XU2t9%(jNCyf#!Ilx|u_Sp+ayb!J@=j zp=3R`x?&K81Xp=UY`mNW(TaY?sX5*R#H3U3jS5-(3OB6qAyWVEZig~R_E=frBE{CR z6}Jippkzf??J5%z(pLU#HFCkkl||OTxMN|snYVn2&8Ci#7^Mpb*O>uUXtP)`;Civ>r)jjSZY{)_ZMXCb?$zQJpqDmIHV}A zEWQ9v`2bI{n;6eBJqg(t>a%dK%3d zV=FyIY@e^gS#1-#Q!~GR4PLinj5tRxm52G%GSa%vW7||cBzOo}pqTZo^Somy1PYsX zaznZ6Jba4WGjtwlJm+wB~5{CcDhV^(@nqz{P}nOLspH(&#$3wC)FL=~5Z zcEo5FX0~ZlJzB0c=h0HofE7BWE<+P>^Tc_PRa80EuYsaJ`Lu^RhY^lk?uUD6L*RBv zw59`!S_!FF4` zH^jr>uzyHo`~W!k8Si|6WTZ3yfRy73VsQ6#vz=V!tu=)iawYUS*|9JwO5XX_moq|n zPurl61}{|4l$(#Z0}`cAraNf^)xgMnr?W4u>xn7htj(l66j;_6lD;r^ys_jyZOxsR zBp1z-%(G6=b$^NX88*+|gDzWA_tQux}>-hG-y1kZ$B+u8yo_p;c?&&Ii>pjarr7PXXa|gzsacKA(;u^kvz@-vt z_zfu@Vs)@pjbZj*7SOl)5hwe~-6%e;`!v_Xk|H-aoOW?>&i- z9%7Oq8^kh>^x*5<541=I@elY$ouBZXj5)-nOS`|%Kw<-Y@ION0jYfGuszTx$g2m^{ zBjOu^&3{D1H)Qz9xy?ZCHb%LvM-4Wxv~FBOBGg#d6S%iKCce=;gSbNFw#(53KK&Vmj<#l+hrJq#lhBZKriCccfL z)Bul(Z}1$G5=TtDL6(QT$wEKcykp{R>zr6bOgy){cp^QNb%b)4mxshRgeJImoDuN^ zRQK8N?DklvcE%nNe;_U?Au+BvJ;P#v4fP~hR?1uJd>QBqj>O81jKLr*a7hdY5VFCrJgGwz9H{!q+82E zbjuYG-(aa@@RtJOZBDW#Dn9T4A;9Jp?0S3?rU6%fyZqzK?*G7>B( zMn^zAOHZAE_=b>tN|OqRZ^&7t`z-?E8^W{eSye-z^E`o{4H+2WToJ`XFbu^*1;jU) ze6nZMq;!oVAbvx3K>UFyAf98!Ehr$q!6b19#2Y~89^4BNI<#nudo@Jx{0N9|$cV_d zbkL9!L1Tjg;v0g(MKTx=|4!A&e&Vu3Jp4X_(2aq}Cm!C;wEc{SZ^LKq@$e0yB2;k{ z4{t~^e#XOZRQ7;)L#rv(z>^yh2*gmW2#DW^=K=9Hb`O&R;;*p>#2-kH>*5(o3Wz_{ zHX`CV&&L(7zH}q6hbzBh;K-+y&~cpGpb)F zAf6XM1bfppHvsOFi)i?_qm;C`j7}f5|o>i(p8N5Xf+gZzku?}*o59&c;E z-JhC0dYkve#_eY?d`Cp`6%5}Io`3yhdMF{BIVGG$x*ouNn>*6A!^?e#!uQmq&v@`l zhmGnAg+Jp6bls4Bg?nOcs85gxbUgqCy4rY(;VRIzBWpn9OM$K(Rw7A9G^KQeC@@Gz zfvz2Pr8~~GBR)L4Zc=<})`@HF4=a*g>UDo+xg$VrZ}S}qZ+l;VM#A?8#cf=}#tUtS z!TWzll&gkkKb|BO{2Q`ETn|Jct{qWiR{*??)6W2SL%^;O95+89&g{7?3JbdG4~qh# zY)ZSHZ~`3y05Y6ZV#7mR8%s##mxs7EmJiw~3k~603>A(LSA!(!ac+e}>bYWY7~*=y z9^$$Iha>#F{v-*e7P%l9dFLJKO25<0d+}#3$g}Q>E#JSsqmLtacwY1-06W;r^td4* z;6QS{A-%JJo(k&q?j@*TcwlX_-n~jv8!VC0p*faqspzN<;C2iK>-9c|mldI%up>;A zzrb>Ooigy0r9=pa5MTP!GQEr)GB7O}iIVLZKVCC#L;UP*{3vG=aaWkrbp5z`eMOt4 zC;G}g#%0Q&#Q2lmwQWAM7ogG{!1o56Yw&aH;YHdnN$auGu&b>=FhQ{S&}R-DUVI0cuorjil>AOSc!%Gvc!np9 zEgfm4JVRMqI`Z!Ni3dO9u(oW7TU)v+uF2HW5u3_ji!ikqB(kqXPm$isNCye49Zu4E z2ZQ(7#1P!n(&6=N$8WWlz181No$k0|I|R*?!`9NF6w2D;#unT9BHylzE&FKP*z$gO zkajzit~$cnvWGIa^x>D%O&uN8YiM%{V~9=CWm}m`I;;R!*@3gHFt~8xPr9CHNtS~6 zLQjf^+`oa`dA{MZfJd6^l)+_>x54E=C?f0+#FdVp*w&Ce3AdN*NxCw+m$9|gz0i0f zHX^OGh$uJ}S=V0JT9;kS1G(oBh2Y!BGbMjWpu^hUl&D zU*BOZ&xYs4o?mytUQvs$TSLlE=NEDTlI8cHwYAp=Bk;I91%}0ZX z(@3is@bxLsfNrHT9!+kh4cWHs@j$a{pCD%&S(OWdjg11)^C(oN!ONuMY;3S1^t#yCfD%l-Q*3NN3x1B%?Tmws zZHTk6f#STpP&&lnLHUQ14fss+W@Mv8u`n^R!8)e(Vq~MBf^*-DY-BLUlg6|cz8RTq zP51gc{zQq|PheyNiO8j1jBKD(rAkVXk?pf_M)rPsU}OXN&qQF6z!-{=*-vJfj>SUk z@QMs7!DMWb5m z%h-HuFLXbleb^uHjXFOOTN#ts8!tBY;~;d| zXr{g+s0U1ExaB)mcT_KW=Ha~qZb_E1V3^Pz?h`+dLWy@UHH0}|Bsl}dfOd8QZ-6}2 zZ6M)KQl(2(<04VDDNY`55i=CG+5$56nj*^kciYC z&=?rO5P{qSr?5Ql#MU`LZlot=%`wK@+&zqo!MxK~gqe@3LU<<-eZYL5>JC*OtpApF zDEs?S@%;X$y%w1AIqpse0Xe-EKr`l0qXE738*<+I*N1O^dg}e_e?R=5t>E8lVt@~u z26nX{2*~N6fGD6`nO^O0{f3;k{v$0E&aeNkedm3KzajsTCJH8qG57|#H;Z2j2oQK> zRuo=^rIK$*qYEn_3H7xR^oh!*D4)0xn3Gx1ebUC9P|zDG4Y<81CJc*{^bJU>WQR8e^&OFl#hZC5QP2cW9o!sDqcHx}->wSTZMpeboe zN(n|r392nF$0!ECB^y^&=QnY&P<2jAl}2&R&{ZNKaMvgeMbM{d8(5!2Q^p%mf+vbR z*sSoxWYQw8<>VKT4T%z6w&g7B@<6xi`#exn@nLxDfh0s6vz{5m3!a8*iDBs|W{Jel zg|aaWRZg&`4b)hIbDHHcSy70kE7%nxA$%B#lki5P<|>NOR5hl^sx!F~1v-f5I^a}P zT;yTN{{(Xz`x0bXZPHRH9qd zMKl&DMHMfkvpU3USEjWg32A_ZWgG#WF!*b;$1Aipv^7CI6iZ*&bv^`;iQGL1=6kfH1s&@=*BX)I*VDbZL68)zr8 z!3zF@#DFsMi8Z0}9-j>j$oH?UQpL#!I&{A%KtRrY&j}fu?E?ft&t&74i~>0yA=g_# z^pB7W-~FxMkir0E6nv zd?ztG?gJ!`C;;j&y#o+Zmw5$plQZB0Iqm9`_6r0TwEs1hhN*+kQa5o*+}>yy5{7_-J>X8uq-F%%jJGyj;NPv9ENIEJ@f)n>k5ZM3o=McJm|3;BRI0GRuAEe<5Tygqbf?!dW*D|A6*`28 zG$?CkALuM^#vT@|mWTp#eTZ^pR;aewA~lYMN(W2HWMmeib{EQ$;-^t^cxv6Meu*+l zTBmAVLbI$73$DU2A48V5RAtuv0MfPXlW5Jt60a%>iIP-Hr7czS6&abh`=*1cUSU-~ zm5fkCY}doi5B37G=J1Dwz884G4BCSK6_)SQUPGjMinxI!a18M zi}f|>{y-LPV^lWRf%Rb=TF z#T-~?bf{qtHu4%eM<;>_0<$`5NFo>soDVH}+NnYdH9Fo<9a_+3aLYVU-U!*Q^!yU1 z7m{qjAM`?IO_J&zDeMqB??pv=$2j-I$2|Ua{kc-=pi%;SWc42K0bsr!e`q*IltG*Q z6~}_=(%jS^$EL!jFhZ{%WX>TMQA75~N5~;Ii50FEC-hRtV(Nz^o+2m(KM1Bk@ zJJZXY{6xvPLw-sE-Uan3Nc3g?qi9P>o+7)cPf184JCK5GWPH)7PXUsFmTc-%GBU!P z^pq?QX^P2{LiA+lh!c$Nq8oDO+a)p^Pav}%tRTLC4ey8e6r`z@9K@%<+|_CjpFP~f zXG5I$0N-Hm3F5<&f+}#b-zX$+L3~*JPnq=U@}<&!hxnNMt;B67K8583(xxu^nrz}j z3}9+{JdxRXFX#^|Gxl-OAKQA=VF>cGPsZub``P_bsX1h1pqd^VHT~THt*TnmZL3Z14apHA0$4y@3}uMLp^2VjeOQ5I8lDK-k!h(sa4r_W{d( z%Jl?FfX#EGU{=(XYmBZc=!pc@4b;eN)y5d#4DV~gxT=IQGF3CN4DJO;1#@bfGSdJz zQHU{)u%QqomEC zjWB>M(axkQWjL)EvaA_h0q23ma5R{&(6g@~G$_FUV3Lq77g`G@Z?MN2euY^*Q22rD zg^dO!LeHT$8q2JL0wlI4=d}k=^qqCFFM2|kRgnjDsF?cR%mpz;9d90x9(gxuh(`S z$ensyyq{=Xycl17BsLcr6Bv@bXa|`@AaH32?p-m#1xn{dGm2O7Lx_JNJxZ#I1c^}S z(wkTPVppvKOk1qc=Q!+R<#1_p%xWpo5<;k?iH2?;yi`pOp=8t(!@l7M%S1a$<7z&2`{e=3p&f-EtVF6U3-c; zQ2$zFT|~fKRkI&eG;s91(y01R0f6Y0ye25A*!MeG^SXI<9+&3%cSB$-d8Q~C%PNGR zReD~x`3#V$!=5q(5wciTG7gEE|J1G@)JB7p$z?WDWt1UP)kbEzd3`=SFe>}p6$q}N zChKAAPrNWCd7fFY82yi#4&CBwDGoW}-uniqAjk8toI8NHdVe!h zBp`f>HF(koz<#HqeroyziQoSIH5*OQi_07tbwebhRumD&MRXapqU!B4uB&Q%xk;v6 zD%DfS!9oPBrrwaEZ6Vd@EM2Sn3AoB=YY-u>MOAo?kXm7*Do0MOMOBPKPOUI_!Ys78 zL50x?wm8YD6<3c{J|(B_@s?9J#90zQ(6^Y%UqEH;kW(wz3zTh_Q!Cg{&s$Kf5Cy=7 zx1egvWUsGatF{fSKpJefLVO(UV$78vAJ-F^zOoQhx$|=zLDde2*_I*9RRk2k{NsXZ zg+m#YoWwxYh+>D_CA*oi#L(k!x`>t%pNfcP^dLpxG zW=N{67lr~Go11g*@#`+C?z3@G_5Jiz&IFtXEa{MefH)aoa?P=nRd^o9Z7Hji3AV0U zAym|3DT^vg7a4$grq1gL#Lpi~Sw+y^x-Dh3s}|KJ127xZV=1esHQaAYS%s0QZA)22 z>>9E-HXf z(7cUh6$Pu?CIUV>G{6Bt0+8rBkEN`_COK|PnIWkx=RpEG-AS7Sw3StkZj%56rLAKr ztB6$Y$1=9>$sqwa{(e31Pz>D^0B-Pp+sZ1!7wA=S3J~WK6yWXTL;(iR`jX%Ras(mP z@|yJn_n0Je17$R+0|$ayKF^X2*gIpXd6Y&1p01zwJ=zdIlPV0A#k zrF|eUW~$?I@itB%y=qajYSaKOHC+> zvO>~f0!%i9u(O#0!{9FIk#)4%+>2$d9Oxdp1~3wkE$ksInzYW2ayUR--Jv$q5N}}X zZ{m%3p}I1NMmkI+L^??@2_MELv4#l%*FJ*cd;nbgDgX+oRK=jX4`Y%tF;f{g941`l zFyk`983OTx)xsBbM%QPVg$VAu72XDkg@UA1Vph6J1AWHBlkx9I2sZuT3QpWpVmep#)He z18J%%5O00|`p&oKv@;AGwQC;ZOi1-?x*jZoj1cHHm5RNI0NMtXq};KY<-hiFkeD>k_r>hQkDm0T8c zO3bef2-3Y1yB3nf*a{f~7t!?07r#ulJedOSitIc8q9e9iJ#0)9>|aF46rFGv4*E+-Vop{BrTYr zX?5dgVU2^xOO$<<%z7=b11UIY&Cp{fpfj(H4Logd(+fKqOLd(mP@g`*8fEuqXfGG+ zzbmK|iZ{SY3s#O&r4tT)I|yRuaDAu(aU$=96J!&t`8f-GHn z3?MV)?EXas;p8dr9O|1t>JR+Lg^?5%Y>-jawhZA4Np5i?DKMe6q^3MD-s3VNYr)N= zMqtSaXHv0C81`u#N5$`l`a*WEYECTwWDw*EDdZ4d1Bi@9P8nDy{|SmEp@JaY#kwd( zVRW)0A%S)AtV^C%(}%%U4(T-&LWq(YG~}nO*_w9FYf#XBf*ca{Cd$M!g#i)-!{5W4~iX1O;S_x&CP+L%Hgk3k%P^fo7PN(LJ`X$X< z{|K!nV+)@y>`1FJ52YZyoOC&(EF^J7 z)C>0GC4ee)vdj}}OSTZ_Hz>MH8M8hZ{J*XYy za-XU_XYVey$9jB++0hDThqhB?$?L$fp#?UM%pV80TLSPa=o*4(-7b&bCrE`-Tg!RL z1mqMS;a8*hK7W}gT^XudH9J-~sr07aE2u0NFs@Y^(&4lhGiP{(tPh@gamhcNVOqtWl69o>j6jXW?33!bg@7q?12=?ezjtn?+ot zqc4#{$se_Q?{g_m(MwSp1Vs>l=0z12kqMa8K@Sf8q-4!bZdRZ!i7>N71tVRZ8jjQz zyq)Lr?|@rSG6W7VH!v%kuDC4_1pXl}EfPWrsT6G#R>bc>Z!YW@Nwo@DEorF90s>4;Wx38wtWWeR8FUPKse%0h@=De zmNwP(crGjG0(_zmoSJ;ASH_b0WgWc@MGe)Y(=%>L`dVP*$@++raZHwAo**E0j_?Dm z?6X7F0`_4Y^sy5%80!eBWz>K`XSgAq3Oz1`#+kNfNUprT@zWWUNt@@>v$OO{Rk4JO z)MlYTXV+*2Kb%d-D7d}ywNZJZRcOC9lfkdb^7IX7xT`X5k^T#fcg#okjt9r6+wO$T z&o-kZ*FJsNVun(vh#}0`&k*zTg+v(@)zXb<89SzZaAeHgNDQlX5@8XkhWZCZD4cjG z@G)qWzfr_&Kg%I}osLKF(ZL0xa^Swz}_J;aReaEkU$uOh*;_rQVMLh$QqvcGh`-S_3N#X zNc_*2+0=85>(|MZ+ciN3yY*`gr6}BRFSBG158XS#KD_1HtO(pa8=9e~&U@1{3huXZ z9Sn&K^BCgrA}o5JZ*FVq6aob@YTV^CX#rIpk?ngqAxpdv2gib496Z@8>K9sw%Z(_o#U`mS1nm{gq`};a4 zrjDlT$|u-|FtYN{ zIiya(skKSr?41Eehg`y##T0^|sI-=?_Jis+CXyY>+*_kL=umG~L+Uq$M_1ThZYI!@ zdo+Vjpi)<5q(kr$1d8>W-N;px4@aVJ2u|nCv}laN83bP|tbvs-&WE%ll;1ksF|&qM zx;Q8VCj4=y_N^BU5m8TPz3*$Ppd3ktC!G z*ijmDK3o8SsRfa3M@0E;eEHXgg_`vD7laA8NZrVyNsWp3KLP(n`YoqJd8kd5mVJk4 z4IP&kxtL1bV}Ta9pVlMY3US@5yD^9+8*Epa%v52GRvCl(NHPW`Y4+&DL1U2DkxKj^ z-WqOZf-&ex3~3%)DK})Qii;-^g|}rfQa(9#hB2tX!p+GOzn(`k1o5Om4$?TG+*61V zy@u4yi0wzW9_FC@FpA%$PMCvwp*e_Fe3^p^Z8^xjp~i(sUg)P;9k0oO?N1CyZ(f-m zfdULT@1f?V^txgyxb;)eXmb)^Imq{9p+IY2JHI}0JQPG+$vN6 zDQr~XW+6gqSE(DCg@y-|vUVHILU3VVZ%JelLLZWwg~$bI7J?3lk{w;Nf4WU-xvrGh zn;3dGVgfm37@Z?dT}&)3v*eMpi|NYg;MT> zfVCM z=FAdvXSmP07suEap4k$HSJZ~%#;#~CIeJqL>B?e%mCdP_wp!sMNLcNkcyVON-suB3jlYHBuS;}f2|cP)4VEJ0B3Km_9Gk^_ zc~qh_2#Vn)$VaO{hI;`kmm{3wZBn;&xp7I_mxAv}Ks#-XxTVXdXG~$rtu(W+wiJw$DaDmZ(rtJqyt**cmbi)=tF@}v|9i7Jy37o{@U9gyB+s6lic zFKLI%kx^mGDWNHdGBiNQl*$MfGQ%wU3cEYRH5$xWvyaNCjDC=Un;V6)%tXj-P`$3s z@P<-Ug^`Ny)UU(d$Y+vj6Ba~ON|{G86MhTqiI2b*1eS;bMoab{w@Sl{M)tzeM2VSC ze*Xt-Tp;kC8wHI&%So7E-4q07Uj~Ug(;hV<;Jed^(PXYoN&%+%ff*$Q4LxP&0AcFP zNlV)I!4R^cWUnFPM`G&(<|Jt^dSNDt5uxIiB=ls!BQm7W$U^1Amg}r`^r0vhc#o=# zH$xreAIboP%qH{AawRD_=O7K^|p# z1K#2-7{+u~SvFCnO)sJUq-~(9pR`{QXn5#+QAS*&oj%)j)ru@Z$U2{K9i{BB?}A@h z1`qT{Xxhj_iG=FCnL3m0)8;3%v#|Ja6?r# zJX8IAgUMyqkslW$%q-v6FJ?&_flM^cP&4`@j*I7JmMAM1U(Reku~~Ov9`1B0+}V3Z zK9o2$wt)7HR4xgDrV3T+aw!5g4>lX3EhUYoyQQaxG}0WB-HW9h-x7rB0|Zexw3Y3* z(4C^r>&wM!4WD19$jPIK85W>OyH`PHZ=2Uj#Vqo*8}fPQYsW}>`?aZgu`tlt_l&?; z#c79L1x0(@$43j%Xx9;ENRP4-IvVggJvXY*M8uy8bdnWnUMNQs5d+}@Ei)9xQZLM< ziHN8Y$W0RwqkiH7&_=Y{bxCL=s{Oi12}LhJllNt#k%-U4g`|;a)$7s#i9mM0(n`cM z>$umn64iQLeOie|y{H4NMEr6P5E_c+O=M^&qFE>iQA*ELZe9>88j4_=*#wP-BE}vD z(W9Ygwu>;*QpB*PAfB=m)r-K=RHRxGn+P|W`GZW;P{gtZLCPU?PwdVn_YhiXOA3zA zsM_RYm>7%W8vX7kPHU@9v74mlyhH77G| zf>pAv9#DI;QwUQ_cA|9bL^RcGwhTK_MfB!o-6&@{>&4xnQ#Hg3ZUKNnFfe{?At7ud zN02!7lMpswrYNjI6#@xpsfObW!$+^?R&k|dM zIsXjHPfJ9M{#TV}TC^lV)@~}()#Pu7D}*)GV*GgJ?hWx6IM(^1nQ72!zkd_arrcRo$|TPgWBOnpe%OY$Wq zw7yL&46#%>GJzne{05!airYcC1H|^DKLSSG=QLSOtDtHy4tQ45Z);19$#bl;DvC8N6<;gJvSYC1jQ)MfOZLF=LC50 zLvFxD1Ol*ce1`al9r_JnX=;UWjsE`uId5eN&L1HAO!r&AAqh_T^5fTkLC#x0SEZFA zVIbWrb-pyWQl+eqYL zYS`mCbuSMj)3nVmJdB%Jl+;I-xfn)vFIbk8?B#(ol!+1zB#d>;j9h^q1hK!W?4{7L z!j9Md6_viqljyVLR)IG77@NDq5aWp^CdDtnEWl_?7+fGD@HY@wmQ)`IB7Kt}Zvq!H z6X@AQ0^)=F&4sfSnzH~FjtLBa8z{eiAP6g*H5FaMjroE)g%Tf;DstDf`>kzlbMY5dOthWIU9;XyQp12 z4sn}M4n6=5xmhZ+{t2=P(AzJG0wF$(Tvrrm51j%b=0?ssQlNqwxA`JKhWk}vdLlpt z`H?JDCh}6yOgy!V07bQ?^8~hY(;xA?e$gMBix-_F{Sj4JoBjl^KJ*9wwTVxG|U0$bxJ^f1>=K z(;tfT=}?z*QQAIF1-tJj9);Tk{jseT_67an-m@s5I|%pLi2l5vp30mdER35dVgK(1 zX&!-EyiMK*$j(bCUc8=nV9J5T2MTkvAy%oxNLM#SuOU^~?QN)<5@jk!ci61@8MA;B z)B4U6m4y@bl|nuim9&!8<-8z>f&9A`Q3yD9rmn5DX9+ea+^G6WSv|jqgQ5DeCS8z* z7}w#&1vg~qg2xv?B1p#kH!kWlNye1FgkXh5A0R62G3_xek9+P))r%0fO(79?QC!Aj zT(zH~v4#z@n!fS+mV2*Hq!FWpP&)eZ%oZMZo281X*fNonGm&sytRf z1~P-z)k2Ka6j%zsC;2JD1^GfxQvDH~L5yi~bt`jAVeec=W-K`qVe*CE@OQGTC375K zj0NP*Rmo6TC0ET{Q@)Y1-yqrwN>x(FzEOMU_MMALWBUn}+uL72_T5T114QnkWO9Xj zp!A(;fTOK3kCSx|A;Ib=k^(4#aKIe5B0`2y^4PSjMjQoob0`^41?*=fTTo*m4#&7X z(uxlxv)>S-VTh5kwU?rt55w`S9wwX-OVEz4+Gtq;9ZzTT6Isx!+>ui^%iX0AH(1|q zsLXElR4Eqgiy;w`J*oBs2tXuLtE_NVssi{);+0Qv4(u3GO zM5Q2Z^6yHBvKd3Bc5#>KI<4*x;I>0ATfzjb5DvL<>-%M}?%R)fwfwf2fNY`feG9ZN zFf@@hAO;Z;bOl~RZYZ+ENa0~_sg5{6p!F0T;$%w7dK^oX+3*Kmo+cj9#S3A|V?$0T@@^e0#)ZpRS0clRh`u?@kS9X$I4JZ1rd3;NmzJJ*H~E|d?O$ek_*2us-gf` z3#25;zVch)jXWeurlFd>K1=63m8l+=wXZ%N?BYjV(B!mlqo?g$mN5{*2KK2e2{c}a zer1nK5Zx%SYh{*4Y);sg{2MgIvKHG)GSwmOx&S%6u?P!Ky#3GhnA#yM?Np+UfwPOWzfRx=4uOn0574BbdM8T>r_QviD@#(8)+xGR&`+3cF&S#Z6+5WY)71adBQA za{WdjZLw5H40#==^H2S~6qjkIZ?^xS@*#QSJsgK&`kN%g@$PXdvV9&1D@wc=+qPUt z03%#+4OViw5l)~rL?u{C1XhFsNdaVmDUdNLULj%EM?tS!#9pX-apdRackf8paL%Ml!p3>a zLgpVxQ#05?Je*3bL{ze9#9W$_OWe560dNs_l~*50zpVrm9w!EbrG{&mya+sB1$rSYf}_irTPL zR147n<^6i|%)CcW)OKt26}P#kYl|z?g3HKQVKnc~j9I6%C(SC;7=|}0W4NeDHVpMVcew`H@vhJDSY{O zX)AmLv{cBZcgErL+7S2BM%BCU((d2fUfK#%c)Ca?BERY0lb5z4X^@^ochW|!z>rsJ zQ{lzfr3eeBnOVVlh$U+ z2Fl^2WhKn<3LkAn56#N4`)F%rRi9V*Xe$(7N?LT&RtB=%ep+VcF-by>+FF%E5RTf4 z@+!Pn;izRv!0wJ%mVoRkH{ovB3hkYCx^UE1Xuf1>;i%n^v-UTP{bpIncrP5a75M^m z0*5a$N*D&DBKr9FX<6`a-hSH3BGhBEj(d4ilpY64u+eiDpQz8OLO1X^g ze-Gqbc|=py^#fuEa4DR1sH2j$b3W1oHvvF~z&!UK@i$Zg{r=D59>IP8Co;*;^+#L) zyM_4m-{ZZT0g3C+LSp4y|MVZyLm~603fH5w^alH@eo|G$pFqP5=h9!+sNhk>|PnC|^F# z-L9zauuf10DBma^>Jhg;AZO)osLI>F-`lr;)b2`O-2TzC2({n-F}%^9Uw;%9V~EAR z{=*0&#b>|%$k0*CL0$iSvithaN4}f5{)oaOHu(LI@rAMhaSDK2Ly1Nd011zDYHtbv zgp)2K5`eBs^eQJuseVZljdFxWTMPt7mxB+OwMb8eocUK;`}lhgxG( z@z=3fx0Kz*A(vWXxvS$+JL7Pv9f+(K{6clRdgf0|^33g0Ye{jR;ZkeRlqihLrPg43 z;YAIXT9hyi`+s{_5O<5#+^BZzHx>N~FX{DIVbrD)tQJDP%HiaHVze?zvO`~bJ(i%*5G*?Km zZ`5PgD_m(UDIe&#(i*arX)KT{t$`oVvJ)gB#^Fjk5V_L!7u=P$f8!!d63J-Z;uLB6 zlOwHx^v|OxVG-?77=`E}vu}?dZJ*V)1UA+%I*^7ie8tSt64+4ZfpTW}(HfkT*)4%6 zURr#o-H+DL0jb}9w1&tJ?6yC=G|IM_Pld zKs`(jn#R5-lw*X!dmN6m1Cb-Gp}aHkQI52R8dJ30gd>e}qQOj#w1zFt$C1{sd?oO^ zBaO|><(_!dWqvB9)~y#U@=feVdUY~YMCI1`-4v!1vS8lQ&E=ZRJHO-OQHaE^uN zpna?Va-r~Jv{^?v6}Z<~iWe6&lvwq@6;+ zH4WJnxH9WI{{FCJ8~Qe@5i{>41>dPG*)~yio6sKs0sJ@eU#^6y8KYUz9RlJEM}}b6;~w3N#f+& z^?(up>;oPuJyl51%SiF){q{|jaoh*h*dXHV+!Xk{RDa?kumRabtH5DB%MXa6hXX?A z9P%^$_EHRD`Kp>_45MR=rKuu{3F5!5H=Sed*e@8Cy1LLY`BJ^(Fv6AkE85&<)}vt@7roF~xvX>^cU602(VL{*tQ;5b)Ct=` zJ7j?8(a$NW_{1Ufe}0`aH+gS+0lTJ5;0ngP_T4(^NRRkluBQHXv zNfG5sPrN+cJ32sqAa<7FLA>z!u?jTnt|ADy=uwliij*gw7=IJP~!y zne0Qq4+O=fsi8kq#bW&DY`#Oje;tQH!jb~e&;8txa~liGXMX_1r%U$i_TLa#y_0I$ zHSzEdkjE>-owt5L4#pt)`NuLgWaHlZs)ECMhcK*<{Wj!8Pe!qbPpAf3mhCxmmj9AzDS+AlJ57A z)CS>)8V@hv45|bMG>YyHvT^FBZ45u0O6D?cSIt1)db5iy#PC?BZr9 z(>nN$?ibp8pif)V^&5+bJ=8@zvwVHSFHY57>56VfJJ{hBToisZGGp+Ke^GcUNE=fj zU)5QPai6Si&o>;B#XjOUQBa0WW_%5PFn@j>m4{DyEz^TQ0XgV06_|8EXxhz}vS5($ zb##S->T9I%(iI9if}~4TC@@*Gu7Fg9vRcR^R22$}!Hi2&h_J#liTWsp6iF;X6HD6)iP zj7?DoJz$hzTRLONfA_;ETW|^CfWNno<&;Oh77d;*zJ^{GR1d zsf2@?8e`?Y(*1<*M0_Fk>ikCRX3Qcs8?!_U+@GhRushajs~1h%kfG`?2qCGe$nybG zqZXkz<~6d-=wODOTsIE}ZcwCi^H6w(>U2E8QY1qiYpc3TOEFWw%*vSX{r%dK`UOGm z=a_lvv?+8Cr%AqlJd28C7ye*nnPGN5W#QaX-6!h-ILdX#19!#vGkl5!@eMfyvnmGV z0|Y85i@Y6(ifEm+qV5iUhcQtZ;Q{K8i!KoDqBz`fTdy^&8Tm`A{E~x&@qbJmMc@x1H!_J|oO9z~d zc|$z0fTniBtjtsBC`CsG<~Mh5f?yD4Q#!^GQc!HLebiM$wk8i|JfFL%eU=vwuS6~NAQ?I24wv;YL{)!H^ zU7U9C&qFg>yw7_a)(JMWg~;L$x+tay1MS^_HCtX#AU&499V z?xN5z8PXUK#wDn*6G#q&$NG|;$f<>|`H&M7UuuW7*Y3-N`3u1%P^YKU*GFBX1EQb! zR$u97e1bS9z90;qWZ%rLG;uYtu3+-CuQfO2u;Dee?Mgcs8)6g33#~~u4>j%c^5^VV zEYlsrMhn|htG$5>qY=1y#MK&wruGvk!HXd!3T`)rGz7t`UvctI5^6K;@sC8|{CdBJ zWaW607HniL@n!~~KOVi8rI*#Ba66~aSf2-XDxfiR`^v^W*j%njrZEh7oT^yQzhU=R zKkuPJ9MG++_DD0a5+ zJM5WN=KIaSu{_C+{zQlJzdzuit^A2Dr1u>hymh|4L)G!$_TT$K8zm4dB<6sG#5{cK zTw(^VV@upEF@sA`d2*2%{B>Py8H(T>_f4CsHoKpgv6C(`!-lPm2$309@0AV%L%skx zvvZ3WACY-O{QQtXMA_0s<|)PP5}9XLbKj7ep^nZYGNVrlrf@`N*aDw&L}qBGsjwVM6Te^|F05=rtgGBw0w(J(JtHUs&dcGX z2Fq_B+pgUZ96=*o*tHu1nk_*bW1Z<{2$ zyQ{1(Aq{z486B;K`H~0& z9gn0dL4Z@UNzW04I7Y6cZZ8cr<|eH|Zcb;^9UJ^qX5BJ4k-E2}#)ke@#l_5}BgtLz zS7YcfL&Yd|N|`!iBq8br2OzgL2`#7yEoR;EC%O#u5nGm~B2S=s>SmAuCGB5%R1VzR z3nAcb4c)gylF_ncrhT;$q`u~LwfAoBtNp&eKlc1k-Z-m6dC_ii9Fnl-5^M#5vY|~B z#|PIA)a<0eG(kG44&e<+rfTRn0;_$?5Zlm&a>+Gl#MXOoWr(XJ74qZ5<_`{yVjG=4 z$R;$8@wqqwQA;U)fhHBT>a%f{*K$s&jW(&F(2zyT8WCT9kw;Og3g|ortcG5lyzY-5 zi}wV8&cSHQ!QSOQyiUm>-@i`8g9gj=N_g(*YP9zC%b(IvCK@pu?t^JCzR9gCv1pG& zINlKWc@Tex;6PdpM9vzDFkxzrj`?N}QxoNmoq^MqHf8RwI@EU(=jhb(#k zQY08SDHAuHf(^NcB7yEUv`IWNGRU#mP-vy4?Rb1YG0MA$!8IcF-~Z?3i~sX~`k$0a zZpcb!(-sEI_oOlhl#19*1XYqd3qHRnru4+eq){;U#Y=3jC26QWDt7+%(!bH(iwiD|p3V5*shH~W^ zs;?9r>xLjMJ$tyT5%~TQvZA>#8c3r4!v{#bC9_2T1o2=0{xzSUTb~xJB`?}J2ag;q z1&Lq|`96@8y-`oR^b4@x`Pc6ce|YBo%YQ%o*1x&y8PzgiVno8iWPBH*spz$wRb8nv zd(y$LAcYn6fERV(%0!A+_BM9*5o#70Hxs6DAOEozx{UApiAK7`p9Lj^I)%hLh?9)8 zgqF=0n%bg3^MhxpsQehmu)%J?;9Rhnofx83)IzNh}qsJXhh|Mny zDP^bfPrZNr?}y*}cWEUIMsS*zM@=$2@CujKA>V?)FkXtMz4k}l_f&Hwy*dki0TcTLI#WF|zkq%R{YEpL?X&4EkF}~4AgU=J=af(Bi*ufm(3Er5pB^TKzJE#HbUqSIQ z)xCp;;k?c?7i}&)P(%L?@<5*AKZ)e5dCv(J&UHUPcA^NRo{CfLJf&Q97%$t}kZ(z( zB%_IGG(9QrvO;MxNy^5`;`cGWk!Z9zPv}k+m1o_<;+37=?wnH>2>8!3yaMT&hC@qS z6&XfF`RR`&LWj&*Ji-zckIH9APm0q3>BEiv4JeNjJtOu}RY8U)aYQ|e%%vr| zDK%#0INQeqIh&y`APu|IB^19=VZrF(@xy_lhUb~(8K>o?<2FRa2=*7Il5CmkjSZhN z05c+!ovIC@-nJ;NNxvjcqMvp6n31@K+UY!Dc)Ey~ExO~{r;~m|m3MtJVXsDEu)WzR zHZ@=G$Dv$y)HFypp#omN69qhH=!!ly)+%WIigQZAy)5i$tVT7MvP@SjK2r4XV6&_ zV%!iE*&x2H#^$8xf4OqL9-)UU^-mD}61p`aUZZ{hOj);~KcaNTydDAD4U$R#I5%n% zoOc2ekGw6>n~xMt80DDqVE++^bQLv#TGMo(A0U0G^%go>t=c|9_FE997&7$>;=lg= zYd&HX;NG=eliZN~bCqeE^CKjF4q6g*?hg>uB7U)+oncG<0Ko2fIKRL10Rjz)Kb_gW z>;oW{^}Z$rxCL?F3*C^jEZnM9F9^b`661J=H%r^M=RAXAdv$(->a^ z8#%2I@d!+drQHid)Z^^sdTT?@GjHqMH*on=t@#aPY*tLUv-;t^bQCtO^=wZE86@(e z-opz}-gKD2=&L}_LhcnzXLcQ7KGse(RzgBn8~Fhnh2RCGic{5+HLb7WVOh+Y-orfP zliPqq2Hs)S6+W@*9GmE3OP?W47C*?FjesG$^PPR&vBgV5K3r!{-PndD6cHU{u^TDg zw4tdu3=#>*3flB29!6d$EDq)mC>ctQQ$ZVaZxvt@mv*|$8&JFKV%INA#hac>mVVUwhu%$7UpdMFX3zQPOtV&o? zY98Cyh*e0&)Pe;Sxt}1GVgoKD}xBB!8(XRFE(Uf5qROWUB4mmsey*l z`7^}nAb4fX`2%2+!Trt$h|@v10LNUP06_`f*TjWRV$Hl3x*=y-K>vDE2b5;27neYJ z>s~!7(?ki>6{bu?J33H>-4A&Vs%p0oz>ErA2zIsGi8|7}I`CIhbX&Cb*S&QMHVq*Q zs}Wpd*IEuleP)sFBZN<^_JV{UAu#Cr&sjap^jL_a#ki?DDO%oTmH}N&Ry;JlTll8a z2(-MTaUC9N+W}O_PG0qsQtncp*2)3_$^Jh5eH8>jk#-88D4xk5Kp};8a{_E8`O<+v z6=Jxl${E`cL2u_XgLR5=WR09b^>|U~+f;PL?=qTf(qGa=i6)+am#m4n*@B=|6@Fno zvXZc?Xz``n6=H{8@|wl;2jtWj)(Tx-iUXZV7t4AI@_j*KE$;|O??gNWLNr0{pf+ZO zq!NM^XT_unfGy$4IXeJ`Qby~^?XPTKNGw*TV${ag*(VzF(9c?wLJS6H?K&;;(M|L} zSe_Yga*daC)B{m%L42W63My=HgWp_?HHXQwa#lm?2K%Mi14hTj6hYIfN{|l*=uR-N zendT#jlT)Zq?h`PuS3`*=zV)-5_yE6jCWly8zfe0o*Tlpze$nms_Klkzl(ipF9>SR zJ?VN2S#u@-_{<|?e#E*6&PDne1Vx%?lEy-Sj1s}2R$f1{`o+}QkK z7#_n7N4SyIanG~&ULOG`GwryoDwMDfUm*!;32tMYtwJ=;_qP_U0IKlyy@du!RJB_$ z-;_N=2`_?u{7Tt9Oafm1jj~$-qI3L0*qi-(Z`?(2+%rLM7n#xiX2F}%-XZfT>`*3A zu@VrJa+37=Zfusx%tn(VRYDZrVh!SjCm8j~6U0{%5SL(bft$N>($dIJCu-vTCm`&1 zzH%XSCuI+hB~-7=KI!^%ql$c5H#!yZ`!vEN*kp;+-04F2ma9N*JKvuZ99Vca3Q?3T zj50fzONM1eq)ev2IOWCk#%@tQ7A`O1Lj6L4b5r{uAhSC@EB?=pB>b#lxiNKJKO-s8 zH*(5am3R+KnRz|l;v=V!#7xnsU%4X^V9$6n2%|9p^h|2S(tVfkZbYVD2tARINPs~b zuXL6GIM!T1UBIf3_*+iuS~RpnI6@_q{1t(W1d0|S-CHi|y>PKok~b=Y4V2$FEh4EC ztNOk0-ZGtMIeetQO)-JpuD~hjX4z91yFR9PmzCz@-yi2fhXp3Eeyetya+VX`aCv=D zrUEcbNkv*gNHD1y_;yP$@5z<9-4aZK0*e{71e2;&;D&S8JUrE)+$r8*}wghu1 zl3)^Y)z7&lm;{p}WyO$SPOl`vB;*333L**S9oM5>6cWr!={jQC!3j39yagBz{1#vm za))8=EWxBIAH|ShIPQK)FbRQmH%H?qpId-QfOabN5@49Cz8wJuE4HPV1f!hFmR=HI z`4|Bu>E$hV^FE~-E_C2H!plqWS&{IPV8F7L zYYQ(4ukBPF;=WCIPEUDLI3L_Ql3w2OB!vH#UJ^ko*Op!qfDO6sl3w1j9s#%Xl8P>d zkY3IXm-KR#ExjCyq!;cK-e;0t-g5n?UcyU)IhCP#6kbv>$CL1q;E6NFCA_2}o)_l< z@Qry~<*sM9ExVk#+!yG#*%b?b7tpQ41mPTa1ZL&&D`kJWjw3X-#j05X6P@`t!Z|V@BXZ(q2kBxfD3>YRSg}CZ49iKF8CF@bp%C{AW8t8`1|4QH zUIH^cJj@O1rlXySySL19Rmi>P13`Qz`E@qTEI0(a>MfFiqP7I&#Lr>%>=3^frq zj;k>R3di-NT}F#cn6^^`dEd@NW1ec$PY7TMkJ+5)M(-k?D9nQ(jZd-1jt>Gobav}1 z_?W#8W!j|&h@;uz=$xmlv}ee_$UzrI5>|M`E)Aj53Ao}#GF2@NCqC0ZH&bngk-lq= zIx)N|UeC}2h4yp%W|rx_T)Yc2|ds1PL(G*N^QQwuX3o#M0%awvv#DGGN|JUf1Y z;SUvew0Gl>Wf4wdaLFxB9);r$2XKHIkZZL_s$C>hF`j*LD`?>{7wluODV061tzR`T zn&T42JdP|+g+BAl;qlPj%zzJ}JH=oI$?xn}Fl!VOF_LPZ)=jB{@)TcQ9{KqEq%cti z2vcq`KMA`H9wWFfeo*||SF4{Cv$OlRe^9PgpQF|7A|G)lD5vIb`=sUsJ7}^xZzx_tp1N}B84HS>>GmDt`a)&UHwh2h~UFgQZ zYfVs|T?x`|3ed6g-3o$JuOF1fh{J2X2zt>!D4*S-BPrsBR@1ds7rTf@bMP7dC_X(U zQ@G04k47G>fF`e14a(^OBCkFc6;AhOi)XmGEL{zBz{kLud8a9c@x8t1XI6oCiVzVP z7okn!@*?EtG^mEI4z!q(O1w)lp#A9|ZMJ*LPCR)ih3ax<0!1-J#)iE-=_$IU%V(!j z7K&(Z>Vz?TW)nZa7OTPp?M!z8Q2{VOXn@NFnBu)^+~i^lkGT4YEYH2g2=qy8M8bX` zY5)({VlY+qn9Qu8A150AEc4@RPNB)sBbQ!y3}7v0$Xt#xv|%I_W|&yTzc+wtDe5+{ z=_d4MBp627xCIBrj?ZM0Vv}DXb7UG;z_D5G%v0!T3w#|AVB$= zS2@%B$;E5xH+%h@RjU%d>wx6N_ry(s0j{zg1bsRn9*P7u6C`H|D_j=-99x(IEKgME>>s>Rq5Jsm z%MnGnyM&wv2%N)JzgQLv2z3LNDNA#J?1VQo-5c2eJUuCrm!oc3j=&Zd2a!AggxHS| z43upRNoXYwumK$P^XQ9O3Bo(e7JgA0N+Gx`G6;m$Da$uNEL)X4$*q_K`2u55V!0{^ zJeTgQltR++-p&@+l!ywyl#qm_p%=ah@f z1?9{Wpn0D9D`j^xWY}LQrxl`>`frqT0KWCdFztm&o32g<<@_A6IDaGTAEO`6`jwKB zZ9@P`Vcygq6!5!L?pD806fw&m7e3W5ls(jMqvB9IWG^bet7&OB1@ir%J4}0Q6Z}be zvO^DHH=$+o2c;>e5-4lqnn85F}wFrk7H!|Gg-K66{-+){eJ~ zPDhogcdW=}(pyP3IKw00tx*^@{|<_gNF8r6(=cfAu;Rl|*(Tubw-=gx;ck!IrF5x) zoX-YIj6#bq`Y;TYmC?c3gtEq@s~x}kB>#;c)OQ}ZK^3Vj@EcN02I8w_Os5Rm5nU~> zCPi56G7X$;Fg7AuVuLJ*GrI5TC;0c2q%yD%lqnaraCVRus>MKU_P?DnN86b{de>-4 z62HHI-yZi*>@~@BB{*wX6pHX|mEl|6n=|ENWQ^cDluFs5!;x3--*idpe(QXH#Tg^n zQMO1lD0aNZCYBrB%=pT2%5=<cSk-qdn|==V^YX z3nn#+@?c+-&;HPj4}s?MyrQCy$#95#TH&XYv$nFz*N;ZxKyd%3N`{@mNV1@u9w7O_ z2XBRX!i|P6a5&(EA#vArsshvqrarA#cvt!Q(a3|X%w~ZE>EbskUOzwQw=TvZHKp^$sN1yB zyS>z4+MrC^>1Iofo%%qhpXAs^f!-B)&xe;R23?E7WG2m`z590JOH;neJ)C6^C2k4F z)V3-vR+*S83|(jePE6}Zk$)(?&-Tj+r1WmU8EE*yR4=TYVLToOiMQJse3u;of%8g+rIhnxbxh_X`kvKK*=4N z&Uxa+xz8BMi&Pk%UcUH3*~e_s6*=p9GEI$%qXwjve!;$BpfrdS-u<`*Sb*^Yc@fLRx9aA*eIOYcKNz>|6o4X}Y^2h*WJ>SAu_ zeQ1D>#{hdD8bBL9?Hrn2-iPK;bZCIPOdGNf&FBo^K4%6$$~Rb_nb9P_$C)84bG^?D zamLa!{E44wB6^Z3BLl^%A7lVtzVS??BLi3@&ZmzI!I`f!bINgO zHpQogz)I&Q?^84Ewiw4|&};Y{8;q;3``Ey?-{v_s!yG@3&3O8KX1>j?&dgk0 zc9eaqGMcjA*CE0wKjWC;uAV+FTI5J#6!>n1O}x^_caq;M_whscoXqW;^4TA53m8bb z_4c(2^R+N6;$B4}C5901d-Yo@4R<}lea?b<_cWgy)T znPg+m@Ao&CUkay%^5~T@Gv02Sa|4OzEsmlO!s^ZXihv3pvEZK|1^``^sh@d?8Y1%j ze&WQzY6t~yEj`Q^0h4jmJZFks#~9L-kxR>gsaA~4P3go!t@LV{q9ko({euy>1)2j8+D(_Kc3 zJhuSS)J0RSVSMg9ZtUHz(H#K0u?|VFqHwU1-%a6kJnh^CK%5Df6R(-=8hf6hS$YpGVe> z{eyD)h!@v3f1{jMMF`}-P);Ym^~Y9Dr9yqh#G=f-TdPcpS+VBH$CX3rdYU3uYz=#5 zzN^4SK^yyN1gF{kOJ6^JJG5n4%S{Bp22j_KY360ifBx_PQ?(}3xe+$2^JeXgm;nWO zIH*?2N0&**|7>*wm_jlZNxgWK0h8L8oR1&n7N?epM?wQDcYwdowaeBj%erb*ITzy# z;OXyR_+sz`L}({IH)<@t^7SsGP(`*rT*y%-l!=s{O{xCo(i_Obd!oakn*bBf3S(qz zTEIlvxg+k7uVqQsLa)qJf;36BhN=q(8bo(AtIsr|Cw_XX+eA09CgyB2*{bd%?|-Zk zev(nEd`-ymN2g|*_?$+b+i5K$D8i&Rvde86d}mWSH5(cZQq?me?2bz?H{b(h+a23^ zHSC>%XL{soRNsc*PyJrHHNYeRvm+EV58+R(Cc6T$9hUEXt}xRYMGf5OS&4b5WA^2j z$!Y+YK87Ahkq7*(Ky=2Ml!c2$Tp)g(;Og~%4&gHB;XPFgE4 zikh@_!35nCqss6BP>K7#8GTBBwk_N99M%{-3d_E0Eg8Rm8C{bSmtEy2_Iyy<&@8)s ztJd?q2ynezx1Nvm>$Dx@uIJ!7G-4ZCkc~=q6u4rdoG2c4B{#3g1f97^odYgafX1C@ zsoac7)*ysS;RAwh?F13y(cwSEB{Dc3U;jQGgQp@ zJA=R10S^wIgsh}pN+aLuD^j>38XIt&IL$E>0Hr=3gN6P4qI9Mq;unbfMQb+nj%P@@ zwv7caQytZx;w2TM-DN?qvxO;@v%0?kjwQuchD+jfZUsJ*MM3MWO}oy#B+M;`+aP&H zx%d$g!1r_KJ7-eH;5fk`rI#XXA2@Ur!Wv{{OjG7)E<@p2qn9XWRSpaZh8CG6Ch_w3 zagC<|Jg7s+MyFQQ`IiWbrJz^Hpet@43V(ac^t9#Da2P7n?2`o~88y6A=3z8Kkk@zT z$JtL7=8Ig+(t`(_VxEHUJ`}-FpAYC}-9O>;$^B9(oC0@@<}E-FblvXUaWY=HNNd;J z0)e(96LZ}#_dqr)_9UIBATOGX4!lxg}c%M64y#Qehp zvWNrALNhC!fMdz}^ve>a9~w8Hv?|L}$-X*VzuMGY3jW3@-2TT7Gkw}b!VovE&$On5 zs}wvJ5!=_**{2{Kug%Ty<92E+N7eFdFgkwSM+bqqJs)uZ#tv>=rMEm~i6H;}?@-=D z@lf5S?;Dnb%3_t{xR3wJj5*od0o_~maE}SoZoT;nhD;!>sL|zB5?`3UnEeA@m0&M> z5zSt{Ei>P5;qRBdtBY)0K}j^;b|kbR4|$l5zE7bQbBF10PKBs(S9@K?wW+Z#tKYkN zJ&Ie18hax20bmBiy%rj*{VAR-wYn%BPxNt@^S0*%r7{BKe4#NChrdB7N+J(8OO?z) zA%uOTylMUsqc|J}y@K&oztX&qco6}hc zCbX>D4f&zt$Kq6~W#}Z?4MABsnq-myllVT`Gjm%)5%D^+(#9Ad^M@T`vR!DO7zHGt z34@cMO^qnLTx%P@6`&qb!bX41H$Wy9O{48i!U1AgPK;{GBb5ca*)URV`5f!m(9wPi zD-2_iGBB2xCGr{C-r6f@GtNP6O?eTa_iTsi_>kh0+c)<5^8eg<%fd2Z^>B0c0Ad1 zDorwtaqWsjm_%I64~%srvK(V5IZ3dBn%BTJ|{eZQ0zq|6wv8gMf7s%FV@0~?ScGSYz1 zXA~%-N7y_vFU8Yei_uYykNwi60g$p3OmJwR1|rGkHqrwjH#;1u*if&MrRA1HAD7(D zd3$Rc=E0h_-M0v4!d^TA^hDI>B&PwIkD5@w3AjBN*A_vC25^WXPa`1&AYJV z77d5wiLm&vk*-x6tG^G4=HU(h(K`(?N#R*w+QROU%qM3(%orH?{a~H60Y^N)9=dKQ z2bA%1%?|y>2f3w+m#X!SXM+l7lh?=5vu7DvXM_{1>}Q{+P*Fc3|4QF9ude0~$oiNz z9c4%SBmLjVZQH!*8I`3cC~B2Cxvl6fkv>J9$RvoCiNJkJSBz907{uMdqw-LvUlR= zLVw-|9uEfCi^bc$b&2YHJB{T-lnrdY7^`-H-aQef=rZ->`JAD;W+N({E@zW27Py93 z;8oZmx61-lA6rLO9Y-7OBsIM#6DWHR%@r=5Ej}iFf`C64?e=7Q633(Dt^`5aCGx-& zd-JeaagcqUN34;_fK&F9o$`fGxF(CWsP^~yOiJrOK8x=bk_p?D+)VJe((G@B$;O@q z@FbkV15}bn6%oIQ{xk~B;T@J8AmiCed2zDC$DH(Krw)lYy{t|x7?RxBVTzv*SG!%De5~UQ9!k6-@)&!t8n4D8HQ&gvJ%3}mhFR96?+viMWgj}I%5Q)-IpyxS>4Vmdu~wFc9whiU zk2jv_zF)xM$o)%+M5^9d%IKgk|UfKm^n` z;IgVC>`E^RFj7@luHUUT^cdU?4*1osz^k1)~VY2#Xh*7>7c zN66}l+-AF2IGBPulNjz-@1xtfOrs110Cb9Pb|!B7=^fr-^+n09-{U>s7HO77F^ZCy zmF|gWM#5n4$&oIslY>wVp$sYH%AywE3)Xv%*g)^MdCZ+#9s@R}+XD))Gp&G~px{n5 z;pbTMDs#SU(Xf}Fo*dT&i^x^eUWRX~EYeGthhdFp-gJIL{sd>Adt?=#FS6{+_l<0 zhI4Uh=6GWi>9cz!Q?BC~hWxYh_wTI*_!V@vm7|{}1vx64=)e*aCdH`W^|JiQ#7i;_ z-GuO_jw78I;FD2&0G6A2lX$lU@0G@DL5^7fX>vrgmu?ADlo`Sf8cGx5Z;RdFf^#yI zIo!+QI5cEtRY-Vq+ZTRiO&Xe#WeS`~w#M$@L+jY}jFfyi*Vn4FGn&CKf9 zo%%ua)Yft%Dhsy2b14}`P?f_r846BLR_?=tohE~#WjlYAUKlcwz$iICp z701rC0yUWWMkfUX$FW`y(Ey=rQQ)lY=qLE?MyrQZd5sl=Qo1zc9nR5k&&b@BLMSmq zNLin-RPnypLLl%=2_Ert)PqFTCAB|!4{=W;Ibz8LS7@+GK_c<`F3 zi823q(^HfP_Y8|}RP0UNS{g^|OFhN7(awD02CvE(rPp0>3=1^&0l@<||!Ap2`;BmTRe&8V>>{(+yP{txsM%V!gD>>T5 z0I9BTU(+H&)y=?SFqa?*pekn=x55%eOG-MF0wcL^0S;P%k(~J?PWAogGAOo=5TxJ< za~%lZO1n7Ia2;o0`V+hKjwb8d5j06~U72d+PKnZiWklJ%Wfxswkm`^<<6WS_hRge* zG;_;AC<8gX%{B&&bE|FIKEY#>7|>^=UdFU(%MzkQ+B>#yykt`t!9M%RWh$|qLpt$n ziG_^`;$ti|VdlkTv zcZCtBB*x5;%h5D`k=GEFiG?z*)olIp4IAoJ0mmSf8GhlY4rU7Xop}kG)R_Rlp)foq zIYgULeAA)dU<`8^QQJS$QrRVAfR*?peGoF{|Di82Hgf00jjp}e^y#qgq0f->+vDSK zavaL%{L^?Dn<0sVYa~`UI%a(d#Wfs7cs9A^Hz;FZLrPXXs$*=c{O{XdVzx8~_5y)~ z1vWLTZ=_EMDCc@`qDHaAk!o6FcnZ1V50hyIg>aa($|GtV%eM#Ws)DnJ1e~Zr+hDGJstej9B7#k+2F8whaD>V z27eFm0=<~K>WrZ=+8@NOu*Ic3V7X?pK5BkitCQSvwnzPTL5E%dDza~tEs`2*L4C^< zv|Npnlz@a1r00P+Cz_?v#0IBzn*ccl-EspyF?t8I^TvUkx?<;+(0^_^- zKF;mu!FI^Bt&4z3SKhhG`Gy=3^ej@)dJ)w-LCnVf zLX#+4I6I=-)-t^Vrw%|^0v#n{R5z>SQD-E~fvw!Zq4=;6o}|`c*A?ih$k5}fzek|@ zlYv7CL$3t1Bxjar8AI2fR~9#V3*45!0}?+Cn*9_JiKX3BDm04MJ}$gX(y2(oywYNz zJ(n1E3*#eycyhe8W+uA_GcxWeXkgQKsuu7Gri`l3g*_ER*-QN@DR2+`G%M3Qp;Dfo zHt2c;VlLVt9O0gya1GD-%s$PzSddf5x_a@Z*Mw#pL45?raL=H$SbJkdtzU6?f{MGS zch>4$@kv$b(?P1RUZU!Amy>O!5B$66=DfBTYZ+=RMXI-Fm+U-CgxvyuP$UtE z?g&3l@YGsW*eiH$^zIqLc#Ssvf!qhzsw@hh2jRX+FUvQ@L=kG|*~Mi=HVI}xZ3wFS z&);1?4@qFNt&rhTOS0{!#&~(ruPxa}B;sgos=@`18Cc3Wob}9JktfWV>nDvpA;Je6 zalZ14o}W272Iv&eRL%Pz%|L&lOo?}vFBzq&p>##-M+o-F)Vkk42J6Eo+t-}{N$~F7 zvmh^V7i5JSDewz^Di`Q4CMW^&OI_Oh3E6{jQw+^qHZ8yOwhWF8H{z|mV#UsnJrZG9 zl~kG2Cp#aPfMKuSN`Q`?QNQRk597T@x-Qv4j0)n+3P_1Q^Wjh~8)Q6}8fnA(pkLHw z0=ePPyv9bJZn~&j6|Yi7Qf!}uQ%SN}3wfG(J+_*7vhkpyQhOU89(Qf~igDFAs<((0 zPN-aorUx*>ehzyOV3mejB081xg6ikPs6RyZMYx7VrAEf$+4_Wsp`cjT6ZmxuR(u0GV1K$q7dz1zC@8d+aRB8 za_~_;L-lL5lW|P#e-=mNMiCAV- zC*HnQjkFusl{Di*H42PH5xkRD6dB>une=T#li#v111nFYDV~&mb%aXBx~4ygq*G(@ zCC}JO=YFfBPGzr6hl(r6&V${@GWUO^vz}-M%@m#zD^4L)TVFCGu0%V&Z&268cHHXj`1yvapfsM4Zwl z{VXRn7WQ^M^D5ZBCWrst@f|j@O1zU=Az4psJX482Zf2nfl-T=^SV1-VZHRB7@y>;- zj&sK~6s-j=dy48wycaWM?L>x*lslGrrCNZULBh;x$U=B2bgM)d43%HSnN{!fHsKAw zp1KMozIQVdGVaxZMqJa`K6`QTPup|EM|mie6{}jR#r*9qTwV2hZ-37}L`7KbQjFs~ z1MfN}M_7>V*_SsZ|fXc)OXFF z8X&SID^-P*l)eTc&#mdBBX>fS#0r_0lM&gOoWhh6Xemlw$e*0bLd;|KvY9&WUzQg1 ztj(;$W{=Z4t$;yW4sgUD(XDoBwJjv0@^MU$tl`FhGLxO5`(ZC z!l!Qg2a(e!L^vi%dE@y>T5?xBDA^Y5J@Rm)KV*%AM4q|= z%^LCRE0pFS!KJd88{7-~2wX4AR4I-+_%vC z43KSY+C|O4l4A`2#|jr^A4ri_3^)kz*wEuinqP!)jigi66S3nt!?D1dP@w$*Pp}St z;`SK#^6=0~b(|n58&Ly|Jm%cbt_1c}X;Ev#;%bf018umH0pZu!`KSyh_646%vY?GjU4bdBP1&?8}NCC z-D|pAq>_3eZw7SJRseZ1Rr0=RV>yQ3qt z{JdMoh;`viy=#_A=Ih+9ut%VQ0`z04X5Z~xGoY^B<`L+}pelyj@q@2BZTVZCh@Owv zjpKKwJ)TF;?;abQ;-u^-b)#>Vv#3h9+E9|$4iQVxm@JDXX~MoHVtqux?mCa>cuH{0 z+!ov)G;*=Y>NLYzhFQazRQP&wxtaQliy^$(Pq!5NFwH)G@2LQ91lk}a!n0#Hc|FJB z*I{zXCCHf3}o_eUP3cHRhuYN0!PE`2G!>g~4I-@q!?Me5$&g z6*!&xCHP#XmRhgT-B+9a@dnCsiJG=ST&)9R2W@9%{4vG-`wB=p>LuL|1va;Kb9oIK z8=s0XCuNX(@{!uWd)xw$+h&=gPz+VuFokzMggZ!qqiTEdrohq@P@*86aAK6<>6~W2 zbSR-ZAflBZAo(jyAu&wDg;T~}FQLr*C(>@ev3>6qkWH4hccWq;iX5fO7q}wR!vWQL zj1`vxo^UV;?ZpI zTtL~;Qa*Qxf%+=OFSFxrNWf5|cbP9r7R(p@qm2jNZQsq8I+!U~J$?VG2#+|wQacgo zVT|V|ks}w1-hJL$>VJfZ2|Z?(tU3(jP3>~y#ip!gH)T0vHW4Aw^9;XTh_ewET<7hk z=ii`EuYNB65wV}~gFSGdlo09)c!#VK6?jbdwjMd+qw_6nLDppa!*B$F{*8AL=2~G| zrDSm2q;s74d!E@u!ITYtdL%SsD|j1^E0qESNe6rk)fipKp||iXo<=YGmbFUL zht+|saoxjfeZaDh!~VmaP0iy;gFvO}_%kH1T4V4u#?=iP?+hb5<`u2SFIYE6zNpjd zy6c+`=05dcR4P^2Dr?8Hcgi`AtLgVvD8?E?rD+)lY4Fe81QQA3JHH5N1X+ftFHmi* z%m%Ab{ZVkSG=rtor*iza_lWR*(Tks@Qx>KARN|UEubnUT^w0P z&vugF-tK_!9X4o%w2wck>;Ir_L>J=kpMu?hkwD#Y>FBAhTCm;Zn@JQ*;7y-uU_(%a zhU>=W5m8&lgmdPW@;Lz268OEqdHc zJEt>ev76nG(Zp0H?qG=2a07)X4FD1HpT19mE#bbMU3PuUk*6Lts3p;gTfLFZOl}?y zE_tPhWGGu(85ebZV*eKKW)h{ipsO?OT?&J^i8q6M(e(>Db4iL>{xkIuyytv|k#aWL~fC#9J(>l7T=f~GQrC%5%}kC#LsZRGaaML z&_(xy>SxXcy5XrE3yy2aOEfy~)i^5+o>9t=YL0L4Iuisa?jYacus-Jmd~%@g$<9Q<^1CDT6n>&vtMZl4Q0!0LhL7h?x+`Zru)Ic+@` zQcER~hlmdKa_-|t`oes-5bD|F^5&-TGN&(TND!$KyR$2G!+{3$A5Ks7UHq zxOWkf!tq=~a)P%xl0qP>%5dFs1Pl_+}DM*xY7Dql}a#7ZrMNjhsjys?Q3dzCLY&>#wh7Vab-aQ#;e<9t_ghkt=@VZ3~021nw)NCY-Kov^#5VTHKE#oK`wF|xd zl(X_!z11o)>P*rVYpWo4GG=ND?Ouaol7Re70pX}V2u=h$4G>&dqY+KN(cZ$U<=8BB zJpjj2aZ27N6PGDIb%%=A(v|1zow%uEKP_$Iqr%!*XhbLxsWP!Wd0(Bie-%p5zYj#F zip6C``RTf(a#J+3+>*2&l8X|DuwUh^~;B5 z>MGBrQkK|dVk$Ji`BH68SMbnKzE~EL3y8V#cQHYt zet;^}Pc>OsV$z*97Qf$X$r^VHbU^xu4^%XXhb?*RU5_o|o?s7mZG|-_N})U!VS9cQ zL0J&W7bz=Ljz+d@Qkv*!6d)1w$5sFvg|NJ6)`@hqfEL}{+9T3!sZX;nJv5p$s(>bk zm9+_s$jeQ#1>l(UYA79_p`)y{TAsHpBWSQqBjbY7^74;ZCLp(sL?DI-!iS61u&Qj) z2%q#}HqOF*N6ITP4r59g-(eV8`|%jwZCp93bC0+}Lj7XKl8%l}ZJe46 zysM#^F{ICt8M9bKHZL6)s{t>A8t3Q8l$B}{CDPNtq|bUMRifJ=q(NDFax{?TGjbLvO?>skRqSOMXLgMet$QOag zMppee6}^~^hAscZV}NMm@%__4hlm#d%Y6cU%XqrqF3(jr5QK`(r3_XKn|R7&{z;R= zG+qoy5SrSktmX9>)s@pHUWn1rnPrsJMvqR9{kigt3JQ;s3NTKsG?6pSnus|`S#DZq zOzihb97v z)f6;gBJz#o3a5qdl5(L54cgR+CtOsx_v#yE>6wRD?bES`ndD5af<9!MX@xc81J&ex z$1J4S>uwRFh381;Ci)z^ga>EDi=5|nHk+Zg+5<|YHY zaf64J{{5Yn20ZeZmF%`wWGH=7zwz)Gv%&!vWj|0(dMnU0$4>4P^!b8?oF!JkkH7JAZ%~Pk zBspJ_>MXn|&FCmm*;iK8!;&B~+BNZ%W1 z@*#7P>@ek*p?x+o`Z$bx^j0kdswek8_EEXSUO8RK6d++(9o4AJhFM{-m$W4f3c9Ib zKTcociFz;XiJp(`@5Y*oy(H8E;4KI|=XndB81WZUywmfa)y@{qS9HD)u;8s^Gfro>mD=}2!gIw!2db5I>lbU+bK zTp`n;chMXbsuwA0F>uQ1;_Bn$0drwKGSgW(o&#?&ME>at}D)4_ppRs!qqwgl!k#TFMuw$7- zxuq-yV9z@hP>l2wP%T@g(5>LYXNh`$!G|`cbXKi);^WMzMOPy1XQD#sBIpSjFh*zd z+N_h3^KFX7*Q=S^rqu)4T0Vk$w6J*VF*(NIQBZi2a@}hq^K+#60%B4%8M-tF0dcYM^(Qo|0j8vwZf0yAm@{kHA5Hr?F{G>%5v*lMT*Ez~ zro=BQ=eVIlKR|IFYIkjRvVyUYO6F+UyHC>UvRkL{4lq8s#=mMX%L4|2SEI28&5MT_ zgz0>2W6ltE~qtWtPgj3B-~cjs3f^;U0Ni%p-mA{bjmsS~Iz?%uEwu z{bi%ViI^~h!~r*olu_u((C5%2yOwTDeGclDy%xRsLQCC{Dvk%OPgR2K`knSRV$aZr zaz`)WIV{>Om^Ic#i8bZpjMXPYI)dYi86223t`my=^9jwXGGZFfKENqCgN-mn1iIUBhuJ%Gn;V?uMf?@k6ZKTWHs^_chMyDe2YI|33k=aDM zqDJj7@!*;^g>6i%C~A)z>#gBQ{FmW4Tw?e4BaiicSw?tYZxP7|@H)E+^1mS*N?;#C zuF!>%{KZI;SYOw2;!5Cya_S>`J^InQG$yHlPveJ!*vm4<0;79rh|ia?-&?Pq=-;fB z_E7bp3KyJBRnlC2li@vT{D@l*<19Fh61i?bW0J?KoH{iPLRs0dewCfM=+R#F+&>(1 z9{kjxoO`2?;Ow5%=X*JklI(Y@@ZSGE8a!LPH4d81bg*66QAnt(d%|Xm-)jq3Xq!u* z5uA?R55O*Fcw~L=`IFtCZFL6=5b7de#(rwTDAOj0hfHT=dScK<+w-HTUqKgDTj&?v z$Tlg#sWLy@m{N`ZVtEzLXyRnf5V$c6`G?JJx%3|H=u1#6mC0$X-#LoNVPT)bzScno zTVd3c=C(cTZmeD+*k^>Qg+BrYPi)+as28X!$8{przIsVd2B5VD?3qvz`?YHPnV9wAU)49^G{Fknafk ze9_?zN}z0mdqdgE9DJsl-}1Rhr+x6iH+wV9nMt^jGtR9FTDo+Q@kDVN^(A!7Yh_e; ze~#$Ceq!=jC4LSI#lcOu?Was%T_RYT>Nq&?wK3Axhrz0l*?7J$qqRC(2CkBE z2A(&G!scazcUeTnJIRej%Kc!%2?LZ|xCB3ko~XVABfqd}4m!WtGDiENTc7tIzgIlD zNW`@&OUtfVL}2|uisF;k>N0g;=VrB35cc^%;G_o{HPx$C&e2*2JM+W6RMDv57`K$5ZbNM&1aBqGLMX~qY zBMlCG$uCb2N$peJtKhJ9Sx$Mw6t)hWz>Ij$x)wUpicYJHyr=idZt8nuPHK7f?ixHv zWnaA|#m396K<_Qn_ZA7~8umdPW%Q$59#BTFpU61DjFQJ~9iogg&!k#577l9W*m)1u zw^Ifdi7=7n_w+M-ybIlBiPLyjVW6sCVUQaE`akT{DV#bM=ay`Qo5rJAS4XpX4h$_n znTJ27P)&Cz7h|au5pFB^2l!=}bGMqzXj;WuE^*l{GGdd5AAjI+=XN*DYzK$g5apEX zz2ccX=+rb%oh_$te9lTu{|00o7L{gtLzupR392ZYzfHU4u4S526zbTh)_z6s)bof{ zHP07mjeV4DP&I|!h3<8DmQ{HCo}Q)}A$4Ps9`j|@%eqmXRAw}Gv$iVP_>@H3_O}w7 zx52I6n>d9QN#YZt95SoT`&EsEJI%{H1)tS4Re~}%!)NiukzZtqKcfOwzdziaWWq`1 z)H+)rA4I{@Fhnn)eLDSS!Gs|7ftwdJMEWCu+9W0|G-k=yotb!Jd3tVJ^;#n!+Uz@V zgs!2MIu*>xPg(y#wx-XQU*Q{8+wXZ8=a??@i;!bTDv`JHJ?*!FjjNDVda zO3gXY;#od00sVtoR_#U0K+;EoH~V9~>2V!l2<;<+r0=o%SWnpEPV5y0^Uw;ftBQWB zuY2N`S}AE@t661|QtN1hc%f`USO%BTop8h5TwB2zr)gm|7)!cG_Ikz5&_b9CCUu3IC-lgA1DohsL%5KnXfYc$tWqicfC z90_5ft3J{(N{y9SUG{`RZ029ji@(ELW!St6z#xhkc})8d;$Hm0xm}#q9P9Xu&{4|y zajx-ckm9DpxmyT)nk9tT=HR~^94Z7bon+8%A zhF(J0h8}stB-{Lwx#=Q*Kd|Sznl8+_ufNeg&WdvM+hxAt4kMt)xb0~CaP@4-m_VYf zFC6Fra}0UCt8Rc5h)`9yj${WL0@V^&*mcPiq|5stmo)b15pWMV9$Ak$?ltmzCEsHD zw_Mx^4Iz{U@1vGsT1>T;U8I7ZT`*EQnWgm9m5}d^h=Di@TX)wyp1esd2XE03Gkej# z=;dUP7iBnvKG#H`|JB{Io>741}_VH zao63xBi2^0-|nKnF?SkosBFH}IwTUvXfCCz%%OJV^dDTSRs2!f}dVXsIq0vpVjbmLOwvT$sD|xcgf(4WVV}ECe&fS!zIc6vAQGm6o2l4 z3nv{g5(Xn6)tQwf?%c@MmZ?F{(x;VhO_hzK;gKG#Uo;dqhefFwr<)s%j8u8E3{*)w5ysXu$3nCv-Mk?Fkx_Iua4dqTNQrz zSk#ytsZJ;P%S6H5@(y&n%(`9N&m5*IZj0F=t=#VXjmv}WGQ>UrFn9fwl-gnW9W&Id zokrFLdIh|5=_|eI-59L>9I}G>Zla7p=p*Op5GF!98K9A| zph|6G)6?1OIPwbju@$jN6s}J|@9pEMRL-U;>P_!zXq4Z4sG{59lDp}NKq=!eqRoV< z9f{i5IUA|Rei5xv^aXtLQr?>+4OW9D)Nsmgt)bzQt=4dx`u-80lL|QD^$I%g1%Fv{ zN9p0kiqt7O&()!M8Vecz2uuXU?bb~0A)3D(B7bNhO)t7z&E+I$5%$FN9=mBHRN#rc z&}LPd_-4)d_V8i(IB$Pqi?aIzrOOo$3)NYMKit0GP2N14)@>;*BEZ=IBgfg`p`gBa z)bJLaQNrv#Ta>8XhxcKg9EuXipwcKKK733~jq(y^&o`4=fg3aqbY2HF!%mzoabn-I za(FZ_-n(Yn#7FB%p~oSrMy5PaPXAu*XN*xI63V!@YzqE(zOUSzq=7r<^2M-749jrS z?q`N&#nm&tDdKejUl}PtE^MGxQCl;+AJp;|4LxPJ9&6D@NzC5!%0+)IW+T=^$vpP+ z%h%%|wD8~d0$(#RuTfaeEa%&@FPq(_RnKF}5di~d?W1xQcgty25*MM|OqYJF8FfUu5Oabx%o) zTBuwM!Ek^9t}MW=zW&)g`FiU(=dd@CH_~j2O_^kkZ2#R#dLKd}_wTyw=NiY17>^R2 z?v?-MMP;`giSn#+UA1SUK3^qT72?anaCd#1t2nbr; zdb4FZhuYs6E@7WBuN-VW4sW?Sxb!(aw?OfLRxU|luEY_Zq_GEK1~dq*dI4!^=^8cN zoXSWH>r7ZjyE5gF-B#4CD&BWfuLXVW7w-*8Sn$Vil`b#{YNeP16SA?GJp6Ei&skt4 z&X3!6YN7E*?j(*`gta3{jU{?YvMNbvk|Y?z^J{;e^K4$jAX(Eu>TfuC6NXDzX6=gz zNI5TkCfbZxfP(i65!6kaLHs>m?f__$NOrmp0KVduD!=@y-V4e-Cz*zh_n9Ml|44fU ztM;9AP0Hns3zqT+nNgT?kpyqnw@5r>7y4FRW_O#pMdYg(-NxSNi+Xbu&NhjA#CV=`-nlI z=GF|1g0j6MxLBZpY#Zd{jUJbM!MPc^kTmlW^VBt88Gx7c#u)adnFgOzSS{6YIG)ybDRs?$1YmB^42+nZ*OZxmyO(;W6`wmkZ1zdxATHZa^u2t{I!Va}8m`D5r zp`FNk&r>N$a}FqXwCNDXbKGa3Yz!ZmFDOm(F~hj6mz{4kT53zz~sU zurA1G8hH2Zk^#n$l&k?y(V^)m;!$OD;Asj$2Ow>R^k!GlFsPBM?JCkN?GTPhoMB^U z)?3BPh}RU4kvCEqNZ*0|!sz(3PRw^>zyTccD-YSx0FiVhE~HVB-I_F^)KRCUhjNfY zk0(HMR(8}tPX=Mp@(KN9G%%11GcOBcw9F;lAF`tucP#1L$*5~afM2Yj^8uqGqr2qG zesWeCs_-`n%+jAy2+J6ivkuccs49`n6v|~|ze(-EV z{}$RlZ&o_ykva9NW~16(aDL%;cpF-0^2x=G`q$1c#+x<8WQvK6Pki86>2(bH2|p1v z9KTVcGxX>pL+f!#<&yO`0+$`t+hK|a|AmyRH#l0a6R{6>@%F_+&ksg^=mGCZ| zfKaW&2?cYwoW<~xXc4<1R@Eptc?c}h6kkRWbqzoWqhL5 zxn>f(o6aNJc?t1SJDyzx^?coA$S@wToZnP_Kd+tKoEmHWYs#+T)O)=&w*{?nKbj>G zT8Zp_?ZVB)$btOwEoSJi<#!ZEHh|cnTZ{wC?Q(T3|}ftxA!Uk7rpmO-v1R zjp13?wfdNynhJX9J%V*nZyP>6_hmeD)7Z1_Y+*|b?}c9M&Kggr2uP@+S*r8w=uA-~ z2hS%R`00C z%$;5N3J#JPFV%MwXvQ6?$@s*_urgx%5njbX4k)80%o>#hal;3}?7afvpPEPSdajyq zzd~1OY&M+hmG*Lf7?`9_-gqun%_EvG7%Z;z^j(_0Kqprcl@PL9B6*$n`kbt_>z%_)9Etk@-7Ht=EA3;n$F#ZItI} zsI1ML#GFu>SMbtn$@t{^eC(rfeZJxIt#Mvf!@5dYuE1tSokxSWp8KzN>#wNPQy=p| zPL}RqH;|bl3Z&(1Zim7{$xiv_Hy1AtJI6nPTz>-v1p%5qE+BxanKcNY1hTX>6L8x^YZdha`SN+p+Gv_Ku%yvP6$vP1)vUcclL0z0J%eGRo$E|G(cbjfU2Z41X0Qx zETaK71A{2}{=yX&Mgd4TJAon8?v&jB1pTeoA9jEA5)`ETO9#rolyIj6DA-!MQyQTB zQBfVmh!VoV10tOR1;XubQjY&3{hLz43~c7$Z2eCbe`~4)0-ISvdMNq-Lp1Nd)Bm^L zC;$~zB}xuq;lBm_8OA?!1gP_({2^2SZ!P|C{k!uo8~#%q3P8id9Q?%2S=fWXl;$97TPGogv(`=qN?S`I1|4oCb|n`Hkd3XZuNz3i zS6S1-*WQBPl0ifmMNq^H;!qH)x0ws8m8}C9qomQYuerv8KAE#U3w;s_Zv zrMIJlle>Vo5W`<20+99}Fo1#bFBGu75QDCgDka$2*}>ixObKM;XX9Yy;AEk+ax-%T zc{#h;Q*yBJFhE$kSy~CGOG^LE5b~E0gAEw$A^-q*d3mvUak4qPSpzuu`S}6tKmZWP z3c+A?_i+N7d9ymX(?I0?rHHNWe~~%4v;CzLn}xF@z*ZN)!Nv~wryxnlaNKNNz_!j# zlz#-9nLB%cg%~_MY%K+NIr%Is%-DHYxj1+%SvfeY*jd>j4=a~BCpVCXlgomW-Qu6( zT>eGPf0GC4fC%J-*a6ZKfXrS?4-1f+5QB`WBBhLtvpe`7@+l$aU}pgQJ^cSItsuVn zpRE9K=-*}#gy0A$Ia}IV`A9;-NEpb@!OaR8Gdoa|gI|D~SAd)EEjv(vom~*{AD9s5 zLr5hcfe!}#-;n+b=D(0SyJwe1pIN&zZm9! z+f-&QN=pC##&UH0Gn@b52}n9ycsN4V7&*!Rm$~x4?OscZ|5Dh+!_DEZz_7FcfE+-7 zbaRJzm;<7*rGgtY!Wy8-`u5&ma5GyYG}%mm3qe}V&I>_6ebC@JtK zw%B>tfgJqYynlri13Nnd1Pu~?{|Ah}BZ2Wh!URIA`Nw;VfBeGqUpd6v4P=GFPRYTJ z@@KvJ$3w}(&CSV8X+`-D7#A-eKP0*Qc_^L!3FGJDf~3HIhw<`pLQ>Lyz=*&0dlePi;3}ait+LA@bU5T^78X=OG`;h h^9%oLVwW}ufclB>F$B%o%T;^?J7^HE;?0|4N|000Dp000j!sDMKNz?}mC zI5q_U1k(TjVyCR1YQisEy;YSoWe^Aizh#NAU4^7ejhJJlh+Tz*Q#I26%Ycx={eKv1 z*)ZwB$hlDPz6j1A37k8L{~BJ2;}kH1)rmkY9GJtrST8Dl`SQie%IXF9pD;N&nU$6G z0#EW|$rFJ7ll2nT=MY_Wh?1E3`T3QV6-10Z;`|sPjr$Ullat5C$B&MVhKGk=y2AUp z=>LxItV;!L%7pF8#ht1Yyc$&fTatX7vz7@ zzCy*XMb@M41@nS`VIpK(CgoBiU|I4aLfE!k=}VK)|K=?3S^pwM?0+};A8{|Kv}^54 zt&nZGm}Aw8ECH*MmnJV51+VWfu()H@%M`q*^fCo9ZngjC@Vn$r{GY}D>COxCV`QVI zdz#I+E(8A(8B`Xk&`5Y}R6XJ>6~ZKI>32zV{RkR5S#ju`7il*VamYkPTlrKhLkFFyfDtLH!!o$N6`x|Njt;W$^=JCBYsY4E#quL>D`r*GUlKMY%)| zK|$f*;Gm+SQdLzI7Z(SE!RYAd78Vxj>gvbOCI79?1UGeM4Zscj_r`pwXZS1b3Te7C zi&3q%we(W=SJL5YS``-Qqugz0o^%5Noquw7V*V}U&i|H#6;PCu5SBviQ*dn!Y`Rx4c!1MC@^6qx$ZnOIO_ho-T z$?+ejKR0XlcWw6%ccyKl563jBgRgpbHfjeZ)gHQDltVICl#>R8gDB-+3K&lEdaf_| zf3Q42cF0x~05F?Uke1N&T0ZT#52lbyq0*K`rV$5zA}E^G@-_K2QSULI!akHzn>^KO zr*9ST5nzaofyZFs740!NrQcv{>q}iGR0%z?y3ucQ5dTXOgF0)~>RkJk+CPDNJbEy? zDmuKXBDyN_94$|fo2%xlN$(eSW9j|pz&0WxBG0(plE|05uP_BnLCdhmm`{~w0=$16ott8UR!Y@homMwyoy9|E zNQ@cXANg^++LLn_MYJMBq1;ceK2#>|xS8A1OTj#X%ReSz;W=xHo0HQ?i9u%Cy^A*G8{$SO0N(H#)@JL>yS45=1}aIp63;$R>Lzm_S29ipB{~bXJ(kH1ZF4LJP;fK%==S$h@r3 z=7?xmcbnYu1f*?zi{dK&2p(7ZAg16kItk|Gsyl8FrX))B=FQ@Z9y>;k)`l`PV*&Y< z!;3il5BPY6a?EN-zkg3L{4EY5SCy0MBSZfToekxE8?a6GLN0cEouLaE)aQNB`xR$i zw)p|mxlo1z67ajhhN#RW>KmmZNcy$&I8r(br&I^R3f7oOP5rZRX1h!k_t&sa+BN$&N;WR(dznXALsyP0N0`CdTu4GtgUXI7oMD~t>pjRy)GMc}86F<%-2U9OH z8y{V)Os?}g?T`K zo_5!I_&Mz|{^osfO12fe1~wYM$ufB*M7LNGP_2q4O1b&VQsbX}Px_x0AM>)w*qp-M zGC-0RU5=%CGpGUWa57NP9$wnT@>3_=SLdOi{PK_@6<%GxEL z%J9;W*^_GE(l$G{vv~53#HmzLFzrLi@bXF7p0pMBN7R5Sa`$unVEqf@fnYHo_r;}b z)F)D_{9CIyg#(o7gy~}?Yu;WU4|FGLQen!bfQ-kw80db^5rkSyEW8y(UE@0AZXinB zn$`B&s1k`0Nf)MWs$IsnnB_}8e(8h$0o$H|c-3$LK{}t<^E?KCyx(<{@CTK_$H76O zfHFZ&2Tu&B^lD;}y*CRVf?x4FqDreOgYV`NoIwffu~>BKo(@3PmvM@k2*8= zi+EsetP!^db(R#frREb9()Ow5ujhi@Q5)MiAgkdACu;tXrO}Xgvqfc-7%jhI``-b- zInQiSwk&$tb1+Gc)%?&L?m>;0gDf?@6y-@gbf}`p`Uhm*VWr zw1}P1aVw>&K&9V~g!QLiZ{FzukIG<&T!kFILA$GFJPiyrCQJFmnSP-KExVy}fHN7X zYuQ;7)#}I+;K^Y*H!n)e@yW-?Qc3m)BD7^P<03^DO($thD>W$k4!=#G0Mre}#}MUH z=EfD{-5^>yFcZs|l8$JgtU#t07@Z(fW`tJn*?ym$nfy4NOt)fS(c4Ko_~SS8V&lS3 zEN{giw?@MEpm|^QzPD>RwZ2KsoFcuSbUnJy){S+so$?Zc0|;fl+mYL7@j!xn#bNB@ zF;prr?Hg87s3w7GzFaxpcfK^XBPmc|@#_MhO0#h*l=gQia$}VeB=;Lt-hUs;e`Ck)Dzg~NwPH#r{|YAptC3C` z6zW(ObXS|WQXS?KZsx}W$pBKfAwQ|1Q)U=1R>(u8J4OOkX$2a#5NIb#_JUhAv;>j# zldgl4Yc0O4UC|^GAOW~pSu-c6|0Zs`r5*?hawd{&*k63bwOA)-6>(_3hx)4vRR(Js8Q0HsMj zp|?NH_CyLQikQb`Pj(86^$j$kvHI(z)R`CEG0cQ z(j5z7YmA4BP1jVM7tm>uQ$X^}yHY|InunS)dYBF=OTgQ2n!z(FqZzy`#gU5koW)vn zE@vtrZ6P>;z{$Czkd3AlW}l=Itn4{5PqMDWO}H{jNe;DMGvKFu4=gB*&+YHydkh1q z)xY*SjrmChY+QBDUK}{r#c`4Z%~KN78=*_v^O9)EUSCR>SCQWo0SQx~ryXp+LeOe5 zxOJiMLxx{Ggb6qs{1nKOKedB%k^s`I(2Jmm*|4NK>XS`5P=3yhmNMBKa#Ud;ai3}N zTZpOAFb{D7+)PirzAVu2K`sC7svV&ONX1_$u!W!|F5;w2v2&x6KADNT85x@?{o z(?OduVg6i8e-s9iLrYu8D4ds@7-p~p=I4bz6DI26>?*-!OTf#4!lkUlyeOR_q6hkQ z5Ho1rW!{MhQdmEJLV$L)A?iO8veuwPO)CsyKl(D7WA-UNe>_9&URQw)wAY_EShMjN zjWt_!VHUrC0;6Qz0N=zJe)O2!xqiHRf1~>{&ye@q7;owDVMA!P=5wg7pg1Pvf}lJe z57PXe5o%f1H0~KyxmjufOM#M5!PwJd{kj4=Xq|hP6witj{QC*v=W;w}NjX9YN;Oyw zsWv$vH(S-_QM%v>+`4~*S0HGaHSn@?{pP2|I9(uHDx9hWkw)|DzH^fhT~t7V&h~1* z*HqOebsgJC)b7TVH$B%`Bu@$l2TdO~`6TOMFeT(LTGmI{6%wsXtByPINTYpeGVIil zdN-ifb&i{XIfQ(J7ps_9C@EJ}DXmVsT5<7CK74hqY#sF10>RDx2{-bF5Y!?P>8k#I zFT)^8K&(#R!{`Y4RY#)@T7hOe!xedegi)ybH?vlr#b5emaUFt<|5|?ZHweXZSXJn1bK8z>uNy$Kq=uu%GT0fmcZI-Xma0w5 zIfxGbWw1hM5_5w;B_Q31oDZubiEq#HD8ih@ODCe5HJQ4Lx3shNtX?R~Ek=WBY~%b=SQKP^7dc39w0iWW%VxAEK;4Y(0Xjw=^AkxfhV(N-oq&FkJfK@u{>zg z1&y$&Lr+3WDrO_hsxXg6j~Z>`iLgq$7nK+K|F+duQlNJTeV z(%mMz!1gM-IH>%;YCgzljS*d1Mfg|Ka?{uSUZ*p&rnwsD#YVxiraX{-uVy~?n-5>? zvW7~v8;d0c83D-p3Z~1Mt1wLZ4C3Oa?^@y zBk(;Cl?Nqt0Sx2acx}l17>vOC0Aia6_-3s`O4GrbZ7c1!K#OUSAG$kbZX^%tO<4VY zyFoXZ-=77R)nUT{$#%Z+uc|8ivOco@5M~YKco+*@`LC%6d+h?mt16)9E7B-7w^eWH zU!+HolNhq7%6NM5IQ<-{&}&@{+L;ERB230~g;fn1cm1E-VXao8;3*Wj=%6XHR5J}^ zRFBn)r?+ATv@jbg>6!^wDwLakZ~XkC z0KpaSF~XpD0U#o5GfGp5XPADw&Ppe@tc5D?s90M1YAmrB1s?H-^_USmee9%?V@z-^ ztDV*&t33X+Z$HQpI>{fgPIMDrm49m#AeC#W#6l_wBh<2(D9Fe*7_Y^952vMmE;s>? z6mc))9n76H09y?KNzznMMF7pKr?=QiMz=ffVZh1M`K{$wcc(F-_e<45Z#Cr|NwaGB z=%YxKk_AeFVxO2Bxpm-(hDBV?hU2F}?tWfd%aQKcWU2tW0V59ZH1yj81;xmIUf-r( z0D?p_1%Ra862NKpGLEa$dYgvhG$p_UNpVmf-P2A8)XCl_tK8IOZM!RNjCq&wkyCDC zhOVGnSQ8~WU$Ua(7miz=f}NMg2@!56cwMQpF_ta=Far|c4`k{N0N73dge0j8o8ClV;l`;IYi3k$stixvE_EZ!QE6-lWiXlTU$(zLwp*Y-*< z&+L9KFe?B>7bIB!R+GbBV`}oUzDtvXx5xwslbLyB)C88Cd=E5K(CxC=3PUvBjwpiI z$96Z_kvZxO1hM~4NB_Ie4sB*%v3N??zt}E|mbR1=Ub)0V(zdQuXE+^;&H{uE7ag+zJMxia%crtU{NsaNm%h{~2|( z-@AT2-2t!WAa=RAeR=Sa#C|DDX)j@2d!3-4>~r6^!zfP>KG>+QOk``z9`M^TutN z7mtqj+L@~Flr6AW4zCwSSx{f9r-i-Cn`AXPm~$=4(3I~PJLqBmVjt~-T+R{M0buEY zWRW)TrIZDN6_}1{qfb|_1U$7MCVr&v0^eK|E|E&ZJ~s|w_uqoc0&?J`fL%&Zk*^y)QStQ0C+wP|}+;dR|vOK*%n1<)OxXe~1^tqDjL->VP+~3Xk6Z zYnE^2^2xTN;I5RYq_6%%q0J&OJJ0n1Y8$b|;CO`x*{oqKquyJD{}x^WIW-{HafC0m z2YDjpGdZ3oTFTVcScZU?V%q>{6!|e2n453d6YY;d?Yx+>7P;^i@$hLM4$`|0N%Px0 z-lM0^Shk=q640suZnfsR<+|>yuA=Zp?XF-=cpK5CgKjN-hr&mYni(b96?Z-tQsO+W&%xl({x@X-ZelB2AmQnr+Z(Ee6>qjQtmhmVJr*f!v)E4J zJm7Rn9aX}vSN*sCJl^(%cP--{OIYi*$T06$Mj*0j779{eb2pv9Bk_k**3@FvNkKvLTI8?a1zcz$TXkydD-o30$fql zpnPDpHB#*P$#o82XOsKBk&o?LM!x(mq?18K<$)%2sA<(DStIK7m3goXM{Acggq6w5 zh$k+!TXiONkU4APDh?~>jo;7qb6xQ^3*s&3M9k+cus{#cI4_`)GXZ?NefjYWX&JjU zTaj7OpqCmgl_=F2DnKz>{Ibn)`FnSYXb0&n|8w6)rn`buzfa0XvLyoZy+i%nzwt~Y z0bA0_!u`l+t0mNA^_eS&mD}HLY+@H3aACS8%o90ta~{lh!}z2@ zVp0Ki8iDOLn=+`^v~KZ%nAfeuPL`0Mq%A8vGv>VD$*wJt^DOv*ISXdu-j@1_ORUJf zP3#Ba?~oMBp8tAk;9Noc*gBfdG-NwQz|bzJVQJobfOFAF&m>1zKK+a)O*2!QAMhJ$9aCp4 z>X@+RC^1o9Q%3Vr^s4k^h@6~ZJGH*cMbfL!DPP5C@{d~4tT^%ZccE` zmKWJ?hkSD(!are279ua(Y_NxT;{#?}F4%MI2>SOu<+9pcouQ${);s)3%!33ITEz)P z0e={9_(6(qzkMWESSl%u^<9+}(jNrou9S~54j@OEW zeuS`7>Y;5DDhKQ&RV4lR2Jtt*RQV9#>JAb{owPq`XwrUGBNwM;ypiU{BY$K4+b${5m_-Y1rTlM<{QMCixbbK9?ZMG*Sydb|GS-+dEz>)W~#vEGpvHFb?EQXx#S#(cB=?ta(>Wt?^iiSdIh9=PNtc zBF>-VW%_X;q zQykX@RBy_K9bCo$MRAN#qYkkOA0xRSn?E?b~C;<}qAcs(2lMk!EhMuMCoe!Zik zaJhJFMq!w6)wZeTBY9bsYvaeSLJkS_!$f#;lW(74tH7)~OI}>PZy`gPt%wWS8=c?3 z&qU2_cJ;viSG7H=wSVv+gKU_2qzT!j+yW2`vXm~YlIizO%dy3hIA5GBFC0piL=PC^ z7$Fvc1mrk}yCcxiEhn!b3#vs;r{jx`FU*gRm}MM_w`jKuJZQk+@(Z|gR>#14oLp?f z$n4=cSC4(KjcbmGy;)3AhK6c_%ZcmyVu*UfN?e-Ahvx~>ub2#_E9sjKCBOD!-az1- zyNauv*53R72o4oxPBxurc@B3x8`z3~?_%SBZJTwQLVur~ItZz>Q{!fLP&U8!KR;LP zqmKmNJc_nne=EvJHFBV`ml}uy8#C6j+uh3{b`Mexo$E)u-Dptqke2rq2#fT*viUDk zHfdogVB;3CpDhiY2S;*`MSzRU&JfR(#Fz>vUE{w4N5U;H{LIIw1I|)ve1YUUOOoLyxE`LlWQri&hG1PN zV2%fu!qRp0l6WM4UoH@y)2m-+Kno{&`3P1uyV3b1ffQ4CBc z^Ef|+F~T?tyT_4kaJ_>5GM%{>$$>2WzaZe1+h=TIToDrzK_jRI=QDeQmpcZ72a&&9 z-@HDQfYJ<96$8mQT5`b*FU^5YDfYMF!q&ekBRisSj6PA0s9~ zgQ8r2K{{6T-rUa|(9|{QV-`@n**T8~UkqNo(%8E6#qqNZGx)mkEO)+%!L`_*0XCIf zT*CyXzZm_Ge+vgl*1L+`@wMu32J2wPAFu_1XFJeh$@|ttZr+;u|D@3zjLQM9x0!CW zc((T4p85w+S~?ogAW4+~^#lPID!e^sdRNHBh5VvmuuheapzPZ>c|rbnpfthoLh`S(isB#_td`>LjxVuR>Lh%SW|SJ- ztM_RgPTbeKf`xPkmx?B`4&9LUd7da-4a<%nO2Jg;W;07lP>PVprEQ%p>eRtFl0crj z@#yLNh#u5h8j;KOFg@^e$7!(X27y#X7_MfapGr+jQP+^`_aBKsmR`BJdma9aAH@`4ysVZahUG|009l>#p)TgwS ztBD7OZKhY43%GamNT1T(67nHCGihN14gng*G`Dqq0!ae{=U*619lY0ZM-0#9V8|TA z%>UwKWnmpwIr>nnS9X_i52{_M@+8~5sxL<6{UC>U3M{^!651(mVz{TU>+{f*cYBy+ z#H<6hmVGfUq&?O@Qn@RR9_)M?Ijh$IJ2S=I;?8$WFUo-Hz+X#v321w0{!fMq) z7C@=Pd`B-yQLS3HM0Y=J!vg`|ycT`Y1xxv0URd6=F1#Q*x_**X@Gq$v3n1CSaY!RIk>bY z=??vV4(I^l<>tJDRyANIcqN#j+6}yxs~X!~0GGA7c)1cB;ia*} zGTtoP@?XuQ-VRC*bDwK{iUnhSQUcb1zGe~Xo9anYlSvr-nkuciG~3w}2O;7}XA`1@ zE;bBhxPL2|(vb2fl?DMOwE-grcPFyZ%{;oe>VBBi){T;Xb3Sgo%7MYhubY0{1F)U9 z0RIenP#z+t2H-)&u;@*^oX<%cf7Xvl-ExA z8d2muOfGRogVimMyYIQsh<7pXyq>D(`asICkUV2CH$VW5UJj*qsK2xnYWcdxV^c$eXDD{;jio-~ z-!ZMx{i`PS*n|Dnks9jO43KLaqFyaTBPhocfZuIAXJ6#^(|-$~m1J2{x&7OmOCf;k zsZ`kA##Np-{1crOnM zOGHzF{cCIM+8k7KcjGA%Ua3Ez4k40h=oTwxactUaIwaGL^F`WP&teDa#~hEoqJ z-IaCz28S%Ypu6pREfNcpR18`qk1j&5x751FeL&_4+tie4f_Q(bBoUNhH~w-2D`kZ! zu;rPGK*Xo5kMk^XVpr`bJ$Q>zAXu$<>gnA(U@+ecv(Jaj(t3G8 zMIC&~9QysG9vQwU9^}OA`9OYP|;3y8!Yvb)Sj#^1938W@@?yows{l3>4jq|1SNQcgvr% zJBOdrJwUEI?W+_R$nM?sxeyc%2bq)Ims>ZIccX>fcQyC7U2^?DE(iP^aJqz{N}IEG z1q*gp`xeOM9Nwszw`A)IZKx8_9n|b7*JT`m4(*0#$U9{A>%zQtX^dX`39cv{D$Eow zrZ}~D9ArvTEVuJmK>v?;21jYGIB*g_H?mUZz9iXy^>vyY$mi+vHrJZXL$;T0%Mf|c z3t>^qTrBpBBD>Y6fUj0rm`egDpBFjezy!Bono;r)MhAJWSTF&pX9BnC6@!Cfsk0_W zjU;{d&5Qj658nHOJvym9BD!sm^iYz^$$ux_j0`er@JxjrZ7|JMBPkVTt(n%&A7Gk= zX?@lIdZ&yd!I>EKXFP+72Je{XJLh?_Kx?+wJ5_`EJ&pVv^_l`7(_RRh-7;ihM~%$! zMA6raX$+(U3#K#2+*~9F>}jp6*(DJ<*3Bb>PRAYpTLb$eo@g*5a`ywF?<>rLZ8$fn)|p z=ij#t46vc=O-_z6*zT?}DX$U^`FZ+YOIoXah~3HuA4uu=*WI@h1jRLE3_c|>(S;#; zmq+lzt6yf*oN8&GplMBd`$jXuP=e5*n3o|u=n&o#Ah2sK#_1_CYZS27W;q;+8?BfK z>EhXVurf=#osPbCn{WtmQYPE7oNMniWnvT&5rDi6m-pCD_I+$lV?96!R#Noc=nx$;>g|q3?>jB${XFi^J``;ruZh|t@emsyv`f5r0CRj^Z3TMe^O=z_V-^OgC2ilw#Mp{I z#yL396e^TQe6ozYo_EC2=($@HnQK~o3Wiy?ePQ&YlHRD3143V)EKI+-njAI2=cw$9 zVG)pOjTr=sOEoRIb2)Avh+sZo@X5KeN~3C2;jb|g@VmTjgQGTMaZs=ae%Kl#NM&DZ zb+X4VjmU3}AOGSrd8tSR@&h;KHEz_y$ku;(`QFWxucXEyy;quK;ap@-&t1FQ9`2ji zWHEgk?@sf6^@)N>nIQxdhaB03Hhb-&Byc1%hx2ij4HQi(+;@~zo|%~%8~2Vr@n`&a zu=nQGX}O9pPSMjiOK3z3yRhu)udheL#5>mVS)zZa{l3aNrl0HC0 z=7Mn-T4g&(N0u|}W_f&8&rF&_BYN2K#d0T#d;qR#8ob9+bn*9oE48Kb=cNqaJzo9l z@A}Qk6%#5^|8$RY{ZH7n#uU#t78dvLu9o-o(VvDBj)oV%gH+br zmD(6t`;pjlsg>6{+@5Ua>C#0z{$AHQ_&qKE3}-=&Y^gn8eb|?^C<$vYp;&sHuaG8^ z>SlKIS$sSrE-}Eh^uJu&PYv_nsw3eNJ~6wV25B6bTAOmJxBEV6ARk>EHPNS_5*4E5 z^>~_)H1PQT8RqY_wKh#4GN$nRH#RYI%i{YGb?$)ZeNbeb?yKY%`{8>;{8kyqvi8f2 z#6I%diqE*g?@f^SnV07#ebljw{r2F;si7tjW}DUg?+iOLP;qOXzh0Ntn#49YeGZf8 zSU=TV63Y7ea~F7v6?DSL%xiF{-@|%|8)d8d=E%T7-W=K_$d)JPpe=rklZ*Ab0z^J< zhmu3cQ_fVE-cSI}~q(bDz z6E|+Z1OK`%@6Lvqt|JWmYahE0TU&4~K>Qn-gacue7mtIPnVl?8IW8p2xOfqPQ%2|D zfVoiDrA+!^y3vREg2e8f0cS(GDg`O|_%pVnsC;ptjIrSRJ&(22lV{DtZ|_VMSR^8x z%qs9HW+I%z%T=*UOSxitt0Ho0`Fy)DD&+IV?L|#g^)Wwi9u76PzI=lPtxXmwpieQc zQmV^nK7lLz(koMDq(OzvbI4jZIS!gu`6QdPSLEvXL$_|?V&s%L8$a%^^Ov!6jqmnH z2yf^j^V|T~&2QR!G$icyfK!K4sai-MT_^knzP01an^^Ak?J;5uW^h%LCexNtxg+26 zEpjgE4DXcz5U9mkgOvPUXgZjUwKCMf@AaYxSGFRMGKZJBjrsBvBnV0eiHVtnKeyjM zWS;a~y)|lcJGuB=QH`k}$F07(Q@)8>{9VzcI3CPaNe7sH(lNoQAk-3bZKf!r0?l4< ziKzrIXu%-txAu0KtIolm@qmROExU(5L38GEPT~_Oh|*g-~+8d!r;@q{)$myzPk-_HmFz9;Hp;k>3O2c%LkFL!(05f-n{J_c z%|n5Fj854Xe>NI<6?Uy2NmX~UwL}vI9!R51_cV@Xov~*j$oOk1nF>t5)heSEpU`>JcBP zDLB%(B5WWzx_}B={}0k13(HlbG~<_9+JY-V(wG%6J>yTAGZNfcij0DhSgKt;Q6|sp zx5%{Jx2ZD=(Hucs04>6;Y%gfIp|4R^b~xDV3voHgCW5F`FAShn#5HWJ3d!SbvZ3V~ z)Ii!-ImOf_W7fntepzLsi4MB`?;7!vDwVB%aFAnB}!@)&~#S@+99uMM!M2>yGh!S{cU+{=CGq1)f{wGg4No5Ybv zP^Fdz7M|8Ki-K3Gu$@d`>2z{NqT9Se!`Ebrx_YsS=1B@cecy>!Mp^}y2Q8G-r(`V- zMj2;L2y5zhUPN9{w&T%#68$l#Y_oNY%t|Ptk1^(_R{+c+y|D{zAojP`pS9ln!2i?! zuX62p9z+TzKZV*;6adaHyEzTWN`@s)h7t?*F=^Tu3G%u0@OYkC-3=V|?%2ABJ4en(yAwHI-T8|^dUo+%0DT4eTYv*veQVlbi9YD6r(b_5eqg2+JXZoJ=0f# zUFxtS16>>&*70Ca6JaT)W6JQIAx4YJ9BIgHkU0iO$3z+Pw8QRSts+$cszTv> zsK*71{z0}x9gh1VG35I%By>_R4~r|I=R++siEsR9C8Dgh!|9ovKD!J>GBB*7YMRfV zYkSB3U$p~){nyeR^T|M6%NhRTF*fB1CFD<;{)NhhY%wky760H{Ue6dvpJrLNPVd}Z z+Qnxtsdyz7&EolJS=RT@=csjZFM*SjxauhbT?I~miu=gMl@W6m4VDot{QvBa?+wDN z7i!tNuV%Z)aap0N_j_+x6TyKufioI+VPt`YW)IcO-+We+euX5`^8xo@*K`@?UbOM< z4VPh^H(omdVvl_i2d^>Od$WeVSwjhPO(HG2`)j9bjQm4B2atsNXaeMdraY+^ZRrbu zYNi2jJ}EU&G7jX(hw-rIyt8*-j;6^AJf+c3A-4WLo;XWPkPaFzbjR+atIgN zi&BV|q=ka%3g40OeZN#9dATsP-_2P#S4f-x;zOF8L^t9)tpguxp7)O1a~T-nr)biE zwn(HPYy7Mx9H%qw9%MQyP=Bphm46*V1j2%cz$Mq1&zm3<)(5!!Yq3FZ%I8;yqZJh){(FD_+@E*L zkYvbXHE|df?h0GbPF!DNP zsbemfe5c}%IB2j*-hwcZtNET{KIeRxDS`u3oOJWBJxN7+!GsDF-my z^A9-9kw&oI1_qPK!EEA)(Nq1^8`q3e!NsV{OmSs!>Y8aXQb^i$bb-g~R1`UuIFRvb z;^Y3{Qm${JhY=di>*m#*KWvI1H=ts}K6Y}ke%#s$ZqDlsH_6hH@H11mHDfH;U07s` z09_ZmT(EcS66e~vf@%P?kMqcZJQrm+wA0BQ+T-{-4tIQS+~j_)^{v9XqWuM#I*fE+ zid2FX;bpVW#QI#;uDnZ0&8btQ3atkl)(X)!+HoU@+8KBvU8X@fp^cH$w93>L&^*Zb}dg|U~ z3W@{^Z@(!aP>(!$G5=oQuy~6=-HujKqRzjYAI=qyspqeTl&+{vFbV`=P>aleT+L68 zwd`%opgbh{oMSK0QRCm6MlaCui@CKYTVS4q*>-D>vZ+=@?Q5s?Hrmn+ppzJGBTspO zfqgY?u%&X`m|b=r+uB<*TOc`fK+p24pJ>gAOePon#>bHIo$xgCRP}W5&7hrREe~^} z>~p<8wmEWGbUe{Jnw(Az*EHN4o`J!Lo8yap5Gx&k_2^-&hm#h$2v|vr6qBtgarZPV zJG)S3Wy1<}1LlG&ILOq=%Z$H)<-4amJ)dyJ;Ph`2e(&sT=f`XWY+(IPAakDBrdNj9 zlFUs~UIgNsJgmI3AEgqeEAz{86&?bV!>#1s&?JO_?d41<=d;Tk3GullqrlOUA(57B zfTwVEBuaGLIE+$ik`OjCFD}kUAg~=(ns}TH!V?j1d$&Yoq>P~!=y#R$Ljx)2)8B9> zOJSZOov;=}eO3&|jfWQWObX9x#YC4mwM;ZM`xIE9dr3@$-gCgM1d9Okpwq04gIl+yS32xVECj zhc2Q<#D?1WG1R&i;`8LVQ^0ct;b3=JcYGGU+hU+?Qo+Wr&=4XDbO@Oe+iqq!8~ykl zf!Z_U@9QA@C+ z-yiNFCQOB_r~5G>J>$TBlPtS?hkRvDKkYI?8O=jZa3alF0Xt-I)#;M=_h30qs2TL4 zZ#yEqBi!F}(T(>;F2U1<5Wc%WRg1Hg6VL+%Y@X_nfK5plIADpLf zbGGjO&vhet8JZI4_gw8&ZZ#AQ@(FNN{Ux8f>1})P%dbpOiz2ToTK6f{GmZRl5uy(u zvFv#8DHC*Zh{LILTp9W~;VKOz-06CK5S)ugV)&%uurWkO9^QMCH`!(-@cO&1bqH}H zT=#sIeP%Q%Fbb_3D51_ElkR1zo$i1ef4iN`c@McPmmXK+xiDMT%P~?oNT? zPH=aJQc7FgB}Gbc_ZI2D`M&?=T%4=(JSP`BJ3Aw5-dQuVW@gR17r!d^>C+J3){=lz zf(zjc=6Ki#iWcY<%2!R$3Xa|mjhCs(<>Y|m_ai9@9NQSXCE#t}& ztX=OZ_#_$a+k#fvFyToR!bdxiZ3%earK9qwkFCDOltBb0lU64qC;SuEtFHJLgGqck ze^k9f*S)g&v{*?PVh(W~VAvu+2KWC({o~_=UdIlj*$!<4r%3Z$|9Z#@7L!zrk;xu* z>h^nDODN7F5H@=Fvz<|AT84NpGAXprCW#0$;J2fXy*%xfBCngdtm=o!_53$)JPku5~l1|b*Vm44dDxw?IW=n?-v+XrLR zdNb?DgG&dd2+M0R)D?7>QGOA$Za) ze1BcVPCfctgc4Yk$`umHbXL5(5MP~-O=I-hBOleQI_TuW-Ercn>J+Csf{Xpg{4ogD z3uB{Wy|E%IO0JMLe3Sc*^3cqcicv22F=7OKnS~&W(GOohYNJ|Ts?|V1js1UQd}TWB zXB%`i-CtQSb$NdiIIZ6$vvC-1+14kRh2M*Y@<|bcw@!~5#1Nt*2}phKz(?Gb4Z6NJhk#s&?BeM?|0Q3 zDc*Np0GEIjKX=Bcc@p@9rLVYSThO@87$mL?1^uQ(X*a<$`bF=~M)GO%)4t9U<~N4M z3SDy*(gzIRjqZcPCbjLQXWGRdz74HzOzd0UtWu(@hF->5iHI8Aq?Hc+Q1m3gW45ig z9iO9+#a+EvGVg9ITOZz7Xp?%Gi$O}=ck6tyB4^oB>cP8?s^h2X6)#iuk`vf?$e17~ z7wmgEE*LdbzEB&0UKV-CF%*wgI$&62ytW~iPLC1MD3cl@M0x+HH&XX$lTGW(7w!b3 zM}$~iP3Px9+TCU(nuaT{QvG1{g#oU}t9lY4>u#UGot5uv#$T7M2*3P^Kga-lU;_%^ z%@|bkL$_+EJ6X)HI0J8p%m%g_4)k7%QHGuEeYrZ}T06fi&0xE!!Dc1U{k$5n_%@rO zhJPs0#FuKSErUBAj1!Qvb~_wj=N#mF`$gXSfOTUYv+^rU)Va;XmbM&KrprV_QNr); z{`C7w{#tu|G7)#O;M1zD)5RMx8U3)c^I=A4RD$XEUSo#%3uuSdNm3{tfUTtJZ z`Rq@Ur=y7r)|yD2FCkp|n&T+EyZz3#PY)`(6cdg5L}dhn`Nmz0n&K$*KKQO@d_dK! zjqmZcGee4NKU>-+(2k6pczdX@eYW{$V`H{0JD;}0S)?E~KHhzV`~CZyH!9H_o8W@} z3~g_zK9Bpsh`DeKRHf)*Zx=Ph87a$wGarqMgys79Y@2tYiTHcxA$8QDfu(rv+BM

      X$7U?=qZO1C&_os+}$uPq1Ys#qbTuvr|(ZYy2C zz>?Us^zmqICKRiKNaQLg7N;K%EVp4?k4M%}tPUQJ)~jEJvn&n8ddoZpjKk_fSqp)~ z>Okcj_HKYpuFAPWLLzWby}`P%K9G(-d|&Z?GqW?dBMo6RV4eH^h(&!A2CENebqfE) zKDu@g7MDx&F@+rtolFf;5UU)91YvR96bAG!x=2OCiiz24pM~cVx1xvJLsIVA1IO7Z zsF_2cobRi`vZRN8S|jD$llue{Ay7HvrMTKlBYiq`3t)(oXy*ZeH4jxTj|ql%5d0 z%0DG#Zsu!#N@UeQa*-Ez`^gg^yp%W-$=g1uQFUQ*ef(RibjAf`XEhbUrTOt7u1Dp3 zjTrtb5%xS*#Qk(@;f!sw99p|*CBeLV-Z@#wyel`CrV7eDl_G{uGTw7DlY)vjw4wWc zjFq#Cn37G809S9n_7@06T{9T$y=#=_5Ny5<;s+t|){473&gFLAJ+V6Mhg(D;8N?^M z?E26`5fS}#O8{IjKeSLVPke-iJ3^eCIT6Jt@iVnWMe#dAn$7WRm>{Ol%^*GnYu5Q> zhG)m{I|7^xt40jJBcv(E7-RS>%QRr%m4v-ICN_aZ+7{7hL;<^E#$POOn!C$ztuA4Q*{P7svw9s@^KRe@mNhpV#qYTMm*>2~ z_#L+g>zLNa_dE^0UgA#I47gD-Pp#+>6}Lt)5Lu zo?%VmVqWfC5yq#4$CzC7AK^Q?7-CvYp&=Xg4UXp?;IqS{)QToT*Xx`rVn zVWK`x>DeU4XV>n48>2sx1Cm0yzQ5Y_U1C7<_S9!}L}J{!kyK%|LP870`|>hGHEgYg z;Ku#6S*@#iD%xCIr{}KsX_N(~3#)aVkKI|aTGx52KW(+5Ja&a?otMpAnVeOYNs2O^ z-f6V%lK6#U4e^F)fI)p@+7OmvvCd(Df$Ub4n^DipPjqWHI&T)3Fz&r0n(f*!T-PZ= zyX?$UX=HK!ti#}~v|NG5n7g66I$=^({v1J*XWx4$e;ng70>FX$f#CDmev@RNwj$7qW=r>9G;^R-jaR(S4?md!UpOhoKs-#H%KwOJU zCc?l2F{-B=+2b%$Q<40Eq~LpxFh^eOfIt=O`^!#Y~h6g!O1s*jB1zs2LL;`lk8 z7{`B0g812~{mwpO3e)Rd(>lD~C5fOtAG)p&$#m3Ql7VZ;?+W7&FeIGgWBjh+@ne;5 zzwpvntaPg{{rYXZrw8c0a>g@?&rZE}AZ~TLqWIgeFpB?u;LMKPjG&5$Z%O2&e#=Hs zNyiw-e^bViqxhqp!r#j^`xd8Bb@YI|WdYGMh(FpPs!7}G<1`T0LHxITIL*pI{DF&& zg-T-(f8eU*tNa54!O9KdN;d7|6MvSH+I4Wr^YJOUm5v)55wevDcvlqvEyp(FDE?bl zuTojW1A$cbvNoQ#95{am^4UL!L2BTnMfcI9(eijZ*l4hbUWN3e3Y*q5c0#l97w|Apr%Q&dGr7R%CkIhQe1m(+2~l^;-8k5UoSb~XD?qO0L6x|C3{?)t*(RYGTyKzTnV%SYvJopWY7-jVtO{s87%=Pm z81axiYZMtSu7K3QvY;XpuH~VPHfIgCRk}3kIUZ>K%p!h%iMcrbE=Oi~mIu_@xyrLV z`fXT*Jj;WJ)kx3sfJ3ccn`e0-Vj@dO8!LeVD=qIq?daNE%Oq_d=hiK&JJ1Z*@<1w@ z%*7e3!^hJ3AKvA`WVDsu<$**_EiaKH;{M8G59|#0f4VG96g{<b%WzY2;jvUtyj1-Oo1d~yy6FZm(L$X&o zm^ldvT8(C$hX>dW=7DaUt-6LTl$j3Z0qc@J$M7)^{6#6<^f3<}q32iln748)m6XWG zTyKykslJg~DM1B1Uc|T!3-;KyX`JilZqf`G2?C;sbC}Drec8{yxQ$q}z8^C=-OQX++}Y%2<}^G@Lww7Rb7bwL8@NHVmFIA~ z!oW5vC*pn9k%mK^wF);gC#E#l#}iYjAklT6r|D+SMQm#@7r9l_+y&Cjocn}rP;Mhf zZSvnYeVqhwkoStt{oN(f+Q^@0>?PQ|M;96~!s7!T^HvVDG5h7TRBbMx2e0G_-k~7U zJ7?q%MA8&m>!JfcPpyZ@$RE>CWM||Lgd;}f+mrO12WzfUL=3NU`^Du=)~l3Bq-$TL z$Ws;mQ>!$tIfzw?OlZC_S1FQX=eccQ{ct9VRw>48AGWHa7&bYa?5;KzSPG#fQoXvj9 zNo|`tC%t?6+p^Hz3;o#X68>%y>m$5ov(yztg4((1Gnn{9*jwSjWg>l*LWIE3eeNpL zJPnGqQZ)nBZ>1}^`>QXIu^cHRP~67b?dPW0XP zr0SQIum!?o@w*-)}1U_9&vI!4!vBbsvc$gi>iFZUh)La)R(Y4 zg*)YCCs7_|SWiir`^eTl=WmiS_mQ<9sdkbe|Mapg_wG=NCb>|J&%w=X-DXXbpMXYfwX; z5)U~j)z9)+Z{-;BAYG3k&$5TS$}!}@ZXZKlWes_jbI3zd4U9VpeoCrWZYW6ihXgL< zXCLyCXvlA489m}CUgtjICDDjiStE|J(n4dzOQI1+Sy{xs=po8E;wj0BKgXGAn4glZ z13rgWV~*^>4FmtTB=xG*#y6*ZN`e_`JmdaZ?93C!?*X+sf0YQ%nvZ-Io9@5l7X>r= zA;{)^Yl+wdgNwZUBtc#thvixUCe&exv@spfaaiI~PNn+mutZ!e(o{~C4XDe*64_$s zrWP!bx8`BFbl*xHmSAINa_m&MVvh}sbvE2!izL^tT_m}_?IMZwpB|FjAnYOG{?T(U|GwLs zJ-0nh)Hdg0O7f%#^5`FeJkXL}{1-`_it{u&?iWcu^{qBKr4TNu`hb_cai7IXdA|PV zfAL2cn)!T{^}0z!X^i8ACKoF|p+0q6N9KE-g5Ju{lQgxlId*YO*M2_X8a;}7apK!_ zYs%3xyP+`Y=$Qa0wW3~}*eJ`_IF>J8dy z>Kn1suog;)6)$@mAC!b|yAH!iyw|)E;TE*lOk5~? zjM{22TB}gO9L;UBn$R{B^NepGDixa#CPX)5jjPyoQ)6jUoOI8&D+I@}T|G5xv!8NW z%hglU-aY+oVTg2im?otbOGuMAV<8)V+Q2S7Cwv*`}G_+}ByI)sm8?)iPTK zLGS$&p}tlnq`tmo@y~^xhGsl_C^j1!+Z#Hf{4BN6geQi58R23aKhf8A{%J8EMtb*pZ_f(8c%e6sw8tuB@e? zuKu<(bV!cNPN*;gXOVc?^e>4_f0k#N{#$v(@e$0gGX1M8(|;>pv7Ib$Q8N9vGWU@x zhv}b^I=h1k`=_K1=Ay)AVPNamO60lF;@hd4tP>c&$K58snL7S$8NvX#vM^6Aqd;+>?W) z8R-mu39y62k%g-gz%7Jj4Zr}eH6UvfkFa+r&Wlm`7RwmG4A6xkr5L6UfEkSxG^jI- zqf=R>4JHqwRX_%T?*gU#>oZsP9*|tUlnej3LIK~(_XA< zUrJL!!%kQ8V&6=L>fa(SRmqNtW>wc+x*76R2&jctlYJlMvq`Hj$pL1Xd;u;M;^6ob zzz#0`o>e#=dJ3X~M&M-&fISoKQ?wCR@4VA9x&X$*y{eC3tWGuAy$It0jAzlyFa$tg z7~_Cz)TTe7v9bgs$+DVBxwE;&73DDXxPCRus$S%Sr~7p z{X3()IPe6bH6njd1mwA4XT12=p*u&KwSJ&b4^n_j?F6R@d5$Nsg}DAmOh&;W4wUQ^ z$@s+|FzS$$;=EQy?9NlIuV2WCj~6t4QM(*(I`b1sp{P12hob7Z)Pm_6iKG0`H6snT z1+2C8z$HFcbmeh!b>?Yq$a7XEIEwW+DKjVv-Vn<~)EJ1p&DlgMec z4SrDHmjtmND8p4tB&%^}Dv3!}x2Haw?{YW1E&D@*^ehL?qWZK9ebWP4`U3(p-&u2iv$Odj;ARU@+SBgz5mRUtM0=c z9Ae6~;3SnTcpwS)c~^xLq4R4&lYrz2xcC z==?DSC$5WP$9hiZN@uI9X36nPH}bqaT+kYh9dXCl*06*2!Z6s z#Vzf!DSn@xlK)Bq9xmpTzHbqFdy^oszkZX<$~a%}o!e+*%*;z|F+BM|4lBmz6gP3bpzDj?g9gX~iQ z*>Esd&-96KUU1!UB%RU6`C3~-zZ$kAhG#_#v9J}F ze^1>#Plb}iFL*1`_5xvu_brL<6%%uEDZ|IGnYokRnM&s`nPwMG6)p{ywZ(F2yyeSF#S=H_Ro%TG<@KmM*S0t|N&TXKzCdfIJ|R@M*2Y`x9#E_e z7N!4qZFJmlJ?>l_B(Yt4CkPZCYlFPDZR}Py*W(Z+X%&%1d__%8ff0jumB=Lq(tp^q7$HCiue|(OVR}%;{Ko08AtN z1#PU3M$bn|5-Ccj$hDv%nZs?;&*^MQuFDQL!#qDE zIEqTrp{-EEc$gtZLPsvh=TX0RT!6-ret0if*R5wLPj%O29YvIFc;XfS*P2zwoI1*@ z!tUc#;LPF!Qb;|S-m}+lT&B4Yak3Ard-HAc*oPBH-AR!pT^Y~yv zb~?0R9V>QTa2@c>KORl%TsTAIrXLGQ}aq{cgi%VOYI6RH@J2b&rd` z(Z}Q8U2=*4H73r%Fgw>Lhph%WChs}48oWE5IEFB0msr$nQSNP%Q<9^|72Ozltj=mJ zcEF)*EP71viyO#Q5}5jZkiz)$j^#YnD=tP?m2ERuY*Sb-g46oiO@`jO_|HoXf{T7#ACixu`_ELEw?+@Qf^j@U0$OWw?KQ<( zp;(Zu%y3UH1ki~!MSSf-@8cA<2N#@UMvPM&JdQTtiC68rH`NF?33HyodEIgI@bgFw z5;H7vwk}UZ662bO5{dI2d4u<3BUq zW|ul26x27f#KdMT(WJ92D9iL6AoCYuUoQ#7TMF_Pi{&9JSzn47e0n{0?zL+v(F0 zBkrjP1I?xEAE_Y3iu0%iROPoGkbY}8o=BmSSE&e6K5bWC|$8B2< zAxjym@}p=_NvvuDf+VwBswS#%mKDuPiI@-vz|++XhFKone}IN_bJo$zhTAe1dY_%i zcgoAml}J5Y<`jocS1g>1AUX~uJ7N*Jz?H|YRQXS_;^r^R_M2~5$_wyu%^52+Rn#J9 zuuZg_^J2~Bs_2>`;LrjU=6TsQwnPSN7`~mn+}Xv3XhoenJvC&X)NvN%!IcZ^I;@*P zQjQVs^vhNqMmTl@C`%%Tef1hebq+68n=p41y}dUWoW`d}iQ=TjSYnG+!?R}g53uipgWvh4sawci9913c0V+xaPxDY!lKU0}UIWUoJqX^MPn zix?mX(td@Q%*gaZ9P1qA(0}$Xm9G6!?*j%WzvEOgd5p zpF*H?BplK%42(+0MX7`^2*uK;NNNJ*@|GI|p8<^NxDS^4OaNn&x;Y=AHJk4ff6?~E zTj>^AC$ZL5ouAN-vsI7seXOE)q+X7_U!qmfZ@7$C=B_R!0TV5ccH)t$7=WdcSpA6? z81j@~NKjPP!LX^UqxYz6MZ&JKod#xQKg3xQJyo_JJJP_f>}8*^ISvUXi=j#^S&n5s z;<3(GMyu+Jo-f9@<$TIId&VV7F6X2JzARnw3m5$A-0tz5dGcd~#S0=WHW)|2?u{}L$*deYQ9&v2fAgU#l=MMhnO9oPU za;``BYT6Ie5izzMb+B`;=d@piVD*kbG<^w&h^n)E9=3{7l8%pS8LRSBqUpO!>|n!< zz}&*=2W86`MAFaLbngo`T5eRxh`ftsnXG9=14BUokbqO2_ zKGqSsK37?57{H^fw?AV2RR}(QA&%aB!!W$7z5(6*-fA(0uCiU)Z|7UUdXs8$L-V;~ zt9W%OrO=@tCd)=X3BH8~E>V;s0*^ELzQpQ%>XM-~jg~Sbx^B`};t#-A4MyO!69%i-fQ&TkA#_XR+DA0>QG=Zu$pH4yU~^-7$}o z8$x@mvbN?dOMBd&s1yA$JpQMol#xdO_)UP_@znI2-z0J$pgdZ-4_H3!JfJF70!99+ ze3SY((1M{!Z4zxM&kBSHy{udL@#UZ?$$EpC^?81iY|Z~1S5vQo#?b*G!h=d8$NWGR z>ME$$IAm-W)N3F_dK>CBphAp-dJQDvonHm@8psxv*NB15!MOBSK)nV+v;uOic>N)2 z4r>z~*`l*BD}9MCZ;M)*bhesq!PYxU?cOCKhR&EJu4Fw5>h;#b2#J7t4MekBLA?gz z!WEEwi$*X8)a&gUao-y1#eN$F^Of;4#8Q4r>;}(|5SnYiC`ykRu`&k_yu-WoGY^b?lI^j_YBmFFfXZJ+x(~_mIQ< z6x?e7aBvmeYXBt?$IYQ>fKxIpfVVil0_-)8K&1xQi@iS!?6r*-C*=3>6FmynLcg{h zIVCxN2PV;n=~a@jtjO$ptY0NzS`E0q{(mH4Th&uPBxzp_#H*g?S4k|(@9ol#gjA{U z&bLVhQN&RhY2c+G|AEF*Oa70E+DkGJOe6?J4yS=w=+Qog?~>kcm(@U^ zb{5KH@WRqF&kK*>VLuutxF`G&YbJV^ZZ#n;p*TDf%OpF zLNqo#1jJ+gLl42tMJ@CY+-kHoJp>ef*M}m4Ym-`G&Pnifmm&fNzrJJ6NtZ`kM2ZOc z_Ks3S1{`&BS42p=xTB{+Q2PxcNgpuB0WbOH?I&&D+!T?~ZNR4@65NBKh?tZw6p;Z- z|3eW$-;7?02z+I0Q$&U@3Qt93=zj80L}FyDhkTA4)etZNo*!yRO00&UR(Gi(W7?6L zY6$q$)~1Gxv78~oH4P@h_MwJ=((TyRFxU*`osk+cn&HNwhP)DoQKW_pcvf32L9)_5 zyBb33+hbQlQj$u?Kp5mXKO{}zc1s4lt*ub!oLJX~8Zx@bzCsNNg1b;df{d=z5I8W; zQbRDgXDK4XVAfJZupW+05vdV7OlS8of?lIbSH_hh5|Wy~)7NDGB1yGlej-bENva)i z;L)V{DM_^>pZXywwF3^X>vu^m%Wv(HB68iDfYsQ`@Va{NI_B=ugTxobZxYk6MNS3fU^uC6Tt@MEwBPdSAovoo+x0O!_=JFh0vND3@AUl)+|VWWYuq|< zU0P1{i)lTWc!9U9%`vj-Ucv3Kdep%%=d7cmVwqU?N|rrV^oI=G@3o~C25(&C)eU5g zJUiTaz(06>_V(u(nOd%kETsl6BsC|Wh}-^@en@Ig zK3zOczesYjeQTFF)f^V9#)hPN>A9z~mcL8tbE`j^B0nWrfp6b3>)CA}0FSA^CD6G& z;qvEUavoyp(Y-o_Oe49?@Pr4=0K8E&_%+$)F?q8bg9VScxu)(lvuBK)R-Dhba{muN z_|h+IYOa9glZwlfRd#$$Ak9}f#_$B#7VeagqpCWCbY#q1y?l=|*_Y&ehHoy3+CsZn zm!mRITrCnTYH(zd3~qXOweANDT%OVgImSsBC72Jo@+OIuI3%Dwx4o>f;1iaBWuC-X zeuFT|^^LS1mT#wo?@nBA{X;WezTYy@YUFa0iNw2^*%8zxV2%%U6;)EP8H-sv*z_+t$@p_G3zbe%k>++D5Yl&pAn z&DrRtn$$XTkZ0^S5gj%G0E;m-B8A0 za&Z~0!hSFpz{Q06WOp;-f;}laB)g*BnZrSHH)U`Gig4~@qcT^DNGJ0b$B|x!S~&TE zcRnoZP^`j$+h%4B2Yf%XZ*3q4;vrO;dVx!=Z{73?oHwhEO!h%{bd_tJq=e9R zzCm^=0Vw$iu)T}9E$SfaBk2nrpkXVv@C=*HW`;e2Ug(7Y&izFJQFiO0;DGRU+0Blv z)Rq;|7Y-HGllVn@c4+g2|M6)b-vFyo)`5hBM^8P1+bW~k_HDoOP4qr)W$wf71aKtEtJ2)01Za7gmKK%Q9c;G?_xY32T}En zNjr&p2hwoGY3 z-`lPQ(A%zT{7u2B%fS9C0q*PuGgB0Yc+H~doQ@O-?_EWbg|evV+~w(A5;{SWZ7c@7 z$}@hx0qAG(ODEvuO6Ey{nRakofc4Jnz)Y^1y% zKC$fUxx}34i=%CNv%J0n&+Z4-_IF=AozDmEpuX^&(lw$Ek4QnRoFo_B){0ymZE}*y-R(C?jr!-#C<~M~x1Jx{r6u(y zxIBCRRT9?y1Z;QxE(z;?!fm<6uadCt>!}}-G_I43?H5V4^|M`S?ED@JoVf1BZcY)f zg}_S~#aT(xTiNIgN**5%)4vdy_t^_ZXG~lpLMXpC-zsw(t#Y6JkG`p}C7@qwE5rFV0qG-VJ>VIeL^P$-w~88`v6T(a zC`r}(`S9s)l4}3_B^Wy4W!tzD{+6U3yyhWnGs`#zewt-&-$3# z?_xI713n$5i-zPz(#j?AmlxA?^l(0%?*@!-7f%RjqtQKE>#fOQ{aaI z@7B94Z{dsE5W_WqS&z8<#w2DAP`P(Oy}tm5?-!7C>tK-}yt^alMvjy5?pkO7T0o`0 z{{?0w#GnTH100TczpjCfGJbxL?>c{B=FI59hTF&91MBWh0J{cQ{HxpD7$0z`fXnrs ztl<3)SOewuyVSrn)S2(lkdE@I0>JLQCgWF7sG$#@0h%}%f$XIF)&r9q$>_!#M2zO) zC4z3PDtjQz6ZcAR(ZqSTuXqEmnV&sA0e+at7$j-i-Vp;XY=VY|M4{(9;D|!w0d1}z zKDpg)M6SOcr00Or3f=HF?*U(5XPF22gE-5jPYBudAdUz+LG<)HwhuHxw8CQ%WsF55 zUbTMFsVCPPaI#YCyX%eLVE3Fu-z;wC7k!Kj`uK| zfxkH6AbOMn^fsJav+$kJk{Oomj%K;xBdP^Vt`TRst6Jg_%5bIs5~% zGVoHx0J+S?LPNKHaS+j+Z}8&TzQG%M&#DEEdURjZlH}BTGkAyWne9YU%DHs|RvWge z>L^}BUp^DHe+LZPc5X00?J!TTA(gDX%YEQJTxPy_c*40_A55|}KDRlF~6s&lasO$2h7ZfjLDV;hb>7=o8=z2qsK{TNf; z-TZA$h^7l6%NyJCyV;B;@T^juI4F2;qi@pQ8tF5cAq;QG7{^1;O*4C7We zpCAD~wxTYsTx1qt^FoB|9fgL}f_GlTQix*hO(_986d&MR%)RP5sIWd{l7Cbwee{53 z)3Z`oEmuRcmZm!9=;0>_7>8!k7aL9}(oO0=yy0O=F79S(ydeFR5Tg!ywd0+A?#dgt zIrpZX=7>7`yFt}D?vDZdoE9R{e5Q8D_hqMeJ}p5+9-M|C^J9t9+GPbXq{l(}N_O}y!coR( zM#yP-R+j(dgbv9z#X;G~`#;{N$cMj6F5aRVlDDkoxL^dM?Ly`3<9K(CBMbqK%B6SG z3T{&=H4|f)Cd&g7(t6|K4MD+Wu-hGuCu&J%fD@6SdWHpGLbHrfMK40HQ@Q;}^ z$&?xD7Wo%x3~egxeQ*lmQy1yLDLF=|H{d12ia!w>Z^-?)aERl^J5EXDhuo+dZ4eeQ z4NgsA&{kd}Ck}tl2^hx`%UJDQl!KQpm*3{e1&})b&Siwm8Ym6*{D33iVWOcQQ1>yz zm#-wS05!yh!}9oS0$KXqL?r60r#isIjnPH;{iQ9vy73x3?sv&aeDAAYvD64vh|(mE z9XjaZHDRxWUdkKCCl3D$!P0k~<1VX)CQKeW2#C5<=9J#+GX$68b(|^C3#ZBpdhok5 zxK}0-araoVCjkBEI0@lZ0w3k1Q;T^rkM_)q;5!^_7xrzGG4Vk;1HM6EL2ez-^LEEH z_@vSTLHWWHppj%5^ufrRSzeB9LG7z==vcNP630F4HJ!im@nj!LY5Z~H)m#&BqCdE^VB5y9M}MLGeDo;tYTkn`yBy`~ zt|39069eE-k$_^0UL4kkw6BQEjv96|=x!4O7UFTICCM_)GEJrbtzXdA1OWl+jY~%K zjo$c9wh$>+L+1x1*qN)IB%@`H6?u3&L6k8w_yie=Z=f6I5M6CQv$um7I93^+02OwP zCiI?Mq2D%3S>=!Jw%&G7utlQjwz|n$deO)&3C{EJeC)C}XKe{!6kQ{}{fx1f7Gcl( zuRp6HiqpYSdq_y5s=mfJ?LW&29f(~*URg90zXsmM#Yhkh%`{tIe#`8ZFn zkGB)Kj_<$S_Qmp{`b`#@zJvc=hg*EoMD(;R}f4@sM#T-DO z>r*0RbE@jV4&1F&btE|Twd?A*NAfOR9hHU>XI;G?$FV8u9Z)7}_EOY?$22C4Sujga zH*037>15UHBh>UPrkY+7sp)(k+KAP3(r#jDrJ5d}w3Z$<3N5_@5QNp2+TANb(m^We zxa)B~rKAHrfsLt@bfo@Z^9v>2otRqsdNviEPe47s$Kw&j7>$y&6sVKjt=O_^Xxi$OepK<0JF4S zIy#7S*R$*Bn8ure&RJc$_|iSqyF}Rg)XvwA# zTqD$URKB%HIY{ugeIp%^6R0KwVMdXDg6V#wH?@P{2~!`VONP#aP-LF} z{=`A%M(7Oa+>R*SQwLE$bTM|6F`KzrZ%0)~YSZa}{ zI_>@CF6@A^Ou0yp2`)(hkXmj%9TcdH5d4=ur8`2UlY8!?1bz%7>>Z#1kP;2h)lsXoBQkhh+bZn`)x~Y0 zh9ul#97Gan?~=vq5<}8~-8!jAcI@VuT~G>fTa1}?#fTZIX9s23deWE1rXvQD4ncMf zLI^NkCVP|IUZEzkcVVi5G0-op=j;0jn!fTTJ5M-g$qh*qZb--l z`LuM`2GwG@Ysq{F!`klJjy$aYudpx4wIo-To7XDt3Lb(zxr`4jAt7i|InWx&@;mU5PRf_Eb3xuRu z$bAvR_9zuwB`XS^*uua9q*EX6Ic@+hVRkgu)qqT@)rS(lQEY>i!apGN+zz3KIAmEiWi4*9+0H3pp2LW$ehSsBiS3>-* zMFEXy)}nykPCG>;7MrqPFfWn4BdMlU%GFvJ@V2?w{FttljPPO3G+>WluV{pgBQcLh z;K+^o%oL+Df>(>;HKd9%ir01J%XCB>up!Czq(3;cO-$jpm2CIwAK}j361kfAaIC`C zT}vdPXiM(5h9Z7A`NSdkuk3~9b}3)6cid-9&R6ID2e^T01tVN_>OrFZc%4cccxfJfXfp5$LZ;j{?ylSGsRdCBO6y zs^pixK`~M@2hqvLSXXRNkjg%>A#FC&230D{_zS3m@dLdv-z2@F!~1PLK=2XYU_Hc& znlCk^OF4S~N-W8U(%YI%!=$U)O=?;6KF;q=K_$5J;(Toslc*+w5Ic6XX)2v-CF?Ss zT4HEBh_Vh3*fpdgBb*e<5@PTK+Ne5(2>cwOZYjZM9tnP9sBFE+F=J{s_pLW8vKIOX%FUyA!inpAcEETH-Po5cOm72i zL3ls3JWS8YqR-j>qHHl8RBJ?n^=|ncI4VbU0&)DOhhmD8b=4H7Z-B&T(Z+Z;9F;*(4`3yVb?JkvF`3s07KBH8)?Qa=5QB-#3eR=xyGSVQn&l$iy< zB9r2gVB^Jn!s672X`)<$;L3@=z|J`O1YPtNJ_`vdwG891{BbbjH1{Gj8peaY#}u zH`+Sm-u4++N&3K9K0=`;Ny9Q5w`P(cznXfE&$&x<(v@D(C!K+~Jm)6RDc7dWIGWgL zG2<@L83$=0*ND!zwPVIrlDiFqtACN?&wo#@@=XfWV4882q@Tj2a?Ur214YRvIDZQk zkSC&RLj@)j;gizGhuFS2=0004YP~WM4})c8cP7Z>*2s6}-bA_Bow+wtFZ|BjTcJFDXYTFb9p0ID z9N_2nJJZ{KXPQJ$a{U26=<$jdWQ&~`H7*PEk)d(DO!g@P&hB>8W$*S%K!DP&y9VJIliSZY$nk$96=4nhRPL7hJ7+`gjoX)gn_mrG2 z=$Y`8oWZE7UH!=Vo+msdC~bFU_LLy^9C$k$m@}F8d*pX z*AOJY^q9SY%<(d^rv!nBr-iHJOlDuX4Wkrq$yI`Uc4CvoRe~=sD_kW940_p9g0UeN_2y}t3;20%&q`{uf1HbT$|r9A7IPHXSM1PvmBF}v+Hfe(@Y9Avjd+}%B{msx+HkhUPJhv=7#sErckex~cPM?N zcLEFM)aWG0_p;l^NCf>eu_W7ezmF~2G*G&%&F^E&-iP{QV~~7JsR;9CF^Q;FY(L#q zFR}(cSvljUJj>NL<1bY0&WH#@{p$!i@r)1!u_GweB0GblIp=FIsv?_23B7H>0qGIu zGvr4a2@!Fy+Fuk!z1lD6_DSym3Bro(j9x@_^j;Pz`JTQ5nQZ{a=!at2oiq-}vOL*G zb|p^?Bof}sh=KNY>=l(rNANVgI;z9k?}rX+Jun@X9gLV3zo6$}pM9g9Yh_1nh95BQ zkhx>}P<>ISkBzapbo|hArw`|ejwJgFsb6jya7Uk$Zd;@yFSWy)c42=WABFe5}ma7 z(}?YN4Ca*(fdM=pR^31r46_9B-%I=G^?)T;M;Un&8&{D|1Ctn*4lQTOB$yeQM}J1A*?-eMEZ(Y1#rvg8$@{HqEq$1- zMtnMy6kDt@G`gJA;OT-_@Q!Z?HTCnBDMiRh-vPQ3b_- z)L#BY%bt~vjGvl7_Z=xd&&Yo;WaWwLrK27X4p6y!{|IL(mSXgQare|m+MRZO@(BU0 zAb%OeU`V{fZRz8{1?3|JVoiZp=}68lcao0lYg&}pREiJ(4<^?-E1Qa7(cCqgR3zji zM`e~20u$1#BQAjmj}-FK(~<)l&U5{g&Y zeP03^3fO&zDa z0qOyg236o0D(FZ+T#tY_Yvl&#@DI&m*8jEhVSl5q!L@t!;~1c12*L}6({O+t(h`*kK?lZlu5X@gth-TXNXCHMP&3x=%wy&pnh1i+e2J{3T~5X60SZW zp+Nlnj!8GqUgLmMby^{LvuE+uv(6^AK81&cnwI`GMQHw^evNl zbxYc{u)UR@BP9A442Y&*V0`KI4!Uk8v;X>!aVemaRoXnn@EMx(1<74P_|VE%Joua# zhr*gP69-L`P8G&iV=N169ZllEr?gAuY{3=q`v815v$$32&_rwadC+|8|sndc`(@*3!hBHctRX?t~5~z%}SF}8>AJj zlC&*hKdhGk*HP$9OCmYYnMgCTB+!GAo!YCznFc8gGsYJa-Y3F~OpHdz77uhPx_AOC zJ~gzeB~_7ZJ>E9yjcjf438*c;nkrHi8`jd4EIw}+%Q9DiPBVW1iX3vRY<6&LBeS(= zr{D>m&=92$M2Dax1$O{kEKsnTq5}LQFrb`_MQ*8qtV`qxA{*zf9F)hfTi{)@~9=@3D~TXTCcC%$G=+E7&zkPtC?IxyPCQ6 zo4|y@pt`PFf&^&nGe`Z@wQZd#YW~MoqWX%AKU^TN z0LJ0=QVH}gc1(&QO=j{R84GN6M9QPa+M{QmaCU4u?g~} zp9O<=b<81v#mlv9Y=wI|V#{4fpX-teQM1s{h{2pprTrXS9q5y_Vg@(d3$U~zmKXULapr($I7 zm{pUcS#=|UY#=WISBe=8I)|f65Q4n|y}KUU{0^=?NQ69MZZj($Ip5^Vv3TmTjg7H^ z5>}_|(yFEarZO;nvz$$>`jQn5bzBNPsc#fg%31b7aPNmGyZk{x50`d&=WPx=wi zGkb+%fHn+8(~kh~fr1tK(FO^Ct4C6SE*UYv9Q>ZK0uz^fN z{thrP;L>e?NfopQeNAmzUN_2s9#@STs-)rr%{YSFypZphtYB+v#F^hf>zYqVFk}v@eH`#0Y%m6FmIbh5Ipz0>+E%6I@ zfK|i>(0@Xb0Rhe?{gVo;Q^UyJ0ekpPD$zEQ{D~n)i@M#86dHrx$zvGMLR`mPT&Z|s zG9GM$O@<77`RzQ(`|#aU&PPNgITBdi@m)}%Q5-4w6SPTY0EUnJ-_MkZk!Qh`L01NN zTDq`bNH7SmFJ~A%1`b!S<`~&U_-w93R1PHBKKzTxLJVEf-fvruo#81gSS+v*)r;ec zhn2!cw8c@MRu@9xWcbh@;030yfcr%*MfrH2n2;P1-v13qleKRZYZ+fK&i&>b=CrPAEs=#dAGXqDFN3<&uLYf zlE%_*t_fLNuNpjI5>+$t3%m+c%{<7+@|%LMAluI*7H!BUz!gI{PLpqj9iskWel+Vr z!ula4EXI*uX>~ClsRn806eo_^aO6i5&Jt1zfFBKehI*6D}HhLpdDi#(GQJ zB@j23?JC%4M+p}S87=JYH{O^jbP{$F;3s#JZ6$GIdR+FB(*vd^VhnTH;X=pGmT`D! z0HNQ?p@JiUKk>u(F|zkwWx| z=ZUp3fXAMA#4#eQGlT49u$b$N`wn_b-kBeTtvGsdZFxK|)4GQ&J+57BWXKElZl z|9V@tLU?GQV&f3if>vUe>|~TIhc17bT^_PXaV(Pj zSlyGz)`m(_w7KOhzgvX`P3`OteMxT%?xp5>+HDTrh;FP=1KY!m@=)2tDF0O9Buno> zlH^SGgh|2|)KG_Ioo^C%+BOu(YTqO_2Y9L~Bb5>w#D$K%+YmH z?<$AAR0-9(P1doZM%>DwNix7r#A~FX=F?&+MJ%2M04^&EPLh;06q5pkj6OzT$N{2c zy98qaM?ijNEvcSoKUt{lr*{I6R#UGwF(KY%)CZ)NZJ$(5llnlSr{6a58a^cUSutqk zY_WW|Y!0*$Y=Wz+)o8I|gJ=P1HD#9`)y|jbMJ_Fw3CF-1h zDDE9$J(7X&Yek1D3_u%8-20vHkg>KK*Jgu+q)P`^^#GAzezt1@@{CM*{N_5UDlKLS=Srvy=Mtk4i}__d~Ln@u-J-@fwMJlCztIB8+zY0ox1v;U;9WlS6k%G z!;XWV`1c>>R%zSDdUSIoj%|<7;g!*(m1o2>OGFTs~hSo;1)t4 z;7E4)VySin{e`S!@eIK{6y#|l)Vh~@r_f)brR`~u=D>KDB2LN7bgekAkF-l`60>y=$~D5VXfMlUjcMiUiZ z+{XVTJsFG4(X z5Owi41cz?x1_piXUbQSDRtSi$T!S_*$D{T!pj~zGh|ijXMTn63sD1r2UA`E9!(>5B`E(tAwY+?G zs*>HjW>0Bk>LZaU*CkYvcIqhIyo?``&>WNt=C>rN4!FVk_$CS6!Jhgp3Eg27K{)-E zgf{WN2jPNdPO)8&8&eI(+ltsCpQz%2 zrZbk!mWM$s->_^E1fiS3hH^=SUwyF+ZlDyWZdeshOODruy;iex_HzO?=^iNVk#Jxx z(J)M7=2>%KUn8w{Nx;5F^ycx}!BK11zYK>;^bAR9!{(H2|g= z$1eVk+N9tkHOG4Z5nN^qw5^BGp9oa9skPG5q83RyEx_9UwoXT1~=39CPA+u|`hvmau)CAUejjes~v+*Y3|HB`pKo*N_8QcifoB znJkVlxy?sFO#<$_1Iq%Y=Ki@;vBmkLmm#L+Ir%c2;P-xAhAQ#6obh8MK_O&G1r3os zjl(hVcU2-7ldBjL%s_*{`x+A2aTO}Oj|&wpe24dOWZDQb4h9uTD30mhji9UtFkUEy>;0JblWx!I~g7Qq-1fp&G zy#D48M4Tn>9tw&bj*&nN{WU@AB8Zds{vt`2HC(taq?k*5)Apx3Chyy(b5 zVr?fD2EaAuqk+NriMSM=z!H?(x#1PHOHoz{GIbWX&S9tyX4@2o>L8STLgQfGH&(2o zg8m>A{DI#dj#s?mS={_~I^Tsau`vx-Sh<~lApvd_aYLH3wRJN1L^GrW@CEh@2B)!igu%mJ3<+s6_x71xv_OI5mkon!m_todQQYV@8R2N}MPY9K7rF!G z@m|Dk^cTR1)w}~m>X%seij)>X{~z9p9ZmxD-@XvJuI7-n<(dXa7qnS`z5#TE-}`~7 z$|xF4L{aP!lZer8`Re9@WiI&)Fgllf7f{{QTyiPwVwNkn0R8+DQsF2l>h@vI*&Vba zK6i->U=Zahh=EYVBbKb}5a zY`src-PlJ4KE;=IzoNdu>-w2~o?#S#{!^feA1&&xy1$Cb7@b%G-B zzo-%jMbJTlXuPTj-IGI87H|eSM~#!8Qy<$^fNt(nakfX^Y-Q z`eR#Y!g6PTBp{zIQOM_Q4^fl_^4XgLC>-*6C69Qhm4Kj0brC;`o7CpZn`8+}N0{CQ`AbJCQ@|`DLQB5kn7~+$&2L!!CKJ6pa;ntBt z^8}!C#F2FG*ZR?bDlz3~aZ4km$}NaW{uFZ{2Wx zosO;UC_Q9&Gj-c-unxFgp?O696pZ%}6HX}}28nTOabO0ikf?%!IUhuqf$|K0--}`P zP`9w-LAWKR5*t|?G;~#R&P5U?cgMqZevw$~u61M{9P)LYW7GJrh8R+5ZIW%+MjB;ovlk9fBdJ4rzPnkh(4QSlWSd?!ZZT z65`hc0{CU?84gqJ@OeHfuQV{!z^kEl04W2`bi^-{{JCxn@oNe7rWr4(vEsWLoNUyL z4e{HT)Qa)1T2+>beHCav_Rg*rcqvEvi@A>^SjkA;_Crv@=H>P z63~=RPLv&s2=#CEg481l9{83%Y$>=!V7+}w3cH4o|FFSAhMJ4uR-uf&G#$fq)$6FI!S}$B#c-K??izw!wZw zAh2Km0fqhY6;z2H`|3^*q``jK$0r=Z9i&}wtQqXL!{I!Z!+yC&1IN{ulzEAGc}MkP z1Yb;pLIk69hyC6*OSA;+w}a0H8^bgv%p~w@3j5_;W27DT+flxFY!CBylp`ikm{vqb zY2jxk;4k+Drb2 z_CX^Yw(SD?dnJNQ(-<_{&k2>-+7A5x!+%L&m5VBR=FAwe+k)J=#IO4uF9QAOEYE;-Rg9wk> zz6#(kH#b5V8f#`hF%WXu*;x?4-;O}t2!s~TkI@~^VdqOAe>-Acy*Ylvt_zDBchDL$ z1;>!Tq~EE{k-xW1tf=97eRdrA%Tu$aKafM!kiXoDD*=DGAXZqYeJXOzY+T)n$qRx) z-78|%+?ouusawRBpaXv?DaDaT+`M#@sGr%}2K;r20)P1n?Ktq)uE_xY@&+Pqm%v|k zo10mHzdT@87`%D}?c{a_5B(VKTDk4T+*`x_lKAKueq!)4Z*GQjYD!D6U)v~V!}w7v zV5p9GCvzDL_sjKBhQny6V8G;4pbb}C?ScEXHEOtDWB4(zA}NFjR5aW#X^jl@YaB^- zl9Nz32D##mV^np71j1z5=Q06SJAE0B=piC2jV;IQmfyZ2J_VGNz0HdneKq5xl2`kY7KR=Q6-;u{dwN|ha9e{R53=J#M z0fL9`L9h~?Svm1_9nk*za`2u~-jp3CNi&ATvhs5Af(?EIIZ{U%+g9VMI7`4h4wmT1 zbm-eJyp9y55xB^X+=1YW~;qWW7BXQy+&*d2skq^)1sXYF|aVdguXdw%5yacnt$)P?BB$PZO;t*I; zJtx(5B#Y6k6r{xcpl0qWhGFo@Cx?BL)FBi42};Pi#~g8>r^iph zA+pGc@t?xG^MC#P*FX0MuRd7!PXF=W|L30qo`l8(b27x=pC3}!l~IF(O=Xf=9$E|k z{(6eX%sn3-nh05flnb+jr<2Dp;gP&TSSJ+7XhqVyvrZ?6yS@Yc##q9 zF7e+2u(`t1{IAnneUWJ2{{7Y4f0eb0SQti8lo3iLz~B_nHBA;zL5PF-vt7zjuu7;T zz4yu9JdJj1?NS;5L}3qR4m4QI6D-8T{}EQBg>-4+G%AW$RU~+$EJa0eG~u+MN*Mf6 z_=ky4VM!C-?|S`0i4b#lI5E5pTGs_fG3IhRIem0>UH*(-p7d{IMlSywL~i z8|7`H5}n%P8-D}k7V8|g&t!$ z=@n%O?!>!LiclUd0VY0E68_P7q?;Ed1+|a#6AcL$BnH5V?WYTpS|srvl{0Z_z`?h1 zgvuzRv@0^W{KV4sAEEd|sbG(ag#`IqB@ZF4IN!-=n`I4hrrfwg;hxu$AI7!hh7X@@T2J0E~+o!tX0xp8*;=m z&i;uhd4#_9W71^DlR!NbtG`0q^vtZQ!WqV-kWEw7CwMQXO|G0*xvX=+#v9L)z{*fQUL{j!L0*d*`Dba zSU3l7kWgiXbFIsYrP2$I$t_(Z{g-l1=8xE2_OE>=&X|)%VUq*F#tBbMD#U3hJK2J= zL{P>!`LJ>RbvDK<>EtYe;)&ac67n1Y(n5+H_>Gz8+mv~-^R{WSl+lw;Z-?I=K#VmK z{LnwbHdYySzl`U2lsiC-2)HM3fFRTW?yV`ckU;FL+<}lBQg;a723+H`8a5+~qzfg( zg#r+-fcQZ-JEp*NQKFp(?38j!K&A{a3m}17fSjD6f5AlJhXt4_a(ba}BcWEADv{+2 zExyaCG6!upI4#?hCdS%t%_#+&U@P$&pMp>%{%bC2<36nZ)tflCJX>e!-KGMBj#%bh z9#Tnb@vCTaI`yr{@<8QB?-m4@KI`|A8bbbAOKR1m4~K+#-9^qD#0jz7ZRpS@X^#&s zQiE{c+3>Ua!iniYd&>lNp+H*XJ%a9p>mT{gBc>lt`<2%R1n0OFSrMwFMJ6li|NTP= zSIi)PeTA#IQzIgA76JoRR3amUt8!F(7aMtQ2*o75TcdJh>jO_PPQif#cD*9_fIL+h z>57_XPwX@@;ej(G&n8?ruMPWghKgAZ_Ovqc!MX?0=w^1~!9#+IED>(YbUrMiPO=0w zb;j#_0Jq$DEjbhbEw4lTqd&q4*9Ol!=nCjy>vBQJp^RcFa$=G?4;1@dOw%JYM4O;X z3>Z~R`S#gp|6hlpzN(KanUB-G;h1Ndpx;z?A*99z@k{iUYG zTc=EmKT`iDDT7A}`M4IZR7R%8!{|{g_%OGYP=4mYVpcj6jM502A@Ub;BKqBDa@$4t=!(KD8j?`Xa35SLB|(701^2boU2zcMLV9pd z^3;*xYe=r?;xh$O{C-#GGSGA9e);nsak@&pmP3ON-jDDYV&vxWZPAcx2(42OXO1oL z9_A$T$${5qo}bU@WAZTu{JdsV1iH4^Ep%7yjoa-l?&L?)WQ*W4;XM-;Ai;0iZoc2W z5k$q=Co-{R~P zCMs!}e~i;ev_qC`qApBw+ft7P^FmHbaA4mBS&b{N2&C0?(Ay@y(tK+C;GG?V91^nV z4F(!+n@|(e7&)ec>Y*S-IOw#+nsNi_Bt4SV|DH41npHrV=As41m4Gfy(op$vHFw(H zJARAO(v7kT8BWukwhdKBdv&MnZFl~FJ8fGP;Gf@fwQh?wbQ&=7o$j=~5?S=>v~4Wv z8}4y$yTdRf;!^Zq5RW5Y0X4~t7vtV9HlZ6&yzuG(2ZvdJ}&S{^K71ewQDW(#?8J_t<NbQWn$d{t76+e^&lh_N?-}O{S5(nHH(6NMJ z5>5e_e)|#59%X|%jZ2n!0wy4E`6U@~glrLa2#dlBDjC@}Pj0N&XoabEmI-`OqI zP^DOi^o>af^;p?&i2!o_?f49ob6pYtYqe07^lIHHnzT}do}o34!L+~| z#|S<1$Q(y;Hjmx4Diz=?wrBGY(Z7bv8%g{A7lP<9rQR2@-kn@eTMn}=3NscUzD6~` z1_h+nz7Z;okq&LyzIj%^Yi>ifk=aFy2Mov~J`fzMT zZqq_x_Sx<>#nZOG*^L|t9uQ`0^86_I5Pu)@O20JZp!Tq%OH3_;FU3Ohx52nmgytLK zG(0B7#nBMT>hrcS?FF$hX#niln276_h*dNw^IYP-G4W%w$Hr7b zHrtt4$s@LCdT>1PSlA=8xu2yD%17{orRU-2T&dhhef;sE8$e{0|JiR6WYbz znMn{z2bS6lQ;tiKY%4`#8@g6wn7EY9PPTQfWBjoZsNiDlmiF2lDlw%4A$1ZxsZ!G0 zrY0Y13s!q`wFWU&+{LE#p!gZNeq1j?$i0N()LBY16f2D4K6wy;fD6s6KXS0xrk81n zJ>M{#v>ogZcGBx~v&63}1DwBJDdW6*uvh%zRqSAY;D=p_nWEf=W~X22XBhTXb(O@A6c3e?AF&<} z$J-!Vu-#56kH&MFSdl{ipbHMub;Dk$NTpZcVC)VF;4(QQluzuP*-|*Z0rrwVQ;%I6 z1*}w_>^4falyww+?du?a>;<_!5JoIJIguMUWC;M0i|pT!EDaT(DJw{vkEIaLSf#96~ocB_R{*nCP`*{-(2axCCO|bM3=rKs3;<{Qa&V8 z7`4!*I(vwkZ_LunxQUQ-=9@%&5-iB}m=P;;0Te>UJtu*_%%R4?=k2Y1cT`hd(=Sze z?;;Q&^pem!NGC{@E}ak{Kmvr&mEJ*0sETxuj-XUQiXZ}t0wP^0BGOShQoO;}=Pl3r z*8T2X>plNupV{-9nLV>-PgZjFJ|kp$g_UO?f7mX3HqI!+J;}8#2Y22=9V&h`@s5EH z>zA0MtdeNoZMrv{?rWs2*WQd6ez9#rNs=O#hw_-q44JF2;aNXR%K;BFL9R2b+*)MC ztOy&s-5s{YBBdFw<)fNHhD>&7^HE-#nWZ8rocSoa=}c~8JQIY;4x$j1q47GM#dv@T z!XAFSB^clkMh>VksmC0c#E(4M(_eNN9ax^V=fOOMNI&DQ_)vkny!fK#i@Q{ zs|~q-I-sJoYvL=XE9hM>_%IkR!VH|8}n$Ot)oNDXr#1mi&Rx9l^v%u7Q-Fgmmoy&QSoTFp4#C@ zF=)23s4FfI@QML%QEBMICk7P#Axk}VEagi&Jg@Hl;{N)Z%Y-j3S4mVGk}o|EqZjjC zW6Dtk&>Th1O5K;0CBbUnm)=tv4#I6a>32xvZl_EsaS~m#dRoz-ZI_a^Pd)?rNpz;e z{E5824(9Z7aW)UggY4yt%4}1Kk#Z-0%UIiFZByxBX4ukZl;hb9Zl|6@ zO6iGuROpw`N)c@ly2APNZ0zdN7fhg$Rj1!Z>7sgz-s&0Gi zx(3xKc$MSb?hd;=3)_FP0feYq)`=SD7{oE%cg+a&Lt2-#?tE;=EQ{vbm0Q;4-*45I z?~{EWvK{R3q5Ol;zU9Yq-|ch3T=D&NwCu8lRG~p!#WStvnsL^s6^X~CJ*s375W$-n z*@LG#C(PP!v%YUNaK}dHD?JrSZupSO{3Y=jckD_GH})1GnvyH@Akrp{JN6uH=xmMM z`@x(uNb^OdNISXvWhyh&sEIo^Kf1j>%-l{}(%F%9 zmL1n|oRa8Y*TUV&z%+4 z{<<$o*xy33p9TBhZQqm)+aki)kvy~g%*AEIQ*9wY=&n17kg%4YXb?)5&^TyHSu{+r zNm3xEeG{Phggdk;yC#zD2hWL;soBcSl&sgPs{YlU{(%dICte8mW%`bc0A`{|6@F6p zW{xylI?&BV49g5VTeNI`# zpXKJIu{~@FQi!j12Z8lJE`T0Zj~zTT7@%5%7&n6sGRV2T=c}AvCo0&=M)Hjdqr*o$ zz7S=d`Nozu3F6s|M5Rt{IP^~-{^OR1Cu7od3&8czRb2Zno$;?p>6=f;9x6ES(WwBj(2MAVg(cegCvX(R;e!fIRiZd-5N9>s~Kkw|)jOl+y9iyX8K2 z`qDY){XjUn%9#q1}YMyRpfRm-tq2iV8eRr}CiCveBZKw^}_sFGrC>Tq}8mG$fgli;`|UeGOpo zT_J-{?=fzCLdkrfxEU|*mqNYADy13Q-Ea;@uaAUZK8+JHd|FL>v%n)ndn6Wg$M4m^ z;NZh|(25$nC7CXviR#pQCdtqXD4&4I61#X&XbDDs17@AP{4h7XOkp}KBm@#2n<|+Z zE#T+OdEZ-s`Asp01c0fQ=28Ek&~<$;&6d;~Fd(U#*5pno{*MIC%eTF1mTXl@6IrkF z)b>W}bnfMu&=~K676d@I6pmNqBUrVrA<<3mM=#!M>uIqK4Fy`)e+A1W46L1ZM$I zxvdToup|bLd@`*r2jZR$k;R_Oa4f?@?l1Ltb?DaDId0r1836@< zjS)9`;WI~2*;UG@B}X|XAuk=J@vP2LT*@i?%)#wU%Nnrnd7SZn4f}L@CC{&y=ip2L zCs^|lY3oQ)ck#vyFLA%oVOe&GE_Y?{`1zJ3bz-=$krGdNS?|`X$m^0dOOfw#gT-lR z3SEeQc0{x990P+4i+eUAwmz%$yq6X~d5BYPwRkOt2Yp6d3y}6Eynb?2IdAgQeL@9@ zSHwg_c`ZAEXL<3ws6@nr27g*9H0@$0Grvf@I_?e8*)vSxPokfkvJQeRpV)wHEEO(B zDqAPZQ=hX)%{B@e8${ygV-xTG8lMeIj(kb*4q{A=U`fJD`;?WlGOFr@N!?P_mcY3KnPdSS@_?*j6#1cES{qMnA&Ea9?M=v<1 z@9w4ZB*mb{c>x>BWIxqOIZPD@i#dT=m(PW*fUHA?FFN|rNgjgB^vzjGqUI-wVQwzm zkmg(9BAsI9FVx}B^nLlB2i|F{&8>|V3}grsOX#X+d)>dhDxg23@c9k-c7&#hj*Fgu z>a(`36fu_XM}1uG&Y}%RX?I55a)w*LWUdL9gwWD;CO5V2&%Jki)(CA_1`2Srxha?D zc8u&Btt6k26&Ov}I(9jO%8U~o`JV<9c}Z{6db~K%VdOP*Eb4U~IO3kOko}ze1NTl` zv=Zc7M5zGeGaY{pKE$InY|B2U>|=Q5o_x2?mcaRmv&KpiFvZ@jx%6&EzX``hx&aqW zdv>Qn8fP+1{0p2t+#50wF1gkAIYr!O1g25XR!4A#)eBBIRqwpstUg_%Y9+!UIHrco zL3PJC7T6u?JwNaQtN$lu9x|uiks+A}Z;`4M4+jgx*QW>54cASjI zJbXh@nlv}}{A8?v&nxw6lL#w00$F&F!o#Z7N;GZSXzLkLG_t)shi^I$eMR}e0efC7 zzuuPK96lkrQ$Tn)MQhtOWsjuG=No{Q9^K@+a1H;0G0q^v!rG4JAyjxDdw*V7Mj58; zpru_JXVhU;Uff}qs7DGo_E@MmZ{kU5bKz)`1HnA&1Hyoo^V3Mdn9R~wmMOAN(tWkG z%6UE`Yl(}uU1E1vHf%B;nJka`j=&St!El3Nue7OWI^zR2`T?psmIm_Z3LZ!Hro5BU zgF6qTx01;BRrpKm?zui!7S5fbq(c=`7A1n^p)JCa*>9bcFP0&eM)m38>-wE|HKHV8Lv zQ2%WNsNJ63kH8zW`13Wg;z4Z)q18oXRp>VF##6xID@}1Ci;oLwwSokO%;fCsx5P`t znD6Zknn3Yg)~iepWik&K@?O6qrL9Lp)g5SY zC}>bZme6~?Jf1&Rg{_5NiiOj%1qi6x(^KNle6q9w`aSdFu$`Zvor|mj_z`S6HO6yj z{A9(cJ`kBc1W|dB5AkW2F*EV_u>~gkD-daC|+rDJb!N`^yeXZa3%v~{+ zAd|SqLfVwj_W=7oi6DMcB6(AaF6mQAddJF4@B;?kpb;VS;Uy~t{Tf}TI~k1)I?pe% zz1!PPi$3UVl-QNK2BglMjuiM1;u%B>BSQ0-nN3pULKWN7pYQG}C<2|iCSyKwhFWT- zAs=WO;qTQGDzBJ0Tx->*xlz?`)5T}(8NUzilY&ErOViL?Fu6h6DxpkdlwXdG`;NgA zr`z#I^BlC!LajN~hhr?9p1HtyLqXai1raN1Yqc2vXSrUbR&l?_(*gorhiN@zn}*MY)aJ;q!M0TFLw;oY-l6Bm$^Dvnye~ zCpOSdlm$t8wWf6r9+VvwO_EKNY2SX#!6nl(_OSx^lfy22lR9w@L`!@~6JKBb5|}GJYLL0>M9>i?$B$C!RDHjCnS0zqQZ)P@SBIHYzjr zP-l_2VdTT3i^#9$ulzSD57s(y(+X8o&LsnNHCC*<1BdyU;9GEd2y{?=0`-F1<$8@ zMFbH~s@&zj6~hwpe9hR*#|2JCNJ@4&cgob&uEjQb>u(&Q+q^Fd6lqJ<3{)QU-{hiD z>XPDS!22d)?!1X2j>^WXPIXUZu>2@G`?a(tAx*@sFu$?Lz=eC#wV7~Ez3`)E>KCFp zB9{-i>6UI5heplikDYIIrmtNarkNRjw@r~u=m+2EQXetkF~QrRT98XgOOu>@Dxp7^ z_dzF0-zk{4pyEee@G3kye@3a7Z*bS7p@ih++DfIM5drbF9bt@HmlGvDe16GLD+rq6 zOc5aA&l!4CU(kSX%n%0ya2c{CvgdqenzSV!nAmjjTEK7_L@7YM%oIKHYR8=?erAl! zzT5rrX=GeT=7t@otaNsxE z0Qw@qXh**3x`tu#ax*ixww6^NYuxO}nB<$3d-Tta!VL zVi?zW!FD{;>M>moUI%o4dRc^|hGi$g9xmjwwpY%w5v>2xp>~wubu!uYJH0xRR6ex&7r`0(4 zBc7`br(z3f(qx(n=`*Wx$yK?PI+y5)4;`n^v}MR6H*Sg-p(c8|Is zX%R23fPS)7c<+^Wn(BWZ_q0sr+A*yc`PeuzPj1h#&iLZan{AZE`w7usri;J;D!-}M z1_RiwB0Lk|qs^qAd#x1BRdY-c2DltmD7te@r2sS4JyKJz9`2hDe!0hO|2UN@X^R{U zXF4qX=xiI=&xdkW)GN&#e2?H9*zdCu;vBCM?pSg6xTgccH?V$eNMB_DRn;GT(qnBN z8c2-u1jn9vgXIezuh*ByVt6on-(GKVfM}=@6mJoyiie2jc5VQ*u|-Z?rBydME7kkfmAw^Qf5AZuY- zWqt;q0J)?|dEc=UQ4otv{vo^js8;$_hhun{G z{jJ@!&0shtljOo`fxE2K__DWp*e#l^V3B0eQV~T4Dvw6HAy(N{wI{-8x8ozttq7!!pH9E!Eq#uMjAzB zGLOTAWu{~U8hV@cXGu`tSN3Q|^85B{yG+D2(Z@IUc1HLSJrOdqNc|IfR(G2NS>W}a zuBJ>#G&(PX5=`u5*03J8c?u&u_v73ES)n8ldVKT6ekc! z+7se0Mb^!c@QYb(kY^*^3ozm0sRg#DNS<%zduyRCCu+&N5sBni@MDTPeRMt1r?=`` z(UaKc=C7c62u#ehsyzbpNg<-^`e5H~vwN_Hy73EdB^gFqB>~ioWxRBa5ATqA^!b;4 z%#Dbu%Ch1c0DUK^aATh2O0fDpDJRub>%9R>2Or4ei#})nX(sIoxs4jmuFj6quIv1x zh8j6?olh(1kG|5CwLN(+09+#9i0n<&{ZLJNU$qgs!~^F?Cm_~(K;t(?y*Gbud*71V zslf#qxxBn5MX*riNsPS%H-5_dZ0Y95GtI>36Dw0xT+ewf?*3jH;6r10=xw8Z7(s{o zJj|BX_@Q)e^8qHDTj=s}V=S~E-qtqoCWP4LW*z03dpPI3@1%phO+)a4jz&T$K2+}@ ztk#Qpob+OOZFvy2#uWDpI8~^hs@AQ{XY|gMzT8&M6N+hyrcs^U&jacS(KD=V<^es0 zqO08`e_^71V1^f%=zB5YW*1yKtovVTR%~udDEMkUoE013Hvt=UcA-((4Ztz&1!I^P(S(?8-%r%~&R+GQkDq^{yw`AzR5nY|53t#)5I1y*Q^wy}fx@ccFL>ZC<3_i)#yF(|}#uf4K+3SV+J$)qjH=+we6Blj_-?)uex0qD; z5t_0Orf*|Sl3;W=|46dC&nSCc=AC1dyqPwH| zK3U&H7s={YFbespes4SrbJ^gXvJPy8m;un3OGy{UJcIEiJ0aZ5&F@nq7iY|dg$=Q?}wI1s_V9Jgq`ZGn#h+b{h+$@v$0T0fv|KM=kxIQNn%!Grxpr}1OR@yTwUKiEw>cL*lG3E8vljbJH4=&)Tu)|vZtSZk42d!} z-PpB%ag%dwA2PAl*!{q39a<*!Ph7^0aM9w+j@IqWxTOYlr`ji3-OIBti{d1%uBYl> z4&o{8clMl=(ZMI#U7USVe9tibEo-O2`=R~Em?l8S05a^Bld81(_Bp0Mk^oU6ucZQP z1Z-E?V=UA2a}K;z@4z|iVeqNsgmObO$o0~$72`axb_(YQTXFBxSW)Awqd>9qj+Ml;g zTY7ek>WoJ(an~zH>!zQ`a`fI11oW-~0AvA)=0Cp;yd4hglz|LATPRHadV1EV_MLE2 zrIvFwAK({Rm~7UPfeF`aQ)=6;nTQ+AZnQLN8AL=c^RL(71#u%5{(EMT2D1mGGl*8|my?wNVx((O6K)Fx(z7I z5R*}4yz@k5O*_U&zqOMBdxi8MQ9T0;gIsGd?`U}Ic5@H9fJLs;B#O97VG6SK+(A)m zBud6P^hj`#d_nGBGil*k_`FbXsvf@1lL(p`grYHlbQvbh)+vCR?zmkc^cF@J&*9V> z93;|V96uXWGKu3k+y#v|8;ZY?l4;nN%28nOr8FwUp5GT7%8lB*dlx|kQtP<^JO9Q} z$ffE2s?0#&Bg{}dRl5x1z*?RllYk6E-%#esJuZD!Tf}TeV~!Kf*wJAtD;b#j05Pmc z?UMICF%Kb%>+S94uh<+XJT_xavT$pyG_YG973847$;dU~BfaLYGTjPS9{o1;#!gmh z^Lm&*&g+D-^^V2SMmPQT(oUGw4N<`K;GM-Le2L*kH`^&LZBCje+;bwg-Ad{VL@u3P zz6~hKWndi=Vjxe{)7z33PMb(q;0%@6Edl1PKVQNpx3G?G;Bb7}da{T}Dp*Q;8WQCD z5m?7S`Pj7+XuBhKPnX9?+j8lo0H;F+Ql53{$SOpV!d+r55M&egTwkl5;^%<>42cwq zXW7ZjQ((>;*L{2jp%U#};{24FQEj}{1J(h->9>(^d!Nn50pMq6FWRomC2=iKyF^-l zdM6#hdvYFij(>d#@e_~1GPSIVxW_G^)F3i?s8$^LnQ_5hvLc&W0#YDcP-G8W*J~ot z$MBFAIW?K0Y@T%KFNuPu2D8KO-t1K99Qlv|pElK#{eH}rJP^o-B6h~_C7}e8xJP+M zhIc8Z03Aa>hHFc7weOrcU0N*sl32Bxi>FVgM1IlfH68$|UQc-iRI~j!GAL|f`4%Fv zcetUlE<4VI;a1VYxjuZCf+n8B<9fdcJ+1Pfb>Ea3r}})4)NAXX5sl{EI^)URhFXmZ zODc%3em04~PJl06UdJyqaP!KFU!QK!=3t!2i;d&I2Ut$?ugvzn7C zb+GliiFS|% zrXct@F8};V*riIY?Y9dU(%Bb{f;l2cu`MqrcT#Bp7;yC|29}W)lm3e;`G=~g2r>=w zhJlP6U11=7m^0i_%_|UK4aRm$$;tvGC1q?$v7IOw5)F{R5^s}&Zo_=N{7_JsFBWTr z@`9Sc(AFR$4J|CAW*}PI1nr210c3ykDl3zM)V+{sEZP?!^%v=nVOQd=3{zAD{I&t` z+X!C(=oZ}B7hp|#W#Vm8TL4yqA6B~(@mWaegY~`D zVQz4pU=++G*uWGT>;aW?=2KB7Ra9}rMieFz=;$rt0{2A2P`&_|FI0(3{kEPK*A+vc zd?3ObfgLp<5aEgRl@C)k&~$CIl9j2ZI$sf8)dk z9}88-WfTXDSKa~AO{9#Z8U4`f09P{6H zm7}-5{{P)s2*lNFzT%VD@PhgwuxkuNUcHVLD=cYr>uzWM8naZFy-HAr|OCRN5d0-l}7TO zj!0J}zCaOYn2V#ICz?+g>4k*-BNCo)<$pAOV?h6s^FPGtHwl~4*pPw#xnL-h0{%pEV>91#=+<1H{0jSL@Y3E`YR@ zl!O$(1@N1OEzNRb*qU{90g!*u~ zjV339Eo%Qs!#V?7_Wn+j{5L){$`S4fL;bGYCh%Ywc5DF9Z7(luk-n;s01yP};sv;h z4EE~+L<3;0C?h4Nt|_M>r>3bPEh{IfDJ7vHqopMwr758*Eh#A{ru@Hi*k09tU$i3% V{oA2pU^!`VaZ(;0O+zix{{x*C@^JtF diff --git a/Content/Figures/PU_exercise_8.eps b/Content/Figures/PU_exercise_8.eps deleted file mode 100644 index b51ace36a..000000000 --- a/Content/Figures/PU_exercise_8.eps +++ /dev/null @@ -1,2806 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%BoundingBox: 0 0 588 447 -%%Pages: 0 -%%Creator: LibreOffice 4.2 -%%Title: none -%%CreationDate: none -%%LanguageLevel: 2 -%%EndComments -%%BeginProlog -%%BeginResource: procset SDRes-Prolog 1.0 0 -/b4_inc_state save def -/dict_count countdictstack def -/op_count count 1 sub def -userdict begin -0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath -/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if -/bdef {bind def} bind def -/c {setrgbcolor} bdef -/l {neg lineto} bdef -/rl {neg rlineto} bdef -/lc {setlinecap} bdef -/lj {setlinejoin} bdef -/lw {setlinewidth} bdef -/ml {setmiterlimit} bdef -/ld {setdash} bdef -/m {neg moveto} bdef -/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef -/r {rotate} bdef -/t {neg translate} bdef -/s {scale} bdef -/sw {show} bdef -/gs {gsave} bdef -/gr {grestore} bdef -/f {findfont dup length dict begin -{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def -currentdict end /NFont exch definefont pop /NFont findfont} bdef -/p {closepath} bdef -/sf {scalefont setfont} bdef -/ef {eofill}bdef -/pc {closepath stroke}bdef -/ps {stroke}bdef -/pum {matrix currentmatrix}bdef -/pom {setmatrix}bdef -/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef -%%EndResource -%%EndProlog -%%BeginSetup -%%EndSetup -%%Page: 1 1 -%%BeginPageSetup -%%EndPageSetup -pum -0.02835 0.02832 s -0 -15779 t -/tm matrix currentmatrix def -tm setmatrix --1869 -4102 t -1 1 s -103 lw 1 lj 0.402 0.402 1.000 c 2488 17304 m 6757 17304 4227 17308 7487 17309 ct -ps -8181 17309 m 7503 17083 l 7503 17535 l 8181 17309 l p ef -7487 13871 m 4196 13870 6431 13861 3140 13860 ct ps -8181 13871 m 7503 13645 l 7503 14097 l 8181 13871 l p ef -2446 13860 m 3124 14086 l 3124 13634 l 2446 13860 l p ef -5333 7882 m 7061 7882 8381 8431 8381 9151 ct 8381 9871 7061 10421 5333 10421 ct -3606 10421 2286 9871 2286 9151 ct 2286 8431 3606 7882 5333 7882 ct p -2286 7882 m 2286 7882 l p -8382 10422 m 8382 10422 l p ef -0 lw 5333 7881 m 7061 7881 8381 8431 8381 9151 ct 8381 9871 7061 10421 5333 10421 ct -3605 10421 2285 9871 2285 9151 ct 2285 8431 3605 7881 5333 7881 ct pc -2285 7881 m 2285 7881 l pc -8382 10422 m 8382 10422 l pc -pum -2891 9492 t -0.003 0.003 0.003 c 536 0 m 332 -297 l 124 0 l 22 0 l 281 -353 l 42 -680 l -144 -680 l 333 -413 l 517 -680 l 618 -680 l 386 -357 l 638 0 l 536 0 l -p ef -1192 0 m 988 -297 l 780 0 l 678 0 l 937 -353 l 698 -680 l 800 -680 l -989 -413 l 1173 -680 l 1274 -680 l 1042 -357 l 1294 0 l 1192 0 l -p ef -1848 0 m 1644 -297 l 1436 0 l 1334 0 l 1593 -353 l 1354 -680 l 1456 -680 l -1645 -413 l 1829 -680 l 1930 -680 l 1698 -357 l 1950 0 l 1848 0 l -p ef -2570 -605 m 2570 0 l 2479 0 l 2479 -605 l 2245 -605 l 2245 -680 l -2804 -680 l 2804 -605 l 2570 -605 l p ef -3523 -343 m 3523 -290 3516 -242 3500 -198 ct 3485 -155 3463 -117 3434 -87 ct -3405 -56 3370 -32 3328 -15 ct 3286 2 3239 10 3186 10 ct 3130 10 3081 1 3038 -16 ct -2996 -34 2961 -58 2933 -90 ct 2905 -121 2884 -158 2870 -201 ct 2856 -245 2849 -292 2849 -343 ct -2849 -396 2856 -444 2871 -487 ct 2886 -530 2907 -566 2936 -596 ct 2965 -626 3000 -649 3042 -666 ct -3084 -682 3132 -690 3186 -690 ct 3241 -690 3289 -682 3330 -665 ct 3372 -649 3408 -626 3436 -595 ct -3465 -565 3486 -529 3501 -486 ct 3516 -443 3523 -395 3523 -343 ct p -3429 -343 m 3429 -384 3424 -421 3413 -454 ct 3403 -488 3388 -517 3367 -540 ct -3347 -564 3321 -583 3291 -595 ct 3261 -608 3226 -615 3186 -615 ct 3146 -615 3110 -608 3080 -595 ct -3049 -583 3024 -564 3003 -540 ct 2983 -517 2968 -488 2958 -454 ct 2947 -421 2942 -384 2942 -343 ct -2942 -302 2948 -265 2958 -231 ct 2969 -197 2984 -167 3004 -143 ct 3025 -118 3050 -99 3081 -85 ct -3111 -72 3146 -65 3186 -65 ct 3228 -65 3265 -72 3295 -86 ct 3326 -99 3351 -119 3371 -143 ct -3391 -168 3405 -197 3415 -231 ct 3424 -266 3429 -303 3429 -343 ct p ef -4290 -343 m 4290 -290 4283 -242 4267 -198 ct 4252 -155 4230 -117 4201 -87 ct -4172 -56 4137 -32 4095 -15 ct 4053 2 4006 10 3953 10 ct 3897 10 3848 1 3805 -16 ct -3763 -34 3728 -58 3700 -90 ct 3672 -121 3651 -158 3637 -201 ct 3623 -245 3616 -292 3616 -343 ct -3616 -396 3623 -444 3638 -487 ct 3653 -530 3674 -566 3703 -596 ct 3732 -626 3767 -649 3809 -666 ct -3851 -682 3899 -690 3953 -690 ct 4008 -690 4056 -682 4097 -665 ct 4139 -649 4175 -626 4203 -595 ct -4232 -565 4253 -529 4268 -486 ct 4283 -443 4290 -395 4290 -343 ct p -4196 -343 m 4196 -384 4191 -421 4180 -454 ct 4170 -488 4155 -517 4134 -540 ct -4114 -564 4088 -583 4058 -595 ct 4028 -608 3993 -615 3953 -615 ct 3913 -615 3877 -608 3847 -595 ct -3816 -583 3791 -564 3770 -540 ct 3750 -517 3735 -488 3725 -454 ct 3714 -421 3709 -384 3709 -343 ct -3709 -302 3715 -265 3725 -231 ct 3736 -197 3751 -167 3771 -143 ct 3792 -118 3817 -99 3848 -85 ct -3878 -72 3913 -65 3953 -65 ct 3995 -65 4032 -72 4062 -86 ct 4093 -99 4118 -119 4138 -143 ct -4158 -168 4172 -197 4182 -231 ct 4191 -266 4196 -303 4196 -343 ct p ef -4416 0 m 4416 -680 l 4508 -680 l 4508 -75 l 4852 -75 l 4852 0 l 4416 0 l -p ef -pom -0.402 0.402 1.000 c 5298 5766 m 1870 5766 l 1870 4242 l 8727 4242 l -8727 5766 l 5298 5766 l p ef -5298 5765 m 1869 5765 l 1869 4241 l 8727 4241 l 8727 5765 l 5298 5765 l -pc -pum -2096 4869 t -0.003 0.003 0.003 c 394 -121 m 394 -103 391 -86 384 -70 ct 377 -55 366 -41 351 -30 ct -336 -19 317 -10 294 -3 ct 272 3 245 6 214 6 ct 160 6 117 -4 87 -23 ct 56 -42 37 -69 29 -105 ct -86 -117 l 89 -105 94 -95 100 -86 ct 106 -76 114 -68 124 -61 ct 134 -55 147 -50 162 -46 ct -177 -42 195 -40 216 -40 ct 234 -40 250 -42 264 -45 ct 279 -48 292 -52 302 -59 ct -313 -65 321 -73 327 -83 ct 333 -92 336 -104 336 -118 ct 336 -132 333 -144 326 -153 ct -320 -161 310 -169 299 -175 ct 287 -180 273 -185 256 -189 ct 240 -193 222 -197 202 -202 ct -190 -205 178 -208 165 -211 ct 153 -214 141 -218 130 -222 ct 119 -227 108 -232 98 -238 ct -88 -244 80 -251 73 -259 ct 65 -268 60 -278 56 -289 ct 51 -300 49 -313 49 -327 ct -49 -348 53 -365 62 -380 ct 70 -395 82 -407 97 -417 ct 112 -426 129 -433 149 -437 ct -170 -442 192 -444 215 -444 ct 242 -444 265 -442 285 -438 ct 304 -433 320 -427 333 -419 ct -347 -410 357 -400 365 -387 ct 373 -375 379 -360 384 -343 ct 326 -333 l 323 -344 319 -353 313 -361 ct -308 -370 301 -377 292 -382 ct 283 -388 272 -392 259 -395 ct 247 -398 232 -399 215 -399 ct -194 -399 177 -397 164 -394 ct 150 -390 139 -385 130 -379 ct 122 -373 116 -366 112 -357 ct -109 -349 107 -340 107 -330 ct 107 -317 110 -306 117 -298 ct 123 -290 132 -283 143 -277 ct -154 -271 167 -267 182 -263 ct 197 -259 212 -256 229 -252 ct 242 -249 256 -246 269 -242 ct -282 -239 295 -235 307 -231 ct 319 -226 331 -221 342 -215 ct 352 -209 361 -202 369 -193 ct -377 -185 383 -174 388 -163 ct 392 -151 394 -137 394 -121 ct p ef -650 6 m 626 6 603 3 581 -4 ct 560 -10 541 -20 525 -34 ct 509 -47 496 -64 486 -85 ct -477 -106 472 -131 472 -159 ct 472 -438 l 531 -438 l 531 -164 l 531 -142 534 -123 540 -108 ct -546 -92 554 -80 565 -70 ct 575 -60 588 -53 602 -49 ct 616 -44 632 -42 649 -42 ct -666 -42 682 -44 697 -49 ct 712 -53 726 -61 737 -71 ct 748 -81 757 -94 764 -110 ct -770 -126 774 -145 774 -168 ct 774 -438 l 833 -438 l 833 -165 l 833 -136 828 -110 818 -89 ct -809 -67 795 -50 779 -36 ct 762 -22 743 -11 721 -4 ct 699 3 675 6 650 6 ct p ef -1242 -1 m 1128 -182 l 992 -182 l 992 -1 l 933 -1 l 933 -437 l 1139 -437 l -1163 -437 1185 -435 1205 -429 ct 1224 -423 1240 -415 1253 -404 ct 1266 -394 1276 -380 1283 -365 ct -1289 -349 1293 -332 1293 -313 ct 1293 -299 1291 -285 1287 -272 ct 1283 -258 1276 -246 1268 -235 ct -1259 -224 1248 -214 1234 -206 ct 1221 -198 1205 -192 1186 -189 ct 1310 -1 l -1242 -1 l p -1233 -312 m 1233 -325 1231 -337 1226 -346 ct 1222 -356 1215 -364 1207 -371 ct -1198 -377 1187 -382 1175 -385 ct 1163 -388 1148 -390 1133 -390 ct 992 -390 l -992 -229 l 1135 -229 l 1152 -229 1167 -231 1179 -235 ct 1192 -239 1202 -245 1210 -253 ct -1218 -260 1224 -269 1227 -279 ct 1231 -289 1233 -300 1233 -312 ct p ef -1699 -1 m 1585 -182 l 1449 -182 l 1449 -1 l 1390 -1 l 1390 -437 l -1596 -437 l 1620 -437 1642 -435 1662 -429 ct 1681 -423 1697 -415 1710 -404 ct -1723 -394 1733 -380 1740 -365 ct 1746 -349 1750 -332 1750 -313 ct 1750 -299 1748 -285 1744 -272 ct -1740 -258 1733 -246 1725 -235 ct 1716 -224 1705 -214 1691 -206 ct 1678 -198 1662 -192 1643 -189 ct -1767 -1 l 1699 -1 l p -1690 -312 m 1690 -325 1688 -337 1683 -346 ct 1679 -356 1672 -364 1664 -371 ct -1655 -377 1644 -382 1632 -385 ct 1620 -388 1605 -390 1590 -390 ct 1449 -390 l -1449 -229 l 1592 -229 l 1609 -229 1624 -231 1636 -235 ct 1649 -239 1659 -245 1667 -253 ct -1675 -260 1681 -269 1684 -279 ct 1688 -289 1690 -300 1690 -312 ct p ef -2259 -221 m 2259 -187 2254 -156 2244 -128 ct 2234 -100 2220 -76 2201 -56 ct -2183 -36 2160 -21 2133 -10 ct 2106 1 2076 6 2042 6 ct 2006 6 1974 0 1947 -11 ct -1920 -22 1897 -38 1879 -58 ct 1861 -78 1848 -102 1839 -130 ct 1830 -158 1825 -188 1825 -221 ct -1825 -255 1830 -286 1839 -313 ct 1849 -341 1863 -364 1881 -384 ct 1900 -403 1922 -418 1949 -428 ct -1976 -439 2007 -444 2042 -444 ct 2077 -444 2108 -439 2135 -428 ct 2162 -418 2184 -403 2203 -383 ct -2221 -364 2235 -340 2244 -313 ct 2254 -285 2259 -255 2259 -221 ct p -2198 -221 m 2198 -247 2195 -271 2188 -293 ct 2181 -314 2171 -332 2158 -348 ct -2145 -363 2129 -375 2109 -383 ct 2090 -391 2068 -396 2042 -396 ct 2016 -396 1993 -391 1974 -383 ct -1954 -375 1938 -363 1924 -348 ct 1911 -332 1902 -314 1895 -293 ct 1888 -271 1885 -247 1885 -221 ct -1885 -195 1889 -171 1895 -149 ct 1902 -127 1912 -108 1925 -92 ct 1938 -76 1955 -64 1974 -55 ct -1994 -46 2016 -42 2042 -42 ct 2069 -42 2092 -47 2112 -55 ct 2132 -64 2148 -77 2161 -93 ct -2173 -108 2183 -127 2189 -149 ct 2195 -171 2198 -195 2198 -221 ct p ef -2322 -221 m 2322 -255 2327 -286 2336 -313 ct 2345 -341 2359 -364 2377 -384 ct -2395 -403 2418 -418 2445 -428 ct 2472 -439 2504 -444 2539 -444 ct 2566 -444 2590 -442 2610 -437 ct -2630 -432 2648 -425 2663 -416 ct 2678 -407 2690 -397 2701 -384 ct 2711 -371 2720 -357 2727 -341 ct -2670 -324 l 2665 -335 2659 -345 2651 -354 ct 2644 -362 2634 -370 2624 -376 ct -2613 -382 2600 -387 2586 -390 ct 2572 -394 2556 -396 2538 -396 ct 2511 -396 2488 -391 2469 -383 ct -2449 -375 2433 -363 2420 -348 ct 2407 -332 2398 -314 2392 -293 ct 2385 -271 2382 -247 2382 -221 ct -2382 -195 2386 -171 2392 -149 ct 2399 -127 2409 -108 2423 -92 ct 2436 -76 2453 -64 2473 -55 ct -2493 -46 2516 -42 2542 -42 ct 2559 -42 2575 -44 2590 -46 ct 2604 -49 2617 -53 2629 -58 ct -2640 -62 2651 -68 2660 -73 ct 2668 -79 2676 -85 2682 -91 ct 2682 -169 l 2551 -169 l -2551 -219 l 2736 -219 l 2736 -68 l 2727 -58 2715 -49 2702 -40 ct 2689 -31 2674 -23 2658 -16 ct -2642 -9 2624 -4 2604 0 ct 2585 4 2564 6 2542 6 ct 2505 6 2473 0 2446 -11 ct 2418 -22 2395 -38 2377 -58 ct -2359 -78 2345 -102 2336 -130 ct 2327 -158 2322 -188 2322 -221 ct p ef -3148 0 m 3098 -128 l 2899 -128 l 2849 0 l 2787 0 l 2966 -438 l 3033 -438 l -3208 0 l 3148 0 l p -3024 -319 m 3021 -327 3018 -335 3015 -344 ct 3012 -352 3009 -360 3007 -367 ct -3004 -374 3003 -380 3001 -384 ct 2999 -389 2999 -392 2998 -393 ct 2998 -392 2997 -389 2996 -384 ct -2994 -379 2992 -373 2990 -366 ct 2987 -359 2985 -352 2982 -343 ct 2979 -335 2976 -326 2973 -318 ct -2917 -174 l 3080 -174 l 3024 -319 l p ef -3381 -389 m 3381 0 l 3322 0 l 3322 -389 l 3172 -389 l 3172 -437 l -3531 -437 l 3531 -389 l 3381 -389 l p ef -3600 0 m 3600 -437 l 3932 -437 l 3932 -389 l 3659 -389 l 3659 -249 l -3913 -249 l 3913 -201 l 3659 -201 l 3659 -48 l 3944 -48 l 3944 0 l -3600 0 l p ef -4573 0 m 4573 -292 l 4573 -302 4573 -313 4573 -324 ct 4573 -335 4573 -345 4574 -354 ct -4574 -365 4575 -375 4575 -385 ct 4572 -374 4569 -364 4566 -353 ct 4564 -345 4561 -335 4558 -325 ct -4554 -315 4551 -306 4548 -298 ct 4435 0 l 4394 0 l 4279 -298 l 4278 -301 4277 -305 4275 -309 ct -4274 -313 4273 -317 4271 -322 ct 4269 -327 4268 -331 4266 -336 ct 4265 -341 4263 -346 4262 -351 ct -4258 -362 4255 -373 4252 -385 ct 4252 -373 4252 -362 4253 -350 ct 4253 -341 4253 -330 4253 -320 ct -4254 -309 4254 -300 4254 -292 ct 4254 0 l 4201 0 l 4201 -437 l 4279 -437 l -4395 -134 l 4397 -130 4398 -125 4400 -118 ct 4403 -112 4404 -105 4406 -98 ct -4408 -91 4410 -85 4411 -79 ct 4413 -73 4414 -68 4415 -65 ct 4415 -68 4416 -73 4418 -79 ct -4420 -85 4422 -92 4424 -98 ct 4426 -105 4428 -112 4430 -118 ct 4432 -125 4434 -130 4436 -134 ct -4550 -437 l 4626 -437 l 4626 0 l 4573 0 l p ef -5142 -221 m 5142 -187 5137 -156 5127 -128 ct 5117 -100 5103 -76 5084 -56 ct -5066 -36 5043 -21 5016 -10 ct 4989 1 4959 6 4925 6 ct 4889 6 4857 0 4830 -11 ct -4803 -22 4780 -38 4762 -58 ct 4744 -78 4731 -102 4722 -130 ct 4713 -158 4708 -188 4708 -221 ct -4708 -255 4713 -286 4722 -313 ct 4732 -341 4746 -364 4764 -384 ct 4783 -403 4805 -418 4832 -428 ct -4859 -439 4890 -444 4925 -444 ct 4960 -444 4991 -439 5018 -428 ct 5045 -418 5067 -403 5086 -383 ct -5104 -364 5118 -340 5127 -313 ct 5137 -285 5142 -255 5142 -221 ct p -5081 -221 m 5081 -247 5078 -271 5071 -293 ct 5064 -314 5054 -332 5041 -348 ct -5028 -363 5012 -375 4992 -383 ct 4973 -391 4951 -396 4925 -396 ct 4899 -396 4876 -391 4857 -383 ct -4837 -375 4821 -363 4807 -348 ct 4794 -332 4785 -314 4778 -293 ct 4771 -271 4768 -247 4768 -221 ct -4768 -195 4772 -171 4778 -149 ct 4785 -127 4795 -108 4808 -92 ct 4821 -76 4838 -64 4857 -55 ct -4877 -46 4899 -42 4925 -42 ct 4952 -42 4975 -47 4995 -55 ct 5015 -64 5031 -77 5044 -93 ct -5056 -108 5066 -127 5072 -149 ct 5078 -171 5081 -195 5081 -221 ct p ef -5601 -223 m 5601 -187 5596 -155 5585 -127 ct 5574 -99 5559 -76 5540 -57 ct -5521 -38 5498 -24 5472 -14 ct 5446 -5 5418 0 5388 0 ct 5225 0 l 5225 -437 l -5370 -437 l 5403 -437 5434 -433 5463 -425 ct 5491 -417 5516 -404 5536 -386 ct -5557 -369 5573 -346 5584 -319 ct 5595 -293 5601 -261 5601 -223 ct p -5542 -223 m 5542 -253 5537 -278 5529 -299 ct 5520 -320 5509 -337 5493 -351 ct -5478 -364 5460 -374 5438 -381 ct 5417 -387 5394 -390 5368 -390 ct 5284 -390 l -5284 -47 l 5382 -47 l 5405 -47 5426 -51 5445 -59 ct 5465 -66 5482 -77 5496 -92 ct -5510 -107 5522 -125 5530 -147 ct 5538 -169 5542 -194 5542 -223 ct p ef -5681 0 m 5681 -437 l 6013 -437 l 6013 -389 l 5740 -389 l 5740 -249 l -5994 -249 l 5994 -201 l 5740 -201 l 5740 -48 l 6025 -48 l 6025 0 l -5681 0 l p ef -6105 0 m 6105 -438 l 6164 -438 l 6164 -48 l 6385 -48 l 6385 0 l 6105 0 l -p ef -pom -pum -4452 5580 t -39 -165 m 39 -193 42 -221 46 -247 ct 50 -273 57 -299 66 -323 ct 76 -347 88 -371 102 -393 ct -116 -416 134 -438 154 -460 ct 208 -460 l 188 -438 172 -416 157 -393 ct 143 -370 132 -347 122 -322 ct -113 -298 107 -273 102 -247 ct 98 -220 96 -193 96 -164 ct 96 -135 98 -108 102 -81 ct -107 -55 113 -30 122 -5 ct 132 19 143 43 157 65 ct 172 88 188 110 208 132 ct 154 132 l -134 110 116 88 102 65 ct 88 43 76 19 66 -5 ct 57 -29 50 -55 46 -81 ct 42 -107 39 -134 39 -163 ct -39 -165 l p ef -557 0 m 426 -191 l 292 0 l 226 0 l 392 -227 l 239 -437 l 304 -437 l -426 -266 l 544 -437 l 610 -437 l 460 -229 l 622 0 l 557 0 l p ef -980 0 m 849 -191 l 715 0 l 649 0 l 815 -227 l 662 -437 l 727 -437 l -849 -266 l 967 -437 l 1033 -437 l 883 -229 l 1045 0 l 980 0 l p ef -1403 0 m 1272 -191 l 1138 0 l 1072 0 l 1238 -227 l 1085 -437 l 1150 -437 l -1272 -266 l 1390 -437 l 1456 -437 l 1306 -229 l 1468 0 l 1403 0 l -p ef -1654 -163 m 1654 -134 1652 -107 1648 -81 ct 1643 -55 1636 -29 1627 -5 ct 1618 19 1606 43 1591 65 ct -1577 88 1560 110 1540 132 ct 1486 132 l 1505 110 1522 88 1536 65 ct 1550 43 1562 19 1571 -5 ct -1580 -30 1587 -55 1591 -81 ct 1596 -108 1598 -135 1598 -164 ct 1598 -193 1596 -220 1591 -247 ct -1587 -273 1580 -298 1571 -322 ct 1562 -347 1550 -370 1536 -393 ct 1522 -416 1505 -438 1486 -460 ct -1540 -460 l 1560 -438 1577 -416 1591 -393 ct 1606 -371 1618 -347 1627 -323 ct -1636 -299 1643 -273 1648 -247 ct 1652 -221 1654 -193 1654 -165 ct 1654 -163 l -p ef -pom -1.000 0.203 0.203 c 5298 7566 m 1870 7566 l 1870 6042 l 8727 6042 l -8727 7566 l 5298 7566 l p ef -5298 7565 m 1869 7565 l 1869 6041 l 8727 6041 l 8727 7565 l 5298 7565 l -pc -pum -2096 6669 t -0.003 0.003 0.003 c 394 -121 m 394 -103 391 -86 384 -70 ct 377 -55 366 -41 351 -30 ct -336 -19 317 -10 294 -3 ct 272 3 245 6 214 6 ct 160 6 117 -4 87 -23 ct 56 -42 37 -69 29 -105 ct -86 -117 l 89 -105 94 -95 100 -86 ct 106 -76 114 -68 124 -61 ct 134 -55 147 -50 162 -46 ct -177 -42 195 -40 216 -40 ct 234 -40 250 -42 264 -45 ct 279 -48 292 -52 302 -59 ct -313 -65 321 -73 327 -83 ct 333 -92 336 -104 336 -118 ct 336 -132 333 -144 326 -153 ct -320 -161 310 -169 299 -175 ct 287 -180 273 -185 256 -189 ct 240 -193 222 -197 202 -202 ct -190 -205 178 -208 165 -211 ct 153 -214 141 -218 130 -222 ct 119 -227 108 -232 98 -238 ct -88 -244 80 -251 73 -259 ct 65 -268 60 -278 56 -289 ct 51 -300 49 -313 49 -327 ct -49 -348 53 -365 62 -380 ct 70 -395 82 -407 97 -417 ct 112 -426 129 -433 149 -437 ct -170 -442 192 -444 215 -444 ct 242 -444 265 -442 285 -438 ct 304 -433 320 -427 333 -419 ct -347 -410 357 -400 365 -387 ct 373 -375 379 -360 384 -343 ct 326 -333 l 323 -344 319 -353 313 -361 ct -308 -370 301 -377 292 -382 ct 283 -388 272 -392 259 -395 ct 247 -398 232 -399 215 -399 ct -194 -399 177 -397 164 -394 ct 150 -390 139 -385 130 -379 ct 122 -373 116 -366 112 -357 ct -109 -349 107 -340 107 -330 ct 107 -317 110 -306 117 -298 ct 123 -290 132 -283 143 -277 ct -154 -271 167 -267 182 -263 ct 197 -259 212 -256 229 -252 ct 242 -249 256 -246 269 -242 ct -282 -239 295 -235 307 -231 ct 319 -226 331 -221 342 -215 ct 352 -209 361 -202 369 -193 ct -377 -185 383 -174 388 -163 ct 392 -151 394 -137 394 -121 ct p ef -650 6 m 626 6 603 3 581 -4 ct 560 -10 541 -20 525 -34 ct 509 -47 496 -64 486 -85 ct -477 -106 472 -131 472 -159 ct 472 -438 l 531 -438 l 531 -164 l 531 -142 534 -123 540 -108 ct -546 -92 554 -80 565 -70 ct 575 -60 588 -53 602 -49 ct 616 -44 632 -42 649 -42 ct -666 -42 682 -44 697 -49 ct 712 -53 726 -61 737 -71 ct 748 -81 757 -94 764 -110 ct -770 -126 774 -145 774 -168 ct 774 -438 l 833 -438 l 833 -165 l 833 -136 828 -110 818 -89 ct -809 -67 795 -50 779 -36 ct 762 -22 743 -11 721 -4 ct 699 3 675 6 650 6 ct p ef -1242 -1 m 1128 -182 l 992 -182 l 992 -1 l 933 -1 l 933 -437 l 1139 -437 l -1163 -437 1185 -435 1205 -429 ct 1224 -423 1240 -415 1253 -404 ct 1266 -394 1276 -380 1283 -365 ct -1289 -349 1293 -332 1293 -313 ct 1293 -299 1291 -285 1287 -272 ct 1283 -258 1276 -246 1268 -235 ct -1259 -224 1248 -214 1234 -206 ct 1221 -198 1205 -192 1186 -189 ct 1310 -1 l -1242 -1 l p -1233 -312 m 1233 -325 1231 -337 1226 -346 ct 1222 -356 1215 -364 1207 -371 ct -1198 -377 1187 -382 1175 -385 ct 1163 -388 1148 -390 1133 -390 ct 992 -390 l -992 -229 l 1135 -229 l 1152 -229 1167 -231 1179 -235 ct 1192 -239 1202 -245 1210 -253 ct -1218 -260 1224 -269 1227 -279 ct 1231 -289 1233 -300 1233 -312 ct p ef -1699 -1 m 1585 -182 l 1449 -182 l 1449 -1 l 1390 -1 l 1390 -437 l -1596 -437 l 1620 -437 1642 -435 1662 -429 ct 1681 -423 1697 -415 1710 -404 ct -1723 -394 1733 -380 1740 -365 ct 1746 -349 1750 -332 1750 -313 ct 1750 -299 1748 -285 1744 -272 ct -1740 -258 1733 -246 1725 -235 ct 1716 -224 1705 -214 1691 -206 ct 1678 -198 1662 -192 1643 -189 ct -1767 -1 l 1699 -1 l p -1690 -312 m 1690 -325 1688 -337 1683 -346 ct 1679 -356 1672 -364 1664 -371 ct -1655 -377 1644 -382 1632 -385 ct 1620 -388 1605 -390 1590 -390 ct 1449 -390 l -1449 -229 l 1592 -229 l 1609 -229 1624 -231 1636 -235 ct 1649 -239 1659 -245 1667 -253 ct -1675 -260 1681 -269 1684 -279 ct 1688 -289 1690 -300 1690 -312 ct p ef -2259 -221 m 2259 -187 2254 -156 2244 -128 ct 2234 -100 2220 -76 2201 -56 ct -2183 -36 2160 -21 2133 -10 ct 2106 1 2076 6 2042 6 ct 2006 6 1974 0 1947 -11 ct -1920 -22 1897 -38 1879 -58 ct 1861 -78 1848 -102 1839 -130 ct 1830 -158 1825 -188 1825 -221 ct -1825 -255 1830 -286 1839 -313 ct 1849 -341 1863 -364 1881 -384 ct 1900 -403 1922 -418 1949 -428 ct -1976 -439 2007 -444 2042 -444 ct 2077 -444 2108 -439 2135 -428 ct 2162 -418 2184 -403 2203 -383 ct -2221 -364 2235 -340 2244 -313 ct 2254 -285 2259 -255 2259 -221 ct p -2198 -221 m 2198 -247 2195 -271 2188 -293 ct 2181 -314 2171 -332 2158 -348 ct -2145 -363 2129 -375 2109 -383 ct 2090 -391 2068 -396 2042 -396 ct 2016 -396 1993 -391 1974 -383 ct -1954 -375 1938 -363 1924 -348 ct 1911 -332 1902 -314 1895 -293 ct 1888 -271 1885 -247 1885 -221 ct -1885 -195 1889 -171 1895 -149 ct 1902 -127 1912 -108 1925 -92 ct 1938 -76 1955 -64 1974 -55 ct -1994 -46 2016 -42 2042 -42 ct 2069 -42 2092 -47 2112 -55 ct 2132 -64 2148 -77 2161 -93 ct -2173 -108 2183 -127 2189 -149 ct 2195 -171 2198 -195 2198 -221 ct p ef -2322 -221 m 2322 -255 2327 -286 2336 -313 ct 2345 -341 2359 -364 2377 -384 ct -2395 -403 2418 -418 2445 -428 ct 2472 -439 2504 -444 2539 -444 ct 2566 -444 2590 -442 2610 -437 ct -2630 -432 2648 -425 2663 -416 ct 2678 -407 2690 -397 2701 -384 ct 2711 -371 2720 -357 2727 -341 ct -2670 -324 l 2665 -335 2659 -345 2651 -354 ct 2644 -362 2634 -370 2624 -376 ct -2613 -382 2600 -387 2586 -390 ct 2572 -394 2556 -396 2538 -396 ct 2511 -396 2488 -391 2469 -383 ct -2449 -375 2433 -363 2420 -348 ct 2407 -332 2398 -314 2392 -293 ct 2385 -271 2382 -247 2382 -221 ct -2382 -195 2386 -171 2392 -149 ct 2399 -127 2409 -108 2423 -92 ct 2436 -76 2453 -64 2473 -55 ct -2493 -46 2516 -42 2542 -42 ct 2559 -42 2575 -44 2590 -46 ct 2604 -49 2617 -53 2629 -58 ct -2640 -62 2651 -68 2660 -73 ct 2668 -79 2676 -85 2682 -91 ct 2682 -169 l 2551 -169 l -2551 -219 l 2736 -219 l 2736 -68 l 2727 -58 2715 -49 2702 -40 ct 2689 -31 2674 -23 2658 -16 ct -2642 -9 2624 -4 2604 0 ct 2585 4 2564 6 2542 6 ct 2505 6 2473 0 2446 -11 ct 2418 -22 2395 -38 2377 -58 ct -2359 -78 2345 -102 2336 -130 ct 2327 -158 2322 -188 2322 -221 ct p ef -3148 0 m 3098 -128 l 2899 -128 l 2849 0 l 2787 0 l 2966 -438 l 3033 -438 l -3208 0 l 3148 0 l p -3024 -319 m 3021 -327 3018 -335 3015 -344 ct 3012 -352 3009 -360 3007 -367 ct -3004 -374 3003 -380 3001 -384 ct 2999 -389 2999 -392 2998 -393 ct 2998 -392 2997 -389 2996 -384 ct -2994 -379 2992 -373 2990 -366 ct 2987 -359 2985 -352 2982 -343 ct 2979 -335 2976 -326 2973 -318 ct -2917 -174 l 3080 -174 l 3024 -319 l p ef -3381 -389 m 3381 0 l 3322 0 l 3322 -389 l 3172 -389 l 3172 -437 l -3531 -437 l 3531 -389 l 3381 -389 l p ef -3600 0 m 3600 -437 l 3932 -437 l 3932 -389 l 3659 -389 l 3659 -249 l -3913 -249 l 3913 -201 l 3659 -201 l 3659 -48 l 3944 -48 l 3944 0 l -3600 0 l p ef -4573 0 m 4573 -292 l 4573 -302 4573 -313 4573 -324 ct 4573 -335 4573 -345 4574 -354 ct -4574 -365 4575 -375 4575 -385 ct 4572 -374 4569 -364 4566 -353 ct 4564 -345 4561 -335 4558 -325 ct -4554 -315 4551 -306 4548 -298 ct 4435 0 l 4394 0 l 4279 -298 l 4278 -301 4277 -305 4275 -309 ct -4274 -313 4273 -317 4271 -322 ct 4269 -327 4268 -331 4266 -336 ct 4265 -341 4263 -346 4262 -351 ct -4258 -362 4255 -373 4252 -385 ct 4252 -373 4252 -362 4253 -350 ct 4253 -341 4253 -330 4253 -320 ct -4254 -309 4254 -300 4254 -292 ct 4254 0 l 4201 0 l 4201 -437 l 4279 -437 l -4395 -134 l 4397 -130 4398 -125 4400 -118 ct 4403 -112 4404 -105 4406 -98 ct -4408 -91 4410 -85 4411 -79 ct 4413 -73 4414 -68 4415 -65 ct 4415 -68 4416 -73 4418 -79 ct -4420 -85 4422 -92 4424 -98 ct 4426 -105 4428 -112 4430 -118 ct 4432 -125 4434 -130 4436 -134 ct -4550 -437 l 4626 -437 l 4626 0 l 4573 0 l p ef -5142 -221 m 5142 -187 5137 -156 5127 -128 ct 5117 -100 5103 -76 5084 -56 ct -5066 -36 5043 -21 5016 -10 ct 4989 1 4959 6 4925 6 ct 4889 6 4857 0 4830 -11 ct -4803 -22 4780 -38 4762 -58 ct 4744 -78 4731 -102 4722 -130 ct 4713 -158 4708 -188 4708 -221 ct -4708 -255 4713 -286 4722 -313 ct 4732 -341 4746 -364 4764 -384 ct 4783 -403 4805 -418 4832 -428 ct -4859 -439 4890 -444 4925 -444 ct 4960 -444 4991 -439 5018 -428 ct 5045 -418 5067 -403 5086 -383 ct -5104 -364 5118 -340 5127 -313 ct 5137 -285 5142 -255 5142 -221 ct p -5081 -221 m 5081 -247 5078 -271 5071 -293 ct 5064 -314 5054 -332 5041 -348 ct -5028 -363 5012 -375 4992 -383 ct 4973 -391 4951 -396 4925 -396 ct 4899 -396 4876 -391 4857 -383 ct -4837 -375 4821 -363 4807 -348 ct 4794 -332 4785 -314 4778 -293 ct 4771 -271 4768 -247 4768 -221 ct -4768 -195 4772 -171 4778 -149 ct 4785 -127 4795 -108 4808 -92 ct 4821 -76 4838 -64 4857 -55 ct -4877 -46 4899 -42 4925 -42 ct 4952 -42 4975 -47 4995 -55 ct 5015 -64 5031 -77 5044 -93 ct -5056 -108 5066 -127 5072 -149 ct 5078 -171 5081 -195 5081 -221 ct p ef -5601 -223 m 5601 -187 5596 -155 5585 -127 ct 5574 -99 5559 -76 5540 -57 ct -5521 -38 5498 -24 5472 -14 ct 5446 -5 5418 0 5388 0 ct 5225 0 l 5225 -437 l -5370 -437 l 5403 -437 5434 -433 5463 -425 ct 5491 -417 5516 -404 5536 -386 ct -5557 -369 5573 -346 5584 -319 ct 5595 -293 5601 -261 5601 -223 ct p -5542 -223 m 5542 -253 5537 -278 5529 -299 ct 5520 -320 5509 -337 5493 -351 ct -5478 -364 5460 -374 5438 -381 ct 5417 -387 5394 -390 5368 -390 ct 5284 -390 l -5284 -47 l 5382 -47 l 5405 -47 5426 -51 5445 -59 ct 5465 -66 5482 -77 5496 -92 ct -5510 -107 5522 -125 5530 -147 ct 5538 -169 5542 -194 5542 -223 ct p ef -5681 0 m 5681 -437 l 6013 -437 l 6013 -389 l 5740 -389 l 5740 -249 l -5994 -249 l 5994 -201 l 5740 -201 l 5740 -48 l 6025 -48 l 6025 0 l -5681 0 l p ef -6105 0 m 6105 -438 l 6164 -438 l 6164 -48 l 6385 -48 l 6385 0 l 6105 0 l -p ef -pom -pum -4452 7380 t -39 -165 m 39 -193 42 -221 46 -247 ct 50 -273 57 -299 66 -323 ct 76 -347 88 -371 102 -393 ct -116 -416 134 -438 154 -460 ct 208 -460 l 188 -438 172 -416 157 -393 ct 143 -370 132 -347 122 -322 ct -113 -298 107 -273 102 -247 ct 98 -220 96 -193 96 -164 ct 96 -135 98 -108 102 -81 ct -107 -55 113 -30 122 -5 ct 132 19 143 43 157 65 ct 172 88 188 110 208 132 ct 154 132 l -134 110 116 88 102 65 ct 88 43 76 19 66 -5 ct 57 -29 50 -55 46 -81 ct 42 -107 39 -134 39 -163 ct -39 -165 l p ef -557 0 m 426 -191 l 292 0 l 226 0 l 392 -227 l 239 -437 l 304 -437 l -426 -266 l 544 -437 l 610 -437 l 460 -229 l 622 0 l 557 0 l p ef -980 0 m 849 -191 l 715 0 l 649 0 l 815 -227 l 662 -437 l 727 -437 l -849 -266 l 967 -437 l 1033 -437 l 883 -229 l 1045 0 l 980 0 l p ef -1403 0 m 1272 -191 l 1138 0 l 1072 0 l 1238 -227 l 1085 -437 l 1150 -437 l -1272 -266 l 1390 -437 l 1456 -437 l 1306 -229 l 1468 0 l 1403 0 l -p ef -1654 -163 m 1654 -134 1652 -107 1648 -81 ct 1643 -55 1636 -29 1627 -5 ct 1618 19 1606 43 1591 65 ct -1577 88 1560 110 1540 132 ct 1486 132 l 1505 110 1522 88 1536 65 ct 1550 43 1562 19 1571 -5 ct -1580 -30 1587 -55 1591 -81 ct 1596 -108 1598 -135 1598 -164 ct 1598 -193 1596 -220 1591 -247 ct -1587 -273 1580 -298 1571 -322 ct 1562 -347 1550 -370 1536 -393 ct 1522 -416 1505 -438 1486 -460 ct -1540 -460 l 1560 -438 1577 -416 1591 -393 ct 1606 -371 1618 -347 1627 -323 ct -1636 -299 1643 -273 1648 -247 ct 1652 -221 1654 -193 1654 -165 ct 1654 -163 l -p ef -pom -pum -9747 4803 t -394 -121 m 394 -103 391 -86 384 -70 ct 377 -55 366 -41 351 -30 ct 336 -19 317 -10 294 -3 ct -272 3 245 6 214 6 ct 160 6 117 -4 87 -23 ct 56 -42 37 -69 29 -105 ct 86 -117 l -89 -105 94 -95 100 -86 ct 106 -76 114 -68 124 -61 ct 134 -55 147 -50 162 -46 ct -177 -42 195 -40 216 -40 ct 234 -40 250 -42 264 -45 ct 279 -48 292 -52 302 -59 ct -313 -65 321 -73 327 -83 ct 333 -92 336 -104 336 -118 ct 336 -132 333 -144 326 -153 ct -320 -161 310 -169 299 -175 ct 287 -180 273 -185 256 -189 ct 240 -193 222 -197 202 -202 ct -190 -205 178 -208 165 -211 ct 153 -214 141 -218 130 -222 ct 119 -227 108 -232 98 -238 ct -88 -244 80 -251 73 -259 ct 65 -268 60 -278 56 -289 ct 51 -300 49 -313 49 -327 ct -49 -348 53 -365 62 -380 ct 70 -395 82 -407 97 -417 ct 112 -426 129 -433 149 -437 ct -170 -442 192 -444 215 -444 ct 242 -444 265 -442 285 -438 ct 304 -433 320 -427 333 -419 ct -347 -410 357 -400 365 -387 ct 373 -375 379 -360 384 -343 ct 326 -333 l 323 -344 319 -353 313 -361 ct -308 -370 301 -377 292 -382 ct 283 -388 272 -392 259 -395 ct 247 -398 232 -399 215 -399 ct -194 -399 177 -397 164 -394 ct 150 -390 139 -385 130 -379 ct 122 -373 116 -366 112 -357 ct -109 -349 107 -340 107 -330 ct 107 -317 110 -306 117 -298 ct 123 -290 132 -283 143 -277 ct -154 -271 167 -267 182 -263 ct 197 -259 212 -256 229 -252 ct 242 -249 256 -246 269 -242 ct -282 -239 295 -235 307 -231 ct 319 -226 331 -221 342 -215 ct 352 -209 361 -202 369 -193 ct -377 -185 383 -174 388 -163 ct 392 -151 394 -137 394 -121 ct p ef -650 6 m 626 6 603 3 581 -4 ct 560 -10 541 -20 525 -34 ct 509 -47 496 -64 486 -85 ct -477 -106 472 -131 472 -159 ct 472 -438 l 531 -438 l 531 -164 l 531 -142 534 -123 540 -108 ct -546 -92 554 -80 565 -70 ct 575 -60 588 -53 602 -49 ct 616 -44 632 -42 649 -42 ct -666 -42 682 -44 697 -49 ct 712 -53 726 -61 737 -71 ct 748 -81 757 -94 764 -110 ct -770 -126 774 -145 774 -168 ct 774 -438 l 833 -438 l 833 -165 l 833 -136 828 -110 818 -89 ct -809 -67 795 -50 779 -36 ct 762 -22 743 -11 721 -4 ct 699 3 675 6 650 6 ct p ef -1242 -1 m 1128 -182 l 992 -182 l 992 -1 l 933 -1 l 933 -437 l 1139 -437 l -1163 -437 1185 -435 1205 -429 ct 1224 -423 1240 -415 1253 -404 ct 1266 -394 1276 -380 1283 -365 ct -1289 -349 1293 -332 1293 -313 ct 1293 -299 1291 -285 1287 -272 ct 1283 -258 1276 -246 1268 -235 ct -1259 -224 1248 -214 1234 -206 ct 1221 -198 1205 -192 1186 -189 ct 1310 -1 l -1242 -1 l p -1233 -312 m 1233 -325 1231 -337 1226 -346 ct 1222 -356 1215 -364 1207 -371 ct -1198 -377 1187 -382 1175 -385 ct 1163 -388 1148 -390 1133 -390 ct 992 -390 l -992 -229 l 1135 -229 l 1152 -229 1167 -231 1179 -235 ct 1192 -239 1202 -245 1210 -253 ct -1218 -260 1224 -269 1227 -279 ct 1231 -289 1233 -300 1233 -312 ct p ef -1699 -1 m 1585 -182 l 1449 -182 l 1449 -1 l 1390 -1 l 1390 -437 l -1596 -437 l 1620 -437 1642 -435 1662 -429 ct 1681 -423 1697 -415 1710 -404 ct -1723 -394 1733 -380 1740 -365 ct 1746 -349 1750 -332 1750 -313 ct 1750 -299 1748 -285 1744 -272 ct -1740 -258 1733 -246 1725 -235 ct 1716 -224 1705 -214 1691 -206 ct 1678 -198 1662 -192 1643 -189 ct -1767 -1 l 1699 -1 l p -1690 -312 m 1690 -325 1688 -337 1683 -346 ct 1679 -356 1672 -364 1664 -371 ct -1655 -377 1644 -382 1632 -385 ct 1620 -388 1605 -390 1590 -390 ct 1449 -390 l -1449 -229 l 1592 -229 l 1609 -229 1624 -231 1636 -235 ct 1649 -239 1659 -245 1667 -253 ct -1675 -260 1681 -269 1684 -279 ct 1688 -289 1690 -300 1690 -312 ct p ef -2259 -221 m 2259 -187 2254 -156 2244 -128 ct 2234 -100 2220 -76 2201 -56 ct -2183 -36 2160 -21 2133 -10 ct 2106 1 2076 6 2042 6 ct 2006 6 1974 0 1947 -11 ct -1920 -22 1897 -38 1879 -58 ct 1861 -78 1848 -102 1839 -130 ct 1830 -158 1825 -188 1825 -221 ct -1825 -255 1830 -286 1839 -313 ct 1849 -341 1863 -364 1881 -384 ct 1900 -403 1922 -418 1949 -428 ct -1976 -439 2007 -444 2042 -444 ct 2077 -444 2108 -439 2135 -428 ct 2162 -418 2184 -403 2203 -383 ct -2221 -364 2235 -340 2244 -313 ct 2254 -285 2259 -255 2259 -221 ct p -2198 -221 m 2198 -247 2195 -271 2188 -293 ct 2181 -314 2171 -332 2158 -348 ct -2145 -363 2129 -375 2109 -383 ct 2090 -391 2068 -396 2042 -396 ct 2016 -396 1993 -391 1974 -383 ct -1954 -375 1938 -363 1924 -348 ct 1911 -332 1902 -314 1895 -293 ct 1888 -271 1885 -247 1885 -221 ct -1885 -195 1889 -171 1895 -149 ct 1902 -127 1912 -108 1925 -92 ct 1938 -76 1955 -64 1974 -55 ct -1994 -46 2016 -42 2042 -42 ct 2069 -42 2092 -47 2112 -55 ct 2132 -64 2148 -77 2161 -93 ct -2173 -108 2183 -127 2189 -149 ct 2195 -171 2198 -195 2198 -221 ct p ef -2322 -221 m 2322 -255 2327 -286 2336 -313 ct 2345 -341 2359 -364 2377 -384 ct -2395 -403 2418 -418 2445 -428 ct 2472 -439 2504 -444 2539 -444 ct 2566 -444 2590 -442 2610 -437 ct -2630 -432 2648 -425 2663 -416 ct 2678 -407 2690 -397 2701 -384 ct 2711 -371 2720 -357 2727 -341 ct -2670 -324 l 2665 -335 2659 -345 2651 -354 ct 2644 -362 2634 -370 2624 -376 ct -2613 -382 2600 -387 2586 -390 ct 2572 -394 2556 -396 2538 -396 ct 2511 -396 2488 -391 2469 -383 ct -2449 -375 2433 -363 2420 -348 ct 2407 -332 2398 -314 2392 -293 ct 2385 -271 2382 -247 2382 -221 ct -2382 -195 2386 -171 2392 -149 ct 2399 -127 2409 -108 2423 -92 ct 2436 -76 2453 -64 2473 -55 ct -2493 -46 2516 -42 2542 -42 ct 2559 -42 2575 -44 2590 -46 ct 2604 -49 2617 -53 2629 -58 ct -2640 -62 2651 -68 2660 -73 ct 2668 -79 2676 -85 2682 -91 ct 2682 -169 l 2551 -169 l -2551 -219 l 2736 -219 l 2736 -68 l 2727 -58 2715 -49 2702 -40 ct 2689 -31 2674 -23 2658 -16 ct -2642 -9 2624 -4 2604 0 ct 2585 4 2564 6 2542 6 ct 2505 6 2473 0 2446 -11 ct 2418 -22 2395 -38 2377 -58 ct -2359 -78 2345 -102 2336 -130 ct 2327 -158 2322 -188 2322 -221 ct p ef -3148 0 m 3098 -128 l 2899 -128 l 2849 0 l 2787 0 l 2966 -438 l 3033 -438 l -3208 0 l 3148 0 l p -3024 -319 m 3021 -327 3018 -335 3015 -344 ct 3012 -352 3009 -360 3007 -367 ct -3004 -374 3003 -380 3001 -384 ct 2999 -389 2999 -392 2998 -393 ct 2998 -392 2997 -389 2996 -384 ct -2994 -379 2992 -373 2990 -366 ct 2987 -359 2985 -352 2982 -343 ct 2979 -335 2976 -326 2973 -318 ct -2917 -174 l 3080 -174 l 3024 -319 l p ef -3381 -389 m 3381 0 l 3322 0 l 3322 -389 l 3172 -389 l 3172 -437 l -3531 -437 l 3531 -389 l 3381 -389 l p ef -3600 0 m 3600 -437 l 3932 -437 l 3932 -389 l 3659 -389 l 3659 -249 l -3913 -249 l 3913 -201 l 3659 -201 l 3659 -48 l 3944 -48 l 3944 0 l -3600 0 l p ef -4573 0 m 4573 -292 l 4573 -302 4573 -313 4573 -324 ct 4573 -335 4573 -345 4574 -354 ct -4574 -365 4575 -375 4575 -385 ct 4572 -374 4569 -364 4566 -353 ct 4564 -345 4561 -335 4558 -325 ct -4554 -315 4551 -306 4548 -298 ct 4435 0 l 4394 0 l 4279 -298 l 4278 -301 4277 -305 4275 -309 ct -4274 -313 4273 -317 4271 -322 ct 4269 -327 4268 -331 4266 -336 ct 4265 -341 4263 -346 4262 -351 ct -4258 -362 4255 -373 4252 -385 ct 4252 -373 4252 -362 4253 -350 ct 4253 -341 4253 -330 4253 -320 ct -4254 -309 4254 -300 4254 -292 ct 4254 0 l 4201 0 l 4201 -437 l 4279 -437 l -4395 -134 l 4397 -130 4398 -125 4400 -118 ct 4403 -112 4404 -105 4406 -98 ct -4408 -91 4410 -85 4411 -79 ct 4413 -73 4414 -68 4415 -65 ct 4415 -68 4416 -73 4418 -79 ct -4420 -85 4422 -92 4424 -98 ct 4426 -105 4428 -112 4430 -118 ct 4432 -125 4434 -130 4436 -134 ct -4550 -437 l 4626 -437 l 4626 0 l 4573 0 l p ef -5142 -221 m 5142 -187 5137 -156 5127 -128 ct 5117 -100 5103 -76 5084 -56 ct -5066 -36 5043 -21 5016 -10 ct 4989 1 4959 6 4925 6 ct 4889 6 4857 0 4830 -11 ct -4803 -22 4780 -38 4762 -58 ct 4744 -78 4731 -102 4722 -130 ct 4713 -158 4708 -188 4708 -221 ct -4708 -255 4713 -286 4722 -313 ct 4732 -341 4746 -364 4764 -384 ct 4783 -403 4805 -418 4832 -428 ct -4859 -439 4890 -444 4925 -444 ct 4960 -444 4991 -439 5018 -428 ct 5045 -418 5067 -403 5086 -383 ct -5104 -364 5118 -340 5127 -313 ct 5137 -285 5142 -255 5142 -221 ct p -5081 -221 m 5081 -247 5078 -271 5071 -293 ct 5064 -314 5054 -332 5041 -348 ct -5028 -363 5012 -375 4992 -383 ct 4973 -391 4951 -396 4925 -396 ct 4899 -396 4876 -391 4857 -383 ct -4837 -375 4821 -363 4807 -348 ct 4794 -332 4785 -314 4778 -293 ct 4771 -271 4768 -247 4768 -221 ct -4768 -195 4772 -171 4778 -149 ct 4785 -127 4795 -108 4808 -92 ct 4821 -76 4838 -64 4857 -55 ct -4877 -46 4899 -42 4925 -42 ct 4952 -42 4975 -47 4995 -55 ct 5015 -64 5031 -77 5044 -93 ct -5056 -108 5066 -127 5072 -149 ct 5078 -171 5081 -195 5081 -221 ct p ef -5601 -223 m 5601 -187 5596 -155 5585 -127 ct 5574 -99 5559 -76 5540 -57 ct -5521 -38 5498 -24 5472 -14 ct 5446 -5 5418 0 5388 0 ct 5225 0 l 5225 -437 l -5370 -437 l 5403 -437 5434 -433 5463 -425 ct 5491 -417 5516 -404 5536 -386 ct -5557 -369 5573 -346 5584 -319 ct 5595 -293 5601 -261 5601 -223 ct p -5542 -223 m 5542 -253 5537 -278 5529 -299 ct 5520 -320 5509 -337 5493 -351 ct -5478 -364 5460 -374 5438 -381 ct 5417 -387 5394 -390 5368 -390 ct 5284 -390 l -5284 -47 l 5382 -47 l 5405 -47 5426 -51 5445 -59 ct 5465 -66 5482 -77 5496 -92 ct -5510 -107 5522 -125 5530 -147 ct 5538 -169 5542 -194 5542 -223 ct p ef -5681 0 m 5681 -437 l 6013 -437 l 6013 -389 l 5740 -389 l 5740 -249 l -5994 -249 l 5994 -201 l 5740 -201 l 5740 -48 l 6025 -48 l 6025 0 l -5681 0 l p ef -6105 0 m 6105 -438 l 6164 -438 l 6164 -48 l 6385 -48 l 6385 0 l 6105 0 l -p ef -6917 -1 m 6803 -182 l 6667 -182 l 6667 -1 l 6608 -1 l 6608 -437 l -6814 -437 l 6838 -437 6860 -435 6880 -429 ct 6899 -423 6915 -415 6928 -404 ct -6941 -394 6951 -380 6958 -365 ct 6964 -349 6968 -332 6968 -313 ct 6968 -299 6966 -285 6962 -272 ct -6958 -258 6951 -246 6943 -235 ct 6934 -224 6923 -214 6909 -206 ct 6896 -198 6880 -192 6861 -189 ct -6985 -1 l 6917 -1 l p -6908 -312 m 6908 -325 6906 -337 6901 -346 ct 6897 -356 6890 -364 6882 -371 ct -6873 -377 6862 -382 6850 -385 ct 6838 -388 6823 -390 6808 -390 ct 6667 -390 l -6667 -229 l 6810 -229 l 6827 -229 6842 -231 6854 -235 ct 6867 -239 6877 -245 6885 -253 ct -6893 -260 6899 -269 6902 -279 ct 6906 -289 6908 -300 6908 -312 ct p ef -7066 0 m 7066 -437 l 7398 -437 l 7398 -389 l 7125 -389 l 7125 -249 l -7379 -249 l 7379 -201 l 7125 -201 l 7125 -48 l 7410 -48 l 7410 0 l -7066 0 l p ef -7799 0 m 7749 -128 l 7550 -128 l 7500 0 l 7438 0 l 7617 -438 l 7684 -438 l -7859 0 l 7799 0 l p -7675 -319 m 7672 -327 7669 -335 7666 -344 ct 7663 -352 7660 -360 7658 -367 ct -7655 -374 7654 -380 7652 -384 ct 7650 -389 7650 -392 7649 -393 ct 7649 -392 7648 -389 7647 -384 ct -7645 -379 7643 -373 7641 -366 ct 7638 -359 7636 -352 7633 -343 ct 7630 -335 7627 -326 7624 -318 ct -7568 -174 l 7731 -174 l 7675 -319 l p ef -8288 -223 m 8288 -187 8283 -155 8272 -127 ct 8261 -99 8246 -76 8227 -57 ct -8208 -38 8185 -24 8159 -14 ct 8133 -5 8105 0 8075 0 ct 7912 0 l 7912 -437 l -8057 -437 l 8090 -437 8121 -433 8150 -425 ct 8178 -417 8203 -404 8223 -386 ct -8244 -369 8260 -346 8271 -319 ct 8282 -293 8288 -261 8288 -223 ct p -8229 -223 m 8229 -253 8224 -278 8216 -299 ct 8207 -320 8196 -337 8180 -351 ct -8165 -364 8147 -374 8125 -381 ct 8104 -387 8081 -390 8055 -390 ct 7971 -390 l -7971 -47 l 8069 -47 l 8092 -47 8113 -51 8132 -59 ct 8152 -66 8169 -77 8183 -92 ct -8197 -107 8209 -125 8217 -147 ct 8225 -169 8229 -194 8229 -223 ct p ef -8559 -181 m 8559 0 l 8500 0 l 8500 -181 l 8332 -438 l 8397 -438 l -8530 -229 l 8662 -438 l 8728 -438 l 8559 -181 l p ef -9116 -389 m 9116 0 l 9057 0 l 9057 -389 l 8907 -389 l 8907 -437 l -9266 -437 l 9266 -389 l 9116 -389 l p ef -9734 -221 m 9734 -187 9729 -156 9719 -128 ct 9709 -100 9695 -76 9676 -56 ct -9658 -36 9635 -21 9608 -10 ct 9581 1 9551 6 9517 6 ct 9481 6 9449 0 9422 -11 ct -9395 -22 9372 -38 9354 -58 ct 9336 -78 9323 -102 9314 -130 ct 9305 -158 9300 -188 9300 -221 ct -9300 -255 9305 -286 9314 -313 ct 9324 -341 9338 -364 9356 -384 ct 9375 -403 9397 -418 9424 -428 ct -9451 -439 9482 -444 9517 -444 ct 9552 -444 9583 -439 9610 -428 ct 9637 -418 9659 -403 9678 -383 ct -9696 -364 9710 -340 9719 -313 ct 9729 -285 9734 -255 9734 -221 ct p -9673 -221 m 9673 -247 9670 -271 9663 -293 ct 9656 -314 9646 -332 9633 -348 ct -9620 -363 9604 -375 9584 -383 ct 9565 -391 9543 -396 9517 -396 ct 9491 -396 9468 -391 9449 -383 ct -9429 -375 9413 -363 9399 -348 ct 9386 -332 9377 -314 9370 -293 ct 9363 -271 9360 -247 9360 -221 ct -9360 -195 9364 -171 9370 -149 ct 9377 -127 9387 -108 9400 -92 ct 9413 -76 9430 -64 9449 -55 ct -9469 -46 9491 -42 9517 -42 ct 9544 -42 9567 -47 9587 -55 ct 9607 -64 9623 -77 9636 -93 ct -9648 -108 9658 -127 9664 -149 ct 9670 -171 9673 -195 9673 -221 ct p ef -10333 -123 m 10333 -101 10329 -82 10320 -67 ct 10311 -51 10300 -38 10285 -28 ct -10270 -19 10253 -11 10234 -7 ct 10214 -2 10194 0 10172 0 ct 9995 0 l 9995 -437 l -10154 -437 l 10178 -437 10200 -435 10219 -431 ct 10238 -427 10254 -421 10267 -412 ct -10280 -404 10290 -393 10297 -379 ct 10304 -366 10308 -350 10308 -331 ct 10308 -319 10306 -307 10303 -297 ct -10299 -286 10294 -276 10287 -267 ct 10280 -258 10271 -251 10261 -245 ct 10251 -238 10238 -234 10225 -230 ct -10242 -228 10258 -224 10271 -218 ct 10285 -212 10296 -205 10305 -195 ct 10314 -186 10321 -175 10326 -163 ct -10331 -151 10333 -137 10333 -123 ct p -10248 -324 m 10248 -348 10240 -365 10224 -375 ct 10208 -385 10184 -390 10154 -390 ct -10054 -390 l 10054 -251 l 10154 -251 l 10171 -251 10186 -253 10198 -256 ct -10210 -260 10220 -265 10227 -271 ct 10234 -277 10240 -285 10243 -294 ct 10246 -303 10248 -313 10248 -324 ct -p -10273 -128 m 10273 -142 10271 -153 10266 -163 ct 10261 -173 10253 -181 10244 -187 ct -10234 -193 10223 -198 10210 -201 ct 10196 -204 10181 -205 10165 -205 ct 10054 -205 l -10054 -47 l 10169 -47 l 10184 -47 10198 -49 10211 -51 ct 10224 -54 10235 -58 10244 -64 ct -10253 -70 10260 -79 10265 -89 ct 10271 -99 10273 -112 10273 -128 ct p ef -10418 0 m 10418 -437 l 10750 -437 l 10750 -389 l 10477 -389 l 10477 -249 l -10731 -249 l 10731 -201 l 10477 -201 l 10477 -48 l 10762 -48 l 10762 0 l -10418 0 l p ef -pom -pum -9747 5514 t -227 6 m 203 6 180 3 158 -4 ct 137 -10 118 -20 102 -34 ct 86 -47 73 -64 63 -85 ct -54 -106 49 -131 49 -159 ct 49 -438 l 108 -438 l 108 -164 l 108 -142 111 -123 117 -108 ct -123 -92 131 -80 142 -70 ct 152 -60 165 -53 179 -49 ct 193 -44 209 -42 226 -42 ct -243 -42 259 -44 274 -49 ct 289 -53 303 -61 314 -71 ct 325 -81 334 -94 341 -110 ct -347 -126 351 -145 351 -168 ct 351 -438 l 410 -438 l 410 -165 l 410 -136 405 -110 395 -89 ct -386 -67 372 -50 356 -36 ct 339 -22 320 -11 298 -4 ct 276 3 252 6 227 6 ct p ef -851 -121 m 851 -103 848 -86 841 -70 ct 834 -55 823 -41 808 -30 ct 793 -19 774 -10 751 -3 ct -729 3 702 6 671 6 ct 617 6 574 -4 544 -23 ct 513 -42 494 -69 486 -105 ct 543 -117 l -546 -105 551 -95 557 -86 ct 563 -76 571 -68 581 -61 ct 591 -55 604 -50 619 -46 ct -634 -42 652 -40 673 -40 ct 691 -40 707 -42 721 -45 ct 736 -48 749 -52 759 -59 ct -770 -65 778 -73 784 -83 ct 790 -92 793 -104 793 -118 ct 793 -132 790 -144 783 -153 ct -777 -161 767 -169 756 -175 ct 744 -180 730 -185 713 -189 ct 697 -193 679 -197 659 -202 ct -647 -205 635 -208 622 -211 ct 610 -214 598 -218 587 -222 ct 576 -227 565 -232 555 -238 ct -545 -244 537 -251 530 -259 ct 522 -268 517 -278 513 -289 ct 508 -300 506 -313 506 -327 ct -506 -348 510 -365 519 -380 ct 527 -395 539 -407 554 -417 ct 569 -426 586 -433 606 -437 ct -627 -442 649 -444 672 -444 ct 699 -444 722 -442 742 -438 ct 761 -433 777 -427 790 -419 ct -804 -410 814 -400 822 -387 ct 830 -375 836 -360 841 -343 ct 783 -333 l 780 -344 776 -353 770 -361 ct -765 -370 758 -377 749 -382 ct 740 -388 729 -392 716 -395 ct 704 -398 689 -399 672 -399 ct -651 -399 634 -397 621 -394 ct 607 -390 596 -385 587 -379 ct 579 -373 573 -366 569 -357 ct -566 -349 564 -340 564 -330 ct 564 -317 567 -306 574 -298 ct 580 -290 589 -283 600 -277 ct -611 -271 624 -267 639 -263 ct 654 -259 669 -256 686 -252 ct 699 -249 713 -246 726 -242 ct -739 -239 752 -235 764 -231 ct 776 -226 788 -221 799 -215 ct 809 -209 818 -202 826 -193 ct -834 -185 840 -174 845 -163 ct 849 -151 851 -137 851 -121 ct p ef -933 0 m 933 -437 l 1265 -437 l 1265 -389 l 992 -389 l 992 -249 l -1246 -249 l 1246 -201 l 992 -201 l 992 -48 l 1277 -48 l 1277 0 l -933 0 l p ef -1732 -223 m 1732 -187 1727 -155 1716 -127 ct 1705 -99 1690 -76 1671 -57 ct -1652 -38 1629 -24 1603 -14 ct 1577 -5 1549 0 1519 0 ct 1356 0 l 1356 -437 l -1501 -437 l 1534 -437 1565 -433 1594 -425 ct 1622 -417 1647 -404 1667 -386 ct -1688 -369 1704 -346 1715 -319 ct 1726 -293 1732 -261 1732 -223 ct p -1673 -223 m 1673 -253 1668 -278 1660 -299 ct 1651 -320 1640 -337 1624 -351 ct -1609 -364 1591 -374 1569 -381 ct 1548 -387 1525 -390 1499 -390 ct 1415 -390 l -1415 -47 l 1513 -47 l 1536 -47 1557 -51 1576 -59 ct 1596 -66 1613 -77 1627 -92 ct -1641 -107 1653 -125 1661 -147 ct 1669 -169 1673 -194 1673 -223 ct p ef -1998 0 m 1998 -437 l 2057 -437 l 2057 0 l 1998 0 l p ef -2452 0 m 2219 -372 l 2219 -362 2220 -352 2220 -342 ct 2221 -334 2221 -325 2221 -315 ct -2222 -306 2222 -298 2222 -290 ct 2222 0 l 2169 0 l 2169 -437 l 2238 -437 l -2474 -62 l 2474 -73 2473 -83 2472 -93 ct 2472 -101 2472 -111 2471 -121 ct 2471 -131 2470 -141 2470 -151 ct -2470 -437 l 2524 -437 l 2524 0 l 2452 0 l p ef -2962 -389 m 2962 0 l 2903 0 l 2903 -389 l 2753 -389 l 2753 -437 l -3112 -437 l 3112 -389 l 2962 -389 l p ef -3476 0 m 3476 -202 l 3239 -202 l 3239 0 l 3180 0 l 3180 -437 l 3239 -437 l -3239 -252 l 3476 -252 l 3476 -437 l 3535 -437 l 3535 0 l 3476 0 l -p ef -3638 0 m 3638 -437 l 3970 -437 l 3970 -389 l 3697 -389 l 3697 -249 l -3951 -249 l 3951 -201 l 3697 -201 l 3697 -48 l 3982 -48 l 3982 0 l -3638 0 l p ef -4611 0 m 4611 -292 l 4611 -302 4611 -313 4611 -324 ct 4611 -335 4611 -345 4612 -354 ct -4612 -365 4613 -375 4613 -385 ct 4610 -374 4607 -364 4604 -353 ct 4602 -345 4599 -335 4596 -325 ct -4592 -315 4589 -306 4586 -298 ct 4473 0 l 4432 0 l 4317 -298 l 4316 -301 4315 -305 4313 -309 ct -4312 -313 4311 -317 4309 -322 ct 4307 -327 4306 -331 4304 -336 ct 4303 -341 4301 -346 4300 -351 ct -4296 -362 4293 -373 4290 -385 ct 4290 -373 4290 -362 4291 -350 ct 4291 -341 4291 -330 4291 -320 ct -4292 -309 4292 -300 4292 -292 ct 4292 0 l 4239 0 l 4239 -437 l 4317 -437 l -4433 -134 l 4435 -130 4436 -125 4438 -118 ct 4441 -112 4442 -105 4444 -98 ct -4446 -91 4448 -85 4449 -79 ct 4451 -73 4452 -68 4453 -65 ct 4453 -68 4454 -73 4456 -79 ct -4458 -85 4460 -92 4462 -98 ct 4464 -105 4466 -112 4468 -118 ct 4470 -125 4472 -130 4474 -134 ct -4588 -437 l 4664 -437 l 4664 0 l 4611 0 l p ef -5180 -221 m 5180 -187 5175 -156 5165 -128 ct 5155 -100 5141 -76 5122 -56 ct -5104 -36 5081 -21 5054 -10 ct 5027 1 4997 6 4963 6 ct 4927 6 4895 0 4868 -11 ct -4841 -22 4818 -38 4800 -58 ct 4782 -78 4769 -102 4760 -130 ct 4751 -158 4746 -188 4746 -221 ct -4746 -255 4751 -286 4760 -313 ct 4770 -341 4784 -364 4802 -384 ct 4821 -403 4843 -418 4870 -428 ct -4897 -439 4928 -444 4963 -444 ct 4998 -444 5029 -439 5056 -428 ct 5083 -418 5105 -403 5124 -383 ct -5142 -364 5156 -340 5165 -313 ct 5175 -285 5180 -255 5180 -221 ct p -5119 -221 m 5119 -247 5116 -271 5109 -293 ct 5102 -314 5092 -332 5079 -348 ct -5066 -363 5050 -375 5030 -383 ct 5011 -391 4989 -396 4963 -396 ct 4937 -396 4914 -391 4895 -383 ct -4875 -375 4859 -363 4845 -348 ct 4832 -332 4823 -314 4816 -293 ct 4809 -271 4806 -247 4806 -221 ct -4806 -195 4810 -171 4816 -149 ct 4823 -127 4833 -108 4846 -92 ct 4859 -76 4876 -64 4895 -55 ct -4915 -46 4937 -42 4963 -42 ct 4990 -42 5013 -47 5033 -55 ct 5053 -64 5069 -77 5082 -93 ct -5094 -108 5104 -127 5110 -149 ct 5116 -171 5119 -195 5119 -221 ct p ef -5638 -223 m 5638 -187 5633 -155 5622 -127 ct 5611 -99 5596 -76 5577 -57 ct -5558 -38 5535 -24 5509 -14 ct 5483 -5 5455 0 5425 0 ct 5262 0 l 5262 -437 l -5407 -437 l 5440 -437 5471 -433 5500 -425 ct 5528 -417 5553 -404 5573 -386 ct -5594 -369 5610 -346 5621 -319 ct 5632 -293 5638 -261 5638 -223 ct p -5579 -223 m 5579 -253 5574 -278 5566 -299 ct 5557 -320 5546 -337 5530 -351 ct -5515 -364 5497 -374 5475 -381 ct 5454 -387 5431 -390 5405 -390 ct 5321 -390 l -5321 -47 l 5419 -47 l 5442 -47 5463 -51 5482 -59 ct 5502 -66 5519 -77 5533 -92 ct -5547 -107 5559 -125 5567 -147 ct 5575 -169 5579 -194 5579 -223 ct p ef -5719 0 m 5719 -437 l 6051 -437 l 6051 -389 l 5778 -389 l 5778 -249 l -6032 -249 l 6032 -201 l 5778 -201 l 5778 -48 l 6063 -48 l 6063 0 l -5719 0 l p ef -6426 0 m 6193 -372 l 6193 -362 6194 -352 6194 -342 ct 6195 -334 6195 -325 6195 -315 ct -6196 -306 6196 -298 6196 -290 ct 6196 0 l 6143 0 l 6143 -437 l 6212 -437 l -6448 -62 l 6448 -73 6447 -83 6446 -93 ct 6446 -101 6446 -111 6445 -121 ct 6445 -131 6444 -141 6444 -151 ct -6444 -437 l 6498 -437 l 6498 0 l 6426 0 l p ef -6910 0 m 6860 -128 l 6661 -128 l 6611 0 l 6549 0 l 6728 -438 l 6795 -438 l -6970 0 l 6910 0 l p -6786 -319 m 6783 -327 6780 -335 6777 -344 ct 6774 -352 6771 -360 6769 -367 ct -6766 -374 6765 -380 6763 -384 ct 6761 -389 6761 -392 6760 -393 ct 6760 -392 6759 -389 6758 -384 ct -6756 -379 6754 -373 6752 -366 ct 6749 -359 6747 -352 6744 -343 ct 6741 -335 6738 -326 6735 -318 ct -6679 -174 l 6842 -174 l 6786 -319 l p ef -7222 -389 m 7222 -226 l 7466 -226 l 7466 -177 l 7222 -177 l 7222 0 l -7163 0 l 7163 -437 l 7473 -437 l 7473 -389 l 7222 -389 l p ef -7861 -1 m 7747 -182 l 7611 -182 l 7611 -1 l 7552 -1 l 7552 -437 l -7758 -437 l 7782 -437 7804 -435 7824 -429 ct 7843 -423 7859 -415 7872 -404 ct -7885 -394 7895 -380 7902 -365 ct 7908 -349 7912 -332 7912 -313 ct 7912 -299 7910 -285 7906 -272 ct -7902 -258 7895 -246 7887 -235 ct 7878 -224 7867 -214 7853 -206 ct 7840 -198 7824 -192 7805 -189 ct -7929 -1 l 7861 -1 l p -7852 -312 m 7852 -325 7850 -337 7845 -346 ct 7841 -356 7834 -364 7826 -371 ct -7817 -377 7806 -382 7794 -385 ct 7782 -388 7767 -390 7752 -390 ct 7611 -390 l -7611 -229 l 7754 -229 l 7771 -229 7786 -231 7798 -235 ct 7811 -239 7821 -245 7829 -253 ct -7837 -260 7843 -269 7846 -279 ct 7850 -289 7852 -300 7852 -312 ct p ef -8320 0 m 8270 -128 l 8071 -128 l 8021 0 l 7959 0 l 8138 -438 l 8205 -438 l -8380 0 l 8320 0 l p -8196 -319 m 8193 -327 8190 -335 8187 -344 ct 8184 -352 8181 -360 8179 -367 ct -8176 -374 8175 -380 8173 -384 ct 8171 -389 8171 -392 8170 -393 ct 8170 -392 8169 -389 8168 -384 ct -8166 -379 8164 -373 8162 -366 ct 8159 -359 8157 -352 8154 -343 ct 8151 -335 8148 -326 8145 -318 ct -8089 -174 l 8252 -174 l 8196 -319 l p ef -8805 0 m 8805 -292 l 8805 -302 8805 -313 8805 -324 ct 8805 -335 8805 -345 8806 -354 ct -8806 -365 8807 -375 8807 -385 ct 8804 -374 8801 -364 8798 -353 ct 8796 -345 8793 -335 8790 -325 ct -8786 -315 8783 -306 8780 -298 ct 8667 0 l 8626 0 l 8511 -298 l 8510 -301 8509 -305 8507 -309 ct -8506 -313 8505 -317 8503 -322 ct 8501 -327 8500 -331 8498 -336 ct 8497 -341 8495 -346 8494 -351 ct -8490 -362 8487 -373 8484 -385 ct 8484 -373 8484 -362 8485 -350 ct 8485 -341 8485 -330 8485 -320 ct -8486 -309 8486 -300 8486 -292 ct 8486 0 l 8433 0 l 8433 -437 l 8511 -437 l -8627 -134 l 8629 -130 8630 -125 8632 -118 ct 8635 -112 8636 -105 8638 -98 ct -8640 -91 8642 -85 8643 -79 ct 8645 -73 8646 -68 8647 -65 ct 8647 -68 8648 -73 8650 -79 ct -8652 -85 8654 -92 8656 -98 ct 8658 -105 8660 -112 8662 -118 ct 8664 -125 8666 -130 8668 -134 ct -8782 -437 l 8858 -437 l 8858 0 l 8805 0 l p ef -8962 0 m 8962 -437 l 9294 -437 l 9294 -389 l 9021 -389 l 9021 -249 l -9275 -249 l 9275 -201 l 9021 -201 l 9021 -48 l 9306 -48 l 9306 0 l -8962 0 l p ef -9803 0 m 9732 0 l 9656 -278 l 9654 -286 9651 -295 9649 -306 ct 9646 -317 9644 -327 9642 -337 ct -9639 -348 9637 -360 9634 -371 ct 9632 -359 9629 -348 9627 -336 ct 9624 -326 9622 -316 9620 -306 ct -9617 -295 9615 -286 9612 -278 ct 9536 0 l 9465 0 l 9337 -438 l 9399 -438 l -9477 -159 l 9480 -146 9484 -133 9487 -121 ct 9490 -108 9493 -96 9495 -86 ct -9498 -74 9500 -63 9503 -52 ct 9506 -66 9509 -80 9512 -94 ct 9514 -100 9515 -106 9517 -113 ct -9518 -119 9520 -125 9521 -132 ct 9523 -138 9524 -144 9526 -149 ct 9527 -155 9529 -160 9530 -165 ct -9606 -438 l 9663 -438 l 9739 -165 l 9740 -160 9741 -155 9743 -149 ct 9744 -144 9746 -138 9747 -132 ct -9749 -126 9751 -119 9752 -113 ct 9753 -106 9755 -100 9756 -95 ct 9760 -81 9763 -66 9766 -52 ct -9766 -52 9767 -56 9769 -63 ct 9770 -70 9772 -79 9775 -90 ct 9777 -100 9780 -112 9783 -125 ct -9786 -137 9789 -149 9792 -159 ct 9869 -438 l 9931 -438 l 9803 0 l p ef -10399 -221 m 10399 -187 10394 -156 10384 -128 ct 10374 -100 10360 -76 10341 -56 ct -10323 -36 10300 -21 10273 -10 ct 10246 1 10216 6 10182 6 ct 10146 6 10114 0 10087 -11 ct -10060 -22 10037 -38 10019 -58 ct 10001 -78 9988 -102 9979 -130 ct 9970 -158 9965 -188 9965 -221 ct -9965 -255 9970 -286 9979 -313 ct 9989 -341 10003 -364 10021 -384 ct 10040 -403 10062 -418 10089 -428 ct -10116 -439 10147 -444 10182 -444 ct 10217 -444 10248 -439 10275 -428 ct 10302 -418 10324 -403 10343 -383 ct -10361 -364 10375 -340 10384 -313 ct 10394 -285 10399 -255 10399 -221 ct p -10338 -221 m 10338 -247 10335 -271 10328 -293 ct 10321 -314 10311 -332 10298 -348 ct -10285 -363 10269 -375 10249 -383 ct 10230 -391 10208 -396 10182 -396 ct 10156 -396 10133 -391 10114 -383 ct -10094 -375 10078 -363 10064 -348 ct 10051 -332 10042 -314 10035 -293 ct 10028 -271 10025 -247 10025 -221 ct -10025 -195 10029 -171 10035 -149 ct 10042 -127 10052 -108 10065 -92 ct 10078 -76 10095 -64 10114 -55 ct -10134 -46 10156 -42 10182 -42 ct 10209 -42 10232 -47 10252 -55 ct 10272 -64 10288 -77 10301 -93 ct -10313 -108 10323 -127 10329 -149 ct 10335 -171 10338 -195 10338 -221 ct p ef -10791 -1 m 10677 -182 l 10541 -182 l 10541 -1 l 10482 -1 l 10482 -437 l -10688 -437 l 10712 -437 10734 -435 10754 -429 ct 10773 -423 10789 -415 10802 -404 ct -10815 -394 10825 -380 10832 -365 ct 10838 -349 10842 -332 10842 -313 ct 10842 -299 10840 -285 10836 -272 ct -10832 -258 10825 -246 10817 -235 ct 10808 -224 10797 -214 10783 -206 ct 10770 -198 10754 -192 10735 -189 ct -10859 -1 l 10791 -1 l p -10782 -312 m 10782 -325 10780 -337 10775 -346 ct 10771 -356 10764 -364 10756 -371 ct -10747 -377 10736 -382 10724 -385 ct 10712 -388 10697 -390 10682 -390 ct 10541 -390 l -10541 -229 l 10684 -229 l 10701 -229 10716 -231 10728 -235 ct 10741 -239 10751 -245 10759 -253 ct -10767 -260 10773 -269 10776 -279 ct 10780 -289 10782 -300 10782 -312 ct p ef -11230 0 m 11055 -211 l 10998 -168 l 10998 0 l 10939 0 l 10939 -437 l -10998 -437 l 10998 -218 l 11209 -437 l 11279 -437 l 11093 -247 l 11303 0 l -11230 0 l p ef -pom -pum -9748 6704 t -394 -121 m 394 -103 391 -86 384 -70 ct 377 -55 366 -41 351 -30 ct 336 -19 317 -10 294 -3 ct -272 3 245 6 214 6 ct 160 6 117 -4 87 -23 ct 56 -42 37 -69 29 -105 ct 86 -117 l -89 -105 94 -95 100 -86 ct 106 -76 114 -68 124 -61 ct 134 -55 147 -50 162 -46 ct -177 -42 195 -40 216 -40 ct 234 -40 250 -42 264 -45 ct 279 -48 292 -52 302 -59 ct -313 -65 321 -73 327 -83 ct 333 -92 336 -104 336 -118 ct 336 -132 333 -144 326 -153 ct -320 -161 310 -169 299 -175 ct 287 -180 273 -185 256 -189 ct 240 -193 222 -197 202 -202 ct -190 -205 178 -208 165 -211 ct 153 -214 141 -218 130 -222 ct 119 -227 108 -232 98 -238 ct -88 -244 80 -251 73 -259 ct 65 -268 60 -278 56 -289 ct 51 -300 49 -313 49 -327 ct -49 -348 53 -365 62 -380 ct 70 -395 82 -407 97 -417 ct 112 -426 129 -433 149 -437 ct -170 -442 192 -444 215 -444 ct 242 -444 265 -442 285 -438 ct 304 -433 320 -427 333 -419 ct -347 -410 357 -400 365 -387 ct 373 -375 379 -360 384 -343 ct 326 -333 l 323 -344 319 -353 313 -361 ct -308 -370 301 -377 292 -382 ct 283 -388 272 -392 259 -395 ct 247 -398 232 -399 215 -399 ct -194 -399 177 -397 164 -394 ct 150 -390 139 -385 130 -379 ct 122 -373 116 -366 112 -357 ct -109 -349 107 -340 107 -330 ct 107 -317 110 -306 117 -298 ct 123 -290 132 -283 143 -277 ct -154 -271 167 -267 182 -263 ct 197 -259 212 -256 229 -252 ct 242 -249 256 -246 269 -242 ct -282 -239 295 -235 307 -231 ct 319 -226 331 -221 342 -215 ct 352 -209 361 -202 369 -193 ct -377 -185 383 -174 388 -163 ct 392 -151 394 -137 394 -121 ct p ef -650 6 m 626 6 603 3 581 -4 ct 560 -10 541 -20 525 -34 ct 509 -47 496 -64 486 -85 ct -477 -106 472 -131 472 -159 ct 472 -438 l 531 -438 l 531 -164 l 531 -142 534 -123 540 -108 ct -546 -92 554 -80 565 -70 ct 575 -60 588 -53 602 -49 ct 616 -44 632 -42 649 -42 ct -666 -42 682 -44 697 -49 ct 712 -53 726 -61 737 -71 ct 748 -81 757 -94 764 -110 ct -770 -126 774 -145 774 -168 ct 774 -438 l 833 -438 l 833 -165 l 833 -136 828 -110 818 -89 ct -809 -67 795 -50 779 -36 ct 762 -22 743 -11 721 -4 ct 699 3 675 6 650 6 ct p ef -1242 -1 m 1128 -182 l 992 -182 l 992 -1 l 933 -1 l 933 -437 l 1139 -437 l -1163 -437 1185 -435 1205 -429 ct 1224 -423 1240 -415 1253 -404 ct 1266 -394 1276 -380 1283 -365 ct -1289 -349 1293 -332 1293 -313 ct 1293 -299 1291 -285 1287 -272 ct 1283 -258 1276 -246 1268 -235 ct -1259 -224 1248 -214 1234 -206 ct 1221 -198 1205 -192 1186 -189 ct 1310 -1 l -1242 -1 l p -1233 -312 m 1233 -325 1231 -337 1226 -346 ct 1222 -356 1215 -364 1207 -371 ct -1198 -377 1187 -382 1175 -385 ct 1163 -388 1148 -390 1133 -390 ct 992 -390 l -992 -229 l 1135 -229 l 1152 -229 1167 -231 1179 -235 ct 1192 -239 1202 -245 1210 -253 ct -1218 -260 1224 -269 1227 -279 ct 1231 -289 1233 -300 1233 -312 ct p ef -1699 -1 m 1585 -182 l 1449 -182 l 1449 -1 l 1390 -1 l 1390 -437 l -1596 -437 l 1620 -437 1642 -435 1662 -429 ct 1681 -423 1697 -415 1710 -404 ct -1723 -394 1733 -380 1740 -365 ct 1746 -349 1750 -332 1750 -313 ct 1750 -299 1748 -285 1744 -272 ct -1740 -258 1733 -246 1725 -235 ct 1716 -224 1705 -214 1691 -206 ct 1678 -198 1662 -192 1643 -189 ct -1767 -1 l 1699 -1 l p -1690 -312 m 1690 -325 1688 -337 1683 -346 ct 1679 -356 1672 -364 1664 -371 ct -1655 -377 1644 -382 1632 -385 ct 1620 -388 1605 -390 1590 -390 ct 1449 -390 l -1449 -229 l 1592 -229 l 1609 -229 1624 -231 1636 -235 ct 1649 -239 1659 -245 1667 -253 ct -1675 -260 1681 -269 1684 -279 ct 1688 -289 1690 -300 1690 -312 ct p ef -2259 -221 m 2259 -187 2254 -156 2244 -128 ct 2234 -100 2220 -76 2201 -56 ct -2183 -36 2160 -21 2133 -10 ct 2106 1 2076 6 2042 6 ct 2006 6 1974 0 1947 -11 ct -1920 -22 1897 -38 1879 -58 ct 1861 -78 1848 -102 1839 -130 ct 1830 -158 1825 -188 1825 -221 ct -1825 -255 1830 -286 1839 -313 ct 1849 -341 1863 -364 1881 -384 ct 1900 -403 1922 -418 1949 -428 ct -1976 -439 2007 -444 2042 -444 ct 2077 -444 2108 -439 2135 -428 ct 2162 -418 2184 -403 2203 -383 ct -2221 -364 2235 -340 2244 -313 ct 2254 -285 2259 -255 2259 -221 ct p -2198 -221 m 2198 -247 2195 -271 2188 -293 ct 2181 -314 2171 -332 2158 -348 ct -2145 -363 2129 -375 2109 -383 ct 2090 -391 2068 -396 2042 -396 ct 2016 -396 1993 -391 1974 -383 ct -1954 -375 1938 -363 1924 -348 ct 1911 -332 1902 -314 1895 -293 ct 1888 -271 1885 -247 1885 -221 ct -1885 -195 1889 -171 1895 -149 ct 1902 -127 1912 -108 1925 -92 ct 1938 -76 1955 -64 1974 -55 ct -1994 -46 2016 -42 2042 -42 ct 2069 -42 2092 -47 2112 -55 ct 2132 -64 2148 -77 2161 -93 ct -2173 -108 2183 -127 2189 -149 ct 2195 -171 2198 -195 2198 -221 ct p ef -2322 -221 m 2322 -255 2327 -286 2336 -313 ct 2345 -341 2359 -364 2377 -384 ct -2395 -403 2418 -418 2445 -428 ct 2472 -439 2504 -444 2539 -444 ct 2566 -444 2590 -442 2610 -437 ct -2630 -432 2648 -425 2663 -416 ct 2678 -407 2690 -397 2701 -384 ct 2711 -371 2720 -357 2727 -341 ct -2670 -324 l 2665 -335 2659 -345 2651 -354 ct 2644 -362 2634 -370 2624 -376 ct -2613 -382 2600 -387 2586 -390 ct 2572 -394 2556 -396 2538 -396 ct 2511 -396 2488 -391 2469 -383 ct -2449 -375 2433 -363 2420 -348 ct 2407 -332 2398 -314 2392 -293 ct 2385 -271 2382 -247 2382 -221 ct -2382 -195 2386 -171 2392 -149 ct 2399 -127 2409 -108 2423 -92 ct 2436 -76 2453 -64 2473 -55 ct -2493 -46 2516 -42 2542 -42 ct 2559 -42 2575 -44 2590 -46 ct 2604 -49 2617 -53 2629 -58 ct -2640 -62 2651 -68 2660 -73 ct 2668 -79 2676 -85 2682 -91 ct 2682 -169 l 2551 -169 l -2551 -219 l 2736 -219 l 2736 -68 l 2727 -58 2715 -49 2702 -40 ct 2689 -31 2674 -23 2658 -16 ct -2642 -9 2624 -4 2604 0 ct 2585 4 2564 6 2542 6 ct 2505 6 2473 0 2446 -11 ct 2418 -22 2395 -38 2377 -58 ct -2359 -78 2345 -102 2336 -130 ct 2327 -158 2322 -188 2322 -221 ct p ef -3148 0 m 3098 -128 l 2899 -128 l 2849 0 l 2787 0 l 2966 -438 l 3033 -438 l -3208 0 l 3148 0 l p -3024 -319 m 3021 -327 3018 -335 3015 -344 ct 3012 -352 3009 -360 3007 -367 ct -3004 -374 3003 -380 3001 -384 ct 2999 -389 2999 -392 2998 -393 ct 2998 -392 2997 -389 2996 -384 ct -2994 -379 2992 -373 2990 -366 ct 2987 -359 2985 -352 2982 -343 ct 2979 -335 2976 -326 2973 -318 ct -2917 -174 l 3080 -174 l 3024 -319 l p ef -3381 -389 m 3381 0 l 3322 0 l 3322 -389 l 3172 -389 l 3172 -437 l -3531 -437 l 3531 -389 l 3381 -389 l p ef -3600 0 m 3600 -437 l 3932 -437 l 3932 -389 l 3659 -389 l 3659 -249 l -3913 -249 l 3913 -201 l 3659 -201 l 3659 -48 l 3944 -48 l 3944 0 l -3600 0 l p ef -4573 0 m 4573 -292 l 4573 -302 4573 -313 4573 -324 ct 4573 -335 4573 -345 4574 -354 ct -4574 -365 4575 -375 4575 -385 ct 4572 -374 4569 -364 4566 -353 ct 4564 -345 4561 -335 4558 -325 ct -4554 -315 4551 -306 4548 -298 ct 4435 0 l 4394 0 l 4279 -298 l 4278 -301 4277 -305 4275 -309 ct -4274 -313 4273 -317 4271 -322 ct 4269 -327 4268 -331 4266 -336 ct 4265 -341 4263 -346 4262 -351 ct -4258 -362 4255 -373 4252 -385 ct 4252 -373 4252 -362 4253 -350 ct 4253 -341 4253 -330 4253 -320 ct -4254 -309 4254 -300 4254 -292 ct 4254 0 l 4201 0 l 4201 -437 l 4279 -437 l -4395 -134 l 4397 -130 4398 -125 4400 -118 ct 4403 -112 4404 -105 4406 -98 ct -4408 -91 4410 -85 4411 -79 ct 4413 -73 4414 -68 4415 -65 ct 4415 -68 4416 -73 4418 -79 ct -4420 -85 4422 -92 4424 -98 ct 4426 -105 4428 -112 4430 -118 ct 4432 -125 4434 -130 4436 -134 ct -4550 -437 l 4626 -437 l 4626 0 l 4573 0 l p ef -5142 -221 m 5142 -187 5137 -156 5127 -128 ct 5117 -100 5103 -76 5084 -56 ct -5066 -36 5043 -21 5016 -10 ct 4989 1 4959 6 4925 6 ct 4889 6 4857 0 4830 -11 ct -4803 -22 4780 -38 4762 -58 ct 4744 -78 4731 -102 4722 -130 ct 4713 -158 4708 -188 4708 -221 ct -4708 -255 4713 -286 4722 -313 ct 4732 -341 4746 -364 4764 -384 ct 4783 -403 4805 -418 4832 -428 ct -4859 -439 4890 -444 4925 -444 ct 4960 -444 4991 -439 5018 -428 ct 5045 -418 5067 -403 5086 -383 ct -5104 -364 5118 -340 5127 -313 ct 5137 -285 5142 -255 5142 -221 ct p -5081 -221 m 5081 -247 5078 -271 5071 -293 ct 5064 -314 5054 -332 5041 -348 ct -5028 -363 5012 -375 4992 -383 ct 4973 -391 4951 -396 4925 -396 ct 4899 -396 4876 -391 4857 -383 ct -4837 -375 4821 -363 4807 -348 ct 4794 -332 4785 -314 4778 -293 ct 4771 -271 4768 -247 4768 -221 ct -4768 -195 4772 -171 4778 -149 ct 4785 -127 4795 -108 4808 -92 ct 4821 -76 4838 -64 4857 -55 ct -4877 -46 4899 -42 4925 -42 ct 4952 -42 4975 -47 4995 -55 ct 5015 -64 5031 -77 5044 -93 ct -5056 -108 5066 -127 5072 -149 ct 5078 -171 5081 -195 5081 -221 ct p ef -5601 -223 m 5601 -187 5596 -155 5585 -127 ct 5574 -99 5559 -76 5540 -57 ct -5521 -38 5498 -24 5472 -14 ct 5446 -5 5418 0 5388 0 ct 5225 0 l 5225 -437 l -5370 -437 l 5403 -437 5434 -433 5463 -425 ct 5491 -417 5516 -404 5536 -386 ct -5557 -369 5573 -346 5584 -319 ct 5595 -293 5601 -261 5601 -223 ct p -5542 -223 m 5542 -253 5537 -278 5529 -299 ct 5520 -320 5509 -337 5493 -351 ct -5478 -364 5460 -374 5438 -381 ct 5417 -387 5394 -390 5368 -390 ct 5284 -390 l -5284 -47 l 5382 -47 l 5405 -47 5426 -51 5445 -59 ct 5465 -66 5482 -77 5496 -92 ct -5510 -107 5522 -125 5530 -147 ct 5538 -169 5542 -194 5542 -223 ct p ef -5681 0 m 5681 -437 l 6013 -437 l 6013 -389 l 5740 -389 l 5740 -249 l -5994 -249 l 5994 -201 l 5740 -201 l 5740 -48 l 6025 -48 l 6025 0 l -5681 0 l p ef -6105 0 m 6105 -438 l 6164 -438 l 6164 -48 l 6385 -48 l 6385 0 l 6105 0 l -p ef -6783 6 m 6759 6 6736 3 6714 -4 ct 6693 -10 6674 -20 6658 -34 ct 6642 -47 6629 -64 6619 -85 ct -6610 -106 6605 -131 6605 -159 ct 6605 -438 l 6664 -438 l 6664 -164 l 6664 -142 6667 -123 6673 -108 ct -6679 -92 6687 -80 6698 -70 ct 6708 -60 6721 -53 6735 -49 ct 6749 -44 6765 -42 6782 -42 ct -6799 -42 6815 -44 6830 -49 ct 6845 -53 6859 -61 6870 -71 ct 6881 -81 6890 -94 6897 -110 ct -6903 -126 6907 -145 6907 -168 ct 6907 -438 l 6966 -438 l 6966 -165 l 6966 -136 6961 -110 6951 -89 ct -6942 -67 6928 -50 6912 -36 ct 6895 -22 6876 -11 6854 -4 ct 6832 3 6808 6 6783 6 ct -p ef -7349 0 m 7116 -372 l 7116 -362 7117 -352 7117 -342 ct 7118 -334 7118 -325 7118 -315 ct -7119 -306 7119 -298 7119 -290 ct 7119 0 l 7066 0 l 7066 -437 l 7135 -437 l -7371 -62 l 7371 -73 7370 -83 7369 -93 ct 7369 -101 7369 -111 7368 -121 ct 7368 -131 7367 -141 7367 -151 ct -7367 -437 l 7421 -437 l 7421 0 l 7349 0 l p ef -7899 -223 m 7899 -187 7894 -155 7883 -127 ct 7872 -99 7857 -76 7838 -57 ct -7819 -38 7796 -24 7770 -14 ct 7744 -5 7716 0 7686 0 ct 7523 0 l 7523 -437 l -7668 -437 l 7701 -437 7732 -433 7761 -425 ct 7789 -417 7814 -404 7834 -386 ct -7855 -369 7871 -346 7882 -319 ct 7893 -293 7899 -261 7899 -223 ct p -7840 -223 m 7840 -253 7835 -278 7827 -299 ct 7818 -320 7807 -337 7791 -351 ct -7776 -364 7758 -374 7736 -381 ct 7715 -387 7692 -390 7666 -390 ct 7582 -390 l -7582 -47 l 7680 -47 l 7703 -47 7724 -51 7743 -59 ct 7763 -66 7780 -77 7794 -92 ct -7808 -107 7820 -125 7828 -147 ct 7836 -169 7840 -194 7840 -223 ct p ef -7980 0 m 7980 -437 l 8312 -437 l 8312 -389 l 8039 -389 l 8039 -249 l -8293 -249 l 8293 -201 l 8039 -201 l 8039 -48 l 8324 -48 l 8324 0 l -7980 0 l p ef -8712 -1 m 8598 -182 l 8462 -182 l 8462 -1 l 8403 -1 l 8403 -437 l -8609 -437 l 8633 -437 8655 -435 8675 -429 ct 8694 -423 8710 -415 8723 -404 ct -8736 -394 8746 -380 8753 -365 ct 8759 -349 8763 -332 8763 -313 ct 8763 -299 8761 -285 8757 -272 ct -8753 -258 8746 -246 8738 -235 ct 8729 -224 8718 -214 8704 -206 ct 8691 -198 8675 -192 8656 -189 ct -8780 -1 l 8712 -1 l p -8703 -312 m 8703 -325 8701 -337 8696 -346 ct 8692 -356 8685 -364 8677 -371 ct -8668 -377 8657 -382 8645 -385 ct 8633 -388 8618 -390 8603 -390 ct 8462 -390 l -8462 -229 l 8605 -229 l 8622 -229 8637 -231 8649 -235 ct 8662 -239 8672 -245 8680 -253 ct -8688 -260 8694 -269 8697 -279 ct 8701 -289 8703 -300 8703 -312 ct p ef -pom -pum -9748 7415 t -428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct 348 -38 325 -24 299 -14 ct -273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l 230 -437 261 -433 290 -425 ct -318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct 422 -293 428 -261 428 -223 ct -p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -509 0 m 509 -437 l 841 -437 l 841 -389 l 568 -389 l 568 -249 l 822 -249 l -822 -201 l 568 -201 l 568 -48 l 853 -48 l 853 0 l 509 0 l p ef -1123 0 m 1062 0 l 884 -438 l 946 -438 l 1067 -129 l 1070 -120 1073 -111 1076 -102 ct -1079 -92 1082 -84 1085 -77 ct 1088 -69 1090 -60 1093 -52 ct 1096 -60 1098 -68 1101 -76 ct -1104 -84 1106 -92 1109 -101 ct 1112 -110 1116 -120 1119 -129 ct 1239 -438 l -1302 -438 l 1123 0 l p ef -1356 0 m 1356 -437 l 1688 -437 l 1688 -389 l 1415 -389 l 1415 -249 l -1669 -249 l 1669 -201 l 1415 -201 l 1415 -48 l 1700 -48 l 1700 0 l -1356 0 l p ef -1779 0 m 1779 -438 l 1838 -438 l 1838 -48 l 2059 -48 l 2059 0 l 1779 0 l -p ef -2543 -221 m 2543 -187 2538 -156 2528 -128 ct 2518 -100 2504 -76 2485 -56 ct -2467 -36 2444 -21 2417 -10 ct 2390 1 2360 6 2326 6 ct 2290 6 2258 0 2231 -11 ct -2204 -22 2181 -38 2163 -58 ct 2145 -78 2132 -102 2123 -130 ct 2114 -158 2109 -188 2109 -221 ct -2109 -255 2114 -286 2123 -313 ct 2133 -341 2147 -364 2165 -384 ct 2184 -403 2206 -418 2233 -428 ct -2260 -439 2291 -444 2326 -444 ct 2361 -444 2392 -439 2419 -428 ct 2446 -418 2468 -403 2487 -383 ct -2505 -364 2519 -340 2528 -313 ct 2538 -285 2543 -255 2543 -221 ct p -2482 -221 m 2482 -247 2479 -271 2472 -293 ct 2465 -314 2455 -332 2442 -348 ct -2429 -363 2413 -375 2393 -383 ct 2374 -391 2352 -396 2326 -396 ct 2300 -396 2277 -391 2258 -383 ct -2238 -375 2222 -363 2208 -348 ct 2195 -332 2186 -314 2179 -293 ct 2172 -271 2169 -247 2169 -221 ct -2169 -195 2173 -171 2179 -149 ct 2186 -127 2196 -108 2209 -92 ct 2222 -76 2239 -64 2258 -55 ct -2278 -46 2300 -42 2326 -42 ct 2353 -42 2376 -47 2396 -55 ct 2416 -64 2432 -77 2445 -93 ct -2457 -108 2467 -127 2473 -149 ct 2479 -171 2482 -195 2482 -221 ct p ef -2964 -305 m 2964 -286 2961 -269 2955 -252 ct 2948 -236 2939 -221 2926 -209 ct -2914 -197 2898 -188 2879 -181 ct 2861 -174 2839 -170 2814 -170 ct 2685 -170 l -2685 1 l 2626 1 l 2626 -437 l 2810 -437 l 2836 -437 2858 -434 2878 -428 ct -2897 -421 2913 -412 2926 -401 ct 2938 -389 2948 -375 2954 -359 ct 2961 -343 2964 -325 2964 -305 ct -p -2905 -305 m 2905 -332 2896 -354 2879 -368 ct 2862 -382 2837 -390 2803 -390 ct -2685 -390 l 2685 -217 l 2805 -217 l 2839 -217 2864 -224 2880 -240 ct 2897 -255 2905 -276 2905 -305 ct -p ef -3421 0 m 3421 -292 l 3421 -302 3421 -313 3421 -324 ct 3421 -335 3421 -345 3422 -354 ct -3422 -365 3423 -375 3423 -385 ct 3420 -374 3417 -364 3414 -353 ct 3412 -345 3409 -335 3406 -325 ct -3402 -315 3399 -306 3396 -298 ct 3283 0 l 3242 0 l 3127 -298 l 3126 -301 3125 -305 3123 -309 ct -3122 -313 3121 -317 3119 -322 ct 3117 -327 3116 -331 3114 -336 ct 3113 -341 3111 -346 3110 -351 ct -3106 -362 3103 -373 3100 -385 ct 3100 -373 3100 -362 3101 -350 ct 3101 -341 3101 -330 3101 -320 ct -3102 -309 3102 -300 3102 -292 ct 3102 0 l 3049 0 l 3049 -437 l 3127 -437 l -3243 -134 l 3245 -130 3246 -125 3248 -118 ct 3251 -112 3252 -105 3254 -98 ct -3256 -91 3258 -85 3259 -79 ct 3261 -73 3262 -68 3263 -65 ct 3263 -68 3264 -73 3266 -79 ct -3268 -85 3270 -92 3272 -98 ct 3274 -105 3276 -112 3278 -118 ct 3280 -125 3282 -130 3284 -134 ct -3398 -437 l 3474 -437 l 3474 0 l 3421 0 l p ef -3578 0 m 3578 -437 l 3910 -437 l 3910 -389 l 3637 -389 l 3637 -249 l -3891 -249 l 3891 -201 l 3637 -201 l 3637 -48 l 3922 -48 l 3922 0 l -3578 0 l p ef -4285 0 m 4052 -372 l 4052 -362 4053 -352 4053 -342 ct 4054 -334 4054 -325 4054 -315 ct -4055 -306 4055 -298 4055 -290 ct 4055 0 l 4002 0 l 4002 -437 l 4071 -437 l -4307 -62 l 4307 -73 4306 -83 4305 -93 ct 4305 -101 4305 -111 4304 -121 ct 4304 -131 4303 -141 4303 -151 ct -4303 -437 l 4357 -437 l 4357 0 l 4285 0 l p ef -4630 -389 m 4630 0 l 4571 0 l 4571 -389 l 4421 -389 l 4421 -437 l -4780 -437 l 4780 -389 l 4630 -389 l p ef -pom -pum -9748 9103 t -428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct 348 -38 325 -24 299 -14 ct -273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l 230 -437 261 -433 290 -425 ct -318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct 422 -293 428 -261 428 -223 ct -p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -509 0 m 509 -437 l 841 -437 l 841 -389 l 568 -389 l 568 -249 l 822 -249 l -822 -201 l 568 -201 l 568 -48 l 853 -48 l 853 0 l 509 0 l p ef -1104 -389 m 1104 0 l 1045 0 l 1045 -389 l 895 -389 l 895 -437 l 1254 -437 l -1254 -389 l 1104 -389 l p ef -1581 0 m 1531 -128 l 1332 -128 l 1282 0 l 1220 0 l 1399 -438 l 1466 -438 l -1641 0 l 1581 0 l p -1457 -319 m 1454 -327 1451 -335 1448 -344 ct 1445 -352 1442 -360 1440 -367 ct -1437 -374 1436 -380 1434 -384 ct 1432 -389 1432 -392 1431 -393 ct 1431 -392 1430 -389 1429 -384 ct -1427 -379 1425 -373 1423 -366 ct 1420 -359 1418 -352 1415 -343 ct 1412 -335 1409 -326 1406 -318 ct -1350 -174 l 1513 -174 l 1457 -319 l p ef -1702 0 m 1702 -437 l 1761 -437 l 1761 0 l 1702 0 l p ef -1872 0 m 1872 -438 l 1931 -438 l 1931 -48 l 2152 -48 l 2152 0 l 1872 0 l -p ef -2224 0 m 2224 -437 l 2556 -437 l 2556 -389 l 2283 -389 l 2283 -249 l -2537 -249 l 2537 -201 l 2283 -201 l 2283 -48 l 2568 -48 l 2568 0 l -2224 0 l p ef -3023 -223 m 3023 -187 3018 -155 3007 -127 ct 2996 -99 2981 -76 2962 -57 ct -2943 -38 2920 -24 2894 -14 ct 2868 -5 2840 0 2810 0 ct 2647 0 l 2647 -437 l -2792 -437 l 2825 -437 2856 -433 2885 -425 ct 2913 -417 2938 -404 2958 -386 ct -2979 -369 2995 -346 3006 -319 ct 3017 -293 3023 -261 3023 -223 ct p -2964 -223 m 2964 -253 2959 -278 2951 -299 ct 2942 -320 2931 -337 2915 -351 ct -2900 -364 2882 -374 2860 -381 ct 2839 -387 2816 -390 2790 -390 ct 2706 -390 l -2706 -47 l 2804 -47 l 2827 -47 2848 -51 2867 -59 ct 2887 -66 2904 -77 2918 -92 ct -2932 -107 2944 -125 2952 -147 ct 2960 -169 2964 -194 2964 -223 ct p ef -3654 0 m 3654 -292 l 3654 -302 3654 -313 3654 -324 ct 3654 -335 3654 -345 3655 -354 ct -3655 -365 3656 -375 3656 -385 ct 3653 -374 3650 -364 3647 -353 ct 3645 -345 3642 -335 3639 -325 ct -3635 -315 3632 -306 3629 -298 ct 3516 0 l 3475 0 l 3360 -298 l 3359 -301 3358 -305 3356 -309 ct -3355 -313 3354 -317 3352 -322 ct 3350 -327 3349 -331 3347 -336 ct 3346 -341 3344 -346 3343 -351 ct -3339 -362 3336 -373 3333 -385 ct 3333 -373 3333 -362 3334 -350 ct 3334 -341 3334 -330 3334 -320 ct -3335 -309 3335 -300 3335 -292 ct 3335 0 l 3282 0 l 3282 -437 l 3360 -437 l -3476 -134 l 3478 -130 3479 -125 3481 -118 ct 3484 -112 3485 -105 3487 -98 ct -3489 -91 3491 -85 3492 -79 ct 3494 -73 3495 -68 3496 -65 ct 3496 -68 3497 -73 3499 -79 ct -3501 -85 3503 -92 3505 -98 ct 3507 -105 3509 -112 3511 -118 ct 3513 -125 3515 -130 3517 -134 ct -3631 -437 l 3707 -437 l 3707 0 l 3654 0 l p ef -4223 -221 m 4223 -187 4218 -156 4208 -128 ct 4198 -100 4184 -76 4165 -56 ct -4147 -36 4124 -21 4097 -10 ct 4070 1 4040 6 4006 6 ct 3970 6 3938 0 3911 -11 ct -3884 -22 3861 -38 3843 -58 ct 3825 -78 3812 -102 3803 -130 ct 3794 -158 3789 -188 3789 -221 ct -3789 -255 3794 -286 3803 -313 ct 3813 -341 3827 -364 3845 -384 ct 3864 -403 3886 -418 3913 -428 ct -3940 -439 3971 -444 4006 -444 ct 4041 -444 4072 -439 4099 -428 ct 4126 -418 4148 -403 4167 -383 ct -4185 -364 4199 -340 4208 -313 ct 4218 -285 4223 -255 4223 -221 ct p -4162 -221 m 4162 -247 4159 -271 4152 -293 ct 4145 -314 4135 -332 4122 -348 ct -4109 -363 4093 -375 4073 -383 ct 4054 -391 4032 -396 4006 -396 ct 3980 -396 3957 -391 3938 -383 ct -3918 -375 3902 -363 3888 -348 ct 3875 -332 3866 -314 3859 -293 ct 3852 -271 3849 -247 3849 -221 ct -3849 -195 3853 -171 3859 -149 ct 3866 -127 3876 -108 3889 -92 ct 3902 -76 3919 -64 3938 -55 ct -3958 -46 3980 -42 4006 -42 ct 4033 -42 4056 -47 4076 -55 ct 4096 -64 4112 -77 4125 -93 ct -4137 -108 4147 -127 4153 -149 ct 4159 -171 4162 -195 4162 -221 ct p ef -4683 -223 m 4683 -187 4678 -155 4667 -127 ct 4656 -99 4641 -76 4622 -57 ct -4603 -38 4580 -24 4554 -14 ct 4528 -5 4500 0 4470 0 ct 4307 0 l 4307 -437 l -4452 -437 l 4485 -437 4516 -433 4545 -425 ct 4573 -417 4598 -404 4618 -386 ct -4639 -369 4655 -346 4666 -319 ct 4677 -293 4683 -261 4683 -223 ct p -4624 -223 m 4624 -253 4619 -278 4611 -299 ct 4602 -320 4591 -337 4575 -351 ct -4560 -364 4542 -374 4520 -381 ct 4499 -387 4476 -390 4450 -390 ct 4366 -390 l -4366 -47 l 4464 -47 l 4487 -47 4508 -51 4527 -59 ct 4547 -66 4564 -77 4578 -92 ct -4592 -107 4604 -125 4612 -147 ct 4620 -169 4624 -194 4624 -223 ct p ef -4764 0 m 4764 -437 l 5096 -437 l 5096 -389 l 4823 -389 l 4823 -249 l -5077 -249 l 5077 -201 l 4823 -201 l 4823 -48 l 5108 -48 l 5108 0 l -4764 0 l p ef -5187 0 m 5187 -438 l 5246 -438 l 5246 -48 l 5467 -48 l 5467 0 l 5187 0 l -p ef -5999 -1 m 5885 -182 l 5749 -182 l 5749 -1 l 5690 -1 l 5690 -437 l -5896 -437 l 5920 -437 5942 -435 5962 -429 ct 5981 -423 5997 -415 6010 -404 ct -6023 -394 6033 -380 6040 -365 ct 6046 -349 6050 -332 6050 -313 ct 6050 -299 6048 -285 6044 -272 ct -6040 -258 6033 -246 6025 -235 ct 6016 -224 6005 -214 5991 -206 ct 5978 -198 5962 -192 5943 -189 ct -6067 -1 l 5999 -1 l p -5990 -312 m 5990 -325 5988 -337 5983 -346 ct 5979 -356 5972 -364 5964 -371 ct -5955 -377 5944 -382 5932 -385 ct 5920 -388 5905 -390 5890 -390 ct 5749 -390 l -5749 -229 l 5892 -229 l 5909 -229 5924 -231 5936 -235 ct 5949 -239 5959 -245 5967 -253 ct -5975 -260 5981 -269 5984 -279 ct 5988 -289 5990 -300 5990 -312 ct p ef -6147 0 m 6147 -437 l 6479 -437 l 6479 -389 l 6206 -389 l 6206 -249 l -6460 -249 l 6460 -201 l 6206 -201 l 6206 -48 l 6491 -48 l 6491 0 l -6147 0 l p ef -6880 0 m 6830 -128 l 6631 -128 l 6581 0 l 6519 0 l 6698 -438 l 6765 -438 l -6940 0 l 6880 0 l p -6756 -319 m 6753 -327 6750 -335 6747 -344 ct 6744 -352 6741 -360 6739 -367 ct -6736 -374 6735 -380 6733 -384 ct 6731 -389 6731 -392 6730 -393 ct 6730 -392 6729 -389 6728 -384 ct -6726 -379 6724 -373 6722 -366 ct 6719 -359 6717 -352 6714 -343 ct 6711 -335 6708 -326 6705 -318 ct -6649 -174 l 6812 -174 l 6756 -319 l p ef -7370 -223 m 7370 -187 7365 -155 7354 -127 ct 7343 -99 7328 -76 7309 -57 ct -7290 -38 7267 -24 7241 -14 ct 7215 -5 7187 0 7157 0 ct 6994 0 l 6994 -437 l -7139 -437 l 7172 -437 7203 -433 7232 -425 ct 7260 -417 7285 -404 7305 -386 ct -7326 -369 7342 -346 7353 -319 ct 7364 -293 7370 -261 7370 -223 ct p -7311 -223 m 7311 -253 7306 -278 7298 -299 ct 7289 -320 7278 -337 7262 -351 ct -7247 -364 7229 -374 7207 -381 ct 7186 -387 7163 -390 7137 -390 ct 7053 -390 l -7053 -47 l 7151 -47 l 7174 -47 7195 -51 7214 -59 ct 7234 -66 7251 -77 7265 -92 ct -7279 -107 7291 -125 7299 -147 ct 7307 -169 7311 -194 7311 -223 ct p ef -7640 -181 m 7640 0 l 7581 0 l 7581 -181 l 7413 -438 l 7478 -438 l -7611 -229 l 7743 -438 l 7809 -438 l 7640 -181 l p ef -8198 -389 m 8198 0 l 8139 0 l 8139 -389 l 7989 -389 l 7989 -437 l -8348 -437 l 8348 -389 l 8198 -389 l p ef -8815 -221 m 8815 -187 8810 -156 8800 -128 ct 8790 -100 8776 -76 8757 -56 ct -8739 -36 8716 -21 8689 -10 ct 8662 1 8632 6 8598 6 ct 8562 6 8530 0 8503 -11 ct -8476 -22 8453 -38 8435 -58 ct 8417 -78 8404 -102 8395 -130 ct 8386 -158 8381 -188 8381 -221 ct -8381 -255 8386 -286 8395 -313 ct 8405 -341 8419 -364 8437 -384 ct 8456 -403 8478 -418 8505 -428 ct -8532 -439 8563 -444 8598 -444 ct 8633 -444 8664 -439 8691 -428 ct 8718 -418 8740 -403 8759 -383 ct -8777 -364 8791 -340 8800 -313 ct 8810 -285 8815 -255 8815 -221 ct p -8754 -221 m 8754 -247 8751 -271 8744 -293 ct 8737 -314 8727 -332 8714 -348 ct -8701 -363 8685 -375 8665 -383 ct 8646 -391 8624 -396 8598 -396 ct 8572 -396 8549 -391 8530 -383 ct -8510 -375 8494 -363 8480 -348 ct 8467 -332 8458 -314 8451 -293 ct 8444 -271 8441 -247 8441 -221 ct -8441 -195 8445 -171 8451 -149 ct 8458 -127 8468 -108 8481 -92 ct 8494 -76 8511 -64 8530 -55 ct -8550 -46 8572 -42 8598 -42 ct 8625 -42 8648 -47 8668 -55 ct 8688 -64 8704 -77 8717 -93 ct -8729 -108 8739 -127 8745 -149 ct 8751 -171 8754 -195 8754 -221 ct p ef -9414 -123 m 9414 -101 9410 -82 9401 -67 ct 9392 -51 9381 -38 9366 -28 ct 9351 -19 9334 -11 9315 -7 ct -9295 -2 9275 0 9253 0 ct 9076 0 l 9076 -437 l 9235 -437 l 9259 -437 9281 -435 9300 -431 ct -9319 -427 9335 -421 9348 -412 ct 9361 -404 9371 -393 9378 -379 ct 9385 -366 9389 -350 9389 -331 ct -9389 -319 9387 -307 9384 -297 ct 9380 -286 9375 -276 9368 -267 ct 9361 -258 9352 -251 9342 -245 ct -9332 -238 9319 -234 9306 -230 ct 9323 -228 9339 -224 9352 -218 ct 9366 -212 9377 -205 9386 -195 ct -9395 -186 9402 -175 9407 -163 ct 9412 -151 9414 -137 9414 -123 ct p -9329 -324 m 9329 -348 9321 -365 9305 -375 ct 9289 -385 9265 -390 9235 -390 ct -9135 -390 l 9135 -251 l 9235 -251 l 9252 -251 9267 -253 9279 -256 ct 9291 -260 9301 -265 9308 -271 ct -9315 -277 9321 -285 9324 -294 ct 9327 -303 9329 -313 9329 -324 ct p -9354 -128 m 9354 -142 9352 -153 9347 -163 ct 9342 -173 9334 -181 9325 -187 ct -9315 -193 9304 -198 9291 -201 ct 9277 -204 9262 -205 9246 -205 ct 9135 -205 l -9135 -47 l 9250 -47 l 9265 -47 9279 -49 9292 -51 ct 9305 -54 9316 -58 9325 -64 ct -9334 -70 9341 -79 9346 -89 ct 9352 -99 9354 -112 9354 -128 ct p ef -9500 0 m 9500 -437 l 9832 -437 l 9832 -389 l 9559 -389 l 9559 -249 l -9813 -249 l 9813 -201 l 9559 -201 l 9559 -48 l 9844 -48 l 9844 0 l -9500 0 l p ef -10276 6 m 10252 6 10229 3 10207 -4 ct 10186 -10 10167 -20 10151 -34 ct 10135 -47 10122 -64 10112 -85 ct -10103 -106 10098 -131 10098 -159 ct 10098 -438 l 10157 -438 l 10157 -164 l -10157 -142 10160 -123 10166 -108 ct 10172 -92 10180 -80 10191 -70 ct 10201 -60 10214 -53 10228 -49 ct -10242 -44 10258 -42 10275 -42 ct 10292 -42 10308 -44 10323 -49 ct 10338 -53 10352 -61 10363 -71 ct -10374 -81 10383 -94 10390 -110 ct 10396 -126 10400 -145 10400 -168 ct 10400 -438 l -10459 -438 l 10459 -165 l 10459 -136 10454 -110 10444 -89 ct 10435 -67 10421 -50 10405 -36 ct -10388 -22 10369 -11 10347 -4 ct 10325 3 10301 6 10276 6 ct p ef -10900 -121 m 10900 -103 10897 -86 10890 -70 ct 10883 -55 10872 -41 10857 -30 ct -10842 -19 10823 -10 10800 -3 ct 10778 3 10751 6 10720 6 ct 10666 6 10623 -4 10593 -23 ct -10562 -42 10543 -69 10535 -105 ct 10592 -117 l 10595 -105 10600 -95 10606 -86 ct -10612 -76 10620 -68 10630 -61 ct 10640 -55 10653 -50 10668 -46 ct 10683 -42 10701 -40 10722 -40 ct -10740 -40 10756 -42 10770 -45 ct 10785 -48 10798 -52 10808 -59 ct 10819 -65 10827 -73 10833 -83 ct -10839 -92 10842 -104 10842 -118 ct 10842 -132 10839 -144 10832 -153 ct 10826 -161 10816 -169 10805 -175 ct -10793 -180 10779 -185 10762 -189 ct 10746 -193 10728 -197 10708 -202 ct 10696 -205 10684 -208 10671 -211 ct -10659 -214 10647 -218 10636 -222 ct 10625 -227 10614 -232 10604 -238 ct 10594 -244 10586 -251 10579 -259 ct -10571 -268 10566 -278 10562 -289 ct 10557 -300 10555 -313 10555 -327 ct 10555 -348 10559 -365 10568 -380 ct -10576 -395 10588 -407 10603 -417 ct 10618 -426 10635 -433 10655 -437 ct 10676 -442 10698 -444 10721 -444 ct -10748 -444 10771 -442 10791 -438 ct 10810 -433 10826 -427 10839 -419 ct 10853 -410 10863 -400 10871 -387 ct -10879 -375 10885 -360 10890 -343 ct 10832 -333 l 10829 -344 10825 -353 10819 -361 ct -10814 -370 10807 -377 10798 -382 ct 10789 -388 10778 -392 10765 -395 ct 10753 -398 10738 -399 10721 -399 ct -10700 -399 10683 -397 10670 -394 ct 10656 -390 10645 -385 10636 -379 ct 10628 -373 10622 -366 10618 -357 ct -10615 -349 10613 -340 10613 -330 ct 10613 -317 10616 -306 10623 -298 ct 10629 -290 10638 -283 10649 -277 ct -10660 -271 10673 -267 10688 -263 ct 10703 -259 10718 -256 10735 -252 ct 10748 -249 10762 -246 10775 -242 ct -10788 -239 10801 -235 10813 -231 ct 10825 -226 10837 -221 10848 -215 ct 10858 -209 10867 -202 10875 -193 ct -10883 -185 10889 -174 10894 -163 ct 10898 -151 10900 -137 10900 -121 ct p ef -10981 0 m 10981 -437 l 11313 -437 l 11313 -389 l 11040 -389 l 11040 -249 l -11294 -249 l 11294 -201 l 11040 -201 l 11040 -48 l 11325 -48 l 11325 0 l -10981 0 l p ef -11781 -223 m 11781 -187 11776 -155 11765 -127 ct 11754 -99 11739 -76 11720 -57 ct -11701 -38 11678 -24 11652 -14 ct 11626 -5 11598 0 11568 0 ct 11405 0 l 11405 -437 l -11550 -437 l 11583 -437 11614 -433 11643 -425 ct 11671 -417 11696 -404 11716 -386 ct -11737 -369 11753 -346 11764 -319 ct 11775 -293 11781 -261 11781 -223 ct p -11722 -223 m 11722 -253 11717 -278 11709 -299 ct 11700 -320 11689 -337 11673 -351 ct -11658 -364 11640 -374 11618 -381 ct 11597 -387 11574 -390 11548 -390 ct 11464 -390 l -11464 -47 l 11562 -47 l 11585 -47 11606 -51 11625 -59 ct 11645 -66 11662 -77 11676 -92 ct -11690 -107 11702 -125 11710 -147 ct 11718 -169 11722 -194 11722 -223 ct p ef -pom -pum -9748 9814 t -59 0 m 59 -437 l 118 -437 l 118 0 l 59 0 l p ef -513 0 m 280 -372 l 280 -362 281 -352 281 -342 ct 282 -334 282 -325 282 -315 ct -283 -306 283 -298 283 -290 ct 283 0 l 230 0 l 230 -437 l 299 -437 l 535 -62 l -535 -73 534 -83 533 -93 ct 533 -101 533 -111 532 -121 ct 532 -131 531 -141 531 -151 ct -531 -437 l 585 -437 l 585 0 l 513 0 l p ef -1023 -389 m 1023 0 l 964 0 l 964 -389 l 814 -389 l 814 -437 l 1173 -437 l -1173 -389 l 1023 -389 l p ef -1538 0 m 1538 -202 l 1301 -202 l 1301 0 l 1242 0 l 1242 -437 l 1301 -437 l -1301 -252 l 1538 -252 l 1538 -437 l 1597 -437 l 1597 0 l 1538 0 l -p ef -1699 0 m 1699 -437 l 2031 -437 l 2031 -389 l 1758 -389 l 1758 -249 l -2012 -249 l 2012 -201 l 1758 -201 l 1758 -48 l 2043 -48 l 2043 0 l -1699 0 l p ef -2672 0 m 2672 -292 l 2672 -302 2672 -313 2672 -324 ct 2672 -335 2672 -345 2673 -354 ct -2673 -365 2674 -375 2674 -385 ct 2671 -374 2668 -364 2665 -353 ct 2663 -345 2660 -335 2657 -325 ct -2653 -315 2650 -306 2647 -298 ct 2534 0 l 2493 0 l 2378 -298 l 2377 -301 2376 -305 2374 -309 ct -2373 -313 2372 -317 2370 -322 ct 2368 -327 2367 -331 2365 -336 ct 2364 -341 2362 -346 2361 -351 ct -2357 -362 2354 -373 2351 -385 ct 2351 -373 2351 -362 2352 -350 ct 2352 -341 2352 -330 2352 -320 ct -2353 -309 2353 -300 2353 -292 ct 2353 0 l 2300 0 l 2300 -437 l 2378 -437 l -2494 -134 l 2496 -130 2497 -125 2499 -118 ct 2502 -112 2503 -105 2505 -98 ct -2507 -91 2509 -85 2510 -79 ct 2512 -73 2513 -68 2514 -65 ct 2514 -68 2515 -73 2517 -79 ct -2519 -85 2521 -92 2523 -98 ct 2525 -105 2527 -112 2529 -118 ct 2531 -125 2533 -130 2535 -134 ct -2649 -437 l 2725 -437 l 2725 0 l 2672 0 l p ef -3241 -221 m 3241 -187 3236 -156 3226 -128 ct 3216 -100 3202 -76 3183 -56 ct -3165 -36 3142 -21 3115 -10 ct 3088 1 3058 6 3024 6 ct 2988 6 2956 0 2929 -11 ct -2902 -22 2879 -38 2861 -58 ct 2843 -78 2830 -102 2821 -130 ct 2812 -158 2807 -188 2807 -221 ct -2807 -255 2812 -286 2821 -313 ct 2831 -341 2845 -364 2863 -384 ct 2882 -403 2904 -418 2931 -428 ct -2958 -439 2989 -444 3024 -444 ct 3059 -444 3090 -439 3117 -428 ct 3144 -418 3166 -403 3185 -383 ct -3203 -364 3217 -340 3226 -313 ct 3236 -285 3241 -255 3241 -221 ct p -3180 -221 m 3180 -247 3177 -271 3170 -293 ct 3163 -314 3153 -332 3140 -348 ct -3127 -363 3111 -375 3091 -383 ct 3072 -391 3050 -396 3024 -396 ct 2998 -396 2975 -391 2956 -383 ct -2936 -375 2920 -363 2906 -348 ct 2893 -332 2884 -314 2877 -293 ct 2870 -271 2867 -247 2867 -221 ct -2867 -195 2871 -171 2877 -149 ct 2884 -127 2894 -108 2907 -92 ct 2920 -76 2937 -64 2956 -55 ct -2976 -46 2998 -42 3024 -42 ct 3051 -42 3074 -47 3094 -55 ct 3114 -64 3130 -77 3143 -93 ct -3155 -108 3165 -127 3171 -149 ct 3177 -171 3180 -195 3180 -221 ct p ef -3700 -223 m 3700 -187 3695 -155 3684 -127 ct 3673 -99 3658 -76 3639 -57 ct -3620 -38 3597 -24 3571 -14 ct 3545 -5 3517 0 3487 0 ct 3324 0 l 3324 -437 l -3469 -437 l 3502 -437 3533 -433 3562 -425 ct 3590 -417 3615 -404 3635 -386 ct -3656 -369 3672 -346 3683 -319 ct 3694 -293 3700 -261 3700 -223 ct p -3641 -223 m 3641 -253 3636 -278 3628 -299 ct 3619 -320 3608 -337 3592 -351 ct -3577 -364 3559 -374 3537 -381 ct 3516 -387 3493 -390 3467 -390 ct 3383 -390 l -3383 -47 l 3481 -47 l 3504 -47 3525 -51 3544 -59 ct 3564 -66 3581 -77 3595 -92 ct -3609 -107 3621 -125 3629 -147 ct 3637 -169 3641 -194 3641 -223 ct p ef -3782 0 m 3782 -437 l 4114 -437 l 4114 -389 l 3841 -389 l 3841 -249 l -4095 -249 l 4095 -201 l 3841 -201 l 3841 -48 l 4126 -48 l 4126 0 l -3782 0 l p ef -4488 0 m 4255 -372 l 4255 -362 4256 -352 4256 -342 ct 4257 -334 4257 -325 4257 -315 ct -4258 -306 4258 -298 4258 -290 ct 4258 0 l 4205 0 l 4205 -437 l 4274 -437 l -4510 -62 l 4510 -73 4509 -83 4508 -93 ct 4508 -101 4508 -111 4507 -121 ct 4507 -131 4506 -141 4506 -151 ct -4506 -437 l 4560 -437 l 4560 0 l 4488 0 l p ef -4972 0 m 4922 -128 l 4723 -128 l 4673 0 l 4611 0 l 4790 -438 l 4857 -438 l -5032 0 l 4972 0 l p -4848 -319 m 4845 -327 4842 -335 4839 -344 ct 4836 -352 4833 -360 4831 -367 ct -4828 -374 4827 -380 4825 -384 ct 4823 -389 4823 -392 4822 -393 ct 4822 -392 4821 -389 4820 -384 ct -4818 -379 4816 -373 4814 -366 ct 4811 -359 4809 -352 4806 -343 ct 4803 -335 4800 -326 4797 -318 ct -4741 -174 l 4904 -174 l 4848 -319 l p ef -5284 -389 m 5284 -226 l 5528 -226 l 5528 -177 l 5284 -177 l 5284 0 l -5225 0 l 5225 -437 l 5535 -437 l 5535 -389 l 5284 -389 l p ef -5923 -1 m 5809 -182 l 5673 -182 l 5673 -1 l 5614 -1 l 5614 -437 l -5820 -437 l 5844 -437 5866 -435 5886 -429 ct 5905 -423 5921 -415 5934 -404 ct -5947 -394 5957 -380 5964 -365 ct 5970 -349 5974 -332 5974 -313 ct 5974 -299 5972 -285 5968 -272 ct -5964 -258 5957 -246 5949 -235 ct 5940 -224 5929 -214 5915 -206 ct 5902 -198 5886 -192 5867 -189 ct -5991 -1 l 5923 -1 l p -5914 -312 m 5914 -325 5912 -337 5907 -346 ct 5903 -356 5896 -364 5888 -371 ct -5879 -377 5868 -382 5856 -385 ct 5844 -388 5829 -390 5814 -390 ct 5673 -390 l -5673 -229 l 5816 -229 l 5833 -229 5848 -231 5860 -235 ct 5873 -239 5883 -245 5891 -253 ct -5899 -260 5905 -269 5908 -279 ct 5912 -289 5914 -300 5914 -312 ct p ef -6381 0 m 6331 -128 l 6132 -128 l 6082 0 l 6020 0 l 6199 -438 l 6266 -438 l -6441 0 l 6381 0 l p -6257 -319 m 6254 -327 6251 -335 6248 -344 ct 6245 -352 6242 -360 6240 -367 ct -6237 -374 6236 -380 6234 -384 ct 6232 -389 6232 -392 6231 -393 ct 6231 -392 6230 -389 6229 -384 ct -6227 -379 6225 -373 6223 -366 ct 6220 -359 6218 -352 6215 -343 ct 6212 -335 6209 -326 6206 -318 ct -6150 -174 l 6313 -174 l 6257 -319 l p ef -6866 0 m 6866 -292 l 6866 -302 6866 -313 6866 -324 ct 6866 -335 6866 -345 6867 -354 ct -6867 -365 6868 -375 6868 -385 ct 6865 -374 6862 -364 6859 -353 ct 6857 -345 6854 -335 6851 -325 ct -6847 -315 6844 -306 6841 -298 ct 6728 0 l 6687 0 l 6572 -298 l 6571 -301 6570 -305 6568 -309 ct -6567 -313 6566 -317 6564 -322 ct 6562 -327 6561 -331 6559 -336 ct 6558 -341 6556 -346 6555 -351 ct -6551 -362 6548 -373 6545 -385 ct 6545 -373 6545 -362 6546 -350 ct 6546 -341 6546 -330 6546 -320 ct -6547 -309 6547 -300 6547 -292 ct 6547 0 l 6494 0 l 6494 -437 l 6572 -437 l -6688 -134 l 6690 -130 6691 -125 6693 -118 ct 6696 -112 6697 -105 6699 -98 ct -6701 -91 6703 -85 6704 -79 ct 6706 -73 6707 -68 6708 -65 ct 6708 -68 6709 -73 6711 -79 ct -6713 -85 6715 -92 6717 -98 ct 6719 -105 6721 -112 6723 -118 ct 6725 -125 6727 -130 6729 -134 ct -6843 -437 l 6919 -437 l 6919 0 l 6866 0 l p ef -7023 0 m 7023 -437 l 7355 -437 l 7355 -389 l 7082 -389 l 7082 -249 l -7336 -249 l 7336 -201 l 7082 -201 l 7082 -48 l 7367 -48 l 7367 0 l -7023 0 l p ef -7864 0 m 7793 0 l 7717 -278 l 7715 -286 7712 -295 7710 -306 ct 7707 -317 7705 -327 7703 -337 ct -7700 -348 7698 -360 7695 -371 ct 7693 -359 7690 -348 7688 -336 ct 7685 -326 7683 -316 7681 -306 ct -7678 -295 7676 -286 7673 -278 ct 7597 0 l 7526 0 l 7398 -438 l 7460 -438 l -7538 -159 l 7541 -146 7545 -133 7548 -121 ct 7551 -108 7554 -96 7556 -86 ct -7559 -74 7561 -63 7564 -52 ct 7567 -66 7570 -80 7573 -94 ct 7575 -100 7576 -106 7578 -113 ct -7579 -119 7581 -125 7582 -132 ct 7584 -138 7585 -144 7587 -149 ct 7588 -155 7590 -160 7591 -165 ct -7667 -438 l 7724 -438 l 7800 -165 l 7801 -160 7802 -155 7804 -149 ct 7805 -144 7807 -138 7808 -132 ct -7810 -126 7812 -119 7813 -113 ct 7814 -106 7816 -100 7817 -95 ct 7821 -81 7824 -66 7827 -52 ct -7827 -52 7828 -56 7830 -63 ct 7831 -70 7833 -79 7836 -90 ct 7838 -100 7841 -112 7844 -125 ct -7847 -137 7850 -149 7853 -159 ct 7930 -438 l 7992 -438 l 7864 0 l p ef -8460 -221 m 8460 -187 8455 -156 8445 -128 ct 8435 -100 8421 -76 8402 -56 ct -8384 -36 8361 -21 8334 -10 ct 8307 1 8277 6 8243 6 ct 8207 6 8175 0 8148 -11 ct -8121 -22 8098 -38 8080 -58 ct 8062 -78 8049 -102 8040 -130 ct 8031 -158 8026 -188 8026 -221 ct -8026 -255 8031 -286 8040 -313 ct 8050 -341 8064 -364 8082 -384 ct 8101 -403 8123 -418 8150 -428 ct -8177 -439 8208 -444 8243 -444 ct 8278 -444 8309 -439 8336 -428 ct 8363 -418 8385 -403 8404 -383 ct -8422 -364 8436 -340 8445 -313 ct 8455 -285 8460 -255 8460 -221 ct p -8399 -221 m 8399 -247 8396 -271 8389 -293 ct 8382 -314 8372 -332 8359 -348 ct -8346 -363 8330 -375 8310 -383 ct 8291 -391 8269 -396 8243 -396 ct 8217 -396 8194 -391 8175 -383 ct -8155 -375 8139 -363 8125 -348 ct 8112 -332 8103 -314 8096 -293 ct 8089 -271 8086 -247 8086 -221 ct -8086 -195 8090 -171 8096 -149 ct 8103 -127 8113 -108 8126 -92 ct 8139 -76 8156 -64 8175 -55 ct -8195 -46 8217 -42 8243 -42 ct 8270 -42 8293 -47 8313 -55 ct 8333 -64 8349 -77 8362 -93 ct -8374 -108 8384 -127 8390 -149 ct 8396 -171 8399 -195 8399 -221 ct p ef -8852 -1 m 8738 -182 l 8602 -182 l 8602 -1 l 8543 -1 l 8543 -437 l -8749 -437 l 8773 -437 8795 -435 8815 -429 ct 8834 -423 8850 -415 8863 -404 ct -8876 -394 8886 -380 8893 -365 ct 8899 -349 8903 -332 8903 -313 ct 8903 -299 8901 -285 8897 -272 ct -8893 -258 8886 -246 8878 -235 ct 8869 -224 8858 -214 8844 -206 ct 8831 -198 8815 -192 8796 -189 ct -8920 -1 l 8852 -1 l p -8843 -312 m 8843 -325 8841 -337 8836 -346 ct 8832 -356 8825 -364 8817 -371 ct -8808 -377 8797 -382 8785 -385 ct 8773 -388 8758 -390 8743 -390 ct 8602 -390 l -8602 -229 l 8745 -229 l 8762 -229 8777 -231 8789 -235 ct 8802 -239 8812 -245 8820 -253 ct -8828 -260 8834 -269 8837 -279 ct 8841 -289 8843 -300 8843 -312 ct p ef -9291 0 m 9116 -211 l 9059 -168 l 9059 0 l 9000 0 l 9000 -437 l 9059 -437 l -9059 -218 l 9270 -437 l 9340 -437 l 9154 -247 l 9364 0 l 9291 0 l -p ef -pom -1.000 0.203 0.203 c 5333 10682 m 7061 10682 8381 11232 8381 11952 ct 8381 12672 7061 13222 5333 13222 ct -3606 13222 2286 12672 2286 11952 ct 2286 11232 3606 10682 5333 10682 ct p -2286 10682 m 2286 10682 l p -8382 13223 m 8382 13223 l p ef -5333 10682 m 7061 10682 8381 11232 8381 11952 ct 8381 12672 7061 13222 5333 13222 ct -3605 13222 2285 12672 2285 11952 ct 2285 11232 3605 10682 5333 10682 ct pc -2285 10682 m 2285 10682 l pc -8382 13223 m 8382 13223 l pc -pum -2891 12293 t -0.003 0.003 0.003 c 536 0 m 332 -297 l 124 0 l 22 0 l 281 -353 l 42 -680 l -144 -680 l 333 -413 l 517 -680 l 618 -680 l 386 -357 l 638 0 l 536 0 l -p ef -1192 0 m 988 -297 l 780 0 l 678 0 l 937 -353 l 698 -680 l 800 -680 l -989 -413 l 1173 -680 l 1274 -680 l 1042 -357 l 1294 0 l 1192 0 l -p ef -1848 0 m 1644 -297 l 1436 0 l 1334 0 l 1593 -353 l 1354 -680 l 1456 -680 l -1645 -413 l 1829 -680 l 1930 -680 l 1698 -357 l 1950 0 l 1848 0 l -p ef -2570 -605 m 2570 0 l 2479 0 l 2479 -605 l 2245 -605 l 2245 -680 l -2804 -680 l 2804 -605 l 2570 -605 l p ef -3523 -343 m 3523 -290 3516 -242 3500 -198 ct 3485 -155 3463 -117 3434 -87 ct -3405 -56 3370 -32 3328 -15 ct 3286 2 3239 10 3186 10 ct 3130 10 3081 1 3038 -16 ct -2996 -34 2961 -58 2933 -90 ct 2905 -121 2884 -158 2870 -201 ct 2856 -245 2849 -292 2849 -343 ct -2849 -396 2856 -444 2871 -487 ct 2886 -530 2907 -566 2936 -596 ct 2965 -626 3000 -649 3042 -666 ct -3084 -682 3132 -690 3186 -690 ct 3241 -690 3289 -682 3330 -665 ct 3372 -649 3408 -626 3436 -595 ct -3465 -565 3486 -529 3501 -486 ct 3516 -443 3523 -395 3523 -343 ct p -3429 -343 m 3429 -384 3424 -421 3413 -454 ct 3403 -488 3388 -517 3367 -540 ct -3347 -564 3321 -583 3291 -595 ct 3261 -608 3226 -615 3186 -615 ct 3146 -615 3110 -608 3080 -595 ct -3049 -583 3024 -564 3003 -540 ct 2983 -517 2968 -488 2958 -454 ct 2947 -421 2942 -384 2942 -343 ct -2942 -302 2948 -265 2958 -231 ct 2969 -197 2984 -167 3004 -143 ct 3025 -118 3050 -99 3081 -85 ct -3111 -72 3146 -65 3186 -65 ct 3228 -65 3265 -72 3295 -86 ct 3326 -99 3351 -119 3371 -143 ct -3391 -168 3405 -197 3415 -231 ct 3424 -266 3429 -303 3429 -343 ct p ef -4290 -343 m 4290 -290 4283 -242 4267 -198 ct 4252 -155 4230 -117 4201 -87 ct -4172 -56 4137 -32 4095 -15 ct 4053 2 4006 10 3953 10 ct 3897 10 3848 1 3805 -16 ct -3763 -34 3728 -58 3700 -90 ct 3672 -121 3651 -158 3637 -201 ct 3623 -245 3616 -292 3616 -343 ct -3616 -396 3623 -444 3638 -487 ct 3653 -530 3674 -566 3703 -596 ct 3732 -626 3767 -649 3809 -666 ct -3851 -682 3899 -690 3953 -690 ct 4008 -690 4056 -682 4097 -665 ct 4139 -649 4175 -626 4203 -595 ct -4232 -565 4253 -529 4268 -486 ct 4283 -443 4290 -395 4290 -343 ct p -4196 -343 m 4196 -384 4191 -421 4180 -454 ct 4170 -488 4155 -517 4134 -540 ct -4114 -564 4088 -583 4058 -595 ct 4028 -608 3993 -615 3953 -615 ct 3913 -615 3877 -608 3847 -595 ct -3816 -583 3791 -564 3770 -540 ct 3750 -517 3735 -488 3725 -454 ct 3714 -421 3709 -384 3709 -343 ct -3709 -302 3715 -265 3725 -231 ct 3736 -197 3751 -167 3771 -143 ct 3792 -118 3817 -99 3848 -85 ct -3878 -72 3913 -65 3953 -65 ct 3995 -65 4032 -72 4062 -86 ct 4093 -99 4118 -119 4138 -143 ct -4158 -168 4172 -197 4182 -231 ct 4191 -266 4196 -303 4196 -343 ct p ef -4416 0 m 4416 -680 l 4508 -680 l 4508 -75 l 4852 -75 l 4852 0 l 4416 0 l -p ef -pom -pum -9748 11704 t -428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct 348 -38 325 -24 299 -14 ct -273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l 230 -437 261 -433 290 -425 ct -318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct 422 -293 428 -261 428 -223 ct -p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -509 0 m 509 -437 l 841 -437 l 841 -389 l 568 -389 l 568 -249 l 822 -249 l -822 -201 l 568 -201 l 568 -48 l 853 -48 l 853 0 l 509 0 l p ef -1104 -389 m 1104 0 l 1045 0 l 1045 -389 l 895 -389 l 895 -437 l 1254 -437 l -1254 -389 l 1104 -389 l p ef -1581 0 m 1531 -128 l 1332 -128 l 1282 0 l 1220 0 l 1399 -438 l 1466 -438 l -1641 0 l 1581 0 l p -1457 -319 m 1454 -327 1451 -335 1448 -344 ct 1445 -352 1442 -360 1440 -367 ct -1437 -374 1436 -380 1434 -384 ct 1432 -389 1432 -392 1431 -393 ct 1431 -392 1430 -389 1429 -384 ct -1427 -379 1425 -373 1423 -366 ct 1420 -359 1418 -352 1415 -343 ct 1412 -335 1409 -326 1406 -318 ct -1350 -174 l 1513 -174 l 1457 -319 l p ef -1702 0 m 1702 -437 l 1761 -437 l 1761 0 l 1702 0 l p ef -1872 0 m 1872 -438 l 1931 -438 l 1931 -48 l 2152 -48 l 2152 0 l 1872 0 l -p ef -2224 0 m 2224 -437 l 2556 -437 l 2556 -389 l 2283 -389 l 2283 -249 l -2537 -249 l 2537 -201 l 2283 -201 l 2283 -48 l 2568 -48 l 2568 0 l -2224 0 l p ef -3023 -223 m 3023 -187 3018 -155 3007 -127 ct 2996 -99 2981 -76 2962 -57 ct -2943 -38 2920 -24 2894 -14 ct 2868 -5 2840 0 2810 0 ct 2647 0 l 2647 -437 l -2792 -437 l 2825 -437 2856 -433 2885 -425 ct 2913 -417 2938 -404 2958 -386 ct -2979 -369 2995 -346 3006 -319 ct 3017 -293 3023 -261 3023 -223 ct p -2964 -223 m 2964 -253 2959 -278 2951 -299 ct 2942 -320 2931 -337 2915 -351 ct -2900 -364 2882 -374 2860 -381 ct 2839 -387 2816 -390 2790 -390 ct 2706 -390 l -2706 -47 l 2804 -47 l 2827 -47 2848 -51 2867 -59 ct 2887 -66 2904 -77 2918 -92 ct -2932 -107 2944 -125 2952 -147 ct 2960 -169 2964 -194 2964 -223 ct p ef -3654 0 m 3654 -292 l 3654 -302 3654 -313 3654 -324 ct 3654 -335 3654 -345 3655 -354 ct -3655 -365 3656 -375 3656 -385 ct 3653 -374 3650 -364 3647 -353 ct 3645 -345 3642 -335 3639 -325 ct -3635 -315 3632 -306 3629 -298 ct 3516 0 l 3475 0 l 3360 -298 l 3359 -301 3358 -305 3356 -309 ct -3355 -313 3354 -317 3352 -322 ct 3350 -327 3349 -331 3347 -336 ct 3346 -341 3344 -346 3343 -351 ct -3339 -362 3336 -373 3333 -385 ct 3333 -373 3333 -362 3334 -350 ct 3334 -341 3334 -330 3334 -320 ct -3335 -309 3335 -300 3335 -292 ct 3335 0 l 3282 0 l 3282 -437 l 3360 -437 l -3476 -134 l 3478 -130 3479 -125 3481 -118 ct 3484 -112 3485 -105 3487 -98 ct -3489 -91 3491 -85 3492 -79 ct 3494 -73 3495 -68 3496 -65 ct 3496 -68 3497 -73 3499 -79 ct -3501 -85 3503 -92 3505 -98 ct 3507 -105 3509 -112 3511 -118 ct 3513 -125 3515 -130 3517 -134 ct -3631 -437 l 3707 -437 l 3707 0 l 3654 0 l p ef -4223 -221 m 4223 -187 4218 -156 4208 -128 ct 4198 -100 4184 -76 4165 -56 ct -4147 -36 4124 -21 4097 -10 ct 4070 1 4040 6 4006 6 ct 3970 6 3938 0 3911 -11 ct -3884 -22 3861 -38 3843 -58 ct 3825 -78 3812 -102 3803 -130 ct 3794 -158 3789 -188 3789 -221 ct -3789 -255 3794 -286 3803 -313 ct 3813 -341 3827 -364 3845 -384 ct 3864 -403 3886 -418 3913 -428 ct -3940 -439 3971 -444 4006 -444 ct 4041 -444 4072 -439 4099 -428 ct 4126 -418 4148 -403 4167 -383 ct -4185 -364 4199 -340 4208 -313 ct 4218 -285 4223 -255 4223 -221 ct p -4162 -221 m 4162 -247 4159 -271 4152 -293 ct 4145 -314 4135 -332 4122 -348 ct -4109 -363 4093 -375 4073 -383 ct 4054 -391 4032 -396 4006 -396 ct 3980 -396 3957 -391 3938 -383 ct -3918 -375 3902 -363 3888 -348 ct 3875 -332 3866 -314 3859 -293 ct 3852 -271 3849 -247 3849 -221 ct -3849 -195 3853 -171 3859 -149 ct 3866 -127 3876 -108 3889 -92 ct 3902 -76 3919 -64 3938 -55 ct -3958 -46 3980 -42 4006 -42 ct 4033 -42 4056 -47 4076 -55 ct 4096 -64 4112 -77 4125 -93 ct -4137 -108 4147 -127 4153 -149 ct 4159 -171 4162 -195 4162 -221 ct p ef -4683 -223 m 4683 -187 4678 -155 4667 -127 ct 4656 -99 4641 -76 4622 -57 ct -4603 -38 4580 -24 4554 -14 ct 4528 -5 4500 0 4470 0 ct 4307 0 l 4307 -437 l -4452 -437 l 4485 -437 4516 -433 4545 -425 ct 4573 -417 4598 -404 4618 -386 ct -4639 -369 4655 -346 4666 -319 ct 4677 -293 4683 -261 4683 -223 ct p -4624 -223 m 4624 -253 4619 -278 4611 -299 ct 4602 -320 4591 -337 4575 -351 ct -4560 -364 4542 -374 4520 -381 ct 4499 -387 4476 -390 4450 -390 ct 4366 -390 l -4366 -47 l 4464 -47 l 4487 -47 4508 -51 4527 -59 ct 4547 -66 4564 -77 4578 -92 ct -4592 -107 4604 -125 4612 -147 ct 4620 -169 4624 -194 4624 -223 ct p ef -4764 0 m 4764 -437 l 5096 -437 l 5096 -389 l 4823 -389 l 4823 -249 l -5077 -249 l 5077 -201 l 4823 -201 l 4823 -48 l 5108 -48 l 5108 0 l -4764 0 l p ef -5187 0 m 5187 -438 l 5246 -438 l 5246 -48 l 5467 -48 l 5467 0 l 5187 0 l -p ef -5865 6 m 5841 6 5818 3 5796 -4 ct 5775 -10 5756 -20 5740 -34 ct 5724 -47 5711 -64 5701 -85 ct -5692 -106 5687 -131 5687 -159 ct 5687 -438 l 5746 -438 l 5746 -164 l 5746 -142 5749 -123 5755 -108 ct -5761 -92 5769 -80 5780 -70 ct 5790 -60 5803 -53 5817 -49 ct 5831 -44 5847 -42 5864 -42 ct -5881 -42 5897 -44 5912 -49 ct 5927 -53 5941 -61 5952 -71 ct 5963 -81 5972 -94 5979 -110 ct -5985 -126 5989 -145 5989 -168 ct 5989 -438 l 6048 -438 l 6048 -165 l 6048 -136 6043 -110 6033 -89 ct -6024 -67 6010 -50 5994 -36 ct 5977 -22 5958 -11 5936 -4 ct 5914 3 5890 6 5865 6 ct -p ef -6430 0 m 6197 -372 l 6197 -362 6198 -352 6198 -342 ct 6199 -334 6199 -325 6199 -315 ct -6200 -306 6200 -298 6200 -290 ct 6200 0 l 6147 0 l 6147 -437 l 6216 -437 l -6452 -62 l 6452 -73 6451 -83 6450 -93 ct 6450 -101 6450 -111 6449 -121 ct 6449 -131 6448 -141 6448 -151 ct -6448 -437 l 6502 -437 l 6502 0 l 6430 0 l p ef -6980 -223 m 6980 -187 6975 -155 6964 -127 ct 6953 -99 6938 -76 6919 -57 ct -6900 -38 6877 -24 6851 -14 ct 6825 -5 6797 0 6767 0 ct 6604 0 l 6604 -437 l -6749 -437 l 6782 -437 6813 -433 6842 -425 ct 6870 -417 6895 -404 6915 -386 ct -6936 -369 6952 -346 6963 -319 ct 6974 -293 6980 -261 6980 -223 ct p -6921 -223 m 6921 -253 6916 -278 6908 -299 ct 6899 -320 6888 -337 6872 -351 ct -6857 -364 6839 -374 6817 -381 ct 6796 -387 6773 -390 6747 -390 ct 6663 -390 l -6663 -47 l 6761 -47 l 6784 -47 6805 -51 6824 -59 ct 6844 -66 6861 -77 6875 -92 ct -6889 -107 6901 -125 6909 -147 ct 6917 -169 6921 -194 6921 -223 ct p ef -7061 0 m 7061 -437 l 7393 -437 l 7393 -389 l 7120 -389 l 7120 -249 l -7374 -249 l 7374 -201 l 7120 -201 l 7120 -48 l 7405 -48 l 7405 0 l -7061 0 l p ef -7794 -1 m 7680 -182 l 7544 -182 l 7544 -1 l 7485 -1 l 7485 -437 l -7691 -437 l 7715 -437 7737 -435 7757 -429 ct 7776 -423 7792 -415 7805 -404 ct -7818 -394 7828 -380 7835 -365 ct 7841 -349 7845 -332 7845 -313 ct 7845 -299 7843 -285 7839 -272 ct -7835 -258 7828 -246 7820 -235 ct 7811 -224 7800 -214 7786 -206 ct 7773 -198 7757 -192 7738 -189 ct -7862 -1 l 7794 -1 l p -7785 -312 m 7785 -325 7783 -337 7778 -346 ct 7774 -356 7767 -364 7759 -371 ct -7750 -377 7739 -382 7727 -385 ct 7715 -388 7700 -390 7685 -390 ct 7544 -390 l -7544 -229 l 7687 -229 l 7704 -229 7719 -231 7731 -235 ct 7744 -239 7754 -245 7762 -253 ct -7770 -260 7776 -269 7779 -279 ct 7783 -289 7785 -300 7785 -312 ct p ef -pom -pum -9748 12415 t -428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct 348 -38 325 -24 299 -14 ct -273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l 230 -437 261 -433 290 -425 ct -318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct 422 -293 428 -261 428 -223 ct -p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -509 0 m 509 -437 l 841 -437 l 841 -389 l 568 -389 l 568 -249 l 822 -249 l -822 -201 l 568 -201 l 568 -48 l 853 -48 l 853 0 l 509 0 l p ef -1123 0 m 1062 0 l 884 -438 l 946 -438 l 1067 -129 l 1070 -120 1073 -111 1076 -102 ct -1079 -92 1082 -84 1085 -77 ct 1088 -69 1090 -60 1093 -52 ct 1096 -60 1098 -68 1101 -76 ct -1104 -84 1106 -92 1109 -101 ct 1112 -110 1116 -120 1119 -129 ct 1239 -438 l -1302 -438 l 1123 0 l p ef -1356 0 m 1356 -437 l 1688 -437 l 1688 -389 l 1415 -389 l 1415 -249 l -1669 -249 l 1669 -201 l 1415 -201 l 1415 -48 l 1700 -48 l 1700 0 l -1356 0 l p ef -1779 0 m 1779 -438 l 1838 -438 l 1838 -48 l 2059 -48 l 2059 0 l 1779 0 l -p ef -2543 -221 m 2543 -187 2538 -156 2528 -128 ct 2518 -100 2504 -76 2485 -56 ct -2467 -36 2444 -21 2417 -10 ct 2390 1 2360 6 2326 6 ct 2290 6 2258 0 2231 -11 ct -2204 -22 2181 -38 2163 -58 ct 2145 -78 2132 -102 2123 -130 ct 2114 -158 2109 -188 2109 -221 ct -2109 -255 2114 -286 2123 -313 ct 2133 -341 2147 -364 2165 -384 ct 2184 -403 2206 -418 2233 -428 ct -2260 -439 2291 -444 2326 -444 ct 2361 -444 2392 -439 2419 -428 ct 2446 -418 2468 -403 2487 -383 ct -2505 -364 2519 -340 2528 -313 ct 2538 -285 2543 -255 2543 -221 ct p -2482 -221 m 2482 -247 2479 -271 2472 -293 ct 2465 -314 2455 -332 2442 -348 ct -2429 -363 2413 -375 2393 -383 ct 2374 -391 2352 -396 2326 -396 ct 2300 -396 2277 -391 2258 -383 ct -2238 -375 2222 -363 2208 -348 ct 2195 -332 2186 -314 2179 -293 ct 2172 -271 2169 -247 2169 -221 ct -2169 -195 2173 -171 2179 -149 ct 2186 -127 2196 -108 2209 -92 ct 2222 -76 2239 -64 2258 -55 ct -2278 -46 2300 -42 2326 -42 ct 2353 -42 2376 -47 2396 -55 ct 2416 -64 2432 -77 2445 -93 ct -2457 -108 2467 -127 2473 -149 ct 2479 -171 2482 -195 2482 -221 ct p ef -2964 -305 m 2964 -286 2961 -269 2955 -252 ct 2948 -236 2939 -221 2926 -209 ct -2914 -197 2898 -188 2879 -181 ct 2861 -174 2839 -170 2814 -170 ct 2685 -170 l -2685 1 l 2626 1 l 2626 -437 l 2810 -437 l 2836 -437 2858 -434 2878 -428 ct -2897 -421 2913 -412 2926 -401 ct 2938 -389 2948 -375 2954 -359 ct 2961 -343 2964 -325 2964 -305 ct -p -2905 -305 m 2905 -332 2896 -354 2879 -368 ct 2862 -382 2837 -390 2803 -390 ct -2685 -390 l 2685 -217 l 2805 -217 l 2839 -217 2864 -224 2880 -240 ct 2897 -255 2905 -276 2905 -305 ct -p ef -3421 0 m 3421 -292 l 3421 -302 3421 -313 3421 -324 ct 3421 -335 3421 -345 3422 -354 ct -3422 -365 3423 -375 3423 -385 ct 3420 -374 3417 -364 3414 -353 ct 3412 -345 3409 -335 3406 -325 ct -3402 -315 3399 -306 3396 -298 ct 3283 0 l 3242 0 l 3127 -298 l 3126 -301 3125 -305 3123 -309 ct -3122 -313 3121 -317 3119 -322 ct 3117 -327 3116 -331 3114 -336 ct 3113 -341 3111 -346 3110 -351 ct -3106 -362 3103 -373 3100 -385 ct 3100 -373 3100 -362 3101 -350 ct 3101 -341 3101 -330 3101 -320 ct -3102 -309 3102 -300 3102 -292 ct 3102 0 l 3049 0 l 3049 -437 l 3127 -437 l -3243 -134 l 3245 -130 3246 -125 3248 -118 ct 3251 -112 3252 -105 3254 -98 ct -3256 -91 3258 -85 3259 -79 ct 3261 -73 3262 -68 3263 -65 ct 3263 -68 3264 -73 3266 -79 ct -3268 -85 3270 -92 3272 -98 ct 3274 -105 3276 -112 3278 -118 ct 3280 -125 3282 -130 3284 -134 ct -3398 -437 l 3474 -437 l 3474 0 l 3421 0 l p ef -3578 0 m 3578 -437 l 3910 -437 l 3910 -389 l 3637 -389 l 3637 -249 l -3891 -249 l 3891 -201 l 3637 -201 l 3637 -48 l 3922 -48 l 3922 0 l -3578 0 l p ef -4285 0 m 4052 -372 l 4052 -362 4053 -352 4053 -342 ct 4054 -334 4054 -325 4054 -315 ct -4055 -306 4055 -298 4055 -290 ct 4055 0 l 4002 0 l 4002 -437 l 4071 -437 l -4307 -62 l 4307 -73 4306 -83 4305 -93 ct 4305 -101 4305 -111 4304 -121 ct 4304 -131 4303 -141 4303 -151 ct -4303 -437 l 4357 -437 l 4357 0 l 4285 0 l p ef -4630 -389 m 4630 0 l 4571 0 l 4571 -389 l 4421 -389 l 4421 -437 l -4780 -437 l 4780 -389 l 4630 -389 l p ef -pom -pum -9749 13705 t -111 -389 m 111 -226 l 355 -226 l 355 -177 l 111 -177 l 111 0 l 52 0 l -52 -437 l 362 -437 l 362 -389 l 111 -389 l p ef -853 -221 m 853 -187 848 -156 838 -128 ct 828 -100 814 -76 795 -56 ct 777 -36 754 -21 727 -10 ct -700 1 670 6 636 6 ct 600 6 568 0 541 -11 ct 514 -22 491 -38 473 -58 ct 455 -78 442 -102 433 -130 ct -424 -158 419 -188 419 -221 ct 419 -255 424 -286 433 -313 ct 443 -341 457 -364 475 -384 ct -494 -403 516 -418 543 -428 ct 570 -439 601 -444 636 -444 ct 671 -444 702 -439 729 -428 ct -756 -418 778 -403 797 -383 ct 815 -364 829 -340 838 -313 ct 848 -285 853 -255 853 -221 ct -p -792 -221 m 792 -247 789 -271 782 -293 ct 775 -314 765 -332 752 -348 ct 739 -363 723 -375 703 -383 ct -684 -391 662 -396 636 -396 ct 610 -396 587 -391 568 -383 ct 548 -375 532 -363 518 -348 ct -505 -332 496 -314 489 -293 ct 482 -271 479 -247 479 -221 ct 479 -195 483 -171 489 -149 ct -496 -127 506 -108 519 -92 ct 532 -76 549 -64 568 -55 ct 588 -46 610 -42 636 -42 ct -663 -42 686 -47 706 -55 ct 726 -64 742 -77 755 -93 ct 767 -108 777 -127 783 -149 ct -789 -171 792 -195 792 -221 ct p ef -1246 -1 m 1132 -182 l 996 -182 l 996 -1 l 937 -1 l 937 -437 l 1143 -437 l -1167 -437 1189 -435 1209 -429 ct 1228 -423 1244 -415 1257 -404 ct 1270 -394 1280 -380 1287 -365 ct -1293 -349 1297 -332 1297 -313 ct 1297 -299 1295 -285 1291 -272 ct 1287 -258 1280 -246 1272 -235 ct -1263 -224 1252 -214 1238 -206 ct 1225 -198 1209 -192 1190 -189 ct 1314 -1 l -1246 -1 l p -1237 -312 m 1237 -325 1235 -337 1230 -346 ct 1226 -356 1219 -364 1211 -371 ct -1202 -377 1191 -382 1179 -385 ct 1167 -388 1152 -390 1137 -390 ct 996 -390 l -996 -229 l 1139 -229 l 1156 -229 1171 -231 1183 -235 ct 1196 -239 1206 -245 1214 -253 ct -1222 -260 1228 -269 1231 -279 ct 1235 -289 1237 -300 1237 -312 ct p ef -1798 0 m 1727 0 l 1651 -278 l 1649 -286 1646 -295 1644 -306 ct 1641 -317 1639 -327 1637 -337 ct -1634 -348 1632 -360 1629 -371 ct 1627 -359 1624 -348 1622 -336 ct 1619 -326 1617 -316 1615 -306 ct -1612 -295 1610 -286 1607 -278 ct 1531 0 l 1460 0 l 1332 -438 l 1394 -438 l -1472 -159 l 1475 -146 1479 -133 1482 -121 ct 1485 -108 1488 -96 1490 -86 ct -1493 -74 1495 -63 1498 -52 ct 1501 -66 1504 -80 1507 -94 ct 1509 -100 1510 -106 1512 -113 ct -1513 -119 1515 -125 1516 -132 ct 1518 -138 1519 -144 1521 -149 ct 1522 -155 1524 -160 1525 -165 ct -1601 -438 l 1658 -438 l 1734 -165 l 1735 -160 1736 -155 1738 -149 ct 1739 -144 1741 -138 1742 -132 ct -1744 -126 1746 -119 1747 -113 ct 1748 -106 1750 -100 1751 -95 ct 1755 -81 1758 -66 1761 -52 ct -1761 -52 1762 -56 1764 -63 ct 1765 -70 1767 -79 1770 -90 ct 1772 -100 1775 -112 1778 -125 ct -1781 -137 1784 -149 1787 -159 ct 1864 -438 l 1926 -438 l 1798 0 l p ef -2267 0 m 2217 -128 l 2018 -128 l 1968 0 l 1906 0 l 2085 -438 l 2152 -438 l -2327 0 l 2267 0 l p -2143 -319 m 2140 -327 2137 -335 2134 -344 ct 2131 -352 2128 -360 2126 -367 ct -2123 -374 2122 -380 2120 -384 ct 2118 -389 2118 -392 2117 -393 ct 2117 -392 2116 -389 2115 -384 ct -2113 -379 2111 -373 2109 -366 ct 2106 -359 2104 -352 2101 -343 ct 2098 -335 2095 -326 2092 -318 ct -2036 -174 l 2199 -174 l 2143 -319 l p ef -2689 -1 m 2575 -182 l 2439 -182 l 2439 -1 l 2380 -1 l 2380 -437 l -2586 -437 l 2610 -437 2632 -435 2652 -429 ct 2671 -423 2687 -415 2700 -404 ct -2713 -394 2723 -380 2730 -365 ct 2736 -349 2740 -332 2740 -313 ct 2740 -299 2738 -285 2734 -272 ct -2730 -258 2723 -246 2715 -235 ct 2706 -224 2695 -214 2681 -206 ct 2668 -198 2652 -192 2633 -189 ct -2757 -1 l 2689 -1 l p -2680 -312 m 2680 -325 2678 -337 2673 -346 ct 2669 -356 2662 -364 2654 -371 ct -2645 -377 2634 -382 2622 -385 ct 2610 -388 2595 -390 2580 -390 ct 2439 -390 l -2439 -229 l 2582 -229 l 2599 -229 2614 -231 2626 -235 ct 2639 -239 2649 -245 2657 -253 ct -2665 -260 2671 -269 2674 -279 ct 2678 -289 2680 -300 2680 -312 ct p ef -3214 -223 m 3214 -187 3209 -155 3198 -127 ct 3187 -99 3172 -76 3153 -57 ct -3134 -38 3111 -24 3085 -14 ct 3059 -5 3031 0 3001 0 ct 2838 0 l 2838 -437 l -2983 -437 l 3016 -437 3047 -433 3076 -425 ct 3104 -417 3129 -404 3149 -386 ct -3170 -369 3186 -346 3197 -319 ct 3208 -293 3214 -261 3214 -223 ct p -3155 -223 m 3155 -253 3150 -278 3142 -299 ct 3133 -320 3122 -337 3106 -351 ct -3091 -364 3073 -374 3051 -381 ct 3030 -387 3007 -390 2981 -390 ct 2897 -390 l -2897 -47 l 2995 -47 l 3018 -47 3039 -51 3058 -59 ct 3078 -66 3095 -77 3109 -92 ct -3123 -107 3135 -125 3143 -147 ct 3151 -169 3155 -194 3155 -223 ct p ef -3243 7 m 3370 -460 l 3419 -460 l 3293 7 l 3243 7 l p ef -3811 -123 m 3811 -101 3807 -82 3798 -67 ct 3789 -51 3778 -38 3763 -28 ct 3748 -19 3731 -11 3712 -7 ct -3692 -2 3672 0 3650 0 ct 3473 0 l 3473 -437 l 3632 -437 l 3656 -437 3678 -435 3697 -431 ct -3716 -427 3732 -421 3745 -412 ct 3758 -404 3768 -393 3775 -379 ct 3782 -366 3786 -350 3786 -331 ct -3786 -319 3784 -307 3781 -297 ct 3777 -286 3772 -276 3765 -267 ct 3758 -258 3749 -251 3739 -245 ct -3729 -238 3716 -234 3703 -230 ct 3720 -228 3736 -224 3749 -218 ct 3763 -212 3774 -205 3783 -195 ct -3792 -186 3799 -175 3804 -163 ct 3809 -151 3811 -137 3811 -123 ct p -3726 -324 m 3726 -348 3718 -365 3702 -375 ct 3686 -385 3662 -390 3632 -390 ct -3532 -390 l 3532 -251 l 3632 -251 l 3649 -251 3664 -253 3676 -256 ct 3688 -260 3698 -265 3705 -271 ct -3712 -277 3718 -285 3721 -294 ct 3724 -303 3726 -313 3726 -324 ct p -3751 -128 m 3751 -142 3749 -153 3744 -163 ct 3739 -173 3731 -181 3722 -187 ct -3712 -193 3701 -198 3688 -201 ct 3674 -204 3659 -205 3643 -205 ct 3532 -205 l -3532 -47 l 3647 -47 l 3662 -47 3676 -49 3689 -51 ct 3702 -54 3713 -58 3722 -64 ct -3731 -70 3738 -79 3743 -89 ct 3749 -99 3751 -112 3751 -128 ct p ef -4206 0 m 4156 -128 l 3957 -128 l 3907 0 l 3845 0 l 4024 -438 l 4091 -438 l -4266 0 l 4206 0 l p -4082 -319 m 4079 -327 4076 -335 4073 -344 ct 4070 -352 4067 -360 4065 -367 ct -4062 -374 4061 -380 4059 -384 ct 4057 -389 4057 -392 4056 -393 ct 4056 -392 4055 -389 4054 -384 ct -4052 -379 4050 -373 4048 -366 ct 4045 -359 4043 -352 4040 -343 ct 4037 -335 4034 -326 4031 -318 ct -3975 -174 l 4138 -174 l 4082 -319 l p ef -4513 -396 m 4488 -396 4466 -391 4447 -383 ct 4428 -375 4412 -363 4399 -348 ct -4386 -332 4376 -314 4369 -293 ct 4363 -271 4359 -247 4359 -221 ct 4359 -195 4363 -171 4370 -149 ct -4377 -127 4387 -108 4401 -92 ct 4414 -77 4430 -64 4450 -56 ct 4469 -47 4491 -43 4515 -43 ct -4532 -43 4547 -45 4561 -49 ct 4575 -54 4588 -60 4599 -68 ct 4610 -76 4621 -86 4629 -97 ct -4638 -108 4646 -120 4653 -134 ct 4701 -109 l 4694 -93 4684 -78 4672 -64 ct -4661 -50 4647 -38 4631 -27 ct 4616 -17 4598 -9 4578 -3 ct 4559 3 4537 6 4512 6 ct -4477 6 4446 0 4419 -11 ct 4393 -22 4371 -38 4353 -58 ct 4335 -78 4321 -102 4313 -130 ct -4304 -158 4299 -188 4299 -221 ct 4299 -255 4304 -286 4313 -313 ct 4323 -341 4337 -364 4355 -384 ct -4373 -403 4395 -418 4421 -428 ct 4448 -439 4478 -444 4512 -444 ct 4558 -444 4597 -435 4629 -417 ct -4660 -398 4683 -371 4697 -336 ct 4641 -317 l 4637 -327 4632 -337 4625 -347 ct -4617 -356 4609 -364 4598 -372 ct 4588 -379 4575 -385 4561 -389 ct 4547 -393 4531 -396 4513 -396 ct -p ef -5067 0 m 4892 -211 l 4835 -168 l 4835 0 l 4776 0 l 4776 -437 l 4835 -437 l -4835 -218 l 5046 -437 l 5116 -437 l 4930 -247 l 5140 0 l 5067 0 l -p ef -5617 0 m 5546 0 l 5470 -278 l 5468 -286 5465 -295 5463 -306 ct 5460 -317 5458 -327 5456 -337 ct -5453 -348 5451 -360 5448 -371 ct 5446 -359 5443 -348 5441 -336 ct 5438 -326 5436 -316 5434 -306 ct -5431 -295 5429 -286 5426 -278 ct 5350 0 l 5279 0 l 5151 -438 l 5213 -438 l -5291 -159 l 5294 -146 5298 -133 5301 -121 ct 5304 -108 5307 -96 5309 -86 ct -5312 -74 5314 -63 5317 -52 ct 5320 -66 5323 -80 5326 -94 ct 5328 -100 5329 -106 5331 -113 ct -5332 -119 5334 -125 5335 -132 ct 5337 -138 5338 -144 5340 -149 ct 5341 -155 5343 -160 5344 -165 ct -5420 -438 l 5477 -438 l 5553 -165 l 5554 -160 5555 -155 5557 -149 ct 5558 -144 5560 -138 5561 -132 ct -5563 -126 5565 -119 5566 -113 ct 5567 -106 5569 -100 5570 -95 ct 5574 -81 5577 -66 5580 -52 ct -5580 -52 5581 -56 5583 -63 ct 5584 -70 5586 -79 5589 -90 ct 5591 -100 5594 -112 5597 -125 ct -5600 -137 5603 -149 5606 -159 ct 5683 -438 l 5745 -438 l 5617 0 l p ef -6084 0 m 6034 -128 l 5835 -128 l 5785 0 l 5723 0 l 5902 -438 l 5969 -438 l -6144 0 l 6084 0 l p -5960 -319 m 5957 -327 5954 -335 5951 -344 ct 5948 -352 5945 -360 5943 -367 ct -5940 -374 5939 -380 5937 -384 ct 5935 -389 5935 -392 5934 -393 ct 5934 -392 5933 -389 5932 -384 ct -5930 -379 5928 -373 5926 -366 ct 5923 -359 5921 -352 5918 -343 ct 5915 -335 5912 -326 5909 -318 ct -5853 -174 l 6016 -174 l 5960 -319 l p ef -6507 -1 m 6393 -182 l 6257 -182 l 6257 -1 l 6198 -1 l 6198 -437 l -6404 -437 l 6428 -437 6450 -435 6470 -429 ct 6489 -423 6505 -415 6518 -404 ct -6531 -394 6541 -380 6548 -365 ct 6554 -349 6558 -332 6558 -313 ct 6558 -299 6556 -285 6552 -272 ct -6548 -258 6541 -246 6533 -235 ct 6524 -224 6513 -214 6499 -206 ct 6486 -198 6470 -192 6451 -189 ct -6575 -1 l 6507 -1 l p -6498 -312 m 6498 -325 6496 -337 6491 -346 ct 6487 -356 6480 -364 6472 -371 ct -6463 -377 6452 -382 6440 -385 ct 6428 -388 6413 -390 6398 -390 ct 6257 -390 l -6257 -229 l 6400 -229 l 6417 -229 6432 -231 6444 -235 ct 6457 -239 6467 -245 6475 -253 ct -6483 -260 6489 -269 6492 -279 ct 6496 -289 6498 -300 6498 -312 ct p ef -7031 -223 m 7031 -187 7026 -155 7015 -127 ct 7004 -99 6989 -76 6970 -57 ct -6951 -38 6928 -24 6902 -14 ct 6876 -5 6848 0 6818 0 ct 6655 0 l 6655 -437 l -6800 -437 l 6833 -437 6864 -433 6893 -425 ct 6921 -417 6946 -404 6966 -386 ct -6987 -369 7003 -346 7014 -319 ct 7025 -293 7031 -261 7031 -223 ct p -6972 -223 m 6972 -253 6967 -278 6959 -299 ct 6950 -320 6939 -337 6923 -351 ct -6908 -364 6890 -374 6868 -381 ct 6847 -387 6824 -390 6798 -390 ct 6714 -390 l -6714 -47 l 6812 -47 l 6835 -47 6856 -51 6875 -59 ct 6895 -66 6912 -77 6926 -92 ct -6940 -107 6952 -125 6960 -147 ct 6968 -169 6972 -194 6972 -223 ct p ef -7484 -396 m 7459 -396 7437 -391 7418 -383 ct 7399 -375 7383 -363 7370 -348 ct -7357 -332 7347 -314 7340 -293 ct 7334 -271 7330 -247 7330 -221 ct 7330 -195 7334 -171 7341 -149 ct -7348 -127 7358 -108 7372 -92 ct 7385 -77 7401 -64 7421 -56 ct 7440 -47 7462 -43 7486 -43 ct -7503 -43 7518 -45 7532 -49 ct 7546 -54 7559 -60 7570 -68 ct 7581 -76 7592 -86 7600 -97 ct -7609 -108 7617 -120 7624 -134 ct 7672 -109 l 7665 -93 7655 -78 7643 -64 ct -7632 -50 7618 -38 7602 -27 ct 7587 -17 7569 -9 7549 -3 ct 7530 3 7508 6 7483 6 ct -7448 6 7417 0 7390 -11 ct 7364 -22 7342 -38 7324 -58 ct 7306 -78 7292 -102 7284 -130 ct -7275 -158 7270 -188 7270 -221 ct 7270 -255 7275 -286 7284 -313 ct 7294 -341 7308 -364 7326 -384 ct -7344 -403 7366 -418 7392 -428 ct 7419 -439 7449 -444 7483 -444 ct 7529 -444 7568 -435 7600 -417 ct -7631 -398 7654 -371 7668 -336 ct 7612 -317 l 7608 -327 7603 -337 7596 -347 ct -7588 -356 7580 -364 7569 -372 ct 7559 -379 7546 -385 7532 -389 ct 7518 -393 7502 -396 7484 -396 ct -p ef -8159 -221 m 8159 -187 8154 -156 8144 -128 ct 8134 -100 8120 -76 8101 -56 ct -8083 -36 8060 -21 8033 -10 ct 8006 1 7976 6 7942 6 ct 7906 6 7874 0 7847 -11 ct -7820 -22 7797 -38 7779 -58 ct 7761 -78 7748 -102 7739 -130 ct 7730 -158 7725 -188 7725 -221 ct -7725 -255 7730 -286 7739 -313 ct 7749 -341 7763 -364 7781 -384 ct 7800 -403 7822 -418 7849 -428 ct -7876 -439 7907 -444 7942 -444 ct 7977 -444 8008 -439 8035 -428 ct 8062 -418 8084 -403 8103 -383 ct -8121 -364 8135 -340 8144 -313 ct 8154 -285 8159 -255 8159 -221 ct p -8098 -221 m 8098 -247 8095 -271 8088 -293 ct 8081 -314 8071 -332 8058 -348 ct -8045 -363 8029 -375 8009 -383 ct 7990 -391 7968 -396 7942 -396 ct 7916 -396 7893 -391 7874 -383 ct -7854 -375 7838 -363 7824 -348 ct 7811 -332 7802 -314 7795 -293 ct 7788 -271 7785 -247 7785 -221 ct -7785 -195 7789 -171 7795 -149 ct 7802 -127 7812 -108 7825 -92 ct 7838 -76 7855 -64 7874 -55 ct -7894 -46 7916 -42 7942 -42 ct 7969 -42 7992 -47 8012 -55 ct 8032 -64 8048 -77 8061 -93 ct -8073 -108 8083 -127 8089 -149 ct 8095 -171 8098 -195 8098 -221 ct p ef -8526 0 m 8293 -372 l 8293 -362 8294 -352 8294 -342 ct 8295 -334 8295 -325 8295 -315 ct -8296 -306 8296 -298 8296 -290 ct 8296 0 l 8243 0 l 8243 -437 l 8312 -437 l -8548 -62 l 8548 -73 8547 -83 8546 -93 ct 8546 -101 8546 -111 8545 -121 ct 8545 -131 8544 -141 8544 -151 ct -8544 -437 l 8598 -437 l 8598 0 l 8526 0 l p ef -8983 0 m 8750 -372 l 8750 -362 8751 -352 8751 -342 ct 8752 -334 8752 -325 8752 -315 ct -8753 -306 8753 -298 8753 -290 ct 8753 0 l 8700 0 l 8700 -437 l 8769 -437 l -9005 -62 l 9005 -73 9004 -83 9003 -93 ct 9003 -101 9003 -111 9002 -121 ct 9002 -131 9001 -141 9001 -151 ct -9001 -437 l 9055 -437 l 9055 0 l 8983 0 l p ef -9157 0 m 9157 -437 l 9489 -437 l 9489 -389 l 9216 -389 l 9216 -249 l -9470 -249 l 9470 -201 l 9216 -201 l 9216 -48 l 9501 -48 l 9501 0 l -9157 0 l p ef -9774 -396 m 9749 -396 9727 -391 9708 -383 ct 9689 -375 9673 -363 9660 -348 ct -9647 -332 9637 -314 9630 -293 ct 9624 -271 9620 -247 9620 -221 ct 9620 -195 9624 -171 9631 -149 ct -9638 -127 9648 -108 9662 -92 ct 9675 -77 9691 -64 9711 -56 ct 9730 -47 9752 -43 9776 -43 ct -9793 -43 9808 -45 9822 -49 ct 9836 -54 9849 -60 9860 -68 ct 9871 -76 9882 -86 9890 -97 ct -9899 -108 9907 -120 9914 -134 ct 9962 -109 l 9955 -93 9945 -78 9933 -64 ct -9922 -50 9908 -38 9892 -27 ct 9877 -17 9859 -9 9839 -3 ct 9820 3 9798 6 9773 6 ct -9738 6 9707 0 9680 -11 ct 9654 -22 9632 -38 9614 -58 ct 9596 -78 9582 -102 9574 -130 ct -9565 -158 9560 -188 9560 -221 ct 9560 -255 9565 -286 9574 -313 ct 9584 -341 9598 -364 9616 -384 ct -9634 -403 9656 -418 9682 -428 ct 9709 -439 9739 -444 9773 -444 ct 9819 -444 9858 -435 9890 -417 ct -9921 -398 9944 -371 9958 -336 ct 9902 -317 l 9898 -327 9893 -337 9886 -347 ct -9878 -356 9870 -364 9859 -372 ct 9849 -379 9836 -385 9822 -389 ct 9808 -393 9792 -396 9774 -396 ct -p ef -10208 -389 m 10208 0 l 10149 0 l 10149 -389 l 9999 -389 l 9999 -437 l -10358 -437 l 10358 -389 l 10208 -389 l p ef -10434 0 m 10434 -437 l 10493 -437 l 10493 0 l 10434 0 l p ef -11017 -221 m 11017 -187 11012 -156 11002 -128 ct 10992 -100 10978 -76 10959 -56 ct -10941 -36 10918 -21 10891 -10 ct 10864 1 10834 6 10800 6 ct 10764 6 10732 0 10705 -11 ct -10678 -22 10655 -38 10637 -58 ct 10619 -78 10606 -102 10597 -130 ct 10588 -158 10583 -188 10583 -221 ct -10583 -255 10588 -286 10597 -313 ct 10607 -341 10621 -364 10639 -384 ct 10658 -403 10680 -418 10707 -428 ct -10734 -439 10765 -444 10800 -444 ct 10835 -444 10866 -439 10893 -428 ct 10920 -418 10942 -403 10961 -383 ct -10979 -364 10993 -340 11002 -313 ct 11012 -285 11017 -255 11017 -221 ct p -10956 -221 m 10956 -247 10953 -271 10946 -293 ct 10939 -314 10929 -332 10916 -348 ct -10903 -363 10887 -375 10867 -383 ct 10848 -391 10826 -396 10800 -396 ct 10774 -396 10751 -391 10732 -383 ct -10712 -375 10696 -363 10682 -348 ct 10669 -332 10660 -314 10653 -293 ct 10646 -271 10643 -247 10643 -221 ct -10643 -195 10647 -171 10653 -149 ct 10660 -127 10670 -108 10683 -92 ct 10696 -76 10713 -64 10732 -55 ct -10752 -46 10774 -42 10800 -42 ct 10827 -42 10850 -47 10870 -55 ct 10890 -64 10906 -77 10919 -93 ct -10931 -108 10941 -127 10947 -149 ct 10953 -171 10956 -195 10956 -221 ct p ef -11383 0 m 11150 -372 l 11150 -362 11151 -352 11151 -342 ct 11152 -334 11152 -325 11152 -315 ct -11153 -306 11153 -298 11153 -290 ct 11153 0 l 11100 0 l 11100 -437 l 11169 -437 l -11405 -62 l 11405 -73 11404 -83 11403 -93 ct 11403 -101 11403 -111 11402 -121 ct -11402 -131 11401 -141 11401 -151 ct 11401 -437 l 11455 -437 l 11455 0 l -11383 0 l p ef -pom -pum -9749 14416 t -39 -165 m 39 -193 42 -221 46 -247 ct 50 -273 57 -299 66 -323 ct 76 -347 88 -371 102 -393 ct -116 -416 134 -438 154 -460 ct 208 -460 l 188 -438 172 -416 157 -393 ct 143 -370 132 -347 122 -322 ct -113 -298 107 -273 102 -247 ct 98 -220 96 -193 96 -164 ct 96 -135 98 -108 102 -81 ct -107 -55 113 -30 122 -5 ct 132 19 143 43 157 65 ct 172 88 188 110 208 132 ct 154 132 l -134 110 116 88 102 65 ct 88 43 76 19 66 -5 ct 57 -29 50 -55 46 -81 ct 42 -107 39 -134 39 -163 ct -39 -165 l p ef -454 0 m 393 0 l 215 -438 l 277 -438 l 398 -129 l 401 -120 404 -111 407 -102 ct -410 -92 413 -84 416 -77 ct 419 -69 421 -60 424 -52 ct 427 -60 429 -68 432 -76 ct -435 -84 437 -92 440 -101 ct 443 -110 447 -120 450 -129 ct 570 -438 l 633 -438 l -454 0 l p ef -694 0 m 694 -437 l 753 -437 l 753 0 l 694 0 l p ef -1175 0 m 1125 -128 l 926 -128 l 876 0 l 814 0 l 993 -438 l 1060 -438 l -1235 0 l 1175 0 l p -1051 -319 m 1048 -327 1045 -335 1042 -344 ct 1039 -352 1036 -360 1034 -367 ct -1031 -374 1030 -380 1028 -384 ct 1026 -389 1026 -392 1025 -393 ct 1025 -392 1024 -389 1023 -384 ct -1021 -379 1019 -373 1017 -366 ct 1014 -359 1012 -352 1009 -343 ct 1006 -335 1003 -326 1000 -318 ct -944 -174 l 1107 -174 l 1051 -319 l p ef -1804 -223 m 1804 -187 1799 -155 1788 -127 ct 1777 -99 1762 -76 1743 -57 ct -1724 -38 1701 -24 1675 -14 ct 1649 -5 1621 0 1591 0 ct 1428 0 l 1428 -437 l -1573 -437 l 1606 -437 1637 -433 1666 -425 ct 1694 -417 1719 -404 1739 -386 ct -1760 -369 1776 -346 1787 -319 ct 1798 -293 1804 -261 1804 -223 ct p -1745 -223 m 1745 -253 1740 -278 1732 -299 ct 1723 -320 1712 -337 1696 -351 ct -1681 -364 1663 -374 1641 -381 ct 1620 -387 1597 -390 1571 -390 ct 1487 -390 l -1487 -47 l 1585 -47 l 1608 -47 1629 -51 1648 -59 ct 1668 -66 1685 -77 1699 -92 ct -1713 -107 1725 -125 1733 -147 ct 1741 -169 1745 -194 1745 -223 ct p ef -2195 0 m 2145 -128 l 1946 -128 l 1896 0 l 1834 0 l 2013 -438 l 2080 -438 l -2255 0 l 2195 0 l p -2071 -319 m 2068 -327 2065 -335 2062 -344 ct 2059 -352 2056 -360 2054 -367 ct -2051 -374 2050 -380 2048 -384 ct 2046 -389 2046 -392 2045 -393 ct 2045 -392 2044 -389 2043 -384 ct -2041 -379 2039 -373 2037 -366 ct 2034 -359 2032 -352 2029 -343 ct 2026 -335 2023 -326 2020 -318 ct -1964 -174 l 2127 -174 l 2071 -319 l p ef -2429 -389 m 2429 0 l 2370 0 l 2370 -389 l 2220 -389 l 2220 -437 l -2579 -437 l 2579 -389 l 2429 -389 l p ef -2906 0 m 2856 -128 l 2657 -128 l 2607 0 l 2545 0 l 2724 -438 l 2791 -438 l -2966 0 l 2906 0 l p -2782 -319 m 2779 -327 2776 -335 2773 -344 ct 2770 -352 2767 -360 2765 -367 ct -2762 -374 2761 -380 2759 -384 ct 2757 -389 2757 -392 2756 -393 ct 2756 -392 2755 -389 2754 -384 ct -2752 -379 2750 -373 2748 -366 ct 2745 -359 2743 -352 2740 -343 ct 2737 -335 2734 -326 2731 -318 ct -2675 -174 l 2838 -174 l 2782 -319 l p ef -3358 -123 m 3358 -101 3354 -82 3345 -67 ct 3336 -51 3325 -38 3310 -28 ct 3295 -19 3278 -11 3259 -7 ct -3239 -2 3219 0 3197 0 ct 3020 0 l 3020 -437 l 3179 -437 l 3203 -437 3225 -435 3244 -431 ct -3263 -427 3279 -421 3292 -412 ct 3305 -404 3315 -393 3322 -379 ct 3329 -366 3333 -350 3333 -331 ct -3333 -319 3331 -307 3328 -297 ct 3324 -286 3319 -276 3312 -267 ct 3305 -258 3296 -251 3286 -245 ct -3276 -238 3263 -234 3250 -230 ct 3267 -228 3283 -224 3296 -218 ct 3310 -212 3321 -205 3330 -195 ct -3339 -186 3346 -175 3351 -163 ct 3356 -151 3358 -137 3358 -123 ct p -3273 -324 m 3273 -348 3265 -365 3249 -375 ct 3233 -385 3209 -390 3179 -390 ct -3079 -390 l 3079 -251 l 3179 -251 l 3196 -251 3211 -253 3223 -256 ct 3235 -260 3245 -265 3252 -271 ct -3259 -277 3265 -285 3268 -294 ct 3271 -303 3273 -313 3273 -324 ct p -3298 -128 m 3298 -142 3296 -153 3291 -163 ct 3286 -173 3278 -181 3269 -187 ct -3259 -193 3248 -198 3235 -201 ct 3221 -204 3206 -205 3190 -205 ct 3079 -205 l -3079 -47 l 3194 -47 l 3209 -47 3223 -49 3236 -51 ct 3249 -54 3260 -58 3269 -64 ct -3278 -70 3285 -79 3290 -89 ct 3296 -99 3298 -112 3298 -128 ct p ef -3753 0 m 3703 -128 l 3504 -128 l 3454 0 l 3392 0 l 3571 -438 l 3638 -438 l -3813 0 l 3753 0 l p -3629 -319 m 3626 -327 3623 -335 3620 -344 ct 3617 -352 3614 -360 3612 -367 ct -3609 -374 3608 -380 3606 -384 ct 3604 -389 3604 -392 3603 -393 ct 3603 -392 3602 -389 3601 -384 ct -3599 -379 3597 -373 3595 -366 ct 3592 -359 3590 -352 3587 -343 ct 3584 -335 3581 -326 3578 -318 ct -3522 -174 l 3685 -174 l 3629 -319 l p ef -4208 -121 m 4208 -103 4205 -86 4198 -70 ct 4191 -55 4180 -41 4165 -30 ct 4150 -19 4131 -10 4108 -3 ct -4086 3 4059 6 4028 6 ct 3974 6 3931 -4 3901 -23 ct 3870 -42 3851 -69 3843 -105 ct -3900 -117 l 3903 -105 3908 -95 3914 -86 ct 3920 -76 3928 -68 3938 -61 ct 3948 -55 3961 -50 3976 -46 ct -3991 -42 4009 -40 4030 -40 ct 4048 -40 4064 -42 4078 -45 ct 4093 -48 4106 -52 4116 -59 ct -4127 -65 4135 -73 4141 -83 ct 4147 -92 4150 -104 4150 -118 ct 4150 -132 4147 -144 4140 -153 ct -4134 -161 4124 -169 4113 -175 ct 4101 -180 4087 -185 4070 -189 ct 4054 -193 4036 -197 4016 -202 ct -4004 -205 3992 -208 3979 -211 ct 3967 -214 3955 -218 3944 -222 ct 3933 -227 3922 -232 3912 -238 ct -3902 -244 3894 -251 3887 -259 ct 3879 -268 3874 -278 3870 -289 ct 3865 -300 3863 -313 3863 -327 ct -3863 -348 3867 -365 3876 -380 ct 3884 -395 3896 -407 3911 -417 ct 3926 -426 3943 -433 3963 -437 ct -3984 -442 4006 -444 4029 -444 ct 4056 -444 4079 -442 4099 -438 ct 4118 -433 4134 -427 4147 -419 ct -4161 -410 4171 -400 4179 -387 ct 4187 -375 4193 -360 4198 -343 ct 4140 -333 l -4137 -344 4133 -353 4127 -361 ct 4122 -370 4115 -377 4106 -382 ct 4097 -388 4086 -392 4073 -395 ct -4061 -398 4046 -399 4029 -399 ct 4008 -399 3991 -397 3978 -394 ct 3964 -390 3953 -385 3944 -379 ct -3936 -373 3930 -366 3926 -357 ct 3923 -349 3921 -340 3921 -330 ct 3921 -317 3924 -306 3931 -298 ct -3937 -290 3946 -283 3957 -277 ct 3968 -271 3981 -267 3996 -263 ct 4011 -259 4026 -256 4043 -252 ct -4056 -249 4070 -246 4083 -242 ct 4096 -239 4109 -235 4121 -231 ct 4133 -226 4145 -221 4156 -215 ct -4166 -209 4175 -202 4183 -193 ct 4191 -185 4197 -174 4202 -163 ct 4206 -151 4208 -137 4208 -121 ct -p ef -4290 0 m 4290 -437 l 4622 -437 l 4622 -389 l 4349 -389 l 4349 -249 l -4603 -249 l 4603 -201 l 4349 -201 l 4349 -48 l 4634 -48 l 4634 0 l -4290 0 l p ef -4833 -163 m 4833 -134 4831 -107 4827 -81 ct 4822 -55 4815 -29 4806 -5 ct 4797 19 4785 43 4770 65 ct -4756 88 4739 110 4719 132 ct 4665 132 l 4684 110 4701 88 4715 65 ct 4729 43 4741 19 4750 -5 ct -4759 -30 4766 -55 4770 -81 ct 4775 -108 4777 -135 4777 -164 ct 4777 -193 4775 -220 4770 -247 ct -4766 -273 4759 -298 4750 -322 ct 4741 -347 4729 -370 4715 -393 ct 4701 -416 4684 -438 4665 -460 ct -4719 -460 l 4739 -438 4756 -416 4770 -393 ct 4785 -371 4797 -347 4806 -323 ct -4815 -299 4822 -273 4827 -247 ct 4831 -221 4833 -193 4833 -165 ct 4833 -163 l -p ef -5411 -1 m 5297 -182 l 5161 -182 l 5161 -1 l 5102 -1 l 5102 -437 l -5308 -437 l 5332 -437 5354 -435 5374 -429 ct 5393 -423 5409 -415 5422 -404 ct -5435 -394 5445 -380 5452 -365 ct 5458 -349 5462 -332 5462 -313 ct 5462 -299 5460 -285 5456 -272 ct -5452 -258 5445 -246 5437 -235 ct 5428 -224 5417 -214 5403 -206 ct 5390 -198 5374 -192 5355 -189 ct -5479 -1 l 5411 -1 l p -5402 -312 m 5402 -325 5400 -337 5395 -346 ct 5391 -356 5384 -364 5376 -371 ct -5367 -377 5356 -382 5344 -385 ct 5332 -388 5317 -390 5302 -390 ct 5161 -390 l -5161 -229 l 5304 -229 l 5321 -229 5336 -231 5348 -235 ct 5361 -239 5371 -245 5379 -253 ct -5387 -260 5393 -269 5396 -279 ct 5400 -289 5402 -300 5402 -312 ct p ef -5559 0 m 5559 -437 l 5891 -437 l 5891 -389 l 5618 -389 l 5618 -249 l -5872 -249 l 5872 -201 l 5618 -201 l 5618 -48 l 5903 -48 l 5903 0 l -5559 0 l p ef -6292 0 m 6242 -128 l 6043 -128 l 5993 0 l 5931 0 l 6110 -438 l 6177 -438 l -6352 0 l 6292 0 l p -6168 -319 m 6165 -327 6162 -335 6159 -344 ct 6156 -352 6153 -360 6151 -367 ct -6148 -374 6147 -380 6145 -384 ct 6143 -389 6143 -392 6142 -393 ct 6142 -392 6141 -389 6140 -384 ct -6138 -379 6136 -373 6134 -366 ct 6131 -359 6129 -352 6126 -343 ct 6123 -335 6120 -326 6117 -318 ct -6061 -174 l 6224 -174 l 6168 -319 l p ef -6781 -223 m 6781 -187 6776 -155 6765 -127 ct 6754 -99 6739 -76 6720 -57 ct -6701 -38 6678 -24 6652 -14 ct 6626 -5 6598 0 6568 0 ct 6405 0 l 6405 -437 l -6550 -437 l 6583 -437 6614 -433 6643 -425 ct 6671 -417 6696 -404 6716 -386 ct -6737 -369 6753 -346 6764 -319 ct 6775 -293 6781 -261 6781 -223 ct p -6722 -223 m 6722 -253 6717 -278 6709 -299 ct 6700 -320 6689 -337 6673 -351 ct -6658 -364 6640 -374 6618 -381 ct 6597 -387 6574 -390 6548 -390 ct 6464 -390 l -6464 -47 l 6562 -47 l 6585 -47 6606 -51 6625 -59 ct 6645 -66 6662 -77 6676 -92 ct -6690 -107 6702 -125 6710 -147 ct 6718 -169 6722 -194 6722 -223 ct p ef -7051 -181 m 7051 0 l 6992 0 l 6992 -181 l 6824 -438 l 6889 -438 l -7022 -229 l 7154 -438 l 7220 -438 l 7051 -181 l p ef -7609 -389 m 7609 0 l 7550 0 l 7550 -389 l 7400 -389 l 7400 -437 l -7759 -437 l 7759 -389 l 7609 -389 l p ef -8227 -221 m 8227 -187 8222 -156 8212 -128 ct 8202 -100 8188 -76 8169 -56 ct -8151 -36 8128 -21 8101 -10 ct 8074 1 8044 6 8010 6 ct 7974 6 7942 0 7915 -11 ct -7888 -22 7865 -38 7847 -58 ct 7829 -78 7816 -102 7807 -130 ct 7798 -158 7793 -188 7793 -221 ct -7793 -255 7798 -286 7807 -313 ct 7817 -341 7831 -364 7849 -384 ct 7868 -403 7890 -418 7917 -428 ct -7944 -439 7975 -444 8010 -444 ct 8045 -444 8076 -439 8103 -428 ct 8130 -418 8152 -403 8171 -383 ct -8189 -364 8203 -340 8212 -313 ct 8222 -285 8227 -255 8227 -221 ct p -8166 -221 m 8166 -247 8163 -271 8156 -293 ct 8149 -314 8139 -332 8126 -348 ct -8113 -363 8097 -375 8077 -383 ct 8058 -391 8036 -396 8010 -396 ct 7984 -396 7961 -391 7942 -383 ct -7922 -375 7906 -363 7892 -348 ct 7879 -332 7870 -314 7863 -293 ct 7856 -271 7853 -247 7853 -221 ct -7853 -195 7857 -171 7863 -149 ct 7870 -127 7880 -108 7893 -92 ct 7906 -76 7923 -64 7942 -55 ct -7962 -46 7984 -42 8010 -42 ct 8037 -42 8060 -47 8080 -55 ct 8100 -64 8116 -77 8129 -93 ct -8141 -108 8151 -127 8157 -149 ct 8163 -171 8166 -195 8166 -221 ct p ef -8826 -123 m 8826 -101 8822 -82 8813 -67 ct 8804 -51 8793 -38 8778 -28 ct 8763 -19 8746 -11 8727 -7 ct -8707 -2 8687 0 8665 0 ct 8488 0 l 8488 -437 l 8647 -437 l 8671 -437 8693 -435 8712 -431 ct -8731 -427 8747 -421 8760 -412 ct 8773 -404 8783 -393 8790 -379 ct 8797 -366 8801 -350 8801 -331 ct -8801 -319 8799 -307 8796 -297 ct 8792 -286 8787 -276 8780 -267 ct 8773 -258 8764 -251 8754 -245 ct -8744 -238 8731 -234 8718 -230 ct 8735 -228 8751 -224 8764 -218 ct 8778 -212 8789 -205 8798 -195 ct -8807 -186 8814 -175 8819 -163 ct 8824 -151 8826 -137 8826 -123 ct p -8741 -324 m 8741 -348 8733 -365 8717 -375 ct 8701 -385 8677 -390 8647 -390 ct -8547 -390 l 8547 -251 l 8647 -251 l 8664 -251 8679 -253 8691 -256 ct 8703 -260 8713 -265 8720 -271 ct -8727 -277 8733 -285 8736 -294 ct 8739 -303 8741 -313 8741 -324 ct p -8766 -128 m 8766 -142 8764 -153 8759 -163 ct 8754 -173 8746 -181 8737 -187 ct -8727 -193 8716 -198 8703 -201 ct 8689 -204 8674 -205 8658 -205 ct 8547 -205 l -8547 -47 l 8662 -47 l 8677 -47 8691 -49 8704 -51 ct 8717 -54 8728 -58 8737 -64 ct -8746 -70 8753 -79 8758 -89 ct 8764 -99 8766 -112 8766 -128 ct p ef -8911 0 m 8911 -437 l 9243 -437 l 9243 -389 l 8970 -389 l 8970 -249 l -9224 -249 l 9224 -201 l 8970 -201 l 8970 -48 l 9255 -48 l 9255 0 l -8911 0 l p ef -9688 6 m 9664 6 9641 3 9619 -4 ct 9598 -10 9579 -20 9563 -34 ct 9547 -47 9534 -64 9524 -85 ct -9515 -106 9510 -131 9510 -159 ct 9510 -438 l 9569 -438 l 9569 -164 l 9569 -142 9572 -123 9578 -108 ct -9584 -92 9592 -80 9603 -70 ct 9613 -60 9626 -53 9640 -49 ct 9654 -44 9670 -42 9687 -42 ct -9704 -42 9720 -44 9735 -49 ct 9750 -53 9764 -61 9775 -71 ct 9786 -81 9795 -94 9802 -110 ct -9808 -126 9812 -145 9812 -168 ct 9812 -438 l 9871 -438 l 9871 -165 l 9871 -136 9866 -110 9856 -89 ct -9847 -67 9833 -50 9817 -36 ct 9800 -22 9781 -11 9759 -4 ct 9737 3 9713 6 9688 6 ct -p ef -10312 -121 m 10312 -103 10309 -86 10302 -70 ct 10295 -55 10284 -41 10269 -30 ct -10254 -19 10235 -10 10212 -3 ct 10190 3 10163 6 10132 6 ct 10078 6 10035 -4 10005 -23 ct -9974 -42 9955 -69 9947 -105 ct 10004 -117 l 10007 -105 10012 -95 10018 -86 ct -10024 -76 10032 -68 10042 -61 ct 10052 -55 10065 -50 10080 -46 ct 10095 -42 10113 -40 10134 -40 ct -10152 -40 10168 -42 10182 -45 ct 10197 -48 10210 -52 10220 -59 ct 10231 -65 10239 -73 10245 -83 ct -10251 -92 10254 -104 10254 -118 ct 10254 -132 10251 -144 10244 -153 ct 10238 -161 10228 -169 10217 -175 ct -10205 -180 10191 -185 10174 -189 ct 10158 -193 10140 -197 10120 -202 ct 10108 -205 10096 -208 10083 -211 ct -10071 -214 10059 -218 10048 -222 ct 10037 -227 10026 -232 10016 -238 ct 10006 -244 9998 -251 9991 -259 ct -9983 -268 9978 -278 9974 -289 ct 9969 -300 9967 -313 9967 -327 ct 9967 -348 9971 -365 9980 -380 ct -9988 -395 10000 -407 10015 -417 ct 10030 -426 10047 -433 10067 -437 ct 10088 -442 10110 -444 10133 -444 ct -10160 -444 10183 -442 10203 -438 ct 10222 -433 10238 -427 10251 -419 ct 10265 -410 10275 -400 10283 -387 ct -10291 -375 10297 -360 10302 -343 ct 10244 -333 l 10241 -344 10237 -353 10231 -361 ct -10226 -370 10219 -377 10210 -382 ct 10201 -388 10190 -392 10177 -395 ct 10165 -398 10150 -399 10133 -399 ct -10112 -399 10095 -397 10082 -394 ct 10068 -390 10057 -385 10048 -379 ct 10040 -373 10034 -366 10030 -357 ct -10027 -349 10025 -340 10025 -330 ct 10025 -317 10028 -306 10035 -298 ct 10041 -290 10050 -283 10061 -277 ct -10072 -271 10085 -267 10100 -263 ct 10115 -259 10130 -256 10147 -252 ct 10160 -249 10174 -246 10187 -242 ct -10200 -239 10213 -235 10225 -231 ct 10237 -226 10249 -221 10260 -215 ct 10270 -209 10279 -202 10287 -193 ct -10295 -185 10301 -174 10306 -163 ct 10310 -151 10312 -137 10312 -121 ct p ef -10393 0 m 10393 -437 l 10725 -437 l 10725 -389 l 10452 -389 l 10452 -249 l -10706 -249 l 10706 -201 l 10452 -201 l 10452 -48 l 10737 -48 l 10737 0 l -10393 0 l p ef -11192 -223 m 11192 -187 11187 -155 11176 -127 ct 11165 -99 11150 -76 11131 -57 ct -11112 -38 11089 -24 11063 -14 ct 11037 -5 11009 0 10979 0 ct 10816 0 l 10816 -437 l -10961 -437 l 10994 -437 11025 -433 11054 -425 ct 11082 -417 11107 -404 11127 -386 ct -11148 -369 11164 -346 11175 -319 ct 11186 -293 11192 -261 11192 -223 ct p -11133 -223 m 11133 -253 11128 -278 11120 -299 ct 11111 -320 11100 -337 11084 -351 ct -11069 -364 11051 -374 11029 -381 ct 11008 -387 10985 -390 10959 -390 ct 10875 -390 l -10875 -47 l 10973 -47 l 10996 -47 11017 -51 11036 -59 ct 11056 -66 11073 -77 11087 -92 ct -11101 -107 11113 -125 11121 -147 ct 11129 -169 11133 -194 11133 -223 ct p ef -pom -103 lw 1.000 0.203 0.203 c 7488 15572 m 4197 15571 6432 15562 3141 15561 ct -ps -8182 15572 m 7504 15346 l 7504 15798 l 8182 15572 l p ef -2447 15561 m 3125 15787 l 3125 15335 l 2447 15561 l p ef -pum -9750 15406 t -0.003 0.003 0.003 c 111 -389 m 111 -226 l 355 -226 l 355 -177 l 111 -177 l -111 0 l 52 0 l 52 -437 l 362 -437 l 362 -389 l 111 -389 l p ef -853 -221 m 853 -187 848 -156 838 -128 ct 828 -100 814 -76 795 -56 ct 777 -36 754 -21 727 -10 ct -700 1 670 6 636 6 ct 600 6 568 0 541 -11 ct 514 -22 491 -38 473 -58 ct 455 -78 442 -102 433 -130 ct -424 -158 419 -188 419 -221 ct 419 -255 424 -286 433 -313 ct 443 -341 457 -364 475 -384 ct -494 -403 516 -418 543 -428 ct 570 -439 601 -444 636 -444 ct 671 -444 702 -439 729 -428 ct -756 -418 778 -403 797 -383 ct 815 -364 829 -340 838 -313 ct 848 -285 853 -255 853 -221 ct -p -792 -221 m 792 -247 789 -271 782 -293 ct 775 -314 765 -332 752 -348 ct 739 -363 723 -375 703 -383 ct -684 -391 662 -396 636 -396 ct 610 -396 587 -391 568 -383 ct 548 -375 532 -363 518 -348 ct -505 -332 496 -314 489 -293 ct 482 -271 479 -247 479 -221 ct 479 -195 483 -171 489 -149 ct -496 -127 506 -108 519 -92 ct 532 -76 549 -64 568 -55 ct 588 -46 610 -42 636 -42 ct -663 -42 686 -47 706 -55 ct 726 -64 742 -77 755 -93 ct 767 -108 777 -127 783 -149 ct -789 -171 792 -195 792 -221 ct p ef -1246 -1 m 1132 -182 l 996 -182 l 996 -1 l 937 -1 l 937 -437 l 1143 -437 l -1167 -437 1189 -435 1209 -429 ct 1228 -423 1244 -415 1257 -404 ct 1270 -394 1280 -380 1287 -365 ct -1293 -349 1297 -332 1297 -313 ct 1297 -299 1295 -285 1291 -272 ct 1287 -258 1280 -246 1272 -235 ct -1263 -224 1252 -214 1238 -206 ct 1225 -198 1209 -192 1190 -189 ct 1314 -1 l -1246 -1 l p -1237 -312 m 1237 -325 1235 -337 1230 -346 ct 1226 -356 1219 -364 1211 -371 ct -1202 -377 1191 -382 1179 -385 ct 1167 -388 1152 -390 1137 -390 ct 996 -390 l -996 -229 l 1139 -229 l 1156 -229 1171 -231 1183 -235 ct 1196 -239 1206 -245 1214 -253 ct -1222 -260 1228 -269 1231 -279 ct 1235 -289 1237 -300 1237 -312 ct p ef -1798 0 m 1727 0 l 1651 -278 l 1649 -286 1646 -295 1644 -306 ct 1641 -317 1639 -327 1637 -337 ct -1634 -348 1632 -360 1629 -371 ct 1627 -359 1624 -348 1622 -336 ct 1619 -326 1617 -316 1615 -306 ct -1612 -295 1610 -286 1607 -278 ct 1531 0 l 1460 0 l 1332 -438 l 1394 -438 l -1472 -159 l 1475 -146 1479 -133 1482 -121 ct 1485 -108 1488 -96 1490 -86 ct -1493 -74 1495 -63 1498 -52 ct 1501 -66 1504 -80 1507 -94 ct 1509 -100 1510 -106 1512 -113 ct -1513 -119 1515 -125 1516 -132 ct 1518 -138 1519 -144 1521 -149 ct 1522 -155 1524 -160 1525 -165 ct -1601 -438 l 1658 -438 l 1734 -165 l 1735 -160 1736 -155 1738 -149 ct 1739 -144 1741 -138 1742 -132 ct -1744 -126 1746 -119 1747 -113 ct 1748 -106 1750 -100 1751 -95 ct 1755 -81 1758 -66 1761 -52 ct -1761 -52 1762 -56 1764 -63 ct 1765 -70 1767 -79 1770 -90 ct 1772 -100 1775 -112 1778 -125 ct -1781 -137 1784 -149 1787 -159 ct 1864 -438 l 1926 -438 l 1798 0 l p ef -2267 0 m 2217 -128 l 2018 -128 l 1968 0 l 1906 0 l 2085 -438 l 2152 -438 l -2327 0 l 2267 0 l p -2143 -319 m 2140 -327 2137 -335 2134 -344 ct 2131 -352 2128 -360 2126 -367 ct -2123 -374 2122 -380 2120 -384 ct 2118 -389 2118 -392 2117 -393 ct 2117 -392 2116 -389 2115 -384 ct -2113 -379 2111 -373 2109 -366 ct 2106 -359 2104 -352 2101 -343 ct 2098 -335 2095 -326 2092 -318 ct -2036 -174 l 2199 -174 l 2143 -319 l p ef -2689 -1 m 2575 -182 l 2439 -182 l 2439 -1 l 2380 -1 l 2380 -437 l -2586 -437 l 2610 -437 2632 -435 2652 -429 ct 2671 -423 2687 -415 2700 -404 ct -2713 -394 2723 -380 2730 -365 ct 2736 -349 2740 -332 2740 -313 ct 2740 -299 2738 -285 2734 -272 ct -2730 -258 2723 -246 2715 -235 ct 2706 -224 2695 -214 2681 -206 ct 2668 -198 2652 -192 2633 -189 ct -2757 -1 l 2689 -1 l p -2680 -312 m 2680 -325 2678 -337 2673 -346 ct 2669 -356 2662 -364 2654 -371 ct -2645 -377 2634 -382 2622 -385 ct 2610 -388 2595 -390 2580 -390 ct 2439 -390 l -2439 -229 l 2582 -229 l 2599 -229 2614 -231 2626 -235 ct 2639 -239 2649 -245 2657 -253 ct -2665 -260 2671 -269 2674 -279 ct 2678 -289 2680 -300 2680 -312 ct p ef -3214 -223 m 3214 -187 3209 -155 3198 -127 ct 3187 -99 3172 -76 3153 -57 ct -3134 -38 3111 -24 3085 -14 ct 3059 -5 3031 0 3001 0 ct 2838 0 l 2838 -437 l -2983 -437 l 3016 -437 3047 -433 3076 -425 ct 3104 -417 3129 -404 3149 -386 ct -3170 -369 3186 -346 3197 -319 ct 3208 -293 3214 -261 3214 -223 ct p -3155 -223 m 3155 -253 3150 -278 3142 -299 ct 3133 -320 3122 -337 3106 -351 ct -3091 -364 3073 -374 3051 -381 ct 3030 -387 3007 -390 2981 -390 ct 2897 -390 l -2897 -47 l 2995 -47 l 3018 -47 3039 -51 3058 -59 ct 3078 -66 3095 -77 3109 -92 ct -3123 -107 3135 -125 3143 -147 ct 3151 -169 3155 -194 3155 -223 ct p ef -3243 7 m 3370 -460 l 3419 -460 l 3293 7 l 3243 7 l p ef -3811 -123 m 3811 -101 3807 -82 3798 -67 ct 3789 -51 3778 -38 3763 -28 ct 3748 -19 3731 -11 3712 -7 ct -3692 -2 3672 0 3650 0 ct 3473 0 l 3473 -437 l 3632 -437 l 3656 -437 3678 -435 3697 -431 ct -3716 -427 3732 -421 3745 -412 ct 3758 -404 3768 -393 3775 -379 ct 3782 -366 3786 -350 3786 -331 ct -3786 -319 3784 -307 3781 -297 ct 3777 -286 3772 -276 3765 -267 ct 3758 -258 3749 -251 3739 -245 ct -3729 -238 3716 -234 3703 -230 ct 3720 -228 3736 -224 3749 -218 ct 3763 -212 3774 -205 3783 -195 ct -3792 -186 3799 -175 3804 -163 ct 3809 -151 3811 -137 3811 -123 ct p -3726 -324 m 3726 -348 3718 -365 3702 -375 ct 3686 -385 3662 -390 3632 -390 ct -3532 -390 l 3532 -251 l 3632 -251 l 3649 -251 3664 -253 3676 -256 ct 3688 -260 3698 -265 3705 -271 ct -3712 -277 3718 -285 3721 -294 ct 3724 -303 3726 -313 3726 -324 ct p -3751 -128 m 3751 -142 3749 -153 3744 -163 ct 3739 -173 3731 -181 3722 -187 ct -3712 -193 3701 -198 3688 -201 ct 3674 -204 3659 -205 3643 -205 ct 3532 -205 l -3532 -47 l 3647 -47 l 3662 -47 3676 -49 3689 -51 ct 3702 -54 3713 -58 3722 -64 ct -3731 -70 3738 -79 3743 -89 ct 3749 -99 3751 -112 3751 -128 ct p ef -4206 0 m 4156 -128 l 3957 -128 l 3907 0 l 3845 0 l 4024 -438 l 4091 -438 l -4266 0 l 4206 0 l p -4082 -319 m 4079 -327 4076 -335 4073 -344 ct 4070 -352 4067 -360 4065 -367 ct -4062 -374 4061 -380 4059 -384 ct 4057 -389 4057 -392 4056 -393 ct 4056 -392 4055 -389 4054 -384 ct -4052 -379 4050 -373 4048 -366 ct 4045 -359 4043 -352 4040 -343 ct 4037 -335 4034 -326 4031 -318 ct -3975 -174 l 4138 -174 l 4082 -319 l p ef -4513 -396 m 4488 -396 4466 -391 4447 -383 ct 4428 -375 4412 -363 4399 -348 ct -4386 -332 4376 -314 4369 -293 ct 4363 -271 4359 -247 4359 -221 ct 4359 -195 4363 -171 4370 -149 ct -4377 -127 4387 -108 4401 -92 ct 4414 -77 4430 -64 4450 -56 ct 4469 -47 4491 -43 4515 -43 ct -4532 -43 4547 -45 4561 -49 ct 4575 -54 4588 -60 4599 -68 ct 4610 -76 4621 -86 4629 -97 ct -4638 -108 4646 -120 4653 -134 ct 4701 -109 l 4694 -93 4684 -78 4672 -64 ct -4661 -50 4647 -38 4631 -27 ct 4616 -17 4598 -9 4578 -3 ct 4559 3 4537 6 4512 6 ct -4477 6 4446 0 4419 -11 ct 4393 -22 4371 -38 4353 -58 ct 4335 -78 4321 -102 4313 -130 ct -4304 -158 4299 -188 4299 -221 ct 4299 -255 4304 -286 4313 -313 ct 4323 -341 4337 -364 4355 -384 ct -4373 -403 4395 -418 4421 -428 ct 4448 -439 4478 -444 4512 -444 ct 4558 -444 4597 -435 4629 -417 ct -4660 -398 4683 -371 4697 -336 ct 4641 -317 l 4637 -327 4632 -337 4625 -347 ct -4617 -356 4609 -364 4598 -372 ct 4588 -379 4575 -385 4561 -389 ct 4547 -393 4531 -396 4513 -396 ct -p ef -5067 0 m 4892 -211 l 4835 -168 l 4835 0 l 4776 0 l 4776 -437 l 4835 -437 l -4835 -218 l 5046 -437 l 5116 -437 l 4930 -247 l 5140 0 l 5067 0 l -p ef -5617 0 m 5546 0 l 5470 -278 l 5468 -286 5465 -295 5463 -306 ct 5460 -317 5458 -327 5456 -337 ct -5453 -348 5451 -360 5448 -371 ct 5446 -359 5443 -348 5441 -336 ct 5438 -326 5436 -316 5434 -306 ct -5431 -295 5429 -286 5426 -278 ct 5350 0 l 5279 0 l 5151 -438 l 5213 -438 l -5291 -159 l 5294 -146 5298 -133 5301 -121 ct 5304 -108 5307 -96 5309 -86 ct -5312 -74 5314 -63 5317 -52 ct 5320 -66 5323 -80 5326 -94 ct 5328 -100 5329 -106 5331 -113 ct -5332 -119 5334 -125 5335 -132 ct 5337 -138 5338 -144 5340 -149 ct 5341 -155 5343 -160 5344 -165 ct -5420 -438 l 5477 -438 l 5553 -165 l 5554 -160 5555 -155 5557 -149 ct 5558 -144 5560 -138 5561 -132 ct -5563 -126 5565 -119 5566 -113 ct 5567 -106 5569 -100 5570 -95 ct 5574 -81 5577 -66 5580 -52 ct -5580 -52 5581 -56 5583 -63 ct 5584 -70 5586 -79 5589 -90 ct 5591 -100 5594 -112 5597 -125 ct -5600 -137 5603 -149 5606 -159 ct 5683 -438 l 5745 -438 l 5617 0 l p ef -6084 0 m 6034 -128 l 5835 -128 l 5785 0 l 5723 0 l 5902 -438 l 5969 -438 l -6144 0 l 6084 0 l p -5960 -319 m 5957 -327 5954 -335 5951 -344 ct 5948 -352 5945 -360 5943 -367 ct -5940 -374 5939 -380 5937 -384 ct 5935 -389 5935 -392 5934 -393 ct 5934 -392 5933 -389 5932 -384 ct -5930 -379 5928 -373 5926 -366 ct 5923 -359 5921 -352 5918 -343 ct 5915 -335 5912 -326 5909 -318 ct -5853 -174 l 6016 -174 l 5960 -319 l p ef -6507 -1 m 6393 -182 l 6257 -182 l 6257 -1 l 6198 -1 l 6198 -437 l -6404 -437 l 6428 -437 6450 -435 6470 -429 ct 6489 -423 6505 -415 6518 -404 ct -6531 -394 6541 -380 6548 -365 ct 6554 -349 6558 -332 6558 -313 ct 6558 -299 6556 -285 6552 -272 ct -6548 -258 6541 -246 6533 -235 ct 6524 -224 6513 -214 6499 -206 ct 6486 -198 6470 -192 6451 -189 ct -6575 -1 l 6507 -1 l p -6498 -312 m 6498 -325 6496 -337 6491 -346 ct 6487 -356 6480 -364 6472 -371 ct -6463 -377 6452 -382 6440 -385 ct 6428 -388 6413 -390 6398 -390 ct 6257 -390 l -6257 -229 l 6400 -229 l 6417 -229 6432 -231 6444 -235 ct 6457 -239 6467 -245 6475 -253 ct -6483 -260 6489 -269 6492 -279 ct 6496 -289 6498 -300 6498 -312 ct p ef -7031 -223 m 7031 -187 7026 -155 7015 -127 ct 7004 -99 6989 -76 6970 -57 ct -6951 -38 6928 -24 6902 -14 ct 6876 -5 6848 0 6818 0 ct 6655 0 l 6655 -437 l -6800 -437 l 6833 -437 6864 -433 6893 -425 ct 6921 -417 6946 -404 6966 -386 ct -6987 -369 7003 -346 7014 -319 ct 7025 -293 7031 -261 7031 -223 ct p -6972 -223 m 6972 -253 6967 -278 6959 -299 ct 6950 -320 6939 -337 6923 -351 ct -6908 -364 6890 -374 6868 -381 ct 6847 -387 6824 -390 6798 -390 ct 6714 -390 l -6714 -47 l 6812 -47 l 6835 -47 6856 -51 6875 -59 ct 6895 -66 6912 -77 6926 -92 ct -6940 -107 6952 -125 6960 -147 ct 6968 -169 6972 -194 6972 -223 ct p ef -7484 -396 m 7459 -396 7437 -391 7418 -383 ct 7399 -375 7383 -363 7370 -348 ct -7357 -332 7347 -314 7340 -293 ct 7334 -271 7330 -247 7330 -221 ct 7330 -195 7334 -171 7341 -149 ct -7348 -127 7358 -108 7372 -92 ct 7385 -77 7401 -64 7421 -56 ct 7440 -47 7462 -43 7486 -43 ct -7503 -43 7518 -45 7532 -49 ct 7546 -54 7559 -60 7570 -68 ct 7581 -76 7592 -86 7600 -97 ct -7609 -108 7617 -120 7624 -134 ct 7672 -109 l 7665 -93 7655 -78 7643 -64 ct -7632 -50 7618 -38 7602 -27 ct 7587 -17 7569 -9 7549 -3 ct 7530 3 7508 6 7483 6 ct -7448 6 7417 0 7390 -11 ct 7364 -22 7342 -38 7324 -58 ct 7306 -78 7292 -102 7284 -130 ct -7275 -158 7270 -188 7270 -221 ct 7270 -255 7275 -286 7284 -313 ct 7294 -341 7308 -364 7326 -384 ct -7344 -403 7366 -418 7392 -428 ct 7419 -439 7449 -444 7483 -444 ct 7529 -444 7568 -435 7600 -417 ct -7631 -398 7654 -371 7668 -336 ct 7612 -317 l 7608 -327 7603 -337 7596 -347 ct -7588 -356 7580 -364 7569 -372 ct 7559 -379 7546 -385 7532 -389 ct 7518 -393 7502 -396 7484 -396 ct -p ef -8159 -221 m 8159 -187 8154 -156 8144 -128 ct 8134 -100 8120 -76 8101 -56 ct -8083 -36 8060 -21 8033 -10 ct 8006 1 7976 6 7942 6 ct 7906 6 7874 0 7847 -11 ct -7820 -22 7797 -38 7779 -58 ct 7761 -78 7748 -102 7739 -130 ct 7730 -158 7725 -188 7725 -221 ct -7725 -255 7730 -286 7739 -313 ct 7749 -341 7763 -364 7781 -384 ct 7800 -403 7822 -418 7849 -428 ct -7876 -439 7907 -444 7942 -444 ct 7977 -444 8008 -439 8035 -428 ct 8062 -418 8084 -403 8103 -383 ct -8121 -364 8135 -340 8144 -313 ct 8154 -285 8159 -255 8159 -221 ct p -8098 -221 m 8098 -247 8095 -271 8088 -293 ct 8081 -314 8071 -332 8058 -348 ct -8045 -363 8029 -375 8009 -383 ct 7990 -391 7968 -396 7942 -396 ct 7916 -396 7893 -391 7874 -383 ct -7854 -375 7838 -363 7824 -348 ct 7811 -332 7802 -314 7795 -293 ct 7788 -271 7785 -247 7785 -221 ct -7785 -195 7789 -171 7795 -149 ct 7802 -127 7812 -108 7825 -92 ct 7838 -76 7855 -64 7874 -55 ct -7894 -46 7916 -42 7942 -42 ct 7969 -42 7992 -47 8012 -55 ct 8032 -64 8048 -77 8061 -93 ct -8073 -108 8083 -127 8089 -149 ct 8095 -171 8098 -195 8098 -221 ct p ef -8526 0 m 8293 -372 l 8293 -362 8294 -352 8294 -342 ct 8295 -334 8295 -325 8295 -315 ct -8296 -306 8296 -298 8296 -290 ct 8296 0 l 8243 0 l 8243 -437 l 8312 -437 l -8548 -62 l 8548 -73 8547 -83 8546 -93 ct 8546 -101 8546 -111 8545 -121 ct 8545 -131 8544 -141 8544 -151 ct -8544 -437 l 8598 -437 l 8598 0 l 8526 0 l p ef -8983 0 m 8750 -372 l 8750 -362 8751 -352 8751 -342 ct 8752 -334 8752 -325 8752 -315 ct -8753 -306 8753 -298 8753 -290 ct 8753 0 l 8700 0 l 8700 -437 l 8769 -437 l -9005 -62 l 9005 -73 9004 -83 9003 -93 ct 9003 -101 9003 -111 9002 -121 ct 9002 -131 9001 -141 9001 -151 ct -9001 -437 l 9055 -437 l 9055 0 l 8983 0 l p ef -9157 0 m 9157 -437 l 9489 -437 l 9489 -389 l 9216 -389 l 9216 -249 l -9470 -249 l 9470 -201 l 9216 -201 l 9216 -48 l 9501 -48 l 9501 0 l -9157 0 l p ef -9774 -396 m 9749 -396 9727 -391 9708 -383 ct 9689 -375 9673 -363 9660 -348 ct -9647 -332 9637 -314 9630 -293 ct 9624 -271 9620 -247 9620 -221 ct 9620 -195 9624 -171 9631 -149 ct -9638 -127 9648 -108 9662 -92 ct 9675 -77 9691 -64 9711 -56 ct 9730 -47 9752 -43 9776 -43 ct -9793 -43 9808 -45 9822 -49 ct 9836 -54 9849 -60 9860 -68 ct 9871 -76 9882 -86 9890 -97 ct -9899 -108 9907 -120 9914 -134 ct 9962 -109 l 9955 -93 9945 -78 9933 -64 ct -9922 -50 9908 -38 9892 -27 ct 9877 -17 9859 -9 9839 -3 ct 9820 3 9798 6 9773 6 ct -9738 6 9707 0 9680 -11 ct 9654 -22 9632 -38 9614 -58 ct 9596 -78 9582 -102 9574 -130 ct -9565 -158 9560 -188 9560 -221 ct 9560 -255 9565 -286 9574 -313 ct 9584 -341 9598 -364 9616 -384 ct -9634 -403 9656 -418 9682 -428 ct 9709 -439 9739 -444 9773 -444 ct 9819 -444 9858 -435 9890 -417 ct -9921 -398 9944 -371 9958 -336 ct 9902 -317 l 9898 -327 9893 -337 9886 -347 ct -9878 -356 9870 -364 9859 -372 ct 9849 -379 9836 -385 9822 -389 ct 9808 -393 9792 -396 9774 -396 ct -p ef -10208 -389 m 10208 0 l 10149 0 l 10149 -389 l 9999 -389 l 9999 -437 l -10358 -437 l 10358 -389 l 10208 -389 l p ef -10434 0 m 10434 -437 l 10493 -437 l 10493 0 l 10434 0 l p ef -11017 -221 m 11017 -187 11012 -156 11002 -128 ct 10992 -100 10978 -76 10959 -56 ct -10941 -36 10918 -21 10891 -10 ct 10864 1 10834 6 10800 6 ct 10764 6 10732 0 10705 -11 ct -10678 -22 10655 -38 10637 -58 ct 10619 -78 10606 -102 10597 -130 ct 10588 -158 10583 -188 10583 -221 ct -10583 -255 10588 -286 10597 -313 ct 10607 -341 10621 -364 10639 -384 ct 10658 -403 10680 -418 10707 -428 ct -10734 -439 10765 -444 10800 -444 ct 10835 -444 10866 -439 10893 -428 ct 10920 -418 10942 -403 10961 -383 ct -10979 -364 10993 -340 11002 -313 ct 11012 -285 11017 -255 11017 -221 ct p -10956 -221 m 10956 -247 10953 -271 10946 -293 ct 10939 -314 10929 -332 10916 -348 ct -10903 -363 10887 -375 10867 -383 ct 10848 -391 10826 -396 10800 -396 ct 10774 -396 10751 -391 10732 -383 ct -10712 -375 10696 -363 10682 -348 ct 10669 -332 10660 -314 10653 -293 ct 10646 -271 10643 -247 10643 -221 ct -10643 -195 10647 -171 10653 -149 ct 10660 -127 10670 -108 10683 -92 ct 10696 -76 10713 -64 10732 -55 ct -10752 -46 10774 -42 10800 -42 ct 10827 -42 10850 -47 10870 -55 ct 10890 -64 10906 -77 10919 -93 ct -10931 -108 10941 -127 10947 -149 ct 10953 -171 10956 -195 10956 -221 ct p ef -11383 0 m 11150 -372 l 11150 -362 11151 -352 11151 -342 ct 11152 -334 11152 -325 11152 -315 ct -11153 -306 11153 -298 11153 -290 ct 11153 0 l 11100 0 l 11100 -437 l 11169 -437 l -11405 -62 l 11405 -73 11404 -83 11403 -93 ct 11403 -101 11403 -111 11402 -121 ct -11402 -131 11401 -141 11401 -151 ct 11401 -437 l 11455 -437 l 11455 0 l -11383 0 l p ef -pom -pum -9750 16117 t -39 -165 m 39 -193 42 -221 46 -247 ct 50 -273 57 -299 66 -323 ct 76 -347 88 -371 102 -393 ct -116 -416 134 -438 154 -460 ct 208 -460 l 188 -438 172 -416 157 -393 ct 143 -370 132 -347 122 -322 ct -113 -298 107 -273 102 -247 ct 98 -220 96 -193 96 -164 ct 96 -135 98 -108 102 -81 ct -107 -55 113 -30 122 -5 ct 132 19 143 43 157 65 ct 172 88 188 110 208 132 ct 154 132 l -134 110 116 88 102 65 ct 88 43 76 19 66 -5 ct 57 -29 50 -55 46 -81 ct 42 -107 39 -134 39 -163 ct -39 -165 l p ef -454 0 m 393 0 l 215 -438 l 277 -438 l 398 -129 l 401 -120 404 -111 407 -102 ct -410 -92 413 -84 416 -77 ct 419 -69 421 -60 424 -52 ct 427 -60 429 -68 432 -76 ct -435 -84 437 -92 440 -101 ct 443 -110 447 -120 450 -129 ct 570 -438 l 633 -438 l -454 0 l p ef -694 0 m 694 -437 l 753 -437 l 753 0 l 694 0 l p ef -1175 0 m 1125 -128 l 926 -128 l 876 0 l 814 0 l 993 -438 l 1060 -438 l -1235 0 l 1175 0 l p -1051 -319 m 1048 -327 1045 -335 1042 -344 ct 1039 -352 1036 -360 1034 -367 ct -1031 -374 1030 -380 1028 -384 ct 1026 -389 1026 -392 1025 -393 ct 1025 -392 1024 -389 1023 -384 ct -1021 -379 1019 -373 1017 -366 ct 1014 -359 1012 -352 1009 -343 ct 1006 -335 1003 -326 1000 -318 ct -944 -174 l 1107 -174 l 1051 -319 l p ef -1804 -223 m 1804 -187 1799 -155 1788 -127 ct 1777 -99 1762 -76 1743 -57 ct -1724 -38 1701 -24 1675 -14 ct 1649 -5 1621 0 1591 0 ct 1428 0 l 1428 -437 l -1573 -437 l 1606 -437 1637 -433 1666 -425 ct 1694 -417 1719 -404 1739 -386 ct -1760 -369 1776 -346 1787 -319 ct 1798 -293 1804 -261 1804 -223 ct p -1745 -223 m 1745 -253 1740 -278 1732 -299 ct 1723 -320 1712 -337 1696 -351 ct -1681 -364 1663 -374 1641 -381 ct 1620 -387 1597 -390 1571 -390 ct 1487 -390 l -1487 -47 l 1585 -47 l 1608 -47 1629 -51 1648 -59 ct 1668 -66 1685 -77 1699 -92 ct -1713 -107 1725 -125 1733 -147 ct 1741 -169 1745 -194 1745 -223 ct p ef -2195 0 m 2145 -128 l 1946 -128 l 1896 0 l 1834 0 l 2013 -438 l 2080 -438 l -2255 0 l 2195 0 l p -2071 -319 m 2068 -327 2065 -335 2062 -344 ct 2059 -352 2056 -360 2054 -367 ct -2051 -374 2050 -380 2048 -384 ct 2046 -389 2046 -392 2045 -393 ct 2045 -392 2044 -389 2043 -384 ct -2041 -379 2039 -373 2037 -366 ct 2034 -359 2032 -352 2029 -343 ct 2026 -335 2023 -326 2020 -318 ct -1964 -174 l 2127 -174 l 2071 -319 l p ef -2429 -389 m 2429 0 l 2370 0 l 2370 -389 l 2220 -389 l 2220 -437 l -2579 -437 l 2579 -389 l 2429 -389 l p ef -2906 0 m 2856 -128 l 2657 -128 l 2607 0 l 2545 0 l 2724 -438 l 2791 -438 l -2966 0 l 2906 0 l p -2782 -319 m 2779 -327 2776 -335 2773 -344 ct 2770 -352 2767 -360 2765 -367 ct -2762 -374 2761 -380 2759 -384 ct 2757 -389 2757 -392 2756 -393 ct 2756 -392 2755 -389 2754 -384 ct -2752 -379 2750 -373 2748 -366 ct 2745 -359 2743 -352 2740 -343 ct 2737 -335 2734 -326 2731 -318 ct -2675 -174 l 2838 -174 l 2782 -319 l p ef -3358 -123 m 3358 -101 3354 -82 3345 -67 ct 3336 -51 3325 -38 3310 -28 ct 3295 -19 3278 -11 3259 -7 ct -3239 -2 3219 0 3197 0 ct 3020 0 l 3020 -437 l 3179 -437 l 3203 -437 3225 -435 3244 -431 ct -3263 -427 3279 -421 3292 -412 ct 3305 -404 3315 -393 3322 -379 ct 3329 -366 3333 -350 3333 -331 ct -3333 -319 3331 -307 3328 -297 ct 3324 -286 3319 -276 3312 -267 ct 3305 -258 3296 -251 3286 -245 ct -3276 -238 3263 -234 3250 -230 ct 3267 -228 3283 -224 3296 -218 ct 3310 -212 3321 -205 3330 -195 ct -3339 -186 3346 -175 3351 -163 ct 3356 -151 3358 -137 3358 -123 ct p -3273 -324 m 3273 -348 3265 -365 3249 -375 ct 3233 -385 3209 -390 3179 -390 ct -3079 -390 l 3079 -251 l 3179 -251 l 3196 -251 3211 -253 3223 -256 ct 3235 -260 3245 -265 3252 -271 ct -3259 -277 3265 -285 3268 -294 ct 3271 -303 3273 -313 3273 -324 ct p -3298 -128 m 3298 -142 3296 -153 3291 -163 ct 3286 -173 3278 -181 3269 -187 ct -3259 -193 3248 -198 3235 -201 ct 3221 -204 3206 -205 3190 -205 ct 3079 -205 l -3079 -47 l 3194 -47 l 3209 -47 3223 -49 3236 -51 ct 3249 -54 3260 -58 3269 -64 ct -3278 -70 3285 -79 3290 -89 ct 3296 -99 3298 -112 3298 -128 ct p ef -3753 0 m 3703 -128 l 3504 -128 l 3454 0 l 3392 0 l 3571 -438 l 3638 -438 l -3813 0 l 3753 0 l p -3629 -319 m 3626 -327 3623 -335 3620 -344 ct 3617 -352 3614 -360 3612 -367 ct -3609 -374 3608 -380 3606 -384 ct 3604 -389 3604 -392 3603 -393 ct 3603 -392 3602 -389 3601 -384 ct -3599 -379 3597 -373 3595 -366 ct 3592 -359 3590 -352 3587 -343 ct 3584 -335 3581 -326 3578 -318 ct -3522 -174 l 3685 -174 l 3629 -319 l p ef -4208 -121 m 4208 -103 4205 -86 4198 -70 ct 4191 -55 4180 -41 4165 -30 ct 4150 -19 4131 -10 4108 -3 ct -4086 3 4059 6 4028 6 ct 3974 6 3931 -4 3901 -23 ct 3870 -42 3851 -69 3843 -105 ct -3900 -117 l 3903 -105 3908 -95 3914 -86 ct 3920 -76 3928 -68 3938 -61 ct 3948 -55 3961 -50 3976 -46 ct -3991 -42 4009 -40 4030 -40 ct 4048 -40 4064 -42 4078 -45 ct 4093 -48 4106 -52 4116 -59 ct -4127 -65 4135 -73 4141 -83 ct 4147 -92 4150 -104 4150 -118 ct 4150 -132 4147 -144 4140 -153 ct -4134 -161 4124 -169 4113 -175 ct 4101 -180 4087 -185 4070 -189 ct 4054 -193 4036 -197 4016 -202 ct -4004 -205 3992 -208 3979 -211 ct 3967 -214 3955 -218 3944 -222 ct 3933 -227 3922 -232 3912 -238 ct -3902 -244 3894 -251 3887 -259 ct 3879 -268 3874 -278 3870 -289 ct 3865 -300 3863 -313 3863 -327 ct -3863 -348 3867 -365 3876 -380 ct 3884 -395 3896 -407 3911 -417 ct 3926 -426 3943 -433 3963 -437 ct -3984 -442 4006 -444 4029 -444 ct 4056 -444 4079 -442 4099 -438 ct 4118 -433 4134 -427 4147 -419 ct -4161 -410 4171 -400 4179 -387 ct 4187 -375 4193 -360 4198 -343 ct 4140 -333 l -4137 -344 4133 -353 4127 -361 ct 4122 -370 4115 -377 4106 -382 ct 4097 -388 4086 -392 4073 -395 ct -4061 -398 4046 -399 4029 -399 ct 4008 -399 3991 -397 3978 -394 ct 3964 -390 3953 -385 3944 -379 ct -3936 -373 3930 -366 3926 -357 ct 3923 -349 3921 -340 3921 -330 ct 3921 -317 3924 -306 3931 -298 ct -3937 -290 3946 -283 3957 -277 ct 3968 -271 3981 -267 3996 -263 ct 4011 -259 4026 -256 4043 -252 ct -4056 -249 4070 -246 4083 -242 ct 4096 -239 4109 -235 4121 -231 ct 4133 -226 4145 -221 4156 -215 ct -4166 -209 4175 -202 4183 -193 ct 4191 -185 4197 -174 4202 -163 ct 4206 -151 4208 -137 4208 -121 ct -p ef -4290 0 m 4290 -437 l 4622 -437 l 4622 -389 l 4349 -389 l 4349 -249 l -4603 -249 l 4603 -201 l 4349 -201 l 4349 -48 l 4634 -48 l 4634 0 l -4290 0 l p ef -4833 -163 m 4833 -134 4831 -107 4827 -81 ct 4822 -55 4815 -29 4806 -5 ct 4797 19 4785 43 4770 65 ct -4756 88 4739 110 4719 132 ct 4665 132 l 4684 110 4701 88 4715 65 ct 4729 43 4741 19 4750 -5 ct -4759 -30 4766 -55 4770 -81 ct 4775 -108 4777 -135 4777 -164 ct 4777 -193 4775 -220 4770 -247 ct -4766 -273 4759 -298 4750 -322 ct 4741 -347 4729 -370 4715 -393 ct 4701 -416 4684 -438 4665 -460 ct -4719 -460 l 4739 -438 4756 -416 4770 -393 ct 4785 -371 4797 -347 4806 -323 ct -4815 -299 4822 -273 4827 -247 ct 4831 -221 4833 -193 4833 -165 ct 4833 -163 l -p ef -5277 6 m 5253 6 5230 3 5208 -4 ct 5187 -10 5168 -20 5152 -34 ct 5136 -47 5123 -64 5113 -85 ct -5104 -106 5099 -131 5099 -159 ct 5099 -438 l 5158 -438 l 5158 -164 l 5158 -142 5161 -123 5167 -108 ct -5173 -92 5181 -80 5192 -70 ct 5202 -60 5215 -53 5229 -49 ct 5243 -44 5259 -42 5276 -42 ct -5293 -42 5309 -44 5324 -49 ct 5339 -53 5353 -61 5364 -71 ct 5375 -81 5384 -94 5391 -110 ct -5397 -126 5401 -145 5401 -168 ct 5401 -438 l 5460 -438 l 5460 -165 l 5460 -136 5455 -110 5445 -89 ct -5436 -67 5422 -50 5406 -36 ct 5389 -22 5370 -11 5348 -4 ct 5326 3 5302 6 5277 6 ct -p ef -5842 0 m 5609 -372 l 5609 -362 5610 -352 5610 -342 ct 5611 -334 5611 -325 5611 -315 ct -5612 -306 5612 -298 5612 -290 ct 5612 0 l 5559 0 l 5559 -437 l 5628 -437 l -5864 -62 l 5864 -73 5863 -83 5862 -93 ct 5862 -101 5862 -111 5861 -121 ct 5861 -131 5860 -141 5860 -151 ct -5860 -437 l 5914 -437 l 5914 0 l 5842 0 l p ef -6392 -223 m 6392 -187 6387 -155 6376 -127 ct 6365 -99 6350 -76 6331 -57 ct -6312 -38 6289 -24 6263 -14 ct 6237 -5 6209 0 6179 0 ct 6016 0 l 6016 -437 l -6161 -437 l 6194 -437 6225 -433 6254 -425 ct 6282 -417 6307 -404 6327 -386 ct -6348 -369 6364 -346 6375 -319 ct 6386 -293 6392 -261 6392 -223 ct p -6333 -223 m 6333 -253 6328 -278 6320 -299 ct 6311 -320 6300 -337 6284 -351 ct -6269 -364 6251 -374 6229 -381 ct 6208 -387 6185 -390 6159 -390 ct 6075 -390 l -6075 -47 l 6173 -47 l 6196 -47 6217 -51 6236 -59 ct 6256 -66 6273 -77 6287 -92 ct -6301 -107 6313 -125 6321 -147 ct 6329 -169 6333 -194 6333 -223 ct p ef -6473 0 m 6473 -437 l 6805 -437 l 6805 -389 l 6532 -389 l 6532 -249 l -6786 -249 l 6786 -201 l 6532 -201 l 6532 -48 l 6817 -48 l 6817 0 l -6473 0 l p ef -7205 -1 m 7091 -182 l 6955 -182 l 6955 -1 l 6896 -1 l 6896 -437 l -7102 -437 l 7126 -437 7148 -435 7168 -429 ct 7187 -423 7203 -415 7216 -404 ct -7229 -394 7239 -380 7246 -365 ct 7252 -349 7256 -332 7256 -313 ct 7256 -299 7254 -285 7250 -272 ct -7246 -258 7239 -246 7231 -235 ct 7222 -224 7211 -214 7197 -206 ct 7184 -198 7168 -192 7149 -189 ct -7273 -1 l 7205 -1 l p -7196 -312 m 7196 -325 7194 -337 7189 -346 ct 7185 -356 7178 -364 7170 -371 ct -7161 -377 7150 -382 7138 -385 ct 7126 -388 7111 -390 7096 -390 ct 6955 -390 l -6955 -229 l 7098 -229 l 7115 -229 7130 -231 7142 -235 ct 7155 -239 7165 -245 7173 -253 ct -7181 -260 7187 -269 7190 -279 ct 7194 -289 7196 -300 7196 -312 ct p ef -7907 -223 m 7907 -187 7902 -155 7891 -127 ct 7880 -99 7865 -76 7846 -57 ct -7827 -38 7804 -24 7778 -14 ct 7752 -5 7724 0 7694 0 ct 7531 0 l 7531 -437 l -7676 -437 l 7709 -437 7740 -433 7769 -425 ct 7797 -417 7822 -404 7842 -386 ct -7863 -369 7879 -346 7890 -319 ct 7901 -293 7907 -261 7907 -223 ct p -7848 -223 m 7848 -253 7843 -278 7835 -299 ct 7826 -320 7815 -337 7799 -351 ct -7784 -364 7766 -374 7744 -381 ct 7723 -387 7700 -390 7674 -390 ct 7590 -390 l -7590 -47 l 7688 -47 l 7711 -47 7732 -51 7751 -59 ct 7771 -66 7788 -77 7802 -92 ct -7816 -107 7828 -125 7836 -147 ct 7844 -169 7848 -194 7848 -223 ct p ef -7989 0 m 7989 -437 l 8321 -437 l 8321 -389 l 8048 -389 l 8048 -249 l -8302 -249 l 8302 -201 l 8048 -201 l 8048 -48 l 8333 -48 l 8333 0 l -7989 0 l p ef -8602 0 m 8541 0 l 8363 -438 l 8425 -438 l 8546 -129 l 8549 -120 8552 -111 8555 -102 ct -8558 -92 8561 -84 8564 -77 ct 8567 -69 8569 -60 8572 -52 ct 8575 -60 8577 -68 8580 -76 ct -8583 -84 8585 -92 8588 -101 ct 8591 -110 8595 -120 8598 -129 ct 8718 -438 l -8781 -438 l 8602 0 l p ef -8835 0 m 8835 -437 l 9167 -437 l 9167 -389 l 8894 -389 l 8894 -249 l -9148 -249 l 9148 -201 l 8894 -201 l 8894 -48 l 9179 -48 l 9179 0 l -8835 0 l p ef -9259 0 m 9259 -438 l 9318 -438 l 9318 -48 l 9539 -48 l 9539 0 l 9259 0 l -p ef -10022 -221 m 10022 -187 10017 -156 10007 -128 ct 9997 -100 9983 -76 9964 -56 ct -9946 -36 9923 -21 9896 -10 ct 9869 1 9839 6 9805 6 ct 9769 6 9737 0 9710 -11 ct -9683 -22 9660 -38 9642 -58 ct 9624 -78 9611 -102 9602 -130 ct 9593 -158 9588 -188 9588 -221 ct -9588 -255 9593 -286 9602 -313 ct 9612 -341 9626 -364 9644 -384 ct 9663 -403 9685 -418 9712 -428 ct -9739 -439 9770 -444 9805 -444 ct 9840 -444 9871 -439 9898 -428 ct 9925 -418 9947 -403 9966 -383 ct -9984 -364 9998 -340 10007 -313 ct 10017 -285 10022 -255 10022 -221 ct p -9961 -221 m 9961 -247 9958 -271 9951 -293 ct 9944 -314 9934 -332 9921 -348 ct -9908 -363 9892 -375 9872 -383 ct 9853 -391 9831 -396 9805 -396 ct 9779 -396 9756 -391 9737 -383 ct -9717 -375 9701 -363 9687 -348 ct 9674 -332 9665 -314 9658 -293 ct 9651 -271 9648 -247 9648 -221 ct -9648 -195 9652 -171 9658 -149 ct 9665 -127 9675 -108 9688 -92 ct 9701 -76 9718 -64 9737 -55 ct -9757 -46 9779 -42 9805 -42 ct 9832 -42 9855 -47 9875 -55 ct 9895 -64 9911 -77 9924 -93 ct -9936 -108 9946 -127 9952 -149 ct 9958 -171 9961 -195 9961 -221 ct p ef -10443 -305 m 10443 -286 10440 -269 10434 -252 ct 10427 -236 10418 -221 10405 -209 ct -10393 -197 10377 -188 10358 -181 ct 10340 -174 10318 -170 10293 -170 ct 10164 -170 l -10164 1 l 10105 1 l 10105 -437 l 10289 -437 l 10315 -437 10337 -434 10357 -428 ct -10376 -421 10392 -412 10405 -401 ct 10417 -389 10427 -375 10433 -359 ct 10440 -343 10443 -325 10443 -305 ct -p -10384 -305 m 10384 -332 10375 -354 10358 -368 ct 10341 -382 10316 -390 10282 -390 ct -10164 -390 l 10164 -217 l 10284 -217 l 10318 -217 10343 -224 10359 -240 ct -10376 -255 10384 -276 10384 -305 ct p ef -10901 0 m 10901 -292 l 10901 -302 10901 -313 10901 -324 ct 10901 -335 10901 -345 10902 -354 ct -10902 -365 10903 -375 10903 -385 ct 10900 -374 10897 -364 10894 -353 ct 10892 -345 10889 -335 10886 -325 ct -10882 -315 10879 -306 10876 -298 ct 10763 0 l 10722 0 l 10607 -298 l 10606 -301 10605 -305 10603 -309 ct -10602 -313 10601 -317 10599 -322 ct 10597 -327 10596 -331 10594 -336 ct 10593 -341 10591 -346 10590 -351 ct -10586 -362 10583 -373 10580 -385 ct 10580 -373 10580 -362 10581 -350 ct 10581 -341 10581 -330 10581 -320 ct -10582 -309 10582 -300 10582 -292 ct 10582 0 l 10529 0 l 10529 -437 l 10607 -437 l -10723 -134 l 10725 -130 10726 -125 10728 -118 ct 10731 -112 10732 -105 10734 -98 ct -10736 -91 10738 -85 10739 -79 ct 10741 -73 10742 -68 10743 -65 ct 10743 -68 10744 -73 10746 -79 ct -10748 -85 10750 -92 10752 -98 ct 10754 -105 10756 -112 10758 -118 ct 10760 -125 10762 -130 10764 -134 ct -10878 -437 l 10954 -437 l 10954 0 l 10901 0 l p ef -11058 0 m 11058 -437 l 11390 -437 l 11390 -389 l 11117 -389 l 11117 -249 l -11371 -249 l 11371 -201 l 11117 -201 l 11117 -48 l 11402 -48 l 11402 0 l -11058 0 l p ef -11764 0 m 11531 -372 l 11531 -362 11532 -352 11532 -342 ct 11533 -334 11533 -325 11533 -315 ct -11534 -306 11534 -298 11534 -290 ct 11534 0 l 11481 0 l 11481 -437 l 11550 -437 l -11786 -62 l 11786 -73 11785 -83 11784 -93 ct 11784 -101 11784 -111 11783 -121 ct -11783 -131 11782 -141 11782 -151 ct 11782 -437 l 11836 -437 l 11836 0 l -11764 0 l p ef -12109 -389 m 12109 0 l 12050 0 l 12050 -389 l 11900 -389 l 11900 -437 l -12259 -437 l 12259 -389 l 12109 -389 l p ef -pom -pum -9751 17307 t -111 -389 m 111 -226 l 355 -226 l 355 -177 l 111 -177 l 111 0 l 52 0 l -52 -437 l 362 -437 l 362 -389 l 111 -389 l p ef -853 -221 m 853 -187 848 -156 838 -128 ct 828 -100 814 -76 795 -56 ct 777 -36 754 -21 727 -10 ct -700 1 670 6 636 6 ct 600 6 568 0 541 -11 ct 514 -22 491 -38 473 -58 ct 455 -78 442 -102 433 -130 ct -424 -158 419 -188 419 -221 ct 419 -255 424 -286 433 -313 ct 443 -341 457 -364 475 -384 ct -494 -403 516 -418 543 -428 ct 570 -439 601 -444 636 -444 ct 671 -444 702 -439 729 -428 ct -756 -418 778 -403 797 -383 ct 815 -364 829 -340 838 -313 ct 848 -285 853 -255 853 -221 ct -p -792 -221 m 792 -247 789 -271 782 -293 ct 775 -314 765 -332 752 -348 ct 739 -363 723 -375 703 -383 ct -684 -391 662 -396 636 -396 ct 610 -396 587 -391 568 -383 ct 548 -375 532 -363 518 -348 ct -505 -332 496 -314 489 -293 ct 482 -271 479 -247 479 -221 ct 479 -195 483 -171 489 -149 ct -496 -127 506 -108 519 -92 ct 532 -76 549 -64 568 -55 ct 588 -46 610 -42 636 -42 ct -663 -42 686 -47 706 -55 ct 726 -64 742 -77 755 -93 ct 767 -108 777 -127 783 -149 ct -789 -171 792 -195 792 -221 ct p ef -1246 -1 m 1132 -182 l 996 -182 l 996 -1 l 937 -1 l 937 -437 l 1143 -437 l -1167 -437 1189 -435 1209 -429 ct 1228 -423 1244 -415 1257 -404 ct 1270 -394 1280 -380 1287 -365 ct -1293 -349 1297 -332 1297 -313 ct 1297 -299 1295 -285 1291 -272 ct 1287 -258 1280 -246 1272 -235 ct -1263 -224 1252 -214 1238 -206 ct 1225 -198 1209 -192 1190 -189 ct 1314 -1 l -1246 -1 l p -1237 -312 m 1237 -325 1235 -337 1230 -346 ct 1226 -356 1219 -364 1211 -371 ct -1202 -377 1191 -382 1179 -385 ct 1167 -388 1152 -390 1137 -390 ct 996 -390 l -996 -229 l 1139 -229 l 1156 -229 1171 -231 1183 -235 ct 1196 -239 1206 -245 1214 -253 ct -1222 -260 1228 -269 1231 -279 ct 1235 -289 1237 -300 1237 -312 ct p ef -1798 0 m 1727 0 l 1651 -278 l 1649 -286 1646 -295 1644 -306 ct 1641 -317 1639 -327 1637 -337 ct -1634 -348 1632 -360 1629 -371 ct 1627 -359 1624 -348 1622 -336 ct 1619 -326 1617 -316 1615 -306 ct -1612 -295 1610 -286 1607 -278 ct 1531 0 l 1460 0 l 1332 -438 l 1394 -438 l -1472 -159 l 1475 -146 1479 -133 1482 -121 ct 1485 -108 1488 -96 1490 -86 ct -1493 -74 1495 -63 1498 -52 ct 1501 -66 1504 -80 1507 -94 ct 1509 -100 1510 -106 1512 -113 ct -1513 -119 1515 -125 1516 -132 ct 1518 -138 1519 -144 1521 -149 ct 1522 -155 1524 -160 1525 -165 ct -1601 -438 l 1658 -438 l 1734 -165 l 1735 -160 1736 -155 1738 -149 ct 1739 -144 1741 -138 1742 -132 ct -1744 -126 1746 -119 1747 -113 ct 1748 -106 1750 -100 1751 -95 ct 1755 -81 1758 -66 1761 -52 ct -1761 -52 1762 -56 1764 -63 ct 1765 -70 1767 -79 1770 -90 ct 1772 -100 1775 -112 1778 -125 ct -1781 -137 1784 -149 1787 -159 ct 1864 -438 l 1926 -438 l 1798 0 l p ef -2267 0 m 2217 -128 l 2018 -128 l 1968 0 l 1906 0 l 2085 -438 l 2152 -438 l -2327 0 l 2267 0 l p -2143 -319 m 2140 -327 2137 -335 2134 -344 ct 2131 -352 2128 -360 2126 -367 ct -2123 -374 2122 -380 2120 -384 ct 2118 -389 2118 -392 2117 -393 ct 2117 -392 2116 -389 2115 -384 ct -2113 -379 2111 -373 2109 -366 ct 2106 -359 2104 -352 2101 -343 ct 2098 -335 2095 -326 2092 -318 ct -2036 -174 l 2199 -174 l 2143 -319 l p ef -2689 -1 m 2575 -182 l 2439 -182 l 2439 -1 l 2380 -1 l 2380 -437 l -2586 -437 l 2610 -437 2632 -435 2652 -429 ct 2671 -423 2687 -415 2700 -404 ct -2713 -394 2723 -380 2730 -365 ct 2736 -349 2740 -332 2740 -313 ct 2740 -299 2738 -285 2734 -272 ct -2730 -258 2723 -246 2715 -235 ct 2706 -224 2695 -214 2681 -206 ct 2668 -198 2652 -192 2633 -189 ct -2757 -1 l 2689 -1 l p -2680 -312 m 2680 -325 2678 -337 2673 -346 ct 2669 -356 2662 -364 2654 -371 ct -2645 -377 2634 -382 2622 -385 ct 2610 -388 2595 -390 2580 -390 ct 2439 -390 l -2439 -229 l 2582 -229 l 2599 -229 2614 -231 2626 -235 ct 2639 -239 2649 -245 2657 -253 ct -2665 -260 2671 -269 2674 -279 ct 2678 -289 2680 -300 2680 -312 ct p ef -3214 -223 m 3214 -187 3209 -155 3198 -127 ct 3187 -99 3172 -76 3153 -57 ct -3134 -38 3111 -24 3085 -14 ct 3059 -5 3031 0 3001 0 ct 2838 0 l 2838 -437 l -2983 -437 l 3016 -437 3047 -433 3076 -425 ct 3104 -417 3129 -404 3149 -386 ct -3170 -369 3186 -346 3197 -319 ct 3208 -293 3214 -261 3214 -223 ct p -3155 -223 m 3155 -253 3150 -278 3142 -299 ct 3133 -320 3122 -337 3106 -351 ct -3091 -364 3073 -374 3051 -381 ct 3030 -387 3007 -390 2981 -390 ct 2897 -390 l -2897 -47 l 2995 -47 l 3018 -47 3039 -51 3058 -59 ct 3078 -66 3095 -77 3109 -92 ct -3123 -107 3135 -125 3143 -147 ct 3151 -169 3155 -194 3155 -223 ct p ef -3667 -396 m 3642 -396 3620 -391 3601 -383 ct 3582 -375 3566 -363 3553 -348 ct -3540 -332 3530 -314 3523 -293 ct 3517 -271 3513 -247 3513 -221 ct 3513 -195 3517 -171 3524 -149 ct -3531 -127 3541 -108 3555 -92 ct 3568 -77 3584 -64 3604 -56 ct 3623 -47 3645 -43 3669 -43 ct -3686 -43 3701 -45 3715 -49 ct 3729 -54 3742 -60 3753 -68 ct 3764 -76 3775 -86 3783 -97 ct -3792 -108 3800 -120 3807 -134 ct 3855 -109 l 3848 -93 3838 -78 3826 -64 ct -3815 -50 3801 -38 3785 -27 ct 3770 -17 3752 -9 3732 -3 ct 3713 3 3691 6 3666 6 ct -3631 6 3600 0 3573 -11 ct 3547 -22 3525 -38 3507 -58 ct 3489 -78 3475 -102 3467 -130 ct -3458 -158 3453 -188 3453 -221 ct 3453 -255 3458 -286 3467 -313 ct 3477 -341 3491 -364 3509 -384 ct -3527 -403 3549 -418 3575 -428 ct 3602 -439 3632 -444 3666 -444 ct 3712 -444 3751 -435 3783 -417 ct -3814 -398 3837 -371 3851 -336 ct 3795 -317 l 3791 -327 3786 -337 3779 -347 ct -3771 -356 3763 -364 3752 -372 ct 3742 -379 3729 -385 3715 -389 ct 3701 -393 3685 -396 3667 -396 ct -p ef -4342 -221 m 4342 -187 4337 -156 4327 -128 ct 4317 -100 4303 -76 4284 -56 ct -4266 -36 4243 -21 4216 -10 ct 4189 1 4159 6 4125 6 ct 4089 6 4057 0 4030 -11 ct -4003 -22 3980 -38 3962 -58 ct 3944 -78 3931 -102 3922 -130 ct 3913 -158 3908 -188 3908 -221 ct -3908 -255 3913 -286 3922 -313 ct 3932 -341 3946 -364 3964 -384 ct 3983 -403 4005 -418 4032 -428 ct -4059 -439 4090 -444 4125 -444 ct 4160 -444 4191 -439 4218 -428 ct 4245 -418 4267 -403 4286 -383 ct -4304 -364 4318 -340 4327 -313 ct 4337 -285 4342 -255 4342 -221 ct p -4281 -221 m 4281 -247 4278 -271 4271 -293 ct 4264 -314 4254 -332 4241 -348 ct -4228 -363 4212 -375 4192 -383 ct 4173 -391 4151 -396 4125 -396 ct 4099 -396 4076 -391 4057 -383 ct -4037 -375 4021 -363 4007 -348 ct 3994 -332 3985 -314 3978 -293 ct 3971 -271 3968 -247 3968 -221 ct -3968 -195 3972 -171 3978 -149 ct 3985 -127 3995 -108 4008 -92 ct 4021 -76 4038 -64 4057 -55 ct -4077 -46 4099 -42 4125 -42 ct 4152 -42 4175 -47 4195 -55 ct 4215 -64 4231 -77 4244 -93 ct -4256 -108 4266 -127 4272 -149 ct 4278 -171 4281 -195 4281 -221 ct p ef -4708 0 m 4475 -372 l 4475 -362 4476 -352 4476 -342 ct 4477 -334 4477 -325 4477 -315 ct -4478 -306 4478 -298 4478 -290 ct 4478 0 l 4425 0 l 4425 -437 l 4494 -437 l -4730 -62 l 4730 -73 4729 -83 4728 -93 ct 4728 -101 4728 -111 4727 -121 ct 4727 -131 4726 -141 4726 -151 ct -4726 -437 l 4780 -437 l 4780 0 l 4708 0 l p ef -5165 0 m 4932 -372 l 4932 -362 4933 -352 4933 -342 ct 4934 -334 4934 -325 4934 -315 ct -4935 -306 4935 -298 4935 -290 ct 4935 0 l 4882 0 l 4882 -437 l 4951 -437 l -5187 -62 l 5187 -73 5186 -83 5185 -93 ct 5185 -101 5185 -111 5184 -121 ct 5184 -131 5183 -141 5183 -151 ct -5183 -437 l 5237 -437 l 5237 0 l 5165 0 l p ef -5338 0 m 5338 -437 l 5670 -437 l 5670 -389 l 5397 -389 l 5397 -249 l -5651 -249 l 5651 -201 l 5397 -201 l 5397 -48 l 5682 -48 l 5682 0 l -5338 0 l p ef -5956 -396 m 5931 -396 5909 -391 5890 -383 ct 5871 -375 5855 -363 5842 -348 ct -5829 -332 5819 -314 5812 -293 ct 5806 -271 5802 -247 5802 -221 ct 5802 -195 5806 -171 5813 -149 ct -5820 -127 5830 -108 5844 -92 ct 5857 -77 5873 -64 5893 -56 ct 5912 -47 5934 -43 5958 -43 ct -5975 -43 5990 -45 6004 -49 ct 6018 -54 6031 -60 6042 -68 ct 6053 -76 6064 -86 6072 -97 ct -6081 -108 6089 -120 6096 -134 ct 6144 -109 l 6137 -93 6127 -78 6115 -64 ct -6104 -50 6090 -38 6074 -27 ct 6059 -17 6041 -9 6021 -3 ct 6002 3 5980 6 5955 6 ct -5920 6 5889 0 5862 -11 ct 5836 -22 5814 -38 5796 -58 ct 5778 -78 5764 -102 5756 -130 ct -5747 -158 5742 -188 5742 -221 ct 5742 -255 5747 -286 5756 -313 ct 5766 -341 5780 -364 5798 -384 ct -5816 -403 5838 -418 5864 -428 ct 5891 -439 5921 -444 5955 -444 ct 6001 -444 6040 -435 6072 -417 ct -6103 -398 6126 -371 6140 -336 ct 6084 -317 l 6080 -327 6075 -337 6068 -347 ct -6060 -356 6052 -364 6041 -372 ct 6031 -379 6018 -385 6004 -389 ct 5990 -393 5974 -396 5956 -396 ct -p ef -6390 -389 m 6390 0 l 6331 0 l 6331 -389 l 6181 -389 l 6181 -437 l -6540 -437 l 6540 -389 l 6390 -389 l p ef -6615 0 m 6615 -437 l 6674 -437 l 6674 0 l 6615 0 l p ef -7198 -221 m 7198 -187 7193 -156 7183 -128 ct 7173 -100 7159 -76 7140 -56 ct -7122 -36 7099 -21 7072 -10 ct 7045 1 7015 6 6981 6 ct 6945 6 6913 0 6886 -11 ct -6859 -22 6836 -38 6818 -58 ct 6800 -78 6787 -102 6778 -130 ct 6769 -158 6764 -188 6764 -221 ct -6764 -255 6769 -286 6778 -313 ct 6788 -341 6802 -364 6820 -384 ct 6839 -403 6861 -418 6888 -428 ct -6915 -439 6946 -444 6981 -444 ct 7016 -444 7047 -439 7074 -428 ct 7101 -418 7123 -403 7142 -383 ct -7160 -364 7174 -340 7183 -313 ct 7193 -285 7198 -255 7198 -221 ct p -7137 -221 m 7137 -247 7134 -271 7127 -293 ct 7120 -314 7110 -332 7097 -348 ct -7084 -363 7068 -375 7048 -383 ct 7029 -391 7007 -396 6981 -396 ct 6955 -396 6932 -391 6913 -383 ct -6893 -375 6877 -363 6863 -348 ct 6850 -332 6841 -314 6834 -293 ct 6827 -271 6824 -247 6824 -221 ct -6824 -195 6828 -171 6834 -149 ct 6841 -127 6851 -108 6864 -92 ct 6877 -76 6894 -64 6913 -55 ct -6933 -46 6955 -42 6981 -42 ct 7008 -42 7031 -47 7051 -55 ct 7071 -64 7087 -77 7100 -93 ct -7112 -108 7122 -127 7128 -149 ct 7134 -171 7137 -195 7137 -221 ct p ef -7565 0 m 7332 -372 l 7332 -362 7333 -352 7333 -342 ct 7334 -334 7334 -325 7334 -315 ct -7335 -306 7335 -298 7335 -290 ct 7335 0 l 7282 0 l 7282 -437 l 7351 -437 l -7587 -62 l 7587 -73 7586 -83 7585 -93 ct 7585 -101 7585 -111 7584 -121 ct 7584 -131 7583 -141 7583 -151 ct -7583 -437 l 7637 -437 l 7637 0 l 7565 0 l p ef -7904 -165 m 7904 -193 7907 -221 7911 -247 ct 7915 -273 7922 -299 7931 -323 ct -7941 -347 7953 -371 7967 -393 ct 7981 -416 7999 -438 8019 -460 ct 8073 -460 l -8053 -438 8037 -416 8022 -393 ct 8008 -370 7997 -347 7987 -322 ct 7978 -298 7972 -273 7967 -247 ct -7963 -220 7961 -193 7961 -164 ct 7961 -135 7963 -108 7967 -81 ct 7972 -55 7978 -30 7987 -5 ct -7997 19 8008 43 8022 65 ct 8037 88 8053 110 8073 132 ct 8019 132 l 7999 110 7981 88 7967 65 ct -7953 43 7941 19 7931 -5 ct 7922 -29 7915 -55 7911 -81 ct 7907 -107 7904 -134 7904 -163 ct -7904 -165 l p ef -8318 0 m 8257 0 l 8079 -438 l 8141 -438 l 8262 -129 l 8265 -120 8268 -111 8271 -102 ct -8274 -92 8277 -84 8280 -77 ct 8283 -69 8285 -60 8288 -52 ct 8291 -60 8293 -68 8296 -76 ct -8299 -84 8301 -92 8304 -101 ct 8307 -110 8311 -120 8314 -129 ct 8434 -438 l -8497 -438 l 8318 0 l p ef -8559 0 m 8559 -437 l 8618 -437 l 8618 0 l 8559 0 l p ef -9039 0 m 8989 -128 l 8790 -128 l 8740 0 l 8678 0 l 8857 -438 l 8924 -438 l -9099 0 l 9039 0 l p -8915 -319 m 8912 -327 8909 -335 8906 -344 ct 8903 -352 8900 -360 8898 -367 ct -8895 -374 8894 -380 8892 -384 ct 8890 -389 8890 -392 8889 -393 ct 8889 -392 8888 -389 8887 -384 ct -8885 -379 8883 -373 8881 -366 ct 8878 -359 8876 -352 8873 -343 ct 8870 -335 8867 -326 8864 -318 ct -8808 -174 l 8971 -174 l 8915 -319 l p ef -pom -pum -9751 18018 t -428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct 348 -38 325 -24 299 -14 ct -273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l 230 -437 261 -433 290 -425 ct -318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct 422 -293 428 -261 428 -223 ct -p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -819 0 m 769 -128 l 570 -128 l 520 0 l 458 0 l 637 -438 l 704 -438 l -879 0 l 819 0 l p -695 -319 m 692 -327 689 -335 686 -344 ct 683 -352 680 -360 678 -367 ct 675 -374 674 -380 672 -384 ct -670 -389 670 -392 669 -393 ct 669 -392 668 -389 667 -384 ct 665 -379 663 -373 661 -366 ct -658 -359 656 -352 653 -343 ct 650 -335 647 -326 644 -318 ct 588 -174 l 751 -174 l -695 -319 l p ef -1053 -389 m 1053 0 l 994 0 l 994 -389 l 844 -389 l 844 -437 l 1203 -437 l -1203 -389 l 1053 -389 l p ef -1530 0 m 1480 -128 l 1281 -128 l 1231 0 l 1169 0 l 1348 -438 l 1415 -438 l -1590 0 l 1530 0 l p -1406 -319 m 1403 -327 1400 -335 1397 -344 ct 1394 -352 1391 -360 1389 -367 ct -1386 -374 1385 -380 1383 -384 ct 1381 -389 1381 -392 1380 -393 ct 1380 -392 1379 -389 1378 -384 ct -1376 -379 1374 -373 1372 -366 ct 1369 -359 1367 -352 1364 -343 ct 1361 -335 1358 -326 1355 -318 ct -1299 -174 l 1462 -174 l 1406 -319 l p ef -1982 -123 m 1982 -101 1978 -82 1969 -67 ct 1960 -51 1949 -38 1934 -28 ct 1919 -19 1902 -11 1883 -7 ct -1863 -2 1843 0 1821 0 ct 1644 0 l 1644 -437 l 1803 -437 l 1827 -437 1849 -435 1868 -431 ct -1887 -427 1903 -421 1916 -412 ct 1929 -404 1939 -393 1946 -379 ct 1953 -366 1957 -350 1957 -331 ct -1957 -319 1955 -307 1952 -297 ct 1948 -286 1943 -276 1936 -267 ct 1929 -258 1920 -251 1910 -245 ct -1900 -238 1887 -234 1874 -230 ct 1891 -228 1907 -224 1920 -218 ct 1934 -212 1945 -205 1954 -195 ct -1963 -186 1970 -175 1975 -163 ct 1980 -151 1982 -137 1982 -123 ct p -1897 -324 m 1897 -348 1889 -365 1873 -375 ct 1857 -385 1833 -390 1803 -390 ct -1703 -390 l 1703 -251 l 1803 -251 l 1820 -251 1835 -253 1847 -256 ct 1859 -260 1869 -265 1876 -271 ct -1883 -277 1889 -285 1892 -294 ct 1895 -303 1897 -313 1897 -324 ct p -1922 -128 m 1922 -142 1920 -153 1915 -163 ct 1910 -173 1902 -181 1893 -187 ct -1883 -193 1872 -198 1859 -201 ct 1845 -204 1830 -205 1814 -205 ct 1703 -205 l -1703 -47 l 1818 -47 l 1833 -47 1847 -49 1860 -51 ct 1873 -54 1884 -58 1893 -64 ct -1902 -70 1909 -79 1914 -89 ct 1920 -99 1922 -112 1922 -128 ct p ef -2377 0 m 2327 -128 l 2128 -128 l 2078 0 l 2016 0 l 2195 -438 l 2262 -438 l -2437 0 l 2377 0 l p -2253 -319 m 2250 -327 2247 -335 2244 -344 ct 2241 -352 2238 -360 2236 -367 ct -2233 -374 2232 -380 2230 -384 ct 2228 -389 2228 -392 2227 -393 ct 2227 -392 2226 -389 2225 -384 ct -2223 -379 2221 -373 2219 -366 ct 2216 -359 2214 -352 2211 -343 ct 2208 -335 2205 -326 2202 -318 ct -2146 -174 l 2309 -174 l 2253 -319 l p ef -2832 -121 m 2832 -103 2829 -86 2822 -70 ct 2815 -55 2804 -41 2789 -30 ct 2774 -19 2755 -10 2732 -3 ct -2710 3 2683 6 2652 6 ct 2598 6 2555 -4 2525 -23 ct 2494 -42 2475 -69 2467 -105 ct -2524 -117 l 2527 -105 2532 -95 2538 -86 ct 2544 -76 2552 -68 2562 -61 ct 2572 -55 2585 -50 2600 -46 ct -2615 -42 2633 -40 2654 -40 ct 2672 -40 2688 -42 2702 -45 ct 2717 -48 2730 -52 2740 -59 ct -2751 -65 2759 -73 2765 -83 ct 2771 -92 2774 -104 2774 -118 ct 2774 -132 2771 -144 2764 -153 ct -2758 -161 2748 -169 2737 -175 ct 2725 -180 2711 -185 2694 -189 ct 2678 -193 2660 -197 2640 -202 ct -2628 -205 2616 -208 2603 -211 ct 2591 -214 2579 -218 2568 -222 ct 2557 -227 2546 -232 2536 -238 ct -2526 -244 2518 -251 2511 -259 ct 2503 -268 2498 -278 2494 -289 ct 2489 -300 2487 -313 2487 -327 ct -2487 -348 2491 -365 2500 -380 ct 2508 -395 2520 -407 2535 -417 ct 2550 -426 2567 -433 2587 -437 ct -2608 -442 2630 -444 2653 -444 ct 2680 -444 2703 -442 2723 -438 ct 2742 -433 2758 -427 2771 -419 ct -2785 -410 2795 -400 2803 -387 ct 2811 -375 2817 -360 2822 -343 ct 2764 -333 l -2761 -344 2757 -353 2751 -361 ct 2746 -370 2739 -377 2730 -382 ct 2721 -388 2710 -392 2697 -395 ct -2685 -398 2670 -399 2653 -399 ct 2632 -399 2615 -397 2602 -394 ct 2588 -390 2577 -385 2568 -379 ct -2560 -373 2554 -366 2550 -357 ct 2547 -349 2545 -340 2545 -330 ct 2545 -317 2548 -306 2555 -298 ct -2561 -290 2570 -283 2581 -277 ct 2592 -271 2605 -267 2620 -263 ct 2635 -259 2650 -256 2667 -252 ct -2680 -249 2694 -246 2707 -242 ct 2720 -239 2733 -235 2745 -231 ct 2757 -226 2769 -221 2780 -215 ct -2790 -209 2799 -202 2807 -193 ct 2815 -185 2821 -174 2826 -163 ct 2830 -151 2832 -137 2832 -121 ct -p ef -2914 0 m 2914 -437 l 3246 -437 l 3246 -389 l 2973 -389 l 2973 -249 l -3227 -249 l 3227 -201 l 2973 -201 l 2973 -48 l 3258 -48 l 3258 0 l -2914 0 l p ef -3457 -163 m 3457 -134 3455 -107 3451 -81 ct 3446 -55 3439 -29 3430 -5 ct 3421 19 3409 43 3394 65 ct -3380 88 3363 110 3343 132 ct 3289 132 l 3308 110 3325 88 3339 65 ct 3353 43 3365 19 3374 -5 ct -3383 -30 3390 -55 3394 -81 ct 3399 -108 3401 -135 3401 -164 ct 3401 -193 3399 -220 3394 -247 ct -3390 -273 3383 -298 3374 -322 ct 3365 -347 3353 -370 3339 -393 ct 3325 -416 3308 -438 3289 -460 ct -3343 -460 l 3363 -438 3380 -416 3394 -393 ct 3409 -371 3421 -347 3430 -323 ct -3439 -299 3446 -273 3451 -247 ct 3455 -221 3457 -193 3457 -165 ct 3457 -163 l -p ef -4036 -1 m 3922 -182 l 3786 -182 l 3786 -1 l 3727 -1 l 3727 -437 l -3933 -437 l 3957 -437 3979 -435 3999 -429 ct 4018 -423 4034 -415 4047 -404 ct -4060 -394 4070 -380 4077 -365 ct 4083 -349 4087 -332 4087 -313 ct 4087 -299 4085 -285 4081 -272 ct -4077 -258 4070 -246 4062 -235 ct 4053 -224 4042 -214 4028 -206 ct 4015 -198 3999 -192 3980 -189 ct -4104 -1 l 4036 -1 l p -4027 -312 m 4027 -325 4025 -337 4020 -346 ct 4016 -356 4009 -364 4001 -371 ct -3992 -377 3981 -382 3969 -385 ct 3957 -388 3942 -390 3927 -390 ct 3786 -390 l -3786 -229 l 3929 -229 l 3946 -229 3961 -231 3973 -235 ct 3986 -239 3996 -245 4004 -253 ct -4012 -260 4018 -269 4021 -279 ct 4025 -289 4027 -300 4027 -312 ct p ef -4184 0 m 4184 -437 l 4516 -437 l 4516 -389 l 4243 -389 l 4243 -249 l -4497 -249 l 4497 -201 l 4243 -201 l 4243 -48 l 4528 -48 l 4528 0 l -4184 0 l p ef -4917 0 m 4867 -128 l 4668 -128 l 4618 0 l 4556 0 l 4735 -438 l 4802 -438 l -4977 0 l 4917 0 l p -4793 -319 m 4790 -327 4787 -335 4784 -344 ct 4781 -352 4778 -360 4776 -367 ct -4773 -374 4772 -380 4770 -384 ct 4768 -389 4768 -392 4767 -393 ct 4767 -392 4766 -389 4765 -384 ct -4763 -379 4761 -373 4759 -366 ct 4756 -359 4754 -352 4751 -343 ct 4748 -335 4745 -326 4742 -318 ct -4686 -174 l 4849 -174 l 4793 -319 l p ef -5406 -223 m 5406 -187 5401 -155 5390 -127 ct 5379 -99 5364 -76 5345 -57 ct -5326 -38 5303 -24 5277 -14 ct 5251 -5 5223 0 5193 0 ct 5030 0 l 5030 -437 l -5175 -437 l 5208 -437 5239 -433 5268 -425 ct 5296 -417 5321 -404 5341 -386 ct -5362 -369 5378 -346 5389 -319 ct 5400 -293 5406 -261 5406 -223 ct p -5347 -223 m 5347 -253 5342 -278 5334 -299 ct 5325 -320 5314 -337 5298 -351 ct -5283 -364 5265 -374 5243 -381 ct 5222 -387 5199 -390 5173 -390 ct 5089 -390 l -5089 -47 l 5187 -47 l 5210 -47 5231 -51 5250 -59 ct 5270 -66 5287 -77 5301 -92 ct -5315 -107 5327 -125 5335 -147 ct 5343 -169 5347 -194 5347 -223 ct p ef -5676 -181 m 5676 0 l 5617 0 l 5617 -181 l 5449 -438 l 5514 -438 l -5647 -229 l 5779 -438 l 5845 -438 l 5676 -181 l p ef -6233 -389 m 6233 0 l 6174 0 l 6174 -389 l 6024 -389 l 6024 -437 l -6383 -437 l 6383 -389 l 6233 -389 l p ef -6851 -221 m 6851 -187 6846 -156 6836 -128 ct 6826 -100 6812 -76 6793 -56 ct -6775 -36 6752 -21 6725 -10 ct 6698 1 6668 6 6634 6 ct 6598 6 6566 0 6539 -11 ct -6512 -22 6489 -38 6471 -58 ct 6453 -78 6440 -102 6431 -130 ct 6422 -158 6417 -188 6417 -221 ct -6417 -255 6422 -286 6431 -313 ct 6441 -341 6455 -364 6473 -384 ct 6492 -403 6514 -418 6541 -428 ct -6568 -439 6599 -444 6634 -444 ct 6669 -444 6700 -439 6727 -428 ct 6754 -418 6776 -403 6795 -383 ct -6813 -364 6827 -340 6836 -313 ct 6846 -285 6851 -255 6851 -221 ct p -6790 -221 m 6790 -247 6787 -271 6780 -293 ct 6773 -314 6763 -332 6750 -348 ct -6737 -363 6721 -375 6701 -383 ct 6682 -391 6660 -396 6634 -396 ct 6608 -396 6585 -391 6566 -383 ct -6546 -375 6530 -363 6516 -348 ct 6503 -332 6494 -314 6487 -293 ct 6480 -271 6477 -247 6477 -221 ct -6477 -195 6481 -171 6487 -149 ct 6494 -127 6504 -108 6517 -92 ct 6530 -76 6547 -64 6566 -55 ct -6586 -46 6608 -42 6634 -42 ct 6661 -42 6684 -47 6704 -55 ct 6724 -64 6740 -77 6753 -93 ct -6765 -108 6775 -127 6781 -149 ct 6787 -171 6790 -195 6790 -221 ct p ef -7450 -123 m 7450 -101 7446 -82 7437 -67 ct 7428 -51 7417 -38 7402 -28 ct 7387 -19 7370 -11 7351 -7 ct -7331 -2 7311 0 7289 0 ct 7112 0 l 7112 -437 l 7271 -437 l 7295 -437 7317 -435 7336 -431 ct -7355 -427 7371 -421 7384 -412 ct 7397 -404 7407 -393 7414 -379 ct 7421 -366 7425 -350 7425 -331 ct -7425 -319 7423 -307 7420 -297 ct 7416 -286 7411 -276 7404 -267 ct 7397 -258 7388 -251 7378 -245 ct -7368 -238 7355 -234 7342 -230 ct 7359 -228 7375 -224 7388 -218 ct 7402 -212 7413 -205 7422 -195 ct -7431 -186 7438 -175 7443 -163 ct 7448 -151 7450 -137 7450 -123 ct p -7365 -324 m 7365 -348 7357 -365 7341 -375 ct 7325 -385 7301 -390 7271 -390 ct -7171 -390 l 7171 -251 l 7271 -251 l 7288 -251 7303 -253 7315 -256 ct 7327 -260 7337 -265 7344 -271 ct -7351 -277 7357 -285 7360 -294 ct 7363 -303 7365 -313 7365 -324 ct p -7390 -128 m 7390 -142 7388 -153 7383 -163 ct 7378 -173 7370 -181 7361 -187 ct -7351 -193 7340 -198 7327 -201 ct 7313 -204 7298 -205 7282 -205 ct 7171 -205 l -7171 -47 l 7286 -47 l 7301 -47 7315 -49 7328 -51 ct 7341 -54 7352 -58 7361 -64 ct -7370 -70 7377 -79 7382 -89 ct 7388 -99 7390 -112 7390 -128 ct p ef -7536 0 m 7536 -437 l 7868 -437 l 7868 -389 l 7595 -389 l 7595 -249 l -7849 -249 l 7849 -201 l 7595 -201 l 7595 -48 l 7880 -48 l 7880 0 l -7536 0 l p ef -8312 6 m 8288 6 8265 3 8243 -4 ct 8222 -10 8203 -20 8187 -34 ct 8171 -47 8158 -64 8148 -85 ct -8139 -106 8134 -131 8134 -159 ct 8134 -438 l 8193 -438 l 8193 -164 l 8193 -142 8196 -123 8202 -108 ct -8208 -92 8216 -80 8227 -70 ct 8237 -60 8250 -53 8264 -49 ct 8278 -44 8294 -42 8311 -42 ct -8328 -42 8344 -44 8359 -49 ct 8374 -53 8388 -61 8399 -71 ct 8410 -81 8419 -94 8426 -110 ct -8432 -126 8436 -145 8436 -168 ct 8436 -438 l 8495 -438 l 8495 -165 l 8495 -136 8490 -110 8480 -89 ct -8471 -67 8457 -50 8441 -36 ct 8424 -22 8405 -11 8383 -4 ct 8361 3 8337 6 8312 6 ct -p ef -8936 -121 m 8936 -103 8933 -86 8926 -70 ct 8919 -55 8908 -41 8893 -30 ct 8878 -19 8859 -10 8836 -3 ct -8814 3 8787 6 8756 6 ct 8702 6 8659 -4 8629 -23 ct 8598 -42 8579 -69 8571 -105 ct -8628 -117 l 8631 -105 8636 -95 8642 -86 ct 8648 -76 8656 -68 8666 -61 ct 8676 -55 8689 -50 8704 -46 ct -8719 -42 8737 -40 8758 -40 ct 8776 -40 8792 -42 8806 -45 ct 8821 -48 8834 -52 8844 -59 ct -8855 -65 8863 -73 8869 -83 ct 8875 -92 8878 -104 8878 -118 ct 8878 -132 8875 -144 8868 -153 ct -8862 -161 8852 -169 8841 -175 ct 8829 -180 8815 -185 8798 -189 ct 8782 -193 8764 -197 8744 -202 ct -8732 -205 8720 -208 8707 -211 ct 8695 -214 8683 -218 8672 -222 ct 8661 -227 8650 -232 8640 -238 ct -8630 -244 8622 -251 8615 -259 ct 8607 -268 8602 -278 8598 -289 ct 8593 -300 8591 -313 8591 -327 ct -8591 -348 8595 -365 8604 -380 ct 8612 -395 8624 -407 8639 -417 ct 8654 -426 8671 -433 8691 -437 ct -8712 -442 8734 -444 8757 -444 ct 8784 -444 8807 -442 8827 -438 ct 8846 -433 8862 -427 8875 -419 ct -8889 -410 8899 -400 8907 -387 ct 8915 -375 8921 -360 8926 -343 ct 8868 -333 l -8865 -344 8861 -353 8855 -361 ct 8850 -370 8843 -377 8834 -382 ct 8825 -388 8814 -392 8801 -395 ct -8789 -398 8774 -399 8757 -399 ct 8736 -399 8719 -397 8706 -394 ct 8692 -390 8681 -385 8672 -379 ct -8664 -373 8658 -366 8654 -357 ct 8651 -349 8649 -340 8649 -330 ct 8649 -317 8652 -306 8659 -298 ct -8665 -290 8674 -283 8685 -277 ct 8696 -271 8709 -267 8724 -263 ct 8739 -259 8754 -256 8771 -252 ct -8784 -249 8798 -246 8811 -242 ct 8824 -239 8837 -235 8849 -231 ct 8861 -226 8873 -221 8884 -215 ct -8894 -209 8903 -202 8911 -193 ct 8919 -185 8925 -174 8930 -163 ct 8934 -151 8936 -137 8936 -121 ct -p ef -9017 0 m 9017 -437 l 9349 -437 l 9349 -389 l 9076 -389 l 9076 -249 l -9330 -249 l 9330 -201 l 9076 -201 l 9076 -48 l 9361 -48 l 9361 0 l -9017 0 l p ef -9817 -223 m 9817 -187 9812 -155 9801 -127 ct 9790 -99 9775 -76 9756 -57 ct -9737 -38 9714 -24 9688 -14 ct 9662 -5 9634 0 9604 0 ct 9441 0 l 9441 -437 l -9586 -437 l 9619 -437 9650 -433 9679 -425 ct 9707 -417 9732 -404 9752 -386 ct -9773 -369 9789 -346 9800 -319 ct 9811 -293 9817 -261 9817 -223 ct p -9758 -223 m 9758 -253 9753 -278 9745 -299 ct 9736 -320 9725 -337 9709 -351 ct -9694 -364 9676 -374 9654 -381 ct 9633 -387 9610 -390 9584 -390 ct 9500 -390 l -9500 -47 l 9598 -47 l 9621 -47 9642 -51 9661 -59 ct 9681 -66 9698 -77 9712 -92 ct -9726 -107 9738 -125 9746 -147 ct 9754 -169 9758 -194 9758 -223 ct p ef -pom -1.000 0.203 0.203 c 2463 18905 m 6732 18905 4202 18909 7462 18910 ct ps -8156 18910 m 7478 18684 l 7478 19136 l 8156 18910 l p ef -pum -9726 18908 t -0.003 0.003 0.003 c 111 -389 m 111 -226 l 355 -226 l 355 -177 l 111 -177 l -111 0 l 52 0 l 52 -437 l 362 -437 l 362 -389 l 111 -389 l p ef -853 -221 m 853 -187 848 -156 838 -128 ct 828 -100 814 -76 795 -56 ct 777 -36 754 -21 727 -10 ct -700 1 670 6 636 6 ct 600 6 568 0 541 -11 ct 514 -22 491 -38 473 -58 ct 455 -78 442 -102 433 -130 ct -424 -158 419 -188 419 -221 ct 419 -255 424 -286 433 -313 ct 443 -341 457 -364 475 -384 ct -494 -403 516 -418 543 -428 ct 570 -439 601 -444 636 -444 ct 671 -444 702 -439 729 -428 ct -756 -418 778 -403 797 -383 ct 815 -364 829 -340 838 -313 ct 848 -285 853 -255 853 -221 ct -p -792 -221 m 792 -247 789 -271 782 -293 ct 775 -314 765 -332 752 -348 ct 739 -363 723 -375 703 -383 ct -684 -391 662 -396 636 -396 ct 610 -396 587 -391 568 -383 ct 548 -375 532 -363 518 -348 ct -505 -332 496 -314 489 -293 ct 482 -271 479 -247 479 -221 ct 479 -195 483 -171 489 -149 ct -496 -127 506 -108 519 -92 ct 532 -76 549 -64 568 -55 ct 588 -46 610 -42 636 -42 ct -663 -42 686 -47 706 -55 ct 726 -64 742 -77 755 -93 ct 767 -108 777 -127 783 -149 ct -789 -171 792 -195 792 -221 ct p ef -1246 -1 m 1132 -182 l 996 -182 l 996 -1 l 937 -1 l 937 -437 l 1143 -437 l -1167 -437 1189 -435 1209 -429 ct 1228 -423 1244 -415 1257 -404 ct 1270 -394 1280 -380 1287 -365 ct -1293 -349 1297 -332 1297 -313 ct 1297 -299 1295 -285 1291 -272 ct 1287 -258 1280 -246 1272 -235 ct -1263 -224 1252 -214 1238 -206 ct 1225 -198 1209 -192 1190 -189 ct 1314 -1 l -1246 -1 l p -1237 -312 m 1237 -325 1235 -337 1230 -346 ct 1226 -356 1219 -364 1211 -371 ct -1202 -377 1191 -382 1179 -385 ct 1167 -388 1152 -390 1137 -390 ct 996 -390 l -996 -229 l 1139 -229 l 1156 -229 1171 -231 1183 -235 ct 1196 -239 1206 -245 1214 -253 ct -1222 -260 1228 -269 1231 -279 ct 1235 -289 1237 -300 1237 -312 ct p ef -1798 0 m 1727 0 l 1651 -278 l 1649 -286 1646 -295 1644 -306 ct 1641 -317 1639 -327 1637 -337 ct -1634 -348 1632 -360 1629 -371 ct 1627 -359 1624 -348 1622 -336 ct 1619 -326 1617 -316 1615 -306 ct -1612 -295 1610 -286 1607 -278 ct 1531 0 l 1460 0 l 1332 -438 l 1394 -438 l -1472 -159 l 1475 -146 1479 -133 1482 -121 ct 1485 -108 1488 -96 1490 -86 ct -1493 -74 1495 -63 1498 -52 ct 1501 -66 1504 -80 1507 -94 ct 1509 -100 1510 -106 1512 -113 ct -1513 -119 1515 -125 1516 -132 ct 1518 -138 1519 -144 1521 -149 ct 1522 -155 1524 -160 1525 -165 ct -1601 -438 l 1658 -438 l 1734 -165 l 1735 -160 1736 -155 1738 -149 ct 1739 -144 1741 -138 1742 -132 ct -1744 -126 1746 -119 1747 -113 ct 1748 -106 1750 -100 1751 -95 ct 1755 -81 1758 -66 1761 -52 ct -1761 -52 1762 -56 1764 -63 ct 1765 -70 1767 -79 1770 -90 ct 1772 -100 1775 -112 1778 -125 ct -1781 -137 1784 -149 1787 -159 ct 1864 -438 l 1926 -438 l 1798 0 l p ef -2267 0 m 2217 -128 l 2018 -128 l 1968 0 l 1906 0 l 2085 -438 l 2152 -438 l -2327 0 l 2267 0 l p -2143 -319 m 2140 -327 2137 -335 2134 -344 ct 2131 -352 2128 -360 2126 -367 ct -2123 -374 2122 -380 2120 -384 ct 2118 -389 2118 -392 2117 -393 ct 2117 -392 2116 -389 2115 -384 ct -2113 -379 2111 -373 2109 -366 ct 2106 -359 2104 -352 2101 -343 ct 2098 -335 2095 -326 2092 -318 ct -2036 -174 l 2199 -174 l 2143 -319 l p ef -2689 -1 m 2575 -182 l 2439 -182 l 2439 -1 l 2380 -1 l 2380 -437 l -2586 -437 l 2610 -437 2632 -435 2652 -429 ct 2671 -423 2687 -415 2700 -404 ct -2713 -394 2723 -380 2730 -365 ct 2736 -349 2740 -332 2740 -313 ct 2740 -299 2738 -285 2734 -272 ct -2730 -258 2723 -246 2715 -235 ct 2706 -224 2695 -214 2681 -206 ct 2668 -198 2652 -192 2633 -189 ct -2757 -1 l 2689 -1 l p -2680 -312 m 2680 -325 2678 -337 2673 -346 ct 2669 -356 2662 -364 2654 -371 ct -2645 -377 2634 -382 2622 -385 ct 2610 -388 2595 -390 2580 -390 ct 2439 -390 l -2439 -229 l 2582 -229 l 2599 -229 2614 -231 2626 -235 ct 2639 -239 2649 -245 2657 -253 ct -2665 -260 2671 -269 2674 -279 ct 2678 -289 2680 -300 2680 -312 ct p ef -3214 -223 m 3214 -187 3209 -155 3198 -127 ct 3187 -99 3172 -76 3153 -57 ct -3134 -38 3111 -24 3085 -14 ct 3059 -5 3031 0 3001 0 ct 2838 0 l 2838 -437 l -2983 -437 l 3016 -437 3047 -433 3076 -425 ct 3104 -417 3129 -404 3149 -386 ct -3170 -369 3186 -346 3197 -319 ct 3208 -293 3214 -261 3214 -223 ct p -3155 -223 m 3155 -253 3150 -278 3142 -299 ct 3133 -320 3122 -337 3106 -351 ct -3091 -364 3073 -374 3051 -381 ct 3030 -387 3007 -390 2981 -390 ct 2897 -390 l -2897 -47 l 2995 -47 l 3018 -47 3039 -51 3058 -59 ct 3078 -66 3095 -77 3109 -92 ct -3123 -107 3135 -125 3143 -147 ct 3151 -169 3155 -194 3155 -223 ct p ef -3667 -396 m 3642 -396 3620 -391 3601 -383 ct 3582 -375 3566 -363 3553 -348 ct -3540 -332 3530 -314 3523 -293 ct 3517 -271 3513 -247 3513 -221 ct 3513 -195 3517 -171 3524 -149 ct -3531 -127 3541 -108 3555 -92 ct 3568 -77 3584 -64 3604 -56 ct 3623 -47 3645 -43 3669 -43 ct -3686 -43 3701 -45 3715 -49 ct 3729 -54 3742 -60 3753 -68 ct 3764 -76 3775 -86 3783 -97 ct -3792 -108 3800 -120 3807 -134 ct 3855 -109 l 3848 -93 3838 -78 3826 -64 ct -3815 -50 3801 -38 3785 -27 ct 3770 -17 3752 -9 3732 -3 ct 3713 3 3691 6 3666 6 ct -3631 6 3600 0 3573 -11 ct 3547 -22 3525 -38 3507 -58 ct 3489 -78 3475 -102 3467 -130 ct -3458 -158 3453 -188 3453 -221 ct 3453 -255 3458 -286 3467 -313 ct 3477 -341 3491 -364 3509 -384 ct -3527 -403 3549 -418 3575 -428 ct 3602 -439 3632 -444 3666 -444 ct 3712 -444 3751 -435 3783 -417 ct -3814 -398 3837 -371 3851 -336 ct 3795 -317 l 3791 -327 3786 -337 3779 -347 ct -3771 -356 3763 -364 3752 -372 ct 3742 -379 3729 -385 3715 -389 ct 3701 -393 3685 -396 3667 -396 ct -p ef -4342 -221 m 4342 -187 4337 -156 4327 -128 ct 4317 -100 4303 -76 4284 -56 ct -4266 -36 4243 -21 4216 -10 ct 4189 1 4159 6 4125 6 ct 4089 6 4057 0 4030 -11 ct -4003 -22 3980 -38 3962 -58 ct 3944 -78 3931 -102 3922 -130 ct 3913 -158 3908 -188 3908 -221 ct -3908 -255 3913 -286 3922 -313 ct 3932 -341 3946 -364 3964 -384 ct 3983 -403 4005 -418 4032 -428 ct -4059 -439 4090 -444 4125 -444 ct 4160 -444 4191 -439 4218 -428 ct 4245 -418 4267 -403 4286 -383 ct -4304 -364 4318 -340 4327 -313 ct 4337 -285 4342 -255 4342 -221 ct p -4281 -221 m 4281 -247 4278 -271 4271 -293 ct 4264 -314 4254 -332 4241 -348 ct -4228 -363 4212 -375 4192 -383 ct 4173 -391 4151 -396 4125 -396 ct 4099 -396 4076 -391 4057 -383 ct -4037 -375 4021 -363 4007 -348 ct 3994 -332 3985 -314 3978 -293 ct 3971 -271 3968 -247 3968 -221 ct -3968 -195 3972 -171 3978 -149 ct 3985 -127 3995 -108 4008 -92 ct 4021 -76 4038 -64 4057 -55 ct -4077 -46 4099 -42 4125 -42 ct 4152 -42 4175 -47 4195 -55 ct 4215 -64 4231 -77 4244 -93 ct -4256 -108 4266 -127 4272 -149 ct 4278 -171 4281 -195 4281 -221 ct p ef -4708 0 m 4475 -372 l 4475 -362 4476 -352 4476 -342 ct 4477 -334 4477 -325 4477 -315 ct -4478 -306 4478 -298 4478 -290 ct 4478 0 l 4425 0 l 4425 -437 l 4494 -437 l -4730 -62 l 4730 -73 4729 -83 4728 -93 ct 4728 -101 4728 -111 4727 -121 ct 4727 -131 4726 -141 4726 -151 ct -4726 -437 l 4780 -437 l 4780 0 l 4708 0 l p ef -5165 0 m 4932 -372 l 4932 -362 4933 -352 4933 -342 ct 4934 -334 4934 -325 4934 -315 ct -4935 -306 4935 -298 4935 -290 ct 4935 0 l 4882 0 l 4882 -437 l 4951 -437 l -5187 -62 l 5187 -73 5186 -83 5185 -93 ct 5185 -101 5185 -111 5184 -121 ct 5184 -131 5183 -141 5183 -151 ct -5183 -437 l 5237 -437 l 5237 0 l 5165 0 l p ef -5338 0 m 5338 -437 l 5670 -437 l 5670 -389 l 5397 -389 l 5397 -249 l -5651 -249 l 5651 -201 l 5397 -201 l 5397 -48 l 5682 -48 l 5682 0 l -5338 0 l p ef -5956 -396 m 5931 -396 5909 -391 5890 -383 ct 5871 -375 5855 -363 5842 -348 ct -5829 -332 5819 -314 5812 -293 ct 5806 -271 5802 -247 5802 -221 ct 5802 -195 5806 -171 5813 -149 ct -5820 -127 5830 -108 5844 -92 ct 5857 -77 5873 -64 5893 -56 ct 5912 -47 5934 -43 5958 -43 ct -5975 -43 5990 -45 6004 -49 ct 6018 -54 6031 -60 6042 -68 ct 6053 -76 6064 -86 6072 -97 ct -6081 -108 6089 -120 6096 -134 ct 6144 -109 l 6137 -93 6127 -78 6115 -64 ct -6104 -50 6090 -38 6074 -27 ct 6059 -17 6041 -9 6021 -3 ct 6002 3 5980 6 5955 6 ct -5920 6 5889 0 5862 -11 ct 5836 -22 5814 -38 5796 -58 ct 5778 -78 5764 -102 5756 -130 ct -5747 -158 5742 -188 5742 -221 ct 5742 -255 5747 -286 5756 -313 ct 5766 -341 5780 -364 5798 -384 ct -5816 -403 5838 -418 5864 -428 ct 5891 -439 5921 -444 5955 -444 ct 6001 -444 6040 -435 6072 -417 ct -6103 -398 6126 -371 6140 -336 ct 6084 -317 l 6080 -327 6075 -337 6068 -347 ct -6060 -356 6052 -364 6041 -372 ct 6031 -379 6018 -385 6004 -389 ct 5990 -393 5974 -396 5956 -396 ct -p ef -6390 -389 m 6390 0 l 6331 0 l 6331 -389 l 6181 -389 l 6181 -437 l -6540 -437 l 6540 -389 l 6390 -389 l p ef -6615 0 m 6615 -437 l 6674 -437 l 6674 0 l 6615 0 l p ef -7198 -221 m 7198 -187 7193 -156 7183 -128 ct 7173 -100 7159 -76 7140 -56 ct -7122 -36 7099 -21 7072 -10 ct 7045 1 7015 6 6981 6 ct 6945 6 6913 0 6886 -11 ct -6859 -22 6836 -38 6818 -58 ct 6800 -78 6787 -102 6778 -130 ct 6769 -158 6764 -188 6764 -221 ct -6764 -255 6769 -286 6778 -313 ct 6788 -341 6802 -364 6820 -384 ct 6839 -403 6861 -418 6888 -428 ct -6915 -439 6946 -444 6981 -444 ct 7016 -444 7047 -439 7074 -428 ct 7101 -418 7123 -403 7142 -383 ct -7160 -364 7174 -340 7183 -313 ct 7193 -285 7198 -255 7198 -221 ct p -7137 -221 m 7137 -247 7134 -271 7127 -293 ct 7120 -314 7110 -332 7097 -348 ct -7084 -363 7068 -375 7048 -383 ct 7029 -391 7007 -396 6981 -396 ct 6955 -396 6932 -391 6913 -383 ct -6893 -375 6877 -363 6863 -348 ct 6850 -332 6841 -314 6834 -293 ct 6827 -271 6824 -247 6824 -221 ct -6824 -195 6828 -171 6834 -149 ct 6841 -127 6851 -108 6864 -92 ct 6877 -76 6894 -64 6913 -55 ct -6933 -46 6955 -42 6981 -42 ct 7008 -42 7031 -47 7051 -55 ct 7071 -64 7087 -77 7100 -93 ct -7112 -108 7122 -127 7128 -149 ct 7134 -171 7137 -195 7137 -221 ct p ef -7565 0 m 7332 -372 l 7332 -362 7333 -352 7333 -342 ct 7334 -334 7334 -325 7334 -315 ct -7335 -306 7335 -298 7335 -290 ct 7335 0 l 7282 0 l 7282 -437 l 7351 -437 l -7587 -62 l 7587 -73 7586 -83 7585 -93 ct 7585 -101 7585 -111 7584 -121 ct 7584 -131 7583 -141 7583 -151 ct -7583 -437 l 7637 -437 l 7637 0 l 7565 0 l p ef -7904 -165 m 7904 -193 7907 -221 7911 -247 ct 7915 -273 7922 -299 7931 -323 ct -7941 -347 7953 -371 7967 -393 ct 7981 -416 7999 -438 8019 -460 ct 8073 -460 l -8053 -438 8037 -416 8022 -393 ct 8008 -370 7997 -347 7987 -322 ct 7978 -298 7972 -273 7967 -247 ct -7963 -220 7961 -193 7961 -164 ct 7961 -135 7963 -108 7967 -81 ct 7972 -55 7978 -30 7987 -5 ct -7997 19 8008 43 8022 65 ct 8037 88 8053 110 8073 132 ct 8019 132 l 7999 110 7981 88 7967 65 ct -7953 43 7941 19 7931 -5 ct 7922 -29 7915 -55 7911 -81 ct 7907 -107 7904 -134 7904 -163 ct -7904 -165 l p ef -8318 0 m 8257 0 l 8079 -438 l 8141 -438 l 8262 -129 l 8265 -120 8268 -111 8271 -102 ct -8274 -92 8277 -84 8280 -77 ct 8283 -69 8285 -60 8288 -52 ct 8291 -60 8293 -68 8296 -76 ct -8299 -84 8301 -92 8304 -101 ct 8307 -110 8311 -120 8314 -129 ct 8434 -438 l -8497 -438 l 8318 0 l p ef -8559 0 m 8559 -437 l 8618 -437 l 8618 0 l 8559 0 l p ef -9039 0 m 8989 -128 l 8790 -128 l 8740 0 l 8678 0 l 8857 -438 l 8924 -438 l -9099 0 l 9039 0 l p -8915 -319 m 8912 -327 8909 -335 8906 -344 ct 8903 -352 8900 -360 8898 -367 ct -8895 -374 8894 -380 8892 -384 ct 8890 -389 8890 -392 8889 -393 ct 8889 -392 8888 -389 8887 -384 ct -8885 -379 8883 -373 8881 -366 ct 8878 -359 8876 -352 8873 -343 ct 8870 -335 8867 -326 8864 -318 ct -8808 -174 l 8971 -174 l 8915 -319 l p ef -pom -pum -9726 19619 t -428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct 348 -38 325 -24 299 -14 ct -273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l 230 -437 261 -433 290 -425 ct -318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct 422 -293 428 -261 428 -223 ct -p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -819 0 m 769 -128 l 570 -128 l 520 0 l 458 0 l 637 -438 l 704 -438 l -879 0 l 819 0 l p -695 -319 m 692 -327 689 -335 686 -344 ct 683 -352 680 -360 678 -367 ct 675 -374 674 -380 672 -384 ct -670 -389 670 -392 669 -393 ct 669 -392 668 -389 667 -384 ct 665 -379 663 -373 661 -366 ct -658 -359 656 -352 653 -343 ct 650 -335 647 -326 644 -318 ct 588 -174 l 751 -174 l -695 -319 l p ef -1053 -389 m 1053 0 l 994 0 l 994 -389 l 844 -389 l 844 -437 l 1203 -437 l -1203 -389 l 1053 -389 l p ef -1530 0 m 1480 -128 l 1281 -128 l 1231 0 l 1169 0 l 1348 -438 l 1415 -438 l -1590 0 l 1530 0 l p -1406 -319 m 1403 -327 1400 -335 1397 -344 ct 1394 -352 1391 -360 1389 -367 ct -1386 -374 1385 -380 1383 -384 ct 1381 -389 1381 -392 1380 -393 ct 1380 -392 1379 -389 1378 -384 ct -1376 -379 1374 -373 1372 -366 ct 1369 -359 1367 -352 1364 -343 ct 1361 -335 1358 -326 1355 -318 ct -1299 -174 l 1462 -174 l 1406 -319 l p ef -1982 -123 m 1982 -101 1978 -82 1969 -67 ct 1960 -51 1949 -38 1934 -28 ct 1919 -19 1902 -11 1883 -7 ct -1863 -2 1843 0 1821 0 ct 1644 0 l 1644 -437 l 1803 -437 l 1827 -437 1849 -435 1868 -431 ct -1887 -427 1903 -421 1916 -412 ct 1929 -404 1939 -393 1946 -379 ct 1953 -366 1957 -350 1957 -331 ct -1957 -319 1955 -307 1952 -297 ct 1948 -286 1943 -276 1936 -267 ct 1929 -258 1920 -251 1910 -245 ct -1900 -238 1887 -234 1874 -230 ct 1891 -228 1907 -224 1920 -218 ct 1934 -212 1945 -205 1954 -195 ct -1963 -186 1970 -175 1975 -163 ct 1980 -151 1982 -137 1982 -123 ct p -1897 -324 m 1897 -348 1889 -365 1873 -375 ct 1857 -385 1833 -390 1803 -390 ct -1703 -390 l 1703 -251 l 1803 -251 l 1820 -251 1835 -253 1847 -256 ct 1859 -260 1869 -265 1876 -271 ct -1883 -277 1889 -285 1892 -294 ct 1895 -303 1897 -313 1897 -324 ct p -1922 -128 m 1922 -142 1920 -153 1915 -163 ct 1910 -173 1902 -181 1893 -187 ct -1883 -193 1872 -198 1859 -201 ct 1845 -204 1830 -205 1814 -205 ct 1703 -205 l -1703 -47 l 1818 -47 l 1833 -47 1847 -49 1860 -51 ct 1873 -54 1884 -58 1893 -64 ct -1902 -70 1909 -79 1914 -89 ct 1920 -99 1922 -112 1922 -128 ct p ef -2377 0 m 2327 -128 l 2128 -128 l 2078 0 l 2016 0 l 2195 -438 l 2262 -438 l -2437 0 l 2377 0 l p -2253 -319 m 2250 -327 2247 -335 2244 -344 ct 2241 -352 2238 -360 2236 -367 ct -2233 -374 2232 -380 2230 -384 ct 2228 -389 2228 -392 2227 -393 ct 2227 -392 2226 -389 2225 -384 ct -2223 -379 2221 -373 2219 -366 ct 2216 -359 2214 -352 2211 -343 ct 2208 -335 2205 -326 2202 -318 ct -2146 -174 l 2309 -174 l 2253 -319 l p ef -2832 -121 m 2832 -103 2829 -86 2822 -70 ct 2815 -55 2804 -41 2789 -30 ct 2774 -19 2755 -10 2732 -3 ct -2710 3 2683 6 2652 6 ct 2598 6 2555 -4 2525 -23 ct 2494 -42 2475 -69 2467 -105 ct -2524 -117 l 2527 -105 2532 -95 2538 -86 ct 2544 -76 2552 -68 2562 -61 ct 2572 -55 2585 -50 2600 -46 ct -2615 -42 2633 -40 2654 -40 ct 2672 -40 2688 -42 2702 -45 ct 2717 -48 2730 -52 2740 -59 ct -2751 -65 2759 -73 2765 -83 ct 2771 -92 2774 -104 2774 -118 ct 2774 -132 2771 -144 2764 -153 ct -2758 -161 2748 -169 2737 -175 ct 2725 -180 2711 -185 2694 -189 ct 2678 -193 2660 -197 2640 -202 ct -2628 -205 2616 -208 2603 -211 ct 2591 -214 2579 -218 2568 -222 ct 2557 -227 2546 -232 2536 -238 ct -2526 -244 2518 -251 2511 -259 ct 2503 -268 2498 -278 2494 -289 ct 2489 -300 2487 -313 2487 -327 ct -2487 -348 2491 -365 2500 -380 ct 2508 -395 2520 -407 2535 -417 ct 2550 -426 2567 -433 2587 -437 ct -2608 -442 2630 -444 2653 -444 ct 2680 -444 2703 -442 2723 -438 ct 2742 -433 2758 -427 2771 -419 ct -2785 -410 2795 -400 2803 -387 ct 2811 -375 2817 -360 2822 -343 ct 2764 -333 l -2761 -344 2757 -353 2751 -361 ct 2746 -370 2739 -377 2730 -382 ct 2721 -388 2710 -392 2697 -395 ct -2685 -398 2670 -399 2653 -399 ct 2632 -399 2615 -397 2602 -394 ct 2588 -390 2577 -385 2568 -379 ct -2560 -373 2554 -366 2550 -357 ct 2547 -349 2545 -340 2545 -330 ct 2545 -317 2548 -306 2555 -298 ct -2561 -290 2570 -283 2581 -277 ct 2592 -271 2605 -267 2620 -263 ct 2635 -259 2650 -256 2667 -252 ct -2680 -249 2694 -246 2707 -242 ct 2720 -239 2733 -235 2745 -231 ct 2757 -226 2769 -221 2780 -215 ct -2790 -209 2799 -202 2807 -193 ct 2815 -185 2821 -174 2826 -163 ct 2830 -151 2832 -137 2832 -121 ct -p ef -2914 0 m 2914 -437 l 3246 -437 l 3246 -389 l 2973 -389 l 2973 -249 l -3227 -249 l 3227 -201 l 2973 -201 l 2973 -48 l 3258 -48 l 3258 0 l -2914 0 l p ef -3457 -163 m 3457 -134 3455 -107 3451 -81 ct 3446 -55 3439 -29 3430 -5 ct 3421 19 3409 43 3394 65 ct -3380 88 3363 110 3343 132 ct 3289 132 l 3308 110 3325 88 3339 65 ct 3353 43 3365 19 3374 -5 ct -3383 -30 3390 -55 3394 -81 ct 3399 -108 3401 -135 3401 -164 ct 3401 -193 3399 -220 3394 -247 ct -3390 -273 3383 -298 3374 -322 ct 3365 -347 3353 -370 3339 -393 ct 3325 -416 3308 -438 3289 -460 ct -3343 -460 l 3363 -438 3380 -416 3394 -393 ct 3409 -371 3421 -347 3430 -323 ct -3439 -299 3446 -273 3451 -247 ct 3455 -221 3457 -193 3457 -165 ct 3457 -163 l -p ef -3902 6 m 3878 6 3855 3 3833 -4 ct 3812 -10 3793 -20 3777 -34 ct 3761 -47 3748 -64 3738 -85 ct -3729 -106 3724 -131 3724 -159 ct 3724 -438 l 3783 -438 l 3783 -164 l 3783 -142 3786 -123 3792 -108 ct -3798 -92 3806 -80 3817 -70 ct 3827 -60 3840 -53 3854 -49 ct 3868 -44 3884 -42 3901 -42 ct -3918 -42 3934 -44 3949 -49 ct 3964 -53 3978 -61 3989 -71 ct 4000 -81 4009 -94 4016 -110 ct -4022 -126 4026 -145 4026 -168 ct 4026 -438 l 4085 -438 l 4085 -165 l 4085 -136 4080 -110 4070 -89 ct -4061 -67 4047 -50 4031 -36 ct 4014 -22 3995 -11 3973 -4 ct 3951 3 3927 6 3902 6 ct -p ef -4467 0 m 4234 -372 l 4234 -362 4235 -352 4235 -342 ct 4236 -334 4236 -325 4236 -315 ct -4237 -306 4237 -298 4237 -290 ct 4237 0 l 4184 0 l 4184 -437 l 4253 -437 l -4489 -62 l 4489 -73 4488 -83 4487 -93 ct 4487 -101 4487 -111 4486 -121 ct 4486 -131 4485 -141 4485 -151 ct -4485 -437 l 4539 -437 l 4539 0 l 4467 0 l p ef -5017 -223 m 5017 -187 5012 -155 5001 -127 ct 4990 -99 4975 -76 4956 -57 ct -4937 -38 4914 -24 4888 -14 ct 4862 -5 4834 0 4804 0 ct 4641 0 l 4641 -437 l -4786 -437 l 4819 -437 4850 -433 4879 -425 ct 4907 -417 4932 -404 4952 -386 ct -4973 -369 4989 -346 5000 -319 ct 5011 -293 5017 -261 5017 -223 ct p -4958 -223 m 4958 -253 4953 -278 4945 -299 ct 4936 -320 4925 -337 4909 -351 ct -4894 -364 4876 -374 4854 -381 ct 4833 -387 4810 -390 4784 -390 ct 4700 -390 l -4700 -47 l 4798 -47 l 4821 -47 4842 -51 4861 -59 ct 4881 -66 4898 -77 4912 -92 ct -4926 -107 4938 -125 4946 -147 ct 4954 -169 4958 -194 4958 -223 ct p ef -5098 0 m 5098 -437 l 5430 -437 l 5430 -389 l 5157 -389 l 5157 -249 l -5411 -249 l 5411 -201 l 5157 -201 l 5157 -48 l 5442 -48 l 5442 0 l -5098 0 l p ef -5829 -1 m 5715 -182 l 5579 -182 l 5579 -1 l 5520 -1 l 5520 -437 l -5726 -437 l 5750 -437 5772 -435 5792 -429 ct 5811 -423 5827 -415 5840 -404 ct -5853 -394 5863 -380 5870 -365 ct 5876 -349 5880 -332 5880 -313 ct 5880 -299 5878 -285 5874 -272 ct -5870 -258 5863 -246 5855 -235 ct 5846 -224 5835 -214 5821 -206 ct 5808 -198 5792 -192 5773 -189 ct -5897 -1 l 5829 -1 l p -5820 -312 m 5820 -325 5818 -337 5813 -346 ct 5809 -356 5802 -364 5794 -371 ct -5785 -377 5774 -382 5762 -385 ct 5750 -388 5735 -390 5720 -390 ct 5579 -390 l -5579 -229 l 5722 -229 l 5739 -229 5754 -231 5766 -235 ct 5779 -239 5789 -245 5797 -253 ct -5805 -260 5811 -269 5814 -279 ct 5818 -289 5820 -300 5820 -312 ct p ef -6531 -223 m 6531 -187 6526 -155 6515 -127 ct 6504 -99 6489 -76 6470 -57 ct -6451 -38 6428 -24 6402 -14 ct 6376 -5 6348 0 6318 0 ct 6155 0 l 6155 -437 l -6300 -437 l 6333 -437 6364 -433 6393 -425 ct 6421 -417 6446 -404 6466 -386 ct -6487 -369 6503 -346 6514 -319 ct 6525 -293 6531 -261 6531 -223 ct p -6472 -223 m 6472 -253 6467 -278 6459 -299 ct 6450 -320 6439 -337 6423 -351 ct -6408 -364 6390 -374 6368 -381 ct 6347 -387 6324 -390 6298 -390 ct 6214 -390 l -6214 -47 l 6312 -47 l 6335 -47 6356 -51 6375 -59 ct 6395 -66 6412 -77 6426 -92 ct -6440 -107 6452 -125 6460 -147 ct 6468 -169 6472 -194 6472 -223 ct p ef -6613 0 m 6613 -437 l 6945 -437 l 6945 -389 l 6672 -389 l 6672 -249 l -6926 -249 l 6926 -201 l 6672 -201 l 6672 -48 l 6957 -48 l 6957 0 l -6613 0 l p ef -7226 0 m 7165 0 l 6987 -438 l 7049 -438 l 7170 -129 l 7173 -120 7176 -111 7179 -102 ct -7182 -92 7185 -84 7188 -77 ct 7191 -69 7193 -60 7196 -52 ct 7199 -60 7201 -68 7204 -76 ct -7207 -84 7209 -92 7212 -101 ct 7215 -110 7219 -120 7222 -129 ct 7342 -438 l -7405 -438 l 7226 0 l p ef -7459 0 m 7459 -437 l 7791 -437 l 7791 -389 l 7518 -389 l 7518 -249 l -7772 -249 l 7772 -201 l 7518 -201 l 7518 -48 l 7803 -48 l 7803 0 l -7459 0 l p ef -7883 0 m 7883 -438 l 7942 -438 l 7942 -48 l 8163 -48 l 8163 0 l 7883 0 l -p ef -8646 -221 m 8646 -187 8641 -156 8631 -128 ct 8621 -100 8607 -76 8588 -56 ct -8570 -36 8547 -21 8520 -10 ct 8493 1 8463 6 8429 6 ct 8393 6 8361 0 8334 -11 ct -8307 -22 8284 -38 8266 -58 ct 8248 -78 8235 -102 8226 -130 ct 8217 -158 8212 -188 8212 -221 ct -8212 -255 8217 -286 8226 -313 ct 8236 -341 8250 -364 8268 -384 ct 8287 -403 8309 -418 8336 -428 ct -8363 -439 8394 -444 8429 -444 ct 8464 -444 8495 -439 8522 -428 ct 8549 -418 8571 -403 8590 -383 ct -8608 -364 8622 -340 8631 -313 ct 8641 -285 8646 -255 8646 -221 ct p -8585 -221 m 8585 -247 8582 -271 8575 -293 ct 8568 -314 8558 -332 8545 -348 ct -8532 -363 8516 -375 8496 -383 ct 8477 -391 8455 -396 8429 -396 ct 8403 -396 8380 -391 8361 -383 ct -8341 -375 8325 -363 8311 -348 ct 8298 -332 8289 -314 8282 -293 ct 8275 -271 8272 -247 8272 -221 ct -8272 -195 8276 -171 8282 -149 ct 8289 -127 8299 -108 8312 -92 ct 8325 -76 8342 -64 8361 -55 ct -8381 -46 8403 -42 8429 -42 ct 8456 -42 8479 -47 8499 -55 ct 8519 -64 8535 -77 8548 -93 ct -8560 -108 8570 -127 8576 -149 ct 8582 -171 8585 -195 8585 -221 ct p ef -9067 -305 m 9067 -286 9064 -269 9058 -252 ct 9051 -236 9042 -221 9029 -209 ct -9017 -197 9001 -188 8982 -181 ct 8964 -174 8942 -170 8917 -170 ct 8788 -170 l -8788 1 l 8729 1 l 8729 -437 l 8913 -437 l 8939 -437 8961 -434 8981 -428 ct -9000 -421 9016 -412 9029 -401 ct 9041 -389 9051 -375 9057 -359 ct 9064 -343 9067 -325 9067 -305 ct -p -9008 -305 m 9008 -332 8999 -354 8982 -368 ct 8965 -382 8940 -390 8906 -390 ct -8788 -390 l 8788 -217 l 8908 -217 l 8942 -217 8967 -224 8983 -240 ct 9000 -255 9008 -276 9008 -305 ct -p ef -9525 0 m 9525 -292 l 9525 -302 9525 -313 9525 -324 ct 9525 -335 9525 -345 9526 -354 ct -9526 -365 9527 -375 9527 -385 ct 9524 -374 9521 -364 9518 -353 ct 9516 -345 9513 -335 9510 -325 ct -9506 -315 9503 -306 9500 -298 ct 9387 0 l 9346 0 l 9231 -298 l 9230 -301 9229 -305 9227 -309 ct -9226 -313 9225 -317 9223 -322 ct 9221 -327 9220 -331 9218 -336 ct 9217 -341 9215 -346 9214 -351 ct -9210 -362 9207 -373 9204 -385 ct 9204 -373 9204 -362 9205 -350 ct 9205 -341 9205 -330 9205 -320 ct -9206 -309 9206 -300 9206 -292 ct 9206 0 l 9153 0 l 9153 -437 l 9231 -437 l -9347 -134 l 9349 -130 9350 -125 9352 -118 ct 9355 -112 9356 -105 9358 -98 ct -9360 -91 9362 -85 9363 -79 ct 9365 -73 9366 -68 9367 -65 ct 9367 -68 9368 -73 9370 -79 ct -9372 -85 9374 -92 9376 -98 ct 9378 -105 9380 -112 9382 -118 ct 9384 -125 9386 -130 9388 -134 ct -9502 -437 l 9578 -437 l 9578 0 l 9525 0 l p ef -9682 0 m 9682 -437 l 10014 -437 l 10014 -389 l 9741 -389 l 9741 -249 l -9995 -249 l 9995 -201 l 9741 -201 l 9741 -48 l 10026 -48 l 10026 0 l -9682 0 l p ef -10388 0 m 10155 -372 l 10155 -362 10156 -352 10156 -342 ct 10157 -334 10157 -325 10157 -315 ct -10158 -306 10158 -298 10158 -290 ct 10158 0 l 10105 0 l 10105 -437 l 10174 -437 l -10410 -62 l 10410 -73 10409 -83 10408 -93 ct 10408 -101 10408 -111 10407 -121 ct -10407 -131 10406 -141 10406 -151 ct 10406 -437 l 10460 -437 l 10460 0 l -10388 0 l p ef -10733 -389 m 10733 0 l 10674 0 l 10674 -389 l 10524 -389 l 10524 -437 l -10883 -437 l 10883 -389 l 10733 -389 l p ef -pom -0 15779 t -pom -count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/PU_exercise_8.png b/Content/Figures/PU_exercise_8.png deleted file mode 100644 index 19fae36de729119ed923aed17e875025a02f52fa..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 25015 zcmb5V1yo!?(;$k41OmZ>1_&~^4ekV&0TML04ess`5+F#>!3NhMxI4jZa2VX(HMr*S zz1_3>zq5PZ+t;Vhz17v#)!lXb-Y)4I{#iv18Fuf!a)7O&JNv2Y`h1Ef@*u{sr}I z4++Vg6A9_S7zs%z1qq4RDZTlN$V7v9XOA!R|0}`&z`WF2TmSC~{@)w^HxB=Ec>i^%|G!{f-v3i3|6i2< zV^S}`ihy85t;OffC37C(R3n>YAG zL_9b+v@aZ5001viQW+c^Eqwf!>S1PPC^hvm8(SC!#R(UeB@q!m8XE1JH#~3OzC36F z{kg!G1rh9~rlO7{O;b@w;~CZ>ZNXivi3c5CKGFXVN+0jDdvrtp>deUL z@B8dgSz5j4)tUt7*u|!GUgxg(P4MtRluCX}-|{^7f9Tt-%NA}{C&p$DzT@d#ZVuFQ zLf2F}kMhK4uRMoOgQ+ie(aP<ojvtC7nR#zb$@Mj!fYzuQ8ao$+u3Zdd!W(Jpnq2T`Hzr|3%t! zFfw`?Op+R*9;~ds4u>$QOtLDQ3MjfZYven9msbSQs`3odl}#=rkEb9|dI^g@u}9m- zcPUZGxG&T*g^w|5ci$My&_u~Jx$3}{0C{xb3?e|RTM8L4Nb|4POsv4RZZ>{%l^qIdV4HP90(nC z$Po5CdDQWDGdW~6Xl{JP5FEK^Da!yDn|Z}#au|>2<$MTyc68EW;H(s^x7&!kym@SL z)h>6qP>w1|9&IET^qCQJ#sKyf|Kv!=k>UmrJQ=cR!XfV+E$QRlwD}bX39z6)kB1Lx zSRc?@dglp^^Cml)#x7xD2K;p{xDR#Zbr0o9(&-210?j|erU)~}i&c2pzZfvBeJKO_ zSZu3J7BC)!ITn#Asoeq|`-LAV!%?&@4;6Pq!^ z8!FD`y$4(WR-rz8Z>bvr3Y8cS z9*$#*@Nv!!T*@A5L^-3D6Ge*`Qd9Ofs@9#00U4-b!P$Hvz$1z5Fx{8h94_2>c%~ zr!M9{ywcsq%rc;Lu=X(gLX2%W>J!LTKQ-!|^e$%NadDxKo0_Gd&B^ds|E#859#-z$ z|2hssm07Pa!=Y3c(aL3$QM-At@Dqe#$gGJRpIEe#5*8<%L;(V1`06i)up`EO!+pjz zu+M(0<(h#9rkD_<2b!DkityD#I>^WI`N+2eZab;@^Su7M)lIG#8sj?dQP$quz~?`0 zHTL*NQm_l*xqO2bbn7wlbL~%mpi?XGLGUE+RH1uK3W!&uXxixP_%-5UVzqJHnq1Ye zpoHG!yC9HWFt-XP>Wgn(@kG2*-obBXWp+Zgno$UbyF#(9Vrcpvuca=?PDeu0R&%;K zt_H036kJ7DP4au&{M_7)&?(BUD`GaYw{X7U@_7MhxdQi;Zymjm(>spNf?$a2b9dkTWt^rM^k1h;#|EOc}k^QIg1wY z`=OZX^FF3yDBmQF%T3GAVnXoXpHefR2~>y`a{RFnuK_eQg9)6LcCUzY1rMfwRRZ*U zmaDF5e+T?jxP|H2Y6*AK;c;!oXpubvdN*7`XIW;@TJkUKq6XZqSU0|pcv_4HbeLs( zE;JC$_v4<#VCI`?P%bFbBDc_t*e@UI_7iTqMFDLl1qKbIKHMBmfl{ewv(5aUyMjT& z&1L~7WS$)rEszh0s6MRSv!m~%CH7_|p8l57fJNd4@B#|{i9Rw-hC5h@16~`#zFf;wpdypR_#7gcPHSaasZLH64rR7!dhm`Fca_gSF8JAh~v8_O6}#^}(7L zL5+-u4cP_T7H8=Oo(1eNo)c=P%7ia9p>gJ0mM2Kvv0ZjJzL@b5;eKL33-uuU9KFA3 z3#+jx_0Y7p=It^#d*VU7%DAa^;N*>~C$@r>l zetE-~e}3|OeehmT{rAT*g4Fe)ZLBEaoO;zd_smNTyu0iL8V=pP$39qRL{kJdR5y?p zrG%&Zk@1VT*odnrVRq76HEo^(_L|hqrIMqBz7wcUYf)4&nvBw{o;keo8|X}hsSPqw zQ~o2%dt+7tb|E6{M#OwAG(F>;+9@4xXQZ9HB!YMcdfHRs(Nmzkw-wRzMwa!Fwf(4i z&49RmH*EhA%02;R3=^Q2)l9)oBdXx*sr)ieiq;puKh+dprD2S6 z`+w4SHcR~v*a|5Wq@1Jl8_P%S4VIg~a|b88Ran^`QjD54Pb~4y@-pz|Lktkh$A>*M zBi|11k1#LeIM(uEUmU)JcDSQ#Y~yzoL3^meV^C#W5cKKFjna`p3I0wQO* zocroIbWGl&rschJr8(-Nvc|jGv&!_s7(Vs&weA14!=qe&)Ny`I$~ETJd#Y?8oq=YM zXGIh@c5B;b00H{fPk zY0ZoV6qT9dAwq#>(!A&nK_FE;KIISzSmB#ASQiAKZWh{2Kfm_9&Q)0sJxVa?&X_%$ zD_QYjHhW6yDU|9nSsuzq+Il(qG3Fi_#iTueJ83wr4`ceZetx{$l4|kA5 zC|3%3*>&<{hWCmJk+3jyj%* zVSzF`!#@tz=oDsHA6AT{> z2fGOk4B9gQd|3!T#(?rMq&gHAv9w+ zL1B)!bhN-dKHP47H0SQyzkfQuze*eyg?FR>rguXWz7~zdV`z_y0w*NrOa`Q7*QzAH zU&AJB2eQ+IIVWk-U3jfzhQN~zirRVH;6bJgi}bo2g>!`h#l9Azj&xbue6lk1wa$8w zA(!ce(9g9=A-LOz=(y+T>W^ zura)-Ko$0epBfiRHpe}VGg@pf31D_WwKowTk4h;cOyz=(Tj-Yz<X^ZWjsmSywUVojx*1ou!+C&w07bTtyB21Mbw68CSX(57IpHDEKH(WojQ^jt`jPkGd}nClLb%}RMk zL`_&b&iXA-<9a4lCn!7h)SWpsK3pcgw@LA*iMv$zm1ePRi%0MVUjO3B9Q2WrABtpN zcoyPcy@;`#hrhV-{oNZyK4nUk&G#zEfTsGzclsB?Pq z2c2Gr)~TW<@_iElaQ_6S7&^lvQuYz?d#uM} zwagS7eq41DO}^+F18TmAlKRt@x7?8nswd&%Vl42e(o0l6WPqHI%m+-;Pgn}EM9Y4J1j=6K zxbQk`d&jQ3{CP9G)#!?`{B|t%9Pn?*06K;0l8d5EwD0-x7IlU0cMvV@S;DW5W6mrk zt^p!KYdjSlC)QX(7cKY%gwF0CqkAZ8t&Vk_ z$L;4X)wp0_4OFlTh)F$o#e{<@i}yi|O0FC4eaytJecsfLD_uG#ls4di~CB zb0&bx=+X9_@Om;N@YZ7t%D;#H<2g|@1M{(Gybo6(_bF`{UzBzr)p-+dZj)~3ieF)M z-`1wMjNYuj@KKd;&B65AYshuMRRoMF04S|cE6a-b;T*7^5Ckg3u%$zUnD5rj3L#St zxVcpJ>29-ayf%GUxVnnkMuDo}&M3gR^|X^r;JvPgwGtR$A;GUKP`>XHFoGYus-i0m z`>G_k|1~+Koas2j(jY?eq=iwxYGI9M}MD0p&^%MD7H9)20$_ zDM2RU>vzGW*m3dm;Nu|Y+~RUgf2gD4a(0g{{`f7Ph_YpC5dW8SAHSb!3#Gp4)(XHx z`y}%{!|Y+N8ky9lxdjrUrF23&O(O|Pa)lOI40bga^q1W;iZZjX4_Q`HxGyb#usVV! zb{DADG@NQN8PLvYsT1mbYhz;OKXkiJ*FjNHUkE-1Hy2U{2{rzcUnYm_10ct7d8C

      Z&{o5??Pgar~$r70X|l!9O>Vs;qh?Uvoe0Gd)8 zNOk|4%QtZlv-)3SLgZA%yp)pfW!)7GkO&3BUgt`7iOD)K@Cj1Pa}+~V0e?TsgB5AX zF_u>GKsINepPgppU=LF+-aUWeZtBZ7@Jos19W19>%NOJAuf(!&7^s13@xv9n$WG2i z+uRB5e5&YVGLAB!8`_$QBSTfCgeyjx5LTOkI%c!UmT%`hW=oZZ_7Gb{#^@|F(S2OL zIJ4aaDS(61=gb|bthiR7Cz1+OY$6AEaI}p0eqa9gko|JIozG0mJfc)(!q=DcqA?5- z`HSgGar?{UVZPTnEjU!0MpLGt4b%^zo5QFg&N|vO>IzXoa;5&cKXGVa6d&qn!1h@`oj- zzvJ=y=WD~h94s)-aEGxir15N)+nQ~yF1-9Ifc|p{xZx09rdWhho^@$S*Ecb z7ptJmC+%QF>?oc-MFm^fF;~Z!W~}a?T0w@_O4fn_i*soMrPd3Ca^i*9hu8 zsQKZ_>1Kx3W+T1)qFF)ifEzhg=(w|H6bp)eVsL?h_BYK6Ahc1H+Lm7@QDBn=A{aqq zcXGcRO6YYSE?5(*m6T9R_hNFg-v7%HCGTyFfXkYmpD3bsR(Owhl#}o4MFa_eP~A%*+k23F zNl+ktqAENWqaz-T0;7zM6qx}eE}&Kiz+xELZ8<%BX5gmZK>PWk(Li`#J! zJ>p63Ao}I{(wN4_s6n!k3F8B<^YR!MY)JtUoddlxAe8EuP;B*@WbAqUu8pK#gb=U(_(fx2vy!j zp5ccGPPmM27i~f|lLrn1FLL%08kF)ZbwG52ModB`4F8nb-PZ9mND^pv@Vc4U(=%b3 zV)bh%$U-AJaNbp)-hz|YWMd*coOm>@K5D2Wols%86xZbA4m_X9R-|#8;y#-~8oavo z%^Mb~pTIXcuP=TX4dTJ!lY(_O=IJv)Jx)(Q@$cf*d3aKa@br6xxeuKxFV}ewE3Q2K z>1RZ4893EtbMds`*=?RV<4ll=X?l$l;B^?P{1lt~44x6?uM|!JoqscQXM#x;b*O@W z_QOU>wyoa%^!U7MkXn!0Pdc&e@~c{uaMYe%5JR6tl;V$v=5GW@OF<;U`5pBL1&qWOD^pO!`dp{meMQ4euA_d=GuIi5ox5m-Ok_Ktp&lsSO zQkkWE_{Ji0$X|3170VKJP4Go2;2M#8>w+RFk2LC*ZDa8k>C-Wkqfnu-Dm~k$DeP7c zM%2Kx?N-1LUvBD)>BgV}`?lE)E5aSPBs4*2yaD?}{6DwL(mKP_<;HgDVqyLydBOoV z%&JkFKmYd5Pbe#fmR4G-_HN5FLNLKT&6O|sJKVy;^)t%S*}Hy$ey`WjRKJDgUW5py zIdq8rN}}hx->5Qzq950{(X2u%I#6ie7rLGfvw%2fW=JpEiMMdgsPtYbvn74tp7~l* zi|a`+@|tp!?&kaE1CAr*wjfI!T)J*g(K%PcP;Y3)#OhIgqke~+GwE1BzCi)?Vy3BT zAk@20f%p_1Ej2l0U~8}VNBm($Am4s3S>NmWP0+0waa z4b?&80GciNAEU#*E>tX)9e6_8SwPe9+dCIcXqfI(FsO(Nobxsa^s}?Y!4e_WB8(h; zsvI+)c|!sZjfK8u6;Xoem%hp~A*_q9+_s7r`U06*0_ zW3!1Kp3u_hV%6V?tj!htU`OX{^43s~W`?cSUkE!DtyT(BWPP1ly7E<#8i6-J_W+9g zkA`g&4wB?HX`M_xcHiYu-<|(X-Uqf*;&=PPT|4p1g65cLz>RPzmo4FjDjaVq?=CJw z!8aYODCg|WWJ-7ZE$x(BP|s;_abYbu7NF_enGOZVTp4r3?lT(OOD(2ZIqWB;SjP90 z?{V|4JUcb#H_M(doN>$RIi<*w6o$LE7sc$r(f(XY!1BInDXbKTvfNOLH9JP1{)+MR zRCe{W1KS9VxxUKLWWt`?frITjtyMSalz##?F2Iw@V5$K(w58Y0Yc6p1xPy1zTBKA; zg`)kR0G!BApok5S1}q?*MD1|4xCcsFqe9<>6ztZW zmb#)mV(4KfcqBV?1bsCti(uP$*m&NQJ0u@^MUX%c>>h9Jc{&4RCB4hX0{hrhY60!h zfa5Olq@#XTqIc;30-@Zb6~)_#*m^|aR?aM*D9kLn*9Wn1aL zz`MI$@xOx?W9_$Xt1Fi!=;_9Oe|xpX|E|QeJ)Uz9ZK!A6XCxbXpCi)PJv$V-90PX> zZUU~i3j}#OPXmq;$DURmX0i!TRd~hjpxRoWWga#NvV69uvkNjc{q8R~{+;-E(WSL% zi(SB#+rM^HZG>?6oosWIXULYr}P$3V<82C8MAxHtcptqKv* z9RA)2I+xo`V*V#yl<057Vt>Pxxd*!YUkn5ee5bE|_bh1^Vp+(&- zfZ?w)V%%vwht;gs^7w!;%dIzf2_S|ZPzWnQ#E3yIv&>kBdtV#xT}NOX0Pco2=|z{d zvKr1YGSbzGk*Ou*m=>d!w6V^zfurI=F6U*Pcmvn0Xb*`Zo%IE)q0W9PE;T}=Z=B!) zr{^QOHVunLXEZ{eJ!mh>-p)rNZ{gTvXS1farVrpv;C*D*kbT8^9R5+gY+R1h=rrNr zqov$kT9Dt0FNfMYr~EA4+rREJvJo#`PqkuTo*-(wT7l-HI8<6N#9M}j)8n(iQfa`W zVXp+T=VNTb48h6x)sqNRzZc=0UYt{<{nb#o;}d*U_zSKxdmVgJP_VojJCfx~Q?N}o z5~klDg;;TV8TO0GzmZnoO_pl>D#zAJiIzyhsp5*Lcam^r88f{2e*UZ&gjG1EGAgZ$ zvOq9wnswx1lJrN0&k{g5Gh9QKkYfDU&*Bof4@b%VuLmj6WR9x6-fUXUirDv$1ZBb2 zW?NcY*oe_$7KTw5|7sS9iMV}qccACXjaFx4x0}1|VZ3M)7Q>>Rp7t@3e{~)9?AU@* za(z8}+GdTO*l6m|E>F3BD|J?_KWRl~d#io9oxOp+G)%Qj1qPjCiUvV#Oz#cYKf(F} zG)5@%v!9LLdd!mZ3IJugD=DD&&i1J73MLDOAFPUDv;RC5uUl_re8{ItchTp-$~ZHi zCaaF!0XkDSYY1_lmXl>-vxUt~yxQ#5IZ;8qo&V-}$cH+!u&S~cj_^fF&eeI_>&I65 zQD}+q&PH@x`BYO#vGtw#>eAEK{x2DJAA0gdHeTXV2|0M$${K`g)M}LnwD>2tGy`bg zEw=}3Y;`9s^u3wTB_J%Dm+j@yIIE_xG;k`~k}bgK8xzg(l^b z(+f@7fV%qa-+2m1Jo9ZTfl!;@)%t&Iiv@e#&nYA?g5OCX^k22D(thpig;1Q+tXsrx&;4ph&Hr3^y{gar4L;upD+kYgZwgia{pS-V3#Y4aQ+q_mK$P zB8>!RMbh+^e&T+b2bFyyuUFO`m^#*kMbAhMf3u&_6*|8<4uA6ru#Cw(OE8HtS`+GO zPixf{`8s|-Mhk!tkgX{B(e;RRnD_v~bF=X=2r#31;8nV&w)j9dCxmoLcA3$RHaHU8osO=C$8lezDkFGBkSn6LrXv48bO zPt~2pp+gXB(-TB{?ZT&u$O3|2VUKE)jhLWGTlrY=^tUfbNAJWJ$htyT`MVYv%=yBi zy^m$FYQTyHX<`oWNkJggfl~GlJ7cO4mi;VO>ci8#&*FE7ac`Z~@u8KK>)LS{;~C8u zW>;{t%F(%WR#V3jmoaYx2Xs`Vfeh;A8poPq$*g>V*1q!to-p7I`28B|6qI)rL=%JU zkQvU9@s3XYmzwkkzU*@TgB#VSQZjxW!bhC zaRIuRhAmcRu;qlvd#AUUKCHjl^FI9?=*I=EPt4k2wfPfC`wqYN9W~;VO&PEUaf>iJ zPYqx0nhuH*Ffy*3S{l(NHr;97+Wd5-HGe_!CSZBVTuU?6qo*hVg7b{!#grd8$OlQP z_X{afSraliwI&Os0)C3}w0OT58!miX#E^M9!}-nD*YDMc1j+4H-uE*(NX@~}TF9#_ z4~)>`*?PGvQBx#0cWEU7RalMLbV%_0UtPg8n?T^7>Mf=7Nun~XCU@3*&c^0MXn-rE z&cc3_&c)V-o=RK6%zQIKEBerqj&tTJ*T+ZeBSdvOg=TKMN^#Xi$y6p4s*uHJd)w^m zCWL8fIdkZys+VkRWw6^<`gF(QkVI_02sQQ-ayvS?7YmS##@tKJPJexC zpmq_pgbZHz1oWO9izi#k0=3snmb{|i7pwWbQO?+&XlA~B@it-Fj>VG%XdoC1;&8mT zeRUMc!KMY8eepD($VOQp8>6@e*|>n4ITwcw(&MfDNAx>FIgRX-ja7X54{<(m^k-%D zR4qRaf1?j)NtsHiMf?!q-G9;E9H zM|2960`=6)Spo7F-yqiwJ>qXB>m-WB zXSLK^CND9VJaz;lKR076uz_E|*C8e%A*z3Y)fNs*S0gsxQem{s1gHR>i4Z(|CU!U@ zt)I;%b&&6?ni$fCAmnCoQ;Beh;iST_>GIK>v&rPBy^$*$uKI52;W~*u{gDd$*k_6O zm#>QZ_QrgTWyQg;aA_a=UjI>gdufHk@t*7n3S|F&u5@&RV5lX5mIX6Ym5;lBhE965 zj-|S`(!sd#_wfCRL?j0%ydSX0=l)(UKr1b>5cZaShQY2&KgEY9pm{1KxnIQ7-n>Rs zVo0|B3`rekn1mrS*}}VQQ!{(mncUaL+!~@omt^@QyKs#{p)K$>A6 z7nNobDz@0>a*}>{erpMc6Z!Ma!`Wsx!ZOkK`q6!B*1IHl6yq0`mv~zj3m$YKN0=4L zTzxp;(>z87sNzHSijRW#V1$FJYzUh4`2YlLi$5|I2+Sf4@gDB&q+ujcNs5{#U7+$+ zpZeV@CIqaJP^N$T0qlY2=<5q#Dj9xTSw-!C-W?lWN^TZ%Z9Y>^X8+U9<}?@_e}xm5 zuj$Qg_Db-hdWoWKq{_~A0kbSPLMY@|JG}RG4X$M`&zro~P$NrM{fOr^qYngW(cc|Q z|H}6Lt)*3u6$Dlh(fL0~e>G8e|8bu797%Mt2*li+TN)}JtKyde+jIbmG$prEKy3C5 zDEmZj0m%V3Rs?K`Fr2pa?X$v&J%H zWIE$}^geei&m;#ePysQJ&KGR#!^t0M^Rb#YPq11YKCbZ|`#7CVC^cEGxqHXGL%rI{ z_OhK&uThtzt4go{w@7uWCv2bOyiVD5o7&HumqU35Kq>Z^!=wI7gY|QKN#hS5$VrK< zLD+tkNyL3;1Yus&yPM5;XN4FGPt^I`Ja6wD#4lcgIpkUST*(HfI6AK#X=cKrhpk?K zrh2W3_Q-1&>s|@bB+!eU`E#Fp+lTdiU32F8v+=91EyM8eI1FJdr!9v8b?Il+5tG3O zCs92&9*&>NnVVt+m!)dig~h*r@M4vNqKM#&+cqsRe%t~R&HFLhSCqRRhf~G&I5L1` z;?O(f##QD_5UVwUu3&UK98&aJKmBz=1n*jAY|$rSqm0&UH=;PEFH`hn5QT=+4`IdV zJmNq7@QAzHkWY;|A@P7-zTj1nrcssv%WYo4sw)=tp9s*%w+Bmwq0ha0Tx#~}5bw(b zQ1fQg6DwbjWj`|a2d6C^yU7VBs*$0O{lTDSgYI002#>REeb^ie!6}{GTcv||`!|6e zYW;33f)dbJCd#Q!u+6dV&z40~QCCadLix#{7IcF1K3C3$ODoj5i?8USb>qevpHraxyh! z&e!%d>8tV-Xq)KWV`Ds$KY0rQnF}dYmpGz`>11hmgnK`9RE4+`gc4sQ8-G8<6f5>c zB*)s5&jebmA7O_+5mT}>bEUk7b|3R_q~Kh?SZbm7Z#W6QKBgl7`|S_$#|!1axNo#; z{Ii7Qer#U*`M(RkNo}|?6wp3zi_c#cz7YT#dhOGV@7H{^8$<*Vx79asrhH-%_4jiB z(a9lp9w$*yh-Ktu&b{6xMs8{>mUxRuj!9FX`sepqQI*Zm>x$&=GBNqt4sl9;20rg9 zF%paBT~qaE-^;f|;qY6(Fba$hz8_QyYZ7AxW9oW%e*9w;a2LjNKgW{w50rxZ=D!=dfdQ8sTC@|y;@3t0-Olyx z!03I;5wKIRYji&#Cw~9eaYRq*$*BFRC?;Twb}aDZ#!%l``^DV8Tyo{GX+3QsGWB5# zALm3z`>!co!|$TI;?MO$gJIxi6u;rW@t-S|fh&)(ZI25N{07b6)W12lUuW>IKAw2C zH~4a{+&|-p-S*j5_!}c+-U(RW?%1w+KRpCCp@mqSIj;CTjZg*L9xJy?c3^ZE`R`tx zK3}a{ZLQ0RKc~&2v+{JRR+D?i<`%zkc=w87D4!T?=pjvH^Aq-54O+U z7o*ZG{Ry&5{)^RF@_ba>E>&3l@yYYuISnDR^>0ki@6pf8Il1J7CFlnCmVChy0Q?E( zS)tQoXt)Rdm&?fCdt4Z=Wr^Vaf0=bynRCfhkugG*e=$KxOs-^Vwn3E*%OnN? zu<3r#?hS)yGHs+b$i5v6xPqV;kfuF7h@t{|IotL?Zi5Hzm zG^9xvJsa&5hu=>IZ|`gzAuR&Oa7o~mXiq{7QJpwcpJx~}O>)BY1=pL`!?_Vm=!oUt z%ma17WZVg9`ysIPa=1@b47zgHkOmt1LpZ%BPG&BX0)d}&daS^c~0m|^HY%n5mzGbxQFkD`&;8#xi;e_(jnf7tI z86J#GuXOalE(e>7$DoN!#>MiH2IMFePY-CMHcq~TlsN4;V=r88&tXL_oB>se97|fx z>$Cit)bUI+KR8Jiut!`*^mkJQ_nOUyz1SMv%2X;^wTg9epn2DGv=HJ#5nyW3Dwt$< z`^<=cB*FX)hh-S|>$Aj%QAl{;mBUo+%k)>@&^%j61$Snvzj1?)P{ArcvFH42rGg5i z6ptV-rD)+(UZRx)6uacuiOpCmq$3>5jn12GqD`KgeSel8_#Ku=m)lWivA6s)I)5m* z@1CrzWa182uPiV6-h?LjTY4gkH9nG)J`;W}yZ~=l6-Jef`opK(JaRDxH1_ZeRKPY- zZlsj_U2DUUaInt=Ms0N{Koc-9)hvuA<{-!6x^edOrRPrzF%kH5Jk??$S9AqNW8d|8ji1vgB*}!&j#5Vl~oZ_eW_3eEbOh&E^6Z7Ufw9EUB8YAY5&)vGmGsHQd774>HwrL#eJ}W<3+}O~j9z@iPx4V zZxZCLTgN2Ik_<0&0pXolOarjD!*xJh__1%10h$T<3<84}!rXNh0^nNQqTemU%v$m{ z!z2CU_$P9(e#sBWRV&*^vLEoOPAKGIFRsKgly@D0nI(J<-40FV@h2id^^=5Neydz- zNvkU(FX7exSaL0iXM-Tyi*tyhj8w`Fx(2QG*^~&!fd1Khgu3k- ztTaVMtzgevGwgf5Sn>bhc=DNhin~7-j8B6>=0# zNuX|bDgpe{_8(e~XPYm*O?XM;S^Ww!b|Gn;$Kz;v6lXf0?u` zxUJq#U~jv3II0S*38?rA%xIYbkE2P$f}6M|eQl4qbLKs#CxUBgk@*kvD{)!Mm4Jyq z4h902c1F-EbBCkKJf;YsU=Q0_{5y}GF_In8?F}pl{|_{75Kll&a;$CxPCA*FG=Y+s z{YeyKy&Rc?XrADX>@Tf_riS;X*Lk<^Q%)L5trQyKyvaEYhcs2+qtwv=;YT0lOU+B8 zRIXF|A>B8-Hc^%-TlefEoC@~6+#ui0w&@g5!(&pcs{32PRLkZ-YG_i1Wi{Vg_W*jU z#WqT93WK`oRLtn%BpsMoM#T1~og^$6^d-|BIC9l7f(7~N&Yj@A5V6}Mw_pdJT%kegJ^O*XRHk4;)`{e1Zg{^9xAaX3P#tkZ1f~4EVwniyK3+ndb*hT`Rzq7k z!#Emk?BT8wj{*2ixf}wr;;pnKdcTODJ&lCtY6N8aqv9WaGi_}oTPvPf4dHrGJSka>Buy}O+IROaIuRD0y{NYfd?@h2k_m2^Q@>io#vz) zbpdQW=$0VT8mzXk-8{>43+~su9I-wjj>zoMHQzhT@>V%-l{Hjr}7Ba&(A6rw4=v~dY zd|Gc`xFp8>O35&vH+pii`p*fm%3w^NZXAf({uOR3^P*Y4<{yE|-2U|Bd$LB+>RV+e zXt=vQ_i(7x)zO_Fa?|F$6c^#KY6nv{&UlgCCOAL5V)>!zKD!@#=Y*{rB zzjhMwlgfd5=R!Q#YD|@7PzwTEpw8<- z&rxJuKvewUd~9|8QV*SieC2LBO*QPZ_`|-Z+)3X0KL_))TLyZhwfq74YB@MD=Im zbx(yIeUi|(jG;0>;?B^NRobEF{8q zH%!P(%%HsWsTDbkCq3o4@66LJeh5g0d_B~G81xGaLPi>kQ~`btW+=t-&7=FNSXoHE z`JJESGSVzi0V7JdCvzsZN6)2_}@LrB79zgWi#M@ z8nwTQF_J{%n=qn&QF;#KK8$ZO*i~g}#-vS?aKeyp9{4`%c_^s1vQ=k{mgz_D(%CH9 z1aV3S=y6g1d6HhR^wMoh*o+fKblFZSSZ~%Hv;r{w55E&9t+{Zk9gnMno6}Wjd}&%g zq=*1a^P2jdNy<7%B=<00Wcvv=b<+xNGYdIiCBN+;fruRh+2F!SD+U?ct3==v*f~vV zYI#VYgHTzqGV5Pb3|sh3;!`|F&0z`z`>DIk+#y}kCv;pKW?n&JxQp^j+B#i5J&YB9 zd*X`fy&Gc~;2Nj2oJgFQxT+ni^nv~8l9#5-by8?VpxSS$UybR>FzD$nDJDL>Yo46S zz(`N4;TPiYDOLeD2J6aLj!m!t`d)|bR*Jp!Qa?H6CTK#GF{R}b63$JYN+hxvbjt-* z{F$5*2Hik;A_$^pn%m zFOB)$4IL)t)&%T*!a>G%%?Js5%N#RJOWJ#EULG?n}#l0<^fvx}o;!OYN~-iC#wTH^b_ zFbcLz*@E9dV*OUM4cSzA3|{ZV5gT;Z-$B<5kP_cK`OmJTz;H>gF(e_ZJ~0_L%P;%u{bA|Oe^M|6UA3i!2>%Yrm{;Wd|XGo z_OYSU62EM*f6#FEXv|&I@n(=0B*~9?mczS7-_beTf2;>jGK|zh36Asq(Bhczdaqug zBS~k$ufB56(iZK#J-{5z29^Yc-sAGTN+TyvrB=_hIN*&dHq?&`=<7T#_SZ#Jdrrs8 zDK+DL+5ljt;Vtu+!iF_PJXe-+gRBWIrjh~1$3AMQQ6W$E8cCp3vlpGAAOmf)NK*m! zgociU1_iMa8jPJ~>>>7_`LXQCG)=Y{Fc%r~wD5_)()S@ZIunv)`U1M9LyeLjKZ+B_q1elQC_5Z<0X|VOQhJB-;bue~BcE1L0 zjCB11)l#=DeW&q$pSe-ZDo5Fj@b#$PbaP$Fg%CmJfwy#WF>*<@oMx|zt~JV_;Jlqz zJr{g9nCK0qhE_+qHE|xS#3p5`=V7NIhXQIUw!ic}b`)Zg<7KrU7yb&yjWQb)=y&x` z*mZ~eFwUJ(#B*nOHl~MRtkVJdB?jGg%wO(S6wsO-wE0_lSbkee@+Y3gZ(j&sV-kM& zt0XmWH#OO1?Z>Em$sa#$`exi_hWcJjWgprse(V~L$n=x?z}ie`X(7sp-;ON@@M027 z9kQcjLC~rbYDc0`k`Cl^lQSTowC6?6N|m=wOM}*isf6^;s#&GMmjwokzb@t!!`!?2 z*t-92SZ!*V{juAz4q#%WFMJ&YU?T2enOYL!5UYR+atWS)zY%E3)KhttqHmGY;A}gS z*^$@Dxi1~NZ{>$M$A|_|!Gxk@snGiYkfEa#*n#I!-J2zCzdH)mLw27{B}4P#_ZhvM zUA7O6<}Mjtc46CDkS#qz{HcMM?`J6_5q;aYywPIN~;&%^0T%JMI7 zGcMcl+t4Kune2bb*N7@|w#6V1x(caKx;XTuSni~CbrA2cfmEP2frijjdk$r+Yo*FAHZX5Rcc<3CR2uuIpMbdNH!yf=w z^i^Pi_bp@{(Fb?SpD7~+R&wU}G}IH}l_%)fHiiAlfsC>mOkrxdeBrKR&dIVVMYnhb zU>Ab@Zdr*7sh4~}HSu27Ytd`d2g`$@7BpG2Ulf5K*LbDXC_WHl{HnhoDeZYVaV$PLfZf9_~u$yM%zVg0Alac)UXsC^>uu@j83h-+J`YmScpHLv5` znmNmgaW28QyV>hZaNhQGSJ{5!Rpg}VkCLHGKf_Mtc`q%Jm`WncP1a^#BQYX-{DVs{8`3f_iXo>Gx|^n3RG*Ua6m4xn;p& zC7;EE%K3AbFKu1+`jZ)8&)k2*A8^mKzXrBQVy2Ns8{QD&_CyuX(q{4`$+$^i!(KRkKRnpQ}_75cCUeAz>X?0a0wpe9B>?^S81HOv0 zp!!&x7gMs(8r%DNl0u&FR7)Z1BUTVEis!&wYMa)G?1}~9aa=edS_wgt#G;&)v8>j# z^c!yjahf8Zg=H4j3egc0yRW$es+;h!RyAIiC5)Hfg!OA}=)@v&@u1n2W$bqR%y!fW zNfO|vyk6dDsvD&3Njeh0PYIP-k%TS z;r`3^dV2}QcygF%b3**okKF$kGz!C<0ZZhMw5b=q1m`L?S=q{Q>U6i$uW^w%IK5$1|EmZ%Tf1TS0OZ-N;#W0MpF!lSyk)&Okk^ifXuZoHz+O|c5hv4qe zIDy7pf`-N+!2@*T?h-;ExI1*?+60F{pn=BS-6c3AcyJQJ<-B`8-WzY+`l!7|jkU@? zcFjF&&6yL}B$@BRC5}LMX_~p`50!yz74<~Cyi-^Tn7U?fQq11)?)ltaj%q*R%*rYy zl=(*#Z>=nQ1uYjnkV*GO`R+21BT{@KKJ;O=7n)JsrQBfet#4Jyjqe@ zKjv=|y`)=TeA&mZV)I=cdZ}vDY}n=w{K`8UTcffVuTFhD_;&Ot2sjy*alkiT^>-|8 zjUstisxF_WtYDF`7CXwSZZCFZBVNt=ttTl$NU5?4r&-X&#}OGghs|KZqUT~tmY%WV zz8iG*&zrYRb$0rT)6WwJD78O0OZ?tN)BV_WG@YL-RVaC$&tQ7!F1v(%0G2snLOE$} zZfUDAiH>rCLzxEAS|90ah`B&K-08%LT4UuHLwZ-LIo~OWhj~W_|8JWuN)WPzW5V&E zXwo=0E(bG3>$z?IhT;BvG}m1RwpYxZhlTz}h{$yUn!1Fx6||oG5yc(YB>KvgKOmQF zXB;NQykQDnf5k^kiE_R@zL%$>V@o(l?h(DL9h;HSF5Dv|nQe+}$@@gi%GG3!dl%9! ztOQm;Nx!_ysVoG6HtB%}C3Jx5Wf@0xnpG0lMcI#n&wZpbmkV4C_l)^DQPoDJj~L7w zIXIYB7z-pJsKIN7B^iex@$uYRFwhNiaU^>AjT+P6rOsQ6IDSq`t(t5}k9E+hWy6FY z=V7&|E0_+XRVk?Y7Q%(~xVdzUy2r2CRc>>*9BBH1?Q$!;COfxz-vi~xl>gg~kMkTG zrav{qSVD-~--iZ6x5qhWKm*=_co181O=T3h<4Stxao>-Q;v1%Y|7Pt!pd9~oEe(s< z9*3D}-endMcj-8}){%eHYS7$ERtIdDF1VATdRTwB^wDmx{6^e1*kAKB<|6r3?iEp8 ziE1QWG~+*gn?L(@Bmu6Xy80WJNg!~@2o639Hjs^ZO^LVpYFEGeJM)q2n(>h-kzZQ@ zk_3C&QS>dfronMZmrS)~o7p}w)sb*Tzn>?hrOfj@16{9WqeJwlvFAi#I5&~b4;|zr zWy%QSn1q5(9r>Si1#9D8%={>fL%TOT0N@7gFU z?mRuh7gj2gO%bo2I_wsmmJDZlC{fwg4dd9D)}TU)ku9A4{URr2lWHo8c;)#@!Ip1h zP3%=7V=CUM7}+z*`~-(e6HN7w+`#Huy4Nc|MPBR=4UwA>F;<)AbJDr8oPE~Wv%ak1F!yIBeUIKjz_O8k>aK!C^iM&0RFR7~w9NoOn>Z$Cg+A;jsU2%Cc0zL2ibpKIeQ^5ko z!o{J0R1ck0`6U(8m$?sQ`x9WQEYCF6@eqdiN` zmtC+_Tsq}-oLg2b+jwt(7=lQ@c!NT?H&Pw`H21D0j~K+Ap`%8$<)sp5mP4NW$C+a= z-%w+FT%Mkoe;)J)$5h?y-^u5-^~dV~2p#U(kH>sjapHU_+oX+!K+odd*0*HdP^`_2 zgBUrG@%{umYJ^fh!Iq0}XWS~T4ATqamRG1k+++0D++_tydEla*V&=4#IeDK=!SQkZ5V z&R6afHfQa76a{j5fRCfHpFL+ka9EJV-CZ5sG7vq1`~3KE-vG#g#t4PfrK49UuMN+Ks%w zFA99Yn8c3Bsm2c69_-ngC$g-_Wh)Yct~MA$$=|Vh=b2qQJ}|G1IU9*LU{G04j+GQC zU6f#me-^M8@34}7l`oau3=P(N3$-+abQP84Q0Sj_g`hsTeEXLRUF;FIH+2xK%N6m7xzHDg^p+dm|9r zU%+C(pLkUBWu3b<`ErZ5(V~m-uSq`7#5D6q^*@eLW&BZU*yuc{o>8e4*80@S2EVF*@vn^tUYILK-8rMyVP70 z10MqG#7RpICT0MP5yj$)MUOE8qB2n@V2N4`(XK>CD;6Hr{gTmdY~qfyF00q$fkh$d zVID#qJ}vRpb~foT98O0m@NMDgr9Ly?u_34C79T|(HTBXZYKppf%N*&_mp#ui|2N^? zF0Tr-bR<|@gWtEm-=v^cRfuDV_rHT9)fI-&%+INR%)+;OS1a1dw=+Zqa(&* zMKde#BeaVOS&u&W(@m2;23_nAK)w`|Kfeo?{V;;o4@&`SW6_H_uKT9Q-no==h1fLO z1O9Ew?^7i(mhBfnn4f2Q^x0U(@5_t*V8#VBBn2_(#dLTXf$p|Mughs&Qa9eXCloXl z><4kkEwAG-etjUIX!!})vY5l3x+*lK`EXz7|60wBVhbO}_~s!ll~bTSeMC8rJ==IE zy*p9#{S;h8Fc3g9CgnjzEYO0Iyfc1<=G8r$*Io`9+C?*W(*DI_ zZVNR{%wnxx>X8uUP_`VoDmD&6vvtw+3o}Bx^%t(W8$)O2bcFb-GW9#)uNA_G5)0!n zsS3-&ImjJ&b`2#aT$EN`-#Klw_GLR71bQ){vZItsDC4CWMae-?%V;zfT^BgPJMZ?< zG$peF8{$Fd{M7%qDEWVj>&)YdA{Tq?TiY~Gx2m@SLul&bAA?vhRm*;#Qhh(4O<)I5 zx413K$P9m@fgWy2>+m$=NYX@=krB14Ie_Y&bv+e6 z(u!{oT&mKWhsst<)w4DJ)5uCDB#3czz?hj0m+O&}MKAGT**PqnO{q(@tbPUY zFrRgxlBSg^+}3I{&{&{}RM)njd!WJ*xRd#fTxLWr1%VTV?L%GOL1lLVE+Dv5W9=kM zYV1{Z947PI9f>LNMeT)lLxGn?4{*eV+(fO#j>8k(fn-C%9PWu9_IkOV?cK5lDA!AD)L-t((M? zx%XvHKCCkS)4kQ9sH`L(KXqpXM>sy_JQ#Z*5gh>yx!DkJwFrWPr<^`OqqTc0JSbl8pbAY+^36 zr=E0+R-YN-{A-mDWv`=4#rbRKQLG#)r}u9P)0ZDIb2mV-;fakpgPDw%yRNh#D3y3@ z5Frm0rh#0!ZPCDb;v^?cmJPYYb{t+*ast(1n%@&-ANc{P*O!`J*Tbv;`T?|-;3|r4 zydbNFmfx;Tc>mU(ByjEq53oDkmA8*7FNg7HfM1)M1QUEb63GaIo}kEL7=mcCVp%D_ zwyJq%BdnjX+<*YJe@nO8LV}o{Xtniqy2sz)`#zBIKpGaNeo%Cazd<>gw_N{31{OK=H#KFS6l7WAz0%0=2QWSj?d zv0D2QH^oE;+~L~FCt_pqGDoUiU;Eb7kI1oE4V%2+V-hAzHgh5?n6g`tnf9`Db6Zkr zDWA&5ePuxkX=MHKK~ZF)By&A-UsG}Hd|2&Nh~xm4wj}NQjMNR?;slv26V(p7?9_fzJEv&S<;4Xbb+k=;N0_qP}T z%p6J~E0lzSZV&sxeMo?_@=nn9(l~dYzwRy{0o)O|m14BwrIMQbq~Afak(pM0CD`x( zYusU|D86shC@camdp9+$hg4=$I|=n0k@TQfTGLkgHWj!*Y9#vPI${PKhb`~}8l_~; z{rYBBQSTm|ug4mB>a>v6uDU06yL!a7?Xq0UV3H zWJowexH8XD)@XVh9Yy>eC7#Eoj+GM%-6T&WN#O5xxbz+`lCh?JEPq0qV$3M(bH-$%2$#W!ONfY{jJJz5JIO z77_|xn&`}Jr;^K(T+U~zP-jcjv$bX9TUFT)Ux%X5+Xw1JVzvSEaHJ+j9qXi#l-SA(vf=fPOX&Ak$AzXs7^&o-E+u3_gbL!HFhoZP_* z&x5+K(UJ>dR)Um#&8*oucWIR2!fe$x1+d2)pUff}L=N{hk%JFGQ!-P_LjrU$P?}=} zpr_O(=SmP4~}j4sU0`zZg>wM=uc1L%72ItA1aHpBJES$nDt|qhHq$A1PwaA5^&?7aY93;pso0>hu#v^(e)a?<| zsk(g=_|nDSTE}vbkkF89MsjgTXytK`b4Ru2apb5qB1WiMpzR=W^u*%|G-CG5@ztbL zW!uFTz^u1vqgn`Jo}F0@~rLaNHBbG)F%D#UKY zoT;wnpstgDN3@%r@ZQ8@P0*^nW3SjOO+#XHVoaIuH_h!BPm+&j02+?Qvxu&(n~msY zh4Vf7LIlW&Abry(Whvm*Zbot25aE9RGkY8t~9F`5>| zEayZ#+Kf1<(d6O&qQse86lf1(%v*KB#`ZAf?YddaIUXNfYC@=VnxMdXu6r z@_o5jAG@I_#>=JXm&Plm&Ou4H;%gK+XKaycT*y>|g!l#!9gHVYeDjItNY3ohQHy4?$S+C|u%! ztP|?b@=6d+nz5#F!hX9)uYcgIqrt&QTd>u#ACnPuxhvX~^p0C!UoXBGj^7V6Vx4RJ zcj#~KnXmZy=EWOV0{zdz{q#C(E{OGXI6Pa;i#=FRuYTDULtvi=X7vf^vY+ypC4K-d z%E3<4iu8@uC>YndN5}UeQrS$6vT>B<6%qC7btbAUY*EvXZciG~xLpd1Cbbo96)U%9 zX=+56`8^D!;6PL3hIU1Q58~fjCG@vyGg{jKZbI!}3vxAZe-7@h>9)LQg}(qcNQ!vU z3e+@7gy*`hJIP)5S4DbIaMX2oqz}&{2%KTdm)Pq+HZY8S(ONgUq_Km6Mjt?Xc3fyr z#vxX3`0@HiBb=fuKBh|Fj&{l;AOC&d{@TAxCPtc%0ehP@5X*TE{9(Z!-1;&8GuG9G zjoC^U1}S@$ctZBSTF!t)5&QDZO6Ea=Eb$Y^Sk9#ApLB!?vZYed2n<}noc%{@A!a=d zv{6mOjAaP64S}Cey=PU+hkpdyk8SKYo%Ff26YNyB#6BWE=ms6_(;kfGB*)}J!P$~C z!n<6e^(TXj0ZlC#OP8mr1sKxI-@F-gDE*%lPm98&LW%g9NjAo8Fqye}GZw1c5xwyWd!mER=TTcDytlYiARlnt0D7AJywC|$^wV72W(B;N{G zdb`d1zA7dP{dQkcND>>3@<-}ln>HgGP~xl5ZH$o5p05f`_b^~K*%miX;>xnCNeC_V zr5xRUN`|t)^m^oLKFqKk3%2Wo4 z#pj&|CsWwkYFHMDp_jP_;SlrLQnkD$ez1r|d57*S@-;zLCy{&;Q$mj(3YxcAA1$-T zjplTgG(`W$#5GtvbNCaXh^AYzUzV`Po+_K;e@%x5QBp-IIfj?=z)MrL>VY=HSOw!O({$ zYHi!*1rBFC!vrzi5-8fOj0?E`$D+;TlAt3gv3AyVRWPxb=HgHs1P^=vSE}K{D-UO4 zYNVP15Tq;e`-UgdI^t`+BrOtY2(3D+JFm!1iawb^hh>DiHm(<3RN1#dLB@}Uy}-N9 ztqRXY6I``J97TlrY!t|NJ&gq@96J}&5PXTto%)SRu2Z!IMv%0V=)PsVJ{Dx3dQ)7YPl?Nzrcouw@|imn*nUhe8IvWj zjN+<$0A?AB`|k&4(ZiB;UQ%1lGA|PlCfVO`E0rf<_oveVJR;CL7+?jc7sGRv?lek- zb~d<@ar77tDQ~jJMLabHg&Pw`$KCA)f(zfytK2ujSlXU_F7`G9TB`X^B7E3HC7r0g ztK;K>%x#6h5`K_v#8!rEONA6rLqfsJbR6_s3g0fau53Mgym zFp(^kVgY%vz>VuTvxi?Ija4yT78;K{gf5kC2NvGIyTQ7lUy3jmqv61Z9fNd2PVL-mX#FhNbGHHt84sDp`BteQ zP)>3@E+|}-WXg|IM-jj!Kd%UE);GFF)a{fc*K6iS)hSI+o(ZnEO_YR4!Xy78*O?fs z8J5$qfG32eF>j|MTE~vb)x>&c#RMx#hy9i-zXXfK`%1@_RYhR`$&2d0E!I)X(4J_DG#rQiXs_}@J2b3C3ME_5Lvn#~j#{YjWuz&Tk z`niDNKUZ+`lu)(Twf0nS^>%^SyVxqY`k@GmiTMc$iE{IE^Ar9t+;~o<`=3;hwU4zE miaf;C%9>Y@kDpOVTTl7_1h^1ZoSx@I6g4GH#To^RFaHI_CwLtI diff --git a/Content/Figures/Plots.py b/Content/Figures/Plots.py deleted file mode 100644 index 30fcf16e1..000000000 --- a/Content/Figures/Plots.py +++ /dev/null @@ -1,23 +0,0 @@ -import matplotlib.pyplot as plt - -T = [] -RHO0 = [] -P0 = [] -P1 = [] - -indata=open('out.txt','r') -for aline in indata: - t,rho0,p0,p1,=aline.strip().split() - T.append(t) - RHO0.append(rho0) - P0.append(p0) - P1.append(p1) -indata.close() - -plt.plot(T,P0, label = 'p0') -plt.plot(T,P1, label = 'p1') -plt.xlabel('Time', fontsize=14, fontweight='bold') -plt.ylabel('Pressure', fontsize=14, fontweight='bold') -plt.legend(loc='upper left') -plt.legend() -plt.show() \ No newline at end of file diff --git a/Content/Figures/Plotsparam.py b/Content/Figures/Plotsparam.py deleted file mode 100644 index 2657e5a7f..000000000 --- a/Content/Figures/Plotsparam.py +++ /dev/null @@ -1,24 +0,0 @@ -import matplotlib.pyplot as plt - -P1 = [] -P2 = [] -LNR = [] -count = 1 -indata=open('output.txt','r') -for aline in indata: - LNR.append(count) - param1, param2 =aline.strip().split() - P1.append(param1) - P2.append(param2) - count = count + 1 -indata.close() - - -fig, ax1 = plt.subplots() -ax1.plot(LNR,P1, label = 'P1', color = 'b') -ax1.set_ylabel('Parameter 1', color = 'b') -ax1.set_xlabel('Iternation Number', color = 'g') -ax2 = ax1.twinx() -ax2.plot(LNR,P2, label = 'P2', color = 'r') -ax2.set_ylabel('Parameter 2', color = 'r') -plt.show() \ No newline at end of file diff --git a/Content/Figures/Software_Stack-eps-converted-to.pdf b/Content/Figures/Software_Stack-eps-converted-to.pdf deleted file mode 100644 index d12c5e449005acfccabe61a4e2f8bdcee89abdc9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 246553 zcmV(vK%9Im;duu z`q-Gy=gDi$(mwv}Uw-w~_s`NtEh~Sv_VMReA9H*@`CxjldB`=A1s~{P_LL zh*H|;v*yQFAac#0=~*A~zSQeys{4KZV!*$Dja15KzL=56_^kI00mmoy6UM|SzAnbY zjCY<{{FvwOzh?gR>;L$5=6Z_Ra7?8I-?IYfa;g^v=;;R93f%rsV_Jr5xI4>|5U*Pfp5rgKmPN7M6W}QL$4p0|FQRYxG~+o5b+jmr}}I@`+svQ)s*MwygR2p zZI8BG9yWY;PGHV1@Ed;ali&Z}+b93?cEBde{(L?BUZ1)?+hsn1m)ng9-u2Tzc>DMN zUwQkbCjR+<$?>CoroMOnlRrE8fXq^j0n63_=Gm}Ver@Uu$ckrqbylvQwQS6$-{$$1 zwvfjU()yfxvDUN6zQIlX(eeAa_Hcm#ozusLi{4o4=V*W*y`XJzRQSZ~TW@Sk@B7cQ z3fR0@s$ooFGez^y_dxas>Ru+u%kk|0*=mP~YE02f)*jpnOv-r8=7Nt6CNRtX%7a;q zr%ipOna7@1Ijv2eiQjKlD|oyN5OTxmb72yB;gfiv)K7eIv)$g;Pi~(L@7ue$;Q9S; z%OWec`CjtRIz{&dx^Jpb3t(NqmETwHH#RkJoK=1BQmp3OpBcvBskJ|cx9s7~{naOZ zjwI6euFoz!%6VZLdoi)JEnzTw)Q^~<_0Pt=^X$c6z-)RA{9xh_8ytAyo;1m~sZzE2 z8)M4PJpz1TlO-oD-&lsRFcVwMbW3~46S1H%x&{t|XVOJ&{Gk1NPk;<sw}ycuAFtxz^%J7C50 zW>|@T?4Arv=eF4J;&*c2B*u2jWVAdIhQkfopldc}GY^>Nd1$@mO}q-?JsZEl`G~bQ z?H&$ca(j`ujXx;(FiE*5C|IN@iQEqiWK5Z4x;#0AO}hd~P$1a0B)|iEd+kqe%$^Hq zwP%a<%X|GOquUk+oZ}`+52ZISiO&78VGm-n?xIxR)W$dV@+C|4E<)_DcMQ7^JyE*I z02oi~EuA&*PSKVi(8P$F&GCvP5l76z!@^(~d&YC`sJvdtSt}{1wo@^$`HsJID{C8^LU{9TZ!-lD-b5JQUad4e18oq3YBL$K$gJDCByjU z-W0v)iA15CbH=FnhJhzCwgW-z;=HAN(~9knc2e)bM>jn6K*`)5%L}%5ktfkah|)ei z>or7ts-Xq>vcb?IYjZKQPA)RFK*)j-6fVYwslT{!yu&w!J7X)3)VMfvKP#pxNy4%6 z2U}Pa(Je3Sj3ycWNQ_|XEQq&F;f0TEX37v=$sgU!R|lWi6op>Md-GEuZi*)E-UZ3K z1!kgjgDJlBjlElv2{A$1E#`_S+mk^q-QK+|L~tQXEiFwhT8ph2o~2J@vS|yEx}SwU zOnd&LOUh5e1tK>}e6GfITOc4KKYwHasP<_K$LjBQB zNLyQVjq~9YiFt;s6^?uBd43a0KW$kmO9Y}1i<7n#nP3@NMH{Y=?Set4c8u@9V8Jas zp%)U=#1IU>H1#1BxFEKGy#Kp`mT%j0W@RkYp348+^u4q(Hq2Rk@ z%>)&iCgdtLQK7C&i|a^D1XY&yPR&{C$w4iuPLlg#Y%SoKE(u$^&CMcd2}5e`O+e9C z@t|oZQI}+&Lg6k+vN}J0s$^MSG6N~*`=aFq3^slmuzsBN|GYtl7f^BGY z39O9)_d;Yo{6*6fTQVe?=9PO0La|GTRvL#K8tGH5xvTkq|FT)diCo*bf-Ro+t0@Av zVty!|I>gl8g4DNyTi8i8Fjbb75y?KNY4hMN7N@(ySl{48r}0>dC$EOq+90*U;!K3&aD1`jih0fLZImIVJPYkEr_4 zu-Sv27MQ?bd7s`bnNgW(=%F!3xGyiQwxkYk8}X)PrQpRK%Tx@WlqgnRf8(Bs5R zIS|+-cmq9-DxdLzkJQ3}z^-_tX1BvYzneqm>TR{hH^Az0)GUc;5Q#+&1Vkk~_cG)_ zKykyEvdOzw5vm?mAbCjEP=VD*A^>h58SHM+xG{4hHdAr8(1F;L6efoQu>wQ8mb;KJ zov}%;WW&p}hv~)7j7Lvwh1c*En6XU`#Kar6Ehna;ILN?wpo@BV!(0ej_nTOm&P;d% zTjpe#)K8bcP%+5K;S0tm_wIaBJVDIXKpw11wi{p{H|W6=Fkq_YJ)w*;3=|G~FB=90lR)mn0Do3@`}t zS!r<8FdmY049KwMs4Y4~PB4v3xi8&~QNv|3h%q5XSmS{VO7G>iu5b8#YTC*ho)|zn zV!H9y8TVLJ{}T)MyU3^@*THn~BwI2jne=MmRzt+t9}XERL3Tr_EHdeWMCnB$=50Amia zu_fupW?}ePKPoJXjoOpUS?bGV=HC))S+_+DPp&Xz){y5=DTpe(Jz8*x{}3+WIm~7Z zcVLrzP5d-XxRphoHDZ5F4>M8;DNE?j>#UQ&p2jn@M9YrAhN(U0l8nc@xk4=*fy6-l z#w2Ags z^^NabA=hEa+Rmd>MUqu2r7AJ>Ni>wvhn*M(oi@B;D3E%4@M8})=mAAOUUp*k9A|{^U$IK)o>=k>QLG z+FN*oopE&sCh{yaYhs&qU>pm9yqa5;^rZn!ybZZ+NdoA33}9;`Zrerkd&3J`pW$xo z+S#%_fw`E)*qA0w@GzRQ;VG7S@W&p;E-_P>roiHs%jIG=%;eGwel*Ap&+_e){gDm6 z7&qK-`b-i%AiF^RK4UUOluUE>6Q$tbX%m+VDM zW^92tYgm*NBYQ2oV!d^0gVS7;vqBMIM;eiPZ24hdZjt3ELu4mIqf*G&cpHpMQ4BHk z-=!8QruxTEK_)%eXszyX(*$55no5)yCQ8yL=hfu#%_Y`K&lx6-tqJnZ>$6N1P6)=| z3oQma7{ZXvX{^_fBwE+Uf+Vl_Lgz|(3`^p7(u-B%hEgNhmSS>;lBFv0C9j*DFl@y_ zcy758nY6yV2_M>fh!hlo6!0ydKQGZ5=|v+Pl(Jl*(NmC^OEqjkYO%_lY(iu6)PpjJ|dL(=8$K zz#dmpSYsmKxDkV13570{Uvc1M$x0oiDPhztC^u%wz_<3S`Ou;grgs;SOuQ1xs>uG} z-a+7G$=b+UoMKf~nuqRP1cUcU3 zGs9&Wn{z1sI%WGNS|swiYX62JXdN~TA3)&L;Qn4m%t$g1`#sy_)h%H8mUKaLtlX>b=XbgM#JX=VuEs2g3C6d|JkX@B7Fw zx(Q?0qbmKO+6fGM4CVeFI+nT5#}STzOC;(Z#_>0%V@P@fe=)I}6%)ZHS5i!aA4TY< zD`%m2LIK>AOj>j_H%wQ{GHQ~%%V}4HNk#moAP7X*c#^FnN-Zu=7RP|a!B7vAYV^F@ z5FApih~sDnI|wq0Sc*~#1{J_@qDQ%i!;_F+GMsXq9f$c_pcA2!N5R(mEUC zQEhdWU5EnX0bExYv&e!Uhshb$cua`eq&jmEadR;YVx#6@geuKsfTHEea`(VNO4U*f zZ=PGxEf5;+5V=7K)uA#lLcb|jIi}{$` zvsBDv$b5rCku{Ymv{@$&Z{S1Tr?bCA|#pCQ5FKI=c5z-E52{Ji>SY z9Wve^bZp#C{}_uCdCUGDXALt z8euT=6Pd9Fxk7m7UIH2Av3&KFbrq(&n2lu*T<@MCJrC#3v9!Hid*w5ePw45IeNC2!xEL*E059nNg$wr7ePtn{|tg!U`jo@>0c& zT@S3O+L}t6gyPUPUX`~AaYyRx&0CrT3weKAHO<vj2%`cx>O)x{K73 z^l$4ml3~e&=vk)jHie(0iFbP%u<=?uVX{a2zcpLCV0sJ^3V8{}wrTKPR_Gn@6o_r# zgoDB^4>)UeX8c|VTB~wZ@Bm`jj!0rFH^jaV;W{yqNS-w4!41pewv#)0WR;*!fw06$ zijTEDeH!SAWfEjC=Q5MhB@MMMUJF=(?U|~z$_z*gc8NBn7cp5OO6ZU#u|hYIi@QHr zPRMd;OezbhpIu{4O>QPvMkU_-y|iu1j=L5GFv0U<+AUe4qa&O$3R@W#<&v|lGFr$= z7S0io&=Aa8{i4`!mC$TZQdP2_U+gS$u>9aGhdq_1BxM^-f}v?rGm55=&LZ7r6+0oe zwzNy=xgdVCcfb>Jd@w+?F-0F3T}!*{=}vlef?F8dtr^qhgyifuGwy_6PsQQfS$Rc4=rCqF)TN2gl`7uJ{oO!ewk-ayH9FoEF2X+*E9Zu=swO=XzF=7{XfSC`tMmF3!$@ck6JLBHYkNOYzyIivBO(cyMboTcH`p|6 ztg@tGL6Nl%hthkm^0Q!>coJoqM~CBgvIVLL^wau@xEAX;GEPu9tW{`xm9npo+_L*Vg=T&oqWQ|Gn17Ah-lUn^s{Rw&?r z+Ok~TDtn?fxfDp;f`8Qq#RN`5r8Ilsa z2M14Pl4yhhQF??Wc-$)U{LG5@JVsG4@uC1d9;m|tK>7Cq1vz5g*b6v%M9#&>7vQS1 z5&*1qhO+{8DoNPz6ScjGDUnV6A$KojZNR50y@Uk@16*%T7E#7AFBkEF zL&}OE0t3B!xke;+A1NZ7PExh@B#V^ccsXoRykX=hMT6OfUv%XkVdsJnI7c+S6`(ar zuOU8>K<0Wp*iK(I=(u88(k)Ssas}ut z6q1t%gC&1tRelmV7=!sFWw^v8itS%q2tCKs%Cl`ActiX-vPv>K_$XpIPiS57L` zpQN*3FDj#AEjtB!rP+{ivV)a2jU1G5(1&haSIj!A{s*hrWp|@eniVO7l>iwv=uMs@ zG(*lc%6}HK@)^fXNWDiP7ZktKok9H>K3Ql?lbuDKEdO4Xd=||0XbczgppVJP@Guco zRx_+2_6oS~#!!y)nz4t8A8BwRF?m8QllnG`Lw$8wIMIfsEzE}kW( zbvBQbO(&q~($snI7bj;?rcQX_zi*8!7=w%jKh;`2c|Q z${Q&l*p3;sgfQV73RFpnY&(3R=Wt))$zcr1rv*9hrGoaw^Ix2V&;KHqqgldGn}Zcb zqyj#O`ULFwG=_X|=2P*8!RpJs3o@zv!3~nM26Dc?@0h5#-!%J3*pfqW#brT4U|W(#gAUc-6{=jix_?nD#a=|>S6hqbV@PnkXdHkByL*o{pm1*W#l zvu2zWfO}Ge>9&42^|d697EdG)wkf(;$B>gM1myo@!OKauhkrjN*+W^BlLCh%Ug9r` zB@zwe4Og94~tnw?C-A*3X;k4LSs zVkyPhY^4$a)9=$s!<^C+#m9-7F!8jmA_+}kTbe{og3po9IfbBL)+r6ZT7CU3mab^9 zGsVh5ji*X0f#OlMt-!Pq7_ROrYBEC206X+i>HU{{F4(e9S2gNtGSMIXOSb{)=(!aR zjb&#WGgLf)bJ$?ZsCcL<9)ozUGeS}Pflme?5zbF2{>lPjFcgA{H6s3Gsp#tASQdH! z%#SF^z}W^Hm6cg6Vv6fExiRWcP_Z%_at==7u&jT9R(xgE?A zzEQ{6AVAVsRG7^4fH8&WT7mt-4R=M!;ImJ_GyLRD&V&L(SBva*+hF&ZK+4@TQ#55k zv>O62IKQv$x z{2PZe6ElB_lL^}m(|mmLSZ9?J>m9@6UM8e;Aw5nJI$$mZwGyAeo=LD8oc8BhS0)qq zfdXDAu5#oMK$V#p){}ZC|8#xfp+}ooeRLv?+x$+bK8m7>y{HK_cl1Li*@FD)nkXGt zNT`x!?yED7Lyor;d+i7p#5J+CYKyQ-bTmyEF9u0b^pcf4)93S4B61_tW-aCCw=^N` zABHzbI){!`pt6Zu+&F;cCCMjX8NSwHoMTm!l^TiM%qUILm?GgS`7Ag>2}Q6<*J;yp zy@xB9VaQ;gxL{4@7jjzDy(IWT85b%lFB(!*Q1M7xaxuON*s3PMI72cAj1eU;NP`Sb zyV~DwB+OEL6L8gb@8{r0BPo~5%(prMsFg^}8zj1CC4vMLC*4D8qGOH9_hoVOM6wiT zaIm!F)Rb2;L(@T%QZ?dIPyPNQI+cj8sZ-N*`13nAMc|O(kZnq{_<%K+Rh`{NS9Pu8 zrpp+%ox#RTNE1^u4@Q#-uM`}Cq4hECe#b|a3eInwv)kJv2_3U6@KLg)V|hIOoKQ9wPA*hh=D}OXt05~#Uit(=2Sf01Ob#n%*hUrv z6)?SqcBL5UE$ZZ;Uxa8XrBiXXFrGW4nPDBoiYMIafd%z}p#ubw4VVpk5_2Mgd*o^g zpXlc}7^&6ijnWd$2JN3GEkI}aqgq}B?0gahXzx*ht%{k1im~By#f2Ibm|7&*r@$2F zYd za3e74wD+jCV=r@)U7qAUg7>%h|t^-`!u9M<|hc;Bs;b20q_u+Kk zB=E@N%|$!5yZ@Ga6YNM81gX#sJFZn#%qM9Q)EqfFg7N{jj2!H#2EuTUR~?z9a-p?3bpkLU83l0w z80H}|$1u+!R56k^vOR=Z=&~jhRAl~wIfvAy3;>#mn;uQ)*YQN<_S%@rAV^($fh^b# zMFE}E<$W{AF-0JF(+IbA1_U?U)#9VG7;3{q`70=^{jEKw=#F>y}Z8p8PYDz4) zSgMAZgl%_M4JolWhM{r}>AioPi-Gi-m^k__DaX z_*6es7`Qxw!*qO83u8=8pf>Ci)au(owsuK{I&fQs9l15&B@|hA`NDgKg(F zT(uh&{@U;ebFR^3PIWQR z=t(_+1kO0IWjs+HwbfdZM5Q=e#tN>~)HWeJRs5o|8Bcm&FT^^~n5h-*CNe(GrU${%_s}GW2fOd(7;eNN1 zC%%{}e<3Nh!9pAQwpD+JXFB2=+||W{P^B=}QkB5+gusQ)BxLP{mQ{qA88s%msOW{| zXJjb1b*nU!$Z`x2)+I_O*L{Cy+TRW{GOV9UqLuPTaah?A_0X0e~jtwJ!3L^}ec?SNFk5*su$eGLxLC-tL)2A+6eqtRlpw0s81;>ym%1M%Z2LHi_|37AO-w zzZ68nV$^nySuciXIEHFJA3Lzt$imQasAYsFn<$Gp&CuJBGOTi{*4smba*SJ*k0j-? zqOPX&FxoYSF)a4G7`stsIogQz1jcQL$hLlm zjcSxFxzC~UZK>!00Oc*bO0aQv^pQ`@8b_BO_8Qy7ZEhmD@a}}t57sTM z)~m|g9PDbh;USi3nm1t!4$2&1e40aBqbpa9BWZe}E%(fj-^Mr#A~$5iE)dU;SV(n2 zzg@cngj+BqmML#IyUB&uf6XYBP6~OJRaGFQj>`$9AFT0nG_uSdishj}zA=s}B-Y3z z6eT6g=xiQzy|;=O6WTB@AL|7vQQo8G9FJvAii$op@lGfRVq7&VEsh1(xl&6y_<$jk z6FEliB3o8ebC9|0#Zi{YgC*Gs-R-lI@#^hK3|FMlcuA@FU|5k?lS+-^H9fmAOOhoi z#*)xXT_SojHyT~Kl>L#Tgerm6?MQ7}pm%9WS3;-xoJ2HZ%L!d4>5J=dX<{)*w3ygW zer;^Zn5<~TH10CH!abVU63}%)UUNHt1AR4zaAg_Q+N<7KV7UUY3%g5P-9O@e- zB}`Q`8Q^GlN(oqH0iqkJ15)aWky4EY0%A50PkCuY_|fyeoKCNhHdp}JIV{B1l9i92 zOX$AiQv~ZwoBdJlpWlhjB#YIYiN!IL-C!fGL1ba5VL7$OeR3a8b*S$ZvfH3VRv${G zzkwKv#TA~xOsI^Zm9Hw#l;eB~t8GaChmmoRMoU;+A+)?WQ}0(bWkP@G7Daj>B@nI_ zPtx2dD{{0|Co>ZIPEMa(PyD8f0$x#LCBpTild!xr&BSXtY>T8y`UUp?>C!bmr}T2{4^FHBAlLrKVX73?^= z+_Y~m7;LN(Q4j{~VXO@uGGf-02hN%M;el}Eil5VVd{dkb{S#^0{YEGdwO`^dVOFPk zI=cXa?y%Dbp|F9XNgUw>ctx9)$?A%PYLJ?>30b}KL=SHw!0=2>9>l;~hKhbW!>Wkf zcDAnTG;vsW=vM!oEo>0N%se~ZSb@u;cDz8g5Y}PXooON_GI5N`!)^IM5+5fI29of5 z_b`cLx3|!ELO+P9E+P5?0;#fn z5N>I}Ya9|*HapY8U^_9cRas4sJT5F#=9!1S75W$WoKx|j?&_w6>eV^wlHD6{EKRCA zj`5nd56x2Q@pwfW;p6O0ObqL=+oMHWvS%7iCvax5GuCLyuW7SgeXn(I1btGb>EPSO zDF|liSnb6J5H;sC9{rv=@SkN@`|i_dAmJ+vQbR zNO6#VZ+u3WOC$#NOmIG`MLVrM6>vJk`iq~13pm2OWFm@B-s^ToBOjcIBQU(-Od(ZA__zZ=J6&?P4 zVoe~kCR7{`500~)4=K;udnR)1gbyA|oz0DNI>j8aODSt*YLm@Q?r= zFDzuqNx$C{k6TibJ^;JMI(+MFHoK}$wmh0ca|fKs5`WCGvtiue=_$}aTE2@P(eg#7 zdcop*;~=lYs-mg;I9LHRrt)(|>+mRD|6|wa`nFFrcKZ15|M5LY|M4wuICF}o%WYEg z|M}Gz>MjTK#T%C@hs56vb%Ae8edBkPeKx-?rk6*}xPLz7(a&vYVpLn`@!!3Gn@s=q zFTe88(LXvRokAZ~f>=glz7D1qwKK+7GINuEWA0Nw-+ZpY`+sr;-hL^MA>r73QEU9l zctjw+0#OT38FOUJxc!B=kNkY=|D8*(2BL=*H-Ocl0>q0!st*%KbHao%{f&Xg!D8g| z)IVSl9R&g#s^ot_pPXN<=8_1B2GFi1jg39^xm*5;oVM*Duh3Zi&R+<(I8 zsjt7@15zGb(#eVUyNjEb-#7h*@l#)ay+;EdG%-w*KL>`>L^tXpc#`*mJeGaIPJ`jX zOr{=Ct`@+)Wnsm|H8p;33_~6-nANo}c&ee@3&R7I%s6+_g4K#I*r&o+zPOFIzr)pncA3X@#&==I8VSVb7ye#GN!f4_LPApbH*sh z+c7w{2s^LsOJ8bMLIN2J4XLn(hzImIsNya>?4R(g`wN_Lsp$nL8pH9%{RHOo41E+v zdgfWC3sx#K!kolGXfeKivE%b7!ob5poS5HCbk-Ru$m788QIfQ5O#23#D4ld1k1@e~ z7J^;+;@3~3UDVooaRa>bM{7%Npe3ajuoC62oVF>r!HbKMl=ND9B$hwG8Qh2JqxPGu z0>`B$9ZsY%M>()qv43Hd@g%d`xRT=Qhvc9zVY&aL5M~zt&kF;4P0l9ewhCoXOOHEG zYtjMmJ#(Za3I;~Yi*EK7Wq{dJ0d9E04V$r2nwE9#x~N z_HIYhxaIA#%&y|X9-3N=acCY>`#C-4qvUF!N9{B#E;K@bjMdSvi6tFRj#1JDo1B+w z&)KJee=piPiIoUIpzFyUb3uy)otg3qGt!}Zq=@PAT&w1UB;ku}1VLxqZDad2XG zy&l4&!fPv92A;-6qY^E4V@Uxs0%VuYY{Z49kKA93L^867WGLRZwKonrL{VBiQ;~1> z(ym8=vBeZ^3vYGS$ni!}6+MH4JKw0nz10*Wpa@Kim}PKVW^FGfZFZBmL0TCu%@JQi zfvT6lLvRuI(#9`%ICvfzs>>CUKG?l#;vMTJ2E%kOt?~wRRmzn=aLuij8CgzjI}4&L zx$24hQuE`Q3PnyR4#uYgDOkAm`1b-;BkZ5|v+ckB5(F?~F30Pr-5+ru?Js?o4Hc;@ z)B}`9?l{ln*7NKmDb4#R%!hK!estPm8TokYINae;-oMy<@zi62ES8l|-RaA~*H*fAS6mi|=x&mb%5t|8PQ=kds99YZh$&0INE{M%+I@jq&|ia&7-~nE zYbogj0L?S-XA+&?vrsGgJI#j$-j@sydw2$+Kyh8tc4^5wlg1mN@^ShKtUF4Nnq9mx zos}6CsggQ{VWCh>>S@1W(q+T!xse`a!l)s&*+;UXn2K5Imeh)y-6-S-YiTMj%_BRe zM;R$96694L28pFcP-}GcT088U$Nfhtl0Jcsg3W_@F(x@!K2nh>nT8i$FlzApWLrF%4oHzd$_bKknK0|VHoR1> zNKCJiI!F{hYNJi+BNGG|u56laKahAxG{09Y!QmUFULJsHLzCxl2{7=ilCsE&Hyj?e`uAT%)Ol>P1ZzkZ4bEZ`T(Wo=_)U0q zeK8U9#ObJercTr45kA2WhF(=pUa~i0W`9w zxoO)LpZ81FP&VI^g%`~`5Q8rJ_W?cAJ73vsT)RkF(sY_7tDg;xZ+*cU+I*I>ZjQ1! zf5GVsCk_U#4AbdyV8XcJoY(dL@I>RTxxZ*UAZq(5;mTlnlu7nJsmcdj6@hDqrSnw* z&ufWo1IR4K)x~|h24%Sb0!_lj&Qn)jcVn8=q;A5xYrl%V`JFqE|JmbOvW73m1ZF93 z3|McO%7>djVE-^2vN0?(40APQHPGWo!S9C}$@dAStSbIHH-)`z`=#s+W5s8BuS1=^ zAX8tEeUxx@WPZmo67R2EuV0idYcbxy!q)c}%JUiSEi_ct5f~1U)6P}uS*8RTIa~cI zU7nR-34G+4F^@YvVX3lzE4L zrb>}?yff}b3jOAus+?xCTIF6b87LL&p_5%k@Aq=|XX0(ihEYo#@Gb3&E!z2Goai#pof*y9W1X9A9QTByIidN2}j7xuU{!`GI*7|%UmxiBx-0jC#6ht4lt zRnB%`haWeF4e4(9QALn9{K!JxHjgMOy6o=TFgc-!KeCdSmcQbUsi<%9jX$QMxMRd0 zS(v$QAUq+VB5&LAN0xHd8-PruKC=9+ZqTKxU;i9WR9fP%Uv!P)z(ZDk1RytteW)Yi zxZ!1`XShAmH;zDFL_{F@$m0kh4uY^*SiLf|*nB$?$U96^x0cWP29t;#A%IfYdHMXk z)Dxn7Oh`JtFOFDpZw^PWdOt#tckv*X!9fTwc%^QRyj5w%+kQa_1 zym`*7O?_sgYFFVdEb#Cw+6C`Wutfi2Can z%eL&LJi?}bF4z zk18x~w&PqKnjL4h&LrwUQ^lMW3&}G&ec1YtCO@zU<%P_4h$-_r&%=Z! zuQ<~t){!j|0xa`hrpw%lXJ2V1XN?cAHz)H8+)z5VNOmpb<0=Am-Q%>Iq>~aoiM_|u zM?}Oo;j%W^%18M$3ICOKm`QzsL(QJG(hlO{SyC{~^^zoWN!HPmn$zJh_9d^!Iw7-i z4!Q(0p%Hm;;Ls9RM{v36d5%65u7yNX4&oI!go+;ZdQ(ji?IXI#@;5vN6M)ijJUa6p zHo}0S|6wxF6>BLo9$1!cXGfWo?yoBDkB>4bHVOR)gq{JS(V6)hQ{9&hn58)W#USdA zH8rLo699rgx)!Y^-K<<6T^{gzKLIx#2rAM&c+R9gx~^lx^hzsgw3%qxYw`f32fhIo z3|HRxodGNCihh2)!LRY?1zu3tMXu5Ezz8#oT3>LI6L~R-u^heuA`Q7(&It`H65yoc zeD|vlh1wmJ?vuulDK?Swc{D22Qv$)uk~YY2X<<8FfEl~0@cx1nR6Cl;Q)+`X?c`x4&wm<@pA41&(CZBK&;f3KvcpGMvpgy`?r6HJ(5HnA@tQZ>n7?g!~ zkV`$sxCFgwsPHnL;&V0)`6R>xQDr~624A#>6V%hSBNa8K++~-m3ME8CqsVM{Ys~hj zt8T!*gPjBMbrEPr5UdNUMaX*BSci z13!E~su5hW_zQ8qZnhz17ul}pj=f9!#3tu=ZFKX^&(-tp@AN3jn!bkdg<<5A@E%#= zeHs{eXFR>2Xu`bHc_OYLmCCsc=55MS!=RRQGO)0p)#MX{xwV4idFL;9Agb_e446Qz zT?!JbY7q0b2hM4C-IEcSoFf zy5`$2x-S0a*&)Kr+{RkqiN+p3#m5mE6GY?@^w_=N93hnhvzi2bV`$}Ur`E-)kM4(P zj7DNZs&i{Y$_mCW>KGn8(0OjR@{EXtfY`X=>`j|uN+b^!_RI?Aq& zCuWgk%2T>U?YRRcX?Y{{`2}(x`X*u#8*G}CIxTqdCO^URbqxj>YzowxLsEeoC}vVu z5QYo`Cjb-gSl+Ch(4!{fE$h_uOVA)rP0>D}(g=h+(&?jjt2(K*$o%&{6587 zt!ZEPrf&WlLz-OS#H%wYoACQii-z*>(YSkkiOb*#3*bC>C+$lJWL=B$`o*%CU?j6K zT^gUm?`M-(iQ!Bhr95gQiyb&WTDPq{NhA{HOPF#+@`f3Uj7hhwgWmjxcE@55$C%}Y zn`hm%J=6%c@UobpC)gLLpeSb~4YR$ZA##VaNa9KBuy%I0fZOe+yhB z`Ka9D7i~%L$oAq=Hhr;r>CGE4CUpg)+Mpn+P4?Z$0T8 z%EnadN9w~3cT)Zlp-Gpv=yGo(x(hLpdA$*%{nxm!72 zk2gO*ShV_MiI5i5APQBZMSI4vtOJtHH8x){lV%B~wnRG@>)q~>~bOtrD4 zhjr23z>N((uKACC9#1)%0uMY>Hi_+EH1y~ecr^pICO9GyEj{wQQWuxp)GK9MnN#}e zNL}3aQuFH<>V=#6_F^RaFU%Cu3wC#r7luKi3*&&~c*AZieK9)9i{V7nW4KaL9J#SZDn>!JG?o7B6@x^WKVXJa})K zgQ0N#2InDojfQ;l!$x z=Xr;!sCaV)h$S09Zh$zYC*)9bt%~#ejZef1?{9 zd2uPqxY`*@)xYU) zWX5NE{X&;t-3_lU=adQ`wQeXU)n|M{PG*X2=XKpnFE&`y=^9X z1@_El1!vu#x1Ju%s05=rF!cM^VdTLZgkGG_%+k-DAUmq63BxO9c`=Gv0v=u*#4K?M zB_moVW{JBoxt5Mu*6^V0d?Lx;`nRdIq>UOzODm2*iZV#R(ycqRt8FRDY3f#~iWBRr zV$WC1vf@-+ef?rE zu^~s<92lT%ifEz!(SQGLcO z@xD}Ev7%ap|QSx1lO#A8|{w@=>Z_%-N3>(~!kij4|StX1uH8`r{y@ zbYShu4__^b^lW=MpjC1t;+FNO-7sOyMJH~FF1ZSYDsBmWNb9X1s^rEo|LS`AR;UU} zj-Y9=k&5MFI%)}+aT`Z14}662#YEKdhghIvggOnTB_nEynUr-t-Ov%ZT7QdkAKOI{ zwX9*L*e(L`vh@~uCdhlDmi1U$@r&d@hBO~aka{_~^Sy-e4Ylz*QOmRF$6v2uss>}# zX_89yLB5S|oLE)o6j93~A|17?x{2#XEx(gat{^&SGbt#k`R9$1XV*evS(c!iZmDmH zg$BIqmC0$bukF8}U#<2X4Ba^ZF~TO~o~j>_FFiN17 zQu14NG;PHDi_)d2&?y#RmUcfb5t`(5J|HQk88L9^Pfp%XN9S>tJ;hW@xT z2x8*u07_xcTD6U-Cs^6}iy~zl#7$Xa&`lluMsW;v>Sm6Hf`Mg)P&uw~0)eoq&=^=z z+GW?E>DHg4ba0_SM0z3Y5AlxLYP!|!{sI+q*DPsjLiwJUE+V?0KwaE*dT|MYHLD`g zO(HEkX>veGngqlsxF9;t z&`q3H$>c$vhT9(~C7G!rA9E|=@)3O^Pt8jf7WtU7n2elXj#BLhpGeN#$roW)`}T2) z4cJiL_7vpdpd)B{1D(_(^M@xDh&&!v`#QVIyBS_Z| zXc_Se+qMwW_UkQl!ZD=aN)Ez46bYk#OSePPF~X>P{o%oIxv&>|u~1$Xb=mQ3MP1EN zp)}3-{R)2Xj1$$=z6oo>8*5%Y5_5EvwCOg+m*Q!49jELemBxvvbEQnRvrsN%IPj@_xEL}4;eIt2UMMPNodpURM)!Ac?ekS^Y+Fy) zdFn(U$E;wj5);@nVrY5OM;DxW8s7ZyN>{hql{G?`o%+Pyf}DCTMDivmmT=zd4iIah zUIjQ17Y|>-Nc)v0>oGrC6YIEl#q3yFIUX~hFgIG#QL^qCkfD(|8pZ0^?xu#p|LiKK=g13iY_eT`G zXGiM;(bWGxp85LgEwWc|1=4h3&!qi#Fbd`G2Z!#J`Wr*aGP&W0{sAH74-5?Z@ei2F zIykE0q3i1Z38V3S{WW4u1J{<(U_6O~g9(C+qSMoVBTnMr$6IJ08}~{aoL`-Y=Xujl z%qwy5<2@d>E=_yCT$reQ`+8v%hkC)XYcK4pI*BQ-*ye?q+PdIWZR*9?S-CK?WiPm> zSpYGLR4QV7Va1Iv9C6|?bkg=kql57?2lhJ$yCS?k8VHXnKo8pBaWcjzb`dn~14Ik20u(&EmdU@!&1^cS}eOFbf75SJhFtl?!R#uw%xW8kS&u>4d9%8`F zmOz*aL-)+zPpobaTM65-hE&{%Tpx^<<4f;&IsW*_Xm7Zh&%=X`Q9AlLmJ59j?8?gf zz|`Tn^NXNVu*A&okUyW`eJwARSXRxlN3eLW?aJk3cMx7Bn_ugXFx>~)Lup~(LqQgz zq_AoQ+^s0n3!E-IznCjpzDp5_7Ifw7-$H;FqYxmP6lPoJ2m#LQ@|lPL0-?y5B7iej zX+K8*XYMMAI1#{^hoW4L0M7C_Z7KJRSJ!=u0P+%`>*~(p1ftv|Tp={BV};-2Y|hJ( zLi5f1ivOYaXa5%eL$A-rQAt>QY~X3f2d0oa(!Sz<=RitBoGfx+eMC{KjcVd6MqV|e15Gj8P{o(Gz=N0;6 zH`*EEw4s&ka=E)ge`cT)`oq13>7`9^EpPu8`om>gD*aICkCz16F+%hY4A{R#|K{j6 zxE1}IQW_`vciZrHr{9sR@Zn6Ky`xNyCqf3vxYprrbC-EbMe=_F@eu@v@^2XO5MfFZ*#aHho9?L=zO}gsO?SP3f$OaZ?vL&QzXnN% z;i1SlS-*p!*WG=cxAD5(SNB#SMi9FT?b6vNtsD!qWBmD>Map)1?O>X3mp=QG7hsxUL7oOA6BUaLk6U zvPE{u?AJ~fABOJX+O&81M#s?Wdi^3ft09HgF_zVjlY}So^dT3xK^@1o`lZ2z(Qsc( zDGW2zEM0tIbmKWrCZ&1IpZ@5E;waMMI~;D7l;}9Clw6cWMlYQ2&Aa!fIN5)Gu~fGl zaD9|)xldFT1IWVKU}Q-G&Q32d#?A+fp=kTk8(z|w-%Kvo{#u*{7pmNh6qLbw)r|kpeXJv5C(+9^ ze_k&MHqt$tk(vqdc};x|yV=RX-BD*+ayag^yAQdBSPw^vq#G`^z$J`U3%62+s$;k+ zWVMgG8iQrV7gnO=yI6tF*^BSmp@d7{ z(k=Kua@NdVg{)<>7m9z!w4FS2C>fQ+CWHDJq|E!%bWup6_T7nchBOXJ5%ECvb8^$$T&r=yBJ48}9wCX#@SFA{G?38p^7Otox;_1 zkcYNP>h{O`SvlR#)~hcW!_}gORGOwg$AM^48+|xQ?40h#xI9Za-Hy8p`9XRZm!%@5 z+aGnXjC9n7tCm+D2ANtN0i4n`TPvU2A2pYYeC`YGp~C|sTa+&x$4BnC{%5{SP4cvZ zzEt@`oje?XCBxPm^CeN|I||HYjAG+0{6g5=bS?!{Zei|roY?L+VoL!xT(h*si~DXq zm)z7pBApw|6yeigrJK$rGs)M`?aba3kcyDS<(|3q(N_&bMz^zF@khk+I$H^w;TtuH zD{ms9OG0Z46v?;P=W@zpp>9T(iz!Dw$rlMPoPPZkcahM&;!V-;s~{DDqzX+oXrz45 zy_l+92Fq2t78UG+-9B#gfo%TV8k4KXmC>c1*Fiw1bctbgm5sA744BdVVK>;87}F=p zo%ieRYsGOfJK9tDGZM3JOazZQx?X%sDhB3cIpd+f5R`RI7|7H2NvO{5a^Dc4QJIzC zFUn{8_TleSVz{Yi@bT??@aK(@)s)rg_^5Yw9DW;3S^c$-)s%HP#IYWDOl`carmW_o z$7;%TNlV&l;?d7{A??Pb&vcC@G#zcXZnmRWQ+?Obc6L!OuV3UWR+rV3({=Fh>lC$g zGMTbD!WL831p2RT*~TR7!w(XdJ7%Xd12J601LM81E}C8lgNu>=0Mc^#+TUqCC$ zTL;IrEbk-P9Vc9$d!(#qHFG;Q6S$$g4;6HrM6B&K@Ahb(wwW#*Hq*h_X3EV)=eC&+ z#~qsqqgvNw%C&13$Yw%A;kOIa+4(TL{hCZTI4n6ACQ}gB7E_K0jZG#rAmjc$ zHWNCd_HhLv8+Ej6GqHPcdD~2Es9dkjl*7Td(R4WK7)@+=u&&XBb`SO1OuWR3);L-Z1UjO*#3<^f8<)#E#*_b~886Ly?y5ktfa~+tQcegpE_? zwVaMFIF=K7@z$FL?QCp(EvFnY#A7*u(&HLVXSdsM@t8Nj^z}(+=dg_Ugf@FIOVQJEVi4D zZ6L$xhw;mvX6?}4B^f|ci4ixjdbXAGb%L3T`#-6;(pR4Y2qN zgtd};Da8wPH}Lxl4{J@%5FRPIsdlW+ZEVU0Tk|fJ+p4`Wh4-q& zQ^sKH$9vJhFWt|&pWka>z-S;Ex;p@#sR2fKt5AkQ1nadwtV4x&2D4 zKw|ThSRX*-?X!T%d>c#betxWN!z3yTOGvCP|w>1@gd5k`}qHh8t>X5vAD$t`5m9?K3=} zUMuhAR2z{u=DQ4yc1tSmnz|3`&kFusY`#d2a{*+ko4jhBXU&_p3oGT^`?hCCeD;Gv0~aaPIRaVQ=U@8_4IYhO^UR-pOt%oPTfEd{o?{AU#b`A{e}4Syun=# z@y+FygDSQlwzTI=zt1ib+{9y#+=dL z4^Cq}Ta>hhqD74|8#Sr@qru;&f#msnW)<*#J~PU~F9e4?uK^TBh3)`#^ZI)VR!wJ; z?#UH22%bGeI$Uiso?Rd+f8P``TBD!YHCh9MQn<=Gu!E`0>c3#J%nPokNtXJ{&FaRO z2PRv-;5fHNYp#8%1hE2PAUra8xj& zL0NvOp%OCas3Bkwu(`iz)-o5SbZ-7RJG{r+hjsxME#Rs(bWt{*}~R+}3Ny(CMi ztf4Mb7a@b}p+sd$zcBaZyfh~L6J|~pxxL@>Hzu)-^w(*4^pXJ4VdaHsS@w`7&)=xD z{q^HXB-7~DQrzhf4@MVOLl zL}M0f_|e>s3m8yq=p1o$dciH>ZtOy?n(5OW-n<>A4oKE#$Z$ce4L~Nv=VamzzfY=j znNXE(GS~W9uMIDKPcWXyk3Z>OAdOMqaMgyLVX{}B;WuW(L)$67>9f*+{Rtyb%tNwe z)hqzP?j5T>sB~U5@`(EoZL(S3`o?|HI875tZRCJaE|A2V-9gqpB~p+G1lL#fxh( z6x;JJl4^&-0Yo2+bc`lbwzOj$#QE=IC1EKTjy(Qfoav51#fk2409&D*^6~(2#+wK^ zfM@mX0RG?)I)J!8tA2|a9E@GS=&cbhV6ez_0iz2@xPa)Lz;U~iNm4=E^#G$ONcdJQ z_Nq00yIUZapmx2)X}H3MQqJxjZmbDY%?()GIVXNm*UNv5UQgHi!@VkuZF&Ug{qu}F z!s?b{*ZXsioij@?HiLtrgu1OuYV7g+Fkwpb$m7R+c1T8dHUenlKevsTPqPqs-dZutEUS3qW*q0Z!sH z-B`;fl5->SegG$K2UgB(_>mcLZ0vq)D*d7%zWI7XQ}e3eZcq%NhSw+nGveh@0)D>D zqajLL?@R%w7bTiIuvxJDzU>VzIitVB3sbv8b773Ski%B^K^4LO;JJv@d1X>PpTqXNFeUazAI{*LXK{35Y-jBjvpxV zb6=nm+4m=gL)knQN0^H8jBz@U9S1Fesh(%zyj9ZR$Th%1DiynXZ55}Vf|5Pt?8SJe z`6**eU7R-TStYSh$6X*Jz>(zvf+m4u_&pcVRy()56OUv1e848j;!$S8{YBgEt$b>fiikICu@)EzsFLKqM z(}}DN>#nWA8b&;j#t{y1)<#n11%tu~HMAM&wk+M2;ZXurh%BidQH4#N21lctM!LQM;+KBQlDkPVWx4tUv(` z|Gt8@XaMNs8=F1oB=gB)f^xK>Q}S8ppl#$mLH)?rA;~!04*|g$nZIZYvtGH>VG-tx z-iDpHNy84xNRjiS%qA-{!j*J)S8&zj(}ne_l`YinBa6 zN8wT&ut%Sjz|`Vb_P0IFy`?y2af_^xoW?{|pLVYzqh{EpFs0T&H)H8 zhhjfOnMG_DhdIqy$zjXhKkg)5s4?ne3Pw8#h{Rll!Ng1ZeETGaXvhB>;UUH^a*zW9StP~0FI=Mk#Km-c3vZAK$KEPwijKH`+&`D_f`{2O0{TD*BT$B` z8HHUO&cSshnKy)<7D^FC4K0Af{_e+9lJ-L8Em0e;np0+$X~RSIG_K*+1FBgJKk97p zT%_(|r97glTiDnt7Ovid}08pea8&>QHltj_C)`HIL}P=D*GqQ{k9+aiLkNwMyM_Y8jwzO=uT8}f3pDA zvQJHIOoe!~H)%feTboad=lhExzy82l#p6*&4;Z`gXHxOO;EOrkcJBwLxE~RU%#Otd z?m;-QUmK2cAf2b8g~!XXjCM6)i(;3t9K;4zz_;e-VtBRm>FN<0-EBZ#duiJIx4u0c zjY7L(lyjaPk0(l%KDNkkH!$V5e<)aZ0LLzBfDg3D|&&CqPs zy$aaU=4r2q=jDnY88%R>-)t(Z`*etyy`4hUIrDzlP_~oVkgMes?%_j6rSYa#K3;L_ z>2tH^7b8;2y2}9h7Ui(B8;MSJz&OcyWUJbn5CJR9!zY@3g9&%>>y4@EQ|2?~QI|K> z-tOhYyI;-~6zj2zqafm3*%B?njC1LR$NP)wLY9D=eE8QBjm|;1QPXGVFKoGeauEj; zVv+BtyD7k9+_Q}o;26s?hwG`pq&z`)R;s1ljo93OCy05MF(oRhkA$M)yC%lXqaQu9Q zD8B1IrcY)>Lc}tEUM~qIYN|3hy4mv6!EH_~Irb-4`%G-PwOCC2SV$q(BZlVoWRU{9 zYT?AYqr080#iMB+H%JRuZt+`RC59cbVr|&1y_k9&TQ>c2OyIz3BStgWO~684*)Tq$ zJvB8Otgc=<&h>O4DT>ai3vDQ~S)iH^UXLF_l!I_&e>!@?8uSZ1pYBTL*ote;Lj*^# z(R$$q)1WZk!J6pMcb5A*L;QAAv1zM0?Cw?isd8Wktx`|$5B)Br8mur6n+&-@@yiW8@`*pET-OKo1?hkZ-pzG}} z?4>-`_Y#kW@g4Ju4+e7_e5d(M$5J{meO{orIGUsU+UabuFJtDM~dwyb^TCJge#!g z4X9i@feqT^#IV+%Eskb+xj7t%lz;;0XV{KayB*t0X)hkvzWaNQZ=Thm-HD$^hrRQQ z&?46I%XYaJ15ecD12;0l7J^$J=j1|wifZupLO2k!+_i;fD}Qh4uB<;EXpf7mRqu)> zQF$E0y)Cytg_UZN6D;f_TFZ@GeLf29%SJlJDQ9h$$YmBweMG{VjZTQy-i_`?=NImW zcb#QHG^R-8@Pd?*6a8=yGU~0PX=YLX;A~${P_djLrRX_jpZ~yWuBT~CpDd8;%IXOf{ z_f81JS0L127Kn-{V@m&kxext(FURn&`_o%^^u42>{oiK6=h-vC|Ns7jM=F>zff;y* zBES5UgZVlbURcTR`c~x^bbtNxjbN+)`thHCZF)U6ZV=kDr5^rgvDagvN;!^=GG;s5n1@GGKk^34FkkR~ z0aEz?PoT;&IbO0=9-PdoO-oUMm_Sdi$Yzi4Qb48i%9Y`=QIy32dF5olAFJao`xwLNe}gX#zXpu7tji<0H<_E+oa4ZPmF! z7-6>rX1{`o`mRY%jA(0EMbjuYFhWIys@Hx_r$&(LU+X1VGrtS% z;NHy~G?Ah|2cTW45XYPGYh*TQrqh&A_=bi&kDy;Tw#UURnt3kM zUOY#1mf>`pVVISN_5BM36x8$Nxs1DNWdRF3pvj~Bg=I_Yaf8v#CVQL<#yH!OWoMKT zA!_VC5Z6dEGR0ONiG`|+WwBjiX7w3jMC>A%oBBL}6$cOUXQr62*(zHBm~6qE@J*7K z*BchzNCLZhLxZqj&e-yBMzn!LC_q^6Paw-$U$XnVaHn6J9(f+DsV*qzzZiLO38r$? zu}IOOLGhM7{kYz?`5OMd6U~{*wUZ;+BEcI{x8a|9LsWCSNd-ixq>?4Os=Qg zto^%RhzJ0@neF`3Mm3Ork$&}ZggL@l`@C&&R&b{K%&mr zMW&2aZTCA_5eUzjSV9LfS~kk79HEb{qO11~i1n;chHAJAp0) z6e>8##5-Z~u(Thfu9SyP7N|?CvSMc?2p9vY_{!PeaR2>WALcPL1dW40xv!bzP{$hG zwu&5Vetd7ITVj_$PE92Yny{@+XW)x!7X^#ls`}4PeE@%wdTH*7UW{)G# zT=y54=cu*(MmxGA*N?Ui4pC6_F-ozdHH@+3HOxOYg{14AOnjj^@bBWVbm#lx95}rT zfH<)RP>ui^uXco2UjUsrxQI6HAgYHpO9AG^;WC8sDTb2)P_YL-wqn2=fQNmM$yE%u z1Io!)b}?iSNV9@SYcVVl05Eee6hIrE56LqJe>JX9TN8i65Gd}W?6G2Cc;{SiHJC$X z@7+LG0y019sa32a8Njc&eTt#f;@p1VZF=d=6rQ85_Qil|5%W7h8Up=9Y1Bm)>d@qP zl(!hpI}en*hVIl5>wns53*WhR5l z1T>mTTSD6Uq>qM*03zaie{!ZRlc4Re1`=izZ6G~@9JoI(8vfFY9yD)X4)Y+)WW zP9ultq94|LCFcR4)kQ<-UiA1g{Dx7S@y#hdA5Y*a%9W~BR@Cz>SEB1(U#SHVid@MB z);jLkG5{a0REfYC%E?%?>3(e=<|oUnE`X9fVJu)n@}Mkp0-JjF>k6wE3=6av;P3dH z9g`?&#TLNA_FQu1VUAOboH20N_mMNCPf8w+oB`Ruh}Fm$wh?f=V&n`DX^$K^!&{;y z&5<*}ruH#%h5`lSUL$AFIM=|HBIH0HxKfD;(9dSt$cp19Vx~<)g|d!yvqLCoZ9cZL!<{4k}!zFGCHV9)w;& z!+&-FJ9E(w@nw<|BFSF5wEyIUrU{NTjbZP=3n5JdES`O98bj+@B{dDueRgV^LWO*3 z8p9NNTFUeoYyWu54ZQ6%%+IAJN@eui)ktA|@}+1>6^NQ&QPg9}pHK+CFHH)5Bl9QUGK$pj}=%BQ73?c0#HpQkiIrWsq~S1 zL1L-hy{wylol?1bbapGX)jPGhRPyumSE_b!Tv3`*PW1#!1z#UO@i5RuKTa`#6e#3| z#Eq9$_9o3e8{gwN5QQ#KaNJ}yJ(KjqJ$BJg@n^IhV{_4f*1hQID>*pkXShgISzdIJ zVdL?OOx?Z$w6JylNHc6Vc$xR=9JF}qDHn};_3m5$y(px`zhCgG+Yg{BPC|@)7 z6?NUKNMCx<8VOD4C7PT=fAvL68U~F_vujet!G~?x>i!HyiA+m3+a1i2v6mXLJ7}D6 z_zezdwKT$fKiPL{KNTjI_*mHv#D~drFnG?IjtTAAr>BxN_@;i@9=^*{$+{efD_qH% z+72-yC2!YD(D-z?Akufbq)NR}Lu*3!grqYqI&WDRa@vLEM#MH{DaGIQoFD< z!aWw84Nos!=3k)DI^SFkden3ux?_8Whmj{WiJ{LaH?X&0^5l^%5e6wB>L7P{{i- z)k)1)u^c{FxWCq7bS6zV%0isP%i6<3a?!Db5j6(ZVb9R z>Zg?cmmEuwgX26oObB@CNt6Y|fIw20A4cO!^;u;KLNRP1hv0gZUNM9v<`yfuRt%5m ziiH)!FX}S}uo&XeQ__7@3?ymHRP9ZN5}(7S{Sofvm!p`uUr~kn;!mi8Dv3F3b>CnE zr8S|WbfC+>bW<|2uf5hr)F-`4BBuz0(1B(W*SZI8Y-O4Yx+pUU~jy%Dai#b zn6&cw-;+tXGycCnIi?YkMj6UQt2pZAJSwS2TEa!+m~+uW+PFBFUC{38+#j?{l;E%y z?xHD^l2*(R9G2gJV_()BqejnYOBS`(tFJYh)L0sgt~3-Jz9icR$pp96e8P0a@|F-| zmDo!QdB=ypK5^nHoUbD6GM?98S^zCN7PRLu?i2@yW+v=?fi}J#P~E=vLbPJoZT?aw zIrjOJC6&bh!|+O88&?eO3xY!ji)ulTlpA#yA&98x@a1^b0=H;gN2QR6DqVEQRdI5E z)t{!VNm7GCf)?TM{WDGzUKdvDOB2RQho=6p)r=z7?=SUd{<((NfUUX`W=!4~P}Y;Q z4ewq|deRkb3zdi2Vo7@uM{s16**aSfy)(Z#DNuG{hk}bU)!M_>nlTRZyni#|9)o%s z^*=fJ+kV$Cj`G)T4hvCUdi~jiYJGQp8U!j#v zwH;IG>c}9(c7#vjyIgq2+6dk9W3^}rQ7`y*u_Z*+5*w&D!G&>emlBoTY_5zrTgSLRhfW+Xh09L|F9+?$Nwt0V4u^~cuy>zEoSWwb0y_v7Jw$yv? z%*-?keA{c&%0bA|L`@$`=G%?O%{~NMzLCgQx)~##v>iXY>BFS$j!k3^alUVkg-LIQ zl|$Gv@ZEFZ3N8lRgK+UVa%>v1&rvMatWDr(oiy_e8^}-QJREl4U-Db^rOv2wrge)b ze;kSoY0JYj1y?+GnCAV|_2*6C>~e)s51Q3 z$QbkSC?st{u`|ywVk4btQ1yT0r%OlL3Dk6EH`h?Q&+(pWbVcVi-fLf;;?8r%T3nVFM4Miy4@vxazUg4Tns`{`uXWA(S z(Y0&ZnKr3(=5I>Pqc#{8v*XIM;Lb|jY#?Ag>rUTQa&7|~vcxmZq_(t<+=?{1>sTcN z!X+Fzka<%lk|G(`Wh2r+G6`1O=dV6@J!~;-z$3FB>wmE$wd`lCcjdIv`&$eNkXUv! zBu!X*e3lzzD(lY;ov{@gk(T?^gK+Egv1Ei}<^1DQPI9mjYq>PvDl(XbSpiYI)9aj{ z#{5cr`nan}i{Z&VSyqeTTbYBD!%HEdDPUT{p$PIRVP@(@k3aik&Q>Fs4Kx5td4l8W zj-32-I#wX^aT+FssziPfr$MeYp@X8u%u7G8lZnA90Zz{hy#<}dmFH5y5&<5XCoV#% z<3|V%BvArI+rJjlj|6CGuXbgImE;D>gwF7ba zG1ZVnn|q9u6($SZ^w8oQLk(DDV~_F3a&s%(AR*Vdu4qL&h&w&#u)>{_R<0pe(!ckM z6V~!*RX*S3sH3bK-NTxt{|B9S%>Lsr6P)~I-Sm@@7PvEHfDcY+Sm2`{ox0otw?SJc zMOh50>mIC`%K#rP68wVs2o;3}cub;O;3K2~){1|XTi~%Q!UF%XP-uZ0JRAEFR-!E= zXSgqA97U^tb9mSHujg1ofAA;3YKmF~2>gq7NBT7SNj$CHk~>s&tv<3n*pSN*5<)NDuR6sCi|4973!Nq)NZ$CG?9 z?6>myPPIzAK^l}7Xx1h62+;K|d!&SkUeO4UXLO_EPmS+$QthFVk-F zP?T3JHELwo<)zgD)AKdH1A~$PIJfiuPYza zW}9w!Ot!75KV4S1C%Cz2OU!Dw_>%+4_Uyh2M6&#q0Juy529|Pgp zpf87w7WGxD#2Lgi*qol&;^(3{J@tjQ{hUSVZA^WcT-=!q`f>=jmRC?x#}iEc){o!l zP0137k<3nv5|5G0h6B+RBbjX~y@oLoTh>#^s~nr0$-*d<02+AUsIoLlxq6cHuqAdv0Uh z61yWsMA(tjUiVyAghbX8<_eX-pP*^tDWO;}S4t?BRQ>#lrCu-oo%`V-lgC#q+jc%i zO6%H((wDst_2ZLI-OpToHLXs4_o!*jRRgdt=h{u;8!P_@eCTQC%^b*1`P z<=V;IAiJYai6^~PC#sJp>KHIsyFCSl(Z+NmZXrWxYga<3L5;yJ;Q6424ftI7poZb5 zRGpjhL>*^Dh+w(m_{GU&(Bv=~G-*0KlJ;cK;ONYrG=-1Ra3oMhC&^^cq!~L;S_v1y zkYmE=M~0h)EpGZ~oQMXPrrpgk_f^txL>S2!vZos+hj|D|GZ{2#PX=8QfSwGRG?PJ- z_PBI#bV?0ygg?9EqC=h6^`75*pVczEfPm(#G&InE)x7D`R);`r)av zI(RybXjlN~KyD?-I;-DbnG;*AdVgg$cL6HQ4EGxD=#ojyYFuu7DyuPR&y-k~d8)nj zDJ^NBBFvaYd9Mhy7}dBk%3wH-uW)Pwgi~iIj+j+}j_b%^RcnO6qGLPgaBL@sj%^fe z!ycq(+X}sp0_5~;TOH};*tRlKoaN=%-bhXfuQmdkFq-JqwipynhVp9L@dvlNR~yk+ z7;5xt<3J_arW6oVN!uMuz+vIlPL90V!H`#*y*a|EZ8fvZeRQX`DYy9*K5h9B!l$h| z#LK4*C&AABW|@pT*AY5zWXJ|L0E^5$+CT)ll*;~8GIqnDnXUx&K)&U?uTVBe(8LtG@92>iWa0r!XWsM_1cjer zgA>kdM(%MQ5~zHDXr zg)iGBm;15}fa`qBu_SxG*Ho&KeA(vA+{!PYFMCUKyDuAvC09}e(zKV)7etpb4CF2} zQFY}~|ImCme#5;yV%_}XLuPWI2+p;bhdR-QCmUYak!Pd$FnO}K&I0MlR)3}NWXqKt zp6nRh@MKHtg(o{EM4s%V<;f04_^s{M_Q{ZjlOsDmT#jr28H}&Xk&WpWr&UUJhz2>b zG5L54_hcixTLEi)sZG8Pc@RL2*i`AsMyCA8W1%evfnv3bazC~+U(>~3siL}_k{ zp1+i&0^g)7r+gM4bQiMH)%pIJIuiB$ z@5ZcFT>*vP3vJPAbxFo(NKUHObPKAip+8c!Hu3oJcR=9JtyVDt^R@!ju3F>yJzP;G z>5A&&U^+m%->u`0qHJZE1o5M?rQ)Sz0^pq?9Pq992=!>9!Cb963s4R~hkHjsPEUih z+8iZsMTgjH45Kn?F~(OaGu~-Ml9A@_V^Nsvxjr=D{oMBN=4}4ZVfP>9lViFF5z)D= z@M?@=BWvQNnI0xIg!k20$SFt$yJOQIYglb#^5tQzG|0kgC9SaGnsiq#sRr%%(uEo2 z4brz-#T}Lj>A$&{#krR^?F%ejMQ@X{6z?UcqL>yghH9F-T334>bTpAxzgv|N{+=B% zFK}mb24DK{xN_97sXlx(&Qh=PjP?IO_`GD-;)414_kTG9G+D11g24MZhmaE0I+8OG z2-WxR;!xUEl)6E-0gnHr6Dxvibf|9+<=aa)p;19mR4ZJ&6O&)YR?2nbR(zjKfGfzm zm+nfA7GUzrSu`l9&uX!0-68N^dNN_i1z@$-;H6wwY;~oF1g%ADG166Q;c>?mU@gbn zpCL$7>r(C@Gy_PUAUb@~XVL5niVZ6g#WfSU(QKD$6+UWJ}!M4ty zXu<)ax&6`te_#$|(q3kfoQ(|7YBhsRo35E8v<CWr{qxyaT103_sgomCgH#^IU$NT4Kkk z9w}ClxsEWsUO$iCDYZTxFAxwSme8XJg8c$Y4Hh-XYd~WWPNk$Fh*7Qh04txBh@j^R ziJ!FBR9qa$fbU;Y0V*Ii0Gtv3xDs3bbSF_3?B=DE1zJl zh8eWoAvv2@Jaj-xrkP-H*TMXlLjQ?bRK1EbGA8{|<@m!p#*`NvzD+EXEX;*;Qw@vs zr2!Q2tH&)KSz(kzC!fuaaf3Un*3OFPDDq4W?QYOht|lAI>OVtQls#AP!N!y?Sp`vs z(8WvRGon{wtuBV)?W$HfwPa)-`+=z%6>m@Xa(bk!+7HYf;g@bdu-czQv9jyej&v|w zu$!m2Zd-SI1rqz=4;=5&AaQwGz!aL|u(sQ*Z5W)~RvzI*8slB3?MZBQGufKB7&fjZQ2-a=*WMWJ(K9tk$EtYh=OWB~gMQS!hkF)9q;2Z#fNle6E)L zeG5|?H*eI*cdGNFT((*j+s@+Hm`bmW#p39EBQv#XAId&PB}KJDABN|Zs!*+1h>bU? z+-g(m0@7n%(z}|eg!tt&mHs?@rKV;otN?dFh`&Kj+T&cwp)V6ps1aqsPqY*A9XAYF zM6`hHoz5jb{GB6q`hM3V%oD^=@SXdFQxD_NGn9Zkn4hJf33kyI62Y z*n}|^3W>Z^)xydhK6kDGux4FANhA1dr_S(g5?64WxX!U{GL^y6mT!|2N~ButK)XJH z2IF-sX$(q1X4=NHQmCv?t&Ikw$JcPfk_4n_X}gGN&eSon%V=QYl~_Vf8{aG+v!}+T zmRu1s92T2De8TwbGxN1E;8V!c-fpj)fd29PpyYTq(7RQ%u77hp z8|deAprM`T`9XP+X9MMfesMe<=*Ls2uPnE(^jlvAM*;!q+8G$HmWtOuM2hAAQMyCs zSn{8v*xDh$dS$zT4p@Shqbd!FHDqtE6nmEc&7>lii`K8aUxKq20Vztb_QKX3A$j|w zP%r=9T=?t$cDge8{1@6jf~18qXj=gx77x9&N-Q0f032^(MyOWfT%Na!#!=*hhHE-G z(xgfAG?cVZ2`-MI5?mzeyDplj1o_@5?Yc-yzPd=dEQ1jk1h4GQP9UG0Kqa_1G-Z>9 zlD=r|;9zLO8$GiY|DuITaB*nzCrx3QG=t<|^o)sKG^Fnbee~^t6mz&=_6;3#lg}Y} zQhMtFC*I*A5yy`O6OaTK2cLP-8V1c~M8lHfB0p%PSX{JAW1rE0BzQSAWAYge<79iN zTHzQoLj*~Ht#Rr#_O7NDuvWc>>KvgR(Sy_kWvw<3^}F)MTj{;5~Lt>NP-lVIx&POWd_Pm zVQU`$YLzW8LOtOwIXc!E4KtIN1o$?3u@q`gdC51aR_LXSA_(9*{$x6lq-i1&ykt=p zg~d7Fp*?>h@eM;gHF8kLoyYL-jrPY=EPRpnhhFZyLS-?s=9;}%*0f;32t)}7{$`Gj zTYQ|yUzg@$EKwf7Vg<{kfECXAp&I*!Cl+SfrQDP6H0U@v2ZyP^@c@7k#1@L|vD6oI zBHE}4jbe<-BCAh}YLJ3XIg_Qn2UuZ1v&vi%~f?TOyFq>&DQ~M3awG`z09x7A=|R7DSbfs!*A-=D>F8^F}ii*W${%w`W>*#J}N9V(j*{3&2qaPEMk-0RJ z4nJmaXaqBt1t!~7u+a6*cu?>@{CI*~riQB{>L zC&ZvFa``X^P06r}20fGEp&XL8>BAhM*m#A_#!|hm`7lulxLtGJ)2E-XLcgnQ6%+3G zQS@PU=@s{3TGbh$d+5Y8!3KdEUQ8=7WfBeDm?0b8DDlyAH|FQi;aF$}P8;vidnHe) zKl@5}V~lFaj|W{YtW%n)YH_}U(@-vt1{;>7ZGM1XoV@Gjlm8zrH*gE8y4bdD1m`{k3g?3`@hXpuM9)do5eIhYlL1 z*&Wum{ObU_zZ+SvmJH_7fsF%qhG}>63cY_pr$e)f%#XBzVQ<>V{5d#M1%|yLX8^zy&v?rwzF5f!{l91Z8;H(>9!a!@H>ic-$PN z!pnZ}&5J%aYwLxk4H}gL;D5WKn|sgtO6`R|FUEt973$hy7j9ED-*A+EbG4QMOzmmQ z+uq>>;w#R6+50poCi(tJ%06eMET# zkZ;-krv5DSWtiGlp7)5hakLa!%M=rB5d7uy3d_2%6>YIpgVcYz)?Y#F$kvy7h8V`( zlZ_hm8FpgY>u{<7@q^}^X4Y|Fq6>q$q~8U+EP{fOpZthuMFFScyNe9R*9=8-7eD8s zW0M4DTVI5)e8PFq>m`2UY-aMJ9jLvf#WbvKh~?Dv&5dqNJiNJtNruU-UigewQQ2?9 zuomcTYsz$5!5ytIA;5-mnMKqn(`=|KX>6pJ4ADfM2hzM>VbLhlT?Qp&8%@jDe)4gY z_iby=1f1<%$8~Q74L1Yi-`vy>*VNKFK8HR_+X}h{pyz=tZ}&6<@i)6}Q|jT!V(Su+ z`W8U~dcDx^@Dxqr$dc;2`I zUOsFeU`U(cW*B$Gv@V1=vDAiwUJ-D;_*O!52^R@^Av3va?F0jNNnH=&-POFpL^+PD z)?$w`sUr!_+FhXO5xnQ;qB%r%hjXmGpuG_Sw6-l4;Km7fEZSa30P%6fK>t6i7R#P{ zCR$2DBQjszVeKuFLL6?UZD}*UG?T?GK*>C6%R9n$);leBvaWleBZr{)O=ni&c(Z$f zg@+!&`D5DOUnZ{i$HG9?r={jW%jIHm4mB-k-1SNmOpdROHP{6c5af81{Roo0>P3-N z9Ajbe8VBrWRNudBFv-Xa1k33(lyuvA77=3lwjrxy32<I2PyNQF*m()m-%nBqpE*<3+{!^<_YzYRfE_Wz5}bQ zE@e&Imo9ED^nmbDs7UC^ajL~%sxkVg-TBg!15tqSox*`MX0Ic7m{%})D4sB2uH3&N zTzr{ESTI8(0NrHN1LFFO$%@wa(8(kxnLb#gr+o~SFKi#o*a{l#&#gh>iZrtpcEP`k z^Ui7^JbG}@t^1`HQaUY2YuWWiSFDu66lF(Yx1|IqWi#w{Y#0E)V=eFF0HlKn0~W?5 zG(58&YzGm6oi!f0x{Fmrl40quPUZD2w@;}Iwc4Oq6_SIq*R_-n?STCz-nIbzABeX@6#AeCm1lA|S?D{^ z;OYDi4u#bRhb0$DZ}lb+O{?nfb;mn2rQcUj_86`^4A!&QXZYeAf=r7xD8ltYSI71b z4ipOL2?c}b!$r%)0i3;gzr^{zIo)L8MK`WHb3=p$q(?|)wHbf6mp=U>w-iuu5qKsW z8U&3VFc;mFgPt6rsRvE58}vK&({Jd@8Q+{^j-;O8>&TZW7TKA!z+w$b>G~42aj&4c zgzbx2d{@-|#Kx$h#{;Ebj3MKr7-iN5Sg(UJ!lr(=76W5$DirkrFj&a?}<)aXDy!xK-vD*YsT24Q2?`7>WQWcS&1aU%sCwJn_0^?sVdbGtdw5e?I8OQ+RSh zDmjq)e{e$0B!_ASiNPh+jDv57nlbx(?o>05-tKC~vAI*tI7+okbRX~dcp=88nsK=9 zSV@PqPN78vmVfCPVXMX!`^Xs76ZX_^gr3<%)QHuq{xzXz7Iwv@Xch}K-5|B(WE}rD z%I|Xducb1tvWOR8V+)Dy8)jm;Ty*Ff=cH!&G!m1|I5`g?j2kNe-7Imy zTyxs6O+pi{HysIp(8YSIXio&l=pli?;Ytt|QQCbEq`X=+$oPV+oa-`^b-P z0?hTpoo$ZGSz^*Dx4&LLUX-dViIY-r$$ziEn(i#h&(vVTf zfd~7dB^RCE2!Py+fE@d>#j@vk#$w5!DQ#PM3sEk-)QlZ+kH2*p-f4{ama^~GmLke@ z43*VyjWi=_DB!^$u$}3!jw~? zJVKID0i~dO1^(KXC=59r!g3WM)k~PldGSNs!sTHxjq!DPJe)Bbq1V;4#HO%cp#7<@ zU0(7v065-us+0DqXEAgHYPKn`>T@K=%Dd1gUU7ovUbPwJdTiEy!uu4sf~+!=uH|{2 z+jUf`&>mfdB76KcyQ{1>xH`;UsJG-;Loe&Dj#!&ItHsil!>7vp3{QutNto^Obi{6$ zo$A18OP}2z`=uYs3V#9u5xIHd^d9;`jt=vJBS_F5Hf3@B;(-TjpdyWe{tt_&LGJ0O zLe(_gp#4Nd2zOK1vfSy|C^nuu-5Qt(O_i>QnPgBPC)y&wYB8aeAe9v>#g)0QrF!H? zjMdf<(2d2|rgXbjYcD!C$9nFQd&1X0yrw_41HBy0q;5*;f5|bcgcyLydDs-fr6}V- zpfRI-PkWIG?<>B=6r&@$+Z35ZYl~6uh_Jn!M!z#7VlPd64UOMRGj5)aqqd3B;R@Z7 zr|7=o95&w?;aYCz@5vpa3u2?>yf`Sd?;Hr#O=P2&(mvVf48gm=HSA?vHcN{ z?!MNOUJh&C=gfpe)k82DXr+&%jxk>5HW?v62*<0;8+zm`pe!ey~jYj zbf-Jq1;%LF{t&OYgGQu3Z4U6e{-(i)?NR>X-!bT!Ks^_0Op|=f|?{iwKBvivg`6`pVN za@fA40&DqErpq`)vo6T6YgSM-g{V*L0<*de;A<2HRLyb+JauKEuhqg4KfeM%!j5<5 zP8?QDNYdJi4lC>n(k^FBt8>0D4#T4#oQXwX^iUuZ153zWxb7M}X~2w!0Iw4z}Gqb%O7HCCN}x2Z{d_k!B=rVKh#|7914 z=Y-oDujTFqb79zbx7&X_DkInKVb(JAL-9}_v^+K2e4lzsj z86`Qkb!aG>*n*q5Mtnk3^5)xCq2k(-V%DI5PQciZ_dG(<~W+ww4wJ zH2Ik~&4CCdJJf$6FL0$wwLI1%73yZmP;(VGD~DQ1c)EL zf*d#C#($n9$MkeE>L)E5HyVxX65uYGB+JP8CRlxuMNeraStVO&sGr64qpvWp*ITi+ z0xw-aIz6^Pk`0oC3$R1Q&@cVT`Teha4Y&ge|Oe z>wM*WF#q(Tw+ye~3^ZRt0|O;uB}ZzFjQn!?O(58zJjU=T^dr(3R5v(CjE?RD>MdzH zn_y}trRj&EFTnE9F+a?cibgq+lo-u*JUZdcca%VyG`#?S|95c;H-|*7E!1acvmIr3 z{bi4drGqA(>FUVm`*TImWnpOIEsraP9^Z(2<&wh@%6(tY_S}NuuYvos?A@2=R1Y#Y zrVaeR?61q*p3hO#M^`+JJBZud$uPE^5w`3&%E$S|Nt<}8iPFv4NDv9r+S(8xtoe(P z_XwZ(Hz$AF@A?l;*xJF7t!*@IZ`#_k79FwN*0y0=SI{MfRr}Q&9HgynQ{xGMTVV5# ztaY=sV=BYecCdM0Gx2S-wPSUJt^H%YsAa`qB+*>c1&ua>)8#jrY<%{M<{jU^o`EJC z&Z8i_A4|jHdd^PGm|=d!4A`-)@xdXzb&bkBL1D;n=Kk7Djh_?!X{^@LCF zP7w*8FNa0~^F2XAWlN3)9hr5(p$C5HIOA5@s^`wx_)B>2b6+8BUr+cnbnemagwLhM z51v}E?0^hwlqnQTts~NoH$d*1X^~642xR;jl0Ho6NcddpP2dTiG5JdP{INWsPM5GQ zuO;Ig#Y_xGd?}^^%y?fRk??8w`!wbsA&)WBN9xU3b2R;JIe{>Y|Ajo?5 zpDSO@7WMp!Y|r%&Wh!GJ>rqCuVj$~L+N82QgN`+s93~*z6PUG3T^qj+8?X!UD17tm z!lGGE_S_Fs<}%rHKkP*B$)5XBHmZ_6llBCh;6yB7x!U;6iDb{@FxfL{IyQoiWY6UA ze4exfj}_^DUAdmYV5+A`kBSFbquqfR^gtN-)J&pC+LI`@sn-wlFgZ-3NSaOuqnWel z35CgFa)HyH>Y23XdTxP;d#-2F%=Jv#gU-njI&{z!xj}o@qA~Vy#y1zmxN<#X8Tmr> zWfp0RyEOT^sB^8^!Wo&ixP@n&X^V!2?;aq4a|``G#+zX05i5QzNOD0zit<^F5nn!#$K z{~9H;Do`~MhYCV?yyd^Ps#~04*#KCUa} z!ajY`7!Mcr5w5qpuuo^_RCi%p^az9J|AuRQ0~Xv(H2qd2GUkZR6Qw(AiI@jf(rQf!8N#vorxEl5Wh0b3zGG)B{)G zP8$WXQALu@I#43{$d#l||I& z4bX?3PHceFT{+H2Vll6m3T8xGWQ zlC(~1B*K?<)Qcgnc=(n&rCYV?`Utk4F*P>yY9Hww_Y9ojRhsVAwtCijxx3CFzKT1L zkK4XEcKy&9C|8g#BR`H9U9#x@7J}i|HUY+Dh#?U-;`m^G?W5)v_ph>feY{umj9fal zk6Xy$**0)^ShVtN1JM8SY@a$~G$p^3SRmISa8xcQ$qy}vqd0nGl~_3c_>`F(=!Bh~ zG04#^Hx@nHhrM^sWxhT|j!|>L2 z$OrRuw5GNj#oKOJ!5-9r<9<}TAgjZx)jqLw{~@q=IShU}?8nP#xB;ji?^Mw2AV#Fp0Gb&&fp#+_Qy+a<%z;4 z0+e&85YIHMg<#t;G6G6x%5Alx8Jwpb`=eUL)*~1JV1EF6{mBhctyZUMC{H#82x(re zH0Mfp4fJ~@$f5@Wfd^J}X_&OUnYae*btd6f_GlpjZ(x4_JN?R{LSKQArwweAOhUtK zuFne!+Ph0NN5hrKltcfN%YThUIIfTIb}5n3hsGQ(Camj*AnFPIQLU1{+)=jrxWPc^ zkLUy<=#Qjxqd14qANd6OE%GLTh;-e}haLfRMdM=aui{=kZ2+F9l9ReKjfe_)AT zNoTmDs}MubAJGs%{t&FfESx~ch9SHob@fq)03m;%LBL7alvt#J{1Mw%$RDx2h5Qi$ zAdo*oL=gI;S{3QumoWd7_Jk{}`q*&pCx`K%YND40^8RxHWQVOH`G!lZFe> z&p$%+fuJ5&v>w%rfUvI0s!}|tnldahw+fm`2#!Si$^P|tV2y?qV}%+;hm$4g*9Kc$ zFkG*I5PF_GN`v2(O);q24}a5X_xC0TAqu<{mM#xG`0gYD?LCM>;}-}kTmhi~agTry z(8r$@PMd0H_8D99oss7&Ps9%4?yn=9QJ$Ux&^=;7nCO<-Z8`Cb1^rwa0DyHI`D?j2 zNBY(Q(-jNK)#0%qVAD@I9Oh(42lpe*mctOSAV945nqQ_K5sC!`#CmuWFw!%<1prYe z&cI+R0|D|!FsQp2><(w_NnxAWN;(&0a1f%v6TAci`^n4G}lW4m`FCAA5)||Vlw9lS*WFZHJk%Sz$ zGYC!YL(6yg`@f%@?@!M7xJPLBLD#@+KX=CKMO(4uMNYOKzBrq>&Oskxwv$%a=DI^( zw~MZvprBO{nH=Sg1X%PhhVLlwSlAMB?4F)_RNj9|} zkWiu%SJGZ?0=d>XvYOpov;M{IXj7?Fa4DtSp&WU4I6JUja;2+8 z(XSXqK07^O^hm~1KO~dt+-Fr>&d5Ne z$3<`Nc;FnFHt_^0C5F}tb*JNjA&y(&3L9tgvUr+cRoXTEy9 zr#zrQhL;}&J!UK$LKcP{ExIkav_JqHF9;K@_patPz8|c$LeHdjyTh6Sw(E+aU?a^O z;Ca)ntJ=zH1x$|Nu?gROWVlsginj!H6GVJX%kGzabID{ zqdQd4d!F+W;K#AgpB*J_kD3#3%^>KQv||7yXD&kWvty5~W&pB3D@sx5mazKEM?2)O z4~32_>}=qvXj45go<9lBgeBQpdKbJAfp8k|%|p3^JUaIN+_{Em?y={6`0TQy ziS`F`(jnn68L@`UfWf+7nZL2I#^eR%F%0XY2@YrxG2B)Au4-H$hrB^)t8oFdDO?B` zjrBrgg`~ag|KfB8w13J3sMc8jh^7DILLB+iScpgR3V8W0sJAy%aluTXi1DK!<^j>$ zr{odRTCP0pzM}l8DRoUKIDF)~=P-VuRnOYOnz8`W2$}nr4J>xTEMS?;gpGn^JJLRl zgB3@}$v!eJ90`7rL#LF3ALGV!j4%7|MpCzQux{Z3bWrcf`3_Dqn6xqgRnA5Go0E6_ zeDePXN!^-9t>!OdDpQ>A;IzX1grDY^|Kj9bKcD>nLQ=O}3X>=ntm?M#oYR0j(O;SEG#79pA7pYrEv&D^S?NTxcza{FGfd-0e+eG)qimK1>e8EiHpL(7R_FX z4^7Ut)93faIF)d2#AkeI7MKf%uL66Q7+S(>e4a{RFJbvTR<}p=Koi@KWl`{Yx_O>w z69dr#e0G85X&8yro0lx=cyEE5PR0bvBG0CV-CGV(82bnsH_(0IS0F-lJ;9<)CgJ#t z?+w;2dyIUgN7!V~vj`b#etjbyqv{dpok0>?eA_y7m&19rG)8l}KNz*)FtQul15?pMV|l;7N;US9MHl5+by5;)Mz1Z&pF?poQCmpx)3>bGgTNsxXqsdPCX09a7gtep{^ughr#rYUDzTFc_%^VM9ABN88WWVOM;ay>j8#$Z}R7lYXx;`3pHY(otua4Flw8r=Xx zx{*I18rvEHy11ay-D^K#iFrkMia9?PwKg?ouWiKv=<1yduds9DHFO0H39pfJOimv; zi^o3ok`#?m$Q-#M{AeFKi`UMbLuZY^&&SXeVHo?+S>$T196H1FH1&QBolt&b=md)$ zBQsIraE;t#L=|EAs_mNDntacx3)CAvU#ktuk3uM&Ayx(34nC2 zmNHj}M<%k5&>Gn#%LLpC5Km|UOCL%4aTrkNgm6O4_rDmSYDBxHAv$Afnne@r(lkPA z3{A7>8+A=1xT@4Ni{&PvX?&pd)e}u@Z%t!3B=cH8lihGb)r_s>6RKtmEjhmeIrQ;> ze)JR4GzJPg?j_rqLhqWUut(OVY7DV?q>RTR-;2Wn$Vx7Hs2UdGlrS=w)TC{Kfd{5* z&{8$Q$f^1?6lgtEVtQ6fooi;iC8s0XQ2=Dsk~}-$z!;1a{nwxa8?6VwqNDv(wLB}^ ze->ycc*0T9NM)xo%Pa!aqk4i_iv*wmvX`n^Ld*uLYVaz~_sw|-fakPD?QV z@FT3RN?NdHL038o!GZnN;O0r%Dni#M%{nIIG;NQgJ6dj+4_aVug$^xozCStkBSCJ$ z!x19PUqX*)dd*U1o0|~I2 zvGHGw3U|=OD4P#;auK_eGYZYly20d7{v}P#o^**dAkK5N2AoELrIvv2+rRlrkNPhA zQpImRc*3UErum_zeknw41~+S85Ex!uvDsWv&jdiA#F>B~o1}|?Q+@wR zQvBHA$X={$M^P6*Q@>Jkan!6k(eDynu>mC8&qxv6(pC9+S{?Dg(Hq7&1@6YvSZg1EL zglm9lPR}DGL3T^Y4{!B81mKR!J!`(@mGW#Oi#N#S#iq`flURm+`z#c|{sUvGxFB9( zR4x&|VzmQesqqcf5<~^j_k{Ea6vJDt7NDy5h;f0c;w!P0hzW^Nn1i%s4Oy4;q9v+D zJS%00FY>vxs6V!W@DnY&)gH4@5cBWiXo3*k?fF>q$>ZC{cC^IGq)1DA5U%w4ABFDNzBy*pUC~8t=7|+3huDa_jIJLudp0?8lTfHB%LBcTC2T~1)jP#2ZHO+?l@@c=_~OY5RH1qAgbGeGp$-OGX~FK zX4c1-?a77V?k{LQJ^W5zjp@BsC*#(}*jG+|0_^hD+X0l#pH zZ0UzUhXhj&7&6lE;#+&c%6f=>(Y0D{7}`;xmgi zi|_jup#l&MVI~Avm;6aD#QyCLVZ^%g$o%{>jXS;6W&Y{4^NPW8JNLQRho5QZe zLN#>0@qKXp75@J3C+GX-Y{FRv&6N@~SJM3qor;sDWt_C)o)-tcxr?TSpY(Ph!{ESk zlQho^AN2Wrt2ky@uUrV6pBz7}d~kT4NtyGT_X&el1vIuZ=&_;-}q<}HwJesr~8T64b4vti5ryR>|7j%=rPY$6mIuY4& z;|9GPv@|$~FDK2&$3@rAmE#=9;9e)KnK;4(XX2;=8k=#l)K!qhmzmbXaBE!k1gEN2 z$!7lNZY5h>D3UQi4211sFWTh0?}a$M0Q|yt(KFeJsTMX`h#*-uy`$LXk}v8r9~Th1 zEFUlqE%$a*z;0ptIRJbg|i|ON+4b4o7LBKsd*M5Qg_CEktuMjyrcD#(9^E zwiDpTbio&u_wNM0-O|xTH|QO#At_dXpAH4S>JskpN-TXQBp9CQQt=_mkOu0OS3-f) zA<>a@U3qphpHrD)@|cv7SJb?_vE2B2e5g_h%+~bEDCRR&gU3IC$ZbJoo+`KCv1#rh z@hunY3Ak%t&az};x$mOo{jniK`rBz46aV)PekM~NgO7zfc(GP-Xhf*EHWecSmbSPDELa7eHmbuP!Y{S&5dhNVI zSg@{D2hE8~t8!pMscPIpsd8X1o%+f6z8G6blp-DClVmKQU{IX~No^XWE7M?5mj+2y z8l-E|U{H}dDLs0T=i_BUXF9a!FV3Y!lhXw$>NK_J2(9W`G&t0vNm7d@?OHTB)S^jK ziyGa>twobVm6tTM=uH+Oil)w_7Bx;8sYR34BZGD=8XRfS5gJdsENIuF$)OeR#)CkW9mFOV0-=#$jnUteRB^V+{N>V7yw?r9CZcYReq8ZkFcg4~VKQ%4OC{=)AsyN zP`zF#P#0#QKlOc~KSTaWe>$4>C7*;qD-Eb24(&K#%3SKxW{DcuFJOV8-)~3J^YH_1 zDyKvelIYA*paZ7Zr9T}=)D@_&L+Q_0sG&c7B};wALYMmdu@wYNN?^Ln7Z@D*0%zN%B`X0_QsPxr8Hd5;r^KZoIY}fs=rm=?JthFP9^55;Q*C zd@*q02%IjS{ECX^#^DH@W zfI);CFgfl9{2>X54C|{t+<>+K>*WTVixmLw2AqNcO*h~aY^b~F=J329I{9p1+lL!) zrliFM>NwzXb_$R&y?`-y{u732wo=eK{BC#wO(f0B3uw!ur5A9r|G?!1G$D8{FJK5o zc>!ba!VCCg=o}HZ@oW;Om1PIP%bBoj5nWzDgJG>7Ucfb2+~(&Mp-skVM9{C-d1W=^ zgX9%eu`ZogR$=v43QvLLh9nbmXB=39jsuHhd-{Q8S@}|)MjVee&npg+8CMLJdH8w7 zK74$50W~ynVA0UUfklIRomhTwzHbiCEJ<^v1RY8{IXt!`&2vlAesD<+PcBI>;ov&$ zXP4yg@Dj96FE@QY-zrWkYj1kfe{!z#OLBOANt)-EwU0a}uAqX$^GlLEza;JFm*nvL zk~GgRMz?yOUy{SaM$$OH++-21aHn+;=NIEVHP0_e>ybhG`6W2gql;oJw_VVFeo2l1 za##Cs-zV+om*nvL60|Jvr0eI(`8dEVLeE_XnBeFDWAwPZfQuNAmw~p-WV^h8%MCUi zVV2c=+$Wd?5LQ1MSdx01d4MtWHgscT&prDsuN61hmJ5o`xzz}JjBHP zI>f{;#3?4;L8lnKW1M0_#Kkd2pBcxP5Q{p-IBfSNu!I$?W5{y5McUKmVt$-s9PT== zQ2wDFV08f>p1>9AR6^6*oTevm2_8RBGPd4U9%N!U>Le2jHcm3Jq-D&+lGjn@$EFYr z6|t$VGJ)WD?q)EQym<()8ksJJ+K7a=NZxc@Oi$i4AjhMe(~`hxVOcm}mM3o-@K?{2 zRma!L6$-2!9g4&d(+TFTg!Jcv{A-DnZ3E~ z6tcs-#vM&F%0hv?3!Mil6xh}a4m0M30^16-zM@XR$gYt$TR3SYZw4chH#Z>xe{-%n zf#h@n$2!eAfuvO@5De7`Bu(4WXrz`!oj`I}Cy+Gj1d{eTf#4{u*-C*B5LKPPO-~J0 zlHV8EFmn4V$^*9Lq^Dvl&~LoaPtlDngo#!w#g4a*$&eGU_& zYa-~KmM1vJ!^<nduYE^vjOiz}RgJ)W@j~qM)R?NXO)Bc!?^p zVpe6D_?gP2;c4^;t63*KJHL6VBLF6Y_6mXEgjfwj@V&p5;Nj2jBBX9%Hs>zP&M z8_OG3M!-zzsnQ8x@-{_!qeei;&5`-5jS_Z3 z(o!?Q$hrEo5^ydDnw*@|#HMt{*o1;4Je6CQ_1W@Jxv^g#0`vM2qdo>Bm43DQ5IQdX zZ1w318v7M((-XjR{Y%SXU$?Loo~lSC4=vTU5sl`CQF$nw?zf_~;*Qm7yQH)@64s|E zd{3L$?syIZ3Geym$tFkO?nmGk3?Ym|f{~ z@VmVONlau(01Yj(eGXAI*P-O1tP8xtSi3K0M(iAKwNETGdlMNkOKh;VAszjFQ~ps zkeYHAzI1MJO^(6(Wtq=QkFYJx0rUvgFI;c$qFhlbge!VePJy0ap0@V!8-iDtFZQLo zOh*_CSjI)ZTY?!qRhbJkE?;`nQ$}wamN_|0{tj>)aym(vUJYGX$Lf1 z^OH~~@f&0MR;gQCfzgVmDPxxIeSAk#mM_r(9v4PDt@}uLy0?#2CWK=&dv4H|o=SE> z4NnRQujzR?oq5!8#a42Io-mbroWDU-a`)k2)eI$_W4Fws^qKe$s-FDP)#w!($PKb( ziV#B%l~%TorLTJ*>(8A*Fcqr~oOhmv<5s!@1qiV_Yo@9dAbP$S(NwHz?Ua;|R;ES? z3BRU;P^RY-5W{C*R~SY?JhEEx=SVLEAVCR8D#vFngl=>vLDKH{bWW^yt1F+GnGwjC z;raB}&MSsWP^-SXFss>3N*@`w@dNQwj!z%kbbS8geBT_Nc#~#Qeb9c&zc>OO4!UtD zf_B)KR)Wq6 zXNp8RJ$;mJVa0Kj&r+l8E)IYdmlpKjL_E(c9D9TJyHS%r5N3_!Wh;7V0-mb_L-;)3 z)x{pXa(d=!q|-Ckt2;e&Me{I|E1pizpL;@>%2f~^p1+YCnd~(-P9^j%k$kQdARt!H z-vFR2a?X&y0le9+R0yGzHs(+=eWO}&UhR3xu;RRr^4el|!^d~8DP+A4iv3LU&?WP;{pTZ z3Qre6dLKDmr>4$NpggJ6

      =@GFB&nNZbIBdCd|oEH4U!z`D-FjcPDlEps$(wihX6ZLaI(_6q209VP?%n%=w$7~1-kc^lXQh#oU< zBZVRJHgfDdZ{z34(LZFRidQKLTAZLr(pJdu7AO5-7}bh1fdeOc<6QodMFr-MkN_(~ zmS;I`;;TKFv&hdA@}D2R9ZFEXew52olGkL(4684VO<-*B%I`N&*paVXPVX2K7Um>Ep~*q&oX^8@~vaXZ^3msbeyzt zFXztI@$b3^uBdEx^KfgZhb%SK&^sNwC^(Zq&+!Bu^x`*0;M?&nLL=xUA@Koe$zN$Ar*(!D4w!W9D*@lePS~ zoVyP|Z!f)p2iFLHkcK4SUKxM$2(LH`d3Fe0gKQ_o&0D6;8nn zA1t9T+EaG6?jSOPT$4u9PXmM1$R%$b!K9O;3&w|Q)96`0e_+x8h*yxz9;kyH5~zu)R08JfPvxu@v7d{&~+S3YF-Tfo$D*pF?IR7;;?ECSB+9+s-DZ zb!Zh!pQY1?ha)6(t9;1*wS@1pKVGUha0kzvv#35qkuA$HUsElYR=F zlY@>Rf;bUyvA4Q{S?_lqfIa8IVh#nK{0d2AolK@wK!moCJ$*tgz4WF%CedjL;wu9< zcE=tJyZSrrrQ`vIwyXvLdon^>s8d*95!#9cpxD-rC4%6VRX@~^RU-ynK67=UeloV@ zD=rU&x}T@r6OBF=c06uqAk-TBm_C5G4UG_uCcdR>Hff5a;s1%P8UEC5wb5u zw!7Tp8i|N(X{@fO)9fYc(QG5zXcy7;HX$S;vSo!QyIxmVtIg{H?=GG7<0mK;Bd}$4 z1$5ssuw{#?e167y6tdHYE)^m%uw|>Z){l|$b?sxRRqsRnu`B3*+l9Ur?XG_pX9GyR zS`&AkJy7RRt;svAu-Oy^*`PdEbzA=O;KVu))hdDh z>e`JCJHq~=KKdOuyDu+6&y?T3Ya4J|b>c1$6n;b)^;G601@ zdcW}rqq~(tL?46ZC*03JW)SjkKP`^xn$_U2cFA6hE^3~&*70&em((^#48GH8w2qFs zit{Z>>dQo3F57iPu+hR3bb?r}E!xn^S?08X5zAr|%MOPAXw;W$u#2K-yQ2v#gq-i- zU|%gFqz{VWi(}a=Jvep6&Z72R%W)z)ThG4lUUUb|ie(n)_=>QEtyylq#^cXA^2F$z zXv24#O*X(ROFVL@+O{a#kLKHnDU$5`F^Sr*qsDHezdSgy1B~9PV>O|@Ifj?Nd=L79 z8oWl3`|*X1y`G-#r;xx*Yy+OJ6Yaj_;(01~0^ zTKI|%_t%FY7aAX;BFM)}pWJ1Rj>j|2!gz1_%ZOhoR!9XEj z=H<#=zE3*nXH46^B;TPv3wJr1Vc&pf)zauk7CK^a5!u;59Vx&se>t*nGwrXU9XG6| zauMO{OOCtDe@Fqi%wy4q%N*&!JAU}3*&4-N=H_SfmH~8`+txdoMS=BqGQkR?`(*k# zc6+#Zd4UwB&i~tdPD;X{-Nf1R=i5m?v#c@K1o)T3d=DWx%XPZPQmQ{3<|fJ7{<<9I zChdsQLWg-sLpjW2=~jtwd~qIOeQMn*jmk-1h^84F{vECh zr(UFVKRB1wbF{;p(JYsYb#>#D+``Tk>e{O? z0NYxL7ejsW_kYO{UVxJV6sR~pNW@xHMFy9O>vy53+RAB{irtm*C+k~%ZGvW< z-*H^o%x1M-9yn8Nv{-J|h+rrE-eK7&gwO@&`{K}E`QV_tINI8*%%nhP89FG`Z3-Mm zVd{2)j>Xn^$zH3f3WJFixIqc_lpxL8pwvhtZ`Sq1F{K{9cgcEK>$FpprAoWES(}r2 z+riBmos4l`kx=x_S~$3mdR8CF69Nyb>(r2V%~E%d4&`m|hKIgQX12XkwWA~p;$<%` z3eP)lmL5DZ*Itv`1b++?tB08ySZ`a^-zajnonX$k`w>gnmXDB_msfclU$d)uQ9C}| zawyaB+bpTMoKWI;%X$GC;jK<~Bf)2n>@1>@dsMMudBR$QE-Y`hE>3Mo#~e4kZk%V_v7)Hp9DLIdR51l3 ze$>y`1;1M4qn|vLHcJ96%Jv@^2KL!Xx<{_-;7;w8u|dD09a*Zhm5{Tv(inaj3E|W% zmrcpEwoZ}0B$xrN9*boY02|hKv+OuJVAx39=;w3bq?VYf=8MOjMxdG2H~b4+oRRZQ zaRq%#L~NH=o?!=h)jxi-9Jx01Ru;C!Td~t`QP)*vUE&UTrkL~FihBKN@*tV(jgMsl ziYthRh<9JD`_S-H;hDn#*F2dH^v|ABg&L`4^vwHM2f@h{q=&^Vcz0Icvwkzaji)qx zJH|@q%7$!a#i$Dh?p{|k3qHh)UTWmdZI3RvI%2y6pd}x)CvczWJs}r zkzc*!>^Pf=6RU-|mVa{T7;zLNS~8ut!cgmBW-Y`uEDE0d&Ahk)ikj7b(4p4p_=EOd z>Bno<&xk=AfMq-x!;;U zhxKltS<<0;x0kczJf{LRtZ&qEA|}ubTzsEA$TR~7S04*>mMkR_G||xehw~n-CtH?G zqSa)*^slwQ9Cy(WJ7l)|imJkEKEcwqy8ohGzo**zs7d5jsSNAgnq>s8JjdG|>qPA# znx8I3q*ztW&WUhXsj8aYeqoA~=xB>A&a&!@X1!Z7!e+1INNxP!WLfpaVOyW1X+kB< zvg%~W4oI4PDy*-uFi}udoeUh!lHBaC>ZD4lgCSeTNVj#+(e2$b;>o4r>SOIb-^!3 ztrD5_z$WyURcW1MuNrD>X3wzH6{V~0nwG1Hi;*?)c1Km$O09^-zQGh9^KWh-NSDGZ&L4b}=yL>6#8ZqT&u=}h;wZDxMfppA`(;eAI zcKJBB=(Mls4qW()6T8c>{KqF_P!GOl{DCfMO8|_&IeFJ<;nMlR$shN-esbJ@a&uV9 z@zPUvCF1YayI?6?(O^@wcc)yoYmBFiGwaB(YS5Sg!Fk0Mit4c)SI(iwE1Pv~Xge(g zeVG@=6TH4@q z2P~Q;Dn7!Avh$yzglDv;87jEKLsV0iwzzU^khPeO{$_2o>tzZx^x3|STs>APhsq$o z=N++VhL7#YyQVP=KYL}wq8Z|L$?8qJ<5kbk9kFQ0OG|jhW?5z{BNh!gWb@;@wu7_j zJ$)VN^kKN)^Nv_Fw0_QrMZPy97WlGuMJ({?Pev>-G%Mo~F?N2|Xq|#9FQ{_JGGNiH z19`au7R~yF?+92l>n>h0V3D*3ERw^3MYEL8Dlh}H*zJMi3RpDj0Fm%9&00u!X`v-| zTdHlswEg7*zQ7rq^_I@;zt)?e;}o#adh?J)v;O1r(jL|wd$wD@pnvwfu9$)tq|R#A ze|+5`3tvATvS`+Syd|nzL$=@@vS^lp=>1Oc8+Jrc$O4OR+#!pX!wNlxELwN@vCBnx z$l~HCK=D%!!0eAz?;#7UzbjVKto8WHkVUi9z@0-JOOVV8YNyBvhd*8uxLeR3Ejdu6~6sKJrF21B; z++4KMNG}dc>y0iY&84K>V764t@}Y~9qkEk8XF`eGKk5vcmO<*JZICN@9YLPUZ084Fz9jQ$6 zW-!iImTxn>Z%5v@Umm_8!eSog^GSnwbd`NbT#a7>&9JARabIx+2r1gq?GtX(?id09 zl1Xi7)-tq^@pG<7y+#3N=eLL!>s2%2aGgs?zPu);3S@+H`+wlJ>OC(_S3ZypVRXXRsak=;L2j?Oj(CTmN7;1I0(xnhe#7;q^_%9BSSk-1w6ex)Q!(;L*V@>P zi)bi^`{m5&a0Eeg1SLk7*h?$MR$RYmM2DAF`$le(w7#vTcgElG;7M-KRzG> zn1hx}nv3e9i;U>t#6pa*{LRS){kc`Re=KL0o61AYv$Y$nydjZXiH_zMu$1kOZcc3$ zb&b|x#S+PR*5Pyp9nt3CDB3*D!bWBqqs^9_zT}@~wAmoiarRKO*>ZMiV>8@r8M$m& zt8nvd$`Dhy*%EFaWS148eqCc|VUrtv)3wjool~vB0p3%vcC&J)F(Al2RFE^sS#ntKO zrJoxp9$%)!BZZLXVLUKM4Mq4Jtu~}z7np9i9F>!rI=vazz~I92Zr0CY3UCRc(t2-y zT~TMNHev$|y8WyG<|K>)=(g^Wvo$j=*PYf-gq=-fAp#O%=MZWUcAoCHQP^2>E5goJ zIIuoucuvJJ{k^7l@MYZDiW6qSoZ}8P@m1W}Dpt;l`FrWEv2?v^jS$M^}+adt0oSz$0tN_=cGOE92^fb+k2M}dPFZ9d!m1}!p^g+ZaKovCak8iLd{e(u}&MF zVP_NK@Xtip*{aq`CY(b~7e&V*dRnEsFv89zLGh~!JDXOoiL`Rj9(E3n!p@Sx5qGxV zbjbLv-&i-`o2#ds@6Q#%xbrd(OZxc!U7U#`&t^pcs)jeMVI3nblgGqQQ?J>9O#hb_ z_9SX)UUH~o&z6J1V8fr1cGYUi($t`g`$<~ z?^A_P5)7zu$=njV!HzpK1VOVV03{OlK_2BxNJ_uruhig}%st-a8U=1`?GxR=?Ul`H ztucT0h&|+F<`HD=7OlT+rCN;#=gUtCD+FAHA!1b@OsM3cY`s&~gfqYmxy)?3a*5V_ zh{q$zVIx=XtoL_lXY>We6{h@BuE%UT^d8m+2baf-<#u-C!NgjMc-u|}Ggc9hsN{$> z8DVb&pl`kOP*oa=o^VH}B+~Y=f+LVbv2fC>uYw_)dAXUc*tq>b{c^80uAhPRYsQql z5j_d?jp~iFp6~rCRgoj^{gUlZ+K$a&>tPu({EO>9qTDMiDipdm!_D`GKnywCCK)>o zAkKpyj9yYW(BU~U^!^Kjxmg#L3xnCG`m(vSOY#bClkle7Ht9+fq2{upttEfFDQznr zE9LqOi=EZmN?TjdrKNG}ZN+nCLtF9B&^ds9ghfjN2M2tq0e5`Sc^-T0ohM0#B`{qc zOKcyy9|AYTF@w%O?fmQ5VIRHL^+MwW8aYO>U7b@g%$|+OzxN?ynP&u(U7p=Z$CspA zoCzfT!a&!Ka=R6GG?jHcUnyPr$ti!C_n{4l#XhzFB)@&}e@b|Y{ryg0`??~B&X5K( z(o3xDWp`!SV+Ia)RWhX_huhq%srq*nerDJPy9#1Tk;844-UtQu(p@dlJjS-$zIz|G z-Id)hg=Pgf^M=rCR-$m5I9B6OO6m`MYF%I=phP+ zGG+hUI9<=6@-P7V1U_koZ|~r*`mp8rrg}{?R7aYSR@X(uFn6xmYdl#6pRcXpp*0e? zt!=9`8&{&D4NS>O{2aQF`@5-aq+d~MDwbVT{pt$VN-b-EDKx96!*WsNFzARJ21k*@ z{V2gqk;DC{!LLUS_alrHMNd%8nH%e+RRIyPLtC>?jdLqj?y!jj~;6MMD);#dbW^QOru!Y&-rkBZJfq>qleZDp(ixpODmslmy3w#VRAfr_$dkyJd8yj!9&{?D}VR>&Marg*iNPX zMDTFCa*>XyH2~M&(0q7-}k31LuXu9%tPcrnw%XaJ$YQVJBDY}z~t=aihl$>`%2nw0fn-z zv(d}(9-f6IW)}y?-K3edbJ05JgM;@Xz|}>gw*I1V@YfwJof=6~tbWj?`W;@jdUVH= z(W4K#@U5BBdZCFvUP;=mPi z(KroV^kg-_=yI)toto&P?I_^O zAT8Q_33Bk7lWK&RWWJz1lI%-9j|09b-2V4X+g@S zVRZWx(q;a@RA*Mcz$|yi9?Y!gA!zl`B`Y6)x8NoXA$|Vn>fIUxG?a|CQ9qZ`ZNn9r zv;*ZOht_;PVFJ`Of5ZK7`4%*D{VmYp?=!!&Bb!^P7Q;y@2ISo-l>kNl*56TgX@); zSc`F_T+uul<%)m582jdPPyD5xY>RfA=MOn2^M@`DA~_cg3;3dyKXh^M(n&KU(hZe- zjgV!y!#OZNFBd?R?A-;eY?{%1}|DC|BHk8*G0ouaM3P%N{Du)5OtIg1`KVt5<*Xdd8I=yA?Nco z)x`=aL@&A3D4v4fI$IDBQ7J?(hrT|g5WRH2O|_Sva{K%rW$%t;IS#Xl`n`%=L4`<) zl(dYASwb4)R2g^nZ;ZYN0G_Ne?jLP*0V(N7B#8IJj-V4w)ML;N8UNL?_29r0;LO|| zK`&;x$zoh_rRWfRr=v*1rM(tx*ga4Y+RKZcbBCKp_&SHEFp)#Vd!ldpzivs2 zckFRQ!h;6FXdo<;%}GQgnr4{@eXE74sU)I;BZ;Umk@@qJp-3C={n*P9UoL|--diW| zvmcIB$U}TKHcA_(xvz!ZE{BNf2j09DqPJH?*7S8lTn<;2ZSYdqE|S5M@oV?(GFT2fS9Ln zqJQ)#7>Sx+)dtvgnN#e zk2~C9#M&ZDDDNFUrI$q(L}4Neg3pM0ZWzyai&Y+svrDX176iY%GmTpcbBs}I*(;FyF9dN5!`;GNQ76cjBQ);sqS48k$GQD$e{FA3ME8?ZjsD6}?bSm;P!2@y zhEgC3bOuBsobbSR9{mGh*+xWtvz)*uX1a94=Gwh`EE_W*$k#6ylstHargW1?fFRSR z)uaRnGU-u+WljwHc&cHv*{76*W<|t(cob0DU?)Hn#+I2GaJr1}o9n~L2jMc)91Q7H zd;LibGR!)J$%kQP%x0Js#v&?V8D<5CVOAI!W(fzIepdRrWtbI422Q~;%nA+@sW394 z`r~fwA&?Rd!wj{x&xc`F7~PYwpUGPK55uf5GRz9rdk-m`o5fQYeS5-Ia|#YUs4!BL z3YKA3a2RHz#U#lv%topaG|W&&JT}8@v;pDh;#I?`)TcQ!_@}8|L1Jxi5~ z**@$tY`|(eQQR&iq;8$tm&&)dIMs8LK-y)XkojSkfr{2D8^MF(r?J#O`(g)VWKlB^}$6`Yhb*S8VmomL?7f_{*`yGX?A9$RaM;`b@ zB1-q+QCF{5OERx{+}BGk+!vlId4IsxUeHawVzZlRO)GBH1L7&QJs%ZRGmL7za2k)JFhf&>+_0E z6dtH>qP|tR-wY+5=W<2A2K}6<17-zEi~>4OAN@EF=Ts7chY7u~5*0Oi=tNELv10Vl zi6UUJ0bhMiwOoy-oo;elzc+`@SG>_&^7F?V&*-I*-vq)6daioh0)-sdV&T^)o;Y;sd$UXH;A_ke~mw5Bs4B(2bsCu~At1XD?-K=}G+x1L+*Z!-b7|#+5g37lR#f=>#Pij@UN&;P%w*L+{_p=mS9A7zLMF_4Bh}(+%-|2i z??5z=ERzb)>tvPm-{@+Uo=t|Axr~8;980_D=Pp!<$f6zs`;gvAz;w239IDa3O@OuYl z?Hp%fei!Ca?>FoxVqj~>U`*595`%u&9beX{KZ2@O8=_2(S4O{W-$1U6B+UbK2U@-w zDfQsmbPx7LX6Qlc?wlCQ6F77@-W|m1E*>6L34#VN?*Tud`i9z_$xhfmwvQeQ_ATO( zQa0?L4Wj}Oz#Kt&4NBODD>(I9_*v*#&%l?cB?4SmuaXRy#uM`JSLc^ss*ixPc<~Wh z9Vk~PpPN^7J0RI%#9t1|P{BHLO z5kU#wtMp-A`V{!ymj ztce?xB-)@G;)2<9gTeER9|%O3qw6O-fVi*MMuZX^;(_;PE&5rGIi{#c|-<7EgjNxxddt#53jA-Cx& zw$aep_L`yeH1q_2&W&p{Bm}nN8Vw19SFwo~9&m>h+jvjgop3MqM`*eL30!*3Nso?2O+$KSvupwninTM08`hFu z8&_QPX>2e@6Ybx1(Xh;)xNcEEqdnHpWtha=oc7m{{T5UNH3PkjrAqrNZnjkn(ZxI1 z-Z8{BVKQZ{)dt&dzG1W?`2;C2Np-C8(+xvxoo)Xbx+$+y8qN|`QYs)Zf9R{tIMnH& zq1FAvE4*mKdds~&mUYl1=ECy;tHVG;8e*qlI+VNIkhn;5K?X^K6}!w1AH33eiQtNZ zo>bSGE4Pw}Q9s9T4tj#MEdo3B$k}vGLbR!(fiz7{Hdj#nyL^;Ys)1-6&n` zcwHFk;d~_5Rot|(3(uXx(O*GHB5}y?zAgNC(AE&g5zMV%fmU4+^!12TljGcvY8D$Z zhFnntD!Vn@$xY~9FW}%GjH-gTz zHfENa0BbDCAUw3*0c)*zM_?|oKFX&QUwk4BlI60n;$(~I0`(RWaK+c)s@Gf1t}mZd zOmKXTCfdFES&|9Y^m%MrYpHz=NxphM)nW|4(8(Ang_|zK*t2U)5Vj80ly_mG3~{Y`YjXiMYF@Z}fBz`PjzfJqb$NBDhRKfh## z)(2|_V=c%fR)Hmhj$`<}qr+-E>k4F_U52q#$Ud8wzKQl%L-NDfgaLCzUgxv)7K`wZ zKBy^nxTCQRTSH$JtS53fR(*9tz8W+$ObH&ogXul*c5_l*Lq^R>?T!T>3B#^z`i{Uz zIr}Y4yFM`Ov6@0>cD@G`AAO15Gp*BxYbA>CPeNWr#nHv~P$NS@^@BEfhE*DoEvM3Bt@9MZN>vx9t>4=f_hsY5Pk;))_TLB*A8ytcOtfnVQYi5nl9%+s1L z3OUG?a;aXXM;_?41bA$UWy0DF-*9ZEWIjMmV(TYl>hcc1gqld_JBF7hKB6tfm5OcI zBF|;8>mnCQqK*r7X?x@Z2u&f}La4oXKD-9W=X?crb8}RLpsQa1L7WxVASFKzxQ(5p zG-Su(mbQ+)1WA+%YZTe`TdvxoYbn4*_iB{&^JGZfMgCU1Q{w(942%=0vWa0gi#B{J zucbEvOc(KTC!vNUFcP;4e;P&yjg4C%2khCMhz(g_eIr$5aM3&vF}Hy!R=YGCv7n~@ z5limVF^*$59kD#t_u>kSMWNvxJnuRD#5|+-B`z4J_&&7-Hi41Ie);@JV?`?awC@u^ zM5MCQ&w_dlz57A%1zvm2qq?Nu=Iwk~D!j|e#8|!- zEI@$+_e3jV08rDVA^ryU-&sb-I4AOc~(k{YV<8+L0LbH*c6Q zaavG8*dX1eeR!`i3gWWL1h)=Sest7j$zrm|N2maKMRUJkoFB#z<}}C{Qo&xs92vzy zrAwUe9yqB31c!vV-alRma_KC&b(#-LOub+UW?X$JT+7~8c-}E(cG~VqIMso~SbN6{ z(SK*6!6&b^lhp~=*nY)odP9X98}h$aaTP9WgabuJm=rQs9TsfFQ-T3^!27w`6qpo3 z|F^W;hS4A--Q`LfZZ^daGXiSw?Th|F9aL1$YsmLg6cZRRd%pN>e>Jx!=wl7*AsDKo z7m?Qh!$b6UO}}A5fGv_c+Cj&L zaU&F3dByQ-^WvU^rr!1oV@QtD+Gv<2!v~sSp8d9(>Lv#-#*D#Y7G!;S8DQ{W-UyXS zWcq1G(JSxz3Xf~Uyphe^4zTFb2>TjwJ9kE-BJ=;{q9t&ktC)-9`Sy%Lx~n`bJWvu2~Bd#2iZ)#2!ohc^ssjPOMz%eSZp5?07bX zT>i%Rt`~DYj{^sPVN#XIyZ*vBN$LY51`8Oc=x)*-XHz5=PG5OMfN}O2j@N8V4`hBC z{y*XGIF-%Tb^Sv|i>_B7<=GWLy1N)9=2l#EJuiE}FfD_LTAiIt+Z=Mh+ByBg%TK&* znq$1l*sm~k6)fik;6uN0N@nM8oJ@w>;ESKfPF_oQ7}H$0-7r~Xo{8Zz3<5pPGz{|* z(gT6H`6Em?-(We84g156bGsrwJ$_@HTJ3gP%f%#^-i6@>OmGdSJ=aqE*;V<_FuX)N zj_vO(=V)k(hf@G}R?ZwZN2Y`G>XLj-QXAZC5G2VL8G0%Ifk|@yaZsd_EDP_l?E;hO zl=SAVe<2R~PhZ693hw@mF}vkWO^Vmwn0Y#mk$3%#QE(l1wc{_a&h?M)(MLkXZO{IZ zFjJR<*?7oU_A&JBdMpptlF|$P524bfYY}REG!Bt7nexC#{`@<4} zWaEMqAxTi9f9rLRR`2diq5=`*+b*`R6JOG#W&e#~uifhtqr|s@oj4zGIC={q2Rz{A z+`2J$IO1%DVG_g!%Nw0=*!@6^nHu^A2fq(E?0$5VTp#DCFtS&7n4)VqBA$-#( zgZ54&p~z>xla9W0gS`^o&9oX4A@wytJC71{$w%$}<&uwvR+@c(z%4yl8Sdv{cW*fH zaTb*A=Y>B%of|$p_~1A^_W#Br&7KU42YOB$UlD=D@oW|0X~@o=Wsc>6F7qsod|qLe zAV)&-4Er6(Wz1D#BZBKVOqF~o&4uJ#j&vnkb0jPoU&hLkH9G$yS*H!HAIz2J8M+0p zk2peNoCFG3=|l<(qeHCHhr)M|U#mB1NX(!1l#=Jdu`|EIPihX@?6H882z3_sX09Ro z{h0fCeIM1W>zc#P&DLT%eFY7;rPr^`3yOM*Jq~drfyRo2{8`A^@A;DrB^l?=LCztU zLRx1@skY97j%}lY$`xH1d2k$owQ-gw12v=@Ypi6k#EeTzA5T#JTO6b`K2lKFK*K8@ zPDLd9uvp2QJ)9*;M;T~1OLWQEKtnl8cM|;NqcVO)nmiT|>#Q{SOB=HrXt_=CM{lBn z?X}CwLL^<74nj@^orLrbN{Z5eqBTv{ELzkk;i6V0mw*3P^sKQNMenMM_<15^p`mpM z-7iu0P#8OX0N+*i(2#Tg?Dix@C;jx9c8_FiSC9Ohfpjo9Z zO0+(~Zxl&r=tFZqDM|U&ra8MIpWvgGgIFi!b%msSK4s^-^gWFQ>~;#y&|s2;l!?IV zfa@!(9zYDuUNmt@)E7)U&iD(@w75|qkYzFC#8LKuQi|p16O8fak@6BEFX80Gg>jw3 zPmaLEw|sS1KJaur_0tV4BNr$;LBmiT*?p*yM2<%b5ZSFMzd?3ZnLb+;92Aubn%F zY7(pG+J_%YM`N&~+sRm)&6^lU?tkwX>J}T!GqAx<=-V*d(t_O;4DfO1`uPrFNP-&- z_vHrOv|$RN#sVlszQ4i_D9~zuN0q|88`K-dw72V+-#%M!+>lu-3gGzt=%DjTRzu=)$Y?Zm*G8Q*E zN5IpIZAQwKSZllDymd%}D1vbmQJieiSVVE!AFeF(+CH6EZm73-(fd;*;5Pdp5uQf1 zqU9Z`l(79lm^!J{=7N=x?K}F|JWD@0iP_6#tvFJk3lj;?9YqLN|0gCAo_{_Ek|1%B z0-cCVc+Lm?jfsrsA5YO+BXj8bV2XjsOqRlEE(?>57$;&TOGh#i-GGtFLd-aeiy{r0 zyP|+vM-t_BaB;_S>6E!B(=IKR(Fy^Lg7-|8j!wc`CQC;ibQx%!nV`D`*U_i;xVJ0L zieK^pr;BGJk>$ns=*K&qPJCA)%L_Yt6NxOn4aaw6!}XTb$V8Ujf?-7>%ZoX)<^gS4 z0LxlNBFhFkktH!jj7uK@F)%&^auLFfUJ#OqAfv%uioF?E`A}et}x) zBy3OChLAV{+@1Z26IpPGv^HG!kRq)xV#6COVA^RlpLoD@F#DX_73TW|JA;Lo+kPvw z7%Et;JPWqPUl_Buf@$(^urgSC_%*}cVCXj$I9JNpA<`XKV~>yy7%*AbNrCBTr+HbG<65K5vRq*rLWqu_SEUTTaCeEDO^A+G&6k;4;}z;6 zpxmDV?Y;{{@guYf4mtFRDG`$xi5P&~9gCQbXzjI&7+^+87-T`q@{xo=d(3O@5(e#` zSEVJ^TE~aCCtY|FG03VPPZ1GvOK176J4!juJ=wS;QU5r%D~@oN`w1wWDyc>?d_Hud z7RF`Bn8y{NC1ai;w~g34NnLrRYTlcqAAVdO4$0>(h8~B-qnrv(A!E!YQ$E!M=?=`O zV`7rMScUQQR=~G2K+wGut&(}F?8WLmj=sED9VvM7uN~UQdr|m=7wbjb&iSAht0M)E z)}_2y9gRW{ClO1;A_woZn-G)aM{I)JKYbik{Y)=bM>EB%ZC5m>M$?Pck#IMh-9<0f zi*Y8jyjXnPQei zwkw!q$+zU1bR>(~L+C@ZE+@;W<6>V?6t7_=35P4IFmh#e^ra?M$(6+?QW*$WR!3*+ zs6BugkKWfKz4IOE#KT#-m%idY908C>0$tucg;wuzroxp~geRM;Bb9nQ#mli$qj)>l z*52~C0yQ&t2$0S^PK)Z6+ZVaP3;Vl1%yQ7fX8w}Ox?L|*zi>ueL=)4;xx`(WGVG+^@8?aJa2dFrS82#zmT)(fA%`YwiW2%icRV)aTx zU>@yC7?&TeN6RY?8x+#tIvCmfN;g*RpP%0!*A|;IW5?H?eczerzP`eZ^}_R4+vFrB zAb*t;i_EWlSj8JX|1FozKCB;WCYFn&xTs>4xfYm`rHPR&1*mo@lBH+210rQ96YnaZ z_QEsC22A*jy@)SIVqXPmUobMOB}&hB*|Z8#dNx&`SPn8jcC*FK!!g?sq~|6$b%FhR zegL{wUb`Gc8%#+>y%PFnM&%WG;nSq{q#Q-3&&zTY>Kr`*3K!C|tYd26_!WU>`T`tk+?7>X38QIHs$Yz50?D>zKH;R9!jEkPal z1jAkngwJ<^vepu`$pLshf#By%Z$sQ~`Uw&Z`bv`nonTM{x3uxFZ40}bo-yz={!!v9)U0e`wLO`%%fXt`3qA& z9e4eW!APA?jOq(JY5`PlNIQb7q+DrtEqXB#(NvS{Sl3Y7&o~`XPRPAEKdz_*ZKxEn zmyxjje#)_REvhe5HbPQI<`4X&7ZcI#08g~gDvXLNUpPL6iQg~0WYk0ptrv5ue!#Cj zp(Hy5jZWtiK9V94+;L4S`%>NK)#UZ#a)u1BDbk61eS5nL8RH8#E?#L_- z!sZpHlK1inLkW%9MW8d!x0a_Pr+Sq&F|9U4|Ew2r(3msbBa54{$oOb03Aw?@6F`#JV=elcRkWe=^EFrHoEE2A(`z9jV16BbB*!StLl7>qYad7c=C- zQRA5xR!5a9mQ0yQZk|<(sytmTI~PUGvpVwP8KrUWtd6{Q@(Z=X>Bwqd4zZ&jGqTv9 z56fjzhA1s3XxDwSijdqltD~Y|Ii}Ck(VQEjS|t)Qb@dg*-kkBJUKAZA4bur+{N#k) zHmfk2+r%P=O^cg-IF#?USshvRtGQ;q!^Tf@e^a7h3xo~Na%uq?k70XOGI%aJcsX5qQIYDJG;)ygEqhnSvFDXLx7B(r9l|{#_7xO5~M>Y!%4b38T z%t{%cj#)3LG^}v6%;{`6TBI*HeI~-Zv;OLx)nzN&V!Z%zH=TW#{V8ED-A4(D4=R!EwWMx}-{c zI>?PBL_!*bY zjo7{)ghA&SekneG(0i5`Pagrj?=d!zJ8dkrU-!Go{YZyy2f?#aL9NX@$elG@$I!s) z4uWR_>%qn!e0vs>9nue3p*>W#CDSO$>X0!7bAZ)sYHi->;T>Pq{5%Odo1Yia(|JYe zRny^wdzW%8@74w1)he-yQy9&GwT;7>FY@Db6gH`u1gntw;ZJ3kbEzU*L9WQ4{t#JM z-0LF;ESKN8G__&!J^a`}vjC{cAJLP<|J!$%O z#klwA36sXFb_h3|teuPC3F$B)j?Gvr8 zLF(wI_Ypb))haJop%W109y-BUf9%9k=p?Dmp%ciR&1r=IbU=&0l?tbpRK$Bk%L`v| z9(&~EPVN|ylcXUf)Zwun!RH!QX2%6l%+^ibkV@s>Rx*nAajLW-10|9%z?1oq90McVPP|tIOCK_ARgabsrwx|i1-WD}Uo@f;} z7cHVDpDQMp4Jw(AmgnHlj^U6H!qe6%r!&FR%5n_PrzS?s*OQWtuCTId_c>2Zt-c?- zz%fro{v^38o>+_)6QNx6m3BUJ^ovz8$$#a6??}KuK4PaB8Wp7sydn;UooJ{6(G-cH zx!Ifr%g%vjm5)ir5(8c4HCEv<* z@*_FeY;&J<)R@SL=K^*PN?R_N^{8427;!-+k3U=c%Z_yMcBYS(V|Yh#RxaDPc20{) zc1PQ;I21__uW#&SR?w0@G{~oW^q`wM+INK^e~;^crO;wtihMQ}Yxl}B;*QxfN(gY3 zaYvcZS#`*rg+{b0k3b3PV2bz6TO1syumG$toh)L?y+%?c;l!^(cUfFC zJ|eiRKD_v_Vy-@kV)&O&;&5Zxl=-Jy2 z%;;P&(2HEGd1{>P?Mi9!yn*!b)i*F^@M9Ux!2CG2Gh}pb=WBX2<6J$Xzre)D5n-}mJ+JwS|yp7Cd*?s%+w6Tgm2B4 z4%o+cLv)Q*Z1S-ya9f~z7!-nveu0n1I2&{h0pX)^2sW6EcY~cnz?~d>NOQyREPcTJ z5j=}^`x*0z*Cu*Ud9X^w z2~7koq@s<%Kq<`J7yoR|cX~85(+4U07z|V{jlQkbc{{Q{biCo*Ey2jcdS-(1J{zEEs1@?VQl%48@; zIz5*AlhvY+!N8mjE>`q0D2yyR!be4X24+8~A+nPa>TC5TFRc1{IhqD$=Oe?ZKl|FRXcDec=SUI9UeiD-dh$2N zVJ}B=kl~zz&=`wQl~q-AEPn#ow|XIuJUzqmn_lWV8*-W!9F}uo)W)Emz(`~rrRZZ& zGD9AufugYGn6S7=Bw#pvI*zoGx@N(jAD!lSmhMU&;MyK~3E4H{2py2U3b+|-1<1|w zZu#%AmonsPv%{V!atNViY6)>}Y6@3hQkxnX6ft%WzzuSZMg~RDYGhCZuSNzxj|3H~ z(YgXY;loUXT$lvud6NtCg&)6$T$rN`$B5*@d|@+78Kk2H!Q_Xbh)Poq_2q52mRdf{ zfg+f-7yJ(ty&SWociZ;rz)Q|EZBqI$2dY}Od5$l9`3@N71NCdqoqK^BE>{i8+I!(! z>{m|Afua|#LpU)9^7x0Zpc8YTNTpXljloQQlIhUe-LBQC54*2SZRcyk!YgBXV7iC8 zX^i;Q%dIZu#?1G&ACq6UyDav0cE`_?OdoRHq=*iw)Y0qDH96XV^MIwB5N9I7m$yOXfSW^X??=YO~xG;8G z{$L6)lj_aw$0Q-H`sINkH7W^hTHnhZR>POcGZ^aXV@h1*&gA;;-ptWby!isy?T-3m zzV7QjxovUd@w)y;rQ^irlbh`Z5V=$*-;AvkZ%Z;`)i>w@xVA~jh9{%ya}f- z223yTHOve5fa!&R^7|#|jx^u%8*q(}4or=YUXTHk7!L^l8v_n|bqxr|F*|n*rpCP= z9vHkE#;QVc`?YnBUGftY^2yE$g@|W`KoP2CgJtt&nJE zeSw^9Y|)MOY%lltf^_H3q0{dxvM~9ZcYKeXXV!11%V{+b=CUN-QzFIAF+3P8TW6^DY9WyWgambt3wM zA9p{)_X}FLz^)#K8^-_mluc{-fo6A;N5(U2p+Eo?~ROx_qTBT z&SQPWP-cv7>vY4$&|M75!RTE0Z4ZH%tP7_s=rUl;Tt+I-m6+cf2GcyA9Rs`W{UpHH z4GcE}4WV~be`y7~#_R#KEE=!wkJ)CJYy6P>p4`Sqqb?UL;+unXIQ8hpVL(im=}Gd+V#|B5SY4*EjRr=Ag12ItPYNbBoqxwaY>PP&UvM_YBA zA9zhp4F7KA{+KIwX}mb~#s{`(y|9eme2BRc{ z!DQ_F++Z((VU6G(_t>szlHYzNhP2PM_)<-y$5B&wi1|Le;$_$1NoXSt^1}pC{^rA( z^|)h@L4rL`uvU~>7IhrxQ$+9q7 z9D6UGW|q~UVdEKt>fQF6lx9!8)p|G)9dF&iCDHE%$NvcB0G-OfP~abVPYdGE4{q@O zJyeBeZWovqrgUg~@Z&LJJ>}XD$p__t9S+YVnm>F9j#gm68zBT!)S-DbSM#S<7K>Q-iE=H`_(-OalY+N$eK~-|W2hZL@VjGxcNT%5FPm)l-&I1Do?_d>w3Lzo>yAT#E z1xtJtEb;ce-Er|-3KokdJScbW7^^J=Jm$0heo~?(2>n{jUV3nh&w@+i>Tw4pa(s5clE4Lr`coL`M+J8t zoPyu=9KM5|rNHpZ=$FG&!TcIL*{9T%!O_c_qrSiA$<`H+`_M9Co;Bn?GzdNZS-qj_=~e8!_utmC|JO!qlb%yVG;ha%7pjW4Y$7AG-m zFbhQEiM#`vPN*6Ue&_SqK-SUYm7Y^eCroU|@BdHuG^?HMH3F`ethLqL z`wixl)_}bb_q|`iZ0@3olL>n}O@O(tjV4Y`R|=gvcQ2Ig++b_vNdPwPNgz0lHttPC z;2TS9k1+IurNX2DU)A~a%yeVKG=Bf&A|63)r6@~ zYSIOw3-?AiXv%eNgoQ3%*KUn9xc!bY#~LCU$DQU_gC`lQo#xn!ImJp8P-!qquCy>3 z`k$TGW{x#@$j98TK%&kD9$f3R#<-YejFHH$p2pYV-2yxJIyg}W=m`A1tn(E8f%Cl%$e5M3$r9X?4E|` z*ry%)V$v8(;;}JC*q${RW69Cd7$XmBR~lolJ8xI4VM>NejFKdiXdCrZD8oLh` z8Dl`*+^n$|L+S}@EWgdx7{7gP##lpunFfQ(9I$v-S!21lX^n9MMjB(eA2!Ac4r44a zX?l_4&*uYU>1IrRxQ#KgcnFa+#>nE^8OGQPG7~?Hu@`1;W*TE;*f`NP#@eC5zF~|} z?da!bj8TN+H*Ji)FnbM#F;;LGV~MdbmfY9I7=QCQH)D)~1>)4kSW2ec@K2JEHRh4% zWsL=5$>~^A(}Rh&?rptPIRp@*1^HK}#z4bx>?Mr)7!pRT8|Bn>$|~6lyn!hqX})!h zD@?JEj)c#(i~X*7iy@{t)qa=zm`x2Wx8y!XsE@T@(YZ(Y1RpB@ChmarTH9M`ggV}P za#XMNt`g)OUb)5(9~^IPQSZ1{j97;THDio7tBRpzQBm`zF1c3PMEZ8-HmsM8-zuT z4xHnur9_9$-ZzUHEj*7^7PW`Dr>=%0**+}lPWez5i2dV<0}1+QmkKMTHm9F6`~c87 zUl^H9Np=0?WUy`NIw}eGmFwt}-fQLhWMz4+oRz(8wnBX4B{#!_qNlfTK=(*YkHJ-B* zX2NV}JfIJscI!M19W?KB<-efphf*(xh6+RfoE)wW3*<=^=!Kam2@Q7212Go6RHcqP z7CXMDN;DQTH%ldYRa6dAs4Gkup;Vz&9ag6+g9CTmkBkUw#cW0Qf-3$U4+opCad1z+ z|Kr4R{MFu5w3*v%5Y8iq7sci$+R|Nf|EBZkALiiD9O1M;#=~lku$u6O4^tLlgLGt+ z#~Y*I0+h-2d*^Pc;j53QEDo&7RR%{aTN)hi(og!P^9lqsP8xUgK%t+mjg2LiHTt97 zw%Lsqt)Q2oHo5_3c1~iJQV$v$?smml&x;RWW*M9!m&O&L>E~6RmNqn;KHaMW4lFs) zFU=AH5z|#|0fZK=$CD!J{Y;)FaNd4u_eFEz<$afi({++{qub-^J98fw)AH*Ije57Z zXzX<;x!hz12MIYc(9p0Gp`(ZcprPkk9$u0NGiSjK5$t;5OZ@X@ViHJ@jOFT{m~|dZ z;Y_Z8UWZd2#}icw3Co1S9f1)8`2814;MApfb-O12h!%VPbVDCUa8YChP9CpCQ)`nu z=rXhU+pv6iKqv)l(0T6Bg|Vg-%eVm+MST z{~NO@^QY{>4-DE~BI#{RF-tA;KQP-(i(^3k#_T^H+w~U)S*2I|z@WV#KKtY-4KQZ# zmlqZZG>H z6Vm&<*uN;HHy${iU3#B)Qy9|H8*Na}EjWrMr{~(GH|UlbtCrrNN-};+Z!{^T1)I{_ zWS7!=YQB5Q=85ppvrBLEz}#)O35Rf+$&H;7ci|m06vBI&i-hn7J&d^v?>SGgN(*nc z!0aWw(HG9q)n<}<=mrnrjaG3Wm=N9xr|?cp3hy6GfxrtF?jRGwXS2j|G2I5-zIWjDGKJIH9+ zjb64$84B5rUbpZBhU^A&!x2o`eLie^m9jhdW617Uypr8NmQIWp?eqHFT&;n~#Fs#X zRhzJnK*E{$k{H{y3EOdp=C_;fgF6Bf1Q@V$UlPtdl*BkwW%}%gv%&D@sGFFUwo70k z>JEePz~|i0h#x?VoiYi>OI!YIgkwy8c)&ph0cWf^F^)zjY%giTnfd|@L~^CROmmn> zeR-LD&^wbY=JV*Z=XP=AZ(2jXm|nm@V}MPjGG$ z+r{)QmD}7MKglS1roQ+kb8R8lpAVSLgf>pP#Ler9!-+|z3CK+5CnQZk0>Uj8G=beA zM{@>4>|Ulg#0EzWL=Zr*iutf{$d>v7l7XO$)EB^r>p1l#z)F1yO!{L!`G|PSWg>9- z$DhPFvhd!9LStGOKM`|jU~As;7b1UpIfz_P6}hm~>*dw|!1%3x|Mi}Fd9bK%bNt$ueClP3VMh9> zsJn-#r!9sd>w8LbL#MM{Q$yWKYh`Jn*WT53TkMAVFt;nvUuTpp7I4{Ofhkkx9>*R{ zE6m2Q(SvW^pBT=c-%Kx5P_2I;wtKD_>eVM^|83s%H=+!&K-dmLhdH=3a8|Aj2C4 z8MAHC%~;Xjn0=?8vFF4R!{n`vV9?_TQsi$;-GzDW^Z5s6`*q*-4@^-}VoXMW@4Lw8 zLE_i5kr7+UwIZWf+Mp5-dEe*=+q3p7x*Ya3V4&lo-c_ z2(OF_#SG($3lUS92OMe4j9YcAX0wWOvjt)hcIeL?{V=x7gBO-lCgVc==(kK5g>_zd zDvw)HpUzbAbBhc0!)G+FXd_Y<^@PTn^a>31Bj`Ea>X7HcfuW9anlcM`LzC{~!~>Mm z&=>B+1Jnv)qOW`Nybyk#EhU-%2@NSbiznUmZ==*1d(!If@<5O|L^og8ef# zmVp$5J#^ktd(fVAFc2o&Qs_M444o$?&esoK>2c$Y%p8sW&!%zXjSZ>-(~*CB=!%Eq zgAa6Pz?g`pi4@E3XkZKM+I6ZqCdCGl`U*`Yg;B{L5cR@E z06tN$GHAbZh;`H}{1(PFT!9&ETN5d+ev3%^^gEWT*Q2#pJ4u}Jm9VWB$A5SBkX-2I zq(;d|(m%>!-I1b?*sl{_xzg8@RT#Jd{B54;*5lFS;*)%g!DN|qR$L}l)S?TxhsPZ`XI*^V!kjiB3Xd!h~ zHblZ`lcrv(fm!^axE}))biaNe6FKq~&=!C6uY5!6GI8>DO$EmzJxv`6{jDI}PGf^+u9!im9KN z-y3GJ6qoR7;YTVk9K?x1pS(g` zup|PFsMPGnnBZnF+{yba22cwC=6R*k8_e#~G#T@il4YOL4oU7w3m7o)%9uYJMx|1G z=y|7ROXi29B8Q#$vx@;ZG#-M+&}MJ_g@cJVZC+M-{c3bHwxg9eY>ce`A ziX$y{a|kG9(Num%$s$_>dBwrTS@ncN6(!qmP_mc7pi$`gl9uz^XIRL_X9mwql>{Bt z_GLmk`Z;SM4~WiWa?!F7*Tpw(U32Co!Yiq~Tiy6EMSq zm|lzV3}R9~T2~*FBt~>!=Bfn01Hqq*uJ)ftLM@vIUTCC*{G)lx zP+HOWnPpHN$+hP{5Jz}wJM#9|^AAjUd^tk?n4cI{O9iGg)AS~ceHw5GPqsd?=pBu% z)zSLs;vjW+Rp4h-ggi#Zqp2ZWJKq`^52sO6M7%S#3>}4r2I^||GhENZ!-U6BnD=C} zB2IT-Wx*93WoCu(i3ALvqKo`qnA5{Hlia@=2h8sjMSL+X9)W`R?mks`AuE6*%&|pl z(J}X~11CWvaL_$2ToY(vr=y@M*3zK_t~9C*90&f^l>75z2Y*n8=8L0#=1z0;&xVm4 zC)`>o3WL)o(MjqV@nW>=7AtIC*xuxauCy0ESe)IOGcn$Gy%=$7okg#F_jP8Is28TB z0W8mF(p5uD4kN-JjID_tQ5-Qo=GH~Z^juA(g23%t;;?mkLw3xguvPe<`lIA<%;>|! z4W?1wAG@gO>EUX5VU^~Eco|^rD>HVvSVQrAMbU%)gI5!N_HGBU{GsyX?$}cKv43U( zmvSL9>nAaxqK-?ox6b-`VV1gO($9f%){X;*~io1({zd# zcCJs%oUUY_m`WW10ItcZUG7X>MSSw^s!X2SQg-zDyDL>Pe-yZ*NH4F z!A$l^jFWv{m@^_no!|o@iZj`#BPa7ZlYhRjiX^R(awz&dw`3oZ@624Ej*nA(!PKtI!QsO7%Io3M_PtX{A7-p|1X=`6s1O1Zf_UOi&EhO>`L6x>&VSw^DF%(?r43lZQvYV zFe6J0fJ_=Zsp)-d2rDiy=68;M#i!E{^&nSpWMpLYX_o4;*l$g#X2pa)mE(ucDwpT< zVZ`#yg!!7cB71DM%-O+=)tVt96Ls|6Up0@V(spSh9XV#bx?yqcwrU8j_NB7TxZ-Y+ zSwR<8?5KTY+)=sP!)JABEID5L0uMzt@JEcfpPFA$(v1UTK_qDQ)lW?=UoX#jG?nt4 zDv5Pb@(Z6LOj~RLmra)#TYY%Kv6*I-j-| z=*5O_vcrcZukc|>>4U>^R^aJd6WTX_9A{Ry&BKFUU<*uUE3UCLcX#6}Fj>jw&3Rz5wppgY(nQD*9JoVc#gn-q{f$j= z&HSLSuv25Q$HkfT$v^QnYvZpJonz;~%i368p@F*fgtnww*H1KgdMy_4m##p_!Yoxh zX;rU6+;FHA$C%&3j5{$qOfOZy*<7YD7ODx`C`xz+hfU1MMok4fK$GxcW)?4w2@dd& zB#czWdxN6^NnpbF`a9-y|Ana3*hE;h4UmE}p*+Jz_{>kS+YGTLobkQHSp82pm}S7} zF9)Vq|Gj|IxM7O|b> zEe=dD*o5s2PB>X|?65KXvK5WC{EUmrLIh2iWW4r(0-L6twF5l6BXS(_IAKJ#1|TkJ zS+!WbDJ|JfB=~iE+meQPWRJ6??vn18GS!ECle%UDbp^RZm~6pCoPI#Q<3@wA9p*z3 zGYd{tLABsz5q1k+7h$>Jh84Ioy9_fTxT%wCe)3z!HDJQcbB}8z#-<)%<`pZ8xU+Rl z+fxYQWBnrUQaqC6ay)f3uemB!$}H7#6UongX*PF8+OW9KN0exdJDOimHe*B1>M6zz zYwLqn``Y`lb?EKx%0lICS;@)FmcBITJUs#6b3NN>bg;Q&?D}Jns&k=|lqa55SBIv0$C1fqBk;DG3j|mO7blD>Ei!P4=eZ zd1@=WSM_CMDdO~$87*@Kxwc&vgAE;~aJFn#)sYN&@14nVzw!$2XIOZ#<7Hz6O{4%b z&7^2IRh1Jk=&nDeD$^w#Wmgfdd`aK`C1qpaNuOUy`R=v!^K5wj`=Ov*c{c+S-c63o zY31DnPe3rK+?!w;>=kVHCZYq`jiAGqJ=XqVoKCfAHCJq*9h~r0&wKX;B0%wMvK&g? zQzeWYgMr=T+a69&45=%|9VMSM+A$X9X}gQ_I#mu8Mj$4CfNbpIykfc2#fgb({n=fd zn5e=>*lNdou_K$4cMN4a&X4b!A8md+=G`1+VRsCNdn(14cUYgZpEKS%{G9l%HFiHI zzI;n`#>$i~7YkR~9>-H|7aXpNwn-1^dam8M0cly?2s-!)sMapd0L#T0m~e4|Yl5D_ z#R>j&_ua(_o_17-s6)1H?6gCY-uLd}uK9B zv4l-xg2L`iVqPIZB{DfDYU~xohu6&@oA>ZK@#X>)gyQP#{BN z;pV(7L&MDp_}+wH!pV>mlb+5W9D#OIyn1;$L5DMcx?^Myk^#dxafJj-PbUYswbGNY zd|Pj0F7Vn5zB=NTTkEWjxMiNNB#yht;+4>w)frD3EuRS3?!YbRjy8K z?z1*mCnuI&2}`C?cPiwl`$6J(VMe@A%>es9;P;M0 zT6AFUhh)e{PK*XxG;#;3>^XA>!&)%9i#5@j(t~!k12yz7S)nZF!W&D)t|3q_hK-Vb z|A%L8mtg8TvWs4r-M=v=NpGY@#MGn4w9|pA>i5i`N(H7Ie{*3F)uPorSh*i_lEBe( zoexbqos)U2j|N|iDK!V>6H{1j%-Kes@TCD0o$PQZpEf213?$FuqdoFwAYbg! zP#jHqc`;n@m|!#LInb~ISP(-=!d%yf>c*Iw{fOEs)XcoFM#G>*B!=})#F@FUXc0+r zfsgeIJNa;LAGVA}#So16fr?D-+@Ykwfhtc76yZ!0-oVzXH>bAnd5@f%7|VsWumgpp z7$AqzDv%!vO26X&}Gv+fVot`&nLf5c<2N-tKkS?^t)L(RmFoPK@sBN1VFH8Fezxi;Y*iaMn zFHP4%65vn_j2{8PGt`5X=awfQ3YL!Pph`0|&y6dI@mxdm-gpQvuA^);?1lU~Llfe@ zu$Pc5l2|-;(E9@hf5SNPv#!vjgS`Lj^oH>lG!w-mJMtZZgq1T@G_OwXB=U#D-_?mW z=ba3gM3}gS{w>_gb7{)mvo0M}b&lousr$xHGOxIV0GzFw1rsNW0W!|a(!?WP@{rB@ z2~1y4R)8mp{a}&;c&Jj!c=Rv~Y{1m(HEoK!DL#K{1|Q#hXgC-pg={n)#hYud-NssL zuoJ%=(gsy*r{R5b2;v|v@m&AiEY%Ho!Ezt{^%h0qAReUhlldB$U3c?ToRnR85b;g7 z4&n+L?buAnDxC|uwZDo0!!W%$_Gyah2PWz@dbWlw*@D?x+_J_P8ebmKHx#Q(@hA)5 z?=+^*CZ^Usw@8>)%KK5BF_-}lh}iU@WZI!bb}}gaU}FH|X~QJW;eUf z+By1yIT&v6C+P+MI3?`bU2ImSSq=&tiiMgw$YyDLog5W(@CM9-xv9dwK+`1kqR-2eoya(g4Q5!|ILw!8Ybt4oKNaOxP0>E`ATR^ghD8;<6K&Rxj4*s%7K78Fr)KM zMT7%U9zTQKo*HI%Q=&@w;s}*BK0ZsW?dv7MWtTKxjsnu47iyh{-;;I_RbLDu&-Wf= zCovIapq-6}$((dxP!;Yo2bzSUTT2(Ja68moy{-r~Q5ig(-zKH*(mdja%;8K$^x+{` zHzf`K&9Wj~spBDHM@`2VI#5ufJezJPnDeEvX^UKk-WU#6o5^Bg4BJqOvPhAm+k$D4 z6e*e|{u^rac)TTWNLV5@Rl|U=sHso_ao`2p00&6Adh`=xs5B40txN^rp zIZSxL7B|{mV5DrOt~osXC=a(-OeYFn=jlE4r1fX%Bd#GL zkvh4-U7Tyf@WlWAiwCfRI*A_s5we9zQzd?y^LfPd4^F5)tO+NVk7-DQ87))eb@&99 zu4{dJOPD)yTeSF!&c-#N;(--N?)1+Mj2~#^wL?Kjz{r!94teQ7Xp+ZJz!q1~sWBX6 zi~)inHAq$*1wzHPCpUc9!mAdJi}d|-)jZt??rWXOho$I9w(nDzfiBq^1;bOyZtK1K zoKp$-#$9f9K&_ckt<2@hksVh*Uu&(4L1-~ymwf4ryCrh$Wui<}T zSn5CwY90EHY32}69yNYPV+;O)sC!VG{x3xSa^CY7#>U?VhP9oosWbQscduIKMog>T zt*KQwE!KH$%W6r(g1?b4?$E4>?TR5$ArrW^Qr(_eduh4jPqKBKRH0Oc@1JC1(z%)C zzSGWiNx%l}pe1+PXeZb~(ay!3^`e~xcicuhi**eSDX3%B*GSM-e`-SNr3ivy_uGbZE3fB|VA2)szcPu8L)l0#~=(4lac6~`Xkj8{N z)Mh>GC^l6;uQZd`GMzG8CeL>aCJ3vBlM6`Y^c-zqjtB^h_KIEChZOq1Fq$p&iJ|?s z!R!~Z!R*BFz2EV8c#C0c3Le!$)#{2HgkWoi4Q9#q2H(H#j~fQ-=?Pn~ail|m%QGL? zMrUI^J7&zU4Mt;P4}~aqR3TWcS0KDn8+gi7NyPP}8NR_%juOsJK!uS$R4@(m4W^IH z+j(4x`7MIb!uuIPLP4fMVhG%NFa>-4haZk)Dz$Hk=s0$4I6zIh?h*xZK)mq$HMeC{ zCvt1qJUQ$PMm1a$4W`b4)pAcj*cA5;zumQ6fg-D~@PLqe&_SVJB)eFaP9g>mq8KW8 z{Nfl2srv6v;|A1ykzr^VI78xI#W4n%L#oE8coRF4-pLBMuke)y2w#Hifp zj`NTXq_!#SPEU`znx?$)qU>ieh!a#QMRHt*=*Nv9e(72Srq+k7}zZ`GT@ta8v4m_79` zCbIB}9t?4_!^%KL^vS01r(6vxl#V9xd`b81*Z2>9`I>4gPyJF~-cViwvB4J6ZmQo& z>`003kES-rcpyP+@NFYBF_Tfh-~V~i!v~_-XS zBNCH3_Qg3#4g)QLHSgh;XXoVj3KH*erd~EIB*LwOV%bSOk&d7jrZLPo-r;c(w=_%k zviTxRqr~2|gzsUCJ~2Qn7%=)uoUILru znXR;3&-Mu4sK;v^kg^X;(bqbl%Y&)wx}m3L#o0RdAwkth-a9Hbh!692K9-zS>`|~a7^9?i+rrywUfBOc@-26&2&s0** zDHErb>6~K7UPsN+sbvmW8^IflVYI#OS6i?A1!PHFzQGK9c??VF1@o46655OG_>FH( zrC*lDBlmxd#XD%x84gLT6S-%1oDov98qyTCU)Qgg^R%4@g@LAKbVMG*pADnr3^x3y zh6UvfEyMf$>rC()69ytP#}_p2K?-9J#t4D`t?>ech0_=%6L8$kIk^NP$$B`u*az8PSC>1O-CJ4da zmGAAXgh5Ah6D)Oypyn{(gWk*Fj}s9ZP@I_1kbI;{g(Asqe?K2dzNJo+WWRwTjx z74iM=oM020TLW32Uw)}ibu5IBeJ+)4ATMOZtz(_1Dk``WZ6?f} zxT);q6`F5E_`bB)W7hLIJS!PGDCL}Gn}U}3d_~&7bGi#ZaFJe52^tkakzUWQO2;gM zc2YwUJiCK_{X7zqkVv;$&#p!$20cD7WMMv1B~+Z%mPRJUcfLQ2R3xS{$o_0N*q5Vp z*nX&M&z_pvR;+zop&=S6R6Xc{V!?wQmP7tBv!`afFnYt8CHEumOuiKINyes;koI~q zagJ@+bS~V1mX1R<=YSdW~& zbEOgF#odjumE2N(NQ99-m1qo%Xji=ztLS>#ENyArQ0V>N+H#UIsxiNc0v^u~`J@r@ zSEP0^{kZ5RF!G`|BzrAqV}f3TO0c)mF<0_aMvmJ`eoBveEryIQ+=023&-Q7b{Io5f z!Ey;;+0Irbg(sh+huyPPwrD+`9S&$-(U{UxPteSa{WlKhDq7}xXiPe!VM;hHOuCoH zlw<${OT_4&;`1?-B+^j7a{^D~T@h9;th^}+7i|XST4EoXpA%_P`5Vq5<{j4Gg2M(+ zHiyM$T;*~5)_j(uIBcv#@VHnhb3jO#yUu7#h_Mb^Tq0Cjcq`>U}FPb)H{=Q(i%1$T2_G@3EBx$c!EP# z3t!F(;BsD&mRndC-TT@m-B2fU+&jZXC5_A+U!fsH^#lpu2<~3vkX0P-Gn^=9A0(lvF^kI=u#B~W!&tk{NCuFxRxthL8$2v@3nPy^;4OVH!Q1vtB3NsYpcqg>UFot! z94#@wMH0cI_<(UM2PvpDh)l*K$!^N|!a5n!DGwgh6XL5`0ePWOrf;x zyi%FM4QTI`i_lPU7a2w16)0_^Zy-uq8ahpg9hsNjPExW*t6;8<@1Ts!bM=E!daBde z{jQNUk(kVy2#m8PJYp&BmD^mP(k6fzRy07!w`D_kdGB#$;9i*%_gIb~%g=a^k2HoC zZhImZ?m#4KizwfH+3hbi;_eY~4!!Me4vqVQmib4#9}&K5_kG^*AJ6TbjwS!C6DRKD zRD?MbCvN$dQ}4JHAI-#xOYze!apHPzYa+^=xI!?=7g}IsP9&zd2uNf73sadBg;6-R zV7YM%j?9U|D03oVYi)odyZ?$Cmg{KNy{SpHBkjx35eMvZ&ZF zgUc5%!@B_2v-?sCqwI--<$WnQ@+W{{`i%1@3YLo~;mn^XjB+0embzMS1f;GwnHi9} z6p6@ZBqas42Bl^G1gP_AGeg~jGNsWmX!${p_ofU;J-E;L5u@__w=~Xf7@J=eSi7hFg!bRv zGeRn68!**AQYbK8O{_^N6u0GcgeL;7B#Qe}lK=jTXU0@2HifjP#ONpps3|6oqm5b; zI=1b$e$2qivCWdbEe?&6y=l81uJK1H1e^2x*3g=~;(iXPXpWAfgfz5BIfhWJcD7Xe zIH_$)h1-CeLG|zd5)-tG(zT5Q;*HAp81I}{XvA9vfLW&a;ogjOi6a>6<{bT8Sii#e ze?Kw5cZ_F`C9LC9@MD)+Vtk+q?mNJYjE~F77dBX~<$@zeqc9p0UNHR&AF!0W#H5Sc zlg0jlv6tloBWHTSRN0<+ITInA@r9AQzF;XM1&71GFbWA2EG_i$nJPWCFw$fTmZrPI z3S~T2Ei;nwY=?}~e!bt7HdhT(eg1c&~HjL6X9*wT3Bb#s-VTF-lQLxnA zgt_|PKiPt&bZS)K<~mP|0-6AM4AF-VTo0~>s-C(vfGc&s+d_|%vdILT36jxF6bK$$ zO8aB!5w;;K>z>_u^!UJ3+mrR!ZeZ>3vojV?1FS31>SzmrqS)@N%xAK@C!?HPJLGTe zZy5|zj#09TrQdMe7OaA9Os~W<9x2+(o8=g*&C%S8OG9`QzE3+K5@R1*KEZCG_{#K`9W)5uIxi3$^hoFJ;6eVyQy~d72|Dg1>W^V_lKL z-%mKEJ!ttG8g5n`69IxsZjL#c5hEfQE+rqL03nIeg_23LvKhYrE24JAQPRA_{69{G z8XX-_09Qb$zp+PJVt;ZPUD{@kCUiyq*9(uRI`A34Zb#}(hu0F9ke{mH%)KfMH|B*e zg$^$E8h>GBRdSXKZ@B4FiSWw{Tk5Lh@`Z1CZXi5GXK=5N`gn||dtAHENpUECC9Dde zj(Q^3!9AQDN27opoyDl(7V(feYYZ6Y#_;gVsp@k^gF;c!Pgv(!sh zC^0YL!vRByd9LIol~55qPw|VBz*&<@XmP^;4gys17jNvSWo%_SJ*laO73j%=Y5m6L zM!fHdgTs^Z{a;LBj3x&)O|l+g3bP(dDqp4F@EOyU1hQ^%F4#eUZLRR5hnIHQU-|ez zrh=jwnW200yYEdoCk>9ue-;s1x98}>UPX@FekT{j6`WOS)2yS)Pj#15E)EVF6vufq z?R1__N2K?qU~`m2z(0AiD`#Rxp->);4gTg<4bxEo9A$sE7IGa< ziDfa@`%!nA6@tAAQS8N;j^pEs!)67a*-;`K^){YVsd-kRjd8Bzto-4Q5@I>0kD#8j zTccn-Sd4faE?kaTmD}QJ^iL=ZK|fNY$grNWV|K15%efBYo# zAo7(E+o~QyoP8TkVYU86k@->f)_V%nj>Oy7QKmjittG=6b`?&|pj47#$g`gkkNq)G zUOHNm%^yAGEDRZAq%V<1|{MfRa)PgPRPQ5OSrJE4-KjqH3;X=({Op^2kj>4OvIw`SD#@{N1iXGGv*)ZO-) z%@pml?3fN4{uGXeJFfJh@s8<~26C&Iw-=(GqvDRObgH8Sx>uGyNBC8e1tf z+cL!!8YQ>EeRCt>2ADXTZsD{Z# zUfUKrOu{P_*qGefGohVVgnDU`z)H4fCkYScOOn9utXXPw?p`U{vBRN?n*h{FAjSel z#~9NPZPqD1t?9wEEhxMLj^1L03IF9!_Thoc8o3%$ALAykXas_xhVRQGt_xPA!A>vi zdD5!fva{&|I#4nj@otZ zZR}<0nL|b^_o`KXGEdxX_iylH7WIE{=(Zv+=Kl2rf@vyBEH4sJzoCwjc}0vxm-Y-gn_D?YQLwB?aD2z}T}^3trbJ01aDA)&%vvdL1z;jhM>SwQK%I>Q>o z#H@6=+0^aZM6phs{W4N0j=A*lK0Yu)>o>Oz~fvm7#v<&dsGN;o_1 z6;x}lbb7z^W_?SiL-QS&H07zJ8~rqA{vEJx^*Gg=5qcKuS)gUXid7l$H;zzwgP z8C^m)iZ_n5#0va}E6V=T0)nD*$|hkcrcRh{^p|b&lGsO_t^!Q6_iSPvgzwQ(Fzrij z7GDYNXY1EF1A7YB<83p7=j}N|Q}e}6-Ol$(T%mm;)y(#Z>+Dnl8Z5`GZ>*@6omr>x za%fSGsQZFi&${?wS1hT?^wOb>n}zVIvap>~vJkDJP>slcmd6)6Er9!MBb;=B{^1C( z(LFlGU43^6klG!#iY2f4d$9mJ9GIBBnhs5y?-CA4yW;U^C*6^aO+GIzRdUYVk1ht~ z3XHuK6_X)K{WDzD>eF2oM|nXCYgTHcEcc!8DeY--_92zg6O?m=*?_fc(G zkSouG_V2u5POQ!r(l@{O$We>Y*7OuhXbL3>^CM1l~Wphm0LZ#3VKvP{*Q z)$){n#ea_lWfm^@?uG#q)1t1#p1^jJnT%Px?;^dF z`n9?S@X}50Acf(qu_FCH+%tU(q=?Cw-lH^=F}+8upNvM=DDc0??31aHaHOC$qQ`GO zM_E0kBH9);FX-iMKXeMLkfLy6+GU`g)2Tez8 z*U_4m;yu!A`kXdZR9!|dT{TB6tb5V)Tqdn#OdDw@G~|m`KXRu%8S@&Uhc0Q#+N70? zX(RJS2Qg0J^!qc!N#fSvG*8BSM`}Ql*qM8J6!{wO9S?mg8MF42d2z?O4Oi*$oJ=)T zO~rjYir`Cehez#6Cu|*lkcA?lPQZCZB|4p4tPmV~#V_Ipi7;mha{*kMg%v~8uSmzN zDnsyzsFp&OIn|ZL^O=oVk!ZCN(5g~&dorezk&77vvAezrO!f3+-`7aRWE(a+Ni46+ zT8DYfyY)ws089JSYN>WAmXkeaJkhe+E8RE-6^$CsxUN_p*kfqWTryu7wW&~(cNXBh zG<9eHm*-%Tbbhttqg>0b7fDyTzp7uM&T5{4X&?L1;2@^M_nl9dGB9I4BLnmM$e(+J zW=hiBGf6AsC`Yu5lCC$Q49si9guz8y2IfU81M?bTPqU;g1M`DE?c)y5x2%&%k^dNp z49si9oHQ40S`J805iIHv=OgqqC2coev@$TS5k{huHs6lXj_IvWi4g|qlb&o2dC_VM z*aQjUDVW}XGNRc@>zP3-1@juAy`_$bxzU1Fde${!DVW~1@7k)Fk+GLA(w1+?8q)?% zk66%3!Tcr;*iv{aozYV;bA;}p!NP9KzpNH(*54?DC%Jm)4-P&U@aT z8@x7!q^Dn6hef8-So)>Oi8XU3toZuGJeh#eH12EvDg82OPru9&S%mQf88Q9?Y3BGV zc(BZ0QR$Z{+C2R-K2uJd6o(2M`b1rVN>k}B8=q=dI@GfEih@rz6pJgy$xJsq0f~8K z-@jpI*_A8D2Eh>o9@efelP~LV)yT3hoh6l077QDyQp0PCx?L<*mwV^iX80X_u}uSa z7~mX9QOG8M{~B@7-|x?{-RENg1Dsbm=x;vh$H*n0KA*$Gf5CNlLTI5GT6eGmW>BF- z@wv|S)mCIX4fUZ+Xmx8N*@TTmXzPj^#5ID(9c4yZs$GG=upCV|goAeY>lg`qY4kt* zNrrZfg5g;{M-*!l(6x8t`^P}u({DW5Yao6$?)fnixYyT+i8yaa8KPskAaLC4cjQDt zE`ljBqY_Uj0^ON!Zfl^D?YQCtp($69<~$0EJ!3}SM2OdKJR-)S{JuCoMuNZB z5}d@(k>L1m&rvHzbq@)SkE?>e<4He8lH?o52&ir{Xbj zsBY#^h9`D+g;(Tf-M&8IiADY8RU}(c4R+ynRa9HDyh*-T6j*Z7sT-gm&HLlQ7mEV6 z^Z8Qj+ZfJR6vg!(s#irJ-OBWTEbQqjQKvI@9d;gYXKc{n_3{yS5aO-wOcfNSW~vKb zs<#^yxS}M@`yzq)P=eO7tWk5jF0*M{^e=3~ZNc2jIkJ}={(7V386@<^q9m&cHEHVx zRhrQo8>=sG>^J@}Z|vrj-8|zXI(zplQTj0LHHEbj-q=0lrj$1pg>qAo2^lI^8G2_jFY{) z2i>u#bDUZ8_R>p$>F$o*E_vlzLggeQEOf_$)y)qbdde;j^Y^L9fNXLl;YbQP_%cT1 zF0^7z#rkc#=_k_RxY?0Dys>!63x2~sV|`uzOsnTiJH@BLy|F$~60qCPJh@Xb&koqs zE&<`*Sk!!HCN*|VzkIp7Gq|c}k0=>J9U6P>Z>X6L2B zbjG6XUcLOD=xBFAbXK(KbLEtrgAQaD)Oxkbx|tgQ6-)C&;Gjln-4~Q!S5*4ceLHb* zJ#vZX^-i_^(tdf2d?IX0SF9C#mD`M>;KWxne;(C_%kRcg4m? zxQ0-%ROY`%(iNK{bj2o3S8USmip>$aVuN;Zb5u|4uGk!)D>iAmVw09DHU{K%13faH z{z20fdrJML8r~z#rq5|}#U35S=>p0Tx?+>2ODJh~#iH9@$z+9#rp*&{xMFjJHcrx% zvq`%v79)Meh<(`5^!qc!NzSa!Y2k_mH`YupFlHTD7hkPF`L2tvXxG@XF1}iw;<+Z% z6IFS2o4>pe=CQvXmd#K-KtIXnu8Obd{aVI##qhFw`eBbBqv3}|4?wzl$q{ENekg_F z%*e2|s~s4FPS`^fq?8!U#=pFiA&Q=8>(5BFyIzE zu{lB)LPJH&&OEzjB{Zq>{l*>a6d^mHp&J^HB})}*sBRf0EG^tIga@pA0~8jO0K01_ zUAbzJaYGjzJI%d@%7&84ZhNZt(US7pP^dP_bwxSRPsyGjHjSd3hB}3rl_AXv`jird znY1zmB}6@ZtH;swX+oktizXCvq)-WYwVlGMoEm;5Tenk$S;dSw)POncu_-bQ)h0Go zJR$#JWT@)H4Ao}U2J_3YmKqA|nC2+cu33$X46%1&YIIq|I>ywwQs1mj@LX548Ko?w z4`XWnStcd;q-)GneJh4Dg+wJL4fRuIu`QMlTXod_ zQYNQO8iCRTtd-Mh{!5$psiGE$4wV0xvE^ki%}Rt!=^<9nLk)hvHi^|hn#nR`8(5i*B`8?Gf_mIAWAD_9o|1E6x!K`h z`{QYG65Ecdcg15vt(C%AkoZ=zxI=O`lt7iFZ54#N;#Y{ZB$`9gD3Q&il~=4<*`>*| ztPe18_k`Q-Vm+vcg&QywK4u;{D=D!pI7z)8#qh0!{uNt7p_te*QPOHVYGyiJaF>+G zhPtd$;#4*E8ah|agK6ycl+YP-?p&#CRvLG%E1)cv>o>$=QNn60<_ij+E|$x&<=ahj zuC$;WVGB;H_O*kHn*n`frJn0ETzc^&OFn03#*}5=e%F{}L>j2=8g|(r`e_^l)H-v!R9I45U`^CF?ZM2lhO!?|5p3|JwW3!GpIk$ty|knx-okFa6v(kqv3a>-N<(q%xmNp+OV5t958Y>#V&$eq%m?0{^}fdc^Gn ztZQiBRWn%%Hw*^FIPix9=Q@UyW^Q26s>Qwr*xn;)Dt<`|A^IAzw1OmQM3Y4j zVF_NO>4ixuA{rxV3xbboR*UsxAj2CSts#(#yT3(e~*asc)d9;4&U#XNNHvdq1v_Y@m4>!Xr`~ zT)Ox|xbV?uhIk5hQV1|Vm0iHOe&Ql9`bwpc)S((OlxN;|DGPsevn2O)fd0KlSjpC) z2hPwKjpnb&D9w-Mo3zRbN!J%zJ>KWJFa~F{HKj}8|44+VV~c6wRcG+EU-$YY-x?GQ zbO?MhkFi-*%I#aTCB1MtUb;qGSxiDjVqKP08`sRJDTSX0e3q#;#)f=nd83n6>0L`c zreEHK_eXND?S(5jI7J^zMw1TpKSmaDI^zknXM8J#&oxgBdZQcKIT9Y8&f7R(!U{t_ zM^C`*+)m0)u*Gy`z>#Vj`Z->3*A4v~9bBVvDcs}CdDU9^-?@^?!HK1gAYm{=99YML zp6!F30x=;NPAJlObVE{+_j=zQB2RDoXJ`IUh;Y?a|S!93p40EtmT zX8xlBjEU6Bx@oA$*@+j?Q0X$X8Zf?tc2J~ign5dneOoH7B{3q;!aei zSpZiSBP!Pz^AIXhL$zDxCA_2p{scvO>B9#I6se(koWXq&6{(>aqba_`J$heB-O3#q zsi9otBy`fBdxXeHF`%*_qiw%2!=xc;-TZ}Ku-%$|-t820N*Xn#3W`#8z0V>f#+RCA zArj}kya_rpQtdr8PEr_p_@yW`lv!Sar-}Jf@SqQ6zb=5BnK!*IC%-0hWg(JrnYYdb z6E|(xv?8${Pp14e^u(G9UUZ|qd|q*YcZBV#C4pmwg^Xl$%{&%kB55ZMjnq&)_VEm{ zncSHT#bh-zY48j&UVM5VI^(D#prrEYaj@Ha7CH4Pw3?)y>rl-luDfX8*=cd^V%D4$ z{anWSq*vG$RB16+4b>`2~82vi>i|;K06pONL*f7YV3cma%YNczxv0;swH8zT0@ym`6NG50dmAM zHtdlX?6Lj+*`dDU1-~x;E2=*jAEJK~bv{qKY41O+B%pUhHROK9Bh+u&Or1P>xsf}P z^2V2^N4~Toq|B*ko$ZubU?RPXetsz%(xm-yoN(4-p&sU3vj&W#&2$~H`Y7tOhau}A|zXtPHPm{%^H?uL&w5gHj~KZ zHnAF2V)vV)m~Qp!B>On(s43179%TbVvS*wevAuSAkQ;jEWn5drbe}X$`AsY=whv~R zxgYB&S}I>&)ooK|st$w3F{2KHWV7Csgkti=S3!Z7qzQwR0}gs*;+^i79MM_Ek^E?? zXeQ5x=;rdgXaJ1gCha`|A+_cTS$KpYo#|AT@&O|(lV?oLpo`hP)Htw5CM7hK z-GtmXIl`L$5VK00wjVr78)NXNh2LT42^8!6$q7`BQ0=%!h=sp752=S_tHt3ur2~Ttln89pCn;8VYXt&b)a7-Sz(sM-jIITwx zuVnO}i~)MFlh!Lst&H579P!T%ntDvquIc0mb)lpg-$+`BNbiUW(8HzDhZ-Bn0_}qZ zu}m6z$r%uk{+e6$<}_-%6h{TKU&XU1BSMHs??_WhFA;(Ibhshf{C#?p5=MPnzs`5; zmAOV$<%mbHzsnN(h)2D&xoNF6(PN zUY73G*Law)<%V$SN-9+6k;1fvu)aoRu990{s2_VS>kIQyKCG`H^*^nz9Fg_q18#kR zF4wx-6z!Wc#w9O2Q2kui7Y>v5VSPc@nV0p2^Mf80Rcv*oKZNxKeaE|xctf6kSzl0J zo)7B_%?hvJmlfrXo1Wg4a%eJDz%An!gHkU zHRMV6Qw`t!QKo2&*i$SzAG%=0;(Yi_ZQEU@muY%wdO=?qxAA4k#MfbOWkEBIub|!d z@_{tIVnoK5#r-ei%Ty|PyA~fIXd#IR>oJ-3l!f7LH64Nbdi}Y|Pzcf$C0*Sjm(we7 z#<}ScwjS-T7zz8!VuhFeWvK&~{RO>pd|eh8LTH|4Lwv7smtEu>gau~K#rukBmFsSS zLF1kh*tEdR(RNv2mauVIU|5j)VSz!Z&*UM~Opl9zM*6l}Ei2}-z?^ktfmveuhXob_ zE-bL&$BZm6msf6q84G+YZFigly;C2obSP0_GCyoE{Ht6x*k~&juA!zkOA1U<2{MHi z7$j4@LWQ5lompV08@{mr|MD5`YaL3IT3O9uZz9)1mk6%vw^!8lj^8w*WvrINZ7@i2 z+doS69o4&;6Jt$t8a9}9io0yEScm05?6hpK7zm3CFKv7D8qtX+8!SFsHW-i$f%#(2(YcRvxs#e8BUjeSiYfD7F_Hl*2=9fjn*c9T9+p zj-9DJqO|Fk_7h!c)9=V4s=KnIyQ=4P#G@5uy|bp@5l3xdTxPbd=15Av`EkUX;dLni zc3_q32@Gy#-n6I6=37afm~m7qy(o@sKioaE<0g<2r$fn!#ObhMrw7AiXeoasNzXrt zkx+Ywj{Tn_kvM&g`172W_7Suar>_y6qE0Ja%W5QLFfYI1k;OdseSwlyf>xwE23%7B zzsY8%VwyBuzRpMNW|84=8p zEyJotm~xhzR^oIdi$&seZk2e3ILW!yIn5KNlN;-ZWUwtO+IY|3-xH^=D}}48oP?N6 z$V+89^M=;$PWBBwW!GgRV^dx&1hlWO>Z?~WG=kwMrap&5(Zm8t2k@}{oIOIcOG!eG zf1}BJNBa7hys5flpS<}2UC<^{tk1{fAc+p^hI=?oR?ZV&$!_}-aF94wp>@NM?G4kIip4G&Y#2`*zhg4)N(GO=cJ+R)$s}W z6YmUV`h7#s+RL(9!Qx6iZ>!b-O`LW`RlJ88eNJbTKSn}2;k7++=i5k}I6k5y2OU1y zl7mMM=&sa49yw^=d;176SH%9~44~U@ZX>&)MybfM$$g^!!N%Qm$|DDE-;BY%bo+Is zRL*_ACB2|)=-Bra?XL8B>4%#jPaLQbH{-4mp-4M%;LQ0j62Z77Mg2=Z>f@u7P-p!} z_n2-TDZJsEMdjuf9Y>Cj#DaaQ40N=tag-Jye9cl-n5dT^Nr=T|U(w?L*D35n!%3z?TyR-zZAg#-iqJM3j z`Vsm<@5kf%6)Il6aGLpEXyZr_MXJWAPd&0cFb7sAc)mQ(0(Vr;&0BJy?&|sMW`w-7 zB0zZ1u49|0fN#)BBy!91v;f(FpK%pDsI4M$><;l;G@0a2qt44 z*}<|pV%j2walwMVub4usAmYi(3r+3Cgy-8<7s|G5Zi4|hU!HxDw5K8Eh;nyPM?R#d zVv1HD3jHrRD^?d2gtV>|iYlEmYY0q&Vh(qVt<#go5ty>gIIv!tNmI%hvoCiPCUf(? z^rkN8QhaxnCxx6pRf%P~0^YUiN5{Jw$_Qhso^uf60xzj@V?_b1Y;=5G{@xAoBkdcH z2YZ<}OhM{h)syL|#FJ=SAL}Av>lF0duB1KRC`TR@rhF3zD63EAH=pERG9t0_Sp>XY z&dW+d+tl@W03Frg%h86pyZS5G?9LK2?vQgOu2_zO#lsCEp-DNYpDXCUv52(eQW0JaU=SBObC*Nq8}R?!Nt;JBr->e%g^OVAvV& z$P*9*P`bAc6!*aZSzyS?MyJhQE%)_y0ZLemwxxYjxEV1L z_!JFoWoerI7zw=|jbuNNFq+k(W1|Ty<9#>H@sEMLXDd7M=Scpx-}Pf8@H4Ivs%U$5 zx<7a{Y^{FQSOKs>Q068DV_tRaY@Op-G-Z$vA6HD}fGzF}Ur0ud&=!_ebXeq_IqKl0 zV2j9&`^G5bp5sST9N00U1N*@HF!R7Zad_ERqH7_~ZywkvIz2rPY!rVI#=;NmQ`m3A z5A5TInGWnD(UgbValxW_Iqfs3eBdq4!w+}7tXQt&&?>GqbL{}+W84S!8CNm^sv>vK z)A~%MSHx+JO3Kpi)B3FIs7CSTUU^!hxYNO|^g(me2j;Igl}w=1`b?%P#9@5~;SKz- z<_qhj#`pAfAJzEWdN~NuBGZxY@R*peII0f>;e7>!*2<&$JWYj+epI7*kb>EHrP94WA&jvtoyKb2GU`DC^-DAK5&qK#Ad-i z9u2b}fa7rISq=7E_fd`Jm!;-WeOzwns7~6C>KyT-`kNrIqdGX>k7}^tby5Qvf%X

      M3RRfvg;sdf?gB0&O z>G>@&K-)D)y6QlV5;LdkN4Xd;Xv=O%QmH06U>gGD?N&%yp1E$7d*eE3uMxW^X?vuR zqvcOt1LlFbXnSR&_pR9F2tWIxZTT-+k>qQ{+^`pIUeSwIc1yPc#2q8{UCuJbRQ+-N zn|rvUlzi>a_oQ!|*)1Iviqufe}=(YpJ6- z;84u;!39`_G&wq|7+2=5;0~0`@B0c*m~nc`Pp9mbjyi8<(3tb7qwaB)n=XpVD!U~| zJiEp2@ywHk`F@}Il#uE67QTV)Fwgh&*=?Si;xtR>LxT3l#fD!|N8klMnoRn%f-B%C z-8WZk8HMJijrH>shFoGMIV1~EMi`5j#^Kp5#zq#+V|I(tOpQ0IIBCyr$&v86dFBCgLfz=kW`aN{B=3lVT7Jb+gLHqu>XF8= zxy9y*(DK0*u2fM?>S(&kv{?mRI|^p0C01@3=%^<@8?9-d)I05tqRLQH9XrZ)8QbK{ zqR^Y#uFx7fif+AIke#djal^sHYe$VOJz8eOz8_Y8wabop2ZqP5F;T@4iTAqZ&4d2$ z#MWqkYge3%_K_CmM|@L(`sL3rPZP!yIKjosuK4<3gdV!E zaSHQrWB_!u7N0La}~7bVZS)?X8^%Iyy|wi392}UQ>RqPB<4a z0n}hpsVRzeHsx5o#CmZtFQkTGoVf(9zpD$D{(&?UO!F5sk#~E%T=W3`<$d@6`M-d5H3PJ^ zZ6f^df7U^(j}jw)a%3(`ihQ@)gjG8JH4=Ayf3hhw|L+S`60eoKzMl8Lcj=zzeG&Zo z_g~`tR<+Zy4yX3hd&J0}96_jT@|PFkQ=T1NeV`{jdLAQ}OSAz7qs=t_LW3 zIK>XKt8!$3Wns}5>lZMrrzJc>-C&&iq)!!IfDSNh=pygA3@5=cr1EAW8*pN^8QrN_ z0CH?wlY(X~A^=I&th+$9Xa#&g$2vej`@=%R`rg%=NSOWy6f|IG4)Pdm?eXlOfBy## zn_~?OIPxb)I_q`bk%e|D^Iszn1RZz5rP9{8M;dxa>==QA3O=+7VKJt?{A>oZK3SZM z&qHf)2!mI;;OmFAn>dy}pYyX1GnX-ge8ff>Urz8gUl^940ObfrJ2rE!(YtmFYZi-Y z=g;>=Mp_-9AS*yobK!HuPB*wj_@T>?269!_pYgY2z10wyMOJcNvgVmW<6?T%?#SnrfSYLHV>BF?bf ze*WxhXYfU!xfbZH{+{-$J{P0?BByk=L5L6Q?EDLJCE$+qAfmxMG!At*@R3Y8Hy_K z;8SQr_2nJ9q71em^Ctj3J7hR+cv+C=f*pGW*1Rn*tKSOL`);&UfC2-6>siQ^?+lS; z_}#D|&WU-!9cbrUId|A6+k(= zE3h!D&JpX9REl=D_^`l6um^}uW9s6BEcLKwr(f|-b{jWseax@#LU;P-{*C@{F8AhQ zj=@(l!{#07>Ul=SFMaX{{UbViU1MI%)_OxB>@)o&UX1?gc#<0MC(Oeh+)*S=SME&M&q*W2$9= z8^q4tY2k?i%eP8-w%x9#HjB{-oBEl57JHe~4r?!I0~>X7UR@GSOM^3+#`Df9=3d&I z=@pJjNeA&yU$i!Dz>fNEKKtY-+F;2~qe-*EYw<^H`^3J0ve0U78mllGzOAhH<=A9m z=P(}aFWvcJFTFGoROjY{Sz@ziR}5m-LJup&YW4Dpm%Zk=o*!y}O^f);+V~9=4%#}| z78v;1B)dZF*9d~jMw(SXGqk|{Woli2nAjfjOLjxPLbC%rq?uF=`-pCz+y*yQS!`w4 zIu~E(fK@qhr`N`LZq^8@6rJ=|plSP-Cq1=9o76@%uRRn6ZL%X1V(|DXUnXuLTWSdl z1l-0YOyE7K6nI0%b6w6~rjyYFV?5jJH}Hd_aouZmfjfqN((n@E$PGa;4yO^}+v$h& zyp#d3c)5g^b9{N|GB7oOBGS-xE=6IGSw0m9Y7?~_>RC%&ZQhYZO^ik3FWuQeTExsh zuj>N!>2Xf4a!su?w+g+w-zR&0kH7PAMPs|zZFlB!hL&5=_o}2W;GYH>dp=lX>jyqK z<`3DZT1}dtl-NB5_7jTj-naOl|6^AHg~f!CyGL@w{9=WU4GCmxq5YLUv0}ZcFJT0T zE$ezppV&*AUpIYX1<*A-3wbu8GrSqoIy-^5!oI0~y0%$)n(F)odWjuuba@rvpO}}; zono&5uQc!6DHbE)0(%h3*n7fD7B^ zBr~6weZ2`a`owa6+$Ux;$bN@V+jD~H6SEaCmydj6S|2*ZuGKV$*!R^nlO8xerGKn= zjF>~rUfMpB4zXMkcZk`Nm@KA4%qC`=Yma(AKJeBGXF``RJ@pvH-QDXr^hq^v3pDm^nCjdRH4tsm#5zg$ulX zjZ+5%$uC#2d*AFFFE3#qg|<%k5rLiZjQfhtcL;izqc(JS;JKKh_WtC-M?j_7H@(UI zOBrD~!qvdc4MP-n721AeYrWw4!b@1}fb{*EKDk59wVm#VS`KMV#F_UM>TK;i0VIJB zmS~GEJ!gqFD3Yi&$Kr9j+6`LZZVj}O0d!D-Kg_h?K_wnCVNN5>=phaDjGG=Z!F@zx z*8htKheKI^18n(AVn@_X2%2;b`%7=?Y;?LO9bV2DkvkY~WlOC+0N+B-U4$<$TgR2IsPgd1`wkPNosf8%UAsfx z_aXL^h_fcjUzg2iDc1Q)Fkh!Uz4(aX{2#9O;X6dG_h0}iLEl)!&S{)^<$SP>kI?mQ zsarDRus+Ts>3TO5ez~0StG*}XdXI^4*ZXkU?;lp>%-1%B?bOq@wYfgjux0(iGO}$Y zuLM?So?Fghm5EZ(<$Y8hqKs3 zmR#>Wv{rY$!~c8~#(?)7G%a9y--AxR^by&D*cG-oavaBRJi2^qE71FnSL{8#()fr~ zZof4?^Q?5g`!u-w-6txo2Keb#Zcv+Q^K{F(9zr7A@7Q+xzJR^9;{mnE%!r?$ZMPAM1pM%xl1a@J6kvCmYgTV5W->4^-f#*nKDnHs+*@oDX`=Xvvv@9qvvz*2 zRY93=lXn4(;Rqu}kL`llJI@GY>42>CNV5>q9$~5c{-p)*9(L%6fdKD8JGSYRMcy%O zUo*SyEvF8h2R~UAok4=%;!GUczI1LB=yP%Q++s=ku!9ca zk|Xqv4L=0spuf+)Cuo7SS*X<0wFX0v z`f}$dY&AWnJGfYW7Dy$>m*GNLHl?qD437en`HWjRM#)M`?HEaI>(YIFne&|YEfQB~ zi}*Q@Ez)HD&`dy{;?QeCi$W%(siFFc88(2rQ@kS*IXcmWtfp@7vdtarF8g3tJ=b26?qjS%@u{~D>Bi@5vr1)ZE08r^*O->)vSWPSQrd6E z_u@QQ46nqAGEXQqI$LMeLPPs0b8IpS!Az14e`1U%+A+sbl8Z5a0T|AX6c_sibE1cH z2-r8LrwThIt>61PKVo&dtr)&DUhE-H-*04mW~$$e^IC|yV`4u_6EcNhuCp|73Bi!ZC}i8;?~L8th- zQV;@zg83WNt$=eeZ;1iul$rtqI4KNnF|P$J+k3qP2GA&GNr?eilzK~y(-qlrk+HVN zOLWDyc7rK%wiz^6V#`{CxlT%KS<50*DaGcdf**-3z?!H%zU!qcjRbu*kR{4Tm}m{_ zQ0<8=Ys`?%nAtTLILpMAH4nq*k=OzVjM=^-u>}wr%za`~$XXUZx}sTY+h6jS*^5t* z1|O3bP9H#fw981`evmoY8BdGv+RtJ}j(!4YB4mKg)m*o!v`Y)K7e?hSL&q>b0qihp z99edUP7o!w0BDEav?T^2orx_u!o(JTf@iik%VlN@;9Is-_+d=g=qXWV3t&I&M2O6m z&Ewo-!}~F1EfQNWYfIMcxTn>P0!+L`PL~+KsU!Cbj@Th4J$c zpe_QG*y2p=fwkbL2)(U2^+*Qi0GP5bzt!@CFA`e-h+;xoi7lWXWjPu@1?`C~F`~p4 zY!uJMG+{e8b=1ggS*tTXrOXz5c-vt)EEm4+72lUBQNM!2+)poglbJ0$PCjO~K&GXO z+(e$V^D}M+%)}OqSYo>pTY{lv6a+g(V#}u1<9RLG7Or*smdUghY^v4s015t5+Q~)@ z(ASmKvY*F2b6>`6MduZ~3+pNUmnMOmh`fHCOgr`e1h(-n>G_E9_sGOqc`X2nvgBpuwfKSSa$?s_3pMgua76FRm${o#xm%F)LzOs1DT`7ij-LfOQ-Kq~GuCwp z;6gklm5K9Ao!e9<&Qq8*8OnqfJd_C(re!5V*_$5I&?UCGFfI^V#{<@*+#S~?fI~Dc zU1HB7gN3@p9$Q(ru1oAORO&!oVgu3W(j|63RKoJi?MuhH=@PpS`2wY-b>pN;(IjzH-WN1M|>0o>3&bcypUDNNKQfE)7ULiT4ngnpdW=lE zyfg`5jqRG6MAEKF#E3KrJo8+d1U6Rr&?JBmcBRMy@2jLDvG-v1UMLc0(3i)*JA1hz z;ld_0iR0(KGzo~bnx|#~rqlV*C4zlIm%s@9Y1Acxp`=R$JB2QR_u{WmnedGf+Jtt^ zrA?frni^>n&S0)hoTjrq)Ct6|T%FiknRikaV&X!b*lS;ZURAX;db+b$=n`PBow~#h zcZ%r}L541oBc@A$oR=;Ee7th25-z)3m54WxD&dkWRf#Q2%2f$$n3kHv4qe1G31GR| zBukUnd+H~oN$kU{^3WuXf~&4c$npwJ!q+G?i4YXhBtno#lYqFRp5U6q32lU$1UQzd z?vOi$1tY0RoYM7^)Fk}8bt!S&jtWfzC-l5D2{5?%x7C`w(RU-8S>Js1d z1}PK0s?^lFx&O@(gbhx!eKVNO@N-0W{rT}6b0GPcG6Sz?YoFgw`Z1FEgx{WH?v#q+ zwWhQ~%QTA-FqXYSj&z2ILDOGFS3GK>C=eFGAu9lTxS{BmvVyp%sjDcedgfO+lPchP z==QhFw2CUMCSP6ySy(CNA@~Zko-t$pS3n!}OpC9NRJYjh)zEpa3uMK|1CW9~{TFfl zbCg=3R|2$Gh_ILJ$^xlOTzW?`nc=Z39+ewdZfZG4@y_1lx;{r~V~ji)U9O;7(%O+e zkoi4lS5_ze7*S5e#|XnUNn2vzMI-d~`@Vq*azX3ZI=iUSqq+tWBaFr+J$Xa~z2w`= z5oY-vx0M(h`=FOTe*Ri9@aJQ|4m**G?;UAo83D`@L({luCe$U}2;%mRELou@h%TC5 z)Sx+0_Z@zo2F=uvqy-jYBV)vfeb>1QG?I~=Rh`j1W7L?jDHsYj;UfnmzU&z7iGhMe zsX#3AXs9u3Y4X?GWLA_`TBK6J(E7NdV46m?!pigI-unt9v5#QryJuN97gw|;-GlsH!qwWmgt&MctLzUY(1K`a&ZO48A_HX+|)|uB^)&bnyTV%6@Jz zn;Z}-mNYYqOET`HZVl=2&0`t+e{IZP$uAycGS0@J;I-7o$@-LW}kfM=pQ)A3l`POv{nU*I))! zzNJS7E2=VS(;CWaeknUZ+Dw@L;nCWmKCEOBZbdmFvo0;Q#3uXHuS{pDC>I1!WT0vh*T9L&ZnT9-7i>r@R zA1>PEdX7lK^s0HIoJ~6BEk?|6HaaukZ_<>BTKphzZQ^4D2VKxQjgpoMVs6m6yV)nzSj>Nh;YTM$~rp&ox5XR#A6IQONTEHLm6_ z?9zN)^mPlPxrEVS_Hoi7EjSs%(}J&&!xPV~0qV6TZR=O&iq+z}0h7f{4nE4*nI;#T z`~$_;ua(fFrZN6jp&zw%Y=m2z2S}Ee2HH#`O*rEV6{uUT;!5(CN=wwQcs4a2f5PJl z|Nav?*W(qQ=dQnrV?IAZ=d6FF%T3otj>DArGy#f$a6Ftx(DZ3>o|A4afP930w|oKt z+4DE(8?-wdeS)IObpg7>Q&%~{Y7B`b7iOwA=ID)S(h+Aj>|dEiB;|k()e1a^lm7He zz{M4{{;JpAe!S)5>yC&rdFhd-nKh5jODYM_8N0)yn#}kx*VwrgIEU5u$4r+&vU{0S zCO$XBe}k3=rMT}KElndAT3V|De@<+)A0u(s_b2~1Xlc0R88=#*MlQ6p#`LNi9qq?R z-1Ys*{~cZ$9F}0HIaq|8BZKHlI0ErbD5HLLf&1PRvmEwN${AAEOfFR6pgRWgBO@hU_R4Gi7t$YQt2h= z_YM^6_8uc}vQgxjo(3mfF`c`yyb>Xdw){wYuZKBhTsW-PDIAB0wV^WHoX~K6Zo2{M zJSH8_ye@%jzSzkTXx=Z74zFG=`Ad_eR=AME>x385` zEr2SZCA=?t1O$W%ddn3De!6`%KMHQWHFVIwKV*TpX9fM-C4SLjcopgKVg~d0i4=4MPYTG0eFjI$Ir5q05lS??_R(lJ*aYp zxls1=>jS>8>_VWptsmGHF9n+Z1L=*@c{2wB(GO+u$``REKJaBT^X;4S zAE$jeRx1m~bTR%z8Nf7-t;TIfP0qpM-8k}Ci5TKdFvU*MP6I;90>FiUI9_Za8L8`Th#Mq^mlvT_fgLv;Y@83ALHg ziZ^(0?$oAMfoRXtptRI(Q0e%Hg@dJblSbIMw)HE20QGbBX9OjN&Etdf=+zgn2P`;* zS*$~V+2~0ym)$|wz`{&ukU%el&Qxd65O42(hj{ZVgb(QV1KiE7exGqQTLuh_5*$h z)GAop*i*Ht?W2Ph;*wTO$moc|g(Et;$i^83Q&kU+-& z7CyXa8JpLLWd`91)3%hwnfzqLj;l*A)QtTK-`6IvSR)ifo*rZN=SVsu)ZT5+n;{3m z#9w>NONdkr^7b=`IM!KzrUPUV-U>Lk6m)$>(zz z@C9Q~z8-US9-+yVvxsr}DzkP79YxH7JIm?hPC;ryT6XNH_l~Dhx|$6cFsG2fK=A}} zqv=T$;Rh*oJQIetl++}h5zBfl*_ra1wZJ^>_BitCqDKO_D(_lcYMNDmd{^6q_$lPS zTFr;>H%D+8;SF-cK;w(WW2mGcL<{oh^tF8*@PSZDP+I!G|C%@_yD}%a|VqYLNC!3LV}D32xUk=i8}}| z81K}(Tp*KZa(&W|*S9k7;U+g92lbKw9K_5R{va`j%Gi$TDEvXp>@mPgrk|JTc!Z+Y zqadn}XuYsHlh*Lh5xhqI7@+=i(USnHLF=%%Moft_1kqxX^AHBs>9!U0&yh(G%%DeL zkdkh~z`#hC%ea1Bq)EYxR?MQvtoti1DuV?* z*9E@s{Q=LRqk_x#o4BR^QYLB4S%}3l07#+h6*e0LtS=k{C8puPi~E$=#K#V*ecKWa z{Oh)ZVK2*4fYc0nR+%e4a&53rp~-3ph+T_MnEwCw8lYJdz@Ek0Ck3imQ8RVNmh(Rg zyin6`IBQE`hb3UPAuq`wzFlD%h~}aI@V-?3KH*u+an@tx&pl%1-$hr#qy_z`-l+(x zwy^QfMK5CL1w8}Pj*xSOz1S|g5m7GaO8wkm>&{75O!^_B+(i=rQ6P#O_;U|PFkG|= z1|cL~f+0pE7=pI%xag$-bB=Jn9i9|h)G%;^mf?GiNDu_Q2?Ojj9SGMQbxM@`qW&DH zjg7aj5yNo3XhJ*qn!aj8K(qSDBAi~(W>H;q|Fu4EX!l>O9Z7Hiz|MrT=x@LgyrXy( zU}pU*SQ)Qq5P@R$Fxg@|Xv_I#fd*@MeA-N+af1YATrrLw(1=?&S$-ZmY{4OGhQVX5 z|J=Vcb-!(J!{I2@w=B%{*GY7h!6c5U+aGRE!FWqs{7sNS>W7E0ti!6Eq|+Ki;R&Vq zH!)YKXhEk2MF2m`URms z#ybd5)n5_$>OE|E6I!g3#YY;5D^$aE&4Cc|u2~XXp>*aHYuoS>la^Erl3*Hf`y_^6 z{J;o!Wq*Z1qzivV*W&ymuuFw-sju{X?6aVq9`lsis!yaV4L;GJ4XCpb^g;A*Vw1M( z0@p>UycR#*^B07V8j`#pxxfXt?8;|otB!gJSK>1WBW))PTnJ)VJD}WunJhg86HN9m z;_uuG0;}w-O_13BdyOELY{Du>1`!j*)Xop)d^j}hs0CJGd%`$8b_dhP>SI7Ir3wZX z!iM+>Uz5{)~g3&jZ&^Lneo0u%{JLw+2E;)owEP&`@11|8W>*t`ZVS<`;~O{7mc=Q_b8 z{WPZoFli*!3ma4;p<=@o=)s%M5xj>rio8YyA{(^z5=xp<;`en&Vda0)lK`$duQ5rE zL8_7Zke`Dt)Cq!aN)pczOM*7K%iDw#KIzHMzyNq0!V)MYzt5j@d&NY|9OUD0MX#lsMc~Ny{!*kd~!=}Wxe0tEf zwXHNRE)Xg?9toLLCE~8-8A~r=JNT8$R=?+bSB2V{Ge;QToH(IO#>7F5sMo}yn!kQb z+}t{4HF2(H_{1%XP2LlSTFiP)916JSHE{q2-5(RT8#M!;H~~z>y!anAYlkWH{^#~E z8A$%Xmu5n{e(=4c3CPy>QhO|F5M$WLNc|-DpP(A#Bmb?JZ+i~eEqZm{fzsxX%Dmg{j|YUwQ-#` zXY0e_v^nUZnPT1N+7BBTpyT7PK}>I5ECe{Pb{!>XX;nWCn_WY9wJU&5ayQv*p}`1sdeJ%=?Zk;4cqWzq8XH>){!`lKxB@3)RwPUb-sX<_LnO0d8mH z6-^k8uwcQeLDMUXJ2WC*{F4y5{}_og(NT!+5mt0z{Y)WfNJIPw9e4DyLQsDj$zRq@ z-v<=sy$1Rr%%1k9+{!OqL(v6=4Tju563ZBR zcrQbmeI-_G@n|+ZslgiIX8y)3;-D>8S?JC_0?UatD>*{hl=L!O+aM1cE9Z!0Q_|GJ z96wWxt~y0 zT6o%hyq!-fs?2U$sHEw`a9q;7f_vPV0kyd2+{}P_T?@#H8L%v-FFitA^=0E$wL7%5 zj}=bD(j&Myg=}iu{ixMw0m9@^@`j;~q7=o>&mmAyrO<9snE`x)_2(oJ;I8Ap@3J=MUjBo)`(4xHngD2`{#>@&@DOrLho6bbS=nqRe8bZSqs;9yw zNw4kr#y+wIy4qOH2Su@CGsCl0xizMKpoKdDZv^Q7>breBJV45Hh}OXx6}RY+6A(O-c+0hg67A8uparQvzAiYdPp(jM(1)^Ftb#S{%H; zf!X$#OxW|MjR|S00eQ~gI_HNi=fIHox;==RYw}T6HYRwqkAqGaWpRZN$lM14iO^(b zua7nKpLm4|o#7JNsQSLmGRP&1**)w&GKACT_9ldyonp)vF~(xIxRB8<7f&S?u+N>% z)9>#SM{(;=jgpmr?~zJq8ezQ1z5LRJPP+)(t>;AL6DDKf)X(7iOE)QyE;ax{*VZLA zfL!wBQPn9(h!h$QG3P?V@hx2_I3Qd~4In4_9d^ZJTeEn=WL;QBkLMVaunOu;0hPEY zn_cx_-H}TLhwAo=Lk#<8PeE3uwhoA47Q&d6f9a`|4^Ay0hr7-yM`V?Bqt6>sT>{2) zSEk_CJy&9mrBJ;a6^`)eXU&|8Pmr%ZCNEM^rXY3WimeDl(EZo=_^`bqr`CRAA03cP zkHLy=Svo|o0P178g3nVDD?a0RK*GZT^DGvj@ZdJsLOUrqSrW{MZ~65wlV2 zl^Niekg3RH@=v|45R18K;X+4oXA?u#HW1c}K_?2`%4PHts6?dx1_#N_^oJuuiGOPc zPeCdeug4kh2_VN#!9m(&|1qfAkvp+Pf_f4wzFDK zr@)xxSwDLvE*$<90)@$sFPBsNJUYzn43hwJmREw`?|?Lhken-_ofUNbu0Jrax`g1B zNt-^BNt-!BVZ8cQZV8Px&@7eotjz_vwe#d#DEd}@BQ((EaxStqmw=i)Lvp!f)UmV# zs+8U_Ae*i{vkf$ITuGU0sx~^#%C*>YFRl>4V?04XV(CuKd}F7>o9KgM&9N^_3&4uZ7x54m9`ml97{fuUM>g!`#BP6n=zoY&7^sT zC+$XUj?me-1(5A&n?Xm~W{xmzGij!6ChcjP0xy*=85EVeAU$Vu`GyRyM2;{u>!u9^ zJZMkNT0)re)U2eLvzfH#Z05)jh9#jJ-SAG@b2f8CFuy@F#Up9Y*~EzDmPXDd7WuiK zv5$(}#H!9_k+Zp6pJC3XgOz&DCQvJ_eA#n0*V=)yU?7#k)%59KE^b5XUYDM3sJ}vO zb-mpYRa3JEwy@XD*%iL+{RvPdK3onN_Pc(JWI!iI6w%oNVfBcPBW|Yg<;Z9r(TQo* zp0i?IE#kASrDOU5&SE@EJMjpqTpJbTBupUooqPy}=RArs+*MN) zpwP0X@W2g#x+&KcUO#KMwYTrLFHV1YO0Duddk|B&IYoTTk9suw)148rwpxW1tM0o(5P7gqi zmp- zhxrew=)P%g?e*)j?PJ=)`nS^Cb6vsaCh-H!>m}XzhnUO^)|WKMY&ZRbbjx1@Zunze z+vT^$)0Q%GX!wWtlHng5F2g^BSs4DO3pGH7KZ+yi!lL0H=YSjjC@-#8)aMZ5S9U*2 zi-$a5e)3dGej5H*gsBY!!`~MvE&q@dviw7m$npoH*f)gbf80`}=?`W#XQWJjhe1r! z|7<3)x$PgvtqY1Rn3Ayl!QYl-E%W~fZ7ZY~89uFlocS&wr(HmmK-T}K%J7>op#qH) z`~1z3u(4iF8KKpFj)eAAQDHX9KSx}P%e#J#Gz-ezBb{hX&$Ko(Uhi!5QK@_<6wV|X z39>Z}0CXyV#7gvcYcm**+I2fM-Vx>HjY<4L^!u~&_)W}2;f2*9SagHZvk2W}*AoDO z)kqNwRUO;bgfq$|8f`H$k)eD3T!n(Vj?+|KAn0v{lWgN`h zu@PTrtm0PML>J1Wph_JcARyW--9Et&#Yq?4DK~Q@xXVt_QMMJBcWuq~{FEtfC5W>{dfubb+LP!qhE2qV$8kklzfu{d%Im7Qfh8?D zS~~q*wJNBm@!~%euT-pKxXgn9q*L*jfdy`bwuTVxWQb4Z0D-;|KQ4MZN}5J2J^afN zpA-eRU$QW+$H`4l?Q>l*d!*R&myaY&caX%@bq9N8KpIL>a_?QT5vIThleSO+)fH( zY-ue{CsW1TRSVf>@7!Dc-ePs)kaM&UbFN8dH-S-R9qGF6g~p` z*G`FHGhMS_KIMZK(gyfnTp?7$c*0a@BY$IhOjk~GovgC(jHBx3XDpT!`*$uu6-qT) zDmu%Fa<2BNjD4V~{@fQ-NUGrZB2_g;B31Po8KLWvUTzRn6|9(1mLp76y=Vm;3uC5{ zs(Otmh8XnmeEcU8a_;MyR%%SWYRIOGR;sG~>%(P#jp&}B^-Kx%{81l}cuQI@UDvNW zF(wB*)+(~93`wLi6JvmhiAj>Rf>e&G4eS*o_C+TQ4};w)nJf9yMS;$Ey_R)abMf#l zS?y%7JUgVj-LRMm&Q5TExanCFWDq#+jTKGHr;`%@=n0#YhY-}rx$Z0K zuYHqExmq%7-;trDWp>kmmRUc^wc-%78#Lkxs`iMfoKb=*^SNJV7;=mIq~?-yF#sTb%+E`96}GU@KKsofuH{FJn1AuqG{r^!B|y1e;nCIq9>ixY2(C5 z7&*9SrrA?bI@8mtvER5%68lwcBN;7isOT{0CM+#CbMRf|zQRA;f1|71GR&OTr*@GE z!-jTOiR5Mz$>nrAr}Y*Kj@9gpvALZCnqMh9rwIUAc24lK?3|?C&WVxaLZ8c@BgxI5 z`$U^(RZXCZrE)~IQSV#rU*jLN7e;-52694U%uA*6A}@@J=X@XVx~Ol@;QIpUnDxer ztQnSmMvx6`|7mG9^)6M$18atVe4*03bi^>MA$K$PU4+%%WqYV4`30p3a)$dlXb-H# zNX|Wqug>`ANUT^#!R-1RVVR!dXz!aGD#t$t@|HO5evIT#`&~aqBCwVt46MDg@+fP< z0&6c_lrOJ<#yira$g(oqra?$Mxco-6BdZE?ODjwJT;< zFFL}hpyzB&DLT+2l5_d(XD@uJ=mTY9=Eg$!lMXq;CsGat=vG z`s5ihl9fiSTXx2X%Sv?9vgpH)fsmfxo?_C|$3l9>MIkKXK|e-9ettfM?~FQvOQ-sK zjd;!TH9~ByS!AlR=-Fsf620iTqAsOpVPQq}LR0QM#!;to?(F(^WXXu4xrUMf52|1( zP%NMmuP0gSkSi>f}$Roh+MNTs*G-&~ATq9Ne zkDR8%D`>$(*g$t0pS9$V*8Soj=TPyNV?!7RUfuvODAhi8sUPb|C;9gW}KF>QmNok+2wPu$!=$@k+ST3YRXA z?yQBb0AWMC16{I$?#>AV>s+#;3cSMWiQbVN@(ABD>j~hj^Fa$6B1d9deUp?DpIeQW zjulx!e8S&6Vx%Is`{|^iWlrQv9d?M|mPXF=P{`)}#ffm3J%AWdNSS^rJM+-Bg*0pP zwlgIZS=gp~JSG~el@}Q8Tw*0C5d4KZbZUPAsHz*S_+N1c#nf&>(15nsB%`9EkV*9Q zsG|_uf1*sn{I$>z(!KF`C(H-5pfz8@g5*^qZ_8Yi0f z*~G0!j?Ra^FO)GcEWzEd9`haH6?rVJhwUKn5nuzWi`wzs74-$CasueiZYcC70gr3p z@9NZ4x#~ePreil~gdWsC9C_O32rEd4tCcSy*KoX~*GpEUj9a}clTq_KnXYQ{KGFmEk^A8nc)E`UBYlr*%J`mR+l?9_KrCDYS}vc=8xMZ03LbBHp*D)RcN z&HBus7GNspwi%aNl{nI{u&cnd7wUmAt%6LcrQ6`E?Dcq(aOjOB=81@QzX&E#)5N=dwh(n;bi-Q($-@6uDo7AzM%oG9I32|kZUOx60z z%FlN$**07lL=`0uC*?27NqYJ-wS1RD(l*XcBcP&2Vcmy-HijJA&VWis2_B9!>T}@F zHNZF%NP$9NGJ|BLWztr7v!pyqf4FE#_ZTpjcU=;@ei|h0^OYlPz-J+)t2Ed=0` z1>DAvQW6++HHpU-4m>nbL*rl>60~R*S5u3fCkvp=emGMAMgDE5>}f5h8vprq{(X;y{b<*c&_&Mtz8gkPWlQ|@ie5z0<%Z?hH zOsl9`IoUx+xHCtJ?$8rh>XX00oJ+eyZ^6iaY6DC(j_;5af5|N6hQ>@Nhc@Oay2RLQ z-p-p)4`j8YqIjpBe~G!c;wY2CpWx?Q{>C|qp$@T?hiRD%=4=&kxyE<|b0*G@Gp5?W zBoLy=DLu|58a4pQ$vHcc=)Ncl*1kSdeSTeDx(KStuN?@#_OI!M_q zZC@Rvd?Y(a*-y9fmHndrF%oxufAW9RLCQ)D0HRX|zxmfH-C#DY^#-dhjx~w_<`TND z;nk6$_ZYBK>uiUBOmASLR6{fLwo@;y=9Ner?1s8jEj)s3VM7Q)Kd@zugU~?1X?E!u z?c@~z{v10ViOgQ)x%W0GLB0FO`<6(+LfS4k<7HX%EhN1vPo5Y7XpA+cc()$vpa4|! za(BFwXm*VlH7`JUxj}6J5#mc-9}4=c8(?nC3UF=EM8#)q6l?Vr^Qss4{h#k6e?CXf z$35>xy2(wA@)|KuYSK9V)=gKUa9kti=(%Xi_`m3>hD$kOuA+;!s(}yMax8KLP`1#0 z(9n4iCFJ`E9Mr3Pj#xp)MH?eJ4E@UlOQknCV)@P&-3+HG>8etW9I;}>r0XWW|6?vU zqH@ z3cX1=P{Fexx&O3dlOAf*mLrA;dC^u1lr$&*_Yb)M!Gnb6$0Q1N14Km(pzrqf_DC;j zm=Wmy(hZ%B+m!9%(7dIf)iF38i3x_Y)D5o6yTcfpST3%mMB9>eD@sC2bVHFPLL=B` zFh;Pk@nvj!hpyQsT-s!hF&96SCf+dSk}m4G6j!{bRBJPz02CAyci=aySQ6r3^A64* zEIoUs-ZEq+j#6ob$Sw5E#S?H(ca}AMI zZ86X%N+edVTgRaI`>R42o{?@>C#vfQkRxxBoI(=^1kU{NboLi2`T-Q684Dh3t!Kz_ zV}B(}9?OwTracdRPr=nlxnK`4?Sg}|=yOx3-w(Uq6hx6sAGk(3+ZNz9+=cF{J^F&= z@>{2zYFmW|lRAmmR$*_FLUctUXFc6Ahm8Zb`sNq}W;^Um!Y(-jxY?b{WHtS(=DDXGYQNGU*zxmeH z@ObUJpoHlVz#YrLMNH^FmA!rJyQ-PdId`OgvujbkuV~gj+K(P<`||8K+;9hSlM7`b z3M0^+i7YeK?@9FgF6v|9BiQJ8tIE;G80}wPAbk_m${!3OY`P&8Q|5NCiWJSB%-kmj(4@z)S zB6KEk8=s(fTnJ$rQO^|kqTw`|O)S-H6 z7@L?$g=587nLRS>*jZvML;QG040i3ViQ+uG@h-ONg=kGOwk|%cK z@evAmqg&?zV687uVnJ>osF~F%G{Q&XE0Alqgd}QBAYx7Y`%&FAbtYLm48%amf=4}0 ziWGYSIH)U%EA|CR>Px34;2MyW{Oq7{$7B^`T!C!Kay^0VulzTEvscSn*Gowv;kCEX zmh$hy0C)JAa(MK>iBK2i$7Ht*;<{Fe-U4v|X;ZD+1{b?;EA_kRM^ZFKxLQ~n_VoD2 z$UFI;Bu~GjJDchRJ%u2VBS@4=Qp{g!;*qi_G)Fpn+5~MT(nT+^VvcO~9iakq*w)90 z`gjMCwkfVS^5=8Jx->Xl4%y9ml%(mI1CzqXNi#%~Y=WLuLmHFfr+i(sZTBE;e(vkJ zyOT7t^`aX?Og2I#(MJ9lAH*u`TAYZ)W_a2@1ly z1RnqeYx1?961^~tv(&Zg5IsjTQHr#gkQCQZMR8vUg&(36PS7s(wcYgIsz8pB+*6-Y zlA_bHURPMH=p!>M!z&y}$fTvpVs4&Nt#y)-Y?uLPqmfFHddQf{!@dzbZ$;w{c6iAv z*w4jPv!we_QMivtbOO%4G)dndBeBIS-{E|Y5XBm}s8c<1o}Xl1KbAC?A0zp@cFQM; zWV*R8vfs^d++MWiIX3yUYJaomhFk2`p281RgxV)KX0&52U zGhyPjfG>T_A0`@?_d-lqzoIwlr9lts;luYbvc_$n+7Ga)jEKR*d6@6UuJw^_E-&i{ zacBu}h^k#CjO`Gh{|H!| zpmE2m4S;#_ie^h3BvpX>2AjIP0t$zI0&lOQQ*U4lti$wq)Ik!38FmIdoO?XNdCL8jAerdB0%|FYIL15j>{Q`2z4`nMJbd`%Ics;II48X+` z6xOmxW`zsfZEi0P}cBJ>HU5!o3k%AQ)c2-W; zV_1vuLYh6!P8aUK#|^bnyN|_!qpf`mdwh?ys(7`RcTg^f)yL(hQcV&9R zbhK?R(>rN5y<;Tw8nx5-$B0btB#RcoX`0?iyXl=HW_kx%{ID@#qs#Qp5t`mfPxW$f z+D-2qq3|@Ho_vsul!^`moSj!Le!d1wUlA$m+Z>Iu_Gy0S2<`8rd7vfj7WiQAp|HS{ zmQ^d#E$|#L^EpXc;7Pj$K3w+;3w*ftr$@Nz=S(UNOA8#`UiM{ygGr0rs>3uC%A_>G z2XvJT1i!SUJLW{bI!$_RZQm3%mZ1qgP@41=_BDE7STBvRz}0jjuVB-Ou)x*x9J3L2?s(CVC$*cmjMlKLJrLM|51RYnhx zd1cMnB4{Lp>nm!6%qc#@qDE88=uxA&K0-#8n0>wCsxqA!F+y6m9k&rNvi$R}2pGj1 zD_|td?<-(5b?&%t1WC0=o(}_1_j!we5fb#reMM0~PXVL($axw8BekswePgh5Km?3} zj(|~&C}1?$4k-dg^C|5476BuxT%JXXyHuwq{#R~dQR1Z$r zX@n&&(j3&YsTQ6(3K)S&=H=y7*QYCBWCbw_K0LQmY>lP(RwtVFSd_ffbsZ1dKlnEhqRUQo zYdKSM(u{t3>^!@phe8HkT!zURTU9vnA3s44HeLcE1|Zb#OXf=!&3b-DF$tL;sz#eJ z5sw7O6hP|I=Dnt~xLepq)GgxD$=0JdbBW|4csDF=W&A>xpk2Rl9lp*c8b~4bwU$F{^cZ0o;s&5leHd;_TE{iAA3eqH(um11 zvzr|o-Smk~(lnVkc`1!HY`{k(kV8EZp^nwnc7aRdS z(GaW2=+?r8E-5>1bUFN zU67s{6BndsspC75p1SM?)Jxj2UT^~JebWmD_IwKj*25k#6C@1;v2=m-J{OKf$VfrDMge;5x(7`rgP~v1`M)3&^tJxr zwCkGW?7{glYR_F1zxoj;C;!y3b}!)ITdj|4Cg)2RPV0m``cv&<c&LsqOM6jibMk9?^K1930|oYk6@=xPNjGZ)Y)7ayUOT>8T#kPRk1^95xaG&2Xqi z*b3d%cpy2GMf^c8Hc<{*QD5V6`&6SMXz9LE5CL?!^7!=Od z0z19fTUvsn!kQvVdeK5_A&zHJ>R_R8Oqmv%?R=7+zwi1@$*{NbK(KznRS^q>yyLb# z(-m7}x3c)w6WfE^v8Po1gH3oTXID#wU3f|Vsn0-3`PHtyGVIHS3Yqll+dPbX=z+LE zdO}7%G)Yt-g|6|B;krn#8QLmNeL|nfFr~g@;X`UffOxyXRVJ-Ys#G4Sd{??`aNHG} z!BmW6ia0plc4#U{q)8-w=&vYvoNDu7S6ORlZ8+_CYsO!GK1Q9&&1x-sbwGh8H=FwP zsay4KdGuxNmfiYOBJE2t=H(KKt`UBYU{_pA$7yQqb(sN)qYSkU_rGcVI$Bj9JQr); zi(KNVgRc-@!BP|Nr4z(Q+tN;JRN<0pZ*%lP(t=*e!Dtjy&isMN$)3J};QB3X5ZMfR zBG$wH=oHs9huawQLjJIC{hgIl)^*+@a-Gc_E-$Ot(YJmwl}lsFuB@`Kjuv+#Rwr#c zir*=&(07!F;2%2jwn7rzX5I9(?kYn=HdX>Q*vZ7Dk70+DPkI`E{!0nw(R@nyT596_ zu?N`9*ix?RQAgou%Gv3RG|&sS%I#B+I;IN?pSOY-jv+$Ua&QQ9eLF8(mf6` zraJwu>IPfO%~_8+tRvlsqYi6{))X$`Xab#W#Cr`p1B-`*%an&5);qY>!wzpZ>`rh# zG@W4U2jQ^PyVl-;KG=AfX&sK-V(AjvJ&K+=wmS;n(h0VCA-kS-Si_Q@ryW*XzEU)k zc7>cAI>FWn{^V(g{o++mJ8Ya$&(jX;+uHC{?VYC`CY38sJG>8mI>8}$ zGMLuopcU(fwYqn;k7((1-{p$d!*j4Pz3qu~^wIqbuJnSvm$7@nCK4V?rkX@!){(~@ zCS-Q1u+@oA$7}8cTZd?qeLBI`hWAcG7o_W9XSl!nT_;#ezYu?Sfo+47a~AKY>^`u! z`c5C%Hld%cH_773;|^;Ta_Vu1H4EvZUeTFZXil*8-&pmyBR`@31cdpD;|}}gqaJry zUy3`AJ4{MSQnycENGI6z-^}BV)Q=8FeD&N3{=Rl}4V!>*dcna#5Yg0$V`pNDLTiq6 z&_kWGl0%r9G<((VE20e4C&7^P1wGjGC+O*Y>Vuo?C-WGMb>a5|gF1g+=RS1OX@9KCsvCI?9hz9+-*T9TZLlJvz{Nya(VJ!=vihq3MO zyk8sn)db2gi6@j9bY$Ef6?-vx<)w#`S}bA0?%+9w(DqAbX$A04_wC?$9<8%WZvg&| zm{5lGURo7uq0#!SBS*giai(7B#=w<#Yj`HR-TE=!ova zyVNdc`akQoIqnlRxQJ1W+sgfm?}~KXmc@cEeSbJ* z1LL7HK@oRc%AklVm`Lou(AlZ?j-18Teb?)$kS=>G)6)8@bKcJ#NsFy>CQ$fpmKwZ& zDQU4G$YgNclNMX2GE>f?ku!4^3w?Rt`t$AJ_=T!oKlGi$oW(*?r6z60tI*0>EF4qe zK?)0i?lotzaM&?9X~rUw_UKh|Xo*03-Ly?Ea5}76KlArTXt*#;2a9CRqLH4fcb5M^ z&z!|VQ|%|MoJHfT%vmh7fuJDW(NBiyw0~e$ZR?!Kuh^=skwpiHz4LG4 zj^ig&+(fW+{RD8aX7hBslt%oC>f{tii za6%zLeSK6kCnv3pbKJ@xE#oOxhE4UVmD!InsAOjLQO&;0%w9EF$nH>fuA3QOaew=L z2XvL0Sq~crxFo&q^SFxxO^jbBOOXj4n? zQJ*=_X9`D~Yt|GF>#EH=7`$Q^?Gn41Y)%-lD|O9|*cCd(e}t~ke14u9x|(c2>7lFn zOeJVBbT!$Hvc49_7UV;6q(lU-)UCb*uO=H*M(`@0TEQzMfIoK)Ud;d%L+!|?jwu9CXzj%D}Dx-)PEkuBL9CXs80scM$IuTl~Qu3YFmaD__Jmf8BYP8r8C30rd0 zbir1!qvBTcRbo*<(f#9&5GuPZo|?BmQTF=G-P>%pb|Pm8Cqd)CriF zVDh5CRni{03QmNsz9|GwqmcARq&r@iF|>)w(^*CrSi*dQ8^s^|Wd})ekm|pE}BhaYR!3POlAjOdTov6|>7Y>KEpv zUv%?{DuOY}Q;i`5O#8V;BjgGDiRA88PS}vz{fzL^R#!+oytE}f;BFddQ#Eqal6E5+ zoUo#+UC}@5lOs1RNxErC4-GGH+TFC|n41=)L?8L%gw^h*C5LWW(sa|3b~i0KM3|P7 ze$q_~I@~lADy*6n`oXzv^+d~4Tipxv+#yH~J+-9isU_{6nq}j!^wg5JZ6Bn2YRRx| zo+LfBq}}BJXO8M}Kup>wKS3c1L6wlD(*Z&3BfSm?>bleGSgwk~>rhwu@H#Mlp?Yel z@o*>k(ZmPY8#*26rGJV`p?=N99xaEweg!Ahgwvs3*2U>iTlo};v!r3^bRdzP-kUoe z>$#~n}6~v(d@lc z&0r@E5Xa4Ka@uAMMIKWbAh0Q@u&~ujaXeN~7n1UfaA1(45{u^zh8qeZW~*16NVPZm zR!_xvv2!agfq&xMOEO@>XJ3@!do%*+wA-Z!Cge1)G~r7?Bv#GCInC=vOkgHIKbI+K zF9InXJAcpHG0yxcBFA0}dLVo%(-=&AAc&Jo_Q zP2zyYG~1pvU({YgmF3Dw#A}xWNQmnQ(msTOq<#TK%dv%P8zrEc!t$kpeJrSvc~^+k?+rMqY_K;Cix3SpAxYCmxab`i|`j!?Jw*fBc9)Rw9ao#acF z>Lst5tY`AI!{gwtoe}bTS}t6;DEpbLuh0b><0eM_370Rfi+veSA>;uyzSI!XzkAYJ zCw)tD2zVf%*PSlp76ya-@GU}p5fY`4%gc0S#vDO=3$I$F4}(qP?J^KG2ur|peY?X; zKpB8JINcrLr`kfck5J+fNI|6bY<>%?PO`4i@u{?l?Bh{e>@D>sWwI9~uBl#l{tk6@ zX`dpq7cy(_z;56#{g`g?i3qQZ-ujCdMOHSKisJOCVurTFgY?V4KZh+Ry2sz_j%|PVZ*q{Z-Qb!eXIxx_pc{5np@&9$B*!dL zp$~i5Gr#Me8k?F7i*P1s^C**?8UzvyQ}G}tZ~6EJvW4bDk2U zdLPbO;0|jH_Mp?cHPIb5HT6OG+1FlAxvlB$`xXzbM^C!J_qKlE7uznNdGW)J;TP2; zR&Lo9h7z%~@F=c}sU4uzB^`-4b_H8iTsQ6Ly=>&zOWQO{r*Q|Y`l(mg!x#D(*wruo zVPAC<_hs$SFP!k+ALP`(vg=xK_$ko*yV)>YTPTEB@r%~1cd%v^&+r6UACfD3qk?RI z(A^e9v@L`+q=*Zy#qPm;hL@&46yor5*fB7~;WY%-wH8h)J{CV+7qrZe+ilENe*A9T z^+0nUwoSwiaq*ta`!V@?fY327bB;<|2?_k`KYmB;$#3=qL7)9)4~_zgGlOHD=1o8v zOOd@-{nZ{7t7EL3&9dpt8@kkF7`^&!3Xb}sUwybZ9{L1$B-+R_L?{A1+DA8b$WmG*Wi+<+3_`q6MQTKrUabM zK@Rp5qpKfiy!+7p^0n#Oes_yW7>9Qtue@GhmW`z|*Y3{5d`%#N`rc0iW`MNOX6u>VC)^r$Q2!$L68 zU=6N^4Jz49ug|{wkj_nGAlr?F!o%&sQ7Ol|HDNJK9-f;D%6`eFJUtr1vFS&mrfs%D z-`?XfIPKDW3jP8rY;2F|Z{QQ%x`PjaX7}1kr-ccP%?C5io{e}-)2lR^F%kks(*ERg zspa|cg?i|=K_8hy{x;sKcr==A|z8Y&3;c86WiU?(4y!g2CipU$RP%k-CE9B%M3<=thpMJv3?qrNOX|1`F_Vqt*V9V2> zhcHCY4jyhcW|yf?vYD0$@}d{!3~aoI{o%!+R- z-9vF?%EN6HF@GzE@t#}5W+07Er?$PMrng2FSYsml7lVcU(v?TZLwbAM>XC$fdZ#-P z;~?Zr*uHk4rgu~4?O5)c{b@kc=veGXq?s`$EyV>Fdx^ylIOvT(;YQvc;v!~=hjf#l zui@s_U(}T+76Pabpnz)0mkM=`W8`82CLkQ(i=A`}JtWShaeMj&DDtQL4Lq%sqpNU~ zXWqXO6d?3B@;xrZS*qd!A~A__w6pd2S}Ga3KRH)NIzKVO)^LvdlA&8Zy+yh%ui%+f z{DRxM{2LnQfu}IpXj5iHi!Q0cYpm_&)^O_)W~Nx;{qH9Q7nPyc?Hk5K`?~ZUCHfb; ztbE%XoGOM%(okfH9-G`D-)AUUG_Wu9h{7b;^F)s~F!@UKh$>0ADvlm~ghir99~R;0 z5z}xCS_nP*^qWMFsMRxz?)pMAoE$wOMqtP=&?Aa7O>6@_qGsyui5`7WhNDM}!7yhn z&||#2&||EPz#--hbCQs6RLm@XTD{^S5)*zz<=DLne)KUCjvrBMMp#Vz=tCtEKsFB0 za{OrJoe3YC`oSlBY<*G#2tKyXb}9}ZlXj34oB)f>m2u$+rV2m$V+cO_Lk4=I$2KK?M1AOWCw{~{W3wK@k3k21 z436-l|AOO3{~L)P{UL-O{Sh5M`u0owcnc;we#9~uxD$Rv@u4B8#6b^}&>cTog=2}S zG`DC0Ao2MOwfYtJqZkSSBzDSB5RC}Z_l84A$)F=h7vn^b-#A~DLj>6ZQ4&HX?HDpR z0+FDXmS%j=4kD97JpVec*;5%?p(>x7_kUo;gkyS&c>|L=}6C7}K)&v(E zy)^-f#CIszzE)XrcfW=ko=ZMqn5K*U<>Cs!p85;dB~ThLRi-|GtowuxbY=Jp6qeBq zuq*}Y7!ov9Q^4(W6j%`;KWuXxfIa9Ix=0*hNdE=Lkp4FkLxvg`h74#R3>g5%F{CRm z$B=<}gdu&Y65nAl?~EHHQV>GK=a`8Yi@M7z6c6!VaC?`319g9QV#wwmkuao-Rbog8 zo<&rMAzdyVL%QT9h78#jh78#khWxfWgdx$7;FpDKI(LjSXt6+Yil!wCH_i9J_o0bI z;psj3Tqf<$9g|#5IpB<-^Ti%61zJ1Ye0A)brlA+UG+je15Omb6lxqga$8vWE2b-tQ zDA#>v(6~eG?&FHKB5;WhgaXihLMU*D1{wh++2{@U`m*&lPN=i79lV^a2`-HQ)6jrM zo$x0Z=k_5wLJvNWsJs`l9P4{%1Q7rUe%VJT0a$I#U}8$V1FLxI#b3gEIgBE}@9wN% zbjslvC`P6`2iEx7k+#*oIC4{0G|pauE{DvwKurM;_s}P21g~j$B}5Zj*J+Cp@&+*) zv!9yg@kq1S51Iz;K8BDhnyXnFE6>b}N8Wq!=5*)Y`Ih^pJSUT1-iD-Fh^C!nz z0ruG6m_D_UBSrh{e9wOS*qOCq^ee8sK@2K^ukTvH&OzeIo6Sx9 zOU~8fFWYphA^Tx-nL5*H@#Kp`dKw$m0-M@ws>W$|Iv%tYws4Uj7v5H8Kg$)DfHeTfi;34ZR?G*MA_+4RxiL79ztZE`dLuT7X89m9*FU}?rLkGVoaBBU;I z#WMZ*v2YqSw3k;v_sdJP9u}_dwF_nkPpSvVyiFVWWB6s-y72k^BWsRGzdB zrVED|PhA5u9GeCm@D_EuCjswQ;rKm4>o;Xn%3lo*E9a8db88?}ksRmvy9Z4ihgxwwlpltpHrWtP9EPJh z*>r&p!!h2;fVW%=l=XYqo~Pjho?4z=-zZnMhmyt`KXe+J37mR?fLhROT9~fi;Cvh% zeq-)i?;qq7D%GwgBTmAHhS#{$hCg7wrZhX+9kdp7c|xr#Ug56f{rf|KVhMID7jWd2 z%fSeJk#b-q)+q*C!B;vW@!9+!JiaW?!SlmQK|nA@JqNd8Weg;;S-TG}(?NKlbr2q$ zIQIUoK{SugpEclIa)!o2(EJI{4ar#IIg~(IAWeAA@)4iJb3U{w@f`9G_eeZvg(W-j zoYkT1ihHbfr2y=y5g?9(=DRLuS3HMlLu;2S`qCXMriS(k=TN&gXTmv5@v<1C;N0Yd zkVJDnY%I{+Tpp~}P@%6l(9L-^{Sf3Tm;UVfVYdo~j9Nx;4 z9lB;LO&z=v&G{52$7->1f#xhTvs^JWkkR2B$`3h6-r?NPls|`a$YG?&Eag0s4mcMK z!8s&Bn&J|i!w)iu9aH6wXR|b=Nq(lk4BtWl=ODLjB%Fg-?wxSX5=`^x&V-C&=Wq@+ zIXx49Y^hSQ+1lPZHPr>0a^h&timY2ja}pv4bC@M}6{7@!xYGidi0A}CU=A|oN0U}M zrU6z7=H_D8E(dc~eB2YvB`q))i~w`rl!Bo-fARoxKIP8AoMv%3mP3)uJu8;elsku6 zKGV*D8dmqJnP04-+2sn2rgA7ZU9CHkix233;(BCYSIm{OSVABQ=4OOW?(k+yJwQMUk;x$Uy3gCnS`1x_%9DfTzC;MAI4XIqCkw1l_StR+ltorohaXw#5@2XK5X zZQ0kUw&dPu?Nv<+D$H8>ca3dv%Ys2F=fkuhJ=YGrWLmaHp1Em3F_#@Pgl(}xtGn11 zjLqRsaKCR&A&_m^8U|KgYUs$!pK_Ei!PXZ~!-D!UGtx3F@yIePJ{=|vi>BAOUD<$X zcUlc!wJNQyKosF>!Lrdh#=ElP@Jq=^o*5)7FYlxL2N)y7P& zG%Gg6&20)wy3a_PqIp_rQc$c(6GD?>rI~3_P)0ebL6M}nJ=vOc=H_DGO^K&&P_{;U z#1)$0<_2Z=CY|X9#YM+03ab9*NsF>M$RG_01jjsP85Ez#`5@fo_tdRW>4b5!=OL}NB-rQ`{Wj7ceV*ki{b;4T;Fd^&~bx-1un4w+;Ly! zpD#|%a(e0A#Xq2aABtpUg0y{bPX*DOvqyP=v?mY{W;fBE_?W7&C)fm*c_Vw` z%24(s7B1|`w`J1^GEG+DM)+G87hR+6f_rgH%?_P=boT87ijZKz5lK9bgGvIl+j(uHSQS(kwGRz|a<`{mp$`l-hab>@ zE&WN{py@8ICQ%1E(pI2?g~=|%ht#0|K`<~zMMJM}dSJ6cxPkEA*fwYAqfCAUoqUu54lk;WoZtZ;MD5*UqCr#&+t}rwuUkoUJhIxM?mdv?Iu3vGvCZWNw;T)Rn=8+? zU5|!&m7djmhbD#?Ypb}fZbRGAmAf{=hqC9H+}VbmB~*Wdp+nNI!r-~s(bzr*)u4|u z^caKn31L8>HX{j}L3SM<)ANG}*GUsUueh_y1kS5oi zfQ#M9KmXYvsCLJ{V@%Y#^Y#ZPe4}b9%%I~BKA1Z-by{k8*{4*=PT1A#1Ex%!r?D{< z76chyPiwM|O+e~tJVpT;g$#f`et7Z5sdQoZ>7ZeZnw5O`2e^j(u{t+x zKk2byZrWWuHlMy%poHcI#udKj{TI&l%_%%Mbv-E-$B}{D%CnW%yKkQ>xcn^NCXSr7 zv=Gu8=qcELxi4=w3_?2Fr)TwmYc{wr=p~!&oZMrd+ET;aE*)Ruv8k~ zPfltT^h5Yy>?;x)ms#5f{ZZRLIeC}nG5&*-f86i-!GS7W-#Ey?G14IF(FjHjj=VM( z>5Sir`D0OiD?OY?pQ$#_H^cI1ybfrapXnbmOwprpsP35fTS+OTaJX&xE-sRxyDKG0 zMTN=n62f*lsQJn962kAlW6c1a7e$46m6s6aFa6*|3E}tO(YU{E-yxFVoFUWZ^L=1} z&_)80!(L2ty8%G=FHfBHaYRxZHt(n>jpfrP^$Ye<yfUhqE!a{8uG#)B^52BRZl{_VR!J*9GST2PJp~|%L-~L%aAVKcs_W$!=D67Kw3Av*RTn$%dq4G^26} z!5_aRGhWoDfs(hUEn8qSmx3vyxZ^rJhShsrOJIL<{1RqHj8HsU?UEE3W3?3ju~}gs z74bgGD=s)n!uB8d)NQ!IE2?cg9}*olpU|c@Zg${uhqGO-bjz-$|!TI_H`km$uk^QI2=~4Fo*ca{~~=j`tXRwuiKu1~ag> z7w-)7*jr4&9SuIT$}Z+D#u9~cwMA^PHDh|3z-TH5()QVAgn@X)(P^;#fKNZmzi?|D zwSwO!DE!F>KB$S({CEW)h^BYEZ$J9AV3$d&>HknOFQLM-jypnrj)qaJqg`nZ^xm%}z9^ zQ0Uq?8Ya7kYCO4fe5@9#oNWA&=87PAz+t66ic5}lyVs+_5|tR}4sr&?FKEszOj_Cfg>$G)rcuJz zB{WARGHY=fT|Z?tam-m0uVTEQ;(j&)tR;GAs9u_xY+zfJ5hB0B=e#kK%9P2SaPZH6 zF}Td70!im3U(5!b4OM}#eH^NA_Kc;l`Gb2D{n1q6>1Q$+9rw%6J8X^|RT%rz1^pro z_HlGhZn1A_QzL?oohByU5W^8_KUd<@{(jF@!C+rH5Eec~zUxfSw{D;-yiU_Ym!G?F=wRiL6`M)Mg2SBDOPqCcSO68-|Lp^yb`7g=%h@$D(Jet&|MUc?s4NZ6QpW1nqyQSrREql z=#b0c2t9!|pH%3||3t#Cu8CHTQBjh>y<+&SOK&B>!&~lxQGFF0rusT1h{Q_HgsHu& z;9MXyR7Aj3E4_H?6-PC#{DJA|4DlD{P-!}0D&%DqnA$b_q`bva`LJGd@hr(ceQ5qJIMY}@r89BNw7 za7R!Q4nu0mxp;-6)Rh=kW@Y9!k?G;F&S776_IX;c0 z?>z>r@eu1~10tL0Vy-8HI4`ZbH`2JHt9Hb%&=iBDS6%cdf zIJZPm#h8Yp&{j;pvl?Vgzw0Vvwn(?pR;RNq&K=|MARkA6Lm4ZZ6FXd9l01T_@ZaL4w(01dP z6+63K-3R};@Ck>b_k3#s+S=401090m4rtFTOK8ZWlx4FUM0&D$GH5H~_7~BhtNYZr zK_r)Gwu}}B?ci)!%~W>DSWf-nn3!?rKWiM1D_&$$QkU~-ILSjvBr$|Y$qg^9qnP7cZyuH99XqRt zkwUJQk#l+KSz$~miWPYdG4Atl6v4%A0VpfQ_3IvLjAEslXvmM|ulFxMuzl}%81rDt z#Y?Z6ABf*TJWTkq*;8d|O-#9o%#@dNsX2n3IN598dH5Dnk0Le2mhloMw&^{~4@`)e zr^b^cs-Bt*7gr3`ZPKpT)T8k$54m2+*>Nrj5Dn2gApMEbJ*2U~p=(=%S zDD48PL$-})nd(|Pi71}IXa8{T!lUP?E{2S^Bvcz;EoT4Zq%P};VIz__U@8>&r-~#~so&6v)+HTAH>kYm#k}h>5s^-r9YQA?&7#UcQt+1O**4XqbA~t)s_9EA6On3 zjz2L~3n*uF%^|EpXVgdZgfog6J`9l48C@f?XJg_|dZKH1yEnR`KFrEp(V$Zvog)Wn zX+VuTQ2sa4#afzaVTN+`PP8{BGwsb{(4cry=RZ2$@>lnwYHg#yHn;EJh z98n)EmRFoe_rd+=j^l6rzPjBz9$FfF>W-)tTztL*2A}4c&{DU12RuuPysVOhIo8pI z-PieZJ4mleUh}}jIdNbT3>}#GL=`(QL1rB5Ed9V_YnY=SnC#dAO~VE{8yv-fi4U{z zqX{2$;sMXS4;`40X&-Ol(PJdTvW*IN!PW;W>PGV{;tJ^YQ+{FH(Uph?CVMJc>`yh9 z3gvlVvST0lfyvh7KHoS<^JkGd4@|biHV;fN4aj^s9hiW&b7UQuB<%+#&dIO<>JvU< zx53E+liHN&A6Ga(G}8wDb;WwxjX`ljQKgBxxR)B<%+#$zf=GYnY`DOo9w} zgNmC1c)mV4mo1=|7tm1yZTYHkV3Hgjm?X^ulcfE?1RSRF^1vi%9+(6j2PVnkVMo$a zW1^h)0}~$$l?Nt17%G0lg~z{E==Y+uth71m9`!?Oilc@P| z7#wg~IidGCW^QmSk$zW$<8y#qwZ}U9i+4{kcY}i>ma_Sf%^VgZw9U22M@QkC{h?-kA%!XrUb2I@=C z-w|7~>($Gc+0^ZURm^glmsX2TFSuzBw~o7RPyfifZI9;gr1SS^|Hc(Jd)UM;xVxEu z;!?9yMRT6(QhRc^5Y1A5S0Fwt@3VE9@o2I(IH#b(O1G!d9#&6|h24^596srx*}loK zFhij^hcsxuh27!ju#65TZEkO&Jvtm5cKySP9kp!#!ST*4h0&?(f~L_-T9qM%W3?nk zGebc7ENFF`EgadFpcfTd(2h}1lCcX$N!l<ta%L0sWh_Tn~{E|Hzb4bnFLIb0j*JzZO+^>B423l!>(&0#|yrmB|0WJPMKQ$;O4 z^{s_Ep7E`xX5koOdugT9u$zs&)>BP&yeFUHr5g_cWl)}>=@~S$(y2_E-a=iB zePCfnt2_4TcSI|2(t?li6u%80YkefTp=#qPmiD=`#b!6P>}}c|e4|LCv?ekc+eME& zm$zwGyd%U^Zd-`4Vm^-p(1>|pD=>`2m`7|4b_Oam%d?Y#)=$6Uem{!vjg-E8*bYTJ zo=am{SQ4AICXODgHmjVzTW!{pArI`NB^%1|i>PZpE)b(i8VFo??YsD4% zntn9k-#b(GT_W6mxx|EBmrO+;iI6%K#ib>GOcA))MyW~4H98>uO0mC|#QbMF&Gvli z=)cK{;=RJL>OG^gcn`DOlqR6!J>zWUM*xOC8a}Avy^g_6Qy<7q1UjZ>J*v6r7@6hW zB;Lh)X>W+C5K_Nxb$q04f9a<7rTBjR($4VMa=+SDvMXNF+i&Xjwm2WczgD-(g~y+# zx2W^pAcq7}0@u-5enk+jqp>`X?5udNqdhxQsdOOM(V%^0z`mnFJA2?*MN^?wyq6re zrTv=wGi5S3QM^|;mP=4*E8a`mi}wo0_J+~@grFB%hw_DE#d}G!c(2eZ-ZRch)KqB8 zd;Xwrt(Q{j9BY4Yx~-toR=ihe74I3R3%hOI!6G<2c`USw_X@|3zKp)4270Ts^hn`Y z;a$?yM1|Iop?%l=1m}yg(NFn}?$tmNRu?uE@0mP4I$2qr;%d8(u(e}S!bs3+(k<=9 z;=PxiS{i+TrYN!(?{$oOyR-DJV<_Fo!_|(Vbt6k^Y)4yiM_k}ro!zJA}eY_H$3Fea(p>PpgA>i6xro+{hxC>OZ0F0xzol9m?A659MEjio(L9M73L z^_OMYUeaE+7o5l+={R}6?|*VqpS)V*qYYEPj(6Htm0rKx{{Q5}T__^@CnNv1-}8eL zReObldY}&T#Hxx*%Xa@#N<~MFhFjlWR#ZC(EB<7K9&W&3;d;e=M|j6zAGJw*OCvc;IUhso#6*%)^q@13qam>B+vnXnM^qlfb77D?5wxw)^q@1 zAIR14P(wX;o3&TyaLbsUsg^Pwo}EQ!UZt~e$71m^=m&pe9nHEk8h1$k#rdinI})uN zYv*7j(?%`Vt|QZcKvz96I~u(YoeNypcF-dYK!ANf=FMQs%bueEvJ$c=vQ=jW?r#-+XonG zqi?w_c84bWv8zOfr|f-Uo6(m7@(Q=vN99wQ|C1lNZ%Q75`ixRCzSD7v+~q;FZ663J ziuE^K)EHtldG~V|Nv{i^zq<@0o`2&x#~lMYh$`_0OXn^q8;f@*|Hn@|=+@bfzDpx#8f8(jkOKX~eC*<@d()qb6!*271yA`Pv;*Q>Uym z^jGCrQdq|TfNU?(QFhf-|3CB-r#3L{DBXIp?Cqt;XBk|_Y@vJCE0#JLBz^Yh9Xp&T zD2sM`(wx(ew6ainFkCa*PmIKQ_7G(%X}1EkEP}V+xML_|v(@w}DyOv+VQ*2kGCr=j zYhiuA-LN<^>8L^TW)mi=uOCDkzNt5#5xHv;qo)f8(jud{hUwgmssdGqr!F4kW)_nr zF>>Gt{lys(J@l1806AaOU`rN}I&KOV(v3nkmA8A<9|b0=kF}N6hm0nWN?#*lHU&0> zRW_C6zEsXl;CQdCBU!~iU(OKz5xQBP=O;7wX$TR)>DW7ch2Z?iO;vl?*-68b(&jJ`wa`Pr zJ2Pn8=J96UP8A0jLOqWR4-*lG%V)mqlw<8=(G&KugHvasU?tT=1S$s_# z6Q5t6G}U1R*gj7=il#-)+2)yrnRpKMo5VgrTRcD@peaPt%^u{aioriQvh>JaLEVsr zreveybAJkiMJ{?)JN#le0)ZD)8a3GLry7hp0m1Rz6S?`oi6%||1{dZAn~kN~CNH{ZRZ9BO?$Q|pl|{@&OzXXDOd#Ezn{QHv3Kccj4F z&zDwjWvQ{CJ=mEXhU7bHuy#RisDCQ?8@OXFP0!U8yVVBWFMZUGPr0AAww_S~r>&zw z-wE{ByX<}fe6-@<^{HGega*;u|El$f9Wxbnw#x{4VD{%X@i2SZk+WLs5tGAX6r&Zy z?|4j!NaTKY6hU5Dj`-4QhsYE6Tnf+r>}dCY%6n~3L$Tz~j!MnDRwKTvtz;L$dz72? zOm?yF(`&nojta+d*DEyI+J9l3S`&sl##DZUA-b1V=RqEbm?+<+8nL6`(Pv+qAodky znMO{!Mt&aByDM&j?k99M6ZQ> z_L}8DB$h#NDHbY~ES54G+H}+oo-9X9B@s~4>QkR`#aiJ$;0KmQ?dD(DO<_z^&L%H2 z%Mo8%lXUYf-lxB2z9ztHcFiymJ^H*km7LGZYg*FGh(8{VP9L6L-TPA^JRV3+I6&mHF9+D?Vm^7TPjDllH^s!eMwUY3kafmAq)2k-4Du zW+y%ge?ubVQtBe+$%`h1OrxO1g_J6#)nsm{A&uuQzJh*5ObFq}FcB|R`G5w6@UsRjOE7!4kX6bh%UckuNXc%sWVnWLELc0N1$pTIGHsi9pguyn!wn{ zqw0RH#7mEuLS#DQ@ooUhV0=03yQ~bxj^PoPf_Ci`+S4L}Q#RSBwj@BsP?(;zLaz$N z5SS}5Ww(;DEavMd;5@3cV{98mpI7l4tkf=R0+No{c5)coMqwLED;V6y$R1OX5!^ zZ{;M7JAk9kuM*l$j)%5`!_fBJtlU;)8#6eV?C6nga7tj?s?e0nioo{VO*8I1usyf3 zKD6uRdVcp5B^0UcEJnr+Ym`yQ-Ky4#ZJD381~<&1bSb~0ePF*iypxoNwXu|su7H;Z zA$z2nZ@WXI2_meG&*3RJh~Lc69aQ&I<|pixl>zTG)bV{4)t;`NBC0*x^{a%mr|W9} z0STBQ+L$nt`p|A4wR?tbi>~CUZBKap{)lJKu9gOhXV0GAhrREt{dR24yno6p(kCs1 z&+?=LWFKBb>imkW5`GyHt9V?YTye*9$1x%-Bx)*KabJRtV77BIn4KI3v!`4l1+(Wf zbz0}aY?OA^?2q|qSb(tSx_or4qf>A^A%s^bg(K)}{_JOx_ zIrEHVPgxp|224lM5zC(ERx3+}xaRRzBn%qQ#g1PkmhBoX zW7*JIT_yO`Y9m^r!n{Fgjr;SDdP@~O*76)Bk{z6gTcgbTli}7)foy+s z1+t;zw@BC6i=_h!WKYL(3S?utoY@hNWkX{dc2+DKID;M@gFsf$uY@?pvSGuC66h0R zgqrz`3}pxDk!)uuknIXsfoxcWdq&vGu0OSvZTzcHC-w%hP9V%8lv;}e4p{1jY!VLX>1Vd4OWZedsiiFY*vtrvIVMpo5 zR6`Pa^(YQ8Wc#kxyOb|IRIWrLm9!hF;K4Nh-I#X~L;P|nnK=8>qb4oeLp=)I#+UmL z2@5^r5B2oi{#Fh_14e-C%p30*D!~yTox2L3kYfccU-YG$x(1`|fj#Jxtru{^VJsF+ zWS)nQZZKt2F`|f-J(S#Tg-~spMii~G3k7vArmtKr=s!iYx0~1C5L$q<9*sK+&K~NP z!BCBr&o0sn52jJ7@flH}%Mo3s>N`sGyn`SD)B92DP-cSbJ2JDx4g+HYaPWw&Zt2Hq zH+X;2t>yLaLr?nK7o>_n!5Ui|XpUXsP}f;Wn>5=7*%U>bE}<`syz-c?qr{C-L|O?{ zwC!p}4h*8%;G0|VHJD7pWsn}d@t->)c(`M!A%lz=+V8iM+VAXL$H(Ii1o#Wg!kms) z^yhiJd#@*`B4ON{t-<^uMZK#wd>ZX1a2jUUkte^Rdi)EFsh=>o(NRg!R{&0=hkLvA zqhI(K=Grmrfarr-&1yNGfJnFl*e zfu~+E)dhqpuN^aQvRe&q=$Zg4pnba6&0Ef6&|XZD3=XvGC=TRga5LTZgJ#ivpj}77 z;mBN}ZiSh0%k29Ob))g2b|$xW{!A~&#B!_P$5v`-R;!P-3%T=Sn6vNNsnk}gj77Dz zo%|bq1=2AxrqfSsIh7rS6ltzqM@fMxJE8D&>< z@~$C_Ecs>N6LU766*TT}O&eF-ia}DVVa~>u4Zc1x_$A1+60I zc#Ww_6_e%36D&=(GyS)I`Cz-yjw~a}b&F8Vw^d^#>zS&2RyAibIN0u`CA=JLXLJcd z;dl8QnrqiF8{^8>6)(L4UE0;s!HjaD8mi6of}Z7dD4J>4FVW55QOaT$91R~eR}D$lXT=}H^-rrqr8}lsoI9-srdhC(K_l%3Qo+5&yIEo5aO|CV zisRDeQ3cPqT%BsJ-9Ya6=<%Kd1tE9Ta}4B?6GW?fSVzH0=^kcJIeV(Y=ed4)w9ytp zu|m1cSd^+sv1-ppHv6+aiefve(t1hj=6Ce^SCf;h!R@HL@gXyStk3XfpPr(Cc|{x? zD67_$vcM|fm-Y^BsuO-W>ft0$#!C0pO2(GJ={RUi4&#?kX!oHzrrOnLq@DfMorlja ztz#xB4u9%6E=9@Go$biFl`JWt74dp3#FM88cE_W>3p_Bve(~-}-8RUKRvA3Ic;-=w zA@RO{3Y~|%^ay;*fc>*H!s)K3}y}#JhePpvl||%K7*CEg_z!K)+M%B%(JtNdH;%W zcD5yWh3t{rK%Iv9*3U37cF9<&ps^@RDjZ>6EZfMiuPyWw*~)eWf=r?FO?_RpY&jI1 zdt%am9x;8GmaJiRp*-UiT*uoxhw_bCcB!5@%dY5i?SK#cZb*AvjlF&&FDN;l1vD-f z>z^FY0{Z?tFwMb>yr8_wvw-rKesCfS==<-Ou^RYHYoxJC1~r1wS0)w=Y|^Ldl!4FS z%KgHLMZ+Owp+^FTg0i?|AHNmqqdv@$u~XJFu7%bxzh@y-K&W#dpiKXh*c6yz9U)BwLmW6{=hL2n##@Qu8qHIxs94+rruo zM04-#GT=KrjBTiZxS)NUxQ7ynt^=WF{A;)x(rbpEiWADvWO61#)3NP9sKRJF5XzDc zL+Vl{pnOxd2=xzGS`J24mR;ePLpR`m*>M{C4jAo6yNhe*ugd2bX3Bnfv}xdBR4LMi zYg6skSI!51mSo2DpuNK)51e(EliC44((@}QrTCintXHTahKO!hm3UUO zn8c`6lKoK=u%~K}=k{Y)3H1|$4c0Cq%$R~Ha8?doW#eRqUG547P76)9IT_Y*z;9Q> zf!IQkHkKxX5u|}kXrDc9?uwfjKff9%?DpB?_M32uZDi(?P@t0j9?BN8gcBF`M3jT9Q*vr2ueOfG{waB#xQ&)BunY3Cdml- zl>nw~24>DQnrdlA2PD3D9>M&+bmkP|Fy&p^|L^@j*M+t$eg69Q|NUS8*MI-}rJv_n z@7i7Of3J977cP4L`}6m|g<%_p=T0OgCB3^(tNwierh6Kdrh@Zw4VwNI|05w zWvXHQi-QBu`!SC0`UhuT3z^Dx;n$C6){8urv))d#l&8PR z+1pBFzADG!Hxp3`YtFi@ccjr9eZ@I&@DJ`#-}q%={dudQ`d+5dUiz?Y>at^6yW_D| zTId!0e$)vQ*^Rd3fr%Z}t?%zc12nPg)*z?j0(0_=yl?}uFoVSPw?&uA1$KOG^t*c} zcKL}vh#Q)^s`?|f!49*0=!w~J*I*}COSgJC9CCt0iiu}x7S^+t$uHQMP(8LRn4$eqiR8C=wrQ~21*ov@h1n*K#@+4J!hdUdRS=1Pz%S@ zRnpVkqCzjm9}34j$wHeFHM*;@u3z8Tc(?EJ&nDrOwB(?Pnn$+XHO|*3$8HJw)>1pI z6b$3ARj&=;DYOj`EA;&ReBQA2aa#2H-Gg-7u}Zq5Nn+-%SC|`FXvJ;qgFYuX_G0D? z*io~t%Z1`N4(UwtW zZ`p0_ZbDmMi3tm6&9FH;d)_?sGNofV?Z&a~ru}K&fGIMIEEIYX9|kA)*EfYpEs9dW zJ0$OS8x;!=muT! zSmP%Do4Dgxx@J68)0iPW_e&4{>Zbo|jWEWEVS&FosCI|I#yW5-Q} zUciop-VzXSwi+g%UrAaQpGrzk?8CmbX)6lHZVCDTbQ+EReE5^A`)`o5Ahb!E7!|s+ z{-AIgP2x5;!Peov3(a-X9poIE*`OEAaMJ!MFE)L)S2}irn0LnpmUy~swZ@Q_iQm$? zw@&fw>N{#Z}gZ{un9S~`ekFItnu|_+j6k^ zFKOGBhkdI33g7DNyk^Q`=7+PbfAkg<1{6Hcn;&W$ZSiJ%OJcPCzMplY zs+?Vh=CGBe-Eq`!oBOi2M_uEsR=3cN=iuoLlobUUfS$HnR74={cnQVGg;|Fp9F>2{ne~&=E2!zin0KV)pXv>M|~9 zfyeBDv0kzXcwBahZST!d8xOytG`*t&6yO>@4%~pM?x&S2md)yOD1y&OATn>BW2I#1 zk*1}58z{K2)HouqsJ9^Nt)=)Q0{j^$vH00A- z?YQ2xJI?P^0JdT7o#qAA@w-*?(!=1;8sJ-;^flgZW$@9I(#`LUeB7evwta)tV%jA| z&vBc?1==T}=AN7F`BTk>ZnYD-mp*LDt+yDiTAS($UQU-fx0L;t7UGd%#wM_d5rLvG zf0YQv+8^6SB8sxZ{n%&(ZuU@uMAwq54GwiDZ^8ENEwDomjHKYVy}7NWE8j3mL|It6 z`GLcvfbs$jWFWK)4W`)$_BpBJ4%>RW3Y2=Mg2XG|lrQPecmwHIN2^l60$g<;qBXAx zpzCz)flnQ8@%xEd*!{T1_zOli{3-J=Q8jJ@=d}OFc)~SV{940`?837^eXh-Lp{p_m zhsTn{^}XdkzEZR9^jd>v*aBCJqh&QUyR|icZ~|A2wkaXW=^WmQbk)JTIwu+YgOhj7 zA=&-G$-nM*{oufO?B|nX$D0%5V8=tRb7D`7Tc*Jy0H}IqY=agHt9lhLbVy-|wmTmB zPJRVaVV+9sOGW?(-@1*AGWfg2-*n*!-Tf&p#11HqHn(b6Qug1%nfS&LGkbR4{N>f);W9{x)|I0<>a{SF@+!$r;Ur_uOZIIr^wWr!NsBTRrDKB2$wu+Hyt zpnQz>nf4duO;6fRlqR)Pt?O)y2HLMc+%(PelpxCm#|?LnFb?d}WMn-;4VXtdKOPC% z_93zvc7cuVG|5}oopuc84mUojzw)tv-NXaOCLb5tEvs{&#Q6IUW16xcc<1?HVo*SJ z$^~O^Ytm><)K6`nI&*wg%^ekTo?%JpAE2yne5hg+{;l#%i1MCLrZ2t1vj5?C9(SPR z{O%kf_gylO3NTULe18aw81!f-D&cIH1={NyP07IA8k#`_#LY0;q??J!wc}1Gk7XFW z0u0p7ZF%kQPPc`#$u=}76V<^_YDQb>r%q>@C}wN(SGc_RHYaJ5$4Abgu8@4jFKC`Z zI){+hV%Fw#x5u9n#r22pLA^BZSzc2kpYb&wqnoUn4tM9Y(w6w9Fqnf@lH*U+-2GwsSHHmmEgnRv$GA2l6utw~!3_D}rzsB3pxS z7$W-_gj@akU7}r!xi}GnTQ1|VZ&n*0F}Ovo?3-Ze>!-e1_oR}GE4mH=7~@#)!<%Ox zAvhG9Kdn5}H9tadC};l&!J(AAhTu?0UPExGkpB$9p|re);H=dANuS5*48jE`EG60j z*qp#0oQT3D!;o~6s}dfCLos@d!UgRLCuontC5KVCr0HNJ?QRk{>j?`|XoiC-Ezy4V zw?JIw*gZkh^#Vl!2}(E44?YmDb8KK9Aa~(VAtr4Wx6q5JNyfQmDxaje zDTAgY);pS=MiiQok@RGW#>7bLow8AAeuboc6YkcDBw`aLNB0D+-(;zE{j0&za|NyE z4%!jV{zNo|<}OLvBLm5?6SG2_0!*^YnC~_S!^rs}=gCj<(i*KKleC*v64npU4kI_s zf+utPSVO6o&D=?sYTVHq)jhZ3?wvbLTX7>>=qX!qcSR$#75BJm4E&`#pE0%~I0iW5 ziun;;+P-i2i*|>0PW+8c^ry`WH^}ru1h9g`&+*0I;E|dgV7~MU7)*L9vg2`G6+|gO!nV(YzGaev6H4ZrK9Q2yH;-wLm00|(9J+m=m(n0^tnqHd zqkH<7-O2{Rh+KTh7dFlem&2bNPk5bngR(<-7Cg~Gz!59_2K?#v5o^Gx?OPz&Zg_-= zdH9bi{UmYyb94m23y!Rr9~b~&UMK$Idj~M)I2nnCMzshTGdCtarVrd^tovBUNC(kh zU<{t*>)ZhQbt<(3k^@C_2Tr$Nxb#$d%KQA*{B7(INZ36iAZ8EQ&7DyIAf8#N1HgZo znuP1G&Sg_L4$Cr2P{P+OViGvf`M3amIx?n#PdMwz3ce7taICmvBGBI&V+gB|&&52s z!m+^q#H)ABEryO>m-4nA=H%c5nO<>&wuU01+VN}iTvaV#LVWRcka_}PG?h$soG4sm<8fjVB6lVPA8td>zwwv{j;5donU+CPRj&2xIfeu z{>6rH-WFju(W22{02r#?Mu&35pWR^-6y;kPxpnAakLdKfa~SzZj_v%fAG*N8ZdiBo zRUbPf`OB9v9m_vGPXQ$+wbxegd@}!X;@h?oPRH`yCD0HHoQCfsndLia9$h1B~3cLqnRR1Sx$7;Rp}FzYcf zSzCcviSp3V$FM5Q*U3}%2RjN+6y`JB+g-8F&QX!*6%R>7uTHzd`ovC@{To6;Vi(tK zT}+IbRtGuJI$%e{_$9agqz)0#mn1{X^X!ZJ*U6^8cXZs0W(F-eFU{P=_73BYqd~QaRvtE44z%(xT|UstqfzOJR!}U>7j?MuXzMy$d9<}1u3-4@y(?Zpeg7^w zmyZUvJ79TOR8auSqe-)lSmL>bSROWFDv$;5em@CW9tTxIB(ZvdSupl?l{|(M*pHy) zJguZALk7-b-h@EQakxp)5@dju!MDy+X!>ugaf_^KjxG884v_DXb z3$mjYh~-&{TF`>%zAI{Rv2)ad1~qiJh)Et|$pkGA;cEPQ_lyGrEf4$47SQ4%?T0VqglreTAo?X=^r-?fmoi|8Qm3R0eyNxmY@T&B*!7kH*{7AwHteu6TghzaF1F)b8)fn}Hq1C-4wRfDQw9oJ7 zf8yFS4?-;Q#RIWGHJt*5(f5ZjJt7vUHhYZ_!{;#Xl7PjPqXQPuV^zTNZRMzS(M}_S zReyt#L8xFb1{I_p(@Bp&J#Od}fl8WDn4lv7k{pR%(2Vpv1@ki&ghn~1M2nJUG%0D1 zKs~4b{s=$?Lw7i-AH>Mr^YJHxqlXGw4;^#}&G8gsy?D?PfuKFokQ_!DlD6U6(C0*a3$dqIESHF<|DGQL z@hGu01ma=FxI$0(e0(SmJ>iqvLn-tWBEZlSy27wb%0o{OA%h7DJv}mh9(qdJLr=kp z(9@?5F}<>`epCH8nkyVbbL(PloTE9T8G@PqU8T8&<`!lpGfTtJ+`3p*q zo)KVfp>4<=SZ-Z%B?8MWD-y1uCvXDDEt?Is1IR6Fyfq7uTPT*kMtR2lsLX9~e{5xv z2*=qYJu`4zJ~DBfz0{o^EACjG>qZ>+F3TatB}&VMa~!uWwkpaidS_u9aooZf_opY0 zTNwMkp1^VIQdosJE=k96g=0AGrIl`CIL>~Lxga#43xl%z6Q=B?iPK}tw;@&>5y~y}8L+q`pl ztw1>w#Fc@sWmD0gz;f@~p917;^Cif#rOUumuC1HomvbraR#&j^h2yxFo($YOj?3@o ze}XN%TxI7McO3U}l(*(m<O<;?4KAoqRUsBmpaN=0(P ziG+;8v4o7Ji7`sZSg3(tk_0<%Um8*3;BToxj%Q>nwSp_JujVxl|CUuz5~FEE@+V=xqrZ%X*TT+3kF&P(2slT6832B*%^BLLZTJ{>AZxjKaW^ z7IIZW2^q#2fj@(k><6iAjAU3uJxPm%CAnQRE+zL6K^NMP;0J9Oe4*{htQoc+9J?oI z)1OAWpS-&N#!Vrp*O z-L5F=Gx2oU@>C2Hzw~w%8ZxBkvCuJKD+lJ{A4K>l5cskd1HG(aAF-xIu@aQEcg<%bDQ?A2834Om) z(cZ#Qk%_U;!JKwVyK;FFlx1QRTA3KZDLd*@NlJ4*%#4hRsN}FB%IF;xQ41X=X03=? zsGz^IB5GMlZdODsRMaavXF=-KxSbr+VbHaw@ zeLcBbjY8%B+>Wa2Enj+BDSWModO5?Yi~M=I_Y@$~ZZc|76SXio)@#75CTcY{nQ|a& z^p!PH3oS%?t%+Jq=2ma{(mf#HYXM*SW|F$sL@hMJxue_~kC^}x1>e0?MA=)ftcbET zSs7cjMLQoD6{XiDXM3T~LCcCL`;1Smh)T)e1ECkgl@(Fzrbn0l21bLgtcY6ZZ?v)^ zYTbfbQ4zIn!7)`tEvv-Nil{;>J2N?~2C-kbvm(mqr&L7QA3dY&r1R)RkEqKZIue$b z6_95|)Iy>5l@(F84!u@HEfl4%)Bv`JPL@R3(t3oF2F7|$B$&33G1H(dYdTR&qU`gP zFaUkuD@&qG=C7Sr zxs4U&N!sbIed*-eKI&QD6#L9eqGGc~Nz_8WpnaEH`cUZBaD#9E2sGH6_dLV3h3T0W zYfINYFqrgDUeKZv{n@F&((7;)r;;ewfYR@-A)_cNRA{_|RIIS7>) zt)djDiZ)kRVTz^=nrfq+hoN!l^QWtLlny@n1h8Di!xZQ(FiRk#yMdAU=*ZD~YM25Y z5Ik!KB7ovybJ!H8z|3YZ@}=%W!Ew85oB~D5JxgmBMn$(wky)MCCL1@ji z+M;Z}WuDAJ+5D+_G7Dw$O9AoQxPtU}1?a10%6wlu zHN)CW)m#iI{4E?dew{XvsDrjPY!fq!unpIUJ~qpSxxU-QhLu?#E=bT~66Zu4vB&=X zvNm=TehHq$Qq9pTYg$^>Vn*gfe?7?CVxli@7&hJDZL(gIRmesXfJha@MiRFWl9sbP5OQ>?=6aMtTm=ojrM`wMl&G#u3QVCeGS#TztPp zqq(;Ag|zhnPFQ=Y!Z%iMGvy*yc(F@Xd;^Y`!X5sV*xj&vSGGd<_MNT7&YA(^R~VuD zTR9J(Y})YE_gAgIQhu3rRQ+h}f$^Z$64@39f*lXuxrs&B4?|A*FiUOrC;Io<3I@YJ zw=pJyS=et2hxXR5*zVpsONr$kYOCZg#Y2YgugyX#^mhU*ne1r#m;Iaobj7g-Z?NT< zVyeB!wy2P#D zb_0{qyp`7S5djl@Fq83>4DSERpn?F|OhK>;7x=wzelhjX>6T;*onvjtY-89LysfDi zvxU}(hG6P_wuU<0smt7&YUkFNuCivfx?}H`#qkl*>TXSMeRta<&*%_$9}1dZfRR}G z0qg06-c|8?TE{WsZ<>hhQJ(3dN3ncB?*uqsjj9)AwASwR;d`R9hxh+m!yAINi;1^u zsOg-4-Jw2bNXcGYX|*Y2?yt1>7diZ+{D}}T-!4z%LV4p(6S|%+e#4qB&gF=%XNx^k z?Gc$b;F<`JY#*PqM^XTN=C1WIw2#Hst|5SIhHhWR-g$XNwR!}`1)aIUuEng&uYDS? z&4lyTBn~*yZK~9dWpuhv@95yq)ikbstg7LJvW|9;e!Tj)o%f67MaGIimsLjXoYNW};FxAGa2i(FI ziBn==+i0RI^!oU!>WG*R#Z-*R-hR>T5O1Yshx9t|+RNnM>IvKqK_B;BKMDZ;py4`` zis>F{$iA66g96sycZab2Ex+R810dBXys*2jFQ-qBpXe%V!oyi8`C@EflP}HzxwaJ4 z@N+ddC^ z5W8~RP1Q~;Qcg8~9}4NUX-ItNy{YZX?wI@lYV5jL7H=Bz(R(bn*;FzJ*0aaU>f7=zv%QA z2;x zi!c7f9)aHMZ#YaMeI)4KE-0Ro9D9#;SK6^$-ob8kenl*mO9Wf?SBXHY)>9;cx;UKo zMr~b@wmLfo7MBDthder&3d{eY$Xw=~89FhUvd3m%Jh6S3kI_R;H}wX0cG;vQHZx7;Q5Rvef1 ztb1U+KhmHyc>Zzafc4_)st4(yN(~1L;rP4wa3NrFz#!#g#j5_vuB7qSo%J>Dg!Rsf z)O5nSd(g61UBK4uS;$~GVcx(obfU|k>r^=}MGLDVa9p9rmhOgib+Ju1tRI#dxW(%p z5Al_7I^3|}gd5f)%0f4+%dWZ`)^Vy@y)f_489L&*Vk=M|4ZFP-Tms)=JJlZlzAY1Z>s3dR6jOeqR@Qz@V@$)0`-1D zmoLIUaPA0kHT8gf^g8sw@C~VPn|dy8;YN4C)TB`!7$^o^>Fjhtvs^C;iF;t6S5FTN zbWew?sJe8)yep@>V0}Fj0lHw&Q|;rEE@mvpQy~jxrVHksAj1Xg;Rn+N>yu@@VTdMk zR`biuMg%S&tjo=HL-uLv%mwp?sOf^mkGSlp7ofXf(w6Cgb(?1G1poM;EMj)*FTk28C%4As4Lo!7wUauq5SzIm2BrSGewi zxgAIstg9oXyI^>URloM9Jb3reK~FARFz29658DtWhqb^-+cq%T4ijM8*vQhYs`Tzq zYqG@|c-F|$-qwfUS*uGskdf0i)Kb_T2ec@??rQ42NvWH9Z@1|-Y`A5e-hX;@)`G+p z4x>0V3T;gz=F8Cq19q^ulEa}HpW9lS(%yUNH&4R-ptptxft*buaQxk`6+lV#~ry3&Fx2XA`5dmo*%aWQ)!Q{_4iYU4 zJM1!g-iaEM*7U062)QQBK^sZ?_?N+!bz*$+J3qbtgha{3)kV#Zol+bXA_#G15W&Q` zJptNGz}er_ed*B$Pr`gHJIkfgmmca+DNoni-a1C}Cbx;=u(O}yJEH+Dj~eYKUz(-E zMJQw~g*IQB3(aV_o#E&nhAU zdS+`_XI9o0mWB_#U!Pb7YrJW34f!+Zym{x*&7bUM>-x>Rfv&E0xIt^?d2muW;koDh z7bk5_a%giv+c$Tc!zQ@JvY#h4Xm)b4PYgnHTg9BXOiorQY zAv>9qvqHpVaD;~Q3f8Hl5VB51%WWdH@k^vu?QNA{qjMq>TTc zvUf?c9EY_8=edelL6{_pq_~W>UV>ZAJO*8ZxBe2&2jKOHLAB)|19VAOB0>ClfZD^s z{yB-BYg^JV!<`<`*MEt?+v(OM0;+7Hm!_zZ-HtmRS^xCa`Z&`$3md7&sjRlyNWE)* z^NPvhW?NZdakq1~!@{PYXIaUHyXuqdfpjP&c&Z?XmA-GDn!PelZB!2g3Zo}1uPV4+Z zAS^$XGzS7Rv~IsFz|6%`M_rJ3Qdq#@arGN$woL&OD@DLiDl3*$|HgJ zY&0D!-NBKmUTi<40eQK;7Tg=3*0-`9)-q)jZEs`)#fSNp2lfT zab`n=FkTlNT2;#C-gzKrxP@%3qJN?{6^RJa+3TJfrQao*!6t1}ly~PR6ekJ|+~HG8 zN1`Kxgg(kB?vH7s)Exq3ROBE4n<+*e^MOLFlsn>x6|wmW7}J&cUZ5)rk;FE2zB3bVgaqdk9#~+ItX#(8_yE zo(3)DJ+y>9@*dBmev!%>3l&zSyN4v4FPO(EO-$WA50_S0 zchBR|Yf^U`CD*!phC%%7y4&EfrMst40Ij>{#p+(`?#T|jo9>>$=v$0;o--BqjFzi? zQ{3@N&nm^8uS~@q-*l{9amQER=eECXTSzT?+EQ;1N!z?2fLcmzNA2cQRY!3{e-vY- z-iH5wmEKM|^>&R=Z-*8`4WRV)keyc2atO21;x+10pQrTp7-Lu3=3eRSC=NZI(%HlM zHFdVx%{qHnze*zy*;A#nhpaYVG1a%jI(tU(-M#DVFjASnL2xN#!_b+ zPuV)#c(J9kjY4akZID{)?4(m?*NAoYr!0WVj#r1WN|il@6mFG0Be2<0Wd|RwzN_ph zkT&bnn7_LU7HWo5Wsmf*bj8EEJ*n&{kbe5EvU3sr6SFEJW9#Lzr^+5e08F+LDz4Rb z@c#N_#L2T@R@*5UrMH7dtTXlYkGT_suYkEK@amDOeW?-pv_Q%{9VYbkU5L7Om2k7^qzKcY)+OwQG=E2NdF1(Y-$A-ZD+KFH_#A zQs`o3%U1JXpAAJDKJTgoZ`&ZDj9@3R;F1u9Ox8UldarJti|D`j|)CaVT=Nu zr7v^twJ;zb{rx%%CAvyqawJP%;vR=y+R5LTeWzWdS=pg3h&XM98g(Xw)BgD$1K%VABWIabF=(} zNsUe~yg?52fdhR3g(xIb`AYo}+E^Hi0HHia7JUnm_E;a4mT|yqZUq53Z)pYxYR0o) zP*vg+6RoVTKkK3CP`@A`Q+pIoa~k-P7JUQ|>O^sX8si=083i*u#ca64DRq6fKnyum zNou0NUmhV)UpxR?gGF!2Z)(%?MP%ih4okxgY{fa)^)ruA`C7v;9 zP_-`lJXAl3>Je$b!;R5-#;nJ+e~^k9ED;BT{V7(fBQ--hwSA~10;&)MLVKDZa} zud=Y@r99LY4E!iO0}1ucK1h~@2{vA`2G{G{LxkOMflAlnnE6gF3m=cDkSLybm)=dF z`YIDLf`91wr%=bGE8_g))i+)82twC?r-_x?%`!&$L~zAqx=Dpf0c?G5IkNz`b{y%t zcE)3T{F?);5xOYZ%t(^+W+PhQV)kpK5t-Xz5OpfIOBI2|hPpS)H$PKVWDi$pGi24J zz^R7EX1^@ooVZLi#BtR9f?)EkPA%Chv%5mSx3Q87#mc-Q_of6GArxQ2!`lpgj-I7e zw*(bM7f#g~U*1;oV{f6I>OTDlY}I)P!|z)+TKW&}Ox*EkM+jM)of>=yH0JOUy@Tx! zZspqIs-nzQ;`YJ1wXD1Z%(g`cD=|~d4KB~lT~ye`u{u}!sIf_G>Qm6{owkokPpoKD zPzc+->P15}!)v4{qUIj#!Uu*&PLTb}zNq*SmqCF|83vurCq4}Y7KH>f@~SxepKas; z*2?!jBK>aK%J|`FwuoeRS_nDP3D`^s%RYI`^$AM?r%H@S86yZh4us?Z;EWW-c&Gvd zoZ81QlM3<~(O-n^tjz9{ z2Y4S@#PR9RPSZluuRiB)#pMX6{QIv(F#M)c;q0IMXB!D)r(oz5wM^8xz6!|hP`r@X zZ%6EkimJV|vNkk(gxKitF7P?ep|Bcy1ibVq3-mHxr;u9}VFZTiRV6Dxk3FA#MpmSx zKXSqzse{siQH#yAjY#2e1lX;?>rdmS2@W>sgUEuyGl@V!0KFVSfYwRsmnO`YPErd^ z5^^ut;4U=D2o#J(d`m=m=HUqrvp6Aa&Hr{GWA0) znsm-fcjblQtl%wMiu3(5Zo_gOs*gCdrYsIq9v@THmB|nNhnbrdX?o{Y1#p)4?-fc| zP#*%flli2(P&#F6;El*<3RGbtdE|cSlQanu-(cJ!X}lU)yPYX(fjoLw9X;;2SpyJ= zLBF=m(-OjQ+e}};t~^!0LYMo`HWFYbzwniZR`=9A(1Bib>HsNBjyVCM6wt^=9a%3n z&Liw=EKW`yVb75)>dw2i5f`5w1l1G-GcB7$U{>L{UTkGjt#${aOYfIeDZ21uPnA8= z-m7mn*9pBo%bwnmTStm@jD zGMks^n4G@PMI;K7K@;V|{Mkkh0SKP#dMowx(#P*|O#w%#;e$J(-F)(a{&NID@6^Sr_t`3 zXQ0h4ic(J&t#Ieoisn4w4vp~G2wrNd40}KOrjOyU-8(S{CBCm%ogM(=Ztp}MzuT^K zVrChRpG45KIM7x-!$Ym&B|u_o6X~T+Z?YRD_X+b^I^;a76l~*$NifMz?tm;X+UdqI zIf8Pe#2*bsa)4Gn2W@kFSd*$Dy5G6gt6>^QcjiyuiF%YHm^2!M^`}VTOSj+Ut7)c3 zO$=a^pUPWcZSFmfk-*(~#Z(!d9uP6uDzpU;Us;rbcbG?(8sHsA6}L4(CJ$963+g*+ zCg(55A`{P?zWo=GzE9`=2R)!jXP!@!H0GA9NTdl$cMg6Vl77ITI28UgU;=4 zY1vG#m%#BGM2p_GyTYIyKg%4oUA<8d%w;$ z(bG#Ko{z8}ylP?`bnOPZ=B;v&#zbJ^afVbUyyi%A^8TO|GOQ8j!4kai?-5lTe2m~- zH=5eL=*x)AIdV{DnkLT|DWu67h+zIk-eg!IFouS_@`hPTbfZtABPV@WC_gg~hAr}D zj_96^2F_#Bml4GUg2ssbM$#=UI^nx>qXtRPV&3w)~GV~QP8NQRtlp6boxfdGHC~wJz1gI|Jiib-bbc&bv5!_>%Nv>YVJ&5j@G><%O132;o+9&G)ZJM-=)*QJ7^PTi0uyfMG2)p4Kv>f>^ zAm)08>Kn|c=CWQ0=PLA~*Ak3cRnZC4oQHN2s96;h316O5DY=#v6ysu1nUYc?AgOw} zUN0>ew{*n-gSEM0x#KBh6K6Kh?Ytu@9Wze|jM%=Jp@;L}j=_gD4}cyXRjZtMpm}iT z9cdp9g29R9tZlRo?&Qd}xjv;OMQ9vVrUHbD3<%YJDzp9&5LVL0>a5+j;5)3@ zHOeE-y3WmqHy&(hCj$uQ6{pH%6($I16oX{ZhBU0LBMnVJ(~d+W&FW0tp%J;e0nl<) zWlX+RExg}5uh3`N2lt0(MPN>i`PEbBb@k-x9lki-GY7su2Erdn656gFklVCIs0)f_ z$gXG$xEkReD;jCujaFKA8-djOpvTy0MiX$@M^Y>YlMbS(aeSvZR@y6rqosgBFo(FNm|cLI)61s zU>!F#^Thp|SbXok%9J&24;JwTB*K0m{3`SS|1`Sq+|`~elCicd85O+>Lg1&(rg zk~UeTX-rvVqf)k5OCu%W?wgKU`3gbR=My4%G(LVKGGm3=19q8pQX8t~_(+Qw@LYKm zBkHS8rdT#JW69L4Fxa-iAa{Ij3&wW>@c{WRm+<9?O87t@Ol0lTW-#{ zLvZTOi3f~LyJ}`z28Whki3sjl$TtGV=c+?b12{cTNuB#RbfVKyn)^^iBqL)Z5Exq3 z>DA1+knbINGLC~Qt}S#K$P#@&ON6D_LT@iE*fdG-Sj@Wu6nR2;2mm?7CEdLzm-LM+BAVyfjhCSjzX37aiNo zP6h*?6~6@oGqruuJTf=Aly5Y(X;3ZF2p}dn9m<^mhzY{?aN7nkwG!+D$V{ronmegt zz8X<-H+IRnr7_xa&6$e%-jOE{%{=^U!x3oST=?C&4!6$3@bB&1p*>R6l+_3j z$g^W}2JhSWhAQSu_H!{G1`ZuUp@92v7fef$xdhubMt+{w9#g z>(^!~ps4Ss>A<2scSX1#_(FfSk@M0)j6>-E{}|z2F~TaZe~pB3`*G9Hfk5#%*XIcE zL_miEK3G5X}Qp4 z@3Nqo!odh<&}^!4AO_kmmYbe}cnvz5a-8gtN-{1dI)DBdC)1L8@Ke{J`uIq7KRM9R zc=X(U>rw{nTmrPokpns;Q1!2q$2<>$n4RjHkhFf{bYW?{1Wt-@q$4}uNXOyBc;)dV zy?s(%pij;RD6Dh1L_MlCU^X4BU5z;#Bu`BtQl-b#k&mb`fH`@9_rZY+tImH9aYWaO zFf`W>oOrEORBB4;i$#c?l_nUL9&e5>kvu%bC0d2GFT^pjuJ%_m=K^7y%4 zyGQ1Ag7%q2T#MX3m*xq%Pv!wV^1YAfhK-KnD@8Y<8O6xO-zK*v-Eq>rXaUvLz@t?W9ZjlkuF9G@ zH(He?RzVA)q}BK-X@eQX$XGe@O9EO;K~XZI83%vzJZpS6 z@js)QpbgGV9OiLvq@2qrt%+r|t$ z3kk45xhvYhc{x(M>QhisdLrR*CV&3fMg}SqzxR<&Wca}-z&#d;h-C)26~FEx@^j!} zHC(_mH-VQG=iuFWBoMXKrijp`fyu^ZB{*yt2wY(dTxvWLLZ7O`y;B0T4Z!ss$Gd`T zXgtDGb)w^jK+%}n6@p-u9?51R`pK{VvRg>LQ{$N!y>xb~2&6f+q2U>ufTBb12mw^a zv|RI-+tdW2*V%ak6ErcYZEFP*(~i$J{c`9Sz5^pEN}^!}e)R8=dAn6jj<79Cl9T;$ zlJ*hA=(vNe{-`fX(pR>GB7M8nMve@&Q%af#28(`#O5^@X_oLZi0;|wYmf$?JGZdsnaaNI|1di`xE(#`dIpn^$ zJw0NnXq`pUl^a%#cP72`*uV=-J{Sm&nWZgs*^=@8e0cgWK=;s>CFxrg;W<*9>r+;$ zbAft61WxXR`I#g4B#yi~OoTUik;J<;CDeLTv#8`T9bro4w@ILR+nWzjkt1yuB?<`xlhKl(AUG~8jJ2>?H zl`M1H!Db2(q`CN!!lhTkDUEz{%$X1I(~yYuCaThO%69lu#Fsv5A2R; zk}YuV<2ST7ER1+biqxha0X!EIs$AIl(gWwowQM|UVC%qLDaw98*5cf*h|r>*aAR?q z`-`8vv%knuR*zeSgz<(R6KV}oc70=r7UluCoxn|)YBXC~kBsu}W?GE-!Xr9XH4h21 zeD;lgnOL1Za%8Z{jj-%fJ+Z0_>PyXG*q_83s;T#2Y`6=ZT=ddYNzLr-VjbI9WSeTe zu{_N37k3b_LV^Gr=NzSIki0o}MH3r^(u+y~#R%nnpyfxzZ-O3b3c`*ImUm4pxh&0c zr=+~gt&&%0uSnjxze35oz%V~0@8YbZJ6Gg)SjIjoR0haA#k!#J(*zQ9zCh{AsA>UW zGO72kn|le9Eiiv?wc$<~+^w&OdvIv9@n&7k-WjqXa`Vr}$nb(#xBP9Xl`d_QV>iIQ z{ww+8D=eRA<&^|`40Vt)ZZ0+Ikqn#y^0$qh&9Q9XN&W7EZVwm>Vz7Gd*-8RY2 zE$~Cq3zVHnTuF?;WXIu7>xdq~*Js=QH*1tFP`=Oxf^R7YLwz9Rur$`Li;T-3o&xsY z18?P5`m81yxQNR&z-j#^>_7J9-y>;Sxzoco@+c9{@DbWosCC9)BX!s99sT!6{kre^ zd!(Ig0h>a0s@!OlOjG;LE?YSm#^v{_hPiAgLFV_$Kr{Zi3d#|+@y zOp9fJAwNyOnVgYw`;%8_K7^D%&kV%<*+vkcj5%v3bD)0>@Sg9#o&p#!kCkVaBefiQ z(mzJh>iO{;0SJ3DQephrMw;-e*=+%f)_@AVv`7wUb%C&1`5M*PnlnU$U3bAi&#Cyp zkr2!MEbVN(WO?Fo$7qT<7(tmQsvU6%@9O#pv$;b;Fw<)6fAA<4bpjKer|aZ-#~lJY zmhX-J2UMXP_%4Et^R$%|3$Vk-mGVb(JvY^K ztE-S5;8>krH10U0&vk|Q)K8eOk~dG$2=@6F@3i7W{g%ST+sVniffjyBe@*gf(#e+|dDZ=m-J&PlXful6prbP6md9J{u1dV6U6rG4 z-@(W^?pS2Z3r7xWCa#MuAUszYo4nO$$VR=f`yI)>1&1vf>oFv7^!Zp`SBa9>a$oS*7 zCy zPudZ>8exR4XgVB4+i{8!rjCW^Z(4Dpq8*_N%>T~_U5)6TjlKry&j?+OJo}%AP_~~R z5xN>-gwAaT9HA@PayLg5U@Mvtx}qJS15kKH=z>f32wiZ|9-&Jv%LrXp1BTSReaHkB za=!3$D?(?yb4BQchMu#i7AqN{>tlXI=#2JnW1*`tMOhPl^2mB#;XN;p)e!IHv39|` zCOgEBuU}7ltg?)zTVq_1|8PeVng`ypz%aPh$p8`|(t%6}L zDVifGMQemo)R4K5qK1|(DLPN(cqB!QsB0-2NYB@~OVNNBKAw_S2DG*mH6(FK(Ex)6 zt4WHE#nWk)kz=tpcuCQ*u1t*Jif8?<@(+M;lQ%6y1B_?ZJB?4--verArr-ZXxM}!R zTB0GePs>mPg_jTw&|XZ8gs4G$Eku(}A(|t(s6%j`{}@RjS|h}@Pm)5k=mZ=WfUAXQ z(ZV!O+CsEOC`5~<5G~q5G)538(XL5aTe)Zp(SVg%9}ZcK90`wY`Wi%Q2dAYFt&wN{ zvw-lEwh*lm3eli@$m?Q;gl9r!FlP?iE)Rv{5FeUE9re?Afp+hjV7NNnX zXD<;NY|Ncv5o$$&nfK0 zlAnf#Hz!P?PFjA>Q(5MepN12+{0yl2F-m?K%)aF3WTjkg&M8nm%g>@MKXW8E)(=rB z`8iw&aS-(<;c@MVPeIu+vhgY$rDGVC`Xch}lAjHvYIe48vLNYpi-~K*NY$!kxf>BO z1!@}wcj^altD2=FP5RPH2~=ca-*;5uNxzMzPAF=}_lyZ_2R2ZJp~0dw2iFHmSjWkF0Dqsw~=wHS#ym{L3>J-%CVbEA?k^O3p|y5szdq#Sz1`1 zp?o6pG#{lLGCmt zsy?AI`{u~A`AW%R3OUa(Xh+T~p0PeE4W=5;NQ=C5Q)GV#YSGx_l3fWso|3{`Sh8fy zGyoxO%!Zam)0K58uY^ySSFD?ATROz}w3Tl#qOG;#lhzAoB59gSxI-fihmOCukqc*t z5?9paXTpFEmz$ut1{#%+Fv_UC_{TCd{d^&*)&>0|Fc2`LpMe2`{kjk;U`bt5XL|nH zqJbVz#5Nv~!V$mM&{z zW;HE70gn$c0}CWWLamR*4MgsKZ}0W+;AOlwnpg-xR8?`f!--U+R)I}_=juT`kB{Q8 z$;LNIrAz_7rBeG;dkA38q0}lF=1)CC92An#;VVEtTXHh6gtr94F}j=|rBrTybS7|8 zm@AJSNYD_ps{Bf2kZ~q~M@KlC+Cgh^pTb5reJ3`$wG^^+-_O4xSm~=8K{%oo3jIeY9;nMFLJih`8Bms?3lD_l*r>7i&&Ehv6tp!z-6`;#FA%DZtI9nKs{hqFfLa2CBt z93Mq>hPq7wJe@qJ!)b8bayXxPDx@qd`JpNSIh>E$DwNiL)S<#!{~5}nNtrzZN6yOM zeAG1|FYtQEl7B+mwfsrkp&C)YlzJD~<9uv6+T(m~Rr<)NeR#ApJ2T&qTEPzwzWi$>9nKno!&xL9&Y}z2e|Zw9Nz&m=(hg?~d^(&)@~$WJ{TM;+97%~3Fa3G2AV*Ti)ChIVQZEANm?c>0(lIe| zmx@^@53*Xt#I)Vlu40y8qb<#IqNQS%K!;1kEWzDc#jL}HL)0KkXym11*5Q&@UvXwk zpB%WDlY9<0eOQwj-sD+TbXmvP+(}pQ*&OPq3VYI_J_+n^t{;ywrB7rO?@h~ipIFP7 zE-mAc(kY)-0%I*p$edv&y;J#TAE6l(^rO>F(H3Bht}@E0gDh(dopxf&tu<8rClfM| zjdi-|qQzQ7emp&zY(EA~t$MYR()nu@LZJ(E(zhzb) zU^drtwS?9d14|FBQEKY_yekzY``nw`RNAt_soP?$E7IE^(T(K*nXib`(y42K1>URJ z@~c`NNF@PH9dq~)J0aMh?X`!A!5!Z`MnUkavM@ooBZhYf#9w7XL){AmT^GT|-gdfr z5om-v|NAdl09c-Q_ogZvHkCLA4S)XhOW%9lEm-i;t1oTFnYnZ*r*O@;^l{E`*0-#% zB%b{W_U1^Ltgaf8$=f3OC#FgtB$9L0OO@C=F;@-M7h6RR)gvbx3b5E=(-ez?JxUg# z!X3Q*F>z|qp=J#k*e(Qd)!G4reD1VxFm=oKUk}lf1zIcF9$@_KwY}m{?emJ*|NXxN zy3TU*EdHwz|K1t+M(tk%F7^BQ6tIcM(gUp#8~XXAe~efo{d|s)IE8_eM;>Z~5utG% zxAFmpa8*@IX0Zm`)V5zCTwn!f5*9U2L5?`v2c|=r{5S<^9RVXC-wJkJukiKX&ynwa zgpdzW&=r5N_M(n~1;rh1i7{mf_W6prYA+q z2Fa0PbS=(b0}|vPBhR*&R5Keb$8#Hj`6P>)#Qba34$9*i#uC;vz4dhi6g?H{3dd32*eJ zFInZ9e1ZFCbm^TLm85b3Yo;EZZ15EX!Y>Td#uFB98gx0+MhLi&pL@vOeN!?Xd4eXaz`J*dH~P+)K9eWTkoWIp#5C$ z$hc^I1#RcA|LQxvqeEe@O_t6okSAbf&Ly)cHP;OB*J?QAkM%mv{fe2vRXkxG%<9)~ zEM>+07VDM-r;UHALqw(~z;;wsOOWhh%hn1`T{sb6|0P=!N}{-)2d94S3&O$StZxU#&}6HP`1%VEvpgQwMDZ-K+(ou#QD>TYi;x*WUpz* z4-k1X=B`w{=C*lrvey`t<7+~xyA=C2!U5#)pzWI!) zXxK6ME6=mjE@ZR6mG8+Be95(wryRDtp+8w2gDX5$W(WafZVW+i>|zKt*pS>#-1RKG zNcd?LW)uUwpNI8VSraQez6!rO4xLOf*;G*ISUcUM`Ew*KyC1SdIL?Q_VbX881WRXg z`VvB%3_{~WSKvaR)H2}W{4{o$LM2JN9%mad?De8XVLc8|tq&#dv_~JoVz3_PrIjsb zJq}(GR))%P-fs|QjxCDSsV`WMGcKDHcIn~(DYgsiaeyQZ-;C8ZK$^bJq&LXXtjDPl z*W+v>ljwXxl=ZU5fzWmBjL`&DCRvd{re>`;Qu^$?*91dn?li8c+~tJ9&A2I`a__3B z2XLt^86ux5hn2!7PAm3vyCQ1TD$@GWLkSBNcjb%l452;g z)2~Q#RDJyWt1>HGlmk{AW7AntBeCm2v!XKwn7plox_D8NH5O=?wZav9jS>G%x|CgYxGRSuwkSBZ)^DZCkRh7v9# zE)FmEk1JG5mUR2PTv;l`T#anJ)2pn=uL8q%Q4Sul0iz@`yJHFQj%U$d#Bz6d26*we z>e-UM)8`hJd!!k!{fZ+GcHlPxT(JMDNN)ll+X;{LJcV5pxR9;gdF8E^1t})pGsW9%5EH zjfZv;%hf_O!xr)8&O<rLonnMBG}rfQ>`rM*YwhNc`=*eLZw=7}z0H#>yqP7t}~pIku) zt%Y~H*XPtoI%qZG-T|iRpcQQgt=Wu~gO;?#^{De2($P60Ao--}2o;?G`J>BaqhczW ziYe)I(3%ambkK6d_av=ns)Nb)t2v_gN?Pxov>mh<**{&R?H!Y85P3iblS%kyN!c}v zf%)VJKFP;#3>$u^KAFB*iyqP+Gq0vAcFmd%WVvQWTrS_NJ(_0WFV`^+fS7LwvPLuC z%V%odDc1B$U>#)(tY@$ONQ7Y1flg4xB7p1_c8-2R7{9hYfL5S7A9`gul3rPi9CE4v z!F!yV0@JEsN+&DdQcjj}(~BN5LhBBJ>E#uwFc2TuODRTp1V3d?NMnv(SxaLtjqgY0 z9yZUt^z_P_{G4>kf>l@_MyD)jA3(ysPTEdcj-*reLw?XH3)y-;X#t=Kz(e!*n7^;W z29Akefc|AkAJCk+NH>f408k&`(>F160`TGiBsNR-0%Baa@r}v3)9 zSdo}E!COxx;xKCuk?0@LWMu<4i~b_u`Z@M12=!bvG1&JzSZ-BUph7Et5`76G^G#BS z?xfeLgql&@V=@*BlHe=#lTV&J;62G9oM=2S?*YH>y9I?W%x?4{aC3} zNciAFucVNs0}A|9a|V@M*hV$Rc8TH8NFUf6xQQjRQw@XiG56q`Hf2R=9e{>?a$n4& zqD=%WrAFX)agb0sfN%|0hfrf*|0U+NO&0SY(N_S0eds`cSECAh3~ajL#ubho?DUzf zE&BO+1$_+qAQ4Pu&^B?~!{^XTuw90>PP^E*@Jw2D4FBJ+0L@+F)yv2G-}^zL@4xQ) zzj&cL>ghs)UMHN2KP5FZ!WVj9oNzXgOqvvUksf>pSY-X31CcWUmiW(m{(sER8F=G2 zPM;lwg7=8#2c=^-M;GU(K?El zGD6VD?@Tm4`o}=Kbs*v-g6O|S!u9^R>E}R5dswN!o_)FWUn6||@6WFh=<9*qvVCH- zMtu$K7OD!qUW}liGCaIID);`$B2K6x+j1Yf#<$mf<}+` z$4vyG-+t;MbldhiKR!$NjKrO5&=Fvt90@0B5}EE5|LsQYmVxUUtetn?1KIA5$D+G9 zknmn5+!{*&`^A3C4JM;*K&H2aii@KT7u&ov7!q-ZCZO@4R@^~QuXhBJu}2fZ6Ibw< zNC0BaC+V-mqO2=`p<55=fX?540wB3~2ZQ9sD?QkUK>5UKvjX^wn7L2Sk?(y3r^!C( zcYglozwIfQij780XQP_{oonPGbYaps%2PC7d%q*Rmi+=kvlrcsF6@!}W|vrCrk?*8 zK!b?658Q{qdqrMEmNnUQR0*vxgE^xcgkV}pPvX8N{jlR#jYM#KyP)IX@J3%oBW)<_ zYGIb@iCr7y{6X^sU#!mcu@m=^I7?P^Bdjwq06`!542~e=y3u+~)31nT?X7u2U%Jtn ziKM%#(Y!n`61EkO*^OGfm>9P$vKs+i?kz1k?$D;sD8-+|g&IWQu8dbO&WuOx-Qy&>Nf&xTBPP=)FS#O$)~hAXp_lFC66g zDPD0%E;2iq+!Or<{_G=*lM#vic!(gvAJ`Wy!fFTihd-7t(vduhD;m(dIucskvX-Bd z`?ce0?bd!%mfrniyH4m3Fku6}Fp?)`N-R}-KA4n{#oHCgJk^FDCzq~fnyBUeRb!Ty z3?ZOr3p;&@CB>u-fMvzR?G|YH3U%4w)8$5(T$+8Ou&Z0q=WTdukHmoqZMB(t&zlIb z2LU-#M+6&dtGr?&hFdB|s~x`~IQj?kfw#iUlUGuGi<80`HU0268Bc66crxgU5&Fhau*29c!vvyCuQ*AXg?%@`*jCP7p$*eQq54TV08H#>pS zjMKq*^FWo06vH+4ZxeoTeto1ZuB#@e-6!paoW4j9?Gr4>WGuh~B-$gSu<5viNL+Qr zIJG1IXnpBBEen=>2LkEU`Bp&CorgFJmB}xChV#-It9jxMA|#p@g;07IH}*! zkTH#@ac0IZqMY)*^qv#l)zWN(X@$8t4AnXjWNyGm#h2*435S3$>yyUE5XSYv*#j&J zVS6{bE+;STI)Mk*6-3U3xq~IWZrYMujxXZknt}V7IJjodqM0?o9U8fyV1T4c$zf#O zN$Z1>2X_EA8PaMBHn|N-w*jaw)<4M^GO+0mB zBkJa+Es6YH7Ytj#((VfPvgHvcuSIc z;@M@s=5Kn$FO{_3IcYNtS|j%DtCQyP7i~+vMrgMs-4-!TlYXTBZ;PsQ)ovoZr%5Zg zV!XwL_g;|E+vLY?EGrq7tfm_&Ft+7pD`KsFCe$rnf+lzlbM_Aq=b^HEsk4TSw?<0XjU1S4zGHCF3 zOK8q^(nD$h4?UssrxDtF=kIL<_ax02jZo3IC{B$q&Qr8x zzv+7kcdSOH;KLUq4bUb<+V9T+i8qswZaaBizT5$s6RRae^L#?Gky+Jj#)ulYLaZoF zovbQD7mZm<*JC#vG}oojI=k2AL`G*;7`~~{`Z>vqQZ~{4^x4es*pFAy*rAKb3t!RN z@6A5%RxQa8uT)h)3?4&|?{78J{k|34^4!J9>>qP?_cY-#cQHrX)DhfwpE{!X*3=Ob zx~48T>HL^FUqW{zmtb;VS6gnGRb9@9S= zH#}GJJFTa+1CX5Z!jJjV-Zhntss0rStKXFyj{S z#?{W?sM$V)xRG_ecTMAcVoj5DY8s7fYxQX*&~%8_+8tRr2eEQQL9A%TjTu!CD`;f) zGKe(@WST*&Xz-1&i-K6uB7A)W=+t#QgIGi6g@agwqNZY4(I~xF(B!2TUc!-|5%%u2 z$FK&$L+gsjvs4Ic1f0(v!5V>jPywtFXFg{Ium-uL;#Y%Ep z6U+G3m?z&!uQ<>|JHuCF3`UMJd=+nTTou0ZODlRch_ALquSRd2H%71CNvXh8&RK@8 zM!U8@OCdOJ6)n_Pg%RWO6EZgAR^yoTUlg}WI^$M3qPW$tji$KOuv*J-0ot;U+&eGb z89tDMGuXpqi(4iCQVR_t7~?@16N`m>!d-r_jJU^RL&+{u3(*}bO=$oJ97^TTnVLn3tS1uI|El^KD56TxJo($ zS2g0m)el(!zhw~gZwp+-&X^T6GiY{3u0{tU#1^@Vtv6;Vr$LC-G)8lZGY~Ptl33dn z?ctkAB#&@nXNu%)5&aVpce+a==c=b385d5r6k}aD$CCOngxK-Pio|brDdX4U!6yDl}-gI;lbfO8IuED}b7zGNnQ%!P>S@4`k+J z^NeP5wv0M-wkdPNI&`)!D~mdGw(G+gn-@;gY)W)qL$O(3(X^seq5{X>{Iz*LzxS6q z(a=4WXy9*8eHO*f1SUtVm;nFNT@%9p=C29kKecGku>GV(i?$Z^NNLf)6+ha)M#^8S z5&COM%U>(n{+c=gq`y|QHbBz$*J_0RTGH~@ine(^*w4X6W|1^}cX|pWeJYM-e{CPR zF=3|ZuL(wd^Ve#G{#w!W*OE?utw!jtO@PCt7m=j>wH#>b;~ zc(CP;k9^8(jeck9rD-AQE4=aLb_gANb2|e4`YyLaP}k{pOd=v~Zim2E)9ncG)iFx! z3RQk{I|Kn+o0J&d>2@TYZih!|gZ+@16r=$)y=3bwRE0faMqT#Otj1Fzk&&2PVf7Vv zoWExpN5aqsNl@fKSvL7a5N_CKzTiQ@sqM3(iIs*sj+BcB0=9zs{?|zDvH)lL9Ozt_ zc?nobfX)9J$-5r0{$B(2)4u1g5gd3pKSxgPKSD{vsvS>)PrIfpKAPx#Swj}{dMbMi z(9=UXZqir>7<1bdES@S_D@o)1i)-Cx79#l5{FBKX=|KEo7eV!1XfABW<h#Art#YjXRuf#WNm7p>gIi?ii|=oQue}!}XH<@W2_q zpN}Ob%3XSR0v^tp6}&1Kk9r``j!(Hm2ciXpJSjF=2o1X}#;a=6Tj53#$`>w99A zT6tVKd+9a?wB)_^D^Rze^(}%r-M&m{r}-P}U<%Z{xCrOw0$hK~d25OyJp07DX7^c21F6L3;i9!TJJN)=i6y|ux`>YpVS2({co%ol zn&W8_F*1?}EYkra5Bvt;fs>_lBIb*L*?lW(d(vjdu~C5f(iBIo33rgST}~G;z@v(~ zHoD0K$`L9>Y!;?QXxlvm%9F#2&uD2JU^lUpHcbJ6n{JszL8#^x!C}2reTp3!hY&f)%CSAp<-0u966LPIs3*{%Jd~q(Tn{e@b4OB)O&A4O&u@-wRhy* zi_OlvER6h8sw_jrZl0jPV$)Xvobi@f%Gpa_<#|+1<16A&$k=|vjF#s5LldGoWt}U= zr1nPN%0So1^;_WYOSz;g(c_`>^Pg#h#14lAs2{Wz>ZOxZlFutE_1 z%EJnAmg)1bLY$QPJgiV7Jgl(OJgiVpk)};rwph|WtWYB|(30k1g{1SaLXF_CLXoo9 zlD09GBY8Gqwe@*eK?79*;{iqcl4PNAl8z3p_Iw;xD4Jeb(LSt@BaDd_$yhQ!OX^pU?sc5~X={&4pp73FXqGuu@e;!uw z@>rh~&9GC^u4ajm&%+7=Xx^T2e;ig=Q6u_sSYh>NKdd0g=M0LhasD{0utxhhtRT>6 zPcOiAdj_qy4Vo4J5x_GT;4NL@0&n`fLP9}ta7&FktYEp4%OSbrGAv7`49!q*Nk^to zleLgiFOys)7HL|Q*rWpbDOhn*LAd1GNrf7rNk@F{)PrlCKTay-m+GX#VhSjeaqD^Z zlL|3U+ewA>=u7}C`RDp^Qem;FLk5#pNXRX@xNH{`htA{Uq=K;DYqyX7FDesSw=vc~T)cR8g7aV4YN0z5O_;5WApGD&#Iv$yL&sUC0rgRPgI%)XC>bh1f&eNrjajCr>H}d3!slApGg{!3n0JH4nM+d&3NyFL#p)ChCD zFWvTo3L{S0ejHSINBVwH;iboZP~oMY&w~oa+4k3u09x0 zD4>^C@yjqeJQ2!LZl3x$OX4$Zwzi9c^F9@`)D<@iwd9Mv^rPI!BN(fbaIN)Hu_5o$ zAZJtwEPkfZ-hou>5g@T+wJe1t93`L}Eev?oFFV z@|6?@ksJHcOz4*?jW!i{2dTL;Le8BLg}_WY8P`R~fl~2|?AT)q4J7S1hAfh{VNoND z|A4OA=a;-y8@=4kA;3OE(W0;fL0sS+MI(GBYs{NCng{8YIE&I|c?V)b)Mk(dtjgnVr zqbMs2cKRp=9f81cx6~&utrKScivH}?!e5CUZ=DEi_)(r1w#88eiMXRPmd;QuHq!Hy z!tq8^%?aMBNnoA?Uctz<-xKb+${Z;Y9wk5JO5@vCRjFcbR=GOw?0uAGV!9<|^NM57 zSXz>mBDJVfL^(yFg6}CTfy2b9kT}iHkhs;Smq2FGNbSb(D1mWrf$oj)De`$(I6z%u znFHp54Ml4NF@ca8Arr2Pbq+?P36Kv+>Z!c#c%ee=)dYYnF4w@sgpr0;Htj3IKsM;F8C0Ou+fR^sVlaiH~(K0pzI+ z?DGgB!_^ME=2!&!?%~$p87I?FvGY)E64Bh#NKoRvW75pU-%hGo-x$UNjOKha?6CT6 z@16h#KN?v*^j!ed9+J?kCpv&|(Ze=?(RBdGJ>kIu!(~j~z>=jv;*DV9*#K?X0!24s zvZ(|f<(IIbVi6zL=fGlVc}eZBXX&ja1D5)m^iYZXk%l-{Y`LLz!=ANVS;Ly=q)Dt7 zuPwNcM}zr!I8nS} ztZp#QxuUo%v|qLG6Dm zG@Z7Hccm9Z>g;DxspqLodM!>obYdu1{9DY3gGys?Fj685{DWCam1 z6>5|aI$?CSmI^3txOv9lx)F@pEVG9j=fFGP7g6~H4H14>>c#sJ&qvs3!Rx@1iqHzTLKIM4!i)eg5O25^_b&HN5Ay_@ zb;7CdVb)ofakq!X!|kOj%$QR^M(3o)o~|go1gVlQ1p&u*?qR*Q+~k zu>ZK10Az?a;>P$QLgL&^fS_;M5Ib=hxXmNEnt}%Vdtl(F_Yp~mqFESFw5#1>2A)yz2?hm5D3G@7Z#Cqkqx!~3-f^jRwB6OxyEJ9OE#qzMYV^b^w zic1;p$+l*hQ&W?gWp)|^)+_?2OT8f+vrV(S))e_vR|sV{nK0d~g2+35kDY53@33wm z3|9P-fI^AEC%K+DgFx21Hm;8!;`Kb2mYPMo1d7G~PQ9XmT&E9%K!CeKERz8KvyH@# z2gX$nuofg}eD%e0QsX{FWI@nU?Ig=wFy|5}D#XyUA>AqF@WTLCkwf(tYv{cSch%+rjMqrviMe~h9eBAlYz{$f_ zyNoK;Mx*7Th>MZ)VqO5oDY(Rtt%s2G7z4c;i=YAq?dHtmqfM@a1>-;}OJkn>W8`WC zIp0PY7)tsSj91c=y_>fYhNp^V#YoW#7;htl@k#o?smAtHAQD%D6bRTO78MMj+4GA) zgYb*Y!219$-)PRT=|`@kG5_L4uB$Kr9VIQ==LTz}eV_)$$A{35HCPq>)2b|S3UJVp zeuSuK+K>P-0&UHaZ*l^okbXv2;8g5s-inq?dQT}Y23x_OO-m5Lwbq%@kGUAa;A3_@ zW}cvOH}{xlv!9y1&K`dNm80lKJwbxXIRG4Ow(g>_k0%WcU*Vm8uu|C=nEK5xBIw~e z%nt%5jQ0j`-PIK7JgF+8%hOd;k!XjpAPsnkEOoBXs1Xu#W1f>Q6+IF9MmLw_E$-wqPMUa_#*V^agZZkVIM`8P`9o8{@$DK7df`J~EJ70)0V!GNy40 zWi<3S(+kn!2)avw)7ye7jzPU-Bwc^mu8->lVPb_Ioo>#R8vmtR`UPQf`qFImkrV&pgIvLScb|hzQwFB(Rd`K((wobMce+#C@ ze-~bl9nxqr1#v{TBW_qMN3^4TFV+y{EF^t+_j!a#tnYnHVP2{RFx^jeq4R~2ZyQ0Lz zZ^GWC%1OAaQbF+na>N!MGHAGN-f(s0%>>2CJ?w{ zj-xozipjC6g^Vk(oCaMujKmN<5CWo zCPE0Sb8WiqQ~P}pAMv5SBjfzpo+4I?O?XM+h53_0G?TEmu%KcxAkh42(K#@F*Pl)o z1b0xjUtNoOmIaV%p&bfL#biU=wI)TOJ(P@&9}B>zZ>yVI}a^Y&h-{ZT4ZG@K_8g{kl!#qpl#Z)juU#6Lf)Vm0>^=@ zqOZgc%n>1vS_U(#Ub^9Y*uWBR1>Z**@Y}Yh7yOeY7rQGDD?+gN&7 zIixJ;;UsGB13JrQjkvY9ktGgHV+MBRoZA&bF!feXI{7L`sEk9%oo6b5A0uf`#$Bs_ zjtEKXKt%&UyqZ&t9|PMx!V>$(Nd2~M`fGrN0Q*2ZI*Tgic12|nlV0eiEb&k#hL0G6T|{al1#(n!Qqh`2Ol`U8MTc3tY+ zA@n#auhFJdDh2Wo9CG<=BN%uS*+b~7R-nVoOZ6Ccq!y=-HjYL~Ctq|}NtY$CCMAT# zbzdyrbRke*3P)2Qe-$F3oHC#su1$_5&6&a-8j+1V1hg%~Z3v|(4Z9&=BmdpT=z|G* zC(>EBn;mj7wR4Ndj;`7dMVteG?W$B&+|ixK)hl)7ww1^=e3+uIUtDhHOc8&r<(FUe zgF&EA$E}K!Vj7Py76=+?Ra7h%kHnAh%eVmt(No5KQ;91`Jmmc`82d%cuKp_%*v3%{ zJ0AF2t;?GzOg~3TY1an`AU3#?Pq8?o=&%10lCG{e(vQLugcMy_8pFlqTL?}r-%=2E z<>MHVF2D1b^giT22A^M5x`R8E24TwjrEl6xDnCj(xiUu@{Hc0^v~Bzb45TzY44fC< z0HOAXOXcuIe#d3to%qrz%P_3ToC%ssHCGw48p0@YIMhIoHvWgzVA_&H2(fuZyX1lB z2~8zQDa2Fq_$_Xi2kI?vSMud|+$i$R4;6?}PK4RErb>M6xis5*u0J;ht%`X)6g?K* zIgsg#98vmW3c}Lqi=bhrIeifTPWR^M1|r&Mxno|Mz=V~)2oR`44mlv71QO-+#Y}eh z7BbM30}J!)%Iyq+rd^Z_DSZO$s%?RUd7z_%vlsKYf8@m{F_QdFLm)}cUW_=Y_K_Ml zxLIzXrJ_@%#)rjvrpCu&xv~=&K_AQ=?SxYpIbx+bgs1!WK&HlXM5*zj1+|%U;)e>y z)*gG&l08X33EHR;rN)b9YP@JCM2Em}9hWE?$;O=&Z(E(E0kMw&S(omRZ8V%UUCu3Ur zqj$QZOCc&+u322)TvBXIX4dws&Z+i-To}wAxEBaPR zYK>r1ZS+ZOucUp_J4cu#+GruqB<*;QN6zV@R0FvEJ)$7{J~D~DQ8Z1nq6;QYDGF)3 zqPYo*UaB_C5fz;jEd;ToEs`HAKyAgHUgu6*CO_wg`<)~gutagp5;t`-#!rqgOuf^1 zyQB}5=O;(-3pZLbkhJxEu9gHt(ZV-N+UboaZ3;Dben*ILm(RFdsx!42RF<;@9$hNuv0-GL^h9CNR?qb`rO`R5FKuyX@a^25lE#k^Y$b5Loh^@ZyX(&q26F0B zSUd$iCvoD1u(;tDmOx6Smm+H#08b)qOu{`$=DB7gg(6Q3q|A)a-TCXMRE0_#NauNS(9Gwekx!=3}ous=MFn;G`!QOQAO*q=vb3d*oQ1fj?bdqCNt?jcj`56|mn zihT)7)uA8*|5b{8#qky$Z2|~el!@NIoMK<6bM#8FFP*{66nhOg#hxQdu?O9^V*^WU zmKpXX@DOL%SG!ZBtfn+iDxekhAoEw+|4WDuRzFK@pI-2aeX*5?8ll|D-V3+Bn`b%Xv@dfga|wp-#o z`(`sG6WYIt$=e;EQ(f`U$xM3f(l_o9kdrfFi$Ekh z>3|$V>N%3h^>{?pcj7n4miS&4w`t5T%V&8yhH5JM+%o}~eI`+TLF8%f?I&(!VKcYB zBK5O*6zf*aw9*rc;2oJ-4*)y{4ViB^5^h~U;%f)t+aFl0OE`~;0Y>2Qe%~_>( zKtw!0O6`6sJ>sLCPP{pYCYFOsr90jTF-$@q#LVq8?nu$RQeJ;MA7VjTdDOFR7$OxM;kO3Luvm0CA$ssq%a(zndI$xN*0K$G1f;j6rQDuv9e8$;ZA^(CzITJR5+ zkikS$pA3MTrVjt!1|(BOQh615Svt<^=0PR4b(S6i$6|(z0ukPRl1pXc{GX2#8Sh zNOaPN?R6`vBFMQkGQ#GRuLO3qc~H}y27>Wr2|4G0@UnTpSmYORAP>3gKpz(*y@DQw zg{;`=B7Tp(b;3eYw*v+8$xx|4Ajh-)eem^6YD4l-xL!gpAFgUa+8Ur;+Gm(ajc^^l zIdW8OB%XP-o%WGNxw-Y097!0m965Vl+kiZ;8lmSk z0wsc;7@?;EU}3F|D-xbf5(2n^*D_ZnmR+)4LMVza#~~zIIXVEt+v<#g-nN_&0?w;V zN{Sf3y`8(H2d-nE+Z8e(>3}5KTRLBf_NL!VA z`Fcl)(j^5~%R2%ZL-}6d!h3D<&|D~i+V4DoNH!O6s{cM!YfIm206Ax+8U(K3 zsfZtu-wyTI$Vo{0@ZR%?y{~QLA~q;f5=&5qQgU{^fR5$u zu+=fYvM5O# z|0p*Hz@+{Dm^!lzoiETs7HXfQ_p;`aYIeRLwd%A~2(4dsydbjL$L|UBFW+cfzg37m z?q7)!n|{|g?1;nfdP!mpr#k8?^R0F1!oi^9_3oje@^LA&PnGutAkAB+LhN|eQ_Mm_ zRFmUXg42#yVz|oj$}gkeRUdB0tHe1SuSAKJ<5k+gju$itYnB^#g4d!6>@;aQUNvAh z3-3MV=g3FhGrs)3H~MDF-*mi6O40EuiB88W!GzQCg1jCI14D8))lt*&N;KPayb{4v zju+rhyHLc&wb6FHwh>{^TK3ZSDxF~8D`7_Ed*M6AzUH4?L44*j8II0Z4Y>NKMkqu# zx)GjHn1QZ7O0-Q&;h+yWY;!}g%<7|r>yyX!(lgU6zyx(1Cl!C-qBwFGnjgq2mFpP+ z#Ns3V#u?RtuDqfpkjDwAOsPAUA0+@|zEvtryf>gTuf6^Vkd9Afdw>9Vr> zfQjNFFTz2ZY>C9FVr|(BMTgPwK~hQpC~&W2{usG_ZR9QFO_g3N$GZ&>XS--9!J=m( zx8?{@wT;tgtFdS$2DcGmyCx0ecB55%gvC6o3@pA&_>lPwagQ0)%rz6%)(l94s2G%y z12C`w8;t&X=)4;I=Mex$qh>O|ad!7P@nh}bo|c8Q&`uk}w%}rGw{n>c+^Gk?wD9zb z9fpg>U}Pp{ZqD>j1z*jZHBZf(K%aBo1R$CdHy#!H=EO}EgnQ!B($vJwrq9fY6Tos# z+V@%$ZxNc-7xmRfhw3b*bFdw)J(W-c|eP66UR9 zB_l+F%TK81uH&O_YlKlUHt*^>50}RgjTne8y`#B;24Z|+IPzLbIs^Eeq_ zr5=ebim7@l8B~|umo<UL1AGZ-iWf_#@iIh|PH`*T+2=j#|~uf5(UlD->P|2%ST4 z0l^gj*-_oYqi2X){hGn6O8$f`86txvj1Fl5-bM#V!v@aRCh`J4tf{J5vSP9;st&4Q zYW6T%PM*Dv0dSYiFNq~?!cD-E3Y}WZ5qG@0NFGEO7QqVy)@AR6r0>C|j5R{|y%EMT zPOEx^pmQb)mVPA4|5x87oB zdEqXC|AqpyTIt1J&l1QZKrLZ<6VkS5mm6&(7muj@6bWeN5buscI>sbJOgv2}k@#(J z;iG^d_|_^F;XzE6j;dHejU@}7rl=>^Sr2S+8tA&9>)^Cxa(v@?rcB9~Q-80(5t$kmF*B%LvU9P#1K z5rDPh`R7R5^MP*C&W{ndmGDv1(cC5CuaWJp`}2fj4%Bb^p1((Y`g9w?@l()4)fgc( z0y1VQBuMAJHQ^2_=oB-1)^XC8e)iMjxML|Sr7P}&=q7z88r0!p%&W>aZ5o2z-ny#wry=#EoG-TT`47p7`Vq_cCiQ)x%9oAcT@Y6>AxO1r@- zD+V0wvu>50GEpi!W^Gf@Uw_RRg)MrINXh_ePQ{u6R%hgS!MNNC z*?(7MnMs$>y3QrQYqrXl5y(E5u880ikbYK5Q{17EtaFKHY<)6Hv%W+BaqNG=pe^|S3r zXE|+Y{&st6zTm2Y@UR6s8wYM5)h`y#_!rn&EB%Sye8_c5hXxAIBda~~!Lju1S9(RA zot5jv&)AfLIUmf%U`4x`W{u!{Idnwr4%CU9vUbHW=oxh|2}3T6bq zXBM_M)wHWLE2afM5&30I8g`lSZEIS2oEY;CLx9JBUb@pY%*=3?5r3nO`CZ7B@K_JI z*G0jD%Mh3_g$M!eWmzyw!IGKohi%8-5gj<;!MhP~as;+yDcHSK$xU&CJH*jA?>7Jt zh+-o6oEv>JU6uo?9EvAC6=xX%Xtz`x%etWW3ImrzZX7EWiutuayGH5kfL&MEWu}Hp zIm0X>B#&_SRh$$EOtVTDA>0&8YWD~GF*g4FA6Rs%Y;kQ2C0U>BLnB^JI~b$Rk3`=zsg9f)<9M`E#FJf@Gi?kXsq+g?`%WiA!B5ms9`jBMRf z;)GS0De&&+Cx=mS7t_-7eQCB$j=gZyN>L?g9{TK<#G#Xd&h3wxwTChcWq(C8}lK(k-bgKnx32pSPw(F-b$yPRyHc12sQ zhQ=V+=~p!IbdL=PyDQ2O&;TIXWW^na+h5##tM|H@O;Fw&qF>w5*;M8I|AkgZ8~Hq{ zxUZ3$`2TF8az$0#ytD7e6}_N_y0Y*$qv~yYr6_7^_z4`-zM^i5M_Z5sj&~Y3o8Kex z*<-o~;Fa9}w8zpGh>}WlM+_*N zc;a*Dd`7Oo!{fQNW~{jXv4&sj(FCz@MVa)iCQTZ-i3HCUOjnd0qC*6`#$8eROAL<- zEw8SqPXimX<<%ASYrV5GOT*s}cR#v2S?<-A_=OwneMNopJ=mQEY=61e-Nj}JSJXTY zw51q)iK}t5vbBooxFgWKw+q->u@+ad4ui^VraZ(DX7x7ZB(noU(w)?oE z^pEE{BT>r_Jq2uuws-iD1%|!M@)!D)qQ45J_ENLfetF&fo)47R6=xETnQchkz36Ut z@g6sX@MQBKzxRnoi1@N0A+5F}V{!7%K-t91+$Tx)5YgO`#`?hjsVmyjBT-?Z7Fu46 zxZ(Xi$f1TgLW`_JJc2GFru%L2?2*C76Ol_eSM4Z7;lcgQEv+uN`VgmqjiSa~;PwC{ zxCkkKMY;CHRwZWSXK|)(WHcbL;sE@`W&)5{hnky+@j|_@8OnePU>nRZc0#;}#?-?2 zsw>!#2M@T=;bp|fo`WalT$7kvz+dtzOb8!QD<4+zeyu7Vb z*r1{SB8-RrE@{gU`t9CnWHxjMM|>jnhg^UXxSo@mg=agjPbt??W`q}GcU73ldT|1L zz|wyBad%eAs#YRK7j*DNJVnf|yQfwfrb5m@fPezADx`~bGy)jd2MEdcZB@>!w zA*Dw12FxpP7!`ChHf-0RdZJkocU%`&lfUUk8Y#*mxlG~b7N!A`3zj?4n)9X4*!=a~ zY+{CaS?qLjJQOU_E$H>SiRkF3x}>dW*F|y~-_an7qxA+GdO*;J8P?d$45}i|J-+6< z#Qad>)W)77sczJND8+ovUh1nx%;LJ@MvMb=?AdnDkI%Xn1&@EA!+`)jM|Ky2rg8rv z3A2mMZi4~%3V$3q$I&t^jxPt`_uAz;-A&X}u%(G~Ud^VxXrK6ONvO^@Dz zh$6Zl%oX+dX!FxA8pOA9k#3@NMP+-#q|hF|5sSj4P5i*~F{d|A;zwE@_V>NWk?i?& z#fbs+H)vIkGom<+iD78X+v9#0SYklelIM$b!_89DMC`N+OXj5apwvu6BaPa90lYTQT{ z4t_(ip_vccVwlF{&TxC`ihgrbEcTF2fwSC=RV{^}>d*&@&5}|yhm?Z|nue}T4xEVK zezPgoE%A)^G)v8g+eQpUT`9J2CGTrvJQrI_dE?NG(AMg`G)R8v16%?0AmU_N=QP5; zrzfb+V5y~Y@}8dE#u{xfUvWK@WBv{E*`w%&yAa_!&;`m1CU>A{I}kMz;chT$8>zP9 zdAAI%C7C5DHYRt=)oEu)v$ZJ3!{0l>dm0<1!pykUS_zB|#w~r2&Z&B;rO_8fFqb$V zeckLSj6;5Z%yr|ywQYAfv$;~~%*JYl*B^(j{tsnuj$}IyM2q>oidsPjL5y61Y)MO~ zP{^q^^bKkI;u$i5Tkk1;DB9?kStKtBByt`&87??VXCmijdVTyRvEDW9Dacl;YD~G} ziMI^WBrNiT-VWItJVWza$Yo{->t~89r6_NnY!CPF4HQZ#|qKj;Ygk!bnWT^Yor)cG` z7@40ZMlX86D<>$m@^xq-8`EexZ1~m$rG$%_dSawE9`MwBD@|#lCFt=hiRm7<5^(cm zs10{d`daBl^c1ZFqXiEba~}>cM#Ot;Qz(W9%n|Vk-d9eB3QW=5nS`ZndEi;BlWs3;&BeJ;r`3$z7*t8mic9$HpR%9I(jiPV$l5T)%RvZuLl{Wr0 z)1gkSga`~Nh)q}_R2@4-^E=pCVl<^_|iMQoz1TtZJ?$vr_B z^4g};x8}Eu;{weE$a9*oSoQZm8zYT^6TPS;{|%F?;^|l?rZA`AE`{0zF{~T^3+A}1 zR#|R;V)EDXu0Jugd35N;T$%)f61uOnS$a@+vOKKZI7o+a@#Dy0;b%{ncRVs|;|hd~ zPcXzoh%AJSR^MDTzbt;z5lv%3JywMu&bH*5{Ba0EO~6Q> z+yLh|e0H9%a2(@NnpFC@;(GE}v$wjslEB(%KO(lT@2!=cH01WUdTHjehl)F2vU!EHbPw>Dbw1;un?<8A$Y z5{9R%6mf@5EP)wxP7$U%d~hN|(#D9ny`w%l7V=`nyp;5EjgV9`dVh}EYz3)3kEd;f zUy{=}=03e%=jX6##@(cA+vvp3j17|_r+9E&5fmCvC?)MGbsO^}lKmE%U9#U&vrfX9 z$2)FsfWP!AlDV^L1VP9F8PlZUM<M?f3iUm+!Ps@7L$d1e`EFle}MwFt{Aa% z73oBk`6n^GD5Y6`g%s`YoOeXV2eTp9L4kz5QmMaSEqPY0Cyz2@oLTo9(4+5!zjNNr zzCz=Q_7jp(wxkjBoOlb(?b>fyy9}TG9iex{m)1v;JyybmyO$~`I~Fr2-;4e0Y{(oM z$Y-fvVWIzbV5FmPMu(!ke;{-Z5GXsIf5phVf86vNQLg#{sf{bZ#_;2!+B&8p$dIJc zQ-P_Bb62qs4dsYPI46g!rAWCa2%!fH5L7Wtf;JUM=Hn!W+6%XVTE&;QZP zjAsbLsT9|(4@ua+QTCJ#mZb!Sb2*q3Q0O_~d#{o3`DJ;9zdfJOyg#>ncb*m!x=+j# zdErZQ$SnT=%L{`UDRpSiN#PHRQkj>4hNYm)kBBr7{mvkFP%dKNB>04teZNUNX)qS^ zFPKfrpGQPW$?VH&D0%;X8?$pa7Mq*?1(5;tIV02JH^w~oN4>(yGylX4)(D<={fUu1 zg}d5i1@I3{T9?1R>c=g+o7i7|>RR>mCF4t0n_CyKfJpI z+KvB>>xU!V3{O4kW}fkTcWn#}m^WOug%!qjJ3!j8?DM$n<|!kZB%>B~E2Gb}C&|j{ z!yZkCHv5crMy=V;_%6o-Iwi{a3u>~Qw)CUUZ)tQs>iZVDEACKFy}7 zzyCR&B5Pp7a&T?UO?|t4uFTerH+}?25{Kgb4yZq>GDEucT9LgUU z1)dYOvbEuC|E^gY=?LHOP*c)`XEX#&jAHZ&D{64S#ZyUuX*(}#g9==nu;c>v=<{f8 z1p5PT@bZ?nkC6Sw&^vIze#d~<6McGvEcBfR>~%;u%!u4G2OT!7866ug4u!eXbzt~i z!?sF1!`y0hwPQ7BTGL&PdpQ=K4aWIRt7L<5e)HqwGo-%9I(6r=INuB1z_lvPjkM#0 zIzaTGHN|16#gR@!Ezf*hV3r_LEm_99FVQ5|OeOXqm<~U1bEUK%l5aVNl5EYvq~v=u zW+o(Kbm%P^ry>-;S*x00ul{w|Y6cbSdo;8mLL>l-LoT-)Q&WshP}>$aG_ql;=ter`kLV6ZPMJKmk7i3UC6yugWQamf2}Qb(?H zcM_AWv`5WHH{(Fe?fE*a%^*!1X-T;@S0A;&JB&0?KaF}BX?Z+4J1QJ-WVj@zY1~yl zz#=csPFfx*9&DOCZHW`vbb0!faf9yjbUO({<`2%09YN8f|F$Qo`37h9*ur{-{Gv9% zVkgo<%dLtFP#+g;M z=<>T$hoXybxB>TTE9MYQdUpU|Al#bX?dUxms@h(>pbytCXGvN=OR^rEqRr?=ZwQm z$r7rhOXWZp^?j}m9Y@CDraKC`0d7R8ED;#piMNo92FLq~{@7vJ)Jl3Zr(IZm*;J&A zL-tTr#>3QNqv^^aAfjn&=zY=FH4+X?;BH?gc!9oT`}Rn>_UY@b}88 zf)ttd+cf@fBUq2{bHG!b84c+z16)x*1H|PF-0BOiI~9Qg?k<0LkI$Gs-6 z=SlsaoIc_E-w&`x+dfnleQj-jBX~nXdK|z|-QCa{CHUd0Y9*)XBj?(enQM`_kZwk^oVWsgxkMcb3I>C7&eWa{e&;s5c`f$SK^9T zr=W*h5u!~Fx05WA9F`b}a@x3ac}lsHJ+)(XGxgq26|JI3itJ@1?ToZJ2=axcDj#rn z*O0`76X_S@Ff(c4il$rYzXK!3F#B{?>Scey=&qkXoLTdKx7+FzL83vzSYOGc~!|v5l^<-(E15S!|=rHEnO{((|%#* zaNY05n4bo$QmF%u+EJ8et&@i*EG=Ne({1E8hEAUi%NcRNc3cs|^|B;N(CqYpEy^C} z_G}72FvE>d17`2#$057$+8h}Abv7JqKVg?O9vG%E5*}NMAF$2+17il4a8U#5gk7l? z4O|1`p0JVds%My(l2}b_@}QCY4#goU)qNo^Wn4Vj^YEI^3Xm*AbBH?kLZS##k}G5x z8Yz@#%bGik0gEP_$I?z=hC_Zm#}#TLmzw!)(UJslvpruL3oN7Sd!g^ax05u3x9V^{qCalt!_1y=7_-m#$B}_FlTqkXEkT ztCf#)v^l)68g>~Y6*{99)UjdiNunyp9Gm6c!VHlM3Yv(QSg zWoon7W@pjm5=3Rp^NuCm!R!q%x!dhtmIA|bmx$y`?)LdN%$75Wk(`-M!3jAtBb^}y z4O-+Jf<|3ix1gD~vo=!DOy@fUPmi?@Ni&ugCM6B5s_oy4&aYdJ4CnZ4Nuw61`-<+Q zo*={Sc$XHNca(p(UdE=Ib(=_}(&uYuaST-0-^t>mdvJI~H{FNhHk#3B=3JoFa!`5^JW?{XyE;RTKhdO7Qt*uhV(&G21Sb-ha8 zRUNK-vG1ym;*7-bUAax<;k!aE`?G7YqOoK;uj+6nO**gKm~Fr3aGivmS5?jA59gJ8 z38wQZ-`mcs+M}W@oL8tZifql9jW*Lam1~#Yt9q}`D?&8bdsR!#(k^$@R6o7+UR89{ zFqN>+YQX8eN{qc%HB>cwuWAUmbQx52qDk`|H9*f{>D1CKal?C+v}}RoZm{XSLQzTx zO?j{CA>w+rK}|mHjSpLAFrF@L$Pl0n*ag~gj^z3i{0i_VIUbfnFen3Sa(Ls<$?l2WqNE!7TL z>aK<%OIsXl%hHA^ZuR_lRt+5X5%c?>ElZK#Uq57Nt4<-YEJg82>>*pj-NU|t?A>&` zQAA!5_2QDHNZ&6be-n3@$#X7;YOQ!!2PO zZW|6g9hmCK^ZGhKDZnTExFKq@FD(qW6EnDA8@`qnFj%b&w~dkEmaq-C4Ts^jF*4i$ zM~z{tC)~0la!=imeZLZx;kMzhK-Bj3FhJa*_;|#!5o2-a8DyXV?Hq3L{oi!3yJn2cCOU&fn#jRu> zj*o|`Rl(KL2t5ljJQ^>fs(JVj>D;@2Q8WwKP*cYJRWE6`C_HIVzHuwAX zPqg{9Kg~ax6p|*zFPc$i;jNm{f>d#Kj^3EUU0?^R_v>Gns(m!-DoAlxiUPV#y@ITu zxTN3eQgjh6x&iG;~>kLX? z`UzOeXrYDnAhgl;X`M!L>v-E(AqJS%paLPq3 zyP&8=>3Dbv{AOp$6<+Z@<7JFXec1{pz7*uaE14W&rUnFuCvg#8c3H+`6;{VMGCY5F zw*ag3UKFIcv+-MF+_)gk9jPOwU!oqtxTACQ$i8CG?%7XJ!=2+N)P!cg!eZ0({faL` zzNWsRxnJq`I zG0^)fk+_BSXZl@EmtdDMzFEI@awg5@7amSuiT-J;(ep*8m$6Y)oT4L}LWVa>1T2aJ^ZL00K0;%iec)}o` zI)7qP4dY9oTi@*Fx_(C=qvI*Vs^8j@jW$f)te_?)%1NK>{QEyjqmu6kqhob3 zyhRV?p&x8acMrCJRlmLA8XXMT#Ul_u2f}x3P)lvFTZF*tzKY(7B%3hnG7tE1+IwOa zTc{l{l^}rqgC%TCXLFSeGne*&t&jk5_dxt;cS|{+0OM~HXwcUxu8!iA+oiW=CrC7$ z_R6!@9kQ`br3p0tcwt(}hI@M%VKb%P##8o)X6LP*t8IvtT2JHP!L8ZxB#V{C1##37 zVrt?QGk@?~Z3g>u(1JSg@TJ-04hUq3_MntSbM`W=2;DXnLd|1;Bh7h{1&v7uz z)H^+0?G+8<91g8hVD_o{{C9Ut_*)&;<~XiEwcm065*G929l}6f(|5=IgSGq>lb?*cp7x1huKTO&6<3kD zvDM!&`>x+hw=wzadDkBpa8K1*B?c9IQ=Pu+$u+ zpD8?2X~ATs`te1pSkLj}S51OrW0!6jLy_{GomnWB*b_{>UiK+kkIZ7N$+w!t)I*u8 zYK-hvIzUe~JTOx&`kqV6Z2d7v4gB`;OCf)~pm#uZcNy}ltGXXelb#foImg$LV|Vpd zoMZ`w?Fq24DD-Zp=Hz7^7o+dd)r&BRaWFs#w~025-c))~I{(ZfH+lkQHe!6iJNg)^ z8Q+Vk+1-=IB)m6YNk?c3;GTCAq9|MmYP&{7ojuFc->#rTfSZ(=l*irmf$Dho!b@@` zV3}Os{~VYnpGnidb+>NhI6~TV?joe#ZM6E9zIoO(%dui3T@~DeOJ=42zNT%)s!pNi zFQYw47L&RITC2d(EI}akkzK(Tkp0q#? zFpmoco&Wm>g1B077hm;Qm*3oeBYA%blB3rc_;$QZ3914 z1@|LF%$Hud%MFebvnXxZ9PQSI{E5+BKYu)jO{fEBmG*pgDs=gzKQP;3`}G_tK3yMc z8wstw)FqM1JsZb8(;{9b4dNWqJHoVU>|K@`c7v=aTkUA-=y50}O>I#36@$fV@yL## zP8}(8afiBGQYNy6VS8+1vlb{}(1|uZ5Ur>OVqa36d(#bmDZ~5?!qufl?|FP%So z^y03Vu`uATXv^ev8z3sLs(<}k%Pij}F+ZP}xJ57-;eJH508NCrR)Sr9!UFX4nT=3E zc7hZ(8w}YHh)z%L366PyceDU9B1yT!FMj_G1Ffai56t4=*aMbo#*xlL#HD!paZAE}V#4{8iJ7_BW9}oi z;m0ks5+k3_0ec-xJYJ`R;H-vjP@c3656ieuMj*yBsv-;0ss1}K7s4C_Tia@4vk3CB zr0sLpfDW7+SG0f}M_Va_#6t*{W2-B@97kW!z_ zBvtabA{1~xLA@Ez-*~Ex0KbKWP^j!2VRols%sULsvtrW2HEO>R8J- zVb+fWEY05OK*+V6ci$W|lFx^N5rnHZfPyMMt~W#@GzjPT2B>bbY%qpxHmN<&S1tk= z)Yz-E8C0xeaHy85o)q5L3B%mG5C8{{<5bV~@f+$_nOw4kO4HQfplM7%gh5D9 zL*gGj+lwf$98sv2YE!6UN!7QyJnv)hh(11#g%p6!HhB^C{cj_#p~j8ssZ9%uT^8Gt zdqBYjY!Ezs$5G*IOHmLRxcVaoJH-vXNfBA@4cUiX_Oz{gr`>UoaUV<~+T3(>yC`Vt zcCTex!r)-n4m)?X;z~=mtMk@&fq-|&!M~tTM=wM=!h25}v}w#+G=&SV;7_(+Om{$6 zL#uT7Lj}8^4*{WuR{4q#EAls=d~W;p!s~)Z&u4pG@}2GDz=O!3((6Jld^le4m$|m~ zlFOF*O~({~^NRLtZKe^P|a0&^w~&j!%~XB|JfKT@?EV9X*`fwsJUUB zb>6XL9O`s;404;tIpWwh9YlF7gM33@fY)Um`hj{nMu3tZ{W$U}g{coFU8O$NhePwJ zabZP9J+4?qClQUu@fE9!r=`jjG!!b=Lsm(phwJzZ@|iYrHY01hJ~ zdUtf$7@>vTbYu~xNnDoNpCx>|XZXhOcH(jMD-eTQ;q$+whR!nra7mh_<=bDePXjX1I;Zne^JDHRfy|0(Z{hpn^iCb1VfF z@~!4@sKgHPIc^DcX+AGpC5!OowVl#x zT?#D564;!ls0R zbn9B-K;_a6%Mn@<>#Aat&BbzD>$O+r-Hj!upCuV~XKWbz`LJkaUtv1UCoE?*r6n=f zeuJ5^mG3v_(xRm)H0SWb>jS6yPH_PS;ijKgG~ipEJ82BbU;Dy09pm<;CYS_i#5Kh& z0F+jOo0U~+eV&h z#hFPc^KnvuVD7+l=ucN*5ASC`VX5Kg5xGrn+`J_KE zTjKwEj+>s=>r@r~+ZZdeKPP6Xvt4ymp|bPIYc4(Va@Lrs^xO;*gYem>?siy0NBe~x zwn&xmxg9H!8ulPMp@Rla{M>Tn?z8Tet`WU?%HctHO8fVKdG)1(7+08Pti-->cep8r zTe;Efexd8K7eWE4^*plX(_^sI6mfI2XLymQI=-;779hRV!5A3kjNTd~wH`LJ&d^N4 z;;+0zm}5`DgT~)5cn`IR-WVl$ZkX+qHk^^GrS@sT_YPQma>L;_-k8Pg)(z8DykS{_ zxMMz6x+wV$Sb@kB_PKm+vCmE82Zr|~EX8iAwIzR5;nj^{6M+pkPLMueH~-v-A?^Xk zib-e96AlrvF|vO)EN4@~T7GY<6gy&mL>e;F;u+mGs|YrUt@!~`b&~bJ6lp@&mtY!C6q?0{sIQ%7dk=sXR)(sj^ z){-#pm{%5K@QTr`l`EYr;Y=qB%ud!quiDQ9v&7^Xdxk@&2SzzdJ9+GxN^ScKX5SS= z{wHStdffE~W~Y-S#_42e)miKIsz1RIGnEHxw^jx<(5Z7B$zfRfNWpT0-7r`3iYJps z3CDJ(Qi2V?j_lj`wD`%OkaVj4q8Sp>|Mi8;@#j6nU)THJOV8K!{v7`O{og;0oz79- z#-oPP-kYf#M*RHqzkmI&|GdX*s1grD;}2KtDKuI7KwdW zJxaUgH(t(!!0W}Tg+Y%3!U~0NIe4N1#vPSjxWN2u zOq*_fjn-m#jo%1(s@g>sjnV;*F*z_wN;c+wGkd%d;(fAK0N$-44FF#^7+3b!DfOWv zI;%1e z%2`m~+L*(wtX5RBdZu?_Ymmn5Y88kz^f5kRDE*$v9vH>x@4~4T4QcL7lvgDWYegl| zk^1~9G!1e@SD?92o(jC)t8}2K^74Rn<;)^JcQH|3Q%Z62+U?p8o;*z9^+0c)1_b!{ z3ytPGqMGIInPVRCcUD#e<|i@108Wfq#0@IGkZsLO`bvEh(M*qQSL!@?PEoBzQE?Pn zid3c2Lt$clt|y}}o*48o!L~b>zGEi9wTIVtj!4vZc2>4`&R}503Ht>CUc94eB9&p> z(KJAQUvaB&P&Dt^=<&ese`5N1{3yvwrD=YtO5ZPMGAOg1l{lS6rL42LRndhq5{Roj*9u$x`kG58pG`E)(!I!NYntL4iyR=fS159*O1vG#}$+v`}vd3 zAiU5m$KB20zev}*c*CGq81PeE76fJpvrp-vuF)|&W=$9PCz=|K6(u|8s)ow4v!fxmCJ$Gob79M|PeDh00M|ganPmRkPe~$bc*{xV z6Z{h2Ib9~Gnmw$9*q6TxO`61m_1y!k*dX0u!OO;L#u|WFe5Bsp1#!xCGPVhnf4jBG9Ggx6T z@K92o3>Pae_9ijVP*d#UG*)_HGmkp3z0sefAmylDG||l-{!2v2?VpVaKANxu)`n~F zMPRV=VQnOA#+-0U;lRA&rZbf}U@`X%#}v+6#W!2}1RMe=;P)pzE55J~S73e)jPFU< z&jhU6S^sDv;;jOXw>Dg&ZVqkHu5x^Mz*cAyPL(GyR*Dk7kAF*n^40f~7=BYzakI6H zDs8iCm^BN!ShBuXUL{?f-Q}7}y2!sOrDCtv3)n?NN#%%bk`uh-$O1c!mb0vn8n4a{ zcUrel6_#kdf^ypy?bRyL7XDQS?zp1qEfel4D%BHt$52^m{08~~rn-T)VO9Fba)!S# z-ijYRfr^|oH~xmqpMaa_9LYQVd`n|kiN@9$30sldcc{8;U*WY%g3ze$i&bO5K`xkO0!%ACfs+TZAHSGJ>>2mGm^3_DTEVUeAWt6BQdqq>cT_ zMqH|CL7!$9>KE4B@(L9YlwX#3sNi|}VRyM;hWZuT>fPJ!3V7RHiILq^m1mN6mkWXp zyQ?b4Jnb&jY}C08FZ5At&uMs}CIc)u3@=w;q~TSS=YAMos<;Td%e7@`ccH%TFuLl) zi3W$!Wz1o8CB{Y(ww(qCJ!k}W+FdTF*c1hS)(6Qw8bq2z`4rhews2gpc9>nR zL`t&@bs=M$Sy4E0vYn}(3~_;~$HMxkp~|Ic$yS%E$@V*q=RB<3E6%J)yUW!v zn=`60$YFQ6PH+o4?QYs#)%L9wI5yEdZ7vro?)ybwX>_@8@i4k-7_k2AK2&yYqf7Og zht1`pxGkYnG`A&~=&i|p{pB>m9)Ch{%jmF zt`#-`%T)+?+g-*ShF4-_c{Rz=w7k$i4I1ONyqb6zIYVQ{ewtA(dO1{c^cOr0Ex=Dd z;qveLyn(T()SQ|m+y^|@X?F!?+g*6ZwbJftV&iESHL>wSyKfT2X-T0;T>pTz2;25z zo4La}!%kfN_zkpQ>Zk36-gfw~Fut1V64Ll`$@5`+p>}GlG`?Iwm{yKUt&X)5y`=F4 z@Krd{_;R(@VSEMC+s2ox7Ss4bCH1V^_yWVa>gSK%NDs-^aye`oU#>$ttS?lmm2G^v zC~=FT#mLLCJuX5_kHieFup7d4&w{!Ph-o*SL}z4uK>64m6))#R4aVK%+?5Nt4=0|Z;)xM zhw)_|mByEOd0Jnt6h5pkaB4VY!}>x`WNcShUzL4g4&%!epJ{!$L_Dppgwy&8OjuuL zy=i?_I%3lFs^OKGuDpNbLXM68Bn6icBHVS_UV(TQxX45?CYa}j-_3ehKcPq(YOJ+8 z&4M+!uZm+J=L40F9t&q=N> zp4flC+^6g1JXLji3_}dZw_OXkUr0p{e&gO$6`@1MGQnHI=3;zCN?r)%-lRbygiu}C z)07Bv6`k8=HSt0Fk#@jnk|m~TOe(wRf%_41G6HW=ukwMxFT}qq5A}xif#15CmPLrr zfYoO&K&u7E4Jh>G8U_4P8Nycy_aNsM29!00gl)7Pu-iJYh9Am3QyORH@EkHM^27En1h(rDn!Txl?s( zzm&VS+_3cB+%zYp05wy>=8p=hCU}Y%iVa z(qid4tF@1nbLC>L9GD+Hs$Mx9_UArV4hON#y>fWlt>i|9=&^EL8sfeJ>fDoBGbnuA zr&^7etVy58sn&U~wSXKl9DE0cQg<#U|y zn8;4NK@*}~*QD{#%eYGiSMr;7~(V~qze zbR^{5W7GO%tM5>7@bN07geFMakqP}}D~e2Kp(0t8(9H7XFO=$Yv!qCb$`iF)p_Jo# z{f7y><d0_$ z&0YVM|NK^F6B=W{2n!z)3XB}vAUzD#$Q|hOJe~V$6XvYnM>3t_;?H-Hq=SOB9<;K3)UxoT%nTbwBk_qMRVD;iOgva z+u9{vQ1fn_g@AXCO<+)L(H~WrlGz|4%%U(!GUOdTE;Ch|l!yp)^_@!3smo5m{%oX} zd{gjrtCQO!fdg1!0KvN7cBcxCCI_l)vh70V0Xg9CxUp0@K-kcWNA^?ECHc94Yz7bZBBBQ?RR0+y}h z>xt0G|M`O#FwGpriDf5z{HITWO!6;xbVtEAU5^R(>ZeIE zw{_ER1eMt515u@Gj=mIFE@B!e8@wq1x+EnQZQR?nghd_OcY-yacf!13S|G(0D{OSb z+(tFLhc=gGOEeh*dIF>Pm+$>CzI)wGS@9>!F3PiU@ z3hP;&9g)I%R_9n)SfjLd-CJ1C%El*$u%12uTUt+1W=iYX*!w%B^=zybJft=1OXuOY zbp>il>xuD$^^n$6iRme=+x`E zlBM-fQ=*X81G(c{SR353+K3RM!)7jJifR*3h-%axkG4hi z4DOhs8q{;$TU3MIuChh-?3esPDXOPR+f!BpMgTEnb-*dB6Opp|7c2NtK{Hd04_S?G zfq@&c8l~1aBq6JDyk0;jB=DwNxQSMr@@wad~ESsgo=&zCly zvO4xWW%ax~`y$9neHcaUkOZ@ ztqJ>G6VCh+uMk>!N%nJcJit#f;l=5xzSXHSxATn|su6ji1t z33bVb(XnK^9h?l9XPsAkCb9s2wrlEJMX@`RC2C~D_2kOwBXK1#J8=cK*sVeyzOGDE zF{}jSc#P&zliu(>6Su3C)X1zOW1u&y0&RPjLvsMC;u9i>cA%?P4qZF#we+OoW&H$HZ z>m_RrMT1lOSt=H9`fHUV18L^GTbVMcgRC*-Qm_uPMpIPRG1`SdR6BK$r9!XNL6+rC zXc#CKp8eE8R=ZCh!fTvK{R(SiRpnFeaOXm!iu_UbA!utWM(A5G`WaANs`Jf|>r$2P z{_Zl*Q0I5{AV?k6)!chs*>V8O?%2Rm6AdVh8nobU31JnzFzW@N1a}D3RoO80upw6M zM~38TY#NpNVl3QNd>6FR!%MY#W_cs>|H2N~?yu@YsIumNfY zco#yMZJR+LhrX$ecPJd5Uk$=6xlkL9j=X_D9}X4`tC$e>MmY!$gB)C^KbQan`vmFV zFI;#6kRA_?>iYB}zPh?H)g#$z^{$c@MUA;`IBAekI`6TvFXn-g;|h0#bQkop)z~fT z2>PzdgnuYgc!xTa@r#yHB;gtfziqW3VSE?*3UX!DOC!^}f}D0e+Ojeq6>ILFlIdOO z=kcuMIHX}wHF~;{y<77_{{eFIfJY=$1SXP#a84-Kq?)-Q$dU82)N=@Oem0-oate&* z*(h70pm}jUt{5sj3o&Po6VXC4tXp$LoOlG5b|3Mug{ZN-M@8crOoaA?{|Lb}pU3B2 zRFw?hG!^={DStbB;$+}AnJMCvb7XXZ$PR~oerM!_tzN@}Wjz+0@!r)tB)V%msbc9e zps<=IkHp{WP}OAoK#k#Q5xHG55L0Q1&5B&RfOlPGVia7#1Mmu=1}~Y?ARzma%*3)P zZpju(MS00u;IKm1q*u(i$(RGq%{a0SuuQ$|K%=z?SK;nBXjTN1EMK<1Ey z*fq02Y@?jHpG)0Tf+3|4NA?6;^-T7Y0?TXaDh;vUjy#!A3lK(m+ShNz;roAH7CcZ+ z`o83(pnElq3rz%GPy$g^!S5o`VrOeHm8fIzI;P-a7MiLpFHO&yJm}D5e&6M~;7NZ7 z*w|D%t@le{%wt11uRMl>{fY2BKbq0^a>YL}=o@g~OaUs5osUio8l>-QUYO?q?Lp*! zV7dK+xWAfmx+E9v2}s6x`Il_*VG7N2U^*Ix+@7PSLe>WZ0~n&#>^L+GK?QCUzM^4> z6)DX3ddcBIw2r(=^S#ia;ih&Q@J-hH{ZC?+yy*bnRbI$tQvNGB(88qd%Qx^x(Gi0T z!Y>7KTg+EgjVlP$`B(*%*uFr}bI|CdD+44?MHmC_Cg2&`T~U4%&P?Z9Xf45ki>!7o zHBMQtuA^lk*|CMcNQ0gVkJ7{ELzVsSz#uTP^e*o&qK5@7XchFLg@t+?6%Efq6AKD? z%xJp-HwyI^rrwDb7EaG`X*M?P;s`dV8tOB%D(qqMQUIg-8IxI zb3?b4TPK3_zt*kFP1VUQOxeC%rme*X6P#bUHyEC*?Cg)-b1k%H{effS^Zz?A#g$Km zRy9Nbw+!%WB0xk$A(JLGL3v(sDA3McXi>u|j+>pMD3_vClvNFoWOO~CnDnJjj3{Q- zg=(cB8C^@Kx(TTB<=XYkP~d2Nx>_sX?<{KDS2RxXra{156K|k@5_fnD-$&o{0YGSd zLE>NXG}6Nc*%|eysyD?I$Zq1AU9o4jzE^9s#q!xLx_skjqAIZIZqgM45)FlS4nI~E46U#@Tji-B!Y zO2xo8)GvI z*UW)g6i#!g?9X>F3(sB)X5nFN$qGFE?O+yFbsGB$O{W9Am@KZ8tI#68voI`vwBO3@ z-yH0rdjpoY-NN@n;{YGVtg@S9Ir6(*&yIC*0;uciw>VKr`{v8a?Z?tvi@PyaYPm_nsw;u{6Ac?&kb(!2D1x zR>EE?-$BeRB^fZ5yMfy7O?ItEKN*)vLZzUsg)&L#z&H^srBHth80W)vtvKQDd%`Em zx`?||2S#6TmaM5jhh8O@9D8xmlB}03bOroeyLJ|w?(%kAY*Ggd6~}tf0)+o=a&<2@ zPy_$$D`^>DhJZ7D@+!51bFK|EfhkT`Ix%r<)#4Y zsRTuH(g_ss3=d^smg}-qo3~l1W=w{3{8r^ORtD|?_WeQs<3ZU51&=HDtc1B6;;(sy z*)sy8ES@prc|RZa|F>qR%}#Nr65+=A$HAdJiY-*#gACCCt>3D~?V%2f-gA4My#vI>D`Pup!~_(#kFRB@T9wZ(o}|GG?wd{aIL9wI3;*Gob{He z8tDfna0=n%85)6&C_phEYMd4roGIlx8i|SUL6YdSX%VaraPWTL&3XYYs8TFH)d;t2 zP!XAp?p;-er+Of4Ac7^U0t??oC^6oo`u^t(4 zsB{M$HE7V0dt!b*FuG^MYt;?g>hv?9fmt!!a8=eu!YxZv0yCu5Cv1HS@V#=ae8;^~ zf!c6U7$o64%ack^ke|iI3C9C&@`EH)lNoZOuB?`ZVThyzj;Xt*v_4kjb{&#JM*gkA zgkx-NS(6NN6;hu`0w5@6dM^;^*mfnLER^a~*KEpD_@5v_5&HCqAndFsKp= zA`HF&&m22opUAZZZ719BI zYn&pKio8IRVD=F;Z0^iEgs~O@N>thAUoe~9D7ElJu=)!g_1pKTI`~h_z6q-_{)CU; z^&Nj=Fs7ac^2RjRE2<yfUxerGG!p*X7<8S6^9WtU#p99s${K+>4&moAgY>{Tbw7`2 zS1#Rgh%xl)I?QrZ-`p)JGDcj*nZ+Hd=E+m*T>E58U8&Fer95mXElZCY3MVg1JaA-v zM0p3hYWt9~CS+_kbAVccz<6FfW z5BbAEF~%TUnsrJrGbZ(OrUV6r%oY+C19xxQPbyo%JA`)&!wzWoK$d9jRP_K8)FZxzmgFwv3sYB`}U0tdNNTXE^i(hmKY6ZXp1`ds-G z@ORGH%PTy?EFLg6uQV?VrW5br(x`mLp_+l?D_kv=--%K=Fr8S3AlkiBLDsRBc@VVJ zzs`k>AIxN0Jx%ieHpVIn3riT*{R_r-vFzoR9sUQ#KK!;5Sp1R7IW)KkV>M`dqYMVuLk+{CiOr%% ze|cQ?g0T8zTP)VNl$$VvEki|A0poIV+T#LLeIDTCucfTPD6EkP79d>r@q40fz^*Y5 zjN`ddAXJh`(TVq#Pv@NT~P&6AYJkv0w6EFz=gH zrHaK}e`0J${V1`{8sIO?HY$I8m-Ba(N99YE_>xD;KkloJa(k+TNGwEenvx;&R6;TAkVFUvyb;(7h`mRu>1SL ze7Cw??ttMSvD5w=H&lhQ9gupE$5eNW9y2Nqg&TKJCOK67pgF~&c}`LL=;QAzhWvny z-CG5H`fa0!Y~yKDk*DM<7y@!cru$QQIQIkUtw2%!0u=cs%lU!oc9@tT|iIwn(er}0zuqt6WDK=a`u9m&OVVl+gZ}Z+5Cey2A z0vzSN_D_uc#V5j{<%F$QC7iKn&yWc(cYsLOLl`6B$Sm0y$KVrIL}0^;$@`A$NVPg( zMkNwnp19;WQv2*22u2|iR-B(}1-JJO$|t5Papi#ZmH|_>If%v|y5U#|!`otrEsKak z!gB9#7@nRx?!Y-Th9Ab-zvCHXPMC!_tETb5OnGh|T%Uw-AFHoPH~6mmsX97Jh-ex| z|I{XJJ(fy&u93!t;XEZRspD)$0O)~Zd7EBwn747})1DWY8H8!r| zYW#u8iMFK>yedK@!OJ366x?q1;1yFYb4E9w!jIzK)Fz->~e#SuX zQOuH%>Bq0)XX-6ph@*@n#Pu$UT;i)RW!^lKCXo^;UbyQsZGJw=yFCwTXPdeZ_uPrY z#=;P!Pm9*0mi85u-PZG@vpnKl>8cE+u*pDL>p6G_hs7PHWl(3BWF}rN(9QO$hcyPB z_CBn!I2}kG=O`Y-JB1}N7-{u<>ZXnK@jof!^6C@HH=N;~5& zh|Lk6AjMW#*A=AdjIHl~l9*B7Gv?POe}~V19S7QCuT5DMV~=FQjggm!FuugegfGn2 zXFHkj#n3$z5v~^=O6E{9;R~-wHq)n#t0?isAOFHP^F_QkFRTb$tlo=Q=kkurg2Hiu z7w*a^iA;^xIOa6geMRl^pUFHP$kVPnff08!dBL4c_`+ROrO?g`v&-I2Cma`u`p71H z5km@@2=RqGU(+$H7nYYG(+OXU-Foqw{0b>(?=RZJ7x_Var>CUPFW=e01%6d2hp(UC z-7-Ju1$FqXqUFM+68A23{k-B*5IDnYaU>MJ7IoB>3Jdy zo>_(O$3E0DOk1QBW@tAV@hiwSYh1cxC(2ZZ1J^S$0h2Ye==#Ij?7;#+d+M^&JbEVbv!Z$tob80Gj0#AK}W zepn!h(PsSU5eFX!c=Z!5XGCMaq!IjzI!<`XgxEJ&SJ_u+rA!Z4$m{;32W3)hdKh9L zx5e|*&ZEjZDwSjT%5wYRynL2mnlVL_CrK~&HaSR8cxmg)8&-akN$xp4TfbR|_)59y zbhf|qzeLyzjP-8pG4~gYZ~FQD6f%FI4t`}so@zhkPsD!X&u8d`?~5%{jt2+E;_GK) zCUYP*IM_>P+@|aKI8lL^ds}2L+?|pS<7V7G7+V6|mx_9VaiY#)-uwKPhs8@fjy5o| z@oHgjyq9cN7N9+uVK`7}hnI3G6YpR<80cJ7^H8F;N~Q;HxVdIMF~_bBg|Pm_tU@Q= zi7`h_ST#@^j^s&VoL)&L9&o4u2`e%6xI<2#4ayU-;qY7$bC)fL5)O{KVaXxR5?v>W zZ-nj$SSlsqXB-Zjjgd!Z!(#ghMxElu6q*-Y|9gw@4Tq(_F=lT8ioI<(%Fl?Q@Dk=n zWHH9^h!N6Dq-r{|_l%El%-$k8Xf?E4kn*)fJc+wYUk`D%6lBb$M5uH}O?ZIHzv~b+ zkFqUNI6YIMCZ*XeO)M_BFO}hiZjO4W=ROGn6(M!I-v;aB=3eU?iu+zS)+asZx}jjs z$~)E#)hg!^M?K5k&virn9P3iOZkz`?_quVuX+PHu6?L>)yl$wl8GG4SfHTi!Ly=Cq z_qt(Z+I?8buF|jff<>yRr3hx2uAP<6 z{T}C^mAaD@Xn%;8nH0EWLZTrmL&?NeB+44|4Ys;88 zBq3uGP8k!JW1~K`1gj2EnaAn1N{qc$fJfb4E7mNn(`$wDpt?(72UGCJ_F5sqzMUno zqgqu6uN89a+b&vqVX>L?TCs3o2b%^G>f5e?9Vk608@P81(Vc)!jX*ntH3(T=w?rH0=M z8TWJ9?sPfCNOk(B2^qoMLOSk=2sLD96U}eupztuoZTCa!S zYM|)s-bJv3<6l?$trAYZRbu3~8mLMm>yh7z54@rXaom<`VYIUdZkNFhRu+xZZxuwG zQpmbz_^m*I&yM-p7(ZJ1-#u>iAlHBFP1>d1+^eZ zSK4kXe9XN)W`h$4pY687`5I>(>_CMIHEW9}tY6tqhrPn-gs7oQ}N$% z?qdGN)gwqGu%1OxyrHOi)})1cBMO(0k&nt*O^6Tsou=C=c%$7`0P9%|`+MEQb20r2 zGH{z~f!Q)NFqWYJ-7tY-lw-ZtDMo?0$`+%|$2#OF=YsX~(~-|V%9f)@-?x{5Od09= z&xai4aI=hr4`l0~))=Ot-Dkbm;DD?{(jrB_?i8KDSyt<`*N~%sAHp3Io}MlK2dC}L z(_q82J=%QUG0w8;+h9XZ|8<`R8_ILa*uoU!uEv(70j4N5VoOqH_0PXywzZZRTWbm1 zT1z;sHDK<;S_?R-Kj5_15+iFZL0fAHr*i&cwt^|ZI&T0n(ooOTj%=P2q00ldk;Ve3 zei~_sv5}UrjI;#PNK1^3G_1O71!*`WoJLw=e7FO&k(O{88^F{LBaM|>{dhzVV@337 z+SF$kxHrLlmX4!3ku28yhG}c@7J?T3g!I1`4|BHa1WQb4E}aCNOT8 zC%Hz^s;=-^4`TzoVeQ?+9k+t2K@06x)p!^i?PdqN!`NuIieGT6$mrACC- zf6uN#8Eg%>OH^>fP*^Rm=w0bxQp*y~nv}$3-N!(CNsGT%yH9FS>_*z<$uyKjd4>ybPgDA zf#K^>cf;$Am;e5Wfw5M=9)9w+zo6pT&;rqb?bVL1SD9XTi@*N!T}bq9!ZF~)nTaD> zxIaQL8x#n%fJC9pGeD*9>L_<|D49l>K^?4;N+sVNPW#t+Me0FgST=m3RAzP?HKOyV*UmaYJ#(Qu?Ve z1;$J96J9=yE@DjVA`BT*Fh#CuLKaei*vxDU!|RI+@;nKDbBUM?_DW2(l;=H<5$})U zk?0nZaN(_h8?)_7%t#c1Z++_q5FNUoF$wRAQf7R4^-th!urh4xK=}PGR8GvAFzzVo zy+RCXEguyx954&B0aLZvm_p|J!)NeE^r(U!m23!)8ERU6jWb(UEIw+rQA)_|!Z2pG z>mSV5!@6K|(Bx9%wu?$P(6$of$DVFovv| z#1t)DV}nE7gV)UV)?Y_&T2aVa`UR0%-VQ+9Ca9Hu~*gJKADOJ8U>^4f?N-fd!6x2~za$eaKwdo`w z14PuqqF(mtm>R_P{vc;7-vU|C2#&#qjGol?^9K(RM?|~YqJhV#^M4r&%7xKI9GLf* zFiZ@h=-P*JFq74NVt9(K)nA6SZNvY|&quYy5*aXFz!Lzkq9Og}$} z{(UP9AiViquQ+|*;i~Q%i?;-GhMB#XQpw$Gh}^=exwK9Q<+G_YoXH>$+wo|U! zzr-}*wZx#bvgBk&D_1@N%@5wMohYNLS`~PHCxxHaji(JUFT4Q={yo5mrE4!?$#EGk zMB-bf5+hLqyUMvXFRQ#%A_P?vdt1<43=bH~39AJHxvPCQ49h|*M1zyikO3zH%oh*T zEEI?`?&YZTqVc>p%>n|`f%eli)=1eDV2yK{s24b0<@%rnJvIoO5StEd-NzAZhl9dz zx;Md=ux?dqg~0bKYIQq!VoYC1vBm@NDA+e-d{vyX4EymQrbKXsH-eo*`oi?XDZxjf zTpFffX9g-h8=D030SSYNK>YxD4ayh>6KkfOlv{b!aLJID-WN}DWuxTxqe|mP3dRjD zZNCp9EYA9i8$hqYej#}WFW#C|54Fx{E(a^n)F4RS=W_>NW(dBDf$xtcvh*IDKFBC+ z88joT9(fF43|qwd(i1NXcA(Qe265QCb_DJTJP}6?T8`EiKY>SJ2d88>e!O8_+ak{f z@8+K0L00^Xwzw=%pkQo*O2ATKB^3@bAivhcA+SAcW4X1a9Py15fZuRThK*jB?#ZwK*UfXwx3jtQzS3yX+=nAYkla&VGMOPZKo%Ah(?Ug{fjmM}miRq>Q zgyLVB#Prf2gC&)(SfuW<;YEMJ8gI00kwhsB&EAzEJ`(oBREREIVb^`Wp)Q$nVnEydck3O&oD#9 zQn9M~BHzefh1%9Af7wcv+K%EYY`{6KyFi^o?^UV4vSZkrmCEerVexG zu7I3w?Ne2l7QqGN|6`HCbE}mfikx>5LE`c_Q9pl469fnG52FKWJfaP7rW8*Oxv3t7 zI*#K90+j93SapT>0yBgNA<2RQS@;AYLke3`SWDM{11z`H>!~MB*X6g~Bvm2DQ2Xg&xYBY~^z>{yQ#HC((N5E7m;0}gZCZ>R8K)-`ENDO_JFKvJ* zU`0WTL5v!wqR~M~?f^N4m_0Nzy!*>k?y4G5!tV)Y7u8VZgc$6ezhN~gTN3g}@t7<> zS)B7xi79Lo2LB|ksMK;6W>?~j)mwwjCW8C#ABgB?!d18Ej8BZl@oyr^w&6)5ovPL( z(bb2_O2Uxh0lyT+Rp4e3gZ+lxeN%h8pb=m%aNy^lLV(6J*;BYUYY2XJuwV05Bw#qmm&@cH+G`NLE+H_pIVo>i51IkAu2H%M@_*610utJ12 zdHeJzjsro@47}{z%>Iz3q4L5u0Jrj9lf=jEpg!IRsu;KxWE@o9;8xIZAK4D~Shl?1 zkG`PtqhBys7@g19>?r|^RTPWrRDPrclf_L=7+C;th9 z?VR%IgMD#jktxVlCGcy!PnpGi2Ncw(eD%g2@$U&5LtplODZ>rmjQDa{AW(I<7KNu3 zoC8`I7LR5p+s-d8u9hEi6ExK|;}4n4;62<9cw1ia38pKULa_9dK66szQ@=O1PQDX! z>C4cwUhvH?2kV36#V`Tzcr{Q120Ad=RKXpJyfVf=AibFn&Ss!Z!uyig;N)i*4UdEl zvO_8U2SY9F?a6qEjL<^f34R14lza=}*^4Sgg?gwqw^QcXf)Yy1Lc@KI`d|xFHcy5^ zDjA_sXv+pOe=k{X&``0Y$Uai( zJXjSr?tV8GZZNrO05=(?kL-1{n$|cpIEWwwkt{e_>L*JTX;M(z7bW!jgu7a3EUgPN zuW$$uQ^dF!^vXv6%*QSQz&=h>20DJUvUD8H;-GjUp%Edj=lVjs^@n9IP(R*_FAX{( zE4;{=u5Q-#kP}@>nE?!$!DVAd3t}b~vT%?M5@^u<73*BZGA54$m?Ak7egbq}DAJH+ z04)kTBcg=&2}}nwHIk{2?Su!M?e0J=NU@*j(D5=Is8tkcItH{akh%&@fE|1n!FNa5 zh0=eO(Fu(n>o1HB8m~vT1Drus*43QO0V!;jk2hG-qoGs5$p&cz{3VqH^r&X5;7Sl* zNPY!F#Oa4tgLM%XlY0p3rY@!67Z3_uS!gAtNXf_7Tw*XZc+u3lq-8s_TaXT5QFwp0 z_6KJyn$rssR@-1WD&Uz$`YTi<7!**mOSOIRP$?rZEtv zrV#J^Xoz{j_@yWPoX`uga7!&E=@PygH;-G=twAH4>UUDU7ueIfq!?rPB*uNvaiW34 zoO?oL49YkiBy>N9t_@KGnj$URcTSq3sn0?*PP-9_HK}EIE5;=%nFvk=NfnNB9hzb1 zyh7fEebQ<1NWoqvVpN`yMJ`&EQs!YxpctXj#$cOcR4ZVi2;w6j1&ee84AdLdMs(f} zQsT`yvW@RV(}_L#hCia2MM4(itEslKF)LuoAH!O?`mdNOm30`75SAcNx+gBF_Bb0| z^z}&WUJ8uD_QW3CJa6<^P{>}!f<=Np36cN7zQ`MxIiv&06ii&?6J=ZHcBV`R&$bK<*cyldF9r_MOBK1fPq$& zDN%}@Th{kV@m9`CbE2qgSAkwOLtBA|1R|9SU*vP5z@>gu=(B)tL>-<=cqO2@;j~=x z)li6oMRo;bhW1Np8DtbN{CZAN4K<;D{ZbpKN*}i zDLmLfD0n#J2nRjdvZXIZm?o7E7_3;W5#WUL1Y!UNk{p3ABLLl!p_UmK_RoQDj}9h? zYB=)>XF&7Ek(mmerK%Ir?~ih<9{(ND`NGtcazy7}YD8CspMRKB554X;V#4FVBEyX6 z|AC3;{`}7;l|^ivx7jm@eR|T%JnSQ6A>Us(73wS|q|iWE%guoz2+zJF-* zhfTq+!W#q+Gerh-x3>GIpw$V=8PG7a`_tJS3ajLb&~?QsAkv437}mTX0T(_nWSEwR zV}fNGJya;sPNb3z(Rs|?9!TY)4)cPZ8;dw2*NYwk8t9@6COk8aNmu`~Slh=vA(hZ8 zLcY(-U-G#rHuO3V$Jv2wrN9*QWB~o$o#Q}Wc$H~<{G{HDd0N${8P{b{B_<6?LkUsxnnAHKn4^)c;^%S$AA%*d;j@RsR9 zgPjdq1Xk^Ul$^x_!ri*5;3H$9ps3bACuUSU+%D{n!p?#ah>s#jAU7-(+(sAmvZ`^y z&{&yBf^<2h2X$pgknF){5EbMiVX)$~=}r2&>?Iv+gg^qk#S^(?H_Kn~4qD`UI80{a zn}-z#Y2N>eT~H+>8@|b4D$}pO$*5ty7Id1zA)U&&Bfpqmzd1V(adwT= zMV?@^djlceN|q^8O-}$bRL3#(#ZeuqeM`kaKk#{qHv`kBFrCZ2G_^%JUZhN56qYfe zV>0|5S`sx-Oo9i$UCnmPn$lTssla%7CKA)*Ld9}wJ*I{Uzc9@*oIV-b97{qnskWV& zs7{qs<`zd?(62BS zac%Y@ed)!)s4HU=B>uTPS{^nP2lzZ#Nyf5%I zqiy~yoZN+xpU^8`c!+<%)aCaV)@{LCO9_XBO!gm?e4B^>t2wH&5GGsNej&F0h>dV+ zNr(2rlcrYJMT=YEc=%$*0v$ez3j(GCapHX9av*5`fRw)ukRwL`QwUB(dYW(G4`8v7 zi6`&)3-h=jO+jCWSdl8H-(}~Db*2ZS5L#aT_nt@f+48;d8A#XO@D%SL226>s;X4G= z`7w$QTVuVeZs3`n7|eyb92p`7JyFLCV=3wOq%nj$mOO~>va+NK`-lXk7p8td{S{n% z-f&nHMNLrWps-BEgY$ODm0U3Rd0923A_K&& zkrZS(h5aSr-xHrJWoM?yiZ85^<+_p_3fmmP=A=JhVmZ4tA!<8=-Yst*ZQ-E?B#C1sAXHXjNsEiVeOn^+tx-NWG(}ru-6DA5C+lFMDxEzok_H zGx%mhL)*aSL1{xy|7Y3YARO64hz%0ME}F#Pt!Jc34`tmDqx|b(5zcPTGg7H1AB@iW zfx#tE=;92J7Kq8m;8cuuS$w+HurM_+`5YP&Mcx!3nEQ;1Qw27FfdzC^MMA%Dw5CSa z$RsUuQ?EQBeuEHGUix6Rpym>~>1@-6P<(j5!#1nxEb z=Lp4L{?<{IyV#eBqc~uBkc+gdrbPFGnGB;d_51Rgnc({^dPSRg=Rxzu$PKL5DhzaS zZYCo6bc&*LJ@|ir6ph260;ywYf&(}DxM+WXO@m8x=MN97PUw}-uqJc|<^(+b-waXl z0;|DtP8D?HZ!MG!W>_yKP;hiLKW1Gbnv2xBAt@%l#AY2_LqcBFRs)d>&nmE;gGY^wwemlJ#}mbe2y#{C}7oLjNf-5A_b^Pb0{(q!|x>)cW^|6lIzzz%bXoivx6KWyy2T^ow=b zR)^pehIGfF-uxCjO(2H3?TeJG#iDkN*(cyWU?#ZnVe?pm+RZTTfq~Wr0=V=@<$yeF zN`jx%;b4xsUrJWYb2$M#oE{rg^e#)D93FN1iIDHyQgD^EQxXv)Y+xGKIdRDvP4Jp$3WqZ#W+`HcnO~M9Kk`lZ+&UNkY08dxSG{o5z;aLv`C{||4kl4Gb~RI&acY;i2E|1wFN|ikSR%2%Hsx_+ zXsZQgklj($#`|1)5y7NRqfkUHr z01YPicwpqKQf17;{siy^(6$A;JAE>r;y51v6O9(x}&By>TbI(%}CWTjdibH!Z~$A~8TvRinhgXMjc@@kH@R1am24 zy7EMjAV!Z=<6qfWmLU|u(|(@T#H~@B_;52+C&Te;!$N@>pWK=o!k!3h<*gCKFAUvB z6iE(WtG#c^km&Zep)zdb?5|5GGvTmt6UkRhkiY_MZ2o?9%gkFeF1-h5lsO1erb5KLCaw_UXE>HsCx7{v8l;$JPe|4d6^@(X4a#}pKr&|HJk%Aji_+^B zDW}7aU#0my`ihGo0G3-b>0909P;O1Ftf@N#J+sPtXlj4ObrAis`#e^P;*sKafOGOeDH zfNzeJ)E&yUy*UAx>IaS*ip0APCpr+kaI+GGx1xlpipsda;e{2oX-@BGE&Q<1$}0o- zoa$YgQbbDQbXchmyrFr|pgr6y_+leA>TV!bmR;ZEby^6OVN(N?MF32(4JhLmB`hlD zL<%xrv_IA-96b#TrSNJ8{794-wxAz=YL_ZdNj(8~c@_vqt=&8@kPIb$qgxv(A9sw) zDcXq9QAcpT#D*zx4a+8WlJ%6km{!7_2&zC7H-`J;ga@X6TVRR4g@IB;=R?A(?G-Fq zYx3zEgQX~X3HsBe6Rm_rIrpsl3MfInf54)wyyL`l8KC(L^t2?oj$5QehOd$#ky@<3 z-je-HsO*v6tDG$TQK=x@ZeILb2)R74kYLTNiouLx_JNG)FrFOug(VcJ0PU7;4Or}; zNYN!`^4znnV4=(F*10eK#brkFgat?yi1lKFBt+#Ae_oOS2|O>QB~%AfA)MZxx|!8}1981_;9%`>f_-ikz_9bH3g8~J-Y zg~XuCnaW^ZDLL5lqbTXHAcK?VL2W4TQz&s{a`R1N6KVZJiR1`M(2!TOj|UEo#wfPr z_e77P_bE?kqnO-%TjBh`Fn>_Fn#RCepiBzGMgJrRUCQqfqATHaZE)JlTv?>`wewGf zsVue2ALC2`Xkd53?;X`Ei=pjoDP|ALhI<0s8ZSU)u>a?uT+kjcQS_k^swr?;$0 zOS;L1T+~R#2exYTXlSAUwi0D2?8Dm^7lEw|4J+fW+6JwK-F=vBGlFns_a@`fM;Dc@ z3UkxSU}Td|P%$3s-|!pjaYTaNE51c#VFC|Rq2~8Y)n4l}e5$$ERRyQuqcke2{P3B7 zgJoiQAF{hu4R^^bxq=m;X#?FAQ#AHG3LO)pt)cr6Phf`P!$wN@32GhKYnn>%lhIuW zYCsB3ca#{^g7lB6x)9QnLJZgC+E3)H$mc*4f)sgkq3ACK&64no>`)Q)&CI4Q0z@4D z>-VYnR*#a!G~sfqjm3XtXiP9}?D-@P$IOyj0|I|^6DWt65}4yL$UH-a>}?dA%TR0K zk!2?jD~PUV9de~DcJT0zu|oCNVXNb zr_8wbSLBxQj!7SNoAQPrNX-MIu3iO68*+a{ei~xw^!5}vR++TnE*Xst6Vj=t!l8or zJe_n^;)5l%2JsUsl_+}|kRs6Rv$+UQ>6(hnFblTDJ7K$!Cws|!&@a9;SM3^Ugr^-# zNNI-HLq_{l0}{q|kZ)Y<`6gewiq+Yw%$xh7vjK}QO1qeF0w)laDY#M|DFb|GB8oS4 zDaE48kBG&mk`0Ush}&?UuQ2Saa)A9}n|{IJuu;~p)Wz<6hlIQ88VSpYoM!66&|h|S z!*q9RsSHaArk9AB`BKDL!AV$NJb%T|86)QAw{vc^h@PG&V;DJH2WWen1pqcc$-gj< zts)6YVMJMx z51o{Yf$TN>ZfKPuSZUP2}wye+;ezH5HQ$7P3Lp*ylKtmjniBP?2_}4fErp%r4_z+Rd`9|jN`qMC*K()99x#tN#Bt%W20cG#|WXVT|RQ9cF)%saRRss(IdFk*Z#;Zul;_*6^-vFruFX?VSQZp zBRZ4HIh-FzU;oI(rBClSl%~NL(?Qk3Oz>^UP?!Iz5M?PIz;4h+$D@c5twXP~kXzj5 zSjNmK9!$nBMzl<^nnGT|P-B@5FrNcC??OvgD7fEAc=d&Qi=cESs8_T+H9>s(-XcA(15rJ)wkXY_u~HLGeuWI;q9#M+q$S3E>v> z4^Rw08oora$xj6J63SYQcvK_6ULOIeH=0{rhA@&ef2wdr8`J`3&y{R`aXcnLNO~D^S}+sDt_@)ly9ZIc)ICmNamH96p6c2^=7D zCXjqUDoQLs!Z6dxLzXPstwkV1i+Yqd)bD)eufMlNxKb`)F6tFoXShwGQ~u9RyHG-gz7bsU8cCE~!V4JIMfBoFg zrx>xZ+FW|eh>jA`7(FI{S`0gB!SPJT;XBJARdhCP3`Fn(`iT(KI8-hIv?cgyQzrcCh_y!Wk6@?f6an{W7YaY%G7KNErrYuE>|z4EN^E2_{K1oAR~9682VRiE@JGz z6ZL>oeqCv3=o=jA9w8GYU3BEj=*{aY5p}$y$Rb9_ezo?I1NnZL%-`4>Z$ghiZn@$c z-Kl*5hap=lfiJk+tOT@8{ziA`jc`rK_Mxl`RIr&y$GC=Z7I64%){%4AH>uVQ19*?= zm!+V!Xcww`nNp*28~nS;c^{AESx##Dy24#m;qW$1xx@iw)@?EzZ0N4dRGltV8;Iw7 zD$g@~vaud$2yU{CVMc3J{26NH_y#*Zyej2%q%fkmS(zqf_D7((A}dH2=Ds2aD9VMA zFsGaMztg28`}SPmrm<6If>pIxuCqO5N5I{R3X@}}KG9V7HX=rdVA-S>wFfj}GT*;7 zCF)br1}U+9*~b4bBl0Lz&L*4auIA_1ms4dr+4M*oiW1=Q-I2#l7-amylot>}51Yxkn3s;PNNcOLn4qfs7WXz)}j$t{4&pldU7k3{k$a1NXhOo zA|xdb#n}n__qL5q36xsQ%y`J+I{)Fy6&2)7cQa}xqSRB%0fS%W@~pVOoiTP|m!I2x z{9IfI#r-{j-;Wwx|CNX8#nkbpKhohdTQvT=z~|#F($GcR|I>6GQ286LFH32a-WBDi&>>BpZ<+%QehQQ7Q%VV`bfzMAtBti7sEpSlE zq?9SnZ)>8ei8N``lI)?L^rD}D%sx9b!-AOnSk=d<)z4LdSW3!ldI^7%!;cDCy`MVu~=N0ry zTC2^^4R4Fqs^1buwKhoIF7{Rcaw>HfRq~gshg1q@f-t2IR1dscy7%U2Rabe3_F|4( zCteUn^Ynmpels@?7q}hl~=kd8-$SUr@iN$xLaSd z##uMaNTjK1J5M>OXl*KJO0|#m;E)*JmNog8X>ucavE3~wRk;i@?HQ^LB6g`I5^PL& za0{*5=Z?-a+P&38{=kK!?0_+i!2!J}`>PSWDAAMXDmE=)UIymwjxU!3 z2)8R()OW_XE!Vgpw}gObG2{r(G2B=buWYS}ggTX#ggFfrMYUvNm4Uz~1A(jb#Sjzt6nPwr;P17RgrANi#yKubou`ShU%I*22q2H95`taAZTiw|YV$ zCoTR)G}ItKJ={KIg(16Xv=Z@oZruI5qNJtybqOe9SR@Cmw$I%nSs=|Kr`_2gM%ZyZ zlCy=1^XVMH?J`AnXnetsr_-GbbvH>Wdm0Shz`fs5O%#C6;=|V98y~~c3xq4085mW; z9Nh6Oe3zO@f`#iU*_jJN>!?0C$WV@w!o{6kwH~@l zdoi&F${nm?J9zx`q?IWpWPD&B=?XtKW&k+$2K3Tu#v z2Q$v1^*2g&=P#d!M6dY3?&(TC|so$f|1fhS?(9Or+E^*h@y)L#P=FD7=5;82LrEWZ4 z*Me2LnvZoSJ25B>#SW)%oZcmC6qtctI!v-eEhp0gM$gL) z!}2N_%eahQQlT{Gl2W|SB~_~Kh-e3aJ&*P7gi48#84=*Z6+opHQyglgJEbjGfv2ce zbAlXdA}_bSq#3>Jj%y_UdAZ}JOqvaRTAhJPDm8CoO`Kb`6Z>PXhv{$2LK)N6k{rJ+ z=T&Riw*&(V?+VjX%_^Ha0fp#SYY^~1rrefJQoTm<3&@FSQOr=ya>jxRx~WM8n-;Md zuso&ea!H;tc=5HUxBc&C3LY(Mf_u#?x;ThQtAVKPig<#yT~N5f_{$d}(R#akmv+@1 z7~hH+rv{`hpESfoW%I6V3{Ks$qGOyL{>8)-FONE>MPj%aNBlg3lug`~k*`$mPuD=m zmz&T*f~jS(%(V^?eY07kh1e4sz_z%eaJLV4Rk%vP>|twUJw;S8N}Y6D9QF<}YFn5K z*-oAoSoE540#)nF^#{$yT!|$dLB~}NyLF!?Q`8u79T>`V!54)Z@>WP3J^8q znk8WzP-qE(Ib72S&tnVNN^}1l>9Zj4ZYCem3JCzBw^uyCd|e-7i8i!s{EyaqH0)YR3DDju#Np0u5w2qfg*8yKU}Y z4jldivz&~-E4-50LW8Y99~uljwXofRQUQ z2QEkDAaA74*iu^e5vJDjJ==2NBHIXr8xT^ zBfjwe5$TyM&PP?Y>89}i_3`)UnjC>l>9K7ZBn&c}od#?Zex+ZKq+;y0>2gqc*UyZ! z+1v=Wnf|+pIs!!?gHZ3PiDaV`h_&VPG?8pP%10d23SKqwSzJMp3%cUjY2XoOlu88F&3?I0L6PhNVC5my z6G2v?^_fhHUVIJr8>15qBZg6~^D6?C>|il(a|boM>~`O`B6}D-gjtn(B}aYPI%({Q zU!=jkd?zNO;$Xz+9@%aEh7Cy`8#`d#t}tsN1zP0)2fZC;v`-CY?IzM2P(AMcsn-Fa zfj)uR_e}N#b1-rRC^ynn0wSFsXESvPwb!VIV%@9YEe{B8O)LXsOg}_p+st zGiq49NFXR`p{Mqza67x{2k)T6KP^iC?HVldHOxN4^81 zqZ7z$Xc%mFpuA==>H>*u(tKpvFfwT>6erxu5Zw8Vt8(_T0X0cUoI-5Exng?lV z=&)NRp>N5=>s6raF*AzJ)PU>MCmnIwJ<3sw|4a=xwDx_rPLn-7BOS=Vyu6m1$!>>P zanRY$<_-63YGO@t)&6gkdW9Q}Q0jI26iC43Vn)SB>6#CR>bWU1W#DkIy|Sc>E!(Rh zZ?28lekxw$?YA5(M&J%hsFkRuaL9p)A<}8STJJz1*xc2WE$Df;;-+rUP*8xexJUUN z#P6(}IdacV!`0B2nmI)dXKcX5FK)J**eM*BUa?;SWI3>l*?-dyb$j^-s+4@P`S&^_xC+Hjlf|8g022_wItz{(EWCz->5-R@QpGIMnnNI0O8Us_HgQqOg^S9YCKjd@G#;Ft<7O?) z^|?(qsj)pL>MA#6xs4QVVwtk(I|prsCrB-*MP-y|;@CQ~yG6w_vo$(U*wWRzQDAGj zCoXTZg@F!n7c1l@o=I6?n-{0r8fl$fHK0vJA<^Ql~}#MtC0xn56CUEv0Ple{JYW$vilC)L0m z`!MNgLtZ|9`iR}8l(2CXww$l)_m$OUXszKEf0+_t-`sbkOpsfgk$zR%#b`Q|CNE+d zj5Mq!huJY5JMuSHl)E`F_T0vHxsA_#z3Y|zUKMp=lQe(9cc=!DE&*Xhj~?}FZd&^c z1W{JCr8acP7|>nV$FgCwCz;}a4dO6r=oEx#Vhy9#*}%Xi)-WHSZTn2tE-6;^3V5)K zC~7t@uXouB&5iBDUR_bjt5iZ!Ka>IYK!_%0B4X<`(^k zSdF6S*dCZV@qTB>7xg4&s^V~}w|+4- z!d>Il(A_cgQ9*r32U{OufQWD`_^%fS!!@$Bjy|nTjAg+$hYvk2(_!E4;n2i+R!)aJ znI8AH74^!~H)&dqM-FNkcY4(Tl-D=Si6xrqQo;1AS^o52ykq445R5Rge|w?1RzR6!7ap(K?u2Fa=>jf86do{B}^>|rE+p{9r-siaMZcEz4+(y`VQ$5Yg z>ESc8QA&%OYCSZ$NI$m&%a|v{)tf35THSJ*qi4kg^ArZ{C_bE?|MRh5q93gkhLQw~ z%;>}SQ6Z*|nC@QMZu*W&uh7`4#K;QrW=;t)3!1WWl8p60%Yn~j6r_ZpSrdEHa0wnq zh-UmD^NienN-pF(B;3ou9X&XHT;)$1!OHEnPBI!J`0~NT2&S{HD@pLf?M!16?^kpX zaG0z^JpC(Km0E|G8WV`HXkSs_)gm&dZtfGlHfV-hPuzl~^4@Vp*z-MGpq?QJ(2&@DSSrIn9 zTSoG}BW65b#_HvWEO{k;Q~rOIU$;dXSCN;9K1{j0TIKUA%_ujIfW5;7PBA#GQl<;x z9-l9Wgq4?x>=tRQzVbi+QIkh3292N=G-5>|)yZi{cnZ0?-nJ0+VF2zKK&r3oVv&?> zGYsaln{`GO;t$!ef)M|4<;IFj-cjo&L;J{K3x#YQO=LzR%e8Lh{wcG}LiQPnYJt}; z_7Ho)14L@1^sre3J!x8dhRHO0lYlOY77QM;kKHeH1hO%#byBg_G* z{WG#&m5HFKnCBYxR3oBghWQ2s4N?40^d8GcRD_{8 zUFSm(1FdOv=~u4;e=8$g(IUC7MQN;#A+N|C)jh7 z1gGaA3sBo=Mwi4D$IRg9n~^fSBg;J8EtHAM=ARDs=;#8W5s{QzXq9Ps`CXvYG(ZUR zc2S&wo<5aaGpE+4H#d2;la+K%N-M&Zvo;*GVvN1c(|0*z1Vzs%vFKC|6>*Xt<YyoAAN}3%w5EOYIhajd1VrR zpH9Y{WRR(0IQWf-ea&`(qf8=a+tHJkP-wr22`T&OxllfOsYDFRE3Bsqpv zL|-PLCkxB_>dP#3(22|OVnoFOE;DZ8%G)LhvrVRuaP%mGEr6+OlrHc16^b&EeZ|W} z5E|hSfOnC=Wy%=UE6QYB@HD#VGbe5bZ9>l0&u>#@O&4T)h4A|RS~Gv58LqcLqbZTQ z;VulVW?l%DTCz@>i6Kjgm$l!IJY%8I-|msOm7*Z#{?*5zU&Ibc zt2en0zaS>p!#2!cuRMbTnrnV%+GS05<7T&Px<+)>-=Gp%RqF~zs%Mc6>kA6*nc74& zd<4B`#JsxQ*cr(N2t0?|bYt2Vr>f}G%bIjZKy@4>P{a**`5g~Vo0=vua{`s1dvX^( z4aKDZs$^s(JE=c&KZ~Mun8=PA{04(4q^(we-A%lflZpLWcC)o+CcE!~3uy(Iw?QO` zh3)mgq{S+vzw$Fe1`rzaRy@sa3=VGckt2>r_gDRDTjr9B68uLdjx4+1uYT_6-?fZ6 zenvQj1$^;hnH5D%&F9S2Ar!BMK8}eDRdSHz^m`dxU-XI4fZ}j&Hh0Z8f6%|dfpttD3_D^Q0){W zcpsq~5@0x76N96>f)=CXc~zrFQioUPK2If*<&a3aZ`lAj*kGvLE_%lTE9NgQCi!PM z^$3MuUQK8*aF{I6;xLZTUaTi&pzg5g@X)$@3>r}WqnDI#W|6+5zU)5=I|H;n7%7k4=jOC6 zMMU;OcLizYjI}bdd6|N)zGi;|paPe(p1R}6cvD(W%?6qPl`N;8J&*SCZQTwg2{5Mx z6%OI_mN^7k>xxa)Z8Boc^N^PDW1CW|D~(KMVVnQj4I{PM4j};#sd=jrf5$s(JBW_M z36ZWS#!_HHYJu(S=L?`i`Y~cp3;kBiyCm*E){AAwo~#iyVvu9Ed;$0|7+P?nT6Q0k zdc1?U}wmUzAg{D<^ z)6(X`QLcj)T{8j@bylPDu~_9HR1656=@k>GQe-K!f_j-Ia=>k~gYt$}aX+ZAz_b?q zpkq!31lB!msH`AWX`1GQBUr;moH@zpSQ%+WSDCR0W(sJ;7-JYfv)$Ke4mUV<;(EXZNLKK%n(Sn7#tAMi~ zdKD)eF8xtEb~}4r$B*9Kj$+TsyUdo8+Pd;6YjYDf5%Hhp5G0E4@<@l@Pb#<{{(iOE zW1z6%V?CJcy}27Sj}c{Dw=pI4hA^)!>h&Jc=W2J~>PH?ybKRRUEcFiUe_NB+VE{=t z`SK%&(ahY`;o0scGgReF6OU>uzmjGAc|S*cPx_8OBe(BjTFYpaW|wD{^|2;&7us;5 zsDw1$1WpZhR|DP9GF8Zc6&^p(m@0(l2nI7&&E*I{@hK-t)WmiZ71jW!yP@f=nu|m4 z!h$no3Ulk=W@G`Hj*nNcAMRSkJ|f<;XPDc%fdMfyhk@=dS~#uZ2jB-5Jn7w!XaFka zaL~fanZb00gLBz5HNdnIp#Bw&9+~92Ewa95J^0g$RDM;>I@T{*Q}1!(P*H35$c-6V zX-1-LRN?48b4`XF$7o$%Nq`&Z4LonJwMJ!}{p}iEo-Z0-g)-Y=W8yHdoDC)QKEAzg zf9{7&#yVnM)kUsHI@Z5iwsG4IK=(7^_;dTnHP)l#td~S9Y2KfWp*Hp^%$km`a z$p=cY;}S5@Z)4yX@hFe7 ze1D_?%1Ve{ca@GuO7ijOT+jt7%@qu>(l21E-VR?Ez+IUbSb2~B29YT}#oS+cXC&Ad z0ZjuM`1Ty3eOp{?Cn&sQfH3F9iFq3)*JVgxo?Ghimgf|4X1&(o3bi|5I&o|t&sX5u z3kQxGt)QsM?Npm-vKQN3kL6$w*6_-nq9)oUZ0%2ctDTGD_Rnrr<_Zk#omxwW6LJddchvj)qdWEha4|wEC z$fSi8d&yqt5n96LzvMqE^z`23P1@4YMd;_e0*3Ee^}S1mvQN*8PKn6udd=L(*e^3D zD}9ssz?S~Vb=~!-~n{#`n6|28IB6d+Dz^X!lxWgc8KG3&n2kpiIcEroP?_u17-^>p|Xi= z;3iB34=t!~*`ilAQ%u|6&0G0|mqzrDMAqWl?wy<+DcK^Se7VJIt>io=@~SOT4g|ll zMT*^vM)BUW7~Rw*`_3bcCthyJ{r4!qnc6-=cp8110y zdPx+jc9^kK&HWD80<8w29v1553}Xi^&Az6MQ6yon(}__Bef4w4%jECU2*yF-7;4^H z0u*syX`36xvgpUF8##5ya=8xedF0rM1{zI>%cG?%9F*YgI{LM#g7tsK;a%MSs<|fI zN_M%1hFw!euK5waT1FBmqR#>Z{+E{j=V<{T)EJuhV5vC4F203g8yxIRfJ<& zfqvq6R|9yPyh)EuE%RJDlSt2%xhUG5-h3cRn#Y$l9J)`P5WgJZEv0hD;rnr6Bi)SrAXZC^QQ* z`I$N<_V(sdVyNyNp5G*1#GCL6=w>dWN^_gbS};Q19o(hF@FkBdk}v~7g^q6En#*bS z+jpe+yFTojPad^Gy$A=VY6JR+k>vug-YsX*{k8ohMlrNuKSV5i!vRA|#^4w9mZiMt zqP{quji~o^-D##-v0Tf0aN0Dy%9X$b_f}!TyTR3+4-8j`Ew}`DLnDj($zfhKSpBC_ zms+Vi5WN>GcV)Z!$WLCa1gsB3=Tfn^y)BZUSG%*9I%ytJA$`T^yUDt?14NWgU0v zLRBYf^c+1}A=yT_DAXgBV><@et>}3@5rPojzk)kWD)OqBO6v|6`*NKLG7F+cb3XF# z%x$4WSBfWgREs)P=g_WFqP})TsVl0-xmf(0E7}r9^I#TLHiY8D)T+ZxcXl2^P?Pc~ z8)eNl!VnSa#0%TW8X2x$_@QDyTO-r)fYquP2K&rTIdyx)jp>_Libt&N{nOR0Cz?wv ztLV+nIeGaT#{G2jo>j3H-t(Mtj~uR6Ff>+Z48yT6+O+hOG29pBPs{ z=t8}~P#{_V9@*i-jcuQiW#qSmV|5dua%gMmp_S)Oh?Y_#&&cgoI0_3$oalsZ9^^;f zaqhwrqZ@)embAj=C+?aRS_?gMr$*GBbIse0AM~u;#O;$>p~%`pCeu5e&}W3I`#H^H zRK>4Z64p0kpw@u(^>+Yzjh1o?Wc4fC;#fHnc($8`6EX<$`^dH*bpmJ>uR;uT%(E zd_LdJP;x#2wNShc+L4Snjx1+5bbUV2!B|-iu4LAfWruaoNS_fikmhGmfaG!zmSt33 z3M_}j%PgBg%AEI7G-38+k!Y!g`ChhH^3KN6g2q21hLp>edjyw;+%wch+u7B2#@nSk zAx#i2J`ioD7w$n7KVrBCD}GTWg1(})!R5v+9SgXMQ0&UaEnfL1J_13>`YGh1IdX}4VaUqPb`;NAaBX{r@4fF6be$;7*Bq3(s+On z*s~6+*!o(QgD9f)j8v?K+jK3De6gSxA6E%bjRmc9v5E|^C99rpX>=>aMqU%yzHM`I z(qyn9V79Kh4LB z)WZs<z0MH=P24hiG6HVlD1D2~AStKHg;aQJNBRJfG`?-_J0YKe> z6r-p=DikJNHg%oG5-9G)77X47!^TjZq92*vSys*Ow9hgFW>jHO2qYDq<0@Q31gtRY z9+}=-Gg2#6EMn8qCDK2287Cq~1qXF8(O7xjA$2<~_hV%1d{!jaKkAW1SBQ4x{}=K* z)rI*gPBInNX2`d*R4FrAIGN`Y&1k11=UgM#@MF)f>d}{>aYvr{=rte)lq+goEGV2* zVxSY5`x4{=wS4&~(!iWi*L5G6ey{5z5*bc0HsR!gVA+iKt|7a{qLplK?@6MJY~+-gFvCP<#Gl$O_G-Y)gcdyc`p-DZ*x8#Eb;I&=AF0Y$;-4-DX0JaF6)` z*Be-yS@vml#lYp`Y#iD48OC$S|0I0~Z)V!WeB~KA;?ykeuXh`9&URal`Q2#k(sCviF+Dcu z^r?zc5E)o>AK)gHkVsw>whrWkzT#e136Q$Fd>5sWVGa48XceamMeBjmX%1`f`{I6h z6Z5@VYmq~7*D|zPH&Fv84SLT`^Cl#SX6$CYQBcZ?v;F#8wPsj@RVj{&Spst)9F#|b zpFzt^q!w2(y@QqCm8tg*vn|hBTo5i|+bTLHCxdXgMEVkSpDyF86E@Xf4lC=%_HYEj z5M<^yAqQB@;+YvfBw17f-MfjL7umJ4-*Xs>Vz^990_xQba{7!THEaB6ydL_ux|Wfh zB1hD2W{m~dPwn--W0AUd?9Bx$wU5MpYWE_)3^!QsRw;%X>{NsE)PGnDt_Wz@SgEw9 z#0$^8SAu7>`WHy4iG>xvg(HIIMgXR{#|;OT=Mc=-ujpxfdmGhxnjW)_#N9VTC6-`7 zO7c`@aS_b`ox~*1`71j=^BR(if)p1oN<53fy1;u}#)+fG^`e7@3)-zJz95)@%`(bL zxu8GDlQ-awWWL7mVyn@^b@y0|znnR1v07bQuxyM5?+XbXKC%2Fer||pzyn2Fo%Bnj zRCACj^a!@*iWMME9V_o?4rWH~6(gU^P^uZ3E5;^phIDE);!Zj80i^c1P#C`~jfr0v z1K-R1i4cq}f@uOeYL^QHRSvc9ge1BQwC>mqLP%yuxVnmQn3+%Led@+E-QY zPxpr>T0I((B-Patuo`VdkGJ4( z6PK>TH9;+6OS)bHj8zg?MGA78<5cPQ3Moh+VJ6EsGA=-)wTW29_IhK@86zPJPAB6~ zRxh#EoZ?z_R6efXULm8W6~T$Ci3(bf6~Cb*Vh?bmW_r4rX+*C^Z`lT^{r0kL%Uv8V z$IM1EW1H}KvO|Zk#OHL?aXhNqi;8Eddx70S=p?&BOE4Ik7Da;32p(yzv74*Avj+vT zWfK~AAUZkn=U+O(9sW$I$DOyHO~7jN_DH&h?PVD8L$AZ0rG?YJu{L0INoJ1=;$!hH zF}WFsxR{IK$Y?j0EU%-F$Q|*zW}M1UrIdJq^Ox&9^&Hc*EizwAzVe)1Kf}DUf)e*; zOk<5(1neEdbt9QE%47c4} z5~0iwkL6Bc*sJ#mJJTI$dt$2lJCiif#6`P$5{CDk#o^x(x7X|D;?9vo$-Oeo;^P`= zf@&AVKmzZMY+T;w^S66ec*IrIQZ`5Ic9TN>=U@TfPuzB#j%@Vc=Nrpa)QpTC765la zA445SLGQ{4^?*{RMBZXV3(*(pBo9OnR<3$vaHAE~%}58=o{4Z!8nQK94^9q{40xn!P~)>c|2*mGTN=ij;}T z0KYn)sJX#zpa&HB4F+<&bGXQesV1Tkt=W z!k_Ty{2?LI0@g;%TLaxRbr{`}tGB3>`C*FLY3D%fGNJbO%s}2DD~GWBE$IKR=y=Ne zk-4tB9=`s9u@bbG)Y+|t(Y-(bJ3J#0@-2WQJrs|dMEeG2a0}7!iHDk$lj#bCq3%iY zV!0vMv!l0LxnaDc6b7V(s&4R4jt&8E3rp=D)u;bXqvjse=Ir3sedd-tDD%WVxK|uE zms9PGTy9uPo|Fw&UD{IO_1(!j8`m^ZVcm8SbcLX=!i?fKTxvCQ+q=stg;m3M8Bk_I zK6;Lw5DnjjsmQW93^TD?gpZf!DuQ9lZonPfX3+fKp6qBiNJK!dV`cMJ&u+AV?#r%) zUg(T0=$wA##&32O7i*%q#>_t%-Cn!9>S#@cdyOTo71wRtVXNO!0@5NP#F|ZRcmLvc z@=+%NCm68ugTF^WrWD{lYqow<35!iL$w+|EaooIExG1FJZOZ)8#o#2Rm!3I`Yrx{v2w<^~jOY-sw zspdUc#~PvQp*zb}swLq!w_DO{0J-(3m`W-D#@(XxN>#z{guB4O=U%tto2$B_;JFQ| zcCe@NHYXTOBC4twZ;>^!=IY=COn}b&?ZC%o`knp0jM1IZS*~{6aB7~>>0N}WBm=BB zx`23bc==T5lM-iI7(POera4eVK62-S0{^%#7XvqAC8u^uJei4`4K~me7@3*9J zgo5dFx&DWY&m$V{f13}ADTpL~bt1S=!f2*P+uk(Wu~J+dZIb@dp>=PP;^->wV|T$l z(OTZ)qZKnT>@VnO)lWoFxkug89iBl4PR2JjP&Jmqj1H#?uWG5xbzq@vl9tJBp_HoV z1-2vp7>ObeSWf$^GV+nH{0$8A=WR{1mbjAOkq==SAz`im$PK!ms`613SIXzxv4^_T zqyikV$4qan4cfc|?i!W2i>SD6w1Oa;yj^(UinEJ)|4w=8AwFL2aV8hE|`!ktR2ixEn;>`^r%7-YX-z%@PcaAbw3 zZDUC*m&K~1aC9OH?p3L}4~67tPg|y;RlH4;-6+nIdZCD*QnuW`MyCpu*D}>uLB?5; z*7TyfF7vZ0+@bpIN{M)(Pulg^4|Ca!hQ9^R~8P&5qO_PN?TjBBJP+HxtL5~lJJ+Buh0U_Ymq z?sVv+`Wq_=YuV*u&WPmUMM1+e60I8V;&t7_^py!O28cU}!;4q?ZG3Ha#zV3UTS^Mz z?=~A1#?Eh0);*z5_Z9lDC=uW%sxu})CAkMRBEF57u8;&k$89%KyOCdz!$s^t)$jC3 zHPH=|Ko>w0k}yrBew|@W=eTC)#zS<}#W-dYq|jF{O3 zA)NtR0X;0b7~xFb_eYK-7?(({L2lavm@cJ$WcMbpoL1e<+nN!mV;{ewn|Ob}aN9CD zpKzhgR|XjMeq%+nkP#E2LJ3f-RpTEmWcxB2ff-9%89zNnXx_j@EU#$LX*oPB5(zP| zf-~XBJpy3w7h0UTj7$PSc~^~9=ZILnqjiOFN5rdQM6ss)#S044(eoDlg%w_4omZs% zc0`LbvOo;kwF#MCp<^By%K?6-^NE_5#xvDV)Ua$~ zO?IQIF1U$(i|#AvS)4P89q+t}=sh{Dg_e;dVDFi=6Lw;nNx%QfW{gZSu#io4Sgkuj zSQ=UJqKYdNu@EZZieJf0!Hcd*XUW+Y{7OnswCR;XLZ~{@*pBhsNs4&21;r+3qhd$) zwh2l!BmW$#@^2ROJ=I5?##-zB*WbG#oE1|g)Jm(*Y(Bzv)`**ruq3MkV3#Y09yuC= zXn|m7K59m1z&^XVVlnTt`)hUhyng795tfnEY&qT~W*JT_{xwK( zDUQn!Jvn!c{&u)b_4V$>H{BJ5Cx0~KobJ$ERYYIm?s2q>xr;o#V~Mq(@Wc$_4O>SL z9>y6VIFhZMS{Y#aY@CA(`Gy8 zj!RXWoiaIZsGwE?vnH#7Z`7H%IUlXnw7t`T9u@BIjPw9j*P65WWd-7*dStZXb$IXH z;+zE*=2!EAYQ_Q%JBsB{ToE(cesw@Qi*a>jmBi}Fqtj9dZtAN(vONkm7zu=%b@} znsjCtpH&B`gc;SvdXy;u5LaEiNQ%*Qb4NTfT6VUWDA6cktQR5|+{E)LNI_mTZhHJ0 zk$&meIC?iD5;Q#cW1%ZWspE)wdCqF37JQGIIld9>PhAG8Y7(yVHfgFlBS!GZ!P22* z0oM#aRraG)@gtk-0gUDjxrL6AE9DXQ#*v-!$ZphH-FNVjM^^Dvl^vvQiy8~1FFg4ViQNb^RnPUjI?(L*9-fea>d|HR@GNjQI(gY; zjdON4JOZ{?bn=?y2D;4cWk8m^DyDBc6@<83P)0NdH+r>+qByu`pxUoxQNP4`;E;-lRy-*B-v z9O7EvRi(wh#}_?WQ8r0G2F3^p1%y&k9S#5&n+)=)N~ODf}5vW15M=Cx~oNkV&5?pI>9l6>gfa}NblRxi( z21zAnrd!@IcZ7yD!r=ld+5XkT)9A1}-M^p_XDTp!DLj4FSBJ5y=@wwq?4p-?9_NnE z*j`2;z(Yk6bVh zR39UMkCZsAN>B=IvtRojVDQEd;U1GKUL;gq_Wh!vprS@R<)bXs$EW5b#IX`@f}F5! zGR_?ZDXPwy>htv)KDlT`$9lNvVmHDY>+;5)Uz9vK>qG`od=h!$Y6XWeg2}w&BTgp9 zCsPfkJne3|6Y6*92;U=`(j-D0UG4y&55l z!l*|aj^`_aXgOO;7gkbt8!M>uc3faPr*qHv1!sNSu9^{LhS__~_o!@4Gs_LTF1lDz z5a{O|#;N+6I76hvJBr}A0~70>Efq%a#7e0y%ToT7L&xeoGO9f26);o>K6%wW3S>CA z)I>f>_geLqs8+<{1n6>VF7pMk%e7orCW_Cc$zw|z>)g%8C(E*lwO`d!`WQ!9vNa7bpQ{9Flm>m<@K@w%l zIOQ)>*|=pTb^#eEOeu>70M)qVh7AOO&EFC)_s0^taDns$iAr8!J|8 zcL1GQC$Hy9)^qq1E&=^(L;RDTIUXmPs)lFo-RWK@J8}WYl{d6~?DyO0BYOJkokf+Q za#}(=cIh5vsJg4>Iwz0aVA2iUWrwGaTc^^JlIm@>qwq((q1y_;H9|9rp}I+`K&B}7 z({(_OsA<1!WC^wEwt6==QRr_Zq>CTC#B3CR>qYjH^XitBQDZmZtv~B05hHvN|o@WloRg2);g+{ z{SqmBSv!pjTmeg=D_^eTV1&(8nZ4$C#+5+hh#)|#;m{us8FZDB21=FYgL!;i=!aj7n+v9$pO&Vg%fV6(pCxy1jrFm@_RpY=Z^V zx>&j2XM~AH8P{dGSQ+z-$ThrkyyzJD^DmW<-uWF%f8ODotE`158Fp+HnC(IKs{8g9 zE_o2m-&PwU&T}lq{y_<@PAB6$y@ykULtaE%(JC3y7_DfD*2^grYcnp<0vI~LP_vAa z(|+bF&w!7g!WCPJuA)H&65U>fye`>PzXI>h72$^bm8~GG8yDWWK$pmdI{loujK2H7>j3P?i>pvJ2{RY)iyzVa%G>_8B>yqd8D6U|^?pOBZ#U z@t@6Y%byX$`<3l1+|~xuCeuQm1#EC7j1Sxy_~M)xusUl*&`1=pmfA}D#yGit^=jf3 zfB=%aBQ#ivk2oW#r<;=PC(_4lRsbA<3&);>4ME!LKK*YmA9I(RKm!k!V{k!|@C#*l z31I8+iYa9o2~Zq2AmDAK3lH(GknuqwzGb9$N4Tx*#O~YOb^MBXG2ibW7M7pWBbZ(F zBMw{1lG6^vjMl*N%%Xvj&7_FW7P3`I$xE!A75=YyL!$Hjf}2QmakxfmS|tl#S-F#x z!|#(BbXjZL8S(6U1mNEOh(;76_jE?Y%#$O;CwKYCHCE}kGN0nk6*=Of%J@bJH?Gbj zd&!KvixT{ptiqIgEUA$??~L5!f7~}7)uCnKWqNaNXEodfPT6ZL{Z*dy?w-76w@Ayh zyT2wkt=LaYz5t5PvR+97uRQ)E50|}|GOdevG!y+k34-pCpwjZz3ThKCh?b#)zWtLe z`dlnBUF`SnSEWo58skLv?={6iOcqdcZILv5+L-tD23 z@ak7d%C!bQvtO6Vi`CA@l5k&&(eO-?Z*MlAUgp>R^DkA2{#@B>Vgo04XGFjxZJQ)` z*63fnX>ue3#suEGFY}{l6T@5yTipDWDU3(POC5oCX?rvuM;d`Kdr!!nbxp|2_k#LN zMiDgPB4O>(ixO+EZ8MF~(^S05+X*!|p!vp5EpYQjJYYNs?7@4reCaojIhtWS$yCN| z2M!M6@D05WCWtIl9=s>JEFBj#HFDRKAy97_OJqvd|Z zMH<8xNOBQDigSdlZEYVpdbGaZFt5@3f#x1xkW!-RX8wNS1z}UozYi0QrwF?E{q&sf zkg$D9{qczS-bKSlEJ=|)FCbYXk#}?Zz8Fb7gk`!1njk%7dzEFqAE5tA3O$(ccN&v2 z^x?UU5lTyVvmqA;Y>|mZQf$Hk^vKvjxtwxRyuaUA?nJRoTl+_sXz)63b~4TceFZ{R zCUE;jWGna*g!}o4nmeme@h2o~>FdaZiQPddKOwq@TrR~~Qz-o<;}S&%GX~_Soww;) z+Ozq4l(GI$2Y({?11<2Tlr|W#;pAt84p;QT+fE*B$9^Ai+Hj-lfUDAd!R^d1z7O%L zoLYJW?AhZ!s*!-t2wbjNaQnznjmz(i6;0YBb^eSHWzrARrVfqMEsN)N-vJewCa`%1 zMkKJ^o^l(Rub+S+ScI1=crx79RJ;EIG3oB-BDi!#8rl_Ia0PVK9T~)N*^H2)v(fJ4 z8B{O}eedpZ`f4J5o6VFF>VJWLY1F#XAFIaeojpuqul=?Xs7LFm?ev^oiygngj#a{z z4c}e1*e-KI>n?>jQxdaoKSxPT>bt-PLq}N!QCnaoRc_CfBenYR-aVVQZCP4;XtsgD zZTEHCVkgMtA>7q^VI|nFd5+=09klIw-}O|!-Yl3aYk=s#r{!`RiX@Al1r_GD(Jd@F z;*ZlUm$W3Ofp$Jmq`#Qi9X~o*WU^-IEW?^N>h!xS906)R=G&$ToVH4kO?kwuq04u& zoJh5S%dTZ42R@h4E*#nKSz}ezB^j;r2zoVAUtDMfrUalUBXfJ?$90S;`KAB7NN*mgkIBmT_sILLzpu>i{{Ma{_x`BK`RjWAdluxS zK!*PP&wuq5(J%6q&TR72>pmlY&WO6hUtqlZAf)m?M&57zePvDX|NZO#`j48cim6)n z@IU|gOp)k66}u3QK|t;Qo)NV#zD(RhZmj&TkygO8iGi{HHt6E-kp`jBq`Pu7;rRE+ z^q%;9>)#`47f|TQJX^Hw{MSf4#h-sYSAdN=mdpFFXT&9-e?9}wn<95sJkMS(^Q)Cx;vyb*nYMNm3bgGw!sHP2`9>>I zRkcaw7A$*w2+Xe{H~c;#ar9^QK7X$e=)B*rw9Lt0)EC5&|K5W(kQABOtVHFQ4OoBW-@0YpEEMo(#{KibM zo0Q9TCrODqCXP5@_~zM{W1b%Q^JAnCu}}FXiidprH}|>3?VFmO@Q`WT{>qx=d*n9= z`b=E)SGG<6%ATn2H!2S0D;HdgSI)9Hy;EhmJfO!aWMJPbcpbef)$6R24v&^htVK8K zF7H}Z0>&~cS#GGkno9^RB6UQG*$f2cawd%q>2x75dR$>d2IO)Tg|rmDq;YCdK#S<* z3VTBFs@mVbJ36Jy3oleI6VZQO4E&qiumZg08k}6Y-X0mq!DrG2En_~DHYkpIC(X@X z-$?`O@MF>jU3T9|n_!&ZNpmH|ch=zX{mdGr8SkWt4Ws^;wAGye&skf`&mGgUY1{dk zwrvbt{2gv%zI{{h2&Z`doa`4-xttAD=ut@o9*9FBuFj6EF5|ciz;nnk=FN;=R?fZxK5Ss6rod99qBWA)F_B~>VuO8jbD#wR`(=Zpk>Q!rxFMu&=Km*uFY!gks zn$sNlbHv2R`@;S*5NtI7!G1m_zQyAH9x+S+Mr3HWwI~C!QM|8 zK;No+p%u{Xx|K#$oHQ7vo&vSXi+W`Iu2z9NE1^L5P2Iy7;XMJV$&o*wkY z$^|cpYb@W_rU>$t-5TVTM?^c}qu?%43@N(R?hz{1vuE4MUl&Io4TD-!Zb zshcfC&j((rBGpVjbcz?9=SKe8GXmml9~_=2x& zTPfdt?%99dyNVIrr&pxK)L&CL8~KN2bBNfkRZG`=nl9le&*} z%Uwb!brgFb8Ku}2J1X^6>&sCFJy$!&d{GP6>pS`TwwYj02bcb+ZN0!VRq^D7nw}ps zQQUO;{luI$$MOpE=MT8+{Cf*yS?k9gh6dg)Tta0%bE!xQEi_mQ<#V=;>+1sWd05O_ zaElz3rnBPeuRK8Ad={Ll{RibkaRqT`$dJk3xXs-C&wuhJ6bB~j?OPNZ?DrXzL5}U| zhdjI4bCBDeDU$kJMiRsfN;~lLp5Ue^RHwcXa@3T01;oDIPe8281qOU1o1ETXpd^bR`5&PGMaCAs5 z<~2rX|9@XOUQKmE?7ikq)la+Kkwd>KPT6OwyW4@(IE;jZfGu=DOsaQv-BF_FW|D12 z%E%{VoOeZ4Dl*|-)f^SUnoaQ+6{>OTd0i?7kQZxFpI=1B&fndMCSOKTHHN~IiqB;d zizT5%5PTy>6utx$)S&Ed0IguODe_=s z9bSee3m0AApv5CcMmkP6^=5aLoE+6ZUcgstD7zS|Gas>Xrl-odO7Qe<`+Rm4O9+tE!H6ui?4gB2k9p%PW8w?jp? zGfV&cYu@aB=!Qnk6G?Na@?MS*LTUPa+Qx^Y&|J6iaV4}%_Umi3N!sZ6B5gtp`teqz z#P|Gs!u|L1l0`?!T|bIbJ9&+d4l@=ZmHm;G^6)tuBPUkWtR#+E7dQ1W{NlFXPb`QI zPNc<%%rq=xR*vQANz2`ylbS#O&wu_N`STg6AaK4i3*^W>@;GN8+~6aRAT$lp+xPng z2jPyKR{fD3S^Rt>A~mmUPvI-i02ao`>s@pXn12nVkMa)Kh3V%!qN>2KsLye9M#4i% zIX$Q&9~bM4*abUcIB1gR{CaR_#2(%e!vQ?cpbswh@y+2>a^T=_@6dUKuKc6qe zq1i)Yq@*<=GFj8n6Pj_Y8|ts88XHP^^KG8Q!)j36tA5BnC) zU37@|`PyKqZPI#~u#kLIiB8S^{(aGd^8NaviF}I^Pj)&L{b%N&5B%O>=tre#OC)p` zKha&Fif)kEo|7Pzzkisj=zyDv9Q{=v(9%)7ld?%zKJP1{P3H;=LZ0_G)<~l$??Tkl zfYahG#SXIf`y7$l;2S)tR8}ER41Ufn+jF8`?G!V4yuX;}b3is5$0?(6+wVw)#3!z= zN2#K~--c}FPvnsq8d7UTN;r;C&Xsa}ah6}4nH@^Qvm8~-qj}B+8}U-U;U#_Sm00rA z{ki_$6n0hai(UR6p?w2neK+T(^8el3o0^l)87hid^(4v&d}~gy61$9d-|NAao6uB*8L+}q31RZ zI%!TkG3OYKi96?L%;oI7g2h=jca{b2LZZWAiRhPX2r3bCTwWkJ2OgEWP7oJx6H{#7P=r9;7Lrb2JBh zjHVQ)sKma%r|208X5kd$6g~1eMejTU&nc>rvfoqm$Z^RO&nbFF;uO^^vI}CP9XU_Y zGZ3e!06j~wU0k@G11sSP+vyTQ7jqx6i#QQF;a_#CA@!yE4zal?1^ zo+9pdagI_LoX7Vl?MnTP_oNbQu<&eomWp{>`H6FuiWa!OXJP7`I4VU;tsi(b3hj{I zzpJI?{(N05cjbGO_D$X0YlQ6PE9MP`ntYGazM)V#N2&CKViP$Dx4QrK?=;;P6l>=w z&9{+9>5SODBGS68U zbA8UrZoB4lnsx*D-%pI~G;LnNT?;-xF}e@v^fzpIozt|Z|Cy(0592LQ(_E2xn&z5) zPt#o0d79>`&(rj;eG#XrNIO4)zmy~JcgJ@!@OR%ZjeVEEyHgbHQHzN63H(K~norb@g|c?@qW?boo7d>E7@L{?r6$egc1LzA%0S{>J5U z;|%-_IUJwB-%yz0N8oRWQ{qS9Z@8xP9QdOQM~@@&H`ILUN91pa1Lu8=QJ}j#k-u?4 zwEKzt4cA~D^_#byk-z9F@d^FiZc>(^zk2~FJb}HOxi|EuW*hAj`qS$kZ}9JS1IthF z?{?k73I5&GXurX~l;7ZAj%4ufZp+E|2>$7c_mAM;-Kl9l!N0rT4kktL@9sNsB@z77 zA|9XMAAL&R;2#Z@egyww(VgJmJ)2D@2lwu@v@-a2hX%>NZ@|GP_;+uEPEPPIR?rFl zJwI#ERs{csx;g&H*Ng&n&k6nw=oR1KpH|@b5&Rn!)a=>*lE)|bm+~9@J0ltV`=Jat zOLOVJ!M_2A=^Ol0!>joT{?V!ANAQn^J8$q$bJsq>KTYlnnPI=vPWAHv(rriAN*|OT z!M}Wc`3vKAkyP5GgKD}@@b9)cpTWP|ZE`dCCzS>={RIEC53Wz}FV$iO|6=0a;NM^K z=HTDFilhJOxr{An-!X@V+r}JwYOFw|9LGgX|L)gsQM0!D6Z}*AxBeserzUgv$8j0A zlUnJx42VKM%2Pe=`X~6OZj9p-{7d%nE&~+t>z2e#eH@p#?e`OIzjGWHJ@+@S z9P@Jg7Ejx8TVh&2Zp&XIe?BAOwtQrk$dU8BJ_F&l9NBKm5s%w)M#61LIo*~cAGhU< zgxhlDa9cidxGg#IIw@0K4*xyyaav-)K1&LAS*G;WkMQ3a38y9H^jeO5+?F$9zvYPG zxJYi}>$sc|dl^Rz$K}Y!ahX>&cIG%P)7^`X<8tJ{Pc z$3^ldN}u9!TXG=0mK4MCPBDF!pL)Q0_6CIY@mbDD_$Eo0EhEgibXuew1g$!=uqpBV%+r*M@rnQC>qw{N z$j52Pk#t(}3hA`uZ@f-R-bFesd6((51nT(Ymrl8gG- zEV1a*W%+Ac*kxI+y8i(GbL2oX&p<#kB~wuu@Rg;?s4p^e#W|SB%+>n~%Us>*tJi*5 zD%8FYEORx&;s=(wPQ81=GFQ7DYK!A!wSZOy=u+L$>kHG=H^j&@zn`dndwB(QF#Do1 z7cIcwdwLAW@?tVqF|O{#WUBqS3(pMuU*&o+|LTPp^#6`{XQZ5<|5r}X|2twV`zwe2DA~659s1V;0r@|o59T8#;QtH+ zTzS&#`T+i4`5^w+MVqz{;{P)Ovhv7*_+MAheWl5B1_JSaC!ei8r6j2s8?f8^Nh zM?Q%EGZOpz$YIDGIl=21So_xtUe_x50RFXt-u3C_^#QKO5ql~ z$^y5(MD6;S#M-?Q^{nrj%cisGFNr(?oGTjR0{KNDucgwKQx5Mu9)jb;!?PTII#Lh(+T+X26mHb{M+NpshO@1#w7 zLA;YT19y_MrWPDOCT-D<>7BH7`>A76%rE|#v`z1}^LIH>>qYzTs~RYC;Qsr$Ld*zlSj+Ca@F}0>gn|Hb=JK78}HdNt9|xdx3GGCPM2XY-RE=} z!v;_w{@3V!Wk&qR!v7%twKe7o<&B+kEQ6Fk$4iX7@9Qta0H?dEWQY*7tK$Frj@;@O zQGQib9T9=FOc{M*2EtXDN5N=Oh51j8#6mXrkhTL$LTBE=17{r`gnuJQH`)v;QPo<>}Qzw z$etv=F>D+b*q95|=4aDysP8^XVJ|2@^3S64tZz7NZ#V!_1H_EpM+HzIyuN78rBX3g;1v}VReUEDe|EQk%GVAT+x_eBg(0x`b03|A)n~E9 zNUS^LX49WWvbi*9vRM6S)pz0m<|AJ}c0x=>ssK%%zySAWuGQG~1Ov;?4Su%#hBffr zz#(*=ZhNGbM*d2jc;qB2$IA+9LRRe)Cbh9x$LjLD5~sVmQ{#zw8LANvsZQMEkCgW z7MxdDfg*l?!|fUlbX`m4c6ku4)i#sd`xGp@avt*$%WtPJ=)|f;s@%bur?aqQCf}{# znf`lg;EGjM`i(PJ+Ae##kjasfDuTo{Po$-)k}%+44rx}EpY3r}V}-6G!j)B(WO}_P zpjj{5T<<4ty3FJSt137{d3RsmU0yPvSs^idVN*vw0nHrAm0mAv-!zc&rrv-i_x%2O zMGdK~$f^pw>r>5}bCR}v&RNDYb5h@U=HDZKJ|m82eq}d4NjaSPcfe=-D-+Lr#f)dZ zBla+k9P!Lo&UofKVq5f;9nbvAj%S{c6TYk}?X36z7cZ8VcD>|l$yy_>W`Hoa~*h$eb%~#HtW-Z>0C#1>1T~A2!mE(#jW=QiL z>Ctn?oEc}M9XUdp?|?&^%>DlC)FU6O=ZrY2`O1#Xy>i4g|I!A3I8b51|HL)l5yv&_ z6&gL_n#j9-;&oM3*Yh=Js@U0fIdRQ;#kq6hnkWgd6f=(CQL@BSam}h)(XrpSW>uB- z{em%$-mw;`mz$h^l*-%=oW|c*H7YT`z927sL((u ziIxDonX@2I;v4^E`pXGxp0^QU%~#H_<{3%bCN2=C@%e>wUY~o2sOGuHh-#jvI8n`f z&WvgvWf)=2oT*n&#Z+ccGG{u&7>`VA^*5|pRsUYg=M!TYX^~gZ0Y1JzF(T3$x)OT8 zb$qZ&QU7}5n)OOU#&ONFAS14Mmh6dZo<$wr%USdh*Zg~1#9?}ycO$VF?|`jzZ z4&rPC^%nba`l@cRt@rQSIqEQM=oxpF4;F)tUBIZK^|@**f%h7VQB@Cjmk$<$7F=zA zuo#s-5pNEYrd{Q&!lJ8J`Ef>w^7~C((DqL@Vqh_7945HO!D4V*yMNSg+;(6w+=r}v zuozWz+i2i$iJ`js6PMr$Z6f5pSupX1oL!#!ck1*?(g4aDEAZJsw%xTb#GuXas?$8qpBVf=$1_%_kdd; zEJhUxKiPvFjhw?E2rP!1z>NoM;TT0%Q5}^|MUOhQ&IxmuSy(>|9wYP?OtiJy+A0YcKfW^v*q>|4jG8}x72bB;7pxubWwYm6&DD8qzYMiip3A@B7nUP>J$|L< zD}Lke72~l!zv)%;-j!F?xoI!E?^AhUCSk}~xMyBsWq)Qa*8Vd=XouVzw<*HEyT?`k zfA1%6MPYjH`AO;KNXDT5d`9fC9x+0ODMv{0pZ5!qiFoDh=Ar2AN= zHx(`2%;`sbW}(3v&KD}Z>R=9hWQs&}0iCfGZ1UzOs$Z){2#ubbpijl;CR=6#ozQtk zs!JoCuB^g!w|)|RmGYL?-qknmsKLuPcUZnwPyGZ!5X(ygRrP@5lSXBry>XVRpK@C!H&vHRldp^JO8SN} zOZ226MpbqDG_e`R8m;dtKWXG9I9-i;U|QgZil%)M)gq_fyXSU%w1a6Y;A(1B?_ zN}h*j;#p&8pQhH8x$4L&9S2nh3wHVKHpCn>2I@Fq{EV3FAY+u01szQbR`PP_ZnT!) zphDq%qNR5bSD>ZwkKZ8s^|_0l<$;0^)NZBv<2mjOjmDEg>3rtlQT5l)nYyPTk~x<* zwL52?1(O-)O|YX2ChhyS?&9LEe~o;1>`xtO#R&{}eG?WrlG!Z*(d&A%TjPp&=!x?P z!F%@;T&lPGW*yH%c-;N7io1tNbjUiy4%*K{RopOt z{DMlf-a>*3D*P?MtaqHFC&g8T46o&+xT7Z zxhlHNhjuv0t*WY$H9j9$-6^5GfNCekkDstU%y>*y!2rQgC%0HlW&C)EZNPp$rq*L= zZ+c5BwvO*K<(kfkJi8z!`mbH#h}`T18*+R7_Z@+}`+2z8hrN%Rc6pCX%N+Rw6`;v8 za`}MSv_N_OH`uZrINu{)PVCWtjW4(pz{yw40`Y3H_C0bTiWe+>`o^=QUpzq-*0j6_ zMID;(SJq_olGUPdxWvfk02<4!Pd+2tJfSgCg@V-w;;l^|EM1X0C%QnJ-}sMcr&$SM zbv0hq{+bntYxA+8FElzqc0nJdWHonSiNfNW-R!LfKQXxjC{ctO^6g|i`mgtg`kM^~ zxz8*0fPpF8Qv`#xux6cKcIJ3J#G@j7G;0L7BHcHwq(4^a47Hw4fhOvjuhTH&pr|Lw zIX0E@ni-$ji*Sb|wW)q{6I!Bm9;1p`atJ2}V7?wb^ah%RsN5gGd=*A=w)gL4|Nex_R}K9936~4;IO-cN7vizsZ@7Fl z2O{2ZInd|(8!lgNQ+&eZD|A?T{Q^6G3o@(V&TmYAxy{H4mJ4Os>o-`w{O;2D%X`jP zxt{9!)-67dy<7|FSh*(U1GhS}_FANKw=dj^7hT_a`8ucRWZz)jJtzLx5QyXTOJg4prlm9hyb}@zg`x%=P zqEz+ubXKkon~{zts4V{5{! z?bpWV3o)`h8{k8YdeiB9#7+z`zA%0mYwGH;|JTUp;s1KGyzT}p@^$zB`;3$ySk@*a z7|k52oy@(rgNq3@5jgF73-&AEwRP6hhDQcTFV>@r{nOO1;4Lj`>P9eKuObKOiX-Q2hNcdB@>A4AM_OEc zI26a3Zcy6PN?^URzH!q*I7j}xBVo3DM;6eKCM?0K2U5|%5?D2v0hW>ASrRqxBNzMH z>X@kexGz%$8)Bhvxcyz~l6FNi`3N#Lx(|K*l z`vu#dR~#J1$XZ2#+h7$psE=TaMP&AX$zmHrK@Y?Q}%qv;({fRMcz50?(2&ONVk-C5P! z>(GkJsJo`-D*fl{?bDHsyelPccj7RcnhR4JZX6~`Xp;^I@NW}xcf5>NsOb7-!9q=~ zou0)b-r32)N88WCPXPlya~*d_=V1ene-=@5^!qGh5t{51QRBH>ejf3x^IX}TPR~8R zCKt?j=6ZHD8Iznz!i{4aSzv&Lgz?ZT%EtJ3` z`H>L_1V)bpHH@JRXmsu)*rjk@@^$`>=};gl=y_2IlnIMOY{Su1yL~wV)HhCiy6kak z`DOIon(HbAC?^n;Fw2kSiRNH9q@iyELNGf+I?~#EM<{^i#!e@`u@_`VK1DnE%2*x_ z?5riDLAwE#3Js6+!pSvdgCh@#aF{Ws_+u4urn zhtmF&WB2_2@eH^!;<)_gW3@Mwhy20G;^H4qF*EP6JtD38;CQ!NGED2gG#{g8Hr zpv|p)X(6F`Gj(v}sU>ZF0ZDs5b#i3zfF3h^!KA$spy61AQIAlooZEz5v}_#EyI{y9 z!>VJFwkC|AqoJBZerKIU(mED7Xm6-aj_mHBEuWOM`h&?3q5?y46qV8+?4p#?YND3? z!4$_Qo2n_U{X~qsJ!S)EJxN3LV)h5WQoq_U$vS(qR9R&4O5#IBh^yKea!&0iFHHHtE+uxGZ?$dIJX0 zDDj*IwD-O}SkiF##5JNnIOymP4o)tw9~#rtC`_=OeH;IRb1~oU_99MzxU%)Lq57(S z%s-s@aPF{4a4^7S*>#?e3mo~GG~Vs-=-9a8*^Ak98FwOa(04N#A;Z-uK4k?u;SWw( zVOtRjWl6>VBJu|i3@86&6zONuDrr5PaUxpa~Y}2hB@fjspsG3Ju@L6-f8kvU?fF- zo5`a@MlxgrA#?<%Ly3&mxMDJo(eTe6d5nhGl90b?KjOx_<}n%!!~6C`Mnk0KWFn(A zJDoa%{tXu0>Sb&eA=G3NA*}M0L`FlxI~xO9GntHGLf)h%G8$Iq$wWrOp0zTO(V!#m zn#gF-U{_6Kw629D7o z?0h1V!EtMu$>6}Yn#p)Mw}ai<6$Mp_THvmEjF>oo{;RUG*q>_V1HDL9G&7As$>@>B zpdwo}jlm^wWf~)Nq0$&JZW+1#F>Iz|;a0882K<{Gg<5|XjvSbvCHJD;e*X1Wa?Du> zQsy)0p2zO$hJySVw2Ygiy?!(~WNQr3p5XAynq%$^s==YNNp*-gsyWy9 zHFZwjvC7d`6OERB0D%6VtlGm3Qz$?(m;vl9n0*?|fO@`nHJJNk&OZ$1zHT#$Oj-5S zKWMTI@Y2^Qe_u4|gWUBX0A7F0#+OA6xa!#|eOtx2=~CPwj^+a6wuRtg@pk^oX{plj z5~HTm;w@ujU2_Ee7ywb6SGA!nurzad$t!=rZ(5B8Vv{_8Kh)5f)ua zFNYvuc|pZHeaXX8su8}_x#7PnKk^GaBqWoi#Xyq)z zq?MHO_+bW*(Iem7SgE};-~2Lqg%xcm9={{q>||t{ouOp&`~PP7cuO`n;EOY;?aAf_ z+;hTED%m`2`;25WYj8(RHlywqZk}hGQDzGlLD^;iR`UU2vkYW~c4nK$GDI!UHjiyV z>dZC+h?~dQMz+~GnQab^vdy6HY~XLKdOcO2qE43Bm(sYXq`k@>4QTWB*~J0)J;#T1q#w{5#vNd50AedAb?z*|JfAAHFMIA4O4U_B1CX zif)f!c3SDcZY=gs^99i7&(2Wnyl=B4BHheBhMAV)e5?+|)6Gt2y4g9IZVryzUSQeN z0n$!1pT|#2SGsvVN=Hgd%tskbC6DKG?0}ZYN6vQDQumj>{a}fp&;7l_axaP~OoV;z zLfUawnQnGYrknAEo;5jqhjNh5`X=r}Y(ev9Xbf-;54jl@1W=88I zMxJnn=3?0Iq^45dH4@IyU8`ln*>#r^&TLZoOfV#OmA68Z%D5xp%pR3p6V7AnI9?^3 zaiYd`XTo_PDsk6@Gfp>nGPnyxRgT>Fx%DyOJj}4pgfpHoLW-~xl;cpSJ(*UId^3BK zvVS5z%VTTM*jL2?p;n)F#tSiW?aq9&k8I|fv2*a0Y2}-JHay?#bmp6b6WQgV=vd`6 z&o49ItS|R;GkQ(#nr()vTA6HyR)?YL$!6#_o>UsiX0)n3nQMlUe(sF3q66rYYKHc_ zGt-Q1{Yk`?pd-^93}u?7eU)j(&yAXB#nOn(Hy^2`$fl@;N zzye9-!toPWYKl(tj_%;T%vIo}*2x&CzjUam${XXu?N%l&4Q2mt+~M2V&%Fm6WKWT%;>H4=Zf zB@zL1ERhjObc&yKGb#w)*d;dd6V|mXFdTN-x-aWbSZp1BY0KQoW?p6%cqIgHFvHKXRpM1C9rSAK4i`-+mS${S39#wSR@>Z@G?tJXtHknOY=+u%Zh z#|rqWc+>l6Wov;C^lxEk>jKRVE2RimKh}00Il`sYtsLP(hj`iZ7eZ&NS_NxNKQWL` zL|gaC9O1GxQ1WSO8c>>>CTm$wm-aJs;moq1HFPNSEXPEL!=0U>4c%45?TRcRnkMM! zOCO=T>d7SGf*JGFBq3UdJ~_e-OLpbP0hs!yrQfix<2#Q&3db0XG`}|N(vvnL8oKVx zzVjuIl@2IP=r8SQ!gX}gTbS2qGaFfzh+%osD2#DSy}za%1{qfjE0y)FWp(Rz%^eo4 zl`WAI8v5yG%QT_WnI?3OrwNyQ8&4DBiK?Aens7C%TlI7a+BfeKQ(j$XAV!*y4Vp94 zgpkP*YV{?Byc%i3<$70IZ_RBnCy%G}QhLIXeGGh6f8Q#0QKE1iVYNo0P$CqGLiF|Q z1V(M!9GMd3-nTWCc%pEd)(m~X-l0`9g*f=YWY02%`?g9tPZc_yxx(Ohvhb@8m@IVR z&txH1$I4%R>1l0F+9PXDQDbf~1RtAv7O{S2+OJjGi#`vCH7wkD;@u zZs`g8u^l;Y1H z&*8UqR3Hlr5Y4v#CPzMFN9FIi182FTWVRfU{p-EsT>>*0jg1o{O;5D+>{dm%aRNzcQp()ek9NQFm`TlWUU2ud6T{$vKgEpLLpHY~p@?e9b>c60+ zbAk??6C73@O-$ER|XE)?p>j;-HN8VWCo(_T5gF66PE^h7nddjTs`!WL1 z@+%s9%k{*L;{2BVj<}&)%HRkGMJre*X#8B`2rYGXX`R0ljyX7M*oguU)8THLzOTwzQ(8`aLQ3V4JRzDY`UXFSly<__i^TeK!8~e4@`gV zGGXUKhIjzQ#jITDw|AST(dKku<0VHny+7f#%vprtzmZ`$e+yZ>@s=`p<2wR6#XmF_ zwT*+XdLOA$;;6Bd{p&*wD8S9a`D7t+DS0He5B2dB!pRN1^MdIF})jQg7 zN+6dqRYJX#DcjW)rRr!zA^6y2sWqjPG2crmq>ya+N4XSk;&%L88oz9xbe-u%L&1rn zq2yQ+Cuy^Soz9}69{)IDU)M{={Wx9Oq9OL*axV{gwCi?U+xFf40+R2`25XzjHhnnY0B9l1|m5%{}Uc zI$H)$*q0qGgXam&(63bU@t(tiN5@`g+aYLD{2eD+$YrsZ@p~bgx4dBJrJri0y>$1$ zkA;FdaMY{jKgTcxw-sq!%|IUH)Vz#t)mr{{1DOnRTIFQyEcdn8qN;@6OK33g&^tDR85Cw+LtJMopq)v}|p`^WDC^%8%^HYtO z4Sx4sdkQ6 z6S4k8Q9~zKbkev1dtfhR55bADhvZn8ku=hmKI`|k(0$6qy>)V%B*B}l|8)l?a)+K_V9kocEG=B8TV0})jAsYp6n#&;20)hTrun{zoes3 z!t4PKXD_DH-FaM~IoloZ>?-QBvWJ(W!U+p^b^yA!JZCC>4)phaO3gz@SKG{kNjm$>R=CHV{bZ}S%P(i!0n2g4u{sK; zZ|hYrcie_6BKr^xXu=CL^07`2uXzYg)I9JBGpi!`4l6?z{jnV_YaaL=D=Qc}8tK-o zbW}|=X}+V5cU^%48g@Rdy=7Qj&9X3xy9U=xaEHMMcemidZEzhRc<|uv65K*?cXtaC zf=h6MOORmSSztqj= zrb+|l_IKa8`!#D5Lf6lp@7-MLkF(m^36dV;-a46cgK|xv(fumRYUZXgue>b*VP&w6 zL294R=;5dF=d5uw#;wZK;u}`SY1sX*Xj;`?o}lp=M8_{ayi$gf#=|63g4-4bO5+zM z>^Byq$1?VI8!>UQjDUxF^*v*sAvC1hK(29ZKG_)f3!ci5UU=PSLj?jgW6|~^zOuPn zJX9R4HS4$6IFe-RgkiZ_d3`D~hwl~S;w08;dRDE7BJR_50NQ%HvyDrn2huM^+I zDKRY;NI&*!nft818$w~9zAZ^Vj}uGhyRl}McbWhl#vsbJD^6byNf9}*@bASSGD>6q zzV|fmO|aW;@G%z;v%@F9SNWRsL`KzzCyD*|>tY~in~(oQ)owrc<{o6;Lcdqk?I`%m z)85b+Yg$FGM0wiuF&uC2?eyh95SHrkp#U4F5b)-iNEO4cuhY{^Ri~VHqaM9(NvL)> zdh~oC#}QeynEvK^+t1{BAjk9`<8~lthC)O&XOXJ{qz5fkdgqS5s&c^?_E{x&$Eh>k zC#H6&s2*pGN3w%0gHp2bK7w7fN!$F5w7a(~GU9O0;z>7ZhrxhjYG?;U?-X zxFr8le9%H5W{Jf$GxMqAgd1DxRNx^4HKlac*NjSZhptx?g_cNQ{5g@aK^GTWL3n>6oN0-MK^d0J4GJf)6ceKXR<%gQXut5@~5a z$VI$_$UW0JWJ6$ql4uU+A9rIVJL)^&-Uf{(h-hwFkx3;?B82_E51Y2Nhds=0G^Eqm zqswHNh}z9Pjf=4TE;T=94XS*?rr58DJ`DBjJ^@z1c(r8G!Y{gg9$ryiHP*#`FCl~c zs%OHp8XY(BS}wiYt@NQ{S$G{tZWqrR6_x*cPo8LpY~6JJ?Wxpxy%iE>P*Ytq&adAd zy0u>2VEu7+A?@fq4KulV=nK&Au$WiA8LXMK)^2_;X#6D86i5OKF5+7e6@LG~oK}JJ zNRmDH~sxVCQnr0BN@i0eX+|XOW#OetBs7@__?Kb z*~$l>PW_9h1vQVs(gBg-&XU)X-U2+<qMDmKnuA?UL;p zIi>AoOTk@3Y<$UiV!bW!-!`a1-= zY&Ry}FVf44`7SHZqv-&Fg5Xu}Os(1l0tFdC_m6#rLB+C)9%Ie|uHVr@-9z1T*v*$N z=l#{bMVFo|n8kcv_hJwCdLjf%CnZZ`zMsEZuA9|=ifi~<-Yp+^k<>?{d@=Q^S;$uD zlDL+DNar=7f-6SmcpER+7)|7$RTC@8QuI640^amnBfm@k4Sxfoa{^=B?X*TU>=$RoFV8$PuO%&3dVlx(zmSH*z|Rl*b-(Oaf5=N5 z9S~P-IVMiD<$}4|=)F+hy#1PWcM6ZYGzq`J`1yqn`By$sUjn>K@GbmHaDP88AE@m} z6$>W|^lSTL!KasAaXBOrl3b|$ubOS*X_yxe3v_qut;ZK z%bfB-jhh`x@Vj;ACfDTe+Zy)|iWuaJ8iQi}Y3RJS}LZ8?v3b6vgq zR+w$g!G=Vc-GLHxrOrnWle1R~dXJ?}*lA$OX=t-jf}Hosxu=uATa>(=-o{f)-YNf0 zQm_JR_SRT4J|?o?Mrc=~4^3&UHr1iZL+&+?S+d(OxZtw988T>zX*??nRGiw;>%DjA zv>fm6hB_5kP z=YV*8$r9s>6o7a*+Z$!deaoZYZLBruv0*bO?AsyG+b7CTE~8TuF3lalJdcf%TkX#Y zA5-d>n@rX8Es}0Wq8elUXezdJ(ytZueW%yDHl|_lHFCjnX~kF+tkMpF2^zv$j(?Hv zzzEN;nb;EGJN1O1dnZUdQyx1>wimEVjC4E7JY@qB$Z~gg3*Bi5^5!nw@bF`W&*ta% z{J!+SBt!uTwxkDP8-l^JfX#Uyw_>vn<9$D884f%z2j|53eVTliJ z#4=}9T5&{H`^wJ|mzV(WxH93F!YxH`;QW>4x{@w-6W_34?Lu{GHMy#9rk(DI>E(#6 z!H;JM!RCQmbf1PQgT#_PHu=vas-5FJ0`}R zbc?S{AANKWx>}(l@o^OD`wkf?-@y=`m`o+l_964(CVs1ZHu|;C#wrITTysT_1Pw&l?@eo7p2a8pbC9u9UN-s(8o@&R+&cH%>wB-S_;h5gG` z#FRl%fmdHXtDOrZ@M$_ry(H`4QLf*p!cT5Wx&ITlePvTP4QD*@VEa~xUOm1iIYo43 zKWBZfy=ZjhXRlQ$)FEDuUr%~8Us;#YW_LfCAJpgyQPMyix^I~J6L5yLhb}F!aIl3*1w4y`BwT6=3`(5 zMLd`-!7$;g<$^XVRq@Jz$0>xr-QOC)?EAowVAjWIjQ(c2-pu&e(aV1z-_x=UYXIny z%~!W{!LDxsf=byKHK$BO^;oRq(o)5H1bG+yjvKQwQdT$k;1AXN$QibjTd6kHgOvB% zF$u@YvM?p7zu04*X)0|fAhkb{j#8s<<4_7VP|P8y{^T^K{e0q^GC-h5TXm9-L!z~E z!9e1pXo80cm@xp4A6JTZw7x zxO3Xnn#3-XVh(cP`zYv^m+Wgj+KPCL=l!j__m@3!?d(8Z|CjxtpvD3AI4;IDB_bDOpyKhXV~AQr&;W4ELiWx$~_4 z966@KQll+PWt=dYx9RYazEg_z^W_6@946@_ixpJ7V*U+^IuUya=}lwIC4+83O^g!& zEV_GdPU!1c1fqTCzSa;Sp}b=8b|8S}Ls>_0L^yoZ(@EErHl&FuA)ZV`a!MA94L4Xq zSmjMYx*Gbbcg>pFlq=(ipK8|@lfr0ps`wpYo^^k3@oQyVup^QOgxvU2*^7yoPdnD5 z+r#8ee#ee1LYiK&cF8!JBwNG)>_5c0w}Vx0#Gy(jFRCO(L(gg0Ij$wKE4 zky$d}P|=H9tU)s2nRWc$Qy|Mh{ zXSaRZ2J@O`?4fKwv;Q_TfFY7pOw_Bgk%@b2WSDjhCrFpY3kA2Aq}!4fyRv6#QUNYx zEQ#=GQ@m-u1Ewg_wWyCA`=OIt);;eU}X#pfVSYu+`*5K?h(SEqS$4JM7 z%1Mb+U+zo&Xu-GJIASO84uJwVdd1S^k4knlE?tXj!l7+q+T&SD!TtJi*7y)CV$(Axm< zTodv@ZWgQ)ggy?2+GZvg7LL#2 zwhhU}^G0YF?XEzz*rD^lrKMk6Nyz`A=32KQuNWV{84{~J=wxot1fG)|!pk)}T-gx{ zVt!6_%w%iA*707VGd?|dZT=m3Y}b^WYea)`b=KL7`1mM}fxtNn(s+pkR~uG)G$-mr zNRsrCjZ{C64?o=zmYiEHVMrfd`(afcUiW1E!|>BmoqrkbAz`Y|OUw;?Hq5OPWc5dX z@8X(Sh4l(?Ple5Oq@Q-&e4tPitt>pUoq4F2C;6S?SG2UNPWX6XD`^Q&n7aL1?guZA z0od@;FCU2mVBI+_usw4UABIh@t&n4mUMofo5G?jsTB5$E9_V-hoCetNa$R?jWzBTj znr{MrWnB2I0vEOSKVCUG>rRk+1+8Hl&)I4?$Np9sCs#d~TOZqaWu!sq+QHp^Aapa> zY>{i&^78!MNF?Bl^j&9f!s4nb%kxJU85peCB z*g3^74!yTd*bl|go}zPD)m#v6%FUZssY4oNek@zsq0oi8G)Cc#K~GZMcPA*>rzn6I zg&%9$^~&$anOXYMPD={gtZ)pz3*Ep7)fL=uNIWGWug1*>3=qVGHMLXv9sXz?0lRCm z2|BW!tWPLTr#1+x8Zt0hdzj&E^{WmG*>s%v*k1Aoh4XR~$Q4v#H z#r%th;;+Pc$x4hxhbJ{p*2jZ2JEYd6DZ*% ze5jJc4(VWTitgaH<63O-%7|ty5tv@~qAP;b!tFrMa!D^6obmKb{i3|PWh!ScR$Q=Q z-zpQ#$UD}#ln@g{C7DMWa4j*8pnA7MFwk%gxL6E(N`o#)m=(`6r&}^{H!;W0I`7w= zBDff3N=IEJ?VIH?9*pzy@55Nf%2J)@xbnZU-rD23eVo0+bc;?;9k4ql$WGgf=o9iv zmT-*vdU$E-73$|L@}u_N#@5&$Q~^<&4Kfcq#gYChFM7u%Pb5`YaaZ9kEZ@0$ngs~ zf4Ax~)BcZEyg^;qMN)enKJ6*Vkrxi_srpKM*65TuwlDH2wUC~TNmms=vtKgS>QN~(M8QBKU{g+hLgrY>{|PC|b=4BYca*Yb z0csvYH812}tWa@eMebxC6bIebR?;gGrkV1+10;kmw2s2v7ecU;2BoKzQ|Dp@^%~@2 zk4GBbO|?ui-Y|be!?38&j&STXt7}1M9liYNvr-JM%N}$*GpozK%@t%N3}0aKx-s{W ztks<|+py4O$xA>^7~HbZW9dbW+6|M)8-$b;FZ7%BmacLs6S`pn3Qp<9Nn~NU-mws8 z3&uon%?d#Gp4#oYF#{r)8?M?L;oPUc)Na)ieGOwzJS|rB&|_AUuh;FxiPzwiQnT5n z4#s|K(68%K$zYC1IzXA$PUU+Pnx^PQIVZE9O=7G*O-p%K%g*< z+iY1a_H+8Vd>H~O*d8Et_^EkHXB%)}Ar8|S%=S$wN@AB>6 z;<@U-(b}MiCsLZr#YWi761t)-o2yuu%$=vtAsnoX9eUc#8AgJX19}WQF+@P*zEPk~ zZrn)WJ#JXMX1xedXSPG;sF@00jf-G^4YVx$=(kV1q^V>LM|Y}V$P0_+QU1aM3*T(n z+V{(Rx_LKJ`1l(7Cg$`bA88hm@agsJT45}q2U_g#C(m(V$(XBzld6W|Ly6Zzc9H$q z8I`l+eR8|8r?sqxrop?MF8Ynu2@xwl2tL;R_k{5 zc(ihW4JiAPjU=h72qi{7eThCcROKy(zh;LqkTM`wdiMPu=v&3In9Rz6gW8rMd_tmYj$ zA3wd?ojnJb&li~$jkczvlMm{c5oE4cRF@jWt{2OkdvxblD$GOVq7>9tL#qg7D`SMo z#4Q|q>$S!k%qCYi9D7Ej`y)lHeASMjN_D$N%S@9NyX?=&}r^*vApiY2~ zuF`mQ%^q~Encaa_*mN?K*k(AhhuNT2cx|Bqk*1@!N$8zxavL)<7X49d6p(M}VXiNo z+HW=0l}V}9q-E_!gQ6#KTfdomhauFN@%qb^fHpjwnlr-8*( zzom|X4nPn)v^T$-EQ0i1fqoZwa`e%f%b902du6FAxQz83;PJPmmDLzn1U{L-ecKs( zkovZ~{;8mKi7oKtgt5fHx!^YyKT|hg^13UviWz-H^LG^%rji0fF*txH)2oO!`{DEu}7@lM{cDgp7;`$2O8VtF4# z8E3Qc?8V#PkL)U%CJ4h0eR-@`xeYod@vdjwlEJBu$R`BEy|rl3G?j4FHq|}p9&ObP zCBdoky4Gs|9*P@J(?tpu=m*qU!em5#DFr5eXB#&?c}+wM9luTK|+YN@5oRKHa6ikiWV zIOV8E0%vkXb)p9?u%F~BeRB6mbiWLyhs!~RFSWcY&=eYp#bsG#oX5}}m{jIUtRwwx z%{3tvz{u;7p|Z3b!jS7B28ar;jPm;fOY?71R({nnZ?9(BAk^5OewF_$UX~y_Z&Nh? zHeTyZ$R{!*zgl-C;6c&=xNBXSq}8*sOgtm7lHoH{VpS zcOewol~1E>y!;-~??I8zF8Ok(EF$%qAXgx;yRohS0_S&BRr!{^RAaCV`>?q3X2C(x zEoh^d#}((_!c5w{|b&r##utgCI*cpLdTmWzw~>V$5kCu zinBE30B${xt%wi~yY5ESL5!++gkYlrXe zW@-1$7bPH#Fr(Y;8=GoVs+Apnw<}a80?nYIULjr9d_7O3qLrl`zUUO+z0G_qZUnrm@(m{83u$^W_y>(3F{Ljj_21JFcfe|WpeQEwfuPK{9 z6@|WTPObv}Q~VwH1JaIaB7G<9)+*fYsNNZAD=fM>seVH^<5cyoui(phhBS?A!r zaEB;(?lHu^43X7oVGE+K1ETIZWu}~ z-pgp?O^T|d3v_?0IAfft+i!P>Vyg2?NDD>s6$af8J-bNLJ8y;wPzti^hVzb`J~Zh| zh3O%2P`(qV>~R)=C!V^184A9(C!9WyC?uR#3c!j^U8jq`tNH|sA$GY|io{_MD;zL` zkuC&B9I!>!7(iDv1y39^o&K2;sC_$ZHej7oV7BxwcNZP+)35dgn2+cQ`fXBk<7k-? zD!((KTimkGgyD(fIa&^@h{7`kZ4nB4c_v~*mWl=m`kXn7tqRi~#|QY* za+ya#I$;m80DmDa#3+88LB@}q?V<%Jq2a^@!$1RZrue{G^NnO=&MtV_m4}ztb``lR zsqmQrBzpjbtT`lZ-r+h*bGL&ljIM}NHT!5k2gy(jtltp&4-fl>sZ^3eXg`VD?@y8R zEXjL58&1?oO0;4=j*{GH!`IdbKSy0~Y)|=AoIQ#1!~6i{wm)y0>^Hwx*aGLi>@4y< zK5u_Pkf9^5delV54Kg}nSrYps-{~|RbCd$_gJXv=%b5mWZOFn_3_m=4?cas*^va@v zq*PyAw^as3BXsV7W`|uEA?LAU^0qL<=Z)uUl=BbaK5wwxXl)y_VA2CPgQp~hVFP)! zn;T&QV2ZtCVPSfG{0JvsU|@p2P_Lr9clA%WA^@Tu*p=?AMV6DEg-$)$T9vhrCGBO6 zdZ$Ku)Nr4e1K&MH%BI6ShwOXKgui^0{JzN=J{F2MzsNi$S%VaBd|1w!(;qJQO_puy zZ0tv^PUr`o{tf7pp-UVrnfyaR!c3KwYHwsb5&8b>N{>am1wj+5TyI3y1PQJH^|Js9 z4$OuVT-{MstXQAc56(?*euCCeD&JaD);*4&1~l*$Fw=mZmr`i#!JXN#i8L8jXmxnu z;%Rv4MO+4#`TG^zX_(zBkqu1T!gKa-H$CQ6J7;L|S! z2{`L;(ibzNzOaTR!I6zlfi1IkMs^r*ycTeefdhqm_XJK0m}}IQOK)RUKD0=9i+{zK z3{2y6e)X9!7gI<0_mrB7&}E-nk_|hh;=Kn0UqIpoa`E$dzq+z|yl0~k&fNJWLe^cm zF0Z=a0EuUCvEQiaE&pMcJ=x-Kj-k}k`?#KgM~xF@lnbfD4=tat3rMdf_eJ~N86E<2 z&DoKzrySI!?nv?#b|HwXS2?`=?Rh2goFHR5?oR8q(s^djWT~n<^Cm|OK2tx{$Ai4l z^++t-7LvWUFv)D6v0;7G6JZln{6<{K9DUcr=Xx5N{;h8F9 zp9@bD;eA*ph`5Pl%~lAm=}q-S4~Wr9uZY~0)zu<=AA7TC)>i6(j=+cL$*-KYSLQ`j znn4!&V31fGsKEb;pq@Ynro(4fd;2P8gWE)M7`OklF@$>P?B``6BCsoD%-=AG-P#%deg2X8zVK07Uy+QlE zh=F_Htf$4a*IOQ%l_$l~ECrLT-Ew13xc!PTLj30=Z3u(Rwxm5HdVyd zSvNVnT%TMSi_bVJ7gt^^O{Aw3N@QnoFm>zwM|gH?A6(3IcAL?+!~j?NCPI7GYm=+^ zIa8zvEm;9;9LWO-&o;fz*m&EOHF)_X8T0E5;X;H!!J8`(J_gn`+t}4qmy6z1nSQiCI zPwT5x(;qr%D^r#_iVprf%20I067J zuVF<~`mPL2ov}ZnR2KTHa=4t;Q%~PZ+4GW6`HTEy>dz93)KQ82(68EzJpKl0_ObtL zKB4?^A%Kk6iqXZ$pVWs(v%xi5n2Wm;5&ey(_KGO6SUvZM)=r#j>aFz|*J)q5`?#P@ z{Y%n&pN)i?*>&hz2CCjya&2LQ4?O(d)p@_x#fNvZMg2VDd0*t)PbkSVY~=NYU5l$* zg4Ky~-XW`4Dh(-S?)BFh`l2f0CHE3xWn>M03X@NVz){NY_ZslBASF&08&A%D7#-3B z-ev{-n$NN$HFDZCay;?~1ccfK)q9p-!nG|N|3V9vRa)L$xRzQs3KbI2}lxtMs+Tqfm;M7zFCMqNSFO}=KeVmXa>f2DJ0(yFG!+|4TS#vmIX zO%c&_td$nsR`JWPG}DgOcS;6aX@Oalm_@B?s~R_0Awv@ut{}0i&PgQ|$Ro9wqzmWJ zwPXxGZzchvnWAr|X?jF3h{!tQ@uMi{{lb}O4z(xuHbLjE&fu#!`lnt-_GiCXj#)h1oP@;I=9SfCMddRnrZEh`CMe14Vt@?acZu=!&1-| z50bI0ojwrvl$Hg@6RpTx7018BgZrKu!sf&1mI>S$#}J=gaB-%0ff$9=7(efr+~q!u z0}->hZ%2#nKX)I0T#_iJ2Qgig7n}{Eyx`An;fl-RqmyGLzb{hAHL}^5hr44&6yk3y zokn1hT;4r<)rR_U@O^gj4R&IVcM9 zTVB_AlS$mtiLd&t=cEu*89q$x{vIPc9@TdfNB<1G8LL${G%`7^VCc8AH-AjQ&2d$? zyhJV_TNTNCN|=NB_LF0A(h0rSFlq)LfP=Xp2^Fu#n0Q6s#9R{2JaF-z#o@`aT~Hl= z=)2Gd=NtLry^*)m&j?^wfr9r_@}VJoXJ7qYAZhZkC!Bc>>kerd&GRGsZ17V_?GsW@ znjdHQeJdR~@j45bue~suc{2{zHSIam3$&Bza2 z%(`nwpMC+;Ari#OWJbFTudQ(|MOg!Z>A}!d{&DWvV_VQmzpbT_S3pt?31^SfQGQ2A zS(7=-OHu<7V#C%|{#KXj{B2d}fCh@RO-6*G{cT(83L}(9*oX&rafzf_uP^63U_L1Q zn6yR@MI#4V$}Pl2>#`1HokGha^(km$!>R8i7>0zhT2Du(Yy@80Gb-hx+|y?83tbJW zZ427QWS~Y1+P2v{3v`+L9_a?#sjJQ&=dVJ#h}J_H36iS;kb^1{f}S75bec6|hbY>J zlD*}J-!lrd=J=YzN%OZ?oKQS)&ztdu}0MM797fy25D)GWRp~6f}Qk3 zlIleQ)i%qL9A6W3r)5liKrGKTcg+qQ-|1x{qS#3N4yN@#4VOgAx$bAsd%qfk`~_gE z#LJ-Dh_kq}b!##Y;VCyEIH=^tTnE}`KYsdNsJv>X zrK@fCXb2VDB2~+CLJR*PIe)$YlR8MjrsGYoqBS~ z{PbW>_~mx>F>2*BwRRP{u-UF!DQ@j=tn~PfraF=z*&zDn$(_X})MZ}j72bs}iX;u; z4tV7H46D3pmF62f3j&dZcg@vcD`A@z13PKwfIB}VCXFU#)4uzvR)n^LD_GB_oU1G5 zA4`{!`hxW*nLV9cX9I>@CflvG!g#The9C#X?$S{RA@pKcxxirzw*`Cm`STFFrZ$33 zD2M5Z8P^32f%nS$J5{Y}2ktLK^oI32D4q<~u9HFU7wl1KB&*&f7QTW^CWv!{53YI3n%=GV(1N-E4H3`oJ%h%QLIV0;99S71R~Mp`EsFbG2nza zVCB%ChzQ;j(xf*zs4FY)YqR1GowbPIIlz?zFYwiBY%ztWl{ftb12I+lCO6orKc@z3sY)^SB9uUP1t}sWXWQ^ec9`{43trn|@ zrgL%WqbRu5lJ7f3{#fWW3UojG$C-e8g>YxS-QBr<|Q?YD2 zy|kX9mk_}!!XQi=_v0f{;6mFHb9-AV3-Lr7~g7xij`YOkzD@p*{jxZnd@; z&$YFMd<|7yE}E%`ZMtk1L9cW&&@mF2+QEiS~@{FA&IDx^C6&LsB6IQBRS#4F07F>ayymyfOI@ju*n4j>g z_~~;Zp1VV5>FOCwA?hu;5X9dpbII|s35<8+o6Bu0vFweuEX%k@HL}L-k=byny1ss6 zm~|2o@(J|k1|N4a6{f5N^lD$77oLo!P^B5#*;v7_cF*wA$)(Isgw^kx7@Wq!#4sP- zLl*nU0+G_c7`#C!xQ42V5G!$yc|=Dj5>ec70?DNj z5kCA2{0U|8^N-a_)KEI)@y((yLB$gC+TS(WjCXGzErOM<7stdAbP7ZeZ6fNAaG+khUe+;w<3t(5g( zvHL_XvDMG2P(&Pm=#$=SfzVW)XVSc#Ui}hgF9B32Jd2ZGRW~%uX0Q&9|-{6gX z`DR%^IQ5XA;g*s{b|`)Br?A|z4|bw?C$jvw5W0Xp{k~LbU@+tJ=qOs+jxGbc^*kp1 zNw4UefRE*_v*fja&RYO6;W@@7N|nn8AMBp8PUMumkN6E?NK@;gwh4)a%4O3inB@6N zU=(hUb|rp8x8?LtVdsqV_242N4Dqm`h3kQmSKNh)^4_1v#1r@Ce4IlT@#FZvmfmh= zKNsG@jOX7_l9O~(!h!l^A_1fA1Es(IVsFk!e_~mWK5Y(vaEZ=C^RVfZ3@%;O+hXbVJC9nH=<7D z(Eg`zw?knRwLTQ!PU&(MLR;>{r!-2aVPmxpg*^{TZzwyif1L;emW>aEH+_@W;inc# zZv(jWys?eEzpV$SeGq}_v;F&;lDz1%;#qG(R7xlEo6l%NAv9lZVG^HDgrVokT&@S} zvTJLm6zyY6P?X>HyvCUdCDgc~95Bj<`bO_WxJM7lfL|>CmNMI!CquNKU)my|@SELs zuVVGGCk`HN3^Gv5Yp~q?0=R^0n8%+y6pWL$IFx(gAcPX3u?;=1`MW0$Cs_>gn|WIy zl+S5Izg!JRWN?q`OI?EVh1lNADs00Zs&2!+B~aWJ2dpzDC?*f8ZugD@mP2y5| zm%cV%005U}0k=(Q9PHTvp}9lwRP3ok@De*IL-1xhex%sp2|A?MBT7iu&Yqc`sD_QrE+? zo;`t#F~}e{n^jb1wklm!2O+@3Ug-ru?KFPeFX9~;cF>K1Bj>~hiiw)yt^kI$#T>LZ zG00L+EWf@4P7{4zO@?NA_+P3+7^ZNd(C)g_&Yfs&ACMQRLi^?On*b(qWC*^%?K{*y zuS1{daro?yEZ98YD7WW4#SRZmU*0w;Z1nDY?r%IZS%)Ll@jfrsIT2)N&~*8s`|~D@ zm*d;exd?08xcl4RSa8*vt*fK`4(8NF2u-sdJqa4w)Wh>L+N#$S&R7Z?f#S6vt#UQ? z;?|%XM&xfa>1qM>X94O^%CaWg4eq9g06S4WE~R3uX}WfS#SEi(Dex-%d#3k@2l(z?is|MBjw;&WhPwU zs?D^1l{vYF9xcYU?m3Bf4H2|I&Gr4FLNf4wBtm`V(J=lqWy--t?c`NJKp}Ql8g1@g zFeD5wdt>N_k%fS#2prc;*wyYC$TA1l;kzOTnnVdT^qm2$Y z^jX_Hr z+tGRtmB%2Dls#;LsLR19J*8M-WK z+~=h)5u*i8^$+8&>JoOV8xtRk45_%i@R+&MLpSbJHGlAb{tf+zHalk=*wMn(4FWcG zK!ett%xuwk0UUroznt9MKoI9Yq1=B%g@o8Oy_~`9YNl3Tc4e@Ijj4o_CqSPA+RVqv z58&no8KOZOAz(*00Q7kiKpl-;9qj7l4lxJ2LTS|?PUae5H+^ z%E28f9f$_y_BSc;U!;FiN}9Tv+B;eOlf~bfDudljEubv`(0_=A{^R+#=zsM7UwWgl ztEwpjfFdG)3;NTIf9S}r&WHAgO#Q#K_`~(@#=mU%PjP7M8t!Ipf2^vjti-MacC>P{ z1^~IZ_(Vkhc8!pzr?aWK9oP+E2DY+s6sA9G@1_UXSP0YW@F;UAJ4=GCZRETmU=42- zO>=KMbC3nSs0f;ns43K=U{+64XI4uadp9t|6##ZM7p9U_SCXOngWxIP>EP@D?KQyD z!QRnTz*Ct1FA@Q0{STO(9`F~6o1HMduCf}y&B@8$&c+SE$p&HrvI4nS0G1F_2e5|| z#0~&tCh$(Ut8lo!HEs9N2Ai*@0{v?Ee%b1?>*R#@WpVx)%3G zu&J4oyPGh*ySt5r0JjA%kkj0Pla(9D3)K~9$-&A2y;%9Vc`U%(K(Hw%FYuq@oc~SD z|0WOG02RmuwF9&!03E#+?&e^KFukmr5K05|mAw7-P?Me#R+5c?nZ{F`C^w@qd0 ztgQV1ZY&3fKco2%o`95-xw`{&j**x8|1(zpx7}-D{x5}{-68gW1%`z=JJ=rlM>kif zhk;OyEzAWhogfaT&|z)r>}+piZu)1mvqOg?y@(LB(apxq9xU=#*ooV_{i9-U^Cyf1 z>`fi5gy}t5Ex?wh?)Gl_^%w|2?1N8aR7iEXn*Fb ze_Q}w9v&_pfFYw4BGzzyT8bh diff --git a/Content/Figures/Software_Stack.eps b/Content/Figures/Software_Stack.eps deleted file mode 100644 index 354213287..000000000 --- a/Content/Figures/Software_Stack.eps +++ /dev/null @@ -1,5737 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%BoundingBox: 0 0 728 449 -%%Pages: 0 -%%Creator: LibreOffice 4.2 -%%Title: none -%%CreationDate: none -%%LanguageLevel: 2 -%%EndComments -%%BeginProlog -%%BeginResource: procset SDRes-Prolog 1.0 0 -/b4_inc_state save def -/dict_count countdictstack def -/op_count count 1 sub def -userdict begin -0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath -/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if -/bdef {bind def} bind def -/c {setrgbcolor} bdef -/l {neg lineto} bdef -/rl {neg rlineto} bdef -/lc {setlinecap} bdef -/lj {setlinejoin} bdef -/lw {setlinewidth} bdef -/ml {setmiterlimit} bdef -/ld {setdash} bdef -/m {neg moveto} bdef -/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef -/r {rotate} bdef -/t {neg translate} bdef -/s {scale} bdef -/sw {show} bdef -/gs {gsave} bdef -/gr {grestore} bdef -/f {findfont dup length dict begin -{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def -currentdict end /NFont exch definefont pop /NFont findfont} bdef -/p {closepath} bdef -/sf {scalefont setfont} bdef -/ef {eofill}bdef -/pc {closepath stroke}bdef -/ps {stroke}bdef -/pum {matrix currentmatrix}bdef -/pom {setmatrix}bdef -/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef -%%EndResource -%%EndProlog -%%BeginSetup -%%EndSetup -%%Page: 1 1 -%%BeginPageSetup -%%EndPageSetup -pum -0.02833 0.02835 s -0 -15837 t -/tm matrix currentmatrix def -tm setmatrix --1949 -3213 t -1 1 s -1.000 1.000 0.003 c 26517 3556 m 25906 3556 25398 3830 25398 4158 ct 25398 17868 l -25398 18196 25906 18471 26517 18471 ct 27128 18471 27637 18196 27637 17868 ct -27637 4158 l 27637 3830 27128 3556 26517 3556 ct 26517 3556 l p -25398 3556 m 25398 3556 l p -27637 18471 m 27637 18471 l p ef -0 lw 1 lj 0.503 0.503 0.503 c 26516 3555 m 25905 3555 25398 3829 25398 4158 ct -25398 17867 l 25398 18195 25905 18470 26516 18470 ct 27127 18470 27636 18195 27636 17867 ct -27636 4158 l 27636 3829 27127 3555 26516 3555 ct 26516 3555 l pc -25398 3555 m 25398 3555 l pc -27636 18470 m 27636 18470 l pc -1.000 1.000 0.402 c 26517 3556 m 25906 3556 25398 3830 25398 4158 ct 25398 4486 25906 4761 26517 4761 ct -27128 4761 27637 4486 27637 4158 ct 27637 3830 27128 3556 26517 3556 ct 26517 3556 l -p -25398 3556 m 25398 3556 l p -27637 18471 m 27637 18471 l p ef -0.503 0.503 0.503 c 26516 3555 m 25905 3555 25398 3829 25398 4158 ct 25398 4486 25905 4761 26516 4761 ct -27127 4761 27636 4486 27636 4158 ct 27636 3829 27127 3555 26516 3555 ct 26516 3555 l -pc -25398 3555 m 25398 3555 l pc -27636 18470 m 27636 18470 l pc -pum -26248 6777 t --89.9 r 0.003 0.003 0.003 c 624 -321 m 624 -268 616 -222 600 -182 ct 584 -142 563 -109 535 -82 ct -508 -55 475 -34 438 -21 ct 400 -7 360 0 317 0 ct 61 0 l 61 -632 l 290 -632 l -339 -632 384 -626 424 -614 ct 465 -601 501 -583 530 -557 ct 560 -532 583 -499 599 -460 ct -616 -421 624 -375 624 -321 ct p -491 -321 m 491 -358 486 -389 476 -415 ct 466 -442 452 -463 434 -480 ct 416 -497 395 -510 370 -518 ct -345 -526 317 -530 287 -530 ct 193 -530 l 193 -102 l 305 -102 l 332 -102 356 -107 379 -116 ct -402 -125 421 -139 438 -158 ct 454 -176 467 -199 477 -226 ct 486 -253 491 -285 491 -321 ct -p ef -841 9 m 818 9 797 6 779 -1 ct 760 -7 745 -17 732 -29 ct 719 -41 709 -57 702 -75 ct -695 -93 692 -114 692 -138 ct 692 -167 697 -191 707 -210 ct 717 -230 731 -246 748 -258 ct -765 -270 785 -279 809 -285 ct 832 -290 857 -293 883 -293 ct 987 -293 l 987 -318 l -987 -336 986 -351 983 -362 ct 980 -374 975 -384 969 -392 ct 963 -399 956 -405 947 -408 ct -938 -411 928 -412 917 -412 ct 906 -412 897 -411 889 -409 ct 880 -407 873 -404 867 -399 ct -861 -394 857 -387 853 -379 ct 849 -371 846 -360 845 -347 ct 714 -347 l 717 -369 724 -389 734 -406 ct -743 -424 756 -440 773 -453 ct 790 -466 811 -476 835 -483 ct 860 -490 889 -494 922 -494 ct -952 -494 979 -490 1003 -483 ct 1026 -475 1046 -464 1063 -449 ct 1079 -435 1092 -416 1100 -395 ct -1109 -373 1113 -348 1113 -320 ct 1113 -143 l 1113 -132 1114 -122 1115 -113 ct -1116 -104 1118 -96 1121 -90 ct 1123 -84 1127 -80 1133 -76 ct 1138 -73 1145 -72 1153 -72 ct -1163 -72 1172 -73 1181 -74 ct 1181 -6 l 1173 -4 1167 -3 1161 -1 ct 1155 0 1149 1 1143 2 ct -1137 3 1130 4 1124 5 ct 1117 5 1109 5 1100 5 ct 1069 5 1045 -2 1030 -18 ct 1015 -33 1006 -56 1003 -87 ct -1000 -87 l 984 -56 962 -33 936 -16 ct 910 1 878 9 841 9 ct p -987 -224 m 923 -224 l 909 -224 897 -223 885 -221 ct 873 -220 862 -216 853 -211 ct -844 -206 836 -198 831 -188 ct 826 -178 823 -165 823 -148 ct 823 -124 828 -107 839 -96 ct -850 -85 864 -79 881 -79 ct 897 -79 912 -82 925 -89 ct 938 -96 949 -105 959 -116 ct -968 -127 975 -140 980 -155 ct 985 -169 987 -184 987 -199 ct 987 -224 l p ef -1365 8 m 1328 8 1300 -2 1280 -22 ct 1260 -42 1250 -73 1250 -114 ct 1250 -400 l -1188 -400 l 1188 -485 l 1256 -485 l 1295 -599 l 1374 -599 l 1374 -485 l -1466 -485 l 1466 -400 l 1374 -400 l 1374 -148 l 1374 -124 1378 -107 1387 -96 ct -1396 -85 1410 -79 1429 -79 ct 1437 -79 1444 -80 1450 -81 ct 1456 -82 1463 -83 1471 -85 ct -1471 -7 l 1456 -2 1439 2 1422 4 ct 1405 7 1386 8 1365 8 ct p ef -1658 9 m 1635 9 1614 6 1596 -1 ct 1577 -7 1562 -17 1549 -29 ct 1536 -41 1526 -57 1519 -75 ct -1512 -93 1509 -114 1509 -138 ct 1509 -167 1514 -191 1524 -210 ct 1534 -230 1548 -246 1565 -258 ct -1582 -270 1602 -279 1626 -285 ct 1649 -290 1674 -293 1700 -293 ct 1804 -293 l -1804 -318 l 1804 -336 1803 -351 1800 -362 ct 1797 -374 1792 -384 1786 -392 ct -1780 -399 1773 -405 1764 -408 ct 1755 -411 1745 -412 1734 -412 ct 1723 -412 1714 -411 1706 -409 ct -1697 -407 1690 -404 1684 -399 ct 1678 -394 1674 -387 1670 -379 ct 1666 -371 1663 -360 1662 -347 ct -1531 -347 l 1534 -369 1541 -389 1551 -406 ct 1560 -424 1573 -440 1590 -453 ct -1607 -466 1628 -476 1652 -483 ct 1677 -490 1706 -494 1739 -494 ct 1769 -494 1796 -490 1820 -483 ct -1843 -475 1863 -464 1880 -449 ct 1896 -435 1909 -416 1917 -395 ct 1926 -373 1930 -348 1930 -320 ct -1930 -143 l 1930 -132 1931 -122 1932 -113 ct 1933 -104 1935 -96 1938 -90 ct -1940 -84 1944 -80 1950 -76 ct 1955 -73 1962 -72 1970 -72 ct 1980 -72 1989 -73 1998 -74 ct -1998 -6 l 1990 -4 1984 -3 1978 -1 ct 1972 0 1966 1 1960 2 ct 1954 3 1947 4 1941 5 ct -1934 5 1926 5 1917 5 ct 1886 5 1862 -2 1847 -18 ct 1832 -33 1823 -56 1820 -87 ct -1817 -87 l 1801 -56 1779 -33 1753 -16 ct 1727 1 1695 9 1658 9 ct p -1804 -224 m 1740 -224 l 1726 -224 1714 -223 1702 -221 ct 1690 -220 1679 -216 1670 -211 ct -1661 -206 1653 -198 1648 -188 ct 1643 -178 1640 -165 1640 -148 ct 1640 -124 1645 -107 1656 -96 ct -1667 -85 1681 -79 1698 -79 ct 1714 -79 1729 -82 1742 -89 ct 1755 -96 1766 -105 1776 -116 ct -1785 -127 1792 -140 1797 -155 ct 1802 -169 1804 -184 1804 -199 ct 1804 -224 l -p ef -2517 -244 m 2517 -208 2513 -174 2506 -143 ct 2498 -112 2487 -85 2472 -62 ct -2457 -40 2437 -22 2414 -10 ct 2390 3 2363 9 2331 9 ct 2316 9 2302 8 2288 5 ct 2273 2 2260 -3 2247 -10 ct -2234 -17 2222 -26 2212 -37 ct 2201 -48 2192 -62 2184 -78 ct 2183 -78 l 2183 -72 2183 -64 2182 -56 ct -2182 -48 2181 -40 2181 -33 ct 2180 -25 2179 -18 2179 -12 ct 2178 -6 2177 -2 2177 0 ct -2054 0 l 2055 -10 2056 -25 2057 -44 ct 2058 -64 2058 -86 2058 -110 ct 2058 -665 l -2184 -665 l 2184 -480 l 2184 -470 2184 -461 2184 -452 ct 2183 -442 2183 -434 2183 -426 ct -2183 -417 2182 -409 2182 -401 ct 2184 -401 l 2199 -434 2220 -458 2247 -472 ct -2273 -487 2304 -494 2339 -494 ct 2370 -494 2397 -488 2419 -475 ct 2441 -463 2460 -446 2474 -423 ct -2489 -401 2499 -375 2506 -344 ct 2513 -314 2517 -280 2517 -244 ct p -2385 -244 m 2385 -299 2377 -340 2361 -367 ct 2345 -393 2320 -407 2286 -407 ct -2274 -407 2261 -404 2248 -399 ct 2236 -394 2225 -385 2215 -372 ct 2205 -360 2197 -343 2191 -321 ct -2185 -300 2182 -273 2182 -240 ct 2182 -209 2185 -182 2191 -161 ct 2197 -140 2205 -124 2214 -111 ct -2224 -99 2235 -90 2247 -85 ct 2260 -80 2273 -77 2285 -77 ct 2317 -77 2342 -90 2359 -117 ct -2377 -143 2385 -186 2385 -244 ct p ef -2733 9 m 2710 9 2689 6 2671 -1 ct 2652 -7 2637 -17 2624 -29 ct 2611 -41 2601 -57 2594 -75 ct -2587 -93 2584 -114 2584 -138 ct 2584 -167 2589 -191 2599 -210 ct 2609 -230 2623 -246 2640 -258 ct -2657 -270 2677 -279 2701 -285 ct 2724 -290 2749 -293 2775 -293 ct 2879 -293 l -2879 -318 l 2879 -336 2878 -351 2875 -362 ct 2872 -374 2867 -384 2861 -392 ct -2855 -399 2848 -405 2839 -408 ct 2830 -411 2820 -412 2809 -412 ct 2798 -412 2789 -411 2781 -409 ct -2772 -407 2765 -404 2759 -399 ct 2753 -394 2749 -387 2745 -379 ct 2741 -371 2738 -360 2737 -347 ct -2606 -347 l 2609 -369 2616 -389 2626 -406 ct 2635 -424 2648 -440 2665 -453 ct -2682 -466 2703 -476 2727 -483 ct 2752 -490 2781 -494 2814 -494 ct 2844 -494 2871 -490 2895 -483 ct -2918 -475 2938 -464 2955 -449 ct 2971 -435 2984 -416 2992 -395 ct 3001 -373 3005 -348 3005 -320 ct -3005 -143 l 3005 -132 3006 -122 3007 -113 ct 3008 -104 3010 -96 3013 -90 ct -3015 -84 3019 -80 3025 -76 ct 3030 -73 3037 -72 3045 -72 ct 3055 -72 3064 -73 3073 -74 ct -3073 -6 l 3065 -4 3059 -3 3053 -1 ct 3047 0 3041 1 3035 2 ct 3029 3 3022 4 3016 5 ct -3009 5 3001 5 2992 5 ct 2961 5 2937 -2 2922 -18 ct 2907 -33 2898 -56 2895 -87 ct -2892 -87 l 2876 -56 2854 -33 2828 -16 ct 2802 1 2770 9 2733 9 ct p -2879 -224 m 2815 -224 l 2801 -224 2789 -223 2777 -221 ct 2765 -220 2754 -216 2745 -211 ct -2736 -206 2728 -198 2723 -188 ct 2718 -178 2715 -165 2715 -148 ct 2715 -124 2720 -107 2731 -96 ct -2742 -85 2756 -79 2773 -79 ct 2789 -79 2804 -82 2817 -89 ct 2830 -96 2841 -105 2851 -116 ct -2860 -127 2867 -140 2872 -155 ct 2877 -169 2879 -184 2879 -199 ct 2879 -224 l -p ef -3541 -142 m 3541 -118 3537 -98 3527 -79 ct 3517 -60 3503 -45 3485 -32 ct 3466 -19 3443 -9 3416 -2 ct -3390 5 3359 9 3325 9 ct 3294 9 3266 7 3241 2 ct 3217 -2 3195 -10 3176 -20 ct 3158 -30 3142 -44 3129 -60 ct -3117 -77 3108 -97 3101 -121 ct 3212 -138 l 3215 -124 3220 -113 3227 -105 ct -3233 -97 3241 -90 3250 -86 ct 3259 -81 3270 -78 3282 -77 ct 3295 -75 3309 -74 3325 -74 ct -3339 -74 3352 -75 3365 -77 ct 3377 -78 3388 -81 3397 -85 ct 3406 -89 3413 -95 3418 -102 ct -3423 -110 3426 -119 3426 -130 ct 3426 -143 3422 -153 3415 -160 ct 3408 -167 3398 -173 3385 -178 ct -3372 -182 3357 -186 3340 -190 ct 3323 -193 3305 -197 3285 -202 ct 3265 -206 3245 -212 3225 -218 ct -3206 -224 3188 -233 3172 -244 ct 3157 -254 3144 -268 3135 -285 ct 3125 -301 3120 -322 3120 -348 ct -3120 -371 3125 -391 3134 -409 ct 3143 -427 3156 -443 3173 -456 ct 3191 -468 3212 -478 3238 -485 ct -3263 -491 3292 -495 3326 -495 ct 3352 -495 3376 -492 3399 -487 ct 3422 -483 3442 -475 3460 -464 ct -3478 -454 3493 -440 3505 -424 ct 3517 -407 3525 -387 3530 -364 ct 3419 -352 l -3417 -364 3413 -374 3408 -381 ct 3402 -389 3395 -395 3388 -399 ct 3380 -404 3371 -407 3360 -409 ct -3350 -410 3338 -411 3326 -411 ct 3296 -411 3273 -407 3258 -400 ct 3243 -392 3236 -379 3236 -361 ct -3236 -350 3239 -341 3245 -335 ct 3251 -328 3260 -323 3271 -318 ct 3282 -314 3296 -310 3311 -307 ct -3326 -304 3343 -300 3361 -296 ct 3384 -291 3406 -285 3427 -279 ct 3449 -272 3468 -264 3485 -252 ct -3502 -241 3516 -227 3526 -209 ct 3536 -191 3541 -169 3541 -142 ct p ef -3843 9 m 3808 9 3777 4 3749 -6 ct 3721 -17 3697 -32 3678 -54 ct 3658 -75 3643 -101 3632 -133 ct -3622 -165 3617 -202 3617 -245 ct 3617 -291 3623 -330 3635 -362 ct 3648 -393 3665 -419 3686 -439 ct -3707 -458 3731 -472 3758 -481 ct 3786 -490 3815 -494 3845 -494 ct 3883 -494 3916 -487 3943 -474 ct -3970 -461 3992 -442 4010 -418 ct 4027 -394 4040 -366 4048 -332 ct 4056 -299 4060 -262 4060 -222 ct -4060 -218 l 3749 -218 l 3749 -198 3751 -179 3754 -161 ct 3758 -144 3764 -129 3772 -116 ct -3780 -104 3790 -94 3803 -86 ct 3816 -79 3831 -75 3850 -75 ct 3872 -75 3890 -80 3904 -89 ct -3918 -99 3928 -113 3934 -133 ct 4052 -123 l 4047 -109 4040 -94 4030 -79 ct -4020 -63 4007 -49 3991 -36 ct 3975 -23 3955 -12 3931 -4 ct 3907 5 3878 9 3843 9 ct -p -3843 -415 m 3831 -415 3819 -412 3807 -408 ct 3796 -404 3786 -397 3778 -387 ct -3770 -378 3763 -366 3758 -351 ct 3753 -336 3750 -318 3750 -297 ct 3938 -297 l -3935 -336 3926 -366 3910 -385 ct 3893 -405 3871 -415 3843 -415 ct p ef -4527 191 m 4504 158 4484 125 4467 92 ct 4450 59 4437 25 4426 -9 ct 4415 -44 4407 -80 4402 -118 ct -4396 -155 4394 -195 4394 -238 ct 4394 -280 4396 -320 4402 -358 ct 4407 -395 4415 -431 4426 -465 ct -4437 -500 4450 -533 4467 -566 ct 4484 -599 4504 -632 4527 -665 ct 4652 -665 l -4629 -630 4608 -596 4591 -562 ct 4574 -529 4560 -494 4549 -460 ct 4538 -425 4530 -389 4525 -353 ct -4520 -316 4518 -278 4518 -237 ct 4518 -197 4520 -158 4525 -121 ct 4530 -85 4538 -49 4549 -14 ct -4560 20 4574 54 4591 88 ct 4608 122 4629 156 4652 191 ct 4527 191 l p ef -5237 0 m 5237 -383 l 5237 -398 5237 -414 5238 -430 ct 5238 -446 5239 -461 5239 -474 ct -5240 -490 5241 -506 5242 -520 ct 5235 -497 5229 -474 5224 -453 ct 5221 -444 5219 -435 5216 -425 ct -5213 -416 5211 -407 5208 -398 ct 5206 -389 5203 -380 5201 -373 ct 5199 -365 5196 -358 5195 -352 ct -5081 0 l 4987 0 l 4873 -352 l 4871 -358 4869 -365 4867 -373 ct 4865 -380 4863 -389 4860 -398 ct -4857 -407 4855 -416 4852 -425 ct 4849 -435 4847 -444 4844 -453 ct 4838 -474 4832 -497 4825 -520 ct -4826 -503 4827 -486 4828 -469 ct 4829 -455 4829 -440 4830 -424 ct 4830 -408 4831 -394 4831 -383 ct -4831 0 l 4713 0 l 4713 -632 l 4890 -632 l 5003 -278 l 5006 -269 5009 -258 5013 -244 ct -5016 -231 5019 -218 5023 -205 ct 5026 -191 5030 -175 5034 -160 ct 5039 -175 5043 -190 5046 -204 ct -5048 -211 5050 -217 5052 -224 ct 5054 -230 5055 -237 5057 -243 ct 5059 -249 5061 -255 5063 -261 ct -5064 -267 5066 -272 5068 -276 ct 5179 -632 l 5355 -632 l 5355 0 l 5237 0 l -p ef -5943 -243 m 5943 -206 5938 -172 5928 -141 ct 5918 -110 5902 -84 5882 -62 ct -5861 -39 5835 -22 5805 -10 ct 5774 3 5738 9 5697 9 ct 5658 9 5623 3 5593 -9 ct -5563 -22 5537 -39 5517 -61 ct 5496 -83 5481 -110 5470 -141 ct 5460 -171 5455 -206 5455 -243 ct -5455 -279 5460 -313 5470 -343 ct 5480 -374 5495 -400 5515 -423 ct 5536 -445 5561 -463 5592 -475 ct -5623 -488 5659 -494 5700 -494 ct 5743 -494 5780 -488 5811 -475 ct 5842 -463 5867 -445 5887 -423 ct -5906 -401 5921 -374 5930 -344 ct 5939 -313 5943 -279 5943 -243 ct p -5812 -243 m 5812 -301 5802 -342 5783 -368 ct 5765 -394 5737 -407 5702 -407 ct -5665 -407 5636 -394 5616 -368 ct 5597 -342 5587 -300 5587 -243 ct 5587 -214 5590 -189 5595 -168 ct -5600 -147 5607 -130 5617 -117 ct 5626 -103 5638 -93 5651 -87 ct 5665 -80 5680 -77 5696 -77 ct -5714 -77 5731 -80 5745 -87 ct 5760 -93 5772 -103 5782 -117 ct 5792 -130 5799 -147 5804 -168 ct -5809 -189 5812 -214 5812 -243 ct p ef -6360 0 m 6360 -272 l 6360 -291 6358 -308 6355 -324 ct 6352 -340 6348 -353 6341 -364 ct -6334 -376 6325 -384 6314 -391 ct 6303 -397 6289 -400 6273 -400 ct 6258 -400 6244 -397 6232 -390 ct -6220 -383 6209 -374 6200 -361 ct 6191 -349 6184 -334 6179 -317 ct 6174 -300 6172 -281 6172 -260 ct -6172 0 l 6046 0 l 6046 -377 l 6046 -387 6046 -398 6046 -409 ct 6046 -420 6045 -430 6045 -440 ct -6044 -450 6044 -459 6044 -467 ct 6043 -475 6043 -481 6042 -485 ct 6162 -485 l -6163 -481 6164 -476 6164 -468 ct 6165 -460 6165 -451 6166 -442 ct 6167 -432 6167 -423 6168 -413 ct -6168 -403 6168 -395 6168 -389 ct 6170 -389 l 6187 -426 6208 -453 6234 -469 ct -6260 -486 6290 -495 6326 -495 ct 6355 -495 6380 -490 6400 -480 ct 6420 -471 6437 -458 6449 -441 ct -6462 -424 6471 -404 6477 -382 ct 6482 -359 6485 -334 6485 -308 ct 6485 0 l 6360 0 l -p ef -6811 195 m 6779 195 6751 192 6726 185 ct 6702 179 6681 170 6664 158 ct 6647 147 6633 133 6623 117 ct -6613 101 6606 84 6602 65 ct 6728 50 l 6732 69 6742 84 6756 95 ct 6771 107 6791 112 6814 112 ct -6829 112 6843 110 6855 106 ct 6868 102 6878 94 6887 84 ct 6896 74 6903 61 6908 45 ct -6913 28 6915 8 6915 -16 ct 6915 -25 6915 -33 6915 -42 ct 6915 -50 6915 -58 6916 -66 ct -6916 -74 6916 -82 6916 -90 ct 6915 -90 l 6901 -58 6880 -36 6854 -22 ct 6827 -8 6796 -1 6759 -1 ct -6729 -1 6702 -7 6680 -19 ct 6658 -31 6639 -48 6625 -69 ct 6610 -91 6599 -117 6592 -147 ct -6585 -177 6582 -210 6582 -246 ct 6582 -284 6585 -317 6593 -348 ct 6600 -378 6612 -404 6627 -426 ct -6642 -448 6662 -465 6685 -476 ct 6709 -488 6737 -494 6769 -494 ct 6801 -494 6830 -487 6855 -473 ct -6881 -460 6901 -437 6915 -407 ct 6917 -407 l 6917 -413 6918 -420 6918 -428 ct -6919 -437 6919 -444 6920 -452 ct 6920 -460 6921 -467 6922 -472 ct 6922 -478 6923 -483 6924 -485 ct -7043 -485 l 7042 -474 7042 -459 7041 -439 ct 7040 -420 7040 -398 7040 -373 ct -7040 -14 l 7040 21 7035 52 7025 78 ct 7015 104 7000 126 6980 143 ct 6961 160 6937 173 6908 182 ct -6880 191 6847 195 6811 195 ct p -6916 -249 m 6916 -279 6913 -305 6907 -325 ct 6901 -345 6893 -362 6884 -374 ct -6874 -386 6863 -395 6851 -400 ct 6839 -405 6826 -407 6814 -407 ct 6797 -407 6783 -404 6771 -398 ct -6758 -392 6748 -382 6739 -369 ct 6731 -356 6724 -339 6720 -319 ct 6715 -298 6713 -274 6713 -246 ct -6713 -194 6721 -154 6738 -128 ct 6755 -101 6780 -88 6813 -88 ct 6825 -88 6838 -90 6850 -95 ct -6862 -100 6874 -109 6883 -121 ct 6893 -134 6901 -150 6907 -171 ct 6913 -192 6916 -218 6916 -249 ct -p ef -7631 -243 m 7631 -206 7626 -172 7616 -141 ct 7606 -110 7590 -84 7570 -62 ct -7549 -39 7523 -22 7493 -10 ct 7462 3 7426 9 7385 9 ct 7346 9 7311 3 7281 -9 ct -7251 -22 7225 -39 7205 -61 ct 7184 -83 7169 -110 7158 -141 ct 7148 -171 7143 -206 7143 -243 ct -7143 -279 7148 -313 7158 -343 ct 7168 -374 7183 -400 7203 -423 ct 7224 -445 7249 -463 7280 -475 ct -7311 -488 7347 -494 7388 -494 ct 7431 -494 7468 -488 7499 -475 ct 7530 -463 7555 -445 7575 -423 ct -7594 -401 7609 -374 7618 -344 ct 7627 -313 7631 -279 7631 -243 ct p -7500 -243 m 7500 -301 7490 -342 7471 -368 ct 7453 -394 7425 -407 7390 -407 ct -7353 -407 7324 -394 7304 -368 ct 7285 -342 7275 -300 7275 -243 ct 7275 -214 7278 -189 7283 -168 ct -7288 -147 7295 -130 7305 -117 ct 7314 -103 7326 -93 7339 -87 ct 7353 -80 7368 -77 7384 -77 ct -7402 -77 7419 -80 7433 -87 ct 7448 -93 7460 -103 7470 -117 ct 7480 -130 7487 -147 7492 -168 ct -7497 -189 7500 -214 7500 -243 ct p ef -8294 -321 m 8294 -268 8286 -222 8270 -182 ct 8254 -142 8233 -109 8205 -82 ct -8178 -55 8145 -34 8108 -21 ct 8070 -7 8030 0 7987 0 ct 7731 0 l 7731 -632 l -7960 -632 l 8009 -632 8054 -626 8094 -614 ct 8135 -601 8171 -583 8200 -557 ct -8230 -532 8253 -499 8269 -460 ct 8286 -421 8294 -375 8294 -321 ct p -8161 -321 m 8161 -358 8156 -389 8146 -415 ct 8136 -442 8122 -463 8104 -480 ct -8086 -497 8065 -510 8040 -518 ct 8015 -526 7987 -530 7957 -530 ct 7863 -530 l -7863 -102 l 7975 -102 l 8002 -102 8026 -107 8049 -116 ct 8072 -125 8091 -139 8108 -158 ct -8124 -176 8137 -199 8147 -226 ct 8156 -253 8161 -285 8161 -321 ct p ef -8955 -180 m 8955 -148 8948 -121 8935 -98 ct 8923 -75 8905 -56 8883 -42 ct 8860 -27 8835 -17 8805 -10 ct -8775 -3 8744 0 8711 0 ct 8395 0 l 8395 -632 l 8684 -632 l 8721 -632 8755 -629 8784 -622 ct -8813 -616 8837 -606 8857 -593 ct 8877 -580 8893 -563 8903 -543 ct 8913 -523 8918 -500 8918 -473 ct -8918 -437 8908 -407 8889 -382 ct 8869 -358 8838 -341 8798 -332 ct 8849 -326 8888 -310 8915 -284 ct -8941 -258 8955 -223 8955 -180 ct p -8785 -455 m 8785 -484 8776 -504 8758 -516 ct 8740 -528 8713 -534 8678 -534 ct -8527 -534 l 8527 -377 l 8679 -377 l 8716 -377 8743 -384 8760 -397 ct 8777 -410 8785 -429 8785 -455 ct -p -8822 -191 m 8822 -207 8819 -221 8812 -233 ct 8806 -244 8797 -253 8785 -260 ct -8774 -267 8760 -272 8745 -275 ct 8729 -278 8713 -279 8695 -279 ct 8527 -279 l -8527 -98 l 8700 -98 l 8717 -98 8733 -100 8748 -102 ct 8763 -105 8776 -110 8787 -117 ct -8798 -124 8806 -134 8813 -146 ct 8819 -158 8822 -173 8822 -191 ct p ef -9000 191 m 9024 156 9044 122 9061 88 ct 9078 54 9092 20 9103 -14 ct 9114 -49 9122 -85 9127 -121 ct -9132 -158 9135 -197 9135 -237 ct 9135 -278 9132 -316 9127 -353 ct 9122 -389 9114 -425 9103 -460 ct -9092 -494 9078 -529 9061 -562 ct 9044 -596 9024 -630 9000 -665 ct 9126 -665 l -9149 -632 9169 -599 9185 -566 ct 9202 -533 9216 -500 9227 -465 ct 9238 -431 9246 -395 9251 -358 ct -9256 -320 9259 -280 9259 -238 ct 9259 -195 9256 -155 9251 -118 ct 9246 -80 9238 -44 9227 -9 ct -9216 25 9202 59 9185 92 ct 9169 125 9149 158 9126 191 ct 9000 191 l p ef -pom -1 lw 25074 6395 m 19646 6395 l ps -19217 6395 m 19666 6545 l 19666 6245 l 19217 6395 l p ef -0.812 0.906 0.960 c 11597 18740 m 4232 18740 l 4232 3756 l 18963 3756 l -18963 18740 l 11597 18740 l p ef -0 lw 0.503 0.503 0.503 c 11597 18739 m 4231 18739 l 4231 3755 l 18962 3755 l -18962 18739 l 11597 18739 l pc -pum -4482 4456 t -0.003 0.003 0.003 c 111 -389 m 111 -226 l 355 -226 l 355 -177 l 111 -177 l -111 0 l 52 0 l 52 -437 l 362 -437 l 362 -389 l 111 -389 l p ef -431 -407 m 431 -460 l 487 -460 l 487 -407 l 431 -407 l p -431 1 m 431 -335 l 487 -335 l 487 1 l 431 1 l p ef -573 0 m 573 -258 l 573 -265 573 -272 573 -279 ct 573 -287 573 -294 572 -300 ct -572 -307 572 -314 572 -320 ct 572 -326 571 -331 571 -336 ct 624 -336 l 624 -331 624 -326 625 -320 ct -625 -313 625 -307 626 -301 ct 626 -294 626 -288 626 -282 ct 626 -276 626 -271 626 -267 ct -628 -267 l 632 -280 636 -291 640 -301 ct 645 -310 650 -318 656 -324 ct 662 -330 669 -335 677 -338 ct -685 -341 696 -342 707 -342 ct 712 -342 716 -342 720 -341 ct 724 -340 728 -340 730 -339 ct -730 -288 l 726 -289 722 -290 717 -290 ct 712 -291 706 -291 700 -291 ct 687 -291 676 -288 667 -282 ct -658 -276 651 -268 645 -258 ct 640 -248 636 -236 633 -221 ct 630 -207 629 -192 629 -175 ct -629 0 l 573 0 l p ef -827 -156 m 827 -139 828 -122 832 -108 ct 836 -93 841 -80 849 -70 ct 856 -59 866 -51 878 -45 ct -890 -39 904 -36 920 -36 ct 944 -36 964 -41 978 -50 ct 993 -60 1003 -72 1008 -87 ct -1057 -73 l 1053 -64 1049 -55 1042 -45 ct 1036 -36 1028 -27 1017 -20 ct 1006 -12 993 -6 977 -1 ct -962 4 943 6 920 6 ct 871 6 833 -9 807 -38 ct 781 -68 768 -112 768 -170 ct 768 -202 772 -228 780 -250 ct -788 -272 798 -290 812 -303 ct 826 -317 842 -327 860 -333 ct 878 -339 897 -342 918 -342 ct -946 -342 970 -338 989 -329 ct 1008 -320 1023 -307 1034 -291 ct 1046 -275 1054 -256 1059 -234 ct -1064 -212 1066 -189 1066 -164 ct 1066 -156 l 827 -156 l p -1008 -199 m 1005 -234 996 -260 981 -277 ct 966 -293 945 -301 917 -301 ct 908 -301 898 -300 888 -296 ct -878 -293 868 -288 859 -280 ct 851 -273 843 -262 837 -249 ct 831 -236 828 -219 827 -199 ct -1008 -199 l p ef -1561 0 m 1490 0 l 1414 -278 l 1412 -286 1409 -295 1407 -306 ct 1404 -317 1402 -327 1400 -337 ct -1397 -348 1395 -360 1392 -371 ct 1390 -359 1387 -348 1385 -336 ct 1382 -326 1380 -316 1378 -306 ct -1375 -295 1373 -286 1370 -278 ct 1294 0 l 1223 0 l 1095 -438 l 1157 -438 l -1235 -159 l 1238 -146 1242 -133 1245 -121 ct 1248 -108 1251 -96 1253 -86 ct -1256 -74 1258 -63 1261 -52 ct 1264 -66 1267 -80 1270 -94 ct 1272 -100 1273 -106 1275 -113 ct -1276 -119 1278 -125 1279 -132 ct 1281 -138 1282 -144 1284 -149 ct 1285 -155 1287 -160 1288 -165 ct -1364 -438 l 1421 -438 l 1497 -165 l 1498 -160 1499 -155 1501 -149 ct 1502 -144 1504 -138 1505 -132 ct -1507 -126 1509 -119 1510 -113 ct 1511 -106 1513 -100 1514 -95 ct 1518 -81 1521 -66 1524 -52 ct -1524 -52 1525 -56 1527 -63 ct 1528 -70 1530 -79 1533 -90 ct 1535 -100 1538 -112 1541 -125 ct -1544 -137 1547 -149 1550 -159 ct 1627 -438 l 1689 -438 l 1561 0 l p ef -2007 -168 m 2007 -110 1995 -66 1969 -37 ct 1943 -8 1905 6 1856 6 ct 1833 6 1812 2 1794 -5 ct -1775 -12 1760 -22 1747 -37 ct 1734 -51 1724 -69 1718 -91 ct 1711 -113 1708 -139 1708 -168 ct -1708 -284 1758 -342 1858 -342 ct 1884 -342 1907 -339 1925 -331 ct 1944 -324 1960 -313 1972 -299 ct -1984 -284 1993 -266 1999 -245 ct 2005 -223 2007 -197 2007 -168 ct p -1949 -168 m 1949 -195 1947 -216 1943 -233 ct 1939 -250 1933 -264 1925 -274 ct -1917 -284 1908 -291 1897 -295 ct 1886 -299 1873 -301 1859 -301 ct 1845 -301 1832 -299 1820 -295 ct -1809 -290 1799 -283 1791 -273 ct 1783 -263 1777 -249 1773 -232 ct 1768 -215 1766 -194 1766 -168 ct -1766 -142 1769 -121 1773 -104 ct 1778 -87 1784 -73 1792 -63 ct 1800 -53 1809 -46 1820 -41 ct -1831 -37 1843 -35 1856 -35 ct 1870 -35 1883 -37 1894 -41 ct 1906 -45 1916 -52 1924 -63 ct -1932 -73 1938 -86 1942 -104 ct 1947 -121 1949 -142 1949 -168 ct p ef -2076 0 m 2076 -258 l 2076 -265 2076 -272 2076 -279 ct 2076 -287 2076 -294 2075 -300 ct -2075 -307 2075 -314 2075 -320 ct 2075 -326 2074 -331 2074 -336 ct 2127 -336 l -2127 -331 2127 -326 2128 -320 ct 2128 -313 2128 -307 2129 -301 ct 2129 -294 2129 -288 2129 -282 ct -2129 -276 2129 -271 2129 -267 ct 2131 -267 l 2135 -280 2139 -291 2143 -301 ct -2148 -310 2153 -318 2159 -324 ct 2165 -330 2172 -335 2180 -338 ct 2188 -341 2199 -342 2210 -342 ct -2215 -342 2219 -342 2223 -341 ct 2227 -340 2231 -340 2233 -339 ct 2233 -288 l -2229 -289 2225 -290 2220 -290 ct 2215 -291 2209 -291 2203 -291 ct 2190 -291 2179 -288 2170 -282 ct -2161 -276 2154 -268 2148 -258 ct 2143 -248 2139 -236 2136 -221 ct 2133 -207 2132 -192 2132 -175 ct -2132 0 l 2076 0 l p ef -2497 1 m 2384 -153 l 2343 -119 l 2343 1 l 2287 1 l 2287 -460 l 2343 -460 l -2343 -172 l 2490 -335 l 2555 -335 l 2419 -191 l 2562 1 l 2497 1 l -p ef -2856 -93 m 2856 -77 2853 -63 2846 -51 ct 2840 -39 2831 -28 2820 -20 ct 2808 -12 2794 -5 2777 -1 ct -2760 4 2741 6 2719 6 ct 2700 6 2682 4 2667 2 ct 2651 -2 2638 -6 2626 -13 ct 2614 -20 2604 -28 2596 -39 ct -2588 -50 2582 -63 2579 -79 ct 2628 -89 l 2633 -71 2643 -57 2657 -49 ct 2672 -41 2693 -37 2719 -37 ct -2731 -37 2742 -37 2752 -39 ct 2762 -41 2771 -44 2778 -48 ct 2786 -52 2791 -57 2795 -64 ct -2799 -70 2801 -79 2801 -89 ct 2801 -99 2799 -107 2794 -114 ct 2789 -120 2783 -126 2774 -130 ct -2766 -134 2756 -138 2743 -141 ct 2731 -144 2718 -148 2704 -152 ct 2690 -155 2677 -159 2664 -164 ct -2650 -168 2638 -174 2628 -181 ct 2617 -188 2609 -197 2602 -207 ct 2595 -218 2592 -231 2592 -247 ct -2592 -278 2603 -301 2625 -317 ct 2647 -333 2678 -341 2720 -341 ct 2757 -341 2786 -335 2808 -322 ct -2830 -309 2844 -288 2850 -259 ct 2799 -253 l 2798 -261 2794 -269 2789 -275 ct -2784 -281 2778 -285 2771 -289 ct 2764 -293 2756 -295 2748 -297 ct 2739 -298 2730 -299 2720 -299 ct -2695 -299 2676 -295 2664 -288 ct 2652 -280 2646 -268 2646 -253 ct 2646 -244 2648 -236 2653 -230 ct -2657 -224 2664 -219 2672 -215 ct 2679 -211 2689 -208 2700 -205 ct 2711 -202 2724 -199 2737 -195 ct -2746 -193 2755 -191 2764 -188 ct 2774 -186 2783 -182 2792 -179 ct 2800 -175 2809 -171 2816 -166 ct -2824 -161 2831 -155 2837 -149 ct 2842 -142 2847 -134 2850 -125 ct 2854 -116 2856 -105 2856 -93 ct -p ef -pom -pum -19736 5125 t -301 1 m 206 -151 l 93 -151 l 93 1 l 43 1 l 43 -364 l 215 -364 l -235 -364 254 -362 270 -357 ct 285 -352 299 -345 310 -336 ct 321 -327 329 -316 335 -304 ct -340 -291 343 -276 343 -260 ct 343 -248 341 -237 338 -226 ct 335 -215 329 -204 322 -195 ct -315 -186 306 -178 294 -171 ct 283 -164 270 -159 254 -157 ct 357 1 l 301 1 l -p -293 -259 m 293 -270 292 -280 288 -288 ct 284 -296 278 -303 271 -308 ct 264 -314 255 -318 245 -320 ct -235 -323 223 -324 210 -324 ct 93 -324 l 93 -190 l 212 -190 l 226 -190 238 -192 248 -195 ct -259 -199 267 -204 274 -210 ct 281 -216 285 -223 289 -232 ct 292 -240 293 -249 293 -259 ct -p ef -452 -130 m 452 -116 454 -102 457 -90 ct 460 -77 464 -67 471 -58 ct 477 -49 485 -42 495 -37 ct -505 -32 517 -30 530 -30 ct 550 -30 567 -34 579 -42 ct 591 -50 599 -60 603 -73 ct -644 -61 l 641 -53 637 -46 632 -38 ct 627 -30 620 -23 611 -17 ct 602 -10 591 -5 578 -1 ct -565 3 549 5 530 5 ct 489 5 458 -7 436 -32 ct 414 -57 403 -93 403 -142 ct 403 -168 407 -190 413 -208 ct -420 -227 429 -241 440 -253 ct 452 -264 465 -272 480 -277 ct 495 -282 511 -285 528 -285 ct -552 -285 572 -281 587 -274 ct 603 -266 616 -256 625 -242 ct 635 -229 642 -213 646 -195 ct -650 -177 652 -158 652 -137 ct 652 -130 l 452 -130 l p -604 -166 m 601 -195 594 -217 581 -230 ct 569 -244 551 -251 528 -251 ct 520 -251 512 -249 503 -247 ct -495 -244 487 -240 480 -234 ct 472 -227 466 -219 461 -208 ct 456 -197 454 -183 453 -166 ct -604 -166 l p ef -748 -141 m 748 -125 749 -111 752 -97 ct 754 -84 758 -72 763 -62 ct 769 -53 776 -45 785 -40 ct -794 -34 805 -32 819 -32 ct 835 -32 849 -36 860 -45 ct 871 -53 878 -67 881 -85 ct -928 -85 l 926 -73 923 -62 917 -51 ct 912 -40 905 -31 896 -22 ct 888 -14 877 -7 864 -2 ct -851 2 837 5 820 5 ct 798 5 779 1 764 -6 ct 749 -14 736 -24 727 -37 ct 717 -50 710 -65 706 -83 ct -702 -100 699 -120 699 -140 ct 699 -159 701 -176 704 -190 ct 707 -204 712 -217 717 -228 ct -723 -239 729 -248 737 -255 ct 745 -262 753 -268 762 -272 ct 770 -277 780 -280 790 -282 ct -799 -284 809 -285 819 -285 ct 835 -285 849 -283 861 -279 ct 873 -274 884 -268 893 -261 ct -902 -253 909 -245 914 -234 ct 920 -224 924 -213 926 -202 ct 878 -198 l 876 -213 870 -226 860 -235 ct -850 -244 836 -249 818 -249 ct 805 -249 794 -246 785 -242 ct 776 -238 769 -231 763 -222 ct -758 -213 754 -202 752 -189 ct 749 -175 748 -159 748 -141 ct p ef -979 -340 m 979 -384 l 1026 -384 l 1026 -340 l 979 -340 l p -979 0 m 979 -280 l 1026 -280 l 1026 0 l 979 0 l p ef -1335 -141 m 1335 -120 1333 -100 1330 -82 ct 1326 -64 1321 -49 1313 -36 ct 1305 -23 1294 -13 1281 -6 ct -1268 2 1251 5 1232 5 ct 1212 5 1195 2 1180 -6 ct 1165 -14 1153 -26 1145 -43 ct -1144 -43 l 1144 -43 1144 -41 1144 -39 ct 1145 -36 1145 -32 1145 -28 ct 1145 -24 1145 -20 1145 -14 ct -1145 -9 1145 -4 1145 1 ct 1145 110 l 1099 110 l 1099 -223 l 1099 -229 1099 -236 1099 -242 ct -1098 -248 1098 -254 1098 -259 ct 1098 -264 1098 -268 1098 -272 ct 1097 -276 1097 -278 1097 -280 ct -1142 -280 l 1142 -279 1142 -277 1143 -274 ct 1143 -271 1143 -268 1143 -263 ct -1144 -259 1144 -254 1144 -249 ct 1145 -244 1145 -239 1145 -235 ct 1146 -235 l -1150 -244 1155 -252 1160 -258 ct 1166 -264 1172 -269 1179 -273 ct 1186 -277 1194 -280 1203 -282 ct -1212 -284 1221 -285 1232 -285 ct 1251 -285 1268 -282 1281 -275 ct 1294 -268 1305 -258 1313 -245 ct -1321 -233 1326 -218 1330 -200 ct 1333 -182 1335 -163 1335 -141 ct p -1286 -140 m 1286 -157 1285 -173 1283 -186 ct 1281 -200 1277 -211 1272 -221 ct -1267 -230 1261 -237 1252 -242 ct 1244 -247 1233 -249 1220 -249 ct 1210 -249 1200 -248 1191 -245 ct -1182 -242 1174 -236 1167 -228 ct 1160 -219 1155 -208 1151 -193 ct 1147 -179 1145 -160 1145 -137 ct -1145 -117 1147 -100 1150 -86 ct 1153 -72 1158 -61 1164 -53 ct 1171 -44 1178 -38 1188 -35 ct -1197 -31 1208 -29 1220 -29 ct 1233 -29 1243 -32 1252 -37 ct 1260 -42 1267 -49 1272 -58 ct -1277 -68 1281 -79 1283 -93 ct 1285 -107 1286 -123 1286 -140 ct p ef -1430 -130 m 1430 -116 1432 -102 1435 -90 ct 1438 -77 1442 -67 1449 -58 ct 1455 -49 1463 -42 1473 -37 ct -1483 -32 1495 -30 1508 -30 ct 1528 -30 1545 -34 1557 -42 ct 1569 -50 1577 -60 1581 -73 ct -1622 -61 l 1619 -53 1615 -46 1610 -38 ct 1605 -30 1598 -23 1589 -17 ct 1580 -10 1569 -5 1556 -1 ct -1543 3 1527 5 1508 5 ct 1467 5 1436 -7 1414 -32 ct 1392 -57 1381 -93 1381 -142 ct -1381 -168 1385 -190 1391 -208 ct 1398 -227 1407 -241 1418 -253 ct 1430 -264 1443 -272 1458 -277 ct -1473 -282 1489 -285 1506 -285 ct 1530 -285 1550 -281 1565 -274 ct 1581 -266 1594 -256 1603 -242 ct -1613 -229 1620 -213 1624 -195 ct 1628 -177 1630 -158 1630 -137 ct 1630 -130 l -1430 -130 l p -1582 -166 m 1579 -195 1572 -217 1559 -230 ct 1547 -244 1529 -251 1506 -251 ct -1498 -251 1490 -249 1481 -247 ct 1473 -244 1465 -240 1458 -234 ct 1450 -227 1444 -219 1439 -208 ct -1434 -197 1432 -183 1431 -166 ct 1582 -166 l p ef -1900 -77 m 1900 -64 1898 -53 1893 -42 ct 1888 -32 1880 -24 1871 -17 ct 1861 -10 1849 -4 1835 -1 ct -1821 3 1805 5 1787 5 ct 1771 5 1756 4 1743 1 ct 1730 -1 1719 -5 1709 -11 ct 1699 -16 1691 -24 1684 -33 ct -1678 -42 1673 -53 1670 -66 ct 1711 -74 l 1715 -59 1723 -48 1735 -41 ct 1748 -34 1765 -30 1787 -30 ct -1797 -30 1806 -31 1815 -33 ct 1823 -34 1830 -36 1836 -40 ct 1842 -43 1847 -47 1850 -53 ct -1854 -59 1855 -66 1855 -74 ct 1855 -82 1853 -89 1849 -95 ct 1845 -100 1840 -105 1833 -108 ct -1826 -112 1817 -115 1807 -118 ct 1797 -120 1786 -123 1774 -127 ct 1763 -129 1752 -133 1741 -136 ct -1729 -140 1720 -145 1711 -151 ct 1702 -157 1695 -164 1689 -173 ct 1684 -182 1681 -193 1681 -206 ct -1681 -231 1690 -251 1708 -264 ct 1726 -278 1753 -284 1788 -284 ct 1818 -284 1843 -279 1861 -268 ct -1879 -257 1891 -240 1895 -216 ct 1854 -211 l 1852 -218 1849 -224 1845 -229 ct -1841 -234 1836 -238 1830 -241 ct 1824 -244 1818 -246 1810 -247 ct 1803 -248 1795 -249 1788 -249 ct -1767 -249 1751 -246 1741 -239 ct 1731 -233 1726 -223 1726 -210 ct 1726 -203 1728 -197 1732 -192 ct -1735 -187 1740 -183 1747 -179 ct 1754 -176 1762 -173 1771 -171 ct 1780 -168 1791 -165 1802 -163 ct -1809 -161 1817 -159 1824 -157 ct 1832 -154 1840 -152 1847 -149 ct 1854 -146 1861 -142 1868 -138 ct -1874 -134 1880 -129 1885 -124 ct 1889 -118 1893 -111 1896 -104 ct 1899 -96 1900 -87 1900 -77 ct -p ef -1922 5 m 2028 -384 l 2069 -384 l 1964 5 l 1922 5 l p ef -2163 -325 m 2163 -189 l 2366 -189 l 2366 -148 l 2163 -148 l 2163 -1 l -2113 -1 l 2113 -365 l 2372 -365 l 2372 -325 l 2163 -325 l p ef -2427 -340 m 2427 -384 l 2474 -384 l 2474 -340 l 2427 -340 l p -2427 0 m 2427 -280 l 2474 -280 l 2474 0 l 2427 0 l p ef -2547 0 m 2547 -215 l 2547 -221 2547 -227 2547 -233 ct 2546 -239 2546 -245 2546 -250 ct -2546 -256 2546 -261 2546 -266 ct 2545 -271 2545 -276 2545 -280 ct 2589 -280 l -2589 -276 2589 -271 2590 -266 ct 2590 -261 2590 -256 2590 -251 ct 2591 -245 2591 -240 2591 -235 ct -2591 -230 2591 -226 2591 -223 ct 2592 -223 l 2595 -233 2599 -243 2603 -250 ct -2606 -258 2611 -265 2616 -270 ct 2621 -275 2627 -279 2633 -281 ct 2640 -284 2649 -285 2659 -285 ct -2662 -285 2666 -285 2669 -284 ct 2673 -284 2675 -283 2677 -282 ct 2677 -240 l -2674 -241 2671 -241 2667 -242 ct 2662 -242 2658 -242 2653 -242 ct 2642 -242 2633 -240 2625 -235 ct -2618 -230 2612 -224 2607 -215 ct 2602 -207 2599 -196 2597 -185 ct 2594 -173 2593 -160 2593 -146 ct -2593 0 l 2547 0 l p ef -2759 -130 m 2759 -116 2761 -102 2764 -90 ct 2767 -77 2771 -67 2778 -58 ct 2784 -49 2792 -42 2802 -37 ct -2812 -32 2824 -30 2837 -30 ct 2857 -30 2874 -34 2886 -42 ct 2898 -50 2906 -60 2910 -73 ct -2951 -61 l 2948 -53 2944 -46 2939 -38 ct 2934 -30 2927 -23 2918 -17 ct 2909 -10 2898 -5 2885 -1 ct -2872 3 2856 5 2837 5 ct 2796 5 2765 -7 2743 -32 ct 2721 -57 2710 -93 2710 -142 ct -2710 -168 2714 -190 2720 -208 ct 2727 -227 2736 -241 2747 -253 ct 2759 -264 2772 -272 2787 -277 ct -2802 -282 2818 -285 2835 -285 ct 2859 -285 2879 -281 2894 -274 ct 2910 -266 2923 -256 2932 -242 ct -2942 -229 2949 -213 2953 -195 ct 2957 -177 2959 -158 2959 -137 ct 2959 -130 l -2759 -130 l p -2911 -166 m 2908 -195 2901 -217 2888 -230 ct 2876 -244 2858 -251 2835 -251 ct -2827 -251 2819 -249 2810 -247 ct 2802 -244 2794 -240 2787 -234 ct 2779 -227 2773 -219 2768 -208 ct -2763 -197 2761 -183 2760 -166 ct 2911 -166 l p ef -3171 -324 m 3171 0 l 3122 0 l 3122 -324 l 2997 -324 l 2997 -364 l -3296 -364 l 3296 -324 l 3171 -324 l p ef -3354 5 m 3326 5 3305 -2 3291 -17 ct 3277 -32 3269 -53 3269 -79 ct 3269 -97 3273 -112 3280 -124 ct -3287 -136 3296 -145 3307 -152 ct 3319 -159 3331 -164 3346 -166 ct 3360 -169 3375 -170 3390 -170 ct -3453 -170 l 3453 -185 l 3453 -197 3452 -207 3449 -215 ct 3447 -223 3443 -230 3438 -235 ct -3433 -240 3427 -244 3419 -246 ct 3412 -248 3403 -250 3393 -250 ct 3384 -250 3376 -249 3369 -248 ct -3361 -246 3355 -244 3350 -241 ct 3344 -237 3340 -233 3337 -227 ct 3334 -221 3331 -214 3330 -205 ct -3282 -210 l 3284 -221 3287 -231 3292 -240 ct 3297 -249 3303 -257 3312 -264 ct -3321 -271 3332 -276 3346 -279 ct 3359 -283 3375 -285 3394 -285 ct 3429 -285 3456 -277 3473 -261 ct -3491 -245 3500 -221 3500 -191 ct 3500 -71 l 3500 -57 3502 -46 3505 -39 ct 3509 -32 3516 -29 3526 -29 ct -3529 -29 3531 -29 3534 -29 ct 3536 -30 3539 -30 3541 -31 ct 3541 -2 l 3535 0 3530 1 3524 1 ct -3518 2 3512 2 3505 2 ct 3497 2 3489 1 3483 -1 ct 3476 -4 3471 -7 3467 -12 ct 3463 -17 3460 -22 3458 -29 ct -3456 -36 3455 -44 3454 -54 ct 3453 -54 l 3448 -45 3442 -37 3436 -29 ct 3431 -22 3424 -16 3416 -11 ct -3408 -6 3399 -2 3389 1 ct 3379 4 3367 5 3354 5 ct p -3365 -30 m 3379 -30 3392 -33 3403 -38 ct 3415 -43 3424 -50 3431 -59 ct 3438 -67 3444 -76 3447 -86 ct -3451 -96 3453 -106 3453 -115 ct 3453 -137 l 3402 -137 l 3391 -137 3380 -137 3370 -135 ct -3359 -134 3350 -131 3343 -127 ct 3335 -122 3329 -116 3324 -108 ct 3320 -101 3317 -90 3317 -78 ct -3317 -62 3321 -51 3330 -42 ct 3338 -34 3349 -30 3365 -30 ct p ef -3788 -77 m 3788 -64 3786 -53 3781 -42 ct 3776 -32 3768 -24 3759 -17 ct 3749 -10 3737 -4 3723 -1 ct -3709 3 3693 5 3675 5 ct 3659 5 3644 4 3631 1 ct 3618 -1 3607 -5 3597 -11 ct 3587 -16 3579 -24 3572 -33 ct -3566 -42 3561 -53 3558 -66 ct 3599 -74 l 3603 -59 3611 -48 3623 -41 ct 3636 -34 3653 -30 3675 -30 ct -3685 -30 3694 -31 3703 -33 ct 3711 -34 3718 -36 3724 -40 ct 3730 -43 3735 -47 3738 -53 ct -3742 -59 3743 -66 3743 -74 ct 3743 -82 3741 -89 3737 -95 ct 3733 -100 3728 -105 3721 -108 ct -3714 -112 3705 -115 3695 -118 ct 3685 -120 3674 -123 3662 -127 ct 3651 -129 3640 -133 3629 -136 ct -3617 -140 3608 -145 3599 -151 ct 3590 -157 3583 -164 3577 -173 ct 3572 -182 3569 -193 3569 -206 ct -3569 -231 3578 -251 3596 -264 ct 3614 -278 3641 -284 3676 -284 ct 3706 -284 3731 -279 3749 -268 ct -3767 -257 3779 -240 3783 -216 ct 3742 -211 l 3740 -218 3737 -224 3733 -229 ct -3729 -234 3724 -238 3718 -241 ct 3712 -244 3706 -246 3698 -247 ct 3691 -248 3683 -249 3676 -249 ct -3655 -249 3639 -246 3629 -239 ct 3619 -233 3614 -223 3614 -210 ct 3614 -203 3616 -197 3620 -192 ct -3623 -187 3628 -183 3635 -179 ct 3642 -176 3650 -173 3659 -171 ct 3668 -168 3679 -165 3690 -163 ct -3697 -161 3705 -159 3712 -157 ct 3720 -154 3728 -152 3735 -149 ct 3742 -146 3749 -142 3756 -138 ct -3762 -134 3768 -129 3773 -124 ct 3777 -118 3781 -111 3784 -104 ct 3787 -96 3788 -87 3788 -77 ct -p ef -4021 0 m 3926 -128 l 3892 -100 l 3892 0 l 3846 0 l 3846 -384 l 3892 -384 l -3892 -144 l 4015 -280 l 4069 -280 l 3956 -160 l 4075 0 l 4021 0 l -p ef -4322 -77 m 4322 -64 4320 -53 4315 -42 ct 4310 -32 4302 -24 4293 -17 ct 4283 -10 4271 -4 4257 -1 ct -4243 3 4227 5 4209 5 ct 4193 5 4178 4 4165 1 ct 4152 -1 4141 -5 4131 -11 ct 4121 -16 4113 -24 4106 -33 ct -4100 -42 4095 -53 4092 -66 ct 4133 -74 l 4137 -59 4145 -48 4157 -41 ct 4170 -34 4187 -30 4209 -30 ct -4219 -30 4228 -31 4237 -33 ct 4245 -34 4252 -36 4258 -40 ct 4264 -43 4269 -47 4272 -53 ct -4276 -59 4277 -66 4277 -74 ct 4277 -82 4275 -89 4271 -95 ct 4267 -100 4262 -105 4255 -108 ct -4248 -112 4239 -115 4229 -118 ct 4219 -120 4208 -123 4196 -127 ct 4185 -129 4174 -133 4163 -136 ct -4151 -140 4142 -145 4133 -151 ct 4124 -157 4117 -164 4111 -173 ct 4106 -182 4103 -193 4103 -206 ct -4103 -231 4112 -251 4130 -264 ct 4148 -278 4175 -284 4210 -284 ct 4240 -284 4265 -279 4283 -268 ct -4301 -257 4313 -240 4317 -216 ct 4276 -211 l 4274 -218 4271 -224 4267 -229 ct -4263 -234 4258 -238 4252 -241 ct 4246 -244 4240 -246 4232 -247 ct 4225 -248 4217 -249 4210 -249 ct -4189 -249 4173 -246 4163 -239 ct 4153 -233 4148 -223 4148 -210 ct 4148 -203 4150 -197 4154 -192 ct -4157 -187 4162 -183 4169 -179 ct 4176 -176 4184 -173 4193 -171 ct 4202 -168 4213 -165 4224 -163 ct -4231 -161 4239 -159 4246 -157 ct 4254 -154 4262 -152 4269 -149 ct 4276 -146 4283 -142 4290 -138 ct -4296 -134 4302 -129 4307 -124 ct 4311 -118 4315 -111 4318 -104 ct 4321 -96 4322 -87 4322 -77 ct -p ef -pom -pum -19736 5722 t -390 0 m 331 0 l 268 -232 l 266 -238 264 -246 262 -255 ct 260 -264 258 -272 257 -280 ct -254 -290 252 -300 250 -309 ct 248 -299 246 -290 244 -280 ct 242 -272 240 -263 238 -255 ct -236 -246 234 -238 232 -232 ct 168 0 l 110 0 l 2 -365 l 54 -365 l 119 -133 l -122 -122 125 -111 127 -101 ct 130 -90 132 -80 134 -72 ct 137 -62 139 -52 141 -44 ct -143 -55 146 -67 149 -79 ct 150 -84 151 -89 152 -94 ct 153 -99 155 -105 156 -110 ct -157 -115 158 -120 160 -125 ct 161 -129 162 -134 163 -138 ct 227 -365 l 274 -365 l -337 -138 l 338 -134 339 -129 341 -125 ct 342 -120 343 -115 344 -110 ct 346 -105 347 -100 348 -94 ct -349 -89 351 -84 352 -79 ct 355 -67 357 -56 360 -44 ct 360 -44 361 -46 362 -52 ct -364 -58 365 -66 367 -75 ct 369 -84 372 -93 374 -104 ct 377 -114 379 -124 382 -133 ct -446 -365 l 497 -365 l 390 0 l p ef -759 -140 m 759 -91 748 -55 727 -31 ct 705 -7 674 5 633 5 ct 613 5 596 2 581 -4 ct -565 -10 552 -19 542 -31 ct 531 -43 523 -58 518 -76 ct 512 -94 509 -116 509 -140 ct -509 -237 551 -285 634 -285 ct 656 -285 675 -282 691 -276 ct 706 -270 719 -261 729 -249 ct -740 -237 747 -222 752 -204 ct 757 -186 759 -164 759 -140 ct p -710 -140 m 710 -162 708 -180 705 -194 ct 702 -208 697 -219 690 -228 ct 684 -236 676 -242 667 -246 ct -657 -249 647 -251 635 -251 ct 623 -251 613 -249 603 -245 ct 594 -242 585 -236 579 -227 ct -572 -219 567 -207 563 -193 ct 560 -179 558 -161 558 -140 ct 558 -119 560 -101 564 -86 ct -568 -72 573 -61 579 -52 ct 586 -44 594 -38 603 -35 ct 612 -31 622 -29 632 -29 ct -644 -29 655 -31 665 -34 ct 674 -38 683 -44 689 -52 ct 696 -61 701 -72 705 -86 ct -708 -101 710 -119 710 -140 ct p ef -820 0 m 820 -215 l 820 -221 820 -227 820 -233 ct 819 -239 819 -245 819 -250 ct -819 -256 819 -261 819 -266 ct 818 -271 818 -276 818 -280 ct 862 -280 l 862 -276 862 -271 863 -266 ct -863 -261 863 -256 863 -251 ct 864 -245 864 -240 864 -235 ct 864 -230 864 -226 864 -223 ct -865 -223 l 868 -233 872 -243 876 -250 ct 879 -258 884 -265 889 -270 ct 894 -275 900 -279 906 -281 ct -913 -284 922 -285 932 -285 ct 935 -285 939 -285 942 -284 ct 946 -284 948 -283 950 -282 ct -950 -240 l 947 -241 944 -241 940 -242 ct 935 -242 931 -242 926 -242 ct 915 -242 906 -240 898 -235 ct -891 -230 885 -224 880 -215 ct 875 -207 872 -196 870 -185 ct 867 -173 866 -160 866 -146 ct -866 0 l 820 0 l p ef -1172 0 m 1077 -128 l 1043 -100 l 1043 0 l 997 0 l 997 -384 l 1043 -384 l -1043 -144 l 1166 -280 l 1220 -280 l 1107 -160 l 1226 0 l 1172 0 l -p ef -1321 -247 m 1321 -1 l 1275 -1 l 1275 -247 l 1235 -247 l 1235 -281 l -1275 -281 l 1275 -312 l 1275 -322 1276 -332 1278 -341 ct 1279 -349 1283 -357 1288 -363 ct -1293 -370 1300 -375 1309 -378 ct 1318 -382 1329 -384 1343 -384 ct 1348 -384 1354 -384 1360 -383 ct -1366 -383 1371 -382 1376 -381 ct 1376 -345 l 1373 -346 1369 -346 1366 -347 ct -1362 -347 1358 -348 1355 -348 ct 1348 -348 1343 -347 1338 -345 ct 1334 -343 1330 -340 1328 -337 ct -1325 -333 1324 -329 1323 -324 ct 1322 -318 1321 -313 1321 -306 ct 1321 -281 l -1376 -281 l 1376 -247 l 1321 -247 l p ef -1412 0 m 1412 -384 l 1458 -384 l 1458 0 l 1412 0 l p ef -1766 -140 m 1766 -91 1755 -55 1734 -31 ct 1712 -7 1681 5 1640 5 ct 1620 5 1603 2 1588 -4 ct -1572 -10 1559 -19 1549 -31 ct 1538 -43 1530 -58 1525 -76 ct 1519 -94 1516 -116 1516 -140 ct -1516 -237 1558 -285 1641 -285 ct 1663 -285 1682 -282 1698 -276 ct 1713 -270 1726 -261 1736 -249 ct -1747 -237 1754 -222 1759 -204 ct 1764 -186 1766 -164 1766 -140 ct p -1717 -140 m 1717 -162 1715 -180 1712 -194 ct 1709 -208 1704 -219 1697 -228 ct -1691 -236 1683 -242 1674 -246 ct 1664 -249 1654 -251 1642 -251 ct 1630 -251 1620 -249 1610 -245 ct -1601 -242 1592 -236 1586 -227 ct 1579 -219 1574 -207 1570 -193 ct 1567 -179 1565 -161 1565 -140 ct -1565 -119 1567 -101 1571 -86 ct 1575 -72 1580 -61 1586 -52 ct 1593 -44 1601 -38 1610 -35 ct -1619 -31 1629 -29 1639 -29 ct 1651 -29 1662 -31 1672 -34 ct 1681 -38 1690 -44 1696 -52 ct -1703 -61 1708 -72 1712 -86 ct 1715 -101 1717 -119 1717 -140 ct p ef -2094 0 m 2040 0 l 1996 -181 l 1994 -185 1993 -191 1991 -198 ct 1990 -205 1988 -212 1987 -218 ct -1985 -226 1984 -234 1982 -242 ct 1981 -234 1979 -226 1977 -219 ct 1976 -212 1974 -205 1973 -198 ct -1971 -191 1970 -185 1968 -180 ct 1922 0 l 1868 0 l 1790 -280 l 1836 -280 l -1883 -90 l 1885 -86 1886 -81 1887 -75 ct 1888 -69 1890 -64 1891 -58 ct 1892 -52 1893 -45 1895 -39 ct -1896 -45 1897 -52 1899 -58 ct 1900 -63 1902 -69 1903 -74 ct 1904 -80 1906 -84 1907 -88 ct -1957 -280 l 2007 -280 l 2056 -88 l 2057 -83 2059 -78 2060 -72 ct 2061 -67 2063 -61 2064 -56 ct -2065 -51 2067 -45 2068 -39 ct 2069 -45 2071 -52 2072 -58 ct 2073 -63 2074 -69 2076 -74 ct -2077 -80 2078 -85 2080 -90 ct 2129 -280 l 2174 -280 l 2094 0 l p ef -2565 -77 m 2565 -64 2563 -53 2558 -42 ct 2553 -32 2545 -24 2536 -17 ct 2526 -10 2514 -4 2500 -1 ct -2486 3 2470 5 2452 5 ct 2436 5 2421 4 2408 1 ct 2395 -1 2384 -5 2374 -11 ct 2364 -16 2356 -24 2349 -33 ct -2343 -42 2338 -53 2335 -66 ct 2376 -74 l 2380 -59 2388 -48 2400 -41 ct 2413 -34 2430 -30 2452 -30 ct -2462 -30 2471 -31 2480 -33 ct 2488 -34 2495 -36 2501 -40 ct 2507 -43 2512 -47 2515 -53 ct -2519 -59 2520 -66 2520 -74 ct 2520 -82 2518 -89 2514 -95 ct 2510 -100 2505 -105 2498 -108 ct -2491 -112 2482 -115 2472 -118 ct 2462 -120 2451 -123 2439 -127 ct 2428 -129 2417 -133 2406 -136 ct -2394 -140 2385 -145 2376 -151 ct 2367 -157 2360 -164 2354 -173 ct 2349 -182 2346 -193 2346 -206 ct -2346 -231 2355 -251 2373 -264 ct 2391 -278 2418 -284 2453 -284 ct 2483 -284 2508 -279 2526 -268 ct -2544 -257 2556 -240 2560 -216 ct 2519 -211 l 2517 -218 2514 -224 2510 -229 ct -2506 -234 2501 -238 2495 -241 ct 2489 -244 2483 -246 2475 -247 ct 2468 -248 2460 -249 2453 -249 ct -2432 -249 2416 -246 2406 -239 ct 2396 -233 2391 -223 2391 -210 ct 2391 -203 2393 -197 2397 -192 ct -2400 -187 2405 -183 2412 -179 ct 2419 -176 2427 -173 2436 -171 ct 2445 -168 2456 -165 2467 -163 ct -2474 -161 2482 -159 2489 -157 ct 2497 -154 2505 -152 2512 -149 ct 2519 -146 2526 -142 2533 -138 ct -2539 -134 2545 -129 2550 -124 ct 2554 -118 2558 -111 2561 -104 ct 2564 -96 2565 -87 2565 -77 ct -p ef -2730 -2 m 2723 0 2716 1 2709 2 ct 2701 3 2693 4 2683 4 ct 2646 4 2627 -17 2627 -59 ct -2627 -246 l 2595 -246 l 2595 -280 l 2629 -280 l 2643 -343 l 2674 -343 l -2674 -280 l 2725 -280 l 2725 -246 l 2674 -246 l 2674 -69 l 2674 -56 2676 -47 2680 -41 ct -2685 -36 2692 -33 2703 -33 ct 2708 -33 2712 -33 2716 -34 ct 2721 -35 2725 -36 2730 -37 ct -2730 -2 l p ef -2842 5 m 2814 5 2793 -2 2779 -17 ct 2765 -32 2757 -53 2757 -79 ct 2757 -97 2761 -112 2768 -124 ct -2775 -136 2784 -145 2795 -152 ct 2807 -159 2819 -164 2834 -166 ct 2848 -169 2863 -170 2878 -170 ct -2941 -170 l 2941 -185 l 2941 -197 2940 -207 2937 -215 ct 2935 -223 2931 -230 2926 -235 ct -2921 -240 2915 -244 2907 -246 ct 2900 -248 2891 -250 2881 -250 ct 2872 -250 2864 -249 2857 -248 ct -2849 -246 2843 -244 2838 -241 ct 2832 -237 2828 -233 2825 -227 ct 2822 -221 2819 -214 2818 -205 ct -2770 -210 l 2772 -221 2775 -231 2780 -240 ct 2785 -249 2791 -257 2800 -264 ct -2809 -271 2820 -276 2834 -279 ct 2847 -283 2863 -285 2882 -285 ct 2917 -285 2944 -277 2961 -261 ct -2979 -245 2988 -221 2988 -191 ct 2988 -71 l 2988 -57 2990 -46 2993 -39 ct 2997 -32 3004 -29 3014 -29 ct -3017 -29 3019 -29 3022 -29 ct 3024 -30 3027 -30 3029 -31 ct 3029 -2 l 3023 0 3018 1 3012 1 ct -3006 2 3000 2 2993 2 ct 2985 2 2977 1 2971 -1 ct 2964 -4 2959 -7 2955 -12 ct 2951 -17 2948 -22 2946 -29 ct -2944 -36 2943 -44 2942 -54 ct 2941 -54 l 2936 -45 2930 -37 2924 -29 ct 2919 -22 2912 -16 2904 -11 ct -2896 -6 2887 -2 2877 1 ct 2867 4 2855 5 2842 5 ct p -2853 -30 m 2867 -30 2880 -33 2891 -38 ct 2903 -43 2912 -50 2919 -59 ct 2926 -67 2932 -76 2935 -86 ct -2939 -96 2941 -106 2941 -115 ct 2941 -137 l 2890 -137 l 2879 -137 2868 -137 2858 -135 ct -2847 -134 2838 -131 2831 -127 ct 2823 -122 2817 -116 2812 -108 ct 2808 -101 2805 -90 2805 -78 ct -2805 -62 2809 -51 2818 -42 ct 2826 -34 2837 -30 2853 -30 ct p ef -3174 -2 m 3167 0 3160 1 3153 2 ct 3145 3 3137 4 3127 4 ct 3090 4 3071 -17 3071 -59 ct -3071 -246 l 3039 -246 l 3039 -280 l 3073 -280 l 3087 -343 l 3118 -343 l -3118 -280 l 3169 -280 l 3169 -246 l 3118 -246 l 3118 -69 l 3118 -56 3120 -47 3124 -41 ct -3129 -36 3136 -33 3147 -33 ct 3152 -33 3156 -33 3160 -34 ct 3165 -35 3169 -36 3174 -37 ct -3174 -2 l p ef -3250 -130 m 3250 -116 3252 -102 3255 -90 ct 3258 -77 3262 -67 3269 -58 ct 3275 -49 3283 -42 3293 -37 ct -3303 -32 3315 -30 3328 -30 ct 3348 -30 3365 -34 3377 -42 ct 3389 -50 3397 -60 3401 -73 ct -3442 -61 l 3439 -53 3435 -46 3430 -38 ct 3425 -30 3418 -23 3409 -17 ct 3400 -10 3389 -5 3376 -1 ct -3363 3 3347 5 3328 5 ct 3287 5 3256 -7 3234 -32 ct 3212 -57 3201 -93 3201 -142 ct -3201 -168 3205 -190 3211 -208 ct 3218 -227 3227 -241 3238 -253 ct 3250 -264 3263 -272 3278 -277 ct -3293 -282 3309 -285 3326 -285 ct 3350 -285 3370 -281 3385 -274 ct 3401 -266 3414 -256 3423 -242 ct -3433 -229 3440 -213 3444 -195 ct 3448 -177 3450 -158 3450 -137 ct 3450 -130 l -3250 -130 l p -3402 -166 m 3399 -195 3392 -217 3379 -230 ct 3367 -244 3349 -251 3326 -251 ct -3318 -251 3310 -249 3301 -247 ct 3293 -244 3285 -240 3278 -234 ct 3270 -227 3264 -219 3259 -208 ct -3254 -197 3252 -183 3251 -166 ct 3402 -166 l p ef -pom -1.000 0.503 0.503 c 11597 12136 m 4486 12136 l 4486 4851 l 18709 4851 l -18709 12136 l 11597 12136 l p ef -0.503 0.503 0.503 c 11597 12136 m 4485 12136 l 4485 4851 l 18708 4851 l -18708 12136 l 11597 12136 l pc -pum -4736 5552 t -0.003 0.003 0.003 c 246 -396 m 221 -396 199 -391 180 -383 ct 161 -375 145 -363 132 -348 ct -119 -332 109 -314 102 -293 ct 96 -271 92 -247 92 -221 ct 92 -195 96 -171 103 -149 ct -110 -127 120 -108 134 -92 ct 147 -77 163 -64 183 -56 ct 202 -47 224 -43 248 -43 ct -265 -43 280 -45 294 -49 ct 308 -54 321 -60 332 -68 ct 343 -76 354 -86 362 -97 ct -371 -108 379 -120 386 -134 ct 434 -109 l 427 -93 417 -78 405 -64 ct 394 -50 380 -38 364 -27 ct -349 -17 331 -9 311 -3 ct 292 3 270 6 245 6 ct 210 6 179 0 152 -11 ct 126 -22 104 -38 86 -58 ct -68 -78 54 -102 46 -130 ct 37 -158 32 -188 32 -221 ct 32 -255 37 -286 46 -313 ct -56 -341 70 -364 88 -384 ct 106 -403 128 -418 154 -428 ct 181 -439 211 -444 245 -444 ct -291 -444 330 -435 362 -417 ct 393 -398 416 -371 430 -336 ct 374 -317 l 370 -327 365 -337 358 -347 ct -350 -356 342 -364 331 -372 ct 321 -379 308 -385 294 -389 ct 280 -393 264 -396 246 -396 ct -p ef -783 -168 m 783 -110 771 -66 745 -37 ct 719 -8 681 6 632 6 ct 609 6 588 2 570 -5 ct -551 -12 536 -22 523 -37 ct 510 -51 500 -69 494 -91 ct 487 -113 484 -139 484 -168 ct -484 -284 534 -342 634 -342 ct 660 -342 683 -339 701 -331 ct 720 -324 736 -313 748 -299 ct -760 -284 769 -266 775 -245 ct 781 -223 783 -197 783 -168 ct p -725 -168 m 725 -195 723 -216 719 -233 ct 715 -250 709 -264 701 -274 ct 693 -284 684 -291 673 -295 ct -662 -299 649 -301 635 -301 ct 621 -301 608 -299 596 -295 ct 585 -290 575 -283 567 -273 ct -559 -263 553 -249 549 -232 ct 544 -215 542 -194 542 -168 ct 542 -142 545 -121 549 -104 ct -554 -87 560 -73 568 -63 ct 576 -53 585 -46 596 -41 ct 607 -37 619 -35 632 -35 ct -646 -35 659 -37 670 -41 ct 682 -45 692 -52 700 -63 ct 708 -73 714 -86 718 -104 ct -723 -121 725 -142 725 -168 ct p ef -1047 0 m 1047 -213 l 1047 -229 1046 -243 1044 -254 ct 1042 -265 1038 -274 1034 -280 ct -1029 -287 1022 -292 1015 -295 ct 1007 -297 997 -299 986 -299 ct 974 -299 963 -297 954 -292 ct -944 -287 936 -281 929 -272 ct 923 -263 918 -252 914 -239 ct 910 -226 909 -211 909 -195 ct -909 0 l 853 0 l 853 -264 l 853 -271 853 -279 853 -286 ct 853 -294 853 -301 852 -308 ct -852 -315 852 -321 852 -326 ct 852 -331 851 -334 851 -336 ct 904 -336 l 904 -335 904 -332 905 -327 ct -905 -323 905 -318 905 -312 ct 906 -306 906 -300 906 -294 ct 906 -288 906 -283 906 -278 ct -907 -278 l 912 -288 918 -297 923 -305 ct 929 -313 936 -319 944 -325 ct 951 -330 960 -335 970 -338 ct -980 -341 992 -342 1005 -342 ct 1031 -342 1051 -337 1066 -327 ct 1080 -317 1091 -301 1096 -278 ct -1097 -278 l 1102 -288 1108 -297 1114 -305 ct 1120 -313 1128 -319 1136 -325 ct -1144 -330 1153 -335 1164 -338 ct 1174 -341 1186 -342 1199 -342 ct 1216 -342 1231 -340 1243 -335 ct -1255 -331 1265 -324 1273 -314 ct 1281 -305 1287 -292 1291 -277 ct 1294 -262 1296 -244 1296 -224 ct -1296 0 l 1241 0 l 1241 -213 l 1241 -229 1240 -243 1238 -254 ct 1236 -265 1232 -274 1227 -280 ct -1223 -287 1216 -292 1208 -295 ct 1201 -297 1191 -299 1180 -299 ct 1168 -299 1157 -297 1148 -292 ct -1138 -288 1130 -281 1123 -272 ct 1117 -264 1111 -253 1108 -240 ct 1104 -227 1102 -212 1102 -195 ct -1102 0 l 1047 0 l p ef -1664 -170 m 1664 -144 1662 -121 1658 -99 ct 1654 -78 1647 -59 1638 -43 ct 1628 -28 1615 -16 1600 -7 ct -1584 2 1564 6 1541 6 ct 1517 6 1496 2 1478 -7 ct 1460 -17 1446 -31 1437 -52 ct -1435 -52 l 1436 -52 1436 -50 1436 -47 ct 1436 -43 1436 -39 1436 -34 ct 1436 -29 1436 -24 1436 -17 ct -1437 -11 1437 -5 1437 1 ct 1437 132 l 1381 132 l 1381 -267 l 1381 -275 1381 -283 1381 -290 ct -1381 -298 1380 -305 1380 -311 ct 1380 -317 1380 -322 1380 -326 ct 1379 -331 1379 -334 1379 -336 ct -1433 -336 l 1433 -335 1433 -333 1434 -329 ct 1434 -326 1434 -321 1435 -316 ct -1435 -311 1435 -305 1436 -299 ct 1436 -293 1436 -287 1436 -282 ct 1437 -282 l -1442 -293 1448 -302 1455 -310 ct 1462 -317 1469 -323 1478 -328 ct 1486 -333 1495 -337 1506 -339 ct -1516 -341 1528 -342 1541 -342 ct 1564 -342 1584 -338 1600 -330 ct 1615 -321 1628 -310 1638 -295 ct -1647 -280 1654 -261 1658 -240 ct 1662 -219 1664 -195 1664 -170 ct p -1606 -168 m 1606 -189 1605 -207 1602 -224 ct 1600 -240 1595 -253 1589 -265 ct -1583 -276 1575 -284 1565 -290 ct 1555 -296 1542 -299 1527 -299 ct 1514 -299 1503 -297 1492 -294 ct -1481 -290 1471 -283 1463 -273 ct 1455 -263 1448 -250 1444 -232 ct 1439 -215 1437 -192 1437 -164 ct -1437 -140 1439 -120 1442 -104 ct 1446 -87 1452 -74 1460 -64 ct 1467 -53 1477 -46 1488 -42 ct -1499 -37 1512 -35 1526 -35 ct 1542 -35 1555 -38 1565 -44 ct 1575 -50 1583 -59 1589 -70 ct -1595 -82 1600 -95 1602 -112 ct 1605 -128 1606 -147 1606 -168 ct p ef -1786 -336 m 1786 -123 l 1786 -107 1788 -93 1790 -82 ct 1792 -71 1796 -62 1802 -56 ct -1807 -49 1814 -44 1823 -41 ct 1832 -39 1842 -37 1856 -37 ct 1869 -37 1881 -39 1891 -44 ct -1902 -49 1911 -55 1919 -64 ct 1926 -73 1932 -84 1936 -97 ct 1940 -110 1942 -125 1942 -141 ct -1942 -336 l 1998 -336 l 1998 -72 l 1998 -65 1998 -57 1998 -50 ct 1998 -42 1999 -35 1999 -28 ct -1999 -21 1999 -15 1999 -10 ct 2000 -5 2000 -2 2000 0 ct 1947 0 l 1947 -1 1947 -4 1947 -9 ct -1946 -13 1946 -18 1946 -24 ct 1946 -30 1945 -36 1945 -42 ct 1945 -48 1945 -53 1945 -58 ct -1944 -58 l 1939 -48 1933 -39 1926 -31 ct 1920 -23 1912 -17 1904 -11 ct 1895 -6 1886 -2 1875 2 ct -1864 4 1851 6 1837 6 ct 1818 6 1802 4 1789 -1 ct 1775 -5 1764 -12 1755 -22 ct 1747 -31 1740 -44 1736 -59 ct -1732 -73 1730 -91 1730 -112 ct 1730 -336 l 1786 -336 l p ef -2212 -2 m 2203 0 2195 2 2186 3 ct 2177 4 2167 5 2155 5 ct 2111 5 2088 -20 2088 -71 ct -2088 -295 l 2050 -295 l 2050 -336 l 2091 -336 l 2107 -411 l 2144 -411 l -2144 -336 l 2206 -336 l 2206 -295 l 2144 -295 l 2144 -83 l 2144 -67 2147 -56 2152 -49 ct -2157 -43 2167 -39 2180 -39 ct 2185 -39 2190 -40 2195 -41 ct 2200 -41 2206 -42 2212 -44 ct -2212 -2 l p ef -2346 6 m 2313 6 2287 -3 2270 -21 ct 2253 -39 2245 -63 2245 -94 ct 2245 -117 2249 -135 2258 -149 ct -2266 -163 2277 -174 2290 -183 ct 2304 -191 2319 -196 2337 -199 ct 2354 -203 2372 -204 2390 -204 ct -2465 -204 l 2465 -223 l 2465 -237 2464 -248 2461 -258 ct 2458 -268 2453 -276 2447 -282 ct -2441 -288 2434 -292 2425 -295 ct 2416 -298 2405 -299 2393 -299 ct 2382 -299 2373 -299 2364 -297 ct -2355 -296 2348 -293 2341 -289 ct 2335 -285 2330 -279 2326 -272 ct 2322 -265 2319 -257 2318 -246 ct -2260 -251 l 2262 -265 2266 -277 2272 -288 ct 2277 -299 2286 -309 2296 -317 ct -2307 -325 2320 -331 2336 -335 ct 2352 -340 2372 -342 2394 -342 ct 2437 -342 2468 -332 2490 -313 ct -2511 -294 2522 -266 2522 -229 ct 2522 -85 l 2522 -68 2524 -55 2528 -47 ct 2532 -39 2541 -35 2553 -35 ct -2556 -35 2559 -35 2562 -35 ct 2565 -36 2568 -36 2571 -37 ct 2571 -2 l 2564 0 2557 1 2550 2 ct -2543 3 2536 3 2528 3 ct 2518 3 2508 2 2501 -1 ct 2493 -4 2487 -8 2482 -14 ct 2478 -20 2474 -27 2472 -35 ct -2469 -43 2468 -53 2467 -64 ct 2465 -64 l 2459 -54 2453 -44 2445 -35 ct 2438 -27 2430 -19 2420 -13 ct -2411 -7 2400 -2 2388 1 ct 2376 4 2362 6 2346 6 ct p -2359 -36 m 2377 -36 2392 -39 2406 -46 ct 2419 -52 2430 -60 2439 -70 ct 2448 -80 2454 -91 2459 -103 ct -2463 -115 2465 -127 2465 -138 ct 2465 -165 l 2404 -165 l 2390 -165 2377 -164 2365 -162 ct -2353 -161 2342 -157 2333 -152 ct 2323 -147 2316 -139 2311 -130 ct 2305 -121 2302 -108 2302 -93 ct -2302 -75 2307 -61 2317 -51 ct 2327 -41 2341 -36 2359 -36 ct p ef -2742 -2 m 2733 0 2725 2 2716 3 ct 2707 4 2697 5 2685 5 ct 2641 5 2618 -20 2618 -71 ct -2618 -295 l 2580 -295 l 2580 -336 l 2621 -336 l 2637 -411 l 2674 -411 l -2674 -336 l 2736 -336 l 2736 -295 l 2674 -295 l 2674 -83 l 2674 -67 2677 -56 2682 -49 ct -2687 -43 2697 -39 2710 -39 ct 2715 -39 2720 -40 2725 -41 ct 2730 -41 2736 -42 2742 -44 ct -2742 -2 l p ef -2789 -407 m 2789 -460 l 2845 -460 l 2845 -407 l 2789 -407 l p -2789 1 m 2789 -335 l 2845 -335 l 2845 1 l 2789 1 l p ef -3213 -168 m 3213 -110 3201 -66 3175 -37 ct 3149 -8 3111 6 3062 6 ct 3039 6 3018 2 3000 -5 ct -2981 -12 2966 -22 2953 -37 ct 2940 -51 2930 -69 2924 -91 ct 2917 -113 2914 -139 2914 -168 ct -2914 -284 2964 -342 3064 -342 ct 3090 -342 3113 -339 3131 -331 ct 3150 -324 3166 -313 3178 -299 ct -3190 -284 3199 -266 3205 -245 ct 3211 -223 3213 -197 3213 -168 ct p -3155 -168 m 3155 -195 3153 -216 3149 -233 ct 3145 -250 3139 -264 3131 -274 ct -3123 -284 3114 -291 3103 -295 ct 3092 -299 3079 -301 3065 -301 ct 3051 -301 3038 -299 3026 -295 ct -3015 -290 3005 -283 2997 -273 ct 2989 -263 2983 -249 2979 -232 ct 2974 -215 2972 -194 2972 -168 ct -2972 -142 2975 -121 2979 -104 ct 2984 -87 2990 -73 2998 -63 ct 3006 -53 3015 -46 3026 -41 ct -3037 -37 3049 -35 3062 -35 ct 3076 -35 3089 -37 3100 -41 ct 3112 -45 3122 -52 3130 -63 ct -3138 -73 3144 -86 3148 -104 ct 3153 -121 3155 -142 3155 -168 ct p ef -3495 0 m 3495 -213 l 3495 -229 3494 -243 3491 -254 ct 3489 -265 3485 -274 3480 -280 ct -3474 -287 3467 -292 3458 -295 ct 3450 -297 3439 -299 3426 -299 ct 3412 -299 3400 -297 3390 -292 ct -3379 -287 3370 -281 3363 -272 ct 3355 -263 3349 -252 3345 -239 ct 3341 -226 3339 -211 3339 -195 ct -3339 0 l 3283 0 l 3283 -264 l 3283 -271 3283 -279 3283 -286 ct 3283 -294 3283 -301 3282 -308 ct -3282 -315 3282 -321 3282 -326 ct 3282 -331 3281 -334 3281 -336 ct 3334 -336 l -3334 -335 3334 -332 3335 -327 ct 3335 -323 3335 -318 3335 -312 ct 3336 -306 3336 -300 3336 -294 ct -3336 -288 3336 -283 3336 -278 ct 3337 -278 l 3343 -288 3349 -297 3355 -305 ct -3361 -313 3369 -319 3377 -325 ct 3386 -330 3395 -335 3406 -338 ct 3417 -341 3430 -342 3445 -342 ct -3463 -342 3479 -340 3493 -335 ct 3506 -331 3517 -324 3526 -314 ct 3534 -305 3541 -292 3545 -277 ct -3549 -262 3551 -244 3551 -224 ct 3551 0 l 3495 0 l p ef -3718 6 m 3685 6 3659 -3 3642 -21 ct 3625 -39 3617 -63 3617 -94 ct 3617 -117 3621 -135 3630 -149 ct -3638 -163 3649 -174 3662 -183 ct 3676 -191 3691 -196 3709 -199 ct 3726 -203 3744 -204 3762 -204 ct -3837 -204 l 3837 -223 l 3837 -237 3836 -248 3833 -258 ct 3830 -268 3825 -276 3819 -282 ct -3813 -288 3806 -292 3797 -295 ct 3788 -298 3777 -299 3765 -299 ct 3754 -299 3745 -299 3736 -297 ct -3727 -296 3720 -293 3713 -289 ct 3707 -285 3702 -279 3698 -272 ct 3694 -265 3691 -257 3690 -246 ct -3632 -251 l 3634 -265 3638 -277 3644 -288 ct 3649 -299 3658 -309 3668 -317 ct -3679 -325 3692 -331 3708 -335 ct 3724 -340 3744 -342 3766 -342 ct 3809 -342 3840 -332 3862 -313 ct -3883 -294 3894 -266 3894 -229 ct 3894 -85 l 3894 -68 3896 -55 3900 -47 ct 3904 -39 3913 -35 3925 -35 ct -3928 -35 3931 -35 3934 -35 ct 3937 -36 3940 -36 3943 -37 ct 3943 -2 l 3936 0 3929 1 3922 2 ct -3915 3 3908 3 3900 3 ct 3890 3 3880 2 3873 -1 ct 3865 -4 3859 -8 3854 -14 ct 3850 -20 3846 -27 3844 -35 ct -3841 -43 3840 -53 3839 -64 ct 3837 -64 l 3831 -54 3825 -44 3817 -35 ct 3810 -27 3802 -19 3792 -13 ct -3783 -7 3772 -2 3760 1 ct 3748 4 3734 6 3718 6 ct p -3731 -36 m 3749 -36 3764 -39 3778 -46 ct 3791 -52 3802 -60 3811 -70 ct 3820 -80 3826 -91 3831 -103 ct -3835 -115 3837 -127 3837 -138 ct 3837 -165 l 3776 -165 l 3762 -165 3749 -164 3737 -162 ct -3725 -161 3714 -157 3705 -152 ct 3695 -147 3688 -139 3683 -130 ct 3677 -121 3674 -108 3674 -93 ct -3674 -75 3679 -61 3689 -51 ct 3699 -41 3713 -36 3731 -36 ct p ef -3984 1 m 3984 -460 l 4040 -460 l 4040 1 l 3984 1 l p ef -4620 -1 m 4506 -182 l 4370 -182 l 4370 -1 l 4311 -1 l 4311 -437 l -4517 -437 l 4541 -437 4563 -435 4583 -429 ct 4602 -423 4618 -415 4631 -404 ct -4644 -394 4654 -380 4661 -365 ct 4667 -349 4671 -332 4671 -313 ct 4671 -299 4669 -285 4665 -272 ct -4661 -258 4654 -246 4646 -235 ct 4637 -224 4626 -214 4612 -206 ct 4599 -198 4583 -192 4564 -189 ct -4688 -1 l 4620 -1 l p -4611 -312 m 4611 -325 4609 -337 4604 -346 ct 4600 -356 4593 -364 4585 -371 ct -4576 -377 4565 -382 4553 -385 ct 4541 -388 4526 -390 4511 -390 ct 4370 -390 l -4370 -229 l 4513 -229 l 4530 -229 4545 -231 4557 -235 ct 4570 -239 4580 -245 4588 -253 ct -4596 -260 4602 -269 4605 -279 ct 4609 -289 4611 -300 4611 -312 ct p ef -4802 -156 m 4802 -139 4803 -122 4807 -108 ct 4811 -93 4816 -80 4824 -70 ct -4831 -59 4841 -51 4853 -45 ct 4865 -39 4879 -36 4895 -36 ct 4919 -36 4939 -41 4953 -50 ct -4968 -60 4978 -72 4983 -87 ct 5032 -73 l 5028 -64 5024 -55 5017 -45 ct 5011 -36 5003 -27 4992 -20 ct -4981 -12 4968 -6 4952 -1 ct 4937 4 4918 6 4895 6 ct 4846 6 4808 -9 4782 -38 ct -4756 -68 4743 -112 4743 -170 ct 4743 -202 4747 -228 4755 -250 ct 4763 -272 4773 -290 4787 -303 ct -4801 -317 4817 -327 4835 -333 ct 4853 -339 4872 -342 4893 -342 ct 4921 -342 4945 -338 4964 -329 ct -4983 -320 4998 -307 5009 -291 ct 5021 -275 5029 -256 5034 -234 ct 5039 -212 5041 -189 5041 -164 ct -5041 -156 l 4802 -156 l p -4983 -199 m 4980 -234 4971 -260 4956 -277 ct 4941 -293 4920 -301 4892 -301 ct -4883 -301 4873 -300 4863 -296 ct 4853 -293 4843 -288 4834 -280 ct 4826 -273 4818 -262 4812 -249 ct -4806 -236 4803 -219 4802 -199 ct 4983 -199 l p ef -5152 -170 m 5152 -150 5154 -133 5156 -117 ct 5159 -100 5164 -86 5171 -75 ct -5177 -63 5186 -54 5197 -48 ct 5208 -41 5221 -38 5237 -38 ct 5257 -38 5273 -43 5287 -54 ct -5300 -64 5308 -80 5311 -102 ct 5368 -102 l 5366 -88 5362 -74 5356 -61 ct 5349 -48 5341 -37 5330 -27 ct -5320 -17 5307 -9 5291 -3 ct 5276 3 5259 6 5238 6 ct 5212 6 5190 2 5171 -7 ct 5153 -16 5138 -28 5127 -44 ct -5115 -60 5107 -78 5102 -99 ct 5097 -121 5094 -144 5094 -168 ct 5094 -191 5096 -211 5100 -228 ct -5103 -245 5109 -260 5115 -273 ct 5122 -286 5130 -297 5139 -306 ct 5148 -315 5158 -322 5169 -327 ct -5179 -332 5190 -336 5202 -338 ct 5214 -341 5226 -342 5238 -342 ct 5257 -342 5273 -339 5288 -334 ct -5303 -329 5315 -322 5326 -313 ct 5337 -304 5345 -293 5352 -281 ct 5359 -269 5363 -256 5366 -242 ct -5309 -237 l 5306 -256 5298 -271 5287 -282 ct 5275 -293 5258 -298 5236 -298 ct -5220 -298 5207 -296 5196 -290 ct 5186 -285 5177 -277 5171 -266 ct 5164 -256 5159 -242 5156 -226 ct -5154 -210 5152 -191 5152 -170 ct p ef -5427 -407 m 5427 -460 l 5483 -460 l 5483 -407 l 5427 -407 l p -5427 1 m 5427 -335 l 5483 -335 l 5483 1 l 5427 1 l p ef -5851 -170 m 5851 -144 5849 -121 5845 -99 ct 5841 -78 5834 -59 5825 -43 ct 5815 -28 5802 -16 5787 -7 ct -5771 2 5751 6 5728 6 ct 5704 6 5683 2 5665 -7 ct 5647 -17 5633 -31 5624 -52 ct -5622 -52 l 5623 -52 5623 -50 5623 -47 ct 5623 -43 5623 -39 5623 -34 ct 5623 -29 5623 -24 5623 -17 ct -5624 -11 5624 -5 5624 1 ct 5624 132 l 5568 132 l 5568 -267 l 5568 -275 5568 -283 5568 -290 ct -5568 -298 5567 -305 5567 -311 ct 5567 -317 5567 -322 5567 -326 ct 5566 -331 5566 -334 5566 -336 ct -5620 -336 l 5620 -335 5620 -333 5621 -329 ct 5621 -326 5621 -321 5622 -316 ct -5622 -311 5622 -305 5623 -299 ct 5623 -293 5623 -287 5623 -282 ct 5624 -282 l -5629 -293 5635 -302 5642 -310 ct 5649 -317 5656 -323 5665 -328 ct 5673 -333 5682 -337 5693 -339 ct -5703 -341 5715 -342 5728 -342 ct 5751 -342 5771 -338 5787 -330 ct 5802 -321 5815 -310 5825 -295 ct -5834 -280 5841 -261 5845 -240 ct 5849 -219 5851 -195 5851 -170 ct p -5793 -168 m 5793 -189 5792 -207 5789 -224 ct 5787 -240 5782 -253 5776 -265 ct -5770 -276 5762 -284 5752 -290 ct 5742 -296 5729 -299 5714 -299 ct 5701 -299 5690 -297 5679 -294 ct -5668 -290 5658 -283 5650 -273 ct 5642 -263 5635 -250 5631 -232 ct 5626 -215 5624 -192 5624 -164 ct -5624 -140 5626 -120 5629 -104 ct 5633 -87 5639 -74 5647 -64 ct 5654 -53 5664 -46 5675 -42 ct -5686 -37 5699 -35 5713 -35 ct 5729 -35 5742 -38 5752 -44 ct 5762 -50 5770 -59 5776 -70 ct -5782 -82 5787 -95 5789 -112 ct 5792 -128 5793 -147 5793 -168 ct p ef -5962 -156 m 5962 -139 5963 -122 5967 -108 ct 5971 -93 5976 -80 5984 -70 ct -5991 -59 6001 -51 6013 -45 ct 6025 -39 6039 -36 6055 -36 ct 6079 -36 6099 -41 6113 -50 ct -6128 -60 6138 -72 6143 -87 ct 6192 -73 l 6188 -64 6184 -55 6177 -45 ct 6171 -36 6163 -27 6152 -20 ct -6141 -12 6128 -6 6112 -1 ct 6097 4 6078 6 6055 6 ct 6006 6 5968 -9 5942 -38 ct -5916 -68 5903 -112 5903 -170 ct 5903 -202 5907 -228 5915 -250 ct 5923 -272 5933 -290 5947 -303 ct -5961 -317 5977 -327 5995 -333 ct 6013 -339 6032 -342 6053 -342 ct 6081 -342 6105 -338 6124 -329 ct -6143 -320 6158 -307 6169 -291 ct 6181 -275 6189 -256 6194 -234 ct 6199 -212 6201 -189 6201 -164 ct -6201 -156 l 5962 -156 l p -6143 -199 m 6140 -234 6131 -260 6116 -277 ct 6101 -293 6080 -301 6052 -301 ct -6043 -301 6033 -300 6023 -296 ct 6013 -293 6003 -288 5994 -280 ct 5986 -273 5978 -262 5972 -249 ct -5966 -236 5963 -219 5962 -199 ct 6143 -199 l p ef -pom -0.683 0.812 0.003 c 11597 9343 m 4740 9343 l 4740 7027 l 18455 7027 l -18455 9343 l 11597 9343 l p ef -0.503 0.503 0.503 c 11597 9342 m 4739 9342 l 4739 7027 l 18454 7027 l -18454 9342 l 11597 9342 l pc -pum -4990 7728 t -0.003 0.003 0.003 c 246 -396 m 221 -396 199 -391 180 -383 ct 161 -375 145 -363 132 -348 ct -119 -332 109 -314 102 -293 ct 96 -271 92 -247 92 -221 ct 92 -195 96 -171 103 -149 ct -110 -127 120 -108 134 -92 ct 147 -77 163 -64 183 -56 ct 202 -47 224 -43 248 -43 ct -265 -43 280 -45 294 -49 ct 308 -54 321 -60 332 -68 ct 343 -76 354 -86 362 -97 ct -371 -108 379 -120 386 -134 ct 434 -109 l 427 -93 417 -78 405 -64 ct 394 -50 380 -38 364 -27 ct -349 -17 331 -9 311 -3 ct 292 3 270 6 245 6 ct 210 6 179 0 152 -11 ct 126 -22 104 -38 86 -58 ct -68 -78 54 -102 46 -130 ct 37 -158 32 -188 32 -221 ct 32 -255 37 -286 46 -313 ct -56 -341 70 -364 88 -384 ct 106 -403 128 -418 154 -428 ct 181 -439 211 -444 245 -444 ct -291 -444 330 -435 362 -417 ct 393 -398 416 -371 430 -336 ct 374 -317 l 370 -327 365 -337 358 -347 ct -350 -356 342 -364 331 -372 ct 321 -379 308 -385 294 -389 ct 280 -393 264 -396 246 -396 ct -p ef -783 -168 m 783 -110 771 -66 745 -37 ct 719 -8 681 6 632 6 ct 609 6 588 2 570 -5 ct -551 -12 536 -22 523 -37 ct 510 -51 500 -69 494 -91 ct 487 -113 484 -139 484 -168 ct -484 -284 534 -342 634 -342 ct 660 -342 683 -339 701 -331 ct 720 -324 736 -313 748 -299 ct -760 -284 769 -266 775 -245 ct 781 -223 783 -197 783 -168 ct p -725 -168 m 725 -195 723 -216 719 -233 ct 715 -250 709 -264 701 -274 ct 693 -284 684 -291 673 -295 ct -662 -299 649 -301 635 -301 ct 621 -301 608 -299 596 -295 ct 585 -290 575 -283 567 -273 ct -559 -263 553 -249 549 -232 ct 544 -215 542 -194 542 -168 ct 542 -142 545 -121 549 -104 ct -554 -87 560 -73 568 -63 ct 576 -53 585 -46 596 -41 ct 607 -37 619 -35 632 -35 ct -646 -35 659 -37 670 -41 ct 682 -45 692 -52 700 -63 ct 708 -73 714 -86 718 -104 ct -723 -121 725 -142 725 -168 ct p ef -1047 0 m 1047 -213 l 1047 -229 1046 -243 1044 -254 ct 1042 -265 1038 -274 1034 -280 ct -1029 -287 1022 -292 1015 -295 ct 1007 -297 997 -299 986 -299 ct 974 -299 963 -297 954 -292 ct -944 -287 936 -281 929 -272 ct 923 -263 918 -252 914 -239 ct 910 -226 909 -211 909 -195 ct -909 0 l 853 0 l 853 -264 l 853 -271 853 -279 853 -286 ct 853 -294 853 -301 852 -308 ct -852 -315 852 -321 852 -326 ct 852 -331 851 -334 851 -336 ct 904 -336 l 904 -335 904 -332 905 -327 ct -905 -323 905 -318 905 -312 ct 906 -306 906 -300 906 -294 ct 906 -288 906 -283 906 -278 ct -907 -278 l 912 -288 918 -297 923 -305 ct 929 -313 936 -319 944 -325 ct 951 -330 960 -335 970 -338 ct -980 -341 992 -342 1005 -342 ct 1031 -342 1051 -337 1066 -327 ct 1080 -317 1091 -301 1096 -278 ct -1097 -278 l 1102 -288 1108 -297 1114 -305 ct 1120 -313 1128 -319 1136 -325 ct -1144 -330 1153 -335 1164 -338 ct 1174 -341 1186 -342 1199 -342 ct 1216 -342 1231 -340 1243 -335 ct -1255 -331 1265 -324 1273 -314 ct 1281 -305 1287 -292 1291 -277 ct 1294 -262 1296 -244 1296 -224 ct -1296 0 l 1241 0 l 1241 -213 l 1241 -229 1240 -243 1238 -254 ct 1236 -265 1232 -274 1227 -280 ct -1223 -287 1216 -292 1208 -295 ct 1201 -297 1191 -299 1180 -299 ct 1168 -299 1157 -297 1148 -292 ct -1138 -288 1130 -281 1123 -272 ct 1117 -264 1111 -253 1108 -240 ct 1104 -227 1102 -212 1102 -195 ct -1102 0 l 1047 0 l p ef -1664 -170 m 1664 -144 1662 -121 1658 -99 ct 1654 -78 1647 -59 1638 -43 ct 1628 -28 1615 -16 1600 -7 ct -1584 2 1564 6 1541 6 ct 1517 6 1496 2 1478 -7 ct 1460 -17 1446 -31 1437 -52 ct -1435 -52 l 1436 -52 1436 -50 1436 -47 ct 1436 -43 1436 -39 1436 -34 ct 1436 -29 1436 -24 1436 -17 ct -1437 -11 1437 -5 1437 1 ct 1437 132 l 1381 132 l 1381 -267 l 1381 -275 1381 -283 1381 -290 ct -1381 -298 1380 -305 1380 -311 ct 1380 -317 1380 -322 1380 -326 ct 1379 -331 1379 -334 1379 -336 ct -1433 -336 l 1433 -335 1433 -333 1434 -329 ct 1434 -326 1434 -321 1435 -316 ct -1435 -311 1435 -305 1436 -299 ct 1436 -293 1436 -287 1436 -282 ct 1437 -282 l -1442 -293 1448 -302 1455 -310 ct 1462 -317 1469 -323 1478 -328 ct 1486 -333 1495 -337 1506 -339 ct -1516 -341 1528 -342 1541 -342 ct 1564 -342 1584 -338 1600 -330 ct 1615 -321 1628 -310 1638 -295 ct -1647 -280 1654 -261 1658 -240 ct 1662 -219 1664 -195 1664 -170 ct p -1606 -168 m 1606 -189 1605 -207 1602 -224 ct 1600 -240 1595 -253 1589 -265 ct -1583 -276 1575 -284 1565 -290 ct 1555 -296 1542 -299 1527 -299 ct 1514 -299 1503 -297 1492 -294 ct -1481 -290 1471 -283 1463 -273 ct 1455 -263 1448 -250 1444 -232 ct 1439 -215 1437 -192 1437 -164 ct -1437 -140 1439 -120 1442 -104 ct 1446 -87 1452 -74 1460 -64 ct 1467 -53 1477 -46 1488 -42 ct -1499 -37 1512 -35 1526 -35 ct 1542 -35 1555 -38 1565 -44 ct 1575 -50 1583 -59 1589 -70 ct -1595 -82 1600 -95 1602 -112 ct 1605 -128 1606 -147 1606 -168 ct p ef -1786 -336 m 1786 -123 l 1786 -107 1788 -93 1790 -82 ct 1792 -71 1796 -62 1802 -56 ct -1807 -49 1814 -44 1823 -41 ct 1832 -39 1842 -37 1856 -37 ct 1869 -37 1881 -39 1891 -44 ct -1902 -49 1911 -55 1919 -64 ct 1926 -73 1932 -84 1936 -97 ct 1940 -110 1942 -125 1942 -141 ct -1942 -336 l 1998 -336 l 1998 -72 l 1998 -65 1998 -57 1998 -50 ct 1998 -42 1999 -35 1999 -28 ct -1999 -21 1999 -15 1999 -10 ct 2000 -5 2000 -2 2000 0 ct 1947 0 l 1947 -1 1947 -4 1947 -9 ct -1946 -13 1946 -18 1946 -24 ct 1946 -30 1945 -36 1945 -42 ct 1945 -48 1945 -53 1945 -58 ct -1944 -58 l 1939 -48 1933 -39 1926 -31 ct 1920 -23 1912 -17 1904 -11 ct 1895 -6 1886 -2 1875 2 ct -1864 4 1851 6 1837 6 ct 1818 6 1802 4 1789 -1 ct 1775 -5 1764 -12 1755 -22 ct 1747 -31 1740 -44 1736 -59 ct -1732 -73 1730 -91 1730 -112 ct 1730 -336 l 1786 -336 l p ef -2212 -2 m 2203 0 2195 2 2186 3 ct 2177 4 2167 5 2155 5 ct 2111 5 2088 -20 2088 -71 ct -2088 -295 l 2050 -295 l 2050 -336 l 2091 -336 l 2107 -411 l 2144 -411 l -2144 -336 l 2206 -336 l 2206 -295 l 2144 -295 l 2144 -83 l 2144 -67 2147 -56 2152 -49 ct -2157 -43 2167 -39 2180 -39 ct 2185 -39 2190 -40 2195 -41 ct 2200 -41 2206 -42 2212 -44 ct -2212 -2 l p ef -2346 6 m 2313 6 2287 -3 2270 -21 ct 2253 -39 2245 -63 2245 -94 ct 2245 -117 2249 -135 2258 -149 ct -2266 -163 2277 -174 2290 -183 ct 2304 -191 2319 -196 2337 -199 ct 2354 -203 2372 -204 2390 -204 ct -2465 -204 l 2465 -223 l 2465 -237 2464 -248 2461 -258 ct 2458 -268 2453 -276 2447 -282 ct -2441 -288 2434 -292 2425 -295 ct 2416 -298 2405 -299 2393 -299 ct 2382 -299 2373 -299 2364 -297 ct -2355 -296 2348 -293 2341 -289 ct 2335 -285 2330 -279 2326 -272 ct 2322 -265 2319 -257 2318 -246 ct -2260 -251 l 2262 -265 2266 -277 2272 -288 ct 2277 -299 2286 -309 2296 -317 ct -2307 -325 2320 -331 2336 -335 ct 2352 -340 2372 -342 2394 -342 ct 2437 -342 2468 -332 2490 -313 ct -2511 -294 2522 -266 2522 -229 ct 2522 -85 l 2522 -68 2524 -55 2528 -47 ct 2532 -39 2541 -35 2553 -35 ct -2556 -35 2559 -35 2562 -35 ct 2565 -36 2568 -36 2571 -37 ct 2571 -2 l 2564 0 2557 1 2550 2 ct -2543 3 2536 3 2528 3 ct 2518 3 2508 2 2501 -1 ct 2493 -4 2487 -8 2482 -14 ct 2478 -20 2474 -27 2472 -35 ct -2469 -43 2468 -53 2467 -64 ct 2465 -64 l 2459 -54 2453 -44 2445 -35 ct 2438 -27 2430 -19 2420 -13 ct -2411 -7 2400 -2 2388 1 ct 2376 4 2362 6 2346 6 ct p -2359 -36 m 2377 -36 2392 -39 2406 -46 ct 2419 -52 2430 -60 2439 -70 ct 2448 -80 2454 -91 2459 -103 ct -2463 -115 2465 -127 2465 -138 ct 2465 -165 l 2404 -165 l 2390 -165 2377 -164 2365 -162 ct -2353 -161 2342 -157 2333 -152 ct 2323 -147 2316 -139 2311 -130 ct 2305 -121 2302 -108 2302 -93 ct -2302 -75 2307 -61 2317 -51 ct 2327 -41 2341 -36 2359 -36 ct p ef -2742 -2 m 2733 0 2725 2 2716 3 ct 2707 4 2697 5 2685 5 ct 2641 5 2618 -20 2618 -71 ct -2618 -295 l 2580 -295 l 2580 -336 l 2621 -336 l 2637 -411 l 2674 -411 l -2674 -336 l 2736 -336 l 2736 -295 l 2674 -295 l 2674 -83 l 2674 -67 2677 -56 2682 -49 ct -2687 -43 2697 -39 2710 -39 ct 2715 -39 2720 -40 2725 -41 ct 2730 -41 2736 -42 2742 -44 ct -2742 -2 l p ef -2789 -407 m 2789 -460 l 2845 -460 l 2845 -407 l 2789 -407 l p -2789 1 m 2789 -335 l 2845 -335 l 2845 1 l 2789 1 l p ef -3213 -168 m 3213 -110 3201 -66 3175 -37 ct 3149 -8 3111 6 3062 6 ct 3039 6 3018 2 3000 -5 ct -2981 -12 2966 -22 2953 -37 ct 2940 -51 2930 -69 2924 -91 ct 2917 -113 2914 -139 2914 -168 ct -2914 -284 2964 -342 3064 -342 ct 3090 -342 3113 -339 3131 -331 ct 3150 -324 3166 -313 3178 -299 ct -3190 -284 3199 -266 3205 -245 ct 3211 -223 3213 -197 3213 -168 ct p -3155 -168 m 3155 -195 3153 -216 3149 -233 ct 3145 -250 3139 -264 3131 -274 ct -3123 -284 3114 -291 3103 -295 ct 3092 -299 3079 -301 3065 -301 ct 3051 -301 3038 -299 3026 -295 ct -3015 -290 3005 -283 2997 -273 ct 2989 -263 2983 -249 2979 -232 ct 2974 -215 2972 -194 2972 -168 ct -2972 -142 2975 -121 2979 -104 ct 2984 -87 2990 -73 2998 -63 ct 3006 -53 3015 -46 3026 -41 ct -3037 -37 3049 -35 3062 -35 ct 3076 -35 3089 -37 3100 -41 ct 3112 -45 3122 -52 3130 -63 ct -3138 -73 3144 -86 3148 -104 ct 3153 -121 3155 -142 3155 -168 ct p ef -3495 0 m 3495 -213 l 3495 -229 3494 -243 3491 -254 ct 3489 -265 3485 -274 3480 -280 ct -3474 -287 3467 -292 3458 -295 ct 3450 -297 3439 -299 3426 -299 ct 3412 -299 3400 -297 3390 -292 ct -3379 -287 3370 -281 3363 -272 ct 3355 -263 3349 -252 3345 -239 ct 3341 -226 3339 -211 3339 -195 ct -3339 0 l 3283 0 l 3283 -264 l 3283 -271 3283 -279 3283 -286 ct 3283 -294 3283 -301 3282 -308 ct -3282 -315 3282 -321 3282 -326 ct 3282 -331 3281 -334 3281 -336 ct 3334 -336 l -3334 -335 3334 -332 3335 -327 ct 3335 -323 3335 -318 3335 -312 ct 3336 -306 3336 -300 3336 -294 ct -3336 -288 3336 -283 3336 -278 ct 3337 -278 l 3343 -288 3349 -297 3355 -305 ct -3361 -313 3369 -319 3377 -325 ct 3386 -330 3395 -335 3406 -338 ct 3417 -341 3430 -342 3445 -342 ct -3463 -342 3479 -340 3493 -335 ct 3506 -331 3517 -324 3526 -314 ct 3534 -305 3541 -292 3545 -277 ct -3549 -262 3551 -244 3551 -224 ct 3551 0 l 3495 0 l p ef -3718 6 m 3685 6 3659 -3 3642 -21 ct 3625 -39 3617 -63 3617 -94 ct 3617 -117 3621 -135 3630 -149 ct -3638 -163 3649 -174 3662 -183 ct 3676 -191 3691 -196 3709 -199 ct 3726 -203 3744 -204 3762 -204 ct -3837 -204 l 3837 -223 l 3837 -237 3836 -248 3833 -258 ct 3830 -268 3825 -276 3819 -282 ct -3813 -288 3806 -292 3797 -295 ct 3788 -298 3777 -299 3765 -299 ct 3754 -299 3745 -299 3736 -297 ct -3727 -296 3720 -293 3713 -289 ct 3707 -285 3702 -279 3698 -272 ct 3694 -265 3691 -257 3690 -246 ct -3632 -251 l 3634 -265 3638 -277 3644 -288 ct 3649 -299 3658 -309 3668 -317 ct -3679 -325 3692 -331 3708 -335 ct 3724 -340 3744 -342 3766 -342 ct 3809 -342 3840 -332 3862 -313 ct -3883 -294 3894 -266 3894 -229 ct 3894 -85 l 3894 -68 3896 -55 3900 -47 ct 3904 -39 3913 -35 3925 -35 ct -3928 -35 3931 -35 3934 -35 ct 3937 -36 3940 -36 3943 -37 ct 3943 -2 l 3936 0 3929 1 3922 2 ct -3915 3 3908 3 3900 3 ct 3890 3 3880 2 3873 -1 ct 3865 -4 3859 -8 3854 -14 ct 3850 -20 3846 -27 3844 -35 ct -3841 -43 3840 -53 3839 -64 ct 3837 -64 l 3831 -54 3825 -44 3817 -35 ct 3810 -27 3802 -19 3792 -13 ct -3783 -7 3772 -2 3760 1 ct 3748 4 3734 6 3718 6 ct p -3731 -36 m 3749 -36 3764 -39 3778 -46 ct 3791 -52 3802 -60 3811 -70 ct 3820 -80 3826 -91 3831 -103 ct -3835 -115 3837 -127 3837 -138 ct 3837 -165 l 3776 -165 l 3762 -165 3749 -164 3737 -162 ct -3725 -161 3714 -157 3705 -152 ct 3695 -147 3688 -139 3683 -130 ct 3677 -121 3674 -108 3674 -93 ct -3674 -75 3679 -61 3689 -51 ct 3699 -41 3713 -36 3731 -36 ct p ef -3984 1 m 3984 -460 l 4040 -460 l 4040 1 l 3984 1 l p ef -4505 -396 m 4480 -396 4458 -391 4439 -383 ct 4420 -375 4404 -363 4391 -348 ct -4378 -332 4368 -314 4361 -293 ct 4355 -271 4351 -247 4351 -221 ct 4351 -195 4355 -171 4362 -149 ct -4369 -127 4379 -108 4393 -92 ct 4406 -77 4422 -64 4442 -56 ct 4461 -47 4483 -43 4507 -43 ct -4524 -43 4539 -45 4553 -49 ct 4567 -54 4580 -60 4591 -68 ct 4602 -76 4613 -86 4621 -97 ct -4630 -108 4638 -120 4645 -134 ct 4693 -109 l 4686 -93 4676 -78 4664 -64 ct -4653 -50 4639 -38 4623 -27 ct 4608 -17 4590 -9 4570 -3 ct 4551 3 4529 6 4504 6 ct -4469 6 4438 0 4411 -11 ct 4385 -22 4363 -38 4345 -58 ct 4327 -78 4313 -102 4305 -130 ct -4296 -158 4291 -188 4291 -221 ct 4291 -255 4296 -286 4305 -313 ct 4315 -341 4329 -364 4347 -384 ct -4365 -403 4387 -418 4413 -428 ct 4440 -439 4470 -444 4504 -444 ct 4550 -444 4589 -435 4621 -417 ct -4652 -398 4675 -371 4689 -336 ct 4633 -317 l 4629 -327 4624 -337 4617 -347 ct -4609 -356 4601 -364 4590 -372 ct 4580 -379 4567 -385 4553 -389 ct 4539 -393 4523 -396 4505 -396 ct -p ef -5042 -168 m 5042 -110 5030 -66 5004 -37 ct 4978 -8 4940 6 4891 6 ct 4868 6 4847 2 4829 -5 ct -4810 -12 4795 -22 4782 -37 ct 4769 -51 4759 -69 4753 -91 ct 4746 -113 4743 -139 4743 -168 ct -4743 -284 4793 -342 4893 -342 ct 4919 -342 4942 -339 4960 -331 ct 4979 -324 4995 -313 5007 -299 ct -5019 -284 5028 -266 5034 -245 ct 5040 -223 5042 -197 5042 -168 ct p -4984 -168 m 4984 -195 4982 -216 4978 -233 ct 4974 -250 4968 -264 4960 -274 ct -4952 -284 4943 -291 4932 -295 ct 4921 -299 4908 -301 4894 -301 ct 4880 -301 4867 -299 4855 -295 ct -4844 -290 4834 -283 4826 -273 ct 4818 -263 4812 -249 4808 -232 ct 4803 -215 4801 -194 4801 -168 ct -4801 -142 4804 -121 4808 -104 ct 4813 -87 4819 -73 4827 -63 ct 4835 -53 4844 -46 4855 -41 ct -4866 -37 4878 -35 4891 -35 ct 4905 -35 4918 -37 4929 -41 ct 4941 -45 4951 -52 4959 -63 ct -4967 -73 4973 -86 4977 -104 ct 4982 -121 4984 -142 4984 -168 ct p ef -5322 -53 m 5311 -32 5298 -16 5280 -7 ct 5263 2 5242 7 5217 7 ct 5175 7 5144 -7 5124 -36 ct -5104 -64 5094 -108 5094 -166 ct 5094 -283 5135 -341 5217 -341 ct 5242 -341 5264 -337 5281 -327 ct -5298 -318 5311 -303 5322 -283 ct 5322 -283 l 5322 -285 5322 -288 5322 -293 ct -5322 -297 5322 -302 5322 -307 ct 5322 -312 5322 -316 5322 -321 ct 5322 -325 5322 -328 5322 -330 ct -5322 -460 l 5377 -460 l 5377 -69 l 5377 -61 5377 -53 5378 -45 ct 5378 -38 5378 -31 5378 -25 ct -5378 -19 5378 -13 5379 -9 ct 5379 -4 5379 -1 5379 1 ct 5326 1 l 5325 -2 5325 -4 5325 -8 ct -5325 -12 5324 -16 5324 -21 ct 5324 -26 5323 -32 5323 -37 ct 5323 -42 5323 -48 5323 -53 ct -5322 -53 l p -5152 -167 m 5152 -144 5154 -124 5157 -108 ct 5160 -91 5164 -78 5171 -67 ct -5177 -56 5185 -49 5195 -44 ct 5205 -39 5217 -36 5231 -36 ct 5246 -36 5259 -39 5270 -43 ct -5282 -48 5291 -56 5298 -66 ct 5306 -77 5312 -91 5316 -108 ct 5320 -125 5322 -146 5322 -171 ct -5322 -195 5320 -215 5316 -232 ct 5312 -248 5306 -261 5298 -271 ct 5291 -282 5281 -289 5270 -293 ct -5259 -298 5246 -300 5232 -300 ct 5218 -300 5207 -298 5197 -293 ct 5187 -288 5178 -280 5172 -270 ct -5165 -259 5160 -246 5157 -229 ct 5154 -212 5152 -191 5152 -167 ct p ef -5505 -156 m 5505 -139 5506 -122 5510 -108 ct 5514 -93 5519 -80 5527 -70 ct -5534 -59 5544 -51 5556 -45 ct 5568 -39 5582 -36 5598 -36 ct 5622 -36 5642 -41 5656 -50 ct -5671 -60 5681 -72 5686 -87 ct 5735 -73 l 5731 -64 5727 -55 5720 -45 ct 5714 -36 5706 -27 5695 -20 ct -5684 -12 5671 -6 5655 -1 ct 5640 4 5621 6 5598 6 ct 5549 6 5511 -9 5485 -38 ct -5459 -68 5446 -112 5446 -170 ct 5446 -202 5450 -228 5458 -250 ct 5466 -272 5476 -290 5490 -303 ct -5504 -317 5520 -327 5538 -333 ct 5556 -339 5575 -342 5596 -342 ct 5624 -342 5648 -338 5667 -329 ct -5686 -320 5701 -307 5712 -291 ct 5724 -275 5732 -256 5737 -234 ct 5742 -212 5744 -189 5744 -164 ct -5744 -156 l 5505 -156 l p -5686 -199 m 5683 -234 5674 -260 5659 -277 ct 5644 -293 5623 -301 5595 -301 ct -5586 -301 5576 -300 5566 -296 ct 5556 -293 5546 -288 5537 -280 ct 5529 -273 5521 -262 5515 -249 ct -5509 -236 5506 -219 5505 -199 ct 5686 -199 l p ef -pom -1.000 1.000 1.000 c 11597 9059 m 4994 9059 l 4994 8023 l 18201 8023 l -18201 9059 l 11597 9059 l p ef -0.503 0.503 0.503 c 11597 9058 m 4993 9058 l 4993 8022 l 18200 8022 l -18200 9058 l 11597 9058 l pc -pum -5244 8724 t -0.003 0.003 0.003 c 52 0 m 52 -437 l 384 -437 l 384 -389 l 111 -389 l -111 -249 l 365 -249 l 365 -201 l 111 -201 l 111 -48 l 396 -48 l 396 0 l -52 0 l p ef -661 0 m 661 -213 l 661 -229 660 -243 658 -254 ct 656 -265 652 -274 648 -280 ct -643 -287 636 -292 629 -295 ct 621 -297 611 -299 600 -299 ct 588 -299 577 -297 568 -292 ct -558 -287 550 -281 543 -272 ct 537 -263 532 -252 528 -239 ct 524 -226 523 -211 523 -195 ct -523 0 l 467 0 l 467 -264 l 467 -271 467 -279 467 -286 ct 467 -294 467 -301 466 -308 ct -466 -315 466 -321 466 -326 ct 466 -331 465 -334 465 -336 ct 518 -336 l 518 -335 518 -332 519 -327 ct -519 -323 519 -318 519 -312 ct 520 -306 520 -300 520 -294 ct 520 -288 520 -283 520 -278 ct -521 -278 l 526 -288 532 -297 537 -305 ct 543 -313 550 -319 558 -325 ct 565 -330 574 -335 584 -338 ct -594 -341 606 -342 619 -342 ct 645 -342 665 -337 680 -327 ct 694 -317 705 -301 710 -278 ct -711 -278 l 716 -288 722 -297 728 -305 ct 734 -313 742 -319 750 -325 ct 758 -330 767 -335 778 -338 ct -788 -341 800 -342 813 -342 ct 830 -342 845 -340 857 -335 ct 869 -331 879 -324 887 -314 ct -895 -305 901 -292 905 -277 ct 908 -262 910 -244 910 -224 ct 910 0 l 855 0 l -855 -213 l 855 -229 854 -243 852 -254 ct 850 -265 846 -274 841 -280 ct 837 -287 830 -292 822 -295 ct -815 -297 805 -299 794 -299 ct 782 -299 771 -297 762 -292 ct 752 -288 744 -281 737 -272 ct -731 -264 725 -253 722 -240 ct 718 -227 716 -212 716 -195 ct 716 0 l 661 0 l -p ef -1279 -169 m 1279 -52 1238 7 1156 7 ct 1131 7 1110 2 1093 -7 ct 1076 -16 1062 -31 1052 -51 ct -1051 -51 l 1051 -46 1051 -40 1051 -35 ct 1050 -29 1050 -24 1050 -19 ct 1049 -14 1049 -9 1049 -6 ct -1048 -2 1048 0 1048 1 ct 994 1 l 994 -1 994 -4 995 -9 ct 995 -13 995 -19 995 -25 ct -995 -31 996 -38 996 -45 ct 996 -53 996 -61 996 -69 ct 996 -460 l 1052 -460 l -1052 -328 l 1052 -322 1052 -316 1051 -311 ct 1051 -305 1051 -300 1051 -296 ct -1051 -290 1051 -286 1050 -281 ct 1052 -281 l 1062 -302 1076 -318 1093 -327 ct -1110 -336 1131 -341 1156 -341 ct 1198 -341 1230 -327 1250 -298 ct 1270 -270 1279 -227 1279 -169 ct -p -1221 -167 m 1221 -190 1219 -210 1217 -226 ct 1214 -243 1209 -256 1203 -267 ct -1196 -278 1188 -286 1178 -291 ct 1168 -296 1156 -298 1142 -298 ct 1127 -298 1114 -296 1103 -291 ct -1092 -286 1082 -278 1075 -268 ct 1067 -257 1061 -243 1057 -226 ct 1054 -209 1052 -188 1052 -163 ct -1052 -139 1054 -119 1057 -103 ct 1061 -87 1067 -73 1075 -63 ct 1082 -53 1092 -45 1103 -41 ct -1114 -36 1127 -34 1141 -34 ct 1155 -34 1167 -37 1177 -41 ct 1186 -46 1195 -54 1201 -64 ct -1208 -75 1213 -89 1216 -105 ct 1219 -122 1221 -143 1221 -167 ct p ef -1390 -156 m 1390 -139 1391 -122 1395 -108 ct 1399 -93 1404 -80 1412 -70 ct -1419 -59 1429 -51 1441 -45 ct 1453 -39 1467 -36 1483 -36 ct 1507 -36 1527 -41 1541 -50 ct -1556 -60 1566 -72 1571 -87 ct 1620 -73 l 1616 -64 1612 -55 1605 -45 ct 1599 -36 1591 -27 1580 -20 ct -1569 -12 1556 -6 1540 -1 ct 1525 4 1506 6 1483 6 ct 1434 6 1396 -9 1370 -38 ct -1344 -68 1331 -112 1331 -170 ct 1331 -202 1335 -228 1343 -250 ct 1351 -272 1361 -290 1375 -303 ct -1389 -317 1405 -327 1423 -333 ct 1441 -339 1460 -342 1481 -342 ct 1509 -342 1533 -338 1552 -329 ct -1571 -320 1586 -307 1597 -291 ct 1609 -275 1617 -256 1622 -234 ct 1627 -212 1629 -189 1629 -164 ct -1629 -156 l 1390 -156 l p -1571 -199 m 1568 -234 1559 -260 1544 -277 ct 1529 -293 1508 -301 1480 -301 ct -1471 -301 1461 -300 1451 -296 ct 1441 -293 1431 -288 1422 -280 ct 1414 -273 1406 -262 1400 -249 ct -1394 -236 1391 -219 1390 -199 ct 1571 -199 l p ef -1910 -53 m 1899 -32 1886 -16 1868 -7 ct 1851 2 1830 7 1805 7 ct 1763 7 1732 -7 1712 -36 ct -1692 -64 1682 -108 1682 -166 ct 1682 -283 1723 -341 1805 -341 ct 1830 -341 1852 -337 1869 -327 ct -1886 -318 1899 -303 1910 -283 ct 1910 -283 l 1910 -285 1910 -288 1910 -293 ct -1910 -297 1910 -302 1910 -307 ct 1910 -312 1910 -316 1910 -321 ct 1910 -325 1910 -328 1910 -330 ct -1910 -460 l 1965 -460 l 1965 -69 l 1965 -61 1965 -53 1966 -45 ct 1966 -38 1966 -31 1966 -25 ct -1966 -19 1966 -13 1967 -9 ct 1967 -4 1967 -1 1967 1 ct 1914 1 l 1913 -2 1913 -4 1913 -8 ct -1913 -12 1912 -16 1912 -21 ct 1912 -26 1911 -32 1911 -37 ct 1911 -42 1911 -48 1911 -53 ct -1910 -53 l p -1740 -167 m 1740 -144 1742 -124 1745 -108 ct 1748 -91 1752 -78 1759 -67 ct -1765 -56 1773 -49 1783 -44 ct 1793 -39 1805 -36 1819 -36 ct 1834 -36 1847 -39 1858 -43 ct -1870 -48 1879 -56 1886 -66 ct 1894 -77 1900 -91 1904 -108 ct 1908 -125 1910 -146 1910 -171 ct -1910 -195 1908 -215 1904 -232 ct 1900 -248 1894 -261 1886 -271 ct 1879 -282 1869 -289 1858 -293 ct -1847 -298 1834 -300 1820 -300 ct 1806 -300 1795 -298 1785 -293 ct 1775 -288 1766 -280 1760 -270 ct -1753 -259 1748 -246 1745 -229 ct 1742 -212 1740 -191 1740 -167 ct p ef -2262 -53 m 2251 -32 2238 -16 2220 -7 ct 2203 2 2182 7 2157 7 ct 2115 7 2084 -7 2064 -36 ct -2044 -64 2034 -108 2034 -166 ct 2034 -283 2075 -341 2157 -341 ct 2182 -341 2204 -337 2221 -327 ct -2238 -318 2251 -303 2262 -283 ct 2262 -283 l 2262 -285 2262 -288 2262 -293 ct -2262 -297 2262 -302 2262 -307 ct 2262 -312 2262 -316 2262 -321 ct 2262 -325 2262 -328 2262 -330 ct -2262 -460 l 2317 -460 l 2317 -69 l 2317 -61 2317 -53 2318 -45 ct 2318 -38 2318 -31 2318 -25 ct -2318 -19 2318 -13 2319 -9 ct 2319 -4 2319 -1 2319 1 ct 2266 1 l 2265 -2 2265 -4 2265 -8 ct -2265 -12 2264 -16 2264 -21 ct 2264 -26 2263 -32 2263 -37 ct 2263 -42 2263 -48 2263 -53 ct -2262 -53 l p -2092 -167 m 2092 -144 2094 -124 2097 -108 ct 2100 -91 2104 -78 2111 -67 ct -2117 -56 2125 -49 2135 -44 ct 2145 -39 2157 -36 2171 -36 ct 2186 -36 2199 -39 2210 -43 ct -2222 -48 2231 -56 2238 -66 ct 2246 -77 2252 -91 2256 -108 ct 2260 -125 2262 -146 2262 -171 ct -2262 -195 2260 -215 2256 -232 ct 2252 -248 2246 -261 2238 -271 ct 2231 -282 2221 -289 2210 -293 ct -2199 -298 2186 -300 2172 -300 ct 2158 -300 2147 -298 2137 -293 ct 2127 -288 2118 -280 2112 -270 ct -2105 -259 2100 -246 2097 -229 ct 2094 -212 2092 -191 2092 -167 ct p ef -2444 -156 m 2444 -139 2445 -122 2449 -108 ct 2453 -93 2458 -80 2466 -70 ct -2473 -59 2483 -51 2495 -45 ct 2507 -39 2521 -36 2537 -36 ct 2561 -36 2581 -41 2595 -50 ct -2610 -60 2620 -72 2625 -87 ct 2674 -73 l 2670 -64 2666 -55 2659 -45 ct 2653 -36 2645 -27 2634 -20 ct -2623 -12 2610 -6 2594 -1 ct 2579 4 2560 6 2537 6 ct 2488 6 2450 -9 2424 -38 ct -2398 -68 2385 -112 2385 -170 ct 2385 -202 2389 -228 2397 -250 ct 2405 -272 2415 -290 2429 -303 ct -2443 -317 2459 -327 2477 -333 ct 2495 -339 2514 -342 2535 -342 ct 2563 -342 2587 -338 2606 -329 ct -2625 -320 2640 -307 2651 -291 ct 2663 -275 2671 -256 2676 -234 ct 2681 -212 2683 -189 2683 -164 ct -2683 -156 l 2444 -156 l p -2625 -199 m 2622 -234 2613 -260 2598 -277 ct 2583 -293 2562 -301 2534 -301 ct -2525 -301 2515 -300 2505 -296 ct 2495 -293 2485 -288 2476 -280 ct 2468 -273 2460 -262 2454 -249 ct -2448 -236 2445 -219 2444 -199 ct 2625 -199 l p ef -2964 -53 m 2953 -32 2940 -16 2922 -7 ct 2905 2 2884 7 2859 7 ct 2817 7 2786 -7 2766 -36 ct -2746 -64 2736 -108 2736 -166 ct 2736 -283 2777 -341 2859 -341 ct 2884 -341 2906 -337 2923 -327 ct -2940 -318 2953 -303 2964 -283 ct 2964 -283 l 2964 -285 2964 -288 2964 -293 ct -2964 -297 2964 -302 2964 -307 ct 2964 -312 2964 -316 2964 -321 ct 2964 -325 2964 -328 2964 -330 ct -2964 -460 l 3019 -460 l 3019 -69 l 3019 -61 3019 -53 3020 -45 ct 3020 -38 3020 -31 3020 -25 ct -3020 -19 3020 -13 3021 -9 ct 3021 -4 3021 -1 3021 1 ct 2968 1 l 2967 -2 2967 -4 2967 -8 ct -2967 -12 2966 -16 2966 -21 ct 2966 -26 2965 -32 2965 -37 ct 2965 -42 2965 -48 2965 -53 ct -2964 -53 l p -2794 -167 m 2794 -144 2796 -124 2799 -108 ct 2802 -91 2806 -78 2813 -67 ct -2819 -56 2827 -49 2837 -44 ct 2847 -39 2859 -36 2873 -36 ct 2888 -36 2901 -39 2912 -43 ct -2924 -48 2933 -56 2940 -66 ct 2948 -77 2954 -91 2958 -108 ct 2962 -125 2964 -146 2964 -171 ct -2964 -195 2962 -215 2958 -232 ct 2954 -248 2948 -261 2940 -271 ct 2933 -282 2923 -289 2912 -293 ct -2901 -298 2888 -300 2874 -300 ct 2860 -300 2849 -298 2839 -293 ct 2829 -288 2820 -280 2814 -270 ct -2807 -259 2802 -246 2799 -229 ct 2796 -212 2794 -191 2794 -167 ct p ef -3477 0 m 3477 -213 l 3477 -229 3476 -243 3474 -254 ct 3472 -265 3468 -274 3464 -280 ct -3459 -287 3452 -292 3445 -295 ct 3437 -297 3427 -299 3416 -299 ct 3404 -299 3393 -297 3384 -292 ct -3374 -287 3366 -281 3359 -272 ct 3353 -263 3348 -252 3344 -239 ct 3340 -226 3339 -211 3339 -195 ct -3339 0 l 3283 0 l 3283 -264 l 3283 -271 3283 -279 3283 -286 ct 3283 -294 3283 -301 3282 -308 ct -3282 -315 3282 -321 3282 -326 ct 3282 -331 3281 -334 3281 -336 ct 3334 -336 l -3334 -335 3334 -332 3335 -327 ct 3335 -323 3335 -318 3335 -312 ct 3336 -306 3336 -300 3336 -294 ct -3336 -288 3336 -283 3336 -278 ct 3337 -278 l 3342 -288 3348 -297 3353 -305 ct -3359 -313 3366 -319 3374 -325 ct 3381 -330 3390 -335 3400 -338 ct 3410 -341 3422 -342 3435 -342 ct -3461 -342 3481 -337 3496 -327 ct 3510 -317 3521 -301 3526 -278 ct 3527 -278 l -3532 -288 3538 -297 3544 -305 ct 3550 -313 3558 -319 3566 -325 ct 3574 -330 3583 -335 3594 -338 ct -3604 -341 3616 -342 3629 -342 ct 3646 -342 3661 -340 3673 -335 ct 3685 -331 3695 -324 3703 -314 ct -3711 -305 3717 -292 3721 -277 ct 3724 -262 3726 -244 3726 -224 ct 3726 0 l 3671 0 l -3671 -213 l 3671 -229 3670 -243 3668 -254 ct 3666 -265 3662 -274 3657 -280 ct -3653 -287 3646 -292 3638 -295 ct 3631 -297 3621 -299 3610 -299 ct 3598 -299 3587 -297 3578 -292 ct -3568 -288 3560 -281 3553 -272 ct 3547 -264 3541 -253 3538 -240 ct 3534 -227 3532 -212 3532 -195 ct -3532 0 l 3477 0 l p ef -4094 -168 m 4094 -110 4082 -66 4056 -37 ct 4030 -8 3992 6 3943 6 ct 3920 6 3899 2 3881 -5 ct -3862 -12 3847 -22 3834 -37 ct 3821 -51 3811 -69 3805 -91 ct 3798 -113 3795 -139 3795 -168 ct -3795 -284 3845 -342 3945 -342 ct 3971 -342 3994 -339 4012 -331 ct 4031 -324 4047 -313 4059 -299 ct -4071 -284 4080 -266 4086 -245 ct 4092 -223 4094 -197 4094 -168 ct p -4036 -168 m 4036 -195 4034 -216 4030 -233 ct 4026 -250 4020 -264 4012 -274 ct -4004 -284 3995 -291 3984 -295 ct 3973 -299 3960 -301 3946 -301 ct 3932 -301 3919 -299 3907 -295 ct -3896 -290 3886 -283 3878 -273 ct 3870 -263 3864 -249 3860 -232 ct 3855 -215 3853 -194 3853 -168 ct -3853 -142 3856 -121 3860 -104 ct 3865 -87 3871 -73 3879 -63 ct 3887 -53 3896 -46 3907 -41 ct -3918 -37 3930 -35 3943 -35 ct 3957 -35 3970 -37 3981 -41 ct 3993 -45 4003 -52 4011 -63 ct -4019 -73 4025 -86 4029 -104 ct 4034 -121 4036 -142 4036 -168 ct p ef -4374 -53 m 4363 -32 4350 -16 4332 -7 ct 4315 2 4294 7 4269 7 ct 4227 7 4196 -7 4176 -36 ct -4156 -64 4146 -108 4146 -166 ct 4146 -283 4187 -341 4269 -341 ct 4294 -341 4316 -337 4333 -327 ct -4350 -318 4363 -303 4374 -283 ct 4374 -283 l 4374 -285 4374 -288 4374 -293 ct -4374 -297 4374 -302 4374 -307 ct 4374 -312 4374 -316 4374 -321 ct 4374 -325 4374 -328 4374 -330 ct -4374 -460 l 4429 -460 l 4429 -69 l 4429 -61 4429 -53 4430 -45 ct 4430 -38 4430 -31 4430 -25 ct -4430 -19 4430 -13 4431 -9 ct 4431 -4 4431 -1 4431 1 ct 4378 1 l 4377 -2 4377 -4 4377 -8 ct -4377 -12 4376 -16 4376 -21 ct 4376 -26 4375 -32 4375 -37 ct 4375 -42 4375 -48 4375 -53 ct -4374 -53 l p -4204 -167 m 4204 -144 4206 -124 4209 -108 ct 4212 -91 4216 -78 4223 -67 ct -4229 -56 4237 -49 4247 -44 ct 4257 -39 4269 -36 4283 -36 ct 4298 -36 4311 -39 4322 -43 ct -4334 -48 4343 -56 4350 -66 ct 4358 -77 4364 -91 4368 -108 ct 4372 -125 4374 -146 4374 -171 ct -4374 -195 4372 -215 4368 -232 ct 4364 -248 4358 -261 4350 -271 ct 4343 -282 4333 -289 4322 -293 ct -4311 -298 4298 -300 4284 -300 ct 4270 -300 4259 -298 4249 -293 ct 4239 -288 4230 -280 4224 -270 ct -4217 -259 4212 -246 4209 -229 ct 4206 -212 4204 -191 4204 -167 ct p ef -4556 -156 m 4556 -139 4557 -122 4561 -108 ct 4565 -93 4570 -80 4578 -70 ct -4585 -59 4595 -51 4607 -45 ct 4619 -39 4633 -36 4649 -36 ct 4673 -36 4693 -41 4707 -50 ct -4722 -60 4732 -72 4737 -87 ct 4786 -73 l 4782 -64 4778 -55 4771 -45 ct 4765 -36 4757 -27 4746 -20 ct -4735 -12 4722 -6 4706 -1 ct 4691 4 4672 6 4649 6 ct 4600 6 4562 -9 4536 -38 ct -4510 -68 4497 -112 4497 -170 ct 4497 -202 4501 -228 4509 -250 ct 4517 -272 4527 -290 4541 -303 ct -4555 -317 4571 -327 4589 -333 ct 4607 -339 4626 -342 4647 -342 ct 4675 -342 4699 -338 4718 -329 ct -4737 -320 4752 -307 4763 -291 ct 4775 -275 4783 -256 4788 -234 ct 4793 -212 4795 -189 4795 -164 ct -4795 -156 l 4556 -156 l p -4737 -199 m 4734 -234 4725 -260 4710 -277 ct 4695 -293 4674 -301 4646 -301 ct -4637 -301 4627 -300 4617 -296 ct 4607 -293 4597 -288 4588 -280 ct 4580 -273 4572 -262 4566 -249 ct -4560 -236 4557 -219 4556 -199 ct 4737 -199 l p ef -4865 1 m 4865 -460 l 4921 -460 l 4921 1 l 4865 1 l p ef -5178 -165 m 5178 -193 5181 -221 5185 -247 ct 5189 -273 5196 -299 5205 -323 ct -5215 -347 5227 -371 5241 -393 ct 5255 -416 5273 -438 5293 -460 ct 5347 -460 l -5327 -438 5311 -416 5296 -393 ct 5282 -370 5271 -347 5261 -322 ct 5252 -298 5246 -273 5241 -247 ct -5237 -220 5235 -193 5235 -164 ct 5235 -135 5237 -108 5241 -81 ct 5246 -55 5252 -30 5261 -5 ct -5271 19 5282 43 5296 65 ct 5311 88 5327 110 5347 132 ct 5293 132 l 5273 110 5255 88 5241 65 ct -5227 43 5215 19 5205 -5 ct 5196 -29 5189 -55 5185 -81 ct 5181 -107 5178 -134 5178 -163 ct -5178 -165 l p ef -5775 0 m 5775 -292 l 5775 -302 5775 -313 5775 -324 ct 5775 -335 5775 -345 5776 -354 ct -5776 -365 5777 -375 5777 -385 ct 5774 -374 5771 -364 5768 -353 ct 5766 -345 5763 -335 5760 -325 ct -5756 -315 5753 -306 5750 -298 ct 5637 0 l 5596 0 l 5481 -298 l 5480 -301 5479 -305 5477 -309 ct -5476 -313 5475 -317 5473 -322 ct 5471 -327 5470 -331 5468 -336 ct 5467 -341 5465 -346 5464 -351 ct -5460 -362 5457 -373 5454 -385 ct 5454 -373 5454 -362 5455 -350 ct 5455 -341 5455 -330 5455 -320 ct -5456 -309 5456 -300 5456 -292 ct 5456 0 l 5403 0 l 5403 -437 l 5481 -437 l -5597 -134 l 5599 -130 5600 -125 5602 -118 ct 5605 -112 5606 -105 5608 -98 ct -5610 -91 5612 -85 5613 -79 ct 5615 -73 5616 -68 5617 -65 ct 5617 -68 5618 -73 5620 -79 ct -5622 -85 5624 -92 5626 -98 ct 5628 -105 5630 -112 5632 -118 ct 5634 -125 5636 -130 5638 -134 ct -5752 -437 l 5828 -437 l 5828 0 l 5775 0 l p ef -6206 -168 m 6206 -110 6194 -66 6168 -37 ct 6142 -8 6104 6 6055 6 ct 6032 6 6011 2 5993 -5 ct -5974 -12 5959 -22 5946 -37 ct 5933 -51 5923 -69 5917 -91 ct 5910 -113 5907 -139 5907 -168 ct -5907 -284 5957 -342 6057 -342 ct 6083 -342 6106 -339 6124 -331 ct 6143 -324 6159 -313 6171 -299 ct -6183 -284 6192 -266 6198 -245 ct 6204 -223 6206 -197 6206 -168 ct p -6148 -168 m 6148 -195 6146 -216 6142 -233 ct 6138 -250 6132 -264 6124 -274 ct -6116 -284 6107 -291 6096 -295 ct 6085 -299 6072 -301 6058 -301 ct 6044 -301 6031 -299 6019 -295 ct -6008 -290 5998 -283 5990 -273 ct 5982 -263 5976 -249 5972 -232 ct 5967 -215 5965 -194 5965 -168 ct -5965 -142 5968 -121 5972 -104 ct 5977 -87 5983 -73 5991 -63 ct 5999 -53 6008 -46 6019 -41 ct -6030 -37 6042 -35 6055 -35 ct 6069 -35 6082 -37 6093 -41 ct 6105 -45 6115 -52 6123 -63 ct -6131 -73 6137 -86 6141 -104 ct 6146 -121 6148 -142 6148 -168 ct p ef -6659 -223 m 6659 -187 6654 -155 6643 -127 ct 6632 -99 6617 -76 6598 -57 ct -6579 -38 6556 -24 6530 -14 ct 6504 -5 6476 0 6446 0 ct 6283 0 l 6283 -437 l -6428 -437 l 6461 -437 6492 -433 6521 -425 ct 6549 -417 6574 -404 6594 -386 ct -6615 -369 6631 -346 6642 -319 ct 6653 -293 6659 -261 6659 -223 ct p -6600 -223 m 6600 -253 6595 -278 6587 -299 ct 6578 -320 6567 -337 6551 -351 ct -6536 -364 6518 -374 6496 -381 ct 6475 -387 6452 -390 6426 -390 ct 6342 -390 l -6342 -47 l 6440 -47 l 6463 -47 6484 -51 6503 -59 ct 6523 -66 6540 -77 6554 -92 ct -6568 -107 6580 -125 6588 -147 ct 6596 -169 6600 -194 6600 -223 ct p ef -6774 -156 m 6774 -139 6775 -122 6779 -108 ct 6783 -93 6788 -80 6796 -70 ct -6803 -59 6813 -51 6825 -45 ct 6837 -39 6851 -36 6867 -36 ct 6891 -36 6911 -41 6925 -50 ct -6940 -60 6950 -72 6955 -87 ct 7004 -73 l 7000 -64 6996 -55 6989 -45 ct 6983 -36 6975 -27 6964 -20 ct -6953 -12 6940 -6 6924 -1 ct 6909 4 6890 6 6867 6 ct 6818 6 6780 -9 6754 -38 ct -6728 -68 6715 -112 6715 -170 ct 6715 -202 6719 -228 6727 -250 ct 6735 -272 6745 -290 6759 -303 ct -6773 -317 6789 -327 6807 -333 ct 6825 -339 6844 -342 6865 -342 ct 6893 -342 6917 -338 6936 -329 ct -6955 -320 6970 -307 6981 -291 ct 6993 -275 7001 -256 7006 -234 ct 7011 -212 7013 -189 7013 -164 ct -7013 -156 l 6774 -156 l p -6955 -199 m 6952 -234 6943 -260 6928 -277 ct 6913 -293 6892 -301 6864 -301 ct -6855 -301 6845 -300 6835 -296 ct 6825 -293 6815 -288 6806 -280 ct 6798 -273 6790 -262 6784 -249 ct -6778 -236 6775 -219 6774 -199 ct 6955 -199 l p ef -7374 0 m 7141 -372 l 7141 -362 7142 -352 7142 -342 ct 7143 -334 7143 -325 7143 -315 ct -7144 -306 7144 -298 7144 -290 ct 7144 0 l 7091 0 l 7091 -437 l 7160 -437 l -7396 -62 l 7396 -73 7395 -83 7394 -93 ct 7394 -101 7394 -111 7393 -121 ct 7393 -131 7392 -141 7392 -151 ct -7392 -437 l 7446 -437 l 7446 0 l 7374 0 l p ef -7624 6 m 7591 6 7565 -3 7548 -21 ct 7531 -39 7523 -63 7523 -94 ct 7523 -117 7527 -135 7536 -149 ct -7544 -163 7555 -174 7568 -183 ct 7582 -191 7597 -196 7615 -199 ct 7632 -203 7650 -204 7668 -204 ct -7743 -204 l 7743 -223 l 7743 -237 7742 -248 7739 -258 ct 7736 -268 7731 -276 7725 -282 ct -7719 -288 7712 -292 7703 -295 ct 7694 -298 7683 -299 7671 -299 ct 7660 -299 7651 -299 7642 -297 ct -7633 -296 7626 -293 7619 -289 ct 7613 -285 7608 -279 7604 -272 ct 7600 -265 7597 -257 7596 -246 ct -7538 -251 l 7540 -265 7544 -277 7550 -288 ct 7555 -299 7564 -309 7574 -317 ct -7585 -325 7598 -331 7614 -335 ct 7630 -340 7650 -342 7672 -342 ct 7715 -342 7746 -332 7768 -313 ct -7789 -294 7800 -266 7800 -229 ct 7800 -85 l 7800 -68 7802 -55 7806 -47 ct 7810 -39 7819 -35 7831 -35 ct -7834 -35 7837 -35 7840 -35 ct 7843 -36 7846 -36 7849 -37 ct 7849 -2 l 7842 0 7835 1 7828 2 ct -7821 3 7814 3 7806 3 ct 7796 3 7786 2 7779 -1 ct 7771 -4 7765 -8 7760 -14 ct 7756 -20 7752 -27 7750 -35 ct -7747 -43 7746 -53 7745 -64 ct 7743 -64 l 7737 -54 7731 -44 7723 -35 ct 7716 -27 7708 -19 7698 -13 ct -7689 -7 7678 -2 7666 1 ct 7654 4 7640 6 7624 6 ct p -7637 -36 m 7655 -36 7670 -39 7684 -46 ct 7697 -52 7708 -60 7717 -70 ct 7726 -80 7732 -91 7737 -103 ct -7741 -115 7743 -127 7743 -138 ct 7743 -165 l 7682 -165 l 7668 -165 7655 -164 7643 -162 ct -7631 -161 7620 -157 7611 -152 ct 7601 -147 7594 -139 7589 -130 ct 7583 -121 7580 -108 7580 -93 ct -7580 -75 7585 -61 7595 -51 ct 7605 -41 7619 -36 7637 -36 ct p ef -8067 -407 m 8067 -460 l 8123 -460 l 8123 -407 l 8067 -407 l p -8067 1 m 8067 -335 l 8123 -335 l 8123 1 l 8067 1 l p ef -8421 0 m 8421 -213 l 8421 -229 8420 -243 8417 -254 ct 8415 -265 8411 -274 8406 -280 ct -8400 -287 8393 -292 8384 -295 ct 8376 -297 8365 -299 8352 -299 ct 8338 -299 8326 -297 8316 -292 ct -8305 -287 8296 -281 8289 -272 ct 8281 -263 8275 -252 8271 -239 ct 8267 -226 8265 -211 8265 -195 ct -8265 0 l 8209 0 l 8209 -264 l 8209 -271 8209 -279 8209 -286 ct 8209 -294 8209 -301 8208 -308 ct -8208 -315 8208 -321 8208 -326 ct 8208 -331 8207 -334 8207 -336 ct 8260 -336 l -8260 -335 8260 -332 8261 -327 ct 8261 -323 8261 -318 8261 -312 ct 8262 -306 8262 -300 8262 -294 ct -8262 -288 8262 -283 8262 -278 ct 8263 -278 l 8269 -288 8275 -297 8281 -305 ct -8287 -313 8295 -319 8303 -325 ct 8312 -330 8321 -335 8332 -338 ct 8343 -341 8356 -342 8371 -342 ct -8389 -342 8405 -340 8419 -335 ct 8432 -331 8443 -324 8452 -314 ct 8460 -305 8467 -292 8471 -277 ct -8475 -262 8477 -244 8477 -224 ct 8477 0 l 8421 0 l p ef -8688 -2 m 8679 0 8671 2 8662 3 ct 8653 4 8643 5 8631 5 ct 8587 5 8564 -20 8564 -71 ct -8564 -295 l 8526 -295 l 8526 -336 l 8567 -336 l 8583 -411 l 8620 -411 l -8620 -336 l 8682 -336 l 8682 -295 l 8620 -295 l 8620 -83 l 8620 -67 8623 -56 8628 -49 ct -8633 -43 8643 -39 8656 -39 ct 8661 -39 8666 -40 8671 -41 ct 8676 -41 8682 -42 8688 -44 ct -8688 -2 l p ef -8780 -156 m 8780 -139 8781 -122 8785 -108 ct 8789 -93 8794 -80 8802 -70 ct -8809 -59 8819 -51 8831 -45 ct 8843 -39 8857 -36 8873 -36 ct 8897 -36 8917 -41 8931 -50 ct -8946 -60 8956 -72 8961 -87 ct 9010 -73 l 9006 -64 9002 -55 8995 -45 ct 8989 -36 8981 -27 8970 -20 ct -8959 -12 8946 -6 8930 -1 ct 8915 4 8896 6 8873 6 ct 8824 6 8786 -9 8760 -38 ct -8734 -68 8721 -112 8721 -170 ct 8721 -202 8725 -228 8733 -250 ct 8741 -272 8751 -290 8765 -303 ct -8779 -317 8795 -327 8813 -333 ct 8831 -339 8850 -342 8871 -342 ct 8899 -342 8923 -338 8942 -329 ct -8961 -320 8976 -307 8987 -291 ct 8999 -275 9007 -256 9012 -234 ct 9017 -212 9019 -189 9019 -164 ct -9019 -156 l 8780 -156 l p -8961 -199 m 8958 -234 8949 -260 8934 -277 ct 8919 -293 8898 -301 8870 -301 ct -8861 -301 8851 -300 8841 -296 ct 8831 -293 8821 -288 8812 -280 ct 8804 -273 8796 -262 8790 -249 ct -8784 -236 8781 -219 8780 -199 ct 8961 -199 l p ef -9090 0 m 9090 -258 l 9090 -265 9090 -272 9090 -279 ct 9090 -287 9090 -294 9089 -300 ct -9089 -307 9089 -314 9089 -320 ct 9089 -326 9088 -331 9088 -336 ct 9141 -336 l -9141 -331 9141 -326 9142 -320 ct 9142 -313 9142 -307 9143 -301 ct 9143 -294 9143 -288 9143 -282 ct -9143 -276 9143 -271 9143 -267 ct 9145 -267 l 9149 -280 9153 -291 9157 -301 ct -9162 -310 9167 -318 9173 -324 ct 9179 -330 9186 -335 9194 -338 ct 9202 -341 9213 -342 9224 -342 ct -9229 -342 9233 -342 9237 -341 ct 9241 -340 9245 -340 9247 -339 ct 9247 -288 l -9243 -289 9239 -290 9234 -290 ct 9229 -291 9223 -291 9217 -291 ct 9204 -291 9193 -288 9184 -282 ct -9175 -276 9168 -268 9162 -258 ct 9157 -248 9153 -236 9150 -221 ct 9147 -207 9146 -192 9146 -175 ct -9146 0 l 9090 0 l p ef -9369 -295 m 9369 0 l 9313 0 l 9313 -295 l 9266 -295 l 9266 -336 l -9313 -336 l 9313 -374 l 9313 -386 9314 -397 9317 -408 ct 9319 -418 9323 -427 9329 -435 ct -9335 -443 9344 -449 9354 -453 ct 9365 -458 9378 -460 9395 -460 ct 9402 -460 9408 -460 9416 -459 ct -9423 -458 9429 -458 9434 -456 ct 9434 -414 l 9431 -414 9427 -415 9422 -415 ct -9417 -416 9413 -416 9410 -416 ct 9401 -416 9395 -415 9389 -413 ct 9384 -411 9380 -407 9377 -403 ct -9374 -399 9372 -394 9371 -387 ct 9370 -381 9369 -374 9369 -366 ct 9369 -336 l -9434 -336 l 9434 -295 l 9369 -295 l p ef -9563 6 m 9530 6 9504 -3 9487 -21 ct 9470 -39 9462 -63 9462 -94 ct 9462 -117 9466 -135 9475 -149 ct -9483 -163 9494 -174 9507 -183 ct 9521 -191 9536 -196 9554 -199 ct 9571 -203 9589 -204 9607 -204 ct -9682 -204 l 9682 -223 l 9682 -237 9681 -248 9678 -258 ct 9675 -268 9670 -276 9664 -282 ct -9658 -288 9651 -292 9642 -295 ct 9633 -298 9622 -299 9610 -299 ct 9599 -299 9590 -299 9581 -297 ct -9572 -296 9565 -293 9558 -289 ct 9552 -285 9547 -279 9543 -272 ct 9539 -265 9536 -257 9535 -246 ct -9477 -251 l 9479 -265 9483 -277 9489 -288 ct 9494 -299 9503 -309 9513 -317 ct -9524 -325 9537 -331 9553 -335 ct 9569 -340 9589 -342 9611 -342 ct 9654 -342 9685 -332 9707 -313 ct -9728 -294 9739 -266 9739 -229 ct 9739 -85 l 9739 -68 9741 -55 9745 -47 ct 9749 -39 9758 -35 9770 -35 ct -9773 -35 9776 -35 9779 -35 ct 9782 -36 9785 -36 9788 -37 ct 9788 -2 l 9781 0 9774 1 9767 2 ct -9760 3 9753 3 9745 3 ct 9735 3 9725 2 9718 -1 ct 9710 -4 9704 -8 9699 -14 ct 9695 -20 9691 -27 9689 -35 ct -9686 -43 9685 -53 9684 -64 ct 9682 -64 l 9676 -54 9670 -44 9662 -35 ct 9655 -27 9647 -19 9637 -13 ct -9628 -7 9617 -2 9605 1 ct 9593 4 9579 6 9563 6 ct p -9576 -36 m 9594 -36 9609 -39 9623 -46 ct 9636 -52 9647 -60 9656 -70 ct 9665 -80 9671 -91 9676 -103 ct -9680 -115 9682 -127 9682 -138 ct 9682 -165 l 9621 -165 l 9607 -165 9594 -164 9582 -162 ct -9570 -161 9559 -157 9550 -152 ct 9540 -147 9533 -139 9528 -130 ct 9522 -121 9519 -108 9519 -93 ct -9519 -75 9524 -61 9534 -51 ct 9544 -41 9558 -36 9576 -36 ct p ef -9871 -170 m 9871 -150 9873 -133 9875 -117 ct 9878 -100 9883 -86 9890 -75 ct -9896 -63 9905 -54 9916 -48 ct 9927 -41 9940 -38 9956 -38 ct 9976 -38 9992 -43 10006 -54 ct -10019 -64 10027 -80 10030 -102 ct 10087 -102 l 10085 -88 10081 -74 10075 -61 ct -10068 -48 10060 -37 10049 -27 ct 10039 -17 10026 -9 10010 -3 ct 9995 3 9978 6 9957 6 ct -9931 6 9909 2 9890 -7 ct 9872 -16 9857 -28 9846 -44 ct 9834 -60 9826 -78 9821 -99 ct -9816 -121 9813 -144 9813 -168 ct 9813 -191 9815 -211 9819 -228 ct 9822 -245 9828 -260 9834 -273 ct -9841 -286 9849 -297 9858 -306 ct 9867 -315 9877 -322 9888 -327 ct 9898 -332 9909 -336 9921 -338 ct -9933 -341 9945 -342 9957 -342 ct 9976 -342 9992 -339 10007 -334 ct 10022 -329 10034 -322 10045 -313 ct -10056 -304 10064 -293 10071 -281 ct 10078 -269 10082 -256 10085 -242 ct 10028 -237 l -10025 -256 10017 -271 10006 -282 ct 9994 -293 9977 -298 9955 -298 ct 9939 -298 9926 -296 9915 -290 ct -9905 -285 9896 -277 9890 -266 ct 9883 -256 9878 -242 9875 -226 ct 9873 -210 9871 -191 9871 -170 ct -p ef -10190 -156 m 10190 -139 10191 -122 10195 -108 ct 10199 -93 10204 -80 10212 -70 ct -10219 -59 10229 -51 10241 -45 ct 10253 -39 10267 -36 10283 -36 ct 10307 -36 10327 -41 10341 -50 ct -10356 -60 10366 -72 10371 -87 ct 10420 -73 l 10416 -64 10412 -55 10405 -45 ct -10399 -36 10391 -27 10380 -20 ct 10369 -12 10356 -6 10340 -1 ct 10325 4 10306 6 10283 6 ct -10234 6 10196 -9 10170 -38 ct 10144 -68 10131 -112 10131 -170 ct 10131 -202 10135 -228 10143 -250 ct -10151 -272 10161 -290 10175 -303 ct 10189 -317 10205 -327 10223 -333 ct 10241 -339 10260 -342 10281 -342 ct -10309 -342 10333 -338 10352 -329 ct 10371 -320 10386 -307 10397 -291 ct 10409 -275 10417 -256 10422 -234 ct -10427 -212 10429 -189 10429 -164 ct 10429 -156 l 10190 -156 l p -10371 -199 m 10368 -234 10359 -260 10344 -277 ct 10329 -293 10308 -301 10280 -301 ct -10271 -301 10261 -300 10251 -296 ct 10241 -293 10231 -288 10222 -280 ct 10214 -273 10206 -262 10200 -249 ct -10194 -236 10191 -219 10190 -199 ct 10371 -199 l p ef -10676 1 m 10676 -460 l 10732 -460 l 10732 1 l 10676 1 l p ef -10815 -407 m 10815 -460 l 10871 -460 l 10871 -407 l 10815 -407 l p -10815 1 m 10815 -335 l 10871 -335 l 10871 1 l 10815 1 l p ef -11239 -169 m 11239 -52 11198 7 11116 7 ct 11091 7 11070 2 11053 -7 ct 11036 -16 11022 -31 11012 -51 ct -11011 -51 l 11011 -46 11011 -40 11011 -35 ct 11010 -29 11010 -24 11010 -19 ct -11009 -14 11009 -9 11009 -6 ct 11008 -2 11008 0 11008 1 ct 10954 1 l 10954 -1 10954 -4 10955 -9 ct -10955 -13 10955 -19 10955 -25 ct 10955 -31 10956 -38 10956 -45 ct 10956 -53 10956 -61 10956 -69 ct -10956 -460 l 11012 -460 l 11012 -328 l 11012 -322 11012 -316 11011 -311 ct -11011 -305 11011 -300 11011 -296 ct 11011 -290 11011 -286 11010 -281 ct 11012 -281 l -11022 -302 11036 -318 11053 -327 ct 11070 -336 11091 -341 11116 -341 ct 11158 -341 11190 -327 11210 -298 ct -11230 -270 11239 -227 11239 -169 ct p -11181 -167 m 11181 -190 11179 -210 11177 -226 ct 11174 -243 11169 -256 11163 -267 ct -11156 -278 11148 -286 11138 -291 ct 11128 -296 11116 -298 11102 -298 ct 11087 -298 11074 -296 11063 -291 ct -11052 -286 11042 -278 11035 -268 ct 11027 -257 11021 -243 11017 -226 ct 11014 -209 11012 -188 11012 -163 ct -11012 -139 11014 -119 11017 -103 ct 11021 -87 11027 -73 11035 -63 ct 11042 -53 11052 -45 11063 -41 ct -11074 -36 11087 -34 11101 -34 ct 11115 -34 11127 -37 11137 -41 ct 11146 -46 11155 -54 11161 -64 ct -11168 -75 11173 -89 11176 -105 ct 11179 -122 11181 -143 11181 -167 ct p ef -11308 0 m 11308 -258 l 11308 -265 11308 -272 11308 -279 ct 11308 -287 11308 -294 11307 -300 ct -11307 -307 11307 -314 11307 -320 ct 11307 -326 11306 -331 11306 -336 ct 11359 -336 l -11359 -331 11359 -326 11360 -320 ct 11360 -313 11360 -307 11361 -301 ct 11361 -294 11361 -288 11361 -282 ct -11361 -276 11361 -271 11361 -267 ct 11363 -267 l 11367 -280 11371 -291 11375 -301 ct -11380 -310 11385 -318 11391 -324 ct 11397 -330 11404 -335 11412 -338 ct 11420 -341 11431 -342 11442 -342 ct -11447 -342 11451 -342 11455 -341 ct 11459 -340 11463 -340 11465 -339 ct 11465 -288 l -11461 -289 11457 -290 11452 -290 ct 11447 -291 11441 -291 11435 -291 ct 11422 -291 11411 -288 11402 -282 ct -11393 -276 11386 -268 11380 -258 ct 11375 -248 11371 -236 11368 -221 ct 11365 -207 11364 -192 11364 -175 ct -11364 0 l 11308 0 l p ef -11604 6 m 11571 6 11545 -3 11528 -21 ct 11511 -39 11503 -63 11503 -94 ct 11503 -117 11507 -135 11516 -149 ct -11524 -163 11535 -174 11548 -183 ct 11562 -191 11577 -196 11595 -199 ct 11612 -203 11630 -204 11648 -204 ct -11723 -204 l 11723 -223 l 11723 -237 11722 -248 11719 -258 ct 11716 -268 11711 -276 11705 -282 ct -11699 -288 11692 -292 11683 -295 ct 11674 -298 11663 -299 11651 -299 ct 11640 -299 11631 -299 11622 -297 ct -11613 -296 11606 -293 11599 -289 ct 11593 -285 11588 -279 11584 -272 ct 11580 -265 11577 -257 11576 -246 ct -11518 -251 l 11520 -265 11524 -277 11530 -288 ct 11535 -299 11544 -309 11554 -317 ct -11565 -325 11578 -331 11594 -335 ct 11610 -340 11630 -342 11652 -342 ct 11695 -342 11726 -332 11748 -313 ct -11769 -294 11780 -266 11780 -229 ct 11780 -85 l 11780 -68 11782 -55 11786 -47 ct -11790 -39 11799 -35 11811 -35 ct 11814 -35 11817 -35 11820 -35 ct 11823 -36 11826 -36 11829 -37 ct -11829 -2 l 11822 0 11815 1 11808 2 ct 11801 3 11794 3 11786 3 ct 11776 3 11766 2 11759 -1 ct -11751 -4 11745 -8 11740 -14 ct 11736 -20 11732 -27 11730 -35 ct 11727 -43 11726 -53 11725 -64 ct -11723 -64 l 11717 -54 11711 -44 11703 -35 ct 11696 -27 11688 -19 11678 -13 ct -11669 -7 11658 -2 11646 1 ct 11634 4 11620 6 11604 6 ct p -11617 -36 m 11635 -36 11650 -39 11664 -46 ct 11677 -52 11688 -60 11697 -70 ct -11706 -80 11712 -91 11717 -103 ct 11721 -115 11723 -127 11723 -138 ct 11723 -165 l -11662 -165 l 11648 -165 11635 -164 11623 -162 ct 11611 -161 11600 -157 11591 -152 ct -11581 -147 11574 -139 11569 -130 ct 11563 -121 11560 -108 11560 -93 ct 11560 -75 11565 -61 11575 -51 ct -11585 -41 11599 -36 11617 -36 ct p ef -11871 0 m 11871 -258 l 11871 -265 11871 -272 11871 -279 ct 11871 -287 11871 -294 11870 -300 ct -11870 -307 11870 -314 11870 -320 ct 11870 -326 11869 -331 11869 -336 ct 11922 -336 l -11922 -331 11922 -326 11923 -320 ct 11923 -313 11923 -307 11924 -301 ct 11924 -294 11924 -288 11924 -282 ct -11924 -276 11924 -271 11924 -267 ct 11926 -267 l 11930 -280 11934 -291 11938 -301 ct -11943 -310 11948 -318 11954 -324 ct 11960 -330 11967 -335 11975 -338 ct 11983 -341 11994 -342 12005 -342 ct -12010 -342 12014 -342 12018 -341 ct 12022 -340 12026 -340 12028 -339 ct 12028 -288 l -12024 -289 12020 -290 12015 -290 ct 12010 -291 12004 -291 11998 -291 ct 11985 -291 11974 -288 11965 -282 ct -11956 -276 11949 -268 11943 -258 ct 11938 -248 11934 -236 11931 -221 ct 11928 -207 11927 -192 11927 -175 ct -11927 0 l 11871 0 l p ef -12226 -1 m 12218 20 12210 38 12202 54 ct 12194 70 12185 84 12175 96 ct 12165 107 12153 116 12141 122 ct -12129 128 12114 131 12098 131 ct 12091 131 12085 131 12079 131 ct 12073 131 12066 130 12060 128 ct -12060 86 l 12064 87 12068 88 12073 88 ct 12078 88 12082 88 12086 88 ct 12102 88 12117 82 12131 70 ct -12145 57 12158 38 12168 11 ct 12174 -2 l 12041 -336 l 12100 -336 l 12171 -150 l -12173 -145 12175 -137 12179 -128 ct 12182 -119 12185 -109 12188 -100 ct 12191 -91 12194 -83 12197 -75 ct -12199 -68 12201 -63 12201 -61 ct 12202 -63 12203 -68 12206 -75 ct 12208 -81 12211 -89 12214 -97 ct -12217 -105 12220 -114 12223 -122 ct 12226 -131 12229 -138 12231 -144 ct 12296 -336 l -12355 -336 l 12226 -1 l p ef -12528 -163 m 12528 -134 12526 -107 12522 -81 ct 12517 -55 12510 -29 12501 -5 ct -12492 19 12480 43 12465 65 ct 12451 88 12434 110 12414 132 ct 12360 132 l 12379 110 12396 88 12410 65 ct -12424 43 12436 19 12445 -5 ct 12454 -30 12461 -55 12465 -81 ct 12470 -108 12472 -135 12472 -164 ct -12472 -193 12470 -220 12465 -247 ct 12461 -273 12454 -298 12445 -322 ct 12436 -347 12424 -370 12410 -393 ct -12396 -416 12379 -438 12360 -460 ct 12414 -460 l 12434 -438 12451 -416 12465 -393 ct -12480 -371 12492 -347 12501 -323 ct 12510 -299 12517 -273 12522 -247 ct 12526 -221 12528 -193 12528 -165 ct -12528 -163 l p ef -pom -1.000 0.503 0.503 c 11597 15916 m 4486 15916 l 4486 12360 l 18709 12360 l -18709 15916 l 11597 15916 l p ef -0.503 0.503 0.503 c 11597 15915 m 4485 15915 l 4485 12360 l 18708 12360 l -18708 15915 l 11597 15915 l pc -pum -4736 13061 t -0.003 0.003 0.003 c 428 -223 m 428 -187 423 -155 412 -127 ct 401 -99 386 -76 367 -57 ct -348 -38 325 -24 299 -14 ct 273 -5 245 0 215 0 ct 52 0 l 52 -437 l 197 -437 l -230 -437 261 -433 290 -425 ct 318 -417 343 -404 363 -386 ct 384 -369 400 -346 411 -319 ct -422 -293 428 -261 428 -223 ct p -369 -223 m 369 -253 364 -278 356 -299 ct 347 -320 336 -337 320 -351 ct 305 -364 287 -374 265 -381 ct -244 -387 221 -390 195 -390 ct 111 -390 l 111 -47 l 209 -47 l 232 -47 253 -51 272 -59 ct -292 -66 309 -77 323 -92 ct 337 -107 349 -125 357 -147 ct 365 -169 369 -194 369 -223 ct -p ef -543 -156 m 543 -139 544 -122 548 -108 ct 552 -93 557 -80 565 -70 ct 572 -59 582 -51 594 -45 ct -606 -39 620 -36 636 -36 ct 660 -36 680 -41 694 -50 ct 709 -60 719 -72 724 -87 ct -773 -73 l 769 -64 765 -55 758 -45 ct 752 -36 744 -27 733 -20 ct 722 -12 709 -6 693 -1 ct -678 4 659 6 636 6 ct 587 6 549 -9 523 -38 ct 497 -68 484 -112 484 -170 ct 484 -202 488 -228 496 -250 ct -504 -272 514 -290 528 -303 ct 542 -317 558 -327 576 -333 ct 594 -339 613 -342 634 -342 ct -662 -342 686 -338 705 -329 ct 724 -320 739 -307 750 -291 ct 762 -275 770 -256 775 -234 ct -780 -212 782 -189 782 -164 ct 782 -156 l 543 -156 l p -724 -199 m 721 -234 712 -260 697 -277 ct 682 -293 661 -301 633 -301 ct 624 -301 614 -300 604 -296 ct -594 -293 584 -288 575 -280 ct 567 -273 559 -262 553 -249 ct 547 -236 544 -219 543 -199 ct -724 -199 l p ef -1104 -93 m 1104 -77 1101 -63 1094 -51 ct 1088 -39 1079 -28 1068 -20 ct 1056 -12 1042 -5 1025 -1 ct -1008 4 989 6 967 6 ct 948 6 930 4 915 2 ct 899 -2 886 -6 874 -13 ct 862 -20 852 -28 844 -39 ct -836 -50 830 -63 827 -79 ct 876 -89 l 881 -71 891 -57 905 -49 ct 920 -41 941 -37 967 -37 ct -979 -37 990 -37 1000 -39 ct 1010 -41 1019 -44 1026 -48 ct 1034 -52 1039 -57 1043 -64 ct -1047 -70 1049 -79 1049 -89 ct 1049 -99 1047 -107 1042 -114 ct 1037 -120 1031 -126 1022 -130 ct -1014 -134 1004 -138 991 -141 ct 979 -144 966 -148 952 -152 ct 938 -155 925 -159 912 -164 ct -898 -168 886 -174 876 -181 ct 865 -188 857 -197 850 -207 ct 843 -218 840 -231 840 -247 ct -840 -278 851 -301 873 -317 ct 895 -333 926 -341 968 -341 ct 1005 -341 1034 -335 1056 -322 ct -1078 -309 1092 -288 1098 -259 ct 1047 -253 l 1046 -261 1042 -269 1037 -275 ct -1032 -281 1026 -285 1019 -289 ct 1012 -293 1004 -295 996 -297 ct 987 -298 978 -299 968 -299 ct -943 -299 924 -295 912 -288 ct 900 -280 894 -268 894 -253 ct 894 -244 896 -236 901 -230 ct -905 -224 912 -219 920 -215 ct 927 -211 937 -208 948 -205 ct 959 -202 972 -199 985 -195 ct -994 -193 1003 -191 1012 -188 ct 1022 -186 1031 -182 1040 -179 ct 1048 -175 1057 -171 1064 -166 ct -1072 -161 1079 -155 1085 -149 ct 1090 -142 1095 -134 1098 -125 ct 1102 -116 1104 -105 1104 -93 ct -p ef -1168 -407 m 1168 -460 l 1224 -460 l 1224 -407 l 1168 -407 l p -1168 1 m 1168 -335 l 1224 -335 l 1224 1 l 1168 1 l p ef -1436 132 m 1417 132 1400 130 1385 126 ct 1370 122 1357 117 1347 109 ct 1336 102 1327 93 1321 83 ct -1314 73 1310 61 1307 49 ct 1363 41 l 1366 56 1375 68 1387 77 ct 1400 85 1417 89 1437 89 ct -1450 89 1462 88 1472 84 ct 1482 81 1491 75 1498 67 ct 1505 59 1511 49 1515 37 ct -1519 25 1521 9 1521 -8 ct 1521 -63 l 1520 -63 l 1516 -54 1511 -46 1505 -38 ct -1499 -30 1491 -24 1483 -18 ct 1474 -12 1464 -7 1452 -3 ct 1440 0 1427 2 1412 2 ct -1391 2 1373 -1 1358 -8 ct 1342 -16 1330 -26 1320 -41 ct 1311 -55 1304 -73 1299 -94 ct -1295 -115 1293 -139 1293 -167 ct 1293 -194 1295 -218 1299 -240 ct 1304 -261 1311 -280 1321 -295 ct -1331 -310 1344 -321 1360 -329 ct 1376 -337 1396 -341 1419 -341 ct 1442 -341 1463 -336 1480 -325 ct -1498 -314 1511 -298 1521 -278 ct 1521 -278 l 1521 -284 1522 -289 1522 -296 ct -1522 -302 1523 -308 1523 -314 ct 1523 -320 1524 -324 1524 -329 ct 1524 -333 1525 -335 1525 -336 ct -1578 -336 l 1578 -334 1578 -331 1578 -326 ct 1577 -322 1577 -316 1577 -310 ct -1577 -304 1577 -297 1577 -290 ct 1576 -282 1576 -274 1576 -266 ct 1576 -10 l -1576 37 1565 73 1542 96 ct 1519 120 1483 132 1436 132 ct p -1521 -168 m 1521 -191 1518 -211 1513 -228 ct 1508 -245 1502 -258 1493 -269 ct -1485 -279 1476 -287 1465 -292 ct 1454 -297 1443 -299 1432 -299 ct 1418 -299 1406 -297 1395 -292 ct -1385 -287 1377 -279 1370 -269 ct 1363 -258 1358 -244 1355 -228 ct 1352 -211 1350 -191 1350 -168 ct -1350 -144 1352 -123 1355 -107 ct 1358 -91 1363 -77 1370 -67 ct 1376 -57 1385 -50 1395 -46 ct -1405 -41 1417 -39 1431 -39 ct 1442 -39 1453 -41 1464 -46 ct 1475 -51 1484 -58 1493 -69 ct -1501 -79 1508 -92 1513 -109 ct 1518 -125 1521 -145 1521 -168 ct p ef -1873 0 m 1873 -213 l 1873 -229 1872 -243 1869 -254 ct 1867 -265 1863 -274 1858 -280 ct -1852 -287 1845 -292 1836 -295 ct 1828 -297 1817 -299 1804 -299 ct 1790 -299 1778 -297 1768 -292 ct -1757 -287 1748 -281 1741 -272 ct 1733 -263 1727 -252 1723 -239 ct 1719 -226 1717 -211 1717 -195 ct -1717 0 l 1661 0 l 1661 -264 l 1661 -271 1661 -279 1661 -286 ct 1661 -294 1661 -301 1660 -308 ct -1660 -315 1660 -321 1660 -326 ct 1660 -331 1659 -334 1659 -336 ct 1712 -336 l -1712 -335 1712 -332 1713 -327 ct 1713 -323 1713 -318 1713 -312 ct 1714 -306 1714 -300 1714 -294 ct -1714 -288 1714 -283 1714 -278 ct 1715 -278 l 1721 -288 1727 -297 1733 -305 ct -1739 -313 1747 -319 1755 -325 ct 1764 -330 1773 -335 1784 -338 ct 1795 -341 1808 -342 1823 -342 ct -1841 -342 1857 -340 1871 -335 ct 1884 -331 1895 -324 1904 -314 ct 1912 -305 1919 -292 1923 -277 ct -1927 -262 1929 -244 1929 -224 ct 1929 0 l 1873 0 l p ef -2472 -168 m 2472 -110 2460 -66 2434 -37 ct 2408 -8 2370 6 2321 6 ct 2298 6 2277 2 2259 -5 ct -2240 -12 2225 -22 2212 -37 ct 2199 -51 2189 -69 2183 -91 ct 2176 -113 2173 -139 2173 -168 ct -2173 -284 2223 -342 2323 -342 ct 2349 -342 2372 -339 2390 -331 ct 2409 -324 2425 -313 2437 -299 ct -2449 -284 2458 -266 2464 -245 ct 2470 -223 2472 -197 2472 -168 ct p -2414 -168 m 2414 -195 2412 -216 2408 -233 ct 2404 -250 2398 -264 2390 -274 ct -2382 -284 2373 -291 2362 -295 ct 2351 -299 2338 -301 2324 -301 ct 2310 -301 2297 -299 2285 -295 ct -2274 -290 2264 -283 2256 -273 ct 2248 -263 2242 -249 2238 -232 ct 2233 -215 2231 -194 2231 -168 ct -2231 -142 2234 -121 2238 -104 ct 2243 -87 2249 -73 2257 -63 ct 2265 -53 2274 -46 2285 -41 ct -2296 -37 2308 -35 2321 -35 ct 2335 -35 2348 -37 2359 -41 ct 2371 -45 2381 -52 2389 -63 ct -2397 -73 2403 -86 2407 -104 ct 2412 -121 2414 -142 2414 -168 ct p ef -2610 -295 m 2610 0 l 2554 0 l 2554 -295 l 2507 -295 l 2507 -336 l -2554 -336 l 2554 -374 l 2554 -386 2555 -397 2558 -408 ct 2560 -418 2564 -427 2570 -435 ct -2576 -443 2585 -449 2595 -453 ct 2606 -458 2619 -460 2636 -460 ct 2643 -460 2649 -460 2657 -459 ct -2664 -458 2670 -458 2675 -456 ct 2675 -414 l 2672 -414 2668 -415 2663 -415 ct -2658 -416 2654 -416 2651 -416 ct 2642 -416 2636 -415 2630 -413 ct 2625 -411 2621 -407 2618 -403 ct -2615 -399 2613 -394 2612 -387 ct 2611 -381 2610 -374 2610 -366 ct 2610 -336 l -2675 -336 l 2675 -295 l 2610 -295 l p ef -2905 0 m 2905 -437 l 3237 -437 l 3237 -389 l 2964 -389 l 2964 -249 l -3218 -249 l 3218 -201 l 2964 -201 l 2964 -48 l 3249 -48 l 3249 0 l -2905 0 l p ef -3525 0 m 3435 -138 l 3344 0 l 3284 0 l 3404 -173 l 3290 -336 l 3351 -336 l -3435 -205 l 3518 -336 l 3581 -336 l 3467 -173 l 3588 0 l 3525 0 l -p ef -3920 -170 m 3920 -144 3918 -121 3914 -99 ct 3910 -78 3903 -59 3894 -43 ct 3884 -28 3871 -16 3856 -7 ct -3840 2 3820 6 3797 6 ct 3773 6 3752 2 3734 -7 ct 3716 -17 3702 -31 3693 -52 ct -3691 -52 l 3692 -52 3692 -50 3692 -47 ct 3692 -43 3692 -39 3692 -34 ct 3692 -29 3692 -24 3692 -17 ct -3693 -11 3693 -5 3693 1 ct 3693 132 l 3637 132 l 3637 -267 l 3637 -275 3637 -283 3637 -290 ct -3637 -298 3636 -305 3636 -311 ct 3636 -317 3636 -322 3636 -326 ct 3635 -331 3635 -334 3635 -336 ct -3689 -336 l 3689 -335 3689 -333 3690 -329 ct 3690 -326 3690 -321 3691 -316 ct -3691 -311 3691 -305 3692 -299 ct 3692 -293 3692 -287 3692 -282 ct 3693 -282 l -3698 -293 3704 -302 3711 -310 ct 3718 -317 3725 -323 3734 -328 ct 3742 -333 3751 -337 3762 -339 ct -3772 -341 3784 -342 3797 -342 ct 3820 -342 3840 -338 3856 -330 ct 3871 -321 3884 -310 3894 -295 ct -3903 -280 3910 -261 3914 -240 ct 3918 -219 3920 -195 3920 -170 ct p -3862 -168 m 3862 -189 3861 -207 3858 -224 ct 3856 -240 3851 -253 3845 -265 ct -3839 -276 3831 -284 3821 -290 ct 3811 -296 3798 -299 3783 -299 ct 3770 -299 3759 -297 3748 -294 ct -3737 -290 3727 -283 3719 -273 ct 3711 -263 3704 -250 3700 -232 ct 3695 -215 3693 -192 3693 -164 ct -3693 -140 3695 -120 3698 -104 ct 3702 -87 3708 -74 3716 -64 ct 3723 -53 3733 -46 3744 -42 ct -3755 -37 3768 -35 3782 -35 ct 3798 -35 3811 -38 3821 -44 ct 3831 -50 3839 -59 3845 -70 ct -3851 -82 3856 -95 3858 -112 ct 3861 -128 3862 -147 3862 -168 ct p ef -4031 -156 m 4031 -139 4032 -122 4036 -108 ct 4040 -93 4045 -80 4053 -70 ct -4060 -59 4070 -51 4082 -45 ct 4094 -39 4108 -36 4124 -36 ct 4148 -36 4168 -41 4182 -50 ct -4197 -60 4207 -72 4212 -87 ct 4261 -73 l 4257 -64 4253 -55 4246 -45 ct 4240 -36 4232 -27 4221 -20 ct -4210 -12 4197 -6 4181 -1 ct 4166 4 4147 6 4124 6 ct 4075 6 4037 -9 4011 -38 ct -3985 -68 3972 -112 3972 -170 ct 3972 -202 3976 -228 3984 -250 ct 3992 -272 4002 -290 4016 -303 ct -4030 -317 4046 -327 4064 -333 ct 4082 -339 4101 -342 4122 -342 ct 4150 -342 4174 -338 4193 -329 ct -4212 -320 4227 -307 4238 -291 ct 4250 -275 4258 -256 4263 -234 ct 4268 -212 4270 -189 4270 -164 ct -4270 -156 l 4031 -156 l p -4212 -199 m 4209 -234 4200 -260 4185 -277 ct 4170 -293 4149 -301 4121 -301 ct -4112 -301 4102 -300 4092 -296 ct 4082 -293 4072 -288 4063 -280 ct 4055 -273 4047 -262 4041 -249 ct -4035 -236 4032 -219 4031 -199 ct 4212 -199 l p ef -4341 0 m 4341 -258 l 4341 -265 4341 -272 4341 -279 ct 4341 -287 4341 -294 4340 -300 ct -4340 -307 4340 -314 4340 -320 ct 4340 -326 4339 -331 4339 -336 ct 4392 -336 l -4392 -331 4392 -326 4393 -320 ct 4393 -313 4393 -307 4394 -301 ct 4394 -294 4394 -288 4394 -282 ct -4394 -276 4394 -271 4394 -267 ct 4396 -267 l 4400 -280 4404 -291 4408 -301 ct -4413 -310 4418 -318 4424 -324 ct 4430 -330 4437 -335 4445 -338 ct 4453 -341 4464 -342 4475 -342 ct -4480 -342 4484 -342 4488 -341 ct 4492 -340 4496 -340 4498 -339 ct 4498 -288 l -4494 -289 4490 -290 4485 -290 ct 4480 -291 4474 -291 4468 -291 ct 4455 -291 4444 -288 4435 -282 ct -4426 -276 4419 -268 4413 -258 ct 4408 -248 4404 -236 4401 -221 ct 4398 -207 4397 -192 4397 -175 ct -4397 0 l 4341 0 l p ef -4551 -407 m 4551 -460 l 4607 -460 l 4607 -407 l 4551 -407 l p -4551 1 m 4551 -335 l 4607 -335 l 4607 1 l 4551 1 l p ef -4886 0 m 4886 -213 l 4886 -229 4885 -243 4883 -254 ct 4881 -265 4877 -274 4873 -280 ct -4868 -287 4861 -292 4854 -295 ct 4846 -297 4836 -299 4825 -299 ct 4813 -299 4802 -297 4793 -292 ct -4783 -287 4775 -281 4768 -272 ct 4762 -263 4757 -252 4753 -239 ct 4749 -226 4748 -211 4748 -195 ct -4748 0 l 4692 0 l 4692 -264 l 4692 -271 4692 -279 4692 -286 ct 4692 -294 4692 -301 4691 -308 ct -4691 -315 4691 -321 4691 -326 ct 4691 -331 4690 -334 4690 -336 ct 4743 -336 l -4743 -335 4743 -332 4744 -327 ct 4744 -323 4744 -318 4744 -312 ct 4745 -306 4745 -300 4745 -294 ct -4745 -288 4745 -283 4745 -278 ct 4746 -278 l 4751 -288 4757 -297 4762 -305 ct -4768 -313 4775 -319 4783 -325 ct 4790 -330 4799 -335 4809 -338 ct 4819 -341 4831 -342 4844 -342 ct -4870 -342 4890 -337 4905 -327 ct 4919 -317 4930 -301 4935 -278 ct 4936 -278 l -4941 -288 4947 -297 4953 -305 ct 4959 -313 4967 -319 4975 -325 ct 4983 -330 4992 -335 5003 -338 ct -5013 -341 5025 -342 5038 -342 ct 5055 -342 5070 -340 5082 -335 ct 5094 -331 5104 -324 5112 -314 ct -5120 -305 5126 -292 5130 -277 ct 5133 -262 5135 -244 5135 -224 ct 5135 0 l 5080 0 l -5080 -213 l 5080 -229 5079 -243 5077 -254 ct 5075 -265 5071 -274 5066 -280 ct -5062 -287 5055 -292 5047 -295 ct 5040 -297 5030 -299 5019 -299 ct 5007 -299 4996 -297 4987 -292 ct -4977 -288 4969 -281 4962 -272 ct 4956 -264 4950 -253 4947 -240 ct 4943 -227 4941 -212 4941 -195 ct -4941 0 l 4886 0 l p ef -5263 -156 m 5263 -139 5264 -122 5268 -108 ct 5272 -93 5277 -80 5285 -70 ct -5292 -59 5302 -51 5314 -45 ct 5326 -39 5340 -36 5356 -36 ct 5380 -36 5400 -41 5414 -50 ct -5429 -60 5439 -72 5444 -87 ct 5493 -73 l 5489 -64 5485 -55 5478 -45 ct 5472 -36 5464 -27 5453 -20 ct -5442 -12 5429 -6 5413 -1 ct 5398 4 5379 6 5356 6 ct 5307 6 5269 -9 5243 -38 ct -5217 -68 5204 -112 5204 -170 ct 5204 -202 5208 -228 5216 -250 ct 5224 -272 5234 -290 5248 -303 ct -5262 -317 5278 -327 5296 -333 ct 5314 -339 5333 -342 5354 -342 ct 5382 -342 5406 -338 5425 -329 ct -5444 -320 5459 -307 5470 -291 ct 5482 -275 5490 -256 5495 -234 ct 5500 -212 5502 -189 5502 -164 ct -5502 -156 l 5263 -156 l p -5444 -199 m 5441 -234 5432 -260 5417 -277 ct 5402 -293 5381 -301 5353 -301 ct -5344 -301 5334 -300 5324 -296 ct 5314 -293 5304 -288 5295 -280 ct 5287 -273 5279 -262 5273 -249 ct -5267 -236 5264 -219 5263 -199 ct 5444 -199 l p ef -5785 0 m 5785 -213 l 5785 -229 5784 -243 5781 -254 ct 5779 -265 5775 -274 5770 -280 ct -5764 -287 5757 -292 5748 -295 ct 5740 -297 5729 -299 5716 -299 ct 5702 -299 5690 -297 5680 -292 ct -5669 -287 5660 -281 5653 -272 ct 5645 -263 5639 -252 5635 -239 ct 5631 -226 5629 -211 5629 -195 ct -5629 0 l 5573 0 l 5573 -264 l 5573 -271 5573 -279 5573 -286 ct 5573 -294 5573 -301 5572 -308 ct -5572 -315 5572 -321 5572 -326 ct 5572 -331 5571 -334 5571 -336 ct 5624 -336 l -5624 -335 5624 -332 5625 -327 ct 5625 -323 5625 -318 5625 -312 ct 5626 -306 5626 -300 5626 -294 ct -5626 -288 5626 -283 5626 -278 ct 5627 -278 l 5633 -288 5639 -297 5645 -305 ct -5651 -313 5659 -319 5667 -325 ct 5676 -330 5685 -335 5696 -338 ct 5707 -341 5720 -342 5735 -342 ct -5753 -342 5769 -340 5783 -335 ct 5796 -331 5807 -324 5816 -314 ct 5824 -305 5831 -292 5835 -277 ct -5839 -262 5841 -244 5841 -224 ct 5841 0 l 5785 0 l p ef -6052 -2 m 6043 0 6035 2 6026 3 ct 6017 4 6007 5 5995 5 ct 5951 5 5928 -20 5928 -71 ct -5928 -295 l 5890 -295 l 5890 -336 l 5931 -336 l 5947 -411 l 5984 -411 l -5984 -336 l 6046 -336 l 6046 -295 l 5984 -295 l 5984 -83 l 5984 -67 5987 -56 5992 -49 ct -5997 -43 6007 -39 6020 -39 ct 6025 -39 6030 -40 6035 -41 ct 6040 -41 6046 -42 6052 -44 ct -6052 -2 l p ef -6353 -93 m 6353 -77 6350 -63 6343 -51 ct 6337 -39 6328 -28 6317 -20 ct 6305 -12 6291 -5 6274 -1 ct -6257 4 6238 6 6216 6 ct 6197 6 6179 4 6164 2 ct 6148 -2 6135 -6 6123 -13 ct 6111 -20 6101 -28 6093 -39 ct -6085 -50 6079 -63 6076 -79 ct 6125 -89 l 6130 -71 6140 -57 6154 -49 ct 6169 -41 6190 -37 6216 -37 ct -6228 -37 6239 -37 6249 -39 ct 6259 -41 6268 -44 6275 -48 ct 6283 -52 6288 -57 6292 -64 ct -6296 -70 6298 -79 6298 -89 ct 6298 -99 6296 -107 6291 -114 ct 6286 -120 6280 -126 6271 -130 ct -6263 -134 6253 -138 6240 -141 ct 6228 -144 6215 -148 6201 -152 ct 6187 -155 6174 -159 6161 -164 ct -6147 -168 6135 -174 6125 -181 ct 6114 -188 6106 -197 6099 -207 ct 6092 -218 6089 -231 6089 -247 ct -6089 -278 6100 -301 6122 -317 ct 6144 -333 6175 -341 6217 -341 ct 6254 -341 6283 -335 6305 -322 ct -6327 -309 6341 -288 6347 -259 ct 6296 -253 l 6295 -261 6291 -269 6286 -275 ct -6281 -281 6275 -285 6268 -289 ct 6261 -293 6253 -295 6245 -297 ct 6236 -298 6227 -299 6217 -299 ct -6192 -299 6173 -295 6161 -288 ct 6149 -280 6143 -268 6143 -253 ct 6143 -244 6145 -236 6150 -230 ct -6154 -224 6161 -219 6169 -215 ct 6176 -211 6186 -208 6197 -205 ct 6208 -202 6221 -199 6234 -195 ct -6243 -193 6252 -191 6261 -188 ct 6271 -186 6280 -182 6289 -179 ct 6297 -175 6306 -171 6313 -166 ct -6321 -161 6328 -155 6334 -149 ct 6339 -142 6344 -134 6347 -125 ct 6351 -116 6353 -105 6353 -93 ct -p ef -6913 -1 m 6799 -182 l 6663 -182 l 6663 -1 l 6604 -1 l 6604 -437 l -6810 -437 l 6834 -437 6856 -435 6876 -429 ct 6895 -423 6911 -415 6924 -404 ct -6937 -394 6947 -380 6954 -365 ct 6960 -349 6964 -332 6964 -313 ct 6964 -299 6962 -285 6958 -272 ct -6954 -258 6947 -246 6939 -235 ct 6930 -224 6919 -214 6905 -206 ct 6892 -198 6876 -192 6857 -189 ct -6981 -1 l 6913 -1 l p -6904 -312 m 6904 -325 6902 -337 6897 -346 ct 6893 -356 6886 -364 6878 -371 ct -6869 -377 6858 -382 6846 -385 ct 6834 -388 6819 -390 6804 -390 ct 6663 -390 l -6663 -229 l 6806 -229 l 6823 -229 6838 -231 6850 -235 ct 6863 -239 6873 -245 6881 -253 ct -6889 -260 6895 -269 6898 -279 ct 6902 -289 6904 -300 6904 -312 ct p ef -7095 -156 m 7095 -139 7096 -122 7100 -108 ct 7104 -93 7109 -80 7117 -70 ct -7124 -59 7134 -51 7146 -45 ct 7158 -39 7172 -36 7188 -36 ct 7212 -36 7232 -41 7246 -50 ct -7261 -60 7271 -72 7276 -87 ct 7325 -73 l 7321 -64 7317 -55 7310 -45 ct 7304 -36 7296 -27 7285 -20 ct -7274 -12 7261 -6 7245 -1 ct 7230 4 7211 6 7188 6 ct 7139 6 7101 -9 7075 -38 ct -7049 -68 7036 -112 7036 -170 ct 7036 -202 7040 -228 7048 -250 ct 7056 -272 7066 -290 7080 -303 ct -7094 -317 7110 -327 7128 -333 ct 7146 -339 7165 -342 7186 -342 ct 7214 -342 7238 -338 7257 -329 ct -7276 -320 7291 -307 7302 -291 ct 7314 -275 7322 -256 7327 -234 ct 7332 -212 7334 -189 7334 -164 ct -7334 -156 l 7095 -156 l p -7276 -199 m 7273 -234 7264 -260 7249 -277 ct 7234 -293 7213 -301 7185 -301 ct -7176 -301 7166 -300 7156 -296 ct 7146 -293 7136 -288 7127 -280 ct 7119 -273 7111 -262 7105 -249 ct -7099 -236 7096 -219 7095 -199 ct 7276 -199 l p ef -7446 -170 m 7446 -150 7448 -133 7450 -117 ct 7453 -100 7458 -86 7465 -75 ct -7471 -63 7480 -54 7491 -48 ct 7502 -41 7515 -38 7531 -38 ct 7551 -38 7567 -43 7581 -54 ct -7594 -64 7602 -80 7605 -102 ct 7662 -102 l 7660 -88 7656 -74 7650 -61 ct 7643 -48 7635 -37 7624 -27 ct -7614 -17 7601 -9 7585 -3 ct 7570 3 7553 6 7532 6 ct 7506 6 7484 2 7465 -7 ct 7447 -16 7432 -28 7421 -44 ct -7409 -60 7401 -78 7396 -99 ct 7391 -121 7388 -144 7388 -168 ct 7388 -191 7390 -211 7394 -228 ct -7397 -245 7403 -260 7409 -273 ct 7416 -286 7424 -297 7433 -306 ct 7442 -315 7452 -322 7463 -327 ct -7473 -332 7484 -336 7496 -338 ct 7508 -341 7520 -342 7532 -342 ct 7551 -342 7567 -339 7582 -334 ct -7597 -329 7609 -322 7620 -313 ct 7631 -304 7639 -293 7646 -281 ct 7653 -269 7657 -256 7660 -242 ct -7603 -237 l 7600 -256 7592 -271 7581 -282 ct 7569 -293 7552 -298 7530 -298 ct -7514 -298 7501 -296 7490 -290 ct 7480 -285 7471 -277 7465 -266 ct 7458 -256 7453 -242 7450 -226 ct -7448 -210 7446 -191 7446 -170 ct p ef -7720 -407 m 7720 -460 l 7776 -460 l 7776 -407 l 7720 -407 l p -7720 1 m 7720 -335 l 7776 -335 l 7776 1 l 7720 1 l p ef -8144 -170 m 8144 -144 8142 -121 8138 -99 ct 8134 -78 8127 -59 8118 -43 ct 8108 -28 8095 -16 8080 -7 ct -8064 2 8044 6 8021 6 ct 7997 6 7976 2 7958 -7 ct 7940 -17 7926 -31 7917 -52 ct -7915 -52 l 7916 -52 7916 -50 7916 -47 ct 7916 -43 7916 -39 7916 -34 ct 7916 -29 7916 -24 7916 -17 ct -7917 -11 7917 -5 7917 1 ct 7917 132 l 7861 132 l 7861 -267 l 7861 -275 7861 -283 7861 -290 ct -7861 -298 7860 -305 7860 -311 ct 7860 -317 7860 -322 7860 -326 ct 7859 -331 7859 -334 7859 -336 ct -7913 -336 l 7913 -335 7913 -333 7914 -329 ct 7914 -326 7914 -321 7915 -316 ct -7915 -311 7915 -305 7916 -299 ct 7916 -293 7916 -287 7916 -282 ct 7917 -282 l -7922 -293 7928 -302 7935 -310 ct 7942 -317 7949 -323 7958 -328 ct 7966 -333 7975 -337 7986 -339 ct -7996 -341 8008 -342 8021 -342 ct 8044 -342 8064 -338 8080 -330 ct 8095 -321 8108 -310 8118 -295 ct -8127 -280 8134 -261 8138 -240 ct 8142 -219 8144 -195 8144 -170 ct p -8086 -168 m 8086 -189 8085 -207 8082 -224 ct 8080 -240 8075 -253 8069 -265 ct -8063 -276 8055 -284 8045 -290 ct 8035 -296 8022 -299 8007 -299 ct 7994 -299 7983 -297 7972 -294 ct -7961 -290 7951 -283 7943 -273 ct 7935 -263 7928 -250 7924 -232 ct 7919 -215 7917 -192 7917 -164 ct -7917 -140 7919 -120 7922 -104 ct 7926 -87 7932 -74 7940 -64 ct 7947 -53 7957 -46 7968 -42 ct -7979 -37 7992 -35 8006 -35 ct 8022 -35 8035 -38 8045 -44 ct 8055 -50 8063 -59 8069 -70 ct -8075 -82 8080 -95 8082 -112 ct 8085 -128 8086 -147 8086 -168 ct p ef -8255 -156 m 8255 -139 8256 -122 8260 -108 ct 8264 -93 8269 -80 8277 -70 ct -8284 -59 8294 -51 8306 -45 ct 8318 -39 8332 -36 8348 -36 ct 8372 -36 8392 -41 8406 -50 ct -8421 -60 8431 -72 8436 -87 ct 8485 -73 l 8481 -64 8477 -55 8470 -45 ct 8464 -36 8456 -27 8445 -20 ct -8434 -12 8421 -6 8405 -1 ct 8390 4 8371 6 8348 6 ct 8299 6 8261 -9 8235 -38 ct -8209 -68 8196 -112 8196 -170 ct 8196 -202 8200 -228 8208 -250 ct 8216 -272 8226 -290 8240 -303 ct -8254 -317 8270 -327 8288 -333 ct 8306 -339 8325 -342 8346 -342 ct 8374 -342 8398 -338 8417 -329 ct -8436 -320 8451 -307 8462 -291 ct 8474 -275 8482 -256 8487 -234 ct 8492 -212 8494 -189 8494 -164 ct -8494 -156 l 8255 -156 l p -8436 -199 m 8433 -234 8424 -260 8409 -277 ct 8394 -293 8373 -301 8345 -301 ct -8336 -301 8326 -300 8316 -296 ct 8306 -293 8296 -288 8287 -280 ct 8279 -273 8271 -262 8265 -249 ct -8259 -236 8256 -219 8255 -199 ct 8436 -199 l p ef -pom -1.000 0.503 0.503 c 11597 18485 m 4486 18485 l 4486 16212 l 18709 16212 l -18709 18485 l 11597 18485 l p ef -0.503 0.503 0.503 c 11597 18484 m 4485 18484 l 4485 16211 l 18708 16211 l -18708 18484 l 11597 18484 l pc -pum -4736 16913 t -0.003 0.003 0.003 c 390 -305 m 390 -286 387 -269 381 -252 ct 374 -236 365 -221 352 -209 ct -340 -197 324 -188 305 -181 ct 287 -174 265 -170 240 -170 ct 111 -170 l 111 1 l -52 1 l 52 -437 l 236 -437 l 262 -437 284 -434 304 -428 ct 323 -421 339 -412 352 -401 ct -364 -389 374 -375 380 -359 ct 387 -343 390 -325 390 -305 ct p -331 -305 m 331 -332 322 -354 305 -368 ct 288 -382 263 -390 229 -390 ct 111 -390 l -111 -217 l 231 -217 l 265 -217 290 -224 306 -240 ct 323 -255 331 -276 331 -305 ct -p ef -551 6 m 518 6 492 -3 475 -21 ct 458 -39 450 -63 450 -94 ct 450 -117 454 -135 463 -149 ct -471 -163 482 -174 495 -183 ct 509 -191 524 -196 542 -199 ct 559 -203 577 -204 595 -204 ct -670 -204 l 670 -223 l 670 -237 669 -248 666 -258 ct 663 -268 658 -276 652 -282 ct -646 -288 639 -292 630 -295 ct 621 -298 610 -299 598 -299 ct 587 -299 578 -299 569 -297 ct -560 -296 553 -293 546 -289 ct 540 -285 535 -279 531 -272 ct 527 -265 524 -257 523 -246 ct -465 -251 l 467 -265 471 -277 477 -288 ct 482 -299 491 -309 501 -317 ct 512 -325 525 -331 541 -335 ct -557 -340 577 -342 599 -342 ct 642 -342 673 -332 695 -313 ct 716 -294 727 -266 727 -229 ct -727 -85 l 727 -68 729 -55 733 -47 ct 737 -39 746 -35 758 -35 ct 761 -35 764 -35 767 -35 ct -770 -36 773 -36 776 -37 ct 776 -2 l 769 0 762 1 755 2 ct 748 3 741 3 733 3 ct -723 3 713 2 706 -1 ct 698 -4 692 -8 687 -14 ct 683 -20 679 -27 677 -35 ct 674 -43 673 -53 672 -64 ct -670 -64 l 664 -54 658 -44 650 -35 ct 643 -27 635 -19 625 -13 ct 616 -7 605 -2 593 1 ct -581 4 567 6 551 6 ct p -564 -36 m 582 -36 597 -39 611 -46 ct 624 -52 635 -60 644 -70 ct 653 -80 659 -91 664 -103 ct -668 -115 670 -127 670 -138 ct 670 -165 l 609 -165 l 595 -165 582 -164 570 -162 ct -558 -161 547 -157 538 -152 ct 528 -147 521 -139 516 -130 ct 510 -121 507 -108 507 -93 ct -507 -75 512 -61 522 -51 ct 532 -41 546 -36 564 -36 ct p ef -819 0 m 819 -258 l 819 -265 819 -272 819 -279 ct 819 -287 819 -294 818 -300 ct -818 -307 818 -314 818 -320 ct 818 -326 817 -331 817 -336 ct 870 -336 l 870 -331 870 -326 871 -320 ct -871 -313 871 -307 872 -301 ct 872 -294 872 -288 872 -282 ct 872 -276 872 -271 872 -267 ct -874 -267 l 878 -280 882 -291 886 -301 ct 891 -310 896 -318 902 -324 ct 908 -330 915 -335 923 -338 ct -931 -341 942 -342 953 -342 ct 958 -342 962 -342 966 -341 ct 970 -340 974 -340 976 -339 ct -976 -288 l 972 -289 968 -290 963 -290 ct 958 -291 952 -291 946 -291 ct 933 -291 922 -288 913 -282 ct -904 -276 897 -268 891 -258 ct 886 -248 882 -236 879 -221 ct 876 -207 875 -192 875 -175 ct -875 0 l 819 0 l p ef -1114 6 m 1081 6 1055 -3 1038 -21 ct 1021 -39 1013 -63 1013 -94 ct 1013 -117 1017 -135 1026 -149 ct -1034 -163 1045 -174 1058 -183 ct 1072 -191 1087 -196 1105 -199 ct 1122 -203 1140 -204 1158 -204 ct -1233 -204 l 1233 -223 l 1233 -237 1232 -248 1229 -258 ct 1226 -268 1221 -276 1215 -282 ct -1209 -288 1202 -292 1193 -295 ct 1184 -298 1173 -299 1161 -299 ct 1150 -299 1141 -299 1132 -297 ct -1123 -296 1116 -293 1109 -289 ct 1103 -285 1098 -279 1094 -272 ct 1090 -265 1087 -257 1086 -246 ct -1028 -251 l 1030 -265 1034 -277 1040 -288 ct 1045 -299 1054 -309 1064 -317 ct -1075 -325 1088 -331 1104 -335 ct 1120 -340 1140 -342 1162 -342 ct 1205 -342 1236 -332 1258 -313 ct -1279 -294 1290 -266 1290 -229 ct 1290 -85 l 1290 -68 1292 -55 1296 -47 ct 1300 -39 1309 -35 1321 -35 ct -1324 -35 1327 -35 1330 -35 ct 1333 -36 1336 -36 1339 -37 ct 1339 -2 l 1332 0 1325 1 1318 2 ct -1311 3 1304 3 1296 3 ct 1286 3 1276 2 1269 -1 ct 1261 -4 1255 -8 1250 -14 ct 1246 -20 1242 -27 1240 -35 ct -1237 -43 1236 -53 1235 -64 ct 1233 -64 l 1227 -54 1221 -44 1213 -35 ct 1206 -27 1198 -19 1188 -13 ct -1179 -7 1168 -2 1156 1 ct 1144 4 1130 6 1114 6 ct p -1127 -36 m 1145 -36 1160 -39 1174 -46 ct 1187 -52 1198 -60 1207 -70 ct 1216 -80 1222 -91 1227 -103 ct -1231 -115 1233 -127 1233 -138 ct 1233 -165 l 1172 -165 l 1158 -165 1145 -164 1133 -162 ct -1121 -161 1110 -157 1101 -152 ct 1091 -147 1084 -139 1079 -130 ct 1073 -121 1070 -108 1070 -93 ct -1070 -75 1075 -61 1085 -51 ct 1095 -41 1109 -36 1127 -36 ct p ef -1576 0 m 1576 -213 l 1576 -229 1575 -243 1573 -254 ct 1571 -265 1567 -274 1563 -280 ct -1558 -287 1551 -292 1544 -295 ct 1536 -297 1526 -299 1515 -299 ct 1503 -299 1492 -297 1483 -292 ct -1473 -287 1465 -281 1458 -272 ct 1452 -263 1447 -252 1443 -239 ct 1439 -226 1438 -211 1438 -195 ct -1438 0 l 1382 0 l 1382 -264 l 1382 -271 1382 -279 1382 -286 ct 1382 -294 1382 -301 1381 -308 ct -1381 -315 1381 -321 1381 -326 ct 1381 -331 1380 -334 1380 -336 ct 1433 -336 l -1433 -335 1433 -332 1434 -327 ct 1434 -323 1434 -318 1434 -312 ct 1435 -306 1435 -300 1435 -294 ct -1435 -288 1435 -283 1435 -278 ct 1436 -278 l 1441 -288 1447 -297 1452 -305 ct -1458 -313 1465 -319 1473 -325 ct 1480 -330 1489 -335 1499 -338 ct 1509 -341 1521 -342 1534 -342 ct -1560 -342 1580 -337 1595 -327 ct 1609 -317 1620 -301 1625 -278 ct 1626 -278 l -1631 -288 1637 -297 1643 -305 ct 1649 -313 1657 -319 1665 -325 ct 1673 -330 1682 -335 1693 -338 ct -1703 -341 1715 -342 1728 -342 ct 1745 -342 1760 -340 1772 -335 ct 1784 -331 1794 -324 1802 -314 ct -1810 -305 1816 -292 1820 -277 ct 1823 -262 1825 -244 1825 -224 ct 1825 0 l 1770 0 l -1770 -213 l 1770 -229 1769 -243 1767 -254 ct 1765 -265 1761 -274 1756 -280 ct -1752 -287 1745 -292 1737 -295 ct 1730 -297 1720 -299 1709 -299 ct 1697 -299 1686 -297 1677 -292 ct -1667 -288 1659 -281 1652 -272 ct 1646 -264 1640 -253 1637 -240 ct 1633 -227 1631 -212 1631 -195 ct -1631 0 l 1576 0 l p ef -1953 -156 m 1953 -139 1954 -122 1958 -108 ct 1962 -93 1967 -80 1975 -70 ct -1982 -59 1992 -51 2004 -45 ct 2016 -39 2030 -36 2046 -36 ct 2070 -36 2090 -41 2104 -50 ct -2119 -60 2129 -72 2134 -87 ct 2183 -73 l 2179 -64 2175 -55 2168 -45 ct 2162 -36 2154 -27 2143 -20 ct -2132 -12 2119 -6 2103 -1 ct 2088 4 2069 6 2046 6 ct 1997 6 1959 -9 1933 -38 ct -1907 -68 1894 -112 1894 -170 ct 1894 -202 1898 -228 1906 -250 ct 1914 -272 1924 -290 1938 -303 ct -1952 -317 1968 -327 1986 -333 ct 2004 -339 2023 -342 2044 -342 ct 2072 -342 2096 -338 2115 -329 ct -2134 -320 2149 -307 2160 -291 ct 2172 -275 2180 -256 2185 -234 ct 2190 -212 2192 -189 2192 -164 ct -2192 -156 l 1953 -156 l p -2134 -199 m 2131 -234 2122 -260 2107 -277 ct 2092 -293 2071 -301 2043 -301 ct -2034 -301 2024 -300 2014 -296 ct 2004 -293 1994 -288 1985 -280 ct 1977 -273 1969 -262 1963 -249 ct -1957 -236 1954 -219 1953 -199 ct 2134 -199 l p ef -2390 -2 m 2381 0 2373 2 2364 3 ct 2355 4 2345 5 2333 5 ct 2289 5 2266 -20 2266 -71 ct -2266 -295 l 2228 -295 l 2228 -336 l 2269 -336 l 2285 -411 l 2322 -411 l -2322 -336 l 2384 -336 l 2384 -295 l 2322 -295 l 2322 -83 l 2322 -67 2325 -56 2330 -49 ct -2335 -43 2345 -39 2358 -39 ct 2363 -39 2368 -40 2373 -41 ct 2378 -41 2384 -42 2390 -44 ct -2390 -2 l p ef -2482 -156 m 2482 -139 2483 -122 2487 -108 ct 2491 -93 2496 -80 2504 -70 ct -2511 -59 2521 -51 2533 -45 ct 2545 -39 2559 -36 2575 -36 ct 2599 -36 2619 -41 2633 -50 ct -2648 -60 2658 -72 2663 -87 ct 2712 -73 l 2708 -64 2704 -55 2697 -45 ct 2691 -36 2683 -27 2672 -20 ct -2661 -12 2648 -6 2632 -1 ct 2617 4 2598 6 2575 6 ct 2526 6 2488 -9 2462 -38 ct -2436 -68 2423 -112 2423 -170 ct 2423 -202 2427 -228 2435 -250 ct 2443 -272 2453 -290 2467 -303 ct -2481 -317 2497 -327 2515 -333 ct 2533 -339 2552 -342 2573 -342 ct 2601 -342 2625 -338 2644 -329 ct -2663 -320 2678 -307 2689 -291 ct 2701 -275 2709 -256 2714 -234 ct 2719 -212 2721 -189 2721 -164 ct -2721 -156 l 2482 -156 l p -2663 -199 m 2660 -234 2651 -260 2636 -277 ct 2621 -293 2600 -301 2572 -301 ct -2563 -301 2553 -300 2543 -296 ct 2533 -293 2523 -288 2514 -280 ct 2506 -273 2498 -262 2492 -249 ct -2486 -236 2483 -219 2482 -199 ct 2663 -199 l p ef -2791 0 m 2791 -258 l 2791 -265 2791 -272 2791 -279 ct 2791 -287 2791 -294 2790 -300 ct -2790 -307 2790 -314 2790 -320 ct 2790 -326 2789 -331 2789 -336 ct 2842 -336 l -2842 -331 2842 -326 2843 -320 ct 2843 -313 2843 -307 2844 -301 ct 2844 -294 2844 -288 2844 -282 ct -2844 -276 2844 -271 2844 -267 ct 2846 -267 l 2850 -280 2854 -291 2858 -301 ct -2863 -310 2868 -318 2874 -324 ct 2880 -330 2887 -335 2895 -338 ct 2903 -341 2914 -342 2925 -342 ct -2930 -342 2934 -342 2938 -341 ct 2942 -340 2946 -340 2948 -339 ct 2948 -288 l -2944 -289 2940 -290 2935 -290 ct 2930 -291 2924 -291 2918 -291 ct 2905 -291 2894 -288 2885 -282 ct -2876 -276 2869 -268 2863 -258 ct 2858 -248 2854 -236 2851 -221 ct 2848 -207 2847 -192 2847 -175 ct -2847 0 l 2791 0 l p ef -3248 -389 m 3248 -226 l 3492 -226 l 3492 -177 l 3248 -177 l 3248 0 l -3189 0 l 3189 -437 l 3499 -437 l 3499 -389 l 3248 -389 l p ef -3568 -407 m 3568 -460 l 3624 -460 l 3624 -407 l 3568 -407 l p -3568 1 m 3568 -335 l 3624 -335 l 3624 1 l 3568 1 l p ef -3838 -2 m 3829 0 3821 2 3812 3 ct 3803 4 3793 5 3781 5 ct 3737 5 3714 -20 3714 -71 ct -3714 -295 l 3676 -295 l 3676 -336 l 3717 -336 l 3733 -411 l 3770 -411 l -3770 -336 l 3832 -336 l 3832 -295 l 3770 -295 l 3770 -83 l 3770 -67 3773 -56 3778 -49 ct -3783 -43 3793 -39 3806 -39 ct 3811 -39 3816 -40 3821 -41 ct 3826 -41 3832 -42 3838 -44 ct -3838 -2 l p ef -4016 -2 m 4007 0 3999 2 3990 3 ct 3981 4 3971 5 3959 5 ct 3915 5 3892 -20 3892 -71 ct -3892 -295 l 3854 -295 l 3854 -336 l 3895 -336 l 3911 -411 l 3948 -411 l -3948 -336 l 4010 -336 l 4010 -295 l 3948 -295 l 3948 -83 l 3948 -67 3951 -56 3956 -49 ct -3961 -43 3971 -39 3984 -39 ct 3989 -39 3994 -40 3999 -41 ct 4004 -41 4010 -42 4016 -44 ct -4016 -2 l p ef -4064 -407 m 4064 -460 l 4120 -460 l 4120 -407 l 4064 -407 l p -4064 1 m 4064 -335 l 4120 -335 l 4120 1 l 4064 1 l p ef -4417 0 m 4417 -213 l 4417 -229 4416 -243 4413 -254 ct 4411 -265 4407 -274 4402 -280 ct -4396 -287 4389 -292 4380 -295 ct 4372 -297 4361 -299 4348 -299 ct 4334 -299 4322 -297 4312 -292 ct -4301 -287 4292 -281 4285 -272 ct 4277 -263 4271 -252 4267 -239 ct 4263 -226 4261 -211 4261 -195 ct -4261 0 l 4205 0 l 4205 -264 l 4205 -271 4205 -279 4205 -286 ct 4205 -294 4205 -301 4204 -308 ct -4204 -315 4204 -321 4204 -326 ct 4204 -331 4203 -334 4203 -336 ct 4256 -336 l -4256 -335 4256 -332 4257 -327 ct 4257 -323 4257 -318 4257 -312 ct 4258 -306 4258 -300 4258 -294 ct -4258 -288 4258 -283 4258 -278 ct 4259 -278 l 4265 -288 4271 -297 4277 -305 ct -4283 -313 4291 -319 4299 -325 ct 4308 -330 4317 -335 4328 -338 ct 4339 -341 4352 -342 4367 -342 ct -4385 -342 4401 -340 4415 -335 ct 4428 -331 4439 -324 4448 -314 ct 4456 -305 4463 -292 4467 -277 ct -4471 -262 4473 -244 4473 -224 ct 4473 0 l 4417 0 l p ef -4683 132 m 4664 132 4647 130 4632 126 ct 4617 122 4604 117 4594 109 ct 4583 102 4574 93 4568 83 ct -4561 73 4557 61 4554 49 ct 4610 41 l 4613 56 4622 68 4634 77 ct 4647 85 4664 89 4684 89 ct -4697 89 4709 88 4719 84 ct 4729 81 4738 75 4745 67 ct 4752 59 4758 49 4762 37 ct -4766 25 4768 9 4768 -8 ct 4768 -63 l 4767 -63 l 4763 -54 4758 -46 4752 -38 ct -4746 -30 4738 -24 4730 -18 ct 4721 -12 4711 -7 4699 -3 ct 4687 0 4674 2 4659 2 ct -4638 2 4620 -1 4605 -8 ct 4589 -16 4577 -26 4567 -41 ct 4558 -55 4551 -73 4546 -94 ct -4542 -115 4540 -139 4540 -167 ct 4540 -194 4542 -218 4546 -240 ct 4551 -261 4558 -280 4568 -295 ct -4578 -310 4591 -321 4607 -329 ct 4623 -337 4643 -341 4666 -341 ct 4689 -341 4710 -336 4727 -325 ct -4745 -314 4758 -298 4768 -278 ct 4768 -278 l 4768 -284 4769 -289 4769 -296 ct -4769 -302 4770 -308 4770 -314 ct 4770 -320 4771 -324 4771 -329 ct 4771 -333 4772 -335 4772 -336 ct -4825 -336 l 4825 -334 4825 -331 4825 -326 ct 4824 -322 4824 -316 4824 -310 ct -4824 -304 4824 -297 4824 -290 ct 4823 -282 4823 -274 4823 -266 ct 4823 -10 l -4823 37 4812 73 4789 96 ct 4766 120 4730 132 4683 132 ct p -4768 -168 m 4768 -191 4765 -211 4760 -228 ct 4755 -245 4749 -258 4740 -269 ct -4732 -279 4723 -287 4712 -292 ct 4701 -297 4690 -299 4679 -299 ct 4665 -299 4653 -297 4642 -292 ct -4632 -287 4624 -279 4617 -269 ct 4610 -258 4605 -244 4602 -228 ct 4599 -211 4597 -191 4597 -168 ct -4597 -144 4599 -123 4602 -107 ct 4605 -91 4610 -77 4617 -67 ct 4623 -57 4632 -50 4642 -46 ct -4652 -41 4664 -39 4678 -39 ct 4689 -39 4700 -41 4711 -46 ct 4722 -51 4731 -58 4740 -69 ct -4748 -79 4755 -92 4760 -109 ct 4765 -125 4768 -145 4768 -168 ct p ef -5403 -1 m 5289 -182 l 5153 -182 l 5153 -1 l 5094 -1 l 5094 -437 l -5300 -437 l 5324 -437 5346 -435 5366 -429 ct 5385 -423 5401 -415 5414 -404 ct -5427 -394 5437 -380 5444 -365 ct 5450 -349 5454 -332 5454 -313 ct 5454 -299 5452 -285 5448 -272 ct -5444 -258 5437 -246 5429 -235 ct 5420 -224 5409 -214 5395 -206 ct 5382 -198 5366 -192 5347 -189 ct -5471 -1 l 5403 -1 l p -5394 -312 m 5394 -325 5392 -337 5387 -346 ct 5383 -356 5376 -364 5368 -371 ct -5359 -377 5348 -382 5336 -385 ct 5324 -388 5309 -390 5294 -390 ct 5153 -390 l -5153 -229 l 5296 -229 l 5313 -229 5328 -231 5340 -235 ct 5353 -239 5363 -245 5371 -253 ct -5379 -260 5385 -269 5388 -279 ct 5392 -289 5394 -300 5394 -312 ct p ef -5585 -156 m 5585 -139 5586 -122 5590 -108 ct 5594 -93 5599 -80 5607 -70 ct -5614 -59 5624 -51 5636 -45 ct 5648 -39 5662 -36 5678 -36 ct 5702 -36 5722 -41 5736 -50 ct -5751 -60 5761 -72 5766 -87 ct 5815 -73 l 5811 -64 5807 -55 5800 -45 ct 5794 -36 5786 -27 5775 -20 ct -5764 -12 5751 -6 5735 -1 ct 5720 4 5701 6 5678 6 ct 5629 6 5591 -9 5565 -38 ct -5539 -68 5526 -112 5526 -170 ct 5526 -202 5530 -228 5538 -250 ct 5546 -272 5556 -290 5570 -303 ct -5584 -317 5600 -327 5618 -333 ct 5636 -339 5655 -342 5676 -342 ct 5704 -342 5728 -338 5747 -329 ct -5766 -320 5781 -307 5792 -291 ct 5804 -275 5812 -256 5817 -234 ct 5822 -212 5824 -189 5824 -164 ct -5824 -156 l 5585 -156 l p -5766 -199 m 5763 -234 5754 -260 5739 -277 ct 5724 -293 5703 -301 5675 -301 ct -5666 -301 5656 -300 5646 -296 ct 5636 -293 5626 -288 5617 -280 ct 5609 -273 5601 -262 5595 -249 ct -5589 -236 5586 -219 5585 -199 ct 5766 -199 l p ef -5935 -170 m 5935 -150 5937 -133 5939 -117 ct 5942 -100 5947 -86 5954 -75 ct -5960 -63 5969 -54 5980 -48 ct 5991 -41 6004 -38 6020 -38 ct 6040 -38 6056 -43 6070 -54 ct -6083 -64 6091 -80 6094 -102 ct 6151 -102 l 6149 -88 6145 -74 6139 -61 ct 6132 -48 6124 -37 6113 -27 ct -6103 -17 6090 -9 6074 -3 ct 6059 3 6042 6 6021 6 ct 5995 6 5973 2 5954 -7 ct 5936 -16 5921 -28 5910 -44 ct -5898 -60 5890 -78 5885 -99 ct 5880 -121 5877 -144 5877 -168 ct 5877 -191 5879 -211 5883 -228 ct -5886 -245 5892 -260 5898 -273 ct 5905 -286 5913 -297 5922 -306 ct 5931 -315 5941 -322 5952 -327 ct -5962 -332 5973 -336 5985 -338 ct 5997 -341 6009 -342 6021 -342 ct 6040 -342 6056 -339 6071 -334 ct -6086 -329 6098 -322 6109 -313 ct 6120 -304 6128 -293 6135 -281 ct 6142 -269 6146 -256 6149 -242 ct -6092 -237 l 6089 -256 6081 -271 6070 -282 ct 6058 -293 6041 -298 6019 -298 ct -6003 -298 5990 -296 5979 -290 ct 5969 -285 5960 -277 5954 -266 ct 5947 -256 5942 -242 5939 -226 ct -5937 -210 5935 -191 5935 -170 ct p ef -6210 -407 m 6210 -460 l 6266 -460 l 6266 -407 l 6210 -407 l p -6210 1 m 6210 -335 l 6266 -335 l 6266 1 l 6210 1 l p ef -6634 -170 m 6634 -144 6632 -121 6628 -99 ct 6624 -78 6617 -59 6608 -43 ct 6598 -28 6585 -16 6570 -7 ct -6554 2 6534 6 6511 6 ct 6487 6 6466 2 6448 -7 ct 6430 -17 6416 -31 6407 -52 ct -6405 -52 l 6406 -52 6406 -50 6406 -47 ct 6406 -43 6406 -39 6406 -34 ct 6406 -29 6406 -24 6406 -17 ct -6407 -11 6407 -5 6407 1 ct 6407 132 l 6351 132 l 6351 -267 l 6351 -275 6351 -283 6351 -290 ct -6351 -298 6350 -305 6350 -311 ct 6350 -317 6350 -322 6350 -326 ct 6349 -331 6349 -334 6349 -336 ct -6403 -336 l 6403 -335 6403 -333 6404 -329 ct 6404 -326 6404 -321 6405 -316 ct -6405 -311 6405 -305 6406 -299 ct 6406 -293 6406 -287 6406 -282 ct 6407 -282 l -6412 -293 6418 -302 6425 -310 ct 6432 -317 6439 -323 6448 -328 ct 6456 -333 6465 -337 6476 -339 ct -6486 -341 6498 -342 6511 -342 ct 6534 -342 6554 -338 6570 -330 ct 6585 -321 6598 -310 6608 -295 ct -6617 -280 6624 -261 6628 -240 ct 6632 -219 6634 -195 6634 -170 ct p -6576 -168 m 6576 -189 6575 -207 6572 -224 ct 6570 -240 6565 -253 6559 -265 ct -6553 -276 6545 -284 6535 -290 ct 6525 -296 6512 -299 6497 -299 ct 6484 -299 6473 -297 6462 -294 ct -6451 -290 6441 -283 6433 -273 ct 6425 -263 6418 -250 6414 -232 ct 6409 -215 6407 -192 6407 -164 ct -6407 -140 6409 -120 6412 -104 ct 6416 -87 6422 -74 6430 -64 ct 6437 -53 6447 -46 6458 -42 ct -6469 -37 6482 -35 6496 -35 ct 6512 -35 6525 -38 6535 -44 ct 6545 -50 6553 -59 6559 -70 ct -6565 -82 6570 -95 6572 -112 ct 6575 -128 6576 -147 6576 -168 ct p ef -6744 -156 m 6744 -139 6745 -122 6749 -108 ct 6753 -93 6758 -80 6766 -70 ct -6773 -59 6783 -51 6795 -45 ct 6807 -39 6821 -36 6837 -36 ct 6861 -36 6881 -41 6895 -50 ct -6910 -60 6920 -72 6925 -87 ct 6974 -73 l 6970 -64 6966 -55 6959 -45 ct 6953 -36 6945 -27 6934 -20 ct -6923 -12 6910 -6 6894 -1 ct 6879 4 6860 6 6837 6 ct 6788 6 6750 -9 6724 -38 ct -6698 -68 6685 -112 6685 -170 ct 6685 -202 6689 -228 6697 -250 ct 6705 -272 6715 -290 6729 -303 ct -6743 -317 6759 -327 6777 -333 ct 6795 -339 6814 -342 6835 -342 ct 6863 -342 6887 -338 6906 -329 ct -6925 -320 6940 -307 6951 -291 ct 6963 -275 6971 -256 6976 -234 ct 6981 -212 6983 -189 6983 -164 ct -6983 -156 l 6744 -156 l p -6925 -199 m 6922 -234 6913 -260 6898 -277 ct 6883 -293 6862 -301 6834 -301 ct -6825 -301 6815 -300 6805 -296 ct 6795 -293 6785 -288 6776 -280 ct 6768 -273 6760 -262 6754 -249 ct -6748 -236 6745 -219 6744 -199 ct 6925 -199 l p ef -pom -0.683 0.812 0.003 c 11597 6821 m 4740 6821 l 4740 5875 l 18455 5875 l -18455 6821 l 11597 6821 l p ef -0.503 0.503 0.503 c 11597 6821 m 4739 6821 l 4739 5875 l 18454 5875 l -18454 6821 l 11597 6821 l pc -pum -4990 6576 t -0.003 0.003 0.003 c 394 -121 m 394 -103 391 -86 384 -70 ct 377 -55 366 -41 351 -30 ct -336 -19 317 -10 294 -3 ct 272 3 245 6 214 6 ct 160 6 117 -4 87 -23 ct 56 -42 37 -69 29 -105 ct -86 -117 l 89 -105 94 -95 100 -86 ct 106 -76 114 -68 124 -61 ct 134 -55 147 -50 162 -46 ct -177 -42 195 -40 216 -40 ct 234 -40 250 -42 264 -45 ct 279 -48 292 -52 302 -59 ct -313 -65 321 -73 327 -83 ct 333 -92 336 -104 336 -118 ct 336 -132 333 -144 326 -153 ct -320 -161 310 -169 299 -175 ct 287 -180 273 -185 256 -189 ct 240 -193 222 -197 202 -202 ct -190 -205 178 -208 165 -211 ct 153 -214 141 -218 130 -222 ct 119 -227 108 -232 98 -238 ct -88 -244 80 -251 73 -259 ct 65 -268 60 -278 56 -289 ct 51 -300 49 -313 49 -327 ct -49 -348 53 -365 62 -380 ct 70 -395 82 -407 97 -417 ct 112 -426 129 -433 149 -437 ct -170 -442 192 -444 215 -444 ct 242 -444 265 -442 285 -438 ct 304 -433 320 -427 333 -419 ct -347 -410 357 -400 365 -387 ct 373 -375 379 -360 384 -343 ct 326 -333 l 323 -344 319 -353 313 -361 ct -308 -370 301 -377 292 -382 ct 283 -388 272 -392 259 -395 ct 247 -398 232 -399 215 -399 ct -194 -399 177 -397 164 -394 ct 150 -390 139 -385 130 -379 ct 122 -373 116 -366 112 -357 ct -109 -349 107 -340 107 -330 ct 107 -317 110 -306 117 -298 ct 123 -290 132 -283 143 -277 ct -154 -271 167 -267 182 -263 ct 197 -259 212 -256 229 -252 ct 242 -249 256 -246 269 -242 ct -282 -239 295 -235 307 -231 ct 319 -226 331 -221 342 -215 ct 352 -209 361 -202 369 -193 ct -377 -185 383 -174 388 -163 ct 392 -151 394 -137 394 -121 ct p ef -509 -156 m 509 -139 510 -122 514 -108 ct 518 -93 523 -80 531 -70 ct 538 -59 548 -51 560 -45 ct -572 -39 586 -36 602 -36 ct 626 -36 646 -41 660 -50 ct 675 -60 685 -72 690 -87 ct -739 -73 l 735 -64 731 -55 724 -45 ct 718 -36 710 -27 699 -20 ct 688 -12 675 -6 659 -1 ct -644 4 625 6 602 6 ct 553 6 515 -9 489 -38 ct 463 -68 450 -112 450 -170 ct 450 -202 454 -228 462 -250 ct -470 -272 480 -290 494 -303 ct 508 -317 524 -327 542 -333 ct 560 -339 579 -342 600 -342 ct -628 -342 652 -338 671 -329 ct 690 -320 705 -307 716 -291 ct 728 -275 736 -256 741 -234 ct -746 -212 748 -189 748 -164 ct 748 -156 l 509 -156 l p -690 -199 m 687 -234 678 -260 663 -277 ct 648 -293 627 -301 599 -301 ct 590 -301 580 -300 570 -296 ct -560 -293 550 -288 541 -280 ct 533 -273 525 -262 519 -249 ct 513 -236 510 -219 509 -199 ct -690 -199 l p ef -947 -2 m 938 0 930 2 921 3 ct 912 4 902 5 890 5 ct 846 5 823 -20 823 -71 ct 823 -295 l -785 -295 l 785 -336 l 826 -336 l 842 -411 l 879 -411 l 879 -336 l -941 -336 l 941 -295 l 879 -295 l 879 -83 l 879 -67 882 -56 887 -49 ct -892 -43 902 -39 915 -39 ct 920 -39 925 -40 930 -41 ct 935 -41 941 -42 947 -44 ct -947 -2 l p ef -1125 -2 m 1116 0 1108 2 1099 3 ct 1090 4 1080 5 1068 5 ct 1024 5 1001 -20 1001 -71 ct -1001 -295 l 963 -295 l 963 -336 l 1004 -336 l 1020 -411 l 1057 -411 l -1057 -336 l 1119 -336 l 1119 -295 l 1057 -295 l 1057 -83 l 1057 -67 1060 -56 1065 -49 ct -1070 -43 1080 -39 1093 -39 ct 1098 -39 1103 -40 1108 -41 ct 1113 -41 1119 -42 1125 -44 ct -1125 -2 l p ef -1172 -407 m 1172 -460 l 1228 -460 l 1228 -407 l 1172 -407 l p -1172 1 m 1172 -335 l 1228 -335 l 1228 1 l 1172 1 l p ef -1526 0 m 1526 -213 l 1526 -229 1525 -243 1522 -254 ct 1520 -265 1516 -274 1511 -280 ct -1505 -287 1498 -292 1489 -295 ct 1481 -297 1470 -299 1457 -299 ct 1443 -299 1431 -297 1421 -292 ct -1410 -287 1401 -281 1394 -272 ct 1386 -263 1380 -252 1376 -239 ct 1372 -226 1370 -211 1370 -195 ct -1370 0 l 1314 0 l 1314 -264 l 1314 -271 1314 -279 1314 -286 ct 1314 -294 1314 -301 1313 -308 ct -1313 -315 1313 -321 1313 -326 ct 1313 -331 1312 -334 1312 -336 ct 1365 -336 l -1365 -335 1365 -332 1366 -327 ct 1366 -323 1366 -318 1366 -312 ct 1367 -306 1367 -300 1367 -294 ct -1367 -288 1367 -283 1367 -278 ct 1368 -278 l 1374 -288 1380 -297 1386 -305 ct -1392 -313 1400 -319 1408 -325 ct 1417 -330 1426 -335 1437 -338 ct 1448 -341 1461 -342 1476 -342 ct -1494 -342 1510 -340 1524 -335 ct 1537 -331 1548 -324 1557 -314 ct 1565 -305 1572 -292 1576 -277 ct -1580 -262 1582 -244 1582 -224 ct 1582 0 l 1526 0 l p ef -1791 132 m 1772 132 1755 130 1740 126 ct 1725 122 1712 117 1702 109 ct 1691 102 1682 93 1676 83 ct -1669 73 1665 61 1662 49 ct 1718 41 l 1721 56 1730 68 1742 77 ct 1755 85 1772 89 1792 89 ct -1805 89 1817 88 1827 84 ct 1837 81 1846 75 1853 67 ct 1860 59 1866 49 1870 37 ct -1874 25 1876 9 1876 -8 ct 1876 -63 l 1875 -63 l 1871 -54 1866 -46 1860 -38 ct -1854 -30 1846 -24 1838 -18 ct 1829 -12 1819 -7 1807 -3 ct 1795 0 1782 2 1767 2 ct -1746 2 1728 -1 1713 -8 ct 1697 -16 1685 -26 1675 -41 ct 1666 -55 1659 -73 1654 -94 ct -1650 -115 1648 -139 1648 -167 ct 1648 -194 1650 -218 1654 -240 ct 1659 -261 1666 -280 1676 -295 ct -1686 -310 1699 -321 1715 -329 ct 1731 -337 1751 -341 1774 -341 ct 1797 -341 1818 -336 1835 -325 ct -1853 -314 1866 -298 1876 -278 ct 1876 -278 l 1876 -284 1877 -289 1877 -296 ct -1877 -302 1878 -308 1878 -314 ct 1878 -320 1879 -324 1879 -329 ct 1879 -333 1880 -335 1880 -336 ct -1933 -336 l 1933 -334 1933 -331 1933 -326 ct 1932 -322 1932 -316 1932 -310 ct -1932 -304 1932 -297 1932 -290 ct 1931 -282 1931 -274 1931 -266 ct 1931 -10 l -1931 37 1920 73 1897 96 ct 1874 120 1838 132 1791 132 ct p -1876 -168 m 1876 -191 1873 -211 1868 -228 ct 1863 -245 1857 -258 1848 -269 ct -1840 -279 1831 -287 1820 -292 ct 1809 -297 1798 -299 1787 -299 ct 1773 -299 1761 -297 1750 -292 ct -1740 -287 1732 -279 1725 -269 ct 1718 -258 1713 -244 1710 -228 ct 1707 -211 1705 -191 1705 -168 ct -1705 -144 1707 -123 1710 -107 ct 1713 -91 1718 -77 1725 -67 ct 1731 -57 1740 -50 1750 -46 ct -1760 -41 1772 -39 1786 -39 ct 1797 -39 1808 -41 1819 -46 ct 1830 -51 1839 -58 1848 -69 ct -1856 -79 1863 -92 1868 -109 ct 1873 -125 1876 -145 1876 -168 ct p ef -2477 -169 m 2477 -52 2436 7 2354 7 ct 2329 7 2308 2 2291 -7 ct 2274 -16 2260 -31 2250 -51 ct -2249 -51 l 2249 -46 2249 -40 2249 -35 ct 2248 -29 2248 -24 2248 -19 ct 2247 -14 2247 -9 2247 -6 ct -2246 -2 2246 0 2246 1 ct 2192 1 l 2192 -1 2192 -4 2193 -9 ct 2193 -13 2193 -19 2193 -25 ct -2193 -31 2194 -38 2194 -45 ct 2194 -53 2194 -61 2194 -69 ct 2194 -460 l 2250 -460 l -2250 -328 l 2250 -322 2250 -316 2249 -311 ct 2249 -305 2249 -300 2249 -296 ct -2249 -290 2249 -286 2248 -281 ct 2250 -281 l 2260 -302 2274 -318 2291 -327 ct -2308 -336 2329 -341 2354 -341 ct 2396 -341 2428 -327 2448 -298 ct 2468 -270 2477 -227 2477 -169 ct -p -2419 -167 m 2419 -190 2417 -210 2415 -226 ct 2412 -243 2407 -256 2401 -267 ct -2394 -278 2386 -286 2376 -291 ct 2366 -296 2354 -298 2340 -298 ct 2325 -298 2312 -296 2301 -291 ct -2290 -286 2280 -278 2273 -268 ct 2265 -257 2259 -243 2255 -226 ct 2252 -209 2250 -188 2250 -163 ct -2250 -139 2252 -119 2255 -103 ct 2259 -87 2265 -73 2273 -63 ct 2280 -53 2290 -45 2301 -41 ct -2312 -36 2325 -34 2339 -34 ct 2353 -34 2365 -37 2375 -41 ct 2384 -46 2393 -54 2399 -64 ct -2406 -75 2411 -89 2414 -105 ct 2417 -122 2419 -143 2419 -167 ct p ef -2828 -168 m 2828 -110 2816 -66 2790 -37 ct 2764 -8 2726 6 2677 6 ct 2654 6 2633 2 2615 -5 ct -2596 -12 2581 -22 2568 -37 ct 2555 -51 2545 -69 2539 -91 ct 2532 -113 2529 -139 2529 -168 ct -2529 -284 2579 -342 2679 -342 ct 2705 -342 2728 -339 2746 -331 ct 2765 -324 2781 -313 2793 -299 ct -2805 -284 2814 -266 2820 -245 ct 2826 -223 2828 -197 2828 -168 ct p -2770 -168 m 2770 -195 2768 -216 2764 -233 ct 2760 -250 2754 -264 2746 -274 ct -2738 -284 2729 -291 2718 -295 ct 2707 -299 2694 -301 2680 -301 ct 2666 -301 2653 -299 2641 -295 ct -2630 -290 2620 -283 2612 -273 ct 2604 -263 2598 -249 2594 -232 ct 2589 -215 2587 -194 2587 -168 ct -2587 -142 2590 -121 2594 -104 ct 2599 -87 2605 -73 2613 -63 ct 2621 -53 2630 -46 2641 -41 ct -2652 -37 2664 -35 2677 -35 ct 2691 -35 2704 -37 2715 -41 ct 2727 -45 2737 -52 2745 -63 ct -2753 -73 2759 -86 2763 -104 ct 2768 -121 2770 -142 2770 -168 ct p ef -2950 -336 m 2950 -123 l 2950 -107 2952 -93 2954 -82 ct 2956 -71 2960 -62 2966 -56 ct -2971 -49 2978 -44 2987 -41 ct 2996 -39 3006 -37 3020 -37 ct 3033 -37 3045 -39 3055 -44 ct -3066 -49 3075 -55 3083 -64 ct 3090 -73 3096 -84 3100 -97 ct 3104 -110 3106 -125 3106 -141 ct -3106 -336 l 3162 -336 l 3162 -72 l 3162 -65 3162 -57 3162 -50 ct 3162 -42 3163 -35 3163 -28 ct -3163 -21 3163 -15 3163 -10 ct 3164 -5 3164 -2 3164 0 ct 3111 0 l 3111 -1 3111 -4 3111 -9 ct -3110 -13 3110 -18 3110 -24 ct 3110 -30 3109 -36 3109 -42 ct 3109 -48 3109 -53 3109 -58 ct -3108 -58 l 3103 -48 3097 -39 3090 -31 ct 3084 -23 3076 -17 3068 -11 ct 3059 -6 3050 -2 3039 2 ct -3028 4 3015 6 3001 6 ct 2982 6 2966 4 2953 -1 ct 2939 -5 2928 -12 2919 -22 ct 2911 -31 2904 -44 2900 -59 ct -2896 -73 2894 -91 2894 -112 ct 2894 -336 l 2950 -336 l p ef -3461 0 m 3461 -213 l 3461 -229 3460 -243 3457 -254 ct 3455 -265 3451 -274 3446 -280 ct -3440 -287 3433 -292 3424 -295 ct 3416 -297 3405 -299 3392 -299 ct 3378 -299 3366 -297 3356 -292 ct -3345 -287 3336 -281 3329 -272 ct 3321 -263 3315 -252 3311 -239 ct 3307 -226 3305 -211 3305 -195 ct -3305 0 l 3249 0 l 3249 -264 l 3249 -271 3249 -279 3249 -286 ct 3249 -294 3249 -301 3248 -308 ct -3248 -315 3248 -321 3248 -326 ct 3248 -331 3247 -334 3247 -336 ct 3300 -336 l -3300 -335 3300 -332 3301 -327 ct 3301 -323 3301 -318 3301 -312 ct 3302 -306 3302 -300 3302 -294 ct -3302 -288 3302 -283 3302 -278 ct 3303 -278 l 3309 -288 3315 -297 3321 -305 ct -3327 -313 3335 -319 3343 -325 ct 3352 -330 3361 -335 3372 -338 ct 3383 -341 3396 -342 3411 -342 ct -3429 -342 3445 -340 3459 -335 ct 3472 -331 3483 -324 3492 -314 ct 3500 -305 3507 -292 3511 -277 ct -3515 -262 3517 -244 3517 -224 ct 3517 0 l 3461 0 l p ef -3811 -53 m 3800 -32 3787 -16 3769 -7 ct 3752 2 3731 7 3706 7 ct 3664 7 3633 -7 3613 -36 ct -3593 -64 3583 -108 3583 -166 ct 3583 -283 3624 -341 3706 -341 ct 3731 -341 3753 -337 3770 -327 ct -3787 -318 3800 -303 3811 -283 ct 3811 -283 l 3811 -285 3811 -288 3811 -293 ct -3811 -297 3811 -302 3811 -307 ct 3811 -312 3811 -316 3811 -321 ct 3811 -325 3811 -328 3811 -330 ct -3811 -460 l 3866 -460 l 3866 -69 l 3866 -61 3866 -53 3867 -45 ct 3867 -38 3867 -31 3867 -25 ct -3867 -19 3867 -13 3868 -9 ct 3868 -4 3868 -1 3868 1 ct 3815 1 l 3814 -2 3814 -4 3814 -8 ct -3814 -12 3813 -16 3813 -21 ct 3813 -26 3812 -32 3812 -37 ct 3812 -42 3812 -48 3812 -53 ct -3811 -53 l p -3641 -167 m 3641 -144 3643 -124 3646 -108 ct 3649 -91 3653 -78 3660 -67 ct -3666 -56 3674 -49 3684 -44 ct 3694 -39 3706 -36 3720 -36 ct 3735 -36 3748 -39 3759 -43 ct -3771 -48 3780 -56 3787 -66 ct 3795 -77 3801 -91 3805 -108 ct 3809 -125 3811 -146 3811 -171 ct -3811 -195 3809 -215 3805 -232 ct 3801 -248 3795 -261 3787 -271 ct 3780 -282 3770 -289 3759 -293 ct -3748 -298 3735 -300 3721 -300 ct 3707 -300 3696 -298 3686 -293 ct 3676 -288 3667 -280 3661 -270 ct -3654 -259 3649 -246 3646 -229 ct 3643 -212 3641 -191 3641 -167 ct p ef -4035 6 m 4002 6 3976 -3 3959 -21 ct 3942 -39 3934 -63 3934 -94 ct 3934 -117 3938 -135 3947 -149 ct -3955 -163 3966 -174 3979 -183 ct 3993 -191 4008 -196 4026 -199 ct 4043 -203 4061 -204 4079 -204 ct -4154 -204 l 4154 -223 l 4154 -237 4153 -248 4150 -258 ct 4147 -268 4142 -276 4136 -282 ct -4130 -288 4123 -292 4114 -295 ct 4105 -298 4094 -299 4082 -299 ct 4071 -299 4062 -299 4053 -297 ct -4044 -296 4037 -293 4030 -289 ct 4024 -285 4019 -279 4015 -272 ct 4011 -265 4008 -257 4007 -246 ct -3949 -251 l 3951 -265 3955 -277 3961 -288 ct 3966 -299 3975 -309 3985 -317 ct -3996 -325 4009 -331 4025 -335 ct 4041 -340 4061 -342 4083 -342 ct 4126 -342 4157 -332 4179 -313 ct -4200 -294 4211 -266 4211 -229 ct 4211 -85 l 4211 -68 4213 -55 4217 -47 ct 4221 -39 4230 -35 4242 -35 ct -4245 -35 4248 -35 4251 -35 ct 4254 -36 4257 -36 4260 -37 ct 4260 -2 l 4253 0 4246 1 4239 2 ct -4232 3 4225 3 4217 3 ct 4207 3 4197 2 4190 -1 ct 4182 -4 4176 -8 4171 -14 ct 4167 -20 4163 -27 4161 -35 ct -4158 -43 4157 -53 4156 -64 ct 4154 -64 l 4148 -54 4142 -44 4134 -35 ct 4127 -27 4119 -19 4109 -13 ct -4100 -7 4089 -2 4077 1 ct 4065 4 4051 6 4035 6 ct p -4048 -36 m 4066 -36 4081 -39 4095 -46 ct 4108 -52 4119 -60 4128 -70 ct 4137 -80 4143 -91 4148 -103 ct -4152 -115 4154 -127 4154 -138 ct 4154 -165 l 4093 -165 l 4079 -165 4066 -164 4054 -162 ct -4042 -161 4031 -157 4022 -152 ct 4012 -147 4005 -139 4000 -130 ct 3994 -121 3991 -108 3991 -93 ct -3991 -75 3996 -61 4006 -51 ct 4016 -41 4030 -36 4048 -36 ct p ef -4303 0 m 4303 -258 l 4303 -265 4303 -272 4303 -279 ct 4303 -287 4303 -294 4302 -300 ct -4302 -307 4302 -314 4302 -320 ct 4302 -326 4301 -331 4301 -336 ct 4354 -336 l -4354 -331 4354 -326 4355 -320 ct 4355 -313 4355 -307 4356 -301 ct 4356 -294 4356 -288 4356 -282 ct -4356 -276 4356 -271 4356 -267 ct 4358 -267 l 4362 -280 4366 -291 4370 -301 ct -4375 -310 4380 -318 4386 -324 ct 4392 -330 4399 -335 4407 -338 ct 4415 -341 4426 -342 4437 -342 ct -4442 -342 4446 -342 4450 -341 ct 4454 -340 4458 -340 4460 -339 ct 4460 -288 l -4456 -289 4452 -290 4447 -290 ct 4442 -291 4436 -291 4430 -291 ct 4417 -291 4406 -288 4397 -282 ct -4388 -276 4381 -268 4375 -258 ct 4370 -248 4366 -236 4363 -221 ct 4360 -207 4359 -192 4359 -175 ct -4359 0 l 4303 0 l p ef -4657 -1 m 4649 20 4641 38 4633 54 ct 4625 70 4616 84 4606 96 ct 4596 107 4584 116 4572 122 ct -4560 128 4545 131 4529 131 ct 4522 131 4516 131 4510 131 ct 4504 131 4497 130 4491 128 ct -4491 86 l 4495 87 4499 88 4504 88 ct 4509 88 4513 88 4517 88 ct 4533 88 4548 82 4562 70 ct -4576 57 4589 38 4599 11 ct 4605 -2 l 4472 -336 l 4531 -336 l 4602 -150 l -4604 -145 4606 -137 4610 -128 ct 4613 -119 4616 -109 4619 -100 ct 4622 -91 4625 -83 4628 -75 ct -4630 -68 4632 -63 4632 -61 ct 4633 -63 4634 -68 4637 -75 ct 4639 -81 4642 -89 4645 -97 ct -4648 -105 4651 -114 4654 -122 ct 4657 -131 4660 -138 4662 -144 ct 4727 -336 l -4786 -336 l 4657 -1 l p ef -5051 -170 m 5051 -150 5053 -133 5055 -117 ct 5058 -100 5063 -86 5070 -75 ct -5076 -63 5085 -54 5096 -48 ct 5107 -41 5120 -38 5136 -38 ct 5156 -38 5172 -43 5186 -54 ct -5199 -64 5207 -80 5210 -102 ct 5267 -102 l 5265 -88 5261 -74 5255 -61 ct 5248 -48 5240 -37 5229 -27 ct -5219 -17 5206 -9 5190 -3 ct 5175 3 5158 6 5137 6 ct 5111 6 5089 2 5070 -7 ct 5052 -16 5037 -28 5026 -44 ct -5014 -60 5006 -78 5001 -99 ct 4996 -121 4993 -144 4993 -168 ct 4993 -191 4995 -211 4999 -228 ct -5002 -245 5008 -260 5014 -273 ct 5021 -286 5029 -297 5038 -306 ct 5047 -315 5057 -322 5068 -327 ct -5078 -332 5089 -336 5101 -338 ct 5113 -341 5125 -342 5137 -342 ct 5156 -342 5172 -339 5187 -334 ct -5202 -329 5214 -322 5225 -313 ct 5236 -304 5244 -293 5251 -281 ct 5258 -269 5262 -256 5265 -242 ct -5208 -237 l 5205 -256 5197 -271 5186 -282 ct 5174 -293 5157 -298 5135 -298 ct -5119 -298 5106 -296 5095 -290 ct 5085 -285 5076 -277 5070 -266 ct 5063 -256 5058 -242 5055 -226 ct -5053 -210 5051 -191 5051 -170 ct p ef -5609 -168 m 5609 -110 5597 -66 5571 -37 ct 5545 -8 5507 6 5458 6 ct 5435 6 5414 2 5396 -5 ct -5377 -12 5362 -22 5349 -37 ct 5336 -51 5326 -69 5320 -91 ct 5313 -113 5310 -139 5310 -168 ct -5310 -284 5360 -342 5460 -342 ct 5486 -342 5509 -339 5527 -331 ct 5546 -324 5562 -313 5574 -299 ct -5586 -284 5595 -266 5601 -245 ct 5607 -223 5609 -197 5609 -168 ct p -5551 -168 m 5551 -195 5549 -216 5545 -233 ct 5541 -250 5535 -264 5527 -274 ct -5519 -284 5510 -291 5499 -295 ct 5488 -299 5475 -301 5461 -301 ct 5447 -301 5434 -299 5422 -295 ct -5411 -290 5401 -283 5393 -273 ct 5385 -263 5379 -249 5375 -232 ct 5370 -215 5368 -194 5368 -168 ct -5368 -142 5371 -121 5375 -104 ct 5380 -87 5386 -73 5394 -63 ct 5402 -53 5411 -46 5422 -41 ct -5433 -37 5445 -35 5458 -35 ct 5472 -35 5485 -37 5496 -41 ct 5508 -45 5518 -52 5526 -63 ct -5534 -73 5540 -86 5544 -104 ct 5549 -121 5551 -142 5551 -168 ct p ef -5891 0 m 5891 -213 l 5891 -229 5890 -243 5887 -254 ct 5885 -265 5881 -274 5876 -280 ct -5870 -287 5863 -292 5854 -295 ct 5846 -297 5835 -299 5822 -299 ct 5808 -299 5796 -297 5786 -292 ct -5775 -287 5766 -281 5759 -272 ct 5751 -263 5745 -252 5741 -239 ct 5737 -226 5735 -211 5735 -195 ct -5735 0 l 5679 0 l 5679 -264 l 5679 -271 5679 -279 5679 -286 ct 5679 -294 5679 -301 5678 -308 ct -5678 -315 5678 -321 5678 -326 ct 5678 -331 5677 -334 5677 -336 ct 5730 -336 l -5730 -335 5730 -332 5731 -327 ct 5731 -323 5731 -318 5731 -312 ct 5732 -306 5732 -300 5732 -294 ct -5732 -288 5732 -283 5732 -278 ct 5733 -278 l 5739 -288 5745 -297 5751 -305 ct -5757 -313 5765 -319 5773 -325 ct 5782 -330 5791 -335 5802 -338 ct 5813 -341 5826 -342 5841 -342 ct -5859 -342 5875 -340 5889 -335 ct 5902 -331 5913 -324 5922 -314 ct 5930 -305 5937 -292 5941 -277 ct -5945 -262 5947 -244 5947 -224 ct 5947 0 l 5891 0 l p ef -6241 -53 m 6230 -32 6217 -16 6199 -7 ct 6182 2 6161 7 6136 7 ct 6094 7 6063 -7 6043 -36 ct -6023 -64 6013 -108 6013 -166 ct 6013 -283 6054 -341 6136 -341 ct 6161 -341 6183 -337 6200 -327 ct -6217 -318 6230 -303 6241 -283 ct 6241 -283 l 6241 -285 6241 -288 6241 -293 ct -6241 -297 6241 -302 6241 -307 ct 6241 -312 6241 -316 6241 -321 ct 6241 -325 6241 -328 6241 -330 ct -6241 -460 l 6296 -460 l 6296 -69 l 6296 -61 6296 -53 6297 -45 ct 6297 -38 6297 -31 6297 -25 ct -6297 -19 6297 -13 6298 -9 ct 6298 -4 6298 -1 6298 1 ct 6245 1 l 6244 -2 6244 -4 6244 -8 ct -6244 -12 6243 -16 6243 -21 ct 6243 -26 6242 -32 6242 -37 ct 6242 -42 6242 -48 6242 -53 ct -6241 -53 l p -6071 -167 m 6071 -144 6073 -124 6076 -108 ct 6079 -91 6083 -78 6090 -67 ct -6096 -56 6104 -49 6114 -44 ct 6124 -39 6136 -36 6150 -36 ct 6165 -36 6178 -39 6189 -43 ct -6201 -48 6210 -56 6217 -66 ct 6225 -77 6231 -91 6235 -108 ct 6239 -125 6241 -146 6241 -171 ct -6241 -195 6239 -215 6235 -232 ct 6231 -248 6225 -261 6217 -271 ct 6210 -282 6200 -289 6189 -293 ct -6178 -298 6165 -300 6151 -300 ct 6137 -300 6126 -298 6116 -293 ct 6106 -288 6097 -280 6091 -270 ct -6084 -259 6079 -246 6076 -229 ct 6073 -212 6071 -191 6071 -167 ct p ef -6379 -407 m 6379 -460 l 6435 -460 l 6435 -407 l 6379 -407 l p -6379 1 m 6379 -335 l 6435 -335 l 6435 1 l 6379 1 l p ef -6648 -2 m 6639 0 6631 2 6622 3 ct 6613 4 6603 5 6591 5 ct 6547 5 6524 -20 6524 -71 ct -6524 -295 l 6486 -295 l 6486 -336 l 6527 -336 l 6543 -411 l 6580 -411 l -6580 -336 l 6642 -336 l 6642 -295 l 6580 -295 l 6580 -83 l 6580 -67 6583 -56 6588 -49 ct -6593 -43 6603 -39 6616 -39 ct 6621 -39 6626 -40 6631 -41 ct 6636 -41 6642 -42 6648 -44 ct -6648 -2 l p ef -6696 -407 m 6696 -460 l 6752 -460 l 6752 -407 l 6696 -407 l p -6696 1 m 6696 -335 l 6752 -335 l 6752 1 l 6696 1 l p ef -7120 -168 m 7120 -110 7108 -66 7082 -37 ct 7056 -8 7018 6 6969 6 ct 6946 6 6925 2 6907 -5 ct -6888 -12 6873 -22 6860 -37 ct 6847 -51 6837 -69 6831 -91 ct 6824 -113 6821 -139 6821 -168 ct -6821 -284 6871 -342 6971 -342 ct 6997 -342 7020 -339 7038 -331 ct 7057 -324 7073 -313 7085 -299 ct -7097 -284 7106 -266 7112 -245 ct 7118 -223 7120 -197 7120 -168 ct p -7062 -168 m 7062 -195 7060 -216 7056 -233 ct 7052 -250 7046 -264 7038 -274 ct -7030 -284 7021 -291 7010 -295 ct 6999 -299 6986 -301 6972 -301 ct 6958 -301 6945 -299 6933 -295 ct -6922 -290 6912 -283 6904 -273 ct 6896 -263 6890 -249 6886 -232 ct 6881 -215 6879 -194 6879 -168 ct -6879 -142 6882 -121 6886 -104 ct 6891 -87 6897 -73 6905 -63 ct 6913 -53 6922 -46 6933 -41 ct -6944 -37 6956 -35 6969 -35 ct 6983 -35 6996 -37 7007 -41 ct 7019 -45 7029 -52 7037 -63 ct -7045 -73 7051 -86 7055 -104 ct 7060 -121 7062 -142 7062 -168 ct p ef -7401 0 m 7401 -213 l 7401 -229 7400 -243 7397 -254 ct 7395 -265 7391 -274 7386 -280 ct -7380 -287 7373 -292 7364 -295 ct 7356 -297 7345 -299 7332 -299 ct 7318 -299 7306 -297 7296 -292 ct -7285 -287 7276 -281 7269 -272 ct 7261 -263 7255 -252 7251 -239 ct 7247 -226 7245 -211 7245 -195 ct -7245 0 l 7189 0 l 7189 -264 l 7189 -271 7189 -279 7189 -286 ct 7189 -294 7189 -301 7188 -308 ct -7188 -315 7188 -321 7188 -326 ct 7188 -331 7187 -334 7187 -336 ct 7240 -336 l -7240 -335 7240 -332 7241 -327 ct 7241 -323 7241 -318 7241 -312 ct 7242 -306 7242 -300 7242 -294 ct -7242 -288 7242 -283 7242 -278 ct 7243 -278 l 7249 -288 7255 -297 7261 -305 ct -7267 -313 7275 -319 7283 -325 ct 7292 -330 7301 -335 7312 -338 ct 7323 -341 7336 -342 7351 -342 ct -7369 -342 7385 -340 7399 -335 ct 7412 -331 7423 -324 7432 -314 ct 7440 -305 7447 -292 7451 -277 ct -7455 -262 7457 -244 7457 -224 ct 7457 0 l 7401 0 l p ef -7791 -93 m 7791 -77 7788 -63 7781 -51 ct 7775 -39 7766 -28 7755 -20 ct 7743 -12 7729 -5 7712 -1 ct -7695 4 7676 6 7654 6 ct 7635 6 7617 4 7602 2 ct 7586 -2 7573 -6 7561 -13 ct 7549 -20 7539 -28 7531 -39 ct -7523 -50 7517 -63 7514 -79 ct 7563 -89 l 7568 -71 7578 -57 7592 -49 ct 7607 -41 7628 -37 7654 -37 ct -7666 -37 7677 -37 7687 -39 ct 7697 -41 7706 -44 7713 -48 ct 7721 -52 7726 -57 7730 -64 ct -7734 -70 7736 -79 7736 -89 ct 7736 -99 7734 -107 7729 -114 ct 7724 -120 7718 -126 7709 -130 ct -7701 -134 7691 -138 7678 -141 ct 7666 -144 7653 -148 7639 -152 ct 7625 -155 7612 -159 7599 -164 ct -7585 -168 7573 -174 7563 -181 ct 7552 -188 7544 -197 7537 -207 ct 7530 -218 7527 -231 7527 -247 ct -7527 -278 7538 -301 7560 -317 ct 7582 -333 7613 -341 7655 -341 ct 7692 -341 7721 -335 7743 -322 ct -7765 -309 7779 -288 7785 -259 ct 7734 -253 l 7733 -261 7729 -269 7724 -275 ct -7719 -281 7713 -285 7706 -289 ct 7699 -293 7691 -295 7683 -297 ct 7674 -298 7665 -299 7655 -299 ct -7630 -299 7611 -295 7599 -288 ct 7587 -280 7581 -268 7581 -253 ct 7581 -244 7583 -236 7588 -230 ct -7592 -224 7599 -219 7607 -215 ct 7614 -211 7624 -208 7635 -205 ct 7646 -202 7659 -199 7672 -195 ct -7681 -193 7690 -191 7699 -188 ct 7709 -186 7718 -182 7727 -179 ct 7735 -175 7744 -171 7751 -166 ct -7759 -161 7766 -155 7772 -149 ct 7777 -142 7782 -134 7785 -125 ct 7789 -116 7791 -105 7791 -93 ct -p ef -7992 7 m 8119 -460 l 8168 -460 l 8042 7 l 7992 7 l p ef -8673 -170 m 8673 -144 8671 -121 8667 -99 ct 8663 -78 8656 -59 8647 -43 ct 8637 -28 8624 -16 8609 -7 ct -8593 2 8573 6 8550 6 ct 8526 6 8505 2 8487 -7 ct 8469 -17 8455 -31 8446 -52 ct -8444 -52 l 8445 -52 8445 -50 8445 -47 ct 8445 -43 8445 -39 8445 -34 ct 8445 -29 8445 -24 8445 -17 ct -8446 -11 8446 -5 8446 1 ct 8446 132 l 8390 132 l 8390 -267 l 8390 -275 8390 -283 8390 -290 ct -8390 -298 8389 -305 8389 -311 ct 8389 -317 8389 -322 8389 -326 ct 8388 -331 8388 -334 8388 -336 ct -8442 -336 l 8442 -335 8442 -333 8443 -329 ct 8443 -326 8443 -321 8444 -316 ct -8444 -311 8444 -305 8445 -299 ct 8445 -293 8445 -287 8445 -282 ct 8446 -282 l -8451 -293 8457 -302 8464 -310 ct 8471 -317 8478 -323 8487 -328 ct 8495 -333 8504 -337 8515 -339 ct -8525 -341 8537 -342 8550 -342 ct 8573 -342 8593 -338 8609 -330 ct 8624 -321 8637 -310 8647 -295 ct -8656 -280 8663 -261 8667 -240 ct 8671 -219 8673 -195 8673 -170 ct p -8615 -168 m 8615 -189 8614 -207 8611 -224 ct 8609 -240 8604 -253 8598 -265 ct -8592 -276 8584 -284 8574 -290 ct 8564 -296 8551 -299 8536 -299 ct 8523 -299 8512 -297 8501 -294 ct -8490 -290 8480 -283 8472 -273 ct 8464 -263 8457 -250 8453 -232 ct 8448 -215 8446 -192 8446 -164 ct -8446 -140 8448 -120 8451 -104 ct 8455 -87 8461 -74 8469 -64 ct 8476 -53 8486 -46 8497 -42 ct -8508 -37 8521 -35 8535 -35 ct 8551 -35 8564 -38 8574 -44 ct 8584 -50 8592 -59 8598 -70 ct -8604 -82 8609 -95 8611 -112 ct 8614 -128 8615 -147 8615 -168 ct p ef -8827 6 m 8794 6 8768 -3 8751 -21 ct 8734 -39 8726 -63 8726 -94 ct 8726 -117 8730 -135 8739 -149 ct -8747 -163 8758 -174 8771 -183 ct 8785 -191 8800 -196 8818 -199 ct 8835 -203 8853 -204 8871 -204 ct -8946 -204 l 8946 -223 l 8946 -237 8945 -248 8942 -258 ct 8939 -268 8934 -276 8928 -282 ct -8922 -288 8915 -292 8906 -295 ct 8897 -298 8886 -299 8874 -299 ct 8863 -299 8854 -299 8845 -297 ct -8836 -296 8829 -293 8822 -289 ct 8816 -285 8811 -279 8807 -272 ct 8803 -265 8800 -257 8799 -246 ct -8741 -251 l 8743 -265 8747 -277 8753 -288 ct 8758 -299 8767 -309 8777 -317 ct -8788 -325 8801 -331 8817 -335 ct 8833 -340 8853 -342 8875 -342 ct 8918 -342 8949 -332 8971 -313 ct -8992 -294 9003 -266 9003 -229 ct 9003 -85 l 9003 -68 9005 -55 9009 -47 ct 9013 -39 9022 -35 9034 -35 ct -9037 -35 9040 -35 9043 -35 ct 9046 -36 9049 -36 9052 -37 ct 9052 -2 l 9045 0 9038 1 9031 2 ct -9024 3 9017 3 9009 3 ct 8999 3 8989 2 8982 -1 ct 8974 -4 8968 -8 8963 -14 ct 8959 -20 8955 -27 8953 -35 ct -8950 -43 8949 -53 8948 -64 ct 8946 -64 l 8940 -54 8934 -44 8926 -35 ct 8919 -27 8911 -19 8901 -13 ct -8892 -7 8881 -2 8869 1 ct 8857 4 8843 6 8827 6 ct p -8840 -36 m 8858 -36 8873 -39 8887 -46 ct 8900 -52 8911 -60 8920 -70 ct 8929 -80 8935 -91 8940 -103 ct -8944 -115 8946 -127 8946 -138 ct 8946 -165 l 8885 -165 l 8871 -165 8858 -164 8846 -162 ct -8834 -161 8823 -157 8814 -152 ct 8804 -147 8797 -139 8792 -130 ct 8786 -121 8783 -108 8783 -93 ct -8783 -75 8788 -61 8798 -51 ct 8808 -41 8822 -36 8840 -36 ct p ef -9094 0 m 9094 -258 l 9094 -265 9094 -272 9094 -279 ct 9094 -287 9094 -294 9093 -300 ct -9093 -307 9093 -314 9093 -320 ct 9093 -326 9092 -331 9092 -336 ct 9145 -336 l -9145 -331 9145 -326 9146 -320 ct 9146 -313 9146 -307 9147 -301 ct 9147 -294 9147 -288 9147 -282 ct -9147 -276 9147 -271 9147 -267 ct 9149 -267 l 9153 -280 9157 -291 9161 -301 ct -9166 -310 9171 -318 9177 -324 ct 9183 -330 9190 -335 9198 -338 ct 9206 -341 9217 -342 9228 -342 ct -9233 -342 9237 -342 9241 -341 ct 9245 -340 9249 -340 9251 -339 ct 9251 -288 l -9247 -289 9243 -290 9238 -290 ct 9233 -291 9227 -291 9221 -291 ct 9208 -291 9197 -288 9188 -282 ct -9179 -276 9172 -268 9166 -258 ct 9161 -248 9157 -236 9154 -221 ct 9151 -207 9150 -192 9150 -175 ct -9150 0 l 9094 0 l p ef -9390 6 m 9357 6 9331 -3 9314 -21 ct 9297 -39 9289 -63 9289 -94 ct 9289 -117 9293 -135 9302 -149 ct -9310 -163 9321 -174 9334 -183 ct 9348 -191 9363 -196 9381 -199 ct 9398 -203 9416 -204 9434 -204 ct -9509 -204 l 9509 -223 l 9509 -237 9508 -248 9505 -258 ct 9502 -268 9497 -276 9491 -282 ct -9485 -288 9478 -292 9469 -295 ct 9460 -298 9449 -299 9437 -299 ct 9426 -299 9417 -299 9408 -297 ct -9399 -296 9392 -293 9385 -289 ct 9379 -285 9374 -279 9370 -272 ct 9366 -265 9363 -257 9362 -246 ct -9304 -251 l 9306 -265 9310 -277 9316 -288 ct 9321 -299 9330 -309 9340 -317 ct -9351 -325 9364 -331 9380 -335 ct 9396 -340 9416 -342 9438 -342 ct 9481 -342 9512 -332 9534 -313 ct -9555 -294 9566 -266 9566 -229 ct 9566 -85 l 9566 -68 9568 -55 9572 -47 ct 9576 -39 9585 -35 9597 -35 ct -9600 -35 9603 -35 9606 -35 ct 9609 -36 9612 -36 9615 -37 ct 9615 -2 l 9608 0 9601 1 9594 2 ct -9587 3 9580 3 9572 3 ct 9562 3 9552 2 9545 -1 ct 9537 -4 9531 -8 9526 -14 ct 9522 -20 9518 -27 9516 -35 ct -9513 -43 9512 -53 9511 -64 ct 9509 -64 l 9503 -54 9497 -44 9489 -35 ct 9482 -27 9474 -19 9464 -13 ct -9455 -7 9444 -2 9432 1 ct 9420 4 9406 6 9390 6 ct p -9403 -36 m 9421 -36 9436 -39 9450 -46 ct 9463 -52 9474 -60 9483 -70 ct 9492 -80 9498 -91 9503 -103 ct -9507 -115 9509 -127 9509 -138 ct 9509 -165 l 9448 -165 l 9434 -165 9421 -164 9409 -162 ct -9397 -161 9386 -157 9377 -152 ct 9367 -147 9360 -139 9355 -130 ct 9349 -121 9346 -108 9346 -93 ct -9346 -75 9351 -61 9361 -51 ct 9371 -41 9385 -36 9403 -36 ct p ef -9851 0 m 9851 -213 l 9851 -229 9850 -243 9848 -254 ct 9846 -265 9842 -274 9838 -280 ct -9833 -287 9826 -292 9819 -295 ct 9811 -297 9801 -299 9790 -299 ct 9778 -299 9767 -297 9758 -292 ct -9748 -287 9740 -281 9733 -272 ct 9727 -263 9722 -252 9718 -239 ct 9714 -226 9713 -211 9713 -195 ct -9713 0 l 9657 0 l 9657 -264 l 9657 -271 9657 -279 9657 -286 ct 9657 -294 9657 -301 9656 -308 ct -9656 -315 9656 -321 9656 -326 ct 9656 -331 9655 -334 9655 -336 ct 9708 -336 l -9708 -335 9708 -332 9709 -327 ct 9709 -323 9709 -318 9709 -312 ct 9710 -306 9710 -300 9710 -294 ct -9710 -288 9710 -283 9710 -278 ct 9711 -278 l 9716 -288 9722 -297 9727 -305 ct -9733 -313 9740 -319 9748 -325 ct 9755 -330 9764 -335 9774 -338 ct 9784 -341 9796 -342 9809 -342 ct -9835 -342 9855 -337 9870 -327 ct 9884 -317 9895 -301 9900 -278 ct 9901 -278 l -9906 -288 9912 -297 9918 -305 ct 9924 -313 9932 -319 9940 -325 ct 9948 -330 9957 -335 9968 -338 ct -9978 -341 9990 -342 10003 -342 ct 10020 -342 10035 -340 10047 -335 ct 10059 -331 10069 -324 10077 -314 ct -10085 -305 10091 -292 10095 -277 ct 10098 -262 10100 -244 10100 -224 ct 10100 0 l -10045 0 l 10045 -213 l 10045 -229 10044 -243 10042 -254 ct 10040 -265 10036 -274 10031 -280 ct -10027 -287 10020 -292 10012 -295 ct 10005 -297 9995 -299 9984 -299 ct 9972 -299 9961 -297 9952 -292 ct -9942 -288 9934 -281 9927 -272 ct 9921 -264 9915 -253 9912 -240 ct 9908 -227 9906 -212 9906 -195 ct -9906 0 l 9851 0 l p ef -10228 -156 m 10228 -139 10229 -122 10233 -108 ct 10237 -93 10242 -80 10250 -70 ct -10257 -59 10267 -51 10279 -45 ct 10291 -39 10305 -36 10321 -36 ct 10345 -36 10365 -41 10379 -50 ct -10394 -60 10404 -72 10409 -87 ct 10458 -73 l 10454 -64 10450 -55 10443 -45 ct -10437 -36 10429 -27 10418 -20 ct 10407 -12 10394 -6 10378 -1 ct 10363 4 10344 6 10321 6 ct -10272 6 10234 -9 10208 -38 ct 10182 -68 10169 -112 10169 -170 ct 10169 -202 10173 -228 10181 -250 ct -10189 -272 10199 -290 10213 -303 ct 10227 -317 10243 -327 10261 -333 ct 10279 -339 10298 -342 10319 -342 ct -10347 -342 10371 -338 10390 -329 ct 10409 -320 10424 -307 10435 -291 ct 10447 -275 10455 -256 10460 -234 ct -10465 -212 10467 -189 10467 -164 ct 10467 -156 l 10228 -156 l p -10409 -199 m 10406 -234 10397 -260 10382 -277 ct 10367 -293 10346 -301 10318 -301 ct -10309 -301 10299 -300 10289 -296 ct 10279 -293 10269 -288 10260 -280 ct 10252 -273 10244 -262 10238 -249 ct -10232 -236 10229 -219 10228 -199 ct 10409 -199 l p ef -10665 -2 m 10656 0 10648 2 10639 3 ct 10630 4 10620 5 10608 5 ct 10564 5 10541 -20 10541 -71 ct -10541 -295 l 10503 -295 l 10503 -336 l 10544 -336 l 10560 -411 l 10597 -411 l -10597 -336 l 10659 -336 l 10659 -295 l 10597 -295 l 10597 -83 l 10597 -67 10600 -56 10605 -49 ct -10610 -43 10620 -39 10633 -39 ct 10638 -39 10643 -40 10648 -41 ct 10653 -41 10659 -42 10665 -44 ct -10665 -2 l p ef -10757 -156 m 10757 -139 10758 -122 10762 -108 ct 10766 -93 10771 -80 10779 -70 ct -10786 -59 10796 -51 10808 -45 ct 10820 -39 10834 -36 10850 -36 ct 10874 -36 10894 -41 10908 -50 ct -10923 -60 10933 -72 10938 -87 ct 10987 -73 l 10983 -64 10979 -55 10972 -45 ct -10966 -36 10958 -27 10947 -20 ct 10936 -12 10923 -6 10907 -1 ct 10892 4 10873 6 10850 6 ct -10801 6 10763 -9 10737 -38 ct 10711 -68 10698 -112 10698 -170 ct 10698 -202 10702 -228 10710 -250 ct -10718 -272 10728 -290 10742 -303 ct 10756 -317 10772 -327 10790 -333 ct 10808 -339 10827 -342 10848 -342 ct -10876 -342 10900 -338 10919 -329 ct 10938 -320 10953 -307 10964 -291 ct 10976 -275 10984 -256 10989 -234 ct -10994 -212 10996 -189 10996 -164 ct 10996 -156 l 10757 -156 l p -10938 -199 m 10935 -234 10926 -260 10911 -277 ct 10896 -293 10875 -301 10847 -301 ct -10838 -301 10828 -300 10818 -296 ct 10808 -293 10798 -288 10789 -280 ct 10781 -273 10773 -262 10767 -249 ct -10761 -236 10758 -219 10757 -199 ct 10938 -199 l p ef -11067 0 m 11067 -258 l 11067 -265 11067 -272 11067 -279 ct 11067 -287 11067 -294 11066 -300 ct -11066 -307 11066 -314 11066 -320 ct 11066 -326 11065 -331 11065 -336 ct 11118 -336 l -11118 -331 11118 -326 11119 -320 ct 11119 -313 11119 -307 11120 -301 ct 11120 -294 11120 -288 11120 -282 ct -11120 -276 11120 -271 11120 -267 ct 11122 -267 l 11126 -280 11130 -291 11134 -301 ct -11139 -310 11144 -318 11150 -324 ct 11156 -330 11163 -335 11171 -338 ct 11179 -341 11190 -342 11201 -342 ct -11206 -342 11210 -342 11214 -341 ct 11218 -340 11222 -340 11224 -339 ct 11224 -288 l -11220 -289 11216 -290 11211 -290 ct 11206 -291 11200 -291 11194 -291 ct 11181 -291 11170 -288 11161 -282 ct -11152 -276 11145 -268 11139 -258 ct 11134 -248 11130 -236 11127 -221 ct 11124 -207 11123 -192 11123 -175 ct -11123 0 l 11067 0 l p ef -11529 -93 m 11529 -77 11526 -63 11519 -51 ct 11513 -39 11504 -28 11493 -20 ct -11481 -12 11467 -5 11450 -1 ct 11433 4 11414 6 11392 6 ct 11373 6 11355 4 11340 2 ct -11324 -2 11311 -6 11299 -13 ct 11287 -20 11277 -28 11269 -39 ct 11261 -50 11255 -63 11252 -79 ct -11301 -89 l 11306 -71 11316 -57 11330 -49 ct 11345 -41 11366 -37 11392 -37 ct -11404 -37 11415 -37 11425 -39 ct 11435 -41 11444 -44 11451 -48 ct 11459 -52 11464 -57 11468 -64 ct -11472 -70 11474 -79 11474 -89 ct 11474 -99 11472 -107 11467 -114 ct 11462 -120 11456 -126 11447 -130 ct -11439 -134 11429 -138 11416 -141 ct 11404 -144 11391 -148 11377 -152 ct 11363 -155 11350 -159 11337 -164 ct -11323 -168 11311 -174 11301 -181 ct 11290 -188 11282 -197 11275 -207 ct 11268 -218 11265 -231 11265 -247 ct -11265 -278 11276 -301 11298 -317 ct 11320 -333 11351 -341 11393 -341 ct 11430 -341 11459 -335 11481 -322 ct -11503 -309 11517 -288 11523 -259 ct 11472 -253 l 11471 -261 11467 -269 11462 -275 ct -11457 -281 11451 -285 11444 -289 ct 11437 -293 11429 -295 11421 -297 ct 11412 -298 11403 -299 11393 -299 ct -11368 -299 11349 -295 11337 -288 ct 11325 -280 11319 -268 11319 -253 ct 11319 -244 11321 -236 11326 -230 ct -11330 -224 11337 -219 11345 -215 ct 11352 -211 11362 -208 11373 -205 ct 11384 -202 11397 -199 11410 -195 ct -11419 -193 11428 -191 11437 -188 ct 11447 -186 11456 -182 11465 -179 ct 11473 -175 11482 -171 11489 -166 ct -11497 -161 11504 -155 11510 -149 ct 11515 -142 11520 -134 11523 -125 ct 11527 -116 11529 -105 11529 -93 ct -p ef -pom -0.683 0.812 0.003 c 11597 10633 m 4740 10633 l 4740 9617 l 18455 9617 l -18455 10633 l 11597 10633 l p ef -0.503 0.503 0.503 c 11597 10632 m 4739 10632 l 4739 9616 l 18454 9616 l -18454 10632 l 11597 10632 l pc -pum -4990 10318 t -0.003 0.003 0.003 c 390 -305 m 390 -286 387 -269 381 -252 ct 374 -236 365 -221 352 -209 ct -340 -197 324 -188 305 -181 ct 287 -174 265 -170 240 -170 ct 111 -170 l 111 1 l -52 1 l 52 -437 l 236 -437 l 262 -437 284 -434 304 -428 ct 323 -421 339 -412 352 -401 ct -364 -389 374 -375 380 -359 ct 387 -343 390 -325 390 -305 ct p -331 -305 m 331 -332 322 -354 305 -368 ct 288 -382 263 -390 229 -390 ct 111 -390 l -111 -217 l 231 -217 l 265 -217 290 -224 306 -240 ct 323 -255 331 -276 331 -305 ct -p ef -749 -168 m 749 -110 737 -66 711 -37 ct 685 -8 647 6 598 6 ct 575 6 554 2 536 -5 ct -517 -12 502 -22 489 -37 ct 476 -51 466 -69 460 -91 ct 453 -113 450 -139 450 -168 ct -450 -284 500 -342 600 -342 ct 626 -342 649 -339 667 -331 ct 686 -324 702 -313 714 -299 ct -726 -284 735 -266 741 -245 ct 747 -223 749 -197 749 -168 ct p -691 -168 m 691 -195 689 -216 685 -233 ct 681 -250 675 -264 667 -274 ct 659 -284 650 -291 639 -295 ct -628 -299 615 -301 601 -301 ct 587 -301 574 -299 562 -295 ct 551 -290 541 -283 533 -273 ct -525 -263 519 -249 515 -232 ct 510 -215 508 -194 508 -168 ct 508 -142 511 -121 515 -104 ct -520 -87 526 -73 534 -63 ct 542 -53 551 -46 562 -41 ct 573 -37 585 -35 598 -35 ct -612 -35 625 -37 636 -41 ct 648 -45 658 -52 666 -63 ct 674 -73 680 -86 684 -104 ct -689 -121 691 -142 691 -168 ct p ef -1070 -93 m 1070 -77 1067 -63 1060 -51 ct 1054 -39 1045 -28 1034 -20 ct 1022 -12 1008 -5 991 -1 ct -974 4 955 6 933 6 ct 914 6 896 4 881 2 ct 865 -2 852 -6 840 -13 ct 828 -20 818 -28 810 -39 ct -802 -50 796 -63 793 -79 ct 842 -89 l 847 -71 857 -57 871 -49 ct 886 -41 907 -37 933 -37 ct -945 -37 956 -37 966 -39 ct 976 -41 985 -44 992 -48 ct 1000 -52 1005 -57 1009 -64 ct -1013 -70 1015 -79 1015 -89 ct 1015 -99 1013 -107 1008 -114 ct 1003 -120 997 -126 988 -130 ct -980 -134 970 -138 957 -141 ct 945 -144 932 -148 918 -152 ct 904 -155 891 -159 878 -164 ct -864 -168 852 -174 842 -181 ct 831 -188 823 -197 816 -207 ct 809 -218 806 -231 806 -247 ct -806 -278 817 -301 839 -317 ct 861 -333 892 -341 934 -341 ct 971 -341 1000 -335 1022 -322 ct -1044 -309 1058 -288 1064 -259 ct 1013 -253 l 1012 -261 1008 -269 1003 -275 ct -998 -281 992 -285 985 -289 ct 978 -293 970 -295 962 -297 ct 953 -298 944 -299 934 -299 ct -909 -299 890 -295 878 -288 ct 866 -280 860 -268 860 -253 ct 860 -244 862 -236 867 -230 ct -871 -224 878 -219 886 -215 ct 893 -211 903 -208 914 -205 ct 925 -202 938 -199 951 -195 ct -960 -193 969 -191 978 -188 ct 988 -186 997 -182 1006 -179 ct 1014 -175 1023 -171 1030 -166 ct -1038 -161 1045 -155 1051 -149 ct 1056 -142 1061 -134 1064 -125 ct 1068 -116 1070 -105 1070 -93 ct -p ef -1264 -2 m 1255 0 1247 2 1238 3 ct 1229 4 1219 5 1207 5 ct 1163 5 1140 -20 1140 -71 ct -1140 -295 l 1102 -295 l 1102 -336 l 1143 -336 l 1159 -411 l 1196 -411 l -1196 -336 l 1258 -336 l 1258 -295 l 1196 -295 l 1196 -83 l 1196 -67 1199 -56 1204 -49 ct -1209 -43 1219 -39 1232 -39 ct 1237 -39 1242 -40 1247 -41 ct 1252 -41 1258 -42 1264 -44 ct -1264 -2 l p ef -1298 -144 m 1298 -194 l 1453 -194 l 1453 -144 l 1298 -144 l p ef -1872 -305 m 1872 -286 1869 -269 1863 -252 ct 1856 -236 1847 -221 1834 -209 ct -1822 -197 1806 -188 1787 -181 ct 1769 -174 1747 -170 1722 -170 ct 1593 -170 l -1593 1 l 1534 1 l 1534 -437 l 1718 -437 l 1744 -437 1766 -434 1786 -428 ct -1805 -421 1821 -412 1834 -401 ct 1846 -389 1856 -375 1862 -359 ct 1869 -343 1872 -325 1872 -305 ct -p -1813 -305 m 1813 -332 1804 -354 1787 -368 ct 1770 -382 1745 -390 1711 -390 ct -1593 -390 l 1593 -217 l 1713 -217 l 1747 -217 1772 -224 1788 -240 ct 1805 -255 1813 -276 1813 -305 ct -p ef -1949 0 m 1949 -258 l 1949 -265 1949 -272 1949 -279 ct 1949 -287 1949 -294 1948 -300 ct -1948 -307 1948 -314 1948 -320 ct 1948 -326 1947 -331 1947 -336 ct 2000 -336 l -2000 -331 2000 -326 2001 -320 ct 2001 -313 2001 -307 2002 -301 ct 2002 -294 2002 -288 2002 -282 ct -2002 -276 2002 -271 2002 -267 ct 2004 -267 l 2008 -280 2012 -291 2016 -301 ct -2021 -310 2026 -318 2032 -324 ct 2038 -330 2045 -335 2053 -338 ct 2061 -341 2072 -342 2083 -342 ct -2088 -342 2092 -342 2096 -341 ct 2100 -340 2104 -340 2106 -339 ct 2106 -288 l -2102 -289 2098 -290 2093 -290 ct 2088 -291 2082 -291 2076 -291 ct 2063 -291 2052 -288 2043 -282 ct -2034 -276 2027 -268 2021 -258 ct 2016 -248 2012 -236 2009 -221 ct 2006 -207 2005 -192 2005 -175 ct -2005 0 l 1949 0 l p ef -2443 -168 m 2443 -110 2431 -66 2405 -37 ct 2379 -8 2341 6 2292 6 ct 2269 6 2248 2 2230 -5 ct -2211 -12 2196 -22 2183 -37 ct 2170 -51 2160 -69 2154 -91 ct 2147 -113 2144 -139 2144 -168 ct -2144 -284 2194 -342 2294 -342 ct 2320 -342 2343 -339 2361 -331 ct 2380 -324 2396 -313 2408 -299 ct -2420 -284 2429 -266 2435 -245 ct 2441 -223 2443 -197 2443 -168 ct p -2385 -168 m 2385 -195 2383 -216 2379 -233 ct 2375 -250 2369 -264 2361 -274 ct -2353 -284 2344 -291 2333 -295 ct 2322 -299 2309 -301 2295 -301 ct 2281 -301 2268 -299 2256 -295 ct -2245 -290 2235 -283 2227 -273 ct 2219 -263 2213 -249 2209 -232 ct 2204 -215 2202 -194 2202 -168 ct -2202 -142 2205 -121 2209 -104 ct 2214 -87 2220 -73 2228 -63 ct 2236 -53 2245 -46 2256 -41 ct -2267 -37 2279 -35 2292 -35 ct 2306 -35 2319 -37 2330 -41 ct 2342 -45 2352 -52 2360 -63 ct -2368 -73 2374 -86 2378 -104 ct 2383 -121 2385 -142 2385 -168 ct p ef -2553 -170 m 2553 -150 2555 -133 2557 -117 ct 2560 -100 2565 -86 2572 -75 ct -2578 -63 2587 -54 2598 -48 ct 2609 -41 2622 -38 2638 -38 ct 2658 -38 2674 -43 2688 -54 ct -2701 -64 2709 -80 2712 -102 ct 2769 -102 l 2767 -88 2763 -74 2757 -61 ct 2750 -48 2742 -37 2731 -27 ct -2721 -17 2708 -9 2692 -3 ct 2677 3 2660 6 2639 6 ct 2613 6 2591 2 2572 -7 ct 2554 -16 2539 -28 2528 -44 ct -2516 -60 2508 -78 2503 -99 ct 2498 -121 2495 -144 2495 -168 ct 2495 -191 2497 -211 2501 -228 ct -2504 -245 2510 -260 2516 -273 ct 2523 -286 2531 -297 2540 -306 ct 2549 -315 2559 -322 2570 -327 ct -2580 -332 2591 -336 2603 -338 ct 2615 -341 2627 -342 2639 -342 ct 2658 -342 2674 -339 2689 -334 ct -2704 -329 2716 -322 2727 -313 ct 2738 -304 2746 -293 2753 -281 ct 2760 -269 2764 -256 2767 -242 ct -2710 -237 l 2707 -256 2699 -271 2688 -282 ct 2676 -293 2659 -298 2637 -298 ct -2621 -298 2608 -296 2597 -290 ct 2587 -285 2578 -277 2572 -266 ct 2565 -256 2560 -242 2557 -226 ct -2555 -210 2553 -191 2553 -170 ct p ef -2872 -156 m 2872 -139 2873 -122 2877 -108 ct 2881 -93 2886 -80 2894 -70 ct -2901 -59 2911 -51 2923 -45 ct 2935 -39 2949 -36 2965 -36 ct 2989 -36 3009 -41 3023 -50 ct -3038 -60 3048 -72 3053 -87 ct 3102 -73 l 3098 -64 3094 -55 3087 -45 ct 3081 -36 3073 -27 3062 -20 ct -3051 -12 3038 -6 3022 -1 ct 3007 4 2988 6 2965 6 ct 2916 6 2878 -9 2852 -38 ct -2826 -68 2813 -112 2813 -170 ct 2813 -202 2817 -228 2825 -250 ct 2833 -272 2843 -290 2857 -303 ct -2871 -317 2887 -327 2905 -333 ct 2923 -339 2942 -342 2963 -342 ct 2991 -342 3015 -338 3034 -329 ct -3053 -320 3068 -307 3079 -291 ct 3091 -275 3099 -256 3104 -234 ct 3109 -212 3111 -189 3111 -164 ct -3111 -156 l 2872 -156 l p -3053 -199 m 3050 -234 3041 -260 3026 -277 ct 3011 -293 2990 -301 2962 -301 ct -2953 -301 2943 -300 2933 -296 ct 2923 -293 2913 -288 2904 -280 ct 2896 -273 2888 -262 2882 -249 ct -2876 -236 2873 -219 2872 -199 ct 3053 -199 l p ef -3432 -93 m 3432 -77 3429 -63 3422 -51 ct 3416 -39 3407 -28 3396 -20 ct 3384 -12 3370 -5 3353 -1 ct -3336 4 3317 6 3295 6 ct 3276 6 3258 4 3243 2 ct 3227 -2 3214 -6 3202 -13 ct 3190 -20 3180 -28 3172 -39 ct -3164 -50 3158 -63 3155 -79 ct 3204 -89 l 3209 -71 3219 -57 3233 -49 ct 3248 -41 3269 -37 3295 -37 ct -3307 -37 3318 -37 3328 -39 ct 3338 -41 3347 -44 3354 -48 ct 3362 -52 3367 -57 3371 -64 ct -3375 -70 3377 -79 3377 -89 ct 3377 -99 3375 -107 3370 -114 ct 3365 -120 3359 -126 3350 -130 ct -3342 -134 3332 -138 3319 -141 ct 3307 -144 3294 -148 3280 -152 ct 3266 -155 3253 -159 3240 -164 ct -3226 -168 3214 -174 3204 -181 ct 3193 -188 3185 -197 3178 -207 ct 3171 -218 3168 -231 3168 -247 ct -3168 -278 3179 -301 3201 -317 ct 3223 -333 3254 -341 3296 -341 ct 3333 -341 3362 -335 3384 -322 ct -3406 -309 3420 -288 3426 -259 ct 3375 -253 l 3374 -261 3370 -269 3365 -275 ct -3360 -281 3354 -285 3347 -289 ct 3340 -293 3332 -295 3324 -297 ct 3315 -298 3306 -299 3296 -299 ct -3271 -299 3252 -295 3240 -288 ct 3228 -280 3222 -268 3222 -253 ct 3222 -244 3224 -236 3229 -230 ct -3233 -224 3240 -219 3248 -215 ct 3255 -211 3265 -208 3276 -205 ct 3287 -202 3300 -199 3313 -195 ct -3322 -193 3331 -191 3340 -188 ct 3350 -186 3359 -182 3368 -179 ct 3376 -175 3385 -171 3392 -166 ct -3400 -161 3407 -155 3413 -149 ct 3418 -142 3423 -134 3426 -125 ct 3430 -116 3432 -105 3432 -93 ct -p ef -3749 -93 m 3749 -77 3746 -63 3739 -51 ct 3733 -39 3724 -28 3713 -20 ct 3701 -12 3687 -5 3670 -1 ct -3653 4 3634 6 3612 6 ct 3593 6 3575 4 3560 2 ct 3544 -2 3531 -6 3519 -13 ct 3507 -20 3497 -28 3489 -39 ct -3481 -50 3475 -63 3472 -79 ct 3521 -89 l 3526 -71 3536 -57 3550 -49 ct 3565 -41 3586 -37 3612 -37 ct -3624 -37 3635 -37 3645 -39 ct 3655 -41 3664 -44 3671 -48 ct 3679 -52 3684 -57 3688 -64 ct -3692 -70 3694 -79 3694 -89 ct 3694 -99 3692 -107 3687 -114 ct 3682 -120 3676 -126 3667 -130 ct -3659 -134 3649 -138 3636 -141 ct 3624 -144 3611 -148 3597 -152 ct 3583 -155 3570 -159 3557 -164 ct -3543 -168 3531 -174 3521 -181 ct 3510 -188 3502 -197 3495 -207 ct 3488 -218 3485 -231 3485 -247 ct -3485 -278 3496 -301 3518 -317 ct 3540 -333 3571 -341 3613 -341 ct 3650 -341 3679 -335 3701 -322 ct -3723 -309 3737 -288 3743 -259 ct 3692 -253 l 3691 -261 3687 -269 3682 -275 ct -3677 -281 3671 -285 3664 -289 ct 3657 -293 3649 -295 3641 -297 ct 3632 -298 3623 -299 3613 -299 ct -3588 -299 3569 -295 3557 -288 ct 3545 -280 3539 -268 3539 -253 ct 3539 -244 3541 -236 3546 -230 ct -3550 -224 3557 -219 3565 -215 ct 3572 -211 3582 -208 3593 -205 ct 3604 -202 3617 -199 3630 -195 ct -3639 -193 3648 -191 3657 -188 ct 3667 -186 3676 -182 3685 -179 ct 3693 -175 3702 -171 3709 -166 ct -3717 -161 3724 -155 3730 -149 ct 3735 -142 3740 -134 3743 -125 ct 3747 -116 3749 -105 3749 -93 ct -p ef -3814 -407 m 3814 -460 l 3870 -460 l 3870 -407 l 3814 -407 l p -3814 1 m 3814 -335 l 3870 -335 l 3870 1 l 3814 1 l p ef -4168 0 m 4168 -213 l 4168 -229 4167 -243 4164 -254 ct 4162 -265 4158 -274 4153 -280 ct -4147 -287 4140 -292 4131 -295 ct 4123 -297 4112 -299 4099 -299 ct 4085 -299 4073 -297 4063 -292 ct -4052 -287 4043 -281 4036 -272 ct 4028 -263 4022 -252 4018 -239 ct 4014 -226 4012 -211 4012 -195 ct -4012 0 l 3956 0 l 3956 -264 l 3956 -271 3956 -279 3956 -286 ct 3956 -294 3956 -301 3955 -308 ct -3955 -315 3955 -321 3955 -326 ct 3955 -331 3954 -334 3954 -336 ct 4007 -336 l -4007 -335 4007 -332 4008 -327 ct 4008 -323 4008 -318 4008 -312 ct 4009 -306 4009 -300 4009 -294 ct -4009 -288 4009 -283 4009 -278 ct 4010 -278 l 4016 -288 4022 -297 4028 -305 ct -4034 -313 4042 -319 4050 -325 ct 4059 -330 4068 -335 4079 -338 ct 4090 -341 4103 -342 4118 -342 ct -4136 -342 4152 -340 4166 -335 ct 4179 -331 4190 -324 4199 -314 ct 4207 -305 4214 -292 4218 -277 ct -4222 -262 4224 -244 4224 -224 ct 4224 0 l 4168 0 l p ef -4433 132 m 4414 132 4397 130 4382 126 ct 4367 122 4354 117 4344 109 ct 4333 102 4324 93 4318 83 ct -4311 73 4307 61 4304 49 ct 4360 41 l 4363 56 4372 68 4384 77 ct 4397 85 4414 89 4434 89 ct -4447 89 4459 88 4469 84 ct 4479 81 4488 75 4495 67 ct 4502 59 4508 49 4512 37 ct -4516 25 4518 9 4518 -8 ct 4518 -63 l 4517 -63 l 4513 -54 4508 -46 4502 -38 ct -4496 -30 4488 -24 4480 -18 ct 4471 -12 4461 -7 4449 -3 ct 4437 0 4424 2 4409 2 ct -4388 2 4370 -1 4355 -8 ct 4339 -16 4327 -26 4317 -41 ct 4308 -55 4301 -73 4296 -94 ct -4292 -115 4290 -139 4290 -167 ct 4290 -194 4292 -218 4296 -240 ct 4301 -261 4308 -280 4318 -295 ct -4328 -310 4341 -321 4357 -329 ct 4373 -337 4393 -341 4416 -341 ct 4439 -341 4460 -336 4477 -325 ct -4495 -314 4508 -298 4518 -278 ct 4518 -278 l 4518 -284 4519 -289 4519 -296 ct -4519 -302 4520 -308 4520 -314 ct 4520 -320 4521 -324 4521 -329 ct 4521 -333 4522 -335 4522 -336 ct -4575 -336 l 4575 -334 4575 -331 4575 -326 ct 4574 -322 4574 -316 4574 -310 ct -4574 -304 4574 -297 4574 -290 ct 4573 -282 4573 -274 4573 -266 ct 4573 -10 l -4573 37 4562 73 4539 96 ct 4516 120 4480 132 4433 132 ct p -4518 -168 m 4518 -191 4515 -211 4510 -228 ct 4505 -245 4499 -258 4490 -269 ct -4482 -279 4473 -287 4462 -292 ct 4451 -297 4440 -299 4429 -299 ct 4415 -299 4403 -297 4392 -292 ct -4382 -287 4374 -279 4367 -269 ct 4360 -258 4355 -244 4352 -228 ct 4349 -211 4347 -191 4347 -168 ct -4347 -144 4349 -123 4352 -107 ct 4355 -91 4360 -77 4367 -67 ct 4373 -57 4382 -50 4392 -46 ct -4402 -41 4414 -39 4428 -39 ct 4439 -39 4450 -41 4461 -46 ct 4472 -51 4481 -58 4490 -69 ct -4498 -79 4505 -92 4510 -109 ct 4515 -125 4518 -145 4518 -168 ct p ef -pom -0.683 0.812 0.003 c 11597 11849 m 4740 11849 l 4740 10833 l 18455 10833 l -18455 11849 l 11597 11849 l p ef -0.503 0.503 0.503 c 11597 11848 m 4739 11848 l 4739 10832 l 18454 10832 l -18454 11848 l 11597 11848 l pc -pum -4990 11534 t -0.003 0.003 0.003 c 394 -121 m 394 -103 391 -86 384 -70 ct 377 -55 366 -41 351 -30 ct -336 -19 317 -10 294 -3 ct 272 3 245 6 214 6 ct 160 6 117 -4 87 -23 ct 56 -42 37 -69 29 -105 ct -86 -117 l 89 -105 94 -95 100 -86 ct 106 -76 114 -68 124 -61 ct 134 -55 147 -50 162 -46 ct -177 -42 195 -40 216 -40 ct 234 -40 250 -42 264 -45 ct 279 -48 292 -52 302 -59 ct -313 -65 321 -73 327 -83 ct 333 -92 336 -104 336 -118 ct 336 -132 333 -144 326 -153 ct -320 -161 310 -169 299 -175 ct 287 -180 273 -185 256 -189 ct 240 -193 222 -197 202 -202 ct -190 -205 178 -208 165 -211 ct 153 -214 141 -218 130 -222 ct 119 -227 108 -232 98 -238 ct -88 -244 80 -251 73 -259 ct 65 -268 60 -278 56 -289 ct 51 -300 49 -313 49 -327 ct -49 -348 53 -365 62 -380 ct 70 -395 82 -407 97 -417 ct 112 -426 129 -433 149 -437 ct -170 -442 192 -444 215 -444 ct 242 -444 265 -442 285 -438 ct 304 -433 320 -427 333 -419 ct -347 -410 357 -400 365 -387 ct 373 -375 379 -360 384 -343 ct 326 -333 l 323 -344 319 -353 313 -361 ct -308 -370 301 -377 292 -382 ct 283 -388 272 -392 259 -395 ct 247 -398 232 -399 215 -399 ct -194 -399 177 -397 164 -394 ct 150 -390 139 -385 130 -379 ct 122 -373 116 -366 112 -357 ct -109 -349 107 -340 107 -330 ct 107 -317 110 -306 117 -298 ct 123 -290 132 -283 143 -277 ct -154 -271 167 -267 182 -263 ct 197 -259 212 -256 229 -252 ct 242 -249 256 -246 269 -242 ct -282 -239 295 -235 307 -231 ct 319 -226 331 -221 342 -215 ct 352 -209 361 -202 369 -193 ct -377 -185 383 -174 388 -163 ct 392 -151 394 -137 394 -121 ct p ef -520 -336 m 520 -123 l 520 -107 522 -93 524 -82 ct 526 -71 530 -62 536 -56 ct -541 -49 548 -44 557 -41 ct 566 -39 576 -37 590 -37 ct 603 -37 615 -39 625 -44 ct -636 -49 645 -55 653 -64 ct 660 -73 666 -84 670 -97 ct 674 -110 676 -125 676 -141 ct -676 -336 l 732 -336 l 732 -72 l 732 -65 732 -57 732 -50 ct 732 -42 733 -35 733 -28 ct -733 -21 733 -15 733 -10 ct 734 -5 734 -2 734 0 ct 681 0 l 681 -1 681 -4 681 -9 ct -680 -13 680 -18 680 -24 ct 680 -30 679 -36 679 -42 ct 679 -48 679 -53 679 -58 ct -678 -58 l 673 -48 667 -39 660 -31 ct 654 -23 646 -17 638 -11 ct 629 -6 620 -2 609 2 ct -598 4 585 6 571 6 ct 552 6 536 4 523 -1 ct 509 -5 498 -12 489 -22 ct 481 -31 474 -44 470 -59 ct -466 -73 464 -91 464 -112 ct 464 -336 l 520 -336 l p ef -1101 -169 m 1101 -52 1060 7 978 7 ct 953 7 932 2 915 -7 ct 898 -16 884 -31 874 -51 ct -873 -51 l 873 -46 873 -40 873 -35 ct 872 -29 872 -24 872 -19 ct 871 -14 871 -9 871 -6 ct -870 -2 870 0 870 1 ct 816 1 l 816 -1 816 -4 817 -9 ct 817 -13 817 -19 817 -25 ct -817 -31 818 -38 818 -45 ct 818 -53 818 -61 818 -69 ct 818 -460 l 874 -460 l -874 -328 l 874 -322 874 -316 873 -311 ct 873 -305 873 -300 873 -296 ct 873 -290 873 -286 872 -281 ct -874 -281 l 884 -302 898 -318 915 -327 ct 932 -336 953 -341 978 -341 ct 1020 -341 1052 -327 1072 -298 ct -1092 -270 1101 -227 1101 -169 ct p -1043 -167 m 1043 -190 1041 -210 1039 -226 ct 1036 -243 1031 -256 1025 -267 ct -1018 -278 1010 -286 1000 -291 ct 990 -296 978 -298 964 -298 ct 949 -298 936 -296 925 -291 ct -914 -286 904 -278 897 -268 ct 889 -257 883 -243 879 -226 ct 876 -209 874 -188 874 -163 ct -874 -139 876 -119 879 -103 ct 883 -87 889 -73 897 -63 ct 904 -53 914 -45 925 -41 ct -936 -36 949 -34 963 -34 ct 977 -34 989 -37 999 -41 ct 1008 -46 1017 -54 1023 -64 ct -1030 -75 1035 -89 1038 -105 ct 1041 -122 1043 -143 1043 -167 ct p ef -1364 0 m 1364 -213 l 1364 -229 1363 -243 1361 -254 ct 1359 -265 1355 -274 1351 -280 ct -1346 -287 1339 -292 1332 -295 ct 1324 -297 1314 -299 1303 -299 ct 1291 -299 1280 -297 1271 -292 ct -1261 -287 1253 -281 1246 -272 ct 1240 -263 1235 -252 1231 -239 ct 1227 -226 1226 -211 1226 -195 ct -1226 0 l 1170 0 l 1170 -264 l 1170 -271 1170 -279 1170 -286 ct 1170 -294 1170 -301 1169 -308 ct -1169 -315 1169 -321 1169 -326 ct 1169 -331 1168 -334 1168 -336 ct 1221 -336 l -1221 -335 1221 -332 1222 -327 ct 1222 -323 1222 -318 1222 -312 ct 1223 -306 1223 -300 1223 -294 ct -1223 -288 1223 -283 1223 -278 ct 1224 -278 l 1229 -288 1235 -297 1240 -305 ct -1246 -313 1253 -319 1261 -325 ct 1268 -330 1277 -335 1287 -338 ct 1297 -341 1309 -342 1322 -342 ct -1348 -342 1368 -337 1383 -327 ct 1397 -317 1408 -301 1413 -278 ct 1414 -278 l -1419 -288 1425 -297 1431 -305 ct 1437 -313 1445 -319 1453 -325 ct 1461 -330 1470 -335 1481 -338 ct -1491 -341 1503 -342 1516 -342 ct 1533 -342 1548 -340 1560 -335 ct 1572 -331 1582 -324 1590 -314 ct -1598 -305 1604 -292 1608 -277 ct 1611 -262 1613 -244 1613 -224 ct 1613 0 l 1558 0 l -1558 -213 l 1558 -229 1557 -243 1555 -254 ct 1553 -265 1549 -274 1544 -280 ct -1540 -287 1533 -292 1525 -295 ct 1518 -297 1508 -299 1497 -299 ct 1485 -299 1474 -297 1465 -292 ct -1455 -288 1447 -281 1440 -272 ct 1434 -264 1428 -253 1425 -240 ct 1421 -227 1419 -212 1419 -195 ct -1419 0 l 1364 0 l p ef -1697 -407 m 1697 -460 l 1753 -460 l 1753 -407 l 1697 -407 l p -1697 1 m 1697 -335 l 1753 -335 l 1753 1 l 1697 1 l p ef -1967 -2 m 1958 0 1950 2 1941 3 ct 1932 4 1922 5 1910 5 ct 1866 5 1843 -20 1843 -71 ct -1843 -295 l 1805 -295 l 1805 -336 l 1846 -336 l 1862 -411 l 1899 -411 l -1899 -336 l 1961 -336 l 1961 -295 l 1899 -295 l 1899 -83 l 1899 -67 1902 -56 1907 -49 ct -1912 -43 1922 -39 1935 -39 ct 1940 -39 1945 -40 1950 -41 ct 1955 -41 1961 -42 1967 -44 ct -1967 -2 l p ef -2195 0 m 2195 -258 l 2195 -265 2195 -272 2195 -279 ct 2195 -287 2195 -294 2194 -300 ct -2194 -307 2194 -314 2194 -320 ct 2194 -326 2193 -331 2193 -336 ct 2246 -336 l -2246 -331 2246 -326 2247 -320 ct 2247 -313 2247 -307 2248 -301 ct 2248 -294 2248 -288 2248 -282 ct -2248 -276 2248 -271 2248 -267 ct 2250 -267 l 2254 -280 2258 -291 2262 -301 ct -2267 -310 2272 -318 2278 -324 ct 2284 -330 2291 -335 2299 -338 ct 2307 -341 2318 -342 2329 -342 ct -2334 -342 2338 -342 2342 -341 ct 2346 -340 2350 -340 2352 -339 ct 2352 -288 l -2348 -289 2344 -290 2339 -290 ct 2334 -291 2328 -291 2322 -291 ct 2309 -291 2298 -288 2289 -282 ct -2280 -276 2273 -268 2267 -258 ct 2262 -248 2258 -236 2255 -221 ct 2252 -207 2251 -192 2251 -175 ct -2251 0 l 2195 0 l p ef -2448 -156 m 2448 -139 2449 -122 2453 -108 ct 2457 -93 2462 -80 2470 -70 ct -2477 -59 2487 -51 2499 -45 ct 2511 -39 2525 -36 2541 -36 ct 2565 -36 2585 -41 2599 -50 ct -2614 -60 2624 -72 2629 -87 ct 2678 -73 l 2674 -64 2670 -55 2663 -45 ct 2657 -36 2649 -27 2638 -20 ct -2627 -12 2614 -6 2598 -1 ct 2583 4 2564 6 2541 6 ct 2492 6 2454 -9 2428 -38 ct -2402 -68 2389 -112 2389 -170 ct 2389 -202 2393 -228 2401 -250 ct 2409 -272 2419 -290 2433 -303 ct -2447 -317 2463 -327 2481 -333 ct 2499 -339 2518 -342 2539 -342 ct 2567 -342 2591 -338 2610 -329 ct -2629 -320 2644 -307 2655 -291 ct 2667 -275 2675 -256 2680 -234 ct 2685 -212 2687 -189 2687 -164 ct -2687 -156 l 2448 -156 l p -2629 -199 m 2626 -234 2617 -260 2602 -277 ct 2587 -293 2566 -301 2538 -301 ct -2529 -301 2519 -300 2509 -296 ct 2499 -293 2489 -288 2480 -280 ct 2472 -273 2464 -262 2458 -249 ct -2452 -236 2449 -219 2448 -199 ct 2629 -199 l p ef -3009 -93 m 3009 -77 3006 -63 2999 -51 ct 2993 -39 2984 -28 2973 -20 ct 2961 -12 2947 -5 2930 -1 ct -2913 4 2894 6 2872 6 ct 2853 6 2835 4 2820 2 ct 2804 -2 2791 -6 2779 -13 ct 2767 -20 2757 -28 2749 -39 ct -2741 -50 2735 -63 2732 -79 ct 2781 -89 l 2786 -71 2796 -57 2810 -49 ct 2825 -41 2846 -37 2872 -37 ct -2884 -37 2895 -37 2905 -39 ct 2915 -41 2924 -44 2931 -48 ct 2939 -52 2944 -57 2948 -64 ct -2952 -70 2954 -79 2954 -89 ct 2954 -99 2952 -107 2947 -114 ct 2942 -120 2936 -126 2927 -130 ct -2919 -134 2909 -138 2896 -141 ct 2884 -144 2871 -148 2857 -152 ct 2843 -155 2830 -159 2817 -164 ct -2803 -168 2791 -174 2781 -181 ct 2770 -188 2762 -197 2755 -207 ct 2748 -218 2745 -231 2745 -247 ct -2745 -278 2756 -301 2778 -317 ct 2800 -333 2831 -341 2873 -341 ct 2910 -341 2939 -335 2961 -322 ct -2983 -309 2997 -288 3003 -259 ct 2952 -253 l 2951 -261 2947 -269 2942 -275 ct -2937 -281 2931 -285 2924 -289 ct 2917 -293 2909 -295 2901 -297 ct 2892 -298 2883 -299 2873 -299 ct -2848 -299 2829 -295 2817 -288 ct 2805 -280 2799 -268 2799 -253 ct 2799 -244 2801 -236 2806 -230 ct -2810 -224 2817 -219 2825 -215 ct 2832 -211 2842 -208 2853 -205 ct 2864 -202 2877 -199 2890 -195 ct -2899 -193 2908 -191 2917 -188 ct 2927 -186 2936 -182 2945 -179 ct 2953 -175 2962 -171 2969 -166 ct -2977 -161 2984 -155 2990 -149 ct 2995 -142 3000 -134 3003 -125 ct 3007 -116 3009 -105 3009 -93 ct -p ef -3128 -336 m 3128 -123 l 3128 -107 3130 -93 3132 -82 ct 3134 -71 3138 -62 3144 -56 ct -3149 -49 3156 -44 3165 -41 ct 3174 -39 3184 -37 3198 -37 ct 3211 -37 3223 -39 3233 -44 ct -3244 -49 3253 -55 3261 -64 ct 3268 -73 3274 -84 3278 -97 ct 3282 -110 3284 -125 3284 -141 ct -3284 -336 l 3340 -336 l 3340 -72 l 3340 -65 3340 -57 3340 -50 ct 3340 -42 3341 -35 3341 -28 ct -3341 -21 3341 -15 3341 -10 ct 3342 -5 3342 -2 3342 0 ct 3289 0 l 3289 -1 3289 -4 3289 -9 ct -3288 -13 3288 -18 3288 -24 ct 3288 -30 3287 -36 3287 -42 ct 3287 -48 3287 -53 3287 -58 ct -3286 -58 l 3281 -48 3275 -39 3268 -31 ct 3262 -23 3254 -17 3246 -11 ct 3237 -6 3228 -2 3217 2 ct -3206 4 3193 6 3179 6 ct 3160 6 3144 4 3131 -1 ct 3117 -5 3106 -12 3097 -22 ct 3089 -31 3082 -44 3078 -59 ct -3074 -73 3072 -91 3072 -112 ct 3072 -336 l 3128 -336 l p ef -3425 1 m 3425 -460 l 3481 -460 l 3481 1 l 3425 1 l p ef -3694 -2 m 3685 0 3677 2 3668 3 ct 3659 4 3649 5 3637 5 ct 3593 5 3570 -20 3570 -71 ct -3570 -295 l 3532 -295 l 3532 -336 l 3573 -336 l 3589 -411 l 3626 -411 l -3626 -336 l 3688 -336 l 3688 -295 l 3626 -295 l 3626 -83 l 3626 -67 3629 -56 3634 -49 ct -3639 -43 3649 -39 3662 -39 ct 3667 -39 3672 -40 3677 -41 ct 3682 -41 3688 -42 3694 -44 ct -3694 -2 l p ef -3995 -93 m 3995 -77 3992 -63 3985 -51 ct 3979 -39 3970 -28 3959 -20 ct 3947 -12 3933 -5 3916 -1 ct -3899 4 3880 6 3858 6 ct 3839 6 3821 4 3806 2 ct 3790 -2 3777 -6 3765 -13 ct 3753 -20 3743 -28 3735 -39 ct -3727 -50 3721 -63 3718 -79 ct 3767 -89 l 3772 -71 3782 -57 3796 -49 ct 3811 -41 3832 -37 3858 -37 ct -3870 -37 3881 -37 3891 -39 ct 3901 -41 3910 -44 3917 -48 ct 3925 -52 3930 -57 3934 -64 ct -3938 -70 3940 -79 3940 -89 ct 3940 -99 3938 -107 3933 -114 ct 3928 -120 3922 -126 3913 -130 ct -3905 -134 3895 -138 3882 -141 ct 3870 -144 3857 -148 3843 -152 ct 3829 -155 3816 -159 3803 -164 ct -3789 -168 3777 -174 3767 -181 ct 3756 -188 3748 -197 3741 -207 ct 3734 -218 3731 -231 3731 -247 ct -3731 -278 3742 -301 3764 -317 ct 3786 -333 3817 -341 3859 -341 ct 3896 -341 3925 -335 3947 -322 ct -3969 -309 3983 -288 3989 -259 ct 3938 -253 l 3937 -261 3933 -269 3928 -275 ct -3923 -281 3917 -285 3910 -289 ct 3903 -293 3895 -295 3887 -297 ct 3878 -298 3869 -299 3859 -299 ct -3834 -299 3815 -295 3803 -288 ct 3791 -280 3785 -268 3785 -253 ct 3785 -244 3787 -236 3792 -230 ct -3796 -224 3803 -219 3811 -215 ct 3818 -211 3828 -208 3839 -205 ct 3850 -202 3863 -199 3876 -195 ct -3885 -193 3894 -191 3903 -188 ct 3913 -186 3922 -182 3931 -179 ct 3939 -175 3948 -171 3955 -166 ct -3963 -161 3970 -155 3976 -149 ct 3981 -142 3986 -134 3989 -125 ct 3993 -116 3995 -105 3995 -93 ct -p ef -4307 -295 m 4307 0 l 4251 0 l 4251 -295 l 4204 -295 l 4204 -336 l -4251 -336 l 4251 -374 l 4251 -386 4252 -397 4255 -408 ct 4257 -418 4261 -427 4267 -435 ct -4273 -443 4282 -449 4292 -453 ct 4303 -458 4316 -460 4333 -460 ct 4340 -460 4346 -460 4354 -459 ct -4361 -458 4367 -458 4372 -456 ct 4372 -414 l 4369 -414 4365 -415 4360 -415 ct -4355 -416 4351 -416 4348 -416 ct 4339 -416 4333 -415 4327 -413 ct 4322 -411 4318 -407 4315 -403 ct -4312 -399 4310 -394 4309 -387 ct 4308 -381 4307 -374 4307 -366 ct 4307 -336 l -4372 -336 l 4372 -295 l 4307 -295 l p ef -4699 -168 m 4699 -110 4687 -66 4661 -37 ct 4635 -8 4597 6 4548 6 ct 4525 6 4504 2 4486 -5 ct -4467 -12 4452 -22 4439 -37 ct 4426 -51 4416 -69 4410 -91 ct 4403 -113 4400 -139 4400 -168 ct -4400 -284 4450 -342 4550 -342 ct 4576 -342 4599 -339 4617 -331 ct 4636 -324 4652 -313 4664 -299 ct -4676 -284 4685 -266 4691 -245 ct 4697 -223 4699 -197 4699 -168 ct p -4641 -168 m 4641 -195 4639 -216 4635 -233 ct 4631 -250 4625 -264 4617 -274 ct -4609 -284 4600 -291 4589 -295 ct 4578 -299 4565 -301 4551 -301 ct 4537 -301 4524 -299 4512 -295 ct -4501 -290 4491 -283 4483 -273 ct 4475 -263 4469 -249 4465 -232 ct 4460 -215 4458 -194 4458 -168 ct -4458 -142 4461 -121 4465 -104 ct 4470 -87 4476 -73 4484 -63 ct 4492 -53 4501 -46 4512 -41 ct -4523 -37 4535 -35 4548 -35 ct 4562 -35 4575 -37 4586 -41 ct 4598 -45 4608 -52 4616 -63 ct -4624 -73 4630 -86 4634 -104 ct 4639 -121 4641 -142 4641 -168 ct p ef -4768 0 m 4768 -258 l 4768 -265 4768 -272 4768 -279 ct 4768 -287 4768 -294 4767 -300 ct -4767 -307 4767 -314 4767 -320 ct 4767 -326 4766 -331 4766 -336 ct 4819 -336 l -4819 -331 4819 -326 4820 -320 ct 4820 -313 4820 -307 4821 -301 ct 4821 -294 4821 -288 4821 -282 ct -4821 -276 4821 -271 4821 -267 ct 4823 -267 l 4827 -280 4831 -291 4835 -301 ct -4840 -310 4845 -318 4851 -324 ct 4857 -330 4864 -335 4872 -338 ct 4880 -341 4891 -342 4902 -342 ct -4907 -342 4911 -342 4915 -341 ct 4919 -340 4923 -340 4925 -339 ct 4925 -288 l -4921 -289 4917 -290 4912 -290 ct 4907 -291 4901 -291 4895 -291 ct 4882 -291 4871 -288 4862 -282 ct -4853 -276 4846 -268 4840 -258 ct 4835 -248 4831 -236 4828 -221 ct 4825 -207 4824 -192 4824 -175 ct -4824 0 l 4768 0 l p ef -5226 -295 m 5226 0 l 5170 0 l 5170 -295 l 5123 -295 l 5123 -336 l -5170 -336 l 5170 -374 l 5170 -386 5171 -397 5174 -408 ct 5176 -418 5180 -427 5186 -435 ct -5192 -443 5201 -449 5211 -453 ct 5222 -458 5235 -460 5252 -460 ct 5259 -460 5265 -460 5273 -459 ct -5280 -458 5286 -458 5291 -456 ct 5291 -414 l 5288 -414 5284 -415 5279 -415 ct -5274 -416 5270 -416 5267 -416 ct 5258 -416 5252 -415 5246 -413 ct 5241 -411 5237 -407 5234 -403 ct -5231 -399 5229 -394 5228 -387 ct 5227 -381 5226 -374 5226 -366 ct 5226 -336 l -5291 -336 l 5291 -295 l 5226 -295 l p ef -5334 -407 m 5334 -460 l 5390 -460 l 5390 -407 l 5334 -407 l p -5334 1 m 5334 -335 l 5390 -335 l 5390 1 l 5334 1 l p ef -5603 -2 m 5594 0 5586 2 5577 3 ct 5568 4 5558 5 5546 5 ct 5502 5 5479 -20 5479 -71 ct -5479 -295 l 5441 -295 l 5441 -336 l 5482 -336 l 5498 -411 l 5535 -411 l -5535 -336 l 5597 -336 l 5597 -295 l 5535 -295 l 5535 -83 l 5535 -67 5538 -56 5543 -49 ct -5548 -43 5558 -39 5571 -39 ct 5576 -39 5581 -40 5586 -41 ct 5591 -41 5597 -42 5603 -44 ct -5603 -2 l p ef -5781 -2 m 5772 0 5764 2 5755 3 ct 5746 4 5736 5 5724 5 ct 5680 5 5657 -20 5657 -71 ct -5657 -295 l 5619 -295 l 5619 -336 l 5660 -336 l 5676 -411 l 5713 -411 l -5713 -336 l 5775 -336 l 5775 -295 l 5713 -295 l 5713 -83 l 5713 -67 5716 -56 5721 -49 ct -5726 -43 5736 -39 5749 -39 ct 5754 -39 5759 -40 5764 -41 ct 5769 -41 5775 -42 5781 -44 ct -5781 -2 l p ef -5829 -407 m 5829 -460 l 5885 -460 l 5885 -407 l 5829 -407 l p -5829 1 m 5829 -335 l 5885 -335 l 5885 1 l 5829 1 l p ef -6183 0 m 6183 -213 l 6183 -229 6182 -243 6179 -254 ct 6177 -265 6173 -274 6168 -280 ct -6162 -287 6155 -292 6146 -295 ct 6138 -297 6127 -299 6114 -299 ct 6100 -299 6088 -297 6078 -292 ct -6067 -287 6058 -281 6051 -272 ct 6043 -263 6037 -252 6033 -239 ct 6029 -226 6027 -211 6027 -195 ct -6027 0 l 5971 0 l 5971 -264 l 5971 -271 5971 -279 5971 -286 ct 5971 -294 5971 -301 5970 -308 ct -5970 -315 5970 -321 5970 -326 ct 5970 -331 5969 -334 5969 -336 ct 6022 -336 l -6022 -335 6022 -332 6023 -327 ct 6023 -323 6023 -318 6023 -312 ct 6024 -306 6024 -300 6024 -294 ct -6024 -288 6024 -283 6024 -278 ct 6025 -278 l 6031 -288 6037 -297 6043 -305 ct -6049 -313 6057 -319 6065 -325 ct 6074 -330 6083 -335 6094 -338 ct 6105 -341 6118 -342 6133 -342 ct -6151 -342 6167 -340 6181 -335 ct 6194 -331 6205 -324 6214 -314 ct 6222 -305 6229 -292 6233 -277 ct -6237 -262 6239 -244 6239 -224 ct 6239 0 l 6183 0 l p ef -6448 132 m 6429 132 6412 130 6397 126 ct 6382 122 6369 117 6359 109 ct 6348 102 6339 93 6333 83 ct -6326 73 6322 61 6319 49 ct 6375 41 l 6378 56 6387 68 6399 77 ct 6412 85 6429 89 6449 89 ct -6462 89 6474 88 6484 84 ct 6494 81 6503 75 6510 67 ct 6517 59 6523 49 6527 37 ct -6531 25 6533 9 6533 -8 ct 6533 -63 l 6532 -63 l 6528 -54 6523 -46 6517 -38 ct -6511 -30 6503 -24 6495 -18 ct 6486 -12 6476 -7 6464 -3 ct 6452 0 6439 2 6424 2 ct -6403 2 6385 -1 6370 -8 ct 6354 -16 6342 -26 6332 -41 ct 6323 -55 6316 -73 6311 -94 ct -6307 -115 6305 -139 6305 -167 ct 6305 -194 6307 -218 6311 -240 ct 6316 -261 6323 -280 6333 -295 ct -6343 -310 6356 -321 6372 -329 ct 6388 -337 6408 -341 6431 -341 ct 6454 -341 6475 -336 6492 -325 ct -6510 -314 6523 -298 6533 -278 ct 6533 -278 l 6533 -284 6534 -289 6534 -296 ct -6534 -302 6535 -308 6535 -314 ct 6535 -320 6536 -324 6536 -329 ct 6536 -333 6537 -335 6537 -336 ct -6590 -336 l 6590 -334 6590 -331 6590 -326 ct 6589 -322 6589 -316 6589 -310 ct -6589 -304 6589 -297 6589 -290 ct 6588 -282 6588 -274 6588 -266 ct 6588 -10 l -6588 37 6577 73 6554 96 ct 6531 120 6495 132 6448 132 ct p -6533 -168 m 6533 -191 6530 -211 6525 -228 ct 6520 -245 6514 -258 6505 -269 ct -6497 -279 6488 -287 6477 -292 ct 6466 -297 6455 -299 6444 -299 ct 6430 -299 6418 -297 6407 -292 ct -6397 -287 6389 -279 6382 -269 ct 6375 -258 6370 -244 6367 -228 ct 6364 -211 6362 -191 6362 -168 ct -6362 -144 6364 -123 6367 -107 ct 6370 -91 6375 -77 6382 -67 ct 6388 -57 6397 -50 6407 -46 ct -6417 -41 6429 -39 6443 -39 ct 6454 -39 6465 -41 6476 -46 ct 6487 -51 6496 -58 6505 -69 ct -6513 -79 6520 -92 6525 -109 ct 6530 -125 6533 -145 6533 -168 ct p ef -pom -0.683 0.812 0.003 c 11597 14338 m 4740 14338 l 4740 13322 l 18455 13322 l -18455 14338 l 11597 14338 l p ef -0.503 0.503 0.503 c 11597 14338 m 4739 14338 l 4739 13322 l 18454 13322 l -18454 14338 l 11597 14338 l pc -pum -4990 14023 t -0.003 0.003 0.003 c 59 0 m 59 -437 l 118 -437 l 118 0 l 59 0 l p ef -433 -53 m 422 -32 409 -16 391 -7 ct 374 2 353 7 328 7 ct 286 7 255 -7 235 -36 ct -215 -64 205 -108 205 -166 ct 205 -283 246 -341 328 -341 ct 353 -341 375 -337 392 -327 ct -409 -318 422 -303 433 -283 ct 433 -283 l 433 -285 433 -288 433 -293 ct 433 -297 433 -302 433 -307 ct -433 -312 433 -316 433 -321 ct 433 -325 433 -328 433 -330 ct 433 -460 l 488 -460 l -488 -69 l 488 -61 488 -53 489 -45 ct 489 -38 489 -31 489 -25 ct 489 -19 489 -13 490 -9 ct -490 -4 490 -1 490 1 ct 437 1 l 436 -2 436 -4 436 -8 ct 436 -12 435 -16 435 -21 ct -435 -26 434 -32 434 -37 ct 434 -42 434 -48 434 -53 ct 433 -53 l p -263 -167 m 263 -144 265 -124 268 -108 ct 271 -91 275 -78 282 -67 ct 288 -56 296 -49 306 -44 ct -316 -39 328 -36 342 -36 ct 357 -36 370 -39 381 -43 ct 393 -48 402 -56 409 -66 ct -417 -77 423 -91 427 -108 ct 431 -125 433 -146 433 -171 ct 433 -195 431 -215 427 -232 ct -423 -248 417 -261 409 -271 ct 402 -282 392 -289 381 -293 ct 370 -298 357 -300 343 -300 ct -329 -300 318 -298 308 -293 ct 298 -288 289 -280 283 -270 ct 276 -259 271 -246 268 -229 ct -265 -212 263 -191 263 -167 ct p ef -615 -156 m 615 -139 616 -122 620 -108 ct 624 -93 629 -80 637 -70 ct 644 -59 654 -51 666 -45 ct -678 -39 692 -36 708 -36 ct 732 -36 752 -41 766 -50 ct 781 -60 791 -72 796 -87 ct -845 -73 l 841 -64 837 -55 830 -45 ct 824 -36 816 -27 805 -20 ct 794 -12 781 -6 765 -1 ct -750 4 731 6 708 6 ct 659 6 621 -9 595 -38 ct 569 -68 556 -112 556 -170 ct 556 -202 560 -228 568 -250 ct -576 -272 586 -290 600 -303 ct 614 -317 630 -327 648 -333 ct 666 -339 685 -342 706 -342 ct -734 -342 758 -338 777 -329 ct 796 -320 811 -307 822 -291 ct 834 -275 842 -256 847 -234 ct -852 -212 854 -189 854 -164 ct 854 -156 l 615 -156 l p -796 -199 m 793 -234 784 -260 769 -277 ct 754 -293 733 -301 705 -301 ct 696 -301 686 -300 676 -296 ct -666 -293 656 -288 647 -280 ct 639 -273 631 -262 625 -249 ct 619 -236 616 -219 615 -199 ct -796 -199 l p ef -1137 0 m 1137 -213 l 1137 -229 1136 -243 1133 -254 ct 1131 -265 1127 -274 1122 -280 ct -1116 -287 1109 -292 1100 -295 ct 1092 -297 1081 -299 1068 -299 ct 1054 -299 1042 -297 1032 -292 ct -1021 -287 1012 -281 1005 -272 ct 997 -263 991 -252 987 -239 ct 983 -226 981 -211 981 -195 ct -981 0 l 925 0 l 925 -264 l 925 -271 925 -279 925 -286 ct 925 -294 925 -301 924 -308 ct -924 -315 924 -321 924 -326 ct 924 -331 923 -334 923 -336 ct 976 -336 l 976 -335 976 -332 977 -327 ct -977 -323 977 -318 977 -312 ct 978 -306 978 -300 978 -294 ct 978 -288 978 -283 978 -278 ct -979 -278 l 985 -288 991 -297 997 -305 ct 1003 -313 1011 -319 1019 -325 ct 1028 -330 1037 -335 1048 -338 ct -1059 -341 1072 -342 1087 -342 ct 1105 -342 1121 -340 1135 -335 ct 1148 -331 1159 -324 1168 -314 ct -1176 -305 1183 -292 1187 -277 ct 1191 -262 1193 -244 1193 -224 ct 1193 0 l 1137 0 l -p ef -1404 -2 m 1395 0 1387 2 1378 3 ct 1369 4 1359 5 1347 5 ct 1303 5 1280 -20 1280 -71 ct -1280 -295 l 1242 -295 l 1242 -336 l 1283 -336 l 1299 -411 l 1336 -411 l -1336 -336 l 1398 -336 l 1398 -295 l 1336 -295 l 1336 -83 l 1336 -67 1339 -56 1344 -49 ct -1349 -43 1359 -39 1372 -39 ct 1377 -39 1382 -40 1387 -41 ct 1392 -41 1398 -42 1404 -44 ct -1404 -2 l p ef -1452 -407 m 1452 -460 l 1508 -460 l 1508 -407 l 1452 -407 l p -1452 1 m 1452 -335 l 1508 -335 l 1508 1 l 1452 1 l p ef -1661 -295 m 1661 0 l 1605 0 l 1605 -295 l 1558 -295 l 1558 -336 l -1605 -336 l 1605 -374 l 1605 -386 1606 -397 1609 -408 ct 1611 -418 1615 -427 1621 -435 ct -1627 -443 1636 -449 1646 -453 ct 1657 -458 1670 -460 1687 -460 ct 1694 -460 1700 -460 1708 -459 ct -1715 -458 1721 -458 1726 -456 ct 1726 -414 l 1723 -414 1719 -415 1714 -415 ct -1709 -416 1705 -416 1702 -416 ct 1693 -416 1687 -415 1681 -413 ct 1676 -411 1672 -407 1669 -403 ct -1666 -399 1664 -394 1663 -387 ct 1662 -381 1661 -374 1661 -366 ct 1661 -336 l -1726 -336 l 1726 -295 l 1661 -295 l p ef -1914 -1 m 1906 20 1898 38 1890 54 ct 1882 70 1873 84 1863 96 ct 1853 107 1841 116 1829 122 ct -1817 128 1802 131 1786 131 ct 1779 131 1773 131 1767 131 ct 1761 131 1754 130 1748 128 ct -1748 86 l 1752 87 1756 88 1761 88 ct 1766 88 1770 88 1774 88 ct 1790 88 1805 82 1819 70 ct -1833 57 1846 38 1856 11 ct 1862 -2 l 1729 -336 l 1788 -336 l 1859 -150 l -1861 -145 1863 -137 1867 -128 ct 1870 -119 1873 -109 1876 -100 ct 1879 -91 1882 -83 1885 -75 ct -1887 -68 1889 -63 1889 -61 ct 1890 -63 1891 -68 1894 -75 ct 1896 -81 1899 -89 1902 -97 ct -1905 -105 1908 -114 1911 -122 ct 1914 -131 1917 -138 1919 -144 ct 1984 -336 l -2043 -336 l 1914 -1 l p ef -2479 0 m 2479 -213 l 2479 -229 2478 -243 2475 -254 ct 2473 -265 2469 -274 2464 -280 ct -2458 -287 2451 -292 2442 -295 ct 2434 -297 2423 -299 2410 -299 ct 2396 -299 2384 -297 2374 -292 ct -2363 -287 2354 -281 2347 -272 ct 2339 -263 2333 -252 2329 -239 ct 2325 -226 2323 -211 2323 -195 ct -2323 0 l 2267 0 l 2267 -264 l 2267 -271 2267 -279 2267 -286 ct 2267 -294 2267 -301 2266 -308 ct -2266 -315 2266 -321 2266 -326 ct 2266 -331 2265 -334 2265 -336 ct 2318 -336 l -2318 -335 2318 -332 2319 -327 ct 2319 -323 2319 -318 2319 -312 ct 2320 -306 2320 -300 2320 -294 ct -2320 -288 2320 -283 2320 -278 ct 2321 -278 l 2327 -288 2333 -297 2339 -305 ct -2345 -313 2353 -319 2361 -325 ct 2370 -330 2379 -335 2390 -338 ct 2401 -341 2414 -342 2429 -342 ct -2447 -342 2463 -340 2477 -335 ct 2490 -331 2501 -324 2510 -314 ct 2518 -305 2525 -292 2529 -277 ct -2533 -262 2535 -244 2535 -224 ct 2535 0 l 2479 0 l p ef -2660 -156 m 2660 -139 2661 -122 2665 -108 ct 2669 -93 2674 -80 2682 -70 ct -2689 -59 2699 -51 2711 -45 ct 2723 -39 2737 -36 2753 -36 ct 2777 -36 2797 -41 2811 -50 ct -2826 -60 2836 -72 2841 -87 ct 2890 -73 l 2886 -64 2882 -55 2875 -45 ct 2869 -36 2861 -27 2850 -20 ct -2839 -12 2826 -6 2810 -1 ct 2795 4 2776 6 2753 6 ct 2704 6 2666 -9 2640 -38 ct -2614 -68 2601 -112 2601 -170 ct 2601 -202 2605 -228 2613 -250 ct 2621 -272 2631 -290 2645 -303 ct -2659 -317 2675 -327 2693 -333 ct 2711 -339 2730 -342 2751 -342 ct 2779 -342 2803 -338 2822 -329 ct -2841 -320 2856 -307 2867 -291 ct 2879 -275 2887 -256 2892 -234 ct 2897 -212 2899 -189 2899 -164 ct -2899 -156 l 2660 -156 l p -2841 -199 m 2838 -234 2829 -260 2814 -277 ct 2799 -293 2778 -301 2750 -301 ct -2741 -301 2731 -300 2721 -296 ct 2711 -293 2701 -288 2692 -280 ct 2684 -273 2676 -262 2670 -249 ct -2664 -236 2661 -219 2660 -199 ct 2841 -199 l p ef -3289 0 m 3224 0 l 3171 -217 l 3169 -222 3167 -229 3165 -238 ct 3164 -246 3162 -254 3160 -262 ct -3158 -271 3156 -280 3154 -290 ct 3153 -281 3151 -272 3149 -262 ct 3147 -255 3145 -246 3143 -238 ct -3141 -229 3139 -222 3138 -216 ct 3083 0 l 3018 0 l 2924 -336 l 2979 -336 l -3036 -108 l 3037 -103 3039 -97 3040 -90 ct 3042 -83 3043 -77 3045 -70 ct 3046 -62 3048 -54 3049 -46 ct -3051 -54 3053 -62 3055 -69 ct 3056 -76 3058 -82 3060 -89 ct 3061 -95 3063 -101 3064 -105 ct -3125 -336 l 3185 -336 l 3243 -105 l 3245 -100 3246 -94 3248 -87 ct 3249 -80 3251 -74 3252 -68 ct -3254 -61 3256 -54 3257 -46 ct 3259 -54 3261 -62 3262 -69 ct 3264 -76 3265 -82 3267 -89 ct -3268 -96 3270 -102 3271 -108 ct 3331 -336 l 3385 -336 l 3289 0 l p ef -3646 -156 m 3646 -139 3647 -122 3651 -108 ct 3655 -93 3660 -80 3668 -70 ct -3675 -59 3685 -51 3697 -45 ct 3709 -39 3723 -36 3739 -36 ct 3763 -36 3783 -41 3797 -50 ct -3812 -60 3822 -72 3827 -87 ct 3876 -73 l 3872 -64 3868 -55 3861 -45 ct 3855 -36 3847 -27 3836 -20 ct -3825 -12 3812 -6 3796 -1 ct 3781 4 3762 6 3739 6 ct 3690 6 3652 -9 3626 -38 ct -3600 -68 3587 -112 3587 -170 ct 3587 -202 3591 -228 3599 -250 ct 3607 -272 3617 -290 3631 -303 ct -3645 -317 3661 -327 3679 -333 ct 3697 -339 3716 -342 3737 -342 ct 3765 -342 3789 -338 3808 -329 ct -3827 -320 3842 -307 3853 -291 ct 3865 -275 3873 -256 3878 -234 ct 3883 -212 3885 -189 3885 -164 ct -3885 -156 l 3646 -156 l p -3827 -199 m 3824 -234 3815 -260 3800 -277 ct 3785 -293 3764 -301 3736 -301 ct -3727 -301 3717 -300 3707 -296 ct 3697 -293 3687 -288 3678 -280 ct 3670 -273 3662 -262 3656 -249 ct -3650 -236 3647 -219 3646 -199 ct 3827 -199 l p ef -4160 0 m 4070 -138 l 3979 0 l 3919 0 l 4039 -173 l 3925 -336 l 3986 -336 l -4070 -205 l 4153 -336 l 4216 -336 l 4102 -173 l 4223 0 l 4160 0 l -p ef -4555 -170 m 4555 -144 4553 -121 4549 -99 ct 4545 -78 4538 -59 4529 -43 ct 4519 -28 4506 -16 4491 -7 ct -4475 2 4455 6 4432 6 ct 4408 6 4387 2 4369 -7 ct 4351 -17 4337 -31 4328 -52 ct -4326 -52 l 4327 -52 4327 -50 4327 -47 ct 4327 -43 4327 -39 4327 -34 ct 4327 -29 4327 -24 4327 -17 ct -4328 -11 4328 -5 4328 1 ct 4328 132 l 4272 132 l 4272 -267 l 4272 -275 4272 -283 4272 -290 ct -4272 -298 4271 -305 4271 -311 ct 4271 -317 4271 -322 4271 -326 ct 4270 -331 4270 -334 4270 -336 ct -4324 -336 l 4324 -335 4324 -333 4325 -329 ct 4325 -326 4325 -321 4326 -316 ct -4326 -311 4326 -305 4327 -299 ct 4327 -293 4327 -287 4327 -282 ct 4328 -282 l -4333 -293 4339 -302 4346 -310 ct 4353 -317 4360 -323 4369 -328 ct 4377 -333 4386 -337 4397 -339 ct -4407 -341 4419 -342 4432 -342 ct 4455 -342 4475 -338 4491 -330 ct 4506 -321 4519 -310 4529 -295 ct -4538 -280 4545 -261 4549 -240 ct 4553 -219 4555 -195 4555 -170 ct p -4497 -168 m 4497 -189 4496 -207 4493 -224 ct 4491 -240 4486 -253 4480 -265 ct -4474 -276 4466 -284 4456 -290 ct 4446 -296 4433 -299 4418 -299 ct 4405 -299 4394 -297 4383 -294 ct -4372 -290 4362 -283 4354 -273 ct 4346 -263 4339 -250 4335 -232 ct 4330 -215 4328 -192 4328 -164 ct -4328 -140 4330 -120 4333 -104 ct 4337 -87 4343 -74 4351 -64 ct 4358 -53 4368 -46 4379 -42 ct -4390 -37 4403 -35 4417 -35 ct 4433 -35 4446 -38 4456 -44 ct 4466 -50 4474 -59 4480 -70 ct -4486 -82 4491 -95 4493 -112 ct 4496 -128 4497 -147 4497 -168 ct p ef -4666 -156 m 4666 -139 4667 -122 4671 -108 ct 4675 -93 4680 -80 4688 -70 ct -4695 -59 4705 -51 4717 -45 ct 4729 -39 4743 -36 4759 -36 ct 4783 -36 4803 -41 4817 -50 ct -4832 -60 4842 -72 4847 -87 ct 4896 -73 l 4892 -64 4888 -55 4881 -45 ct 4875 -36 4867 -27 4856 -20 ct -4845 -12 4832 -6 4816 -1 ct 4801 4 4782 6 4759 6 ct 4710 6 4672 -9 4646 -38 ct -4620 -68 4607 -112 4607 -170 ct 4607 -202 4611 -228 4619 -250 ct 4627 -272 4637 -290 4651 -303 ct -4665 -317 4681 -327 4699 -333 ct 4717 -339 4736 -342 4757 -342 ct 4785 -342 4809 -338 4828 -329 ct -4847 -320 4862 -307 4873 -291 ct 4885 -275 4893 -256 4898 -234 ct 4903 -212 4905 -189 4905 -164 ct -4905 -156 l 4666 -156 l p -4847 -199 m 4844 -234 4835 -260 4820 -277 ct 4805 -293 4784 -301 4756 -301 ct -4747 -301 4737 -300 4727 -296 ct 4717 -293 4707 -288 4698 -280 ct 4690 -273 4682 -262 4676 -249 ct -4670 -236 4667 -219 4666 -199 ct 4847 -199 l p ef -4976 0 m 4976 -258 l 4976 -265 4976 -272 4976 -279 ct 4976 -287 4976 -294 4975 -300 ct -4975 -307 4975 -314 4975 -320 ct 4975 -326 4974 -331 4974 -336 ct 5027 -336 l -5027 -331 5027 -326 5028 -320 ct 5028 -313 5028 -307 5029 -301 ct 5029 -294 5029 -288 5029 -282 ct -5029 -276 5029 -271 5029 -267 ct 5031 -267 l 5035 -280 5039 -291 5043 -301 ct -5048 -310 5053 -318 5059 -324 ct 5065 -330 5072 -335 5080 -338 ct 5088 -341 5099 -342 5110 -342 ct -5115 -342 5119 -342 5123 -341 ct 5127 -340 5131 -340 5133 -339 ct 5133 -288 l -5129 -289 5125 -290 5120 -290 ct 5115 -291 5109 -291 5103 -291 ct 5090 -291 5079 -288 5070 -282 ct -5061 -276 5054 -268 5048 -258 ct 5043 -248 5039 -236 5036 -221 ct 5033 -207 5032 -192 5032 -175 ct -5032 0 l 4976 0 l p ef -5186 -407 m 5186 -460 l 5242 -460 l 5242 -407 l 5186 -407 l p -5186 1 m 5186 -335 l 5242 -335 l 5242 1 l 5186 1 l p ef -5521 0 m 5521 -213 l 5521 -229 5520 -243 5518 -254 ct 5516 -265 5512 -274 5508 -280 ct -5503 -287 5496 -292 5489 -295 ct 5481 -297 5471 -299 5460 -299 ct 5448 -299 5437 -297 5428 -292 ct -5418 -287 5410 -281 5403 -272 ct 5397 -263 5392 -252 5388 -239 ct 5384 -226 5383 -211 5383 -195 ct -5383 0 l 5327 0 l 5327 -264 l 5327 -271 5327 -279 5327 -286 ct 5327 -294 5327 -301 5326 -308 ct -5326 -315 5326 -321 5326 -326 ct 5326 -331 5325 -334 5325 -336 ct 5378 -336 l -5378 -335 5378 -332 5379 -327 ct 5379 -323 5379 -318 5379 -312 ct 5380 -306 5380 -300 5380 -294 ct -5380 -288 5380 -283 5380 -278 ct 5381 -278 l 5386 -288 5392 -297 5397 -305 ct -5403 -313 5410 -319 5418 -325 ct 5425 -330 5434 -335 5444 -338 ct 5454 -341 5466 -342 5479 -342 ct -5505 -342 5525 -337 5540 -327 ct 5554 -317 5565 -301 5570 -278 ct 5571 -278 l -5576 -288 5582 -297 5588 -305 ct 5594 -313 5602 -319 5610 -325 ct 5618 -330 5627 -335 5638 -338 ct -5648 -341 5660 -342 5673 -342 ct 5690 -342 5705 -340 5717 -335 ct 5729 -331 5739 -324 5747 -314 ct -5755 -305 5761 -292 5765 -277 ct 5768 -262 5770 -244 5770 -224 ct 5770 0 l 5715 0 l -5715 -213 l 5715 -229 5714 -243 5712 -254 ct 5710 -265 5706 -274 5701 -280 ct -5697 -287 5690 -292 5682 -295 ct 5675 -297 5665 -299 5654 -299 ct 5642 -299 5631 -297 5622 -292 ct -5612 -288 5604 -281 5597 -272 ct 5591 -264 5585 -253 5582 -240 ct 5578 -227 5576 -212 5576 -195 ct -5576 0 l 5521 0 l p ef -5898 -156 m 5898 -139 5899 -122 5903 -108 ct 5907 -93 5912 -80 5920 -70 ct -5927 -59 5937 -51 5949 -45 ct 5961 -39 5975 -36 5991 -36 ct 6015 -36 6035 -41 6049 -50 ct -6064 -60 6074 -72 6079 -87 ct 6128 -73 l 6124 -64 6120 -55 6113 -45 ct 6107 -36 6099 -27 6088 -20 ct -6077 -12 6064 -6 6048 -1 ct 6033 4 6014 6 5991 6 ct 5942 6 5904 -9 5878 -38 ct -5852 -68 5839 -112 5839 -170 ct 5839 -202 5843 -228 5851 -250 ct 5859 -272 5869 -290 5883 -303 ct -5897 -317 5913 -327 5931 -333 ct 5949 -339 5968 -342 5989 -342 ct 6017 -342 6041 -338 6060 -329 ct -6079 -320 6094 -307 6105 -291 ct 6117 -275 6125 -256 6130 -234 ct 6135 -212 6137 -189 6137 -164 ct -6137 -156 l 5898 -156 l p -6079 -199 m 6076 -234 6067 -260 6052 -277 ct 6037 -293 6016 -301 5988 -301 ct -5979 -301 5969 -300 5959 -296 ct 5949 -293 5939 -288 5930 -280 ct 5922 -273 5914 -262 5908 -249 ct -5902 -236 5899 -219 5898 -199 ct 6079 -199 l p ef -6420 0 m 6420 -213 l 6420 -229 6419 -243 6416 -254 ct 6414 -265 6410 -274 6405 -280 ct -6399 -287 6392 -292 6383 -295 ct 6375 -297 6364 -299 6351 -299 ct 6337 -299 6325 -297 6315 -292 ct -6304 -287 6295 -281 6288 -272 ct 6280 -263 6274 -252 6270 -239 ct 6266 -226 6264 -211 6264 -195 ct -6264 0 l 6208 0 l 6208 -264 l 6208 -271 6208 -279 6208 -286 ct 6208 -294 6208 -301 6207 -308 ct -6207 -315 6207 -321 6207 -326 ct 6207 -331 6206 -334 6206 -336 ct 6259 -336 l -6259 -335 6259 -332 6260 -327 ct 6260 -323 6260 -318 6260 -312 ct 6261 -306 6261 -300 6261 -294 ct -6261 -288 6261 -283 6261 -278 ct 6262 -278 l 6268 -288 6274 -297 6280 -305 ct -6286 -313 6294 -319 6302 -325 ct 6311 -330 6320 -335 6331 -338 ct 6342 -341 6355 -342 6370 -342 ct -6388 -342 6404 -340 6418 -335 ct 6431 -331 6442 -324 6451 -314 ct 6459 -305 6466 -292 6470 -277 ct -6474 -262 6476 -244 6476 -224 ct 6476 0 l 6420 0 l p ef -6686 -2 m 6677 0 6669 2 6660 3 ct 6651 4 6641 5 6629 5 ct 6585 5 6562 -20 6562 -71 ct -6562 -295 l 6524 -295 l 6524 -336 l 6565 -336 l 6581 -411 l 6618 -411 l -6618 -336 l 6680 -336 l 6680 -295 l 6618 -295 l 6618 -83 l 6618 -67 6621 -56 6626 -49 ct -6631 -43 6641 -39 6654 -39 ct 6659 -39 6664 -40 6669 -41 ct 6674 -41 6680 -42 6686 -44 ct -6686 -2 l p ef -6987 -93 m 6987 -77 6984 -63 6977 -51 ct 6971 -39 6962 -28 6951 -20 ct 6939 -12 6925 -5 6908 -1 ct -6891 4 6872 6 6850 6 ct 6831 6 6813 4 6798 2 ct 6782 -2 6769 -6 6757 -13 ct 6745 -20 6735 -28 6727 -39 ct -6719 -50 6713 -63 6710 -79 ct 6759 -89 l 6764 -71 6774 -57 6788 -49 ct 6803 -41 6824 -37 6850 -37 ct -6862 -37 6873 -37 6883 -39 ct 6893 -41 6902 -44 6909 -48 ct 6917 -52 6922 -57 6926 -64 ct -6930 -70 6932 -79 6932 -89 ct 6932 -99 6930 -107 6925 -114 ct 6920 -120 6914 -126 6905 -130 ct -6897 -134 6887 -138 6874 -141 ct 6862 -144 6849 -148 6835 -152 ct 6821 -155 6808 -159 6795 -164 ct -6781 -168 6769 -174 6759 -181 ct 6748 -188 6740 -197 6733 -207 ct 6726 -218 6723 -231 6723 -247 ct -6723 -278 6734 -301 6756 -317 ct 6778 -333 6809 -341 6851 -341 ct 6888 -341 6917 -335 6939 -322 ct -6961 -309 6975 -288 6981 -259 ct 6930 -253 l 6929 -261 6925 -269 6920 -275 ct -6915 -281 6909 -285 6902 -289 ct 6895 -293 6887 -295 6879 -297 ct 6870 -298 6861 -299 6851 -299 ct -6826 -299 6807 -295 6795 -288 ct 6783 -280 6777 -268 6777 -253 ct 6777 -244 6779 -236 6784 -230 ct -6788 -224 6795 -219 6803 -215 ct 6810 -211 6820 -208 6831 -205 ct 6842 -202 6855 -199 6868 -195 ct -6877 -193 6886 -191 6895 -188 ct 6905 -186 6914 -182 6923 -179 ct 6931 -175 6940 -171 6947 -166 ct -6955 -161 6962 -155 6968 -149 ct 6973 -142 6978 -134 6981 -125 ct 6985 -116 6987 -105 6987 -93 ct -p ef -pom -0.683 0.812 0.003 c 11597 15608 m 4740 15608 l 4740 14592 l 18455 14592 l -18455 15608 l 11597 15608 l p ef -0.503 0.503 0.503 c 11597 15608 m 4739 15608 l 4739 14592 l 18454 14592 l -18454 15608 l 11597 15608 l pc -pum -4990 15293 t -0.003 0.003 0.003 c 223 -389 m 223 0 l 164 0 l 164 -389 l 14 -389 l 14 -437 l -373 -437 l 373 -389 l 223 -389 l p ef -408 0 m 408 -258 l 408 -265 408 -272 408 -279 ct 408 -287 408 -294 407 -300 ct -407 -307 407 -314 407 -320 ct 407 -326 406 -331 406 -336 ct 459 -336 l 459 -331 459 -326 460 -320 ct -460 -313 460 -307 461 -301 ct 461 -294 461 -288 461 -282 ct 461 -276 461 -271 461 -267 ct -463 -267 l 467 -280 471 -291 475 -301 ct 480 -310 485 -318 491 -324 ct 497 -330 504 -335 512 -338 ct -520 -341 531 -342 542 -342 ct 547 -342 551 -342 555 -341 ct 559 -340 563 -340 565 -339 ct -565 -288 l 561 -289 557 -290 552 -290 ct 547 -291 541 -291 535 -291 ct 522 -291 511 -288 502 -282 ct -493 -276 486 -268 480 -258 ct 475 -248 471 -236 468 -221 ct 465 -207 464 -192 464 -175 ct -464 0 l 408 0 l p ef -618 -407 m 618 -460 l 674 -460 l 674 -407 l 618 -407 l p -618 1 m 618 -335 l 674 -335 l 674 1 l 618 1 l p ef -885 132 m 866 132 849 130 834 126 ct 819 122 806 117 796 109 ct 785 102 776 93 770 83 ct -763 73 759 61 756 49 ct 812 41 l 815 56 824 68 836 77 ct 849 85 866 89 886 89 ct -899 89 911 88 921 84 ct 931 81 940 75 947 67 ct 954 59 960 49 964 37 ct 968 25 970 9 970 -8 ct -970 -63 l 969 -63 l 965 -54 960 -46 954 -38 ct 948 -30 940 -24 932 -18 ct -923 -12 913 -7 901 -3 ct 889 0 876 2 861 2 ct 840 2 822 -1 807 -8 ct 791 -16 779 -26 769 -41 ct -760 -55 753 -73 748 -94 ct 744 -115 742 -139 742 -167 ct 742 -194 744 -218 748 -240 ct -753 -261 760 -280 770 -295 ct 780 -310 793 -321 809 -329 ct 825 -337 845 -341 868 -341 ct -891 -341 912 -336 929 -325 ct 947 -314 960 -298 970 -278 ct 970 -278 l 970 -284 971 -289 971 -296 ct -971 -302 972 -308 972 -314 ct 972 -320 973 -324 973 -329 ct 973 -333 974 -335 974 -336 ct -1027 -336 l 1027 -334 1027 -331 1027 -326 ct 1026 -322 1026 -316 1026 -310 ct -1026 -304 1026 -297 1026 -290 ct 1025 -282 1025 -274 1025 -266 ct 1025 -10 l -1025 37 1014 73 991 96 ct 968 120 932 132 885 132 ct p -970 -168 m 970 -191 967 -211 962 -228 ct 957 -245 951 -258 942 -269 ct 934 -279 925 -287 914 -292 ct -903 -297 892 -299 881 -299 ct 867 -299 855 -297 844 -292 ct 834 -287 826 -279 819 -269 ct -812 -258 807 -244 804 -228 ct 801 -211 799 -191 799 -168 ct 799 -144 801 -123 804 -107 ct -807 -91 812 -77 819 -67 ct 825 -57 834 -50 844 -46 ct 854 -41 866 -39 880 -39 ct -891 -39 902 -41 913 -46 ct 924 -51 933 -58 942 -69 ct 950 -79 957 -92 962 -109 ct -967 -125 970 -145 970 -168 ct p ef -1237 132 m 1218 132 1201 130 1186 126 ct 1171 122 1158 117 1148 109 ct 1137 102 1128 93 1122 83 ct -1115 73 1111 61 1108 49 ct 1164 41 l 1167 56 1176 68 1188 77 ct 1201 85 1218 89 1238 89 ct -1251 89 1263 88 1273 84 ct 1283 81 1292 75 1299 67 ct 1306 59 1312 49 1316 37 ct -1320 25 1322 9 1322 -8 ct 1322 -63 l 1321 -63 l 1317 -54 1312 -46 1306 -38 ct -1300 -30 1292 -24 1284 -18 ct 1275 -12 1265 -7 1253 -3 ct 1241 0 1228 2 1213 2 ct -1192 2 1174 -1 1159 -8 ct 1143 -16 1131 -26 1121 -41 ct 1112 -55 1105 -73 1100 -94 ct -1096 -115 1094 -139 1094 -167 ct 1094 -194 1096 -218 1100 -240 ct 1105 -261 1112 -280 1122 -295 ct -1132 -310 1145 -321 1161 -329 ct 1177 -337 1197 -341 1220 -341 ct 1243 -341 1264 -336 1281 -325 ct -1299 -314 1312 -298 1322 -278 ct 1322 -278 l 1322 -284 1323 -289 1323 -296 ct -1323 -302 1324 -308 1324 -314 ct 1324 -320 1325 -324 1325 -329 ct 1325 -333 1326 -335 1326 -336 ct -1379 -336 l 1379 -334 1379 -331 1379 -326 ct 1378 -322 1378 -316 1378 -310 ct -1378 -304 1378 -297 1378 -290 ct 1377 -282 1377 -274 1377 -266 ct 1377 -10 l -1377 37 1366 73 1343 96 ct 1320 120 1284 132 1237 132 ct p -1322 -168 m 1322 -191 1319 -211 1314 -228 ct 1309 -245 1303 -258 1294 -269 ct -1286 -279 1277 -287 1266 -292 ct 1255 -297 1244 -299 1233 -299 ct 1219 -299 1207 -297 1196 -292 ct -1186 -287 1178 -279 1171 -269 ct 1164 -258 1159 -244 1156 -228 ct 1153 -211 1151 -191 1151 -168 ct -1151 -144 1153 -123 1156 -107 ct 1159 -91 1164 -77 1171 -67 ct 1177 -57 1186 -50 1196 -46 ct -1206 -41 1218 -39 1232 -39 ct 1243 -39 1254 -41 1265 -46 ct 1276 -51 1285 -58 1294 -69 ct -1302 -79 1309 -92 1314 -109 ct 1319 -125 1322 -145 1322 -168 ct p ef -1504 -156 m 1504 -139 1505 -122 1509 -108 ct 1513 -93 1518 -80 1526 -70 ct -1533 -59 1543 -51 1555 -45 ct 1567 -39 1581 -36 1597 -36 ct 1621 -36 1641 -41 1655 -50 ct -1670 -60 1680 -72 1685 -87 ct 1734 -73 l 1730 -64 1726 -55 1719 -45 ct 1713 -36 1705 -27 1694 -20 ct -1683 -12 1670 -6 1654 -1 ct 1639 4 1620 6 1597 6 ct 1548 6 1510 -9 1484 -38 ct -1458 -68 1445 -112 1445 -170 ct 1445 -202 1449 -228 1457 -250 ct 1465 -272 1475 -290 1489 -303 ct -1503 -317 1519 -327 1537 -333 ct 1555 -339 1574 -342 1595 -342 ct 1623 -342 1647 -338 1666 -329 ct -1685 -320 1700 -307 1711 -291 ct 1723 -275 1731 -256 1736 -234 ct 1741 -212 1743 -189 1743 -164 ct -1743 -156 l 1504 -156 l p -1685 -199 m 1682 -234 1673 -260 1658 -277 ct 1643 -293 1622 -301 1594 -301 ct -1585 -301 1575 -300 1565 -296 ct 1555 -293 1545 -288 1536 -280 ct 1528 -273 1520 -262 1514 -249 ct -1508 -236 1505 -219 1504 -199 ct 1685 -199 l p ef -1814 0 m 1814 -258 l 1814 -265 1814 -272 1814 -279 ct 1814 -287 1814 -294 1813 -300 ct -1813 -307 1813 -314 1813 -320 ct 1813 -326 1812 -331 1812 -336 ct 1865 -336 l -1865 -331 1865 -326 1866 -320 ct 1866 -313 1866 -307 1867 -301 ct 1867 -294 1867 -288 1867 -282 ct -1867 -276 1867 -271 1867 -267 ct 1869 -267 l 1873 -280 1877 -291 1881 -301 ct -1886 -310 1891 -318 1897 -324 ct 1903 -330 1910 -335 1918 -338 ct 1926 -341 1937 -342 1948 -342 ct -1953 -342 1957 -342 1961 -341 ct 1965 -340 1969 -340 1971 -339 ct 1971 -288 l -1967 -289 1963 -290 1958 -290 ct 1953 -291 1947 -291 1941 -291 ct 1928 -291 1917 -288 1908 -282 ct -1899 -276 1892 -268 1886 -258 ct 1881 -248 1877 -236 1874 -221 ct 1871 -207 1870 -192 1870 -175 ct -1870 0 l 1814 0 l p ef -2245 -156 m 2245 -139 2246 -122 2250 -108 ct 2254 -93 2259 -80 2267 -70 ct -2274 -59 2284 -51 2296 -45 ct 2308 -39 2322 -36 2338 -36 ct 2362 -36 2382 -41 2396 -50 ct -2411 -60 2421 -72 2426 -87 ct 2475 -73 l 2471 -64 2467 -55 2460 -45 ct 2454 -36 2446 -27 2435 -20 ct -2424 -12 2411 -6 2395 -1 ct 2380 4 2361 6 2338 6 ct 2289 6 2251 -9 2225 -38 ct -2199 -68 2186 -112 2186 -170 ct 2186 -202 2190 -228 2198 -250 ct 2206 -272 2216 -290 2230 -303 ct -2244 -317 2260 -327 2278 -333 ct 2296 -339 2315 -342 2336 -342 ct 2364 -342 2388 -338 2407 -329 ct -2426 -320 2441 -307 2452 -291 ct 2464 -275 2472 -256 2477 -234 ct 2482 -212 2484 -189 2484 -164 ct -2484 -156 l 2245 -156 l p -2426 -199 m 2423 -234 2414 -260 2399 -277 ct 2384 -293 2363 -301 2335 -301 ct -2326 -301 2316 -300 2306 -296 ct 2296 -293 2286 -288 2277 -280 ct 2269 -273 2261 -262 2255 -249 ct -2249 -236 2246 -219 2245 -199 ct 2426 -199 l p ef -2758 0 m 2668 -138 l 2577 0 l 2517 0 l 2637 -173 l 2523 -336 l 2584 -336 l -2668 -205 l 2751 -336 l 2814 -336 l 2700 -173 l 2821 0 l 2758 0 l -p ef -2914 -156 m 2914 -139 2915 -122 2919 -108 ct 2923 -93 2928 -80 2936 -70 ct -2943 -59 2953 -51 2965 -45 ct 2977 -39 2991 -36 3007 -36 ct 3031 -36 3051 -41 3065 -50 ct -3080 -60 3090 -72 3095 -87 ct 3144 -73 l 3140 -64 3136 -55 3129 -45 ct 3123 -36 3115 -27 3104 -20 ct -3093 -12 3080 -6 3064 -1 ct 3049 4 3030 6 3007 6 ct 2958 6 2920 -9 2894 -38 ct -2868 -68 2855 -112 2855 -170 ct 2855 -202 2859 -228 2867 -250 ct 2875 -272 2885 -290 2899 -303 ct -2913 -317 2929 -327 2947 -333 ct 2965 -339 2984 -342 3005 -342 ct 3033 -342 3057 -338 3076 -329 ct -3095 -320 3110 -307 3121 -291 ct 3133 -275 3141 -256 3146 -234 ct 3151 -212 3153 -189 3153 -164 ct -3153 -156 l 2914 -156 l p -3095 -199 m 3092 -234 3083 -260 3068 -277 ct 3053 -293 3032 -301 3004 -301 ct -2995 -301 2985 -300 2975 -296 ct 2965 -293 2955 -288 2946 -280 ct 2938 -273 2930 -262 2924 -249 ct -2918 -236 2915 -219 2914 -199 ct 3095 -199 l p ef -3264 -170 m 3264 -150 3266 -133 3268 -117 ct 3271 -100 3276 -86 3283 -75 ct -3289 -63 3298 -54 3309 -48 ct 3320 -41 3333 -38 3349 -38 ct 3369 -38 3385 -43 3399 -54 ct -3412 -64 3420 -80 3423 -102 ct 3480 -102 l 3478 -88 3474 -74 3468 -61 ct 3461 -48 3453 -37 3442 -27 ct -3432 -17 3419 -9 3403 -3 ct 3388 3 3371 6 3350 6 ct 3324 6 3302 2 3283 -7 ct 3265 -16 3250 -28 3239 -44 ct -3227 -60 3219 -78 3214 -99 ct 3209 -121 3206 -144 3206 -168 ct 3206 -191 3208 -211 3212 -228 ct -3215 -245 3221 -260 3227 -273 ct 3234 -286 3242 -297 3251 -306 ct 3260 -315 3270 -322 3281 -327 ct -3291 -332 3302 -336 3314 -338 ct 3326 -341 3338 -342 3350 -342 ct 3369 -342 3385 -339 3400 -334 ct -3415 -329 3427 -322 3438 -313 ct 3449 -304 3457 -293 3464 -281 ct 3471 -269 3475 -256 3478 -242 ct -3421 -237 l 3418 -256 3410 -271 3399 -282 ct 3387 -293 3370 -298 3348 -298 ct -3332 -298 3319 -296 3308 -290 ct 3298 -285 3289 -277 3283 -266 ct 3276 -256 3271 -242 3268 -226 ct -3266 -210 3264 -191 3264 -170 ct p ef -3594 -336 m 3594 -123 l 3594 -107 3596 -93 3598 -82 ct 3600 -71 3604 -62 3610 -56 ct -3615 -49 3622 -44 3631 -41 ct 3640 -39 3650 -37 3664 -37 ct 3677 -37 3689 -39 3699 -44 ct -3710 -49 3719 -55 3727 -64 ct 3734 -73 3740 -84 3744 -97 ct 3748 -110 3750 -125 3750 -141 ct -3750 -336 l 3806 -336 l 3806 -72 l 3806 -65 3806 -57 3806 -50 ct 3806 -42 3807 -35 3807 -28 ct -3807 -21 3807 -15 3807 -10 ct 3808 -5 3808 -2 3808 0 ct 3755 0 l 3755 -1 3755 -4 3755 -9 ct -3754 -13 3754 -18 3754 -24 ct 3754 -30 3753 -36 3753 -42 ct 3753 -48 3753 -53 3753 -58 ct -3752 -58 l 3747 -48 3741 -39 3734 -31 ct 3728 -23 3720 -17 3712 -11 ct 3703 -6 3694 -2 3683 2 ct -3672 4 3659 6 3645 6 ct 3626 6 3610 4 3597 -1 ct 3583 -5 3572 -12 3563 -22 ct 3555 -31 3548 -44 3544 -59 ct -3540 -73 3538 -91 3538 -112 ct 3538 -336 l 3594 -336 l p ef -4020 -2 m 4011 0 4003 2 3994 3 ct 3985 4 3975 5 3963 5 ct 3919 5 3896 -20 3896 -71 ct -3896 -295 l 3858 -295 l 3858 -336 l 3899 -336 l 3915 -411 l 3952 -411 l -3952 -336 l 4014 -336 l 4014 -295 l 3952 -295 l 3952 -83 l 3952 -67 3955 -56 3960 -49 ct -3965 -43 3975 -39 3988 -39 ct 3993 -39 3998 -40 4003 -41 ct 4008 -41 4014 -42 4020 -44 ct -4020 -2 l p ef -4068 -407 m 4068 -460 l 4124 -460 l 4124 -407 l 4068 -407 l p -4068 1 m 4068 -335 l 4124 -335 l 4124 1 l 4068 1 l p ef -4492 -168 m 4492 -110 4480 -66 4454 -37 ct 4428 -8 4390 6 4341 6 ct 4318 6 4297 2 4279 -5 ct -4260 -12 4245 -22 4232 -37 ct 4219 -51 4209 -69 4203 -91 ct 4196 -113 4193 -139 4193 -168 ct -4193 -284 4243 -342 4343 -342 ct 4369 -342 4392 -339 4410 -331 ct 4429 -324 4445 -313 4457 -299 ct -4469 -284 4478 -266 4484 -245 ct 4490 -223 4492 -197 4492 -168 ct p -4434 -168 m 4434 -195 4432 -216 4428 -233 ct 4424 -250 4418 -264 4410 -274 ct -4402 -284 4393 -291 4382 -295 ct 4371 -299 4358 -301 4344 -301 ct 4330 -301 4317 -299 4305 -295 ct -4294 -290 4284 -283 4276 -273 ct 4268 -263 4262 -249 4258 -232 ct 4253 -215 4251 -194 4251 -168 ct -4251 -142 4254 -121 4258 -104 ct 4263 -87 4269 -73 4277 -63 ct 4285 -53 4294 -46 4305 -41 ct -4316 -37 4328 -35 4341 -35 ct 4355 -35 4368 -37 4379 -41 ct 4391 -45 4401 -52 4409 -63 ct -4417 -73 4423 -86 4427 -104 ct 4432 -121 4434 -142 4434 -168 ct p ef -4773 0 m 4773 -213 l 4773 -229 4772 -243 4769 -254 ct 4767 -265 4763 -274 4758 -280 ct -4752 -287 4745 -292 4736 -295 ct 4728 -297 4717 -299 4704 -299 ct 4690 -299 4678 -297 4668 -292 ct -4657 -287 4648 -281 4641 -272 ct 4633 -263 4627 -252 4623 -239 ct 4619 -226 4617 -211 4617 -195 ct -4617 0 l 4561 0 l 4561 -264 l 4561 -271 4561 -279 4561 -286 ct 4561 -294 4561 -301 4560 -308 ct -4560 -315 4560 -321 4560 -326 ct 4560 -331 4559 -334 4559 -336 ct 4612 -336 l -4612 -335 4612 -332 4613 -327 ct 4613 -323 4613 -318 4613 -312 ct 4614 -306 4614 -300 4614 -294 ct -4614 -288 4614 -283 4614 -278 ct 4615 -278 l 4621 -288 4627 -297 4633 -305 ct -4639 -313 4647 -319 4655 -325 ct 4664 -330 4673 -335 4684 -338 ct 4695 -341 4708 -342 4723 -342 ct -4741 -342 4757 -340 4771 -335 ct 4784 -331 4795 -324 4804 -314 ct 4812 -305 4819 -292 4823 -277 ct -4827 -262 4829 -244 4829 -224 ct 4829 0 l 4773 0 l p ef -5372 -168 m 5372 -110 5360 -66 5334 -37 ct 5308 -8 5270 6 5221 6 ct 5198 6 5177 2 5159 -5 ct -5140 -12 5125 -22 5112 -37 ct 5099 -51 5089 -69 5083 -91 ct 5076 -113 5073 -139 5073 -168 ct -5073 -284 5123 -342 5223 -342 ct 5249 -342 5272 -339 5290 -331 ct 5309 -324 5325 -313 5337 -299 ct -5349 -284 5358 -266 5364 -245 ct 5370 -223 5372 -197 5372 -168 ct p -5314 -168 m 5314 -195 5312 -216 5308 -233 ct 5304 -250 5298 -264 5290 -274 ct -5282 -284 5273 -291 5262 -295 ct 5251 -299 5238 -301 5224 -301 ct 5210 -301 5197 -299 5185 -295 ct -5174 -290 5164 -283 5156 -273 ct 5148 -263 5142 -249 5138 -232 ct 5133 -215 5131 -194 5131 -168 ct -5131 -142 5134 -121 5138 -104 ct 5143 -87 5149 -73 5157 -63 ct 5165 -53 5174 -46 5185 -41 ct -5196 -37 5208 -35 5221 -35 ct 5235 -35 5248 -37 5259 -41 ct 5271 -45 5281 -52 5289 -63 ct -5297 -73 5303 -86 5307 -104 ct 5312 -121 5314 -142 5314 -168 ct p ef -5510 -295 m 5510 0 l 5454 0 l 5454 -295 l 5407 -295 l 5407 -336 l -5454 -336 l 5454 -374 l 5454 -386 5455 -397 5458 -408 ct 5460 -418 5464 -427 5470 -435 ct -5476 -443 5485 -449 5495 -453 ct 5506 -458 5519 -460 5536 -460 ct 5543 -460 5549 -460 5557 -459 ct -5564 -458 5570 -458 5575 -456 ct 5575 -414 l 5572 -414 5568 -415 5563 -415 ct -5558 -416 5554 -416 5551 -416 ct 5542 -416 5536 -415 5530 -413 ct 5525 -411 5521 -407 5518 -403 ct -5515 -399 5513 -394 5512 -387 ct 5511 -381 5510 -374 5510 -366 ct 5510 -336 l -5575 -336 l 5575 -295 l 5510 -295 l p ef -5999 -396 m 5974 -396 5952 -391 5933 -383 ct 5914 -375 5898 -363 5885 -348 ct -5872 -332 5862 -314 5855 -293 ct 5849 -271 5845 -247 5845 -221 ct 5845 -195 5849 -171 5856 -149 ct -5863 -127 5873 -108 5887 -92 ct 5900 -77 5916 -64 5936 -56 ct 5955 -47 5977 -43 6001 -43 ct -6018 -43 6033 -45 6047 -49 ct 6061 -54 6074 -60 6085 -68 ct 6096 -76 6107 -86 6115 -97 ct -6124 -108 6132 -120 6139 -134 ct 6187 -109 l 6180 -93 6170 -78 6158 -64 ct -6147 -50 6133 -38 6117 -27 ct 6102 -17 6084 -9 6064 -3 ct 6045 3 6023 6 5998 6 ct -5963 6 5932 0 5905 -11 ct 5879 -22 5857 -38 5839 -58 ct 5821 -78 5807 -102 5799 -130 ct -5790 -158 5785 -188 5785 -221 ct 5785 -255 5790 -286 5799 -313 ct 5809 -341 5823 -364 5841 -384 ct -5859 -403 5881 -418 5907 -428 ct 5934 -439 5964 -444 5998 -444 ct 6044 -444 6083 -435 6115 -417 ct -6146 -398 6169 -371 6183 -336 ct 6127 -317 l 6123 -327 6118 -337 6111 -347 ct -6103 -356 6095 -364 6084 -372 ct 6074 -379 6061 -385 6047 -389 ct 6033 -393 6017 -396 5999 -396 ct -p ef -6536 -168 m 6536 -110 6524 -66 6498 -37 ct 6472 -8 6434 6 6385 6 ct 6362 6 6341 2 6323 -5 ct -6304 -12 6289 -22 6276 -37 ct 6263 -51 6253 -69 6247 -91 ct 6240 -113 6237 -139 6237 -168 ct -6237 -284 6287 -342 6387 -342 ct 6413 -342 6436 -339 6454 -331 ct 6473 -324 6489 -313 6501 -299 ct -6513 -284 6522 -266 6528 -245 ct 6534 -223 6536 -197 6536 -168 ct p -6478 -168 m 6478 -195 6476 -216 6472 -233 ct 6468 -250 6462 -264 6454 -274 ct -6446 -284 6437 -291 6426 -295 ct 6415 -299 6402 -301 6388 -301 ct 6374 -301 6361 -299 6349 -295 ct -6338 -290 6328 -283 6320 -273 ct 6312 -263 6306 -249 6302 -232 ct 6297 -215 6295 -194 6295 -168 ct -6295 -142 6298 -121 6302 -104 ct 6307 -87 6313 -73 6321 -63 ct 6329 -53 6338 -46 6349 -41 ct -6360 -37 6372 -35 6385 -35 ct 6399 -35 6412 -37 6423 -41 ct 6435 -45 6445 -52 6453 -63 ct -6461 -73 6467 -86 6471 -104 ct 6476 -121 6478 -142 6478 -168 ct p ef -6799 0 m 6799 -213 l 6799 -229 6798 -243 6796 -254 ct 6794 -265 6790 -274 6786 -280 ct -6781 -287 6774 -292 6767 -295 ct 6759 -297 6749 -299 6738 -299 ct 6726 -299 6715 -297 6706 -292 ct -6696 -287 6688 -281 6681 -272 ct 6675 -263 6670 -252 6666 -239 ct 6662 -226 6661 -211 6661 -195 ct -6661 0 l 6605 0 l 6605 -264 l 6605 -271 6605 -279 6605 -286 ct 6605 -294 6605 -301 6604 -308 ct -6604 -315 6604 -321 6604 -326 ct 6604 -331 6603 -334 6603 -336 ct 6656 -336 l -6656 -335 6656 -332 6657 -327 ct 6657 -323 6657 -318 6657 -312 ct 6658 -306 6658 -300 6658 -294 ct -6658 -288 6658 -283 6658 -278 ct 6659 -278 l 6664 -288 6670 -297 6675 -305 ct -6681 -313 6688 -319 6696 -325 ct 6703 -330 6712 -335 6722 -338 ct 6732 -341 6744 -342 6757 -342 ct -6783 -342 6803 -337 6818 -327 ct 6832 -317 6843 -301 6848 -278 ct 6849 -278 l -6854 -288 6860 -297 6866 -305 ct 6872 -313 6880 -319 6888 -325 ct 6896 -330 6905 -335 6916 -338 ct -6926 -341 6938 -342 6951 -342 ct 6968 -342 6983 -340 6995 -335 ct 7007 -331 7017 -324 7025 -314 ct -7033 -305 7039 -292 7043 -277 ct 7046 -262 7048 -244 7048 -224 ct 7048 0 l 6993 0 l -6993 -213 l 6993 -229 6992 -243 6990 -254 ct 6988 -265 6984 -274 6979 -280 ct -6975 -287 6968 -292 6960 -295 ct 6953 -297 6943 -299 6932 -299 ct 6920 -299 6909 -297 6900 -292 ct -6890 -288 6882 -281 6875 -272 ct 6869 -264 6863 -253 6860 -240 ct 6856 -227 6854 -212 6854 -195 ct -6854 0 l 6799 0 l p ef -7416 -170 m 7416 -144 7414 -121 7410 -99 ct 7406 -78 7399 -59 7390 -43 ct 7380 -28 7367 -16 7352 -7 ct -7336 2 7316 6 7293 6 ct 7269 6 7248 2 7230 -7 ct 7212 -17 7198 -31 7189 -52 ct -7187 -52 l 7188 -52 7188 -50 7188 -47 ct 7188 -43 7188 -39 7188 -34 ct 7188 -29 7188 -24 7188 -17 ct -7189 -11 7189 -5 7189 1 ct 7189 132 l 7133 132 l 7133 -267 l 7133 -275 7133 -283 7133 -290 ct -7133 -298 7132 -305 7132 -311 ct 7132 -317 7132 -322 7132 -326 ct 7131 -331 7131 -334 7131 -336 ct -7185 -336 l 7185 -335 7185 -333 7186 -329 ct 7186 -326 7186 -321 7187 -316 ct -7187 -311 7187 -305 7188 -299 ct 7188 -293 7188 -287 7188 -282 ct 7189 -282 l -7194 -293 7200 -302 7207 -310 ct 7214 -317 7221 -323 7230 -328 ct 7238 -333 7247 -337 7258 -339 ct -7268 -341 7280 -342 7293 -342 ct 7316 -342 7336 -338 7352 -330 ct 7367 -321 7380 -310 7390 -295 ct -7399 -280 7406 -261 7410 -240 ct 7414 -219 7416 -195 7416 -170 ct p -7358 -168 m 7358 -189 7357 -207 7354 -224 ct 7352 -240 7347 -253 7341 -265 ct -7335 -276 7327 -284 7317 -290 ct 7307 -296 7294 -299 7279 -299 ct 7266 -299 7255 -297 7244 -294 ct -7233 -290 7223 -283 7215 -273 ct 7207 -263 7200 -250 7196 -232 ct 7191 -215 7189 -192 7189 -164 ct -7189 -140 7191 -120 7194 -104 ct 7198 -87 7204 -74 7212 -64 ct 7219 -53 7229 -46 7240 -42 ct -7251 -37 7264 -35 7278 -35 ct 7294 -35 7307 -38 7317 -44 ct 7327 -50 7335 -59 7341 -70 ct -7347 -82 7352 -95 7354 -112 ct 7357 -128 7358 -147 7358 -168 ct p ef -7538 -336 m 7538 -123 l 7538 -107 7540 -93 7542 -82 ct 7544 -71 7548 -62 7554 -56 ct -7559 -49 7566 -44 7575 -41 ct 7584 -39 7594 -37 7608 -37 ct 7621 -37 7633 -39 7643 -44 ct -7654 -49 7663 -55 7671 -64 ct 7678 -73 7684 -84 7688 -97 ct 7692 -110 7694 -125 7694 -141 ct -7694 -336 l 7750 -336 l 7750 -72 l 7750 -65 7750 -57 7750 -50 ct 7750 -42 7751 -35 7751 -28 ct -7751 -21 7751 -15 7751 -10 ct 7752 -5 7752 -2 7752 0 ct 7699 0 l 7699 -1 7699 -4 7699 -9 ct -7698 -13 7698 -18 7698 -24 ct 7698 -30 7697 -36 7697 -42 ct 7697 -48 7697 -53 7697 -58 ct -7696 -58 l 7691 -48 7685 -39 7678 -31 ct 7672 -23 7664 -17 7656 -11 ct 7647 -6 7638 -2 7627 2 ct -7616 4 7603 6 7589 6 ct 7570 6 7554 4 7541 -1 ct 7527 -5 7516 -12 7507 -22 ct 7499 -31 7492 -44 7488 -59 ct -7484 -73 7482 -91 7482 -112 ct 7482 -336 l 7538 -336 l p ef -7965 -2 m 7956 0 7948 2 7939 3 ct 7930 4 7920 5 7908 5 ct 7864 5 7841 -20 7841 -71 ct -7841 -295 l 7803 -295 l 7803 -336 l 7844 -336 l 7860 -411 l 7897 -411 l -7897 -336 l 7959 -336 l 7959 -295 l 7897 -295 l 7897 -83 l 7897 -67 7900 -56 7905 -49 ct -7910 -43 7920 -39 7933 -39 ct 7938 -39 7943 -40 7948 -41 ct 7953 -41 7959 -42 7965 -44 ct -7965 -2 l p ef -8098 6 m 8065 6 8039 -3 8022 -21 ct 8005 -39 7997 -63 7997 -94 ct 7997 -117 8001 -135 8010 -149 ct -8018 -163 8029 -174 8042 -183 ct 8056 -191 8071 -196 8089 -199 ct 8106 -203 8124 -204 8142 -204 ct -8217 -204 l 8217 -223 l 8217 -237 8216 -248 8213 -258 ct 8210 -268 8205 -276 8199 -282 ct -8193 -288 8186 -292 8177 -295 ct 8168 -298 8157 -299 8145 -299 ct 8134 -299 8125 -299 8116 -297 ct -8107 -296 8100 -293 8093 -289 ct 8087 -285 8082 -279 8078 -272 ct 8074 -265 8071 -257 8070 -246 ct -8012 -251 l 8014 -265 8018 -277 8024 -288 ct 8029 -299 8038 -309 8048 -317 ct -8059 -325 8072 -331 8088 -335 ct 8104 -340 8124 -342 8146 -342 ct 8189 -342 8220 -332 8242 -313 ct -8263 -294 8274 -266 8274 -229 ct 8274 -85 l 8274 -68 8276 -55 8280 -47 ct 8284 -39 8293 -35 8305 -35 ct -8308 -35 8311 -35 8314 -35 ct 8317 -36 8320 -36 8323 -37 ct 8323 -2 l 8316 0 8309 1 8302 2 ct -8295 3 8288 3 8280 3 ct 8270 3 8260 2 8253 -1 ct 8245 -4 8239 -8 8234 -14 ct 8230 -20 8226 -27 8224 -35 ct -8221 -43 8220 -53 8219 -64 ct 8217 -64 l 8211 -54 8205 -44 8197 -35 ct 8190 -27 8182 -19 8172 -13 ct -8163 -7 8152 -2 8140 1 ct 8128 4 8114 6 8098 6 ct p -8111 -36 m 8129 -36 8144 -39 8158 -46 ct 8171 -52 8182 -60 8191 -70 ct 8200 -80 8206 -91 8211 -103 ct -8215 -115 8217 -127 8217 -138 ct 8217 -165 l 8156 -165 l 8142 -165 8129 -164 8117 -162 ct -8105 -161 8094 -157 8085 -152 ct 8075 -147 8068 -139 8063 -130 ct 8057 -121 8054 -108 8054 -93 ct -8054 -75 8059 -61 8069 -51 ct 8079 -41 8093 -36 8111 -36 ct p ef -8494 -2 m 8485 0 8477 2 8468 3 ct 8459 4 8449 5 8437 5 ct 8393 5 8370 -20 8370 -71 ct -8370 -295 l 8332 -295 l 8332 -336 l 8373 -336 l 8389 -411 l 8426 -411 l -8426 -336 l 8488 -336 l 8488 -295 l 8426 -295 l 8426 -83 l 8426 -67 8429 -56 8434 -49 ct -8439 -43 8449 -39 8462 -39 ct 8467 -39 8472 -40 8477 -41 ct 8482 -41 8488 -42 8494 -44 ct -8494 -2 l p ef -8542 -407 m 8542 -460 l 8598 -460 l 8598 -407 l 8542 -407 l p -8542 1 m 8542 -335 l 8598 -335 l 8598 1 l 8542 1 l p ef -8965 -168 m 8965 -110 8953 -66 8927 -37 ct 8901 -8 8863 6 8814 6 ct 8791 6 8770 2 8752 -5 ct -8733 -12 8718 -22 8705 -37 ct 8692 -51 8682 -69 8676 -91 ct 8669 -113 8666 -139 8666 -168 ct -8666 -284 8716 -342 8816 -342 ct 8842 -342 8865 -339 8883 -331 ct 8902 -324 8918 -313 8930 -299 ct -8942 -284 8951 -266 8957 -245 ct 8963 -223 8965 -197 8965 -168 ct p -8907 -168 m 8907 -195 8905 -216 8901 -233 ct 8897 -250 8891 -264 8883 -274 ct -8875 -284 8866 -291 8855 -295 ct 8844 -299 8831 -301 8817 -301 ct 8803 -301 8790 -299 8778 -295 ct -8767 -290 8757 -283 8749 -273 ct 8741 -263 8735 -249 8731 -232 ct 8726 -215 8724 -194 8724 -168 ct -8724 -142 8727 -121 8731 -104 ct 8736 -87 8742 -73 8750 -63 ct 8758 -53 8767 -46 8778 -41 ct -8789 -37 8801 -35 8814 -35 ct 8828 -35 8841 -37 8852 -41 ct 8864 -45 8874 -52 8882 -63 ct -8890 -73 8896 -86 8900 -104 ct 8905 -121 8907 -142 8907 -168 ct p ef -9247 0 m 9247 -213 l 9247 -229 9246 -243 9243 -254 ct 9241 -265 9237 -274 9232 -280 ct -9226 -287 9219 -292 9210 -295 ct 9202 -297 9191 -299 9178 -299 ct 9164 -299 9152 -297 9142 -292 ct -9131 -287 9122 -281 9115 -272 ct 9107 -263 9101 -252 9097 -239 ct 9093 -226 9091 -211 9091 -195 ct -9091 0 l 9035 0 l 9035 -264 l 9035 -271 9035 -279 9035 -286 ct 9035 -294 9035 -301 9034 -308 ct -9034 -315 9034 -321 9034 -326 ct 9034 -331 9033 -334 9033 -336 ct 9086 -336 l -9086 -335 9086 -332 9087 -327 ct 9087 -323 9087 -318 9087 -312 ct 9088 -306 9088 -300 9088 -294 ct -9088 -288 9088 -283 9088 -278 ct 9089 -278 l 9095 -288 9101 -297 9107 -305 ct -9113 -313 9121 -319 9129 -325 ct 9138 -330 9147 -335 9158 -338 ct 9169 -341 9182 -342 9197 -342 ct -9215 -342 9231 -340 9245 -335 ct 9258 -331 9269 -324 9278 -314 ct 9286 -305 9293 -292 9297 -277 ct -9301 -262 9303 -244 9303 -224 ct 9303 0 l 9247 0 l p ef -9470 6 m 9437 6 9411 -3 9394 -21 ct 9377 -39 9369 -63 9369 -94 ct 9369 -117 9373 -135 9382 -149 ct -9390 -163 9401 -174 9414 -183 ct 9428 -191 9443 -196 9461 -199 ct 9478 -203 9496 -204 9514 -204 ct -9589 -204 l 9589 -223 l 9589 -237 9588 -248 9585 -258 ct 9582 -268 9577 -276 9571 -282 ct -9565 -288 9558 -292 9549 -295 ct 9540 -298 9529 -299 9517 -299 ct 9506 -299 9497 -299 9488 -297 ct -9479 -296 9472 -293 9465 -289 ct 9459 -285 9454 -279 9450 -272 ct 9446 -265 9443 -257 9442 -246 ct -9384 -251 l 9386 -265 9390 -277 9396 -288 ct 9401 -299 9410 -309 9420 -317 ct -9431 -325 9444 -331 9460 -335 ct 9476 -340 9496 -342 9518 -342 ct 9561 -342 9592 -332 9614 -313 ct -9635 -294 9646 -266 9646 -229 ct 9646 -85 l 9646 -68 9648 -55 9652 -47 ct 9656 -39 9665 -35 9677 -35 ct -9680 -35 9683 -35 9686 -35 ct 9689 -36 9692 -36 9695 -37 ct 9695 -2 l 9688 0 9681 1 9674 2 ct -9667 3 9660 3 9652 3 ct 9642 3 9632 2 9625 -1 ct 9617 -4 9611 -8 9606 -14 ct 9602 -20 9598 -27 9596 -35 ct -9593 -43 9592 -53 9591 -64 ct 9589 -64 l 9583 -54 9577 -44 9569 -35 ct 9562 -27 9554 -19 9544 -13 ct -9535 -7 9524 -2 9512 1 ct 9500 4 9486 6 9470 6 ct p -9483 -36 m 9501 -36 9516 -39 9530 -46 ct 9543 -52 9554 -60 9563 -70 ct 9572 -80 9578 -91 9583 -103 ct -9587 -115 9589 -127 9589 -138 ct 9589 -165 l 9528 -165 l 9514 -165 9501 -164 9489 -162 ct -9477 -161 9466 -157 9457 -152 ct 9447 -147 9440 -139 9435 -130 ct 9429 -121 9426 -108 9426 -93 ct -9426 -75 9431 -61 9441 -51 ct 9451 -41 9465 -36 9483 -36 ct p ef -9736 1 m 9736 -460 l 9792 -460 l 9792 1 l 9736 1 l p ef -10372 -1 m 10258 -182 l 10122 -182 l 10122 -1 l 10063 -1 l 10063 -437 l -10269 -437 l 10293 -437 10315 -435 10335 -429 ct 10354 -423 10370 -415 10383 -404 ct -10396 -394 10406 -380 10413 -365 ct 10419 -349 10423 -332 10423 -313 ct 10423 -299 10421 -285 10417 -272 ct -10413 -258 10406 -246 10398 -235 ct 10389 -224 10378 -214 10364 -206 ct 10351 -198 10335 -192 10316 -189 ct -10440 -1 l 10372 -1 l p -10363 -312 m 10363 -325 10361 -337 10356 -346 ct 10352 -356 10345 -364 10337 -371 ct -10328 -377 10317 -382 10305 -385 ct 10293 -388 10278 -390 10263 -390 ct 10122 -390 l -10122 -229 l 10265 -229 l 10282 -229 10297 -231 10309 -235 ct 10322 -239 10332 -245 10340 -253 ct -10348 -260 10354 -269 10357 -279 ct 10361 -289 10363 -300 10363 -312 ct p ef -10554 -156 m 10554 -139 10555 -122 10559 -108 ct 10563 -93 10568 -80 10576 -70 ct -10583 -59 10593 -51 10605 -45 ct 10617 -39 10631 -36 10647 -36 ct 10671 -36 10691 -41 10705 -50 ct -10720 -60 10730 -72 10735 -87 ct 10784 -73 l 10780 -64 10776 -55 10769 -45 ct -10763 -36 10755 -27 10744 -20 ct 10733 -12 10720 -6 10704 -1 ct 10689 4 10670 6 10647 6 ct -10598 6 10560 -9 10534 -38 ct 10508 -68 10495 -112 10495 -170 ct 10495 -202 10499 -228 10507 -250 ct -10515 -272 10525 -290 10539 -303 ct 10553 -317 10569 -327 10587 -333 ct 10605 -339 10624 -342 10645 -342 ct -10673 -342 10697 -338 10716 -329 ct 10735 -320 10750 -307 10761 -291 ct 10773 -275 10781 -256 10786 -234 ct -10791 -212 10793 -189 10793 -164 ct 10793 -156 l 10554 -156 l p -10735 -199 m 10732 -234 10723 -260 10708 -277 ct 10693 -293 10672 -301 10644 -301 ct -10635 -301 10625 -300 10615 -296 ct 10605 -293 10595 -288 10586 -280 ct 10578 -273 10570 -262 10564 -249 ct -10558 -236 10555 -219 10554 -199 ct 10735 -199 l p ef -10904 -170 m 10904 -150 10906 -133 10908 -117 ct 10911 -100 10916 -86 10923 -75 ct -10929 -63 10938 -54 10949 -48 ct 10960 -41 10973 -38 10989 -38 ct 11009 -38 11025 -43 11039 -54 ct -11052 -64 11060 -80 11063 -102 ct 11120 -102 l 11118 -88 11114 -74 11108 -61 ct -11101 -48 11093 -37 11082 -27 ct 11072 -17 11059 -9 11043 -3 ct 11028 3 11011 6 10990 6 ct -10964 6 10942 2 10923 -7 ct 10905 -16 10890 -28 10879 -44 ct 10867 -60 10859 -78 10854 -99 ct -10849 -121 10846 -144 10846 -168 ct 10846 -191 10848 -211 10852 -228 ct 10855 -245 10861 -260 10867 -273 ct -10874 -286 10882 -297 10891 -306 ct 10900 -315 10910 -322 10921 -327 ct 10931 -332 10942 -336 10954 -338 ct -10966 -341 10978 -342 10990 -342 ct 11009 -342 11025 -339 11040 -334 ct 11055 -329 11067 -322 11078 -313 ct -11089 -304 11097 -293 11104 -281 ct 11111 -269 11115 -256 11118 -242 ct 11061 -237 l -11058 -256 11050 -271 11039 -282 ct 11027 -293 11010 -298 10988 -298 ct 10972 -298 10959 -296 10948 -290 ct -10938 -285 10929 -277 10923 -266 ct 10916 -256 10911 -242 10908 -226 ct 10906 -210 10904 -191 10904 -170 ct -p ef -11179 -407 m 11179 -460 l 11235 -460 l 11235 -407 l 11179 -407 l p -11179 1 m 11179 -335 l 11235 -335 l 11235 1 l 11179 1 l p ef -11603 -170 m 11603 -144 11601 -121 11597 -99 ct 11593 -78 11586 -59 11577 -43 ct -11567 -28 11554 -16 11539 -7 ct 11523 2 11503 6 11480 6 ct 11456 6 11435 2 11417 -7 ct -11399 -17 11385 -31 11376 -52 ct 11374 -52 l 11375 -52 11375 -50 11375 -47 ct -11375 -43 11375 -39 11375 -34 ct 11375 -29 11375 -24 11375 -17 ct 11376 -11 11376 -5 11376 1 ct -11376 132 l 11320 132 l 11320 -267 l 11320 -275 11320 -283 11320 -290 ct -11320 -298 11319 -305 11319 -311 ct 11319 -317 11319 -322 11319 -326 ct 11318 -331 11318 -334 11318 -336 ct -11372 -336 l 11372 -335 11372 -333 11373 -329 ct 11373 -326 11373 -321 11374 -316 ct -11374 -311 11374 -305 11375 -299 ct 11375 -293 11375 -287 11375 -282 ct 11376 -282 l -11381 -293 11387 -302 11394 -310 ct 11401 -317 11408 -323 11417 -328 ct 11425 -333 11434 -337 11445 -339 ct -11455 -341 11467 -342 11480 -342 ct 11503 -342 11523 -338 11539 -330 ct 11554 -321 11567 -310 11577 -295 ct -11586 -280 11593 -261 11597 -240 ct 11601 -219 11603 -195 11603 -170 ct p -11545 -168 m 11545 -189 11544 -207 11541 -224 ct 11539 -240 11534 -253 11528 -265 ct -11522 -276 11514 -284 11504 -290 ct 11494 -296 11481 -299 11466 -299 ct 11453 -299 11442 -297 11431 -294 ct -11420 -290 11410 -283 11402 -273 ct 11394 -263 11387 -250 11383 -232 ct 11378 -215 11376 -192 11376 -164 ct -11376 -140 11378 -120 11381 -104 ct 11385 -87 11391 -74 11399 -64 ct 11406 -53 11416 -46 11427 -42 ct -11438 -37 11451 -35 11465 -35 ct 11481 -35 11494 -38 11504 -44 ct 11514 -50 11522 -59 11528 -70 ct -11534 -82 11539 -95 11541 -112 ct 11544 -128 11545 -147 11545 -168 ct p ef -11714 -156 m 11714 -139 11715 -122 11719 -108 ct 11723 -93 11728 -80 11736 -70 ct -11743 -59 11753 -51 11765 -45 ct 11777 -39 11791 -36 11807 -36 ct 11831 -36 11851 -41 11865 -50 ct -11880 -60 11890 -72 11895 -87 ct 11944 -73 l 11940 -64 11936 -55 11929 -45 ct -11923 -36 11915 -27 11904 -20 ct 11893 -12 11880 -6 11864 -1 ct 11849 4 11830 6 11807 6 ct -11758 6 11720 -9 11694 -38 ct 11668 -68 11655 -112 11655 -170 ct 11655 -202 11659 -228 11667 -250 ct -11675 -272 11685 -290 11699 -303 ct 11713 -317 11729 -327 11747 -333 ct 11765 -339 11784 -342 11805 -342 ct -11833 -342 11857 -338 11876 -329 ct 11895 -320 11910 -307 11921 -291 ct 11933 -275 11941 -256 11946 -234 ct -11951 -212 11953 -189 11953 -164 ct 11953 -156 l 11714 -156 l p -11895 -199 m 11892 -234 11883 -260 11868 -277 ct 11853 -293 11832 -301 11804 -301 ct -11795 -301 11785 -300 11775 -296 ct 11765 -293 11755 -288 11746 -280 ct 11738 -273 11730 -262 11724 -249 ct -11718 -236 11715 -219 11714 -199 ct 11895 -199 l p ef -pom -1 lw 24637 4363 m 19646 4363 l ps -25074 4363 m 24617 4211 l 24617 4516 l 25074 4363 l p ef -19217 4363 m 19666 4513 l 19666 4213 l 19217 4363 l p ef -pum -19883 9349 t -93 -325 m 93 -189 l 296 -189 l 296 -148 l 93 -148 l 93 -1 l 43 -1 l -43 -365 l 302 -365 l 302 -325 l 93 -325 l p ef -403 -280 m 403 -103 l 403 -89 404 -78 406 -68 ct 408 -59 411 -52 416 -46 ct -420 -41 426 -37 433 -34 ct 441 -32 450 -31 461 -31 ct 472 -31 482 -33 491 -37 ct -499 -41 507 -46 513 -54 ct 520 -61 524 -70 528 -81 ct 531 -92 533 -104 533 -118 ct -533 -280 l 580 -280 l 580 -60 l 580 -54 580 -48 580 -41 ct 580 -35 580 -29 580 -23 ct -580 -17 580 -12 581 -8 ct 581 -4 581 -1 581 0 ct 537 0 l 537 -1 537 -3 537 -7 ct -536 -11 536 -15 536 -20 ct 536 -25 536 -30 535 -35 ct 535 -40 535 -45 535 -48 ct -534 -48 l 530 -40 525 -33 520 -26 ct 514 -19 508 -14 501 -9 ct 494 -5 486 -1 477 1 ct -468 4 457 5 445 5 ct 429 5 416 3 405 -1 ct 394 -4 385 -10 377 -18 ct 370 -26 365 -36 361 -49 ct -358 -61 356 -76 356 -94 ct 356 -280 l 403 -280 l p ef -831 0 m 831 -177 l 831 -191 830 -202 828 -212 ct 826 -221 823 -228 818 -234 ct -814 -239 808 -243 801 -246 ct 793 -248 784 -249 774 -249 ct 762 -249 753 -247 744 -243 ct -735 -239 727 -234 721 -226 ct 715 -219 710 -210 706 -199 ct 703 -189 701 -176 701 -162 ct -701 0 l 655 0 l 655 -220 l 655 -226 655 -232 655 -239 ct 654 -245 654 -251 654 -257 ct -654 -263 654 -268 654 -272 ct 653 -276 653 -279 653 -280 ct 697 -280 l 697 -279 697 -277 698 -273 ct -698 -269 698 -265 698 -260 ct 698 -255 699 -250 699 -245 ct 699 -240 699 -235 699 -232 ct -700 -232 l 704 -240 709 -247 715 -254 ct 720 -261 726 -266 733 -271 ct 740 -275 748 -279 757 -281 ct -767 -284 777 -285 789 -285 ct 805 -285 818 -283 829 -279 ct 840 -276 850 -270 857 -262 ct -864 -254 869 -244 873 -231 ct 876 -219 878 -204 878 -186 ct 878 0 l 831 0 l -p ef -985 -141 m 985 -125 986 -111 989 -97 ct 991 -84 995 -72 1000 -62 ct 1006 -53 1013 -45 1022 -40 ct -1031 -34 1042 -32 1056 -32 ct 1072 -32 1086 -36 1097 -45 ct 1108 -53 1115 -67 1118 -85 ct -1165 -85 l 1163 -73 1160 -62 1154 -51 ct 1149 -40 1142 -31 1133 -22 ct 1125 -14 1114 -7 1101 -2 ct -1088 2 1074 5 1057 5 ct 1035 5 1016 1 1001 -6 ct 986 -14 973 -24 964 -37 ct 954 -50 947 -65 943 -83 ct -939 -100 936 -120 936 -140 ct 936 -159 938 -176 941 -190 ct 944 -204 949 -217 954 -228 ct -960 -239 966 -248 974 -255 ct 982 -262 990 -268 999 -272 ct 1007 -277 1017 -280 1027 -282 ct -1036 -284 1046 -285 1056 -285 ct 1072 -285 1086 -283 1098 -279 ct 1110 -274 1121 -268 1130 -261 ct -1139 -253 1146 -245 1151 -234 ct 1157 -224 1161 -213 1163 -202 ct 1115 -198 l -1113 -213 1107 -226 1097 -235 ct 1087 -244 1073 -249 1055 -249 ct 1042 -249 1031 -246 1022 -242 ct -1013 -238 1006 -231 1000 -222 ct 995 -213 991 -202 989 -189 ct 986 -175 985 -159 985 -141 ct -p ef -1324 -2 m 1317 0 1310 1 1303 2 ct 1295 3 1287 4 1277 4 ct 1240 4 1221 -17 1221 -59 ct -1221 -246 l 1189 -246 l 1189 -280 l 1223 -280 l 1237 -343 l 1268 -343 l -1268 -280 l 1319 -280 l 1319 -246 l 1268 -246 l 1268 -69 l 1268 -56 1270 -47 1274 -41 ct -1279 -36 1286 -33 1297 -33 ct 1302 -33 1306 -33 1310 -34 ct 1315 -35 1319 -36 1324 -37 ct -1324 -2 l p ef -1364 -340 m 1364 -384 l 1411 -384 l 1411 -340 l 1364 -340 l p -1364 0 m 1364 -280 l 1411 -280 l 1411 0 l 1364 0 l p ef -1720 -140 m 1720 -91 1709 -55 1688 -31 ct 1666 -7 1635 5 1594 5 ct 1574 5 1557 2 1542 -4 ct -1526 -10 1513 -19 1503 -31 ct 1492 -43 1484 -58 1479 -76 ct 1473 -94 1470 -116 1470 -140 ct -1470 -237 1512 -285 1595 -285 ct 1617 -285 1636 -282 1652 -276 ct 1667 -270 1680 -261 1690 -249 ct -1701 -237 1708 -222 1713 -204 ct 1718 -186 1720 -164 1720 -140 ct p -1671 -140 m 1671 -162 1669 -180 1666 -194 ct 1663 -208 1658 -219 1651 -228 ct -1645 -236 1637 -242 1628 -246 ct 1618 -249 1608 -251 1596 -251 ct 1584 -251 1574 -249 1564 -245 ct -1555 -242 1546 -236 1540 -227 ct 1533 -219 1528 -207 1524 -193 ct 1521 -179 1519 -161 1519 -140 ct -1519 -119 1521 -101 1525 -86 ct 1529 -72 1534 -61 1540 -52 ct 1547 -44 1555 -38 1564 -35 ct -1573 -31 1583 -29 1593 -29 ct 1605 -29 1616 -31 1626 -34 ct 1635 -38 1644 -44 1650 -52 ct -1657 -61 1662 -72 1666 -86 ct 1669 -101 1671 -119 1671 -140 ct p ef -1957 0 m 1957 -177 l 1957 -191 1956 -202 1954 -212 ct 1952 -221 1949 -228 1944 -234 ct -1940 -239 1934 -243 1927 -246 ct 1919 -248 1910 -249 1900 -249 ct 1888 -249 1879 -247 1870 -243 ct -1861 -239 1853 -234 1847 -226 ct 1841 -219 1836 -210 1832 -199 ct 1829 -189 1827 -176 1827 -162 ct -1827 0 l 1781 0 l 1781 -220 l 1781 -226 1781 -232 1781 -239 ct 1780 -245 1780 -251 1780 -257 ct -1780 -263 1780 -268 1780 -272 ct 1779 -276 1779 -279 1779 -280 ct 1823 -280 l -1823 -279 1823 -277 1824 -273 ct 1824 -269 1824 -265 1824 -260 ct 1824 -255 1825 -250 1825 -245 ct -1825 -240 1825 -235 1825 -232 ct 1826 -232 l 1830 -240 1835 -247 1841 -254 ct -1846 -261 1852 -266 1859 -271 ct 1866 -275 1874 -279 1883 -281 ct 1893 -284 1903 -285 1915 -285 ct -1931 -285 1944 -283 1955 -279 ct 1966 -276 1976 -270 1983 -262 ct 1990 -254 1995 -244 1999 -231 ct -2002 -219 2004 -204 2004 -186 ct 2004 0 l 1957 0 l p ef -2226 0 m 2226 -215 l 2226 -221 2226 -227 2226 -233 ct 2225 -239 2225 -245 2225 -250 ct -2225 -256 2225 -261 2225 -266 ct 2224 -271 2224 -276 2224 -280 ct 2268 -280 l -2268 -276 2268 -271 2269 -266 ct 2269 -261 2269 -256 2269 -251 ct 2270 -245 2270 -240 2270 -235 ct -2270 -230 2270 -226 2270 -223 ct 2271 -223 l 2274 -233 2278 -243 2282 -250 ct -2285 -258 2290 -265 2295 -270 ct 2300 -275 2306 -279 2312 -281 ct 2319 -284 2328 -285 2338 -285 ct -2341 -285 2345 -285 2348 -284 ct 2352 -284 2354 -283 2356 -282 ct 2356 -240 l -2353 -241 2350 -241 2346 -242 ct 2341 -242 2337 -242 2332 -242 ct 2321 -242 2312 -240 2304 -235 ct -2297 -230 2291 -224 2286 -215 ct 2281 -207 2278 -196 2276 -185 ct 2273 -173 2272 -160 2272 -146 ct -2272 0 l 2226 0 l p ef -2437 -130 m 2437 -116 2439 -102 2442 -90 ct 2445 -77 2449 -67 2456 -58 ct 2462 -49 2470 -42 2480 -37 ct -2490 -32 2502 -30 2515 -30 ct 2535 -30 2552 -34 2564 -42 ct 2576 -50 2584 -60 2588 -73 ct -2629 -61 l 2626 -53 2622 -46 2617 -38 ct 2612 -30 2605 -23 2596 -17 ct 2587 -10 2576 -5 2563 -1 ct -2550 3 2534 5 2515 5 ct 2474 5 2443 -7 2421 -32 ct 2399 -57 2388 -93 2388 -142 ct -2388 -168 2392 -190 2398 -208 ct 2405 -227 2414 -241 2425 -253 ct 2437 -264 2450 -272 2465 -277 ct -2480 -282 2496 -285 2513 -285 ct 2537 -285 2557 -281 2572 -274 ct 2588 -266 2601 -256 2610 -242 ct -2620 -229 2627 -213 2631 -195 ct 2635 -177 2637 -158 2637 -137 ct 2637 -130 l -2437 -130 l p -2589 -166 m 2586 -195 2579 -217 2566 -230 ct 2554 -244 2536 -251 2513 -251 ct -2505 -251 2497 -249 2488 -247 ct 2480 -244 2472 -240 2465 -234 ct 2457 -227 2451 -219 2446 -208 ct -2441 -197 2439 -183 2438 -166 ct 2589 -166 l p ef -2756 -247 m 2756 -1 l 2710 -1 l 2710 -247 l 2670 -247 l 2670 -281 l -2710 -281 l 2710 -312 l 2710 -322 2711 -332 2713 -341 ct 2714 -349 2718 -357 2723 -363 ct -2728 -370 2735 -375 2744 -378 ct 2753 -382 2764 -384 2778 -384 ct 2783 -384 2789 -384 2795 -383 ct -2801 -383 2806 -382 2811 -381 ct 2811 -345 l 2808 -346 2804 -346 2801 -347 ct -2797 -347 2793 -348 2790 -348 ct 2783 -348 2778 -347 2773 -345 ct 2769 -343 2765 -340 2763 -337 ct -2760 -333 2759 -329 2758 -324 ct 2757 -318 2756 -313 2756 -306 ct 2756 -281 l -2811 -281 l 2811 -247 l 2756 -247 l p ef -2882 -130 m 2882 -116 2884 -102 2887 -90 ct 2890 -77 2894 -67 2901 -58 ct 2907 -49 2915 -42 2925 -37 ct -2935 -32 2947 -30 2960 -30 ct 2980 -30 2997 -34 3009 -42 ct 3021 -50 3029 -60 3033 -73 ct -3074 -61 l 3071 -53 3067 -46 3062 -38 ct 3057 -30 3050 -23 3041 -17 ct 3032 -10 3021 -5 3008 -1 ct -2995 3 2979 5 2960 5 ct 2919 5 2888 -7 2866 -32 ct 2844 -57 2833 -93 2833 -142 ct -2833 -168 2837 -190 2843 -208 ct 2850 -227 2859 -241 2870 -253 ct 2882 -264 2895 -272 2910 -277 ct -2925 -282 2941 -285 2958 -285 ct 2982 -285 3002 -281 3017 -274 ct 3033 -266 3046 -256 3055 -242 ct -3065 -229 3072 -213 3076 -195 ct 3080 -177 3082 -158 3082 -137 ct 3082 -130 l -2882 -130 l p -3034 -166 m 3031 -195 3024 -217 3011 -230 ct 2999 -244 2981 -251 2958 -251 ct -2950 -251 2942 -249 2933 -247 ct 2925 -244 2917 -240 2910 -234 ct 2902 -227 2896 -219 2891 -208 ct -2886 -197 2884 -183 2883 -166 ct 3034 -166 l p ef -3144 0 m 3144 -215 l 3144 -221 3144 -227 3144 -233 ct 3143 -239 3143 -245 3143 -250 ct -3143 -256 3143 -261 3143 -266 ct 3142 -271 3142 -276 3142 -280 ct 3186 -280 l -3186 -276 3186 -271 3187 -266 ct 3187 -261 3187 -256 3187 -251 ct 3188 -245 3188 -240 3188 -235 ct -3188 -230 3188 -226 3188 -223 ct 3189 -223 l 3192 -233 3196 -243 3200 -250 ct -3203 -258 3208 -265 3213 -270 ct 3218 -275 3224 -279 3230 -281 ct 3237 -284 3246 -285 3256 -285 ct -3259 -285 3263 -285 3266 -284 ct 3270 -284 3272 -283 3274 -282 ct 3274 -240 l -3271 -241 3268 -241 3264 -242 ct 3259 -242 3255 -242 3250 -242 ct 3239 -242 3230 -240 3222 -235 ct -3215 -230 3209 -224 3204 -215 ct 3199 -207 3196 -196 3194 -185 ct 3191 -173 3190 -160 3190 -146 ct -3190 0 l 3144 0 l p ef -3356 -130 m 3356 -116 3358 -102 3361 -90 ct 3364 -77 3368 -67 3375 -58 ct 3381 -49 3389 -42 3399 -37 ct -3409 -32 3421 -30 3434 -30 ct 3454 -30 3471 -34 3483 -42 ct 3495 -50 3503 -60 3507 -73 ct -3548 -61 l 3545 -53 3541 -46 3536 -38 ct 3531 -30 3524 -23 3515 -17 ct 3506 -10 3495 -5 3482 -1 ct -3469 3 3453 5 3434 5 ct 3393 5 3362 -7 3340 -32 ct 3318 -57 3307 -93 3307 -142 ct -3307 -168 3311 -190 3317 -208 ct 3324 -227 3333 -241 3344 -253 ct 3356 -264 3369 -272 3384 -277 ct -3399 -282 3415 -285 3432 -285 ct 3456 -285 3476 -281 3491 -274 ct 3507 -266 3520 -256 3529 -242 ct -3539 -229 3546 -213 3550 -195 ct 3554 -177 3556 -158 3556 -137 ct 3556 -130 l -3356 -130 l p -3508 -166 m 3505 -195 3498 -217 3485 -230 ct 3473 -244 3455 -251 3432 -251 ct -3424 -251 3416 -249 3407 -247 ct 3399 -244 3391 -240 3384 -234 ct 3376 -227 3370 -219 3365 -208 ct -3360 -197 3358 -183 3357 -166 ct 3508 -166 l p ef -3794 0 m 3794 -177 l 3794 -191 3793 -202 3791 -212 ct 3789 -221 3786 -228 3781 -234 ct -3777 -239 3771 -243 3764 -246 ct 3756 -248 3747 -249 3737 -249 ct 3725 -249 3716 -247 3707 -243 ct -3698 -239 3690 -234 3684 -226 ct 3678 -219 3673 -210 3669 -199 ct 3666 -189 3664 -176 3664 -162 ct -3664 0 l 3618 0 l 3618 -220 l 3618 -226 3618 -232 3618 -239 ct 3617 -245 3617 -251 3617 -257 ct -3617 -263 3617 -268 3617 -272 ct 3616 -276 3616 -279 3616 -280 ct 3660 -280 l -3660 -279 3660 -277 3661 -273 ct 3661 -269 3661 -265 3661 -260 ct 3661 -255 3662 -250 3662 -245 ct -3662 -240 3662 -235 3662 -232 ct 3663 -232 l 3667 -240 3672 -247 3678 -254 ct -3683 -261 3689 -266 3696 -271 ct 3703 -275 3711 -279 3720 -281 ct 3730 -284 3740 -285 3752 -285 ct -3768 -285 3781 -283 3792 -279 ct 3803 -276 3813 -270 3820 -262 ct 3827 -254 3832 -244 3836 -231 ct -3839 -219 3841 -204 3841 -186 ct 3841 0 l 3794 0 l p ef -3949 -141 m 3949 -125 3950 -111 3953 -97 ct 3955 -84 3959 -72 3964 -62 ct 3970 -53 3977 -45 3986 -40 ct -3995 -34 4006 -32 4020 -32 ct 4036 -32 4050 -36 4061 -45 ct 4072 -53 4079 -67 4082 -85 ct -4129 -85 l 4127 -73 4124 -62 4118 -51 ct 4113 -40 4106 -31 4097 -22 ct 4089 -14 4078 -7 4065 -2 ct -4052 2 4038 5 4021 5 ct 3999 5 3980 1 3965 -6 ct 3950 -14 3937 -24 3928 -37 ct -3918 -50 3911 -65 3907 -83 ct 3903 -100 3900 -120 3900 -140 ct 3900 -159 3902 -176 3905 -190 ct -3908 -204 3913 -217 3918 -228 ct 3924 -239 3930 -248 3938 -255 ct 3946 -262 3954 -268 3963 -272 ct -3971 -277 3981 -280 3991 -282 ct 4000 -284 4010 -285 4020 -285 ct 4036 -285 4050 -283 4062 -279 ct -4074 -274 4085 -268 4094 -261 ct 4103 -253 4110 -245 4115 -234 ct 4121 -224 4125 -213 4127 -202 ct -4079 -198 l 4077 -213 4071 -226 4061 -235 ct 4051 -244 4037 -249 4019 -249 ct -4006 -249 3995 -246 3986 -242 ct 3977 -238 3970 -231 3964 -222 ct 3959 -213 3955 -202 3953 -189 ct -3950 -175 3949 -159 3949 -141 ct p ef -4215 -130 m 4215 -116 4217 -102 4220 -90 ct 4223 -77 4227 -67 4234 -58 ct 4240 -49 4248 -42 4258 -37 ct -4268 -32 4280 -30 4293 -30 ct 4313 -30 4330 -34 4342 -42 ct 4354 -50 4362 -60 4366 -73 ct -4407 -61 l 4404 -53 4400 -46 4395 -38 ct 4390 -30 4383 -23 4374 -17 ct 4365 -10 4354 -5 4341 -1 ct -4328 3 4312 5 4293 5 ct 4252 5 4221 -7 4199 -32 ct 4177 -57 4166 -93 4166 -142 ct -4166 -168 4170 -190 4176 -208 ct 4183 -227 4192 -241 4203 -253 ct 4215 -264 4228 -272 4243 -277 ct -4258 -282 4274 -285 4291 -285 ct 4315 -285 4335 -281 4350 -274 ct 4366 -266 4379 -256 4388 -242 ct -4398 -229 4405 -213 4409 -195 ct 4413 -177 4415 -158 4415 -137 ct 4415 -130 l -4215 -130 l p -4367 -166 m 4364 -195 4357 -217 4344 -230 ct 4332 -244 4314 -251 4291 -251 ct -4283 -251 4275 -249 4266 -247 ct 4258 -244 4250 -240 4243 -234 ct 4235 -227 4229 -219 4224 -208 ct -4219 -197 4217 -183 4216 -166 ct 4367 -166 l p ef -pom -pum -19883 9946 t -325 -255 m 325 -239 322 -224 317 -210 ct 312 -197 304 -185 294 -175 ct 283 -165 270 -157 254 -151 ct -239 -145 221 -142 200 -142 ct 93 -142 l 93 0 l 43 0 l 43 -365 l 197 -365 l -218 -365 237 -362 253 -357 ct 269 -351 282 -344 293 -334 ct 304 -325 312 -313 317 -300 ct -322 -286 325 -271 325 -255 ct p -275 -254 m 275 -277 268 -295 254 -307 ct 240 -319 219 -325 191 -325 ct 93 -325 l -93 -181 l 193 -181 l 221 -181 242 -187 255 -200 ct 269 -213 275 -231 275 -254 ct -p ef -458 5 m 430 5 409 -2 395 -17 ct 381 -32 373 -53 373 -79 ct 373 -97 377 -112 384 -124 ct -391 -136 400 -145 411 -152 ct 423 -159 435 -164 450 -166 ct 464 -169 479 -170 494 -170 ct -557 -170 l 557 -185 l 557 -197 556 -207 553 -215 ct 551 -223 547 -230 542 -235 ct -537 -240 531 -244 523 -246 ct 516 -248 507 -250 497 -250 ct 488 -250 480 -249 473 -248 ct -465 -246 459 -244 454 -241 ct 448 -237 444 -233 441 -227 ct 438 -221 435 -214 434 -205 ct -386 -210 l 388 -221 391 -231 396 -240 ct 401 -249 407 -257 416 -264 ct 425 -271 436 -276 450 -279 ct -463 -283 479 -285 498 -285 ct 533 -285 560 -277 577 -261 ct 595 -245 604 -221 604 -191 ct -604 -71 l 604 -57 606 -46 609 -39 ct 613 -32 620 -29 630 -29 ct 633 -29 635 -29 638 -29 ct -640 -30 643 -30 645 -31 ct 645 -2 l 639 0 634 1 628 1 ct 622 2 616 2 609 2 ct -601 2 593 1 587 -1 ct 580 -4 575 -7 571 -12 ct 567 -17 564 -22 562 -29 ct 560 -36 559 -44 558 -54 ct -557 -54 l 552 -45 546 -37 540 -29 ct 535 -22 528 -16 520 -11 ct 512 -6 503 -2 493 1 ct -483 4 471 5 458 5 ct p -469 -30 m 483 -30 496 -33 507 -38 ct 519 -43 528 -50 535 -59 ct 542 -67 548 -76 551 -86 ct -555 -96 557 -106 557 -115 ct 557 -137 l 506 -137 l 495 -137 484 -137 474 -135 ct -463 -134 454 -131 447 -127 ct 439 -122 433 -116 428 -108 ct 424 -101 421 -90 421 -78 ct -421 -62 425 -51 434 -42 ct 442 -34 453 -30 469 -30 ct p ef -685 0 m 685 -215 l 685 -221 685 -227 685 -233 ct 684 -239 684 -245 684 -250 ct -684 -256 684 -261 684 -266 ct 683 -271 683 -276 683 -280 ct 727 -280 l 727 -276 727 -271 728 -266 ct -728 -261 728 -256 728 -251 ct 729 -245 729 -240 729 -235 ct 729 -230 729 -226 729 -223 ct -730 -223 l 733 -233 737 -243 741 -250 ct 744 -258 749 -265 754 -270 ct 759 -275 765 -279 771 -281 ct -778 -284 787 -285 797 -285 ct 800 -285 804 -285 807 -284 ct 811 -284 813 -283 815 -282 ct -815 -240 l 812 -241 809 -241 805 -242 ct 800 -242 796 -242 791 -242 ct 780 -242 771 -240 763 -235 ct -756 -230 750 -224 745 -215 ct 740 -207 737 -196 735 -185 ct 732 -173 731 -160 731 -146 ct -731 0 l 685 0 l p ef -933 5 m 905 5 884 -2 870 -17 ct 856 -32 848 -53 848 -79 ct 848 -97 852 -112 859 -124 ct -866 -136 875 -145 886 -152 ct 898 -159 910 -164 925 -166 ct 939 -169 954 -170 969 -170 ct -1032 -170 l 1032 -185 l 1032 -197 1031 -207 1028 -215 ct 1026 -223 1022 -230 1017 -235 ct -1012 -240 1006 -244 998 -246 ct 991 -248 982 -250 972 -250 ct 963 -250 955 -249 948 -248 ct -940 -246 934 -244 929 -241 ct 923 -237 919 -233 916 -227 ct 913 -221 910 -214 909 -205 ct -861 -210 l 863 -221 866 -231 871 -240 ct 876 -249 882 -257 891 -264 ct 900 -271 911 -276 925 -279 ct -938 -283 954 -285 973 -285 ct 1008 -285 1035 -277 1052 -261 ct 1070 -245 1079 -221 1079 -191 ct -1079 -71 l 1079 -57 1081 -46 1084 -39 ct 1088 -32 1095 -29 1105 -29 ct 1108 -29 1110 -29 1113 -29 ct -1115 -30 1118 -30 1120 -31 ct 1120 -2 l 1114 0 1109 1 1103 1 ct 1097 2 1091 2 1084 2 ct -1076 2 1068 1 1062 -1 ct 1055 -4 1050 -7 1046 -12 ct 1042 -17 1039 -22 1037 -29 ct -1035 -36 1034 -44 1033 -54 ct 1032 -54 l 1027 -45 1021 -37 1015 -29 ct 1010 -22 1003 -16 995 -11 ct -987 -6 978 -2 968 1 ct 958 4 946 5 933 5 ct p -944 -30 m 958 -30 971 -33 982 -38 ct 994 -43 1003 -50 1010 -59 ct 1017 -67 1023 -76 1026 -86 ct -1030 -96 1032 -106 1032 -115 ct 1032 -137 l 981 -137 l 970 -137 959 -137 949 -135 ct -938 -134 929 -131 922 -127 ct 914 -122 908 -116 903 -108 ct 899 -101 896 -90 896 -78 ct -896 -62 900 -51 909 -42 ct 917 -34 928 -30 944 -30 ct p ef -1320 0 m 1320 -177 l 1320 -191 1320 -202 1318 -212 ct 1316 -221 1313 -228 1309 -234 ct -1305 -239 1300 -243 1293 -246 ct 1287 -248 1279 -249 1269 -249 ct 1259 -249 1251 -247 1243 -243 ct -1235 -239 1228 -234 1222 -226 ct 1217 -219 1212 -210 1209 -199 ct 1206 -189 1205 -176 1205 -162 ct -1205 0 l 1159 0 l 1159 -220 l 1159 -226 1159 -232 1159 -239 ct 1158 -245 1158 -251 1158 -257 ct -1158 -263 1158 -268 1158 -272 ct 1157 -276 1157 -279 1157 -280 ct 1201 -280 l -1201 -279 1201 -277 1202 -273 ct 1202 -269 1202 -265 1202 -260 ct 1202 -255 1203 -250 1203 -245 ct -1203 -240 1203 -235 1203 -232 ct 1204 -232 l 1208 -240 1212 -247 1217 -254 ct -1222 -261 1228 -266 1234 -271 ct 1241 -275 1248 -279 1256 -281 ct 1265 -284 1274 -285 1286 -285 ct -1307 -285 1323 -281 1336 -272 ct 1348 -264 1357 -250 1361 -232 ct 1362 -232 l -1366 -240 1371 -247 1376 -254 ct 1381 -261 1387 -266 1394 -271 ct 1401 -275 1409 -279 1417 -281 ct -1426 -284 1436 -285 1447 -285 ct 1461 -285 1473 -283 1483 -279 ct 1494 -276 1502 -270 1509 -262 ct -1515 -254 1520 -244 1523 -231 ct 1526 -219 1528 -204 1528 -186 ct 1528 0 l 1482 0 l -1482 -177 l 1482 -191 1481 -202 1479 -212 ct 1478 -221 1475 -228 1471 -234 ct -1467 -239 1461 -243 1455 -246 ct 1448 -248 1440 -249 1431 -249 ct 1421 -249 1412 -247 1404 -244 ct -1396 -240 1389 -234 1384 -227 ct 1378 -220 1374 -211 1371 -200 ct 1368 -189 1366 -176 1366 -162 ct -1366 0 l 1320 0 l p ef -1633 -130 m 1633 -116 1635 -102 1638 -90 ct 1641 -77 1645 -67 1652 -58 ct 1658 -49 1666 -42 1676 -37 ct -1686 -32 1698 -30 1711 -30 ct 1731 -30 1748 -34 1760 -42 ct 1772 -50 1780 -60 1784 -73 ct -1825 -61 l 1822 -53 1818 -46 1813 -38 ct 1808 -30 1801 -23 1792 -17 ct 1783 -10 1772 -5 1759 -1 ct -1746 3 1730 5 1711 5 ct 1670 5 1639 -7 1617 -32 ct 1595 -57 1584 -93 1584 -142 ct -1584 -168 1588 -190 1594 -208 ct 1601 -227 1610 -241 1621 -253 ct 1633 -264 1646 -272 1661 -277 ct -1676 -282 1692 -285 1709 -285 ct 1733 -285 1753 -281 1768 -274 ct 1784 -266 1797 -256 1806 -242 ct -1816 -229 1823 -213 1827 -195 ct 1831 -177 1833 -158 1833 -137 ct 1833 -130 l -1633 -130 l p -1785 -166 m 1782 -195 1775 -217 1762 -230 ct 1750 -244 1732 -251 1709 -251 ct -1701 -251 1693 -249 1684 -247 ct 1676 -244 1668 -240 1661 -234 ct 1653 -227 1647 -219 1642 -208 ct -1637 -197 1635 -183 1634 -166 ct 1785 -166 l p ef -2001 -2 m 1994 0 1987 1 1980 2 ct 1972 3 1964 4 1954 4 ct 1917 4 1898 -17 1898 -59 ct -1898 -246 l 1866 -246 l 1866 -280 l 1900 -280 l 1914 -343 l 1945 -343 l -1945 -280 l 1996 -280 l 1996 -246 l 1945 -246 l 1945 -69 l 1945 -56 1947 -47 1951 -41 ct -1956 -36 1963 -33 1974 -33 ct 1979 -33 1983 -33 1987 -34 ct 1992 -35 1996 -36 2001 -37 ct -2001 -2 l p ef -2078 -130 m 2078 -116 2080 -102 2083 -90 ct 2086 -77 2090 -67 2097 -58 ct 2103 -49 2111 -42 2121 -37 ct -2131 -32 2143 -30 2156 -30 ct 2176 -30 2193 -34 2205 -42 ct 2217 -50 2225 -60 2229 -73 ct -2270 -61 l 2267 -53 2263 -46 2258 -38 ct 2253 -30 2246 -23 2237 -17 ct 2228 -10 2217 -5 2204 -1 ct -2191 3 2175 5 2156 5 ct 2115 5 2084 -7 2062 -32 ct 2040 -57 2029 -93 2029 -142 ct -2029 -168 2033 -190 2039 -208 ct 2046 -227 2055 -241 2066 -253 ct 2078 -264 2091 -272 2106 -277 ct -2121 -282 2137 -285 2154 -285 ct 2178 -285 2198 -281 2213 -274 ct 2229 -266 2242 -256 2251 -242 ct -2261 -229 2268 -213 2272 -195 ct 2276 -177 2278 -158 2278 -137 ct 2278 -130 l -2078 -130 l p -2230 -166 m 2227 -195 2220 -217 2207 -230 ct 2195 -244 2177 -251 2154 -251 ct -2146 -251 2138 -249 2129 -247 ct 2121 -244 2113 -240 2106 -234 ct 2098 -227 2092 -219 2087 -208 ct -2082 -197 2080 -183 2079 -166 ct 2230 -166 l p ef -2340 0 m 2340 -215 l 2340 -221 2340 -227 2340 -233 ct 2339 -239 2339 -245 2339 -250 ct -2339 -256 2339 -261 2339 -266 ct 2338 -271 2338 -276 2338 -280 ct 2382 -280 l -2382 -276 2382 -271 2383 -266 ct 2383 -261 2383 -256 2383 -251 ct 2384 -245 2384 -240 2384 -235 ct -2384 -230 2384 -226 2384 -223 ct 2385 -223 l 2388 -233 2392 -243 2396 -250 ct -2399 -258 2404 -265 2409 -270 ct 2414 -275 2420 -279 2426 -281 ct 2433 -284 2442 -285 2452 -285 ct -2455 -285 2459 -285 2462 -284 ct 2466 -284 2468 -283 2470 -282 ct 2470 -240 l -2467 -241 2464 -241 2460 -242 ct 2455 -242 2451 -242 2446 -242 ct 2435 -242 2426 -240 2418 -235 ct -2411 -230 2405 -224 2400 -215 ct 2395 -207 2392 -196 2390 -185 ct 2387 -173 2386 -160 2386 -146 ct -2386 0 l 2340 0 l p ef -2726 -77 m 2726 -64 2724 -53 2719 -42 ct 2714 -32 2706 -24 2697 -17 ct 2687 -10 2675 -4 2661 -1 ct -2647 3 2631 5 2613 5 ct 2597 5 2582 4 2569 1 ct 2556 -1 2545 -5 2535 -11 ct 2525 -16 2517 -24 2510 -33 ct -2504 -42 2499 -53 2496 -66 ct 2537 -74 l 2541 -59 2549 -48 2561 -41 ct 2574 -34 2591 -30 2613 -30 ct -2623 -30 2632 -31 2641 -33 ct 2649 -34 2656 -36 2662 -40 ct 2668 -43 2673 -47 2676 -53 ct -2680 -59 2681 -66 2681 -74 ct 2681 -82 2679 -89 2675 -95 ct 2671 -100 2666 -105 2659 -108 ct -2652 -112 2643 -115 2633 -118 ct 2623 -120 2612 -123 2600 -127 ct 2589 -129 2578 -133 2567 -136 ct -2555 -140 2546 -145 2537 -151 ct 2528 -157 2521 -164 2515 -173 ct 2510 -182 2507 -193 2507 -206 ct -2507 -231 2516 -251 2534 -264 ct 2552 -278 2579 -284 2614 -284 ct 2644 -284 2669 -279 2687 -268 ct -2705 -257 2717 -240 2721 -216 ct 2680 -211 l 2678 -218 2675 -224 2671 -229 ct -2667 -234 2662 -238 2656 -241 ct 2650 -244 2644 -246 2636 -247 ct 2629 -248 2621 -249 2614 -249 ct -2593 -249 2577 -246 2567 -239 ct 2557 -233 2552 -223 2552 -210 ct 2552 -203 2554 -197 2558 -192 ct -2561 -187 2566 -183 2573 -179 ct 2580 -176 2588 -173 2597 -171 ct 2606 -168 2617 -165 2628 -163 ct -2635 -161 2643 -159 2650 -157 ct 2658 -154 2666 -152 2673 -149 ct 2680 -146 2687 -142 2694 -138 ct -2700 -134 2706 -129 2711 -124 ct 2715 -118 2719 -111 2722 -104 ct 2725 -96 2726 -87 2726 -77 ct -p ef -2846 -57 m 2846 -13 l 2846 -4 2846 4 2845 12 ct 2845 19 2843 26 2842 33 ct -2840 39 2838 45 2835 51 ct 2833 57 2830 62 2826 68 ct 2795 68 l 2802 57 2808 45 2812 34 ct -2817 23 2819 11 2819 0 ct 2796 0 l 2796 -57 l 2846 -57 l p ef -3369 -103 m 3369 -84 3365 -69 3358 -55 ct 3351 -42 3341 -32 3329 -24 ct 3317 -15 3302 -9 3286 -6 ct -3270 -2 3253 0 3235 0 ct 3087 0 l 3087 -365 l 3220 -365 l 3240 -365 3258 -363 3274 -360 ct -3289 -356 3303 -351 3314 -344 ct 3325 -336 3333 -327 3339 -316 ct 3345 -305 3348 -292 3348 -276 ct -3348 -266 3346 -256 3344 -247 ct 3341 -238 3336 -230 3331 -223 ct 3325 -216 3318 -209 3309 -204 ct -3300 -199 3290 -195 3279 -192 ct 3293 -190 3306 -187 3317 -182 ct 3329 -177 3338 -171 3346 -163 ct -3353 -155 3359 -146 3363 -136 ct 3367 -126 3369 -115 3369 -103 ct p -3298 -270 m 3298 -290 3291 -304 3278 -312 ct 3265 -321 3245 -325 3220 -325 ct -3137 -325 l 3137 -210 l 3220 -210 l 3234 -210 3246 -211 3256 -214 ct 3266 -217 3274 -221 3281 -226 ct -3287 -231 3291 -238 3294 -245 ct 3297 -252 3298 -261 3298 -270 ct p -3319 -107 m 3319 -118 3317 -128 3313 -136 ct 3309 -144 3302 -151 3295 -156 ct -3287 -161 3277 -165 3266 -167 ct 3255 -170 3242 -171 3229 -171 ct 3137 -171 l -3137 -40 l 3233 -40 l 3245 -40 3257 -41 3267 -43 ct 3278 -45 3287 -48 3295 -54 ct -3302 -59 3308 -66 3313 -74 ct 3317 -83 3319 -94 3319 -107 ct p ef -3667 -140 m 3667 -91 3656 -55 3635 -31 ct 3613 -7 3582 5 3541 5 ct 3521 5 3504 2 3489 -4 ct -3473 -10 3460 -19 3450 -31 ct 3439 -43 3431 -58 3426 -76 ct 3420 -94 3417 -116 3417 -140 ct -3417 -237 3459 -285 3542 -285 ct 3564 -285 3583 -282 3599 -276 ct 3614 -270 3627 -261 3637 -249 ct -3648 -237 3655 -222 3660 -204 ct 3665 -186 3667 -164 3667 -140 ct p -3618 -140 m 3618 -162 3616 -180 3613 -194 ct 3610 -208 3605 -219 3598 -228 ct -3592 -236 3584 -242 3575 -246 ct 3565 -249 3555 -251 3543 -251 ct 3531 -251 3521 -249 3511 -245 ct -3502 -242 3493 -236 3487 -227 ct 3480 -219 3475 -207 3471 -193 ct 3468 -179 3466 -161 3466 -140 ct -3466 -119 3468 -101 3472 -86 ct 3476 -72 3481 -61 3487 -52 ct 3494 -44 3502 -38 3511 -35 ct -3520 -31 3530 -29 3540 -29 ct 3552 -29 3563 -31 3573 -34 ct 3582 -38 3591 -44 3597 -52 ct -3604 -61 3609 -72 3613 -86 ct 3616 -101 3618 -119 3618 -140 ct p ef -3772 -280 m 3772 -103 l 3772 -89 3773 -78 3775 -68 ct 3777 -59 3780 -52 3785 -46 ct -3789 -41 3795 -37 3802 -34 ct 3810 -32 3819 -31 3830 -31 ct 3841 -31 3851 -33 3860 -37 ct -3868 -41 3876 -46 3882 -54 ct 3889 -61 3893 -70 3897 -81 ct 3900 -92 3902 -104 3902 -118 ct -3902 -280 l 3949 -280 l 3949 -60 l 3949 -54 3949 -48 3949 -41 ct 3949 -35 3949 -29 3949 -23 ct -3949 -17 3949 -12 3950 -8 ct 3950 -4 3950 -1 3950 0 ct 3906 0 l 3906 -1 3906 -3 3906 -7 ct -3905 -11 3905 -15 3905 -20 ct 3905 -25 3905 -30 3904 -35 ct 3904 -40 3904 -45 3904 -48 ct -3903 -48 l 3899 -40 3894 -33 3889 -26 ct 3883 -19 3877 -14 3870 -9 ct 3863 -5 3855 -1 3846 1 ct -3837 4 3826 5 3814 5 ct 3798 5 3785 3 3774 -1 ct 3763 -4 3754 -10 3746 -18 ct 3739 -26 3734 -36 3730 -49 ct -3727 -61 3725 -76 3725 -94 ct 3725 -280 l 3772 -280 l p ef -4201 0 m 4201 -177 l 4201 -191 4200 -202 4198 -212 ct 4196 -221 4193 -228 4188 -234 ct -4184 -239 4178 -243 4171 -246 ct 4163 -248 4154 -249 4144 -249 ct 4132 -249 4123 -247 4114 -243 ct -4105 -239 4097 -234 4091 -226 ct 4085 -219 4080 -210 4076 -199 ct 4073 -189 4071 -176 4071 -162 ct -4071 0 l 4025 0 l 4025 -220 l 4025 -226 4025 -232 4025 -239 ct 4024 -245 4024 -251 4024 -257 ct -4024 -263 4024 -268 4024 -272 ct 4023 -276 4023 -279 4023 -280 ct 4067 -280 l -4067 -279 4067 -277 4068 -273 ct 4068 -269 4068 -265 4068 -260 ct 4068 -255 4069 -250 4069 -245 ct -4069 -240 4069 -235 4069 -232 ct 4070 -232 l 4074 -240 4079 -247 4085 -254 ct -4090 -261 4096 -266 4103 -271 ct 4110 -275 4118 -279 4127 -281 ct 4137 -284 4147 -285 4159 -285 ct -4175 -285 4188 -283 4199 -279 ct 4210 -276 4220 -270 4227 -262 ct 4234 -254 4239 -244 4243 -231 ct -4246 -219 4248 -204 4248 -186 ct 4248 0 l 4201 0 l p ef -4496 -45 m 4487 -27 4476 -14 4462 -7 ct 4448 1 4430 5 4409 5 ct 4374 5 4348 -7 4331 -31 ct -4315 -55 4306 -91 4306 -139 ct 4306 -237 4340 -285 4409 -285 ct 4430 -285 4448 -282 4462 -274 ct -4476 -266 4487 -254 4496 -237 ct 4497 -237 l 4497 -238 4497 -241 4496 -245 ct -4496 -249 4496 -252 4496 -257 ct 4496 -261 4496 -264 4496 -268 ct 4496 -272 4496 -274 4496 -276 ct -4496 -384 l 4543 -384 l 4543 -58 l 4543 -51 4543 -45 4543 -38 ct 4543 -32 4543 -27 4543 -21 ct -4543 -16 4543 -12 4544 -8 ct 4544 -4 4544 -2 4544 0 ct 4500 0 l 4499 -2 4499 -4 4499 -8 ct -4499 -11 4498 -14 4498 -19 ct 4498 -23 4498 -27 4497 -32 ct 4497 -36 4497 -41 4497 -45 ct -4496 -45 l p -4355 -140 m 4355 -121 4356 -105 4359 -91 ct 4361 -77 4365 -66 4370 -57 ct 4376 -48 4382 -41 4391 -37 ct -4399 -33 4409 -31 4421 -31 ct 4433 -31 4444 -33 4453 -37 ct 4463 -41 4471 -47 4477 -56 ct -4483 -65 4488 -77 4491 -91 ct 4494 -105 4496 -123 4496 -144 ct 4496 -163 4494 -180 4491 -194 ct -4488 -208 4483 -219 4477 -227 ct 4470 -236 4463 -242 4453 -245 ct 4444 -249 4433 -251 4421 -251 ct -4410 -251 4400 -249 4392 -245 ct 4384 -241 4377 -235 4371 -226 ct 4366 -217 4362 -206 4359 -192 ct -4356 -178 4355 -160 4355 -140 ct p ef -4825 -77 m 4825 -64 4823 -53 4818 -42 ct 4813 -32 4805 -24 4796 -17 ct 4786 -10 4774 -4 4760 -1 ct -4746 3 4730 5 4712 5 ct 4696 5 4681 4 4668 1 ct 4655 -1 4644 -5 4634 -11 ct 4624 -16 4616 -24 4609 -33 ct -4603 -42 4598 -53 4595 -66 ct 4636 -74 l 4640 -59 4648 -48 4660 -41 ct 4673 -34 4690 -30 4712 -30 ct -4722 -30 4731 -31 4740 -33 ct 4748 -34 4755 -36 4761 -40 ct 4767 -43 4772 -47 4775 -53 ct -4779 -59 4780 -66 4780 -74 ct 4780 -82 4778 -89 4774 -95 ct 4770 -100 4765 -105 4758 -108 ct -4751 -112 4742 -115 4732 -118 ct 4722 -120 4711 -123 4699 -127 ct 4688 -129 4677 -133 4666 -136 ct -4654 -140 4645 -145 4636 -151 ct 4627 -157 4620 -164 4614 -173 ct 4609 -182 4606 -193 4606 -206 ct -4606 -231 4615 -251 4633 -264 ct 4651 -278 4678 -284 4713 -284 ct 4743 -284 4768 -279 4786 -268 ct -4804 -257 4816 -240 4820 -216 ct 4779 -211 l 4777 -218 4774 -224 4770 -229 ct -4766 -234 4761 -238 4755 -241 ct 4749 -244 4743 -246 4735 -247 ct 4728 -248 4720 -249 4713 -249 ct -4692 -249 4676 -246 4666 -239 ct 4656 -233 4651 -223 4651 -210 ct 4651 -203 4653 -197 4657 -192 ct -4660 -187 4665 -183 4672 -179 ct 4679 -176 4687 -173 4696 -171 ct 4705 -168 4716 -165 4727 -163 ct -4734 -161 4742 -159 4749 -157 ct 4757 -154 4765 -152 4772 -149 ct 4779 -146 4786 -142 4793 -138 ct -4799 -134 4805 -129 4810 -124 ct 4814 -118 4818 -111 4821 -104 ct 4824 -96 4825 -87 4825 -77 ct -p ef -pom -pum -19883 10543 t -93 -247 m 93 -1 l 47 -1 l 47 -247 l 7 -247 l 7 -281 l 47 -281 l -47 -312 l 47 -322 48 -332 50 -341 ct 51 -349 55 -357 60 -363 ct 65 -370 72 -375 81 -378 ct -90 -382 101 -384 115 -384 ct 120 -384 126 -384 132 -383 ct 138 -383 143 -382 148 -381 ct -148 -345 l 145 -346 141 -346 138 -347 ct 134 -347 130 -348 127 -348 ct 120 -348 115 -347 110 -345 ct -106 -343 102 -340 100 -337 ct 97 -333 96 -329 95 -324 ct 94 -318 93 -313 93 -306 ct -93 -281 l 148 -281 l 148 -247 l 93 -247 l p ef -229 -280 m 229 -103 l 229 -89 230 -78 232 -68 ct 234 -59 237 -52 242 -46 ct -246 -41 252 -37 259 -34 ct 267 -32 276 -31 287 -31 ct 298 -31 308 -33 317 -37 ct -325 -41 333 -46 339 -54 ct 346 -61 350 -70 354 -81 ct 357 -92 359 -104 359 -118 ct -359 -280 l 406 -280 l 406 -60 l 406 -54 406 -48 406 -41 ct 406 -35 406 -29 406 -23 ct -406 -17 406 -12 407 -8 ct 407 -4 407 -1 407 0 ct 363 0 l 363 -1 363 -3 363 -7 ct -362 -11 362 -15 362 -20 ct 362 -25 362 -30 361 -35 ct 361 -40 361 -45 361 -48 ct -360 -48 l 356 -40 351 -33 346 -26 ct 340 -19 334 -14 327 -9 ct 320 -5 312 -1 303 1 ct -294 4 283 5 271 5 ct 255 5 242 3 231 -1 ct 220 -4 211 -10 203 -18 ct 196 -26 191 -36 187 -49 ct -184 -61 182 -76 182 -94 ct 182 -280 l 229 -280 l p ef -658 0 m 658 -177 l 658 -191 657 -202 655 -212 ct 653 -221 650 -228 645 -234 ct -641 -239 635 -243 628 -246 ct 620 -248 611 -249 601 -249 ct 589 -249 580 -247 571 -243 ct -562 -239 554 -234 548 -226 ct 542 -219 537 -210 533 -199 ct 530 -189 528 -176 528 -162 ct -528 0 l 482 0 l 482 -220 l 482 -226 482 -232 482 -239 ct 481 -245 481 -251 481 -257 ct -481 -263 481 -268 481 -272 ct 480 -276 480 -279 480 -280 ct 524 -280 l 524 -279 524 -277 525 -273 ct -525 -269 525 -265 525 -260 ct 525 -255 526 -250 526 -245 ct 526 -240 526 -235 526 -232 ct -527 -232 l 531 -240 536 -247 542 -254 ct 547 -261 553 -266 560 -271 ct 567 -275 575 -279 584 -281 ct -594 -284 604 -285 616 -285 ct 632 -285 645 -283 656 -279 ct 667 -276 677 -270 684 -262 ct -691 -254 696 -244 700 -231 ct 703 -219 705 -204 705 -186 ct 705 0 l 658 0 l -p ef -812 -141 m 812 -125 813 -111 816 -97 ct 818 -84 822 -72 827 -62 ct 833 -53 840 -45 849 -40 ct -858 -34 869 -32 883 -32 ct 899 -32 913 -36 924 -45 ct 935 -53 942 -67 945 -85 ct -992 -85 l 990 -73 987 -62 981 -51 ct 976 -40 969 -31 960 -22 ct 952 -14 941 -7 928 -2 ct -915 2 901 5 884 5 ct 862 5 843 1 828 -6 ct 813 -14 800 -24 791 -37 ct 781 -50 774 -65 770 -83 ct -766 -100 763 -120 763 -140 ct 763 -159 765 -176 768 -190 ct 771 -204 776 -217 781 -228 ct -787 -239 793 -248 801 -255 ct 809 -262 817 -268 826 -272 ct 834 -277 844 -280 854 -282 ct -863 -284 873 -285 883 -285 ct 899 -285 913 -283 925 -279 ct 937 -274 948 -268 957 -261 ct -966 -253 973 -245 978 -234 ct 984 -224 988 -213 990 -202 ct 942 -198 l 940 -213 934 -226 924 -235 ct -914 -244 900 -249 882 -249 ct 869 -249 858 -246 849 -242 ct 840 -238 833 -231 827 -222 ct -822 -213 818 -202 816 -189 ct 813 -175 812 -159 812 -141 ct p ef -1151 -2 m 1144 0 1137 1 1130 2 ct 1122 3 1114 4 1104 4 ct 1067 4 1048 -17 1048 -59 ct -1048 -246 l 1016 -246 l 1016 -280 l 1050 -280 l 1064 -343 l 1095 -343 l -1095 -280 l 1146 -280 l 1146 -246 l 1095 -246 l 1095 -69 l 1095 -56 1097 -47 1101 -41 ct -1106 -36 1113 -33 1124 -33 ct 1129 -33 1133 -33 1137 -34 ct 1142 -35 1146 -36 1151 -37 ct -1151 -2 l p ef -1191 -340 m 1191 -384 l 1238 -384 l 1238 -340 l 1191 -340 l p -1191 0 m 1191 -280 l 1238 -280 l 1238 0 l 1191 0 l p ef -1546 -140 m 1546 -91 1535 -55 1514 -31 ct 1492 -7 1461 5 1420 5 ct 1400 5 1383 2 1368 -4 ct -1352 -10 1339 -19 1329 -31 ct 1318 -43 1310 -58 1305 -76 ct 1299 -94 1296 -116 1296 -140 ct -1296 -237 1338 -285 1421 -285 ct 1443 -285 1462 -282 1478 -276 ct 1493 -270 1506 -261 1516 -249 ct -1527 -237 1534 -222 1539 -204 ct 1544 -186 1546 -164 1546 -140 ct p -1497 -140 m 1497 -162 1495 -180 1492 -194 ct 1489 -208 1484 -219 1477 -228 ct -1471 -236 1463 -242 1454 -246 ct 1444 -249 1434 -251 1422 -251 ct 1410 -251 1400 -249 1390 -245 ct -1381 -242 1372 -236 1366 -227 ct 1359 -219 1354 -207 1350 -193 ct 1347 -179 1345 -161 1345 -140 ct -1345 -119 1347 -101 1351 -86 ct 1355 -72 1360 -61 1366 -52 ct 1373 -44 1381 -38 1390 -35 ct -1399 -31 1409 -29 1419 -29 ct 1431 -29 1442 -31 1452 -34 ct 1461 -38 1470 -44 1476 -52 ct -1483 -61 1488 -72 1492 -86 ct 1495 -101 1497 -119 1497 -140 ct p ef -1784 0 m 1784 -177 l 1784 -191 1783 -202 1781 -212 ct 1779 -221 1776 -228 1771 -234 ct -1767 -239 1761 -243 1754 -246 ct 1746 -248 1737 -249 1727 -249 ct 1715 -249 1706 -247 1697 -243 ct -1688 -239 1680 -234 1674 -226 ct 1668 -219 1663 -210 1659 -199 ct 1656 -189 1654 -176 1654 -162 ct -1654 0 l 1608 0 l 1608 -220 l 1608 -226 1608 -232 1608 -239 ct 1607 -245 1607 -251 1607 -257 ct -1607 -263 1607 -268 1607 -272 ct 1606 -276 1606 -279 1606 -280 ct 1650 -280 l -1650 -279 1650 -277 1651 -273 ct 1651 -269 1651 -265 1651 -260 ct 1651 -255 1652 -250 1652 -245 ct -1652 -240 1652 -235 1652 -232 ct 1653 -232 l 1657 -240 1662 -247 1668 -254 ct -1673 -261 1679 -266 1686 -271 ct 1693 -275 1701 -279 1710 -281 ct 1720 -284 1730 -285 1742 -285 ct -1758 -285 1771 -283 1782 -279 ct 1793 -276 1803 -270 1810 -262 ct 1817 -254 1822 -244 1826 -231 ct -1829 -219 1831 -204 1831 -186 ct 1831 0 l 1784 0 l p ef -2228 0 m 2228 -177 l 2228 -191 2227 -202 2225 -212 ct 2223 -221 2220 -228 2215 -234 ct -2211 -239 2205 -243 2198 -246 ct 2190 -248 2181 -249 2171 -249 ct 2159 -249 2150 -247 2141 -243 ct -2132 -239 2124 -234 2118 -226 ct 2112 -219 2107 -210 2103 -199 ct 2100 -189 2098 -176 2098 -162 ct -2098 0 l 2052 0 l 2052 -220 l 2052 -226 2052 -232 2052 -239 ct 2051 -245 2051 -251 2051 -257 ct -2051 -263 2051 -268 2051 -272 ct 2050 -276 2050 -279 2050 -280 ct 2094 -280 l -2094 -279 2094 -277 2095 -273 ct 2095 -269 2095 -265 2095 -260 ct 2095 -255 2096 -250 2096 -245 ct -2096 -240 2096 -235 2096 -232 ct 2097 -232 l 2101 -240 2106 -247 2112 -254 ct -2117 -261 2123 -266 2130 -271 ct 2137 -275 2145 -279 2154 -281 ct 2164 -284 2174 -285 2186 -285 ct -2202 -285 2215 -283 2226 -279 ct 2237 -276 2247 -270 2254 -262 ct 2261 -254 2266 -244 2270 -231 ct -2273 -219 2275 -204 2275 -186 ct 2275 0 l 2228 0 l p ef -2418 5 m 2390 5 2369 -2 2355 -17 ct 2341 -32 2333 -53 2333 -79 ct 2333 -97 2337 -112 2344 -124 ct -2351 -136 2360 -145 2371 -152 ct 2383 -159 2395 -164 2410 -166 ct 2424 -169 2439 -170 2454 -170 ct -2517 -170 l 2517 -185 l 2517 -197 2516 -207 2513 -215 ct 2511 -223 2507 -230 2502 -235 ct -2497 -240 2491 -244 2483 -246 ct 2476 -248 2467 -250 2457 -250 ct 2448 -250 2440 -249 2433 -248 ct -2425 -246 2419 -244 2414 -241 ct 2408 -237 2404 -233 2401 -227 ct 2398 -221 2395 -214 2394 -205 ct -2346 -210 l 2348 -221 2351 -231 2356 -240 ct 2361 -249 2367 -257 2376 -264 ct -2385 -271 2396 -276 2410 -279 ct 2423 -283 2439 -285 2458 -285 ct 2493 -285 2520 -277 2537 -261 ct -2555 -245 2564 -221 2564 -191 ct 2564 -71 l 2564 -57 2566 -46 2569 -39 ct 2573 -32 2580 -29 2590 -29 ct -2593 -29 2595 -29 2598 -29 ct 2600 -30 2603 -30 2605 -31 ct 2605 -2 l 2599 0 2594 1 2588 1 ct -2582 2 2576 2 2569 2 ct 2561 2 2553 1 2547 -1 ct 2540 -4 2535 -7 2531 -12 ct 2527 -17 2524 -22 2522 -29 ct -2520 -36 2519 -44 2518 -54 ct 2517 -54 l 2512 -45 2506 -37 2500 -29 ct 2495 -22 2488 -16 2480 -11 ct -2472 -6 2463 -2 2453 1 ct 2443 4 2431 5 2418 5 ct p -2429 -30 m 2443 -30 2456 -33 2467 -38 ct 2479 -43 2488 -50 2495 -59 ct 2502 -67 2508 -76 2511 -86 ct -2515 -96 2517 -106 2517 -115 ct 2517 -137 l 2466 -137 l 2455 -137 2444 -137 2434 -135 ct -2423 -134 2414 -131 2407 -127 ct 2399 -122 2393 -116 2388 -108 ct 2384 -101 2381 -90 2381 -78 ct -2381 -62 2385 -51 2394 -42 ct 2402 -34 2413 -30 2429 -30 ct p ef -2806 0 m 2806 -177 l 2806 -191 2806 -202 2804 -212 ct 2802 -221 2799 -228 2795 -234 ct -2791 -239 2786 -243 2779 -246 ct 2773 -248 2765 -249 2755 -249 ct 2745 -249 2737 -247 2729 -243 ct -2721 -239 2714 -234 2708 -226 ct 2703 -219 2698 -210 2695 -199 ct 2692 -189 2691 -176 2691 -162 ct -2691 0 l 2645 0 l 2645 -220 l 2645 -226 2645 -232 2645 -239 ct 2644 -245 2644 -251 2644 -257 ct -2644 -263 2644 -268 2644 -272 ct 2643 -276 2643 -279 2643 -280 ct 2687 -280 l -2687 -279 2687 -277 2688 -273 ct 2688 -269 2688 -265 2688 -260 ct 2688 -255 2689 -250 2689 -245 ct -2689 -240 2689 -235 2689 -232 ct 2690 -232 l 2694 -240 2698 -247 2703 -254 ct -2708 -261 2714 -266 2720 -271 ct 2727 -275 2734 -279 2742 -281 ct 2751 -284 2760 -285 2772 -285 ct -2793 -285 2809 -281 2822 -272 ct 2834 -264 2843 -250 2847 -232 ct 2848 -232 l -2852 -240 2857 -247 2862 -254 ct 2867 -261 2873 -266 2880 -271 ct 2887 -275 2895 -279 2903 -281 ct -2912 -284 2922 -285 2933 -285 ct 2947 -285 2959 -283 2969 -279 ct 2980 -276 2988 -270 2995 -262 ct -3001 -254 3006 -244 3009 -231 ct 3012 -219 3014 -204 3014 -186 ct 3014 0 l 2968 0 l -2968 -177 l 2968 -191 2967 -202 2965 -212 ct 2964 -221 2961 -228 2957 -234 ct -2953 -239 2947 -243 2941 -246 ct 2934 -248 2926 -249 2917 -249 ct 2907 -249 2898 -247 2890 -244 ct -2882 -240 2875 -234 2870 -227 ct 2864 -220 2860 -211 2857 -200 ct 2854 -189 2852 -176 2852 -162 ct -2852 0 l 2806 0 l p ef -3119 -130 m 3119 -116 3121 -102 3124 -90 ct 3127 -77 3131 -67 3138 -58 ct 3144 -49 3152 -42 3162 -37 ct -3172 -32 3184 -30 3197 -30 ct 3217 -30 3234 -34 3246 -42 ct 3258 -50 3266 -60 3270 -73 ct -3311 -61 l 3308 -53 3304 -46 3299 -38 ct 3294 -30 3287 -23 3278 -17 ct 3269 -10 3258 -5 3245 -1 ct -3232 3 3216 5 3197 5 ct 3156 5 3125 -7 3103 -32 ct 3081 -57 3070 -93 3070 -142 ct -3070 -168 3074 -190 3080 -208 ct 3087 -227 3096 -241 3107 -253 ct 3119 -264 3132 -272 3147 -277 ct -3162 -282 3178 -285 3195 -285 ct 3219 -285 3239 -281 3254 -274 ct 3270 -266 3283 -256 3292 -242 ct -3302 -229 3309 -213 3313 -195 ct 3317 -177 3319 -158 3319 -137 ct 3319 -130 l -3119 -130 l p -3271 -166 m 3268 -195 3261 -217 3248 -230 ct 3236 -244 3218 -251 3195 -251 ct -3187 -251 3179 -249 3170 -247 ct 3162 -244 3154 -240 3147 -234 ct 3139 -227 3133 -219 3128 -208 ct -3123 -197 3121 -183 3120 -166 ct 3271 -166 l p ef -3344 5 m 3450 -384 l 3491 -384 l 3386 5 l 3344 5 l p ef -3529 0 m 3529 -384 l 3575 -384 l 3575 0 l 3529 0 l p ef -3646 -340 m 3646 -384 l 3693 -384 l 3693 -340 l 3646 -340 l p -3646 0 m 3646 -280 l 3693 -280 l 3693 0 l 3646 0 l p ef -4002 -141 m 4002 -44 3968 5 3899 5 ct 3878 5 3860 1 3846 -7 ct 3832 -14 3821 -27 3812 -44 ct -3812 -44 l 3812 -39 3812 -34 3811 -30 ct 3811 -25 3811 -20 3810 -16 ct 3810 -12 3810 -9 3810 -6 ct -3809 -3 3809 -1 3809 0 ct 3764 0 l 3764 -2 3764 -4 3765 -8 ct 3765 -12 3765 -16 3765 -21 ct -3765 -27 3765 -32 3766 -38 ct 3766 -45 3766 -51 3766 -58 ct 3766 -384 l 3812 -384 l -3812 -274 l 3812 -269 3812 -264 3812 -260 ct 3812 -255 3812 -251 3812 -247 ct -3811 -243 3811 -239 3811 -235 ct 3812 -235 l 3821 -253 3832 -266 3846 -273 ct -3861 -281 3878 -285 3899 -285 ct 3934 -285 3960 -273 3977 -249 ct 3994 -226 4002 -190 4002 -141 ct -p -3953 -140 m 3953 -159 3952 -176 3950 -189 ct 3947 -203 3943 -214 3938 -223 ct -3933 -232 3926 -239 3918 -243 ct 3909 -247 3899 -249 3887 -249 ct 3875 -249 3864 -247 3855 -243 ct -3846 -239 3838 -233 3831 -224 ct 3825 -215 3820 -204 3817 -189 ct 3814 -175 3812 -158 3812 -137 ct -3812 -117 3814 -100 3817 -87 ct 3820 -73 3825 -62 3831 -53 ct 3838 -45 3845 -39 3855 -35 ct -3864 -31 3875 -29 3887 -29 ct 3898 -29 3908 -31 3916 -35 ct 3925 -39 3931 -46 3937 -54 ct -3942 -63 3947 -75 3949 -89 ct 3952 -103 3953 -120 3953 -140 ct p ef -4063 0 m 4063 -215 l 4063 -221 4063 -227 4063 -233 ct 4062 -239 4062 -245 4062 -250 ct -4062 -256 4062 -261 4062 -266 ct 4061 -271 4061 -276 4061 -280 ct 4105 -280 l -4105 -276 4105 -271 4106 -266 ct 4106 -261 4106 -256 4106 -251 ct 4107 -245 4107 -240 4107 -235 ct -4107 -230 4107 -226 4107 -223 ct 4108 -223 l 4111 -233 4115 -243 4119 -250 ct -4122 -258 4127 -265 4132 -270 ct 4137 -275 4143 -279 4149 -281 ct 4156 -284 4165 -285 4175 -285 ct -4178 -285 4182 -285 4185 -284 ct 4189 -284 4191 -283 4193 -282 ct 4193 -240 l -4190 -241 4187 -241 4183 -242 ct 4178 -242 4174 -242 4169 -242 ct 4158 -242 4149 -240 4141 -235 ct -4134 -230 4128 -224 4123 -215 ct 4118 -207 4115 -196 4113 -185 ct 4110 -173 4109 -160 4109 -146 ct -4109 0 l 4063 0 l p ef -4311 5 m 4283 5 4262 -2 4248 -17 ct 4234 -32 4226 -53 4226 -79 ct 4226 -97 4230 -112 4237 -124 ct -4244 -136 4253 -145 4264 -152 ct 4276 -159 4288 -164 4303 -166 ct 4317 -169 4332 -170 4347 -170 ct -4410 -170 l 4410 -185 l 4410 -197 4409 -207 4406 -215 ct 4404 -223 4400 -230 4395 -235 ct -4390 -240 4384 -244 4376 -246 ct 4369 -248 4360 -250 4350 -250 ct 4341 -250 4333 -249 4326 -248 ct -4318 -246 4312 -244 4307 -241 ct 4301 -237 4297 -233 4294 -227 ct 4291 -221 4288 -214 4287 -205 ct -4239 -210 l 4241 -221 4244 -231 4249 -240 ct 4254 -249 4260 -257 4269 -264 ct -4278 -271 4289 -276 4303 -279 ct 4316 -283 4332 -285 4351 -285 ct 4386 -285 4413 -277 4430 -261 ct -4448 -245 4457 -221 4457 -191 ct 4457 -71 l 4457 -57 4459 -46 4462 -39 ct 4466 -32 4473 -29 4483 -29 ct -4486 -29 4488 -29 4491 -29 ct 4493 -30 4496 -30 4498 -31 ct 4498 -2 l 4492 0 4487 1 4481 1 ct -4475 2 4469 2 4462 2 ct 4454 2 4446 1 4440 -1 ct 4433 -4 4428 -7 4424 -12 ct 4420 -17 4417 -22 4415 -29 ct -4413 -36 4412 -44 4411 -54 ct 4410 -54 l 4405 -45 4399 -37 4393 -29 ct 4388 -22 4381 -16 4373 -11 ct -4365 -6 4356 -2 4346 1 ct 4336 4 4324 5 4311 5 ct p -4322 -30 m 4336 -30 4349 -33 4360 -38 ct 4372 -43 4381 -50 4388 -59 ct 4395 -67 4401 -76 4404 -86 ct -4408 -96 4410 -106 4410 -115 ct 4410 -137 l 4359 -137 l 4348 -137 4337 -137 4327 -135 ct -4316 -134 4307 -131 4300 -127 ct 4292 -122 4286 -116 4281 -108 ct 4277 -101 4274 -90 4274 -78 ct -4274 -62 4278 -51 4287 -42 ct 4295 -34 4306 -30 4322 -30 ct p ef -4537 0 m 4537 -215 l 4537 -221 4537 -227 4537 -233 ct 4536 -239 4536 -245 4536 -250 ct -4536 -256 4536 -261 4536 -266 ct 4535 -271 4535 -276 4535 -280 ct 4579 -280 l -4579 -276 4579 -271 4580 -266 ct 4580 -261 4580 -256 4580 -251 ct 4581 -245 4581 -240 4581 -235 ct -4581 -230 4581 -226 4581 -223 ct 4582 -223 l 4585 -233 4589 -243 4593 -250 ct -4596 -258 4601 -265 4606 -270 ct 4611 -275 4617 -279 4623 -281 ct 4630 -284 4639 -285 4649 -285 ct -4652 -285 4656 -285 4659 -284 ct 4663 -284 4665 -283 4667 -282 ct 4667 -240 l -4664 -241 4661 -241 4657 -242 ct 4652 -242 4648 -242 4643 -242 ct 4632 -242 4623 -240 4615 -235 ct -4608 -230 4602 -224 4597 -215 ct 4592 -207 4589 -196 4587 -185 ct 4584 -173 4583 -160 4583 -146 ct -4583 0 l 4537 0 l p ef -4834 -1 m 4827 16 4821 31 4814 45 ct 4807 58 4800 70 4791 79 ct 4783 89 4773 96 4763 101 ct -4753 106 4741 109 4727 109 ct 4721 109 4716 109 4711 109 ct 4706 109 4701 108 4695 107 ct -4695 72 l 4699 73 4702 73 4706 73 ct 4711 73 4714 73 4717 73 ct 4731 73 4743 68 4755 58 ct -4767 48 4777 31 4786 9 ct 4790 -2 l 4679 -280 l 4729 -280 l 4788 -125 l -4790 -121 4792 -115 4794 -107 ct 4797 -99 4800 -91 4802 -84 ct 4805 -76 4807 -69 4809 -63 ct -4812 -56 4813 -53 4813 -51 ct 4814 -53 4815 -57 4817 -62 ct 4819 -68 4821 -74 4824 -81 ct -4826 -88 4829 -95 4831 -102 ct 4834 -109 4836 -115 4838 -120 ct 4892 -280 l -4941 -280 l 4834 -1 l p ef -pom -25058 8635 m 19646 8635 l ps -19217 8635 m 19666 8785 l 19666 8485 l 19217 8635 l p ef -19270 11245 m 24628 11245 l ps -25058 11245 m 24608 11095 l 24608 11395 l 25058 11245 l p ef -25058 13738 m 19700 13738 l ps -19270 13738 m 19720 13888 l 19720 13588 l 19270 13738 l p ef -pum -19774 7144 t -43 0 m 43 -364 l 320 -364 l 320 -324 l 93 -324 l 93 -207 l 304 -207 l -304 -167 l 93 -167 l 93 -40 l 330 -40 l 330 0 l 43 0 l p ef -558 0 m 483 -115 l 407 0 l 357 0 l 456 -144 l 362 -280 l 413 -280 l -483 -171 l 552 -280 l 604 -280 l 509 -144 l 610 0 l 558 0 l p ef -890 -141 m 890 -120 888 -100 885 -82 ct 881 -64 876 -49 868 -36 ct 860 -23 849 -13 836 -6 ct -823 2 806 5 787 5 ct 767 5 750 2 735 -6 ct 720 -14 708 -26 700 -43 ct 699 -43 l -699 -43 699 -41 699 -39 ct 700 -36 700 -32 700 -28 ct 700 -24 700 -20 700 -14 ct -700 -9 700 -4 700 1 ct 700 110 l 654 110 l 654 -223 l 654 -229 654 -236 654 -242 ct -653 -248 653 -254 653 -259 ct 653 -264 653 -268 653 -272 ct 652 -276 652 -278 652 -280 ct -697 -280 l 697 -279 697 -277 698 -274 ct 698 -271 698 -268 698 -263 ct 699 -259 699 -254 699 -249 ct -700 -244 700 -239 700 -235 ct 701 -235 l 705 -244 710 -252 715 -258 ct 721 -264 727 -269 734 -273 ct -741 -277 749 -280 758 -282 ct 767 -284 776 -285 787 -285 ct 806 -285 823 -282 836 -275 ct -849 -268 860 -258 868 -245 ct 876 -233 881 -218 885 -200 ct 888 -182 890 -163 890 -141 ct -p -841 -140 m 841 -157 840 -173 838 -186 ct 836 -200 832 -211 827 -221 ct 822 -230 816 -237 807 -242 ct -799 -247 788 -249 775 -249 ct 765 -249 755 -248 746 -245 ct 737 -242 729 -236 722 -228 ct -715 -219 710 -208 706 -193 ct 702 -179 700 -160 700 -137 ct 700 -117 702 -100 705 -86 ct -708 -72 713 -61 719 -53 ct 726 -44 733 -38 743 -35 ct 752 -31 763 -29 775 -29 ct -788 -29 798 -32 807 -37 ct 815 -42 822 -49 827 -58 ct 832 -68 836 -79 838 -93 ct -840 -107 841 -123 841 -140 ct p ef -985 -130 m 985 -116 987 -102 990 -90 ct 993 -77 997 -67 1004 -58 ct 1010 -49 1018 -42 1028 -37 ct -1038 -32 1050 -30 1063 -30 ct 1083 -30 1100 -34 1112 -42 ct 1124 -50 1132 -60 1136 -73 ct -1177 -61 l 1174 -53 1170 -46 1165 -38 ct 1160 -30 1153 -23 1144 -17 ct 1135 -10 1124 -5 1111 -1 ct -1098 3 1082 5 1063 5 ct 1022 5 991 -7 969 -32 ct 947 -57 936 -93 936 -142 ct 936 -168 940 -190 946 -208 ct -953 -227 962 -241 973 -253 ct 985 -264 998 -272 1013 -277 ct 1028 -282 1044 -285 1061 -285 ct -1085 -285 1105 -281 1120 -274 ct 1136 -266 1149 -256 1158 -242 ct 1168 -229 1175 -213 1179 -195 ct -1183 -177 1185 -158 1185 -137 ct 1185 -130 l 985 -130 l p -1137 -166 m 1134 -195 1127 -217 1114 -230 ct 1102 -244 1084 -251 1061 -251 ct -1053 -251 1045 -249 1036 -247 ct 1028 -244 1020 -240 1013 -234 ct 1005 -227 999 -219 994 -208 ct -989 -197 987 -183 986 -166 ct 1137 -166 l p ef -1248 0 m 1248 -215 l 1248 -221 1248 -227 1248 -233 ct 1247 -239 1247 -245 1247 -250 ct -1247 -256 1247 -261 1247 -266 ct 1246 -271 1246 -276 1246 -280 ct 1290 -280 l -1290 -276 1290 -271 1291 -266 ct 1291 -261 1291 -256 1291 -251 ct 1292 -245 1292 -240 1292 -235 ct -1292 -230 1292 -226 1292 -223 ct 1293 -223 l 1296 -233 1300 -243 1304 -250 ct -1307 -258 1312 -265 1317 -270 ct 1322 -275 1328 -279 1334 -281 ct 1341 -284 1350 -285 1360 -285 ct -1363 -285 1367 -285 1370 -284 ct 1374 -284 1376 -283 1378 -282 ct 1378 -240 l -1375 -241 1372 -241 1368 -242 ct 1363 -242 1359 -242 1354 -242 ct 1343 -242 1334 -240 1326 -235 ct -1319 -230 1313 -224 1308 -215 ct 1303 -207 1300 -196 1298 -185 ct 1295 -173 1294 -160 1294 -146 ct -1294 0 l 1248 0 l p ef -1424 -340 m 1424 -384 l 1471 -384 l 1471 -340 l 1424 -340 l p -1424 0 m 1424 -280 l 1471 -280 l 1471 0 l 1424 0 l p ef -1705 0 m 1705 -177 l 1705 -191 1705 -202 1703 -212 ct 1701 -221 1698 -228 1694 -234 ct -1690 -239 1685 -243 1678 -246 ct 1672 -248 1664 -249 1654 -249 ct 1644 -249 1636 -247 1628 -243 ct -1620 -239 1613 -234 1607 -226 ct 1602 -219 1597 -210 1594 -199 ct 1591 -189 1590 -176 1590 -162 ct -1590 0 l 1544 0 l 1544 -220 l 1544 -226 1544 -232 1544 -239 ct 1543 -245 1543 -251 1543 -257 ct -1543 -263 1543 -268 1543 -272 ct 1542 -276 1542 -279 1542 -280 ct 1586 -280 l -1586 -279 1586 -277 1587 -273 ct 1587 -269 1587 -265 1587 -260 ct 1587 -255 1588 -250 1588 -245 ct -1588 -240 1588 -235 1588 -232 ct 1589 -232 l 1593 -240 1597 -247 1602 -254 ct -1607 -261 1613 -266 1619 -271 ct 1626 -275 1633 -279 1641 -281 ct 1650 -284 1659 -285 1671 -285 ct -1692 -285 1708 -281 1721 -272 ct 1733 -264 1742 -250 1746 -232 ct 1747 -232 l -1751 -240 1756 -247 1761 -254 ct 1766 -261 1772 -266 1779 -271 ct 1786 -275 1794 -279 1802 -281 ct -1811 -284 1821 -285 1832 -285 ct 1846 -285 1858 -283 1868 -279 ct 1879 -276 1887 -270 1894 -262 ct -1900 -254 1905 -244 1908 -231 ct 1911 -219 1913 -204 1913 -186 ct 1913 0 l 1867 0 l -1867 -177 l 1867 -191 1866 -202 1864 -212 ct 1863 -221 1860 -228 1856 -234 ct -1852 -239 1846 -243 1840 -246 ct 1833 -248 1825 -249 1816 -249 ct 1806 -249 1797 -247 1789 -244 ct -1781 -240 1774 -234 1769 -227 ct 1763 -220 1759 -211 1756 -200 ct 1753 -189 1751 -176 1751 -162 ct -1751 0 l 1705 0 l p ef -2018 -130 m 2018 -116 2020 -102 2023 -90 ct 2026 -77 2030 -67 2037 -58 ct 2043 -49 2051 -42 2061 -37 ct -2071 -32 2083 -30 2096 -30 ct 2116 -30 2133 -34 2145 -42 ct 2157 -50 2165 -60 2169 -73 ct -2210 -61 l 2207 -53 2203 -46 2198 -38 ct 2193 -30 2186 -23 2177 -17 ct 2168 -10 2157 -5 2144 -1 ct -2131 3 2115 5 2096 5 ct 2055 5 2024 -7 2002 -32 ct 1980 -57 1969 -93 1969 -142 ct -1969 -168 1973 -190 1979 -208 ct 1986 -227 1995 -241 2006 -253 ct 2018 -264 2031 -272 2046 -277 ct -2061 -282 2077 -285 2094 -285 ct 2118 -285 2138 -281 2153 -274 ct 2169 -266 2182 -256 2191 -242 ct -2201 -229 2208 -213 2212 -195 ct 2216 -177 2218 -158 2218 -137 ct 2218 -130 l -2018 -130 l p -2170 -166 m 2167 -195 2160 -217 2147 -230 ct 2135 -244 2117 -251 2094 -251 ct -2086 -251 2078 -249 2069 -247 ct 2061 -244 2053 -240 2046 -234 ct 2038 -227 2032 -219 2027 -208 ct -2022 -197 2020 -183 2019 -166 ct 2170 -166 l p ef -2457 0 m 2457 -177 l 2457 -191 2456 -202 2454 -212 ct 2452 -221 2449 -228 2444 -234 ct -2440 -239 2434 -243 2427 -246 ct 2419 -248 2410 -249 2400 -249 ct 2388 -249 2379 -247 2370 -243 ct -2361 -239 2353 -234 2347 -226 ct 2341 -219 2336 -210 2332 -199 ct 2329 -189 2327 -176 2327 -162 ct -2327 0 l 2281 0 l 2281 -220 l 2281 -226 2281 -232 2281 -239 ct 2280 -245 2280 -251 2280 -257 ct -2280 -263 2280 -268 2280 -272 ct 2279 -276 2279 -279 2279 -280 ct 2323 -280 l -2323 -279 2323 -277 2324 -273 ct 2324 -269 2324 -265 2324 -260 ct 2324 -255 2325 -250 2325 -245 ct -2325 -240 2325 -235 2325 -232 ct 2326 -232 l 2330 -240 2335 -247 2341 -254 ct -2346 -261 2352 -266 2359 -271 ct 2366 -275 2374 -279 2383 -281 ct 2393 -284 2403 -285 2415 -285 ct -2431 -285 2444 -283 2455 -279 ct 2466 -276 2476 -270 2483 -262 ct 2490 -254 2495 -244 2499 -231 ct -2502 -219 2504 -204 2504 -186 ct 2504 0 l 2457 0 l p ef -2683 -2 m 2676 0 2669 1 2662 2 ct 2654 3 2646 4 2636 4 ct 2599 4 2580 -17 2580 -59 ct -2580 -246 l 2548 -246 l 2548 -280 l 2582 -280 l 2596 -343 l 2627 -343 l -2627 -280 l 2678 -280 l 2678 -246 l 2627 -246 l 2627 -69 l 2627 -56 2629 -47 2633 -41 ct -2638 -36 2645 -33 2656 -33 ct 2661 -33 2665 -33 2669 -34 ct 2674 -35 2678 -36 2683 -37 ct -2683 -2 l p ef -3081 -77 m 3081 -64 3079 -53 3074 -42 ct 3069 -32 3061 -24 3052 -17 ct 3042 -10 3030 -4 3016 -1 ct -3002 3 2986 5 2968 5 ct 2952 5 2937 4 2924 1 ct 2911 -1 2900 -5 2890 -11 ct 2880 -16 2872 -24 2865 -33 ct -2859 -42 2854 -53 2851 -66 ct 2892 -74 l 2896 -59 2904 -48 2916 -41 ct 2929 -34 2946 -30 2968 -30 ct -2978 -30 2987 -31 2996 -33 ct 3004 -34 3011 -36 3017 -40 ct 3023 -43 3028 -47 3031 -53 ct -3035 -59 3036 -66 3036 -74 ct 3036 -82 3034 -89 3030 -95 ct 3026 -100 3021 -105 3014 -108 ct -3007 -112 2998 -115 2988 -118 ct 2978 -120 2967 -123 2955 -127 ct 2944 -129 2933 -133 2922 -136 ct -2910 -140 2901 -145 2892 -151 ct 2883 -157 2876 -164 2870 -173 ct 2865 -182 2862 -193 2862 -206 ct -2862 -231 2871 -251 2889 -264 ct 2907 -278 2934 -284 2969 -284 ct 2999 -284 3024 -279 3042 -268 ct -3060 -257 3072 -240 3076 -216 ct 3035 -211 l 3033 -218 3030 -224 3026 -229 ct -3022 -234 3017 -238 3011 -241 ct 3005 -244 2999 -246 2991 -247 ct 2984 -248 2976 -249 2969 -249 ct -2948 -249 2932 -246 2922 -239 ct 2912 -233 2907 -223 2907 -210 ct 2907 -203 2909 -197 2913 -192 ct -2916 -187 2921 -183 2928 -179 ct 2935 -176 2943 -173 2952 -171 ct 2961 -168 2972 -165 2983 -163 ct -2990 -161 2998 -159 3005 -157 ct 3013 -154 3021 -152 3028 -149 ct 3035 -146 3042 -142 3049 -138 ct -3055 -134 3061 -129 3066 -124 ct 3070 -118 3074 -111 3077 -104 ct 3080 -96 3081 -87 3081 -77 ct -p ef -3375 -141 m 3375 -120 3373 -100 3370 -82 ct 3366 -64 3361 -49 3353 -36 ct 3345 -23 3334 -13 3321 -6 ct -3308 2 3291 5 3272 5 ct 3252 5 3235 2 3220 -6 ct 3205 -14 3193 -26 3185 -43 ct -3184 -43 l 3184 -43 3184 -41 3184 -39 ct 3185 -36 3185 -32 3185 -28 ct 3185 -24 3185 -20 3185 -14 ct -3185 -9 3185 -4 3185 1 ct 3185 110 l 3139 110 l 3139 -223 l 3139 -229 3139 -236 3139 -242 ct -3138 -248 3138 -254 3138 -259 ct 3138 -264 3138 -268 3138 -272 ct 3137 -276 3137 -278 3137 -280 ct -3182 -280 l 3182 -279 3182 -277 3183 -274 ct 3183 -271 3183 -268 3183 -263 ct -3184 -259 3184 -254 3184 -249 ct 3185 -244 3185 -239 3185 -235 ct 3186 -235 l -3190 -244 3195 -252 3200 -258 ct 3206 -264 3212 -269 3219 -273 ct 3226 -277 3234 -280 3243 -282 ct -3252 -284 3261 -285 3272 -285 ct 3291 -285 3308 -282 3321 -275 ct 3334 -268 3345 -258 3353 -245 ct -3361 -233 3366 -218 3370 -200 ct 3373 -182 3375 -163 3375 -141 ct p -3326 -140 m 3326 -157 3325 -173 3323 -186 ct 3321 -200 3317 -211 3312 -221 ct -3307 -230 3301 -237 3292 -242 ct 3284 -247 3273 -249 3260 -249 ct 3250 -249 3240 -248 3231 -245 ct -3222 -242 3214 -236 3207 -228 ct 3200 -219 3195 -208 3191 -193 ct 3187 -179 3185 -160 3185 -137 ct -3185 -117 3187 -100 3190 -86 ct 3193 -72 3198 -61 3204 -53 ct 3211 -44 3218 -38 3228 -35 ct -3237 -31 3248 -29 3260 -29 ct 3273 -29 3283 -32 3292 -37 ct 3300 -42 3307 -49 3312 -58 ct -3317 -68 3321 -79 3323 -93 ct 3325 -107 3326 -123 3326 -140 ct p ef -3470 -130 m 3470 -116 3472 -102 3475 -90 ct 3478 -77 3482 -67 3489 -58 ct 3495 -49 3503 -42 3513 -37 ct -3523 -32 3535 -30 3548 -30 ct 3568 -30 3585 -34 3597 -42 ct 3609 -50 3617 -60 3621 -73 ct -3662 -61 l 3659 -53 3655 -46 3650 -38 ct 3645 -30 3638 -23 3629 -17 ct 3620 -10 3609 -5 3596 -1 ct -3583 3 3567 5 3548 5 ct 3507 5 3476 -7 3454 -32 ct 3432 -57 3421 -93 3421 -142 ct -3421 -168 3425 -190 3431 -208 ct 3438 -227 3447 -241 3458 -253 ct 3470 -264 3483 -272 3498 -277 ct -3513 -282 3529 -285 3546 -285 ct 3570 -285 3590 -281 3605 -274 ct 3621 -266 3634 -256 3643 -242 ct -3653 -229 3660 -213 3664 -195 ct 3668 -177 3670 -158 3670 -137 ct 3670 -130 l -3470 -130 l p -3622 -166 m 3619 -195 3612 -217 3599 -230 ct 3587 -244 3569 -251 3546 -251 ct -3538 -251 3530 -249 3521 -247 ct 3513 -244 3505 -240 3498 -234 ct 3490 -227 3484 -219 3479 -208 ct -3474 -197 3472 -183 3471 -166 ct 3622 -166 l p ef -3767 -141 m 3767 -125 3768 -111 3771 -97 ct 3773 -84 3777 -72 3782 -62 ct 3788 -53 3795 -45 3804 -40 ct -3813 -34 3824 -32 3838 -32 ct 3854 -32 3868 -36 3879 -45 ct 3890 -53 3897 -67 3900 -85 ct -3947 -85 l 3945 -73 3942 -62 3936 -51 ct 3931 -40 3924 -31 3915 -22 ct 3907 -14 3896 -7 3883 -2 ct -3870 2 3856 5 3839 5 ct 3817 5 3798 1 3783 -6 ct 3768 -14 3755 -24 3746 -37 ct -3736 -50 3729 -65 3725 -83 ct 3721 -100 3718 -120 3718 -140 ct 3718 -159 3720 -176 3723 -190 ct -3726 -204 3731 -217 3736 -228 ct 3742 -239 3748 -248 3756 -255 ct 3764 -262 3772 -268 3781 -272 ct -3789 -277 3799 -280 3809 -282 ct 3818 -284 3828 -285 3838 -285 ct 3854 -285 3868 -283 3880 -279 ct -3892 -274 3903 -268 3912 -261 ct 3921 -253 3928 -245 3933 -234 ct 3939 -224 3943 -213 3945 -202 ct -3897 -198 l 3895 -213 3889 -226 3879 -235 ct 3869 -244 3855 -249 3837 -249 ct -3824 -249 3813 -246 3804 -242 ct 3795 -238 3788 -231 3782 -222 ct 3777 -213 3773 -202 3771 -189 ct -3768 -175 3767 -159 3767 -141 ct p ef -pom -pum -19774 7741 t -329 -101 m 329 -85 326 -71 320 -58 ct 314 -45 305 -34 292 -25 ct 280 -15 264 -8 245 -3 ct -226 2 204 5 178 5 ct 133 5 98 -3 72 -19 ct 47 -35 31 -58 24 -88 ct 72 -97 l 74 -88 78 -79 83 -71 ct -88 -64 95 -57 103 -51 ct 112 -46 122 -41 135 -38 ct 147 -35 162 -34 180 -34 ct -195 -34 208 -35 220 -37 ct 233 -40 243 -44 252 -49 ct 261 -54 267 -61 272 -69 ct -277 -77 280 -87 280 -98 ct 280 -110 277 -120 272 -127 ct 266 -135 259 -141 249 -146 ct -239 -150 227 -154 214 -158 ct 200 -161 185 -164 168 -168 ct 158 -171 148 -173 138 -176 ct -128 -178 118 -182 108 -185 ct 99 -189 90 -193 82 -198 ct 74 -203 66 -209 60 -216 ct -54 -223 50 -231 46 -241 ct 43 -250 41 -260 41 -272 ct 41 -290 45 -305 52 -317 ct -59 -329 68 -339 81 -347 ct 93 -355 108 -361 125 -365 ct 141 -368 160 -370 179 -370 ct -202 -370 221 -368 237 -365 ct 253 -361 267 -356 278 -349 ct 289 -342 298 -333 304 -323 ct -311 -312 316 -300 320 -286 ct 271 -278 l 269 -286 266 -294 261 -301 ct 256 -308 250 -314 243 -319 ct -236 -323 227 -327 216 -329 ct 205 -332 193 -333 179 -333 ct 162 -333 148 -331 136 -328 ct -125 -325 116 -321 109 -316 ct 102 -311 97 -305 94 -298 ct 91 -291 89 -283 89 -275 ct -89 -264 92 -255 97 -248 ct 103 -241 110 -236 119 -231 ct 129 -226 139 -222 152 -219 ct -164 -216 177 -213 191 -210 ct 202 -207 213 -205 224 -202 ct 235 -199 246 -196 256 -192 ct -266 -189 276 -184 285 -179 ct 293 -174 301 -168 308 -161 ct 314 -154 319 -145 323 -135 ct -327 -126 329 -114 329 -101 ct p ef -386 -340 m 386 -384 l 433 -384 l 433 -340 l 386 -340 l p -386 0 m 386 -280 l 433 -280 l 433 0 l 386 0 l p ef -668 0 m 668 -177 l 668 -191 668 -202 666 -212 ct 664 -221 661 -228 657 -234 ct -653 -239 648 -243 641 -246 ct 635 -248 627 -249 617 -249 ct 607 -249 599 -247 591 -243 ct -583 -239 576 -234 570 -226 ct 565 -219 560 -210 557 -199 ct 554 -189 553 -176 553 -162 ct -553 0 l 507 0 l 507 -220 l 507 -226 507 -232 507 -239 ct 506 -245 506 -251 506 -257 ct -506 -263 506 -268 506 -272 ct 505 -276 505 -279 505 -280 ct 549 -280 l 549 -279 549 -277 550 -273 ct -550 -269 550 -265 550 -260 ct 550 -255 551 -250 551 -245 ct 551 -240 551 -235 551 -232 ct -552 -232 l 556 -240 560 -247 565 -254 ct 570 -261 576 -266 582 -271 ct 589 -275 596 -279 604 -281 ct -613 -284 622 -285 634 -285 ct 655 -285 671 -281 684 -272 ct 696 -264 705 -250 709 -232 ct -710 -232 l 714 -240 719 -247 724 -254 ct 729 -261 735 -266 742 -271 ct 749 -275 757 -279 765 -281 ct -774 -284 784 -285 795 -285 ct 809 -285 821 -283 831 -279 ct 842 -276 850 -270 857 -262 ct -863 -254 868 -244 871 -231 ct 874 -219 876 -204 876 -186 ct 876 0 l 830 0 l -830 -177 l 830 -191 829 -202 827 -212 ct 826 -221 823 -228 819 -234 ct 815 -239 809 -243 803 -246 ct -796 -248 788 -249 779 -249 ct 769 -249 760 -247 752 -244 ct 744 -240 737 -234 732 -227 ct -726 -220 722 -211 719 -200 ct 716 -189 714 -176 714 -162 ct 714 0 l 668 0 l -p ef -991 -280 m 991 -103 l 991 -89 992 -78 994 -68 ct 996 -59 999 -52 1004 -46 ct -1008 -41 1014 -37 1021 -34 ct 1029 -32 1038 -31 1049 -31 ct 1060 -31 1070 -33 1079 -37 ct -1087 -41 1095 -46 1101 -54 ct 1108 -61 1112 -70 1116 -81 ct 1119 -92 1121 -104 1121 -118 ct -1121 -280 l 1168 -280 l 1168 -60 l 1168 -54 1168 -48 1168 -41 ct 1168 -35 1168 -29 1168 -23 ct -1168 -17 1168 -12 1169 -8 ct 1169 -4 1169 -1 1169 0 ct 1125 0 l 1125 -1 1125 -3 1125 -7 ct -1124 -11 1124 -15 1124 -20 ct 1124 -25 1124 -30 1123 -35 ct 1123 -40 1123 -45 1123 -48 ct -1122 -48 l 1118 -40 1113 -33 1108 -26 ct 1102 -19 1096 -14 1089 -9 ct 1082 -5 1074 -1 1065 1 ct -1056 4 1045 5 1033 5 ct 1017 5 1004 3 993 -1 ct 982 -4 973 -10 965 -18 ct 958 -26 953 -36 949 -49 ct -946 -61 944 -76 944 -94 ct 944 -280 l 991 -280 l p ef -1243 0 m 1243 -384 l 1289 -384 l 1289 0 l 1243 0 l p ef -1432 5 m 1404 5 1383 -2 1369 -17 ct 1355 -32 1347 -53 1347 -79 ct 1347 -97 1351 -112 1358 -124 ct -1365 -136 1374 -145 1385 -152 ct 1397 -159 1409 -164 1424 -166 ct 1438 -169 1453 -170 1468 -170 ct -1531 -170 l 1531 -185 l 1531 -197 1530 -207 1527 -215 ct 1525 -223 1521 -230 1516 -235 ct -1511 -240 1505 -244 1497 -246 ct 1490 -248 1481 -250 1471 -250 ct 1462 -250 1454 -249 1447 -248 ct -1439 -246 1433 -244 1428 -241 ct 1422 -237 1418 -233 1415 -227 ct 1412 -221 1409 -214 1408 -205 ct -1360 -210 l 1362 -221 1365 -231 1370 -240 ct 1375 -249 1381 -257 1390 -264 ct -1399 -271 1410 -276 1424 -279 ct 1437 -283 1453 -285 1472 -285 ct 1507 -285 1534 -277 1551 -261 ct -1569 -245 1578 -221 1578 -191 ct 1578 -71 l 1578 -57 1580 -46 1583 -39 ct 1587 -32 1594 -29 1604 -29 ct -1607 -29 1609 -29 1612 -29 ct 1614 -30 1617 -30 1619 -31 ct 1619 -2 l 1613 0 1608 1 1602 1 ct -1596 2 1590 2 1583 2 ct 1575 2 1567 1 1561 -1 ct 1554 -4 1549 -7 1545 -12 ct 1541 -17 1538 -22 1536 -29 ct -1534 -36 1533 -44 1532 -54 ct 1531 -54 l 1526 -45 1520 -37 1514 -29 ct 1509 -22 1502 -16 1494 -11 ct -1486 -6 1477 -2 1467 1 ct 1457 4 1445 5 1432 5 ct p -1443 -30 m 1457 -30 1470 -33 1481 -38 ct 1493 -43 1502 -50 1509 -59 ct 1516 -67 1522 -76 1525 -86 ct -1529 -96 1531 -106 1531 -115 ct 1531 -137 l 1480 -137 l 1469 -137 1458 -137 1448 -135 ct -1437 -134 1428 -131 1421 -127 ct 1413 -122 1407 -116 1402 -108 ct 1398 -101 1395 -90 1395 -78 ct -1395 -62 1399 -51 1408 -42 ct 1416 -34 1427 -30 1443 -30 ct p ef -1764 -2 m 1757 0 1750 1 1743 2 ct 1735 3 1727 4 1717 4 ct 1680 4 1661 -17 1661 -59 ct -1661 -246 l 1629 -246 l 1629 -280 l 1663 -280 l 1677 -343 l 1708 -343 l -1708 -280 l 1759 -280 l 1759 -246 l 1708 -246 l 1708 -69 l 1708 -56 1710 -47 1714 -41 ct -1719 -36 1726 -33 1737 -33 ct 1742 -33 1746 -33 1750 -34 ct 1755 -35 1759 -36 1764 -37 ct -1764 -2 l p ef -1805 -340 m 1805 -384 l 1852 -384 l 1852 -340 l 1805 -340 l p -1805 0 m 1805 -280 l 1852 -280 l 1852 0 l 1805 0 l p ef -2160 -140 m 2160 -91 2149 -55 2128 -31 ct 2106 -7 2075 5 2034 5 ct 2014 5 1997 2 1982 -4 ct -1966 -10 1953 -19 1943 -31 ct 1932 -43 1924 -58 1919 -76 ct 1913 -94 1910 -116 1910 -140 ct -1910 -237 1952 -285 2035 -285 ct 2057 -285 2076 -282 2092 -276 ct 2107 -270 2120 -261 2130 -249 ct -2141 -237 2148 -222 2153 -204 ct 2158 -186 2160 -164 2160 -140 ct p -2111 -140 m 2111 -162 2109 -180 2106 -194 ct 2103 -208 2098 -219 2091 -228 ct -2085 -236 2077 -242 2068 -246 ct 2058 -249 2048 -251 2036 -251 ct 2024 -251 2014 -249 2004 -245 ct -1995 -242 1986 -236 1980 -227 ct 1973 -219 1968 -207 1964 -193 ct 1961 -179 1959 -161 1959 -140 ct -1959 -119 1961 -101 1965 -86 ct 1969 -72 1974 -61 1980 -52 ct 1987 -44 1995 -38 2004 -35 ct -2013 -31 2023 -29 2033 -29 ct 2045 -29 2056 -31 2066 -34 ct 2075 -38 2084 -44 2090 -52 ct -2097 -61 2102 -72 2106 -86 ct 2109 -101 2111 -119 2111 -140 ct p ef -2397 0 m 2397 -177 l 2397 -191 2396 -202 2394 -212 ct 2392 -221 2389 -228 2384 -234 ct -2380 -239 2374 -243 2367 -246 ct 2359 -248 2350 -249 2340 -249 ct 2328 -249 2319 -247 2310 -243 ct -2301 -239 2293 -234 2287 -226 ct 2281 -219 2276 -210 2272 -199 ct 2269 -189 2267 -176 2267 -162 ct -2267 0 l 2221 0 l 2221 -220 l 2221 -226 2221 -232 2221 -239 ct 2220 -245 2220 -251 2220 -257 ct -2220 -263 2220 -268 2220 -272 ct 2219 -276 2219 -279 2219 -280 ct 2263 -280 l -2263 -279 2263 -277 2264 -273 ct 2264 -269 2264 -265 2264 -260 ct 2264 -255 2265 -250 2265 -245 ct -2265 -240 2265 -235 2265 -232 ct 2266 -232 l 2270 -240 2275 -247 2281 -254 ct -2286 -261 2292 -266 2299 -271 ct 2306 -275 2314 -279 2323 -281 ct 2333 -284 2343 -285 2355 -285 ct -2371 -285 2384 -283 2395 -279 ct 2406 -276 2416 -270 2423 -262 ct 2430 -254 2435 -244 2439 -231 ct -2442 -219 2444 -204 2444 -186 ct 2444 0 l 2397 0 l p ef -2901 -141 m 2901 -120 2899 -100 2896 -82 ct 2892 -64 2887 -49 2879 -36 ct 2871 -23 2860 -13 2847 -6 ct -2834 2 2817 5 2798 5 ct 2778 5 2761 2 2746 -6 ct 2731 -14 2719 -26 2711 -43 ct -2710 -43 l 2710 -43 2710 -41 2710 -39 ct 2711 -36 2711 -32 2711 -28 ct 2711 -24 2711 -20 2711 -14 ct -2711 -9 2711 -4 2711 1 ct 2711 110 l 2665 110 l 2665 -223 l 2665 -229 2665 -236 2665 -242 ct -2664 -248 2664 -254 2664 -259 ct 2664 -264 2664 -268 2664 -272 ct 2663 -276 2663 -278 2663 -280 ct -2708 -280 l 2708 -279 2708 -277 2709 -274 ct 2709 -271 2709 -268 2709 -263 ct -2710 -259 2710 -254 2710 -249 ct 2711 -244 2711 -239 2711 -235 ct 2712 -235 l -2716 -244 2721 -252 2726 -258 ct 2732 -264 2738 -269 2745 -273 ct 2752 -277 2760 -280 2769 -282 ct -2778 -284 2787 -285 2798 -285 ct 2817 -285 2834 -282 2847 -275 ct 2860 -268 2871 -258 2879 -245 ct -2887 -233 2892 -218 2896 -200 ct 2899 -182 2901 -163 2901 -141 ct p -2852 -140 m 2852 -157 2851 -173 2849 -186 ct 2847 -200 2843 -211 2838 -221 ct -2833 -230 2827 -237 2818 -242 ct 2810 -247 2799 -249 2786 -249 ct 2776 -249 2766 -248 2757 -245 ct -2748 -242 2740 -236 2733 -228 ct 2726 -219 2721 -208 2717 -193 ct 2713 -179 2711 -160 2711 -137 ct -2711 -117 2713 -100 2716 -86 ct 2719 -72 2724 -61 2730 -53 ct 2737 -44 2744 -38 2754 -35 ct -2763 -31 2774 -29 2786 -29 ct 2799 -29 2809 -32 2818 -37 ct 2826 -42 2833 -49 2838 -58 ct -2843 -68 2847 -79 2849 -93 ct 2851 -107 2852 -123 2852 -140 ct p ef -3032 5 m 3004 5 2983 -2 2969 -17 ct 2955 -32 2947 -53 2947 -79 ct 2947 -97 2951 -112 2958 -124 ct -2965 -136 2974 -145 2985 -152 ct 2997 -159 3009 -164 3024 -166 ct 3038 -169 3053 -170 3068 -170 ct -3131 -170 l 3131 -185 l 3131 -197 3130 -207 3127 -215 ct 3125 -223 3121 -230 3116 -235 ct -3111 -240 3105 -244 3097 -246 ct 3090 -248 3081 -250 3071 -250 ct 3062 -250 3054 -249 3047 -248 ct -3039 -246 3033 -244 3028 -241 ct 3022 -237 3018 -233 3015 -227 ct 3012 -221 3009 -214 3008 -205 ct -2960 -210 l 2962 -221 2965 -231 2970 -240 ct 2975 -249 2981 -257 2990 -264 ct -2999 -271 3010 -276 3024 -279 ct 3037 -283 3053 -285 3072 -285 ct 3107 -285 3134 -277 3151 -261 ct -3169 -245 3178 -221 3178 -191 ct 3178 -71 l 3178 -57 3180 -46 3183 -39 ct 3187 -32 3194 -29 3204 -29 ct -3207 -29 3209 -29 3212 -29 ct 3214 -30 3217 -30 3219 -31 ct 3219 -2 l 3213 0 3208 1 3202 1 ct -3196 2 3190 2 3183 2 ct 3175 2 3167 1 3161 -1 ct 3154 -4 3149 -7 3145 -12 ct 3141 -17 3138 -22 3136 -29 ct -3134 -36 3133 -44 3132 -54 ct 3131 -54 l 3126 -45 3120 -37 3114 -29 ct 3109 -22 3102 -16 3094 -11 ct -3086 -6 3077 -2 3067 1 ct 3057 4 3045 5 3032 5 ct p -3043 -30 m 3057 -30 3070 -33 3081 -38 ct 3093 -43 3102 -50 3109 -59 ct 3116 -67 3122 -76 3125 -86 ct -3129 -96 3131 -106 3131 -115 ct 3131 -137 l 3080 -137 l 3069 -137 3058 -137 3048 -135 ct -3037 -134 3028 -131 3021 -127 ct 3013 -122 3007 -116 3002 -108 ct 2998 -101 2995 -90 2995 -78 ct -2995 -62 2999 -51 3008 -42 ct 3016 -34 3027 -30 3043 -30 ct p ef -3259 0 m 3259 -215 l 3259 -221 3259 -227 3259 -233 ct 3258 -239 3258 -245 3258 -250 ct -3258 -256 3258 -261 3258 -266 ct 3257 -271 3257 -276 3257 -280 ct 3301 -280 l -3301 -276 3301 -271 3302 -266 ct 3302 -261 3302 -256 3302 -251 ct 3303 -245 3303 -240 3303 -235 ct -3303 -230 3303 -226 3303 -223 ct 3304 -223 l 3307 -233 3311 -243 3315 -250 ct -3318 -258 3323 -265 3328 -270 ct 3333 -275 3339 -279 3345 -281 ct 3352 -284 3361 -285 3371 -285 ct -3374 -285 3378 -285 3381 -284 ct 3385 -284 3387 -283 3389 -282 ct 3389 -240 l -3386 -241 3383 -241 3379 -242 ct 3374 -242 3370 -242 3365 -242 ct 3354 -242 3345 -240 3337 -235 ct -3330 -230 3324 -224 3319 -215 ct 3314 -207 3311 -196 3309 -185 ct 3306 -173 3305 -160 3305 -146 ct -3305 0 l 3259 0 l p ef -3506 5 m 3478 5 3457 -2 3443 -17 ct 3429 -32 3421 -53 3421 -79 ct 3421 -97 3425 -112 3432 -124 ct -3439 -136 3448 -145 3459 -152 ct 3471 -159 3483 -164 3498 -166 ct 3512 -169 3527 -170 3542 -170 ct -3605 -170 l 3605 -185 l 3605 -197 3604 -207 3601 -215 ct 3599 -223 3595 -230 3590 -235 ct -3585 -240 3579 -244 3571 -246 ct 3564 -248 3555 -250 3545 -250 ct 3536 -250 3528 -249 3521 -248 ct -3513 -246 3507 -244 3502 -241 ct 3496 -237 3492 -233 3489 -227 ct 3486 -221 3483 -214 3482 -205 ct -3434 -210 l 3436 -221 3439 -231 3444 -240 ct 3449 -249 3455 -257 3464 -264 ct -3473 -271 3484 -276 3498 -279 ct 3511 -283 3527 -285 3546 -285 ct 3581 -285 3608 -277 3625 -261 ct -3643 -245 3652 -221 3652 -191 ct 3652 -71 l 3652 -57 3654 -46 3657 -39 ct 3661 -32 3668 -29 3678 -29 ct -3681 -29 3683 -29 3686 -29 ct 3688 -30 3691 -30 3693 -31 ct 3693 -2 l 3687 0 3682 1 3676 1 ct -3670 2 3664 2 3657 2 ct 3649 2 3641 1 3635 -1 ct 3628 -4 3623 -7 3619 -12 ct 3615 -17 3612 -22 3610 -29 ct -3608 -36 3607 -44 3606 -54 ct 3605 -54 l 3600 -45 3594 -37 3588 -29 ct 3583 -22 3576 -16 3568 -11 ct -3560 -6 3551 -2 3541 1 ct 3531 4 3519 5 3506 5 ct p -3517 -30 m 3531 -30 3544 -33 3555 -38 ct 3567 -43 3576 -50 3583 -59 ct 3590 -67 3596 -76 3599 -86 ct -3603 -96 3605 -106 3605 -115 ct 3605 -137 l 3554 -137 l 3543 -137 3532 -137 3522 -135 ct -3511 -134 3502 -131 3495 -127 ct 3487 -122 3481 -116 3476 -108 ct 3472 -101 3469 -90 3469 -78 ct -3469 -62 3473 -51 3482 -42 ct 3490 -34 3501 -30 3517 -30 ct p ef -3894 0 m 3894 -177 l 3894 -191 3894 -202 3892 -212 ct 3890 -221 3887 -228 3883 -234 ct -3879 -239 3874 -243 3867 -246 ct 3861 -248 3853 -249 3843 -249 ct 3833 -249 3825 -247 3817 -243 ct -3809 -239 3802 -234 3796 -226 ct 3791 -219 3786 -210 3783 -199 ct 3780 -189 3779 -176 3779 -162 ct -3779 0 l 3733 0 l 3733 -220 l 3733 -226 3733 -232 3733 -239 ct 3732 -245 3732 -251 3732 -257 ct -3732 -263 3732 -268 3732 -272 ct 3731 -276 3731 -279 3731 -280 ct 3775 -280 l -3775 -279 3775 -277 3776 -273 ct 3776 -269 3776 -265 3776 -260 ct 3776 -255 3777 -250 3777 -245 ct -3777 -240 3777 -235 3777 -232 ct 3778 -232 l 3782 -240 3786 -247 3791 -254 ct -3796 -261 3802 -266 3808 -271 ct 3815 -275 3822 -279 3830 -281 ct 3839 -284 3848 -285 3860 -285 ct -3881 -285 3897 -281 3910 -272 ct 3922 -264 3931 -250 3935 -232 ct 3936 -232 l -3940 -240 3945 -247 3950 -254 ct 3955 -261 3961 -266 3968 -271 ct 3975 -275 3983 -279 3991 -281 ct -4000 -284 4010 -285 4021 -285 ct 4035 -285 4047 -283 4057 -279 ct 4068 -276 4076 -270 4083 -262 ct -4089 -254 4094 -244 4097 -231 ct 4100 -219 4102 -204 4102 -186 ct 4102 0 l 4056 0 l -4056 -177 l 4056 -191 4055 -202 4053 -212 ct 4052 -221 4049 -228 4045 -234 ct -4041 -239 4035 -243 4029 -246 ct 4022 -248 4014 -249 4005 -249 ct 3995 -249 3986 -247 3978 -244 ct -3970 -240 3963 -234 3958 -227 ct 3952 -220 3948 -211 3945 -200 ct 3942 -189 3940 -176 3940 -162 ct -3940 0 l 3894 0 l p ef -4207 -130 m 4207 -116 4209 -102 4212 -90 ct 4215 -77 4219 -67 4226 -58 ct 4232 -49 4240 -42 4250 -37 ct -4260 -32 4272 -30 4285 -30 ct 4305 -30 4322 -34 4334 -42 ct 4346 -50 4354 -60 4358 -73 ct -4399 -61 l 4396 -53 4392 -46 4387 -38 ct 4382 -30 4375 -23 4366 -17 ct 4357 -10 4346 -5 4333 -1 ct -4320 3 4304 5 4285 5 ct 4244 5 4213 -7 4191 -32 ct 4169 -57 4158 -93 4158 -142 ct -4158 -168 4162 -190 4168 -208 ct 4175 -227 4184 -241 4195 -253 ct 4207 -264 4220 -272 4235 -277 ct -4250 -282 4266 -285 4283 -285 ct 4307 -285 4327 -281 4342 -274 ct 4358 -266 4371 -256 4380 -242 ct -4390 -229 4397 -213 4401 -195 ct 4405 -177 4407 -158 4407 -137 ct 4407 -130 l -4207 -130 l p -4359 -166 m 4356 -195 4349 -217 4336 -230 ct 4324 -244 4306 -251 4283 -251 ct -4275 -251 4267 -249 4258 -247 ct 4250 -244 4242 -240 4235 -234 ct 4227 -227 4221 -219 4216 -208 ct -4211 -197 4209 -183 4208 -166 ct 4359 -166 l p ef -4575 -2 m 4568 0 4561 1 4554 2 ct 4546 3 4538 4 4528 4 ct 4491 4 4472 -17 4472 -59 ct -4472 -246 l 4440 -246 l 4440 -280 l 4474 -280 l 4488 -343 l 4519 -343 l -4519 -280 l 4570 -280 l 4570 -246 l 4519 -246 l 4519 -69 l 4519 -56 4521 -47 4525 -41 ct -4530 -36 4537 -33 4548 -33 ct 4553 -33 4557 -33 4561 -34 ct 4566 -35 4570 -36 4575 -37 ct -4575 -2 l p ef -4651 -130 m 4651 -116 4653 -102 4656 -90 ct 4659 -77 4663 -67 4670 -58 ct 4676 -49 4684 -42 4694 -37 ct -4704 -32 4716 -30 4729 -30 ct 4749 -30 4766 -34 4778 -42 ct 4790 -50 4798 -60 4802 -73 ct -4843 -61 l 4840 -53 4836 -46 4831 -38 ct 4826 -30 4819 -23 4810 -17 ct 4801 -10 4790 -5 4777 -1 ct -4764 3 4748 5 4729 5 ct 4688 5 4657 -7 4635 -32 ct 4613 -57 4602 -93 4602 -142 ct -4602 -168 4606 -190 4612 -208 ct 4619 -227 4628 -241 4639 -253 ct 4651 -264 4664 -272 4679 -277 ct -4694 -282 4710 -285 4727 -285 ct 4751 -285 4771 -281 4786 -274 ct 4802 -266 4815 -256 4824 -242 ct -4834 -229 4841 -213 4845 -195 ct 4849 -177 4851 -158 4851 -137 ct 4851 -130 l -4651 -130 l p -4803 -166 m 4800 -195 4793 -217 4780 -230 ct 4768 -244 4750 -251 4727 -251 ct -4719 -251 4711 -249 4702 -247 ct 4694 -244 4686 -240 4679 -234 ct 4671 -227 4665 -219 4660 -208 ct -4655 -197 4653 -183 4652 -166 ct 4803 -166 l p ef -4914 0 m 4914 -215 l 4914 -221 4914 -227 4914 -233 ct 4913 -239 4913 -245 4913 -250 ct -4913 -256 4913 -261 4913 -266 ct 4912 -271 4912 -276 4912 -280 ct 4956 -280 l -4956 -276 4956 -271 4957 -266 ct 4957 -261 4957 -256 4957 -251 ct 4958 -245 4958 -240 4958 -235 ct -4958 -230 4958 -226 4958 -223 ct 4959 -223 l 4962 -233 4966 -243 4970 -250 ct -4973 -258 4978 -265 4983 -270 ct 4988 -275 4994 -279 5000 -281 ct 5007 -284 5016 -285 5026 -285 ct -5029 -285 5033 -285 5036 -284 ct 5040 -284 5042 -283 5044 -282 ct 5044 -240 l -5041 -241 5038 -241 5034 -242 ct 5029 -242 5025 -242 5020 -242 ct 5009 -242 5000 -240 4992 -235 ct -4985 -230 4979 -224 4974 -215 ct 4969 -207 4966 -196 4964 -185 ct 4961 -173 4960 -160 4960 -146 ct -4960 0 l 4914 0 l p ef -5300 -77 m 5300 -64 5298 -53 5293 -42 ct 5288 -32 5280 -24 5271 -17 ct 5261 -10 5249 -4 5235 -1 ct -5221 3 5205 5 5187 5 ct 5171 5 5156 4 5143 1 ct 5130 -1 5119 -5 5109 -11 ct 5099 -16 5091 -24 5084 -33 ct -5078 -42 5073 -53 5070 -66 ct 5111 -74 l 5115 -59 5123 -48 5135 -41 ct 5148 -34 5165 -30 5187 -30 ct -5197 -30 5206 -31 5215 -33 ct 5223 -34 5230 -36 5236 -40 ct 5242 -43 5247 -47 5250 -53 ct -5254 -59 5255 -66 5255 -74 ct 5255 -82 5253 -89 5249 -95 ct 5245 -100 5240 -105 5233 -108 ct -5226 -112 5217 -115 5207 -118 ct 5197 -120 5186 -123 5174 -127 ct 5163 -129 5152 -133 5141 -136 ct -5129 -140 5120 -145 5111 -151 ct 5102 -157 5095 -164 5089 -173 ct 5084 -182 5081 -193 5081 -206 ct -5081 -231 5090 -251 5108 -264 ct 5126 -278 5153 -284 5188 -284 ct 5218 -284 5243 -279 5261 -268 ct -5279 -257 5291 -240 5295 -216 ct 5254 -211 l 5252 -218 5249 -224 5245 -229 ct -5241 -234 5236 -238 5230 -241 ct 5224 -244 5218 -246 5210 -247 ct 5203 -248 5195 -249 5188 -249 ct -5167 -249 5151 -246 5141 -239 ct 5131 -233 5126 -223 5126 -210 ct 5126 -203 5128 -197 5132 -192 ct -5135 -187 5140 -183 5147 -179 ct 5154 -176 5162 -173 5171 -171 ct 5180 -168 5191 -165 5202 -163 ct -5209 -161 5217 -159 5224 -157 ct 5232 -154 5240 -152 5247 -149 ct 5254 -146 5261 -142 5268 -138 ct -5274 -134 5280 -129 5285 -124 ct 5289 -118 5293 -111 5296 -104 ct 5299 -96 5300 -87 5300 -77 ct -p ef -pom -pum -19986 11944 t -301 1 m 206 -151 l 93 -151 l 93 1 l 43 1 l 43 -364 l 215 -364 l -235 -364 254 -362 270 -357 ct 285 -352 299 -345 310 -336 ct 321 -327 329 -316 335 -304 ct -340 -291 343 -276 343 -260 ct 343 -248 341 -237 338 -226 ct 335 -215 329 -204 322 -195 ct -315 -186 306 -178 294 -171 ct 283 -164 270 -159 254 -157 ct 357 1 l 301 1 l -p -293 -259 m 293 -270 292 -280 288 -288 ct 284 -296 278 -303 271 -308 ct 264 -314 255 -318 245 -320 ct -235 -323 223 -324 210 -324 ct 93 -324 l 93 -190 l 212 -190 l 226 -190 238 -192 248 -195 ct -259 -199 267 -204 274 -210 ct 281 -216 285 -223 289 -232 ct 292 -240 293 -249 293 -259 ct -p ef -452 -130 m 452 -116 454 -102 457 -90 ct 460 -77 464 -67 471 -58 ct 477 -49 485 -42 495 -37 ct -505 -32 517 -30 530 -30 ct 550 -30 567 -34 579 -42 ct 591 -50 599 -60 603 -73 ct -644 -61 l 641 -53 637 -46 632 -38 ct 627 -30 620 -23 611 -17 ct 602 -10 591 -5 578 -1 ct -565 3 549 5 530 5 ct 489 5 458 -7 436 -32 ct 414 -57 403 -93 403 -142 ct 403 -168 407 -190 413 -208 ct -420 -227 429 -241 440 -253 ct 452 -264 465 -272 480 -277 ct 495 -282 511 -285 528 -285 ct -552 -285 572 -281 587 -274 ct 603 -266 616 -256 625 -242 ct 635 -229 642 -213 646 -195 ct -650 -177 652 -158 652 -137 ct 652 -130 l 452 -130 l p -604 -166 m 601 -195 594 -217 581 -230 ct 569 -244 551 -251 528 -251 ct 520 -251 512 -249 503 -247 ct -495 -244 487 -240 480 -234 ct 472 -227 466 -219 461 -208 ct 456 -197 454 -183 453 -166 ct -604 -166 l p ef -922 -77 m 922 -64 920 -53 915 -42 ct 910 -32 902 -24 893 -17 ct 883 -10 871 -4 857 -1 ct -843 3 827 5 809 5 ct 793 5 778 4 765 1 ct 752 -1 741 -5 731 -11 ct 721 -16 713 -24 706 -33 ct -700 -42 695 -53 692 -66 ct 733 -74 l 737 -59 745 -48 757 -41 ct 770 -34 787 -30 809 -30 ct -819 -30 828 -31 837 -33 ct 845 -34 852 -36 858 -40 ct 864 -43 869 -47 872 -53 ct -876 -59 877 -66 877 -74 ct 877 -82 875 -89 871 -95 ct 867 -100 862 -105 855 -108 ct -848 -112 839 -115 829 -118 ct 819 -120 808 -123 796 -127 ct 785 -129 774 -133 763 -136 ct -751 -140 742 -145 733 -151 ct 724 -157 717 -164 711 -173 ct 706 -182 703 -193 703 -206 ct -703 -231 712 -251 730 -264 ct 748 -278 775 -284 810 -284 ct 840 -284 865 -279 883 -268 ct -901 -257 913 -240 917 -216 ct 876 -211 l 874 -218 871 -224 867 -229 ct 863 -234 858 -238 852 -241 ct -846 -244 840 -246 832 -247 ct 825 -248 817 -249 810 -249 ct 789 -249 773 -246 763 -239 ct -753 -233 748 -223 748 -210 ct 748 -203 750 -197 754 -192 ct 757 -187 762 -183 769 -179 ct -776 -176 784 -173 793 -171 ct 802 -168 813 -165 824 -163 ct 831 -161 839 -159 846 -157 ct -854 -154 862 -152 869 -149 ct 876 -146 883 -142 890 -138 ct 896 -134 902 -129 907 -124 ct -911 -118 915 -111 918 -104 ct 921 -96 922 -87 922 -77 ct p ef -1025 -280 m 1025 -103 l 1025 -89 1026 -78 1028 -68 ct 1030 -59 1033 -52 1038 -46 ct -1042 -41 1048 -37 1055 -34 ct 1063 -32 1072 -31 1083 -31 ct 1094 -31 1104 -33 1113 -37 ct -1121 -41 1129 -46 1135 -54 ct 1142 -61 1146 -70 1150 -81 ct 1153 -92 1155 -104 1155 -118 ct -1155 -280 l 1202 -280 l 1202 -60 l 1202 -54 1202 -48 1202 -41 ct 1202 -35 1202 -29 1202 -23 ct -1202 -17 1202 -12 1203 -8 ct 1203 -4 1203 -1 1203 0 ct 1159 0 l 1159 -1 1159 -3 1159 -7 ct -1158 -11 1158 -15 1158 -20 ct 1158 -25 1158 -30 1157 -35 ct 1157 -40 1157 -45 1157 -48 ct -1156 -48 l 1152 -40 1147 -33 1142 -26 ct 1136 -19 1130 -14 1123 -9 ct 1116 -5 1108 -1 1099 1 ct -1090 4 1079 5 1067 5 ct 1051 5 1038 3 1027 -1 ct 1016 -4 1007 -10 999 -18 ct 992 -26 987 -36 983 -49 ct -980 -61 978 -76 978 -94 ct 978 -280 l 1025 -280 l p ef -1276 0 m 1276 -384 l 1322 -384 l 1322 0 l 1276 0 l p ef -1502 -2 m 1495 0 1488 1 1481 2 ct 1473 3 1465 4 1455 4 ct 1418 4 1399 -17 1399 -59 ct -1399 -246 l 1367 -246 l 1367 -280 l 1401 -280 l 1415 -343 l 1446 -343 l -1446 -280 l 1497 -280 l 1497 -246 l 1446 -246 l 1446 -69 l 1446 -56 1448 -47 1452 -41 ct -1457 -36 1464 -33 1475 -33 ct 1480 -33 1484 -33 1488 -34 ct 1493 -35 1497 -36 1502 -37 ct -1502 -2 l p ef -1927 -140 m 1927 -91 1916 -55 1895 -31 ct 1873 -7 1842 5 1801 5 ct 1781 5 1764 2 1749 -4 ct -1733 -10 1720 -19 1710 -31 ct 1699 -43 1691 -58 1686 -76 ct 1680 -94 1677 -116 1677 -140 ct -1677 -237 1719 -285 1802 -285 ct 1824 -285 1843 -282 1859 -276 ct 1874 -270 1887 -261 1897 -249 ct -1908 -237 1915 -222 1920 -204 ct 1925 -186 1927 -164 1927 -140 ct p -1878 -140 m 1878 -162 1876 -180 1873 -194 ct 1870 -208 1865 -219 1858 -228 ct -1852 -236 1844 -242 1835 -246 ct 1825 -249 1815 -251 1803 -251 ct 1791 -251 1781 -249 1771 -245 ct -1762 -242 1753 -236 1747 -227 ct 1740 -219 1735 -207 1731 -193 ct 1728 -179 1726 -161 1726 -140 ct -1726 -119 1728 -101 1732 -86 ct 1736 -72 1741 -61 1747 -52 ct 1754 -44 1762 -38 1771 -35 ct -1780 -31 1790 -29 1800 -29 ct 1812 -29 1823 -31 1833 -34 ct 1842 -38 1851 -44 1857 -52 ct -1864 -61 1869 -72 1873 -86 ct 1876 -101 1878 -119 1878 -140 ct p ef -2045 -247 m 2045 -1 l 1999 -1 l 1999 -247 l 1959 -247 l 1959 -281 l -1999 -281 l 1999 -312 l 1999 -322 2000 -332 2002 -341 ct 2003 -349 2007 -357 2012 -363 ct -2017 -370 2024 -375 2033 -378 ct 2042 -382 2053 -384 2067 -384 ct 2072 -384 2078 -384 2084 -383 ct -2090 -383 2095 -382 2100 -381 ct 2100 -345 l 2097 -346 2093 -346 2090 -347 ct -2086 -347 2082 -348 2079 -348 ct 2072 -348 2067 -347 2062 -345 ct 2058 -343 2054 -340 2052 -337 ct -2049 -333 2048 -329 2047 -324 ct 2046 -318 2045 -313 2045 -306 ct 2045 -281 l -2100 -281 l 2100 -247 l 2045 -247 l p ef -2291 0 m 2291 -364 l 2568 -364 l 2568 -324 l 2341 -324 l 2341 -207 l -2552 -207 l 2552 -167 l 2341 -167 l 2341 -40 l 2578 -40 l 2578 0 l -2291 0 l p ef -2806 0 m 2731 -115 l 2655 0 l 2605 0 l 2704 -144 l 2610 -280 l 2661 -280 l -2731 -171 l 2800 -280 l 2852 -280 l 2757 -144 l 2858 0 l 2806 0 l -p ef -3138 -141 m 3138 -120 3136 -100 3133 -82 ct 3129 -64 3124 -49 3116 -36 ct 3108 -23 3097 -13 3084 -6 ct -3071 2 3054 5 3035 5 ct 3015 5 2998 2 2983 -6 ct 2968 -14 2956 -26 2948 -43 ct -2947 -43 l 2947 -43 2947 -41 2947 -39 ct 2948 -36 2948 -32 2948 -28 ct 2948 -24 2948 -20 2948 -14 ct -2948 -9 2948 -4 2948 1 ct 2948 110 l 2902 110 l 2902 -223 l 2902 -229 2902 -236 2902 -242 ct -2901 -248 2901 -254 2901 -259 ct 2901 -264 2901 -268 2901 -272 ct 2900 -276 2900 -278 2900 -280 ct -2945 -280 l 2945 -279 2945 -277 2946 -274 ct 2946 -271 2946 -268 2946 -263 ct -2947 -259 2947 -254 2947 -249 ct 2948 -244 2948 -239 2948 -235 ct 2949 -235 l -2953 -244 2958 -252 2963 -258 ct 2969 -264 2975 -269 2982 -273 ct 2989 -277 2997 -280 3006 -282 ct -3015 -284 3024 -285 3035 -285 ct 3054 -285 3071 -282 3084 -275 ct 3097 -268 3108 -258 3116 -245 ct -3124 -233 3129 -218 3133 -200 ct 3136 -182 3138 -163 3138 -141 ct p -3089 -140 m 3089 -157 3088 -173 3086 -186 ct 3084 -200 3080 -211 3075 -221 ct -3070 -230 3064 -237 3055 -242 ct 3047 -247 3036 -249 3023 -249 ct 3013 -249 3003 -248 2994 -245 ct -2985 -242 2977 -236 2970 -228 ct 2963 -219 2958 -208 2954 -193 ct 2950 -179 2948 -160 2948 -137 ct -2948 -117 2950 -100 2953 -86 ct 2956 -72 2961 -61 2967 -53 ct 2974 -44 2981 -38 2991 -35 ct -3000 -31 3011 -29 3023 -29 ct 3036 -29 3046 -32 3055 -37 ct 3063 -42 3070 -49 3075 -58 ct -3080 -68 3084 -79 3086 -93 ct 3088 -107 3089 -123 3089 -140 ct p ef -3233 -130 m 3233 -116 3235 -102 3238 -90 ct 3241 -77 3245 -67 3252 -58 ct 3258 -49 3266 -42 3276 -37 ct -3286 -32 3298 -30 3311 -30 ct 3331 -30 3348 -34 3360 -42 ct 3372 -50 3380 -60 3384 -73 ct -3425 -61 l 3422 -53 3418 -46 3413 -38 ct 3408 -30 3401 -23 3392 -17 ct 3383 -10 3372 -5 3359 -1 ct -3346 3 3330 5 3311 5 ct 3270 5 3239 -7 3217 -32 ct 3195 -57 3184 -93 3184 -142 ct -3184 -168 3188 -190 3194 -208 ct 3201 -227 3210 -241 3221 -253 ct 3233 -264 3246 -272 3261 -277 ct -3276 -282 3292 -285 3309 -285 ct 3333 -285 3353 -281 3368 -274 ct 3384 -266 3397 -256 3406 -242 ct -3416 -229 3423 -213 3427 -195 ct 3431 -177 3433 -158 3433 -137 ct 3433 -130 l -3233 -130 l p -3385 -166 m 3382 -195 3375 -217 3362 -230 ct 3350 -244 3332 -251 3309 -251 ct -3301 -251 3293 -249 3284 -247 ct 3276 -244 3268 -240 3261 -234 ct 3253 -227 3247 -219 3242 -208 ct -3237 -197 3235 -183 3234 -166 ct 3385 -166 l p ef -3496 0 m 3496 -215 l 3496 -221 3496 -227 3496 -233 ct 3495 -239 3495 -245 3495 -250 ct -3495 -256 3495 -261 3495 -266 ct 3494 -271 3494 -276 3494 -280 ct 3538 -280 l -3538 -276 3538 -271 3539 -266 ct 3539 -261 3539 -256 3539 -251 ct 3540 -245 3540 -240 3540 -235 ct -3540 -230 3540 -226 3540 -223 ct 3541 -223 l 3544 -233 3548 -243 3552 -250 ct -3555 -258 3560 -265 3565 -270 ct 3570 -275 3576 -279 3582 -281 ct 3589 -284 3598 -285 3608 -285 ct -3611 -285 3615 -285 3618 -284 ct 3622 -284 3624 -283 3626 -282 ct 3626 -240 l -3623 -241 3620 -241 3616 -242 ct 3611 -242 3607 -242 3602 -242 ct 3591 -242 3582 -240 3574 -235 ct -3567 -230 3561 -224 3556 -215 ct 3551 -207 3548 -196 3546 -185 ct 3543 -173 3542 -160 3542 -146 ct -3542 0 l 3496 0 l p ef -3671 -340 m 3671 -384 l 3718 -384 l 3718 -340 l 3671 -340 l p -3671 0 m 3671 -280 l 3718 -280 l 3718 0 l 3671 0 l p ef -3953 0 m 3953 -177 l 3953 -191 3953 -202 3951 -212 ct 3949 -221 3946 -228 3942 -234 ct -3938 -239 3933 -243 3926 -246 ct 3920 -248 3912 -249 3902 -249 ct 3892 -249 3884 -247 3876 -243 ct -3868 -239 3861 -234 3855 -226 ct 3850 -219 3845 -210 3842 -199 ct 3839 -189 3838 -176 3838 -162 ct -3838 0 l 3792 0 l 3792 -220 l 3792 -226 3792 -232 3792 -239 ct 3791 -245 3791 -251 3791 -257 ct -3791 -263 3791 -268 3791 -272 ct 3790 -276 3790 -279 3790 -280 ct 3834 -280 l -3834 -279 3834 -277 3835 -273 ct 3835 -269 3835 -265 3835 -260 ct 3835 -255 3836 -250 3836 -245 ct -3836 -240 3836 -235 3836 -232 ct 3837 -232 l 3841 -240 3845 -247 3850 -254 ct -3855 -261 3861 -266 3867 -271 ct 3874 -275 3881 -279 3889 -281 ct 3898 -284 3907 -285 3919 -285 ct -3940 -285 3956 -281 3969 -272 ct 3981 -264 3990 -250 3994 -232 ct 3995 -232 l -3999 -240 4004 -247 4009 -254 ct 4014 -261 4020 -266 4027 -271 ct 4034 -275 4042 -279 4050 -281 ct -4059 -284 4069 -285 4080 -285 ct 4094 -285 4106 -283 4116 -279 ct 4127 -276 4135 -270 4142 -262 ct -4148 -254 4153 -244 4156 -231 ct 4159 -219 4161 -204 4161 -186 ct 4161 0 l 4115 0 l -4115 -177 l 4115 -191 4114 -202 4112 -212 ct 4111 -221 4108 -228 4104 -234 ct -4100 -239 4094 -243 4088 -246 ct 4081 -248 4073 -249 4064 -249 ct 4054 -249 4045 -247 4037 -244 ct -4029 -240 4022 -234 4017 -227 ct 4011 -220 4007 -211 4004 -200 ct 4001 -189 3999 -176 3999 -162 ct -3999 0 l 3953 0 l p ef -4266 -130 m 4266 -116 4268 -102 4271 -90 ct 4274 -77 4278 -67 4285 -58 ct 4291 -49 4299 -42 4309 -37 ct -4319 -32 4331 -30 4344 -30 ct 4364 -30 4381 -34 4393 -42 ct 4405 -50 4413 -60 4417 -73 ct -4458 -61 l 4455 -53 4451 -46 4446 -38 ct 4441 -30 4434 -23 4425 -17 ct 4416 -10 4405 -5 4392 -1 ct -4379 3 4363 5 4344 5 ct 4303 5 4272 -7 4250 -32 ct 4228 -57 4217 -93 4217 -142 ct -4217 -168 4221 -190 4227 -208 ct 4234 -227 4243 -241 4254 -253 ct 4266 -264 4279 -272 4294 -277 ct -4309 -282 4325 -285 4342 -285 ct 4366 -285 4386 -281 4401 -274 ct 4417 -266 4430 -256 4439 -242 ct -4449 -229 4456 -213 4460 -195 ct 4464 -177 4466 -158 4466 -137 ct 4466 -130 l -4266 -130 l p -4418 -166 m 4415 -195 4408 -217 4395 -230 ct 4383 -244 4365 -251 4342 -251 ct -4334 -251 4326 -249 4317 -247 ct 4309 -244 4301 -240 4294 -234 ct 4286 -227 4280 -219 4275 -208 ct -4270 -197 4268 -183 4267 -166 ct 4418 -166 l p ef -4705 0 m 4705 -177 l 4705 -191 4704 -202 4702 -212 ct 4700 -221 4697 -228 4692 -234 ct -4688 -239 4682 -243 4675 -246 ct 4667 -248 4658 -249 4648 -249 ct 4636 -249 4627 -247 4618 -243 ct -4609 -239 4601 -234 4595 -226 ct 4589 -219 4584 -210 4580 -199 ct 4577 -189 4575 -176 4575 -162 ct -4575 0 l 4529 0 l 4529 -220 l 4529 -226 4529 -232 4529 -239 ct 4528 -245 4528 -251 4528 -257 ct -4528 -263 4528 -268 4528 -272 ct 4527 -276 4527 -279 4527 -280 ct 4571 -280 l -4571 -279 4571 -277 4572 -273 ct 4572 -269 4572 -265 4572 -260 ct 4572 -255 4573 -250 4573 -245 ct -4573 -240 4573 -235 4573 -232 ct 4574 -232 l 4578 -240 4583 -247 4589 -254 ct -4594 -261 4600 -266 4607 -271 ct 4614 -275 4622 -279 4631 -281 ct 4641 -284 4651 -285 4663 -285 ct -4679 -285 4692 -283 4703 -279 ct 4714 -276 4724 -270 4731 -262 ct 4738 -254 4743 -244 4747 -231 ct -4750 -219 4752 -204 4752 -186 ct 4752 0 l 4705 0 l p ef -4931 -2 m 4924 0 4917 1 4910 2 ct 4902 3 4894 4 4884 4 ct 4847 4 4828 -17 4828 -59 ct -4828 -246 l 4796 -246 l 4796 -280 l 4830 -280 l 4844 -343 l 4875 -343 l -4875 -280 l 4926 -280 l 4926 -246 l 4875 -246 l 4875 -69 l 4875 -56 4877 -47 4881 -41 ct -4886 -36 4893 -33 4904 -33 ct 4909 -33 4913 -33 4917 -34 ct 4922 -35 4926 -36 4931 -37 ct -4931 -2 l p ef -pom -pum -19922 13498 t -386 -184 m 386 -156 382 -130 374 -106 ct 366 -83 354 -63 338 -47 ct 323 -30 304 -17 282 -8 ct -259 1 234 5 205 5 ct 175 5 149 0 127 -9 ct 104 -18 85 -32 70 -48 ct 55 -65 44 -85 36 -108 ct -29 -131 25 -157 25 -184 ct 25 -213 29 -238 37 -261 ct 45 -284 56 -304 72 -320 ct -87 -336 106 -348 129 -357 ct 151 -366 177 -370 206 -370 ct 235 -370 261 -366 283 -357 ct -305 -348 324 -336 340 -319 ct 355 -303 366 -284 374 -261 ct 382 -238 386 -212 386 -184 ct -p -336 -184 m 336 -206 333 -226 327 -244 ct 322 -262 314 -277 303 -290 ct 292 -303 278 -312 262 -319 ct -246 -326 227 -330 206 -330 ct 184 -330 165 -326 149 -319 ct 132 -312 119 -303 108 -290 ct -97 -277 89 -262 83 -244 ct 78 -226 75 -206 75 -184 ct 75 -162 78 -142 84 -124 ct -89 -106 97 -90 108 -77 ct 119 -64 133 -53 149 -46 ct 165 -39 184 -35 205 -35 ct -228 -35 248 -39 264 -46 ct 281 -54 294 -64 305 -77 ct 315 -90 323 -106 328 -124 ct -333 -143 336 -163 336 -184 ct p ef -492 -280 m 492 -103 l 492 -89 493 -78 495 -68 ct 497 -59 500 -52 505 -46 ct -509 -41 515 -37 522 -34 ct 530 -32 539 -31 550 -31 ct 561 -31 571 -33 580 -37 ct -588 -41 596 -46 602 -54 ct 609 -61 613 -70 617 -81 ct 620 -92 622 -104 622 -118 ct -622 -280 l 669 -280 l 669 -60 l 669 -54 669 -48 669 -41 ct 669 -35 669 -29 669 -23 ct -669 -17 669 -12 670 -8 ct 670 -4 670 -1 670 0 ct 626 0 l 626 -1 626 -3 626 -7 ct -625 -11 625 -15 625 -20 ct 625 -25 625 -30 624 -35 ct 624 -40 624 -45 624 -48 ct -623 -48 l 619 -40 614 -33 609 -26 ct 603 -19 597 -14 590 -9 ct 583 -5 575 -1 566 1 ct -557 4 546 5 534 5 ct 518 5 505 3 494 -1 ct 483 -4 474 -10 466 -18 ct 459 -26 454 -36 450 -49 ct -447 -61 445 -76 445 -94 ct 445 -280 l 492 -280 l p ef -850 -2 m 843 0 836 1 829 2 ct 821 3 813 4 803 4 ct 766 4 747 -17 747 -59 ct 747 -246 l -715 -246 l 715 -280 l 749 -280 l 763 -343 l 794 -343 l 794 -280 l -845 -280 l 845 -246 l 794 -246 l 794 -69 l 794 -56 796 -47 800 -41 ct -805 -36 812 -33 823 -33 ct 828 -33 832 -33 836 -34 ct 841 -35 845 -36 850 -37 ct -850 -2 l p ef -1100 -77 m 1100 -64 1098 -53 1093 -42 ct 1088 -32 1080 -24 1071 -17 ct 1061 -10 1049 -4 1035 -1 ct -1021 3 1005 5 987 5 ct 971 5 956 4 943 1 ct 930 -1 919 -5 909 -11 ct 899 -16 891 -24 884 -33 ct -878 -42 873 -53 870 -66 ct 911 -74 l 915 -59 923 -48 935 -41 ct 948 -34 965 -30 987 -30 ct -997 -30 1006 -31 1015 -33 ct 1023 -34 1030 -36 1036 -40 ct 1042 -43 1047 -47 1050 -53 ct -1054 -59 1055 -66 1055 -74 ct 1055 -82 1053 -89 1049 -95 ct 1045 -100 1040 -105 1033 -108 ct -1026 -112 1017 -115 1007 -118 ct 997 -120 986 -123 974 -127 ct 963 -129 952 -133 941 -136 ct -929 -140 920 -145 911 -151 ct 902 -157 895 -164 889 -173 ct 884 -182 881 -193 881 -206 ct -881 -231 890 -251 908 -264 ct 926 -278 953 -284 988 -284 ct 1018 -284 1043 -279 1061 -268 ct -1079 -257 1091 -240 1095 -216 ct 1054 -211 l 1052 -218 1049 -224 1045 -229 ct -1041 -234 1036 -238 1030 -241 ct 1024 -244 1018 -246 1010 -247 ct 1003 -248 995 -249 988 -249 ct -967 -249 951 -246 941 -239 ct 931 -233 926 -223 926 -210 ct 926 -203 928 -197 932 -192 ct -935 -187 940 -183 947 -179 ct 954 -176 962 -173 971 -171 ct 980 -168 991 -165 1002 -163 ct -1009 -161 1017 -159 1024 -157 ct 1032 -154 1040 -152 1047 -149 ct 1054 -146 1061 -142 1068 -138 ct -1074 -134 1080 -129 1085 -124 ct 1089 -118 1093 -111 1096 -104 ct 1099 -96 1100 -87 1100 -77 ct -p ef -1157 -340 m 1157 -384 l 1204 -384 l 1204 -340 l 1157 -340 l p -1157 0 m 1157 -280 l 1204 -280 l 1204 0 l 1157 0 l p ef -1452 -45 m 1443 -27 1432 -14 1418 -7 ct 1404 1 1386 5 1365 5 ct 1330 5 1304 -7 1287 -31 ct -1271 -55 1262 -91 1262 -139 ct 1262 -237 1296 -285 1365 -285 ct 1386 -285 1404 -282 1418 -274 ct -1432 -266 1443 -254 1452 -237 ct 1453 -237 l 1453 -238 1453 -241 1452 -245 ct -1452 -249 1452 -252 1452 -257 ct 1452 -261 1452 -264 1452 -268 ct 1452 -272 1452 -274 1452 -276 ct -1452 -384 l 1499 -384 l 1499 -58 l 1499 -51 1499 -45 1499 -38 ct 1499 -32 1499 -27 1499 -21 ct -1499 -16 1499 -12 1500 -8 ct 1500 -4 1500 -2 1500 0 ct 1456 0 l 1455 -2 1455 -4 1455 -8 ct -1455 -11 1454 -14 1454 -19 ct 1454 -23 1454 -27 1453 -32 ct 1453 -36 1453 -41 1453 -45 ct -1452 -45 l p -1311 -140 m 1311 -121 1312 -105 1315 -91 ct 1317 -77 1321 -66 1326 -57 ct 1332 -48 1338 -41 1347 -37 ct -1355 -33 1365 -31 1377 -31 ct 1389 -31 1400 -33 1409 -37 ct 1419 -41 1427 -47 1433 -56 ct -1439 -65 1444 -77 1447 -91 ct 1450 -105 1452 -123 1452 -144 ct 1452 -163 1450 -180 1447 -194 ct -1444 -208 1439 -219 1433 -227 ct 1426 -236 1419 -242 1409 -245 ct 1400 -249 1389 -251 1377 -251 ct -1366 -251 1356 -249 1348 -245 ct 1340 -241 1333 -235 1327 -226 ct 1322 -217 1318 -206 1315 -192 ct -1312 -178 1311 -160 1311 -140 ct p ef -1608 -130 m 1608 -116 1610 -102 1613 -90 ct 1616 -77 1620 -67 1627 -58 ct 1633 -49 1641 -42 1651 -37 ct -1661 -32 1673 -30 1686 -30 ct 1706 -30 1723 -34 1735 -42 ct 1747 -50 1755 -60 1759 -73 ct -1800 -61 l 1797 -53 1793 -46 1788 -38 ct 1783 -30 1776 -23 1767 -17 ct 1758 -10 1747 -5 1734 -1 ct -1721 3 1705 5 1686 5 ct 1645 5 1614 -7 1592 -32 ct 1570 -57 1559 -93 1559 -142 ct -1559 -168 1563 -190 1569 -208 ct 1576 -227 1585 -241 1596 -253 ct 1608 -264 1621 -272 1636 -277 ct -1651 -282 1667 -285 1684 -285 ct 1708 -285 1728 -281 1743 -274 ct 1759 -266 1772 -256 1781 -242 ct -1791 -229 1798 -213 1802 -195 ct 1806 -177 1808 -158 1808 -137 ct 1808 -130 l -1608 -130 l p -1760 -166 m 1757 -195 1750 -217 1737 -230 ct 1725 -244 1707 -251 1684 -251 ct -1676 -251 1668 -249 1659 -247 ct 1651 -244 1643 -240 1636 -234 ct 1628 -227 1622 -219 1617 -208 ct -1612 -197 1610 -183 1609 -166 ct 1760 -166 l p ef -2306 -255 m 2306 -239 2303 -224 2298 -210 ct 2293 -197 2285 -185 2275 -175 ct -2264 -165 2251 -157 2235 -151 ct 2220 -145 2202 -142 2181 -142 ct 2074 -142 l -2074 0 l 2024 0 l 2024 -365 l 2178 -365 l 2199 -365 2218 -362 2234 -357 ct -2250 -351 2263 -344 2274 -334 ct 2285 -325 2293 -313 2298 -300 ct 2303 -286 2306 -271 2306 -255 ct -p -2256 -254 m 2256 -277 2249 -295 2235 -307 ct 2221 -319 2200 -325 2172 -325 ct -2074 -325 l 2074 -181 l 2174 -181 l 2202 -181 2223 -187 2236 -200 ct 2250 -213 2256 -231 2256 -254 ct -p ef -2605 -140 m 2605 -91 2594 -55 2573 -31 ct 2551 -7 2520 5 2479 5 ct 2459 5 2442 2 2427 -4 ct -2411 -10 2398 -19 2388 -31 ct 2377 -43 2369 -58 2364 -76 ct 2358 -94 2355 -116 2355 -140 ct -2355 -237 2397 -285 2480 -285 ct 2502 -285 2521 -282 2537 -276 ct 2552 -270 2565 -261 2575 -249 ct -2586 -237 2593 -222 2598 -204 ct 2603 -186 2605 -164 2605 -140 ct p -2556 -140 m 2556 -162 2554 -180 2551 -194 ct 2548 -208 2543 -219 2536 -228 ct -2530 -236 2522 -242 2513 -246 ct 2503 -249 2493 -251 2481 -251 ct 2469 -251 2459 -249 2449 -245 ct -2440 -242 2431 -236 2425 -227 ct 2418 -219 2413 -207 2409 -193 ct 2406 -179 2404 -161 2404 -140 ct -2404 -119 2406 -101 2410 -86 ct 2414 -72 2419 -61 2425 -52 ct 2432 -44 2440 -38 2449 -35 ct -2458 -31 2468 -29 2478 -29 ct 2490 -29 2501 -31 2511 -34 ct 2520 -38 2529 -44 2535 -52 ct -2542 -61 2547 -72 2551 -86 ct 2554 -101 2556 -119 2556 -140 ct p ef -2664 -340 m 2664 -384 l 2711 -384 l 2711 -340 l 2664 -340 l p -2664 0 m 2664 -280 l 2711 -280 l 2711 0 l 2664 0 l p ef -2960 0 m 2960 -177 l 2960 -191 2959 -202 2957 -212 ct 2955 -221 2952 -228 2947 -234 ct -2943 -239 2937 -243 2930 -246 ct 2922 -248 2913 -249 2903 -249 ct 2891 -249 2882 -247 2873 -243 ct -2864 -239 2856 -234 2850 -226 ct 2844 -219 2839 -210 2835 -199 ct 2832 -189 2830 -176 2830 -162 ct -2830 0 l 2784 0 l 2784 -220 l 2784 -226 2784 -232 2784 -239 ct 2783 -245 2783 -251 2783 -257 ct -2783 -263 2783 -268 2783 -272 ct 2782 -276 2782 -279 2782 -280 ct 2826 -280 l -2826 -279 2826 -277 2827 -273 ct 2827 -269 2827 -265 2827 -260 ct 2827 -255 2828 -250 2828 -245 ct -2828 -240 2828 -235 2828 -232 ct 2829 -232 l 2833 -240 2838 -247 2844 -254 ct -2849 -261 2855 -266 2862 -271 ct 2869 -275 2877 -279 2886 -281 ct 2896 -284 2906 -285 2918 -285 ct -2934 -285 2947 -283 2958 -279 ct 2969 -276 2979 -270 2986 -262 ct 2993 -254 2998 -244 3002 -231 ct -3005 -219 3007 -204 3007 -186 ct 3007 0 l 2960 0 l p ef -3187 -2 m 3180 0 3173 1 3166 2 ct 3158 3 3150 4 3140 4 ct 3103 4 3084 -17 3084 -59 ct -3084 -246 l 3052 -246 l 3052 -280 l 3086 -280 l 3100 -343 l 3131 -343 l -3131 -280 l 3182 -280 l 3182 -246 l 3131 -246 l 3131 -69 l 3131 -56 3133 -47 3137 -41 ct -3142 -36 3149 -33 3160 -33 ct 3165 -33 3169 -33 3173 -34 ct 3178 -35 3182 -36 3187 -37 ct -3187 -2 l p ef -pom -19302 16762 m 24628 16762 l ps -25058 16762 m 24608 16612 l 24608 16912 l 25058 16762 l p ef -pum -19974 17470 t -325 -255 m 325 -239 322 -224 317 -210 ct 312 -197 304 -185 294 -175 ct 283 -165 270 -157 254 -151 ct -239 -145 221 -142 200 -142 ct 93 -142 l 93 0 l 43 0 l 43 -365 l 197 -365 l -218 -365 237 -362 253 -357 ct 269 -351 282 -344 293 -334 ct 304 -325 312 -313 317 -300 ct -322 -286 325 -271 325 -255 ct p -275 -254 m 275 -277 268 -295 254 -307 ct 240 -319 219 -325 191 -325 ct 93 -325 l -93 -181 l 193 -181 l 221 -181 242 -187 255 -200 ct 269 -213 275 -231 275 -254 ct -p ef -458 5 m 430 5 409 -2 395 -17 ct 381 -32 373 -53 373 -79 ct 373 -97 377 -112 384 -124 ct -391 -136 400 -145 411 -152 ct 423 -159 435 -164 450 -166 ct 464 -169 479 -170 494 -170 ct -557 -170 l 557 -185 l 557 -197 556 -207 553 -215 ct 551 -223 547 -230 542 -235 ct -537 -240 531 -244 523 -246 ct 516 -248 507 -250 497 -250 ct 488 -250 480 -249 473 -248 ct -465 -246 459 -244 454 -241 ct 448 -237 444 -233 441 -227 ct 438 -221 435 -214 434 -205 ct -386 -210 l 388 -221 391 -231 396 -240 ct 401 -249 407 -257 416 -264 ct 425 -271 436 -276 450 -279 ct -463 -283 479 -285 498 -285 ct 533 -285 560 -277 577 -261 ct 595 -245 604 -221 604 -191 ct -604 -71 l 604 -57 606 -46 609 -39 ct 613 -32 620 -29 630 -29 ct 633 -29 635 -29 638 -29 ct -640 -30 643 -30 645 -31 ct 645 -2 l 639 0 634 1 628 1 ct 622 2 616 2 609 2 ct -601 2 593 1 587 -1 ct 580 -4 575 -7 571 -12 ct 567 -17 564 -22 562 -29 ct 560 -36 559 -44 558 -54 ct -557 -54 l 552 -45 546 -37 540 -29 ct 535 -22 528 -16 520 -11 ct 512 -6 503 -2 493 1 ct -483 4 471 5 458 5 ct p -469 -30 m 483 -30 496 -33 507 -38 ct 519 -43 528 -50 535 -59 ct 542 -67 548 -76 551 -86 ct -555 -96 557 -106 557 -115 ct 557 -137 l 506 -137 l 495 -137 484 -137 474 -135 ct -463 -134 454 -131 447 -127 ct 439 -122 433 -116 428 -108 ct 424 -101 421 -90 421 -78 ct -421 -62 425 -51 434 -42 ct 442 -34 453 -30 469 -30 ct p ef -685 0 m 685 -215 l 685 -221 685 -227 685 -233 ct 684 -239 684 -245 684 -250 ct -684 -256 684 -261 684 -266 ct 683 -271 683 -276 683 -280 ct 727 -280 l 727 -276 727 -271 728 -266 ct -728 -261 728 -256 728 -251 ct 729 -245 729 -240 729 -235 ct 729 -230 729 -226 729 -223 ct -730 -223 l 733 -233 737 -243 741 -250 ct 744 -258 749 -265 754 -270 ct 759 -275 765 -279 771 -281 ct -778 -284 787 -285 797 -285 ct 800 -285 804 -285 807 -284 ct 811 -284 813 -283 815 -282 ct -815 -240 l 812 -241 809 -241 805 -242 ct 800 -242 796 -242 791 -242 ct 780 -242 771 -240 763 -235 ct -756 -230 750 -224 745 -215 ct 740 -207 737 -196 735 -185 ct 732 -173 731 -160 731 -146 ct -731 0 l 685 0 l p ef -933 5 m 905 5 884 -2 870 -17 ct 856 -32 848 -53 848 -79 ct 848 -97 852 -112 859 -124 ct -866 -136 875 -145 886 -152 ct 898 -159 910 -164 925 -166 ct 939 -169 954 -170 969 -170 ct -1032 -170 l 1032 -185 l 1032 -197 1031 -207 1028 -215 ct 1026 -223 1022 -230 1017 -235 ct -1012 -240 1006 -244 998 -246 ct 991 -248 982 -250 972 -250 ct 963 -250 955 -249 948 -248 ct -940 -246 934 -244 929 -241 ct 923 -237 919 -233 916 -227 ct 913 -221 910 -214 909 -205 ct -861 -210 l 863 -221 866 -231 871 -240 ct 876 -249 882 -257 891 -264 ct 900 -271 911 -276 925 -279 ct -938 -283 954 -285 973 -285 ct 1008 -285 1035 -277 1052 -261 ct 1070 -245 1079 -221 1079 -191 ct -1079 -71 l 1079 -57 1081 -46 1084 -39 ct 1088 -32 1095 -29 1105 -29 ct 1108 -29 1110 -29 1113 -29 ct -1115 -30 1118 -30 1120 -31 ct 1120 -2 l 1114 0 1109 1 1103 1 ct 1097 2 1091 2 1084 2 ct -1076 2 1068 1 1062 -1 ct 1055 -4 1050 -7 1046 -12 ct 1042 -17 1039 -22 1037 -29 ct -1035 -36 1034 -44 1033 -54 ct 1032 -54 l 1027 -45 1021 -37 1015 -29 ct 1010 -22 1003 -16 995 -11 ct -987 -6 978 -2 968 1 ct 958 4 946 5 933 5 ct p -944 -30 m 958 -30 971 -33 982 -38 ct 994 -43 1003 -50 1010 -59 ct 1017 -67 1023 -76 1026 -86 ct -1030 -96 1032 -106 1032 -115 ct 1032 -137 l 981 -137 l 970 -137 959 -137 949 -135 ct -938 -134 929 -131 922 -127 ct 914 -122 908 -116 903 -108 ct 899 -101 896 -90 896 -78 ct -896 -62 900 -51 909 -42 ct 917 -34 928 -30 944 -30 ct p ef -1320 0 m 1320 -177 l 1320 -191 1320 -202 1318 -212 ct 1316 -221 1313 -228 1309 -234 ct -1305 -239 1300 -243 1293 -246 ct 1287 -248 1279 -249 1269 -249 ct 1259 -249 1251 -247 1243 -243 ct -1235 -239 1228 -234 1222 -226 ct 1217 -219 1212 -210 1209 -199 ct 1206 -189 1205 -176 1205 -162 ct -1205 0 l 1159 0 l 1159 -220 l 1159 -226 1159 -232 1159 -239 ct 1158 -245 1158 -251 1158 -257 ct -1158 -263 1158 -268 1158 -272 ct 1157 -276 1157 -279 1157 -280 ct 1201 -280 l -1201 -279 1201 -277 1202 -273 ct 1202 -269 1202 -265 1202 -260 ct 1202 -255 1203 -250 1203 -245 ct -1203 -240 1203 -235 1203 -232 ct 1204 -232 l 1208 -240 1212 -247 1217 -254 ct -1222 -261 1228 -266 1234 -271 ct 1241 -275 1248 -279 1256 -281 ct 1265 -284 1274 -285 1286 -285 ct -1307 -285 1323 -281 1336 -272 ct 1348 -264 1357 -250 1361 -232 ct 1362 -232 l -1366 -240 1371 -247 1376 -254 ct 1381 -261 1387 -266 1394 -271 ct 1401 -275 1409 -279 1417 -281 ct -1426 -284 1436 -285 1447 -285 ct 1461 -285 1473 -283 1483 -279 ct 1494 -276 1502 -270 1509 -262 ct -1515 -254 1520 -244 1523 -231 ct 1526 -219 1528 -204 1528 -186 ct 1528 0 l 1482 0 l -1482 -177 l 1482 -191 1481 -202 1479 -212 ct 1478 -221 1475 -228 1471 -234 ct -1467 -239 1461 -243 1455 -246 ct 1448 -248 1440 -249 1431 -249 ct 1421 -249 1412 -247 1404 -244 ct -1396 -240 1389 -234 1384 -227 ct 1378 -220 1374 -211 1371 -200 ct 1368 -189 1366 -176 1366 -162 ct -1366 0 l 1320 0 l p ef -1633 -130 m 1633 -116 1635 -102 1638 -90 ct 1641 -77 1645 -67 1652 -58 ct 1658 -49 1666 -42 1676 -37 ct -1686 -32 1698 -30 1711 -30 ct 1731 -30 1748 -34 1760 -42 ct 1772 -50 1780 -60 1784 -73 ct -1825 -61 l 1822 -53 1818 -46 1813 -38 ct 1808 -30 1801 -23 1792 -17 ct 1783 -10 1772 -5 1759 -1 ct -1746 3 1730 5 1711 5 ct 1670 5 1639 -7 1617 -32 ct 1595 -57 1584 -93 1584 -142 ct -1584 -168 1588 -190 1594 -208 ct 1601 -227 1610 -241 1621 -253 ct 1633 -264 1646 -272 1661 -277 ct -1676 -282 1692 -285 1709 -285 ct 1733 -285 1753 -281 1768 -274 ct 1784 -266 1797 -256 1806 -242 ct -1816 -229 1823 -213 1827 -195 ct 1831 -177 1833 -158 1833 -137 ct 1833 -130 l -1633 -130 l p -1785 -166 m 1782 -195 1775 -217 1762 -230 ct 1750 -244 1732 -251 1709 -251 ct -1701 -251 1693 -249 1684 -247 ct 1676 -244 1668 -240 1661 -234 ct 1653 -227 1647 -219 1642 -208 ct -1637 -197 1635 -183 1634 -166 ct 1785 -166 l p ef -2001 -2 m 1994 0 1987 1 1980 2 ct 1972 3 1964 4 1954 4 ct 1917 4 1898 -17 1898 -59 ct -1898 -246 l 1866 -246 l 1866 -280 l 1900 -280 l 1914 -343 l 1945 -343 l -1945 -280 l 1996 -280 l 1996 -246 l 1945 -246 l 1945 -69 l 1945 -56 1947 -47 1951 -41 ct -1956 -36 1963 -33 1974 -33 ct 1979 -33 1983 -33 1987 -34 ct 1992 -35 1996 -36 2001 -37 ct -2001 -2 l p ef -2078 -130 m 2078 -116 2080 -102 2083 -90 ct 2086 -77 2090 -67 2097 -58 ct 2103 -49 2111 -42 2121 -37 ct -2131 -32 2143 -30 2156 -30 ct 2176 -30 2193 -34 2205 -42 ct 2217 -50 2225 -60 2229 -73 ct -2270 -61 l 2267 -53 2263 -46 2258 -38 ct 2253 -30 2246 -23 2237 -17 ct 2228 -10 2217 -5 2204 -1 ct -2191 3 2175 5 2156 5 ct 2115 5 2084 -7 2062 -32 ct 2040 -57 2029 -93 2029 -142 ct -2029 -168 2033 -190 2039 -208 ct 2046 -227 2055 -241 2066 -253 ct 2078 -264 2091 -272 2106 -277 ct -2121 -282 2137 -285 2154 -285 ct 2178 -285 2198 -281 2213 -274 ct 2229 -266 2242 -256 2251 -242 ct -2261 -229 2268 -213 2272 -195 ct 2276 -177 2278 -158 2278 -137 ct 2278 -130 l -2078 -130 l p -2230 -166 m 2227 -195 2220 -217 2207 -230 ct 2195 -244 2177 -251 2154 -251 ct -2146 -251 2138 -249 2129 -247 ct 2121 -244 2113 -240 2106 -234 ct 2098 -227 2092 -219 2087 -208 ct -2082 -197 2080 -183 2079 -166 ct 2230 -166 l p ef -2340 0 m 2340 -215 l 2340 -221 2340 -227 2340 -233 ct 2339 -239 2339 -245 2339 -250 ct -2339 -256 2339 -261 2339 -266 ct 2338 -271 2338 -276 2338 -280 ct 2382 -280 l -2382 -276 2382 -271 2383 -266 ct 2383 -261 2383 -256 2383 -251 ct 2384 -245 2384 -240 2384 -235 ct -2384 -230 2384 -226 2384 -223 ct 2385 -223 l 2388 -233 2392 -243 2396 -250 ct -2399 -258 2404 -265 2409 -270 ct 2414 -275 2420 -279 2426 -281 ct 2433 -284 2442 -285 2452 -285 ct -2455 -285 2459 -285 2462 -284 ct 2466 -284 2468 -283 2470 -282 ct 2470 -240 l -2467 -241 2464 -241 2460 -242 ct 2455 -242 2451 -242 2446 -242 ct 2435 -242 2426 -240 2418 -235 ct -2411 -230 2405 -224 2400 -215 ct 2395 -207 2392 -196 2390 -185 ct 2387 -173 2386 -160 2386 -146 ct -2386 0 l 2340 0 l p ef -2726 -77 m 2726 -64 2724 -53 2719 -42 ct 2714 -32 2706 -24 2697 -17 ct 2687 -10 2675 -4 2661 -1 ct -2647 3 2631 5 2613 5 ct 2597 5 2582 4 2569 1 ct 2556 -1 2545 -5 2535 -11 ct 2525 -16 2517 -24 2510 -33 ct -2504 -42 2499 -53 2496 -66 ct 2537 -74 l 2541 -59 2549 -48 2561 -41 ct 2574 -34 2591 -30 2613 -30 ct -2623 -30 2632 -31 2641 -33 ct 2649 -34 2656 -36 2662 -40 ct 2668 -43 2673 -47 2676 -53 ct -2680 -59 2681 -66 2681 -74 ct 2681 -82 2679 -89 2675 -95 ct 2671 -100 2666 -105 2659 -108 ct -2652 -112 2643 -115 2633 -118 ct 2623 -120 2612 -123 2600 -127 ct 2589 -129 2578 -133 2567 -136 ct -2555 -140 2546 -145 2537 -151 ct 2528 -157 2521 -164 2515 -173 ct 2510 -182 2507 -193 2507 -206 ct -2507 -231 2516 -251 2534 -264 ct 2552 -278 2579 -284 2614 -284 ct 2644 -284 2669 -279 2687 -268 ct -2705 -257 2717 -240 2721 -216 ct 2680 -211 l 2678 -218 2675 -224 2671 -229 ct -2667 -234 2662 -238 2656 -241 ct 2650 -244 2644 -246 2636 -247 ct 2629 -248 2621 -249 2614 -249 ct -2593 -249 2577 -246 2567 -239 ct 2557 -233 2552 -223 2552 -210 ct 2552 -203 2554 -197 2558 -192 ct -2561 -187 2566 -183 2573 -179 ct 2580 -176 2588 -173 2597 -171 ct 2606 -168 2617 -165 2628 -163 ct -2635 -161 2643 -159 2650 -157 ct 2658 -154 2666 -152 2673 -149 ct 2680 -146 2687 -142 2694 -138 ct -2700 -134 2706 -129 2711 -124 ct 2715 -118 2719 -111 2722 -104 ct 2725 -96 2726 -87 2726 -77 ct -p ef -pom -25058 16532 m 19732 16510 l ps -19302 16508 m 19751 16660 l 19753 16360 l 19302 16508 l p ef -pum -19907 16161 t -301 1 m 206 -151 l 93 -151 l 93 1 l 43 1 l 43 -364 l 215 -364 l -235 -364 254 -362 270 -357 ct 285 -352 299 -345 310 -336 ct 321 -327 329 -316 335 -304 ct -340 -291 343 -276 343 -260 ct 343 -248 341 -237 338 -226 ct 335 -215 329 -204 322 -195 ct -315 -186 306 -178 294 -171 ct 283 -164 270 -159 254 -157 ct 357 1 l 301 1 l -p -293 -259 m 293 -270 292 -280 288 -288 ct 284 -296 278 -303 271 -308 ct 264 -314 255 -318 245 -320 ct -235 -323 223 -324 210 -324 ct 93 -324 l 93 -190 l 212 -190 l 226 -190 238 -192 248 -195 ct -259 -199 267 -204 274 -210 ct 281 -216 285 -223 289 -232 ct 292 -240 293 -249 293 -259 ct -p ef -452 -130 m 452 -116 454 -102 457 -90 ct 460 -77 464 -67 471 -58 ct 477 -49 485 -42 495 -37 ct -505 -32 517 -30 530 -30 ct 550 -30 567 -34 579 -42 ct 591 -50 599 -60 603 -73 ct -644 -61 l 641 -53 637 -46 632 -38 ct 627 -30 620 -23 611 -17 ct 602 -10 591 -5 578 -1 ct -565 3 549 5 530 5 ct 489 5 458 -7 436 -32 ct 414 -57 403 -93 403 -142 ct 403 -168 407 -190 413 -208 ct -420 -227 429 -241 440 -253 ct 452 -264 465 -272 480 -277 ct 495 -282 511 -285 528 -285 ct -552 -285 572 -281 587 -274 ct 603 -266 616 -256 625 -242 ct 635 -229 642 -213 646 -195 ct -650 -177 652 -158 652 -137 ct 652 -130 l 452 -130 l p -604 -166 m 601 -195 594 -217 581 -230 ct 569 -244 551 -251 528 -251 ct 520 -251 512 -249 503 -247 ct -495 -244 487 -240 480 -234 ct 472 -227 466 -219 461 -208 ct 456 -197 454 -183 453 -166 ct -604 -166 l p ef -922 -77 m 922 -64 920 -53 915 -42 ct 910 -32 902 -24 893 -17 ct 883 -10 871 -4 857 -1 ct -843 3 827 5 809 5 ct 793 5 778 4 765 1 ct 752 -1 741 -5 731 -11 ct 721 -16 713 -24 706 -33 ct -700 -42 695 -53 692 -66 ct 733 -74 l 737 -59 745 -48 757 -41 ct 770 -34 787 -30 809 -30 ct -819 -30 828 -31 837 -33 ct 845 -34 852 -36 858 -40 ct 864 -43 869 -47 872 -53 ct -876 -59 877 -66 877 -74 ct 877 -82 875 -89 871 -95 ct 867 -100 862 -105 855 -108 ct -848 -112 839 -115 829 -118 ct 819 -120 808 -123 796 -127 ct 785 -129 774 -133 763 -136 ct -751 -140 742 -145 733 -151 ct 724 -157 717 -164 711 -173 ct 706 -182 703 -193 703 -206 ct -703 -231 712 -251 730 -264 ct 748 -278 775 -284 810 -284 ct 840 -284 865 -279 883 -268 ct -901 -257 913 -240 917 -216 ct 876 -211 l 874 -218 871 -224 867 -229 ct 863 -234 858 -238 852 -241 ct -846 -244 840 -246 832 -247 ct 825 -248 817 -249 810 -249 ct 789 -249 773 -246 763 -239 ct -753 -233 748 -223 748 -210 ct 748 -203 750 -197 754 -192 ct 757 -187 762 -183 769 -179 ct -776 -176 784 -173 793 -171 ct 802 -168 813 -165 824 -163 ct 831 -161 839 -159 846 -157 ct -854 -154 862 -152 869 -149 ct 876 -146 883 -142 890 -138 ct 896 -134 902 -129 907 -124 ct -911 -118 915 -111 918 -104 ct 921 -96 922 -87 922 -77 ct p ef -1025 -280 m 1025 -103 l 1025 -89 1026 -78 1028 -68 ct 1030 -59 1033 -52 1038 -46 ct -1042 -41 1048 -37 1055 -34 ct 1063 -32 1072 -31 1083 -31 ct 1094 -31 1104 -33 1113 -37 ct -1121 -41 1129 -46 1135 -54 ct 1142 -61 1146 -70 1150 -81 ct 1153 -92 1155 -104 1155 -118 ct -1155 -280 l 1202 -280 l 1202 -60 l 1202 -54 1202 -48 1202 -41 ct 1202 -35 1202 -29 1202 -23 ct -1202 -17 1202 -12 1203 -8 ct 1203 -4 1203 -1 1203 0 ct 1159 0 l 1159 -1 1159 -3 1159 -7 ct -1158 -11 1158 -15 1158 -20 ct 1158 -25 1158 -30 1157 -35 ct 1157 -40 1157 -45 1157 -48 ct -1156 -48 l 1152 -40 1147 -33 1142 -26 ct 1136 -19 1130 -14 1123 -9 ct 1116 -5 1108 -1 1099 1 ct -1090 4 1079 5 1067 5 ct 1051 5 1038 3 1027 -1 ct 1016 -4 1007 -10 999 -18 ct 992 -26 987 -36 983 -49 ct -980 -61 978 -76 978 -94 ct 978 -280 l 1025 -280 l p ef -1276 0 m 1276 -384 l 1322 -384 l 1322 0 l 1276 0 l p ef -1502 -2 m 1495 0 1488 1 1481 2 ct 1473 3 1465 4 1455 4 ct 1418 4 1399 -17 1399 -59 ct -1399 -246 l 1367 -246 l 1367 -280 l 1401 -280 l 1415 -343 l 1446 -343 l -1446 -280 l 1497 -280 l 1497 -246 l 1446 -246 l 1446 -69 l 1446 -56 1448 -47 1452 -41 ct -1457 -36 1464 -33 1475 -33 ct 1480 -33 1484 -33 1488 -34 ct 1493 -35 1497 -36 1502 -37 ct -1502 -2 l p ef -1927 -140 m 1927 -91 1916 -55 1895 -31 ct 1873 -7 1842 5 1801 5 ct 1781 5 1764 2 1749 -4 ct -1733 -10 1720 -19 1710 -31 ct 1699 -43 1691 -58 1686 -76 ct 1680 -94 1677 -116 1677 -140 ct -1677 -237 1719 -285 1802 -285 ct 1824 -285 1843 -282 1859 -276 ct 1874 -270 1887 -261 1897 -249 ct -1908 -237 1915 -222 1920 -204 ct 1925 -186 1927 -164 1927 -140 ct p -1878 -140 m 1878 -162 1876 -180 1873 -194 ct 1870 -208 1865 -219 1858 -228 ct -1852 -236 1844 -242 1835 -246 ct 1825 -249 1815 -251 1803 -251 ct 1791 -251 1781 -249 1771 -245 ct -1762 -242 1753 -236 1747 -227 ct 1740 -219 1735 -207 1731 -193 ct 1728 -179 1726 -161 1726 -140 ct -1726 -119 1728 -101 1732 -86 ct 1736 -72 1741 -61 1747 -52 ct 1754 -44 1762 -38 1771 -35 ct -1780 -31 1790 -29 1800 -29 ct 1812 -29 1823 -31 1833 -34 ct 1842 -38 1851 -44 1857 -52 ct -1864 -61 1869 -72 1873 -86 ct 1876 -101 1878 -119 1878 -140 ct p ef -2045 -247 m 2045 -1 l 1999 -1 l 1999 -247 l 1959 -247 l 1959 -281 l -1999 -281 l 1999 -312 l 1999 -322 2000 -332 2002 -341 ct 2003 -349 2007 -357 2012 -363 ct -2017 -370 2024 -375 2033 -378 ct 2042 -382 2053 -384 2067 -384 ct 2072 -384 2078 -384 2084 -383 ct -2090 -383 2095 -382 2100 -381 ct 2100 -345 l 2097 -346 2093 -346 2090 -347 ct -2086 -347 2082 -348 2079 -348 ct 2072 -348 2067 -347 2062 -345 ct 2058 -343 2054 -340 2052 -337 ct -2049 -333 2048 -329 2047 -324 ct 2046 -318 2045 -313 2045 -306 ct 2045 -281 l -2100 -281 l 2100 -247 l 2045 -247 l p ef -2291 0 m 2291 -364 l 2568 -364 l 2568 -324 l 2341 -324 l 2341 -207 l -2552 -207 l 2552 -167 l 2341 -167 l 2341 -40 l 2578 -40 l 2578 0 l -2291 0 l p ef -2806 0 m 2731 -115 l 2655 0 l 2605 0 l 2704 -144 l 2610 -280 l 2661 -280 l -2731 -171 l 2800 -280 l 2852 -280 l 2757 -144 l 2858 0 l 2806 0 l -p ef -3138 -141 m 3138 -120 3136 -100 3133 -82 ct 3129 -64 3124 -49 3116 -36 ct 3108 -23 3097 -13 3084 -6 ct -3071 2 3054 5 3035 5 ct 3015 5 2998 2 2983 -6 ct 2968 -14 2956 -26 2948 -43 ct -2947 -43 l 2947 -43 2947 -41 2947 -39 ct 2948 -36 2948 -32 2948 -28 ct 2948 -24 2948 -20 2948 -14 ct -2948 -9 2948 -4 2948 1 ct 2948 110 l 2902 110 l 2902 -223 l 2902 -229 2902 -236 2902 -242 ct -2901 -248 2901 -254 2901 -259 ct 2901 -264 2901 -268 2901 -272 ct 2900 -276 2900 -278 2900 -280 ct -2945 -280 l 2945 -279 2945 -277 2946 -274 ct 2946 -271 2946 -268 2946 -263 ct -2947 -259 2947 -254 2947 -249 ct 2948 -244 2948 -239 2948 -235 ct 2949 -235 l -2953 -244 2958 -252 2963 -258 ct 2969 -264 2975 -269 2982 -273 ct 2989 -277 2997 -280 3006 -282 ct -3015 -284 3024 -285 3035 -285 ct 3054 -285 3071 -282 3084 -275 ct 3097 -268 3108 -258 3116 -245 ct -3124 -233 3129 -218 3133 -200 ct 3136 -182 3138 -163 3138 -141 ct p -3089 -140 m 3089 -157 3088 -173 3086 -186 ct 3084 -200 3080 -211 3075 -221 ct -3070 -230 3064 -237 3055 -242 ct 3047 -247 3036 -249 3023 -249 ct 3013 -249 3003 -248 2994 -245 ct -2985 -242 2977 -236 2970 -228 ct 2963 -219 2958 -208 2954 -193 ct 2950 -179 2948 -160 2948 -137 ct -2948 -117 2950 -100 2953 -86 ct 2956 -72 2961 -61 2967 -53 ct 2974 -44 2981 -38 2991 -35 ct -3000 -31 3011 -29 3023 -29 ct 3036 -29 3046 -32 3055 -37 ct 3063 -42 3070 -49 3075 -58 ct -3080 -68 3084 -79 3086 -93 ct 3088 -107 3089 -123 3089 -140 ct p ef -3233 -130 m 3233 -116 3235 -102 3238 -90 ct 3241 -77 3245 -67 3252 -58 ct 3258 -49 3266 -42 3276 -37 ct -3286 -32 3298 -30 3311 -30 ct 3331 -30 3348 -34 3360 -42 ct 3372 -50 3380 -60 3384 -73 ct -3425 -61 l 3422 -53 3418 -46 3413 -38 ct 3408 -30 3401 -23 3392 -17 ct 3383 -10 3372 -5 3359 -1 ct -3346 3 3330 5 3311 5 ct 3270 5 3239 -7 3217 -32 ct 3195 -57 3184 -93 3184 -142 ct -3184 -168 3188 -190 3194 -208 ct 3201 -227 3210 -241 3221 -253 ct 3233 -264 3246 -272 3261 -277 ct -3276 -282 3292 -285 3309 -285 ct 3333 -285 3353 -281 3368 -274 ct 3384 -266 3397 -256 3406 -242 ct -3416 -229 3423 -213 3427 -195 ct 3431 -177 3433 -158 3433 -137 ct 3433 -130 l -3233 -130 l p -3385 -166 m 3382 -195 3375 -217 3362 -230 ct 3350 -244 3332 -251 3309 -251 ct -3301 -251 3293 -249 3284 -247 ct 3276 -244 3268 -240 3261 -234 ct 3253 -227 3247 -219 3242 -208 ct -3237 -197 3235 -183 3234 -166 ct 3385 -166 l p ef -3496 0 m 3496 -215 l 3496 -221 3496 -227 3496 -233 ct 3495 -239 3495 -245 3495 -250 ct -3495 -256 3495 -261 3495 -266 ct 3494 -271 3494 -276 3494 -280 ct 3538 -280 l -3538 -276 3538 -271 3539 -266 ct 3539 -261 3539 -256 3539 -251 ct 3540 -245 3540 -240 3540 -235 ct -3540 -230 3540 -226 3540 -223 ct 3541 -223 l 3544 -233 3548 -243 3552 -250 ct -3555 -258 3560 -265 3565 -270 ct 3570 -275 3576 -279 3582 -281 ct 3589 -284 3598 -285 3608 -285 ct -3611 -285 3615 -285 3618 -284 ct 3622 -284 3624 -283 3626 -282 ct 3626 -240 l -3623 -241 3620 -241 3616 -242 ct 3611 -242 3607 -242 3602 -242 ct 3591 -242 3582 -240 3574 -235 ct -3567 -230 3561 -224 3556 -215 ct 3551 -207 3548 -196 3546 -185 ct 3543 -173 3542 -160 3542 -146 ct -3542 0 l 3496 0 l p ef -3671 -340 m 3671 -384 l 3718 -384 l 3718 -340 l 3671 -340 l p -3671 0 m 3671 -280 l 3718 -280 l 3718 0 l 3671 0 l p ef -3953 0 m 3953 -177 l 3953 -191 3953 -202 3951 -212 ct 3949 -221 3946 -228 3942 -234 ct -3938 -239 3933 -243 3926 -246 ct 3920 -248 3912 -249 3902 -249 ct 3892 -249 3884 -247 3876 -243 ct -3868 -239 3861 -234 3855 -226 ct 3850 -219 3845 -210 3842 -199 ct 3839 -189 3838 -176 3838 -162 ct -3838 0 l 3792 0 l 3792 -220 l 3792 -226 3792 -232 3792 -239 ct 3791 -245 3791 -251 3791 -257 ct -3791 -263 3791 -268 3791 -272 ct 3790 -276 3790 -279 3790 -280 ct 3834 -280 l -3834 -279 3834 -277 3835 -273 ct 3835 -269 3835 -265 3835 -260 ct 3835 -255 3836 -250 3836 -245 ct -3836 -240 3836 -235 3836 -232 ct 3837 -232 l 3841 -240 3845 -247 3850 -254 ct -3855 -261 3861 -266 3867 -271 ct 3874 -275 3881 -279 3889 -281 ct 3898 -284 3907 -285 3919 -285 ct -3940 -285 3956 -281 3969 -272 ct 3981 -264 3990 -250 3994 -232 ct 3995 -232 l -3999 -240 4004 -247 4009 -254 ct 4014 -261 4020 -266 4027 -271 ct 4034 -275 4042 -279 4050 -281 ct -4059 -284 4069 -285 4080 -285 ct 4094 -285 4106 -283 4116 -279 ct 4127 -276 4135 -270 4142 -262 ct -4148 -254 4153 -244 4156 -231 ct 4159 -219 4161 -204 4161 -186 ct 4161 0 l 4115 0 l -4115 -177 l 4115 -191 4114 -202 4112 -212 ct 4111 -221 4108 -228 4104 -234 ct -4100 -239 4094 -243 4088 -246 ct 4081 -248 4073 -249 4064 -249 ct 4054 -249 4045 -247 4037 -244 ct -4029 -240 4022 -234 4017 -227 ct 4011 -220 4007 -211 4004 -200 ct 4001 -189 3999 -176 3999 -162 ct -3999 0 l 3953 0 l p ef -4266 -130 m 4266 -116 4268 -102 4271 -90 ct 4274 -77 4278 -67 4285 -58 ct 4291 -49 4299 -42 4309 -37 ct -4319 -32 4331 -30 4344 -30 ct 4364 -30 4381 -34 4393 -42 ct 4405 -50 4413 -60 4417 -73 ct -4458 -61 l 4455 -53 4451 -46 4446 -38 ct 4441 -30 4434 -23 4425 -17 ct 4416 -10 4405 -5 4392 -1 ct -4379 3 4363 5 4344 5 ct 4303 5 4272 -7 4250 -32 ct 4228 -57 4217 -93 4217 -142 ct -4217 -168 4221 -190 4227 -208 ct 4234 -227 4243 -241 4254 -253 ct 4266 -264 4279 -272 4294 -277 ct -4309 -282 4325 -285 4342 -285 ct 4366 -285 4386 -281 4401 -274 ct 4417 -266 4430 -256 4439 -242 ct -4449 -229 4456 -213 4460 -195 ct 4464 -177 4466 -158 4466 -137 ct 4466 -130 l -4266 -130 l p -4418 -166 m 4415 -195 4408 -217 4395 -230 ct 4383 -244 4365 -251 4342 -251 ct -4334 -251 4326 -249 4317 -247 ct 4309 -244 4301 -240 4294 -234 ct 4286 -227 4280 -219 4275 -208 ct -4270 -197 4268 -183 4267 -166 ct 4418 -166 l p ef -4705 0 m 4705 -177 l 4705 -191 4704 -202 4702 -212 ct 4700 -221 4697 -228 4692 -234 ct -4688 -239 4682 -243 4675 -246 ct 4667 -248 4658 -249 4648 -249 ct 4636 -249 4627 -247 4618 -243 ct -4609 -239 4601 -234 4595 -226 ct 4589 -219 4584 -210 4580 -199 ct 4577 -189 4575 -176 4575 -162 ct -4575 0 l 4529 0 l 4529 -220 l 4529 -226 4529 -232 4529 -239 ct 4528 -245 4528 -251 4528 -257 ct -4528 -263 4528 -268 4528 -272 ct 4527 -276 4527 -279 4527 -280 ct 4571 -280 l -4571 -279 4571 -277 4572 -273 ct 4572 -269 4572 -265 4572 -260 ct 4572 -255 4573 -250 4573 -245 ct -4573 -240 4573 -235 4573 -232 ct 4574 -232 l 4578 -240 4583 -247 4589 -254 ct -4594 -261 4600 -266 4607 -271 ct 4614 -275 4622 -279 4631 -281 ct 4641 -284 4651 -285 4663 -285 ct -4679 -285 4692 -283 4703 -279 ct 4714 -276 4724 -270 4731 -262 ct 4738 -254 4743 -244 4747 -231 ct -4750 -219 4752 -204 4752 -186 ct 4752 0 l 4705 0 l p ef -4931 -2 m 4924 0 4917 1 4910 2 ct 4902 3 4894 4 4884 4 ct 4847 4 4828 -17 4828 -59 ct -4828 -246 l 4796 -246 l 4796 -280 l 4830 -280 l 4844 -343 l 4875 -343 l -4875 -280 l 4926 -280 l 4926 -246 l 4875 -246 l 4875 -69 l 4875 -56 4877 -47 4881 -41 ct -4886 -36 4893 -33 4904 -33 ct 4909 -33 4913 -33 4917 -34 ct 4922 -35 4926 -36 4931 -37 ct -4931 -2 l p ef -pom -1.000 0.503 0.503 c 2062 17778 m 2062 16508 l 2824 16508 l 2824 19048 l -2062 19048 l 2062 17778 l p ef -0 lw 0.503 0.503 0.503 c 2061 17777 m 2061 16507 l 2823 16507 l 2823 19047 l -2061 19047 l 2061 17777 l pc -pum -2216 16758 t --89.9 r 0.003 0.003 0.003 c 93 -325 m 93 -189 l 296 -189 l 296 -148 l 93 -148 l -93 -1 l 43 -1 l 43 -365 l 302 -365 l 302 -325 l 93 -325 l p ef -357 -340 m 357 -384 l 404 -384 l 404 -340 l 357 -340 l p -357 0 m 357 -280 l 404 -280 l 404 0 l 357 0 l p ef -477 0 m 477 -215 l 477 -221 477 -227 477 -233 ct 476 -239 476 -245 476 -250 ct -476 -256 476 -261 476 -266 ct 475 -271 475 -276 475 -280 ct 519 -280 l 519 -276 519 -271 520 -266 ct -520 -261 520 -256 520 -251 ct 521 -245 521 -240 521 -235 ct 521 -230 521 -226 521 -223 ct -522 -223 l 525 -233 529 -243 533 -250 ct 536 -258 541 -265 546 -270 ct 551 -275 557 -279 563 -281 ct -570 -284 579 -285 589 -285 ct 592 -285 596 -285 599 -284 ct 603 -284 605 -283 607 -282 ct -607 -240 l 604 -241 601 -241 597 -242 ct 592 -242 588 -242 583 -242 ct 572 -242 563 -240 555 -235 ct -548 -230 542 -224 537 -215 ct 532 -207 529 -196 527 -185 ct 524 -173 523 -160 523 -146 ct -523 0 l 477 0 l p ef -689 -130 m 689 -116 691 -102 694 -90 ct 697 -77 701 -67 708 -58 ct 714 -49 722 -42 732 -37 ct -742 -32 754 -30 767 -30 ct 787 -30 804 -34 816 -42 ct 828 -50 836 -60 840 -73 ct -881 -61 l 878 -53 874 -46 869 -38 ct 864 -30 857 -23 848 -17 ct 839 -10 828 -5 815 -1 ct -802 3 786 5 767 5 ct 726 5 695 -7 673 -32 ct 651 -57 640 -93 640 -142 ct 640 -168 644 -190 650 -208 ct -657 -227 666 -241 677 -253 ct 689 -264 702 -272 717 -277 ct 732 -282 748 -285 765 -285 ct -789 -285 809 -281 824 -274 ct 840 -266 853 -256 862 -242 ct 872 -229 879 -213 883 -195 ct -887 -177 889 -158 889 -137 ct 889 -130 l 689 -130 l p -841 -166 m 838 -195 831 -217 818 -230 ct 806 -244 788 -251 765 -251 ct 757 -251 749 -249 740 -247 ct -732 -244 724 -240 717 -234 ct 709 -227 703 -219 698 -208 ct 693 -197 691 -183 690 -166 ct -841 -166 l p ef -1100 -324 m 1100 0 l 1051 0 l 1051 -324 l 926 -324 l 926 -364 l 1225 -364 l -1225 -324 l 1100 -324 l p ef -1284 5 m 1256 5 1235 -2 1221 -17 ct 1207 -32 1199 -53 1199 -79 ct 1199 -97 1203 -112 1210 -124 ct -1217 -136 1226 -145 1237 -152 ct 1249 -159 1261 -164 1276 -166 ct 1290 -169 1305 -170 1320 -170 ct -1383 -170 l 1383 -185 l 1383 -197 1382 -207 1379 -215 ct 1377 -223 1373 -230 1368 -235 ct -1363 -240 1357 -244 1349 -246 ct 1342 -248 1333 -250 1323 -250 ct 1314 -250 1306 -249 1299 -248 ct -1291 -246 1285 -244 1280 -241 ct 1274 -237 1270 -233 1267 -227 ct 1264 -221 1261 -214 1260 -205 ct -1212 -210 l 1214 -221 1217 -231 1222 -240 ct 1227 -249 1233 -257 1242 -264 ct -1251 -271 1262 -276 1276 -279 ct 1289 -283 1305 -285 1324 -285 ct 1359 -285 1386 -277 1403 -261 ct -1421 -245 1430 -221 1430 -191 ct 1430 -71 l 1430 -57 1432 -46 1435 -39 ct 1439 -32 1446 -29 1456 -29 ct -1459 -29 1461 -29 1464 -29 ct 1466 -30 1469 -30 1471 -31 ct 1471 -2 l 1465 0 1460 1 1454 1 ct -1448 2 1442 2 1435 2 ct 1427 2 1419 1 1413 -1 ct 1406 -4 1401 -7 1397 -12 ct 1393 -17 1390 -22 1388 -29 ct -1386 -36 1385 -44 1384 -54 ct 1383 -54 l 1378 -45 1372 -37 1366 -29 ct 1361 -22 1354 -16 1346 -11 ct -1338 -6 1329 -2 1319 1 ct 1309 4 1297 5 1284 5 ct p -1295 -30 m 1309 -30 1322 -33 1333 -38 ct 1345 -43 1354 -50 1361 -59 ct 1368 -67 1374 -76 1377 -86 ct -1381 -96 1383 -106 1383 -115 ct 1383 -137 l 1332 -137 l 1321 -137 1310 -137 1300 -135 ct -1289 -134 1280 -131 1273 -127 ct 1265 -122 1259 -116 1254 -108 ct 1250 -101 1247 -90 1247 -78 ct -1247 -62 1251 -51 1260 -42 ct 1268 -34 1279 -30 1295 -30 ct p ef -1718 -77 m 1718 -64 1716 -53 1711 -42 ct 1706 -32 1698 -24 1689 -17 ct 1679 -10 1667 -4 1653 -1 ct -1639 3 1623 5 1605 5 ct 1589 5 1574 4 1561 1 ct 1548 -1 1537 -5 1527 -11 ct 1517 -16 1509 -24 1502 -33 ct -1496 -42 1491 -53 1488 -66 ct 1529 -74 l 1533 -59 1541 -48 1553 -41 ct 1566 -34 1583 -30 1605 -30 ct -1615 -30 1624 -31 1633 -33 ct 1641 -34 1648 -36 1654 -40 ct 1660 -43 1665 -47 1668 -53 ct -1672 -59 1673 -66 1673 -74 ct 1673 -82 1671 -89 1667 -95 ct 1663 -100 1658 -105 1651 -108 ct -1644 -112 1635 -115 1625 -118 ct 1615 -120 1604 -123 1592 -127 ct 1581 -129 1570 -133 1559 -136 ct -1547 -140 1538 -145 1529 -151 ct 1520 -157 1513 -164 1507 -173 ct 1502 -182 1499 -193 1499 -206 ct -1499 -231 1508 -251 1526 -264 ct 1544 -278 1571 -284 1606 -284 ct 1636 -284 1661 -279 1679 -268 ct -1697 -257 1709 -240 1713 -216 ct 1672 -211 l 1670 -218 1667 -224 1663 -229 ct -1659 -234 1654 -238 1648 -241 ct 1642 -244 1636 -246 1628 -247 ct 1621 -248 1613 -249 1606 -249 ct -1585 -249 1569 -246 1559 -239 ct 1549 -233 1544 -223 1544 -210 ct 1544 -203 1546 -197 1550 -192 ct -1553 -187 1558 -183 1565 -179 ct 1572 -176 1580 -173 1589 -171 ct 1598 -168 1609 -165 1620 -163 ct -1627 -161 1635 -159 1642 -157 ct 1650 -154 1658 -152 1665 -149 ct 1672 -146 1679 -142 1686 -138 ct -1692 -134 1698 -129 1703 -124 ct 1707 -118 1711 -111 1714 -104 ct 1717 -96 1718 -87 1718 -77 ct -p ef -1951 0 m 1856 -128 l 1822 -100 l 1822 0 l 1776 0 l 1776 -384 l 1822 -384 l -1822 -144 l 1945 -280 l 1999 -280 l 1886 -160 l 2005 0 l 1951 0 l -p ef -pom -1.000 1.000 1.000 c 2062 14014 m 2062 11729 l 2844 11729 l 2844 16300 l -2062 16300 l 2062 14014 l p ef -0.503 0.503 0.503 c 2061 14014 m 2061 11728 l 2843 11728 l 2843 16299 l -2061 16299 l 2061 14014 l pc -pum -2236 11978 t --89.9 r 0.003 0.003 0.003 c 205 -330 m 184 -330 166 -326 150 -319 ct 134 -312 120 -303 110 -290 ct -99 -277 91 -262 85 -244 ct 80 -226 77 -206 77 -184 ct 77 -162 80 -142 86 -124 ct -92 -106 100 -90 111 -77 ct 123 -64 136 -54 152 -46 ct 168 -39 187 -36 207 -36 ct -221 -36 234 -37 245 -41 ct 257 -45 267 -50 277 -57 ct 286 -64 295 -72 302 -81 ct -309 -90 316 -100 322 -111 ct 362 -91 l 355 -78 347 -65 338 -53 ct 328 -41 317 -31 304 -23 ct -291 -14 276 -7 259 -2 ct 243 3 225 5 204 5 ct 175 5 149 0 127 -9 ct 105 -18 86 -32 71 -48 ct -57 -65 45 -85 38 -108 ct 31 -131 27 -157 27 -184 ct 27 -213 31 -238 39 -261 ct -46 -284 58 -304 73 -320 ct 88 -336 107 -348 129 -357 ct 151 -366 176 -370 204 -370 ct -243 -370 275 -362 301 -347 ct 327 -332 346 -310 359 -280 ct 312 -264 l 308 -273 304 -281 298 -289 ct -292 -297 285 -304 276 -310 ct 267 -316 257 -321 245 -324 ct 233 -328 220 -330 205 -330 ct -p ef -381 5 m 487 -384 l 528 -384 l 423 5 l 381 5 l p ef -854 -255 m 854 -239 851 -224 846 -210 ct 841 -197 833 -185 823 -175 ct 812 -165 799 -157 783 -151 ct -768 -145 750 -142 729 -142 ct 622 -142 l 622 0 l 572 0 l 572 -365 l 726 -365 l -747 -365 766 -362 782 -357 ct 798 -351 811 -344 822 -334 ct 833 -325 841 -313 846 -300 ct -851 -286 854 -271 854 -255 ct p -804 -254 m 804 -277 797 -295 783 -307 ct 769 -319 748 -325 720 -325 ct 622 -325 l -622 -181 l 722 -181 l 750 -181 771 -187 784 -200 ct 798 -213 804 -231 804 -254 ct -p ef -1037 -1 m 1030 16 1024 31 1017 45 ct 1010 58 1003 70 994 79 ct 986 89 976 96 966 101 ct -956 106 944 109 930 109 ct 924 109 919 109 914 109 ct 909 109 904 108 898 107 ct -898 72 l 902 73 905 73 909 73 ct 914 73 917 73 920 73 ct 934 73 946 68 958 58 ct -970 48 980 31 989 9 ct 993 -2 l 882 -280 l 932 -280 l 991 -125 l 993 -121 995 -115 997 -107 ct -1000 -99 1003 -91 1005 -84 ct 1008 -76 1010 -69 1012 -63 ct 1015 -56 1016 -53 1016 -51 ct -1017 -53 1018 -57 1020 -62 ct 1022 -68 1024 -74 1027 -81 ct 1029 -88 1032 -95 1034 -102 ct -1037 -109 1039 -115 1041 -120 ct 1095 -280 l 1144 -280 l 1037 -1 l p ef -1290 -2 m 1283 0 1276 1 1269 2 ct 1261 3 1253 4 1243 4 ct 1206 4 1187 -17 1187 -59 ct -1187 -246 l 1155 -246 l 1155 -280 l 1189 -280 l 1203 -343 l 1234 -343 l -1234 -280 l 1285 -280 l 1285 -246 l 1234 -246 l 1234 -69 l 1234 -56 1236 -47 1240 -41 ct -1245 -36 1252 -33 1263 -33 ct 1268 -33 1272 -33 1276 -34 ct 1281 -35 1285 -36 1290 -37 ct -1290 -2 l p ef -1377 -232 m 1382 -241 1388 -250 1394 -256 ct 1400 -263 1406 -268 1414 -273 ct -1421 -277 1429 -280 1437 -282 ct 1446 -284 1456 -285 1466 -285 ct 1484 -285 1499 -283 1510 -278 ct -1522 -273 1531 -266 1537 -257 ct 1544 -249 1549 -238 1551 -226 ct 1554 -214 1555 -201 1555 -187 ct -1555 0 l 1508 0 l 1508 -177 l 1508 -189 1507 -200 1506 -209 ct 1504 -218 1502 -225 1498 -231 ct -1493 -237 1488 -242 1480 -245 ct 1472 -248 1463 -249 1451 -249 ct 1439 -249 1430 -247 1421 -243 ct -1412 -239 1404 -234 1398 -226 ct 1392 -219 1387 -210 1383 -200 ct 1380 -190 1378 -178 1378 -165 ct -1378 0 l 1332 0 l 1332 -384 l 1378 -384 l 1378 -284 l 1378 -278 1378 -273 1378 -267 ct -1378 -261 1378 -256 1377 -251 ct 1377 -246 1377 -242 1377 -239 ct 1376 -236 1376 -233 1376 -232 ct -1377 -232 l p ef -1864 -140 m 1864 -91 1853 -55 1832 -31 ct 1810 -7 1779 5 1738 5 ct 1718 5 1701 2 1686 -4 ct -1670 -10 1657 -19 1647 -31 ct 1636 -43 1628 -58 1623 -76 ct 1617 -94 1614 -116 1614 -140 ct -1614 -237 1656 -285 1739 -285 ct 1761 -285 1780 -282 1796 -276 ct 1811 -270 1824 -261 1834 -249 ct -1845 -237 1852 -222 1857 -204 ct 1862 -186 1864 -164 1864 -140 ct p -1815 -140 m 1815 -162 1813 -180 1810 -194 ct 1807 -208 1802 -219 1795 -228 ct -1789 -236 1781 -242 1772 -246 ct 1762 -249 1752 -251 1740 -251 ct 1728 -251 1718 -249 1708 -245 ct -1699 -242 1690 -236 1684 -227 ct 1677 -219 1672 -207 1668 -193 ct 1665 -179 1663 -161 1663 -140 ct -1663 -119 1665 -101 1669 -86 ct 1673 -72 1678 -61 1684 -52 ct 1691 -44 1699 -38 1708 -35 ct -1717 -31 1727 -29 1737 -29 ct 1749 -29 1760 -31 1770 -34 ct 1779 -38 1788 -44 1794 -52 ct -1801 -61 1806 -72 1810 -86 ct 1813 -101 1815 -119 1815 -140 ct p ef -2101 0 m 2101 -177 l 2101 -191 2100 -202 2098 -212 ct 2096 -221 2093 -228 2088 -234 ct -2084 -239 2078 -243 2071 -246 ct 2063 -248 2054 -249 2044 -249 ct 2032 -249 2023 -247 2014 -243 ct -2005 -239 1997 -234 1991 -226 ct 1985 -219 1980 -210 1976 -199 ct 1973 -189 1971 -176 1971 -162 ct -1971 0 l 1925 0 l 1925 -220 l 1925 -226 1925 -232 1925 -239 ct 1924 -245 1924 -251 1924 -257 ct -1924 -263 1924 -268 1924 -272 ct 1923 -276 1923 -279 1923 -280 ct 1967 -280 l -1967 -279 1967 -277 1968 -273 ct 1968 -269 1968 -265 1968 -260 ct 1968 -255 1969 -250 1969 -245 ct -1969 -240 1969 -235 1969 -232 ct 1970 -232 l 1974 -240 1979 -247 1985 -254 ct -1990 -261 1996 -266 2003 -271 ct 2010 -275 2018 -279 2027 -281 ct 2037 -284 2047 -285 2059 -285 ct -2075 -285 2088 -283 2099 -279 ct 2110 -276 2120 -270 2127 -262 ct 2134 -254 2139 -244 2143 -231 ct -2146 -219 2148 -204 2148 -186 ct 2148 0 l 2101 0 l p ef -2605 -141 m 2605 -44 2571 5 2502 5 ct 2481 5 2463 1 2449 -7 ct 2435 -14 2424 -27 2415 -44 ct -2415 -44 l 2415 -39 2415 -34 2414 -30 ct 2414 -25 2414 -20 2413 -16 ct 2413 -12 2413 -9 2413 -6 ct -2412 -3 2412 -1 2412 0 ct 2367 0 l 2367 -2 2367 -4 2368 -8 ct 2368 -12 2368 -16 2368 -21 ct -2368 -27 2368 -32 2369 -38 ct 2369 -45 2369 -51 2369 -58 ct 2369 -384 l 2415 -384 l -2415 -274 l 2415 -269 2415 -264 2415 -260 ct 2415 -255 2415 -251 2415 -247 ct -2414 -243 2414 -239 2414 -235 ct 2415 -235 l 2424 -253 2435 -266 2449 -273 ct -2464 -281 2481 -285 2502 -285 ct 2537 -285 2563 -273 2580 -249 ct 2597 -226 2605 -190 2605 -141 ct -p -2556 -140 m 2556 -159 2555 -176 2553 -189 ct 2550 -203 2546 -214 2541 -223 ct -2536 -232 2529 -239 2521 -243 ct 2512 -247 2502 -249 2490 -249 ct 2478 -249 2467 -247 2458 -243 ct -2449 -239 2441 -233 2434 -224 ct 2428 -215 2423 -204 2420 -189 ct 2417 -175 2415 -158 2415 -137 ct -2415 -117 2417 -100 2420 -87 ct 2423 -73 2428 -62 2434 -53 ct 2441 -45 2448 -39 2458 -35 ct -2467 -31 2478 -29 2490 -29 ct 2501 -29 2511 -31 2519 -35 ct 2528 -39 2534 -46 2540 -54 ct -2545 -63 2550 -75 2552 -89 ct 2555 -103 2556 -120 2556 -140 ct p ef -2664 -340 m 2664 -384 l 2711 -384 l 2711 -340 l 2664 -340 l p -2664 0 m 2664 -280 l 2711 -280 l 2711 0 l 2664 0 l p ef -2960 0 m 2960 -177 l 2960 -191 2959 -202 2957 -212 ct 2955 -221 2952 -228 2947 -234 ct -2943 -239 2937 -243 2930 -246 ct 2922 -248 2913 -249 2903 -249 ct 2891 -249 2882 -247 2873 -243 ct -2864 -239 2856 -234 2850 -226 ct 2844 -219 2839 -210 2835 -199 ct 2832 -189 2830 -176 2830 -162 ct -2830 0 l 2784 0 l 2784 -220 l 2784 -226 2784 -232 2784 -239 ct 2783 -245 2783 -251 2783 -257 ct -2783 -263 2783 -268 2783 -272 ct 2782 -276 2782 -279 2782 -280 ct 2826 -280 l -2826 -279 2826 -277 2827 -273 ct 2827 -269 2827 -265 2827 -260 ct 2827 -255 2828 -250 2828 -245 ct -2828 -240 2828 -235 2828 -232 ct 2829 -232 l 2833 -240 2838 -247 2844 -254 ct -2849 -261 2855 -266 2862 -271 ct 2869 -275 2877 -279 2886 -281 ct 2896 -284 2906 -285 2918 -285 ct -2934 -285 2947 -283 2958 -279 ct 2969 -276 2979 -270 2986 -262 ct 2993 -254 2998 -244 3002 -231 ct -3005 -219 3007 -204 3007 -186 ct 3007 0 l 2960 0 l p ef -3256 -45 m 3247 -27 3236 -14 3222 -7 ct 3208 1 3190 5 3169 5 ct 3134 5 3108 -7 3091 -31 ct -3075 -55 3066 -91 3066 -139 ct 3066 -237 3100 -285 3169 -285 ct 3190 -285 3208 -282 3222 -274 ct -3236 -266 3247 -254 3256 -237 ct 3257 -237 l 3257 -238 3257 -241 3256 -245 ct -3256 -249 3256 -252 3256 -257 ct 3256 -261 3256 -264 3256 -268 ct 3256 -272 3256 -274 3256 -276 ct -3256 -384 l 3303 -384 l 3303 -58 l 3303 -51 3303 -45 3303 -38 ct 3303 -32 3303 -27 3303 -21 ct -3303 -16 3303 -12 3304 -8 ct 3304 -4 3304 -2 3304 0 ct 3260 0 l 3259 -2 3259 -4 3259 -8 ct -3259 -11 3258 -14 3258 -19 ct 3258 -23 3258 -27 3257 -32 ct 3257 -36 3257 -41 3257 -45 ct -3256 -45 l p -3115 -140 m 3115 -121 3116 -105 3119 -91 ct 3121 -77 3125 -66 3130 -57 ct 3136 -48 3142 -41 3151 -37 ct -3159 -33 3169 -31 3181 -31 ct 3193 -31 3204 -33 3213 -37 ct 3223 -41 3231 -47 3237 -56 ct -3243 -65 3248 -77 3251 -91 ct 3254 -105 3256 -123 3256 -144 ct 3256 -163 3254 -180 3251 -194 ct -3248 -208 3243 -219 3237 -227 ct 3230 -236 3223 -242 3213 -245 ct 3204 -249 3193 -251 3181 -251 ct -3170 -251 3160 -249 3152 -245 ct 3144 -241 3137 -235 3131 -226 ct 3126 -217 3122 -206 3119 -192 ct -3116 -178 3115 -160 3115 -140 ct p ef -3375 -340 m 3375 -384 l 3422 -384 l 3422 -340 l 3375 -340 l p -3375 0 m 3375 -280 l 3422 -280 l 3422 0 l 3375 0 l p ef -3672 0 m 3672 -177 l 3672 -191 3671 -202 3669 -212 ct 3667 -221 3664 -228 3659 -234 ct -3655 -239 3649 -243 3642 -246 ct 3634 -248 3625 -249 3615 -249 ct 3603 -249 3594 -247 3585 -243 ct -3576 -239 3568 -234 3562 -226 ct 3556 -219 3551 -210 3547 -199 ct 3544 -189 3542 -176 3542 -162 ct -3542 0 l 3496 0 l 3496 -220 l 3496 -226 3496 -232 3496 -239 ct 3495 -245 3495 -251 3495 -257 ct -3495 -263 3495 -268 3495 -272 ct 3494 -276 3494 -279 3494 -280 ct 3538 -280 l -3538 -279 3538 -277 3539 -273 ct 3539 -269 3539 -265 3539 -260 ct 3539 -255 3540 -250 3540 -245 ct -3540 -240 3540 -235 3540 -232 ct 3541 -232 l 3545 -240 3550 -247 3556 -254 ct -3561 -261 3567 -266 3574 -271 ct 3581 -275 3589 -279 3598 -281 ct 3608 -284 3618 -285 3630 -285 ct -3646 -285 3659 -283 3670 -279 ct 3681 -276 3691 -270 3698 -262 ct 3705 -254 3710 -244 3714 -231 ct -3717 -219 3719 -204 3719 -186 ct 3719 0 l 3672 0 l p ef -3897 110 m 3881 110 3866 108 3854 105 ct 3842 102 3831 97 3822 91 ct 3813 85 3806 78 3801 69 ct -3795 61 3791 51 3789 41 ct 3836 34 l 3839 47 3846 57 3856 64 ct 3867 71 3881 75 3898 75 ct -3908 75 3918 73 3927 70 ct 3935 67 3942 63 3948 56 ct 3955 50 3959 41 3962 31 ct -3966 20 3967 8 3967 -7 ct 3967 -52 l 3967 -52 l 3963 -45 3959 -38 3954 -32 ct -3949 -25 3943 -20 3935 -15 ct 3928 -10 3920 -6 3910 -3 ct 3900 0 3889 2 3877 2 ct -3859 2 3844 -1 3831 -7 ct 3819 -13 3808 -22 3800 -34 ct 3792 -46 3786 -60 3783 -78 ct -3779 -96 3777 -116 3777 -139 ct 3777 -162 3779 -182 3783 -200 ct 3786 -218 3793 -233 3801 -245 ct -3809 -258 3820 -267 3833 -274 ct 3847 -281 3863 -284 3882 -284 ct 3902 -284 3919 -279 3934 -270 ct -3948 -261 3959 -249 3967 -232 ct 3968 -232 l 3968 -236 3968 -241 3968 -246 ct -3968 -252 3969 -257 3969 -261 ct 3969 -266 3970 -270 3970 -274 ct 3970 -277 3971 -279 3971 -280 ct -4015 -280 l 4015 -278 4015 -275 4015 -272 ct 4014 -268 4014 -264 4014 -258 ct -4014 -253 4014 -248 4014 -241 ct 4014 -235 4014 -228 4014 -222 ct 4014 -8 l -4014 31 4004 61 3985 80 ct 3966 100 3936 110 3897 110 ct p -3967 -140 m 3967 -159 3965 -176 3961 -190 ct 3957 -204 3951 -215 3944 -224 ct -3937 -233 3930 -239 3921 -243 ct 3912 -247 3903 -249 3893 -249 ct 3882 -249 3871 -247 3863 -243 ct -3854 -239 3847 -233 3842 -224 ct 3836 -215 3832 -203 3829 -190 ct 3827 -176 3825 -159 3825 -140 ct -3825 -120 3827 -103 3829 -89 ct 3832 -75 3836 -64 3842 -56 ct 3847 -47 3854 -41 3862 -38 ct -3871 -34 3881 -32 3893 -32 ct 3902 -32 3911 -34 3920 -38 ct 3929 -42 3937 -49 3944 -57 ct -3951 -66 3957 -77 3961 -91 ct 3965 -104 3967 -121 3967 -140 ct p ef -4296 -77 m 4296 -64 4294 -53 4289 -42 ct 4284 -32 4276 -24 4267 -17 ct 4257 -10 4245 -4 4231 -1 ct -4217 3 4201 5 4183 5 ct 4167 5 4152 4 4139 1 ct 4126 -1 4115 -5 4105 -11 ct 4095 -16 4087 -24 4080 -33 ct -4074 -42 4069 -53 4066 -66 ct 4107 -74 l 4111 -59 4119 -48 4131 -41 ct 4144 -34 4161 -30 4183 -30 ct -4193 -30 4202 -31 4211 -33 ct 4219 -34 4226 -36 4232 -40 ct 4238 -43 4243 -47 4246 -53 ct -4250 -59 4251 -66 4251 -74 ct 4251 -82 4249 -89 4245 -95 ct 4241 -100 4236 -105 4229 -108 ct -4222 -112 4213 -115 4203 -118 ct 4193 -120 4182 -123 4170 -127 ct 4159 -129 4148 -133 4137 -136 ct -4125 -140 4116 -145 4107 -151 ct 4098 -157 4091 -164 4085 -173 ct 4080 -182 4077 -193 4077 -206 ct -4077 -231 4086 -251 4104 -264 ct 4122 -278 4149 -284 4184 -284 ct 4214 -284 4239 -279 4257 -268 ct -4275 -257 4287 -240 4291 -216 ct 4250 -211 l 4248 -218 4245 -224 4241 -229 ct -4237 -234 4232 -238 4226 -241 ct 4220 -244 4214 -246 4206 -247 ct 4199 -248 4191 -249 4184 -249 ct -4163 -249 4147 -246 4137 -239 ct 4127 -233 4122 -223 4122 -210 ct 4122 -203 4124 -197 4128 -192 ct -4131 -187 4136 -183 4143 -179 ct 4150 -176 4158 -173 4167 -171 ct 4176 -168 4187 -165 4198 -163 ct -4205 -161 4213 -159 4220 -157 ct 4228 -154 4236 -152 4243 -149 ct 4250 -146 4257 -142 4264 -138 ct -4270 -134 4276 -129 4281 -124 ct 4285 -118 4289 -111 4292 -104 ct 4295 -96 4296 -87 4296 -77 ct -p ef -pom -0.683 0.812 0.003 c 2062 8503 m 2062 5439 l 2824 5439 l 2824 11566 l -2062 11566 l 2062 8503 l p ef -0.503 0.503 0.503 c 2061 8502 m 2061 5439 l 2823 5439 l 2823 11565 l -2061 11565 l 2061 8502 l pc -pum -2217 5588 t --89.9 r 0.003 0.003 0.003 c 329 -101 m 329 -85 326 -71 320 -58 ct 314 -45 305 -34 292 -25 ct -280 -15 264 -8 245 -3 ct 226 2 204 5 178 5 ct 133 5 98 -3 72 -19 ct 47 -35 31 -58 24 -88 ct -72 -97 l 74 -88 78 -79 83 -71 ct 88 -64 95 -57 103 -51 ct 112 -46 122 -41 135 -38 ct -147 -35 162 -34 180 -34 ct 195 -34 208 -35 220 -37 ct 233 -40 243 -44 252 -49 ct -261 -54 267 -61 272 -69 ct 277 -77 280 -87 280 -98 ct 280 -110 277 -120 272 -127 ct -266 -135 259 -141 249 -146 ct 239 -150 227 -154 214 -158 ct 200 -161 185 -164 168 -168 ct -158 -171 148 -173 138 -176 ct 128 -178 118 -182 108 -185 ct 99 -189 90 -193 82 -198 ct -74 -203 66 -209 60 -216 ct 54 -223 50 -231 46 -241 ct 43 -250 41 -260 41 -272 ct -41 -290 45 -305 52 -317 ct 59 -329 68 -339 81 -347 ct 93 -355 108 -361 125 -365 ct -141 -368 160 -370 179 -370 ct 202 -370 221 -368 237 -365 ct 253 -361 267 -356 278 -349 ct -289 -342 298 -333 304 -323 ct 311 -312 316 -300 320 -286 ct 271 -278 l 269 -286 266 -294 261 -301 ct -256 -308 250 -314 243 -319 ct 236 -323 227 -327 216 -329 ct 205 -332 193 -333 179 -333 ct -162 -333 148 -331 136 -328 ct 125 -325 116 -321 109 -316 ct 102 -311 97 -305 94 -298 ct -91 -291 89 -283 89 -275 ct 89 -264 92 -255 97 -248 ct 103 -241 110 -236 119 -231 ct -129 -226 139 -222 152 -219 ct 164 -216 177 -213 191 -210 ct 202 -207 213 -205 224 -202 ct -235 -199 246 -196 256 -192 ct 266 -189 276 -184 285 -179 ct 293 -174 301 -168 308 -161 ct -314 -154 319 -145 323 -135 ct 327 -126 329 -114 329 -101 ct p ef -422 -141 m 422 -125 423 -111 426 -97 ct 428 -84 432 -72 437 -62 ct 443 -53 450 -45 459 -40 ct -468 -34 479 -32 493 -32 ct 509 -32 523 -36 534 -45 ct 545 -53 552 -67 555 -85 ct -602 -85 l 600 -73 597 -62 591 -51 ct 586 -40 579 -31 570 -22 ct 562 -14 551 -7 538 -2 ct -525 2 511 5 494 5 ct 472 5 453 1 438 -6 ct 423 -14 410 -24 401 -37 ct 391 -50 384 -65 380 -83 ct -376 -100 373 -120 373 -140 ct 373 -159 375 -176 378 -190 ct 381 -204 386 -217 391 -228 ct -397 -239 403 -248 411 -255 ct 419 -262 427 -268 436 -272 ct 444 -277 454 -280 464 -282 ct -473 -284 483 -285 493 -285 ct 509 -285 523 -283 535 -279 ct 547 -274 558 -268 567 -261 ct -576 -253 583 -245 588 -234 ct 594 -224 598 -213 600 -202 ct 552 -198 l 550 -213 544 -226 534 -235 ct -524 -244 510 -249 492 -249 ct 479 -249 468 -246 459 -242 ct 450 -238 443 -231 437 -222 ct -432 -213 428 -202 426 -189 ct 423 -175 422 -159 422 -141 ct p ef -655 0 m 655 -215 l 655 -221 655 -227 655 -233 ct 654 -239 654 -245 654 -250 ct -654 -256 654 -261 654 -266 ct 653 -271 653 -276 653 -280 ct 697 -280 l 697 -276 697 -271 698 -266 ct -698 -261 698 -256 698 -251 ct 699 -245 699 -240 699 -235 ct 699 -230 699 -226 699 -223 ct -700 -223 l 703 -233 707 -243 711 -250 ct 714 -258 719 -265 724 -270 ct 729 -275 735 -279 741 -281 ct -748 -284 757 -285 767 -285 ct 770 -285 774 -285 777 -284 ct 781 -284 783 -283 785 -282 ct -785 -240 l 782 -241 779 -241 775 -242 ct 770 -242 766 -242 761 -242 ct 750 -242 741 -240 733 -235 ct -726 -230 720 -224 715 -215 ct 710 -207 707 -196 705 -185 ct 702 -173 701 -160 701 -146 ct -701 0 l 655 0 l p ef -831 -340 m 831 -384 l 878 -384 l 878 -340 l 831 -340 l p -831 0 m 831 -280 l 878 -280 l 878 0 l 831 0 l p ef -1186 -141 m 1186 -120 1184 -100 1181 -82 ct 1177 -64 1172 -49 1164 -36 ct 1156 -23 1145 -13 1132 -6 ct -1119 2 1102 5 1083 5 ct 1063 5 1046 2 1031 -6 ct 1016 -14 1004 -26 996 -43 ct 995 -43 l -995 -43 995 -41 995 -39 ct 996 -36 996 -32 996 -28 ct 996 -24 996 -20 996 -14 ct -996 -9 996 -4 996 1 ct 996 110 l 950 110 l 950 -223 l 950 -229 950 -236 950 -242 ct -949 -248 949 -254 949 -259 ct 949 -264 949 -268 949 -272 ct 948 -276 948 -278 948 -280 ct -993 -280 l 993 -279 993 -277 994 -274 ct 994 -271 994 -268 994 -263 ct 995 -259 995 -254 995 -249 ct -996 -244 996 -239 996 -235 ct 997 -235 l 1001 -244 1006 -252 1011 -258 ct 1017 -264 1023 -269 1030 -273 ct -1037 -277 1045 -280 1054 -282 ct 1063 -284 1072 -285 1083 -285 ct 1102 -285 1119 -282 1132 -275 ct -1145 -268 1156 -258 1164 -245 ct 1172 -233 1177 -218 1181 -200 ct 1184 -182 1186 -163 1186 -141 ct -p -1137 -140 m 1137 -157 1136 -173 1134 -186 ct 1132 -200 1128 -211 1123 -221 ct -1118 -230 1112 -237 1103 -242 ct 1095 -247 1084 -249 1071 -249 ct 1061 -249 1051 -248 1042 -245 ct -1033 -242 1025 -236 1018 -228 ct 1011 -219 1006 -208 1002 -193 ct 998 -179 996 -160 996 -137 ct -996 -117 998 -100 1001 -86 ct 1004 -72 1009 -61 1015 -53 ct 1022 -44 1029 -38 1039 -35 ct -1048 -31 1059 -29 1071 -29 ct 1084 -29 1094 -32 1103 -37 ct 1111 -42 1118 -49 1123 -58 ct -1128 -68 1132 -79 1134 -93 ct 1136 -107 1137 -123 1137 -140 ct p ef -1354 -2 m 1347 0 1340 1 1333 2 ct 1325 3 1317 4 1307 4 ct 1270 4 1251 -17 1251 -59 ct -1251 -246 l 1219 -246 l 1219 -280 l 1253 -280 l 1267 -343 l 1298 -343 l -1298 -280 l 1349 -280 l 1349 -246 l 1298 -246 l 1298 -69 l 1298 -56 1300 -47 1304 -41 ct -1309 -36 1316 -33 1327 -33 ct 1332 -33 1336 -33 1340 -34 ct 1345 -35 1349 -36 1354 -37 ct -1354 -2 l p ef -1604 -77 m 1604 -64 1602 -53 1597 -42 ct 1592 -32 1584 -24 1575 -17 ct 1565 -10 1553 -4 1539 -1 ct -1525 3 1509 5 1491 5 ct 1475 5 1460 4 1447 1 ct 1434 -1 1423 -5 1413 -11 ct 1403 -16 1395 -24 1388 -33 ct -1382 -42 1377 -53 1374 -66 ct 1415 -74 l 1419 -59 1427 -48 1439 -41 ct 1452 -34 1469 -30 1491 -30 ct -1501 -30 1510 -31 1519 -33 ct 1527 -34 1534 -36 1540 -40 ct 1546 -43 1551 -47 1554 -53 ct -1558 -59 1559 -66 1559 -74 ct 1559 -82 1557 -89 1553 -95 ct 1549 -100 1544 -105 1537 -108 ct -1530 -112 1521 -115 1511 -118 ct 1501 -120 1490 -123 1478 -127 ct 1467 -129 1456 -133 1445 -136 ct -1433 -140 1424 -145 1415 -151 ct 1406 -157 1399 -164 1393 -173 ct 1388 -182 1385 -193 1385 -206 ct -1385 -231 1394 -251 1412 -264 ct 1430 -278 1457 -284 1492 -284 ct 1522 -284 1547 -279 1565 -268 ct -1583 -257 1595 -240 1599 -216 ct 1558 -211 l 1556 -218 1553 -224 1549 -229 ct -1545 -234 1540 -238 1534 -241 ct 1528 -244 1522 -246 1514 -247 ct 1507 -248 1499 -249 1492 -249 ct -1471 -249 1455 -246 1445 -239 ct 1435 -233 1430 -223 1430 -210 ct 1430 -203 1432 -197 1436 -192 ct -1439 -187 1444 -183 1451 -179 ct 1458 -176 1466 -173 1475 -171 ct 1484 -168 1495 -165 1506 -163 ct -1513 -161 1521 -159 1528 -157 ct 1536 -154 1544 -152 1551 -149 ct 1558 -146 1565 -142 1572 -138 ct -1578 -134 1584 -129 1589 -124 ct 1593 -118 1597 -111 1600 -104 ct 1603 -96 1604 -87 1604 -77 ct -p ef -2046 -140 m 2046 -91 2035 -55 2014 -31 ct 1992 -7 1961 5 1920 5 ct 1900 5 1883 2 1868 -4 ct -1852 -10 1839 -19 1829 -31 ct 1818 -43 1810 -58 1805 -76 ct 1799 -94 1796 -116 1796 -140 ct -1796 -237 1838 -285 1921 -285 ct 1943 -285 1962 -282 1978 -276 ct 1993 -270 2006 -261 2016 -249 ct -2027 -237 2034 -222 2039 -204 ct 2044 -186 2046 -164 2046 -140 ct p -1997 -140 m 1997 -162 1995 -180 1992 -194 ct 1989 -208 1984 -219 1977 -228 ct -1971 -236 1963 -242 1954 -246 ct 1944 -249 1934 -251 1922 -251 ct 1910 -251 1900 -249 1890 -245 ct -1881 -242 1872 -236 1866 -227 ct 1859 -219 1854 -207 1850 -193 ct 1847 -179 1845 -161 1845 -140 ct -1845 -119 1847 -101 1851 -86 ct 1855 -72 1860 -61 1866 -52 ct 1873 -44 1881 -38 1890 -35 ct -1899 -31 1909 -29 1919 -29 ct 1931 -29 1942 -31 1952 -34 ct 1961 -38 1970 -44 1976 -52 ct -1983 -61 1988 -72 1992 -86 ct 1995 -101 1997 -119 1997 -140 ct p ef -2107 0 m 2107 -215 l 2107 -221 2107 -227 2107 -233 ct 2106 -239 2106 -245 2106 -250 ct -2106 -256 2106 -261 2106 -266 ct 2105 -271 2105 -276 2105 -280 ct 2149 -280 l -2149 -276 2149 -271 2150 -266 ct 2150 -261 2150 -256 2150 -251 ct 2151 -245 2151 -240 2151 -235 ct -2151 -230 2151 -226 2151 -223 ct 2152 -223 l 2155 -233 2159 -243 2163 -250 ct -2166 -258 2171 -265 2176 -270 ct 2181 -275 2187 -279 2193 -281 ct 2200 -284 2209 -285 2219 -285 ct -2222 -285 2226 -285 2229 -284 ct 2233 -284 2235 -283 2237 -282 ct 2237 -240 l -2234 -241 2231 -241 2227 -242 ct 2222 -242 2218 -242 2213 -242 ct 2202 -242 2193 -240 2185 -235 ct -2178 -230 2172 -224 2167 -215 ct 2162 -207 2159 -196 2157 -185 ct 2154 -173 2153 -160 2153 -146 ct -2153 0 l 2107 0 l p ef -2467 -141 m 2467 -125 2468 -111 2471 -97 ct 2473 -84 2477 -72 2482 -62 ct 2488 -53 2495 -45 2504 -40 ct -2513 -34 2524 -32 2538 -32 ct 2554 -32 2568 -36 2579 -45 ct 2590 -53 2597 -67 2600 -85 ct -2647 -85 l 2645 -73 2642 -62 2636 -51 ct 2631 -40 2624 -31 2615 -22 ct 2607 -14 2596 -7 2583 -2 ct -2570 2 2556 5 2539 5 ct 2517 5 2498 1 2483 -6 ct 2468 -14 2455 -24 2446 -37 ct -2436 -50 2429 -65 2425 -83 ct 2421 -100 2418 -120 2418 -140 ct 2418 -159 2420 -176 2423 -190 ct -2426 -204 2431 -217 2436 -228 ct 2442 -239 2448 -248 2456 -255 ct 2464 -262 2472 -268 2481 -272 ct -2489 -277 2499 -280 2509 -282 ct 2518 -284 2528 -285 2538 -285 ct 2554 -285 2568 -283 2580 -279 ct -2592 -274 2603 -268 2612 -261 ct 2621 -253 2628 -245 2633 -234 ct 2639 -224 2643 -213 2645 -202 ct -2597 -198 l 2595 -213 2589 -226 2579 -235 ct 2569 -244 2555 -249 2537 -249 ct -2524 -249 2513 -246 2504 -242 ct 2495 -238 2488 -231 2482 -222 ct 2477 -213 2473 -202 2471 -189 ct -2468 -175 2467 -159 2467 -141 ct p ef -2935 -140 m 2935 -91 2924 -55 2903 -31 ct 2881 -7 2850 5 2809 5 ct 2789 5 2772 2 2757 -4 ct -2741 -10 2728 -19 2718 -31 ct 2707 -43 2699 -58 2694 -76 ct 2688 -94 2685 -116 2685 -140 ct -2685 -237 2727 -285 2810 -285 ct 2832 -285 2851 -282 2867 -276 ct 2882 -270 2895 -261 2905 -249 ct -2916 -237 2923 -222 2928 -204 ct 2933 -186 2935 -164 2935 -140 ct p -2886 -140 m 2886 -162 2884 -180 2881 -194 ct 2878 -208 2873 -219 2866 -228 ct -2860 -236 2852 -242 2843 -246 ct 2833 -249 2823 -251 2811 -251 ct 2799 -251 2789 -249 2779 -245 ct -2770 -242 2761 -236 2755 -227 ct 2748 -219 2743 -207 2739 -193 ct 2736 -179 2734 -161 2734 -140 ct -2734 -119 2736 -101 2740 -86 ct 2744 -72 2749 -61 2755 -52 ct 2762 -44 2770 -38 2779 -35 ct -2788 -31 2798 -29 2808 -29 ct 2820 -29 2831 -31 2841 -34 ct 2850 -38 2859 -44 2865 -52 ct -2872 -61 2877 -72 2881 -86 ct 2884 -101 2886 -119 2886 -140 ct p ef -3157 0 m 3157 -177 l 3157 -191 3157 -202 3155 -212 ct 3153 -221 3150 -228 3146 -234 ct -3142 -239 3137 -243 3130 -246 ct 3124 -248 3116 -249 3106 -249 ct 3096 -249 3088 -247 3080 -243 ct -3072 -239 3065 -234 3059 -226 ct 3054 -219 3049 -210 3046 -199 ct 3043 -189 3042 -176 3042 -162 ct -3042 0 l 2996 0 l 2996 -220 l 2996 -226 2996 -232 2996 -239 ct 2995 -245 2995 -251 2995 -257 ct -2995 -263 2995 -268 2995 -272 ct 2994 -276 2994 -279 2994 -280 ct 3038 -280 l -3038 -279 3038 -277 3039 -273 ct 3039 -269 3039 -265 3039 -260 ct 3039 -255 3040 -250 3040 -245 ct -3040 -240 3040 -235 3040 -232 ct 3041 -232 l 3045 -240 3049 -247 3054 -254 ct -3059 -261 3065 -266 3071 -271 ct 3078 -275 3085 -279 3093 -281 ct 3102 -284 3111 -285 3123 -285 ct -3144 -285 3160 -281 3173 -272 ct 3185 -264 3194 -250 3198 -232 ct 3199 -232 l -3203 -240 3208 -247 3213 -254 ct 3218 -261 3224 -266 3231 -271 ct 3238 -275 3246 -279 3254 -281 ct -3263 -284 3273 -285 3284 -285 ct 3298 -285 3310 -283 3320 -279 ct 3331 -276 3339 -270 3346 -262 ct -3352 -254 3357 -244 3360 -231 ct 3363 -219 3365 -204 3365 -186 ct 3365 0 l 3319 0 l -3319 -177 l 3319 -191 3318 -202 3316 -212 ct 3315 -221 3312 -228 3308 -234 ct -3304 -239 3298 -243 3292 -246 ct 3285 -248 3277 -249 3268 -249 ct 3258 -249 3249 -247 3241 -244 ct -3233 -240 3226 -234 3221 -227 ct 3215 -220 3211 -211 3208 -200 ct 3205 -189 3203 -176 3203 -162 ct -3203 0 l 3157 0 l p ef -3671 -141 m 3671 -120 3669 -100 3666 -82 ct 3662 -64 3657 -49 3649 -36 ct 3641 -23 3630 -13 3617 -6 ct -3604 2 3587 5 3568 5 ct 3548 5 3531 2 3516 -6 ct 3501 -14 3489 -26 3481 -43 ct -3480 -43 l 3480 -43 3480 -41 3480 -39 ct 3481 -36 3481 -32 3481 -28 ct 3481 -24 3481 -20 3481 -14 ct -3481 -9 3481 -4 3481 1 ct 3481 110 l 3435 110 l 3435 -223 l 3435 -229 3435 -236 3435 -242 ct -3434 -248 3434 -254 3434 -259 ct 3434 -264 3434 -268 3434 -272 ct 3433 -276 3433 -278 3433 -280 ct -3478 -280 l 3478 -279 3478 -277 3479 -274 ct 3479 -271 3479 -268 3479 -263 ct -3480 -259 3480 -254 3480 -249 ct 3481 -244 3481 -239 3481 -235 ct 3482 -235 l -3486 -244 3491 -252 3496 -258 ct 3502 -264 3508 -269 3515 -273 ct 3522 -277 3530 -280 3539 -282 ct -3548 -284 3557 -285 3568 -285 ct 3587 -285 3604 -282 3617 -275 ct 3630 -268 3641 -258 3649 -245 ct -3657 -233 3662 -218 3666 -200 ct 3669 -182 3671 -163 3671 -141 ct p -3622 -140 m 3622 -157 3621 -173 3619 -186 ct 3617 -200 3613 -211 3608 -221 ct -3603 -230 3597 -237 3588 -242 ct 3580 -247 3569 -249 3556 -249 ct 3546 -249 3536 -248 3527 -245 ct -3518 -242 3510 -236 3503 -228 ct 3496 -219 3491 -208 3487 -193 ct 3483 -179 3481 -160 3481 -137 ct -3481 -117 3483 -100 3486 -86 ct 3489 -72 3494 -61 3500 -53 ct 3507 -44 3514 -38 3524 -35 ct -3533 -31 3544 -29 3556 -29 ct 3569 -29 3579 -32 3588 -37 ct 3596 -42 3603 -49 3608 -58 ct -3613 -68 3617 -79 3619 -93 ct 3621 -107 3622 -123 3622 -140 ct p ef -3731 -340 m 3731 -384 l 3778 -384 l 3778 -340 l 3731 -340 l p -3731 0 m 3731 -280 l 3778 -280 l 3778 0 l 3731 0 l p ef -3850 0 m 3850 -384 l 3896 -384 l 3896 0 l 3850 0 l p ef -4004 -130 m 4004 -116 4006 -102 4009 -90 ct 4012 -77 4016 -67 4023 -58 ct 4029 -49 4037 -42 4047 -37 ct -4057 -32 4069 -30 4082 -30 ct 4102 -30 4119 -34 4131 -42 ct 4143 -50 4151 -60 4155 -73 ct -4196 -61 l 4193 -53 4189 -46 4184 -38 ct 4179 -30 4172 -23 4163 -17 ct 4154 -10 4143 -5 4130 -1 ct -4117 3 4101 5 4082 5 ct 4041 5 4010 -7 3988 -32 ct 3966 -57 3955 -93 3955 -142 ct -3955 -168 3959 -190 3965 -208 ct 3972 -227 3981 -241 3992 -253 ct 4004 -264 4017 -272 4032 -277 ct -4047 -282 4063 -285 4080 -285 ct 4104 -285 4124 -281 4139 -274 ct 4155 -266 4168 -256 4177 -242 ct -4187 -229 4194 -213 4198 -195 ct 4202 -177 4204 -158 4204 -137 ct 4204 -130 l -4004 -130 l p -4156 -166 m 4153 -195 4146 -217 4133 -230 ct 4121 -244 4103 -251 4080 -251 ct -4072 -251 4064 -249 4055 -247 ct 4047 -244 4039 -240 4032 -234 ct 4024 -227 4018 -219 4013 -208 ct -4008 -197 4006 -183 4005 -166 ct 4156 -166 l p ef -4441 -45 m 4432 -27 4421 -14 4407 -7 ct 4393 1 4375 5 4354 5 ct 4319 5 4293 -7 4276 -31 ct -4260 -55 4251 -91 4251 -139 ct 4251 -237 4285 -285 4354 -285 ct 4375 -285 4393 -282 4407 -274 ct -4421 -266 4432 -254 4441 -237 ct 4442 -237 l 4442 -238 4442 -241 4441 -245 ct -4441 -249 4441 -252 4441 -257 ct 4441 -261 4441 -264 4441 -268 ct 4441 -272 4441 -274 4441 -276 ct -4441 -384 l 4488 -384 l 4488 -58 l 4488 -51 4488 -45 4488 -38 ct 4488 -32 4488 -27 4488 -21 ct -4488 -16 4488 -12 4489 -8 ct 4489 -4 4489 -2 4489 0 ct 4445 0 l 4444 -2 4444 -4 4444 -8 ct -4444 -11 4443 -14 4443 -19 ct 4443 -23 4443 -27 4442 -32 ct 4442 -36 4442 -41 4442 -45 ct -4441 -45 l p -4300 -140 m 4300 -121 4301 -105 4304 -91 ct 4306 -77 4310 -66 4315 -57 ct 4321 -48 4327 -41 4336 -37 ct -4344 -33 4354 -31 4366 -31 ct 4378 -31 4389 -33 4398 -37 ct 4408 -41 4416 -47 4422 -56 ct -4428 -65 4433 -77 4436 -91 ct 4439 -105 4441 -123 4441 -144 ct 4441 -163 4439 -180 4436 -194 ct -4433 -208 4428 -219 4422 -227 ct 4415 -236 4408 -242 4398 -245 ct 4389 -249 4378 -251 4366 -251 ct -4355 -251 4345 -249 4337 -245 ct 4329 -241 4322 -235 4316 -226 ct 4311 -217 4307 -206 4304 -192 ct -4301 -178 4300 -160 4300 -140 ct p ef -4745 -141 m 4745 -125 4746 -111 4749 -97 ct 4751 -84 4755 -72 4760 -62 ct 4766 -53 4773 -45 4782 -40 ct -4791 -34 4802 -32 4816 -32 ct 4832 -32 4846 -36 4857 -45 ct 4868 -53 4875 -67 4878 -85 ct -4925 -85 l 4923 -73 4920 -62 4914 -51 ct 4909 -40 4902 -31 4893 -22 ct 4885 -14 4874 -7 4861 -2 ct -4848 2 4834 5 4817 5 ct 4795 5 4776 1 4761 -6 ct 4746 -14 4733 -24 4724 -37 ct -4714 -50 4707 -65 4703 -83 ct 4699 -100 4696 -120 4696 -140 ct 4696 -159 4698 -176 4701 -190 ct -4704 -204 4709 -217 4714 -228 ct 4720 -239 4726 -248 4734 -255 ct 4742 -262 4750 -268 4759 -272 ct -4767 -277 4777 -280 4787 -282 ct 4796 -284 4806 -285 4816 -285 ct 4832 -285 4846 -283 4858 -279 ct -4870 -274 4881 -268 4890 -261 ct 4899 -253 4906 -245 4911 -234 ct 4917 -224 4921 -213 4923 -202 ct -4875 -198 l 4873 -213 4867 -226 4857 -235 ct 4847 -244 4833 -249 4815 -249 ct -4802 -249 4791 -246 4782 -242 ct 4773 -238 4766 -231 4760 -222 ct 4755 -213 4751 -202 4749 -189 ct -4746 -175 4745 -159 4745 -141 ct p ef -5212 -140 m 5212 -91 5201 -55 5180 -31 ct 5158 -7 5127 5 5086 5 ct 5066 5 5049 2 5034 -4 ct -5018 -10 5005 -19 4995 -31 ct 4984 -43 4976 -58 4971 -76 ct 4965 -94 4962 -116 4962 -140 ct -4962 -237 5004 -285 5087 -285 ct 5109 -285 5128 -282 5144 -276 ct 5159 -270 5172 -261 5182 -249 ct -5193 -237 5200 -222 5205 -204 ct 5210 -186 5212 -164 5212 -140 ct p -5163 -140 m 5163 -162 5161 -180 5158 -194 ct 5155 -208 5150 -219 5143 -228 ct -5137 -236 5129 -242 5120 -246 ct 5110 -249 5100 -251 5088 -251 ct 5076 -251 5066 -249 5056 -245 ct -5047 -242 5038 -236 5032 -227 ct 5025 -219 5020 -207 5016 -193 ct 5013 -179 5011 -161 5011 -140 ct -5011 -119 5013 -101 5017 -86 ct 5021 -72 5026 -61 5032 -52 ct 5039 -44 5047 -38 5056 -35 ct -5065 -31 5075 -29 5085 -29 ct 5097 -29 5108 -31 5118 -34 ct 5127 -38 5136 -44 5142 -52 ct -5149 -61 5154 -72 5158 -86 ct 5161 -101 5163 -119 5163 -140 ct p ef -5449 -45 m 5440 -27 5429 -14 5415 -7 ct 5401 1 5383 5 5362 5 ct 5327 5 5301 -7 5284 -31 ct -5268 -55 5259 -91 5259 -139 ct 5259 -237 5293 -285 5362 -285 ct 5383 -285 5401 -282 5415 -274 ct -5429 -266 5440 -254 5449 -237 ct 5450 -237 l 5450 -238 5450 -241 5449 -245 ct -5449 -249 5449 -252 5449 -257 ct 5449 -261 5449 -264 5449 -268 ct 5449 -272 5449 -274 5449 -276 ct -5449 -384 l 5496 -384 l 5496 -58 l 5496 -51 5496 -45 5496 -38 ct 5496 -32 5496 -27 5496 -21 ct -5496 -16 5496 -12 5497 -8 ct 5497 -4 5497 -2 5497 0 ct 5453 0 l 5452 -2 5452 -4 5452 -8 ct -5452 -11 5451 -14 5451 -19 ct 5451 -23 5451 -27 5450 -32 ct 5450 -36 5450 -41 5450 -45 ct -5449 -45 l p -5308 -140 m 5308 -121 5309 -105 5312 -91 ct 5314 -77 5318 -66 5323 -57 ct 5329 -48 5335 -41 5344 -37 ct -5352 -33 5362 -31 5374 -31 ct 5386 -31 5397 -33 5406 -37 ct 5416 -41 5424 -47 5430 -56 ct -5436 -65 5441 -77 5444 -91 ct 5447 -105 5449 -123 5449 -144 ct 5449 -163 5447 -180 5444 -194 ct -5441 -208 5436 -219 5430 -227 ct 5423 -236 5416 -242 5406 -245 ct 5397 -249 5386 -251 5374 -251 ct -5363 -251 5353 -249 5345 -245 ct 5337 -241 5330 -235 5324 -226 ct 5319 -217 5315 -206 5312 -192 ct -5309 -178 5308 -160 5308 -140 ct p ef -5604 -130 m 5604 -116 5606 -102 5609 -90 ct 5612 -77 5616 -67 5623 -58 ct 5629 -49 5637 -42 5647 -37 ct -5657 -32 5669 -30 5682 -30 ct 5702 -30 5719 -34 5731 -42 ct 5743 -50 5751 -60 5755 -73 ct -5796 -61 l 5793 -53 5789 -46 5784 -38 ct 5779 -30 5772 -23 5763 -17 ct 5754 -10 5743 -5 5730 -1 ct -5717 3 5701 5 5682 5 ct 5641 5 5610 -7 5588 -32 ct 5566 -57 5555 -93 5555 -142 ct -5555 -168 5559 -190 5565 -208 ct 5572 -227 5581 -241 5592 -253 ct 5604 -264 5617 -272 5632 -277 ct -5647 -282 5663 -285 5680 -285 ct 5704 -285 5724 -281 5739 -274 ct 5755 -266 5768 -256 5777 -242 ct -5787 -229 5794 -213 5798 -195 ct 5802 -177 5804 -158 5804 -137 ct 5804 -130 l -5604 -130 l p -5756 -166 m 5753 -195 5746 -217 5733 -230 ct 5721 -244 5703 -251 5680 -251 ct -5672 -251 5664 -249 5655 -247 ct 5647 -244 5639 -240 5632 -234 ct 5624 -227 5618 -219 5613 -208 ct -5608 -197 5606 -183 5605 -166 ct 5756 -166 l p ef -pom -pum -2189 3463 t --89.9 r 43 0 m 43 -365 l 93 -365 l 93 -40 l 277 -40 l 277 0 l 43 0 l -p ef -367 -130 m 367 -116 369 -102 372 -90 ct 375 -77 379 -67 386 -58 ct 392 -49 400 -42 410 -37 ct -420 -32 432 -30 445 -30 ct 465 -30 482 -34 494 -42 ct 506 -50 514 -60 518 -73 ct -559 -61 l 556 -53 552 -46 547 -38 ct 542 -30 535 -23 526 -17 ct 517 -10 506 -5 493 -1 ct -480 3 464 5 445 5 ct 404 5 373 -7 351 -32 ct 329 -57 318 -93 318 -142 ct 318 -168 322 -190 328 -208 ct -335 -227 344 -241 355 -253 ct 367 -264 380 -272 395 -277 ct 410 -282 426 -285 443 -285 ct -467 -285 487 -281 502 -274 ct 518 -266 531 -256 540 -242 ct 550 -229 557 -213 561 -195 ct -565 -177 567 -158 567 -137 ct 567 -130 l 367 -130 l p -519 -166 m 516 -195 509 -217 496 -230 ct 484 -244 466 -251 443 -251 ct 435 -251 427 -249 418 -247 ct -410 -244 402 -240 395 -234 ct 387 -227 381 -219 376 -208 ct 371 -197 369 -183 368 -166 ct -519 -166 l p ef -735 110 m 719 110 704 108 692 105 ct 680 102 669 97 660 91 ct 651 85 644 78 639 69 ct -633 61 629 51 627 41 ct 674 34 l 677 47 684 57 694 64 ct 705 71 719 75 736 75 ct -746 75 756 73 765 70 ct 773 67 780 63 786 56 ct 793 50 797 41 800 31 ct 804 20 805 8 805 -7 ct -805 -52 l 805 -52 l 801 -45 797 -38 792 -32 ct 787 -25 781 -20 773 -15 ct -766 -10 758 -6 748 -3 ct 738 0 727 2 715 2 ct 697 2 682 -1 669 -7 ct 657 -13 646 -22 638 -34 ct -630 -46 624 -60 621 -78 ct 617 -96 615 -116 615 -139 ct 615 -162 617 -182 621 -200 ct -624 -218 631 -233 639 -245 ct 647 -258 658 -267 671 -274 ct 685 -281 701 -284 720 -284 ct -740 -284 757 -279 772 -270 ct 786 -261 797 -249 805 -232 ct 806 -232 l 806 -236 806 -241 806 -246 ct -806 -252 807 -257 807 -261 ct 807 -266 808 -270 808 -274 ct 808 -277 809 -279 809 -280 ct -853 -280 l 853 -278 853 -275 853 -272 ct 852 -268 852 -264 852 -258 ct 852 -253 852 -248 852 -241 ct -852 -235 852 -228 852 -222 ct 852 -8 l 852 31 842 61 823 80 ct 804 100 774 110 735 110 ct -p -805 -140 m 805 -159 803 -176 799 -190 ct 795 -204 789 -215 782 -224 ct 775 -233 768 -239 759 -243 ct -750 -247 741 -249 731 -249 ct 720 -249 709 -247 701 -243 ct 692 -239 685 -233 680 -224 ct -674 -215 670 -203 667 -190 ct 665 -176 663 -159 663 -140 ct 663 -120 665 -103 667 -89 ct -670 -75 674 -64 680 -56 ct 685 -47 692 -41 700 -38 ct 709 -34 719 -32 731 -32 ct -740 -32 749 -34 758 -38 ct 767 -42 775 -49 782 -57 ct 789 -66 795 -77 799 -91 ct -803 -104 805 -121 805 -140 ct p ef -960 -130 m 960 -116 962 -102 965 -90 ct 968 -77 972 -67 979 -58 ct 985 -49 993 -42 1003 -37 ct -1013 -32 1025 -30 1038 -30 ct 1058 -30 1075 -34 1087 -42 ct 1099 -50 1107 -60 1111 -73 ct -1152 -61 l 1149 -53 1145 -46 1140 -38 ct 1135 -30 1128 -23 1119 -17 ct 1110 -10 1099 -5 1086 -1 ct -1073 3 1057 5 1038 5 ct 997 5 966 -7 944 -32 ct 922 -57 911 -93 911 -142 ct 911 -168 915 -190 921 -208 ct -928 -227 937 -241 948 -253 ct 960 -264 973 -272 988 -277 ct 1003 -282 1019 -285 1036 -285 ct -1060 -285 1080 -281 1095 -274 ct 1111 -266 1124 -256 1133 -242 ct 1143 -229 1150 -213 1154 -195 ct -1158 -177 1160 -158 1160 -137 ct 1160 -130 l 960 -130 l p -1112 -166 m 1109 -195 1102 -217 1089 -230 ct 1077 -244 1059 -251 1036 -251 ct -1028 -251 1020 -249 1011 -247 ct 1003 -244 995 -240 988 -234 ct 980 -227 974 -219 969 -208 ct -964 -197 962 -183 961 -166 ct 1112 -166 l p ef -1398 0 m 1398 -177 l 1398 -191 1397 -202 1395 -212 ct 1393 -221 1390 -228 1385 -234 ct -1381 -239 1375 -243 1368 -246 ct 1360 -248 1351 -249 1341 -249 ct 1329 -249 1320 -247 1311 -243 ct -1302 -239 1294 -234 1288 -226 ct 1282 -219 1277 -210 1273 -199 ct 1270 -189 1268 -176 1268 -162 ct -1268 0 l 1222 0 l 1222 -220 l 1222 -226 1222 -232 1222 -239 ct 1221 -245 1221 -251 1221 -257 ct -1221 -263 1221 -268 1221 -272 ct 1220 -276 1220 -279 1220 -280 ct 1264 -280 l -1264 -279 1264 -277 1265 -273 ct 1265 -269 1265 -265 1265 -260 ct 1265 -255 1266 -250 1266 -245 ct -1266 -240 1266 -235 1266 -232 ct 1267 -232 l 1271 -240 1276 -247 1282 -254 ct -1287 -261 1293 -266 1300 -271 ct 1307 -275 1315 -279 1324 -281 ct 1334 -284 1344 -285 1356 -285 ct -1372 -285 1385 -283 1396 -279 ct 1407 -276 1417 -270 1424 -262 ct 1431 -254 1436 -244 1440 -231 ct -1443 -219 1445 -204 1445 -186 ct 1445 0 l 1398 0 l p ef -1694 -45 m 1685 -27 1674 -14 1660 -7 ct 1646 1 1628 5 1607 5 ct 1572 5 1546 -7 1529 -31 ct -1513 -55 1504 -91 1504 -139 ct 1504 -237 1538 -285 1607 -285 ct 1628 -285 1646 -282 1660 -274 ct -1674 -266 1685 -254 1694 -237 ct 1695 -237 l 1695 -238 1695 -241 1694 -245 ct -1694 -249 1694 -252 1694 -257 ct 1694 -261 1694 -264 1694 -268 ct 1694 -272 1694 -274 1694 -276 ct -1694 -384 l 1741 -384 l 1741 -58 l 1741 -51 1741 -45 1741 -38 ct 1741 -32 1741 -27 1741 -21 ct -1741 -16 1741 -12 1742 -8 ct 1742 -4 1742 -2 1742 0 ct 1698 0 l 1697 -2 1697 -4 1697 -8 ct -1697 -11 1696 -14 1696 -19 ct 1696 -23 1696 -27 1695 -32 ct 1695 -36 1695 -41 1695 -45 ct -1694 -45 l p -1553 -140 m 1553 -121 1554 -105 1557 -91 ct 1559 -77 1563 -66 1568 -57 ct 1574 -48 1580 -41 1589 -37 ct -1597 -33 1607 -31 1619 -31 ct 1631 -31 1642 -33 1651 -37 ct 1661 -41 1669 -47 1675 -56 ct -1681 -65 1686 -77 1689 -91 ct 1692 -105 1694 -123 1694 -144 ct 1694 -163 1692 -180 1689 -194 ct -1686 -208 1681 -219 1675 -227 ct 1668 -236 1661 -242 1651 -245 ct 1642 -249 1631 -251 1619 -251 ct -1608 -251 1598 -249 1590 -245 ct 1582 -241 1575 -235 1569 -226 ct 1564 -217 1560 -206 1557 -192 ct -1554 -178 1553 -160 1553 -140 ct p ef -1826 -226 m 1826 -280 l 1877 -280 l 1877 -226 l 1826 -226 l p -1826 0 m 1826 -54 l 1877 -54 l 1877 0 l 1826 0 l p ef -pom -1.000 1.000 1.000 c 11597 18252 m 4740 18252 l 4740 17216 l 18455 17216 l -18455 18252 l 11597 18252 l p ef -0.503 0.503 0.503 c 11597 18251 m 4739 18251 l 4739 17215 l 18454 17215 l -18454 18251 l 11597 18251 l pc -pum -4990 17917 t -0.003 0.003 0.003 c 52 0 m 52 -437 l 384 -437 l 384 -389 l 111 -389 l -111 -249 l 365 -249 l 365 -201 l 111 -201 l 111 -48 l 396 -48 l 396 0 l -52 0 l p ef -661 0 m 661 -213 l 661 -229 660 -243 658 -254 ct 656 -265 652 -274 648 -280 ct -643 -287 636 -292 629 -295 ct 621 -297 611 -299 600 -299 ct 588 -299 577 -297 568 -292 ct -558 -287 550 -281 543 -272 ct 537 -263 532 -252 528 -239 ct 524 -226 523 -211 523 -195 ct -523 0 l 467 0 l 467 -264 l 467 -271 467 -279 467 -286 ct 467 -294 467 -301 466 -308 ct -466 -315 466 -321 466 -326 ct 466 -331 465 -334 465 -336 ct 518 -336 l 518 -335 518 -332 519 -327 ct -519 -323 519 -318 519 -312 ct 520 -306 520 -300 520 -294 ct 520 -288 520 -283 520 -278 ct -521 -278 l 526 -288 532 -297 537 -305 ct 543 -313 550 -319 558 -325 ct 565 -330 574 -335 584 -338 ct -594 -341 606 -342 619 -342 ct 645 -342 665 -337 680 -327 ct 694 -317 705 -301 710 -278 ct -711 -278 l 716 -288 722 -297 728 -305 ct 734 -313 742 -319 750 -325 ct 758 -330 767 -335 778 -338 ct -788 -341 800 -342 813 -342 ct 830 -342 845 -340 857 -335 ct 869 -331 879 -324 887 -314 ct -895 -305 901 -292 905 -277 ct 908 -262 910 -244 910 -224 ct 910 0 l 855 0 l -855 -213 l 855 -229 854 -243 852 -254 ct 850 -265 846 -274 841 -280 ct 837 -287 830 -292 822 -295 ct -815 -297 805 -299 794 -299 ct 782 -299 771 -297 762 -292 ct 752 -288 744 -281 737 -272 ct -731 -264 725 -253 722 -240 ct 718 -227 716 -212 716 -195 ct 716 0 l 661 0 l -p ef -1279 -169 m 1279 -52 1238 7 1156 7 ct 1131 7 1110 2 1093 -7 ct 1076 -16 1062 -31 1052 -51 ct -1051 -51 l 1051 -46 1051 -40 1051 -35 ct 1050 -29 1050 -24 1050 -19 ct 1049 -14 1049 -9 1049 -6 ct -1048 -2 1048 0 1048 1 ct 994 1 l 994 -1 994 -4 995 -9 ct 995 -13 995 -19 995 -25 ct -995 -31 996 -38 996 -45 ct 996 -53 996 -61 996 -69 ct 996 -460 l 1052 -460 l -1052 -328 l 1052 -322 1052 -316 1051 -311 ct 1051 -305 1051 -300 1051 -296 ct -1051 -290 1051 -286 1050 -281 ct 1052 -281 l 1062 -302 1076 -318 1093 -327 ct -1110 -336 1131 -341 1156 -341 ct 1198 -341 1230 -327 1250 -298 ct 1270 -270 1279 -227 1279 -169 ct -p -1221 -167 m 1221 -190 1219 -210 1217 -226 ct 1214 -243 1209 -256 1203 -267 ct -1196 -278 1188 -286 1178 -291 ct 1168 -296 1156 -298 1142 -298 ct 1127 -298 1114 -296 1103 -291 ct -1092 -286 1082 -278 1075 -268 ct 1067 -257 1061 -243 1057 -226 ct 1054 -209 1052 -188 1052 -163 ct -1052 -139 1054 -119 1057 -103 ct 1061 -87 1067 -73 1075 -63 ct 1082 -53 1092 -45 1103 -41 ct -1114 -36 1127 -34 1141 -34 ct 1155 -34 1167 -37 1177 -41 ct 1186 -46 1195 -54 1201 -64 ct -1208 -75 1213 -89 1216 -105 ct 1219 -122 1221 -143 1221 -167 ct p ef -1390 -156 m 1390 -139 1391 -122 1395 -108 ct 1399 -93 1404 -80 1412 -70 ct -1419 -59 1429 -51 1441 -45 ct 1453 -39 1467 -36 1483 -36 ct 1507 -36 1527 -41 1541 -50 ct -1556 -60 1566 -72 1571 -87 ct 1620 -73 l 1616 -64 1612 -55 1605 -45 ct 1599 -36 1591 -27 1580 -20 ct -1569 -12 1556 -6 1540 -1 ct 1525 4 1506 6 1483 6 ct 1434 6 1396 -9 1370 -38 ct -1344 -68 1331 -112 1331 -170 ct 1331 -202 1335 -228 1343 -250 ct 1351 -272 1361 -290 1375 -303 ct -1389 -317 1405 -327 1423 -333 ct 1441 -339 1460 -342 1481 -342 ct 1509 -342 1533 -338 1552 -329 ct -1571 -320 1586 -307 1597 -291 ct 1609 -275 1617 -256 1622 -234 ct 1627 -212 1629 -189 1629 -164 ct -1629 -156 l 1390 -156 l p -1571 -199 m 1568 -234 1559 -260 1544 -277 ct 1529 -293 1508 -301 1480 -301 ct -1471 -301 1461 -300 1451 -296 ct 1441 -293 1431 -288 1422 -280 ct 1414 -273 1406 -262 1400 -249 ct -1394 -236 1391 -219 1390 -199 ct 1571 -199 l p ef -1910 -53 m 1899 -32 1886 -16 1868 -7 ct 1851 2 1830 7 1805 7 ct 1763 7 1732 -7 1712 -36 ct -1692 -64 1682 -108 1682 -166 ct 1682 -283 1723 -341 1805 -341 ct 1830 -341 1852 -337 1869 -327 ct -1886 -318 1899 -303 1910 -283 ct 1910 -283 l 1910 -285 1910 -288 1910 -293 ct -1910 -297 1910 -302 1910 -307 ct 1910 -312 1910 -316 1910 -321 ct 1910 -325 1910 -328 1910 -330 ct -1910 -460 l 1965 -460 l 1965 -69 l 1965 -61 1965 -53 1966 -45 ct 1966 -38 1966 -31 1966 -25 ct -1966 -19 1966 -13 1967 -9 ct 1967 -4 1967 -1 1967 1 ct 1914 1 l 1913 -2 1913 -4 1913 -8 ct -1913 -12 1912 -16 1912 -21 ct 1912 -26 1911 -32 1911 -37 ct 1911 -42 1911 -48 1911 -53 ct -1910 -53 l p -1740 -167 m 1740 -144 1742 -124 1745 -108 ct 1748 -91 1752 -78 1759 -67 ct -1765 -56 1773 -49 1783 -44 ct 1793 -39 1805 -36 1819 -36 ct 1834 -36 1847 -39 1858 -43 ct -1870 -48 1879 -56 1886 -66 ct 1894 -77 1900 -91 1904 -108 ct 1908 -125 1910 -146 1910 -171 ct -1910 -195 1908 -215 1904 -232 ct 1900 -248 1894 -261 1886 -271 ct 1879 -282 1869 -289 1858 -293 ct -1847 -298 1834 -300 1820 -300 ct 1806 -300 1795 -298 1785 -293 ct 1775 -288 1766 -280 1760 -270 ct -1753 -259 1748 -246 1745 -229 ct 1742 -212 1740 -191 1740 -167 ct p ef -2262 -53 m 2251 -32 2238 -16 2220 -7 ct 2203 2 2182 7 2157 7 ct 2115 7 2084 -7 2064 -36 ct -2044 -64 2034 -108 2034 -166 ct 2034 -283 2075 -341 2157 -341 ct 2182 -341 2204 -337 2221 -327 ct -2238 -318 2251 -303 2262 -283 ct 2262 -283 l 2262 -285 2262 -288 2262 -293 ct -2262 -297 2262 -302 2262 -307 ct 2262 -312 2262 -316 2262 -321 ct 2262 -325 2262 -328 2262 -330 ct -2262 -460 l 2317 -460 l 2317 -69 l 2317 -61 2317 -53 2318 -45 ct 2318 -38 2318 -31 2318 -25 ct -2318 -19 2318 -13 2319 -9 ct 2319 -4 2319 -1 2319 1 ct 2266 1 l 2265 -2 2265 -4 2265 -8 ct -2265 -12 2264 -16 2264 -21 ct 2264 -26 2263 -32 2263 -37 ct 2263 -42 2263 -48 2263 -53 ct -2262 -53 l p -2092 -167 m 2092 -144 2094 -124 2097 -108 ct 2100 -91 2104 -78 2111 -67 ct -2117 -56 2125 -49 2135 -44 ct 2145 -39 2157 -36 2171 -36 ct 2186 -36 2199 -39 2210 -43 ct -2222 -48 2231 -56 2238 -66 ct 2246 -77 2252 -91 2256 -108 ct 2260 -125 2262 -146 2262 -171 ct -2262 -195 2260 -215 2256 -232 ct 2252 -248 2246 -261 2238 -271 ct 2231 -282 2221 -289 2210 -293 ct -2199 -298 2186 -300 2172 -300 ct 2158 -300 2147 -298 2137 -293 ct 2127 -288 2118 -280 2112 -270 ct -2105 -259 2100 -246 2097 -229 ct 2094 -212 2092 -191 2092 -167 ct p ef -2444 -156 m 2444 -139 2445 -122 2449 -108 ct 2453 -93 2458 -80 2466 -70 ct -2473 -59 2483 -51 2495 -45 ct 2507 -39 2521 -36 2537 -36 ct 2561 -36 2581 -41 2595 -50 ct -2610 -60 2620 -72 2625 -87 ct 2674 -73 l 2670 -64 2666 -55 2659 -45 ct 2653 -36 2645 -27 2634 -20 ct -2623 -12 2610 -6 2594 -1 ct 2579 4 2560 6 2537 6 ct 2488 6 2450 -9 2424 -38 ct -2398 -68 2385 -112 2385 -170 ct 2385 -202 2389 -228 2397 -250 ct 2405 -272 2415 -290 2429 -303 ct -2443 -317 2459 -327 2477 -333 ct 2495 -339 2514 -342 2535 -342 ct 2563 -342 2587 -338 2606 -329 ct -2625 -320 2640 -307 2651 -291 ct 2663 -275 2671 -256 2676 -234 ct 2681 -212 2683 -189 2683 -164 ct -2683 -156 l 2444 -156 l p -2625 -199 m 2622 -234 2613 -260 2598 -277 ct 2583 -293 2562 -301 2534 -301 ct -2525 -301 2515 -300 2505 -296 ct 2495 -293 2485 -288 2476 -280 ct 2468 -273 2460 -262 2454 -249 ct -2448 -236 2445 -219 2444 -199 ct 2625 -199 l p ef -2964 -53 m 2953 -32 2940 -16 2922 -7 ct 2905 2 2884 7 2859 7 ct 2817 7 2786 -7 2766 -36 ct -2746 -64 2736 -108 2736 -166 ct 2736 -283 2777 -341 2859 -341 ct 2884 -341 2906 -337 2923 -327 ct -2940 -318 2953 -303 2964 -283 ct 2964 -283 l 2964 -285 2964 -288 2964 -293 ct -2964 -297 2964 -302 2964 -307 ct 2964 -312 2964 -316 2964 -321 ct 2964 -325 2964 -328 2964 -330 ct -2964 -460 l 3019 -460 l 3019 -69 l 3019 -61 3019 -53 3020 -45 ct 3020 -38 3020 -31 3020 -25 ct -3020 -19 3020 -13 3021 -9 ct 3021 -4 3021 -1 3021 1 ct 2968 1 l 2967 -2 2967 -4 2967 -8 ct -2967 -12 2966 -16 2966 -21 ct 2966 -26 2965 -32 2965 -37 ct 2965 -42 2965 -48 2965 -53 ct -2964 -53 l p -2794 -167 m 2794 -144 2796 -124 2799 -108 ct 2802 -91 2806 -78 2813 -67 ct -2819 -56 2827 -49 2837 -44 ct 2847 -39 2859 -36 2873 -36 ct 2888 -36 2901 -39 2912 -43 ct -2924 -48 2933 -56 2940 -66 ct 2948 -77 2954 -91 2958 -108 ct 2962 -125 2964 -146 2964 -171 ct -2964 -195 2962 -215 2958 -232 ct 2954 -248 2948 -261 2940 -271 ct 2933 -282 2923 -289 2912 -293 ct -2901 -298 2888 -300 2874 -300 ct 2860 -300 2849 -298 2839 -293 ct 2829 -288 2820 -280 2814 -270 ct -2807 -259 2802 -246 2799 -229 ct 2796 -212 2794 -191 2794 -167 ct p ef -3477 0 m 3477 -213 l 3477 -229 3476 -243 3474 -254 ct 3472 -265 3468 -274 3464 -280 ct -3459 -287 3452 -292 3445 -295 ct 3437 -297 3427 -299 3416 -299 ct 3404 -299 3393 -297 3384 -292 ct -3374 -287 3366 -281 3359 -272 ct 3353 -263 3348 -252 3344 -239 ct 3340 -226 3339 -211 3339 -195 ct -3339 0 l 3283 0 l 3283 -264 l 3283 -271 3283 -279 3283 -286 ct 3283 -294 3283 -301 3282 -308 ct -3282 -315 3282 -321 3282 -326 ct 3282 -331 3281 -334 3281 -336 ct 3334 -336 l -3334 -335 3334 -332 3335 -327 ct 3335 -323 3335 -318 3335 -312 ct 3336 -306 3336 -300 3336 -294 ct -3336 -288 3336 -283 3336 -278 ct 3337 -278 l 3342 -288 3348 -297 3353 -305 ct -3359 -313 3366 -319 3374 -325 ct 3381 -330 3390 -335 3400 -338 ct 3410 -341 3422 -342 3435 -342 ct -3461 -342 3481 -337 3496 -327 ct 3510 -317 3521 -301 3526 -278 ct 3527 -278 l -3532 -288 3538 -297 3544 -305 ct 3550 -313 3558 -319 3566 -325 ct 3574 -330 3583 -335 3594 -338 ct -3604 -341 3616 -342 3629 -342 ct 3646 -342 3661 -340 3673 -335 ct 3685 -331 3695 -324 3703 -314 ct -3711 -305 3717 -292 3721 -277 ct 3724 -262 3726 -244 3726 -224 ct 3726 0 l 3671 0 l -3671 -213 l 3671 -229 3670 -243 3668 -254 ct 3666 -265 3662 -274 3657 -280 ct -3653 -287 3646 -292 3638 -295 ct 3631 -297 3621 -299 3610 -299 ct 3598 -299 3587 -297 3578 -292 ct -3568 -288 3560 -281 3553 -272 ct 3547 -264 3541 -253 3538 -240 ct 3534 -227 3532 -212 3532 -195 ct -3532 0 l 3477 0 l p ef -4094 -168 m 4094 -110 4082 -66 4056 -37 ct 4030 -8 3992 6 3943 6 ct 3920 6 3899 2 3881 -5 ct -3862 -12 3847 -22 3834 -37 ct 3821 -51 3811 -69 3805 -91 ct 3798 -113 3795 -139 3795 -168 ct -3795 -284 3845 -342 3945 -342 ct 3971 -342 3994 -339 4012 -331 ct 4031 -324 4047 -313 4059 -299 ct -4071 -284 4080 -266 4086 -245 ct 4092 -223 4094 -197 4094 -168 ct p -4036 -168 m 4036 -195 4034 -216 4030 -233 ct 4026 -250 4020 -264 4012 -274 ct -4004 -284 3995 -291 3984 -295 ct 3973 -299 3960 -301 3946 -301 ct 3932 -301 3919 -299 3907 -295 ct -3896 -290 3886 -283 3878 -273 ct 3870 -263 3864 -249 3860 -232 ct 3855 -215 3853 -194 3853 -168 ct -3853 -142 3856 -121 3860 -104 ct 3865 -87 3871 -73 3879 -63 ct 3887 -53 3896 -46 3907 -41 ct -3918 -37 3930 -35 3943 -35 ct 3957 -35 3970 -37 3981 -41 ct 3993 -45 4003 -52 4011 -63 ct -4019 -73 4025 -86 4029 -104 ct 4034 -121 4036 -142 4036 -168 ct p ef -4374 -53 m 4363 -32 4350 -16 4332 -7 ct 4315 2 4294 7 4269 7 ct 4227 7 4196 -7 4176 -36 ct -4156 -64 4146 -108 4146 -166 ct 4146 -283 4187 -341 4269 -341 ct 4294 -341 4316 -337 4333 -327 ct -4350 -318 4363 -303 4374 -283 ct 4374 -283 l 4374 -285 4374 -288 4374 -293 ct -4374 -297 4374 -302 4374 -307 ct 4374 -312 4374 -316 4374 -321 ct 4374 -325 4374 -328 4374 -330 ct -4374 -460 l 4429 -460 l 4429 -69 l 4429 -61 4429 -53 4430 -45 ct 4430 -38 4430 -31 4430 -25 ct -4430 -19 4430 -13 4431 -9 ct 4431 -4 4431 -1 4431 1 ct 4378 1 l 4377 -2 4377 -4 4377 -8 ct -4377 -12 4376 -16 4376 -21 ct 4376 -26 4375 -32 4375 -37 ct 4375 -42 4375 -48 4375 -53 ct -4374 -53 l p -4204 -167 m 4204 -144 4206 -124 4209 -108 ct 4212 -91 4216 -78 4223 -67 ct -4229 -56 4237 -49 4247 -44 ct 4257 -39 4269 -36 4283 -36 ct 4298 -36 4311 -39 4322 -43 ct -4334 -48 4343 -56 4350 -66 ct 4358 -77 4364 -91 4368 -108 ct 4372 -125 4374 -146 4374 -171 ct -4374 -195 4372 -215 4368 -232 ct 4364 -248 4358 -261 4350 -271 ct 4343 -282 4333 -289 4322 -293 ct -4311 -298 4298 -300 4284 -300 ct 4270 -300 4259 -298 4249 -293 ct 4239 -288 4230 -280 4224 -270 ct -4217 -259 4212 -246 4209 -229 ct 4206 -212 4204 -191 4204 -167 ct p ef -4556 -156 m 4556 -139 4557 -122 4561 -108 ct 4565 -93 4570 -80 4578 -70 ct -4585 -59 4595 -51 4607 -45 ct 4619 -39 4633 -36 4649 -36 ct 4673 -36 4693 -41 4707 -50 ct -4722 -60 4732 -72 4737 -87 ct 4786 -73 l 4782 -64 4778 -55 4771 -45 ct 4765 -36 4757 -27 4746 -20 ct -4735 -12 4722 -6 4706 -1 ct 4691 4 4672 6 4649 6 ct 4600 6 4562 -9 4536 -38 ct -4510 -68 4497 -112 4497 -170 ct 4497 -202 4501 -228 4509 -250 ct 4517 -272 4527 -290 4541 -303 ct -4555 -317 4571 -327 4589 -333 ct 4607 -339 4626 -342 4647 -342 ct 4675 -342 4699 -338 4718 -329 ct -4737 -320 4752 -307 4763 -291 ct 4775 -275 4783 -256 4788 -234 ct 4793 -212 4795 -189 4795 -164 ct -4795 -156 l 4556 -156 l p -4737 -199 m 4734 -234 4725 -260 4710 -277 ct 4695 -293 4674 -301 4646 -301 ct -4637 -301 4627 -300 4617 -296 ct 4607 -293 4597 -288 4588 -280 ct 4580 -273 4572 -262 4566 -249 ct -4560 -236 4557 -219 4556 -199 ct 4737 -199 l p ef -4865 1 m 4865 -460 l 4921 -460 l 4921 1 l 4865 1 l p ef -5178 -165 m 5178 -193 5181 -221 5185 -247 ct 5189 -273 5196 -299 5205 -323 ct -5215 -347 5227 -371 5241 -393 ct 5255 -416 5273 -438 5293 -460 ct 5347 -460 l -5327 -438 5311 -416 5296 -393 ct 5282 -370 5271 -347 5261 -322 ct 5252 -298 5246 -273 5241 -247 ct -5237 -220 5235 -193 5235 -164 ct 5235 -135 5237 -108 5241 -81 ct 5246 -55 5252 -30 5261 -5 ct -5271 19 5282 43 5296 65 ct 5311 88 5327 110 5347 132 ct 5293 132 l 5273 110 5255 88 5241 65 ct -5227 43 5215 19 5205 -5 ct 5196 -29 5189 -55 5185 -81 ct 5181 -107 5178 -134 5178 -163 ct -5178 -165 l p ef -5775 0 m 5775 -292 l 5775 -302 5775 -313 5775 -324 ct 5775 -335 5775 -345 5776 -354 ct -5776 -365 5777 -375 5777 -385 ct 5774 -374 5771 -364 5768 -353 ct 5766 -345 5763 -335 5760 -325 ct -5756 -315 5753 -306 5750 -298 ct 5637 0 l 5596 0 l 5481 -298 l 5480 -301 5479 -305 5477 -309 ct -5476 -313 5475 -317 5473 -322 ct 5471 -327 5470 -331 5468 -336 ct 5467 -341 5465 -346 5464 -351 ct -5460 -362 5457 -373 5454 -385 ct 5454 -373 5454 -362 5455 -350 ct 5455 -341 5455 -330 5455 -320 ct -5456 -309 5456 -300 5456 -292 ct 5456 0 l 5403 0 l 5403 -437 l 5481 -437 l -5597 -134 l 5599 -130 5600 -125 5602 -118 ct 5605 -112 5606 -105 5608 -98 ct -5610 -91 5612 -85 5613 -79 ct 5615 -73 5616 -68 5617 -65 ct 5617 -68 5618 -73 5620 -79 ct -5622 -85 5624 -92 5626 -98 ct 5628 -105 5630 -112 5632 -118 ct 5634 -125 5636 -130 5638 -134 ct -5752 -437 l 5828 -437 l 5828 0 l 5775 0 l p ef -6206 -168 m 6206 -110 6194 -66 6168 -37 ct 6142 -8 6104 6 6055 6 ct 6032 6 6011 2 5993 -5 ct -5974 -12 5959 -22 5946 -37 ct 5933 -51 5923 -69 5917 -91 ct 5910 -113 5907 -139 5907 -168 ct -5907 -284 5957 -342 6057 -342 ct 6083 -342 6106 -339 6124 -331 ct 6143 -324 6159 -313 6171 -299 ct -6183 -284 6192 -266 6198 -245 ct 6204 -223 6206 -197 6206 -168 ct p -6148 -168 m 6148 -195 6146 -216 6142 -233 ct 6138 -250 6132 -264 6124 -274 ct -6116 -284 6107 -291 6096 -295 ct 6085 -299 6072 -301 6058 -301 ct 6044 -301 6031 -299 6019 -295 ct -6008 -290 5998 -283 5990 -273 ct 5982 -263 5976 -249 5972 -232 ct 5967 -215 5965 -194 5965 -168 ct -5965 -142 5968 -121 5972 -104 ct 5977 -87 5983 -73 5991 -63 ct 5999 -53 6008 -46 6019 -41 ct -6030 -37 6042 -35 6055 -35 ct 6069 -35 6082 -37 6093 -41 ct 6105 -45 6115 -52 6123 -63 ct -6131 -73 6137 -86 6141 -104 ct 6146 -121 6148 -142 6148 -168 ct p ef -6659 -223 m 6659 -187 6654 -155 6643 -127 ct 6632 -99 6617 -76 6598 -57 ct -6579 -38 6556 -24 6530 -14 ct 6504 -5 6476 0 6446 0 ct 6283 0 l 6283 -437 l -6428 -437 l 6461 -437 6492 -433 6521 -425 ct 6549 -417 6574 -404 6594 -386 ct -6615 -369 6631 -346 6642 -319 ct 6653 -293 6659 -261 6659 -223 ct p -6600 -223 m 6600 -253 6595 -278 6587 -299 ct 6578 -320 6567 -337 6551 -351 ct -6536 -364 6518 -374 6496 -381 ct 6475 -387 6452 -390 6426 -390 ct 6342 -390 l -6342 -47 l 6440 -47 l 6463 -47 6484 -51 6503 -59 ct 6523 -66 6540 -77 6554 -92 ct -6568 -107 6580 -125 6588 -147 ct 6596 -169 6600 -194 6600 -223 ct p ef -6774 -156 m 6774 -139 6775 -122 6779 -108 ct 6783 -93 6788 -80 6796 -70 ct -6803 -59 6813 -51 6825 -45 ct 6837 -39 6851 -36 6867 -36 ct 6891 -36 6911 -41 6925 -50 ct -6940 -60 6950 -72 6955 -87 ct 7004 -73 l 7000 -64 6996 -55 6989 -45 ct 6983 -36 6975 -27 6964 -20 ct -6953 -12 6940 -6 6924 -1 ct 6909 4 6890 6 6867 6 ct 6818 6 6780 -9 6754 -38 ct -6728 -68 6715 -112 6715 -170 ct 6715 -202 6719 -228 6727 -250 ct 6735 -272 6745 -290 6759 -303 ct -6773 -317 6789 -327 6807 -333 ct 6825 -339 6844 -342 6865 -342 ct 6893 -342 6917 -338 6936 -329 ct -6955 -320 6970 -307 6981 -291 ct 6993 -275 7001 -256 7006 -234 ct 7011 -212 7013 -189 7013 -164 ct -7013 -156 l 6774 -156 l p -6955 -199 m 6952 -234 6943 -260 6928 -277 ct 6913 -293 6892 -301 6864 -301 ct -6855 -301 6845 -300 6835 -296 ct 6825 -293 6815 -288 6806 -280 ct 6798 -273 6790 -262 6784 -249 ct -6778 -236 6775 -219 6774 -199 ct 6955 -199 l p ef -7374 0 m 7141 -372 l 7141 -362 7142 -352 7142 -342 ct 7143 -334 7143 -325 7143 -315 ct -7144 -306 7144 -298 7144 -290 ct 7144 0 l 7091 0 l 7091 -437 l 7160 -437 l -7396 -62 l 7396 -73 7395 -83 7394 -93 ct 7394 -101 7394 -111 7393 -121 ct 7393 -131 7392 -141 7392 -151 ct -7392 -437 l 7446 -437 l 7446 0 l 7374 0 l p ef -7624 6 m 7591 6 7565 -3 7548 -21 ct 7531 -39 7523 -63 7523 -94 ct 7523 -117 7527 -135 7536 -149 ct -7544 -163 7555 -174 7568 -183 ct 7582 -191 7597 -196 7615 -199 ct 7632 -203 7650 -204 7668 -204 ct -7743 -204 l 7743 -223 l 7743 -237 7742 -248 7739 -258 ct 7736 -268 7731 -276 7725 -282 ct -7719 -288 7712 -292 7703 -295 ct 7694 -298 7683 -299 7671 -299 ct 7660 -299 7651 -299 7642 -297 ct -7633 -296 7626 -293 7619 -289 ct 7613 -285 7608 -279 7604 -272 ct 7600 -265 7597 -257 7596 -246 ct -7538 -251 l 7540 -265 7544 -277 7550 -288 ct 7555 -299 7564 -309 7574 -317 ct -7585 -325 7598 -331 7614 -335 ct 7630 -340 7650 -342 7672 -342 ct 7715 -342 7746 -332 7768 -313 ct -7789 -294 7800 -266 7800 -229 ct 7800 -85 l 7800 -68 7802 -55 7806 -47 ct 7810 -39 7819 -35 7831 -35 ct -7834 -35 7837 -35 7840 -35 ct 7843 -36 7846 -36 7849 -37 ct 7849 -2 l 7842 0 7835 1 7828 2 ct -7821 3 7814 3 7806 3 ct 7796 3 7786 2 7779 -1 ct 7771 -4 7765 -8 7760 -14 ct 7756 -20 7752 -27 7750 -35 ct -7747 -43 7746 -53 7745 -64 ct 7743 -64 l 7737 -54 7731 -44 7723 -35 ct 7716 -27 7708 -19 7698 -13 ct -7689 -7 7678 -2 7666 1 ct 7654 4 7640 6 7624 6 ct p -7637 -36 m 7655 -36 7670 -39 7684 -46 ct 7697 -52 7708 -60 7717 -70 ct 7726 -80 7732 -91 7737 -103 ct -7741 -115 7743 -127 7743 -138 ct 7743 -165 l 7682 -165 l 7668 -165 7655 -164 7643 -162 ct -7631 -161 7620 -157 7611 -152 ct 7601 -147 7594 -139 7589 -130 ct 7583 -121 7580 -108 7580 -93 ct -7580 -75 7585 -61 7595 -51 ct 7605 -41 7619 -36 7637 -36 ct p ef -8067 -407 m 8067 -460 l 8123 -460 l 8123 -407 l 8067 -407 l p -8067 1 m 8067 -335 l 8123 -335 l 8123 1 l 8067 1 l p ef -8421 0 m 8421 -213 l 8421 -229 8420 -243 8417 -254 ct 8415 -265 8411 -274 8406 -280 ct -8400 -287 8393 -292 8384 -295 ct 8376 -297 8365 -299 8352 -299 ct 8338 -299 8326 -297 8316 -292 ct -8305 -287 8296 -281 8289 -272 ct 8281 -263 8275 -252 8271 -239 ct 8267 -226 8265 -211 8265 -195 ct -8265 0 l 8209 0 l 8209 -264 l 8209 -271 8209 -279 8209 -286 ct 8209 -294 8209 -301 8208 -308 ct -8208 -315 8208 -321 8208 -326 ct 8208 -331 8207 -334 8207 -336 ct 8260 -336 l -8260 -335 8260 -332 8261 -327 ct 8261 -323 8261 -318 8261 -312 ct 8262 -306 8262 -300 8262 -294 ct -8262 -288 8262 -283 8262 -278 ct 8263 -278 l 8269 -288 8275 -297 8281 -305 ct -8287 -313 8295 -319 8303 -325 ct 8312 -330 8321 -335 8332 -338 ct 8343 -341 8356 -342 8371 -342 ct -8389 -342 8405 -340 8419 -335 ct 8432 -331 8443 -324 8452 -314 ct 8460 -305 8467 -292 8471 -277 ct -8475 -262 8477 -244 8477 -224 ct 8477 0 l 8421 0 l p ef -8688 -2 m 8679 0 8671 2 8662 3 ct 8653 4 8643 5 8631 5 ct 8587 5 8564 -20 8564 -71 ct -8564 -295 l 8526 -295 l 8526 -336 l 8567 -336 l 8583 -411 l 8620 -411 l -8620 -336 l 8682 -336 l 8682 -295 l 8620 -295 l 8620 -83 l 8620 -67 8623 -56 8628 -49 ct -8633 -43 8643 -39 8656 -39 ct 8661 -39 8666 -40 8671 -41 ct 8676 -41 8682 -42 8688 -44 ct -8688 -2 l p ef -8780 -156 m 8780 -139 8781 -122 8785 -108 ct 8789 -93 8794 -80 8802 -70 ct -8809 -59 8819 -51 8831 -45 ct 8843 -39 8857 -36 8873 -36 ct 8897 -36 8917 -41 8931 -50 ct -8946 -60 8956 -72 8961 -87 ct 9010 -73 l 9006 -64 9002 -55 8995 -45 ct 8989 -36 8981 -27 8970 -20 ct -8959 -12 8946 -6 8930 -1 ct 8915 4 8896 6 8873 6 ct 8824 6 8786 -9 8760 -38 ct -8734 -68 8721 -112 8721 -170 ct 8721 -202 8725 -228 8733 -250 ct 8741 -272 8751 -290 8765 -303 ct -8779 -317 8795 -327 8813 -333 ct 8831 -339 8850 -342 8871 -342 ct 8899 -342 8923 -338 8942 -329 ct -8961 -320 8976 -307 8987 -291 ct 8999 -275 9007 -256 9012 -234 ct 9017 -212 9019 -189 9019 -164 ct -9019 -156 l 8780 -156 l p -8961 -199 m 8958 -234 8949 -260 8934 -277 ct 8919 -293 8898 -301 8870 -301 ct -8861 -301 8851 -300 8841 -296 ct 8831 -293 8821 -288 8812 -280 ct 8804 -273 8796 -262 8790 -249 ct -8784 -236 8781 -219 8780 -199 ct 8961 -199 l p ef -9090 0 m 9090 -258 l 9090 -265 9090 -272 9090 -279 ct 9090 -287 9090 -294 9089 -300 ct -9089 -307 9089 -314 9089 -320 ct 9089 -326 9088 -331 9088 -336 ct 9141 -336 l -9141 -331 9141 -326 9142 -320 ct 9142 -313 9142 -307 9143 -301 ct 9143 -294 9143 -288 9143 -282 ct -9143 -276 9143 -271 9143 -267 ct 9145 -267 l 9149 -280 9153 -291 9157 -301 ct -9162 -310 9167 -318 9173 -324 ct 9179 -330 9186 -335 9194 -338 ct 9202 -341 9213 -342 9224 -342 ct -9229 -342 9233 -342 9237 -341 ct 9241 -340 9245 -340 9247 -339 ct 9247 -288 l -9243 -289 9239 -290 9234 -290 ct 9229 -291 9223 -291 9217 -291 ct 9204 -291 9193 -288 9184 -282 ct -9175 -276 9168 -268 9162 -258 ct 9157 -248 9153 -236 9150 -221 ct 9147 -207 9146 -192 9146 -175 ct -9146 0 l 9090 0 l p ef -9369 -295 m 9369 0 l 9313 0 l 9313 -295 l 9266 -295 l 9266 -336 l -9313 -336 l 9313 -374 l 9313 -386 9314 -397 9317 -408 ct 9319 -418 9323 -427 9329 -435 ct -9335 -443 9344 -449 9354 -453 ct 9365 -458 9378 -460 9395 -460 ct 9402 -460 9408 -460 9416 -459 ct -9423 -458 9429 -458 9434 -456 ct 9434 -414 l 9431 -414 9427 -415 9422 -415 ct -9417 -416 9413 -416 9410 -416 ct 9401 -416 9395 -415 9389 -413 ct 9384 -411 9380 -407 9377 -403 ct -9374 -399 9372 -394 9371 -387 ct 9370 -381 9369 -374 9369 -366 ct 9369 -336 l -9434 -336 l 9434 -295 l 9369 -295 l p ef -9563 6 m 9530 6 9504 -3 9487 -21 ct 9470 -39 9462 -63 9462 -94 ct 9462 -117 9466 -135 9475 -149 ct -9483 -163 9494 -174 9507 -183 ct 9521 -191 9536 -196 9554 -199 ct 9571 -203 9589 -204 9607 -204 ct -9682 -204 l 9682 -223 l 9682 -237 9681 -248 9678 -258 ct 9675 -268 9670 -276 9664 -282 ct -9658 -288 9651 -292 9642 -295 ct 9633 -298 9622 -299 9610 -299 ct 9599 -299 9590 -299 9581 -297 ct -9572 -296 9565 -293 9558 -289 ct 9552 -285 9547 -279 9543 -272 ct 9539 -265 9536 -257 9535 -246 ct -9477 -251 l 9479 -265 9483 -277 9489 -288 ct 9494 -299 9503 -309 9513 -317 ct -9524 -325 9537 -331 9553 -335 ct 9569 -340 9589 -342 9611 -342 ct 9654 -342 9685 -332 9707 -313 ct -9728 -294 9739 -266 9739 -229 ct 9739 -85 l 9739 -68 9741 -55 9745 -47 ct 9749 -39 9758 -35 9770 -35 ct -9773 -35 9776 -35 9779 -35 ct 9782 -36 9785 -36 9788 -37 ct 9788 -2 l 9781 0 9774 1 9767 2 ct -9760 3 9753 3 9745 3 ct 9735 3 9725 2 9718 -1 ct 9710 -4 9704 -8 9699 -14 ct 9695 -20 9691 -27 9689 -35 ct -9686 -43 9685 -53 9684 -64 ct 9682 -64 l 9676 -54 9670 -44 9662 -35 ct 9655 -27 9647 -19 9637 -13 ct -9628 -7 9617 -2 9605 1 ct 9593 4 9579 6 9563 6 ct p -9576 -36 m 9594 -36 9609 -39 9623 -46 ct 9636 -52 9647 -60 9656 -70 ct 9665 -80 9671 -91 9676 -103 ct -9680 -115 9682 -127 9682 -138 ct 9682 -165 l 9621 -165 l 9607 -165 9594 -164 9582 -162 ct -9570 -161 9559 -157 9550 -152 ct 9540 -147 9533 -139 9528 -130 ct 9522 -121 9519 -108 9519 -93 ct -9519 -75 9524 -61 9534 -51 ct 9544 -41 9558 -36 9576 -36 ct p ef -9871 -170 m 9871 -150 9873 -133 9875 -117 ct 9878 -100 9883 -86 9890 -75 ct -9896 -63 9905 -54 9916 -48 ct 9927 -41 9940 -38 9956 -38 ct 9976 -38 9992 -43 10006 -54 ct -10019 -64 10027 -80 10030 -102 ct 10087 -102 l 10085 -88 10081 -74 10075 -61 ct -10068 -48 10060 -37 10049 -27 ct 10039 -17 10026 -9 10010 -3 ct 9995 3 9978 6 9957 6 ct -9931 6 9909 2 9890 -7 ct 9872 -16 9857 -28 9846 -44 ct 9834 -60 9826 -78 9821 -99 ct -9816 -121 9813 -144 9813 -168 ct 9813 -191 9815 -211 9819 -228 ct 9822 -245 9828 -260 9834 -273 ct -9841 -286 9849 -297 9858 -306 ct 9867 -315 9877 -322 9888 -327 ct 9898 -332 9909 -336 9921 -338 ct -9933 -341 9945 -342 9957 -342 ct 9976 -342 9992 -339 10007 -334 ct 10022 -329 10034 -322 10045 -313 ct -10056 -304 10064 -293 10071 -281 ct 10078 -269 10082 -256 10085 -242 ct 10028 -237 l -10025 -256 10017 -271 10006 -282 ct 9994 -293 9977 -298 9955 -298 ct 9939 -298 9926 -296 9915 -290 ct -9905 -285 9896 -277 9890 -266 ct 9883 -256 9878 -242 9875 -226 ct 9873 -210 9871 -191 9871 -170 ct -p ef -10190 -156 m 10190 -139 10191 -122 10195 -108 ct 10199 -93 10204 -80 10212 -70 ct -10219 -59 10229 -51 10241 -45 ct 10253 -39 10267 -36 10283 -36 ct 10307 -36 10327 -41 10341 -50 ct -10356 -60 10366 -72 10371 -87 ct 10420 -73 l 10416 -64 10412 -55 10405 -45 ct -10399 -36 10391 -27 10380 -20 ct 10369 -12 10356 -6 10340 -1 ct 10325 4 10306 6 10283 6 ct -10234 6 10196 -9 10170 -38 ct 10144 -68 10131 -112 10131 -170 ct 10131 -202 10135 -228 10143 -250 ct -10151 -272 10161 -290 10175 -303 ct 10189 -317 10205 -327 10223 -333 ct 10241 -339 10260 -342 10281 -342 ct -10309 -342 10333 -338 10352 -329 ct 10371 -320 10386 -307 10397 -291 ct 10409 -275 10417 -256 10422 -234 ct -10427 -212 10429 -189 10429 -164 ct 10429 -156 l 10190 -156 l p -10371 -199 m 10368 -234 10359 -260 10344 -277 ct 10329 -293 10308 -301 10280 -301 ct -10271 -301 10261 -300 10251 -296 ct 10241 -293 10231 -288 10222 -280 ct 10214 -273 10206 -262 10200 -249 ct -10194 -236 10191 -219 10190 -199 ct 10371 -199 l p ef -10676 1 m 10676 -460 l 10732 -460 l 10732 1 l 10676 1 l p ef -10815 -407 m 10815 -460 l 10871 -460 l 10871 -407 l 10815 -407 l p -10815 1 m 10815 -335 l 10871 -335 l 10871 1 l 10815 1 l p ef -11239 -169 m 11239 -52 11198 7 11116 7 ct 11091 7 11070 2 11053 -7 ct 11036 -16 11022 -31 11012 -51 ct -11011 -51 l 11011 -46 11011 -40 11011 -35 ct 11010 -29 11010 -24 11010 -19 ct -11009 -14 11009 -9 11009 -6 ct 11008 -2 11008 0 11008 1 ct 10954 1 l 10954 -1 10954 -4 10955 -9 ct -10955 -13 10955 -19 10955 -25 ct 10955 -31 10956 -38 10956 -45 ct 10956 -53 10956 -61 10956 -69 ct -10956 -460 l 11012 -460 l 11012 -328 l 11012 -322 11012 -316 11011 -311 ct -11011 -305 11011 -300 11011 -296 ct 11011 -290 11011 -286 11010 -281 ct 11012 -281 l -11022 -302 11036 -318 11053 -327 ct 11070 -336 11091 -341 11116 -341 ct 11158 -341 11190 -327 11210 -298 ct -11230 -270 11239 -227 11239 -169 ct p -11181 -167 m 11181 -190 11179 -210 11177 -226 ct 11174 -243 11169 -256 11163 -267 ct -11156 -278 11148 -286 11138 -291 ct 11128 -296 11116 -298 11102 -298 ct 11087 -298 11074 -296 11063 -291 ct -11052 -286 11042 -278 11035 -268 ct 11027 -257 11021 -243 11017 -226 ct 11014 -209 11012 -188 11012 -163 ct -11012 -139 11014 -119 11017 -103 ct 11021 -87 11027 -73 11035 -63 ct 11042 -53 11052 -45 11063 -41 ct -11074 -36 11087 -34 11101 -34 ct 11115 -34 11127 -37 11137 -41 ct 11146 -46 11155 -54 11161 -64 ct -11168 -75 11173 -89 11176 -105 ct 11179 -122 11181 -143 11181 -167 ct p ef -11308 0 m 11308 -258 l 11308 -265 11308 -272 11308 -279 ct 11308 -287 11308 -294 11307 -300 ct -11307 -307 11307 -314 11307 -320 ct 11307 -326 11306 -331 11306 -336 ct 11359 -336 l -11359 -331 11359 -326 11360 -320 ct 11360 -313 11360 -307 11361 -301 ct 11361 -294 11361 -288 11361 -282 ct -11361 -276 11361 -271 11361 -267 ct 11363 -267 l 11367 -280 11371 -291 11375 -301 ct -11380 -310 11385 -318 11391 -324 ct 11397 -330 11404 -335 11412 -338 ct 11420 -341 11431 -342 11442 -342 ct -11447 -342 11451 -342 11455 -341 ct 11459 -340 11463 -340 11465 -339 ct 11465 -288 l -11461 -289 11457 -290 11452 -290 ct 11447 -291 11441 -291 11435 -291 ct 11422 -291 11411 -288 11402 -282 ct -11393 -276 11386 -268 11380 -258 ct 11375 -248 11371 -236 11368 -221 ct 11365 -207 11364 -192 11364 -175 ct -11364 0 l 11308 0 l p ef -11604 6 m 11571 6 11545 -3 11528 -21 ct 11511 -39 11503 -63 11503 -94 ct 11503 -117 11507 -135 11516 -149 ct -11524 -163 11535 -174 11548 -183 ct 11562 -191 11577 -196 11595 -199 ct 11612 -203 11630 -204 11648 -204 ct -11723 -204 l 11723 -223 l 11723 -237 11722 -248 11719 -258 ct 11716 -268 11711 -276 11705 -282 ct -11699 -288 11692 -292 11683 -295 ct 11674 -298 11663 -299 11651 -299 ct 11640 -299 11631 -299 11622 -297 ct -11613 -296 11606 -293 11599 -289 ct 11593 -285 11588 -279 11584 -272 ct 11580 -265 11577 -257 11576 -246 ct -11518 -251 l 11520 -265 11524 -277 11530 -288 ct 11535 -299 11544 -309 11554 -317 ct -11565 -325 11578 -331 11594 -335 ct 11610 -340 11630 -342 11652 -342 ct 11695 -342 11726 -332 11748 -313 ct -11769 -294 11780 -266 11780 -229 ct 11780 -85 l 11780 -68 11782 -55 11786 -47 ct -11790 -39 11799 -35 11811 -35 ct 11814 -35 11817 -35 11820 -35 ct 11823 -36 11826 -36 11829 -37 ct -11829 -2 l 11822 0 11815 1 11808 2 ct 11801 3 11794 3 11786 3 ct 11776 3 11766 2 11759 -1 ct -11751 -4 11745 -8 11740 -14 ct 11736 -20 11732 -27 11730 -35 ct 11727 -43 11726 -53 11725 -64 ct -11723 -64 l 11717 -54 11711 -44 11703 -35 ct 11696 -27 11688 -19 11678 -13 ct -11669 -7 11658 -2 11646 1 ct 11634 4 11620 6 11604 6 ct p -11617 -36 m 11635 -36 11650 -39 11664 -46 ct 11677 -52 11688 -60 11697 -70 ct -11706 -80 11712 -91 11717 -103 ct 11721 -115 11723 -127 11723 -138 ct 11723 -165 l -11662 -165 l 11648 -165 11635 -164 11623 -162 ct 11611 -161 11600 -157 11591 -152 ct -11581 -147 11574 -139 11569 -130 ct 11563 -121 11560 -108 11560 -93 ct 11560 -75 11565 -61 11575 -51 ct -11585 -41 11599 -36 11617 -36 ct p ef -11871 0 m 11871 -258 l 11871 -265 11871 -272 11871 -279 ct 11871 -287 11871 -294 11870 -300 ct -11870 -307 11870 -314 11870 -320 ct 11870 -326 11869 -331 11869 -336 ct 11922 -336 l -11922 -331 11922 -326 11923 -320 ct 11923 -313 11923 -307 11924 -301 ct 11924 -294 11924 -288 11924 -282 ct -11924 -276 11924 -271 11924 -267 ct 11926 -267 l 11930 -280 11934 -291 11938 -301 ct -11943 -310 11948 -318 11954 -324 ct 11960 -330 11967 -335 11975 -338 ct 11983 -341 11994 -342 12005 -342 ct -12010 -342 12014 -342 12018 -341 ct 12022 -340 12026 -340 12028 -339 ct 12028 -288 l -12024 -289 12020 -290 12015 -290 ct 12010 -291 12004 -291 11998 -291 ct 11985 -291 11974 -288 11965 -282 ct -11956 -276 11949 -268 11943 -258 ct 11938 -248 11934 -236 11931 -221 ct 11928 -207 11927 -192 11927 -175 ct -11927 0 l 11871 0 l p ef -12226 -1 m 12218 20 12210 38 12202 54 ct 12194 70 12185 84 12175 96 ct 12165 107 12153 116 12141 122 ct -12129 128 12114 131 12098 131 ct 12091 131 12085 131 12079 131 ct 12073 131 12066 130 12060 128 ct -12060 86 l 12064 87 12068 88 12073 88 ct 12078 88 12082 88 12086 88 ct 12102 88 12117 82 12131 70 ct -12145 57 12158 38 12168 11 ct 12174 -2 l 12041 -336 l 12100 -336 l 12171 -150 l -12173 -145 12175 -137 12179 -128 ct 12182 -119 12185 -109 12188 -100 ct 12191 -91 12194 -83 12197 -75 ct -12199 -68 12201 -63 12201 -61 ct 12202 -63 12203 -68 12206 -75 ct 12208 -81 12211 -89 12214 -97 ct -12217 -105 12220 -114 12223 -122 ct 12226 -131 12229 -138 12231 -144 ct 12296 -336 l -12355 -336 l 12226 -1 l p ef -12528 -163 m 12528 -134 12526 -107 12522 -81 ct 12517 -55 12510 -29 12501 -5 ct -12492 19 12480 43 12465 65 ct 12451 88 12434 110 12414 132 ct 12360 132 l 12379 110 12396 88 12410 65 ct -12424 43 12436 19 12445 -5 ct 12454 -30 12461 -55 12465 -81 ct 12470 -108 12472 -135 12472 -164 ct -12472 -193 12470 -220 12465 -247 ct 12461 -273 12454 -298 12445 -322 ct 12436 -347 12424 -370 12410 -393 ct -12396 -416 12379 -438 12360 -460 ct 12414 -460 l 12434 -438 12451 -416 12465 -393 ct -12480 -371 12492 -347 12501 -323 ct 12510 -299 12517 -273 12522 -247 ct 12526 -221 12528 -193 12528 -165 ct -12528 -163 l p ef -pom -1 lw 25058 18078 m 19900 18078 l ps -19470 18078 m 19920 18228 l 19920 17928 l 19470 18078 l p ef -pum -19974 18676 t -93 -325 m 93 -189 l 296 -189 l 296 -148 l 93 -148 l 93 -1 l 43 -1 l -43 -365 l 302 -365 l 302 -325 l 93 -325 l p ef -403 -280 m 403 -103 l 403 -89 404 -78 406 -68 ct 408 -59 411 -52 416 -46 ct -420 -41 426 -37 433 -34 ct 441 -32 450 -31 461 -31 ct 472 -31 482 -33 491 -37 ct -499 -41 507 -46 513 -54 ct 520 -61 524 -70 528 -81 ct 531 -92 533 -104 533 -118 ct -533 -280 l 580 -280 l 580 -60 l 580 -54 580 -48 580 -41 ct 580 -35 580 -29 580 -23 ct -580 -17 580 -12 581 -8 ct 581 -4 581 -1 581 0 ct 537 0 l 537 -1 537 -3 537 -7 ct -536 -11 536 -15 536 -20 ct 536 -25 536 -30 535 -35 ct 535 -40 535 -45 535 -48 ct -534 -48 l 530 -40 525 -33 520 -26 ct 514 -19 508 -14 501 -9 ct 494 -5 486 -1 477 1 ct -468 4 457 5 445 5 ct 429 5 416 3 405 -1 ct 394 -4 385 -10 377 -18 ct 370 -26 365 -36 361 -49 ct -358 -61 356 -76 356 -94 ct 356 -280 l 403 -280 l p ef -831 0 m 831 -177 l 831 -191 830 -202 828 -212 ct 826 -221 823 -228 818 -234 ct -814 -239 808 -243 801 -246 ct 793 -248 784 -249 774 -249 ct 762 -249 753 -247 744 -243 ct -735 -239 727 -234 721 -226 ct 715 -219 710 -210 706 -199 ct 703 -189 701 -176 701 -162 ct -701 0 l 655 0 l 655 -220 l 655 -226 655 -232 655 -239 ct 654 -245 654 -251 654 -257 ct -654 -263 654 -268 654 -272 ct 653 -276 653 -279 653 -280 ct 697 -280 l 697 -279 697 -277 698 -273 ct -698 -269 698 -265 698 -260 ct 698 -255 699 -250 699 -245 ct 699 -240 699 -235 699 -232 ct -700 -232 l 704 -240 709 -247 715 -254 ct 720 -261 726 -266 733 -271 ct 740 -275 748 -279 757 -281 ct -767 -284 777 -285 789 -285 ct 805 -285 818 -283 829 -279 ct 840 -276 850 -270 857 -262 ct -864 -254 869 -244 873 -231 ct 876 -219 878 -204 878 -186 ct 878 0 l 831 0 l -p ef -985 -141 m 985 -125 986 -111 989 -97 ct 991 -84 995 -72 1000 -62 ct 1006 -53 1013 -45 1022 -40 ct -1031 -34 1042 -32 1056 -32 ct 1072 -32 1086 -36 1097 -45 ct 1108 -53 1115 -67 1118 -85 ct -1165 -85 l 1163 -73 1160 -62 1154 -51 ct 1149 -40 1142 -31 1133 -22 ct 1125 -14 1114 -7 1101 -2 ct -1088 2 1074 5 1057 5 ct 1035 5 1016 1 1001 -6 ct 986 -14 973 -24 964 -37 ct 954 -50 947 -65 943 -83 ct -939 -100 936 -120 936 -140 ct 936 -159 938 -176 941 -190 ct 944 -204 949 -217 954 -228 ct -960 -239 966 -248 974 -255 ct 982 -262 990 -268 999 -272 ct 1007 -277 1017 -280 1027 -282 ct -1036 -284 1046 -285 1056 -285 ct 1072 -285 1086 -283 1098 -279 ct 1110 -274 1121 -268 1130 -261 ct -1139 -253 1146 -245 1151 -234 ct 1157 -224 1161 -213 1163 -202 ct 1115 -198 l -1113 -213 1107 -226 1097 -235 ct 1087 -244 1073 -249 1055 -249 ct 1042 -249 1031 -246 1022 -242 ct -1013 -238 1006 -231 1000 -222 ct 995 -213 991 -202 989 -189 ct 986 -175 985 -159 985 -141 ct -p ef -1324 -2 m 1317 0 1310 1 1303 2 ct 1295 3 1287 4 1277 4 ct 1240 4 1221 -17 1221 -59 ct -1221 -246 l 1189 -246 l 1189 -280 l 1223 -280 l 1237 -343 l 1268 -343 l -1268 -280 l 1319 -280 l 1319 -246 l 1268 -246 l 1268 -69 l 1268 -56 1270 -47 1274 -41 ct -1279 -36 1286 -33 1297 -33 ct 1302 -33 1306 -33 1310 -34 ct 1315 -35 1319 -36 1324 -37 ct -1324 -2 l p ef -1364 -340 m 1364 -384 l 1411 -384 l 1411 -340 l 1364 -340 l p -1364 0 m 1364 -280 l 1411 -280 l 1411 0 l 1364 0 l p ef -1720 -140 m 1720 -91 1709 -55 1688 -31 ct 1666 -7 1635 5 1594 5 ct 1574 5 1557 2 1542 -4 ct -1526 -10 1513 -19 1503 -31 ct 1492 -43 1484 -58 1479 -76 ct 1473 -94 1470 -116 1470 -140 ct -1470 -237 1512 -285 1595 -285 ct 1617 -285 1636 -282 1652 -276 ct 1667 -270 1680 -261 1690 -249 ct -1701 -237 1708 -222 1713 -204 ct 1718 -186 1720 -164 1720 -140 ct p -1671 -140 m 1671 -162 1669 -180 1666 -194 ct 1663 -208 1658 -219 1651 -228 ct -1645 -236 1637 -242 1628 -246 ct 1618 -249 1608 -251 1596 -251 ct 1584 -251 1574 -249 1564 -245 ct -1555 -242 1546 -236 1540 -227 ct 1533 -219 1528 -207 1524 -193 ct 1521 -179 1519 -161 1519 -140 ct -1519 -119 1521 -101 1525 -86 ct 1529 -72 1534 -61 1540 -52 ct 1547 -44 1555 -38 1564 -35 ct -1573 -31 1583 -29 1593 -29 ct 1605 -29 1616 -31 1626 -34 ct 1635 -38 1644 -44 1650 -52 ct -1657 -61 1662 -72 1666 -86 ct 1669 -101 1671 -119 1671 -140 ct p ef -1957 0 m 1957 -177 l 1957 -191 1956 -202 1954 -212 ct 1952 -221 1949 -228 1944 -234 ct -1940 -239 1934 -243 1927 -246 ct 1919 -248 1910 -249 1900 -249 ct 1888 -249 1879 -247 1870 -243 ct -1861 -239 1853 -234 1847 -226 ct 1841 -219 1836 -210 1832 -199 ct 1829 -189 1827 -176 1827 -162 ct -1827 0 l 1781 0 l 1781 -220 l 1781 -226 1781 -232 1781 -239 ct 1780 -245 1780 -251 1780 -257 ct -1780 -263 1780 -268 1780 -272 ct 1779 -276 1779 -279 1779 -280 ct 1823 -280 l -1823 -279 1823 -277 1824 -273 ct 1824 -269 1824 -265 1824 -260 ct 1824 -255 1825 -250 1825 -245 ct -1825 -240 1825 -235 1825 -232 ct 1826 -232 l 1830 -240 1835 -247 1841 -254 ct -1846 -261 1852 -266 1859 -271 ct 1866 -275 1874 -279 1883 -281 ct 1893 -284 1903 -285 1915 -285 ct -1931 -285 1944 -283 1955 -279 ct 1966 -276 1976 -270 1983 -262 ct 1990 -254 1995 -244 1999 -231 ct -2002 -219 2004 -204 2004 -186 ct 2004 0 l 1957 0 l p ef -2226 0 m 2226 -215 l 2226 -221 2226 -227 2226 -233 ct 2225 -239 2225 -245 2225 -250 ct -2225 -256 2225 -261 2225 -266 ct 2224 -271 2224 -276 2224 -280 ct 2268 -280 l -2268 -276 2268 -271 2269 -266 ct 2269 -261 2269 -256 2269 -251 ct 2270 -245 2270 -240 2270 -235 ct -2270 -230 2270 -226 2270 -223 ct 2271 -223 l 2274 -233 2278 -243 2282 -250 ct -2285 -258 2290 -265 2295 -270 ct 2300 -275 2306 -279 2312 -281 ct 2319 -284 2328 -285 2338 -285 ct -2341 -285 2345 -285 2348 -284 ct 2352 -284 2354 -283 2356 -282 ct 2356 -240 l -2353 -241 2350 -241 2346 -242 ct 2341 -242 2337 -242 2332 -242 ct 2321 -242 2312 -240 2304 -235 ct -2297 -230 2291 -224 2286 -215 ct 2281 -207 2278 -196 2276 -185 ct 2273 -173 2272 -160 2272 -146 ct -2272 0 l 2226 0 l p ef -2437 -130 m 2437 -116 2439 -102 2442 -90 ct 2445 -77 2449 -67 2456 -58 ct 2462 -49 2470 -42 2480 -37 ct -2490 -32 2502 -30 2515 -30 ct 2535 -30 2552 -34 2564 -42 ct 2576 -50 2584 -60 2588 -73 ct -2629 -61 l 2626 -53 2622 -46 2617 -38 ct 2612 -30 2605 -23 2596 -17 ct 2587 -10 2576 -5 2563 -1 ct -2550 3 2534 5 2515 5 ct 2474 5 2443 -7 2421 -32 ct 2399 -57 2388 -93 2388 -142 ct -2388 -168 2392 -190 2398 -208 ct 2405 -227 2414 -241 2425 -253 ct 2437 -264 2450 -272 2465 -277 ct -2480 -282 2496 -285 2513 -285 ct 2537 -285 2557 -281 2572 -274 ct 2588 -266 2601 -256 2610 -242 ct -2620 -229 2627 -213 2631 -195 ct 2635 -177 2637 -158 2637 -137 ct 2637 -130 l -2437 -130 l p -2589 -166 m 2586 -195 2579 -217 2566 -230 ct 2554 -244 2536 -251 2513 -251 ct -2505 -251 2497 -249 2488 -247 ct 2480 -244 2472 -240 2465 -234 ct 2457 -227 2451 -219 2446 -208 ct -2441 -197 2439 -183 2438 -166 ct 2589 -166 l p ef -2756 -247 m 2756 -1 l 2710 -1 l 2710 -247 l 2670 -247 l 2670 -281 l -2710 -281 l 2710 -312 l 2710 -322 2711 -332 2713 -341 ct 2714 -349 2718 -357 2723 -363 ct -2728 -370 2735 -375 2744 -378 ct 2753 -382 2764 -384 2778 -384 ct 2783 -384 2789 -384 2795 -383 ct -2801 -383 2806 -382 2811 -381 ct 2811 -345 l 2808 -346 2804 -346 2801 -347 ct -2797 -347 2793 -348 2790 -348 ct 2783 -348 2778 -347 2773 -345 ct 2769 -343 2765 -340 2763 -337 ct -2760 -333 2759 -329 2758 -324 ct 2757 -318 2756 -313 2756 -306 ct 2756 -281 l -2811 -281 l 2811 -247 l 2756 -247 l p ef -2882 -130 m 2882 -116 2884 -102 2887 -90 ct 2890 -77 2894 -67 2901 -58 ct 2907 -49 2915 -42 2925 -37 ct -2935 -32 2947 -30 2960 -30 ct 2980 -30 2997 -34 3009 -42 ct 3021 -50 3029 -60 3033 -73 ct -3074 -61 l 3071 -53 3067 -46 3062 -38 ct 3057 -30 3050 -23 3041 -17 ct 3032 -10 3021 -5 3008 -1 ct -2995 3 2979 5 2960 5 ct 2919 5 2888 -7 2866 -32 ct 2844 -57 2833 -93 2833 -142 ct -2833 -168 2837 -190 2843 -208 ct 2850 -227 2859 -241 2870 -253 ct 2882 -264 2895 -272 2910 -277 ct -2925 -282 2941 -285 2958 -285 ct 2982 -285 3002 -281 3017 -274 ct 3033 -266 3046 -256 3055 -242 ct -3065 -229 3072 -213 3076 -195 ct 3080 -177 3082 -158 3082 -137 ct 3082 -130 l -2882 -130 l p -3034 -166 m 3031 -195 3024 -217 3011 -230 ct 2999 -244 2981 -251 2958 -251 ct -2950 -251 2942 -249 2933 -247 ct 2925 -244 2917 -240 2910 -234 ct 2902 -227 2896 -219 2891 -208 ct -2886 -197 2884 -183 2883 -166 ct 3034 -166 l p ef -3144 0 m 3144 -215 l 3144 -221 3144 -227 3144 -233 ct 3143 -239 3143 -245 3143 -250 ct -3143 -256 3143 -261 3143 -266 ct 3142 -271 3142 -276 3142 -280 ct 3186 -280 l -3186 -276 3186 -271 3187 -266 ct 3187 -261 3187 -256 3187 -251 ct 3188 -245 3188 -240 3188 -235 ct -3188 -230 3188 -226 3188 -223 ct 3189 -223 l 3192 -233 3196 -243 3200 -250 ct -3203 -258 3208 -265 3213 -270 ct 3218 -275 3224 -279 3230 -281 ct 3237 -284 3246 -285 3256 -285 ct -3259 -285 3263 -285 3266 -284 ct 3270 -284 3272 -283 3274 -282 ct 3274 -240 l -3271 -241 3268 -241 3264 -242 ct 3259 -242 3255 -242 3250 -242 ct 3239 -242 3230 -240 3222 -235 ct -3215 -230 3209 -224 3204 -215 ct 3199 -207 3196 -196 3194 -185 ct 3191 -173 3190 -160 3190 -146 ct -3190 0 l 3144 0 l p ef -3356 -130 m 3356 -116 3358 -102 3361 -90 ct 3364 -77 3368 -67 3375 -58 ct 3381 -49 3389 -42 3399 -37 ct -3409 -32 3421 -30 3434 -30 ct 3454 -30 3471 -34 3483 -42 ct 3495 -50 3503 -60 3507 -73 ct -3548 -61 l 3545 -53 3541 -46 3536 -38 ct 3531 -30 3524 -23 3515 -17 ct 3506 -10 3495 -5 3482 -1 ct -3469 3 3453 5 3434 5 ct 3393 5 3362 -7 3340 -32 ct 3318 -57 3307 -93 3307 -142 ct -3307 -168 3311 -190 3317 -208 ct 3324 -227 3333 -241 3344 -253 ct 3356 -264 3369 -272 3384 -277 ct -3399 -282 3415 -285 3432 -285 ct 3456 -285 3476 -281 3491 -274 ct 3507 -266 3520 -256 3529 -242 ct -3539 -229 3546 -213 3550 -195 ct 3554 -177 3556 -158 3556 -137 ct 3556 -130 l -3356 -130 l p -3508 -166 m 3505 -195 3498 -217 3485 -230 ct 3473 -244 3455 -251 3432 -251 ct -3424 -251 3416 -249 3407 -247 ct 3399 -244 3391 -240 3384 -234 ct 3376 -227 3370 -219 3365 -208 ct -3360 -197 3358 -183 3357 -166 ct 3508 -166 l p ef -3794 0 m 3794 -177 l 3794 -191 3793 -202 3791 -212 ct 3789 -221 3786 -228 3781 -234 ct -3777 -239 3771 -243 3764 -246 ct 3756 -248 3747 -249 3737 -249 ct 3725 -249 3716 -247 3707 -243 ct -3698 -239 3690 -234 3684 -226 ct 3678 -219 3673 -210 3669 -199 ct 3666 -189 3664 -176 3664 -162 ct -3664 0 l 3618 0 l 3618 -220 l 3618 -226 3618 -232 3618 -239 ct 3617 -245 3617 -251 3617 -257 ct -3617 -263 3617 -268 3617 -272 ct 3616 -276 3616 -279 3616 -280 ct 3660 -280 l -3660 -279 3660 -277 3661 -273 ct 3661 -269 3661 -265 3661 -260 ct 3661 -255 3662 -250 3662 -245 ct -3662 -240 3662 -235 3662 -232 ct 3663 -232 l 3667 -240 3672 -247 3678 -254 ct -3683 -261 3689 -266 3696 -271 ct 3703 -275 3711 -279 3720 -281 ct 3730 -284 3740 -285 3752 -285 ct -3768 -285 3781 -283 3792 -279 ct 3803 -276 3813 -270 3820 -262 ct 3827 -254 3832 -244 3836 -231 ct -3839 -219 3841 -204 3841 -186 ct 3841 0 l 3794 0 l p ef -3949 -141 m 3949 -125 3950 -111 3953 -97 ct 3955 -84 3959 -72 3964 -62 ct 3970 -53 3977 -45 3986 -40 ct -3995 -34 4006 -32 4020 -32 ct 4036 -32 4050 -36 4061 -45 ct 4072 -53 4079 -67 4082 -85 ct -4129 -85 l 4127 -73 4124 -62 4118 -51 ct 4113 -40 4106 -31 4097 -22 ct 4089 -14 4078 -7 4065 -2 ct -4052 2 4038 5 4021 5 ct 3999 5 3980 1 3965 -6 ct 3950 -14 3937 -24 3928 -37 ct -3918 -50 3911 -65 3907 -83 ct 3903 -100 3900 -120 3900 -140 ct 3900 -159 3902 -176 3905 -190 ct -3908 -204 3913 -217 3918 -228 ct 3924 -239 3930 -248 3938 -255 ct 3946 -262 3954 -268 3963 -272 ct -3971 -277 3981 -280 3991 -282 ct 4000 -284 4010 -285 4020 -285 ct 4036 -285 4050 -283 4062 -279 ct -4074 -274 4085 -268 4094 -261 ct 4103 -253 4110 -245 4115 -234 ct 4121 -224 4125 -213 4127 -202 ct -4079 -198 l 4077 -213 4071 -226 4061 -235 ct 4051 -244 4037 -249 4019 -249 ct -4006 -249 3995 -246 3986 -242 ct 3977 -238 3970 -231 3964 -222 ct 3959 -213 3955 -202 3953 -189 ct -3950 -175 3949 -159 3949 -141 ct p ef -4215 -130 m 4215 -116 4217 -102 4220 -90 ct 4223 -77 4227 -67 4234 -58 ct 4240 -49 4248 -42 4258 -37 ct -4268 -32 4280 -30 4293 -30 ct 4313 -30 4330 -34 4342 -42 ct 4354 -50 4362 -60 4366 -73 ct -4407 -61 l 4404 -53 4400 -46 4395 -38 ct 4390 -30 4383 -23 4374 -17 ct 4365 -10 4354 -5 4341 -1 ct -4328 3 4312 5 4293 5 ct 4252 5 4221 -7 4199 -32 ct 4177 -57 4166 -93 4166 -142 ct -4166 -168 4170 -190 4176 -208 ct 4183 -227 4192 -241 4203 -253 ct 4215 -264 4228 -272 4243 -277 ct -4258 -282 4274 -285 4291 -285 ct 4315 -285 4335 -281 4350 -274 ct 4366 -266 4379 -256 4388 -242 ct -4398 -229 4405 -213 4409 -195 ct 4413 -177 4415 -158 4415 -137 ct 4415 -130 l -4215 -130 l p -4367 -166 m 4364 -195 4357 -217 4344 -230 ct 4332 -244 4314 -251 4291 -251 ct -4283 -251 4275 -249 4266 -247 ct 4258 -244 4250 -240 4243 -234 ct 4235 -227 4229 -219 4224 -208 ct -4219 -197 4217 -183 4216 -166 ct 4367 -166 l p ef -pom -19302 13984 m 24714 13984 l ps -25144 13984 m 24694 13834 l 24694 14134 l 25144 13984 l p ef -pum -19907 14592 t -43 0 m 43 -364 l 320 -364 l 320 -324 l 93 -324 l 93 -207 l 304 -207 l -304 -167 l 93 -167 l 93 -40 l 330 -40 l 330 0 l 43 0 l p ef -558 0 m 483 -115 l 407 0 l 357 0 l 456 -144 l 362 -280 l 413 -280 l -483 -171 l 552 -280 l 604 -280 l 509 -144 l 610 0 l 558 0 l p ef -890 -141 m 890 -120 888 -100 885 -82 ct 881 -64 876 -49 868 -36 ct 860 -23 849 -13 836 -6 ct -823 2 806 5 787 5 ct 767 5 750 2 735 -6 ct 720 -14 708 -26 700 -43 ct 699 -43 l -699 -43 699 -41 699 -39 ct 700 -36 700 -32 700 -28 ct 700 -24 700 -20 700 -14 ct -700 -9 700 -4 700 1 ct 700 110 l 654 110 l 654 -223 l 654 -229 654 -236 654 -242 ct -653 -248 653 -254 653 -259 ct 653 -264 653 -268 653 -272 ct 652 -276 652 -278 652 -280 ct -697 -280 l 697 -279 697 -277 698 -274 ct 698 -271 698 -268 698 -263 ct 699 -259 699 -254 699 -249 ct -700 -244 700 -239 700 -235 ct 701 -235 l 705 -244 710 -252 715 -258 ct 721 -264 727 -269 734 -273 ct -741 -277 749 -280 758 -282 ct 767 -284 776 -285 787 -285 ct 806 -285 823 -282 836 -275 ct -849 -268 860 -258 868 -245 ct 876 -233 881 -218 885 -200 ct 888 -182 890 -163 890 -141 ct -p -841 -140 m 841 -157 840 -173 838 -186 ct 836 -200 832 -211 827 -221 ct 822 -230 816 -237 807 -242 ct -799 -247 788 -249 775 -249 ct 765 -249 755 -248 746 -245 ct 737 -242 729 -236 722 -228 ct -715 -219 710 -208 706 -193 ct 702 -179 700 -160 700 -137 ct 700 -117 702 -100 705 -86 ct -708 -72 713 -61 719 -53 ct 726 -44 733 -38 743 -35 ct 752 -31 763 -29 775 -29 ct -788 -29 798 -32 807 -37 ct 815 -42 822 -49 827 -58 ct 832 -68 836 -79 838 -93 ct -840 -107 841 -123 841 -140 ct p ef -985 -130 m 985 -116 987 -102 990 -90 ct 993 -77 997 -67 1004 -58 ct 1010 -49 1018 -42 1028 -37 ct -1038 -32 1050 -30 1063 -30 ct 1083 -30 1100 -34 1112 -42 ct 1124 -50 1132 -60 1136 -73 ct -1177 -61 l 1174 -53 1170 -46 1165 -38 ct 1160 -30 1153 -23 1144 -17 ct 1135 -10 1124 -5 1111 -1 ct -1098 3 1082 5 1063 5 ct 1022 5 991 -7 969 -32 ct 947 -57 936 -93 936 -142 ct 936 -168 940 -190 946 -208 ct -953 -227 962 -241 973 -253 ct 985 -264 998 -272 1013 -277 ct 1028 -282 1044 -285 1061 -285 ct -1085 -285 1105 -281 1120 -274 ct 1136 -266 1149 -256 1158 -242 ct 1168 -229 1175 -213 1179 -195 ct -1183 -177 1185 -158 1185 -137 ct 1185 -130 l 985 -130 l p -1137 -166 m 1134 -195 1127 -217 1114 -230 ct 1102 -244 1084 -251 1061 -251 ct -1053 -251 1045 -249 1036 -247 ct 1028 -244 1020 -240 1013 -234 ct 1005 -227 999 -219 994 -208 ct -989 -197 987 -183 986 -166 ct 1137 -166 l p ef -1248 0 m 1248 -215 l 1248 -221 1248 -227 1248 -233 ct 1247 -239 1247 -245 1247 -250 ct -1247 -256 1247 -261 1247 -266 ct 1246 -271 1246 -276 1246 -280 ct 1290 -280 l -1290 -276 1290 -271 1291 -266 ct 1291 -261 1291 -256 1291 -251 ct 1292 -245 1292 -240 1292 -235 ct -1292 -230 1292 -226 1292 -223 ct 1293 -223 l 1296 -233 1300 -243 1304 -250 ct -1307 -258 1312 -265 1317 -270 ct 1322 -275 1328 -279 1334 -281 ct 1341 -284 1350 -285 1360 -285 ct -1363 -285 1367 -285 1370 -284 ct 1374 -284 1376 -283 1378 -282 ct 1378 -240 l -1375 -241 1372 -241 1368 -242 ct 1363 -242 1359 -242 1354 -242 ct 1343 -242 1334 -240 1326 -235 ct -1319 -230 1313 -224 1308 -215 ct 1303 -207 1300 -196 1298 -185 ct 1295 -173 1294 -160 1294 -146 ct -1294 0 l 1248 0 l p ef -1424 -340 m 1424 -384 l 1471 -384 l 1471 -340 l 1424 -340 l p -1424 0 m 1424 -280 l 1471 -280 l 1471 0 l 1424 0 l p ef -1705 0 m 1705 -177 l 1705 -191 1705 -202 1703 -212 ct 1701 -221 1698 -228 1694 -234 ct -1690 -239 1685 -243 1678 -246 ct 1672 -248 1664 -249 1654 -249 ct 1644 -249 1636 -247 1628 -243 ct -1620 -239 1613 -234 1607 -226 ct 1602 -219 1597 -210 1594 -199 ct 1591 -189 1590 -176 1590 -162 ct -1590 0 l 1544 0 l 1544 -220 l 1544 -226 1544 -232 1544 -239 ct 1543 -245 1543 -251 1543 -257 ct -1543 -263 1543 -268 1543 -272 ct 1542 -276 1542 -279 1542 -280 ct 1586 -280 l -1586 -279 1586 -277 1587 -273 ct 1587 -269 1587 -265 1587 -260 ct 1587 -255 1588 -250 1588 -245 ct -1588 -240 1588 -235 1588 -232 ct 1589 -232 l 1593 -240 1597 -247 1602 -254 ct -1607 -261 1613 -266 1619 -271 ct 1626 -275 1633 -279 1641 -281 ct 1650 -284 1659 -285 1671 -285 ct -1692 -285 1708 -281 1721 -272 ct 1733 -264 1742 -250 1746 -232 ct 1747 -232 l -1751 -240 1756 -247 1761 -254 ct 1766 -261 1772 -266 1779 -271 ct 1786 -275 1794 -279 1802 -281 ct -1811 -284 1821 -285 1832 -285 ct 1846 -285 1858 -283 1868 -279 ct 1879 -276 1887 -270 1894 -262 ct -1900 -254 1905 -244 1908 -231 ct 1911 -219 1913 -204 1913 -186 ct 1913 0 l 1867 0 l -1867 -177 l 1867 -191 1866 -202 1864 -212 ct 1863 -221 1860 -228 1856 -234 ct -1852 -239 1846 -243 1840 -246 ct 1833 -248 1825 -249 1816 -249 ct 1806 -249 1797 -247 1789 -244 ct -1781 -240 1774 -234 1769 -227 ct 1763 -220 1759 -211 1756 -200 ct 1753 -189 1751 -176 1751 -162 ct -1751 0 l 1705 0 l p ef -2018 -130 m 2018 -116 2020 -102 2023 -90 ct 2026 -77 2030 -67 2037 -58 ct 2043 -49 2051 -42 2061 -37 ct -2071 -32 2083 -30 2096 -30 ct 2116 -30 2133 -34 2145 -42 ct 2157 -50 2165 -60 2169 -73 ct -2210 -61 l 2207 -53 2203 -46 2198 -38 ct 2193 -30 2186 -23 2177 -17 ct 2168 -10 2157 -5 2144 -1 ct -2131 3 2115 5 2096 5 ct 2055 5 2024 -7 2002 -32 ct 1980 -57 1969 -93 1969 -142 ct -1969 -168 1973 -190 1979 -208 ct 1986 -227 1995 -241 2006 -253 ct 2018 -264 2031 -272 2046 -277 ct -2061 -282 2077 -285 2094 -285 ct 2118 -285 2138 -281 2153 -274 ct 2169 -266 2182 -256 2191 -242 ct -2201 -229 2208 -213 2212 -195 ct 2216 -177 2218 -158 2218 -137 ct 2218 -130 l -2018 -130 l p -2170 -166 m 2167 -195 2160 -217 2147 -230 ct 2135 -244 2117 -251 2094 -251 ct -2086 -251 2078 -249 2069 -247 ct 2061 -244 2053 -240 2046 -234 ct 2038 -227 2032 -219 2027 -208 ct -2022 -197 2020 -183 2019 -166 ct 2170 -166 l p ef -2457 0 m 2457 -177 l 2457 -191 2456 -202 2454 -212 ct 2452 -221 2449 -228 2444 -234 ct -2440 -239 2434 -243 2427 -246 ct 2419 -248 2410 -249 2400 -249 ct 2388 -249 2379 -247 2370 -243 ct -2361 -239 2353 -234 2347 -226 ct 2341 -219 2336 -210 2332 -199 ct 2329 -189 2327 -176 2327 -162 ct -2327 0 l 2281 0 l 2281 -220 l 2281 -226 2281 -232 2281 -239 ct 2280 -245 2280 -251 2280 -257 ct -2280 -263 2280 -268 2280 -272 ct 2279 -276 2279 -279 2279 -280 ct 2323 -280 l -2323 -279 2323 -277 2324 -273 ct 2324 -269 2324 -265 2324 -260 ct 2324 -255 2325 -250 2325 -245 ct -2325 -240 2325 -235 2325 -232 ct 2326 -232 l 2330 -240 2335 -247 2341 -254 ct -2346 -261 2352 -266 2359 -271 ct 2366 -275 2374 -279 2383 -281 ct 2393 -284 2403 -285 2415 -285 ct -2431 -285 2444 -283 2455 -279 ct 2466 -276 2476 -270 2483 -262 ct 2490 -254 2495 -244 2499 -231 ct -2502 -219 2504 -204 2504 -186 ct 2504 0 l 2457 0 l p ef -2683 -2 m 2676 0 2669 1 2662 2 ct 2654 3 2646 4 2636 4 ct 2599 4 2580 -17 2580 -59 ct -2580 -246 l 2548 -246 l 2548 -280 l 2582 -280 l 2596 -343 l 2627 -343 l -2627 -280 l 2678 -280 l 2678 -246 l 2627 -246 l 2627 -69 l 2627 -56 2629 -47 2633 -41 ct -2638 -36 2645 -33 2656 -33 ct 2661 -33 2665 -33 2669 -34 ct 2674 -35 2678 -36 2683 -37 ct -2683 -2 l p ef -3081 -77 m 3081 -64 3079 -53 3074 -42 ct 3069 -32 3061 -24 3052 -17 ct 3042 -10 3030 -4 3016 -1 ct -3002 3 2986 5 2968 5 ct 2952 5 2937 4 2924 1 ct 2911 -1 2900 -5 2890 -11 ct 2880 -16 2872 -24 2865 -33 ct -2859 -42 2854 -53 2851 -66 ct 2892 -74 l 2896 -59 2904 -48 2916 -41 ct 2929 -34 2946 -30 2968 -30 ct -2978 -30 2987 -31 2996 -33 ct 3004 -34 3011 -36 3017 -40 ct 3023 -43 3028 -47 3031 -53 ct -3035 -59 3036 -66 3036 -74 ct 3036 -82 3034 -89 3030 -95 ct 3026 -100 3021 -105 3014 -108 ct -3007 -112 2998 -115 2988 -118 ct 2978 -120 2967 -123 2955 -127 ct 2944 -129 2933 -133 2922 -136 ct -2910 -140 2901 -145 2892 -151 ct 2883 -157 2876 -164 2870 -173 ct 2865 -182 2862 -193 2862 -206 ct -2862 -231 2871 -251 2889 -264 ct 2907 -278 2934 -284 2969 -284 ct 2999 -284 3024 -279 3042 -268 ct -3060 -257 3072 -240 3076 -216 ct 3035 -211 l 3033 -218 3030 -224 3026 -229 ct -3022 -234 3017 -238 3011 -241 ct 3005 -244 2999 -246 2991 -247 ct 2984 -248 2976 -249 2969 -249 ct -2948 -249 2932 -246 2922 -239 ct 2912 -233 2907 -223 2907 -210 ct 2907 -203 2909 -197 2913 -192 ct -2916 -187 2921 -183 2928 -179 ct 2935 -176 2943 -173 2952 -171 ct 2961 -168 2972 -165 2983 -163 ct -2990 -161 2998 -159 3005 -157 ct 3013 -154 3021 -152 3028 -149 ct 3035 -146 3042 -142 3049 -138 ct -3055 -134 3061 -129 3066 -124 ct 3070 -118 3074 -111 3077 -104 ct 3080 -96 3081 -87 3081 -77 ct -p ef -3375 -141 m 3375 -120 3373 -100 3370 -82 ct 3366 -64 3361 -49 3353 -36 ct 3345 -23 3334 -13 3321 -6 ct -3308 2 3291 5 3272 5 ct 3252 5 3235 2 3220 -6 ct 3205 -14 3193 -26 3185 -43 ct -3184 -43 l 3184 -43 3184 -41 3184 -39 ct 3185 -36 3185 -32 3185 -28 ct 3185 -24 3185 -20 3185 -14 ct -3185 -9 3185 -4 3185 1 ct 3185 110 l 3139 110 l 3139 -223 l 3139 -229 3139 -236 3139 -242 ct -3138 -248 3138 -254 3138 -259 ct 3138 -264 3138 -268 3138 -272 ct 3137 -276 3137 -278 3137 -280 ct -3182 -280 l 3182 -279 3182 -277 3183 -274 ct 3183 -271 3183 -268 3183 -263 ct -3184 -259 3184 -254 3184 -249 ct 3185 -244 3185 -239 3185 -235 ct 3186 -235 l -3190 -244 3195 -252 3200 -258 ct 3206 -264 3212 -269 3219 -273 ct 3226 -277 3234 -280 3243 -282 ct -3252 -284 3261 -285 3272 -285 ct 3291 -285 3308 -282 3321 -275 ct 3334 -268 3345 -258 3353 -245 ct -3361 -233 3366 -218 3370 -200 ct 3373 -182 3375 -163 3375 -141 ct p -3326 -140 m 3326 -157 3325 -173 3323 -186 ct 3321 -200 3317 -211 3312 -221 ct -3307 -230 3301 -237 3292 -242 ct 3284 -247 3273 -249 3260 -249 ct 3250 -249 3240 -248 3231 -245 ct -3222 -242 3214 -236 3207 -228 ct 3200 -219 3195 -208 3191 -193 ct 3187 -179 3185 -160 3185 -137 ct -3185 -117 3187 -100 3190 -86 ct 3193 -72 3198 -61 3204 -53 ct 3211 -44 3218 -38 3228 -35 ct -3237 -31 3248 -29 3260 -29 ct 3273 -29 3283 -32 3292 -37 ct 3300 -42 3307 -49 3312 -58 ct -3317 -68 3321 -79 3323 -93 ct 3325 -107 3326 -123 3326 -140 ct p ef -3470 -130 m 3470 -116 3472 -102 3475 -90 ct 3478 -77 3482 -67 3489 -58 ct 3495 -49 3503 -42 3513 -37 ct -3523 -32 3535 -30 3548 -30 ct 3568 -30 3585 -34 3597 -42 ct 3609 -50 3617 -60 3621 -73 ct -3662 -61 l 3659 -53 3655 -46 3650 -38 ct 3645 -30 3638 -23 3629 -17 ct 3620 -10 3609 -5 3596 -1 ct -3583 3 3567 5 3548 5 ct 3507 5 3476 -7 3454 -32 ct 3432 -57 3421 -93 3421 -142 ct -3421 -168 3425 -190 3431 -208 ct 3438 -227 3447 -241 3458 -253 ct 3470 -264 3483 -272 3498 -277 ct -3513 -282 3529 -285 3546 -285 ct 3570 -285 3590 -281 3605 -274 ct 3621 -266 3634 -256 3643 -242 ct -3653 -229 3660 -213 3664 -195 ct 3668 -177 3670 -158 3670 -137 ct 3670 -130 l -3470 -130 l p -3622 -166 m 3619 -195 3612 -217 3599 -230 ct 3587 -244 3569 -251 3546 -251 ct -3538 -251 3530 -249 3521 -247 ct 3513 -244 3505 -240 3498 -234 ct 3490 -227 3484 -219 3479 -208 ct -3474 -197 3472 -183 3471 -166 ct 3622 -166 l p ef -3767 -141 m 3767 -125 3768 -111 3771 -97 ct 3773 -84 3777 -72 3782 -62 ct 3788 -53 3795 -45 3804 -40 ct -3813 -34 3824 -32 3838 -32 ct 3854 -32 3868 -36 3879 -45 ct 3890 -53 3897 -67 3900 -85 ct -3947 -85 l 3945 -73 3942 -62 3936 -51 ct 3931 -40 3924 -31 3915 -22 ct 3907 -14 3896 -7 3883 -2 ct -3870 2 3856 5 3839 5 ct 3817 5 3798 1 3783 -6 ct 3768 -14 3755 -24 3746 -37 ct -3736 -50 3729 -65 3725 -83 ct 3721 -100 3718 -120 3718 -140 ct 3718 -159 3720 -176 3723 -190 ct -3726 -204 3731 -217 3736 -228 ct 3742 -239 3748 -248 3756 -255 ct 3764 -262 3772 -268 3781 -272 ct -3789 -277 3799 -280 3809 -282 ct 3818 -284 3828 -285 3838 -285 ct 3854 -285 3868 -283 3880 -279 ct -3892 -274 3903 -268 3912 -261 ct 3921 -253 3928 -245 3933 -234 ct 3939 -224 3943 -213 3945 -202 ct -3897 -198 l 3895 -213 3889 -226 3879 -235 ct 3869 -244 3855 -249 3837 -249 ct -3824 -249 3813 -246 3804 -242 ct 3795 -238 3788 -231 3782 -222 ct 3777 -213 3773 -202 3771 -189 ct -3768 -175 3767 -159 3767 -141 ct p ef -pom -0 15837 t -pom -count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/Software_Stack.png b/Content/Figures/Software_Stack.png deleted file mode 100644 index 4c6b99e0f8d4a0b04ce35064546483c84f4a3286..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 63072 zcmZs?bzB?G_XZl=rMMMqfg;7--6;;mix)4&gHyD4aWC##+&yT40>xc|yX#&0et-A= zb3Y^`+1=Thony~==1iE%2N?`h5>yZfgdry@sRjbU&VoQNUC4;Q5%u+vVc-MaQcOt< z1gefkdoV@-e#1Da$%un0ev|D2KPXLQ)s#RWFf9n=7YG8~0f+o{Kp+=Z5NPic2*jTZ z0ug>mZ&noqP9T~n$Vh^oU;ci!6~+NaP`=3OI02us|K8GrHo`!2kesBLhWq@%qi;N( zwktH;hwl-MSVKwn$QWDS4L9hxEy(tOcA^K?qu~CB&Q-HQEdq76CCOav3U%qGp@e7I zzWiRD^hfVqJ+pF}F^=mx&4kwK9RdA&85kd)qxE-4#fu=f2sq?z)H?)My2(rk;z_2Ac7tLOERzcEqp%PV=C za^4Qq!;1d$T2!v;wD{j~+HTmi|6P-cjAr}qVxnLxYNjgU|GpQ5{r_J)fE4G7Or-|8 zn${V!A3HyAb^Bji?jQfVw{!c$7R$2&=()k@p--=r!hN+63$|0_ zp(n>^eE4B;Z0YtHw)6hjcQwTK+AW*~_GX{Z(0y%T(r%$OFM%uw+X`epcD`Nb3HonT z$xVaHZJr|4UblzBq7Qf7K_Xn_J~xF}jYlDUxzSIX5*pjFGCmQv=WVkabhPmHizngh z&krIZH>=~8`Fz(QeA0vEy#r~R zJD_-NRf|b5`(JCtg`4n>9iiLk=f>5^j)!59+Z5NZy|-l0H#cb=x2qygBV(=C+m+9E z<8hbdkpGjT72orz$dlfE7g8UK@M&*v2>M3hA$K7|#XU^x<=+R2=aZ1-mB)SG$7A)n zAv)B9Ch=XC<%b@G*Wpj*Er*`~z1Su{e(dyKJu~u!rU-dneJRni_^ra=?YNI5eA1;Y z{J0yIm9pE-|9#&FwDNTI;Jdf;<^HMgc~|+0E}=BB081PhPL!P8fTGw1O?2YCRjox} z4qf;m_Ev$M?Kx!nu>KpM6e*rw&v)0L6oMq{?^V7qa?{$ddJuX81_paZtA2&P<5&t+DoC!K$_`&+= zw+KM~GmR0i|E}z~vJuhcTo4y8F(wk}3&s%9y~%n$KYn_1!k9IFt$F?_4RjDlGyZ;{ z>ec_$UT$;j`N7S%(YPm?fc8B+M_P)=N>9f_k_dPeIHCPyf4tn5_49Drq>7&GEha9z zZQ%b*!{oM~$7klT&ZtGCkBiN>Jp_Z)r}l(SV z#nvt4f3}+<*VKAmD)M~((OD$i#^lKhtK%m8n!p<>koBzo^E=YQxu7<3H7Pr0+Rw)Q z0PrY^G>bRkhDf7&-N?MrBPVEe&W?1VZZB^3GM`1cc=VKFv1=#)IAl9$#;w{C zNw$Ct!F)s+qKh(}Nop6|YW~-Cih!b`^MQWTS(|Ix1iRvS*2&cZmJr62>?G8~@RfgI zGjivd;Fz@=lJ4kJWvidlipMYOlyIIS?z&NmWk>Jor+FixvxK2L^Uh zo}jDO0vB|%&k2N88)zLo=Bi$Yp2w?;Zp&pJ-@5)uMcV<>_ZS-0&4d z+80;c9zC@kfj5k-va80YXu~^ZkcO@0zo)Z8Sb2Vud7l13GwLGz8xb%cY?G%-ZDd<~ z(+tEa={_S!{>B1b;7*efL0WNA}?I<2H4!ks!f4gHqwJsA%SrIl_PXw~dJ<@(_1> zSf6dc^wBR1Md_=?@~$9A!K1<{rur|IM<&nMd8-HLuc!slU_%QWN33OoT`wRT5NPLS zhgz`3?v3H?UI*mY0{8l=_A@s0Ney*!LSd!P(r1e>=GX&qD-Pm#QtBJ}(rmfiz{kMm zIS8*PiRDqL2;+O@Z^0(|%~8bF5T`sI`>Te-=OMJ4#mZ-ftEg^z$X?yd{cz|6@&WC(-qz8;Kc-FV-=+$JRP zMf@XVW?cbUe|1Mr+G*!KhP>NI*+)Y+JeKW+$RxM=mLosyIu{`R4KtN>Sd756e8yCE zcoqcF_regXeO*6TSzC{6nQeV+@b*WQ#c~CD=;C)|(lEO1b$l5zLL)iF2Uwr25~Hi@ z*AIIX)V~~Y+qu9Pm5+UHC*>11JGz&0z*zBdpw3>#H=15H7rM4a1MQ;=zNBMVM@XRO z;Pu|Qj-CeT%76U;_GAjkQi3}3#m1AHxvq`XaWc+ z{SF^qRD!nM`t)Jd=S5eE|2nSo_WOQ8N^5v_eHRfR&Mx~F?oYTyVj2-wJ&P&y@$?x4 z+D|-r9j}gG3~c6TvY!>5gAQBV>`k!?aRIG(=o|4+{ea~(&dlqLtlAcb!}UUuHa8ZM zZ%R2}B2g4}rvU^iNwGsXGcQ+6(SoJdpSd<&qH=W!Vn5Sj;S2+QWy8}qET6)N9B0JF z_j2-G7H`y9*v8A$8F|I|8Q!x9A3D6D`p``Z>OWpQ-H)t?1I;{B9dyxFy2rohTG#Uo zMUKrhoy2;otzc2NB)7w}-HYA+eF|6Bt{nt)fRpfjI!Ab?*xyO}mSi0%t+wDGY?^`T z=EC%mbs3Sfqb#lo(#@+wPZ1Op+p%*pDoHHAoz4D6fpza>Q|cBSV)0OLH{Bmn9@Cd; zK}w?~fK_Wv0!$Uq(cKWw9qL=a+eF|uKS?UkblQmVz+yeEVgiDo+gw|I5$PO6#2-*z zobOA^r$H-eUxmK_wnrP0xWtG?JU_@fnqy^hzue{qvAfTDubA&MbtGJex9~*lwIjjf zqY^9Cd)}IZ-7S8|a+t0#Idf1(zRaT6ocDwx@3bRUgRC`&=P8Qe?E< zfKa7AYH-+nk~h%{z4ql~J6&OAt44M*rjY?9Cu4)`#et)EX)nJw2;+vcj+YYY2hj)R{jyee({EITKlU8%yADg3+D#x zyAs7WBX0+67XvFV-gj3^_y$yHW?e|R{(0Ly(yzpOGcAH{PB@`+Uz!!{vYssBs7Cj= zY4PHX0jKp2&*;)gtK)3i7Yp=c1_9sxS$&QgPI^MT?>GyfC=qA;(C&2;NWm|jqRfj4 zfMSa?_e^aZ@mXZ}52NUYPL6%%7H7z++BH~&U+pue2T0zXL!Uvxj<0we3aZQoqZgK@ zt+uvDvAS59O`aYoKp^W#YvQkJrZ8s{esFx99#rtqu1r|Gu?)bSX6@+)Pe(JoxKhAA z2ER9&3vKf==b0T=`tWlL1`ZwHbRVw)%Gg`joVe!H@l<-FF~hF^ysRnmOYV)cm-8#c zkdCOA&;s1R{Y$Jr6zTfK;hYv%m}j@Y_z2sHP6aDhJ(fv888O9Q zq58Be1zU|VgUt2d%i4kr)oL9sR=W zV>G&7764(NSziWI3W zjAGK#!hgtmqSU{3i2d*!BI$?$suP^m%QnXri=i#*)RFuLSB#SftG;gOB_}ufHLNWA zg@r|%ZVh>|Mx->|a0k0h;y=I z|8MN-GzmXoueL|CAiI+t=s)4kp(3F&6d9lAV&g`nRvEAISlrSgIpC z(%w6-_~{ERd_Iz0GD_ZdGfqv&ao-xci>ho`)JUr|(+qjM3Ocom8=2%=#)BvMA+Lhv?C6YqVpQ?8er z0v1+;X6!j$Ac@ZJF}pkc7Nrwa>Txv%v-^&726X4F`q2P%?Jv_lK>8+jXXxw8DJhAp z8mxaoi$ou20HRqkWeyxDd8~EMz@JmD&!dzOJP3sdl}9;F$6c1Zo&Bi6En2RjiK|;>F3go!vUYKYW#Ok$#+-9HA2?7kzv_;%v?^FQUxB0u0L|aSIt%$ z7Vo=SZbp3DCjK|T5k+S!2C8CTZWw((JTIXbSbHKhwDCXtJu%%*Jb9S2NX58+MZb#* zEen(zBEZ{NZw6u4Lp^9{DxxVrdb1;Z%EE@tgdS>{@Kzow!wsNN>5rYG>XJr=4)c=A zNlsev=hPo+na0AY5Qvu*b1*lTMdgzEds{F5{e0PithG2&YRaIcu5r4hBU{;8N^r+9 zU0qRg7>b>v9(2Oa5elZ`3$9n@_RIQ*?-ETVX$8~{*s+nP(&sZL1poTseW8~XOA5O9 zNLcr{Tl8^eTb2FqlAW*IoR?Ub3Tg-?TZ)tycf5C~rD3=0qdU%Jaj1dIsDQfRHg#U15aBMC z$56O+g!dR<2Amx_y|abeWND5IMM>R z*^a4XyLP6CTl7TtxAo^hsN%@#C{QlsKgSqw<8?@3Bk!u?$o6eTCUB$q#Z_xr)0j4i z?n{kvGohEF;BEt1mL~*!)SNi=d-YgTHwkHiS!8?RAb{n4F1SAO2i4TQ#)9Zi8re;{0u&9$z7|bA z+Pt{vTBJTV9^B^GgV+>-%%?4H_(rk0f&JjLGjuloAkFgJ@8g zlRW%)t)DfyE$-Rru-4eQJcCeVK6AtpvNGNai9%#S@Dn}_;nT-+pZS>Td7pP-;P2jI zeOP+P>s2VJKa(UA_p~!Dm-hA5?k|~WWd_n117{0qFJnieth0LC{kOyANxL@1Y6ewI z$G`APO!Kr=Xeh#qE{>uI8T=&8211brWN$vaN5X=YB7M`5nYT!o;C@@F@wfvE#7gcC zDyC7GxBC;3cR#Hit6KvPw|lizILG6Vvr-LyKSR~vo zr;!2xvE!Cv*3f%ms%NEW9)hRMB+ot&)-^(xte=Sjuo2}a31@=Qi2GNIYM28wf4Y_0 znRDqx)4u;BDNg$5mjL3fPJ#P2xhzuF0?n-Ye6xBvec|=)9Zf zUJMHxcb#M%Z}9QfgyA8rB14MW|4>4q&gaVSxZ+EZxG{xSu~gZv>*C9t&@IX@bZGJd z;Bd^aaU~8tGT#S&gnPf)bKXkMB{w# zOSedz1TeYnyb+GLU?63J;VZGM{w~~#WUkJmknNLV~t9UP=x;SNLP?U5WJuE8j7ZZHT2oNl$A0V!tptiz)h8qa? z`Q2~oz?h)Y?4|R4moD=JVSyeZHc>y}dG>ZO3}ths(xIU^ZhL2IIF4Y@5fUYMuGrEt zh3&X}r5*(bNEy$L^eU2+H_K)y;4}W=@A_&JB8zPmCBMEc7p;W@1_*Cxn77tKhTK#k z^k>wO(<_dy7`2_g_;LpBTyEOPNUaKuTw#H=S(Cc2a^6w<5)q@Ckhl~+4YXGi6kAg! zziD|{=DFpQSQMx((mIIGObV26^~k;PmW-bH5m&%ya|w*bBwc1kX9tEZ2DYq9d81zl zD2E*%SmXX|4L7=PNEfAVG`}-wM+a5A$V3}F4!n^~vlx(W(^p$a+~{m~>{+oV30_GQ zV1oe~-6{1TPbWCr>bD&A!XJ?Gd|GMUjW$~JDUqOvYy5)YW&)evu+pzN)3+x>E@nOW zW1NU9;ItDC9~vU;)^W$c1o7YE&1N?{riXNW?Gc^lG+l^}GIre>`p#eE8@1o9yhsR5hR2*elRo>xP0FaRrjWP_e8I_&+BeZF z-b9lFy-OE1p!!4qf!NQe{>vTb*J3;^7M+0QIJ(CTBw#Aublj%-+%}rRbS8^*boq^JKNd zvgBT@%gIEG2s2IBzPxMK&X)dbyI3 zEP6Z`$BF@`?Rpr{V2M?6FpmIOyn_zas}=O3%6>R3Pz;aCV5N>U+=?kH5ZuDg(Ll)`8C`o>L1yv$O?0g7+YMs+*kdrh~WUg{Ce!% z)ya#MBdIvCfCVANhmN_*nWCg{I|Wx|2M(pQIjYG6H*tfKbWk6V;4_(wH*i%E1%Aa}hyFEK9zhg2NNl*-vDekJ+R- z?SMl#9LZN3$XDZ%&?zFDUb^nZ1^I=`AE=W`kn#lg|8#f+6Z22z+4%i~AMz!ApC%=P z8wJL3cn5scR8Tv3VG_6jCn110oQB8I(pA=E%?PNr2AK_s^ki$2)nwU8v-&^)v#X7x zeAwydEMT1^mU|Snn*4Rk)SGC~xZvQP^jqsRa)!xwSEFfRbCU1EWot9SdF)qnno%aR zPYb_-N4WgPMsP!%Eu^K-MXss+`LBXHJ!TduLPNvUfhc z45|ZQ$q_s?#aU$qKR9-H7m98jPNMC0V>Px}Iit)bL==Grm})hpO)k$f9j-C3v-q;v zj*thA)IuAhLlMY)iOJ?x2@>*1%HGbEYLaOgpm`-OF85#WHC{E@b09377SK(WUUFbT35C9g8&@Uge%v6MNu>jk(t8IDtLB#bip20ryn@f#+maBq1fVigL>s(6_g=o8~li7x+~r2X^?zqenpa?I}V+CP)z63 z#`BHM^Hx`M2Od?RLP%zWdn~o92%U? z>1nbu-X94>*KZDOLHZ0^(e&o{^lgu>QuUaR(jzQxw_o2W=B?BK9n7gb*)+Qr+1CWo zuHiT@IhF_qr{I2!+5c!Z{bxaRb~s&{5=ZW2-jAjCeEte&vzxZIL-A4~IAJ85yCRWr z43-yhHF|oxRafE-uDVYagM+w7GXQ?e=V}rNa#X`tQ|?H}kV!SAwkW zPG*x9`wVw~f4qNW%OUmaYFIuS2GG{uE%WFoe5GXl@?Oq4Y$g0z2OalDl~uVYbPgWM z)3TM_xT5-3p_UyHx?&T7=x-dUg1#WCeI{2mN!Xh!+$%vYS6K%WsU<%X!-^S5wlLlc2>&**6Kv0_3fPWi5u=IhvgN+-%g4UpmgdkNZB%pRXUUy_Gir zB~bb`%88ENeo25i>sr+qp6Cc0lOhE;^o=#~t}K;gqmFj*Knv{(Nx+8*>c67|a3pW~ zsL4rrg9;FhfH)6Ch{*#x#ssfdd@&#HA>Rp&B1W5(h`GVanZ2fc)PD+ynTl%62>zzopg^O-XyIR`)8x?fDpR#QiN)E?DZ-SMb3X_OT6d`0gWQJhj+sI9%V zr%_ao5&z?NVNW{5s5qPgC-zY;dYg@z5<6Do_myBJ-F!vr2ya;wokLB&R-miU*e?@t z$*-XAv1d9(v!AH~b8T7ZNoDckiawM!Z@|~1c>EGosMfRAC*zW?6%+^>{>WAj)f5t? zT({dgEWnN{->fDOzW}*wUxv@%rF^UEw1@3~xFzz~CKf@UF#r6~o~YeTi>}TLrNZkp z{E6Y4A70SJmw<=6OZ>PwSv=_;+V!E-VE>*bvhVeg0zmwn`av^GEC<6A^TD*qIPie- zG=HYB&{MBm3%~WOkL7OpND51EHGH^duB-!WyjbmcrS`oYz+~;^6Pg&ijl9NXGcw`7 z$;Jiy@VXs&(=f{UQ#6dqtEY)&3uD3ehvV>LpM3|SJ|mBe$0?gwGHhAi&7SS#W`Du0 zVFR}}l<9}PXVhMg-=G8roJcC&cZpjrP-iB${yiEfDQNf@lZ{Rb8_nhMDFntW;V0*- zvgPyuylDG8@_Fs=wv%kC^ogb7hC9i3OtQ*Arffrb(%pjGdfsfHDj&mxZ7PmD6rlC} zVk|`R7Xd14c_i;ZMf&zua82~{+Hcj5pLkxO!W1K!K0TzC?)G`GO`^ck4{pejUs(6f zy((w3=Z0?@Z8SxWOg^6dhpa+y`=1gvOEqefAwP$%&GQKmR1`h(FY$LUP@V+>ua8|aQi z@vr`%;A`bP9pQ?btqU&4e!* ziB6Uq7o`{eA8FT(&skB&IKV{!>D*wn^W0Fhp zNq7mIK^4~&WWm{B)D_SVq1o)Io*`31E$?VF`a!V|DtTvkx^eMbf&IPf(~QJ9^YT%R z0+?R6b3=zlJ_NkA6udsz?x#ApN&oNxF-nkjauMDvEkoa%K5A&4-2{qH*gLFSEf77I zTy^FdLEcQ78gc<8Le(;P{%dE!F{dd9HbVM(VeeP@&^*J3 zRB=^QwlxANjeah|S9z}$_k2~A>=msRE=W;p;_j@9&k$?VaOxuOY7pn)rMdbO|01%$ zh(N5|e{AGCttIdOuDCh;N1u+M|1kMh8rDg2UnbokwXFUTxx}ut&d6iR20XoAB%oVq zP_C%oQaAr;n;<8)+YMsw9y*6_OG=vHdujI{|BB9`4M>5IB`(tnX95pZJabQP#(%A? zb3K2J73V*KH#ntK1LIXTN`!Y-9QEB_7y1f%ro4w{yp^`Gh8EIt2*OF0?^T9t+RHlo z2#Db6Lc;xz!TbvomqIla(dA>$iv4Gwy;EHvz`OMCkX%$aboCjJurvDk{`k`xgf|2L zG$Z=Z<%CPnO9>Gk7sAzgK06HsrBppRYIhvTe?>b)w2Dgp-UaBbj;x_Qh(+@;3#yX>y;Sui{Sq)RGKJG zK@w>G@uu3ncqANH?fBolH2vFtN`Q-5GSD0-NE52(oY*`E%$i&bqTaOWIy!y*EON5` ztNhSXVBQvyMVQgf64ua*d%#8?ku%kz_4vZF~Hv51Iw9>!94mB_y8_4i8I{GOo z@Jo`8;0abEAMVDv7Y;C0Vw8!xp+e4>=<>-QC+YX#9RW)uMWF)J z>@^yB{F;V>59Wza>cf)ko^qXQ+_soLKi$|y0Mf?2SpCGco2^D-F*mK~7sW-Ny;2Sm z_tHzYpX_(1&P;P8uVv;P816GBI{!A>L{{{Ge;YXq@|W@=uHSte#bof^O<$yVt=(n> zJcy42N7^^`3!x4dp{LgIXCw8N{+0V|+wgv6k;-Y?2!U%i$QGBUcBJ_Q%Evm>+^dOa z+&15fXH#ROXDuLkxh_hP+Pvx7d@TK2ljK~(bO3s~k=(k-)*%fxmlxWsq>%-!_KC17n)oso=dgDvRgg8TJ@8=1Ml%echrfJu0C-yW+o#%EVR!u zzwK@JdIgs32&|#V7!QqSEg(Wmu&K=v44hDmKNLw=>(cz-|@8zFhf|t zzgFfDT2H=S(pkGf^2@=^6YtC*&5B!sVV_C2O#P84VxH-8p>h-)cOvrQH{(x3&*c*v z4h9P3Nl?^;ecZC)fkVkfkLiUk(%*#RqX!9vU`kz>upfja?=4;Bpkf#4GftVwgKq){ zU}fP3fW=3ZmP4RA;={CDR7&BNi2mdBed~ivd(}5nVw+eG-KW>{jJ{>->s2n8he;x~ zDWjb;?KD9LPC=B%yp&@wVSz#{!|aX=C8|C`UQ8e|Um9BoU^sXew?`LTYf$k)id>nlCgkAQ{9BX~E8=8aWcIbn)q zgho*+L7jFd^DMGMQm}7oTYGkARuGI$%@{~TAl{0$itI-Q%3X40LsyshG`V5*m@r4? z4nL*~csh$;?!|Z@G=a_N@nc(fpM7;T=lE#NC+wu?plF!90m@TO?)f5wQ`;4MWDNew zyXb8oxb+1Qup}66Ne>9VcF*QHME2~2;Umv5Fg8w{BMU9j<#{6~$V23AG3Y}AWxH%l zo6l|+s(Z8iv<&^`s5|>=%B`Mk(w^$%XPjRY7&@j~GbR^3Mu&Th7YYh`7^9?24fY{re`>f*`;-A<`EEp&xAHd4^~g{~0~wK-JKUd{ zEP(HFg?|Jq8|;JKQ|;eehF?L%W*U6TglQ-C!3MO8BF*)Rhx~LfhKJifim?c$0pg>G zZ;%b;7vqiP@3(PtOhMf`3c;@c7w7x)cYJnTl)ESy*~o$Z_}$^@4WN?KiW9Dm(O>XASjox}{ci$ymG+Oo$tLR@mT z2>K&>@}1Zp{OrYdG{Y63dq#MSx)gJzMk09NT+j44d%xVvX@225q3EcdlDae9i3XXm zBzuL$=Q!(?jXYDpiSl3RKHOmAC9PcZ@oh(@)6tR(J-{&)5L;-e%)Ev0^0&ZJby{VX zNUU-C*lt}?`Z#{BJfkdiEJ*&#+b^AV{zmgXBD-85>{;xEnb0u25^@^m2+`O{0Fki~ z78u=QO5h__N}>5{%W_d7*lD32XAF%rbZPSv@0rgga~dC8ZLJ}2UG9)+sW??qfA}*} zq%F6Q^-PYmtw;s6EC++6%3^nALRa{!<=084w->(A6)kzs391EPL2Tc0NbE&NUZ&uK z97OsVNwQ-M@O@4`4+%r(y(#h}GRU#tF4PK1crA=t4lRy6zh^@E4!KQeC*$R!Lawxh zk1T&oP)w7Hyc1g3j7=ZJl_7lvk{dx}`I}OMH!~skEgqoH$dyZz?`HC=D6x$5i0Da=OomoZ49+z%zcFg47(REdXX=n}gTzf5sLA$dR0s*J@F+1y zd~lCUYa~MI8&|%%kxrJM?=2=%z(hc``s1r`ID`&TNdni zdPZDIP!C2Xr+woG1bFBA)Q;Tlgz0>fH)?`*Vy=CSWm>D6T-scekp?&jE}4H2RvG4S z?+2(T3lO-GVPAozA!ap(7jMVD=%dR2RKw2lAA`>Z z{r+q|0GBUm3;#$TZ@;3Er4e|CTg=ET-9Ua6g|tg%71der`m2494x`Q|^`U<7WUtg= zzKu2o<4^X*Lc?gmX$t(*QT+p1te!AKx4O(PjVeK<-!JJbL1aFjK*3j1agOeyainE~-F(@>yQCe` ztZopH(c3Ou%$^F9N1o%&YZK(eFT=qB5{q&W8gnQl=_#Jg$-+uSE{ax{(v_q+x*W9L zoVJHYm2=K>0Sw$vDtIP6Kj zSByhSJ%+E;6ZYS;)R~(5{8l_pGnOTd>3#DS7bP&krSQ&-{PB6sQ+8X|tUf=XnLZ^T zR=(oVicV6#6v!hU68PaK9t@`r6WB?1?KK1o@v+UtAhUF>5`Mj2>m8QI@jDJ#p$lP( z2%$L{QyJLfrT``h)3aswRXf{@d)ei_GqzQAz`Y-!2A0upyT>3#OgJ__}}pgVsb2f>f}5*@(+{A<5c+AW{v z(2?w6=RQQP!BKgPPmr>ljJg?gp0J6Bm#h^Ar;0+?N>|XK2l-A_Rd2lFVyBpme{@zj z1uOwhmE>o2G-=Cc;u;o)k8!r)_Q&3anGXC|@g!f3WmN1>Yd*0NuQzp3<}Z}gotnQ} zKr(o)o)I5$bX>@FQEizvS-4E=0qfLh73Al&3uU4-h;39}8>}2xTBM9u>O#~c2dyKg-opl{^H@`dPP9wJtk3Qr4e^pS%K{1T~rw2$T4+mV$1^8G*I6b8o8DJkP`|L$x` z1Q&;38R|qwIzS+wbwED#&}-9cZ(v8jm+j5ikxU^^cXO2O_VwPdmBwbrjWFffg{Z3w zpr%VxXf|Ge`>yDR$!C^~()U#9Lp`?(3F?SR6AWd~{LW1sU-I4*y(#op za;cX~5lnC+Ba+HgvZoWZywV(6H!UmKC=O@>dC=zN1N?tU<06Fy{%kx>1i2G#ym3I= z%ry%T9tf8{Rm+xTK~c{T;~}=L#;$`Wg%(UTFG=Qzoi*wK6jhAbDB$b(*Yx#Atnl7` zo!PFqCW|+Ccm1r2`znl@e**Z?omNyhBm=cRgo`(Y>G-h$osEo0Av;#i`@C#unGlp` zoaOc}|3ey(^kk7L2PDY*;D^0{cq@~WI#;)BAtI3Qg^>^bGw`o&so*8SwX^7IbG4po zuA(B$OHp;t`s8rdX3H9uI6<;M;s#Nvk_aLdU^F>)9`hhGty_L!< z)wy)22eA-P3>1qP6MSKzE|dr~F;^g9SFj%hN&;=-q7r%8`@e-7*KtP!a z2~Evp$?tS6+RD9sRlAupBXU(&^^UK)9g3qCq+J-YiMA>{NHXz{^(BmzR}1p`M&td7 zSC${mlto5Q0wAiIpI8hD%0>vc{<>u1^}bB$FL-qin_S*ZC_ca&2Vx`08fyojriHpY zD}nTc#u#DzXEcG`7;1PHFc;&2QdEHm^z%;hZ>8ZxrLUK*W2WdoyF?T>3nYv;z>vKX z&r7%&kpPE#a;Ei9U6Gd`E$L=#zCSt@bZEfYbxpt4jn(2l)PfLdb|{rc9C|EkwXIkS zqQ>xm63H=h?-G!z@VjvRKa8IHh}8|ldZsqHzZ$S8G*pf+ffe|r11`Zj#9|K~uUV<} z`d@_(IUEBXH3|*)WX!S#oIg~DMg5PkE^;^X4pmF;-gp@51g~Rx?y;Lj%iH$LFL-CR zG7HYscGAD%Iro0mQX+6+2inKXa@Vm>CFT#2$d9Cf%0eT#VUN9aBg1p2s}U8KHor#p zsV2$$ag3_#mZBc$&6uNeqwH3zHc8$sIi}P*j13=jy=+NK*6}ld26p4*LFzO@u%mEG zCQ|gY^7NG)^<-L9YmniE>n28!p7o}a&8UPPnDb;>ekO#)+0euDa9K%8igYjUTA^wr zliJSx`AAl0*P!z$$tcO{<{e_o1Ao=3*lOttJP=vVO~*9-4?$I0y6&GQMqSfhD5%<$ z=*2q^+t>FAu4!yE@eN#9`1?$O1JZ(jRT;d3?S@d*ij1N0D$7o&Vsgc7^M&GK$Q;`$ z-v<#lF%;C0zlW136DH5ejBS%%H{!L<07_^DPAs47 zM4Kj~r=-%^w|OHK*hRItH`nyW81U52{O1aU8fh|=6wK;^?r*xMg76wcPuW{a+H3bH zE{COJUco!Jaz`--^f|efIx?1;KFB3n`>MWH*D_VereUfm{bW6cUcjz8!Aa+){~o}q z5Dxag;Lnv8S}cYP2v;dJ=vW@skPD)J<)Dg_@1|yzyK6&QC*{o?g76ZX;Rh)Pz}0%u z5?6u_r9(D$;@=0TyFF?)1c&lNUk5SVU$S%FR{vxV-|?vO&3s%{v zlHTXI@S#`5kgc|55ReCV0ESr1e<3)VGVsxoQfLdDY5$v24Z&N@^v&s1#X|bSTwM`E z75!85L$l(XOo}7{OB^l*bbkF`sVm1q5zc+7X&;&8ge%SuhQMsP;vcg0QK|PAcJg?~ z6|Rcn#4Eq8y=CXM4&Cckqz=>Yw3lr0aQ4PGs^jKY6W)@FVjaFq@M{-tVlaJ=h}4r+ zXc|lWGYUI)WP8ZjE5qRI|H@&@Y10tEp5MlnmO9sZrV*T~k@0Hve(vJTh`#=BmtQhp zG#migF$oijky8jh5wSnJs0wX-F`%#crSqu=kyy_zmEEh?(JxnqQ9{D?C|&seR}dP%+24#lg*3~_e5X!;b~<4~ zoihOfsl7&#wBr!|l4a32R%XO3Eh1vx=f9>^3N*JRQrrSUjJ!BZRfQ=49JjnlNp4zz zU=69H5gH~2*w(XiGicwZM^HuyxK3gcLq+t6ND&P8(AbZ5$mUrj%HAab)G^>YN4r?f zKFYeenHJxv(SQ2<8El8EUKvo_ui!ynp0GN$_j0scMiy!DwHY*r;;DEY^YK0P#66|8xUMtlv%lc!)fnm zj2NB-J60@uUp*|wCmMB2ij@DkMSyv@VmPozZV0lu0-026U20}-TU9X&MpLZqUJewm^e-&L z2&I4XwDutFcfQkCucC-KngyE+x$f-8Gcvms%@j?`Y291rb+oMF*07&3RC{9pL_DMr zL0)Vo*!-!Ss!#TMKkx2kbLD5W_RU&5zlhh%<=tfH19*;;^a7uWFPlx8g0OW44#+fw zgKlUBQ;2{)g?l5E9Q$nOyRk?6acfkBEWtwa!BiVHle@dap0D!@I-kydoymBf{#mVl zJpHCdhSA!DScZI?$aW!LLWnyVFyIYV&{Su>S#+ zNO=}8_1OBY(&l<8wgYtL!n@7waUY%MfGAPfj_aPE?GpFqI?V;gQNwmyGx>Ix-~Y61 z)ExCG#EqSHWA0A>rKgB9Rr1&Z=zzlxN7jc7l6l5qSJy!{rVh;BavXr!8;80O&p{>b z^Zl|8*JOaA#~|Z@hY_I|1=kk&R?O0wRALf^^lyrGGPgOFsoop}b_hd!R8=UG@#K3c zqMH5&!nD2**R5n%nE=hueSgD9rl*S`b58qr_*8rIX3wnxw_epMynj-H${SgPgV7x696=uft3o+-4)(<&wBx}f#$a^9{PW( zRo}IWSB8t*1YZq(AvLk(JWwi-^S2!G?_>s^FE`wZq~({^;~IS&U&q^RLKch$WmAcj zV!fHI`kl#W!Ym93IF2{EAE}jYNqZ zhsT(>QEcWgVCEq$Mv_x#TTZ>hKZ@0KX=;wNZgQ%z%K~VIY3^{rdGS!ZfIht(i26dl zY>LSrSmwQg9?>e2T>noKggk02=K4`bW5tegaIzCh{_~kyF8nb({1ZO$lv33&O;h*w zb$MXjIgLL_zS>s>bxx`p3Qcj1!NL}Ma)@&7`WPs zuSv44(XYyF)W)R{db=@i-G%Md2ywr-wVrydZB|b~yo^KeyxkyhsxmvJR)5&QpFtim z8zy-?-t9FQpUzIF`0*SnMAj(pNt*2YrOj_4lWWbNBkT<-%ajS@9oMe`-jrqO*ZzWQ z`Dr`%I#s*#hb1DR*TT%d_}q12;FW1}vfodPUBqt|zh1lBp)Dqc{s16KG)5D(sVvw% z)6$9x{_W5X446Po7W#_m*c<*#jO0D;2lMqP<$1(T!WnaT>c0rAWhnQ&vbKLt2{o1o z@;b@1s8t>G9C`xvYXs@hY4f9qwJzuO&V|brb>>9TAe&Q-*qpRFnn)Nt}S zzNs*v>P0AjuYNf;zL)3vzWf7DcQ%_g#6aarS9isEVGwcUD*4Ic4Wu^V$>&oa>Zb+n z+x8YcpZdcuDdO4HaxtSnOOVpYt2yEdU$M!VmwHI%UMg*!K060r_x2s_-|ua;oo@QL zmXL<%%>=YhIY~&c9W`q|w;|f5qB?)WvxKgjCv4yg$xMuyU6Uexn+0bKF0!%$nGJwu z-z5ZL$B)eiqY@T7+DdyA$zdh+@pbkKLPyOAo@bGTj#id%M}Vw3qHp+r76Y zcRy2fv!)ViKD;pVyVDB983!uE$Ini6)0}f9)Ap>&+QDa%J>5nqq-KKV!a`yPe&3_85S9`|U$?zNJDz zi0i~0jTG6IRE3m~$>(}x+V4xzA4bxSNb3=}`ct~o`lWmLN{*u-Arn)RTDcIeIBOop zbkhuDBGGMY0&!<*)LL)x&?U`8o(5C+MrK7j_-weyc{3C$GMWe3GZlAfq24ev zG*RaD;+f$oO}Dp!y_M>7`kpK$IBP?hI3-NC%kr3HvdhrsuP`J+X>(4mGY?h^^No z7X9V3krT*4s{>e~W0(qQ%cO@WfWmg*kIO_>L2r8U4#Vw_`+wMa3!ti^Hfs2S(kKW> zw}^Cicb9Y{(k&?+(hVYA(k0!E)J3{mP`bPG+xWikH{Z1Kwv`j=eC`|Mk`sx$DPq%q=;_6N*eAhIZfzA4Rk5f z6OLyne!wJ4Qy|mJOoYjiv!8x2;~0=O9(fJ>p5-bf&9!F^saTYGc-`nYdu~MEo=yr{ zU-3rsg;H>o-3Bb(dpnlEOeF#oBawieW1%>u2;|}F^?9g77Al4PK4<{hSW^tAXF!r- zjqqR3Jns=}pTuEI8Gx?I!_CQ%bIp^Sd{;5pA`}}C$DxyhN1d=JGMB`j39uVv5r@vI|+Ihii-F{-J<;*V*XNOZ{bv1t1(b9SBQ?Ut za$RjwJh?fF#}W0>+U?lnw(Z}BP>(biBw{Q@A}gN|Mn}RY>-P}|)NtaKXKea2=kcur zkg)S+V5I+kZC$@somldE5cGdyQK3q>A%{6?iCkLlev_H2Oz4^_ zVtB^yz&+xqARlv=*dYrW0~sPr+JvbGmZ>b;eyVWkaPs6h=@SvVStTvo52RO~=ayD` zCHUkbMQvY0bc6ztL}5etfKs@o8fEKRnTs_b!(aPSy-b^SfFn-LDi7U5+G`3V(Ew7? zo~1lTKi6k#LmkNuTxn$0S_wJsp!l@wjv_%-FVbznaM1W1| zl*D%FYa6Yta4ov?H1}aDQw{13bG2nElr6VoSp_iBePCESgOI?I;u~~#Hor*aW_jn8 zlnkVRm6nqCBIphuicj7aUYQQ%q^rdpWph`c#H?I=NpY35x%gl?+TH%OiZ;As)tWkW zpqMakdZ5UNhSJE=ey~P{GBUjMX5)iH_~xFvjlNKf_J|ldys@y!`&S~GmgDB?UJT^u zTMD|!;&A+LzcUB%^k(eH%dyTjswg-)5pKulpLyEH;p(tgzAq^5Pzc-3O;Q;y*CDBq zyD8oED{wllGPXOr&{JMi?nSCD8Mh+*Yy^T&3zJ+E(tMk2o=yukVfn<|+ljeYvt;Wi z_sAI&-{E+gRA|+Xv!DiI!MAW;j``p~BIQ}TWi>CkuVVI29*3vOXG=|#t@~$ZACB0! z@AKRVUd_4d+cjN>RL9;_Z>}GmqhIO`SSM^F<##cuCu^f;PU=N^wX9G_EQn zM#+IRkRr5HIX7j?n^YR4p3mQk$%^D+QMC{19(r)(kK>cUbTW2@*7 z8RboqnBn#py*A-1LSar-&A}p6lN8Vh(+TyIAE6yNI$=eu{vB3&%0{9qdiAmeJ69#4 zacpf)40oQZ{bj%BuSC{shsh8Cp|M3b zA>!fMM$1oTJ=Y{J9|{aA1aJD*r_KqlR;o`B?i%r9#bzE%S9u>zp_~cz`Mi;*k(?tB z+t6n3?P~kmgNJ>C)zJ1EmpzbPCwBFFI-`f$)N~9~Gv+0pQ-Gya+#o{v4`^@wYI+?u zsCKXKXT6r&ANbR_-6*QfMl!I)gIJ^sBM9x69859(ub?(`+q$bR&()Tq?B>pmo6N!e zw(U4QMKAMrSir?$&!#=|xaf>ied7A$!wRkiCSR)# z_!CLez!3^8^4wBBVYMiVo<>g~4^u3hX_A&0O*~&Lb3AMUBU-_Z72N+Ehmy3U8Q#6) z9cI(~pNmd)Sew9hdela1RG0I5fYkS<`sQRd3P85=pMw7{wJ4t`cS87JS9_LY^f&!- zbi}03qUwM6cz;{}zCNJBVT7Jgp2qoH8H~+c3)U>4KAolXU48TNPY;sou#6VO1{f*|v&6RK?6QUVr=;j-eyG_met%M?t zC+Kew@!@1;d9~Gr01&7kjlP3M(SbdV{8-2*@k8*2loP`Lu-Kk+!16I91I={r|LgEW zyM1VkJ}$bqJpZgjjJv>D9-Hm)pNh(ZGWF=>|_&))n$$oFiIwAu6BN z%7lcwBh%}{e=|tTusYGNZpgqd+wH9Sk-}JyBrMVM@zw9&zbmK*ZrFtPC$rnz+shoz z$M_vCR2Qys>AkaLHjvI=Ni>z%*DLhHwA}^tZgK9 zHaX4B1U(-ssp}M9L+vYU7V3hAeP~0XR7yu!Ukp^4)_8%{ngqkUF8-G!32tTdvZmOf zZ{oj#tIoGmHu?q@?^&%v*P81WtL5EhIEFj^-Vv6}EG%EnuvoJVTHRkKm}Hfg+iBm5 z?N3fzy7y1XR_|JI#MOc}WSz|dJkd?o{;qB zUk)TP+UYE3kIKu_{GBP9esGCXD6s$20dsbF`6gawNRt;Ys3`MeB}=Ll54};zHmyEY zpEcQ>wUtc?4VdA14NGmZ`Kxc3y|#7#3>|p2)xs~^tvPU8&wWi}O!ax5qz%5OtIj4O zBBCRN@76&N2i%HA-LjPi<)X=N7tSzyTrU~)TS7iohA0;WWMyT|*6sFG(S4J7Yg}+F zXhahq_WJnz6F8k*<)VCK>xDW)T=<}%p#0L2p${~x(+uEs#m63GaF7umz+y!*(h{<> zyK{lU3}+_(B`r{pe&zkg_spf9Ml83uLqG>!y)>SAh6fPGkfQ7}Z1S0R&b_&#o3q&H^XXfdzo)^@-SfqXmvAVt!=EY?X=Z58rpuyHEcyA0s!e z)=J99qY+&y4##2qczv=S3R}43Fy>NZo%Z2JeVh63vR(3Yg&a+~m7S>)%^LGp4vmDU zUB0VaT%Z0xARoGdUQ})dh>+q}mZvmKj;w+=y?aZ(-SRG!Z-UMKY->!DSBj7_(0S6z z02n}hJ`nr-nbY0F!!X6PFhW3LYDXbY`4b^RYip}i!NhALqTp37s(6`)+Ej%CtEJqg zG88aaDfy3j*&{)Q0c{#i!$lD$T1@g2kFv{g<|H}G?5!`reA=0${-M{5je^4vu*xNs zr~H74$ipyS-*9MBqdV@r!}Zd7L7}FcID0k0SoG{}{E=m6wI>|s{?SP2%4hOqeIQn$ zK=gbUnke&D7fj#whu!ullE*73_@+uPXF_N_YvMqb64jNW6hM8_3w*^`02s@c=_|p^O;8$uEV9U_~YBNnFkF4M>RX6 z{MMzb$F%E-!zIr{{l#5gpW}^I51%81%JNFVD}N6Il5M%YOU{S8N3U}Hb%*Pv7Pr%b z{iW7heg3_r)&)jEyQLNnH2$;ER=3lQ->IB-ORWx#o`+e%#K<Q)Y~avyeFF43y%u-9&A2r+fDp;a5+kq zT7#~xuFH*~)X#RVu3UBPP6yE5UXfey>&{!EyzA+<>`g#*%Y)~oR{CP!{O6s!)1{S0 zxtIKLzXEPDei~*Qv9`TU9 zy6rw*?!WapGHSWWxupHEI`iIIJl*MGn{Rq2RRG@I?Ve|9VCzEOC2d7O5^6J)!tTvK z_GohBHu?Ct<-GOiv+|I6zuO1!TyZ;SAXN0b^CI|!vT8*+l7yAp|gVx|V08f(ba$6)A z*)F!B*-$ZT9fH31cwy+SMl||M*0`Wvkv0d)y5K_B^M?m=7 z#PE_tU~j=J#Wc`sq0R;+asZqSGaK9Ug*t+aNeSXU3Pr*|lGxAsB(jjo3?pQ2ZqF;G zGTp{6;9}+a1y0g-vZ&bf-@JL_y?lDjM>o*<=g$XgqHU-7OD^>s5W@2fcif6}d#Ou@4X*j$ z4P3r&_R+8}g&7~vr-_e|$@667;(u+f9)bnPG(AklTz!2ZcLeuZySpeXA&~L7-^idD zGt7WT{6vX9+xatf$vy1uyr{W#fY{$iNTC-c>betv#o&~A{*4;@0oLyQ1oJA8^&(479>}7!TEw%m(6ZT68O@%dQQp9$rgX;lhARK zeHQFwCKt1?{m|Gd)t)d3=I=HM@lawHp*a~av$leKhozN&gGs}Lnp50RK#OW@0b>tuK z?(Uuryo!;pA-Yl{ny+SLI*y2Wdh zLJ6J+-I>w`=8<)WzIBI(<1??x@;B~^kGoC;e!Y|!Bk%#}`RL?==P5v?EjsogA1|sT zO2JCDpv#ag)$=nSm^(7M;U2UidDS zZ$@KEO}g@ry~~#17pzm=(zM+sa7F4u+a_CHPI6R1txF{R?ohV*%LeZlCDJiM4Z(DS zs>}dlH=flBo8|*o&4oIv-dNkYs<+?bb5v=5+NaI_V3}NQV9p|l{?%LdwZj3ZWe>3s zNP>wu7nYYvJXFMIgo{*>L%X+X7ZBr;Kgg}zuJnXgZgQrmS7g}dwv8>qkh@O^-DYnp zw3Fo-f&9KMct4sf*VL=MDv_Dv72PWnr>B7Ku#5zn+i&=OtA->orvm68HW5CiKmH9t+ji36to z3lGE8$cG$|JCOr_-P@I!VQ6FB{4Ad?J2+33BT(_%E15n3Ih58`-zl4u7;@J#X3zGf zzFL7HQPjsr5L6mrPCWbJQ4OKdL+F}g$Kg@GjfscQP*FRo=&-_jknJcU@z&j=6*$u9 zR2nnlGQ{M1jZ!A-w;E-dkRpvJ*S_Q{z4F>?YHt49WNTjaahx6RGpj78);GVvaiY4L z$6lv6(qcSQg;<3F-Ps=U(cdpnU%V|?v4VbuRTCBKl~`xlmM#~))v;rm@N_CyqKQ8- zQphRS=7f!V#k%%0Cuu@^zqfYGTDVwcSCUvr%|6|Uu4liuH6?w{x7(>w^UNqDt}1nM zb*LN%IWgqI%-o!+@^I=q?q;s5?m}Jc$mTunb!=>GF*Q@cGYl^f+2VGL#<_NwZzt;u zHPlBsW1s7dut}2MSeooK6>dci8-DlZIHB+x=FAJ7tRHfrx)VjThv~re_4;5xG-wa{ ze1$H008bV|q^^U(v!W01+5cefpr%(UpIfX8N$QGTy9N<* zr-Xt$M@khT8a)?r`zqQtoK~`^b){c?0Te9JLln(9&>iOa3E^5?eSATFc%ESay$>p0 zY!)oq2{$^7_DjcH9M-eGA1k+l=_x{ATJn~)uX&YnmQvJ;6K}pC;P|dY)g44RiHQvg z>8I;WawS3@3R&9gu4M<0C^dsqLF_0Ak^2`+jm#+TgEJTN@tx68boFxmNbsCm4H)l- zW3;|{!)p~-HD-SkDZ2O=Zn>ps)wdwHpmK~v<^XXp7m`CEyQp2T-Dv9tE<5|tKdp7b zwk1GykC$=8l@549>3SU*iK~~b-x5Vqlkwf}Yzc3~N{bvo8SV2iRp4)^_h_B<9PB{V z-4Fb4hl#|B28|AIAeG>~LJs^Qi1eeqU67-#21Nb-*hCr0=<+e znH{50M23(pH>$mU^yRZfsK$8Nb;vY3H^ zfi=fV5uCay^%QH$n;~U}#I8SoNI_Z^x+ zcWwCc3+jib0nc2cp0L;6jZcLEp$RoOBPe(a zDw&v6#2A`@Nw5@+n%oE=y#d!fY&5Cx?pkXj`!2fSHAC)k3HsPY>XOvOj)Z+$Iaoewz2+nUo7ai>`&(A zh*7Io>mcsjI|^TX^*ZCn6akMyK$VXisHP4t@BapqT&#Y#a{FpweP*OL^TMlqCzNQ$ z=q!$sb6o8A97gKCoBl6gfiiMR3|sM9=vBvAPcQQz9qG*xNBq~N?FJ12MwP4DlMHuI zonPLeAv{hn&XRboRSBN19dP}L=p~Ulo&jP8yFc^G)}EWodsn>=1G#|Wcduf6Sj3ej1|cZZg{*W@%b%5Yq! z^elZ$gQWE7a~E&Z>n&GvA2Y`?W5hKiHcmw?tYhF z@?f)Ij2-Kwz0r{&oyJvpoL&rjJI>9W%pAJ3nfI<4AE0HX?%VtO;+2}+eSLjDqB%{H zibVc0NG}J2=LI4pnx)w-hdImBG^?Ir8)QK{L0=Ir-l*$N^AQuc6A1@ZtHPQ{|VTO!ARaChQ1L9$5 z&*f<+KxQ>a(Og((tMaZtdMR7nKtBBR@0eZRzz3lB+IPN{Cqbk0{psfb!vkQ?9p6}% z`qN3y`^OU=5{DDl=oEGOKV(quo3uv-YpS1ord|E@e^5zO*6O4)k^lH_4>C;l$4C!Y z)|mtfkcr_7xl!ihsFr-(fYHp@Ja)Xr>+XP5xU-Kg&L#5LR>$a|g& z-Ut6jc*%xz*tLw{UH4m^4X!zPNs~;h|CEo{FcS#^v~I2s1DE80~3N z(K{g@C~FPMTaor-$|u684aUl;YbN?!^C1n=`^EPl=3d^*WcvFn>rNm?O#%EKz&i=y z6E)xLzK4bw9Ut(nD_acXgs$5~{oqoC-zadJ~y8(b?iuUR~^rfi#e39)k z@sxnu-y$!KT7%;80*u@WPRO9j{+`N$$iC8S7*7jbKn35(Kp~u0kQ$M9yA*nfOBka1 zOj<$r)hAtEZJ%*V!n5N=nR{t`#Zo<Lf6g2+56*>PQn3qJ6>L6(8RCtpk`C9FetJ7K(2q%8WQdrEwbeScaVjp#jS(0#7E-Y~ z%IihHt9DppOU7QFOV)Gd^(*-hKL427I}sJ}E|N2Jmssr)Uu`)yK@Z8M+u5IM@7G=? zL$QK`lY}1}(eW)dAC=1aKk%HjgejgX{Nog|LCC0R7IMFl3~W-jo$x|C!LK-4ubQJ* z?Z8q$Oh&ihRn*jyJh3*J7*Z{q3y9udXfnTGWx4ah+5Eb0_?2PNcN9Uawxo7XQ_}P! zz-8qo&L8W}otHoMVbt|2C!Yo1#LnVtwfj2s>_Q?RgKR~0I_&j;-a<1lKczwre(Kj0 zvR_Q;(%fGOC!_G5)|`D<285QINdMy!zW*@Za+tq&GLlaoSMYzAxnrKPu`(gh!{{zL z#$*1AR(m4K#cbjzql!tH`_0v5pqIGR2Z@#NT|Y5Be45sDH|U;oEc4=DIylCsLd}r%)gUdz7Q24WJwlsk&v5kFN z{(8Uq{%kRkj+eqSF7f~>B~)j*_7h7!_sK}8K;Kbx@XGVj;u+Wq#{Be;ofIRv$BXX* z`U;O1app3?OjRRnEZPB3j8zJ|DQi3k!k|3e3&-*IBH)mUb}ng|<^e+sL|*a+7$7Le z6BiBYYM&p&Kt9|4=tgT_4yx{bYFSVLZhy8*>Zn{;%$F;@eaGMSEtV$+@D3*=Q^Fu5 zZ%++BYxuqs88%lMgU8gX+QcKIaAb8s6Q`pl$Y{Qg^@_w2Bm+9KZgohPHaxlvn&yzs zV%(^L9w%yTugdQlh_dft_(3LZuJXxLG48H5sG7qQ)kd6KU6b#cZC^?_(8Cz6DJc;K4VMOiRJqZA7fQyFQrRXvgJPHIPPTuPlo$-W6dZkX|+FA__)=66H9ep0=;3Z z{DO|WvtKJ)%a$BQOUl3A$)W*U70-(CPNA9)>wNiy1kMZBttsZXFoaA?iRfe&Q`W!( zTRi-16&jcVgS)8x-CRwZ`A>ctl>4(aHh-I=C31` zPZ zkmOUZmTb4~2Eko)_@d&t?J-|puk_%NS6CFCh3%I^Jc8E5r2c)oserb^HdS6Dhj3Z) zXeT3cb68wD`ke7?zmS)fu_+3eMRql-0jz;a!&Y8@lT``6woRq2xth19wKRC)9Q6t} z-XEhfwP=LxEpa#LHlh3xeB9&R=lHj&0}S2WcJNUyFD;*f7KAz=aa2K=K~=fX@oyYn zAo@pC7M$~MEKYKYg4zxiw3IIY%ZVAir9A0v1nC^rxc$gD}@7b8`% z&n_^E`yrRsBd>KKf)9u7{(&S`w~^FO-6_)pJuS4smwqq$^4df* z5vh==PzBet8LWqJke#wa-Fs?TUb?v!m2zeMs9lxVV?{rVEr=(N)UK0Ez%8F&*4|nz z-f4$4?tGN`06q6%q4F?-Cf{T_t-c=tc7?b>SW~U7ELMm;>boDC+6^A)f+-SGgT9i1{!x>bHGjTI$hqipGAgV4u~|Faq?SMOgNbMrf=I}Z6H9|p z>k)D5_V05slgko`A!u3aGZ&8PRL$pg&_Y4WM**^K{??2w4)!2PHjkWDIU8N2)f0xA z)R=%%HVKs5LCPrN7td=~K^20vAeKdH;NBor;$W!pde$^im%+=LttDMVlFOOoDPu0; zh_!ayLO^jeq*8*3O`5nuS!pgBBt8q7E^OznwTa|0eW98pmV1EZ8$3DSrz_Et8#RYa zJw1^^Wbb^SlA(2iYsNQ{qlOn8&yQwNhbH;l82KdsW8_U*^x0?5T*>yV0NWkPFZ$el zF@#>yXNK(4=^)P+XGX>VlTs4aDeTDPqDU>pwL6KC2~o>iR4wBcfv_H#W8H91fsnBb z+y7vdKKIH775i7he?D`_#NJOvP2)aU!!yZEFp-OVBFUwyrcUbse$43lZK<88+4{r3 zGdAZkHXDH~gH$}Vbf;pN zGtu_Ij*18=lBwqHD2j|VCq8Ai$9XW>8=3Q?7`mF!=;C_}e4KjmeciF7SSLBr)SBW8 zXrM2yW&5t1{-$+!d;9DM{B2KxK8|r@OVd}|UIIrS;-D!SHpWjiq?Rl)4V#EC`RHX0 zGFep&@uH>SvoZ#u_*3MRc;W>Fml zh4Ad_4lV27f}3d*-1*wYYK27)YHtC7I|-mcbHa}&-jn#wgvLJ+tkqL3m%Tj7UnLTv zS}TV)|A6896+Ih~TbhYo{MM_zsOdd$Ysp2w*m*bo{@qKOE(bYFQ5645iwUxz847v2&sAaRq#X?X)u`U=^^W@X_Onwv^S0BW_N2dz+EuS`dVW>J1B z9yxdaoKv}vy++QZiiUJnh5hCr*c7U$?!y;Ihf$8xH9T(5ycX1TR4_^@C5=AygV{Wt(i_RznYoA?pn&oa@ z6%oa+x^1W3HGhA@y^-DzISC5h!6k^#;#bYrCW@lZjjuc zY2;bSMvH%)Y176#`4Crn(=cW9Zc3g*Vi!_98+{}%Kq&#h07UPs$>)4{yx5hvx%X?hTzk>44|#iRA`jG=tKbO z(mGIP@TXpS%yu|cRXlU$qlb>+y?Ab*+aO_vGkWT&dG})f1+)j`AL5NcQ!NCfHk{0O zXT@nz0<(8h?G}yG>YF!57aI%M(8C19IHyhfHc&`(r?3Voywz&!nrt*npL% z0}^`iWnknXzI&nPkQRIi4{gmQ#(L34IdFH3w9Wo@tkp|{6mr?ZcRm_bm@amm^dnWw zxb=c$o^il-o^0Sn8}_UsCp<-2QCYc{Y(l#e17V7jc{^W1FW|~QKObG1H_1-YI|*7D z=ce8&x^G?uRGC`GF`S5NaLj>TdE_TnjVWWsrj0x@v*ElyLpB=8%TCaGpUp>d%|LxY zhCh_auLVN3*61tmG~1Imhxwnj(^{mp3Iml0eZ;*FyacG~ErL-MsYv2P;*}}CetsSE z@i;Isk2JS}7^6!?&*oH4s|}m66!mk+Dc6jV54eEnfJdN9_&Xg)9Y3}^-$sjD4~!+M zfWt~~y7lfJYz6_U2+tXMLN1H+A`zNLN&Vs1>`bxi*}@t_JxbTkYKAv_M|qE|zxVq=Hl)=CmZ^{>RVPc1)`9?+nhfZ~e`s6zQ(OwO)kK_G zm9cqK1tNMVLrg;^$1L01gM36GtSMMHoPM^zy#rl(wDrgV-BdUZ51fkrBt`6g;V0sB zdEVmS=~Ic9RCq4^h2D9vWp~eWNk_Ig$z%~q;N;YK3?zI8gzo?{f}*Gj zM`L5zJxsA8_Reh>$LTpNJN1QD!SoBr_fCG~6X^~u6x?RQMOP(j9ychEq_AL_ima+d zzvGSiMGQ6-n_y72T{DCLvlUE`ci~1^_VMIwU=rtKUb3t&iCPjO$KZ)j!5IcY3kA&I zN-iXns}?(~ydmYE_V@pJ@x%-yLD|C-DcD$#6d~5bXa|#~Pk)w-zw(>@VIJS7x-`;? zL0qg>kJ*a%G`e(dx z!>p?aY76EQM{LmG$l@r*9~EIldo)O>n@kpG2{yY0Id!+$n`Cy`ZzEXhl|UO5Ct%)8o@FGsu%0 zZ<>P59r)Y^0dJ-)g!s^D&|psPfsa}D*;V<=BJ@dA1n<*IKijjgLk1EQzLU>T?wpq( z17W@niur;yOHCF)79jQB^^1N~9TJ(GcDj;{qU1n{SI~T7eqO^AM?X<|_C8Ww-s(`U4jtw`GPaVh~LEtWv_T;hbB%znioTKa6 z0+i}Bx~-TmUs;@DI9-let}pZ2rq_+~W8y6@p0QjcQ(7cM2ksXzVYil@>{ex};>b4) zS|=ENPXu-`y7wL-)0mw4aejO&6lY-ma|mQ? z$EssGk#))5O(DeN^1?P!@X*t@5jec=G%Qtk#mz}>Gl{++0ox`_q#Rk3q% z-a`F2O;n0`B+Bh5l+V4b@IHIftwu;*tC|S1VX+Bgxu+r$^0n^Mi@<_WdoKt)8BXh% z3i`&>!!V_;<3#`8E{9`Wua#^=h^VNr=_`!MYd$8XQJw`$X>!R}ejNoSc6B-(vuH`QZ!0p#)*IIZOX3#o_^f$b9 zuGCS~WAm%@r0aA2=%N-Su8h~(>YRLYgZo>-eisY7iXq4LOa4!zVPM(ydXiJN@bHX1r%TK?|E3`9N z^o52;u2p`&2!>gkjEu~gs#h!hjx?13s{aBP+e;*}@mNg{$&z}Fb77p>u@Tk;Rb(z7 zeFkF3^Wuo|DEB%QYQVMmMANRW^n@f3(_K_IOHd#KK<;5Hu)siNuS3)e~*>#p;Ac<3jb z5q;&zk`D#5f*!_a25p*V+wC)fD+{++%|r}ny4>> zgT0+*r!FgCEobQ(q}{o|QjSee3=j(osLIBL7rN2Z0;{c{Z zycqv?I4NeA=gJ+g#~LoVp5eI&Q?JlHU$Vj&cAHXgI$2bg@+&DwTmU^XCxt57!V3m- zuR1jn2BEU5S#+?ZkAJ6o`5XsEsrMCTB+A}bd;*oofoY245?fPq@jk+M$(W4_bsem5 zeyf(5JY_C^uxLUhFC(C%iyM(;u%u2tw5=2g+RS_|8NDwo!WCNe`E#jF?0s^Qje9D`iX&g*O200(_`QHBxnc>ApaZIzt(V|67pBt#3j_N-(oh{Gv)bLYPz8q)^7UPv*^!=|3-E3i@wvZiE*b1}oI*fiO$b&*)-&@WOLU-|R|Bbx@DKz!fs zb9^z}z%BZQHFtmi%cSZ_51%ZZ8$XFP>pMv4u$_iA2N?LbgApTd)wd0-7!fopo zu)yc@hdkG&M~rr7%bx@S$&N97QQjO8(}Dio?^Qmue?u7lMq3ZW)@K5O^{W*mnogJ~ zg1z3r@ARLmL&t*^SSI2Ip(0pt0+CuK^?>FsAT)@uLJeU0%SUYd{^w5m-ZFn%r$v>4 zGN)h-{55@zM_}{+G%uf`mXnm7v+k1)-H{jmf4eiU054Kt?bC(!6MkvR0n$;b-g)>2T#L0k`L_+FXf1M7XMup6wQgfpwx8u3(=Hupnro(^I6lS=3YFXzT9R<@=p2pD)kxUMv1$jGi%0;h@ z`D9M(@_eZbbQpDJ);y|d`L<)FP0hRljB=E} z4{a1+0q@YWuR~j+*GYtNgQnc-6Fpk8b=3@*#(PDZi`_QiPX%_@pqm^7Y>bO3G7FLU zQ286na^q({iDg(VrFoGP_WUp4LpjrgI(nLSq!}MAeav5jbG3@OUsv$&m{`)+sLYG0zwv(E?57ZMo}Etxy0MzpQ-Dh1;W*+fL4^bNq)EBeX-|b0*5ix=xUzgaHt?*gN-r!0I&qoI;EUh^ zlsaE5$l{la)W@7Rh;J>?R%_r8*0tR1&FDInV*r#J92XlzDUowkxp z&zSKemtHo=;~m^7;!?c;d;4W)pQIFYzqjRSI3)T3|-R=aiMyqE?+5 z+J%xt+0ER0d#_0i{#IvtE=Ck$Yd-6o3`fj*diTXybEeqjvYZC1zoXub@*_Tv>t^d_ z!+|4A6VYLDL$wPpH`>-#oxg>K?E{CRJQv(uu8u$7v1ZOgcD5>evOUi)U>gZXXE?nw z_JN2*&1#k3%~a#h@y8W6KKj;V3UAibye<9OI&SW6UJV(0WT|MQ<;`65ema3?{J2VHbcz<>pJ(j*nr(EBb+WX8Tcc1$se&no}#}=OS#>wrSF~q}z+n_24=mM1fD!(Hu`04`R!#3$OM5 zAp&w>(abX`dwnXYECD7ae&YQUz$R(zSArK3Al?WxEv^Q@k1&6)pp|r%n3Kz|(a1ua z=2uSkb-*=kaup#jSXGeIeUBa~+d279+W7N9(_T%%yz}q?R<|+dR1!r5O!!|Ltm{Ye zo%uv61O?h+J!i%XvO7kmj(=Xyh*t?n?2FaEai<@>6vW@C**@)mHsZ(xo~;9od4}Rp zn}uB5s5j{e%+ul6zuMnh6EwK1J=DHw{Y0o$zY4kbbhH6=)vt;9%f=7nOQlvPtZolU zJ9K+7(eoaeXf0u9ni<4nf}Fp2t8xj_3S+FGVyb$^JTwu1rrGf@e~8-e97aAvXB~Am)m6PE|m>p^edMLNScb0Wlu3|_0WdtK@MTPJ>naI9i6k~wFHO%+cgv! zuTTI;?Z(!Z+2TX>S~b>A8>HVhd8j8~Lo3Y-L8bC3nPN=BViVEQEI%}(M|M4Y#m#y6 zo4+^Ej6-D)4_ESpsW1XlMjih0#D$U+TsWmt!4ZunX&$I*ef)ZZ_#EZM5M|%S*454_ z$e$n!@!;X7v`xA{do~o^4!?8sfi=!-Vl&V8_N3Z@#bC2v$XuC^qvsy>VSpXKPBaeBpdWz~Zry0SO`bQO(KLCu z-rIIdo2SMgYQ|V273jwR|8u62mFBi5F70W)xEN}&pk1iWRge)D{HD|Vp!gMe7*@B7Ieo{ z83X-)Xw$A{M7Luw01w_hoWM3&vu`%Oe~_*+Tv#Fp3hq=QTEq(%K4*snM51+e8d za!>ivv($E3PVgs2UeLpfXKWPFZ9eD<>zg_00ZVRU=u_pDq9~KDZ;}^OHKL zi-hQE@9|I+Wy!|U_h)zd+j{TA&uteYsdny;SG}obk7uiT?O3VLPX50}f13AW$2T%b zQw`2~38kC~Dawnr~wWw-UKE~lY?d}$L!>%{e zW9KCkg;T!P$JFs(mYh!>Jw$Nf^tST$|K0mlz4>-j0l3saG-)Usw4C!HxoWMf?kD=R zy*X3=k6yL7UCXWV)D4eve6h{W^WECdhm~Q$+rxY-(xgB39`sbEjr!W$MU{A8DwiIn z@Jl3~PHBgqQ^mrlNqT2S)s32wf2Jmz7M-rR%a9zE)#E)m1EnLAE~E!LoYy_doO)qg z#lnF8yK>N3a3f@|?*Yr#ORczqf5d8YMIh_g9KjORX5!wl|MEvfDG~F*-I52rnvbuH9PO*hvAHM8{6h7K?28q zw^Q_51Pc-Yyzsu(@gq?8Z8v1sjVP_tUeGF^Wu( zC+s)boHe(M(n!B$pVFlt952UC<3&GV#!e3uItme={XmDUW>)Q~^UIN3M~<0t&{LEQ z6Yzc7_}Q6Buf&1{mGxAKd`g%Ukqm5rOWhr2c?)bi*4^}@X_SMo+-rO?!M=to>@TQi zoye?ut)Ib;u#ol`{$Ly5qZSSu;LE+zomjK?-6;Wk`sD;{3rLMHkOn$x&)K{;_;p*} zeGWFqDZKfHBXVZ`g|ob_KoxHuUai1;RarUH5rA0p2Zbk;zQi`3RS+r}H_gD`)@qs3 zg$1hV`Bf+}A_95)ne4~A=V3e69DT$rbK+K(uP|l-f&LL%Wis%fRZU>8ce$`TQ~ubx zy$$=X+8z>dGgnbskqhmo^F?)I2}I|}HK!FpUc`b3=87R2k_ogm)AZBoz{XtiF>*Y{ zo+z2YoSEx85OlmE6H{rGzf#ns5#Y?6|zN!)~`cYRqNNZ zGTyEkLxx#~F^xkCS5OieZjcaANn>Z_5`(j(nuVj3`Jy(u+v-<|K=Nq592JfAb3~5> zy;6C>HBnvzcdn4UsiIpq=aKV>0?lv9Vqe8-4W*b{-JN&EYF`G2JS}Gi7kebo^9>GuCgYy(|BuIxg=2%KAC^jB2^1kp`MQ zOV#wOLhTUV&{WCs3QuNcTaOXGAKV32gQL+~@2h(Y-q+CFbpXIT%-heeHd2DvkAd0I?q)X42R2^-G1vX*|FCryKvjNGyC(zz=`Jae zZjkQo2I-P+5D*TnG*Z$n-3RHCMnJl|B&0!ULGbRQ|L?mqckT?M44lJx-*>NFYp>_| zy^4kRD0jjy$egqI#MmnfuW42c<6VW=D1^RG(iswY(k(42^6;j1VJOUqRx8rQp-%mt zJPiHKe(?Kh3Q!)wOn6zpkB9hlP?`K;6p0mPrNdLzZglUr%I;J3<|K(kJeDFkkqi~o z94!>#f|6E|MSNcoV?5F=v;TIUaAIN2k2T3pwZ7p!A5`#_n<(6SVywhCb!p zNirs)Elx>o8eX>J1wUSI(h)K_^<8Of&O~mlq0Z-{cBpscNRm{i%xxA_TKf6$BB-A} zwlS-8p;*RBF~MZ1(T@P_EX~pDw(knKGraxUo62t5Si%@Rm|LV-7C7s7UNXkFCVW>y zd3swk-hbS7*Ay5-|8TH;%nM6#q<_)-|Jd4Edoc0PQBX^h9GmL;%ewz>!S|9KVrcXP zTC7_l&9t4FW#OX#`i<%;h2wB7OhLSmaq16rU_krCVMsFbA2MacZcxb>s~C0Lz5By{ z)kn7A)%Eo_NeNK}PIN?|*=ls^tz|*S#N7PxtyjKDh!XAZkfrQUGr1j^tn8m9_*_cF znkip57)Zk<^MV|CqyH0t0zu}_KN-bfVcyv7c^a)y_BXG<;hD!(GSZA1qHdDKzwOb!ww{hJSvqy(Ez09zx+B@@9hNr42MAfRSu2xBJ1K%9xh`9O8!`a`4GDd zP@v!J{nMiDZpuUSObptyFwW-OL;~yUEY{z`cbh_$yo6QcuGFKJRtT!^166Y|Zf;q}HL|?E31;;_?7Y?!=|o3qV*&adMXs+1dI2 zF}tzte-Grl@1F}%ieK|0uvy0pw=-XQZ6DaE19mG&k>0PMm@MpI$WxR=Wfn&8%PVs{RPDWiT;9 z1oDt#r|r0!C&K0!2`nKIFT!2ih!GMb9y7NK^^#<; zS>x*2It*V-)I zNzgcAa&pI*2JZNPVMTmOz;m7e7*K$F6mU8&QF+~us^;$q=#tOc+@I^dtf^TdKDf`a zmnmN%HEvwV%DWo9_GO=w%Rc=m z#=<)83u0u~2jPijva#r=&$E${kqw9fF_b0EN;Da>1U;kZU&sQaD=sbY+mZX;4rv2I1>jU|ZDa2uv;fL9S=&jZOf4JXX znsLGicl{V?Ver!&k~@Q8do8R>jq9rQSTlr+Pv8JRna9JqEQU2s6z$c6UuO(J^#vI* zA;G?XztsvrywaUkp<@-!VAsq#_=@s5XxEjOrlC9hpUCO8i**Axp^K#|e~HFo_@QH$ zV?buB44$xRME8NG0NFW^##{FBq4f%Og_JQ(2_Jm10;mS7>yZ_)V)>%Ub@^)7OR zVZ6*VF-q_N0d5&Ekz?}cb1x1L0xoCOZ>0ZmtKqtM(D7AsWdrUZu>Y2L?zdq0Undxm z9K_p3GaG;y0xGEvyoCT}W3r+vJzYGn3O_U&)**~)`kPDS5^5VvA(uK zTz9d1?BOk+s7Iokj#Hh>+Qk=d(Cj4k_3qb~L~fZ08*zXh%x80JQVoM>PX5|CF?1)W6m$?%ZWBxg+Y&te5!S zeR02IeR9$#Z9Ap=?ZWQDkPrkZfC8ITWp(fa zDD%Y^o21eOYBF#gvkJbn2;;l%9SqMBcy8tliRDYa0bH~5&MW{j+bwy2pRXQ}c|J2p zrikFPoo*xfO0)iW;Q=6<2{CQz9%z-}nrj_W1GOab9p8Cr70%1ih%!2V27u;3=haBm z%9{c)Nr_O02@I5&m!P{OC>4R01Po7U`>(jUQGmyy?qKcy}$=3Qz0}0Hse0VBnPH1 zz@P_aErb4$rx@}X765tFE!s>M3?iKY?eDF?fB-{dJL+Nph-5h@6!6nw5eOqZ!v-w? zmTzZ|D)8Eu6a)hqL;W+%VYiKD=TZ!DNMdwj41j1Rj+IiI_;I@BvZ00ZI*07=?}@k} z{NsB+>kROhxj_(-m>BQ|08~G7BM69lJUq}6Qj*cP?iXh}@ue}bFLCXjQ+!1}%Q~6q zp#Vb)tb62<(yHI(c<1+|fRErWf|9gj+@FtWqk+fh_Om}GjBd6#g{Ax0uLD{O;Hcrw zOtw%7@DTrGP%Se$z6)WEky*dJ42X~e9B}PJzGS6L7{YssGLyD8PLz~%7YtxsjhbJ@ zVkIk(r}ojvK*L>BlfiOqS0Gu1Vfq5BDH76I4Gp&TbAY!Q5Zi(;upsmh#7NY#nGFS` z^$z-FH{%OA!k=#RbO4qM7hg6GI>krZt7mNH$|J8A#xit3>eHm14HYXN|!+i#7>iBUjv^bUGn;L>>$oX}eq z21wyDz|0_sz~s;J$w8c^CrxafNX^Z}B7?;S0O-XGDE$sulh{mULC*xE*;RY#?B}G( ziG;;7;?Fqad?IUaj9wPIW=cZ%@A_k+Sf1Bx`jJjkPhDc$3~S$&%yWa_=ZE~_Qe-*@ z-S-#8mchINj}A?!yY~6fVV(v=WR!TgkgP9?Q{@w|@CY+6j@E;X)4-a56n6ovqG1LJ zsj9$E0yrW)vB4{Y57myRqGPuJGfu|a50d1z2&?b}TCG*ul8VtJvACCBf-fi<)WYmd zPINiI2;gc&RBZmSwANl(w;rQ#+KI@>gRNwl5X}_u;}yWloKTLWR6aHGq};X^bs0t! ztIL;sJ|0ds&@tI_Y-{sXkBBSkArMp5FCh)e&u6T-CM;gK@$wB5D!!D9pD6wsmKeO5 z3CvGF9#TO~RtqX^UQg~fRc1slOTVfwGbz`~buHUcRqlf{z_PH5ywXn<45v((|AA^pVipC>BTYr*)kr}jWo zO}jH({0Xbaog6k71oX!tHpZO1G{s1s43)^b&X7cnYCL{IHtfdKH>?d7WcriHU~lci zwD!{f_ofLCayz|R4-a~vq}e*2+Rd*V&wRI&r1nrp<%1_*7zb3)v)LF{F?CG5yrp=RyMx1=Zs$VqQ|r z1xy6U>yRhn9AZI^U<{&h?2W|puGDkc4%nS|;mf~gFl6mUlOvybdtcLNU)&f@s&s5>k!-Df-$e1^aux#oAT1D>pMN%40 zBkBF}D5?y{=RQhVlw5BstlyQmI1oPT{FMn?lramxZ_&1&0@Z*^!*0I5S2q?4YF|^q zm^vO)srG0TYP7#Ts2AuaNmY>2`{N$F1(VFS7W(1DHPo6SAkksv3kr;Hu0a z-}mucz$-Rl3N2ugp%T&Oz(54kVdOuow$#q~;ryMN1sHnF_P)|j`kq;qk~>w)0tECV zSZ6=9JU86?U7|8Q4o}$-EPM@{itop};M7?V8d*cVm_IL^pRBg+1~&Wss%?iQzZ61Q zhkGUqU#dK zU@dt45~UI-*oz)LdixcEMT9nJA6?S-^re$8zW?(f8T-)AJx(6ph7jc`V%a?PF#bER zzzTe825vus$P}zk0f_nXrJa#8apbSwOPv=5KUcKhcpMchCk}myk!ldEh;e9doZwZI zkzbT7&B}2r&QVBefJX1#94_1aPSl-x)Wa;=UsYIEy)7@$Czs-)p?-tbbu3K{);Vr=wH*Le+#6w$X#93gLj;hA)Jlh|BnyBZV z!-1TrG9r!8W5$_7T%dlLW!0mPEIW#1llp)Nw4Rk^a+bb1O=Mjs5Hg*dUtFZv+aud< zt6j{iC}h0#z}E+%4R}a_P5EM)f;!KBLb?F)`R*$az7DF`ZREgtGQwY5HB#j^Ul2}_cHz?fpw6U` z*al?Jqr0Y^XSbf~BIsB5zQym-XZTrl`vJ)e&NVrkx~-I=mMl0(uCP;}%E*|PtLk~G zgKr%mc4$h)|JRN}w10fzy(xaU7BUwZmmsb1@Ikbzcb*jP^m}KCf@tU z<5A3));^bK=k`gs|ABXgk{CoJiBA?$LdVWu-+@)p_|+LvbK_LXy;+I0i*)?lX!i6; zyva%aflbcAtKw7-12zV3tukimLSUwe{9So4;>kvJ>itvE-@%kk|J4SK6Cg z%GAJ$DO^i;%%FHORd*;JrpOQ1sB707m#k}IZOl_b9q9gb3;hv7OL>VNs++A9qc5t@ zi3;5FDyNsIzx|Rse&w+NMcUA_oT)=|;*Vq43H&U>8Pj>xY(al+Uk3t(<5r0{ED*B+ z9}6aM1e{zUGKmGLXBXm-@Njr>)bF6iH&mLzr{mQ`pdQ90(?C+ibH~eDCtGvQ3_X|0 z)_@TYDH192$KW8{dHIt>Sa^N!wV{?-94+mW`hQs+V9Um@^H=gWf{>ItC&8h>9?JtK zmz=FlrcU8NkdlDpDs6T8slnY#@}B1#_CYlW%w5`}Qo?cxnjEANmY&)m#K%Fs;qRPc z5z#S+l1U5jXXkiA>I;gbWdg}_MCv8~Ey16EfQX7?U9NSihUA&Byve3xV{ z)Rwo*0#@9;Aop{5$YHg>YakLrWWW$5$adhvd+F^;9l{tgSdq4`kk_Lt>Ez)5%A6Z< z|MYQd+m7aL67WI@9-xROniq^k1ZKJ~E7Ck7A`V+4TWbD(R(g7AWF+#obT`jiN6Pv= zWsTtpb1AgR&%6>`OrMMg6%vyA*-AuHZF6tQh{iOuJx`|{T?_80xx?e%582-pOTxRK z?R+AA#{yE*g2{>kDyHXdSzTl*xhh)Fi9KHIZ7r4|N1Cb#SE$2>S6Qh`wJgM832Ek_ zniMQP(j$S1^66a@uO#vN#C|aO8q^m{rSIfVyQX0x9olc0zizf4hLVD2+*u z5;(V2hiX-vlSbz7Z2ockIG!1V`9KBI(iex^}@-@ZqjpOq7P1B zqdl|J`5~hcJgW4uDNO1v7yyUIhmW1krv!c>1Rb|6i7=tVeZFCtSp2g4R|C9UsQD9* z;C0JEx@1^bA$?nd>xVMU)W^%UEaW1PnYb2SbVQJX5QipDbJ|d+jw!g++sQe(@$izO zEbni?oMsRz=IELPc$tok7vR&3ot_HHz7njCE^`NHmqx)~5MaR(JhUXCFOH^F6=!aZ z3z-r$R%bUgS+9XEwwI3{`z+Ub3sFgO3UK+1$}j6IjO<(?8v#E zeQ+Yg9+rgeFF`86^M5z(D2H1KGJajOpa zE8x*a%PVL7!}>CshTC6;xgTiMuQ#VS(?@GDHi1N?nEYyFo*R0|RVyNXB2?eW zRUdv30Hqq9)&nI8qPZ}t4hC}m*$F?#Zvvl6)%t+)({?vT`+ed4-SlMsAIcKoNH6KYi#6F4F4|q8@O^wixhB&rE714J?KE zS<2H}hQctqX=R4d)Ldz8eH%8=hGeIrP znzI?hzxZZ}(2nr=o5Wl)*RDsWDw6RY$FHq!Jq{k=c4q+uorAfiknbQ|F!k>hJ!D zfjbWX(uYydPEgFnKkkUR#6bDP*^$uW(PeVn*R6fJ7&RBA{lFS?S4PhY%{|K+)Vzuckp@I3CM=(TwqW%A)K%?A;7cLg}DoY;u{x zfDh&PdUojtu_k4~t0(emE>-aa_e-Es%NZqS2`6IvOPl2~fb))f98Zj9n~bN|3iGvg zA@`^${irWz$3+7!;NGSIA`5bB2P5C-LVkl?MwH^86pbhC6H{9a7Tlc!PqI0#@xrl` zPA{}&yedkWRdSt{_hR%--ED0nki6clw6c8(r#M&C7xHj90*3jnQ`C9xhX#7}!W1pf zqR%ze!bYqaSL9a^rk*V>>g3u+p+Q!mH5!cS1^$n>8*3(AzvI<@tGsmw#BA)f^iheY z3KWj5kv_u4izd5@0^eU1)Vk0Ln+_rR=O*4=eI}=@AV1zJZ%8IFxFCbGFqgZrem6AB z4OMWPhMQkZ1w6{ z96x-F{orGOR?NNAmFV~8^F!9iY~QAD#*YeK)Ym_!KEaWx=9&=t*#d&e26esC;_NxIcDi+)R3i*PP?yA`Cj5|Md7V118?GUW-gS zUdf1O@fG?8xAr;QF^;^#32w!j*NU-a+EI0(^(eUdvxG$Hs?>z`Hf8uK_)xcfBdWBF zFRjW}wg?j6D7HzEde%IQFSH!pSh+G2+gBjoUl(k#?||{P9ts{ln}*YG`-a7XAE;3^ zxoixo*`IH0h9yeT2F$pX&jIvCSRu*|AJKl%yCK96mD|X1+!9EjK*B^%2f;*ERyN*Q zr|-sJGK*olX@7stx~JgMljM04%P)xVD!Cf%bgd$!mpI=O)omW=PK`JGpor zI>9$V=4s#aBb~z1(U2`gFZG`_8ovyS*%PRFS)KA^xc*s2%Xdj`!$wC5(cEfplCWS$ z-eHqtWc>!-!7&MPF+Ii^u1vs?D)^mx)^+NLt`<@G7`JbB(c%*DD@w%nc<_i!d_#ghPky;#QFiTyd&l+j&sDd@6pGmMehK~JT_sIg(FUo2 zSVL_YF}dxAB6R}Atv7S!j^}T9ht3z77_P)JBwZY}izTy;-f}|pMwNW@Urt@>vvR`@ zt+}63*Z51L{Dd0J*vcZ=U0fqF>kg7HhD!ceYE*GvZ)E)}ufklq->qtZ=?@HPfz_Xk zW2_@xx{6RCoG&A#H$LOG1kq}yD7zTtQngiKGab@d@zWUJ_)#`S7Sp5ToLO1Q*=b8T z+?dg~J*r_>$lr)()I_EqV_RbE&(N*29>w#nwwmPr00onff;&+n6xEF1^2ZvoI3mv} zvzx$N;l_gus2>?J{%2H0aE~n8*>|kkJjSvo`z;nT;jOAkmY(>1`gebYC{cJgr|Nk1|UqC|#AJyx{%GA{)X&RqaYW(tL7$>s-iyrh+vk z36Q;O?t2cH$#JUSfw8vH=`~%#Bfuu?Q6?&^H$(BkA!1K9e|#DfzGY$O3kJd^-KwfA z$0jyBN;R_8oJDdLGs)!wtJ1aR8)sal%fjyteb6sT!PNnEUSeff(W$y12yXrS&FO+1 zeSb7i8E=4+&M|AM=13oVxtj$rrn=o~1tC4{+AvdJFK^JaJg^9yU2@HwA!=8l(qo`g z^zb!mDSS=Dnz>kMaqz;BLG0Sn(Z`vCIPuHy%r9dSXyB|t3oGMTj(OTr=|mji-9}nV z2=?ZxU{o@k9-QJa{#@UN+5Mul5z*c;(paubjMM*aD>aSUnt;UO2sQgsccBD;oW&J>RIqvD5+yKj6{xc5oLd#DqF?!= z``8axKPC~>GlCTWjQEegKhqw_Q<~OR3=8a&VZlO|AAiBx5OARFF!g&De*tvJNP0_0Pm2$;H7u8*EChJ5Z`z#FSQ=_&$ign%)x0hTzH;m<#E#snwGVrZ z>nvr@gFMUk09eKNMyWzJx)xE2jaVDJ6_&HhvuNEAG znzRumc3I*Q_be}>xGsu0BwtEo0Ssido&pp#Ui%;Gt$6*BWLH z*OFyagA*^=rdJv8-frlXfrLu1F$Cx89+kW@nGAg0^9d3 zjr@*$yzJED!2wL|l0T{-63b$@N^DMqT!du8oq=-CoZaLkaTps*L3%e7TO=cGqynNW zFQK>$#~7p)Z}9?)aa(1O;E|Gj8zNOzh%44c^wnp3yz)_+Zka2?YN378^#OS$a8bg&lqO8ODR8v$8|RE-U`lXG+KsYlMpVN0|(zX zt=i?ra~zhKN4h}AL@5H{;RN2jz)5$6G5FqLKA`4biO7g0N0M#qrgzRRu=+E^n&CTQ>9_evk?4)_D*+VO7KBGgGE6uT#-&2)2*B{>N97 zcnG-n_{&xOwI7e!%K=|=&2~bipH#&)&hCyRrZ>FErd2P= zk*4Zf9mI%zM^#T-b>LaH4reXtc>CVUOuU0dssGh9Q*6b{;jeMWKkh+23Gl{+m6GTh zUeP5hQYR~#16R^dEEV51_rZn1eAmz#&M272J#aK5PIIKa-=gkg#4ek#$0+mA{)80D zW+r0Rsq^6)!XFiQ&BVw^#Iet>Kf~U+E%(2(D5uYJp<$Uw7gQ*5*zI#B$kzpiw&l<{ z+a|#ps=qfr9m}gf5qz=0+v-ub18hapUeYt2+xNwFRl$f7?kr(`xHI zmgrfMplamidHtujo96FbRr!YZg8*&yQr6k#i-Y24z;IS#_N6u- zg+`nQDcq`j{6cXhbN%`h0QwawWI@`j8UhVmRITwEpN_eR=z~O{$&@2lH32Jq03yKv zR5(yH*sJ+6n{OIx2!gT zDr{MIK#m+_kJ zl{`6HP^Zb&o0}hx16G{1V9$t`J8)A%IN)%1*-5rNo<-p-{yuA|$uP6e7M0o-!9=4% zZv5TxfM*42qyu*0CSoBKtMpL>B>B?Gjbe9?Gj@&=^gP*B{=GzU?u=_eHs}j{p{m<- zN#)9B((tNsHHhl*p7a34BcDoETV^dt&iu2Gj|wqKm>dNv-|IuLNgnYDOp0>U1+@}o zd{d9-_`eCoLzwCpdfv@^7_3k8>Cg!6-jH+P7;2N*I4(g@?U42Kwvk`$%>}VeG4Z1A zXmN&r>8mpv)EB~=iY$gYS48U1cTB3b($m#O6=Ff96t*O72g~qVEBy!Gzol3(`@Vgi z4WG+Sg9P(dP|h{GS;?qOn>#+fACCijMY@zLT8+0PHS@>{;K`27w%Fcvc_?@PEhn?? z*I<5c0mUV%?HN%4jsNiQP~HLsKmq?Y`IWYhJ9YQSD&3!Li0*e?UdYR`6Fb)|ECy8pAjb~iBRR&>2;s*=UhawSN* zSe7zHM}|dEpKst&Ub8u$l3lzJpV{-_m9M9#R^L+V;IL9Fl6JkUw@js>!7(AIF=W^z za#1$Uk7zryP%^$9Fj(Sc7cj6f&AfsXxz%9;&$NtZE@qJ$ymJgub2Qj*ZXVpmxUWZ6 z(p$v5+1VLIDL3A3kEFlOd2P+MD>N>=D-a%hl6~B0y>&Kq-qnL-b`k1jh&z6F8ifUS z;g7V?+TOSYHNq8hVC}>axUIiA5%EbomVfo_?M;sG!s82(NoNP*utk*8v+4673!GBU za*`rVKatTwYAjwVi#mFGdh=you5{&s*_GPQ7s5XdqGyL!eFJM<+s+cORmIxYPSzY* z)&hw*yb#{3Fg}rJ58Zn(QbW%5GV5d(G=u+zh_rF zRmaOwey=KkoA-F$<8;86Vd5_W_}%qMmH|vba9N>n-g0Q$ex+Ry^rXuKzjN9 zJsk9dc}r8%i>ntbpWwUBg}p0q25T`R*EU>?hhGNW&3oD&=pRea%W(*t#)lA=&x0NUYL0xe=$Ac1 zn`0r>h7BW1y@}+&D_hsolBwnTK~ZhthIP;#wHxTyP|BU^ zmkxy%Bwu7l-2FM*{#G0AdzC!I5o=IAF55ZX;HQ@1_CON0sJHFjwQacw23a5tyD9Bi zJm1`^4-YrAG3=#q?B(EpC!hGy^#eT?Vs$%%vsVFoMCP{&_OSM{$qBr(2tI?@&t7~< z97!kHT^n^fWDK(}E*uvTGrm`q>+bd-QGaiA#`2vW>|MGJv8~X(+r0H1$j+z0C8K4_ z_o`T)eR(983oN5g7G9d-JC(2a2J)Na#A*%1IQkZ=8%y_vlC1i6@?XUYZ5`{3R}EDJ zvIK};X@BN8SYteBcV}b?DqsBAs4`D9c^!g%vQEr4;46pp(0Rj3tzIzTyoxEzZNhe) zy!!K-_JNnD@XYarD-K4k_wTZ^%b(zBONr-^4F?vy_A1ansH>1)Qto_)~A-folFsl>Q2fdyd7Cn z?EK?dBIZza((+R8Ggo(8l*k9)Q=(T&UhRLJ7uYtz`_k?w88u>WGmx`;AK&%4*^{jg z(l0yEdK0`;h-bu`IB7RMqEC?DY(0&v#fTFlXbg6>$`UkoSrw9@eAt?nw2TX^Sh=1z zVWG4+!XM}mA)_c@PA!kqSo!r#LiAShmmp-{$9y?4T;_gj9oJu{I&P9^GcHCb6?8JU zn*y!P>FbbErDLL)7H0YZ&6dz7T}Q(^TmzkKw}Kay#OsqpeV3|u4w0-gZlNWdcTxNUTkB}1L>CioTdmEq0ar~H=q3Sb4}X@~ zpqx4$V7%`$&#GwukS05OzZ*{xneyPaFC<^x&LJV%89ZFR4r#8D`Lh4cf3rX1yH0t-*g!7sosB8Z za@-#qx4Ng0MwTCIHOz;Q-(|Jxc>y0jk^D9g;IWavYR`#}bKcPrQ$dS<_qlr4!dt_lQVmhgvns&lb=_`p{D904P19o3~DBdXO3&Wfs4qS{g-DQ zC)twPh+T-fE#q-w&krKPEGB9uIU#>mZy)JitKzi6h3pEdXMIH1>PfGF-xm7d zt5FboI<1;eP|j+pOf*!8^7s1$?{|mM(IAXwnkit_R(CKgd5d@O`upl071XqBjn#%{ zkBL!rgui4%Rv^|@@_@KMF_@widU%4dM6vS) z7>f<&LkA$%vVC?<8RgV8pniMNk=JYe=7xVPM`Rho%!e{-LCUC1V{p>l@#&2qlzjEG z4$hBy}HeK4edFa(VSX8L$=dFsb&dKjV43E%0*rd4geFDnIL*{~=KimZ-LBgUHD@x-nkd z${1@b&0b?k-l0#KLP@7IRM3GvftD>*Gjq}Q_3~6P#sCor#onpsb7Z*zkR4aIcwP}Tp76%{k?4x+!JYFnI&DP4j z8rnX_utt&@E&4ARADVbi8icJb^_aEK=irljO4q)o(DF<@^0@d`k^^xF4pGZ!juDlw z)Y;s;A){6~`Xb^nb4I1(AUF<*=y%p?*3-O-FH|QdtxgWH>odMHY)T#Yumps9K=`4> zew;(2r(?F<7?Yl!9))DZm5xqFPw)19goJQGB|oF&==6*?cH=MAWG&{O7i;l4lExpG+_lZZ<^x+qfK_BJB8!+^%K?@bU zFXOL1&J4DcD2z--#>FfYrBTSe#_LDsgt!}QuH88cHk*8CdW55QpyJN(k=I`q|b*m z(m+*D9X!7`Dg7U<81{0p9}{Lf)aEhjBP4rgq9C%C_UA#h&3mSbWLkGN`TUf2my4&Ez2! zZ7t@#@3Ucg?85R;GbhM+{`iZr7E5_Xd&oglhh*+eYiYFe8kU|F7Qe)$+?L#WO|KQ{ z{uW}2tq|$;!t(J3~e8VzZG^lfdcCnuMB=Es4H-4)M$Cbf3{%i|WItSh&sh#!rYg>6M_5 z&^q(amDM9AD+0*_Z1tL{Hkb)(BEj`sKM;KXb6q-*pl7uKtVMMp+PT$|;e?B6L0`2MMh?>AZJag_H?Nx`Kg9hRcK78eOFYu7 z`&jwt;EwNXC;aX8I>D>d6gtkBKR@1W9qyIvpo8&SSu{1(6s`x=PQ}@`qo)fmcahdRLo$J z5_j(4&Fh=%zU#L~Ro2UM$D5@2=h9et+n2>N@paV^;nueglh@bq9oZb{b*jK91%L@T zjJ7oSfJ-@-VW)cf^JlH>z!28TPKb3RzZiOOr)b4gVKBVvR>E?vs6XR)|CXU5Oh@`y zz92==n6Z&^?@9Dzsd%1@g0(5*`UE3Ju3-0RtWfZuJ5Op|d1;L$_VV1mEuqGGg{WxT zl&B8+A*@IBBBUmtJlky5jRqeT(h_m^4j2;sTA_wN}Q>&@8cWmRCUHIm{~5c<~nkI`auuC8fA zjSdN<@hlKdq_jiC@CrCb3)PP<=s!FNnBo}@86%Nr>EO?#Ie#HEElBwN%i+EY z`Y?Gn7iOA;&AXjct)a<$qQB`Qur>ugK!7wAJTrl%xDL`I%$mPAM|ZkKahN1(;``=~ zEoK2dXG(MJKkKN`yz;KG$q)QG#D+1R^yy}2xvgl1Mk`iTJ77T|?9=>{;7NKzbd6SD zV$-viK;JfE@UgrLAO>L~z0C)Zin%hX=4vRmbI={)2mAcr6K@=P{`i6|KcD^gJuk}y zD5Hw0fukoFC!YW(Brr-4TaW(8;qnp9;OsLF{f)0fFEBPT(sg}5vAY!~CM%j7ZkGXS zX#c)4Odr^n{BGOQhLq{x9P^9ksjrC&=&#K)QM%~_KV4@OiD+R%*irPe<58+dfI+X0d~I*m4>~0a1U#yzXb!n zO+o+111q*@ya6Z-7hNs6tf-AyqSTW7I*!_7^ABmTyqImhKNRfxxRTrST4PPZ`~4~i zoN?xc-BFl1FD)Wsa*jR0FhW@PmmV%RW;~xGs_F6~t*Ct(V^aBf!&59F80}pwTsJ`-_}>9}@%e zV=xeK^w+8E;T?{erMO3b!-eO4v7JIqcI@e0MI&u^u^nB|E4bL3j?>C|(V{WoKJBt7 z$O{#2xI&rL){fI^$&~F`k~qWA1e}jx&yI)dM8^MGHYAZJae>EwYin!5^J$p*qfRvy z6`k#F5F%Osh&XdZb*Q-&8O2WxWrRH7QhuYVOpnmj=OzNDIB(QD8!ge}i+2#XtVeAx zkyNJ9Ri>?%`H^e*F(=lsEbB%MY5P5c^Qbkdr{4~w>%p{)VC`U*K_@)k3)rp<1e817 zjVw=2%anFt2|)BZ3Wl4G&PY+XM)8O#zo_uGSxdM|o~xOlAAPCi-uZVk56rpGoDPKi z*5CNAi%qd%wf23;eW6fBd!}bo*K@vt(#RTe8T<5W;RLWfRQ!o~*9CLLJ z2ESs>wo&z(eCVf#bfj3NFP5&J?YcD_>oi}G=4<2T?6#fYTC}NS_bfItzjUp4su9a1 z$ZzfJZ0N~|i0RgqlIrj8|70^x0S92r>|iN!*qWA=6=J2|bV0+N`{F@#&Atf-Jg$+} z;(}G=8BCuz5%Gu@DBU{olu8f&xZ=6^Z+%eAPsBqY*tPA6wT=>v za#tS1Td^gx8c#Y-g))i>s6PL~w|6HGI=&0gSVAZ|Wed3$skX~FzU!zG<{*bx&##&0 z!N6hnF^Nr%xmj>6FMz}8a93`8qki?La3z4&+K-|5jy4FyTcTn%;Ua6?w3WYqZT1WJ zqQz)7;w>LZ$7)&wfm|XIxeS%cE(!{YFsEf8bnb2hqGZVtO@2_X-fZ>S+#&Z)X60wm z`af+f`n03Rm);7gh#K;cG}=EVm^3SIADJsal;ULQo-FY&s!i92Sw#4+zj>i@zJ02| z{)Zb*c>NmjCmYfaH)RCG0LfaP%PhFq+EqKhbr|frzO8(=!cUYo8eg`BcMC>MgfJe+cb>@@vxIjl~ z<8NS3Gr5;$O}uFtEajGvT|p?rjnf`I*V34(G7j` z{N{RlX-++-&|(zQtbG#Fb%*C?gcr8ci}C$ip)afd`tqeUs0Is9PjN#qdxR>ZaE;{5doy2`~!#DAUd zg{3#L6}Cob38Hv)ioO)i^t+7W?2w4NBBx2BAIv_~r(ej`K9mtqW6)EFlwsglo6CJZ z*Ptv#!kJg*cN$dOY~aRIZ2MF>w>@Zrs1B*mPtt3$7VP)c*#eUj#MXxDq1B049BJvH1ET7 zo5({V%Ep*I7iQj|RJT`opYI3nWYu3X_4P^(OWIg2dvrjDILE1ubgGd>N-MAOrJBeA zlvH^9iAA-7a)rJW)VOW#MD%Y&Y6;aaE?5%A-hK2=u(FP%8Ty9Z?S8;T*ldWVDdOB& zY`4k~?y1fj`{C?O?r+rf>nB{yVX=?m>QC?9afRkc@XAGLKZ#?Y5y|RH%oS~LwsO=~ z#NM0@LK$^UI-`(g>NRtuX$-r~`NRszu?@5c-1(J{@1J*`pl)NEd3yJJhqSq9v+-pn zFf-&pS5{S(oc9F(_VB3ewPG$ee&fdsGfWV6jrmcBCDt|Y=Wz8OL9Oz2z|PNghbB~b zyTm)~gi^=X2{etHu^LxCC{GNqtT>5QQw?6SUTF(;7?|R3Qix~p@}l}@ z<-c-}#l?4Z0FwQ#pkR*!Fj5TWTk}Q?{7DoTZ2BwNw443U8GEm%vEQ+S>63u!e)?R$ z+E~KcztE^Kh3BMe-5k`C2)@qFC#IvLqt6MUGRpK%Zvox1sjd3&B+kKXT~*~VSSbQt z<>8UU{&z{DzdOj|07;fn0ILX`LmPkPzv~p-NuE)#lB6f{ZHXExnji_&e-7|t{{qd4 zCRJd3a9mMW!IHQ*^3&tYmZCi|H-u*xECDlnZifUmZaDY!svifLYq&;QVK!s#!HGx_ zGOD0{VT6=syF1`=Z?Z&)&#AQ_9b?7Fq~qt!-rker6Wa>dU-9bMR;#Oc(u*Y$qO7LY zHtL89-R(9sc)K_|JLNUipOz-zfs$gbofKU+34VI$ljk&hV0s*||McnL(NgHQc3<~)PC!rKX|&j?2MN=R=CxrZ`3!ECsi?JvPAp=np7SIKYwdi_7^a$w*$7&WKXVv~X4KF?vQfJn#Z-M6!~x9=;c>-|-eua^#b2 zuVYEO01Bey*T*dXr>?J#iz;fn9YqC{QjqR0k#cBB8Ho`D1Zn98sX<~uKpF-CMH&eS zDX9TLL8Lnd7+?gXB!&=4$-D7=@BQ8HkMA!IbI!y$XFtz=&RT1)N62zzw0KA=j$yVQ z-!|l}X(KA!*znV&iBZ~Z*JnU{4s3m#6(s?$2fsv>7;mk7OR;$(O9a%v0gE~ld(kf8 z#R_KfUT_ikD;_CyN)ZKf5dKbmR)k1zh`e-k{En}+pPzP0dP&N2Rd#RwB;qzqq>BNg z8{M_*o}RaJ#}TF}Al-zvMr^kLI}0zSu+LJlgZ&o#Nx|UVCo^AvCnpOR*T63ux^UQ~ z@%Hs!rM#pjnPzHwG2RJuo_=65juf=iOUsU!84fPiZ_qaEA7oM2|HWi?GP++NaC7JGTZLY%xppD=obF;W9Hu9 zD3LsG?~>Yeow*p|zhN+ux82|NWUVzmj6!2j1fDo(K*r$0Lcsmsn>26l9|Y~B=QONN z(Muy6lnz0kPosd@gMit)M@>N#->4y>5Osml||33kJzkidne!RfS;B ztS|N+A`f#SAgmOs1M}?8*arjR$}X{n)VnCMH@}uIy=f)g9T@nAG2WQy?jiuEo$`0h zAOS#2-6~Cz40l>z&P>udmr#FKWHzVo9eQfoMB?T^oNC$_vJJ+jaUIP&CBxCdNS8ce z3Bs>=97Pr4^5h_UNnuFP!vxnMn!TRNZdb!u{CH_YHMPk9czn;tbII_Nn0B@`A%|q7 zmAo;vPrMjkfD2t+`rcI;8;ZA2tWFfx#6{l3wIgtCr3|7FRA@T_^OGWhTf`DaYako9 z2#0#fEpjncm$H(jsKn5lQE>4?@KQ6Pu@m(ZW?a+~4d#0xFu8fo+$5rTgbj&DtyR*x zhLVh*xVyOk_xgj4m?`yzW*H9@+4|IzxiT$fQky7LDt%gxUyW6#!DgX{JC-bgvnp?g zXr(2hM|WD`@Q9TG(?;3lteKPX<+Dct9|$T*70!5w0^OPiP;3+pR4 zWwX%t%3wW{N_oc3Q}Q4xnh6qYSDn1TFqc+ZvLYEJmH73;ho=^r0K^Iv53Nm$;#xyi zNbF_O7s5r>Z4GD!e$CTZIN3C9*6(~A;CLS)buT;{JokRKv8bG875tR`>ZnJS7`r3v zbtK+bE_4xW!quh{!!gD4f9{d;5it6&n++O2!(Qi?A^aUtMRCl0;z6GU&lK zJN~uLh0Mz-X6!tr26Fm^OCtM1zxtU6*yjC?$MZTVe!1=5GO6`3k^fT+in7gH->TMw zt-|i%i^sChz5MTW#YjF&yUn+q_Mjp|*ym1%K-S`C*N#ejg8!nFB=BNrX&iar1nxEw zNG4Rjem#GNEm!E$@qhC~^#PN48Wr6gn8gDJO7(?uE|6x5BDm#LY1X2qfGv^dHZtg* zho~3>3A{x5_F!m=xYKddV3HmFeYqN{=E%6#MN`_buco>_(w*+nV>oY8kv@+yNY*`$ zl{%xNULWPa&_Zc?B?&Uw^j2>{_F~J%O+QPz{}A)w2GP7KG}&{&`4DPdAtK9f1(U>=T$nb(X&nqg!hLmpXw5U6_zph z=W)I*Fs@0eH=k*FC(Y5W-}X=_7%I8f|6|fb=(hrW0}9jw4;t!SaKgy50BscYtH(K4 zEk+kQ1qJNQ;TRg9fQm$YIG545C`m^D(q-}@pB>vzk&*lZyjNMZ$;{us2^mAhRaZ>W zVwGxUBpE=us+gdb6Y6fNKk_H#p!Ju|eq-szb*i($=}|!3D=fS!`CN|N&(3cB@Rv31 zFx_gxK&mb8k5|lOejFhaq9h<~4Ri^=2Fd<5o0?LmovZEo_Cv|D#v(|h=Sww~tY9n>`DsRb;@`81ujXPO^P*CQnYca>## zL$~U1Dz>EH!bgA;cxVC!OTwMEX=v#sM}^siJ!`SnQW|H75BZtmdQ-O95%J7@WR)AJ z|9Ij=>Zl4Ioes309&4RCHg4E!%^n1GF*}DFUaCoXT~~7jT<4kwD;cH#l$Z|k7rmmd zf}rh6R?i{M5LZjUOkALYeI5Bi!EpC<{+dPcR%aCu*a6QEg};3G@N9m~k81p4D1b?y zOJn?>epNNkHJB-GP`t50k`P)wH!LGPz8Ct-uPz&uOhe*uLJA47$+;&-w6;qCzVbHQ zl(bjUJCC9Sv-Jy)i-qZ}rR18BYIm8%#EDQm+`e~A=+5jx%mzBlLgy;N?RGr%hWrqw zwIccANznFmc=@=A6tvnQ_(`i`w%CGTFyNt!T>4`8Ow5Jn$ur~d#~7!DxU}_Agre5g;3BI2cm|X$v#HQlH{Brp?Fq;bR>l<6n zxX@+w$3uqoRizM~SBdB())^o92lBobNev;ew0IM;b&LW}ybgIn8&d3b#v^2uOYM5s zo3{MZ3R0_@5(O93amCHtZDm>OPYsxn1z*8Q8<=P`! zPBqPA^LIrA-=8;Flb{!j?C_?v`UEP@G=urZC#!2~A(e_O7rx6WqMP%Ujd1(xBh}7| zks1m_zb=1g#*^^#JOm&h%i}X{EfL@BOKb=@kq8M(1A9sZ-(< zWDZh9&n_tp9Gr#}I50zak3A`ppad4BFUFP8i5pc+Q>rrv1{*h-)=`y@-2P`=a2jR-=(X z`f$*fWE9OMhv8S7$6o&FkcJR6g6c$2{+&)*uvC^Md1HM@(mEPD-la$l zf!C(gw%m*yB0us1Ub5QT`pc}cgV$aia$ZV{jD4FG7VD&siWwmpHhNeLi?1Auk>Wly zy}s&ds2V|}YxsKMoA5o%Z*^2g;=hL9<8owSdYrElY{*8!X~{jPqMh!q90#f~D^n6O zguU{pBy+1G5Lx~6@W&%MA)VlWdR_(1Lp>I1Nf}~YG0*^EX5<#ghN>VEhEUAyAj2vb zYAJ86JbfoH{tuzY(2gWI<)Tuo`E+*v460hCYW(3DBYzAX^0yMrB6{+bl`~PLze)1v>vN}j5Jo4?A4+~@glzKwvG}^IO{N%p zqK0NpLQFvh9MYfy8-sbW-J;zHCU!w<=!ji-aq1{VLhiyh@O%eqfD}{Hmgu;PXT>wO zK*}UkYYsc#1UgR4Zb0vj1Qd#%M*}S{U|R!b-5jzVUF@u_uRw&w#4v9V$H&JOhWeN_ zCurQ1!Js>Ub$F?+D^3D$k{Fu1mIs^DUDl$NoiDN?wzu6O-@biQm^O4MsEl zi%lV#N_swtrn{#OZJWGFNl7gehE6|&s53Pn0Fr|LWf>yLUC`Uustw0C00`2_Q4=dn zrqbuVMhVsjJV>2u4Y~D*od_ipj!!`JBO>AwTRi-g{LZYbRx?Uxp`DJdyWF~#={ zL|r#nle&L?J(#&so?d%M@k#&nd^NXEGgajy>vX0A|NJu@>-3m6QE|h5^F3H?7+=l| zCj$n(g9kpWj?pcTl(tsv>rU|@si|~_P1%PQDULvS^G!JRsR+J7Nd1G(x;x<7;12SB z{g2>qz)AqG6%ta?dnOg-c+lRk-O_29%rH5uva+%v3^bZ*Ne{8LqP-^AYlNAv9d>u( z0qEe6x7-WQi>yfoCWZ=&_bZZ$Bv9?F-KQz(%3IP$g^kR>p;8g3lz|o(n%<6Lk^x8! zOC--!vsEV<_^$R2#fI`2APEA5NFD$j!63Q4R22A8AiclidW}vo)o4<`Eu~eE(;Yh; zv}#fitoR6(^WSF$yE`*Z;ZA9rZ8v6`Ipn9udYybh6R_POg(U|4&p0AU~U2$~*N zjt7C$Lh5L5PXq)%1r7jc1D=^r2id0I0Q=2lUl3&=AabB91#W4!MWlP&27=VU5p&L$ z8SE~{S4z|YZ>6-JVoTsT`ZW1Ak;NXjq^RgEqD#7F=9~{d0!6C&hg(&X&O;K89O?bv zy{CV^bArGtQihZfl^u;8*#z zxXAhPkJFjt@yd&_CL^awU6Ie=;^Nyu#Lf&WAZsZkT)j}MK|~aRw3l8wVavgKq>C5; zE&&9OL`K$9Fri^b$oz=bgoK;*tk)7v}gLm!<3JMmwFLos?!PB94SY!~+z6b<#KW}^(i>>?OfGJqwfT6D7P%QFI z|Nh(D+*|@{G_T=+QRX`dmnl8>^_EaVW#|u|S!8cI)aCkAjt5vmccaGy*f9I{Cg14= ztCEPvnr(WMwbMIMOvW=c4!T9tH6Fm)u6T)>nmQSLNKL>j@*r$|Wpfk71gmY5>_SgY zPCmo^{P_%sD1=;eadFl0>!1Dh97~yop}D8*wsv+G-(4dsDM?%P*{B)qJgM`TCbPGx zspDYNCiF(jqeDeuadhcz}y zt#29=eWVryt6-828g7F1Cb;N5`Wim!lz}p+$jd(`=h4cF-EcFR)UWzIZX9(GGr62) z{HS5DFC*PNaP#wW>C(OD@{8m_X@7lB_h5I0?z$PxL}p{ngLW-V1*8D>^NECm${!$C zx#w+B2zj1Thf#y#VXX{_@Go~2d_5kETPf>kE`qsf#qG~TB2BbxSHYkCV6)4vqcwwWu3^eo!;nI~+Q@UU4hbu3x z@1VEoi!7Q62i2J$DxDd!QSQs%g=5=Zta8c@YV?mQ?tR4G%7pD1MNiR8! zHV$}|L~k&dmW)a`8lMW$hX+^N4O%)n@>j+>n%_x{`*`y!BJqg%4$vjc9S5$+l;izY z&J{+schN7u;D&c@o;F*h{Yq00?g9@VxpQwBiMM{iCr-2k-+~F@`eW5L;-z}v)uS9U zkTwgZY{>RUgWFZZpRVnxsx)^_s^(BaF0)b9#+e~0^~&}5pZriMF01*`u$LdA(L?{N z;FZ{i_N}x6y2UJRoP%c4S^=>;nB#9(6v+*i2t)|S)f#d!3M6&E*XF%4rwC@L9N|34 zZ`;arjKM774Hp$7ApkQ_i@RE?8puLGSQi?R`&KE$XrozL)m^($ZH{_)8--2) z>Zi8dT`%X^QQ1-VA}nZZ8Q58jvW+#~ol-kOb(mUFL3Mh)smpwTJp?UJZ&ip|kpsEN z7_&BbxG`#pz6#Z4!ieLNh4?o+l-z#|yS%JtL-*kGI%+y<8J7FaNgY8A;)I2a3LWy< zN|ZPE+XCM%z+8c|34Zs5dT>>p%`HIh;k}Uq;9&+(Gpg%hPX}e%VM(-wM+Jq23*Ryas+LgCz|{9LwL$jEg9d!07;EFEm&4qn%T7LDsa^PXbgP zU!@9aaX1`9y3gmal8z6=@(rsD;Wz!@75jJiha}u)NFea;%+lyrj!X85GoU7!^EG>r zqWUIZP<$`)rXMeR#eLszZoJ&iHC_00ND9~ zs*iI@=eeu(j4KZH-xmsP>FRn2{HPuG!yI?__peP#&d*R&s8!ZGt|Ra9Zm`)T zz9%I9gX#$D(Ecl~i2-&j8aGo#gd(x#`wtczldqKG$kM2wYBy0lYXH~*=b}tkZF+;r}&Z3 z|C@NpuLcA)jiI%H1=#Ct`B=<=kt3dlcokGOMtzpf&VpURa1Cutv~RM_Rmwb%&nB-w zx`A;>LH?$IgjWlt$zK>9Y9d6FPs~6|OXT{x-BQFpNy*_M5jd~!?itB7*Y>1m3EHvNwSe}Y*`*3TbLmHc#wa~lP#YJo9Y1Ben0ZFW=tZb}Ku^!u%ReEMnr-Idc zAx?1}5nocvem|W;$4xi-5Ry{@y$LM~OD70}Asp@o)?4KMeKSmYsN|?NaYK1@yX9{r zFajVE%_KL)ibzS(NiRFnNyEhT)t2kbfJhVSHp3Vz_kpH#za#t$9)wPT!?jb+LD|!0 z_0V6`Lj)=&K`V191|HTa`#E?lX#WP1BKv^_J_ ze{Blk^*4a2sw#aB_55tI^7hZf#M9@k;1UFd*VRp(fgug$zIUD5mXf#F1nAb zdvxJ@wMNz@`^E0TCD+^>L1y_J&@~+*wH(snr*xCb%RIgYD3!G@2RewmRYi zBO?NTpH3{8KqS5F`#TOESXCP2mD{4#CZXeNhvfyxa=axdG{9H_4=naRSUPT2z9j9E z9JL%uO3F%d-+dDV5aVzeX%>db)paOGD0yi^RuK;T4%s2fGnXP<3}|$oCjR=0gVWF zC&+sr#CM}Sc6$zt=A40(X}_~BcJH1*xdHCJ-=3KuHABx{pKzHHcJB!dmTEJRDp5%z zAGWjUCN2)g+=KT5jN;a}Cy-7y6=-Ye_3S`DTzXdBc2lT^2Ge0<^KsZ;yM!@lL zfGS*6PL5U@Ne_@@AwTA-54WOG1b{{riy*6Qlqd1jQ2soMp|-S0F{bO8Z3coLFv}l9 zJ9lKQt0zCw#kf9sswd_YC4asXbZ9;kbglus%1~p!rhU%i;|DWwr+WYd+V}-u)TFdZ z4lCBY27vy8!R*cy8#cQ%$<`Zvpagx7m*(c?2J?S!^+%xnd-Y{FRr8wNU{+kFfbjkM z7l9p3*!<+#IY#_Z#rM)H*n`tFSvm8wKj(}A z8?`)vJC&Vg$AlYDu*Mx<7IFVa^SMl@!dr2q6sB$W?+#$s*qVLZ?6dK{fW(=a1_1)r z!M#3gGQX^ysDumoZDK%)JAca~C0f$m$#On|nLXX)m9$Gb3(DS>6qH2W2d9d&2XzohqW45E7o<|rRi4Z7XC#MzO=pkIwqP6R50e2~ z{$E+9k#%(kXUDU?rqfw#Eln_NC~@3BF+eHHEm@o(Iu-rtrxRSKioa@;^WK!I}mg4Ovu&T|W0~3d zoq=XLqY5?-x2C`8*(S|rF_ggKzeh~XM&~LTuq8Q|!cbxq8qaR5)0Cas7k+zE8ge># z{^h^R%u!lX}5&$TL~NR-!N1BoB+!>d%Z9tOFP)4EoRh0oHyG z3f9u$d?R)AldAbl;p|1&#YG{$^7u=iT9RPtA-lHn&;KkYH3$CvgFes2&$z8m?z9df zyaa1;H54FLCH?m$?r+PUMrdf%o#R3Y&5x>$P>p3qm#RxLSbrc)N#u7aAOoTQMoS$8 z29XrOW%>y?Qrvh+EJ8;KfK-Qrmz>WoKM$DQa;jsiqu2R#hRK7)uNhRV4F+v`N(AC} zvdvGFv<3r=H`21VTH0d{PL>L@XKdXjJr-u=k5)=p#yta`1iLf}b+B4ifY6I>zgUQU z!T(6AWjO*ZB}9ss?dGscT0w#VR>AkG8V&%mI`Mq*B9MBBdeat8l#!F8mvIMq{!m;+ z1tZR+z^wFB3H@XjIh(hz2)(tI<=mVy#G{dXNAX3zM$;CJjf~XiyQ74Y;aox4SD&{X zAYtQgqxMT?5Vwx3_-)i3gDg9$SB{(V)(elkKR173Rx$!PK@JiD`Pr9x_dJPQ{>$?3 z!P6h-Gwuh|@?WvSCM$kUnGIQmt=^s?xCc(EPL&Hbvjf|69hHwmTO~*s~WyU?N)p+6r9g%YR@b!2B7IjU- zh_YQD0L>r2Aeg=SYzN8Pxo%tT}h$0W18GAC9NWUmUM zez|lUsCa!Wf9N&iD{Fz6JY*6JdOIa7L zD|a6tZ*>fbyIlHijAZHg!#0It!?6u-C=uD$%A4iOzp)%nwwhPn&%W|{SiI~CTX{V1 zj1PT0ql)BEgYtE-ig@~Lt%NY^tc9HUuvSa{^mAsq#5ufkf8*WRpN06Xsep~CUqHH$ z9l#86ojF-Icbx&RnED_CTr6^q4c;Z+_uN3^&JMx`2GZpNPqtTSj2wK%C=!5#s9i-B z&{$OI$dW&)LC^0}Z_Z5p6Jw`%_c1kpDrn`iyI1DXFEx80G4>cXW&M!gW{xq8vHB`o z))Vu0Wt&OOGV0T2CP5!3oE3@YGdu+0*7?G*5I!SP$f5|h$(vT``KcU=WD?^2t|o<( z!re~2jf5O7PIR#gM@PBw0Ebb9f|*P9b0CG6CM#HWx*-b4DbHTtnxHc=ro#^#=Fb0G zw2)x<6S<|vm8S%}|9pX#xZZjv(6e}x(x*I6=ao(ojEbM8?yjC&K9ihBz`Dp2BJNim z&-iRc-90P)lJx1+o{&T5{FqG!7nX)ENUvYxEyZF?=3ldF-WD9iM3Xr-r{2t9e)B1o zzKBSyI4{#r_Rzil;UgRSJVy4BKU6WA(oYOLI4f%Kz8AbJkR7%488r9Msr;L3tls;@ zlu5^b7`kB^E;ID%dt!z{N;v6FLKnV}$Nf#if{c-$NOhy)3P{*)(@9#(n?ShtG?+a} z*zZesw>tMCN*|&VCJ;Jnkqm?EJ(LWd;`cq|ZA2`FzebNz6)paQHi%c4n1K3a=)B+U zyKzH%q00rW)7Q}v{JVh}E54Be*aPh#dsW48_X|lRuiY@K$ciG-m|-fL@&{fQNj{uB zSt?szH=RgPCWt$fMoz#j%Rja{GNBYRyPhLxLkDBa`dF$N^m_ah$`BTm*pZ}j$`nko zU0rqNNpU&L6Iv?zDL+X!ULa>A-Q>NCjwGVjO3u&>PUmyQCRpQGL;V;@6tms*@Tn?W+3B0Wh$Fu0 z3`RvmR+gw&9#;_ER?bq;n*K{eKnKlN%;algt|{Z#^L_M;GuBQbuCR}JB*KGMjj$>q+cN;g*7dD!cFHUwxw0`feCL#0k@=lJjEL_=ulrOf|2R^f&TYbj!LCEZ6 z+ebd*{PBOJh)^N?xowZIW~3fDLhLCX(7_ky57dF&_u&6g0D}Jtp#SmNxnSTZE&g9i zYWS;*4t@WUt@usq|F-oe!KnOy2NN%~G?4_9=XH|`j=gsJzfGxKZ=VHWd?a)X*$R6g z5D1sogQs5B7G5^eRvtFs4@6X03eExaZU>!J= v>A#0++8}J4A&S;+mNs|9goIfiXzQx}+qiDcN&Fog2vK|RNTpoqS;+qZh6R4) diff --git a/Content/Figures/conceptual_structure-eps-converted-to.pdf b/Content/Figures/conceptual_structure-eps-converted-to.pdf deleted file mode 100644 index ae5ec4a6b3acaa61768e80ced6a22378423a83fb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 181499 zcmd?QcU+U*vM(M*1!)24H7Fn=LPUB?RHTa(X@U@G(tEEF5D)|+T>CFL|m3}b#p`HKg^(&KNi)-|vBKHLcg+wp$2?H)aH&r2f zr%!e@(YN#=#}&X+THteYd$T_WBK-RO^53ug<6DUI&pX2ZF)b}GM{}^cv4uHU)!fX= z__2d0hrxY9v*>+c4w3u9hNOf>XLEa34x!%@Ck1PoyEwQxo0_{2NK$upFnw z%>h=jBa9+T=pg6ms_@*EKp2O_U;5~&nOK{fx^f8q9$1r&0jdi0scKVjz1>n!U0yXGIQZDApJdcO;SS+!U%4JSqc6g?a!`)|K9b_p0dWS z#UEOf7|-|@1Kp&-Ar76bN>&<{bq@+gY$DoV^eeR6LWVfQ*%v)$E09g zD>H)B2tE*zAO$O$TUl8CW~0b`Qt)FdR~L12XITe3M+f`g3nWhZr&xiX$ZGvXrv6Rn z1jWR~9}uShr(9f2UhDuU9}$GZ9AE|@T$e6>0b~J}|NSB&x=eKC+LbFrL|2HfUb}Mb zI?46x*GWi7NXaP4Nl7V4Nl3`4$SEj+Kq}yMa_Sq@z#D|$z~6&hA|mu5^ty6|7)VM& zO1S%fcwKx2P?KC?zOqSli5hU3`VtZKrHc*#h%m>im;ShZ&-eFri7>^h*N923ladi0 zsHOs3CcOLd6{4$GuUsLt`VrazSE#SvxGDJP8jXfA@hvCX2LaI;B%F`STj?~1&|E?$ z&VkoS=@}TAn7MEB+~K_|EFvl(XV9 z--J_Nxq4IZ+KopV#KulEw;lwL&_0gNC~v*aDWr*}GjSdwrRNexabtdy_6KGEdxQo4 zUs3k&g#8CyQvhGhOBNEmmKEnCRhnY%Ys(RF z#drgx1}~8hy_BOxE5|{^Jf>idTLqbqJ#JkqaQ{);i-|87ZvY}j**J~$9YB5j2c z*|ytxJ$y5mAJvrnEnvqYRm$>8h3OKaFG;5Fr?Y35RlxpS8x%1sfK4pLJ;s`+`)XtD z7QqY#SSz(3yf){~GOBHp|DqX8LUpPNxnTJkQ8ew1o{$O8| zF=?r*p#lEPmM#Vx4O*%zFK4k)Q#2w6R6Q}7Q=H3fh=Gs&1~+wMzPfC0Xw%uuQbjMX)>cJ{3 zA|eivA+Yk@_hrT-@idvsO;HRFwMdn)x}AHNd6FvZX; zz~23uN45il9Z+zJjfT(wew=Qh^=WQA|8~h+mRBJx1_t7*p^4FRv9~#+1S0fa5q%s* zS|Z--m$mP{jlo)|qH8{5Wc9GIZs>hOgl71{>a*I^F%j-0%g2)6)SDxm?z<9=IndK8@3o2LM`^B|K9t?|kg{Dxo+SNssd z^6XL{z^9Yr|4yR*g^UX&%Ys__IdCB{04F;Srf&Y>ty6L%>*Y`JD4!P^=prE&%EtGCfW9(3VZsi;Yvov{1sG{J%Fd%rF*svX=gtp7!;|ES#9P-aKYiuy zYV$XHF86fpUY<~$I0i2ffMq4 z=rtW5UV)KAsIiHt*)(&Mq3l9#-U2xE)F{QZMCi$=@R{Cn__Uo~$FX9ISs$y-auLNR zVga@g+@zAtOUW5VU`pUe@mOM1qM$XB zL0V`vid{LhRUJpSz#W-G$;z-c^v$-Htjl|Uthm$uD%Yfy4Ov0XhMs@KF9aRPGy76n?n1W@GHXp6QIlK zCvIgotdqFELWL#gLJ#>Krv`sYpAzRd-wEZRg_|#=wbPz6UjPL6bIygD(YxL7Ks^7R zLTJlfPyIbFlIyk&*}Q^0>3g4ojt`3OzA6`Pk#yL(dZ+o*CTZ&%bB=-~>e+gE{{QLn zLd>_Y%jzlhRnlP7NCX2(&a|>gd19TygYD~{7p zncT_*aX5#T)g|NUYPYX1%D=`2U|Qzdyk3${ z`ZO=-kR^TW%z5V~@F#S>;-x~qXPWG&v~daV^b}#UH~6fh1UysXJn?U)(&`oJsJ0ZL zo8kpyZ}zY^oNo9)0_GjAV4qu}YlEs(S?^3iE2^+|juMO~wC+6nrAiY;x{I;?B^5Ch z6_SPD{@D762Bc-tu_%l8(jyBFq3ld!T(MF)&BGR;Hk8)OT8J`k+ur}^+BAvDk97_D$@TU&r;OF-2F;wM3Q1Rv|u2h1S2=%|7>%| z`@H=)G41f&mAm>pPneB#=a&L@V165pDlHT8QgJD56A-Rn`gUS6YCJEZ^(_#H-K3s^0lxuO6XYT!nEDEsCOv5_9D_x z%!ZNY&V8`3L3xZOSA=ELz&&HT~W^kT5O-T`2|Du1+0 zK-sDB+Nk!={R!MXVB{QAAh-<-EDP`@ zM7muLglI4a5;KWJzHFj65mW#!@MH3OfWRj!eu82@gm=p619AM&ZZr+7TfQpECB zu-CzfF-AfQtsRGcbRfLQ!{EBr<@>YHzt7t}z|U;~8enu6NpM{x41UD)s)8(sc9ZeR z>pQ;X-7Hy?y7^3H@)GZpmOABBy>^;GC(+*$+w%@5iySbU9Txz~GX4YDlvryIYK_~8 zmR(}-X`(mXNNn&8L3Z;j_TD=j^Pj(xIuMaRUTN)3J}Xm#$DR<2fjch%M0n!Ef`ggJ z^QZy~yZrUU4~FZI%=@1?=n!|z z1)y7^L|RU)9s1TE#Qp%A&v1M+)Vn-ssqA@UgMsKRQCS?a$<}n4i)Kx|)rkEUwSb;K zc*sA~dAwIgcE0Ql_3e5q4A~-k)2uW$nVp#|c{0%Ily`pXOVwFe5MnmEDY|i)E1b`? zc|w7*{w5ZwdwN}=Xe>=(B31qGgz8VHimr5PTZGIYndQu~)HY8(+`wy4F(!lY?srd) zsPqxl&KVhb-^zSnMoe0p!Dbqbf8Q~>JEwE0d21Wbj zB3a|0{u$Drj#m46Zg>C>O?bd!=(Au(R-fZ^yzQET-ZKrUTYfHKxMDskO z+Uq*ATIlvGqdpHlWjOaQL&4s~qihFOTAi)Mofc8whjmA}0`Lo|=*A`wA^ur3u}ZHFccf9A)@U(A|pX7XbFs7xNqKIp>sKC~JkB z0hMseyeNtEc&@Oo=B}?~f$DND!s8LERwYdQH~-Ku;s~5JRxs07$xaGZF)H9If#H$w zwZwym9~u)CRV{o--sty?^fb zfs8!=2PqDA*Kqu>Y|2A_w25rq@A2w0EKT0C@!4A#^JLoC4rku>Nj>okKmuD%ir=q1}IeA+9c(4jiZh7hu+62vQ&09P zXlde;#P{Nqm7SmdAgMwfqP$)|OHzCHHce zc3ETU&Pin_oc)j`i@z-R-uUobdQ-!tWynUF8=P$}*jwuhwf?AwRKfi4xOXbBVB<8m z($W6V?(xFT(glF6Blz19)0#}MM;CQqm3Gv(PPrF+Ok;9?9T5{Nq+@G4{F&mEGOb5` z2{;c1HHe*Nd`~OolZ?yIU66OlV@|sPd52EyZj{Q68tAME9G3msQbRtJb{v}k%O4oj z{cJ$+fo5<~ck4u}0}j|eZ>MHB(9J~t(50`4>=71V)AJ4#7g?>VYZP`8UfAl@3L}^< zqW%^hUqSRlC!9hFH9*}h?7;fo#klYVGTtp`hDUJP;G2XJ?SAT8GuA*kSL1S_wt-ZT z$WZAIRbD=!9}os#WsDAD!5qtrNy)@L3Smf8z>o``xVP|EJ*(*cDWGoJ7g{^}vS2Zf zCNxjn&w>K&W@vH&=&htRK;Emx4dn3k-}zU=%m2xKa3Zx}-&}$-$HX6h1%;lb96>-8 zPvETB%)T$s!N%OSQIm@;)LD%yHb#jnMoDBhOLC+6RM+w!;*9~l zgECg_QV37!yya{e@6t|_2%o$FR4L3l7?0F%8`k-<7W#|~vBljl^*^Xm=+W=5E%FRJ zRaMYyN!ZxF07S{QA>`O-eJJ_H-*T!tcfMecdzD^7Ypxyl4*(rDk6>ws1>m(AuT#07 zXHu-aRs#CG{za2#5g_lb5)vJqm3nMW3uK=0eDbzqZa7?8tl8jt12NaV61YO;xj5^*VrgR)QJ)*jHP0N&Y8TU^F5M ze#0$|#L62Sgd@Ie{9A1Oxi{b~pFbnOlY!V|)eB}X?@7BgCFcEckpbWv@P~ei6XM|ARu7c^5 z&AX-F=5jSHDvk1RTiX>Do<@-s3E{^I`5sZ%Jl@p#{CXspGbV<7dtk$Wm~-<1?4n+KmOWI49hP;m%*@muv6 zTJDhibv3v1msYu@Q9ED$)w5}rLkbEeEgS5!imhv%rq0pyi%0wfdK$vFSxCoKeFsL32(xCL0ujX^ke^^9c0G`HO z0M=lMCElLWVz{QXZwHQb@LF*6KAX3N=RXU&2;29ido+D^!eaD$RUXv$U85;UzerqR zR=r)^G3*Vp!QI0~f+C73qB7S~Z&tx(^8sXU*H`Y~Dx^TB0SgOX@SU?zGU;MD;Om_l z8RvRR_1}|IYJg$Yk*w)05nfPIf4*4~dv#X1Y)=G;>th$4{iq$JLg3jop$+iSmI!ir zS>(7IPrRho4(2(z0JP$3AvI<9e$)6*cA@{*H(Q`2rmS-y1VpL%d=bIE<}Eyw?_%TQ z`Cf`>#Fpa|3;uF$!yS~3E}oU;#6Nv1YHQEwOqnOly_9ARGJ$7OF6o-Vw~4kHorrL z44UYG4TiLg!Y(P8-$h&iF2Ra`UMK$0CEsI=)V%8~KQ*D2)*DGA`^Y_V(v1yjEJ=uW;m#4Jg8108j@Ybi%E63{iWnizVb% z4deODdHv*eH)FKBqG0!~_(FBJdL${b5zAe803QpcpPF!)=6h%S&vu4?;I;g2ouBhHT-lXhBK3J@5y0m9i%?@5x z_x=oiRE$YLWnpPr=YR*REWQ^28f$Rz>>GIG&6;0S#^)0s&Q^0+KQcpUm&KNfk!-TF z{;-L|QK$3NCWQsx+DImxQD-%r!KBGLD24cU;nDRJI?|edWnsbf$%4 zscA}6M32|{Ekdc}-7f&bH40BPQ6DSMlR({CE6(%m>9>)8q> zz@`$I_ni@3Sj3sEjp&iXJ{u3}FixNO$=nQs!jI31_$ztq3ghSlWRRS9&m4M)n9rv& z6FsrjgO+L+3(`V-)zL3)csN&xjb0inHFMZatg~nbX%qdT`~0+WNSEe(P)1lA?D6lW?w{=+E%e!c)$Z98aGVqdtR_^++@V4zXE z+f6)qN-4H6m?Ood!%MGdY80MQezrmK2fCeS;~9B)_6SO9tY#ySSBv#|JkkVCw@hUo zS`f67RLvIE8A?^|WWJ*AG)Kx8l|7?W-|LaTWjhK`CmsNSq}9j0%@M&RW*rmV19jb& zakwmuF(IPV&3Kd3$D?r|^~H5(`sbdTcXyU!x&STtf8n6$(%z7uy*hN9*AAkEw`rsJ z$a=E*^9>M{FJqil@!&T4Y{ed}K-nH+AXVkh*7ixC5L983kt$+AM zXo7gyXJPBl?+sAf>)SnY53j|6IwTkj)%=F5{5T&~yjLAOXq16IL+t2Je*GYyCZ`U- z6@@&Hn-l*0^L4!9Z>aF!1e9n6NLz>yh{!PPyZ>Ul(TN2HyfoxP4VDy`kN#!;U z!kw4cq^nM}5T#;%dK1Xd(2CqlA1%|KD^XHCkob~5%Aj^U&1jPf_YZv={o)V7-1ZiF zwHD%JjRgytIeH`GPo8Cltfc0l2fC)T{QU+(cZ|p_epK-}3U2Pv1RNGb-HtoZye+cc z``WRDg_k3cWIkxBR)jO%Dwya$Nc(sBy-FlZx)Sv{+giVB;n&kIb&Yk)+EU-j0ZGmrwQm2DCLh1wPWRqQy zfYz(vAJ;hzt^}r;#xhV^y0}B?%DDC~zoCx1fA=e$G?mXF@sG5Mqiv%0RB7yUK4Tow zg3r0YxM=?c;EVFY#u%bJYSHpY&HA7c?C)6GGX4C7;O^g4kh7mdua3m8MEu)&{yWkC zFU3xKbIdq9tO|Oo2NcnA)6&~+fi1UlC&3`o?`ng69G=w2dqS0!{T32EKZS#wzg=eB z84!X^fpsym_u$uCNU*;;1?z9iJlCi-Bz_hTZ>nX`Gl4{>4TP`b2OnM|Ns69tye-NA46I8{*jjgg!l5Q|<;Y-dtEY0<`7 z)5j9zyfi55JRV0~EbM|)!>C0-IHt>faAM@E1*;>mJt}(SP5`H4MPtNEQg#a+W{n8r zwd%8(_Gp_w>>Po$?r;)M%`K zadwQ3g7%AlR9WWRhkgooz-gW5`1)M{?&V;v)`q0(EM;1a=a(T&`8)D9_=dXtcY;Zc zp24s*7XYrO9uB9382VG0czQaeMVDl(6+7ejZk9KdvNzTJvodhj<|G43 zeBl}qcrN$eh0nyD*b2;18Y{!@UiShU&W8Evx9O zJ?p-{fF!XtqHB!etB9SP7C19Fb7|ms_7+3o!o-I zS7zr@OCFaoSG8+a`maAZEWp{+xLZEmpRvkm?Ia}q>+l<{CkWF~Gm8Yb9A0P5xuUfQ zZjGM3=X1y>D*3*$-H*K>7za(k)PtM<$h7B=AqaiHk#s0U}72!j^ z7AStGp#;FhMKACVxO}5LT;IsItrm?}78$#K_iB-4rSU=w4;bt2U zAozjjiwL?K5L*8MJpXu!qw>b=ZOw*H~62kI045=#mv=N4NT zhJ|G8!eJ9@(!Q552_+2RtQf{K4GHp_?-BKt^XNSNqumKkpRRyvKawyZgqy zGsv$ntT`;?7=i3ax&R=2A9pNY0BV|G1wF_J@~wDD_pGyL6*_?tez%a{e8a~lcHt{3 z7Xb2TGzcFYX-cReE3vr%#1z1-O^~19^8{z?mKQ_X?6s;Nu+TonOp+qTd^JQ_RPL|pewkEjV- zG*A+@c`MN+bf3EXNY^_2ll?8SB)%k>#j@r6`q<%Bqym?7S4_tSMx4Af^k%>kl^$hui9+!An zJ2?yyxsRpZhFhzVZgwg9(|K}sr9u-K4N8a#FW#a8) zo5y^y{i#zI0GMMW{7lbtfX_S~%Y*7lyiJ!qx?_g9mIXXhjP`OrIeKk8QKm29NbBL8 zk82*oZm{p~;p8p=Ar1`~Q7&vPCb66S{wy4x)9Nj(Dr&w(QIalu@(rG z)dtyo0r=oN=W*_f&_wIDB7@nOHEUFUQK=HZK4- z?C>!6b`6c6?1?Yi|GBmUlb~j02XjH9kh}5kjXaC=#twVt(mt;uQwmnc=w$qJn^{Mm z%7!Xtw=9K)Oh6KU?*YJ%En+w)tOCl(Wj>7>CpUO7N8Nc3?2b#|fmiqoH4{?m zL%OwB=&{%5*(OtxUoe#`7JX^xX2@0e&~x-0o|xMk(uUltto=mc5Cy+X0GSK04uoi4 zGwn+WE<&Q|`!=R~-iZU;38r-E#=*Iv#s(*hE?%E&KIN~mb5%+rLJpgyv`6-9wh)d{uBwetb^K7jN>i87wexdiNV69dtVHf39BlfDI*c)%f%rQ#I{k3lMz&YB&GSP z&+e+cc3|So;W8VecWt2@=6BnrSxb`HSL7F1rT%6jZp(TgJ+7U*-rD0TRK!Cf!O5Z? z!0)hIk~xq_KES+MN<<}eqTM-j`=#NqxnxH0?>b&$Q&h>dUfp47V?Wp7u&Q3}y0@GF zG6u4Jr*Eyr)~an9Dn$^Orbs}Hu4xykl3zQjg9G2G22(%^Yq({Nh+HTRCs(F*3EbN}qI z$E0yyCR!W?-SJneqiucbb0{eL5vYD%O&gQ!`vFuJF3nR9+{) zrxj2~`RUH&Df6DqqpoM0E=i1qjGt5{Rh4HxA4?^D8@xlb0t-tPE}IfMvKZ1QnNb`9)v<5W)ZHISs=GW_3TUH*C$qE#5Z z|1dl4NcGPq8uY&6sQ*phM~^~>n(omn+D182%%C8u4Xc4l_nIf7je_sBWM^&jiI8~s z`O$AZQ$EtKyz0-2^TH-wxd70%+=jO?p-%iAuyPRA+C<2-BhTp4wa3$_1a58d`2!KS zUK^?^L+#UX;yP%bF8kP>fEGfrrlYv4Xa$s7JLjsWP%E=rLbejP@O#M0k*0S-eOy(Z zgfxA(NFR&|MxCQn(`ehWoIa}ME~8T~|F;O23!W2Q79wq$2Z>%7pj>b0Pnb?t)f|`l zxW8H5%5=P`|GY?2Eh#0*|IyMw8uxi}4%$V@2hFe`T0gIJ?0|2N?=Q(x_6f3(qG7U6 z&T{*@CQdh93AD+*OX}~VvioGu0OgKHmV}pK7P~=YKkeX_@X%qaQ}tI!^k+{A^HJA8 zXtT7L*HQDsllTA`O5Stj1fG{%1n4nAUuAhHR0zg!cn*Jh`uq`wGH9XX_JARJyxgMD zveu@7W%GK1We)p~Yy`Rt;<~K-Oi0JFdirNR)qjaC{w)Lk_Me%J{!u8Zmtjm=wnT5; z+k~pbBY!%lN!e?@@q-lmc_He$mhTr`e_81p$4A9j74Fefi@@9oX|Lk8PNVLx4Np%$ zvEv;tv-+HTEL~fU-|o{Kgw0yPTX7_-h9U>NX)O2=|NA$6Z=!=9q1}Qm_vT}db)L^^#_L7*RTugCpe|H`*t}cFwhpzda@%7z+BceI5}cpo))1Z>l8g z+R~36y4oqPe}pr9b~FrF%)eDp^wGqIPuYGZ;XRr;TtBB^`+LSiZNQ!ROH*|r|Hbix zOMRZ*8h)TQ_Pb-57B^m4)rygtO6k#teSCE!{X0a^6!g<)T7g!ICNwB)ouI9U+!xd+ ze;WF}T@-p!>9Kp(@3(Kr6j6_HgC*mHZ-Fi!$n@6{oK?IJ+-AK*WMB%q5V>_UsJ!k$ zQM&TZ;#d?T7X_a#8>|S|h$2m@RXN|TWa?Med3sWLCiaYAd&nHl4v;9LL@pniZJwFX zBYOhO2ce%kUWd0uDINi>AX~DzR(U~rzfAGQ% z{dC5}L;udo=F4+jx)lYHFJJxul>kBtB8lp6)c5@Z%R^6QsM2e-g;boS0{y8!w;DHqmuj?h^jy% zKJl*4ZF>TU)Hnh~p4MW=;d%wrDEwIW1z@1_n1kSsd*s65hYpymO**O2qf#i|A6!q2 z<7*Z=y8slyBSD16q18?ofPIYLw&Cc0(G?W2Mc6o%XXwQ8-Y)p$&;@8q_!_!CY(+4 zlxiLPK>CY9c^}j%UH{d=%?R>Vmks3al7G&SDY5P|95 ziS>vlto``*`0UR|qauu5`VYJnn6@VS)$IKw`YIP(wl>PDJ@0XqID{MeF>KhZ&yu10 zlLAbK(^HK~WTwKhO{ZgK@E;4B2jaD?x(y7Ey_4XRlA!ZT#c(tmv@P1GpX~$u)f)WZ zTKNUwt1H3#CHmQ30o-B(;@^xzv6N}3hd$!&3bnp8H5Fe*Mb_>W&)3q(vU~}=pIlQ; zB+k0%h1-l}sIWjr>kAdo)~cN1)G{{To<2+mCc!P;4E$`4T*qne*VSM{jU85aC8!4+ z+-S&MCGLINedDydHZKzCc>!?3Q;-@$OCwJ8n^1pv4}XvF|E=x%KlpcP1$qN7;0Z=O zOS5uWu=$xY=CDL%)j;`)Vakm{$HbAdrk2UtP3RZNx-(U?{wkf*~B*6-``ClHgYm%8C0P3wx-6LAA`tnvjd!C{%>P3{q>mHe& zGDwMa{PKXNt~pmsg{1di4#51c5Y@E@#o)7GW&e z0?j;->FKOpUvQI={rlqkSL_-p&I;AkMEQ&BO#^KP^AM}ydEp3Y_@4RN1wdXFp|@s; z*6scTN8PN%x?qyqEm}c0ETs6aRGcKeZc<<=wnvaFb??9^#V+l$4wnQRv)M}5qp)S# zr-2DI-a=~|```b$^ZnQE!{3lm&)~_3nv>KOMN@SZA;EdTC9c#r z&y{+zYfT|9(GJ@=XHd`0F3whc=zH!U_4rvSgFfZ4ZM!liA1*`$Js^ITL57%%XkGie zpqAB{l7bq)zEGr|(odmM3~>7qTJ~Wxz9*;)Z8LS|#2$-MG#?k>wq3L|aC2n&`L1|< zxi0B_a!haI$Ubks6zd7L5mVdQnT2&YgKRMSC4VR=_I)yXYgkk0e9;Q@NeXEc`;H~N5)rzUA3&?@2x=UE7LCyC-M;*&5UR8n7`4kp)9x6eH=q<{sz zXw$^gv0Ka%Y0H7|UVlUkn*JkR0=L;606Hb4q^`!&gR(yV69?oj~AV2Jky)0ci zmcte(%KO|jdOBDDIxpY!be1e$@zC*sJq0LJtUaOZ22Up9(NNWkCRKEoAw+7E?}eQR zQp9|ehbp)I8fl2kp3BSqw2Cqxqs_d6h@2jMJgneHTJUKUe902sji;c&@xe+IPGHme zrH#$A~*- zAX4u=*?l-N4GN^|Mvj9L?Asdh1Qdtiz3=HSY9Xns>si+L;y?x66bqT>{l zFOn(^mw0PFQE5 z8gPInSO9sWijA;cz`?iDdR`>siJ}hI2++~q8SchyeZ5o7riH-2N}c>uLHysh9}s73 z7$!{z!kLUxYqh%#q{eC8rP$g}V0H*Gv5$o*BfHNh8CGps7vIbVle2osv~cgW=XrU< zKc-YyO#i|fqoE3D(F~78=nd;wY~?~%Hgp6BE8^HMkMI&5I{)Q)O_4g!G*A&h(y_?> z!be;{-^Q|RqVXz=&FJyng}*=9^&izEm%e$iwM5|Xlks?%bVrxU89Rok!I2DFF4CA+S@ zb>n&h+h#9JKaqShf93e-kZ$?A07aK_AH7k*|7nEa1fy=^yZ~H3ej{x&kEoT2o~UXp z5jX5kX)}+Ebt1|?sb}j_@csqVoz#w0G3vW-y`F{XMkV5CRu`$TpE9~J#7~Dyny%)} zDadT^!Q>np-cr}y7SCjY&t5{z-hIOun_>smeK&9)-+6X>I%z}|iHcG*Udq|E^&j?x zx6Lx5eU77nnU^np)Q3du|l)+um{BS6AWyJW$$x2-3rMrQT?49&a+mXfE7V<=dK@ zOtNX1f9bo))!*_p6X3IBJQ;p6J>HNKN4;&#E9p4lvb{OcBeKF-&1PTrSqfzoV8sJ0 z+^B@zk#Uz#)m@I&YoF~=WplTS=Ch`nLaDX9G9!GNsVXWcb~un%EaB z5LN;@=g|p2MT1U-bxo%d4+l?i3}-cI7q!a1`sGt8^; zTL1&=Bln3R(+r&m@c#3YiQ5dyzRk%B5YYVcwyVpOZ#tbwadeghj6}JC|EOsGSMGK0 zrV=Ofy2bulXFa=PVhNldh1pqJ+=Al(xKpdGS4FD3A8a~k{j}}3RUw*$0K1-*6si2Q z8}s)50v)a|hm*?ui1a^l=skqIDJ5DbR8`uXXI1Ru2aYy`xR5to{g7yq9W#jwz?&@p z_%-u09r$$O+S3M*vhF`WVfP<8{*O{k|JVV&v^UoQdY8(F4O-~k4NSY@&{+2I+CtN*%v#fhf77iuM(Lb`bHX5}JpeuX+exE+qix`0P*7SD} z3w|I~3^26%jtB*fday-JQ?(^dLzGset7~< zPLZHJAl4EbGQp^#0xN1zJ?Yln;fFZUI=8i^;+bNwK6 zs;3G*NaF%92PBX()FaS(h!flY%>Q|&`n*akAtsDJ$MD-c6{Eihzuv~%Ma{b!9#1P3 z)Bl1f60Nei995sEN{f})u(OThx%H?TE_M?x$>A~|)(6z#!7l8SzyB7eaye(^YzB3|0!dk$>F97%d z{)w!~(Jjy<69RXN(>)2riH2_VTma;B1_%`+U^upqy({k({_79;>cj%_2NYEWeXVwS zw+4>AY_)vT)-K`(lDn|z5<<(}qMca7;c4-4YBDTeyOdY$w{`t*}k zkZR5B_3DoQ#84>Q(@>-RpvK&DC0t|Ck;zc)3YB-b)h{ifRp3v0U1;T8`x#UAj7!e@ z83FZY$|B86==oD8#>K&?vALwOqxzO3xc3uTluGTIACHmOqlcgxURBZMT2)dY#PQQsw?+|h6ic;C6-0_f+jqewP?8Xyj|K8JHh zY+DmLK=*+8$Q2xP{vFf;F~$3l)0aQ$-UWa)X(#pJX@GzwemrB2fW>j>F~Hv)q+P{# zrwWdjmh80L-AwS-3CtE+Yq%F;^F9Jp&s8_|=Cr`!>z+7;H^gB;_WBCd8DxLSt=D7s zjkV*T6GFJwJ6fJ!;nU8c^i%`I&_4m4Zgeh$3G*xHh2K$;GW?-p=E{F?RJ{6Vw5rSw z2x5sFVA9r!IB`|6!RO3j^^Vi_ci z1$gLRi^IdPKpYhTjzV}5#B+5YhR)hRoCKZ2N(j78#1mZrt|(x`+}GB|S8Xnnd_RB& zgS6m3c-jxsaLq6e+>L>^c?^;%7fxxP?us<|DsYa5~0~ybTe@gW4`n~lBfb>f|=)U>==P&Al4W}oXVc|EkW@=2AoKPgg`t0ra! z{&i1i!Qq|0j%!G34z5R6t4!_XFJbY+&$&Vx&T}|I(Xp$+=`gM2N2>40z~u?Zs~c3 z4se9c}<`{hcs0{_iU|zqAkT9ANj%>+t76 z%!{?LVC)v(Z#p@ZVxu3qqEl1n@#y)88Ab812f&;CLm_1fWRGc4hsBSNb$U`#}3WkxIUbBUTMF%>&bDP4vaiZ<|UNR!f90(&Piu=&r?M{{g=9|<_K6m-QfEzJZ%;Z3L>$I)!D7!=uT z+W2g;yeqv|%K5^$E}%U-zy0p__COMjKyi+Vn34CD(}U%TkN%F&z7uD%o(QcdAh{=* zVpGgelN?vq(F#q7fnFTLL-?!acYDAG$=z@=joF6E z4huKBR+o>YhtsirxG}qQ$TL0RHjol2-l~76`N#lva`YaLr46qDRuGcl168o&uj%)K zwrY_3+YIOEJ7gSZ{AIW^LY~`~^zt`IFQEzoG6bKy{H8(-5A0@zu{b0MYZ14VI%a|P zj@gXE@yv(kKv}Ml`-xZ(J`PdA*AMCV)BV{8hCQT1qd5^(wfG?Y;px3fnS#@l+a35d zTv0Zvf+FmE=tQ0ViOVgo2PlOZndX8AX7Qi4W=RQ)t^5D+_TF(#v|GDy5EZ0FqzDK^ zDWX)RhzKNt(gg(RRYAIR>47Ln6$l+cY0{+kULw7V(mRCSNvHur{Kma~_IaLN-t(UC zJ>T~a`OOS7lezE7y4SkawXXFD@aBn+6Bpw)4>7Q9%>ILr=r6x7iw9xf-RZ&_FQhA6 z5kfRO7EqM>{R9c{8O^X5CBnSXFOzi@H!=|W9}*B|mB8}rj@o&vKMr}+!`gJHZ-0FB z>*;k#c)du*ZBZ*T0;h9oFPTd=A^-SanFyzjV(+*~g7-W?k-9)H)x+AZc^K2f*I4jb z@x(3om4T{Rj_%z69Zn;S00Y)^%$Fn)PIE_72ilUDrAsn~KS6rOkgAljs@6Qzd(_2x z@Ir(9W08-OZUJW|Um;cjvH`La(Cy{WYNMt$_t+a?wTnU>{E_eNP{n;8}`7b{!pG-QW3t@2U;B1Os$ z*}*YbrG@GXqCxJKQ|#i<7$8?Ca=9c)1p5j}}&R+=Kc1aD@n2gls)-0%>z>Svd@tk~<)kc}f9;jrlfM}&qI9!d0N`v)v$1gc(c}$@c6dX)eAC%4a$`+> zK4Z}PlB2p+V}OgA)Wd`UoPKNk4E+dSg%`6>$8Hz-+4us?s?84K z1K~t9P@NJ(`Y?GcX(RuwpSvir@PijfwZ}TH17RjP1%!RTZwCP zZqeCzujyGsf98`9w#d1bDea6RRnSjRgFutOp2?}vd%$4{fPO3z{=a9&-K*MXgO3nY z`;_9Um~Y9oMXg0N1_*O^d)dyPAcb1?o4S%Wf_>cV-heJ$dt2Dc%BcO(+4Y@EG=S`g zepk_&blL$3Fs>11xi~kiiq6+Oj`m*m+^+20tE)3}e$sY)BDKUz{ekh? zDIlNg6L8AW?Fr+6sKZT5y zlGrb>dYWToQ2u#x_u_!I#r(?FEY?O3msH>mJ!**~+^oV$9?FJyuRI%EDJ~x_ijxym zCXFCw3+g3O0!e}2i1m*wj_IJ&ImNwHDy_=vV6BU-3U&IXTgEspvlV0!l+2oPzDs}; zgZE7DNbQ2_lvI({wVKs7b95Rw*15CXHBy1+@JcVv04s!H-xuTPXA=lZV=C*YM`$F( ziayFvG|=dUmn~_JNPaGHHOrxG|Bqk^vc2LmwdnWj?g<2X=XZB$hmQqZ7LO1-tdFv+ zPs~fs8LU;6sM1j2Lj@aKT}Z}89rsE;nHODkmW}+q240+Ph8*)9%^q^Y2yt>cCa8c0 z6?`;7_6k5T`Ux6{JmmA}82g<QKcZR5NMjru=9QUz9a9v&(9x`X?AYxmE+VgGpc z1ht*Aq!6MnG%i60Q1=P}2EGBwo=6wp_||j8GC<=lJk#dojo$)Ktb^DWXE zt|(~5r{&bbZ_IWN;;24l-{#3YGwwXAJ4^Cmn#ObBMCRvZaz_X~k$V~m=((&+wAP#`p=NH{f>G%G}GK92FJ zg!*l*XFuM~{R-TKH@AHd8;8-BdLua*PddCawl15dBuJrA)PA^8)TP^PN;O+jIc@SC zqH?FhTHGB{=rcOJ^pUkl1DCSSxu}zh{)nPam~0ZRkdRo(q;mW3!Tr(cK7k59L8P<3 z!o6KZxLuwsA78G%cXp!~B;UHIjy9M*x1MuxM+tEkIc<#h_>D55oDxyo2q zr7!X`W{V5c0J7ml6_`f55aND!bC_q_7xmD7&cfZwkIX zJ-r!rM%b$fY6d@KCJE%hB@j zeM-X`uRczAj|VtU+5-q=jFyWJU2@>y1dpAg54*$Jn7X37ByacYKI<#sg3;sG`!5n) z%T0lh{kbyhjMBW{u{G;>Q3!ZXf`CpOS)L!ykh3&Q7of4zYHF9-mfUd3ttlNsZpod_ z=6r4`S%;AdcZ}4VSqbrP*h(@j?R~OizJ9U|;5J{ColUvA6be_MHw|KD6AlgCJAUa? zko3aJ_EKnYEr-6i^w>K#$y|i?($^5)%EXt_<1DHU10qc)D01Ad z1zzO5w!WwM9~_E*i&gzsJJWKlU77ele%W9um~yQ(e0RlQYWm5fI%%Ymc**8DU)6!! zyUtOenv=xKu(yelN3F;!*0bd)@AF@VEa(S~;pCKSfg1PE=UjXIj?8PsB7;_}o>Gl` z-FGb0apz?btt|CkBFKN(*zul8!KmhL^!~R*Rfu~lRD%wK=OqCK2=`dmd;@3s+BUC? zc$4)geLU6V%($lEQlv?U_xlR9#it)fDY`dFVyuiAg?n}wr55z#M++O7)@x1lR!8-0 z3#LleCSsiAt19)vVib+8H8fuiFuQ*XTNHPEC62fhXN>N1Yt~!Nvo%fa$%5Y>-Ao(h z6An(kK67m-gKNw61ziwz&Fh%+-MqeVX2B59x(_e@-asP{4x)t#NavZD>Z)8&9YW6= z3LXm8k_UZoVuXufK~(ckjMXj!QxF zq^IM;J3%B9PvKRhBsy770X+rc|pJvdNitPw8NOhe5sL`>4@qP7-T|^or}?UY;Q&hcU00 z++z{iq?6>)94k-rGAqu2l5D+M9kB}qMK^TQUpWcplZtdODpFxx&91VC-%pqSEF&Lr zK||_Isso5M2B-zRbenY7)@IJWIm~BUe_E-@HN`5jN?cE(G7XtSEr={)9{EwE&UDkG zq7+VbV^1Xt6+60Q3L!Ao&7saNr5vjP`QC*JW8J*jT>zug-rWHpvmSiQUyql2n->9a z>oC5K;O!&$cQnrq2hb#?EeIO+Fx(d8*ZJTB1phC%FZ35)_puQ`dA}$81jSzKCy2|9 zSRdg52&4zKGP)oDFu}}se1C%WZz7gt0Z%Rb$3bGl-|*T$?*A>X8FI-7;tqb6qJzl} zB(!|#BdYXh9Cf_6+QUQF8s3t7`sq` z)_EX8=B++ZX<)uXH0#n&(CZMZijuHbk`mI2pBq92aN0gp0Nwy2JW>7$ zYSVQ7gpYg}ayGM^YW%l{T z$~6k;?{1)|e1;3wkDQH-3;@_}{qFH#_tNxXK3bc%75$J{0>oox^jYi4!P-jo$(^wK z8l?)H8Lr0cJOl>&L%;|4Yz&NagDODTzje~40_1D+#p3a2KLJmVAO+C+MNj#Df_?xK z);*IA?4LcRL)c z${nVWt;ZXsq5u8!?^2eV+|SAdlk4ZG|xOi9aazy4r+;Z$_3obH_dR zLbccv&$Q(#VU^k*kl}3Rxq^goFGeL`>DK)&*%H_&dh`%CM?BQ1vo}+LH014vTf#(J zv~O+^FM&hVfJOtsP`b0!eO$M@`A#=xB`iG@gffjhoS41Sp>y+j{!~d=b0|pJ^MmSP zu3$4P*al*hw~V@Cw%ur7e^R4!ha!Vc!dHAW?rAxZ|2%{S=iIFKa$+>ZWeX8By~x+yzX(4mPCZmV|N+j};TI z+-dW?TBB`7XuhS>1EziYbHXld8fv?GJ=^;5u4Pm+z;!F0#i`9wH?mQ~I_yJ^v^`B1 zQGRgnvK5p0B}N5{{t14Xw?_$g*VesV!y!-j05mYJXnUN52SIaM4p1Ass(c9$pvvT1 zOfA>jdcLgH#OK7X_2A@;F`;vvvmTStdw02#E86rL3?A3yc2%k?@UWNUKm4z}u>ZHm zzG77ag=ZPuZCY7rM@$7WHts#sG5FH{#3@a-qmg0mWF#i{!Lu;=?W7iO@YS;fxKfTa zAP$9b3pSfxFeWlmLfh)9UYHs44^W%RkMQ8XR>SA(n7Gkv^=0HR0%u+m-;Zeh(7-o# z!dgv623p4JqbCuxIE4BS{yP%5pCGpz043asN)vUC1Rbe2@MTR|feHBArvOPF9nsda z-5N>pq7L7lkPVTa#OW|I9W8KjB#s?Mt82?Bru`26{zFdcmwRkFr%JB80KTHL#$9mu z5I&i36~@6WyX{5OjC7?7^UMup4$U3Xm|OID(?a2jl{tSahr*gpP4?WIJD|fNqPq2d zy1KejYd~Az*mQviLfv==&W^hax?=U<^(-b47wq}g)_Rf`{o;GDoz9i)a@|Gq1_`cH zC~Fqy_Sx7;17Yz=g%uo-1jOQzIsZ+^^}k_Vh()!BU!RdE36hmcZ}WQ!sNa)SWIUb>raN6hq3(xX@18mW6N6OiohX_H;pK@yJBAC@3&r*gw9U! zGQhFXxBJ|dh16mkzT>R&JR6I4*q93Kfbjb7m7;&OD-;dZD;lK(MTO;td?I}69MhEV zr^p?}5pKQL{TC!6k=c5n1qn*5_+xCvOkUbY%14i|Sy7RVndmSlk&xZKmn1J!*oB=R zx89+V-eEK|qpZ=nNRmGA*JmasZk^%AbolPu6j8hPv?dz)p-)Xd+p6l;hkTp4(o5&2 z#D2k`1oU!Oo|XcaHy_{nq6oLAg;5QWFgt_Qt+wY|YBJU)6=$U5s_ zNxqdPHP|FX`dz6dKWX(fR^-}?f+5nUg1^YXNInD8Eyv^hp)_jV{dE} zH92LiGu-q7!gPR_8=bO6jZO)GQUJLxW2}-^Z8a`!Zn6u0KM|T>#y5RfL3_ieN8*m` zB{q2`frOw7elPco3b}|Rl#OkryrK+7?YfL#&qm)+;Ow6HvJFFDKg(?7DmEs^*{I^Q z(YjzJRLD7N&(@sr^pZzQ(q424W5`E3rxL8!7NT?bd*shfQ4wb=i*~>|Z-(=-$Z484 zW>wCCOJid!c=Fvx5LKiK%t5w6mmk+Gf)ZHk$wCssv}$haQE#z8kE)O9ceK1O=a%Gl zF!{?cXsW#-Ni95A1^Hju3EB!u=?=xx+Mx>Z>Vns&F9nqy#ox&fxo{-M0O~X}V(p&{ zmN(;{t(>MzXgBu>zfZ*(w|cfEUP0NFmurNm9+4Mwct0$RefLqX97zV32~ZhA-{xPl z!j)?SKxI@Z;J`V~7oB3S{sdiBU60xh2As1TM1KwevJAltXc_OTNND~9`2cVC{OUzBXRun_g(kgb(7%;5t{?{!y1sno83E_E_)%V?PPmGlL- zc2Gn|*`0-35a=~i&Oj9cr)XGv(YR3jsR{%@R>459psR)0KR1NhdG`~F5AeL3$;EZD;_@fTN@f*57hF(# z)yE|J_U~CIk`=^zfUxk{=OP9fT5mQt4rRpUo@}(#R?I|74yRS!?E%P3G=fWezS`^( zb0PaVOR?5XDgv^e<)yV1so7W4#eRZt9`SDxs}Z<J6+ZPyo3||=ULbTZ;3lP&$C=@f?OycPZEIyGY#pP z^*naKtO2oHhOvCZ0~rQsNzNiAe#I-vH}#)sA2(17t+DQ}cYY?V8@!HHr8|5&W}P1$}|@$8u>73wtXyHD0R@S!lmn*5#ZT zMuu+!;7eQk?wK*&S-W$53btvnETTNJJF#YD1F~PuYt3;Vt+H^F=>B&HlQ2eimg{vt z4#1bk4c4@og3VueWYkXcIz3RJPz>LGB5ifUyB8Cc3VHg^t0G#J2L2F`r^&@VQY$YT z6;=&~vSR7FSM^*=&<#eER}}PaUq7YFbmlNpQs%Yc@A)FN%cMc}QtO2{@d(2FeHgzn z7eh6lFucb;XBd|Wm{ z${pFM3>^FtgZcbRX6(-c364Wp_KY8}$bE&9S~0#3lh)m_f69ER^@ie&gKHn6B;Rfs zevr?rafR9h<%(_s_RCz`{@X|?UWJlfK9W6*j$O@PlYxxnIZrwE9*g{M|AZ3t4z{bm zgWA+UobiSi1B%a{Nyl9HP)-8LPf#ZNrrsX1yD2?;`0e#(}%PmWGtJ6V8bV4DC zWo#LA^3`QWb%*z`%VpSWhmJTvUHI};k7MDZ^Aj#@y;J4OGgdd``0$V0gX6X*OBK3` zLfQs3HWb+B93y^xtdlK^N&jVde-Fs7k2xPMJZzxxwmY~r`N9ax=ZfL$<1D=hp8=N} z^9c{&U2N&dBOCZ{Swe&|u|gg*>?&2~CY`G2`d|8ET2pB@$>uzIUe>?~KpwoqP6SpePWXY*N)ouyk~2RUI83x3#4 z>nlV!8fA_7337h>&U45XANL+R6r0}wE82yo{z~rr>2&~X88`(h0N1X@jARfl4AgUr zY^k5L-{u^AG4k;Vsv%%r_xgC2e^_YQmvC*9mv2pW|S20Mr+mwem zs@weA*rYjz?tLEd%C!9gS8)8iYABx1d0uDVR#aL)aHu?o_lkJsV1^&PD3eCvacynl z!i|S=L3Hk8ydj?-g0oe9>%}=&0z}C3bhmdTBrm;Ji8|T!LSBybuJfjx!=|9`Er2K?ia zi&F88T$uEhd2fET5%Kqo=Z{%4+N1czw+r!=)(k=If7e>OiJ%HBbGI-m#cBuOVe{U? zRfn!6rWei{w;K&g^53U4`8y8zWr|5{CpFG*Cx4m#^B`RSx!bn`38nQJ-hq8@M9ZyG z_w<&5`oqIb2mX17^CcE#m-CQmEV~cx9B7K^=?isybD(Kg4_$*h40~kPLXF>d=#dFc zu9x;?t~;`njm@@VyU3|h7qvgf9>{gpV%{&M)Q+sJb^+mv7$*LV#1x!N;}HfFy6D+Zrv>Bk6-T$D zU%a6Tn?7jg@6~sAC%BZu(ejFXlbRhvlo!0BfUloN*!8J>&5H4aD`am!CF!-no_9V_ z2+4zQDdY-805H5FEvOo^H@?}K!#((ynOV6T1V-tA?foh(M=0zD+C(9|$nd`1y zk}(?<3y5W~3HW+=?9-2a%i&ASc2uiC@d3D{L9XfQl5a!1zmU)T9t&*DrwR3ek>%?l z1{XAHWKkenn_J&6Rv7K@PsZ?1rtt{npF+kt%Hh|_%2E09M@*paa69F!gZxiWGUDXw zV9`Y$`n2swh|Yyp6Aj6+ZEvTbNH#g93t!ni%DtH z3k;E*oI(t} zX5DxJbC_9x>t3@5R_)4#Q|;FHxd7vG>UUK^;pgw%piX6WXnlU~;)kinHp;Te5#f>h zJL}EdJ%;@bg*W{FZ*>#|=$V^Y9K(&QK*&aIM@ycbK_JTn_| z=rp=ZB3b#mu;rhErn_*dqBWzd1N;XK)^jZ{h-5gaGdx(PO~dd1kg|xJ{y|4eZ*KPV z()Fh#U9%7g)A`E*y)U(+NYTQ*2p78IDzaMOR z{YxleTN%l`3AVu*V)j%q%Yo@VeBtRV^=kPiDuMGiY+Rht^3zTuY6fyOAvZW5?ip}@ z(X>r{N>Z%;r|-uzt*<{bX)r$BTsko&`$LH)G*Fh|I#QbIcGmoM0DS56R-dC4CJJ_8 zR_I>lT$t%IOzUP}9n8GOkrkXB^TTv+%_zV;x@e1jP|?^E`1#$yOqT2yc(nc19br7G zRf)}^vz2>NQOk3r+{$wknm{{fV`8R4gNrhQ;AG%HwSx3=JixhdL|}!FQ=BCI1s08+ z!2f*28H(P#jbJ;CKs589ktbJ$QFvkiM+i<&I0C;=I=(vPN1!&QKzy&s1i%GmW4tnR zf3+8xacAQq1QUWYCHVINnK%%@uAH}A_HG$dC&(PJ4JW@(Un@=6KfC#D#MLlB$^FVb zo~HJP%rB`VbMDP7$$q+#ZxY`*l%ew*Q=u3+JOc5xQg;${Ub*$k=XL9RW^E10p*i5A zKRo@LeuNaX8`9l4N9Y|ytU_!7^e7&G3v32nGIl_iTcP&B05=q+M4%-p4cslNE|1Kx z%wghY3%#KB21X{65mgHL!!|N2kG9wcx*fTRj?NHamfDtD!+1w&*0i>F>zK=gXuE(m zB@$8A!wLm7=DGO;rO~II2(;F(q5SNKM&M~Cfx4Ts{GXtNv-!heSi%_^V9}SMk!LhW za$t0lCx3#1(kJ?lQ)XBvviD&1uzx<+OZO*8=(J^0gJ5wKi0AGPfB|3_Fn+#X_5?Ph z4Qv_V?q!|QOTYkYwk}W+9Ngjm6NFI(9=KI)%L3oO1GaqzT-`;_C^FMBE;xI&)-WsO zc{Y!&*||qdDNl1jbd)vLT~1EJb%}rLqVuQM^3P!$K&y(nzZ5nfOE>SJ8QK1bxaqv- zGnI+76o|Wz2h3c6MQYAldCB;V4{rku6F%GNCWrQx)#4qwB8t)PZY_V}uEhbFw?42I z*kUpofVG7TBLsKWYa<#u>{3SektH@=zjz*G55kko@^q)HPQvot=${pivqd^FAd&;W zNDRxWfD;AO(}Bi<@L(*-+;Td4Bt-+W+vD}wsqgZ&%u3b;T>O-ic(|bVE2yA|oX?dN{!7)dz8Pw_&7C|!Bpd^P-1yC{JZKWm8Ke2! z#@oLAPG0XFtd&Kq@gsqppCF6uLJzuSle<+%R^C5Biw@dt-iZj0{lwfo3(yNfD$X4GhOAmzlOv7JwRxonNKd~` z(q6C++k(Py{ZEqnoAo^FjfgR4yIbyQc93Vu(7`95-KNtVU!hpj)p-kM7J=MBw`klf zVWK`>UAtii7I{$MVfNSG`u|{yXc@wEu!EB!fZ=M`bDgG%9W6(Dk6U0HkHN)`>!-3_ z=CuwEhaW;5w?~(6Lp3H=VRQX~qs=L#1O}X=3F(QCpXvD!D(CBOMN`_UAnlE1)V`Uw6v1ONw)*gP9zg%58@Hyh~(ZFYV9nH=gN)fco z%rp-nl6X~Iyj3pF0-an1{D2s{&^zaF5tM3hn+q}Vk(2dGENvC_U*2(Z%+^!96jzNg zK`%)&5r2cS;(TD#?uFz*jW;JP2|T}8a1|RqH1zQTZW+^M9rr#b8uqB5Oa!~wgfZn# z-TtGF2K*rC0*K^`U)kQUv}CwmN*w6$QKkOQ>o}4k zG}7au;nj;v2~F>SxBG;mY2$YLgQZdJe_mBGR*sQ8(E0465N0IZK5gawZC2 zqSc`{zg_F!AIBf(b_?HQ^A0~@Vkl&ShXEf=<{C5ps8Y(zUgc$lJ=_#pu{wW-7a>D> zi5yA71huvh#v_4)A}jxfXZMGl{2#n>e+q$_XW!#F(K{?S8yyTXq`cFGlK9!XCPy1V zUq)4FNk$b$9VgQB&qD@cb-yR(keI*C*thrw1H)g;gZ+|k4>pqEwTC(DeiU{FHW>-m zJ?`$$eA zu0v&D^8B>X4Rs()aePoU`gX^l!twQ*l~-AE)=gUc_<^=xBa6FpQ)HfwzQ;tQfr7VV zKxD(i&Ga!Ju_FFTHkYc&k`>LO2X&in72lo%sL2JJx;lNJkLJedhk|_DbgQiDYKLI5 zTRngt$t_TnDu~QVOq{PB?qx%_vt>MgtAeM~yy`4*pQkOVd%`jlDAK9!I@^3(b4pk74!s>auspXJ-9xbvtfcg2ET_pgTZhl<79bE`Ho*SegSnLPqJNQ(LW`Q{>N_x zeE8HT>L;jd6v^8HvY%BcUR+@FI<-Wuu4Id>E*bAQcoz~DyHZ+A*JPfia=)Q<0BspL zN`LqcT|4*hG*&2=w- zh&9zXg7*qrgHq414v{$!JTMdk|k{qWR5vFR|wPq1}wVal1D{ znVRT4wOY1mCn@NO4q?%eKG zev*p+*A9{=5d|Wi^LXPc($6G}Ohn zd?|eVAhe492W;$|Vs=k;MCw$SuXH05bst<3*Y7x2cXkzR(V==}?I>GYzQd2eZZ1-c z?aTMq5;lj_DPdTMTdBsS_Sn1QG(r1k>fF3{20*waFW4Gy!WYZ%kEhqv6+EgCEhYjufLO+W0+fNW&+yfN^ZDf@U%V7n zZpYy0JQe+ z$G#`{&ypc#dyoWfWNu3xcx%c6e~O%GAzX#E3!Geq-v%^A_+hwQXdcz(A9od31)McH zyv00<*$^k!_CO`_RmmD(4o9L@Ow{8a?L@pCr@fx8bg`b)*{m;50O58UW5(du+-*Fv zC&smMKU})K(0{imB-a+e)W+^UeD}ws&X-Pgo3eS2F)(ggqgjEE256d(I#XiUr8{D5F zN-jl&37Ghwr5W0Eqi6#1|n2JTNYPRO86_*OVdSeGLa$v|=DgdcSVZdj5UO+YTM*5k4HohNldf6m1A$I_B zJCg7nv40&$LO2GflneWayw`w9CqNci2aq2SEge5Wmavn{aG;O?KJycVJ%J6^A^?~R zybHFH1L&H-oR&k*NTEbP$(KC>cLrIX20ZJ)W0LZ8AOnpBNMvBbI|vAa&I zhfO;Owq9=YT35>sf1ekim7+r^+1u9X(TsEAlmE?OoXt_#v zXLO1m{*Gx}hoY{%cINcT&P$RZ3xC-5TLaCzBHY{iVq8H<$}@p*5Hs1z9r|B69b)p< zWX|srkhFCpPONN^ZII6G`yG7DSfzcW+5K)u@=$x|Q1Lr(WQl84IrFBrXssX&} zsiu*hwa=}=o!8*;ZZuq%3Admy7h_i~zttQRItFR`0$MmT~v1|1?I(U#-h@j4JC5Oo$+iS002r&I?@Fa1+%- zLaxv`zBUsv~DZtK4#kVIFwxB4Tn4E4SsHJJzCh3{SY+1EVXEs?wjpDArd{-L@o+hh2fOH<^~~vqRl58p z)SY!%3fbx*-Db4kSsxX^LL2#P^r~7R0r!}C4?R=MFgtC=?f%({N{k{;U9DM567OQ&-0^q^kEI=UD-Ky6b_N2*DNO%DMGHm0FkO{ z@Vu-2RdMZX#>?mi-IKl8896-hU&TmtDbKkJ_;(~tKZFS5gzLUql0u*#p^{Qit9-IkrE$Sdm$?w2au@8A97+%#ne@?GFThf@%@5H*de{ ze~Hn?htxvO93Z`;990$-Zvk>+VA_yIlGN`7c~1zdN>H-zm_22!=s)9$Ldo{Prmao{ zx~PL@pg{{Z-^H5$p2#J&dl52!DeV(6c@70Q^JcV`>3c`3g8u2BpfQ-vhzM%j813?{ zVp*bC&cni9qV%GWev6y1BeToX+|PHwmQAZNK5mKaciZ~pdUnOv@p7XFD?pRFf0=+k zJ8eX<`KyVrp#6_$-16)a3ALX>^6i%PuD($@2{eYw$M&!S>j5--95yo2>)<8l9f|ASGWYgK%js#z9+Td_6dXHx9R8cG-)|k`ijB{iBINE}; zLhc7E5iV@5DENc|%8r4eY;)F-yIo5xrIRrCmC=4%O|>ROCpa?JM#KmI&Z3eEj{C(r+ZN&RQY4v>ep_I-hY`0Xrk+VjG# z&>QbP0LMoAIx6VmzQo;)Hcv70ikEfm#t|8XjW&C70|zUAG^^U%2_}#>;NGII^${y# zT?^1*E@mM+s-v$x6uT^3Xh?#SCAJdzzLNOwhG+PNlbS-G57sLKNf44C6U-|he*kVl zP6#!Pb5z)N9~OwBZaox1P;8P-H!T7wC`~T5$oY|yCQ%akhz zlJ_X7?n?+B-5Jxf`f)dcJ+JumNgq!q;Z+b>j>f}taSq^AtAE(-KbZ~qaBgb-Ss|Q- zHe+*;09n^oyRfk0bt?Z6nr^>g6lz#}rAoJ`t5p9eKK%@wY4g`^=n_@)s1_7X$MZr% zL+t#xJ5u?B;o4}vV9xcqyoIFD`}enrRv5(9@-{Pl0+SNv=%Gk%*C;pD{{F5MKGmzO zd`z;XqXb5ruYM;^$TBYLkP$JV_3SJ3-Esrza5kq42mBLetXm*1lTq|+*adeP@b+=> zKrK!<0;9l%8(az86R7WxrUs%lE+D&6O!$EnIJ*L9`~V1i6cF+xLwXxAi>-+MU|adOKod!cjE`^ zxAx`LHgTbXa#`tg`_zKl<;mF}6QtFjI=*-H7LhpZ9!9O|kH9dL8$Rww5|bK0eVWs$ z-#_-Qt{@#MRF97Ys$WH{?=Xi*h~}HUB|f7B_B-Amwx0QB?6}2B?dxSsxq5hXr~X;S zbzvuFMuUc=$x2JWW?1T;bEr>a0&26lA@ z)eHTF33{V{rE3-}&MpfCqi~A9LPuJ}AKxPokbV%T-$w=f1eMAG5$5~EhQ?UOIa}=} zBYF#RL?MuA&!1sH1{a=l`wvbm8bDE)W; z;ZJz_zxdzalzI;giQK5jngjxKs$T~PK0~vOe^A2<9(~$GRlw?Mq!qeeiK>1irkj1l za!YPp(*U!1;tBP2Y|N8&0y1PQ^)E2r9uJ@_`!7~TTjsMPI~tk7m8R)eiiJQFm7yvZ zSrk{eu4^GLsM72_UqWm*aPF?Q_1Om_jI$4N_8Y?rR%h4-ZCz5p>m#0Vk+18}4aG?o zAurYoGyHH&dn=co#q$m)=qJYhJBNi?HN27C{Tezs++~*4{d0%xpa*l8ea>{E>9_*|5G|3YAU(Y|qjCuK(q3iRa8j1boF%Y)bn)Y<_&l?9;5Fmv*0)3zrmP&XmS6_wI((t@1!ptwZJiPG zNso7i>eUK*?GE@9y1E3vO)Z?oPNcI4^*PPob#c6>KEU&`Txn4~B)lVk^w$5z@%ndW z^}qJi_O!R$&-wH>iZxD%S`Dn#zIkO~89rAML6NDvo87sWu0JDQM201H zyxWnm!p!R6Rx+%$j6p61^hz!twUU*t*^(PXJ+}Oo!S1-kc!Q7GsqR&{j9GX2o9`C{ z0O*Rco)4?i-{wO%3RF_LS2Y25t$)mpfwhuT>dmvLkaARn74kjPcssmIEfJ+(9nkijRH6Z*?A0M~?5fse5U&D!wRiQp3k}Y5sCFd7I)QkwUUdN$@GcWb zWlCNdrkub*J=nFCCPm$5HnFdwY#1IzGU{sFoa1=zfo!uSk;3xlp|`FzL7A|cvu~bB z8(+rrjrd$^#ZbeB!JT>~OqnY7Tgtq^ zW%w%``@A?uB{utA#lxG!uPkI)&9)PRBD*Mu>$}~?LHU_PK^#HEcc7U#4~#y6TG>Jw zdk=*bXlK3GILNzL`a{31$hJ5visp8Ru;3@$;;`c&=IU#f6!$AY8t?a zyyNyjZS9twPUFh~D677Hw`)q2!T}=(c{HJy+x?p}q0dubx@Y*Lk3ec{vvlV3XV36o zY|CFS{(oUBT<3H0?d!=RQI}}b+vfyplS!{1&<<99vFMvXZ32i4i~2?@iWIJphZn(0 zY%MDiu9?|FxAr3JgpY;D-}aNy{n9NSvjWB18JB+f0U-WfB{ z(lJ5%(r&b#=)N!3w2LuX#M`w7g{uN6U-&A!FgcyQvsSfvg0`^%O?qb9uO zP(k)I@^x5ioO7#Ru(0aYrkh9?@|R(m7G(KTueGedWf=x%)x>zjyRV~&a@tnChOS;V zd_>om|D(^AJ5a&odH1^KWx4a(G|J+F!8xRVj3Tjs&d9zoSf?vzz>{*MUORpZ>O);*x612`1ZUy z9jtnVBrH5kV<*Guo1=A9Jpjyk-ukxqf#gW_KVX{wV;lEhoZw;H0Rbav@l3dEG?qHb zW)?i#K?YLTg9qM?AW>(&-BIE4JbM#MyEI2@TdhaS# z3$yq`|3K!K_oR;K?pJ#~IJhy6>b2VAI86>Sm;-Dt2{Bdx-R_5d)?A8HZPjK9t0)4z z__@Xb{=|{>?)8b+$(Pb%oC>34L#e=u&*3X*`?sPKqU}9=&y=C}VSJ?qL5&mpWHN=M;7hQ;d3iOx@%x{{{cnepW+qp8^l`Z4wcwUJ@w6e;v z>28P`8HYN%Z1;MQ?1*u~+d()f?(r;Xy-2}?p)p5dN05t6gWJ=R!KC(tYy$(u0b%;f z#jG0S)l_e4E{vUPC3?FJl;Q$6{6yfv-x{55jhkiiq3p7Hfki4;(gSiCwoBvgwM{BJ z#WRsdI!-UDn=C)<#qgGY-30Uq$fX7=lAg_H1_rtaQ2amKy?H#;@7_O75)qTizDz=7 zElaXan`|+a>@k&O3klhVDMAP#lrTlIlXbFA_H5b7ZpNB*#yZTHzL(EA_c`a&IiGW% zbN|lwdp{n(KWESExo^ecLn}6mZ-RkGDBbeC2#akPtSj{v;OtpA!B`T?F@i{NfBQGJ!WfUHt?*H z4(H>mRJ>$1Dt(*U)hkTCbS}K+hDIeDYoe1t-@JHq?L^AN(y8Vu6-{{C+f%xh=uE8Q zBAO7_ZRIn8CTUS18AVPG=mQQIZ@(2Qj?FNB&x7B*GE9>m=icZ+jA;WNNLHNvIz+yic}e z$fjm+`>Ts@c1_dAagm=is?=lVGApohKFa=Sdf0TxUZh_t0IhOpckEA^V?ROI@mCGeWNDSPuZqoe+f zjc7zPv(9jS1(gw18%7GwEpX=Z>mF0Cymeax_d2I|f1|7aosh(>*@tRMc+d+en2@32 zJ%)G@BCo?VB!a37Rjr$vj+A21o+lGXr;5BJwvf678*v0ALAnYiskUM}J~Fi6ac`GFmEuop}odh;y^x z<&cd?5Ij{+-`b-yv2$iYbp}qNDeS-vYO>w=KnB^mf8z<W zkC*p7?Twisi0vej-vc&}*TDUg-uo|rZNzT|PBri5+h?H8J{jf%;nkb#{ayU+n*7HM*EpWDf||}%;A*TPc%p1rOGc^i!;j$r!_h5L)$Dh&I2qZ8~EbXxujcXj>R-UI<;v4+YdchTyFd z_Kj0ck(m&!+c6u9C<@SqKw6Gdhe+U>hS^V$EvAtIfrUs=6N@^%vk9Z3uw|&1C`Y6* zC=Sg9s`Cj4fMIBUN~2(3`}#mZ++lnK`xRDNEdln15f)fy%qT)CsE%2MFtF;@TK44ECny z=gP*90_i8fS_H52f_%O45{Ue0GJsOuiNXQURcDa`p=={U+II_#F&kS96cI$R%r2im z5s=tcz-di}(E;^mjE4@h`=CHgajhX4Xw9yg1sF-P1O$y>MFiN|w4dOA&58`fD}k(kB)f*1fRxS@tFb+L@FUcMPlzj-3Q!(%&&#gGgTcTwxpUTOd7NXj1$ z9eUdHPOv}99{PNY?_t4@YFL+)sqDc5?&w#KTp$yowcky@t*yd zpRai2Q8Ukw<>76S6iwqlan{mYJ75GNm&es?s8v8rI$7j3;7@n>$Ll(_*(!l~WeFnL zb0^BuiE;xqs0xF1P3s$Ofi!-%{W_tm535i8r1_*5PX(5QQ~HV}XpDlH0kz`avNLvt z|7>XIyE-^~?Jvb#%PC!D$$25mm}yUrId{dyCA!>ZZg!DwQp((rgqnoV%*WrjRX4G8 z^}-$b4{^HMugb5$eRB$}I#2V_NPKOmx%e>{N3nVubdAL-g^c!WOj%l4q1 zfEI6s$f&{yh=w?CC5HNHVKz@^onTU0d3BUyugqstejr@zqwxlYXU;q#S*^e{GCnL8 ztNGOW@fQ$KffOa2njCC!NGh-zeE{cg6{--fy;U1JoqfG8F-vXOc}2Y6Nb{2E^Z)W9 z_VQlp*LUA@TqefXz70zR*x{KSdC}#Z#i*r@vZeLBMS<>Zs7$>!*^Fgr#dn9#(Oux& zf2I8Xm)J%}KZ5gjo47)4Ie_^|lN#t368w|qaVnLOs@XEL*N&?wEf=!adTTGBlAfV$ z!xFey9(MebR^qpN8iPZ?-sLf)h%xv_{ftR+wtlA$+h5$ENo0K(M3*E0SIIrxX z+&&t=Y4PkfE_r4tZb&UThv)V<0eZor%vZ$t=>ARpl`aqpIN3EfMn}lae_F|ggB~z_ zKt3D%aoBGD>uG39_%%%LOKml6C4~;l>|7&5sL}UsZBu^7dw-K-`d5ecKhq8jZP4O2 zS5M0(+*acPV^Ur<|AMx=@3eK&dRUG*;za(%$MVh{a0!JU*8Lf?K`2MN`I5^Wa39R{ zuD!3^eu6~}OJ7d2Lh)DO2$R>cUq9TFjjGwt=P&WiF8#hK0Tm`M(ecbruy4s-LMig8 zJ9Bz@&xTg241dAPshX2=7=|Z48_SP(-0a1pbhFesq0f>n%=Gd{n@80L0AlXqb7Fj; z3EeK%+F!2iol(CH6qCM(t2|A>>@qB(R#v-K+xFl3>i&Yd zB%y8SO76liL;;gJff0NkbwEAst`aj~kqt)QJjim%nq1ueCGudHWPw9i9VtJ;N ztDC3YkAGV4@n!ptvNZul#t34oGeh||^krZqWw+rcjV}}3P+i%!JNfebkTrUV7H_(o z|2~vkK3l}tgXYX|r?Dmfhd1P=ppDF)R+&@6Agvp2HEMP*wPS$m*kLh4jn`z#8n`Ua((BOcJjKA|@Q?7^g5=%#Nt5I|$ysj{KX7)(CO8FcI^guSwWP=GbAp!> z-}<#Z#kVe#CU_c0xX2D`A@7G1T<M0@PIY4#b0Oa%Ut*g#?? zfu0WxCu<>9396dypzvr|k?52|E5bslc=sv1pj+dB*AulXkb$05YDYklWf3yF$Afyg z>R!AfD!+aw`d4}dR+*;i16@=>&&QK>Lp9OzHm2{&pF9=GX-z5=+~5`(Iik}4YF_!# zOi1gCnx3ZXZuUs@O>*jtZe$>oyV&FGWAt~krIdS`-aQJ%IaQVQLbTP-cJ&_T7%EnE ztsQB0=^ag(6dBt@$zK8{&DNyHE;A35ddP0~KKc!8P$_t|X$4rZP(r?+BC4|hI9n5- zlWfl#WHGUB+iD9Ku(DVjH>qH^3>1BiJt^i-mHi>#=_wA0`XoGQSq^Npn zRRCG&G}UAmSk){Dk};MSJ7>}fK3ExSB>3Igjd_id^aErww0}Dc+nsjUX=-yDEDnaE z&|ye=gtev}XuZlfJE=nNQ*n_m`}#VE$Hlw1I`{&F=6F{D1z2Y$J=d1np>*knI|cex z_oAmuBX$kclk?=}YX6i?W94kz5y;HdNCPb(nvS+Q%BdVg*w%1mKYL{{SQGjFMtNk> z+&57wn+zAKBOFcLZ&cmK2Qz3uiIdyj>ZzDj_ip%dbdc3840Knk2OnUd3fP3S)X^rQ zn6P2lxd!cAftn3fxb;?oGY-O8uIwAsF|!|)pRt(%X9%$$$zD-I)IH|pu?+lZVnNS& z_%eHK;)~h-Pcao`3%Jbkn^p&%qRO;J{(L%6^7~;nD?^I<#HI!o-8##|oz8A*KJ`0s zMUHCySy4)%USTJVF)ha?Ru3v{dLqZ^d5+B#zp?=YVfAw7B>HLOE;CvuRCFU zGjh{70C~!FletXN30Y<9H{;g0uCy!*Q!cyzSap}CL*UTv-NVcO%T?-n8_}<%mReV| zn6e$+k9Ki@v-nQxkFzdjc8^b|RaNCMmk5R&1Er2%Xc%w^A*GfNi652+=i}%9i|qTq zJ&T|+6i1;36g$=i9VB+iytGI$bc3EwM6f4Cit*0wz~{I#8wmULPpI8EEwxO|fN1USv4jQt|gW#mdS5s?}wa+L?G80Z{_TJ8#a1!$mX~k@0){P(%Z;MZZ7Pfh*PPG?1N|HM?ztQbaggV zmjnStWn6-hM)|sz9X2S&l-+ph{+~3UMqM9y0>llBflyM|hET+ErL+-sEQm#*_x>6U zT8N$Mc!pTlp@2YwzY3hHs3~6&JU~ROZ6ZiOzQOzhl?Y+f5JUh_tD1HoKQuQ3-WgSb z>eu>{W*-Vf0{?CRP(%Z&V-Pg~r?f9I)Ce3R6i2t?A{pn(FBk6PU$0Wb%+|RIQOWb@LpZ#Foj_X$o&59IY(M^$g@1QO`Al*N3rF+S`vi!4Olm<`SeF}}L zVeOGj5yo80fMM4f*nMAS!I5bR`~au?+_bJ-P5Q zz@qHM>JWom8k(k-GqmxeZBExwH{iQz7N0w|-Kq3DPnSyS z|4nszKr}?p`TNa=yd7h<3{T6p&)2EhZ zVSl}olgWp-S7`DL7^r<$Of<0#d*rPlagncgvXq44dj>42Y+ZRLnHay`4uu~d z$P7RjrAgkx45{aPtX{4{$ZYJw*3`2NP5P|DFM=BPj4yPZ#;+|WL35Q~>nHbCn#i#Y zvn65fc~vv|zM-mN7AgcjkG)wRQFFjhZ~vrO0?xV(#`v)RpR9(z>XU^q^^VQhCTfccU$#ABmrqqrhofw<4#lD?%R7|N3G_F<-0croD{ts$Wio} z|Mq^enJ-UD4oRCg`<5ye2LFVKp7DYcu7sLKPS9q(xHXl6u~MbmH0*JnB*8wCicCU! zEQwVcv!N@OBJ#Z?v<1{EBZVPp9`_$1Oxz}mkA!ZcYRV4xE3Ra&`+80P>kIY&{Z880 z+_`eZ^L1Z?x}E7)9tmgDoJDf`a>|C~_0vrCm8OnjAcF?bacKbX(W`qT0>3yLYwJ;SP=ELzTqA3|$9C$Vv%syvkk7^GCWBFAvau zX;!7P;Ci51U}$)5V`0$apaQ#V7>R|jW=;rtnoY`Xk}jg$B&L1stGx6u{b3;Sx#MAQ zu$>b+p};Mq^7Y(_lE#5>(~KJ=!IWJ@+jXP9nIbtp^4iDQIT0PFgiCqPf-rr7TSBU+UbH!GcqjH|e5bO9PMlca)bPt)ad)fAPay83)9uKY2WQW&3z_sd;k1gbc$ViMf^s z`Yb2!UYRcA^SD(ffn^UX;T~+NwnSwxpY=BhrVR`4h|~qrV}!86`|n04{=q{2@gmdB zLWi;qD@#dAIV3BssCWc1cQifl0lRW#d|}QF2zm8BEO^o~$n+SI>Cq5p43LrnIg;b} zh8n1*&MD>>((PRTURk9AFAeP;Q?C#TzbHnbVXsqCYHl$vY!{FE{oDAz{fQwM=}fZD zB+Y7fRccOD^!8MXdtQ0mi&V>0WU_7)E{X5we)YhmXF2)1+GokDw#~IERZ6x43-f^@ zzD6@!wUAI{=Y~kehP)cPljyv`woRV?VAuK~Jql8He?UINOP@@J-a|wao50ML4fsuR z-lYEAhVslmQmX$z(;ol)+5g+Y<>lE3UajjN;_P0ZxDqOB`kFvP6Rr1Kc1W9W@fNiU z%J!gIdj4TKMUW6%A4O8GwLb2^nWdwhRgRvxb?ljdH>SmVCpPy<3V}!!u9gv@U}r9F zCG7x%47RFXl`r=0PxYz)Xi#{hDPjDJfC?khYNDOjB<{@fbZk+C>77|v#mn&K4)+tK zY0tASksdkBu!xocIjfD=gF+@ixLB6(t)c#LNG8gDFdq|zETTu)w)n7_@4BK%pI%fO zp^y(axT5?ztN8^r2K+1S?(m>Dnq6_^X7wDbT?l9_&jnlDNFnK<+Zk4)ccC*B@in_aHk>Oh-oCbn_Jq&Sarbn>bPjjLuK$Q%aVklh}no~1OQgh07% zgL6>zxhO}9=wvwWjp|wV7o4`zR!!FkM}#jewn&J7HtTiIJP?oDT0HpCo5l6XpG%1G zd)%zit;AvK1a?PfV;HeJ6uDcq{Z|X7(K_5rn@e0wgz zG>4_ng1+8;xO*_tA(+5ZpR1DUTuR;*e$15Gws3VC&y%EJVqPj9#@)jESk*WO?#_VS zIdQDCW`&&BORX}3)#(U?$TXqqCCfo>;r;v$G`JXY=zCr)t_lM0b}MmgwfShS>3H}Y zo#0{GMB3p`d8WNdn(b$Y*Lu%hY5zBDli#Emgc#W_5F?j(3A$eLsY9YJgL5i6m(+ULz2nHVq5jXyDDJElOsul2ouYO5eD3sgNwQjo4QI zP-4>-`H%pOpqwE})D9tDAfcI3%OQScnsg5JlR*(0svklhal?;?PUc_q^eT5}PdFvt z*Y&;s_oT0Pxni0hm%Os-o^L&IH)yveTse`nc(r4r}kZd!&T-ALXQM z#`^9H@K@aFO(~oc@8euS)K;Lps9`%dc6XJ5xBX_LFFY_V-pb~qUFpjqyZ$I)j?L0J zp$NuK`kRJ)^nk{3g4Xiphp7?Z{#&=~p;!NrmiX(JteOo1`v{uhDOyO-REO8>vPFiw zE>|9pAhqtah`!hU!xv^s(k*kLxaRyTETXBZBnoSfTfS5!!z7lQbhRE5@0dQn;%l3Z z*^!z{K8{^X$yl$MDOayJh2mg~&nhDKy*7DdLhTgbXAARnt)a>lpVvK^=BOU%Mjdmz zf`(aodofX>h z@kkZBSIsaMj=eMbz+1uf=^ttf+16uh+N!IP53i(+0d0{Ip)I`5-Wa=nNfo%JljF4x zx-;E5NCazH&Jz^g9A|s7KaZBWplKh?uHGJL(4^4E$10d-!z;Z4|5iVGEV3RR;yni^ zT~cSBKXc)D?Kr9DMu66H=!(~MueAwpc`a0uao=1WDc1Od0V*PlC{T4+6XzVkL%M{A zhw{LKbDIU1R5?>6S}{FK#<^mmBj<~KZb`xX-^P>BbGh4L*EJV+3Cr8>(2Zy2sj}ta z7zSccwo67mYN_w-;)D<5lhlQcxK~T`yS?#~SiFj8*@CiqND9fjQBCfAw`6g<0_%+) zI7aIPB1MeGjXyiiHCD4-5%B5X00_|ki9`bDujYkk5q^A$g(&4;QfS}lc?mAns>y-o zT-ih~SJkfysHB&|)53Q91;U}yHa}^c9Z5&|%~1mzu0MwUb4|Vey1oC{Ci=5jfG!?9 zB+f8=KnsxSqPb+Pg%-N~J^>}{8N%b_Ib>cM>q;3)7 zP=yyv=4)J{#pD`d0MWLUPlLQbK-aGv8uYBFNk|#D-P-?t;zQhO{&=WK$Eg!BEy*A! zeL+=W?q;1{Pex9Qo`T!slIQ>3OMX#v;r?;4shFWB>aYRI9Xw)4#iW-CrJU?b>rp>4 zsO5;%CLZVut=gul@Jkg0JwWEeMz1w-Z+qbY$T@db+oosv^JmsQ<&+?R_<{ZSNW}ZM@r5Y z@J5*m5vG^i9jz2bPWe2_>m05O6}bI+#8A7Lxy&`<4fi|ito{E~6Ve))4~t1VO3qXS zskG*fU51>jPjO66p#MJP6Z(Z(ntVWTpDDeKsD|Wm}7jv}kl`l$ImKvKW6olXvXY^AMr^2l<~e+&)=hj}y`fS2FT==8PGtD92GR~ zCLNqmiN{nCdySKo25!bjlN+{Je0i0WPO4n_NpmIef~us87}V0C!*f1c#}dE9591$i zkG1aI7?soMUe`TWyu_UrE4x`#MLtgSj<{awK%PMSjmh3P5gGhoE}TD+^vze zDD(QXsW>C1jCc0{@ePfv_PaZWI!EeQ+KZc|DzgNXtU#Iel?(eHUSK#LN|OMHUky1+ zuWS@|c^vHJ5L7BzV|XnjobjmYaWrGc)qo%8IWqqF5%CupQbO=~rVN0<8PVp2^OLjX z0&iV2l+QF0k3As!r8_Z{<=XbRXI)8{@80Y3`G(rA&QV4{e_07GH47Qf83*{M2Z*nA ztXqmN24tPpbm`8HpqC@Q7+({qH=mFllN|xcC%TaE z45TTE4dswZqRv9HNq#HSJ*qdeV?ugS*`K%HK3Mn$Z?BP5JF$Du%Og&2H0E8x5x>RE*yEWh+6~qrH60K; z(RPO7xDE>X<)p+;a>p&Je|A_aVL3dpb?Wq;&Xnu;U8e!d+)#X<8TwY-oA;Lp|9fP0IL`uD+k{n);{Cbv0<6vU<`xPai!@&$>Bd9J7PO<%4`;%Jlmxo4*+f z&niA{`Q8uq%%M@sWonal?}}TM)P|bQ*qFBC`rNdZ*{a43BM}e5n+3EN?jAeZOn34r zTJ<}%`>dH33F}NWujRC4?WOY1^-~3VPndr%5nC?)5%(zig0QC~c`5BhV@vwOTTUzq zkJ+XI8ZG6Cs3k+P0(=q@#5o2LsuK_|D>1LSIJUNQP^^cwaW%p!K`pF`QCziQXl2cj zX3NoeQsy~QlnAL6I7&p->E^1`R*Uz4=#)nvZOAeo32~}F+QIqu0an#c@^SZ)(p^Sc z|5EarMBe(L;9AG4NI8PcbDK_g?9qnI;WL4EJ!A7yOU^}Wb?R_89imaW z{OoQR?EtpEBjg}i%aU>qanMAu&IGA+Aj>_dcT(HHtxy6!z4)!OdHTU9MP)7E32h(_ zJ>)|@!WUgXVg1)F{;8J7ARj;Hv#E_-N5_ctRFPZ=5AuG>#H zdg}K9Q`)trChT+U5mj0jLW)dq^^v0fAS_<1xRvOUA@Y$eC8}RUGQ4%s3QIy(-d_G{ zD-fjl0&ANKKi^k<+|<(wXOxf6RmAP)C<=&I^*Ar3oRuap$6-n$F0%AC(@DN~_pUC> z-(-pYNkuNT(_nPrlcx_3R=4nzMgY--BO{KEDuxQdWYcNpY&rd` zNZMHB2`(S$@gAv1N+)ws&J%jzyMg(Gp8h+dPN}QY;RyJPS5ZF7iP?veZ?1ZGGNd7e zNqu?9TS+Cp61b9fbX{4VjAL%4#@T#3;cDyR_Jc=_PUFeWzTdj# zti{*C4%wE&n<9r4O+OVzNL{+&%Qh2r(}t?Xdv1MX{LF^v$*Mzo+PcgarRK`8XM|&% z%hnyeCVwx$>Pn;~Vya;oVXJ9nzo#g!It}jtWg_|cpbpP(V*2~>jSgX=uQU$bIP4@G z!5LvnBM}&NF%A{?ntvb=sXd8ir5qtCDn6z1VZx;E5gLzgfIM~U;0N~7foSRppV@0h2wlx8jL=uCq4M4wD*@ntqx zvX{4G-U)2KrgHsA@S`kLRETQk|34ao)dAb(#FMwKK|K>UPl+F(zy=Rwb7t6IgC$PC%8ir6b^oV zNuweYh-F(+7bQJfGl|p${VW{iZd7!YSO{!KO?|2=ebprC(;4f2jy0lERykSj3GEO0 zUo$Je9+;5VSo=3n69PQYkINkNM8!iw+?Ebpxf&lj(7v{OkH&qU7&rU@tjgQ;?o_7u z%Ay7~xpnQNceV!=EA%7HFx==|ueexk)(aXndas6M_5UP8&96iK%W3}m&HCFXh%o4J zU{y2Dexhf2<7Rme(lqVm4kFae&aXYgE`s$!=xteJ;b~s+N1h!DeL)SqbrzZ?RXu|N z+RI*&h-08(!x5K{NY8FGf*^lS7s*S4sjOD~nD1`O)1HTrxv zZk3rrksTJ+MBg;w$sHdn)$nQz4G9|Y&sERl49=H}46XR@)LJJfF%+F@yf6{*j^OYu zQ{U|aPT_v&oMZ3r71m!qF?UpR8Lrq8{+ zY;d`gYm%y#JN)JzS5uO-`O`1rEXtq1*Gk86s22EOi+2(5%OV1WeSbytcy=`Xq@ndp z$J^AlqiO|M`cL$148O@edEM1jAxE+6lIyX;AwBuy&3vv+y!CBQUJ9$8{whVg3ImDU zdukpxFuN&kj>ccAK|ewq;(7AnqE7i;(HhQf`!hebPFD?c&x|@g;0}WyJ)9lH{34*8 zlWu4|pPurF2y2WCz#gWauoXDcy*_?mE}{SJH(ue4{tv4G!9g!qujxCQCX0DL^;o!ND-1v&Y*qVm{4(5vW2ciP|b@3 zq|E)>CQGBYE?U35ihF?&e=@ai!aK4?hMsbrfOrnGRY4!MF&i@kGRmRHx!l zj0o+?!o#w+%I2p?7&iWA|C7oz?YWGf%zidd_^8!l5?3!vxqEj%= zVVv&lYpOV*5o?n_Wa@CFl4B@1rb>X}4cm|uv4!+7GKe`=NWK#&T67?qPu|gI@*K&S z;o1EzKZy^L0lvkH-#;*5IzKD>+h;^n7LRZJXdB&!br;ujhG zId|u$9F|-I@~xm8!M6HHbgqMk`pr_UFVBzN!h$4I13T>I$WZgxk`Kj1YBeb@D(u=gSLUn3u4@-} zx3yF*R(oH41(%aO%@`s03nC<$nFJ$C+L^f}uy@o$o?-6d7vN8TOW3VYNF!;dozt z-!qQ&igLGxN1EiX!7C4xy}9>1L-H*9oq(4R{sB1Em8B5b$ z@h}F@$ZMawi^ti<5wOGo^EmFB(;Xsp!jBqTF4q%Uif=Jj?<28HVhium`EY zsT;mY)X&eh@Vwz@>Eo;3-#>% z{xLdlYmx;BB^!Ms0~j97AQ{oB(vXoS5VWLAafG3P>w{}r6IKaa0ww<#^Zhqx*LIi@ zC?2KujUD~8zch)kP{*m96Os4~+lyH2N+s_mbH7GatysQ7xjuzABlM(4$lop{cX_ z2*EiJc`#*|aNWx2(}o&+(b{vT(tHnpQ>1d()J5)y2>{8i$pyG3PIF%~%qpzx zISh9nc@7jcJ;h-uJi~xo#qCcQo}g;mNG(^8jK^3DpiYgtMZA8`FIt|)1qFG^c?>xcd50ru$EeohoE+umLHozFF^P#%V6UM15 zj-Z6KTs_x(8#?mk-<~_o|6m#ibN!B!m^Sgex-z_ToSd$wwI+gZJRQ5DwlCvB%#t>4 zKFxz+>r7JM-Q(|=cp}n2&TU2`=7$1HVqYK?8b-2@$n?E_BA&{vHzdAj1IjjkeObAF zzs;roe|3(3xKskxIMfkO6&+GIQMW!mS(Wg)yJUQEyr6u6qv37y)2J;L3bNix%^@XM zIXYFJiFJOfYr{(I?|191pESQM<=y|yH9im&I|*Z0h)3P&LK>&ebEfHr`S6nN`=(|N z<>)iyUd`zBuT1G)=k75ADXfM*iUtmVM1^G?c9xSqYMzncwdcG(9Ktw%tc-hJ*|0Wo z9(fRZ;Wg^lz1j1p-4CiVe_iVTf62uk?wS9Xcn^0`v~lBybK2iI>^%Muby!&0x7YRg zTF>KJ7t?QvKPWB^z4u4Y`~OluwrB0lKnK5qGK1@xNPE)fZ8xHG=>3vUpXr#@-=>Qd zVXOs~_-5zf$bq!ieoHq%!d%jQBQAgaq#9!5`;K>I_dj^z?@poLpGp7uPpTeG2pTFI zHd2uZb~RNR6n!GaxCNZj(iRooLXP`V0|( z;-m=0ksQbu9pnZ@+sZZTnZ-)JjsRlKrAw_zoR~4IjU{Y9VFMMefvB{=vRo@O8w7ZP zzNScSzusit18S&=fxt?$b1(;j$8&1U)A7@m?`FSiZ+CB=<3ZCKLx~bpF&U9^DmEWz zGD5f1?KAkur)c(K|HSrlgstI;=Qc4j=Gvky2lO8*`^uth){yMCsgEg5?Rl91i5Jg@ zE$R5;`9x2*ekb{j>sJR~cwKo~#e4pn%a|IW&ZC-}mJ%Nf)*UDf->@H=AVcKM2SPKX zg0#lLX^~L;S;XC3uH(BJGK)EY6&w&t2Ny@Wz;O8}8-U-sPGlUJ!ud6Qu;&CPOaQ(Yw-otwrS5<0Nx5?*<-)W8Fe`EdBl$v?Y28~IM&*O&!@ zH#VluI}^JYyC(I_TV3d_&h!)AKk(*Cf;`a!dF^Z z8cEm9H`1)fY{lDsx)-Kg@ZyTnh6Mx#AI;PM1pxdtM*=NG5cJUz>JmhxK*S&11dwF3_V~;gf ze<*c_dG|S07Q}_QsH|aVj#0JoP*s@skYW3Jz-;CD=R}>^iY4D1@94LYQV2-m9l>Yy zeoJPu#_MWKa;|}cD=03c7pP#b!=WNnk)^eGUrzlvJQo+TP%pdySWY%R(ms<44bR?h zBoNX@$Rzp2A4H4XU=Aqz3Yf&A{9gE9s!>WbKrowy9JA zz>wb1!B{&3Sstb{BmjUIy=lp-9OD zjITdP2I5{D2F#18EMVXMc_dM2HP|!-u0z7)BH2hDlVMmUFtnnG01pTDptqhUKNDF? zxk}o@t9n?a3j*z0B5zBeSq^Dlf3s?_p!C&p>7RX)y_m`@z#nbnsVGmb$!po zbrWQ}H?`9p*1K|CZUfFQHug-b|XEy+>Tu#Ul*%QN|yAxT66TXnBD2Y_rwbHRpQ{=CJ5!g!@UQ zi>vzMXQ14(T=^XZuherb-74g|!)COT({9!M8n9jcNfU0V0L*B2!dpCN_z?sCu{UXO zk!)J@dYr{eNTcx!KZTxv)TM=5v~urh6_*Tt(ui^rgQ;~u26T2Aq<_-5 zrO!pGV~N}o>_hk5{iF$x^Cv2DIeJV_dkuYzwa%&8^pIBXaA#`gSU$jO^&+CFEa!(| z_{|aTv(>YA(>Qq%nd=AAAptNO9~MRJNP61X`DX6gz`H!3Q|7JSM#qG!$BkKf%vG2hJ=nI*He02H3J8)E$rmV^RRN6xLWJb_ z^jr2E#7egDTR#MNAv9c<__LcCS|jlXV`_wF<#D04otEE@IE~}uCo^=COv&wB2tpf- z3pK|J^nj!rjH;VW?R-B9JV4pKeiDKDHK3Zh4ov=O^`3w>T>=7H4l5S(K#>k%zk=%x z1!Qrg(^=CI~SFyJJvb zK;;gegzVBGf!`Py5eyc_4fLG&^D`}L)9?0mEM^kR+Z`=eE_U8FfBlRgKPJ_6SdUwn z;npanHTF(a?9fZoP=Pr?fTU~*d;y&1^50wU@0 z+YFyFzr%2^{Q&f*QxQ1QCUYoCyyovNZv+*QFcUJ2W*S7B2}~g64j~;Lp<=osPbwbF zlP7sy#~Abseh9j{Zuh3<+*c*`c5n8NyMe~s)mz}y!&s+o^N@*=Sl-l{YH6fe7lqgN zokKNCpJ<;tFDa{YURmJ1+f&iYtT)UZ08n35c3&iB8YXe*0L|k&*)3Tv8M)_x=56{T^5nZjU4an&Ui_$Y>KHcLru#(IURa-OQDeXj z)H$N?M)~gPc1H#W?aF;CEa$z)GG$_H(#&PX;=E2jls!+guT6{QsEKht4_jr4^X0gu zZB9m|D#(SHFQ}rvqROMxPP59jD>}vH9{%^D8PqenEgGkM3Quk3_?DiU&&W^2HpAMg zbx`f3L!fp@bQ7#{$_5@z5rmPeBOSs3TuT>}d;$cCMl*aH3w-*2cF(0~^qL&{EL~Z#B3~&POk$5U7;2jDUfz41@vuhCt{0?|_&zcr@`KdWHI?Cx(_KU7j z*ot-q`Z*FTus=ph>(B9bu*cpqIvK5hGcH#qtOB$8D)XXoF_td&??zFw`5C*tjwQ%Y zdz1I(!T`o!l)lTEe*}d)2yE1KpIZpZ4uS;6VbAyKC(T=ea+3MP_?If)I?H23i`k}J zAF@O}!k*00vELf>vpOE3H@P$dyzM*<8$P3xuCLfdJcpM&z#h_ZONow&i~Kr`#U0#D zg3VQV#_Y|Px{|AwCqwm>p)iAD7uchH=Jn$ta^&NnY_@)_{>-gKB^3>2)AvPQV4UN=_wdotV*wH85rG(Le(jGic+70W)T$0N?<^JU8hzV zQ2l^j1X?C+ehf~4kZfcCO0kQdlnvBdd@y!fATs|Z*z7NVQ&x92oJC3eXrDL>gf>WA_BEQKH&gK98%u07Q;M>~}$^pa-ysr{H0VRC11VWLbLNo>zmkb28ss^>p z1ZI>V0LQmd>h@lcDj7e;i9Lv9bD4l0qMRTyJS&!AuXIM?5l0XW86ys7YHPZOPQ431 zt`&WrKlV{ujmP0*Ov5Y>^x$^Nq53Mqxegmejw7My^2ih6`MujbRdTO^^#Gac*#w&< z<~Hd%a8U;kJEm$#0cR@NV0v4qD~%vDud}B2t7)NrdpGq0Q9YBOi{rap?pf4udUSj^ z<{4VA=hfIP2{MNkDE9Yg@HRy)Pa3mP3VQm@WP0DY?X~~g_8WzQR^nT-}>O(}S%>rmZrTE%BhuIWIe>U`c?pG-~ zb0tCJ6+eOve|BT)p{wtW2en1o)x)dC&8flW5B2$4Q_k@_&B6&QOPQJT&?9X&nx#bY zD5CWdx}2<3ITkIONL^?ZBh8*_Qm8zdd@GiJTYdvGb7{-L2N)r^$aAE8!qy~zdIaT? z>trqifNxYRyph(=D_tGAlqqr6$X0|VyZ(!Rnl{aCmlsAP`(A$eO!?>^!_C_?AAiEEO=ME?b$PB^@U4*{>>m}RGPgLuzU~t8!FES8$4R#-LYzWFS zpYo&9C+(}?*+(n)c>LZm(+?-^JKym+Pw8gxz=`E*hVA-+Xv>!Vc~2RNU@};N_XdC) z(xy!n(vgrKD%uHL$Ekoi?+@XSC%Ka^MG|wYP)q#hmmbJ49Abss zm54legUPT20i_Nfwf__|T{ssB&b4Q9jnH**2Plb75x5B!$^C$$e+_D*4sg(ih{3x| z2~AX*c0df>wRC5X$Q@kRfp1z9u;EC>N!@WCQm|&P8~WMK<0Q{&iOSxIXlC6iwfELO zmnvx`qYE^&8qK|o=%&9;w22!eDdRXQIsx3M7n^AK%_-Q=@5#5q7bF`D7{CziWuoqLqhL~v;ax`Zl|1kJZH|_ zxpU6UXMXp0|4ah!`|kbjz4ltqTI+cR9+$@pd}H!?e2@3a3Gb-XDXE)VV#2$I2q*Xs z^+r^QPVQV##<#<$hnKz62s{i??UZ5jey28~BWq3De9_eg9(oRem1HJrkGQyBXN8w& zzaSZ|9M`LqsXe>C-_)gVllhe+hR7z=qv%8pb%T6<$8L5Z)so@#pMTUC4@Qw*eRoeX0GSt0b>CedH z+Bc>?0z;F)1DnH8F(42rGT~Dl38E6eF{O)|Bb?ilnJqJbn)(Wbjd9*jZ@R-g?3>GDoX$R~9CJvmpFU7kB@E9S2%-_5GF zl(Xk6ndt;xLS=-6zYgLJZMApsPlvn6D>D2dxjB~NL(Iq=)!?EXDy5< zk$9SbvPRwaEVlV%Q}dlyr#h*Lo(gFli4!W=5OCx`RrN>lJXT0ty@+V{%0N|Sd8~0s zVe$g|_;uaZT{(j0hvduH{$wnWzUKrDLo>x)%sn_o9;grqtu$!gJ=N&6!6uD!8u3shn=O?csbs_(7lQ8J|{Rnz{X^)D*$vCbXJ4*}-S zh=5(kuAk(33|W~6flGR9Z{5Ta+do4E$b6Kg^&>y4=t;8Vj5!5oA`s+=Ff|5 zemqqF9iM#Lfq06p_8drE*xV&-xK&`aS!qJx+@oJip6y+>|Ct)mk2An<#5rNsPvOF0 ztHPKKlPP7d&2-q=d%#=-IG@flZV*9cA+c<21xD!Z>SFxj4A#ZUqA zeS0U#h!*MFF**||dq?#Zd8^zeR&14(U41&Jxx}(&OBT&esDyJ2fPU>FocWTRM|q2V zs${G>#0GYGQJQyUA3t)%tli=WlgGNI34c-kFCg$hcZn;Dmz`e=I?)o-Wpz*K{DUE_}Yl>!*hz zS|)D3!Hf00&J^+*x2U4MfAS*VKaj&rVj4o@kznYtMdIenQFO^NEK4wIh{%v@PdWuo zTxY}qPsn?9{}=bP5hG|3WG?Yj4Sz80U`|bB+MD9z9ARQ6$I7_&wjYxcyLsx!+W_j$ z4mcXQr+16I{OY%Ia;MmICpTWi zhZZwd80V4)Hggw5!3!LJ30`#-4MYHMWiEp-AZz2rH>SzuZ$M;+1#EeLJIwJcd9eS{2IMX3agV!I-&Mz6uKn?u&s;J!_q};R5D^pzAZ$xPayi;c zc6vI}lX~fuie~vKwWItD{`dd@x-XJJXvkCoXBg!E6OY;4wm2^#lA7j_$h!8{?QzGn zkap6lu-%)k)q(Xq5q;cr-}=)n?iXKk9=~Ih>4gKv<=vCn(wOmcN;EkcHbw-2Xu@E2 z!qAdTem1rc=pQ*pFycK2*s?3wxi~UAh<(Rqpqa3BI*gX^4Ny7*&Fr;(@J6}NVQFg2 z-7pu2FMUYVd2RFsG9%0>-c!h_Vz6GoB>c^IQkd#B+elUyO^#jagC1_4D{d1ybrg`D5RFO| zOIBeq>&X>T7&o*Kzmv*;G6ou-Kr#VqWlI%OPooDau zWLi|i$XtvsRzqGW!0NX~bpy~AP7p;Nzt(~_uQQ4l_;!iO% zwem~%KXC7KSnes;hx409H&bp^;8oq5Z<`XQda#_R+fKc8eIV4PVF(r6{HAu9B?0gp)-Z&@7Q;3pXs5scqo#g(h-<5}Rhu8> z1ROzGW&Q|;2Q*0voJBNQ1yi*v0VZqp_PW& zf!RVv+{LB0jeC6*vHDLloucpPPYpS}D2mv?la zPdaLY?LPv&t71bZ1{+1YarVi87lp0SJF@yg?N{^l4E7rmpS89eTSd8BMcS=PHi!1_ z(VMKIy$j5t12=~XF);aG;fv4^-#HC!@xodZ787dCi29aUGjdNQx68R+y$2c34Jxke zTxc&aZ6tav?%O6S?9dPI8S9Hs(y^YY(sA+68prCCwec*u6zkiayy16f#nNDBG3Rzz zoDYq%;C`p|HGa+y!FXVTStEk{L!`qRzjPJbDijMyt8($1V6hUl6?}sJcYnv1M>|2% z*PW13hc#@(b&uuo9w;r2(Y}LZIwE*DHd`RKH1L%~AXWoH6b452 zIZ5Ah``p~}v-0?!&&NC+gUD6o@Tie2bg~7@*iyBxysSdDYI?4}y~|G5M3)78dnlO$ zJ!!KVMUSKTk=>eA8Y|s`uq$#wUM5^8pXGje+nFXWFK+!JYhCP8%PEd<>@DaL^E1Py zP7_az5ks3-_jp*PiFPZ1p*C>zEm+th*wBx?_q8urx60Ph(cskkEV;y>!KjzoM2P?Y z@m2F$kUs=~ul-MiV1a4}^PIe&eB`}WR1~8bJNw}NDG3QCCY|X^h9xR`iFb6opJczE zLr+Pqo~H`?kcElrWkDW&2T^=Z3GnQhhub)#bZ3HJ=c0C>)!G`V#9wzH0I?_0hVLW* z?s-!{=|$}e^%pmNlp1j?Uub${wlErN_66&bUTN{7%`*j~EQPcf=I9t~$s2;JR4kVn zai%$Es@3_K0)AqRWd9Z$ir7&yP{Y;4*xhw#kMbU;lVr8h1jl5NqfcC}-8n@Jymea5 zWSB^Ka$9~PQ+$Kok|cQtozQX3G^Lh+b^)6f2W)}2)>$8dCgo)4{uWmsc`5^-jynHC_JTM=UpsF=Cd-JBrS8Z^7qi7+}Pa-J5SI@o)11ocr zA_~$ixhRG~>cDke4D35q;FxA#1AakuNW-6*KvN>OG&GR#!SDIdIRvMNROFd0wo38? z=Puh10BNmj?y*VqZOY9s^9Vtlhqzb(SzzW;t=DzD7Xf8IQX@>yf zu&z?N`UN|N{!VGQ&aM7JjWJq7jmI(7iXtl~o9fkH%d8!Lpl>{X0Jn@=j)FVYf z+VmE^EPXdI&v+;A>drkSrv;&z0!%MyeQRP_9N%M<%6;N??=Lj zt4Z?7gtLWucI8rK_=NbF3!X!wsy3xF)P4G1A^DQnT=nhgyf?f#t{wZKyojY9=7`=q zgoKZv8rf?UTzg7{HBzT30f9cxTPz$_L56x)6>bC?H;`axbo&_GHh0-PR6ncA)!XZ# znw;|pW*hZ#U5~2&`xM8Xe&3s^!jCTHxNam>z|1G}FZEgn3>=*XaqPQRB*%Z!oBkWA z4d!v&PLClAt4?3*lUVPy<9*ajvo{Z3Fpt-942B5ZV%zzW%StMjcY9q+oSOiyhU?Xg z(TCqC75kp?8KZfjywZ`P&E^>xgv+Ez{Gn^OkXe$dUW^@*T8v^A4@L_}g%8 zK@82*ZYR5DXBpVxsykd{C7#{irX#Y~&L&b>EcpnQSEwkoPig%@&-cpWKh33lwPt}S z)&6v^nojn!ZO_vB+Wc-^xBPf0L~wwmqCay>!HfMmS=yd+>R~-5w+Maxgn_Yv!N$T@ z)&V8=MMb9^bxxIHPRn%tK;#cD%`(9iK87qKt<9~F+x96Id*?Cax-Om5)yiyQpsVQd z<x)z#8FNGrhJ5q?4SUjmt%skrul?yuwl>HY$h(>LeyayknSA|HK=oba#pwMe_i|g%Wc9XK*rD#xWZAZJH96(2)(w5H7Bb= zI`bm^9^gN?_VlOTh{EMx{Ydf`(J~Af`+jdzTnh&Eskac>&nBLF}bw2^SMlaxsuwz zs1gm>)={xQ)jP}r-+m_poBznmzb#b-&Y5SOz01!QOjp8 zg)kK8hzT|q)4yy2<_UrzZVXK`2E%p+uvCYcbLtKT1y0jj;^|95JVuR~0`7mL#dn}H zZ{`~lw^d$dl~S(!kGn~*vN_lG<+M;nMYi7fbiZG5nHRT5-##bH??k4Lu8yVd|AOC2 zk1KvY;1-am6ykwQ0!CbLXo#8vbeJeQJ|}d87__I_M5>9Wy%>daPybOZU);!Gu&>f0 zcGyqY>Ym0wMcDMqjs7<*`9JX||7R}#Nprz6vDl9_tU-@3Qi(E$jrF}+_*eb+77jE| zRL9vw`Kdinh8ZB+yajJuZj_Aa-|?P?8~O5V2B2M2`=u@vwJX#po$E~5n}W=?-yEspc49H-t+Id%0Hbq`Kw+3vzY+B-4R*7YLrq8C9>nw%u@YgWsD7!fBhuJ#J9&_j_sYsLPLLzM3A@c8X9Y~)G_P;*LLq$h_KP= zT^>-k*X)}2;5anDHGZx1vUK}}AZm11l=kP|eZ(U=&AM&8wHa~eAO7}1^UvERh$_v9 z0(y0JEc&xj56=xcZRBiM)5|tXYDaoq@C|uXaLVFYl-g~rB*KaFx3XgifthpMjos#Q zkG=e$dY+8aE1x%Z4sUn47TD7-9@@WmPs=`=ouS*9SYB@_w{RH>Py8#N1lLJw8?bgL zQW-tW9K(odwG@D_g@US`r^z2@Xi}hDv?T~OTTcKvnS6T_YRrnQdSA_t3Pn4a*27u= zIbm zv@SuDunI4KaM}N!wf}eg_D`1;|7hQVlJ>+avfSGf!-$z=NYE8>auISuXHo57Haz`a zfp>LOW4)ljiumYtxVm%Uss8LEpE~r`V^AP_6>PS*C4iwo_4(+=>1$TloBxD0vbDKV z+U2l1wA=3UH4wD4!^$NR{d+ksk7l+q_%~D;)^^gE-Tp_AD8OG%U|p1RNoDZ>Si0hQ z#j~*adpu$Ha3hkD+BkFd$2&0%xo$@f<9P4#`-OQTL~8lq9-K+J$R|`clc-&e47p;= z*{88IN!gfVll1zxD}wvFT3IY*9a^4wMPSBnRjPZk2g|++o#=6xD2>xhdvnazLw&pG zL#eooq^IwH-p=xqpP*(lf~Gy7fiu=70|ce%9ldrZNI_JabvF2H#oS8s-!K}?b<|uE z(BWdiMU(IVU9==J#?(ICmdPR17KDB7`}qyxt~UN=q_bOgma}o1%~I87D(a)G8g`zAbU^#r2%gpK zUA2n^dbedJ$-j-ejCeqV4pIv@GHIQtBiL?+26lyhFq>>va(M!|Npg!&)3x+$bx@R> z3p=^G+cZxZVQ-K3ZD09>AYKmlH$nN7=TCUM1*(Y?F|3Z4ru?}--@F@fP@ufz_2cWt z?%`F}d_Ubf-XgZ9*k+hFtCyHsB@$-yXF9zt=}6n87{WjIaOb>_V?m0W!dA-z3)$A-S_Ud-c2` zXCzxp+z2oTmQIJSiI5!O`#Zmwq=(bHcPgk=VCXevgCUXg-6Ub%U$y~ zUH(7lZ1~Gbk?m(~lid%u&Ni#_vN=8$3fL3JAzg~fb=nmiZr0xI4q+zxupyp0NY4{~e zQBNuAUAbEOYQ)b@_~Rx$amwPIdiRB(P6eNRK)b5DXkOf{$r0UvWs~TQ=ST?l z=%XFY*6F}E8(*Hv$7uOHIzN~^u>ZlFzQhBpbDg`~Lh&~ynKQH5v&KrRDoJVl8!lt~ zo+o6d3S`pEM5DZOw`f3g$DdraOw0Qqd*z2{^?$NwnJ1wV)GBgIU9XG{3BG@-)H~$` z%8s5dR^>ibI{i#wlU1=DzQZb~`au6;=i(RH_#j!(BEJ%GRfWn<T8T=Zh!zxKFRgv#@F>ix(!CN_tDdF!B9{lZYTgkGPlU5&{) z*L4&ho3A*dxb-()>&Qelzxm}!^amWI$`BE1!NA+v?G#k_;>qVOT>2GVg8N2v#?O7? zpJ`-byK_32Ut!SlGhVck%0|v!Nbf3k10jFCQm#&n8||P6G~}r3GaDyL z5VWd+Wl(6wbY^w@NkxLA8N-WTaw;_QEsXc>?x1>zAfSvRArjz}+SqMr`3yY9ZS~$8 zMyJ9fpGe7?8i2KO$5oU1Y5RM}gw}Y~5ERVmuf2@`Mwc#W^)T$PqKcYDYJ+^NMIAF6 zJuY5zI<`rql>_!L9oL96LcM1tSliHF`U{!2x;c_+G%u1L(}oUE;-9&v6}U%AJlo2J zzZ)Is(}5Ifvr05XfLbwj#9QTr%e@M1CVD+{q^`Rzx;?EI2+j2 z*X9YfYcv%P)r zQ)1|3`VqK$Y~5fqs76w14@e4Rp5lM!|*NZw8|GVTG?0lf#7$7xuyW{rM9ug~rO(!b|goBYx&re{H zs_U;r^*umgYv7P-j2{_apb6(mU*-kCo<$vZKx93!XkNRp;R;m}5W9r<12iVe`HN{S zj0P+Dno0?s_1{(QHGmeFRuZ~s(RS;K-T9m^{M$66gg4^GiTxmvh;}@_nBVVjsE2!e3qs$pB z7)|OLiPahiYcz;(m&ru41unOA%Q7u*>bHYx_^%eUBa`))sn^D5=BaW^94PGU@*aN{ z?Z*^9(rF>Jd6M8*XnCyS6p7THC zFYjeu(r$sRAB7Zg(IYxh)3p;d`}oNK9}QYLnR6)ON|IhJOawQQZGQz~YR)@Of6!q?Ul~(pFxVl^HcQa3iLKjxZPqJw9oE)9*cTk)7&XuX5KL{J z=_qvd8f$TU@s?Tg1oe6)w4tFzPTHR80yW`FiVTLK=bX)>qJ$dr# z>A!iD{OU`#=f0p{ChlBfLi3>TL}vNKDh78GbUR;$%_=wtqr<)t+y3#_zUOJj>ec zT*SJK?W_#{%!QIdM)7|hl=*!f{fpimMA=u1T0{}nrj`&FAE7v^cf4{={FF(o!tYU> zz~#4QXxxlnGbZyMR=w93=J%5M@yt2o`wTW73jb@9J8aO^oapQv+l%5{;Ccjs2f$F*v)GK-b5-p8YYjr~QaNt>7PjxP;1Fpt!Z zrp%tuhvuq9%?Jh<-VKo%kRO=el;1@O$311=a`7T7jM*1O8BQ&riM^pdCy(lq7a}Ms zje|(f&GWqoLu7$r=e&!HcZA#SkYV1qsOGP-Hj)PC-(NfC0y@QKHR4HXmC?TZkX|i^Z zNxco*r{@g|O-`bGhk2JDO>}O|4!TPby8x_K!W2aWQxc%U+frR<8 zPp%mr%htPY9b8=Up-jWqP6@Q+jS=2E{;6XJ`xTn}p9cE>D|ZUaiNNW54>m7OM1>`K z^gICT!UO$yfu`i)cxNfBnV%7Sw#tp`|EJo@NNAFY2We zp#j01WYS=qXJ zlakQrhiHJ1!;r#fLN~QLmjz_c_V!+$uJ2ba@a>UIzQS{1OTk>#!XVR@`;t`6)$_$< zc!Wgd8?sWpj71 zzX+h7{yBi!4=b1~>iw05?|+^0KTk>g?sUJl^c#)6vG_wRTb(S&q95iQ8H<5y=u1rn z`nGRMHp%9WaP9WhtqK-jY=rEdfgb9AyAU}verzBEu6p*^xzo#ThR*FD2{NYb78>Fk zxTa_hEMbF&&X{dG@?+xjKj7293KrPrnw{sU!uxziWjNb0^UJ}Vy-J{FIa{6C?tr_I zfUax1iOnfA^(ui4lw9N@L4O!qDTa2ZbR$EQ;n%uwW5|o^S3jb2uEQn=YbW?EKL}+u z!5#|rJj-(E&uk>H4o)YKbzI!t4p%sqIwa{hCGH`X++^G{5~p2qZs^3bs#v99OeY{u=60N zvoCe#DSCZPuHtd;El^6`1{ASF%K~s@A4kxRcI2-&@)(2>-F+dz6U`r4q=^7U><`fF zV9<4OXY;A0m)az;3|%XTybP!4mu6ECb=&kc8_f%{xni;X$94}|s=b+<6mZEqt}3$9 z9{kEYH!MQgac`;L?uGn{DFV5o7R2c7#$+!BmkW$K?oPkF2iTACHF?XwJ5>$;lA-*) zm(!NSMdG?&t$$a#T4~ge#kfZK5JA7|Wrh2L*srNPor%vr=jvPCa=e$JF4AIcdjGcz z8-I5gC&IRAKuuh1fUwZ+9gcS|nCWRvacmD*(s4)5-h6=S7jbl>a(LNxbzit3SJ=HF zqjh-Q5)JtC18>pBl5c;<*(|_kt{}C7agDQ7^?Ts*Q_^bIkQ{XKSh|}me##&Q&S3i2|(7-lQ;@`WU*h((sRvUf=pj>G~xfsmArcFFARcd zE8NVMe>BG@6xK~q`p1+XAzj1!A@LLhq?{=rw!$#R5yfj;SGDEoK@T`yJ zxyfdg&;#!yRRvZD0J>mX0Qwf;)>iR6Yo^}a)lW?DsJG9YI{q`G4p8fgjzoPmgxNth zg)_b}b^5h=pOPEt1)RMzkJhYksn7)MDeIp>B>(VQMv1L#-2SfA%{;@{NtGW(?RO}% zI`YO+N|zi_4Q9#3r!g_TG|sMb6l$oan&s7Uv7-6h?dW8u^2)om?-s`U4iiQkg$!dR zraSt+;pot($;!gKF>R!w9tpy`{3nIEJcr?<-m? zNZg16ZZceTEg4XsdG+F^GJGXL5@}Wss6iI{c|+dAXj?!d@%IZT$l~ne1Wo&<6C)NQ z{e=dmH=el3#C>F(=rmL<)^-?5u{pd?D)*?=i{nxEc%_bI4Co%OBn+X(VAt2~05%gq z(zb|2wO{z&xB9pz0h|p^wKZI07zVT4SN=lA*UdI|bYEEW$#@mdY_CylV3cDS!@f^; zoRX0kZFy4_(dvE};&@;mPe5I^+2fP_m*RTY5bIoDiVONrfDWsqmBo#t7|_aD*#Stq z=S_YZ+?iFxFan8cP@N?#UxxCch#u*HxV#_w*IRSh(#O|AVfKE=D7Hr2=>H@p3K zs=n$OAH9jc+$kOSJY%~5R@A%F*V;^X3HHGd%FuTns4W6?O%M zyc`sKOSswcBBzGUNR7%>Yp-)S=W0Y&qC*gEtB*}bqyOv<-2^i$_*cXODKjO2tYhH+ zQB8t>oxpz;W(jVl;U(aJ!uA4?= z=q|`5xVIYDW|pDqwKf${?J}UvpSK4`dvG-wF9-;y01kT}$2i}cm;i`=qW#+-%X+@w zJN-Sd-%qrp0`B&w2q%E@P2xpif6g&qgp zPYh{!9LmW`KGXhAAjj=Y+AcZ4YZ!6!;u+kq6}=!Y-%Y$M+bC|7e?R((REKgsfKt{# zb^!5J8)paK+~Nd0x_dPR(n^%s4J=(;2v5DW{+;GUyT(@oAdLGr)lq}s$@I9(r@k>& zgHqu#l&CkRJ_x_0##gm#%Y9y>XAiT)(M+7n%&UGxa?2wqGfn<8RE_Fv)#dT5#8Ueb znGt7`-I8hL*ncI&wQ6kX;FG-LpJECR8of8Zc3$nCUUGrtod)1FJTK|=Ue7lqET|-< z>Pv=w{z{;p$JwDb#B0@oU8)2dCrT={ZxpbHp~(DzmQirYa1O6ZX?{hXV7RE!)X1MI zQU_8_RqDGLgUBL zeN?xx1jbg}I#cl`wu-SGW#j7wJnZNZIocsN+`5}KRCpb52Rx8toc_PZ_!rHF7<50? z#GOCbMa`bV-qdR)OEHS1WD4e|7QN~4+9H^re=(|Xx9&5`v{*Lg`(pf;_g3szksl8u z^wH{3)5y^opH8&RD@)+!8VOa9og^D6-U3#B`@*sy z5ms1>_Ol_|H!u$L90DqL;j*&Tm$UelD>~^x0&=+r`?wlr=;i$5vowpKA5k3#hi&hZe@C133o;+C5Ys}KTUz3k_QUgOM zb2SX?vj#vE3Q8DfFVT}gtsKUAfy?c3IjZ3bqaC$u>Z=1b9)j-lmw&9Ap8>(B6Q*B| z5yl1hE~UOP2K+TFqXg3T1-`yoJF>c>8uZHtP2E%lH9Js1R5hFl!tuatI_SEcdQAnc-WJ?O z7s}omHrc-!FwnICA$P-y5p+HXH)_NLluDxK<|JsFh+ANUc)ni6dH2SR^x-m+`t`Ld zJ+9Avd;1?Psuf~ZlR^$xzS`ay8qOR2o%Q{=)BBxF|2@-%e?l)_`0?MOFaBj%=R34% zM6fEWw?MN_Ulu6A?w|35?k&D`JHYFhnfv^h^!n;5R#Q53mC<3Lq3lN>-@L#O_WHcR zrQeyi9HG*n(@EU@#q4xE`D~47#9qm)4JOuG9}Mo?@hNQWKJ;7B&d(Aq|L#BeSAk4y zOAVXn{NEGyK=)8vEHG!uwXZ;)ucG{3@sNrBg9X0rW`%FyuX%(E&WzvZ2#-wTs(Nd8 z<@S|cg?wl>BZ$}hcsQ2#)e<1W{gE$l@lSk#PdAmnw@Gcc4~I=%>4A~AxiJo-zmpas z0g>SU{qT=ZiCu3HgO>&fma<(^s6KC1=&PB^^$naDIhF&qAy*~CzkWQu|6O)=aH@e? zXQE!0(~IGFm_MlI#y%*+FxT=7AiXS*h$ip!RwwVwsJb3OOCw`mH`4atm(g|C8*l9E zZL~u+MPTue#}2rUi*IqM~EKzx%g>7Rzs=1M{LU;XtEJ60ygXO1F^(XlIpC%#whbHW= zh&2ny1YRAyN=3EIyWbYeOID^xJKVTFaLGgUe$I){%=g)x=3B(l*->Js(0EAA(!5ukPLP^OBceuccoeTi_0C!W6EiQpOfCB)r=B&YqOd%dOApG5dB1o$8B& zja=A5*LOJ+i#1m0HI7oU^}K~DLO)ti6C`UAn# zyGyN&j2l1cIe#yA=5{s1}uh z;;p-GXbG&RiHbhn+S8R~R4{KK6W9V=5e`AJGb0E>%N#~gatNC+9vUw68xs&_dIU-22AVoW;O{yrCQk2Q=PPlJ}PFMX0m=C)o{*N z2(aL`d}BJghM_s3=V#lThmK7zP)Ham?3+YLiP{TfJA?S*<^5K5ZotKQYf}x>I|>u9>KLt$D}#(_Oog zovU^PV0RilNzIK+ESUYMpZmSk?es4nz8v+J@e2I%mw)T9{+GO+{~N}C(q8#r@-}wO z!$teW*9IMK1?8wVj^cQLI1Lr$d+<0k<-M+a=I?Ge~pHefOp7W`Oy>YF$_o`en zMn$V4)o=V#T;z~scc67%Vt7w)UqL8cXlc-RToprgzy+iRQLer@HPQl&^W%B7Z0n%G z_9e9CuhvW+1hxOaWJ>>+ERX*i#_zQ`zU!OXw3}4hQ4|}}o%kt^bosV33A1~;$2;3X zD$e2VyK#R0<4o-lUre_|9rs6F==DSdxyA1vbH;sQ8gNAMQ$Tw)!E}{%$L^6>K%VPd|y%TrnF(-~^d4d$I4z&Bk zThc*(2{zj$+QV6!-rT5P=l}m2{QYhuX;+P#QR(Mm7sS=-T`mfgLe7)BC>E9a$26QzoH$AjHgseXUQg z)GVYR&lYj-b6`|th*z1(1mKI`AzK5#U2x!6@#eoN_WEan5w?#?+6*3ee}ir*Q){}f zBDuQk!n}KZZKErJ2%$qs?9${GPEngU8CI> zovaP2=gpjk6LjV!K02&evBO->IP+FHWX%8-HG%A^q;< z@tZ4;8e(Ra%**ZtztcPJzy`l6TAUf0P!eI~chKVdUJ z#naZ#$%jAtD$=9rRXLir^jtr_XZDla&~^`5-|_@{M*r>QmmK|nn+q%SUP@`8^Rq#* zJqNwq+pp}3UBAf2pGngti{x@WkX2aR`(;pLRLhIJ**q3uX1uN3hHD>bFG!eq=wz_D zpa1oI{CrbGt?7w)npi4nvZ-Q6ELe@amcqg@$8K~=zp;02aa%bK@&w*y=mmN*Wc?6! zX5~i1|DfSTM4kv+mxTy`*Th2vHPE<%54eS{8ruyP!p4$%a{1ezKgq9l?(bPtr!XOy zuLjTqs4v_gb9q+XEs&w0ZZg44#xrzU8on`YZUMbC(WuL(cT6V_)ofkW@K>O3Wnr%DTm zsA3uIh}~*ZgDg2{Kj}c&|A0F;d+mE8aoBKcR1%^g^LtEK}6XZqdb|qFr~q znRX4auO?8gbA_siGa`rxL1aUN{~oAJ=QXNJj{36Dvu#&=_{2`6wH`Xl!sM0r_7SUY z%v*~vl2;Q>!2c7F-tj-^;4ebR#z$AGS?J*ojiBpwDiR3*Bq_wAqV!p zyT&|B)2D`v!h(|d$Y~p8k^bCNpT;$3F)w#ytKoBl!paw{1N&dv@4BP&X+j)%%Jm5| zsfgwTx+)I$uF6x&8Y-48+4QI(YKvJ@8!2tKutz%N3WOx?N>%b6<4$9}J}Y?2^22FW zIer?FnkHL&(wV?P<0sPLZwWi?ob}CRjK3n?N~(hM4^>x2;;%mmYYjv`e8zGQ9sQL_ z;J)iDgdZw~1QQVms6bO1>f2IghB?BTT8t=CR~OFuJm5a}rvBDI9MFbwlb9H}$W~7M z#)POKmj#s6cn_G87ZTji;zawUH?R&)UM?<^Q7-klZ}P!i8fkY$(nfmQjj{V& z`A}Kka}@2z9;hG@HZmtVgFqc^E?XKfZ_U>e^Yr$sspe2`YD|%@S&|(5J5@3x+R=}t9{ygn_3LUWzf+*}2V+&iA-+GRD7 zS{&^U3{5#2S-xO>?~!uxp~EUvOX94hq-v5}y^w2-wO>|VLB5BFN0vsR?YXUuDet*j z1J?(VpD>RSwlYL%x^8_Ebr9}qpHUcV3(05bQ1ga5s&S3m)QtU}=%eC%apNU$Ph16@H&^RfWV3%SG9*(g|qoUHvij$>Yo!c($ zF%y?RarRhy+RKGIX%|^#d{zUfL(aCF=aCH>WUl~OH4bu^adm0AUh6>lVu_EBg_KWU z_m=EP3DXSmtMQzTvW){3_n{q@=aiQ{x?kQ1Jt|Y%5#c$&%WV0!Vn5S@kNbK1mgFt; z6b~+8>SPmPrw3v;O@*?rrQW1+*&N%DWQipfI@m@IJL^R?l1{r?+ukf7Rvjr9ysj2R z)TV{O$a-!YO91!nvio{p-5b%bO*;75jUnHURMm(bQO^t^G%Qvw*me*1sB3PXv^>jE zdr_;Lb6BI{o=$nWgo89&DkxmyfgYwVl1w7+BA6Wf1rbb0QH!$A9u`A)CdOq~*kiZy z^CRr`yfST+zuL%;bdz7>iuQM68iT4a+EvhXHOS*s3^8rPqq-F8^~h}{KA=(Qb(_NN zcdO({L5;&J!UD%Ge^`0NT$YXuA`KEsGQ-uxp(QD04N`JD990shlP?VWUU!Z#IC$vf ze2R@sWsn%Jd*SCF=;{-Cp03q(Nw5S(A<%>oro|9*UCK4dFLZ?hlO18 zIn&+k_wnzkKpa0{IA3QdY}0rToPR6WEyyJjlA7R0?j%J<5YuX&Ygqa>TqIYoadBt8 z&`_+-Jsv2XM~RDK!)uH}!PrCO(c&INn#RJS>|o zaz$WmDGi;e*!}Q(<7mdJ8$zG(r_Rw_GP+KOJV^|?U(I>w?DKOS`SY23UIe~4aJ@l+1MG+!lYV6&1#_Db|r$){i5_9rLtzoH1Xa3q|e7t{>f+)71#V{)4<#BP?z znfc#eV^sg+-DAJ@YW`a>ejJNTy zje|!(_Cm-XyTnqO_iLy14vhU6cVW31pElgWZ^9g0Ac$VbrYgxU z(>mwO>T9`YY5I<~)>~zj7R&_gJ3Fl7SfbMQaqB%my+wR)<+5vNY|EvVy>%o>34&PFkZ5h3@5o|qGw<#?!TjVfpRagF+i_VZsV zA^XQ2j&&SQF^IVHUaYe?!Btj3(5(Dy#4XQw@wfHe3|3z=ToFC#IwHhM5MxNS&e8Fa znV$?QU|X#|(>F(C<(}I<#J4LpO!Z(f%?;#JEr=#_^btB&i}7b_ zFH!x&)#;6o8}9m!CaFN12NcEnd*_POe?Uy@+@xyV`k_B`=D9wD__)@#AHm@6o)L`6aq7DyQ3 z0dr6Bkb8so3O2ZSwYzw6UP?GDn9s;`A^%bIvqOiB)l>kn37aI~6wJrXRgpFc+iAWX zYVgsaouiE~9>x793}Y70e#RIScShuSwy*2B+DC`ZmoUl4ioKC|F;)&aGlSxc%%pgM z_=M+hm*`1zug5EJPM!2>RY39MT=@p`k??{k`ihce z${L465RWmOG%e@cY2(WdcfK(>>N~n3-W4a#&L2K8F8z4x!`)XUxtTdC2Du!lMdVg9 zO3CB{Uy~8w7*SCq{s6a(nvTWAyhKLFjYPJGKF&}1&i9d`_wCCI{qQcFOW?r1pb-B( zzIr_cVEQ&XNrxY}QHtu{5X`}|DFuzI7{9VdUTkxgd0M%2=4jwHZL>9&-Jdj%9T0Hb zR2T*&r2MZO5^9zBhoxb=mjQjE_d=EU{SZafa=C-$$dvoaUv0jQgbLJo9m%SY36*6_ zbHwc|kcJ-iwWZ$o$QqX0H??stZhzGMfEzdCSM(BwmV!2~jW9cF7q<2wi(t8bph}5X`8U&GM=tw8h zoAlm$Z;22Hgv4**`|iEZF6W$m&%O8gp6C7{X00{Lm~+iJ=2)ZrhW)%F{RZ8v0ID!7 zcjM|7Q$q~bO7`4@TY;BxeW?a@$a^J~DIqq?U69e&n@6el4vE7a5iv_&1fXciH`d#Z{a zjVRpmnGMNVkFd&EFSUt3ygfN>`bhjDPtv%=6y?L)l4RdNpnYz9{HdxVs(qm-P@v(O z4Lv>Nas?IxxoB*6kJ!XWCRX?7eTu?t2O;_$svCVmJYfqfmgeCKq(Y>jZ;>z6?fuBn zz$6AppjYC0bI|gqn^cxf&9SBXc0%z(IRBx~Gu(rc+qD)KrtIuXF8Js4bUJliA^tD`go03S z40wrrr=O#GRVaH7t6&mpIw&nh7yfLRp;5BBqO7WZ|A&jweepITb3F?t{@aZL#*}T2 zfqE`j^25(4vr|q~Sb&h}=8@A3K6XiszQ&|JP}cA4rx~Lg@@}d4frHacc?9N5P-K`dS9Leg;ZrLhm%SVhtp;P- zzKt>EG;U3V)KA$&mTcDePEP9|Yp|z2a*eR*KmL^D*U>pn`z_Cz;R)e~DZls;oYKC5 zd-6UGGUFAAjn|+MikzFYNXFshACffSGT+Ud_jEetz=kYnylW6d zOEg2?-4ll%?)P7P2+VcQ6{eK|9*?TJ#3`O!^x8nC-eYH`QMPho?;m9q?Yy*jl@0&PL4 zxr>A!veE#{ZHAt=hN0OXXoQ)Pq9123I#POt_sJ(3<~Grx1F131Sg^s0WA5q>bC2wNrQC-KUuB06P7eRr z{%~QtD`-%JK5lwV%DRf}fIyZ+;GgtUB@Em@FUy*sAkJnmZLn(zFthYP6QRQ=AI=aSoDhGH z@R0g%#;yPF;M)I9Qu{ZAxqmG3pJ193$uhC{-8~cc%pbDjuf#rsMnUwBUr#yE25xgN z$!&A*`J8KVILZ)Uu3rbu?8%Yt`G6#R`-y6211V+?K){nT!As)Q7zj9mAEy8qD*qy& zYi7^XsoAq0^q;mNAavHvt|&>!G%syPuk{rx8c<3IadAp6>l>g`ef8M`lHmWU0pkDW zA(4frZ$BNqGcb;jbH&@MuSq~JOx91tcC)kX=xfyD+KRq-BcC;-&#>7+ZhLgDNHWLx z1Txz&5|h3jADRKCVQK4;06>aju-yNRKlcIZn8>RJ$w@a!EGBx+T>_~$y&hL@FU}C~ zYh38Veudh?-x;FEC!v9UQdSFC$!Ut2CFbf0e@07{E5AVXFk>Gbi0kV&K0TE`4R7d{ z2AGWzzAxL}9?VAHfXIHGX&mym#Va2O5%Kr?VwMWIoMHPP!nc zFLCKydyg553ZQj?;efqAKJ|C`)E~u{oF!B*TrhRkrDzKL*9|m&ko(HWRvy%}HW)}l zEk|AxNHGiwsoxkUrOPp=_NOC~zzvvF|2WG0&Sq6l2ilieFD6UcQw)^u^AR9g^&Kz= zi_AuVyweZ#iT|BKB(sou#Xyq-eG&@AKqp5ZU81Ra-eS@vppB5c@%T2nFHB(#fyF8K zb@Gd=z@i6Q4=e^+Ckg%mY-4}~B6ENQa)1OmeSm~>jsH%eraiWDl8`w$ea&H##QE8S zuk@@{Pl{VPeFn^HF2f83=&x5*2aR4VEPSEAv!KBFQL-uX^+(lh(3i}qQsULVi6=KJ z*h3B5TkJaOY5_s)9wBQ{Nj~RxGv^m6x6U=|Acl8`jtCz{c&(0>(S2SZ0ASIIEE~|G zn|(NFQ1?C*T8L2$`rrMxxGSnJ#9W_SY-}8^%i8)`q^*wI8Qr|Zjt_DJ|IJQ7ZLeXo zW&97Y$^Y#q?0;?X_*-?NH-x7&ADaChN@87?&TIl^(DhIRYOXCb|Ma_K^AoaWI0!Hx z01D&>Tnz9fjS+&S%J!o`U2(w&k)4lQc|Rn1lRTd|DGm z5dBv_Gs8mjGMiRdxYqVGg`V8!;wO)FiuD;Rkjru`0*B*t>ZwT%JSZb+66%g&%~2ZMy3cY^OuT`W973na#yRPQb1UYV!XK z^@$(}-r>Lv>kF{ku+L^Tn&VUm7&>yYN#Vtv`cvvQ4xAMl$3bl`H>o|bv>zgej% z;&&w$Au@nGN_w^fk}zGUkM7l5DKZpvS9xP(HuM#mqle!xuM;;yZThHYu)gyNQCWj< z0#D8K?e%+pmV2tsK3lKO;a>AgoRZd-ZrXm~mYxzc>wfa`z(dBW$%h0$ITBnzUfjqb zaGeN-G{A{C7*(?LhnLnXx^*4Cu4wH}SsGeL;eqk|W?B?Wz%YrufJ@MCrXz7Sod5aF zGoCfKrx>&pJXpMY_m(JV-k+DaU7Fh!ja;Jta}(xw=0puj#3V%g2`;`V7Fl_ z*Ow&T;TVk|yXOBHV3*6lqA(O-3GIb5c^$w>+W>|Xx*-kYCUvUO{S>vclAbnP0qj+6bew605Jjly}4l~M+_lzERI z;H)t@UCptwlQPyT7G3Q2Y~?P+E8uT1LrHy?&?#jE%U58dW{pPc0y`6^!4K?WYfM&L zD6fCH&%nP|F%w_qGq^&j)r7Lj&5AYt4B)h|-E@hFO>@|9+tj7MX(Qz0+DgaOl4$Ha z8W-kF>;fK)xYPo6Bektoe3mt{grqgj(6gJiTFvRYL+l5s5BK|I0e1j21emN?0d@zn zJiN`%K=>Kufxn3&IwO>q?2Pz~-vjzzyp41Oz7q&;)pAY^>~laDk1Dfp!`1Swv2{nM zH}AfyO1O5E=S(fc)&AH;G0Mrfz#Ha&F@8?Yz; z&;23U4}ho9kw;VEZS;jyxBy;PeWwF#S|LdG>0Sl*S2CE_qhFxbT`ZvQFi#^s(+cPR zp%o6^^wpFs&qw-U0wNwVKuGBrv`qPx4O zHC#poVq49>?cxz$%eeG2px^AW19w#gsv#%W>)RoFJ$CSB#z^kW?a9t<@#oRXdW!pPB_C!7CLnNxy)H`X}Nt3cJ=(h4m zUhAYz*3VUFHuCD6k5r?JQ~O7sx;Vq_2DNAnubdyP;sPa5Z;i`po9z!5clIpt78Wa zkWAz4g>)Bc9_O+@u6yQ7ZWj`*jTKaX#Om`f8Gz%hF!QN7Kh%#=TlwqMoC_pw1wGK9 zp;LOyd)~>6n*EGd)k8|oc-5E^W55ZJl}hy6ThHcBXVl(z1;{>037|i}sB!hTi@{{7 zo3a@VwF#BpN~F8xV99v(W6`7Opv9#JWn2zLo~qMaGN!HaVw-jsVwnw5-@L0*AiD$I z9A*{~+wXd-0XK@16qFgELe>DhIo{A=G3E!vKSQ*Cf#yVAI%E+M+rc>3CdmFi1i!B= z5WIPwB-d6HC zyKd{@gJ45ckzE*aFWI=1`cuSqM6t28UZ_0+tqPXIuOG#)YDf7%X&eN5>JF=39%st1 z`e-IUd$R<20-u!G{3=1kQw^ETSBW6EcXah@?=n`pSL;S2o>hJ4MAs2mBPkB3`R9-axTir0+GVrBiR#q_X7gzUABdm^O_U9S_3t7;Z(A|bu znUym6Y0R@9pJjM%0Asbb3q07lpw}S_JSehL0&uX*k)84$x(82;{sd!HPlw*bXP!P0lr4NsSHo>g)Wzrn40j?VG@9g`>uD?Kj?5M1XQLvR!$Ny6; zhOqIVz<-+_om#T8qUF0@Dc=O`-Xc)oCbo~ilZ+uG-_j!&v8YHEfw@msU` z-}}V|2$)Np`u<-fJa=_Tj+OPKi5{yfyO?|soWlA(Bym@N%BZZrBpt4G7=zU;oNbfB zCVW?rDsu1wSoqoNFDV+AStMSBh1Tx@^aT@W@KFJcdzXPXm9wyR`U_+N1>W;b925S1 z1sJQ=zy|Hx8TZjVz_I=kOe+0 z;0^{EGy7wGL~|6|vZLbsqyT2RRfL-d=wNHVIxcqB0V|LX9`k1p@3xsjPr1w}0a5*A z>uhBzm$Z2N(J6Ev|Cde|rAR*kiaNb!+@0KV$&IxxfEjXRiO1mGr zRt}HT16YCN(zM2oIx)ew^O#8{&9t$PZ2_N`0qwJa@cln_=?&pf{$s#e`PPvAS&c53 zm0q!Hd(}eTy4B~wfTwBq>Vwm{5_ij!qKB)lom4!GQmkQ$HFz=a#yn7&lbiQM!+Bg~ z`Dp1_v;Rmsp-COcR#Uq~h7T$~(;p9l*%;j_)bme@-CWrNc$2^ zr(UYkjx*rBZ&H#j$Q~8Ib^4f?KpP+4z=-mLd$!36l)K7IvMg-7E$VcA2r8XsXutMu zTF){|nc~!{M|efUQSXHRdPyAC)S5cPS%n$qdfZ__9BBBUk1*xj?V60gbr?0I{C&Mt`P2yt^Hji=|aI^>#- z4CC^k-?cI68zg;=NLI6TRd)V`H239^a&NiL@sf^N_hL>=kdD@vrCVWkM3l+xE6C(Q zvt@$aD&4o%9`?o4WQQV)1xSP}n=BYDwsb762Xhi~Ll_({PVQeKPIbQA&5{~P+H0e6 zv4>t8EM$$q73rK5WFTFq3f}!W_vamADXyfK(obIO%#a5=vuwzI76T|@6 zgaLY%6ZYk|fmj0L0|!5{c~PEa6S|I=b!ou0GyBZ7bD;a<#Tc)gR<_4DW}b;lPHO0? zVR=@Axu8a~xx50a=(#OKb%W2ugQL8KUJrZ!w@w)2oJUS8;%H)z_XAzl#p{vS*X^g} zkTlt+kb>*Tsh`k3jnU|*?7Ba}J4XZnBtw}GT;NT12EBm zA^FnV_T;+Fg+HMuk6@O+YgM#%!Ib~g=H5dckw*a1g`}oGaGY1p0kj}ka%B{EMq z0OaFOa*rWvIe(B#2{d}V4!s9dFrX5C$4u~H?~QwdTCb*S0Oakj0KFn!u0GwS_RVW~ z)~k7;%7s8QzVD&IEHcTCr#pVl{>5E)<wGCIdbCOzg{}l~bf!($iBb$t!euCbM^3yLf=PPzAVdi!ft2Y> zuYgchTXD;)?y7sXCCxBdaY4dTsd0Uy6;FF;MPyEagKd9!=#t?i6<-WJhkQy#NfbWlCvL-^yfJ2S*7bqQxVEZAH2yN2hImO_u z4=uKv2~=T_wW2NMGBAKr6$_x6$UqHc5`Aw02WY0o@z%+}cJl;q{QV#4;I3D?#_`5k zS1Reez|`9SRK8gEdwk4Zhqv*)ViVV*_;vIS0d8tP`Str|rQ!GW z`0ty%DOZFrV|!(&xCcbT&Usr>b=3pIgscq~W1-f^tIrd3{YDDBGL<|nZ*yWe*TlBu zqux4KvfYf~ISSoJ#BuT`ef0VQ(5;(y?bRD>zS-H53Fr`#AW-E=bwTgRye|Z#h_i{) zSW_+~2j=Ptv`_nZU^{35cmYr0`@;k`-)mLCnGei4B#o^@=>KkUp1%>W6dIlly!6oh ztO?5Hyu~~bLh%_bkLtnU&pYsITbdgrz3|6q1qZX)fQr~WqCGZJ>}#>lAEr!HUKB&) zKJR&I)b|MBYnmr*P>?@YAYnms+eP=+p6*!?Ag{od{f+g5ly=}p2M$b{FW!O zPS0W1p|T1hX=atz9J3%eV`bl=enTpGKy3Aqu_)9IfeW zxArQzdl1k$+abL?hqb>zUIW{~sgQ~}TpR2;%L2ae7id=0_u3kG$CH50njpIiwL>07 zv2{o`<4gb>y!GMzUiQg7{E~7hr4wNcy2m8*-Zk`p){gLD86b9^b?-DXg&X$0o)=H8 z_X?IcT%({ZCRp)I<+wmnTS!DIjo#ENO>4@HCqH=!abF}eO`$AF`=YejCOmmreY@wh zj}`U$7bs!^?Po=>FeD?)>6thl*#?y2L5CR0LaMNY?1wigSvQF9MtQdKXKW?gBW59G zg_%;*l+RwxOAL+H@-EcZ-&B*zO3!wDA)5YU=h=tnI&S7&&3s)h3~YsuHcY)K zdwqCCd{Q}d`_`CGMVrV<%jZDQdHN5^&BR-YJIuz{_``@?9K4YVvbaH zbZoNN9?tG!Yh9>aey)|r@6`x)Tw`-TbI2)h;SFAI~1X9joN-Fpe>xm@8k`_EB+Y>bbr~4 zCSnmDC|PBI0niMn7y8LuFTTr_KD#;5@}Y<_mUaw?hkqDZ4dID}S<{44V#hS5Qtc{jgVNj7K(o(?i5?su#lz8~Go%cUR#A9%a;g zu<<!7w>+(FXO`jO5x!Z+_ zE$fkwpBb%L9wF}ywvOkHY2cS01C|w+nQ?*}$s3$10i7YhGpTVDMP&ZR1-lJoRur(d z@Zj140V@i?c>r@}Ied@lT;pL3en}3nwm|Ew0n^KWQ-^*>aMPL`Ob>K;JYX)M?6avX z`jwygkST@KxRO?gQ;jEQovF-GBfU8Fu}#ZKL({=#197+~XOA^b!B;PFsoQX-Psn+t zU{fE}vN)wNiqRgO6(C+$r`1_uNP0T**{^J|-c*%4T{%W*TUB1fjok({jDzXj^o(?yNLda zHb!`kqF6G7CqH9EUEcZ3-X(B6j3vK4SH-dVc~L5jcOm~gRjJQo&(y2Q5YBWi9x@Yedx)Hf#p^<<Q(Vpe^0Jjyuv~}LaBf}a^n{H=UCQbR|xr*7h%@!~nSg4E7ytIC}aUQO{9y$D!w7D~AF2%5RhSyML2 zA8GMVWm!hF7=XSu^(bx zkc$XpU9C@HTK~5L*%;l+#5YMau0>|N?345xF@bMR5SfVTW8Oha^hxB}0YX%%*?y#y; zvPE(vjh94oz%^uuMSVks>Wc>qCNo{Z{cKs|M_XnxVV`qHVmV5!))_r+=+_C}+t+nb zEi0Va(@%T-H;=Br&^PUGP2}m*PsajwvgXQMri!!Zqxt$Eu6IePO6t8;c)a)cyLEq_ zFS33lRe%Q1aZ4ZC-MoDJ(sP%2qzv|{5v7h{pjN3L{<+}?-9JsygTWfxO;#4_H}$(FY|SJQwsr+Fz9oHE1! zcc5X3OT_>FrKUf{xhjkwyRE`>{~3k0hE=b8ctQ)`xvf@jUeDSAAeN{SP~r{k1mOa|#L&83AZO?rU-D!?DA z*(pN^@P~2&{Gr}1$Qc9vQ2+TuU<9DM?55>J&v=@jmW#U8ysCP!TAUk|(dUeca44x; z8?1|ba`a(N5%+Z;dVvK9SOh*6{$!1YbGrxl7bi>@nO>3aVohBF(IW!ZA2Z6D34G8F z1+`zGLO}pUO0O*5j|wBb?brh2FH%{Qsr+tw8)w*>xfuh^&S;^Q1QZUC8jYiRnSgpf zKL_fBqxXjHGMB{y99@jk%P-uhYc6f-zXlj0Ibte^l|y<6-^`9+`$aady!Tvu`6mu= zvDKBY?qSHXDCcocQfbEcS)MQM!c2$67{r*LSG_?GyieCW(TjVMlEW`jb4OcGDedKN zH%g+Ed}w%QP(|hcBxM`Wx?8L*JKt*wT)p{0_|1412*mpi=#$X40OUepMNR7^rs2O z3G%&T-hr6YKQmtv(34?N9IIgyPHlMSM$M3;g|Baf!LYRJgH4?ev8bm(_gNc(ROL*u zCdrJ8(2IM*b*u1abA+>7rU4&)=lEn)@JH>{4!q zIfx8IWW4ijw@;CaCX1DdYrH(X%APfswx#{mCD84I3}VL$5W``{`R@lAo-~&=uYWhk zX`at@Y6@Z;Ti@F+5))Wx5$wxx%YuhiV^U6%*M5N#LfaOha{&q$0T^(w$)V+G{uuh1 z1!SqcA3N33x8G@6FEaRgMM7C<&Txh~OQvQ--|_-$4@ihC8^j(0^hE=*9M>emUIN{c zxfy7#N%VR{DT9G6wgUA13-DWxY(a&Xtts%b?+Y?jU zWXSJiSbPfve(2GkJy9oe7EcDlxBIARXk6@&!8)G>ern16|%2^68z59auPECsem`N*Xqi#exnM2k)q=T2ySC9N8TwR_u6ReshSL|@mMl`!CV zR+w`=c0NdEL(HGyRbNIO^&)0;o=&2WUN^)Sy;gJ-iY!_?K%o=Oo*ieQ2+BF3MLYBY zl`>bZC@DInodW=;nyWxp2b-85dRdo5ARV zubV?UmM@LD=XYTyWwmdAURZm5^kC`Qi7&g)&un_Km!9083nSvrFnoz6p8f*C+yJc# zl*91J^rJ=ufI&Q7T(@yPbV8M&6T2`%19yE^!ti%VRfv|^nJRY7)KRf)EU5Z{N_0ZR z-m`wuyrKAS-ocE8q?AxshXm^9R*9hq_xT0Jr)$Ya&k6}f!YQSsIJVG*BFYWftEj`U z1^-LKM(dO6Up+kfqdnTfX`Ub5Wl3M-uHJkaXHebknJXwR!S}CiB&fb7SmvqT zK!&&29>`ccccA6Yn2#l|y8Il0#4(9J$ghK=)nop1HjliKhKBN?*<4Q6vjo@4S9^l) zp1XV$>z8x)y9~fA?GZ3SHiXsM`J~HymOIR6a?}h^fr-B>AZW zfr!vEWx*`K+Y;O(^>QIZy%ls2XLPo}_C>JHID zdZuRT(ym*o#cbKO@>)sKSZipKl`(V;c)5`-_+$dv_jV$spq zx+ol*QL%Rf`-!0c3(x9nSv&gZukJJ4r$!bx4NJt^ePYhcx+&Tw`HcI0p~^MRgA5^Q zBY;8RQ#RxZ*SxwH8 zLC~)-S%k@7pnE?Hplm!aGi>hY0Qgi(_Evl5le|-F28~7KRstVH8g6)$_ew!Jd_Rd{ z%&-OG4)}NoDekF9PK8R*@g-9%MU*P8bbF1n!jWG@ZQEW!&*1-|HeBc$?)pJiBJnn&KV0ZGMV6126ZJM?L-D(U?QHBW zF-0w9aJbM75k}U$X;P5#U?6v-%gtL>RvGZwb^{FyxCf96`#akWK)~rfjcmbG ziW&>tl?R5rE!8PnNC)N|a4PoZ8H@-C?vx$g{qveTuBmZ3X7cPNP+a&UP+VW*cS-I) z?_Ga$qFtqL^DcVWSeHq&pICl~9L!?=#8N_Ze;@HeL?s(Wr zVZj`Ejig_+w2e#0Z66D*pC~j1@CLVt8$}Nf-vFs!_yy`u7$?NdKP&D73-gq0_J7T9 z|FIn^J$5tqkFRA^HFC6@fF`)_2*PA`l^@-gW3FK<o({JaAQSIvSFfZ`SSP0 zaHF^T_Y_{+hIyjeHRr9jt;4%k>jSA)7U5y_yXMwzu~%)d$p;EItqD zHEw)2+L5>_`gQgZ;@h=lKA(B*V)BB3em4641L0_&-n^{M5@SE%YVpap$se+&ZMhJi zsw(X?nJL!72Ch(1o(4z0j36=~$UJmKlWSxB7v@4tg~kd+Z@v;dRm|In%K6GfGv?GT zs(PcxmF443^i$7USs~iP?-fB$QSEIS44Y6!0za164D0Uv#f!Zuezfv7_RGUsVL`1y zJ>feM@$bI|$#lMZty#2c&*h>|>L-QImWH6oOi=MD0N}YsxF`jCn{JFL_MypGW<~T| zOK~eh+>e_qeFBf3$+~cEFiTq`g5v@O$jIz*FRfiRCN;u@WWlF$u*Q4wmCg$(W>=c+ ztek0k^Aki2+Z|bMI$2o=^n2R~$8%7rEUJejyM1ytEp>M^6N$qB-(8#y4 zT_^Fci}3NPROHzo5Npv!Hra1grWJUP&G-iHy}xx4ggH6O8GT+vf#S!Vsp$tF8~I{C z-lVxx^C9Sh^p*P?>f&kreGFLAeSI&sweLsTs)A!dVh@oNVO+Q#N8;Ubo-He`yi=d_ ziiv179UYy+!Gt;Fl8bKm49vdp`iC=#T75A2CJi_4OCEE}K0AOJq;U#(%9#7k{S|5| z2|4kC{SuIog&Gx#4;BD&i_2>x2xuTME7<}%Yq{BH#GJ(75Je+Y8@f=q*DAb4Zw?7=Dr=U_AO{q&Fw9uou z3Dof8m(Oo2z!iztTp(t7=2DNs0^!qVBOAh% z!DnxGrQ$vmT9#kki{v;b!JfDrcULwk|I3%O<=*LU@v?Dx+VoOizSU!DHY#1a5+3tZ z*tt%+t3t|*24DMX%}pTilS0C_Jcl-f9eVZ(dYtHqmeXN|=+cIquO^dC-%RGhj@(9j z@VAK23c%k_N|S9EQU*J+2HUbvT~C|M-MUrhAnN{2P0sU>3Q=q z%HNqhV6Hh{wJPDh)k21f)gSxSp4@o{nw7QauzbC>W$;wn0c{nP^rU?xKi`7qdHmS7 zN`LWf_ZnCe?7UY^7XU0oyy-mEODZoA#c6Qh4!H+Sr%)@nE2YjtQ&#tq)Rtk~#J_K4 z0Qe4ti`&(Z<}A!8Evbzl49Poc@|JIHclicy@@L+8qNhA+ffhwS9Wi{ok@(3uIqRju z=gpevS|r;DN_a^fuCo{)+TOtJZzXT#+X?twWRv+3o45o#w7kqvq)<@Iy(AAPmJC`a%L&Yp&$@SZJ;CEmxw!6kIuQoAoBLRwGfe zh0x`wX59Eg_)t|Qca_ro-hGa{XSMpa;|Uu%KUkKS)i|)~EX}Jjp$iUqsIdnnBVYY| zGg`d`TRQstxIXr+@G@|C&YC`U;*X)eG-NaAah#f%IGXY}7O^h_(Zt?HH@24a9N)T+;BJorEx*_py5i`m8Z?!Oj+;Mf>BZxtZ94nrr;x``Gw(x*AU}%C8Na)uLSi-;!N<UNB@H~IxpSEB&(cTn5KN!=(PA8TaTgdqJ<5Fi3$C#yR zvy}6I%3jorT{9y2DMILxXn;SoNb}&1?6oZ@@d_%sB*Tlo8L-7nJvqKXAun~AW{R)u znSrcx+~vDlscr?$+HHLK?%6qZ#~y~1KaMLzOQCP;O)bV_ZO;D!5oPz%v55wcyOB_MeB%2!XA183BPu9pUxy2K9WSxpxIe&pXqMeH26N30j z$)@kX?UmoPIsLmN+bxh2WVq0uS*f}VlUnS}%6IiKdvAQ;%|&4LD~)J!`EUY%Ul~4G z_0`9+e9oyQ4MF}s*{8U6_7OBipHi-uzj-?sVLn%z;J^T?Jh{s>rTO{vXErqE7& z;SZXV&hzkFEKB_5{&pdjC0@$5n_DNFA)9{wOE8dE!~&ss67o*)oFvJos>t2&6-Zsw z+_aOj6aQ56;>|^iKK0jaB#kV(^QHqB@*a8Aq_zCD5=qsfwI>5@OZhi~q}#}XJG3@c z__aho)`j?P`&XbUzfbA_seUlsh?h9sVTUI#7X6jH7Njq~oaI(gWt`vcYw#{2XEf9* zqGcBTczVRFD~((d4n7t0{Dc)=7>&yDk3MRfB zx4BPbbfk@`%P2MLl~oKMOy%yr64I2`ZgVLFA8!onjyii-3B*O9 zjMQBPobEHLibm3Ekv^pECsKQ&rT0v=^0}{26l$`mcf=h`JM(UsqHX5+g}m*)Y20OC z!{|8wOs(eSXh^43bk(t}Na-W`lH_ms*#>Z8;~rmC5h*_be07;_D$uNEYi(>wc7;bo z>gFU0!b^%2QkPcP4>|Bd%D0XcaTgCDaY9Zj^xMi`<_4pkR=_2`0kOwG08cxiZz){z z>_^|s(uVR~m(X$8k#}}4U?hedLe>0$xI4>VAghC{R7tss6Y%f4#qeEt7qIl+cKial z4g6rqQcq%UvRiALTPI0s4db$NS3l zZwX!UWo-Fh< z;-g-%LOjkaV9xsVmHb~Qpzoc9loIEocB@`-(j^E5w5`2`{OmZv%h;t{RZeqNcD2=! zbn|6Pk7PJU>Ds|j@10}BE*JTCb~@5ZPQX2c&EAeOs;v1NmC?ftufeV<19V7+P;Dk^r=z+orkj!B zS6$;~R3_e9Hx4Hz00u?k5S&FuK{(N7zQ%*0gdYC4s}sc1%4+r?Tpz>u2L;+F_w0 zawtOi;kyY&6~2zfw--c-mLMRARg`ig697gL=4XW}U659sPcgU-YrEs8I8tGB^9zoD zlJRSK=gJFMPq-?PvP#SS4)t-;wa8f9FZ`}@gC|McWRYg|-vgGT{iP;O<{epdKH6vvh#iMvaU4OCn=>6$L%?hshx z{I|t!dbpUy;PnM32}lIkuJ9Iz!vW2^lx)!_yy{2lXBv74HDno%-6DKHLY`dT@{>S+ z+C+*#OS@!gf$wo1Ks!%r@GrFU{(b@Itv?i1Z{EM?8%3~%%NC;Sqtj4*-=BEpXa>rb zK$$wrQ9ZSZnPkOnj7YXxMVFqMvK1qCT3DX8M7zIkN;$^~Ag?L{nO{(ltJrv>P9Z;q zMSm5`TI9_AiL21}v~`w_9=sSdLn<49tjO0XpXzf2O>x|l)R%ttF~8epLB_-PB#wG;dVt`&4@a8VEt0&q$OfEB`?;}VfqZp|Hl0pW)0 z7wC=#Rvk`w1HS^D3;6|F%=6`$A;&|Tq5U!%rwOO6fZc2YxvqjH!(+_=Pd2y{5L=G= zYvtRJ1#!m{s=u_IQ0m_gEy6mUkmUih_6w94+Exnfk0}BmpYH)EgHQ1>yAbR6B$@8;dq*XAcCiL_qVS!*3<7bM-gf{N*082Cttcf&v zyuYp4{Hy>O&@|VgeB|pha$mBRW2#exD_u8^>9$R_zt5IKXeewFDG#V4?G}r082Voz zT0`7LxHdi_l3><&mX^RG13DmzHp8C)7vWjskIcpsd*_1b2~5p^9_K(^TJIMq;1e*1 zxrfx??MGIQjqjj#6vTwEobX?uyK0NCu z4z{DQfY=;^gHLrF?cnK-Wi2?eJmzB>U&hRI?TDaS*nA%pMb=^>Z1Ald9U3S$Toouj zdV57J9o@~?$S!}+Ji4tc*6}k;;_BNd>l(48EJ7jdOP!9DC0b$O1pBrZlspn7^~O}K zbf437K3e&dY`;Yk?X*es!8|h+J*mnRGS(NeX_LPBz?yPtv<9w$dGER2B zO7ZK-DZB0VC|b^?Ij%@Pp(b@sqwi$+WOJt{Uv(-4s)(F(Yw%q6*IHr+VO<+*G~Ryh zw_kqq=)uc7$2yvUfmsY7A3YX6wa@U|`_&$@g+lH(dq<;3b$?3D@DNnT0c9V6t~d;s z!+*2@Z}jx-FVK%*VD;2NS54ihoW)x8(k|o>FUiRFLcrKE?Lon}Gu*3-uCKn%ZD#9Az4yJ<{d%*|HyoqA z78EnRowHkB^Uw@#hJ@DP$`MeuP!hjWZPCh;xg2^~h zxbAPyZtbM$H^7EFNTdbRh9TXeu0X%K84so1qQy31~8B83a0G#ur|=P=XNgp4%dYK z(1D5yq4U;604&d3XkQqCef6=J(Fb4?dsG8!j|@Aw z2FA37o&q3|gl9k??=-YO4FPPvy8!;5-vXhk9|$6%K85_y*s+73P*?QfP>{BSyU;>W z$Qm%;;C&`{qb#7YfXd&E4FQdH{n40}@&do4w25qqonwyir13_BMjGv;MQ9>J5wT2y z^htQw=+m8m93|%P+-Iq=Hl24Tk1EZQCfJGQir7p8!l6xNCxhF)2`x0pwP_@H|B4sY zDS8FSpOkaT3p`-oA`w155^g^2yNT^7oIIsN#T7+V%m{6s4EnBrr6RvZoWyGK`uH6K ze&V#%PO0cyf`Hb{>mOOLg6&UqX+?SaDtLt7Ey!vbHid8;3T(~7zJjOQzGgazaVI>Y zPUs#0@(ILR0*Y1Ihnpk5WFvMSz@D8046Fx_>ofohjsjpM9XhEnZNwPPyn$3yhV-2d zA*q320KmT-{nX#E$ovH1(4r0i@R}cBJr^Bui|ha&Eg0Tr*C`m!ovSblF-hn{(T6Ps zW7D36bis@r8BaHGmm)Fjou zHg^6?^~>^GfL&c+G<342PMn=Bfc~LBZNBp2jEMJxNLSXTTrM*Ik3zS1m7i3sD%R2Z zLP7{;D6kOy_pu86*fI1wL`p2~02^XN_b9_!N31Q*cZ?lRv}^i#{px*GkY5d`nU z7tkLI+3(WSO1~WHo%U&=Bu--l?Ev?uEvC8lux`MhFg5^LRzbrC_-vs}q_hD3ab+`- zc->SQEsOYKw;^TNX#Mj3`E-MsdcC57D9^SpaHZ;x&`w0E-c59~;D0r_gv>4%zy z!q~Dr;#JmU^%D5`x&7N%eD`+3F}dm^Sr@xK;s{G(S+XP8iwkMY-y29r0tB!hZ}G%S zi2wLb7e4cNE=Gn;`8XiO_jVEW?E-1V7a=+O7$B`Rn{qI=ukEBSy22>R(X968c7Kec zUDdJfhr>%UKF={cDB5+cEDdr>{nH6CKKVDSYS9BGj~%+a9W>P~Gi(z)+IRaXssZbX zywC7MYU-v0DvLc_jmyWq7bj&VLc)4QZ`|Q$8z^gw*KCVR_;?@EeA?N%0x+>81w$aJ zg!t6P--7I<^C7{n53s}EZaUc`yusTMPQmDG%p3NW8<<0y%Qw7TmE=-g|9=znZS#IivjRB)me&M3_vU}-P;AL}J)=eHP8UE+og7VnXMCf5E z?8OEImW(w zzyrs>dyxCb0}7z6Z~q@>?-|$B7o`hFQ9%%*RH;Ehkq**pM5GG=l-^W&myWau2q;y$ zA`ofPL3$H{^xh#zC-k0B1BCb<|7GsX-1#u~{qf->J7*uxN%q>SJ?mK*KzpXVLBszR zuzVe|*3($VfC*C?Cj?j;NG1Lysn5>R{#=O~aa@2Y{C*%!gm#aC3h`(O5;a}JA_frS zTwhP1pIHV03)w0R-L-@jdn@wG99iblsQ9wB(k+$POulQkxN9w?B}Ybri}$uFAIDtM zsO@i1rC7`PIoWzfL2a;;IIV;cZ z^Tc-nSsR<_$s|pJ++v)JruGry^%r(HqT2QkDfZ*SguQE`^k!^l;B9O(OxqT{uQ}=z z`Q{^?V_~!e&60M9PVt8{PKQ#QU`c1W-+iEsH&L6}(Jy!$ibd=KeTS{LlFVfZJSF>v z@!$y-~6jLq!Y%IRRU)_Bqhe_I@ zX4h?^wEs>2FaG9z1zc86-++4zg}qN=W~zV5)FcUj=q%R{g5Oc^!_K)W5|;1Xo8^U4 z_TV*%N&}@80Nn)a&Ea`&;2l5*<_ADlm1Q|u0jVQvGdo#?;tC|fE~;Pzf3-hC2Vb7jO6doW{K|Wn-9k%$=KO|f@9>5!iu`6`8KXlHp~9|` z{@15D(h5rIa=G?f&IeK*HvrZAs1~YF)KuBPjL=uxE+Ya=zfb<1K>7cK-ixyyg071h zrL;2;;{GX#iuQ24d%Of2^+P;le4R1f_xbManMYf!GCrj1En*SH41&WA1k#n3f-hAm z(rg5VlzGDYwJ0Qpg`dFH7_xWynLfc2~& zyh=r2NS`LWp9khK0Q3HxW{`pZ35X}m5ddg9cOY@(e@tMdV}QnD4Gk_DBD~B!&Z*wP zxOL3qz<)l1o!^HaV2LLlzy*m2W1?$GIOx*r;F4+m$)!oBwGG%g7w|FJ^f26(r4+M< zM!l0|SCBagK9X1*ceu@%Cc7!*>}BN^SSK_(tHNB7&K-X%Bwv2Epc3xJ@9e{K_C>v} z2740bbU6Ejbu8od0cag3WdZ4mDJ}N)xQo$wzKB6?b~;#;QO{V`EzpVX8_uXZO9BDS z2b=Jaz@Ly$rFK9*!2~9%miQ}qTNZaV*5@KK{S&cI(R2o0F%{)sQp%BEv`+VyBB;UI z2hXprL(lyUb$^4ra<}-0Q2D#D{!@#Vw4HL=4-JC`!8pL9xkJuPsI4J{m<||V)W#0V zkd)FTjco7#syq?JLrYD)11|V^KiCZR@~~s?o-g9i7tEEUPvi?tb*0?@~nZM~p z{G71m^-KaA@_NI8BSyx&ZN6bQWcSbXgtK~jHC9qS0uh$Kxihe(Z%2S!E12b|<%2We zhcecX2oR|inbtw%8XzH_=81(y<$yQSt$EK;1}^l=KJp*b9#|-*g$0a*=i%jW-%>nt zebKy+CucV4-p$zQIXYezDlX186XG#n;&MR{0JO^5{q zqEtEjN?~=-;UiK+AdjBq_h59U>R-{Hw-qfnHM+DcjW)1~q>jF?Jb-#dM5`&3a?PWX zqE$9&RF+0U z!NLxsEnhKTy5sfA=rsbJSuk>)d}$uf`ezgC(g_>q@`@o4g9*y%9&0BLMRDT`yKuDn z(%?TQJonem^#-i>*S|r_;cKRFH#X-eQ;JS};Ey+eR}OxUJS7czmp=!^F+or7CMp1z zNI)`3v&j7heSk*)20<=)zk}~2>izv+AP1sR`llCz_!uc%7}l+&CV&{5R%r-}qE)FZ ztQ{L%Nb_XB(z4*>SxK6eu6C1H+r{W5riwJtxi!`V zC62t_uXAOV!0q?DZD9`D5crVCIU;!EpGN=^6K(Fcdm4(AwkeR*7@j6UK_|u_yfl_i zc`xRWtJE60`_GpV9oGKbF-OAq7#2>rQ;hlZwg|2G6wC!G~P#b-1#n9T} z8e0=+X|8^wP;u=icH+KwahdoRZ-oDo*0zD(AE^B>^wC1^`5g5D2^kkvX9KE#!mmP_s<(5T;_ z8u)$Rr@>byNRF08e1?bA+|Z@dhw%0!%-%(mDD;dA-5>zzP#VIVoTCpfv`(YUGy~%P zMYLQ(`P~`Ym6iZV!|h+SJBl2o^qkH5sJ-KhiqULlIn}lyQ~|{r3%MRd`By z9j6p-Q)o}=u=~0g*Gjmd5*p?Y6!lfyP^rKRs^1gn}Q0deH^@VN#gR?`W;dy&82NVi;ib}M58!QwdI3L*7_EZSSMJaL;gRPJt$ zeHGH+`+^Ql6W{DVKk+fUpwAGyU&Ogr;BU~4B{csz3E(B1X;!UUn(c9~`iO(k_|K;tX72j` zf;@rEzfohY)r=ZXpJ%(PX;;Ih_Tz)b6>M+wjMR=}@sZYsv3QSd=cnz~?jAmH#yR9% z%#Lyj*yA-v$7+7ah?DHiuMwS(;)HeS< zoe}F;saKDTaD-PP^uq<>c#?**?WwpHpP1^pyd`-#@5M~tL?MuKy;XtE-sd;yr$B~Q zcjX0aWbiV)s~r$rQy|=zk>fo%xX5pIKm&#YUO+eP(io=HAS;7G3k&8>pvzFH|~KodS~z=0q z1u~mj-6a;jacqXyl?DKA!G+(TNH-i1pK^knnK+uJs}X<_*FS}-HY|*0+J5W*E+XQz ztw_InOM77~&=GKazG$g)j_G^cxn48#C@|fSim&pqe z99*guZG)EIhf!sLHLvZhW;V$))aA_{%0voPsWB2*an2rvTXbhp)fra=jRoMmLva+> ze0)+79c39YQCxQ9rX5wUOI%%Hu8GK&Eu1okP7U;lU7ZyGQ&G@Z$DV6Mo$Xty1WnAH|B^tgw}&^39wo2q0U+=HeFE_h+sQZ%)^@_e+_>hR z;@5UPgXuS@IRWk+P}LvaT7W$;V$>|!Q0qF=f%ve2UMngt$l;^>4s<kgb756q7rK0+!)nYkJdPn28OatzR2d^3ll|*S+_6!6+lc<&_OcE5o z=hS6Ka{Xg1Ke%jT<;^4s$ves(iK`%++{pZ>#?bZk?aTs7NY|6!RrL?f?N5P=cV~0m zotTyYwvoG+;N?J94Q}->6=fRv9z5o#_c<}8TR&w!ja_70oOSR6xfZnpN{y*gf^`Mz z_8|D;>yJB2NJc+d2IyN6`o%Hxv0}bb2VM_@$~PWgNS6EC)zP@XyVxeH>6ofcXP7s2Ay-WA((hGJBEalWQU|!-n9Py zj;%NBNzbJwl*je=deBkLr=>r28QM|?ceH@Gi6Jynn4h?Pp;*iyxOHkT(#hk?7pc#( zbL??sM|E))Dzg0)>-Zrtwij2;Yl*%M@j3!+5T&(&+2m9uB|J*o?n>z@_>i7y{ZrT1UkC2V1_e>RKh!p$=U~e%VdQcBbkJ0D6T&v8ao{J@}#g z1kU*{av-49ZKB^D;qQKQ7{8CI*e>B-X-PqC=L$ip}`XYxtnWHkrj`N0WXcv{gapu^px1KUAnUSW#7%wSqw??VGQCBgb9a52fb7 z6yuF4=dp**?Y@>+x)5P7?MAEr4_4*L<@Y&c-Dd(?xRkZ*Qw#K9eD{6Kr-Dz0Uy%J~ z2TDCDKlIL=3T@HFT;nCxj~(|Mmd^JTQbXlt1MzUf?OgW832$k~kEk{ci6lzt0q!Ih zqpEsa5BpLh{n21F@w?ndoqEbs6?JZiQ!n4-m|1aa-g+qnHk` z#&a5kO>n{=f^iyuNF(K@o%?`b6z$8SaI-!LCKabf2(F$7f;^-=ty|Q{PtZjPO!5V> zBT|S!{ntbR`2V@og9>nwHo-g(Csd%X?y|I%R}x#iI(93|WjJ&ovkuFcHPU0JIBs%A z2rHM(v5Y6gC5GD^&MKc=87p!Fyhl!jp+w~qS?-Hk55{|#(pHJ7#VZ214T8ztuFBrcbZpPqkcW*{SIJSXZwXe?~ zbU8PTil>#FCctgo?Cm`G=+_T9v9>+xjSAap?6gQp%uDwMOD-T@==H2;*#hJf%JKEe z{&@btcFf0qmo0kjpgBmLbR)3wv4jE!XQ7A&Y;R|5sls z`v1k3!j*Oqc(Brhdkl}TEZ<)FtM4*Et9l-@Q@#mrc3Pr*uT-tzb7(6k|0U7!^f&0~ zA+xv$$$qiNIdWn0TnwG9)H#3MPh?45`pu{z&`Hw)w4-Yh55|!NA|BXH>xa$O8*p%($ovM|f+wN*E zFua;dld`$glx|=1Y^XSZ6{oQ(FjzqL1|H6sU|}H}78&qlg4Vj(*9S;n3|0&$!T-~8 zF8bdt@E1TZVXejNkhvN^h|{uy=;!>2VqPD7hg_F(JVjtK`((@1PNRbtDN1uqytB|I zJ5@8ThUyn-D?N>jx4OVvDV?`6qwoXU-?II4toMTDBlxo|@ ziYop{L<(QgJ#DcWT+Q)mQ)T=@$y;5IJJK+Vo$V`nOem{Mr4IgJ@bifFz0o736(pYB zkmKS?=7s%+f29;6%l}pK0r9_MHpfG||K2F=2S92bAPr?IrT&OMAi)Zm@F7+Hi5N$U z#lPh~)&_A%8F3)&YvToWRy%z^-&W7SX`aXCbLHv>dFKd+&Wrs!2y=8dv@c&V1Ruh%ifYv*yGB-aLi!C_Er!KA zSUcEk3?Q*SG47<+b7j5C?hr{77?LDFoQY69GFK#xi%JS}f6zjyW$S<>{|%Dg;Sb;M zg|vwL^0CyGF$h)5BX;?9APeW|VaV=(kgggaM|a03XvNQQMIY5nxjR=D`m z^#m zyy0f$ye@egW%3>Z5TS;)Vrrn(fY5me&C*ac9rFVjstXUZWsy28UTF5$?8ekUN~T(` zsKmR}H^Z@^#%D`8KKkLto9mc^zN=54vl#~cSRAeQ#hU)EtKdHUof- zEz{8Fzd=)aeTU_z9Xdq_#em0vLX!j5up<9N)BIFx9cr7)6O2<9hMkeLpAGN4oRJC9 zXo0uL16c{+96${mf8S+k$$bf3ygRIfZ+itOix_)~#lL4&{x$0l>*)k@>*Vuoksm6V ztUMkh*zMauKwhaT?DbirMrR%V7S6xO`%626S&T=Ns6CW)Ln^0?POWTjm!zdWf9=)L z?9fL+#1|G%?wh&0Z5ts_bK3On3y+J>cqsQ~`WJjQ&> zwCaZN9Yuiz9aQq1`jKoOE=m{$y)4UYZ2WY8Mvdjuz8V{?wYh@|d%6n1;)Y(N)SvnQ z_dQ?`6o!IuMrgC2NIGv=hvcid^%JU&b1!Od3r*5)Mhcz4b^k7jE5ROH8lhZN-?rPu z^SK2P05lICiX^6MXXt#lU3za~cc*FKEIJ38#?@LY81g}?qA#747s;e#ZECPoY4)KK_78$6t?Er4r_As!dRdztz1n*VAI8T(`N zYVn;FI=*SQlSg6B8uX}%MkeM5zW44Y&8L+0Yr8&6%56*|JivL8J?ZB?D!&or+K0us zZK@vN!ViR7U(FuF^GES^3{Ekh@h)HIHz!i8N;BS09mjB{lYCmxhy=w!3qepGuhPeW z;-HVF)ql_V47XHpup6yC-ARDFel@ll|8$J%gTr2yh4&!pw#Wc_kZk&=6l~W2v;BV( z1=YW{`TyU-@jn<>4VZJ|kt#@dvR9JWaKA$ni%sNv4I=*>3g}&K$us#?_my#0Y_!To z?^)J5rw2C=kU8(sRAj6d;BlZuuNN)FaIP z9RaX&i%g4`)dyC2F6M*~TFBpzY-y_b1uI+j*R9zP!}CJJkcT1$0geC>FXu71V1l6e zU(SuOlm)OW^F0tuB>~9b4~<)%)&MNjxs$SmMyK)wT14yo8AB0L^bg^5!Z`qdfpan; zX$UOxjLHPgDlVzJ4TvsI;lD2px0u5DF3#F75l2ajpx+2L6oNx#nd(gx$s#8E9E(g! z&ng(w%L?5Pd7H0))YfA&)JHWAe0y*U7(W=IKyV^P^7Jb zD%UEFU3Y)wA(w%@WP`wL!5oY4z}ngPKms(;zpW$tykhFdJr|h{gpU(PoFeE&S9{qh zDn2|sGBI{t%dx$BQ1riqCH}2F&;5T6OKicxc(&EsRXeKuv(b((U!KIAbR8bzFSvU< zUlpI{`2o3{ofbg(CdZw!477rLP#=Bhq(z;N%Kre@(tOp-2Yh2k|K_n(cXk$;!A>`a zF%Dgth0a5|MsjL} z{>Cx?Nx2~{?X3NGq3+21!@Sfw&5^nx5D4UcSmGM;FN_&XiF1dSHQn=b!o)vei#B=O z+m=+|%}>5k@OT*vtJI%KJuBT-2eUk|p;YYuSV79f*!sV(N zP2XNMdLQ{K}@|SaDH%GjKYFW_D z?Un~BPh^c>K3g`G)e2g8VHnVlB-$39ziD#}0XsOlH`@K$F4=L+Nf)N=+hY59Q;+4z z)Aj6ZBkCP`YGX32-({TI6$CgZtR)1}j03Dlzv7E|yxQyYX026xE5~jBR_ERm@2_N2 zVn6vq>aR3OCu?9r%2-7B{N!ksD@@u8cCQ-shwE9e7Sga@+JD;!0@YHx@4bZ(3nOpf z!hTlIT^dES8ln|wGc3I=>ghOd%~I0Feh%uGfB1m)&dO_>S~@&A@Oq3k>m<@MLXRfs?c36Q|u!)Y9qf;PMYIE8+C+?&apcH#(T zc{ZZ%CU{ zLFsW=sxe<#2HT*~>3r{3uZ{2cL5Uz}HOA+BaI%QPL;#_s=fp9SrHF`!1A$-mK$a!rNB`?E zL4qGQFbCEGIlckd=EK)DYR=mLszKY3-=H@!84CbJ=B%@rt?c-dV>E?XlijEcbqpM* zwzMP5s3J{=){8lR=-=ziv$o9Gbf`Yb+0A+uzsXHnIeVJvH{g}@JRwPl9Lu}Y^hH=7 ztJe}`uAFW^NTGpPVy zV8MChUYx=(Sz6LH09a8r>x6%wx#G{bW9gsquV%k$;ipHCy6Y9H&;xQnqae8n)WpY5 z5Q4wbuGz9!&&VLYwHUtF0}r8v9D6eUJ#0`@TT^wTx=e|*tozmjW5V+y?PksBG1N>1 zWXiNyG9^x^Z-=Mqav535H$%P6`48^*gZQyYsI3Y;{&uMmKYE?j}))oDe5TlyRgNRsc*`9m(7c^nb&7*q-&c8Go) zAi^Xk!F2#|=NV8V*L)j}OW~o-pN*7-V7x9!>%|Bl0EO8$`h7=sI}i_DH~=C&B~ic< zxe36^g!Qv?@qPX=VTaji7Q@o~HZ=y#_Kf$yh=LNEX_vYO`~kX0*2UgNi@G(%#!4P& zlI+pLudc5G?tk*RN`U0A4Y5?EZsuUp6~!d8!Xl!G`}u#u5na~pF%a99c0cf9P%tdm z&bar|sX*gh`I*btVAV3VBj5J=?=06@YQRg-0UT8)sKN_ya#gWJm6S~z6^RI$?bY_; zpNv29AF*0^Y3C${T`BzDHDF(oTF25LGniSdHl?IwRRyacR0gQ0r&(f^46#RzC21w> zo>QTpn$=%^=WcF$!4%UJN!+s(ye&s0q4_**sQ{>#>%xA=sZukosEc>+enB2K$RYy| zt>S^Dz70pgH|@U=Oj)k|Pq6`55<4!r&`-!;O>2~IA$Z5g94-kF?vj(zq04`z(hQ0> zO&(u*Uuh9tUztA^e*A@PEw5?XH*b@Lb$sZ4u3y_JcMxyZjQ)Kk#t-ae%w6<%$1!!<^=_ejbC&+v%T&*T~M5ByfonbN+~U> zRTA+dw_dz#Qt#QxcUR@Y}3Ipje`Hu zc{v+3r#aogEEL_S&h+7s^QBFv4SyYNXoJ|BX~LOsW6CzPP@AB0!b+I=Lh!A*IJDj8 z`*~ys?`Z;>kknR;@3em_w!gZQ_X5pWJMnx*D7dOzsC#WL-0;eLvI1-Arbl?n z)L2(}3oRhRf51G*2j4rc4j&50xrt9pXAQGS=byX~Ob^R()9rZnt(e?w!F8fzG`pDC z)6vfX7oTb4LxM9|2#tCXb%n0n=%e=SPJMZ=R{^JI!Er{nf?IoBkBl%}5HlF`K3czGPTcSScE8pcht z8t*E-^sSS1_BNYThQs1e^rHcPq3JJVp9+1Y6{9==Fyl9Gn(?IEoUWlQN#6d-vQ(PJ zY70OM`h$HAWqMM+eag|G!et@~Xt^5%h|hQ+Cp++#`0R#TM?QZxcw;(G$iap)5Di7) zIeqU^Vd;MZ@Nq+*=v5UxIuN36t<#N4*NRJ;4;O%t5Al%-iiOw z1fLUbOz@@IUc~1;Lj#WI+6qt)lciK1^U_xw&h@~K?szJv;+I{lf|u1YZB4x#7bS(F zPPw@7xNwzn&h7TO2R|7&0O-`8Wqb`-#swq0dP2KW=X5`jhg|DO+@(KSMq^}G)_TTl z+w2KH=`p!a<2yXoiu0iAGw^3||-T zA@8jcnnMKX>YUq^B6W6$W^uFH|Xv2}e zZRp&-2b7q!PQe02x_Qkbl$5CrI&bRgL`hd#29&(>I$Br=BBuH|nxi!lz55&Vo&)}D z8}e>`pVd2p(7?ZMh{YoJZZSolxBLd}Q%pd&J{57}wb-(x2Q{%ixI4~O8~k^wgT#BJ zEBFXxH@NavK7ITHl>=Q?_bMQ}nZO|aX63pmM}k2b%oOE}cSe($JLk<^3m@sP6;0ay z`Qhc13cXG$MIf80Dy`GX?a`nd^4MN&nq96H&7Pn;qJei0rFK83(~N9rD!OTfL1a?K7T zxfV|wH?6;z+D7O0j#s*>vLtI-L!O53Xi$v{52(nWE}djv`93T_e5??&Lgtx~K90g)gsX}gh10d);j}`gB;F$H9*Maxt$Ecjl56@#aKFWl!^piin z1+0EPvQG_}R>>76VK&F$%J$zN>CyeHUnM_nj=APKU*=7#S?3uT&HU<)!Wb)-vn>QY z%)a>sM4-`%Vf*23uFk71@Ef#9h0(hpWq|y>a3`8ZN)M2Yi36SR7LEm=faeg3rvuOz zZ6n8t@Xr_95|e+%OaIUK@D7mt5IUbcot(!h_)!7sAplS-f2#*yRpbESn9o!22lqnB z+)Y4LV$A-?5o}6_V0}{N78%hpN2?NN#D9H5?R6N}(Bu<(SQ%N0Q}#{~Vvf)1ScXUi z<5W}B6(vk=ZH-7V7z?uQRn$uO|Gf39XicI}O{t zJRS^SY$En=jv%)p;OjcuD~KzNFeyeXThG>r_}`e?MvT(CfjYP2tuZ#$z&hd>i7-rz zGeGDg?((VhRh>B&+Pu*^bR6?}+aJtuMUxr?Y9{(#dgHJ~V=Rz`PVDR#d=5I$m{Yda z*tPKo1$MfxKztvgCU%WxR2VR)i#rRFZVf z=`2C^<9|R9z4fBAVI+71+{>kJq$y6d72Z(og!mBK_v!6}Bi`BXd}m{dJ%=uKS#tOa z=gfE^i=|yGF=qti;-E*#zYv!H0RR4j0bcpxh;D>7H{HbYM|v24A!q2Z?`C@z%-7C- z_vrM~;-jD4FF?gMBOV2csa{S$%lh%mn3602-4ez^KjP8Jk5y zn?D&I0~{|0hx(=zHjd3T`5H^8Bfo z{9rCr$lq>wL+RC>JM{g6>0cI|BUrdGV}ifhU6WJ%{CKO@`EL4fTL`fHYCbH=QGF;K zX{8p@AtqX9ISbbn{b7wYg)!Jn)IYC(IHgA3GDAPIblz;hgOroUijs&ab0lm_c)@NzF+r0lO{QS=X-{GDNAKsv^1qf^Jvy-fnj{JL zJRelWn6-b9rq435)mks~Vy_{8ecv}I&^51ix^ivzXwav}y>52*4SlF`1!+%VTAXfG z>3HMb+GH12seO4S6ivJgb5fL>S1Q|t!&2h~YCuo58uaD_j@2TAn*SLoh)t|w- zXZ;89gVAlAO1H;%x2xnE=^oZx@`(j!qv}VcD z4xIA@_Qux5l*8 zh*aYnOYoil90$p4U42k5f4%&=Jj7--s!};-U6TTP$lX)GWybAt72r; zWvHcyx@yzkZK2Sa*#Iv!uAY>iZ71pd`i9u?zLAFF?)4N=3ywVWt!eCmUA;zmy)6Oa zg{SH&N+~GK=YQwy=K)y3k`twld|}!8riQJrU)p>dvz%JL4LZ-zVUtn)ew?eL9pc?S zTeS};wdKppYJvbxIP1 z%SL&Q#A@gswCG2#=Z5sTKJnM-WXqL#zYru|v~oWP1?0Dkte3vPE^qC8+cGq{i0i4V z8Ruo;oDZBp-=CBMAF-Uu;H8bSw>m!y^&hRS zREL|;%iJl|v}ukORlANFKQ`7sPi{gf*T#hl`$d;jqb$-y-<0(|GV{-dtQlACA8FXx z88P-!uhG%Q$Qle5dkMQ4ClAVgOZ;eTCLJ9b!CL!fHTtoHDj~puYz?ue)$>+*4?YpCSxbMhz9Q$+^yVnnf;+ZyZ6f08Kt!u7 zk1Rv_F1*Y?yDw1mv#8_G0UxG`+mT`ulzLTBwz|ja4aRka_@}77;f%`t?M#`c^n6O^ zow*BF6?mEwM3S=7`CNx>-t@)&h#uHAn2gg;jkB-gW=m{{4el2Zb%0LXvy_SWuqO*( zZ$5gQ48ggu05gRQ7lcgu;OG3lVE`X|l3xzsX4)L7Id6m-1cWxi+#_~TWDlw(Nn_*2 zXuaX>uu~FSv!iyv={j~D3^L74i^9dOcx*7q0Z2&qCOXV)=liNlq`PVlFr$6YcRt|b z7-vG28`_2R9X~3gm_ehcc<9WuXJD>piqS|vNy_^<*WF{9gVFd@AZsLJk)RXnn*CSD zpZ}@;>5%`%x~Z~>;ttfWRgeu_F9WN);0~rTBrIzb2=D9()e#ZVbU5(-k2I5N)G(nU z8wqI6{Smzv?%yAOR4mIoLp(FyPZp}P)lbR(r-bRxVF>`KNRFb3gQevb$r?WMhGtxw zbiOliF7@suyHGA0@MA~I?FLn67!2hzMC79DOH;0uyu#nZ=IllNV0QE>ew;MNKe8IH zf-3rmwa;tzd`f)IyWf>w))Urf$`ziaJ&ZFg9Nr#fRj!} zg;ok_qMdrBPV^`aOy!*x*dw5Hzoq|e7ccw9T6qn|2)q}*mq8d*)S25qF+W4bjRGXp z+rCGyZ#=jxx+kanq5he|-FNfu<80pPmRK=@%5M-5ncW5hk@if}npQXi&;eQOoF`+^ z?DTHHO~914L=fJqdLZZifb4{x@}KwlgRf&jz1@aN<~st@EFP}|tXPgRWgcwnoM{?T zvm9RiK=WRFkebr?u`T7mR;wv7mN>kapI_MKZXCDO)Z#K}+mbj@qcvv-_}M`Fs<41| zB)63D>J5kN!pparZhEthGpBY`I^-?a6iLA>8}T#_{D>Da{9zAD&C+>j+e*9EZs_S^he$ms9BVrP>fY>rEw7s z)Eh|oinDF9NnMGEf`cD>>B*^9+RHr;9n@a^u-I?k=EZB9IjQ2t6kLBWyj!Z!l4_;Ba!~!AbxOUJG==gACCdN$_Tn|@JUginB@ttJ5cZF1F+3YAXm0! zz{!3vLOCqIRQ2=bqy54-FNEqWGfAG?*7LjilOxxRAA5g|ufW8Fc*M}#4X>x%RXo{^ zVl}WJ5y;|*H_*vv&{|FE@UZKMe3SEi$E$TJIkd`m7OeMPDbG;AfX3)G{iRUwYdK&=?dU$ulzf^8+x@WXI58vax9l^GkjpAwOzKi^qHpP30>!}^F5yNBb%o9QAKFbs z-9AuXe_oF{x=2EDgqBR*uDZS3)U~}I5(V*`NtV7!oWBunXQ#PlHv{6P~kaD|_`OojbnM>iK`Ni+$UlBSY*%0}H-l}r#Mut_p* zZeq zqWKriG}Z&5u9mXdu4SedC~2(w*HfdhwREn8d%eC$UJax6^s89CpydzJ3fU@-Oh1$) zW7)NRiM18|D^f-hZFF(;Ib35~{4O(#7Up|KU#OSe9*uC*aokM{r+<3=coFW5Zwsr7XqA?--+EFqEoZ*zt6Rmz zrRA2?1=fmRAdXqG0@6_BI%5lkcDI6Lt9mbTZ!;L=T+<25c7sBt`q{kddyG#NnKZ*_IkCL5E1yR z=)EiI)B*Q~bE=}v&kNt`D(4(iWJjJ`i&QbG^E|$ou8k&DWD^;BrxhnZDx!P2?qh1? z==ZMPA=YQ3!U8->W7^j|eMm00Jra(IcIQKgSU_013s1A|UsB!Yed;sa9x|n5>L1{zg4=#grZ88NGM;C!(0k;~1Td-P8I8H&#|v;>3FTdIW08Z8&o^fX8Lj(ojG zw{;hLD@4IP4bj8_-1O)>*9)9I?HL{>7$hvshyn)bgWaj!BNu`Jta zK9XkW$+6M4RoOMRRrRvZh`>#J^JEX2L+{!Y7r%Pr#4i3^F0OOq59^>Wxk8PFN7Mp@ ziru%pNKy0Q3#$8AoK;;@gW@^i+PrSQW3+~iRZZezx>&S@xP?nl?ojxqx{Ar|U&Zt& zBOIMcU3FE1oWq^kC`L4^CiXmbfWxoHq09XplCmMoGjuCJKFI!hcPdQMPQijND%C^uPXn<3 zn}M7{$NELV!_Kc+FC?YZENkRqKZEB)1|{4cj+8n53#0kRI0UEvfYS`NAaAQ+v!2$x z@w*4Vp&KAv8KPFHsYnw1>Z%+Wowu80-Hl_bYwr$#k z6h;`p#X^q^Z*ZGo z@fVuf>M=*A8w&z64|69YgO7@=60&0tens6z3s!Extm)|yw}gH5MZ8631+0}Omd-7B zpdm4QNKFlwX-_FF^;v`6DA)S^M2^R~o$C9@;fwZC`meIIICsI30keziHeu~|1;7`% zRGUb)kC@f)sojR04K4~kD;-zK0uOWCgZm}0L{YC-Wn|=v9%ew+l^mDeTWBYU8<xUp6L=YCCpQ2my83f}(swPUM20(ky4&5l$CvY-5skX<;id|{KC4Su9dJak z0};6<_opKq|3CKLGc2lQTNiFbL?k0QiXcI<0+LY?5D<_cNEVRLAQ{Qf2$GYML2}MW z&N)fWId+qCHxe3XdVLeu+Iye9?mFMy_ndv6=l-}qdUnt1niWUYtQs}O`>Nhv9>4#F zihi-niq%E1fqsLf$nssTs;JNtBpJ%u_j=kTp@sCXwOkNqFx=tb0q{n%(PZaz!(nD| zZD`sN531}6o&Jy3+$T83Lg0kjIb~gwx5guECquSpYiq-jJi$G%hekV=X6EN_j}$pH zCiuCY<0~uFnsY;i@kDqJZXXcZX;)?y4O>)EyTpsUc{47W8hqgyTE0ckJ-$LTzdN<$ z_>~Q6ilN}eYCD{N^DHlGsmzm5@C7PYy+WlFqAY_Mk;UG_m^uWFn1V}cny~z=^$#yMFQE)b3!Ag~Vxg87O zGFoQTT#f^@as7~`j*)ZU&VGO*DCY4bKoO)6V0fsL>G;}kDId?n^_D-2x%A7ZrDjY# zm-WDvFp1q%<;dEymiF_^2pW`RBC0=?gw#^o`BS3>1y{j#`_lTwL0yf6PSgpF-5$H) zRgZ{g>Pl}%v#f|->dH_L^kEpLjH1oK;;!3iYSvTtz^ONpy6(hBscA)J`lvd0mI1q8 zU%-mm71HU5-P6n?1R%VG0yaogC845M6P^S~lJLx}@ZD8;UlaH^y7e{S4p?Lxp>+|z zvQ#Cm#S+7uf{7Gn4XhkrLxyxtn~rji2i>cA-nwrC-4NWoN^`$~!($V;<}U5U$g>P{ zW#}M-BtYGqvh%(4di^$et!N`<8ltx5rk@MWhkB90k?WRH)d2BBvAMZRh<+17 zsmi_7LPaNgfBcr66=j$`h)$9qH%dNScT6~@ngESGA=jsyyCaSu{gDLM=W8rWw9H+ z24q8)E7Jk|`!-$0u7&O8U~Tb=<$jv5zI9tt;^n9YI)ViTsT}UCbfwY7EpSLan_8u_ z8!b;LO0xhtt^@c7YAyQK9a;68aIFsC&aB4Xa21=H$d?IKH?onBHt&*Q%|X#lOm}9g zBQ;@E)PUC*SC-|odrKcSpEWqTZntuUC#dW=42MKiRJmB!{FD{smKd6Z)}vH@reuS; z{MHvkcdOl9soAkJ+1sw9ouwD`=(c}yWYR00NZ(Ii8)tiEuSow?E6i)3ML|>#=h1eT z854EDoc?VCWc3_i?rsH1cKz5A9zhSd!GD9-Lb~E?F0r&ATiJyGYEWaThJ!fFqY4&% zwbmT7H+swEWC!*;MO65tkJFQ-1 zlYWK!=G}T9Xi{a7Z}D+Eh+TvU9@yO4p>CRsfJHh-m>zz7DmxNz}(KA zJEY+jUYwo1Uln#TSmdlyNx>)0bT5GrOP3&XW;&m(+sR75qi#p?rWjwYW%DD;MN_i4 zm!nqiCrrb-*T3Z4@DV+7Hcp@S-E#SPr#x4FWJ#%Yh@yLmdlF?=qHn2P)lvI(_^Y+f zT6KivL$)nm$;XkdCBdY|0Y0B0(AE;^?RwD!8E2hj`f>n&l(OYdP^bI?^&PRG2R% z#{5p!r5e#tPJB-|*3A>H7muW04sAY_+DPv*RtaNpL_O4X!R=&1e*;e2&rxOw7>haT z0VTXANOJE1aLl*ucp}sSlO6SX86NPsphRo8I$={?XuF#lSQfu54YvR|<=&0mSo6e^ zGd~%|UQXueh;VQC04|WB1qP)0tt*_;$7FxC4N}6;mr)%@zZYDmgVXD_EVocBkoLK3jsnfkf>V8>Yn_^co8msz){& znl9o_^t6BKH0bm%^9*@s@(g!+h!c)5rd(&}H3!@g--4PJa}3=#u*=oJ+5~*%?V}K>w0tVA zXJ!E?bwJbW515(i0(LylOU*cu4|ZHPg9@$qE99B_jF z#i;vdjv$#+zf6gIyZWcnNoL%OPax$ScTSoj#~rlQ&zBnLD@f%?9^S{2rhG#S;ux^1 zadL9Kul*cQh5jX@+EQ8Nk-EaYt5rvAq_m;1!3$NH7}Ng%)%{C_dV4Kg*w`go+9iqX zz1^2q_%r(G@#;LYfv<|5mm(HmW58<}J$yE9G`BA$isUvE<{O;&cFRb<7g&oaSlL8@ z=|dEF!=@3MXvOWTL+&gTeQF$vuz%bp$1ss5-l(=F=7G-}LfW$LCLfvZ`3T+food`j zbTYZC`nyg4A6NjS7(Fh_J^J)W&kVsD7)=5h^H-~V&f?eo4tWbT7Y*(%0gvR@-mzUI zfnLsqQBB8jO0GOuJipaLxMG8~dyyIlfm(RH3Kl>_e-~(uOP9WvxZFV=Zf_*Bb@s?^ zQ%Pjyz9GfNT$Q;DeS1X5B%q=NRuH2eXSg5DDyJ#0%>lXrrSIosetgn(S^=#}WqxF$ zBy1UZh;E&}2DJY0JD_#uUU|f4882KHF}H0Eg9}D>Knv)ST8QfJ00%{+!`x7k{7D*L z0U}Sd=i0=R(@wp~2_`g<)h zQme$NxF|6I30D|${2-SwSo)n~C(KiG4UFQgt}ct{q-Sq#2p^*n@*2h;D9|#FReJKy z-mbOhQoW#Ij;%*1sX)ZVTsEP1v1A)!@X4m_G=&N<`UvDap+tQI+ch{UV^qa>jI2`j zuGl}@9E)Darm_DTp2A8N5cA|&NlpD&PcpJp7Tty*FV4mYOplKL4YZqZ9tVI6->>{! zmyxjZu8cveqrFt4>SPz0Y!<%IWwRp8WK_-_^x;jM&uxHb<*HOIgmV&h7wt+%H$-ir<4nN$70ffm6KKQCDwgr8z}X@;dr=BGh~IcMY=Z-!;gIjfxn{j9qS|vpdgH?UQ6C!M1Jnt}%|T;Qs9q2B6v>g-PAxk=)yyW69X!*r#n z_0Bta(g#~t2W z+jc~fTa>;&eQ^H3dE(^WFbAR3+|OpyD)+~jFz3K3F4;DEiit)c!*aN3K7D^b4W))a z_`Z^s?x&HJ73bNgxl%$!nWE^E$el}S!~AZ62UNQcDm+6WpT6;YB&6JW*k)bDMQ@(L zX&1X<3>@+guUH^bc0wB-mDS5U+8bRd&y+c&$=6hU6AgbxSJ>dtWZ^d4sz6oJ%(DGN zCI1M}Ri&8r+{s~yU_L$1(q8M4pU^%uj-nk)n|7yv0<+Bfh!4?e@!r7w)|(@>Q?wQ_ zGOZ`jPa6J%Lz=~bAfu=}U&$rcZs7*)F)YN_WZtEpw>3*{O9U&QJ4xe_DH+wNtgrDr zd{;x)p%x-?w9~Tu;)tVVDU%fnfB|pts?pG?uI03t4FU;scFU^17lEA8>mjvktzz}ipT;0}8*10-L z&7>ONq2@#EL2e7Y?cNq3)gwQTE2t#&89Xo&Z4S|r$(>9#Z%!;tMGMOm5Nq zXd-=5Aff^{KAn8`)Li4i998^#f^&yK=g~}R;&uO4X=p0xE}CdUQw@Ha&6PdHJ1?xI zd0CR{Pv5ClC_}c|ucCLSXGGB6#eKEOzYuRuj9RmEUewr*Y%sN-Jc9z{kKO!|b}iHg z2UP4jrq-VbUix-8;!Y_EYS-V95P)Cs>J+OrNjB$=tpAM&* zhGja3zj(MMU;e%Arc8V)Q1Ch6^?}mzN%C!|iO&5O=vfSae;C zJGB^o-kp>@u7_n(pk7|^^b$GLXT3j!HRM+e=h?;aLBl>uCzVTc$Gnet7A19K&S_AA zojw2<4fpBu_q|dtZkGVYgaE7ZP6XT_zd}6j^lJGt&(j4SW1``MQHG?{f{3wlwNt)) z`nl4SuG&jk9Oo-sa_8ka?YMB8X9G5dLeC{@Z%tl-@{`1q*kuO^9&N_Rt_|INRc@uA zQeO6I!<7t&F2DhaH*F$!DJ1M9oKEk`?A**!J#xaOSc8njHK~4PU5!?#iKWQrktN&+;-zGvvjI?E^tXZef!R#2^BVW`sH$bL3?kvea>Wk zaJ>>=r1O?$AWcg^90vs#*oCTf*Ebx3I2_BrtgZ6OQ&>vRm2uss5?FA!Ba}v{JN2<= z^w47{{za+7`X&4-k^*XWa}95_0=o0kmG+hnVc}<@^DTel@x5m*ZJzb zakw}8E^@_7U^pZ)j7oQ$pj3rYf;mw%%v~$xas1N8^DJkY2!X1btMcrpGH>)YmJ^1A zx~xM3cf4bnnS*27=mfvvEH&D_RW}`xtwqW?%`9Q=>&tLxF*QfD4?lr>_jLaS`S8Lj z?H#De$NxQ*I;aeELv96Q2>^M$z-(P2rsl^~X^ud%RFvM4z3>xnSrP|!(7H&M1#p_B(T`ha-Iv44NUG1|-yi;Z&=kJtpa$%WgEc z-$r`FsWn(MF(WbNr9a5qp7LvQN>XerZS0F1PmqbJ z2pbRQ9#mWDFOVY0FOZ_`%OYPW>ef#vs~?x16{OU z?YJ09Eu6ohzw~s#d)4jO1oiBGfy#!4V3*-)aOOi*0Ia1E8B>aMcuS3^PgD2PsyI?_ zd%fP(BwkSBo%n@mM$-Gz0oOVu8e*wAvF8;|J5}XJk4~(dUxl<$WBXSYrV2u{EgO!A z<31#l**_h^*rZ}$+ei%Av^SlwoqQ0QADCBE6zwU}vRl_`bHC_#&lxQ^?bt%B<6^1i zv*}e??SqR9=4G7Dd>=}?UVnG4;+U-^Lnlh zSz886$r!N@R5W*R*1QR@4d-HB3R~3h4%)uqBYwliE0H=MbJ9Ox zL{3}~FS<%J$8Wum$Cofq`UroMKYcMpTw+%5E{T+!E{YxT;2zmjR8q7!(~V?m=D1m9 zPWpYj@%x&mB-5DxCKs2H31>e^Q=(6<=i=en+n>PMxC>yC)1}=tR0i>je0BdtixV>) zsaNhoq{S*3*?YHm&Ie*-Wb!Hf2+twKiOY?m{TH{yPSc!eu4#wE*AVl3Ou^g=kxw{3 zXvO1KaV4ERqz}jhZ?gO4e>f^5BlJw1-=iljD>n>?Ia?k3uJp6+=)i0GE_+D;9lUbq8|Z^-O=q+AfxgX8zHjTcUst?X#unelXx)CN^o(p-Nj4jYUNnDu zfU346@5feXxRHXU1{0Yx_u73yTH;qG@zFj)S)Fdn?aD-832KCzh4$j~Y*AQDr@mS2 z;m>kI8PdDcb9HvSG4dW|+KaR^dGc9Y^jmfChR#HTfJUX#QeJxc=IYoXB&pdgR)d35 z)(zb8lu9FTUzYgbRNmV}`+PzNn0Cehn!9QO{ZI#4edMJ0_|k~RmxKKQ*Vvo6mzb=? zc`JAbIaRy#y{S`_+$lG|c;eD>Pz-=}#;T9lD0NAUh)Q3!c(rVEq}N!hbsp6Z4JX~S zxw%TFzRIR5KbKvmzWUHHvO52R^D@~-$W6<7S^wo{2u_e(2S z+h?x3Q{UU$vmS7}%s%lP;Qd~RqmUw~xa<%Or-=A)jH{>9q5t4}B!Fx=_Z@%`stHBG zTR?L3cEgypmj%yOlPyOaENq=31xuez{Q6!Um%!exVN#Fka%(O$4{$Tzen0vW9enhq zK(>VMByXd$*ZwGb)8PrHdK}L~eP^-ht`tUtySo?u74+Y13~%m7gQ zC<#l(II0Fz_=Fuej^*yHWV$C0ciE7dr#z^K7bVhd*M$$u1<%VcPyzZ$b(yM(lU{64emaN>e5k^>1g!eGsWQrqk4l5?&ev{rpJ%56l~C%h zcCiCOnPn10fj7WUzF979OmoRgF9dA z203si&iwk7&(57Vn{W{qhI#-cB(U(JM1F{iqe#qfb-uVd3S3-mqq(ntCtR5s@BN7o zV|SQ*gFEwn z4h2cKRq4ui;t=~rjrf{=oo^M8gwRSAvrov1myyD`VdHqA&lu!S%m?}L5aODO?*{!! zwto1BKeuF2YejLWcfR4}-Kjjd8AOGhO+oB+Pv+6Xx5GvwVzQaDC{9Fb05|uk<&){^ z3Z40LYmd(7Pv}~$D9`TK7L0xCe4e4r-0ft5C&2{PCx@2?A73dwug?-KFb}yq&f`lpzw>a_!8|jryo~q?XZm3D3^)!+UzE=d;&33*uQnqhq>Nx9#yAU zc;p+pFP0*-HdR~yI4}K2DVX)>mLW=f>I1(djf+25vwM)x&@H=N-RRul?Asl)A6gP_ z|1_X5Z^j(kE6#zZhBHqc((9G$G$(WAh4Cuw5AnLT_B4G|$=9|j_`a^6AG%fPhQLn3Y~aHiwUlvHf*X6V{*;rz9R#AJ61Nm?)Dx~D&8DB{$5zR5$%OW_BLx%= zZ&}o!84)Iv4LVY;0%g@T)%ZR-miV1(gu1J=re(Xb~H0ipm>VG z7w9OSIEWd`G3TQqkw@PTvPfQqx9EJxpq59IROgc| zCg+HoAA*D)68tW%_n`rW`Wg9wRk6KZX&xu{SgYKgv;FvdT0pGZ?l6|z`V5!ed(bYfPR-Z&KJp0p_2Ql9l!$Vr4+o*_beLAqi zwEl~xK1m#PIvTAip@I680?>)1O>J(d*Req)>MIUul_iTD^K%0AFAjSA*^YMVK^;rl zUzD(%WMnxrj2mw{6{|fme;4Ze^ldW6aaOmJMq*5o7fH)F^#=nvr}82l<%gi&A-?&k zIujg`9Zyb28OvFrle!A%A@Lk|j=a#!cBV;j*z71$N+jk3acd8Ds&-!!j(Q;#S3N2u z`^|HF@e8VEx{0DaM#K%h!S$-a&tJNZqMClJ*b1R6<&W2&5WJ~)6|AbF+M+Jmo*3i* z)xk4gUmj~faE~iuFCHvSIx0tuF#P@$wQ>G0lF&@ zCK@j>n!U&xXJ>N--4Q>ROkI7WA5bNi3+77TFR&MPGR@RN;whY#?tdG%Icx5`X9bW8 zBYVzwwSK~i`};}(B=U5RN*gbmufvx0St7;o#Iatk53AC_Y+vy9>2T>cYBCka!?F$r z3KSI=Ihf2k>x=!3!l>S2uA6Gy-83{7c=p0;^f9sYN$Dct3eM@-THPwadc+L= z0y-Qjd0_2IKgVy#;0C}JvG%eE1ng^>#!~J_XZMRhNXXc;UHVNOPS4c9(_i(p1~0c5 z>|ds>tTqz@7JPjV?J8q8z_ksT6^)JX)F7Ju>9fb%+TSoXKLqyE225ZKpC3-uLaC7u zCyqpMk;l#t-+Z(lD47GSTIXpB4e1DEBmu z(}6V?Bh(zy-|G=!@}~8yl=DSXMEt0w%uA{?*mww|FZM`^Vd%ZHNY5T7G7dirKs9&DM_l$t|Lie z{eq~r}YPx-DQAmDp@xh_E@!Jb-9gBPOchR0e$cVuaZKf zsgWdCxrsKkq)GPm!v~)_d)#aej5ai@24~S69^6%7rgg|DsJW4`_tCCk0nTn4&-Ux@ zRZA1g3q6kEMu(?)DLD~cR1dz@bT!&G&!R7 z9x$Jp$Rdkj`&LVYAQTOPYa1K$HR7oOp*G$z^DF#bI%ExNgg*O~Mv_3`8=eP;k{!yO z&dtlyCtI2}{(!Fu%4WDrGEmVb^CcgvUnAaw@!~bAb(SVhYg5%n1RbDzN0sO@nFu&z zsjCHA!2}sRc;Ghd-^c}RxwTC`hwaBN%Ec<;}QmK0@)p9SO{k%TH$xBMqTC}WkC0* z?K)(>KyXlbwIaK9kG4r5j%f7*{H#A#SGYKo@DvjamMOtp7LJq zG4SAPh>2u21)+uSCAYFXH~l2;RU9k8=-yOLxL4=NR_p$r^;A8eih`j^N-6RxU|qUn z{yzB_vt%oHAzO<$nOq9RdX#P7R8Mmi#CoO-{JneIZ7cj`Um`bapv-6LyK5c*`F8x! z+s}@t)HK!%4;0MkUOn5Rr-0|&(bvz7vq*h1*uB%|uoZz#6Lv{7Sz)6QzpQKhEYO(d zwc8yP4WVt>+3sNnKcs=^Hkts=)fZZNDjjdQBNkl}D!-90umRx5P^rLTE3h5MPq-IN6qrnTG}Ko8bWF1&9;m;pD5y zSA!6OAA}16y6X;M)HeYe??TBKTIkTLdfH4%sdJSfZu|DF3If5@zBt~bFNb?zNWJ+6 z!Fz_8v0t3eegpo=)HVl+!U02{(OutuQH=|aq|N|416#DZ17R{gx+@OoB7p3E%V1AS zvL5nKw{6JpI%+P^Fv24cBZaFDARF2(sf_+{Lsb4x++<=p0=4ezKnZ*D5tH9QDUJ^5 zKfk6D%0s-zHwo;vp|c{crg1_JiGpaFD5f*BqpS^uypI=V{>%30J@lLC0xJ3RLoXaS z&A{lAf$aK>tUu=}O>@d*mv&R7PLjaxymZ}?WzBuGV=zYb7)BMT^H~wNH(naQ(2% z9A1xP!*wngm@Zy`x|nl#U3u9DEY4Go( z9<#_E3@Q|e(uK!C0~T5ugp1772_bNvj`LFHaM%tLS+K_-Q>ZolVg2aOHkL1~@F;(rPhjHcT6_@QmLUJ`0`Py!vzNbhb589&s;WNEXhqG6s|}E( zg44hhnS0~941j!zXAr2YDo2%HH?0J)>3?@UFXTG}u(cRM0732f(XsbydT>a$4?4xU zmPp|d`+!rx7Vo&-QPFVa57$bo|>VqFM>Ou?W!pXTfW72ZO_O za34U8vWIN;9JJ;2ft`q%ovH^aO)m#J?> zV6CwM;%Fu+d%mkPRkS0@6_~3irJpPPmh|to02(`lm7I2)cNmy2-%WPwmcT65c7lWR zGVk01YfgP(!$M9@Ti|Qi0nZ|PaB#=Y!p)pJ}?)O zK$aEJ{0=WAYC;bf;9I};*hP&5Eu2Qy%<^bKXc@x{}IYC#f81GfP(Mqk(bz#n=l>JeZ zko6^l>rBGI5xXu!TiE{BU{4Z9XdsrutLq8}MBpPus~TIrLBhDfxYuzKJj9_7w((Md z5ZbW^uriwhey)8-ToUT3&PLxH^hDE!i7@P;hkZGngM;|Y9osU3z$PsIqF08LR&{EC za({2Ub|IVzdeVFtfW}%a2?Jg?86-6&zk%E(HO~{ew!-_SU^`v$owK1QVfEC#*<9@^ zY718DrT$f~sx7_ zY%aHd19eAOU5C{UBc+<@A;Vb!A`#H(^m8?~r&WFcvz&|M`WWPI5o_J$f#v^gNXPQ| zaq6!Qnb$a=pQ>$v2cUo>nN+!!UtKI-Yz^JF3_vjggm#e4F(4nHo2rTz^ryZ<+8F?( zRZo^*`F>=|&tzeI=2Tp2oxr0!$J(NUMoCUC6RBK!gi~aCe}ITKrpnZcAPr102$_HJ#4*z+C?M zF|-DC0W3p)H41{REAJ2~D29 zs_@_XsF|tOf&uP_`d9|7Ssv ze<{|lv@ZTgD-#06MOp$wJqp0$0_yMXA#1k-l*0fYkY~u{{`I&iG7|OAh`{m?+z0>B zB2#>H9V#7d2KYS+f0I0kvcLl_1sq`Y77%jA^@rGtAj4NDrYgt8sB(!;6OH@tt+@iS zCK9And1hz|)?HrEyXVhOG*5VLnxxK_w>zOxMk|QymKN+Ba%g?M`J(w8vhlbOuxoAK zs4Tf!-)86~asDFqo!5MRN8A$ItTu!Ma0`KCYlkf_smM9VLf==WtP74gGW7=aR4Zy1 zYSu{%-ISF9Bph`F85lpUau28oc!%zRpIzUN?pvHuT;F#C_Xx|w?`g5GW zD$oBChxPPHK+9$b+6)lPKicBD?m%1oqwZ{@jlldSmI`nIXgBrjL1)~yE^cqrpiLtz zHEZ34oVYs7vUI)}*Ko?7)#W+lbInW`g(%w|2;To3F`}L~uOaFqd#?7uscbEU!~of} zOewiXmIm3sx^@G0$_8jpMN($4pXnMiZ>zqBj(w>QlRhw~c^^&kw`C2e=jInIOeycy zt{de4nI7XWl^cH3}lPU@V zJBdMbZ^r5-VFjezyw)LLwq=%ISGZ$uc`uQh7J6!Psz^a#d->#&B_u$|^V?OFbVt&! zC!j+Nz-#LLsO`V>Bw*N^0ox?ifm8s`$5=Jx)p5V?w~=3~i{h%?4#r#PaRsT>iS-b} zcR*hBE_kcxcT<4fCC3M;t7G7_SUxszXK9`(N7^+0Jh;?yI@pyq$LQ`xD-S!R6;#{ffnBEP}2i2l>@@qfIv1+O)SmReE=yZJHXRQI# zGUeCEyV}!`X268BS6QmaUH2GJfnxPVm?}%d@?V;001-@6d3C*KA`VvJxdRlGAD-eyo%`4t!;CCjTT(Jqevul>bwHU2Ap3$OtJ z68ZgB#YkLIMA&E5FYtIH{2hx9V^6|v8MH_4Ppp&dEwGWr{zoNdfTCH8&X@^l74qIcr=`zIA?+yv>^m=`oYx~_*zdgh| zMY(2IX@wrRO1CPrgm^dq`X!cXGZo_PDzRKlfgzU2jj=XrOVN9JWnPONwSO^cOUOEZ zlJU2Pe*Nb8BYZ}+7I&S{f*bR*!P*^ea%N%%c}?8AMNdCw&Gb%M=uoXL-K9h>B0>Pe zZ*27P^c#aS3;psd%>4bQ#=E+T(O*^`fiW4LF#>2De;==ZJZ8M@XNXfsNcqShL@?e?}(iH^c$0e2Nl*<6xrSRZ9Z%iSF++<0GZc zRzi!u)%)h+SfYME!kXRH=za{=q7Td)aDz?_x0Rr_m%M;>?|C`N62$yTwi#Pda@}%|J@6Q6XC(A9d5;3i1$jgt`j}!ou@*C@*u=8 zPN;_svI`LEWK6)#dAFbfn6s|mg`Uc0ySh@$w69JQ-$&5hUn5A?Tyy@Y$eJ%3(wl2bbKS}*22~WG z8FBUnZq`_Fd<@&8p7byXgq&{FH=yegQcrco%C^jL1O7Kr zVSDt^!1JfswiISn6c}yhwFJ2P@+;iS^4!>D@DT>2=08d{PjtN*&^!;^zjLXfN#-B@ z8;B)d*ShZp%++fGtK%J@?XFD$%5(6m6x{!|E57eoOgrq{YvK-U?=+2@P5#E}>7{C| zg%B4XNIIZHB7{SmE=SlwHQQ-@kcoFKFBaXF%VzU4MYF z3S4sTwH>EnVvl*_G01~>J=sA2+AXyvo$sv>KfgKmL~e458!$_=Y~lXg;*dIn_j2pCYmy3p55fk^Ym@Ks=sef5bGa{OEa`Rfh!&Z)r?V?i$T!6p00ZIEy1eOue!eC2ePHW z2U7SSx?s(Lu|^s^&HpG6!_Ty3!2iZZ>o?GN%%qLMs{YsCKx40e6$xg=PXK#2Lh*kl zV*jZ;a?>bc*g0K}aD;fXk#+t5YCHc~_xV44hZ%%41K{-kLL4T&|Mf)@Ex@LF&dLC| z;_c!5Qj69AdKqfK4+gWk=&#Rr|8h9Mycht-sawB+&>e2W=%kWDz#D@4I07B%yW48!stXj2D}{Y0ObI>HTHUe z&Gi<(fY4T2mvcF=uzG_f1hu6YDy8MFM*ktjbQFO=>HSP37YHi+vz<{o3-+~iCEl*&q2+-HtRu~ zqJf=u=cCpR?T5N4;7^hPMf_JhPe+aiSsc)LJN;4USrWIcP`P5+7ulx8t9alw=~q$Hu&S_PYFg+-bh%ZlCUcm9<*r&-gj0Kfl}UFnKCWOS|@F$lBiCy-CJu;x^lju<-nx z9mogt-~?9*x>s~=!87qq)Q<$a`X_Coy6;VtnZ!o0c7C6S+2jhqUv>oNUet#bSWFX( zjm(PmvBdJ<6D=^ad&8Obh4%^GNgD3)KTS&NEiK>2_6`K_l}?w&+7}i29X{UgqLmk| z-~$obo8NeA>c2s0ZIvTuwf-8>PjgFC_0er6pWDJWUq7$}$7wBj&?NYGxwd1VaIg1L+ zitnKmtGEq~flK;P9+P4yw0B5}@N4SROr*DrmYUTz2OljtrU-}rlzSZg@m&7!Ygu>) zRbf)n;&S9=jKAZxRa3fE0XQzsEj-mMZ(bRaTmE3N@=;;0#Zdah%d~YI84b`X;LQB@ zn!m0C$}8F=s@ynXmDVyrH8wT}e#2bm9af~Byz}F9%KlX$S9?#*0AITByM}Q)%&-n|X^_FccXa>xT_GWKm3|+g zl#XaPH6E`7wBd6ULHsWT#GjwYR1^sm6!*=(%0{JD$QKy}&Al+P*Y%^3K$_z&v0vq$ z=wSgo+=YrrJ??zCS!;b(qAWlfOkYOp%%^~Rf3erfcs*5u#>q*GvY*D3{YIwM+IKqr zGDK?6BM)&EtP~?!#&Ih zq$i@Va}GcU?jQE^5{F|21c<$u706%r zeg1-r(F>MfLI%MIf&8FU$RIdux!t)8NzwTTpbjg}DW*jOA^e<5+4#mP z&*K5o20;idKw9&Vn$tT62p|CtGOu1!hDU4y9T z@*+W|LnUt^8=&icxxOgnV!=<@NdKNrcIS_$nKt5`EU=CrYNYnrmGOogF+vNs9HhPL zR$4;!xd8HcI*a9Y2)zhi+NsZX?chu-4U4G+C4s|-?ZSVq0I2&Az!e^dsimCnp=C4QArTfvPL$d6?Vl1 z3M}u_uQi^EPrS|rC)II^h{z7%4Zm;6@$rb0tQOC`TkV8ctwV9K>eWCw6UQMsghbrgo(0PGy|fxjnqNs|#uPZ^XsB>( z_?#co=5b>4K)E127n}RvpuPxP=t+%Vl~6N<#Rgl^$E?Y;WEzce5qYK{-x81s-+n)S z(JC_?=rZvitOvjxi`~^yb;Bj|H8T71q4}JRcctWA^HNwtLj|~aXAn#~tpcX@O?!XI zpGlnNIyt1AK*BOw`y&jaWtCyhSOdt;9I56|;=zG*aGKI*K|Hb;onMeaNYhR$ znwT2fRA$%9i?xq+^@*g}=Y(L4xP+`ahxT+Kn@K%HkY>iPr(%x{VF^`$*D_JqBg*0u z>k_Neo0nomLs-=(J@~c$d@JOjE@aT9Qffd7339zy&*jF>S?3aHs;JVPhfqhK4$XM^ z-l-JKsd_uSbz?i)yR>rthj14;=D3F_!oH)cg~&>b2HGUf!w;O;TEgn8QY-h5R1ZuQ zggnwdGYBx&+s}88l7tnvJjD0`^qoy`m1OW&4|b$4{HUiRu{u3#apyvBDh5V6Wt_~F zUDAZt0wnRi@h)B?hLOnDKD4eXdfA-#~aMDMU?=B)*jg5B!_LSm_CIzHDjO z^HXTCsmp++MfDcwi%b_~e}j;!uW&}IE6VF3G7J_mmwReei}ZtcOJcX6n7lYr`q-+n zCI%2c_{&vwrKy5lPD_qEa)$(eAU}XUASWSELBx}NomJV6ZLeE!y=kAysqW{CiY8a- zc_OKH+~25rq^#S$c~FGNURW}R5)uP`3B&F%8R0J_M>;JL;_t@JO*n5HxVzs>POtwg z(_-f2$Lu(Flt1(AUFQvqEqY<(EUYx3SscC*0%Hh>Wq_BSG+B2%twG?|1ga`b)HZ$$ z#$ix8!XTnbHsWUC#OYP6v*5%U#zz?53qE5L(k{(X%>|;0u$pS1Yi#-O z8N=3UuTycOi!`9m6s%HH=$&f?a-nED3?-kV=p+m_z-eU9>Vh!@QTKF)IlN9)c+x&5 z&MGfkqg85cGPABujzeqVmu(N4OJ93R_!8-RsV)s1o%{x(6jO9x!3Cs;#D$`B6zS+< zrrf|Im{(rh2w#xdV5}6#?n%KG~;%CAS1g+}};P1wV-9DdKOzpRqjJ zRj?};bf0C_vHbWvSz8p$%+uiAdz3s2qJ?xEhUv3RqgnJlI1q>4oMOT-meK6#%5%qL z&yVreRz|hqOYdVo6T3dn9KNN7mnC=9@NNb3Gn{Z=8YW5PLE3ng)@TFIkiQpiYse7=36y?ejqPvC{neSh-x4UuAs9N9iM#+jh}*-R$^qo)yG;?T z&5V(AqT*Hp=9^&$l>>!B!S^F`M(CWP&*Lmxgg}?=|2&$1q*mYbVs3&Dx9>Aa!<8an zRuX63b5G`uuPonK-ZpitlVkL2^?8SA41V(7@cE|YrWHTlEJC)&fO4DqFhqY?0(JTLZ3PIZ5Rc6DF$O(Id4)Q?$Z<->_To=Dt~4m z8TrI>!1AGdiD&Vq|LZ#|v8t_BE`_I`B#4^)b$8~9YwpUMoGLIbArJt6=#v2Ia^W@aaZbLGdJGe`R?%np^=Pm?l8bZS;3Dw z#c7di#fy2L@LLjYs@4-75q|NXdwKIlK*w*O2nkL^NiG6g ztp#ainBl<<_o^w``v2H_@35xcd|xyes+1@oRR{`#N)x0>3yL%mK~#EC5FsESO@ahM zkuF_8L5NBd5$QeD&_n?#f&_si^qvU95<-4w&9m=)_MW+CX3w3w=bpRIo&Vs0l(p9T zzTfsK^)qK1smC${)gO*@jh@K{F%YFbd^c9^JWqo>f>z$uWbbn1(F~x--bY$UG6eK_RrtP2-8RF`uYdn z&=e>uuUv&~ExuW&njQ>W6Z*8XW_B315$oyHgl-2mfd4?wEl&<`uXBWH8hIm0hpOF= zJZ}EDE`OgJ<8pl5((_Ars_LT)+Ao1hYJImOTWzWFfF)@aIea}~ycT1$O4eS8BUFg=7m0U_-+Wq)bK?kn6Jj?H?$#h^8IvUC~tW-c{ z>4x#4@~_5RrL^O0O|`@+hmk`*n%$0{>f<%5TYIIV?mQMVV`)T$#Q=~!_b3eOoNq?20{C_}vnt`DFk1hAE( z|4nJ=xa7MLt@ow4z(=g&D(k~_zwm}!BWx^!GR*v82scM=px%VqmZS{kwtS+ZfDy?f z@$t-dS2`-z&Q5jLrEA#eG=V+fh>Dd+g3{{}M$fy@3YJ87aMNSvK#6$AO0QaSd6a8s z6Ibzj51XWnOXE(hFG(2KOqD?ZYa$0v#-ncD{(MIMz7EJCd%<6hH2!u24Lu1iHkR%o z80`_DMQme1+3JmH@|RCJ8owI~`5Ev;-u7Ql;2=$oABbHX7!?tu7)Bm&$m_lvDKuGLCn+)($dq`OCFXEkfs)@YM64VtmtR__(TjQHgr;?lwiyoAzpE*$wf?hL**xzk6zf$ zEEmnLg6iERY|0FHn;H*DnzGpdA3a?+G|%k_#M-4{7-GX*>`;LTgq z6g)8YAhh8T$7r6^A-t_4J56$Ar}Xfu`^~jEvz7)APyj)QP}T&II9{o*xH-uCdeE&x z)CDt#jkPJ>kU!8~!yKodz_OKLqcj~uJUm@Wi^^oju4g+ddA&XRC6M*Fu0FKrzF8Gw zAPn}pl@aYgP3|#aH=!2p;ipxvQsipyW=E%&SOZB~H;{Mwx>U_%&dp!v&Fw1}v#>Cq zKLh#HJAfQ}A1wBB=;~kBgT=~8M0wyo> zbOyXUyDnRA&O1m-$Xxr8dHyvo&V<5qlghur`I=^ub+ZZ+KQmIp@P6YrV#Lo8 zLI7w35R!8<*DiB#S*)FyV#g)ifvA>B(nL^%=UDI>ApNL7^b*yM8<~xXQ(AGwR3LYE zeXNju#-5KpdwV6y%~Y8vaQJfaL&Zt3^@TZX42D049FT=ij-(%}tfS~{MU#fn>}STV z(0^@~Nks>jm=w6ABs{Q?&?tKHxp_g3#e`@&xz;ncdnIz$m%3Z>7C9qPJeL64wuW6k>F$%4aYgz<*J-asRHH&!jab&VN@+q=uR^Ft=-ClvHBE!} zEB9VXjwvH9ZMnv_3T6#9K7aF2<<3kdZ5sKFoJ`e@=@D4J7?mIgah7>tK9OBLO zy9vaw+hMtZ_k8gy0`|?ej}|^2e|dc{X*hx-_(~cvM1-%_>c3LKB=FIY<<+udH7pKvlMk6IXCELn znng@;j(i@&0h;(yK&01)t`$K!hf#+9K=4Na@#(-Z^xk^)^O7CY1;z~9EqvU>MD;G znoW8*1kMfkypp_mCTlyAtX@a3YbZabr9s9YKazN(5;kI7{Z67m5W$IXbreOxdqq{L zJufM1B-m4KkYUb)deW;yxjJ#-vQMa_Vz=^-S?A=l_@jg3u4d{+-=QBUTk9Y|(qn59 ze)SNG^LV#x6PU2$snRp}`OffzJo>Pg%$ew5<7jRJ_KNK?vTL$HkEQH*(rf=vZVIf& z#9(eFof=G5&Wco;zGzDE+>1^(rOcEBVPw(=f?OU+$|`>lJHn?|9}pboHpt ze}tI85olYAWmg+FS`UDcF^mM%15f^rrf=iL?>YU<8*6h%JcJXt>sCZ?@8{3Vr=i!w zYTO&~d=@Mjzz`A9!`^I~h~>iZlVL~klxlL}#=y**cdOC!?%CWkmrwE!Pj$vRHF7hi z=DViJ%k*F7W;zn4vB5*aB-g+Q+Dl~4#QGQn$r2F(LPXiRV$2%oBMIy2c7x^fA=rMg zmcgN4_@g-$Mg)jBHMzaawhL@!L};J2b+7Y5ogZffGvzo@Q`MU-)k##PUACJ1(-@>( z^FsJEqX1`Q1kncrf`uMn_yJQAq8A341_(1lj@0WHmqSIyYn(55!mdV)u4mg_t((|( zy7E(dygkTH`Yu$jeIfLC=oh*wfT23$5y$TVA(Vv9Ive?@01>7Q&0~A#^+4;ZzPdL`=%WjSg0)eA{Cne`b)Mwl@H|w(!1&% z&ScKrYG?+th5OAuvOg3$Q)~R9U-U0;$OLN+6k46_V_|`>50hnu_PX=5DK)JkH9#}y zwR2>Ui2>$4g%nJ8`qM#>GATzJdcyDRR-_j%WYAsB7*@*BQsb@$)EMhQL4S= zY+(BRIE&~;7o0>rSh_ik({m~NAr<#aI)`;q7W?J4e)Np5u`0{?3zwD(l~{N{xNa0i zU?=$`+JXx2*f8jXngSUf?oDr~SF?Nu@*O%nb`=7=D#gn>YuH#XG+%}4=7JKjX3P(w zDBv*&1>PKJIiOVO$EV7p9bsr5`KMm4-{d#N#)=hd>sIo^WoIPYt75m$&wn{Q!bub{ z?ePw8>g_6zojr=aQ@FaD*~Fans1lXexiHW9-U=V+`Oa3t{k^W@^rSwkQ|ZEh>aB1c zUOFF|ae~GPe$zyunS8PurdoMaHaSWkD^X<6-RY6jyb{UGaJB7WTaK`isNFG+#0I8z z&>ja~WspSUr1BG4;=FO^C~rIEV}{Vmm=kVrclD)&XZxPrAV{T*C6B_Oe8|YWehxyrlq=7wb`;d!Sn7HQ$}s6^jcfpT18QgpUcT;kS_Z8XXvhq zTi3|B-?1+37LdK6r>#f6(S-64gBxk{h51==UpSnntNo}dhpyV_gbr3Lls!3<2fz1?5I&~@v>k)J@KPytp9<3Tg1|V zwj|#mw?sT&l%NayLT2qR%A=l<3M#5HRA~4+&Z-= zRmR;7WBxe@z0DJh*>}3*ugm65I@f!S^bGLlhzUBu!wR75@Bb{M|LyATPfgh*v>wGE zApk1`ww-1py_L%A0f)_1=>ZKZMFWwA#2?6$J(rv<&M5}DEg#KrI-2%+lLLkgXqy}& z=T5}Xf+@GIjcZD_K{f5k?70ut%$q#YKUfp&XV^bCvu<<>+@IM{l-M|*VRR|+rS37< zwg0U{H#;Jx4X$~a>PqtNauhKj8e7r$-+E*}@b|p7yJ~Wc{Oe(-oszc)cUM#yn_HxU z4l3y4&oBqTk&@i|1l9vPM!PYgG|L89-Wc<5lqs))GtN%iO##t61HzK|0VhEhyus9- zWfhqu@LfI}JHqfw`JY+t{a-3c=qsUx6{-i|K|fw*h+Hd{rBE4;ha?s#K3BmnZEF%C ze$Ux!qXk}twJ)zQnD6g@zFyTlRx8~ntF&fCKyH4#Z#5UKEa)2ObmSfA6$UxVd?xBJ zv((w;J+j`%9#p+J)7|ogLqsxhOtGngSi*SBz|8H)!oNv9{N+gSFTdLo+`h$;Zwhcj zd6;`@+p8NdQXxNEdru~u7pp@cUM^kmotvMk6VpNn+ibx2r1D>B-s2{wjO`W4wq&;#f*w zzwQw(RYY)ILM=3!oCIrwuYKZ^tn_c&v7m#oV+I@?g1XF_CN{H)KcIEk%|r*L$?i z&^ul7grhzQr;cT~^l3&$>I~TYpQG%*<2(KNzxX<6Q<;XI;@IaLPgv{nPGqa32ffqd zn4A>Hv-iFKE=J6N5SMt{HKAm7EFZw%;c&hs`mDEduH=werhs3SYBq0bhObe(jLxUQ zv(T~vX3<)*2@ihgZSRNK!qU}=;g!0}8Od1R)i0ILpb=LteQKX8gIxCb=Ge|U=h=QHj95qTw z+~r@q>*ENkk&mH^0>%d_z;?TQaR+tqpm(?FCa$VQHW=d}S*AWSIkcUrLjF3qA;@&= z?%nq~caJF3f=NS9>p{XD(-ANY-+cH17ffooxw#{9*Fm6sCnw|UhwK^KQ;X+}Y##CQ zcBF(oO}PNkeoOHx!~`7N0L*|SxAg9dXz^N)gOGN`A2|z1es9K;n`-Uk6!--i6W~Zp z<_I1715(-6Z4cGs!yGSHPUIe6>pG{D7~tpOBa>?U@aIKt&;B|_gpZ;5dsg0d0+2|Y z2a?J1gz75|fX{nig8X&7tr{&z{_GJl-pYqm%GKH+@|$0M#&vdWST4^ z5u_uLU8*zikwB%3)A)eLqGUCrUV_9krU!lUwSo7ajr@S+wH|lps|x-42Lyt1CT;y` z3RQfV~Z^prk6+LV`MojRh&@@1B+oNzA`^BYg9WDrjr{rgog8!5r%I1&1aK}R8EJOHC3^oE z1F4&=@`IV64Z{rr_1= zkD+bf4+WM_qgcARmB-%#jZJaU&t(^~B+`Cfeb<%d8|XWY49BB9NP!VNM9ak13my5t z5xo9wafIi)qLM}hsurg-&72k5yHa^g1zk{InS8`E87q|-R@?Z|;7u2xxdKyfP}?Mn zMymK{%1m0GaQ&#PN!JtJYCSaQlH+e|J@3!u#hd)RM=;BciD9>`b3nXn1`aq=)-F@a zeposvjQUHno7gNKIcgFl(j@Vv0K%#$eKL$ii{%<*>)hXZ?tkTPEORaND9V8;V0&;G zZ7^IoN(8q_0nKs3iLzKIvLf`N@qD!621)QMoSZu;T~;u zi=|Xwb|lS|xS@QSGM2UH$?o>V)@@DV)?_Zef7`2|33fWgKI^j=?^&IIKOkJSA_#q8 z@<4gkgMW8d@UeoY&hIK4c#E~v&3iA^)mQ1&L8(4fRU+6%Sd~EGm zDF9Axi*LP<%4>T?o72AmwNM;M~}X4Z)Xs@G#jTr*aqTx23tXbF}q$LH^UO?3>i9zkn=ZRG=`$y@8~p^Ofbl~k{o zk{>ASfxMXqb|Y8oVSbv%!R$-iC;Iohcd|`i{r>qZPY1FMi)rIT3zD$mi0ZxW0hj?_ z8}||rnNKh#pUIe6+3>>Y%evOhbdjguWK8r6-0)=%Dr!HxSMp~t%Ks!M_|LM>|M|@WxZzycFs412hu-ZQQNQxj*-yU=%=uqI#Z$DMQ@9N9v#fMpl&%GRhJwYz z*p{0}K?U^T5r11-qdnuAYcu!Vguxhek~XF97k(Xf<}fD|x(w%_9Vgjt9iwSdrjxr9 z+&0O$3C|Cn4!_cjU*_JPe!F$oIbiOwhFNGsolo;2uBW z%g5|1t3+?VV-$Vy8uko#i-PF#CMPEla%Vf)!7grcx6SkVCWB}9sK&^$Vtr3iH0!*e zwQM%S(RaZCDOGRlXPn-K9l+b4n8qr>p@6C`)vNKamRzP`R8uqdE3pt$<24t>jigQm zm#QELCD78p31Q^2FomKd?WN7WE>Ipv@1HsR{Y`FXca(I&ZsuioM`M~+vyHR*ht_*c zxOQQUXg8?qf%rA`oHf_$HFQF-&w~m2m7oELQ>VD3Dlf;EDZgiFKIu9q!LC>gNj0h# z3mD=QC~ciKAU1JQl0G`JV{Gh^tf+T(Yw<1fkN#`vuTl(^+NoQU%|yur%3S9YhZ6Eo z%#3g(xl28%Q5=YnmPVFm5|-}Z8ltqv-#a2BP(Pb1E+&m#&;`Lk?7Gds6m^O$)rE-3 z6Z%FT56A_T1n^JtN}N4Hw3<2!ZEOvPvn)_nCeWP@HAXX*rXg@v@oVVWL;7hu6hD51 zrc?6_?@dPfH$NT|dzP<%M=m}nzFA~~p|bY7zhnx(GsQKMG@`Tx({DeP?1&uf+g7-ck@Y>kbLZE zs=~EciSP|q zcdX_~qr!)))9382Uw4b!URp2%s}87MjV$Lc5qZlHq3&9HMK;fe}8*hir*tlxwGrS6E>i{=>UEV1SzYR@}@=RMMI0NVDF3UYEM&IUEGoXL$aX>-E>lglA$tmG793TZ5%i5_Sq;W+CJaya|8S; zT7)v2fIda}+%Y3W9jrVoCO5O2%583K_|Et>#upRL95JdpWks7{z&==nr0YUQR{ly* z|670tmd|h~oxv@Xdkh^&o)w~LQAUB?tzOa7+=o zs1NS7J!AP8u)dn*cNayB;@C)Qj-rme^V2}utZ{u3edR*_!>m)9y>|MMOtHWDznU`) zQMTH-QMKq0sc@Y3jK*CA~yYJcw%q&O3WD#L#cByDN+;ORh8h(oXr{@E&RdN`rUVIiemRt*I zwe?P&o|4|a$n9&S1W5&;?J211z)?7pn*wm+?ZG9=Dzbtd%I8+ToU%Vesmv% zGsUPQ;>*!~1t=)~v4aXOW_?dotY)N))S4%AdObMmvbdc1v%7T{5|+;~NJWQ=&=3@R z5JQ2|Xm1t$>ix?=an^2`;L`Fc>*EdMYs2s4{040$U;N)YD-5|ZK?wT)JhuMxqxb)g zpTKcwd8=kvsm0iOOyb&NDW`2idSk$uFZv#;zV$a^|&w`2eNJr)jjd2XaC{nUh}g6Bn*$^u(fOcQjo|%W{!{GDJ7(1u?A$N38yUEI-ZvH+_Ns zo_tMB=T6K|J8cD!3@i1gOTyS^V5Uo+eBNPc`?VOXfpa#b~c^AR!Bp~ z0mL23R!peK53=d8)zpH=Jxo=#jj2VROU|i}eu_bvPgqEB-{yn91%jx19gfF;m1;pv zMroG|R&A1A1eBfAG${O344R*OXV&vb@T66hWXhB>J(9R`o0&Q60`1&^3E0eX5STy* z9j1~);H2GD=Rk}fInnRB%DA3vfx?$}2MLB98I`q$p2bLs<9cC)8sIlcfr#ZnU#7~( z&@4%gTyB|^>1%Y!;Rm&8tCt!Q)|XWU?Wf#XW455`=X9(u%P`tVZLkmrY!D*4n0z4p z@&rw)0OPeP1dH|Wsm6J5Rw)i0O*6kODae0*$>ZZV!L34&4m~VHv&|jacG%p>j3W<7 zA_Q!W0!Sdh?%49kciXkoYPcms>)$h{ImI|2_x10~2Nwz6JZZexRnTZ|{Y^&(gxmI0U3)!dVKgH^mzV>O(Uu%jniaA# z4LP%K73Ar}YfvkCNkmXYb@QcQ;OPwFt1v6Zkya&?Grmc_7tRY*_dH45O(enij0%iT z?%($LmzDPWqG=@uZLc!OIyQF z&`%8)R@9GQ^$8kGsout2719xa^gZjd)(644)pPI@;AkCQQ1nhy_2XL7whX&7X$?_( z!-ymBgv^`Uo(nI+*q|+tp!m??SuP16u$X3$eBiPn9}r0S)f(OOu=sYmg>@cF<$;_k z+qhw2AL8uo2eLI@Z`-Y?u--OKlx0VrD783N^V}S}#CX7q9rh4Ddp^?*c%9*3Y@6$# zwROIlzf6H*iXq6;xo8a>kT$sFSqamiwU;6a-{oU(XANALxVBxZwz2VDW^{nN(eSPL zaM%~3Lh6xCDPAj%KPfRL$8fuaGK_0#c$cHnwtB8mR&3;=ii~8p4^yIW+xJ59jKU|K zQw(pHrr^?;_@KIuVAqqB%e98LxvhPi`mvO3;%cN${OVuE?AlUM#c}MjANz(v?nZ^d zm#A=t8=QR5CTe|`HwRcfDerY5cs~VskPfVfkM(L&H|-ZwPe-2!<6N}Nw3=gkwt1K9 zEc96uuuTeqx9<-n(X2^Bd???c8_m)9gNru9g-N@+ix2c7q^;5e2|@-L$I(@@3Sz|Q zj=Snw2(q~&csfx1Q2aeARaPeRMz5!l98FKlo_EBHUF$0_AhdY5flYM%eMI0T3)T;pAy8q9!+cE^ z_nG6#cpFSC`koJ2O8^x=2xmnmqw&|z=ro4jKA-vMjpBVNv2z`7+kKV{*O$xLT#?QeIBhX-zt^U`fVGp9{-=Z}79Q$FFwA$s4vsitmSf5&vpq5IY3Dv*|Mvp?8R%IDMAvo8z1dr9<()7CH)drX20~DUzPe? zR)A4Yj@)3s&ZY#9ZdI!R91qysRD~EzN>O}k`srONi&mdTE#O>^HrK2+@tzIYYV<2V z>h$$ZAQ!t4Y-mq%$gSNrAVe}lwm60^v*NU6K=t?S+#Rn@lpMY8VH>*__cVvNtuL-n z;}T85dqSLP+!W?|7jiDNTT}^fp{fjlgP5>8;pfWAtNS+_1npBh8MLrA9Z4v`-!nGO=c<fP2kd^g4Zu}}Lo=;j zqzRlzUuZY)HPgVvQqU&AHYML~#0k(XL+N%uk;~6tdn|;B`^9!iPa#9x>0?=Xe>yOHdwU?`{k?+6+j2hgSMVJLT5KSqo=b-sh_iayheE7UWO& zPgArtkuefdQZNuiLU|;fMuAO04_Fx5fo0t~m-{9-!n$8r`=bv_m4{Q39Bt6Essr>? zB_CSjLiMO*n40M^(D&$YYyI%R89b=)euy~Ddmm6~b62ajojBha_#KtuD5(3!bs6d- z(5vTP#q`&Aa$sg8-bPs!MdQX0_j_cYb>^AQ=7sWMeE z8_dCdFOU`!KVG#7`N~oX%nbEfhAIMV)bsfEz$}Fo&mh;2Zaxk+IW4mCZ{jqG*CWnZ z2%Z+bYanwwQ)k{OOdFX%D)08@al^tT>Hv@TE7?16zMY}i8PTc_ir{7X%RdvhkHqyb!gaTmb= z-{K@9Zq@iWN#Vip4^4_{TJlm*+{wPK8rKX9UWVtgLyEa>UolY_oh@H8r@Y(BHqZ#WJ9qkP2 zjg0s1v&@)E`Y9A2;^bQT%Hzs42a(|!0ZX&SBNs2#A?Fi$OQX{i?OD$@xTuLi7h>rm zXumN{7)D0@Mhm70MANF9#?tsn$tT@a(%kp51B!-f2m_DP)M;Nva{}}9(-)pyYxjkK zK`yV7nnQ-;?dA45L4KVN$(cX4EUEg9?P|75W^;*KeDV_eC32J7>*xK>bAtv7`B5&e z0+8QxrT{+`(dEdB@l56-py1s?H}dD^>%2LwP-_k`x5m6PwNzMj^0qg4AR7`guZ_-q zKU#8^U#Wd(C?3m&_LJ(-@P4-M7}a`uRR|u7JLgaUfe#g@WY!jil!Eau6dxq9 zr%>44dia4fVr6Kd#=#46I*LhmsN5(=Jd*rd_CD49yKSPmG2|*|;6nK;Czh0Glc|tO zL(YF(mg3*b+y7;42EivY8J-`P39T_GD;sx}D#A50Qk`LxFv|qvw@xo^b9-gMc{nrL zQ3%NgXV<(XV*#SkrI8|0i@E1my-Be_KC`yaWJR_+Cw?}5|8ld!^2E1ig_mz78uXQdM63bCBx|F)~;EzDMMa`&^hn~Fh#!e}(Px52L z>s5EsjXU@AnI889S#}!M!jHMrwSW@LJ->Ud1pBH@0#QN~>e(7Bj5-qq3%0K6b!vPZ5B?2~1wmR>6c)1*+<78_G z6c_z#d1_R>_hdK8!9fy#KmzQJ;FI!|)N0=qUNdr-aIm54cN@L}CMcU|LZ>gTtY+}ReQz1geljkBUpI+DQsmTMbh)BmBDa^u^ZIJgl z{s)90fL)~V|At`jmuNzuff>kMJI{}$Jx<=>Fx?Jir-dO%ujrhZuOJRTgMEmuVXzx5 z^}CIUt^=nGVwl^OLHtpF)Dnm_$v@ELq0L780TF}!`G*W2zKNrIcVJRjXcw^^<@-Es zKi>p_4&-k1uV8~xmDtt?r3(%bCl1+Wf1BYz>QW8H%?Xo3ahwN-!5m8z5Bk$B+B*jf zm4K*GKnwu#KOuiWqWu8nKOk2E>9^$(zy|zZSMjfB@vjy2uYK{aGwNR_?Z4v1zhd|Q zKQjv!1OY`w*kBot-Obv7%^F4M^6r_Xl|P!>GT_0mvPAm~UcMQ@#$ON+oKsLD{mH&H zw*}KjsIIITCE9uj`$t3ksuZ5(&F`oG$TKna+;lm2srggp3b%P%eMM7ErtA%YGgUoH zwi!&2lk-bS>WkT)TI>nW?dKYMkPc$i5w5nfCbbBTI6ini_ee;RzS^Db*sjX-9-?(h zYD0=|lUjXKwYrp1?faVMz~BBDtnOE7@sxir;Pi;FXZGr`S`a}gtq z$TQgwSX19V%Y2{-fk>pU=x|iERF8ewP!>_&6fVj6T)wr{po90U^3Is(;v7Xn*Sk8py$jG9`Il>;hj%zSpjBi<{pkCzrgZ!kfJm z8~Y&ZHOV~I9yY!4O12&%H-r<9lBJQ0EtQ!w!qKQqGtc=)d@c;_GEc+W%Wq!iN=iBY zS>{o%#He8c?X~es1tpfD&fjb{ZIQe8T))P`KR^p>&#c8X;0r9fW zM*FvI)TEyued*a178Sk*ehjn|ZA(=OsAl8FZ#escPn^H7H1P;NTF=tChHbNnE=pv*V!X@zLl-=xMu6x2uD!Lu- zdMasuV}u~c%%<-bK@=_I_nT|&e^=UKf|OVYteV)TC8$*oD^-cdrSmP zR{=4^sPMx}^>0}@+Gl|`?|`MQb0H>!!}rc~u|pHfuzEtI;#lX8yQv9iYwjM!c^VONW!3MfKSNc_+ zi!=GGBq`X{uLd18(fFlUBPhw2j@&b^$x=rTxQ|@=6aZ0rX!=;8=00|d=Z5WUV}N;^ z;^Z0~6W45h|9?S$hUMa%$wh~8oCtY9xU=c|FwPWHWN(WkbR-YZhni3?ov^OdhrVS= z2R=G*E>K8vSQZVV=8#~C>zaWDG?V1cNV9R70B^z7?3Rxu0!ENA|Fs^hZ|Rq)`*)5t z5KiPzMSKwqHcjscLFcIh)0(Eynjuc0ZnHnQCDSOtM|{=XKEK>NeE0b!IoOK*FFV5It`?EH=W!?h=5WLx-!|@_U_rCuLy-rAunc28?&6g zEDOG*o4u)ib_+UL)G!gsgv#H|{;COm4@6pyDw#%G-pP7J zW4TF_#72cp>1GLr^o)j+k{Oh}>y)i-#CL<9$Dt}zhqe+_n&*uzv*roqgWPMJ`a$SR zLFbwb3m+#jYs4O5I2mlkSVc6*s2G($-UU4K4IIBt z=#P5RE{AwJySC|7WnL%fo$o&T7=%qom&@ody~y|qdx&Y;yzSnm z`mSkN`42gEP3i$PMr5~*k#7H=i!;jMPCA0l+*wz?^!goX-}g2etFhPZh1WBI>NCez zkD)b(14Klv3xsOF#g58aUa4w$j#pBYNa37%_4{E#+LQSOhA%X&y3tk^P?ix3>PPkV z@--PGEJWDCj(#q8Tvgpyem+>29r8hOdT{8(e7SF$;f&MM%ty@;okC%k5HUhtHErD5 zYBV^NIbqHehEhBr9Y)uowa73byERL*X{~`Bc^{^Idn1|CdeIm9s*vS+y@V8r- zp)T$^A4c~+{bh1vM$6ll@{|xMVzIh3h+GfPlldg>8RI+GXQ$uL`8GUW$Caj=Wif$< zA2_1jTYxNbh;VNkN3H#}S-b_otKJXkQefch$~aCna!O@@4J|cA1PP)BN(>?k30M#P4G{ z+guu1!qJz@+$OZo1BHla_Evl4goVDV zm?#`vj3P6uj)Dl+^0-!}ui9eEGe^N&DRM<>3}-@~R2DV~?X+cYj_q7Y3^-eJl+r7q z;e6#?v#r^rFj9EjKDjo_;sSioU)c-ic)TAQaVIKN&Y#`24pCPpLuUu<=9jK;0C> z0v7q=PsBEM`Vh9d9xuYLOD&I+r-c*~?2!c5Xqs)Hi`L9%iKd3sU+3h8$+c`lnQ6p` z_i;%OmS^t!=sbnPEKTPE)K3g|H$1Xc9=WgeOeibvqf7JX2BN-Z86CHE3affVZPVp; z;Nx?3DvX-${q4UH&z8C-;KDdK#aN$$?eac`*7}NL6D{^E050}Ozn!-GkyBL5V>k1| zVQR={7e$Pn8%US;71g=HE~YhP2+9s_G0{IY701zB?`h5oYHE-~^f$^rI+@<|wGv;y%DNUXNhL=8gNO$fLDEi1Nm zt?aJ-r-yY_dL=!s8MK%O8Tt44zW=!1aI@krv@?_$z}y}QWut$>3bv8%0gGVg_6fZ_ zf6_gDm42obSJzV26c}&(pgM@NLFZ^yMe>)KHwl@aWVq(6C|BE#g-V4IvZE{KW=|5} zY@droj*RM2mFYR21w)77NJL&r$7$)d7sj6HzP`O))^R$nXd`NIGTO5|^h+Ll!&jUO zSqs*s&D20uDJ=k`9AohHHUq1&@i4`e%`(#reu9H8ulc6T^0f?e-6M-R{N0Ht`hX)7 zUC9B!>Qqk1;cm(mh)vLPjm_&T0@Pi~#^1PVD5P#IDt=zLE;vy6NjyMI!<4{7l8W?_ z2hIPIxmL4d;#@20sP((*cAv?K=F%_4Ld0*U!yaX^i}yPSguSSIE;r9vXJEmQ1d4Xf zc?+Y`cZVtEQ8>L4TU2}xUZ!q)v8`O3;U_@JP zg|10aDThaCpR%TDf1{~B0*Rowz&UmiUoD5j)}b?H8y^%L?UXp$e=u7OpZ>nAvTzv+ ztp_ql@91LmZ=swN(dKd>bE=aYt?{k)+|D$+L+gmeD(aW4wi-ddHd9sOYT2_3JC_6* zms#R_KLYhV7-%c^vU)G5>>-1oG`LXG0IccQVr}cVf2pVbK0!73MSq`le%wuL^chvx zz=7*9y9pXwk-MWHn&kj7L{8?nLMx1-PrXA$u(Lbzu0EP^pD5Zt8Rp_>D7pUhrXfs};vGx7LzOfQ2ay7rwsY9yc7V`YSDxCam!{sm_XGEW$-yB)%lLb| z^%aW!fjuJ{&jW(A`-~*K&xFsQ(b{LeqQSC<#zomo2gNM8QKH*7#^t^J4_Ue$C-;kL z#v>;0McdyXZ?bW?$w{PsbKQo!yPhvIJQ~xEs4LSGAa=E$ynwa)qF8bv|WH}1NygPues#Pm2a3vnEjr;(u6<6ml@Lgf?3!?MeY z>WK}SrkDaC$@qCzKi8i26JtN+f|MV6yFpTBQ<2g}wYnEB4T%8cB{JffHWSLA{V}Kl z=|M@pN#SS}udSl=##>$)3n*b6r}SzqEOak?7zsM-I~>O@D8)hC;AI$I)n*0-di5yD z#M-?sS=Da!f>z-W2gC_L%7Cgf@+;B($Mu!sA0bWsBcjXK^Q(FR$fK!! zzo9#&`Cb77l^@ykCgQWd0>xeCMr3ea%n~=FpJny+KE1CkP~#=>VGHi*K1b92Uuqwh z57K>>e`)P|e4ohBPW$%c*B_9JiImy+00hioWlLmit5DY$#As~`_rE$`iI;p7D0v&J zYkBsZ{KY3V&NsD`H-oeAYBK&tv%bwS86z=0yP}NTSm-_YSf2OgwJ6Y8 z_T$ct*-=fJtzR*Rfz@Ukb8<;kagy?}irH10(2OHtqW0%($jFv!HShT}_aFLgt$jkt zW(JB z)+&HZ;j{BuPVPSHMj}J9xuiM$9T~;T67vlrUn%7=SzXzn7HAb&TfA+QH1g5gR$>6j zk#2PIdcg*v+~?8?cIM=60VwbYub${AX9tq;t`2#-sE}gytDltCv#qjK<8Rl+ zHX7bcGhjM?W&72A=ndlS#=~qn^E8kI<1?XbnbM~tElolN(~MG2jb%EjffPZq@{3QI za=d&Jn}auu!zX}1l4Tf93MBTQKyBj*tTj~EICyAjs9Z6oPWAJ);>G8Tj5@40!(MZM zn8ugiFs_)0{h1oN*cgt*Rjz>W>dEkw617X2b=uzR>3On(_B>-Bzn@=23i#e4d+RF{ zS97phh}zv^DwylNC_xv4g*?_TK7FmKRBb!dP7|5f{D@b6THq}axq>-DKd~ajAFrvv z5@oT3pE(_`rmTgyjcXh`-E?)j=0u*sRK$9yonPelyA9j`KQXIwD>{3ykSxy#+>q69 z81qaU*)lu0x;+qZRN=n0sHM}C5iw7Pc#^}6S$S`Lj$(OpR4I`gbHvslAE{oDJrI>x zIM7|A68JybyYjFmt}PynibPNhR1r`H0mEXL$pVB(f=Gx^h$5mQs5Fp)1hSb75-mb% z3sw>POcgEGNY%QcP(?*i5fBh@0T&Qd2x<|eN?aaBi}c-~wzhVA@7b^abpEDtMn`FUtsT!U$C(6>aDqD}wpu5Hm3~E4t2=nGX*#VnxzyA5{zaMd5v5aH z*ZngH{o%(45>|gybf#b~9;m*!@ua2x=9X25WOglGGiz?`n|`5fM(Gv2_p|#tk*({Q z3pYG?ZZ>0|orfl=WR*)vpU`>!m0J6vP%^Q~d~xrta}_S2B!5HN&Enw{7xkaFZ_jP@ zE80*VJwGos$C=vQ8xeTYB4X;WM2*uUnfTj{xG0?_c<4r=VPt!vnmsmXPmNAyeqE$U zQaB%Ja_^x(U9H};YWh`Q zYDM-T%j(#=mTe3>)ufue#3_vXR=r6EyY{kCLaj%A`Z!T9^FfZ%rEwGM_~-6jmx2op zEEy$hCKfHe@#$C772GN1a_=!9^n?3m?=rMF;I9SUis{;MRQq7G26;-Xj>}zSTNJdp z;ft_x&L>unXUZpBVh`$bsy}X(s=v+CqsLV4cf)P>c4;p9ojtOgvo37Sg9Y{>whZ^m z5yMlQH9CpV!K~lG5L?yn@vtMa{oBJJISgDWf*L3J)`)@5`O=M%~#jwH8*@bm2lAW+S&bPHZ|7sEi9~bJ1YuD z7~oh#%663lFZY1LiPnXXd6=(rAJZ~sn>{>Feb!EO#Yu7;UvFK#ZK9uzl zf6(=qs2DEMH4bkw^+~lqGmzn6mNvo=ste6||8_*x+cRG@?$*s1d`-m6sXEZ?buQ+PW-=73p*=o|z2e-pRL?`W*w^j7pXj{8OE?)}qo)?Oju3VQ}+foA&r|mO| z=Z-Wna9f^MKVNO@9P;69{Mg2C=ce5oLT+phRaQH4W^AxGY0JY^g2fJdvQCo0k4#x$ z7IrX;UeGmud?e2$wATKZFu3olJJSnXRzJ&dbU(GW{QQ_f7NNSriW9Nr&!?#ik6Z2Z z&!m6R-^534i@9fSE5FHei(E;JxD*^6^uakn+UF&AN=C!!mTB}WexoG%j>qM_L>09) zNIQ;^H9oA)@n2yY{0a22Sq6eEJN@OIJkPBE?k>&l-sEb%u|vC<>`@e_ zEYVI2Tcl>>kH{!@7@Th1=X2Fzo_^YLF?}=VRPWka+41bCvFr0}Mr|yh?>DBj%_kneGo^h0wvS z9~U#VIK!s#8ZASA{_yUJ8=PuU`8oYX;e}GcqmG>Q^~}BkJnj@Oz}jTmYy(YyFj~L( zW8Lr{aClLMenqFmu4`$^aqdm5X|?5N(uVcIFNgAv4s)gn`f6NGt(awS((jDY?_a6g z7g%narnPUl>l2-ZUmAk?-iVIcF^A}!(-CsCa;W6KMjS8iTl8};<`y>lAG{NCv-X$%Q$@(HUx(;cZO8!gn@=zEXoHv2v)w8;OAyXIGhx;LZnW%qlQ1JQ6jP~ zc^p5_F=d%X5^-<3jXGwcdh$*Dl!i3&)~<#2`i}LF__Mn1c{Tw|YlTIPtqLfF+K?I=E!b^^TEhflYl zYlO|?X1Ax5M^J4XI^4#7mqxm^%(Jq6+A8qtO=)Mxmhyh5%duzI5XauCooKau3fX?Q zI;2y1e}P_F9GTns+?}R68@}tLYndVAgafN7pvxgT{ag#{;g#c|`xgdKYu+oKvnT{v zRH~G^AJwUyVi&FLp1*OohqJ2rP*9zX=Tr8n{Z5q#eY8)=uB80*2mQKQGp7Rgy|$Jg z?j7vO+P)_@&u;cp$%wWs|K54#@42V@KX2Xt5_ZTkz&_m6P2$t%q}Z`(v3Dou)&>2R z+&0o6Gyh{lv~}Ihu<8dBLq$y^{Y6Ya(f_-i z1J}V?&fhz1DeFkMkXBXGT1{y=^mS~rM^tA;{K>sz#>d=j%PqsMd$#Ue zwfol9L-6_dOZio$_iE~)-(3vkw{OS)65Icsy2Niiv(J9jSR2c;mC(o6>RE@l#7@mT z9DM;dhOy#i@mfyr?Q4#eu6XsXv)e8e=6$~{R`~V9z0bh6&%(&iJF0Bc{)xw=8Qm2# z`u*R3c>l$+iWBUMJwM>ooEERDPN%4=E+wDp8xPm@s-iwrhpxRhd_Aj*oh)8)-#UGW ztm+5c2A!nJJUqzWk^??vW(L>e_Lxq=b-IUbDlK){{*RM>@AKY2egCW+@xQ!~!2i%p zK&1jDra<`;V@np7M4(V01Tr@K{NTtXaunvF7+=80_yl-XN*rdSMDfDlFjSg|2_XuN zPGPfOjo|06lJnz}Q4ESh6Gc)Msi(Az1c?MJ(p)bd!jlK0LQ(Ki1v+c#^vL+7$??7d zl0Tc^=g$X%QL>6JCnt!+7^+Z0s4|{4AuuA0JHZH0F;x<|1gHV2Bx0$OsbY}^SeT$~ zB*P?V0D>j6NKw3S2$RXg$s!D*dir`&$Q0TnC_%xOps6xNGDPw8CV?Rpf&^v+hx=+k zaK<7DF-*>c;ndVr&s3VHOpypve0_akgbGusWPl(mmq;|} zKx08XGeM@1@Ig@X<#Mqoo^OnG7z87U?FTwB5hh0214$Pk#$GnWB4ZLU#e8WZi=-k8 z&;)*p7$dP=6GVwrPgJf19y0nvEMmWG3~<6fjrJ?v8X$qR29AS&EE;SA^p1{qH_%U& z5>#ClDb-j9->Ssap9=Boly?2KjCLcy17QqIZcGtZ4%3)lh&Mu|Flfj?YLO6x1YjTq z{{ZnSA6)0ZnJe?%0B@wxhk*XtJ%Gq&znU{t3N(R$Koly$Si4>xkhhl?%?nC^Uejm{ z1RCgqq%Ua{2I5Pj|C|N@G%A>ZjK^ynXi~hr-=cwQe2Ye*Gv1=n>2Kq_euYM7ye-4) zmog|mzFw3!aF~KG5~B(*SwiqE(NYxH0D>cAG7K_KqY)4sB2AD%Mo&f%;1CWJ;}=Mu z>J`AD1bKM}Or6SMaJfEIub`knUpj||P#APC_8%h_5ZG*j65}hd0mD-m6beEoxVQw( H;1d1=j;^Ov diff --git a/Content/Figures/conceptual_structure.eps b/Content/Figures/conceptual_structure.eps deleted file mode 100644 index 6998a568f..000000000 --- a/Content/Figures/conceptual_structure.eps +++ /dev/null @@ -1,101968 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%Creator: (ImageMagick) -%%Title: (fig2.eps) -%%CreationDate: (2015-05-08T13:57:01+02:00) -%%BoundingBox: -0 -0 604 504 -%%HiResBoundingBox: 0 0 604.36 504 -%%DocumentData: Clean7Bit -%%LanguageLevel: 1 -%%Pages: 1 -%%EndComments - -%%BeginDefaults -%%EndDefaults - -%%BeginProlog -% -% Display a color image. The image is displayed in color on -% Postscript viewers or printers that support color, otherwise -% it is displayed as grayscale. -% -/DirectClassPacket -{ - % - % Get a DirectClass packet. - % - % Parameters: - % red. - % green. - % blue. - % length: number of pixels minus one of this color (optional). - % - currentfile color_packet readhexstring pop pop - compression 0 eq - { - /number_pixels 3 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add 3 mul def - } ifelse - 0 3 number_pixels 1 sub - { - pixels exch color_packet putinterval - } for - pixels 0 number_pixels getinterval -} bind def - -/DirectClassImage -{ - % - % Display a DirectClass image. - % - systemdict /colorimage known - { - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { DirectClassPacket } false 3 colorimage - } - { - % - % No colorimage operator; convert to grayscale. - % - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { GrayDirectClassPacket } image - } ifelse -} bind def - -/GrayDirectClassPacket -{ - % - % Get a DirectClass packet; convert to grayscale. - % - % Parameters: - % red - % green - % blue - % length: number of pixels minus one of this color (optional). - % - currentfile color_packet readhexstring pop pop - color_packet 0 get 0.299 mul - color_packet 1 get 0.587 mul add - color_packet 2 get 0.114 mul add - cvi - /gray_packet exch def - compression 0 eq - { - /number_pixels 1 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add def - } ifelse - 0 1 number_pixels 1 sub - { - pixels exch gray_packet put - } for - pixels 0 number_pixels getinterval -} bind def - -/GrayPseudoClassPacket -{ - % - % Get a PseudoClass packet; convert to grayscale. - % - % Parameters: - % index: index into the colormap. - % length: number of pixels minus one of this color (optional). - % - currentfile byte readhexstring pop 0 get - /offset exch 3 mul def - /color_packet colormap offset 3 getinterval def - color_packet 0 get 0.299 mul - color_packet 1 get 0.587 mul add - color_packet 2 get 0.114 mul add - cvi - /gray_packet exch def - compression 0 eq - { - /number_pixels 1 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add def - } ifelse - 0 1 number_pixels 1 sub - { - pixels exch gray_packet put - } for - pixels 0 number_pixels getinterval -} bind def - -/PseudoClassPacket -{ - % - % Get a PseudoClass packet. - % - % Parameters: - % index: index into the colormap. - % length: number of pixels minus one of this color (optional). - % - currentfile byte readhexstring pop 0 get - /offset exch 3 mul def - /color_packet colormap offset 3 getinterval def - compression 0 eq - { - /number_pixels 3 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add 3 mul def - } ifelse - 0 3 number_pixels 1 sub - { - pixels exch color_packet putinterval - } for - pixels 0 number_pixels getinterval -} bind def - -/PseudoClassImage -{ - % - % Display a PseudoClass image. - % - % Parameters: - % class: 0-PseudoClass or 1-Grayscale. - % - currentfile buffer readline pop - token pop /class exch def pop - class 0 gt - { - currentfile buffer readline pop - token pop /depth exch def pop - /grays columns 8 add depth sub depth mul 8 idiv string def - columns rows depth - [ - columns 0 0 - rows neg 0 rows - ] - { currentfile grays readhexstring pop } image - } - { - % - % Parameters: - % colors: number of colors in the colormap. - % colormap: red, green, blue color packets. - % - currentfile buffer readline pop - token pop /colors exch def pop - /colors colors 3 mul def - /colormap colors string def - currentfile colormap readhexstring pop pop - systemdict /colorimage known - { - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { PseudoClassPacket } false 3 colorimage - } - { - % - % No colorimage operator; convert to grayscale. - % - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { GrayPseudoClassPacket } image - } ifelse - } ifelse -} bind def - -/DisplayImage -{ - % - % Display a DirectClass or PseudoClass image. - % - % Parameters: - % x & y translation. - % x & y scale. - % label pointsize. - % image label. - % image columns & rows. - % class: 0-DirectClass or 1-PseudoClass. - % compression: 0-none or 1-RunlengthEncoded. - % hex color packets. - % - gsave - /buffer 512 string def - /byte 1 string def - /color_packet 3 string def - /pixels 768 string def - - currentfile buffer readline pop - token pop /x exch def - token pop /y exch def pop - x y translate - currentfile buffer readline pop - token pop /x exch def - token pop /y exch def pop - currentfile buffer readline pop - token pop /pointsize exch def pop - /Times-Roman findfont pointsize scalefont setfont - x y scale - currentfile buffer readline pop - token pop /columns exch def - token pop /rows exch def pop - currentfile buffer readline pop - token pop /class exch def pop - currentfile buffer readline pop - token pop /compression exch def pop - class 0 gt { PseudoClassImage } { DirectClassImage } ifelse - grestore -} bind def -%%EndProlog -%%Page: 1 1 -%%PageBoundingBox: 0 0 604 504 -userdict begin -DisplayImage -0 0 -604.36 504.034 -12 -1259 1050 -0 -0 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEBDBDBDBDBDBDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -2A2929676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD181717CACAC9FFFEFDFFFFFEFFFFFEE5E3E3E5E4E4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDF4F2F1C8C8C8E5E4E4FFFFFEFFFFFEFFFFFEE5E3E3CBCBCAFFFFFEFFFFFEFFFEFDE5E4E4 -CACAC9F3F1F0FFFEFDFFFFFEFFFFFEE5E3E3CACAC9F4F2F1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F0C9C9C9D7D6D6FFFFFEFFFEFDFFFFFEF3F1F0CACAC9F3F0F0FFFFFEFFFFFEFFFFFECBCBCA -F3F1F0FFFFFEF4F2F1CBCBCA181717A5A6A6CBCBCAFFFFFEFFFFFED7D6D6D7D6D6FFFFFEFFFFFE -FFFFFEFFFFFEF3F1F0CBCBCAD7D6D6FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDCBCBCAE4E2E2FFFFFE -CACAC9CACAC9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8F9090181717 -1918181817178E8F8EFFFFFEFFFFFED7D6D61817179B9C9BFFFEFDFFFFFE676867656666FFFFFE -FFFFFEF3F1F0676867181717181717282828B2B2B2FFFFFEFFFFFEFFFFFEB2B3B3181717191818 -181717686969FFFFFEFFFFFECACAC9191818C9C9C9FFFFFEFFFFFEFFFFFE181717CBCBCAFFFFFE -C9C9C9181717181717191818181717FFFFFEFFFFFE676867676867FFFEFDFFFFFEFFFFFEB2B3B3 -2727271918181817173B3B3AD8D7D7FFFFFEFFFFFEFFFFFE181717676867282828181717181717 -3C3C3CE5E3E3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB1B2B1181717A6A7A6FFFFFEBEBEBE -181717CACAC9FFFFFEFFFEFD8E8F8F282828F4F2F1B2B2B2181717D7D6D6FFFFFEFFFFFE828383 -282828CACAC9FFFFFE8E8F8F282828F3F1F0FFFFFED7D6D6181717838484FFFFFEE5E3E3BEBEBE -FFFFFEFFFEFDCACAC9181717CACAC9FFFFFEFFFFFEFFFEFD181717C9C9C9FFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEE4E2E2181717838484FFFFFE -E5E3E35152523B3B3AFFFFFEFFFFFEFFFEFD1817172A2929B2B2B2FFFFFEE5E3E33B3B3A828383 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD686969515252FFFFFEFFFFFEFFFFFE515252767777 -FFFFFEFFFFFEF3F0F03B3B3A8283833C3C3C8E8F8EFFFFFEFFFFFEFFFFFE1817178E8F8FFFFEFD -FFFFFEF3F1F0181717A6A7A6FFFFFE8E8F8E282828FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -C9C9C9181717CACAC9FFFFFEFFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFEFFFFFE191818C9C9C9 -FFFFFEFFFFFEFFFFFE676867676867FFFEFDFFFFFE8F9090282828FFFEFDFFFFFEFFFEFDBEBEBE -181717CACAC9FFFFFEFFFFFE181717999A9AFFFFFEFFFFFEFFFFFE828383656666FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFE181717828383CACAC9CACAC9C9C9C9676867686969FFFEFDFFFFFE -FFFFFEBEBEBE181717282828F3F1F0FFFFFEFFFFFECACAC9181717A6A7A6CBCBCAC8C8C8CBCBCA -2A2929999A9AFFFFFE686969656666FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA181717 -CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFFFEFFFFFE181717A6A7A6 -FFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B686969FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE181717181717181717181717181717181717656666FFFFFEFFFFFEFFFFFEA6A7A6 -1817173A3A39F3F1F0FFFFFEFFFFFECACAC91817171817171817171918181817171817179A9B9B -FFFFFE676867656666FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFE -FFFFFEFFFFFE181717C9C9C9FFFFFEFFFFFEFFFFFE181717C9C9C9FFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFE676867676867FFFEFDFFFFFEFFFEFDFFFFFE181717999A9AFFFFFEFFFEFD -1918189B9C9BFFFFFEFFFFFEFFFFFE9A9B9B686969FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -2828288E8F8FFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0282828828383272727 -8E8F8FFFFFFEFFFFFED7D6D6181717BEBFBEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE767676 -515252FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717C9C9C9FFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE676867676867FFFFFE -FFFFFE767676515252FFFEFDFFFFFEFFFFFEE5E3E3181717BEBEBEFFFFFEFFFEFD1817179B9C9B -FFFEFDFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8283833B3B3A -F3F1F0FFFEFDFFFFFEF3F0F0FFFFFEFFFFFEFFFFFE8283833A3A39F4F2F1999A9A181717D7D6D6 -FFFFFEFFFEFD3B3B3A767676FFFFFEFFFFFEFFFFFEF3F0F0FFFFFEFFFFFEB2B2B2181717D7D6D6 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFED7D6D6181717BEBEBEFFFFFEFFFFFED7D6D6181717CACAC9 -FFFFFEFFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFE676867656666FFFFFEFFFEFDB2B2B2 -181717D7D6D6FFFFFEFFFFFE9A9B9B181717E5E3E3FFFFFEFFFFFE181717999A9AFFFFFEFFFFFE -FFFFFE999A9A686969FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E32A29293B3B3A9A9B9B -8E8F8F3B3B3AB1B2B1FFFFFECACAC9181717BEBEBEFFFFFEFFFEFD515252515252FFFFFEFFFEFD -BEBEBE1918186566669A9B9B828383272727E5E3E3FFFFFEFFFFFE5353532727279A9B9B8F9090 -3B3B3AD7D6D6FFFEFDFFFEFD5152523B3B3A9A9B9B838484272727191818CACAC9FFFFFEFFFFFE -FFFFFE8E8F8F2828288E8F8FFFFFFEB2B2B23B3B3A3B3B3AB1B2B1FFFEFDFFFFFE5152522A2929 -999A9A8283831817178F9090FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFEFD9B9C9B -676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F08E8F8F676867767676B2B2B2 -FFFFFEFFFFFE8E8F8F828383FFFFFEFFFEFDFFFFFEC9C9C9676867CACAC9FFFFFEFFFEFDD7D6D6 -828383686969828382CBCBCAFFFEFDFFFFFEFFFFFEF3F1F09A9B9B676867767676BEBEBEFFFFFE -FFFFFEFFFFFEF3F1F0828383676867767676CACAC9676867D6D6D5FFFFFEFFFFFEFFFFFEFFFFFE -A6A7A6676867FFFFFE8E8F8F6768676566668E8F8FFFFFFEFFFFFEF3F0F09A9B9B676867767676 -B2B3B3FFFEFDFFFFFEFFFEFDFFFFFE656666B2B2B2FFFFFEFFFFFEFFFEFDB2B2B28E8F8EFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFEFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFEFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEC7BED5C7BED5C7BFD5ACA4C4 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB3928CB2938CB2938CB2938DB3 -938CB2A099BCC7BED5C7BFD6C7BED6F3EDF4FFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFEFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCE3DCE9C6BDD5 -A19ABD938CB2736F9C6966955055883E467C3E457B3F457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F467B3E447A3F457B3E457B3E457B3D457B -3E457B3F457B3E467B3E467B3F457B474E82686796686696938CB2938CB3C7BED5D4CDE1FFFEFC -FFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDC7BFD7A099BC7E78A36866953E457B3E457A3E457B3E447A3E457B -505589686695736E9C928CB1938CB2BAB2CDC7BED5C6BED5D4CDDFFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDE4DDE9C7BFD6C7BFD6 -C7BED5938DB3938CB27E79A46966955E5E8F3F457B3E457B3E457B3F457B3D457B5E5E8F736F9C -938DB3C7BED5F2EEF5FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD5CDE0ACA4C47D78A4 -5F5E8F3E457B3E467B3E457B3E457B6866958781AA938DB3C6BED5D5CDE1FFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCE9C7BFD6A199BC8781AA686695474D823E467B3D457B -3E457B515689736F9CA099BBC7BFD6FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEE4DDE99F98BB736F9C474D823E467B3D457B3E457B686695938DB2 -BAB2CDE4DDE8FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEF2EDF2C8C0D7928DB4736F9C -474E823F457B3E457A3D457C696695938CB2D5CDE0FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FEFEFDFFFEFDFEFEFDFFFFFEFFFEFCFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFDBAB1CC -7E78A45156893E447A3E467B474E82736F9DA098BBD4CDE0FFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEE4DDE9 -ACA5C47E78A35156893E457B3D457B484D827E78A3ACA4C4F2EEF4FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2EEF3ACA4C4736F9C3E467C3E457B3E457B686796 -A098BCD4CDDFFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCE4DDE9ACA3C3736F9D484D813E447B3E467B686695A099BBE4DCE9FFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFD -FFFFFEF2EDF4ADA5C4726F9C3E447B3E467B474E827E78A3BAB2CDF2EFF5FFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDB9B0CC8882AB5255883E447B3E467B5E5D8EA099BBF2EFF5FFFEFDFFFFFD -FFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFFFEC7BED47D78A3474E82 -3E457B484D827E78A3BAB1CCFFFEFDFFFFFEFFFEFDFFFEFCFFFDFCFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFED5CCDD8882AC5156893E447B3E457B736F9CACA4C5FFFFFDFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFEFDF2EEF2A099BD5156893E457B3E457B736F9BBAB1CCFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFEFDFFFFFDFFFFFED5CDE07E78A3474E823E447B474E828882AAE4DDEAFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEC6BED67E78A33E457C3E447B515689A099BBF2EEF3FFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C46866963E457C3E467B686695B9B1CCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDACA4C46866953E457B -3E457B7E78A3C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEE4DDE98882AC464D813E457B525689A099BBF3EFF4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFCFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEACA4C45155883E457B464E82938CB2F3EDF4FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDF2EEF3ACA5C55156893E467B474E82938CB2F1ECF3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFCFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEF2EEF3938CB25156893D457B515689ACA4C3FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEBAB1CC6866953E457B474E82938CB2F2EEF4 -FFFFFEFEFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEACA4C3474D82 -3F457B515689ADA5C4FFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC7BFD66966963E457B484E82928CB3F2EEF4 -FFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEACA4C55155893E457B525689ACA4C4FFFFFE -FFFEFDFFFFFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDC7BED66866953E457B474E82938DB3F2EEF4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFCFFFFFEFFFFFEC7BED55E5E8F3D457B525689ACA4C4FFFFFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEC7BED56867963E467B484E82ACA4C4FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEE4DCE8 -6866953E457B474E82A19ABCFFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFDFCFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFDFFFEFCFFFFFEFFFFFEFFFEFDFFFEFCBAB1CC5055883E467B5F5D8FC7BED5FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFEFDF2EEF4938DB23E457B3E457B8882AA -F2EDF3FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB474E823E457B746F9EE4DDE9FFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEBAB1CC5156893E457B696695E4DDEAFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEF2EEF48882AC3E457B484D82A099BBFFFEFDFFFFFE -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC -FFFFFEF2EDF3726F9C3E447B515688BBB2CDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFDD5CDE05E5E8F3E447B5E5E90D5CDE0FFFEFDFFFFFE -FEFEFDFFFFFEFFFEFCFFFFFEFFFEFCFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDA099BB474E82 -3E457B8882ABF2EDF4FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFD -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEA098BB474D813F457B938CB2FFFFFEFFFFFEFFFFFE -FFFFFDFFFEFCFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFDF2EEF5736E9B3F467B525588C7BED5FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEFFFEFDE4DCEA6766953E457B5E5E8FD5CDE0FFFEFCFFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDBAB2CD484E823D457B8882ABFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFDA099BC474E823F457B938CB2FFFFFDFFFFFEFFFFFEFFFDFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -F2EEF57E78A33E457B505589C7BED6FFFFFDFFFFFEFFFDFBFFFFFEFFFEFDFFFFFEFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDE4DCE96866953E457B696696E3DCE8FFFFFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CCE05D5E8F3F457B -7E78A3F3EFF6FFFEFCFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFE938CB23D467C474E82B9B1CCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C3474E82484E82ACA4C4FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED4CDDF5156893E457B8882AAFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFE7E78A33E457B5E5E8FD4CCDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFFFDFCFFFEFCFFFDFCFFFDFCFFFDFC -FFFEFCFFFDFBFFFDFCFFFDFCFFFFFDFFFDFCFFFDFCFEFCFBFFFDFCFFFEFCFFFEFCFFFDFBFFFEFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF3EFF6736E9B3E467C5E5E8FF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFE -F2EDF35E5E8F3E467B7E78A4F2EEF4FFFFFEFFFFFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFBFFFDFC -FFFDFCFFFDFCFFFFFDFEFCFBFFFFFDFFFDFCFFFDFCFFFDFBFFFEFCFFFEFDF0E4EFF0E4EFF0E5F0 -EFE4EFF0E5F0F0E3EFF0E4EFF0E4EFF0E5F0F0E5F0F0E4EFF0E4EFFFFEFCFEFCFBFFFEFCFFFFFD -FEFDFCFFFDFCFFFDFCFFFEFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFDFCFFFFFEA098BB3E457B474E82D4CDE0FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFED3CBDF484E823E457B -A098BBFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFBFFFDFCFFFEFCFEFCFBFFFDFCFFFEFCFEFDFCFBF7F9F0E4EF -E7D6E8E1CFE3D8C2DBD0B8D5CEB4D2C1A5C9C1A4C8C1A4C8C1A5C9C2A5C8C1A4C8C1A5C9C1A4C8 -C1A4C8C2A5C8C2A5C8C1A4C8C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8CCB3D1D1B9D6D4BED8 -DFCCE2E3D2E5F0E5F0F7F0F6FFFDFCFFFDFCFFFDFCFFFEFCFFFDFCFFFDFBFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEC6BED5484D823E457BACA4C4FFFFFEFFFFFDFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FEFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDACA4C53E457B474E82C7BED5FFFFFDFFFFFE -FFFEFDFFFDFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFEFCFFFDFCF8F0F5E9D9E9DECBE1D1B9D5C6AACCC1A5C9C1A4C8C2A5C8C1A3C8 -C2A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C0A4C8C1A5C9C2A5C8C1A3C8C1A5C9C1A4C8 -C1A3C8C2A5C9C1A4C8C1A4C8C1A5C9C1A4C8C2A5C9C1A3C8C1A4C8C1A3C8C1A4C8C1A4C8C2A5C9 -C1A4C8C1A4C8C1A4C8D0B8D5DBC7DEE8D7E8F3E9F2FFFFFDFEFCFBFFFFFDFFFDFBFFFDFCFFFDFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFD -E4DDE95E5D8E3E447B8781AAFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFD938DB23F457B5E5D8FE4DDE8FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFBF5EBF3E3D2E5 -D4BDD8C7AACCC1A5C9C1A4C8C2A5C8C1A3C8C1A5C9C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C2A4C8C1A5C9C2A5C8C1A4C8 -C1A4C8C2A5C9C1A3C7C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8D0B8D5DFCCE2F0E4EFFFFEFCFEFCFBFFFDFCFFFDFC -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEF3EEF4 -736F9D3E447B7E79A4F2EEF5FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFD -FFFEFD7E79A43F457B696695F2EEF4FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFCFFFDFBFFFDFCFFFDFCF8F1F6E7D7E8D4BDD8C6ABCCC1A3C8C2A5C8C1A5C9C1A4C8 -C2A5C8C1A4C8C2A5C9C1A4C8C1A4C8C1A5C9C1A4C8C1A3C8C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8D2BAD6E3D2E5F4EAF2FFFDFCFFFDFC -FFFDFCFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE7E79A4 -3F447A5F5E8FF2EFF4FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF4736F9D3E447B -7E78A4FFFFFEFFFFFEFFFDFCFFFFFDFFFFFEFFFEFCFFFFFEFFFEFCFFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFDFBFFFFFDFEFCFC -F8F2F6E3D2E5CDB4D2C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8 -C2A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C9AECEDBC7DEF4E9F2FEFDFC -FEFCFBFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDACA5C43E457B -5E5D8EE4DDE9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF55E5E8F3E457B8882ABFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFDFCFFFDFCFEFDFCF8F1F6E3D2E5CDB3D2C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8 -C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C9AECFDBC7DEF8F0F6 -FFFDFCFFFDFBFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEACA4C43E467B474D82 -D5CDDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEF2EEF55E5E8E3E457BADA5C5FFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFEFDFFFEFDECDEEBD4BED8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8CDB3D2E8D8E8 -FBF7F9FFFEFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE0474D82474E82D5CDE0 -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEF2EDF35E5E8E3E457BADA5C5FFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFEFDF8F1F6 -DECCE1CAAECEC1A5C9C2A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A4C8C1A3C8C1A5C9C6AACCD8C3DB -F8F2F6FFFDFCFFFDFCFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDD5CEE1484D82474E82D4CCDFFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF45F5E8F -3E467BACA4C3FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFDFCFEFEFCF8F3F7D8C3DBC2A5C8C1A4C8C1A4C8 -C2A5C8C1A3C8C1A5C9C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9D1B8D5 -EFE4EFFFFDFCFFFDFBFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFCD5CEE1474D82484E82D4CCDFFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EDF35F5E8F3E457BACA4C3FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFDFFFFFEFEFCFBFFFEFCEFE4EFD1B8D5C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C2A5C8CDB3D2 -E7D7E8FFFEFDFFFDFBFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFEFDD5CDE0484D82474E83D4CCDFFFFFFDFEFEFDFFFFFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFDF3EFF65D5D8E3F457BACA5C4FFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFEFDFCFFFDFCFFFDFC -F0E5F0D0B7D4C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C9AECE -E8D8E8FFFDFCFEFDFCFFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFDFFFEFDFFFFFDFFFFFED5CDE0484D82474E82D4CDE1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1EDF35D5E8E3F467CADA5C4FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFDFCFFFEFCF8F1F6D4BDD8C2A5C8C1A4C8 -C1A4C8C2A5C8C1A5C9C1A4C8C1A4C8C1A3C8C2A5C8C1A5C9C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C9C1A3C8C1A5C9C1A4C8C2A5C9C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8D0B8D5 -F1E5EFFFFDFCFEFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFED4CDE0474E82484E82D4CCDFFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF2 -5F5E8F3D457BACA4C3FFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFDFCFFFEFCFAF8F9D8C3DBC1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C0A4C8C1A5C9 -C1A4C8C1A5C9C1A3C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8D1B8D5 -F8F1F5FEFDFCFFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFCD5CDE0474D82474E83D4CDE0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6966963D457AADA4C4 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCE3D2E5C6A9CBC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DBC7DE -FAF7F9FFFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFED5CDE0484D825E5E8FF2EDF2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A33E457B8882ABFFFFFDFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDF0E5F0CEB4D2 -C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C6AACCE8D8E8 -FFFDFCFFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEADA5C43E457B5E5E8FF2EEF4FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFD -FFFEFDFFFFFEFFFFFEFFFEFC938DB23E457B7E78A3FFFEFDFFFFFEFFFFFDFFFEFDFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFEFDFCFBF7F9DCC8DFC1A3C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8D1B9D5F8F0F6 -FEFEFCFFFDFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFD -ACA4C33E457B696695FFFFFEFFFFFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDADA5C43D457A686796FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFDFCFFFEFCF0E3EFC9AECFC1A3C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C2A5C8C1A4C8C6AACCE4D3E5FEFDFC -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFC8782AB -3F457B7D78A3FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFED5CDE13E457C -5E5E8FF2EDF4FFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFEFDFCFFFFFD -FBF7F9DBC8DFC2A5C8C1A4C8C1A4C8C1A5C9C1A3C8C1A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A5C9C1A4C8C1A4C8C2A5C9C1A4C8D0B8D5F8F2F7FEFDFC -FFFDFCFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFD7D78A33E457B -ACA4C3FFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEE3DCE9474E82474E82E4DDEAFFFFFD -FFFFFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFEFCF4E9F1CDB3D2C2A5C9 -C1A4C8C1A4C8C2A5C8C0A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A5C9C1A3C8C2A5C8C1A4C8C6AACCECDEECFEFDFCFFFEFC -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFDFFFEFDF3EEF45E5E8F3E457BC7BED6 -FFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF45E5E8F3E447AD4CDE1FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFDFCE3D2E5C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8 -C1A5C9C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C2A5C8C1A4C8DBC7DEFFFEFCFFFDFCFEFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEF2EEF4484D82474E82E2DBE9FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD7E78A23F467BACA4C4FFFFFDFFFEFDFFFFFDFFFFFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFBFAF7F9D8C3DBC2A5C9C1A4C8C2A5C8C1A4C8C2A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C2A5C8CCB3D2F8F1F6FFFDFBFFFDFCFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFED4CDDF3E457C5E5E8FF2EEF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -ACA4C33F467B7E78A2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -F4EAF2CDB3D1C2A5C8C1A4C8C2A5C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C7AACCF0E4EFFFFEFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEACA4C33E457B7E78A3FFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE03E457B5D5E8F -F2EEF4FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFDFCF0E4EFC6AACCC2A5C8 -C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A4C8E3D2E5FFFEFDFFFEFCFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A33E457BACA4C4FFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3EEF4515588474E82E4DCE9FFFEFDFFFFFE -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFDFCFFFEFCE7D7E8C1A5C9C2A5C8C1A4C8C1A4C8C2A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8D8C3DBFFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEF2EEF45F5E8F474E82D5CDE0FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFE7D78A33E467CBAB1CCFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFEFDFCFFFFFDDBC7DEC1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8D0B8D5FBF7F9FFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFED4CDE0484E825E5E8FFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEBAB1CC3F457B7E78A3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFFFDD8C3DBC1A4C8C2A5C8C1A4C8C1A5C9C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A5C9 -C2A5C8C1A4C8C1A4C8C1A4C8CDB3D2FBF8F9FFFDFBFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFD -FFFEFDA099BB3E467B8882ABFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFEFEFDFFFEFDE3DBE7 -474E82515689F2EFF5FFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFBF7F9D4BED8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8CCB3D2FBF8F9FEFCFBFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFE -736E9C3E457BC6BDD5FFFFFEFFFEFCFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFC6866953E447BD5CDE0 -FFFEFDFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFBF7F9CDB3D2C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A5C9C1A3C8 -C2A5C9C1A4C8C6AACCF4EAF2FFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEF2EEF4484D82 -515689F3EEF3FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEA099BB3F457B928CB2FFFEFDFFFFFEFFFFFD -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFBF7FACDB3D2C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A5C9C1A4C8C2A5C9C1A4C8C2A5C9 -C1A4C8C6AACCF4EAF2FFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEBAB1CC3F457B8782AB -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDE4DDE9474E825E5E8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFBF7FACDB3D2C1A5C9C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C6AACCF4EAF2FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE726F9C3F457BC6BFD6FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFE736F9D3E467BD4CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFBF7FACEB4D2 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C5AACC -F4EAF2FFFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4474E82515689F2EDF3FFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDB9B2CC -3E447A8882ABFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFEFDD1B9D6C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A5C9C1A3C8CDB4D2FBF7FA -FFFEFCFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB1CC3E467C8882ABFFFFFEFFFFFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDF2EFF4474D81505689F3EEF4 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFFFDFBD9C4DCC1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8CCB4D2FBF7FAFFFDFB -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE746E9C3E467CD4CCDFFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD8781AA3F467CBAB1CCFFFFFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFEFCFFFDFBD8C3DBC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A3C8C2A5C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8CCB3D2FFFEFCFFFDFBFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDE2DBE9474E82686695FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDE4DBE83D457B726F9CFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFEFCFBFFFEFC -E7D7E8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8D7C2DBFFFEFCFFFDFCFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFE938CB23E457BACA4C4FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFE6866953E447AE3DCE9FFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFBF0E5F0C2A5C8C1A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8DFCCE2FFFEFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFD515689474E82F2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC6BED4 -3D457A938DB2FFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCF4EBF3C6AACCC1A4C8C1A3C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C2A4C8C1A5C9C1A4C8C1A4C8ECDEECFFFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB1CC -3D457B938DB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFC525688474E82F2EFF5 -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFBF7FACCB3D2C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A3C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C6AACCF4EAF2FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE6866953D457B -E4DDEAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFED5CDE0A099BB6866953E457BABA4C5FFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFEFDD4BDD8C2A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C1A4C8CDB3D2FBF7F9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFED4CCE03D457B7E78A3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDE4DDE9 -ACA4C37C78A35155883E467C3E447B3E467B515588FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFDFCE3D2E5 -C2A5C9C1A3C7C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A4C8C1A4C8D7C2DBFFFFFEFFFDFBFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC7E78A33E457BE3DCE9FFFFFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEF2EEF4BAB1CC8882AA5E5E8F3E457B3E467B3F457B -736F9C9F98BC736F9C3E447BADA5C4FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDF4EAF2C1A4C8C1A4C8C2A5C9 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8 -C1A5C9E7D7E8FFFDFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDE3DCE93E457B736F9CFFFFFDFEFEFDFFFFFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5938DB35F5D8E3E457B3D457A3E447B686695938CB2C6BFD6FFFFFDFFFFFEF3EEF5 -474E82696796FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFAF7F9C9AECFC2A5C8C2A5C8C1A4C8C1A4C8C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C3A5C8C1A3C8C2A6C9C1A4C8C1A4C8C1A4C8C7AACC -F4EAF2FEFCFBFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD7E78A33D457BC6BDD5FFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFED5CEE09F98BB736F9C3E457B3E457B -3E447A5E5E8F8881AABAB1CCF2EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFD928CB23F457BC7BED6 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFDFCFFFEFCDBC7DEC2A5C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C2A5C8C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A5C9C2A5C9C1A4C8C1A4C8CDB3D2FFFDFC -FFFDFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEE4DDE93E457B686796FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEE3DCE9ADA5C57E78A3474E823E457B3E467C5156887D78A4ACA5C4E3DCEAFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFDF2EDF4474E82686696FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFCECDEECC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A3C8C1A5C9C2A4C8C1A4C8DFCDE2FEFDFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFE7E79A43E457BD5CEE1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEF2EDF3BAB2CD7E78A3515689 -3E467C3E447B484E82736F9CA099BDE3DCE9FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFCFFFFFDFFFFFEFFFFFE9F98BA3E457BB9B1CBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFBFBF8F9C6ABCC -C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A3C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C2A5C9C1A4C8F5EBF3FFFDFCFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -E4DDE93F457B7E78A3FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDC7BED68882AB5F5D8E3E467C3E457B3E457B686695938CB2D4CCDF -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFD515689515689FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFEFDFCDBC7DEC1A4C8C1A4C8C2A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A3C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8CDB3D2FFFDFCFFFDFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7D78A3 -3E457BE4DDE9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFED4CCDE938DB3 -6866953E457B3E457B3F457B5E5E8F8882ABBAB1CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -ACA4C33F457BACA4C4FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFEF0E3EFC1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A5C9DFCCE1FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCE93E467B7E79A4 -FEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFDE4DDE9A099BC736F9C484D823F467B3E457B5156897E78A3 -BAB2CDF1EDF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC5E5E8F505589 -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFCFEFEFDCAAFCFC1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C8C0A4C8C2A4C8C6ABCCF8F0F5FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD736E9C474E82F2EEF4FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF3 -ACA4C47E78A351568A3E457B3E457B474E82736F9DACA3C3E4DDE9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC7BED63E467B938CB2FFFFFEFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFDFC -FFFEFDE0CCE1C1A4C8C1A5C9C1A4C8C1A5C9C1A3C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8D3BDD8FEFDFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BFD63E457B938CB2FFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEF2EEF4B9B1CC8882AB5E5D8F3E457B3E457B3E457B -696695A19ABDD5CDE1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD736F9C474D82F2EDF2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFEFDFCF8F0F6C6ABCC -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9 -C1A4C8C1A4C8F1E5EFFFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE5E5E8F525689FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE -FFFDFCC8BFD7938DB26866953F457B3E457B3E447B5E5E8F938CB3C7BED5FFFFFEFFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEE3DCE93E457B7E78A3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFEFCFFFEFCD8C2DBC1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C9AECEFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEACA4C43E447BB8B1CCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CDE1A199BC736E9B474E823E457B -3E457B5156898882ABBAB2CDF2EEF4FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFFFE928CB23F457BD5CDE1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFDFCF4EAF2C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8E8D8E8 -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFEFCF3EEF5474E82686695FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFCE4DDE9ACA5C47E78A3474D823E467B3E447B5156897E78A3ACA4C4E4DDEAFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFC515589 -5E5E8FFFFEFDFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFDFCFFFDFCD1B8D5C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C2A4C8C1A4C8C1A5C9C6AACCFBF7FAFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFD8882AB3E457BE3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF4BAB1CD8882AA515689 -3E457B3E447B474E82736F9CA098BCD5CEE0FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCBAB2CE3E457BACA4C4FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFC -FFFDFCF0E4EFC1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8DFCCE2FFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFED4CCE0 -3D457B938CB2FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEC7BED5938CB25E5E8F3E467C3E457B3E457B686695928CB2C7BFD6 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE7D78A2474E82F2EEF4FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFDFCD0B8D5 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C2A5C8C6AACCFBF7FAFFFEFCFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE5D5D8E515689 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDD4CCDFA099BB -6966953E457B3E457B3E457B5D5E8F8881AABAB1CDF1EDF2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFFFEF2EEF33E447B7E78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFEFCF0E4EFC1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C8DFCCE2FFFDFCFEFDFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDADA4C33D457BC7BED6FFFFFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEE4DDEAADA5C4726F9C474E823F457B3E467C5156887E78A3 -ACA4C4F2EEF3FFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEACA4C53E457BBAB1CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFDFBD1B9D5C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C6AACCFBF7F9FFFDFCFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDF2EEF53F467C7E78A3FFFFFEFFFEFDFFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEF2EEF4 -BAB1CC7E78A35256893D457B3F457B474E82736F9C9F98BBE3DCE8FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -736E9C474E82FFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFDFCF0E4EFC2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C2A5C8E7D8E9FFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE736E9B474E82FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEBAB1CC8882AB5D5D8E3F457B3D457B3E457B -686695A199BCD4CDE0FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2EEF43E467B8882AA -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCD7C2DBC2A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C9AECEFEFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDACA4C53E457BBAB2CDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFED5CDE0928CB26867963E457B3E447B3E467B5E5E8F8781ABC7BFD6FFFEFDFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFDFCFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEACA4C43E457BD5CEE0FFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFEFDFCF8F2F6 -C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -E8D9E8FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDF2EEF33E457C7D78A3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFED4CCDFA199BD726F9C484E823E467B -3E447B5156897E78A4BAB2CDF1EDF3FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE736E9C515689FFFFFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFEFCDBC8DFC1A4C8C1A5C9 -C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9D1B9D5FFFDFC -FFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFFFE736F9C484E82FFFFFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDE5DEEAACA3C37E79A45156893E467B3D457B484D827D78A3ACA4C4E4DDE9FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEF2EEF43E457B7E78A3FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCC7ABCCC1A5C9C1A4C8C1A4C8C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9F4EBF2FFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEADA5C5 -3E457BBAB2CDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDF2EEF3BAB1CD8882AB5E5E8F -3E467B3E447B3F467B736F9DA099BBD5CDE0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFDACA4C53E457BBAB1CCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFDFCE8D9E9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C2A6C9 -C1A5C9C1A4C8C1A5C9C2A5C9C1A5C9C1A5C9C2A6C9C1A5C9C2A5C9C1A5C9C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A3C8C2A5C8C1A4C8C1A5C9C2A5C9C1A5C9C2A5C9C2A6C9C1A5C9C1A5C9C2A5C8C1A5C9 -C1A5C9C1A5C9C1A4C8C1A5C9C2A6C9C1A5C9C1A4C8C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6CAD8C3DCFFFDFCFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF53E457B8881AA -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFD -FFFFFEFFFEFDFFFEFDFFFEFCC6BFD6938DB36867963E457B3F457B3E457B686695938CB2C7BFD5 -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE7E78A3 -3E457BFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCD1B9D5C2A5C9C2A6C9C2A6C9C2A6C9C2A5C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A5C9C2A7CAC2A6C9C2A6C9C3A6C9C2A5C9C2A6C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8C2A6C9 -C1A5C9C1A5C9C2A5C8C0A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9 -C2A7CAC2A5C9C2A6C9C2A6C9C3A6C9C2A6C9C3A6C9C2A7CAC2A6C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A5C9C6ABCDFFFEFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD68669552568AFFFEFCFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDD5CEE09F99BC -746F9C3E457B3E457B3D457B5F5E8F8882ABBAB1CDF3EFF5FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD474E82736E9CFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -F8F2F6C3A6C9C4A7CAC3A6C9C4A7CAC3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9 -C3A6C9C3A6C9C3A6C9C2A6C9C2A7CAC2A5C9C2A7CAC3A6C9C2A7CAC2A6C9C2A6C9C2A6C9C2A5C9 -C2A6C9C2A6C9C1A5C9C1A5C9C2A5C8C1A5C9C2A5C9C1A4C8C1A5C9C1A5C9C2A6C9C1A5C9C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C2A5C9C1A4C8C2A6C9C2A6C9C2A5C9C2A6C9C1A5C9C2A7CAC3A6C9C2A7CAC2A5C9C2A6C9 -C2A6C9C2A5C9C4A7CAC3A6C9C2A7CAC3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9 -C3A6C9C3A7CAC2A6C9C4A7CAC3A6C9E9D9E9FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFFFEA099BB3E457BE3DCE8FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDE3DCE8ACA4C47E79A4474E823E457B3E457B5055887E78A3 -ADA5C5E4DDE9FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED4CCDF3E447BA099BCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCE0CEE3C3A6C9 -C3A8CAC3A6C9C3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A6C9C3A6C9 -C3A8CAC3A6C9C3A7CAC3A8CAC4A6C9C3A6C9C2A6C9C4A7CAC3A7CAC2A6C9C2A6C9C2A6C9C2A5C9 -C3A6C9C2A6C9C2A7CAC2A5C9C1A5C9C2A6C9C1A4C8C1A4C8C2A6C9C2A5C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C2A5C9C3A6C9C2A5C9 -C2A6C9C2A6C9C3A6C9C2A6C9C2A6C9C4A7CAC3A6C9C3A7CAC3A6C9C4A8CAC3A7CAC2A7CAC4A7CA -C2A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC2A6C9 -C3A8CAC3A7CAC3A7CAD5BFD9FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD5CDE13E447AA19ABDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDF2EFF5 -BAB2CD7E78A25156893E447B3E457B474E82736F9CA099BBD5CEE0FFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEA099BB3D457BE3DBE8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFBCAB1D0C4A9CBC2A7CAC4A8CA -C3A8CBC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A7CAC3A7CAC3A7CAC3A7CA -C3A6C9C3A7CAC2A7CAC3A8CAC4A7CAC2A7CAC3A7CAC4A7CAC3A6C9C3A6C9C3A7CAC3A6C9C2A6C9 -C3A6C9C3A7CAC2A5C9C2A6C9C2A6C9C1A5C9C1A5C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C2A5C9C2A6C9C2A5C9C2A6C9C2A7CAC2A6C9C2A7CAC4A7CAC3A6C9 -C3A6C9C4A7CAC3A7CAC2A7CAC4A7CAC2A7CAC4A7CAC3A7CAC4A7CAC3A7CAC4A8CAC2A7CAC3A8CA -C4A7CAC2A7CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC2A7CAC3A8CA -C3A7CAC3A8CBFBF7F9FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FEFEFDFFFFFEFFFFFEFFFEFD474E82746E9CFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCC7BED68882AB5E5E8F3E457B3E457B3F467C -696695938DB3D5CDE0FFFFFEFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFEFDFFFEFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFD696696525689FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCF6EDF4C3A7CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CA -C4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A9CBC4A8CA -DAC5DDE0CEE2E0CEE3D6C1DAD1BAD6C6ACCDC4A7CAC4A7CAC2A7CAC4A7CAC3A7CAC3A6C9C2A6C9 -C2A7CAC2A5C9C2A6C9C2A7CAC3A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C2A6C9C2A5C9C2A6C9C2A6C9C2A7CAC3A6C9C4A6C9C3A7CAC3A7CAC3A7CAC3A7CAC3A7CA -CAB1D1D2BAD6D4BFD9E0CEE3E0CEE3DAC5DDC4A9CBC5A8CBC3A8CAC4A8CAC4A8CAC3A8CAC4A8CA -C4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A9CBC5A8CA -E9DAE9FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE7E78A3474D82FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFEFD -FFFFFDD5CDE0A099BB6A67953E457B3E457B3E457B5E5E8F8882ABBBB2CEFFFEFCFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD3E457B7E78A3FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCDDCAE0C4A9CBC4A9CBC5A9CBC3A8CBC4A9CBC4A9CBC4A9CBC4A9CB -C4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC5AACCC3A8CBC4A8CAF1E7F0FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFCF9FAF1E6F0E0CEE2CFB6D4C3A6C9C3A8CAC3A7CAC2A7CAC3A6C9 -C3A6C9C2A6C9C2A6C9C2A7CAC2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9 -C2A6C9C2A6C9C3A7CAC2A7CAC3A8CAC2A7CAC4A7CAD1BAD6E0CEE3F1E6F0FFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEF2E7F1C4A8CAC4A9CBC5A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CB -C4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC5AACCC2A7CAC4A9CBD6C1DAFFFDFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -ACA5C43E447BD5CDDFFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCE4DDEAA099BB736F9C474E823E457B -3F457B5055897E78A3ACA4C4F2EEF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E467B -ACA4C4FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCCCB2D1C5AACCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCC -C6ABCCC6ABCCC6ABCCC6AACCC6AACCC5AACCC4A9CBC5AACCC5AACCDAC6DEE1CFE3E6D5E7F2E7F1 -F2E7F1FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFDF9FAE9DAE9CEB5D3C4A7CAC2A6C9C4A7CAC3A6C9 -C3A6C9C2A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C2A6C9C3A6C9C3A7CA -C2A7CAC4A8CAD1BAD6E9D9E9FCF9FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2E7F1F2E7F1E6D5E7 -E1CFE3DBC6DEC5AACCC5AACCC5AACCC6AACCC5AACCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCC -C6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCDC5AACCC7ABCCC5AACCC6A9CBFCF8F9FFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE93E457B -9F98BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDF2EEF3ACA4C47E78A35156893E457B3E457B474E82736F9CACA4C4E4DDE9FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB3E457BE4DDEAFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCF8F3F7 -C6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCD -C6ABCDC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC5AACCC6AACCC6ABCCC5AACCC5AACCC4A9CB -CFB8D5DAC5DDEADCEBFDF9FAFFFFFEFFFEFDFFFFFEF5EDF4D9C4DDC2A7CAC3A7CAC2A7CAC3A6C9 -C3A6C9C2A6C9C2A5C9C2A6C9C2A6C9C1A4C8C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CAC3A8CAD9C4DCF8F3F7 -FFFEFDFFFEFDFFFFFEF9F3F7EADBEADAC6DECBB2D1C5AACCC5AACCC5AACCC6AACCC7ABCCC5AACC -C6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCDC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCC -C6ABCCC6ABCCC6ABCCC6AACCC5AACCC6ABCDC5AACCC6ABCCEADBEAFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD474E82736F9DFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEBAB2CD8881AA5E5E8F -3E447B3E457B3E457B6967969F98BBD4CDE0FFFFFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD736F9D474D82FFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFEFDFCE7D7E8C8ACCDC8ACCD -C8ACCDC8ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ABCD -C7ABCDC7ABCDC7ABCDC6ABCDC7ABCDC7ABCDC6ABCCC6ABCDC6ABCCC6ABCCC6ABCCC6AACCC5AACC -C5A9CBC5AACCD6C1DAEADBEAFFFFFEFFFFFEFFFFFEF8F3F7D5BFDAC3A8CAC3A6C9C3A7CAC3A6C9 -C2A7CAC2A6C9C2A5C9C2A6C9C1A4C8C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C3A6C9C2A6C9C2A6C9C2A6C9C3A7CAC3A7CAC3A7CAD9C4DDF8F3F7FFFFFEFFFFFEFDF9FAEADBEA -D0B7D4C5AACCC5AACCC6ABCCC6ABCDC6ABCCC6ABCCC5AACCC6ABCDC6ABCCC7ABCDC7ABCDC7ABCD -C7ABCDC7ABCDC7ABCDC7ABCDC7ABCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCD -C7ABCDC8ACCDC8ACCDC8ACCDC8ADCEC7ADCED8C3DBFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE726F9C525689FFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEC6BED5938CB26966953F467B3E457B3F467B5E5E8F928DB2C7BED5 -FFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD515689736F9CFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDD4BFD9C9AECEC9AECEC9AECEC9AECE -C9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC8ADCEC8ADCE -C8ADCEC8ADCEC8ADCEC8ACCDC7ACCDC7ACCDC7ABCDC7ABCDC7ABCCC6ABCCC6AACCC6ABCDC6ABCC -C5A9CBC5AACCC9AECEE2D0E3FDF9FAFFFFFEFFFEFDF2E6F0CAB1D1C3A7CAC3A8CAC2A6C9C3A6C9 -C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C2A5C9C2A6C9C3A6C9 -C3A6C9C3A8CAC4A7CACEB5D3F1E5EFFFFFFEFFFFFEFDF8FAE2D0E3C8AECEC5AACCC6ABCCC6ABCC -C6ABCCC6ABCCC6ABCDC6ABCDC7ABCDC7ABCDC7ABCDC7ACCDC8ACCDC8ACCDC8ADCEC8ADCEC8ADCE -C8ADCEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECEC8AECE -C9AECEC8AECEC8ADCEC9AECECCB2D1FFFEFDFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938DB43E447BE3DCE9FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFED5CDE0A099BC -726F9C474E823E457B3E457B5156898881AABBB2CDF2EDF3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF2EDF33F457B938DB4FFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCCAAFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCF -C9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AECEC9AECFC9AECF -C9AECEC9AECEC8ADCEC8ADCEC8ADCEC8ADCEC8ACCDC6ADCEC8ACCDC6ABCDC7ABCDC7ABCDC6ABCC -C6ABCCC4A9CBC8AECEE2D0E3FFFFFEFFFFFEFCF9FADCC9E0C3A6C9C3A7CAC3A8CAC2A6C9C2A6C9 -C2A7CAC3A6C9C1A5C9C1A4C8C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A7CAC3A6C9C3A7CAC3A7CAC3A7CA -DCC9E0FFFEFDFFFFFEFDF9FAE1CFE3C9AFCFC4A9CBC6AACCC6ABCDC6ABCCC6ABCCC7ABCDC7ABCD -C7ACCDC8ACCDC8ADCEC8ACCDC8ADCEC9AECEC9AECEC9AECEC9AECFC9AECFC9AECFC9AECEC9AECF -C9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AECFC9AFCFC9AECEC9AFCFC9AFCF -C9AFCFCAB0D0C9AFCFF6EDF4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC6BDD53F457BBAB1CDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFDFCFFFEFDFFFFFE -FFFEFDFEFEFDFFFEFDFFFFFDFFFFFEE4DDEAACA4C47E79A45156893E457B3E447A484E827E79A4 -ACA4C4E4DDE9FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BFD63D467BC6BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFDFBF3E9F2CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1 -CBB2D1CBB2D1CBB2D1CBB2D1CAB1D0CAB1D0CAB1D0CAB1D0CAB1D0CAB0D0CAB0D0CAB0D0CAAFCF -C9AFCFC9AFCFC9AECFC9AECEC9AFCFC9AECEC8ADCEC8ADCEC6ACCDC7ACCDC7ABCDC6ABCCC6ABCC -C7ABCDC4A9CBCBB2D1F2E6F0FFFFFEFFFFFEE9DAE9C7ABCDC2A7CAC4A7CAC3A7CAC2A5C9C2A6CA -C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A5C9C3A6C9C2A7CAC3A7CAC8ADCEF0E4EFFFFFFEFFFEFD -F2E7F1CAB2D1C5AACCC5AACCC7AACCC6ACCDC7ABCCC7ABCDC7ADCEC8ADCEC8ADCEC8ADCEC9AECE -C9AFCFC9AFCFCAAFCFC9AFCFC9AFCFC9B0D0C9B0D0CAB0D0CAB1D0CAB1D0CAB1D0CAB1D0CBB1D0 -CBB1D0CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CCB2D1CBB2D1CBB1D0CBB2D1CBB2D1 -CBB2D1E4D3E6FFFDFBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEF3EEF43D457B938CB1FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFEFFFEFCF3EEF4 -BAB1CC8882AB5156893E457B3D457B484D82736F9CA099BCD5CDE0FFFFFEFFFFFDFFFFFEFFFFFE -FFFFFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFEFDFFFFFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD928DB23E447B -F3EFF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFEFCE6D6E7CDB3D1CDB3D2CDB3D2CDB3D2CDB3D2CDB3D2CCB3D2CCB3D2CCB3D2CCB3D2CCB3D2 -CCB3D2CCB3D2CCB3D1CCB3D1CCB3D1CCB3D1CCB3D2CBB2D1CBB2D1CCB2D1CBB2D1CAB1D0CAB1D0 -CAB0D0C9B0D0C9AECFCAAFCFC9AECEC9AECFC9AECEC7ACCDC8ACCDC7ABCDC7ABCDC5AACCC6ABCD -C6ABCCC5AACCE1CFE3FFFFFEFFFFFEF5EDF4C7ACCDC3A8CAC3A7CAC3A6C9C2A6C9C2A6C9C2A6C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9 -C2A6C9C2A6C9C2A6C9C3A6C9C3A8CAC4A7CACEB6D4F5EDF4FFFFFEFFFFFEDDCAE0C6AACCC7ABCC -C6ABCCC6ABCDC7ACCDC7ABCCC8ACCDC8ADCEC8ACCDC8AECEC9AECFC9AFCFC9AFCFC9B0D0CAAFCF -CAB0D0CAB1D1CBB2D1CBB2D1CBB2D1CBB2D1CCB3D1CCB3D1CCB3D1CCB3D1CCB3D1CCB3D2CCB3D2 -CCB3D2CCB3D2CCB3D2CCB3D2CCB3D2CDB3D2CDB3D2CDB3D2CCB3D2CDB3D2CDB3D2CEB4D2D8C3DC -FFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFD525688686796FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC7BFD7938CB25E5E8F3E457B3E457B3D467C -696695938CB3C7BED6FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE746F9C505689FFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFDFCFFFEFCDAC5DD -CEB6D4CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB4D3 -CEB4D3CEB4D3CEB4D3CEB4D3CDB4D2CDB3D2CDB3D1CDB3D2CCB3D2CCB3D1CCB3D1CBB2D1CBB2D1 -CCB1D0C9B0D0CBB0D0C9AFCFC9AFCFC9AECFC9AECEC7ADCEC8ADCEC6ACCDC7ABCDC6ABCDC6ABCC -C5AACCD2BCD8FDF9FAFFFFFEF8F3F7CEB5D3C4A7CAC3A7CAC3A6C9C2A6C9C2A6C9C2A6C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9 -C3A6C9C3A6C9C3A7CACEB6D4FCF8FAFFFFFEFDFAFBD0B6D4C5A9CBC6ABCCC5AACCC7ACCDC7ABCD -C8ACCDC9AECEC9AECEC9AECFC9AECFC9AFCFCAB0D0CAB1D0CBB1D0CBB2D1CCB3D1CCB3D1CCB3D1 -CDB3D2CDB3D2CDB3D2CDB3D2CDB4D2CEB4D3CEB4D3CEB4D3CEB4D3CEB4D3CEB4D3CEB5D3CEB5D3 -CEB5D3CEB5D3CEB5D3CFB5D3CDB5D3CEB5D3CEB5D3CDB4D2CDB6D3CDB4D2CEB6D4FFFDFCFFFFFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE736F9C -515689FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED5CDE19F98BB736F9C3E457C3E457B3E457B5E5E8F8882ABBAB2CDF2EEF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5D5E8F696695FFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFDFCCFB7D4D0B7D4D0B7D4 -D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4CFB6D4 -CFB6D4CFB6D4CFB7D4CFB6D4CFB5D3CEB5D3CEB5D3CEB4D3CDB3D2CDB3D2CDB3D2CBB2D1CDB3D1 -CBB2D1CBB1D0CAB1D0C9AFCFC9AFCFC9AECEC9AECEC8ADCEC7ACCDC7ABCDC6ABCDC6ABCCC6ABCC -D0B7D4F9F3F7FFFFFEFCF9FACEB5D3C3A7CAC3A7CAC3A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CA -CEB5D3FCF9FAFFFFFEF6EDF4C9AECEC7ABCCC6ABCCC6ABCCC7ABCCC7ACCDC8ACCDC9AFCFC9AECE -C9B0D0C9AFCFCAB1D0CAB1D0CBB2D1CBB2D1CCB3D1CCB3D2CDB3D2CDB4D2CDB4D2CEB5D3CEB5D3 -CEB5D3CFB6D4CFB6D4D0B6D4D0B6D4CFB6D4D0B6D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4 -D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B8D5D0B7D4F8EFF4FEFDFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE938DB23E457BF2EEF3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED3CCDFC7BED5C6BDD5 -ACA4C4938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2928CB2938DB3BAB1CCC7BED5C7BED5E4DDEAFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE4DDE9ACA4C4746F9D474E823E467B -3E457B5055897E78A3ACA4C4F2EFF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3D457B938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCF8F0F6D1BAD6D1B9D6D1BAD6D1BAD6D1BAD6 -D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D2BAD6D1B9D6D1B9D6D1B9D5D1B9D5 -D0B8D5D0B8D5D0B8D5D0B8D5D0B8D5CEB7D4D0B7D4CEB5D3CEB5D3CEB4D3CDB3D2CDB3D1CBB2D1 -CBB2D1CBB2D1CAB0D0C9AECFC9AFCFC9AECEC8ADCEC8ACCDC7ABCDC7ABCDC6ABCDC6ABCCC9AECE -F6EDF4FFFEFDF5EDF4C7ACCDC3A7CAC3A7CAC3A6C9C2A6C9C2A6C9C2A6C9C1A5C9C2A5C9C1A5C9 -C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C2A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A7CAC3A7CAC3A7CACAB1D0FCF9FAFFFFFE -F6EDF4C9AECEC5ABCDC7ABCCC6ABCDC7ABCCC8ACCDC8ADCEC9AECEC9AFCFC9AFCFCAB0D0CBB1D0 -CCB2D1CCB3D2CCB3D2CDB3D2CFB5D3CEB5D3CEB5D3CFB6D4CFB6D4D0B7D4D0B7D4D0B8D5D0B8D5 -D0B8D5D0B8D5D1B9D5D1B9D6D1B9D6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6 -D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6ECDDEBFFFEFCFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDBAB1CC3E457BC7BFD6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEF2EEF3 -C7BFD7ACA4C4928DB37E78A36866955156893E457B3D457B3F457B3E447B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B -3E457B3E457B3E457B3E457B3F457B3D457B3E447A5E5E8E6866957E78A3938CB2BAB1CCC8BFD6 -FFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFD -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEF3EDF3BAB2CE7E78A35255883E457B3F457B474D81726F9DA099BBE4DDE9FFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED5CDE03E457BACA4C4FFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFDEDDEECD3BBD6D3BDD8D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7 -D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D2BCD7D2BBD7D2BBD7D2BBD7 -D2BBD7D1B9D5D1BAD6D1BAD6D0B7D4D1B9D5D0B7D4CFB5D3CFB5D3CEB6D4CDB4D2CCB3D2CCB3D1 -CBB2D1CBB1D0CAB0D0C9AFCFC9AFCFC9AECEC8ADCEC7ACCDC7ABCDC6ABCCC5AACCC9AECEFDF9FA -FFFEFDF5EDF4C3A8CBC3A6C9C3A7CAC3A6C9C2A6C9C2A6C9C1A5C9C2A6C9C2A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8 -C1A4C8C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A3C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C1A5C9C2A6C9C2A5C9C3A7CAC3A6C9C3A8CAC8ADCEF5EDF4FFFFFEF6EDF4C8ADCEC6ABCC -C6AACCC6ACCDC7ABCCC7ADCEC8AECEC9AECEC9AFCFCAB0D0CBB1D0CBB2D1CCB3D1CDB3D2CEB4D3 -CEB5D3CFB5D3CEB6D4D0B7D4D0B7D4D1B9D5D0B9D5D1BAD6D1BAD6D1BAD6D2BBD7D2BBD7D2BBD7 -D2BBD7D2BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7 -D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7E3D2E5FFFDFCFFFDFBFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED4CCDF3D457BACA4C3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDC7BFD7ACA4C48882AB686796474E823E457B3D457B3E447B -3E467B484E82686796736F9C938CB2938CB2ACA4C4C7BED5C7BED5D5CDE0FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFBC7BFD7 -C6BDD4C7BED69F99BC938CB2928CB26966966866953E457B3E457B3E457B3D457B3E457B515588 -686696928CB2BAB1CCD5CDE0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEBAB1CD8882AA5F5D8E -3E457C3D457A3E447B686795938CB2D3CCDFFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C6BED63E457BC7BFD6FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFDFCE5D5E6D5BFD9D6BFD9D5BFD9D5BFD9D5BFD9D6C0DAD6C0DAD6C0DAD6C0DA -D6C0DAD5BFDAD5BFDAD5BFD9D5BFD9D5BFD9D5BFD9D4BED9D4BED8D3BDD8D4BED8D4BDD8D3BDD8 -D2BBD7D2BBD7D3BCD7D1BAD6D1BAD6D1BAD6D0B8D5CFB7D4CFB6D4CFB6D4CEB4D3CDB3D1CCB3D1 -CBB2D1CAB1D0CAB0D0C9AFCFC9AECEC8ADCEC8ACCDC7ABCCC6ABCCC6ABCCD0B7D4FDF9FAFFFFFE -E4D3E6C3A7CAC3A7CAC3A6C9C4A7CAC2A6C9C3A6C9C1A5C9C1A5C9C2A6C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A4C8C2A5C8C1A4C8C9AFCFD0B8D5 -CAAFCFC1A4C8C1A5C9C2A4C8C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C9AECED1B9D6C8ADCEC2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9 -C2A6C9C2A6C9C2A6C9C3A8CAC4A7CAECDEECFFFFFEFDF9FACCB2D1C6ABCCC6ABCCC7ACCDC8ACCD -C8ADCEC9AECEC9AFCFC9AFCFCAB0D0CBB2D1CCB3D1CCB3D2CEB4D3CEB5D3CFB6D4D0B7D4D0B8D5 -D0B9D5D1BAD5D1BAD6D2BBD7D3BBD7D2BCD7D3BCD7D3BCD7D3BDD8D4BED8D4BED8D4BED8D5BFD9 -D5BFD9D5BFD9D5BFD9D5BFD9D5BFDAD5BFDAD6C0DAD6C0DAD5BFDAD5BFDAD5BFDAD5BFD9D5BFD9 -D5BFD9D5BFD9D5BFD9DCC9E0FFFDFBFFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFE3F457B938CB2FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDE4DDE9ACA3C3 -8882AB6866953D457C3E447B3E467B3F457B6866957E78A3938CB2C6BED5D5CEE1FFFEFCFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFDFCFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDC7BFD6BAB1CC938DB3736E9C5E5E8F3E457B -3F457B3D457B3F457B696695938DB3BAB1CCF2EEF4FFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFEFCFFFFFEFFFEFDFFFFFED4CCDF938DB46866953E457B3E457B3E457B5E5E8F8881AAC6BED6 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB33E457B -F2EEF4FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFDFCE2D0E4D9C1DBD7C2DBD8C2DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DBD7C2DB -D7C2DBD7C2DBD7C2DBD7C2DBD7C1DAD7C1DAD7C1DAD6C1DAD6C0DAD5BFDAD5BFDAD5BFDAD4BED9 -D3BDD8D3BDD8D2BCD7D2BBD7D1BAD6D1B9D6D0B8D5D0B6D4CFB6D4CFB5D3CDB4D2CCB3D2CBB2D1 -CBB1D0CAB0D0C9AFCFC9AECEC8ADCEC7ACCDC8ACCDC5AACCC7ABCCD7C2DBFFFFFEFFFFFED5BFDA -C3A7CAC3A7CAC3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8C1A4C8C1A4C8C1A4C8C1A5C9DECDE2FFFFFEDECDE2C2A5C8 -C1A3C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9DFCEE3FFFEFDE0CEE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9 -C4A7CAC3A7CADCC9E0FFFFFEFFFFFED2BCD7C6ABCDC6ABCCC6ABCDC7ABCDC8ADCEC9AECECAAFCF -C9B0D0CAB1D0CBB2D1CCB3D2CDB4D2CEB5D3CFB6D4D0B7D4D0B8D5D1B9D5D1BAD6D2BBD7D2BBD7 -D4BCD7D4BDD7D3BDD8D5BED9D5BFD9D5BFD9D6C0DAD6C1DAD7C1DAD7C0DAD7C1DAD7C2DBD7C2DB -D7C2DBD7C2DBD7C2DBD7C2DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DBD8C2DBD8C2DBD8C2DB -D8C2DBD8C2DBFEFDFCFFFDFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFEFD505589686695FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEE3DCE9ACA4C47E78A35156893E457B3F457B3D457A696695 -8882ABACA5C4D5CDE0FFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFCFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDC7BFD6A099BB -7E79A35E5E8F3E447B3D457B3F457B5E5E8F8882ABBAB1CCF3EEF4FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEE4DDE9A099BC -736F9D474D823F457B3D457B5156897E78A4BAB2CCF2EEF4FFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8882AB3E457BFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFEFCFAFFFEFDDAC5DD -D9C5DDDBC6DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DD -DAC5DDD9C4DDD9C4DCD9C4DCD9C4DCD8C3DCD7C2DBD8C3DBD8C2DBD6C0DAD7C1DAD6C0DAD5BFD9 -D4BED9D4BDD8D2BCD8D2BBD7D1BAD6D1B8D5D0B8D5CFB6D4CFB6D4CEB4D3CDB3D2CCB3D1CBB2D1 -CAB1D0C9AFCFC9AECEC8ADCEC8ACCDC6ABCCC6ABCDC6ABCCE5D5E6FFFFFEFCF9FAC7ACCDC3A7CA -C3A7CAC4A6C9C2A6CAC2A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8E0CEE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8E0CEE2FFFFFEDECDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A5C9C2A6C9C3A7CAC2A6C9C9B1D1 -FCF9FAFFFFFEE1CFE3C5AACCC7ABCCC7ABCDC7ACCDC8ADCEC9AECEC9AECECBB0D0CBB2D1CCB3D1 -CDB3D1CEB4D3CFB5D3CFB7D4D0B8D5D1B9D5D1BAD6D3BBD7D3BCD7D3BDD8D4BED9D5BFD9D5BFDA -D7C1DAD7C1DAD7C2DBD8C3DBD8C3DBD8C3DCD9C4DCD9C4DCD9C4DDD9C4DDD9C5DDDAC5DDDAC5DD -DAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DD -F8F3F7FEFDFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFD -FFFFFE696695676695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -D4CCE08782AB5F5E8E3E467B3E457B3E457B686695938CB2C6BED5FFFFFDFFFFFEFFFFFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFDFFFEFDFFFFFE -F2EEF4BAB2CE8882AB5D5E8F3E457B3F457B3D457B696696A098BAE4DDE9FFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEE4DDE9ACA4C47E78A45156893E457B3E457B474E827E79A3 -ACA4C4E4DDEAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686696686796FFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFBF7F9DCCAE0DDCAE0DCC9E0 -DCC9DFDCC9E0DCC8DFDCC8DFDCC8DFDBC7DEDBC7DEDBC7DEDBC7DEDCC8DFDCC8DFDCC8DFDBC7DE -DBC7DEDBC7DEDBC6DEDBC6DEDAC6DEDAC5DDDAC5DDD9C4DDD9C4DCD7C2DBD7C2DBD7C1DAD6C0DA -D6BFD9D3BDD8D4BDD8D1BBD7D1B9D5D1BAD5D0B8D5CFB6D4CEB5D3CDB3D2CCB3D1CBB2D1CAB1D0 -C9AFCFC8AECEC8AECEC8ACCDC6ABCDC5AACCC9AFCFF8F3F7FFFFFEE9DAE9C3A7CAC4A8CAC2A5C9 -C2A6C9C2A6C9C2A6C9C1A4C8C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C2A5C8C2A5C9C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8DFCDE2 -FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9C3A6C9C3A8CAC3A6C9EEE0EDFFFFFEF6EDF4 -C5AACCC6ABCDC6ABCCC7ABCDC7ACCDC9AECEC9B0D0CBB0CFCBB2D1CCB3D1CDB3D2CEB4D3CFB6D4 -D0B7D4D0B8D5D1BAD6D2BBD7D4BCD7D3BDD8D6C0DAD6C0DAD6C1DAD6C1DBD9C3DCD8C3DBD9C4DC -D9C4DDDAC5DDDAC5DDDBC6DEDBC6DEDBC7DEDBC7DEDBC7DEDBC8DFDCC8DFDCC8DFDCC8DFDBC7DE -DBC7DEDBC7DEDCC8DFDCC8DFDCC8DFDCC9E0DCC9E0DCC9E0DCC9E0DCC9E0DCC9E0F5EDF4FFFFFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD8882AB -3E447BFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEB9B2CE7E78A3474D823E467B3E447B -5E5D8E8882ABC7BED6FFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFDFFFFFEF2EDF4B9B1CC7F79A45156893F457B3E467B5155888882ABD5CEE0FFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEF2EDF4 -BAB1CC8882AB5E5E8F3E467B3E447A3E457B736E9B9F98BCD5CDE0FFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5D5E8E686696FFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD1C4D6C3B3CABEACC6AE97B9AE96B9AE96B9AE96B9AE96B9 -AE96B9AE96B9AE96B9AE96B9AE96B9AE96B9AE97B9AE97B9AE97B9AD96B9AD96B9AD96B9AD95B8 -AD95B8AC95B8AC95B8AC94B8AB93B7AB94B7AB93B7AB93B6B59EBDD7C3DCD9C4DCD7C0DAD6C1DA -D5BFD9D4BED8D3BDD8D2BBD7D1BAD6D0B8D5CFB6D4CEB5D3CDB3D2CCB3D1CBB2D1CAB0D0C9AFCF -C9AECEC7ADCEC7ACCDC6ABCDC5AACCD3BBD7FFFFFEFFFFFECEB5D3C3A7CAC4A8CAC3A6C9C2A6C9 -C2A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A5C9C1A4C8C2A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8DFCDE2FFFFFEE0CEE2 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C3A7CAC2A7CAD2BCD7FFFEFDFFFFFED0B7D4C6ABCCC6AACC -C7ABCDC8ACCDC9AECEC9AFCFCAB0D0CBB2D1CCB3D1CDB3D2CEB4D3CFB6D4D0B8D5D1B9D5D1BBD7 -D2BCD7D4BDD8D5BFD9D7C0DAD6C0D9D9C2DBD7C3DBCBC1D4BCBDCBBDBECDBDBECCBDBFCDBEBFCD -BEBFCDBFC0CDBFC0CDC0C0CDBFC0CDBFC1CEC0C1CEC0C1CEC0C1CEC0C1CEC0C1CEC0C1CEC0C1CE -C0C1CEC0C1CEC0C1CEC0C1CEC0C1CEC0C1CEC0C1CEC0C1CEC1C2CECCD2D7D7E6E3E1EBE7FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457BFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDBAB1CD7E78A3474D823E457B3E457C736E9BACA4C4E3DCE9FFFFFEFFFFFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDD4CDDFA098BB5E5E8F3E467B3E447B5256898882ABD5CEE0FFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDC6BDD5938DB26866953E457B3E457B3E457B -5E5E8F938CB2C7BED5FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E457B8882ABFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFD66507F402B63402B63402B63402B63412B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63412C63402B63412B63402B63402B63402B63563D71816A95BFA8C6D7C1DAD6C0DA -D3BED9D3BCD7D2BBD7D1BAD6D0B8D5CFB7D4CEB5D3CDB3D2CCB3D1CBB1D0CAB0D0C9AFCFC9AECE -C8ACCDC7ABCDC6AACCC6ABCDEEE0EDFFFFFEF2E7F1C3A7CAC2A7CAC3A6C9C3A6C9C2A6C9C1A4C8 -C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9DFCDE2FFFFFEDFCDE2C1A4C8C1A5C9C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCEE3FFFFFEDFCDE2C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9 -C2A6C9C2A6C9C3A6C9C2A7CAC4A7CAF0E6F0FFFEFDEADBEAC5AACCC6ABCCC7ACCDC8ACCDC8ADCE -C9AECFC9B0D0CCB2D1CCB3D1CDB3D2CEB5D3CFB6D4D0B8D5D1BAD6D2BBD7D3BDD8D4BED9D6C1DA -D6C1DACABFD2A6B6BE7EACAD5BA4A15BA5A15BA5A15BA5A15BA5A15BA5A15CA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15AA4A15BA5A2FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEACA4C53E457BC7BED6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEE4DDE98882AB -5156893E457B3E457B736F9CADA5C4F2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCE9A099BB5E5E8F3E457B3E457B5E5E8FA199BCF2EDF4 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFED5CDE0A099BB736F9C3E457B3E457B3E457B5E5E8F8882ABBAB1CCF2EEF5FFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFE3E457B938DB3FFFEFDFFFEFDFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FEFEFD57457B45326B45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C -45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336B -45336C45326B45336C44336B432D66402B63402B63402B63402B62604779B49CBED6C1DAD5BFD9 -D3BDD8D2BAD6D2B9D5D0B8D5CFB6D3CEB5D3CEB4D2CCB3D1CCB1D0C9B0D0C9AECEC8ADCEC7ADCE -C6ABCDC7ABCCCBB2D1FFFFFEFFFFFECFB5D3C3A7CAC3A7CAC3A6C9C3A7CAC2A6C9C1A5C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2 -FFFFFEDFCDE2C1A4C8C1A5C8C1A5C9C1A3C8C2A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8DFCDE1FFFFFEDFCDE2C1A4C7C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9 -C2A7CAC4A7CAD1BBD7FFFFFEFDF9FAC9AECEC5ABCDC6ABCDC8ACCDC8ADCEC9AECFC9AFCFCAB1D0 -CCB3D1CDB3D2CEB4D3CFB6D4D1B9D5D2BAD6D1BBD7D3BDD8D5BED9D6C0DAC8BDD28EAFB45AA4A1 -5BA5A15BA5A15BA5A15BA5A16FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0ADFBFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEADA5C46866953E457B3E457B5E5D8FADA5C4 -F2EDF3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCE4DDE9938DB35256893E457B3D457C7E78A3C7BFD7 -FFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE4DDEAACA4C47D78A3474E823E447B -3E457B5256897D78A3ACA4C5E4DDE9FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE03E457B -A099BCFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD54518F -53529153518F535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190545290525190524F8D4C417C46356E402B63402B62412B6379618ED6C1DAD5C0DAD4BED8 -D2BBD7D2BAD5CFB8D5CFB6D3CDB5D3CDB3D2CBB2D1CAB0D0C9AFCFC9AFCFC8ADCEC6ABCDC5AACC -C6AACCE9DBEAFFFFFEE8D9E9C4A7CAC3A6C9C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEE0CDE2 -C1A5C9C1A4C8C1A4C7C2A5C9C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A5C9C1A4C8C1A5C8C1A4C8E0CEE2FFFFFEDFCCE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C2A5C9C2A6C9C3A6C9C4A7CAC3A7CA -EEE1EDFFFEFDEADBEAC7ABCCC6AACCC7ABCDC8ADCEC9AECEC9AFCFCAB0D0CBB2D1CCB3D2CEB4D3 -CFB6D4D0B8D5D1B9D6D2BCD7D3BDD7D5BED9D6C1DAA5B5BE66A7A45BA4A15CA5A26FB0AD8AC2C1 -9DCFCFA6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A7D6D6A6D5D7A6D5D6A7D5D5EBF5F5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDC7BED53D457BACA4C4FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDE3DCEA8882AB484D823E457B474D828882ABE4DDE9FFFFFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDC7BFD67E78A3474E823E457B515689A099BB -F2EEF3FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEF2EEF4B9B1CC8882AA5156893D457B3E467B484D82726F9C9F98BBD5CDE1FFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFEFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BFD73E457BC7BED5FFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F0F5535190535190525190 -545290525291535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535291525190525190 -5351905351905252915351904F4C8A46356F402B62412B62563E72CBB4D2D4BFD9D4BDD8D2BAD6 -D1B9D5CFB7D4D0B7D4CEB4D2CCB3D1CBB2D1CAB0D0C9AFCFC8ADCEC8ACCDC6ACCDC6ABCCD4BCD7 -FFFFFEFFFFFEC6ACCDC3A8CAC3A7CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C2A5C8BFAECA -B4CBD0B4CBCFB4CBCFB4CACFB3CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCF -B4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCF -B4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCFB4CBCEB4CBCFB4CBCFB3CACEB4CBD0B4CBCFBEAECB -C1A4C8C1A4C8DFCDE2FFFFFEE0CEE2C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9C3A7CACBB1D0FFFFFEFFFFFE -CDB3D2C6ABCCC6ABCDC7ACCDC8ADCEC9AECFC9B0D0CBB2D1CCB3D1CDB4D2CFB6D4D0B7D4D1B9D5 -D2BCD7D3BDD7D6BFD9CFBFD68EB0B55CA5A15AA4A06FB0AD93C7C6A7D6D6A6D5D6A6D5D6A7D6D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D7A6D5D6A6D5D6A5D5D7EBF4F3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFDFFFFFEFFFFFE3E447A938DB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEC7BFD77D78A3 -3E457B3E447A696695ACA4C4FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDF2EEF4A199BC5156893F457B474E828882AB -E2DBE8FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDC7BED58882AB5F5E8F -3E457B3F467B3E457B686695938CB2C6BED5FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEC7BED53E457BC7BFD6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCEC5DE52519054529052529152518F545290 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053519053519053519054529153519053519053518F -5351905351905351905351904D4480412D65402B63563E72CAB2D0D6BFD9D3BCD7D2BBD7D0B8D5 -CFB7D4CFB5D3CDB3D2CCB3D2CAB1D0CAAFCFC9AECEC8ACCDC7ABCDC6ABCDC5AACCF6ECF3FFFFFE -D9C4DDC4A7CAC2A7CAC4A7CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFACD7CF -AED8CFACD7CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFACD7CFAED8CFADD8CFADD8CFBDB1CBC2A5C8C1A4C8 -DFCDE2FFFFFEE0CEE2C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A7CAC3A7CADCC9E0FFFEFDF3E7F1C5AACCC6ABCC -C7ACCDC8ACCDC9AECEC9AFCFCAB1D0CBB2D1CDB3D2CEB5D3CFB7D4D0B8D5D2BBD7D3BCD7D5BFD9 -CFBED575AAAA5CA4A15AA4A086BFBDA6D5D6A6D5D6A6D5D7A6D5D4A5D5D7A5D5D6A7D5D7A7D6D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6 -A6D5D6A7D5D6D9ECEDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFD3F467B938CB3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEC6BED46866953E457B3F457B7E78A3E4DDEA -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFDC7BED56866953E447B3E457B7E78A3 -E4DDE9FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFED5CDE09F98BB6866953E457B3F457A3E467B5E5D8E8882AAB9B2CE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEACA4C43E457BD4CCDFFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECEC5DE535291525190535190535291535190535291535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519052529153519052519053519053519053519053529153519054518F535190 -525190545290535190504A87422D65402B63573E72CAB3D1D5BFD9D2BBD6D2BAD6D0B7D4CFB6D4 -CEB4D3CCB3D1CAB1D1CAB1D0C9AFCFC8AECEC7ACCDC6ABCDC6ABCCDECCE1FFFEFDEDE1EDC3A7CA -C3A8CAC3A6C9C2A7CAC2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDECDE2C1A4C8BEB2CCADD7CEB3DAD2C4E1DDC4E2DF -C4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DF -C4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DF -C4E2DFC4E2DFC4E2DFC4E2DFC4E2DEC4E2DFB3DAD3AED8CFBDB1CBC1A4C8C1A4C8DFCDE2FFFFFE -DFCDE2C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CAF5EDF4FFFFFED9C5DDC6ABCCC6ACCDC7ABCDC8ADCE -C9AECEC9B0D0CBB2D1CCB3D1CEB4D3CFB6D4D0B8D5D1BAD6D3BBD6D4BED8D6C1DA8CAFB45BA4A1 -61A8A493C8C8A6D5D5A5D5D6A7D6D5A5D5D7A6D5D6A6D5D5A7D6D6A5D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D5A6D5D7 -D4EAE9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFD3F467B -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEACA4C45E5E8E3F457B484E82938DB3F1EDF3FFFFFEFFFEFDFFFFFEFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFDFBFFFFFEFFFFFEFFFEFCFFFFFEE4DDE97E78A33D457B3F457B686796 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEE4DDE9ACA4C4 -736F9D474E823E447A3E457B5155887E78A3ACA4C5F2EEF3FFFFFEFFFEFDFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFD938CB33E457BFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC1B7D6535190545291525190535190525190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535291535190535190535190535190535190535190545291525190535190525291525190 -54529153518F4F4A87422E66402B6379608ED5C0DAD5BED9D1BBD7D1B9D5D0B6D4CEB5D3CDB3D1 -CBB2D1CBB1D0C9AECFC9AECEC8ACCDC7ABCDC6ABCCCDB3D1FFFFFEFFFEFDC4A8CAC3A7CAC3A7CA -C3A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DAD3CAE5E4CAE6E5CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E3CAE6E5CAE5E4 -CAE5E4CAE5E4CAE5E4CBE6E4B5DBD4ACD7CFBEB1CBC2A5C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C2A6C9 -C2A6C9C3A6C9C3A7CACAB1D0FFFFFEFFFFFEC9AFCFC5AACCC7ABCCC7ADCEC9AECEC9AECFCAB1D0 -CCB2D1CDB3D2CEB5D3D0B7D4D1B9D5D2BBD7D3BDD8D6C1DAA4B4BD5BA4A15BA5A293C8C7A5D5D5 -A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A5D5D7A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6D5EBEAFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE5E5E8E686796FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDC7BED5 -5155893D457A474D81938CB2F2EEF4FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFC -FFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFDFCFFFEFDE4DDE97D78A33E447A3E467B686695 -D5CDE0FFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFEFDFFFFFEFFFFFEF2EDF4ADA5C57E78A35256893E457B3E457B474E82736F9C -ACA4C4E4DBE8FFFEFDFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFD -FFFEFCFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFEFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFE928CB23E457BFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDA197C1525291535190545291535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053519053519052519053519052519053518F525190 -5452904C4480402B62402C63A88FB4D5BFD9D3BCD7D2BAD6D0B8D5CEB6D4CEB4D3CCB3D1CBB1D0 -C9AFCFC9AECEC8ACCDC7ABCDC7ABCCC4A9CBF9F3F7FFFFFED1BAD6C3A7CAC3A7CAC2A6C9C2A6C9 -C2A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD7CEB5DBD4CAE5E4CAE5E3CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4 -CAE5E4CAE5E4B5DBD4ADD7CEBDB2CCC1A4C8C1A4C8DFCDE2FFFFFEDFCCE2C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9 -C3A7CAD9C4DDFFFEFDF2E8F1C4A9CBC6ABCDC7ABCDC8ACCDC9AECEC9AFCFCBB1D0CCB3D1CDB4D2 -CFB6D4D0B8D5D1BAD6D3BCD7D5BFD9CFBFD666A8A55BA5A181BBB8A7D6D7A5D5D5A6D5D6A6D5D6 -A7D5D5A6D5D6A6D5D6A6D5D6A6D5D5A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6C3E2E2FFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFC686696696695FFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC6BED56966953E457B474E82938CB2 -F2EEF4FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDEA7E78A33E447B3E457B7E78A4 -E3DCE8FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFFFEFFFFFE -BAB1CD8882AB5E5E8F3E457B3E447A3E457B686695A099BBD5CDE1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB2 -3E457BFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA197C1 -535190535291535190535291535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190545190535291535190 -473770402B63604779D5BFD9D4BED8D1BBD7D1B9D5D0B7D4CEB5D3CCB3D2CBB2D1CAB0D0C9AFCF -C8ADCEC7ABCDC6ABCCC6AACCE9DBEAFFFEFDE1CFE3C3A7CAC3A6C9C3A6C9C2A6C9C2A5C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFE -DFCDE2C1A4C8BDB1CBADD8CFB6DCD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4CAE5E4CAE5E3C9E5E4CAE5E4CBE6E4 -B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DFCCE1FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A7CAC3A7CAE5D4E6 -FFFFFEE1CFE3C6ABCCC6AACCC7ABCDC8AECEC9AECFCAB0D0CCB2D1CCB3D2CEB5D3CFB7D4D0B8D5 -D3BBD7D3BDD8D6C0DA8DAFB45BA4A16BADAAA6D5D7A6D5D6A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A7D6D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFE686695686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFD -FFFFFEFFFFFEFFFEFDFFFFFEE4DDE96866953E457B474E82938DB2F1ECF4FFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCE4DDEA7E78A33D457B3E457B8882AB -F2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEC7BFD6938CB26866953E457B3E457B3E457C -5E5E8F8782ABC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE938CB23E457BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA197C1535190535190 -535190535190535190535291535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190504C8A402B63 -412B63B39BBED5BED8D2BCD7D1BAD6D0B9D5CFB6D4CDB3D2CCB3D1CBB1D0C9AFCFC8ADCEC8ADCE -C7ABCDC6ABCCDAC5DDFFFFFEF0E5F0C3A8CAC3A6C9C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8C2A5C9C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8 -BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CF -BDB1CBC1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A7CAC3A6C9C3A8CAF1E7F0FFFEFDD6C1DA -C6AACCC6ABCDC7ACCDC8ADCEC9AECECAB1D0CBB2D1CDB3D2CEB5D3D0B7D4D1BBD7D2BCD7D4BED8 -CFBFD665A7A45BA4A193C8C7A6D5D6A5D5D6A7D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEFFFFFE696695696695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F2EEF48781AA3E457B3E457B8982ACF2EDF3FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEE4DBE86866953E467B474D829F99BC -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED5CEE19F98BB736F9D474E823E457B3E457B5156898882AABAB1CDF3EEF3FFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB23E457BFFFEFCFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA097C1535190545290535190525190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190525190483771402B6379608E -D6BFD9D3BDD8D1BAD6D0B8D5CFB7D4CDB4D2CCB3D1CBB1D0C9AFCFC9AECEC8ACCDC7ABCDC6ABCC -D3BCD7FFFFFEF6EDF4C3A7CAC3A8CAC3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8 -C1A4C8C2A5C9C1A3C8C1A4C8C1A5C9C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CF -B5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ACD7CFBEB1CBC1A4C8 -C1A4C8DFCDE2FFFEFDDFCEE3C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C3A6C9C4A8CAC3A6C9FFFEFDFFFFFECCB3D1C6ABCCC7ABCD -C7ADCEC9AECFC9AFCFCAB1D0CCB3D1CDB4D2CFB6D4D0B7D4D1BAD6D2BCD7D5BFD9ACB7C25BA4A1 -6AAEAAA6D5D6A6D5D6A7D6D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFDFFFFFE696695686795FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFDACA4C3474E823E457B -686695E3DCE9FFFEFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEC7BED55E5E8E3E457B5D5E8FC7BED6 -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFDFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEE4DDE9ACA4C47E78A35156883E447A -3E467B484E827E78A4ACA4C4E4DDEAFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD736F9D515688FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDA197C1535291525190535190545290545290535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905351905352915452904D4480402B63573F72D5BFD9D5BDD8 -D2BBD7D1B9D5CFB7D4CEB4D3CCB3D1CBB1D0CAAFCFC9AECEC8ADCEC6ABCDC6ABCDC5AACCFFFFFE -FFFFFEC2A7CAC2A7CAC4A7CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A3C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8E0CEE3FFFEFDDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4AED8CFBEB1CBC1A4C8C1A4C8E0CEE2 -FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C2A6C9C3A7CAC4A7CAC2A7CAC3A7CAFFFFFEFFFEFDC6AACCC5AACCC7ABCDC8ACCDC9AECE -C9AFCFCBB1D0CCB3D1CEB4D3CFB6D4D0B8D5D2BBD7D3BDD8D6C0DA87AEB15BA4A186BEBDA6D5D6 -A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -686695696696FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDD4CCDF6866953F457B515689C7BFD5FFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDA099BB474E823E457B7E78A3F2EDF3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFDFC -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEF2EEF4BAB1CC8882AB5E5E8F3E467C3E447A474D82736F9DA199BCD4CDE0FFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFE696695696695FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEA097C1535190535190535291535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190525291524F8E412C63402B63D6C1DAD4BED8D1BAD6D1B9D5 -CFB7D4CEB4D3CCB3D1CAB1D1CAB0D0C9AECEC8ADCEC7ACCDC5AACCC5AACCFFFEFDFFFEFDC4A8CA -C3A7CAC2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A3C8C2A5C9C1A3C8E0CEE3FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DECCE1FFFFFEDFCDE2 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C2A5C9C2A6C9 -C2A5C9C2A7CAC4A8CAD1BAD6FFFEFDF9F3F7C4A9CBC6ABCCC7ABCDC8ADCEC8AECECAAFCFCBB2D1 -CCB3D2CEB4D3D0B6D4D1B9D6D2BBD7D4BDD8D6C0DA6DA8A75BA5A293C8C6A6D5D6A6D5D6A6D5D6 -A7D6D5A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6BEE0E0 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695676694 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFCFFFFFEFFFEFD928CB23E467B474D82938CB2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEF2EEF47E78A33E457B474D82ADA4C4FFFEFC -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEC7BED5938CB25F5E8F -3E467B3D457B3E457B696695938CB2C6BED6FFFFFDFFFFFEFFFEFCFFFFFDFFFFFEFFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFD686695696796FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE7871A7525291545290525190535291535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190525291432F67402B63A990B5D4BED8D3BDD8D1B9D5CFB7D4CEB5D3 -CCB3D2CBB2D1CAB0D0C9AECEC8ACCDC7ABCDC6ABCCC5AACCF9F3F7FFFFFECDB5D3C3A6C9C4A7CA -C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C2A5C9DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB0CBC1A4C8C1A5C9DFCEE3FFFEFDDFCEE3C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A5C9C1A4C8C2A6C9C3A6C9C3A6C9 -C3A6C9D1BAD6FFFFFEF2E7F1C4A9CBC7ABCCC7ABCDC8ADCEC9AECECAB0D0CBB2D1CDB3D2CEB5D3 -D0B7D4D1B9D6D2BBD7D4BED8D6C1DA5CA5A25BA5A1A5D5D7A7D6D5A5D5D6A7D6D6A6D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6BEE0E0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE8781AB3E467CFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEC6BED5 -5256893F457B686694E4DBE8FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED55155883D467B686695E4DDEAFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFDFFFFFEFFFFFEACA4C4938DB2928CB2ACA4C4FFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED4CCDFA09ABD736E9C3F457B3F457B3E447B5D5F8F8881ABBAB1CC -F2EEF4FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -686695686695FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -7A72A8525190535190535190525291535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519046336C402C63A88FB4D4BFD9D2BBD7D1BAD6D0B7D4CEB5D3CCB3D2CBB2D1 -CBB0D0C9AECEC8ADCEC6ABCDC6ABCDC5A9CBF2E8F1FFFEFDF4ECF4F2E7F1F0E4EFF1E6F0F1E6F0 -F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F0E5F0F1E5EFF2E6F0F0E4EFF2E7F1F8F3F7 -FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4B5DBD4ADD8CFBDB1CBC1A5C9C1A4C8DFCDE2FFFFFEF8F4F8F1E6F0F1E6F0F1E6F0F1E6F0 -F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F1E6F0F2E6F0F0E5F0F1E5EFF1E6F0F5EDF4 -FFFEFDF1E7F1C6A9CBC6ABCCC7ABCDC7ADCEC9AECFC9B0D0CBB2D1CDB3D2CEB5D3D0B7D4D1B9D6 -D2BBD7D4BED9D6C1DB5AA5A15CA5A1A6D5D6A6D5D6A7D6D6A6D5D6A5D5D7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928CB23E457BFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFFFD928CB23E457B474D82A099BB -FFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDF2EFF4938CB23E467B464E82ADA5C3FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -F2EEF45E5E8F3E457B3E467B3E457B3F457B5E5E8FF2EDF3FFFFFEFFFFFEFFFEFDE4DDE9ACA4C4 -746F9C464E833F457B3E457B5156897E78A3ACA5C4E3DCE9FFFFFEFFFEFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686796696796 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8C82B3545291 -525190535190545290535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519045326C412B63A78FB4D4BED9D2BCD6D1BAD6D0B7D4CEB5D3CCB3D2CBB2D1CBB0D0C9AECE -C8ADCEC8ACCDC5ABCDC6ABCCF2E7F1FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDDFCDE2 -C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4 -ADD8CFBDB1CBC1A4C8C2A5C8DECEE2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2E6F0 -C5AACCC5AACCC7ABCCC8AECEC9AECFC9B0D0CBB2D1CDB3D2CEB5D3D0B7D4D1B9D6D2BBD7D4BED9 -D6C1DA5CA5A25AA4A1A6D5D6A6D5D6A6D5D5A6D5D7A6D5D5A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE726F9C525689FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD4CCE05D5E8F3E457B686695F2EEF4FFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDD4CCDF5E5E8F3E457B736F9DF2EEF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE7E79A43E467B -3D457B3F457B3E457B3E467B3E457B686695B9B1CC7E78A35156893F457B3F457B474D82746F9C -9F98BCE4DDE9FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE686696686695FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA198C2535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053519053519053519053519053519053519045336B -402B63A88FB4D4BED8D2BCD7D1B9D5D0B7D4CEB5D3CCB3D2CBB2D1CAB0D0C9AECEC8ACCDC7ABCC -C6ACCDC4A9CBF2E6F0FFFEFDDCC9E0D1BAD6D2BAD6D1BAD6D1B9D5D1B9D5D1B9D5D0B8D5D0B8D5 -D0B8D5D0B8D5D1B9D5D0B8D5D0B8D5D0B8D5D1B8D5D0B8D5E9D9E9FFFFFEDFCDE2C1A4C8BDB1CB -ADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CB -C1A4C8C1A4C8DFCDE2FFFEFDEAD9E9D0B8D5D0B8D5D0B8D5D0B8D5D0B8D5D0B8D5D0B8D5D0B8D5 -D0B8D5D0B8D5D1B9D5D1B9D5D1B9D5D2BAD6D1BAD6D1BAD6DCC9E0FFFFFEF2E8F1C5AACCC6ABCC -C8ACCDC8ACCDC9AECFC9AFCFCBB2D1CDB3D2CEB5D3D0B7D4D1B9D6D2BBD7D4BED9D6C1DA5AA4A1 -5BA4A1A6D5D6A6D5D6A7D6D6A5D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6BEE0E0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFE686695686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEA19ABC3F457B474E82A099BBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEF3EEF48882AB3F457B474D81C7BFD6FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFE3E447A3F457B3D467B3E447B -3E467B3E457B3E457B3E457B3E457B3E467B696695938CB3D5CDE0FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8882AB3E467BFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA197C1535190535190535190535291535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535291535190535190535190535190535190535291535190535190535190422D65402B63BFA7C7 -D4BED8D2BCD7D1B9D5CFB7D4CEB5D3CCB3D2CBB2D1CAB0D0C9AECEC8ADCEC8ACCDC7AACCC4A9CB -FDF9FAFFFFFECAB1D0C3A6C9C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8 -DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A5C9C2A6C9C2A7CAC3A7CAC3A7CAD1BBD7FFFFFEF3E7F1C5AACCC5AACCC7ACCDC8ADCE -C9AECECAB0D0CBB2D1CCB3D2CEB5D3D0B7D4D1B9D6D2BBD7D4BED8D6C1DA5BA5A15CA5A1A1D2D2 -A6D5D6A5D5D6A7D6D7A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6 -A6D5D6A6D5D6BEE0DFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686796696695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEF2EEF4736E9C -3F457B5E5E8FE3DCE8FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEC6BED5474E823E457B938CB2FFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFCFFFFFEFFFDFCFFFFFEFFFFFEC8BFD63E467B3D457B3F447B3E467B3E447B3E457B -3D457B3E457BA098BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFD938DB23D457BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDA097C2535190535190535291535190535190525190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053519053519053519053519053529153518F535190 -5452905351905351905351905351905251905451904F4C8A402B63402B63D7C0DAD4BED8D2BAD6 -D1B9D5CFB6D4CEB4D3CCB3D1CBB2D1C9B0D0C9AECEC8ACCDC7ABCCC6ABCCC5AACCFFFEFDFFFFFE -C2A7CAC3A8CAC2A5C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DFCDE2FFFFFE -DFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9 -C2A6C9C2A6C9C3A6C9C4A8CACEB5D3FFFFFEFDF9FAC5AACCC6ABCDC7ABCDC8ACCDC9AFCFC9AECF -CBB2D1CCB3D1CEB4D3D0B6D4D1B8D5D2BBD7D4BED8D6C0DA77ABAB5AA4A18EC5C4A6D5D7A7D6D6 -A6D5D5A6D5D6A5D4D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A7D6D6A6D5D6A6D5D5 -BEE0E1FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFEFDFFFFFDFFFFFED5CDE05255883F457B8781AAFFFFFD -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEF1ECF36866953F457C686695F2EDF3FFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFDFFFEFDFFFFFEE3DCE83F457B3E457B3E467B3D457B3F467B3E447A3E457B3E467B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFE938CB23F457BFEFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEA197C1535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535291535190545290 -5452905351905351905452905352904B3E79402B6360477AD5BFD9D4BDD8D2BBD7D1B9D5CFB6D4 -CEB4D3CCB3D1CBB1D0C9AFCFC9AECEC8ACCDC8ACCDC5AACCCCB3D1FFFEFDFFFFFEC3A8CAC3A6C9 -C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A6C9C1A4C8C1A5C9C2A6C9 -C3A7CAC2A6C9C3A7CAFFFFFEFFFFFEC5AACCC6ABCCC6ABCCC8ADCEC8ADCEC9B0D0CBB1D0CCB3D1 -CEB5D3CFB6D4D0B8D5D1BBD7D3BDD8D5BFDA94B0B75CA5A178B6B4A6D5D6A6D5D6A6D5D7A6D5D7 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D5A5D5D6A7D6D6A6D5D6BFE0DFFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE696796686695FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFDFFFFFEFFFEFDFFFEFCACA4C43F457B484D82BAB1CCFFFFFEFFFEFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE918BB13F457B474D82C7BED6FFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFDFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFE6966953E457B3E457B3F457B3E447A3D457B3F447A505589FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB23E447AFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEA096C1535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190545290535190535190535291515190535190 -53519053519054519044316A402B638A719CD5BFD9D3BDD7D1BAD6D0B8D5CFB6D4CDB4D2CCB3D1 -CBB1D0C9AFCFC9AECEC8ACCDC6ABCDC7ABCCD2BCD7FFFFFEF1E6F0C3A7CAC3A7CAC3A6C9C2A6C9 -C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A5C9C2A5C9C3A8CA -C3A7CAF9F3F7FFFEFDD0B7D4C5AACCC7ABCDC7ADCEC9AECEC9AFCFCAB1D1CCB3D1CDB5D3CFB6D4 -D0B8D5D1BAD6D3BCD7D5BFD9BBBBCA5AA4A261A7A4A2D4D3A7D5D7A6D5D5A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A5D5D6A6D5D7BDE0E0FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE686695696695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE7E78A33F457B5D5E8FE4DDE9FFFEFDFFFFFEFFFFFEFFFFFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC6BDD5474E823E457BA098BBFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFED5CDDF474E823D457B3D457B3E457B3F457B3D457BC6BED5FFFFFEFFFFFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938CB2 -3E457BFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB7AED0 -535190535190535190535190525190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519054529053529153518F535190545290525190535190 -4D4683402B63483067CAB3D1D4BDD7D2BBD7D2BAD6CFB7D4CEB4D3CCB3D2CCB2D1CAB0D0C9AFCF -C9AECEC8ACCDC6ABCDC5ABCDE1CFE3FFFEFDE9DAE9C3A7CAC3A8CAC3A6C9C2A6C9C2A6C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFE -DFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A7CAC2A6C9C3A7CAC4A7CAF1E6F0 -FFFFFEDAC5DDC5AACCC6ACCDC7ABCDC8ADCEC9AECECAB1D0CBB2D1CDB3D2CEB5D3D0B7D4D1BAD6 -D2BBD7D4BED8D6C1DA6EA8A75AA4A281BAB9A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6D5EBE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE686695686796FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF3EEF45E5E8F -3F467B7D78A3F2EEF4FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDF2EFF45F5E903E457B7E79A4FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFDFFFFFE -E4DDE87E78A35E5E8F5256887E78A2D5CEE1FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDA099BB3E457BE4DDE9 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECEC5DE535190535190 -535190535291535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519054529051519053519053529152518F535190535190432F68402B62 -78618ED6C0DAD4BED8D3BBD6D0B9D5CFB6D4CEB4D3CCB3D2CBB2D1CAB0D0C9AECEC8ADCEC7ABCD -C6AACCC5AACCEEE1EDFFFFFEDDCAE0C3A7CAC3A6C9C3A7CAC2A6C9C1A5C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8 -BDB1CBADD8CFB5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CF -BDB1CBC1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C9C2A6C9C1A4C8C3A6C9C3A6C9C4A7CAC2A7CAE0CEE3FFFFFEEADBEA -C7ABCCC6ABCCC7ACCDC8ADCEC9AECFCAB0D0CBB1D0CDB3D2CEB4D3CFB6D4D1B9D5D1BBD7D3BDD8 -D5BFD9ABB7C25CA5A161A8A4A2D2D1A7D5D7A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D5A5D5D6A7D6D6A6D5D6D3EAEAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE474E827E78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDD4CDE1474D8240457A9F98BAFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFFFE -FFFFFEFFFDFC7E79A43F457A5E5E8FF2EDF3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEC7BED53E457BC8BFD7FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECEC5DE535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519054529052518F53529153518F483973412B62473168C9B2CFD5BFD8 -D3BCD7D2BAD5D0B8D5CFB6D4CDB4D2CCB3D1CBB1D0C9AFCFC8ADCEC8ACCDC7ABCDC6ABCCC5AACC -FCF9FAFFFFFECEB5D3C3A7CAC4A8CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CF -B5DBD4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8 -C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A5C9C2A6C9C2A7CAC2A6C9C2A6C9C3A7CAD2BBD7FFFEFDF9F3F7C5AACCC6ABCC -C7ABCCC8ADCEC9AECEC9AFCFCAB1D0CCB3D1CDB4D2CFB6D4D0B8D5D1BAD6D3BCD7D4BED8D6C0DA -76AAAA5CA5A26EAFACA6D5D6A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6D4EAEAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFE3E447B928CB1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDB9B1CD474E82474E82C7BED5FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFE -FFFEFDA099BD3E457B5E5E8FD4CCDFFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED63E457BC7BED6FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE8E1EE535190535190545290525190545290535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535291535190 -53519053519052519053519053518F4C417C402B63402B639E85ACD5BFDAD4BED8D2BBD7D1B9D5 -CEB6D3CEB5D3CDB3D2CBB2D1CBB0D0C9AFCFC8ADCEC8ACCDC7ABCDC7ABCCD2BCD7FFFFFEFDF9FA -C2A7CAC3A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB1CBADD8CFB5DBD4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4B5DBD4ADD8CFBDB1CBC1A4C8C1A4C8DFCDE2 -FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A6C9 -C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CAFFFFFEFFFFFECCB3D1C5AACCC6ACCDC6ACCD -C8ADCEC9AFCFCAB0D0CBB2D1CDB3D2CEB5D3CFB7D4D1B9D5D2BBD7D4BCD7D5BFD8C1BCCE5BA5A1 -5CA5A178B6B3A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A5D5D6 -A7D6D6E5F2F2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFD -3E467B938CB2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEADA5C43E447B515689D5CDE0FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -ABA4C5474D82474E82D5CDE0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFCFFFFFEFFFEFDFEFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDC7BFD63E457BBAB1CCFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE535190535291535190545291535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053518F535291535190535190535190535190535190535190525190535190535291 -5351905351904B3E79402B63402B637A618ED6C0DAD5BDD8D2BCD7D1B9D6D0B8D5CFB6D3CFB5D3 -CCB3D1CBB2D1CAB0D0C9AECEC8ADCEC7ABCDC6ABCCC6AACCEADBEAFFFEFDEADAEAC3A7CAC3A8CA -C3A6C9C2A7CAC2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8BDB2CCADD8CFB5DBD4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE6E5CAE5E4CAE5E4CBE6E4B5DBD3ADD8CFBEB1CBC1A4C8C1A4C8DECDE2FFFFFEDFCEE3 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A6C9C1A5C9 -C1A5C9C2A7CAC3A6C9C3A7CAC3A7CAEDE1EDFFFFFEE1CFE3C6ABCDC7ABCDC7ABCDC8AECEC9AECF -C9AFCFCBB2D1CCB3D1CEB4D3CFB6D4D0B8D5D1BAD6D2BBD7D4BED9D5BFD9ACB7C35BA4A15BA5A1 -77B5B3A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A6D5D5A6D5D7A6D5D6EBF4F3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCE93E457B9F98BC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFEFD938CB2 -3E457B5E5E8EF2EDF3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDD5CDE0 -484D81464E82ACA4C4FFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFEFCFFFEFDFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFD3F467B928DB3FFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE5D5A96545290525190525190545290535190535190535190535190535190 -535190535190535190535190535291535190535190535190535190535190535190535190535190 -53529153508F535190535290535190535190535190525291545290525290535190524F8E47356E -402B63412B63705887D5BFD9D4BED8D3BCD7D1BAD6D1BAD6CFB7D4CEB5D3CDB3D2CBB1D0CAB1D0 -C9AECEC9AFCFC8ACCDC7ABCDC6ABCCC4AACCFEF9FAFFFFFED4BFD9C4A8CAC4A7CAC2A6C9C3A6C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8DFCDE2FFFFFEE0CEE2C1A4C8BDB0CCADD8CFB6DCD4C9E4E4CBE6E5CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4 -C9E5E4CBE6E4CAE5E3B5DBD4ADD8CFBDB1CBC1A4C8C2A5C8E0CEE2FFFFFEDFCDE2C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9 -C3A6C9C3A7CAC3A7CAD8C3DCFFFFFEF8F3F7C6A9CBC5ABCDC7ABCDC8ACCDC9AECEC9AFCFCAB0D0 -CBB2D1CDB3D2CEB6D4CFB7D4D0B8D5D2BBD7D3BBD7D4BED9D6C0DAADB7C25BA4A15CA5A16AAEAA -9DCFCEA5D4D5A6D5D7A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D5A5D4D5F5F9F9FFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEC7BED53F457BC7BFD6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD7E78A43E457B686695F2EDF3 -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFED5CEE1515588 -3F457AACA4C4FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFEFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFE3E457B938CB1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFE7971A752529054529053518F535291535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190545291 -525190525190535190535190535190535190535190524F8E4A3B76422E65402B63412C638A729D -D5C0D9D3BFD9D3BDD8D2BAD6D1BAD6D0B7D4CEB6D4CDB4D2CCB2D1CBB1D0C9B0D0C9AECFC7ACCD -C7ACCDC6ACCDC6ABCCDAC5DDFFFFFEF8F2F7C3A8CAC2A7CAC3A7CAC2A6C9C2A6C9C1A5C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2 -FFFFFEDFCDE2C1A4C8BDB0CBACD7CFAFD8D0B5DBD4B5DBD4B6DCD4B5DBD4B5DBD4B5DBD4B5DBD4 -B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4 -B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B4DBD3 -B6DCD5AFD8D0ADD7CEBDB1CCC1A4C8C1A3C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9 -C2A7CAC7ACCDFCFAFBFFFEFDD2BBD7C6ABCCC5ABCDC8ACCDC8ADCEC9AECFC9AFCFCBB1D0CCB3D1 -CDB4D2CEB5D3D0B7D4D1B9D5D2BBD6D3BDD8D4BED8D6C1DAACB7C264A6A45BA4A15CA5A17CB9B7 -9DCFCDA7D6D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6FFFFFDFFFEFDFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEC7BED63E467BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD7E78A33E467B7E78A3FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF3EEF45E5E8F3E447A -ACA4C4FFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFBFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFD515588 -746F9DFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD837BAE -535190525190535190545290535291535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535290535190545290545290 -5251904F49874D46834B3E7946356E412C63402B63412B63563E72AA91B6D5C0D9D4BED9D4BDD8 -D2BBD7D2BBD6D0B6D4CFB6D3CEB5D3CCB4D2CAB1D1CAAFCFCAAFCFC9AECEC8ADCEC7ABCDC6AACC -C6ABCCF9F3F7FFFFFEE0CFE3C3A7CAC4A8CAC2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE1 -C1A4C8BDB1CBAED8CFACD6CEADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFAED8CFADD8CFADD8CFADD8CFADD8CFADD8CFAED8CF -ADD8CFBDB2CBC2A4C8C1A5C9DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A5C9C2A6C9C3A6C9C3A7CAC3A8CA -E4D3E6FFFFFEF2E7F1C5AACCC5AACCC7ABCDC8ACCDC9AECEC9AECECAB0D0CBB2D1CCB3D1CEB4D3 -CFB6D4D0B8D5D1BAD6D2BAD5D2BCD8D4BED9D6C0DACABFD37EACAE5BA4A15BA5A25BA5A16FB0AD -80BBB994C7C793C8C7A2D2D2A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A7D6D5A5D5D6B3DBDAFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE938CB23F457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFBFFFFFEFFFEFD7E78A33D457B7D78A4FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF55E5E8E3E447BACA4C4 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFEFDFFFEFDFFFFFEFFFEFCFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE686695686695FFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8F7BA0412C63402B62 -402B63402B63412B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63412B62402B63402B63402B63412B63402B63 -412B62412B63412B63402B63573E72947CA5D7C2DBD6C0DAD4BED9D3BDD8D3BBD7D1BBD7CEB7D5 -CFB7D4CEB6D4CDB3D1CBB2D1CBB1D0C9AFCFC8ADCEC8ADCEC7ABCDC5ABCDC6ABCDDBC6DEFFFFFE -FCF9FAC8ADCEC3A6C9C3A7CAC3A7CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C2A5C8C1A7C9 -BDB1CBBDB2CDBDB0CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CB -BDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CB -BDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBDB1CBBEB1CCBDB1CBBDB1CBBDB1CBC1A7C9 -C1A5C9C1A4C8DFCEE3FFFFFEDFCCE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9C3A6C9CAB1D1FFFEFD -FFFFFED2BCD7C5AACCC6ABCCC7ABCDC8ADCEC9AECEC9AFCFCAB1D0CBB2D1CDB3D2CEB4D3CFB6D4 -D0B8D5D1B9D5D2BAD6D3BCD7D4BED8D4BFD9D7C2DBBBBCCB7EACAD5BA5A15BA5A25DA4A05AA5A2 -5BA4A15BA5A25BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15CA5A187B8B4FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFE938CB33D457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -7E78A33E457B7E79A4FFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEF2EEF55E5E8F3E457BACA4C3FFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7D78A3484E82FFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB5A4BF412B63402B63402B63412B62 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63573F7260487A685080 -8B739DC0A9C8D8C3DBD6C0DAD5BFDAD5BED8D2BCD7D2BBD7D1BAD6D0B7D4D0B7D4CEB5D3CDB3D2 -CCB3D1CBB1D0CAB0D0C9AFCFC9AECEC7ACCDC7ABCDC7ABCCC4A9CBF9F3F7FFFFFEE0D0E4C3A7CA -C4A7CAC2A6C9C2A6C9C2A7CAC2A6C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A5C9C1A4C8C2A5C8C2A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A5C9C1A4C8 -DFCDE2FFFFFEDFCDE1C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C3A7CAC3A6C9E9DAE9FFFFFEF1E7F0 -C6AACCC5AACCC7ABCCC7ACCDC8ADCEC9AECFC9B0D0C9B0D0CCB3D1CDB3D2CEB5D3CFB5D3CFB8D5 -D0B8D5D2BCD7D3BCD7D4BED8D5BFD9D6C0DAD6C2DBCBC0D4AEB8C38DAFB57EACAD7EADAE5BA4A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15CA5A2 -5BA4A1AFCDC8FFFFFEFFFEFCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -686695525588FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC7D77A33E467B7E78A3 -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEF1EDF25F5E903E457BADA5C5FFFDFCFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF6F8F6C4DAD39AC2BD86B7B386B7B386B7B385B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B8B486B7B386B7B386B8B4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDE2F0ECC3E1DAC2E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DA -C3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DA -C3E1DAC3E1DAC3E1DAC3E1DAE2F0ECFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9E57779C57769D58779D57779D58779C58779D58779D58779D58779D58779D58779D58779D5877 -9D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D5877 -9D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D5877 -9D58779D58779D58779D58779D58779D58779D58779D58779D57779C5877AC6E88D2ACBBFFFEFC -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE938CB33D457BFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFCFCFFFEFCE2D0E4DECBE1DECBE0DECBE1 -DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DDCBE1DDCAE0DDCAE0 -DCC9E0DCC9E0DCC9E0DDC8DFDCC9DFDBC7DEDBC7DED9C5DCDBC6DED9C4DDD8C3DCD7C2DBD7C2DB -D6BFD9D6C0D9D3BDD8D1BBD6D1BAD6D0B9D5D0B7D3CEB6D4CEB5D3CDB4D2CCB3D1CBB1D0CBB0CF -CAAFCFC9AECEC8ACCDC7ABCDC6ABCCC6ABCCE1D0E4FFFFFEFCFAFBC7ACCDC3A7CAC3A7CAC3A6C9 -C2A6C9C2A6C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8DFCDE2FFFFFEDFCDE1C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C2A5C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8DFCEE3FFFFFE -E0CDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9C3A7CAC3A7CACAB1D0FBF7FAFFFFFEDAC5DDC6ABCD -C7ABCCC7ABCDC8ACCDC8ADCEC9AECFC9B0D0CBB1D0CCB3D1CDB3D1CEB5D3CFB5D3D0B8D5D0B8D5 -D1BAD6D3BBD7D3BDD8D4BED9D7C1DAD6C0D9D6C1DAD9C3DCD9C4DCDBC6DDDAC6DEDBC6DEDBC7DE -DCC8DFDCC9E0DCC9E0DCC9E0DDCAE0DDCAE0DECBE0DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1 -DECBE0DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECBE1DECCE1FDFAFBFFFEFCFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE686796686796 -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7D78A43E457B7E78A3FFFFFDFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF35E5E8F3E457BADA5C5FFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEAFCDC767AAA65CA4A15BA5A15AA4A15BA4A15AA4A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15CA5A1 -5BA5A15BA5A25BA5A15BA4A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE6 -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B842E5B -822E5B832F5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B842E5B832F5B832E5B904067C99DADFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEACA4C33E447AD5CDE1FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCE9D9E9DCC9E0DDCAE0DCC8DFDCC8DFDCC8DF -DCC8DFDBC7DEDBC7DEDBC7DEDBC7DEDCC8DFDCC8DFDCC8DFDCC8DFDBC7DEDBC7DEDBC6DEDBC6DE -DBC6DEDAC5DDDAC5DDD9C4DDD8C3DCD8C3DCD8C2DBD7C2DBD6C1DAD5BFDAD5BFD9D4BED8D3BBD7 -D2BBD6D1BAD6D1B9D5D0B7D4CFB6D4CEB4D3CDB3D1CCB3D1CBB1D0C9B0D0C9AFCFC9AFCFC8ADCE -C7ABCDC6ABCCC6ABCCCCB3D1FDF9FAFFFFFED8C4DCC3A7CAC3A7CAC3A6C9C2A6C9C2A7CAC1A5C9 -C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8DFCDE2FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9DFCDE2FFFEFDDFCDE2C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9 -C1A5C9C1A5C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CAE0CFE3FFFEFDFDF9FAC9AECEC6ABCCC6ABCC -C7ABCDC8ACCDC9AECEC9AFCFCAB0D0CAB1D0CCB3D1CDB3D1CEB4D2CFB6D4D0B7D4D0B8D5D1BAD6 -D2BBD7D3BCD7D3BDD7D5BFD9D6BFD9D5C0DAD7C1DAD8C3DBD8C3DBD9C4DCD9C4DDDAC5DDDAC6DE -DAC6DEDBC6DEDBC6DEDBC7DEDBC7DEDBC7DEDCC8DFDCC8DFDCC8DFDCC8DFDBC7DEDBC7DEDCC8DF -DCC8DFDCC8DFDCC8DFDCC8DFDCC9E0DCC9E0DCC9E0E0CFE3FFFDFCFFFDFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFD3E457B8882ABFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFE7D78A33E457B7E78A3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF55E5E8F3E457BACA4C3FFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEF6F8F7 -7CB4B05BA5A15BA5A166AAA781BCB993C8C693C8C793C8C792C7C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C792C7C793C8C793C8C7 -5BA4A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFB9DDD7 -C4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DF -C4E2DFC4E2DFC4E2DFC4E2DFC3E2DFC4E2DFC4E2DFC4E2DFC3E2DFC4E2DFC5E3E0B9DDD7ADD8CF -D7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B822E5BBC4381BA437F -BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380 -BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380 -BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380 -BB4380BB4380BB4380BB4380BB4380BA437FA33A708C3161822E5B832E5BA3637FF8EDF0FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E467BBAB1CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEFFFDFBEDE0EDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DD -DAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDD9C4DDD9C4DDD9C4DCD9C4DCD9C4DDD8C3DCD8C3DB -D8C3DBD7C2DBD7C1DAD6C1DAD5BFDAD5BFD9D4BED8D4BDD8D3BCD7D2BBD7D1BAD6D1B9D5D0B8D5 -CFB6D4CEB5D3CDB3D2CCB3D2CCB3D1CBB1D0CAB0D0C9AFCFC9AECEC8ADCEC8ACCDC6ABCDC7ABCC -C5AACCF7EDF4FFFEFDF1E7F0C3A7CAC3A7CAC3A6C9C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -DFCDE2FFFFFEDFCCE2C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8DECCE1FFFFFEDFCDE2C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9 -C1A5C9C2A6C9C2A7CAC3A6C9C2A7CAC3A7CAF4EBF3FFFFFEF2E7F1C5AACCC6ABCCC6ABCDC7ABCD -C8ACCDC9AECEC9AFCFCAB0D0CAB1D0CCB3D1CCB3D2CEB4D3CEB5D3CFB7D4D0B8D5D1B9D5D1BAD6 -D2BBD7D2BCD7D3BDD8D4BED8D5BFD9D6C0DAD7C1DAD7C1DAD7C2DBD7C2DBD8C3DBD8C3DCD8C3DC -D9C4DCD9C4DDD9C4DDD9C4DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DDDAC5DD -DAC5DDDAC5DDDBC6DDDAC6DEDAC5DDE3D2E5FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDE3DCE93E447B938DB3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFE7E78A33E457B7E78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDF2EEF35D5E8F3E457BACA5C4FFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFFFEF6F8F67CB4AF5BA4A162A8A5 -8AC2C0A5D5D5A6D5D7A5D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A6D5D55CA5A25BA4A1 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BDDFDAADD8CFD7EBE5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B842F5CCE4C8ECF4D90CF4D8FCF4D90 -D04D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4C8FCE4E90CF4C8FA83C73832E5B822E5B9D5877FFFFFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F2EEF43E447B938DB3FFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFCF6EFF5D7C1DAD8C2DBD8C3DBD8C3DBD8C3DBD9C3DCD9C3DCD8C3DBD8C3DB -D7C2DBD7C2DBD7C2DBD7C2DBD7C2DBD7C2DBD7C1DAD7C1DAD7C1DAD7C0DAD6C0DAD6C0DAD5BFD9 -D5BED9D4BED8D3BDD8D3BCD7D2BBD7D2BBD7D1BAD6D1B9D5D0B8D5CFB8D5CFB6D4CEB4D3CEB4D2 -CDB3D2CAB1D1CBB1D0CAB0D0C9AFCFC8AECFC8ACCDC7ABCDC7ACCDC6ABCCC5AACCEADBEAFFFFFE -FDFAFBCAB0D0C3A7CAC3A7CAC3A6C9C3A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8D8C3DBF1E7F0 -D7C2DBC2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A4C8C1A4C8C1A5C9D7C3DCF0E5F0D9C3DCC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9 -C2A6C9C2A7CAC3A7CAC2A7CACEB6D4FFFFFEFFFFFEE1CFE3C7ABCDC6AACCC7ABCDC8ACCDC8ADCE -C9AECEC9AFCFC9AFCFCBB1D0CBB2D1CCB3D1CDB3D2CEB4D3CFB6D4D0B7D4D0B9D5D1B9D5D1BAD6 -D1BBD7D2BBD7D3BCD7D4BDD8D4BED8D4BED9D5BFD9D5BFDAD6C0DAD6C1DAD6C1DAD7C1DAD7C2DB -D7C2DBD7C2DBD7C2DBD7C2DBD7C2DBD7C2DBD7C2DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DBD8C3DB -D8C1DAD8C2DBD8C3DBECDEEBFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEC7BFD63E457BC6BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEA098BB3D457B -7E78A3FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEF2EDF25E5E8F3E457BC6BED5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFE91BDB95AA4A061A8A598CBCBA6D5D5A7D6D6 -A5D4D5A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A8D6D75AA4A05CA5A1FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE842E5B822E5BD04D90CF4D90CF4D90CF4D8FCF4D8FCF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4C8FD04E90CF4C8FCF4E90CF4C8FBF458388305E832E5BB98499FFFFFDFFFFFEFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474E82 -736F9CFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFCFCF9FAD6BFD9D4BED9D5BFDAD5BFDAD6C0DAD6C0DAD6C0DAD6C0DAD6C0DAD5BFDAD5BFDA -D5BFD9D5BFD9D5BFD9D5BFD9D4BED8D4BED8D4BED8D4BED8D4BDD8D3BDD8D3BCD7D3BBD7D2BBD7 -D2BBD7D1BAD6D1B9D6D0B8D5D0B7D4CFB6D4CFB6D4CEB5D3CDB4D2CDB3D2CCB3D1CBB2D1CAB0D0 -C9AFCFC9AFCFC8AECEC8ADCEC7ABCDC7ABCDC6ABCCC4A9CBD9C4DDFFFFFEFFFFFED4BFD9C3A7CA -C3A7CAC3A6C9C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C2A5C9C0A3C7 -C1A5C9C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C8C1A4C8C1A4C8C2A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A7CAC3A6C9 -C3A6C9C3A7CAC3A7CAD9C4DCFFFFFEFFFFFEDAC5DDC6ABCDC7AACCC6ABCDC8ACCDC8ACCDC9AECE -C9AECECAAFCFCAB0D0CBB1D0CCB3D1CCB3D2CDB4D2CEB5D3CFB6D4CFB7D4D0B8D5D0B8D5D1B9D5 -D1BAD6D2BBD7D2BBD7D2BCD7D3BCD7D3BDD8D3BDD8D4BED8D4BED8D5BED9D4BED9D5BFD9D5BFD9 -D5BED9D5BFD9D5BFDAD5BFDAD6C0DAD6C0DAD6C1DAD6C0DAD6C0DAD5BFDAD5BFD9D5BFD9D6BFD9 -D5BED9F6EEF4FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCA099BB3E457AE3DCE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFDFCFFFFFEACA4C43F457B5E5E8FFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFCFFFFFEF3EEF5474E82474E82D4CDE1FFFFFDFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFCFFFFFED7E5E05CA5A15BA5A192C7C7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A6D5D65BA5A15BA5A2FFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E3 -CAE5E4CAE5E4CBE6E4CAE5E4CAE5E4BCDFD8ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE832E5B842E5BCF4D90CF4D8FCF4D90D04D90CF4D8FCF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8F -CF4C8FCF4E90CF4D90CF4C8FB13F79832E5B842E5BEDD9E1FFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6966955E5D8EFFFFFE -FEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFEFD -DBC7DED3BCD7D2BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BDD8 -D3BCD7D3BCD7D2BBD7D2BBD7D2BBD7D2BBD7D2BBD7D1BBD7D1BAD6D1B9D6D1B9D5D0B8D5D0B8D5 -D0B7D4CFB6D4CEB5D3CEB4D3CDB4D2CDB3D2CCB3D1CBB2D1CBB1D0CAB0D0C9B0D0C8ADCEC8ADCE -C8ACCDC7ABCDC6ABCDC7AACCC4A9CBDBC6DDFFFFFEFFFFFEE0CEE3C4A7CAC3A7CAC3A7CAC3A6C9 -C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C2A5C8C2A5C8C1A5C9C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C3A6C9 -C2A7CAC3A8CAE9D9E9FFFFFEFFFFFED2BCD7C6ABCCC6ABCDC5AACCC7ABCDC8ACCDC8ADCEC9AECF -C9AFCFCAB0D0CBB1D0CBB2D1CBB2D1CCB3D2CEB4D2CEB4D3CFB5D3CFB6D4CFB7D4D0B8D5D1B9D5 -D1B9D5D1B9D5D1B9D6D1BAD6D2BBD7D2BBD7D2BBD7D2BBD7D1BBD7D3BCD7D3BCD7D3BCD7D3BDD8 -D3BCD7D3BCD7D3BCD7D4BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D3BCD7D4BCD7FDF9FA -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -7D77A33E457BFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEC7BED53E457B5E5E8FF2EDF4FFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFED4CDDF484E82474D81F2EEF5FFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFD91BEB95AA4A078B6B3A7D6D5A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A7D6D6A6D5D65BA5A15AA4A1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE6E5CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE822E5B842E5BCF4E90D04C8FCF4D90CF4D8FCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D90CF4E90CF4D8F -CF4C8FCF4E90D04D8F953466822E5BB27990FEFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB23E457BFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFBE2D0E4D2BAD6 -D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1B9D6 -D1B9D6D1B9D5D1B9D5D0B8D5D0B8D5D0B8D5D0B7D4D0B7D4CFB6D4CFB6D4CEB5D3CEB4D3CEB4D3 -CDB3D2CCB3D2CCB3D1CCB2D1CBB1D0CAB0D0C9AFCFC9AFCFC9AECFC7ADCEC8ACCDC7ABCDC6ABCC -C6ABCCC5AACCDAC5DDFFFFFEFFFEFDEAD9E9C3A8CBC3A7CAC3A7CAC3A6C9C2A6C9C2A6C9C1A5C9 -C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C2A5C8C2A4C8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C2A6C9C2A5C9C3A6C9C4A7CAC2A7CA -C3A7CAEADAEAFFFEFDFDF9FAD2BCD7C6ABCCC7ABCCC6ABCDC7ABCDC8ACCDC8ADCEC9AECEC9AFCF -CAB0D0C9B0D0CAB1D0CBB2D1CCB3D1CCB3D2CDB3D2CEB4D3CDB5D3CEB5D3CFB6D4CFB6D4D0B7D4 -D0B7D4D0B8D5D0B8D5D1B9D5D1B9D5D1B9D5D1B9D5D1B9D6D1B9D6D1BAD6D1BAD6D1BAD6D1BAD6 -D1BAD6D1BAD6D1BAD6D1BAD6D1BAD6D1BBD7D1BAD6D1BAD6D1BAD6DAC5DDFFFDFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD686695686695 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED5CDE0474E82484D82F2EFF5FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53D457B5E5E8FF2EEF4FFFFFEFFFFFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -5AA4A05CA4A198CBCBA6D5D6A6D5D6A7D6D6A5D5D6A6D5D6A6D5D6A5D5D7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A5D5D6A7D6D55BA5A25BA4A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D7EBE5ADD8CFBBDED9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE842E5B -832E5BCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D8F -CF4D90B6417D832E5B904067FFFFFEFFFFFDFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C43F457BC6BED6FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFBEFE1EDCFB7D4D0B8D5D0B7D4 -D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4CFB7D4CFB6D4 -CFB6D4CFB6D4CFB5D3CEB5D3CEB5D3CEB4D3CEB4D3CEB4D3CDB3D2CDB3D2CCB3D1CBB2D1CBB2D1 -CAB1D0CAB0D0CAAFCFC9AFCFC9AECEC8ADCEC7ADCEC8ACCDC7ABCCC6ABCCC5ABCDC5A9CBDAC5DD -FFFFFEFFFEFDE9DAE9C3A8CAC3A7CAC3A6C9C3A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A5C9C2A4C8C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C3A6C9C2A6CAC2A7CAC3A6C9C4A7CAC7ACCD -F6EDF4FFFFFEFFFFFEDAC5DDC5AACCC7AACCC6ABCCC7ABCDC7ABCDC8ACCDC8ADCEC9AECEC9AECF -CAAFCFCAB0D0CAB1D0CAB1D1CBB2D1CCB3D1CCB3D2CDB3D2CDB4D2CEB4D3CEB4D3CEB5D3CEB5D3 -CFB6D4CFB6D4CFB6D4CFB6D4CFB6D4CFB6D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4 -D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4D0B7D4E4D3E6FFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE3E467C8881AAFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EEF4 -515689474E81D5CDE1FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDADA4C4 -3E457B726F9CFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDD8E6E15CA5A266AAA7 -A6D5D5A6D5D6A6D5D6A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6 -A7D6D65AA4A25BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFED7EBE5ADD8CF -BCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9 -ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5BD04D90 -CF4D90CF4D8FCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D90CF4C8FCF4D90CF4D8FCF4D90 -832E5B832E5BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED5CDE03E457BA099BBFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFCF9F4F8CEB4D3CEB5D3CEB5D3CEB5D3CEB5D3 -CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CEB4D3CEB4D3CEB4D3CEB4D3CEB4D3CEB4D3CDB4D2 -CDB3D2CDB3D2CDB3D2CCB3D2CCB3D1CCB3D1CBB2D1CBB2D1CBB1D0CAB0D0CAB0D0C9AFCFC9AECF -C9AECEC9AECEC9AECEC8ACCDC7ABCDC6ABCCC5ABCDC6ABCCC6A9CBEADCEBFFFEFDFFFFFEE9DAE9 -C4A7CAC2A7CAC3A7CAC4A7CAC2A6CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8C1A5C9C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9C2A5C9C1A5C9C1A5C9C2A6C9C2A5C9C3A6C9C2A7CAC3A7CAC3A7CAE8D9E9 -FFFFFEFFFFFEE5D5E7C6A9CBC6ABCCC6ABCCC6ABCDC7ABCDC7ACCDC8ADCEC8ADCEC9AECEC9AECF -C9AFCFC9B0D0CAB0D0CAB1D0CBB2D1CBB2D1CCB3D2CCB3D1CCB3D1CCB3D2CCB3D2CDB3D2CDB4D2 -CDB4D2CEB4D3CEB4D3CEB4D3CEB4D3CEB4D3CEB5D3CEB5D3CEB5D3CEB5D3CEB5D3CDB5D3CEB5D3 -CEB5D3CEB4D3CEB5D3CEB5D3CDB4D2F1E6F0FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD4CDE03F457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6866953E457BBAB1CD -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD8882AB3E457B -8882ACFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED8E6E15BA4A16FB0ADA6D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A6D5D75BA5A1 -5BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4C9E5E3CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD8ADD8CFD7EBE5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE822E5B842F5BCF4C8FD04D8FCF4D90 -CF4E90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90D04D90CF4D90CF4D90903364822E5B -D9B9C6FFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD3E457B7E78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFEFDD6C1DACDB3D1CDB3D2CDB3D2CDB3D2CCB3D2CCB3D2 -CCB3D2CCB3D2CCB3D2CCB3D2CCB3D2CCB3D1CCB3D1CCB3D1CCB3D1CCB3D1CBB2D1CBB2D1CBB2D1 -CBB2D1CBB2D1CAB1D0CAB1D0CAB0D0C9AFCFC9AFCFC9AECFC9AECFC9AECEC8ADCEC8ACCDC7ACCD -C7ABCDC7ABCCC6ABCCC6ABCCC6AACCD0B7D4F6EDF4FFFFFEFFFFFEDFCFE3C4A7CAC3A8CAC3A6C9 -C3A6C9C2A7CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A5C9C2A4C8 -C1A4C8C1A5C9C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C2A5C9C1A5C9C2A6C9C2A7CAC2A6C9C3A6C9C3A7CAC2A7CAC4A7CAE9DAE9FFFFFE -FFFFFEF2E7F1CCB2D1C5AACCC6ABCCC6ABCCC6ABCCC7ABCDC7ACCDC7ACCDC8ADCEC9AECFC9AFCF -C9AECFC9AFCFCAB0D0C9B0D0C9B0D0CAB1D0CBB1D0CBB2D1CBB2D1CBB2D1CBB2D1CCB3D1CCB3D1 -CCB3D1CCB3D1CCB3D1CCB3D2CCB3D2CCB3D2CCB3D2CCB3D2CCB3D2CCB3D2CDB3D2CDB3D2CDB3D2 -CDB4D2CDB3D2CEB4D2FCF9FAFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEACA4C43E467BD4CCE0FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE7E78A33F457B938CB3FFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFDFCFFFFFEFFFEFD736F9C3E457BACA4C4 -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED5CDE0736F9C3E457B3E457B515689ACA4C4FFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8E6E15BA5A16FB0ADA6D5D6A7D6D7A5D5D6A6D5D6 -A6D5D6A6D5D5A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5BCF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4E90CF4D8FCF4D90CF4D90CF4D8FCF4D90CF4D8F903364832F5BDAB9C5FFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE6866955E5E8FFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDE1CFE3CBB2D1CBB2D1CCB2D1CAB1D1CCB2D1CAB1D1CBB2D1CBB2D1 -CBB2D1CBB2D1CBB2D1CBB1D0CAB1D0CAB1D0CAB1D0CAB1D0CAB1D0CAB0D0CAB0D0CAB0D0CAB0D0 -C9AFCFC9AFCFC9AECFC9AECEC9AFCFC8ADCEC8ADCEC8ACCDC8ACCDC7ABCDC7ABCDC6ABCDC6ABCC -C5AACCC5AACCE1CFE3FFFFFEFFFFFEFCF9FAD5BFDAC3A7CAC3A7CAC3A7CAC3A7CAC3A6C9C2A7CA -C2A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CAC3A7CAD9C4DDFCF9FAFFFFFE -FDF9FADDCAE0C5AACCC6ABCCC6ABCDC6ABCCC6ABCDC7ABCDC7ABCCC8ACCDC8ACCDC7ADCEC9AECE -C9AECEC9AECFC8ADCEC9AFCFC9AFCFC9AFCFC9B0D0CAB0D0CAB0D0CAB1D0C9B1D1CAB1D0CBB1D0 -CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1CBB2D1 -D4BED8FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE7E78A43D457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFD -FFFFFEFFFEFDFFFDFCFFFFFEACA4C33F467B7D78A3FFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEF1EDF35E5E8F474E82D4CCDFFFFFFD -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDD4CCE0474E823E457B3D457B3E467B3E457B3E457B938CB2FFFFFEFFFEFDFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFED8E6E25BA5A166AAA7A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6 -A6D5D7A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5BCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8F -CF4D8FD04E90CF4E90CF4C8FCF4E90CF4C8FCF4D90832E5B832E5BFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -3E447BF2EFF5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDF3E8F0C9AFCFC9AECFC9AFCFC9AFCFC9AFCFC9AECFC9AFCFC9AFCFC9AFCFC9AFCF -C9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AECFC9AECFC9AECEC8ADCEC9AFCFC8ADCE -C8ADCEC8ADCEC7ACCDC8ACCDC6ABCDC7ABCDC6ACCDC6AACCC6ABCCC5AACCC5AACCDAC5DDF8F3F7 -FFFFFEFFFEFDF1E6F0CAB1D0C3A7CAC2A6C9C3A8CAC2A5C9C2A6C9C2A7CAC2A6C9C1A5C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A5C9C2A5C9C2A6C9C2A6C9C2A6C9C3A6C9C3A7CAC3A6C9C3A8CACBB1D0F4EBF3FFFFFEFFFEFD -F9F3F7D3BCD7C4A9CBC6ABCDC6ABCCC6ABCCC6ABCCC7ACCDC7ABCCC7ABCCC7ACCDC8ACCDC8AECE -C8ADCEC9AECEC8AECEC9AECEC9AECFC9AFCFCAAFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCF -C9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFC9AFCFE8D8E8FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -5E5E8F686695FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFEFDFFFFFEFFFEFD -FFFEFDD4CCE0474E825D5D8EF3EDF4FFFFFDFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFDFFFEFDFFFFFDFFFFFEFFFDFCFFFEFCFFFFFED5CDE0474E825F5F90F2EFF5FFFFFEFFFEFD -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -3E457B3E457B3E457B3E457B3D467B3F457B3E457BE3DCE9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE5BA5A15BA5A19DCFCDA6D5D6A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE832E5B832E5BCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90D04E90CF4C8E -D04D90CF4E8FCF4D90CF4D90B5417C832E5B904067FFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEBAB1CC3E467BBAB1CD -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FEFEFCCCB2D1C9AECEC9AFCFC9AECEC9AECEC9AECFC9AECEC8ADCEC9AECEC9AECEC9AECEC9AECE -C9AECEC8ADCEC8ADCEC8ADCEC8ADCEC8ADCEC8ACCDC8ACCDC8ADCEC7ACCDC6ABCDC7ACCDC7ABCD -C7ABCDC6ABCCC6ABCCC6ABCCC7AACCC4A9CBC9AECED9C5DDFAF3F7FFFEFDFFFFFEFCF9FAD9C5DD -C2A6C9C3A7CAC3A6C9C4A7CAC2A5C9C3A6C9C2A5C9C2A6C9C2A6C9C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C3A6C9C3A7CAC3A7CAC3A8CADCC8DFFDF9FAFFFFFEFFFEFD -F8EEF4D9C5DDC5AACCC5AACCC6ABCCC6ABCCC6ABCCC7ABCDC5ABCDC7ABCDC7ABCDC7ABCDC6ACCD -C8ADCEC8ACCDC8ADCEC8ADCEC8ADCEC8ADCEC8ADCEC9AECEC9AECEC9AECEC9AECEC9AECEC9AECE -C9AECEC9AECEC9AECEC9AECEC9AFCFC8ADCEC9AFCFC9AECEC9AECEF6EEF4FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3EEF33E457B928CB1 -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDF3EEF55E5E8F -474E82D5CDE0FFFFFEFFFEFDFFFFFCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFDFBFFFFFEACA4C43E447A746F9CFFFEFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE3D457B3F457B3E457B -3F457A3E457B3E457B3D457B3E457BACA4C4FFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFD -FFFEFD90BDB85BA4A178B5B2A7D6D6A6D5D6A6D5D6A7D6D6A5D5D6A7D6D6A6D5D7A5D5D5A7D6D7 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -832E5B832E5BCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90D04D90CF4D8FCF4D90 -CF4D8FCF4D8F963467832F5BB27890FFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF33E447B8882ABFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCDBC7DE -C8ADCEC8ACCDC7ACCDC7ACCDC7ACCDC7ABCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ABCD -C7ABCDC7ABCDC6ABCDC7ACCDC8ACCDC7ABCDC6ABCCC6ABCDC7ACCDC5AACCC5AACCC7ABCCC6ABCC -C5AACCC6ABCCD6C1DAEBDBEAFDF9FAFFFEFDFFFFFEFCFAFBDFCEE3C7ACCDC3A8CAC3A7CAC3A7CA -C4A7CAC2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C2A6C9C2A6C9C2A6C9C3A6C9C2A7CAC3A7CAC3A7CAC6ACCDE0CEE2FDF9FAFFFFFEFFFEFD -FCFAFBEADAEAD6C1DAC5AACCC5AACCC6ABCCC7AACCC6ABCCC6ABCCC5AACCC6ABCDC6ABCDC8ACCD -C7ABCDC7ABCDC7ABCDC7ABCCC7ACCDC7ABCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCDC7ACCD -C7ACCDC8ACCDC7ACCDC8ADCEC7ACCDC7ACCDCFB5D3FEFCFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB9B1CD3E457BBBB2CEFFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFD7E78A33E457BACA4C4FFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEB1B2B1D7D6D6FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFE8781A93D457BA199BCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE3E447A3D457B3F457B3E467C3E457B -3E457B3E457B3E457BA199BCFFFFFEFFFDFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFED8E5E0 -5BA5A25CA5A197CBCAA7D6D5A6D5D6A5D4D5A6D5D6A6D5D6A5D5D6A7D6D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5 -ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5B -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CE4D8FCF4C8FCF4D8FCF4E90D04D90CF4C8EB6417D -842F5C832E5BEEDAE1FFFFFEFFFFFEFEFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD5E5E8F5E5E8FFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCEFE1EDC5AACCC6ABCD -C6ABCCC7AACCC6ABCCC6ABCCC5AACCC6ABCCC6ABCCC6ABCCC6ABCDC6ABCDC6ABCCC6ABCCC6ABCC -C6ABCCC5AACCC6ABCDC6ABCCC6ABCCC6ABCCC5AACCC5AACCD0B8D5D6C1DAE1D0E4F2E6F0FFFFFE -FFFEFDFFFEFDFFFFFEF8F3F7DCC9DFC8ADCEC3A7CAC3A7CAC3A6C9C2A7CAC2A7CAC2A6C9C2A6CA -C3A6C9C1A4C8C2A5C9C2A6C9C1A5C9C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C2A6C9C2A6C9C2A5C9C2A7CAC3A6C9C3A7CAC3A7CAC4A7CAC7ADCEE0CEE3F8F3F7FFFEFDFFFFFE -FFFFFEFDFAFBEEE0EDE1CFE3D2BBD7D0B8D5C5A9CBC6ABCCC5AACCC7ABCCC5A9CBC6ABCCC5ABCD -C6ABCCC6ABCCC6ABCCC6ABCCC6ABCDC6ABCDC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCC -C6AACCC6ABCCC6AACCC7ABCDDDCAE0FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8882AB3E457BF2EDF4FFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFCFFFFFEFFFEFDACA5C43F457B7E79A4FFFFFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDB2B2B23B3B3A656666CACAC9FFFFFEFEFEFDFFFEFCFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE5E5E8F474E81D4CCE0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEADA5C36966963D457B3F457B3D457B3E457B3F457B3E457B3D457B -3F457BD4CCDEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE90BDB85AA4A1 -62A9A598CBCAA6D5D6A6D5D6A5D4D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -5BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CF -D7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5BCF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D90CF4D90CF4D8FC0468488305E832E5BB27890 -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8781AA3F457BF2EEF5FFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCFEFDFDCAB0D0C5AACCC6ABCCC6ABCC -C6ABCCC6AACCC6ABCDC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC5AACCC5AACCC4A9CBC5AACC -C4A9CBC5AACCEADBEAFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF8F4F8E5D4E6 -CDB5D3C3A7CAC3A8CAC3A7CAC3A7CAC2A7CAC3A6C9C2A6C9C2A6C9C2A6C9C1A4C8C1A5C9C1A5C9 -C2A5C9C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C2A5C9C1A5C9C2A6C9 -C2A6C9C2A6C9C2A5C9C3A6C9C3A6C9C3A7CAC4A7CAC3A8CAC3A7CAD5BFDAE9DAE9F8F2F6FFFFFE -FFFFFEFFFFFEFEFDFDFFFFFEFFFEFDFFFFFEFFFFFEE5D4E6C5AACCC6AACCC5AACCC5AACCC5AACC -C6AACCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6ABCCC6AACCC7ABCCC6ABCC -C7ABCCC5AACCF5EDF4FEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE5E5E8F5E5E8FFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEE4DDEA474E825E5E8FF2EEF4FFFFFEFEFEFDFFFEFCFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEB2B2B23B3B3A828383F4F2F1FFFFFEFFFEFDFFFFFEFFFDFBFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFED5CCDF474E835E5E8EFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDE3DCE8 -938DB3474E823F457B474D82736F9D3E457B3E457B3E457B3D457B3E457B3E457B686696FFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFEFDF6F9F67DB4B05BA4A161A8A5 -8FC4C3A5D5D5A7D6D6A5D5D5A7D6D6A6D5D5A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5BCF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90D04D90CF4E90CF4D8FCF4D90AC3D7689305F822E5B964C6FFFFEFDFFFFFEFEFDFC -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEBAB1CC3F467BB9B1CCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFCD9C4DDC3A9CBC4A9CBC5A9CBC5A9CBC4A9CB -C4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC5A9CBC5A9CBC4A9CBC4A9CBC4A9CBC4A9CBC3A8CAC5A9CB -F2E6F0FFFFFEFFFFFEFFFFFEF8F3F7F1E7F1E4D4E6D9C4DCCAB1D0C3A7CAC2A7CAC3A6C9C2A7CA -C4A7CAC2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A4C8C1A4C8C2A6C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C2A6C9C1A4C8C2A6C9C2A5C8 -C2A6CAC2A5C9C2A6C9C2A6C9C3A6C9C3A6C9C3A6C9C3A7CAC3A7CAC3A7CACEB5D3D8C3DCE5D5E6 -F2E8F1FBF7FAFFFFFEFFFEFDFFFFFEF2E7F1C5A8CBC3A8CAC4A9CBC4A9CBC4A8CAC4A9CBC5A9CB -C4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC4A9CBC3A8CBC4A8CAC4A9CBCBB2D1 -FFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEE3DCE93F457B938CB2FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFE6866953F457BD5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F0767676515252F3F2F1FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEA099BB3E457B8881AAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEBAB2CD736F9C3E457B3E457B686695 -ACA4C4FFFFFEFFFEFD8781AA3F457B3E457B3E457B3E457B686695F2EDF3FFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF6F8F57CB3AF5BA5A15BA5A16BADAB -85BEBC93C8C7A2D2D2A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE832E5B832E5BCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -C54888BB4380AC3D768C3161842E5C822E5B9D5877F8EDEFFFFFFEFFFEFCFFFFFEFFFEFCFFFEFD -FFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF3EFF63E447A7E79A4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFDFBEDE1EDC5A8CBC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CA -C4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A9CBC4A8CAC4A8CACEB7D4C8ACCD -C3A8CAC3A7CAC2A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A6C9C4A7CAC2A6C9C2A6C9 -C3A7CAC2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C2A5C9C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C2A5C9C1A5C9C1A5C9C1A5C9 -C2A6C9C2A6C9C2A6C9C2A6C9C3A6C9C3A6C9C3A7CAC3A7CAC3A7CAC4A7CAC3A7CAC3A7CAC3A7CA -C3A7CAC3A8CAC7ACCDCEB6D4C4A8CAC4A8CAC4A8CAC4A7CAC4A9CBC3A8CAC4A8CAC4A8CAC4A8CA -C4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC4A8CAC5A8CBC4A8CAC4A8CAE5D4E6FFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEADA5C5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB33E457B -938DB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -828383515252F3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -726F9C3E457BC7BED5FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF2EDF3938DB35156893E467B474E827E78A4D4CDDFFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEE3DCE9A199BC938DB3D5CEE0FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEAFCDC868A9A55BA5A15CA5A15CA5A1 -5BA4A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA4A15BA5A15BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7EBE5AED8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE832E5B832F5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B842E5B893761BA8498FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686696515689FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCCAB1D0C3A8CAC3A7CAC3A8CBC3A7CAC3A8CAC3A8CAC3A8CAC3A8CA -C3A8CAC3A8CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CA -C3A7CAC3A7CAC3A7CAC3A7CAC3A6C9C3A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C3A6C9C3A6C9C3A6C9C3A7CAC3A7CAC3A7CAC3A7CA -C3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A8CAC3A8CAC3A8CAC3A8CA -C3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A8CAC3A7CAC3A8CAF8F2F6FEFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFD7E78A3484D82FFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD4CDE03E457B686695FFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6676867D7D6D6FFFFFEFFFEFDFFFFFE828383 -767676FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEF2EDF4474E82 -505689F2EEF4FFFFFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEC7BED5 -7E78A33F457C3E457B5E5E8FACA4C4F2EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF7FAF7BAD3CC8FBDB886B7B35BA5A25CA5A2 -5AA4A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15AA4A15CA5A25AA4A15BA5A15BA5A1FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDD7EBE5ACD7CFAED8CEACD7CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFD7EBE5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE832F5B822E5B842E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B8936619C5877A3627FC89DAD -F8EDF0FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEA098BA3E457B -D5CDE0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCDFCFE3C3A7CAC3A8CAC3A6C9C3A8CAC3A6C9C3A7CAC3A7CAC3A7CAC3A7CAC3A7CA -C3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A6C9C3A6C9C3A6C9C3A6C9C3A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C2A5C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A7CA -C3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CAC3A7CA -C3A7CAC3A7CAC3A7CAC3A7CAC3A7CAD5BFD9FFFDFCFFFDFBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD474E82726F9CFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE5E5E8E474E82E4DDE9FFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE5E3E3686969F3F0F0FFFFFEFFFFFEFFFFFEFFFEFDF4F2F1505050B2B2B2 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEBAB2CD3F457B8882AB -FFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFCFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFDFFFDFCFFFFFEFFFFFEF3EEF49F98BB5256893E457B3E467B7E78A3 -C7BFD7FFFEFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFEFDFDE5DEEA3D457BA199BBFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFB -F9F2F6C2A5C9C4A7CAC2A6C9C4A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9 -C3A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9C3A6C9 -C2A6C9C4A7CAC3A6C9EDDFECFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEBAB1CC3E457BACA4C4FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEA198BB3E467BA098BBFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6FFFFFEFFFFFE -FFFEFDA6A7A6999A9AFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC93A3A39FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD736F9C3E457BC7BED5FFFEFD -FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFED4CCDF7E78A3474D823E457B505589A099BBF3EEF4FFFEFDFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE5155885E5E8FFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFEFCFBD4BED9 -C2A6C9C3A6C9C2A6CAC2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C2A5C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C3A6C9 -C9B0D0FFFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE8882AB3E467CF2EFF5FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -E4DCE9474E825E5E8FFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F2F1FFFFFED7D6D6181717FFFFFEFFFFFEFFFFFED7D6D6 -282828F3F1F0FFFEFDFFFFFEFFFFFECACAC9FFFFFEFFFFFE676867B2B2B2FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEE3DCE9484D825F5E8FFFFEFDFFFFFEFFFEFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDF3EEF3ACA4C3 -5E5E8F3E467B3D457B736E9CC7BED5FFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD8882AB3E447AE4DDEAFFFFFEFFFFFEFFFFFEFFFDFC -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCF0E4EFC2A7CAC2A5C9 -C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A5C9C2A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A6C9C2A7CAC2A5C9DFCEE3FEFDFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFD -FFFEFC515689686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE736F9C3E457B -D5CDDFFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEBEBEBE8E8F8FFFFFFEFFFFFEFFFEFDD8D7D7B2B2B2FFFFFEFFFEFD838484515252 -F3F0F0FFFFFEF3F1F0535353FFFFFEFFFFFEBDBDBD767676FFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE9F98BB3F457B938CB3FFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEE3DCE88882AA474E823E457B515689938CB2 -E4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFED4CCE03E457BA099BBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFEFDFCFEFDFCCAAFCFC1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C2A6C9FBF7F9FFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CCE03E457B -A099BBFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC6BED43D457B8781AAFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -999A9AA7A7A7FFFFFEFFFFFEFFFFFED7D6D6272727B2B2B2FFFFFEFFFEFD8283833C3C3C999A9A -767777CACAC9FFFFFEFFFFFEFFFFFEF3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFCFFFEFDFFFEFDFFFFFEFFFFFE5D5E8F474E82E3DCE9FFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDACA4C46866953E467B3E447B686695B9B0CCFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFE5156895E5E8EFFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCE7D8E9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9 -C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9C1A5C9D8C3DCFEFCFBFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE8882AB3E457CE3DCE9FFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFC525688474E82F2EEF4FFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6282828 -B2B2B2B2B2B2D7D6D6FFFFFED7D6D6282828B2B2B2FFFFFEFFFEFDD7D6D6A7A7A7E4E2E2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDD4CCDF3E457B7D78A3FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDEA938DB3 -474E823E457B474E828881AAE4DDE9FFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD8882AA3D457BE4DDEAFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCC9AECFC1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8F8F0F6FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD474E82726F9CFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE938CB23D457BABA4C5FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED7D6D62A29293B3B3A -F4F2F1FFFFFEFFFFFED7D6D6282828B2B2B2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE7E78A33E457BC7BED5FFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDB9B1CD736E9C3E447B3E467C696695ACA4C5 -FFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCE4DDE9 -3E457B938CB2FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFDFBE8D9E9C1A4C8C1A4C8C1A4C8C2A4C8C1A4C8C2A5C8C1A4C8C1A5C9 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8D8C3DBFFFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEB9B1CC3E457BACA4C5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFFFE -F2EEF4474E82686695FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEA5A6A6F4F2F1FFFFFEE5E3E35050502A2929B1B2B1FFFFFE -FFFFFEFFFFFED7D6D62A2929676867E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -F2EEF4484E82696695FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFCFFFEFDFFFEFCFFFFFEFFFFFE -FFFEFDFFFFFEF2EDF3938CB25056893F457B464D817E78A3D4CCDFFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD5E5E8F525689 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFEFEFCFBF7F9C5AACCC1A4C8C1A4C8C1A5C9C2A4C8C1A3C8C1A5C9C2A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A4C8C1A4C8C1A3C8F8F1F5 -FFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFC -FFFFFEFFFFFE7E79A43E457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD7D78A33F457B -C7BED5FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFE767676D6D6D5FFFFFEFFFFFEFFFFFED6D6D52A2929B2B2B2FFFFFEFFFFFE -FFFFFE828382B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928DB3 -3E467BADA4C3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC6BFD67E78A4 -3F457B3E457B5F5E8FACA5C4F3EEF3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDA19ABC3E457BC7BED5FFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDE8D8E8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A5C9C2A5C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8D8C3DBFFFDFCFFFDFCFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEF2EDF4 -3E457B7D78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFEFDE3DCE93F457B7D78A3FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEE5E3E3686969F3F0F0FFFFFEFFFFFED7D6D6282828B2B2B2F3F0F0FFFFFEF3F1F0 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFEFD515689505589 -FFFFFDFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEF2EFF5A099BC5156893E457B3E457B7D78A3C7BED5 -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEF2EEF33E457B7D78A3FFFFFEFFFFFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFEFCFCFFFDFC -C9AFCFC2A4C8C1A5C9C1A4C8C1A4C8C3A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8F8F1F6FEFDFCFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9F99BB3E457BC7BED6 -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE726F9D3E447BE4DDE8FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE828383515252F3F1F0FFFFFEFFFFFED7D6D6282828515252E5E3E3FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEACA4C43E457BA098BAFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFED5CDDF7E78A4484D823E457B525689A198BBF2EEF4FFFFFDFFFFFEFFFEFDFFFEFD -FFFDFCFFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFFFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFE7E78A33D457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFDFCE7D7E8C1A4C8 -C2A4C8C1A4C8C2A5C9C1A4C8C1A4C8C2A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A3C8C2A5C9C1A3C7D9C4DCFFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE515689515689FFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEC7BED53E457B7E78A3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED7D6D69A9B9BFFFFFEFFFFFE -828383515252F4F2F1FFFFFEFFFFFE757676D8D7D7FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD515689484E82F2EEF4FFFFFEFFFEFD -FFFEFDFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4ADA5C45E5E8F -3E447B3E457B736F9CC7BED5FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53F457AA099BBFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCCDB3D2C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8C7ABCCFBF7F9FFFDFCFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEC7BED53F457B9F98BBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD6866953F457BE3DDEAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFED7D6D6676867CACAC9FFFFFEFFFFFEFFFFFE828383 -515252F3F1F0F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFCFFFFFEFFFEFCFFFFFEC7BED53E447A938DB3FFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCE4DDEA8881AA484E823D457B525689928DB2E4DDE9 -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFD505589515689FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCFFFEFCF0E4EFC1A4C8C2A5C9C1A4C8C1A4C8 -C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8E0CDE2 -FEFDFCFFFDFCFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFC7D78A33E447BF3EFF5FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDC6BDD53E457B -928CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE828383CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE828383282828 -BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFE686695474E82F2EEF5FFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFCACA4C46867963E457B3E457B736F9CBAB1CCFFFFFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEACA4C43E447ABAB1CCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFEFDD4BDD8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C9AFCFFFFDFCFFFEFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -E4DDEA3E457B7D78A3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD6866953E457BF3EEF4FFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE8E8F8F8E8F8FFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2B2B2B2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEC7BED53E457B938CB2FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DBE8938DB3474E82 -3E457B474D828882ABE4DDEAFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4 -474D82696695FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCF8F2F7C6ABCCC1A4C8C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A3C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8ECDEECFFFDFCFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD938DB23E457B -D4CCDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEE5DEEA3E467C7E78A3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -E5E3E3272727B2B2B2FFFEFDFFFFFECACAC9828383FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFD5E5E8F474E82FFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEBAB2CE746E9C3E457B3E457B686695ACA4C5FFFEFC -FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD938CB23D457B -D5CDE0FFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFDFCFFFEFCDFCDE2C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A3C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A4C8C1A5C9D4BDD8FFFEFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2EEF4474D82686695FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFE7E78A43D457BE4DDE9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFEFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED6D6D55353533A3A39676867E4E2E2D7D6D6 -2727279A9B9BCACAC9676867D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -ACA4C43E457BACA4C4FFFFFEFFFDFCFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFEFEFDFFFEFC -FFFFFEE2DBE9938CB25156893F457B474D827E78A3E3DCE9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFEFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCEA3E447A7E78A3FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFDFCCCB4D2C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C6AACCF8F2F6FFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB3F467BB9B1CCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFDE3DCE93E467C7E78A3FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE515252F3F1F0FFFFFE767676676867FFFFFEE5E3E38E8F8E -838484D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFDFFFEFCFFFFFE515588 -52568AFFFDFCFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDC7BFD77D78A33E457B -3E457B5E5E8EACA4C5F2EFF4FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD7E78A33E457BE4DDE8FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFCF4EBF2C1A4C8C1A5C9C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C2A5C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8E4D3E5 -FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFE515689505589FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8882AB -3E457BE4DDE9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEB1B2B18F9090E5E3E3FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFD3C3C3CFFFFFED7D6D6686969F3F1F0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEACA4C43D457ABBB2CE -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEF2EFF5A098BB5156893E447A3E457B7E79A4D4CCDFFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEF7F9F7D7E6E2D9E6E2 -D9E6E3D7E5E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1 -D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1 -D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1 -D8E6E1D8E6E1D8E6E1D8E6E1D8E6E2D8E6E1D9E6E1D7E4E0FFFFFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF7FAF8EDF5F2EEF6F2ECF5F1EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2 -EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EEF6F2ECF5F2EDF5F2 -EDF5F2EEF6F2EDF5F2EDF5F2EDF5F2EDF5F2F7FAF8FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC8B4C5C8B3C4C9B3C4C8B3C4C9B4C5C8B3C4C8B3C5C8B3C4C8B3C4C8B3C4C8B3C4 -C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4 -C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4 -C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C4C8B3C5C9B5C5F1E9ED -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDE4DDE83E447B7E79A4FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFB -DFCDE1C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C2A5C8C1A4C8D0B7D4FFFEFCFEFCFBFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEACA4C53E447AADA5C3FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF3EEF5484D82686695FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -E5E4E49A9B9B282828828383E5E3E3FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3B3B3A909191676867F3F0F0FFFFFE9A9B9BB2B2B2FFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDF2EEF4474E82686695FFFFFEFFFEFD -FFFEFDD5CDE07E79A43D457B3F457B515588A099BDF3EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFCFFFFFEFFFFFEF7F9F7B8D3CD7DB3AF5BA5A15CA5A15BA5A15BA4A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDD8EBE6ADD8CFACD7CFAED8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFACD7CFADD8CF -ADD8CFADD8CFAED8CFADD8CFD8EBE6FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -532B58532B57532C57542C58532C57532C57542C58532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57542C576C456CB196AC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE7E79A43E457BE3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCCEB4D3 -C1A3C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C8C1A4C8C1A4C8C2A5C9C1A4C8C6ABCCF8F1F5FEFDFCFFFFFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD505589 -525689FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA3C33E457BB9B0CBFFFFFDFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F09A9B9B282828BDBDBDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFED8D7D7 -272727999A9AFFFFFEF3F0F0767676E5E3E3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFEFD938CB23F457BC7BED5ADA4C45E5E8F3D457B -3E457B7E78A3C6BFD6FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFCD8E6E272AFAA5CA5A15BA4A15BA5A16FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -70AFAC6FB0AE5BA4A15CA5A1FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5 -ACD7CFB2DAD1B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4 -B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B6DCD5 -B1D9D1ACD7CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B58 -613062603162603162603062603163603162603162603162603162603162603162603162603162 -603162603162603162603162603162603162603162603162603162603162603162603162603162 -603162603162603162603162603162603162603162603162603162603162603162603162603162 -6031626031626031626031626031626031626031625D3060532C57532B57522B576D466CD6C4D2 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE3DCE83F457B7E78A3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFDFBF3EBF3C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C9C1A3C7C2A5C9E8D8E7FEFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDACA4C33E457BACA4C4FFFFFE -FFFEFCFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFD515689515689FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -CACAC9282828B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFED7D6D6282828181717676867D8D7D7FFFFFED7D6D63A3A39 -3B3B3A515252CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE93E457B3E457B3D457B525689928CB2E4DDE9FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDC3D9D5 -5BA4A15BA5A166AAA78AC2C1A2D3D3A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A6D5D6 -5AA4A15BA5A2FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6EBE5ADD8CFBCDFDA -CAE6E5CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CAE5E4CAE6E5CAE5E3BCDFDAADD8CF -D6EBE5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B57854287864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -8643878643878643878643878643878643878241836D366D572D5B532B575C335ED6C4D2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFE7D77A23F457BE4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFDFCE3D2E5C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8 -C2A5C9D4BDD8FFFDFCFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD525689525689FFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED63F457BA099BDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -272727B2B3B3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEF3F1F0515252D7D6D6F3F1F0828383282828D7D6D6FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE726F9C3E457BADA5C5FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD8E6E15BA4A15BA5A178B6B4 -A2D2D2A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B57864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387834184603162532B575C335ED6C4D2FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -E3DCE93E457B7E78A3FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFDFCD4BDD8C1A4C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C9AECEFBF7FA -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFD938CB23E457BABA4C5FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -7D78A23E457BF2EEF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6515252B1B2B1FFFFFEFFFFFEFFFFFED7D6D6282828 -D8D7D7FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -3B3B3A676867FFFFFEFFFFFEFFFFFE838484676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEBAB1CC3F457BABA3C2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF6F9F673AEAB5BA5A178B6B3A6D5D5A6D6D8A5D4D5 -A7D6D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B57864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -8643878542868643878543868643868643875D2F60532C576C456CFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE7E78A3 -3E457BC7BED5FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFDFBFBF7F9CAAFCFC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A3C8C1A4C8C1A5C9C1A3C8F4EBF3FFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDF2EDF4484E825D5E8FFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFDF2EEF43F457B7E78A3 -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE515252F3F1F0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEA6A7A6656666FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6282828 -B2B2B2FFFFFEFFFFFEFFFFFE3C3C3CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE5055895F5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFCFFFFFEBAD5CF5BA4A166AAA7A2D2D1A5D5D6A6D5D5A7D6D6A5D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE532B57532B57864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387854386854387 -864386864387864387864387824183572D5B532B57B096ACFFFEFDFFFEFDFFFEFDFFFEFDFEFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDE4DCE9474E82686695 -FFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFDF4E9F2C2A4C8C2A5C9C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C9C1A3C8C2A5C8E8D8E8FFFEFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD938CB2 -3F457BC7BED6FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDADA5C43E457BBAB1CDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA5A6A6F3F1F0FFFFFEFFFFFE -D6D6D5535353FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD3B3B3ACACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7656666F3F1F0FFFFFED7D6D6272727B2B2B2 -FFFFFEF3F0F0505050FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB2 -3E467BE4DDE8FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFC7CB3AF5BA5A18BC2C0A5D5D6A6D5D6A6D5D7A6D5D6A6D5D5A7D6D6A5D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE532B57532B57864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387854286864387864286864387 -8542868643878643876D366C532B577C5B7DFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFE938CB23F467CBAB1CBFFFEFD -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFEFDFFFFFEFFFDFBFFFDFCE7D7E8C1A4C8C1A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -C1A3C8C1A4C8C2A5C9D7C2DBFFFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFDE4DDE93E457B686796FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFD5E5E8F515689FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE767676D7D6D6FFFFFEFFFEFDFFFFFE3B3B3A -A5A6A6FFFFFEFFFFFEFFFFFEB2B2B2E5E4E4FFFFFEB2B3B3757676FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED6D6D5686969E5E3E3FFFFFEFFFEFDFFFFFED7D6D62828288E8F8E686969 -C9C9C9FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEE3DCE93E457B8882AB -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF6F9F7 -5CA5A15BA5A2A2D3D2A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D5A7D6D7A5D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57 -532B57864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387854286854387864386864387864286 -8643867F3F80532B57532B57FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEF2EEF4515689515689FFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFEFDFCFFFEFCDBC7DEC1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -CDB4D2FEFCFBFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFEFD736F9C3E457BD4CCDFFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEE3DCEA3E457B8882ABFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E4E4676867F3F1F0FFFFFED6D6D5282828B2B2B2 -FFFFFEFFFFFE535353FFFFFEFFFFFEFFFEFD535353FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE838484BDBDBDFFFFFEE5E3E3B2B2B2CACAC9FFFFFED8D7D7282828A5A6A6FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD5E5E8F515689FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDD9E7E15BA5A16FB0AD -A6D5D6A5D5D6A6D5D6A7D6D6A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CF -BCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9 -ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B57864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387854287854286864387854286864387 -522B57542C58E4D6DFFFFEFDFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEACA5C43E457B928DB3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCD5BED9C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C8ADCEFBF7FAFFFFFD -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDC7BED53D457B8882ABFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFD -FFFFFEA199BC3D457BD4CDDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE828383535353F3F0F0FFFFFED7D6D63B3B3A515252515252 -CACAC9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA6A7A6 -2828283B3B3A282828686969282828B2B3B3FFFFFED8D7D7272727B2B2B2FFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEA099BB3D457BD5CDE0FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED8E6E15BA5A16FB0ADA5D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A7D5D6A6D5D6A5D4D5A7D6D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A1 -5BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B57864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864386864387854287854286603162532B58 -C8B3C4FFFFFDFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD686796474E82E3DBE9FFFFFEFFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFEFC -FBF7F9CEB4D2C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C5A9CBF5EAF2FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFD505689484D82F2EEF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE5D5E8F -515689FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D7D6D63B3B3AFFFFFEFFFFFE828383515252F3F1F0FFFFFEFFFFFED8D7D7FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9CACAC9 -FFFFFEFFFFFEB2B2B29A9B9BFFFFFEFFFFFED8D7D7272727B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEF2EEF53F467B8781AAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED9E6E25AA4A16FB0ADA6D5D6A6D5D6A7D6D6A5D5D7 -A7D6D6A6D5D6A6D5D5A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B57864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387854286864387864386854286864387572D5B532B57E4D6E0FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED4CCDF3E457B736F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFBF7F9 -C9AECFC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C6AACCF4EAF2FEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -3F457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDE4DDE93D457B8882ABFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3676867D7D6D6 -FFFFFEFFFEFDFFFFFE828383515252F3F1F0F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F2F1FFFFFEFFFEFDFFFFFEE5E3E3 -515252D7D6D6FFFFFEFFFFFEFFFFFED7D6D6B2B2B2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFD736F9C515689FFFFFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEEDF2EF5BA5A15BA5A1A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6A7D6D65BA5A15BA5A1FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDD7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E3CAE5E4CAE5E4CAE5E4C9E5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE532B57532B57864387854287864387854286854286864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -8643878643878643878643868542868643877F4080532B57532B57FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFD8881AA3E467BBAB1CCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFDFCFFFDFCF4EAF2C6AACC -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C2A5C8C1A4C8E8D8E7FFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDEA474E82696695FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9F98BB3E457BD4CDDFFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768673B3B3AFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFE838484282828BEBEBEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7D6D6676867FFFFFEFFFFFECACAC9515252D8D7D7FFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEACA4C33E467CD4CCDFFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE72AEAA5BA5A289C1C0A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5 -A5D4D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A7D6D6A6D5D6A6D5D75BA4A15BA5A2FFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE532C57532B57864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864286864386 -854386864387854287854287703770542C58745074FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F2EEF5525689474E82F2EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFDFCFFFDFCF3E9F2C6AACCC1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8E8D8E8 -FFFDFCFFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE6866953E467CD3CDE0FFFEFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8F515689FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF3F1F0505050828383FFFFFEFFFEFDFFFFFEFFFFFE -B1B2B1B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7D6D69A9B9B -A5A6A6F3F1F0FFFEFD767676F4F2F1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFDFCFFFFFE -E4DDE93E457B8881AAFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDAFCDC75CA5A26AACAAA6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D5A6D6D8A6D5D4A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A7D6D6A6D5D65BA5A15BA5A2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4BDDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -532C57532B57864387864387864387864387864286864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864386854287864387864386864387 -854287824183572D5A532B57B096AEFFFEFCFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3D457B8882ABFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFDFCF4EAF2C6AACCC2A5C8C2A5C8 -C1A4C8C1A4C8C2A5C9C1A3C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8E8D8E8FFFDFCFFFEFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFDFFFFFEA099BB3E457B938CB2FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF3EDF43E457B8882ABFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3F1F0515252828382FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7D6D6656666CBCBCA7676763B3B3A -D8D7D7FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDFFFEFD5E5E8F -525689FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEF6F9F7 -68A9A55CA5A17BB8B7A6D5D6A6D5D6A6D5D7A6D5D6A6D5D5A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A5D5D55CA5A25AA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5 -ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE6E5CAE5E4CAE5E4CAE5E4 -BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD532B57542C58 -864286864386864387864387864286864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864487854287854286864386864286673367 -532B58653A64FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFD736F9C3E457B -C6BDD6FFFFFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFDFCFFFDFCF4EAF2C5AACCC1A4C8C1A4C8C2A5C8 -C1A3C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9E7D7E8FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEE4DDE8474E825E5E8FFFFFFDFFFEFDFFFFFDFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -ACA4C53D457AC7BFD6FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF4F2F1676867 -5353533A3A39CBCBCAFFFFFEF3F1F05152528283839A9B9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -E5E3E3656666F4F2F1FFFEFDFFFFFEFFFFFE9A9B9BCACAC9FFFEFDD8D7D7515252F3F1F0FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE938DB33E447BE4DDE9 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFECFE1DB5AA5A1 -5BA5A17CB9B6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6 -5BA4A15BA4A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9 -CAE6E5CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CAE5E4CBE6E5CAE5E4CAE5E4CAE5E4BBDED9ADD8CF -D7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57522B57864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387854286864387864387854287663468532C58542C57C8B3C5 -FFFFFEFFFEFDFFFFFEFEFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF3474E83525688F2EEF4 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFFFEFCF5EBF3C6AACCC1A4C8C1A5C9C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C2A4C8C1A4C8C2A5C8E7D6E7FFFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD686695 -3E457BD5CDE0FFFFFEFFFEFDFFFEFDFFFFFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E79A3474E82 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE767676D8D7D7FFFEFDA7A7A7 -282828F3F1F0FFFFFEF3F1F0272727B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE828383 -515252F3F1F0FFFFFEFFFEFD9A9B9B828383D8D7D7676867F3F1F0FFFFFE9A9B9BFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFED4CCE03E467B9F98BCFFFEFCFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEC4DBD55BA5A15BA5A1 -70AFAD94C8C7A5D5D5A6D5D6A7D6D5A6D5D5A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D4D55BA5A25BA5A1 -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5AED8D0BCDFD9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CAE5E4CAE6E5CAE5E3BCDFD9ADD8CFD7EBE5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD542C58542C58854286864387854286864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387854286864387864387753B765B2E5D542C57532B57AF95ACFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB1CC3E467C746F9CFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFDFCFFFDFCF4E9F2C7AACCC1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -E7D7E8FFFEFCFFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFEFDA199BC3E457B938CB2FFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474D82736F9CFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867E5E3E3F3F1F0676867D7D6D6FFFFFE -FFFEFDFFFFFEC9C9C9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE828383515252 -F3F1F0FFFFFEE5E3E3282828535353F3F1F0FFFFFEF4F2F1676867FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFE474E82736F9CFFFFFEFFFEFDFFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFDFFFFFEFFFEFCC5DAD567AAA65BA4A15AA4A1 -67ABA874B3B081BBB881BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBBA81BBBA5AA4A15BA5A1FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFB5DBD3BCDFD9BCDFD9BCDFD9BCDFD9 -BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9 -BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9B5DBD4ADD8CFD7EBE5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE532B57532B576D366D6C366D6D366D6D366D6D366D6D366D -6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D -6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D -6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D -6C356C603162572D5A532C57532C575C335EBCA4B8FFFFFDFFFFFEFFFEFCFDFDFCFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFD8882AB3E457BACA3C3FFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFDFCFFFDFCF5EAF2C5AACCC1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C5AACCE8D7E8FFFFFDFFFDFC -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDD5CDE0474E825E5E8EFFFFFEFFFEFCFFFEFDFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CDE03E457BA099BBFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE838484757676676867D7D6D6FFFFFEC9C9C9828383FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE838484515252F3F1F0 -FFFFFED7D6D6282828828383BEBEBE767676CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE7E78A3474E82FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEEEF3F09AC2BD67AAA65BA5A15BA5A1 -5AA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1FFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDD8EBE6ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFAED8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE532B57532B57542C58532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532C575C335E997B96F2E9EEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFDFFFFFEF2EEF45E5E8F474E82E3DBE8FFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFDFCFEFDFCFCF8FACDB3D2C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C6AACCF4EAF2FFFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEF3EEF45D5E8F474E82D5CDE0FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEA099BB3D457BE4DDE9FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3 -CACAC9FFFFFEFFFFFEF3F1F0515252767676F3F1F0FFFFFE8E8F8EBEBEBEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE828383505050F3F0F0FFFFFE -E5E3E39A9B9B9A9B9BE5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEADA5C53E457BC7BED5FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCD9E7E2C4DAD4AFCDC8AFCDC8 -AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8 -AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8 -AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8 -AFCDC8AFCDC8AFCDC8AECDC8B0CEC8AFCDC8AFCDC7FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEEDF5F2D7EBE6D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5 -D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5 -D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5EDF5F2FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD997C97997B979A7B97997B97997B97997B97997B96997B97997B97997B97997B97997B97 -997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97 -997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97 -997B97997B97997B97997B97997B97997B97997B97997B97997B97997B97B096ACD6C5D3FFFDFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDD5CEE03E457B5D5E8FFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFDFCFFFEFCFBF7FACDB3D2C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A3C8C1A4C8C9AECFF5EBF2FEFCFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFE7E78A33E457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE736F9C525588FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7676867686969535353 -F3F0F0FFFFFEF3F1F0676867282828515252A6A7A6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDE6E5E4A5A6A6E5E3E3FFFFFEFFFFFE828383515252F3F1F0FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEE4DDE83E457B938DB3FFFEFDFFFEFCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFDA098BA3E457B8882ABFFFFFEFFFFFEFEFEFDFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFDFCD8C2DBC1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9 -CCB3D2FBF7FAFFFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFDFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEACA4C33E457B -7E78A3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -484D827E79A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF4F2F1767676F3F0F0FFFFFE828382535353F3F1F0 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -D7D6D6656666828383282828D6D6D5FFFFFEFFFFFE838484515252A6A7A6FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -515588736F9CFFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFD726F9D3F457BACA4C4FFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC -FFFDFCFFFDFCE3D2E5C1A5C9C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C2A4C8C1A5C9C1A4C8D8C3DBFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CEE1484D825D5E8FF3EFF6FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE03E457BA099BB -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE3B3B3A656666FFFFFEFFFFFEFFFFFE828383535353F3F0F0FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867F3F1F0 -FFFFFE9A9B9B282828D6D6D5FFFFFEFFFFFECACAC9E5E3E3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD7E79A3474E82 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -F3EEF45D5E8F474E82D4CDDFFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFDFC -FFFDFCF0E4EFC6AACCC1A5C9C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C2A5C8C1A4C8C1A4C8C2A5C9C1A5C9C2A4C8E8D8E8FFFDFCFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF35E5D8E474E83D5CDE0FFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9F98BB3E467BD5CDE0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDD7D6D6282828B1B2B1FFFFFEFFFFFEFFFFFE828383515252FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3FFFFFED7D6D6676867 -A6A7A6282828D7D6D6FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEA098BB3E467BD5CDE0FFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFEFDFCFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDD4CCDF -474E825E5E8FF2EDF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FAF8FAD0B7D4C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A5C9C2A5C9C1A4C8C1A4C8 -C1A4C8C2A5C9C1A3C8C9AECFF4EAF2FEFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE746F9D3E457BADA4C4FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E79A43E447BFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFED6D6D5282828B2B2B2FFFFFEFFFEFDFFFFFECACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEE5E3E3D7D6D6FFFFFEFFFEFDFFFFFE515252F3F1F0FFFEFD8E8F8F -272727E4E2E2FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE03E447BACA4C4FFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFEFDFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA3C33E457B -696695FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFCFFFDFBFFFDFC -DFCCE2C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9C1A5C9C1A4C8C1A3C8 -D5BDD8FBF7F9FFFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -8882AB3E457B8882ABFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE5D5E8F686695FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F06566665152523B3B3ACACAC9FFFFFE -D8D7D7272727B2B2B2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED8D7D7686969B2B2B2FFFFFEFFFFFEF3F0F03B3B3AF3F1F0FFFFFE515252E5E3E3FFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE3E457B8882ABFFFEFDFFFEFCFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E467C7D77A3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFDFCFFFDFCF0E4EF -C9AECFC1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A3C8C6AACCE3D2E5FEFDFCFFFDFC -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C33E457B696695 -FFFEFCFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE3E457B938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE757676D7D6D6FFFFFEA6A7A6282828F3F1F0FFFFFED7D6D6 -282828E5E3E3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE515252 -F3F1F0FFFFFEFFFFFEFFFFFEFFFFFE8283833C3C3C515252CACAC9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE686695696796FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A33E457BACA4C4FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFDFCFFFEFCFBF7FAD8C3DB -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8D0B8D5F8F1F6FFFDFCFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CCDF3E457B5E5E8FF2EDF3FFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEC7BFD6 -3E447BBAB2CDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -E5E3E3FFFFFEFFFFFE676867E5E3E3F3F1F0676867D6D6D5FFFFFEFFFFFEFFFFFEF4F2F1FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE3B3B3AD7D6D6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD8882AA3E457BFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDF2EEF55E5E8F3E447BACA4C4FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCECDEECC9AECF -C1A5C9C1A4C8C1A4C8C1A4C8C2A5C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A4C8C6AACCE3D2E5FFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFED5CDE0474E82474E82E4DDEAFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDA099BB3E457BD5CDE0 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6838484FFFFFE -FFFFFE828383767676676867D7D6D6FFFFFEC9C9C9828383FFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0FFFFFE9A9B9B515252F3F1F0FFFFFEFFFFFE -B2B2B2BEBEBEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9F99BC3D457BD5CDE0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDF2EDF35E5E8F474E82D5CDE0FFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFBF7FADCC8DFC2A4C8 -C2A5C9C1A3C8C2A5C8C1A4C8C2A5C8C1A4C8C2A5C8C1A5C9C1A5C9C1A4C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C7C1A4C7C2A5C8C1A4C8D0B8D5 -F7F1F6FFFDFCFFFDFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEF2EEF4515689484E82D4CDE0FFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8881AA3E457BFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED6D6D5515252A6A7A6F3F1F0F3F1F0 -515252767676F3F1F0FFFEFD8F9090BEBEBEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE5E3E3FFFEFDFFFFFE -FFFEFDFFFFFED7D6D6515252CACAC9FFFEFDFFFFFE828382515252E5E4E4F3F0F0767676E5E3E3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC6BDD53F467B -B9B1CCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFED4CCDF474E82474E82D5CEE0FFFFFDFFFEFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFEFEFCFFFEFDF4EAF2D0B7D4C1A5C9 -C1A4C8C2A5C8C1A4C8C2A4C8C1A5C9C1A4C8C2A5C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C9AECFECDEECFFFFFEFFFDFCFEFDFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF2EEF35E5E8F -3E457BB8B1CCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE6866955D5E8EFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6676867B1B2B1767777535353FFFFFEF3F1F0676867 -282828535353A6A7A6FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEF3F1F03B3B3AFFFFFEFFFEFDFFFFFEE4E2E2 -676867F4F2F1FFFEFDFFFFFEFFFFFEFFFFFE9A9B9B3A3A39535353CACAC9FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD3E447B938DB3FFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFED4CDDF474E82484D82D4CCDFFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFFFDFCFFFDFCE8D9E9C6A9CBC1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A5C9C1A4C8C2A5C8C1A3C8C6AACCE0CDE2FAF6F9FFFFFDFFFDFBFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDF1EDF25F5F903E447BACA4C4FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE474E82736F9DFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFEFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3F0F0676867FFFFFE -FFFEFDFFFFFEFFFFFE676867E5E3E3FFFFFEFFFEFD676867CBCBCAFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE757676B2B2B2FFFFFEFFFFFEB2B2B2757676F3F1F0 -BEBEBE8E8F8F828382E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE525688736F9CFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFDFFFFFED4CCDF3E467B5F5E8FF1EDF3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFDFBFBF8FADFCCE1C6AACCC1A4C8 -C1A4C8C1A5C9C1A4C8C2A5C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8C1A4C8C2A5C8 -C1A4C8D8C3DCF8F1F5FFFDFCFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFDFCFFFFFEFFFFFEFFFEFCFFFEFDFFFFFE6966953E467BACA4C3FFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFD3E457B938CB2FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE535353CACAC9FFFFFEFFFEFD -FFFFFE656666D7D6D6FFFFFEFFFFFE828383D8D7D7FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDCBCBCA3C3C3CFFFEFDFFFFFEE5E3E32A29291817175050509A9B9B -767676757676FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD686695696695FFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEACA4C43E457B5F5E8FF2EEF4FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFDFBFFFDFCFBF7FAD8C3DBC1A4C8C1A4C8 -C1A4C8C1A3C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8D3BDD8F8F2F6FEFCFB -FFFEFCFFFEFCFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFE7E78A33E467C8881AAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED6 -3E467BBAB1CCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEB1B2B1686969FFFFFEFFFFFEFFFEFDB2B2B2 -282828BEBEBEA6A7A6676867FFFFFECACAC98E8F8FB2B3B3FFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6B2B2B2FFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE6566669B9C9BFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEE5E3E3676867 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE8782AA3E457BFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFD -FFFFFEACA5C43D457A5E5E8FF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFDFBFFFDFCFFFDFBF8F2F6D8C3DBC2A5C8C1A5C9 -C2A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C0A4C8D5BDD8F0E4EFFFFDFCFFFDFCFEFDFCFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFE -7E78A43D457A7E78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3A3A39BEBEBEFFFFFEFFFFFEFFFFFEBEBEBE767676 -767676FFFFFE8F9090767676CACAC9505050BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEE5E3E3282828BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEBEBFBE656666CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFC938CB23D457AF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFC -ADA5C53E457B5E5E8FF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFCFFFDFBFFFFFDFBF7FADFCCE2C5AACCC1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8D8C3DBF8F2F6FFFEFCFFFDFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE7E79A53E457B7E78A3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938DB33F457BF2EEF5FFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFECACAC9282828D8D7D7FFFFFEFFFFFEFFFFFEE5E3E33B3B3A8E8F8F -767676FFFEFDFFFFFE9A9B9BA6A7A6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD838484181717B2B2B2FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -D8D7D73B3B3ACACAC9FFFFFEFFFFFEFFFFFE828383D6D6D5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C6BDD43E457BC7BFD6FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEADA4C4 -3E457C5D5E8FE3DCEAFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFDFCFFFDFCFAF6F9E8D8E8C9AECFC1A4C8 -C1A4C8C2A5C9C1A3C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8 -C1A4C8C2A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C2A5C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A3C8C1A5C9C1A5C9C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C2A5C9C2A4C8C1A4C8C6AACCDFCCE2F8F1F6 -FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF46866953E447B7E79A5FFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFE938CB23D457BFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEB2B2B2515252F3F1F0FFFFFEFFFFFEFFFFFEE5E3E3515252CACAC9FFFFFE -F3F1F0505050E5E3E3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD838484181717B1B2B1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -2A2929A6A7A6FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCC7BFD63E457B -C6BDD5FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFEFDFFFEFDFFFEFDADA4C33E457B -474E82D4CCE0FFFFFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFEFCFFFDFCFEFDFCF0E5F0D4BDD8C1A4C8 -C3A6C9C1A3C8C1A5C9C1A4C8C1A5C9C1A5C9C2A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A5C9 -C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A3C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8D0B8D5E8D8E8FFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFDFFFFFDFFFFFEF2EDF35E5E8F3E447A8882AAFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFC6966965E5E8FFFFFFEFFFEFDFFFEFDFFFFFEFEFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6535353FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEB2B3B3272727D7D6D6FFFFFEFFFFFEFFFFFE8E8F8F828383BDBDBD676867CACAC9 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE828383191818B1B2B1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D5515252 -676867CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF43E457B938CB2FFFFFE -FEFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFDFCFFFFFEFFFFFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFCFFFFFEFFFFFEC6BED5484E82474E82 -D5CDE0FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFEFCFFFDFCFFFDFCFBF7FAE3D2E5CDB4D2 -C2A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A5C9C1A3C8C2A5C9C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8 -C1A4C8C1A4C8C1A5C9C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C2A5C9C1A4C8C1A4C8C1A4C8C2A6C9C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C9AECFDBC7DEF8F1F5FFFDFCFFFDFBFFFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFDFCFFFFFE -F2EEF45E5E8F3E447AACA4C3FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFEFDFFFFFE686695686695FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDE5E3E3282828A6A7A6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEB2B3B32727279B9C9BF3F0F0FFFFFEFFFFFEA6A7A69A9B9BE5E3E3FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -828383191818B1B2B1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB2B2B23B3B3A -505050C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE3E457B938CB2FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDCEE0DBA5C8C286B7B386B7B3 -86B8B487B8B486B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B8B486B7B385B7B387B8B3FFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDE2F0ECC3E2DBC2E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DA -C3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E2DBC3E1DAC3E1DA -C3E1DAC4E2DAC3E1DAC3E1DAC4E2DAC3E1DAE2F0ECFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD66517F67508066507E66507E65517F66507F66507E66507F66507F66507F66507F -66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F -66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F -66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F66507F65507F8F7CA1 -D2C4D7FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFEFDFFFFFEFFFFFED4CDE0484E82474D82BAB2CD -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFDFCFFFDFCFEFDFCF8F2F7DCC8DF -C9AECEC1A4C8C1A4C8C1A4C8C2A5C9C1A3C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C9C1A4C8 -C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8 -C2A5C9C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C2A4C8C1A4C8C1A5C9C9AECFDBC7DEF4EBF3FFFDFC -FFFDFCFFFEFCFFFDFBFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFDFFFEFDD5CEE05155883F457B -ACA4C5FFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -515689736F9CFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED7D6D6767676828383FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -E4E2E28283832828288E8F8FE5E3E3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE828382 -181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC9C9C9E5E4E4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD484E827D78A3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFDFFFEFDFFFFFEC3D9D472AFAA5AA4A25BA5A15AA4A25CA5A15BA4A15AA4A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15CA5A25BA4A15BA5A15BA5A25BA5A2FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED8EBE6ACD7CEADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD7CEADD8CFADD8CFADD8CF -ADD8CFAED8D0ADD7CEADD8CFD7EBE5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -402B63402B62402B63402C63412B63402B62412B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B62412B63412B63513A6E -B5A4C0FFFEFCFFFFFEFFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED5CDE0474E833D457AADA4C3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFFFEFCFFFDFCF7F0F6 -E4D3E6D0B8D5C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A3C8C1A4C8C2A5C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8C2A5C8C1A4C8C2A5C9C1A3C7C2A5C8C1A4C8C1A4C8 -C2A5C8C1A4C8C1A3C8C2A5C8CCB3D1DCC8DFF3E9F2FFFDFCFFFDFCFFFEFCFFFEFCFFFFFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFED5CDDF474E82474D82ACA4C4FFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFC3F457B938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8F -1817178F9090FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -E5E3E39B9C9BCACAC9FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC9C9C9F3F0F0FFFFFEFFFFFEFFFFFE828383181717 -B2B2B2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE686695696796FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDF7FAF890BDB85BA5A15BA4A166AAA77CB9B68EC5C493C7C693C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C792C7C7 -94C9C793C8C75BA5A15AA4A1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE6 -ADD8CFB9DDD7C4E2DEC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DF -C4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC5E3DFC5E3DFC4E2DFC4E2DFC3E2DF -B9DDD8ACD7CFD8EBE6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63402B63 -4D47844E46834D46834F46844E46834E46834E46834E46834E46834E46834E46834E46834E4683 -4E46834E46834E46834E46834E46834E46834E46834E46834E46834E46834E46834E46834E4683 -4E46834E46834E46834E46834E46834E46834E46834E46834E46834E46834E46834E46834E4683 -4E46834E46834E46834E46834E46834E46834E46834C417D473670422D65402B62402B637A6590 -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEF2EDF45E5E8F3E467B8882ABFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFEFDFCFFFDFCFFFDFCFEFDFC -FBF7FAEDE0EDDBC7DECDB3D2C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C2A5C8 -C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A3C8C2A5C9C1A4C8C1A4C8C1A4C8C9AECED8C3DB -E8D8E8F7F1F6FFFDFCFFFEFCFFFDFCFFFDFCFFFDFCFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEACA4C33E457B484D82D5CEE0FFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFE3D457B938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE828383181717 -B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFED6D6D5272727191818181717828383F3F1F0FFFFFEFFFFFE828383181717B2B2B2 -CACAC9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFD686695696696FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF7FAF67BB3AF -5BA5A25BA4A185BFBEA6D5D6A6D5D7A6D5D5A6D5D6A5D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -5BA5A25CA5A1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5AED8CFBCDFD9 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E5CAE5E4BCDFD9AED8D0 -D7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD402B63402B63525190525190 -54529152518F535291535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190514F8D4A3A76402B63412B627A6590FEFDFB -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEF2EFF4736E9B3E467C736E9CF2EEF4FFFEFCFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFEFCFEFCFB -FFFEFCFFFDFCFBF7FAEDE0EDDDCBE1D1B9D5C6A9CBC1A4C8C1A5C9C2A5C8C1A4C8C1A3C8C2A5C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A5C9C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C2A5C8C1A4C8C1A4C8 -C1A4C8C1A3C8C1A4C8C1A5C9C1A4C8D0B8D5DBC7DEEBDFECF8F2F6FFFEFDFFFDFCFEFEFCFFFEFC -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFE -FFFDFC938CB23E457B5E5E8FD5CEE0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF43F457B938DB3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE828383181717B2B2B2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3 -282828B2B2B2FFFFFEB2B2B22A2929515252F3F1F0FFFFFEFFFFFE828383181717282828D7D6D6 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -696695515689FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA5C8C35BA5A161A8A498CBCB -A6D5D6A6D5D7A6D5D5A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A7D6D6A6D5D65BA5A15BA5A1 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63402B63535190535190525190545290 -52518F535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905351905351904C417C412B63402B638F7BA1FEFDFBFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8882AB3E457B5E5E8EE4DDEAFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFDFCFFFDFCFFFFFDFFFDFCFFFDFCFBF8FAF0E4EFE4D3E6DBC7DED1B9D6C9AECEC1A5C9C1A4C8 -C2A5C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8 -C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C1A4C8C6AACCD0B8D5D7C2DBDFCDE2 -F0E4EFF8F0F5FFFDFCFFFDFCFFFDFCFFFEFCFEFDFCFFFDFBFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFFFEF2EEF3736F9C3D457B -686694F2EEF5FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEE5E4E4A6A7A6B2B2B2F3F1F0FFFFFEFFFFFEFFFFFE828383181717B2B2B2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF3F1F0282828828383FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDA7A7A7676867FFFFFE -FFFFFEFFFFFE767676515252F3F1F0FFFFFEFFFEFDFFFFFEE5E3E3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23D457B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8E6E25BA5A15BA5A193C8C7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63402B63535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905452905351905351905351905252904C3E79402B63493268E1D6E3FFFFFEFFFDFCFFFFFE -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEACA4C33E457B474E82C7BED6FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFBFFFDFCFBF7FAF0E4EFF0E3EF -E8D8E8DFCCE2DECBE1E0CEE2DFCCE2D5BDD8D0B8D5D0B8D5D0B8D5D0B8D5D0B8D5DFCCE2DFCCE2 -DFCCE2DFCCE2E3D2E5F1E5EFF0E4EFF8F1F6FEFDFCFFFFFDFFFDFBFFFDFCFFFEFCFFFDFCFFFDFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED4CCDF5E5E8F3E447A8781AAFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEC7BED53E447BC7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7 -282828676867282828282828B2B2B2FFFFFEFFFEFDFFFFFE8283831817179A9B9B3A3A39F4F2F1 -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDB2B3B3181717828383FFFFFEFFFFFEFFFFFEFFFFFE999A9A282828FFFEFDFFFFFE828382 -515252F3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD928DB23F457BFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFE9AC2BD5BA5A277B6B4A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE402B63402B63535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535291535190 -53519053529153519053519052518F45336C402B638E7BA1FFFEFCFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFED4CCDF484E823D457B928CB2FFFFFDFFFFFEFFFFFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFBFFFEFCFFFDFBFFFDFCFEFCFBFFFFFDFFFDFCFFFDFC -FFFDFCFEFDFCFFFFFDFFFDFCFFFDFCFFFDFCFFFDFCFFFFFDFFFDFBFFFFFDFEFCFBFFFDFCFFFDFC -FFFFFDFFFDFCFFFDFBFFFDFCFFFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEB9B1CB474E82484E82ACA4C5FFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C6BDD53F467BC6BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE282828B2B2B2FFFFFE -F3F1F0828383191818BDBDBDFFFFFEFFFFFEFFFEFD767777181717B2B2B2FFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -B2B2B2181717828383FFFFFEFFFFFEFFFFFED7D6D61817179A9B9B828382515252F3F1F0FFFFFE -FFFFFE181717FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB23D457BFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFDFEFDFD68AAA65CA5A198CBCBA5D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE402B63402B63535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053519053519053519053518F53519053529153508F -5352915251905452904C4480402B63513A6EFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1EDF36866953F467B696695F2EDF3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFCFFFEFCFFFDFCFFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFE8882AA3E457C505588D4CCE0FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFCC7BFD63E457B -C7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCACAC9181717FFFFFEFFFFFEFFFEFD828383 -515252F3F0F0FFFFFEFFFEFDFFFFFE8E8F8EB2B3B3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEB2B2B2 -181717828383FFFFFEFFFFFEFFFFFE8E8F8F1817173B3B3AF4F2F1FFFFFEFFFFFEA5A6A6515252 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE938CB23E467BFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE3ECEA -5AA4A161A8A4A6D5D6A7D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63 -402B63535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -525190535190412B63402B63FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE928CB13E447B474E82C7BED5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFED4CDDF5E5E8F3E457B -736E9CF2EDF4FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED63E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6181717BDBDBDFFFEFD838484515252F3F1F0FFFFFE -D6D6D5F3F1F0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB2B3B32727271918188E8F8FFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0767676181717 -828383FFFFFEFFFFFEFFFFFE828383181717828383CACAC9999A9A191818D7D6D6FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938DB33E457BFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDD8E6E25BA5A171AFAC -A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CF -BCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9 -ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63402B63535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053529153519054529053518F545290535291545190535190 -432F67402B63C4B4CCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEC7BED5474D823F457B8782ABF2EDF4FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFDFCFFFFFEFFFFFEFFFFFDA099BB474D82474E82A098BBFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDC6BED53E457BC7BED6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -D7D6D68E8F8FFFFFFEFFFFFE5152523C3C3C828383505050F3F1F0FFFFFEFFFFFE515252CACAC9 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEB2B2B2282828BEBEBE999A9A181717828383FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D62828287676768E8F8F181717828382 -FFFFFEFFFFFEFFFEFD9B9C9B3C3C3C181717767676D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEA099BC3E457BE2DBE8FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFED8E5E15BA5A16FB0ADA5D5D6A6D5D5 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A1 -5BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63402B63535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519052519053519053529153529153519053519053519053519044316A402B63 -C3B2CBFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEF2EEF4726E9C3F457B5E5E8FD5CDE0FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDF2EDF36866953E457B5E5E8FD4CCDFFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEA099BC3E467BE3DBE8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEB2B2B2181717 -E4E2E2FFFFFED7D6D6282828181717E5E3E3FFFFFEFFFFFEB2B2B2282828FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEE5E3E3191818D6D6D5FFFFFEFFFFFE8E8F8F181717838484FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF4F2F1282828B2B2B2FFFFFEFFFEFDB2B2B2181717828382FFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC7BED5 -3E467BC7BED6FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED8E6E15CA5A265AAA7A6D5D5A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B63402B63535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190545290525190535190535190545290525190535190402B62402B63FFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEACA4C3474E823F457B938DB3FFFFFCFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFEFDFBFFFFFE -BAB1CC474E823F457B928CB2FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD938DB33E457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE3B3B3A828383FFFFFE -FFFFFED7D6D62A29292828288F9090828383282828CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F0BEBEBEFFFFFEFFFFFEB2B2B22828288E8F8F181717828383FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFECACAC9181717FFFFFEFFFEFDFFFFFEFFFFFEB2B2B2181717828382FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEC7BFD63E467BC7BFD6 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE5BA5A15BA5A19DCFCEA6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE402B63402B63535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905352915351905351905351904C4480402B63513A6EFFFEFDFFFFFEFFFEFCFFFFFE -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -E4DDE96866953E457B5E5E8FC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DDEA6866953E457B515689 -C7BED5FFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB23E457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF3F1F0D6D6D5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2181717E5E3E3FFFFFEFFFEFD -E5E3E38E8F8E6768678F9090E4E2E2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F2F1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEBEBEBE282828D7D6D6FFFFFEB2B2B2181717828383F3F1F0FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D7D6D6181717C9C9C9FFFFFEFFFEFDFFFFFEFFFFFEB2B2B2181717828383FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE90BDB85BA4A181BCB9A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A6D5D6 -A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15AA4A1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E3CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CBE6E4 -CAE5E4CAE5E4C9E5E4CAE5E4BCDFD9ADD7CED7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE402B63402B63535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190545290535291 -535190545290535190535190473771402B637A6590FFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -A099BB474E823E457B8882ABF2EDF4FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEA099BC474E823E457B938CB2F2EEF4FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD928CB3 -3F457BF2EDF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE828382282828D7D6D6FFFFFEFFFEFD -FFFFFED6D6D5838484E5E3E3FFFFFEFFFEFDFFFFFE3B3B3A828382FFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEBEBEBE272727D7D6D6B2B2B28E8F8FFFFFFEFFFFFEFFFFFEFFFFFE676867 -9A9B9BFFFFFEFFFFFEE4E2E22A2929282828D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE3A3A39 -535353F3F0F0FFFFFEFFFFFEFFFFFEFFFFFE181717181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BFD53E457BC7BED5FFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFED8E6E25CA5A15BA5A198CBCBA5D4D5A6D5D6A6D5D6A7D6D6A6D5D7A6D5D5A5D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D5A6D5D6A6D5D75AA4A15BA5A1FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE6E5CAE5E4CAE5E4C9E5E4CAE5E4 -CBE6E4CAE5E4BCDFD9ACD7CFD7EBE5FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -402B62402B63535190535291535190525291535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190545190545290525190 -5452904E4683412B63402B63E2D7E4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDF2EEF4 -736F9C3F457B474F82ACA4C4FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEC7BFD65D5E8F3E447A5E5E8FD4CCDFFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEC6BED53E457BC7BFD6 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF4F2F1505050282828D7D6D6FFFEFDFFFFFEA6A7A6 -282828181717828383E5E3E3FFFFFEB2B2B2181717E5E3E3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF3F1F0515252282828282828D8D7D7FFFEFDFFFFFEFFFFFEFFFFFE686969676867FFFEFD -FFFFFE828383828383FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED7D6D6282828505050 -F3F1F0FFFFFEFFFFFEA6A7A6515252E5E3E3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEACA4C43E457BD4CCDFFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFC -85B7B45BA5A16CAEAAA3D3D2A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A7D6D7A5D5D55CA5A25BA4A1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDD6EBE5 -AED8CFBBDEDACAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4C9E5E4CAE5E4CAE5E4CBE6E4CAE5E4C9E5E4 -BDDFD9ADD8CFD7EBE4FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD402B62402B63 -535190535190525291535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053518F5452915351905252905451904F4A87422D65 -402B63857098FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC7BED5 -5156893F457B686696D4CDE0FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEE2DCEA7E78A3 -3E457B474E82A098BCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDC7BED53D457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F2F1505050282828D7D6D6FFFFFEFFFFFEF3F1F09A9B9B -282828181717828383E5E3E33B3B3A838484FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -A7A7A7181717282828D6D6D5FFFFFEFFFFFEFFFEFDFFFFFEB1B2B11918186768676768673B3B3A -F3F1F0FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFED7D6D63C3C3C1817171918188E8F8FF3F1F0FFFEFDD6D6D52A29292727278E8F8F -8E8F8E191818D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFD938DB43E447BFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFDFFFFFEF7FAF769AAA6 -5AA4A161A8A493C8C7A6D5D7A6D5D5A6D5D5A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7 -5AA4A05AA4A1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFED8EBE6ADD8CFBCDFD8 -C9E5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4CAE6E5CBE6E4BCDFD9AED8CF -D6EBE5FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD402B63402B63525190545290 -535190535291535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053529153518F5351905351904D4480412D65402B635C4576F2EBF2 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFDFFFFFE928CB3 -474E823E457B7E78A3E4DDE9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEF2EEF4938DB3484D823E457B7E79A4F2EEF4 -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDF4F2F1515252282828D7D6D6FFFFFEFFFFFEFFFEFDF4F2F1B1B2B1 -3B3B3A181717686969181717E5E4E4FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEB2B2B2CBCBCA -505050282828D7D6D6FFFEFDFFFFFEFFFFFEFFFFFEBDBDBD6768678E8F8FF3F1F0FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFED7D6D6 -2A2929A6A7A6CBCBCA999A9A191818505050F5F3F2FFFFFEE5E3E3828383676867767676D7D6D6 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -928CB23F467BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCE3EDEA7CB3AE5BA5A1 -5AA4A16FB0AD8AC2C19ECFCEA5D5D5A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D4D5A6D5D55BA5A15CA5A1 -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDD7EBE5ADD8CFBBDED9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4C9E5E5CAE6E5CAE5E4CAE5E4C9E5E3BCDFDAADD8CFD7EBE5FFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE402B62412B63525190525190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190525190504A874C417D45326B402B63402B635B4576F2ECF2FFFEFDFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDE4DDEA7D78A2 -3E457C474E82938CB2F3EEF4FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFDFFFFFEACA5C4474E823E457B696796D4CDE0FFFEFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDC7BFD73E447BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDF3F1F0515252282828D7D6D6FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEB2B2B2 -3A3A39191818BDBDBDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF4F2F1535353 -282828D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD7677778E8F8FFFFFFE -FFFFFEFFFFFED7D6D6282828676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB23D457B -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCF6F9F7A5C9C35CA5A15BA4A1 -5BA5A15BA4A15CA5A25AA4A05BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA4A15BA5A25BA5A15AA4A25BA5A1FFFEFDFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED7EBE5ADD7CEAED8D0ADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFACD7CFADD8CFADD7CEADD8CFD6EBE6FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD402B63402B63412B63402B62402B62402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402C63412B63402B63402B63402B638F7BA0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFED4CCDF686695 -3F457B474D82958DB3F2EEF5FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -ACA4C35055893F457B525689B9B1CDFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEC6BDD43E467BC7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEF3F1F05152522A2929D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC99B9C9BB2B2B2FFFFFEFFFFFEFFFEFDF3F1F05152522A2929 -C9C9C9FFFFFEB1B2B1FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768678E8F8FFFFFFEFFFFFEFFFFFE -FFFFFECACAC9181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB23E457BFFFFFEFEFDFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFEFDFFFEFDFFFEFCEDF2F0AFCDC787B8B467AAA5 -5BA4A15CA5A25BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A25BA4A15BA5A15BA5A15BA4A1FFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFED8EBE6ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFACD7CFAED8CFAED8CFADD8CFADD8CFADD8CFD8EBE6FFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE402C63402B63402B62402B63402B62402B62402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63493268 -65507E9D89ACF2EBF2FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCC7BFD6686695 -3E467B484D82938DB3F2EEF3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEACA4C45156893E457B515689 -ABA4C3FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -C7BED53E457BC7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEF4F2F1505050282828D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEB2B2B2282828515252181717828383FFFEFDFFFFFEFFFFFEF3F1F0676867181717181717 -515252F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE8E8F8F282828F3F1F0FFFFFEFFFFFEFFFFFEFFFFFE -5152529A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE928CB23E457BFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFDC6BED6686796 -3E457B474E82938CB2F2EDF2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEACA4C45156893E467B515689ACA4C4FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE4DDE93E457B -A099BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0828383676867676867BEBEBEFFFFFEFFFEFD -F4F2F1505050282828D7D6D6F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEB2B2B2B2B2B2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEBEBEBE272727 -D7D6D6FFFFFEB2B2B2181717828383FFFFFEFFFFFEFFFFFEFFFFFECACAC9CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3282828505050F3F1F0FFFFFEFFFEFDFFFFFE7676769A9B9B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A3474E82FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BFD6686695 -3E457B474E827E79A4E4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -F2EEF4938CB2474E823E457B525689ACA4C4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFEFD3F457B928DB3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEF3F0F05152527677779A9B9B676867181717828383FFFFFEFFFFFEF3F1F0 -515252282828282828D6D6D5FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE828383191818B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE828382B2B3B3FFFFFEFFFFFE -B2B3B3282828181717838484FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED7D6D6767676676867 -B2B2B2FFFFFEFFFFFED6D6D5282828515252CACAC9FFFFFEBEBEBE272727E5E4E4FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD696695696796FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEC6BED5726F9C -3F457B3D457B736E9BBAB1CCFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE07E78A33E457B3E457B -686796ACA4C4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3E467B938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE828383767676FFFFFEFFFFFEFFFFFEA7A7A71817178E8F8FFFFEFDFFFFFEF3F1F0B1B2B1 -D8D7D7FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD828383181717B2B2B2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2272727D7D6D6 -B2B3B3181717828383FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7D6D62828288E8F8E828383191818828383 -FFFFFEFFFFFED6D6D53B3B3A191818181717272727CBCBCAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFD686796696695FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE3DCE97E78A4 -484E823E457B515689A099BCE4DDE9FFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEF2EFF5ACA4C35E5E8F3E457B3E457B7E78A3C7BFD7FFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE484D827E79A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867 -9A9B9BFFFFFEFFFFFEFFFFFEFFFFFEA5A6A6181717CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -828383181717B1B2B1FFFFFEFFFFFEFFFFFEFFFEFDE5E4E4181717D8D7D7FFFFFEFFFEFD8E8F8F -181717767676FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE767676A5A6A6FFFFFEFFFFFEB2B2B2181717838484FFFEFD -FFFFFEFFFFFED6D6D5CACAC9F3F1F0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD5F5D8E -686796FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDF1ECF3ADA5C3 -5E5E8F3E457B3E457B736E9CBAB2CDFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -C6BFD67E78A3474D813E457B525689938CB2E4DDEAFFFEFDFFFFFDFFFEFDFFFFFEFFFDFCFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFE686695686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8283833B3B3AFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3A3A399A9B9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD838484 -181717B1B2B1FFFFFEFFFFFEFFFFFEC9C9C9181717F3F0F0FFFFFEFFFFFE5152528F9090D6D6D5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF3F1F0CACAC9191818CACAC9FFFFFEFFFFFEFFFEFDB2B3B3181717838484FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE3E457B938DB3FFFEFD -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFED4CDE0 -7E78A3484D813D457B484E827E78A4BAB1CCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDD5CDE18881AA5056893F457A3F457B -736F9CBAB1CDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFD696696686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEE5E3E3838484E5E3E3FFFEFDCBCBCA181717828383FFFFFEFFFFFE -FFFFFEFFFEFD7676769A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEBEBFBE505050181717181717 -B2B2B2FFFFFEFFFEFDD8D7D7181717828383E5E3E3828382515252FFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D52A2929 -191818181717A6A7A6FFFFFEFFFFFEFFFFFEFFFFFEB1B2B1181717828383FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE3E457B938CB3FFFFFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFDFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -ADA5C5726F9C3D457B3F457B474E827E78A3B9B1CCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFED4CCDF8882AB5156893E457B3D457B5F5E8F9F98BCF3EEF3FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFDFCFFFFFEFFFFFE -8781AA3F467CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFED7D6D6282828828382F3F1F0FFFFFEFFFEFDB3B4B4181717828383F3F1F0FFFFFEE5E4E4 -282828C9C9C9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2282828BEBEBEFFFFFE828382181717B2B2B2 -FFFFFEFFFFFEB2B2B2181717181717515252E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F0F0282828A6A7A6F3F1F0828382 -181717B2B3B3FFFFFEFFFFFEFFFFFEFFFFFEB2B3B3181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E467BACA3C3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -F3EEF4ACA4C3736F9C3E457B3E457B474E82746F9CACA3C3E4DDE9FFFFFEFFFFFEFFFEFCFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEF2EEF4BAB1CD7E78A3 -5156893E457B3E457B5D5E8FA099BBE4DDE9FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938DB33E457B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0282828 -B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB1B2B1181717282828676867282828A6A7A6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE2A2929BEBEBEFFFFFEFFFFFEFFFFFE828383181717B2B2B2FFFFFE -FFFFFEE5E4E4D6D6D5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D5838484828383FFFFFEFFFFFEFFFFFE828383181717 -B1B2B1FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED6FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF2EEF4ACA5C47E79A3474E823E457B3E457B5E5E8F8781AABAB2CDF3EEF3FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDC7BED5938DB26966953E457B3E457B3E457B736F9CA099BB -E4DDE9FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEACA4C53E457BC7BED6FFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBEBEBE191818FFFFFEFFFFFE -FFFFFECACAC99A9B9BB2B2B2FFFFFEE5E3E3A6A7A69A9B9BCACAC9FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE181717BEBFBEFFFFFEFFFFFEFFFFFEFFFEFD828383181717B2B2B2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE8E8F8F1817178F9090FFFFFEFFFFFEFFFFFEFFFFFE828383181717B2B2B2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEA099BB3E457BE3DCE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDF2EEF53F457B6866965F5E8F3E457B3E457B3E457B5E5D8E7E79A4ADA5C4D5CDE1 -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEE4DDE9BAB1CD -8781AA6866953F467C3E457B3E457B5E5E8F8882ABB9B1CCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC7BED53E457BC6BED5FFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6181717515252676867181717181717 -1918181817178F9090FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -535353656666FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE515252181717B2B2B2FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD828383181717B2B2B2FFFFFEFFFFFEFFFEFDFFFFFE828383181717B2B2B2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD928CB2 -3E457BFFFEFDFFFEFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -ADA4C43D457BC7BED5FFFEFDF2EFF5BBB2CC938CB26866953F457B3D457B3E457B3E457B686695 -8882ABA098BBC7BED6F2EDF3FFFEFCFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC -FFFFFEFFFFFEFFFEFDFFFFFDC6BDD5ACA4C4938DB2686695474E823E457B3E457B3F457B5D5E8F -8882AABAB1CDF2EDF3FFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDF3EFF53E457B938CB2FFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B676867676867A7A7A7E4E2E2FFFFFE8E8F8F -272727FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBEBEBE191818 -828383FFFFFEFFFFFEFFFFFEFFFEFD3B3B3A767777D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE828382191818B1B2B1FFFFFEFFFFFEFFFFFEFFFFFE828383B2B2B2FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE686696515689FFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD7E78A43D457A -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDD6CEE2A099BB7E78A36866963E457B3E467B -3E447B3E457B3E457B686695726F9C938DB2A099BCC7BED5C6BFD7FFFEFCFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDC7BED6C7BED5ADA4C4938CB27E79A4686695 -484D823D457C3E457B3E457B3E467B5E5E8F7E78A4A099BBC7BED5FFFEFDFFFFFEFFFEFDFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFDFFFFFE3E457B8781AAFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9A9B9B767676FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB2B2B2181717767676 -E5E3E3FFFFFE828383515252FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -828383181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8E686696FFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE515689696695FFFEFDFFFEFD -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFED4CCE0C7BFD6938CB2 -7E78A3686695474E823D467C3E457B3E457B3E457B3E457B3E457B3E457B5E5E8F696695686695 -686695686796928CB2928CB3928CB2938CB2938CB2938CB2938CB3938DB3736F9D696695686695 -6967966866953E457B3E457B3E447B3D457A3E457B3D457B3D457B474D82686695736F9C948DB3 -B9B1CCD5CDE0FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFDFCFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFE686695686695FFFEFDFFFFFEFFFFFEFEFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA6A7A6181717D8D7D7FEFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEB2B2B2282828181717181717 -515252E5E3E3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD828383 -181717B2B3B3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E467C938DB3FFFFFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DDE93E447BA099BCFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDE4DDE9C7BED5B9B1CC938DB3938CB28782AA686695686695686695696695515588 -3E457B3F457B3E457B3D457C3E457B3E457B3D467B3F447B525588686695686695686695686695 -7E78A3938CB1938DB3ACA4C4C7BFD7D5CDE0FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -7E78A3474E82FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFE2828283A3A39D8D7D7FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0CACAC9CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE828383181717 -E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED4CCDF3E457B9F98BBFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE9F98BB3F457BD5CDDFFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD948DB33E457B -F2EEF3FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFECACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFECACAC9FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEBAB1CC3E447BC8C0D7FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE736E9B474E82FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFD -FFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD928CB2 -3E457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -474E827E78A3FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF53E457B938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE686796515588FFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFEFCFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFED5CDE03E457BADA4C4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD505589736F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474D82726F9CFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -D8E6E0D7E5E1D8E6E1D9E6E2D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1 -D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1 -D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1 -D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E1D8E6E2D7E5E0D9E6E3D7E5E1FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEF7FAF8EDF5F2EEF6F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2 -EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2EDF5F2 -EDF5F2EDF5F2ECF5F2ECF5F2EDF5F2EDF5F2EEF6F2EEF6F2F7FAF8FFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDCBC3DDC9C2DCCAC2DDCAC1DCCAC3DDCAC2DDC9C3DDCAC2DDCAC2DD -CAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DD -CAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DD -CAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DDCAC2DD -D7D0E5FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD938CB23E457BE4DDE8FFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFD -FFFFFEFFFEFDFFFEFDFFFFFE736E9C515689FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFEFEFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFDFFFEFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEE2DBE93F467B928DB4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC4DAD386B7B35AA4A15BA4A15BA5A1 -5BA5A15BA5A25BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA4A15BA5A15BA5A25AA4A15BA4A1FFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFCD8EBE6AED8D0ACD7CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFAED8CFADD8CFD7EBE6FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE474B8B474B8C464B8C464B8C474B8B454C8C484B8B464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8B464C8C -7A75AAB1A9CDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE696695515689FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD938DB33E457BE4DDE9FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFEFDFFFFFDFFFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEBAB2CD3D457BC6BDD5FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEE1EBE772AEA95CA5A25BA4A15BA5A166ABA86FB0AD70AFAD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD5CA5A25BA4A1FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFED7EBE5ADD7CEB2DAD1B4DBD3B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4 -B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD4B5DBD3B4DBD3B5DBD4B5DBD4B5DBD4 -B5DBD4B5DBD4B0D9D1ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -464B8C464C8C55609C54619C54619C54619C53619C54619C54619C54619C54619C54619C54619C -54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C -54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C -54619C54619C54619C54619C54619C54619C54619C54619C54619C4C5694464B8C464B8C474B8C -706CA4E5E0EEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFD3E447B8882AAFFFFFEFFFEFCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFE -C7BED63D457ABAB2CDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFDFBFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFE8882AB3E467BFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFFFD -FFFFFEC4DAD368A9A55BA5A161A8A481BBBA9DCFCEA6D5D6A5D5D6A6D5D6A5D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6 -A7D6D7A5D4D55BA5A15AA4A1FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5 -ADD8CFBCDFD9CAE5E3CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E3 -BDDFDBADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464C8C464B8C -85ABD386ABD384AAD385AAD285ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD37D9DC96677AD485190464B8C505392 -D8D0E5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEBAB1CD3D467ABAB1CDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3E457B -8882ABFFFEFDFFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEF6F8F6C3D9D590BDB867AAA65CA5A15AA4A15AA4A2 -5BA5A15BA5A15BA5A15AA4A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A25CA5A15BA5A1 -5BA4A15AA4A15BA5A25BA4A05BA5A15CA5A198C9C2ADD8CFADD7CEADD8CFACD7CFAED8CEACD7CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD7CEADD8CF997B8C832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B822E5B -832E5B832E5B904067A3637FD2ACBBFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE5E5E8F -5E5D8EFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEE2ECE85BA4A1 -5CA5A174B3B1A2D2D2A7D6D6A6D5D5A6D5D7A7D6D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D5A6D5D6 -5BA5A15CA5A2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFED7EBE5ADD8CFBBDED9 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE6E5CBE6E4BBDED9ADD8CF -D7EBE6FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8C474B8C84AAD285ABD3 -85AAD284ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD386ABD384AAD37D9ECA505B98464B8C505392E5DFED -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE8882AB -3E447BF3EEF3FFFEFDFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8F5E5D8EFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFECEDFDB67AAA65BA4A15BA5A15BA5A15AA4A15BA5A15CA5A15CA5A15AA4A1 -5BA5A25CA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA4A15BA5A15AA4A25BA4A15BA5A2 -5BA4A05BA5A15BA4A15BA5A198C9C2AED8CFADD8CFADD8CFADD8CFADD8CFAED8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD7CFADD8CF9A7B8D822E5B822E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B842E5B822F5B832E5B -822E5B842E5B832E5B903F67DABAC6FFFEFCFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3EEF33E447B8882ABFFFFFD -FFFEFDFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFE72AEAA5BA4A173B2B1A6D5D6 -A7D6D6A5D5D7A6D5D7A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A2 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4CAE5E4BDDFD9ADD8CFD7EBE5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD464B8C474C8C86ACD384AAD386ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD386ABD385ABD385ABD385ABD386ABD381A4CE505B98464B8B706CA4FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFC5E5E8F5E5E8FFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8882AB3E467BF2EDF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -99C2BD5CA5A15BA5A166AAA785BEBD98CBCBA6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A7D6D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6A6D5D5A7D6D6A6D5D6 -6FB0AD5AA4A1AFD3D0CAE5E4CAE5E3CAE5E4CAE5E4CAE5E4CAE5E3CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE6E5A37D92842E5BA73B72CF4D90CF4D8FCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4E90C14584A33A6F -88305E832F5B832E5BC89DAEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCBAB2CD3E457BBAB1CCFFFFFEFFFFFEFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC4DAD45BA5A161A8A5A2D2D2A6D5D6A6D5D6A6D5D6 -A5D4D5A7D5D6A6D5D6A7D6D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D65BA5A15BA4A1FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7EBE5ADD7CEBDDFD9CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CBE6E4CAE5E4BDDFD9ADD8CFD6EBE5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8C474B8B85ABD385ABD385ABD386ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD386ABD385AAD285ABD385ABD385ABD37D9DC9495190464B8CCAC2DDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCE4DDEA3E467C938CB2FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB2CD3E457BBAB2CDFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9AC2BD5BA5A15BA5A1 -80BAB9A5D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D66FB0AD5BA5A1 -AFD3D0CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92 -832E5BA73B72CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4C8FCF4E90CF4D90CA4A8C9E386D -832E5B842E5BC99DAEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFEFEFDFFFEFD8882AB3E457BF2EFF5FFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE7CB3AF5BA4A18AC2C1A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD384AAD385ABD3 -85ABD385ABD385ABD385ABD385ABD36171A9464B8C7B75AAFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA5C43E457BC7BED6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B8882ABFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECDE0DA5BA5A15CA5A18AC1C0A6D5D6A6D5D6 -A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D66FB0AD5BA5A1AFD3D0CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92832E5BA73B72 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4C8FCF4D90CF4E90D04B8FCF4D8FCF4C8FCF4E909E376C832E5B -893761EEDAE1FEFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFE5E5E8F5E5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEF6F8F65BA5A159A4A1A3D3D2A5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -84AAD385ABD386ACD37996C4474B8C4F5391FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE7E78A33E457BFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFD696695525689FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE72AEAA5BA5A182BBB9A5D5D6A6D5D6A6D5D6A6D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D66FB0AD5BA5A1AFD3D0CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92832E5BA73B72CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D8FCF4D90CF4D90CF4E90D04D90D04C8FCF4D90953466842E5BAA6D88 -FFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -E4DEEB3E447B928CB2FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8E6E2 -5BA5A16BADAAA6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8C -464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD384AAD386ABD3 -84AAD285ABD3464B8C464B8CF3F0F6FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFD515688736F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDA098BB3D457BE4DDE9FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFECEDFDB5CA4A161A8A4A3D3D2A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D66FB0AD5BA5A1AFD3D0CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92832E5BA73B72CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4E90CF4C8FCF4E90CF4C8FCF4D90CF4E90CF4D8FC54788832E5B832F5BEEDAE2FFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDACA4C53F457B -D5CDE0FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCD9E6E25AA4A16FB0AD -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CF -BCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9 -ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8C464B8C85ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD384AAD385ABD385ABD385ABD385ABD385ABD386ABD3 -54619C464B8CCAC2DDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFED4CDE13F457B -A099BCFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD4CCDF -3E467BA099BBFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9AC2BD5BA5A17DB8B6A6D5D6A5D5D6A6D5D6A6D5D5A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D66FB0AD5BA5A1AFD3D0CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4A47E92832E5BA73B72CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D90 -CF4E90D04D90CF4D8FCF4D90CF4C8FCF4D90CF4D90913364822E5BC99DADFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE736E9B474D82FFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED8E6E15BA4A16FB0ADA6D5D6A7D6D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A1 -5BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8C464B8C85ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3495190474B8C -D6CFE4FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEA099BB3E457BD4CDE0FFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE525588696796 -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE86B7B35BA5A2 -93C7C6A5D5D5A7D6D7A6D5D5A7D6D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D66FB0AD5BA5A1AFD3D0CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4A47E92832E5BA73B72CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90D04D90CF4D90CF4D90CF4D8F -D04C8FCF4D90CF4D90CF4D90CF4D90A73B71832E5BBA8499FFFEFDFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD3F457C7E78A3FFFFFEFFFEFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCEDF3F15BA5A15CA5A2A6D5D5A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8C464B8C85ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD381A4CE474B8B464B8CFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE746F9C474D82FFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8882AC3E467BF2EEF4FFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE86B7B35BA5A193C8C7A7D6D6 -A5D5D6A7D6D6A5D4D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D66FB0AD -5BA5A1AFD3D0CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -A47E92832E5BA73B72CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4C8FCF4E90CF4D8F -CF4C8FCF4D90D04D90B03F79832F5B9D5877FFFFFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEBAB1CC3E457BBAB1CCFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD71AEAA5BA5A18DC5C4A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85AAD285ABD386ACD386ABD385ABD384AAD36D83B6464B8C706BA3FFFEFDFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFC464D827E78A3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E447BACA5C4FFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE86B7B35BA5A193C7C6A6D5D5A7D6D6A5D4D5 -A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D66FB0AD5BA5A1AFD3D0 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92832E5B -A73B72CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90D04D90CF4E90CF4D90 -CF4D90AC3D76832E5BAA6E87FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE7E78A33E457BF2EEF4FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEAFCDC85BA4A170B0ADA6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4BCDFD9ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -84AAD285ABD385ABD381A4CE4C5694464B8CB1A9CDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEC7BED53E457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD474E82736E9CFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE86B7B35BA5A18AC2C0A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D5A7D6D7A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6A5D4D5A6D5D6A6D5D66FB0AD5BA5A1AFD3D0CAE5E4CAE5E4 -CAE5E4C9E5E4CAE5E4C9E5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92832E5BA73B72CF4D90 -CF4D8FCF4C8FCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D8FCF4D90CF4E90CF4D90CF4E90CF4C8FCF4D90CF4D90CF4D90A23A6F -832E5BB98498FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD -474E82736F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDF6FAF869A9A55BA5A181BBB9A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A7D6D6A7D6D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D7A6D5D55BA5A15BA5A1FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFED7EBE5ADD8CFBCDFD9CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E3CAE5E4CAE5E4CAE5E4CBE6E4C9E5E4CAE5E4C9E5E5CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -C9E5E4CAE5E4BBDEDAADD8CFD7EBE4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -464B8C464B8C85AAD285ABD385ABD385AAD285ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386ABD285ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386AAD285ABD386ABD385ABD3 -85ABD35D6CA4464B8C5B5B98F3EFF6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFE -938CB23F457BE4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFE7C77A23F457BF2EEF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDAFCDC85BA5A179B6B3A7D6D6A6D5D6A7D6D5A6D5D7A7D6D6A6D5D6A7D6D6 -A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5 -A5D5D7A6D5D5A5D5D5A6D5D6A6D5D7A6D5D66FB0AD5BA5A1AFD3D0CAE5E4CAE5E4CAE5E4C9E5E4 -C9E5E4CBE6E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CAE5E3A57E93832E5BA73B72D04D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CE4D8FD04E90CF4C8FCF4E90CF4C8FCF4D90CF4D908C3161832E5BD2ABBA -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDBAB2CD3E457BADA5C4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -C3D9D55BA4A15BA5A185BEBCA6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A7D6D6A6D5D6A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D4D5 -A6D5D6A6D5D75BA4A15BA5A1FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5 -ADD8CFBCDFD9CAE5E3CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE6E5CAE5E4CBE6E4CAE6E5CAE5E4C9E5E4CAE5E4CAE5E4C9E5E4CAE5E4CAE5E4CBE6E4 -BCDFD8ADD8CFD7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474B8B464B8C -85ABD385ABD385AAD285ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD384AAD285ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD384ABD386AAD285ABD386ABD35D6CA4464B8C -464B8CCAC1DCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD686695525689 -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFCFFFFFED5CDE03F467BA098BCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDE2ECE85BA5A25AA4A19DCFCEA6D5D6A6D5D7A6D5D6A5D5D6A7D6D6A6D5D6A7D6D6A6D5D6 -A6D5D6A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6 -A6D5D6A6D5D6A5D5D6A7D6D66FB0AD5CA5A1AFD3D0CAE5E4C9E5E4CAE5E4CBE6E4CAE5E4CAE5E3 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E3A47E92822E5BA73B72CF4D90CF4D90D04C8FCF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4E90CF4D90CF4C8FCE4D8FCF4D8FCF4C8FD04D90B13F79832E5B8A3761FFFFFEFFFFFEFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD7E78A3484D82F2EEF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFE9AC3BD -5BA5A15BA5A270B0AC9DCFCFA6D5D5A7D6D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -5AA4A15CA5A1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7EBE5ADD8CFBCDFDA -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE6E5 -C9E5E4CAE5E4CAE6E5C9E5E3CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CBE6E4CAE5E3BCDFDAADD8CF -D7EBE5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464C8C464B8C85ABD386ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD386AAD284ABD37490C054619C464B8C464B8CB1AACEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF43F457B8781AAFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFD -FFFFFE5156895F5E8EFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -85B6B25BA5A270AFACA6D5D6A6D5D6A5D5D5A7D6D6A6D5D6A6D5D7A5D5D6A7D6D6A6D5D6A6D5D6 -A7D6D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A5D5D6A6D5D6A6D5D6 -A7D6D6A6D5D66FB0AD5BA5A1AFD3D0CBE6E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE6E5A47E92832E5BA73B72CF4D90CF4E90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4E90CF4C8FCF4D8F -CF4D90CF4D8FCF4D90CF4E90CA498B8C3161832E5BB98398FFFEFDFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF43F457C7D78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDBAD4CD5BA4A1 -5BA5A15BA5A16CADAA7BB9B782BBB980BBB881BAB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB980BBB9 -81BBB981BBB980BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BCB981BBBA82BCB95CA5A25AA4A0 -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7EBE6ACD7CFB5DBD4BBDED9BCDFD9 -BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BDDED9BBDED9 -BCDFD9BBDED9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9BCDFD9B5DBD4ACD7CFD7EBE5FFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464B8B474B8C6477AD6677AD6577AD6477AD -6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD -6577AD6577AD6577AD6577AD6577AD6577AD6577AC6577AD6577AD6577AD6576AD6577AD6577AD -6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD6577AD -6577AD6577AD6577AD5C6BA44D5694464B8C464B8C505392B1A9CDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDBAB2CD3E457BBAB1CDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8882AB -3D457BE3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDEEF3F167A9A5 -5CA5A177B5B3A7D6D7A6D5D6A6D5D5A6D5D6A6D5D5A6D5D6A5D5D7A6D5D6A7D6D6A5D5D6A7D6D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A5D5D6A6D5D6A6D5D6A5D5D6A7D6D5A5D5D6 -70B0AD5CA5A1AFD3D0CAE5E4CAE5E3CBE6E4C9E5E4CAE5E4CBE6E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4C9E5E4 -CAE5E4A57E93842E5BA73B72CF4D90CF4C8FD04D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D8FCB4B8C903364832E5B903F67F8EDF0FFFFFDFFFFFEFFFFFCFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEADA5C53D457BBAB0CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEEDF3F09AC2BD5AA5A1 -5CA5A15AA4A15BA5A15BA4A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15CA5A15BA5A15BA5A1 -5CA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15AA4A15BA5A15BA5A2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCD7EBE5ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD7CEAED8CFADD7CEADD8CFAED8CFACD6CEADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFAED8CFACD7CFADD8CFD7EBE5FFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE464C8C474B8B474B8C464B8B464B8C464B8C474B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8B464C8C464B8C464B8C464B8B464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C474B8B454C8C505392847EB0E5DEEDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE8882AA3E457BF3EDF3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDE4DDE93E457B8881AA -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFCFFFEFDC4DAD45BA5A15BA5A2 -69ADAA99CCCBA6D5D6A7D6D6A6D5D6A6D5D6A7D6D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D5A7D6D66FAFAC5BA5A1 -AFD3D0CAE6E5CAE5E4CBE6E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4 -CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4CAE5E4A47E92 -832E5BA73B72D04E90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4C8FCF4E90D04C8FCF4D90BA43808C3161 -832E5B893761E4C9D3FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD5E5E8F515689FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEF6F9F7D8E6E2AFCEC8 -AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8 -AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8B0CFC8AFCDC8AFCDC8AFCDC8AFCDC8B0CFC8 -AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8AFCDC8 -AFCDC8AFCDC8AFCDC8AFCDC8AECDC8B0CFC8B0CEC8AFCDC8AECDC7FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEEDF5F1D7EBE5D6EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5 -D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D8EBE6D7EBE5D7EAE5D7EBE5D6EBE5D7EBE5D7EBE5 -D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5D7EBE5EDF5F2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE9A92BE9992BE9893BF9992BE9A92BE9992BE9992BE9992BE9992BE9992BE -9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE -9992BE9992BE9892BD9992BE9993BF9A92BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE -9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9992BE9891BE9992BE -CAC2DDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFE5E5D8E5E5E8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD686695474E82FFFFFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDCEE0D967AAA65BA5A15BA4A1 -6AAEAA80BBB994C7C693C8C892C7C693C7C792C7C794C9C692C7C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C793C8C7 -93C8C793C8C793C8C794C9C793C8C792C7C793C8C693C8C793C8C66BADAA5BA5A2A9D0CBC4E2DF -C4E2E0C4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DF -C4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC4E2DFC5E3DFA27D91842E5C9E386C -BA4280BC4381BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380 -BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380 -BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380BB4380 -BB4380BB4380BB4380BB4380BB4380BB4380B6417DA73C728C3261842E5B832E5B904067E4C9D3 -FFFFFEFFFDFCFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DCE93E457B -8782ABFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEC7BED5C7BED5FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -C7BED6FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCE9 -3F467C938CB2FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEACA4C43E457BABA4C5FFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEEDF2F09AC2BD5BA5A15BA5A15BA5A1 -5BA5A25BA4A15CA5A15BA5A15BA4A15BA4A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15AA4A15CA5A15BA5A15BA5A15BA4A15BA5A25BA4A15BA5A198C9C3ADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD8CF -ADD8CFADD8CFADD8CFADD8CFADD8CFADD8CFADD7CEACD7CF997A8D832E5B842F5B832E5B842E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B822E5B842E5B893761BA8499F8ECEFFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD8882AB3E457BE4DDEAFFFEFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB2938CB2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2928CB2FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB3938CB3FFFFFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C43E457BC6BDD5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD474E82686695FFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEEDF2F0C4DAD4A5C8C386B7B386B7B3 -86B8B486B7B386B7B386B7B385B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B386B7B3 -86B7B386B7B386B7B386B7B386B7B386B7B386B7B3B3D6CEC4E2DAC3E1DAC4E2DBC3E1DAC3E1DA -C3E1D9C3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DA -C3E1DAC3E1DAC3E1DAC3E1DAC3E1DAC3E1DAB095A39C57769C57769E58789C58779D58779D5877 -9D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D5877 -9D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D5877 -9D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D58779D5877 -9D58779C57769D5877B98498CA9EAEF8EEF0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEF2EDF3474E82696796FFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE7E78A33D457BFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFD8882AB3E457BE4DDE9FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEACA5C43F457CB8B0CBFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD505589736F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEE3DBE83E457B7E78A3FFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFEFDFCFFFFFEFFFFFEFEFEFDFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFD515589515689FFFFFEFFFFFEFFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED5CDE03F467B9F98BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFE736E9C484E82F2EDF3FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEC6BED5 -3E457B928CB2FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEA198BC3E457BD5CDE0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEC6BFD6 -3E447A938DB2FFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE686695474E82F2EDF3 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD746F9C -515689FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE5E5E8F484D81 -FFFFFEFFFDFCFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DDE83E457B8882ABFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474D827E78A3FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEACA4C43E457BABA4C3FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFD7E78A33E457BE4DDE9FFFFFEFFFDFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED53E467BADA5C4FFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD515689515689FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEE3DCE93E457B7E78A3FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928DB33E457BE4DDE9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEADA4C43D457BACA4C3FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -7E79A43E457BE4DDEAFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928CB2938CB2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE6966955E5E8FFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE525588505589FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEE3DCEA3F457B7E78A3 -FFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD938CB2938CB2 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -F2EEF33E467C8882AAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEACA4C43F457BACA4C4FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFD7E78A33D457BE4DDE9FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938DB3938CB2FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938DB3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEBAB1CD3E467A -BAB1CEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFDFFFFFE515588484E83F2EEF3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFEFEFDFFFFFED4CCDE3E467B7E78A3FFFEFDFFFFFEFFFFFEFFFFFEFFFDFC -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD938CB2928CB2FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE8781AA3E457BF2EEF4FFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -BAB2CD3D447A938DB2FFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE6866963E457BE4DDE9FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD928CB3938CB1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD515588686796FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFDFFFFFEFFFEFD696797 -484D82F2EEF4FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -C6BED53E457B938DB3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB3FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE918CB1938CB2FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDE5DEEA3E467B938CB2FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFEFDC6BDD53E457B7E79A3 -FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5D8E474E82 -F2EDF4FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB38882ABFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE696696BAB1CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEACA3C33E457BC7BFD6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE736E9C3E447BD5CEE0FFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB3E457BA098BBFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC6BED6 -5E5E8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE484D82D5CDE0FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -7E79A4474D82FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEE2DBE8474E82686695FFFFFEFFFFFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEF2EEF4474E82525689FFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF43E457BE5DEEA -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEC7BED5515588FFFEFDFFFFFEFEFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE474D82736F9D -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFD928CB33E457BACA4C4FFFFFEFFFFFDFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFD8882AB3E457BC7BED5FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC7E79A4928DB3FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFEFDFFFFFE7E78A3 -938DB3FFFEFCFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CDE03E457BA099BBFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFC515689474E82F3EEF4FFFEFDFFFFFEFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BFD63E457B736F9DFFFFFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFCFFFFFEE3DCE9484E82E3DCE9FFFFFEFFFFFDFFFFFE -FFFEFCFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFDFEFDFCFFFFFEC6BED6474E83F2EDF3FFFEFD -FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDA198BB3D457BD5CDE0FFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEC7BED53E467C8781AAFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFFFE5E5E8F474E82 -F2EDF3FFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFD8882AB686695FFFFFEFFFEFDFFFFFEFFFFFEFFFDFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEF2EEF45E5E8FA098BBFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE726F9C525689FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFE736E9B3F457BC7BED5FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE928CB13E457BA098BBFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDF2EEF45F5E8F7E78A3FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFDFFFFFD726F9C696695FFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFEFEFD3F457B7D78A3FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFDFFFFFEFFFFFEFFFFFE -F2EFF5484D82515688F2EEF4FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDD4CDE13E457B686796FFFFFDFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEF2EEF35E5E8F7E78A3F1EDF4FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -F2EEF46866955F5E8FF2EDF2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEC7BED6 -3F457BACA4C4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEBAB2CC -3E457B8882ABFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE5E5E8E3E457CE3DCE8FFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEF2EDF26866955F5F90C6BDD5FFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDBAB1CC515689746F9C -F2EDF3FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD938CB23E447BE4DDE9 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE726F9C3E467B -C6BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -938CB23E457BA099BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFE9F97BA474E83686695A098BAD4CDE0FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CEE1A098BB5E5E8F515689ACA4C3FFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFEFD5E5E8F5E5E8FFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF4474D82525689F2EEF4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD5CDE03D457B686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF2EEF4ACA4C4736F9C474E82474E82736E9CA099BBD5CDE0FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEC7BFD7 -9F98BB746F9C474E825156897E79A4ACA4C5FFFEFCFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEF2EFF53F447B8882ABFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEBAB1CC3D457C7D78A3FFFFFEFFFFFD -FFFFFEFFFDFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEF3EFF45E5E8F484E82E4DDEAFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFDFFFFFEFFFFFED4CCE0ADA5C47E78A4515688474D82726F9CA099BBD4CCDFFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFEFDFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED5938CB26866953E457C5156897E78A3ACA4C4 -E4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDBAB1CC3E467BBAB1CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFEFFFEFD7E78A33F457BACA4C4FFFEFDFFFFFEFFFFFE -FFFEFDFFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFD8882AB3E457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEE4DDE9ADA5C37E78A3515689474D82746F9C938CB2C7BED6 -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -C7BFD7938CB26866953F457B5156897D78A3ADA5C4E4DDE9FFFFFEFFFFFEFFFEFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFD8882AB3E457BF1EDF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDF2EEF35E5E8F474E82D4CDDFFFFEFDFFFFFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDB9B1CC3D457A746F9DFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE4DDE9ACA4C57E78A35156883E457B686695 -938CB2C6BED5FFFDFCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEC6BED5928CB26867953E467C5E5E8E8882AB -BAB1CCF2EEF4FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD515589 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFED4CDDF474E825E5E8FF2EEF4FFFEFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED4CCE0 -484E82515689F2EEF3FFFFFEFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDE4DDE9ADA5C57E78A45E5E8F -3E457B686695938DB2C7BFD7FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFEFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFCFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFEFD -F2EEF5BAB1CC8882AB6966953D457B5E5E8F8882ABBAB1CCF2EEF3FFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDE4DDEA3D457B928CB2FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFDFFFFFEACA4C43D457B7E78A3FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFFFFFEFFFFFEF2EEF45E5E8F474E82D4CCE0 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EFF5BAB1CD -8882AB5E5E8E3E467B686695938CB2C6BED6F2EEF5FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2EEF4BAB1CC8782AB5E5E8E3E457B5E5E8F -8882ABBAB1CDF3EDF4FFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEACA4C43F457AC7BED5FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFDFFFEFD7E78A33E457BACA4C4FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD7E78A43F457BACA4C4FFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFE -F2EEF4BAB1CC8882AB5D5D8E3E467B5D5D8E8882AABAB2CDF2EDF4FFFFFEFFFEFCFFFEFCFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEF2EEF4B9B1CD8882AB5D5E8F3E457B686695938DB2BAB1CDF2EEF3FFFEFDFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFEFDFFFFFDFFFEFDFFFFFDFFFFFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD7E78A3474D82FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFE -F2EEF45D5D8E3E457BD5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDA099BC3E457B7E78A3FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEF2EDF4BAB1CD8882AB5E5E8E3D457B5F5E8F8781AABAB1CCF2EEF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCE4DDEAACA4C48882AB5E5E8E3E457C -696695938CB2C7BED6FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE474D82736F9CFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE9 -474E82474E82E2DBE8FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFDC7BED63E457B5E5E8FFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5938CB26866953E457B5E5E8E8882ABBAB1CCF2EEF4 -FFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEE4DDE9ACA4C47E78A35156883E457B696695938DB2C7BED5FFFFFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -D5CDE03D457AA099BBFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CDDF3E467B -5E5D8EF2EEF4FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDD5CEE1474D82 -484E82F2EDF3FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDC7BFD6938DB36866953F457B5E5E8E7D78A4 -ADA5C4E3DCEAFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFDE4DDE9ACA4C47E78A3515689 -474E82696695938CB2C7BED6FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDA099BC3E447B -E3DCE8FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEACA4C33E457B736F9C -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEF2EFF5515589484E82D5CDE1FFFFFE -FFFFFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDC7BED5938DB26966953F457B -5156897E78A3ACA4C3E3DCE9FFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEE4DDE9ADA4C47E79A4525589484D82746E9CA099BBD4CCDFFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE736E9B515689FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFFFE8781AA3E457B7E79A4FFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EFF45E5D8F3E457BACA4C4FFFFFEFFFFFDFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEC7BED5938CB2 -726F9C484E825156897D77A3ADA5C4E4DDEAFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFDD4CCDFA099BB726F9C -474E82474E82736F9CA098BBD5CDE0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD3E457B7E78A3FFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFD7D78A43E447AA099BBFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFE7D78A33E457BACA4C4FFFEFDFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFD -FFFEFDFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -D5CEE0A198BB736E9C484E825256887E78A3ACA4C4D4CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFDFFFFFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFCFFFEFDFFFFFEFFFFFED5CDE09F98BB746F9C484D82474E82736F9CA099BBD5CEE0FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BFD63E457BACA5C4FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8E3D457BACA4C3FFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -7D78A33E457B7D78A3FFFFFEFFFEFCFFFFFEFFFEFCFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFED5CDE09F98BB736F9C484E82474E82736F9CA099BCD5CDE0FFFFFEFFFEFDFFFFFE -FFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFCD5CEE1A099BB -746F9C474E825155887E78A3ACA3C3D5CEE1FFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB23E467CF2EEF3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFDFFFEFCF3EEF55D5D8E3F457CABA4C3FFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A33E447A7E78A3 -FFFFFEFEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFDD3CCDFA099BB726F9C484D82474E82736F9C9F98BBD5CDE0FFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFEFDC7BED6938DB2736F9D474E825156897E78A3ACA5C4E3DBE8 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -5E5E8F5E5E8EFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEF2EFF55E5E8F3E457BB9B1CBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BC3E457B7E78A3FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDE4DDE9ACA4C37E78A3505589474E82736F9CA099BB -D4CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDC7BFD6 -938CB26866953F467B5155887E79A4ACA4C4E4DDEAFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EFF53F457B8881AA -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF2EFF5474E82474E82D5CDE1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEADA5C53D457B5E5E8FF2EEF4FFFFFDFFFEFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE9ACA3C37E78A3515689474E82 -686695938CB2C7BFD6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEC7BED5938CB26866953E457B5E5E8F7E79A4ACA3C3 -E5DEEAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEBAB1CC3D457BBAB1CCFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED5CDE1474E82474D82D5CDDFFEFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEACA3C33E457B5E5E8FF2EFF5FFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDE3DCEAACA4C37D78A3 -515689474D82938DB3F2EDF4FFFFFEFFFFFEFFFFFEFFFFFD928DB3938DB2FFFEFDFFFFFEFFFFFE -FFFFFEF2EDF37F79A4474D825F5E8F8882AAB9B1CCF3EEF4FFFEFDFFFEFCFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE7D78A43E447BFEFDFBFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDD4CCE0474E82474E82D5CDE0FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDACA4C43F457B -5E5E8FF2EDF3FFFEFDFFFFFDFFFEFDFFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDC7BED5 -696695474E82BAB1CCFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFEFDFFFEFDADA4C3474E82 -7E78A3E3DCE9FFFEFDFFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFD515689696695FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -D4CDDF474E823F457BACA4C4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE938CB23E457B5E5E8FF3EEF5FFFFFD -FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB9B1CC -484E82ACA4C5FFFFFEFFFEFD938DB2928CB2FFFFFDFFFFFE7E78A3474E82C7BED6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDE4DDE93E457B928DB3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDD5CEE1 -5155883E457BACA4C4FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFD7E79A43E457B5F5E8FF2EEF4FFFFFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDD4CCE0474E82 -ACA4C3FFFFFE928DB2938DB2FFFFFE8781A95E5E8FE4DDE9FFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEACA4C4 -3E457BD5CDE0FFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFDF2EFF55E5E8F -3E447AACA4C5FFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFE7E78A33E467B7E78A3FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFC -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFCFFFFFDFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFDD5CDE13E457BD5CEE0 -938CB2938CB2BAB1CC484E83D4CCE0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFD736F9C474E82FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFEFDFFFFFEFFFFFEF3EEF35D5D8E3E457B -8882ABFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EDF3746F9C -3E467B7D77A2FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFDFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEA099BC5F5E8F938DB38882AB -474E82BAB1CCFFFFFEFFFEFDFFFEFDFFFFFEFFFDFBFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFC474E82736F9CFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF2EEF5736F9C3E457B7D78A3 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF55E5E8F3E447B8882ABFFFFFE -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFD9A9B9BCACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2B2B2B2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFDFCFFFFFDFFFEFCFFFFFE505588525689474E82696695FFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEB2B2B2B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9BCACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDD4CDE03E457BA099BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A33F457B5F5E8FF2EDF3 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CDE05255893E457BACA4C5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD181717 -9A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C43E457B3E457BC7BED5FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDA098BB3E457BE4DDEAFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BB3E457B5F5F90D4CDE0FFFFFE -FFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFDFFFEFDBAB1CC474E82474E82BAB1CCFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE181717999A9AFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD686969676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF2EEF33F457B515689FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFE696796515689FFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEABA4C3474E82474E82B9B1CCFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFEFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE938CB1 -3E457B515689D5CDE0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B3B3CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2CACAC9FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE6866957E79A4FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD676867686969FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE5E3E3999A9AFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE181717 -9A9B9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE3E457B -7D78A3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CCE05055893E447B938CB2FFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEF2EDF4746F9D3F457B686695F2EEF4 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE181717999A9AFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE6869699A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFD8882AB928CB2FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCBCBCA181717FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9BFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC7BED63E467BACA4C4FFFFFE -FFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDF2EFF56966953E457B696695F1EDF3FFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFED5CEE05E5E8F3D457B8882ABFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEF3F1F0A6A7A6767676686969828382E5E4E4FFFEFDFFFFFEFFFFFEFFFEFD -A5A6A6676867767676CACAC91817179A9B9BFFFFFEFFFFFEFFFEFDB2B3B3828383676867767676 -CACAC9FFFFFEFFFFFEFFFFFE8E8F8F8E8F8FB2B2B2676867767676CBCBCAFFFEFDFFFFFEFFFFFE -6869692828283B3B3A676867D7D6D6FFFEFDFFFFFECACAC97677776768678E8F8FE5E3E3FFFEFD -FFFFFEFFFFFEB2B3B3676867BEBEBE676867767676D7D6D6FFFFFECACAC9767676676867838484 -CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE6768672A29293A3A39686969D7D6D6FFFFFEFFFFFEC9C9C97676766768678E8F8F -E5E3E3FFFFFEFFFEFDFFFFFEFFFFFEB2B2B2676867676867A7A7A7F3F1F0FFFFFEFFFFFEFFFFFE -676867676867FFFFFEFFFFFEFFFFFEB1B2B16869696768678E8F8FE5E3E3FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB1 -938EB3FFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEBEBFBE767676686969B1B2B1686969676867FFFFFEFFFFFEFFFFFEB2B2B2838484 -656666767676CACAC9FFFFFEFFFFFEB2B3B35050501817176768678F9090FFFFFEFFFFFEE5E3E3 -9A9B9B6869696566669A9B9BF3F0F0FFFFFEFFFFFEFFFFFE1817178E8F8F8E8F8F686969828382 -D7D6D6FFFFFEFFFFFEFFFFFEFFFEFDB2B2B2828382676867767676CACAC9FFFEFDFFFFFEFFFFFE -C9C9C9767777676867838484CACAC9FFFFFEFFFFFEFFFFFEE4E2E28F9090676867828383E5E3E3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD8882AB3D457BF2EFF4FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFEFEFD938CB23E457B515689D4CCDFFFFFFEFFFEFDFFFDFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEACA4C5484E82464E82ACA4C3FFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFE5050508E8F8F9A9B9B2828283B3B3AFFFFFEFFFFFEFFFFFE8E8F8F2828288E8F8F -8E8F8E2828281817179A9B9BFFFEFDFFFFFEFFFFFE828383828383999A9A515252181717E5E3E3 -FFFFFEFFFFFE6768671817176768679A9B9B767676181717BEBEBEFFFFFEFFFFFE999A9A3C3C3C -6768679A9B9BE4E2E2FFFFFEBEBEBE1918187576769A9B9B3A3A392A2929E5E4E4FFFFFEFFFFFE -999A9A1918183B3B3A9A9B9B828383F3F1F0CACAC9181717696A6A9A9B9B767676676867FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -9A9B9B3B3B3A6869699A9B9BE5E3E3FFFFFEBEBEBE181717767676999A9A3C3C3C282828E4E2E2 -FFFFFEFFFEFD8E8F8F1918188E8F8E8E8F8F282828515252FFFFFEFFFFFEFFFFFE676867676867 -FFFFFEFFFFFE9A9B9B1817178283839A9B9B5152529B9C9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE938DB2938CB2FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBEBEBE -1817178283839A9B9B3B3B3A181717676867FFFEFDFFFFFEFFFFFE8283838283839A9B9B505050 -181717E5E3E3FFFFFECACAC98283831918189A9B9BB2B2B2FFFFFEFFFFFED6D6D5535353999A9A -8E8F8F181717828383FFFFFEFFFFFEFFFEFD1817171817178283829B9C9B3B3B3A282828E5E4E4 -FFFFFEFFFFFEFFFFFE8283828384849A9B9B515252181717E5E3E3FFFFFECACAC9181717676867 -9A9B9B767676676867FFFFFEFFFEFDE5E3E32828283B3B3A9A9B9B676867282828F3F1F0FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE5F5D8E5E5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEBAB1CC484E823D457B938CB2FFFFFEFFFFFDFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFEFDFFFFFEF2EDF2736F9C -3F457B5E5E8FD5CDE0FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDBEBEBE181717D7D6D6FFFFFEE5E3E3181717A6A7A6FFFEFDFFFFFED7D6D6 -1817179A9B9BFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0181717A6A7A6FFFFFEFFFFFE -676867515252FFFEFDFFFFFEFFFEFD6869693A3A39FFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFE -FFFFFEFFFFFE3B3B3A767676FFFFFEFFFFFEF3F1F0282828828383FFFFFEFFFFFE9B9C9B181717 -F3F1F0FFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE656666 -9A9B9BFFFFFEFFFFFEFFFFFE3B3B3A767676FFFEFDFFFFFEF3F1F0272727828383FFFFFEE5E3E3 -181717A6A7A6FFFFFEFFFFFECACAC9181717B1B2B1FFFFFEFFFFFE656666676867FFFEFDFFFFFE -676867676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938DB2928CB2FFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3B3B3A767676FFFFFE -FFFFFEF3F1F03B3B3A656666FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0181717A6A7A6 -FFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8E -282828FFFEFDFFFFFEFFFFFE1918188E8F8FFFFFFEFFFEFDF3F1F0282828828383FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF3F1F0181717A6A7A6FFFFFE9A9B9B191818FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE828383282828F3F1F0FFFFFEF3F1F0282828999A9AFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDF2EEF33E447B8781AAFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEE2DBE86866953E457B696695E4DDEAFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFFFEC7BED55156893E447B8882ABF3EEF4 -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFECACAC9181717CACAC9FFFEFDA7A7A7181717F3F1F0FFFFFEFFFEFDFFFFFE1918189A9B9B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFE999A9A181717F3F1F0FFFEFDFFFFFE6768679A9B9BFFFFFEFFFFFED6D6D5 -181717BDBDBDFFFFFEFFFFFEFFFFFE828383535353FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFEBEBEBE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE6768679A9B9BFFFFFE -FFFFFED7D6D6181717BEBEBEFFFFFEFFFFFEFFFEFD828383535353FFFFFEA6A7A6181717F3F1F0 -FFFFFEFFFEFDFFFFFE3B3B3A8E8F8FFFFFFEFFFFFE686969656666FFFFFEFFFEFD8E8F8F282828 -BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE928CB2938CB2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6181717BEBEBEFFFFFEFFFFFEFFFFFE -676867676867FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE1817179A9B9BFFFFFEFFFEFD -CACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFE1817179B9C9BFFFEFDFFFFFEFFFEFD656666515252FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEBEBEBE1817179B9C9BFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFE3B3B3A828383FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -BAB2CE3E457BBAB1CCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFE938CB23F467B474E82A099BBFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFDFFFFFEFFFEFDFFFFFE8882AB3D457B474E82B9B1CCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D57677771817171817173A3A39 -191818CACAC9FFFFFE999A9A181717FFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFE -F3F1F08283832828281817173B3B3A1817179B9C9BFFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFFFEC9C9C9181717CACAC9FFFEFDFFFFFE6768679A9B9BFFFFFEFFFFFECACAC9181717CACAC9 -FFFFFEFFFFFEFFFFFE9A9B9B191818FFFEFDFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEB2B2B22828283B3B3ABEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFECACAC9 -191818CACAC9FFFFFEFFFEFDFFFFFE9A9B9B181717FFFEFD9A9B9B181717FFFFFEFFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFFFE686969676867FFFFFEFFFFFEFFFFFE8E8F8F181717686969 -D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC9C9C9191818C9C9C9FFFFFEFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEF4F2F18283832828281817173B3B3A1817179B9C9BFFFEFDFFFFFECACAC9181717 -FFFEFDFFFFFEFFFFFEFFFFFEBDBDBD5152521817171817173B3B3A181717FFFFFEFFFFFEFFFEFD -1817179A9B9BFFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEF3F1F08283832A2929181717 -3B3B3A1817179A9B9BFFFFFEFFFFFEB2B2B22828283B3B3ABEBEBEFFFFFEFFFFFEFFFFFE191818 -3B3B3A6768676768676768673B3B3A676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE7E78A33E457B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFDFCFFFFFED4CDDF5F5D8F3E457B736E9CE4DDE9FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFBFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFFFDD5CDE05E5E8F3E467B746E9CF2EEF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3F1F0282828535353BEBEBECACAC99B9C9B181717CACAC9 -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFE1918189A9B9BFFFFFEFFFFFE676867272727 -B2B2B2CBCBCABDBDBD1817179A9B9BFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFEB2B3B3 -181717E5E3E3FFFFFEFFFFFE6768679A9B9BFFFEFDFFFFFECACAC9181717C9C9C9FFFFFEFFFFFE -FFFFFE9A9B9B282828FFFFFEFFFFFE999A9A191818FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F08E8F8F191818828382FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE6768679B9C9BFFFFFEFFFFFECBCBCA181717CBCBCA -FFFEFDFFFFFEFFFFFE9A9B9B282828FFFFFE999A9A191818FFFFFEFFFFFEFFFFFEFFFFFE676867 -767676FFFFFEFFFFFE656666686969FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3656666181717B2B2B2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE676867676867FFFEFDFFFFFE -656666282828B2B2B2CACAC9BEBEBE181717999A9AFFFFFEFFFFFECACAC9181717FFFEFDFFFFFE -FFFEFDCACAC9181717767676CACAC9CBCBCA767676181717FFFFFEFFFEFDFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFFFE7677773B3B3AFFFFFEFFFFFE676867282828B2B2B2CACAC9BEBEBE181717 -9A9B9BFFFFFEFFFFFEFFFEFDF3F1F08E8F8F181717828383FFFFFEFFFFFE1817176869699A9B9B -9A9B9B9A9B9B9A9B9BB2B3B3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE525589686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEF2EDF38881AB3E457B474D82A099BBFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF38882AC3E457B -474D82A198BCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC9C9C9181717CACAC9FFFFFEFFFFFECACAC9181717CACAC9FFFFFEBEBEBE -181717D7D6D6FFFEFDFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFD -FFFFFE1817179A9B9BFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFEFD8E8F8F2A2929FFFFFE -FFFFFEFFFFFE676867828383FFFFFEFFFFFEF3F1F0181717A6A7A6FFFFFEFFFFFEFFFFFE515252 -676867FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -999A9A191818E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686969828383FFFFFEFFFFFEF3F1F0181717A6A7A6FFFFFEFFFFFE -FFFFFE515252676867FFFFFEBEBFBE181717D7D6D6FFFFFEFFFFFEF3F1F01817179A9B9BFFFFFE -FFFEFD686969656666FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE6869693B3B3AFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDF3F1F0181717A7A7A7FFFFFEFFFFFEFFFEFD686969676867FFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFECBCBCA191818E5E3E3FFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFE2828288F9090FFFFFEFFFEFD -FFFFFE535353767676FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFEFD1817179A9B9BFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE9A9B9B191818E4E2E2FFFFFE515252767676FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE3DCE93F457B938DB3FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDD4CCDF5E5E8E3E457B686695D3CCE0FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFEFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFDFBC6BED55156893E457B736F9CE3DCE9FFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDE5E3E31918188E8F8EFFFEFDF3F1F0838484181717CACAC9FFFEFDFFFFFE272727767676 -FFFFFEFFFFFECACAC9191818999A9AFFFFFEFFFFFE3B3B3A656666F3F1F0FFFFFEA7A7A7181717 -9A9B9BFFFFFEFFFFFE6768673B3B3ACACAC9FFFEFDCBCBCA282828828382FFFFFEFFFFFEFFFFFE -8283823B3B3AE4E2E2FFFFFEFFFFFE8283822A2929D7D6D6FFFFFEA6A7A6181717B2B2B2FFFFFE -FFFFFE9B9C9B181717FFFFFEFFFEFDFFFFFEFFFFFED7D6D6C9C9C9FFFFFEFFFFFEA6A7A6181717 -F3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE8283823B3B3AE5E3E3FFFFFEFFFFFE828383282828D7D6D6FFFFFEA5A6A6191818 -B2B2B2FFFFFEFFFFFE3C3C3C505050F4F2F1F3F0F0828383181717E4E2E2FFFFFEFFFFFE767676 -505050FFFFFEFFFEFDBEBEBEE5E3E3FFFFFEFFFFFE757676515252FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -7676763B3B3AF3F1F0FFFEFDE5E4E43A3A39676867FFFFFEFFFEFD3B3B3A676867F3F1F0FFFFFE -A6A7A61817179A9B9BFFFFFEFFFFFEE5E3E31817179A9B9BFFFFFEFFFFFEB1B2B1181717BEBEBE -FFFFFEE5E4E4505050181717FFFFFEFFFFFEFFFEFD838484272727D8D7D7FFFFFEA6A7A6181717 -B2B3B3FFFEFDFFFFFE3B3B3A676867F3F1F0FFFFFEA7A7A7181717999A9AFFFFFED7D6D6CACAC9 -FFFFFEFFFFFEA6A7A6181717F4F2F1FFFFFEB2B2B2181717A5A6A6FFFEFDF4F2F1A6A7A6D6D6D5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEACA5C43F457BD4CCDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFDFFFEFD -FFFFFE938CB23E457B3F457B938DB3F2EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFD -FFFFFEFFFDFCFFFFFEE4DDEA736F9C3E457B484E82B9B1CCFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -999A9A181717181717181717272727181717C9C9C9FFFFFEFFFFFED7D6D62828283B3B3A515252 -3B3B3A1817179B9C9BFFFFFEFFFEFDBDBDBD2A29291817171817172828281817179A9B9BFFFFFE -FFFFFE676867282828181717191818181717515252F3F1F0FFFFFEFFFFFEFFFEFDF3F1F0515252 -191818CBCBCAFFFEFDF4F2F16566661918181817171817178E8F8EFFFFFEFFFFFECACAC9181717 -191818181717CBCBCAFFFFFEFFFFFEB2B2B22828283B3B3A3B3B3A181717B2B3B3FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -F3F1F0515252181717C9C9C9FFFFFEF4F2F16768671817171817171918188E8F8FFFFFFEFFFFFE -FFFFFED7D6D63A3A39181717181717282828B2B2B2FFFFFEFFFFFEFFFEFDCBCBCA1918189A9B9B -FFFFFE8E8F8F1817175152522A2929282828D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0535353 -282828686969272727282828676867FFFFFEFFFFFEBEBEBE272727191818191818272727181717 -999A9AFFFFFEFFFFFEFFFEFDB2B3B3181717676867FFFFFEFFFFFE676867181717181717181717 -282828181717FFFFFEFFFEFDFFFFFEF3F0F06768671817171817171817178E8F8FFFFEFDFFFFFE -FFFFFEBEBEBE2727271918181817172828281817179B9C9BFFFFFEB2B2B22828283B3B3A3B3B3A -181717B2B2B2FFFFFEFFFFFEFFFFFE9A9B9B1817171817171817173C3C3CD7D6D6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE736E9C474E82FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -E3DCE96867963E447B525689ACA4C4FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDF2EEF4 -938DB2474E823E457B8882ABF2EEF4FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0 -CACAC9D7D6D6FFFFFECACAC9E5E3E3FFFEFDFFFFFEFFFFFEFFFFFECACAC9CACAC9FFFFFECACAC9 -E5E3E3FFFFFEFFFFFEFFFFFEFFFEFDCBCBCACACAC9FFFFFED7D6D6D7D6D6FFFFFEFFFFFE676867 -676867F3F1F0CACAC9D7D6D6FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDD7D6D6F3F0F0 -FFFFFEFFFFFEFFFFFED6D6D5CBCBCAF3F1F0FFFFFEFFFFFEFFFFFEF3F1F0CBCBCACACAC9CACAC9 -F3F1F0FFFFFEFFFFFEFFFFFEFFFFFECACAC9CBCBCAF3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -D8D7D7F4F2F1FFFFFEFFFEFDFFFFFED8D7D7CACAC9F3F1F0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFECACAC9CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0E4E2E2FFFFFEFFFFFE -F3F0F0CBCBCAC9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6CACAC9 -F4F2F1D7D6D6D7D6D6FFFFFEFFFFFEFFFFFEFFFFFECACAC9C9C9C9FFFFFED6D6D5D8D7D7FFFEFD -FFFFFEFFFFFEFFFFFEF3F1F0D7D6D6FFFFFEFFFFFEFFFFFEE5E3E3CACAC9E5E4E4F3F1F0C9C9C9 -F3F1F0FFFFFEFFFEFDFFFFFEFFFFFED7D6D6CACAC9F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDCACAC9CACAC9FFFFFED6D6D5D7D6D6FFFFFEFFFFFEFFFFFECACAC9CACAC9F3F1F0FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF4F2F1C9C9C9D8D7D7FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -474E82736E9CFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFCFFFEFDFFFFFD -B9B1CC5156883F467B696695C6BED6FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C35256893D457B686695 -D4CCDFFFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE656666676867FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED5CEE03E447BACA4C4 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -938DB3474E823E457B736F9DE4DDE8FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED55E5E8F3F457B505588BAB1CCFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD676867656666FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BB3E467BE4DDE9FFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF5 -8882AB3E457B3E457B7E78A3E4DDEAFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED66866953E457B474E82938CB2FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE696695505589FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDE4DDE9 -7E79A43E447B3D457B7E78A3E3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDC7BED66966953E457B -474E82938DB3F2EDF3FFFFFEFFFEFCFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB3 -938DB3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFC3E457C7E78A3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCE5DEEA -7D78A33F457A3E457B7E79A4E5DEEAFFFFFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDC6BDD56966963F457B474E82938DB3F2EEF4FFFFFE -FFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB3938CB2FFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDC7BFD63E457BB9B1CCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEE4DDEA -7D78A33E447B3E457B686695C7BED5FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEACA4C35156893E457B474D82938CB2F2EEF4FFFFFEFFFFFEFFFFFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE928CB2938CB2FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD8782AB -3E457BF2EEF4FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCE5DEEA -8882AB474E823E457B515689ACA3C3F2EFF6FFFFFEFFFEFDFFFFFEFFFEFCFFFEFCFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFBFFFEFDFFFEFDFFFFFEE4DDE9928CB2474D82 -3E457B505588A19ABCF2EDF4FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2928CB2FFFEFDFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD5F5E8F5E5E8FFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEF2EDF4 -A098BC5156883F467B474E827E78A3D5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDBAB2CD726E9C3E457B3E457B686796ACA4C4FFFFFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDC6BED5C6BDD5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EFF53E457B8781AAFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFEFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -BAB1CC746F9C3D457B3E457B5F5D8EA099BCF2EDF3FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDE4DDE98882AA5155883D457B484E827E79A4D4CCE0FFFFFEFFFEFDFFFEFDFFFFFDFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C53E467BC7BED6FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFD -E4DDE9938DB35156893E447B3E467B736F9CACA4C5F2EEF3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE5DEEAA098BA5E5E8F3E457B -3E447B5E5E8FACA4C4F2EEF5FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDC7BFD6938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB3938CB2938CB2938CB2938DB3938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938DB2938CB2938CB2938CB2938DB3928DB3ACA5C5F2EDF3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEE3DCE8ADA5C4938DB3938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2938CB2 -938CB2938CB2938DB2938DB3938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938DB3938CB2938DB3938DB3D3CCDEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFCBAB1CC938DB3928CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2928DB3BAB1CDF1ECF3FFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE7E78A43E457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED5CDE07D78A4474E823E457B3E467C736E9CACA4C4F2EEF4FFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDE4DDE9A098BB5E5E8F3E457B3E457B5156888882ACE4DDE9FFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFDA099BB474E823F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B7E78A3F2EEF3FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D5CDE16866953F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E467B3F457B525689BAB1CCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -928DB2484E823E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3F457B -3D457B3E457B3E457C3E457B3D457B3E457B3E457B3F457B3E467B3E457B3E467B3E447B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457A3D457C3E457B3E457B3E457B3E457B3E467C3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3D457B3F457B3E457B3E447B3D457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3F457B3E457B3E447B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E457B3E457B3D457B3E457B8882ABF2EDF4FFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFE515689686696FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDBAB1CC7E78A3474E823E457B3E457B5E5E8FA098BBD4CCDFFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEFFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCC7BED6 -8882AC5155893D457B3E457B5156898882ABD5CDE0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF36866953E467B -3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B484D82D4CDDFFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDABA4C33F457A3E467C -3D457A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B -3E467B3D457B3E447B3D457B3F467B3E457B7E78A3FFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDF2EEF55E5E8F3F457B3D457C -3E457B3E457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3F457B3D457B -3F457A3E467C3E457B3E447B3E457B3E457B3F457A3D457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E447A3E467B3E447B3F457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F457B3D457C3E447B3E467B3E457B3E457B3F457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3D457A3E457B3E447A3E467C3E457B3D457B3F457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3D457B3E457B3E467B3F447B3E457B525689D4CCDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE4DDE93E467C -A098BAFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCC7BED58882AB5155883E457B3E457B474E827E78A3ACA4C5E4DDE9FFFEFD -FFFFFEFFFFFEFFFEFCFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDD5CDE1A19ABD726E9B3F467D3E457B3E457B5F5E8F -938CB3D4CCDFFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE6866953E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B484E82D4CCE0FFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDBAB1CC3E457B3E457B3D457B3E457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B3E457B3E457B -3E467B3E457B3E467B3E457B3E457B8882ABFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFD -FFFEFCFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDF2EEF35E5E8F3E457B3F457B3E467B3E457B3E457B -3E447B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D457B3E457B3E457B3E457B3E467B3E457B -484E82ACA5C5F2EDF4FFFFFEFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDF2EFF5938DB3474D823F457B3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3F467B3E457B -3E457B3E467B3D457B3E457B484D82F2EEF3FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDA099BB3E457BD5CEE0FFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFDFFFFFEE4DDE9A099BC736E9C474E823E457B3E447A474E82736F9CA199BC -C5BED6FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEF3EEF3 -C7BED6938CB36866953E457B3F457B3E447A5156897E78A3ADA5C4F2EEF5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEACA3C23E457B3F457B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3D457B3F447B686796FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF2EEF4474E823E457B3D457B3F467C3E457B3E467B3F457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E447B3E467B3D457B3E467B -3F457B3E467C3E457B3E457BC6BED6FFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFE938CB23D457B3F457B3D457A3E457B3F467C3E467B3D457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457B3F457B3E457B3E457B3F457B3D457B515689F2EEF4FFFFFD -ACA4C4938DB2938CB2938CB2928CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2ACA4C3FFFFFE -ACA4C4938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2C6BED5 -FFFEFD938CB1938DB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB2938CB2C7BED5 -FFFEFDD5CDE1474E823E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3D457A3F457B3E457B -3E457B3E457B3E457B7E78A3FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE736F9C484E82FFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFED4CCDFA099BC726F9C474E823E467B3F457B3E457B -5D5E8E736F9D938DB3C7BED5E4DDE8FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE1BAB1CC938DB36966955156893E457B3E457B3E457B -5156897E78A3ACA5C5E4DDE9FFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFEFEFD5156883E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A -3E457B3F467B3D457BC7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEA099BB3E457B3E457B3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3F457A3E457B3E467B3D457B3E457B3E457B3E467B3E457B -3E457B3E457B736F9CFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFD -FFFFFEF2EEF4484D823E457B3E457B3F467B3E447A3E467B3E457B3E447A3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B3E457B3F467B3E447B3E457B3F457BC7BED5FFFFFE6866953E457B3E457B -3D457B3E457B3E457B3D457C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E467B686696FEFDFC6866953E457B -3F457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938DB3FFFDFB3F467B -3F457B3E447B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3E457B3D457C7E78A2FFFEFD -ACA4C33E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447A3E457B3F467B3E447A3E467B3D457B3E457B -3E457B3E467CE3DCE8FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFEFDFCFFFFFDFFFEFD474E82726E9CFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFDE4DDE9B9B2CE938DB3686695474D82 -3E457B3E457B3E457B3D457B5E5E8F696795938CB2928CB2C7BED5C7BFD5E4DDEAFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED4CDE0C7BED5BAB1CC938CB28881AA -6867965156893D457B3E457B3F457B3E447B515689726F9C948EB4C7BED5F2EEF5FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -C7BED63F457B3E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B7D78A4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -5E5E8F3E457B3F457B3E447B3E467B3F457B3D457A3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E467B3F457B3D457B3F457B3D457A3F457B3F457B3E457B3E457B3E457B -3F457BF2EEF4FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFCFFFFFEADA4C4 -3E467B3E457B3E447B3E457B3F467B3E447B3E457B3E457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3E447B3D457B3F447A3E467B3E457B5E5E8FFFFFFE928CB23F467B3E457B3E457B3E457B3E467B -3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFE6866953E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938DB3FFFFFE3E457B3E457B3D457B -3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E447A3E467BACA4C3FFFFFE474E81 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3E457B3D457B3F457B3E447A3E457B3E457B3E457B3E447A -938CB3FFFFFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFFFED4CCDF3E457BADA5C4FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFEFD -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF2EDF4C6BDD5 -A199BC938CB26867965D5D8E3E457B3F467B3E457B3E457B3E457B3E457B3E447B515689686695 -6966966866956967967E78A3928CB2938DB3938CB2938DB2938CB2928DB2938CB2736F9D686695 -686695686696686695484D823E457B3E457B3D457A3E457B3E457B3E457B3E467C696695736F9D -938DB3ABA3C3C6BED5FFFFFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFEFDFFFDFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BB3D467B -3E447B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D457B3E457B686695 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B -3E447B3D457B3F457A3D457B3F457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3D467B3F457B3E467B3E457B3E447B3E467B3E457B3E457B3E467B3D467BC7BED6 -FFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938CB23E447B3E447B -3E467B3E457B3E447B3E467C3D457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3F457A -3E467B3E457B3E457B8781AAFFFFFE5156893E457B3D457B3E457B3E457B3E457B3E457B3F457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457B686695FFFFFE6866953F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3F457B3E457B3E457B3E457B3D457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686696FFFFFE6966953E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E447B3E467B3F457B3E457B3E467B3F457B3E457B726F9CFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -938DB33E467BE4DDE9FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEF3EEF4C7BED5C7BED5A099BB938CB2938CB2726E9C686695686695686695 -686694474D823E457B3E447B3E467C3D457B3E457B3D457B3E467B515689686695686696686695 -6966957E78A3938CB2938DB3ACA4C3C7BED6C7BED6FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928CB23E447B3E457B3E457B -3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3F457B3E457B3F457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3F457B3D457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B -3E457B3E447A3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B3E457B3E457B3E447B -3D457B938CB2FFFFFE474D823E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B686696FFFFFE6866953E457B3E447B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B3E467B3F457B3E467B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3E457B686695FFFFFE6866963F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3D457B3E457B3E457B3E457B3E457B3E447B3E457B3E447B696695FFFEFDFFFFFDFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE686695515688 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3D457B3E457B3D457B -3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F467B3D457B5256897E78A3 -938CB26866963E457B3E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B -3D457A3E457B3D457B3F467B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E467B3E447A3E457B3E457B3E467B3E457B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B7E78A3 -938CB2736F9C5055893E457B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447A3E457B3E457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3E457B3E447B3E457B3E457B3E457B3D457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E467B3E447B3F457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E467B3E457B3E457B3E457B -3E467B3E447A3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E467B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3D457B3F457B3E457B3E447B726F9C -FFFFFE7E78A33F457B3E457B3F457B3E457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B696796FFFFFE6866953E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B938CB2FFFFFE3E457B3E457B3E457B3E467B3E447B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F457B3D457B3D457A938CB3FFFFFE5E5E8F3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE3E457B7E78A4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467C3E447B3F457B3D457B3E457B -3E457B3E457B3E457B3E457B3D457B3E457B3E457B7D78A4E4DDE9FFFFFEFFFEFDFFFFFE938CB2 -3D457A3E457B3E467C3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3E467B3D457B3E447B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC6BDD5FFFFFEFFFEFD -FFFFFED4CCE07E78A33E457B3E467C3E447B3E457B3E467B3E457B3E457B3D457B3E457B3E447B -3E467B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E447B3E467C3E457B3E457B3F457B3E447B3F467B3E457B3E457B3E457B3F457B3E457B3E457B -3E457B3E447B3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B -3E447B3E467B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E447B3D457B3D457B3F457B3E447B3E467B -3D457B3F457B3E457B3E457B3E447B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3F447B3E467B3E457B3E457B3E457BF2EEF4E3DCE9 -474D823F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B686695 -FFFFFE6866953E447B3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -938CB3FFFFFD3E457B3E457B3E447A3E457B3E467B3D457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457A -3F457B5E5E8FF2EDF2C7BED63E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEB9B1CC3F457BBAB1CCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467C3F457B3D467B3E457B3E457B3E447B3E457B3E457B -3F457B3E447A3F457B5E5E8FD4CCDFFFFEFCE4DDE98882AB6866953D457B3E447B3F457B3D457B -3D457A3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E467B3E457B3E457B3D457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B696695A099BCE4DDE9 -FFFEFDC7BED55156893E467B3E457B3E457B3E457B3F467B3E457B3E457B3E457B3E457B3E457B -3E457B3E467B3D457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467C3F457A3E467C3E457B3E457B3E457B3E457B3E467B3F457B3E467B3E447A3F457B3E467B -3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3D457A3E457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3E467B3E457B3E467B3E447B3D457B3F457B3E457B3E457B -3E457C3E467B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457A3E467B3E447B3E457B3D457B3F457B726E9CFFFFFEE4DDE97E78A3 -474D823E457B3E457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457A696696FFFEFD686695 -3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE -3E457B3E457B3E457B3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B5256897E78A2F2EEF4 -F2EEF55F5E8F3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFC8881AB3E457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F467B3E457B3E467B3E447A3E457B3D457A3F457B3E457B3F457B -7D78A3F3EDF4F2EEF58882AB3D457B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3D457B -3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467C3E457B3E447A3E457B3E467B3E457B3E457B3E467B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E447B3E467C -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447A3F457B3E457B3E457B3E447B928DB2FFFFFE -F2EEF45E5E8F3E467B3E457B3E457B3E457B3E467B3E457B3E457B3E457B3E457B3E457B3D457B -3D457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E447B3E467B -3E447A3E457B3E447B3E467B3F457B3E457B3D457B3E457B3E457B3E457B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E467B3E457B -3E467C3E457B3F457B3D457A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E457B3E457B -3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E467B3E447A3E457B3F457B3E467C3F457B3E467B3E457B3D457B3F457B3E457B -3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3E447B3D457B3E457B736F9DE4DDE9FFFFFEFFFFFEFFFEFD -FEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDE5DEEA5E5E8E3E457B -3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFE5D5E8F5E5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F457B3E457B3E457B3E447B3F467B3E457B3E467B3D457B3F457B5E5E8FF2EEF5F2EDF4 -5D5F8F3E447B3E457B3E457B3E457B3E457B3F457B3D457B3F457B3E457B3E457B3E447A3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3D457B3E457B3E467C3E447B3D457B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457A3F467C3E447A3F457B3E447A3E467B3E457B5E5E8FF2EEF4F2EFF5 -5155883E447B3D457A3E457B3F467B3E457B3E457B3E457B3F457B3E457B3F457B3D457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3F457B3E457B3E457B3E457B3E457B -3E467C5F5D8EACA4C5D4CCDFFFFFFEFFFEFDFFFFFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4BAB1CC7E79A33E447A3E457B3E447B3D457B -3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E467B3E457B3E457B3E457B3E457B3E457B686695938CB2938CB2938CB3938DB2 -938CB1938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB3938CB2938CB2938CB2938CB3938CB1938DB3938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2938CB2938DB3938CB3938CB1 -938CB2938DB3938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB26967963E447A3E457B3D457A3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF3 -3D457B8882ABFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -C6BDD57E79A43D457A3D457B3F457B3E457B3E447B474E82E3DCE9F2EEF45E5E903D457B3E457B -3F457B3E457B3E457B3E457B3E457B3F457B3E457B3E447B3E447B3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467B3E457B3E457B3D457B3E457B3E447B3E467B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E467B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3D457B3E447B3E457B3E457B3E457B3E457A5E5E8FFFFEFDD5CEE03E457B -3F457B3E457B3D457A3E467B3E457BA098BBA099BB3E447A3E467B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3F467B3D457B3E457B3E447B3D457B3F457BA098BBFFFFFE -FFFFFEC6BDD5928DB3938CB2938CB2938DB3918CB2928BB1938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2918BB1938DB3938DB2928CB2C7BFD6FFFEFD -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2928CB2938DB3E2DBE9E4DDEA938CB2928CB2938DB3938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2948DB2928CB2 -938CB2928DB2938DB2928CB3ADA4C3E4DDE9FFFFFED5CEE15E5E8E3D457B3E457B3D457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E447B3E457B -3D457A3E457B3E457B3E457B3E447B3E457B3F457B3E457B3F467B3E447A3F457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E447B3E467B3F457B3E447B3E457B3E457B3E457B3E467C3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E467B3F457B3E457B3F457B3D457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F457B3E447A3E457B3E467B3E457B3E457B3E447A3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDACA4C43E457BC6BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457BFFFFFE928CB2 -3F457B3E457B3E457B3F457B3E457B938CB2FFFFFE736F9D3E457B3E457B3E457B3E457B3E457B -3E457B736F9DBAB1CCD5CEE0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEC7BFD6A099BB5155883E457B3E457C3D457B8882ABFFFEFD7E79A43E447A3E457B -3F457B3D457A3E467BC7BED5C6BED53F467B3E447B3F457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3D457B3F457B3E457B3D457B3F457BACA4C4FFFFFEBAB2CD5156893D457C -3F457B3E457B3E447B3E467B3E447A3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3F457B3E447B3E457B3E467B938CB2FFFEFC3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457BC6BDD5C6BDD53E457B3E467B3E447A3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3D457B3D457B3F457B3E457B -3E457B3E457B3E457B3E467B8781AAF2EEF4F2EEF45E5E8F3E447B3E457B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3E457B3D457B3E457B3E457B3D457A -3E457B3F457B3E457B6966959F99BCC6BDD5C6BDD6C7BFD6C6BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED6C6BED5C7BFD7C6BDD5C7BED5C6BED5C7BFD7C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BFD7C6BDD5C7BFD6C7BED6C6BED5C7BFD6C7BED5C7BFD6C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C8C0D8A099BB5156893E447B3E457B3E447B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE7E78A43F457BFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BFFFEFD938CB23D457B3E457B -3E457B3E457B3E457BF2EEF4C6BDD53E457B3E457B3E457B3E457B3E457B3E457BACA4C4FFFFFE -F2EEF4BAB2CC938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB3938CB2938DB2C6BDD5 -FFFEFD938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -C6BED5FFFDFB938CB2938CB2938CB2928CB3938DB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2928CB2ACA4C4 -D4CCDFFFFEFDF2EEF4736E9C3D457B3E457B3E467BE4DDE9D4CDDF3E457B3E457B3E457B3E467B -3E457BC7BED5C6BDD53E457B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E467B3E457B3E457B938CB2FFFFFEACA4C43E457B3D457B3F457B3E447A3D457B -3F457B3E447B3E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447A3E457B3E457B3E447B938CB2FFFFFE3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457BC7BFD7C6BDD53E457B3E447A3F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E457B3D457B3E457B3E467C3E457B -3E457B3E457B3F457B5E5E8EF2EEF4E4DDE93E457B3F457B3E467C3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3D457B3F457B3E457B3D457B3E457B3E457B3E457B -A099BBFFFFFDFFFFFEC7BFD6C7BED5C7BED5C6BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C6BED5C7BED5 -D5CDE0FFFEFDD5CEE0C7BFD6C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5E4DDE9FFFFFEC7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -D4CCE0FFFFFEFFFFFE8882AB3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE515689686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457BFFFFFE928CB23E457B3F457B3E467B3E457B -686796FFFEFD7E78A33E457B3E457B3E457B3E457B3E457BA099BBFFFFFEACA5C4474E823E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E447B938CB2FFFFFE3E467B -3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE -3E457B3E467C3E447B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B5E5D8E -F2EEF4F3EDF45156883E457B3E457B8781AAFFFFFE5156893D457B3E457A3E457B3E457BC7BED5 -C7BED53D457B3E457B3D457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E467B3E447B3E467B3E457B686796FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEFFFEFD3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B474E82F2EEF4C7BED53F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -C7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467C -3E457B3E457B7E79A4FFFFFE7E78A43E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F447B3D457B3E457B3E457B3E457B3E457B938DB2FFFEFDBAB2CD -474E823D457B3F457B3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFE -6866953D457A3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2 -FFFFFE3E467B3E457B3E457B3E457B3E447B3D457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B515689 -D4CCE0FFFFFE7D78A43E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEE3DCE93F467BA098BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BFFFFFD938CB23E457B3E457B3E457B3E467C938DB3FFFFFE -474E823E457B3E457B3F457B3E457B484D82FFFFFEB9B1CC3E457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E467B938CB2FFFFFE3E457B3E467B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A938CB2FFFEFD3E457B3E467B -3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B3E447B3E457B5E5E8FFFFEFC -ADA4C43E457B3E457B5E5E8FFFFFFE7D78A33F457B3E467B3E457B3F457BC5BED6C6BDD53E457B -3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467B3E447B3E457B686695FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFE -FFFEFCFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B3D457A -7E78A3FFFFFE736F9C3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B938CB2FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED5 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B -3F457BE4DDEAC7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BC7BED5FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFD -FFFFFE938CB23F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3D457B3F457B3E447B3E467B3E447B474E83FFFFFEC6BED53E447A3E457B3E457B -3E457B3D457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686795FFFFFE6966953F457B -3E447A3F467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFD3D457B -3E467B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F447B3E447A474E82E2DBE9 -F3EEF43F457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDA099BB3E447BD4CDDFFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BFFFEFDACA4C4686695686695696695686695BAB1CDF2EEF43D457B3E447B -3E457B3F457B3E457B746F9CFFFEFD6966953E457B3E457B3F457B3F447B3D457B3F457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E447B938CB1FFFFFD3E457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFD3E457B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F457B3D467B3F457B3E467B3E457B3E457CBAB1CDF2EEF43D457B -3F457B3F457BFFFEFDADA5C4686695686695686695686695D5CDE0C6BED63E457B3D457B3E457B -3F457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E467B -3E447B686695FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3F457B928CB2FFFEFD -3E457B3D457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B938CB2FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B3D457BA099BB -FFFEFD3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3E467BC7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFBFFFFFEFFFEFD938CB1 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3E457B3E457B3E467B3E467B3E447B7E78A3FFFFFE746F9C3E457B3E457A3F457B3E457B3F457B -3E457B3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3E447B686695FFFFFE6866953E447B3E457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B3D457B3F457B -3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B3E457B3E457B7E78A3FFFEFD686696 -3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD736F9C -474E82FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467BFFFFFEFFFEFDFFFDFCFFFEFDFFFEFDFFFFFDFFFFFEC7BFD63E447A3E467C3E457B3D457B -3E457B928CB2FFFFFE3E457B3E447A3E457B3E457B3E467B3E457B3D457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E467B938DB3FFFFFE3E457B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F457B928CB3FFFEFD3E457B3D457B3E457B3F457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3D457B3E457B3E457B3E447B3E467B3E457B938CB2FFFFFE3F457B3E467C3E457B -FFFFFDFFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDC7BFD53E457B3F467B3F457A3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E457B686695 -FFFFFEC6BED53E457B3E457B3E457B3E457B3E467B3E447B3F457BFFFEFDFFFFFE3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E467C3E447A938DB2FFFFFE3E457B3E447A -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2 -FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E467B3F457B928CB1FFFFFE3E457B -3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457BC7BED4 -FFFEFD6966973E457B3F457B3E457B3E457B3D457A3F467C938CB2FFFFFE928CB33E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F447B3E467B938CB2FFFFFE3E457B3F457B3E447B3D457A3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3D467B696696FFFEFC6967963E467B3E457B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3E467B3E457B3E457B3F467B3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457A3E457B3E457B3D457B686695FFFFFE6866953F457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD484E837E78A3FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BFFFFFE -ACA5C4686695686695686795686796C6BDD5F2EDF43E457B3E467B3E447A3E467C3E457B736F9C -FFFEFD6866953F467B3E447B3E457B3E457C3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B -3E457B3D457B938CB2FFFEFD3F457A3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3D457B938CB2FFFFFE3E457B3E447B3E457B3E467B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3D457A3E457BBAB1CCF2EEF43E457B3F457B3F457BFFFEFDACA4C4 -696796696795686696686695D4CDDFC7BED53F457B3E447A3E467B3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B686695FFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFEFCFFFFFE3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3F457B3D457B938DB2FFFEFD3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3F447A3E467BA099BCFFFFFE3E447B3E467B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457BC6BED5FFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFEFD938DB33E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B -3F457B7E78A3FFFEFD5F5E8F3E447A3D457C3E457B3E457C3E467B3E447A3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E447B696796FFFFFE6867963E447B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B938CB2FFFEFC3E457B3F457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3D457C3F457B7E79A4FFFEFD6866953E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD5CEE13E447AACA4C5FFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447BFFFFFD938CB23E457B -3E457B3F457B3E447B938DB3FFFEFD484E823E447B3E457B3E447B3E457B474E82FFFFFEBAB2CD -3E447B3E457B3E457B3E447A3F457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -938CB2FFFFFE3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B938CB2FFFEFD3E457B3D457B3D457C3F457B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3D457A3D457B3F457B5E5E8FFFFFFEACA4C43E457B3E457B5E5D8EFFFFFE8882AA3E457B3E457B -3E457B3E457BC7BED5C7BED53D457B3F457B3E447A3E467B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3E467B3E457B3E457B686695FFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B7E78A3FFFFFE6866953E467B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F467B3E457BD4CDDFD4CDE13E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447BC7BED4FFFEFDFFFFFDFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F447B3D457B3E457B3E457B3E457B515689 -FFFEFCBAB1CC3E457B3E447B3E467B3D457A3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B686695FFFFFE6866953D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B928DB2FFFEFD3E457B3E457B3E447B3E457B3E447B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E447B3D457B3F447A3E457BC6BED5F2EEF43E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457BE4DDE9FFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457BFFFEFD938CB23F457B3E457B3D457B -3F457B736F9CFFFEFD746E9C3E457B3E457B3E457B3E457B3E457BA098BAFFFFFEACA4C4484D82 -3E457B3F457B3D457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B918CB3FFFEFC -3F457B3D467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B928CB3 -FFFEFD3E457B3D467B3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457A3E447B3E457B3E457B -5E5D8EF2EEF4F2EEF45156893E457B3E447B8882ABFFFEFD5D5E8F3F457B3E467B3E457B3E457B -C7BFD6C7BED53E447B3E457B3E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E457B3E467B686695FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B474D82FFFFFDC6BED53F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F467B3D457B686695FFFFFE8882AB3F457B3E447A3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467BC7BFD6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F457B3D457B3F457B3D457B3E467B3D457B3F457B9F98BBFFFFFE -ACA4C4474E823E457B3F457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B696696 -FFFEFC6866953E467B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -938CB3FFFEFC3E457B3D457B3E457B3F457B3E467B3E447B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -474E82ABA4C3FFFFFE938DB33E457B3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695515689FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457BFFFFFE938CB23E457B3E457B3E457B3E457B3E457B -F2EDF4C7BED53E457B3E457B3E457B3E457B3E457B3E457BACA4C4FFFFFEF2EEF4BAB2CD938CB2 -938DB2938CB2928CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938DB2938CB2938CB2C7BFD6FFFFFE928CB2938DB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2C8BFD6FFFFFE938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB3938CB2A099BBD4CCE0FFFFFEF2EDF3 -736F9C3E457B3E457B3E457BE3DCE9E4DDE93F457B3E457B3F457B3D457B3F457BC6BDD5C7BED5 -3E457B3F457B3E457B3F457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3F457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B -3E447B3F457B9F98BCFFFFFE7D78A33E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B938CB2FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5 -C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -5E5E8EF2EEF5F2EEF4474E823E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447BC6BFD6FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFE938DB33E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E457BBAB1CCFFFFFEF2EEF4 -C7BED5C6BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED6D5CDE0FFFFFED5CDE0 -C6BED5C6BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5E3DCE9FFFFFE -C7BED5C7BED5C7BED6C6BED5C6BDD5C6BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C6BED6F2EDF4FFFFFE -ACA4C43D457A3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD3E457B8882ABFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447BFFFFFE938CB23F457B3F457B3E457B3E457B3E457B938CB2FFFFFE -6966953E457B3E447B3F457B3E457B3E457B3F457B7D78A3BAB1CCE4DDE9FFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED6A099BB5156893E447B3E467C -3E457B7E78A3FFFEFD8882AB3E447A3E457B3F457B3E457B3E457BC7BED5C7BED53F457B3D457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B -484E82D4CDE1FFFFFEA099BB474E823E447B3E457B3E447B3F457B3E457B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3E467B -3F457B3E457B938CB2FFFFFD3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC6BED6C7BED53E457B -3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B696796F2EEF5FFFFFE -6866963D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3F457B3D457B3E457B7E78A3BAB1CCC7BED5C7BED5 -C6BED5C7BED6C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED6C6BDD5C7BED5C6BED5C7BED6C7BED6 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C6BED5 -C6BDD5C7BFD6C7BED5C6BDD5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5 -C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED6C7BED6ACA4C36866963E447A3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEBAB1CC3F457B -BAB3CEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E467BFFFDFB938CB23E467B3E457B3F457B3D457B3E457B474D82F3EEF4E4DDE9474E82 -3F457B3E457A3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447A3E467C3E457B3E447B3E447B3F457B3E457B5E5E8FF2EEF4 -E3DCE93E457B3E457B3E457B3E457B3E457B3D457BC7BED6C6BDD43E467B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E447B3E447B3D457B484D81 -B9B1CCFFFEFDF2EDF4ADA5C4938CB2938CB3938DB3938CB2938CB2938DB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2938DB2938CB2938CB2938DB2 -C7BED5FFFEFD938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2E4DDE9E3DCE9938CB3938DB3928CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2D5CDDFFFFEFDF2EDF26966963F457B3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E447B -3F467B3E457B3D457B3E447B3D457B3E457B3F457B3F457A3E467B3E457B3E457B3E447B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3E457B3F467B3E457B3D457B3E467B3E447B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D467B3E457B3E457B3F457B3E467C3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3E457B3F457C3E457B3F457B3D457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE8881AA3E467CF3EEF3FFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3D467C3E457B3E457B3E457B3D457B3F457B3E457B3D457B736E9CFFFEFDD5CDE0474E823E457B -3E457B3E457B3E457B3D457B3E457B3E457B3F457B3D457B3E457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447B3E457B3E457B3E457B3D457B5E5E8FF2EEF4F2EEF35E5E903F457B -3E447B3F457B3E457B3F457B3E457B3E457B3E467B3E447A3E457B3E457B3E457B3E447B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3E447B3E467B3F457B3D457A3E457B3E457B736F9C -BAB1CCFFFEFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE9928CB2484E823E467B3F457B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B3E457B3E447B -3E457B3E457B3D457B3E457B3D457B3E457B5E5E8F686695696695686695686696686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695696695686695686796696695686695696696686695686695686695686695686695 -686695686695686695686695686695686696686694686796686695696695686796686796686696 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -6866956866956866956966956966955155883F457B3D457B3E467B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE5D5E8F5E5E8FFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B -3E457B3E457B3E447B3D457B3E457B3F457B3E467B7D78A2FFFFFEF3EEF46866953E467B3E457B -3D457B3F457B3E467B3E447A3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E447B3F467B3D457B3E457B3D457B736F9DF2EEF3F2EEF37E78A43E457B3E467C3E457B3E447B -3F457B3E457B3E457B3E457B3F457B3E457B3E457B3E447B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F447B3E457B3E457B -3F457B3D457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3F467B3E447A3E467B3E457B3E457B3E457B3D457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447B3F457A3D457B3F457B3F467B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E457B3D457A3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3F457B3D457B3E467C3E447A3E457B -3E457B3F457B5F5E8EC7BED5FFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEC7BED65156893F457B3D457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEE4DDE93E447B938DB2FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E447B3E457B -3E457B3F457B3E457B3D457C3E447B3F457B736F9BF2EEF5FFFFFEC7BED57E78A4474E823D457B -3E457B3F457B3D457B3F457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B -5255887D78A4D5CEE0FFFFFDE4DDEA5E5E8F3E457B3E457B3E457B3F457B3D457A3F467B3E457B -3E457B3F457B3E457B3E467B3E447B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3E457B3E467A40457B3D457A3E457B3E447B3E457B3E457B -3E457B3E457B3E457B3D457A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F467B3E447A3F467B3E457B3E447B3E467B3E457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F457B3D457B3E467C3E447B3E467B3F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E457B3E457B3F457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B3D457B3E457B3E457A5E5E8F -F2EEF5F1EDF1938DB3686695696695696695686796686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695696796686796 -8882ABFFFFFE8882AB686695686695686695686695686695686695686695686695686695686695 -686695ACA4C4FFFFFE686695686695696695686695686695686796686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686796 -696695A098BAFFFFFEF2EDF35055893E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDACA4C43E467BC7BED6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3F457B3E447B3E457B -3F457B3E457B3E467B3E457B3E457B474E82928CB1F2EDF4FFFEFDFFFEFDFFFEFC8882AB3E457B -3F457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BACA4C4FFFEFDFFFEFDFFFFFD -E4DDE9938DB2474D823E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B -3F457B3E457B3E457B3E457B3F447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3D457B3F457B3E447A3E447B3D467B3F457B3E457B3E457B3F457B3E447A3E457B3F467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E457B3E457B3E457B3F467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B -3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F457B3D457C3E447B3E457B3E457B3E447A3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E467B3E447B3E457B3D457B3E457B3E457B3F457BE2DBE8F2EEF45F5E8F -3E447A3F457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686695FFFEFD -6866963E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938CB2 -FFFEFD3E447B3F457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D467B3E457B -5E5E8FFFFFFEC7BED63E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -7D78A43F457CFFFEFCFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457C3D457A3E447B3D457B3E457B3E457B3E457B3D467B -3E457B3D457B3F467B3E457B3F457B3D457B696695938CB2928CB37E78A23E457C3E447A3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BA099BB938DB3938CB16967963D457A3E457B -3F457B3E467B3E457B3E447B3D457A3E447A3F467B3E457B3E467B3E457B3E447B3D457B3E447B -3D457B3E457B3D467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3D457B3F457B3E447B3E457B3D457B3E467B3E457B3E457B3E457B3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F467B -3E447B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E447A -3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E447B3E457B -3E447B3E467B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B686796FFFFFE7D78A33E447A3E467B3E457B -3F457B3E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B686796FFFEFD6867963F457B -3E467B3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B928CB2FFFFFE3E467C -3E447A3E457B3E457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E467BA098BB -FFFFFE5256893E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD515689726E9B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3F457B3E457B3E457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E447B3E457B3E457B3F457B3F457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3F457B3F457B3E457B3E467B3E447A3F457B3E457B3E467B3E457B -3D457A3E457B3E457B3E467B3E447B3E457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3F457B3E457B3F457B -3E457B3E457B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E447A3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B -3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467B3E457B3E447B3E457B3E447B938DB2FFFFFE474E823E457B3E457B3E457B3E457B3F457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B696695FFFFFE6966953E457B3D457B3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B938DB2FFFEFD3E447B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B3E457B686695FFFEFD686695 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDD5CEE03E457BA099BBFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928DB23F457B -3D457B3E457B3E457B3E457B3E457B3F457B3E447A3E457B3E467B3E457B3E457B3E467B3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3F457B3E457B3E467B3E457B3E457B3E457B3E447B3E457B3E457C3E457B3E467C3D457B696695 -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3F457B3E457B -3E457B3E467C3E447B3E457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3D457B3D457B3E457B3E457BC6BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938CB23E447B3E457B -3E457B3F457B3E457B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D467B -3F457B3E457B3E457B938CB2FFFFFE5156893E457B3D457B3E467B3E457B3E457B3F467B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B696695FFFFFE6966953E457B3D457B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B938CB2FFFEFD3E447B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457A3E457B3E447B686695FFFFFE6866953E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447B3E457B3E457B3D457B3E467C3E457B3E457B3E457B686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB3E457BD5CDE1FFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC6BED53D457B3E447B3E467B -3E457B3E457B3E457B3E457B3F457B3D457B3E447B3E457B3E467B3E447B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B -3E447B3E467B3E447B3D457B3F467B3E447B3E457B3E457C3E457B3F457B7E78A3FFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5D5E8F3F457B3E457B3F457B -3E467B3E447B3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3D457A3E457B3E467B3E467B3F447B3D457B3F457B3E447B3D457B3F467BF2EDF4FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFCACA4C43E457B3E457B3F467B3D457B -3E457B3F457B3E447B3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E467B3F457B3E467B3E467B -3E457B5E5E8FFFFFFE8882AB3E457B3F457B3E457B3E457B3E457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B686796FFFEFD6867963F457B3F467B3E447B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B928CB2FFFFFE3E467C3D457B3F457B3E457B3E457B3F457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E457B3E457BA099BBFFFFFE5156893E447A3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F457B3D457C3E457B3D457B3F457B3E457B3E457B3E457B938DB3FFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFD736F9C474D82FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD474E823F467B3E457B3E457B3E457B -3F457B3F457B3D457B3E457B3E467B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E457B3E457B -3E457B3F457B3E447A3E467B3F457B3E467B3F457B3E457BBAB2CDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB23E457B3E457B3E447B3F457B3F457B -3E447B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457A3E447B3F457B -3E447B3E447A3E457B3E467B3E457B3E467B3F457B686695FFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF43E457B3E457B3E457B3F447B3E467B3D457B -3F457B3E447A3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B3E457B3E457B3E457C3E447B3E457B -D4CCDFF2EFF55E5D8F3D457A3E447A3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B686695FFFEFD6866963E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B938CB2FFFEFD3E447B3F457B3D457B3F457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3D457B3E457B736E9CFFFEFDC6BDD53F457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D467B -3F457B3E457B3F447B3D467B3D457B3E457B3E457BD5CDE0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFD484E827E78A3FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE938CB23E457B3D457B3E457B3F457B3E457B3E457B -3E467B3E457B3D457B3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B3E457B3D457B -3F467B3E457B3D457B3F457B3E457B525589FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF5484D813E457B3E457B3E457B3E457B3F457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3D457B3F457B -3E447B3E447B3D467B3E447B3E467BC6BDD5FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFDFCFFFFFE7E78A33F457B3E457B3F457B3E457B3E457B3D467B3E467C -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3E457B3F457B3E457B3E457B3E457B5E5E90F2EDF4 -F2EEF4A099BC696796686696686696686796696695686695686695686695686695686695686695 -6866956866956866956866956866956866956866956866956866956866956967966866958882AB -FFFFFE8882AB686695686695696695686695686695686695686695686695686695686695686695 -ACA4C4FFFFFE686695686695696695686695686695686796686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695736F9C -ACA4C4FFFFFDF2EEF4474E823E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E447A3E467C -3E457B3E457B3F457B3E457B696796FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEC7BFD6 -3E457BACA4C4FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFD5E5E8F3E457B3F467B3D457B3E457B3E467C3E447B3F457B -3D457B3D457B3E467B3E447B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E457B3D457B3D457A3E457B3E447B3E467B -3F467B3E457B3D457BD3CCDEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCACA5C53E457B3F457B3D457B3E457B3F457B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457C3F457B3D457B3E447B3E457B3F457B3E467C -3E457B3E457B7E78A4FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDF2EEF35156893F457A3E457B3E467B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E467B3F457B3E467B3E447A3E467B3E447B3D457B3E457B5E5E8FC7BED5FFFEFD -FFFFFEFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDACA4C5 -474D823F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E447B3E457B -3E457B474E82E4DDE9FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938DB33D457BE4DDE9 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDF2EEF45E5E8F3E447A3F457B3E457B3E457B3E457B3D457B3F457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E457B3E457B3E457B3E447B3D457B484E82 -ACA4C4FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDADA5C43D457B3F457A3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3D457B7D78A3 -FFFDFBFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDD4CCE05156893E457B3E447A3E467C3E447A3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3F457B3D457B3F457B3E447A3F457B3D467B3E457B3E467B3E457B3F457B515689686695686695 -686695686695696695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695696695686695686796696695686696696696686695 -686695686695686695686695686695686695686695686695686695686696696695686796696695 -696695696796686796686696686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695464E823E457B3E457B3E457B -3F457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467C3D457A3E457B3E457B3E457B3E467B474E82D4CCE0 -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD686695515689FFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFEFDF2EEF48882AB3E457B3E457B3E467B3F457B3E457B3E447B3E467B3D457B3F457B -3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E467B3E457B3E447B3F457A3E457B696796D4CDE0FFFEFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDC7BED55156893E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E457B3E447A3E457B3F467B474D82A098BAFFFDFCFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFEFD -FFFFFEF2EEF37D78A33E457C3E447B3F467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B40457B -3E447A3F467B3E447B3E457B3E457B3E457B3E457B3E457B3E467B3E447B3D457B3F457B3E467B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E467B3E457B3D457B3E467B3E447B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457A3E457B3E457B3F457B3E457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447A3F467C3E447A3E457B3E447B3E467B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3D457B3E457B3E447A3E457B3F457B686695E3DCE9FFFFFEFFFFFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFCFFFEFDF2EDF23F457C8781AAFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEF2EEF4ACA4C48781AA686796686695686796686695686695686695696695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -6866956866956866956866967E78A3938CB2D5CDE0FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFCFFFEFDBAB1CC938CB2736F9C686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695696695686796938DB2ACA4C4F2EEF3FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFE -FFFEFCE4DDE9A099BB8882AB686795686796686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695696695686696 -686695696696686695686695686695686695686695686696686695686695686696686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686796686696686695686695686695686695 -686695686695686695686695686695686695686695696695686695696695686796686695696695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695696695686695686796696796696695696695696796686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -6866956866956866957D78A3A199BCE3DDEAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEBAB1CD3E457BBAB2CDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFE -FFFFFE8881AA3E457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEF2EEF4D3CCDEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CCDFF2EFF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE9E4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFE5D5E8F -5E5E8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC6BED56A6696FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFD696696C7BFD5FFFFFEFFFFFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFD938DB3938DB3FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE93E467B938DB2FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDC7BFD6686695FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686796C7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFE938CB2938CB2FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEACA5C43E447BC6BFD6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C6BDD5686796FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -696696C7BED6FFFEFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFC7E78A33F457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC7BED5686695 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686795C6BDD5 -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEACA5C4E4DDE9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE525689736E9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686696C7BFD6FFFDFCFFFEFD -FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFEFDFFFFFD686696 -C7BFD7FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -D4CCDF3D457BA099BCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDC7BED5696796FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE696796C7BED5FFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFEFDFFFEFCFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE686695C7BFD6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BB3E457B -D5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE736F9C515689FFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC474D827E78A3FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEC6BDD53E457BACA4C3FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD928DB33F457BE3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -6966955D5E8FFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDF1ECF33E457B8882AA -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB2CD3E467BBAB1CCFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8781AA3F457BF2EEF4FFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE515689696695FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEE4DDE93F447B938EB3FFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C4 -3E457BC7BED6FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE7E78A3474E82FFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD474E82746F9CFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFED5CDE03E457BA099BCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEA099BB3E457BD4CDE0FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD736F9D515689FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE3E457B -7E79A4FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEC7BED53E457BACA3C3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFDFFFFFD938CB33E467BE5DEEAFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFE5D5E8E5E5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEF2EDF43E457B8882ABFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -BAB2CD3F457BBAB1CCFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFE8781A93E467C -F2EEF3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE515689686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EEF33E457BFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD696695BAB2CDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE3DCE93E457B938DB3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE5E5E8FACA3C3FFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFDFFFEFDE5DEE93E457BF3EEF3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFCFFFFFEFFFEFCADA4C43E467BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEA098BB686696FFFFFEFFFEFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFD -FFFFFEFFFFFEFFFFFE928CB2736F9CFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFD7D78A3474E82FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF2EEF5474E82BAB1CCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFE -E4DDE9464E82C6BED5FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFE -474E82736F9CFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEB9B1CC484D82F3EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFDFFFFFE6866958882AB -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CDE03E457BA099BB -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFCFFFEFD7D78A45E5D8EF2EEF3FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD7D78A35E5E90F2EDF2FFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEA099BB3E457BE4DDE9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFC5E5E8F5E5E8FF2EDF3FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFD7E78A3484D82E4DDE9FFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC736F9C515689FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFD -7E79A4474E82ACA4C3FFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED55D5D8E5E5D8EF2EFF5FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFE3E457B7E78A3FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB2CD -515689515588A099BBD4CCE0FFFFFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDE3DDE9ADA5C4686695484E82 -928CB1FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDC7BFD63E457BACA4C4FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDBAB1CC -7E78A3515689484E83736E9C938CB2C7BFD5FFFEFDFEFEFDFFFEFDFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFDFFFEFDD5CEE09F98BB7D78A3515588474E82736F9CADA5C4F1EDF2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD918BB2 -3F467BF2EDF3FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFEFDFFFFFE -E4DDE9ADA5C47E79A45155893E457B6A6796938DB3C6BDD4FFFEFDFFFFFEFFFEFDFFFFFEFFFEFC -FFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFDFCFFFEFDFFFEFD -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CCDFA099BC736E9C -474E82474E82726F9CA199BCD5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8F5D5E8FFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFE -FFFEFDFFFDFCE4DDEAACA4C37E78A35F5E8F3E467B686694938DB2C6BDD5FFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFDFFFEFDFFFFFED4CCE0A099BB736F9C474D82505688736E9CA099BCD5CDE0FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF43E457B8882AAFFFFFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEF2EEF3BAB1CC8882AB5E5E8F3E457C686695928CB2C7BED5F3EEF4 -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFEFDFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFCFFFEFDFFFFFEFFFEFDFFFFFEC7BED5A099BC -736F9D484D825156897E78A3ACA4C4E3DCE9FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBBB2CD3E457BBAB1CDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEF2EFF5B9B1CD8882AB5E5E8F3E457B5F5E8F8782AA -BAB1CCF2EDF4FFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDC7BED5938CB26865953F457B5156897E78A3ACA4C4E5DEEA -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD7E78A43E457BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEF2EEF4BBB2CD8882AB5E5E8F3E457B -5E5E8F8781AABAB1CCF2EEF5FFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDC7BED5 -928CB26966953E447B5156897E78A3ADA5C4E3DCEAFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD515689686796FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5938CB3 -6866953E457B5F5E8F8781AABAB2CDF3EEF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5938CB36866953E457B5E5E8E8882ABBAB1CC -F2EDF2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE93E447A -938CB3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED6938DB36866953E457B5E5E8E7E78A4ACA4C4E3DCE8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4 -BAB2CD8882AB6866953F457B5E5E8F8882AABAB1CCF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDACA4C43E457BD5CDE0FFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDC7BFD6938DB26966953E467C5156897D78A3ACA4C3E4DEEBFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDF2EFF5BAB1CC8882AB5D5E8F3F457B5D5E8F8882AB -BAB1CDF2EDF3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE736F9C474E82FFFFFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFDFCFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFDC7BFD7938CB2736E9C474E825156897D78A4ACA4C4E3DCE9FFFFFE -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -F3EFF5B9B1CC8882AB5E5E8F3E457B686695938CB2B9B1CCF2EEF4FFFFFEFFFFFDFFFFFDFFFFFE -FFFDFCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFC474E82736E9BFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDD5CDE0A099BB736F9C484D825256897D78A4ADA5C4 -D5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEE3DCE9BAB2CD8882AB5E5E8E3E447B686796 -938CB2C7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFED5CDE03E457BA099BCFFFEFDFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CCDFA099BB736F9C474E82484E82 -726F9CA199BCD4CCE0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFEFDE4DDE9ACA4C37E78A35055883F457B686796928CB2C8BFD6FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -A099BB3D457BE4DCE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CDE0A19ABC726F9D -474E82474E82736E9CA099BCD5CEE0FFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFDFBFFFEFDE3DCEAACA4C47D78A35256883F457B -686696928CB2C7BFD6FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFEFEFD -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE696695515689 -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE4DDEA -ACA4C47D78A3515689484E82736F9CA099BBD4CDE1FFFFFEFFFEFDFFFEFCFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDE4DDEAACA4C47D78A4515588464E83746E9CA099BBD5CDE1FFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFDFFFEFDFFFEFC3E457B7D77A3FFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEE4DDE9ACA4C47E78A45256893E457B696695938DB3C7BED6FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CCE0A099BC736E9B474E82 -484D82726F9DA099BBD5CDE0FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDC6BDD53E457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEE4DDE8ADA5C57D78A35156883E457B686695938CB2C7BFD7FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED4CCE0A099BB736F9C474E82474E82736F9CA099BBD5CDE0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE8882AB3E457BF2EEF5FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEE3DCE9BAB1CD8882AB5F5E8E3D457B686695938CB2C7BED5 -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDD5CDE0A099BB746F9C -474E825156887E78A3ACA4C4D5CDE1FFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFEFDFFFFFE5D5E8F5E5E8FFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFCFFFFFEF2EDF3BAB1CC8781AA5E5E8F3E467C686695 -938CB2BAB1CCF3EDF3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDC6BED6928CB2736F9C474D825156897E78A3ACA4C4E3DCE9FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEF2EEF4 -3E467C8881AAFFFFFEFFFEFDFFFEFDFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEF2EEF4BAB1CD8882AB5E5E8F -3E457B5E5E8F8882ABBAB1CDF2EEF3FFFFFEFFFDFCFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFCFFFEFDFFFEFDFFFFFDC7BED6938CB2 -6866953E447B5156897E78A3ACA4C4E4DDE9FFFFFDFEFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEB9B1CC3E447ABAB2CE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEF3EFF5BAB1CC -8882AB6866953E447B5D5E8F8882ABBAB1CCF2EFF6FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFEFCFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFDC6BED5938CB26866953E457B5E5E8F7E78A3ADA5C4E3DCE8 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE7E78A23E467CFFFFFDFFFFFEFFFFFE -FEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5938CB26867963E457B5D5D8E8782ABBAB2CDF2EEF3FFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDC6BED5 -928CB26966953F457B5E5E8F8882ABBAB1CCF2EEF4FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE515689686795FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEC7BFD6938CB16867963E457B5255887E79A4ACA5C5E4DDE8FFFEFDFFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEF2EDF3BAB1CD8882AA5E5E8F3D457B5E5E8F8882ABBAB1CD -F2EEF4FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE3DCE93E457B938CB2FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEC7BED5938CB26866953D457B5155887E79A4ACA3C3E5DEEA -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF3 -BAB1CD8882AB5F5E8F3E457B5E5E8E8781ABBAB1CCF3EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEADA5C53E457BD4CCE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BFD6A098BB736E9B474E835156887E78A3 -ACA4C4E4DDE8FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFC -FFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEF2EEF3BAB2CD8881AA5E5E8F3E457B686695938DB2 -C6BED5F2EEF4FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD736F9D -474E82FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDD5CEE1A099BB746F9C474E83 -525688736F9C9F99BCD5CDE0FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -E4DDE8ACA4C47E78A35E5E8E3F457B696694938DB3C7BED5FFFEFCFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE474D82736F9DFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDD4CDE0A099BB -736F9C474E82484D82726F9C9F98BBD5CDE0FFFFFEFEFDFCFFFFFEFFFFFEFFFFFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFC -FFFFFEFFFEFCFFFEFDFFFEFDFFFEFDFFFFFDFFFFFEE4DDE9ACA4C47E78A35156893D457B686695 -938DB2C7BED5FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD5CEE13E457BACA4C4FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -D5CDE0A198BC7E78A3515689474E82736F9DA098BBD5CEE0FFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEE4DDEAADA5C47D78A3515689474E82746F9C938CB2C7BED5FFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDA099BB3E457BE4DDE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDE4DDEAACA4C47E78A4515588484E82736E9CA099BBC6BED6FFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED5CDE0ACA5C47E78A3515689484D82 -736F9CA098BBD5CEE0FFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE686694525689FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEE4DDE9ACA5C47E78A35256883E457B686695938DB2C7BED5FFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFED5CDDFA098BB736F9D474E82484D82736F9CA198BBD5CDE0FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFE3F457B7D77A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDE4DDE9ADA5C37E78A45156893E457B686795938CB2 -C7BED6FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDD4CDE0A099BD736F9C474E83 -474E82736F9DA198BBD5CEE0FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC6BFD63E457B -BAB3CEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EDF3BAB2CD8882AB5E5D8E3E457B -686695938CB2D4CCDFFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE4DDE99F98BC746F9C474E825256897E78A3ACA4C4E4DDE9FFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8882AB3D457BF2EEF4FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF2EEF5BAB1CC7E78A4 -474E82686695D5CDE0FFFEFDFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEF2EEF4 -7E78A33E457B736E9CACA3C3E4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8F5F5E8FFFFEFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEF2EEF4938CB2 -3E457BACA5C4FFFEFDFFFEFDFFFEFD696695C7BED5FFFFFEFFFEFCD4CCDF484E82726F9CE4DDE9 -FFFEFDFFFFFEFEFCFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF2EEF33F467C8881AAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFEFCD5CDE1484D81 -928DB3FFFFFEFFFFFE676695C7BED5FFFEFDB9B2CD474E82ACA4C4FFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEACA4C53E457BC6BFD6FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFED4CCDF484E82ACA4C4 -FFFFFE686595C8BFD6D4CDE0484E82ADA5C4FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -7E78A33E467CFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED4CCDF3E467BD4CCDF696796 -B8B1CC5255899F98BBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE505589696695 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFFFEFFFEFCFFFFFEFFFFFEFFFEFD928BB1686695686696696695686695 -FFFFFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE93E457BA099BBFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDF2EFF6474E82474E823E457BC6BDD5FFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB3E467BD5CDE0FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8782AB3E447B5E5E8FFFFFFDFFFEFDFFFFFEFFFEFDFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE736F9C474E82FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED5CDE03E457BA099BBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE474D82746F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE3F467CC6BDD4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDD5CDDF -3F457BACA4C3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -484D81C7BED5FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFC938CB23E457BE4DDEA -FFFFFEFFFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD696695C7BFD6 -FFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE686695505588FFFEFDFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686696C6BED5FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD3F457B7E78A3FFFEFDFFFFFDFFFFFEFFFDFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDBAB2CD3D467BB9B1CCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD696695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFD8882AA3E447BF2EEF3FFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE5E5E90 -5E5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCF2EFF53E457B8882ABFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEACA5C43E457BC7BFD6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFD7F79A43E457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE515689686796FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFC -E3DCE93E467BA099BCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BB3E467B -D4CCDFFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD736F9D474E82FFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD474E827E78A3FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6A6A7A6 -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED4CCDF3E457BACA4C5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE767676181717FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE938DB23E447AE3DCE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0D7D6D6FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -686695525689FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3CACAC9FFFFFECACAC9D7D6D6 -FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3C9C9C9F3F1F0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF3F1F0 -CACAC9D6D6D5FFFFFEFFFFFEFFFFFEE5E3E3CBCBCAFFFFFEFFFFFEFFFFFED7D6D6D7D6D6FFFFFE -CACAC9D7D6D6FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9CACAC9F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3E457B8781AB -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717515252191818181717CACAC9FFFEFD -F3F1F0686969181717181717282828B1B2B1FFFFFEFFFFFEFFFFFEB2B2B2181717191818181717 -676867FFFFFEFFFFFE9B9C9B181717FFFFFEFFFEFDFFFFFE6869693B3B3A3B3B3A181717191818 -676867F3F1F0FFFFFEFFFFFEFFFFFED7D6D63B3B3A1817171918183B3B3AD7D6D6FFFFFEFFFEFD -D8D7D73B3B3A181717181717191818A6A7A6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEB9B1CC3E467BBAB1CCFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFD9A9B9B181717A5A6A6FFFFFEE5E3E3FFFEFDFFFFFE828383282828 -CACAC9FFFEFD8E8F8F2A2929F3F1F0FFFFFED7D6D6181717828383FFFFFEE5E3E3BEBEBEFFFFFE -FFFFFE9A9B9B191818FFFFFEFFFFFEFFFEFD676867272727CBCBCAFFFEFDD6D6D5282828838484 -FFFFFEFFFFFEFFFFFE3C3C3C515252E5E3E3F3F1F0676867656666FFFFFEFFFFFE7676763B3B3A -E5E3E3FFFFFEBDBDBDD7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC8882AB3E457BF2EEF3FFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE1918188E8F8EFFFFFEFFFFFE -F3F1F0181717A6A7A6FFFFFE8F9090282828FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFFFE8E8F8F181717FFFFFEFFFFFE -CBCBCA181717BEBEBEFFFFFEFFFFFEBEBFBE181717D7D6D6FFFFFE656666535353FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD5E5E8F5E5D8EFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9A9B9B191818FFFEFDFFFFFEFFFFFEFFFFFECBCBCA181717A6A7A6CACAC9CACAC9CACAC9282828 -9A9B9BFFFFFE676867686969FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFFFEB2B2B2181717D7D6D6FFFFFE999A9A181717 -CACAC9CACAC9CACAC9B2B2B2181717CACAC9FFFFFED7D6D6282828515252CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEE4DDEA3D457B938DB2FFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFFFEFFFFFECACAC91817171817171817171817171817171817179A9B9BFFFFFE -656666676867FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -676867676867FFFFFEFFFFFEFFFFFECBCBCA181717CBCBCAFFFFFE9A9B9B181717181717181717 -181717181717181717CACAC9FFFFFEFFFEFDE5E3E3828383191818767676F3F0F0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEADA5C4 -3E457BC7BFD7FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD999A9A181717FFFFFEFFFFFE -FFFFFEFFFFFED8D7D7181717BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE767676515252 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE676867656666 -FFFFFEFFFFFEFFFFFE999A9A191818FFFFFEFFFFFEA5A6A6181717F4F2F1FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC92A2929767676FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD7D78A43F457CFFFFFD -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3B3B3A767676FFFFFEFFFFFEFFFFFEF3F1F0FFFFFEFEFDFCB2B3B3181717D7D6D6FFFFFE -FFFEFDFFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFFFE676867515252FFFEFDFFFFFEE5E4E4181717A5A6A6FFFFFEFFFFFEFFFFFEF3F1F0FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8E2A2929FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE515689736F9CFFFFFEFFFEFDFFFFFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEE5E3E36768671817179A9B9BE5E3E3FFFFFEFFFFFEFFFFFEBEBEBE -181717676867999A9A828383282828E4E2E2FFFFFEFFFFFE5152522828289A9B9B8E8F8F3B3B3A -D7D6D6CACAC96768671918189A9B9BFFFFFEFFFFFE6566661817176768679A9B9B676867191818 -BDBDBDFFFFFEFFFFFEFFFFFE8F9090181717828383999A9A7676763B3B3AFFFFFEFFFFFE656666 -838484BEBEBEA6A7A62A29298E8F8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFED4CDE03E467BA099BBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7D6D6686969686969676867D7D6D6FFFFFEFFFFFEFFFFFEFFFFFED7D6D6828383 -656666828383CACAC9FFFFFEFFFFFEFFFFFEF3F1F09A9B9B656666767676BEBEBEFFFFFEB2B2B2 -686969676867676867FFFFFEFFFFFE6768675152528E8F8F656666767777BEBEBEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEBEBEBE7676766768678E8F8FE4E2E2FFFFFEFFFFFEE5E3E38E8F8F656666 -686969A5A6A6FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFDFFFFFDA099BB3E457BD5CEE0FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE676867676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFE746F9D474D82FFFFFEFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFE676867676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE474D82 -7E78A3FFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867 -686969FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDC7BFD63E467BACA4C4FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE676867676867FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD928CB23E457BE4DDE9FFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2B2B2B2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFD686695515689FFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEF2EDF33E457B8882AAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD686695 -C7BED5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -B9B0CD3E467BBAB1CDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC686696C7BED5FFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDFFFEFD8882AA3E457B -F2EEF4FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD4CCDFF2EEF4FFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE5E5E8F5E5D8EFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE4DDE83E447B938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED3CCDF938CB28881AA686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686696686695686795686696696796696695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -6866956866956866956866956866956866956866956866956866956866957E78A3938DB3BAB1CC -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDADA5C53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED65156893F457B3E467B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E467B3D457B3E467B474E83A099BB -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFD7E78A3474E82FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCACA4C33E457B3E467C3D457B3E447B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3E457B3E467B3F457B3E457B3E457B3F457B7E78A3FFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -515689736F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C4 -3D457B3E457B3E447B3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E467B3F447A3E467B3E457B3E457B3E457B3E457B7E78A3FFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE03F457A9F98BC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4464E823F457B3E457B -3D457A3E457B3E447B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447A3E467B3E457B3D457A3E457B3E457B3E457B3F467CC6BDD5FFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695 -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDA099BC3E467BD4CDE0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB23E457B3E467B3F457B3E447B3E447A -3E467C3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467C3E447B3F457B -3D457A3E457B3E467B3E457B3D457B3E457B3E457B696796FFFFFDFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD736F9C505589FFFEFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5D5E8F3F457B3E457B3E457B3E447B3D457B3F457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F467B3D457B3E457B3E467B -3F457B3D457B3E457B3E457B3E447A3E467BF1ECF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFD474E837E78A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E447B3E467B3E447A3F457B3D457B3F447B3D457B3F457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D467B3F457B3E457B3E457B3E457B3E447A -3E457B3D457B3F457B3F457BC6BDD5FFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEC7BFD63D457BADA5C4FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3E467B3E457B3E467B3E447A3E457C3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E447B3E457B3E457B3E457B3E467B3E457B3D457B3E457B -3E457B3E457BC7BED5FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928CB2 -3F457BE4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457A3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B3E457B3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E457B -3E447B3E457B3E457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFEFD686695C7BFD6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD6966955D5E8FFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3F447B3E467B3E467C -3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B3D457A3E457B3E457B3E457B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3F457B3D457A3F457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E457B3E457B3E467B3E457B3E457B3D457B3E447B3F457B3E457B -3E457B3E457B3E447B3E457B3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD -686695C7BED5FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDF2EFF53E447B8882ABFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3F467B3E447A3E467B3E457B3E447B3E457B3E457B -3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3D457B3F467C3E457B3E447A3E457B3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F467B3D457A3E457B3E457B3E467B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E467B3E457B3E457B3D457B3E457B3E457B3E467B3E447B3E457B3E467B3E457B -3E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE686696C7BFD6 -FFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDBAB2CD3D467BBAB1CCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457B3E457B3E457B3E447B3E457B3D457B3F457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467C3E457B -3E457B3E457C3E457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E467B3F447A3E467B3E447B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3D457B3E457B3F467B3E457B3E457B3E457B3E467B3E457B3E457B3E457A3E457B3F467B -3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFD515588D4CDE0FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE8882AC3F457BF1EDF4FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B3E467C3D457B3E467B3D457B3F457B3D457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E457B -3E467C3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E457B3F467C3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F467B3E457B3D457B -3E457B3E447B3D457B3F467B3E457B3E457B3F457B3D457A3E457B3E457B3E447A3E467B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDF2EDF43E457BFFFFFDFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE515689686695FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E467B3E457B3F457A3D457B3F457B726F9C938DB3938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2938DB2938CB3 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2938DB3938CB2938CB2 -938DB3938CB2736F9C3E457B3E457B3F467B3D457B3E457B3F467C3D457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDACA4C4696695FFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3DCE93E467B -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E457B -3E457B736F9CF2EEF3FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFCFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEE3DCE95E5E8F3E457B3E467B3E447A3D457C3F457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFCFEFEFD525689ACA4C4FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEABA4C33F457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B7D78A3FFFFFE -E4DDE97E78A23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3D457BFFFEFD938DB33F457B3E457B3E457B3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457B3E457B3E447A3F467B3E447B3E457B474D817E78A3F2EEF3 -FFFFFE5E5E8F3D457A3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB2 -5E5E8EFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A3474D81FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E467C3F457B -3E457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B484D82F2EDF4D4CDE0474E823E457B -3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457BFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B3E457B3E457B3E447B3E457B3E457B3E457B3E457B5E5E8FF3EFF5E4DDE9 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B -3E457B3D457B3E467B3D457B3F457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEACA4C4474E82D4CCE0FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFEFEFDFFFFFE474E82726F9DFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3F457B3D457B3E447B3E467B -3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457A8782ABFFFFFE6867953E447B3E467B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -FFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B -3D457B3F457B3F457B3D457B3E457B3E457B3E457B3E457B3F457B7D77A3FFFFFD7E78A33E457B -3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E467B3E457B -3E457B3F457B3E457B3E467B3F457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF3EEF48882AA474E82D3CCDFFFFEFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED5CDE13E457BA099BBFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3F457B3E457B3D467B3E447B3E457B686695 -686695686695686695686695686695686695686695686695686695686695686695686695686695 -686695686695686695686796D5CDE0E4DDEA3F457B3E457B3D457B3E447B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BFFFFFE938CB2 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E447A -3E467B3F457B3E457B3E457B3E457B3E447B3E457B3F457BFFFFFEACA4C4686796686695686695 -6866956866956866956866956866956866956866956866956866966866956866955E5E8F3E457B -3F457B3E457B3E457B3E457B3F457B3E467BC7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED58882AB474D81696695E3DDEAFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -A099BB3E457BD5CDE0FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E457B3E457B3D457B3F457B3E467C3E457A3E467CFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDC7BED53E457B3E467B3F457B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BFFFFFE938CB23E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5 -C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3E467B3E457B3E447B -3D457B3F457B3E457B3E457B3E447B3E467BD4CDDFFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC6BDD43E457C3E457B3F457B -3E457B3E457B3F457B3D457BC7BED4FFFEFD6966973E457B3F457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B5D5E8F -7E79A3C7BED6FEFEFDFFFEFCFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE736F9C515689 -FFFFFEFFFFFEFFFEFCFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3E457B3F457B3E467B3E447B3E457B3F457B3E447B686695686695686695686695686695 -686695686695686695686695686695686695686695686695686695686695686695686695686796 -D4CCE0E4DDE93F467B3E447A3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BFFFFFE938CB23E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D457B3F457B3E447B3F467B3E457B3D457B -3E457B3E457B3D457B3E447BFFFFFEADA5C4686696696796686696686695686695686695686695 -6866956866956866956866956866956866956966955E5E8F3E457B3E447A3F457B3E457B3E457B -3E457B3F457BC6BED5FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE3E457B7E78A3FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B -3E467C3E447A3E457B3E457C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A8882ABFFFEFC -6966953E467B3F457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E447A3F467B3D457A3E457B -3E457C7D78A3FFFFFD7D77A33E467B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E447B3E457B3F467C3D457B3E457B3E457B3E457B3E447B -C7BED4FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFD -FFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEC7BED53D457AACA5C5FFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E447A3E457B -3E457B3E457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B474E81F2EEF5E4DDE8484D82 -3E457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3F457B3D457B3F467B3F447A3E467C3F457B5D5E8FF2EEF4 -E3DCE93F457B3D457B3F467B3E457C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3F457B3D457B3E467B3E447B3E447A3E467B3E457B3E457B3E457B3E467BC7BFD6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE928CB13E457BE4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3F457B3E457B3E457B3E457B3E457B -3E447B3E457B3E467C3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B746F9CFEFEFDF2EEF47E78A4474E82 -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457BFFFFFE938CB23E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457BC7BED5C7BED53E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E467C515589938DB3F3EEF5F2EEF45E5E8E3E457B -3E457B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3D457B3D457B -3E457B3E447B3E467B3E467B3E447B3E457B3E457B3E457B3E447BC6BFD6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFE5E5E8F5D5E8FFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3D457B3E447B3E457B686696E4DDE9FFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED55F5E8F3D457B3F457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EEF4 -3E457B8782ABFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E447B3E457B696796928CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB25E5E8F3F457B3E447A3E457B3D457B3F457B3E457B3D457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDBAB1CD3D457BBAB1CC -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3D457B3E457B3E457B3E467B3E447B3E447A3F467B3D457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3F457B3E457B3F457B3E457B3E457B3E457B3D457B3F457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD8882AA3E467CF2EEF4FFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E447A3F467C3D457B3F457B3D457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD515689696695FFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3F457B3D457B -3E447A3E447B3E457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3D457B3F467B3E447B3F457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEE4DDE93D457B938CB3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3E457B3E447B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3E467B3E457B3E447B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFE -FFFFFEACA3C43E457BD4CCDFFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3F457B3D457B3E447B3E467B3F457B3D457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3F457B3E467B3E457B3F457B3E457B -3D457A3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD7E79A3 -474E82FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3F457B3E457B3E457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3E467B3D457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE474E82736F9CFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E457B3E457B3D457B3E457B3D457B3E457B3E457B3D457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447A3F457B3D457B3E457B -3E457B3E457B3E457B3F457BC7BED5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFED4CDDF3E467B9F98BBFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE5E5E8F3E457B3E457A3E457B3E457B3E447A3D457B3E447A3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3D457B3F457B3E457B3F457B3D457B3E457B3E457B -3E457B3E457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFFFEFFFFFEA099BC3E447BE4DDE8FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB -3F457B3E467B3E457B3F457B3D457B3F457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3D457B3E457B3E457B3E457B3E457B3E457B3D457B746F9C -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFE736E9C515689FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3EEF4474D823E447B -3E447B3E457B3E467C3E447B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3E457B3F457B3E457B3D457B3E457B3D457B3E457B3E457BC7BED6FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFEFD3E467B7D77A3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB9B1CC3E457B3F457B3D457B -3F457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3F467B -3E457B3D457B3E457B3E457B3E457B3E457B3E457B8882ABFEFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDC7BFD53E447B -ADA5C4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C43E457B3E457B3D457A3E457B -3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3F467B -3E447A3D457B3F457B3E457B7E78A3FFFEFCFFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD938CB23D457BF2EEF5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDD4CCE06866953E457B3F457B3D457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E447B3D457B3E457B3E447A3E457B3F457A -505689BAB1CCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5D8E5F5E8FFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFDFFFEFDE5DEEAA099BB938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2928CB2938CB2928CB2938CB2938DB3D4CCE0FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEF2EEF43E457B8881AAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -928CB2E4DDE9FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEBAB1CC3E457BBBB2CEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457CC7BFD5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -7E78A33F457BFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC6BED6FFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE525588686696 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BFD6FFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DDEA3E457B938CB2FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC6BED5FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C43E457BD4CCDFFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E457BC7BFD6FFFEFCFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE736F9C474E82FFFFFEFFFEFCFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3E467CC7BED5FFFFFEFFFEFDFFFFFEFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE474D82736F9DFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457B -C6BFD6FFFFFEFFFFFEFFFEFDFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE0 -3F457BA098BAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEA098BC3E457BE4DDEA -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE696796515689FFFFFEFFFEFDFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFC3E457B7E78A3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDC6BED63E457BACA4C5FFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD8882AB3D457BF3EEF3FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE5D5E8E -5F5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF2EDF33E457B8882ABFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEBAB2CD3E457BBAB1CCFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEC6BED53F457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB1CC3F457B8882ABFFFFFEFFFFFEFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE7E78A33E457BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFD -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE7E78A3726F9C515588FFFFFDFFFFFEFFFEFDFFFFFDFFFDFCFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE525689696695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEC6BED53F457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFCFFFEFDFFFFFEFFFFFD -FFFFFEC7BED5474E82F2EEF4696796928DB3FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE -E3DCE83E447BA099BBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDC7BED53E467BC6BDD5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFBFFFFFEFFFEFCF2EEF5525689 -A099BBFFFFFED4CCDF3F457BD3CDE0FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C43E467B -D5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFDFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEC7BED53E447BC7BED6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE05E5E8F7E78A3FFFEFDFFFEFD -FFFFFEADA5C4484D82BAB1CCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFEFDFCFFFFFEFFFFFE736F9C474E82FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFCFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53F457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEF2EEF5938CB2464E82928CB2FFFFFEFFFFFDFFFFFEFFFFFDFFFFFE -B9B1CC474E827F79A4E3DBE8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFDFBFFFEFDFFFEFD474E83736E9BFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EEF3 -BAB1CC938DB3938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB2 -938CB2938DB3938CB27E78A43E457B7E78A4938DB3938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB3 -8882AB6866953E457B736F9CD4CCE0FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDF2EEF3 -7D78A3474E825E5E8F7E78A3938CB2938CB2938CB2938DB3928CB2938CB1938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -928CB2938CB2938CB3928CB28882AB3E457B686796938DB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB2 -928CB2938DB2938CB2ACA4C4E3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF1EDF38882AB474E825E5E8E8882AB -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB27E78A33E457B7E78A3938DB3938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB2C6BDD5 -F2EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -C6BED5A098BC938CB2938CB2928CB2938DB2938CB2938CB3938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938DB3938DB26867963F457B938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2928CB3928CB1938DB3 -938CB26866953E457C736F9CE4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE1474E82736E9BE5DEEAFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -686695515688FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -F2EEF3938CB33E447BACA5C5FFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFED3CDE0484D82ADA4C4FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD3E457B7E79A4 -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -D5CDE0474E82ACA4C4FFFEFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EDF4 -474E82ADA5C5FFFEFDFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC8BFD63D457ABAB1CCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED4CCDF -474E82C6BED5FFFFFDFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8882AB746E9CFFFEFD -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFD8781AB3E457BF2EEF4FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEA099BB5E5D8E -FFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1ECF3474E82E3DCE9FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD5F5E8F5E5E8FFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE515689C7BED5FFFFFD -FFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEBAB1CC5E5E8FFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDF2EDF43E457B8781AAFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFD8882AA8881AAFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFD938CB2938CB2FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDACA4C4 -3D457BC7BED5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDC6BED6686695FFFFFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A33E457BFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDC7BED5686695FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE515689686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE93E457BA099BBFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEA099BC3E457BD5CDE0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE736F9C474E82FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD484D82 -736F9DFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE03D457BAEA5C5FFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFECBCBCA9A9B9BFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -B2B3B3B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E4E49A9B9BE5E3E3 -FFFEFDFFFFFECACAC99B9C9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB33E447BE4DDE9FFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA181717CACAC9FFFFFEFFFFFE -9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE696695515689FFFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3282828A6A7A6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE8E8F8F282828FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E457B7E78A3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD9A9B9B191818FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEB2B2B2CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E39A9B9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9A9B9BE5E4E4FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFECACAC9B2B2B2FFFFFEFFFFFEFFFEFDF3F1F0767777BEBEBEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFC -FFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFE999A9AE5E3E3FFFFFEFFFFFEFFFFFEB2B2B2767676FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFD -B9B1CC3E457BBAB2CDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -6566669A9B9BFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717FFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE181717 -C9C9C9FFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -9A9B9B676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFECACAC9181717CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD191818 -CBCBCAFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE8882AB3E467C -F2EDF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEB2B2B2676867676867A6A7A6F3F1F0FFFFFEFFFFFEFFFEFD8E8F8F8E8F8F9A9B9B656666 -828383F3F1F0FFFFFEF3F0F08F9090676867767676CACAC9FFFFFEFFFFFE999A9A181717D7D6D6 -838484656666838484E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEE5E3E38E8F8F686969828383E5E3E3 -FFFFFEFFFFFEFFFFFEE5E3E3828383676867757676B2B2B2FFFFFEFFFFFE6768672828283B3B3A -686969D6D6D5FFFFFED7D6D6676867B2B2B2767676656666BEBFBEFFFEFDFFFFFEB2B2B2828383 -656666767676CACAC9FFFFFEFFFFFEB2B2B25152521918186768678E8F8FFFFFFEFFFEFDFFFFFE -B2B2B2676867656666A6A7A6F4F2F1FFFEFDFFFFFEFFFEFD8F90908E8F8E9A9B9B656666838484 -F4F2F1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEB2B2B2828383676867767676CACAC9FFFFFEFFFEFD -FFFFFE8E8F8F8E8F8FBEBEBE7676766566669A9B9BF4F2F1FFFFFEFFFFFEFFFEFDFFFEFDBEBFBE -767676676867B2B2B2676867676867FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF3F1F08E8F8E -676867767676CACAC9FFFFFEFFFEFDFFFFFECACAC97676766768678E8F8FE5E4E4FFFFFEFFFFFE -FFFFFEB2B2B2676867CACAC97676766768679A9B9BFFFFFECBCBCA757676676867A6A7A6FFFFFE -FFFEFDFFFFFEFFFEFD9091918E8F8EB2B2B2676867767676CBCBCAFFFFFEFFFFFEFFFFFED6D6D5 -676867D8D7D7FFFFFEFFFFFEFFFFFE686969D7D6D6FFFFFED7D6D6656666181717515252676867 -FFFFFEFFFFFEF3F0F0A6A7A6767777676867828383E4E2E2FFFFFEFFFFFE8F90903B3B3A272727 -676867B2B2B2FFFEFDFFFFFE676867B2B2B2FFFFFEFFFFFEFFFFFEE5E3E3828383676867828382 -CACAC9FFFFFEFFFEFDFFFFFEB2B2B2676867D7D6D6828383676867828383E5E3E3FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE5E3E39A9B9B6768676566669A9B9BF4F2F1FFFFFEFFFFFE -CACAC9181717CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEB2B3B3656666 -676867A6A7A6F3F1F0FFFFFEFFFEFDFFFFFEFFFFFEA7A7A7676867676867B2B2B2FFFFFEFFFFFE -FFFFFECACAC98F9090656666686969B2B2B2FFFFFEFFFFFED8D7D7676867181717515252656666 -FFFFFEFFFFFEB2B2B2676867FFFFFEFFFFFEFFFFFEFFFFFEB1B2B1676867676867A5A6A6F3F1F0 -FFFEFDFFFFFEFFFFFE676867B2B2B2A6A7A6686969656666B2B3B3FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD5E5E8F5F5D8EFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457B -C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8F181717 -8E8F8F8E8F8F282828515252FFFFFEFFFFFEFFFFFE6768671817176768679A9B9B8E8F8FFFFFFE -F3F1F05353532727279A9B9B828383515252FFFFFEFFFFFE999A9A1918181817178384849A9B9B -3B3B3A3B3B3AFFFFFEFFFFFEFFFFFEE5E3E32828283B3B3A9A9B9B6768672A2929F3F0F0FFFFFE -F3F1F02828283B3B3A9A9B9B8283833B3B3AF3F1F0FFFFFE999A9A3B3B3A676867999A9AE5E3E3 -FFFFFECACAC91817172828288E8F8F8E8F8FCACAC9FFFFFEFFFFFE8283828283839A9B9B515252 -181717E5E3E3FFFFFEC9C9C98384841817179B9C9BB2B2B2FFFEFDFFFFFE8E8F8F1817178E8F8F -8E8F8F282828515252FFFFFEFFFFFEFFFFFE6768671817176768679B9C9B8E8F8FFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE8283838283839A9B9B515252181717E5E3E3FFFFFEFFFFFE656666 -1817172828288E8F8F8E8F8F272727828383FFFFFEFFFFFEFFFFFEBEBFBE1817178283829A9B9B -3A3A39181717676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF3F1F05152522828289A9B9B828383 -515252FFFFFEFFFFFEBDBDBD1817177676769A9B9B3B3B3A282828E5E3E3FFFFFEFFFEFD9B9C9B -1817172828288E8F8F8E8F8F1817176566662828288E8F8F8E8F8F1817178E8F8FFFFEFDFFFFFE -FFFFFE6566661817176566669A9B9B767676181717BEBEBEFFFFFEFFFFFECBCBCA191818CACAC9 -FFFFFEFFFFFEFFFEFD181717C9C9C9FFFFFEE4E2E29B9C9B1817178384849A9B9BFFFFFEFFFEFD -FFFFFE5152528E8F8F9A9B9B2828283B3B3AFFFFFEFFFEFDB2B2B26869693B3B3A9A9B9BCACAC9 -FFFFFEFFFEFD1918189A9B9BFFFFFEFFFFFEE5E3E32727275152529A9B9B676867181717BEBEBE -FFFFFEFFFEFD9A9B9B1817171817178283829B9C9B3A3A393B3B3AFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDD7D6D6515252999A9A8E8F8F181717828382FFFFFEFFFFFEC9C9C9181717 -CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE8E8F8F1817178E8F8F8E8F8F282828 -505050FFFFFEFFFFFEFFFFFE8283831817178E8F8F8E8F8F3A3A39E5E3E3FFFFFEFFFFFEA6A7A6 -7676769B9C9B757676181717B2B2B2FFFFFEE5E3E39A9B9B1817178283839B9C9BFFFEFDFFFFFE -9A9B9B181717FFFFFEFFFFFEFFFEFD8E8F8F1817178E8F8F8E8F8F2A2929535353FFFFFEFFFFFE -FFFFFE1817171817173B3B3A9A9B9B828383181717B2B2B2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDF2EEF33E457B8882ABFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3181717A7A7A7FFFFFEFFFFFE -CACAC9181717B2B3B3FFFEFDFFFFFE676867515252FFFEFDFFFFFEFFFFFEFFFFFEB1B2B1181717 -D8D7D7FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9B9C9B181717D7D6D6FFFFFEFFFFFEBEBEBE181717 -CBCBCAFFFFFEFFFFFE8283832A2929F3F0F0FFFFFEF3F1F02828289B9C9BFFFFFECACAC9181717 -CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6566669A9B9BFFFFFEFFFFFEFFFEFDCACAC9 -191818BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF4F2F1181717A6A7A6 -FFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEE4E2E2191818A5A6A6FFFFFEFFFFFECACAC9 -181717B2B2B2FFFFFEFFFFFE676867535353FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F2F1181717A6A7A6FFFEFDFFFFFE6768673B3B3AF3F0F0 -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE3B3B3A767676FFFFFEFFFEFDF3F1F03A3A39 -676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2181717D7D6D6FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFE3B3B3A767676FFFFFEFFFFFEF3F1F02A2929828383FFFFFEFFFFFE999A9A181717D7D6D6 -FFFFFEFFFFFE828383181717D7D6D6FFFFFEFFFFFE8E8F8F181717FFFFFEFFFFFEFFFFFE676867 -515252FFFEFDFFFFFEFFFEFD6768673C3C3CFFFFFEFFFEFDCACAC9181717CBCBCAFFFFFEFFFFFE -FFFFFE191818CACAC9FFFEFDFFFFFEFFFEFD181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEBEBEBE181717D7D6D6FFFFFEFFFFFE999A9A686969FFFFFEFFFEFDFFFFFEFFFFFE -1817179B9C9BFFFFFEFFFFFE8283833A3A39F3F1F0FFFEFDFFFFFE6768673B3B3AFFFFFEFFFFFE -999A9A181717D7D6D6FFFFFEFFFEFDCBCBCA181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFD8E8F8F282828FFFFFEFFFFFECACAC9181717CACAC9FFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEE5E3E3181717A6A7A6FFFFFEFFFFFEC9C9C9181717B2B2B2 -FFFFFEE5E3E3181717A6A7A6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE535353757676FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEE5E4E4181717A5A6A6FFFFFEFFFFFECACAC9181717B2B3B3FFFFFEFFFEFD191818 -767676FFFFFEFFFEFDFFFEFD686969656666FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEADA5C43E457BC7BED6FFFEFCFFFEFDFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA6A7A6191818F3F0F0FFFFFEFFFFFEFFFFFE3B3B3A -8E8F8FFFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFFFEFFFEFD767777535353FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE191818CACAC9FFFEFD -FFFFFE3B3B3A828383FFFFFEFFFFFEFFFFFE676867676867FFFFFEE5E4E42A2929767676F3F1F0 -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE6768679A9B9BFFFEFDFFFFFEFFFEFDCBCBCA181717CACAC9 -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFE -CACAC9181717FFFFFEFFFFFEFFFFFEA6A7A6181717F3F1F0FFFEFDFFFFFEFFFFFE3B3B3A8E8F8E -FFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD1918189A9B9BFFFFFEFFFEFD676867676867FFFFFEFFFEFDFFFFFE -CACAC9181717FFFFFEFFFFFED7D6D6181717BEBEBEFFFEFDFFFFFEFFFFFE676867686969FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE767676535353FFFEFDFFFFFEFFFEFDFFFFFEFFFFFED6D6D5181717 -BEBEBEFFFEFDFFFFFEFFFFFE828383515252FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -9A9B9B181717FFFFFEFFFEFDFFFFFECACAC9191818FFFEFDFFFFFEFFFFFE676867676867FFFFFE -FFFFFEFFFFFE9A9B9B181717F3F1F0FFFFFECACAC9181717CACAC9FFFFFEFFFEFDFFFFFE181717 -CBCBCAFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -CBCBCA181717CBCBCAFFFEFDFFFEFD9B9C9B676867FFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFE2828288E8F8EFFFFFEFFFFFEFFFFFEB2B2B2191818F3F1F0FFFFFE9A9B9B191818 -FFFFFEFFFFFEFFFEFDFFFEFD181717C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEA6A7A6181717F3F1F0FFFFFEFFFFFEFFFFFE3C3C3C8E8F8FFFFFFEA6A7A6 -181717F3F0F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE9A9B9B191818FFFEFDFFFFFE -A5A6A6181717F3F1F0FFFFFEFFFFFEFFFFFE3B3B3A8E8F8FFFFFFEFFFFFE1817179A9B9BFFFFFE -FFFFFEFFFFFE9B9C9B656666FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFE7E78A33E457BFFFFFDFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD9B9C9B181717FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFE -FFFFFE676867676867FFFEFDFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFEFD181717 -3B3B3A6566666768676768673B3B3A676867FFFFFEFFFFFED7D6D63B3B3A2828289A9B9BFFFFFE -FFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEF3F1F08283832828281817173B3B3A1817179A9B9BFFFFFEFFFFFECACAC9181717 -FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFE -676867656666FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF4F2F1828383282828 -1817173B3B3A1817179A9B9BFFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9181717 -FFFFFEFFFEFDCACAC9181717CACAC9FFFFFEFFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCACAC9181717CACAC9FFFFFE -FFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFE9A9B9B191818FFFFFEFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFEFDCACAC9181717FFFFFEFFFFFEFFFFFE676867676867FFFEFDFFFFFEFFFFFE -CACAC9191818CACAC9FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFE -FFFFFEFFFFFE181717C9C9C9FFFFFEFFFFFEFFFFFED8D7D77576761817171817173A3A39191818 -CACAC9FFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFE -1817179B9C9BFFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFFFE9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFE181717CACAC9FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEBEBEBE515252181717 -1817173A3A39181717FFFEFDFFFFFECACAC9181717CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE656666676867FFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9B9C9B3B3B3A191818282828282828676867FFFFFE -FFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFEFD9A9B9B181717 -FFFEFDFFFFFEFFFFFEFFFFFE676867686969FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE -9A9B9B676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -525689736E9CFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE676867767676FFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFEFFFFFE676867686969FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9A9B9B191818FFFFFEFFFFFEFFFFFEFFFFFE181717C9C9C9FFFFFEFFFFFE1817176768679B9C9B -9A9B9B9A9B9B9A9B9BB2B3B3FFFEFDFFFFFEFFFFFEFFFFFEA6A7A6282828515252F3F1F0FFFEFD -FFFFFE6768679A9B9BFFFFFEFFFEFDFFFFFEC9C9C9191818C9C9C9FFFFFEFFFFFEFFFFFEFFFFFE -686969272727B2B3B3CACAC9BEBEBE1817179A9B9BFFFFFEFFFFFEC9C9C9181717FFFFFEFFFFFE -FFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFEFFFEFD686969767676FFFEFDFFFFFE676867676867 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867272727B2B2B2CACAC9BEBEBE -181717999A9AFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9181717FFFEFDFFFFFE -CACAC9181717CBCBCAFFFFFEFFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE -9A9B9B282828FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFEFD -FFFFFECACAC9181717FFFFFEFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFEB1B2B1181717 -E5E3E3FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEF3F1F0282828515252BDBDBDCACAC99A9B9B181717CACAC9FFFFFE -FFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFEFFFEFD1918189A9B9BFFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFFFECACAC9181717D7D6D6FFFFFE9A9B9B191818FFFEFDFFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717767676CACAC9CACAC9767676 -181717FFFEFDFFFEFDCACAC9181717CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEFFFFFEFFFFFE676867767676FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE9A9B9B1817179A9B9BCACAC9CACAC93C3C3C676867FFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFE999A9A181717FFFFFEFFFFFE -FFFFFEFFFFFE676867767676FFFFFEFFFFFE181717999A9AFFFFFEFFFFFEFFFFFE9A9B9B676867 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DDEA3E457BA099BC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -BEBEBE181717D7D6D6FFFEFDFFFFFEF3F1F01817179B9C9BFFFEFDFFFFFE676867676867FFFFFE -FFFFFEFFFEFDFFFFFE8E8F8F282828FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFFFEFFFEFD181717CACAC9FFFFFEFFFFFE515252767676FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCBCBCA181717B2B2B2FFFFFEFFFFFE676867 -828383FFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFEFDFFFFFEFFFFFE1817179B9C9B -FFFEFDFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFECACAC9191818E5E3E3FFFFFEFFFFFEBEBFBE -181717D7D6D6FFFFFEFFFFFEF3F1F0181717999A9AFFFFFEFFFFFE676867656666FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFEFD1817179B9C9B -FFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEF3F1F0181717 -A5A6A6FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE8E8F8F272727 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0181717A7A7A7FFFEFDFFFFFEFFFFFE515252686969 -FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFECACAC9 -181717FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFE8E8F8E282828FFFFFEFFFFFE -CACAC9181717CBCBCAFFFFFEFFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFEFFFFFE181717B2B2B2 -FFFFFEFFFFFECBCBCA181717C9C9C9FFFFFEFFFFFECACAC9181717C9C9C9FFFFFEFFFFFE9A9B9B -3B3B3AFFFEFDFFFFFEFFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFE515252767676FFFFFEFFFFFE -FFFFFE8E8F8F181717FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFFFE9A9B9B181717FFFEFD -FFFFFEC9C9C9181717CACAC9FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEBEBEBE181717D6D6D5 -FFFFFEFFFFFEF3F1F01817179A9B9BFFFFFEBEBEBE181717D7D6D6FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFE181717B2B2B2 -FFFFFEFFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEBEBFBE181717D7D6D6FFFFFEFFFFFEF3F1F0 -181717999A9AFFFFFEFFFEFD1817179B9C9BFFFFFEFFFFFEFFFFFE999A9A686969FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFEFDA199BC3E457BD4CDDFFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -3E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3C3C3C -505050F3F1F0F4F2F1828383181717E5E3E3FFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFFFE -FFFFFEE5E3E3191818838484FFFFFEF3F1F0B2B2B2FFFFFEFFFEFD9B9C9B181717FFFFFEFFFFFE -FFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEB2B2B2181717A6A7A6FFFFFEF4F2F1A7A7A7D6D6D5 -FFFFFEF3F1F0B2B3B3FFFFFEFFFFFED7D6D6181717BEBFBEFFFFFEFFFFFE8283833A3A39E5E3E3 -FFFEFDFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFEFDFFFFFE3B3B3A676867F4F2F1FFFFFE -A6A7A61817179A9B9BFFFEFDFFFFFEE5E4E41817179B9C9BFFFFFEFFFFFEFFFFFE3B3B3A515252 -F3F1F0F3F0F0828383191818E5E3E3FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3B3B3A676867F3F1F0FFFFFEA7A7A71817179A9B9BFFFFFEFFFEFD -686969656666FFFFFEFFFFFEFFFFFECACAC9181717FFFEFDFFFFFEFFFFFE7676763B3B3AF3F1F0 -FFFFFEE5E3E33B3B3A676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3181717838484FFFFFE -F3F1F0B2B2B2FFFFFEFFFFFE828383282828D8D7D7FFFFFEA6A7A6181717B2B2B2FFFFFEFFFEFD -9B9C9B181717FFFFFEFFFFFEFFFFFE9B9C9B181717FFFFFEFFFEFDFFFFFECACAC9181717FFFFFE -FFFEFDFFFFFE6869693C3C3CCACAC9FFFFFECACAC92A2929828383FFFFFEFFFFFEF4F2F1181717 -8E8F8FFFFFFEE5E3E3838484181717C8C8C8FFFFFEFFFFFEFFFFFE3B3B3A767676F3F1F0FFFFFE -E5E3E31817178F9090FFFFFEF3F1F0828383191818CACAC9FFFFFEFFFFFEB1B2B1191818CACAC9 -FFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFEB2B2B2191818B2B2B2FFFEFDCBCBCA2A2929 -828383FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEFFFEFD181717CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDB2B2B2191818BEBEBEFFFFFEE5E3E3515252181717FFFFFEFFFEFDD8D7D7 -181717BEBEBEFFFFFEFFFFFEA6A7A6181717F3F1F0FFFFFEFFFFFE3B3B3A535353F3F1F0F3F1F0 -828383181717E5E3E3FFFFFEFFFFFE3B3B3A515252F4F2F1FFFFFEB2B2B2F3F1F0FFFFFE838484 -282828E4E2E2FFFFFECACAC9282828676867FFFFFEFFFFFEFFFFFE3B3B3A767676F3F1F0FFFFFE -FFFFFE9A9B9B191818FFFEFDFFFEFDFFFFFE3B3B3A515252F3F1F0F3F1F0828383181717E5E4E4 -FFFEFDFFFFFE191818999A9AFFFFFEFFFEFDFFFFFE9A9B9B676867FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE726F9C484E82FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D53C3C3C181717 -181717282828B2B3B3FFFEFDFFFFFE9A9B9B181717181717181717FFFEFDFFFFFEFFFFFEFFFFFE -B2B2B2272727181717181717505050D7D6D6FFFFFE9A9B9B191818FFFEFDFFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFE9A9B9B1817171817171817173B3B3AD7D6D6FFFEFDD7D6D6 -3B3B3A2A2929505050191818828383FFFEFDFFFFFEFFFFFEF4F2F1515252181717CACAC9FFFFFE -1817171817171817179A9B9BFFFFFEFFFFFEFFFFFEBEBEBE272727181717181717282828181717 -9A9B9BFFFFFEFFFFFEFFFFFEB2B2B2191818656666FFFFFEFFFFFED7D6D63B3B3A181717181717 -2A2929B1B2B1FFFFFEFFFFFE9A9B9B181717181717181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDBEBFBE2828281817171817172727271817179A9B9BFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEF3F1F0535353282828656666282828 -272727676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2282828191818181717535353 -D8D7D7FFFFFEF3F1F06768671918181817171817178F9090FFFEFDFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFFFECACAC9181717FFFFFEFFFEFDFFFFFE -676867272727191818181717181717535353F3F1F0FFFFFEFFFEFDFFFFFEB2B2B2181717181717 -191818676867181717CBCBCAFFFEFDFFFFFEFFFFFED6D6D52A2929181717FFFFFEFFFEFD9B9C9B -1817171817171817172A2929181717CACAC9FFFFFEFFFFFEFFFFFE8283821817179A9B9BFFFFFE -1817171817171817179A9B9BFFFFFEFFFFFE8E8F8E1817171A1919181717676867F3F1F0FFFEFD -FFFEFD9A9B9B181717FFFFFEFFFEFDFFFFFEFFFFFE181717CBCBCAFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD686969181717181717191818282828191818FFFEFDFFFFFEFFFFFE676867181717 -FFFFFEFFFFFEF3F1F0282828676867FFFFFEFFFFFED6D6D53B3B3A181717181717282828B2B2B2 -FFFEFDFFFFFEFFFFFED7D6D63B3B3A1817171817172A2929BEBEBEFFFFFEE4E2E23B3B3A191818 -181717181717282828656666FFFFFEFFFFFEFFFFFED7D6D6282828181717FFFEFD9A9B9B181717 -181717191818FFFEFDFFFFFED7D6D63A3A39181717181717282828B2B2B2FFFEFDFFFFFEFFFFFE -1817179B9C9BFFFFFEFFFFFEFFFFFE999A9A676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFFFE464D827E79A3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCACACAC9FFFFFE -FFFEFDFFFFFEFFFEFDE4E2E2CACAC9CACAC9C9C9C9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0 -CACAC9D7D6D6FFFFFEFFFFFEFFFFFEE5E3E3CACAC9FFFFFEFFFFFEFFFFFEFFFFFEC9C9C9F3F1F0 -FFFFFEFFFFFEFFFFFEFFFFFEF3F0F0CBCBCAD7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -CACAC9E5E3E3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED8D7D7F3F0F0FFFFFECACAC9CACAC9 -CACAC9E5E3E3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFECACAC9C9C9C9FFFFFED7D6D6D8D7D7FFFEFD -FFFEFDFFFFFEFFFFFEF3F1F0D7D6D6FFFFFEFFFFFEFFFFFEFFFFFECACAC9CBCBCAFFFEFDFFFFFE -FFFFFEFFFFFEE5E3E3CACAC9CACAC9C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFECACAC9CACAC9FFFFFED7D6D6D7D6D6FFFFFEFFFFFED7D6D6D7D6D6FFFFFEFFFEFD -FFFFFEF4F2F1CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD7D6D6CACAC9F3F1F0D8D7D7D6D6D5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0CACAC9D7D6D6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7D6D6CBCBCAF3F1F0FFFFFEFFFFFEFFFEFDFFFFFEE5E3E3CACAC9FFFFFEFFFEFD -FFFFFEE5E3E3CACAC9FFFFFEFFFFFEFFFEFDF3F1F0CACAC9FFFEFDFFFFFEFFFEFD676867686969 -F3F1F0C9C9C9D7D6D6FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE4E2E2CACAC9D7D6D6FFFEFD -CBCBCAF3F0F0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCACAC9FFFFFEFFFFFEFFFFFEF3F1F0CACAC9 -D7D6D6FFFFFECACAC9E4E2E2FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3E4E2E2FFFFFECACAC9C9C9C9 -CBCBCAE5E3E3FFFFFEFFFEFDFFFFFEE5E3E3CACAC9E4E2E2FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3 -CACAC9FFFFFEFFFFFEFFFFFEFFFFFECACAC9F3F0F0FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEE5E3E3CACAC9E5E3E3F3F0F0CACAC9F3F1F0FFFFFEFFFFFEFFFFFED7D6D6FFFEFDFFFFFE -FEFDFCFFFFFED6D6D5FFFFFEFFFEFDFFFFFEFFFFFEC9C9C9CACAC9FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFECACAC9CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D5CACAC9F4F2F1 -E4E2E2CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEC9C9C9FFFFFEE4E2E2CACAC9CACAC9CACAC9 -FFFFFEFFFEFDFFFFFEFFFFFECACAC9C9C9C9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFECACAC9E5E3E3 -FFFEFDFFFFFEFFFFFEE5E3E3D6D6D5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDD4CCDF3E457BACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFE928CB2 -3F467CE4DDEAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD696695505589FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED53E457BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E447B8882ABFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED53E467BC7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBAB1CC3E457BBAB2CCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BDD53E457B -C6BDD5FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD8882AB3E467BF3EFF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BDD53E457BC6BDD5FFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD5D5E8E5D5D8EFEFEFDFFFFFEFFFEFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BDD53E457BC6BDD5FFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFEFDE3DCE93D457C -938CB2FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BDD53E457BC6BDD5FFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDACA4C43E457BC6BFD7FFFEFC -FEFDFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDC6BDD53E457BC6BDD5FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD7D78A43F467CFFFEFDFFFEFCFFFFFEFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCC6BDD53E457BC6BDD5FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFFFEFDFEFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFEFD515689736F9CFFFEFDFFFEFDFFFDFCFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCC6BDD5 -3E457BC6BDD5FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDD4CCDF3E457B9F98BCFFFEFDFEFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCC6BDD53E457BC6BDD5 -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -9F98BB3E457BD4CDE1FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCC6BDD53E457BC6BDD5FFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE726F9C474E82 -FFFEFCFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDC6BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB2938CB2FFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFDFCFFFCFCFFFCFCFFFCFCC6BDD53E457BC6BDD5FFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFEFCFCFEFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFCFCFEFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFEFDFFFEFDFFFEFDFFFEFDFFFEFCFFFEFDFFFEFDFFFEFD474E827D77A3FFFEFDFFFEFD -FEFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD938CB2938CB2FFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCC6BDD53E457BC6BDD5FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFFFCFCFFFCFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFEFEFDFFFFFDFFFEFDFFFEFDFFFEFDC6BED53E447AACA4C5FEFCFCFEFEFDFFFDFCFDFDFD -FEFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFEFDFEFEFDFEFEFD -FFFEFDFEFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5686695FFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938CB2938CB2FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCC6BCD43E457BC6BCD4FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FDFDFDFEFDFDFFFEFDFEFDFD928CB23E457BE2DBE8FEFDFDFEFCFCFEFEFDFFFEFDFEFEFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFD938CB2938CB2FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -C6BCD43E457BC6BCD4FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFCFC -FEFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFCFCFEFCFCFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFCFCFEFCFC -FFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFDFDFDFDFCFCFFFEFDFEFDFDFFFEFD -FDFCFCFFFEFD686695515689FDFDFDFEFDFDFEFDFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFD938CB2938CB2FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBC6BCD43E457B -C6BCD4FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFC -FFFDFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFFFCFCFFFDFCFFFDFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC -FEFCFCFEFCFCFFFDFCFFFDFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC -FEFCFCFEFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFBFBFCFBFBFCFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFDFDFEFDFDFEFDFDFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC -FEFCFCFEFDFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFDFDFDFEFEFDFFFEFDFEFCFCFEFEFDFDFDFDFEFDFDF1ECF2 -3E457B8681A9FDFDFDFEFDFDFDFDFDFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938CB2 -938CB2FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBC6BBD33E447BC6BBD3FFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFDFBFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC -FEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFCFBFBFCFBFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFDFAFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFEFDFDFEFDFDFFFDFCFEFDFDFEFDFCB9B1CC3E447BB7B0CC -FDFDFDFDFDFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC938CB2938CB2FFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAC6BBD33E467BC6BBD3FFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFEFBFCFEFBFCFFFDFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFEF9FBFEF9FBFDF9FAFDF9FAFDF9FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFCFAFBFDFAFBFDFAFBFEFBFCFEFBFCFEFBFCFEFBFCFFFCFCFEFBFC -FEFBFCFDFBFBFDFBFBFDFBFBFDFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFDFCFCFDFBFBFDFCFC -FEFCFCFEFCFCFEFCFCFEFCFCFDFCFCFEFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFDFCFCFDFBFBFDFBFBFDFBFBFEFBFC -FDFCFCFDFCFCFEFCFCFDFCFCFEFCFCFEFCFCFDFCFCFFFDFCFEFCFCFEFCFCFEFCFCFDFCFCFDFCFC -FDFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFEFDFDFDFEFDFDFDFCFDFDFDFDFDFD8781AA3E457BF0ECF3FDFDFDFDFDFD -FDFDFDFDFDFDFDFEFDFDFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -C6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC938CB2938CB2FFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFCFC -FFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAC5BAD33E457BC5BAD3FFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFBFBFFFAFBFFFAFBFFFBFBFFFCFCFFFBFBFFFCFCFFFCFCFFFBFBFFFBFBFFFBFB -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFAFBFEFBFCFEFAFBFDFAFBFDFBFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFBF7FAFBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFDF8FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFEFAFBFDFAFBFEFAFBFDFAFBFEFAFBFDFAFB -FDFAFBFDFBFBFDFBFBFDFBFBFDFBFBFEFCFCFEFCFCFEFBFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFEFBFCFDFBFBFDFBFBFDFBFBFDFBFBFCFAFBFCFAFBFCFAFBFDFBFBFDFBFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFDFBFBFDFBFBFCFBFBFCFBFB -FCFBFBFDFCFCFDFCFCFDFCFCFDFCFCFEFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFDFEFDFDFEFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFC5D5E8F5E5E8FFCFBFCFDFDFDFEFDFDFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5686695 -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC938CB2938CB2FFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFFBFBFFFBFBFFFAFBFFFAFB -FFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9C5BAD33E457BC5BAD3FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFFAFB -FFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFBFBFFFBFBFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFEFAFBFEFAFBFEFBFC -FEFBFCFEFBFCFEFAFBFEFAFBFEFAFBFEFAFBFDFAFBFDFAFBFDFAFBFDFAFBFCFAFBFDF9FAFDF9FA -FDF9FAFDF9FAFDF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFBF7FAFBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDF9FAFDF9FAFDFAFBFDFAFBFDFAFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFCFBFBFCFBFBFDFBFB -FDFBFBFDFBFBFCFAFBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFAF9FBFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAF9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FBFCFBFBFCFBFBFCFBFB -FCFBFBFDFCFCFDFCFCFDFCFCFCFBFBFDFCFCFCFBFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFDFD -FEFDFDFEFDFDFEFDFDFDFDFDFCFCFCFDFDFDFDFDFDFDFCFCFDFCFCFDFDFDFDFDFDFDFDFDFDFDFD -FCFCFCFEFDFDFCFBFCE1DBE93E457B918BB1FEFEFDFCFBFCFCFCFCFCFBFCFCFDFDFCFBFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFCFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFC938CB2938CB2FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9C5BAD33E457BC5BAD3FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFB -FEFAFBFEFAFBFEFAFBFEFAFBFFFCFCFFFCFCFFFBFBFEFAFBFEFAFBFEFAFBFEFAFBFEFAFBFEFAFB -FEFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFCF9FAFDF9FAFDF8FAFCF8FAFCF8FAFCF8FA -FBF7FAFBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF6F8FBF6F8FBF6F8FAF5F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FCF8FAFCF8FAFCF8FA -FCF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFCF9FAFCF9FAFCF9FAFCF9FAFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFBFBFDFBFBFDFAFBFDFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAF9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F9F6F9F8F5F9F8F5F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF7F9FAF8FAFAF8FA -FAF8FAFAF8FAFBF9FBFBF9FBFBF9FBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFCFBFBFCFBFBFCFBFB -FCFBFBFCFBFCFCFBFCFCFBFCFCFBFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFDFD -FDFDFDFDFCFCFCFBFCFCFBFCFDFCFCFDFCFCFDFCFCFDFCFCFEFCFCFDFDFDFCFBFCFCFCFCFBFCFC -FCFDFDABA3C33E467BC5BDD5FBFCFCFBFCFCFCFDFDFCFCFCFCFBFCFBFCFCFBFAFBFAFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFC938CB2938BB1FFFCFCFFFCFCFFFCFCFFFDFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF6F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FEF7F9 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8C5B9D2 -3D457BC5B9D2FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF6F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF9FAFFF9FA -FFF9FAFFF9FAFEF9FAFFF9FAFFF9FAFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFEF9FBFEF9FBFEF9FB -FEFAFBFEFAFBFEFAFBFEFAFBFEFAFBFEFAFBFEFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FAF5F8FAF4F8FAF4F8F9F4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FBF5F8FBF6F8FBF6F8FBF6F8FBF6F8FAF5F8FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFCFAFB -FDFAFBFDFAFBFDF9FAFDFAFBFCFAFBFCFAFBFCFAFBFCF9FAFCF9FAFCFAFBFCFAFBFBFAFBFBF9FB -FBF9FBFBF9FBFAF9FBFAF8FAFAF7F9FBF7FAFAF8FAFAF8FAFAF8FAF9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF7F9 -FBF8FAFAF8FAFAF8FAFAF9FBFAF8FAFAF9FBFBF9FBFBF8FAFBF9FBFBF9FBFCFBFBFCFBFBFCFBFB -FCFBFBFDFCFCFCFBFCFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFCFBFCFCFBFCFCFBFCFCFBFCFDFCFC -FDFCFCFDFCFCFCFBFCFCFBFCFCFBFCFCFBFCFBFBFCFCFCFCFCFDFDFCFCFCFCFCFCFBFCFC7C77A2 -474E82FBFBFBFAFBFCFDFCFCFAFBFCFCFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -938BB1938BB1FFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFB -FFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8C5B8D13E457BC5B8D1 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFFF8FAFFF8FAFEF8F9 -FEF8F9FEF8F9FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFEF9FAFEF9FAFEF9FBFEF9FBFEF9FBFEF9FB -FEF9FBFEF9FBFEF9FBFEF9FBFDF9FAFDF9FAFDF8FAFDF8FAFDF8FAFDF8FAFCF8FAFCF8FAFCF8FA -FCF7F9FCF7F9FCF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF6F8FBF6F8FBF6F8FBF6F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7FAF4F8FAF4F8FAF4F8FBF5F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FBF6F8FBF6F8FBF6F8FAF5F8FBF7F9FBF7F9FBF7F9FBF7F9 -FBF6F8FBF7F9FBF7F9FCF8FAFCF8FAFCF8FAFCF8FAFBF7FAFBF7FAFBF7FAFCF9FAFCF9FAFCF9FA -FCF8FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFBF8FAFBF8FAFBF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF7F9FAF7F9FAF7F9F9F6F9F9F7F9F9F7F9F9F7F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F7F4F8F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F5F9F8F5F9F9F6F9F8F5F9F8F5F9F9F6F9F9F6F9F9F6F9F9F7F9F9F8FAF9F7F9F9F8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF9FBFBF9FBFBF8FAFBF9FBFBF9FBFCFBFBFCFBFBFCFBFB -FCFBFBFCFBFBFCFBFBFCFBFBFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFBFBFCFCFBFCFDFCFC -FCFBFCFBFBFCFBFBFCFCFBFCFBFBFCFCFCFCFBFBFCFCFDFCFCFBFCFBFBFC515588726E9CFBFBFC -FCFCFCFAFBFCFBFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFCFCFBFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDC5BDD5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC938BB1938BB1 -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFFBFBFFFAFBFFFAFBFFFAFBFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FFF3F7FEF3F7FEF3F7FEF3F7C4B7D13E457BC4B7D1FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF6F8FEF6F8 -FEF6F8FEF6F8FFF6F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FEF7F9FEF7F9FEF7F9 -FEF8F9FEF8F9FFF8FAFFF8FAFEF8F9FEF9FAFEF9FAFEF9FAFEF9FAFEF9FAFEF9FAFEF9FAFEF9FA -FEF9FAFDF8FAFDF8FAFDF8FAFDF8FAFDF8FAFDF7F9FCF7F9FCF7F9FDF7F9FCF7F9FCF7F9FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FAF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F1F6F9F1F6F9F1F6F9F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F9F1F6F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FBF6F8FBF6F8FAF5F8FBF6F8FBF6F8FBF6F8 -FBF7F9FBF7F9FBF7F9FBF7FAFBF7F9FBF7F9FBF7FAFBF7FAFBF7FAFBF7FAFBF7FAFBF7FAFBF8FA -FBF8FAFBF8FAFBF8FAFBF8FAFBF8FAFBF8FAFBF8FAFAF7F9FAF7F9FAF7F9FAF7F9FAF6F9F9F6F9 -F9F6F9FAF7F9F9F6F9F8F5F9F9F6F9F9F6F9F8F5F9F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F5F9F8F5F9F8F5F9F9F6F9F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9 -F9F7F9FAF8FAFAF8FAFAF9FBFAF8FAFAF8FAFBF9FBFBF9FBFBF9FBFBF9FBFBFAFBFBFAFBFBFAFB -FBFAFBFBFAFBFBFAFBFBFBFCFCFBFCFCFBFCFCFBFCFAFBFCFBFBFCFCFBFCFBFBFCFBFBFCFCFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFBFCFAFBFCD2CADE3E457B9D96BAFAFBFCFAFAFCFBFBFC -FAFBFCFAFBFCFBFBFCFAFBFCFAFAFCFAFBFCFAFBFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FEFDFDC5BDD5686695FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC938BB1928BB1FFFCFCFFFBFB -FFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF6F9FEF6F8FEF6F8FEF6F8FEF5F8FEF5F8FEF5F8FEF5F8FEF4F7FEF4F7FEF4F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FFF3F6FEF2F6FEF2F6FEF2F6C4B7D13E457BC4B7D1FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF4F7FEF4F7FEF4F7FEF5F8FEF5F8FEF5F8 -FEF5F8FEF6F8FEF7F9FEF6F8FEF6F8FEF6F8FEF6F8FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9 -FEF7F9FEF7F9FEF8F9FEF8F9FEF9FAFEF9FAFEF8F9FEF8F9FEF8F9FEF8F9FDF7F9FDF7F9FDF7F9 -FDF7F9FDF7F9FCF8FAFCF7F9FCF7F9FCF6F9FCF6F9FCF6F9FBF6F8FBF6F8FBF6F8FBF5F8FBF5F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF3F7F9F3F7F9F4F8F9F3F7F9F2F7F9F2F7F9F2F7 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F2F6F9F2F7F9F2F7F9F2F7F9F3F7F9F3F7 -F9F3F7FAF4F8FAF4F8FAF4F8FAF4F8F9F4F8F9F4F8F9F4F8FAF5F8FAF5F8FBF6F8FBF6F8FBF6F8 -FBF7F9FAF6F9FBF7F9FBF7F9FBF7FAFBF7FAFBF7FAFBF7FAFBF7FAFBF7FAFAF7F9FAF7F9FBF7FA -FAF7F9FAF8FAFBF8FAFAF7F9FAF7F9FAF7F9F9F6F9F9F6F9F9F6F9FAF6F9F9F6F9F8F5F9F8F5F9 -F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F7F3F7F7F3F7F7F3F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F5F2F7F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F4F1F6 -F4F1F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F6F2F7F6F2F7F6F2F7F6F2F7F7F3F7 -F7F3F7F7F3F7F7F4F8F8F4F8F8F4F8F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F9F7F9F9F7F9 -F9F7F9F9F8FAF9F8FAFAF8FAFAF8FAFAF8FAFBF9FBFAF9FBFAF9FBFBF9FBFAFAFBFAFAFBFBFAFB -FBFAFBFBFAFBFBFBFCFCFBFCFCFBFCFBFBFCFBFAFBFBFAFBFBFBFCFBFBFCFBFBFCFBFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFBFBFCFAFBFB9E97BB3E457BD0CADEFAFBFCFBFBFCFAFBFCFAFAFCFAFAFC -FAF9FBFAFBFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCF9FAFBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDC5BDD5 -686695FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC938BB1938BB1FFFBFBFFFBFBFFFBFBFFFAFB -FFFAFBFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF7F9FFF7F9FFF6F9FFF7F9FEF6F8FEF6F8FEF6F8 -FEF6F8FEF5F8FEF5F8FEF4F7FEF4F7FEF4F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6C5B6D03F457BC4B7D1FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF4F7FEF4F7 -FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FFF5F8FFF6F9FEF6F8FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9 -FEF7F9FEF7F9FEF7F9FDF6F9FEF8F9FEF8F9FDF6F9FDF6F9FDF7F9FDF6F9FDF7F9FDF7F9FCF6F9 -FCF7F9FCF6F9FCF6F9FBF6F8FBF5F8FBF5F8FBF5F8FBF5F8FBF5F8FAF4F8FAF4F8F9F3F7FAF3F7 -FAF2F7F9F3F7F9F3F7F9F3F7F9F3F7F9F2F7F9F2F7F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8EFF5 -F8EFF5F8F0F5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F9F2F7F9F2F7F9F2F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F4F8F9F4F8FAF5F8FAF5F8FAF5F8F9F5F8FAF6F9 -FAF6F9FAF6F9FBF7F9FAF6F9FAF6F9FBF7FAFBF7F9FAF6F9FAF6F9FAF6F9FAF6F9FAF7F9FAF7F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9F8F5F9F8F5F9F8F5F9F8F4F8F8F4F8F7F3F7F7F3F7 -F7F3F7F7F4F8F7F3F7F7F3F7F6F2F7F6F2F7F6F2F7F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F5F1F6F5F1F6F5F1F6F5F2F7F6F1F7F6F2F7F5F2F7 -F6F2F7F7F3F7F7F3F7F7F4F8F6F3F8F7F4F8F7F4F8F8F5F9F8F5F9F8F5F9F8F5F9F9F6F9F9F6F9 -F9F6F9F9F8FAF9F8FAFAF8FAFAF8FAFAF9FBFAF8FAFAF9FBFAF9FBFAF8FAFAF9FBFBFAFBFBFBFC -FBFAFBFBFAFBFBFAFBFBFAFBFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFAF9FB -F9F9FAFBFBFCFAFBFB716E9C515588FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9FAFBFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFCFCFCFEFDFDC6BDD5686695FEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFC938BB1938BB1FFFBFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FA -FFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FEF6F8FEF6F8FEF5F8FEF5F8FEF5F8FEF4F7FEF4F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF2F6FEF2F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF0F5FEF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5C4B6D03E457BC4B6D0FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FEF0F5FEF0F5FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF2F6FEF2F6FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF4F7FEF5F8FEF5F8FEF5F8FEF6F8FEF5F8FEF6F8FEF6F8FEF7F9FEF7F9FEF7F9 -FDF6F9FDF6F9FDF6F9FDF6F9FDF6F9FDF6F9FCF6F9FDF6F9FDF6F9FCF6F9FCF6F9FCF7F9FCF6F9 -FBF5F8FBF5F8FBF5F8FBF5F8FBF5F8FAF3F7FAF3F7FAF3F7FAF3F7F9F3F7F9F2F7F8F1F6F9F2F7 -F9F2F7F8F1F6F8F1F6F8F1F6F8F0F6F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F1F6F8F1F6F9F1F6F9F2F7 -F9F1F6F8F1F6F8F2F6F8F2F6F8F3F7F9F3F7F9F4F8F9F4F8F9F4F8F9F4F8FAF5F8FAF5F8FAF5F8 -FAF5F8F9F5F8FAF6F9FAF6F9FAF6F9F9F6F9F9F5F8FAF5F8F9F5F8F9F6F9F8F5F9F8F4F8F8F4F8 -F8F4F8F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F7F3F7F7F3F7F7F3F7F6F2F7F6F2F7F6F1F7 -F6F1F7F5F1F6F5F1F6F5F1F6F5F1F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F5F1F6F5F1F6F5F1F6F5F1F6 -F6F2F7F6F2F7F6F2F7F7F3F7F6F2F7F7F4F8F7F4F8F8F5F9F8F5F9F8F5F9F8F5F9F9F6F9F9F6F9 -F9F6F9F9F7F9F9F7F9F9F8FAF9F8FAFAF9FBFAF9FBFAF8FAFAF9FBFAF9FBFAFAFBFAFAFBFAFAFB -FAFAFBFAFAFBFAFAFBFAFAFBFAFAFBFAFAFBFAFBFCFAFBFCFAF9FBFAF9FBFAFAFCFAF9FBF9F9FB -FAFAFB464E827C77A3FAFAFCFAFAFCF9FAFBF9F9FBF8F8FBF8F8FBF8F8FBF8F8FBF7F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9F9FBFAF9FBFAF9FBFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDC5BDD5686695FEFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFB938BB1938BB1FFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9 -FFF6F9FFF7F9FEF6F8FEF6F8FEF5F8FEF5F8FEF4F7FEF4F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF1F6FEF1F6FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -C4B5CF3E457BC4B5CFFDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDF0F5FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FEF1F6FEF1F6FEF2F6FEF2F6FEF2F6FEF2F6FFF3F6FEF2F6FEF3F7FDF2F6FDF2F6 -FEF3F7FEF3F7FEF4F7FEF4F7FEF4F7FDF4F7FDF5F8FEF5F8FEF6F8FEF6F8FDF5F8FDF5F8FDF5F8 -FDF5F8FDF5F8FDF6F9FCF6F9FBF6F8FCF5F8FCF5F8FBF5F8FBF5F8FBF6F8FBF5F8FBF5F8FBF5F8 -FBF5F8FAF3F7FAF3F7FAF2F7F9F2F7F9F2F7F9F2F7F9F1F6F8F1F6F8F0F5F8F1F6F8F1F6F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F7EEF5F7EEF5F7EEF5F7EEF5F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4 -F6EDF4F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6EBF3F6ECF3F6ECF3F7EDF4F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EEF5F7EEF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F0F5F8EFF5F8EFF5 -F8F1F6F8F1F6F8F2F6F9F2F7F9F2F7F8F2F6F8F2F6F9F3F7F9F4F8F9F4F8F9F4F8F9F4F8F9F4F8 -F9F4F8F9F4F8F9F4F8F8F4F8F9F5F8F9F5F8F9F5F8F9F5F8F8F4F8F8F4F8F8F4F8F8F4F8F8F5F9 -F8F4F8F7F3F7F7F2F7F7F2F7F7F3F7F6F2F7F6F2F7F6F1F7F6F2F7F5F0F6F5EFF5F5F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4EFF5F3EEF5F3EEF5F3EEF5F2EDF4F2EDF4F2EDF4F2ECF4F2EDF4F2EDF4 -F2EDF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F3EEF5F3EEF5F3EEF5F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F5F1F6F5F1F6 -F5F1F6F6F2F7F6F2F7F6F2F7F6F2F7F7F4F8F7F4F8F7F4F8F7F4F8F8F5F9F8F5F9F8F6F9F9F6F9 -F9F6F9F9F6F9F9F7FAF9F8FAFAF9FBFAF8FAF9F8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAFAFB -FAFAFBFAFAFBFAF9FBF9F9FBF9F9FBFAF9FBFAF9FBFAF9FBF7F8FAF9F9FBF9FAFBC1BBD43E457B -A7A1C2F9F9FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9F9FBF9F9FBF9F9FBFAFAFC -FAFAFCF9FAFBFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDC5BDD5686695FEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFB938BB1938BB1FFFAFBFFF9FAFFF9FAFFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FEF6F8FEF6F8 -FEF5F8FEF5F8FEF4F7FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF1F6FEF1F6FEF1F6FEF0F5 -FDF0F5FDF0F5FDF0F5FDEFF4FDEFF4FDEFF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3C4B4CF3E457B -C4B4CFFDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEFF4FDEFF4 -FDEFF4FDF0F5FDF0F5FDF0F5FDF0F5FDF1F6FEF2F6FEF1F6FDF2F6FDF2F6FDF2F6FDF3F7FDF2F6 -FEF3F7FEF3F7FEF3F7FDF3F7FDF4F7FDF4F7FDF5F8FDF5F8FDF5F8FDF5F8FDF5F8FDF5F8FDF5F8 -FCF5F8FCF5F8FCF6F9FBF5F8FBF4F7FBF4F7FCF4F8FBF4F7FAF3F7FAF3F7FAF2F7FAF3F7F9F2F7 -F9F2F7F9F1F6F9F1F6F9F1F6F8F0F5F8F0F5F8F0F5F8EFF5F8EFF5F8EFF5F8EFF5F7EEF5F7EDF4 -F7EDF4F7EDF4F7EDF4F7ECF3F7ECF3F6ECF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F5EBF3F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6ECF3 -F6ECF3F7ECF3F7ECF3F7EDF4F7EDF4F7EEF5F7EEF5F7EEF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8F1F6F8F1F6F8F0F6F8F2F6F9F2F7F9F3F7F8F1F6F8F3F7F9F3F7F8F3F7F8F3F7F8F3F7 -F8F3F7F8F3F7F8F4F8F8F4F8F8F4F8F8F3F7F8F3F7F8F3F7F8F3F7F8F4F8F8F3F7F7F3F7F7F2F7 -F7F2F7F6F1F7F6F1F7F5F1F6F6F1F7F5F0F6F5F0F6F4EFF5F4EFF5F4EFF5F4EFF5F3EEF5F3EEF5 -F2EDF4F2EDF4F2EDF4F2ECF4F2ECF4F1ECF4F1ECF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F0EAF3 -F0EAF3F0EAF3F0EBF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EBF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F2EDF4 -F1ECF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F3EEF5F3EEF5F3EEF5F4F0F6F4F0F6F4F0F6F5F1F6 -F6F1F7F5F2F7F6F2F7F6F2F7F6F2F7F7F4F8F7F4F8F7F4F8F8F5F9F8F5F9F8F6F9F8F6F9F8F6F9 -F8F6F9F9F7FAF9F7FAF9F8FAF9F8FAF9F7FAF9F8FAF9F8FAF9F8FAFAF8FAFAF8FAFAF9FBFAF9FB -FAF9FBF9F9FBF9F8FAF9F8FAF9F9FBF9FAFBF8F8FAFAFAFCF8F8FB8F8AB13E457BDDD8E8F8F8FB -F8F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F8FAF6F8FAF6F8FAF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9F9FBF9F9FBFAFAFC -FAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFDFDFDFDFDFDC5BDD5686695FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFB938BB1 -938BB1FFF9FAFFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FEF6F8FEF5F8FEF5F8FEF4F7FEF4F7 -FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF1F6FEF1F6FDF0F5FDF0F5FDF0F5FDEFF4FDEFF4FDEFF4 -FDEEF4FDEEF4FDEDF3FDEDF3FDEDF3FDEDF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3C4B4CF3E467BC4B4CFFDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDEDF3FDEDF3FDEDF3FDEDF3FDEEF4FDEEF4 -FDEFF4FDEFF4FDEFF4FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF1F6FDF1F6FDF2F6FDF2F6FDF2F6 -FDF2F6FDF2F6FDF3F7FDF3F7FDF3F7FDF4F7FDF4F7FCF3F7FCF3F7FCF3F7FCF3F7FCF4F8FCF3F7 -FCF4F8FBF4F7FBF4F7FBF3F7FBF3F7FBF2F6FAF2F7FAF2F7F9F1F6FAF2F6F9F1F6F9F1F6F8F0F5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F7EDF4F7EDF4F7EDF4F7EDF4F6ECF3F6ECF3F6EBF3 -F6EBF3F6EBF3F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F5EBF3F5EAF2F4E9F2F5EAF2F5EAF2F6EBF3 -F6EBF3F6EBF3F6ECF3F6EDF4F7EDF4F7EDF4F6EDF4F6EDF4F7EEF5F7EEF5F7EFF5F8EFF5F8EFF5 -F8EFF5F8F0F6F8F0F6F8F0F6F8F2F6F8F1F6F8F2F6F8F2F6F8F2F6F8F3F7F8F2F7F8F3F7F8F3F7 -F8F4F8F8F4F8F8F3F7F7F2F7F7F2F7F7F2F7F7F2F7F7F2F7F7F2F7F6F1F7F6F1F7F6F1F7F5F0F6 -F5F0F6F4F0F6F4EFF5F4F0F6F3EEF5F3EEF5F2EEF5F2EDF4F2EDF4F2EDF4F2EDF4F1ECF4F1ECF4 -F1EBF4F1EBF4F1EBF4F0EAF3F0EAF3F0EAF3F0E9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EEE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2F0EAF3F0EAF3F0EAF3F1EBF4F1EBF4 -F1EBF4F1EBF4F1ECF4F1ECF4F2EDF4F2EDF4F2EEF5F2EEF5F2EEF5F3EEF5F4EFF5F4F0F6F4F1F6 -F4F1F6F5F1F6F5F1F6F6F2F7F6F3F8F6F3F8F7F4F8F7F4F8F7F5F8F7F5F9F8F5F9F8F5F9F8F6F9 -F8F6F9F9F7FAF9F7FAF9F7FAF9F7FAF9F8FAF8F8FAF9F8FAF9F9FBF9F8FAF9F8FAF9F8FAFAF8FA -F9F8FAF8F8FAF8F8FBF9F9FBF8F8FAF8F8FBF7F7FA6765945A5D8EF8F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF6F8FAF6F8FAF6F7FAF6F7FAF6F7FAF6F7FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F5F9F5F6FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F8FAF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBFAFAFC -FAFAFCF9FAFBFAFAFCFAFBFCFBFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FCFCFCFDFDFDC5BDD5686695FCFCFCFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFB938BB1938BB1FFF8FA -FFF8FAFFF7F9FFF7F9FFF6F9FFF7F9FFF6F9FEF5F8FEF4F7FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FDF1F6FDF0F5FDF0F5FDEFF4FDEEF4FDEEF4FDEEF4FDEDF3FDEDF3FDEDF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FCEBF2 -FCEBF2FCEBF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2C3B2CD3E457BC3B2CDFCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEBF2FCEBF2FCEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDEDF3FDEDF3 -FDEDF3FDEEF4FDEEF4FDEEF4FDEEF4FDEFF4FDEFF4FDF0F5FDF1F6FDF0F5FDF1F6FDF2F6FDF2F6 -FDF2F6FDF2F6FDF2F6FDF3F7FDF2F6FCF1F6FCF2F6FCF2F6FCF3F7FBF3F7FBF2F6FBF2F6FBF2F6 -FBF3F7FBF3F7FAF2F6FAF1F6FAF2F6F9F0F6F9F0F6F9F0F6F8F0F5F8F0F5F8EFF5F8EFF5F8EFF5 -F8EFF5F7EDF4F7EDF4F7ECF3F7ECF3F6ECF3F6EBF3F6EBF3F5EBF3F4E9F2F5EAF2F5EAF2F4E9F1 -F4E9F1F4E9F1F4E8F1F4E8F1F4E8F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F4E8F1F4E8F1F4E8F1F4E8F1F4E9F1F4E9F1F5EAF2F5EAF2 -F5EAF2F6EBF3F6EBF3F6EBF3F5EBF3F5ECF3F6ECF3F6EDF4F6EEF4F7EEF5F7EEF5F7EEF5F7EFF5 -F8F0F6F8F0F6F8F1F6F8F0F6F8F0F6F8F1F6F8F1F6F8F1F6F8F2F7F8F1F6F7F1F6F7F1F6F7F1F6 -F7F1F6F7F1F6F7F1F6F6F1F6F6F1F6F5F0F6F6F1F7F5F0F6F4EFF5F5F0F6F4EFF5F4EFF5F3EEF5 -F2EDF4F2EEF5F2EDF4F1ECF4F1ECF4F1EBF3F1EBF3F1EBF4F1EBF4F0EAF3F0EAF3F0EAF3EFEAF3 -EFE9F2EFE9F2EFE8F2EFE8F2EFE8F2EFE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EDE7F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE9F2EFE9F2EFE9F2F0EAF3 -EFEAF3F0EAF3F1EBF4F1EBF4F1EBF4F2EDF4F2EDF4F2EDF4F3EEF5F3EEF5F3EEF5F3EFF6F4F0F6 -F4F1F6F5F1F6F6F1F7F5F2F7F6F3F8F7F3F7F6F3F8F7F5F8F7F5F8F8F5F9F7F5F8F7F5F9F7F6FA -F8F7FAF9F7FAF9F7FAF9F7FAF8F7FAF8F7FAF9F8FAF9F8FAF8F8FAF7F7FAF8F8FAF8F8FAF7F7FA -F7F7FAF7F6FAF8F8FBF5F5F8EBE7F13E447A847FA9F5F6FAF6F8FAF6F8FAF6F8FAF6F7FAF6F7FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F7FA -F6F7FAF6F7FAF6F8FAF6F8FAF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF9F9FBF9FAFB -FAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFCFCFC -C4BCD5686695FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFFAFBFFFAFB938BB1938AB0FFF8FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF6F8FEF5F8FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6FEF1F6FEF1F6FDF0F5FDF0F5 -FDEFF4FDEEF4FDEDF3FDEDF3FDEDF3FDEDF3FDECF3FDECF3FDECF3FDECF3FDEBF2FDEBF2FCEBF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCEAF2FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1C3B2CD3E457BC3B2CDFCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCEAF2FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCEAF2FCEAF2FCEAF2FCEAF2FCEBF2FDEBF2FDEBF2FDECF3FDECF3FDECF3FEEDF3FDECF3 -FCECF3FCECF3FDEDF3FDEDF3FDEEF4FDEFF4FDEFF4FDEFF4FDEFF4FDF0F5FDF1F6FDF1F6FCF1F6 -FCF1F6FCF1F6FCF1F6FCF1F6FCF2F6FCF1F6FBF1F6FBF1F6FBF0F5FAF1F6FBF1F6FBF1F6FAF1F6 -F9F0F6F9EFF5F9F0F6F9EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EEF4F7ECF3F7ECF3F7ECF3 -F6EBF3F6EBF3F6EAF2F5EAF2F5E9F2F5E9F2F4E9F1F3E9F2F4E9F1F4E8F1F3E7F1F3E7F1F3E7F1 -F3E6F0F3E6F0F3E5F0F3E6F0F3E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E6F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E7F1F3E7F1F3E7F1F4E8F1F4E8F1F4E9F1F4E9F1 -F4E9F1F4E9F1F5EAF2F5EAF2F5EBF3F5EBF3F6ECF3F6ECF3F6ECF3F6EDF4F7EEF5F7EEF5F7EEF5 -F7EFF5F8EFF5F7EFF5F7F0F6F6F0F5F7F0F6F7F0F6F7F0F6F7F0F6F6F0F5F6F0F5F6F0F5F6F1F6 -F6F1F6F6F1F6F6F0F5F5F0F6F5EFF5F4EEF5F3EEF5F3EEF5F2EDF4F3EEF5F2EDF4F2ECF4F1ECF4 -F1ECF4F1EBF4F1EBF3F1EBF3F0E9F2EFE9F2EFE9F2EFE9F2EFE8F2EFE8F2EFE8F2EEE8F2EEE8F2 -EEE7F1EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0EDE6F1EDE6F1EDE6F1EDE6F1EEE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE9F2 -EFE9F2F0EAF3F1EBF3F1EBF3F1EBF4F0EBF3F2EEF5F2EDF4F2EDF4F2EEF5F3EEF5F3EFF6F3EFF6 -F4F0F6F4F1F6F5F2F7F6F2F7F5F2F7F6F3F8F6F3F8F6F4F8F7F5F8F7F5F8F7F5F8F7F5F9F7F5F9 -F7F5F9F8F7FAF8F7FAF7F6FAF7F6FAF7F7FAF8F8FAF7F7FAF7F7FAF7F7FAF7F7FAF7F7FAF6F7FA -F7F6FAF7F7FAB3ACC93E467BB3AECAF5F5F9F6F7FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF6F7FAF6F7FAF6F8FAF6F8FAF6F8FAF7F8FBF8F8FBF8F8FBF8F8FBF9F9FBF9F9FB -FAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCC4BCD5686695 -FDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFBFBFFFAFBFFF9FAFFF9FA938BB1938AB0FFF7F9FFF7F9FFF7F9FEF6F8FEF5F8 -FEF5F8FEF4F7FEF3F7FEF2F6FEF2F6FEF2F6FEF1F6FDF0F5FDF0F5FDEFF4FDEEF4FDEEF4FDEDF3 -FDEDF3FDEDF3FDECF3FDECF3FDEBF2FCEBF2FCEAF2FCEAF2FCE9F1FCE9F1FCE9F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0C3B1CC3E447BC4B1CDFCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE9F1FCE9F1FCE9F1FCEAF2FCEAF2FCEBF2FDECF3FDEBF2FCEBF2FCECF3 -FCECF3FCECF3FCECF3FCEDF3FCECF3FCEEF4FCEEF4FCEEF4FCEFF4FCEFF4FCF0F5FCF0F5FDF1F6 -FCF0F5FCF0F5FCF1F6FBF0F5FBF0F5FBF1F6FBF0F5FAF0F5FAF0F5FAF0F5F9EFF5F9EFF5F9EEF4 -F8F0F5F8EFF5F8EEF4F8EEF4F8EEF4F7ECF3F7ECF3F7ECF3F6EBF3F6EBF3F6EAF2F5EAF2F5E9F2 -F5E9F2F4E8F1F4E8F1F4E8F1F3E7F1F3E7F1F3E6F0F3E6F0F3E5F0F2E5F0F2E5F0F2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF1E4EFF1E4EFF1E3EEF1E2EEF1E2EEF1E3EEF1E3EEF1E3EEF1E2EEF1E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF1E3EEF1E3EEF1E3EEF1E4EFF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF2E4EF -F2E4EFF2E4EFF2E4EFF2E5F0F2E5F0F2E5F0F3E6F0F3E6F0F3E6F0F3E7F1F3E7F1F2E7F1F2E7F1 -F4E9F1F4E9F1F4E9F1F5EAF2F5EAF2F5EBF3F5EBF3F6ECF3F6ECF3F6ECF3F6EDF4F6EDF4F6EDF4 -F6EEF4F6EEF4F6EFF5F7EFF5F6EFF5F7EFF5F6EFF5F6F0F5F5EEF5F5EFF5F5EFF5F5EFF5F5EFF5 -F4EEF5F4EEF5F4EEF5F3EEF5F3EEF5F3EEF5F2ECF4F2ECF4F1EBF3F1EBF3F0EAF2F1EBF3F0EAF3 -F0E9F2EFE9F2EFE8F2EEE8F2EDE7F1EEE8F2EEE8F2EDE6F1ECE6F1ECE6F1ECE6F1ECE5F0EBE5F0 -ECE5F0EBE5F0EBE5F0EAE4F0EAE4F0EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0ECE5F0ECE5F0ECE5F0EDE6F1EDE6F1EEE8F2EEE8F2EEE8F2EEE8F2 -EFE8F2EFE9F2F0EAF3F0EAF3F1EBF3F1EBF4F2EDF4F2EDF4F2EDF4F2EEF5F2EEF5F3EFF6F3EFF6 -F4F1F6F4F1F6F4F2F7F6F2F7F5F2F7F5F3F8F6F3F8F6F4F8F6F4F8F6F4F8F6F4F8F7F5F9F7F6FA -F7F6FAF5F5F9F7F6FAF6F6F9F7F6FAF7F6FAF6F6F9F6F7FAF6F7FAF6F6F9F5F5F9F5F6FAF5F6FA -8481AA3F457BE7E5F0F5F5F9F4F4F8F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF4F6FAF4F6FAF4F6FA -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F4F5F9 -F4F5F9F4F5F9F4F5F9F5F5F9F5F6FAF4F6FAF4F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF6F7FAF6F7FAF6F8FAF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF9F9FBFAFAFC -FAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFCFCFCFCFCC5BDD5686695FDFDFDFDFDFD -FDFDFDFCFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFCFCFFFBFB -FFFAFBFFFAFBFFF9FAFFF8FA938AB0938AB0FFF7F9FEF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF3F7 -FEF2F6FFF3F6FEF1F6FDF1F6FDF0F5FDEFF4FDEEF4FEEEF4FDEEF4FDECF3FDEBF2FDEBF2FDEBF2 -FDEBF2FCEAF2FCE9F1FCE9F1FCE9F1FCE8F1FCE8F1FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFC3B0CC3E457BC2AFCCFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE8F1FCE8F1FCE8F1FCE9F1FCE9F1FCE9F1FBE9F1FCEBF2FCEBF2FCECF3 -FCECF3FCECF3FCECF3FCECF3FCEDF3FCEEF4FCECF3FCEFF4FCEEF4FCEFF4FCEFF4FBEEF4FBEFF5 -FBEFF5FBEFF5FAEFF5FBF0F5FAF0F5FAF0F5FAF0F5F9EEF4F9EEF4F9EEF4F8EEF4F8EEF4F8EDF4 -F7ECF3F8ECF3F8ECF3F7EBF2F6EAF2F6E9F2F6E9F2F5E9F2F5E8F1F5E9F2F4E8F1F4E8F1F3E7F1 -F3E5F0F3E6F0F3E5F0F2E5F0F2E5F0F2E5F0F2E4EFF1E3EEF1E3EEF1E3EEF1E2EEF0E2EEF0E2EE -F0E2EEF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDF0E1ED -F0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E2EEF0E2EEF0E2EE -F1E2EEF1E3EEF1E3EEF1E3EEF2E4EFF2E4EFF3E5F0F2E5F0F2E5F0F2E5F0F2E6F0F2E6F0F3E6F0 -F4E9F1F4E9F2F3E8F1F4E9F2F4E9F2F4E9F2F5ECF3F5EAF2F5ECF3F5ECF3F5ECF3F4ECF4F5EDF4 -F5EDF4F5EDF4F5EDF4F5EDF4F5EEF5F5EEF5F5EEF5F5EDF4F4EDF4F4EDF4F4EDF4F3EDF4F2ECF4 -F2ECF4F3EDF4F1EBF3F1EBF3F1EBF3F1EBF3F1EBF3F0EAF2EFE8F2EFE9F2EFE8F2EEE8F2EEE8F2 -EDE6F1ECE6F1ECE5F0ECE6F1ECE5F0ECE5F0EBE5F0EAE4F0EAE4F0EAE3EFEAE3EFEAE3EFE9E2EE -EAE2EEE9E3EFE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE9E2EFE9E3EFE9E3EF -E9E3EFEAE3EFEAE3EFEAE3EFEAE3EFEBE5F0EBE5F0ECE5F0ECE6F1EDE6F1EDE7F1EDE8F2EDE7F1 -EEE8F2EFE9F2EFEAF3EFE9F2F0EAF3F1EBF4F2EDF4F1ECF4F1ECF4F2EEF5F2EFF6F3EFF6F3EFF6 -F3F0F6F4F1F6F4F1F6F4F2F7F4F2F7F5F3F8F5F4F8F5F4F8F5F4F8F5F4F8F6F5F9F6F5F9F6F5F9 -F5F5F9F5F5F9F6F6F9F6F6F9F5F6FAF5F5F9F5F5F9F5F5F9F5F5F9F5F5F9F6F7FA515588666594 -F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF4F6FAF4F5F9F4F5F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F3F4F9F3F4F9F2F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF5F6FAF5F6FAF4F6FAF5F6FA -F5F6FAF5F5F9F6F7FAF6F7FAF6F8FAF7F8FBF7F8FBF7F8FBF9F9FBF8F8FBF9F9FBF9F9FBFAFAFC -FAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCC3BCD4686695FCFCFCFDFDFDFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFF9FA -FFF9FAFFF8FA938AB0938AB0FEF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6FEF1F6 -FDF0F5FDEFF4FDEEF4FDEEF4FDEDF3FDEBF2FDECF3FDECF3FDEBF2FCEAF2FCE9F1FCE9F1FDEBF2 -FDEBF2FDEBF2FDEBF2FDEAF1FDEAF1FDEAF1FDEAF1FDEAF1FDEAF1FCE9F1FCE9F1FCE9F1FCE8F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFC3B0CC -3E467BC3B0CCFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE8F0FCE9F1FCE9F1FCE9F1FDEAF1FDEAF1FDEAF1 -FDEAF1FDEAF1FDEBF2FDEBF2FDEBF2FDEBF2FDEAF1FCE8F1FCE8F1FCE9F1FCE9F1FCEAF2FCEAF2 -FCEBF2FCEDF3FCEBF2FCECF3FCEDF3FCEDF3FBECF3FBECF3FBEDF4FBEDF4FBEEF4FAEEF4FAEEF4 -FAEEF4FAEEF4F9EEF4FAEEF4F9EEF4F9EEF4F9EEF4F8EDF4F8EDF4F8EDF4F8ECF3F7EBF2F7EBF3 -F6EAF2F6EAF2F5E9F2F5E9F2F5E8F1F4E7F0F5E7F0F4E7F0F3E6F0F3E5F0F3E5F0F2E4EFF2E4EF -F4E6F0F3E6F0F3E5F0F3E5F0F2E5F0F2E4EFF2E4EFF2E4EFF2E4EFF1E4EFF1E4EFF1E4EFF1E4EF -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E2EEF1E2EEF1E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF1E2EE -F1E2EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E4EFF1E4EFF1E4EFF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF3E5F0F2E5F0F3E5F0F3E5F0F3E5F0F2E4EFF1E4EFF2E5F0F2E5F0F2E6F0F2E6F0 -F3E6F0F3E7F1F3E8F1F4E9F2F4E9F1F4EAF2F3E9F2F4EBF3F4EAF2F4EBF3F4ECF4F4ECF4F4ECF4 -F4ECF4F4ECF4F4ECF4F5EDF4F3ECF3F3ECF3F3ECF3F3ECF3F3EDF4F2ECF4F1ECF4F1EBF3F1EBF3 -F1EAF3F0EAF3F0E9F2EFE8F2F0E9F2EFE8F2EEE8F2EDE6F1EEE7F1EDE6F1ECE5F0EBE4F0ECE5F0 -ECE5F0EDE6F1EDE6F1EDE6F1ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0EBE5F0EBE4F0EBE4F0EBE5F0 -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E3EFE9E3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEBE4F0EBE4F0EBE4F0EBE4F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE6F1ECE6F1EDE6F1EEE8F2EDE6F1ECE5F0ECE5F0ECE6F1EDE7F1EDE7F1 -EEE8F2EEE9F3F0EAF3EFEAF3F0EAF3F0EBF3F0ECF4F2EDF4F2EEF5F2EEF5F3EFF6F2EFF6F3EFF6 -F3F0F6F3F1F7F4F2F7F4F2F7F4F2F7F4F2F7F4F2F7F5F4F8F5F4F8F5F5F9F5F5F9F5F5F9F5F5F9 -F6F5F9F4F4F9F5F5F9F4F5F9F5F5F9F5F5F9F5F5F9F4F5F9D8D4E53E467B8D89B0F4F4F8F2F3F8 -F3F4F9F5F6FAF5F6FAF5F6FAF5F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF3F5F9F3F5F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F3F4F9 -F3F4F9F3F4F9F2F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F5F9F2F5F9F3F5F9F4F6FA -F4F6FAF4F6FAF4F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF7F7FAF6F7FAF6F8FAF7F8FBF6F8FAF7F8FBF8F8FBF8F8FBF9F9FBFAFAFCFAFAFC -FAFBFCFAFBFCFAFBFCFBFBFCFBFBFCC3BCD4686695FCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FAFFF8FA -938AB09289B0FEF6F8FEF5F8FEF4F7FEF3F7FEF3F7FEF2F6FEF0F5FEF1F6FDEFF4FDF0F5FDEEF4 -FDEEF4FDEBF2FDECF3FDECF3FDEBF2FDEBF2FDECF3FEEFF4FEF1F6FEF1F6FEF1F6FEF0F5FEF0F5 -FEF0F5FEF0F5FEF0F5FEF0F5FEF0F5FEEFF5FEEFF5FEEFF5FEEFF5FEEFF5FEEFF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4C4B5CF3D457BC4B5CF -FDEDF3FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FEEFF4FEEFF5FEEFF5FEEFF5FEEFF5FEEFF5FEEFF5FEF0F5FEF0F5 -FEF0F5FEF0F5FEF0F5FEF0F5FEF1F6FEF0F5FEF0F5FEEFF5FDECF3FCE9F1FBE9F1FBE9F1FCE9F1 -FCECF3FBEBF2FBECF3FBECF3FBECF3FBECF3FBECF3FAECF3FAECF3FAECF3FAECF3F9ECF3FAEDF3 -F9EDF3F9ECF3F8ECF3F8ECF3F8ECF3F8EBF3F7EBF3F7EBF3F7EBF3F6EAF2F6E9F2F5E8F1F5E8F1 -F5E7F0F4E9F1F4E8F1F4E7F0F3E6F0F3E5EFF4E7F0F5EAF2F7ECF3F8EEF4F8EEF4F8EEF4F8EEF4 -F7EDF4F7EDF4F7EDF4F7EDF4F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EAF2F6EBF3F6EBF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F7ECF3F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F6ECF3F5EAF2F4E8F1F1E4EFF2E5F0F2E7F1 -F3E6F0F3E8F1F3E7F1F3E7F1F3E9F2F4E9F2F3EAF2F4EAF2F3EAF2F3EAF2F3EAF2F3EAF2F3EBF3 -F3ECF3F3EBF3F3EBF3F3EBF3F2EBF3F2EAF3F1EAF3F1EAF3F1EAF3F0EAF2F0E9F2F0E9F2F0EAF2 -EEE8F2EFE8F2EDE7F1EDE6F1EDE6F1ECE5F0ECE5F0EFE8F2F2ECF4F2EDF4F3EEF5F3EEF5F3EEF5 -F2EEF5F2EEF5F2EEF5F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1ECF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4 -F2EDF4F2EEF5F2EEF5F2EEF5F3EEF5F3EEF5F3EFF6F3EEF5F1ECF4F0EAF3EEE8F2EDE6F1EDE7F1 -EEE7F1EFE9F2EFE9F2EFEAF3F1EBF4F1EBF4F1ECF4F1ECF4F2EEF5F2EEF5F3EFF6F3EFF6F3F0F6 -F3F1F7F3F1F7F4F2F7F4F2F7F4F2F7F4F2F7F4F3F8F4F3F8F4F4F9F4F4F8F4F4F9F4F4F9F4F4F8 -F5F5F9F4F4F8F5F5F9F4F5F9F4F5F9F3F3F8A59FC13E457BBEB9D3F6F7FAF8F9FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF7F8FBF6F8FAF6F7FAF5F6FAF5F6FA -F5F6FAF5F6FAF6F7FAF6F7FAF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FAFAFCFBFBFCFBFBFCC3BCD4686695FCFCFCFCFCFCFCFCFCFDFDFDFEFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9928AB09289B0 -FEF5F8FEF4F7FEF3F7FEF2F6FEF2F6FEF1F6FEEFF5FDEFF4FDEFF4FDEDF3FDEEF4FDEBF2FDEDF3 -FDEBF2FDECF3FEEFF5FEF1F6FFF4F7FFF8FAFFFBFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BFD63E457BC7BFD6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFCFCFFF8FAFFF4F7FDF1F6FDEEF4FCECF3FCE9F1FBEAF1FBE9F1 -FBE9F1FBEBF2FBEAF1FBEBF2FBECF3FAEBF2FAEBF2FAEBF2FAEBF2F9EBF2F9EBF2F9ECF3F8EAF2 -F8EBF3F7EBF3F7EBF3F7EAF2F7E9F1F6EAF2F6EAF2F6E9F2F5E8F1F5E8F1F4E7F0F4E7F0F3E5F0 -F3E5F0F3E5F0F5E9F2F8ECF3F8EFF5FAF3F7FCF8FAFFFCFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFDF9FAFAF4F8F8F2F6F7EDF4F5EAF2F2E5F0F3E6F0F0E3EF -F2E6F0F2E6F0F3E7F1F2E7F1F2E8F1F3E8F1F2E9F2F3E9F2F3E9F2F2E9F2F2E9F2F2E9F2F2EAF3 -F2EAF3F2EAF2F1E9F2F1E9F2F0E9F2F0E9F2EFE8F2EFE8F2EEE7F1EFE8F2EEE7F1EDE6F0EDE6F1 -EDE6F1EDE6F1EEE7F1F1ECF4F3EEF5F6F2F7FAF7F9FCFBFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFDFBFBFAF7F9F7F3F7F3EEF5F2EEF5F0E9F2EEE8F2EDE7F1 -EDE7F1EEE8F2EEE8F2EEE9F3EFEBF3F0EBF3F1ECF4F1EDF5F2EEF5F2EFF5F2EFF5F3F0F6F3F0F6 -F3F0F6F3F1F7F3F1F7F4F2F7F4F2F7F4F2F7F4F3F8F4F3F8F4F3F8F4F3F8F4F4F8F3F2F8F4F4F8 -F3F3F8F4F4F8F5F5F9F5F6FA7B76A2474E83FBFCFBFDFDFCFDFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFDFDFDFBFCFCF9FAFBF8F9FBF7F8FBF6F7FAF6F7FA -F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF7F8FBF8F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFAFCFAFBFC -FAFBFCC3BCD4686695FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -C7BED6C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5C7BED5E4DDE9FFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FFF7F99289B09289B0FEF4F7FEF3F7 -FEF2F6FEF2F6FEF1F6FDF0F5FDEFF4FDEEF4FDEDF3FDEDF3FDEBF2FDECF3FDEDF3FEF0F5FFF4F7 -FFF8FAFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEC7BED53E447BC7BED5FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFAFBFEF2F6FDF0F5FCEAF2FBE8F0FBE8F0FBE8F0 -FBE9F1FAE9F1FAE9F1FAE9F1FAEAF2F9EBF2F9EBF2F9EBF2F9EBF2F8EAF2F8EAF2F8EAF2F7EAF2 -F7EAF2F6EAF2F6EAF2F5E8F1F5E8F1F5E7F0F4E7F0F4E6F0F4E6F0F3E5F0F3E5F0F6E9F2F8EEF4 -FAF2F6FDFAFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFCFCFAF4F8F7EDF4F5EBF3F2E6F0F1E6F0F1E5EF -F1E5EFF1E6F0F1E7F0F2E7F1F1E7F1F2E8F1F2E9F2F1E8F2F2EAF2F2EAF2F1E9F2F1E9F2F1E9F2 -F0E9F2F0E9F2F0E9F2EFE8F1EEE7F1EEE7F1EDE6F0EDE6F0ECE5F0ECE5F0EBE4F0EEE7F1F1EBF4 -F5F0F6F9F6F9FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFAF8FAF6F2F7F2EEF5EEE8F2ECE6F1EDE7F1 -ECE7F1EEE8F2EEE9F3EFEAF3F0EBF3F0ECF4F1EDF5F1EEF5F2EFF5F3F0F6F3F0F6F3F1F7F3F1F7 -F3F1F7F4F2F7F4F2F7F4F2F7F4F3F8F3F2F8F3F2F8F3F2F8F3F2F8F2F2F8F4F4F8F3F4F9F5F5F9 -F7F8FBFBFBFC464D82736F9CFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFEFEFDFBFCFCFAFAFCF6F9FBF6F7FAF6F7FA -F5F6FAF6F7FAF6F8FAF7F8FBF7F8FBF8F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFAFBFCC2BCD4 -686695FCFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFD -FFFFFEFFFFFEF1ECF2C7BFD7A099BB8882AB6866955156893E457B3E447A5E5E8F696695686695 -6866956866956866956866956866956866956866956866953E457B3F457B474E82686695746F9C -938CB2BAB1CCE2DBE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FFF7F9FEF7F99289B09289B0FEF4F7FEF2F6FEF2F6FDF1F6 -FDF0F5FDEFF4FDEEF4FDEEF4FDEBF2FDECF3FDECF3FEF0F5FEF2F6FFF9FAFFFFFEFFFFFEFFFFFE -FFFDFCFFFAFBFFF6F9FEF2F6FDEFF4FDEEF4FCEEF4FCEDF3FCEDF3FCEDF3FCEDF3FCECF3FCECF3 -FCECF3FCECF3FCECF3FCECF3FCEBF2FCEBF2FCEBF2FCEBF2FCEBF2FCEBF2FCEBF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCE9F1FCEBF2FCEAF2C3B2CD3E467BC3B2CDFCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2FCEBF2FCEBF2FCEBF2FCEBF2FCEBF2FCEBF2FCEBF2FCECF3 -FCECF3FCECF3FCECF3FCECF3FCECF3FCEDF3FCEDF3FCEDF3FCEDF3FCEDF3FDEEF4FDEFF4FEF1F6 -FFF5F8FFFAFBFFFEFDFFFFFEFFFFFEFFFFFEFFFAFBFEF2F6FCEDF3FBE9F1FAE7F0FAE7F0FAE9F1 -FAE9F1FAE9F1F9EAF2F8EAF2F9EAF2F8EAF2F8EAF2F8EAF2F8EAF2F7E9F1F7E9F1F6E9F1F6E9F1 -F5E8F1F5E7F0F5E7F0F4E6F0F4E6F0F3E3EEF3E5EFF4E6F0F7EDF4FBF4F7FEFBFCFFFFFEFFFFFE -FFFFFEFFFEFDFCF7F9F9F2F7F8EEF4F7EBF3F5EAF2F5EAF2F4E9F2F4E9F2F4E9F2F4E9F2F4E9F1 -F4E9F1F3E8F1F3E8F1F3E8F1F3E8F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E8F1 -F3E8F1F3E8F1F3E8F1F4E9F1F4E9F1F4E9F1F4E9F2F4E9F2F4E9F2F4E9F1F4E9F2F5EAF2F6ECF3 -F8F0F6FAF5F8FEFBFCFFFFFEFFFFFEFFFFFEFEFDFDFAF5F8F8EFF5F2E8F1F1E4EFEFE3EFF1E5EF -F0E4EFF1E6F0F1E7F0F1E7F1F1E7F1F1E7F1F1E7F1F1E7F1F0E7F1F0E8F1EFE8F1EFE8F1EFE8F1 -EFE7F1EEE6F1EEE6F1EDE6F0EDE6F0EBE4F0EBE3EFEBE4F0F0EAF2F5F0F6F9F7F9FFFFFEFFFFFE -FFFFFEFFFEFDFCFBFBF8F5F9F4F1F6F1ECF4F1EBF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3EFE9F2 -EFE9F2EFEAF3EEE8F2EEE8F2EFE9F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1 -EDE7F1EDE7F1EDE7F1EDE7F1EDE7F1EEE8F2EEE8F2EFE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EFE9F2EFE9F2EFE9F2EFE9F2F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F1EBF3F2EDF4 -F4F0F6F6F3F8FBF8FAFEFDFDFFFFFEFFFFFEFFFEFDFBF9FBF6F3F8F1EBF4EDE7F1ECE7F1EDE7F1 -EEE8F2EEE9F3EFEBF3EFEBF3F1ECF4F1EDF5F1EDF5F1EEF5F2EFF6F2EFF6F2F0F7F2F0F7F3F2F7 -F3F2F7F3F2F7F3F2F8F3F2F8F3F2F8F3F2F8F2F1F7F3F2F8F3F3F8F7F7FAFAF9FBFEFEFDD4CDE0 -3E457BA099BBFEFEFDFAFBFCFAF9FBF8F9FBF6F7FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F8FAF6F8FAF6F8FA -F7F8FBF9FAFBFBFCFCFFFEFDFFFFFEFFFEFDFFFFFEFEFEFDFBFCFCF8F9FBF6F8FAF5F6FAF5F6FA -F5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFAFCC2BCD4676595FBFBFC -FBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFEFDFCFEFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFDFFFFFEE4DDE8ACA4C47E79A4515689 -3E467C5E5D8E7D78A3938CB2C7BED5C7BED5FFFEFDFFFFFEFFFEFDFFFEFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE4DDE9C6BDD5A099BB8882AB686695 -474E82474E82696695938CB2C7BED5FFFEFCFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF8FAFFF7F9FFF7F9FFF6F9FEF6F89289B09289AFFEF3F7FEF2F6FEF1F6FDF0F5FDEFF4FDEEF4 -FDEDF3FDECF3FDECF3FDEBF2FEF2F6FFF6F9FFFEFDFFFFFEFFFFFEFFFDFCFFF4F7FEF0F5FDEDF3 -FBE3EDFADDEAF9DBE8F7D5E5F7D4E4F7D3E4F6D2E3F6D1E2F6D1E2F6D1E2F6D1E2F6D1E2F6D0E1 -F6D0E1F6D0E1F6CFE1F6CEE0F6CEE0F6CEE0F6CEE0F5CEE0F5CEE0F5CEE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CEE0F5CDE0 -F4CCDFF5CDE0BFA1C13D457BBFA1C2F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0F5CDE0 -F5CDE0F5CDE0F5CEE0F5CEE0F5CEE0F6CEE0F6CEE0F6CEE0F6CEE0F6CFE1F6D0E1F6D0E1F6D0E1 -F6D1E2F6D1E2F6D1E2F6D1E2F6D1E2F6D2E3F6D2E3F6D3E3F7D5E5F8D9E7F9DDEAFAE2EDFCE9F1 -FDEEF4FFF4F7FFFBFBFFFFFEFFFFFEFFFFFEFFF8FAFDEFF4FBE9F1FAE7F0FAE8F0FAE8F0F9E7F0 -F9E8F1F9E8F1F9E8F1F8E8F1F7E8F1F8E9F1F7E8F1F6E8F1F6E8F1F5E7F0F5E7F0F5E7F0F4E6F0 -F4E6F0F3E5EFF2E4EFF3E4EFF5E8F1F9F0F6FCF8FAFFFDFCFFFFFEFFFEFDFCF7F9F8F0F5F5EBF3 -F2E2EEECDBEAE7D4E6E4D0E3E1CBE0E1CBE0E0CAE0DFC9DFDFC9DFDEC8DEDEC7DEDDC7DEDDC6DD -DDC6DDDDC6DDDDC6DDDCC5DDDCC5DDDCC5DDDCC5DDDCC4DCDCC4DCDCC4DCDBC4DCDBC4DCDBC4DC -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DBDBC3DB -DBC4DCDBC4DCDBC4DCDCC4DCDCC4DCDCC5DDDCC5DDDCC5DDDCC5DDDCC5DDDDC6DDDDC6DDDDC6DD -DDC6DDDDC7DEDEC7DEDEC8DEDFC9DFDFC9DFE0CAE0E0CBE0E2CBE0E3CFE3E6D3E5EAD9E9EFE1ED -F4E8F1F8EFF5FBF5F8FFFEFDFFFFFEFFFFFEFEFAFBF8F0F6F4EBF3F0E3EFF0E3EFF0E4EFF0E4EF -F0E4EFF0E4EFF0E5F0F0E6F0F0E6F0F0E7F1EFE7F1EFE7F1EFE7F1EEE6F1EEE5F0EDE5F0EDE5F0 -EDE6F0ECE5F0EBE4F0ECE5F0ECE5F0F3EDF4F8F6F9FEFCFCFFFFFEFFFFFEFDFCFCF8F5F9F2EDF4 -EEE8F2E5DEEDDED7E8DCD3E6D5CDE3D4CCE2D3CAE1D3CAE1D3C9E0D2C9E0D1C8E0D1C7DFD1C8E0 -D0C7DFD0C7DFD0C7DFCFC6DFCEC5DECEC5DECEC5DECEC5DECEC5DECEC5DECDC5DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DECDC4DE -CDC4DECDC4DECDC4DECDC4DECEC5DECEC5DECEC5DECEC5DECEC5DECFC6DECFC6DED0C7DFD1C7DF -D0C7DFD0C7E0D0C7E0D1C8E0D2C9E0D2C9E1D3CAE1D4CBE2D4CBE2D5CEE3D9D2E6DED7E8E4DDEC -ECE6F1F1ECF4F6F3F8FCFBFBFFFFFEFFFFFEFFFEFDF9F8FAF2EFF6EFEAF3ECE7F1ECE7F1EDE8F2 -EEE9F3EFEAF3EFEBF3EFECF4F0EDF5F1EDF5F1EEF5F1EFF6F1EFF6F2EFF6F2F0F7F2F0F7F2F0F7 -F2F1F7F2F1F7F2F1F7F2F2F8F2F2F8F5F5F9F8F8FBFDFCFCFFFFFEFFFFFEA099BB3E467CCEC8DD -F5F6FAF2F4F9EEF1F8EAEEF6E7EBF5E6EAF4E5EAF4E5EAF4E5EAF4E4E9F4E3E9F4E3E9F4E3E9F4 -E3E9F4E2E9F4E2E9F4E2E9F4E2E9F4E2E9F4E2E8F3E2E8F3E2E8F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3 -E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E2E8F3E2E8F3E2E8F3E2E8F3E2E9F4E2E9F4E2E9F4E2E9F4 -E2E9F4E2E9F4E3E9F4E3E9F4E3E9F4E4E9F4E5EAF4E5EAF4E6EBF5E7ECF5E8EDF6EAEEF6EFF1F7 -F3F4F9F6F8FAF9FAFBFBFCFCFFFFFEFFFFFEFFFFFEFDFDFDFAFAFCF8F9FBF6F7FAF5F6FAF5F6FA -F6F8FAF6F8FAF7F8FBF8F8FBF9F9FBF9F9FBFAFAFCFAFAFCC2BCD4676595FBFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFC -FEFDFCFEFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFED4CDDF8882AC5156893E467C696695938CB2C6BED5FFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE0 -ACA4C47E78A3515689474E83736F9CACA4C5F2EEF4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FFF7F9FFF6F9FEF5F89289B09288AFFEF2F6FEF1F6FDF0F5FDEFF4FDEEF4FDEDF3FEEDF3FDECF3 -FDEDF3FEF3F7FFF9FAFFFFFEFFFFFEFFFEFDFFF6F9FDEFF4FBE6EFFADBE8F7D5E5F6D3E3F6D1E2 -F6D0E1F6CFE1F5CEE0F5CDE0F4CCDFF4CCDFF4CBDEF4CADEF4CADEF3C9DDF3C8DCF3C8DCF3C8DC -F3C7DCF3C7DCF3C7DCF3C7DCF3C7DCF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DB -F3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DB -F3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C5DAF3C6DBF3C6DBF3C6DB -BE9CBF3E457BBE9CBEF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DB -F3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DB -F3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DCF3C7DCF3C7DCF3C7DCF3C7DCF3C8DCF3C8DCF3C8DCF4C9DDF4CADE -F4CADEF4CBDEF4CCDFF4CCDFF5CDE0F5CDE0F5CFE1F6D0E1F6D1E2F6D3E3F6D4E4F8D7E6FAE2ED -FDEDF3FEF2F6FFFBFBFFFFFEFFFFFEFFFCFCFEF1F6FBEBF2F9E7F0F9E6F0F9E6F0F9E6F0F7E7F0 -F8E7F0F8E7F0F7E7F0F7E7F0F6E7F0F6E6F0F5E7F0F5E6F0F4E5EFF4E5EFF3E4EFF3E4EFF2E3EE -F3E4EFF6EBF3F9F1F6FFFEFDFFFFFEFFFFFEFCF8FAF8EFF5F3E7F1EAD8E8E3CFE3E1CBE0E0C9DF -DEC6DDDDC6DDDCC4DCDBC3DBDBC3DBDBC2DBDAC1DAD9C0DAD8BFD9D8BFD9D8BED9D8BED8D8BED8 -D8BED8D7BDD8D7BDD8D7BDD7D7BDD7D7BDD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D7BDD7D7BDD7D7BDD7D7BDD8D7BDD8D7BDD8D7BDD8D7BDD8D8BED9D8BFD9 -D8BFD9D9C0DADAC1DADAC1DADBC3DBDBC3DBDDC4DCDDC6DDDEC7DEDEC8DFE0CBE0E3CDE2E8D6E7 -F1E4EFF6ECF3FAF5F8FFFDFCFFFFFEFFFFFEFAF5F8F6EDF4F0E4EFEFE3EFEFE3EFEFE3EFEFE4EF -EFE4EFEFE5F0EFE5F0EFE4EFEEE5EFEEE5EFEEE5EFEDE4EFEDE4EFECE5F0ECE4EFEBE3EFEBE3EF -EBE3EFEEE7F1F4EFF5FAF8FAFFFEFDFFFFFEFEFDFDF7F4F8F1ECF4E6DFEDDBD3E6D5CCE2D4CBE2 -D2C9E1D0C7DFCFC6DFCDC5DECCC4DECCC3DDCCC3DDCBC2DCCAC1DCCAC0DBC9C0DBC8BFDAC7BEDA -C8BFDAC8BFDAC7BEDAC7BEDAC7BEDAC7BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C5BCD9C5BCD9 -C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9 -C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9 -C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9 -C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9 -C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C5BCD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC8BFDAC8BFDAC9C0DB -CAC0DBCBC1DCCBC2DCCCC3DDCCC3DDCCC4DECDC5DECFC6DED0C7E0D2C9E1D4CBE2D5CDE3DAD1E6 -E4DDECF0EAF3F5F2F7FDFBFBFFFFFEFFFFFEFCFBFBF3F0F6F1ECF4ECE7F1ECE7F1EDE8F2EDE9F3 -EEE9F3EEEAF3EFECF4EFECF4F0EDF5F0EEF5F1EEF5F1EFF6F1F0F6F1EFF6F1F0F6F1F1F7F1F1F7 -F1F1F7F2F2F8F5F5F9F9FAFBFFFFFEFFFFFEFFFFFEFCFCFC716E9B505588ECF0F7E8ECF5E5EAF4 -E5EAF4E3E9F4E2E9F4E1E8F4E1E7F3E1E7F3E0E7F3DFE7F3DFE7F3DFE6F2DEE5F2DDE5F2DDE5F2 -DDE5F2DDE5F2DDE5F2DCE5F2DCE5F2DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE5F2DCE5F2DDE5F2DDE5F2DDE5F2DDE5F2 -DEE5F2DFE6F2DFE7F3DFE7F3E0E7F3E0E7F3E1E7F3E2E8F3E3E9F4E4E9F4E5EAF4E6EBF5E8EDF6 -EDF1F7F4F6FAF8F9FBFBFCFCFFFEFDFFFFFEFFFFFEFBFCFCFAFAFCF6F7FAF5F6FAF5F6FAF6F7FA -F7F8FBF7F8FBF8F8FBF8F8FBF9FAFBFAFAFCC2BCD4676595FAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFC -FEFDFCFEFDFCFDFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFED4CCDF -8882AB5156895155888882ABBAB2CEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED5CDE0A099BC5E5E8F3D457B736F9DACA4C3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF8FAFFF7F9FEF6F8FEF5F8 -FEF4F79289AF9288AFFEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FDECF3FDEEF4FFF4F7FFFBFB -FFFFFEFFFFFEFFF9FAFEF1F6FBE7EFF9D9E7F7D5E5F6D2E3F6D0E1F5CEE0F4CCDFF4CBDEF3C9DD -F3C8DCF3C7DBF3C7DBF2C5DBF3C5DAF2C4DAF2C3D9F1C3D9F1C2D9F1C2D9F1C2D9F1C2D8F1C2D8 -F1C2D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8 -F1C1D8F1C0D7F1C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F1C1D8F0C0D7F0C0D7BC99BC3E457B -BD99BCF0C0D8F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7F0C0D7 -F0C0D7F1C0D7F1C0D7F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8F1C1D8 -F1C1D8F1C1D8F1C1D8F1C2D8F1C2D8F1C2D8F1C2D9F1C2D9F1C2D9F2C3D9F2C3D9F2C4DAF3C5DA -F3C6DBF3C7DBF3C7DBF4C8DCF3C9DDF4CBDEF4CCDFF5CDE0F5CFE1F6D1E2F6D4E4F8D7E6F9E1ED -FCEEF4FEF6F8FFFFFEFFFFFEFFFDFCFDF2F6FBECF3F9E5EFF8E5EFF8E6EFF8E5EFF7E6EFF7E6EF -F7E6EFF6E5EFF6E5EFF5E5EFF5E6F0F4E4EFF4E4EEF3E4EFF3E3EEF2E2EEF2E3EEF7EBF3FAF2F7 -FFFFFEFFFFFEFFFEFDF8F1F6F4E7F0EAD8E8E3CEE2E0CAE0DEC7DEDDC4DCDBC2DBDAC1DAD8BFD9 -D8BED9D7BDD7D6BCD7D6BCD7D5BAD6D5BAD6D4B9D5D4B8D4D4B8D4D4B7D4D4B7D4D3B7D4D3B6D3 -D3B7D4D3B6D3D2B6D3D2B6D3D2B6D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D1B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B6D3D2B5D3D2B6D3D3B6D3D3B6D3D3B6D3D3B7D4D4B7D4D4B7D4D3B8D4D4B7D4D4B9D5D5BAD6 -D5BAD6D6BBD7D6BCD7D7BDD7D7BDD8D8BFD9D9C1DADBC3DBDCC5DDDEC7DEDFC9DFE1CCE1E6D4E6 -F1E3EEF7EDF4FFFCFCFFFEFDFFFFFEFAF5F8F5EDF4EFE3EFEEE2EEEDE1EDEEE3EEEDE2EEEFE4EF -EEE4EFEDE3EFEDE3EFEDE3EFECE3EFEDE3EFECE3EFEBE3EFEBE2EEEAE3EFEBE2EEEDE6F0F4EFF5 -FDFBFBFFFFFEFFFFFEF9F7F9F2EDF4E6DFEDDAD1E5D4CCE2D2C9E0CFC6DFCDC4DECCC3DDCAC1DC -C9C0DBC8BEDAC7BEDAC6BDD9C5BCD8C4BBD8C4BAD8C3B9D7C3B9D7C2B8D6C3B9D7C2B8D6C1B7D6 -C0B7D6C0B7D6C0B7D6C1B7D6C0B7D6C0B7D6C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5 -C0B6D5C0B6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5 -C0B6D5BFB7D6C0B7D6C0B7D6C0B7D6C1B7D6C1B7D6C1B8D6C2B9D7C2B8D6C3B9D7C3B9D7C4BAD7 -C4BBD8C4BBD8C6BDD9C6BDDAC7BEDAC8BFDBCAC1DCCCC4DDCDC5DECFC6DFD2C9E1D4CCE2D8D0E5 -E4DDECF2EDF4F8F5F9FFFEFDFFFFFEFFFDFCF4F1F6F1ECF4EAE6F1EBE6F1ECE8F2EDE9F3EDE9F3 -EEEAF3EEEBF4EFECF4EFECF4EFEDF5F0EEF5F0EFF6F0EFF6F0EFF6F0EFF6F0EFF6F1F1F7F6F6F9 -FAFBFBFFFEFDFFFEFDFFFEFDF7F8FAF5F5F93E457B7674A1E4E9F4E3E8F3E1E7F3DFE7F3DFE7F3 -DEE5F2DDE5F2DCE5F2DCE5F2DCE5F2DBE4F2DAE3F1DAE3F1D9E3F1D9E3F1D9E2F0D9E2F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D9E2F0D8E1F0D9E3F1D9E3F1DAE3F1 -DAE3F1DBE3F1DCE5F2DCE5F2DDE5F2DEE5F2DEE6F3DFE7F3E1E7F3E2E9F4E4E9F4E5EAF4E7ECF5 -EDF1F7F5F6FAF9FAFBFFFEFDFFFFFEFFFFFEFBFCFCF9FAFBF5F6FAF5F6FAF5F6FAF6F8FAF7F8FB -F7F8FBF8F8FBF8F8FBF9F9FBC1BBD4676595FAFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFEFCFEFDFCFEFEFDFEFDFC -FEFDFCFEFEFCFEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFEFFFEFDF2EEF4ABA4C35E5E8F474E827D78A3D5CDE0 -FFFFFEFFFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDE4DDEAA099BB5F5E8F474E827E78A3E4DEEBFFFEFDFFFFFDFFFDFCFFFEFDFFFEFD -FFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F79288AF -9288AFFEF2F6FEEFF5FDEEF4FDEDF3FDECF3FDECF3FDEEF4FFF4F7FFFDFCFFFFFEFFFEFDFFF6F9 -FDEEF4FADCE9F7D6E5F6D3E3F6D0E1F5CDE0F4CBDEF3C9DDF3C7DBF3C5DAF1C4DAF1C2D9F1C1D8 -F1C1D8F1C0D7F1BFD7F1BFD6F0BED6F0BED6F0BDD5F0BDD5F0BDD5F0BCD5F0BCD5EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4F0BBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4BC95B93E457BBD95B9EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4F0BBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4F0BCD5F0BCD5F0BCD5F0BDD5F0BDD5F0BED6F0BED6F0BED6F1BFD7F1C0D7F1C1D8 -F1C2D8F1C2D9F1C4DAF3C5DAF3C6DBF3C8DCF3CADEF4CCDFF4CEE1F6D1E2F6D4E4F8DAE8FBE8F0 -FDF2F6FFFEFDFFFEFDFFFEFDFDF1F6FBEBF2F9E5EFF8E4EEF7E5EFF7E5EFF6E4EFF6E5EFF5E3EE -F6E4EFF5E4EEF4E3EEF4E4EFF4E4EFF3E1EDF2E2EEF2E3EEF7EBF2FAF2F7FFFEFDFFFEFDFEFAFB -F7ECF3EFE0ECE4CFE3E1CAE0DDC6DDDCC3DCDAC1DAD9BFD9D7BDD7D6BBD6D4B9D5D4B8D5D3B6D3 -D3B6D3D2B5D3D1B4D2D0B3D2D0B3D2D0B2D1D0B2D1CFB1D0CFB1D0CFB1D0CFB0CFCEB0CFCEB0CF -CEAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCEAFCFCEB0CFCFB0CFCFB1D0CFB1D0CFB1D0CFB2D0D0B2D1D0B3D2D1B4D2D1B4D2D2B5D3 -D2B6D3D3B6D3D4B8D4D5BAD6D6BBD7D7BDD7D8BFD9D9C1DADBC4DCDDC7DEDEC9DFE3CDE2EBDBEA -F4EAF2FCF9FAFFFEFDFFFEFDFBF7FAF6EDF4EFE3EFEEE2EEEDE1EDEDE1EEEDE1EEECE1EEECE0ED -ECE2EEECE3EFEBE1EDEBE2EEEBE2EEEAE1EEE9E1EEE9E1EEECE5F0F3EEF5FEFCFCFFFFFEFEFEFD -F8F3F7EFE9F2DDD4E7D5CCE2D1C8E0D0C7DFCCC3DDCAC1DCC8BFDAC6BDD9C4BBD8C3B9D7C2B8D6 -C1B7D6C0B6D5BFB5D5BEB4D4BEB5D4BDB4D4BDB3D3BCB2D3BCB2D3BCB2D3BBB1D2BBB1D2BAB1D2 -BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1B9AFD1B9B0D1B9B0D1B9B0D1B9B0D1 -B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1 -B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9B0D1B9B0D1B9B0D1B9B0D1 -B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1 -BAB0D1BAB1D2BAB1D2BBB1D2BBB1D2BCB2D3BCB2D3BCB2D3BDB3D3BDB3D3BEB4D4BEB5D4BFB5D5 -C1B7D5C1B7D6C2B8D6C3B9D7C4BBD8C6BDDAC8BFDACAC1DCCCC4DECFC6DFD2C9E1D4CDE3DBD3E7 -EEE7F1F4F1F6FFFEFDFFFFFEFEFCFCF4F1F6F0EBF3EAE6F1EAE6F1EDE8F2ECE7F1EDEAF3ECE9F3 -EEEBF4EEEBF4EEECF4EEECF4EFEDF5EFEDF5EFEEF6EFEEF6F1F0F6F5F6FAFAFAFBFFFEFCFFFFFE -FEFCFCF6F7FAF0F2F8B5B3CF3E457B9B9BBFE1E6F3DFE7F2DCE5F2DCE5F2DBE3F0DAE2F0D9E2F0 -D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D7E0EFD6DFEFD6DFEFD6DFEFD5DFEFD5DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD5DFEFD5DFEFD5DFEFD5DFEFD6DFEFD7E0EFD7E0EFD8E1F0 -D8E1F0D8E1F0D9E3F1DAE3F1DBE3F1DBE4F2DDE5F2DEE5F2E0E7F3E2E8F3E4E9F4E6EBF5E9EDF6 -EFF3F8F9FAFBFDFDFDFFFFFEFFFFFEFBFCFCF9FAFBF6F7FAF5F6FAF6F7FAF6F7FAF7F8FBF7F8FB -F8F8FBF9F9FBC1BBD4676595FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFDFDFCFEFEFCFAFBFCFDFDFCFEFDFCFEFDFC -FEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFCFBFCFFFEFCFFFEFCFFFDFCFFFDFCFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFEFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDE4DDE98882AB474D825E5E8FACA4C4FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED5CDE07E78A33E457B686694C6BDD6FFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F79288AF9288AFFDF0F5 -FDF0F5FDEDF3FDECF3FDECF3FDECF3FEF2F6FFFBFBFFFFFEFFFFFEFEF2F6FDEBF2F9D9E7F7D4E4 -F6D1E2F5CEE0F4CBDEF3C8DCF3C6DBF1C4DAF1C2D9F1C1D8F0BFD7F0BED6F0BDD5F0BCD5EFBBD4 -EEBAD3EEBAD3EEB9D2EEB8D2EEB8D2EEB8D2EEB7D2EEB7D2EEB7D1EDB6D0EDB6D0EDB6D0EDB6D0 -EDB6D0EDB6D0EDB6D0EDB5D0EDB5D0EDB5D0EDB5D0EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFBB90B63E457BBB90B6EDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB5D0EDB5D0EDB5D0EDB5D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0 -EEB7D1EEB7D2EEB7D2EEB7D2EEB8D2EEB8D2EEB9D2EEBAD3EEBAD3EFBBD4EFBBD4F0BCD5F0BDD5 -F0BED6F1C0D7F1C2D8F1C3D9F2C5DAF3C7DCF3C9DDF4CCDFF4CEE1F5D2E3F6D5E5FAE4EEFCF0F5 -FFFCFCFFFFFEFFFCFCFCF0F5F9E7F0F7E3EEF7E3EEF7E3EEF6E3EEF6E3EEF5E3EEF5E2EDF5E3EE -F4E4EEF3E1EDF3E1EDF1E1EDF2E0ECF5E8F1F9F0F6FFFEFDFFFFFEFDF8FAF5EBF3EAD7E8E1CCE1 -DFC8DEDDC4DCDAC1DAD8BFD9D6BCD7D5B9D5D4B7D4D3B6D3D1B4D2D0B3D1CFB1D0CEAFCFCEAFCF -CDAECECCADCECCADCDCCADCDCBACCDCBABCCCBABCCCBABCCCBAACBCAAACBCAAACBCAA9CBCAA9CB -CAA9CBCAA9CBCAA9CBC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAAACB -CAAACBCBAACBCBABCCCBABCCCBABCCCBACCDCCADCDCCADCECCADCECDAECECEAFCFCEB0CFCFB1D0 -D0B3D1D1B4D2D2B6D3D3B7D4D5BAD6D6BBD7D7BED8D9C1DADCC4DCDEC8DEDFCBE1E5D3E5F2E9F2 -F8F3F7FFFFFEFFFFFEF9F2F7F4EAF2EDE0EDEADFECEDE0EDEBE0EDEBDFECEBE1EDEBE1EDEAE0ED -EBE1EDEAE0EDE9E0EDE9E0EDE7DEECEBE3EFF2EBF3FCFAFBFFFFFEFFFEFDF2EEF5EBE4F0D8CFE4 -D4CBE2D0C7DFCCC3DDCAC1DCC7BDD9C5BCD8C3B9D7C1B7D6BEB5D4BEB4D4BDB3D3BBB2D2BAB1D2 -BAB0D1B9AFD1B8AED0B8ADD0B7AED0B7ADCFB6ACCFB6ACCFB6ACCFB5ABCEB5ABCEB4ABCEB4AACE -B4AACEB4AACEB4AACEB4AACEB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB4AACDB4AACEB4AACEB4AACEB4AACEB4AACEB4ABCE -B5ABCEB5ABCEB6ABCEB7ACCFB6ACCFB7ADCFB8ADD0B8AED0B8AED0B9AFD1B9B0D1BAB1D2BBB2D2 -BDB3D3BEB4D4BFB6D5C1B8D6C3BAD8C5BCD9C7BEDACAC1DCCCC4DED1C8E0D3CBE2D7D0E5E7E1EE -F4EFF5FFFEFDFFFFFEFEFBFCF4F1F6EEEAF3EAE5F0EAE6F1EBE8F2EBE8F2EDEAF3ECE9F3EDEBF4 -EDECF4EDECF4EEECF4EEEDF5EEEEF5EEEEF5F4F4F8F9F8FAFFFEFDFFFFFEFCFBFCF5F5F9EBEDF5 -E6EAF48786AF3F457BC5C7DDDDE6F2DBE4F2DAE2F0D9E2F0D8E0EFD7E0EFD6DFEFD5DFEFD4DFEF -D4DFEFD4DFEFD3DEEFD3DEEED2DCEDD2DDEED1DDEED1DDEED1DDEED0DCEDD0DCEDD0DCEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDCEDCFDBEDCFDBED -D0DCEDD1DCEDD1DCEDD1DCEDD1DDEED1DDEED1DDEED2DDEED3DEEED3DEEED4DFEFD4DFEFD5DFEF -D6DFEFD7E1F0D8E1F0D9E2F1DAE3F1DBE3F1DCE5F2DEE5F2E0E7F3E2E8F3E4E9F4E7ECF5EDF1F7 -F6F8FAFDFDFDFFFFFEFFFFFEFBFCFCF9FAFBF6F7FAF5F5F9F6F7FAF6F8FAF7F8FBF7F8FBF8F8FB -C1BBD4676595FAFAFCFAFAFCFAFBFCFBFBFCFBFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFDFDFCFFFEFCFDFCFBE3E9F4F3F3F8FEFDFCFFFDFCFEFDFCFDFDFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE8EDF6FCFBFCFFFDFBFEFDFCFFFEFCFFFCFBFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF6F9FB -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE4DCE8 -7D78A43D457B7E78A3C7BED6FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEF2EDF4938DB3484E82686695C7BED5FFFFFEFFFFFDFFFEFDFFFFFEFFFFFD -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFF8FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F69288AF9288AFFDEFF4FDEDF3FDEDF3 -FDECF3FDECF3FEF1F6FFF8FAFFFFFEFFFFFEFFF4F7FDEBF2F8D7E6F7D3E4F6D0E1F4CCDFF3C9DD -F3C7DBF2C4DAF1C2D8F0BFD7F0BED6F0BCD5EEBAD3EEBAD3EEB8D2EEB7D2EEB7D1EDB6D0EDB5D0 -EDB4CFEDB3CFEDB3CEECB2CEECB2CEECB2CEECB2CEEBB1CDEBB1CDEBB1CDEBB1CDEBB1CDEBB1CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDBB8EB53E467BBB8EB5EBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB1CDEBB1CDEBB1CDEBB1CDEBB1CDEBB1CDECB2CEECB2CE -ECB2CEECB2CEEDB3CEEDB3CFEDB4CFEDB5D0EDB6D0EEB7D1EEB7D1EEB8D2EEB9D2EEBAD3EFBBD4 -EFBCD5F0BFD7F0C0D8F1C2D9F2C5DAF3C7DCF3CADEF4CDE0F6D1E2F6D4E4FAE4EEFCF0F5FFFDFC -FFFFFEFFFBFBFBEDF4F8E3EEF7E1EDF6E1ECF6E3EEF5E2EDF4E1EDF4E1EDF4E1EDF3E1EDF2E0EC -F2DFECF2DFECF4E4EFF8ECF3FFFEFDFFFFFEFFFBFBF6EAF2EAD7E8E2CBE0DFC6DDDCC3DCDAC0D9 -D7BCD7D6BAD6D4B7D4D2B5D2D0B3D1CFB1D0CFB0CFCCADCECBACCDCBABCCCAAACBCAA9CBC9A8CA -C9A8CAC8A7CAC7A6C9C7A6C9C7A6C9C6A5C8C6A5C8C6A5C8C6A4C7C6A4C7C6A4C7C6A4C7C6A4C7 -C6A4C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A4C7C6A4C7C6A4C7C6A4C7C6A4C7C6A4C7C6A5C8C6A5C8 -C6A5C8C7A6C9C7A6C9C7A6C9C8A7CAC9A8CAC9A8CACAA9CBCAAACBCBABCCCBACCDCCADCECDAFCF -CEB1D0CFB2D0D1B4D2D3B7D4D4B9D5D6BCD7D8BED9DAC3DBDEC7DEDECAE0E6D3E5F1E7F1F9F4F8 -FFFFFEFFFFFEF7EFF5F1E6F0EBDEECEBDEECEBE0EDEADFECEADFECEADFECE9DDECEAE0EDE8DFEC -E7DEECE8DFECE9DFEDF1EAF3F9F6F9FFFFFEFFFFFEF2ECF4EDE5F0D7CEE4D3C9E0CEC5DECCC2DC -C8BFDAC5BCD9C3B9D7C1B7D5BEB4D4BCB3D3BBB1D2B9AFD1B8AED0B6ACCFB5ACCFB5ABCEB4AACE -B3A9CDB3A8CCB2A8CCB1A7CCB1A7CCB1A7CCB0A6CBAFA6CBB0A6CBAFA5CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA5CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAEA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAB0A6CBB0A6CB -B0A6CBB1A7CCB1A8CCB1A7CCB1A8CCB2A8CCB3A9CDB5AACEB5ABCEB5ACCFB7ADCFB8AED0B9AFD1 -BBB1D2BCB3D3BEB5D4C0B8D6C3B9D7C5BCD8C8BFDACBC2DCCDC6DFD3CAE1D6CEE3E8E2EFF3F1F7 -FEFDFDFFFFFEFCFAFBF2EEF5EAE6F1E9E5F0EAE6F1EBE7F2EAE8F2EBE7F2ECE9F3ECEAF4ECEBF4 -EDECF4EDECF4EDEDF5F1F1F7F7F6FAFFFFFEFFFEFDFCFBFCF4F5F9EBEEF6E5EAF4E2E8F3585C8D -575C8DDBE3F1DAE3F1D8E1F0D8E0EFD5DFEFD4DFEFD5DEEED3DEEED2DDEED1DDEED0DCEED0DCEE -CFDCEDCFDBEDCFDBEDCFDBEDCEDAEDCEDAECCEDAECCEDAECCEDAECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCDD9ECCCD9ECCDD9ECCDD9ECCEDAEC -CEDAECCEDAECCEDAECCEDAEDCEDAEDCFDBEDCFDBEDCFDBEDCFDCEDD0DCEED1DDEED2DDEED3DEEE -D4DFEFD5DFEFD7E1F0D8E1F0D9E3F1DAE3F1DDE5F2DFE7F3E1E7F3E4E9F3E5EBF5EDF1F7F6F7FA -FDFDFDFFFFFEFFFEFDFAFBFCF6F8FAF5F6FAF5F6FAF7F7FAF6F8FAF7F8FBF8F8FBC1BBD4676595 -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFEFDFBFEFDFCFFFEFCDDE5F2C3D3E9F3F4F9FFFDFCFEFDFCFEFDFCFDFDFCFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4E0E8F3FDFEFCFFFDFCFEFCFBFFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2F5F9F7F8FBFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2EEF48882AB3D457B7E78A3E4DDEA -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFD -FFFFFEFFFEFDFFFFFEF1ECF3938DB3474E82686696C7BED5FFFFFEFFFEFDFFFEFDFEFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF8F9 -FEF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F69288AF9288AFFDECF3FDEDF3FDECF3FDEBF2FEEFF5 -FFF6F9FFFEFDFFFFFEFFF6F9FDEBF2F9D8E6F7D3E4F6CFE1F4CBDEF3C7DCF3C5DAF1C2D9F1C0D7 -F0BED6EFBBD4EEBAD3EEB8D2EDB6D1EDB5D0EDB4CFEDB3CEECB2CEECB1CDEBB0CDEBAFCCEBAFCC -EBAFCCEBAFCCEBAECBEBAECBEBADCBEBADCBEBACCAEBACCAEAACCAEAACCAEAACCAEAACCAEAACCA -EAACCAEAACCAEAACCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCABA8BB33E457BBA8BB3EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAACCAEAACCA -EAACCAEAACCAEAACCAEAACCAEAACCAEAACCAEBACCAEBADCBEBADCBEBADCBEBAECBEBAECBEBAECB -EBAFCCEBAFCCEBAFCCEBB0CDEBB1CDECB2CEECB2CEEDB3CFEDB4CFEDB6D0EEB7D2EEB9D2EEBAD3 -EFBCD5F0BFD7F0C0D8F1C3D9F2C6DBF3CADEF4CDE0F5D0E2F5D3E3FAE3EEFCF1F6FFFFFEFFFFFE -FEF6F8F9E9F1F6E1ECF6E1ECF5E0ECF4DFECF3E0ECF3DFECF3E0ECF4E0ECF2DFECF1DEEBF1DFEC -F7EBF2FDF9FAFFFFFEFEFBFCF6EBF3E8D6E7E2CBE0DFC6DDDBC2DBD9BED8D6BBD6D4B7D4D1B5D3 -D0B3D1CFB0CFCDAECECBACCDCBAACBC9A9CBC8A7CAC7A6C9C7A5C8C6A5C8C5A4C7C5A3C7C5A3C7 -C4A2C6C4A2C6C4A1C5C4A1C5C4A0C5C4A0C5C3A0C5C39FC4C39FC4C39FC4C29FC4C29FC4C29FC4 -C29FC4C29FC4C29FC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4 -C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29FC4C29FC4 -C29FC4C29FC4C29FC4C29FC4C29FC4C39FC4C39FC4C39FC4C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5 -C4A1C6C4A2C6C5A2C6C5A2C6C5A4C7C6A5C8C6A5C8C7A6C9C8A7CAC9A8CACAAACBCBABCCCCADCE -CDB0CFCFB2D1D1B4D2D3B7D4D5BAD6D7BED8D9C1DBDBC4DCDEC9DFE4D1E4F3E9F2FBF7FAFFFFFE -FFFDFCF4EDF4EBDFECEADDEBEADDEBEADFECE9DDECE9DDECE9DEECE8DDEBE9DDECE7DDEBE7DEEC -EDE5F0F6F1F6FFFFFEFFFEFDF5F1F6ECE5F0D7CEE4D1C7DFCEC5DECBC1DCC6BDDAC4B9D7C1B7D5 -BEB4D4BDB2D3BAB0D1B8AED0B6ABCEB4AACEB3A9CDB2A8CCB1A7CCB0A6CBAFA5CAAFA5CAAEA4CA -ADA3C9ADA3C9ADA3C9ADA3C9ABA2C8AAA1C8ABA1C8AAA1C8AAA1C8AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7A99FC7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA1C8AAA1C8AAA1C8ABA1C8ABA1C8ACA2C9ACA2C9 -ADA3C9ADA3C9ADA4CAAEA4CAAFA5CAAFA5CAB0A6CBB0A7CCB2A8CCB3A9CDB5ABCEB6ADCFB8AFD1 -B9B0D1BCB3D3BEB5D4C1B7D6C4BAD8C5BCD9CCC2DCCCC5DED2C9E0D5CEE3E7E0EDF4F2F7FFFEFD -FFFEFDF9F7FAF0EBF3E9E5F0E8E4F0EBE6F1EAE7F2EAE7F2EAE8F2EBE9F3EBEAF3EDEBF4ECEAF4 -EEEEF5F4F4F9FDFDFDFFFEFDFEFDFDF5F5F9ECEEF6E4E9F4E2E8F3D3D7E93E467B7C7AA6D8E2F0 -D8E1F0D6E0F0D3DEEED4DEEED1DDEED0DCEECFDBEDCFDBEDCEDAECCED9ECCDD9ECCCD9ECCCD9EC -CCD9ECCBD8ECCBD8ECCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EB -C9D7EBC9D7EBC9D7EBC9D6EAC9D6EAC9D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC9D7EBC9D7EB -C9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCBD8ECCCD9ECCCD9ECCCD9ECCCD9ECCDD9ECCEDAECCFDBEDCFDBEDD0DCEDD1DDEED2DDEE -D3DEEFD5DFEFD7E1F0D8E1F0D9E4F1DCE5F2DDE5F2E1E7F3E3E9F4E5EBF5ECEFF7F7F9FBFEFDFD -FFFFFEFFFEFDF9FAFBF6F8FAF5F6FAF5F6FAF7F7FAF7F8FBF8F8FBC1BBD4676595FAFAFCFAFBFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BED0E7CCD8EBFAFAFBFEFDFCFEFDFCFFFDFCFEFDFCFEFDFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0E5EBF5FFFEFCFFFDFBFFFDFCFEFDFCFFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9FAFAFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFEFDFFFFFEFFFEFDFFFFFD928DB3484D82686695E3DCE9FFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEF2EEF5928DB1474E82736F9CE4DDE9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF7F9FEF5F8 -FEF4F7FEF3F7FEF2F6FEF1F69288AF9287AEFDEFF4FDECF3FDECF3FDECF3FEF1F6FFFDFCFFFFFE -FFFBFBFDEEF4F9D9E7F7D3E4F6CEE0F4CBDEF3C8DCF2C3D9F1C1D8F0BED6F0BCD5EEBAD3EDB7D1 -EDB6D0EEB4CFEDB3CEECB1CDEBB0CDEBAFCCEBAECBEAADCBEAACCAEAABCAEAABC9EAABC9EAABC9 -EAAAC9EAA9C8EAA9C8E9A8C8E9A8C8E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7B989B13E447BB988B1E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E9A8C7E9A8C7 -E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C8E9A8C8E9A8C8EAA9C8EAAAC9EAABC9EAABC9EBABC9 -EAABCAEAACCAEAADCBEAADCBEAAECBEBAFCCEBB0CDECB2CEEDB3CFEDB5D0EDB6D1EDB9D2EFBBD4 -EFBCD5F0C0D7F0C2D9F1C5DBF3C9DDF3CCDFF6D1E2F5D3E4FAE7F0FDF5F8FFFFFEFFFDFCFBF0F5 -F7E4EEF5E0ECF5E0ECF5DFEBF4DFECF4DFECF2DEEBF2DFECF1DDEBF1DFECF4E6F0FAF2F6FFFEFD -FFFFFEF8EEF4EEDDEBE1C9DFDEC6DDDAC1DAD9BDD8D5BAD6D4B7D4D1B4D2CFB1D0CDAECECBACCD -CAA9CBC9A8CAC8A6C9C6A5C8C5A3C7C4A2C6C4A0C5C3A0C5C29FC4C29EC4C29EC4C19DC3C19DC3 -C09CC2C09CC2BF9BC2BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BF99C0BF9AC1BF9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BF9AC1BF9AC1BF9AC1C09AC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC2C09CC2C09CC2C09DC3C19DC3 -C29DC3C29EC4C39FC4C3A0C5C4A0C5C4A2C6C4A3C7C6A4C7C7A6C9C8A7CAC9A9CBCBABCCCCADCE -CEB0CFD0B3D2D2B5D3D4BAD6D6BCD7D9C1DADCC5DDDEC8DFE5D4E6F5ECF3FFFEFDFFFEFDFAF6F9 -F2E9F2E9DCEBE9DCEBE8DBEAE8DCEBE9DCEBE7DCEBE7DBEAE6DBEBE5DBEAE9DFEDF1EBF3FEFBFC -FFFFFEFBF9FBEFE8F1D7CEE3D2C7DFCEC5DECAC0DBC5BCD8C3B9D7C0B6D5BDB3D3BAB0D1B8AED0 -B6ACCFB4AACEB2A9CDB0A6CBAFA5CAAEA3C9ADA3C9ACA2C8ABA1C8AAA0C7AAA0C7A99FC7A99FC6 -A89EC6A89EC6A79DC5A69DC5A69DC5A69DC5A59CC5A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59BC4A59CC5A59CC5A69DC5A69DC5A79DC5A89EC6A99FC6A99FC7 -A99FC7AAA0C7AAA0C7ABA1C8ACA2C9ADA3C9AEA4CAAFA5CAB0A7CCB2A8CCB3AACDB5ACCFB8AED0 -BAB0D1BDB3D3BFB6D5C3B9D7C5BEDACAC0DBCDC6DFD2C9E1D7CFE4EAE5F0F7F5F8FFFFFEFFFEFD -F3F1F7ECE7F1EAE5F0E7E4F0E9E6F1E9E7F1EAE8F2EAE8F2EAE9F3EBE9F3ECEAF4F1F0F6FAFBFC -FFFEFDFFFFFEF5F5F9EDEEF6E3E8F3E2E7F3DFE6F2A3A3C43E457BA0A1C4D7E0EED5DFEFD3DEEE -D3DDEECFDBEDCFDBEDCEDAEDCDD9ECCCD9ECCBD8EBCAD7EBCAD7EBC9D7EBC8D6EBC8D6EBC8D6EA -C7D5EAC7D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4E9C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EAC7D5EAC7D5EA -C8D6EAC8D6EBC8D6EBC9D6EACAD7EBCAD7EBCBD8ECCCD9ECCDD9ECCEDAEDCFDBEDD0DCEED1DDEE -D3DEEFD5DFEFD6E0F0DAE3F1DBE3F1DEE5F2E1E7F3E3E8F3E6EBF5EEF1F8F8F9FBFFFEFDFFFEFD -FCFCFCF8F9FBF5F7FAF6F7FAF6F7FAF6F8FAF7F8FBC1BBD4676595F9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFEFDFCFEFEFC -FFFDFCDEE6F3BECFE7BECEE6CBD8ECFAFBFCFFFEFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -E7ECF6FFFDFBFEFEFCFFFDFCFEFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF0F3F9F2F4F9F1F3F9FAFBFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFCC7BED5515689525689C6BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFDFFFEFDF3EFF57D78A3474D82938CB3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FEF7F9FEF5F8FEF4F7FEF3F7 -FEF2F6FEF1F69288AF9287AEFDEDF3FDECF3FDEBF2FEEFF4FFF8FAFFFFFEFFFEFDFEF1F6FADFEB -F7D4E4F6CFE1F4CCDFF3C7DCF1C4DAF1C1D8F0BED6EEBAD3EEB8D2EDB6D0EDB4CFECB2CEEBB0CD -EBAFCCEAADCBEAACCAEAABC9EAAAC9EAA9C8E9A8C7E9A8C7E8A7C6E8A6C6E8A6C6E8A6C6E8A5C5 -E8A5C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4B986AF -3E457BB986AFE7A3C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C5E8A4C5E8A4C5E8A4C5E8A5C5E8A5C5E8A5C5E8A6C6E8A6C6E8A6C6E8A7C6E8A7C7E9A8C7 -EAA9C8EAAAC9EAABC9EAACCAEAADCBEAAECBEBAFCCEBB1CDECB3CFEDB5D0EDB7D1EEBAD3EFBCD5 -EFBFD6F0C0D8F1C5DBF2C8DCF4CDE0F5D0E2F6D7E6FAE9F1FFFAFBFFFFFEFEF9FBF8EAF2F5DEEB -F4DCEAF4DFECF3DDEAF3DEEBF2DEEBF1DCEAF1DDEBF2DEEBF7EBF2FEFCFCFFFFFEFBF5F8F2E2EE -E1CAE0DEC6DDDBC2DAD9BDD7D4B9D5D3B6D3D1B3D1CEB0CFCCADCDCBAACBC9A8CAC8A6C9C6A3C7 -C4A2C6C4A1C5C3A0C5C29EC4C19CC2C09CC2BF9BC1BF9AC1BF99C0BE99C0BE99C0BE98C0BD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE99C0BE99C0BF9AC1 -BF9BC2C09CC2C19CC2C29EC4C29FC4C4A1C5C4A2C6C5A3C7C6A5C8C8A7CACAA9CBCBACCDCDB0CF -CEB2D1D2B5D3D3B9D5D6BCD7DAC1DADAC5DDDFCAE0EBDBEAF5EDF4FFFFFEFFFFFEF5EDF4ECE0ED -E8D9E9E9DCEBE6DBEAE6DBEBE6DAEAE7DBEAE6DBEBE6DBEAEEE5EFF7F3F7FFFFFEFFFEFDF1EBF3 -DCD2E6D2C9E0CEC5DECAC0DBC5BCD9C3B8D6BFB5D5BCB2D3B9AFD1B7ACCFB4AACEB2A9CDB0A6CB -AEA3C9ADA3C9ABA1C8AAA0C7A99FC7A89EC6A79DC5A69DC5A59BC4A59BC4A49BC4A49AC3A49AC3 -A39AC3A399C3A299C2A299C2A299C2A299C2A299C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2 -A298C2A299C2A299C2A299C2A299C2A299C2A399C3A399C3A49AC3A49AC3A49BC4A59BC4A59CC4 -A69DC5A79DC5A89EC6A99FC7AAA0C7ABA1C8ACA3C9AEA4CAB0A6CBB2A8CCB3AACDB6ADCFB9B0D1 -BBB3D3BFB6D5C1B8D6C5BCD9CAC1DCCDC6DFD2CBE2DAD3E7F0EBF3FCFBFCFFFFFEFBF9FBEFECF4 -E7E3F0E7E5F1E8E4F0E8E5F1E9E7F1EAE8F2E9E7F2E9E8F3EEECF4F5F4F8FFFEFDFFFFFEFAF9FB -F0F0F7E5E9F3E1E7F3E0E4F1DCE3F17B7BA63F457BC9CFE4D5DEEED1DDEED1DCEDCEDAEDCEDAEC -CCD8EBCBD8EBCAD7EBC9D7EBC8D6EBC7D5EAC7D5EAC6D5EAC6D4E9C5D4E9C5D4E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4EA -C5D4EAC6D5EAC7D5EAC7D5EAC8D7EBC9D7EBCAD7EBCBD8ECCDD9ECCEDAEDCFDBEDD1DDEED2DDEE -D5DFEFD6E0F0D9E2F1DBE3F1DFE6F2E1E7F3E4E9F4E7ECF5F3F4F9FAFBFCFFFFFEFFFEFDFAFAFC -F6F8FAF5F6FAF5F6FAF6F7FAF7F8FBC0BAD3676595F9F9FBFAFAFCFAFBFCFAFBFCFAFBFCFBFBFC -FCFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFEFDFCFEFEFCFEFDFCDDE4F1 -BFCFE7BECFE7BED0E7D7E1F0FEFDFCFEFEFCFEFDFCFEFDFCFDFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E0EFF0F2F8 -FFFDFCFEFDFCFFFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEF2F4F9F0F3F9F1F3F9F1F4F9FCFCFCFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EDF28882AB484E82 -938CB2FFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEC6BED55F5E8F5E5E8FD5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FFF6F9FEF6F8FEF4F7FEF3F7FEF2F6FEF2F6FEF0F5 -9288AF9287AEFDECF3FDECF3FDEBF2FEF2F6FFFEFDFFFFFEFFF7F9FCE9F1F7D6E5F5D0E2F5CDE0 -F3C7DBF3C5DAF1C1D8F0BED6EEBAD3EEB7D2EDB5D0ECB2CEECB1CDEBAFCCEAADCBEAABCAEAA9C8 -E9A8C7E8A7C7E8A7C6E8A5C5E8A4C5E8A4C5E8A4C4E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A1C3 -E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E7A0C2B883AD3E467BB883AD -E69FC2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3 -E7A1C3E7A1C3E7A1C3E7A2C3E7A2C3E7A2C3E7A3C4E7A3C4E8A4C4E8A4C5E8A4C5E8A5C5E8A6C6 -E8A7C6E9A8C7EAA9C8EAABC9EAACCAE9ADCAEAAFCCEBB1CDEDB4CFECB6D1ECB8D2EFBBD4EFBED6 -EFC0D7F1C5DBF2C8DCF3CCDFF5D0E2F7DEEBFCF0F5FFFFFEFFFEFDFAEFF5F6E3EEF4DDEBF3DCEA -F3DDEAF2DDEAF2DDEAF1DCEAF0DCEAF4E4EFFAF3F7FFFFFEFFFFFEF6E9F2E7D2E5DFC7DEDCC3DB -D8BCD7D5BAD6D3B5D2D0B2D1CEAFCFCBACCDCAA9CBC8A7C9C6A4C7C5A2C6C4A0C5C29EC4C19CC2 -C09CC2BF9AC1BE98C0BD97BFBD97BFBD97BFBC96BEBC95BDBC95BDBB94BDBB93BCBA94BDBA93BC -BA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BCB992BC -B992BCB992BCB992BCB992BCB992BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BC -BA93BCBA93BCBA93BCBA93BCBA94BDBB93BCBC94BDBC95BDBC95BDBC96BEBC96BEBD97BFBD97BF -BE98C0BE9AC1BE9BC2C09CC2C29EC4C3A0C5C4A2C6C5A4C7C7A6C9C9A8CACBABCCCCAECECEB1D0 -D2B5D3D4B9D5D6BBD7D9C1DADCC6DDE0CCE1F1E6F0FBF8FAFFFFFEFBF7FAF1E7F1E7DBEAE6D9E9 -E6DAEAE6D9E9E6DAEAE4D9E9E5DAEAE6DBEBF0EAF2FFFEFDFFFFFEF6F1F6E8E0EDD4CBE2CEC4DD -CBC1DCC7BCD9C2B8D6BFB5D4BCB1D2B8AED0B6ACCFB3AACDB1A6CBAFA5CAAEA2C8AAA1C8A99FC7 -A89EC6A69DC5A59BC4A49AC3A39AC3A299C2A298C2A198C2A197C1A197C1A197C1A097C1A096C1 -9F96C09F96C09F95C09F95C09F95C09F95C09F95C09E95C09E95C09E94BF9E95C09E95C09E95C0 -9E95C09D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9E94BF9E94BF9E95C09E95C09E95C09E95C09E95C09F95C09F95C09F95C0 -9F95C09F95C09F96C09F96C0A096C1A096C1A096C1A096C1A197C1A198C2A298C2A299C2A39AC3 -A49BC4A59CC4A69DC5A79DC5A99FC7AAA0C7ACA2C9AEA4CAB0A6CBB3A9CDB5ACCFB8AFD1BBB2D2 -BEB5D4C2B9D7C5BDD9CAC1DCCEC5DED4CBE2E3DDECF3F0F6FFFFFEFFFFFEF3F0F6EAE5F0E7E4F0 -E7E5F1E8E5F1E9E7F1E9E7F2E9E7F2EBE9F3F1F0F6F9F7FAFFFFFEFFFEFDF3F2F8E6EAF4E2E8F3 -DFE4F1DBE3F1D9E0EF4D54875F6293D3DEEFD1DCECCFDBEDCEDAECCCD8EBCBD8EAC9D6EAC9D6EA -C7D5EAC6D5EAC5D4EAC4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C2D1E8C2D1E8C1D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8 -C0D1E8C0D1E8C0D1E8C0D1E8C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C3D2E8C3D3E9C3D2E8C3D3E9C4D3E9C4D3E9 -C4D3E9C5D4E9C6D5EAC7D5EAC7D5EAC8D6EBCAD7EBCBD8ECCDD9ECCFDBEDD0DCEDD2DDEED4DFEF -D7E1F0D9E2F1DBE3F1DEE5F2E1E8F4E5EAF4EAEEF6F6F7FAFEFEFDFFFFFEFDFDFDF8F8FBF5F6FA -F5F6FAF6F7FAF6F8FAC0BAD3676595F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFCFBFCFCFCFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFDFDFCFEFDFCFFFDFCDEE5F2BECFE7BECFE7 -BDCFE7BFCFE7D7E2EFFEFDFCFEFEFCFEFDFCFEFDFCFDFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E0EFD8E2F0D8E1F0D8E1F0F1F3F9FFFDFC -FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEF0F3F9F2F4F9F1F3F9F1F3F9F4F6FAFCFDFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEC7BED5515689686695E4DDE9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFEFD -FFFFFEFFFFFEFFFEFC938CB33E457B938CB2FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF1F6FDF0F59287AE9186AE -FDECF3FDEBF2FEEFF4FFF7F9FFFFFEFFFEFDFDEFF4F9DBE8F6D2E3F5CEE0F3C9DDF3C5DAF1C1D8 -F0BED6EEBAD3EDB7D1EDB4CFECB2CEEBAFCCEBADCBEAABCAE9A9C8E9A8C7E8A7C6E8A5C5E8A4C5 -E7A3C4E7A2C3E7A2C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E69FC1E69FC1E69FC1E69FC1 -E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0B882AD3E467BB882ACE59CC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0 -E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E69EC1E69EC1E69EC1E69EC1E69EC1 -E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69FC1E69FC1 -E69FC1E69FC1E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A2C3E7A2C3E7A3C4E7A3C4E7A5C5 -E8A6C6E9A8C7E9A9C8E9AAC9E9ACCAEAAECBEBB0CDECB3CFECB5D0EDB8D2EFBBD4EFBED6EFC1D8 -F1C6DBF2C9DDF4CEE0F5D3E4F9E8F1FEF9FBFFFEFDFEF9FAF8E9F1F4DCEAF3DDEAF2DCEAF1DBEA -F1DBEAF1DCEAF0DAE9F7EBF2FFFDFCFFFFFEFAF2F7F0DFECE1C9DFDDC4DCD9BFD9D6BAD6D4B7D4 -D1B3D1CEAFCECBACCDC9A8CAC7A6C9C6A3C7C4A1C5C39EC4C19CC2BF9BC1BE99C0BE98C0BD97BF -BC96BEBC95BDBB94BDBA93BCBA93BCB993BCB992BCB992BBB992BBB991BBB991BBB991BBB991BB -B991BBB991BBB990BAB990BAB890BAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBA -B88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB88FBAB890BAB890BAB890BAB890BAB991BBB991BB -B991BBB991BBB991BBB991BBB992BBB992BBB992BCBA93BCBA93BCBB94BDBB95BDBC95BDBD96BE -BE98BFBE99C0BF9BC1C09CC2C19EC3C3A0C5C4A2C6C6A5C8C8A8CACAABCCCCAECECFB2D0D1B5D3 -D4B9D5D7BDD8D9C2DBDCC7DEE8D7E8F4EBF3FFFFFEFFFFFEF3ECF3EADEECE6DAEAE6D9E9E5D7E8 -E4D8E9E6DAEAE4D9E9EBE2EEF6F1F7FFFFFEFEFCFCEEE7F1D7CEE3D0C6DFCCC2DCC7BDD9C3B9D7 -BFB5D5BDB2D2B8AED0B5ABCEB3A8CCB0A6CBAEA3C9ABA1C8A99FC6A79DC5A59BC4A59BC4A399C3 -A298C2A197C1A096C1A096C19F95C09E95C09E94BF9D94BF9C94BF9C93BF9C93BF9C93BE9C93BE -9C93BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE -9C92BE9C92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9B92BE9C92BE -9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C93BE -9C93BE9C93BE9C93BF9C93BF9D94BF9D94BF9E95C09E95C09F95C0A096C0A096C1A197C1A198C2 -A399C3A49BC4A69CC4A79DC5A99FC7ABA1C8ADA3C9AFA6CBB2A9CDB4ABCFB8AED0BCB2D3BEB6D5 -C2BAD7C6BDDACBC3DDCFC8E0D5CEE4EDE8F2FCFBFCFFFEFDFAF8FAEEEAF3E7E3F0E7E4F0E7E5F1 -E8E5F1E9E7F1E9E7F1EAE9F3F4F2F7FFFEFDFFFFFEF8F8FAEEEFF6E2E6F1DEE4F1DDE3F1D8E1F0 -C1C5DD3E457B8283AED1DCECCFDAECCEDAECCCD8EBC9D7EBC9D6EAC6D5EAC6D5EAC5D4E9C4D3E9 -C4D3E9C3D2E8C2D1E8C2D1E8C2D1E8C1D1E8C0D1E8C0D1E8C0D0E7C0D0E7C0D0E7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BECFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7C0D0E7C0D0E7C0D0E7C0D1E8C0D1E8C1D1E8C1D1E8C2D1E8C2D1E8C3D3E9 -C4D3E9C4D3E9C5D4E9C6D5EAC7D5EAC9D7EBCAD7EBCCD9ECCEDAECCFDBEDD1DDEED4DFEFD7E1F0 -D9E2F1DBE4F2DFE7F3E2E8F3E6EBF5EFF2F8FAFBFCFFFFFEFFFFFEF9FAFBF6F9FBF5F6FAF5F6FA -F7F7FAC0BAD3666595F8F8FBF9FAFBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7E7ECF5FFFDFCFEFDFCFEFDFCFDFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D7E1F0D8E2F0D8E0EFD8E2F0F8F8FAFFFEFDFFFDFC -FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F0F2F8F5F7FAFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFDFFFEFDFFFEFDFFFEFD938CB23E457CA198BAFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFEFDFFFEFD -FFFFFEFFFEFCD5CDE05D5E8F5E5E90E3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FEF0F5FDEFF49287AE9286AEFDECF3FDEBF2 -FEEFF5FFFBFBFFFFFEFFF7F9FCE9F1F7D6E5F6CFE1F4CBDEF3C7DBF1C2D9F0BED6EEBAD3EEB7D2 -EDB4CFECB2CEEBAFCCEAADCBEAABC9E9A9C8E8A7C6E8A5C5E8A4C4E8A2C3E7A1C3E7A0C2E7A0C2 -E69FC2E69FC1E69EC1E69EC1E59DC0E59DC0E59CC0E59CBFE49BBFE59CC0E59CC0E49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFB780AC3D457BB780ACE49ABEE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBF -E49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE49BBFE59CC0E49BBFE59CC0 -E59CC0E59DC0E59DC0E69EC1E69EC1E69FC1E69FC1E7A0C2E7A0C2E7A1C3E7A2C3E7A3C4E7A4C5 -E7A5C5E8A7C7E9AAC8EAABCAEAAECBEBB0CDECB2CEECB5D0EDB8D2EEBBD4EFBED6EFC2D8F1C6DB -F1CADEF3CFE1F6DCE9FCF0F5FFFFFEFFFDFCF9E9F1F4DCEAF3DAE9F2DAE9F1DAE9F0D9E8F0DAE9 -F2DEEBF8ECF3FFFFFEFFFEFDF5E8F1E6D1E4DEC5DDDBC0D9D7BBD6D4B7D4D2B3D1CFB0CFCBACCD -C9A8CAC7A5C8C5A2C6C4A0C5C29DC3C09BC1BE99C0BD97BFBC96BEBB95BDBB93BCBA93BCB992BB -B992BBB991BBB991BBB990BAB88FBAB88FBAB88FB9B78EB9B78EB9B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68EB9 -B78EB9B88FB9B88FBAB88FBAB890BAB990BAB991BBB992BBB992BBBA93BCBA93BCBB95BDBC96BE -BD97BFBE99C0BF9BC1C09CC2C29FC4C4A1C6C5A4C8C8A8CACAABCCCCAECECEB1D0D1B6D3D4B9D5 -D7BED8DAC3DCDECAE0EFE4EFFCF9FAFFFFFEF8F1F6EDE1EEE5D7E8E4D7E8E4D8E9E5D7E8E4D8E9 -E3D8E9EFE8F1FBF8FAFFFFFEF8F4F8E5DDECD3C8E0CCC2DDC9BEDAC4BAD7C0B6D5BCB1D2B8AED0 -B5AACEB1A7CCAFA5CAADA3C9AAA0C7A89EC6A59CC4A49AC3A298C2A197C1A096C19F95C09E94BF -9D94BF9D94BF9C93BF9C93BF9C92BE9C92BE9B92BE9A91BD9A91BD9990BD9990BD9990BC9990BC -9990BC9890BC9890BC9890BC9890BC9890BC9890BC9890BC9890BC9890BC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC9890BC9890BC -9890BC9890BC9890BC9890BC9890BC9890BC9990BC9990BC9990BC9990BC9990BC9990BC9990BD -9A91BD9A91BD9B92BE9B92BE9C92BE9C93BF9C93BF9C93BF9D94BF9F95C0A096C0A096C1A198C2 -A299C2A39AC3A59CC5A89EC6AAA0C7ACA2C9AFA5CAB2A8CCB4ABCEB8AFD1BBB3D3BFB7D6C4BAD8 -C7BFDBCCC5DED2CBE2E1DBEBF4F1F6FFFFFEFFFEFDF1EDF5E6E3EFE6E3EFE6E4F0E7E5F1E7E6F1 -E8E6F1EDECF4F7F5F9FFFFFEFEFEFDF3F2F7E5E9F4E1E6F2DDE3F1DAE1F0D8E1F09596BC3E457B -B0B5D2CFDBEDCCD9ECCBD8EBC9D5EAC9D6EAC5D4E9C4D3E9C4D3E9C3D3E9C2D2E8C2D1E8C1D1E8 -C0D0E7C0D0E7C0D0E7BFCFE7BFCFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BFCFE7BFCFE7C0D0E7C0D1E8C1D1E8C1D1E8C2D1E8 -C3D3E9C4D3E9C5D4E9C6D5EAC8D6EBCAD7EBCCD9ECCEDAECCFDBEDD1DDEED4DFEFD7E1F0D9E3F1 -DCE5F2E0E7F3E4E9F4E9EDF6F6F8FAFFFEFDFFFFFEFBFCFCF6F8FAF5F6FAF5F6FAF6F7FAC0BAD3 -666595F8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFCFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -E7ECF5FEFDFCFFFDFBFEFDFCFEFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E2F0D8E2F0D8E1F0D9E4F1F9F8FAFFFEFCFFFDFBFFFDFC -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F4F6FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F2EEF4696695515689D4CCDFFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEF2EEF47D78A3484E82B9B2CCFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF6F9 -FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6FDF0F5FDEFF49287AE9286AEFDEBF2FDEBF2FFF3F6FFFEFD -FFFFFEFEF2F6FADDEAF6D2E3F5CDE0F3C8DCF2C4DAF1C0D7F0BCD5EEB8D2EDB5D0ECB2CEEBAFCC -EAADCBE9AAC8E8A7C7E8A6C6E8A4C4E7A2C3E7A1C3E69FC1E69FC1E69EC1E59DC0E59DC0E59CC0 -E59CBFE59CBFE49BBFE49BBFE49ABEE49ABEE49ABEE499BEE499BEE499BEE499BEE499BEE499BE -E499BEE499BEE499BEE499BEE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDB77FAB3E457BB77FABE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BEE499BEE499BEE499BEE499BE -E499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE49ABEE49ABEE49ABEE49ABE -E49BBFE49BBFE59CBFE59CC0E59CC0E59DC0E69EC1E69FC1E7A0C2E7A0C2E7A2C3E7A3C4E7A4C5 -E8A6C6E9A8C7E9AAC9EAADCBEAAFCCEBB2CEECB5D0EDB9D2EEBBD4EFBFD6F0C3DAF1C7DCF2CBDF -F4D3E4FAE9F1FFFCFCFFFFFEFBF0F5F5E0ECF2DAE9F2D9E8F1DAE9EFD9E8F0D8E7F4E4EFFBF5F8 -FFFFFEFCF6F9F1E2EDE1C8DEDDC4DCD9BDD7D5B8D5D3B5D2D0B0CFCDADCDCAA8CAC7A5C8C5A2C6 -C4A0C5C29DC3BF9BC1BE98C0BD96BEBC94BDBA93BCB992BCB991BBB990BAB88FBAB88FBAB78EB9 -B78EB9B68DB8B68DB8B58CB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7 -B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58BB7B58BB7B58BB7 -B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58CB7 -B68CB7B58DB8B68DB8B68DB8B78EB9B88FBAB890BAB990BAB991BBB992BBBA93BCBB94BDBC96BE -BD97BFBE9AC1C09CC2C29FC4C4A1C6C5A4C8C7A7CACAABCCCCAFCFCFB2D1D2B7D4D5BBD7D8C0DA -DBC6DDEADAEAF7EFF5FFFFFEFDFAFBF0E6F0E4D6E8E3D5E7E4D6E8E2D6E7E3D7E8E5DBEAF0E8F1 -FFFEFDFFFFFEEFE8F2DBD1E5CFC5DECBC0DBC6BCD9C2B8D6BEB3D3B9AFD1B6ABCEB3A8CCAFA5CA -ADA3C9AAA0C7A79DC5A59BC4A399C3A197C1A096C19F95C09D94BF9C93BF9C92BE9B92BE9B92BE -9A91BD9990BC9990BC988FBC988FBC988FBC988EBB988EBB978EBB978EBB978EBB978EBB978EBB -978EBB978EBB978EBB978EBB978DBB978DBB978DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB968DBB978DBB -978DBB978DBB978DBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB988EBB988FBC988FBC -988FBC988FBC9890BC9990BD9A91BD9A91BD9B92BE9C92BE9C93BF9C94BF9E94BFA096C1A198C2 -A299C3A49BC4A69DC5A99FC7ACA2C9AFA5CAB1A8CCB5ACCFB8AFD1BDB3D3C0B7D6C5BCD9CAC1DC -CEC7DFD6CFE4EEE9F3FFFEFDFFFFFEF4F2F7EAE6F1E5E2EFE5E2EFE6E4F1E6E4F1E7E6F1F0EFF6 -FBFAFBFFFFFEFAFAFCEFF1F7E1E5F2DEE4F1DBE2F0D8E1F0D6DFEF71729F444D82CEDAECCDD8EB -CBD8EAC9D6EAC7D5EAC6D4E9C4D3E9C3D2E8C2D1E7C1D1E8C0D1E8C0D0E7BFCFE7BECFE7BECFE7 -BECFE7BDCFE7BDCFE7BDCFE7BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BDCEE6BDCFE7BDCFE7BECFE7BECFE7BFCFE7BFCFE7C0D0E7C0D0E7C1D1E8C2D1E8 -C3D2E8C4D3E9C6D5EAC8D6EAC9D7EBCBD8ECCEDAECCFDBEDD2DDEED5DEEED8E1F0DAE3F1DEE5F2 -E2E8F3E4E9F4F1F3F9FBFCFCFFFEFDFEFEFDF7F8FBF5F6FAF5F6FAF5F6FABFB9D3666595F8F8FB -F8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7C2D3E9F3F3F8 -FDFEFCFEFCFBFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E2F0D7E0EFD8E1F0D8E2F0D8E1F0DEE6F3FDFDFCFFFEFCFFFDFCFFFDFCFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F1F3F9F2F4F9F6F8FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDD5CDE0525689736F9D -F2EEF4FFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDABA4C33E457B9F99BCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF6F8FEF4F7 -FEF3F7FEF2F6FEF1F6FDEFF4FDEEF49287AE9286AEFCEAF2FDEDF3FFF5F8FFFEFDFFFCFCFDEFF4 -F8D5E5F6CFE1F4CBDEF3C6DBF1C2D8F0BED6EEBAD3EDB6D0ECB3CFEBAFCCEAADCBE9AAC8E8A7C7 -E8A5C5E8A4C4E7A2C3E7A0C2E69FC1E69EC1E59DC0E59CBFE59BBFE59BBFE49ABEE499BEE49ABE -E499BEE499BDE499BDE499BDE499BDE499BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDB77FAA3E457BB77FABE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE499BDE499BDE498BDE499BDE499BEE49ABE -E399BEE49ABEE59BBFE69BBFE69CBFE59CC0E59DC0E69EC1E69FC2E6A0C2E7A2C3E7A3C4E7A6C6 -E9A8C7E9AAC9EAADCBEAAFCCEBB2CEECB6D1EDB9D3EEBCD5EFC0D7F1C5DBF1C9DDF3CEE0F9E5EF -FDF6F9FFFFFEFCF5F8F7E4EEF2D9E8F1DAE9F0D9E8F0D9E8EFD8E8F4E6F0FEF9FBFFFEFDF8EEF4 -ECD9E8DFC6DDDCC1DAD7BBD6D3B6D3D1B2D1CDAECECAA9CBC8A6C9C6A3C7C4A0C5C29DC3BF9BC1 -BE98C0BD96BEBB94BDBA93BCB991BBB990BAB88FBAB78EB9B68DB8B68DB8B58CB7B58CB7B58BB7 -B58BB7B58BB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58BB7B58BB7 -B48BB7B58CB7B58CB7B68DB8B68DB8B78EB9B88FBAB890BAB991BBB992BBBA93BCBB95BDBD97BF -BE99C0C09CC2C29FC4C4A1C6C5A4C8C7A7CACAABCCCDB0CFD0B4D2D3B8D5D7BED8DAC3DCE1CFE3 -F1E7F1FFFFFEFFFFFEF1E8F2E5D7E8E3D5E7E3D5E7E2D6E7E1D4E7E7DEECF4EEF5FFFFFEFDFAFB -ECE6F1D3C9E0CCC2DDC8BEDAC3B9D7BEB4D4BBB0D2B7ACCFB3A9CDB0A6CBADA3C9AAA0C7A79DC5 -A59BC4A299C2A197C19F95C09D94BF9C93BF9C92BE9B92BE9990BD9890BC988FBC988EBB988EBB -978DBB978DBB968DBB968DBB968DBB968DBB968DBB958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA968DBB968DBB968DBB978DBB988DBB -978DBB978EBB988EBB988FBC988FBC9990BC9A91BD9B92BE9C92BE9D94BF9F96C0A198C2A299C2 -A49BC4A69DC5AAA0C7ACA3C9AFA6CBB2A9CDB5ACCFB9B0D1BEB5D4C2BAD7C7BEDACCC4DDD2CAE1 -E8E3EFFAF8FAFFFEFDF8F6F9ECE9F2E4E1EFE4E2EFE5E3F0E5E3F0E7E5F1F2F0F7FEFDFDFFFFFE -F5F5F9E8EBF4E0E5F2DDE4F1DAE1F0D8E0EFD5DDEE444D82676999CED9ECCBD7EACAD6EAC6D5EA -C6D4E9C4D2E8C3D2E8C0D0E7C0D0E7C0D0E7BFCFE7BECFE7BDCFE7BDCEE6BDCEE6BDCEE6BCCDE6 -BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5 -BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BACDE5BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCFE7BDCFE7C0D0E7C0D1E8C1D1E8C1D1E8C3D3E9 -C4D3E9C5D4E9C6D5EAC9D7EBCCD9ECCEDAEDD0DCEDD3DEEED5DFEFD8E2F0DCE5F2DFE7F3E4E9F4 -ECEFF7F8F9FBFFFEFDFFFFFEF9F9FBF5F6FAF5F6FAF5F6FABFB9D3666595F7F8FBF8F8FBF9F9FB -FAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6C4D3E9F4F6FAFEFDFC -FEFDFCFEFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D7E0EF -D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D7E0EFE0E8F3FDFCFBFFFDFCFEFCFBFFFDFCFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F1F3F9F8F8FBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDB9B1CB474E82938DB3FFFEFCFFFFFEFFFFFE -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFEFDFFFFFE -D5CDE0474E827E78A3FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6 -FEF0F5FDEEF4FDEDF39286AE9286ADFCEAF2FEEFF4FFF8FAFFFFFEFFF8FAFCE8F1F6D3E3F5CEE0 -F3C9DDF1C4DAF0BFD7EFBBD4EDB7D1EDB4CFECB1CDEAADCBEAABC9E8A7C7E8A5C5E8A3C4E7A1C3 -E7A0C2E69FC1E59DC0E59CC0E59CBFE59ABEE499BEE499BDE499BDE498BDE498BDE498BDE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -B77EAA3E457BB77EAAE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE498BDE498BDE499BDE499BD -E499BEE499BEE499BEE49ABEE59BBFE59CC0E59DC0E69FC1E6A0C2E7A2C3E7A3C4E7A6C6E8A7C7 -E9AAC9EAADCBEAB0CDEBB3CFECB7D1EDBAD3EEBED6F0C2D9F0C7DCF3CCDFF6DAE8FBF0F5FFFFFE -FFFBFBF8E8F1F1D7E7F0D8E7EFD6E6F0D9E8F0D9E8F6E7F0FFFFFEFFFFFEF5E8F1E6D0E3DDC4DC -DABED8D5B8D5D3B5D2CFAFCECBABCCC9A7C9C6A4C7C4A1C5C29DC3BF9AC1BE98C0BD96BEBB93BC -B992BBB990BAB790BAB78EB9B68DB8B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B489B5B488B5B489B5B489B5B489B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B489B5B489B5B489B5B489B5B488B5B489B5B48AB6B48AB6B48AB6B48AB6 -B48AB6B58BB7B58BB7B58CB7B68DB8B68EB9B78FB9B890BAB991BBB992BCBB94BDBC96BEBE99C1 -BF9CC2C29FC4C4A2C6C5A5C8C8A9CBCBACCDCEB1D0D1B6D3D4BBD6D8C0DADCC7DEEEE3EEFEFBFC -FFFFFEF5EDF4E8DBEAE2D4E6E2D4E6E0D4E7E0D5E7EAE0EDF7F2F7FFFFFEF8F4F8E4DBEBD1C6DF -CBC1DBC6BCD9C1B7D5BDB3D3B8AED0B4AACEB1A6CBAEA3C9AAA0C7A89EC6A59BC4A299C2A197C1 -9E95C09D94BF9C92BE9B92BE9A91BD988FBC978EBB978DBB978DBB968DBB968DBB968CBA958CBA -958CBA948CBA948CBA948CBA948CBA948CBA948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948CBA948CBA948CBA948CBA948CBA948CBA948CBA958CBA958CBA958DBA -968DBB968DBB968DBB978EBB988FBC9990BC9A91BD9B92BE9C93BF9E95C0A096C1A199C2A49BC4 -A69DC5A9A0C7ACA3C9AFA6CBB3A9CDB7AED0BBB2D2BFB7D6C4BCD9CBC3DDCFC7DFE0DAEAF5F2F7 -FFFFFEFCFBFBEDEAF3E3E0EEE4E2EFE4E3F0E5E3F0E8E6F1F3F2F7FFFFFEFFFEFDF2F1F7E5E9F4 -DFE3F1DCE2EFD8E0EFD6DEEEB2B6D33F457B878BB4CCD7EBC9D6EAC7D5EAC5D4E9C4D2E8C3D3E9 -C1D0E7C0D0E7BFD0E7BECFE7BDCFE7BDCEE6BCCDE6BCCDE5BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BACDE5BACDE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACDE5BACDE5BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BCCDE6BCCEE6BDCEE6BDCFE7BECFE7BFCFE7C0D0E7C1D1E8C3D3E9C4D3E9 -C6D5EAC8D6EACAD7EBCCD9ECCFDBEDD1DDEED4DFEFD7E1F0DAE3F1DDE5F2E2E9F4E7ECF5F6F8FA -FFFEFDFFFFFEFAFAFCF5F6FAF5F6FAF5F6FABFB9D3666595F7F8FBF8F8FBF8F8FBFAFAFCFAFAFC -FAFBFCFAFBFCFBFBFCFBFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BFCFE7BDD0E7BECFE7BECFE7CAD8EBFBFBFCFDFDFCFFFDFC -FEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D7E0EFD8E2F0 -D7E2F0D8E1F0D8E1F0D8E1F0D8E1F0E5ECF5FEFCFBFFFEFCFEFDFCFFFEFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9 -F1F3F9FAFAFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFDACA4C33E457BACA4C3FFFEFCFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEF2EEF4 -5D5E8F5E5E8EF2EEF5FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4 -FDECF39286AE9186ADFCE9F1FEF0F5FFFBFBFFFFFEFFF5F8FAE2EDF6D1E2F4CCDFF3C7DCF1C3D9 -F0BED6EEBAD3EDB6D0ECB2CEEBAFCCEAABCAE9A9C8E8A6C6E8A4C4E7A1C3E7A0C2E69EC1E59CC0 -E59CBFE59BBFE499BEE499BDE499BDE498BDE498BDE597BCE497BCE497BCE497BCE497BCE497BC -E397BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCB67EAA3E457B -B67DAAE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE397BCE397BCE497BCE497BCE497BCE497BCE498BDE498BDE498BDE498BD -E398BDE499BDE499BEE59BBFE59CBFE59DC0E69EC1E69FC2E6A1C3E6A3C4E7A5C5E9A8C7E9AAC9 -EAAECBEBB1CDEBB4CFECB8D2EEBCD5EEC0D7F0C5DBF1C9DDF4D4E4F9EAF2FFFFFEFFFDFCF8E7F0 -F0D7E7EFD6E6EFD6E6EED6E6F1DAE9F8ECF3FFFFFEFFFCFCF3E5EFE0C7DEDCC2DBD8BCD7D4B7D4 -D1B2D1CDADCDCAA9CAC8A5C8C5A2C6C39EC4C09BC1BE98C0BD96BEBB93BCB992BBB890BAB88EB9 -B58DB8B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B489B5B489B5B389B5B389B5B389B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B389B5B389B5B389B5B389B5B489B5B489B5B489B5B48AB6B48AB6 -B48AB6B48AB6B58BB7B58CB7B68DB8B78EB9B88FBAB991BBB993BCBB95BDBD97BFBE99C0BF9CC2 -C29FC4C4A3C7C6A6C9C9AACCCCAFCFCFB4D2D2B8D5D6BED8D9C2DBEBDDEBFAF4F8FFFFFEF7F0F6 -E9DDECE0D2E6E1D3E6E1D3E6E0D3E6EBE3EFFAF8FAFFFFFEF2EDF4DFD6E8CFC4DDCABFDBC4BAD7 -BFB5D4BCB1D2B7ACCEB3A8CCAFA5CAACA2C8A99FC6A59BC4A399C3A197C19E95C09C93BF9C92BE -9A90BD9890BC988EBB978DBB968DBB968CBA958CBA958CBA948CBA948CBA948BB9948BB9948BB9 -948BB9948BB9948BB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948BB9948BB9948BB9948BB9948BB9948CBA948CBA958CBA958CBA -958DBA968DBB978EBB978EBB998FBC9990BD9B92BE9C93BF9E94BFA097C1A199C2A49BC4A69DC5 -AAA1C8ADA4CAB0A7CCB4ABCEB9B0D1BEB5D4C2BAD7C7BFDBCCC4DED9D3E6F2EEF5FFFFFEFFFEFD -EFECF4E2DFEEE2E0EEE3E2EFE5E3F0E9E7F2F5F4F8FFFFFEFDFDFDF0EFF6E0E5F1DCE4F1DAE0EF -D8E0EFD5DEEE898BB43D457BB7BEDACAD7EBC8D5E9C6D4E9C5D4E9C3D2E8C1D1E8C0D0E7BFCFE7 -BDCFE7BDCEE6BCCDE6BBCCE5BBCCE5BBCCE5BBCDE6BBCCE5BBCCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5 -BBCDE6BBCDE6BCCDE6BDCEE6BDCEE6BDCFE7BECFE7BFCFE7C0D0E7C1D1E8C3D3E9C5D4E9C6D5EA -C8D6EBCBD8ECCEDAECCFDBEDD2DDEED6DFEFD8E1F0DCE4F1DFE7F3E5EAF4F4F6FAFDFEFDFFFFFE -FBFCFCF6F7FAF5F6FAF5F6FABFB9D3666595F7F8FBF8F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BFCFE7BECFE7BECFE7BFCFE7CAD9ECFAFAFBFEFEFCFEFDFCFEFDFC -FEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E8F3D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0 -D7E1F0D8E1F0D8E1F0D8E1F0E9ECF5FEFCFBFFFDFCFFFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F8F1F3F9 -FAFBFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFC -FFFFFEA199BC474E83D4CCDFFFFFFEFEFEFDFFFEFDFFFEFCFFFDFCFFFFFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDF3EEF35E5E8F -5E5E8FF2EDF3FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDECF39286AE -9186ADFCE8F1FEF1F6FFFDFCFFFFFEFEF2F6F9DDEAF6D0E1F4CBDEF3C6DBF1C1D8F0BCD5EEB8D2 -EEB4CFECB0CDEAADCBE9A9C8E8A7C6E8A4C4E7A2C3E7A0C2E69EC1E59CC0E59CBFE49ABEE499BE -E498BDE498BDE498BDE497BCE497BCE497BCE497BCE497BCE397BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBB67DAA3E457BB67DAAE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BCE396BCE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BCE497BCE497BCE497BCE497BCE497BCE397BCE397BCE398BD -E499BDE499BDE499BEE49BBFE59CC0E69EC1E69FC2E6A2C3E7A3C4E8A6C6E8A9C8E9ACCAE9AFCC -EBB2CEECB6D1EEBBD4EEBED6F0C2D9F0C7DCF2CFE1F8E5EFFFFFFEFFFFFEF8E8F1F1D9E8EFD6E6 -EFD6E6EED6E6F2DCEAF8EDF4FFFFFEFDF8FAF1E1EDDFC6DDDBC0D9D6BAD6D3B5D2D0B1D0CCABCC -C9A7C9C6A3C7C4A0C5C19CC2BF99C0BD97BFBC94BDBA93BCB990BAB78EB9B78DB8B58BB7B48AB6 -B48AB6B48AB6B48AB6B489B5B389B5B389B5B389B5B389B5B288B5B288B5B288B5B288B5B288B5 -B188B5B288B5B288B5B288B5B288B5B288B5B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B389B5B389B5B389B5B389B5B389B5B389B5B48AB6 -B48AB6B48AB6B58BB7B58DB8B68EB9B78FB9B991BBB992BCBB95BDBD97BFBE99C1C09DC3C3A0C5 -C5A4C8C7A8CACBADCDCDB1D0D1B6D4D5BDD8D8C1DAE6D7E8F8F1F6FFFFFEF8F2F6EBDEECE0D2E6 -E0D2E6DED2E5DFD2E5EDE5F0FCF9FAFFFFFEF1EBF3DACFE4CDC3DDC8BDD9C3B8D6BDB3D3B9AFD0 -B4AACDB0A6CBAEA3C9AAA0C7A69CC4A499C3A197C19F95C09D94BF9C92BE9A91BD988EBB978EBB -968DBB958CBA958CBA958CB9948BB9948BB9948BB9948BB9948BB9948BB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9948AB9948AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948BB9948BB9948BB9948BB9948BB9948BB9948CBA958CBA -968DBB968DBB978DBB978EBB9890BC9A91BD9C93BE9D95C09F96C1A299C2A59BC4A89EC6ABA2C8 -AFA6CBB2A9CDB6ADD0BBB2D2BFB7D6C4BCD9CCC4DDD4CDE3EEEAF3FFFFFEFFFFFEEEEBF4E4E1EF -E3E0EEE3E1EEE3E2EFE9E7F2F6F5F9FFFEFDFAFBFCEEEEF5DFE4F1DDE2F0D8E0EFD6DEEED2DCED -6869984C5387CBD7EAC8D5E9C7D4E9C4D2E8C3D2E8C1D0E7C0CFE6C0D1E7BDCEE6BDCEE6BCCDE6 -BBCCE5BBCCE5BBCCE5BACCE5BACCE5BACCE5BBCCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BBCDE6BBCDE6BCCDE6BCCDE6BDCEE6BECFE7BFCFE7C0D0E7C1D1E8C3D3E9C4D3E9C7D5EAC9D7EB -CCD9ECCEDAEDD0DCEED4DFEFD8E1F0DAE3F1DEE5F2E3E9F4F1F3F9FBFCFCFFFFFEFBFCFCF6F8FA -F4F6FAF5F6FABEB9D3666595F6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BED0E7BECFE7BECFE7BECFE7BECFE7BECFE7D7E2F0FEFDFCFEFDFCFEFDFCFEFDFCFEFDFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0 -D8E1F0D8E1F0D8E1F0EFF2F8FFFDFCFEFDFCFFFFFDFEFCFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F8F1F3F9F1F3F9FCFCFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE7E78A3474D82 -D4CCDFFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE7E78A35E5E8F -F2EDF3FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF0F5FDEFF4FDEDF3FDECF39286AE9186ADFCE8F1 -FEF0F5FFFFFEFFFFFEFEEFF5F8DAE8F7D0E1F3C9DDF1C4DAF0BFD7EEBAD3EDB6D1EDB3CEEBAFCC -EAABCAE9A8C7E8A5C5E7A2C3E7A0C2E69FC1E59CC0E59CBFE59BBFE499BDE499BDE498BDE497BC -E497BCE497BCE497BCE396BCE396BCE396BCE396BCE396BCE396BCE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBB67DA93E457BB67DA9E395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BCE396BCE396BCE396BCE396BCE497BCE497BCE397BCE397BCE397BCE398BDE398BD -E499BEE499BEE59BBFE59CC0E59DC0E6A0C2E6A2C4E7A5C5E7A6C6E9AAC8E9ADCAEAB0CDEBB4CF -ECB8D2EDBBD4EEC1D8F0C6DBF2CBDFF8E6EFFFFFFEFFFFFEF9E9F1F2DAE9EED4E5EED5E6EDD4E5 -F1DCEAF9EEF4FFFFFEFCF7F9EFDCEADEC5DCDABED8D5B8D4D2B3D1CEAECECAA9CBC9A6C8C4A2C6 -C39EC3BF9BC1BD97BFBC95BDBA93BCB991BBB88FBAB68DB8B58BB7B48AB6B48AB6B48AB6B489B5 -B489B5B488B5B389B5B389B6B288B5B288B5B288B5B288B5B288B5B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B187B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B288B5B288B5B288B5B288B5B288B5B389B5B389B5B389B5B388B5B389B5B389B5B48AB6 -B48AB6B48AB6B58BB7B68DB8B890BAB891BBBA94BDBB95BEBD98BFBE9AC1C19EC3C4A2C6C6A6C9 -C9AACCCCAECECFB4D2D3B9D5D7BFD9E4D3E5F7EFF5FFFFFEF8F4F8ECDFEDE0D1E5E0D2E5DFD2E5 -DED1E5ECE3EFFFFFFEFFFFFEEDE5F0D7CDE3CCC1DCC6BBD8C1B6D5BCB1D2B8ADCFB3A8CCAFA5CA -ABA1C8A89EC6A59BC4A298C2A096C19D94BF9C92BE9A91BD988EBB978DBB968DBB968CBA948CBA -948BB9948BB9948BB9948BB9948AB9948AB9948AB9948AB9948AB9948AB9938AB9938AB8938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB89289B8 -9289B89189B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8928AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9948AB9948AB9948AB9948AB9948AB9948BB9948BB9948CBA948CBA948CBA958CBA -968DBB968DBB978EBB9890BC9B92BE9C93BF9E95C0A197C1A39AC3A59CC5A99FC7ACA3C9B0A7CC -B4ABCEB9B0D2BEB5D4C3BBD9C7C0DBCFC7DFEDE9F3FFFFFEFFFFFEEFECF4E4E1EFE1DFEEE2E0EE -E2E1EFE9E7F2F8F7FAFFFFFEF9F8FAECEDF5DFE4F1DBE1EFD8E0EFD5DDEED2DBED3E457B6E709E -CAD6EAC8D5E9C4D3E9C4D2E8C2D1E7C0D0E7BFD0E7BECFE7BDCEE6BCCDE6BBCCE5BBCCE5BBCCE5 -BBCDE6BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5 -BCCDE5BBCDE6BBCDE6BDCEE6BFCFE7BFCFE7C0D0E7C1D0E7C4D2E8C5D4E9C7D5EACAD7EBCDD9EC -CFDBEDD2DDEED6DFEFD9E3F1DDE4F1E1E8F4EEF0F7FBFCFCFFFFFEFCFCFCF7F9FBF4F6FAF5F6FA -BEB9D3666595F6F8FAF6F8FAF8F8FBF8F8FBFAFAFCFAFAFCFAFBFCFBFBFCFAFBFCFBFCFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BED0E7BECFE7BECFE7D7E1F0FEFDFCFEFDFCFEFDFCFEFDFCFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E2F0D8E1F0D7E1F0D8E1F0D7E0EFD8E1F0D8E2F0D8E1F0D8E2F0 -D8E1F0D7E2F0F1F3F9FFFDFCFFFDFBFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F3F5F9FCFCFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD7E79A4474E82D4CCE0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E79A45E5E8EF2EEF5 -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8 -FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF39186AD9284ACFCE7F0FEF0F5FFFFFE -FFFFFEFCEEF4F8D9E7F5CEE0F3C8DCF1C2D9F0BED6EEBAD3EDB5D0ECB1CDEAADCBEAA9C8E8A7C6 -E8A4C4E7A1C3E69FC1E59DC0E69CBFE49ABEE499BDE498BDE498BDE497BCE497BCE497BCE396BC -E396BCE396BCE396BCE396BBE396BBE396BBE396BBE396BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE396BBE394BAE396BBB67DA93E457BB57DA9E395BBE395BBE394BAE496BBE294BA -E496BBE294BAE395BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BCE396BCE396BCE396BCE396BCE397BCE398BDE398BDE398BDE499BD -E499BEE59BBFE59DC0E69FC1E6A0C2E6A2C4E7A5C5E8A8C7E8ABC9E9AFCCEBB3CFEBB6D1EDBAD4 -EDBFD7EFC3D9F0C9DDF7E5EEFEF9FAFFFFFEFAECF3F1D8E8EED4E5EDD4E5EDD4E5F1DCEAFBF2F6 -FFFFFEFAF1F6EEDBEADDC3DBD9BDD7D4B7D4D1B2D0CDADCDCAA9CAC7A5C8C4A0C5C29DC3BF99C0 -BD96BEBB93BCBA91BBB88FBAB68DB8B58BB7B48AB6B48AB6B489B5B489B5B389B5B388B5B388B5 -B288B5B288B5B288B5B288B5B287B4B287B4B287B4B287B4B287B4B287B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B287B4B287B4 -B287B4B287B4B288B5B288B5B288B5B288B5B288B5B288B5B389B5B389B5B389B5B48AB6B48AB6 -B48AB6B58DB8B68EB9B890BAB991BBBA94BDBC96BEBE99C0BF9CC2C2A0C5C5A4C8C8A9CBCBADCD -CEB2D1D1B7D4D5BDD8E3D1E4F3EAF2FFFFFEFCF9FAEBDFECDFD1E4DFD1E5DFD1E5DED1E5ECE3EF -FFFFFEFFFFFEEAE2EED6CCE2CBC0DBC4BAD7BFB5D4BBB0D1B6ABCEB2A7CCAEA3C9AAA0C7A79CC5 -A399C3A197C19E95C09C93BE9B91BD988FBC978DBB968DBB958CBA948CBA948BB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9938AB9938AB9938AB9938AB9938AB89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8938AB9938AB9 -938AB9938AB9938BB9948AB9948AB9948AB9948BB9948BB9948BB9948BB9948CBA958CBA968CBA -968EBB978EBB9990BC9B92BE9C93BF9F96C0A197C1A49BC4A79EC6AAA1C8AFA6CBB3A9CDB7AED0 -BCB3D4C1B9D7C6BEDACCC5DEECE8F1FFFFFEFFFFFEEEEAF3E4E1EFE1DFEEE2E0EEE2E1EFE9E8F3 -F8F7FAFFFFFEF8F8FAECECF5DDE2F0DAE0EFD7DEEED3DDEEA7A9C93E457B8E92BAC9D5EAC6D4E9 -C4D2E8C3D2E8C1D0E7BFCFE7BECEE6BCCDE5BCCDE6BBCCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5BACDE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5 -BBCCE5BCCDE6BDCEE6BECFE7BFCFE7C1D0E7C2D1E8C4D3E9C6D5EAC9D7EBCCD9ECCFDBEDD1DDEE -D6DFEFD8E1F0DCE5F2E0E7F3EDF0F7FBFBFCFFFFFEFBFCFCF7F8FBF4F5F9F4F6FABFB9D3656595 -F6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFBFCFCFCFCFCFDFDFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7E7ECF5FEFDFDFEFDFCFEFEFCFEFDFCFEFCFBFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EF -D8E2F0F8F8FBFFFEFDFFFDFCFFFDFCFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F4F6FAFEFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFEFCFFFFFEFFFFFDFFFEFDA099BB474D82D5CDE1FFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A45D5E8EF2EDF4FFFEFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF39186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEDF3 -F8D9E7F5CDE0F3C7DBF1C1D8F0BDD5EEB8D2EDB4CFEBB0CDEAACCAE9A8C7E8A5C5E8A2C3E69FC1 -E69EC1E59CC0E59BBFE499BEE499BDE498BDE497BCE497BCE497BCE497BCE396BCE396BBE396BB -E396BBE396BBE396BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BAE396BBCB88B28363953E447B8D6898D78EB6E395BBE395BBE394BAE495BBE294BAE496BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BB -E396BBE396BBE396BCE396BCE396BCE396BCE396BCE396BCE397BCE397BCE398BDE499BDE49ABE -E59CBFE59DC0E69FC2E6A1C3E6A3C4E7A6C6E8A9C8E9ADCAEAB0CDEBB4D0EDB9D3EDBDD6EFC2D9 -F0C8DDF7E4EDFEF9FAFFFFFEFAECF3F1D8E8EED4E5EDD4E5EDD4E5F1DBEAFBF2F6FFFFFEF9F1F6 -EEDBEADDC2DBD8BCD7D3B6D3D0B1D0CCABCCC9A7C9C6A3C7C39EC4C09BC1BE98BFBC94BDBA93BC -B990BAB78EB9B58CB7B48AB6B48AB6B489B5B489B5B488B5B388B5B388B5B288B5B288B5B288B5 -B287B4B287B4B287B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B187B4B287B4 -B287B4B287B4B288B5B288B5B288B5B288B5B288B5B288B5B389B5B389B5B389B6B48AB6B58BB7 -B58DB8B78EB9B890BAB992BCBA95BDBC97BFBE9AC1C09EC4C4A3C7C6A7C9CAABCCCDB0D0D0B5D3 -D4BCD7E2D0E3F3E9F2FFFFFEFBF8FAEADFECDFD1E4DED0E4DED1E5DDD0E4EBE3EFFFFFFEFFFFFE -EAE1EED5CBE1C9BEDAC4B9D7BEB4D4BAAFD0B5AACEB0A6CBACA2C8A99EC6A59BC4A298C2A096C0 -9D94BF9C92BE9990BC978EBB968DBB958CBA948CBA948BB9948AB9948AB9948AB9948AB9948AB9 -938AB9938AB9938AB9938AB9938AB8938AB89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -938AB9938AB9938AB9948AB9948AB9948BB9948BB9948BB9948CBA948CBA958CBA958DBA968EBB -988FBC9A91BD9C92BE9E94BFA097C1A299C3A59DC5A9A0C7ADA4CAB1A8CCB5ACCFBAB2D3BFB7D6 -C5BDD9CBC3DDEBE6F0FFFFFEFFFFFEEFEBF3E4E1EFE1DEEDE2E0EEE2E0EEE8E7F2F8F7FAFFFFFE -F8F7FAEBECF5DDE2F0D9E0EFD6DDEDD3DCED8082AC3E447BBEC8E0C8D5E9C5D3E8C4D2E8C2D1E7 -C0D0E7BFCFE7BDCEE6BCCDE5BBCCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BBCCE5BBCCE5BACCE5BACCE5BBCDE6 -BCCDE6BDCFE7BECFE7C0D0E7C1D1E8C3D3E9C5D4E9C8D6EACAD7EBCDD9ECD0DCEDD5DEEED8E1F0 -DBE3F1DFE6F2ECF0F7FAFBFCFFFFFEFBFCFCF6F8FAF3F4F9F4F6FABFB9D3666595F6F7FAF7F8FB -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7E7EBF4FDFEFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EFD8E2F0D8E0EFDAE3F1 -F8F8FAFEFDFDFFFDFCFFFEFCFEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F8F5F7FAFEFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEACA4C3484D82D5CEE0FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE6966955E5E8FFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6 -FDEFF4FDEEF4FDECF3FDECF39186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEDF3F8D8E7F4CCDF -F3C7DBF1C1D8F0BCD5EEB7D2EDB3CEEBAFCCEAABC9E8A7C7E8A4C5E7A1C3E69FC1E59DC0E59CBF -E499BEE498BDE498BDE497BCE497BCE497BCE396BCE396BCE396BCE396BBE396BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE394BAA172A1 -3E457B3F447B3E467B3D457B48497FC182ADE294BAE394BAE394BAE394BAE294BAE393BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E396BBE396BBE396BBE396BCE396BCE396BCE397BCE397BCE397BCE398BDE499BDE49ABEE59CBF -E69EC1E69FC2E6A2C3E6A5C5E8A8C7E8ABC9E9AFCCEBB3CFECB8D2EDBCD5EEC1D8F0C6DCF7E4ED -FEF9FAFFFFFEFAECF3F1D8E8EED4E5EDD3E5ECD3E4F1DBEAFAF2F6FFFFFEF9F1F6EEDAE9DCC1DA -D7BBD6D3B5D3CFB0CFCBAACCC8A6C9C5A2C6C29DC3BE9AC1BD97BFBB93BCB991BBB88FB9B68DB8 -B58BB7B48AB6B489B5B489B5B489B5B388B5B388B5B388B5B287B4B287B4B288B5B287B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B287B4 -B287B4B287B4B287B4B287B4B288B5B288B5B288B5B288B5B288B5B389B6B48AB6B58BB7B58DB8 -B78EB9B891BBB993BCBB96BEBE99C1BF9DC3C2A1C5C5A5C8C8A9CBCCAECECFB4D2D3BAD6E1CFE3 -F2E9F2FFFFFEFBF8FAEADFECDFD1E4DED0E4DED0E4DDCFE4ECE3EFFFFFFEFFFFFEEAE1EED4CAE1 -C9BEDAC3B8D6BDB3D3B8ADCFB3A9CDAFA5CAABA1C8A89DC5A49AC3A197C19F95C09C92BE9A91BD -988FBC968DBB958CBA948CBA948BB9948AB9948AB9948AB9938AB9938AB8938AB9928AB99289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89289B89289B89289B89289B89289B89289B89289B89289B8 -938AB9938AB9938AB9938AB9948BB9948BB9948CBA948CBA948CBA948CBA958DBA978EBB9890BC -9A91BD9C93BF9E96C0A098C2A49BC4A79EC6ABA2C8AFA6CBB3ABCEB9B0D2BEB5D5C4BCD9CAC2DD -EBE6F0FFFFFEFFFFFEEEEAF3E3E1EEE0DEEDE0E0EEE1E0EEE8E7F2F8F7FAFFFFFEF8F7FAEBECF5 -DCE3F1D7DEEED7DFEFD2DBED545B8D555A8CCBD7EAC6D3E9C4D2E8C3D1E7C1D0E7BFCFE6BECEE6 -BDCEE6BCCDE5BBCCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5B9CBE5BACCE5BACCE5BBCDE6BCCDE6BDCEE6 -BDCFE7BFCFE7C1D0E7C2D1E8C4D3E9C7D5EAC9D7EBCCD9ECCFDBEDD3DEEED6DFEFDAE3F1DEE5F2 -EBEEF6FAFBFCFFFFFEFBFCFCF6F8FAF3F4F9F4F6FABEB9D3666595F6F7FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECEE6C3D3E9F4F4F8FDFDFDFEFDFCFEFDFCFDFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0DDE5F2FEFDFD -FFFDFCFFFDFBFFFDFCFFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F6F7FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB9B1CC -3F457BC6BFD6FFFFFEFFFDFCFFFFFEFFFFFDFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EDF35D5E8F7E78A3FFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF0F5FDEFF4FDEEF4 -FDECF3FDEBF29186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEDF3F8D7E6F4CCDFF2C5DBF1C0D7 -EFBBD4EEB7D1ECB2CEEBAECBEAAAC9E8A7C6E7A3C4E7A0C2E69EC1E59CBFE59ABEE499BDE498BD -E497BCE497BCE497BCE396BCE396BCE396BBE396BBE396BBE395BBE395BBE395BBE395BBE395BB -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE294BAB67DA93E457B3E457B3E467B -3E447B3E457B3D457A48497FD78EB6E394BAE394B9E394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BB -E395BBE396BBE396BCE396BCE396BCE397BCE397BCE397BCE398BDE399BEE49BBFE59CC0E69FC1 -E6A1C3E6A3C4E7A6C6E8AAC9E8AECBEAB1CEEBB6D1EDBBD4EDC0D7EFC5DBF7E4EDFEF9FAFFFFFE -F9ECF3F1D7E7EED4E5EDD3E5ECD2E4F0DAE9FAF2F6FFFFFEF9F1F6EDDAE9DBC0D9D6BAD5D2B4D2 -CEAECECAA9CAC8A5C8C4A1C5C29DC3BF99C0BD95BEBA93BCB990BAB78EB9B58CB7B48AB6B48AB6 -B489B5B489B5B388B5B388B5B388B5B287B4B287B4B287B4B287B4B186B4B186B4B186B4B186B4 -B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B287B4B186B4 -B186B4B287B4B287B4B287B4B288B5B288B5B288B5B389B5B48AB6B48BB7B58CB7B68DB8B790BA -B992BCBB95BDBD98BFBF9BC2C19FC4C4A3C7C7A8CACBAECECEB3D2D2B9D5E0CEE3F2E9F2FFFFFE -FBF7FAE9DCEBDECFE4DECFE4DDCFE4DDCFE4ECE2EEFFFFFEFFFFFEEAE1EED3C9E0C8BDD9C2B7D6 -BCB1D2B7ACCEB2A7CCAEA4C9AAA0C7A69CC4A398C2A196C19D94BF9B91BD988FBC978EBB958CBA -958CBA948CBA948BB9948AB9948AB9938AB99289B89289B8938AB99289B89289B89289B89289B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89289B89289B89289B8928AB9938AB9 -9289B89289B8938AB9948BB9948BB9948BB9948BB9948CBA948CBA968DBB978EBC9990BD9B92BE -9D95C0A097C1A39AC3A69DC5AAA1C8AEA5CAB2A9CDB7AED0BDB4D4C3BBD8C9C1DCEBE6F0FFFFFE -FFFFFEEDE9F3E2E0EEE0DEEDE0DFEEE1E0EEE7E7F2F8F7FAFFFFFEF8F7FAEBECF5DBE0EFD8E1EF -D4DCEDC6CDE33F457B7578A4C9D6E9C7D4E9C4D1E8C2D1E7C0D0E7BECEE6BCCDE5BCCDE5BBCCE5 -BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE4B9CBE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BBCCE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7 -C0D0E7C1D1E8C4D3E9C6D5EAC8D6EBCBD8ECCFDBEDD2DDEED6DFEFD9E3F1DEE5F2EBEEF6FAFBFC -FFFFFEFBFCFCF7F8FBF3F4F9F4F5F9BEB9D3666595F5F6FAF6F7FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7C3D3E9F3F5F9FEFDFCFEFCFBFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFE0E7F3FEFCFBFEFEFC -FFFEFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F2F5F9F1F3F8F1F3F9F7F9FBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDD5CEE0484E82ABA4C3FFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFEFEFDFFFFFEF2EFF5515588938CB3FFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FDEBF2 -9186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCECF3F8D6E6F4CBDEF3C5DAF1BFD7EEBAD3EDB6D0 -ECB1CDEAADCBEAA9C8E8A5C5E7A2C3E7A0C2E59DC0E59BBFE499BEE499BDE498BDE497BCE497BC -E497BCE396BCE396BBE396BBE396BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BA725B8E3D457B3E447B3E447B3E457B3D457B -3F457B3F457B976C9CE395BBE395BBE294BAE495BBE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E396BBE396BCE396BCE397BCE397BCE397BCE398BDE398BDE49ABEE49BBFE69EC1E6A0C2E6A2C4 -E7A5C6E8A9C8E8ACCAE9B0CDEAB5D0ECBAD4EDBFD7EFC4DAF7E3EDFEF9FAFFFFFEF9ECF3F1D7E7 -EDD3E4ECD2E4EBD2E4F0DAE9FAF2F6FFFFFEF9F1F6EDD9E9DBBFD9D6B9D5D2B3D1CEADCDCAA8CA -C7A4C7C3A0C5C19CC2BE98BFBC95BDB992BBB88FBAB78DB8B58BB7B48AB6B489B5B489B5B389B5 -B388B5B388B5B287B4B287B4B287B4B287B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3 -B186B3B185B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4B187B4 -B287B4B287B4B288B5B288B5B288B5B288B5B389B6B48AB6B58BB7B58DB8B68FB9B891BBBA94BD -BC97BFBE9AC1C19EC4C3A2C7C6A7C9CAACCDCEB2D1D2B8D5E0CEE2F2E9F2FFFFFEFBF7FAE8DCEB -DDCEE3DDCEE3DCCEE3DCCFE3EBE2EEFFFFFEFFFFFEEAE1EED3C9E0C7BCD9C1B7D5BBB0D2B6ABCE -B2A7CBAEA3C9AA9FC6A59BC4A298C29F95C09C93BE9A90BD988FBC968DBB948CBA948CBA948BB9 -948AB9948AB9938AB9928AB99289B89289B8928AB99289B89289B89289B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89289B89289B89289B89289B89289B8 -9289B8938AB9948BB9948BB9948BB9948CBA948CBA958DBA978EBB9890BC9A91BD9C94BF9F96C0 -A299C2A59CC5A9A0C7ADA4CAB1A8CDB6ADD0BCB3D4C2BAD7C8C0DBEBE6F0FFFFFEFFFFFEEDE9F3 -E2DFEEDFDDEDDFDEEDE0DFEEE8E7F2F8F7FAFFFFFEF8F7FAEBECF5DBE1EFD7DDEED4DCEC9C9FC2 -3D457B989CC1CAD5E9C5D3E8C4D1E8C2D1E7C0D0E7BECEE6BCCDE5BCCDE5BBCCE5BACCE5BACCE5 -B9CBE5B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B9CBE5 -B9CBE5B9CBE5B8CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BECFE7BFD0E7C1D1E8 -C3D3E9C5D4E9C7D5EACAD7EBCEDAEDD1DCEDD5DFEFD9E2F1DDE5F2EBEEF6FAFBFCFFFFFEFBFCFC -F6F8FAF3F4F9F4F5F9BDB9D3666595F5F6FAF6F8FAF7F8FBF8F8FBF8F8FBFAFAFCFAFAFCFAFBFC -FAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7 -CBD8ECFAFBFCFEFDFCFFFDFCFEFDFCFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E2F0D8E0EFD8E1F0D8E1F0D7E1F0D8E2F0D8E0EFE5EBF5FFFDFCFEFDFCFFFEFC -FFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F9F9FBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFDF2EEF55255888882ABFFFEFCFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFED4CDDF474E82B8B0CCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFEFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF6F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEBF29186AD9285AD -FBE7EFFEEFF5FFFFFEFFFFFEFCECF3F8D6E6F4CADEF2C4DAF1BFD6EEBAD3EDB5D0EBB0CDEAACCA -E9A8C7E8A4C5E7A2C3E69FC2E59DC0E59BBFE499BDE498BDE497BCE497BCE396BCE396BCE396BB -E396BBE396BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BA6855893E457B3E467B3E447A40457B3D457B3E457B3E457B -8D6899E393BAE294BAE394BAE393BAE394BAE294BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE396BB -E396BCE396BCE397BCE397BCE397BCE398BDE399BEE49BBFE59DC0E59FC2E6A2C3E6A5C5E7A8C7 -E8ACCAE9AFCCEAB4D0ECB9D3EDBDD6EFC4DAF7E3EDFEF9FAFFFFFEF9EBF2EFD6E6EDD2E4ECD1E3 -EBD1E3F0DAE9FAF2F6FFFFFEF9F0F6EDD9E9DBBFD8D5B8D4D2B3D1CDACCDC9A7C9C6A3C7C39EC4 -C19AC1BE97BFBC94BDB991BBB88FB9B68CB7B58BB6B48AB6B489B5B489B5B388B5B388B5B287B4 -B287B4B287B4B287B4B286B3B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B185B3 -B186B3B186B3B185B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B287B4 -B288B5B288B5B288B5B288B5B389B5B48AB6B48AB6B58CB7B58EB9B790BAB993BCBB95BEBE99C1 -BF9DC3C3A1C6C5A6C9C9ABCCCDB0D0D1B7D4E0CEE2F2E9F2FFFFFEFBF8FAE8DDEBDCCEE3DCCDE2 -DCCEE3DBCEE3EBE2EEFFFFFEFFFFFEE9E1EED3C8E0C6BBD8C0B5D4BBB0D1B6ABCEB1A6CBADA2C8 -AA9EC6A59AC3A197C19E94BF9C92BE9990BC988EBB968DBB958CBA948BB9948AB9948AB9938AB9 -928AB99289B89289B89289B89289B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B89189B8 -9189B89189B89189B89189B89189B89189B89289B89289B89289B89289B89289B89289B8928AB9 -938AB9948BB9948BB9948BB9948CBA958DBA968EBB988FBC9990BD9C92BE9E95C0A098C2A49BC4 -A89FC7ACA3C9B0A7CCB5ACCFBAB2D3C0B8D7C6BFDBEBE6F0FFFFFEFFFFFEECE9F2E2DFEEDEDDED -DFDDEDE0DFEEE8E7F2F8F7FAFFFFFEF8F8FAEBECF5DBE2F0D7DDEED3DEEE6F709F3E457BC9D5E8 -C8D6EAC5D3E8C3D1E7C1D0E7BFCFE6BDCDE5BCCDE5BBCCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5 -B9CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE5B9CBE5 -B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BBCDE6BDCEE6BECFE7C0D0E7C2D1E8C4D3E9 -C7D5EACAD7EBCDDAECD0DCEED4DFEFD8E1F0DCE5F2EAEEF6FAFBFCFFFFFEFBFCFCF6F7FAF2F4F9 -F3F4F9BDB9D3666595F5F6FAF6F8FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BECFE7BFCFE6CBD9EC -FBFBFCFDFDFCFEFDFCFEFDFCFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D7E1F0D8E1F0D7E0EFD8E1F0D8E2F0D7E0EFD7E1F0D7E1F0E8ECF5FFFDFCFEFEFCFFFEFCFEFEFC -FFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9 -F1F3F9F2F4F9F1F3F9F1F3F9FAFAFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFFFDFFFEFDFFFFFD736F9C686695FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFEFDABA4C3494E82D4CCDFFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8 -FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF29186AD9285ADFBE7EFFEEFF5 -FFFFFEFFFFFEFCECF3F7D6E5F4CADEF2C3D9F0BED6EEB9D2EDB4CFEBAFCCEAABCAE9A8C7E8A4C5 -E7A1C3E69FC1E59CC0E49ABEE499BDE498BDE497BCE497BCE396BCE396BCE396BBE396BBE395BB -E395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BA6756893E447A3E457B3E457B3D457B3E457B3E457B3E457B8D6899E394BA -E394BAE394BAE294BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE396BBE396BCE396BC -E397BCE397BCE397BCE398BDE398BDE39ABEE59CC0E59EC1E6A1C3E6A4C5E7A7C7E8ABC9E9AFCC -EAB3CFECB8D2EDBDD5EEC3D9F7E3EDFEF9FAFFFFFEF9EBF2EFD6E6EDD1E3ECD1E3EBD1E3F0D9E8 -FAF1F6FFFEFDF9F0F6EDD9E9DABED8D5B7D4D1B2D0CDACCCC9A7C9C6A2C6C39EC4C09AC1BD97BF -BB93BCB990BAB78EB9B58CB7B48AB6B489B5B489B5B388B5B388B5B288B5B287B4B286B3B287B4 -B287B4B186B3B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B287B4B288B5 -B288B5B288B5B288B5B489B5B48AB6B58BB7B58DB8B78FB9B992BCBA95BEBD99C0BF9CC2C2A0C5 -C5A5C8C8AACCCCAFCFD0B7D4DFCDE2F2E9F2FFFFFEFBF7FAE8DCEBDCCDE2DCCDE2DCCEE3DBCEE3 -EAE0EDFFFFFEFFFFFEE9E1EED3C8DFC5BAD8BFB4D4BAAFD0B5AACDB0A5CAACA1C8A89EC6A49AC3 -A197C19D94BF9B91BD988FBC978DBB958DBA958CBA948BB9948AB9948AB9938AB99289B89289B8 -9289B89289B89289B89189B89189B89189B89189B89189B89189B89189B89188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B8 -9189B89189B89189B89189B89189B89189B89189B89289B89289B89289B89289B89289B8948BB9 -948BB9948BB9948CBA948CBA958DBA978EBB978FBC9A92BE9C94BFA097C2A39AC3A79EC6ABA2C8 -AFA7CBB4ABCFB9B1D2BFB7D6C5BEDAEBE6F0FFFFFEFFFFFEECE9F2E0DEEDDFDDECDFDDEDDFDDED -E7E6F1F7F6FAFFFEFDF8F7FAEBECF5DAE0EFD7DEEDD2DBEC4D54875D6192CBD6EAC6D4E8C5D3E8 -C3D1E7C0CFE6BFCFE6BDCDE5BCCDE5BBCCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5BACCE5BACCE5BBCDE6BCCDE6BDCEE6BECFE7BFCFE7C1D1E8C4D3E9C6D5EAC9D7EB -CCD9ECCFDBEDD3DEEED8E1F0DCE5F2EAEEF6FAFAFCFFFFFEFBFCFCF6F8FAF2F4F9F3F4F9BDB9D3 -666595F5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFCFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE6BECEE6BDD0E7BFCFE6D8E1F0FEFDFC -FEFDFCFEFDFCFEFDFCFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EFD8E1F0 -D9E3F1D7E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0EFF3F8FFFEFCFFFDFCFFFEFCFFFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F2F4F9 -F1F3F9F1F3F9F2F4F9FCFCFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEA099BC515689F2EEF4FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFD8882AC5E5E8FF2EEF5FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF29285AD9284ACFBE7EFFEEFF5FFFFFEFFFFFE -FCECF3F7D6E5F4C9DDF1C3D9F0BED6EEB8D2EDB3CFEBAFCCEAABC9E8A7C6E8A4C4E7A0C2E69EC1 -E59CBFE499BEE498BDE597BCE497BCE396BCE396BBE396BBE396BBE395BBE395BBE395BBE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BA8D67983E467B3E457B3E457B3E457B3E447B3E457B3E457BB67CA8E393BAE293BAE293B9 -E393BAE393BAE393B9E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE396BBE396BCE396BCE396BC -E397BCE397BCE398BDE399BEE49BBFE49DC1E5A0C2E6A3C4E7A6C6E8AAC9E8AECBEAB2CEEBB7D2 -EDBDD5EEC2D9F7E2ECFEF9FAFFFFFEF9EBF2EFD6E6EDD1E3EBD1E3EBD0E3F0D9E8FAF1F6FFFFFE -F9F0F6ECD8E8DABED8D6B7D4D1B1D0CCABCCC9A6C9C5A2C6C39EC3BF99C0BD96BEBA92BBB88FBA -B78EB9B58BB7B48AB6B489B5B488B5B388B5B389B5B287B4B186B4B287B4B287B4B286B3B186B3 -B186B3B186B3B186B3B186B3B186B3B185B3B185B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B4B187B4B186B4B187B4B188B5B288B5B288B5 -B288B5B389B5B389B6B48AB6B58DB8B68EB9B891BBBA94BDBC98BFBE9BC2C19FC4C5A4C8C7A9CB -CCAECECFB5D3DECCE1F2E9F2FFFFFEFBF7FAE8DCEBDCCDE2DBCDE2DCCEE3DBCDE2EAE0EDFFFFFE -FFFFFEE9E0EDD3C8E0C5BAD8BFB4D4BAAFD0B4A9CDAFA4CAABA1C8A89DC5A499C3A096C09C93BE -9B91BD988FBC968DBB948CBA948BB9948AB9948AB9938AB99289B8938AB89289B89189B89189B8 -9189B89189B89189B89189B89189B89189B89188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B8 -9189B89189B89189B89189B89189B89189B89189B89289B89289B89289B8948AB9948BB9948BB9 -948CBA948CBA958DBA968EBB978FBC9991BD9C93BF9F96C1A29AC3A69DC5AAA1C8AEA5CBB3AACE -B9B0D2BFB7D6C5BEDAEBE6F0FFFFFEFFFFFEECE9F2E1DEEDDEDCECDEDDEDDFDDEDE7E6F1F8F7FA -FFFFFEF7F6FAEAEBF4DAE0EFD6DDEDBEC2DB3D457B7E81ABCAD6EAC8D4E9C4D2E8C2D1E7BFCFE6 -BECEE6BCCDE5BBCCE5BBCCE5BACBE4BACCE5B9CBE5B9CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5 -BACCE5BACCE5BBCCE5BBCDE6BCCDE6BECFE7BFCFE7C1D1E8C3D2E8C5D4E9C8D6EBCCD9ECCFDBED -D3DEEED7E0EFDBE4F2EAEEF6FAFBFCFFFFFEFBFCFCF6F8FAF2F4F9F3F4F9BDB9D3666595F5F6FA -F6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BDCFE7D8E1EFFEFDFCFEFDFC -FEFDFCFEFDFCFEFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E0EFD8E1F0 -D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0F1F3F9FFFEFCFFFDFBFFFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F9 -F1F3F9F3F5F9FDFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFED5CDE03E457B -D5CDE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFEFD5D5E8F8781AAFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF2F6 -FDF0F5FDEEF4FDECF3FDECF3FCEAF29285AD9284ACFBE6EFFEEFF5FFFFFEFFFFFEFCECF3F7D5E5 -F3C8DCF1C2D9F0BDD5EEB8D2EDB3CEEBAFCCEAABC9E8A6C6E7A3C4E7A0C2E69EC1E59CBFE49ABE -E498BDE497BCE497BCE396BCE396BCE396BBE395BBE395BBE395BBE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAD68DB5 -5D51863E467B3E447B3E457B3E457B3F457B7A5F92E393BAE393BAE393B9E293BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE295BBE395BBE395BBE396BBE396BCE396BCE396BCE397BCE397BC -E297BCE399BEE39BBFE59CC0E59FC2E6A2C4E7A5C6E7A9C8E8AECBE9B2CEEBB6D1ECBCD5EEC1D8 -F7E2ECFEF9FAFFFFFEF9EBF2EFD5E5EDD1E3EBD0E2EACEE2F0D9E8FAF1F6FFFFFEF9F0F6ECD7E7 -D9BDD7D4B6D3D1B1D0CCABCCC9A7C9C5A1C5C29DC3BF99C0BD95BEBA92BBB88FBAB68DB8B58BB7 -B48AB6B488B5B488B5B388B5B287B4B287B4B287B4B287B4B186B3B186B3B286B3B186B3B186B3 -B186B3B186B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B084B2B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B185B3B186B3B186B3 -B186B4B186B3B186B3B186B3B186B3B186B4B187B4B186B4B187B4B288B5B288B5B288B5B389B5 -B389B6B48AB6B58CB7B68DB8B891BBBA94BDBC97BFBE9AC1C19FC4C4A3C7C7A8CACBAECECFB4D2 -DECBE1F1E7F1FFFFFEFBF7FAE8DBEADCCDE2DBCCE2DACCE2DACCE2EAE0EDFFFFFEFFFFFEE8E0ED -D2C7DFC4B9D7BEB4D4B9AED0B4A9CDAFA4CAABA0C7A79CC5A398C2A096C09C93BE9A90BD988EBB -968DBB958CBA948AB9948BB9948AB9938AB99289B89289B89289B89189B89189B89189B89189B8 -9189B89189B89188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79289B89289B89189B89189B8 -9189B89189B89189B89189B89189B89189B89289B89289B8948AB9948BB9948BB9948BB9948CBA -958DBA978EBB978FBC9A91BD9C93BF9F96C0A299C2A59CC5AAA1C8AEA5CBB3AACDB8AFD1BEB6D5 -C4BCD9E9E6F0FFFFFEFFFFFEECE9F2E1DEEDDDDBEBDEDCECDFDDEDE6E5F1F7F6FAFFFFFEF7F6FA -E9EAF4D9DFEFD7DDEE9395BB3E457BACB2D1C9D5E9C6D3E9C4D1E7C1D0E7BFCFE6BDCEE6BCCDE5 -BBCCE5BACCE5B9CBE4B9CBE5B9CBE5B9CBE5B9CBE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B8CAE4B7CAE4B7CAE4B7CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B9CBE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE5B8CBE5BACCE5BACCE5BACCE5 -BACCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C3D2E8C5D4E9C8D6EACBD8ECCFDBEDD2DDEED7E0EF -DAE3F1EAEEF6FAFBFCFFFFFEFBFCFCF6F7FAF2F4F9F3F4F9BDB8D2666595F5F6FAF6F7FAF6F8FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BED0E7BFCFE6BECFE7E7EBF4FEFDFCFEFDFCFFFDFB -FEFEFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0F8F8FAFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F3F5F9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCF2EEF45E5E8F948CB2FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDE3DCE9 -474E83C7BDD4FFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4 -FDECF3FDEBF2FCEAF29285AD9284ACFBE6EFFEEFF5FFFFFEFFFFFEFCECF3F7D5E5F3C8DCF1C2D9 -F0BDD5EEB7D2ECB2CEEBAFCCEAABC9E8A6C6E7A3C4E7A0C2E59DC0E49BBFE499BEE498BDE497BC -E497BCE396BCE396BBE396BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAD68DB5846294 -48497F3E447B524D828C6798E394BAE394BAE394BAE394BAE394BAE395BBE293BAE394BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE393BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE393BAE393BA -E393BAE393BAE393BAE393BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE295BBE395BBE395BBE395BBE396BBE396BCE396BCE396BCE397BCE297BCE398BD -E39BBFE59CC0E59FC2E5A2C4E6A5C5E7A8C8E8ACCAE9B1CDEAB5D1ECBBD4EEC0D8F7E2ECFEF8F9 -FFFFFEF9EBF2EED4E5ECD0E2ECD0E2EACFE2F0D9E8FAF1F6FFFFFEF9F0F6ECD7E7D9BDD7D4B6D3 -D0B0CFCBAACCC8A5C8C5A0C5C29CC2BF99C0BD95BDBA91BBB88FB9B68CB7B58BB7B489B5B488B5 -B388B5B388B5B287B4B287B4B287B4B287B4B186B3B186B3B186B3B186B3B286B3B186B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B4B186B4B186B4B186B4B288B5B288B5B287B4B288B5B389B5B48AB6 -B58CB7B58DB8B790BAB993BCBB96BEBE99C1C09EC4C4A3C7C6A7CACBAECECFB4D2DECBE0F1E7F1 -FFFFFEFBF7FAE8DBEADBCCE1DBCCE2DACCE2DACCE2EAE0EDFFFFFEFFFFFEE8E0EDD1C6DEC4B9D7 -BEB3D3B8AED0B3A9CDAEA3C9AAA0C7A79CC5A398C29F95C09C93BE9A90BD988EBB968CBA948CBA -948AB9948AB9938AB99289B89289B89289B89189B89189B89189B89189B89189B89189B89188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B89189B8 -9189B89189B89189B89189B89289B89289B8938AB8948AB9948BB9948BB9948BB9948CBA968EBB -978EBC9990BD9B92BE9E96C0A199C2A59CC5A9A0C7ADA4CAB2A9CDB7AFD1BEB5D5C4BCD9EAE6F0 -FFFFFEFFFFFEEBE8F2DFDDEDDDDBEBDEDCECDEDDEDE6E5F1F7F6FAFFFFFEF7F6FAE9EAF4DAE0EF -D5DDED686999444D82CBD7EAC7D4E9C7D4E8C4D1E8C1D0E7BFCFE6BDCEE6BCCDE5BBCCE5BACCE5 -B9CBE4B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B7CAE4B7CAE4B7CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4 -B7CAE4B7CAE4B7CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B6CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B6CAE4B6CAE4 -B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B6CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5 -BCCDE6BDCEE6BFCFE7C0D0E7C2D1E8C4D3E9C7D5EACBD8EBCEDAEDD2DDEED6DFEFDAE3F1EAEEF6 -FAFBFCFFFFFEFBFCFCF6F7FAF1F3F9F3F4F9BDB8D2666595F5F6FAF5F6FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BDCFE7BFCFE7BECFE7BED0E7BECFE7BECFE7E7ECF5FFFDFCFEFEFCFEFDFCFFFDFC -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E0EFD8E2F0DAE2F0F9F9FBFFFDFCFFFDFBFFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F5F6FA -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFEFC938CB35F5E8FFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEA099BB515689 -F2EDF4FFFFFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6FDEFF4FDEEF4FDECF3FDEBF2 -FCE9F19285AD9284ACFBE6EFFEEFF5FFFFFEFFFFFEFCECF3F7D5E5F3C8DCF1C2D9F0BDD5EEB7D2 -ECB2CEEBAECBEAAAC9E8A6C6E7A2C3E7A0C2E59DC0E49BBFE499BDE497BCE497BCE397BCE396BC -E396BBE396BBE395BBE395BBE394BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E393BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE393BAE394BAE394BAE393BAE394BA -E394BAE394BAE394BAE393B9E394BAE394BAE395BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE393BAE393BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE295BBE395BBE395BBE396BBE396BBE396BCE396BCE396BCE297BCE398BDE39ABEE59CC0 -E59EC1E5A1C3E6A5C5E7A8C7E8ACCAE9B0CDEAB5D1ECBBD4EEC0D8F7E2ECFEF8F9FFFFFEF9EAF2 -EED4E5ECCFE2ECD0E2EACFE2F0D9E8FAF1F6FFFFFEF9F0F6ECD7E7D9BCD7D4B5D3D0AFCFCBAACB -C8A5C8C4A0C4C29CC2BE98BFBC94BDBA91BBB88FB9B68CB7B58BB6B489B5B488B5B388B5B388B5 -B287B4B287B4B287B4B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3B186B3B186B3 -B186B3B186B4B186B4B186B4B186B4B187B4B288B5B288B5B288B5B288B5B38AB6B48BB7B58DB8 -B78FB9B992BCBB95BEBD99C0BF9DC3C3A2C7C6A7CACBAECECEB3D2DECBE0F1E7F0FFFFFEFBF7FA -E7DAEADBCCE1DBCCE2DACCE2DACCE2EAE0EDFFFFFEFFFFFEE8E0EDD1C6DEC4B9D7BEB3D3B8ADCF -B3A8CCAEA3C9AA9FC6A59BC4A298C19E94BF9C92BE9990BC978EBB958CBA948BB9948AB9948AB9 -938AB99289B89289B89189B89189B89189B89189B89189B89189B89189B89188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B89189B89189B8 -9189B89189B89189B89189B8938AB8938AB9948BB9948BB9948BB9948CBA968DBB978EBB9790BD -9A92BE9D95C0A098C2A49CC4A89FC7ACA4CAB2A9CDB7AED0BEB5D5C4BCD9E9E6F0FFFFFEFFFFFE -EBE8F2E0DEEDDDDBEBDDDCECDEDDEDE6E5F1F7F5F9FFFFFEF7F6FAE9EAF4D9E0EED6DDED464D82 -666998CCD6EAC8D5E9C5D2E8C4D2E8C1CFE7BFCFE6BDCEE6BCCDE5BBCBE4BACBE4B9CBE4B9CBE5 -B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B6CAE4B6CAE4B6CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B6CAE4B6CAE4B6CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6 -BECFE7C0D0E7C2D1E8C4D3E9C7D5EACBD8EBCEDAECD2DDEED6DFEFDAE3F1EAEEF6FAFBFCFFFFFE -FBFCFCF6F7FAF1F3F9F3F4F9BDB8D2666595F5F6FAF5F6FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE6BECFE7 -BFCFE7BED0E7BFCFE6BECFE7BED0E7BFCFE6C3D3E9F4F5F9FFFDFCFEFDFCFEFDFCFEFCFBFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD8E1F0D8E1F0 -D8E1F0D7E2F0DCE5F2FDFDFDFEFDFCFFFDFCFFFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F6F8FAFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDD4CCE03D457AD5CDE1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE6966958782AAFFFEFD -FFFEFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF9FAFFF8FA -FFF7F9FEF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6FDEFF4FDEDF3FDECF3FDEBF2FCE9F19285AD -9284ACFBE6EFFEEFF4FFFFFEFFFFFEFCECF3F7D5E5F3C8DCF1C2D8F0BCD5EEB7D2ECB2CEEBAECB -EAA9C8E8A5C5E7A2C3E69FC1E59CC0E49ABEE499BDE497BCE497BCE396BCE396BCE396BBE395BB -E395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE394BAE394BAE394BAE395BBE394BAE394BAE394BAE394BAE293BAE395BA -E393B9E395BBE393BAE394BAE394BAE394BAE294BAE394BAE394BAE394BAE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE294BA -E395BBE395BBE395BBE396BBE396BCE396BCE396BCE297BCE398BDE399BEE59CC0E59EC1E5A1C3 -E6A4C5E8A8C7E8ACCAE9B0CDEAB5D0ECBAD4EEC0D8F7E2ECFEF8F9FFFFFEF9EAF2EED4E5ECCFE2 -ECD0E2EACFE2EFD7E7FAF1F6FFFFFEF9EFF5ECD7E7D9BCD7D3B4D2CFAFCECBAACBC8A5C8C4A0C5 -C19CC2BE98BFBC94BDB990BAB88FB9B68CB7B48AB6B489B5B488B5B388B5B287B4B287B4B287B4 -B287B4B186B3B186B3B186B3B085B3B185B3B185B2B085B3B085B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3B085B3B186B3B186B3B186B3B186B3 -B186B4B186B4B186B4B187B4B288B5B288B5B288B5B288B5B389B6B48BB7B58DB8B78FB9B892BC -BA95BEBD99C0BF9DC3C3A2C6C6A7C9CAADCDCEB3D2DDCAE0F0E6F0FFFFFEFBF7FAE7DAEADBCCE1 -DACBE1DACCE2D9CCE2EAE0EDFFFFFEFFFFFEE8DFECD1C6DEC3B8D6BDB2D2B8ACCFB3A7CBAEA3C9 -AA9FC6A59BC4A298C19E94BF9C92BE998FBC978EBB958CB9948BB9948AB9948AB9938AB99289B8 -9289B89189B89189B89189B89189B89189B89189B89189B89188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79288B79288B79289B89289B89289B8 -9289B89289B89289B89289B89289B89188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79288B79289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89189B89188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79189B89189B89189B89189B89189B8 -9189B89289B8938AB8938AB8948AB9948BB9948BB9948BB9958DBA968EBB9790BD9992BE9C94C0 -A198C2A49BC4A89FC7ACA4CAB2A9CDB7AED0BDB5D5C3BBD9E9E5EFFFFFFEFFFFFEEBE8F2E0DDEC -DCDBEBDDDCECDDDDEDE5E4F0F7F5F9FFFFFEF7F6FAE9EAF4D9DFEFB2B5D43E457B878AB3CBD6EA -C8D3E8C5D4E9C3D1E7C1CFE7BECEE6BDCDE5BCCDE5BBCBE4BACAE4B9CBE4B9CBE5B9CBE5B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4BACCE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7 -C2D1E8C4D3E9C7D5EACAD7EBCEDAECD2DDEED6DFEFDAE3F1EAEEF6FAFBFCFFFFFEFBFCFCF6F7FA -F1F3F9F2F4F9BDB8D2656595F5F6FAF5F6FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7BDCFE7BECFE7 -BED0E7BFCFE6BECFE7BECFE7BECFE7C2D2E8F2F4F9FEFEFCFEFCFBFEFEFCFDFDFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E0EFD9E2F1 -D8E1F0E0E8F3FDFDFDFFFEFCFFFDFCFEFDFCFFFDFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F2F5F9F0F2F8F8F8FBFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE696796938DB3FFFEFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDE3DDE93E457BD4CDE0FFFEFCFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8 -FEF5F8FEF4F7FEF3F7FEF2F6FEF1F6FDEFF4FDEDF3FDECF3FDEBF2FCE9F19285AD9284ACFAE4EE -FDEEF4FFFFFEFFFFFEFCEBF2F7D4E4F3C7DCF1C2D8F0BCD5EEB7D1ECB2CEEBADCBEAA9C8E8A5C5 -E7A2C3E69FC1E59CBFE49ABEE499BDE497BCE497BCE396BCE396BCE396BBE395BBE395BBE394BA -E394BAE394BAE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE295BBE394BAE394BAE294BAE394BAE394BAE394BAE294BAE394BA -E394BAE395BBE393BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE395BBE395BBE394BAE394BAE394BAE394BAE294BAE395BBE395BB -E395BBE396BBE396BCE396BCE396BCE297BCE398BDE399BEE49BBFE49DC1E5A0C2E6A4C5E8A7C7 -E8ABC9E9AFCCEAB5D0ECB9D3EDC0D7F7E2ECFEF8F9FFFFFEF9EAF2EED4E5ECCFE2EBCFE2EACEE2 -EFD7E7F9F0F6FFFFFEF9EFF5ECD7E7D9BCD7D3B4D2CFAFCECBA9CBC8A5C8C4A0C4C19CC2BD97BF -BB93BCB990BAB88EB9B68BB7B48AB6B489B5B488B5B388B5B287B4B287B4B287B4B287B4B186B3 -B186B3B186B3B085B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B4B187B4B288B5B288B5B288B5B288B5B389B6B48AB6B48BB7B68FB9B891BBBA95BDBD99C0 -BF9DC3C2A1C5C6A6C9C9ACCDCEB2D1DDCAE0F0E6F0FFFFFEFBF7FAE6DAEADACBE1DACBE1D9CBE1 -D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD1C6DEC3B8D6BDB3D3B8ACCFB3A7CBAEA3C9AA9FC6A59AC3 -A197C19E94BF9B91BD988FBC978DBB958CB9948BB9948AB9938AB9938AB89289B89289B89189B8 -9189B89189B89188B79189B89289B89289B89289B89188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79189B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89189B89188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79288B79288B79289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89189B89188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79289B89289B89189B89189B89189B89189B89189B89289B8 -938AB8938AB8948AB9948CBA948BB9948BB9958DBA968EBB978FBC9A91BD9C94BFA097C1A39AC3 -A89FC7ACA3C9B1A8CCB6ADD0BCB4D4C3BBD9E9E5EFFFFFFEFFFFFEEBE8F2DFDDECDCDAEBDCDBEB -DDDCECE5E4F0F7F5F9FFFFFEF7F6FAE9EAF4D7DEEE8B8CB43E457BB9BEDACAD6EAC8D4E9C5D2E8 -C3D2E8C1CFE7BECEE6BCCDE5BCCCE5BBCBE4BACBE4B9CBE4B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B7CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C1D1E8C4D3E9 -C6D5EACAD7EBCEDAECD1DDEED6DFEFDAE2F0EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9 -BDB8D2656595F5F6FAF5F6FAF6F7FAF7F8FBF8F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BECFE7BDCFE7C0D0E7BECFE7BED0E7 -BFCFE7BECEE6BECFE7BECEE6CCD9ECFAFBFCFEFEFCFDFDFCFEFEFCFEFCFBFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D9E2F1D8E0EFD8E2F0D8E0EF -E5ECF5FEFDFCFFFDFCFFFDFCFFFDFCFEFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F1F3F9F9FAFBFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA3C3515689 -F2EEF4FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE938CB2686695FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7 -FEF3F7FEF2F6FEF0F5FDEFF4FDEDF3FDECF3FDEBF2FCE9F19285AD9284ACFAE4EEFDEEF4FFFFFE -FFFFFEFCEBF2F7D4E4F3C7DCF1C2D8EFBBD4EDB6D0EBB1CDEBADCBE9A8C8E8A4C5E7A1C3E69FC1 -E49BBFE49ABEE499BDE497BCE397BCE396BCE396BBE396BBE395BBE395BBE394BAE394BAE395BB -E396BBE396BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BAE396BBE393BAE394BAE393BAE394BAE393BAE395BBE394BAE394BA -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BA -E395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE395BBE395BBE395BBE395BBE395BBE394BAE394BAE294BAE395BBE395BBE396BB -E396BBE396BCE396BCE297BCE398BDE399BEE49BBFE49DC1E5A0C2E5A3C4E7A7C7E8ABC9E9AFCC -EAB4D0ECB9D3ECBED7F7E2ECFEF8F9FFFFFEF8EAF2EED4E5EBCFE2EBCFE2EACEE2EFD7E7F9EFF5 -FFFEFDF9EFF5ECD7E7D8BBD6D3B4D2CFAFCECAA9CAC8A4C7C4A0C4C19BC2BD97BFBB93BCB990BA -B78EB9B58BB7B48AB6B489B5B388B5B288B5B287B4B287B4B287B4B186B3B186B3B186B3B186B3 -B186B3B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B085B3B085B3B085B3B084B2B084B2B085B3B085B3B085B3B085B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3B085B3B186B3B186B3 -B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B3B186B3B085B3B085B3B085B3B085B3B085B3B085B3B085B3 -B085B3B186B3B186B4B287B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B085B3B085B3B085B3B085B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3B085B3 -B085B3B085B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4 -B188B5B288B5B288B5B288B5B389B6B48AB6B58CB7B68EB9B891BBBA95BDBD99C0BF9CC2C2A0C5 -C5A6C9C9ACCDCEB2D1DDCAE0F0E6F0FFFFFEFBF7FAE6DAEADACBE1D9CAE1D9CBE1D9CBE1E9DFED -FFFFFEFFFFFEE8DFECD1C6DEC3B8D6BDB2D2B8ACCFB3A6CBADA2C8A99FC6A59AC3A196C19E94BF -9B91BD988EBB968DBB958CB9948BB9948AB9938AB99289B89289B89289B89189B89189B89289B8 -9288B79189B89289B89289B89188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89188B79188B7 -9189B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89189B89188B79188B79188B79188B79188B79188B79188B7 -9189B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89288B79188B79188B79189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79188B79188B79289B89289B89289B89289B89189B89189B89189B89189B8938AB8938AB8 -948AB9948BB9948BB9948BB9958DBA968DBB988FBC9A91BD9C94BF9F96C1A39AC3A79EC6ABA3C9 -AFA7CCB6ADD0BCB4D4C3BBD8E9E5EFFFFFFEFFFFFEEAE7F2DFDDECDCDAEBDCDBEBDDDCECE5E4F0 -F7F5F9FFFFFEF7F6FAE9EAF4D8E0EF6162924C5487CED7EACBD6EAC6D3E8C5D4E9C2D0E7C0CFE6 -BECEE6BCCDE5BBCBE4BBCBE4BACBE4B9CBE4B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE5 -B9CBE5B9CBE5BACCE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C1D1E8C3D3E9C6D5EAC9D7EB -CEDAECD1DDEED5DFEFD9E2F0EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2656595 -F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BDD0E7BECFE7BFD0E7BDCFE7BDCFE7BFCFE7BDCFE7BECFE7 -BECFE7BECFE7BED0E7CBD8ECFAFAFCFEFDFCFDFCFBFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E2F0D8E0EFD8E2F0D8E0EFE9ECF5 -FFFDFCFFFDFCFFFDFCFFFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9FAFBFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2EDF3474E82BAB1CCFFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFC -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EEF4525689ADA4C4FFFEFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6 -FDF0F5FDEFF4FDEDF3FDECF3FDEBF2FCE9F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2 -F7D4E4F3C7DCF1C1D8EFBBD4EDB6D0EBB1CDEBACCAE9A8C8E8A4C5E7A1C3E69FC1E59CC0E499BE -E499BDE497BCE396BCE396BCE396BBE395BBE395BBE396BBE396BBE396BBE396BBE395BBE395BB -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE394BAE395BBE395BBE395BBE395BBE395BBE495BB -E394BAE496BBE394BAE396BBE295BBE394BAE394BAE395BBE293BAE495BBE295BAE396BBE395BB -E394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E393BAE395BBE395BBE395BBE395BBE395BBE395BBE295BBE395BBE395BBE396BBE396BBE396BC -E396BCE296BCE398BDE399BEE39BBFE49DC0E59FC2E5A3C4E7A7C7E7ABC9E9AFCCEAB4D0ECB9D3 -ECBED7F7E2ECFEF8F9FFFFFEF8E9F1EED4E5EBCFE2EBCFE2EACEE2EFD7E7F9EFF5FFFFFEF9EFF5 -ECD7E7D8BBD6D3B4D2CFAFCECAA8CAC7A4C7C39FC4C09AC1BD97BFBB93BCB990BAB78DB8B58BB6 -B48AB6B489B5B388B5B287B4B287B4B387B4B287B4B186B3B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B3B186B3B186B3B186B3B085B3B085B3B085B3B085B3B085B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B185B3B185B3B085B3B085B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B4B186B4B186B4B187B4B187B4 -B288B5B288B5B288B5B48AB6B58CB7B68EB9B790BABA94BDBC98BFBE9BC2C2A0C5C6A6C9C9ACCD -CEB2D1DDCAE0F0E6F0FFFFFEFBF7FAE6DAEADACBE1D9CAE1D9CBE1D9CBE1E9DFEDFFFFFEFFFFFE -E8DFECD1C6DEC3B7D6BDB2D2B7ACCEB2A6CBADA2C8A99EC6A59AC3A196C19E94BF9B91BD988EBB -968CBA958CB9948BB9948AB9938AB99289B8928AB99289B89289B89289B89289B89289B89188B7 -9289B89289B89188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89189B89189B89189B89189B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89189B89189B89189B89189B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B8938AB89289B89289B89189B89189B89189B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89188B79188B79188B79188B79188B79188B79188B7 -9188B79189B89289B89289B89289B89289B89289B89289B89289B8938AB8938AB8938AB9948BB9 -948BB9948BB9948CBA968DBB988FBC9A91BD9C94BF9F96C1A29AC3A69EC6ABA3C9AFA7CCB6ADD0 -BCB3D4C3BBD8E9E5EFFFFFFEFFFFFEEAE7F2DFDDECDCDAEBDCDBEBDDDCECE5E4F0F7F5F9FFFFFE -F7F6FAE9EAF4D9DFEF3D457B6F709ECDD6EACAD6EAC7D3E8C4D1E8C2D0E7C0CFE6BECEE6BCCDE5 -BBCBE4BBCBE4BACBE4B9CBE4B9CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE5B9CBE5 -B9CBE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C1D1E8C3D3E9C6D5EAC9D7EBCDD9ECD0DCEE -D5DFEFD9E2F0EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2656595F5F6FAF5F6FA -F6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BDCEE6BECFE7BECFE7BED0E7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECEE6BFD0E7D7E1F0FDFDFDFEFDFCFEFDFCFEFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D7E2F0D8E0EFD8E1F0D8E1F0EFF3F7FFFDFB -FFFDFBFFFDFCFFFDFCFDFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F0F2F8F1F3F9F1F3F9F2F4F9FCFCFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2686695FFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEACA4C4515688FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FDF0F5FDEFF4 -FDEDF3FDECF3FDEBF2FCE9F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F7D4E4F3C7DC -F1C1D8EFBBD4EDB6D0EBB1CDEBACCAE9A8C7E8A4C5E7A1C3E69FC1E59CC0E499BEE498BDE497BC -E396BCE396BCE396BBE395BBE396BBE396BCE396BBE396BBE396BBE395BBE395BBE394BAE394BA -E395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE495BBE395BB -E495BAE395BBE395BAE395BBE394BAE394BAE496BBE395BBE395BBE394BAE395BBE395BBE395BB -E395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E395BBE395BBE395BBE396BBE396BBE295BBE395BBE395BBE396BBE396BBE396BCE396BCE296BC -E397BCE398BDE39BBFE49DC0E59FC2E5A1C3E7A6C6E7ABC9E9AFCCEAB4D0ECB9D3ECBED7F7E2EC -FEF8F9FFFFFEF8E9F1EED4E5EBCFE2EBCFE2EACEE2EFD7E7FAF0F5FFFFFEF9EFF5ECD6E7D8BBD6 -D3B4D2CFAFCECAA8CAC7A4C7C39FC4C09AC1BD97BFBB93BCB990BAB78EB9B58BB6B48AB6B489B5 -B388B5B287B4B287B4B387B4B287B4B186B4B186B4B186B4B186B4B187B4B186B4B186B3B186B3 -B186B3B085B3B085B3B185B3B185B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B085B3B085B3B186B3B186B3B186B3 -B186B3B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B187B4B187B4B288B5B287B4 -B288B5B389B6B58CB7B58EB9B790BAB993BDBB97BFBE9BC2C1A0C5C5A5C8C9ACCDCEB2D1DDCAE0 -F0E6F0FFFFFEFBF7FAE6DAEADACBE1D9CAE1D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD0C5DE -C3B7D6BDB2D2B7ACCEB2A6CBADA2C8A99EC6A59AC3A196C19E94BF9B91BD988EBB968CBA958CB9 -948BB9948AB9938AB99289B89289B8938AB8938AB8938AB89289B89289B89188B79188B79188B7 -9188B79188B79188B79188B79188B79189B89189B89189B89189B89189B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89189B89189B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89189B89189B89189B89189B89189B89189B89189B89189B89289B89289B89289B8 -9289B89289B89289B89289B89289B89189B89189B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89189B89189B89189B89189B89189B89189B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89189B89189B89189B89189B89189B89189B89189B8 -9189B89189B89189B89189B89189B89189B89189B89189B89189B89189B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89189B89189B89189B89189B89189B89189B89188B79188B79188B79188B79188B79188B7 -9289B89289B89289B89289B8938AB8948AB8938AB8938AB8938AB8938AB9948BB9948BB9948BB9 -948CBA958DBA978EBC9990BD9C93BF9F96C0A299C3A69EC6ABA3C9B0A7CCB5ADD0BBB3D3C2BAD8 -E9E5EFFFFFFEFFFEFDEAE7F2DFDDECDCDAEBDCDBEBDDDCECE5E4F0F7F5F9FFFFFEF7F6FAE9EAF4 -ACACCC3F457B9294BACDD8EBCAD6EAC7D4E9C4D1E7C3D0E7C0CFE6BECEE6BCCDE5BBCBE4BACBE4 -BACBE4B9CBE4B9CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4 -B7CAE4B8CAE4B8CAE4B8CAE4B8CAE4B9CBE4B9CBE4B9CBE4B8CAE4B9CBE5B9CBE5B9CBE5BACCE5 -BBCCE5BBCDE6BCCDE6BDCFE7C0D0E7C1D1E8C3D3E9C6D5EAC9D7EBCDD9ECD0DCEED5DFEFD9E2F0 -EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2656595F5F6FAF5F6FAF6F7FAF7F8FB -F7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BDD0E7BFCFE7BECFE7BFCFE6BECFE7BECFE7BECFE7BECFE7BFD0E7BDCEE6 -BECFE7D6E0F0FEFDFCFEFCFBFEFDFCFEFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E2F0D8E0EFD8E1F0D7E1F0D8E1F0D8E1F0D7E1F0D9E2F1D8E1F0F1F3F9FFFDFCFFFDFC -FFFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F8F1F3F9F1F3F9F1F3F9F1F3F9F3F5F9FDFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCF2EEF4474E82C7BED5FFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFCFFFFFE505589ACA5C4FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3 -FCEBF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F6D4E4F3C7DBF1C1D8EFBBD4 -EDB6D0EBB1CDEAACCAE9A8C7E8A4C5E7A1C3E69EC1E49BBFE499BEE498BDE497BCE396BCE396BC -E396BCE396BBE396BBE396BBE396BBE396BBE396BBE395BBE395BBE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BA -E394BAE395BBE395BBE395BBE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BA -E395BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE395BBE395BBE396BBE395BBE395BB -E395BBE395BBE395BBE395BBE396BBE395BBE394BAE394BAE395BBE395BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BCE396BBE396BBE396BBE396BBE396BBE395BBE395BBE394BAE394BA -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BB -E396BBE396BBE396BBE396BBE396BCE396BBE395BBE395BBE396BCE296BCE296BCE397BCE398BD -E39ABEE49DC0E59FC2E5A1C3E6A6C6E7AAC9E9AFCCEAB5D0ECB9D3ECBED7F7E2ECFEF8F9FFFFFE -F8E9F1EED3E4EBCFE2EBCFE2EACEE2EFD7E7FAF0F5FFFFFEF9EFF5ECD6E7D8BBD6D3B4D2CFAFCE -CAA8CAC7A4C7C39FC4C099C0BD97BFBB93BCB88FBAB78CB8B58BB6B48AB6B488B5B388B5B387B4 -B287B4B287B4B287B4B287B4B186B4B187B4B186B4B085B3B186B3B186B3B085B3B185B3B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4B186B3B186B3B186B3B186B3 -B186B3B186B3B186B4B186B4B186B4B187B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B287B4B287B4B287B4B287B4B186B4B186B4B186B4B186B4B287B4B287B4B186B4B287B4 -B287B4B287B4B287B4B186B4B287B4B287B4B287B4B186B3B186B3B287B4B287B4B186B4B187B4 -B186B4B186B4B287B4B287B4B287B4B187B4B186B4B186B4B186B4B287B4B287B4B186B4B186B3 -B186B3B287B4B287B4B287B4B286B3B287B4B287B4B287B4B186B4B186B4B287B4B287B4B287B4 -B186B4B287B4B287B4B287B4B287B4B287B4B186B4B186B4B187B4B186B4B186B4B187B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B4B186B4B186B3 -B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B186B3B085B3B186B3B186B3 -B186B4B186B4B186B4B186B4B287B4B187B4B187B4B187B4B187B4B288B5B288B5B288B5B389B6 -B58CB7B58EB9B790BAB993BCBB97BFBE9BC2C1A0C5C5A5C8C9ACCDCEB2D1DCC9E0F0E6F0FFFFFE -FBF7FAE6DAEADACBE1D9CAE1D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD0C4DEC3B7D6BDB2D2 -B7ACCEB1A6CBADA2C8A89DC5A499C3A196C19D94BF9A91BD988EBB968CBA958CBA948AB9948AB9 -938AB9938AB8938AB8938AB8938AB8938AB89289B89289B89188B79289B89188B79188B79188B7 -9189B89189B89189B89189B89289B89289B89289B89289B89289B89289B89289B89189B89188B7 -9189B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B8938AB8938AB8938AB8938AB8938AB8938AB8938AB8928AB99189B89389B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89189B89289B89289B8938AB8938AB8 -938AB8948AB8938AB8948AB8948AB8948AB8938AB8938AB8938AB8938AB89289B89289B89189B8 -9189B89289B8928AB99289B89289B89289B89289B89289B89289B89289B89289B89289B8938AB8 -938AB8948AB8938AB8938AB8938AB8938AB89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89189B89189B89189B89189B89189B89289B89289B89289B8 -9289B89289B89289B89289B89189B89189B89189B89189B89189B89188B79188B79288B79289B8 -9289B89289B8938AB8938AB8938AB8948AB9948AB9938AB8948AB9948BB9948BB9948CBA958DBA -978EBC9990BD9C93BF9F96C1A199C3A59DC5ABA2C8AFA7CCB5ADD0BBB3D3C2BAD8E9E5EFFFFFFE -FFFFFEEAE7F2DFDDECDCDAEBDCDBEBDEDCECE5E4F0F7F5F9FFFFFEF7F5F9E9EAF47B7AA63E457B -C6CCE3CDD8EBCAD6EAC7D4E9C4D2E8C2CFE6C0CFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4 -B9CBE5B8CAE4B9CBE4B9CBE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B8CBE5B8CBE5B8CBE5B7CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B7CAE4 -B7CAE4B7CAE4B7CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4 -B9CBE4B9CBE5B9CBE5B9CBE5B8CBE5B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B9CBE4B9CBE5B9CCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE4B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B7CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B7CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B7CAE4B7CAE4B8CBE5 -B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5 -BCCDE6BDCEE6BECFE7C1D1E8C3D3E9C5D4EAC9D7EBCCD9ECD0DCEDD5DFEFD9E2F0E9EDF6FAFBFC -FFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FB -FAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BFD0E7BDCEE6BED0E7 -E7ECF5FEFDFDFEFDFCFDFDFCFFFDFCFDFDFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0F9F9FBFEFDFDFFFDFCFFFDFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFE938CB2696696FFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFCACA5C4515589FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEBF2FCE8F1 -9285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F6D4E4F3C7DBF1C1D8EFBBD4EDB6D0EBB1CD -EAACCAE9A8C7E8A4C5E7A1C3E59DC0E49BBFE499BEE498BDE497BCE396BCE397BCE396BCE396BB -E396BBE396BCE396BBE396BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BB -E395BBE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BCE396BCE396BC -E396BCE396BCE396BCE396BCE396BBE396BBE396BBE396BBE396BCE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BCE395BBE395BBE396BBE396BCE396BCE396BC -E397BCE397BCE397BCE396BCE396BBE396BBE395BBE395BBE395BBE396BBE396BBE396BBE395BB -E396BBE396BBE396BBE396BCE396BBE396BCE396BBE396BBE396BBE396BBE396BCE296BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BCE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE395BBE396BB -E396BCE396BBE396BBE396BBE396BBE396BBE396BCE296BCE296BCE397BCE398BDE39ABEE49CC0 -E59FC2E5A1C3E6A6C6E7AAC9E9AFCCEAB4D0ECB9D3ECBED6F7E2ECFEF8F9FFFFFEF8E9F1EED3E4 -EBCFE2EBCFE2EACEE2EFD7E7FAF0F5FFFFFEF9EFF5EBD6E7D8BBD6D3B4D2CFAECECAA8CAC7A4C7 -C39FC4C099C0BD96BEBB93BCB88FBAB78DB8B58BB6B489B5B387B4B387B4B387B4B287B4B287B4 -B287B4B287B4B186B4B186B4B186B4B085B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3 -B186B3B186B4B186B4B186B4B186B4B186B4B186B4B186B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B387B4B387B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B387B4B387B4B287B4B287B4B288B5B288B5B389B5 -B389B5B389B5B389B5B389B5B288B5B287B4B287B4B287B4B287B4B387B4B387B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B387B4B387B4B387B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B288B5B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B288B5B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B3B186B3B085B3B186B3B186B4 -B186B4B186B4B186B4B187B4B187B4B187B4B188B5B288B5B288B5B288B5B389B6B58BB7B58EB9 -B790BAB993BCBB97BFBE9BC2C1A0C5C5A5C8C9ACCDCEB2D1DCC9E0F0E6F0FFFFFEFBF7FAE6DAEA -DACBE1D9CAE1D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BDB2D2B7ACCEB1A6CB -ADA2C8A89DC5A499C3A196C19D94BF9A91BD988EBB968CBA958CB9948AB9948AB9948AB9938AB8 -938AB8938AB8938AB89389B89189B89189B89188B79188B79189B89189B89189B89289B89289B8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8938AB89289B89289B8 -9289B89289B89289B89289B8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8 -938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8948AB8938AB8938AB8938AB9938AB9 -948AB9948AB9948AB9948AB9938AB9938AB8938AB8938AB8938AB8948AB8938AB9938AB9938AB9 -938AB9938AB8938AB9938AB9938AB8938AB8938AB9938AB9928AB99289B8938AB8938AB8948AB8 -948AB9948BB9948BB9948BB9948AB9938AB8938AB8938AB89289B8938AB9938AB9938AB8938AB8 -928AB9928AB9938AB8938AB9938AB9938AB9938AB9938AB9938AB9938AB8938AB89389B8948AB9 -948AB9948AB9948AB9948AB9948AB9948AB9938AB8938AB8938AB8938AB8938AB8938AB8938AB8 -938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8938AB8 -938AB89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B89289B8 -9289B89289B89289B89289B89289B89289B89189B89189B89189B89188B79189B89189B89289B8 -938AB8938AB8938AB8948AB9948AB9948AB8948BB9948BB9948BB9948CBA958DBA978EBC9990BD -9C93BF9F96C0A199C2A59DC5AAA2C8AFA7CBB5ADD0BBB3D3C2BAD8E9E5EFFFFFFEFFFFFEEAE7F2 -DFDDECDCDAEBDDDCECDDDBEBE6E4F1F7F5F9FFFFFEF8F8FAE8EAF4575B8D565B8DD1DAECCDD8EA -CAD6EAC7D4E9C3D1E7C2D1E7BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE5B9CBE4 -B9CBE4B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B7CAE4B8CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B7CBE4B8CBE5B8CBE5B8CBE5B9CBE5B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4 -B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE4B9CBE4 -B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B9CBE5B9CBE5B9CBE4B9CBE5B9CBE5B9CBE4 -B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4 -B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4 -B9CBE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4 -B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B7CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5 -B8CBE5B8CAE4B8CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6 -BECFE7C0D0E7C3D3E9C5D4EAC9D7EBCCD9ECD0DCEDD5DFEFD9E2F0E9EDF6FAFBFCFFFFFEFBFBFC -F6F7FAF1F3F8F2F4F9BDB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFC -FAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BED0E7BFCFE6BED0E7E7ECF5 -FDFDFCFEFDFCFEFCFBFEFDFCFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D9E2F1DAE3F1F8F8FAFFFEFCFEFDFCFFFDFCFEFDFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F5F7FAFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDF2EEF3474E83 -C6BED5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -515689ACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9 -FEF6F8FEF5F8FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284AC -FAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F6D4E4F3C7DBF1C1D8EFBBD4EDB6D0EBB1CDEAACCAE9A8C7 -E8A4C4E7A1C3E69EC1E49BBFE499BEE498BDE497BCE397BCE397BCE396BCE396BBE395BBE395BB -E395BBE396BBE395BBE395BBE394BAE394BAE394BAE395BBE395BBE395BBE395BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BCE397BCE397BCE397BCE397BCE397BC -E397BCE396BCE396BCE497BCE497BCE497BCE497BCE497BCE497BCE396BCE396BCE396BCE396BC -E396BCE396BCE497BCE497BCE497BCE497BCE497BCE396BBE396BBE397BCE397BCE397BCE397BC -E397BCE397BCE396BCE396BBE496BBE497BCE497BCE497BCE497BCE497BCE396BCE396BCE396BC -E396BCE396BCE497BCE497BCE497BCE497BCE497BCE496BBE396BBE396BCE396BCE397BCE397BC -E397BCE397BCE397BCE396BCE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE395BBE395BBE396BBE396BBE396BBE396BB -E396BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE396BBE396BB -E396BBE396BBE396BBE396BBE396BCE295BBE296BCE397BCE398BDE39ABEE49CC0E59FC2E5A1C3 -E6A6C6E7AAC9E8AECBEAB3CFECB9D3ECBED6F7E2ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE2EBCFE2 -EACEE2EED6E7FAF0F5FFFFFEF9EFF5EBD6E7D8BBD6D3B4D2CFAECECAA8CAC7A4C7C39EC4C099C0 -BD96BEBB92BBB88FBAB78DB8B58BB6B489B5B387B4B388B5B388B5B287B4B287B4B287B4B287B4 -B186B4B186B3B186B3B186B3B186B4B186B3B186B3B186B3B186B3B186B4B186B4B186B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B387B4B287B4B287B4B287B4B287B4 -B287B4B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B388B5B388B5B388B5B388B5B388B5 -B388B5B288B5B288B5B288B5B288B5B388B5B387B4B387B4B387B4B388B5B388B5B389B5B389B5 -B389B5B388B5B388B5B388B5B388B5B388B5B387B4B287B4B288B5B388B5B389B5B289B6B389B5 -B389B5B389B5B388B5B287B4B287B4B287B4B388B5B387B4B388B5B388B5B388B5B388B5B389B5 -B389B5B288B5B388B5B288B5B388B5B388B5B388B5B388B5B388B5B288B5B288B5B388B5B388B5 -B388B5B388B5B388B5B388B5B388B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B287B4B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B186B4B186B4B186B3B186B3B186B3B286B3B186B3B185B3B186B3B186B3B186B4B186B4 -B186B4B187B4B187B4B187B4B288B5B288B5B288B5B288B5B389B6B58BB7B58EB9B790BAB992BC -BB96BEBE9BC2C1A0C5C4A5C8C9ACCDCEB2D1DCC8DFF0E6F0FFFFFEFBF7FAE6DAEADACBE1D9CBE1 -D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BDB1D2B7ABCEB1A6CBADA2C8A89DC5 -A499C3A196C19D94BF9A91BD988EBB968CBA948BB9948BB9948BB9948AB9938AB8938AB8938AB8 -938AB89289B89189B89189B89189B89289B89189B89189B89289B89289B89289B89289B8938AB8 -938AB8938AB9938AB9938AB8938AB8938AB8938AB8938AB8938AB8938AB9938AB9938AB9938AB9 -938AB9938AB9948AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9948AB9948AB9948BB9948BB9948BB9948BB9 -948BB9948BB9948AB9948AB9948AB9948BB9948AB9948AB9948BB9948AB9948BB9948BB9948AB9 -948BB9948BB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948BB9948BB9948BB9 -948BB9948BB9948BB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948BB9948BB9 -948BB9948BB9948BB9948AB9948AB9948BB9938BB9948BB9948AB9948AB9948AB9948AB9948BB9 -948BB9948BB9948BB9948BB9948AB9948AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB9 -938AB9938AB9938AB9938AB9938AB9938AB8938AB89289B89289B8928AB9938AB9938AB8938AB8 -938AB89289B89289B89289B89289B89289B89189B89189B89189B89189B89289B89289B8938AB8 -938AB8948AB9948AB9948AB9948BB9948BB9948BB9948CBA958DBA978EBC9990BD9C93BF9E96C0 -A098C2A59DC5AAA2C8AFA7CBB5ADD0BBB3D3C2BAD8E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDCDAEB -DCDBEBDEDCECE4E3F0F7F6FAFFFEFDF6F6F9DBDAE93E457B7879A5D0DAECCDD8EBC9D5EAC7D4E9 -C4D2E8C2D0E7BFCFE6BDCDE5BCCDE5BBCBE4B9CBE4B9CAE4B9CBE4B9CBE5B9CBE4B9CBE4B8CAE4 -B8CAE4B8CBE5B8CBE5B8CBE5B8CAE4B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5 -B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5B9CBE4B9CBE4B9CBE4BACBE4BACBE4 -BACBE4BACBE4BACBE4BACBE4B9CBE4B9CBE4BACBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE4B9CBE4B9CBE4B9CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B9CBE4B9CBE4B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BECFE7C0D0E7 -C3D3E9C5D4E9C8D6EBCDD9ECCFDBEDD4DFEFD8E1F0E9EDF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8 -F2F4F9BDB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFC -FBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BFCFE7BECEE6BED0E7BECFE7BFCFE7BDCFE7BECEE6C2D2E8F3F4F9FFFDFC -FEFEFCFEFDFCFEFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E0EFD9E2F1D8E0EFD8E2F0DDE5F2FDFDFDFFFDFCFEFDFCFFFEFCFEFEFCFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F6F8FBFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFDFFFFFD938CB2686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDACA4C3525689 -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4 -FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB6D0EBB0CDEAACCAE9A8C7E8A4C4E7A1C3 -E69EC1E49BBFE499BEE498BDE498BDE397BCE397BCE396BCE396BBE395BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BBE396BCE396BCE396BCE396BB -E396BBE396BBE396BBE396BBE396BBE396BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE498BDE498BDE498BDE498BDE498BDE498BDE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE498BDE498BDE498BDE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE397BCE398BDE297BCE398BDE398BDE397BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE498BDE498BDE498BD -E497BCE498BDE498BDE497BCE497BCE497BCE497BCE497BCE497BCE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE497BC -E497BCE497BCE396BCE396BBE396BBE396BBE396BBE396BBE396BCE396BCE396BCE396BBE396BB -E396BBE395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BAE395BBE396BBE295BBE396BB -E396BBE396BBE396BCE296BCE296BCE297BCE398BDE39ABEE49CC0E49EC1E5A1C3E6A5C6E7AAC9 -E8AECBEAB3CFECB9D3ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE2EACEE2EACEE2EED6E7 -F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D3B4D2CEADCDCAA8CAC6A3C7C39EC4C099C0BD95BEBB92BB -B88FBAB78DB8B58BB6B48AB6B489B5B389B5B287B4B287B4B287B4B287B4B287B4B187B4B186B4 -B186B4B186B3B186B3B286B3B186B4B186B4B186B4B287B4B287B4B287B4B287B4B288B5B288B5 -B288B5B287B4B287B4B288B5B288B5B288B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5 -B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5 -B388B5B388B5B388B5B388B5B389B5B389B5B389B6B389B6B389B5B389B5B389B5B389B5B389B5 -B389B5B389B5B389B5B389B5B489B5B489B5B389B5B489B5B489B5B48AB6B48AB6B389B5B389B5 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B6B389B6B389B6B48AB6 -B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5B389B6B389B6B389B5 -B489B5B389B5B389B5B389B5B389B5B489B5B389B5B389B5B389B5B389B5B389B5B389B5B389B5 -B389B5B389B6B389B6B389B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5 -B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5B388B5 -B388B5B388B5B288B5B288B5B288B5B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B4B187B4B287B4B187B4 -B187B4B187B4B288B5B288B5B288B5B288B5B389B6B48BB7B58DB8B790BAB992BCBB96BEBE9BC2 -C1A0C5C4A4C8C8ABCCCEB2D1DCC8DFF0E6F0FFFFFEFBF7FAE6DAEAD9CAE1D9CBE1D9CBE1D9CBE1 -E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BDB1D2B7ABCEB1A6CBACA1C8A89DC5A499C3A096C0 -9D94BF9A91BD988EBB968CBA948BB9948BB9948BB9948AB8948AB8938AB8938AB8938AB8938AB8 -9289B89189B89189B89289B89289B89289B89289B89389B8938AB8938AB9938BB9948AB9948AB9 -948AB9938AB9938AB9938AB9938AB9938AB9938AB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9958CBA958CBA958CBA958CB9958CB9958CB9958CB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9958CBA948CBA948CBA948CBA958CBA958CBA948CBA -948BB9948BB9948BB9948BB9948BB9958CB9958CBA948BB9948BB9958CB9958CB9958CB9958CB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9958CBA958CBA958CBA948CBA -948CBA958CBA958CB9958CB9948CBA948CBA948CBA948CBA948CBA948BB9958CB9958CB9958CBA -958CBA958CBA958CBA958CBA958CBA948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9958CB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9948CBA948BB9938AB9948AB9938AB9938AB9938AB9938AB8948AB9948AB9938AB9938AB8 -938AB8938AB8938AB8938AB89289B89289B89289B89189B89189B89189B89289B8938AB8938AB8 -948AB9948AB9948BB9948BB9948BB9948CBA958DBA978EBC9990BD9C93BF9E96C0A098C2A59DC5 -AAA2C8AFA7CBB4ACCFBBB3D3C2BAD8E9E4EFFFFFFEFFFFFEEBE7F2DFDDECDCDAEBDCDBEBDCDCEC -E5E5F1F6F5F9FFFFFDF6F6F9ADA8C73F457B9D9FC3CFDAECCCD6EACAD6EAC7D3E8C4D1E8C2D1E8 -BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4B9CBE4B9CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B9CBE4B8CAE4B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CCE5B9CBE5BACCE5BACCE5B9CBE5BACCE5B9CBE5B9CBE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BBCCE5BBCCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACDE5BACCE5BACCE5BACDE5BACDE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BBCCE5BACCE5BACCE5BBCCE5BBCCE5BBCCE5 -BBCCE5BACCE5BACCE5BACCE5BACCE5BACDE5BACCE5BACCE5BACCE5BACCE5BACCE5BACDE5BACDE5 -BACDE5BACDE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BBCCE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -B9CBE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B9CBE5B8CBE5B8CBE5 -B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4B8CAE4B8CAE4B8CBE5B8CCE5B9CBE5B9CBE5B8CBE5B9CBE4 -B9CBE4B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BECFE7C0D0E7C3D2E8C5D4E9 -C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9EDF6FAFBFCFFFFFEFBFBFCF5F6FAF1F3F8F2F4F9BDB8D2 -666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFCFCFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECEE6BFCFE7BECFE7BFCFE7BDD0E7BECEE6C2D2E8F4F5F9FEFDFCFEFDFC -FEFDFCFEFDFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D7E0EFD8E1F0D8E1F0D8E1F0E0E7F3FCFCFCFFFEFCFFFDFCFFFEFCFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F2F8F8F8FBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFD525588B9B1CCFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE505588BAB1CDFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF2F6 -FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFE -FCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB5D0EBB0CDEAACCAE9A8C7E8A4C4E7A0C2E69EC1E49BBF -E499BEE499BDE499BDE397BCE396BCE396BCE396BBE396BBE396BBE396BBE396BBE395BBE395BB -E395BBE395BBE395BBE396BBE396BBE396BCE396BCE396BCE497BCE396BCE396BBE396BCE396BC -E497BCE497BCE497BCE498BDE497BCE497BCE497BCE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BEE499BDE498BDE499BDE499BDE499BDE499BDE499BDE499BDE499BE -E499BDE497BCE498BDE499BEE499BEE499BDE499BDE499BEE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE498BDE499BDE499BDE499BDE499BEE499BDE499BDE499BDE498BDE499BDE499BE -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE498BDE498BDE499BDE499BDE499BDE499BD -E499BDE499BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BD -E497BCE497BCE497BCE497BCE497BCE396BBE396BCE396BCE396BCE396BCE396BCE396BBE396BB -E396BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BBE295BBE396BBE396BBE396BB -E396BCE296BCE297BCE297BCE398BDE39ABEE49CC0E49EC1E5A1C3E6A4C5E7A9C8E8AECBEAB3CF -EBB8D3ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE2EACEE2EACEE2EED6E7F9EFF5FFFFFE -F9EFF5EBD6E7D8BAD6D3B4D2CEADCDCAA8CAC6A3C7C39EC4C099C0BD95BEBB92BBB88FBAB78DB8 -B58BB6B48AB6B489B5B388B5B287B4B288B5B287B4B186B4B287B4B287B4B186B4B186B4B186B4 -B186B4B186B4B287B4B287B4B288B5B387B4B288B5B288B5B488B5B388B5B388B5B388B5B388B5 -B388B5B388B5B388B5B389B5B389B5B389B5B489B5B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B489B5B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B489B5B489B5B389B5 -B389B5B388B5B388B5B388B5B388B5B288B5B288B5B388B5B388B5B388B5B288B5B287B4B287B4 -B287B4B287B4B186B4B186B4B186B3B186B3B186B4B287B4B287B4B186B4B187B4B187B4B187B4 -B288B5B288B5B288B5B288B5B389B6B38BB7B58DB8B790BAB992BCBB96BEBE9AC1C19FC4C4A4C8 -C8AACCCDB1D1DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CBE1D9CBE1D8CAE0E9DFEDFFFFFE -FFFFFEE7DEECD0C4DEC3B7D6BDB1D2B6ABCEB1A6CBACA1C8A89DC5A499C3A096C09D93BE9A90BD -988EBB978DBB948BB9948BB9948BB9948AB8938AB8938AB8938AB8938AB9938AB99289B89289B8 -9289B89289B89289B8938AB8938AB8948AB9948AB9948AB9948AB9948AB9948AB9948AB9948BB9 -948BB9948BB9948CBA948CBA958DBA948CBA948CBA948CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA978DBB968DBB968DBB968DBB968CBA968CBA968CBA958CBA968CBA968DBB968DBB -968DBB968DBB968DBB968CBA978DBB958DBA968DBB968DBB968DBB968DBB968DBB968DBB968DBB -968DBB958CBA958CBA968CBA978DBB978DBB968DBB968DBB968DBB968DBB968DBB968DBB978DBB -978DBA968DBB958DBA958CBA968DBB968DBB968DBB968DBB968DBB968DBB968DBB958DBA958DBB -968EBB968DBB968DBB968DBB968DBB968DBB968DBB968CBA958CBA958CBA968CBA968CBA968DBB -968DBB968DBB968DBB958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA -958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA958CBA948CBA958DBA -958CBA948CBA948BB9948BB9948BB9948AB9948AB9948AB8948AB9948AB9948BB9948AB9938AB9 -938AB8938AB89289B89289B89289B89289B89289B8928AB9938AB9938AB9938AB8948AB9948AB9 -948BB9948BB9948BB9958DBA958DBA978EBB9890BD9B93BE9E96C0A098C2A59CC5AAA1C8AFA6CB -B4ACCFBBB3D3C1BAD8E9E4EFFFFFFEFFFFFEEBE7F2DFDDECDCD9EADCDBEBDBDAEBE6E4F0F7F5F8 -FFFFFEF5F5F97774A03D457BD3DCECD1DAECCCD7EAC9D6EAC6D3E9C3D1E7C1CFE7BFCFE6BDCDE5 -BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4B9CBE4B9CBE5B8CBE5B9CBE5B9CBE5B8CBE5B8CBE5 -B8CAE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B9CBE5B9CBE5B8CBE5B9CBE5B9CBE5B9CBE5 -BACCE5BACCE5BACCE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5 -BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5 -BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCDE6BBCDE6BBCCE5BBCDE6BBCDE6 -BBCDE6BBCCE5BBCCE5BBCCE5BBCDE6BBCDE6BBCDE6BBCCE5BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCDE6BBCDE6BBCCE5BBCCE5BBCCE5 -BBCCE5BBCCE5BBCCE5BACCE5BBCCE5BBCDE6BBCDE6BBCDE6BBCCE5BBCDE6BBCDE6BBCCE5BBCCE5 -BBCCE5BBCCE5BBCDE6BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCCE5 -BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5 -BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4B8CBE5B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -BACCE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9EC -CFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FA -F5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BDCFE7BDCFE7BECFE7BECEE6BED0E7BFCFE6CAD8EBFAFBFCFEFDFCFEFDFCFEFDFC -FEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E2F0D8E0EFD8E2F0E5EBF5FEFDFCFFFDFCFFFEFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9 -F9FAFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFEFDBAB2CD505588FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFB938DB3736F9CFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5 -FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3 -F3C7DBF1C1D8EFBBD4EDB5D0EBB0CDEAACCAE9A8C7E8A4C4E7A0C2E69EC1E49BBFE49ABEE499BD -E498BDE397BCE396BCE396BCE496BBE496BBE396BBE396BBE396BBE396BBE396BBE396BBE396BB -E396BBE396BCE396BCE396BCE396BCE497BCE497BCE497BCE497BCE497BCE497BCE497BCE498BD -E498BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BEE499BEE499BEE499BEE499BE -E499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE49ABEE49ABE -E49ABEE49ABEE49ABEE49ABEE49ABEE499BEE499BEE49ABEE499BEE499BEE499BEE499BEE499BE -E599BEE59ABEE599BEE59ABEE59ABEE599BEE599BEE599BEE599BEE499BEE49ABEE499BEE499BE -E49ABEE49ABEE49ABEE49ABEE49ABEE499BEE499BEE499BEE49ABEE49ABEE49ABEE49ABEE499BE -E499BEE59ABEE599BEE599BEE599BEE599BEE499BEE49ABEE49ABEE599BEE59ABEE49ABEE499BE -E499BEE49ABEE499BEE499BEE59ABEE59ABEE49ABEE49ABEE49ABEE49ABEE59ABEE59ABEE49ABE -E49ABEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BEE499BE -E499BEE499BEE499BEE499BEE499BEE499BDE499BDE499BDE499BDE499BDE499BDE498BDE498BD -E498BDE498BDE497BCE497BCE497BCE497BCE497BCE396BCE396BCE396BCE396BCE396BBE396BB -E395BBE395BBE395BBE395BBE395BBE396BBE396BBE395BBE396BBE396BBE396BBE396BCE297BC -E297BCE297BCE398BDE39ABEE49CC0E49EC1E5A1C3E6A4C5E7A8C8E8AECBEAB3CFEBB8D3ECBED6 -F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE2EACEE2E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7 -D8BAD6D3B4D2CEADCDCAA8CAC6A3C7C39EC4BF99C0BD95BEBB92BBB88FBAB78DB8B58BB6B48AB6 -B489B5B388B5B287B4B288B5B288B5B287B4B287B4B287B4B186B4B186B4B186B4B287B4B287B4 -B287B4B287B4B288B5B387B4B389B5B389B5B389B5B389B5B389B5B389B5B389B6B48AB6B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B58BB6B58BB7B58BB7B58BB7B58BB7 -B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7 -B58CB7B58CB7B58CB7B58CB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58CB7B58CB7 -B58CB7B58CB7B68CB7B58BB7B58CB7B58CB7B58CB7B58CB7B58CB7B58CB7B58BB7B58BB7B58BB7 -B58BB7B58CB7B58CB7B58CB7B58CB7B58BB7B68BB7B58BB7B58BB7B58CB7B58CB7B58CB7B58CB7 -B58BB7B58BB7B58CB7B58CB7B58CB7B58BB7B58BB7B58CB7B58CB7B58CB7B58BB7B58CB7B58CB7 -B58CB7B58CB7B58CB7B58BB7B58BB7B58CB7B58BB7B58BB7B58BB7B58BB7B58CB7B58CB7B58CB7 -B58CB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7B58BB7 -B58BB7B58BB7B58BB7B58BB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B489B5B489B5B389B5B389B5B389B5B389B5B389B5B389B5B288B5B288B5B287B4B287B4 -B287B4B287B4B287B4B186B4B186B4B287B4B287B4B187B4B187B4B187B4B187B4B288B5B288B5 -B288B5B289B6B389B6B38BB7B58DB8B790BAB992BCBB96BEBE9AC1C19FC4C4A4C8C8AACCCDB1D1 -DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CBE1D9CBE1D8CAE0E9DFEDFFFFFEFFFFFEE7DEEC -D0C4DEC3B7D6BCB1D2B6ABCEB1A6CBACA1C8A89DC5A499C3A096C09C93BE9A90BD988EBB978DBB -958CB9948BB9948BB9948AB8938AB8938AB8938AB9938AB9938AB99289B89289B8938AB8938AB8 -938AB9938AB9948AB9948AB9938AB9948AB9948BB9948BB9948BB9948BB9948CBA958CBA958CBA -958CBA958CBA968DBB968DBB968DBB968DBB968DBB968DBB978DBB978EBB978EBB978EBB978EBB -978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB -988FBC988FBC988FBC988FBC988EBB988DBB978DBB978DBB988FBC978EBC978EBB978EBB988EBB -978EBB978EBB978EBC988EBB988EBB988FBC978EBC978EBB978EBB978EBB978EBB988FBC978EBB -978EBB988EBB988EBB988EBB988EBB988EBB978EBB978EBB978EBB988EBB988EBB988EBB988EBB -988EBB978EBB988FBC978EBC978EBB978EBB988EBB988EBB988EBB988DBB988EBB988EBB978EBB -978EBB988EBB988EBB978EBB978EBC988FBC978EBC978EBB988DBB988EBB988EBB988FBC988FBC -988FBC988EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB978EBB -978EBB978EBB978EBB978EBB978EBB978EBB978DBB968DBB968DBB968DBB968DBB968DBB958CBA -958CBA958CBA958CBA948CBA948CBA948BB9948BB9948BB9948AB9948AB9948AB9948AB9938AB9 -938AB99289B89289B89289B89289B89289B8938AB9938AB9938AB8948AB9948AB9948BB9948BB9 -948BB9958DBA968DBB978EBB9890BD9B93BE9E96C0A098C2A59CC5AAA1C8AFA6CBB4ACCFBBB3D3 -C1BAD8E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDCDAEBDCDBEADCDCECE5E3F0F7F5F9FFFFFEF6F6F9 -4F54885F6292D4DCEDCFD9EBCED9ECC8D4E9C6D3E9C4D1E8C1CFE7BFCFE6BDCDE5BCCDE5BBCBE4 -BACBE4B9CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B8CAE4B8CAE4B8CBE5 -B8CBE5B8CBE5B8CBE5B9CBE5B9CBE5BACBE4BACBE4BACCE5BBCCE5BACCE5BACCE5BACDE5BACDE5 -BACCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCDE6BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE5BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCEE6BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BBCCE5BBCCE5BBCCE5 -BBCCE5BBCCE5BACCE5BACCE5BACCE5BACBE4BACCE5BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5 -B8CBE5B8CBE5B8CAE4B8CAE4B8CAE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5 -BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEF -D8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FAF5F6FAF6F7FA -F7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BECFE7 -BFCFE7BDCEE6BECFE7BED0E7BECFE7BED0E7BECFE7CBD8ECFAFBFCFFFDFCFEFDFCFDFDFCFEFDFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E0EFD8E1F0D8E1F0 -D8E1F0D8E1F0D7E0EFE8ECF5FFFDFCFFFEFCFFFDFCFFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9FAFAFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE726F9CA098BAFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFCFFFFFEFFFEFDFFFFFEF2EDF23E457BE4DDE8FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3 -FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8 -EFBBD4EDB5D0EBB0CDEAACCAE8A7C7E8A4C4E7A0C2E69FC1E49BBFE49ABEE499BDE498BDE397BC -E396BCE396BCE497BCE497BCE396BBE396BBE396BCE396BCE396BCE396BCE396BCE396BCE396BC -E396BCE497BCE498BDE498BDE498BDE497BCE498BDE499BDE499BDE499BDE499BEE499BEE499BE -E599BEE599BEE59ABEE59ABEE59ABEE59ABEE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBF -E59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59CBFE59CBFE59CBFE59CBF -E59BBFE59BBFE59BBFE59BBFE59BBFE59CBFE49BBFE49BBFE59CBFE59CBFE59BBFE59BBFE59CBF -E59CBFE59BBFE59BBFE59BBFE59BBFE59BBFE59CBFE59CBFE59CBFE49BBFE49BBFE59CBFE59CBF -E59CBFE59BBFE49BBFE49BBFE49ABEE49ABEE59BBFE59CBFE59CBFE59CBFE59CBFE59CBFE59ABE -E59BBFE59CBFE59CBFE59CBFE59CBFE59BBFE59BBFE69BBFE59CBFE59BBFE59BBFE59CBFE59CBF -E59BBFE59BBFE59BBFE59BBFE49BBFE49BBFE49BBFE49BBFE59CBFE59CBFE59CBFE59CBFE59BBF -E59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBFE59BBF -E59BBFE59BBFE59ABEE59ABEE59ABEE59ABEE59ABEE59ABEE499BEE499BEE499BEE499BDE499BD -E499BDE499BDE498BDE499BDE498BDE497BCE497BCE397BCE396BCE396BCE396BCE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BCE296BCE297BCE297BC -E298BDE39ABEE49CC0E49EC1E5A1C3E6A4C5E7A8C8E8AECBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9 -FFFFFEF8E9F1EED3E4EBCEE1EACEE2E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D3B4D2 -CEADCDCAA8CAC6A3C7C39EC3BF99C0BD95BEBB92BBB88FBAB78DB8B58BB7B48AB6B489B5B388B5 -B287B4B287B4B388B5B287B4B287B4B288B5B287B4B287B4B287B4B287B4B288B5B288B5B388B5 -B389B5B389B5B389B6B389B6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58BB7 -B58BB7B58CB7B58CB7B58CB7B58CB7B58CB7B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8 -B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B58DB8B68CB7B68DB8B68DB8B68DB8B68EB9B68EB9B68EB9B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B78DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8B58DB8 -B58DB8B58DB8B58CB7B58CB7B58CB7B58CB7B58CB7B58CB7B58BB7B58BB7B58BB7B58BB7B48AB6 -B48AB6B48AB6B48AB6B48AB6B48AB6B389B6B389B6B389B5B389B5B388B5B388B5B288B5B287B4 -B287B4B287B4B287B4B287B4B287B4B187B4B288B5B287B4B187B4B288B5B288B5B288B5B289B6 -B38AB6B48BB7B58DB8B790BAB993BCBB96BEBE9AC1C19FC4C4A4C8C8AACCCDB1D0DCC8DFF0E5F0 -FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D9CAE1D8CAE0E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6 -BCB1D2B6ABCEB1A6CBACA1C8A89DC5A499C3A096C09C93BE9A90BD988EBB978DBB958CB9948BB9 -948AB8948AB8938AB8938AB9938AB9948AB9938AB9938AB8938AB8938AB8938AB9948AB9948AB9 -948AB9948BB9948CBA958CBA958CBA958DBA958DBA958DBA968DBB968DBB968DBB978DBB978EBB -978EBB978EBB988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC9990BC9990BC -9990BC988FBC988FBC988FBC988FBC9890BC9890BC9890BC9890BC9990BC9990BD9890BC998FBC -9990BC9890BC9890BC9890BC9890BC9890BC9890BC9990BC9990BC9890BC9890BC9990BC9990BC -9890BC9990BC9890BC9890BC9990BC9990BC9890BC9890BC9990BC9990BD9990BD9990BC9990BC -9890BC9890BC9890BC9890BC9990BC9990BC9890BD9990BC9990BC9990BC9990BC9990BC9990BC -9A90BD9990BC988FBC9890BC9890BC988FBC988FBC988FBC998FBC9990BC9990BC9990BC9990BC -998FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC -988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC978EBB978EBB978EBB978EBB968EBB -968DBB968DBB958CBA958CBA958CBA958CBA958CBA948CBA948BB9948BB9948AB9948AB9938AB9 -938AB9938AB9938AB8938AB8938AB9938AB9938AB9948BB9948AB9948BB9948BB9948BB9968DBB -968DBB978EBB9890BD9B93BE9E96C0A098C2A59CC5AAA1C8AFA6CBB4ACCFBAB2D3C1BAD8E9E5EF -FFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDBECE5E4F0F7F6F9FFFFFEDBD7E63E457B8C8BB3 -D4DCECD0D9EBCDD7EAC9D5EAC6D4E9C4D1E7C1CFE6BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4 -B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B8CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5BACCE5BACCE5BBCCE5BBCCE5BBCDE6BBCCE5BBCCE5BBCCE5BBCCE5BBCDE6BBCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCFE7 -BDCFE7BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCFE7BDCFE7BDCFE7 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCFE7BDCEE6BDCFE7BDCFE7BDCFE7BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCFE7BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BBCDE6 -BBCDE6BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BBCCE5BACCE5B9CBE5B9CBE5B9CBE5 -B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5 -BBCCE5BCCDE6BDCEE6BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5 -FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FB -F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BED0E7BECEE6BDCFE7BED0E7 -BECFE7BDCFE7BFCFE7BECFE7BECFE7BECFE7D7E0EFFEFEFCFEFDFCFEFCFBFEFDFCFEFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EF -D8E2F0D8E1F0EFF2F8FEFCFBFFFEFCFEFDFCFFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9F0F3F9F2F5F9FCFBFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEE3DCE9 -3E447BF2EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE736E9C938DB3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2 -FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8F0BBD4EDB5D0 -EBB0CDEAACCAE8A7C7E8A4C4E7A0C2E69FC1E49BBFE49ABEE499BDE498BDE397BCE396BCE397BC -E497BCE497BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE396BCE497BCE497BCE498BD -E498BDE499BDE499BDE499BDE499BEE499BEE49ABEE59ABEE59ABEE59BBFE59BBFE59BBFE59CBF -E59CBFE59CBFE59CBFE59CBFE59CBFE59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0 -E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59DC0E59DC0E69EC1E59DC0E59CC0E59CC0 -E59CC0E59CC0E59CC0E59CC0E59DC0E59CBFE59CC0E59DC0E59CC0E59CC0E59CC0E59CC0E59DC0 -E59CC0E59CC0E59CC0E59CC0E59CC0E59DC0E69DC0E59DC0E59DC0E59CC0E59CC0E59DC0E59CC0 -E59CC0E59DC0E69DC0E59CC0E59CC0E59DC0E59DC0E59CC0E59CC0E69DC0E59CC0E59DC0E59CC0 -E59CC0E59CC0E59CC0E59CC0E59DC0E59DC0E59CC0E59CC0E59CC0E59DC0E59DC0E59CC0E59CC0 -E59DC0E59CC0E59CC0E59CC0E59CC0E59CC0E59DC0E59DC0E59DC0E59DC0E59CC0E59CC0E59CC0 -E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0E59CC0 -E59CBFE59CBFE59CBFE59CBFE59CBFE59BBFE59BBFE59BBFE59BBFE59ABEE59ABEE49ABEE499BE -E499BDE499BDE499BDE499BDE498BDE498BDE497BCE497BCE497BCE396BCE396BCE396BBE396BC -E396BCE396BCE396BBE396BBE396BCE396BCE396BBE396BCE296BCE297BCE297BCE298BDE39ABE -E49CC0E49EC1E5A1C3E6A4C5E7A8C8E8AECBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1 -EED3E4EBCEE1EACEE2E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D3B4D2CEADCDCAA8CA -C6A3C7C39EC3BF99C0BD95BEBB92BBB88FBAB78EB9B58CB7B48AB6B489B5B287B4B287B4B388B5 -B488B5B387B4B287B4B288B5B388B5B388B5B287B4B287B4B388B5B389B5B389B5B48AB6B48AB6 -B48AB6B48AB6B58BB7B48AB6B58BB7B58BB7B58BB7B58BB7B58CB7B58DB8B58DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B78EB9B78FB9B78FB9B790BAB78FB9B78EB9B78EB9 -B78EB9B78EB9B78EB9B78EB9B78EB9B78FB9B88FBAB88FBAB78FB9B78FB9B88FBAB78EB9B78EB9 -B88FB9B78EB9B78EB9B78FB9B88FB9B78EB9B78EB9B78EB9B88FBAB88FBAB88FBAB78EB9B78EB9 -B78EB9B78EB9B78FB9B78FB9B78EB9B78EB9B78EB9B78FB9B890BAB88FBAB88FBAB78FB9B890BA -B88FB9B88FBAB78FB9B78FB9B88FB9B78FB9B78EB9B78EB9B88FB9B88FB9B78FB9B88FBAB78EB9 -B88FBAB78EB9B78EB9B78EB9B78EB9B78EB9B78EB9B78EB9B78FB9B78FB9B78FB9B78EB9B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B58DB8B58DB8B58CB7B58CB7B58CB7B58BB7 -B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B389B6B389B5B389B5B388B5B388B5B287B4B288B5 -B388B5B287B4B387B4B187B4B288B5B287B4B187B4B188B5B288B5B288B5B289B6B38AB6B58CB7 -B58DB8B790BAB892BCBA96BEBE9AC1C19FC4C4A4C8C8AACCCDB1D0DCC8DFF0E5F0FFFFFEFBF7FA -E6DAEAD9C9E0D9CAE1D9CAE1D8CAE0E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BCB1D2B6ABCE -B1A6CBACA1C8A89DC5A398C2A096C09C93BE9B91BD988EBB978DBB958CB9948BB9948AB8948AB8 -948AB9948AB9938AB9948AB9938AB9948AB9938AB9948AB9948AB9948AB9948BB9948BB9958CB9 -958CBA958DBA968DBB968EBB968DBB978DBB988EBB988FBC988FBC988FBC988FBC9990BC9990BC -9990BC9990BC9990BC9990BD9990BD9990BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD -9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9B92BE9B91BD9B91BD9B91BD -9A91BD9A91BD9A91BD9A91BD9A91BD9B92BE9A91BD9B92BE9B92BE9A91BD9A91BD9A91BD9B92BE -9B92BE9A91BD9A91BD9A92BE9A91BD9A91BD9B92BE9A91BD9B92BE9C92BE9B92BE9A91BD9B92BE -9A91BD9A91BD9B92BE9B92BE9A91BD9A91BD9B92BE9B92BE9A91BD9B92BE9B92BE9B92BE9B92BE -9B92BE9A91BD9A91BD9A91BD9A91BD9B92BE9B92BE9A91BD9991BD9A91BD9B92BE9B92BE9991BD -9B92BE9B91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9B91BD9B91BD9B91BD9B91BD9A91BD -9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD9A91BD -9990BD9990BD9990BD9990BC9990BC9990BC9890BC9990BC988FBC988FBC988FBC988FBC978EBB -978EBB968DBB968DBB968DBB968DBB968DBB958CBA948CBA948BB9948AB9948AB9948BB9948BB9 -948AB9938AB9938AB9948AB9948AB9948BB9948BB9948BB9948BB9948BB9958CBA968DBB978EBB -9890BD9B93BE9D95C0A098C2A59CC5AAA1C8AFA6CBB4ACCFBAB2D3C1BAD8E9E5EFFFFFFEFFFFFE -EBE7F2DFDDECDBD9EBDCDCECDCDCECE5E4F0F7F5F9FFFFFEAAA3C33E457BB5B7D4D4DCEDD1DAEC -CDD8EACAD6EAC6D3E9C4D1E8C2D0E7BFCFE6BECEE6BDCEE6BBCBE4BACBE4B9CAE4B9CBE4B9CBE4 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CAE4B9CBE4B8CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5 -BBCCE5BBCDE6BBCDE6BBCCE5BBCCE5BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BECEE6BECEE6BECEE6BECFE7 -BECFE7BECFE7BECFE7BECEE6BECEE6BECFE7BECFE7BECFE7BECEE6BECEE6BECFE7BED0E7BECFE7 -BECEE6BECFE7BDCFE7BECEE6BECEE6BECFE7BECFE7BECEE6BECEE6BECFE7BECFE7BECFE7BECEE6 -BECEE6BECEE6BDD0E7BDCFE7BECFE7BECEE6BECEE6BECEE6BECFE7BECFE7BECFE7BECFE7BECEE6 -BECFE7BECFE7BECEE6BECEE6BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECEE6BECEE6BECEE6BECFE7BDCFE7BDCFE7BFCFE6BECEE6BECEE6BECEE6BECEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCDE6BBCCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5B8CBE5BACCE5BACCE5BACCE5BBCCE5BCCDE6 -BDCEE6BECFE7C0D0E7C2D1E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFE -FBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FB -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BED0E7BECFE7BECFE7BECFE7BECFE7 -BED0E7BECFE7BDCFE7BECFE7BFCFE7D7E1F0FEFDFCFEFDFCFEFCFBFEFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0 -D7E1F0F1F3F9FFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F8F1F3F9F1F3F9F1F3F8F3F5F9FCFCFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA098BB736F9CFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFCBAB2CE515689FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD -9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBAD3EDB4CFEBB0CDEAABCA -E8A7C7E8A4C4E7A1C3E69FC1E49BBFE49ABEE499BDE398BDE397BCE497BCE497BCE296BCE396BC -E396BCE295BBE497BCE597BCE497BCE396BCE497BCE498BDE498BDE498BDE499BDE499BEE499BE -E49ABEE59ABEE59BBFE69BBFE59BBFE49BBFE59CBFE59CC0E59CC0E59CC0E59DC0E59DC0E59DC0 -E59DC0E59CC0E59DC0E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1 -E69EC1E69EC1E69FC1E69EC1E69FC1E69FC1E69FC1E69FC1E69FC1E69EC1E69EC1E69EC1E69FC1 -E69EC1E69FC1E69EC1E69EC1E69FC1E69FC1E69FC1E69FC1E69FC1E69FC1E69EC1E69EC1E69FC1 -E69EC1E69EC1E69EC1E69FC1E69FC1E69FC1E69FC1E69FC1E69FC1E69EC1E69FC1E69EC1E79FC1 -E69FC1E69FC1E69FC1E69FC1E59EC1E69FC1E69FC1E69FC1E69FC1E69FC1E69FC1E69EC1E69FC1 -E69FC1E69FC1E69EC1E69FC1E69FC1E69FC1E69FC1E69FC1E69FC1E69EC1E69EC1E69FC2E69FC1 -E69EC1E69FC1E69FC1E69EC1E69EC1E69FC1E69FC1E69FC1E69FC1E69EC1E69EC1E69EC1E69EC1 -E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E59DC0E59DC0 -E59DC0E59DC0E59DC0E59CC0E59CC0E59CC0E59CBFE59CBFE59CBFE59BBFE59BBFE59ABEE599BE -E49ABEE499BEE499BDE499BDE498BDE498BDE497BCE497BCE397BCE396BCE296BCE597BCE396BC -E396BCE396BBE396BCE396BCE396BCE396BCE296BCE297BCE297BCE298BDE39BBFE49CC0E49EC1 -E6A1C3E6A4C5E7A8C7E8AECBEAB3CFEBB8D2ECBED6F7E1ECFEF8F9FFFFFEC2B2CEBBA5C4A18EB5 -8C7CA78B7CA7BAA8C7C2B5D0E5DEEAF9EFF5EBD6E7D8BAD6D2B3D1CFAECECAA8CAC6A2C6C29DC3 -C099C0BD95BEBB91BAB990BAB78EB9B58BB7B48AB6B489B5B388B5B287B4B388B5B388B5B388B5 -B288B5B388B5B388B5B288B5B388B5B389B5B389B5B389B6B48AB6B48AB6B58AB6B58BB6B58BB7 -B58CB7B58CB7B58CB7B58DB8B78DB8B68DB8B68DB8B68EB9B68EB9B78EB9B78EB9B78EB9B78FB9 -B88FBAB88FBAB88FBAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BA -B890BAB890BAB890BAB891BBB991BBB991BBB991BBB991BBB991BBB991BBB990BAB990BAB991BB -B991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB891BBB991BB -B991BBB990BAB991BBB991BBB991BBB991BBB991BBB991BBB990BAB991BBB890BAB990BAB991BB -B991BBB991BBB991BBB890BAB890BAB991BBB991BBB990BAB991BBB991BBB991BBB991BBB991BB -B991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BB -B991BBB991BBB991BBB990BAB990BAB991BBB991BBB991BBB991BBB991BBB990BAB890BAB890BA -B890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB890BAB790BAB88FBA -B88FBAB78FB9B88FBAB78FB9B78EB9B78DB8B68DB8B68DB8B68DB8B68DB8B58DB8B58CB7B58CB7 -B58BB7B68CB7B58BB7B58BB6B38BB7B48AB6B38AB6B388B5B289B6B288B5B288B5B388B5B489B5 -B388B5B288B5B288B5B288B5B288B5B188B5B188B5B288B5B289B6B38AB6B58CB7B68FB9B78FB9 -B993BCBA96BEBD9AC1C19FC4C4A4C8C7AACBCDB1D0DCC8DFF0E5F0FFFFFDC2B9D2B5A8C78E84AF -857CA7857BA7AB9FC2B7ACCAF2EEF4FFFFFEE7DFEDD0C4DEC3B7D6BCB1D2B6ABCEB1A6CBABA1C8 -A79DC5A399C3A096C09E94BF9B91BD988EBB978EBB958CB9948BB8948AB8948AB9948AB9938BB9 -948BB9938BB9948BB9948BB9948AB8948AB9948AB9948BB9958CBA958CB9968DBB968CBA968DBB -988EBB988EBB988FBC988EBB988FBC9890BC9990BC9990BD9A91BD9A91BD9A91BD9B92BE9B92BE -9B92BE9B92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE -9C92BE9C92BE9C92BE9C92BE9C92BE9C93BE9C93BE9C93BE9C93BF9C93BE9C92BE9C92BE9C92BE -9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9D94BF9C93BF9C93BF9C93BF9C93BF9C93BF -9C93BF9C93BF9C93BF9C93BF9C93BF9C93BE9C93BF9C93BF9C93BE9C93BF9C92BE9C93BE9C94BF -9C93BF9D94BF9C93BE9C93BE9C92BE9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF -9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF9C93BF -9C93BF9C93BF9C93BF9C93BF9C92BE9C92BE9C93BE9C93BE9C93BE9C93BE9C93BE9C92BE9C92BE -9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9C92BE9B92BE -9B92BE9B92BE9B92BE9B92BE9A91BD9990BD9A91BD9990BD9990BC9990BC9890BC988FBC988FBC -978EBB978EBB978DBB968DBB968DBB958CBA958CBA948BB9948BB9948BB9948BB9948BB9948AB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9958CBA968DBB978EBC9990BD9A92BE -9E94BFA098C2A59CC5AAA1C8AFA6CBB3ABCEBBB3D3C0B9D7E9E5EFFFFFFEE4DDE8B7B1CEB0ABCA -8581AB8581AB9996BBB4AFCECDC6DCFFFFFE736F9C454D81D8DFEED4DCEDCFDAECCDD7EAC9D5EA -C6D3E9C4D2E8C1CFE7BFCFE6BECEE6BCCDE5BBCBE4BACBE4BACBE4B9CBE4B9CBE4B9CBE5B8CAE4 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BCCDE5BBCDE6BBCDE6BBCBE4 -BCCDE6BCCDE6BCCDE6BDCEE6BCCDE5BDCEE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6BECFE7BECFE7 -BECFE7BECFE7BECFE7BED0E7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7C0D0E7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7C0D0E7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BECFE7BFCFE7BFCFE7 -BFD0E7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFD0E7BFCFE7BFCFE7C0D0E7BFCFE7C0D0E7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BFCFE7C0D0E7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -BECFE7BECFE7BECFE7BFCFE7BECEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6 -BCCDE5BCCDE6BCCEE6BBCDE6BCCDE6BACDE5BCCDE6BBCCE5BACCE5BACBE4BACDE5B9CBE5BACCE5 -B8CBE5BACCE5B9CBE5B9CBE5BACDE5BACCE5BACCE5BACCE5BACCE5BBCCE5BCCDE6BDCFE7BFCFE7 -C0D0E7C2D1E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FA -F0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFC -FAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7 -BFCFE7BECFE7BECFE7BECEE6E7ECF6FFFEFDFEFDFCFEFDFCFEFDFCFEFDFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -F8F8FBFFFEFDFFFDFCFFFEFCFEFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F9F0F3F9F4F6FAFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD5D5E8FADA4C4FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFC474E82D5CEE1FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8 -FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EE -FDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C4 -E7A1C3E69FC1E49BBFE49ABEE499BDE398BDE497BCE497BCE497BCE397BCE397BCE497BCE598BD -E497BCE499BDE597BCE598BDE498BDE498BDE498BDE49ABEE599BEE59BBFE59BBFEEB8D2F4C9DD -FBE4EEF9E2EDFFFEFDFFFFFEE59DC0E69EC1E69EC1E69EC1E69FC1E69FC1E69FC1E69FC1E69FC1 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A1C3E7A1C3E7A1C3E7A0C2E7A1C3E6A0C2E7A0C2E7A1C3E7A0C2E7A0C2E7A1C3E7A0C2 -E7A0C2E7A1C3E7A0C2E7A0C2E7A0C2E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3 -E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E8A1C2E7A1C3E7A1C3E8A1C2E7A0C2E7A1C3 -E7A0C2E7A0C2E7A0C2E6A0C2E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E69EC1E69FC1 -E69FC1E69FC1E59EC1E69EC1E59CC0FFFFFEFFFFFEFDEBF2FAE3EDF3CADEEEB8D2E8A1C3E49BBF -E49ABEE499BEE499BEE498BDE598BDE499BDE497BCE297BCE496BBE398BDE497BCE497BCE296BC -E396BCE396BCE396BCE396BCE296BCE297BCE297BCE298BDE39BBFE49BBFE49DC1E4A0C2E6A4C5 -E7A8C8E8ADCBEAB3CFECB8D2C59FC1857BA67D77A28882ABA79ABDBBA5C6C5ADCBE9CDE1DCC2DA -BAA7C7C1B5CF928CB2867FA98377A49884AEC8ABCBCDADCDCBA8CAC5A2C5C29DC3BF99C0BD95BD -BB93BCB990BAB88EB9B58BB7B489B5B489B5B387B4B389B5B388B5B48AB6B388B5B389B5B388B5 -B389B5B388B5B288B5B489B5B48AB6B38AB6B58BB6B58BB7B58BB7B58CB7B58CB7BE99C0D4B9D5 -E3CEE2ECDCEBF8EFF5FFFEFDDAC2DBB890BAB890BAB890BAB991BBB991BBB991BBB991BBB991BB -B992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BB -B992BBB992BCB992BCB992BCB992BCBA93BCB992BCB991BBB992BCB992BCBA93BCBA93BCB992BC -BA93BCBA93BCBA93BCBA93BCB993BCB992BCBA93BCBA93BCBA93BCB993BCBA93BCBA93BCBA93BC -BA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCB993BCB993BCBA93BCBB93BCBA93BCBA93BC -BA93BCB993BCB992BCBA93BCBA93BCBA93BCBB93BCBA93BCBA93BCBA93BCBA93BCB992BCBA93BC -BA93BCBA93BCBA93BCB992BCBA93BCBA93BCBA93BCBA93BCB992BCBA93BCBA93BCBA93BCBA93BC -BA93BCB992BCB992BCB992BCBA93BCB992BCB992BCB992BCB992BCB992BBB992BBB992BBB992BB -B992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB992BBB991BBB991BB -B991BBB991BBB990BAB891BBB890BADAC1DAFFFFFEF8EFF5EEDDEBE4CEE2D4B8D5C3A0C5B58CB7 -B58DB8B58CB7B58BB6B48AB6B48AB6B489B5B389B6B389B6B288B5B488B5B388B5B389B5B389B6 -B288B5B288B5B288B5B188B5B288B5B288B5B288B5B38AB6B58CB7B68DB8B891BAB992BCBA95BE -BD99C0C09EC4C4A3C7C7AACB9B88B27D72A0827BA5938CB2B5ACC9B6AACAC3B4D1D8C9E0CEC0DA -AD9FC2B6ABCA938CB28882AB8079A59189B2C3B7D6BCB1D2B5AACEB2A5CAADA1C8A69CC4A499C3 -A096C09D94BF9B91BD998FBC958CB9958CB9958BB9948AB8948AB9948AB9958BB9948BB9948BB9 -958CB9948BB9948AB9948AB9958CBA968CBA948CBA968EBB978DBB988EBB988FBCA096C1B7ADCF -CAC0DBE5DFEDE4DCEBFFFFFEFFFFFE9B92BE9C93BF9C92BE9C92BE9C93BF9C93BF9C93BF9C93BF -9D94BF9D94BF9E94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9C94BF9D94BF9D94BF9D94BF -9D94BF9E94BF9E94BF9F95C09F95C09F95C09E95C09E94BF9E94BF9E95C09E95C09E95C09E95C0 -9F95C09F95C09E94BF9E94BF9E95C09F95C09F95C09E94BF9F95C09E95C09E95C09E95C09F95C0 -9E95C09E95C09F95C09F95C09F95C09E95C09E95C09E94BF9E95C09F96C09F96C09F96C09F96C0 -9E96C09F96C09F95C09E94BF9E95C09F95C09F95C09F95C09F95C09F95C09E95C09F95C09F95C0 -9F95C09E95C09E95C09E95C09E95C09F95C09F95C09E95C09F95C0A096C09F95C09E95C09E95C0 -9E95C09E95C09E95C09E95C09E94BF9F95C09F95C09F94BF9F95C09E94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9D94BF9E94BF9E94BF9D94BF9D94BF9C93BF9C93BF -9C93BF9C93BF9B92BE9C92BE9C93BF9B92BEFFFFFEFFFFFEE5DEEDE5DEEDCAC0DBB7AED09E95C0 -988FBC9890BC968EBB968DBB978DBA948CBA968CBA948CBA948BB9948CBA948BB9948BB9948BB9 -948BB9948BB9948BB9948CBA948BB9948BB9958CBA968DBB978FBC9990BD9C92BE9C95C0A199C2 -A49CC4AAA1C7AFA6CBB4ABCEB0A9CD8B84B07773A07E78A3938CB2B7B1CDB0AACAD0CBE1DCDBEC -BAB6D2B3AECCA7A0C28781AA3E457B4D5387B6B7D3D3DBECD1DAECCDD8EBC9D5EAC6D3E8C2D1E7 -C2D0E7BFCFE6BECEE6BCCCE5BBCBE4BACCE5B8CAE4BACCE5B9CBE4B9CBE5BBCCE5B9CBE5B9CBE5 -BACCE5B9CBE5B9CBE5BACCE5BACCE5BCCDE6BBCDE6BACDE5BCCCE5BCCDE6BCCDE6BCCDE5C9D6EA -DAE3F1E7ECF5F0F2F8F7F8FBFFFEFDDFE7F3BECFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7 -C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7 -C0D0E7C0D0E7C1D0E7C1D0E7C1D0E7C1D0E7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D0E7 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D0E7C1D0E7C1D0E7C1D0E7C1D0E7C0D0E7 -C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7C0D0E7BFCFE7 -BFCFE7C0D0E7BFCFE7BFCFE7BFCFE7BECFE7DFE7F3FFFFFEF7F8FBF0F2F8E7EBF5DAE3F1CAD7EB -BDCEE6BCCDE6BCCDE6BCCDE6BACCE5BBCCE5BBCDE6BCCDE5B9CCE5BBCBE4B8CCE5BBCCE5B9CBE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8 -C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9 -BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFC -FBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7BECEE6 -BECFE7BED0E7BDCEE6E7ECF5FFFEFDFEFDFCFFFEFCFDFDFCFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0DAE3F1F8F8FB -FFFDFCFEFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F5F6FAFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE4DDE93E457BF2EEF4FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -7E78A48882AAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFE -FFFFFEFCEAF2F6D3E3F3C7DBF1C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C4E7A1C3E69FC1 -E49BBFE599BEE499BDE498BDE497BCE497BCE497BCE397BCE597BCE497BCE497BCE498BDE497BC -E598BDE398BDE599BDE49ABEE49ABEE59BBFECB2CEF8D7E6FFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDE69FC1E7A0C2E7A0C2E7A0C2E7A1C3E7A0C2E7A1C3E7A1C3E7A2C3E7A2C3E6A2C3 -E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E8A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E8A3C4E7A3C4E7A3C4E8A3C4E8A3C4E7A3C4E7A3C4 -E8A4C4E7A3C4E7A3C4E7A3C4E6A2C4E7A2C3E8A4C4E8A4C4E8A4C4E9A4C5E8A4C4E8A4C4E7A3C4 -E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E8A3C4E8A4C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3 -E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2 -E7A0C2E69FC2E69FC1FFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFBDDEAF0BED6E59BBF -E49ABEE599BEE499BEE498BDE398BDE597BCE396BCE497BCE497BCE497BCE497BCE397BCE396BC -E396BCE397BCE397BCE297BCE297BCE298BDE39ABEE39CC0E4A0C2E5A1C3E6A4C5E7A8C8E8ADCA -A380AB716193A487B0E8D2E2FDF8FAFFFFFEF9E9F1EDD3E4EBCEE1EACEE1E9CEE2EFD6E6F9EFF4 -FFFFFEF9EEF4EBD7E7B79EC27368987B6B9BB597BDC6A1C6C39EC3BF99BFBD96BEBB93BCB990BA -B78DB8B58BB7B58AB6B389B6B488B5B388B5B389B5B489B5B489B5B288B5B389B6B388B5B489B5 -B38AB6B489B5B48AB6B48AB6B58BB7B58BB7BE99C0D8BFD9F7EEF5FFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFED9C1DAB992BBB992BBB992BBBA93BCBA93BCBA93BCBA93BCBA94BDBB94BDBA94BD -BA94BDBA94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB95BDBC95BD -BC95BDBC95BDBC94BDBD96BEBC95BDBC95BDBB95BDBB95BDBC95BDBC95BDBB95BDBB95BDBB95BD -BC95BDBB95BDBB95BDBB94BDBC95BDBC95BDBC95BDBB95BDBC95BDBC95BDBC95BDBC95BDBB95BD -BC95BDBC96BEBC95BDBC96BEBB95BDBB95BDBB95BDBC96BEBC95BDBC94BDBC95BDBC95BDBC95BD -BB95BDBB95BDBC95BDBC95BDBC95BDBC96BEBC96BEBC95BDBB95BDBB95BDBC94BDBC95BDBB95BD -BC95BDBC95BDBC95BDBB95BDBB95BDBB95BDBC95BDBB95BEBC95BDBC95BDBC95BDBC95BDBB95BD -BB95BDBC95BDBD95BEBC95BDBC95BDBC95BDBC95BDBB95BDBB94BDBB94BDBB94BDBB94BDBB94BD -BB94BDBB94BDBB94BDBB94BDBB94BDBA94BDBA94BDBB94BDBA93BCBA93BCBA93BCB993BCBA93BC -B992BBBB92BBB992BCDAC2DBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEF8EFF5DEC7DEBE98C0 -B58CB8B68BB7B58BB7B58BB7B48AB6B389B6B489B5B389B5B389B5B389B5B389B5B389B5B288B5 -B288B5B288B5B288B5B288B5B288B5B38AB6B58CB7B68EB8B690BAB892BCBA95BEBE9AC1B797BF -7E6E9D7165969180ABD2BFD9F0E5F0FFFFFEFBF7FAE4D9E8D9C9DFDACBE0D9C9E0D8CAE1E9DFED -FFFFFEFFFFFEE6DEEB9D93B9746E9E6A6898A69BC2B0A4CAADA3C9A69CC4A398C2A196C09D94BF -9B91BD988EBB978DBB958CBA958BB8948AB9948AB8948BB9948CBA958BB9948CBA948BB9948BB9 -948BB9968CBA958DBA968EBB978DBA988EBB988FBCB7ADCFDED6E8FFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFD9D94BF9D94BF9D94BF9E94BF9F95C09E95C09E95C09F95C0A096C0A096C1 -A096C1A096C1A097C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1A197C1 -A197C1A197C1A197C1A198C2A198C2A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1 -A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1 -A197C1A198C2A197C1A197C1A198C2A197C1A197C1A198C2A198C2A198C2A197C1A197C1A198C2 -A198C2A197C1A198C2A198C2A197C1A198C2A197C1A197C1A197C1A197C1A197C1A197C1A198C2 -A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A097C1 -A197C1A198C2A197C1A197C1A197C1A197C1A197C1A197C1A197C1A096C1A096C1A096C1A096C1 -A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C19F95C09F95C09F95C09F95C0 -9E94BF9F95C09D94BF9C93BEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEDED5E8B6ADCF -998FBC988EBB978DBB968CBA958DBB958CB9948CBA948AB9958CB9948CBA948CBA948BB9958CB9 -958CB9948CBA948CBA948CBA948CBA968DBB968EBB9890BC9C93BF9E95C0A098C2A59CC5A9A1C8 -9E97BF6E6B9C6B6898A59EC3E8E4F0FFFFFDFFFFFEEBE7F2DFDDEBDBD9EADCDBEADCDCECE6E4F0 -F7F5F8D4CDDF3E457B9390B69696BB696A9A9093BACED8EAC9D5EAC6D3E9C4D1E8C2D0E7BFCEE6 -BECEE6BDCEE6BBCCE5B9CBE4BBCCE5B9CAE4B9CBE5BACCE5BACCE5B8CBE5BACCE5BACCE5BACCE5 -BACCE5BBCCE5BCCDE6BBCDE6BCCDE5BDCEE6BCCDE6C4D3E9DEE5F2F8F8FBFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEDFE7F3C1D0E7C0D0E7C0D0E7C0D0E7C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8 -C2D2E8C3D3E9C3D2E8C2D1E8C2D1E8C2D1E8C3D2E8C3D2E8C3D3E9C3D3E9C3D3E9C3D3E9C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8 -C3D3E9C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C3D3E9C3D3E9C3D2E8C3D3E9 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C3D3E9C3D3E9C3D2E8C3D2E8C2D1E8C2D1E8 -C2D1E8C2D1E8C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C0D1E8C0D0E7C0D0E7E0E7F3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF7F8FBDFE6F2 -C4D3E9BCCDE6BCCEE6BBCDE6BBCDE6BBCDE6BBCBE4BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BBCDE6BCCDE6BDCFE7C0D0E7C0D0E7C2D1E8C4D3E9C8D6EA -CCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594 -F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECEE6BECFE7BED0E7BECEE6 -BFD0E7C3D3E9F3F3F8FEFEFCFEFDFCFFFDFBFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D9E2F1D7E0EFD8E1F0DDE5F2FDFDFDFFFDFC -FFFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F6F8FAFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE9F98BB746F9CFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9A9B9B656666FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEBAB2CC5D5D8F -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6 -FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2 -F6D3E3F3C7DBF1C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E49BBFE599BE -E599BDE498BDE498BDE497BCE497BCE497BCE498BDE498BDE498BDE498BDE499BDE498BDE499BD -E39ABEE49ABEECB2CEFDF1F6FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -E7A1C3E7A2C3E7A1C3E8A3C4E7A3C4E7A3C4E7A3C4E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5 -E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A6C6E8A6C6E8A6C6E8A6C6 -E8A6C6E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5 -E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A6C6 -E8A5C5E8A5C5E8A5C5E8A5C5E7A5C5E8A6C6E9A5C6E8A6C6E8A6C6E8A6C6E8A5C5E8A4C5E8A5C5 -E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5 -E9A5C6E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E9A5C6E8A5C5E8A6C6E8A5C5E8A5C5E8A5C5E8A5C5 -E7A5C5E8A5C5E8A6C6E8A6C6E8A6C6E8A6C6E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5 -E8A5C5E8A5C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C4E7A3C4E7A3C4E7A3C4E7A2C3E7A2C3 -E7A1C3FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEF1F6F1BFD6E59BBF -E49ABEE499BEE498BDE398BDE499BDE498BDE499BDE497BCE397BCE397BCE396BCE396BCE397BC -E397BCE397BCE297BCE298BDE39BBFE49CC0E49FC1E5A0C2E6A4C5AD82AB7B6696B990B6EBB8D2 -ECBDD6F6E2ECFFF7F8FFFEFDF8E9F1EFD3E4EBCFE2EACEE1E9CDE1EED6E7F8EEF4FFFFFEF9EFF5 -EAD5E6D7BAD5D2B3D1C5A5C7816F9E77699AB08EB7C099C0BE96BEBA92BBB990BAB78EB9B68BB6 -B48AB6B489B5B489B5B288B5B489B5B489B5B48AB6B489B5B48AB6B48AB6B389B5B48AB6B58BB7 -B58BB7B58CB7B992BCE2CEE2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -DCC3DCBA93BCBB94BDBB95BDBB95BDBC95BDBC96BEBC96BEBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE98C0BE98C0 -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD98BFBD97BFBD97BFBE98C0BE98C0BD97BFBE98C0BE98C0BD97BFBD97BFBD97BF -BD97BFBD97BFBE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBE98C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBB95BDBC95BDBB94BDBA94BD -BB93BCDBC3DBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE2CEE2BE98C0 -B58CB7B58BB7B48AB6B48AB6B48AB6B489B5B489B5B48AB6B389B5B389B5B389B5B288B5B288B5 -B288B5B288B5B288B5B38AB6B48BB7B68EB9B790BAB993BBBA96BE836F9F6E6394B195BCC7AACB -CDB1D1DBC7DEF0E5EFFFFFFEFAF7F9E7DBEAD8C8DFD9CAE1D8CAE0D9CAE1E8DEECFFFFFEFFFFFD -E7DEECCFC4DDC3B7D6AA9FC46A66986E6A9BA398C1A89DC5A499C3A196C09C93BE9C92BE988EBB -958CBA978DBA948CBA958BB9948CBA958CB9948BB9948BB9968CBA958DBA958CB9968CBA948CBA -968DBB978EBB988FBCBDB3D3F3EEF5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9F95C0A097C1A096C1A197C1A197C1A197C1A198C2A299C2A299C2A299C2A298C2A298C2 -A399C3A39AC3A39AC3A39AC3A39AC3A49AC3A39AC3A39AC3A39AC3A39AC3A49AC3A49AC3A49AC3 -A49AC3A299C2A39AC3A39AC3A39AC3A39AC3A39AC3A399C3A39AC3A299C2A39AC3A39AC3A39AC3 -A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A49AC3A49AC3 -A499C3A399C3A39AC3A39AC3A39AC3A49AC3A49BC4A39AC3A49AC3A49AC3A49AC3A39AC3A399C3 -A39AC3A39AC3A39AC3A49AC3A49AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A49AC3A39AC3 -A39AC3A39AC3A39AC3A299C3A39AC3A39AC3A39AC3A39AC3A39AC3A49AC3A39AC3A39AC3A39AC3 -A39AC3A399C3A399C3A49AC3A49AC3A49AC3A49AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3 -A39AC3A39AC3A39AC3A298C2A298C2A299C2A299C2A299C2A198C2A197C1A197C1A197C19F96C0 -9F96C19F95C0FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF2EEF5BCB2D3 -988EBB988DBB958DBA968DBB958DBA948CBA958CBA968CBA958CBA958CBA958CB9958CB9948CBA -948CBA948CBA948CBA968DBB978EBC9A91BD9C92BE9F95C0A198C2958EB96C6899746F9FACA4C9 -BAB2D3C1B9D7E8E5EFFFFFFEFFFEFDEBE8F2DFDDECDBD9EBDCDBEBDDDDEDE5E4F0F8F6F9A099BB -3E457BCECBE0D7DEEED4DCEDA6A9CA6F709E8D92B9C6D3E9C4D1E8C2D0E7BFCFE6BECEE6BCCDE5 -BBCCE5BBCDE6BACAE4BBCCE5B9CAE4BACBE4BACBE4BACCE5BACDE5B9CBE5BACCE5BBCCE5BBCDE6 -BBCDE6BCCDE6BCCDE6C4D3E9E8ECF5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDE1E7F3C2D1E8C2D1E8C3D2E8C3D2E8C3D3E9C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9 -C4D3E9C4D3E9C4D3E9C4D2E8C4D2E8C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C3D2E8C3D2E8 -C2D2E8C1D1E8E1E7F3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE8ECF5 -C1D0E7BCCDE6BCCDE5BBCEE6BBCEE6BBCDE6BCCCE5BACDE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BBCCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8C4D3E9C8D6EACCD9ECCFDBED -D4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FA -F6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFD0E7BDCEE6BECFE7BECFE7BFCFE7BDCFE7 -C3D3E9F2F4F9FEFDFCFEFDFCFEFDFCFEFEFCFEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D7E1F0E1E7F3FEFDFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F4F9F7F9FBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD736F9DACA4C3FFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED6D6D5CACAC9E5E4E4FFFFFEFFFFFED7D6D6D7D6D6FFFEFDFFFFFEFFFEFD -FFFFFED6D6D5E5E3E3FFFFFEFFFFFEF3F0F0CACAC9CACAC9FFFFFEFFFFFEFFFFFED7D6D6838484 -505050CACAC9E5E3E3FFFEFDFFFFFEFFFFFEFFFFFEC9C9C9D8D7D7FFFFFEFFFFFEFFFFFEFFFFFE -E4E2E2CACAC9FFFFFED7D6D6CACAC9F3F1F0FFFFFEFFFFFED7D6D6CACAC9FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD3F457BE3DCE9FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4 -FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DB -F0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E59CBFE599BEE599BDE499BD -E499BDE498BDE497BCE499BDE399BEE499BDE499BDE499BEE599BDE39ABEE499BEE8A5C5FBE3ED -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE8A4C4E8A4C5 -E8A5C5E8A5C5E8A5C5E8A5C5E8A6C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E9A8C7E9A8C7E9A8C7E8A7C7E8A7C7E8A7C7 -E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E8A7C7E9A8C8E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7 -E9A8C8E9A8C7E8A7C7E9A8C7E9A8C7E8A7C7E8A7C7E9A8C8E9A8C8E9A8C7E9A8C8E8A7C7E8A7C7 -E8A7C7E9A8C7E9A8C7E9A8C8E9A8C7E9A8C8E9A8C7E9A8C8E9A8C8E9A8C7E8A7C7E8A7C7E9A8C7 -E9A8C8E9A8C7E9A8C8E9A8C7E8A7C7E9A8C7E8A7C7E9A8C7E9A8C8E9A8C8E9A8C8E9A8C7E9A8C7 -E8A7C7E9A8C8E9A8C8E9A8C7E9A8C7E9A8C7E9A8C7E8A7C7E8A7C7E9A8C7E9A8C7E8A7C7E8A7C7 -E9A8C7E9A8C7E9A8C7E9A8C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C6 -E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A6C6E8A5C5E8A5C5E8A5C5E7A5C5E8A4C5E8A4C4FFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFCEAF2EBACCAE499BE -E49BBFE499BDE598BDE498BDE498BDE498BDE398BDE397BCE397BCE396BCE397BCE397BCE397BC -E297BCE298BDE39BBFE39CBFE49FC2D99ABD715E90A27CA7E8ADCAE9B2CEEBB7D1ECBED6F6E1EC -FEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EFD7E6F9EFF5FFFFFDFAF0F5EBD6E6D8B9D5 -D3B3D0CDADCDCBA9CABD9BC16F62948D74A3BD96BEBA92BBB88FBAB78EB9B58AB6B58AB5B48AB6 -B489B5B489B5B489B5B489B5B489B5B38AB6B48AB6B48AB6B48BB7B48AB6B68BB7B58CB7D4B9D5 -FCF8FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEDCC4DCBB95BE -BD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE9AC1 -BE9AC1BE9AC1BE9AC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BF9AC1 -BE9AC1BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BF9BC1 -BF9BC1BF9BC1BF9AC1BE9AC1BF9AC1BF9AC1BE9AC1BF9AC1BF9BC1BF9AC1BE9AC1BE9AC1BF9AC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1C09BC1BF9AC1BF9BC1BF9BC1BF9AC1BF9AC1BE9AC1BE9AC1 -BF9BC2BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BF9AC1BE9AC1BF9AC1BF9BC1BE9AC1BF9AC1BF9BC1 -BF9BC1BF9BC1BF9AC1BF9BC1BF9BC1BF9BC1BF9BC1C09BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BE9AC1BE99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBC96BEDDC6DD -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFBF7F9D8C0DAB58DB8 -B58BB7B48AB6B58AB6B48AB6B388B5B389B6B38AB6B389B5B389B5B288B5B288B5B288B5B389B6 -B389B5B38AB6B58CB7B58DB7B891BB9F80AE655B8F9A80ADC09FC4C4A4C8C7AACBCCB0CFDCC9E0 -F0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CBE1D8C9E0D8CAE0E9DFEDFFFFFDFFFEFDE8DFECCFC5DE -C3B7D5BDB1D2B6ABCD9F96BF5F5E918A82B0A499C2A196C19D93BE9B91BD988EBB968DBA958CBA -958BB9958BB9958CB9948CBA958CB9958CBA948BB9958CBA968CBA968DBB978DBB988EBBA49BC4 -E5DEEDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDA197C1 -A299C2A298C2A39AC3A39AC3A399C3A49AC3A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59CC4 -A59CC4A59CC4A59CC4A59BC4A59CC4A59CC4A59CC4A59CC4A69CC4A69CC4A69CC4A59CC4A59CC4 -A69CC4A59CC5A59CC4A69DC5A69DC5A59CC4A59CC5A59CC4A59CC5A59CC5A59CC4A59CC4A59CC4 -A59CC4A69DC5A69CC4A59CC4A59CC4A59CC4A59CC4A59CC4A69CC4A69CC4A69CC4A69DC5A59CC4 -A59CC4A59CC5A59CC5A69CC4A69DC5A69DC5A59DC5A59CC5A69DC5A69DC5A59CC4A59CC5A59CC5 -A69DC5A69DC5A69DC5A69CC4A59CC4A59CC4A69CC4A59CC4A69CC4A69CC4A69DC5A59CC5A59CC4 -A59CC5A59CC5A59CC5A69DC5A69CC4A59CC5A59CC5A69DC5A69DC5A59CC5A59CC5A59CC5A59CC4 -A59CC4A69CC4A69CC4A69CC4A59CC4A59CC4A59CC4A59CC4A59CC5A59CC5A59CC4A59CC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A49AC3A49AC3A39AC3A39AC3A299C2A299C2A197C1 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEE4DDECA49BC4 -988DBB958DBB968DBB958CBA958CB9958DBA958CBA958CBA958CBA958CB9958CBA948CBA948CBA -958DBA968DBB978EBC9990BD9C94BF9F96BF7974A5646295A299C2AFA6CBB3ABCEBAB2D2C1B9D7 -EAE5F0FFFEFDFFFEFDEAE7F2DFDDECDBDAEBDCDBEBDCDBECE4E3F0F6F6F96865954F5488E8E9F3 -D8DFEED4DBEDCFDAECCCD6E9969CC1656898BAC4DFC3D0E7BFCFE6BECEE6BDCEE6BBCBE4BBCCE5 -BACBE4BACCE5BACCE5BACCE5BACCE5BACCE5BBCDE6BCCDE5BBCCE5BCCDE5BBCCE5BCCDE6BCCDE6 -DEE5F2FDFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEE2E9F4 -C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D4E9C6D5EAC6D5EAC5D4E9C6D5EAC6D5EAC6D4E9C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4EA -C5D4EAC6D4E9C5D4E9C6D5EAC6D6EAC6D4E9C6D4E9C6D4E9C6D5EAC6D6EAC6D5EAC5D4E9C6D4E9 -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC6D5EAC6D5EAC6D5EA -C6D5EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4E9C6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C4D2E8C4D3E9C4D3E9C4D3E9C2D2E8 -E2E8F3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFCFCFCDAE3F1 -BCCDE6BCCDE6BCCDE5BCCEE6BBCDE6BCCCE5BBCCE5BBCCE5BBCCE5BACCE5BACCE5BBCCE5BBCCE5 -BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0 -E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BED0E7BDCFE7BED0E7BECFE7BED0E7BDCFE7BED0E7BECFE7CBD8EC -FAFBFCFFFDFCFEFEFCFEFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0D8E2F0D8E1F0D7E1F0E5EBF5FFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F9FAFBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE3E457B -E4DDEAFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F0F0 -676867181717181717181717767676FFFFFE8E8F8F282828FFFFFEFFFFFEFFFFFEF3F0F0181717 -B2B2B2FFFFFEB1B2B12B2A2A181717181717282828CACAC9FFFFFE676867181717181717181717 -9A9B9BFFFFFEFFFFFEB2B3B3272727191818181717676867F3F1F0FFFFFEFFFFFE9A9B9B191818 -656666191818181717282828CACAC9676867181717181717282828D7D6D6FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFD736F9DACA4C4FFFFFDFFFEFDFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3 -FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4 -EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69EC1E59CBFE59ABEE599BDE499BDE499BDE498BD -E498BDE499BDE499BDE499BDE499BEE49ABEE39ABEE499BEEEB8D2FFF9FAFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFF8FAFADFEBF6CFE1F1C4DAEFBBD4E8A5C5E8A7C7E8A7C6E8A7C7 -E9A8C8E9A8C7E9A8C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAAAC9EAAAC9EAABC9EAABC9EAABC9 -EAAAC9EAAAC9EAAAC9EAABC9EAABC9EAABCAEAABCAEAABCAEAABC9EAABC9EAABC9EAABC9EAABC9 -EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9 -EAABC9EAABC9EAABC9EAAAC9EAAAC9EAABC9EAABC9EAAAC9EAABC9EAABC9E9ABC9E9AAC9EAABC9 -EBABC9EBABC9EAAAC9EAABC9EAABC9EAABC9EAABCAEAAAC9E9AAC8E9AAC8EAABC9EAAAC9EAABC9 -EAABC9EAAAC9EAAAC9EAAAC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9 -EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABC9EAABCAEAABC9EAABCAEAABCA -EAABCAEAABCAEAABC9EAAAC9EAAAC9EAAAC9EAABC9EAABC9EAABC9EAABC9EAAAC9EAA9C8EAA9C8 -EAA9C8EAA9C8EAA9C8EAA9C8E9A8C8E9A8C8E9A8C8E8A7C6E8A6C6E9A6C6EFBBD4F0BED6F6CFE1 -F9DAE8FEF2F6FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2C3D9E599BEE499BE -E398BDE499BEE497BCE499BDE497BCE398BDE397BCE397BCE397BCE397BCE397BCE398BDE298BD -E39BBFE49CC0C189B2705E90D89CBFE8A9C8E8ADCBEAB3CFEBB8D2EDBED6F6E0EBFEF9FAFFFFFE -F8E9F1EED4E5EBCFE2EACEE1E9CDE1EDD6E7F9EFF5FFFFFEF9EEF4EAD6E7D8BAD6D2B2D0CFADCD -CAA8C9C6A2C6C29DC38B74A3746496BA92BBB990BAB68CB7B58CB7B48AB6B389B5B489B5B489B5 -B489B5B488B5B389B6B489B5B48BB7B48AB6B48AB6B68BB7B993BCE7D6E7FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEEFE0ECE1CCE1DEC5DDCCADCEC5A3C7BE98C0BE9AC1BE99C0 -BF9AC1BF9BC1BF9BC2C09CC2C09CC2C09CC2C19CC2C19CC2C19CC2C09CC2C09CC2C19CC2C19CC2 -C19CC2C19CC2C19CC2C19CC2C19DC3C19EC3C19EC3C19DC3C19DC3C19DC3C29DC3C19EC3C19DC3 -C29DC3C29EC4C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19CC2C19CC2C19DC3 -C19DC3C19CC2C19DC3C19DC3C09CC2C19CC2C19DC3C09DC3C19DC3C19EC3C19DC3C19DC3C19DC3 -C19DC3C19DC3C19DC3C29DC3C19CC2C19DC3C19EC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3 -C29DC3C19DC3C19CC2C19CC2C19DC3C19CC2C09DC3C19DC3C19DC3C19CC2C19DC3C09DC3C19DC3 -C19DC3C19DC3C19DC3C09DC3C19DC3C29EC4C19EC3C29DC3C19DC3C19DC3C19DC3C29EC4C19EC3 -C19EC3C19EC3C19DC3C19DC3C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C09CC2C09CC2C09CC2 -C19CC2C09CC2C09CC2C09BC1BF9BC1BF9BC1BF9BC1BE99C0BE99C0BE99C0C4A2C6CCAECED8BFD9 -DDC5DDEFE1EDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDEDDDEBB992BCB58CB7 -B58CB7B48AB6B48AB6B48AB6B48AB6B389B5B389B6B389B5B289B6B288B5B389B6B389B6B38AB6 -B48AB6B58EB98770A0736496B28FB9BD99C0C09FC4C3A4C7C7AACBCCB1D0DCC8DFF1E6F0FFFFFE -FBF7FAE6DAEAD9C9E0D9C9E0D9CBE1D8C9DFE8E0EDFFFEFDFFFFFEE7DEECCFC4DDC2B6D4BBB0D1 -B6ABCEB1A5CAACA2C8706C9C716B9DA195C09E93BF9A91BC988FBC978DBA978DBA958CB9958CB9 -948BB9968CBA948CBA958CBA968DBB968DBB958DBB978DBA988FBCBDB3D3F9F7F9FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEF3F0F6E0D8E9CFC6DEC4BAD8B9AFD1A39AC3A59BC4A59BC4 -A59CC4A59CC4A59CC5A69DC5A79DC5A79DC5A79DC5A79DC5A79EC6A79EC6A89EC6A99FC6A99FC6 -A99FC6A99FC6A89EC6A89EC6A99FC6A99FC6AA9FC6AAA0C7AAA0C7A99FC7A99FC6AA9FC6A99FC6 -A99FC6A99FC6A99FC6A89EC6A99FC6A99FC6A99FC6A99FC6A99FC6A89EC6A99FC6A99FC6A99FC6 -A99FC6A99FC6A89EC6A99FC6A89EC6A89EC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6 -A99FC6A99FC7A99FC6AA9FC6A99FC7A99FC7A99FC7AAA0C7A99FC6A99FC6A99FC7A99FC7A99FC6 -A99FC6AA9FC6A99FC6A89EC6A99FC7A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC7 -A99FC7A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6AA9FC6 -AAA0C7AA9FC6AA9FC6A99FC6A89EC6A89EC6A99FC6A99FC6A99FC6A99FC6A89EC6A89EC6A79EC6 -A79EC6A79DC5A79DC5A79DC5A79DC5A69DC5A69DC5A59CC4A59BC4A59BC4A49AC3B8AFD1C4BAD8 -D0C7DFDFD9EAF4F0F6FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEF9F7F9BEB5D4988FBC -988DBB968DBB968DBB958DBA968DBB958CBA958CBA958CBA958CBA948CBA948CBA958DBA968DBB -978EBC9990BD9B93BD6765987B75A5A49CC4A9A1C8AFA6CBB3ABCFBBB2D2C1BAD8E9E5EFFFFFFD -FFFEFDECE8F2DFDDECDBD9EADDDBEBDCDCECE5E4F0F8F6F93D457B7873A0E9E8F3D7DFEFD4DBED -D1DAECCDD7EAC9D5E9BCC7E0656898A5ADCEBFCFE6BECEE6BBCBE4BCCDE6BBCCE5BACBE4BACCE5 -BACCE5BACCE5B9CBE5BACCE5BBCCE5BCCDE5BBCEE6BBCDE6BCCDE5C0D1E8F0F1F7FFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEF1F3F9E3E8F3E2E9F4D4E0EFCBD7EAC4D3E9C5D4E9 -C5D4E9C6D4E9C6D5EAC6D5EAC6D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EA -C7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EBC8D6EBC8D6EB -C8D6EAC8D6EAC8D6EBC8D6EBC8D6EAC8D6EBC8D6EBC8D6EBC8D6EAC8D6EBC8D6EBC8D6EAC8D6EA -C9D7EBC8D6EBC8D6EAC8D6EAC7D5EAC7D5EAC7D6EAC8D6EBC8D6EBC8D6EBC7D5EAC7D5EAC8D6EA -C7D5EAC8D6EAC8D6EBC8D6EAC8D6EAC8D6EAC8D6EBC8D6EBC8D6EBC8D6EAC8D6EAC8D6EAC8D6EB -C8D6EBC8D6EBC8D6EAC7D5EAC7D5EAC7D5EAC8D6EBC8D6EBC8D6EBC8D6EAC8D6EAC8D6EBC8D6EB -C8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EAC8D6EAC8D6EBC8D6EBC8D6EBC8D6EB -C8D6EBC8D6EAC8D6EAC8D6EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EA -C7D5EAC7D5EAC7D5EAC7D5EAC6D4E9C6D4E9C6D4E9C5D4EAC5D4EAC5D3E8C5D4E9CCD9ECD4E0EF -E1E8F4E6EBF5F2F4F9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDF1F3F8C0D1E8 -BCCEE6BCCDE5BCCEE6BDCEE6BBCCE5BBCDE6BBCCE5BACCE5BACCE5BBCDE6BBCDE6BBCCE5BBCDE6 -BCCDE6BDCFE7BFCFE7C0D0E7C3D2E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFC -FFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BDCFE7BFCFE7BDCEE6BDD0E7BFCFE7BECFE7BECEE6BED0E7BECFE7CBD8EBFBFBFC -FEFCFBFFFDFCFDFDFCFEFCFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0E8EDF6FFFDFCFFFEFCFFFDFCFFFDFCFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F8F1F4F9FAFBFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC6BED6515688FFFFFEFFFEFD -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDA7A7A7181717CACAC9 -FFFFFED7D6D6BEBEBEFFFFFED7D6D6181717BEBFBEFFFFFEFFFFFEB2B2B2181717F3F1F0FFFFFE -2A2929767676F3F1F0F3F1F0B2B2B2F3F1F0FFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE -E5E3E3181717838484F3F0F0E5E4E42828289A9B9BFFFFFEFFFFFE9A9B9B181717838484F3F0F0 -F4F2F13B3B3A181717828383F4F2F1F3F1F05152523B3B3AFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDA099BB7E79A3FFFEFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F1 -9285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CD -EAABCAE8A7C7E8A4C5E7A0C2E69EC1E59CBFE59ABEE499BEE499BEE499BDE498BDE499BDE499BD -E499BDE499BDE59BBFE499BEE49BBFF0BED6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFF8FA -F9D9E7EDB3CFE9A5C5E8A4C5E8A7C6E8A7C6E8A7C7E9A9C8EAA9C8EAA9C8EAAAC9EAABC9EAABC9 -EAABC9EAABCAEAACCAEAADCBEBADCBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCB -EAADCBEAAECBEAAECBEAAECBEAAECBEAAECBEAADCBEAADCBEAAECBEAADCBEAAECBEAAECBEAAECB -EAAECBEAADCBEAADCBEAAECBEBAECBEBAECBEAAECBEBAECBEBADCBEBADCBEBADCBEBADCBEBADCB -EBADCBEBADCBEBADCBEBAECBEBAECBEBAECBEAAECBEAAECBEAAECCEAADCBEBAECBEBAECBEBAECB -EAAECBEAAECBEAAECBEBAECBEBAECBEBADCBEAAECBEAAECBEAADCBEBAECBEBAECBEBAECBEBADCB -EBADCBEBADCBEBADCBEBADCBEBADCBEAADCBEBADCBEBADCBEBAECBEBADCBEBADCBEAADCBEBADCB -EBADCBEAAECBEBAECBEBAECBEAAECBEAAECBEAADCBEAADCBEAADCBEAADCBEAAECBEAAECBEAAECB -EAAECBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCBEAADCBEBADCBEAACCAEAACCA -EAABCAEAABCAEAABC9EAABC9EAABC9E9A8C8EAAAC9E9A8C8E7A6C6EAA7C7E8A6C6E8A5C5E8A4C5 -EBAECBF7D4E4FFF8FAFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEF7D6E6E59BBFE499BEE499BE -E499BEE499BDE297BCE398BDE398BDE398BDE397BCE398BDE398BDE398BDE298BDE399BDA175A4 -7B6294E5A0C2E6A5C6E7A8C8E9AECCE9B2CEEBB8D2ECBED7F6E1ECFEF8F9FFFFFEF8E9F1EED3E4 -EBCFE2EACEE2EACEE1EED6E7FAF0F5FFFFFEF9F0F6ECD6E7D8BBD6D2B3D1CEADCDCAA8CAC6A2C5 -C29DC3C19AC1A484B05B5689B08AB5B78CB8B78BB6B48BB7B48AB6B489B5B489B5B48AB6B48AB6 -B48AB6B48AB6B48BB7B58BB7B58BB7BE98C0F2E5F0FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -F3E7F1D4B8D4C09CC2BD97BFBD97BFBE98C0BF99C0BF9BC1BF9BC1C09CC2C19CC2C29DC3C29DC3 -C29DC3C29DC3C29EC4C29FC4C29FC4C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5 -C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5 -C3A0C5C4A1C5C3A0C5C4A1C5C3A0C5C3A0C5C3A0C5C3A0C5C4A1C5C4A0C5C39FC4C3A0C5C3A0C5 -C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5 -C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A0C5C3A0C5C3A0C5C3A0C5C3A0C5C4A1C5C3A0C5 -C3A0C5C3A0C5C3A0C5C3A0C5C4A0C5C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5C4A0C5C3A0C5C4A1C5 -C3A0C5C3A1C6C4A1C5C4A1C5C4A1C5C4A1C5C3A0C5C3A0C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5 -C4A1C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C29FC4 -C29FC4C29EC4C29EC4C29DC3C19CC2C19CC2C09AC1C09CC2BF9BC1BE99C0BE99C0BD97BFBD97BF -C09BC1D4B9D5EFDFECFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFAF6F9C39FC4B58CB7B58CB7 -B48BB7B48AB6B48AB6B48AB6B48AB6B389B5B389B6B389B6B389B6B389B6B48AB6B58BB7876E9F -816C9DB893BCBA95BDBD9AC1C09EC4C3A3C6C8AACCCCB0CFDCC8DFF0E5F0FFFFFEFAF7F9E7DAE9 -D9C9E0D9CAE0D9CAE1D8CAE0E9DEECFFFFFDFFFFFEE7DEECCFC4DDC3B7D5BCB0D0B6ABCEB2A6CA -ACA0C7A79CC5837AA96864979D93BE9990BD988FBB968EBB978DBA968CBA958CB9958CBA958DBA -958CBA958CB9978EBC968EBB988EBB988FBCCAC0DBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FAF8FAD5CBE2B1A7CCA399C3A399C3A39AC3A59BC4A59CC4A69DC5A79DC5A79EC6A89EC6A99FC6 -A99FC6A99FC7AAA0C7AAA0C7AAA0C7AAA0C7ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8 -ABA1C8ABA1C8ACA2C8ACA2C8ACA2C8ACA2C8ACA2C8ABA1C8ABA1C8ABA1C8ABA1C8ACA2C9ACA3C9 -ACA2C9ACA2C8ACA2C8ABA2C8ACA2C9ACA2C8ACA2C8ABA2C8ABA2C8ABA1C8ABA1C8AAA1C8ABA1C8 -AAA1C8ABA1C8ABA1C8ACA2C8ACA2C8ACA2C8ACA2C8ACA1C8ACA2C8ACA2C8ABA1C8ABA2C8ACA2C9 -ADA3C9ACA2C9ADA3C9ADA3C9ACA2C9ACA2C9ACA2C9ACA2C8ACA2C8ACA2C9ADA3C9ACA2C9ACA2C9 -ACA2C8ABA1C8ABA1C8ACA2C8ACA2C8ACA2C8ACA2C8ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ADA3C9 -ACA2C9ACA2C9ACA2C9ACA2C8ACA2C9ACA2C9ABA2C8ABA1C8ABA1C8ABA1C8ABA1C8ACA2C8ACA2C8 -ACA2C8ACA2C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8ABA1C8AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7A99FC6A99FC6A79DC5A79DC5A69DC5A59BC4A59BC4A499C3A49AC3 -A199C2B2A8CCD4CBE2FAF8FAFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDD0C7E0988FBC978EBB -978EBC978EBB968EBB968DBB968DBB958DBA958DBA958DBA958CBA958DBA968EBB978EBC928AB8 -53568B8A83B1A198C2A59DC5A9A1C8AFA7CCB4ABCEB9B2D3C1B9D7E9E6F1FFFEFDFFFFFEEBE7F2 -DFDDECDBD9EBDCDBEADCDCECE5E4F0BDB7D13E457BB0AAC8E7E9F3D8DFEED4DBEDD0DAECCCD6EA -CAD6EAC6D2E8C4D2E76C6E9E888FB9BFCEE4BCCDE5BBCBE4BBCCE5BACCE5BACCE5BACBE4BBCCE5 -BBCDE6BBCCE5BCCDE5BCCDE6BCCDE6BBCCE5C9D8EBF8F8FBFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEF2F5F9D9E3F1C6D5EAC4D2E8C4D3E9C4D3E9C5D4E9C7D6EAC6D5EAC7D5EAC7D5EAC7D5EA -C8D6EAC8D6EAC8D6EAC9D7EBC9D6EACAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBC9D7EBCAD7EB -CAD7EBCAD8EBCAD7EBCAD7EBCAD8EBCAD8EBCAD8EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBC9D7EBC9D7EB -C9D7EBC9D7EBC9D6EAC8D6EBC8D6EBC7D6EAC8D5E9C7D5EAC6D5EAC6D5EAC5D4EAC5D4E9C4D3E9 -C4D3E9C5D4EAD9E2F0F1F3F9FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDF5F6FACAD6EABDCEE6 -BDCEE6BBCDE6BCCDE6BBCDE6BBCDE6BBCCE5BBCCE5BBCDE6BBCDE6BBCCE5BCCDE6BCCDE6BDCFE7 -BFCFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFC -F5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BFCFE7BDCEE6BFCFE7BECFE7BECFE7BECFE7BDCEE6BECFE7BECFE7BECFE7D7E0EFFEFEFCFDFDFC -FFFDFCFEFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D9E2F1D8E1F0D8E1F0D8E2F0D8E1F0D8E1F0EFF3F8FFFDFBFFFDFCFEFDFCFFFEFCFFFDFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9 -F1F3F9F0F3F9FDFDFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB27D77A3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717F3F1F0FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE3B3B3A8E8F8FFFFFFEFFFFFE767676767777FFFFFEFFFFFE1817178E8F8F -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE9A9B9B181717 -F3F1F0FFFFFEFFFFFE8E8F8F282828FFFFFEFFFFFE999A9A181717FFFFFEFFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEFFFFFEB2B3B3181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFED5CDE0505589FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284AC -FAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7 -E8A4C5E7A0C2E69EC1E59CBFE59ABEE499BEE499BEE499BDE398BDE499BDE499BDE499BEE59ABE -E59BBFE49BBFF0BED6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF7D4E4EAA9C8E8A4C5E8A5C5 -E7A6C6E8A7C7EAA9C8EAA9C8EAAAC9EAABC9E9AAC9EAADCBEBACCAEAADCBEAADCBEBAECBEBAFCC -EBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDECB2CE -EBB1CDEBB1CDEBB1CDEBB1CDEBB1CDEBB1CDEBB0CDEBB0CDEBB1CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBAFCCEBAFCCEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB1CDEBAFCCECB0CDECB0CDECB0CDEBB1CDECB0CD -EBAFCCECB0CDECB0CDECB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBAFCC -EBAFCCEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -EBB1CDEBB0CDEBB0CDEBB1CDEBB0CDECB1CDECB1CDEBB0CDEBB1CDEBB1CDEBB1CDEBB1CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBAFCC -EBAECBEBADCBEBADCBEAACCAEAABCAEAABC9EAAAC9E9A9C8E9A8C8E8A7C7E8A7C6E7A5C5E8A5C5 -EAAAC9F5CDE0FEF9FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF8D6E6E59BBFE39ABEE499BEE499BE -E499BDE398BDE398BDE398BDE397BCE297BCE398BDE398BDE298BDA175A37B6193E49FC2E5A1C3 -E6A4C5E7A8C7E9ADCBEAB3CFEBB8D2ECBED6F7E1ECFDF7F8FFFFFEF7E8F1EED3E4EBCEE1EACEE1 -E8CDE1EFD7E7F8EFF5FFFFFEF9EEF4EBD7E7D8BAD6D2B3D1CEADCDCAA8CAC6A2C6C39EC3BF99C0 -BD97BFA181AE5C5589AF87B4B68BB7B48AB6B48AB6B48AB5B489B5B48AB6B48AB6B58BB6B58CB7 -B58CB7B58CB7C39FC4FBF7F9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF4E7F0CBACCDBC96BEBD97BF -BD97BFBE99C0BE9AC1C09BC1BF9BC2C19CC2C29EC4C29DC3C29FC4C29FC4C3A0C5C4A1C5C4A1C6 -C4A2C6C4A2C6C4A2C6C5A2C6C5A2C6C5A2C6C5A2C6C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A4C7 -C6A5C8C6A5C8C6A4C7C6A4C7C6A4C7C6A4C7C6A4C7C5A4C7C5A4C7C5A4C7C6A3C7C5A3C7C6A4C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C4A3C7C5A2C6C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A4C7C5A3C7C5A3C7C5A3C7C5A3C7C5A4C7C5A3C7C5A3C7C6A4C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C4A3C7C5A3C7C5A4C7C5A3C7C5A3C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C4A3C7C5A3C7 -C6A3C7C5A3C7C5A4C7C6A4C7C5A4C7C5A3C7C6A4C7C6A4C7C6A4C7C6A4C7C6A4C7C6A4C7C6A4C7 -C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A2C6C4A2C6C4A2C6C4A2C6C4A2C6 -C4A2C6C4A1C5C3A0C5C3A0C5C29FC4C29CC2C19CC2C09CC2C19CC2BF9BC1BE99C0BE98C0BD97BF -BD97BFCBACCDEFE0ECFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFAF5F8C29FC4B58BB7B58CB7B58BB7 -B48BB7B48AB6B48AB6B489B5B389B6B389B6B389B6B389B6B48AB6866D9E876FA0B690BAB992BB -BA96BFBD99C0C09FC4C4A4C8C7AACCCCB1D0DCC8DFF1E6F0FFFEFCFBF7FAE6DAEADACAE0D9CAE1 -D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B6ABCEB2A6CAACA1C8A79CC5 -A39AC38C83B16764989B91BD988FBC978EBA958CBA978DBA958CBA968DBB968DBB958CBA978EBB -988FBC988FBC978EBBD6CEE3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCEC5DEA79DC5A299C2 -A39AC3A499C3A49BC4A69DC5A79DC5A89EC6AA9FC6A99FC7AAA0C7AAA1C8AAA1C8ABA1C8ACA2C9 -ADA3C9ADA3C9ADA3C9AEA3C9AEA3C9AEA3C9AFA4CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA5CAB0A6CBAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA4CAAFA4CA -AFA5CAAFA5CAAFA5CAAFA5CAAFA4CAAFA5CAAFA4CAAFA4CAAFA4CAAEA4CAAFA4CAAEA4CAAFA4CA -AFA4CAAFA4CAAFA4CAAFA4CAAFA5CAAFA4CAAFA4CAAFA5CAAFA6CBAFA5CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA5CAAFA4CAAFA5CAAEA5CAAFA5CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA4CA -AFA4CAAEA4CAAFA5CAAFA4CAAFA4CAAFA5CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA4CAAFA5CAAFA5CAAFA5CAAFA4CAAFA5CAAFA5CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CA -AEA5CAAFA5CAAFA5CAAFA6CBAFA5CAAFA5CAAFA4CAAEA3C9AEA3C9AEA3C9AEA3C9ADA3C9ADA3C9 -ADA3C9ACA2C9ABA1C8ABA1C8ABA1C8A99FC7A99FC6A99EC6A79DC5A79DC5A59BC4A49AC3A299C3 -A299C2A69DC5CEC6DFFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED6CEE3988FBC988FBC978EBC -978EBC968DBB968DBB958DBA958DBA968EBB958CBA958DBB978EBB9189B753568A8881B09E96C0 -A199C3A59BC4A9A1C8AFA6CBB4ABCEBAB3D3C1BAD8E9E4EFFFFFFEFFFEFDEBE8F2E0DDECDBD9EA -DCDBEBDDDCECE4E4F0827DA83E457BE8E4EFE8E8F2D8DFEED4DBEDD0DAECCED7EAC9D5EAC6D3E8 -C4D2E8C2D0E76B6F9D878EB8BDCDE5BCCDE5BBCBE4BACAE4BACCE5BACCE5BBCDE6BBCDE6BBCCE5 -BCCDE6BCCDE6BDCEE6C9D7EBFCFCFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEF1F3F9D2DDEEC3D2E8 -C4D3E9C4D3E9C5D4E9C5D4EAC6D5EAC7D6EAC7D4E9C9D7EBC8D6EAC9D7EBCAD7EBCAD7EBCBD8EB -CBD8EBCBD8EBCBD8EBCCD8EBCCD8EBCCD8EBCCD8EBCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD8EBCCD8EBCCD8EBCCD9ECCCD9ECCBD8ECCCD9ECCCD9ECCCD9EC -CDD9ECCDD9ECCDD9ECCCD9ECCCD9ECCDD9ECCCD9ECCCD9ECCCD8EBCCD8EBCCD9ECCCD9ECCCD9EC -CDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD8EBCCD8EBCBD8EBCBD8EBCBD8EB -CBD8ECCAD8EBCAD7EBCAD7EBC9D7EBC9D7EBC8D6EBC6D5EAC8D5E9C5D4EAC6D5EAC5D4E9C4D3E9 -C4D3E9C4D3E9D2DDEEF5F5F9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFCFCFCC9D7EBBDCEE6BCCDE6 -BBCDE6BCCDE6BBCDE6BBCDE6BBCCE5BBCDE6BBCDE6BBCCE5BCCDE6BDCEE6BDCFE7BECFE7C0D0E7 -C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8 -F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BED0E7BECFE7BECEE6BED0E7BECFE7BECFE7BED0E7BED0E7D7E1F0FEFDFCFDFDFCFEFDFC -FEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E2F0 -D8E1F0D8E1F0D8E2F0D8E1F0D8E1F0F1F4F9FFFDFBFFFFFDFEFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F3F5F9FDFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686595ADA5C5FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0515252282828B2B2B2FFFFFEFFFFFEFFFFFE -FFFFFE8F90903B3B3AFFFFFEFFFFFE181717B2B2B2FFFFFEFFFFFEB2B2B2181717767676E4E2E2 -FFFFFEFFFEFDFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE686969515252C9C9C9CBCBCA -C9C9C98E8F8F181717FFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFEFD9A9B9B181717FFFEFD -FFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD3E457BE4DDE9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4 -FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2 -E69FC1E59CBFE59ABEE499BEE499BDE499BDE499BEE499BDE499BEE49BBFE49ABEE59CBFF0BED6 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFDEBF2EDB3CEE7A3C4E8A4C5E9A8C7E8A7C7E9A8C8E9A8C8 -EAAAC9EAABCAEAACCAEBADCBEBAECBEBAFCCEBAFCCEBB0CDEBB0CDEBB1CDECB2CEECB2CEECB2CE -ECB2CEEDB3CEEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB4CFEDB4CFEDB4CF -EDB4CFEDB4CFEDB3CFEDB3CFEDB3CFECB3CFEDB3CFEDB3CFECB3CFEDB3CFEDB3CFECB3CFEDB3CF -EDB3CFEDB3CFEDB3CFEDB3CFEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CE -EDB3CEEDB3CEEDB3CEECB2CEEDB3CFECB3CFEDB3CFEDB3CFEDB3CFECB3CFEDB3CFEDB4CFEDB3CF -EDB3CEEEB4CFEDB3CFECB2CEECB3CFEDB3CFEDB3CEEDB4CFECB2CEECB2CEECB2CEECB2CEECB3CE -EDB3CFEDB3CFEDB3CFEDB3CEEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CF -EDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB4CFEDB4CFEDB4CFEDB4CFEDB3CFEDB3CF -EDB3CFEDB3CFEDB3CFEDB3CFEDB3CEEDB3CEECB2CEECB2CEECB2CEECB2CEECB1CDECB1CDEBB0CD -EBAFCCEBAFCCEBAFCCEAACCAEAACCAEAABCAEAABC9EAA9C8E9A8C8E8A7C7E8A6C6E8A6C6E7A3C4 -EBAECBFBE6EFFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEF8D7E6E49BBFE59ABEE49BBFE399BEE398BC -E297BCE398BDE297BCE298BDE297BCE399BDC185AF846597E39CBFE49FC2E6A2C3E6A4C5E7A8C8 -E8ADCBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7 -F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA9CAC7A2C6C39EC4C099C0BD96BEB992BB -A07FAD6C5E91B68BB6B58BB6B48AB5B48AB6B48AB6B58BB7B48AB6B68CB7B58CB7B68CB7B993BC -F2E5F0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEDCC4DCBC94BDBD97BFBE98C0BE99C0BE9AC1BF9BC2 -C19CC2C19EC3C29FC4C3A0C4C4A0C5C4A1C5C4A2C6C4A2C6C5A4C7C5A4C7C6A4C7C6A5C8C6A5C8 -C6A5C8C6A5C8C8A6C9C8A6C9C8A7C9C8A7C9C8A7C9C9A7C9C8A7C9C8A7C9C8A7CAC8A7CAC8A7CA -C8A7CAC8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7CAC8A7C9C8A7C9C8A7C9C7A6C9C7A7CAC8A7C9 -C8A7C9C8A7CAC8A7C9C8A7C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C8C6A5C8C7A6C9C7A6C9C7A6C9 -C8A6C9C7A6C9C7A6C9C7A6C9C8A7C9C8A7C9C8A7CAC8A7C9C8A7CAC8A7CAC8A7C9C8A7C9C8A7C9 -C8A7C9C8A7C9C8A7C9C7A6C9C7A6C9C9A7C9C6A5C8C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9 -C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C8A6C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9 -C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7CAC8A7CAC8A7CAC8A7CAC8A7C9C8A7C9 -C8A7C9C8A7C9C8A7C9C8A7C9C8A6C9C8A6C9C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A4C7C5A4C7 -C5A3C7C4A3C7C4A2C6C4A1C5C3A0C5C19EC3C29DC3C09CC2C09CC2BF9BC1BE99C0BE98C0BD97BF -BC96BED7BDD8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFAF7F9BE99C0B58CB7B68CB7B58BB7B48AB6 -B38AB6B48BB7B389B5B389B6B389B6B389B6866C9E80699CB58CB7B790BAB993BCBA96BEBC98C0 -C09FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0 -E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC2B6D5BDB1D2B6ABCEB2A6CBACA1C8A69CC4A499C2A196C0 -7E77A7666396998FBC968DBB988EBB968CBA958CBA968DBB968DBB968DBB988FBC988EBB988FBC -C4BAD7FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEEEE8F2B1A7CCA198C1A499C3A59BC4A59BC4A69DC5 -A89EC6A79EC6AAA0C7AAA0C7ABA1C8ACA3C9ADA3C9AEA3C9AFA4CAAFA5CAAFA5CAB0A6CBB0A6CB -B0A6CBB0A7CCB1A7CCB2A7CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB3A9CDB3A9CD -B3A9CDB3A9CDB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CC -B2A7CCB2A8CCB2A8CCB2A7CCB1A7CCB2A8CCB2A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB0A7CC -B1A7CCB1A7CCB1A7CCB0A7CCB1A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB3A8CC -B2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A7CCB2A8CCB3A8CCB1A8CCB2A8CCB2A7CCB2A8CCB1A7CC -B1A8CCB1A7CCB1A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CC -B2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB3A9CDB3A9CDB3A9CDB3A9CDB3A8CCB2A8CC -B2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB1A7CCB0A6CBB0A6CBB0A6CBB0A6CBAFA5CAAFA5CA -AFA5CAAEA3C9ADA3C9ABA2C8ABA1C8AAA0C7AAA0C7A89EC6A79DC5A69DC5A59CC4A59BC4A299C2 -A299C2ACA2C8EFE8F2FFFFFEFFFFFEFFFFFEFFFEFDFFFFFECAC1DC988FBC988FBC988FBC978EBB -968DBA968DBB958DBA958CBA968DBB958DBA978EBC6562968680B09B93BE9F96C0A199C3A49CC4 -A9A1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDBDAEBDDDCEC -E4E4F05A5C8D5E5E8FF6F4F8E8E9F3D8DFEED4DBEDD0DAECCDD6EAC9D5EAC7D3E8C4D2E8C2D0E7 -BFCFE67076A4A1ACCEBCCDE5BBCDE6B9CAE4BBCCE5BBCCE5BBCDE6BBCDE6BCCDE6BBCDE6BDCEE6 -C2D1E8FCFCFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEDDE5F2C3D2E8C4D3E9C4D3E9C4D3E9C6D5EA -C6D5EAC7D5E9C8D6EBC9D7EBC9D6EACAD7EBCBD8ECCBD8ECCCD9ECCCD9ECCDD9ECCDD9ECCEDAEC -CEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAEC -CEDAECCEDAECCEDAECCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAECCEDAEDCEDAED -CED9ECCEDAECCEDAEDCEDAEDCEDAECCEDAECCFDBEDCFDBEDCEDAECCEDAECCFDBEDCEDAECCFDBED -CFDBEDCEDAECCEDAECCFDBEDCEDAECCDD9ECCEDAECCEDAECCFDBEDCDD9EBCEDAECCDDAECCFDBED -CEDAEDCEDAECCEDAECCEDAECCEDAEDCEDAEDCEDAEDCEDAECCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCEDAECCEDAECCFDBEDCFDBEDCFDBEDCFDBEDCEDAECCEDAECCEDAECCEDAEC -CEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCDD9ECCDD9ECCDD9EC -CCD9ECCCD9ECCBD8ECCCD9ECCAD7EBCBD8EBC8D6EAC8D6EBC7D5EAC6D5EAC7D5EAC5D4E9C5D4E9 -C3D3E9C3D2E8E1E7F3FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEF8F8FBC1D0E7BDCEE6BCCDE5BCCDE6 -BCCDE6BBCEE6BBCDE6BBCCE5BBCDE6BBCDE6BCCDE6BDCEE6BDCFE7BECFE7C0D0E7C3D2E8C5D4E9 -C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2 -666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECEE6BED0E7BFCFE7BECFE7E7ECF5FFFDFCFEFDFCFEFDFCFEFDFC -FDFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0F7F9FBFFFEFDFEFDFCFFFEFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F4F6FA -FEFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD484D82D5CDE1FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF3F1F09A9B9B282828515252D7D6D6FFFFFEFFFFFED7D6D6 -181717E5E3E3BDBDBD191818F3F0F0FFFFFEFFFFFEFFFFFECACAC96768671817179A9B9BFFFFFE -FFFFFEFFFFFE9B9C9B656666FFFFFEFFFFFEFFFFFE676867181717191818181717181717181717 -181717FFFFFEFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -CACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695BAB1CCFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6 -FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFE -FCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E59CBF -E59ABEE499BEE499BDE499BEE499BEE499BEE49ABEE59ABEE49BBFE9ADCAFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFADEEBEAA9C8E8A4C5E8A6C6E8A7C7E9A8C7EAA9C8EAAAC8EAABCAEBACCAEBAECB -EBAFCCEAAFCCECB0CDEBB1CDECB2CEEDB3CFEDB3CFEDB4CFEDB5D0EDB5D0EDB5D0EDB6D0EEB6D0 -EEB6D0EEB6D0EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB6D0EEB7D1EEB7D1EEB7D1EEB7D2EEB7D2 -EEB7D1EEB7D2EEB7D2EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB6D0EEB6D0EEB6D0 -EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EDB5D0EDB6D0EEB7D1EDB6D0EDB6D0EEB6D0ECB5D0EDB6D0 -EDB6D0EDB6D0EEB6D0EDB6D0EEB6D0EEB7D1EEB7D1EDB6D1EDB6D1EDB6D1EEB7D1EEB6D0EEB7D1 -EEB7D1EDB6D0EDB6D0EDB7D1EEB5D0EEB6D0EDB5D0EEB7D1ECB5D0EEB5D0EDB6D0EEB5D0EEB5D0 -EEB5D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1 -EEB7D1EEB7D2EEB7D2EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1 -EEB7D1EEB6D0EEB6D0EEB6D0EDB6D0EDB5D0EDB5D0EDB4CFEDB4CFEDB3CFEDB3CEECB2CEEDB3CE -EBB0CCEBB1CDEBAFCBEAAECCEBADCBE9ABC9EBABC9E9A9C7EAAAC9E8A7C7E8A6C6E8A4C4E7A3C4 -F9D9E7FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDF0BED6E49ABEE49BBFE399BEE599BDE299BDE398BD -E497BCE197BCE398BDD792B9715C8FE39ABEE49BBFE49FC1E5A1C3E6A4C5E7A9C8E7ACCAEAB3CF -EBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFE -F9EFF5EBD6E7D8BAD6D2B3D1CEADCDCBA8CAC5A2C6C39EC3BF99C0BD96BEBA91BBB990BA8E72A3 -786597B68BB7B48AB6B48AB5B58BB7B58BB6B58BB7B58BB7B58DB8B68EB9EDDDEBFFFFFEFFFFFE -FFFFFEFFFFFEFCF9FACBABCCBD96BEBC97BFBE98BFBE9AC1BF9BC2C09CC2C29DC3C29FC4C29FC4 -C4A1C5C4A2C6C5A3C7C5A4C7C6A5C8C7A5C8C7A6C9C8A7C9C8A7CAC9A8CAC9A8CAC9A9CBCAA9CB -CAA9CBC9A9CBCAAACBCAAACBCAAACBCBAACBCAAACBCBAACBCBABCCCBABCCCBABCCCBABCCCBAACB -CBAACBCBABCCCBABCCCBABCCCBABCCCBABCCCBAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACB -CAA9CBCAA9CBCAA9CBCAA9CBC9A9CBC9A9CBCAA9CBCAA9CBCAA9CBCAA9CBC9A9CACAA9CBC9A9CB -CAA9CBCAA9CBCAAACBCAA9CBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACB -CAAACBCAAACBCAAACBCAAACBCBAACBC9AACBCAAACBCAA9CAC9A9CACAA9CBCAA9CBC9A9CBCAA9CB -CAA9CBCAA9CBCAA9CBCAA9CBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCBAACBCBAACBCBAACB -CBAACBCBABCCCBABCCCBAACBCBAACBCBABCCCBABCCCBABCCCBABCCCBAACBCBAACBCBAACBCAAACB -CAAACBC9AACBC9A9CBC9A9CBCAA9CBCAA9CBCAA8CAC9A8CAC9A8CAC8A7CAC8A7C9C8A6C9C7A5C8 -C6A5C8C5A4C7C5A2C6C4A2C6C3A0C4C2A0C4C29DC3C19CC2C09BC1C09BC1BE99C0BD96BEBC97BF -C7A6C8FBF7FAFFFFFEFFFFFEFFFFFEFFFFFEF3E6F0B68DB8B68DB8B58CB7B48AB6B48AB6B48AB6 -B48AB6B48BB7B38AB6A480AE6B5D91B58CB7B58DB8B68FB9B993BCBA95BEBE9BC2C19FC4C4A5C8 -C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFE -FFFFFEE7DEECCFC4DDC3B7D5BCB1D2B6ABCEB0A5CAADA2C8A79CC4A49AC3A096C09C93BE726C9D -7B75A6988DBA968CBA968DBB978DBA968DBB978EBB978EBB988EBB9890BCB8ADD0FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEDAD1E5A59CC5A299C2A49BC4A59BC4A69DC5A79EC6A89EC6AAA0C7ABA1C8 -ABA2C8ADA3C9AEA4C9AFA5CAAFA6CBB1A7CCB2A8CCB2A8CCB3A9CDB3A9CDB3AACDB3AACDB4AACD -B4AACEB4AACEB4ABCEB5ABCEB5ABCEB5ABCEB5ABCEB6ABCEB5ABCEB5ABCEB5ABCEB5ABCEB6ACCF -B5ABCEB5ACCFB6ACCFB6ACCFB6ACCFB5ACCFB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB4ABCEB4ABCE -B4AACEB4AACEB4ABCEB4ABCEB3AACDB5AACEB3AACDB4AACEB4AACEB3AACDB4AACEB4AACEB4AACE -B4AACEB4ABCEB4ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCE -B5ABCEB5ABCEB5ABCEB5AACEB5AACEB3AACDB5AACDB6ABCEB3ABCEB4AACEB4ABCEB4ABCEB4AACE -B4AACEB5ABCEB5ABCEB4AACEB4AACEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCE -B5ABCEB6ACCFB6ACCFB6ACCFB6ABCEB6ABCEB6ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCE -B5ABCEB5AACEB4AACEB4AACEB4AACEB4AACEB3AACDB3A9CDB3A9CDB3A8CCB2A8CCB1A8CCB0A7CC -AFA5CAB0A6CBAEA4CAACA3C9ACA2C8ABA1C7AAA0C7A89EC6A89EC6A69DC5A59BC4A49AC3A299C2 -A097C1DAD1E4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB7ADCF978FBC9890BC988FBC978EBB968DBA -978EBB958DBA968DBB958DBA6F6B9D7B74A69890BC9A92BEA096C1A198C2A59DC5A9A1C8AFA6CB -B4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCECD8D5E63E457B -8881AAF6F6F9E8E9F3D8DFEED4DAECCFD9EBCDD8EBCBD6EAC6D4E9C4D1E7C2D0E7BFCFE6BECDE5 -626798B3C1DDBACBE4BACCE5BACBE4BCCDE5BBCDE6BCCDE5BCCDE6BDCEE6BDCEE6F4F6FAFFFFFE -FFFFFEFFFFFEFFFEFDFCFDFDCEDAEDC2D1E8C4D3E9C5D4E9C6D4E9C6D5EAC7D5EAC7D5EACAD6EA -CAD7EBCBD8ECCBD8ECCCD9ECCDD9ECCDD9ECCEDAECCEDAECCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDD0DCEDD0DCEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEE -D1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DCEDD0DCEED0DCEE -D0DCEDD0DCEDD0DCEED0DCEED0DCEDCFDBEDCFDBEDD0DCEDCFDBEDCEDAEBCFDCEDCFDBEDCFDBED -D0DCEDCFDBEDD0DCEDCFDBEDD0DCEDD0DCEDD0DCEDD0DCEDD1DDEED1DCEDD1DDEED0DCEED0DCED -D0DCEDD0DCEED0DCEDD1DCECCFDAECD1DDEECFDAECCFDBEDCFDCEDCFDBEDCFDCEDCFDBEDCFDBED -CFDBEDD0DCEDD0DCEED0DCEED0DCEED0DCEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEE -D1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEED1DDEE -D1DDEED1DDEED0DCEED0DCEECFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCEDAEC -CEDAECCDD9ECCDD9ECCBD8ECCBD8ECC9D7EBC9D7EBC9D7EBC7D6EAC7D4E9C5D4EAC5D4E9C4D3E9 -C2D3E9D3DEEEFCFCFCFFFEFDFFFFFEFFFFFEFFFFFEF0F3F9BDCEE6BDCEE6BDCEE6BCCDE6BACDE5 -BCCDE6BCCDE5BBCDE6BBCDE6BCCDE6BDCEE6BDCFE7BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9EC -CFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FA -F5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BED0E7BECEE6BDD0E7BFCFE7BECEE6E6ECF5FFFDFCFDFDFCFDFEFCFFFDFBFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E2F0DAE2F0F8F8FBFFFDFCFEFEFCFFFDFBFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F6F7FAFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -E3DCE93E457BFFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE5E3E3515252282828FFFFFEFFFFFEFFFFFE3B3B3AA7A7A7 -828383757676FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEA6A7A6191818A6A7A6FFFFFEFFFFFE -999A9A676867FFFFFEFFFEFDFFFFFE767676515252FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFD9A9B9B191818FFFFFEFFFFFEFFFFFEC9C9C9191818 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8882AB -938CB2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5 -FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3 -F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E59CBFE59ABEE499BE -E499BEE499BEE499BEE499BEE69BBFE49BBFE7A1C3FEF1F6FFFFFEFFFFFEFFFFFEFFFEFDF9D9E7 -E7A3C4E7A4C5E9A6C6E8A7C6E9A8C8E9AAC8EAABCAEAACCAEBAECBEBAFCCEBB1CDECB1CDEBB0CC -EDB3CEEEB5D0EEB5D0EEB6D0EEB7D1EEB7D1EEB7D2EEB8D2EEB8D2EEB9D2EEB9D2EEB9D2EEB9D2 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2 -EEB8D2EEB8D2EEB8D2EEB8D2EEB8D2EDB9D2EEB9D2EFB8D2EEB8D2EFB8D2EDB9D2EEB9D2EEB9D2 -EEB9D2EDB9D2EEB9D2EEB9D2EEBAD3EEBAD3EEBAD3EDB9D3EEBAD3EEB9D2EEB9D2EEBAD3EEBAD3 -EEB9D2EEB8D1EEB9D2EDB8D2EEB9D2EDB8D2EEB9D2EFB9D3EEB7D2EEB8D2EEB8D2EEB8D2EEB9D2 -EEB8D2EEB9D2EEB9D2EEB9D2EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EEB9D2EEB9D2EEB9D2EEB8D2EEB8D2EEB7D2EEB7D2EEB7D1EDB6D0EDB5D0EDB4CFEDB3CFEDB3CF -ECB1CDEBB0CCEBAFCCECAFCCEAADCBEAABCAEAABC9EAA9C8E9A8C8E8A6C6E8A5C5E6A3C4F9D9E7 -FFFFFEFFFFFEFFFFFEFFFFFEFFF7F9E8A8C7E49ABEE49BBFE49ABEE599BDE398BDE299BDE398BD -E499BD7B6093CC8CB4EFBDD5F3CADDF4CCDFF4CDE0EDBAD3E7A9C8E9ADCBE9B2CEEBB8D2ECBED6 -F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7 -D8BAD6D2B2D0CEADCDC9A7C9C6A3C7D9BED8E0C8DEDEC6DDDBC2DBCAA8CAB88EB87261949D7BAB -B48AB6B48AB6B58BB6B58BB7B68CB7B58DB8B78DB8D8BED9FFFFFEFFFEFDFFFFFEFFFEFDFCF8FA -C8A6C9BC96BEBD97BFBE98BFBF9AC1C19CC2C19DC3C29EC4C3A0C5C4A2C6C6A3C7C5A3C6C6A5C8 -C7A6C9C8A7CAC9A9CBCAA9CBCAAACBCBABCCCBABCCCBABCCCBABCCCBACCDCCADCDCCADCECCADCE -CCADCECCADCECCADCECCADCECCADCECDAECECDAFCFCDAFCFCDAECECDAECECDAECECDAECECDAECE -CDAECECCADCECCAECECCADCECCADCECCADCECCADCECCADCECCADCECCADCECCADCDCCADCDCCADCD -CBACCDCBACCDCBACCDCBACCDCBACCDCBACCDCBACCCCBABCCCCACCCCBABCCCBACCDCBACCDCBACCD -CCADCECBACCDCDADCDCCADCDCCADCECCADCECCAECECCADCECCADCECCADCDCCADCDCCADCDCCADCD -CCADCDCCADCDCBADCDCBACCDCBACCCCCADCECCADCDCBABCCCBACCDCBACCDCBACCDCBACCDCBACCD -CCADCDCCADCDCCADCDCCADCDCCADCECCADCECCADCECCADCECCAECECDAECECDAECECDAECECDAECE -CDAECECDAECECDAECECDAECECDAECECDAECECDAECECCAECECCADCECCADCECCADCECCADCECCADCE -CCADCECCADCECBACCDCBACCDCBACCDCBABCCCBABCCCAABCCCAAACBCAA9CBC8A7CAC9A8CAC8A7CA -C7A5C8C6A4C7C6A3C7C4A1C5C4A1C5C29EC4C09DC3BF9CC2C09AC1BE9AC0BE98C0BB96BEC7A6C9 -FCF9FAFFFFFEFFFFFEFFFFFEFFFEFDDEC6DDB78EB9B58DB8B58BB6B58BB7B38AB6B58BB7B48AB6 -B48BB763588DAC85B2BD98BFD8BFD9DAC0D9DAC3DCDCC5DDBE9AC1C09FC4C4A4C8C7AACBCCB0CF -DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEEC -CFC4DDC3B7D5BCB1D2B7ABCEB0A5CAB6ABCED2C7DFD0C7DFCEC5DECCC2DC9B90BD5A5A8E9188B7 -968CBA978DBA968DBB988DBB978EBB988FBC998FBC9F95C0F9F7F9FFFFFEFFFEFDFFFFFEFFFFFE -D9D0E5A197C1A299C2A49AC3A59BC4A79DC4A79EC6A99FC7AAA1C8ACA2C9ADA3C9AFA5CAB0A6CB -AFA6CBB1A8CCB3A9CDB3A9CDB4AACEB5ABCEB5ACCFB6ACCFB7ADCFB7ADCFB8ADD0B8ADD0B8ADD0 -B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B9AFD1B9AFD1B9AFD1B9AFD1B8AFD1B8AFD1 -B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AED0B8AED0B8AED0 -B8AED0B7ADCFB7ADCFB7ADCFB7ADCFB7ADCFB7ADCFB7ADCFB8ADD0B7ADCFB7ADCFB8ADD0B8ADD0 -B8ADD0B8ADD0B8AED0B8AED0B8AFD1B8AFD1B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0 -B8AED0B8AED0B8AECFB8ADD0B7AECFB8ADD0B8ADD0B8AED0B8AED0B8ADD0B7ADCFB7ADCFB8AED0 -B8AED0B7AED0B7AED0B8AED0B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B9AFD1B9AFD1B8AFD1B8AFD1 -B8AFD1B8AFD1B8AFD1B9AFD1B9AFD1B9AFD1B9AFD1B9AFD1B8AFD1B8AFD1B8AED0B8AED0B8AED0 -B8AED0B8AED0B8AED0B8AED0B7AED0B6ADCFB6ACCFB6ABCEB5ABCEB4AACEB3AACDB4AACDB1A7CC -B2A8CCAFA5CAAFA5CAAFA4CAACA2C7AA9FC6A99FC7A99EC6A79DC5A59BC4A49AC2A299C2A197C1 -D9D2E6FFFFFEFFFFFEFFFEFDFFFFFEFAF7F99F95C09890BC978EBC978FBC988EBB968EBB968EBB -968EBB847DAE656396978FBBC9C0DBCBC3DDCDC4DECEC7DFB0A6CBAAA1C8AFA6CBB4ABCEBAB2D3 -C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCEC9B96BC3E467BC7BED6F6F4F8 -E8E9F3D8DFEED5DCEDD0D9EBCCD6EACAD6EAE4E9F3E3E8F3E1E7F3E0E6F2C6D5EAAAB6D6696E9D -BBCCE5BBCBE4BBCCE5BBCCE5BCCDE6BDCEE6BCCDE6BCCDE6DFE6F2FFFFFEFFFFFEFFFFFEFFFEFD -FDFDFDCDDBEDC3D2E8C4D2E8C5D4E8C6D5EAC7D5EAC8D6EBC9D7EBCAD7EACAD8EBCCD9EBCCD9EC -CDD8EBCEDAECCFDBEDCFDBEDCFDBEDD0DCEDD1DDEED1DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED4DEEED4DEEED4DEEED4DEEE -D4DEEED3DEEED3DEEED3DEEED3DEEED3DEEED2DDEED2DDEED3DEEED3DEEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED1DDEED2DDEED1DDEED2DDEED2DDEED1DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED3DEEED3DEEED3DEEED3DEEED2DDEED2DDEED2DDEE -D2DDEED1DDEED3DEEED2DDEED2DEEED2DCEDD2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED2DDEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEED3DEEE -D3DEEED2DDEED2DDEED2DDEED2DDEED2DDEED1DDEED1DDEED1DDEED0DCEECFDBEDCFDBEDCEDBED -CDD9ECCDD9ECCDD9ECCCD8EBCBD8EBCBD8EBC9D7EBC8D6EBC7D6EAC6D4E9C5D4E9C4D2E8C2D2E8 -CEDAEDFDFDFDFFFEFDFFFEFDFFFFFEFFFFFEDFE6F2BCCDE5BDCEE6BDCEE6BCCDE5BCCDE6BBCDE6 -BBCDE6BBCDE6BCCDE6BDCEE6BDCFE7BECFE7C0D1E8C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEF -D8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FA -F6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BDCFE7BED0E7BFCFE7BECFE7BECFE7C4D2E8F3F4F9FEFDFCFFFDFCFDFDFCFFFDFCFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0DCE5F2FDFDFDFFFDFCFFFFFDFEFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F4F9F2F3F8F1F3F9F6F7FAFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC6BED5696695 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEBEBEBE181717D7D6D6FFFFFEFFFFFE8E8F8F757676282828B2B2B2 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE505050767676FFFFFEFFFFFE9B9C9B181717 -FFFFFEFFFFFEFFFFFEB2B2B2181717D7D6D6FFFFFEFFFFFEFFFEFDF3F1F0FFFFFEFFFFFE9A9B9B -191818FFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDCBCBCA181717FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C3696796FEFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3 -FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7 -EFBBD4EDB5D0EBB0CDEAABCAE8A7C7E8A4C5E7A1C3E69FC1E59CBFE59BBFE49ABEE499BEE49ABE -E49ABEE59ABEE49BBFE69CBFF6D1E2FFFFFEFFFEFDFFFFFEFFFFFEFDEBF2E6A2C4E8A4C5E9A6C6 -E8A7C6E9A9C8EAABC9EBACCAEAADCBEBAFCCEAB0CDECB1CDECB2CEECB3CFEEB6D0EEB7D1EEB7D1 -EEB8D2EEB9D2EEBAD3EEBAD3EEBAD3EFBBD4EFBBD4F0BCD5F0BCD5F0BDD5F0BDD5F0BDD5F0BDD5 -F0BDD5F0BDD5F0BDD5F0BED6F0BDD5F0BED6F0BED6F0BED6F0BED6F0BED6F0BDD5F0BDD5F0BDD5 -F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BCD5F0BCD5F0BCD5F0BCD5EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD3EFBBD4EEBAD3EFBBD4EFBBD3EEBAD3EFBBD4F0BCD5EFBCD4F0BCD5EFBCD4 -F0BCD5F0BCD5F0BCD5F0BCD5F0BCD5EFBCD4F0BCD5F0BCD5F0BCD5F0BCD5EFBCD4EEBBD4EFBBD4 -EFBBD4EEBBD4EFBBD3EEBAD3EFBBD4EEBAD3F0BCD5EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -F0BCD5F0BCD5F0BCD5F0BCD5F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BED6F0BED6F0BED6 -F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BCD5 -F0BCD5F0BCD5EFBBD4EEBAD3EEBAD3EEBAD3EEB9D2EEB8D2EDB7D1EEB6D0ECB5D0EEB4CFEDB3CF -EDB2CEEBB0CCEAAECBEBAECBEBACCAEBACCAE9A9C7E8A7C7E8A7C6E7A6C6E7A3C4F9D9E7FFFEFD -FFFFFEFFFEFDFFFFFEFCE5EFE49CC0E39BBFE49ABEE499BEE299BDE499BDE297BCB57EAA976F9E -E398BDFBE3EDFFFFFEFFFFFEFFFFFDF4CFE1E7A9C8E7ACCAEBB4CFEBB8D2ECBED6F6E1ECFEF8F9 -FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B2D0 -CEADCDCAA8CAC7A3C7F1E3EEFFFFFEFFFFFEFFFFFEDAC1DAB88DB8AD86B36C5D90B58BB7B489B5 -B58BB7B58BB7B68CB7B68DB8BE9AC1FDF8FAFFFEFDFFFFFEFFFFFEFFFFFECBABCCBB95BEBD97BF -BE98C0BF9BC1BF9BC2C19EC4C3A0C5C4A1C5C4A2C6C5A4C7C6A5C8C9A6C9C7A7C9CAA9CBCAAACB -CBABCCCBACCDCCADCECCADCECDAECECDAFCFCEAFCFCEB0CFCEB0CFCEB0CFCEB0CFCFB1D0CFB1D0 -CEB1D0CFB1D0CFB1D0CFB2D0CFB2D0CFB2D0CFB2D0CFB2D0CFB2D0CFB2D0CFB2D0D0B1D0CFB1D0 -CFB1D0CFB1D0CFB1D0CFB1D0CFB1D0CFB1D0CEB0CFCEB1D0CEB0CFCEB0CFCEB0CFCEAFCFCEAFCF -CEAFCFCDAFCFCDAFCFCDAECECEAFCFCDAFCFCDAFCFCDAECECDAFCFCEAFCFCEB0CFCEB0CFCEB0CF -CFB0CFCEB1D0CEB1D0CEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCCAFCF -CEB0CFCDAFCFCDB0CFCCAECECDAFCFCEAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCEB0CFCEB0CF -CEB0CFCEB0CFCFB0CFCFB1D0CFB1D0CFB1D0CFB1D0CFB1D0CFB1D0D0B2D1CFB2D0CFB2D0CFB2D0 -CFB2D0CFB1D0CFB1D0CFB2D0CFB2D0CFB2D0CFB1D0CFB1D0CFB1D0CFB1D0CFB1D0CEB1D0CEB1D0 -CEB0CFCEB0CFCEAFCFCDAFCFCDAFCFCCAECECCADCECCADCDCBACCDCAA9CAC9A9CAC9A8CAC8A7C9 -C6A5C8C6A4C7C5A2C6C4A2C6C29FC4C39EC4C09DC2BF9BC2BE99C0BE98BFBB96BEC7A6C9FCF8FA -FFFFFEFFFFFEFFFFFEFFFFFEC29FC4B58DB8B58CB8B58BB6B48AB6B48AB6B48BB6866D9F9375A5 -B58BB7C5A4C8FFFFFEFFFEFDFFFFFEFFFFFEBE9AC1C1A0C5C4A4C8C7AACBCCB0CFDCC8DFF0E5F0 -FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5 -BCB1D2B6ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFEFD9B92BE8D83B2656295988DBB978DBB -978DBB968DBA988FBC988EBB978FBCD8CFE4FFFEFDFFFEFDFFFFFEFFFFFEDFD9EAA197C1A299C2 -A39AC3A59CC3A89EC6A99FC6AAA0C7AAA0C7ADA4CAAFA4CAAFA6CBB1A8CCB2A8CCB3A9CCB6ABCE -B6ACCFB7ADCFB8AED0B8AED0B8AFD1B9AFD1BAB0D1BAB0D1BBB1D2BBB1D2BCB1D2BCB2D3BCB2D3 -BCB2D3BCB2D3BCB2D3BCB2D3BDB2D3BDB2D2BDB2D2BDB2D2BCB2D3BDB3D3BDB3D3BCB3D3BCB3D3 -BCB2D3BCB2D3BCB2D3BCB2D3BCB2D3BCB2D3BBB2D2BBB2D2BBB1D2BBB1D2BAB1D2BAB0D1BAB0D1 -BAB0D1B9B0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BBB0D2BAB0D1BAB1D2BAB0D1BBB0D2BBB0D2 -BBB1D2BBB1D2BBB2D2BBB3D3BBB1D2BBB1D2BBB1D2BBB1D2BBB1D2BBB1D2BBB1D1BBB1D1BAB1D2 -BAB1D1BAB0D1BCB1D2BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB1D2BAB0D1BAB0D1BAB1D2BAB1D2 -BAB2D2BBB1D2BCB1D2BBB1D2BCB1D2BCB2D3BCB2D3BCB2D3BCB2D3BCB2D3BCB2D3BCB3D3BCB3D3 -BDB3D3BDB3D3BDB2D3BDB2D3BDB2D3BDB2D3BDB2D3BCB2D3BCB2D3BCB2D3BCB2D3BCB2D3BCB2D3 -BBB1D2BBB1D2BBB1D2BAB0D1B9AFD1B9AFD1B8AFD1B8AED0B7ACCFB5ACCFB4ABCEB3AACDB3AACD -B1A7CCAFA6CBAFA4CAADA4CAABA1C7AAA0C7A99FC6A89DC5A59CC5A49AC3A299C2A197C1DAD1E6 -FFFFFEFFFFFEFFFFFEFFFFFED8CFE49890BD998FBC978EBC978EBB978EBB978EBB958DBB5F5E92 -9188B7978EBBFFFFFEFFFFFEFFFFFEFFFFFEB9B1D2AAA2C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EF -FFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCEC74729F3E447BFFFFFDF6F5F9E8EAF4D8DEEE -D4DCEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFECED9ECBDCEE57F86B196A0C4BBCBE4 -BACCE5BBCCE5BCCEE6BCCDE5BDCEE6CBD8ECFFFEFDFFFFFEFFFEFDFFFFFEFCFCFCCDDAECC4D1E8 -C3D3E9C6D5EAC5D4EAC8D5E9C7D7EACAD7EBCAD7EBCCD9ECCCD9ECCDD9ECCEDAECCFDBEDCFDBED -D1DCEDD1DDEED2DDEED2DDEED3DEEED3DEEFD4DFEFD4DFEFD4DFEFD4DFEFD5DFEFD5DFEFD6DFEF -D6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6E0F0D6E0F0D6DFEFD6DFEFD6DFEFD6DFEF -D6DFEFD6DFEFD6DFEFD6DFEFD5DFEFD5DFEFD6DFEFD6DFEFD5DFEFD5DFEFD5DFEFD5DFEFD4DFEF -D4DFEFD4DFEFD5E0EFD4E0EFD5DEEED4DFEFD5DFEED3DEEFD3DEEED4DFEFD4DFEFD4DEEED4DFEF -D5DFEFD5E0EFD5DFEFD5DFEFD5DFEFD5DFEFD4DFEFD4DFEFD5DFEFD5DFEFD5DFEFD4DFEFD5DFEF -D4DFEFD5DFEFD4DEEED4DFEFD4DFEFD4DFEED4DFEFD4DFEFD4DFEFD4DFEFD5DFEFD5DFEFD5DFEF -D5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEF -D6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD5DFEF -D5DFEFD5DFEFD5DFEFD5DFEFD4DFEFD3DEEED3DEEED2DDEED1DDEED1DEEED3DEEECFDBEDCEDAEC -CEDAECCDD8EBCDD9ECCBD8EBCAD7EBCAD7EBC8D6EBC7D5EAC6D4E9C5D4EAC5D4E9C4D3E9CEDAEC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC5D4E9BDCEE6BDCEE6BCCDE6BCCDE5BCCDE6BCCDE6BCCDE6 -BCCDE6BDCEE6BDCFE7BECFE7C0D1E8C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5 -FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FB -F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7 -BDCFE7BECFE7BECFE7BECFE7C3D3E9F3F4F9FEFDFCFEFDFCFEFCFBFEFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0 -E0E6F2FDFDFDFEFEFCFFFEFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9F1F3F9F7F8FBFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB27C78A3FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFC9A9B9B686969 -B2B2B2B2B2B2515252515252FFFFFEFFFFFEFFFFFED7D6D6181717181717F3F1F0FFFFFEFFFFFE -F4F2F13A3A398F9090CACAC98E8F8F181717BEBEBEFFFFFEFFFEFDE4E2E2282828676867CACAC9 -FFFFFEFFFFFE5152522828288E8F8F9A9B9B535353828382FFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEC9C9C9191818FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC7BFD75E5D8DFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2 -FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0 -EBB0CDEAABCAE8A7C7E8A4C5E7A1C3E69FC1E59CC0E59BBFE49ABEE49ABEE49ABEE49ABEE59BBF -E59CBFE7A6C6FFFFFEFFFFFEFFFFFEFFFFFEFFF9FAE9A8C8E9A5C5E8A7C6E8A7C6E9AAC8EAABC9 -EAACCAEAAECAECB0CCEBB1CDECB2CED3B2C6CBB3C3CBB3C3CCB4C5CCB3C3CDB6C5CCB6C5CCB6C6 -CCB7C6CDB8C7CDB8C7CDB8C7CDB9C7CDB9C8CDB9C7CDB9C7CDB9C8CDB9C8CDB9C8CDBAC8CDBAC8 -CDBAC8CDBAC8CDB9C8CDBAC8CDBAC8CDBAC8CDBAC8CDBAC8CDBAC8CDBAC8CDBAC8CDBAC8CDB9C8 -CDB9C8CDB9C8CDB9C8CDB9C7CDB9C8CDB9C8CDB9C7CDB9C7CDB9C7CDB8C7CDB8C7CDB8C7CDB8C7 -CEB9C7CDB8C7D8BECFE6C7D8E4C6D8E4C6D7E3C6D7E4C7D7E3C6D7E3C6D7E3C6D7E2C6D7E2C6D7 -E2C6D7E1C6D7E2C7D7E2C6D7E2C6D7E2C6D7E3C6D7E3C6D7E2C6D7E2C6D7E3C5D6E5C7D8E4C5D7 -E5C6D7E0BACFCE90ACCF91ADCF91ACCF92ADCF92ADCF92ADCF92ADCF92ADCF92ADCF92ADCF92AD -CF92ADCF92ADCF92ADCF92ADCF92ADCF92ADCF93AECF93AECF93AECF93AECF93AECF93AECF93AE -CF93AECF93AECF93AECF93AECF93AECF93AECF93AECF93AECF92ADCF92ADCF92ADCF92ADCF92AD -CF92ADCF91ACCF91ACCF91ACCF90ACCE8FACCF90ACCE8EABCE8EAACE8DABCC8BA8CD8BA8E3A6C3 -ECB1CDEBAFCCEBAFCCEBACC9EAACCAE9A9C8E9A8C7E8A6C6E8A4C5E7A3C4FDEBF2FFFEFDFFFFFE -FFFEFDFFFEFDEDB3CFE49BBFE59ABEE49ABDE599BDE299BDE298BC7A6092E298BCE399BEFAE3ED -FFFEFDFFFFFDFFFFFEF5CFE1E7AAC9E9AECCE9B2CEEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1 -EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CA -C5A2C6F2E3EEFFFFFEFFFFFEFFFFFEDAC1DAB78EB9B68CB7866D9E876D9EB58CB7B58BB6B68CB7 -B68DB8B78DB8E3CEE2FFFEFDFFFFFEFFFFFEFFFFFED8BED8BC95BDBD97BFBD97BEBF9BC1BF9CC2 -C29FC4C39FC4C4A2C6C5A3C7C5A4C7C2A7C7B0A8BEB1A9C0B2AAC0B3ABC1B3ACC1B3ACC1B4ADC2 -B4AEC2B5AFC3B5AFC3B6B0C4B6B0C4B6B0C4B7B1C4B7B1C4B6B0C4B6B0C4B7B1C5B7B1C5B7B1C5 -B7B1C5B7B1C5B7B2C5B7B2C5B7B2C5B7B2C5B7B1C5B7B1C5B7B2C5B7B1C5B7B1C5B7B1C5B7B1C5 -B7B1C5B7B1C4B7B1C4B7B1C4B6B0C4B6B0C4B6B0C4B6B0C4B6B0C4B6B0C4B6B0C4B6B0C4B5AFC3 -B6AFC3B5AFC3B5AFC3CDBED4CCBCD3CCBDD3CDBED4CCBDD3CBBDD3CABDD3CBBED3CBBED3CBBED3 -CBBED3CABDD3CABDD3CBBED3CBBED3CBBED3CBBED3CBBED3CCBDD3CBBDD3CCBDD3CBBDD3CBBDD3 -CDBED4CDBED4B292B2A986A9A986A8A986A9A986A9A986A9A986A9A986A9AA87A9AA87A9AA87A9 -AA87A9AA87A9AA88AAAA88AAAA87A9AA88AAAA88AAAA88AAAB89AAAB88AAAB88AAAB88AAAB88AA -AB89AAAB89AAAB88AAAB88AAAB88AAAB88AAAB88AAAB88AAAA88AAAA88AAAA88AAAA88AAAA87A9 -AA87A9A986A9A986A9A986A8A885A8A885A8A884A7A784A7A783A6A682A6A581A6A580A5B592B7 -C6A5C7C6A3C7C4A2C6C2A0C4C29EC4C19CC2BF9BC2BE99C0BD97BFBC96BED3B8D4FFFEFDFFFEFD -FFFFFEFFFFFEEEDEEBB68DB8B58DB8B58CB7B48AB6B48BB7AD86B464588DB38AB6B38BB7C5A4C8 -FFFEFDFFFFFEFFFFFEFFFFFEBE9AC1C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FA -E6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B6AACD -B1A6CBC0B5D4FFFFFEFFFFFEFFFFFEFFFFFE9C91BD9A90BD6B66988B82B2988DBB968DBA988FBC -988FBC988FBCACA2C8FFFFFEFFFFFEFFFFFEFFFFFEF4F1F6A69DC5A198C2A39AC3A59CC5A99DC5 -A99FC6ABA1C8ACA2C9AEA3C9AEA4C9B0A6CB9EA7C09FA8C19FA9C1A3ABC3A2ABC3A3ACC3A4ADC4 -A5AEC4A5AEC4A6AFC5A7AFC5A7B0C5A8B0C6A8B0C6A8B1C6A8B1C6A9B1C6A9B1C6A9B1C6A9B1C6 -A8B1C6A9B1C6A9B1C6A9B1C6A9B2C6A9B2C6A9B1C6A9B2C6A9B1C6A9B1C6A9B1C6A9B1C6A9B1C6 -A9B1C6A8B1C6A8B1C6A8B1C6A8B1C6A8B0C6A8B0C6A8B0C6A7B0C5A7AFC5A7AFC5A7B0C5A7B0C5 -A7AFC5A6B0C6A6AEC4B3B6CDBDBDD5BCBDD5BDBED6BDBED5BDBED5BDBED5BDBED5BDBED5BCBDD5 -BCBDD4BCBDD5BDBED5BDBED5BCBDD5BCBDD5BDBED5BDBED5BDBED5BDBED5BDBED5BDBED5BDBED5 -BDBDD4BFBED5B4AFCC9688B19788B09788B09788B09788B09788B09788B09788B19788B19888B0 -9889B19889B19889B19889B19889B19889B19889B19889B19889B19889B19889B19889B19889B1 -9889B19889B19889B19889B19889B19889B19889B19889B19889B19889B19889B19889B19889B1 -9889B19788B09788B09687B09587B09586AF9585AE9485AE9385AE9283AE9283AD9082AC9081AD -B0A7CCAFA5CAAEA4CAACA2C8AAA0C7A99FC7A79DC5A69CC4A39AC3A298C2A69DC5F5F0F6FFFEFD -FFFEFDFFFFFEFFFFFEB1A7CC9890BC988FBC978EBC978FBB968DBB7B74A5756FA1978EBB988FBC -FFFFFEFFFEFDFFFFFEFFFEFDBAB2D3A9A1C8AFA7CCB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFE -EBE7F2DFDDECDBD9EADCDBEBDBDAEB4F5386696796FFFFFEF5F5F9E8E9F3D9DEEED4DBEDD0D9EB -CDD7EAC9D5EAFFFFFEFFFFFEFFFFFEFFFEFDCFDBEDBDCDE5BBCCE4696E9DBBCBE4BBCCE5BBCBE4 -BDCEE6BDCEE6BCCDE5F0F3F9FFFFFEFFFFFEFFFFFEFFFFFED9E3F1C3D2E8C4D3E9C4D3E9C6D5EA -C7D4E9C7D7EBCAD7EBCBD8ECCCD8EBCEDAEBC0D2E1B3CBD6B3CCD7B4CDD6B5CDD7B6CED7B6CED7 -B7CFD8B7CFD8B8CFD8B8CFD8B9D0D8B8CFD8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8 -B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8BAD1D8BAD1D8BAD0D8BAD0D8B9D0D8B9D0D8B9D0D8B9D0D8 -B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B9D0D8B8CFD8B8CFD8B7CFD8B9D0D8 -B7CFD8B9D0D7B8CFD9B7CFD8D0E1ECD1E0EACFE0E9D0E0E9CFE0E9CFDFE9CFDFE9CFE0E9CFDFE9 -CFDFE9CFDFE9CFDFE9CFDFE8CEDFE9CFDFE9CFDFE9CFE0E9CFE0E9CFE0E9CFE0EACFE0E9CFE0EA -CFE0EBD0E0EAD0E0E9ADAFD2ACAED1ACAED2ACAFD2ACAFD2ACAFD2ADAFD2ADAFD2ADAFD2ADB0D3 -ADB0D3ADB0D3ADB0D3ADB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3 -AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3AEB0D3ADB0D3ADB0D3ADB0D3 -ADB0D3ADAFD2ACAFD2ACAFD2ACAFD2ACAFD2ACAFD2AAAED2AAAED2AAAED2AAAED1A9ADD1A8ACD0 -BAC1DECDD9ECCCD9ECCBD8EBC9D7EBC9D7EBC7D6EAC6D5EAC5D4E9C4D3E9C3D2E8DDE4F1FFFEFD -FFFFFEFFFEFDFFFFFEE8EDF6BDCEE6BDCEE6BDCEE6BDCEE6BBCDE6BCCDE6BCCDE6BCCDE6BDCEE6 -BDCFE7BFCFE7C0D1E8C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFE -FBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FB -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7BDCFE7BED0E7BECEE6 -BED0E7BECFE7BDCFE7CBD8ECFAF9FBFEFDFCFDFEFCFFFDFBFDFEFCFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0D8E1F0E4EAF5 -FFFEFCFEFDFCFFFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F8F1F3F9F9FAFBFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD8882AA938CB2FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF3F0F0A5A6A6676867656666 -8F9090F3F1F0FFFFFEFFFFFEFFFFFEFFFFFE3B3B3A767777FFFFFEFFFFFEFFFFFEFFFFFECACAC9 -828383676867757676BEBFBEFFFFFEFFFFFEFFFFFEFFFFFED6D6D5838484B2B2B2FFFFFEFFFFFE -FFFFFEA6A7A6676867686969A5A6A6F3F1F0FFFFFEFFFFFEB2B2B2676867FFFFFEFFFFFEFFFFFE -B2B2B2676867FFFFFEFFFFFEFFFFFED7D6D6656666FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD -9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCA -E9A8C7E8A4C5E7A1C3E69FC1E59CC0E59BBFE49BBFE49ABEE49ABEE49ABEE59BBFE69CBFF8D7E6 -FFFFFEFFFEFDFFFFFEFFFFFEF1BDD5E6A3C4E8A5C5E8A7C6EAAAC9EAABC9EAACCAEBAECBEBAFCC -DBB0C698ABB169A6A35AA4A25BA5A15CA5A25BA4A15CA5A25BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA4A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A25AA4A15BA5A1 -90C1BBBFDFD7BFE0D9BEDFD6BDDFD7BBDED5BADED5B9DDD5B9DDD5B8DCD4B7DCD4B7DCD4B7DCD4 -B7DCD3B7DCD3B8DCD3B8DCD3B8DDD4B9DDD4B9DDD5BBDED5BDDFD7BCDED6BEDFD8C0E0D9B0A8B0 -842E5B842F5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B -832E5B832E5B832E5B832E5B842E5B822E5B832E5B832E5B832E5B832E5B842E5C9F5175CC89A8 -EBAFCCEBAFCCEBACCAEBACC9E8A8C7E8A7C7E7A6C6E8A4C4EDB3CFFFFFFEFFFEFDFFFFFEFFFFFE -FAE4EEE59CC0E39BBFE49ABEE398BDE398BCB67FABA274A2E399BEE399BDFAE3EDFFFFFEFFFEFD -FFFFFEF3D0E2E7A8C7E8AECBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1 -EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CDADCDCBA8CAC6A3C7F2E3EE -FFFFFEFFFFFEFFFFFEDBC2DBB78DB7B88CB8B58CB763598DB58BB6B58BB7B68CB7B78DB8BE9AC1 -FFFFFEFFFFFEFFFFFEFFFEFDEFE0ECBA95BDBC96BEBE98BFBF9AC1C09CC2C19DC3C39FC4C4A1C6 -C5A3C7A3A6B775A5A85BA4A15BA5A15BA4A05BA5A15AA4A15CA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15AA4A05CA5A2 -5CA5A1C1E0D9C0E0D9BEDFD8BEDFD7BCDED5BBDED5BADED5B9DDD5B8DDD4B8DCD4B7DCD4B7DCD4 -B7DCD3B7DCD3B7DCD3B8DCD4B8DCD4B8DDD4B9DDD5BADED5BBDDD5BDDFD6BFE0D7BEDFD7C1E1D9 -6A4E70542C57522B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57532B57 -532B57532B57532B57532B57532B57532B58532B57532B57532B57532B57532B57603561855F85 -BD9ABEC4A1C5C4A1C5C29DC2BF9CC2C09AC1BE99C0BD98BFBC94BDEAD9E9FFFEFDFFFFFEFFFFFE -FFFFFEC7A6C9B58DB8B68DB8B58CB7B48BB77F699A9376A6B48AB6B48BB7C5A4C8FFFFFEFFFFFE -FFFFFEFFFEFDBE9AC1C09FC4C5A4C7C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0 -D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB0D1B6ABCEB1A6CBC1B7D5 -FFFEFDFFFFFEFFFFFEFFFFFE9C92BE9990BC9289B8656295978DBA978DBB978EBC988FBC9990BC -D7CEE4FFFFFEFFFFFEFFFEFDFFFFFEB6ACCFA198C2A39AC3A59AC3A79DC5A99FC6AAA0C7ADA3C9 -AEA3C9A6A5C47FA7B062A5A35BA5A15BA5A25BA5A15BA5A15CA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A25BA4A15AA4A1 -5CA5A18EC1BBBFE0D9C0E0D8BDDFD7BDDFD7BBDED5BADED5B9DDD5B8DDD4B8DCD4B8DCD3B8DCD3 -B7DCD4B8DCD4B7DCD3B7DCD3B8DCD4B8DDD4B9DDD4BADED5BBDED4BCDED6BDDFD7BFE0D9C0E0D9 -99A4B6412B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63412B63402B63402B63412B63412B63412B63402B62402B635F4B7D -8D7FABAFA4CAACA3C9ABA1C8A99FC6A69DC5A69CC4A39AC3A197C1B5ACCFFFFFFEFFFFFEFFFEFD -FFFFFEDED6E89A91BD988FBC988FBC988EBB978EBB595A8E968EBB978DBB978FBCFFFEFDFFFFFE -FFFEFDFFFEFDBAB2D2AAA1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDEC -DBD9EBDCDBEBC6C2DA3D457B9F98BBFFFEFDF7F5F9E8E9F3D8DFEED4DBEDD1D9ECCDD7EACAD6EA -FFFFFEFFFFFEFFFFFEFFFFFECEDAECBDCCE5BCCDE6868EB696A0C6BCCDE6BCCDE5BDCEE6BDCEE6 -CDDAECFFFFFEFFFEFDFFFFFEFFFFFEF1F3F9C4D2E8C3D3E9C4D3E8C6D4E9C7D5EAC8D6EACBD8EB -CAD8EBC5D5E59CC1C66AABA85CA5A15BA5A25CA5A15BA5A15BA4A15BA5A15BA5A15BA5A15BA5A1 -5CA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA5A15BA4A15CA5A15BA5A2 -5AA4A05DA5A1C1E0D8C0E0D7BEDFD8BEDFD7BCDED5BBDED5B9DDD5B9DDD4B8DDD4B8DDD4B8DCD3 -B7DCD4B7DCD3B7DCD4B8DCD3B8DCD4B8DDD4B9DDD4B9DDD5BADED5BCDED5BDDFD7BFE0D8BFE0D9 -C1E1DA464B8C464B8C464B8C474B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C464B8C -464B8C464B8C464B8C464B8C464B8C484B8B464C8C464B8C474B8C474B8B464B8C464B8C575996 -8386B7C2CCE4CBD9ECCAD6EAC8D7EBC7D5EAC6D5EAC5D4E9C4D3E9C3D3E9F1F3F9FFFEFDFFFFFE -FFFFFEFFFFFEC5D4EABCCDE5BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BDCEE6BDCFE7BFCFE7 -C1D1E8C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FA -F0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFC -FAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BECFE7BECFE7BECEE6BDD0E7 -BED0E7BECFE7CBD9ECFBFBFCFDFDFCFDFEFCFEFCFBFFFDFBFEFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0E8ECF5FFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9 -F1F3F9F2F4F9F2F4F9F1F3F9F1F3F9F2F4F9F1F3F9FBFBFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686695C7BED5FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEF3F1F0181717B2B2B2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3D457BE4DDEAFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8 -FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EE -FDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5 -E7A1C3E69FC1E59CC0E59BBFE49BBFE49BBFE49BBFE59BBFE59CBFE6A2C3FFFEFDFFFFFEFFFFFE -FFFFFEFBE5EEE7A3C4E8A4C5E8A7C6E9A8C7EAA9C8E9ACCAEBAECBEBAFCCA9ADB65BA5A15BA4A1 -5AA4A262A8A570AFAD70B0AC6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6EAFAC66ABA85AA4A092C1BCC7E4DE -C5E3DDC5E2DCC4E2DBC2E1DBC1E1DAC1E1DAC0E0DABFE0D9BEDFD8BEDFD8BDDFD8BDDFD8BEDFD8 -BFE0D9BFE0D9BFE0D9C0E0DAC1E1DBC2E1DBC2E1D9C3E1DCC5E3DCC6E3DCB5ABB3832E5B88305E -953466953466953466953466953466953466953466953466953466953466953466953466953466 -953466953466953466953466953466953466953466953466953466953466953466953466953466 -953466953466953466953466953466953466953466953466953466953466953466953466953466 -953466953466953567953466953466953467953466903364822E5B842E5B842E5B98486FE4A6C3 -EBAFCCEAACCAEAAAC8EAA9C8E8A7C6E8A5C5E7A3C4F9D9E7FFFFFEFFFEFDFFFFFEFFFFFEEAACCA -E49BBFE59ABEE49ABDE499BE7A6092E398BCE398BDE399BEFAE2EDFFFFFEFFFFFEFFFEFCF4CFE1 -E7AAC9E9AFCCEAB2CEEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1 -EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEAECECAA8CAC6A2C6F2E3EEFFFEFDFFFFFE -FFFFFEDAC1DAB88EB9B78CB8B68BB7866E9F9D7BABB68CB7B78DB8B68DB8DFC8DEFFFEFDFFFFFE -FFFEFDFFFFFECBACCDBC96BEBD97BFBE99C0C09BC1C19DC2C3A0C5C4A2C6B4A5C075A5A85BA4A1 -5BA5A15BA4A16FB0AD70B1AE6FAFAC70AFAC6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD70B0AD70B0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6EAFAC70B1AD5AA4A15CA4A1C7E4DE -C6E3DDC5E3DCC5E2DCC3E2DBC2E1DBC1E1DBC0E0DABFE0D9BFE0D9BEDFD8BEDFD8BEDFD8BEDFD8 -BEDFD8BEDFD8BEDFD9BFE0D9C0E0DAC1E1DBC1E0D9C4E2DBC5E3DDC5E2DCC7E4DE6B4F71532B57 -5E3060603162603162603162603162603162603162603162603162603162603162603162603162 -603162603162603162603162603162603162603162603162603162603162603162603162603162 -603162603162603162603162603162603162603162603162603162603162603162603162603162 -603162603162613062603162603062603162613062613162572D5A532B57532C575A315D9B759B -C4A1C5C3A1C6C39EC3BF9CC2C09AC1BD97BFBD97BFC39FC4FFFFFEFFFEFDFFFEFDFFFFFEE4CFE3 -B68DB8B58DB8B68BB7B58BB763598DB48BB7B48AB6B58CB7C5A4C8FFFFFEFFFFFEFFFFFEFFFEFD -BE9AC1C19FC4C3A4C7C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0 -D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B6ABCEB0A6CBBFB5D5FFFFFEFFFFFE -FFFFFEFFFFFE9C92BE998FBC988EBB6562959189B8978DBB988FBC9990BCA59BC4FFFEFDFFFFFE -FFFEFDFFFFFEDFD9EAA197C1A299C2A59BC4A69DC5A99DC5A9A0C7ACA2C9ADA3C783A5B25BA5A1 -5BA4A15BA5A166AAA76EAFAC6FB0AD70B0AD6EAFAC6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6EB0AC67ABA85CA4A192C1BC -C7E4DEC5E3DDC5E2DCC4E2DBC2E1DBC1E1DBC1E1DAC0E0DABFE0D9BEDFD8BEDFD9BEDFD8BEDFD8 -BEDFD8BEDFD8BFE0D9BFE0D9C0E0DAC1E1DBC2E1DCC4E2DBC5E2DCC5E3DDC5E3DD9CA5B9402B62 -422D6545336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C -45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C45336C -45336C45336C45336C45336C45336C45336C46336C45336C45336C45336C45336C45336C45336C -45336C45336C45336C45336C45336C45326B45326B45336B432F68402B63402B63402B625E4A7D -A59AC2ACA3C8AAA0C7AA9FC6A69DC5A59AC3A299C2A198C2D9D0E5FFFFFEFFFFFEFFFFFEFFFFFE -A59BC49990BC988FBC978EBC867EAD766FA1958DBA978EBC9790BDFFFEFDFFFEFDFFFFFEFFFFFE -BAB2D2AAA1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBDAEBDCDBEB -8E8BB33E467BD0C8DDFFFEFDF6F5F9E8E9F3D8DFEED3DBECD0D9EBCDD7EAC9D5EAFFFFFEFFFEFD -FFFFFEFFFFFECEDAECBCCDE5BCCDE5BBCDE57075A3BBCBE4BDCDE5BDCEE6BDCDE5E8EDF6FFFFFE -FFFFFEFFFFFEFFFEFDC9D7EBC2D2E8C4D3E9C5D4E9C7D5EAC8D6EACAD7EBCBD9EBB8CFDB6CABA9 -5BA4A05BA5A15BA5A26FAFAC6FB0AD6FAFAB6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD -6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FB0AD6FAFAC70B0AC5BA5A25CA5A2 -C8E4DFC6E3DDC5E3DCC5E2DCC3E2DBC2E1DBC1E1DBC0E0DABFE0D9BFE0D9BEDFD8BEDFD9BEDFD8 -BEDFD8BFE0D9BFE0D9BFE0D9C0E0D9C1E1DBC1E1DBC3E1DBC5E2DCC5E3DCC6E3DDC7E4DD464B8C -474B8B54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C -54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C -54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C54619C -54619C54619C55619C53609C55609C54619C54619C55609C54619C464B8C464B8C474B8C4D5291 -9DA1C9CAD8EBCBD8ECC9D6EAC6D5EAC5D4EAC5D4E9C3D2E8CEDAEDFFFEFDFFFEFDFFFFFEFFFFFE -E8ECF5BECEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE5BDCEE6BDCFE7BFCFE7C1D1E8C3D3E9 -C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9 -BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFC -FBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BFCFE7BDCEE6BED0E7BECFE7BFCFE7BECEE6BED0E7 -BECFE7D6E1F0FFFDFCFEFDFCFEFDFCFDFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD7E1F0D8E1F0D7E1F0D8E2F0EFF2F8FFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F2F4F9F1F3F9 -F1F3F9F1F3F9F2F4F9F1F3F9F1F3F8F1F4F9FDFDFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE5F5E8FC7BED6FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEB1B2B12A2929F3F0F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE686695C7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFE -FFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E69FC1 -E59CC0E59BBFE49BBFE49BBFE49BBFE59BBFE59CC0F1BED6FFFFFEFFFEFDFFFFFEFFFFFEEEB8D2 -E6A3C4E9A5C6E8A7C7E9A8C8EAACCAEBADCBEBAFCC98ABB05BA5A15BA5A170AFAC93C8C7A6D5D7 -A6D5D5A5D4D5A6D5D6A5D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A29AC4C1D9ECEBD7EBEAD6EBEA -D5EBEAD5EBE9D3EAE9D3EAE9D2E9E9D1E9E8D1E9E8D1E9E8D1E9E8D1E8E7D1E8E7D1E9E7D1E9E8 -D1E9E8D2E9E9D3EAE9D4EAE8D5EBE9D6EBEAD6EAEAD9ECEAC0B0BB832E5B953467CF4D90CF4E90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4E90CF4D90CF4E90CF4E90CF4D90C54788A73B72832E5B832E5B8E3A64D391B0EBAECB -EAABCAE9A9C8E8A7C7E8A6C6E8A4C5EBADCBFFFFFEFFFFFEFFFFFEFFFFFEF6D1E2E49BBFE49BBF -E499BED892B9836596E398BDE398BDE399BEFAE3EDFFFFFEFFFFFEFFFFFEF4D0E2E7A8C8E9AECC -EAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5 -FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DA -B88FB9B78CB8B58DB8AE85B26A5D90B68CB7B68DB8B78EB9FCF7F9FFFFFEFFFFFEFFFFFEEFE0EC -BB95BDBD97BFBE98C0BF9BC1C19CC2C29FC4C4A1C6B4A5C064A5A45BA5A161A8A48BC1C0A2D2D2 -A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15BA5A1DAEDECD7EBEAD6EBEA -D5EBEAD5EBE9D4EAE8D3EAE8D2E9E8D1E9E8D1E9E8D1E9E8D1E9E7D1E8E7D1E8E7D1E9E7D1E9E8 -D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9D5EBEAD6EBE9D7ECEBD7EBEB6D4E72542C58793C79864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864286864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864386864387864387864386854387864286864387753A765D3060532B57532B57926D93C4A1C5 -C29FC4C29EC4BF9BC1BE99C0BD97BFBC96BEE5D2E4FFFEFDFFFFFEFFFEFDFFFFFEBA95BDB58DB8 -B58CB89D7BAA876EA0B58CB7B48BB7B58CB7C5A4C8FFFFFEFFFFFEFFFFFEFFFFFEBE9AC0C19FC4 -C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFED -FFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B6ABCEB1A6CBC0B6D5FFFEFDFFFFFEFFFFFEFFFEFD -9C92BE9A91BD988EBB877EAD706B9D988EBB988FBC9990BCC3BAD8FFFFFEFFFEFDFFFEFDFFFFFE -ABA1C8A198C2A39AC3A59CC4A79DC5AAA0C7ABA1C8A8A4C774A6AB5BA5A15BA5A174B2B098CBCB -A6D5D6A7D6D6A6D5D6A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D680BAB85CA5A19BC5C1D8ECEBD7EBEA -D6EBEBD5EBEAD5EBE9D3EAEAD3EAE9D3EAE9D2E9E9D1E9E7D1E9E8D1E8E7D1E8E7D1E9E7D1E9E8 -D1E9E8D2E9E9D1E9E8D3EAE9D4E9E8D5EAE9D5EBEAD7EBEAD8ECEBA8AAC0402B6345336B535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190525190535190535190 -535190535190535190535190535190525190535190535190535190535291535190535190535190 -535190535190535190535190545291525190545291504C8A473670412B63402B62503B70A599C0 -ACA2C8AAA0C7A79DC5A59CC5A49AC3A198C2ABA1C8FFFFFEFFFFFEFFFFFEFFFFFECBC1DC9890BD -9890BC978FBC6562969089B7978EBB978EBC978FBCFFFFFEFFFFFEFFFEFDFFFFFEBAB2D2AAA1C8 -AEA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDBDAEB6B6999474C81 -F7F5F9FFFFFEF5F4F8E8E9F3D8DFEED5DCEDD0D9EBCDD7EACAD6EAFFFEFDFFFFFEFFFEFDFFFFFE -CEDAECBDCDE5BCCDE5BCCDE57075A3B3C1DEBCCDE5BDCEE6C1D1E8FFFEFDFFFFFEFFFFFEFFFFFE -E9EDF5C2D1E8C4D2E8C4D3E9C6D5EAC8D6EAC9D7EBCBD8EAA3C3CA5BA5A15BA5A166AAA78AC2C0 -A1D1D2A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1D9ECEBD7ECEB -D6EBEAD5EBE9D4EAE9D4EAE9D3EAE9D2E9E8D1E9E8D1E9E8D1E9E7D1E9E7D1E9E6D1E9E8D1E9E8 -D1E9E8D2E9E9D2E9E8D3EAE9D4EAE9D5EBE8D5EAE9D6EBEAD6EBEAD9ECEB464B8C464B8C85ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD384AAD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD386ABD385ABD386ABD385ABD385ABD385ABD36D83B64C5694464B8C464B8C9498C3 -CBD7EAC9D8EBC8D6EBC6D5EAC5D4E9C4D3E9C3D3E9EDF1F8FFFFFEFFFEFDFFFFFEFCFCFCBDCEE6 -BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCFE7BFCFE7C1D1E8C3D3E9C5D4E9C8D6EA -CCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594 -F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7BFCFE7BECFE7BECFE7BECFE7 -D7E2F0FEFDFCFEFDFCFEFDFCFEFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E0EFD8E1F0D8E1F0D9E2F1D8E1F0D8E1F0F1F3F8FFFDFCFFFDFCFFFDFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F1F3F9F2F4F9F0F3F9F2F4F9F1F3F9 -F2F4F9F1F3F9F1F3F9F1F3F8F3F5F9FDFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE3D457BF2EEF4FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD7D6D6282828 -9A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686696C7BFD6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6 -FDF0F5FDEEF4FEEEF4FDECF2FCEAF1FCE8F19285AD9184ACFAE4EEFDEEF3FFFFFDFFFFFEFBE9F1 -F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E7A0C2E59CC0E59CBF -E49BBFE49BBFE49BBFE69BBFE59CBFF9DCE9FFFEFDFFFFFEFFFFFEFEF1F6E6A2C4E8A4C5E8A7C6 -E9A9C8EAABC9E9ACCAEBAECBA2ACB25BA5A25BA5A18AC2C0A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19BC5C1D9ECEBD8ECEAD6EBEAD6EBEAD5EBEA -D4EAE9D3EAE9D2E9E8D2E9E9D1E9E8D1E9E8D1E8E7D1E9E7D1E8E7D1E9E8D1E9E8D2E9E9D2E9E9 -D4EAE9D4EAE9D5EBEAD6EBEAD7ECEBD8ECEBC0B0BB832E5B953466CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90C04584903364832E5B943F69E3A5C3EAADCAE9AAC9 -EAA9C8E8A7C6E8A5C5E7A4C5F8D9E7FFFFFEFFFFFEFFFFFEFEF1F6E49BBFE49BBFE49ABEA175A2 -C285B0E398BDE297BCE39ABEFAE3EDFFFFFEFFFEFDFFFFFEF4CFE1E7AAC9E8AECBEAB2CEEBB8D2 -ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5 -EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DAB88FB9B78EB9 -B68CB7B58BB7726193B68CB7B78EB9C7A6C9FFFFFEFFFEFDFFFFFEFFFEFDD0B1D0BC96BEBD97BF -BE9AC1C19BC2C29EC4C3A0C4B4A4BF64A5A45BA5A26BADA9A1D3D3A5D5D5A7D6D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15CA5A1DAEDECD9ECEBD7EBEAD6EBEAD6EBEA -D4EAE9D3EAE9D2E9E9D1E9E8D1E9E8D1E9E8D1E9E8D1E9E7D1E8E7D1E9E8D1E9E8D2E9E9D3EAE9 -D3EAE9D4EAE9D5EBEAD5EBEAD6EBEAD8ECEBD9ECEB6D4F72532B57793C79864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387673367532B57532B57946E93C4A1C5C29FC4 -C09CC2BF9BC1BE98C0BC96BEC7A6C9FFFFFEFFFFFEFFFFFEFFFFFED0B3D1B58DB8B58CB7786597 -AD86B4B58BB7B48BB7B58BB7C6A5C8FFFEFDFFFFFEFFFFFEFFFEFDBD9AC1C19FC4C4A4C8C7AACB -CCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFE -E7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFE9C92BE9A90BD -988EBB998FBB5F5E91988FBC988FBC9990BCEDE6F1FFFFFEFFFFFEFFFFFEE6E0EDA197C1A299C2 -A59BC4A59CC5A99FC6AAA0C7ACA2C87EA5AF5BA5A161A8A48FC6C4A5D4D5A7D6D6A7D6D5A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19BC5C1D9ECEBD8ECEAD6EBEAD5EBEA -D5EBE9D4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D1E9E8D1E9E8D3EAE9 -D3EAE9D4EAE9D5EBE9D6EBEAD6EBEAD7ECEBD9ECEBA8AAC0402B6345336C535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905351905351904F4A87422D65412B63503B6FAEA3C9AAA1C8 -A99FC6A69DC5A59BC4A299C2A097C1E6E0EDFFFFFEFFFFFEFFFFFEEDE6F19990BD978FBC978FBC -656295988FBC978EBB978EBC978FBCFFFFFEFFFFFEFFFFFEFFFFFEBAB2D2AAA1C8AFA7CBB4ABCE -BAB3D3C2BAD7E8E4EFFFFFFEFFFFFDEBE7F2DFDDECDBD9EBDCDBEB454D826F6C9AF7F5F8FFFEFC -F6F5F9E8E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFECEDAECBDCEE5 -BCCDE5BCCDE5A0ABCE868DB6BCCDE5BDCEE6D2DDEEFFFFFEFFFFFEFFFFFEFFFFFECEDAECC3D2E8 -C4D3E9C5D3E8C7D5EAC8D6EBCBD8EBB7CEDB5BA5A15BA5A175B3B0A2D2D1A6D5D6A6D5D6A6D5D6 -A5D4D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1D9ECEBD8ECEBD7EBEAD6EBEA -D6EBEAD4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9 -D3EAE9D3EAE9D4EAE9D6EBEAD6EBEAD7ECEBD8ECEBD9ECEB464B8C464B8C85ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD384AAD25C6BA4474B8C464B8C9CA1C9CAD7EB -C8D6EBC6D5EAC5D4EAC4D4E9C3D3E9D6DFEFFFFFFEFFFFFEFFFFFEFFFFFED1DDEEBDCEE6BDCEE6 -BCCDE5BDCEE6BCCDE6BCCDE6BDCEE6BECFE7BFCFE7C1D1E8C3D3E9C6D4E9C8D6EACBD9ECCFDBED -D4DFEFD8E1F0E8ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FA -F6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7E7ECF5 -FEFDFDFDFDFCFEFDFCFEFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFDFCFFFEFCFFFDFCFFFEFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0F8F8FBFFFEFDFFFDFCFFFDFCFFFEFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F3F9F1F3F9F1F3F9F4F6FAFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E447B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA7A7A7181717828383FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFD7E79A4 -938CB2FFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF0F5FDF0F5FDEEF4 -FDEDF3FDECF3FCEAF2FCE8F09285AD9284ACFAE3EDFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DB -F0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E7A0C2E59CC0E59CBFE39ABEE49BBF -E39BBFE59CBFE59CBFFFFFFEFFFFFEFFFFFEFFFDFCF3C9DDE8A3C4E8A6C5E7A6C6EAA9C8EAABCA -EBADCBCAAEC15AA4A15BA5A18AC2C0A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D681BBB95CA5A19BC5C1D9ECEBD8ECEAD7EBEAD6EBEAD6EBEAD5EBE9D3EAE9 -D2E9E8D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9 -D6EBEAD6EBEAD7ECEBD9ECEBC0B0BB832E5B953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CB4A8C88305E832F5BAB6082EBAECBEBABC9EAAAC9E8A7C7 -E8A6C6E7A3C4F1BED6FFFEFDFFFFFEFFFFFEFFFEFDE8A7C7E49BBFE49ABE836596E399BEE398BC -E39ABEE399BEFAE3EDFFFFFEFFFEFDFFFFFEF4CFE1E7A8C8E8AECBEAB3CFEBB8D2ECBED6F6E1EC -FEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6 -D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DAB88FBAB88DB8B68CB7B58CB7 -80699BA682AFB78DB8D9C0DAFFFFFEFFFEFDFFFFFEFDF8FABA95BEBD96BEBE98C0BF9AC1C09CC2 -C39FC3C3A0C57BA5AA5BA5A26CADAAA2D2D2A5D5D5A6D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D65BA5A15CA5A1DAEDECD9ECEBD8ECEAD6EBEAD6EBEAD4EAE9D4EAE9 -D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D1E9E8D2E9E9D3EAE9D3EAE9D4EAE9 -D5EBEAD6EBEAD7EBEAD8ECEBD9ECEB6E4F72532B57793C79864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387854286673367532B5759305CBC98BDC39FC4C19DC3BF9BC2 -BE99C0BD97BFBC95BDF8EFF5FFFFFEFFFEFDFFFFFEE3CFE3B58DB8B68DB8726194B48AB6B58CB8 -B48BB7B58BB7C6A5C8FFFFFEFFFFFEFFFFFEFFFFFEBD99C0C09FC4C4A4C8C7AACBCCB0CFDCC8DF -F0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DD -C3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFE9C92BE988FBC998FBC988EBB -666295988EBB9890BC9F96C0FFFFFEFFFFFEFFFEFDFFFFFEC3B9D7A197C1A399C3A59BC4A89EC6 -A9A0C7ABA1C895A4BC5BA5A15BA5A193C8C6A5D4D5A7D6D6A5D5D5A6D5D7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19CC6C2D9ECEBD8ECEAD7EBEAD6EBEAD6EBE9D4EAE9 -D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9 -D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBA9AAC0402B6345336C535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905351904F4986412D65412B63715F8EABA2C8AA9FC6A69DC5 -A69CC4A299C3A199C2C2B8D6FFFFFEFFFFFEFFFEFDFFFFFEA096C19890BC8B84B3706B9E988FBC -978EBC978EBC9890BCFFFEFDFFFEFDFFFEFDFFFFFEBAB2D2AAA1C8AFA7CCB4ABCEBBB2D2C1BAD8 -EAE5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBBAB5D23E447AA09ABEF7F6F9FFFFFEF6F5F9E8E9F3 -D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFECEDAECBECEE6BBCCE4BCCDE6 -BCCCE57076A3BDCDE5BDCEE6E4E9F4FFFFFEFFFFFEFFFFFEF9F9FBC2D1E8C4D3E9C4D3E9C6D5EA -C6D5EAC9D7EBCAD7EB6AABA95BA5A174B3B0A6D5D6A7D6D7A6D5D5A7D6D7A6D5D6A7D6D6A5D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DAEDECD9ECEBD8ECEAD6EBEAD6EBEAD5EBE9 -D3EAE9D3EAE9D2E9E9D1E9E8D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9 -D4EAE9D6EBEAD6EBEAD7ECEBD9ECEBD9ECEB464B8C464B8C85ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385AAD25D6CA4464B8C4D5291C1CBE3C8D7EBC8D6EB -C5D5EAC4D3E9C4D2E8C2D2E8FCFBFCFFFFFEFFFFFEFFFFFEE4E9F4BDCEE6BDCEE6BDCEE6BDCEE6 -BBCDE6BCCDE6BDCEE6BECFE7BFCFE7C1D1E8C3D3E9C5D4E9C8D5E9CCD9ECCFDBEDD4DFEFD8E1F0 -E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BED0E7BFCFE7BECFE7E6EBF5FFFEFD -FEFDFCFEFDFCFFFDFCFEFEFDFFFFFEFFFFFEFFFEFCFEFDFCFFFFFDFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0DAE3F1F8F8FBFFFDFCFFFDFCFFFDFCFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F1F3F9F5F7FAFFFEFDFFFFFEFFFFFEFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFC3E467BFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9C9C9C9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC938CB2938DB3FFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDEFF4FDEDF3FCEDF3FEECF2 -FBEBF2FCE9F19285AD9284ACFAE4EEFCEEF4FFFFFEFFFEFDFCEAF2F6D4E4F3C7DBEFBFD7EFBBD4 -EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E69FC2E59CC0E59CBFE49BBFE59CC0E49ABEE59CBF -EAADCBFFFFFEFFFFFEFFFFFDFFFFFEEDB3CEE7A4C5E8A5C5E9A8C7EBABC9E9ABC9EBAECB85A8AA -5BA5A179B6B3A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D681BBB95CA5A19CC6C2DAEDECD9ECEBD7EBEAD6EBEAD6EBEAD5EBE9D3EAE9D2E9E8D2E9E9 -D1E9E8D1E9E8D1E9E7D1E9E7D1E9E7D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBE9D6EBEAD7EBEA -D8ECEBD9ECEBC1B0BB832E5B953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90D04E90CF4D90BB4380832E5B832E5BDC9BBAEAACCAEAABC9E9A8C7E8A7C7E8A4C5 -E9A8C8FFFFFEFFFEFDFFFFFEFFFFFEF0BED6E59CC0E39ABE846596E298BDE399BEE399BEE39BBF -F9E1EDFFFFFEFFFFFEFFFFFEF4D0E2E7A9C8E8AECBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFE -F8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCD -CAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDBC2DBB88FB9B68DB8B68BB7B68BB79577A7876FA0 -B78EB9EEDEEBFFFFFEFFFFFEFFFEFDEAD9E9BB94BDBD97BFBE99C0BF9BC2C09DC3C3A0C5A8A4BA -5BA4A161A7A49BCFCEA6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D65BA5A15CA5A1DBEDECDAEDECD8ECEAD7EBEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9 -D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D6EBEAD6EBEA -D7EBEAD9ECEBDAEDEC6E4F72532B57793C79864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -8643878643878643878642868543875E2F60532B577E577EC4A1C5C19EC3C09CC2BE9AC1BD97BF -BB95BEE0CBE0FFFFFEFFFFFEFFFFFEF3E7F1B68DB8B58CB7726194B58BB7B58CB7B48BB7B58CB7 -C5A4C7FFFFFEFFFFFEFFFFFEFFFEFDBD99C0C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFE -FBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2 -B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFEFD9C91BD9990BC988FBC988EBB756FA1857EAE -9A90BDB0A8CCFFFFFEFFFEFDFFFFFEFFFEFDABA1C8A197C1A39AC3A59CC4A79DC5AAA0C7ACA2C9 -68A5A55BA5A280BBB8A6D5D7A6D5D6A5D5D5A7D6D6A6D5D6A6D5D5A6D5D7A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D681BBB95CA5A19CC6C2DAEDECD9ECEBD7EBEAD7EBEAD6EBEAD5EBE9D3EAE9D3EAE9 -D2E9E9D1E9E8D2E9E9D1E9E7D2E9E8D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBEAD7EBEA -D7EBEAD8ECEBDAEDECA9AAC0402B6345336C535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905352914C407B412B63463067A398C0AAA0C7A89EC6A59CC5A49AC3 -A199C2ABA2C8FFFFFEFFFEFDFFFFFEFFFEFDB3A9CD9A91BD7B75A58079AA988EBB978FBC988FBC -978FBCFFFFFEFFFFFEFFFFFEFFFFFEBAB2D2AAA0C7AFA6CBB3ABCEBAB3D3C1B9D7E9E5F0FFFFFE -FFFFFEEAE7F19A96BB6B69984C53873F457BB5AFCDF7F6FAFFFEFDF6F5F9E9E9F3D8DFEED4DBED -D0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFECFDAECBDCEE5BCCDE5BCCCE5BCCDE67176A4 -BCCCE5BDCEE6F0F4F9FFFEFDFFFFFEFFFFFEEAEEF6C3D2E8C4D3E9C5D4E8C6D5EAC9D7EBC9D7EB -A2C3CA5AA3A061A8A5A2D2D2A6D5D6A7D6D6A6D5D6A5D5D5A6D5D6A6D5D6A7D6D5A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D65CA5A15CA5A1DAEDECD9ECEBD8ECEAD7EBEAD7EBEAD5EBE9D4EAE9D3EAE9 -D3EAE9D2E9E9D2E9E9D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D6EBEA -D7EBEAD8ECEBD9ECEBDAEDEC464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD384AAD386ACD380A4CE4C5694464B8C8486B6CAD7EBC8D6EAC6D6EAC5D4E9 -C4D3E9C3D2E8EAEEF6FFFFFEFFFFFEFFFEFDF0F3F9BDCDE5BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6 -BDCEE6BECFE7BFCFE7C1D1E8C3D3E9C5D4E9C8D6EACCD9ECD0DCEDD4DFEFD8E1F0E9ECF5FAFBFC -FFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BDCFE7BFD0E7C4D3E9F3F4F9FEFDFDFEFDFC -FDFDFCFFFDFCFFFEFDFFFFFEFFFEFCFFFDFCFFFDFCFFFEFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0DEE5F2FDFCFCFFFDFCFEFDFCFFFDFCFFFDFBFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F8 -F2F4F9F5F7FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDE0474D81FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938DB2FFFEFDFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF3F7FEF1F6FDF0F5FEEFF5FDEDF3FCEDF3FDEBF2FBE8F0 -9285AD9284ACFAE3EDFEEFF4FFFEFDFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CD -EAACCAE9A8C7E8A4C5E7A1C3E69FC2E69EC1E59CBFE49ABEE59BBFE49BBFE59CBFEEB9D2FFFFFE -FFFFFDFFFFFEFFFFFEE7A3C3E9A5C5E7A6C6E9A8C7EAABC9EBACCADAAEC65BA5A15AA4A09DCFCF -A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB9 -5CA5A19CC6C2DAEDECD9ECEBD8ECEAD7EBEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D1E9E8 -D1E9E7D1E9E7D1E9E7D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBE9D7EBEAD7EBEAD8ECEBD9ECEB -C1B0BB832E5B953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90953566832E5BB8708FEBAECBEAABC8EAAAC9E8A6C6E8A5C5E6A2C3FDEBF2 -FFFFFEFFFFFEFFFFFEF3CADEE49BBFE59CBF8C6999E499BDE399BEE399BEE399BEFAE4EEFFFFFE -FFFFFEFFFFFEF4CFE1E7A9C8E8AECBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4 -EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7 -F2E3EEFFFFFEFFFFFEFFFFFEDBC2DAB88FB9B78CB8B68DB8B68BB7B68CB7796597B78EB9F8EFF5 -FFFEFDFFFEFDFFFFFEDCC4DCBC96BEBD97BFBE9AC1C09CC2C29EC4C4A1C582A5AC5BA5A17BB8B7 -A7D6D5A5D4D5A5D5D6A5D5D6A6D5D6A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -5BA5A15CA5A1DBEDEDDAEDECD9ECEAD7EBEAD7EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9 -D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D6EBEAD7EBEAD8ECEAD9ECEB -DAEDEC6E4F72532B57793C79864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864386864387864286753A76542C5859305CC4A2C6C29FC4C19CC2BE99C0BE98C0BD97BFD4B8D4 -FFFEFDFFFFFEFFFEFDFFFEFDB68EB9A682AF80699BB58DB8B58BB7B38BB7B48AB6C6A5C8FFFFFE -FFFEFDFFFEFDFFFFFEBD99C0C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEA -D9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CB -C0B6D5FFFFFEFFFFFEFFFFFEFFFFFE9B92BE9A90BC988FBC988EBB8079AA7B74A5988FBCC4BAD8 -FFFEFDFFFFFEFFFEFDFAF9FBA197C1A299C2A59BC4A69DC5AA9FC6ABA0C79FA4C15BA5A262A8A4 -A2D2D2A5D5D5A7D6D5A6D5D7A6D5D6A5D5D6A7D6D7A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -81BBB95CA5A19CC6C2DAEDECD9ECEBD8ECEAD7EBEAD6EBEAD5EBE9D4EAE9D4EAE9D3EAE9D2E9E9 -D2E9E9D2E9E8D2E9E8D1E9E8D2E9E9D3EAE9D3EAE9D4EAE9D5EBE9D6EBEAD7EBEAD8ECEAD9ECEB -DAEDECAAAAC0402B6345336C535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -52529153518F535190545290432E67402C637E6D9BAAA1C8A99FC7A59CC5A59BC4A299C2A197C1 -F4F0F6FFFFFEFFFFFEFFFFFECAC1DC9990BC6A6799978FBC988FBC988FBC978DBB978FBCFFFFFE -FFFFFEFFFFFEFFFFFEBAB2D2AAA1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E6F0FFFFFEFFFFFE646494 -3F457B3E457B3E457B3E457B474D82B6AECAFFFFFEF6F5F9E8E9F3D8DFEED4DBEDD0D9EBCDD7EA -CAD6EAFFFFFEFFFFFEFFFFFEFFFEFDCFDAECBDCEE6BCCDE5BCCCE4BCCCE5787EAABDCEE6BDCEE6 -FFFFFEFFFFFEFFFEFDFFFFFED9E3F1C3D2E8C4D3E9C5D4E9C8D6EAC9D7EBCAD7EB80B4B55CA5A2 -81BBB9A5D5D6A6D5D6A6D5D6A6D5D6A6D5D5A7D6D6A5D5D6A5D4D6A7D6D5A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D65CA5A15CA5A1DBEDECDAEDECD9ECEBD8ECEAD7EBEAD5EBE9D4EAE9D4EAE9D3EAE9D2E9E9 -D2E9E9D2E9E9D2E9E8D2E9E8D2E9E9D3EAE9D3EAE9D4EAE9D4EAE9D5EBE9D6EBEAD8ECEAD8ECEB -DAEDECDBEDEC464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -86ABD385ABD385ABD385ABD36C83B7484B8B545996CAD7EBC8D6EBC6D5EAC6D6EAC4D3E9C3D3E9 -DEE5F2FFFFFEFFFFFEFFFFFEFCFBFCBDCFE7BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BDCEE6BECFE7 -BFCFE7C1D1E8C3D3E9C5D4E9C8D6EACCD9ECD0DCEDD4DFEFD8E1F0E9ECF5FAFAFCFFFFFEFAFBFC -F5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BFCFE7BDD0E7BFCFE7BDCFE7BECFE7C4D3E9F3F3F8FEFDFDFEFDFCFEFDFC -FDFDFCFFFDFCFEFDFCFFFEFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D7E1F0E1E7F3FCFCFCFFFDFCFEFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F0F3F9F2F3F8F1F3F9 -F7F8FBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED6696695FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFD9B9C9B3A3A399A9B9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE938DB2938CB2FFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEFF4FDEDF3FDEBF1FCEAF2FCE8F19285AD9284AC -FAE4EEFDEEF4FFFFFDFFFFFEFEF5F8FCE7F0FAE2EDF9DDEAF9DBE8F8D7E6F7D5E5F6D3E3F6D1E2 -F6D0E1F5CEE0F4CCDFF4CADEF4C9DDF3CADEF4C9DDF3CADEF4CADEFAE3EDFFFFFEFFFFFEFFFFFD -FDEBF2E7A3C4E8A5C5E9A7C7E9A8C8EAABC9EBADCBBAADB95BA5A274B3B1A5D5D5A7D6D6A6D5D7 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19CC6C2 -DBEDECD9ECEBD8ECEBD7EBEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D2E9E8D1E9E7 -D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBEAD7EBEAD7EBEAD9ECEBDAEDECC1B0BB832E5B -953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4E90CF4C8F -CF4D8FB03F79842F5C99476FECAECBE9ABC9EAAAC9E8A7C7E9A5C5E6A3C4FADFEBFFFEFDFFFFFE -FFFFFEFAE4EEF3CADEF2C8DC8F7AA6F3C9DDF4C8DDF2CADEF3C9DDFEF1F6FFFFFEFFFFFEFFFFFE -F4CFE1E7A9C8E8ADCBEAB3CFEBB7D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1 -E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFE -FFFFFEFFFFFEEFDFECDAC0D9D9C0D9DAC0D9D8BED9D9C0D97B6F9DD9C0DAFFFFFEFFFFFEFFFFFE -FFFFFECBABCCBC96BEBE98BFBE99C1C09CC2C29FC3C4A1C565A5A35AA5A198CBCBA6D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65BA5A15CA5A1 -DCEEEDDAEDECD9ECEBD8ECEAD7EBEAD6EBEAD4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D1E9E8D2E9E8 -D2E9E8D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBDBEDEC6E4F72 -532B57793C79864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387854286864387 -854387864387572D5A542C58AA84A9C39EC4C09CC2BF9BC1BE98C0BD96BECBACCDFFFFFEFFFFFE -FFFFFEFFFFFEDAC0D9AD99BEAD99BDD9BFD9D8C0D9D8BED9D8BFD9E2CEE2FFFFFEFFFFFEFFFFFE -FFFEFDBD9AC1C19EC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1 -D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFE -FFFFFEFFFFFEFFFFFECBC1DCCBC1DCCBC0DBC9C0DBCABFDA7F79A6CBC1DCE5DEEDFFFEFDFFFFFE -FFFFFEE6DFEDA197C1A198C2A59CC4A69DC5A99FC6ABA2C887A4B35CA4A177B5B3A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D5A7D6D7A6D5D7A5D5D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A1 -9DC6C2DBEDECD9ECEBD8ECEAD7EBEAD6EBEAD5EBE9D4EAE9D4EAEAD3EAE9D2E9E9D2E9E9D2E9E9 -D2E9E8D1E9E8D2E9E9D3EAE9D3EAEAD4EAE9D5EBE9D6EBEAD8ECEAD8ECEBD9ECEBDAEDECAAAAC0 -402B6345336C535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190545290525190 -5351905351904B3E79412B63625182ACA2C8A99FC6A79DC5A49BC4A49AC3A197C1E6DFEDFFFFFE -FFFFFEFFFEFDE6E0EDCAC1DC746F9EC9C0DBC9C0DBC9BFDACAC0DBC9C0DBFFFFFEFFFFFEFFFFFE -FFFFFEBAB2D2AAA1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFE938EB33E447B3E467B3E457B -3F457B3E457B3D457B484D81F2EEF4F6F5F9E8E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFE -FFFFFEFFFFFEFFFFFEE8ECF5DEE5F2DEE5F2DFE5F2DEE6F38485AED0D6E8E0E7F3FFFFFEFFFFFE -FFFFFEFFFFFED0DCEEC3D2E8C4D3E9C5D4E9C7D5E9C9D7EBCBD8EC5AA4A15BA5A19CCECEA6D5D6 -A6D5D6A5D5D5A7D5D6A6D5D7A5D5D6A6D5D5A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A1 -5CA5A1DCEEEDDAEDECD9ECEBD8ECEAD7EBEAD5EBEAD4EAE9D4EAE9D3EAE9D2E9E9D2E9E9D2E9E9 -D2E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAEAD4EAE9D5EBEAD6EBEAD8ECEAD8ECEBDAEDECDBEDED -464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386ABD3 -86ACD385ABD385AAD2464C8D474B8BB7C0DDC9D8EBC8D6EAC6D6EAC4D2E8C4D4E9D0DCEEFFFFFE -FFFFFEFFFFFEFFFFFEDEE6F3DFE5F2DEE5F2DEE5F2DEE6F3DEE5F2DEE6F3DFE7F3E0E7F3E1E7F3 -E2E9F4E3E9F4E5EAF4E7ECF5E9EDF6ECEFF7EDF0F7F5F6FAFAFBFCFFFFFEFBFBFCF5F6FAF0F2F8 -F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BFCFE7BECFE7BFCFE7BED0E7CBD8EBFAFAFBFEFDFCFFFDFBFEFDFCFEFEFC -FFFDFBFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D7E1F0D8E2F0D8E1F0E5EBF5FFFEFCFFFEFCFFFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F0F3F9F9FAFB -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686696FFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEBEBEBEBEBEBEFFFFFEFFFFFEFFFFFEB2B2B2181717 -9B9C9BE4E2E2FFFFFEF3F1F09A9B9BF3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFEF3F1F09A9B9BF3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE928CB2938CB2FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF3F7FEF2F6FDF1F6FDF0F5FDEEF4FDEEF4FDECF3FCEAF2FCE9F09185AD9184ACFAE4EDFDEDF3 -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFEFDFBE6EFE7A3C4 -E9A5C5E7A6C6E9A9C7EAABCAEBADCAA8ABB55AA4A181BBB8A5D5D6A7D6D6A6D5D5A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19DC6C2DBEDECD9ECEB -D8ECEBD7EBEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D2E9E9D1E9E7D2E9E9D2E9E9 -D2E9E9D3EAE9D3EAE9D4EAE9D6EBEAD7EBEAD7EBEAD9ECEBDAEDECC2B1BB832E5B953466CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4C8FCF4E90CF4D90BB4380 -842E5B8E3A65EAADCBEAABCAEAA9C8E9A8C7E8A6C6E7A3C4F5CDE0FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEC6BFD7BAB1CCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF4CFE1E7AAC9 -E8AECBE9B2CEEBB7D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7 -F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE928DB2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCBACCD -BC96BEBD97BFBF9AC1BF9CC2C39EC4C4A1C65BA5A15CA5A1A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DCEEEDDAEDEC -D9ECEBD8ECEAD7EBEAD6EBEAD4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D1E9E8D2E9E8D2E9E8D1E9E8 -D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBDBEDEC6E4F72532B57793C79 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864286864387864286 -613163542C57A17CA2C3A0C4C19CC2BF9AC1BE99C0BD97BFBE9BC2FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEC7BED6C7BED5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEBD9AC1 -C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0 -E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938CB2FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE6DFED -A197C1A399C3A59AC3A79DC5AA9FC6ABA1C87EA5AF5BA5A181BBB9A6D5D5A7D6D6A6D5D6A6D5D6 -A6D5D7A6D5D6A5D5D6A7D6D6A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19DC6C2DBEDEC -D9ECEBD8ECEBD8ECEAD6EBEAD5EBE9D4EAE9D4EAEAD3EAE9D2E9E9D2E9E9D2E9E9D2E9E8D2E9E9 -D2E9E9D3EAE9D3EAEAD4EAE9D5EBE9D6EBEAD8ECEAD8ECEBD9ECEBDAEDECAAAAC0402B6345336C -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190525190535190545190535190 -4F4684402B63574275AAA1C8AAA0C7A79DC5A59BC4A39AC3A198C2E1DAEBFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFE928CB1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEBAB2D2 -AAA1C8AFA7CBB3ABCEB9B2D2C1B9D7E9E5F0FFFFFE5055873F467B3E457B3E457B3E457B3E447A -3F457B3E457BACA4C4F6F5F8E8E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDC6BDD4C7BFD7FFFFFEFFFFFEFFFFFEFFFFFEFEFEFD -CBD8EBC3D2E8C4D3E9C5D4EAC7D5EAC9D7EBB5CEDA5BA5A166ABA8A6D5D5A6D5D6A5D4D5A7D6D6 -A5D5D5A6D5D5A7D6D6A6D5D7A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DCEEED -DAEDECD9ECEBD8ECEAD7EBEAD6EBEAD5EBE9D4EAE9D3EAEAD2E9E9D2E9E9D2E9E9D2E9E8D2E9E9 -D2E9E9D3EAE9D3EAE9D4EAEAD4EAE9D5EBEAD7EBEAD8ECEAD8ECEBDAEDECDBEDED464B8C464B8C -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386AAD284ABD385ABD3 -86ABD353609C474B8CA4AACFC9D7EBC8D6EAC6D5EAC4D3E9C4D3E9D3DEEEFFFFFEFFFFFEFFFFFE -FEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFBFBFCFFFFFEFCFBFCF5F6FAF0F2F8F1F3F9BCB8D2 -666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BFCFE7BECFE7BED0E7BECFE7BECEE6BECFE7CBD8ECFBFAFBFEFEFCFFFDFCFEFCFBFEFDFCFFFFFD -FEFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D7E0EFD8E1F0E7ECF5FFFEFDFFFDFCFFFEFCFFFDFCFFFEFCFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F2F4F9F2F4F9FAFBFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686796FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE282828676867FFFFFEFFFFFEFFFFFE9A9B9B3A3A39FFFFFEFFFFFE -FFFFFEA6A7A6181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEA6A7A6181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFD938CB23E447A3E467C3F457B3D457B3E457B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E457B3E457B3E457B3E467B3E457B3E457B3E457B3E457B3E457B -3E457B3E457B3E457B3E457B3E447B3E457B3E457B3E447B3E457B3E457B3E457B3E457B3E457B -3E457B3E447B3F457B3E457B3D457B3E457B3E457B3E457B3E457B3E447B3E467B3E457B3E447B -3F467B3D457B3F457A3E447B3E457B3E467B3E457B3E457B3E457B3E457B3E457B3E457B3E457B -3E447B3E447B3E467B3E447B3E467B3E447B3E457B696796FEFEFDFCE4EEE7A4C4E8A5C5E8A6C5 -EAA9C8EAABCAEAADCBA9ACB45CA5A180BBBAA7D6D7A5D4D5A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19DC6C2DBEDECD9ECEBD8ECEBD7EBEA -D6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D2E9E9D1E9E7D2E9E9D2E9E9D2E9E9D3EAE9 -D3EAE9D4EAE9D6EBEAD7EBEAD7EBEAD9ECEBDAEDECC2B1BB832E5B953466CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4E90CF4D90CF4D90CF4D90832E5B832E5B -EBADCBE9ABC9EAA9C8E8A7C7E8A4C5E7A3C4F4CDE0FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEC6BDD4 -C7BFD6FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4CEE1E7A9C8E8AECBE9B2CE -EBB7D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFE -F9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFEFD938CB2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFECBABCCBC96BEBE98C0 -BF9AC1C09CC2C29FC4C4A2C65BA5A15BA5A1A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DCEEEDDAEDECD9ECEBD8ECEA -D7EBEAD6EBEAD5EBE9D3EAE9D3EAE9D2E9E9D2E9E9D1E9E8D2E9E8D2E9E8D1E9E8D2E9E9D2E9E9 -D3EAE9D4EAE9D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBDBEDEC6E4F72532B57793C79864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387854286864387864286603162532C57 -936D93C19FC4C19CC2BF9BC1BE98BFBB96BEBC95BDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEC7BED6 -C6BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEBE98C0C09FC4C4A4C8 -C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFE -FFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFD938CB2FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEE7E0EDA197C1A198C2 -A59BC4A79DC5AAA0C7ABA1C874A4AA5BA5A194C8C7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5 -A6D5D6A6D5D6A5D5D5A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19DC6C2DBEDECD9ECEBD8ECEB -D8ECEAD6EBEAD5EBE9D4EAE9D4EAEAD3EAE9D2E9E9D2E9E9D2E9E9D2E9E8D2E9E9D2E9E9D3EAE9 -D3EAEAD4EAE9D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBDAEDECAAAAC0402B6345336C535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905351905351905452905351905251905351904D4783412B63 -564276ABA1C8AAA0C7A79CC4A59CC5A39AC3A198C2CDC4DEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -938CB2FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEB9B1D2AAA2C8AFA6CB -B4ABCEB9B2D3C1B9D7E9E5EFFFFFFE3F457B3D457B3E457C3E467B3F457B3E467B3E447B3E457B -938CB3F6F5F9E8E9F2D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDC6BED6C7BED6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC1D1E8C3D2E8 -C5D4E9C6D5EAC7D5EAC9D8EAB0C9D55BA5A26EAFACA6D5D7A6D5D6A7D6D6A6D5D6A6D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DCEEEDDAEDECD9ECEB -D8ECEAD7EBEAD6EBEAD5EBE9D4EAE9D3EAEAD2E9E9D2E9E9D2E9E9D2E9E8D2E9E9D2E9E9D3EAE9 -D3EAE9D4EAEAD4EAE9D5EBEAD7EBEAD8ECEAD8ECEBDAEDECDBEDED464B8C464B8C85ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386AAD285ABD385ABD355619C -474B8BA4AACFC9D7EBC6D6EAC7D5EAC4D3E9C3D3E9D2DEEEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFAFAFCFFFEFDFCFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FA -F5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7 -BECEE6BFCFE7BECFE7BECEE6BFCFE7DDE5F2FDFCFBFEFEFCFEFCFBFEFDFCFDFDFCFFFEFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E2F0D8E0EF -D8E2F0F4F4F8FFFEFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F3F9F2F4F9F1F3F9F2F4F9EFF3F8F1F3F9F1F3F9F0F3F9F1F3F8F1F5FAFEFDFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -696695FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEE5E3E3E5E4E4FFFFFEFFFFFEFFFFFE9A9B9B686969FFFFFEFFFFFEFFFFFEFFFFFE -CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9A9B9B676867FFFEFDFFFFFEFFFFFE -FFFFFECACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFE -938CB2938DB3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF0F5FDF1F6 -FDEDF3FDEEF4FDECF3FCEAF2FCE8F09285AD9284ACFBE4EDFDEEF4FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFAE4EEE7A3C4E8A5C5E9A8C7EAA9C8EAACCA -EBADCBA9ABB55BA5A181BBB9A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19DC6C2DBEDECD9ECEBD8ECEBD7EBEAD6EBEAD5EBE9 -D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D2E9E9D1E9E7D2E9E9D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9 -D6EBEAD7EBEAD7EBEAD9ECEBDAEDECC2B1BB832E5B953466CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90D04D90CF4D90CF4C8FC04584832E5B8E3964EBAFCCE9ABC9 -EAA9C8E8A7C7E7A5C5E7A3C4F4CCDFFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDC7BED5BAB1CCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4CFE1E7A9C8E8AECBE9B2CEEBB7D2ECBED6 -F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7 -D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBABCCBC96BEBD97BFBF9AC1C09CC2 -C29FC4C4A1C65BA5A15BA5A1A6D5D6A5D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DCEEEDDAEDECD9ECEBD8ECEAD7EBEAD6EBEA -D5EBE9D3EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E7D2E9E8D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9 -D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBDBEDEC6E4F72532B57793C79864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864286854287603062532B58A27CA2C4A0C5 -C19CC2BF9BC1BE98C0BD97BFBE9AC1FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEC7BED6C7BED6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDBD9AC1C29FC4C3A4C7C7AACBCCB0CF -DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEEC -CFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFE938CB3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE6E0EDA197C1A299C2A59AC3A79DC5 -AA9FC6ABA1C87EA5B05BA5A185BEBEA5D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A5D5D6 -A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19DC6C2DBEDECD9ECEBD8ECEBD8ECEAD6EBEA -D5EBE9D4EAE9D4EAEAD3EAE9D2E9E9D2E9E9D2E9E9D2E9E8D2E9E9D2E9E9D3EAE9D3EAEAD4EAE9 -D5EBE9D6EBEAD7EBEAD8ECEBD9ECEBDAEDECAAAAC0402B6345336C535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905351905452905351905351904E4582402B63574275ABA1C8 -AA9FC6A79DC5A59BC4A39AC3A198C2E0D9EAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB2FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDBBB2D2AAA0C7AFA7CBB4ABCEB9B2D3 -C1B9D7E9E5F0FFFFFE474E823E457B3E457B3F457B3D457B3F457B3D457B3F467BACA4C4F6F5F9 -E9E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC8BFD6C7BED5FFFFFEFFFEFDFFFFFEFFFEFDFFFFFECAD7EBC3D2E8C4D3E9C5D4EA -C6D5EAC9D7EBB6CEDB5BA5A167ABA8A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D7A6D5D6 -A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D65CA5A15CA5A1DCEEEDDAEDECD9ECEBD8ECEAD7EBEA -D6EBEAD5EBE9D4EAE9D3EAEAD2E9E9D2E9E9D2E9E9D2E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAEA -D4EAE9D5EBEAD7EBEAD8ECEAD8ECEBDAEDECDBEDED464B8C464B8C85ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD354619C464B8CA3AACF -C9D6EAC8D6EAC6D5EAC4D3E9C4D3E9D1DDEEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFAFBFCFFFFFEFAFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FA -F6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BED0E7BDCFE7 -BECFE7BED0E7C6D5EAFAFBFCFEFEFCFDFDFCFEFEFCFFFDFCFFFDFCFFFEFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD8E1F0D8E1F0E2E9F4FFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F1F3F9F2F4F9F0F3F9F1F3F9F1F3F9F1F4F9F9FAFBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCACACAC9F3F1F0FFFFFEFFFFFEFFFFFE -D7D6D6D7D6D6FFFFFECACAC9D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7 -CACAC9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEE4E2E2CACAC9E5E3E3FFFFFEFFFFFEFFFFFE -D7D6D6D8D7D7FFFFFEFFFFFED7D6D6828383515252CBCBCAE5E3E3FFFFFEF3F1F0CACAC9F3F1F0 -FFFFFEFFFFFEFFFEFDFFFFFEE5E3E3CACAC9E5E3E3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7D6D6 -CACAC9E5E3E3FFFEFDFFFFFEFFFFFED6D6D5828383515252CACAC9E4E2E2FFFFFEF3F0F0CBCBCA -F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3CACAC9E5E4E4FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3 -CACAC9FFFFFEE5E3E3CACAC9E5E4E4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD938CB2938DB2 -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3 -FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFEFDFFFFFEFFFAFBFEF4F7FFF1F5FDEEF4 -FEEDF3FDEBF2FCEAF2FCE8F1FCE7F0FCE6EFFBE5EEFBE5EEFBE4EEFBE3EDFAE3EDFBE2EDFBE3ED -FBE3EDFEF1F6FFFFFEFFFEFDFFFFFEFCEBF2E7A3C4E8A5C5E9A7C7E9A8C8EAABCAEBAECBB2ACB7 -5BA5A174B3B0A6D5D6A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6A6D5D7A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D681BBBA5CA5A19DC6C2DBECEBD9ECEBD8ECEBD8ECEAD6EBEAD5EBE9D4EAE9D3EAE9 -D3EAE9D2E9E9D2E9E9D2E9E9D1E9E7D2E9E9D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBEAD7EBEA -D7EBEAD9ECEBDAEDECC1AFBA832F5C953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D90CF4E90CF4D90CF4D90 -CF4D8FCF4D90CF4D90CF4D90CF4D90CF4D90B13F79832E5B9A4870EAAECBEAACCAEAA9C8E8A7C7 -E9A5C6E7A3C4FADFEBFFFFFEFFFEFDFFFFFEFEF1F6FAE3EDECD3E49283ACFAE3EDFAE4EEFAE3ED -FAE3EDFFF8FAFFFFFEFFFEFDFFFFFEF4CFE1E7AAC9E8AECBE9B2CEEBB7D2ECBED6F6E1ECFEF8F9 -FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1 -CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEF8EFF5EEDEECEDDDEBEEDEECEDDDEBEEDDEB -8178A4EEDEECFFFFFEFFFFFEFFFFFEFFFFFECBABCCBC96BEBD97BFC09AC1C09CC2C29EC4C4A1C6 -65A5A35BA4A198CBCBA6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D55CA5A25BA5A1DCEDECDAEDECD9ECEBD8ECEAD7EBEAD6EBEAD4EAE9D3EAE9 -D3EAE9D2E9E9D2E9E9D1E9E8D2E9E8D2E9E8D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D6EBEA -D7EBEAD8ECEBD8ECEBDBECEB6E4F72532B57793C79864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864286854286 -854287864387854287864387854287864387864387572D5A532C57AB86ABC29FC4C19CC2BF9BC1 -BE99C0BD97BFCBACCDFFFFFEFFFFFEFFFFFEFFFFFEEDDDEBBAABCAB9ABC9EDDEEBEDDDEBECDBEA -ECDCEBF2E5F0FFFFFEFFFFFEFFFFFEFFFFFEBD99C0C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0 -FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5 -BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFEE6DFEDE5DEEDE5DEECE4DEECE4DDEC -8882ABE5DEEDF3EEF5FFFEFDFFFFFEFFFFFEE6E0EDA198C2A299C2A59BC4A79CC5A99FC6ACA2C8 -87A4B35CA5A177B5B3A6D5D7A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A5D5D6A6D5D6A7D6D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D681BBB95CA5A29CC6C2DBEDECD9ECEBD8ECEBD8ECEAD6EBEAD5EBE9D4EAE9 -D4EAEAD3EAE9D2E9E9D2E9E9D2E9E9D2E9E8D2E9E9D2E9E9D3EAE9D2E9E9D4EAE9D5EBE9D6EBEA -D7EBEAD8ECEBD9ECEBDAEDECAAAAC0412B6345336C535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053529153518F5352914B3E79402B635C4A7CABA1C7AAA0C7A79DC5 -A59BC4A39AC3A198C2E7E1EEFFFFFEFFFFFEFFFEFDF3EEF5E5DEED7E78A4E5DFEDE5DEEBE4DDEC -E4DDECE4DEECFFFEFDFFFFFEFFFEFDFFFFFEBBB1D2AAA1C8AFA7CBB4ABCEB9B2D3C2B9D7E9E5F0 -FFFFFE938CB23E467B3E457B3E457B3E457B3E457B3D457B474E82F2EEF5F6F6F8E8E9F3D8DFEE -D4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFEF5F5F9F0F2F8F0F2F7F0F2F8F0F2F8 -8C89B0E1E2EEF0F2F8FFFFFEFFFFFEFFFEFDFFFFFED1DDEEC3D2E8C4D3E9C6D6E9C6D4E9C8D6EB -CBD8EB5BA5A15BA5A1A2D3D3A6D5D5A7D6D6A5D5D5A6D5D6A6D5D6A6D5D6A6D5D5A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A7D6D6A6D5D6A5D5D65CA5A15BA5A1DCEEEDDAEDECD9ECEBD8ECEAD7EBEAD6EBEAD4EAE9 -D4EAE9D3EAEAD2E9E9D2E9E9D3EAE9D2E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAEAD4EAE9D5EBEA -D7EBEAD8ECEAD8ECEBDAEDEDDBEDED464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD386ABD384AAD385ABD385ABD3464B8C464B8CB7C0DDC9D6EAC7D5EA -C6D6EAC4D3E9C4D4E9D2DDEEFFFFFEFFFFFEFFFFFEFFFFFEF0F3F9F0F3F9F0F2F8F1F3F9EFF2F8 -F0F2F8F0F3F9F0F3F9F1F3F9F2F4F9F2F4F9F2F3F8F3F3F8F4F6FAF5F5F9F6F7FAF7F8FBFAFBFC -FBFBFCFFFEFDFCFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FB -F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BECFE7BED0E7BECFE7BECFE7C4D3E9 -F3F4F9FEFDFCFEFDFCFEFDFCFEFDFCFFFDFCFFFEFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0E0E7F3FDFDFDFFFEFCFFFEFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9 -F1F3F9F1F3F9F2F4F9F1F3F8F8F8FBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4CDDF525689FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFED7D6D63B3B3A181717181717191818A6A7A6FFFFFEFFFFFE6869693A3A39 -3B3B3A181717181717676867F3F1F0FFFEFDFFFFFEFFFFFED7D6D63B3B3A1817171817173B3B3A -D7D6D6FFFFFEFFFEFDFFFFFE8283831918181817171817179B9C9BFFFFFEFFFFFE656666676867 -FFFFFEFFFFFE6768671817171918181817179B9C9BFFFFFECACAC9181717CACAC9FFFEFDFFFEFD -FFFFFE828383181717181717181717999A9AFFFFFEFFFFFEF4F2F1282828181717181717181717 -9B9C9BFFFFFEFFFEFD6869691817171817171817179A9B9BFFFFFECACAC9181717CACAC9FFFFFE -FFFFFEFFFFFE8E8F8F181717181717181717676867F3F1F0FFFFFEFFFFFE9A9B9B181717767676 -181717181717181717999A9AFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2928DB3FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2 -FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFEFDFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0 -EBB0CDEAACCAE9A8C7E8A4C5E7A1C3E69FC2E59DC0E59CBFE49BBFE59CC0E49ABEE69BBFF0BED6 -FFFFFEFFFFFEFFFEFDFFFFFEE6A2C4E9A4C5E8A7C6E9A8C8EAABCAEBACCADBAEC65BA5A15BA5A2 -A3D3D1A5D5D6A6D5D6A5D5D6A7D6D6A6D5D5A6D5D7A5D5D6A7D6D6A6D5D5A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -81BBB95CA5A19CC6C2DBEDECD9ECEBD8ECEAD8ECEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9 -D2E9E9D2E9E8D1E9E7D2E9E9D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBEAD6EBEAD7EBEAD9ECEB -D9ECEBC1B0BB832E5B953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90D04D90CF4D90CF4C8FCF4D90CF4D90 -CF4D90CE4C8FCF4D90CF4D8F953466832F5BB76F8FEBADCBEBACC9EAA9C8E8A6C6E8A5C5E7A3C4 -FEECF2FFFFFEFFFFFEFFFFFEF3CADEE59CBFE49BBF8C6A9AE499BEE399BEE399BEE299BDFAE3ED -FFFEFDFFFFFEFFFFFEF4CFE1E7A9C8E8AECBE9B2CEEBB7D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1 -EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CA -C6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDBC2DAB88EB9B78EB9B68CB7B68BB7B68CB7796698B78EB9 -FCF7F9FFFEFDFFFEFDFFFFFEDCC5DDBD96BEBD97BFBE9AC1C09BC1C29EC4C3A0C581A5AC5BA5A1 -82BBB8A5D5D6A7D6D6A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A7D6D6A5D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A5D5D65CA5A15CA5A1DCEEEDD9ECEBD9ECEBD7EBEAD7EBEAD6EBEAD4EAEAD3EAE9D3EAE9D2E9E9 -D2E9E9D1E9E8D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D6EBE9D6EBEAD8ECEB -D9ECEBDBEDED6E4F72532B577A3C7A864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864386854287854287864387864387864387854287 -864387864386864387854387793C79542C585A315CC4A1C5C3A0C5C19CC2BE9AC1BE99C0BC96BE -CFB2D1FFFFFEFFFEFDFFFEFDFFFFFEB68DB89D7DAC806A9CB48BB7B58BB7B48BB7B58BB7C6A5C8 -FFFFFEFFFFFEFFFFFEFFFFFEBC99C0C29FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FA -E6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCE -B1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFE9B91BC9B90BD9890BC988DBB8079A97570A29990BC -CAC0DBFFFFFEFFFEFDFFFFFEFAF8FAA197C1A299C3A59BC4A59CC4AAA0C7AAA0C79FA4C15BA5A1 -62A7A5A2D2D2A6D5D6A6D5D5A7D6D6A5D5D6A6D5D6A6D5D5A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D681BBB95CA5A19DC6C2DBEDECD9ECEBD8ECEBD7EBEAD6EBEAD5EBE9D4EAE9D4EAE9D3EAE9 -D2E9E9D2E9E9D2E9E8D2E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBE9D6EBEAD7ECEBD9ECEB -D9ECEBDAEDEDAAAAC0402B6346336C535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535291545190535190 -53519053529154529053529153519044316A402B627E6E9CABA1C8A99FC7A79DC5A59AC3A299C3 -A197C1F5F0F6FFFEFDFFFEFDFFFEFDCBC2DC9990BC6B6799988FBC988FBC988FBC978EBB988FBC -FFFFFEFFFEFDFFFFFEFFFFFEB9B1D2AAA1C8AFA6CBB4ABCEB9B1D2C1BAD8E9E5EFFFFEFCF2EEF5 -595B8D3E467B3E457B3D457B3F457B3F457BA8A1C2FFFFFDF7F5F8E8E9F3D8DFEED4DBEDD0D9EB -CDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFEFCCFDAECBDCEE5BCCDE5BCCDE5BBCCE5787EAABDCEE6 -BDCFE7FFFEFDFFFFFEFFFFFEFFFFFED9E3F1C3D2E8C5D4E9C5D4E9C7D6EAC9D7EBCAD7EB72ADAC -5BA5A186BEBCA5D5D6A6D5D7A7D6D6A5D5D6A7D6D6A6D5D5A6D5D6A5D4D5A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D65CA5A15CA5A1DBEDEDD9ECEBD9ECEBD8ECE9D7EBEAD6EBEAD4EAE9D4EAE9D3EAE9 -D2E9E9D2E9E9D2E9E9D2E9E8D2E9E9D2E9E9D3EAE8D3EAE9D4EAE9D4EAE9D5EBEBD6EBEAD8ECEB -D8ECEBDAEDECDBEDED464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD384AAD386ABD385ABD36C83B7464B8B565996CBD8EBCAD8EBC6D5EAC5D4E9C5D4E9 -C2D2E8DEE5F2FFFFFEFFFEFDFFFFFEFCFBFCBDCFE7BCCDE5BDCEE6BCCDE5BDCEE6BBCDE6BDCFE7 -BECFE7BFCFE7C0D1E8C3D3E9C5D4E9C8D6EACCD9ECD0DCEDD3DEEFD9E2F1E9EDF5FAFBFCFFFFFE -FAFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FB -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BED0E7BFCFE6BECFE7BECFE7ECEFF7FEFDFCFEFDFC -FEFDFCFEFDFCFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D7E1F0D8E1F0 -D9E2F1D7E1F0D8E1F0D8E1F0D8E1F0DAE3F1F8F8FBFFFDFBFFFEFCFFFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9F2F3F8 -F0F3F9F6F7FAFEFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFE7676763B3B3AE5E4E4FFFFFEBEBEBED7D6D6FFFFFEFFFFFE656666282828CACAC9FFFFFE -D7D6D6282828828383FFFFFEFFFEFDFFFEFD3B3B3A535353E5E3E3F3F1F0676867656666FFFFFE -FFFFFEA6A7A6181717B2B2B2FFFFFECACAC9D7D6D6FFFEFDFFFFFE676867676867FFFFFEFFFFFE -FFFFFE9A9B9B676867FFFFFEFFFEFDFFFFFECBCBCA181717CBCBCAFFFFFEFFFFFEA6A7A6181717 -B2B2B2FFFFFECACAC9D7D6D6FFFFFEFFFEFDFFFFFEBEBEBEF3F1F0FFFFFE828383181717F3F1F0 -FFFFFEFFFEFD9A9B9B676867FFFFFEFFFEFDFFFFFECBCBCA181717CBCBCAFFFFFEFFFFFEB2B2B2 -181717B2B3B3FFFFFECACAC92A2929828383FFFEFDFFFFFE9A9B9B181717767676E5E3E3FFFFFE -9A9B9B191818E5E3E3FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938CB2938CB3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD -9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D2E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAACCA -E9A8C7E8A4C5E7A1C3E69FC2E59CC0E59CBFE49BBFE59BBFE49BBFE59DC0EDB3CEFFFFFEFFFFFE -FFFFFEFFFFFEECB3CFE7A4C5E8A6C6E9A8C7EAAAC9EAACCAEAAECB85A8AB5CA5A17CB9B7A6D5D6 -A6D5D5A6D5D6A6D5D6A6D5D7A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D681BBB95CA5A1 -9CC6C2DBECEBD9ECECD8ECEAD7EBEAD6EBEAD5EBE9D3EAE9D3EAE9D2E9E9D1E9E8D2E9E9D1E9E7 -D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBE9D6EBEAD6EBEAD8EBEBDAEDECC2B1BB -822E5B953466CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D8FCF4D90CF4D90CF4D8FCF4D90CF4D8FD04D90D04C8F -CF4D8FBB4381832E5B842E5BD99AB9ECADCBEAABC9E9A8C8E8A7C6E8A4C4E8A3C4FFFEFDFFFFFE -FFFEFDFFFFFEF0BED6E49BBFE49BBF846596E299BDE299BDE39ABEE39ABEF9E2EDFFFFFEFFFFFE -FFFEFDF4D0E2E7A8C8E8AECBE9B2CEEBB7D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1 -EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EE -FFFFFEFFFFFEFFFFFEDCC2DBB88FB9B78DB7B68CB7B78CB89D7CAB886E9FB78EB9EEDDEBFFFEFD -FFFFFEFFFFFEE5D2E5BB94BDBD97BFBE99C0C09CC2C29EC4C3A0C5A3A5B85CA5A160A7A4A3D3D2 -A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D7A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D65BA5A1 -5CA5A1DBEDECD9ECEAD8ECEBD7ECEBD6EBEAD5EBE9D3EAE9D3EAE9D3EAE9D2E9E9D2E9E9D1E9E8 -D1E9E7D1E9E7D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D7EBEAD7EBEAD8ECEAD9ECEADAEDEC -6E4F72532B58793C79864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387854286864286864387864387864286864387 -864387864286603162532C58775078C4A1C5C19EC3C09CC2BE9AC1BD97BFBB96BEE1CBE0FFFEFD -FFFFFEFFFEFDF2E6F0B68EB9B58CB7726195B58BB7B48CB8B48BB7B58BB7C6A5C8FFFFFEFFFEFD -FFFFFEFFFEFDBE99C1C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0 -D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5 -FFFFFEFFFFFEFFFFFEFFFFFE9C92BE9A90BD988FBC988FBC7A73A48079A99990BDB1A8CCFFFEFD -FFFFFEFFFFFEFFFFFEABA2C8A298C1A49AC3A69DC5A89EC5AAA0C7ADA3C968A4A65CA5A281BBB9 -A6D5D6A5D5D7A6D5D5A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D681BBB9 -5CA5A19CC6C2DAECEBD9ECEBD9ECEAD7EBEAD6EBEAD5EBE9D3EAE9D3EAE9D3EAE9D2E9E9D2E9E9 -D1E9E7D2E9E8D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D6EBEAD6EBEAD8ECEAD9ECEBDAEDEC -A9AAC0402B6344326C535190535190535190535190535190535190535190535190545290535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190525291535190535190535190535190535190535190535190535190 -5251905351904D4480402B63473067A499C2AAA1C8A89EC6A69DC5A49BC4A198C2ABA2C8FFFEFD -FFFEFDFFFFFEFFFFFEB2A8CC9990BD7670A18079AA988EBB988FBC978EBB978FBCFFFEFDFFFDFC -FFFFFEFFFFFEBAB2D2AAA1C8AEA6CBB4ACCFB9B2D3C1B9D7E9E5F0FFFFFEFFFEFCEBE7F1908BB3 -61619361629273719EC1BCD6F7F5F9FFFFFEF6F6F9E8E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EA -FFFFFEFFFFFEFFFFFEFFFFFECFDAECBCCDE6BDCEE6BCCDE5BCCDE57076A4BCCCE5BDCEE6F4F6FA -FFFFFEFFFFFEFFFFFEE5EBF5C2D1E8C4D3E9C5D4E9C6D5E9C8D6EBCAD7EBA3C3CA5AA4A161A8A5 -A2D2D2A6D5D5A5D5D7A6D5D6A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -5CA5A15CA5A1DAEDEDD9ECEBD8ECEBD7EBEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9 -D1E9E8D1E9E7D2E9E9D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D5EBE9D6EBEAD8ECEAD8ECEBD9ECEB -DAEDEC464B8C464B8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD386ABD386ABD385ABD385ABD385AAD285ABD3 -85ABD385AAD284ABD34D5694474B8C8286B7CAD7EBC8D6EBC7D5EAC5D4EAC3D3E9C4D3E9EAEEF6 -FFFFFEFFFFFEFFFEFDF0F3F9BDCDE5BCCDE5BDCFE7BDCEE6BCCDE6BCCDE5BDCEE6BECFE7BFCFE7 -C1D1E8C3D3E9C5D4E9C8D6EACCD9ECD0DCEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFAFBFCF5F6FA -F0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFC -FAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BED0E7BECFE7BFCFE7BED0E7BECFE7E3E9F4FEFDFCFEFDFCFEFDFCFEFDFCFFFEFD -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0F8F8FBFFFDFCFFFFFDFEFDFCFFFDFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F9F4F6FAFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE676867 -505050FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFE8E8F8F -191818FFFEFDFFFFFECBCBCA181717BEBEBEFFFFFEFFFFFEBEBEBE181717D7D6D6FFFFFE505050 -767777FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD676867676867FFFEFDFFFEFDFFFFFE9A9B9B -676867FFFEFDFFFFFEFFFFFECACAC9191818CACAC9FFFFFEFFFEFD515252767676FFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA181717CACAC9FFFFFEFFFFFE -9A9B9B676867FFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE505050767676FFFFFE -FFFFFEFFFFFE8E8F8E191818FFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFFFEE4E2E2181717 -CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFD8781AB938DB2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8 -FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EE -FDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5 -E7A1C3E69FC2E59CC0E59CBFE49BBFE59BBFE49BBFE49BBFE69CBFFFFFFEFFFFFEFFFFFEFFFFFE -F4C9DDE7A4C5E8A5C5E8A7C7EAA9C8EBACCAEBADCBCAAFC05BA4A15BA4A193C8C7A6D5D6A6D5D6 -A7D6D6A6D5D7A5D4D6A6D5D6A6D5D5A6D5D7A7D6D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A19CC6C2DAEDEB -D8ECEBD8ECEAD6EBEAD5EBEAD4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E7 -D2E9E9D1E9E8D2E9E9D3EAE9D4EAE9D5EBE9D6EBEAD7EBEAD8ECEBD8ECEBC0B0BB832F5B963467 -CF4C8FCF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4E90D04D8FCF4D8FCF4D8FCF4D90CF4D8FCF4D8FCA498C8D3161 -822F5BA5587CEAADCBEAACCAEAAAC9E9A8C7E7A5C5E7A5C5EFBCD5FFFFFEFFFEFDFFFFFEFFFFFE -EAADCBE39BBFE59BBE836596E39ABEE398BDE399BEE39ABEFAE3EDFFFEFDFFFFFEFFFFFEF4D0E2 -E7A9C8E8AECBE9B2CEEBB7D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1 -EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFE -FFFFFED9C0DAB88FB9B78CB8B68DB8B68BB780699B9E7DACB78DB8D9C0DAFFFFFEFFFFFEFFFFFE -FCF8FABC96BEBC96BEBE98BFBF9BC1C19CC2C39FC4C4A2C673A5A85BA5A16FB0ADA6D5D7A6D5D6 -A5D5D6A6D5D6A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D65BA5A15CA5A1DAEDEB -DAEDECD7ECEBD6EBEAD6EBEAD5EBE9D4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7 -D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBEAD7EBEAD7EBEAD8ECEBD8EBEA6F4F72542C57 -783C79864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -8643878643878643878542868542878643878643878643878542868543878543878542866D366D -542C585A305CB58FB5C2A0C5C39EC4C19CC2BE99C0BD97BFBB95BDF4E8F1FFFEFDFFFFFEFFFFFE -E4CFE3B68DB8B58DB8726295B48AB6B58CB7B48AB6B58BB7C6A5C8FFFFFEFFFFFEFFFEFDFFFEFD -BD99C0C19FC4C4A3C7C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0 -D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFE -FFFFFEFFFFFE9C91BD9990BC9990BC988DBB646296978EBC998FBB9F95C0FFFFFEFFFFFEFFFFFE -FFFEFDC2B8D6A298C2A399C3A59BC4A79DC5AAA0C7ABA1C892A5B85BA4A15BA4A199CCCBA7D6D6 -A6D5D6A6D5D6A6D5D6A7D6D6A5D5D6A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A6D5D681BBB95CA5A19DC7C2 -D9ECEAD8ECECD6EBEAD7EBEAD6EBEAD4EAE9D3EAE9D3EAE9D2E9E9D1E9E8D2E9E9D1E9E7D1E9E7 -D1E9E8D2E9E9D2E9E9D3EAE9D3EAE9D4EAE9D5EBEAD6EBEAD7EBEAD8ECEBD9ECEAA9AAC0412B63 -45336C535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -53519053519053519053519053519053519053529153508F535291525190535190535190514F8D -412D65402B63716090ACA2C9AAA0C7A89EC6A59BC4A39AC3A199C2C3B9D7FFFFFEFFFEFDFFFEFD -FFFFFEA096C19890BD877FAF706B9D978FBC978EBB978FBC978FBCFFFFFEFFFFFEFFFEFDFFFFFE -BAB2D2AAA1C8AFA6CBB3ABCEB9B2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DEDCECDBD9EADCDCEC -DCDCECE5E4F0F7F5F9FFFFFEF6F5F9E9E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFE -FFFFFEFFFFFECEDAEBBDCEE6BCCDE5BBCBE4BCCDE57076A4BDCEE6BCCDE6E8ECF5FFFFFEFFFEFD -FFFFFEF9F9FBC3D3E9C4D3E9C5D4E9C6D5EAC8D6EACBD8EBCAD8EB6CACA95BA4A178B6B3A6D5D6 -A7D6D5A6D5D5A6D5D7A6D5D6A5D5D7A7D6D5A5D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6A5D5D65DA5A15DA6A2 -DAEDEBD9ECEBD8ECEBD7EBEAD6EBEAD5EBE9D4EAE9D3EAE9D3EAE9D2E9E9D2E9E9D1E9E7D1E9E7 -D2E9E9D2E9E9D2E9E9D2E9E9D3EAE9D4EAE9D5EBE9D7ECEBD7EBEAD7ECEBD9ECEBD9ECEB464B8C -464C8C85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD386ABD384AAD3 -5E6CA5464B8C4D5291C1CBE4CAD7EBC8D6EBC5D4EAC5D4E9C4D2E8C4D4E9F8F8FBFFFFFEFFFFFE -FFFFFEE4E9F4BDCFE7BDCEE6BCCDE5BDCEE6BCCDE6BCCDE6BDCEE6BECFE7C0D0E7C1D1E8C3D3E9 -C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD9E2F0E9EDF5FAFBFCFFFFFEFCFBFCF5F6FAF0F2F8F1F3F9 -BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFC -FBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BED0E7BECFE7BED0E7D8E1F0FEFDFCFEFDFCFDFDFBFEFDFCFEFDFCFFFEFDFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0 -F1F3F9FFFEFCFFFDFCFFFDFCFFFEFCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F1F3F9F3F6FAFCFCFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE3E447BF2EEF4FFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED6D6D52A2929505050 -CBCBCAFFFFFEFFFFFEFFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFEFDB2B2B2181717D7D6D6 -FFFFFE999A9A181717CACAC9CACAC9CACAC9B2B2B2181717C9C9C9FFFFFE1817179A9B9BFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE686969656666FFFFFEFFFFFEFFFEFD9A9B9B676867FFFFFE -FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDD8D7D79B9C9B9B9C9B9A9B9B181717CACAC9FFFFFEFFFFFE9A9B9B676867 -FFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE1918189A9B9BFFFFFEFFFFFEFFFFFE -CACAC9181717D8D7D7FFFEFD9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFE191818CACAC9FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE686695C7BED5FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFE -FFFFFEFCEAF2F6D3E3F3C6DBF0C0D8EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E69FC2 -E59CC0E59CBFE49BBFE49BBFE49BBFE59CBFE59CBFFBE3EDFFFEFDFFFEFDFFFFFEFCEAF2E7A3C4 -E8A4C5E8A7C6E9A8C8E9AAC9ECADCAEBAECB98ABB15BA5A161A8A48FC5C4A7D6D7A5D5D6A6D5D6 -A6D5D5A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BAB95BA4A09DC6C2D9ECECD7ECEBD7EBEA -D6EBEAD5EBE9D4EAE9D3EAE9D2E9E8D2E9E9D1E9E8D1E9E8D1E9E7D1E8E7D1E9E7D2E9E9D1E9E8 -D2E9E8D2E9E9D3EAE9D4EAE9D6EBEAD6EAEAD7EBEAD9ECEBC0B0BC822E5B943466CF4E90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90 -CF4D8FCF4D90CF4D8FCF4D90CF4D8FCF4C8FCF4E8FCF4D90C54788903364822F5B8F3A65E3A5C2 -EBADCBEAABCAEAAAC9E8A7C7E8A5C5E7A3C4FADAE8FFFFFEFFFFFEFFFFFEFEF1F6E49BBFE59CC0 -E49ABEA175A3C185AFE399BEE298BDE499BEFAE3EDFFFFFEFFFFFEFFFFFEF4CFE1E7A9C8E8AECB -EAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5 -FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DA -B88EB9B78DB8B58CB7B58BB76B5D90B58CB7B88EB9CCADCEFFFFFEFFFEFDFFFFFEFFFFFECEB1D0 -BD96BEBE98C0BF9AC1C09DC3C29EC4C4A1C5B4A5C065A5A35BA5A175B3B0A2D2D1A6D5D6A7D6D6 -A5D4D5A6D5D6A7D6D6A7D6D7A5D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D75BA5A15EA5A2DAEDECD9ECEBD7EBEA -D6EBEAD6EBEAD5EBE9D4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E7D1E8E7D1E8E7D1E9E8D1E9E8 -D2E9E9D2E9E9D3EAE9D4EAE9D5EBE8D7EBEAD7EBEAD8ECEBD9ECEB6E5072532C577B3D7B864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -8643878643878543878643878643878643878543878643878643876D366D542C57532C57926E95 -C3A1C5C19EC3C19CC2BF9BC1BE98C0BD96BEC7A6C9FFFFFEFFFFFEFFFFFEFFFEFDD0B3D1B58DB8 -B58DB8726195AE87B4B48BB7B48AB6B58BB7C7A5C8FFFFFEFFFEFDFFFEFDFFFEFDBC98C0C19FC4 -C5A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFED -FFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFE -9C92BE998FBC9890BC988EBB666295978FBB988FBC9990BDECE6F1FFFFFEFFFEFDFFFEFDE6E0ED -A096C1A399C3A59BC4A69DC5A99FC6ABA1C7ADA3C979A5AC5BA5A161A8A493C8C7A6D5D6A6D5D5 -A6D5D6A6D5D6A7D6D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D5A7D6D682BBB95CA5A19CC6C2D9ECEBD8ECEB -D7EBEAD7EBEAD5EBE9D4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E6D1E9E7D1E9E7D2E9E9 -D2E9E9D3EAE9D3EAE9D4EAE9D5EBE9D6EBEAD6EBEAD9ECEBD9ECEBA9AAC0412C6346346D545291 -545291545291545291545291545291545291545291545291545291545291545291545291545291 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -535190535190535190535190535190535190535190535190535190535190535190535190535190 -5351905351905351905351905351905252915451905351905352914E4987443069402B63513B70 -A599C2ACA2C7A89FC7A79DC5A59BC4A499C3A198C2DFD9EAFFFFFEFFFFFEFFFFFEEDE6F19990BD -9990BD978FBC656395988FBC978EBB978EBB978FBCFFFFFEFFFFFEFFFFFEFFFEFDBAB2D2AAA1C8 -AFA6CBB4ABCEB9B2D3C1B9D6E9E5F0FFFFFDFFFEFDEBE7F1E0DDECDBD9EBDCDBEADCDCECE5E4F0 -F7F5F9FFFFFEF6F6F9E8E9F3D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFEFD -CFDBEDBDCFE7BCCCE4BCCDE59FABCD858EB7BCCDE5BDCEE6D7E1F0FFFEFDFFFFFEFFFFFEFFFFFE -CED9ECC3D2E8C4D3E9C6D5EAC7D5EAC9D8EBCAD7EBB0CBD65CA5A15BA4A178B6B3A1D1D2A6D6D8 -A6D5D6A6D5D6A6D5D6A6D5D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A7D6D75BA4A05BA5A1DAEDECD9ECEB -D7EBEAD6EBEAD6EBEAD5EBE9D3EAE9D3EAE9D2E9E9D1E9E9D1E9E8D1E9E7D1E9E7D1E9E7D1E9E8 -D2E9E9D2E9E9D3EAE8D3EAE9D4EAE9D6EBEAD5EBEAD6EBEAD8ECEBDAEDEC464B8C474C8C86ABD3 -86ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD3 -86ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD3 -86ABD386ABD386ABD386ABD386ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD385ABD3 -85ABD385ABD384AAD385ABD385ABD385ABD385ABD385AAD285ABD384AAD35E6CA5474B8B474B8C -9CA1C9CAD7EBC9D7EBC8D6EAC6D5EAC4D3E9C4D4E9D2DCEDFFFFFEFFFFFEFFFFFEFFFFFED2DDEE -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BDCEE6BDCFE7BFCFE7C1D1E8C3D3E9C5D4E9C8D6EA -CCDAECCFDBEDD4DFEFD8E1F0E8ECF5FBFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594 -F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6 -BED0E7CAD8EBFDFDFCFFFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D9E2F1D7E1F0EAEEF6FFFEFCFEFCFB -FFFFFDFFFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F4F9FBFCFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD5E5E8FC7BED6FFFFFDFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3828382181717767777 -F3F1F0FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFEFDCACAC9181717CACAC9FFFFFE9A9B9B -191818181717181717191818181717191818CACAC9FFFFFE1817179B9C9BFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFE9A9B9B686969FFFFFEFFFFFEFFFFFE -CACAC9181717CBCBCAFFFEFDFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -8485851817175152526869693A3A39181717CACAC9FFFFFEFFFFFE9A9B9B686969FFFFFEFFFFFE -FFFFFECACAC9191818CACAC9FFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFECACAC9181717 -C9C9C9FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686695C6BDD4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6 -FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFEFDFCEAF2 -F6D3E3F3C7DCF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E69FC2E59CBFE59BBF -E49BBFE49ABEE49BBFE59BBFE59CC0F1C3D9FFFFFEFFFEFDFFFFFEFFFFFEEEB8D2E7A4C5E8A6C6 -E8A7C7EAAAC9EAABC9EBAECBECAFCC85A8AB5CA5A25AA5A178B5B29ED0D0A6D5D5A6D5D7A6D5D5 -A6D5D6A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D681BBB95CA5A29BC5C1D8ECEAD8ECEAD7EBEAD5EBEAD4EAE9 -D5EBE9D3EAE9D2E9E8D2E9E9D1E9E8D1E9E8D1E8E7D1E8E7D1E9E7D1E9E8D1E9E8D2E9E9D2E9E9 -D3EAE9D4EAE9D5EBE9D5EBEAD7EBEAD9ECEBC0B1BB832F5B963567CF4E90CF4E90CF4E90CF4E90 -CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90 -CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4E90CF4D90CF4D90CF4D90 -CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4D90CF4E90 -D04D90CF4C8FCF4D8FCF4F91C9498CA83B72872F5E832E5B893460D391B0EBAECBE9ACC9EAABC9 -E9A8C8E8A7C6E8A4C5EAA9C8FFFFFEFFFEFDFFFFFEFFFEFDF8D6E6E49BBFE49BBFE49ABED993B9 -836596E398BDE499BDE39ABEFAE3EDFFFEFDFFFEFDFFFFFEF4CFE1E7A9C8E8AECBEAB3CFEBB8D2 -ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5 -EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DAB88FB9B68DB8 -B68CB7AC85B1726194B68BB7B68DB8B68DB8FBF7F9FFFFFEFFFEFDFFFFFEE9D8E8BB95BDBD96BE -BE99C0BF9BC2C19DC3C3A0C4C4A1C5A2A6B75CA4A15BA5A166ABA88BC2C0A5D5D5A7D6D6A6D5D6 -A5D5D6A7D6D7A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A7D6D6A5D4D55DA6A25DA5A1D9ECEBD8ECEBD7EBEAD5EBEAD5EBE9 -D4EAE9D3EAE9D2E9E8D1E9E7D2E9E9D1E9E8D1E9E7D1E8E7D1E8E7D1E9E8D1E9E7D2E9E9D2E9E8 -D3EAE9D4EAE9D5EBE9D5EBEAD6EBEAD7ECEBD9ECEA6E5073542C58793C79864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387864387864387 -864387864387864387864387864387864387864387864387864387864387864387854286854386 -864387864387864387854286864387793C79603162532B57532B57785179C4A2C6C3A0C5C39EC4 -BF9BC1BE9AC1BD97BFBB95BEE5D2E4FFFFFEFFFFFEFFFEFDFFFFFEBA94BDB58DB8B58CB79B7BAA -866D9FB58CB8B48AB6B48BB7C5A4C8FFFEFDFFFFFEFFFFFEFFFEFDBE9BC2C19EC4C4A4C8C7AACB -CCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFE -E7DEECCFC4DDC3B7D5BCB1D2B6ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFD9C91BD9990BD -988EBB8C83B2706C9E988EBB988EBB998FBCCAC1DCFFFFFEFFFEFDFFFEFDFFFFFEACA2C9A199C2 -A49AC2A59BC4A89EC6AAA0C7AAA2C9AAA4C66DA5A85CA5A15BA5A178B6B39DCECFA6D5D5A6D5D6 -A6D5D6A5D5D6A6D5D5A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A5D5D681BBB95EA5A19CC6C2D9ECEBD7EBEAD6EBEBD6EBEA -D5EBE9D4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E8E7D1E9E7D1E9E7D1E9E8D1E9E8D2E9E9 -D3EAE9D4EAE9D4EAE9D6EBEAD6EBEAD7EBEAD8ECEBA9AAC0412C6346336C545291545291545291 -545291545291545291545291545291545291545291545291545291545291545291545291545291 -545291545291545291545291545291545291535190535190535190535190535190535190535190 -53519053519053519053519053519053519053519053519053519053519053519053519053518F -535291535190535190535190535190524F8D4A3B76422D65402B634B356B9D91BAABA1C7AAA0C7 -A89EC6A59CC4A49AC3A198C2AAA2C8FFFFFEFFFEFDFFFEFDFFFFFED0C8DF9990BD9990BC978FBB -5F5F929188B6978EBB978EBC988FBCFFFEFDFFFFFEFFFFFEFFFFFEB9B1D2AAA0C7AFA7CCB4ABCE -BAB2D3C1B9D7E8E4EEFFFFFEFFFEFDEBE8F2DEDCECDBD9EADCDBEBDDDBEBE5E4F0F7F5F9FFFFFE -F7F5F8E8EAF4D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFECEDAECBECEE6 -BCCDE5BBCBE47076A4A9B5D4BDCEE6BDCEE6C2D1E8FFFFFEFFFFFEFFFFFEFFFFFEE9EDF6C3D3E9 -C4D4E9C5D4E9C6D4E9C8D6EACAD7EBCCD9ECA2C3CA5BA5A15BA5A167ABA789C2C0A6D5D6A5D4D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6A6D5D6 -A6D5D6A6D5D6A6D5D6A6D5D6A7D5D7A6D5D6A6D5D55DA5A25DA5A1D9ECEBD8ECEBD6EBEAD6EBEA -D5EBE9D4EAE9D3EAE9D2E9E9D2E9E9D1E9E8D1E9E8D1E9E7D1E9E7D1E9E8D1E9E8D1E9E8D2E9E9 -D3EAE8D3EAE9D4EAEAD5EBE9D6EBEBD6EBEAD7ECEBD9ECEB484C8C484C8C86ABD386ABD386ABD3 -86ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD3 -86ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD3 -86ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD386ABD384AAD385AAD2 -86AAD285ABD385ABD385ABD385ABD385ABD3708ABB505B98464B8C464C8C9398C3CBD8ECC9D7EB -C8D6EBC6D4E9C5D4EAC4D3E9C4D3E9E9EDF6FFFEFDFFFFFEFFFFFEFCFCFCBED0E7BDCEE6BCCDE6 -BDCEE6BCCDE6BCCDE6BDCEE6BDCEE6BDCFE7BFCFE7C0D1E8C3D3E9C5D4E9C8D6EACBD8ECCFDCED -D4DFEFD9E2F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FA -F6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BED0E7C6D4E9FAFBFC -FFFEFCFDFDFCFFFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E0EFD8E2F0D8E1F0D8E1F0D7E1F0D8E0EFE5ECF5FFFDFBFFFDFBFFFEFCFFFDFBFFFEFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F2F4F9F8F9FBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD696695 -C7BED5FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA272727767676FFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEA7A7A7181717F3F1F0 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE2828288E8F8FFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFECACAC9181717 -CACAC9FFFFFEFFFFFE2727278E8F8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED9D8D7181717A6A7A6 -FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFEFDCACAC9 -181717C9C9C9FFFFFEFFFFFE2727278F9090FFFFFEFFFFFEFFFEFDB2B2B2181717F3F1F0FFFFFE -9A9B9B181717FFFFFEFFFEFDFFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474D82 -E3DCE9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4 -FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DB -F0C0D7EFBBD4EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A2C3E69FC1E59DC0E59ABEE49BBFE49BBF -E49BBFE49ABEE59CBFE7A2C3FFFEFDFFFFFEFFFFFEFFFEFDFBE5EEE8A4C5E8A5C5E7A6C6EAA9C8 -E9AAC9EBACCAEAAECCECB0CDA0ACB35CA4A15BA5A159A3A16AAEAB70B0AC81BAB981BBB981BAB8 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB96FB0AD5DA5A196C3BECDE7E3CBE6E2CBE6E1C9E5E0C8E4DFC7E4DFC6E3DF -C5E3DEC5E3DEC5E3DEC5E3DEC5E3DEC4E2DDC5E3DEC5E3DEC5E3DEC5E3DEC6E3DEC7E4DFC8E4DF -C9E5E0CAE5E1CBE6E1CCE6E2B8ADB5822F5B8C3261A73C72A73C72A73C72A73C72A73C72A73C72 -A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72 -A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73C72A73B72A73B72 -A73B72A73B72A73B72A73B72A73B72A73B72A73B72A73B72A73B72A73B72A73B71A73B72A73B72 -9E386D953466842E5C822E5B842E5B924069DB9CB9EBAFCCEBADCBEAABCAEAA9C8E8A6C5E7A6C6 -E8A4C4F5CEE0FFFFFEFFFFFEFFFEFDFFFEFDECB3CFE49BBFE49BBFE499BDE499BE836596E398BD -E399BEE398BDFAE3EDFFFFFEFFFFFEFFFFFEF4CFE1E7A9C8E9AFCCEAB3CFEBB8D2ECBED6F6E1EC -FEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6 -D2B3D1CEADCDCAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DAB88FB9B78CB7B68BB7876E9F -9576A6B68DB8B68DB8B88EB9E3CFE3FFFFFEFFFFFEFFFEFDFFFEFDC8A5C8BC96BEBE98C0C09AC1 -C09CC2C29EC4C3A0C5C5A2C6B5A5C06CA6A55BA5A15BA5A162A7A56EAFAC7CB9B681BBB981BBB9 -81BBBA81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB980BBB982BBB95CA5A15CA5A1CFE7E3CCE6E2CBE6E1CBE6E1C9E5E0C8E4DFC7E4DF -C6E3DEC5E3DEC5E3DFC5E3DFC5E3DEC5E3DDC5E3DEC5E3DEC5E3DEC5E3DEC5E3DEC6E3DFC7E4DF -C8E4E0C8E4DFCAE5E1CBE6E2CDE7E36C4F72542C586734686D366D6D366D6D366D6D366D6D366D -6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D -6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D -6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6D366D6E366D6D366D6D366D -6D356D6031625A2E5D542B58542C5759315D946E94C4A2C5C4A1C5C19EC3C09CC2BF9BC1BE98C0 -BD96BEC3A1C6FFFDFCFFFFFEFFFFFEFFFFFEE7D5E7B78EB9B58DB8B58CB7B58BB76A5C90B48BB7 -B48AB6B58CB7C5A5C8FFFEFDFFFFFEFFFFFEFFFFFEBC98C0C1A0C5C4A4C8C7AACBCCB0CFDCC8DF -F0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DD -C3B7D5BCB1D2B6ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFE9C92BD9890BC988EBB666295 -8C83B2988EBB978FBC9990BCA59BC4FFFFFEFFFFFEFFFFFEFFFEFDDBD2E6A197C1A399C3A59BC4 -A69DC5A89EC6AAA0C7ACA3C9AAA5C780A6B05BA5A15CA4A15AA5A16BADAA75B4B180BAB882BCBA -80BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB96FB0AD5DA5A196C3BECEE7E3CCE6E1CBE6E1C9E5E0C8E4DFC7E4DF -C6E3DFC5E3DEC5E3DEC5E3DEC5E3DEC5E3DEC5E3DDC5E3DEC5E3DEC5E3DEC5E3DFC6E3DEC7E4DF -C8E4DFC9E5E0CAE5E1CBE6E1CDE7E3A1A7BB402B63432F674A3C764A3C764A3C764A3C764A3C76 -4A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C76 -4A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3C764A3B764A3B764A3B764A3B76 -4A3B764A3B764A3B764A3B764A3B764A3B764A3B764A3B764A3B764A3B76493B764A3B764A3B76 -493C7648346F44336B412B63402B62412B63584275A69BC3ADA3C9ABA1C8A89FC6A69DC5A59BC4 -A399C3A299C2DAD1E6FFFFFEFFFFFEFFFFFEFFFEFDA59CC49990BC978FBC988FBC8079A97570A2 -978EBB978EBC978FBCFFFFFEFFFFFEFFFFFEFFFFFEBBB1D2A9A1C8AFA6CBB4ABCEBBB3D3C1B9D7 -E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDDDBEBDCDBECE5E4F0F7F5F8FFFFFEF6F5F9E8E8F2 -D8DFEED4DBEDD0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFEFDCFDAECBCCDE5BCCCE5BCCDE5 -6F75A3BCCDE5BCCDE5BDCEE6BDCDE5E7EDF6FFFFFEFFFFFEFFFFFEFFFFFECAD7EBC3D2E8C4D2E8 -C6D6EAC7D5EAC8D6EBCAD7EACBD8ECAAC7CF63A8A55BA4A15BA5A161A8A570B0AD7CB8B681BBB9 -81BCB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB981BBB9 -81BBB981BBB981BBB981BBB981BBB85DA5A25DA5A1CEE7E3CCE6E2CBE5E0CAE5E1C9E5E0C8E4DF -C7E4DFC6E3DEC5E3DEC5E3DEC5E3DEC5E3DEC5E3DDC5E3DEC5E3DEC5E3DEC5E3DEC6E3DEC7E4DF -C7E4DFC8E4DFCAE5E1CBE6E1CCE6E2CDE6E2474C8C474C8C6677AD6677AD6677AD6677AD6677AD -6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD -6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD -6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6677AD6678AE6577AD6577AD -6577AD6171A954619C495090464C8C464B8C4D52919498C3CDD9ECCAD8EBC9D7EBC7D5EAC6D6EA -C4D3E9C4D2E8C9D8EBFFFFFEFFFFFEFFFFFEFFFEFDE8EDF6BDCDE5BDCEE6BDCEE6BCCDE5BCCEE6 -BDCEE6BCCDE6BDCEE6BDCFE7BFCFE7C0D1E8C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0 -E9ECF5FAFAFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7C3D2E8F3F5F9FEFDFCFEFDFCFEFDFC -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0E1E8F4FCFBFCFFFDFCFEFDFCFFFDFCFEFEFCFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F0F3F9 -F7F8FBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE7E78A3948DB3FFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8F282828FFFFFEFFFEFD676867 -676867FFFEFDFFFFFEFFFFFE676867535353FFFFFEFFFFFEE4E2E2181717A6A7A6FFFFFEFFFFFE -FFFFFEF3F1F0FFFFFEFFFFFE8283833B3B3AF3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFEFDCACAC9181717CACAC9FFFFFE -FFFFFE8283833B3B3AF4F2F1FFFFFEFFFFFEFFFFFEFFFFFECACAC9181717BEBEBEFFFFFEFFFFFE -BEBEBE191818CACAC9FFFFFEFFFEFD9A9B9B191818FFFFFEFFFFFEFFFFFECACAC9181717CACAC9 -FFFFFEFFFFFE8384843B3B3AF3F1F0FFFFFEFFFFFE6768673B3B3AFFFFFEFFFFFE9A9B9B191818 -FFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3E457BFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3 -FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCE9F1F6D3E3F3C7DBF0C0D7EFBBD4 -EDB5D0EBB0CDEAABCAE9A8C7E8A4C5E7A1C3E69FC1E59CC0E49BBFE39BBFE49ABEE49ABEE49ABE -E59BBFE59CBFF8D7E6FFFEFDFFFFFEFFFFFEFFFFFEEEB8D2E7A3C4E8A6C6E8A7C7EAAAC9EAABC9 -EBACCAEBAFCCEBB0CDCBB1C28DAAAE5CA5A25BA5A15BA5A15BA4A15BA4A05BA5A15BA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A18FC1BBC1E1D9BFE0D8BFE0D8BDDFD7BCDED5BADED6B9DDD6B9DDD4B8DDD4 -B8DCD3B8DCD4B8DCD4B7DCD3B7DCD4B8DCD4B8DCD4B8DDD4B9DDD5BADED5BBDED6BCDED6BEDFD7 -BFE0D8C0E0D9B1AAB1832F5B832F5B832E5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B -832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B -832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832F5B832E5B -832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B832E5B842E5B822E5B832E5B832E5B -832E5B934069BE7998EBB1CDEBAFCCEBADCAEAABCAEAAAC9E8A7C7E8A5C5E8A4C5EBAFCCFFFFFE -FFFFFEFFFFFEFFFFFEFDEBF2E49BBFE49BBFE49ABEE499BEE298BDAC7AA6A274A2E399BDE39ABE -FAE3EDFFFFFEFFFFFEFFFFFEF4D0E2E7A9C8E8ADCBEBB4CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFE -F8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCD -CAA8CAC6A3C7F2E3EEFFFFFEFFFFFEFFFFFEDAC1DAB88EB9B78CB8B58BB763598DB58BB7B58BB7 -B68DB8B68DB8BF9AC1FFFFFEFFFFFEFFFFFEFFFFFEEFE0ECBC95BDBD97BFBE99C0C09BC1C09CC2 -C29EC4C3A0C5C5A2C6C0A5C595A6B36DA5A55BA5A15CA4A15BA5A15BA5A15BA5A25CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15DA5A1C2E1D9C1E1D8BFE0D8BEDFD7BCDED6BBDED6BADED5B9DDD5B9DDD5 -B8DDD3B8DCD3B8DCD4B8DCD3B8DCD3B8DCD3B8DCD3B8DDD4B9DDD4BADED5BBDED5BCDED5BEDFD7 -BFE0D8BFDFD7C1E0D86A4F71542C58542C58542C58542C58542C58542C58542C58542C58542C58 -542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58 -542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58542C58 -542C58542C58542C58542C57542C57532B57532B57532B57532B58542C58542C57532C58542B58 -532B575A315D785179B490B5C5A3C7C4A1C6C39FC4C19DC3BF9BC2BE99C0BD97BFBB95BEEAD7E8 -FFFFFEFFFEFDFFFFFEFFFFFEC7A6C9B58DB8B58DB8B68CB7B38BB77764969D7BAAB48AB6B48BB7 -C5A4C8FFFEFDFFFFFEFFFEFDFFFFFEBD99C0C19FC4C4A3C7C7AACBCCB0CFDCC8DFF0E5F0FFFFFE -FBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2 -B6ABCEB1A6CBC0B6D5FFFFFEFFFFFEFFFFFEFFFFFE9C92BE998FBC9189B7656295988EBB988EBB -988FBC988FBC9A90BDE4DEECFFFFFEFFFFFEFFFFFEFFFFFEB7ADCFA198C2A49AC3A59CC4A79DC5 -AAA0C7AAA0C7AEA3C9AFA6CB9DA6C07AA6AD5CA5A25BA5A15BA4A15BA5A15BA5A25CA5A15BA5A1 -5BA5A15BA5A15BA5A15BA5A15BA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A25CA5A25CA5A25DA5A190C1BBC2E1D9C0E0D8BFE0D8BDDFD7BCDED6BADED6BADED5B9DDD4 -B9DDD3B8DCD4B8DCD4B8DCD4B8DCD3B8DCD4B8DCD4B8DDD4B9DDD5B9DDD5BADED6BBDED6BDDFD6 -BEDFD7BFE0D9C1E0D899A4B6412C63412C63412C63412C63412C63412C63412C63412C63412C63 -412C63412C63412C63412C63412C63412C63412C63412C63412C63412C63412C63412C63412C63 -412C63412C63412C63412C63412C63412C63412C63412C63402B63402B63402B63402B63402B63 -402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63402B63 -412B63402B62513B707F6F9BAFA5CAADA3C9ABA1C7AAA0C7A89DC5A59CC5A49AC3A198C2B0A6CB -FFFFFEFFFEFDFFFEFDFFFFFEE5DEED9890BD9890BC978FBC978EBC978EBB53558A968EBB988EBB -9890BCFFFFFEFFFEFDFFFFFEFFFEFDBAB2D3AAA0C7AFA6CBB4ABCEBAB2D3C1B9D7E9E6F0FFFFFE -FFFFFEEBE7F2DFDDECDBD9EBDBDAEBDCDCECE5E3F0F7F6FAFFFFFEF6F5F9E8E9F3D8DFEED4DBED -D0D9EBCDD7EACAD6EAFFFFFEFFFFFEFFFFFEFFFFFECEDAECBDCDE5BCCDE5878FB88D97BDBCCDE5 -BCCCE5BDCEE6BCCDE6CEDAECFFFFFEFFFEFDFFFFFEFFFFFEEEF1F8C3D2E8C4D3E9C5D4E9C6D5EA -C7D5EAC9D8EBCAD8EBCBD8ECC5D6E696BDC16CABA95BA5A15BA4A15CA5A25CA5A25BA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A15CA5A1 -5CA5A15DA5A15CA5A15CA5A15CA5A1C2E1D9C1E1D8BFE0D8BDDFD7BCDED5BBDED6BADED5B9DDD5 -B8DDD4B8DDD4B8DCD4B8DCD4B8DCD3B8DCD4B8DCD4B8DCD4B8DDD4B9DDD5BADED5BADED6BCDFD7 -BEDFD7BFE0D8C0E0D9C2E1D9474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C -474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C -474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C -474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8C474C8D474C8C464B8C -474B8B474B8C4E52917E7EB1C2CCE4CDD9ECCAD7EBC9D6EAC6D6EAC6D6EAC5D4E9C4D3E9C3D3E9 -F2F3F8FFFFFEFFFFFEFFFEFDFFFFFECAD7EBBDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6 -BDCEE6BDCFE7BFCFE7C0D1E8C3D3E9C5D4E9C8D5E9CCD9ECCFDCEDD4DFEFD8E1F0E9ECF5FAFBFC -FFFFFEFAFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7EFF2F8FEFDFDFFFDFCFEFDFCFEFDFCFEFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD8E2F0 -D8E0EFDAE3F1FAFAFCFFFEFDFFFDFCFFFDFCFEFCFBFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F4F9F0F3F9F5F6FAFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB28882ABFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD676867828382BEBEBEA6A7A62828288E8F8FFFFFFEFFFFFE676867181717676867 -9A9B9B676867191818BDBDBDFFFFFEFFFFFEFFFFFE8E8F8F1817178283839A9B9B7676763B3B3A -FFFFFEFFFFFEE5E3E32828285353539A9B9B828383515252F3F0F0B2B2B23B3B3A3B3B3AB1B2B1 -FFFFFECACAC96768673B3B3A9A9B9BFFFFFEE5E3E3828383181717828383E5E3E3FFFFFEE5E3E3 -2828285152529A9B9B828383515252F3F1F0FFFFFE3B3B3A3B3B3A9A9B9B8E8F8F282828181717 -C9C9C9FFFFFEFFFEFDE5E3E3282828676867CACAC9E5E3E3828383181717828383E5E3E3FFFFFE -E5E3E32828285152529A9B9B676867181717BEBEBEFFFFFEFFFFFE999A9A181717FFFFFEFFFFFE -FFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BFD6525689FFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F1 -9285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CD -EAABCAE8A7C7E8A4C5E7A1C3E69FC1E59DC0E59BBFE49ABEE49ABEE49ABEE49ABEE49BBFE69CBF -E9A8C7FFFEFDFFFFFEFFFFFEFFFFFEFEF2F6E9A8C8E8A4C5E7A6C6E8A7C7EAA9C8EAACCAEBADCB -EBAFCCEBAFCCEBB1CDEDB3CFCBB2C3BBB1BEABAFB8AAAFB6ABB1B8A9B0B7AAB2B8AAB2B8ABB2B8 -ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB4BAABB4BAABB4BAABB4BAABB4BA -ABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB4BAABB3B9 -ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB3B9ABB2B8 -ABB3B9C2C0C8D9CFD8D9CFD8D8CED8D8CFD8D7CFD7D7CFD7D6CED7D5CED7D5CED7D4CED7D4CED7 -D4CED7D5CED7D4CDD6D4CED7D5CED7D5CED7D5CED7D6CED7D7CFD7D7CED8D7CED7D8CED8D9CFD9 -CFB3C3B36E8CB26E8CB26E8BB36E8CB36E8CB36E8CB36E8CB36F8CB36F8CB36F8CB36F8CB36F8C -B36F8CB36F8CB36F8CB36F8CB36F8CB36F8CB3708DB36F8CB36F8CB36F8CB36F8CB36F8CB36F8C -B36F8CB36F8CB36F8CB36F8CB36F8CB36F8CB36F8CB36F8CB36F8CB36E8CB36F8CB36E8CB36E8C -B36D8BB36E8CB36D8BB36D8BB36D8BB36C8BB26C8AB16C8BB26B8ABA7392CC8BA8DB9FBCEBB1CD -EBB0CDECAFCCEBADCBEAABC9EAABC9EAA9C8E8A7C6E8A5C5E7A3C4FBE7EFFFFFFEFFFFFEFFFFFE -FFFFFEEDB8D2E49BBFE49BBFE39BBFE499BDE399BDE499BD67568AE399BDE399BEFAE3EDFFFFFE -FFFFFEFFFFFEF4CFE1E7A9C8E8AECBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4 -EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDC9A7C9C6A3C7 -F2E3EEFFFEFDFFFFFEFFFFFEDAC1DAB78DB8B78CB78D71A2876D9FB58BB6B68BB7B68CB7B68DB8 -B78DB8E8D6E7FFFFFEFFFFFEFFFFFEFFFFFED7BED8BB95BEBD97BFBE99C0BE9BC2C29DC3C19EC3 -C4A1C6C4A2C6C5A4C7C8A5C8B7A8C2B1A9C097A8B598A9B599AAB599AAB599AAB699ABB69AACB6 -9AACB69AADB79AADB79BADB79BAEB79BAEB79BAEB79BAEB79BAEB79BAEB89CAEB89CAEB89CAEB8 -9CAEB89CAEB89CAEB89CAEB89CAEB89CAEB89CAEB89CAEB89CAEB89CAEB89CAEB89BAEB89BAEB8 -9BAEB89BAEB89BAEB89BAEB89BAEB89BAEB89BAEB89BAEB89BADB89BADB89BADB89BADB89BADB8 -9BADB89BADB8CAC9D6C8C9D6C8C8D5C9C9D5C8C8D4C8C9D5C7C8D5C8C9D5C7C8D5C7C8D5C6C8D5 -C6C8D5C6C8D5C6C8D5C6C8D5C6C8D5C6C8D5C7C8D5C7C8D5C8C9D5C8C9D6C8C8D5C8C8D4C9C8D5 -CAC9D6987A9B896589896589896689896589896589896589896589896589896589896589896689 -89658989668989668A8966898966898A668A8A668A8A668A8966898966898A668A896689896689 -8A668A89668A8A668A8965898966898A668A896689896589896589896589896589896589896589 -8965898965898864888863888863888863888763878762878661868661879D789DA580A5C6A5C8 -C5A4C7C5A2C6C4A2C6C3A0C5C19DC3C09CC2BE9AC1BE98C0BC96BECFB2D0FFFFFEFFFFFEFFFFFE -FFFFFEEEDDEBB68DB8B58DB8B58CB8B48BB7B48BB7AC85B26B5C90B38AB6B48BB7C5A4C8FFFEFD -FFFFFEFFFEFDFFFFFEBD99C0C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEA -D9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B7AACEB1A6CB -C0B6D5FFFFFEFFFEFDFFFFFEFFFFFE9C91BD998FBC6B67997F78A8988DBB978DBB988EBB988FBC -9890BDB1A7CCFFFFFEFFFFFEFFFEFDFFFEFDEFE8F2A59CC5A299C2A49BC4A59CC5A89EC6AAA0C7 -ABA1C8ADA3C9ADA4CAAFA5CAADA8CA9FA8C096A9BB8CA8B68CA9B68DAAB68DAAB68EABB78EACB7 -8EACB78FACB890ADB890ADB890ADB891ADB891ACB891ADB891AEB891AEB891AEB891AEB891AEB8 -91AEB891AEB891AEB891AEB992AEB992AEB991AEB992AFB992AEB992AEB992AEB992AEB992AEB9 -91AEB991AEB991AEB991AEB991AEB991ADB991ADB991AEB990ADB990ADB990ADB990ADB990ADB9 -90ADB990ADB9A8BAC7C0C9D7BFC9D8BFC9D7BFC9D6BDC8D6BDC8D6BDC8D6BDC9D6BCC9D6BCC9D6 -BCC9D6BCCAD7BCC9D6BCC9D6BCC9D6BDC9D6BCCAD7BDC9D6BDC8D6BDC8D6BEC8D6BEC9D7BEC9D7 -BFC9D8ABABC3786693786692786693786693786693776693786693786693786693786693796693 -796693796693796693796693796693796693796693796693796693796693796693796693796693 -796693796693796693796693796693796693796693796693786693786693786693776593776593 -7765937765937765927765927765927664927564927563917564917362917B6A979082ADA99DC4 -B0A6CBAEA4C9ADA3C9ABA1C8AAA0C7A89EC6A69DC5A49BC4A299C2A69CC4EEE8F2FFFFFEFFFFFE -FFFFFEFFFFFEB2A8CC9990BC998FBC988EBB988EBB978DBB7570A1756EA0978EBB978EBCFFFFFE -FFFFFDFFFFFEFFFEFDBAB2D2AAA1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2 -DFDDECDBD9EBDCDBEBDCDCECE5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D8DFEED4DBEDD0DAECCDD7EA -CAD6EAFFFEFDFFFFFEFFFFFEFFFFFECFDBEDBCCDE5BCCCE5596091B9CBE4BBCCE5BCCDE5BDCEE6 -BDCEE6BDCEE6F0F3F9FFFFFEFFFFFEFFFEFDFFFFFED6DFEFC3D3E9C4D3E9C5D4EAC6D5EAC7D5EA -C9D7EBCAD7EBCBD8ECCCD9EBCEDAECBAD0DCB4CCD697BEC298BEC299BFC299BFC29ABFC299C0C2 -99C0C299C0C29AC0C29AC0C29AC0C29AC0C29BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C3 -9BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C39BC1C3 -9BC1C39BC1C39BC1C39BC1C39BC1C39AC0C29AC0C29AC0C29AC0C29AC0C29AC0C29AC0C29AC0C2 -9AC0C29AC0C29AC0C3CCE1E4CBE0E4CAE0E5CAE0E3CAE0E3C9E0E3C8DFE3C8DFE3C8DFE3C8DFE3 -C9E0E3C7DFE3C7DFE3C7DFE3C8DFE3C8DFE3C8DFE3C9E0E3C9E0E3CAE0E3CAE0E3CBE0E4CBE0E4 -CCE1E5CCE1E5898AB98989B98989B98989B98989B98989B98989B98989B98989B98989B98989B9 -8989B98989B98989B98989B98989B98989B98989B98989B98989B98989B98989B98989B98989B9 -8989B98989B98989B98989B98989B98989B98989B98989B98989B98989B98989B98989B98889B8 -8889B88889B88889B88889B88789B88789B88789B88688B88688B88587B88688B89EA3CAB1B7D7 -CEDAECCDD9ECCBD8EBCAD7EBC9D7EBC7D5EAC6D5EAC5D4EAC5D4E9C3D2E8DAE3F1FFFEFDFFFFFE -FFFEFDFFFFFEF0F3F9BDCFE7BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCFE7 -BFCFE7C0D1E8C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFC -F5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7BECEE6BECFE7 -BECFE7BECFE7BECFE7E7ECF5FEFDFCFEFEFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0F8F8FA -FFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9 -F1F3F9F1F3F9F1F4F9F1F3F9F0F3F9F1F3F9F1F3F9F5F7FAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BFD5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -E5E3E38F9090656666676867A7A7A7FFFFFEFFFFFEFFFFFE6869695152528E8F8F676867767676 -BDBDBDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBEBEBE7677776768678E8F8FE5E4E4FFFFFEFFFFFE -FFFFFEE5E3E3828383676867828383D7D6D6FFFFFE8E8F8F6768676869698E8F8FFFFFFEB2B2B2 -676867686969656666FFFFFED7D6D6676867686969656666D8D7D7FFFFFEFFFFFEE4E2E2828383 -656666828383D7D6D6FFFFFEFFFFFEE5E3E38E8F8E676867767676A6A7A6676867CACAC9FFFFFE -FFFFFEFFFFFED7D6D6828383B1B2B1D7D6D6686969656666676867D7D6D6FFFFFEFFFFFEE5E3E3 -828383686969828382CACAC9FFFFFEFFFFFEFFFEFDB2B3B3676867FFFFFEFFFFFEFFFFFEFFFFFE -676867D7D6D6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEACA4C4696695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284AC -FAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE8A7C7 -E8A4C5E7A1C3E69FC1E59CC0E59BBFE49ABEE49ABEE49ABEE49ABEE49ABEE59BBFE59CBFF7D2E3 -FFFEFDFFFEFDFFFEFDFFFFFEFADFEBE7A3C4E8A5C5E8A7C6E9A8C7EAA9C8EAABCAEBACCAEAAECB -EBAFCCEBB1CDEDB3CEEDB4CFEDB5CFEEB7D1EDB7D1EEB7D2EEB9D2EEBAD3EEBAD3EFBBD4F0BCD5 -F0BDD5F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7 -F0BFD7F0BFD7F0BED6F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BED6F0BED6F0BED6 -F0BED6F0BED6F0BED6F0BED6F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5EFBCD5F0BCD5EFBCD4F0BCD5 -F0BDD5EFBCD4F1BDD5F0BDD5F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6F0BFD7F0BFD7F0BED6 -F0BED6F0BED6F0BED6F0BED6EFBDD5F0BDD5F0BED6EFBCD4F0BED6F1BDD5EFBDD5F1BED6EEBCD4 -F1BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BDD5F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6 -F0BED6F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0C0D7F0BFD7F0BFD7 -F0BFD7F0BFD7F0BFD7F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6F0BED6F0BDD5F0BCD5F0BCD5 -EFBBD4EEBAD3EEBAD3EEB8D1EEB7D0EFB7D1ECB5D0EDB4CFEDB3CEECB0CDECB0CDEBAFCCEBADCB -EAABCAEAABC9EAA9C8E8A6C6E9A6C6E7A3C4F7D4E4FFFEFDFFFEFDFFFFFEFFFEFDFBE4EEE59CBF -E59BBFE49ABEE499BEE599BDE39ABEE297BCB67FAA966F9EE399BEFAE2ECFFFFFEFFFDFCFFFFFE -F4CFE1E6A9C8E8ADCBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1 -E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CDADCDCBA9CBC5A2C6F2E4EEFFFEFD -FFFFFEFFFFFEDAC1DAB88EB8B68BB763588CB58BB6B58BB6B48AB6B58BB7B68CB7B78EB9BE99C1 -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDC7A6C9BC97BFBE98C0BF99C0BE9BC2C19CC2C29EC4C3A0C5 -C4A2C6C5A3C7C7A6C9C8A6C9C7A8C9C9A9CBCBABCCCAABCCCBACCDCCADCECDAECECEAFCFCEAFCF -CEB0CFCFB1D0D0B2D1D0B3D1D0B3D1D1B3D1D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D2B5D2D2B5D2 -D2B5D2D2B5D2D1B4D2D1B4D2D2B5D2D2B5D2D2B5D2D1B4D2D1B4D2D1B4D2D1B4D2D1B3D1D0B3D1 -D0B3D1D0B3D1D0B3D1D0B3D1D0B3D1D0B2D1CFB2D0CFB2D0CFB1D0CFB1D0CFB1D0CFB2D0CFB0CF -D0B1D0CFB0CFCFB1CFD0B2D1CFB2D0D0B3D1D0B3D1D1B3D1D0B3D1D1B3D1D0B3D1D0B3D1D0B3D2 -D0B3D2D1B3D1D0B2D1D0B2D1D0B2D1D0B2D1CFB2D0CFB2D0D0B1D0CFB0CFCFB2D0D0B2D1CFB1CF -D0B1D0CFB1D0CFB2D0CFB1D0D0B2D1CFB2D0D0B2D1D0B2D1D0B3D1D0B3D1D0B3D1D0B3D1D1B3D1 -D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D2B5D2D2B5D2D2B5D2D2B5D2D2B5D2D1B4D2D2B5D2D2B5D2 -D2B4D2D1B4D2D1B4D2D1B4D2D1B4D2D0B3D1D0B3D1D0B2D1D0B2D1CFB2D0CFB1D0CEB1D0CFB0CF -CDAFCFCDAECECCAECECCADCECBABCCCBACCDC9AACBC9A8CAC8A7CAC5A4C7C5A4C7C5A2C6C3A1C6 -C3A0C5C19CC2C09CC2BF99C0BE98C0BD97BFC7A6C9FCF8FAFFFFFEFFFFFEFFFEFDFFFEFDC7A6C9 -B58DB8B58CB7B58CB7B48BB7B58BB7B48BB77764979476A5B38BB7C5A4C8FFFFFEFFFDFCFFFFFE -FFFFFEBE9AC0C1A0C5C4A4C7C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1 -D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB0D1B6ABCDB1A5CABFB5D5FFFFFE -FFFFFEFFFEFCFFFEFD9C91BD9289B7656396978DBB978DBB978DBB978EBB978FBC988EBB9990BC -DED7E8FFFFFEFFFEFDFFFFFEFFFFFEDAD1E6A198C2A398C2A59BC4A59CC5A79DC5AAA0C7AAA1C8 -ACA2C9ADA4CAAFA5CAB2A7CBB2A8CCB3A9CDB4ABCEB6ADCFB7ADCFB8AED0B8AFD1B9B0D1BAB1D2 -BBB1D2BCB2D3BCB3D3BDB3D3BDB3D3BDB3D3BDB3D3BEB4D4BEB4D4BEB4D4BEB5D4BEB5D4BFB5D5 -BFB5D5BFB5D5BFB5D5BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB4D4BEB5D4BEB4D4 -BEB4D4BEB4D4BEB4D4BDB3D3BDB3D3BDB3D3BDB3D3BCB3D3BCB3D3BCB1D2BCB2D3BCB2D3BCB1D1 -BCB2D3BCB2D3BCB1D1BCB2D3BCB3D3BDB2D3BEB3D3BEB3D3BEB4D4BEB3D3BEB3D3BEB4D4BEB4D4 -BEB3D3BEB4D4BEB4D4BEB3D3BDB4D4BEB4D4BEB4D4BDB3D3BCB3D4BCB3D3BCB2D3BDB3D3BDB2D3 -BCB2D2BCB3D3BCB3D3BDB3D3BCB3D3BCB3D3BDB3D3BDB4D4BEB3D3BEB3D3BEB4D4BEB4D4BEB4D4 -BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BFB5D5BEB4D4BEB4D4BEB4D4BEB4D4 -BEB4D4BEB4D4BEB4D4BEB4D4BEB5D4BEB4D4BDB3D3BDB3D3BDB4D4BDB3D3BDB3D3BCB2D3BBB1D2 -BBB1D2BAB0D1B9AFD1B8AED0B6ADCFB6ACCFB5AACEB3AACDB2A8CCB0A6CBAFA5CAAEA4CAABA3C9 -ABA1C8AAA0C7A89EC6A69DC5A59BC4A299C2A199C2DAD1E6FFFFFEFFFFFEFFFEFDFFFFFEDED6E8 -9990BD988FBC978EBB988FBC978EBB978EBA968DBB595A8E968DBA978EBCFFFFFEFFFEFDFFFEFC -FFFFFEBAB1D2A9A1C7AFA7CCB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EB -DCDBEBDCDCECE5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D8DEEED4DCEDD1D9ECCDD7EACAD6E9FFFFFE -FFFEFDFFFFFEFFFFFECEDAECBCCDE57F85B08E97BEBCCDE5BACCE5BBCCE5BCCDE6BCCDE6BDCEE6 -CEDBEDFFFFFEFFFEFDFFFFFEFFFFFEFCFCFCCFDBEDC3D2E8C4D2E8C5D4EAC7D5EAC8D6EAC9D7EB -CAD7EBCCD8EBCBD8ECCDD9ECCEDAECCFDBEDCFDBECD1DDEED0DCEED1DDEED2DDEED3DEEED4DFEF -D5DFEFD5DFEFD6DFEFD6DFEFD7E0EFD7E0EFD7E0EFD8E0EFD8E0EFD8E0EFD8E0EFD8E0EFD8E0EF -D8E0EFD8E0EFD8E1F0D8E1F0D8E0EFD8E0EFD8E0EFD8E0EFD7E0EFD7E0EFD8E0EFD8E0EFD7E0EF -D7E0EFD7E0EFD7E0EFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD5DFEFD5DFEED5DFEFD6E0F0 -D6DFEFD5E0EFD6DFEFD5DFEFD6DFEFD5DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD7E0EFD7E0EF -D7E0EFD7E0EFD7E0EFD7E0EFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD5DFEFD6E0F0D6DFEE -D6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD6DFEFD7E0EFD7E0EF -D7E0EFD7E0EFD8E0EFD8E0EFD8E0EFD7E0EFD8E0EFD8E0EFD8E0EFD8E0EFD8E0EFD8E1F0D8E0EF -D8E0EFD8E0EFD8E0EFD8E0EFD8E0EFD8E0EFD7E0EFD7E0EFD7E0EFD7E0EFD7E0EFD7E0EFD5DFEF -D5DFEFD4DFEFD3DEEFD2DEEED1DCEDD1DEEED0DCEDD0DCEECFDBEDCFDBEDCDD9ECCCD9ECCCD9EC -CAD7EBCAD7EBC7D6EAC5D4EAC5D4E9C4D3E9C4D2E8CFDCEDFCFCFCFFFFFEFFFFFEFFFFFEFFFEFD -C6D5EABDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCFE7BFCFE7C0D1E8 -C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8 -F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCEE6BED1E8BECEE6BED1E8BECEE6BECFE7BFD0E7 -D7E1F0FEFCFBFEFEFCFEFDFCFEFDFCFDFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFF2F4F9FFFDFCFFFDFCFFFDFB -FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F3F9F1F3F9F1F3F9F1F3F8F3F6FAFCFCFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEE3DCEA474E82FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4 -FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE8A7C7E8A4C5E7A1C3 -E69FC1E59CBFE59BBFE499BEE499BEE499BEE499BEE499BEE59BBFE49BBFE7A1C3FFF8FAFFFFFE -FFFFFEFFFFFEFFFFFEF9D9E7E8A4C4E7A5C5E8A6C6E8A7C7EAAAC9EBABC9EAABCAEBADCBEBAFCB -ECB0CDECB2CEEDB3CEECB2CEEEB4CFEDB6D0EEB6D0EEB7D1EEB8D2EEB8D2EEB9D2EEBAD3EEBAD3 -EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBCD4EFBCD4EFBCD4EFBCD4 -EFBCD4F0BCD5F0BCD5F0BCD5F0BCD5F0BCD5F0BCD5F0BCD5F0BCD5F0BCD5EFBBD4EFBBD4EFBBD4 -EFBBD4EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD2EEBAD2EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EEBAD3EEBAD3EFBBD4EEBAD2EFBBD4EDB9D3EEBAD3EFBBD4EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBCD4F0BCD5EFBCD4F0BCD5F0BCD5 -EFBCD4F0BCD5EFBCD4F0BDD5F0BCD5F0BCD5F0BCD5EFBCD4EFBCD4EFBCD4EFBCD4EFBCD4EFBBD4 -EFBBD4EFBCD4EFBCD4EFBBD4EFBBD4EEBAD3EEBAD3EEBAD3EEBAD3EEB9D2EEB9D2EEB8D2EEB7D2 -EEB7D1EDB6D0EDB6D0ECB3CFEDB3CFEAB0CDECB1CDEBAFCCEBAECBEAADCBEAABCAEAAAC9E9A8C8 -E8A7C6E8A5C5E7A3C4F1C3D9FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDECAECBE49BBFE49BBFE49ABE -E599BEE298BDE398BDE398BDE297BC7B6092CB8CB4EFBED6F3C9DDF3CCDFF3CCDEEDBAD3E7AAC8 -E8ADCBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7 -F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D0CEADCDCAA7CAC6A3C7D9BDD8E0C8DEDCC5DDDAC2DB -CAA8CAB88EB97865979676A6B48AB6B58BB7B68AB6B58BB6B68CB7B58CB8B78EB9D9C1DAFFFFFE -FFFFFEFFFFFEFFFFFEFCF9FAC7A6C9BD97BFBE98C0BF99C0BF9BC2BF9CC2C29DC3C3A0C5C4A1C5 -C4A3C7C6A5C7C6A5C8C8A6C9C8A7CACAA8CACAA9CBCAAACBCBABCCCBACCDCBACCDCCADCECDAECE -CEAFCFCDAECECEAFCFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB1D0CEB1D0 -CEB1D0CEB1D0CEB1D0CEB1D0CEB0CFCEB1D0CEB1D0CEB0CFCEB1D0CEB0CFCEB0CFCEB0CFCEB0CF -CDB0CFCDB0CFCDAFCFCDAFCFCDAFCFCDAFCFCDAECECDAECECDAFCFCDAECECEAFCFCCAECDCDAECE -CDAECECDAECECDAFCFCDAFCFCDAFCFCDB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCDB0CF -CDAFCFCEAFCFCEAFCFCEAFCFCDAFCFCEAFCFCDAECECDAFCFCCAECDCCAECECEAFCFCCADCECDAFCF -CDAECECDAECECDAECECDAFCFCDAFCFCDAFCFCDB0CFCDB0CFCEB0CFCEB0CFCEB0CFCEB0CFCEB1D0 -CEB1D0CEB1D0CFB1D0CFB0CFCEB1D0CEB1D0CEB1D0CEB1D0CEB1D0CEB0CFCFB0CFCFB0CFCEB0CF -CEB0CFCEB0CFCEB0CFCEB0CFCEB0CFCDB0CFCDAECECDAECECCADCECCADCECCADCDCBACCDCBABCC -CBABCCC9AACBCAA9CBC8A7C9C8A7CAC6A5C8C4A3C6C5A4C7C4A2C6C3A0C5C39FC4C19DC3BF9BC2 -BF99C0BE99C0BD97BFBF9BC1F8EFF5FFFFFEFFFFFEFFFEFDFFFFFEDEC6DDB58DB8B58DB8B58DB8 -B48AB6B48AB6B38AB6B48AB6B38AB663598DAD86B2BD98BFD9BFD8D8C1DADAC3DBDBC4DCBE9AC0 -BF9EC4C4A5C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0 -E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D4BCB1D2B6ABCEB2A6CBB7ABCED1C7DFD0C7DFCEC5DE -CCC3DD9A90BC605E928A83B2978DBA968CB9978EBB968DBB978DBB988FBC9890BCA59CC5F9F7F9 -FFFFFEFFFEFDFFFFFEFFFEFDDAD1E5A198C2A399C3A59BC4A59CC5A89EC6AA9FC6AAA0C7ABA2C8 -AEA3C9AEA5CAB0A6CBB1A8CCB2A8CCB3A9CDB4AACEB4ABCEB6ACCFB7ADCFB7ADCFB8ADD0B8AED0 -B8AFD1B9AFD1BAB0D1BAB0D1BAB0D1BAB1D2BAB1D2BAB1D2BAB1D2BAB1D2BBB1D2BBB1D2BBB1D2 -BCB1D2BCB1D2BBB1D2BBB2D2BBB1D2BBB1D2BBB1D2BBB1D2BBB1D2BCB1D2BBB1D2BBB1D2BBB0D2 -BBB0D2BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1B9AFD1B9B0D1B8AFD1B9AFD0B9AFD1B9AFD1B9AFD1 -BAB0D1B8AFD1B9AFD1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BBB1D2BBB0D2BBB1D2 -BAB1D2BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1B9B0D1BBB0D2BAB0D1BAAFD0B9AFD1B9AFD1B9AFD1 -B9B0D1B9B0D1B9B0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BBB0D2BBB1D2BBB1D2BBB1D2BBB1D2 -BBB1D2BBB1D2BBB1D2BBB3D3BBB2D2BBB2D2BBB2D2BBB1D2BBB1D2BBB1D2BBB1D2BBB1D2BAB0D1 -BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1B8AFD1B9AFD1B8AFD1B8AED0B8AED0B7AED0B7ADCF -B6ACCFB5ABCEB4AACEB3A9CDB1A8CCB2A7CCAFA6CBAEA4C9ADA3C9ABA1C8ABA0C7AAA0C7A89EC6 -A69DC5A49BC4A299C2A197C1DAD1E6FFFFFEFFFFFEFFFFFEFFFEFDFAF7F9A59CC59890BC9890BC -988EBB978EBB978DBA968EBB958DBB857DAD6A6699978FBCCAC1DBCBC3DDCDC5DECEC6DFAFA7CB -AAA2C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCEC -E5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D8DEEED4DCECD0D8EBCCD6EACBD6EAE3E8F3E3E8F3E1E7F3 -E0E6F2C5D3E8B4C1DD696E9DBBCCE5BACAE4BCCDE5BBCCE5BCCDE6BDCEE6BCCEE6BECEE6E3E9F4 -FFFFFEFFFEFDFFFFFEFFFFFEFCFCFCCFDCEDC3D3E9C5D3E8C5D4EAC6D5EAC8D6EAC8D6EAC9D6EA -CAD7EBCDD9ECCCD9EBCDD9ECCEDAECCEDAEDCFDBEDD0DCEDD1DDEED2DDEED2DDEED2DDEED2DDEE -D3DEEED3DEEED4DEEED4DFEFD4DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEF -D5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5E0EF -D4DFEFD4DFEFD4DFEFD4DFEFD4DEEED4DEEED4DEEED4DEEED4DEEED4DDEED2DDEED4DEEED4DDED -D4DEEED3DEEED4DEEED4DEEED4DEEED4DEEED4DEEED4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DEEED4DEEED4DEEED4DEEED3DDEED3DEEFD2DCEDD3DEEF -D3DEEED3DEEED3DEEED3DEEED4DEEED4DEEED4DEEED4DEEED4DFEFD5DFEFD5DFEFD4DFEFD4DFEF -D5DFEFD5DFEFD4DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DEEED4DFEFD4DFEF -D5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD5DFEFD4DEEED4DEEED3DEEED3DEEED3DEEED3DEEED2DDEE -D2DDEED1DDEED0DCEDCFDBEDCFDBEDCED9ECCEDAECCDD9ECCCDAECCBD8EBCAD7EBC9D7EBC6D6EA -C6D5EAC5D4EAC4D3E9C3D3E9CEDBEDFCFCFCFFFFFEFFFEFDFFFFFEFFFFFEE0E7F3BDCFE7BDCEE6 -BDCEE6BCCDE6BCCDE6BCCDE6BBCDE6BBCDE6BCCDE6BDCEE6BDCFE7BECFE7C0D1E8C3D3E9C5D4E9 -C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2 -666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BFCFE7BDCFE7BECFE7BECEE6BECFE7BFD0E7CEDAECFEFDFCFEFEFC -FEFDFCFEFCFBFEFDFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0EAEEF6FFFDFCFEFCFBFFFDFCFFFDFCFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9FBFBFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE474E82E4DDE9FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFD686969676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686795B9B1CDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6 -FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFE -FCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB5D0EBB0CDEAABCAE8A7C7E8A4C5E7A1C3E69FC1E59CBF -E59BBFE499BEE499BDE499BEE499BEE499BEE49ABEE69BBFE49CC0EDB4CFFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEF8D9E7E7A3C4E9A5C6E7A6C6E9A8C7E9A8C8EAAAC9EAABCAECADCAEAADCBEBAFCC -EAB0CDECB2CEECB2CEEDB3CEEDB3CFEDB4CFEDB5D0EDB6D0EDB6D0EEB6D0EEB7D1EEB7D2EEB8D2 -EEB8D2EEB8D2EEB9D2EEB8D2EEB9D2EEB8D2EEB9D2EEB9D2EEB9D2EEB9D2EEBAD3EEB9D2EEB9D2 -EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB8D2EEB8D2EEB8D2EEB8D2EEB8D2 -EEB8D2EEB8D2EEB7D2EEB7D2EEB7D2EDB8D2EFB8D1EEB7D2EEB7D2EEB7D2EEB7D2EDB7D1EEB7D2 -EEB7D2EEB8D2EEB8D2EEB9D2EEB9D2EEB8D2EEB9D2EDB8D2EDB9D2EDB9D2EEB9D2EFB9D3EEB9D2 -EEB8D2EEB8D2EDB8D2EDB8D2EDB8D1EEB7D2EFB9D3EEB8D2EEB8D2EEB8D1EEB7D2EEB7D2EEB7D2 -EEB7D2EEB8D2EEB8D2EEB8D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2 -EEB9D2EEB9D2EEB9D2EFB9D3EEB9D2EEBAD3EEBAD3EEB9D2EEB9D2EEB9D2EEB8D2EEB8D2EEB8D2 -EEB8D2EEB8D2EEB9D2EEB8D2EEB7D2EEB7D1EEB7D1EDB6D1EDB6D0EDB5D0EDB4CFEDB3CFEDB3CF -EBB1CDECB1CDEBB0CDEBAFCCEAAECBEAADCBEAABCAEAAAC9EAAAC9E8A7C7E7A6C6E9A5C6E7A3C4 -F5CEE0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2C4DAE39BBFE59CBFE49ABEE499BEE398BDE398BD -E398BDE297BCE299BDD791B8715B8FE39ABEE49BBFE59FC2E4A1C3E5A5C5E8A9C8E8ACCAEAB3CF -EBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFE -F9EFF5EBD6E7D8BAD6D3B3D1CDACCCCBA9CBC6A2C6C29DC3C099C0BD97BFBA91BAB990BA9678A7 -796597B58BB7B58AB5B48AB6B48AB6B48AB6B58BB7B58CB7B58DB8B68EB9F3E5F0FFFFFEFFFFFE -FFFFFEFFFEFDFCF9FAC6A6C9BD97BFBD97BFBE99C0BF9BC1C09CC2C19EC3C39FC4C29FC4C4A1C5 -C5A2C6C5A4C7C6A5C8C7A6C9C8A7C9C8A7CAC9A8CAC9A9CBCAA9CBCAAACBCBABCCCBABCCCBACCD -CBACCDCBACCDCBACCDCBACCDCBACCDCBACCDCBACCDCBACCDCCADCECCADCECCADCECCADCECCADCD -CCADCECCADCECBACCDCBACCDCCADCECCADCDCBACCDCCADCECBACCDCCADCDCBACCDCBACCDCBACCD -CBACCDCBACCDCBABCCCBABCCCBABCCCBABCCCBACCDCBABCCCAABCCCBACCDCBACCCCBABCCCBABCC -CBACCDCBACCDCBABCCCBACCDCBACCDCBACCDCBACCDCBACCDCCACCDCBACCDCBACCDCBACCDCBACCD -CBACCDCBACCDCBACCDCBACCDCAABCCCBACCDCBABCCCBACCDCAABCCCBACCCCBABCCCBABCCCBABCC -CBABCCCBABCCCBABCCCBABCCCBACCDCBACCDCBACCDCBACCDCCADCDCBACCDCBACCDCCADCECCADCE -CCADCECBACCDCCADCECCADCECBACCDCCADCECCADCECCADCECCADCECCADCECBACCDCBACCDCBACCD -CBACCDCBACCDCBACCDCBACCDCBABCCCBABCCCBABCCCAAACBCAA9CBC9A9CBC8A8CAC8A7CAC8A7C9 -C7A6C9C6A5C8C6A4C7C5A1C5C5A2C6C3A0C5C29FC4C09DC3C19CC2BE9AC1BF9BC1BE98C0BD97BF -C7A6C9FCF8FAFFFFFEFFFEFDFFFFFEFFFFFEF3E6F0B993BCB68DB8B58BB7B58BB7B58BB7B48AB6 -B48AB6B38AB6B48AB69C7AAA716194B58CB7B58DB8B78FB9B993BCBA96BEBD99C0C09FC5C4A4C8 -C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFE -FFFFFEE7DEECCFC4DDC3B7D5BCB1D2B6AACDB1A6CBABA1C8A89DC5A499C2A196C19C92BE7771A2 -7670A2978DBA968CBA968CBA958DBA978DBB968EBB988EBB988EBB9990BCB6ADCFFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDDBD2E6A198C2A399C3A59BC4A59BC4A79DC5A99FC7AA9FC6AAA1C8ADA3C9 -ACA4C9AFA4CAAFA5CAB0A6CBB2A7CCB2A8CCB3A9CDB3AACDB3AACDB4AACEB5ABCEB5ACCFB6ACCF -B6ADCFB7ADCFB8ADD0B8ADD0B8ADD0B8ADD0B8ADD0B8AED0B8AED0B8AED0B8AED0B9AFD0B8AED0 -B8ADD0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8ADD0B8ADD0B7ADCF -B7ADCFB8AED0B7ADCFB7ADCFB7ACCFB5ACCFB6ACCFB8ADD0B7ACCFB7ACCFB8ADCFB6ACCFB7ACCF -B8ADCFB8ADD0B8ADD0B7AED0B8AED0B8ADD0B8ADD0B8ADD0B8AED0B8ADD0B8AED0B8AED0B8ADCF -B8ADCFB8ADD0B8ADD0B7ADCFB9ADCFB6ABCEB7ACCFB8ADCFB7ACCFB6ACCFB7ADCFB7ADCFB7ACCF -B6ACCFB7ACCFB8ADCFB7ADCFB7ADCFB7ADCFB8ADD0B8ADD0B8ADD0B8ADD0B8AED0B8AED0B8AED0 -B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B8AED0B7ADCFB7ADCFB7ADCF -B7ADCFB7ADCFB6ACCFB6ACCFB6ADCFB6ACCFB5ACCFB5ABCEB5AACEB3AACDB3AACDB3A8CCB2A8CC -B2A7CCAFA5CAB0A6CBAEA4CAADA3C9ADA2C8AAA0C7A99FC6A89EC6A69DC5A59CC4A59BC4A398C2 -A298C2DAD1E5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEBDB3D39990BC9890BC988FBB978EBB978EBC -968EBB958DBA968DBA968CBA696799807AAA9890BD9B93BE9F96C0A199C2A59CC5A9A0C7AFA7CC -B4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCECE5E4F0F7F5F9 -FFFFFEF6F5F9E8E9F3D8DFEED4DBEDD0D9EBCDD7EACBD6EAC5D3E8C4D2E8C2D0E7BECEE6BFCEE6 -616798B3C1DDBBCCE5BACBE4BBCCE4BBCCE5BBCDE6BCCEE6BCCDE6BDCEE6C1D0E7F5F7FAFFFEFD -FFFFFEFFFFFEFFFFFEFCFCFCCEDAECC4D4E9C4D2E8C6D4E9C5D4EAC7D5EAC8D6EACAD7EBC9D7EB -CBD8EBCBD8EBCCD9ECCEDAEDCEDAECCEDAECCFDBEDCFDBEDCFDBEDD0DCEDD0DCEDD1DDEED1DDEE -D2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED3DEEED2DDEED2DDEED2DDEED2DDEED1DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED2DDEED1DDEED1DDEED1DDEED1DDEDD2DCEDD1DDEDD1DDEED1DEEDD1DDEE -D1DCEDD2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED3DEEED1DCEDD2DCEDD1DDEED1DDEDD1DDEED2DDEED1DDEED2DDEED1DDEE -D1DDEED1DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED3DEEED2DDEED2DDEED2DDEED2DDEED2DDEED2DDEE -D2DDEED2DDEED2DDEED2DDEED2DDEED2DDEED1DDEED1DDEED1DDEED0DCEDCFDBEDCFDBEDCFDBED -CFDBEDCDD8EBCEDAEDCCD9ECCCD9ECCBD8EBCAD7EBC9D7EBC7D5EAC8D6EAC6D5EAC4D3E9C4D3E9 -C2D3E9CEDAEDFCFCFCFFFFFEFFFFFEFFFFFEFFFFFEF5F6FABDCFE7BDCEE6BDCEE6BDCEE6BCCDE6 -BCCDE6BCCDE5BCCDE6BBCDE6BCCDE6BDCEE6BDCFE7BECFE7C0D0E7C3D2E8C5D4E9C8D6EACBD8EC -CFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FA -F5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BFCFE7BECFE7BED0E7CBD8EBFAFBFCFEFDFCFEFDFCFFFDFBFEFDFC -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E2F0D8E1F0E8EBF5FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F4F9F2F4F9F0F3F9FAFAFC -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE686796ACA4C4FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FEFDFCFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFEFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE3F457C -E4DDE9FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5 -FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3 -F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E59CBFE59ABEE49ABE -E499BDE499BDE499BEE499BEE499BEE59ABEE69ABEE49BBFF3C5DAFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFDEBF2EAAECBE9A5C5E8A6C6E8A7C6E9A8C8EAA9C8E9AAC8EBACCAEBADCBEAAECBEBAECB -EBB0CDEBB0CDEBB1CDECB1CDECB2CEECB2CEECB3CFEDB3CFEDB3CFEDB4CFEDB5D0EDB5D0EDB5D0 -EDB6D0EDB6D0EDB6D0EDB6D0EDB6D1EDB6D1EDB6D1EDB6D1EDB6D1EDB6D1EDB6D0EDB6D0EDB6D0 -EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB5D0EDB6D0 -EDB5D0EDB5D0EDB5D0EDB5D0EEB5D0EDB4CFEDB5D0EDB5D0EDB5D0EDB5D0ECB5D0EDB5D0EDB6D0 -EDB5D0EDB6D0EEB6D0EEB5D0EDB6D1EDB6D1EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0 -ECB5D0EDB6D0EEB5D0EDB7D1ECB4CFEDB5D0EEB5D0EEB5D0EDB5D0EDB5D0EDB5D0EDB5D0EDB5D0 -EDB5D0EDB5D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D1 -EDB6D0EDB6D0EDB6D1EDB6D1EDB6D1EDB6D1EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB6D0EDB4CF -EDB4CFEDB3CFEDB4CFEDB4CFEDB3CFEDB3CFEDB3CEECB2CEECB2CEECB1CDEBAFCCEBAFCCEBAFCC -EAADCBEBACCAEAACCAEAABC9EAA9C8EAA9C8E8A7C7E8A6C6E8A5C5E9AAC8FADFEBFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEF8D6E6E59BBFE49ABEE599BEE49ABEE398BDE398BDE398BDE397BCE298BD -E398BDE398BDC185B07B6193E39CBFE39FC1E6A2C3E6A4C5E7A9C8E8ADCBEAB2CEEBB8D2ECBED6 -F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7 -D8BAD6D2B3D1CEAECECAA7CAC6A3C6C39EC3C099C0BD96BEBA91BBA07EAD64598DB58BB6B58BB6 -B48AB6B48AB6B58BB7B58AB5B48AB6B58BB7B58CB7B68DB8BB93BCFAF6F9FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDD8BFD9BC96BEBD97BFBE9AC1BF9BC1BF9BC1BF9CC2C19EC3C29FC4C4A0C5C4A1C5 -C4A2C6C5A3C7C6A4C7C6A5C8C6A5C8C7A6C9C7A6C9C8A7CAC8A7CAC8A7CAC8A8CAC9A8CAC9A8CA -C9A8CACAAACBCAAACBCAAACBCAAACBCAA9CBCAAACBC9AACCCAAACBCAAACBCAAACBCAAACBCAAACB -CAAACBCAA9CBCAAACBCAAACBCAA9CBCAAACBCAA9CBCAA9CBCAAACBCAAACBCAA9CBCAA9CBCAA9CB -CAA9CBCAA9CBCAA8CAC9A8CAC9A8CACAA8CACAA8CAC9A8CAC9A8CACAA8CAC9A8CAC9A8CACAA8CA -CAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAAACBCAAACBCAAACBCAAACBCAAACBCAA9CB -CAA9CBCAA9CBCAAACBC9A8CAC8A9CAC9A9CACAAACBCAA8CAC8A8CAC9A8CAC9A8CAC9A9CBCAA9CB -CAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAAACBCBAACBCBAACBCAAACB -CAAACBCAAACBCAA9CBCAA9CBCAAACBCAAACBCAAACBC9AACBCAAACBCAAACBCAAACBC9AACBC9A9CB -C9A8CAC9A8CAC8A7CAC8A7CAC8A7CAC8A7C9C7A6C9C7A5C8C6A5C8C6A4C7C5A4C7C5A2C6C5A2C6 -C3A1C6C3A0C5C29FC4C29DC3C19CC2C09CC2BE9AC1BF99C0BE98C0BD97BFD4B8D5FBF7FAFFFFFE -FFFFFEFFFFFEFFFFFEFBF7FAC3A0C5B68DB8B68CB7B58BB7B48AB6B48AB6B48AB6B289B6B389B5 -B48AB6B389B6866D9E866D9FB58DB8B790BAB892BBBA96BEBE9AC0C09EC3C4A5C8C7AACBCCB0CF -DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEEC -CFC4DDC3B7D5BCB0D1B7ACCEB1A5CAADA1C8A69CC4A499C3A096C08982B0605E92988FBC978DBA -978DBB958BB9978DBB958DBA978DBA978EBB988FBC988FBC998FBCCFC8E0FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEE8E1EEACA2C9A198C2A49AC3A59CC5A69CC4A79DC5A89EC6AAA0C7ACA1C8ACA2C8 -ADA3C9AEA3C9AEA4C9AFA5CAAFA6CBAFA6CBB0A7CCB1A7CCB2A8CCB2A8CCB3A9CDB3A9CDB3AACD -B3AACDB4AACEB4ABCEB4ABCEB4ABCEB4ABCEB5ABCEB5ABCEB5ABCEB5ABCEB4ABCEB4AACEB4ABCE -B4ABCEB4ABCEB4ABCEB4ABCFB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCE -B4ABCEB3ABCEB4AACEB3A9CDB3AACDB3ABCEB3AACDB4AACEB3AACDB3AACDB3AACDB4AACEB3AACD -B4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4AACEB4AACEB4ABCEB4ABCEB4AACEB4ABCEB4ABCF -B4ABCEB5AACEB3AACDB4ABCEB4AACDB4ABCEB4ABCEB4AACEB3AACDB3AACDB3A9CDB3AACDB3AACD -B4AACEB3AACDB4AACEB4AACEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCE -B4ABCEB4ABCEB4ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB4AACEB4AACEB4AACEB4AACEB3AACD -B3A9CDB3A9CDB3A9CDB3A9CDB2A8CCB2A8CCB2A8CCB1A7CCB0A7CCB0A6CBAFA5CAAFA4CAAEA3C9 -ADA2C8ACA2C9AAA0C7AAA0C7A89EC6A79DC5A69DC5A59CC4A49AC3A399C3ACA2C8E6E0EDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFED0C7E09890BC988EBB978EBC978EBB988FBC978DBB968EBB958DBA -968CBA958DBA968DBA595A8E867FAF9B93BE9F96C0A199C2A59CC5A7A1C8AFA7CBB4ABCEBAB2D3 -C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCECE5E4F0F7F5F9FFFFFEF6F5F9 -E8E9F3D8DFEED4DAECD1D9ECCCD6EAC8D6E9C6D3E9C4D1E7C2D0E7BFCFE66A6E9C97A1C5BCCDE5 -BACDE5BACBE4BACDE5BBCCE5BACDE6BCCDE5BCCDE6BCCEE6BDCEE6C9D6EAFCFDFDFFFEFDFFFFFE -FFFFFEFFFEFDFCFDFDD9E3F1C4D3E9C4D3E9C6D4E9C6D4E9C6D5EAC7D6EAC8D6EBCAD6EAC9D7EB -CCD8EACAD7EBCDD8EBCDD9ECCDD9ECCEDAECCED9ECCEDAECCEDAECCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCED -D0DCEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDD0DCEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDAECCFDBEDCFDBEDD0DCEDCFDBEDCFDAECCFDBEDCEDAECCFDBED -CFDBEDCFDBEDCFDAECD0DCEDD0DBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDD0DCEDCFDBEDCFDBED -CFDBEDCFDBEDD0DBEDCFDBEDD0DCEDCFDBEDD0DCEDCEDAECCFDBEDD0DCEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCED -D0DCEDD0DCEDD0DCEDD0DCEED0DCEED0DCEDD0DCEDD0DCEDD0DCEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCEDAECCEDAECCEDAECCEDAECCDD9ECCDD9ECCDD9EC -CBD7EACAD6EACAD8EBC9D7EBC8D6EBC7D5EAC6D6EAC5D5EAC5D4E9C4D3E9C4D4E9DEE5F2FFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFCFCFCC1D1E8BDCEE6BBCDE6BDCEE6BCCDE6BBCDE6BBCDE6BBCCE5 -BBCDE6BBCDE6BCCDE6BDCEE6BDCFE7BECFE7C0D0E7C3D2E8C5D4E9C8D6EACBD8ECCFDBEDD4DFEF -D8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FA -F6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BFCFE7BECFE7BDCFE7C2D2E8F3F5F9FEFEFCFEFCFBFEFDFCFEFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E0EF -E0E8F3FBFCFBFFFEFCFFFDFCFFFFFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F8F8FBFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD938DB2 -8882AAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -686969676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED5CDDF484D82FFFFFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3 -FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7 -EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69EC1E59CBFE59ABEE499BEE499BEE499BD -E499BEE499BDE598BDE49BBFE59ABEE69BBFE59CC0F8D7E6FFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFAFBF5CEE0EAA9C8E8A5C5E8A6C6E8A7C7EAA9C8EAA9C8EAABC9EAABC9EAACCAECAECBEAAECB -EBAFCCEBAFCCEBAFCCEBAFCCEBB0CDEBB1CDEBB1CDEBB1CDECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB3CFECB3CFECB3CFECB3CFECB3CFEDB3CFEDB3CFECB3CFECB3CF -ECB3CFECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEEBB2CEEBB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -EDB3CFEDB3CEEDB3CFEDB3CFEDB3CFEDB3CFEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CF -EDB4CFEDB3CFEDB4CFEDB3CEEDB3CFECB2CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CE -EDB3CFEDB3CFEDB3CEEDB3CEEDB3CEEDB3CEEDB3CEEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CE -EDB3CFEDB3CFECB3CFECB3CFECB2CEECB2CEECB2CEEBB1CDECB2CEECB2CEECB2CEECB2CEEBB1CD -EBB1CDEBB1CDEBB1CDEBB0CDEBAFCCEBAFCCEBAFCCEBAFCCEAAECBECADCBEAABCAEBABC9EAAAC9 -EAA9C8E9A8C8E8A7C7E7A6C6E8A5C5E8A4C5F1C2D9FFFAFBFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -F8D6E6E59ABEE49BBFE69ABEE49ABEE398BDE398BDE299BDE498BDE297BCE398BDE398BDE398BD -E398BDA174A37B6193E49FC2E5A2C4E6A4C5E7A8C7E8AECBEBB3CFEBB8D2ECBED6F6E1ECFEF8F9 -FFFFFEF8E9F1EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1 -CEADCDCAA8C9C6A3C7C29DC3C09AC1BE96BEB28BB66C5E91AE87B4B68BB7B48AB6B48AB6B489B5 -B48AB6B48AB6B48AB6B48AB6B58BB7B58CB7B68DB8C29FC4FCF7F9FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEEEDFECCDADCDBD97BFBE98C0BE99C0BF9BC1BF9BC2C09CC2C09CC2C29FC4C3A0C5C3A0C4 -C4A1C5C4A2C6C5A2C6C5A3C7C5A4C7C5A4C8C6A5C8C7A5C8C7A6C9C7A6C9C7A5C8C7A5C8C7A6C9 -C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7CAC8A7C9C8A7C9 -C8A7CAC8A7CAC8A7C9C8A7CAC8A7C9C8A7C9C9A7C9C8A7C9C8A7C9C8A7C9C8A7C9C7A6C9C7A6C9 -C7A6C9C7A6C9C7A6C9C7A6C8C6A5C8C7A6C8C7A6C9C7A6C9C7A5C8C7A6C9C8A6C9C8A6C9C7A6C9 -C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C8A7CAC8A7C9C8A7C9C8A7C9C8A6C9C7A6C9C9A7C9 -C7A6C9C7A7CAC7A6C9C7A6C9C7A6C9C6A5C8C8A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C8A7C9 -C8A7C9C8A7C9C8A7CAC8A7C9C8A7C9C8A7C9C8A7C9C8A7CAC8A7CAC8A7C9C8A7C9C8A7CAC8A7C9 -C8A7C9C8A7C9C8A7C9C8A7C9C8A7C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A5C8C6A5C8 -C6A5C8C5A4C8C6A4C7C6A4C7C5A3C7C5A3C7C5A3C7C4A2C6C3A0C5C3A1C6C29FC4C29FC4C09DC3 -C19DC3C09CC2BE9AC1BE9AC1BE98C0BD97BFC4A1C5EFE0EDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FCF8FAC39EC4B68DB8B68CB7B58BB7B48AB6B48AB6B38AB6B389B6B48AB6B389B6B389B6B389B6 -B48AB6776597876E9FB791BAB992BCBA96BEBD99C0C09FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0 -FFFFFEFBF7FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D4 -BCB1D2B6ABCEB1A5CAABA0C6A79CC5A499C38D83B16764979991BD988FBC978EBB968CBA978DBB -958CB9968DBB958DBB958CBA988EBB988FBC988FBC988FBCD7CEE4FFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFBF7FACDC5DEA298C2A399C3A49AC3A59BC4A69DC5A79EC6AA9EC6AA9FC6AAA1C8ABA0C7 -ACA2C8ADA3C9AEA3C9AEA3C9AFA4CAAFA5CAAFA5CAAFA5CAB0A6CBB1A6CBB1A7CCB1A7CCB1A7CC -B1A7CCB1A7CCB1A7CCB1A7CCB1A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CC -B2A8CCB3A9CDB2A8CCB2A8CCB2A8CCB2A8CCB1A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB1A8CC -B1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB2A8CCB1A8CCB2A7CBB1A7CCB1A8CCB1A7CCB1A8CCB2A9CD -B2A8CCB2A8CCB2A8CCB2A8CCB2A9CDB2A9CDB3A9CDB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A7CC -B2A8CCB3A8CCB2A9CDB3A8CCB0A7CCB1A8CCB2A7CCB0A7CCB1A7CCB1A8CCB1A8CCB1A7CCB1A8CC -B2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB2A8CCB1A8CCB1A8CCB1A8CCB1A8CCB2A8CCB2A8CCB2A8CC -B1A8CCB2A7CCB2A7CCB2A7CCB2A7CCB1A8CCB0A7CCB0A7CCB0A6CBB0A6CBB0A6CBB0A6CBB0A6CB -AFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAEA4CAAEA3C9ADA3C9ACA2C8ABA1C8ABA1C8AAA0C7A99EC6 -A89FC7A69DC5A69DC5A59AC3A499C3A49AC3A298C2C8BFDAFAF9FBFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFED7CEE4988FBC988FBC978FBC988FBC978EBB968DBB968EBB948CBA968DBB948CBA968DBB -978EBC9189B7605F92948CBAA096C0A299C3A59CC4AAA1C8AEA7CCB4ABCEBAB2D3C1B9D7E9E5EF -FFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDBEBDCDCECE5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D8DFEE -D4DCECCFD9EBCED7EAC9D4E9C6D4E8C4D2E8C0CFE68188B2888FB8BCCDE5BBCCE5BCCDE5BACAE4 -BACCE5BBCCE5BBCCE5BBCDE6BCCDE5BCCDE5BCCEE6BDCEE6C9D7EBFBFCFCFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEF2F4F9CCD7EBC5D4E9C4D4E9C4D2E8C4D3E9C7D5EAC7D5E9C8D6EAC9D6E9CAD6EA -CAD7EBCBD8EBCBD8EBCCD8EBCCD8EBCDD9ECCDD9ECCDD9ECCDDAECCEDAEDCEDAEDCEDAEDCEDAED -CEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAEDCEDAEDCEDAEDCFDBED -CEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCFDBEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAED -CEDAEDCEDAEDCEDAEDCEDAEDCEDBEDCEDAEDCEDAEDCEDAEDCEDAECCEDAEDCEDAEDCEDAEDCEDAED -CEDAEDCEDAEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCEDAECCEDAED -CEDAECCEDAEDCEDAECCEDBEDCDDAECCFDCEDCEDAECCEDAEDCEDAEDCEDAEDCEDAEDCEDAEDCEDAED -CEDAEDCEDAEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCEDAECCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAEDCEDAED -CEDAEDCEDAEDCDDAECCDD9ECCDD9ECCDD9ECCCD9ECCCD8EBCBD8EBCBD8EBCAD7EBC9D6EAC9D7EB -C7D5EAC8D6EAC6D5EAC5D5EAC5D4EAC4D2E8C4D3E9D3DEEFF2F4F9FFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFCFCFCC9D7EBBDCEE6BCCDE6BDCEE6BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6BACDE5BBCDE6 -BCCDE6BCCDE6BDCFE7BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5 -FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FB -F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7 -BECEE6BECFE7F0F2F8FDFDFCFEFDFCFEFDFCFDFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD8E1F0D8E2F0D8E1F0D8E1F0DAE3F1FDFDFDFFFDFC -FFFEFCFFFDFCFFFDFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F2F4F9F0F3F9F1F3F8F5F7FAFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDC6BDD55E5E8FFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDB2B2B2B2B3B3 -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BC746F9CFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2 -FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CF -EBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69EC1E59CBFE59ABEE499BEE499BEE499BDE499BDE499BD -E499BEE498BDE49ABEE59BBFE49ABEE59BBFF5D0E2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFF9FAF6D4E4EBAFCCE8A5C5E8A6C6E8A7C6E9A9C8EAA9C8EAAAC9EAABC8EBACCAEAABCAEAADCB -EAADCBEAADCBEAAECBEAAECBEAAECBEAAECCEBAFCCEBAFCCEBAFCCEBB0CDEBB0CDEBB0CDEBB0CD -EBB0CDECB0CDECB1CDECB1CDECB1CDECB1CDECB1CDECB0CDECB0CDECB0CDECB0CDEBB0CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB0CD -ECB0CDEDB1CDEBB0CDECB0CDECB2CEEBB1CDECB1CDECB1CDEBB1CDEBB0CDEBB0CDECB1CDECB1CD -ECB1CDEBB0CDECB1CDEBB1CDEBB0CDECB0CDEBB0CDEBB0CDEBB0CDECB0CDEBB1CDEBB0CDECB0CD -EBB1CDEBB0CDECB0CDEBAFCCECB0CDECB0CDECB0CDECB0CDECB0CDECB0CDECB0CDECB0CDECB0CD -ECB0CDECB0CDECB0CDECB0CDECB0CDECB0CDECB0CDECB0CDECB0CCECB0CDEBB0CDECB1CDECB1CD -ECB1CDECB1CDEBB0CDEBAFCCEBB0CDEBB0CDEBB0CDEBAFCCEBAFCCEAAFCCEAAFCCEAAECCEAAECB -EAAECBEAAECBEAADCBEAADCBEAACCAEAABCAEAABCAEAABC9EAA9C8EAAAC9E9A8C8E7A6C6E9A6C6 -E8A5C5EBAFCCF4C8DDFEF2F6FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEF8D6E6E59BBFE499BE -E499BEE599BEE398BDE498BDE398BDE499BCE297BCE398BDE196BCE398BDE398BDE298BDE49ABD -A176A47B6294E4A1C2E6A4C5E7A9C8E9ADCBE9B2CEEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1 -EED3E4EBCEE1EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D3B3D1CDADCDCAA8CA -C5A2C5C39EC3C099C0A283B0655B8EB08AB5B78CB7B68BB7B38AB6B58AB5B38AB6B489B5B48AB5 -B48AB6B58AB6B48AB6B68BB7B58BB7B58DB8C19EC4FBF7F9FFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEF0E1EDD0B3D1BD97BFBD97BFBE99C1BE99C0C09BC1BF9CC2C19CC1C19DC3C19EC3C29FC4 -C3A0C5C4A1C5C4A1C6C4A2C6C4A2C6C4A2C6C5A3C7C5A3C7C5A4C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C4A3C7C5A3C7C6A4C7C6A4C7C6A4C7C6A4C7C5A4C7C6A4C7C6A4C7C5A3C7C5A4C7C6A4C7 -C6A4C7C6A4C7C5A4C7C6A4C7C6A3C7C6A3C7C6A3C7C6A4C7C6A4C7C5A3C7C5A3C7C5A3C7C5A3C7 -C5A3C7C4A3C7C6A3C6C5A4C7C6A3C7C5A4C7C5A3C7C5A4C7C5A3C7C5A2C6C4A3C7C5A4C7C6A4C7 -C6A4C7C5A4C7C5A4C7C5A4C7C5A4C7C6A3C7C6A3C7C6A4C7C5A3C7C5A4C7C5A4C7C5A4C7C7A4C8 -C6A3C7C5A4C7C4A3C7C6A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A3C7C5A4C7C6A4C7C6A4C7C6A3C7 -C6A4C7C5A4C7C5A4C7C6A4C7C6A4C7C6A4C7C5A4C7C5A3C7C6A3C7C6A3C7C6A3C7C5A4C7C6A4C7 -C6A4C7C6A4C7C5A4C7C5A4C7C5A4C7C5A4C7C5A4C7C5A3C7C5A4C7C5A3C7C5A3C7C4A2C6C4A2C6 -C4A1C5C4A1C5C3A0C5C4A0C5C29FC4C29FC4C39EC4C19DC3C19DC3BF9CC2C09CC2BE9AC1BE9AC1 -BD97BFBD96BED0B3D2EAD9E9FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFBF7FAC39EC4B58DB8 -B58BB7B58BB7B58BB7B48AB6B48AB6B48AB6B389B6B389B6B389B5B38AB6B389B5B48AB6B58AB6 -726295896FA1B892BBBA96BEBD99C0C09EC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FA -E6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BBB0D1B6ABCE -B2A5CAABA1C8A89CC48E86B36965979C93BE9B91BD988EBB978EBB978DBA968CBA958BB9958CBA -968CBA958CBA968DBB988FBC978DBB978EBC998FBCD6CEE3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFAF8FACEC5DEADA3C9A39AC3A49BC4A59CC4A59CC5A89DC5A89EC6A99FC6A99FC6AAA0C7 -AAA0C7ABA1C8ACA2C9ACA2C9ACA2C9ACA3C9ADA3C9AEA3C9AEA4CAAFA4CAAFA4CAAFA4CAAFA4CA -AFA4CAAFA5CAAFA4CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA4CAAFA4CAAFA4CAAFA5CA -AFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA4CAAFA5CAAFA6CBAFA5CAAFA4CAAFA4CAAFA5C9 -AFA4CAAFA4CAAFA4CAAFA4CAAFA4CAAFA4CAB0A5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CA -AFA4CAAEA5CAAFA4CAAEA4CAAFA4CAAFA5CAAFA4CAAFA4CAAFA5CAAFA4CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA5CA -AFA5CAAFA5CAAFA5CAAFA4CAAEA4CAAEA4CAAEA4CAAEA3C9AEA4CAAEA3C9AEA3C9ADA2C8ADA2C8 -ADA2C8ACA2C8ACA2C8ABA1C8AAA0C7AAA0C7A99FC7A99FC7A89EC5A79DC5A59DC5A59BC4A59BC4 -A49AC3A399C3ADA3C9CEC6DFF5F0F6FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFED6CFE4988EBB -978EBB978EBC988DBB968EBB968DBB958DBA958CBA968EBB958DBB968DBB948CBA968EBB978EBC -9289B75A5B8F8A83B2A098C2A59BC4A9A1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFE -EBE7F2DFDDECDBD9EBDCDBEBDCDCECE5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D8E0EFD4DBEDD1DAEC -CCD6EACAD6E9C6D3E9C4D0E66B6F9D888FB8BECEE6BCCCE5BBCDE5BBCBE4BACBE4BACDE5BACCE5 -BCCDE5BACDE5BBCBE4BDCEE6BCCDE6BDCEE6BCCDE6C9D7EBFBFCFCFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEEEF0F7D7DFEFC3D3E9C4D3E9C5D4E8C7D4E9C5D4E9C7D5EAC6D6E9C8D6EBC9D7EB -C9D7EBCAD7EBCAD7EBCBD8ECCBD8ECCBD8ECCBD8ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CCD9ECCCD9ECCCD9ECCCD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCCD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCCD9ECCCD9ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCDD9EC -CCD9ECCCD9EBCCD9ECCDD9ECCBD8ECCEDAEDCBD8ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCCD9ECCCD9ECCDD9ECCDD9ECCDD9ECCDD9ECCCDAEDCDD8EB -CCDAECCDD9ECCDD9ECCCD9EBCCD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCBD8EC -CBD8ECCCD9ECCBD8ECCBD8ECCAD8EBCAD7EBC8D5E9CAD7EBC8D6EAC7D4E9C8D6EAC6D4E9C5D4E9 -C5D3E8C4D3E9C4D3E9D7E0EFF2F4F9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFDFDFDC8D7EB -BCCDE6BDCEE6BBCCE5BCCDE6BCCDE6BCCDE6BBCCE5BBCCE5BBCDE6BBCDE6BCCDE5BCCDE6BCCDE6 -BDCFE7BECFE7C0D0E7C3D2E8C5D4E9C9D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFE -FBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FB -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BDCFE7BECFE7E7ECF5 -FEFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E0EFDAE4F1F8F8FBFFFDFCFFFDFCFFFDFCFFFDFC -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F3F9F1F3F9F1F3F9F3F5F9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3E457BE4DDE9FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE736F9D9F98BBFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD -9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCA -E8A7C7E8A4C5E7A0C2E69EC1E59CBFE59ABEE499BDE499BDE499BDE497BCE499BDE498BDE499BD -E499BDE499BEE59ABEE49ABEE59BBFF1BDD5FFF8FAFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFEF2F6F9DAE8F6D0E1EEBAD3EEBAD3E8A7C7E9A8C7EAA9C8E9A9C8E9AAC8E9AAC8E9AAC9 -EAABCAEAABCAEBACCAEBADCBEBACCAEBACCAEBACCAEBADCBEBADCBEBADCBEBADCBEBADCBEBADCB -EBAECBEBAECBEBAECBEBAECBEBAECBEBAECBEBAECBEBADCBEBADCBEBAECBEBAECBEBAECBEBAECB -EBAECBEBAECBEBADCBEBADCBEBAECBEBAECBEBAECBEBAECBEBAECBEBAECBEBAECBEBADCBEBADCB -EBADCBEBACCAEBAECBEBAECBEAAECBEBAECBEAAECBEAAECBEAADCBEBADCBEBADCBEBAECBEAAECC -EBAECBEAAECBEBADCBEBAECBEBAECBEAADCBEAADCBEBAECBEBAECBEBADCBEBAECBEBADCBECADCB -EBADCBEBADCBEAADCBEBAECBEBAECBEBAECBEBAECBEBADCBEBAECBEBAECBEBAECBEBAECBEBAECB -EBAECBEBAECBEBAECBEBAECBEBADCBEBADCBEBADCBEBAECBEAAECBEAAECBEBAECBEBAECBEBAECB -EBADCBEBADCBEBADCBEBADCBEBADCBEBACCAEBACCAEAACCAEAABCAEAABCAEAABCAEAABCAEAACCA -EAABC9EAAAC9EAAAC9EAA9C8EAA9C8E9A8C7E8A7C7EFBBD4EEBAD3F4CADEF7D5E5FDECF3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF5CADEE59BBFE499BEE499BDE499BDE399BE -E498BDE397BCE398BDE297BCE297BCE397BCE397BCE396BCE398BDE298BDE39ABEE59CC0B683AD -7B6394D99CC0E7A8C8E8ADCBEAB3CFEBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE1 -EACEE1E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D2B3D1CEADCDCAA8CAC6A2C5C29DC3 -9479A76E6093B28CB7B88FBAB78CB8B58BB7B48AB6B48AB6B48AB6B489B5B489B5B48AB6B489B5 -B48AB6B48AB6B58CB7B48AB6B58CB7B992BCEEDEECFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFCF8FAEAD9E9DDC6DDD1B4D2CCAFCFC6A3C7BF9BC1C09CC2C19CC2C19CC2C29DC3C29EC4 -C19EC3C29EC4C29FC4C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5C4A1C5 -C4A1C5C4A1C5C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A1C5C4A1C5C4A1C5C4A2C6C5A2C6C4A2C6 -C4A1C5C4A1C6C4A1C5C4A1C5C4A1C5C4A1C6C4A1C6C4A0C5C4A1C5C4A1C5C3A0C5C4A1C5C4A1C5 -C4A1C5C4A1C5C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C6 -C4A2C6C4A1C6C4A1C6C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A2C6C4A1C5C4A2C6C4A1C5C4A1C5 -C4A0C5C3A0C5C4A0C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C6C4A1C6C4A1C5C4A1C5C4A2C6 -C4A1C5C4A1C5C4A1C6C4A2C6C4A2C6C4A1C5C3A0C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5 -C4A1C5C4A1C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C39FC4C39FC4C39FC4C39FC4C29EC4C19DC3 -C19DC3C29DC3C09CC2C09CC2C09BC1BF9BC1BE9AC1C6A5C8CDAFCFD0B4D2DDC5DDEAD9E9FCF9FA -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF2E5F0BE99C1B58CB7B58BB7B58BB6B58BB7 -B48AB6B48AB6B38AB6B48AB6B389B5B389B6B288B5B389B6B28AB6B28AB6B58BB7B58DB88770A0 -6C5F92BA96BEBD99C0C09FC4C4A4C8C7AACBCCB0CFDCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0 -D9CAE1D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEECCFC4DDC2B6D5BCB1D2B6AACDB0A6CBACA1C8 -7771A2646194A095C09D93BE9A91BD988EBB978EBB968CBA958CBA958CBA948BB9968DBB958CBA -958DBA968DBB968EBB988EBB968EBB988FBCBDB3D3FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEEFE8F2D5CCE2CAC0DBB9AFD1B9B1D2A69CC4A69CC4A79DC5A79DC5A89EC6A99FC6 -A99FC7A99FC7AAA0C7AAA0C7AAA0C7AAA1C8AAA1C8AAA0C7ABA1C8ABA1C8ABA1C8ABA1C8ABA2C8 -ABA2C8ABA2C8ACA3C9ACA3C9ACA3C9ADA3C9ADA3C9ACA2C9ACA2C9ACA2C9ADA3C9ACA3C9ADA3C9 -ADA3C9ADA3C9ADA3C9ADA3C9ACA2C9ACA2C9ACA3C9ACA2C9ACA2C8ACA2C9ADA3C9ACA2C9ACA2C8 -ACA2C9ACA2C9ACA2C9ADA3C9ACA2C9ADA3C9AEA3C9ADA3C9ACA2C9ACA2C9ACA3C9ACA2C9ACA2C9 -ADA3C9ACA3C9ACA3C9ACA2C9ADA3C9ACA2C9ACA2C9ACA3C9ADA3C9ADA3C9ACA3C9ACA2C9ABA2C8 -ACA2C9ABA2C8ABA1C8ABA2C8ACA2C8ACA2C9ACA2C9ACA2C8ABA2C8ABA2C8ABA2C8ACA2C9ACA2C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ABA2C8ABA2C8ACA2C8ACA2C8ABA1C8 -ABA1C8ABA1C8AAA1C8AAA1C8AAA1C8AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AA9FC6 -AA9FC6A99FC6A89EC6A79DC5A69DC5A69DC5A59CC4A59AC3BAB0D1B9AFD1CAC1DCD4CCE2EFE9F2 -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEC4BAD7988FBC978EBB968EBB968DBB -968EBB968DBB968DBB968DBA958CBA948CBA958CBA948CBA958DBA968DBB978EBC9991BD948CB9 -616093807AA9A59CC5A9A1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDEC -DBD9EBDCDBEBDCDCECE5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D9DFEFD4DBEDD0DAEBCDD7EAC9D4E9 -BCC6E06C6F9E9299BEBFCFE6BECDE5BCCDE5BCCDE5BBCDE5BACBE4BACCE5BACCE5BACCE5BBCCE5 -BBCDE6BBCBE4BCCDE6BCCDE6BBCDE6BCCDE6C4D3E9F4F6FAFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFCFBFCEEF1F8E3E9F4D8E1F0D5DFEFCEDAEDC6D5EAC7D5EAC7D5EAC7D5EAC8D6EA -C8D6EAC8D6EBC8D6EBC9D8EBC9D7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD8EBCAD8EBCAD7EBCAD7EBCAD7EBCBD8EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD8EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EACAD7EB -CBD8EBCAD7EBCAD7EBC9D7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD8EB -CBD8ECCAD7EBCBD8EBCBD8ECCAD8EBCAD7EBCAD7EBCAD8EBCAD7EBCBD7EACBD8EBCBD8ECCBD8EB -CBD8ECCAD7EBCAD7EBCAD7EBCAD7EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCCD8EBCBD8EB -CBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8ECCBD9ECCBD8EBCAD7EBCBD8EB -CCD8EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBC9D7EBC9D7EB -C8D6EBC8D6EAC8D6EBC8D6EBC8D6EBC7D5EAC7D4E9C6D5EACEDAECD4DFEFD8E1F0E2E9F4EEF1F8 -FCFCFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF5F6FAC1D1E8BDCEE6BCCDE6BCCDE6 -BDCEE6BCCDE5BBCDE6BBCDE6BACCE5BACCE5BBCDE6BBCDE6BBCCE5BBCDE6BCCDE6BDCFE7BECFE7 -C0D0E7C3D2E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FA -F0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFC -FAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7D7E1F0FEFDFCFEFCFBFEFDFC -FEFCFBFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D7E0EFD8E2F0F1F3F9FFFDFCFEFCFBFFFFFDFFFEFCFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F3F5F9FDFDFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD696796ADA5C5FFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFE3E457BE4DDEAFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8 -FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EE -FDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFECB0CDEAABCAE8A7C7E8A4C5 -E7A0C2E69EC1E59CBFE599BEE499BDE499BDE499BDE597BCE497BCE499BDE499BDE498BDE499BD -E499BEE499BEE49ABEE49ABEE9A7C7FBE3EDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEE8A4C5E7A6C6E7A6C6E8A7C6E8A7C7E8A7C7E9A8C8E9A8C8EAA9C8 -EAA9C8EAAAC9EAAAC9EAAAC9EAABC9EAABC9EAABC9EAABCAEAABCAEAABCAEAABCAEAACCAEAACCA -EAACCAEAACCAEAACCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEBABC9EAABC9EAABCAEAABCAEAABCAEAABCAEAABC9EAACCA -EAABCAEAABC9EAABCAEAABCAEAABCAEAABCAEAABCAEAACCAEAACCAEAABCAEAABCAEAACCAEAABCA -EAACCAEAACCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAACCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAACCAEAABCAEAABCAEAABCAEAACCAEAACCAEAACCAEAABCAEAABCAEAABCA -EAABC9EAABC9EAABC9EAABC9EAAAC9EAAAC9EAAAC9EAA9C8E9A9C8E9A9C8E9A8C7E8A7C7E8A7C7 -E8A7C7E8A7C6E9A6C6E8A5C5E8A5C5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFEF1F6EDB3CEE59BBFE499BEE499BDE498BDE499BDE498BDE498BDE397BC -E397BCE398BDE397BCE397BCE397BCE397BCE297BCE298BDE39ABEE49CC0E49EC1CD92B87A6394 -B789B2E8ADCAE9B2CEEBB8D2ECBED6F6E1ECFEF8F9FFFEFDF8E9F1EFD3E4EACEE1EBCEE1E9CDE1 -EED7E7FAF0F5FFFEFCF9EFF5EAD6E7D8BAD6D2B3D1CEADCDCAA8CABD9BC17766988570A0BD96BE -BA93BCB990BAB78DB8B58BB6B48AB6B489B5B489B5B489B5B489B5B489B5B48AB6B48AB6B48AB6 -B48AB6B48AB6B58BB7B58CB7B58CB8D8BFD9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEDDC6DDBE98C0BE99C0BE9AC1BF9AC1BF9BC1C09BC1C19CC2C19CC2 -C19CC2C19CC2C19DC3C19DC3C19EC3C29EC4C29EC4C29EC4C29EC4C29EC4C29DC3C29EC4C29FC4 -C29FC4C39FC4C39FC4C29FC4C29EC4C29EC4C39FC4C29FC4C29FC4C29FC4C39FC4C29FC4C29FC4 -C29FC4C29FC4C39FC4C29FC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C39EC4C29EC4 -C29EC4C29FC4C19EC4C09EC4C19EC4C29EC4C29EC4C29EC4C39FC4C29FC4C29EC4C39EC4C39FC4 -C29EC4C29FC4C29FC4C29EC4C29EC4C29FC4C39FC4C39FC4C39FC4C29FC4C29EC4C29FC4C29FC4 -C29EC4C39EC4C29EC4C29EC4C29FC4C29FC4C39FC4C29FC4C29FC4C39FC4C39FC4C29EC4C29FC4 -C39FC4C29EC4C29EC4C39FC4C39FC4C29EC4C29FC4C39FC4C29FC4C29FC4C29FC4C29EC4C29EC4 -C29EC4C29DC3C29EC4C29EC4C29DC3C19DC3C19CC2C09CC2C19CC2C09CC2C09CC2C09CC2BF9AC1 -BF99C0BF99C0BE99C0BE98C0BE98C0DDC5DDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEDEC7DEB58DB8B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B389B6 -B389B5B389B5B389B5B288B5B289B6B389B6B288B5B38AB6B58CB7B58DB8B790BAA081AF645B8F -A386B1C19FC4C4A4C8C7AACBCCB0CFDCC8DFF0E4EFFFFFFEFBF7F9E6DBEADACAE0D9CAE1D8C9E0 -D9CBE1E9DFEDFFFEFDFFFEFDE7DEECCFC4DDC2B6D4BCB1D2B6ABCEA096BE676395847CAAA499C3 -A196C09D93BE9A91BD988EBB968DBB968CBA958CB9958CB9968CBA948CBA948BB9958CBA958CBA -958CBA968DBB968DBB978EBB988FBCAAA0C7EDE6F1FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA399C3A49AC3A49BC4A59BC4A59CC4A69CC4A69DC5A79DC5 -A79DC5A79DC5A69DC5A79EC6A99FC6A99FC6AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA1C8AAA1C8AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA1C8AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7A99FC6A89EC6 -A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A79DC5A79DC5A69DC5A69DC5A69DC5A59CC4 -A59CC4A59BC4A49BC4A39AC3A399C3A299C3FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEEDE6F1AAA0C7988FBC978DBB968EBB958CBA968DBB958DBA958DBB -958CBA958CBA958CB9948BB9948CBA958CBA958DBA968DBB978EBC9890BD9B93BF9E95C0756FA0 -6A6799A199C1AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDBD9EBDCDAEB -DCDCECE4E4F0F7F5F9FFFEFDF6F6F9E8E9F3D8DFEED4DBEDD0DAECCDD7EAA0A6C8656899B0BAD7 -C2CFE6BFCFE6BECEE6BCCDE5BBCCE5BBCCE5BACAE4BACBE4BBCCE5B9CBE5BACCE5BACCE5BBCCE5 -BBCCE5BBCDE6BBCDE6BBCDE6BDCEE6BDCEE6DFE6F2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE3E9F4C4D3E9C5D4EAC5D4EAC6D5EAC6D5EAC6D5EAC7D5EA -C8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EAC8D6EAC8D6EA -C8D6EBC9D7EBC9D7EBC9D7EBC9D8EBC9D6EAC9D6EAC9D6EAC9D6EAC8D6EAC8D6EAC9D6EAC8D6EA -C9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC8D6EBC9D7EBC9D7EBC9D7EBC8D6EBC8D6EBC8D6EAC8D6EA -C8D6EAC9D6EAC9D6EAC9D7EBC9D7EBC8D6EAC8D6EAC9D6EAC9D6EAC9D7EBC9D7EBC9D6EAC9D6EA -C9D6EAC9D7EBC8D6EBC9D6EAC9D5EAC9D6EAC8D6EAC9D7EBCAD7EBC9D7EBC9D7EBC9D7EBC9D7EB -C9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC8D6EBCAD7EBCAD6EAC9D6EA -C9D7EBC9D7EBC9D6EAC9D6EAC9D7EBC9D7EBC9D6EAC9D7EBCAD7EBCAD7EBCAD7EBC9D7EBC8D6EB -C8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EAC8D6EBC8D6EAC8D6EAC8D6EAC7D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC5D4EAC5D4EAC5D4E9E3E9F4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEDFE6F2BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE5BBCCE5 -BBCCE5BACCE5BACCE5BACCE5BBCDE6BBCCE5BBCCE5BBCDE6BCCDE6BDCEE6BECFE7C0D0E7C3D2E8 -C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9 -BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFC -FBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7D2DDEEFEFDFCFEFEFCFEFCFBFEFEFCFEFCFBFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E0EFD8E1F0 -D8E1F0D8E1F0ECF0F7FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F2F8F1F3F9F1F3F9F1F3F9F2F4F9F0F3F9F2F4F9F1F3F9F1F3F9F1F3F9F1F4F9FCFCFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB736F9CFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFD -BAB1CC515689FFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFE -FFFFFEFCEAF2F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1 -E59CBFE599BEE498BDE498BDE498BDE497BCE397BCE498BDE498BDE498BDE498BDE499BDE499BD -E499BEE499BEE49ABEE59BBFF0BDD5FDF1F6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEE7A3C4E7A3C4E7A3C4E8A4C5E8A4C5E8A5C5E8A7C6E8A7C6E8A7C6E8A6C6E8A7C6 -E8A7C7E8A7C7E9A8C8E9A8C8E9A8C8E9A8C8EAA9C8EAA9C8E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8 -E9A9C8E9A9C8E9AAC8EAA9C8EAA9C8E9A9C8E9A9C8E9A9C8E9A9C8EAA9C8EAA9C8EAA9C8E9A8C8 -E9A8C8E9A8C8EAA9C8EAAAC9EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8E9A8C8EAA9C8EAA9C8E9AAC8 -E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8EAAAC9EAA9C8EAA9C8EAA9C8EAAAC9EAA9C8 -EAAAC9EAA9C8EAA9C8EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9 -EAAAC9EAAAC9EAAAC9EAAAC9EAA9C8EAA9C8EAA9C8EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9 -EAAAC9EAAAC9E9A9C8E9A9C8E9A9C8E9AAC8E9AAC8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8E9A8C8 -E9A8C7E9A8C7E9A8C7E9A7C7E9A7C7E8A7C6E8A7C6E8A6C6E8A6C6E8A5C5E7A5C5E7A4C5E7A3C4 -E7A3C4E7A3C4E8A3C4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFF8FA -F4CBDEE59BBFE49ABEE599BEE499BDE499BDE498BDE499BDE498BDE498BDE397BCE397BCE397BC -E396BCE397BCE397BCE297BCE297BCE298BDE39BBFE49CC0E49FC2E5A1C3E5A4C59876A3715F92 -C599BDEBB8D2ECBED6F7E1EBFDF7F9FFFFFEF8E9F1EDD3E4EBCEE1EACEE0E9CDE1EDD6E7F8F0F5 -FFFEFDF8EFF5EAD6E7D9BAD6D2B3D1CFAECE927CA9685D90AF8FB8C099C0BD97BFBA92BBB990BA -B78DB8B58BB6B48AB6B489B5B489B5B489B5B489B5B489B5B489B5B48AB6B489B5B489B5B48AB6 -B48AB6B58BB7B58BB7B68DB8BF9AC1E3CDE2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEDCC5DDBD96BEBD97BFBC96BEBD97BFBE99C0BE99C0BE9AC1BF9BC1BF9AC1BF9BC1 -BF9BC1BF9BC1BF9BC1BF9BC2BF9BC2BF9BC2C09CC2C09CC2C19CC2C19CC2C19CC2C19CC2C19CC2 -C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2 -C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C09CC2C09CC2C09CC2C09CC2C09CC2 -C19CC2C09CC2C09CC2C09CC2C09CC2C09CC2C19CC2C19DC3C19CC2C19CC2C19CC2C19CC2C19CC2 -C19CC2C09CC2C09CC2C09CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C09CC2C19CC2 -C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C19CC2C09CC2 -C19CC2C29DC3C09CC2C09CC2C09DC3C09DC3C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2BF9BC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BE9AC1BE99C0BE99C0BE98C0BE98C0BE98C0BD97BF -BD97BFBD96BEBB95BDDCC5DDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -EDDDEBBE99C0B58DB8B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B489B5B389B5B389B5B389B5 -B288B5B288B5B288B5B288B5B288B5B38AB6B58CB7B58DB8B790BAB892BCB28FBA7C6A9A756798 -B194BCC7AACBCCB1D0DCC8DFF0E6F0FFFEFDFAF8FAE7D9E8D9C9E0D9CAE1D9CAE0D8CAE0E9DFED -FFFFFEFFFEFDE6DFEDCFC4DDC3B7D5B1A7CB7771A06E6A9BA499C2A79CC5A499C3A196C19D93BE -9B91BD988EBB968CBA968CBA958CB9948BB9958CB9948CBA948BB9948BB9958CBA948CBA958DBA -958DBA968DBB978DBB988FBC988FBCBCB2D3F4EFF5FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEA197C1A199C2A198C2A299C2A39AC3A49AC3A49BC4A59BC4A59BC4A59BC4 -A59CC4A59CC5A69DC5A69DC5A69DC5A69DC5A69DC5A79DC5A79EC6A79DC5A79DC5A79DC5A89EC6 -A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6 -A79DC5A89EC6A79DC5A89EC6A89EC6A89EC6A79DC5A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6 -A89EC6A79EC6A89EC6A89EC6A89EC6A79EC6A79DC5A89EC6A99FC6A79EC6A89EC6A89EC6A99FC6 -A89EC6A79DC5A79EC6A79EC6A89EC6A99EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6 -A89EC6A89EC6A89EC6A89EC6A89EC6A79DC5A89EC6A89EC6A89EC6A79DC5A79DC5A89EC6A79DC5 -A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A69DC5A69DC5A69DC5A69DC5A69DC5A59CC5 -A59CC4A59CC4A59CC4A59CC4A59BC4A49BC4A49BC4A49BC4A49AC3A49AC3A39AC3A39AC3A399C3 -A198C2A199C2A097C1A196C0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -F4EFF5BEB3D3988FBC988FBC968DBB978DBB948CBA948CBA958CBA958CBA958CBA948CBA958CB9 -958CB9948CBA948CBA948CBA948CBA968DBB978EBC9891BD9C93BF9D95C0A198C2968DB95E5E92 -817CAAB3ABCEBAB3D3C1B9D7E9E5EFFFFFFDFFFFFEEBE7F1DFDDECDBD9EBDCDBEADCDCECE5E3EF -F7F6FAFFFFFEF6F5F9E8E9F3D7DEEED5DCEDBABFDA6769998589B2C6D2E8C4D1E8C2D0E7BFCFE6 -BECEE6BCCDE5BBCCE5BACCE5BACBE4BACBE4BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BBCDE6BCCDE6BCCCE5BDCFE7BDCEE6C5D4E9F1F3F8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEE2E9F4C4D2E8C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EA -C7D5EAC7D6EAC7D6EAC7D5EAC7D5EAC7D5EAC7D5EAC6D5EAC6D5EAC6D5EAC6D5EAC7D5EAC7D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC7D5EAC6D5EAC6D5EAC7D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC7D4E9C6D5EAC7D5EAC7D6EAC7D5EAC8D6EAC8D6EAC8D6EB -C7D6EAC7D6EAC7D5EAC8D6EBC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC7D5EAC7D5EAC7D5EAC7D6EA -C7D6EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC8D6EAC7D5EAC7D6EAC7D5EAC7D5EAC7D5EAC7D5EA -C7D5EAC7D5EAC8D6EAC7D5EAC7D6EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4E9C5D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C2D1E8E2E9F4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDE8ECF5C5D4E9BCCEE6BCCDE5BBCDE6BBCDE6BBCDE6BACCE5BCCDE5BACCE5BBCCE5BACCE5 -BACCE5BACCE5BBCDE6BBCCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8C4D3E9C8D6EA -CCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594 -F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BECFE7BED0E7 -BECFE7BECEE6BECFE7CBD8ECFAFBFCFEFEFCFEFDFCFEFEFCFEFCFBFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EFE8ECF5 -FFFEFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F3F9F2F4F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F9F1F4F9FAFBFCFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE3DCE9484E82FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFEFCFFFEFD7E78A28882AB -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6 -FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2 -F6D3E3F3C7DBF0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E59CBFE599BE -E499BDE498BDE498BDE497BCE397BCE397BCE497BCE497BCE498BDE498BDE499BDE499BDE499BD -E499BDE499BDE59BBFE69CBFF0BED6FBDDEAFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -E6A0C2E7A1C3E8A2C3E8A3C4E8A3C4E8A4C4E8A4C5E8A4C4E8A4C5E8A5C5E8A5C5E8A5C5E8A5C5 -E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A7C6E8A7C6E8A7C6E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E9A7C7E8A7C6E8A7C6E8A7C6E8A7C6E8A7C7E8A7C7E9A8C7E8A7C6E8A7C6E9A8C7E8A7C7 -E8A7C6E8A7C6E8A7C6E8A7C7EAA8C7E9A7C7E9A8C7E9A8C7E9A7C7E8A7C6E8A7C7E9A8C7E9A8C7 -E8A7C7E9A8C7E9A8C7E9A8C7E9A8C8E9A8C8E9A8C8E8A7C7E9A8C8E9A8C8E9A8C7E9A8C8E9A8C7 -E9A7C7E8A7C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7 -E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7 -E9A8C7E9A8C7E9A8C7E9A8C7E9A7C7E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A6C6E8A5C5E8A5C5 -E8A5C5E8A5C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C4E8A4C4E8A3C4E7A2C3E7A1C3E7A1C3E7A2C3 -E6A1C3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFDEBF2F1BFD7E7A1C3E59BBFE499BE -E49ABEE499BDE498BDE498BDE497BCE498BDE497BCE497BCE396BCE397BCE397BCE396BCE397BC -E397BCE297BCE297BCE298BDE39BBFE49CC0E39FC1E5A1C3E6A5C5E7A8C7DBA5C68E72A07A6898 -A486AFF6E1ECFEF7F9FFFFFEF8E9F1EFD4E5EACEE0E9CDE1E9CEE1EED6E7F9EFF5FFFFFEF9EFF5 -EBD6E7C1A7C88474A1726696A389B3C5A1C4C39DC2BF99BFBD96BEBA92BBB990BAB78DB8B58BB6 -B48AB6B488B5B488B5B388B5B489B5B489B5B489B5B389B5B489B5B489B5B489B5B48AB6B48AB6 -B58BB7B58BB7B58CB7B68DB8BE99C0DEC7DEFCF7F9FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -DBC3DBBB94BDBB95BDBB95BDBD96BEBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE99C0BE99C0 -BE99C0BE99C0BE99C0BE9AC1BF9AC1BF9AC1BF9BC1BF9AC1BF9AC1BF9BC1BF9BC1BF9BC1BF9BC1 -BF9BC1BE9AC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BF9BC1BF9BC1BE9AC1BF9AC1BF9BC1BF9BC1BF9BC1 -BF9AC1BF9AC1BF9AC1BE9AC1BF9AC1C09BC1BF9BC1C09AC1C09BC1C09BC1BF9BC1BE9AC1BE9AC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC2BF9BC1BF9BC1BF9AC1BE9AC1BF9AC1BF9AC1 -BF9AC1BF9AC1BF9BC1BF9AC1BF9AC1BF99C0BE99C0BE9AC1BE9AC1BE9AC1BE9AC1BE98C0BE98C0 -BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD96BEBD96BEBC96BEBC95BDBA94BDBB94BD -BA93BCDBC3DBFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFCF6F9E4CFE3BE99C0B68DB8B58CB7 -B58CB7B48AB6B48AB6B48AB6B389B5B489B5B389B5B389B5B388B5B389B5B288B5B288B5B288B5 -B288B5B288B5B288B5B38AB6B58CB7B68DB7B690BAB892BCBA95BDBC99C0B796BF7E6E9D776B9B -9B88B1DCC8DFF0E5F0FFFEFCFCF8FAE6DAEAD9C9E0D9CAE1D8CAE0D8CAE0E9DFEDFFFEFDFFFFFE -E7DEECB2A7C96D6898736D9DA59BC3B1A5CAACA1C8A79CC5A499C3A196C09D93BE9B91BD988EBB -968CBA958CB9958CB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948CBA948CBA958DBA -968DBB968DBB988FBC978FBC9890BCBDB3D3E5DEECFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9D94BF9F95C0A097C1A197C1A198C2A197C1A198C2A399C3A39AC3A39AC3A399C3A39AC3 -A49AC3A49BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59CC5A69DC5A69DC5A69DC5 -A69DC5A59CC4A59CC4A69DC5A69DC5A59CC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5 -A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A59CC5A69DC5A59CC4A59CC4A69DC5A59CC5 -A59CC5A59CC5A59CC5A59CC5A59CC4A69DC5A79DC5A69DC5A69CC4A69DC5A69DC5A59CC4A59BC4 -A59CC5A59CC4A59CC4A69DC5A59CC5A59CC5A59CC4A59CC5A59CC5A59CC5A59CC5A59CC5A59CC4 -A59CC4A59CC5A59CC5A59CC5A59BC4A59CC5A59CC4A59CC4A59CC5A59CC5A59CC4A59CC4A59CC5 -A59BC4A59CC4A59CC4A59CC4A59BC4A59BC4A49BC4A49AC3A39AC3A39AC3A39AC3A39AC3A399C3 -A399C3A399C3A298C2A198C2A198C2A198C2A197C1A197C1A197C1A197C1A197C1A096C1A096C1 -9F95C09D94BFFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEEDE6F1BEB4D4988FBC9890BC -978EBB968DBB978EBB958CBA948CBA958CBA958CBA948CBA948CBA948BB9958CB9958CB9948CBA -948CBA948CBA948CBA968DBB978EBB9990BD9C93BF9D95C0A098C2A59BC4A9A1C88F88B4686697 -7973A2AFA7CAE9E5EFFFFFFEFFFFFEEAE7F2DFDDECDBD9EBDCDBEBDCDBEBE6E6F2F6F4F8FFFEFD -F5F5F9E8EAF49696BB71719F8081ABC1C9E0C9D5EAC6D4E9C4D1E8C1CFE5BFCFE6BECEE6BCCDE5 -BBCCE5BACCE5BACBE4BACBE4B9CBE4BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5 -BBCDE6BCCDE5BDCEE6BDCEE6BDCEE6C5D4E9E8EDF6FCFCFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEE1E7F3C2D2E8C4D2E8C3D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9 -C5D4E9C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC6D5EAC6D5EAC6D5EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C6D5EAC6D5EAC6D5EAC6D4E9C5D4E9C6D5EAC7D5EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EA -C5D4E9C6D5EAC6D5EAC6D4E9C6D4E9C6D4E9C6D5EAC5D4EAC5D4EAC6D4E9C6D4E9C6D4E9C6D4E9 -C6D4E9C6D4E9C6D5EAC6D5EAC6D5EAC7D5EAC6D6EAC6D5EAC6D5EAC6D5EAC6D4E9C6D4E9C6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8 -C3D2E8C2D1E8E1E7F3FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFCFDFDE3E9F4C5D4E9BDCEE6 -BDCEE6BCCDE5BCCEE6BACDE5BCCDE6BBCDE6BCCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACDE5BBCCE5BACCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8C4D3E9C8D6EACCD9ECCFDBED -D4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FA -F6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE6BDCFE7BDCEE6BFD0E7BECFE7 -C3D3E9F7F8FAFEFDFDFFFEFCFDFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E1F0E0E8F3FDFDFDFEFDFCFFFEFC -FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F7F9FBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFD5D5D8EBAB1CDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE474E82D5CDE0FFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4 -FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DB -F0C0D7EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C5E7A0C2E69FC1E49BBFE59ABEE499BDE498BD -E498BDE497BCE396BCE397BCE397BCE497BCE497BCE498BDE398BDE499BDE498BDE497BCE499BE -E499BDE39ABEE59BBFE59CBFE8A2C3F0BED6F6D1E2FAE4EEFFF7F9FFFFFEFFFEFDE79FC1E7A0C2 -E7A0C2E7A0C2E7A1C3E7A1C3E7A2C3E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E8A4C4E8A4C5 -E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A6C6 -E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A6C6E8A5C5E8A5C5E8A6C6E8A5C5E8A5C5 -E8A5C5E8A5C5E8A5C5E8A4C5E8A5C5E8A6C6E8A5C5E8A5C5E8A6C6E8A6C6E8A6C6E8A5C5E8A6C6 -E8A6C6E8A6C6E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A7C6E8A6C6E8A5C5E8A6C6E8A6C6E8A6C6 -E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A5C5E8A6C6E8A6C6 -E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E7A6C6E7A6C6E8A6C6E8A6C6 -E8A6C6E8A6C6E8A5C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A4C5E7A3C4E7A3C4E7A2C3E7A2C3E7A1C3E7A0C2E6A0C2E69FC2E69FC1E69FC2E69FC1FFFEFD -FFFFFEFFF8F9FBE5EEF7D6E5F1BFD6E9A7C7E59CBFE59BBFE499BEE399BEE399BEE498BDE498BD -E497BCE497BCE396BCE497BCE497BCE396BCE396BCE396BCE397BCE396BCE396BCE296BCE297BC -E297BCE298BDE39BBFE49CC0E49EC1E5A0C2E5A4C5E7A8C7E8ADCBE9B2CEEBB8D2B08FB57B729F -8780A9938CB2C1B1CCBBA5C6EBCEE1EACEE1E9CDE1E0CADEC2B6D0ACA5C4857EA879709E8E7DA8 -BEA1C4CEADCDCAA8CAC7A2C6C29DC2BF99C0BD96BEBA93BCB990BAB78EB9B58BB7B48AB6B488B5 -B488B5B388B5B389B5B389B5B489B5B389B5B389B5B489B5B389B5B389B5B48AB6B48AB6B58BB7 -B58BB7B58CB7B68DB8B68DB8B78EB9C3A0C5D9C0DAE8D6E7F4E7F0FFFEFDFFFFFEDBC2DBBA92BB -BA93BCBA94BDBB94BDBB95BDBB95BDBB95BDBC96BEBD97BFBD97BFBD97BFBD97BFBD98BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE99C0BE99C0BE99C0BE99C0BE98C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BF99C0BE99C0BE99C0BE98C0BE98C0 -BE98C0BE99C0BE98C0BE99C0BE99C0BE99C0BE98C0BE98C0BE98C0BE98C0BE99C0BE99C0BE98C0 -BE98C0BE98C0BE99C0BE99C0BE99C0BE98C0BE98C0BE99C0BE99C0BE98C0BE98C0BE98C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE98C0BE98C0BE99C0BE98C0BE98C0BE98C0BE99C0BE98C0 -BE98C0BE98C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD96BEBC96BE -BC96BEBB95BEBC96BEBB95BEBB95BDBB94BDBA93BCBB93BCBA93BCB992BCB992BBB992BCDAC1DA -FFFFFEFFFFFEF2E7F1EEDDEBD8C0DAC7A6C9B88EB9B58CB8B58CB7B58CB7B58BB7B48AB6B48AB6 -B48AB6B48AB6B389B5B388B5B388B5B389B5B389B5B288B5B288B5B288B5B288B5B288B5B288B5 -B288B5B38AB6B58CB7B58DB8B78FB8B792BBBA95BDBE9AC1C19FC4C2A3C7C7AACB9A87B07D72A0 -837CA6938CB3C3BAD2BFB3D0DAC9E0DACBE1D8CAE0C2B4D1B6ACCBA199BC8782AB8079A69289B1 -B8ACCDBCB0D1B6ABCEB1A5CAACA1C8A69CC4A499C3A196C09D93BE9B91BD988EBB968CBA958CB9 -948BB9948AB9948AB9948AB9948AB9948BB9948BB9948BB9948BB9948AB9948CBA958CBA948DBB -968DBB978DBB988EBB998FBB9890BCA59CC4BDB4D4D1C8E0E6DFEDF9F7F9FFFFFEFFFFFE9C93BE -9D94BF9E95C09E94BF9F95C0A096C0A096C1A197C1A197C1A197C1A198C2A199C2A299C2A398C2 -A298C2A298C2A298C2A299C2A299C2A399C3A39AC3A39AC3A49BC4A49AC3A49AC3A49AC3A49BC4 -A49BC4A49BC4A59BC4A49BC4A59BC4A59BC4A59BC4A49BC4A59BC4A59BC4A59BC4A59BC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A49BC4 -A49BC4A49BC4A49BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A49BC4A49AC3A49BC4A49BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A49BC4A49BC4A49BC4A49BC4A49BC4A49BC4A49BC4A49BC4 -A49BC4A49BC4A49BC4A49BC4A49BC4A49BC4A49AC3A49AC3A39AC3A39AC3A39AC3A399C3A399C3 -A399C3A399C3A399C3A299C2A198C2A197C1A298C2A198C2A198C2A197C1A197C1A097C1A097C1 -A096C1A197C1A197C1A097C19F96C09E95C09D94BF9E94BF9E95C09D95C09C94BF9C93BF9C92BE -FFFFFEFFFFFEF9F6F9E5DEEDD0C7E0BEB3D3A59BC49890BC988FBC988EBB978DBA968DBB958DBA -958CB9948CBA948CBA948BB9948BB9948BB9958CB9948BB9948BB9948BB9948CBA948CBA948BB9 -948CBA968DBB978EBC9990BC9A92BE9E96C0A198C2A49CC5A9A0C6AFA7CCB3ABCEA8A1C6837CAA -76739F8882ABACA4C3B8B1CED2CEE3DBD9EBDCDAEBDCDBECBFB9D4C0B9D3938DB3857FA97674A0 -A0A1C3D4DAEBD1DAECCDD7EAC9D6EAC5D2E7C4D2E8C2D0E7BFCFE6BECEE6BCCDE5BBCBE4BACCE5 -B9CBE4BACBE4B9CBE4B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCDE6 -BBCDE6BCCDE5BCCDE6BDCEE6BDCFE7BDCFE7CFDAECDFE6F2EFF3F8F5F7FAFFFEFDFFFFFEE2E9F4 -C0D0E7C1D1E8C2D1E8C2D1E8C2D1E8C3D2E8C3D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C5D4E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4E9C4D3E9C5D4E9C5D4E9C5D4E9C5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4E9C5D4EAC5D4E9C5D4E9C5D4E9C5D4EAC5D4EA -C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D2E8C2D1E8C1D1E8C2D1E8C1D1E8C2D1E8 -E0E6F2FFFFFEFFFFFEF4F6FAECF0F7DFE6F2CAD8EBBECFE7BCCDE6BCCDE6BDCEE6BCCDE6BCCDE6 -BACDE5BBCCE5BBCBE4BACCE5BACCE5B9CBE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0 -E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7BDCEE6BFD0E7F3F4F9FEFEFC -FFFDFCFDFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0DAE3F1FDFDFDFFFDFBFFFDFCFFFDFCFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F1F3F9F0F3F9F2F4F9F0F3F9 -F2F4F9F1F3F9F6F8FAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -A098BC726F9CFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDBAB1CC515689FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3 -FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4 -EDB4CFEBB0CDEAABCAE8A7C7E8A4C4E7A0C2E69FC1E49BBFE49ABEE499BDE498BDE397BCE497BC -E497BCE396BCE397BCE397BCE497BCE497BCE497BCE497BCE497BCE498BDE497BCE498BDE499BD -E49ABEE599BEE49ABEE59BBFE59CBFE59CBFE49BBFE59CC0E69DC0E69FC1E69EC1E69EC1E69FC1 -E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A2C3E7A2C3E6A2C4E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A4C5E7A4C5E7A4C5E7A3C4E7A3C4E8A4C4 -E8A4C4E8A4C4E8A4C4E7A3C4E7A4C5E8A4C5E8A4C4E7A3C4E8A4C5E8A4C5E8A4C5E8A4C5E7A4C5 -E8A4C4E8A4C5E8A4C5E8A4C4E8A4C4E8A4C5E8A4C5E7A4C5E8A4C5E8A4C5E7A4C5E7A4C5E7A4C5 -E7A4C5E8A4C5E8A4C5E8A5C5E8A4C5E8A5C5E8A5C5E8A4C5E8A4C5E8A5C5E8A5C5E8A5C5E8A5C5 -E8A5C5E8A5C5E8A5C5E8A5C5E8A4C5E8A4C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A4C5E8A5C5 -E8A4C5E8A5C5E8A4C5E8A4C5E8A5C5E8A4C5E8A4C5E7A4C5E7A4C5E7A4C5E7A4C5E7A4C5E7A4C5 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A1C3E7A2C3E7A1C3 -E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E69FC1E69EC1E69EC1E59CC0E69DC0E59CBFE59CC0 -E59CBFE59BBFE599BEE59BBFE49ABEE499BEE498BDE499BDE497BCE499BDE397BCE497BCE396BC -E396BCE497BCE396BCE396BCE396BCE396BCE396BCE396BBE396BCE296BCE297BCE297BCE298BD -E39BBFE49BBFE49EC1E5A1C3E6A5C5E6A8C8E8ACCAEAB3CEEBB7D2ECBED6F6E1ECFFF8FAF2EEF4 -C1B2CEA391B78C7DA86660918B7CA68D80AAC2B6D0D3CCE0FAF0F5EBD5E6D8BAD6D2B3D1CDADCD -CBA8C9C5A2C5C29DC3BF99C0BD95BEBA91BBB990BAB78EB9B58BB7B48AB6B488B5B388B5B388B5 -B388B5B388B5B488B5B389B5B389B5B389B5B288B5B389B5B48AB6B48AB6B48AB6B58BB7B58BB7 -B58BB7B68CB7B68CB7B78EB9B68DB8B78EB9B88EB9B890BAB88FBAB991BBB991BBB991BBB992BC -BA93BCBA93BCBA93BCBB93BCBB95BDBC95BDBC95BDBC96BEBC96BEBC96BEBD96BEBD96BEBD96BE -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBB95BDBB95BDBB94BDBB94BDBB95BDBB95BD -BB94BDBA93BCBA93BCB992BCB992BBB992BBB991BBB991BBB991BBB88FBAB990BAB68EB9B68DB8 -B68DB8B58DB8B68CB7B68DB8B58CB7B58DB8B48AB6B48AB6B48BB7B48AB6B389B6B389B5B389B5 -B388B5B388B5B388B5B389B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B289B6B38AB6 -B58CB7B58DB8B68FBAB892BBBA95BEBE99C1C09FC4C4A4C7C7AACCCDB1D0DCC8DFF0E5EFE5DEEA -C3BAD3A094B9847BA7625F90857CA78D85AEB6ACCAE4DDE9FFFFFDE7DEECCEC4DDC3B7D6BCB1D1 -B7ABCEB0A5CAACA1C8A89DC5A298C2A096C09D93BE9B91BD988EBB968DBB958CB9948BB9948AB9 -948AB9948AB9938AB9938AB9948BB9948BB9948BB9948AB9948AB9948CBA958CB9948CBA958CBA -968DBB968EBB988FBC988FBC9990BC9A8FBC9990BD9990BD9A91BD9B92BE9C92BE9C92BE9C93BF -9C93BF9D94BF9E94BF9E94BF9F95C09F95C0A096C1A097C1A097C1A197C1A197C1A197C1A197C1 -A197C1A197C1A197C1A198C2A298C2A298C2A298C2A299C2A399C3A399C3A39AC3A39AC3A39AC3 -A39AC3A39AC3A49AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3 -A39AC3A299C3A399C3A399C3A399C3A399C3A399C3A39AC3A39AC3A399C3A399C3A399C3A299C2 -A399C3A399C3A39AC3A49AC3A39AC3A39AC3A39AC3A399C3A299C2A299C3A39AC3A299C2A299C2 -A299C2A299C2A299C2A299C2A299C2A299C2A299C2A299C2A298C2A298C2A299C2A299C2A299C2 -A298C2A299C2A299C2A298C2A298C2A299C2A199C2A198C2A198C2A298C2A298C2A198C2A198C2 -A198C2A198C2A197C1A096C1A096C1A096C1A096C09F95C09F95C09E95C09E95C09E95C09E95C0 -9E95C09D95C09D94BF9C93BF9C93BF9C93BF9C93BF9C92BE9C92BE9C92BE9990BD9A91BD9890BC -9990BD9890BC998FBC988FBC978EBC988FBC968DBB968DBB968EBB958CB9958CBA948BB9948BB9 -948BB9948BB9958CBA948BB9948CBA948BB9948BB9948BB9948BB9948BB9948BB9958CBA968DBB -968EBB9991BD9B92BE9D95C0A099C2A59CC4A9A1C8AFA6CBB4ABCEBAB2D2C1B9D7E9E4F0FFFFFD -D5CDE0B6B1CE8782AB8581AB6162928681AA9D9ABEC0B9D3F2EDF4F6F6F9E8E9F3D7DEEDD5DDED -D0DBEDCDD7EAC8D5E9C7D4E9C4D1E8C1CFE7BFCFE6BECEE6BCCDE5BBCBE4BACCE5B9CBE4B9CBE4 -B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BCCDE5BBCBE4BBCCE5 -BCCDE6BBCDE6BDCEE6BCCEE6BDCFE7BECEE6BFCFE6BDCEE6C0D0E7BFCFE7BECEE6BFCFE7C0D1E8 -C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C3D3E9C3D3E9C3D3E9C3D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9 -C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C3D3E9 -C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9C4D3E9C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9 -C4D3E9C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4EAC5D4E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D2E8 -C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8C1D1E8C1D0E7C1D2E8C0D0E7C0D1E8C0D1E8BFCFE7BFCFE7 -BFCFE6BECFE7BECFE7BDCFE7BDCEE6BDCEE6BDCEE6BBCDE6BACCE5BBCDE6BBCDE6BCCDE5BBCDE6 -BACDE5BACCE5B9CCE5BBCCE5B9CBE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5 -BCCDE6BDCFE7BECFE7C0D0E7C2D1E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFC -FFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECEE6BED0E7BECEE6BECFE7BFD0E7E7EBF4FEFDFCFEFCFBFEFEFCFEFDFC -FEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E2F0D8E1F0DAE3F1F8F8FBFFFDFBFEFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F5F6FA -FEFDFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEE4DDE93E457B -F3EEF3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFDFFFFFEFFFFFE7E78A3938DB2FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F1 -9285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB4CFEBB0CD -EAABCAE8A7C7E8A4C4E7A0C2E69FC1E49BBFE49ABEE499BDE398BDE397BCE497BCE497BCE497BC -E497BCE396BCE396BCE497BCE497BCE497BCE396BCE497BCE497BCE498BDE597BCE398BDE499BE -E49ABEE49ABEE49BBFE49ABEE49ABEE49BBFE59CC0E59CC0E59CC0E59DC0E69EC1E69EC1E69EC1 -E69FC1E69FC1E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A2C3E7A2C3E7A1C3E7A2C3E7A2C3E7A2C3 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E8A4C4E9A4C5E8A4C4E8A4C4E8A4C5E7A4C5E7A3C4E7A3C4E7A3C4E7A3C4 -E8A4C4E8A4C5E7A3C4E7A3C4E7A3C4E7A4C5E7A3C4E7A3C4E8A4C5E8A4C4E8A4C4E8A4C4E8A4C4 -E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A4C4E8A3C4E8A3C4E8A4C4E8A3C4E7A3C4 -E7A3C4E8A3C4E8A4C4E8A4C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A2C3E7A2C3E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E69FC2E69FC2E59FC2E69FC1E69EC1 -E69EC1E69EC1E69EC1E69EC1E59DC0E49BBFE59CC0E59CBFE49BBFE59BBFE59ABEE59ABEE49ABE -E499BEE499BEE499BEE498BDE499BDE499BDE497BCE396BCE396BCE396BCE396BCE396BBE396BC -E396BCE396BCE396BBE396BCE296BCE295BBE396BCE296BCE297BCE297BCE298BDE49BBFE39BBE -E49EC1E4A0C3E6A4C5E7A8C7E8AECBEAB2CDEBB8D2ECBED6F7E0EAFDF7F9FFFFFEF8E9F1EFD4E5 -EBCDE18C7CA7E9CDE1EED7E7F9EEF4FFFFFEF8F0F5EBD5E5D8BAD6D2B3D1CFAECDCAA8CAC5A2C6 -C39EC3BE98BFBD95BDBA93BCB990BAB78EB9B58BB7B48AB6B489B5B388B5B287B4B388B5B388B5 -B387B4B288B5B388B5B388B5B288B5B388B5B389B5B389B6B48AB6B48AB6B48AB6B58BB7B58BB6 -B58BB7B58CB7B58DB8B58DB8B68DB8B78EB9B790BAB88FBAB890BAB990BAB891BBB991BBB992BB -B992BBBA93BCBA93BCBA93BCBA93BCBB94BDBB95BDBB95BDBB95BDBB95BDBB95BDBC96BEBC96BE -BB95BEBC96BEBC96BEBC96BEBC96BEBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD96BEBD97BFBD97BFBD97BFBD97BFBD97BF -BD96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBD97BFBD96BEBC96BEBC96BEBC96BEBC95BD -BC96BEBC96BEBC96BEBB95BEBC95BDBC96BEBC96BEBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD96BE -BD96BEBC96BEBD96BEBD96BEBC96BEBC96BEBD97BFBC96BEBC96BEBC96BEBC96BEBB95BDBB95BD -BB95BDBB94BDBB94BDBB94BDBA94BDBA93BCBA93BCBA93BCBA93BCBA93BCB992BCB992BCB992BB -B991BBB991BBB990BAB890BAB890BAB88FBAB88FBAB78EB9B78EB9B68EB9B58DB8B58CB7B58CB7 -B58DB8B58CB7B58BB7B58BB7B48BB7B48AB6B389B6B389B5B389B5B388B5B288B5B287B4B388B5 -B388B5B388B5B187B4B288B5B288B5B288B5B188B5B288B5B288B5B289B6B38AB6B48BB7B68DB8 -B890BAB892BCBA95BDBD99C0C09FC4C4A4C8C7A9CBCCB1D0DDC9DFF0E5F0FFFFFEFBF7FAE5D9E9 -DACAE0857BA7D8C9E0D9CBE1E9DFEDFFFFFDFFFEFDE7DEECCFC4DDC3B7D6BDB1D1B5AACDB1A6CB -ACA0C7A69CC4A399C3A096C09D93BE9B90BD988EBB978DBB958CB9948BB9948AB8948AB9948AB9 -938AB9938AB9948AB9948AB9948AB9938AB8938AB9948BB9948BB9948BB9968CBA958CB9988DBB -968CBA988FBC988EBB988FBC978EBB978FBC9990BC9991BD9A91BD9B92BE9C92BE9C92BE9C92BE -9C93BE9C93BE9D94BF9D94BF9F95C09F95C09F95C0A096C0A096C0A096C1A196C1A196C1A196C1 -A196C1A097C1A197C1A197C1A197C1A198C2A298C2A298C2A298C1A298C2A299C2A298C2A298C2 -A299C2A199C2A199C2A298C2A299C2A299C2A299C2A299C2A299C2A299C2A299C2A399C3A298C2 -A298C2A298C2A298C2A298C2A299C2A299C2A199C2A298C2A298C2A198C2A198C2A198C2A197C1 -A198C2A298C2A298C2A198C2A197C1A198C2A198C2A198C2A298C2A198C2A298C2A198C2A198C2 -A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A198C2A197C1A198C2A198C2A098C2 -A198C2A197C1A198C2A198C2A197C1A196C1A197C1A197C1A196C1A196C1A196C1A096C19F95C0 -9F95C09F95C09E94BF9E94BF9E94BF9D94BF9D94BF9D94BF9C93BF9C93BF9C93BF9C93BF9C92BE -9C92BE9B92BE9B92BE9A91BD9A90BD9B91BD9990BD9990BC9990BC9890BC988FBC988FBC978EBB -968EBB978DBB978DBB968DBB968DBB958DBA958CB9948CBA948AB8948BB9938BB9948BB9938AB9 -948AB9938AB9948BB9948AB9948BB9948BB9948BB9948BB9948BB9958CBA968DBB978FBC9890BC -9B93BE9E94BFA198C2A49CC4A9A1C7AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFEFDFFFFFEECE8F2 -DEDBECDCD9EA8582ACDCDBECE5E4F0F6F5F9FFFEFDF6F5F9E8E9F3D8E0EFD2DAECD0DAECCDD8EA -CAD6EAC5D2E8C4D2E8C0CFE6BFCFE6BECEE6BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5BACCE5B9CBE5BACCE5BACBE4BBCCE5BACCE5BBCCE5BACDE5BCCEE6 -BBCCE5BDCEE6BDCEE6BECFE7BDCFE7BDCFE7BDCFE7C0D0E7BFCFE7BFCFE7C0D0E7C0D0E7C0D0E7 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8 -C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C2D1E8C2D1E8C3D2E8C2D1E8C2D1E8C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C2D1E8C3D3E9C3D3E9C3D3E9C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8C4D2E8C3D2E8C2D2E8C3D3E9 -C3D3E9C4D2E8C3D2E8C3D2E8C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9 -C3D3E9C3D3E9C3D3E9C3D3E9C3D3E9C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C0D0E7BFCFE7BFCFE7C0D0E7BECFE7BECFE7BDCFE7BDCFE7 -BDCEE6BDCEE6BCCDE5BCCDE6BBCDE6BBCDE6BCCDE5BACCE5BCCDE5BACCE5B9CBE5BBCCE5BACCE5 -B9CBE5B9CBE5B9CCE5B9CBE5B9CBE5BACCE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6 -BECFE7C0D0E7C2D1E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFC -F5F6FAF0F2F8F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BFD1E8BDCFE7DBE3F1FEFEFCFEFDFCFEFEFCFDFCFBFFFDFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0F4F6FAFFFEFDFFFDFCFEFDFCFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F0F3F9F1F3F9F4F6FAFDFDFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFD686695A099BBFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDF2EEF33F457AE3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FEF6F8FEF5F8FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284AC -FAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB4CFEBB0CDEAABCAE8A7C7 -E8A4C4E7A0C2E69EC1E49BBFE49ABEE499BDE498BDE397BCE396BCE497BCE497BCE497BCE396BB -E396BBE396BCE497BCE396BCE396BCE396BCE396BCE396BCE497BCE499BDE599BEE499BDE499BE -E499BEE499BDE49ABEE599BEE69BBFE59CBFE59CBFE59CBFE59CC0E59CC0E59DC0E69EC1E69EC1 -E69EC1E69EC1E69FC1E69FC2E6A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A1C3E7A1C3E7A1C3 -E7A1C3E7A1C3E7A1C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A1C3E7A1C3E7A1C3 -E7A1C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A1C3E7A2C3 -E7A2C3E7A2C3E7A2C3E7A3C4E7A2C3E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3 -E7A2C3E7A1C3E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A3C4E7A3C4E7A2C3E7A3C4E7A3C4E7A2C3 -E7A2C3E7A2C3E7A2C3E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A1C3E7A1C3E7A1C3E7A1C3E7A0C2 -E7A0C2E7A0C2E69FC2E69FC2E69FC1E69FC1E69FC1E69FC1E69FC1E69EC1E59DC0E59DC0E59DC0 -E59CC0E59CC0E59CC0E59CBFE59ABEE399BEE59ABEE49ABEE59ABEE399BEE499BEE499BDE598BD -E498BDE398BDE498BDE496BBE297BCE396BCE396BCE396BCE396BBE396BBE396BBE396BBE396BB -E396BBE396BCE295BBE396BBE396BCE296BCE297BCE297BCE298BDE39ABEE49BBFE59EC1E5A1C1 -E6A4C5E7A8C8E8ADCAEAB3CFEBB8D2ECBED6F6E2ECFEF8F9FFFFFEF9E8F1EED3E4EBCEE18C7DA8 -E9CDE1EED6E6F9EFF5FFFFFEFAEFF5EAD6E7D8BAD6D3B4D2CEADCDCAA8CAC6A2C6C29CC2BF99C0 -BD95BDBB91BBB88FBAB78EB9B58BB7B48AB6B489B5B388B5B287B4B287B4B388B5B287B4B287B4 -B287B4B287B4B287B4B388B5B388B5B389B5B388B5B38AB6B48AB6B489B5B48AB6B58BB7B48BB7 -B58BB7B58CB7B68EB9B68DB8B78EB9B78EB9B78FB9B88FBAB890BAB891BBB991BBB991BBB992BC -BA93BCB992BCB992BCBA93BCBB93BCBB94BDBA94BDBA94BDBB94BDBB94BDBB94BDBB94BDBC95BD -BC95BDBC95BDBC95BDBC95BDBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBD96BEBC96BEBC96BE -BC96BEBC95BDBC96BEBC96BEBD96BEBB95BDBC96BEBC96BEBC96BEBC96BEBC96BEBC95BDBB95BD -BC94BDBB94BDBB94BDBB94BDBB95BDBC95BDBC95BDBC95BDBC95BDBB94BDBB94BDBB94BDBB94BD -BB94BDBB94BDBC94BDBC95BDBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC95BDBC96BEBC96BE -BC95BDBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC95BD -BC95BDBC95BDBC95BDBC96BEBC96BEBC95BDBC95BDBB95BDBB95BDBB94BDBB94BDBB94BDBB94BD -BA93BCBA93BCB993BCB992BCB992BCB992BCB992BBB992BBB991BBB991BBB991BBB991BBB890BA -B88FBAB78FB9B78EB9B78FB9B68DB8B68DB8B58DB8B68DB8B58CB7B48AB6B58BB6B58AB6B58BB7 -B58CB7B48AB6B58BB7B288B5B389B5B388B5B288B5B287B4B287B4B186B4B287B4B387B4B287B4 -B187B4B288B5B188B5B187B4B188B5B288B5B288B5B289B6B38AB6B48BB6B48DB8B68FB9B892BC -BA95BEBD99C0C19FC4C3A3C7C7AACBCCB1D0DCC9E0F0E5F0FFFFFEFCF8FAE7D9E9D8C9E0857BA7 -D8CAE1D8C9E0E9E0EDFFFFFEFFFFFEE7DEECCFC4DDC3B7D5BCB1D2B5ABCEB1A5CAACA1C8A89DC5 -A399C39F95C09C93BE9A90BD988EBB978DBB958CB9948BB9948AB8948AB8948AB9948AB9938AB9 -938AB9938AB8938AB8938AB8938AB9948AB9948AB8948AB8948BB9958CBA968CBA978EBB978DBB -978DBB968EBB978EBB978EBB988FBC988FBC9890BC9990BD9A91BD9A91BD9B92BE9C92BE9C92BE -9C93BF9C93BF9C93BE9D94BF9D94BF9E94BF9E94BF9F95C09F95C09F95C0A096C1A096C1A096C1 -A096C1A096C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A198C2 -A198C2A197C1A197C1A197C1A198C2A198C2A197C1A197C1A197C1A198C2A198C2A197C1A197C1 -A197C1A197C1A197C1A197C1A197C1A197C1A197C1A198C2A197C1A197C1A097C1A097C1A097C1 -A097C1A097C1A096C1A097C1A097C1A197C1A197C1A197C1A197C1A197C1A097C1A097C1A097C1 -A097C1A097C1A097C1A097C1A096C1A097C1A097C1A097C1A197C1A096C1A097C1A197C1A097C1 -A097C1A096C19F96C09F96C0A096C1A097C1A096C1A096C19F95C09E94BF9D94BF9D94BF9D94BF -9D93BE9C93BF9C94BF9C93BF9C92BE9C93BE9B93BE9B93BE9B92BE9B92BE9A91BD9A91BD9A91BD -9990BD9990BC9890BC978FBC9890BC988FBC988FBC988EBB978EBB978DBB968DBB968EBB948CBA -958DBA958CBA968DBB948BB9938BB9948AB9938BB9948AB9948AB8938AB9938AB8938AB8948AB9 -928AB9938AB9948AB9948AB9948BB9948BB9948BB9958CBA968DBB978DBB9991BD9C92BE9C94BF -A199C2A59CC5A9A1C8AFA7CBB3ABCEBAB3D3C1B9D7EAE6F0FFFFFEFFFFFEEBE6F1DFDDEDDBD9EA -8581ABDDDCECE5E4F0F7F5F9FFFFFEF6F5F9E8E9F3D8DEEED4DDEDD0D9EBCDD8EBC9D4E9C6D3E9 -C4D1E8C1CFE7BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B8CAE4B8CAE4B9CBE5BACBE4BACCE5BBCDE6BCCDE6BBCDE6BDCEE6BCCDE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BECEE6BECFE7BFCFE7BECFE7BFCFE7BFCFE7C0D0E7C1D0E7 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C3D2E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C3D3E9C3D2E8C3D2E8C3D2E8 -C3D2E8C3D3E9C3D3E9C3D3E9C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D0E7C0D0E7 -C0D0E7C0D0E7C0D0E7BFCFE7BFCFE7BECFE7BECFE7BECEE6BDCFE7BDCEE6BDCEE6BDCEE6BBCDE6 -BDCEE6BCCDE6BCCDE6BBCDE6BACDE5BBCCE5BACDE5BCCDE6B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7 -C2D1E8C4D3E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8 -F1F3F9BCB8D2666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECEE6BFD0E7 -BFCFE7BDCEE6D2DDEEFDFEFDFEFDFCFFFDFCFEFCFBFEFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0EFF2F8FFFDFC -FEFDFCFFFEFCFFFDFBFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F2F4F9F2F5F9FCFBFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEACA4C4515689FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFDA098BB -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4 -FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB4CFEBB0CDEAABCAE8A7C7E8A4C4E7A0C2 -E69EC1E49BBFE49ABEE499BDE498BDE397BCE396BCE396BCE497BCE497BCE396BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BCE396BCE296BCE397BCE398BDE599BDE498BDE398BDE498BD -E499BDE399BEE599BEE599BEE69ABEE59BBFE59CBFE59CBFE59CBFE59CC0E59CC0E59DC0E59DC0 -E69EC1E69FC1E69FC1E69FC1E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3 -E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A2C3 -E7A1C3E7A1C3E7A1C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E6A2C3E7A1C3E7A2C3E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3 -E7A2C3E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A3C4E7A2C3E7A1C3E7A1C3 -E7A1C3E7A2C3E7A2C3E7A2C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E69FC1 -E69FC1E69FC1E69EC1E69EC1E69EC1E59DC0E59DC0E59CC0E59CBFE49BBFE49BBFE49BBFE59BBF -E59ABEE59ABEE59BBFE499BEE499BDE499BDE499BDE599BDE499BDE398BDE498BDE497BCE397BC -E396BBE297BCE396BCE396BCE396BBE396BBE396BBE395BBE395BBE396BBE496BBE396BBE295BB -E295BBE396BBE396BCE296BCE297BCE297BCE297BCE39ABEE49BBFE29DC0E5A1C3E6A4C5E7A8C8 -E8AECBEBB3CFECB8D2ECBED6F6E1ECFEF8F9FFFFFEF8EAF2EED2E4EBCEE18C7CA7EACEE1EED7E7 -F9EFF4FFFFFEF9EFF4EBD6E7D8BAD6D3B4D2CFAECECAA8CAC6A2C6C29DC3C098BFBC95BDBB93BB -B88FBAB78EB9B58BB7B48AB6B489B5B389B5B287B4B287B4B287B4B187B4B287B4B287B4B186B4 -B186B4B287B4B388B5B388B5B388B5B288B5B488B5B489B5B48AB6B48AB6B48AB6B48AB6B58CB7 -B58CB7B58CB7B68CB7B68DB8B78EB9B78EB9B88FBAB890BAB891BBB991BBB991BBB991BBB991BB -B992BCBA93BCBA93BCBA93BCBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BD -BB94BDBB94BDBB95BDBB95BEBB95BEBB95BEBB95BDBB95BDBB95BDBB95BDBB95BDBC95BDBC95BD -BB95BDBC95BDBC95BDBB95BDBC95BDBC95BDBB95BDBB94BDBB95BDBB95BDBB94BDBB94BDBB94BD -BB94BDBB94BDBB94BDBC94BDBB95BDBB95BDBB94BDBA93BCBB94BDBB94BDBB93BCBB93BCBB95BD -BB95BDBB95BDBB95BDBC94BDBB95BDBB94BDBB94BDBB94BDBB94BDBB95BDBB95BDBB95BDBB95BD -BC95BDBB95BDBB95BDBB95BDBB95BDBC95BDBB95BDBB95BDBB95BDBB95BDBB94BDBB94BDBA94BD -BB94BDBB94BDBB94BDBB95BDBB95BDBB94BDBB94BDBB93BCBA93BCB993BCBA93BCB992BCB992BC -B992BCB992BBB992BBB992BBB991BBB991BBB991BBB991BBB790BAB78FB9B78EB9B78EB9B78EB9 -B78EB9B68DB8B58BB7B68CB7B58BB7B58BB7B58BB6B48AB6B48AB6B48AB6B48AB6B489B5B48AB6 -B289B6B489B5B288B5B288B5B287B4B287B4B287B4B186B4B186B4B186B4B287B4B187B4B187B4 -B187B4B187B4B188B5B288B5B288B5B289B6B389B6B38BB7B58DB8B78FB9B993BCBA95BEBD9AC1 -C09FC4C4A4C8C7AACBCDB1CFDCC8DFF0E6F0FFFFFEFBF7FAE5D9E9DACAE0857BA7D8CAE0D8CAE0 -EAE0EDFFFFFEFFFFFDE7DFEDD0C4DEC3B7D6BCB1D2B6ABCEB1A5CAADA1C7A79CC5A399C3A096C0 -9C93BE9A90BD988EBB978DBB958CB9948BB9948AB8948AB8938AB8938AB8938AB9938BB99289B8 -9289B89289B8938AB8938AB8938AB9948AB9948BB9948BB9948BB9958CB9958CBA958CBA958CBA -958DBB968CBA978DBB978EBB988FBC988FBC9990BC9990BC9A91BD9A91BD9A91BD9B92BE9B92BE -9C92BE9C93BF9C94BF9D94BF9D94BF9D94BF9E94BF9E94BF9F95C09F95C09F96C0A096C19F96C0 -A096C19F96C0A096C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A197C1A198C2 -A197C1A197C1A198C2A197C1A197C1A197C1A197C1A197C1A197C1A197C1A097C1A197C1A097C1 -A096C1A096C1A096C1A096C1A096C1A097C1A096C1A096C1A096C1A096C19F96C09F96C09F96C0 -A096C0A096C1A096C1A196C1A096C1A096C19F96C09F96C0A096C1A096C19F96C0A096C1A096C1 -A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1A096C09F96C09F96C09F95C0 -9E94BF9F95C09F95C09F95C09F95C09F95C09E94BF9D94BF9C94BF9C94BF9C93BF9C93BF9C92BE -9C92BE9C92BE9B92BE9B92BE9A91BD9A91BD9A91BD9990BD9890BC9890BC988FBC988FBC988FBC -978EBC988EBB988EBB978EBB988EBB978EBB968DBB958CBA948CBA948CBA958CB9948CBA948BB9 -948AB8938AB9948AB9948AB9938AB9938AB9938AB9928AB9938AB89289B8938AB9938BB9938AB9 -948AB9948AB9948BB9948BB9948BB9958CBA968DBB958DBA9890BC9B92BE9D95C0A099C2A59CC5 -AAA1C8AFA6CBB4ABCEBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDEBDBD9EB8581ABDCDCEC -E5E4F0F7F5F9FFFEFCF6F5F9E8E8F2D8DFEED3DCEDD0DAEBCED7EAC9D5EAC6D4E9C4D1E7C1D0E7 -BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE4B8CAE4B8CAE4B9CBE5B9CBE5BACCE5BACCE5BACDE6BBCCE5BBCCE5BCCDE5BDCEE6BCCDE6 -BDCEE6BCCDE6BDCFE7BDCEE6BDCEE6BECEE6BECFE7BFCFE7BFCFE7BFCFE7C0D0E7C0D0E7C0D0E7 -BFCFE7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C1D1E8 -C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D0E7C1D0E7C1D1E8C0D1E8C1D1E8C1D0E7C1D1E8 -C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C3D2E8C3D2E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C1D1E8C0D0E7C0D0E7C0D0E7BFCFE7BFCFE7 -BFCFE7BECFE7BECFE7BECFE7BECEE6BECEE6BDCEE6BDCEE6BCCDE5BCCDE6BDCEE6BBCCE5BBCCE5 -BBCDE6BACDE5BBCCE5BACBE4BBCCE5B8CBE5BACCE5B9CCE5B9CBE4BACBE4B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7C2D1E8C4D3E9 -C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F1F3F9BCB8D2 -666594F5F6FAF5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFD0E7BDCEE6BFCFE6CBD8EC -FAFBFCFEFDFDFEFDFCFEFDFCFEFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0E8ECF5FFFEFDFEFEFCFFFEFCFEFDFC -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F0F3F9F1F3F9F1F3F9F1F3F9FAFBFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD515689C6BDD4FFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE515689BAB1CCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6 -FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFE -FCEAF2F6D3E3F3C7DBF1C1D8F0BBD4EDB5D0EBB0CDEAABCAE8A7C7E8A4C4E7A0C2E69EC1E49BBF -E49ABEE499BDE498BDE397BCE396BCE396BCE396BBE396BBE396BBE396BCE396BBE395BBE395BB -E395BBE396BBE396BBE396BBE396BCE397BCE397BCE397BCE397BCE497BCE497BCE498BDE498BD -E499BDE499BDE499BEE49ABEE49ABEE59BBFE59CBFE59CBFE59CC0E59CC0E59DC0E59DC0E69FC1 -E59DC0E7A0C2E69FC1E69FC1E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E6A0C2E7A1C3E7A2C3E6A0C2E7A1C3E7A0C2E7A0C2E7A0C2E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A0C2E7A0C2E8A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3 -E7A0C2E7A1C3E7A1C3E7A2C3E7A2C3E7A2C3E7A1C3E7A0C2E6A1C3E8A2C3E6A2C3E7A2C3E7A2C3 -E8A2C3E7A1C3E7A0C2E7A1C3E7A1C3E6A1C3E7A1C3E7A1C3E7A2C3E6A1C3E8A1C3E7A1C3E7A1C3 -E7A3C4E7A1C3E7A1C3E8A1C3E7A1C3E7A1C3E7A1C3E7A0C2E7A2C3E7A2C3E8A3C4E7A2C3E7A1C3 -E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E69FC1E69FC1E69EC1E69FC1 -E59DC0E59DC0E59CC0E59CC0E59CC0E59CBFE59CBFE59BBFE59BBFE49ABEE499BEE399BEE499BD -E499BDE498BDE498BDE498BDE498BDE497BCE498BDE397BCE397BCE396BCE396BBE396BCE396BB -E395BBE396BBE395BBE395BBE395BBE395BBE395BBE396BBE394BAE295BBE396BBE396BBE396BB -E396BCE297BCE297BCE297BCE297BCE39ABEE49CC0E49EC1E5A1C3E6A4C5E7A8C8E8AECBEAB3CF -EBB8D2ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE18C7CA7E9CDE1EED6E7F9EFF5FFFFFE -F9EFF5EBD6E7D8BAD6D3B4D2CEADCDCAA8CAC6A3C7C39EC3BF99C0BD95BEBB92BBB990BAB78CB8 -B58BB7B48AB6B489B5B388B5B287B4B287B4B287B4B387B4B287B4B287B4B186B4B186B4B187B4 -B287B4B287B4B388B5B388B5B388B5B389B5B48AB6B48AB6B48AB6B48AB6B58BB7B58BB7B58BB7 -B58CB7B58DB8B68DB8B68DB8B78EB9B890BAB88FBAB890BAB991BBB991BBB991BBB992BBB992BC -BA93BCBB93BCB993BCBA93BCBA93BCBA93BCB993BCBA93BCBC94BDBB93BCBB95BDBB93BCBA94BD -BC94BDBB95BEBC96BEBC95BDBC96BEBB95BDBC96BEBC95BDBB94BDBB95BDBC95BDBA95BDBB94BD -BB94BDBC94BDBB94BDBB95BDBB95BDBB94BDBA93BCBB93BCBB94BDBA93BCBA93BCBA94BDBA94BD -BA93BCB993BCBA93BCBA94BDBB94BDBB94BDBB94BDBA94BDBA94BDBA93BCBB94BDBB94BDBB93BC -BA95BDBA93BCBA93BCBA93BCBB94BDBB94BDBC94BDBB94BDBB94BDBB95BDBB95BDBB94BDBC95BD -BC96BEBB95BDBB95BDBB95BDBC94BDBA94BDBB94BDBB94BDBA94BDBA94BDBB94BDBB94BDBB94BD -BB94BDBC94BDBA93BCB993BDBA93BCBA93BCBA92BBBA93BCB992BCB992BBB991BBB991BBB990BA -B991BBB891BBB990BAB891BBB890BAB88FBAB88FBAB78EB9B78EB9B68DB8B68DB8B68DB8B58CB7 -B58CB7B58CB7B48AB6B48AB6B48AB6B48AB6B389B5B388B5B389B5B389B5B388B5B389B5B388B5 -B387B4B287B4B287B4B186B4B186B4B186B3B186B4B186B4B287B4B186B4B187B4B187B4B188B5 -B188B5B288B5B289B6B289B6B389B6B48BB7B58DB8B790BAB992BCBA96BEBE9AC1C19FC4C4A4C8 -C8AACCCDB1D0DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0857BA7D8CAE0D8CAE0E9DFEDFFFFFE -FFFFFEE7DEECD0C4DEC3B7D6BCB1D2B5AACEB1A6CBACA1C8A89DC5A399C3A096C19C93BE9A90BD -988EBB968CBA958CBA948BB9948AB8948AB8938AB8938AB8928AB9938AB99289B89289B89289B8 -9289B89289B8938AB9938AB8948AB9948BB9948BB9948BB9948BB9948BB9948CBA958CBA958CBA -958CBA958CBA978EBB988FBC988EBB988FBC998FBC9990BC9A91BD9A91BD9A91BD9B92BE9C92BE -9C92BE9C93BF9C93BF9D94BF9D94BF9D94BF9E94BF9E95C09F95C09F95C09F95C09F95C09F95C0 -9F96C0A096C1A196C1A196C0A197C1A096C1A197C1A198C2A197C1A197C1A197C1A197C1A197C1 -A196C1A197C1A197C1A196C1A197C1A096C1A096C1A097C1A096C19F95C09F95C09F95C09F96C0 -9F96C09F95C09F95C0A096C0A096C1A097C1A196C19F95C09E95C09E95C09F95C0A096C19F95C0 -9F95C09F95C09F95C09F95C09F95C09F95C09F95C09F95C0A096C09F95C09E95C09F95C09F95C0 -9F96C09E95C09F95C09F95C09F95C09F95C09F95C09F96C0A096C09E95C09E94BF9E95C09F95C0 -9D95C09E95C09E94BF9E94BF9C93BF9C94BF9C92BE9C92BE9C92BE9B92BE9B92BE9B91BD9A91BD -9A91BD9A91BD9990BC9890BC9890BC9990BC9890BC988FBC978EBB978EBB978DBB978DBB968DBB -968DBB968DBB968CBA968CBA958CBA948BB9948BB9948BB9948AB9948AB9948AB9948AB9948AB9 -938AB9938AB9938AB99289B89289B89289B8938AB89289B89289B8938AB8938AB8948AB9948AB9 -948BB9948BB9948BB9958CBA958DBA968EBB9890BD9B92BE9D95C0A098C2A59CC5AAA1C8AFA6CB -B4ACCFBAB2D3C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDCDAEB8581ABDCDCECE5E4F0F7F5F9 -FFFFFEF6F6F9E8E9F3D7DEEED4DCEDD0DAECCDD8EBC9D5EAC6D3E9C4D1E8C1CFE7BFCFE6BDCDE5 -BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5 -B8CBE5B8CCE5B9CBE5BACCE5BACCE5BACDE5BBCCE5BBCDE6BBCDE6BBCDE6BCCDE6BDCEE6BCCDE6 -BDCEE6BDCEE6BDCEE6BECEE6BDCFE7BECFE7BFCFE7BFCFE7BFCFE7BFD0E7C0CFE6C0D0E7C0D0E7 -C1D0E7C1D0E7C1D0E7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D0E7C2D1E7C2D1E7C2D1E7C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D0E7C1D1E8 -C1D1E8C1D2E8C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8C0D0E7C0D0E7C0D0E7C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8C1D2E8 -C1D1E8C1D1E8C2D1E8C1D1E8C3D2E8C2D1E8C1D1E8C2D1E8C2D1E8C3D2E8C3D3E9C3D2E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D2E8C0D1E8C0D1E8C0D0E7C0D0E7BFCFE7BFD0E7BFCFE7BFCFE7BFCFE7BECFE7BECFE7 -BECEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCEE6BCCDE6BBCDE6BBCDE6BBCCE5BBCCE5BBCCE5 -BACCE5BACCE5B9CBE5B9CBE5B8CAE4B9CBE4B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7C2D1E8C5D4E9C8D6EACCD9EC -CFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FA -F5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BDCEE6BECFE7BECFE7BECFE7C3D3E9F6F8FAFEFDFCFEFDFC -FFFDFCFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D7E2F0D7E1F0D8E1F0D8E1F0E0E7F3FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F8F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F7F8FBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE928CB3696796FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEACA3C3525689FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5 -FDEEF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3 -F3C7DBF1C1D8EFBBD4EDB5D0EBB0CDEAACCAE8A7C7E8A4C4E7A0C2E69EC1E49BBFE499BEE498BD -E498BDE397BCE396BCE396BCE396BCE396BBE395BBE396BBE396BBE395BBE395BBE394BAE395BB -E396BBE396BBE396BCE396BCE396BCE397BCE397BCE396BCE497BCE497BCE497BCE498BDE499BD -E499BEE599BEE59ABEE59ABEE59BBFE59BBFE59CBFE59CBFE59CC0E59CC0E59DC0E69EC1E59DC0 -E69EC1E69EC1E69FC1E69FC1E59FC2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A1C3E7A2C3E7A0C2E7A0C2E7A2C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A1C3E7A1C3E7A1C3E6A0C2E7A0C2E6A1C3E7A1C3E7A0C2E8A1C2E7A0C2E7A0C2 -E7A1C3E7A2C3E7A2C3E7A2C3E7A2C3E7A1C3E7A2C3E6A1C3E8A1C3E7A2C3E7A3C4E7A2C3E7A1C3 -E7A0C2E7A1C3E7A0C2E7A1C3E7A2C3E7A2C3E7A1C3E7A1C3E7A1C3E7A2C3E7A1C3E7A1C3E7A2C3 -E7A1C3E7A1C3E6A2C3E7A1C3E7A0C2E8A2C3E7A0C2E7A1C3E7A1C3E7A1C3E8A1C3E7A1C3E7A0C2 -E7A0C2E7A0C2E7A0C2E69FC2E69FC1E69EC1E69FC1E69EC1E69FC1E59DC0E69EC1E59CC0E59CC0 -E59CC0E49BBFE49BBFE49BBFE59BBFE59ABEE49ABEE49ABEE499BEE499BDE498BDE498BDE498BD -E497BCE396BCE397BCE397BCE397BCE397BCE397BCE396BBE396BBE396BBE396BBE395BBE396BB -E395BBE395BBE395BBE394BAE394BAE395BBE394BAE295BBE396BBE396BBE396BBE396BCE296BC -E296BCE297BCE297BCE39ABEE49CC0E49EC1E5A1C3E6A4C5E7A8C8E8AECBEAB3CFEBB8D2ECBED6 -F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCEE18C7CA7E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7 -D8BAD6D3B4D2CEADCDCAA8CAC6A3C7C39EC3BF99C0BD95BEBB92BBB88FBAB78CB8B58BB6B489B5 -B489B5B388B5B287B4B287B4B287B4B287B4B186B4B187B4B186B4B287B4B187B4B187B4B187B4 -B287B4B287B4B388B5B389B5B489B5B389B5B389B5B48AB6B48AB6B48AB6B58BB7B58CB7B58CB7 -B68DB8B68DB8B68DB8B78EB9B78EB9B88FBAB990BAB890BAB890BAB991BBB992BBB992BBB992BC -B992BBBA93BCBA93BCBA94BDBA94BDBB94BDBA94BDBB95BDBA93BCBA94BDBB94BDBA94BDBB94BD -BB94BDBB95BEBB94BDBB95BDBC94BDBB95BEBC95BDBB94BDBA94BDBC94BDBA94BDBB95BDBA94BD -B993BCBB95BDBB94BDBB94BDBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCB992BCB993BCB992BB -B993BCBA93BCBA94BDBA93BCBB93BCB993BCBA94BDBA93BCB993BCBA93BCBB94BDBC94BDBA94BD -BA93BCBA93BCBA93BCBB93BCBB95BDBB93BCBB95BDBA95BDBB95BDBC95BDBB95BDBB94BDBA94BD -BA94BDBB95BEBA95BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDB992BC -B993BCBA93BCB992BCB992BCBA93BCB992BBB992BBB992BBB991BBB991BBB991BBB990BAB990BA -B790BAB78EB9B78EB9B78EB9B78EB9B68DB8B68DB8B58DB8B58CB7B58CB7B58BB7B58BB7B58BB7 -B48AB6B489B5B389B5B389B5B388B5B388B5B388B5B388B5B388B5B388B5B288B5B287B4B186B4 -B186B4B186B3B186B3B186B3B186B3B186B4B186B4B186B4B187B4B187B4B188B5B188B5B288B5 -B288B5B288B5B389B6B48BB7B58DB8B790BAB992BCBA96BEBE9AC1C19FC4C4A4C8C8AACCCDB1D0 -DCC8DFF0E5F0FFFFFEFBF7FAE6DAEAD9C9E0857BA7D8CAE0D8CAE0E9DFEDFFFFFEFFFFFEE7DEEC -D0C4DEC3B7D6BCB1D2B6ABCEB1A6CBACA1C8A89DC5A399C3A096C09C93BE9A90BD988EBB978DBA -958CB9948BB9948AB8948AB8948AB8938AB89289B89289B89289B89289B89289B89289B89189B8 -9289B89289B8938AB9948AB9948AB9948BB9948BB9948AB9948BB9948BB9948BB9958CB9968CBA -978EBB978EBB978EBB988FBC988FBC9890BC9990BD9990BD9A91BD9A91BD9B92BE9B92BE9C92BE -9B93BE9C93BF9C94BF9D94BF9D94BF9E95C09E95C09E95C09F95C09F95C0A096C1A096C1A096C1 -A096C1A096C1A196C1A197C1A196C1A196C1A198C2A096C0A096C1A197C1A197C1A197C1A097C1 -A096C1A096C19F96C0A096C1A196C0A096C1A096C1A096C1A096C19F96C09F95C09E94BF9E94BF -9F95C09E95C0A096C09F95C09F96C0A095C09F95C09E94BF9F95C09E94BF9F95C09F95C0A096C0 -9E95C09E94BF9E94BF9D95C09F95C09F95C09F95C0A096C09E95C09F95C09F95C09F95C09E94BF -9F95C09F95C09F95C09E95C09F95C09F95C09E94BF9F95C09F95C09E94BF9D94BF9D94BF9D94BF -9E94BF9C93BF9C93BF9C93BF9B92BE9C92BE9B92BE9B92BE9A91BD9990BD9990BD9890BD9890BC -9890BC988FBC978EBB988EBB988FBC978EBB968DBB968DBB958CBA958DBA948CBA948BB9948BB9 -958CB9958CB9948BB9948AB9938AB9938AB9938AB9938AB9938AB9938AB9938AB8938AB89289B8 -9289B89289B89289B89289B89289B89289B89289B8938AB8938AB8948AB9948AB9948BB9948BB9 -948BB9958CBA958DBA968EBB9890BD9B93BE9E96C0A098C2A59CC5AAA1C8AFA6CBB4ACCFBAB2D3 -C1B9D7E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDCDAEB8581ABDCDCECE5E4F0F7F5F9FFFFFEF6F6F9 -E8E9F3D8DFEED4DCEDD0DAECCDD8EBC9D5EAC6D3E9C4D1E8C1CFE7BFCFE6BDCDE5BCCDE5BBCBE4 -BACBE4B9CAE4B9CBE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5B9CBE5B9CBE5B8CBE5B8CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5BACDE5BACDE5BBCDE6BCCDE5BCCDE5BCCDE6BCCDE6BDCEE6BDCEE6 -BDCFE7BECFE7BECEE6BECFE7BFCFE7BFCFE7BFCFE7C0D0E7C0D0E7C0D0E7BFD0E7C0D1E8C0D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E7C2D1E8C1D1E8C0D1E8C1D1E8C1D0E7C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D2E8C1D0E7C1D2E8C0D0E7 -C1D1E8C0D0E7BFD0E7C2D1E7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C0D1E8C0D0E7C0D0E7C1D0E7C1D0E7C1D1E8C1D0E7C0D0E7C2D1E7C1D0E7C0D0E7C1CFE7C2D0E7 -C0D1E8C0D0E7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C2D1E8C1D1E8C3D2E8C3D3E9C1D0E7C2D2E8C3D2E8C3D2E8C2D2E8C2D1E8C2D1E8C2D1E8 -C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D2E8C1D1E8C0D0E7C1D0E7 -C0D1E8C0D0E7C0D0E7BECFE7C0D0E7BFCFE7C0D0E7BFCFE7BDD0E7BFCFE6BDCFE7BECFE7BDCFE7 -BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BBCDE6BBCEE6BBCCE5BACCE5BACCE5BACCE5B9CBE5 -B8CBE5B8CBE5B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5 -BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7C2D1E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEF -D8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FAF5F6FAF6F7FA -F7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BECFE7 -BECFE7BDCFE7BFCFE6BED0E7BDCFE7BECFE7C3D3E9F3F4F9FFFDFCFDFDFCFFFDFCFDFEFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EFD8E1F0D8E1F0 -D8E1F0D8E2F0DDE5F2FEFDFDFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9F6F8FAFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFEFDFFFFFEFFFFFEF3EEF3474D82C7BED6FFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFEFDFFFFFE5E5E8FACA4C4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3 -FDECF3FCEAF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8 -EFBBD4EDB5D0EBB0CDEAACCAE9A8C7E8A4C4E7A0C2E69EC1E49BBFE499BEE498BDE498BDE397BC -E396BCE396BCE396BBE396BBE395BBE395BBE395BBE395BBE395BBE394BAE395BBE395BBE396BB -E396BBE396BCE396BCE396BCE396BCE396BBE497BCE497BCE497BCE497BCE498BDE499BDE499BD -E499BEE499BEE49ABEE49ABEE49BBFE59CBFE59CBFE59CC0E59DC0E59DC0E69EC1E69EC1E69FC1 -E69FC1E69FC1E7A0C2E7A0C2E69FC1E7A0C2E7A0C2E7A0C2E69FC1E7A0C2E7A0C2E6A0C2E7A1C3 -E7A1C3E7A1C3E69FC2E6A1C3E6A0C2E6A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E7A1C3E7A0C2E6A1C3E6A0C2E7A1C3E7A0C2E8A1C2E7A0C2E7A0C2E7A1C3E7A1C3E7A1C3 -E7A1C3E7A1C3E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A2C3E7A1C3E7A1C3E7A2C3E7A2C3E7A1C3 -E7A1C3E7A2C3E7A0C2E7A0C2E7A2C3E8A1C3E7A3C4E7A1C3E8A1C2E7A1C3E7A2C3E7A1C3E7A1C3 -E7A1C3E7A1C3E7A2C3E7A0C2E6A1C3E7A1C3E6A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2 -E7A0C2E69FC1E69FC1E69FC1E69FC1E69EC1E69EC1E59CC0E59DC0E59CC0E59CC0E59CBFE59BBF -E59CBFE59BBFE59ABEE499BDE499BDE499BDE499BDE499BDE497BCE497BCE497BCE497BCE396BC -E396BCE396BCE396BCE396BCE396BCE396BBE395BBE395BBE395BBE395BBE395BBE394BAE394BA -E394BAE394BAE395BBE396BBE396BBE295BBE396BBE396BBE396BBE396BCE295BBE296BCE297BC -E297BCE39ABEE49CC0E49EC1E5A1C3E6A4C5E7A8C8E8AECBEAB3CFEBB8D3ECBED6F6E1ECFEF8F9 -FFFFFEF8E9F1EED3E4EBCFE28C7CA7E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D3B4D2 -CEADCDCAA8CAC6A3C7C39EC4C099C0BD95BEBB92BBB88FBAB78CB8B58BB6B489B5B388B5B288B5 -B287B4B287B4B287B4B287B4B186B4B186B4B186B4B186B4B186B4B186B4B187B4B187B4B186B4 -B388B5B388B5B389B5B389B6B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58CB7B58DB8B58DB8 -B68DB8B78EB9B88FBAB890BAB890BAB990BAB991BBB991BBB992BBB992BBB992BCBB93BCBA93BC -BA93BCBA94BDBA94BDBB95BDBA93BCBB95BDBB95BEBB95BDBA95BDBC95BDBB95BDBB94BDBC96BE -BC96BEBD96BEBC95BDBC95BDBD96BEBB94BDBB94BDBA94BDBA94BDBA95BDBC94BDBA95BDBA93BC -BA94BDBA93BCBB93BCBA93BCBA93BCBA94BDBA94BDBB93BCB992BCBA93BCBA93BCBA92BBBB93BC -BB92BBBA93BCBA93BCBA93BCBA93BCBA94BDBA93BCBB93BCBA93BCBA94BDBB93BCBB94BDBA93BC -BB94BDBA94BDBB94BDBB95BDBB95BDBB95BDBC94BDBA94BDBB94BDBB94BDBA94BDBB94BDBA93BC -BB94BDBA94BDBA94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBB94BDBA93BCBA93BCBA93BC -B992BCBA92BBB892BCB992BCB992BBB992BBB992BBB891BBB991BBB890BAB891BBB890BAB890BA -B78EB9B78EB9B78EB9B68DB8B58DB8B58CB7B58CB7B58CB7B58BB7B58BB7B48AB6B48AB6B389B5 -B288B5B388B5B388B5B388B5B388B5B388B5B288B5B287B4B287B4B187B4B186B4B186B3B186B3 -B186B3B185B3B186B3B186B4B186B4B186B4B187B4B187B4B188B5B188B5B288B5B288B5B288B5 -B389B6B48BB7B58DB8B790BAB992BCBB96BEBE9AC1C19FC4C4A4C8C8AACCCDB1D1DCC8DFF0E5F0 -FFFFFEFBF7FAE6DAEAD9C9E0857CA7D9CBE1D8CAE0E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6 -BCB1D2B6ABCEB1A6CBACA1C8A89DC5A499C3A096C09D93BE9A90BD988EBB968CBA948BB9948BB9 -948BB9948AB8938AB8938AB8938AB8938AB89289B89289B89189B89289B89289B89289B89289B8 -938AB9938AB8938AB8948AB9948AB9948AB9948BB9948AB9948AB9948BB9958CBA968DBB968CBA -968DBB988EBB988FBC988FBC9890BC9990BC9A91BD9A91BD9B92BE9C93BF9C92BE9C93BF9C93BF -9C94BF9D94BF9D94BF9E95C09E95C09E95C09F96C0A097C1A096C1A096C1A096C1A096C1A196C1 -A097C1A197C1A197C1A197C1A096C1A197C1A197C1A197C19F96C0A097C1A097C1A096C1A096C1 -A097C19F96C0A096C1A096C1A096C0A096C19F96C09F96C0A096C09F95C09F96C09E94BF9F95C0 -9E95C09E95C0A095C09F95C09F95C09F95C09F94BF9F95C09E94BF9E94BF9E94BF9E94BF9E94BF -9E94BF9D94BF9E95C09E95C09F95C09E94BFA096C09E94BF9E94BF9E94BF9E94BF9E95C09E95C0 -9E95C09E94BF9E94BF9D94BF9E94BF9E94BF9D94BF9F94BF9E94BF9E94BF9E94BF9C94BF9C94BF -9D94BF9B92BE9C92BE9B91BD9B92BE9A91BD9990BD9990BD9990BC9990BC988FBC988FBC988FBC -978DBB978DBB978DBB968DBB958CBA948CBA948BB9948BB9948BB9948AB9948AB9948BB9948BB9 -948AB8938AB99289B8938AB8938AB8938AB8938AB89289B89289B89289B89289B89289B89189B8 -9189B89189B89189B89289B8938AB8938AB8938AB8948AB9948AB9948BB9948BB9948BB9948CBA -958DBA968EBB9890BD9B93BE9E96C0A098C2A59CC5AAA1C8AFA6CBB4ACCFBBB3D3C1BAD8E9E5EF -FFFFFEFFFFFEEBE7F2DFDDECDCDAEB8581ABDCDCECE5E4F0F7F5F9FFFFFEF6F6F9E8EAF4D8DFEE -D4DCEDD0DAECCDD8EBC9D5EAC6D3E9C4D1E8C1CFE7BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4 -B9CBE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE5B9CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B9CBE5 -B9CBE4BACBE4BACCE5BBCDE6BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6 -BECFE7BFCFE7BFCFE7C0D0E7BFCFE7BECFE7C0D0E7C0D0E7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C0D0E7C1D1E8C1D1E8C2D1E8C0D1E8C1D0E7C1D1E8C1D1E8 -C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C0D1E8C1D1E8C1D1E8C2D1E8C1D1E8C1D1E8C0D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C0D0E7C0D0E7C0D0E7C0D0E7C0CFE6BFD0E7C0D1E8C0D1E8 -C1D2E8C0D1E8C0D0E7C1D0E7C0D0E7C0CFE6BFCFE7C0D0E7C1CFE7C0D0E7C0D1E8C1D1E8C1D1E8 -C0D0E7C0D0E7C1D0E7C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D2E8C3D2E8 -C3D2E8C1D1E8C2D1E8C2D1E8C3D2E8C0D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C0D1E8C1D2E8C1D1E8C1D1E8C1D2E8C1D1E8C0CFE6C0D0E7 -C1D0E7C0D0E7BFCFE7C0CFE6BFCFE7BFCFE7BECEE6BED0E7BDCEE6BDCFE7BDCEE6BDCEE6BDCEE6 -BCCDE6BCCDE6BCCDE6BBCCE5BBCDE6BBCDE6BACDE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5 -BBCCE5BCCDE6BDCEE6BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5 -FAFBFCFFFFFEFBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FB -F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BFCFE7 -BDCFE7BECEE6BECFE7BECFE7E7ECF5FFFDFCFEFDFCFEFEFCFEFCFBFEFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E2F0D8E1F0D8E1F0D8E1F0DAE3F1 -F9F9FBFEFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F2F3F8F5F7FAFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD938DB2686695FFFEFDFFFEFCFFFEFDFFFFFEFFFFFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFD -FFFFFEFFFFFEC7BED5474D82F2EFF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF2 -FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB5D0 -EBB0CDEAACCAE9A8C7E8A4C4E7A1C3E69EC1E49BBFE499BEE498BDE497BCE397BCE396BCE396BC -E396BBE396BBE396BBE396BBE396BBE394BAE394BAE394BAE395BBE394BAE395BBE396BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BCE396BCE497BCE497BCE498BDE498BDE499BDE499BE -E59ABEE59ABEE59BBFE59BBFE59CBFE59CBFE69DC0E59DC0E69EC1E59DC0E69FC1E69FC1E69FC2 -E69FC2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3E7A1C3E7A2C3E8A1C3E7A1C3E6A1C3E7A1C3 -E7A1C3E7A0C2E6A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3 -E7A1C3E8A1C3E6A1C3E8A1C3E6A1C3E7A2C3E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A1C3E7A2C3 -E7A3C4E7A3C4E7A3C4E8A2C3E6A2C3E7A1C3E7A1C3E8A1C3E7A1C3E7A1C3E7A2C3E7A0C2E7A2C3 -E7A3C4E7A3C4E7A2C3E8A3C4E7A2C3E7A1C3E7A2C3E7A1C3E7A0C2E7A2C3E7A2C3E7A1C3E7A1C3 -E6A1C3E8A3C4E7A2C3E7A1C3E7A1C3E8A2C3E6A1C3E7A0C2E7A0C2E69FC1E69FC2E69FC2E6A0C2 -E69FC1E69EC1E69EC1E69EC1E69EC1E69EC1E59CC0E59CBFE49BBFE49BBFE59CBFE59BBFE59ABE -E499BEE499BDE499BDE498BDE498BDE498BDE497BCE497BCE497BCE497BCE396BBE395BBE396BB -E396BBE396BBE396BBE396BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BA -E395BBE396BBE396BBE295BBE396BBE396BBE396BBE396BBE295BBE296BCE297BCE398BDE39ABE -E49CC0E49EC1E5A1C3E6A4C5E7A9C8E8AECBEAB3CFEBB8D3ECBED6F6E1ECFEF8F9FFFFFEF8E9F1 -EED3E4EBCFE28C7CA7E9CDE1EED6E7F9EFF5FFFFFEF9EFF5EBD6E7D8BAD6D3B4D2CEADCDCAA8CA -C6A3C7C39EC4C099C0BD95BEBB92BBB88FBAB78DB8B58BB6B489B5B387B4B287B4B287B4B287B4 -B287B4B287B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B287B4B387B4B387B4 -B288B5B389B5B489B5B489B5B48AB6B48AB6B48AB6B58BB7B58CB7B58DB8B58DB8B68DB8B68EB9 -B78EB9B88FBAB891BBB890BAB991BBB991BBB991BBB993BCBA92BBBA93BCBA94BDBA95BDBC95BD -BB94BDBB94BDBB95BEBB95BDBB95BDBA95BDBC96BEBA95BDBB95BDBB95BDBC94BDBB95BDBB96BE -BC96BEBC96BEBB95BEBC96BEBC96BEBA95BDBC94BDBB94BDBB94BDBB94BDBC94BDBC94BDBB94BD -BA94BDBA93BCBA93BCBB93BCBB93BCB993BCBB93BCBB93BCBA93BCBA93BCBA93BCB992BCBA93BC -BA94BDBA93BCBA93BCBA94BDBA94BDBA94BDBB93BCBA93BCBA93BCBB93BCBB94BDBB93BCBB95BD -BB94BDBB95BDBB94BDBB95BEBB95BDBD95BEBB95BEBC95BDBC95BDBC96BEBC95BDBB94BDBB94BD -BB95BDBB95BDBB94BDBB94BDBB94BDBB94BDBB94BDBA93BCBA93BCBA92BBBB93BCBA93BCBA93BC -BA93BCB992BCB891BBB891BBB891BBB991BBB991BBB790BAB990BAB890BAB78FB9B78EB9B78EB9 -B78EB9B58DB8B58CB7B58CB7B58BB7B58BB7B48AB6B48AB6B48AB6B389B6B389B5B389B5B389B5 -B388B5B387B4B287B4B287B4B187B4B187B4B187B4B187B4B186B4B186B3B186B3B085B3B085B3 -B186B4B186B4B186B4B186B4B187B4B187B4B187B4B187B4B287B4B288B5B288B5B389B6B48BB7 -B58DB8B790BAB992BCBB96BEBE9AC1C19FC4C4A4C8C8AACCCDB1D1DCC8DFF0E5F0FFFFFEFBF7FA -E6DAEAD9C9E0857CA7D9CBE1D8CAE0E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BCB1D2B6ABCE -B1A6CBACA1C8A89DC5A499C3A096C09D93BE9A90BD988EBB968CBA948BB9948AB9948BB9948AB8 -938AB8938AB8938AB8938AB8938AB89289B89188B79188B79189B89189B89289B8938AB8938AB8 -938AB8938AB89389B8938AB9948AB9948AB9948BB9948CBA958CBA958DBA948CBA968DBB978EBB -988EBB988FBC988FBC9890BC9990BD9A91BD9B92BE9C91BD9C92BE9D94BF9C93BF9E95C09C94BF -9E95C09F95C09F95C09F95C09F96C0A096C1A196C1A196C1A196C1A197C1A197C1A198C2A197C1 -A197C1A198C2A298C1A197C1A197C1A097C1A197C1A196C1A196C1A198C2A097C1A197C1A197C1 -A196C1A096C1A096C19F96C19F96C09F95C09F95C0A096C19F96C09E95C09E95C09E94BF9E96C0 -9F95C0A096C19F96C0A096C09F96C09F95C09F95C09C94BF9E94BF9F95C09E95C09E96C09F95C0 -9F95C09F95C09F95C09F96C09F95C09F96C09F96C09F96C09F96C09F96C09F95C09E95C09E95C0 -9E94BF9E95C09E94BF9E94BF9E94BF9E94BF9E94BF9D94BF9D94BF9D94BF9C92BE9C93BE9C92BE -9C92BE9B92BE9B91BD9A91BD9990BD9990BC9890BC988FBC988FBC988FBC978EBB978DBB968CBA -968CBA958CBA948CBA948BB9948BB9948BB9948BB9938AB9938AB9948AB9948AB9938AB9938AB8 -9289B89289B89289B89289B89289B89289B89289B89289B89289B89188B79188B79189B89189B8 -9289B89289B8938AB8938AB8938AB8948AB9948AB9948BB9948BB9948BB9948CBA958DBA978EBB -9890BD9B93BE9E96C0A098C2A59CC5AAA1C8AFA7CBB4ACCFBBB3D3C1BAD8E9E5EFFFFFFEFFFFFE -EBE7F2DFDDECDCDAEB8581ABDCDCECE5E4F0F7F5F9FFFFFEF6F6F9E8EAF4D8DFEED4DCEDD0DAEC -CDD8EBC9D5EAC6D3E9C4D1E8C1CFE7BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE4 -BACBE4B9CBE4B9CBE4B9CBE4B9CBE4B8CBE5B8CBE5B8CBE5B8CBE5B9CBE5B9CBE5B9CBE5BACCE5 -BACCE5BACCE5BBCCE5BBCCE5BBCCE5BBCCE5BCCDE6BCCDE6BDCEE6BDCFE7BDCFE7BDCEE6BDCFE7 -BED0E7BECFE7BFD0E7BFCFE7BFCFE6C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D2E8C1D1E8C0D1E8C1D1E8C1D1E8C2D1E8C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D2E8C1D1E8C1D2E8C1D0E7C1D1E8C1D1E8C1D1E8 -C1D1E8C1D0E7C1D0E7C1D0E7C1D0E7C1D1E8C1D1E8C0D1E8C1D2E8C0D1E8C2D1E7BFD0E7BFCFE6 -C1D0E7BFCFE7C0D0E7C1D0E7C0D0E7C1D0E7BFCFE6C1D0E7C0D0E7BFCFE6C0D1E8C0D1E8C2D1E8 -C2D1E8C1D1E8C1D0E7C2D1E8C1D2E8C1D2E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D2E8C1D1E8C3D2E8C2D2E8C2D1E8C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C1D1E8C1D1E8C1D1E8C1D2E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C0D1E8C0D1E8C0CFE6 -BFCFE6BFCFE7BECFE7BECFE7BECEE6BFCFE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6 -BBCDE6BACCE5BBCCE5BBCCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B9CBE5BACCE5B9CBE4B9CBE4B9CBE4B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCDE6BCCDE6 -BDCEE6BECFE7C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFE -FBFBFCF5F6FAF0F2F8F2F4F9BCB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FB -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BDCFE7BFCFE7BECEE6BDCFE7BECEE6BED0E7 -BECFE7DEE5F2FEFDFCFDFCFBFFFEFCFEFCFBFEFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EFD8E2F0D7E1F0F3F4F9FFFDFCFFFDFC -FFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F3F5F9FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F2EEF4474D82C7BFD7FFFFFEFFFEFCFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -5E5D8E938DB3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F8FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEAF2FCE8F19285AD -9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB5D0EBB0CDEAACCA -E9A8C7E8A4C4E7A1C3E69EC1E49BBFE499BEE498BDE497BCE396BCE396BCE396BCE396BBE396BB -E396BBE396BBE396BBE395BBE395BBE394BAE394BAE394BAE395BBE395BBE395BBE396BBE396BB -E395BBE396BBE396BBE396BBE396BCE396BCE497BCE498BDE498BDE398BDE399BEE499BEE49ABE -E59ABEE59BBFE59CBFE59CBFE59DC0E59CC0E69EC1E69FC1E59EC1E69FC1E69FC1E7A0C2E7A0C2 -E8A1C2E7A1C3E7A1C3E8A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A2C3E8A1C2E6A2C3E7A2C3 -E7A3C4E7A1C3E7A1C3E7A1C3E7A1C3E7A0C2E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E6A1C3E8A1C3 -E8A2C3E7A0C2E7A1C3E7A0C2E7A1C3E7A0C2E7A1C3E7A1C3E7A1C3E7A1C3E7A1C3E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A1C3E7A2C3E7A1C3E7A2C3E7A3C4E7A1C3E7A2C3 -E8A2C3E7A3C4E7A2C3E7A2C3E7A3C4E7A2C3E7A3C4E7A2C3E7A0C2E7A1C3E7A1C3E7A3C4E7A1C3 -E6A2C3E8A3C4E6A2C3E7A1C3E7A2C3E7A1C3E7A0C2E7A1C3E69FC2E7A0C2E7A0C2E69FC2E69EC1 -E69EC1E69EC1E59DC0E59DC0E59DC0E69DC0E59CBFE59CBFE69ABEE59ABEE59ABEE599BEE499BD -E499BDE498BDE497BCE497BCE397BCE396BCE396BCE396BCE396BBE395BBE395BBE396BBE396BB -E396BBE395BBE394BAE394BAE394BAE394BAE394BAE393BAE394BAE394BAE395BBE395BBE396BB -E396BBE295BBE396BBE396BBE395BBE396BBE295BBE296BCE297BCE398BDE39ABEE49CC0E49EC1 -E5A1C3E6A5C6E7A9C8E8AECBEAB3CFECB9D3ECBED6F6E1ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE2 -8C7CA7EACEE1EED6E7FAF0F5FFFFFEF9EFF5EBD6E7D8BBD6D3B4D2CEADCDCAA8CAC6A3C7C39EC4 -C099C0BD95BEBB92BBB88FBAB78DB8B58BB6B489B5B387B4B287B4B287B4B287B4B287B4B287B4 -B186B4B186B4B187B4B187B4B186B4B186B4B186B3B186B4B287B4B287B4B287B4B288B5B389B5 -B389B6B389B6B389B5B48AB6B48AB6B58BB7B58BB7B58CB7B68DB8B78EB9B78FB9B78EB9B891BB -B891BBB991BBB992BCB992BBB992BCB992BCBA94BDBA94BDBB94BDBB94BDBB94BDBC95BDBC95BD -BB95BDBC95BDBC96BEBD96BEBB96BEBC95BDBC96BEBC95BDBB95BEBD97BFBC95BDBC96BEBC96BE -BC96BEBC96BEBC95BDBC96BEBC96BEBD95BEBA95BDBB94BDBC94BDBB94BDBA94BDBB94BDBB95BD -BA93BCBA93BCBA93BCBA93BCBA93BCB993BCBB93BCBA93BCBB92BBBA94BDB993BCBA94BDBA94BD -BB94BDB993BDBA95BDBA93BCBA94BDBA93BCB993BCBA93BCBA94BDBB95BDBC94BDBB94BDBB94BD -BD95BEBC95BDBB95BDBB95BDBB95BDBA95BDBC95BDBB94BDBC96BEBB95BDBC96BEBC96BEBC96BE -BC95BDBC95BDBB95BDBB94BDBB94BDBA94BDBA93BCBA94BDBA93BCBA93BCB992BCBA93BCB993BC -BA93BCB992BBB991BBB890BAB991BBB891BBB890BAB78FB9B88FBAB78EB9B78EB9B78EB9B58DB8 -B58DB8B58CB7B58BB7B48AB6B48AB6B48AB6B489B5B389B5B388B5B388B5B287B4B287B4B287B4 -B287B4B186B4B186B4B186B4B186B4B186B3B186B3B085B3B186B3B186B3B186B3B186B4B186B4 -B186B4B186B4B187B4B187B4B186B4B186B4B287B4B288B5B288B5B389B6B48BB7B58DB8B790BA -B992BCBB96BEBE9AC1C19FC4C4A5C8C8ABCCCEB2D1DCC8DFF0E6F0FFFFFEFBF7FAE6DAEAD9CAE1 -857CA7D9CBE1D8CAE0E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BDB1D2B7ABCEB1A6CBACA1C8 -A89DC5A499C3A096C09D93BE9A91BD988EBB968CBA948BB9948AB9948AB9938AB8938AB8938AB8 -938AB8938AB8938AB89289B89188B79188B79188B79188B79289B89289B89289B89289B89289B8 -9289B8938AB9948AB9948AB9938AB9948BB9948BB9948CBA958CBA968CBA978DBB978DBB988EBB -988FBC9890BC9990BD9A91BD9B92BE9C92BE9B93BE9C92BE9C94BF9D94BF9E96C09E95C09F95C0 -A096C1A096C1A096C1A196C1A197C1A197C1A197C1A197C1A198C2A196C1A198C2A298C2A298C2 -A198C2A298C2A197C1A198C2A199C2A097C1A198C2A197C1A197C1A197C1A198C2A196C1A196C1 -A197C1A096C19F95C09F95C09F95C09F95C09E94BF9E94BF9E95C09F95C0A096C09F95C0A196C0 -A095C09F96C0A096C09F96C09E95C0A096C19E95C09D94BF9E94BF9E94BF9E95C09E94BF9F95C0 -9F95C09F95C09F95C09F95C09F95C09F95C09F95C09F95C09F95C09F95C09F96C09F95C09F96C0 -9F95C09F96C09F95C0A096C09D94BF9D94BF9D94BF9C93BF9B93BE9C92BE9C92BE9C92BE9A91BD -9B92BE9A91BD9990BD9990BD9890BC988FBC988FBC988EBB978EBB968DBB958DBA958DBA958DBA -948CBA948BB9948AB9948AB9948AB89289B89289B8938AB8938AB8938AB8938AB89289B89289B8 -9289B89289B89289B89189B89189B89189B89189B89188B79188B79189B89189B89289B89289B8 -938AB8938AB8938AB8948AB9948AB9948AB9948BB9948BB9948CBA958DBA978EBC9990BD9B93BE -9D95C0A098C2A59DC5AAA2C8AFA7CCB4ACCFBBB3D3C2BAD8E9E5EFFFFFFEFFFFFEEBE7F2DFDDEC -DCDAEB8581ABDCDCECE5E4F0F7F5F9FFFFFEF6F6F9E8EAF4D8DFEED4DCEDD0DAECCDD8EBCAD6EA -C6D3E9C4D1E8C2D1E7BFCFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE5B9CBE4B9CBE4 -B9CBE4B9CBE4B9CBE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B9CBE5BACCE5BACCE5BACCE5 -BBCCE5BBCDE6BCCDE5BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BECEE6BECFE7BECFE7BFCFE7 -BFCFE7BFCFE7C1D1E8C0D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C3D2E8C1D1E8C1D2E8C2D1E7C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C0D1E8C2D1E8C0D1E8C1D2E8C2D1E8C0D1E8C1D2E8C1D0E7C1D1E8C1D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8BFCFE7C0D1E8C0D1E8C1D0E7C0D0E7C0D0E7C1CFE7 -C2D1E8C1D1E8C1D0E7C1D0E7C0D1E8C0D0E7C0CFE6C0D0E7C0D1E8C0D1E8C1D1E8C1D1E8C1D1E8 -C2D1E8C1D1E8C1D1E8C2D1E8C2D1E8C1D0E7C2D2E8C2D1E8C3D1E7C2D2E8C2D2E8C2D2E8C2D1E7 -C2D2E8C2D1E8C3D1E7C3D3E9C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C1D2E8C1D1E8C0D1E8C1D1E8C1D1E8C1D0E7C0D0E7C1CFE7BED1E8BFCFE6BFD0E7 -BFCFE7BECFE7BFCFE7BECEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BBCCE5BBCCE5 -BBCCE5BBCCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B8CBE5B7CBE4B8CBE5B8CBE5B8CBE5B9CBE5 -B9CBE4B9CBE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BECFE7 -C0D0E7C3D2E8C5D4E9C8D6EACCD9ECCFDBEDD4DFEFD8E1F0E9ECF5FAFBFCFFFFFEFBFBFCF5F6FA -F1F3F8F2F4F9BDB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFC -FAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BFD0E7BDCFE7BECFE7BDCFE7BED0E7BECFE7D7E1F0FFFDFC -FEFDFCFFFDFCFDFDFCFDFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0EFF2F8FFFDFCFFFDFBFFFDFCFFFDFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F4F9FDFDFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFFFFFE938CB2 -696695FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEACA3C3515689FFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8 -FEF5F8FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEAF2FCE8F19285AD9284ACFAE4EE -FDEEF4FFFFFEFFFFFEFCEAF2F6D3E3F3C7DBF1C1D8EFBBD4EDB6D0EBB0CDEAACCAE9A8C7E8A4C4 -E7A1C3E69EC1E49BBFE499BEE498BDE497BCE396BCE396BCE396BCE396BBE396BBE395BBE396BB -E396BBE395BBE395BBE395BBE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE496BB -E496BBE396BBE396BCE497BCE497BCE497BCE498BDE499BDE499BDE499BEE49ABEE59ABEE59BBF -E49BBFE59CC0E59CC0E69EC1E69EC1EEB5D0F4CCDFF4CCDFF3CBDFEBB1CDE7A0C2E7A0C2E7A0C2 -E7A1C3E7A1C3E7A1C3E7A2C3E7A0C2E7A1C3EEB7D2F5CDE0F1C2D8E7A1C3E7A2C3E7A1C3E7A2C3 -E7A2C3E7A2C3E7A1C3E7A1C3E7A2C3E7A1C3E7A1C3E7A1C3E7A1C3EEB7D2F4CEE0F5CDE0E7A1C3 -E8A1C2E7A1C3E7A1C3E7A2C3E7A2C3E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4F4CCDF -F5CEE0F5CEE0F4C9DDE6A2C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A3C4E7A3C4E6A3C4E7A3C4 -F5CEE0F5CDE0EAADCBE6A2C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E6A2C3E8A4C4E7A3C4E6A1C3 -E7A1C3E6A1C3E7A1C3ECB2CEF2C2D8F4CCDFF4CCDFF3C7DBEDB5D0E7A0C2E69FC2E69EC1E69EC1 -E69EC1E59CC0E59CC0E59CC0E49BBFE49BBFE59BBFE49ABEE499BEE499BDE499BDE498BDE498BD -E497BCE497BCE396BBE396BBE396BBE396BBE395BBE394BAE395BBE395BBE395BBE395BBE395BB -E395BBE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE396BBE396BBE295BB -E395BBE395BBE395BBE396BBE295BBE296BCE397BCE398BDE39ABEE49CC0E59EC1E5A1C3E6A5C6 -E7AAC9E8AECBEAB4D0ECB9D3ECBED6F6E2ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE28C7CA7EACEE2 -EED6E7FAF0F5FFFFFEF9EFF5EBD6E7D8BBD6D3B4D2CEADCDCAA8CAC6A3C7C39EC4C099C0BD96BE -BB92BBB88FBAB78DB8B58BB6B489B5B387B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B187B4B187B4B186B4B187B4B186B4B186B4B186B4B187B4B287B4B288B5B388B5B288B5B389B5 -B48AB6B48AB6B48AB6B48AB6B58BB7B58CB7B68DB8B68DB8B78EB9B78EB9B88FBAB890BAC9A8CA -DBC2DBDBC2DBDBC3DBCBABCCBB94BDBB94BDBB94BDBB95BDBC95BDBC95BDBD96BEBC96BEBB95BE -BC96BEBD97BFCDADCDDDC6DDDBC4DCDCC6DDC4A1C5BC96BEBD96BEBC96BEBD97BFBB95BEDCC5DD -DCC6DDDCC5DDDDC4DCDBC4DCDCC5DDCBACCDBB93BCBB94BDBC94BDB993BCBB94BDBB95BDBB94BD -BB93BCBB94BDBA92BBC6A4C7D7BDD7DBC3DBDBC2DBD3B6D3C29EC4B992BBBA93BCB993BCBC94BD -B993BCBC95BDBA94BDBB94BDBB94BDBB94BDCBABCCDBC4DCDBC3DBDCC5DDDCC3DCDCC3DCDCC4DC -DCC4DCDCC4DCDDC4DCCFB1D0BF9BC2BC96BEBC95BDBC96BEBC96BEBC96BEBC96BEBC96BEBC96BE -BB95BDBB94BDBB94BDBB94BDBB94BDBB93BCBB93BCBE99C1CAAACBDBC2DBDCC3DBDAC2DBCFB0CF -C19DC3B992BBB890BAB891BBB990BAB88FBAB78EB9B78EB9B68DB8B68DB8B58DB8B58CB7B58BB7 -B48AB6B48AB6B48AB6B489B5B388B5B388B5B388B5B387B4B287B4B287B4B287B4B187B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B3B186B4B186B3B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B187B4B288B5B288B5B288B5B389B6B58BB7B58EB9B790BAB993BCBB97BF -BE9BC2C1A0C5C4A5C9C9ACCDCEB2D1DCC8DFF0E6F0FFFFFEFBF7FAE6DAEADACBE1857CA7D9CBE1 -D8CAE0E9DFEDFFFFFEFFFFFEE7DEECD0C4DEC3B7D6BDB1D2B7ABCEB1A6CBACA2C8A89DC5A499C3 -A096C09D94BF9A91BD988EBB968CBA948BB9948AB9948AB9938AB9938AB89289B8938AB8938AB8 -938AB89289B89188B79188B79289B89188B79289B89289B89289B89289B89289B89289B8938AB9 -938AB9948AB9938AB9948AB9948AB9948BB9958CBA968DBB968DBB978EBB988EBB988FBC9890BC -9990BD9A91BD9B92BE9C92BE9C92BEB3AACDCCC3DDCCC3DDCCC3DDB5ABCE9E96C09F96C0A097C1 -A197C1A197C1A198C2A198C2A197C1A198C2A198C2A299C2B7ADCFCEC5DECEC6DFCFC6DFAEA4CA -A299C2A299C2A298C2A298C2A198C2A198C2B8ADD0CEC5DECEC5DECEC5DECEC5DECCC4DECDC5DE -CDC5DECDC4DECDC4DECDC4DECDC4DECDC3DDCDC3DDAAA0C7A096C0A095C09E95C09F95C09F95C0 -9E94BF9F95C09F95C0A59BC4B5ABCECEC5DECCC3DDCDC3DDC0B7D6B0A6CB9E95C09F96C09F96C1 -9F95C09F96C09F96C09F95C09F95C09F95C09F95C09F95C09F95C09F95C09F95C09F96C0A59AC3 -B6ABCECCC3DDCCC3DDCCC4DDBAB1D2A89EC69C93BF9C92BE9C92BE9C92BE9C92BE9A91BD9A91BD -9990BD9990BC9890BC988FBC988EBB978DBB968DBB968DBB958CBA948CBA948BB9948BB9948AB9 -938AB9938AB8938AB89289B89189B89289B89289B89289B89289B89189B89189B89189B89189B8 -9189B89189B89188B79188B79188B79188B79188B79189B89189B89189B89289B8938AB8938AB8 -938AB8948AB8948AB8938AB9948BB9948BB9948CBA958DBA978EBC9990BD9B93BE9E96C0A199C2 -A59DC5AAA2C8AFA7CBB5ACCFBBB3D3C2BAD8E9E5EFFFFFFEFFFFFEEBE7F2DFDDECDCDAEB8581AB -DDDCECE5E4F0F7F5F9FFFFFEF7F6FAE8EAF4D8DEEED5DDEDD0DAECCDD8EBCAD6EAC7D4E9C4D1E8 -C2D1E7C0CFE6BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE5B8CAE4B8CAE4B9CBE4B9CBE4 -B9CBE4B8CBE5B8CBE5B8CAE4B9CBE5B8CBE5B8CBE5B8CAE4B9CBE5B9CBE5BACDE5BBCDE6BBCDE6 -BBCDE6BCCDE6BDCEE6BDCEE6BDCEE6BCCDE6BDCEE6BECEE6BECFE7BFCFE7D8E2F0E0E7F3E0E7F3 -DFE7F3C8D6EAC1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D2E8C2D1E8C2D1E8 -D8E3F1E1E7F3E1E7F3E2E8F3C2D1E8C3D2E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C2D1E8C2D1E7D1DEEFE1E7F3E1E7F3C2D2E8C1D1E8C1D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8C1D1E8C1D1E8C1D0E7C1D1E8C1CFE7C1D0E7C1D1E8C1CFE7C1D1E8C1D0E7D0DCEE -E0E7F3DFE7F3E0E7F3D5DEEEC5D4E9C1D0E7C1D1E8C0D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8 -C2D1E8C2D1E8E1E7F3E1E7F3E1E7F3E1E7F3E1E7F3E2E7F3E1E7F3E2E7F3E1E8F4DDE4F1CFDBED -C2D2E8C4D1E8C3D3E9C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C2D1E8 -C1D2E8C1D1E8C1D1E8CDD9ECD9E3F1DFE7F3E0E6F2DCE5F2CFDBEDBFCFE6BFCFE7BFCFE7BED0E7 -BFCEE6BECEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BBCCE5BBCDE6BBCDE6BBCDE6 -BACCE5B9CBE5B9CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B9CBE4B9CBE4B9CBE4B9CBE4 -B9CBE4B8CAE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BECFE7C0D0E7C3D3E9 -C5D4E9C8D6EBCCD9ECCFDBEDD5DFEFD8E1F0E9EDF6FAFBFCFFFFFEFBFBFCF5F6FAF1F3F8F2F4F9 -BDB8D2666594F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BDCFE7BFCFE7BECFE7BECFE7BECFE7BECEE6CBD9ECFBFBFCFEFDFCFEFDFCFEFCFB -FEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0E8ECF5FFFFFDFFFDFBFFFEFCFFFDFBFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9 -FAFBFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF2EEF4474E82C7BED5 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD515689ACA4C4FFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7 -FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEBF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFE -FFFFFEFCEBF2F6D4E4F3C7DBF1C1D8EFBBD4EDB6D0EBB1CDEAACCAE9A8C7E8A4C5E7A1C3E69EC1 -E49BBFE499BEE498BDE497BCE396BCE396BCE396BBE395BBE395BBE395BBE396BBE396BBE395BB -E395BBE395BBE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE496BBE496BBE396BB -E396BBE497BCE497BCE497BCE497BCE499BDE499BDE499BEE59ABEE59BBFE59BBFE59CBFE59CC0 -E59DC0E59CBFE69FC1F4CCDFFFFFFEFFFEFDFFFFFEFBE5EEE7A1C3E6A0C2E7A2C3E8A2C3E7A3C4 -E7A2C3E7A1C3E7A3C4E7A2C3F5CDE0FFFEFDFBE5EEE7A2C3E7A3C4E7A2C3E7A3C4E7A3C4E7A3C4 -E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3FDF2F6FFFFFEFFFFFEF0C0D8E7A2C3E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4FFFFFEFFFFFEFFFFFE -FFFEFDEEB9D2E7A4C5E7A3C4E8A3C4E7A3C4E7A3C4E7A3C4E6A2C3E5A2C4E7A3C4FFFFFEFFFFFE -EEB8D2E7A3C4E7A3C4E6A3C4E7A3C4E6A2C4E7A3C4E7A3C4E6A2C4E8A1C3E7A2C3E7A2C3F1C2D8 -FEF2F6FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFF9FAF5CBDEE8A5C5E69EC1E59CC0E59DC0 -E59CC0E59CBFE49BBFE49BBFE59BBFE59ABEE499BEE499BDE499BDE498BDE497BCE497BCE497BC -E497BCE497BCE396BBE396BBE395BBE394BAE395BBE395BBE395BBE395BBE395BBE395BBE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE395BBE396BBE396BBE395BBE295BBE395BBE395BB -E395BBE396BCE296BCE296BCE397BCE398BDE39ABEE49CC0E59FC2E5A1C3E6A6C6E7AAC9E8AECB -EAB4D0ECB9D3ECBED7F6E2ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE28C7CA7EACEE2EED7E7FAF0F5 -FFFFFEF9EFF5EBD6E7D8BBD6D3B4D2CFAECECAA8CAC7A4C7C39FC4C099C0BD96BEBB92BBB88FBA -B78DB8B58BB6B489B5B488B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4B187B4B187B4 -B186B4B187B4B287B4B186B4B186B4B187B4B287B4B388B5B388B5B389B5B388B5B48AB6B48AB6 -B48AB6B58BB7B58CB7B58CB7B58DB8B78EB9B78EB9B890BAB890BAB991BBDAC2DBFFFFFEFFFFFE -FFFFFEE9D8E8BB94BDBB94BDBC95BDBC96BEBC96BEBB95BEBC96BEBD96BEBD97BFBD97BFBC96BE -F4E8F1FFFFFEFFFFFEFFFFFECCAECEBD97BFBD97BFBD97BFBD97BFBD96BEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDDCC5DDBC96BEBC95BDBC95BDBB95BDBC94BDBA94BDBB95BDBA93BCCBACCD -EFE0EDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEEFE0EDCBAACBBA93BCBA93BCBA93BCBB94BD -BC94BDBB95BDBB95BDBC95BDDCC4DCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEE2CBE0C19CC2BD97BFBD97BFBC96BEBC96BEBC96BEBC95BDBB95BDBB94BD -BB94BDBB94BDBA94BDC4A1C5E5D1E4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEEEDFEC -C9AACBB991BBB88FBAB88FBAB78EB9B78EB9B68DB8B68DB8B58DB8B58CB7B58BB7B48AB6B48AB6 -B48AB6B389B5B389B5B388B5B388B5B387B4B287B4B287B4B287B4B186B4B186B3B186B4B186B4 -B186B4B186B4B186B4B186B4B186B4B186B3B186B4B186B4B186B4B186B4B186B3B186B4B186B4 -B186B4B187B4B288B5B288B5B288B5B389B6B58BB7B58EB9B790BAB993BCBB97BFBE9BC2C1A0C5 -C5A5C8C9ACCDCEB2D1DCC8DFF0E6F0FFFFFEFBF7FAE6DAEADACBE1857CA7D9CBE1D9CBE1E9DFED -FFFFFEFFFFFEE7DEECD0C4DEC3B7D6BDB2D2B7ABCEB1A6CBADA2C8A89DC5A499C3A196C19D94BF -9A91BD988EBB968CBA948BB9948AB9948AB9938AB99289B89289B89289B89289B8938AB89289B8 -9289B89188B79289B89289B89289B89289B89289B89289B89289B89289B89289B8938AB9948AB9 -948AB9948AB9948BB9948CBA948CBA958DBA968DBB978EBB988FBC988FBC9890BC9990BD9A91BD -9B92BE9B92BE9C92BECCC4DEFFFFFEFFFFFEFFFFFEE0D9EAA096C1A197C1A197C1A197C1A198C2 -A198C2A198C2A298C2A299C2A299C2A298C2EFE9F2FFFFFEFFFFFEFFFFFEB8AFD1A399C3A399C3 -A299C2A299C3A199C2A299C2CFC6DFFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB7ACCF9E95C09F96C09F96C09D95C09E95C0A096C1AAA0C7 -DAD2E6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3EFF6CDC4DEA59BC4A096C09F95C0 -9F95C09F95C09F96C09F96C09F96C09F96C0A096C1A096C1ABA1C8DAD1E6FFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEE5DEEDB3A9CD9C92BE9C92BE9A91BD9C91BD9A91BD9990BD9890BC -988FBC988FBC978EBB978DBB968DBB968DBB958CBA948BB9948BB9948AB9948AB9938AB9938AB8 -938AB89289B89289B89289B89289B89289B89289B89289B89289B89188B79188B79188B79188B7 -9188B79188B79188B79188B79188B79289B89189B89289B89389B8938AB89289B8938AB8938AB8 -938AB8938AB9948BB9948BB9948CBA958DBA978EBC9990BD9C93BF9E96C0A199C2A59DC5AAA2C8 -AFA7CBB5ADD0BBB3D3C2BAD8E9E5EFFFFFFEFFFFFEEAE7F2DFDDECDCDAEB8581ABDDDCECE5E4F0 -F7F5F9FFFFFEF7F6FAE8EAF4D8DEEED5DDEDD1DAECCED8EBCAD6EAC7D4E9C4D1E8C2D1E7C0CFE6 -BDCDE5BCCDE5BBCBE4BACBE4B9CAE4B9CBE4B9CBE5B8CAE4B9CBE4B9CBE4B9CBE4B9CBE4B9CBE5 -B9CBE5B8CAE4B9CBE5B8CAE4B8CAE4B9CBE5B9CBE5BACCE5BACCE5BBCDE6BBCDE6BBCDE6BCCDE6 -BDCEE6BDCEE6BDCEE6BDCEE6BECEE6BECFE7BFCFE7BFCFE7F0F3F9FFFEFDFFFFFEFFFEFDDEE5F2 -C1D1E8C2D1E8C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C7D5EAFFFEFDFFFFFE -FFFEFDFFFEFDC3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C1D1E8C3D2E8C2D1E8 -C4D3E9C3D3E9F9F9FBFFFFFEFFFFFED9E3F1C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8 -C2D1E8C1D1E8C2D1E8C0D1E8C1D0E7C1D1E8C1D1E8C1D2E8D8E1F0F9FAFBFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDE9EEF6C8D6EBC2D1E8C0D1E8C1D1E8C1D1E8C2D1E7C2D1E8C2D1E8C2D1E8 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFAF9FBD1DEEE -C4D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C1D1E8C3D2E8D9E3F1 -F9FAFBFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFCFCFCE0E7F3C4D3E9C0D0E7BDD0E7BECEE6 -BFCFE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6BBCDE6BACDE5BACCE5B9CBE5 -B9CBE5B8CBE5B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B9CBE5B9CBE4B9CBE4B9CBE4B9CBE4B8CAE4 -B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BFCFE7C0D0E7C3D3E9C5D4EAC9D7EB -CCD9ECD0DCEED5DFEFD9E2F0E9EDF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2666594 -F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECEE6BDD0E7BECEE6BFD0E7C3D3E9FAFBFCFEFDFDFEFDFCFDFCFBFEFDFCFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D7E1F0E2E9F4FFFEFCFEFCFBFFFDFCFFFDFCFEFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F5F9F7F9FBFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEA099BB515588FFFEFDFFFFFE -FEFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFE938CB25D5E8FFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF2F6FEF2F6 -FDF0F5FDEFF4FDEDF3FDECF3FCEBF2FCE8F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2 -F6D4E4F3C7DBF1C1D8EFBBD4EDB6D0EBB1CDEAACCAE9A8C7E8A4C5E7A1C3E69EC1E49BBFE499BE -E498BDE497BCE396BCE396BCE396BBE396BBE395BBE393BAE394BAE395BBE396BBE396BBE395BB -E394BAE394BAE394BAE395BBE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BCE396BC -E396BCE396BCE397BCE498BDE499BDE499BEE59ABEE59BBFE59CBFE59CC0E59CC0E59CC0E69FC1 -E59DC0F5CDDFFFFFFEFFFFFEFFFFFEFFFFFEEEB7D2E8A3C4E6A1C3E7A3C4E7A2C3E7A3C4E7A3C4 -E7A3C4E6A2C4F5CFE1FFFFFEFBE6EFE7A3C4E7A3C4E7A3C4E6A2C3E7A3C4E7A3C4E7A3C4E7A3C4 -E7A3C4E7A3C4E7A3C4E7A3C4ECB2CEFFFFFEFFFFFEFFFEFDFBE0ECE7A3C4E7A3C4E7A3C4E6A2C4 -E6A2C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4FFFFFEFFFFFEFFFFFEFFFFFEFBE6EF -E7A5C5E7A5C5E7A5C5E7A5C5E6A5C5E7A4C5E7A6C6E8A4C5E6A4C5FFFFFEFFFFFEEEB9D2E7A3C4 -E7A3C4E7A3C4E7A3C4E7A4C5E7A3C4E7A3C4E8A3C4E6A3C4E8A7C7FBE5EEFFFEFDFFFFFEFFFEFD -FEF2F6FBE6EFFBE5EEFEECF2FFFFFEFFFEFDFFFEFDFEF1F6EBAFCCE69EC1E59DC0E59DC0E59CBF -E59CBFE59BBFE59BBFE59ABEE599BEE499BDE499BEE498BDE497BCE497BCE497BCE497BCE496BB -E395BBE395BBE396BBE394BAE394BAE295BBE395BBE395BBE395BBE395BBE394BAE394BAE394BA -E394BAE395BBE395BBE394BAE395BBE395BBE394BAE394BAE295BBE395BBE395BBE396BBE397BC -E296BCE296BCE397BCE398BDE39ABEE49CC0E59FC2E5A1C3E6A6C6E7AAC9E9AFCCEAB4D0ECB9D3 -EDBFD7F7E2ECFEF8F9FFFFFEF8E9F1EED3E4EBCFE28C7CA7EACEE2EED7E7FAF0F5FFFFFEF9EFF5 -EBD6E7D8BBD6D3B4D2CFAFCECAA8CAC7A4C7C39FC4C099C0BD96BEBB93BCB88FBAB78DB8B58BB6 -B48AB6B488B5B388B5B287B4B287B4B287B4B287B4B186B4B186B4B187B4B287B4B186B4B187B4 -B186B3B186B4B187B4B187B4B287B4B388B5B388B5B389B5B389B5B48AB6B48AB6B58BB7B58BB7 -B58BB7B68CB7B68DB8B78EB9B78EB9B88FB9B990BAB991BBDAC2DBFFFFFEFFFFFEFFFEFDFCF8FA -BC94BDBC96BEBD96BEBD97BFBD96BEBD97BFBD97BFBD97BFBD97BFBD97BFC29DC3FFFFFEFFFFFE -FFFFFEFFFFFECDAECEBE98C0BD97BFBD97BFBD97BFBD97BFCCADCDD8BED9FFFFFEFFFFFEE5D2E4 -CCADCEC4A1C6BC96BEBC96BEBB96BEBC96BEBC95BDBB95BEBB94BDD4B9D5FFFEFDFFFFFEFFFFFE -F8EFF5EFE0ECEFE0ECF5E8F1FFFEFDFFFFFEFFFEFDE0CAE0BA94BDBC94BDBB94BDBB94BDBC94BD -BC95BDBC96BEDCC5DDFFFFFEFFFEFDF4E8F1EEE0EDF1E2EEF0E0EDF0E2EEF0E1EDF8F0F5FFFFFE -FFFFFEFFFEFDF4E8F1C19CC2BD97BFBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBD96BEBC95BD -D3B6D3FCF8FAFFFEFDFFFFFEFFFFFEEFE0ECEFE0ECEFE0ECFCF8FAFFFEFDFFFFFEFFFFFEDFC9DF -B991BBB890BAB88FBAB78EB9B78EB9B78EB9B68DB8B58CB7B58BB7B58BB6B48AB6B48AB6B389B5 -B388B5B288B5B388B5B388B5B388B5B287B4B287B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B186B4B186B4B085B3B186B3B185B3B186B3B186B3B186B3B186B4B186B4B187B4B187B4 -B287B4B288B5B288B5B389B6B58CB7B58EB9B891BBB993BCBB97BFBE9BC2C1A0C5C5A5C8C9ACCD -CEB2D1DCC9E0F0E6F0FFFFFEFBF8FAE6DAEADACBE1857CA7D9CBE1D9CBE1E9E0EDFFFFFEFFFFFE -E8DFECD0C4DEC3B7D6BDB2D2B7ACCEB1A6CBADA2C8A89DC5A499C3A196C19D94BF9A91BD988EBB -968CBA958CB9948AB9948AB9938AB99289B89289B89189B89189B89289B89289B89289B89188B7 -9289B89289B89289B89289B89389B89289B89289B89289B8938AB8938AB8938AB8948AB9948AB9 -948AB9948AB9948BB9958CBA968DBB978EBB988FBC988FBC9990BC9A91BD9A91BD9C92BE9C93BF -9C93BFCCC3DDFFFFFEFFFFFEFFFFFEFAF8FAA197C1A197C1A198C2A199C2A299C2A299C2A299C2 -A299C2A299C2A39AC3A99FC6FFFEFDFFFFFEFFFFFEFFFFFEB8AFD1A399C3A399C3A399C3A299C2 -A399C3A399C3CFC6DEFFFFFEFFFFFEF0E9F2E7E0EDE8E1EEE8E1EEE8E1EEE8E1EEE7E0EDE7E0ED -E6E0EDE6E0EDE6E0EDB1A7CCA196C09E95C09F95C0A096C09F95C0BCB2D3F9F8FAFFFEFDFFFFFE -FFFFFEF4F0F6E6E0EDE6E0EDFAF8FAFFFFFEFFFEFDFFFFFEFAF8FAB0A7CCA096C1A096C1A096C1 -A096C1A096C1A096C1A096C1A196C1C2B8D6FAF8FAFFFEFDFFFEFDFFFFFEE7E0EDE6E0EDE6E0ED -FAF8FAFFFFFEFFFFFEFFFFFED2C9E19C93BF9C92BE9B92BE9A91BD9990BD9990BC9890BC988FBC -988FBC978EBB968DBB948CBA958DBA948CBA948BB9948AB9948AB9938AB9938AB89289B89189B8 -9189B89188B79287B79289B89289B89289B89289B89188B79188B79188B79188B79188B79188B7 -9188B79188B79189B89289B89188B79289B89289B89289B89289B8938AB8938AB8938AB8938AB9 -948BB9948BB9948CBA958DBA978EBC9990BD9C93BF9E96C1A199C3A59DC5ABA2C8AFA7CBB5ADD0 -BBB3D3C2BAD8E9E5EFFFFFFEFFFFFEEAE7F2DFDDECDCDAEB8581ABDDDCECE5E4F0F7F5F9FFFFFE -F7F6FAE8EAF4D8DEEED5DDEDD1DAECCED8EBCAD6EAC7D4E9C4D2E8C2D1E7C0CFE6BDCDE5BCCDE5 -BBCBE4BACBE4B9CAE4B9CBE4B9CBE5B8CAE4B9CBE4B9CBE4B8CAE4B8CAE4B9CBE5B8CBE5B8CAE4 -B9CBE5B8CAE4B8CAE4B9CBE5B9CBE5BACBE4BACCE5BBCDE6BBCDE6BBCCE5BDCEE6BDCEE6BDCEE6 -BECEE6BDCFE7BDCFE7BECFE7BFCFE7BFCFE6F2F4F9FFFFFEFFFFFEFFFFFEEDF1F7C2D1E8C2D1E8 -C3D2E8C3D2E8C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D4E9D7E1F0FFFFFEFFFFFEFFFFFEFFFFFE -C2D2E8C3D3E9C3D3E9C3D3E9C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C4D2E8C3D2E8CFDBED -FFFFFEFFFFFEFFFFFEEDF1F8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C2D1E8C2D1E7C2D2E8C1D0E7C2D1E8E9EDF5FFFFFEFFFFFEFFFFFEF5F6FAF1F3F9F1F3F9F9F9FB -FFFFFEFFFFFEFDFDFDD9E2F1C2D2E8C2D1E8C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8FFFFFEFFFFFE -FCFCFCF1F3F9F2F4F9F2F4F9F2F4F9F2F4F9F1F3F9FFFFFEFFFFFEFFFFFEFFFFFEDAE3F1C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C3D3E9C6D5EAF1F3F9FFFEFDFFFFFEFFFEFD -FAFAFCF2F4F9F2F4F9F5F6FAFFFFFEFFFFFEFFFFFEF9FBFCCCD9ECBECFE7BECFE7BECEE6BDCFE7 -BECFE7BDCEE6BCCDE6BDCEE6BCCDE6BBCDE6BBCDE6BBCDE6BACDE5BACCE5B9CBE5B9CCE5B9CBE5 -B8CAE4B8CAE4B8CAE4B9CBE5B8CBE5B9CBE5B9CBE5B8CAE4B8CAE4B9CBE4B8CAE4B9CBE5B9CBE5 -B9CBE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BFCFE7C0D1E8C3D3E9C5D4EAC9D7EBCCD9ECD0DCEE -D5DFEFD9E2F0E9EDF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2666594F5F6FAF5F6FA -F6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BFCFE7BECFE7C3D3E9F3F4F9FEFEFDFEFDFCFEFDFCFEFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0E0E8F3FCFCFC -FFFDFCFFFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F2F4F9F1F3F9F1F3F9F1F3F9F6F7FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5E5E8F938CB2FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEE4DDE9474E82C7BED5FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FDF0F5FDEFF4 -FDEDF3FDECF3FDEBF2FCE9F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F7D4E4F3C7DC -F1C1D8EFBBD4EDB6D0ECB2CEEBACCAE9A8C7E8A5C5E7A1C3E69FC1E49BBFE499BEE498BDE497BC -E396BCE396BCE395BBE395BBE395BBE394BAE394BAE394BAE394BAE395BBE395BBE394BAE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BBE396BCE396BCE396BCE397BCE497BC -E498BDE498BDE499BDE499BEE49ABEE49BBFE49BBFE49BBFE59CBFE59DC0E69EC1E69FC1F4CCDF -FFFFFEFEF2F6FEF2F6FFFFFEFBE5EEE7A2C3E7A3C4E7A3C4E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4 -F5CEE0FFFFFEFBE6EFE7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E8A4C4E6A3C4E7A3C4 -E7A3C4E7A3C4F7D4E4FFFFFEFEF1F6FFFFFEFFFEFDEAABC9E7A4C5E7A4C5E7A4C5E7A4C5E7A4C5 -E7A3C4E7A3C4E7A3C4E7A4C5E7A4C5E7A4C5FFFEFDFFFFFEFBE6EFFFFFFEFFFFFEEEBAD3E8A5C5 -E8A5C5E8A6C6E7A6C6E8A6C6E8A6C6E8A6C6E8A6C6FFFEFDFFFEFDEEBAD3E7A5C5E7A5C5E7A5C5 -E7A4C5E7A4C5E7A4C5E7A4C5E8A4C4E9A9C8FDEBF2FFFFFEFFFFFEFBE5EEECB2CEE7A3C4E7A1C3 -E7A1C3E7A0C2E8A6C6F4CCDFFFFFFEFFFFFEFFF8FAECAFCCE59CC0E59DC0E59CC0E49BBFE49BBF -E49BBFE59BBFE499BEE499BDE498BDE498BDE497BCE396BCE396BCE396BCE396BBE396BBE396BB -E396BBE395BBE396BBE395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BBE396BCE296BCE296BC -E397BCE398BDE39BBFE49DC0E59FC2E5A1C3E7A6C6E7ABC9E9AFCCEAB4D0ECB9D3ECBED7F7E2EC -FEF8F9FFFFFEF8E9F1EED4E5EBCFE28C7CA7EACEE2EFD7E7FAF0F5FFFFFEF9EFF5ECD7E7D8BBD6 -D3B4D2CFAECECAA8CAC7A4C7C39FC4C09AC1BD97BFBB93BCB88FBAB78EB9B58BB6B48AB6B488B5 -B388B5B287B4B287B4B287B4B287B4B186B3B186B4B186B4B186B4B186B4B186B3B186B4B186B4 -B187B4B287B4B287B4B388B5B389B5B389B5B489B5B48AB6B48AB6B58BB7B58CB7B58DB8B68DB8 -B78EB9B78EB9B78FB9B890BAB991BBB991BBDBC2DAFFFFFEF4E8F1F8EFF5FFFEFDCBACCDBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBE99C0BE98C0BE98C0D5BAD6FFFFFEF3E8F1FFFEFDFFFFFE -CDAECEBD97BFBE98C0BE98C0BD97BFBD97BFBD97BFCDAECEFFFFFEFFFFFEDDC6DDBD97BFBD97BF -BD97BFBD97BFBD97BFBC96BEBB95BEBC96BED4B8D4FFFFFEFFFEFDF8EFF5CBABCCBB95BDBB94BD -BA94BDB992BCC39FC4EFE0ECFFFFFEFFFFFEE0CBE0BB95BDBB94BDBB94BDBB94BDBC96BEBC96BE -DCC5DDFFFFFEFFFFFECCAECEBD97BFBD98BFBD98BFBD98BFBD98BFBE98C0C9A9CBF4E9F1FFFFFE -FFFEFDEAD9E9BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BED4B7D4FFFFFEFFFFFE -FBF7FAD7BDD8BF9AC1BC94BDB993BCBA93BCB992BCCBAACBF2E8F1FFFEFDFFFEFDE4D0E4B890BA -B88FBAB88FB9B68DB8B68DB8B68DB8B58CB7B58CB7B48AB6B48AB6B48AB6B48AB6B389B5B389B5 -B389B5B388B5B388B5B287B4B187B4B187B4B186B4B186B4B186B4B186B4B186B4B186B4B287B4 -B186B3B085B3B085B3B085B3B186B3B186B3B186B3B186B4B186B4B187B4B187B4B288B5B288B5 -B288B5B389B6B58CB7B58EB9B790BABA94BDBB97BFBE9BC2C19FC4C5A5C8C9ACCDCEB2D1DDCAE0 -F0E6F0FFFFFEFBF7FAE6DAEADACBE1857CA7D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD0C5DE -C3B7D6BDB2D2B7ACCEB2A7CBADA2C8A99EC6A59AC3A196C19D93BE9B91BD988EBB968CBA958CB9 -948BB9948AB9938AB99289B89289B89189B89189B89188B79188B79188B79188B79288B79289B8 -9288B79289B89289B89289B89289B89289B8938AB9938AB8938AB8948AB9948BB9948BB9948BB9 -958CBA968CBA978DBB978DBB988EBB988FBC9990BC9A91BD9B92BE9C92BE9C92BE9C94BFCCC2DD -FFFFFEEDE7F1F4F0F6FFFFFEB7ADCFA198C2A398C2A299C3A399C3A399C3A39AC3A39AC3A49AC3 -A49AC3C4BBD8FFFFFEEFE9F2FFFFFEFFFFFEB9AFD1A49AC3A49AC3A39AC3A39AC3A49AC3A49AC3 -CFC6DFFFFFFEFFFFFEB8AED0A399C3A298C2A298C2A197C1A197C1A197C1A197C1A196C1A196C1 -A196C1A196C1A096C1A096C1A096C1A196C1B0A6CBFAF8FAFFFFFEFFFFFECDC3DDABA1C8A196C1 -A196C1A196C1A196C1ACA1C8D4CBE2FAF8FAF4F0F6A197C1A096C1A196C1A196C1A196C1A196C1 -A097C1A197C1C2B8D6FFFEFDFFFFFEFAF8FAC7BEDAA59BC49E95C09E95C09E94BF9D94BFB3AACD -EFE8F2FFFEFDFFFFFED8CFE49C93BE9B92BE9A91BD9990BD9990BC988FBC988FBC988DBB968DBB -958CBA958CBA958CBA948AB9948AB9948AB9938AB8938AB89289B89289B89289B89189B89289B8 -9289B89289B89389B89289B89289B89188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79189B89189B89289B89189B89189B89289B8938AB8938AB8938AB8948BB9948BB9948BB9 -948CBA968DBB978EBC9890BD9C93BF9F96C0A199C3A69EC6ABA3C9B0A7CCB5ADD0BCB3D4C2BBD8 -E9E5EFFFFFFEFFFEFDEAE7F2DFDDECDCDAEB8581ABDDDCECE5E4F0F7F6FAFFFFFEF7F6FAE9EAF4 -D8DFEED5DDEDD1DAECCDD7EACAD6EAC7D4E9C4D2E8C2D0E7C0CFE6BECEE6BCCDE5BBCBE4BACBE4 -BACBE4B9CBE4B9CBE5B8CAE4B9CBE4B9CBE4B8CAE4B8CAE4B8CBE5B8CCE5B8CBE5B9CBE4B9CBE4 -B8CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BCCDE5BCCDE6BDCEE6BDCEE6BDCEE6BDCFE7 -BECFE7BFCFE7BFCFE7C0D0E7F1F3F9FFFFFEEDF0F7FFFFFEFFFFFEC3D2E8C3D3E9C3D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9C4D2E8EAEFF7FFFEFDF6F7FAFFFFFEFFFFFEC4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C3D3E9C3D3E9E6EBF5FFFFFEF9FAFB -FFFFFEFFFFFEC7D5EAC3D2E8C3D2E8C3D2E8C3D3E9C3D2E8C3D3E9C3D2E8C3D2E8C2D2E8C2D1E7 -C3D2E8C2D1E8EAEEF6FFFFFEFFFFFEF1F3F9CAD8EBC0D1E8C1D1E8C0D1E8C2D1E8D1DDEEF9FAFB -FFFFFEFFFFFED5DFEFC2D1E8C2D2E8C1D1E8C4D3E9C3D2E8C3D2E8FFFFFEFFFFFEF2F4F9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D2E8C4D4E9C9D6EADEE6F3FFFEFDFFFFFEFFFFFECFDBEDC4D2E8C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C7D6EAF5F6FAFFFFFEFFFEFDF1F3F9CEDAEDC1D1E8C2D1E8 -C1D1E8C1D1E8C5D4E9E0E8F3FFFFFEFFFFFEFCFCFCCBD8ECBECEE6BDCFE7BDCEE6BECFE7BDCFE7 -BDCEE6BDCEE6BCCDE6BBCDE6BBCDE6BBCCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B8CAE4B8CAE4 -B8CAE4B9CBE5B8CBE5B8CBE5B8CAE4B8CAE4B9CBE4B9CBE4B8CAE4B9CBE5B9CBE5B8CBE5BACCE5 -BACCE5BBCDE6BCCDE6BDCFE7BFCFE7C1D1E8C3D3E9C6D5EAC9D7EBCDD9ECD0DCEED5DFEFD9E2F0 -EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2656595F5F6FAF5F6FAF6F7FAF7F8FB -F7F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECEE6BECFE7BECFE7BECFE7BDD0E7BECFE7BECFE7BFCFE7BECFE7BECFE7BECFE7 -E7EBF4FEFDFCFEFDFCFEFDFCFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E0EFD8E2F0D7E1F0D8E1F0D7E1F0D8E1F0DAE3F1F8F8FAFFFDFCFFFDFCFFFDFC -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F4F9F1F3F9F6F7FAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC7BFD63E457BE3DCE8FFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -6866957E78A4FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFB -FFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FDF0F5FDEFF4FDEDF3FDECF3 -FDEBF2FCE9F19285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F7D4E4F3C7DCF1C1D8EFBBD4 -EDB6D0EBB1CDEBACCAE9A8C7E8A4C5E7A1C3E69FC1E49BBFE499BEE498BDE497BCE396BCE396BC -E396BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BB -E395BBE396BBE395BBE395BBE396BBE396BBE396BCE396BCE397BCE397BCE497BCE499BDE499BE -E499BEE49ABEE49BBFE49BBFE59CC0E59DC0E69EC1E69EC1E69EC1E6A0C2F4CCDFFFFEFDFBE5EE -F1C2D9FFFFFEFFFFFEEBAFCCE7A3C4E7A3C4E7A4C5E7A3C4E7A3C4E7A4C5E7A4C5F5CFE1FFFFFE -FBE6EFE7A4C5E7A4C5E7A4C5E7A4C5E7A4C5E7A4C5E7A4C5E7A3C4E7A5C5E7A4C5E7A5C5E7A5C5 -FEF2F6FFFFFEF3C5DAFEF2F6FFFFFEF1C4DAE7A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5E8A5C5 -E8A6C6E8A6C6E8A6C6E8A6C6FFFFFEFFFFFEEFBBD4FEF3F7FFFEFDF9DBE8E7A6C6E8A6C6E8A6C6 -E8A7C7E8A7C6E8A7C6E8A7C6E8A7C7FFFFFEFFFFFEEFBBD4E8A6C6E8A6C6E8A6C6E8A5C5E8A5C5 -E8A5C5E7A4C5E7A4C5FADFEBFFFFFEFFFFFEF9DAE8E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A1C3 -E7A1C3E7A1C3F1C2D8FFFFFEFFFFFEFEF7F9E9A5C5E69DC0E59DC0E69DC0E59CC0E59CBFE59BBF -E49ABEE499BEE499BEE499BDE498BDE397BCE397BCE397BCE396BCE396BCE396BBE396BBE395BB -E395BBE395BBE395BBE395BBE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE395BBE395BBE396BBE396BBE396BCE296BCE296BCE398BDE399BE -E39BBFE49DC0E5A0C2E5A2C4E7A6C6E7ABC9E9AFCCEAB4D0ECB9D3ECBED7F7E2ECFEF8F9FFFFFE -F8E9F1EED4E5EBCFE28C7CA7EACEE2EFD7E7F9EFF5FFFFFEF9EFF5ECD7E7D8BBD6D3B4D2CFAFCE -CAA9CAC7A4C7C39FC4C19AC1BD97BFBB93BCB990BAB78EB9B58BB6B48AB6B489B5B388B5B287B4 -B287B4B287B4B287B4B186B3B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B4B287B4 -B388B5B389B5B389B5B389B5B48AB6B48AB6B58BB7B58BB7B58CB7B58DB8B68EB9B78EB9B890BA -B891BBB991BBB992BBBA93BCDBC3DBFFFEFDF0E1EDE1CBE0FFFEFDE1CCE1BD97BFBE98BFBE98C0 -BE99C0BF99C0BE99C0BF99C0BE9AC1BF99C0EADAE9FFFFFEDEC7DEFFFFFEFFFFFECDB0CFBE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0CDAECEFFFFFEFFFFFEDDC6DDBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFC8A8CAFFFFFEFFFEFDF4E9F1C09CC2BC96BEBB95BDBC94BDBA95BDBB94BD -BB95BDBA95BDEAD9E9FFFFFEFFFEFDCBACCDBC96BEBC96BEBC96BEBD97BFBB96BEDCC5DDFFFFFE -FFFFFECDAFCFBE99C0BE99C0BE99C0BE99C0BE99C0BE98C0BE9AC1C29DC3F8F1F6FFFFFEFFFFFE -C8A9CBBE98C0BD97BFBD98BFBC97BFBD97BFBD97BFC9A8CAFFFFFEFFFFFEFCF8FAC8A7C9BD95BE -BB95BDBC95BDBB95BDBB94BDBA93BCBA94BDBE98C0F2E7F1FFFFFEFFFFFED9C2DBB991BBB890BA -B88FBAB78FB9B68DB8B58DB8B68DB8B58CB7B58BB7B48AB6B48AB6B389B6B389B5B389B5B388B5 -B388B5B287B4B187B4B187B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B085B3B085B3 -B085B3B186B3B186B3B186B3B186B4B186B4B186B4B187B4B187B4B288B5B287B4B288B5B48AB6 -B58CB7B68EB9B891BBBA94BDBC98BFBE9BC2C1A0C5C5A6C9C9ACCDCEB2D1DDCAE0F0E6F0FFFFFE -FBF7FAE6DAEADACBE1857CA7D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD0C5DEC3B7D6BDB2D2 -B8ACCFB3A7CBADA2C8A99DC5A59AC3A196C19E94BF9B91BD988EBB968DBB958CB9948BB9948AB9 -938AB99289B89289B89189B89188B79189B89189B89188B79188B79188B79189B89288B79289B8 -9289B89289B89289B89289B8938AB8938AB8948AB9948BB9948BB9948BB9948CBA968DBB978DBB -988EBB988EBB988FBC9990BC9A91BD9B91BD9C92BE9C93BE9C93BF9F94BFCCC4DEFFFFFEE8E1EE -D4CBE2FFFFFED4CCE2A49AC3A399C3A49AC3A59AC3A49BC4A59BC4A49BC4A59BC4A59BC4E3DBEB -FFFEFDD1C8E0FFFFFEFFFFFEBAB0D1A59BC4A59BC4A59BC4A59BC4A49AC3A49AC3D0C7DFFFFFFE -FFFFFEB9AFD1A49AC3A499C3A399C3A399C3A298C2A298C2A197C1A198C2A198C2A198C2A197C1 -A197C1A197C1A197C1A197C1D9D1E5FFFFFEFFFFFEC8BEDAA197C1A197C1A097C2A197C1A198C2 -A298C1A299C2A298C2A89EC6B3A9CDA398C2A298C2A298C2A298C2A197C1A197C1A197C1B2A8CC -FFFFFEFFFFFEF9F7F9B1A7CCA197C1A197C19F96C0A096C19F95C09F95C09F95C0A39AC3EFE8F2 -FFFFFEFFFEFDCCC3DD9C92BE9B92BE9C91BD9A91BD9890BC998FBC988FBC988FBC978DBB968DBB -968DBB948BB9948BB9948BB9948BB9948AB9938AB8938AB8938AB89289B89289B89289B89289B8 -9389B89289B89289B89188B79188B79188B79188B79188B79188B79188B79188B79188B79189B8 -9189B89189B89189B89189B89289B8938AB8938AB8948AB9948BB9948BB9948BB9948CBA968DBB -988FBC9990BD9C94BF9F96C0A299C3A69EC6ABA3C9AFA7CCB6ADD0BCB3D4C2BAD8E9E5EFFFFFFE -FFFFFEEAE7F2DFDDECDCDAEB8581ABDDDCECE5E4F0F7F5F9FFFFFEF7F6FAE9EAF4D8DFEED5DDED -D1DAECCDD7EACAD6EAC6D3E9C4D2E8C2D0E7C0CFE6BECEE6BCCDE5BBCBE4BACBE4BACBE4B9CBE4 -B9CBE5B9CBE5B9CBE4B9CBE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4B8CBE5B8CBE5 -BACCE5BACCE5BBCCE5BBCDE6BBCDE6BCCDE5BDCEE6BDCEE6BDCEE6BECEE6BECFE7BECFE7C0CFE6 -BFD0E7C0D0E7F2F5F9FFFEFDE3E9F4F5F6FAFFFFFED6E0F0C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C5D4E9C4D3E9C4D3E9FDFCFCFFFEFDE3E9F4FFFFFEFFFFFEC4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D4E9C4D3E9FAFAFCFFFFFEDAE3F1F9FAFBFFFFFE -DAE3F1C4D3E9C4D2E8C4D2E8C4D2E8C4D2E8C4D2E8C4D2E8C3D3E9C3D1E7C4D2E8C1D1E8DDE5F2 -FFFFFEFFFEFDE9EDF5C2D1E8C1D0E7C3D2E8C1D1E8C2D1E8C3D2E8C3D2E8C5D4EAF9FAFBFFFFFE -FCFDFDC6D5EAC2D1E8C4D2E8C2D1E8C4D3E9C3D2E8FFFFFEFFFFFEF2F4F9C4D3E9C4D3E9C4D3E9 -C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9DEE6F3FFFFFEFFFEFDEEF1F8C5D4E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9EEF1F8FFFFFEFFFEFDEAEEF6C3D1E7C2D2E8C3D1E7C3D2E8C3D2E8C2D1E8 -C1D2E8C1D0E7D8E1F0FFFFFEFFFFFEFCFBFCC4D2E8BECFE7BDCFE7BECEE6BDCEE6BDCEE6BDCEE6 -BCCDE6BCCDE5BBCDE6BBCDE6BBCCE5BACCE5BACCE5B9CBE5B9CBE5B8CAE4B8CAE4B8CBE5B8CBE5 -B8CBE5B8CBE5B8CAE4B8CAE4B9CBE4B9CBE4B8CAE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCDE6 -BCCDE6BDCFE7BFCFE7C1D1E8C3D3E9C6D5EAC9D7EBCDD9ECD0DCEED5DFEFD9E2F0EAEEF6FAFBFC -FFFFFEFBFBFCF6F7FAF1F3F8F2F4F9BDB8D2656595F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FB -FAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BFCFE7BECFE7BFCFE7BECFE7BDCEE6BED0E7BECEE6BED0E7BDCEE6DEE4F2FEFDFCFEFDFC -FFFDFBFEFDFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EF -D9E2F1D7E1F0D8E1F0D8E0EFD8E1F0D8E1F0F6F7FAFFFDFCFFFDFCFFFDFCFFFEFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F8F1F3F9 -F1F3F8F4F6FAFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFC8882AB696796FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDA099BB474D82F2EEF4 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF8FA -FFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF0F5FDEFF4FDEDF3FDECF3FDEBF2FCE9F1 -9285AD9284ACFAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F7D4E4F3C7DCF1C1D8EFBBD4EDB6D1EBB1CD -EBADCBE9A8C8E8A4C4E7A1C3E69FC1E49BBFE49ABEE499BDE497BCE397BCE396BCE396BBE396BB -E395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BB -E395BBE395BBE396BBE396BBE396BCE396BCE397BCE397BCE498BDE499BDE499BEE49ABEE49ABE -E59BBFE59CBFE59CC0E59DC0E69EC1E69FC2E69FC2E59FC2F5CDE0FFFFFEFBE7EFE8A2C3FDF3F7 -FFFFFEF9DAE8E6A5C5E8A4C5E7A6C6E8A4C5E8A6C6E8A6C6E8A6C6F6D0E1FFFFFEFBE7EFE8A6C6 -E8A5C5E8A6C6E8A6C6E8A5C5E8A5C5E8A4C5E8A6C6E8A4C5E8A5C5E8A5C5EDB5D0FFFFFEFFFFFE -ECB0CDF9DBE8FFFFFEFAE1ECE8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6 -E8A6C6E8A6C6FFFEFDFFFFFEEFBBD4F3C4DAFFFFFEFFFFFEECB0CDE8A7C7E8A7C7E8A7C6E9A8C7 -E8A7C7E8A7C7E8A7C7FFFEFDFFFFFEEFBBD4E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6 -F2C4DAFFFFFEFFFEFDFCE6EFE6A4C5E7A4C5E6A5C5E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E6A1C3 -E7A0C2F3C8DCFFFFFEFFFFFEF8D6E6E59EC1E69DC0E59DC0E69DC0E59CBFE59CBFE49BBFE49ABE -E499BEE499BEE499BDE397BCE397BCE397BCE396BCE396BCE396BBE396BBE395BBE395BBE395BB -E395BBE395BBE395BBE395BBE394BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE395BBE395BBE396BBE396BBE396BCE396BCE296BCE398BDE399BEE49BBFE49DC0 -E5A0C2E5A3C4E7A7C7E8ABC9E9AFCCEAB4D0ECB9D3ECBED7F7E2ECFEF8F9FFFFFEF8E9F1EED4E5 -EBCFE28C7CA7EACEE2EFD7E7F9EFF5FFFFFEF9EFF5ECD7E7D8BBD6D3B4D2CFAFCECAA9CAC8A4C7 -C49FC4C19BC2BD97BFBB93BCB990BAB78EB9B58BB7B48AB6B489B5B388B5B287B4B287B4B287B4 -B287B4B186B3B287B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3B186B4B288B5B388B5 -B388B5B389B5B48AB6B48AB6B48AB6B58BB7B58CB7B68DB8B78EB9B88FBAB890BAB891BBB992BB -B992BCBB93BCDCC4DCFFFFFEEFE0ECD0B3D1FFFEFDF9EFF5BE98C0BE98C0BE9AC1BF9AC1BF9AC1 -BF9BC1BE9BC2BF9BC1BE9AC1FDF8FAFFFFFECBABCCFFFFFEFFFFFECEB1D0BF9BC1BF9BC1BF9BC1 -BF9BC1BF9BC1BF9AC1CEB0CFFFFFFEFFFFFEDDC7DEBE99C0BE99C0BE98C0BD97BFBD97BFBD97BF -BD97BFF0E1EDFFFFFEFFFFFEC8A7C9BC96BEBC96BEBD96BEBC96BEBB95BEBC96BEBB95BEBC96BE -C09CC2F4E8F1DCC4DCC09CC2BD97BFBB95BEBD96BEBC97BFBD98BFDDC6DDFFFFFEFFFFFECDAECE -BE98C0BE99C0BE99C0BE99C0BE98C0BE99C0BE9AC1BE99C0D5BAD6FFFFFEFFFEFDDFC7DEBE99C0 -BD99C0BE99C0BE98C0BE98C0BD97BFF8F1F6FFFFFEFFFFFECCADCEBC96BEBB95BEBC96BEBB95BE -BD96BEBA95BDBB94BDBA94BDBB94BDBE99C0F8EFF5FFFFFEFFFFFEC09CC2B890BAB890BAB78FB9 -B78EB9B68DB8B58DB8B48CB8B58BB7B48AB6B48AB6B48AB6B389B5B388B5B388B5B388B5B287B4 -B287B4B287B4B186B4B186B3B085B3B186B3B085B3B186B3B186B4B085B3B084B2B085B3B186B3 -B186B3B186B3B287B4B186B4B186B4B187B4B288B5B288B5B288B5B389B5B48AB6B58CB7B68EB9 -B891BBBA95BDBD99C0BF9CC2C2A1C5C5A6C9C9ACCDCEB2D1DDCAE0F0E6F0FFFEFDFBF7FAE6DAEA -DACBE1857CA7D9CBE1D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD0C5DEC3B8D6BDB2D2B8ACCFB2A7CB -ADA2C8A99EC6A59AC3A197C19E94BF9B91BD988FBC968DBB958CB9948BB9948AB9938AB99289B8 -9289B89289B89189B89189B89189B89188B79188B79188B79289B89189B89188B79188B79288B7 -9289B89289B8938AB8938AB8948AB9948BB9948CBA948BB9958CBA978DBB978DBB988EBB988FBC -998FBC9A90BD9B91BD9C92BE9C93BE9D94BF9E94BF9F95C0CDC4DEFFFEFDE8E1EEBEB3D3FFFEFD -F5F0F6A49AC3A49BC4A59BC4A59CC5A59BC4A59BC4A59CC4A59CC5A69CC4F9F7F9FFFFFEB7ACCF -FFFEFDFFFFFEBBB1D2A59CC4A59CC4A59CC4A59CC4A59BC4A59BC4D0C7E0FFFFFEFFFFFEB9AFD1 -A49AC3A49AC3A49AC3A39AC3A299C2A299C2A298C2A298C2A298C2A198C2A198C2A198C2A198C2 -A198C2A198C2FAF8FAFFFEFDFFFFFEA198C2A198C2A198C2A298C2A298C2A298C2A298C2A298C1 -A298C1A399C3A298C1A398C2A398C2A299C2A298C2A298C2A299C2A298C2F4EFF5FFFFFEFFFEFD -B8ADCFA198C2A198C2A198C2A197C1A196C1A196C1A096C1A096C09F95C0A59AC3F4EFF5FFFFFE -FFFFFEA89EC69C93BE9991BD9C91BD9A91BD9990BD988FBC988DBB978EBB978DBB978DBB958CBA -948BB9948BB9948AB9948AB9938AB8938AB8938AB89289B89289B89289B89289B89289B89289B8 -9289B89188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B89189B8 -9189B89189B89289B8938AB8938AB8938AB9948BB9948BB9948BB9948CBA968DBB988FBC9A91BD -9C94BF9F96C1A39AC3A79EC6ABA3C9B0A7CCB6ADD0BCB4D4C3BBD8E9E5EFFFFFFEFFFFFEEAE7F2 -DFDDECDCDBEB8581ABDDDCECE5E4F0F7F5F9FFFFFEF7F6FAE9EAF4D8DFEED5DDEDD1DAECCED7EA -CBD6EAC7D4E9C4D2E8C2D1E7C0CFE6BECEE6BCCDE5BBCBE4BACBE4BACBE4B9CBE4B9CBE5B9CBE5 -B9CBE4B9CBE4B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CAE4B8CAE4B8CBE5B8CBE5B9CBE5BACCE5 -BBCCE5BBCDE6BBCDE6BCCDE5BDCEE6BDCEE6BDCEE6BECFE7BFCFE7BFCFE7BFCFE6C0D0E7C1CFE7 -F1F4F9FFFFFEE2E7F3E6EAF4FFFFFEEAEEF6C4D3E9C4D3E9C4D2E8C4D3E9C5D4E9C5D4E9C5D4E9 -C6D4E9D0DCEDFFFEFDFCFCFCD4DFEFFFFFFEFFFFFEC5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C5D4E9C4D2E8D0DCEDFFFEFDFFFFFECDD9ECECEFF7FFFFFEEFF2F8C4D3E9 -C4D3E9C5D4E9C3D3E9C4D3E9C4D3E9C4D2E8C4D1E8C4D3E9C2D1E7C8D6EAFCFCFCFFFFFEFAF9FB -C7D5EAC3D1E7C4D2E8C3D2E8C3D2E8C4D2E8C2D1E7C3D2E8C3D2E8D2DDEEF5F6FADAE3F1C3D2E8 -C3D2E8C3D2E8C4D2E8C4D2E8C3D2E8FFFFFEFFFFFEF2F4F9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C6D4E9C5D4E9C6D3E9C6D5EAF9F9FBFFFFFEFFFFFEC5D4E9C5D4E9C5D4E9C4D3E9C5D4E9C4D3E9 -DBE3F1FFFFFEFFFFFEF2F4F9C4D2E8C3D3E9C3D1E7C3D2E8C4D2E8C3D2E8C2D1E8C2D1E8C0D0E7 -C2D0E7DCE4F1FFFFFEFFFFFEE9EDF6BFCFE6BFCFE7BECFE7BDCEE6BDCEE6BCCDE6BDCEE6BCCDE5 -BBCDE6BBCDE6BBCCE5BACCE5BACCE5B9CBE5B8CBE5B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5 -B8CBE5B8CAE4B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7 -BFCFE7C1D1E8C4D3E9C6D5EAC9D7EBCDD9ECD0DCEED5DFEFD9E2F0EAEEF6FAFBFCFFFFFEFBFBFC -F6F7FAF1F3F8F2F4F9BDB8D2656595F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAFAFCFAFAFC -FAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7 -BECFE7BECFE7BECFE7BED0E7BECEE6BECFE7BECEE6D7E1F0FEFDFCFEFDFCFEFDFCFDFEFCFEFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E0EFD9E2F1 -D8E1F0D8E2F0D8E1F0F1F3F8FFFDFCFFFEFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F2F8F3F5F9FDFDFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFEFDF2EEF4515588A099BBFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEE3DCE9474E82BAB1CBFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9 -FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF1F6FDEFF4FDEDF3FDECF3FDEBF2FCE9F19285AD9284AC -FAE4EEFDEEF4FFFFFEFFFFFEFCEBF2F7D4E4F3C7DCF1C2D8EFBBD4EEB7D1EBB1CDEBADCBEAA9C8 -E8A4C5E7A2C3E69FC1E59CBFE49ABEE499BDE497BCE497BCE396BCE396BBE396BBE395BBE395BB -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E395BBE395BBE396BBE396BBE397BCE397BCE498BDE499BDE499BEE49ABEE49BBFE59CBFE59DC0 -E59DC0E69EC1E69EC1E69FC2E7A0C2E6A2C3F5CDE0FFFFFEFBE5EEE6A4C5F1C2D9FFFFFEFFFFFE -EBAFCCE8A7C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6F6D0E1FFFFFEFBE7EFE8A6C6E8A6C6E8A6C6 -E8A6C6E8A6C6E8A6C6E8A7C6E8A5C5E8A6C6E8A6C6E8A6C6F7D5E5FFFFFEFDECF3E9A5C6F1C0D7 -FFFFFEFFFEFDEBACCAE8A6C6E8A6C6E8A6C6E8A6C6E8A7C6E8A7C6E8A7C6E8A7C7E8A7C7E8A7C6 -FFFFFEFFFEFDF0BCD5E9A8C7FEF2F6FFFEFDF9DCE9E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C6 -E9A7C7FFFEFDFFFFFEEFBBD4E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E9A5C6FEF3F7FFFFFE -FFFFFEEAB0CDE8A5C5E6A4C5E8A4C4E7A4C5E7A4C5E7A3C4E7A3C4E7A3C4E7A1C3E7A2C3E7A0C2 -FEF2F6FFFFFEFFFFFEEAA9C8E69FC1E59CC0E59DC0E69DC0E59CBFE49BBFE49ABEE499BEE499BE -E499BDE498BDE397BCE397BCE396BCE396BCE396BBE396BBE395BBE394BAE394BAE394BAE394BA -E395BBE394BAE394BAE393BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BB -E395BBE395BBE396BBE396BBE396BCE396BCE297BCE398BDE399BEE49BBFE49DC0E5A0C2E6A4C5 -E7A8C7E8ABC9E9AFCCEAB5D0ECB9D3EDC0D7F7E2ECFEF8F9FFFFFEF8E9F1EED4E5EBCFE28C7CA7 -EACEE2EFD7E7F9EFF5FFFFFEF9EFF5ECD8E8D9BBD6D3B5D2CFAFCECBA9CBC8A4C7C4A0C4C19BC2 -BD97BFBB93BCB990BAB88EB9B68CB7B48AB6B489B5B488B5B388B5B287B4B287B4B287B4B286B3 -B287B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B4B187B4B287B4B388B5B389B5 -B389B6B48AB6B48AB6B58BB7B58DB8B68DB8B78EB9B88FBAB890BAB991BBB992BBB992BCBA93BC -DCC4DCFFFFFEEFE0EDBC97BFFDF8FAFFFEFDC5A4C7BE9AC1BF9AC1BF9BC2BF9BC1BF9BC1C09CC2 -BF9BC2CFB1D0FFFFFEF8F1F6C09CC2FFFFFEFFFFFECEB1D0BF9BC2BF9BC2BF9BC2BF9BC1BF9BC1 -BF9AC1CEB0CFFFFFFEFFFFFEDEC7DEBE99C0BE99C0BE99C0BE98C0BD97BFBE98BFC9A9CBFFFFFE -FFFFFEE4D0E4BD97BFBC96BEBC96BEBC96BEBC95BDBD96BEBB95BEBD95BEBC96BEBC96BEBC96BE -BD97BFBB96BEBC96BEBD97BFBD97BFBE98C0BD97BFDDC6DDFFFFFEFFFFFECDAECEBE98C0BE98C0 -BE99C0BE99C0BE99C0BF99C0BE9AC1C09AC1C5A4C7FFFFFEFFFFFEE2CEE2BF9AC1C09BC1BE99C0 -BE99C0BD99C0D6BBD6FFFFFEFFFFFEE5D2E5BE98BFBD97BFBD97BFBC96BEBC97BFBC95BDBC96BE -BB95BEBC94BDBA94BDBA94BDD3B7D4FFFEFDFFFEFDE4D0E3B891BBB890BAB88FB9B78FB9B68DB8 -B58CB7B58CB7B58CB7B58BB7B48AB6B48AB6B389B5B388B5B388B5B388B5B287B4B186B4B186B3 -B186B3B186B3B085B3B186B3B186B3B186B4B187B4B186B3B085B3B185B3B186B3B186B3B186B3 -B186B4B186B4B187B4B288B5B288B5B288B5B288B5B389B6B48AB6B48BB7B68FB9B891BBBB95BD -BD99C0BF9DC3C2A1C5C5A6C9C9ACCDCEB3D1DDCAE0F0E6F0FFFFFEFBF7FAE6DAEADACBE1857CA7 -D9CCE2D9CBE1E9DFEDFFFFFEFFFFFEE8DFECD1C6DEC3B8D6BDB3D3B8ACCFB2A7CBADA3C9AA9EC6 -A59AC3A197C19E94BF9B91BD988FBC968DBB958CB9948BB9948AB9948AB99289B89289B89289B8 -9189B89189B89189B89188B79289B89188B79289B89289B89188B79287B79188B79189B89189B8 -9289B89289B8938AB8948AB9948BB9948BB9958CBA978DBB978DBB988EBB988FBC9990BC9A91BD -9B92BE9C92BE9D94BF9D94BF9F95C09E95C0CEC5DEFFFFFEE8E1EEA299C2FAF8FAFFFFFEAEA5CA -A59BC4A59BC4A69CC4A69DC5A79CC5A69DC5A79DC5BCB1D2FFFFFEF5F0F6A79DC5FFFFFEFFFEFD -BCB2D3A79DC5A69DC5A69DC5A69DC5A59CC4A59CC4D1C8E0FFFFFEFFFFFEB9AFD1A49AC3A49AC3 -A39AC3A299C3A199C2A299C2A298C2A298C2A298C2A298C2A298C2A298C2A298C2A398C2A298C2 -FFFFFEFFFEFDFFFEFDA298C2A298C2A298C2A298C2A398C2A298C2A298C2A299C2A298C2A198C2 -A398C2A298C2A298C2A299C2A299C2A299C2A197C1C4BAD7FFFFFEFFFFFEDBD3E6A398C2A198C2 -A298C2A198C2A199C2A197C1A197C1A196C1A096C19F95C09F95C0C1B7D6FFFFFEFFFFFED8CFE4 -9C93BE9C91BD9B91BD9A91BD9A8FBC988FBC988FBC988EBB978DBB978DBB968CBA958CB9958CB9 -948BB9948BB9948AB9938AB8938AB89289B89289B89289B89289B89289B89188B79288B79188B7 -9188B79188B79188B79188B79188B79188B79188B79188B79188B79189B89189B89189B89189B8 -9289B8938AB8938AB8948AB9948BB9948BB9948BB9958DBA978EBB978FBC9A91BD9C94BFA097C1 -A39AC3A89FC7ABA3C9B1A8CCB6AED0BCB4D4C3BBD9E9E5EFFFFFFEFFFFFEEAE7F2DFDDECDCDBEB -8581ABDDDCECE5E4F0F7F5F9FFFFFEF7F6FAE9EAF4D8DFEED5DDEDD1DAECCED7EACBD6EAC8D4E9 -C5D3E8C3D1E7C0CFE6BECEE6BCCDE5BCCCE5BBCBE4BACBE4B9CBE4B9CBE5B9CBE5B9CBE4B9CBE4 -B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4B9CBE5B8CBE5B8CBE5BACCE5BBCCE5BBCDE6 -BBCCE5BBCDE6BCCDE6BDCEE6BDCEE6BECFE7BFCFE7BFCFE7C0D0E7C1CFE7C1D0E7F1F3F9FFFFFE -E2E7F3CFDBEDFFFFFEF8F8FBC5D4E9C4D3E9C5D4E9C5D4EAC5D4E9C6D4E9C6D4E9C5D4E9E5EAF4 -FFFFFEECF0F7D5DEEEFFFFFEFFFEFDC4D3E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9 -C5D4E9C5D4E9C5D4E9E7ECF5FFFFFEF6F8FBC5D3E8D8E1F0FFFFFEFFFEFDC9D7EBC4D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D2E8C4D3E9C4D3E9C4D3E9DDE4F1FFFEFDFFFFFEDAE4F1C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C4D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C3D1E7C4D2E8 -C2D2E8C4D3E9C4D3E9FFFFFEFFFFFEF2F4F9C4D3E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9 -C5D4EAC5D3E8ECEFF7FFFEFDFFFFFECAD7EBC4D3E9C5D4EAC5D4E9C5D4E9C5D4E9F9FAFBFFFFFE -FFFFFECCD9ECC4D3E9C4D3E9C4D2E8C2D1E8C3D1E7C3D3E9C4D2E8C2D1E8C2D1E8C1D0E7C1D1E8 -F8F9FBFFFEFDFFFFFEC7D5EABECEE6BED0E7BECEE6BDCEE6BECEE6BBCDE6BCCDE5BBCCE5BBCDE6 -BBCCE5BACCE5B9CBE5B9CBE5B8CBE5B8CAE4B8CAE4B8CBE5B8CBE5B8CBE5B8CBE5B8CBE5B8CAE4 -B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BBCDE6BCCDE6BECFE7C0D0E7C1D1E8 -C4D3E9C6D5EACAD7EBCEDAECD1DDEED5DFEFD9E2F0EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F8 -F2F4F9BDB8D2656595F5F6FAF5F6FAF6F7FAF7F8FBF8F8FBF8F8FBFAFAFCFAFAFCFAFBFCFAFBFC -FBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BECFE7BECFE7BFCFE7BECFE7 -BECFE7BECEE6BED0E7BECEE6CAD7EBFFFEFCFEFCFBFEFDFCFEFEFCFFFDFBFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D7E2F0D8E1F0D8E1F0D8E2F0D8E0EF -E8ECF5FFFEFCFFFDFCFFFDFCFFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F4F9F1F3F9F1F3F9FBFBFCFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEC8BFD53D457BD4CDE0FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFDFFFEFD6966967E78A4FFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FEF6F8FEF6F8 -FEF4F7FEF3F7FEF2F6FEF1F6FDEFF4FDEDF3FDECF3FDEBF2FCE9F19285AD9284ACFBE5EEFDEEF4 -FFFFFEFFFFFEFCEBF2F7D4E4F3C7DCF1C2D8F0BCD5EEB7D1ECB2CEEBADCBEAA9C8E8A5C5E7A2C3 -E69FC1E59CC0E49ABEE498BDE497BCE497BCE396BCE396BCE396BBE395BBE395BBE395BBE394BA -E394BAE394BAE394BAE394BAE395BBE395BBE394BAE394BAE394BAE394BAE394BAE395BBE395BB -E396BBE396BBE396BCE396BCE497BCE498BDE499BDE499BEE49ABEE59BBFE59CC0E59DC0E69EC1 -E69FC1E69FC2E69FC2E7A1C3F5CDE0FFFFFEFBE6EFE7A3C4EAAAC9FFF9FAFFFEFDF9DBE8E8A5C5 -E8A6C6E8A6C6E8A7C6E8A5C5E8A7C6F6D0E1FFFFFEFBE7EFE8A7C6E8A7C6E8A7C6E8A6C6E8A6C6 -E8A6C6E8A6C6E8A6C6E8A7C6E8A6C6E9A6C6FFF9FAFFFFFEF4CBDEE8A6C6E8A7C6FFF9FAFFFFFE -F3C5DBE8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C7E8A7C7FFFFFEFFFFFE -F0BCD5E8A7C7F6D0E1FFFFFEFFFFFEECB1CDE9A8C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7FFFFFE -FFFFFEEFBBD4E8A7C7E8A7C7E8A7C7E8A7C6E8A7C6E8A7C6EEB5D0FFFFFEFFFFFEFBE0ECE8A6C6 -E8A5C5E9A5C6E7A5C5E7A4C5E7A3C4E7A3C4E7A4C5E7A3C4E6A2C4E7A1C3E7A1C3F1C2D8FFFEFD -FFFEFDF6D1E2E69EC1E69DC0E59DC0E59CBFE59CBFE49BBFE49ABEE499BDE498BDE498BDE497BC -E396BCE396BCE396BBE396BBE396BBE395BBE395BBE394BAE394BAE394BAE394BAE395BBE394BA -E394BAE393BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BB -E396BBE396BCE396BCE396BCE297BCE398BDE399BEE49BBFE59EC1E6A1C3E6A4C5E8A7C7E8ABC9 -E9B0CDEAB5D1ECBAD4EEC0D8F7E2ECFEF8F9FFFFFEF9EAF2EED4E5ECCFE28C7CA7EACFE2EFD7E7 -F9EFF5FFFFFEF9EFF5ECD8E8D9BCD7D3B5D3D0AFCFCBAACBC8A5C8C4A0C5C19CC2BE97BFBC94BD -BA91BAB88EB9B68CB7B48AB6B489B5B488B5B388B5B287B4B287B4B287B4B287B4B287B4B186B4 -B186B4B186B4B186B4B186B4B187B4B186B4B186B4B287B4B287B4B387B4B389B5B389B6B48AB6 -B48AB6B58BB7B58DB8B68DB8B78EB9B78EB9B890BAB991BBB992BBBA93BCBA93BCDCC4DCFFFFFE -EFE0ECBD97BFEAD9E9FFFFFEDAC1DABF9AC1BF9AC1BF9BC1BE9BC2BF9BC2BF9CC2C09CC2E3CFE3 -FFFEFDE7D5E6C09CC2FFFFFEFFFFFECFB1D0C09CC2C09CC2C09CC2BF9BC1BF9BC1BF9BC1CEB0CF -FFFFFEFFFFFEDEC7DEBE99C0BE99C0BE99C0BE98C0BD97BFBD97BFE1CCE1FFFFFEFFFFFED0B3D1 -BB95BDBC96BEBC96BEBC96BEBC96BEBB95BEBD96BEBC96BEBB95BEBC96BEBD96BEBB95BDBC96BE -BB96BEBD97BFBD97BFBC97BFBD97BFDDC6DDFFFFFEFFFFFECDAECEBE98C0BE99C0BE9AC1BE9AC1 -BE9AC1BF9AC1BF9AC1BE99C1C39FC4FFFEFDFFFFFEEBDAE9BE9AC1BF98BFBE99C1BE99C0BF9AC1 -EBD9E9FFFFFEFFFFFECAA8CABD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBD96BEBC95BDBB95BD -BA95BDBB93BCB993BCF8EFF5FFFFFEFFFFFEBC96BEB890BAB88FBAB78EB9B68DB8B58DB8B58DB8 -B58BB7B58BB7B48AB6B389B6B389B5B388B5B288B5B287B4B287B4B186B4B186B3B186B3B186B3 -B085B3B186B3B186B3B186B4B186B4B186B3B186B3B186B3B186B3B186B3B186B3B186B4B186B4 -B187B4B288B5B288B5B288B5B288B5B389B6B48BB7B58CB8B78FB9B992BCBA95BDBD99C0BF9DC3 -C3A2C6C6A7C9CAADCDCEB3D2DDCAE0F0E6F0FFFFFEFBF7FAE7DAEADBCCE1857CA7DACCE2D9CBE1 -E9DFEDFFFFFEFFFFFEE8DFECD1C6DEC3B8D6BDB2D2B8ACCFB3A7CBAEA3C9AA9FC6A59BC4A298C1 -9E94BF9B91BD998FBC978DBB958CB9948BB9948AB9948AB9938AB99289B89289B89189B89189B8 -9189B89189B89189B89189B89289B89289B89188B79188B79188B79189B89189B89289B89289B8 -938AB8948AB9948AB9948AB9948CBA958DBA968DBB978EBB988FBC9890BC9A91BD9B92BE9C92BE -9C93BF9D94BF9F95C09F95C0CDC4DEFFFFFEE7E0EDA299C2E2DAEAFFFFFECBC1DCA59CC4A59BC4 -A79DC5A79DC5A69DC5A79DC5A79DC5D7CFE4FFFEFDDED5E8A89EC6FFFEFDFFFFFEBBB2D2A69DC5 -A69DC5A69DC5A69DC5A69DC5A59CC4D1C8E0FFFFFEFFFFFEB9B0D1A59AC3A49AC3A49AC3A39AC3 -A299C2A299C3A399C3A298C2A298C2A298C2A198C2A198C2A198C2A198C2A198C2DFD9EAFFFFFE -FFFFFEB8ADD0A198C2A298C2A299C2A198C2A299C3A399C3A299C2A299C2A298C2A299C3A299C2 -A399C3A199C3A398C2A299C3A399C3E1DAEBFFFFFEFFFFFEB3A8CCA197C1A399C3A298C2A399C3 -A197C1A198C2A197C1A197C1A197C1A096C09E95C09F95C0F4F0F6FFFFFEFFFFFEA298C19C92BE -9B92BE9B91BD9990BD988FBC988EBB978EBB978DBB968DBB958CBA948BB9948BB9948AB9938AB9 -938AB89289B89289B89189B89189B89188B79188B79188B79188B79288B79188B79188B79188B7 -9188B79188B79188B79188B79188B79188B79188B79189B89189B89189B89189B89289B8938AB8 -938AB8948AB9948BB9948BB9948CBA958DBA978EBB978FBC9A91BD9C94C0A097C2A49BC4A89FC7 -ACA3C9B2A9CDB8AFD1BDB5D5C4BCD9E9E5EFFFFFFEFFFFFEEAE7F2E0DDECDCDBEB8682ABDEDCEC -E5E4F0F7F5F9FFFFFEF7F6FAE9EAF4D9DFEFD6DDEDD1DAECCED8EBCBD6EAC8D4E9C5D3E8C3D1E7 -C1CFE7BECEE6BDCDE5BCCDE5BBCBE4BACAE4B9CBE4B9CBE5B9CBE5B9CBE4B9CBE4B9CBE4B8CBE5 -B8CBE5B9CBE5B9CBE5B9CBE5B8CAE4B9CBE5B9CBE5B9CBE5BACCE5BBCCE5BBCDE6BBCCE5BBCDE6 -BCCDE6BDCEE6BECEE6BECFE7BECFE7BECFE7C0D0E7C1D0E7C1D1E8F1F3F9FFFFFEE2E8F3C4D3E9 -FCFCFCFFFFFECFDBEDC5D4E9C6D4E9C5D4E9C5D4E9C6D4E9C6D5EAC6D5EAF6F7FAFFFFFEDBE3F1 -D5DFEFFFFFFEFFFFFEC6D4E9C6D4E9C6D4E9C6D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9 -C5D4E9FBFDFDFFFFFEDEE6F3C6D4E9C5D4E9FCFCFCFFFFFEDAE3F1C5D3E8C4D3E9C4D3E9C4D3E9 -C4D4E9C5D4E9C5D4E9C4D3E9C4D3E9F5F6FAFFFEFDFFFFFEC6D4E9C3D3E9C3D2E8C4D2E8C2D1E8 -C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C3D2E8C2D2E8C3D1E7C3D3E9C2D1E7C4D3E9C4D3E9 -C4D3E9FFFFFEFFFFFEF2F4F9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C7D5EA -E8ECF5FFFFFEFFFFFED1DCEDC6D4E9C5D4EAC5D3E8C4D3E9D1DCEDFFFFFEFFFFFEEEF1F8C5D4E9 -C4D2E8C3D3E9C4D3E9C3D2E8C3D2E8C3D2E8C3D2E8C2D1E8C2D1E8C1D2E8C1CFE7D8E1F0FFFFFE -FFFFFEE5EAF4BECEE6BDCEE6BFCFE7BDCEE6BCCEE6BCCDE6BBCDE6BBCCE5BBCDE6BBCCE5BACCE5 -B9CBE5B9CBE5B8CBE5B8CBE5B8CAE4B8CBE5B8CBE5B9CBE5B8CBE5B8CBE5B8CAE4B9CBE4B9CBE4 -B9CBE5B9CBE5B9CBE5BACCE5BACCE5BBCCE5BBCDE6BDCEE6BECFE7C0D0E7C1D1E8C4D3E9C7D5EA -CAD7EBCEDAECD1DDEED6DFEFDAE3F1EAEEF6FAFBFCFFFFFEFBFCFCF6F7FAF1F3F9F3F4F9BDB8D2 -656595F5F6FAF5F6FAF6F7FAF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BFCFE7BDD0E7 -BECFE7C6D5EAFBFBFBFDFCFBFDFEFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E1F0D8E0EFE3EAF4FFFDFBFFFDFC -FFFEFBFFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F2F5F9F1F3F8F9FAFBFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFE -FFFFFE938CB25E5E8FF2EEF4FFFFFEFFFFFEFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFD938CB25E5E8FF2EEF4FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7 -FEF2F6FEF1F6FDEFF4FDEEF4FDECF3FDEBF2FCE9F19285AD9284ACFBE6EFFEEFF4FFFFFEFFFFFE -FCECF3F7D5E5F3C8DCF1C2D8F0BCD5EEB7D2ECB2CEEBAECBEAAAC9E8A6C6E7A2C3E7A0C2E59DC0 -E49ABEE499BDE497BCE497BCE396BCE396BCE396BBE395BBE395BBE395BBE394BAE394BAE394BA -E394BAE394BAE395BBE395BBE394BAE394BAE394BAE394BAE395BBE395BBE395BBE396BBE396BB -E396BCE396BCE497BCE498BDE499BDE499BEE49ABEE59BBFE59CBFE59DC0E69EC1E69FC1E69FC1 -E5A0C2E7A1C3F5CDE0FFFFFEFBE6EFE7A3C4E8A4C5F6CFE1FFFFFEFFFFFEECB0CDE7A6C6E8A6C6 -E8A7C6E8A7C6E8A7C6F6D0E1FFFFFEFBE7EFE8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6 -E8A7C6E8A7C6E8A6C6F0C0D7FFFFFEFFFFFEECB1CDE9A7C7E7A6C6F9DBE8FFFFFEFDECF3E8A7C6 -E9A8C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E9A8C7FFFFFEFFFFFEEFBCD4E9A8C7 -EBAECBFFF8FAFFFEFDF9DBE9E8A7C7E9A8C7E9A8C7E8A7C7E9A8C8E9A8C7FFFFFEFFFFFEF0BCD5 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C6E8A7C6F6D0E1FFFFFEFFFFFEF1C0D7E8A6C6E8A5C5E8A5C5 -E8A4C5E7A4C5E6A4C5E7A3C4E7A3C4E7A3C4E8A4C4E7A0C2E7A2C3E8A6C6FFFFFEFFFFFEFDEAF1 -E69FC1E59DC0E69DC0E59CC0E59BBFE59BBFE499BEE499BDE498BDE498BDE497BCE396BCE397BC -E396BCE396BBE396BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE394BAE394BAE394BAE395BBE395BBE396BBE396BCE396BC -E396BCE396BCE297BCE398BDE39ABEE59CC0E59FC2E5A1C3E6A4C5E7A8C7E8ACCAE9B0CDEAB5D1 -ECBBD4EEC0D8F7E2ECFEF8F9FFFFFEF9EAF2EED4E5ECCFE28C7DA8EACFE2F0D9E8F9F0F6FFFFFE -F9EFF5ECD7E7D9BCD7D4B5D3D0B0CFCBAACBC8A5C8C4A0C5C29CC2BE98BFBC94BDBA91BBB88FB9 -B68CB7B58BB6B489B5B488B5B388B5B388B5B287B4B287B4B287B4B287B4B186B4B186B4B186B4 -B186B4B287B4B186B4B186B4B287B4B287B4B388B5B388B5B389B5B389B5B48AB6B48AB6B58BB7 -B58DB8B68DB8B78EB9B78EB9B890BAB991BBB991BBBA93BCBA93BCDCC4DCFFFFFEF0E1EDBD97BF -D5BAD6FFFFFEEBDAE9BE99C1BF9BC1BF9BC1BF9BC2C09CC2C09CC2C09BC1F4EAF2FFFFFED3B7D4 -C09CC2FFFFFEFFFFFECFB1D0C09BC1C09CC2BF9BC2BF9BC2BF9BC2BF9BC2CEB0CFFFFFFEFFFFFE -DEC7DEBE9AC1BE99C0BE9AC1BE98C0BD97BFBE98C0F4E9F2FFFFFEFFFFFEBD98BFBD97BFBD97BF -BC96BEBB95BDBC96BEBC96BEBC95BDBC95BDBC96BEBC96BEBC95BDBC96BEBC95BDBD97BFBC97BF -BD97BFBE98C0BD97BFDDC6DDFFFFFEFFFEFDCEAFCFBE99C0BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BF9AC1BE9AC1CEB0CFFFFFFEFFFFFEDEC7DEBE9AC1BE9AC1BE99C0BF99C0BE99C0FFFEFDFFFFFE -F4E9F1BD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBD96BEBB95BDBB95BDBA95BDBA94BDBA94BD -BB93BCE0CAE0FFFFFEFFFFFECDAECEB991BBB68DB8B78EB9B68DB8B58DB8B68CB7B58CB7B48AB6 -B48AB6B389B6B389B5B388B5B288B5B287B4B287B4B186B4B186B3B186B3B186B3B085B3B186B3 -B186B4B186B4B186B4B186B4B186B3B186B3B186B3B186B3B186B4B186B4B186B4B187B4B288B5 -B288B5B288B5B288B5B48AB6B48BB7B58DB8B78FB9B992BCBA95BEBD99C0BF9DC3C4A3C7C6A8CA -CBAECECEB3D2DDCAE0F0E6F0FFFFFEFBF7FAE7DAEADBCCE1857CA7DACCE2D9CCE2EAE0EDFFFFFE -FFFFFEE8DFECD1C6DEC4B9D7BEB3D3B8ADCFB3A8CCAEA3C9AA9FC6A59BC4A298C19E94BF9C92BE -9990BC978EBB958CB9948BB9948AB9948AB9938AB99289B89289B89289B89189B89189B89189B8 -9189B89289B89289B89289B89189B89189B89287B79189B89189B89289B89289B8938AB8938AB9 -948AB9948AB9948CBA958DBA968DBB978EBB988FBC9990BC9A91BD9B92BE9C92BE9C93BF9D94BF -9F95C09F96C0CEC6DFFFFEFDE8E1EEA399C3C4BAD8FFFFFEE2DBEBA59BC4A69DC5A59CC5A69CC4 -A69DC5A79DC5A89EC6F1EBF3FFFFFEC1B8D6A89EC6FFFFFEFFFEFDBCB2D3A79DC5A79DC5A69DC5 -A69DC5A69DC5A69DC5D1C8E0FFFFFEFFFFFEBAB0D1A59BC4A49AC3A49AC3A49AC3A49AC3A39AC3 -A299C2A299C2A299C2A298C2A298C2A298C2A298C2A298C2A298C2BEB4D4FFFFFEFFFEFDFBF8FA -B3A9CDA199C3A299C2A299C2A299C2A299C2A299C3A299C2A49AC3A39AC3A39AC3A39AC3A499C3 -A29AC3A399C3A39AC3FFFFFEFFFFFEEFE9F2A299C2A399C3A199C2A399C3A198C2A198C2A197C1 -A197C1A197C1A196C1A096C19F95C09E95C0D3CAE1FFFEFDFFFFFEB9AFD19B92BE9B91BD9A90BD -9890BC998FBC988FBC978DBB968DBB958DBA958CBA948BB9948AB9948AB9938AB9938AB89289B8 -9289B89189B89189B89188B79188B79188B79188B79188B79188B79188B79188B79188B79188B7 -9188B79189B89188B79189B89189B89189B89189B89189B89189B89289B8938AB8948AB9948BB9 -948BB9948BB9948CBA968DBB978EBB9890BC9A92BE9D95C0A098C2A49BC4A89FC7ADA4CAB2A9CD -B8AFD1BEB5D5C4BCD9E9E5EFFFFFFEFFFFFEEBE7F2E0DEEDDDDBEB8682ABDEDDEDE6E5F1F7F5F9 -FFFFFEF7F6FAE9EAF4D9DFEFD6DDEDD2DBECCED8EBCBD7EAC8D5E9C5D3E8C3D1E7C1CFE7BFCFE6 -BDCEE6BCCDE5BBCBE4BACBE4B9CBE4B9CBE5B9CBE5B9CBE5B9CBE4B9CBE4B9CBE5B8CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BBCCE5BCCDE6BDCEE6BDCEE6 -BECFE7BECFE7BECFE7BFCFE7C0CFE6C1D0E7C2D1E8F1F3F9FFFFFEE2E8F3C4D3E9EBF0F7FFFFFE -DFE7F3C5D4E9C5D4E9C5D4E9C6D5EAC6D5EAC6D5EACAD8EBFFFFFEFFFEFDCAD8EBD5DFEFFFFEFD -FFFFFEC5D4EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4E9C5D4E9C5D4E9C5D4E9C5D4E9D8E1F0FFFEFD -FFFFFECDD9ECC4D3E9C5D4E9EAEEF6FFFFFEF6F7FAC5D4E9C5D4EAC5D4E9C5D4EAC4D3E9C4D3E9 -C5D4E9C5D4E9C8D6EBFFFFFEFFFFFEF1F3F9C4D2E8C3D2E8C3D3E9C3D1E7C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D3E9C4D2E8C3D2E8C3D2E8C3D1E7C5D4E9C4D3E9C4D3E9C4D3E9FFFFFE -FFFFFEF2F4F9C5D4E9C5D4E9C5D4E9C5D4EAC4D3E9C6D4E9C5D4EAC5D4E9C5D4E9F4F5F9FFFFFE -FFFFFEC5D4E9C4D3E9C5D3E8C5D4E9C5D4E9E3E9F4FFFFFEFFFFFED8E1F0C4D2E8C4D3E9C4D3E9 -C4D4E9C3D2E8C4D2E8C3D2E8C3D2E8C4D2E8C2D1E8C1D1E8C0D0E7C5D4E9FFFFFEFFFFFEF5F7FA -BECEE6BFCFE6BDD0E7BECEE6BDCEE6BCCDE5BBCDE6BBCCE5BBCDE6BBCCE5BACCE5B9CBE5BACCE5 -B8CBE5B9CBE5B8CAE4B8CAE4B9CBE5B9CBE5B8CBE5B8CBE5B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5 -B9CBE5BACCE5BACCE5BBCCE5BCCDE6BDCEE6BECFE7C0D0E7C2D1E8C4D3E9C7D5EACAD7EBCEDAEC -D2DDEED6DFEFDAE3F1EAEEF6FAFBFCFFFFFEFBFCFCF6F7FAF1F3F9F3F4F9BDB8D2666595F5F6FA -F5F6FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BDCFE7BECFE7BECFE7BECFE7C3D3E9F3F4F8 -FDFDFCFFFEFCFEFDFCFEFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D9E2F1D8E0EFD8E1F0E0E7F3FDFCFCFFFEFCFFFEFCFFFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F8F7F8FBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -696695736F9CFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDBAB1CB -474E83D4CCDFFFFEFDFFFFFEFFFFFDFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6 -FDF0F5FDEEF4FDECF3FDEBF2FCE9F19285AD9284ACFBE6EFFEEFF5FFFFFEFFFFFEFCECF3F7D5E5 -F3C8DCF1C2D9F0BDD5EEB7D2ECB2CEEBAECBEAABC9E8A6C6E7A3C4E7A0C2E59DC0E49BBFE499BE -E498BDE497BCE396BCE396BCE396BCE396BBE395BBE395BBE394BAE394BAE394BAE394BAE394BA -E395BBE395BBE395BBE395BBE394BAE394BAE394BAE395BBE395BBE396BBE396BBE396BCE396BC -E497BCE498BDE499BDE499BEE49ABEE59BBFE59CC0E59DC0E69EC1E69FC1E69FC1E7A0C2E7A0C2 -F5CDE0FFFFFEFBE6EFE7A4C5E8A4C5EAA9C8FFF9FAFFFFFEF8D6E5E8A6C6E8A7C7E8A7C6E8A7C6 -E8A7C7F6D1E2FFFFFEFBE7EFE8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C6 -E9A8C7F9DBE8FFFFFEFDECF3E8A7C7E8A7C7E8A7C7F2C2D8FFFEFDFFFEFDECB2CEE8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E9A8C7E9A8C7E8A7C7E9A8C8FFFFFEFFFFFEF0BCD5E9A8C7E9A9C8F7D1E2 -FFFFFEFFFEFDECAECBE9A8C8E9A8C8E9A8C7E9A8C8E9A8C8FFFFFEFFFFFEF0BCD5E9A8C7E9A8C7 -E9A8C7E8A7C7E8A7C7E8A7C7FBE7EFFFFFFEFFFFFEEBACCAE9A6C6E8A6C6E8A5C5E8A4C5E8A4C5 -E6A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A1C3FBE5EEFFFEFDFFFFFEE69EC1E59DC0 -E59CC0E59CC0E59CBFE59BBFE499BEE499BDE498BDE498BDE497BCE396BBE396BCE396BCE396BB -E396BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE394BAE395BBE394BAE394BAE394BA -E394BAE394BAE394BAE394BAE394BAE395BBE395BBE395BBE396BBE396BCE396BCE396BCE397BC -E398BDE398BDE39BBFE59CC0E59FC2E5A2C4E6A5C5E7A8C8E8ADCBE9B0CDEAB5D1ECBBD4EEC1D8 -F7E2ECFEF8F9FFFFFEF9EAF2EFD5E5ECD0E28C7DA8EACFE2F0D9E8FAF1F6FFFFFEF9F0F6ECD7E7 -D9BDD7D4B6D3D0B0CFCBAACCC9A5C8C5A0C5C29CC2BE98C0BC94BDBA92BBB88FB9B68CB7B58BB6 -B489B5B488B5B388B5B388B5B287B4B287B4B287B4B287B4B287B4B287B4B186B4B186B4B287B4 -B187B4B186B4B287B4B287B4B388B5B388B5B389B5B389B6B48AB6B48AB6B58BB7B58DB8B68DB8 -B78EB9B88FBAB991BBB991BBB992BCBA93BCBB94BDDCC4DCFFFFFEF0E1EDBD97BFC19DC3FFFEFD -FFFFFEBF9AC1BE9BC2BF9BC2C09CC2C09CC2C09CC2C9A8CAFFFFFEFFFFFEC09CC2BF9DC3FFFFFE -FFFFFECFB1D0C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2CEB1D0FFFFFEFFFFFEDEC7DEBE9AC1 -BE9AC1BE9AC1BE99C0BE99C0BE98C0FFFEFDFFFFFEF0E1EDBE97BFBC97BFBD97BFBD97BFBD96BE -BC95BDBC96BEBD96BEBD97BFBB95BDBC96BEBC96BEBD96BEBC97BFBD97BFBD97BFBD97BFBD97BF -BE98C0DDC6DDFFFFFEFFFFFECEAFCFBE9AC1BE9AC1BE9AC1BE9AC1BF9BC1BE9BC2BF9BC1BF9AC1 -E3CFE3FFFEFDFFFFFED2B5D3BE99C0BE9AC1BF9AC1BE9AC1CEAFCFFFFFFEFFFEFDE2CDE1BE98C0 -BE98C0BD97BFBC98BFBD97BFBC96BEBC96BEBC96BEBA95BDBC95BDBB93BCBA93BCB993BCCAAACB -FFFFFEFFFFFEDAC2DBB78FB9B88FBAB78EB9B58CB7B58DB8B58CB7B58BB7B48AB6B48AB6B389B6 -B389B5B389B5B288B5B287B4B287B4B186B4B186B3B186B3B186B3B185B3B186B3B186B4B186B3 -B186B4B186B4B186B3B186B3B186B3B186B3B186B4B186B4B186B4B187B4B288B5B288B5B288B5 -B389B5B48AB6B58BB7B58DB8B790BAB993BCBB96BEBE99C1C09EC4C4A3C7C6A7CACBAECECEB3D2 -DECBE0F1E7F0FFFFFEFBF7FAE8DAEADBCCE2857CA7DACCE2DACCE2EAE0EDFFFFFEFFFFFEE8E0ED -D1C6DEC4B9D7BEB3D3B8AED0B3A9CDAEA3C9ABA0C7A69CC4A398C29F95C09C93BE9A90BD988EBB -958CBA948BB9948AB9948AB9938AB9928AB99289B89289B89189B89189B89189B89189B89289B8 -9389B89389B89289B89289B89188B79189B89189B89289B89289B8938AB8948AB9948AB9948BB9 -958CBA958DBA968DBB978EBB988FBC9990BC9A91BD9B92BE9C92BE9C93BF9E94BF9F96C0A096C1 -CDC5DEFFFFFEE6E0EDA299C3AAA0C7FFFFFEFFFFFEA59CC5A69CC4A79DC5A89EC6A89EC6A89EC6 -B3A8CCFFFEFDFFFFFEAA9FC6A99FC6FFFFFEFFFEFDBDB2D3A89EC6A89EC6A79DC5A69DC5A69DC5 -A69DC5D1C8E0FFFFFEFFFFFEBAB1D2A59BC4A49BC4A49AC3A49AC3A49AC3A49AC3A299C2A299C2 -A299C2A299C2A299C2A298C2A298C2A298C2A197C1A399C3DBD3E6FFFFFEFFFEFDFAF8FAC9C0DB -A299C2A199C2A49AC3A299C3A39AC3A49AC3A49AC3A59AC3A49AC3A49AC3A49AC3A49AC3A49AC3 -B9AFD1FFFEFDFFFFFED5CCE2A299C2A299C2A399C3A299C2A298C2A298C1A199C2A197C1A198C2 -A196C1A097C19E95C0A096C0B5ABCEFFFFFEFFFFFECCC2DC9C91BD9B92BE9A91BD9990BC988FBC -988FBC978EBB968DBB958DBA958CBA948BB9948AB9948AB9938AB9938AB89289B89289B89189B8 -9189B89188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79188B79189B8 -9189B89189B89189B89189B89189B89189B89189B89289B8938AB8948AB9948BB9948BB9948BB9 -948CBA968DBB978EBC9990BD9B93BE9E96C0A199C2A59CC5A9A0C7ADA4CAB2A9CDB7AFD1BEB6D5 -C4BCD9EAE6F0FFFFFEFFFFFEEBE8F2E0DEEDDDDBEB8682ABDEDDEDE6E5F1F7F5F9FFFFFEF7F6FA -E9EAF4D9DFEFD6DDEDD2DBECCED9ECCBD7EAC8D5E9C6D3E9C4D1E8C2D0E7BFCFE6BDCEE6BCCDE5 -BBCCE5BACCE5B9CBE4B9CBE5B9CBE5B9CBE5B9CBE4B9CBE4B9CBE5B8CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5BACCE5BACCE5BACCE5BBCCE5BBCDE6BBCCE5BCCDE6BDCEE6BDCEE6BDCFE7BECEE6 -BFCFE7C0D0E7C0D0E7C1D1E8C2D1E8F2F4F9FFFFFEE1E8F4C5D4E9D7E1F0FFFFFEF2F4F9C6D4E9 -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EADCE5F2FFFFFEF3F3F8C6D5EAD6DFEFFFFFFEFFFEFDC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAEBEFF7FFFFFEF6F7FAC5D4E9 -C5D4E9C6D4E9D8E2F0FFFFFEFFFFFECCD9ECC6D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9 -D3DFEFFFFEFDFFFFFEE2E9F4C4D3E9C4D3E9C3D3E9C2D1E8C3D2E8C3D1E7C2D1E7C4D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C4D3E9C4D3E9C3D3E9C5D4E9C4D3E9FFFFFEFFFFFEF2F4F9 -C5D4E9C5D4E9C5D4E9C5D4EAC6D5EAC5D4EAC6D4E9C6D5EACAD8EBFFFEFDFFFFFEF6F7FAC5D4E9 -C7D6EAC5D4E9C5D4EAC5D3E8F1F3F9FFFFFEFFFEFDC8D6EBC4D3E9C4D3E9C4D2E8C3D2E8C4D3E9 -C2D1E8C3D2E8C3D1E7C3D3E9C2D1E8C3D2E8C1D1E8C0D0E7F2F4F9FFFFFEFFFEFDBDD0E7BECFE7 -BDD0E7BDCEE6BDCEE6BCCDE6BBCDE6BBCCE5BBCDE6BBCCE5BBCCE5BACCE5BACCE5B9CBE5B9CBE5 -B8CAE4B9CBE5B9CBE5B9CBE5B8CBE5B9CBE5B9CBE4B9CBE4B9CBE5B9CBE5B9CBE5BACCE5BACCE5 -BBCCE5BBCCE5BCCDE6BDCFE7BECFE7C0D0E7C2D1E8C4D3E9C8D6EACBD8EBCEDAEDD2DDEED6DFEF -DAE3F1EAEEF6FAFBFCFFFFFEFBFBFCF6F7FAF1F3F9F3F4F9BDB8D2666595F5F6FAF5F6FAF6F8FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BFCFE7BECFE7BED1E8BECEE6BED0E7BECFE7BDCFE7ECF0F7FEFEFCFEFCFBFDFDFC -FEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D7E1F0D8E0EFDAE4F1F7F8FBFFFEFCFFFDFCFFFDFCFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F5F6FAFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFEFDF2EFF5474D82 -A099BCFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFDFFFFFED5CEE1474E82ACA4C3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6FDF0F5FDEEF4 -FDECF3FDEBF2FCE9F19285AD9284ACFBE6EFFEEFF5FFFFFEFFFFFEFCECF3F7D5E5F3C8DCF1C2D9 -F0BDD5EEB8D2EDB3CEEBAFCCEAABCAE8A6C6E7A3C4E7A0C2E69EC1E49BBFE49ABEE498BDE497BC -E397BCE396BCE396BCE396BBE395BBE395BBE395BBE393BAE393BAE394BAE395BBE396BBE395BB -E395BBE395BBE394BAE394BAE394BAE395BBE395BBE396BBE396BBE396BCE396BCE497BCE498BD -E499BDE499BEE49ABEE59BBFE59CC0E59DC0E69EC1E69FC1E6A0C2E8A1C2E7A1C3F5CDE0FFFEFD -FBE7EFE8A4C4E8A4C5E8A6C6F6D0E1FFFFFEFFFAFBEBACCAE8A7C7E9A8C7E8A7C7E8A7C7F6D1E2 -FFFFFEFBE7EFE8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E9A8C7E8A7C7E8A7C7E8A7C7E8A7C7FFF9FA -FFFFFEF4CCDFE8A7C7E8A7C7E8A7C7E8A7C7FFFFFEFFFFFEF4CBDEE8A7C7E9A8C7E9A8C7E9A8C7 -E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7FFFEFDFFFFFEF0BCD5E9A8C8E9A8C8EAAECCFFF9FAFFFFFE -F6D1E2EAA9C8E9A9C8EAA9C8EAA9C8EAA9C8FFFFFEFFFFFEF0BCD5E9A8C7E9A8C7E9A8C7E9A8C7 -E8A7C7E8A7C7FEF3F7FFFEFDFFFEFDE8A7C6E7A6C6E8A6C6E8A6C6E9A6C6E8A4C5E9A5C5E7A4C5 -E7A3C4E7A3C4E7A3C4E8A2C3E7A1C3E7A1C3F8D8E7FFFFFEFFFEFDECB3CFE59DC0E59CC0E59CC0 -E59CBFE59BBFE49ABEE499BEE499BDE498BDE497BCE396BCE396BCE396BCE396BBE396BBE395BB -E395BBE394BAE394BAE394BAE394BAE395BBE395BBE395BBE394BAE394BAE394BAE394BAE394BA -E395BBE394BAE394BAE395BBE395BBE395BBE396BBE396BCE396BCE396BCE397BCE398BDE398BD -E39ABEE59CC0E59FC2E6A2C4E7A5C6E7A9C8E8ADCBEAB1CEEBB6D1ECBCD5EEC2D9F7E2ECFEF8F9 -FFFEFDF9EAF2EFD5E5ECD0E28C7DA8EACFE2F0D9E8FAF1F6FFFFFEF9F0F6ECD8E8D9BDD7D4B6D3 -D1B0CFCCABCCC9A6C9C5A1C5C29DC3BF99C0BD95BDBA92BBB88FBAB78DB8B58BB7B48AB6B488B5 -B388B5B388B5B288B5B287B4B187B4B287B4B287B4B287B4B186B4B186B4B287B4B287B4B287B4 -B287B4B388B5B388B5B388B5B389B5B48AB6B48BB7B48AB6B58CB7B58DB8B68DB8B78EB9B88FBA -B991BBB991BBBA93BCBA93BCBB95BEDCC5DDFFFFFEF0E1EDBD97BFBF99C0F5E9F2FFFFFED3B6D3 -BF9BC2C09CC2C09CC2C09CC2C09CC2D6BCD7FFFFFEEDDDEBC19DC3C19DC3FFFFFEFFFFFECFB2D0 -C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2CDB0D0FFFFFEFFFFFEDEC8DEBE9AC1BE9AC1BE9AC1 -BE9AC1BE99C0C6A5C8FFFFFEFFFFFEEBDAE9BE98C0BD97BFBD97BFBC97BFBD97BFBC97BFBD97BF -BC96BEBC96BEBC96BEBC96BEBC96BEBC97BFBD97BFBC97BFBD97BFBD97BFBD97BFBE98C0DDC6DD -FFFFFEFFFFFECEAFCFBE9AC1BE9AC1BE9AC1BF9BC1BE9AC1C09AC1BE9AC1CBABCCFCF7F9FFFFFE -F8F1F6BF9BC1BE9AC1BE9AC1BE9AC1BE99C1D6BBD6FFFFFEFFFFFEDEC6DDBE98C0BD97BFBD97BF -BD97BFBC97BFBD97BFBC96BEBC96BEBD96BEBA95BDBC94BDBA95BDBA92BBC29EC4FFFFFEFFFFFE -EEDEECB990BAB78EB9B78EB9B68DB8B58DB8B58CB7B58BB7B48AB6B48AB6B389B6B389B5B389B5 -B288B5B287B4B287B4B186B4B186B3B186B3B186B4B186B3B186B4B186B4B186B4B186B4B186B4 -B186B3B186B3B186B3B186B4B186B4B186B4B187B4B288B5B288B5B288B5B288B5B389B6B48AB6 -B58CB7B68EB9B891BBBA94BDBB97BFBE9AC1C19FC4C5A4C7C7A8CACBAECECEB4D2DECBE1F1E7F1 -FFFFFEFBF7FAE8DBEADBCCE2857CA7DACCE2DACCE2EAE0EDFFFFFEFFFFFEE8E0EDD1C6DFC4B9D7 -BEB4D4B9AED0B4A9CDAFA4CAABA0C7A79CC5A398C29F95C09C93BE9A90BD988EBB968DBB958CBA -948BB9948AB9948AB9938AB99289B89289B89289B89189B89289B89189B89289B8938AB8938AB8 -9289B89289B89289B89289B89289B89289B89289B8938AB9948AB9948AB9948BB9958CBA958DBA -968DBB978EBB988FBC9990BC9A91BD9B92BE9C92BE9C93BF9E95C09F95C0A097C1CFC6DEFFFFFE -E8E1EEA49BC4A59BC4EFEAF3FFFFFEC1B7D5A69DC5A79DC5A89EC6A99EC6A99EC6C8BEDAFFFFFE -E4DDECA99FC6A99FC6FFFEFDFFFFFEBEB3D3A99FC6A89EC6A89EC6A79DC5A69DC5A69DC5D1C8E0 -FFFFFEFFFFFEBAB1D2A59BC4A59BC4A59BC4A49AC3A49AC3A49AC3A39AC3A299C2A299C2A299C2 -A299C2A299C2A299C2A299C2A299C2A299C2A299C2DBD3E6FFFFFEFFFEFDFFFFFEE8E1EEB8AFD1 -A39AC3A49AC3A49AC3A39AC3A59AC3A39AC3A49AC3A49AC3A49AC3A59AC3A39AC3C4BBD8FFFFFE -FFFFFED0C7DFA39AC3A299C2A299C2A299C2A299C2A298C2A198C2A199C2A196C1A197C1A096C1 -9F96C09F95C0AAA0C7FFFEFDFFFFFEE5DEED9B92BE9B92BE9A91BD9990BC988FBC988FBC978DBB -968DBB948CBA958CBA948BB9948AB9948AB9938AB99389B89289B89289B89189B89189B89188B7 -9188B79188B79188B79188B79188B79188B79188B79288B79188B79188B79189B89189B89189B8 -9189B89189B89189B89189B89289B89289B8938AB8948AB9948BB9948BB9948BB9948CBA968EBB -988FBC9990BD9C93BF9E96C0A199C2A59CC5AAA1C8AEA5CBB3AACDB8AFD1BEB6D5C4BDDAEAE6F0 -FFFFFEFFFFFEEBE8F2E0DFEEDDDBEB8682ABDEDDEDE6E5F1F7F5F9FFFFFEF7F6FAE9EAF4D9DFEF -D6DDEDD2DBECCED9ECCCD7EBC9D5EAC6D3E9C4D1E8C2D1E7C0CFE6BECEE6BCCDE5BBCCE5BACCE5 -B9CBE4B9CBE5BACCE5B9CBE5B9CBE4B9CBE4B9CBE5B8CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5 -BACCE5BACCE5BACCE5BBCCE5BBCDE6BBCCE5BCCDE6BDCEE6BDCEE6BDCFE7BECEE6BFCFE7C0D0E7 -C1D0E7C1D1E8C2D1E8F2F4F9FFFFFEE2E9F4C4D3E9C8D6EBFFFFFEFFFFFEC9D7EBC6D6EAC6D5EA -C6D6EAC7D5EAC7D5EAECEFF7FFFFFEE1E7F3C8D6EAD6DFEFFFFFFEFFFFFEC7D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAFDFDFDFFFEFDE0E7F3C6D5EAC6D5EAC6D5EA -C6D5EAFFFEFDFFFEFDE0E7F3C5D4E9C5D4EAC5D3E8C5D4E9C5D4E9C6D4E9C4D2E8DAE3F1FFFFFE -FFFEFDDFE7F3C4D3E9C4D3E9C3D3E9C4D2E8C2D1E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8 -C3D2E8C3D2E8C4D2E8C4D3E9C3D3E9C5D4E9C4D3E9C4D3E9FFFFFEFFFFFEF2F4F9C5D4E9C5D4E9 -C5D4E9C6D5EAC6D5EAC7D5EAC6D5EAC6D5EAEBEEF6FFFFFEFFFEFDDCE5F2C7D5EAC6D4E9C6D5EA -C5D3E8C5D4E9F9FAFBFFFEFDFFFFFEC6D4E9C4D3E9C4D3E9C4D3E9C5D4EAC4D3E9C4D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C1D2E8C1D1E8C2D1E7E9ECF5FFFFFEFFFFFECEDAECBED0E7BDCFE7BDCEE6 -BDCEE6BCCEE6BBCDE6BBCCE5BBCDE6BBCCE5BBCCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B8CCE5B9CBE5BACBE4B9CBE4B9CBE5BACCE5B9CBE5BACCE5BACCE5BBCCE5BBCCE5 -BCCDE6BECFE7BFCFE7C1D0E7C2D1E8C5D4E9C8D6EACBD8ECCEDAEDD3DEEED7E0EFDBE3F1EAEEF6 -FAFBFCFFFFFEFBFCFCF6F7FAF1F3F9F3F4F9BDB8D2666595F5F6FAF5F6FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BED0E7BECEE6BED0E7BFCFE6BED0E7E4E9F4FEFDFDFEFDFCFEFDFCFEFDFCFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E2F0F8F8FAFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9FFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDD5CEE0484D82ACA4C3 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEF3EEF45E5E8F8882ABFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF8FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3 -FCEAF29285AD9284ACFBE6EFFEEFF5FFFFFEFFFFFEFCECF3F7D6E5F4C9DDF1C2D9F0BDD5EEB8D2 -EDB3CFEBAFCCEAABCAE8A7C6E7A3C4E7A0C2E69EC1E59CBFE499BEE498BDE597BCE497BCE497BC -E396BCE396BBE395BBE395BBE395BBE395BBE394BAE394BAE395BBE396BBE395BBE395BBE395BB -E394BAE395BBE395BBE395BBE395BBE396BBE495BBE396BCE396BCE497BCE498BDE499BDE499BE -E49ABEE59BBFE59CC0E59DC0E69EC1E69FC1E69FC2E7A0C2E7A1C3F5CDE0FFFFFEFBE6EFE8A5C5 -E8A5C5E8A6C6EBACCAFFF9FAFFFEFDF7D2E3E8A7C7E9A8C7E8A7C7E9A8C7F6D1E2FFFFFEFBE7EF -E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C8E8A9C8F1C0D7FFFFFEFFFFFEEDB3CE -E9A8C7E9A8C7E9A8C7E8A7C7FAE1ECFFFEFDFDEDF3E9A8C7E9A8C7E8A7C7E9A9C8E8A7C7E9A8C7 -E9A8C7E9A8C7E9A8C8FFFEFDFFFEFDF0BCD5EAA9C8EAAAC9EBABC9F6D1E2FFFFFEFFFAFBEBAFCC -EAABC9EAAAC9EAAAC9E9AAC8FFFFFEFFFFFEF0BCD5E9A8C8E9A8C8E9A8C7E9A8C7E9A8C7E8A7C7 -FFFFFEFFFFFEFCE7F0E8A7C6E8A7C6E8A5C5E8A6C6E8A6C6E8A4C4E8A4C5E7A4C5E7A3C4E7A3C4 -E7A3C4E7A2C3E7A1C3E7A1C3F4CCDFFFFFFEFFFEFDEDB4CFE59DC0E59DC0E59CC0E59CBFE59BBF -E49ABEE499BEE499BDE498BDE497BCE396BCE397BCE396BCE396BBE395BBE396BBE395BBE394BA -E394BAE394BAE395BBE395BBE396BBE395BBE395BBE394BAE394BAE394BAE394BAE394BAE395BB -E395BBE395BBE395BBE396BBE396BCE396BCE397BCE497BCE497BCE398BDE399BEE49BBFE59DC0 -E6A0C2E6A3C4E7A6C6E8AAC9E8AECBEAB3CFEBB7D2EDBDD5EEC3D9F7E3EDFEF9FAFFFFFEF9EBF2 -EFD6E6EDD0E38D7DA8EBD0E3F0D9E8FAF1F6FFFFFEF9F0F6EDD8E8D9BDD7D5B7D4D1B1D0CCABCC -C9A6C9C6A2C6C29DC3BF99C0BD96BEBA92BBB990BAB78EB9B58BB7B48AB6B489B5B489B5B388B5 -B388B5B287B4B287B4B387B4B287B4B287B4B186B4B186B4B287B4B287B4B287B4B287B4B388B5 -B388B5B389B5B489B5B48AB6B48AB6B48AB6B58BB7B58DB8B68DB8B78EB9B88FBAB991BBB991BB -BA93BCBA93BCBB95BDDCC4DCFFFFFEF0E2EEBE98C0BF99C0DEC8DEFFFEFDE3CFE3C09CC2C09CC2 -C09CC2C09CC2C09CC2ECDCEBFFFFFED7BED8C19DC3C19DC3FFFFFEFFFFFED0B3D1C19DC3C09CC2 -C09CC2C09CC2C09CC2C09CC2CFB1D0FFFFFEFFFFFEDEC8DEBF9BC1BE9AC1BE9AC1BE9AC1BE9AC1 -CEAFCEFFFEFDFFFFFEDCC6DDBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBC95BDBC96BE -BC96BEBC96BEBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0DDC6DDFFFFFEFFFFFE -DAC2DBCEB0CFCEB0CFCEAFCFCEB1D0CEB1D0D3B6D3E7D5E6FFFFFEFFFEFDFFFFFED2B6D3BF9BC1 -BF9AC1BE9AC1BF9AC1BE9AC1DEC7DEFFFFFEFFFFFECDAFCFBE98C0BE98C0BD97BFBD97BFBD97BF -BE98C0BC96BEBC96BEBC96BEBB94BDBA94BDBA95BDBA93BCBA92BBFFFFFEFFFEFDEFDFECB890BA -B88FBAB78EB9B58DB8B58DB8B58CB7B58BB7B48AB6B48AB6B48AB6B489B5B288B5B288B5B287B4 -B288B5B287B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B3B186B3 -B186B3B186B4B186B4B186B4B187B4B288B5B288B5B288B5B389B5B48AB6B48AB6B58DB8B78EB9 -B891BBBA94BDBC98BFBE9BC2C19FC4C5A4C8C8A9CBCCAFCFD0B6D3DECCE1F1E7F1FFFEFDFBF7FA -E7DCEBDCCDE2857CA7DBCDE2DBCDE2EAE0EDFFFFFEFFFFFEE8E0EDD2C7DFC5BAD7BFB4D4B9AFD0 -B4A9CDAFA5CAABA1C8A89DC5A499C3A196C09C93BF9A91BD988FBC968DBB958CBA948BB9948AB9 -948AB9938AB9938AB8938AB89289B89189B89189B89188B79289B8938AB8938AB89389B89289B8 -9189B89289B89289B89289B8938AB8938AB9948AB9948AB9948BB9958CBA958DBA958DBA978EBB -988FBC9890BC9A91BD9C92BE9D93BE9C93BF9E95C09F95C0A197C1CEC5DEFFFFFEE8E1EEA49AC3 -A59BC4D0C7E0FFFFFED6CEE3A69DC5A79DC5A89EC6A99FC6A99FC6E4DDECFFFFFEC8BFDAA99FC6 -A89EC6FFFFFEFFFFFEBEB3D3A99FC6A99FC6A89EC6A79DC5A79DC5A69DC5D1C8E0FFFFFEFFFEFD -F0E9F2E8E2EFE9E3EFE9E2EFE8E1EEE8E1EEE8E1EEE9E2EFE8E1EEE7E1EEA299C2A299C2A299C2 -A298C2A299C2A299C2A299C2A299C2A299C2C9C0DBFFFFFEFFFFFEFFFFFEFFFFFEE2DBEBAEA4CA -A59AC3A49AC3A49AC3A59AC3A49AC3A49AC3A59BC4A49AC3A39AC3D0C7E0FFFFFEFFFFFEB9B0D1 -A49AC3A39AC3A299C2A299C2A299C3A298C2A198C2A199C2A197C1A197C1A097C19F96C09F95C0 -9E95C0FFFFFEFFFFFEE5DEED9C92BE9B92BE9A91BD9990BC988FBC988FBC978DBB968DBB958DBA -968CBA948AB9948AB9948AB9938AB9938AB89289B89289B89289B89189B89188B79188B79188B7 -9188B79288B79289B89188B79188B79188B79188B79189B89189B89189B89189B89189B89189B8 -9189B89289B89289B89289B8948AB9948BB9948BB9948CBA948CBA958CBA968EBB978FBC9991BD -9C93BF9F96C0A299C3A69DC5AAA1C8AFA6CBB3ABCEB9B0D2BFB7D6C5BEDAEBE6F0FFFFFEFFFFFE -ECE9F2E1DEEDDEDCEC8682ACDFDDEDE6E5F1F7F6FAFFFFFEF7F6FAEAEAF4DAE0EFD7DDEED3DBEC -CFDAECCCD7EBC9D5EAC6D3E9C4D1E8C2D1E7BFCFE6BECEE6BCCDE5BBCCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5B9CBE5B9CBE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5 -BACCE5BBCCE5BBCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCFE7BECFE7BFCFE7C0D0E7C1D0E7C1D1E8 -C2D2E8F1F3F9FFFFFEE2E9F4C4D3E9C5D4E9F2F4F9FFFFFED9E2F1C6D5EAC5D4EAC8D6EAC7D5EA -C8D6EAFDFDFDFFFFFECEDAECC7D5EAD6DFEFFFFFFEFFFFFEC7D5EAC7D5EAC7D6EAC7D5EAC6D5EA -C7D5EAC6D5EAC6D5EAC7D5EAD9E2F1FFFFFEFFFFFECEDAEDC6D5EAC6D5EAC6D5EAC6D5EAEFF2F8 -FFFFFEF6F7FAC5D4E9C5D4E9C5D4E9C4D3E9C6D4E9C5D4E9C5D4E9E3E9F4FFFFFEFFFFFED3DEEF -C3D3E9C4D3E9C4D3E9C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C4D2E8C3D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9FFFFFEFFFEFDF6F7FAD3DEEED5DFEFD4DFEFD5DFEF -D5DFEFD5E0EFE0E7F3FBFBFCFFFEFDFFFFFEF6F9FBC6D5EAC7D5EAC6D5EAC7D5EAC5D4E9C5D4E9 -FFFFFEFFFFFEF2F4F9C5D4E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C2D1E8C3D2E8C2D2E8 -C3D2E8C2D1E8C1D0E7C2D1E7DFE7F3FFFFFEFFFFFECFDBEDBECEE6BDCFE7BDCEE6BDCEE6BCCEE6 -BCCDE6BBCDE6BACDE5BACDE5BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5B9CBE5B9CBE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7 -BFCFE7C1D1E8C3D3E9C5D4E9C8D6EACCD9ECCFDBEDD3DEEED7E0EFDBE4F2EAEEF6FAFBFCFFFFFE -FBFCFCF6F7FAF2F4F9F3F4F9BDB9D3666595F5F6FAF6F7FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFC -FAFBFCFAFBFCFCFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BECFE7BECFE7BECFE7BECFE7BED0E7 -BDCFE7BECFE7BECFE7D7E1F0FEFDFCFEFDFCFEFDFCFEFDFCFEFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E2F0D8E1F0D8E1F0D8E0EFD8E1F0D7E1F0D8E1F0D8E0EFD8E1F0D7E0EFF1F4F9 -FFFDFCFFFEFCFFFEFCFFFDFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F3F5F9FDFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFDACA4C4484D82D5CEE0FFFEFD -FFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFEFDFFFFFDFFFEFD5E5E8F736F9CFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4FDEDF3FDECF3FCEAF29186AD -9285ADFBE7EFFEEFF5FFFFFEFFFFFEFCECF3F7D6E5F4C9DDF2C3D9F0BED6EEB9D2EDB3CFEBAFCC -EAABC9E8A7C7E8A4C5E7A1C3E69FC2E59CC0E49ABEE499BDE498BDE497BCE497BCE396BCE396BB -E396BBE395BBE395BBE395BBE395BBE394BAE395BBE396BBE396BBE396BBE396BBE394BAE395BB -E395BBE396BBE396BBE396BCE497BCE397BCE397BCE498BDE498BDE499BDE499BEE49ABEE59BBF -E59CC0E59DC0E69EC1E69FC1E69FC2E7A0C2E7A1C3F5CDE0FFFFFEFBE6EFE8A4C5E8A5C5E7A6C6 -E8A5C5F6D0E1FFFFFEFFF9FAEBADCBE8A7C7E9A8C7E9A8C7F6D1E2FFFFFEFBE7EFE9A8C7E9A8C7 -E9A8C7E9A8C7E9A8C8E8A7C7E8A8C7E8A9C8E8A7C7F9DBE9FFFEFDFEF4F7E9A9C8E8A7C7E9A8C7 -E8A7C7E9A8C7F3C7DBFFFFFEFFFEFDEDB3CEE9A8C7E9A9C8E9A8C7E9A8C7E9A8C7E9A8C7E9A8C8 -E9A8C7FFFFFEFFFFFEF0BCD5EAAAC9EAAAC9E9A9C8ECB0CDFFF9FAFFFEFDF5D2E3EAA9C8EAAAC9 -EAAAC9EAABC9FFFEFDFFFFFEF0BDD5E9A8C8E9A8C8E9A8C7E9A8C7E9A8C7E8A7C7FFFFFEFFFFFE -FCE7F0E8A7C6E8A7C6E8A7C6E8A5C5E8A6C6E8A4C5E8A4C5E7A4C5E7A3C4E7A3C4E7A3C4E7A2C3 -E7A1C3E7A1C3F4CCDFFFFEFDFFFFFEEDB3CFE59DC0E59DC0E59CC0E59CBFE59BBFE49ABEE49ABE -E499BDE498BDE497BCE396BCE397BCE497BCE497BCE396BBE396BBE395BBE395BBE395BBE394BA -E395BBE395BBE396BBE396BBE395BBE394BAE394BAE394BAE394BAE395BBE395BBE395BBE395BB -E395BBE396BBE396BBE396BCE397BCE397BCE397BCE398BDE39ABEE59CC0E59EC1E6A1C3E6A4C5 -E7A7C7E8ABC9E9AFCCEAB3CFECB8D2EDBDD5EEC3D9F7E3EDFEF9FAFFFFFEF9EBF2EFD6E6EDD1E3 -8C7EA8EBD1E3F0D9E8FAF1F6FFFFFEF9F1F6EDD9E9DABFD9D5B7D4D1B2D0CDACCCC9A6C9C6A3C7 -C39EC4C09AC1BD97BFBA93BCB990BAB78EB9B58CB7B48AB6B489B5B489B5B388B5B388B5B287B4 -B287B4B287B4B287B4B287B4B287B4B186B4B287B4B287B4B287B4B388B5B389B5B389B5B389B5 -B489B5B48AB6B48AB6B48AB6B58BB7B68DB8B78EB9B88FB9B88FBAB991BBB991BBB992BCBA93BC -BB95BDDCC4DCFFFFFEF0E1EDBE99C0BE99C0CAA9CBFFFEFDF9F1F6BF9BC2C09BC1C19CC2C19CC2 -C19DC3FFFFFEFFFFFEC9A8CAC19DC3C19EC3FFFFFEFFFFFED0B3D1C19DC3C09CC2C09CC2C09CC2 -C09CC2C09CC2CFB1D0FFFFFEFFFFFEDEC8DEBF9BC1BE9AC1BE9AC1BE9AC1BE98C0CEB0CFFFFEFD -FFFFFEDDC5DDBE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBC96BEBC96BEBC96BE -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0DDC6DDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFDF9FAD6BCD7BF9AC1BF9BC2BF9BC1BE9AC1 -BE9AC1BF9BC1DDC6DDFFFFFEFFFEFDCDAFCFBE98C0BE98C0BE98C0BD97BFBC96BEBC97BFBD97BF -BC95BDBC96BEBC96BEBB95BDB993BCBB94BDBB93BCFFFEFDFFFFFEEEDEECB890BAB88FBAB78EB9 -B68DB8B58CB7B58CB7B58CB7B48AB6B48AB6B48AB6B489B5B389B5B388B5B388B5B388B5B287B4 -B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4B186B4 -B186B4B187B4B288B5B288B5B288B5B288B5B389B6B48AB6B58BB7B58DB8B78FB9B992BCBA95BD -BD98BFBF9CC2C3A0C5C5A5C8C8AACCCCAFCFD0B6D3DFCDE2F2E9F2FFFFFEFBF8FAE8DCEBDCCDE2 -857CA7DBCEE3DBCEE3EAE0EDFFFFFEFFFFFEE9E0EDD3C8DFC5BAD8BFB4D4BAAFD0B5A9CDB0A5CA -ACA1C8A89DC5A49AC3A196C19D94BF9B91BD998FBC978DBB968DBB948CBA948AB9948AB9948AB9 -938AB99289B89289B89189B89189B89189B89289B8938AB8948AB8938AB8938AB89289B89289B8 -9289B89289B8938AB8948AB9948BB9948BB9948CBA968CBA968DBB968DBB978EBB988FBC9990BC -9A91BD9C92BE9C93BE9C93BF9E95C09F95C0A197C1CEC5DEFFFFFEE8E1EEA49AC3A59BC4B5ACCF -FFFFFEF5F0F6A59CC5A89DC5A89EC6A99EC6A99FC7FFFEFDFFFFFEB4AACEA89EC6A99FC6FFFFFE -FFFFFEBEB3D3A99FC6A99FC6A89EC6A79DC5A79DC5A69DC5D1C8E0FFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEA299C2A299C2A398C2A29AC3A299C2 -A299C2A299C2A299C3A299C2A299C2B3A9CDE8E2EFFFFEFDFFFEFDFFFFFEFFFFFECEC7DFA499C3 -A59AC3A39AC3A49AC3A49AC3A39AC3A49AC3A49AC3CFC6DEFFFFFEFFFEFDB9AFD1A499C3A49AC3 -A399C3A299C2A298C2A298C2A299C2A197C1A197C1A197C1A196C19F96C09F95C09E95C0FFFFFE -FFFFFEE5DEED9C92BE9B92BE9B92BE9990BC988FBC988EBB978DBB968DBB958DBA958CBA948BB9 -948AB9948AB9938AB9938AB89289B89289B89289B89289B89189B89289B89289B89289B89288B7 -9289B89188B79188B79189B89189B89189B89189B89189B89189B89189B89189B89289B89289B8 -9289B89289B8948AB9948BB9948BB9948CBA948CBA958DBA978EBB9890BC9A92BE9C94BFA097C2 -A39AC3A79EC6ABA2C8AFA7CBB4ABCFB9B1D2BFB7D6C6BFDBEBE6F0FFFFFEFFFFFEECE9F2E1DEED -DEDCEC8682ACE0DFEEE7E6F1F7F6FAFFFEFDF8F7FAEBECF5DAE0EFD7DEEED3DBECD0DAECCED8EB -CAD6EAC7D4E9C4D2E8C3D1E7C0CFE6BECEE6BDCDE5BCCDE5BBCCE5BACCE5BACCE5BACCE5BACCE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5 -BBCDE6BCCDE6BDCEE6BDCEE6BECEE6BECFE7BECFE7BFCFE7C0D0E7C1D0E7C1D1E8C3D3E9F1F3F9 -FFFFFEE2E9F4C4D3E9C5D4E9DFE7F3FFFFFEECEFF7C5D4EAC7D5EAC6D5EAC8D6EAD5DFEFFFFEFD -FAFBFCC8D6EBC6D4E9D6DFEFFFFEFDFFFFFEC7D5EAC6D5EAC7D5EAC7D5EAC7D5EAC6D5EAC6D5EA -C6D5EAC6D5EAECF0F7FFFEFDFAFAFCC6D5EAC6D5EAC6D6EAC6D4E9C6D5EADCE5F2FFFFFEFFFEFD -CCD8EBC5D4EAC6D4E9C5D4EAC5D3E8C5D4E9C5D4E9E3E9F4FFFFFEFFFEFDD5E0EFC4D3E9C4D2E8 -C4D3E9C4D3E9C4D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C3D2E8C3D2E8C3D3E9C3D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDF3F4F9CAD7EBC7D5EAC6D5EAC7D5EAC5D4EAC5D4E9C5D4E9FFFEFDFFFFFE -F1F3F9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8C3D2E8C4D2E8C3D2E8C3D2E8 -C1D1E8C1CFE7E1E7F3FFFFFEFFFFFECFDBEDBECFE7BECFE7BECEE6BDCEE6BCCDE5BDCEE6BCCDE6 -BBCDE6BBCDE6BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BCCDE6BDCEE6BECFE7BFCFE7C1D1E8 -C4D3E9C6D5EAC9D7EBCDD9ECD0DCEDD4DFEFD8E1F0DCE5F2EAEEF6FAFBFCFFFFFEFBFCFCF6F8FA -F2F4F9F3F4F9BDB9D3666595F5F6FAF6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7BFCFE7BECFE7BECFE7BFCFE7BECFE7BECFE7BDCFE7BED0E7BECFE7BECFE7BDCFE7 -CBD8ECFFFEFDFDFDFCFEFDFCFEFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D7E1F0D8E1F0D8E1F0D8E1F0D7E1F0D9E2F1D8E0EFD7E2F0D8E1F0EAEEF6FFFDFBFFFDFCFFFDFC -FFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F0F2F8F1F3F9F1F3F9F1F3F9FBFBFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEACA5C4474E82D5CDE1FFFEFDFFFDFB -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFD7E79A45D5E8EF3EEF4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FEF6F8FEF5F8FEF4F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FCEBF29186AD9285ADFBE7EF -FEEFF5FFFFFEFFFFFEFCECF3F8D6E6F4CBDEF2C4DAF1BFD6EEB9D2EDB4CFEBB0CDEAACCAE9A8C7 -E8A4C5E7A1C3E69FC1E59CC0E49ABEE499BDE497BCE497BCE497BCE396BCE396BCE396BBE396BB -E395BBE395BBE395BBE395BBE394BAE396BBE396BBE396BBE396BBE395BBE396BBE396BBE395BB -E396BBE396BCE497BCE497BCE398BDE498BDE499BDE499BEE49ABEE49BBFE59CBFE59CC0E59DC0 -E69EC1E69FC1E6A0C2E7A1C3E7A2C3F5CDE0FFFFFEFBE6EFE8A4C5E8A5C5E8A6C6E7A6C6ECB2CE -FFFEFDFFFFFEF7D1E2E8A8C7E9A8C7E9A8C7F6D1E2FFFFFEFBE7EFE9A8C7E9A8C7E9A8C7E9A8C7 -E9A8C7E9A8C7E9A8C7E8A7C7EBAFCCFFFEFDFFFFFEF8D6E6E9A8C7E9A8C8E9A8C7E9A8C7E9A8C7 -EBAECBFFFFFEFFFFFEF6D0E1E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E8A8C7E9A8C7EAAAC9FFFEFD -FFFFFEF0BED6EAABC9EAA9C8EAABC9EAA9C8F8DCE9FFFFFEFFF9FAEBAFCCEAAAC9E9AAC8EAA9C8 -FFFFFEFFFFFEF0BED6EAAAC9EAA9C8E9A8C7E9A8C7E9A8C7E9A8C7FFFEFDFFFFFEFBE7EFE8A7C7 -E8A7C6E8A7C6E8A5C5E8A6C6E8A5C5E8A4C5E7A4C5E7A4C5E7A3C4E7A3C4E7A3C4E7A2C3E7A1C3 -F4CCDFFFFEFDFFFEFDEDB6D0E69EC1E69DC0E59CC0E59CC0E59BBFE49ABEE49ABEE499BEE499BD -E499BDE398BDE497BCE497BCE497BCE396BCE396BBE395BBE395BBE395BBE395BBE396BBE396BB -E396BBE396BBE395BBE394BAE395BBE394BAE395BBE395BBE395BBE395BBE395BBE396BBE396BC -E396BCE397BCE397BCE397BCE398BDE399BEE49BBFE59CC0E59EC1E6A2C3E6A5C5E7A8C7E8ACCA -E9AFCCEAB4D0ECB9D3EDBED6EFC4DAF7E3EDFEF9FAFFFFFEF9EBF2EFD6E6EDD2E48C7EA8EBD1E3 -F0DAE9FAF2F6FFFFFEF9F0F6EDD9E9DABED8D5B8D4D2B3D1CDACCDC9A7C9C6A3C7C39FC4C19AC1 -BE97BFBB93BCB991BBB88FB9B68BB7B48AB6B48AB6B489B5B388B5B388B5B388B5B288B5B287B4 -B287B4B287B4B287B4B287B4B287B4B287B4B287B4B388B5B389B5B389B5B48AB6B48AB6B48AB6 -B48AB6B58BB7B58CB7B68DB8B78EB9B88FBAB890BAB991BBB992BBBA93BCBB94BDBC95BDDCC5DD -FFFFFEF0E0EDBE98C0BF9AC1BF9BC1F8F1F6FFFFFEC8A7CAC19CC2C19CC2C19DC3D4B8D4FFFFFE -F6EBF3C09DC3C19DC3C19CC2FFFFFEFFFFFED0B3D1C19DC3C19DC3C19DC3C19CC2C19CC2C19CC2 -D0B2D1FFFFFEFFFFFEDFC8DEC09BC1BF9BC1BF9BC1BF9BC1C09BC1CEAFCFFFFFFEFFFFFEDDC7DE -BE98C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBE98C0BE98C0BE99C0BE99C0DEC6DDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFCF8FADFC8DEC4A0C5BF9BC2C19BC2C09BC1BF9BC2C09BC1BF9AC1BF9AC1 -DEC8DFFFFFFEFFFFFECDAFCFBF99C0BD97BFBE98C0BE98C0BE98BFBD97BFBD96BEBD96BEBC96BE -BC96BEBB95BEBB94BDBB94BDB992BCFFFFFEFFFFFEEFDFECB990BAB88FBAB88FBAB78EB9B68DB8 -B68DB8B58CB7B58BB7B48AB6B48AB6B489B5B489B5B388B5B388B5B388B5B388B5B287B4B287B4 -B287B4B186B4B186B4B186B4B186B4B287B4B287B4B186B4B186B4B186B4B186B4B287B4B288B5 -B288B5B288B5B288B5B389B5B38AB6B48AB6B58CB7B58DB8B790BAB993BCBB95BEBE99C1BF9DC3 -C3A1C6C5A6C9C8ABCCCDB0D0D1B7D4E0CEE3F2E9F2FFFFFEFBF7FAE8DCEBDDCEE3867DA8DCCEE3 -DBCFE3EBE2EEFFFFFEFFFFFEE9E1EED3C8E0C6BBD8C0B5D4BBB0D1B6ABCEB1A6CBADA2C8A99EC6 -A59AC3A298C19E94BF9B92BE9990BC978EBB968DBB958CBA948BB9948AB9948AB9938AB99289B8 -9289B89289B89289B89289B89289B8938AB8938AB8938AB8938AB89289B8938AB9938AB9938AB9 -948AB8948AB9948BB9958CB9948CBA958CBA968DBB988EBB988FBC9890BC9A91BD9B92BE9C92BE -9C93BF9D94BF9F95C0A096C1A197C1CEC5DEFFFFFEE9E2EFA59BC4A59BC4A59CC4F4F1F6FFFFFE -B2A9CDA99FC6A89EC6AA9FC6C3B9D7FFFFFEF0EAF3A99FC6A99FC6A99FC6FFFFFEFFFFFEBEB3D3 -A99FC6A99FC6A89EC6A89EC6A89EC6A79DC5D1C8E0FFFFFEFFFFFEDDD5E7D1C8E0D1C8E0D0C7E0 -D0C7E0D0C7E0D0C7E0D0C7E0D0C7DFCEC6DFA299C2A299C2A299C3A299C2A299C2A299C2A199C2 -A298C2A299C2A39AC3A39AC3A39AC3BFB7D6F5F1F6FFFFFEFFFFFEFFFFFEEFEAF3B4AACEA59BC4 -A49BC4A59BC4A59BC4A59BC4A59BC4D0C7E0FFFFFEFFFFFEB9B0D1A49BC4A49BC4A399C3A39AC3 -A399C3A299C2A298C2A298C2A198C2A097C2A197C1A097C19F95C09F95C0FFFFFEFFFFFEE6DFED -9C92BE9B91BD9A91BD9A91BD9990BC988FBC988FBC978EBB968DBB968DBB958CBA958CBA948BB9 -948BB9948AB9938AB89289B89289B89289B89189B89289B89289B89289B89289B8938AB89189B8 -9189B89189B89189B89189B89189B89189B89289B89189B89289B89289B89289B89289B8938AB9 -948BB9948BB9948CBA948CBA958DBA968EBB988FBC9990BD9B92BE9D95C0A198C2A49BC4A89FC7 -ACA3C9B0A7CCB5ACCFBAB2D3C1B9D7C7C0DBEBE7F1FFFFFEFFFEFDECE9F2E1DEEDDEDCEC8682AC -E0DFEEE8E7F2F8F7FAFFFFFEF8F8FAEBECF5DBE1EFD7DEEED3DBECD0DAECCED8EBCBD6EAC8D5E9 -C5D3E8C3D1E7C0D0E7BECEE6BDCDE5BCCDE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BBCCE5BCCDE5BCCDE6BCCDE6 -BDCEE6BDCEE6BECEE6BECFE7BECFE7BFCFE7C1D1E8C1D0E7C2D1E8C3D3E9F2F4F9FFFFFEE2E9F4 -C4D3E9C5D4E9CDD9ECFFFFFEFAFBFCC6D5EAC7D5EAC8D6EAC6D5EAE9EDF6FFFFFEE8EDF6C6D4E9 -C7D5EAD6DFEFFFFFFEFFFFFEC7D4E9C6D5EAC7D5EAC6D5EAC7D5EAC7D5EAC7D5EAC7D5EACBD8EC -FFFEFDFFFFFEE7ECF6C6D5EAC6D5EAC6D5EAC6D5EAC6D5EACAD8EBFFFEFDFFFEFDE5EBF5C6D4E9 -C5D5EAC6D4E9C5D4E9C5D4E9C4D3E9E4E9F4FFFEFDFFFFFED3DEEEC4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDF3F4F9 -D5DFEFC5D4EAC6D6EAC5D4EAC5D4E9C6D4E9C6D5EAC6D5EAC5D4EAFFFFFEFFFEFDF2F4F9C5D4E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8C3D2E8C3D3E9C3D3E9C1D1E8C2D1E8C1D0E7 -E0E7F3FFFFFEFFFFFECFDBEDBECFE7BECFE7BECEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6 -BBCCE5BBCCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BCCDE6BDCEE6BFCFE7C0D0E7C2D1E8C4D3E9C7D5EA -C9D7EBCDD9ECD0DCEED4DFEFD8E1F0DCE5F2EAEEF6FAFBFCFFFFFEFBFCFCF6F8FAF2F4F9F3F4F9 -BDB9D3666595F5F6FAF6F7FAF7F8FBF7F8FBF8F8FBFAF9FBFAFAFCFAFBFCFAFBFCFBFBFCFCFBFC -FCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7BECFE7BDCFE7BECFE7BFCFE7BECFE7BECFE7BECFE7C6D5EAFAFAFBFEFEFC -FDFDFCFFFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E0EF -D8E2F0D7E0EFD9E2F1D7E1F0D8E1F0D8E1F0E5EBF5FFFEFCFFFDFCFEFDFCFEFDFCFFFDFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F9FAFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFE7E78A3474E82D4CCDFFFFFFEFFFEFCFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFD7D78A45E5E8F -F3EEF5FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF4F7FEF3F7FEF2F6FDF0F5FDEFF4FDEDF3FDECF3FDEBF29186AD9285ADFBE7EFFEEFF5FFFFFE -FFFFFEFCEDF3F8D6E6F4CBDEF3C5DAF1BFD7EEBAD3EDB6D0EBB1CDEAADCBEAA9C8E8A5C5E7A2C3 -E7A0C2E59DC0E59CBFE499BEE498BDE497BCE497BCE497BCE396BCE396BCE396BBE396BBE395BB -E395BBE395BBE394BAE396BBE396BBE396BBE396BBE395BBE396BBE396BBE396BBE396BCE396BC -E497BCE497BCE498BDE498BDE499BEE499BDE49ABEE49BBFE59CBFE59CC0E59DC0E69EC1E69FC1 -E7A0C2E7A0C2E7A1C3F5CDE0FFFFFEFBE6EFE8A4C5E8A5C5E8A6C6E8A7C7E8A6C6F9DBE9FFFFFE -FFF9FAE9A8C7E9A8C7E9A8C7F6D1E2FFFFFEFBE7EFE9A8C7E9A8C7E9A8C7E9A8C7E9A8C7E9A8C7 -E9A8C7E9A9C8F3C6DBFFFFFEFFFEFDEFB8D2E9A8C8E8A8C7E9A8C7E9A8C7E9A8C7E9A8C7FAE1EC -FFFFFEFDF3F7E9A9C8E8A7C7E9A8C7E8A9C8E9A8C8E9A8C7E9A8C7E9A8C8FFFFFEFFFFFEF0BED6 -EAAAC9EAABC9EAAAC9EAAAC9EDB4CFFFFFFEFFFFFEF4CCDFEAAAC9EAAAC9EAAAC9FFFFFEFFFFFE -F0BED6EAA9C8E9A8C8E9A8C7E9A8C7E9A8C7E8A7C7FFFEFDFFFFFEFEF2F6E8A7C6E8A6C6E8A7C6 -E8A7C6E8A5C5E8A5C5E8A4C5E7A5C5E7A4C5E7A3C4E7A3C4E7A3C4E7A2C3E7A1C3F5CDE0FFFEFD -FFFFFEEDB5D0E69EC1E59DC0E59CC0E59CC0E59BBFE49ABEE49ABEE499BEE499BDE498BDE398BD -E497BCE497BCE497BCE396BCE396BBE396BBE396BBE396BBE395BBE396BBE396BBE396BBE396BB -E395BBE394BAE395BBE395BBE395BBE395BBE395BBE395BBE396BBE396BCE396BCE396BCE397BC -E397BCE397BCE398BDE49ABEE49BBFE69EC1E59FC2E6A2C4E7A5C6E7A8C8E8ACCAEAB0CDEAB5D0 -ECB9D3EDBFD7EFC4DAF7E3EDFEF9FAFFFFFEF9ECF3F1D7E7EDD3E48C7EA8EBD2E4F0DAE9FAF2F6 -FFFFFEF9F1F6EDD9E9DBBFD9D6B9D5D2B3D1CEADCDCAA8CAC7A4C7C39FC4C19BC2BE98BFBC94BD -B991BBB88FB9B68DB8B58BB7B48AB6B489B5B489B5B388B5B388B5B388B5B388B5B287B4B287B4 -B287B4B287B4B288B5B288B5B287B4B388B5B389B5B389B5B48AB6B48AB6B48AB6B58BB7B58CB7 -B58DB8B68DB8B78EB9B88FBAB890BAB991BBB992BBBA93BCBB94BDBC95BDDCC5DDFFFFFEF0E1ED -BE98C0BE99C0BE99C1E8D6E7FFFEFDDBC2DBC19CC2C19CC2C19DC3E4CFE3FFFFFEDDC8DFC29DC3 -C19DC3C19DC3FFFFFEFFFFFED0B3D1C19DC3C19DC3C19DC3C19CC2C19CC2C19CC2D0B2D1FFFFFE -FFFFFEDFC8DEC09BC1BF9BC1BF9BC1BF9BC1BE9AC1CFB0CFFFFFFEFFFFFEE2CDE1BD97BFBE98C0 -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBE98C0DEC8DEFFFFFEFFFFFECEB1D0C09BC1BF9BC1C09BC1BE9AC1E7D5E6 -FFFEFDFCF9FAC4A1C5BF9BC1C09BC1BF9BC1BF9BC1BF9AC1BE9AC1C09CC2BF9BC1DFC7DEFFFFFE -FFFFFED6BBD7BE99C0BE98C0BE98C0BD97BFBD97BFBD98BFBD97BFBD97BFBC96BEBC96BEBB95BD -BB94BDBA94BDBB93BCFFFFFEFFFFFEEDDDEBB991BBB88FBAB88FB9B78EB9B68DB8B68DB8B58DB8 -B58CB7B58BB7B48AB6B48AB6B48AB6B389B5B389B5B389B5B388B5B287B4B287B4B287B4B186B4 -B186B4B186B4B186B4B287B4B287B4B186B4B186B4B186B4B186B4B287B4B288B5B288B5B288B5 -B288B5B389B5B48AB6B58BB7B58DB8B68FB9B891BBBA94BDBC96BEBE9AC1C09EC4C3A2C7C6A6C9 -C9ACCDCEB2D1D2B8D5E0CEE3F2E9F2FFFFFEFCF8FAE9DCEBDDCEE3867DA8DCCEE3DCCFE3EBE2EE -FFFFFEFFFFFEEAE1EED3C9E0C7BCD9C1B6D5BBB0D2B6ABCEB2A6CBAEA2C8AA9FC6A59BC4A298C2 -9F96C09C93BE9A90BD988FBC968DBB958CBA948CBA948AB9948AB9948AB9938AB99289B89289B8 -9289B89289B8938AB8938AB8938AB8938AB8938AB89289B8938AB9938AB9948AB9948AB9948BB9 -948BB9968CBA958DBA958DBA978EBB988FBC988FBC9890BC9A91BD9B92BE9C92BE9C93BF9D94BF -9E95C09F96C0A197C1CEC5DEFFFFFEE8E1EEA49BC4A59BC4A59CC4DED5E8FFFEFDCDC3DDA89EC6 -A79EC6AAA0C7D8CFE4FFFEFDD4CBE2A99FC6A89EC6A99FC7FFFFFEFFFFFEBEB3D3A99FC6A89EC6 -A89EC6A89EC6A89EC6A79DC5D1C8E0FFFFFEFFFFFEBBB1D2A59CC4A59BC4A59AC3A59BC4A499C3 -A39AC3A49BC4A39AC3A399C3A299C2A298C2A199C2A398C2A299C2A299C2A299C2A299C2A299C2 -A39AC3A299C3A49BC4A49BC4A49BC4CBC1DCFAF8FAFFFFFEFFFFFEFAF9FBB4AACEA59BC4A59BC4 -A59BC4A59BC4A59BC4D0C7E0FFFFFEFFFEFDC5BCD9A49BC4A49BC4A39AC3A299C3A199C2A299C3 -A298C2A298C2A198C2A198C2A196C1A096C09F96C09E95C0FFFFFEFFFEFDE4DDEC9C93BF9B92BE -9A91BD9A91BD9990BC988FBC978EBC978EBB978DBB968CBA958CBA958CBA948BB9948BB9948AB9 -938AB8938AB9938AB9938AB99289B8938AB8938AB8938AB8938AB8938AB89189B89289B89189B8 -9189B89189B89189B89289B89289B89289B89189B89289B89289B8938AB9948BB9948BB9948BB9 -948CBA948CBA958CBA968EBB988FBC9A91BD9C94BF9F96C0A199C2A59CC5AAA0C7ADA4CAB1A8CD -B6ADD0BBB3D3C1B9D7C8C0DBEBE6F0FFFFFEFFFFFEEDE9F3E3E0EEDFDDEC8682ACE0DFEEE8E7F2 -F8F7FAFFFFFEF8F7FAEBECF5DBE1EFD7DEEED4DCEDD0DBEDCED9ECCBD6EAC9D5EAC5D3E8C4D1E8 -C2D1E7BFCFE6BECEE6BCCDE5BCCDE5BBCCE5BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5 -B9CBE5B9CBE5B9CBE5BACCE5B9CBE5BACCE5BACCE5BBCCE5BCCDE5BCCDE6BCCDE6BDCEE6BDCFE7 -BECEE6BECFE7BFCFE7C0D0E7C1D1E8C1D0E7C2D1E8C3D2E8F2F4F9FFFFFEE2E9F4C4D3E9C5D4E9 -C5D4E9F9FAFBFFFFFED1DCEDC7D5EAC7D5EAC7D5EAF6F8FAFFFFFED7E0EFC7D5EAC6D5EAD6DFEF -FFFEFDFFFFFEC7D5EAC7D5EAC8D6EAC8D6EAC7D4E9C7D5EAC7D5EAC8D6EADCE5F2FFFFFEFFFFFE -D1DDEEC7D5EAC6D5EAC6D5EAC7D6EAC6D5EAC6D5EAEFF3F8FFFFFEFAFAFCC7D5EAC6D5EAC6D4E9 -C5D4E9C4D3E9C6D4E9E2E8F3FFFFFEFFFFFED8E0EFC4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C3D2E8C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -FFFFFEFFFFFEF2F4F9C5D4EAC5D4E9C7D4E9C6D5EACEDAEDFFFFFEFFFFFEE3E9F4C6D5EAC6D5EA -C6D5EAC6D5EAC7D5EAC6D5EAC5D4EAC6D5EAC7D5EAFFFEFDFFFFFEF9FAFBC4D2E8C5D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8C3D2E8C3D3E9C2D1E8C3D2E8C0D1E8C1D1E8E0E7F3FFFEFD -FFFFFECEDAECBFCFE7BDCFE7BFCFE6BDCFE7BDCFE7BDCEE6BCCDE6BCCDE6BCCDE5BBCCE5BBCCE5 -BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BBCCE5BBCDE6BCCDE6BDCFE7BFCFE7C0D0E7C2D1E8C4D3E9C7D5EACAD7EBCEDAED -D2DDEED5DFEFD8E1F0DCE5F2EBEEF6FAFBFCFFFFFEFBFCFCF6F8FAF3F4F9F4F5F9BDB9D3666595 -F5F6FAF6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BFCFE7BECFE7BECFE7BECFE7BECEE6C4D4E9F2F4F9FEFEFCFEFCFBFFFEFCFDFDFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0DFE7F3FDFCFCFEFDFCFFFDFCFFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F7F9FB -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE7E79A4474E81D5CDE0FFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFDFCFFFFFDFFFFFEFEFEFD7E78A35E5E8EF2EDF4FFFFFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F7FEF3F7 -FEF2F6FEF1F6FDEFF4FDEDF3FDECF3FDEBF29186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEDF3 -F8D7E6F4CCDFF3C6DBF1C0D7EFBBD4EEB7D1ECB2CEEBAECBEAAAC9E8A6C6E7A3C4E7A0C2E69EC1 -E59CC0E49ABEE499BDE498BDE497BCE497BCE497BCE396BCE396BCE396BBE395BBE395BBE395BB -E395BBE396BBE396BBE396BBE396BBE396BBE395BBE396BBE396BBE396BCE396BCE497BCE497BC -E498BDE498BDE499BEE59ABEE59BBFE49BBFE59CC0E59CC0E59DC0E69FC1E69FC2E7A0C2E7A0C2 -E7A2C3F5CEE0FFFFFEFBE6EFE8A5C5E8A6C6E8A7C6E9A7C7E8A7C7ECB2CEFFFFFEFFFFFEF3C7DB -E9A8C7E9A9C8F6D1E2FFFFFEFCE7F0E9A9C8E9A9C8E9A9C8E9A9C8E8A9C8EAA9C8E8A9C8E9A9C8 -FBE2EDFFFEFDFFFFFEFBE7EFFCE7F0FBE7EFFCE7F0FCE7F0FCE7F0FCE7F0FEF3F7FFFFFEFFFFFE -EEB7D2E9AAC9E9A8C7E9A9C8E9A9C8E9AAC8EAAAC9EAAAC9FFFFFEFFFEFDF1BFD6EAAAC9EAAAC9 -EAAAC9EAAAC9EAAAC9FADCE9FFFFFEFEF3F7E9AAC8EAAAC9EAAAC9FFFFFEFFFFFEF0BED6EAABC9 -E9AAC8E9A9C8E9A9C8E9A9C8E9A9C8FBE6EFFFFFFEFFFFFEE9A8C8E8A7C6E8A7C6E8A5C5E8A6C6 -E8A5C5E7A5C5E7A5C5E7A4C5E7A4C5E7A3C4E7A3C4E7A2C3E7A1C3FBE5EEFFFFFEFFFEFDEAAAC9 -E69FC1E59DC0E59CC0E59CC0E49BBFE49BBFE59ABEE49ABEE499BEE498BDE498BDE498BDE497BC -E497BCE396BCE396BCE396BBE396BBE396BBE395BBE396BBE396BBE396BBE396BBE395BBE394BA -E395BBE395BBE395BBE395BBE395BBE396BBE396BBE396BCE396BCE397BCE396BCE397BCE398BD -E399BEE49BBFE59CC0E69FC1E6A1C3E6A3C4E7A6C6E8AAC9E8AECBEAB1CEEBB6D1EDBBD4EDC0D7 -EFC5DBF7E3EDFEF9FAFFFFFEF9ECF3F1D7E7EDD3E48C7EA8ECD3E4F0DAE9FAF2F6FFFFFEF9F1F6 -EDDAE9DBC0D9D6B9D5D2B3D1CEAECECAA9CAC8A5C8C4A0C5C19CC2BF99C0BD96BEBA93BCB990BA -B78EB9B58CB7B48AB6B48AB6B489B5B389B5B388B5B388B5B388B5B388B5B287B4B287B4B287B4 -B288B5B288B5B288B5B388B5B389B5B389B5B48AB6B48AB6B48AB6B58BB7B58CB7B68DB8B68DB8 -B78EB9B890BAB991BBB991BBB992BCBA93BCBB94BDBC96BEDCC5DDFFFFFEF0E2EEBE99C0BE9AC1 -C19BC2D2B6D3FFFEFDEDDCEAC09DC3C19DC3C19DC3F8F2F6FFFFFECDAECEC19DC3C19EC3C19CC2 -FFFFFEFFFFFED0B3D1C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3CFB2D0FFFFFEFFFFFEDEC8DE -BF9BC1BF9BC1BF9BC1BE9AC1BE9AC1BE99C0FFFEFDFFFEFDEFE1EDBE99C0BE98C0BE98C0BD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0 -BE99C0BE99C0DDC6DDFFFFFEFFFFFECDB0CFBF9BC1BF9BC1BF9BC1BF9AC1C7A6C9FFFFFEFFFEFD -DEC8DEBF9BC1BF9BC1BF9BC2BF9BC1BF9BC1BF9BC1BF9AC1BF9BC1CDAFCFFFFFFEFFFFFEDDC7DE -BE98C0BE99C1BD99C0BE99C0BD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBC94BDBB95BEBC94BD -CAABCCFFFEFDFFFFFEE4D0E4B990BAB890BAB88FBAB78FB9B68EB9B68DB8B58DB8B58CB7B58BB7 -B48AB6B48AB6B48AB6B389B5B389B5B389B5B388B5B287B4B287B4B287B4B287B4B186B4B287B4 -B287B4B287B4B287B4B186B4B186B4B186B4B187B4B288B5B288B5B288B5B288B5B389B5B389B6 -B48AB6B58CB7B68DB8B790BAB992BCBA95BDBC98BFBF9CC2C29FC4C5A4C7C7A8CACBAECECEB3D1 -D2B9D5E1CFE3F2EAF2FFFFFEFCF8FAE9DCEBDDCEE3867EA8DDCFE4DDCFE4EBE2EEFFFFFEFFFFFE -EAE1EED4C9E0C8BCD8C2B6D5BDB2D2B7ACCFB2A7CCAEA3C9AAA0C7A69CC4A398C2A096C19D94BF -9B91BD988FBC978EBB958CBA958CBA948BB9948AB9948AB9948AB9938AB9928AB99289B89289B8 -938AB8938AB8938AB8938AB8938AB89289B8938AB9938AB9938AB9948AB9948BB9948CBA958CBA -958CBA968DBB988EBB988FBC9890BC9990BC9A91BD9B92BE9C93BE9D94BF9E94BF9E95C0A096C1 -A197C1CFC6DEFFFFFEE8E1EEA59BC4A59BC4A69DC5C0B7D6FFFFFEE2DCEBA89EC6A99FC6A99EC6 -F5F2F7FFFFFEB8ADD0A99FC7A99FC6A99FC6FFFFFEFFFFFEBEB3D3A99FC6A99FC6A89EC6A89EC6 -A99FC6A89EC6D2C9E0FFFFFEFFFFFEBAB2D2A69DC5A59CC4A59BC4A59BC4A49BC4A49BC4A49AC3 -A299C3A49AC3A299C3A39AC3A399C3A39AC3A39AC3A39AC3A299C2A39AC3A39AC3A39AC3A39AC3 -A399C3A49AC3A39AC3A39AC3AAA0C7E8E3EFFFFEFDFFFFFEF5F1F6AAA0C7A59CC4A59CC4A59BC4 -A59BC4BAB0D1FFFEFDFFFFFECFC6DFA49BC4A49AC3A499C3A49AC3A299C3A39AC3A399C3A299C2 -A298C2A198C2A197C1A198C2A096C1B6ADCFFFFEFDFFFFFED9D0E59C93BE9C92BE9B92BE9B91BD -9A90BD9990BC988FBC988FBC988EBB968DBB958CBA958CBA948BB9948BB9948BB9948AB8938AB9 -938AB9938AB99289B8938AB8938AB8938AB8938AB89289B89189B89189B89189B89189B89289B8 -9289B89289B89289B89289B89289B89289B89289B8938AB9948CBA948BB9948CBA948CBA958CBA -968DBB978EBB9890BD9B92BE9D95C0A097C1A39AC3A69DC5AAA1C8AEA5CAB2A9CDB7AED0BDB4D4 -C3BBD8C9C1DCEBE6F0FFFFFEFFFFFEEDE9F3E2DFEEDFDDEC8682ACE1DFEEE8E7F2F8F7FAFFFFFE -F8F7FAEBECF5DBE1EFD7DEEED5DDEDD1DBEDCED9ECCCD7EBC9D5EAC5D3E8C4D1E8C2D1E7C0D0E7 -BECEE6BCCDE5BCCDE5BBCCE5BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5 -B9CBE5BACCE5B9CBE5B9CBE5BACCE5BBCCE5BCCDE5BCCDE6BCCDE6BDCEE6BDCFE7BECEE6BECFE7 -BFCFE7C0D0E7C1D1E8C1D1E8C2D1E8C3D2E8F2F4F9FFFFFEE3E9F4C4D3E9C5D4E9C6D4E9E8ECF5 -FFFFFEE1E7F3C7D5EAC7D6EACEDAEDFFFEFDFEFDFDC6D5EAC7D5EAC7D5EAD6DFEFFFFFFEFFFEFD -C7D6EAC7D5EAC7D5EAC7D5EAC7D4E9C7D5EAC8D6EAC6D5EAEFF3F8FFFEFDFFFFFEF2F3F8F3F4F9 -F2F4F9F4F6FAF2F3F8F3F4F9F3F4F9FAFBFCFFFEFDFFFFFED1DDEEC6D4E9C5D4E9C7D5EAC6D3E9 -C5D4E9D3DFEFFFFFFEFFFEFDE3E9F4C4D3E9C3D3E9C4D3E9C4D3E9C4D2E8C4D2E8C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9FFFFFEFFFEFD -F2F4F9C5D4E9C7D5EAC5D4E9C6D4E9C6D4E9ECEFF7FFFEFDFDFCFCCBD9ECC6D4E9C6D5EAC6D5EA -C6D5EAC6D5EAC7D4E9C6D4E9C6D3E9F3F5F9FFFEFDFFFFFEC5D4E9C4D3E9C4D3E9C5D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C4D2E8C1D1E8C3D2E8C1D1E8F1F3F9FFFFFEFFFFFEC7D5EA -BECFE7BDCFE7BECEE6BDCFE7BDCEE6BDCEE6BCCDE6BCCDE6BCCDE5BBCCE5BACCE5BACCE5B9CBE5 -B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5 -BCCDE5BCCDE6BDCEE6BECFE7C0D0E7C2D1E8C4D3E9C5D4EAC8D6EBCBD8ECCFDBEDD2DDEED6DFEF -D9E3F1DDE5F2ECEFF7FAFBFCFFFFFEFBFCFCF6F9FBF3F4F9F4F5F9BEB9D3666595F5F6FAF6F7FA -F7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BFCFE7BECFE7BECFE7BECFE7 -BECFE7BDD0E7BED0E7BECFE7BFCFE7EFF2F8FFFDFCFFFDFCFEFDFCFDFEFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D7E0EFD9E2F1D8E1F0D7E1F0D8E1F0 -D9E3F1FBFBFCFFFFFDFFFDFCFEFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F8F6F7FAFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFD7E79A4474E82D5CDE0FFFFFEFFFFFEFFFEFDFFFFFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFDFFFEFD7E78A25E5E8EF2EDF4FFFFFEFFFEFDFFFFFEFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6 -FDEFF4FDEEF4FDECF3FDEBF29186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEDF3F8D7E6F4CCDF -F3C7DBF1C1D8EFBBD4EEB7D1EDB3CEEBAFCCEAABC9E8A7C6E8A4C4E7A1C3E69FC1E59DC0E49BBF -E499BEE499BDE498BDE497BCE497BCE396BCE396BCE396BBE396BBE396BBE396BBE395BBE396BB -E396BBE396BBE396BBE396BBE396BBE396BBE396BBE396BCE396BCE498BDE497BCE498BDE498BD -E499BEE59ABEE59ABEE49BBFE59CBFE59CC0E59DC0E69FC1E69FC2E7A0C2E7A0C2E7A2C3F5CEE0 -FFFFFEFBE6EFE8A5C5E8A5C5E7A6C6E8A7C6E8A7C6E8A7C7F9DCE9FFFEFDFEF2F6EAA9C8E9A8C7 -F6D1E2FFFFFEFCE7F0E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8E9A9C8EBAFCCFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF9D8E6E9A9C8 -E8A9C8EAA9C8E8A9C8E9A9C8EAA9C8E9A9C8FFFFFEFFFFFEF0BED6EAAAC9EAAAC9EAABC9EAAAC9 -EAAAC9EDB4CFFFFEFDFFFEFDF3C9DDE9AAC8EAAAC9FFFFFEFFFFFEF0BDD5E9A9C8E9A9C8E9A9C8 -E9A9C8E9A8C7E9A8C7F9DBE9FFFFFEFFFFFEEFBBD4E8A7C7E8A6C6E8A6C6E8A6C6E7A5C5E7A5C5 -E7A5C5E7A3C4E7A3C4E7A3C4E7A3C4E7A2C3E6A1C3FFF9FAFFFEFDFFF9FAE69FC1E59DC0E59DC0 -E59CC0E59CBFE49BBFE49BBFE59ABEE49ABEE499BEE498BDE498BDE498BDE497BCE497BCE396BC -E396BCE396BCE396BBE395BBE395BBE396BBE396BBE396BBE396BBE395BBE395BBE395BBE395BB -E396BBE396BBE396BBE396BBE396BBE396BCE397BCE397BCE397BCE398BDE398BDE49ABEE49BBF -E59DC0E69FC2E6A2C3E7A5C5E8A8C7E8ABC9E9AFCCEBB3CFEBB7D2EDBCD5EEC0D8F0C6DCF7E4ED -FEF9FAFFFFFEF9ECF3F1D7E7EED3E48C7EA8ECD3E4F0DBEAFAF2F6FFFFFEF9F1F6EDDAE9DCC0DA -D7BBD6D3B5D3CFB0CFCBAACCC8A5C8C5A2C6C29DC3BF99C0BD96BEBB93BCB991BBB88FB9B68DB8 -B58BB7B48AB6B489B5B489B5B388B5B388B5B489B5B488B5B388B5B288B5B288B5B288B5B288B5 -B288B5B389B5B389B5B389B5B48AB6B48AB6B48AB6B58BB7B58CB7B68DB8B68DB8B78EB9B88FBA -B990BAB991BBB993BCBA93BCBB94BDBC95BDDCC5DDFFFFFEF0E1EDBE98C0BF99C0BD99C0BF9BC1 -FFFFFEFFFFFEC4A2C6C19DC3C8A8CAFFFFFEF9F2F7C19CC2C19DC3C19DC3C19DC3FFFFFEFFFEFD -D0B2D1C19CC2C19DC3C19DC3C19DC3C19DC3C19CC2CFB2D0FFFFFEFFFFFEDEC8DEBF9BC1BF9BC1 -BF9BC1BE9AC1BE9AC1BF99C0FCF8FAFFFFFEFDF8FABE99C0BE97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE99C0 -DDC7DEFFFEFDFFFEFDCEAFCFBE9AC1BE9AC1BF9AC1BF9BC1BF9BC1E8D6E7FFFFFEFDF9FAC4A0C5 -BF9BC1BF9AC1BF9BC2BE9AC1BE9AC1BE9AC1BE99C0C7A6C9FFFEFDFFFFFEF0E2EEBE99C0BE99C0 -BD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBC95BDBC96BEBC95BDBB94BDBA93BCD7BCD7FFFEFD -FFFFFED6BCD7B991BBB890BAB88FB9B68EB9B68DB8B68DB8B58DB8B58CB7B58BB7B48AB6B48AB6 -B48AB6B389B5B389B5B389B5B388B5B287B4B287B4B287B4B287B4B287B4B287B4B287B4B287B4 -B287B4B287B4B287B4B287B4B288B5B288B5B288B5B288B5B288B5B389B5B48AB6B58BB7B58DB8 -B78EB9B891BBB993BCBC96BEBE99C0BF9DC3C3A0C5C5A4C8C8A9CBCCAECECFB4D2D3BAD6E2D0E3 -F2E9F2FFFFFEFBF8FAEADEECDECFE4877EA8DECFE4DDCFE4ECE3EFFFFFFEFFFFFEEAE1EED4CAE1 -C8BEDAC3B8D6BDB3D3B8ADCFB3A8CCAEA4C9AAA0C7A79DC5A499C3A196C19E94BF9C92BE9990BC -988EBB968DBB958CBA948CBA948BB9948AB9948AB9948AB9938AB9928AB9938AB9938AB8938AB8 -938AB8938AB8938AB8938AB8948AB9938AB9938AB9948AB9948BB9948BB9958CB9958CBA968DBB -988EBB988FBC9890BC9990BC9A91BD9B92BE9C93BE9D93BE9E94BF9F95C0A096C1A197C1CEC5DE -FFFFFEE8E1EEA49BC4A59BC4A59CC5A69CC4FFFFFEFFFFFEACA3C9A79EC6B3A9CDFFFEFDF5F1F6 -A99FC6A99FC6AA9FC6A99EC6FFFFFEFFFEFDBDB3D3A89EC6A89EC6A89EC6A89EC6A89EC6A79DC5 -D2C9E0FFFFFEFFFEFDBBB1D2A59CC4A59CC4A59BC4A49BC4A49BC4A49AC3A39AC3A39AC3A39AC3 -A399C3A499C3A39AC3A399C3A399C3A398C2A39AC3A39AC3A299C3A39AC3A39AC3A49BC4A49AC3 -A49AC3A49AC3A49BC4A59BC4E9E2EFFFFFFEFFFEFDD0C7DFA59BC4A59BC4A59BC4A59BC4AFA6CB -FFFEFDFFFEFDE8E1EEA49AC3A49AC3A299C3A299C3A39AC3A499C3A299C2A198C2A197C1A197C1 -A197C1A096C19F95C0C7BEDAFFFFFEFFFEFDC5BCD99C93BE9C93BF9B92BE9A91BD9A90BD9990BC -988FBC988FBC978EBB968DBB958CBA958CBA948BB9948BB9948BB9948AB9938AB9938AB9938AB9 -9289B8938AB8938AB8938AB8938AB89289B89189B89289B89289B89289B89289B8938AB89289B8 -9289B8938AB9938AB9938AB9938AB9948BB9948BB9948CBA948CBA948CBA958DBA978EBB988FBC -9A91BD9C93BF9E95C0A198C2A49BC4A79EC6ABA2C8AFA7CBB3ABCEB9B0D2BEB5D5C4BCD9CAC2DD -EBE6F0FFFFFEFFFFFEEEEAF3E3E1EEE0DEED8682ACE1E0EEE8E7F2F8F7FAFFFFFEF8F7FAEBECF5 -DCE1F0D8DFEED6DDEDD2DBEDCED9ECCCD7EBCAD6EAC6D3E9C4D2E8C3D2E8C1D0E7BFCFE6BDCEE6 -BCCDE5BBCCE5BBCCE5BBCCE5BACCE5BACCE5BACCE5BACCE5B9CBE5B9CBE5BACCE5BACCE5BACCE5 -B9CBE5BACCE5BBCCE5BBCDE6BCCDE5BCCDE6BCCDE6BDCEE6BDCFE7BECEE6BECFE7BFCFE7BFCFE7 -C1D0E7C1D1E8C2D1E8C2D1E8F2F4F9FFFFFEE3E9F4C4D3E9C4D3E9C5D4EAD6DFEFFFFFFEF6F7FA -C7D5EAC7D5EADEE5F2FFFFFEECF0F7C7D5EAC7D5EAC7D6EAD5DFEFFFFFFEFFFFFEC7D5EAC7D5EA -C7D5EAC7D5EAC7D5EAC6D5EAC7D5EACCDAECFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE7EBF4C7D4E9C6D4E9C5D4E9C5D4E9C5D4EAD1DAEC -FFFEFDFFFFFEEEF2F8C3D2E8C5D4E9C4D3E9C4D2E8C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9FFFEFDFFFFFEF2F4F9C5D4EA -C5D4E9C6D4E9C6D4E9C6D4E9CED9ECFFFFFEFFFFFEE4E9F4C6D4E9C6D4E9C6D4E9C6D4E9C6D4E9 -C6D4E9C6D4E9C6D4E9EBEFF7FFFFFEFFFFFED4DEEEC5D4E9C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D2E8C2D1E8C2D1E8C1D1E8C1D0E7FDFDFDFFFEFDFCFCFCBFCFE7BECFE7BFCFE6 -BDCEE6BDD0E7BCCDE5BDCEE6BCCDE6BCCDE6BCCDE5BBCCE5BBCDE6BBCCE5BACCE5B9CBE5BACCE5 -B9CBE5B9CBE5B9CBE5B9CBE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BCCDE6BCCDE6 -BDCFE7BFCFE7C0D0E7C3D2E8C4D3E9C6D5EAC9D7EBCCD9ECCFDBEDD3DEEED7E0EFDAE3F1DEE5F2 -ECF0F7FAFBFCFFFFFEFBFCFCF6F9FBF3F4F9F4F6FABEB9D3666595F6F7FAF6F8FAF7F8FBF8F8FB -F9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDCFE7BFCFE7BECFE7BECFE7BFCFE7 -BECFE7BECFE7E6EBF5FFFEFCFEFCFBFEFDFCFEFEFCFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0D8E0EFD8E1F0D8E1F0D8E0EFF8F8FBFFFDFC -FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F4F6FAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFD7D78A4474E82D5CDE0FFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFDF2EDF37E79A45E5E8FF2EEF4FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF4F7FEF3F7FEF2F6FEF2F6FDF0F5FDEEF4 -FDEDF3FDECF39186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEDF3F8D8E7F4CCDFF3C7DBF1C2D8 -F0BDD5EEB8D2EDB3CFEBAFCCEAABCAE9A8C7E8A5C5E7A2C3E7A0C2E69EC1E59CBFE59ABEE499BD -E498BDE498BDE497BCE497BCE497BCE396BCE396BCE396BCE396BBE396BBE396BBE396BBE396BB -E396BBE396BBE396BBE396BCE497BCE396BCE397BCE497BCE497BCE498BDE498BDE499BDE49ABE -E59BBFE49BBFE59CBFE59CC0E59DC0E69EC1E69FC1E7A0C2E7A0C2E7A1C3F5CDE0FFFFFEFBE6EF -E8A4C5E8A5C5E8A5C5E8A7C6E9A8C7E8A6C6ECB2CEFFFFFEFFFFFEF3C7DBE9A8C7F6D1E2FFFFFE -FCE7F0E9A9C8E9A9C8E9A9C8E9A9C8E9A8C8E9A9C8E8A7C7F3C7DBFFFEFDFFFFFEF3C7DBF0BCD5 -EFBBD4EFBCD5F0BCD5F0BCD4F0BCD5EFBCD4F1BDD5FBE7EFFFFFFEFEF2F6EAA9C8E8A8C7E9A8C7 -E9A8C7E9A8C7E9A8C7E9AAC8FFFEFDFFFFFEF0BDD5E9A9C8E9A9C8E9A8C7E9A9C8EAAAC9E9AAC8 -FADCE9FFFFFEFEF2F6EAAAC9E9A9C8FFFEFDFFFFFEF0BDD5E9A9C8E9A9C8E9A8C7E9A8C7E9A8C7 -E9A8C7F3C6DBFFFFFEFFFFFEF7D6E5E8A6C6E8A6C6E8A6C6E8A5C5E8A5C5E7A5C5E7A4C5E7A3C4 -E7A3C4E7A3C4E7A2C3E7A1C3ECB2CEFFFFFEFFFEFDFADDEAE59EC1E69FC1E59DC0E59CC0E59CC0 -E49BBFE59BBFE59ABEE499BEE499BDE498BDE498BDE498BDE497BCE396BCE396BCE396BCE497BC -E497BCE396BBE396BBE396BBE396BBE396BBE396BBE395BBE395BBE395BBE396BBE396BBE396BC -E396BCE396BCE396BCE397BCE397BCE397BCE397BCE499BDE499BEE49BBFE59DC0E69FC1E6A1C3 -E6A3C4E7A6C6E8A9C8E9ADCAEBB1CDECB5D0EDB9D3EDBDD6EFC2D9F0C8DDF7E4EDFEF9FAFFFFFE -FAECF3F1D7E7EED4E58C7EA8EDD3E5F1DBEAFAF2F6FFFFFEF9F1F6EEDBEADDC2DBD8BCD7D3B6D3 -D0B1D0CCABCCC9A7C9C6A3C7C39EC4C09AC1BD97BFBC94BDBA92BBB990BAB78EB9B58BB7B48AB6 -B48AB6B489B5B489B5B489B5B489B5B489B5B488B5B388B5B288B5B388B5B288B5B388B5B389B5 -B389B6B489B5B48AB6B48AB6B48AB6B58BB7B58CB7B68DB8B68DB8B68EB9B78FB9B890BAB991BB -B992BCBA93BCBA93BCBB94BDDCC5DDFFFFFEF0E1EDBE98C0BE98C0BF9AC1BF9BC1EBDBEAFFFFFE -D3B7D4BF9BC2DBC3DBFFFEFDE7D5E7C29DC3C19DC3C09DC3C29DC3FFFEFDFFFFFED0B3D1C19DC3 -C09DC3C09CC2C09CC2C09CC2C09CC2CFB1D0FFFFFEFFFFFEDEC8DEBE9AC1BE9AC1BE9AC1BE9AC1 -BE99C0BE99C0EBDAE9FFFFFEFFFEFDCAA8CABC97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BC96BEBC96BEBC97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFDDC7DEFFFFFE -FFFFFECDAFCFBE99C0BE9AC1BE9AC1BE9AC1BE9AC1C6A5C8FFFFFEFFFFFEDEC6DDBE9AC1BE99C1 -BF9AC1BE9AC1BE9AC1BE9AC1BE99C0BE99C0F9EFF5FFFFFEFFFEFDC29FC4BD97BFBE98C0BD97BF -BC97BFBD97BFBD97BFBC96BEBC96BEBC94BDBB94BDBB93BCBA94BDE9D8E8FFFFFEFFFFFEC4A2C6 -B990BAB88FBAB78FB9B68EB9B68DB8B68DB8B58CB7B58CB7B58BB7B48AB6B48AB6B48AB6B489B5 -B389B5B389B5B388B5B288B5B288B5B288B5B287B4B287B4B288B5B288B5B288B5B288B5B288B5 -B287B4B288B5B288B5B288B5B288B5B288B5B288B5B48AB6B58BB7B58DB8B78EB9B890BAB992BC -BA95BDBD97BFBE9AC1C19EC3C4A2C6C6A7C9C9ABCCCDB1D0D0B5D3D4BCD7E2D0E4F2E9F2FFFFFE -FBF8FAEBDFECDFD1E4877EA8DED0E4DDD0E4ECE3EFFFFFFEFFFFFEEBE2EED5CBE1C9BEDAC4B9D7 -BEB4D4B9AFD0B5AACDB0A6CBACA2C8A99EC6A59BC4A198C29F95C09D94BF9B91BD988FBC968DBB -958CBA958CBA948BB9948BB9948AB9948BB9948AB9938AB9948AB9938AB9948AB9948AB8938AB8 -938AB8938AB8948AB9948AB9948AB9948BB9948BB9958CB9958CBA958CBA968DBB978EBB988FBC -9890BC998FBC9A90BD9B91BD9C92BE9C93BE9D94BF9E95C09F95C0A096C1CEC5DEFFFFFEE8E1EE -A49AC3A49BC4A59CC4A69DC5E2DCEBFFFFFEC2B8D6A99EC6CCC2DCFFFFFEDED5E8A99FC6A89EC6 -A89FC7A89EC6FFFFFEFFFFFEBDB4D4A89EC6A89EC6A79DC5A89EC6A89EC6A79DC5D1C8E0FFFFFE -FFFFFEBBB1D2A59BC4A59BC4A49BC4A49AC3A499C3A39AC3A39AC3A39AC3A399C3A399C3A399C3 -A398C2A399C3A399C3A399C3A499C2A399C3A49AC3A299C2A299C3A399C3A39AC3A39AC3A399C3 -A49BC4A49AC3AFA4CAFFFEFDFFFEFDF5F2F7A39AC3A49BC4A39AC3A59BC4A39AC3F6F1F6FFFFFE -FFFFFEA9A0C7A299C2A49BC4A39AC3A399C3A399C3A199C2A197C1A298C1A096C1A097C1A096C1 -A096C0DFD8E9FFFFFEFFFFFEAEA4CA9C92BE9B92BE9A91BD9A91BD9990BC9890BC988FBC988FBC -978EBB968DBB958CBA958CBA948BB9948BB9948BB9948BB9938AB9938AB9938AB99289B8938AB8 -938AB8938AB8938AB8938AB89289B8938AB89289B89289B89289B89289B8928AB9938AB9948AB9 -948AB9948BB9948BB9948CBA948CBA948CBA948CBA958CBA968DBB988FBC9990BD9B92BE9E94BF -A097C1A299C3A59CC5A99FC7ADA4CAB1A8CCB5ACCFBAB2D2BFB7D6C5BEDACCC4DDEBE7F1FFFFFE -FFFFFEEEEAF3E4E1EFE1DEED8683ACE1E0EEE9E7F2F8F7FAFFFFFEF8F7FAEBECF5DDE2F0D9E0EF -D6DEEED3DCEDD0DBEDCDD8EBCBD7EAC8D5E9C6D3E9C4D2E8C2D1E7C0D0E7BECEE6BDCEE6BCCDE6 -BCCDE5BBCCE5BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BBCDE6BBCDE6BCCDE5BDCEE6BDCEE6BDCEE6BDCEE6BECFE7BECFE7BFCFE7BFCFE7C1D0E7C1D1E8 -C2D1E8C2D1E8F2F4F9FFFFFEE3E9F4C4D3E9C4D3E9C5D4E9C5D4EAFCFBFCFFFFFECAD8EBC7D4E9 -F0F3F9FFFFFEDDE5F2C7D5EAC6D5EAC8D6EAD6DFEFFFFEFDFFFFFEC7D5EAC7D5EAC7D5EAC7D5EA -C8D6EAC7D5EAC6D5EADBE4F2FFFFFEFFFFFEDCE5F2D5DFEFD4DEEED6DFEFD5DEEED6E0F0D5DEEE -D5DFEFD5DFEFF4F5F9FFFEFDF9FAFBC5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C5D4E9FBFCFCFFFFFE -FCFBFCC5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9FFFEFDFFFFFEF2F4F9C4D3E9C4D3E9C4D3E9 -C5D4E9C5D4E9C5D4E9EBEEF6FFFFFEFEFDFDC9D7EBC6D4E9C6D4E9C5D4E9C5D4E9C5D3E8C5D4E9 -C4D3E9DCE4F1FFFEFDFFFFFEE8ECF5C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9 -C2D1E8C2D2E8C3D2E8C1D1E8CEDAEDFFFEFDFFFFFEEDF0F7BFCFE7BECFE7BFCFE6BDCFE7BDCFE7 -BCCDE5BDCEE6BDCEE6BDCEE6BCCDE5BBCDE6BBCDE6BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BBCDE6BCCDE6BDCEE6BECFE7C0D0E7 -C1D1E8C4D3E9C5D4E9C7D5EACAD7EBCDD9ECD0DCEDD4DFEFD8E1F0DBE4F2DFE6F2ECF0F7FAFBFC -FFFFFEFBFCFCF6F8FAF3F4F9F4F6FABFB9D3666595F6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2 -BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7BDD0E7BFCFE7BECEE6BECFE7D6E1F0 -FFFDFCFEFDFCFEFDFCFFFDFCFDFCFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E2F0D7E0EFD9E2F1D8E1F0D8E1F0F1F3F9FFFDFCFFFEFCFFFDFCFEFEFC -FFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F3F5F9FDFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEA099BB474E82BAB2CEFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF1ECF35E5E8F -5E5E8FF2EEF4FFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFB -FFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF3F7FEF2F6FEF2F6FDF0F5FDEFF4FDEDF3FDECF3 -9186AD9285ADFCE7F0FEF0F5FFFFFEFFFFFEFCEEF4F8D9E7F5CEE0F3C7DCF1C2D9F0BED6EEB9D2 -EDB5D0EBB1CDEAACCAE9A9C8E8A6C6E7A3C4E7A0C2E69FC1E59DC0E59BBFE499BEE499BDE498BD -E498BDE497BCE497BCE497BCE396BCE396BCE396BCE396BBE396BCE396BCE396BCE396BBE396BB -E396BBE396BCE497BCE397BCE398BDE497BCE498BDE499BDE499BDE499BEE49ABEE59CBFE59CBF -E59CBFE59DC0E69EC1E69EC1E69FC2E7A0C2E7A1C3E7A2C3F5CEE0FFFFFEFBE6EFE7A4C5E8A5C5 -E8A6C6E8A6C6E8A7C6E9A8C7E9A8C7F9DBE9FFFEFDFEF3F7E9A8C7F6D1E2FFFFFEFCE7F0E9A9C8 -E9A9C8E9A9C8E9A9C8E9A9C8E8A7C7E9A9C8FAE0ECFFFFFEFDEDF3E8A7C6E8A7C7E8A7C7E8A7C7 -E9A8C7E9A8C7E8A7C6E8A7C7E8A7C6F3C6DBFFFFFEFFFFFEEEB7D1E8A7C7E7A6C6E9A8C7E9A9C8 -E9A8C7E9A8C7FFFFFEFFFFFEF0BED6E9A8C7E9AAC8E9AAC8E9A9C8E9A9C8E9A9C8EDB3CFFFFFFE -FFFFFEF3C7DCE9A9C8FFFFFEFFFEFDF0BDD5E9A9C8E9A9C8E9A8C7E9A8C7E8A7C7E8A7C7EBADCB -FFFFFEFFFFFEFEF3F7E8A7C6E8A6C6E8A6C6E7A5C5E8A5C5E8A5C5E8A4C5E8A4C4E7A3C4E7A3C4 -E7A3C4E7A2C3F9D9E7FFFEFDFFFFFEF1C0D7E69FC2E59DC0E59DC0E59DC0E59DC0E49BBFE59CBF -E59BBFE49ABEE499BEE499BDE499BDE499BDE498BDE397BCE397BCE497BCE497BCE497BCE396BB -E396BBE396BBE396BBE396BBE396BCE396BBE396BBE396BBE396BCE396BCE396BCE396BCE396BC -E397BCE397BCE397BCE397BCE499BDE49ABEE49ABEE59CC0E69EC1E6A0C2E6A2C3E6A5C5E8A8C7 -E8ABC9E9AECCEBB2CEECB6D1EDBAD4EDBFD7EFC4DAF0C9DDF7E4EDFEF9FAFFFFFEFAECF3F1D8E8 -EED4E58C7EA8EDD4E5F1DCEAFAF2F6FFFFFEF9F1F6EEDBEADDC2DBD9BDD7D4B7D4D1B2D0CDADCD -CAA9CAC7A4C7C39FC4C19CC2BE98C0BD95BEBA93BCB991BBB88FBAB68DB8B58BB7B48AB6B489B5 -B489B5B489B5B489B5B489B5B489B5B389B5B389B5B389B5B389B5B389B5B389B5B48AB6B489B5 -B48AB6B48AB6B48AB6B58BB7B58DB8B68DB8B68DB8B78EB9B88FBAB991BBB992BBB992BCBA93BC -BB94BDBB95BDDCC5DDFFFFFEF0E1EDBE98C0BE99C0BE9AC1BE99C1DAC2DBFFFFFEE7D5E6C09CC2 -ECDCEBFFFEFDD3B6D3C09CC2C19CC2C19CC2C19CC2FFFFFEFFFFFED0B2D1C19CC2C09CC2C09CC2 -C09CC2C09CC2C09BC1CFB1D0FFFFFEFFFFFEDEC8DEBF9BC1BE9AC1BE9AC1BE9AC1BE99C0BE99C0 -D5BBD6FFFFFEFFFFFEE6D3E5BE98BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBC96BE -BC96BEBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0DDC6DDFFFFFEFFFEFDCFB0CF -BE99C0BE99C0BE9AC1BE9AC1BE99C1BE9AC1E7D5E6FFFEFDFFFFFEC6A4C7BE9AC1BE9AC1BE9AC1 -BF9AC1BE99C0BE99C0BE99C0E2CEE2FFFEFDFFFFFED5BAD6BE98C0BD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBC96BEBB95BDBB95BDBB94BDC39EC4FFFFFEFFFFFEF8EFF5B992BCB991BBB990BA -B890BAB78EB9B78EB9B68DB8B58DB8B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B489B5B389B5 -B389B5B288B5B288B5B288B5B288B5B288B5B288B5B288B5B389B5B388B5B288B5B288B5B288B5 -B288B5B389B5B389B5B389B5B389B5B48AB6B58BB7B68DB8B88FBAB991BBB993BCBB95BEBE99C0 -BF9CC2C29FC4C5A4C7C8A9CBCBADCDCEB2D1D1B7D4D5BDD8E2D0E4F2EAF2FFFFFEFCF9FAEBDFEC -DFD1E4877EA8DFD1E5DED1E5ECE3EFFFFFFEFFFFFEEBE2EED5CBE1CBC0DBC4BAD7BFB5D4B9AFD1 -B6ABCEB2A7CBADA3C9AAA0C7A69CC4A399C3A096C09E94BF9C93BF9A91BD988EBB968DBB968CBA -948CBA948BB9948BB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9948AB9938AB8 -948AB9948AB9948AB9948BB9948BB9958CBA968DBB968DBB968DBB968EBB988FBC9890BC9990BC -9A91BD9B92BE9C92BE9C93BF9D94BF9F95C0A096C0A197C1CEC5DEFFFFFEE8E1EEA49AC3A59BC4 -A59BC4A59BC4CBC1DCFFFFFEDDD4E7A69DC5E4DCEBFFFFFEC2B8D6A89EC6A89EC6A89EC6A89EC6 -FFFFFEFFFFFEBCB2D3A79DC5A79DC5A79DC5A79DC5A79DC5A69DC5D1C8E0FFFFFEFFFFFEBAB0D1 -A59BC4A59BC4A59BC4A59BC4A49BC4A49AC3A499C3A39AC3A299C2A399C3A299C2A299C2A299C2 -A299C2A299C2A299C2A399C3A298C2A399C3A399C3A399C3A49AC3A499C3A49BC4A49BC4A49BC4 -A39AC3E9E2EFFFFFFEFFFFFEA59BC4A49BC4A59BC4A59BC4A59BC4D5CDE3FFFFFEFFFFFEC4BBD8 -A59BC4A299C2A39AC3A399C3A299C3A299C2A298C2A197C1A198C2A196C1A197C1AAA0C7FFFFFE -FFFFFEF3EFF69C94BF9C93BF9C92BE9B92BE9B92BE9990BD9990BD988FBC978FBC978EBB968DBB -968CBA968DBB958DBA948CBA948BB9948BB9948BB9948AB9948AB9938AB8938AB8938AB8938AB8 -938AB9938AB89289B89289B89289B8938AB8938AB9928AB9938AB9948AB9948AB9948AB9948BB9 -948BB9948CBA948CBA948CBA958CBA968DBB978EBB9890BC9B92BE9C93BF9F96C0A098C2A49BC4 -A79DC5AAA1C8AFA6CBB2A9CDB7AED0BCB3D4C0B8D7C6BFDBCCC5DEECE8F1FFFFFEFFFFFEEEEAF3 -E4E1EFE1DFEE8783ACE2E1EFE9E7F2F8F7FAFFFFFEF8F7FAECECF5DDE2F0D9E0EFD7DEEED4DDEE -D1DBEDCED9ECCBD7EAC8D5E9C6D4E9C4D2E8C3D1E7C0D0E7BFCFE7BECEE6BDCEE6BBCCE5BBCCE5 -BBCCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BBCCE5BBCCE5BBCDE6BBCDE6 -BBCDE6BDCEE6BCCDE5BDCEE6BDCEE6BECFE7BECFE7BFCFE7BFCFE7C1CFE7C1D1E8C2D1E8C2D1E8 -F2F4F9FFFFFEE3E9F4C4D3E9C4D3E9C4D3E9C5D4E9EFF2F8FFFEFDDCE4F1C5D4E9FDFDFDFFFFFE -CBD8ECC7D5EAC8D6EAC6D5EAD6E0F0FFFFFEFFFFFEC7D5EAC7D5EAC7D5EAC7D6EAC5D4E9C7D4E9 -C5D4EAEFF2F8FFFFFEF6F8FAC6D4E9C6D4E9C7D5EAC6D4E9C6D4E9C6D4E9C6D4E9C5D4E9C5D3E8 -DBE3F1FFFFFEFFFFFED0DCEEC5D4EAC5D4EAC5D4E9C4D2E8C4D3E9EAEEF6FFFFFEFFFFFEDAE2F0 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9FFFFFEFFFFFEF2F4F9C4D3E9C4D3E9C4D3E9C5D4EAC5D4E9 -C5D4EACDDAECFFFFFEFFFFFEECEFF7C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC9D7EB -FFFFFEFFFFFEF9FAFBC5D4E9C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D2E8C2D1E8 -C2D1E8C1D1E8EAEEF6FFFEFDFFFEFDD8E1F0C0D0E7BFCFE7BECFE7BECFE7BDCDE5BDCEE6BDCEE6 -BDCEE6BDCEE6BCCDE5BBCDE6BBCDE6BBCCE5BACCE5BACBE4BACCE5BACCE5BACCE5BACCE5BACCE5 -BACCE5BACCE5BACCE5BACCE5BBCCE5BCCDE5BCCDE6BDCEE6BDCFE7BFCFE7C1D0E7C2D1E8C4D4E9 -C6D5EAC9D7EBCCD9ECCFDBEDD1DDEED5DFEFD9E2F1DCE5F2E0E6F2EDF0F7FAFBFCFFFFFEFBFCFC -F7F8FBF4F5F9F4F6FABFB9D3656595F6F7FAF7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFBFBFC -FBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7 -BECFE7BECFE7BECFE7BDCFE7BFCFE7BECFE7BECFE7BECFE7BECFE7CFDBEDFEFDFCFDFDFCFEFDFC -FEFDFCFDFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0EAEEF6FFFDFCFFFDFCFFFDFBFFFDFCFFFEFCFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9FBFCFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDABA4C53E457BA099BBFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFED5CDE0525689736F9CF1ECF3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFF9FAFFF8FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF2F6FEF1F6FEF0F5FDEEF4FDEDF3FDECF39286AE9285AD -FCE8F1FEF0F5FFFFFEFFFFFEFDF0F5F9DAE8F7CFE1F3CADEF1C4DAF0BFD7EEBAD3EDB6D1ECB2CE -EBAECBEAABC9E8A7C7E8A5C5E7A2C3E7A0C2E59DC0E59CBFE49BBFE499BEE499BDE498BDE498BD -E497BCE497BCE497BCE396BCE396BCE497BCE396BCE396BCE396BCE497BCE396BCE396BCE497BC -E497BCE397BCE397BCE497BCE498BDE499BDE499BDE499BDE49ABEE59ABEE59BBFE59CBFE59CC0 -E59DC0E69EC1E69FC1E69FC2E7A0C2E7A1C3F5CEE0FFFFFEFBE6EFE8A4C5E8A4C5E8A5C5E8A6C6 -E8A6C6E8A7C6E9A8C7EEBAD3FFFFFEFFFFFEF4C6DBF6D1E2FFFFFEFBE7EFE8A7C7E9A8C7E8A7C7 -E8A7C7E8A7C7E9A8C7ECB2CEFFFFFEFFFFFEF4CCDFE9A8C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E9ACCAFFF9FAFFFFFEF9DBE8E9A8C7E8A7C7E8A7C7E8A7C6E8A7C7E7A6C6 -FFFFFEFFFEFDF0BDD5E8A7C7E9A8C7E9A8C7E9A8C7E8A8C7E9A8C7E8A7C7FBE6EFFFFFFEFEF3F7 -E9A8C7FFFEFDFFFFFEF0BCD5E8A7C6E8A7C7E9A8C7E8A7C7E8A7C7E8A7C7E8A7C6F8DBE9FFFFFE -FFFEFDF7D1E2E8A6C6E8A5C5E7A5C5E7A4C5E8A4C5E7A4C5E7A3C4E7A3C4E6A2C4E7A2C3ECB2CE -FFFFFEFFFFFEFEF1F6E59EC1E69FC1E69EC1E59DC0E69DC0E69CBFE59CBFE59BBFE59BBFE49ABE -E499BEE499BDE499BDE398BDE497BCE397BCE397BCE497BCE497BCE497BCE396BCE396BCE397BC -E396BCE397BCE396BCE396BCE396BCE396BCE396BCE396BCE497BCE497BCE397BCE397BCE397BC -E398BDE498BDE499BDE49ABEE59CC0E69EC1E69FC2E6A2C3E6A3C4E7A6C6E8A9C8E9ACCAEAB0CD -EBB4CFECB8D2EDBCD5EEC1D8EFC4DAF3CCDFF7E6EFFFFFFEFFFFFEF9E9F1F2D9E8EED4E58C7EA8 -EDD4E5F1DBEAF9EEF4FFFFFEFCF7F9EFDCEADEC4DCDABED8D5B8D4D1B3D1CEAECECAA9CBC8A5C8 -C4A1C5C29DC3C09AC1BD97BFBC94BDBB93BCB990BAB78EB9B58CB7B58BB7B48AB6B48AB6B489B5 -B48AB6B48AB6B489B5B489B5B389B5B489B5B489B5B489B5B48AB6B48AB6B48AB6B48AB6B48AB6 -B48BB7B58BB7B58CB7B58DB8B68DB8B78EB9B88FB9B990BAB891BBBA92BBB992BCBA93BCBB94BD -DCC4DCFFFFFEF0E1EDBD97BFBE98C0BF99C0BE9AC1C6A5C8FFFEFDF8F1F6C4A1C5FFFFFEFFFEFD -BF9BC2C19CC2C09CC2C09DC3C19CC2FFFFFEFFFFFECEB1D0C09CC2C09CC2C19CC2BF9BC2BF9BC2 -BF9BC2CEB0CFFFFFFEFFFFFEDFC7DEBE9AC1BF99C0BE99C0BE99C0BE99C0BE99C0C29DC3FCF8FA -FFFFFEFCF8FAC4A3C7BD97BFBD97BFBD96BEBC96BEBD97BFBD97BFBD97BFBD97BFBD97BFD8BED9 -D5BAD6BD97BFBD97BFBD97BFBD97BFBC97BFBD98BFDDC6DDFFFEFDFFFFFECDAFCFBF99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0C3A0C5FCF7F9FFFFFEE6D3E6BF99C0BE99C0BF99C0BE98C0BE9AC1 -BE98C0BE99C0C5A3C7FFFFFEFFFFFEFCF8FAC19DC3BD97BFBD97BFBD97BFBD97BFBC96BEBC96BE -BB95BEBB95BDBB94BDBA93BCE9D8E8FFFFFEFFFFFED3B6D3B891BBB990BAB88FBAB88FBAB78EB9 -B68DB8B68DB8B58DB8B58CB7B58BB7B58BB6B48AB6B48AB6B489B5B389B5B48AB6B389B5B389B5 -B388B5B288B5B288B5B288B5B389B5B389B5B389B5B288B5B389B5B389B5B288B5B389B5B389B5 -B48AB6B48AB6B48AB6B58BB7B68DB8B78FB9B991BBB992BCBB95BDBD98BFBE9AC1C19EC3C4A2C6 -C6A6C9C9AACBCCAECECFB4D2D2B8D5D7BFD9E3D2E5F7F0F6FFFFFEF8F4F8ECE0EDDFD1E4877EA8 -DFD1E5DED1E5ECE3EFFFFFFEFFFFFEEEE6F1D6CDE3CBC1DBC6BBD8C1B6D5BCB1D2B8ADCFB3A9CD -AEA4C9ABA1C8A79DC5A59AC3A198C2A096C19D94BF9B92BE9990BC978EBB968DBB958CBA958CBA -958CB9948BB9948AB9948BB9948AB9948BB9948BB9948BB9948BB9948AB9948AB9948AB9948AB9 -948BB9948BB9948CBA948CBA968DBB978DBB968DBB978EBB988FBC988FBC9990BC9A91BD9B92BE -9C92BE9C93BF9D94BF9E94BF9F96C0A096C1CEC5DEFFFEFDE8E1EEA399C3A49AC3A59BC4A59BC4 -B0A6CBFFFFFEF5F0F6ADA3C9FFFEFDFFFFFEA79DC5A79DC5A79DC5A79DC5A79EC6FFFFFEFFFEFD -BBB2D2A79DC5A79CC5A79DC5A69DC5A69DC5A59CC5D1C8E0FFFFFEFFFFFEBAB0D1A59BC4A49BC4 -A49BC4A59AC3A298C2A499C3A299C2A299C2A199C2A299C2A199C2A299C2A299C2A299C2A299C2 -A298C2A299C2A198C2A299C2A399C3A398C2A399C3A399C3A39AC3A399C3A49AC3A49AC3E8E1EE -FFFEFDFFFFFEA49BC4A39AC3A59BC4A39AC3A59AC3AFA4CAFFFFFEFFFFFEFAF8FAA89FC7A399C3 -A199C2A299C2A299C2A298C2A197C1A197C1A197C1A197C1A096C1DFD9EAFFFFFEFFFFFEBFB6D5 -9C93BF9B92BE9B92BE9B92BE9A91BD9990BD9990BC988FBC988FBC978DBB978DBB968CBA968DBB -958CBA948BB9948BB9948BB9948AB9948AB9938AB8938AB8938AB8938AB9938AB9948AB9938AB9 -938AB9948AB9938BB9938AB9948AB9948AB9948AB9948BB9948BB9948BB9948BB9948CBA948CBA -948CBA958CBA968DBB978EBB988FBC9A91BD9C93BF9E95C0A097C1A299C3A59CC5A99FC7ACA3C9 -B0A7CCB4ABCFB9B0D2BEB5D4C3BBD9C9C0DBCEC7E0EDE8F2FFFFFEFFFFFEEEEAF3E4E1EFE1DFEE -8783ACE2E1EFE9E7F2F8F7FAFFFFFEF7F6FAECECF5E0E4F1DBE2F0D8E0EFD5DDEED2DBEDCED9EC -CDD8EBC9D6EAC7D4E9C4D3E9C4D2E8C2D1E7C0D0E7BFCFE7BDCFE7BCCDE6BBCCE5BBCCE5BBCCE5 -BACCE5BACCE5B9CBE5BACCE5BBCCE5BACCE5BBCDE6BBCDE6BBCCE5BBCCE5BBCDE6BCCDE6BCCDE6 -BDCEE6BDCEE6BDCEE6BECFE7BECFE7BECFE7BFCFE7C0D0E7C1D0E7C2D1E7C1D1E8F2F3F8FFFFFE -E2E9F4C4D3E9C4D3E9C4D3E9C4D3E9DBE4F2FFFFFEEBEFF7D8E0EFFFFFFEF3F4F9C7D4E9C6D4E9 -C6D4E9C7D4E9D5DFEFFFFFFEFFFFFEC6D4E9C6D4E9C6D5EAC5D4E9C7D4E9C5D4E9CEDAECFFFEFD -FFFFFEDFE7F3C5D4EAC5D4E9C5D4EAC5D4EAC5D4EAC5D4EAC6D5EAC5D4EAC5D4EAC9D7EBFCFBFC -FFFFFEEBEFF7C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9D2DEEEFFFFFEFFFEFDF6F7FAC4D3E9C4D3E9 -C4D3E9C5D4E9C3D3E9C4D3E9C2D2E8C3D3E9C3D3E9C3D3E9E7ECF5D2DDEEC4D3E9C4D2E8C4D4E9 -C4D2E8C4D2E8C4D3E9FFFFFEFFFFFEF2F4F9C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9 -E3E9F4FFFFFEFFFEFDCDD9ECC4D2E8C4D3E9C4D3E9C4D3E9C4D4E9C4D3E9C4D3E9EAEEF6FFFFFE -FFFFFEE2E9F4C4D4E9C4D3E9C4D3E9C4D4E9C4D3E9C2D1E8C2D1E8C1D1E8C2D1E8C2D1E8CDDAEC -FFFFFEFFFFFEF9FAFBC0D0E7BFCFE7BECFE7BECFE7BECEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6 -BCCDE6BBCDE6BBCDE6BBCCE5BACCE5BBCDE6BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5BACCE5 -BBCCE5BBCCE5BBCDE6BCCDE6BDCEE6BDCFE7BFCFE7C0D0E7C1D1E8C3D3E9C5D4E9C7D5EACAD7EB -CDD9ECCFDBEDD3DEEED6DFEFDAE3F1DDE4F1E1E8F4EDF0F7FBFCFCFFFFFEFCFCFCF6F9FBF4F6FA -F5F6FABEB9D3656595F6F8FAF7F8FBF7F8FBF8F8FBFAFBFCFAFAFCFAFBFCFAFBFCFBFBFCFCFCFC -FDFDFDFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7 -BECFE7BECEE6BECFE7BDD0E7BECFE7BECFE7CBD8ECFAFBFBFEFDFCFEFDFCFEFDFCFEFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E2F0D9E2F1D8E1F0D8E0EFD7E1F0D8E1F0 -D8E1F0D7E1F0E9ECF5FFFDFCFFFDFCFFFEFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F1F3F9F1F3F9F1F3F9F1F4F9F1F3F9F0F3F9F1F3F9F1F3F9F2F4F9F0F3F9F1F3F9FBFCFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFDD5CEE0484D827E78A2F2EFF6FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEBAB1CC464E838882ABFEFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9 -FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF0F5FDEFF4FDEEF4FDECF39286AE9186ADFCE8F1FEF0F5 -FFFDFCFFFFFEFEF3F7F9DCE9F6D1E2F4CADEF3C5DAF1C1D8F0BCD5EEB7D2EDB3CFEBAFCCEAABCA -EAA9C8E8A7C6E7A4C5E7A1C3E69FC1E59DC0E59CC0E49ABEE499BEE499BDE498BDE497BCE497BC -E497BCE497BCE497BCE497BCE397BCE397BCE397BCE397BCE397BCE397BCE497BCE497BCE497BC -E498BDE498BDE498BDE499BDE499BEE499BEE49ABEE49BBFE59BBFE59CC0E59CC0E59DC0E69EC1 -E69FC1E6A0C2E7A0C2E7A2C3F4CCDFFFFFFEFBE6EFE7A3C4E8A5C5E8A5C5E8A4C5E8A5C5E8A5C5 -E7A5C5E9A8C7FBE6EFFFFEFDFBE6EFF6D1E2FFFEFDFBE7EFE8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7F4CCDFFFFEFDFFFFFEECB2CEE8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C6E8A7C6E8A7C6 -E8A6C6E8A7C7F9DBE8FFFFFEFFF9FAE9A8C7E8A7C7E8A7C7E8A7C6E9A8C7E9A8C7FFFEFDFFFFFE -F0BCD5E8A7C6E9A8C7E8A7C7E9A8C7E9A8C7E8A7C7E9A9C8EFBBD4FFFFFEFFFFFEF0BDD5FFFFFE -FFFEFDEFBBD4E8A7C7E8A7C7E8A7C6E9A8C7E9A8C7E8A7C6E8A7C6ECB0CDFFF8FAFFFFFEFFFFFE -EDB5D0E8A5C5E8A4C5E9A5C5E7A4C5E8A4C4E7A3C4E7A2C3E7A3C4E9A7C7FDEBF2FFFFFEFFFFFE -EFBBD4E69FC1E69FC1E69EC1E69EC1E59CC0E59CC0E59CBFE59BBFE49ABEE49ABEE499BEE499BE -E399BEE499BDE498BDE498BDE498BDE497BCE397BCE397BCE396BCE396BCE397BCE397BCE397BC -E397BCE396BCE396BCE396BCE497BCE497BCE498BDE397BCE297BCE398BDE398BDE499BDE499BD -E49ABEE59CBFE59DC0E69FC1E6A1C3E7A3C4E7A6C6E8A8C7E9ABC9E9AFCCEBB2CEEBB5D0EDBAD3 -EEBED6F0C2D9F0C7DCF3CFE1F8E6EFFFFFFEFFFFFEF8E7F0F2DAE9EFD6E68E7FA9EED5E6F1DCEA -F8ECF3FFFEFDFDF8FAF1E1EDDEC5DDDBC0D9D6BAD6D3B5D2CFB0CFCCABCCC9A6C9C6A3C7C39FC4 -C19CC2BE99C0BD96BEBB94BDB992BBB88FBAB78EB9B58CB7B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B48AB6B488B5B489B5B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58BB7B58BB7 -B58DB8B58DB8B68DB8B78EB9B88FBAB990BAB991BBB991BBBB93BCBB93BCBA94BDDCC4DCFFFFFE -F1E1EDBD97BFBE98BFBD99C0BE9AC1BF9AC1F6E9F2FFFEFDDEC7DEFFFEFDEBDBEAC19CC2C09CC2 -C09CC2C09BC1C09CC2FFFFFEFFFEFDCFB2D0C09CC2C09CC2BF9AC1BF9AC1BF9AC1C09AC1CEAFCF -FFFEFDFFFFFEDDC6DDBE99C0BE9AC1BE99C0BE98C0BD97BFBD97BFBD97BFDAC0D9FFFFFEFFFFFE -EFE1EDBD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBB95BDBC96BEC8A8CAFFFFFEFFFEFDD8BED9 -BD97BFBD97BFBC96BEBD97BFBC96BEDDC5DDFFFFFEFFFEFDCEAFCEBD97BFBE98C0BD97BFBE98C0 -BE98C0BF99C0BE98C0DEC8DEFFFEFDFFFFFEC6A4C7BD97BFBD98BFBE99C0BD97BFBE98C0BD97BF -BD97BFE2CDE1FFFFFEFFFEFDE9D8E9BD96BEBD97BFBD97BFBB95BEBD96BEBC96BEBA95BDBC95BD -BB93BCD2B7D4FFFEFDFFFFFEF3E7F1B992BBB990BAB990BAB88FBAB88FBAB78EB9B68DB8B68DB8 -B68DB8B58CB7B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B389B5B389B5B489B5B389B5 -B389B5B389B5B389B5B389B5B389B5B288B5B389B5B389B5B389B5B389B6B48AB6B48AB6B48AB6 -B58BB7B58DB8B78EB9B891BBB992BBBA94BDBC97BFBE99C1C09CC2C3A0C5C5A4C7C7A8CACAACCD -CDB0D0D0B5D3D5BBD7D9C1DBE7D8E9F8F1F6FFFFFEF8F3F7EBE0EDE0D2E5877EA8DFD2E5DFD2E5 -ECE2EEFDFBFBFFFFFEF1EAF3DACFE4CDC3DDC8BDD9C3B8D6BEB3D3B8AED0B4AACDB0A5CAADA3C9 -AA9FC6A69CC4A399C3A197C19F95C09C93BE9B91BD988FBC978EBB968DBB968CBA958CB9948BB9 -948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9948CBA948CBA948BB9 -958CBA958CBA958DBA978DBB978EBB988FBC988FBC9890BC9990BD9A91BD9B92BE9C92BE9C93BF -9D94BF9E94BF9F95C0A096C1CFC5DEFFFEFDE7E0EDA399C3A39AC3A49BC4A59AC3A69DC5EFE9F2 -FFFFFED1C7DFFFFFFEE1DAEBA79DC5A79DC5A79DC5A79DC5A89EC6FFFEFDFFFEFDBBB1D2A59CC5 -A69DC5A69DC5A59CC4A59CC4A59CC4D1C8E0FFFFFEFFFEFDB9B1D2A49BC4A49BC4A399C3A399C3 -A49BC4A198C2A399C3A199C2A299C2A299C2A398C2A299C3A299C2A299C2A298C2A199C2AEA3C9 -A299C2A299C2A299C2A299C2A299C2A299C3A399C3A39AC3A39AC3AA9FC6FAF8FAFFFFFEF4F0F6 -A49AC3A39AC3A299C3A39AC3A39AC3A39AC3D5CEE3FFFEFDFFFFFEE1D9EAA299C3A299C2A298C2 -A199C2A198C2A198C2A197C1A198C2A096C0C1B9D7FFFEFDFFFFFEEEE8F29D94BF9C93BF9C92BE -9B92BE9B92BE9A91BD9990BD9990BC988FBC988FBC978EBB968EBB968DBB968DBB958CBA958CB9 -958CBA948BB9948BB9948BB9948AB9948AB9948AB9948AB9948AB9948AB9938AB9948AB9948AB9 -948AB9948AB9948AB9948AB9948AB9948BB9948BB9948BB9948CBA958CBA958CBA968CBA968DBB -978EBB988FBC9990BD9B92BE9C94BF9F96C0A199C2A49BC4A79EC6AAA2C8AFA5CAB2A9CDB6ADCF -BBB2D2BFB7D6C5BCD9CBC3DDD3CDE3EEEAF3FFFFFEFFFFFEEFECF4E4E2EFE2DFEE8883ACE3E2EF -E9E8F3F5F5F9FFFFFEFBFAFBEEEEF5E0E4F1DCE2F0D8E0EFD6DEEED3DCEDD0DAECCED9ECCBD7EA -C8D5E9C5D4E9C4D2E8C3D2E8C1D1E8C0D0E7BECFE7BDCFE7BCCDE6BCCDE6BBCCE5BBCCE5BBCCE5 -BACCE5BACCE5BBCCE5BBCCE5BBCCE5BBCDE6BBCCE5BCCDE5BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6 -BDCEE6BFCFE7BECFE7BFCFE7C0D1E8C0D1E8C1D1E8C0D1E8C3D2E8F1F4F9FFFFFEE3E9F4C3D3E9 -C4D3E9C4D3E9C5D3E8C9D7EBFFFFFEFCFCFCE7ECF5FFFEFDDFE7F3C5D4EAC5D4EAC5D4EAC6D4E9 -D5DFEFFFFFFEFFFFFEC5D4EAC5D5EAC5D3E8C6D6EAC5D4E9C6D5EADFE7F3FFFFFEFFFEFDCEDAED -C4D3E9C5D4EAC4D3E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C6D5EAC5D3E8EBF0F7FFFEFDFCFBFC -C4D3E9C4D3E9C5D4E9C4D2E8C4D3E9C4D3E9EEF0F7FFFEFDFFFFFEE2E9F4C3D3E9C4D3E9C2D1E8 -C4D2E8C3D2E8C4D1E8C3D2E8C3D2E8DEE5F2FFFFFEFFFFFECFDBEDC2D2E8C4D2E8C4D3E9C3D3E9 -C4D3E9FFFFFEFFFFFEF2F4F9C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C9D7EBFBFDFD -FFFFFEEBEFF7C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D2E8CCD9ECFCFCFCFFFFFEFFFFFE -CFDBEDC4D3E9C4D3E9C3D2E8C3D2E8C3D3E9C2D1E8C2D1E8C2D1E8C5D4E9F6F7FAFFFFFEFFFFFE -D5DFEFBFCFE7BFCFE7BFCFE7BECFE7BECFE7BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6 -BBCCE5BBCCE5BACDE5BBCDE6BACCE5BBCCE5BBCCE5BACCE5BBCCE5BBCCE5BBCCE5BBCCE5BCCDE5 -BCCDE6BDCEE6BDCEE6BECFE7C0D1E8C1D1E8C2D2E8C4D3E9C6D5EAC9D7EBCCD9ECCEDAEDD0DCEE -D4DFEFD7E1F0DAE3F1DEE5F2E3E8F3F2F3F8FCFDFDFFFFFEFCFCFCF6F8FAF4F6FAF5F6FABEB9D3 -666595F6F8FAF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BECFE7BECFE7 -BECFE7BECFE7BECFE7C3D2E8F3F5F9FDFEFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCE2E9F4D8E0EFD8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E2F0E1E7F3 -FCFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F0F2F8F2F4F9F7F8FBFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -E3DCE95E5E8F5F5E8FD5CDE0FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFD -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFE -FFFFFDFFFFFE8882AB474E82ADA5C4FEFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF6F9FEF6F8 -FEF4F7FEF3F7FEF2F6FEF1F6FDF0F5FDEFF4FDEDF39287AE9186ADFCE8F1FEEFF5FFFBFBFFFFFE -FFF5F8FAE1ECF6D1E2F4CCDFF3C7DBF1C2D9F0BED6EEB9D2EEB5D0ECB2CEEBAECBEAABC9E9A8C8 -E8A5C5E7A2C3E7A0C2E69FC1E59DC0E59CBFE59ABEE599BEE499BDE499BDE498BDE498BDE497BC -E497BCE497BCE497BCE498BDE398BDE397BCE397BCE397BCE397BCE497BCE498BDE499BDE499BD -E499BDE499BDE499BEE499BEE49ABEE49ABEE49BBFE59CBFE59CC0E59DC0E69EC1E69FC1E7A0C2 -E7A0C2E8A1C3F5CEE0FFFFFEFBE6EFE7A3C4E7A4C5E8A5C5E8A5C5E8A5C5E8A5C5E8A7C6E7A6C6 -EFBBD4FFFFFEFFFFFEFDECF3FFFEFDFBE7EFE8A7C7E8A7C7E9A8C7E8A7C7E8A7C7E8A7C7FDEDF3 -FFFFFEFDEDF3E7A6C6E7A6C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6 -F2C0D7FFFEFDFFFFFEF1C0D7E8A7C6E8A7C6E8A7C6E8A6C6E8A7C6FFFFFEFFFFFEF0BCD5E9A8C7 -E8A7C6E8A7C7E8A7C7E8A7C7E9A8C7E8A7C6E9A8C7FBE7EFFFFFFEFDECF3FFFFFEFFFFFEEFBCD4 -E9A8C7E8A7C7E8A7C7E8A7C6E8A7C6E8A7C6E8A7C6E9A7C7F1BFD7FFFEFDFFFFFEFFF9FAF0BED6 -E8A5C5E7A4C5E8A4C5E6A3C4E7A2C3E7A3C4ECADCAFCEBF2FFFEFDFFFFFEF8D8E7E69FC2E7A0C2 -E69FC1E69FC1E59DC0E59DC0E59CC0E59CBFE59BBFE49BBFE49ABEE49ABEE499BEE49ABEE499BD -E498BDE498BDE498BDE497BCE497BCE398BDE397BCE397BCE397BCE397BCE397BCE497BCE497BC -E497BCE497BCE497BCE497BCE498BDE497BCE397BCE398BDE398BDE499BEE59ABEE59CBFE59DC0 -E69FC1E6A0C2E7A3C4E7A5C5E8A7C7E9AAC9EAAECBEBB1CDEBB4CFECB8D2EEBCD5EEC0D7F0C5DB -F1C9DDF5D5E5FAEAF2FFFFFEFFFEFDF8E7F0F0D7E7F0D6E68D7FA9EFD6E6F0D9E8F8EBF3FFFFFE -FFFBFBF3E5EFE0C8DEDCC1DAD7BBD6D4B6D3D1B2D1CDACCDCAA9CAC7A5C8C5A2C6C39EC3C09BC1 -BD97BFBC95BDBA93BCB991BBB88FBAB68DB8B58CB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B489B5B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58CB7B58CB7B68DB8B68DB8 -B68DB8B78EB9B88FBAB890BAB991BBBA91BBB993BCB993BCBB94BDDCC4DCFFFFFEEEE0EDBD97BF -BD97BFBE98C0BE98C0BE99C0E2CCE1FFFFFEFFFFFEFFFFFED6BCD7BF9AC1BF9BC2BF9BC1C09BC1 -BF9BC2FFFFFEFFFFFECEB0CFBF9BC1BE9AC1BF9AC1BF9BC1BF9AC1BF9AC1CEB0CFFFFFFEFFFEFD -DEC7DEBE9AC1BE98C0BE98C0BE98C0BD97BFBE98C0BD97BFBD98BFF0E1EDFFFEFDFFFFFEEADAE9 -C09CC2BC96BEBD97BFBD97BFBD96BEBD97BFD0B3D2FCF8FAFFFFFEF8F0F5C09DC3BD95BEBD97BF -BC96BEBC95BDBD97BFDDC7DEFFFEFDFFFFFECCAECEBE99C0BE98C0BE98C0BD97BFBD97BFBD97BF -BE99C0C29DC3FBF7FAFFFFFEE6D3E5BD97BFBE98BFBD97BFBE98C0BE98C0BE99C0BE98C0BD97BF -F4E9F2FFFFFEFFFFFEEAD9E9C09CC2BD97BFBC96BEBC96BEBB94BDBB95BDBA94BDD8BED8FFFEFD -FFFFFEFBF7F9C5A4C7B991BBB991BBB991BBB890BAB88FBAB78EB9B78EB9B68DB8B68DB8B58DB8 -B58CB7B58BB7B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B489B5B489B5B389B5B389B5B48AB6 -B48AB6B48AB6B389B6B389B5B389B5B389B5B489B5B48AB6B48AB6B58BB7B58CB7B58DB8B78EB9 -B890BAB992BCBA94BDBC96BEBE99C0BF9BC2C29FC4C4A3C7C5A5C8C9AACBCCAECECFB3D1D2B8D5 -D6BED9DAC3DCEADCEBFAF5F8FFFFFEF8F0F6E9DCEBE1D3E6877FA9E0D2E6E0D3E6ECE4EFFBF8FA -FFFEFDF3EEF5DFD6E8CEC4DDC9BFDAC4B9D7BFB5D4BAB0D1B6ABCEB3A8CCAFA4CAABA1C8A89EC6 -A59BC4A299C29F96C09D94BF9C92BE9A91BD988FBC988EBB978EBB958CBA958CBA948CBA958CBA -958CB9958CB9958CBA958CBA958CBA958CBA948BB9948BB9948CBA948CBA958CB9968CBA958CBA -968DBB978EBB978EBC988FBC988FBC9890BC9990BD9A91BD9B92BE9C92BE9C93BF9D94BF9E94BF -9F96C0A096C1CDC4DEFFFEFDE8E2EFA399C3A39AC3A49AC3A49BC4A59AC3D6CDE3FFFFFEFFFFFE -FFFFFEC6BDD9A69DC5A69DC5A69DC5A69CC4A69CC4FFFFFEFFFFFEBBB0D2A69DC5A69DC5A59CC4 -A59CC5A59CC4A59CC4D0C8E0FFFFFEFFFFFEB9B0D1A39AC3A39AC3A39AC3A299C3A299C2A399C3 -A399C3A398C2A398C2A198C2A298C2A298C2A398C2A198C2A298C2CFC6DEF9F7F9D0C7DFAEA3C9 -A39AC3A399C3A399C3A299C2A299C2A399C3A89EC6DBD3E6FFFEFDFFFEFDCFC6DFA39AC3A39AC3 -A39AC3A49AC3A39AC3A299C3A39AC3EFE9F2FFFFFEFFFEFDE1DAEBA89EC6A299C2A398C2A197C1 -A198C2A197C1A198C2C6BEDAFFFFFEFFFFFEFAF7F9AEA5CA9D94BF9C93BF9C93BF9C92BE9B92BE -9A91BD9A91BD9990BD9890BC988FBC988FBC978EBB978EBB968EBB968CBA968CBA958CBA958CBA -948CBA948CBA948BB9948BB9948BB9948BB9948CBA948BB9948AB9948BB9948BB9948AB9948AB9 -948BB9948BB9948BB9948BB9948BB9958CBA948CBA958CBA968CBA968DBB988EBB988FBC9990BD -9B92BE9D94BF9F96C0A198C2A49BC4A69DC5AAA0C7ADA4CAB0A7CCB3AACDB8AFD1BDB4D4C2B9D7 -C7BFDBCCC4DED8D1E5F1EDF5FFFFFEFFFEFDEFEBF3E2DFEEE2E0EE8883ACE3E2F0E9E7F2F6F4F8 -FFFFFEFDFDFDF1F1F7E0E5F1DDE2F0D9E1F0D7DFEFD4DDEED1DBEDCED9ECCCD8EBCAD6EAC7D4E9 -C5D4E9C4D2E8C2D1E8C0D0E7BFCFE7BECFE7BDCEE6BDCEE6BCCDE6BCCDE5BCCDE5BBCCE5BBCDE6 -BBCDE6BBCCE5BBCCE5BBCDE6BBCDE6BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BECFE7 -BECFE7BFCFE7C0D0E7C0D0E7C1D1E8C1D2E8C2D1E8F1F3F9FFFEFDE2E9F4C4D3E9C4D3E9C5D4E9 -C4D3E9C5D4EAF5F6FAFFFFFEFFFEFDFFFFFECDD9ECC5D4EAC5D4EAC5D4EAC5D4EAD4DFEFFFFFFE -FFFFFEC5D3E8C5D3E8C7D4E9C5D4E9C5D4E9C6D4E9F5F7FAFFFEFDF6F8FAC5D4E9C6D4E9C5D4EA -C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C6D4E9C4D2E8C5D4EAD7E1F0FFFFFEFFFFFED8E1F0C5D4E9 -C4D2E8C5D4E9C4D2E8C4D2E8C7D6EAFCFDFDFFFFFEFFFEFDE2E8F3C3D2E8C3D3E9C2D2E8C3D3E9 -C3D3E9C3D2E8E3E8F3FFFFFEFFFEFDEDF1F8C2D2E8C2D2E8C4D3E9C2D3E9C3D2E8C4D3E9FFFEFD -FFFFFEF2F4F9C4D3E9C4D3E9C4D2E8C4D3E9C4D2E8C4D3E9C4D3E9C4D3E9E2E8F3FFFFFEFFFFFE -CDD9ECC4D2E8C4D3E9C4D3E9C4D3E9C4D2E8C4D3E9C4D3E9D8E1F0FFFFFEFFFFFEFCFCFCD6DFEF -C3D2E8C4D4E9C3D2E8C2D1E8C2D1E8C2D1E8C8D6EBF6F7FAFFFFFEFFFEFDE9EEF6C0D0E7C0D0E7 -BFCFE7BFCFE7BECFE7BECFE7BDCFE7BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE5BBCCE5 -BBCDE6BBCDE6BBCCE5BCCDE5BBCCE5BACCE5BBCCE5BBCDE6BBCDE6BCCDE6BDCEE6BDCEE6BDCFE7 -BECFE7BFCFE7C1D1E8C2D1E8C4D3E9C5D4E9C8D6EACAD7EBCDD9ECCFDBEDD2DDEED5DFEFD8E1F0 -DCE5F2E0E7F3E4E9F4F5F6FAFDFEFDFFFFFEFBFCFCF6F7FAF4F6FAF5F6FABFB9D3666595F7F8FB -F7F8FBF8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BED0E7BECFE7BECFE7BFCFE7 -BED0E7EFF2F8FEFCFBFFFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -E2E9F4D8E1F0D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0DAE3F1FCFCFCFFFDFBFFFDFC -FFFEFCFFFDFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9 -F2F4F9F1F3F9F1F3F9F1F3F9F2F4F9F5F6FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFD -8782AB474E829F99BCFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFDFCFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDE5DEEA5E5E8F -5E5E8FD4CCDFFFFFFEFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF7F9FEF5F8FEF4F7 -FEF3F7FEF2F6FEF0F5FDEFF4FDEDF39286AE9186ADFCE9F1FEEFF4FFF9FAFFFFFEFFF8FAFCE8F1 -F6D2E3F5CEE0F3C8DCF1C4DAF0C0D7EFBBD4EDB7D1EDB3CFEBB0CDEAADCBEAAAC9E8A7C6E8A4C5 -E7A2C3E7A0C2E69FC1E59DC0E59CC0E59BBFE59ABEE499BDE499BDE498BDE498BDE498BDE498BD -E498BDE498BDE499BDE498BDE498BDE398BDE398BDE498BDE498BDE499BDE499BDE499BDE499BD -E49ABEE49ABEE49ABEE49BBFE49BBFE59CBFE59CC0E59DC0E69EC1E69FC1E7A0C2E6A0C2E7A0C2 -F5CEE0FFFEFDFBE7EFE7A3C4E7A3C4E7A4C5E7A5C5E8A5C5E7A4C5E9A5C6E8A7C6E8A5C5FCE7F0 -FFFFFEFFFEFDFFFFFEFBE7EFE8A7C6E8A7C6E8A6C6E9A6C6E8A7C6ECB2CEFFFEFDFFFFFEF3CADE -E9A7C7E8A7C6E7A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6FFFAFB -FFFFFEF9DBE8E8A7C6E9A5C6E7A5C5E8A7C7E8A7C6FFFEFDFFFFFEEFBBD4E8A7C6E8A7C6E9A7C7 -E8A7C7E8A7C7E8A7C7EAA8C7E8A7C7EFBBD4FFFFFEFFFEFDFFFEFDFFFFFEEFBBD4E8A7C6E8A7C6 -E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A5C5E8A5C5F3C5DBFFFFFEFFFEFDFFFEFDFBE5EFF3C9DD -EDB8D2EEB7D2F1C4DAF9D9E7FFFFFEFFFFFEFFFFFEF7D8E7E7A0C2E7A0C2E7A0C2E69EC1E69EC1 -E69EC1E59CC0E59CC0E49BBFE49BBFE49BBFE49BBFE49ABEE499BEE599BEE499BDE499BDE499BD -E498BDE497BCE497BCE398BDE398BDE498BDE498BDE498BDE498BDE497BCE497BCE497BCE497BC -E498BDE498BDE498BDE498BDE499BDE499BEE49ABEE59CBFE59CC0E59DC0E69FC1E6A0C2E7A3C4 -E7A5C5E8A7C6E9AAC8EAADCBEAAFCCEBB2CEECB6D1EDBAD3EEBED6EFC2D8F0C6DCF2CCDFF6DAE8 -FCF0F5FFFFFEFEF9FBF8E7F0F1D7E7F1D7E78D80A9EFD7E7EFD9E8F6E7F0FFFEFDFFFEFDF5E7F0 -E5CFE2DDC4DCD9BDD8D5B8D5D2B4D2CEAFCECBABCCC9A6C9C7A4C7C39FC4C19CC2BF99C0BD97BF -BB94BDBA93BCB991BBB88FBAB78EB9B68DB8B58BB7B58BB7B58BB7B48AB6B48AB6B48AB6B489B5 -B48AB6B48AB6B48AB6B48AB6B58BB7B48AB6B58BB7B58CB7B68CB7B68DB8B68DB8B68DB8B78EB9 -B88FBAB890BAB990BAB991BBB992BCBA93BCBB94BDDCC4DCFFFFFEF0E1EDBD97BFBD97BFBE98C0 -BE98C0BE98C0CAA9CBFFFEFDFFFFFEFFFFFEC6A5C8BF9BC1BF9AC1BF99C0BF9AC1C099C0FFFFFE -FFFFFECFB0CFBE9AC1C09AC1BE9AC1BE99C0BE99C1BE99C0CEAFCFFFFFFEFFFFFEDCC6DDBE98C0 -BE98C0BE99C0BE98C0BE98C0BE98C0BE98C0BD97BFBF9DC3F5E8F1FFFFFEFFFEFDFCF8FAE1CCE1 -CFB2D1CBACCDD7BED8EFE0EDFFFFFEFFFFFEFCF8FAC8A7C9BA95BDBA96BEBC96BEBC96BEBD96BE -BD97BFDDC5DDFFFFFEFFFFFECCADCEBD97BFBD97BFBD98BFBE99C0BE98C0BE98BFBE98C0BE98C0 -DDC7DEFFFFFEFFFFFEC5A3C7BE98C0BE99C0BD97BFBD97BFBD97BFBD97BFBD97BFC09CC2F5E9F2 -FFFEFDFFFFFEFCF7F9E0CCE1CFB1D0CBABCCCCACCDDDC4DCF8EFF5FFFFFEFFFFFEFCF7F9C6A5C8 -B992BCB991BBB991BBB990BAB88FBAB88FBAB78FB9B68EB9B68DB8B68DB8B58DB8B58CB7B58BB7 -B58BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B489B5B489B5B389B6B48AB6B48AB6B48AB6 -B48AB6B389B5B389B6B389B6B48AB6B48AB6B58BB7B58DB8B68EB9B78FB9B890BAB992BBBA94BD -BC96BEBE98C0BF9BC2C19EC3C4A1C6C5A5C8C8A8CACBACCDCDB1D0D1B6D3D4BBD6D8C0D9DCC6DE -EEE4EFFEF9FBFFFFFEF5ECF3E7DBEAE2D4E6877FA9E1D3E6E0D2E6EBE3EFF8F4F8FFFFFEF7F4F8 -E5DDECD0C6DFCBC1DCC6BBD8C1B7D5BDB2D2B8ADD0B3A9CDB1A6CBAEA3C9AAA0C7A79DC5A49AC3 -A198C29F96C09D94BF9C92BE9A91BD9990BC988FBC978EBB968DBB968CBA958DBA958CBA948BB9 -958CBA958CBA958CBA958CBA958CBA958CB9958CBA958DBA968DBB978DBB968CBA968DBB978EBB -978EBB988FBC988FBC9890BC9990BD9A91BD9B92BE9C92BE9C93BF9D94BF9E94BF9F95C0A096C1 -CDC4DEFFFFFEE8E1EEA298C2A399C3A39AC3A399C3A49BC4B3ABCEFFFFFEFFFFFEFFFEFDB0A6CB -A59CC4A69CC4A69CC4A69DC5A69CC4FFFEFDFFFFFEBBB1D2A59BC4A59CC4A59CC4A59CC4A59BC4 -A59AC3D0C7E0FFFFFEFFFFFECAC1DCB8AFD1B8AFD1B9AFD1B8AFD1B8AED0B8AED0B8AED0B8AED0 -B8AFD1B8AED0B2A7CCA198C2A197C1A197C1A69DC5FAF8FAFFFFFEFFFFFEFFFFFEE8E1EECFC6DF -BEB4D4B8AED0BEB4D4D5CEE3F4F0F6FFFFFEFFFFFEEFEAF3A89EC6A299C3A49BC4A299C2A299C2 -A399C3A399C3A299C2AA9FC6EFE9F2FFFFFEFFFFFEF9F8FAD4CBE2BDB3D3B7AED0B7ACCFCEC5DE -F4EFF5FFFFFEFFFFFEFAF8FAAFA5CA9E94BF9C93BE9C93BF9C93BE9C92BE9B92BE9A91BD9A91BD -9990BC988FBC988FBC988FBC978EBB978EBB968DBB968CBA968CBA958CBA958CBA948CBA948CBA -948BB9948BB9948BB9948CBA958CBA948BB9948BB9948BB9948BB9948BB9948BB9948BB9948BB9 -948BB9958CB9958CBA958CBA958DBA968DBB978DBB988FBC9990BD9A91BD9B93BE9C94BF9F95C0 -A198C2A39AC3A59CC5A99FC7ACA2C9AFA6CBB3A9CDB6ADCFBAB2D2BFB7D6C4BCD9C9C1DCCDC6DF -E0DAEAF5F2F7FFFFFEFBFAFBEEE9F3E3E0EEE3E2EF8883ACE4E3F0E8E6F1F3F2F7FFFFFEFFFFFE -F1F1F7E4E7F2DFE4F1DBE1EFD9E0EFD5DDEED2DBEDD0DAECCED9ECCCD8EBC9D6EAC7D4E9C5D4E9 -C4D2E8C2D1E7C0CFE6BFCFE7BECFE7BDCEE6BDCEE6BCCDE5BCCDE5BBCCE5BBCDE6BBCDE6BBCDE6 -BBCDE6BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BECFE7BFCFE7 -BFCFE7C0D0E7C0D1E8C1D1E8C1D0E7F1F4F9FFFFFEE2E9F4C2D2E8C4D3E9C4D3E9C5D4EAC4D3E9 -DFE7F3FFFFFEFFFEFDFAFAFCC5D4E9C5D3E8C6D5EAC5D4E9C5D4E9D4DFEFFFFFFEFFFEFDC5D4E9 -C6D4E9C4D3E9C6D3E9C5D4EACDD8EBFFFFFEFFFFFEDEE6F3C5D4E9C5D4E9C4D3E9C6D4E9C5D4E9 -C5D4E9C4D3E9C5D4E9C4D3E9C4D2E8C4D3E9C4D2E8FDFDFDFFFEFDEBEFF7C4D3E9C4D3E9C4D2E8 -C3D3E9C4D3E9C4D2E8CFDBEDFCFDFDFFFFFEFFFEFDF9FAFBE2E9F4D1DDEED0DDEEE2E8F3F8F9FB -FFFFFEFFFFFEF6F7FAC6D5EAC2D1E8C3D1E7C1D2E8C3D3E9C2D3E9C3D2E8FFFFFEFFFFFEF2F4F9 -C4D2E8C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9C4D2E8C9D7EBFBFDFDFFFEFDEBEFF7C4D3E9 -C4D3E9C4D3E9C5D4E9C4D3E9C3D2E8C4D3E9C4D3E9DAE3F1FFFFFEFFFEFDFFFFFEF2F4F9DDE5F2 -D1DDEED2DDEEDAE2F0EAEEF6FFFFFEFFFEFDFFFEFDE9EEF6C1CFE7C0D0E7C0D0E7BFCFE7BECFE7 -BECFE7BECFE7BDCFE7BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BBCDE6BBCDE6BBCDE6 -BBCDE6BCCDE6BBCDE6BBCDE6BBCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCFE7BFCFE7BFCFE7C0D0E7 -C2D1E8C4D3E9C5D4E9C7D5EAC9D7EBCCD9ECCFDBEDD1DDEED4DFEFD7E1F0DAE3F1DEE5F2E2E8F3 -E6EAF4F6F8FAFFFEFDFFFFFEF9FAFBF5F6FAF5F6FAF5F6FABFB9D3666595F7F8FBF7F8FBF8F8FB -FAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFC -FEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7BFCFE7BECFE7BECFE7BDCFE7E6EAF4FFFEFC -FEFDFCFEFCFBFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E2F0 -D8E1F0D7E1F0D8E1F0D8E1F0D8E1F0D8E1F0DAE3F1F8F8FBFFFEFDFFFDFCFFFDFCFEFCFBFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F0F3F9F2F4F9 -F1F3F9F2F4F9F4F6FAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDB9B1CC -474E82736F9DF2EEF4FFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEA099BB474E828781A9F2EEF4FFFFFE -FFFEFDFFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6 -FEF1F6FDEFF4FDEEF49286AE9286AEFCEBF2FDEDF3FFF5F8FFFFFEFFFCFCFDEEF4F7D5E5F6D0E1 -F4CBDEF3C6DBF1C2D8F0BDD5EEB9D2EDB5D0EDB3CEEBAFCCEAABCAE9A9C8E8A7C6E8A4C5E7A2C3 -E7A0C2E69FC1E69EC1E59CC0E59BBFE59ABEE599BEE499BDE499BDE398BDE498BDE498BDE498BD -E499BDE498BDE498BDE498BDE398BDE498BDE498BDE499BDE499BEE499BEE499BEE49ABEE49ABE -E49BBFE59CBFE59CBFE59CC0E59DC0E59DC0E69EC1E59EC1E69FC2E69FC1E7A2C3F4CCDFFFFFFE -FBE7EFE7A3C4E8A4C4E7A4C5E6A5C5E7A5C5E8A5C5E7A5C5E8A6C6E8A7C6EFBAD3FFFEFDFFFFFE -FFFFFEFCE7F0E7A6C6E8A7C6E8A7C7E8A7C6E8A7C6F4CBDEFFFEFDFFFFFEECB0CDE8A6C6E7A6C6 -E9A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6F9DBE8FFFFFEFFF8FA -E8A5C5E7A6C6E9A6C6E8A6C6E8A5C5FFFEFDFFFFFEEFBBD4E9A6C6E8A7C6E7A6C6E8A7C6E8A7C6 -E7A6C6E9A7C7E8A7C6E8A6C6FBE7EFFFFEFDFFFEFDFFFFFEEFBBD4E9A7C7E9A7C7E8A6C6E8A6C6 -E8A6C6E8A6C6E9A5C6E8A5C5E7A6C6E7A4C5EEBAD3FFF3F6FFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFEFDFFF8FAF2C8DCE8A1C2E7A0C2E7A0C2E69FC1E59EC1E69EC1E69FC1E59CC0 -E59CC0E59CC0E59CBFE59CBFE59CBFE49BBFE49ABEE499BEE499BEE499BEE499BEE499BDE498BD -E398BDE398BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE498BDE499BD -E499BDE499BEE59ABEE59BBFE59CBFE59DC0E69EC1E69FC1E6A0C2E7A3C4E7A4C5E8A7C7E9A9C8 -E9ACCAEAAECCEBB2CEECB5D0EDB9D3EEBCD5EEC0D7F0C4DAF1C9DEF3CEE0F8E2EDFDF5F8FFFEFD -FCF5F8F7E4EEF2D9E8F1D9E88D80AAF0D9E8EFD7E7F5E7F0FEFBFCFFFEFDF8EFF5EBD8E8DFC6DD -DBC1DAD7BBD6D3B6D3D1B2D0CDAECECAA9CAC8A6C9C5A2C6C39FC4C19CC2BF99C0BD97BFBC94BD -BA93BCB991BBB990BAB78EB9B68DB8B58DB8B58CB7B58BB7B58BB7B58CB7B58BB6B48AB6B48AB6 -B48AB6B48AB6B58BB7B58BB7B58BB7B58CB7B68CB7B68DB8B68DB8B78EB9B78EB9B890BAB891BB -B991BBB991BBBA93BCBA93BCBA93BCDBC4DCFFFFFEEFE0EDBC96BEBD97BFBD98BFBD97BFBE98C0 -BE98C0FCF7F9FFFFFEF5E9F2BE99C1BE99C0BE9AC1BE9AC1BE9AC1BE9AC1FFFFFEFFFFFECEB0CF -BE9AC1BE98C0BE9AC1BE99C0BE9AC1FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEDDC7DEBD97BF -BD97BFBD97BFBD97BFBC97BFBD97BFBD96BEC09CC2E9D8E9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF4E8F1C7A6C9BB95BEBD96BEBC95BDBC96BEBC96BEBC96BEBC96BEDCC5DD -FFFFFEFFFFFECCADCEBD97BFBD98BFBD97BFBD97BFBC97BFBD97BFBD97BFBD97BFC19DC3FBF7F9 -FFFFFEE6D2E5BC97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFC09CC2E2CCE1FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEEFE0ECC29FC4BA93BCB992BCB992BB -B991BBB991BBB890BAB890BAB88FBAB78EB9B78EB9B68DB8B68CB7B68CB7B58CB7B58CB7B58BB7 -B48BB7B48BB7B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6B48AB6 -B48AB6B48AB6B58BB7B58CB7B68DB8B78FB9B890BAB991BBB992BCBB94BDBC96BEBE98C0BF9BC2 -C19EC4C3A1C6C5A4C7C7A7CACAABCCCDB0CFCFB4D2D3B8D5D6BDD8D9C2DBE1CFE3F1E7F1FFFFFE -FFFEFDF1E8F2E4D7E8E3D6E8887FA9E1D5E7E1D4E7E8DEECF4EEF5FFFFFEFDFBFBEAE3EFD3C9E0 -CCC2DDC8BEDAC3B9D7BEB4D4BAB0D1B7ACCFB3A9CDAFA5CAACA2C9AAA0C7A69DC5A49BC4A198C2 -9F95C09D94BF9C92BE9B92BE9A91BD988FBC988EBB978DBB968DBB968CBA958CBA958CBA968DBB -968DBB968CBA968CBA958CBA958CB9958DBA968DBB978DBB978DBB978EBB978EBB988FBC998FBC -9890BC9990BC9A91BD9B91BD9B92BE9C92BE9C93BF9D94BF9E94BF9E95C0A096C1CCC3DDFFFFFE -E8E2EFA298C1A299C2A499C3A39AC3A39AC3A499C3FAF9FBFFFEFDF0E9F2A59BC4A59BC4A59BC4 -A59BC4A59BC4A59CC4FFFFFEFFFFFEBAB0D1A59AC3A59BC4A49BC4A59BC4A59BC4A49AC3D0C7DF -FFFFFEFFFEFDFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -E8E1EEA198C2A198C2A198C2A199C2AEA3C9DBD3E6FFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEE1D9EAA89EC6A39AC3A39AC3A39AC3A398C2A399C3A399C3A399C3 -A399C3A398C2A89EC6D4CCE2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -E7E0EDAAA0C79E95C09E94BF9D94BF9C93BF9C93BE9C92BE9B92BE9B92BE9B91BD9990BC9990BC -9890BC988FBC988FBC988FBC978EBB978DBB978DBB968DBB968DBB958DBA958CBA958CBA958CBA -958CBA958CBA958CB9948CBA948BB9948BB9958CB9948BB9948CBA958CBA958CBA958CBA958CBA -968DBB968DBB978EBB988EBB988FBC9A91BD9A91BD9C92BE9D94BF9F96C0A198C2A39AC3A69DC5 -A99FC7ABA2C8AFA4CAB1A8CCB5ACCFB9B0D1BDB4D4C2B9D7C6BEDACCC4DDD2CAE1E9E3EFF9F8FA -FFFFFEF8F6F9ECE9F2E4E1EFE4E2EF8984ADE5E3F0E5E5F1F2F0F7FFFEFDFFFEFDF5F5F9EAECF5 -E0E6F2DDE3F1DAE1F0D7DFEFD4DDEED1DBEDCEDAECCDD8EBCBD7EAC9D6EAC7D4E9C5D4E9C3D2E8 -C1D0E7C0D0E7BFCFE7BFCFE7BECFE7BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BECFE7BFCFE7BFCFE7BFD0E7 -C0D0E7C1D1E8C1D1E8F1F3F9FFFEFDE2E8F3C4D3E9C3D3E9C4D4E9C4D3E9C4D3E9D0DCEDFFFEFD -FFFEFDE7ECF6C5D4E9C5D4E9C5D3E8C6D4E9C5D4EAD4DFEFFFFFFEFFFFFEC5D4E9C4D2E8C4D3E9 -C4D4E9C4D2E8DFE7F3FFFEFDFFFFFECDD8EBC4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C5D3E8C4D3E9C4D3E9C5D4E9EAEEF6FFFFFEFCFCFCC5D4E9C4D3E9C4D3E9C4D4E9C3D2E8 -C3D3E9C3D3E9CFDBEDF5F6FAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEEDF1F8 -C6D5EAC3D2E8C3D2E8C3D2E8C3D1E7C3D2E8C3D3E9C3D2E8FFFFFEFFFEFDF2F5F9C4D3E9C4D3E9 -C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9E2E8F3FFFFFEFFFEFDCCD9ECC4D3E9C4D4E9 -C3D2E8C4D3E9C4D4E9C4D3E9C4D3E9C2D1E8D2DDEEF8F9FBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFDFDFDDCE5F2C1D2E8C0D0E7BFD0E7BFCFE7BFCFE7BFCFE7BECFE7BECFE7 -BDCEE6BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE6BCCDE5BCCDE6BCCDE6 -BCCDE6BCCDE6BCCDE6BDCEE6BDCFE7BECFE7BECFE7BFCFE7C0D0E7C1D1E8C2D1E8C4D3E9C5D4EA -C7D5EAC9D7EBCBD8ECCEDAECD0DCEDD2DDEED6DFEFD9E2F1DBE4F2DFE7F3E3E9F4ECEFF7F8F9FB -FFFFFEFFFEFDF8F8FBF5F6FAF5F6FAF5F6FABFB9D3666595F7F8FBF7F8FBF9F9FBFAFAFCFAFAFC -FAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFC -DEE5F2BECFE7BECFE7BECFE7BECFE7BED0E7BDCEE6BED0E7D7E2F0FFFDFCFDFDFCFEFCFBFEFDFC -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D7E1F0D8E1F0 -D8E1F0D7E1F0D8E2F0D8E1F0F1F3F9FFFEFCFFFEFCFFFEFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F3F5F9 -FCFCFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEF2EEF4736E9C -474E82A099BCFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFFFED4CCDF686696515588C6BDD5FFFFFEFFFFFEFFFFFDFFFFFEFFFEFD -FFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FFF6F9FEF5F8FEF4F7FEF3F7FEF2F6FEF1F6FDF0F5 -FDEEF49287AE9286AEFCEAF2FDEBF2FFF3F6FFFFFEFFFFFEFEF2F6FADDEAF6D2E3F5CDE0F3C8DC -F1C3D9F1BFD7EFBBD4EEB7D2EDB4CFECB1CDEBAECBEAABCAE9A8C7E8A7C6E8A4C5E7A3C4E7A1C3 -E69FC2E69FC1E59DC0E59CC0E59CBFE59BBFE49ABEE499BEE499BEE499BDE499BDE499BEE398BD -E499BDE499BDE499BDE499BEE499BDE499BEE49ABEE49ABEE49ABEE499BEE49ABEE49BBFE59BBF -E59CBFE59CBFE59CC0E59CC0E59DC0E69EC1E69EC1E6A0C2E69FC1F4CCDFFFFEFDFAE4EEE8A2C3 -E7A3C4E7A3C4E8A4C5E7A4C5E7A5C5E7A3C4E7A5C5E7A5C5E7A5C5FBE7EFFFFFFEFFFFFEFBE5EE -E8A5C5E8A5C5E8A4C5E8A5C5E8A5C5FCECF3FFFFFEFADFEBE7A5C5E7A5C5E7A4C5E7A6C6E7A5C5 -E7A5C5E7A5C5E7A5C5E7A5C5E7A5C5E7A4C5E7A5C5E8A4C5F0C0D7FFFEFDFFFFFEF0BFD7E7A5C5 -E8A6C6E7A5C5E7A4C5FFFFFEFFFEFDEEBAD3E7A5C5E8A6C6E8A5C5E8A5C5E7A6C6E9A6C6E8A6C6 -E8A6C6E8A6C6EFBBD4FFFFFEFFFFFEFFFFFEEFBAD3E7A5C5E8A5C5E8A5C5E7A5C5E7A3C4E7A6C6 -E7A4C5E7A6C6E7A3C4E7A5C5E6A4C5E8A4C4F0C2D9FADFEBFEF1F6FFFFFEFFFFFEFFF9FAFBE5EE -F3C7DCE9A6C6E7A0C2E6A0C2E7A0C2E69FC2E69FC1E69EC1E69EC1E59CC0E69EC1E59CC0E59CC0 -E59CBFE59BBFE49BBFE49BBFE499BEE499BDE499BEE499BEE499BDE499BDE499BDE499BDE499BD -E499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BDE499BEE499BEE59BBFE59BBFE59BBF -E59CBFE59CC0E69EC1E69FC1E7A0C2E7A1C3E7A3C4E8A5C5E8A7C6E9AAC9E9ADCAEAAECCEBB1CD -ECB5D0ECB8D2EEBBD4EEBED6F0C2D9F1C7DCF2CBDFF4D3E4F9E8F1FFFCFCFFFFFEFBF0F5F5E0EC -F2D9E8F1D9E88D81AAF0D9E8EFD8E8F4E4EFFCF5F8FFFFFEFCF6F9F0E0EDE1C8DEDDC3DBD9BDD7 -D5B8D5D2B4D2CFB0CFCCACCDC9A8CAC7A4C8C4A2C6C39FC4C09CC2BE99C0BD97BFBC94BDBA92BB -B992BBB991BBB88FBAB78EB9B68DB8B68DB8B58DB8B58DB8B58BB7B58BB7B58BB7B58BB7B58BB7 -B58CB7B58CB7B58CB7B58CB7B68DB8B68DB8B78EB9B78EB9B88FB9B88FBAB890BAB88FBAB991BB -B992BBB992BCBA93BCDBC2DBFFFEFDEFE0ECBC96BEBC96BEBD97BFBD97BFBD97BFBC97BFE6D3E5 -FFFFFEDDC6DDBE98BFBE99C0BE98C0BE98C0BE98C0BE98C0FFFFFEFFFFFECDAECEBE98C0BE98C0 -BE98BFBE99C0BD98BFFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEDDC6DDBD97BFBD97BFBD97BF -BC97BFBC96BEBC96BEBC96BEBC96BEBD96BECBABCCE5D2E4F8EFF5FFFFFEFFFFFEF8EFF5E9D8E8 -D3B7D4BB95BDBC94BDBA95BDBB95BDBC95BDBC95BDBC95BDBC95BDBC96BEDCC5DDFFFFFEFFFFFE -CBACCDBD95BEBC96BEBD97BFBC96BEBC96BEBC96BEBB96BEBC97BFBC96BEDCC5DDFFFEFDFFFFFE -C4A2C6BC97BFBC96BEBC96BEBC96BEBD96BEBB95BDBC96BEBD96BEBB95BEC4A1C5E1CBE0EFE0EC -FFFEFDFFFFFEFFFFFEF4E8F1E5D1E4CBABCCBA93BCBA93BCB992BBB992BBB891BBB891BBB891BB -B890BAB88FB9B78EB9B78EB9B68DB8B68DB8B68DB8B68DB8B58CB7B58CB7B58BB7B58CB7B58BB7 -B48AB6B48AB6B48AB6B48AB6B48AB6B58BB7B58BB7B58BB7B58BB7B48AB6B58BB7B58CB7B68DB8 -B68DB8B78EB9B78FB9B88FBAB991BBB992BCBA94BDBC96BEBE99C0BF9BC2C19EC3C3A0C5C5A4C7 -C7A6C9CAABCCCCAECECFB2D1D1B6D4D5BBD7D8C0D9DBC6DDE9D8E9F7EFF5FFFFFEFEFBFCF0E5F0 -E4D6E8E3D6E8887FA9E3D7E8E2D6E8E5DAEAF1EAF3FFFEFDFFFFFEF0E9F2DBD0E5CFC6DECBC0DB -C6BBD8C1B7D5BDB2D3B9AFD0B5AACEB2A7CCAFA4CAACA2C8A99FC6A69DC5A49AC3A198C2A096C1 -9E94BF9C93BF9C92BE9B92BE9A91BD9990BC988FBC988EBB978DBB978DBB978DBB978DBB978DBA -968DBB968DBB968DBB968DBB968EBB978DBB978EBB978EBB978EBB978EBC988FBC9890BC9990BC -9A91BD9A91BD9A91BD9B92BE9C92BE9C93BF9D94BF9E94BF9C94C0CDC5DEFFFFFEE7E0EDA198C2 -A198C2A299C2A298C2A499C3A29AC3DBD3E6FFFFFECFC6DEA59AC3A49BC4A49AC3A59AC3A49AC3 -A39AC3FFFEFDFFFFFEB9AFD1A49AC3A499C3A49AC3A59AC3A399C3A39AC3CFC6DFFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDE8E1EEA197C1 -A097C1A197C1A197C1A097C1A196C1A69DC5C8BFDADFD9EAF4F1F6FFFEFDFFFFFEFFFFFEE7E1EE -D4CCE2B2A8CCA298C2A298C2A298C2A298C2A198C2A299C2A298C2A298C2A298C2A298C2A298C2 -A198C2A198C2ADA3C9D4CBE2E7E1EEFFFEFDFFFFFEFFFFFEEEE8F2D9D1E5B5ACCF9D95C09E94BF -9D94BF9C93BE9C93BF9C93BF9C92BE9B92BE9B92BE9B91BD9A91BD9990BC9990BC988FBC988FBC -988FBC988EBB978DBB978DBA978DBB968DBB958DBA958CBA958CBA968CBA968DBB968DBB968DBB -968DBB968CBA958CBA958CBA958CBA958CBA968CBA968CBA978DBB978DBA978DBB988EBB988FBC -9890BC9990BC9A91BD9B92BE9C93BF9E94BFA096C1A198C2A39AC3A59CC5A99FC6ABA1C8AEA5CA -B1A8CCB4ABCEB8AFD1BCB3D3C0B7D6C5BCD9CAC1DCCEC7DFD7D0E5EEE9F3FEFCFCFFFFFEF4F2F7 -E9E7F1E5E1EFE6E3EF8884ADE6E4F1E7E6F1F0EFF6FBFAFBFFFFFEFAFAFBEEEFF6E1E6F3DFE4F1 -DBE2F0D8E1F0D6DFEFD3DDEED0DBEDCEDAECCDD8EBCBD8EBC9D6EAC6D4E9C4D3E9C3D2E8C2D1E7 -C0D0E7C0D0E7C0D0E7BFCFE7BECFE7BDCEE6BDCEE6BDCEE6BDCEE6BCCDE6BDCEE6BDCEE6BDCEE6 -BDCEE6BDCEE6BDCEE6BDCEE6BDCFE7BECFE7BECFE7BECFE7BFCFE7C0D0E7BFCFE7C0D1E8C1D0E7 -C1D1E8F0F3F9FFFFFEE1E7F3C3D2E8C2D1E8C3D2E8C4D4E9C4D3E9C3D3E9F9FAFBFFFFFED3DEEE -C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9D4DFEFFFFFFEFFFEFDC5D4E9C4D3E9C4D3E9C5D4E9C4D3E9 -F5F6FAFFFFFEEFF2F8C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9C3D3E9C4D3E9C4D3E9C3D3E9 -C4D2E8C4D3E9C3D3E9D7E1F0FFFEFDFFFFFED6DFEFC3D3E9C3D3E9C3D2E8C4D4E9C3D2E8C3D2E8 -C3D2E8C3D2E8D9E3F1EDF1F8FBFCFCFFFFFEFFFFFEF6F7FAE9ECF5D1DCEDC2D1E8C2D2E8C2D1E8 -C2D1E8C2D1E8C2D2E8C2D2E8C2D1E8C2D1E8FFFEFDFFFFFEF2F4F9C3D2E8C3D2E8C4D4E9C2D2E8 -C3D3E9C3D3E9C4D3E9C3D3E9C3D3E9C7D6EAFBFDFDFFFFFEEAEEF6C3D3E9C3D2E8C4D3E9C3D3E9 -C3D3E9C4D3E9C3D2E8C3D3E9C3D2E8C4D2E8DAE3F1ECF0F7F9FAFBFFFFFEFFFFFEFCFCFCF2F4F9 -DCE5F2C5D4E9C0D0E7C1D1E8BFD0E7BFCFE7BFCFE7BFCFE7BFCFE7BECFE7BECEE6BECEE6BECEE6 -BDCFE7BDCEE6BDCEE6BDCEE6BCCDE6BCCDE6BDCEE6BDCEE6BCCDE6BCCDE6BCCDE6BCCDE6BDCEE6 -BDCFE7BDCFE7BECFE7BFCFE7C0D1E8C0D0E7C1D1E8C2D2E8C4D3E9C5D4E9C7D5EAC9D7EBCBD8EC -CDDAECCFDBEDD2DDEED4DFEFD8E1F0DAE3F1DDE6F2E1E7F3E5EAF4F2F4F9FBFCFCFFFFFEFEFEFD -F8F8FBF5F6FAF5F6FAF5F6FABFB9D3666595F7F8FBF8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFBFBFC -FBFBFCFBFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7 -BECFE7BECFE7BECFE7BECFE7BED0E7D1DCEDFEFDFCFEFDFCFEFDFCFDFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0ECEFF7FEFDFDFFFDFCFEFDFCFFFDFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF1F3F9F1F3F9F1F3F9F1F3F9F1F4F9F1F3F9F1F3F9FCFCFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEBAB1CC515589 -696796C7BED6FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -F3EEF48781AA3E457B8882AAF2EEF4FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFB -FFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF1F6FEF0F5FDEFF49287AE -9286AEFDEBF2FDEBF2FEF0F5FFFCFCFFFFFEFFF7F9FCE7F0F7D5E5F5CFE1F3CADEF3C6DBF1C2D8 -F0BED6EEBAD3EEB6D0EDB3CFEBB1CDEBAECBEAABC9E9A8C8E8A7C6E8A4C5E8A3C4E7A1C3E7A0C2 -E69FC1E69EC1E59DC0E59CC0E59CBFE59CBFE59BBFE59ABEE59ABEE49ABEE49ABEE499BEE599BE -E599BEE599BEE599BEE599BEE599BEE49ABEE49ABEE49ABEE49BBFE49BBFE49BBFE59CC0E59CC0 -E59DC0E59DC0E69FC1E69FC1E7A0C2E69FC1E6A0C2E7A1C3E7A1C3E7A2C3E6A3C4E8A3C4E7A3C4 -E7A3C4E7A4C5E7A4C5E8A4C5E8A5C5E9A5C5E8A5C5E8A5C5E8A5C5E8A5C5E9A5C6E7A6C6E8A6C6 -E7A6C6E8A6C6E7A5C5E9A6C6E8A4C5E8A5C5E8A5C5E8A6C6E8A6C6E8A5C5E8A5C5E8A5C5E8A6C6 -E8A5C5E8A5C5E8A5C5E8A4C5E8A4C5E8A4C5E8A5C5E9A6C6E7A5C5E8A5C5E8A4C5E7A5C5E8A5C5 -E8A5C5E7A5C5E8A5C5E9A5C6E8A4C5E8A5C5E8A5C5E8A6C6E8A6C6E7A6C6E7A6C6E7A6C6E7A5C5 -E7A6C6E7A6C6E7A6C6E8A6C6E7A6C6E8A5C5E8A5C5E8A6C6E8A4C5E8A7C6E8A4C5E8A5C5E8A4C4 -E8A4C5E7A4C5E7A4C5E6A4C5E7A3C4E7A3C4E8A3C4E7A3C4E7A3C4E7A3C4E7A2C3E7A3C4E6A0C2 -E7A2C3E7A0C2E59FC2E7A0C2E7A0C2E79FC1E69EC1E69FC1E59DC0E59DC0E59DC0E59CC0E49BBF -E49BBFE49BBFE49BBFE499BEE49BBFE49ABEE499BEE499BEE599BEE599BEE599BEE499BEE499BE -E499BEE49ABEE499BEE59ABEE59ABEE59ABEE59ABEE59CBFE59CC0E59DC0E59DC0E59DC0E69FC1 -E7A0C2E7A0C2E7A2C3E7A3C4E7A5C5E8A7C7E9AAC8EAADCBEBAFCCECB2CEECB4CFECB7D1EEBBD4 -EFBED6EFC2D8F1C6DBF2CADEF3CEE0F7DDEAFBEDF4FFFFFEFFFEFDFAE9F1F4DCEAF2DBE9F2DAE9 -8E80AAF0DAE9F0D9E8F2DEEBF8ECF3FFFFFEFFFEFDF5E8F1E6D0E4DEC5DCDBC0D9D7BBD6D3B6D3 -D1B2D1CEAFCECBABCCC9A7C9C6A4C7C4A2C6C39FC4C09CC2BF99C0BD97BFBC95BDBB95BDBA93BC -B991BBB990BAB88FBAB890BAB78FB9B68EB9B68DB8B68DB8B58DB8B58DB8B58CB7B58CB7B68DB8 -B58CB7B68DB8B68DB8B78EB9B78EB9B78FB9B88FBAB990BAB991BBB991BBB990BAB992BBBB93BC -BA93BCBA95BDBB94BDBB95BDBB95BEBD97BFBD96BEBD97BFBD97BFBE98C0BE98C0BE98C0BE99C0 -BD99C0BE98C0BE98C0BE99C0BE99C0BE99C0BE9AC1BD98BFBE98C0BD98BFBD97BFBE99C0BD97BF -BE99C0BD97BFBE99C0BD96BEBE98C0BD97BFBD97BFBD97BFBD98BFBD97BFBC96BEBD96BEBD97BF -BC95BDBD96BEBD97BFBB95BEBC96BEBC96BEBC96BEBC95BDBC96BEBB95BDBA95BDBB95BDBB95BD -BA95BDBC95BDBA95BDBD95BEBC96BEBC96BEBC96BEBC96BEBD96BEBB95BDBC96BEBD95BEBD96BE -BD97BFBC95BDBD96BEBD97BFBD97BFBD97BFBD97BFBD96BEBC97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD96BEBD96BEBD96BEBD96BEBD97BFBC96BEBC96BEBB95BEBC95BDBC96BEBB95BEBC94BD -BB95BDBB94BDBB93BCBA94BDBA93BCB992BCBB93BCB992BCB991BBB991BBB991BBB890BAB88FBA -B88FBAB78FB9B78EB9B78EB9B78EB9B78EB9B68DB8B58BB7B58BB7B58CB7B58BB7B58BB7B58BB7 -B58BB7B58BB7B58CB7B58CB7B58DB8B58DB8B58DB8B68DB8B68DB8B78EB9B78EB9B88FBAB891BB -B991BBB992BCBA94BDBC95BDBD97BFBE99C0BF9CC2C29EC4C4A1C5C4A3C7C7A6C9C9AACBCCAECE -CEB1D0D1B6D3D4B9D5D7BED8DAC3DCDECAE0F0E4EFFCF9FAFFFFFEF8F0F6EDE1EEE5D7E8E4D6E8 -8880AAE5D7E8E3D6E8E3D8E9EFE8F1FCFAFBFFFFFEF6F1F7E5DDECD3C9E0CDC3DDC9BEDAC4BAD7 -C0B6D5BDB2D2B8AED0B4AACEB1A7CCAFA4CAACA2C8A99FC6A69DC5A49BC4A298C2A096C19E95C0 -9D94BF9C93BF9C92BE9B92BE9A91BD9990BC9990BC998FBC988FBC988FBC988EBB988EBB978EBB -978EBB978EBB978EBB978EBB988FBC988FBC988FBC9890BC9990BC9990BC9A91BD9A91BD9B92BE -9B92BE9C92BE9C93BF9C93BF9D94BF9D94BFA196C19F95C0A197C1A198C2A196C1A198C2A39AC3 -A199C2A299C2A49BC4A399C3A39AC3A49BC4A49AC3A49AC3A499C3A49AC3A59BC4A59BC4A49BC4 -A499C3A49BC4A49AC3A59AC3A49BC4A39AC3A59BC4A399C3A49BC4A399C3A399C3A299C2A299C2 -A299C2A299C2A299C2A197C1A298C2A198C2A198C2A198C2A197C1A198C2A197C1A197C1A197C1 -A197C1A197C1A197C1A198C2A198C2A198C2A197C1A199C2A398C2A198C2A298C2A299C2A299C2 -A299C2A299C3A299C2A299C2A298C2A299C2A299C2A299C2A399C3A299C2A298C2A398C2A298C2 -A197C1A199C2A197C1A198C2A197C1A197C1A097C1A096C0A096C19F96C09E96C09D94BF9E94BF -9D94BF9C93BF9C92BE9C92BE9B92BE9B92BE9B91BD9A91BD9A91BD9990BC9990BC9890BC988FBC -988EBB988EBB978EBB978EBB978EBB978EBB978DBB978DBB978DBB978DBB978DBB978DBB968CBA -968DBB968DBB978DBB978DBB978DBB978EBB988FBC988FBC9890BC9990BC9A91BD9B92BE9B92BE -9C93BF9D94BF9F95C0A097C1A199C2A49BC4A69DC5A99FC6ABA1C8AFA4CAB0A7CCB3AACDB7AED0 -BBB2D2BEB6D5C3B9D7C7BEDACCC4DED1C9E1E0DAEBF4F2F7FFFFFEFEFEFDF1EDF5E6E3EFE5E2EF -E6E4F08984ADE7E5F1E7E6F1EDECF4F7F5F9FFFEFDFFFEFDF2F2F8E4E8F3E0E4F1DDE3F1DAE1F0 -D8E0EFD5DEEED3DDEED0DBEDCEDAECCCD8EBCAD7EBC8D6EAC6D5EAC5D4E9C4D2E8C2D1E8C1D1E8 -C1D1E8C0D0E7C0D1E8BFCFE7BECFE7BECFE7BECFE7BECFE7BDCEE6BDCFE7BDCFE7BDCFE7BDCFE7 -BDCFE7BDCFE7BDCFE7BECFE7BECEE6BECFE7BFCFE7C0D0E7BFD0E7C0D0E7C2D2E8C0D1E8C3D2E8 -C1D1E8C2D1E8C3D2E8C4D2E8C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9 -C5D4E9C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9C4D3E9C5D4EAC4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C4D3E9C4D2E8C4D3E9C4D4E9 -C4D2E8C4D3E9C4D4E9C4D3E9C4D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D2E8C4D3E9C4D2E8C3D2E8 -C3D2E8C3D2E8C3D2E8C3D2E8C2D2E8C2D1E8C2D3E9C1D2E8C2D2E8C2D2E8C2D3E9C1D2E8C3D3E9 -C1D2E8C3D3E9C3D2E8C3D2E8C4D3E9C3D1E7C3D3E9C3D2E8C4D3E9C3D2E8C4D2E8C4D2E8C4D3E9 -C3D3E9C4D2E8C3D3E9C4D2E8C4D3E9C3D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D1E8C4D2E8 -C4D2E8C4D2E8C3D2E8C3D3E9C3D1E7C4D3E9C2D2E8C2D2E8C2D1E8C2D1E8C1D1E8C3D2E8C1D1E8 -C0D1E8C0D1E8C0D1E8C0D0E7BFCFE7BFCFE7BFCFE7BECFE7BECFE7BFCFE7BECFE7BDCFE7BDCFE7 -BDCEE6BDCEE6BDCEE6BDCEE6BDCFE7BDCEE6BDCEE6BDCEE6BDCEE6BDCFE7BECFE7BECFE7BFCFE7 -C0D0E7C1D0E7C0D1E8C1D1E8C3D3E9C4D3E9C5D4E9C7D5EAC9D7EBCBD8EBCDD9ECCFDBEDD1DDEE -D4DFEFD7E1F0D9E3F1DCE5F2E0E7F3E3E9F4E9EDF6F7F8FBFFFEFDFFFFFEFBFCFCF7F8FBF5F6FA -F5F6FAF5F6FAC0BAD3666595F8F8FBF9F9FBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7 -BECFE7BECFE7CAD8EBFBFBFCFEFDFCFEFDFCFEFCFBFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0E7ECF5FFFEFD -FEFDFCFFFDFCFFFDFCFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1F3F9F1F3F9F1F3F9F0F3F9F1F3F9F0F4F9FBFBFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3EEF4928CB23E457B -7E78A3E4DDE9FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA099BB474E82696695 -D4CDE0FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFDFCFFFEFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FA -FFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6FEF1F6FDEFF49287AE9286AEFDECF3 -FCEAF2FDEEF4FFF8F9FFFFFEFFFDFCFDEFF4F9D8E7F6D1E2F5CDE0F3C8DCF3C5DAF1C1D8F0BDD5 -EEBAD3EDB5D0EDB3CEEBB1CDEBAECBEAABCAEAAAC9E8A7C7E8A6C6E8A4C4E8A3C4E7A1C3E7A0C2 -E7A0C2E69FC1E69EC1E59DC0E59DC0E59CC0E59CBFE59CC0E59CC0E59CBFE59BBFE59BBFE49BBF -E59BBFE59CBFE59BBFE59BBFE59CBFE59ABEE59CBFE59CC0E59CC0E59DC0E59DC0E69EC1E69EC1 -E69FC1E69FC1E7A0C2E7A0C2E7A1C3E7A1C3E6A2C3E7A2C3E7A3C4E7A4C5E8A4C4E6A3C4E9A5C6 -E8A4C5E8A5C5E8A5C5E8A6C6E8A5C5E8A5C5E7A5C5E8A6C6E8A6C6E8A5C5E8A6C6E8A6C6E8A6C6 -E8A6C6E7A6C6E8A6C6E8A5C5E8A5C5E8A5C5E8A5C5E7A5C5E8A5C5E8A4C5E8A4C5E8A4C5E8A4C5 -E8A4C5E8A4C5E8A4C5E8A4C5E8A4C5E7A4C5E8A4C5E8A4C5E8A5C5E8A4C5E8A5C5E8A5C5E8A5C5 -E8A5C5E8A5C5E8A5C5E8A6C6E8A6C6E8A6C6E8A7C6E8A6C6E8A6C6E9A6C6E8A6C6E9A6C6E7A6C6 -E9A6C6E8A6C6E8A5C5E8A6C6E7A6C6E8A5C5E8A5C5E8A5C5E8A5C5E8A4C5E8A5C5E8A6C6E8A5C5 -E8A4C5E7A4C5E8A4C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A1C3E7A2C3E7A2C3E7A1C3E7A1C3 -E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E69FC1E69EC1E69EC1E69EC1E59DC0E59CC0E59CC0E59CC0 -E59CBFE69BBFE59BBFE59BBFE59BBFE59BBFE59CBFE59BBFE59BBFE49BBFE59CBFE59CBFE59CBF -E59CBFE59CBFE59CC0E59CC0E59DC0E59DC0E59DC0E59EC1E69FC2E7A0C2E7A0C2E7A2C3E7A3C4 -E8A5C5E8A7C7E9A8C7E9AAC9E9ADCAEAAFCCECB2CEECB5D0EDB7D1EEBAD3EEBED6EFC1D8F1C4DA -F1C8DDF4CDE0F4D2E3F9E8F1FDF8FAFFFFFEFEF8F9F8E8F1F3DBE9F3DBE9F2DCEA8E82ABF1DAE9 -F0DAE9F0DBEAF6E9F1FFFDFCFFFFFEF9F0F6EEDCEAE0C8DEDDC4DCD9BED8D5B9D5D3B6D3D0B1D0 -CDAECECBAACBC8A7C9C6A4C7C4A2C6C39FC4C19CC2BF9AC1BE99C0BD97BFBB95BDBA93BCB992BC -B992BCB992BBB991BBB991BBB890BAB88FBAB78EB9B78EB9B78EB9B78EB9B78EB9B78EB9B78EB9 -B78FB9B88FBAB88FBAB890BAB88FBAB990BAB991BBB992BBB992BBBA93BCBA93BCBA93BCBB94BD -BB95BDBB95BEBC96BEBD95BEBD97BFBD97BFBD97BFBE98BFBE98C0BE99C0BE98C0BE98C0BE98C0 -BE98C0BE99C0BE98C0BE98C0BE98C0BE98C0BE99C0BF98BFBE99C0BF99C0BE98C0BD98BFBE98C0 -BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBD97BFBD97BFBD97BF -BD97BFBC96BEBC96BEBC96BEBC96BEBB96BEBC96BEBB95BEBC96BEBC96BEBC96BEBC96BEBC96BE -BC95BDBC96BEBC96BEBC95BDBD96BEBC96BEBC96BEBC96BEBC95BDBD96BEBC96BEBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD96BEBC96BEBC96BEBC96BEBC95BDBC96BEBC96BEBD96BEBC95BDBB95BDBB94BD -BB94BDBB94BDBA93BCBA93BCB993BCBA93BCB992BCB992BBB992BBB991BBB991BBB890BAB88FBA -B88FBAB88FB9B78EB9B78EB9B78EB9B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8B68DB8 -B68DB8B68EB9B78EB9B78EB9B78EB9B78FB9B88FBAB990BAB991BBB992BBB992BCB993BCBB95BD -BD97BFBE98C0BE9AC1C09CC2C29FC4C4A1C5C6A4C7C7A7CAC9AACBCCADCECEB1D0D0B4D2D3B8D5 -D6BDD8D9C2DBDCC6DEE5D4E6F3EAF2FFFFFEFFFFFEF4EBF3EADCEBE6D8E8E6D9E98980AAE4D8E9 -E4D9E9E3D7E8EBE3EFF7F2F7FFFFFEFEFCFCEEE7F1D7CDE3D0C6DFCBC1DBC7BCD9C3B9D7BEB4D4 -BBB0D2B8ADD0B4AACDB1A7CCAFA4CAACA2C8AAA0C7A79DC5A59BC4A39AC3A198C2A097C19F95C0 -9D94BF9C93BE9C93BF9C92BE9B92BE9A91BD9A91BD9A91BD9A91BD9A90BD9990BC9990BC9990BD -9990BC998FBC9990BC9990BC9990BC9990BC9A91BD9B92BE9B92BE9B92BE9C92BE9C92BE9C93BF -9D94BF9E94BF9D95C09F95C09E96C0A096C1A097C2A298C1A198C2A198C2A299C2A39AC3A399C3 -A39AC3A49AC3A59BC4A39AC3A49BC4A49BC4A49BC4A49BC4A49BC4A49BC4A49AC3A49BC4A49BC4 -A49BC4A39AC3A49BC4A49BC4A49BC4A49AC3A399C3A39AC3A399C3A299C3A299C2A399C3A499C3 -A299C2A399C3A198C2A197C1A198C2A198C2A198C2A197C1A198C2A198C2A197C1A197C1A198C2 -A198C2A298C2A198C2A198C2A198C2A198C2A198C2A299C2A299C2A299C2A399C3A299C2A398C2 -A39AC3A399C3A39AC3A399C3A39AC3A399C3A299C2A299C2A299C2A299C2A198C2A198C2A197C1 -A199C2A198C2A298C1A197C1A197C1A197C1A096C1A096C19F96C09E95C09F95C09E95C09D94BF -9C93BF9C93BF9C93BF9C92BE9C92BE9B92BE9B92BE9A91BD9A91BD9990BD9890BC9990BC9890BC -9890BC9890BC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988FBC988EBB -988FBC9990BC9990BC9990BC9A91BD9B92BE9B92BE9C92BE9C93BE9D94BF9D94BF9F95C0A096C1 -A198C2A39AC3A59BC4A79DC5A99FC7ABA1C8AEA4C9B1A7CCB3AACDB7AED0BBB1D2BEB5D4C1B9D7 -C5BDD9CBC3DDCFC7DFD5CEE3EDE9F3FCFBFBFFFFFEF9F8FAEFEBF3E6E3EFE6E4F0E7E4F08885AD -E7E6F1E8E6F1EAE9F3F3F2F7FFFEFDFFFFFEF8F8FAECEEF6E2E6F2DFE5F2DCE3F1D9E1F0D7E0EF -D5DEEED2DCEDD0DCEDCEDAECCDD9ECCAD7EBC8D6EAC7D5EAC5D4E9C4D3E9C3D2E8C2D2E8C2D1E8 -C1D1E8C0D0E7C0D0E7C0D0E7BFCFE7C0D0E7BECEE6BECFE7BFCFE7BECFE7BECFE7BECFE7BED0E7 -BFD0E7BFD0E7BFD0E7C0D1E8C0D1E8C0D1E8C1D1E8C1D1E8C0D0E7C2D1E8C2D1E8C3D2E8C3D2E8 -C3D3E9C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C5D4E9C5D4E9 -C5D4E9C5D3E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C4D3E9C4D2E8 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D4E9C4D3E9 -C4D3E9C4D3E9C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D2E8C4D3E9C3D3E9C2D2E8 -C3D3E9C3D3E9C3D3E9C3D2E8C3D3E9C3D2E8C3D2E8C3D2E8C3D2E8C3D1E7C3D3E9C3D1E7C3D3E9 -C3D3E9C4D3E9C2D1E8C3D3E9C3D2E8C3D3E9C3D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C3D3E9 -C4D2E8C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9 -C3D3E9C3D3E9C3D3E9C3D2E8C4D2E8C3D3E9C3D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D2E8 -C1D1E8C0D0E7C0D1E8C0D1E8BFCFE7BFCFE7BFCFE7BFCFE7BFCFE7BECFE7BED0E7BDCFE7BECFE7 -BECFE7BECFE7BFCFE7BECFE7BECFE7BECFE7BFCFE7BFCFE7BFCFE7C0D0E7C1D0E7C1D1E8C2D1E8 -C2D1E8C3D2E8C5D4E9C6D5EAC6D5EAC9D7EBCBD8ECCDD9ECCFDBEDD1DDEED3DEEFD6E0F0D9E2F1 -DBE4F2DEE6F3E2E8F3E5EBF5EEF1F8FAFAFCFFFFFEFFFEFDF9F9FBF5F8FBF5F6FAF5F6FAF6F7FA -C0BAD3666595F8F8FBF9FAFBFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFD -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7C3D3E9 -F7F8FBFDFDFDFEFDFCFEFDFCFDFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCE1E8F4D8E1F0D8E0EFD8E2F0D8E0EFE0E7F3FEFDFDFFFEFDFFFDFCFFFDFB -FFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF1F3F9 -F1F3F9F1F3F9F1F3F9F0F2F8F7F8FBFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4DDE97E78A33E467B -7E78A3E3DCE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDACA4C4525689525689BAB2CDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FA -FFF7F9FFF6F9FEF6F8FEF4F7FEF3F7FEF2F6FEF1F6FEF0F59287AE9287AEFDEDF3FDEBF2FDEBF2 -FEF1F6FFFDFCFFFFFEFFF5F8FCE8F1F7D5E5F5CFE1F4CCDFF3C7DCF1C2D9F1C0D7F0BCD5EEB9D2 -EDB6D0EDB3CFECB2CEEBAFCCEAACCAEAAAC9E9A8C7E8A7C6E7A6C6E8A4C5E8A3C4E7A2C3E7A1C3 -E7A0C2E7A0C2E69FC1E69FC1E69EC1E69EC1E69EC1E69EC1E69EC1E69EC1E59DC0E59DC0E59DC0 -E59DC0E59DC0E69EC1E69EC1E69EC1E79FC1E69FC1E69FC1E7A0C2E7A0C2E7A0C2E7A1C3E8A1C3 -E7A1C3E7A2C3E7A3C4E8A3C4E8A4C4E8A4C4E8A4C5E8A4C5E8A4C5E8A5C5E8A5C5E8A6C6E8A6C6 -E8A6C6E8A7C6E8A7C6E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7 -E9A7C7E9A7C7E8A7C6E8A7C6E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6 -E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E7A6C6E8A7C6E8A7C6E8A7C6 -E8A7C6E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7 -E9A7C7E9A7C7E9A7C7E9A7C7E9A7C7E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6 -E8A5C5E8A5C5E8A4C5E8A4C5E8A4C5E8A4C5E8A4C4E8A4C4E8A4C4E8A4C4E7A3C4E7A3C4E7A2C3 -E7A2C3E7A1C3E7A1C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E69FC1E69FC1E69FC1E69EC1E69EC1 -E69EC1E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E59DC0E69EC1E69EC1E59DC0E59DC0E69EC1 -E69EC1E69FC1E69FC1E7A0C2E7A0C2E7A1C3E7A2C3E7A2C3E7A3C4E8A4C5E9A7C7E9A8C7EAAAC9 -EAABCAEAAECBEBAFCCECB2CEEDB5D0EDB8D2EEBBD4EFBED6EFC1D8F1C5DBF2C8DCF3CDE0F4D0E2 -F7DEEBFBEDF4FFFFFEFFFFFEFAEEF4F5E2EDF5DDEAF3DDEAF3DDEA8D81AAF2DEEBF1DAE9F0DBEA -F4E4EFFAF2F7FFFFFEFFFDFCF6E9F2E7D1E4E0C7DEDAC1DAD8BDD8D5B9D5D2B4D2D0B1D0CDAECE -CBAACBC9A8CAC7A6C9C5A2C6C3A0C5C29DC3C09CC2BF9AC1BE98C0BD97BFBC95BDBB94BDBA94BD -BA93BCB993BCB992BCB992BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BBB991BB -B992BBB992BBB992BCBA93BCBA93BCBA93BCBA94BDBB95BDBC94BDBC95BDBC96BEBD97BFBD97BF -BD97BFBD97BFBE98C0BE99C0BE99C0BE99C0BE99C0BE99C0BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1 -BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE9AC1BE99C0BE99C0BE99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE98C0BE98C0BE98C0BE98C0BE98C0BE98C0BE98C0BD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD96BEBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBE98C0 -BE98C0BE98C0BE98C0BE98C0BE98C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBC96BE -BC96BEBC95BDBB95BDBB94BDBA94BDBA93BCBA93BCBA93BCBA93BCB992BCBA92BBB992BBB991BB -B991BBB991BBB990BAB990BAB990BAB88FBAB88FBAB88FBAB88FBAB88FBAB890BAB890BAB991BB -B991BBB991BBB991BBB991BBB992BBB992BCBB93BCBB94BDBB95BEBD97BFBE98C0BE9AC1C09CC2 -C19DC3C3A0C5C4A1C6C5A4C7C8A7CACAABCCCCADCECDB0D0D1B5D3D2B8D5D6BCD7D8C0D9DBC5DD -E0CCE1F0E5F0FBF7FAFFFEFDFBF7FAF1E7F1E7DAEAE6D9E9E6DAEA8A81ABE6DAEAE5DAEAE5DAEA -E6DCEBF0E9F2FFFEFDFFFFFEF5F0F6E6DEECD3C9E1CEC4DDC9BFDAC6BDD9C2B7D6BEB4D4BAB0D1 -B8ADD0B4AACEB2A7CBAFA4CAACA2C9AAA0C7A89EC6A69DC5A59BC4A399C3A198C2A197C1A096C1 -9F95C09E94BF9D94BF9C93BF9C93BE9C93BE9C93BE9C92BE9C92BE9C92BE9B92BE9B92BE9B92BE -9B92BE9C92BE9C92BE9C92BE9C93BE9C93BF9C94BF9D94BF9E94BF9E94BF9F95C09F96C0A096C1 -A096C1A197C1A197C1A198C2A198C2A199C2A299C2A39AC3A49AC3A49AC3A59BC4A59BC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A59CC4A59CC4A59CC4A59CC4A59BC4A59BC4A59BC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A49BC4A49BC4A49AC3A49AC3A49AC3 -A39AC3A39AC3A39AC3A39AC3A399C3A299C2A299C2A299C2A299C2A299C2A299C2A39AC3A39AC3 -A39AC3A39AC3A39AC3A39AC3A49AC3A49AC3A49AC3A49AC3A49AC3A49AC3A49BC4A49BC4A49BC4 -A49BC4A49BC4A49BC4A49BC4A49AC3A49AC3A49AC3A49AC3A39AC3A39AC3A399C3A299C2A299C2 -A299C2A299C2A298C2A198C2A198C2A198C2A197C1A197C1A197C1A096C19F96C09F96C09F95C0 -9E94BF9E94BF9E94BF9D94BF9C93BF9C93BE9C92BE9C92BE9C92BE9C92BE9B92BE9B92BE9C92BE -9B92BE9A91BD9A91BD9B91BD9B91BD9B92BE9B92BE9A91BD9A91BD9B92BE9B92BE9B92BE9B92BE -9C92BE9C92BE9C93BE9C93BF9D94BF9E94BF9F95C0A096C1A197C1A198C2A399C3A59BC4A69DC5 -A89EC6AAA0C7ACA2C9AFA5CAB1A8CCB4ABCEB8AED0BAB1D2BEB5D4C2B8D6C5BCD9C8C0DBCEC5DE -D3CBE2E2DCECF4F1F6FFFFFEFFFFFEF3F0F6EBE6F1E6E3EFE7E5F1E8E5F18985ADE9E7F2E8E7F2 -EAE9F3F2EFF6FAF9FBFFFFFEFFFEFDF3F2F8E6EAF4E2E7F3DEE5F2DAE2F0D9E1F0D6DFEFD5DEEE -D1DDEED0DCEDCEDAECCDD8EBCBD8EBC9D6EAC7D5EAC6D5EAC5D4E9C4D3E9C4D2E8C3D2E8C2D1E8 -C2D1E8C1D1E8C1D1E8C0D1E8C0D1E8C0D1E8C0D0E7C0D0E7C1D0E7C0D0E7C0D0E7C0D1E8C1D1E8 -C1D1E8C1D1E8C1D1E8C1D1E8C2D1E8C2D1E8C2D2E8C3D3E9C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4E9C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9 -C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C3D3E9C2D2E8C2D2E8C2D1E8 -C2D1E8C1D1E8C1D1E8C1D1E8C0D1E8C0D1E8C0D1E8C0D1E8BFCFE7BFCFE7C0D0E7C0D0E7C0D0E7 -BFCFE7C0D0E7C0D1E8C0D1E8C0D1E8C1D1E8C1D1E8C2D1E8C2D1E8C3D3E9C4D3E9C4D3E9C5D4E9 -C7D5EAC8D6EBCAD7EBCCD9ECCDD9ECCFDBEDD1DDEED3DEEED6DFEFD8E1F0D9E3F1DEE5F2E1E7F3 -E5EAF4E9EDF6F6F8FAFDFEFDFFFFFEFCFCFCF8F8FBF5F6FAF5F6FAF5F6FAF6F8FAC0BAD3666595 -F8F8FBF9F9FBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFBFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFEFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFEFDFCFEFDFCFEFDFCDEE5F2BECFE7BECFE7BECFE7BECFE7F3F4F9FDFDFCFFFDFC -FEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFDFCE2E9F4D8E2F0D8E1F0D8E1F0DBE3F1FCFCFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF1F3F8F0F4F9F1F3F9 -F1F3F8F6F8FBFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEE2DBE97E78A33F457B -7E78A3E4DDE9FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFDF2EEF4ADA5C4515588515588ACA4C5FFFEFCFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9 -FEF6F8FEF5F8FEF3F7FEF3F7FEF2F6FEF1F69288AF9287AEFDEDF3FDEDF3FDEBF2FDEEF4FFF8FA -FFFEFDFFFEFDFEEFF5FADEEBF6D4E4F5CFE1F3CADEF3C7DBF1C3D9F1BFD7F0BCD5EEB9D2EDB6D1 -EDB4CFECB2CEEBAFCCEBAECBEAABCAEAAAC9E9A8C7E8A7C6E8A5C5E7A5C5E7A3C4E8A3C4E7A2C3 -E7A2C3E7A1C3E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E6A0C2E7A0C2E7A0C2E7A0C2E7A0C2E6A0C2 -E6A0C2E6A0C2E6A0C2E7A1C3E7A1C3E7A1C3E7A1C3E7A2C3E7A2C3E7A3C4E7A3C4E8A4C4E8A4C4 -E8A4C5E7A4C5E7A5C5E8A5C5E8A6C6E8A6C6E8A7C6E8A7C6E8A7C6E8A7C6E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7 -E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C7E8A7C6E8A7C6E8A7C6E8A7C6E8A7C6 -E8A7C6E8A7C6E8A6C6E8A6C6E8A5C5E8A6C6E8A5C5E7A5C5E8A4C5E8A4C5E8A4C4E8A4C4E7A3C4 -E7A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A1C3E7A1C3E7A0C2E7A1C3E6A0C2E6A0C2E7A0C2E7A0C2 -E7A0C2E7A0C2E7A0C2E7A0C2E69FC2E69FC2E6A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A0C2E7A1C3 -E7A2C3E7A1C3E8A3C4E8A4C5E8A5C5E8A6C6E8A7C6E9A8C7E9A9C8EAABC9EAADCBEAAECCEBB1CD -EDB3CEECB5D0EDB8D2EFBBD4EFBFD6F0C0D8F1C4DAF3C8DCF4CCDFF5CFE1F6D6E5F9E8F1FFFAFB -FFFFFEFFF9FAF8EAF2F5DDEAF4DDEBF3DDEAF3DEEB8E82ABF2DDEAF1DCEAF0DCEAF2DEEBF8ECF3 -FFFDFCFFFEFDFAF3F7F2E3EEE2CBE0DFC6DDDBC1DAD7BBD6D4B8D5D3B5D2D1B2D0CDAECECBABCC -C9A8CAC7A5C8C5A3C7C4A1C5C39FC4C19CC2C09CC2BF9AC1BE98C0BD97BFBD97BFBC96BEBB95BE -BB95BDBB95BDBA94BDBA93BCBA93BCBA93BCBA93BCBA93BCBA93BCBA94BDBA94BDBB94BDBB94BD -BB95BDBC95BDBC95BDBD96BEBC96BEBD97BFBD97BFBD97BFBD97BFBE98C0BE98C0BE98C0BE98C0 -BE99C0BE9AC1BE9AC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1C09BC1C09BC1C09BC1C09BC1C09BC1 -C09BC1C09BC1C09BC1C09BC1BF9BC1BF9BC1BF9AC1BF9AC1BF9AC1BF9AC1BF9AC1BF9AC1BF9AC1 -BE9AC1BE9AC1BE99C0BE99C0BE9AC1BE9AC1BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE98C0BE98C0BE98C0BE98C0BE98C0BE98C0BE98C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0 -BE99C0BE99C0BE99C0BE99C0BE99C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBD97BFBD97BF -BD97BFBC96BEBC96BEBC95BDBC95BDBB95BDBC95BDBB94BDBB94BDBB94BDBA94BDBA93BCBA93BC -BA93BCBA93BCB992BCB992BCB992BCB992BCB992BBB992BBB992BCB992BCBA93BCBA93BCBA93BC -BA93BCBB93BCBB94BDBC96BEBD97BFBE98C0BE99C0BE9AC1BF9BC2C19DC3C39FC4C4A1C5C5A3C7 -C6A5C8C8A8CACAABCCCCAECECEB1D0D2B5D2D3B8D4D6BCD7D8C1DADCC6DDDEC9DFEADAEAF6EEF4 -FFFFFEFFFEFDF5EDF4ECE0EDE7D9E9E7DBEAE7D9E98981ABE6D9E9E6DBEAE4DAEAE5DBEAEDE4EF -F8F4F8FFFFFEFEFDFDF0EAF2DDD3E7D2C8E0CEC3DDC8BEDAC5BCD8C1B7D6BEB3D3BAB0D1B8AED0 -B4ABCEB3A8CCAFA5CAAEA3C9ACA1C8AAA0C7A89EC6A69CC4A59BC4A39AC3A299C2A198C2A197C1 -A096C1A096C19F95C09E95C09E95C09E95C09E94BF9F95C09D94BF9D94BF9D94BF9D94BF9E94BF -9E95C09E95C09F95C09F95C09F96C0A096C1A196C1A096C1A197C1A198C2A198C2A198C2A298C2 -A399C3A399C3A49AC3A49AC3A49BC4A59BC4A59BC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC5 -A59CC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A59CC4A59CC4 -A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59CC4A59BC4A59BC4A59BC4A59BC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59CC4A59CC4A59CC4 -A59CC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A59BC4A49AC3A49AC3 -A49AC3A399C3A399C3A399C3A399C3A299C2A198C2A197C1A197C1A197C1A197C1A197C1A096C1 -9F96C09F95C09E94BF9E94BF9E94BF9E94BF9E94BF9E94BF9D94BF9D94BF9D94BF9D94BF9D94BF -9D94BF9D94BF9D94BF9D94BF9D94BF9C93BF9C93BF9C93BF9D94BF9D94BF9D94BF9E95C09E95C0 -9F95C0A096C1A196C1A197C1A198C2A399C3A49AC3A59BC4A59CC5A79DC5AAA0C7ABA1C8ADA3C9 -AFA6CBB2A8CCB4ABCEB8AED0B9B1D2BEB5D4C1B7D6C4BBD8CAC1DCCDC5DED1CAE2D8D1E5EEE8F2 -FCFBFBFFFFFEFBF9FBF0ECF4E8E4F0E7E5F1E7E5F1E9E6F18984ADE8E7F2EAE8F2EAE9F3ECEBF4 -F5F5F9FFFEFDFFFFFEF9F9FBEFF0F7E4E9F3E1E6F3DEE4F2DAE2F0D8E1F0D6DFEFD5DEEED3DEEE -D1DCEDCFDAECCDD9ECCBD8EBCAD7EBC9D7EBC8D6EAC6D5EAC6D4E9C5D4E9C4D3E9C4D3E9C3D3E9 -C3D3E9C2D2E8C2D1E8C2D1E8C1D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8 -C3D2E8C3D3E9C4D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4EA -C5D4EAC5D4EAC5D4EAC6D5EAC6D5EAC6D4E9C6D4E9C6D4E9C6D4E9C6D4E9C6D4E9C6D4E9C6D4E9 -C6D4E9C6D5EAC6D5EAC6D5EAC5D4EAC5D4EAC5D4E9C5D4E9C5D3E8C5D4E9C5D4E9C5D4E9C5D4E9 -C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9 -C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C5D4E9C5D4E9C5D4E9 -C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C5D4E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C3D3E9 -C2D2E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C2D1E8C1D1E8C1D1E8C1D1E8C1D1E8 -C1D1E8C2D1E8C2D1E8C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C5D4E9C7D5EAC8D6EAC9D7EBCAD7EB -CCD9ECCEDAEDCFDBEDD1DDEED4DEEED5DFEFD8E1F0DAE3F1DEE5F2E0E7F3E5EAF4E7ECF5F3F4F9 -FAFBFCFFFFFEFFFEFDFAFBFCF6F8FAF5F6FAF5F6FAF6F7FAF6F8FAC0BAD3676595F8F8FBFAFAFC -FAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FEFDFCFEFEFCFEFCFBDEE5F2BED0E7BDCFE7BFCFE7E7ECF5FEFCFBFFFEFCFEFDFCFEFDFCFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4 -D8E1F0D8E2F0DBE4F2F7F8FBFFFEFCFEFDFCFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF1F3F9F3F4F9F0F3F9F6F7FAFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFCFFFFFEE4DDE97E78A33E447B -686796BAB1CDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEE4DDE98782AB484D82 -686696ACA4C4FFFFFEFFFEFDFFFFFEFFFDFCFFFFFEFFFEFDFFFFFDFFFFFEFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8 -FEF4F7FEF3F7FEF2F6FEF1F69288AF9287AEFDEDF3FDECF3FDECF3FDEBF2FEF2F6FFFEFDFFFFFE -FFFBFBFDEDF3F9D8E6F6D2E3F5CEE0F4CADEF3C7DBF1C3D9F1C0D7F0BDD5EEBAD3EEB7D2EEB5D0 -EDB3CEECB1CDEBAFCCEBADCBEAABCAEAAAC9EAA9C8E9A8C7E8A7C7E8A7C6E8A6C6E8A4C5E8A4C5 -E8A4C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E8A2C3E7A2C3E7A2C3E7A3C4E7A3C4 -E7A3C4E7A3C4E8A4C4E8A3C4E7A3C4E7A4C5E7A4C5E8A6C6E8A5C5E8A6C6E8A6C6E8A6C6E8A7C6 -E8A7C6E8A7C6E9A8C7E9A8C8E9A8C8E9A8C8E9A8C8EAA9C8EAA9C8E9A9C8E9A9C8E9A9C8EAA9C8 -EAAAC9EAAAC9EAAAC9EAA9C8EAA9C8EAA9C8EAAAC9EAA9C8EAA9C8EAA9C8EAA9C8E9A9C8E9A9C8 -E9A9C8E9A9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8 -EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8E9A9C8E9A9C8E9A9C8E9A9C8EAA9C8EAA9C8EAA9C8EAA9C8 -EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8EAA9C8 -EAA9C8EAA9C8EAA9C8E9A9C8E9A9C8E9A9C8EAA9C8E9A8C8E9A8C8E9A8C8E9A8C8E9A8C8E9A8C8 -E9A8C7E9A8C7E8A7C7E8A7C7E8A7C6E8A6C6E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A5C5E8A5C5 -E7A4C5E7A5C5E7A4C5E7A3C4E8A4C4E8A3C4E8A3C4E7A3C4E7A2C3E7A2C3E7A2C3E7A2C3E7A2C3 -E7A2C3E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E7A3C4E8A4C4E8A4C5E8A5C5E8A6C6 -E8A7C6E8A7C7E9A8C7E9A9C8EAAAC9EAABCAEAADCBEBAFCCEBB1CDECB2CEECB4CFEEB7D2EDB9D3 -EFBCD4F0BFD7F0C1D8F1C5DBF2C9DDF3CCDFF5D0E2F5D3E4FAE7F0FDF5F8FFFFFEFFFEFDFBEFF5 -F7E3EEF5E0ECF5DFEBF4DFECF4DFEC8F82ABF3DEEBF2DEEBF1DFECF0DEEBF3E4EFFBF3F7FFFFFE -FFFFFEF8EEF4EDDCEAE2CADFDDC4DCDAC1DAD8BCD7D4B9D5D2B5D2D0B3D1CDAECECBACCDCAA9CB -C8A7C9C7A4C7C5A2C6C4A1C5C39FC4C19DC3C09CC2BF9BC1BE9AC1BE9AC1BE99C0BE98C0BD97BF -BC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBC96BEBD97BFBD97BF -BD97BFBD97BFBE98C0BE98C0BE99C0BE99C0BE99C0BE9AC1BF9AC1BF9BC1BF9BC1C09CC2C09CC2 -C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2 -C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2 -C09CC2BF9BC2C09CC2C09CC2C09CC2C09BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1 -BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BF9AC1BF9AC1BF9AC1BF9AC1BF9AC1BF9BC1BF9BC1BF9BC2 -BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1BF9BC1 -BF9BC1BF9BC1BF9BC1BF9BC1BF9AC1BF9AC1BE9AC1BE9AC1BE99C0BE99C0BE99C0BE9AC1BE98C0 -BE98C0BE98C0BE98C0BD97BFBD97BFBD97BFBD97BFBC96BEBC96BEBC96BEBC96BEBC95BDBC95BD -BC95BDBC95BDBC95BDBC95BDBB95BDBB95BDBC96BEBC96BEBD97BFBC96BEBD97BFBD97BFBE98BF -BE98C0BE99C0BF9AC1BF9BC1C09CC2C19DC3C39FC4C4A1C5C4A2C6C6A5C8C8A7C9C9A9CBCBABCC -CDAFCFCFB2D0D1B5D3D3B8D4D6BBD7D8C0DADBC5DDDDC9DFE6D4E6F4EBF3FFFDFCFFFFFEFBF7FA -F3E8F1E8DAEAE8DBEAE8DBEAE7DBEA8A82ABE7DCEBE6DBEBE7DCEBE6DBEBE6DDECF1EBF3FEFBFC -FFFFFEFAF7F9EEE7F1D6CDE3D1C8E0CDC3DDCABFDAC4BBD8C2B8D6BEB4D4BBB1D2B8AED0B6ABCE -B3A9CDB1A7CCAFA5CAADA3C9ABA1C8AAA0C7A89EC6A79DC5A69DC5A59CC4A59BC4A49AC3A399C3 -A198C2A198C2A198C2A198C2A197C1A197C1A197C1A197C1A197C1A197C1A197C1A196C1A197C1 -A197C1A198C2A198C2A198C2A299C2A299C2A399C3A39AC3A49AC3A49BC4A49BC4A59BC4A59BC4 -A59CC4A59CC5A69DC5A69DC5A69DC5A79DC5A79DC5A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6 -A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A89EC6A79DC5 -A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A69DC5A69DC5A69DC5A69DC5 -A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5A69DC5 -A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5A79DC5 -A79DC5A79DC5A79DC5A79DC5A69DC5A69DC5A69DC5A69DC5A69DC5A59CC5A59CC5A59CC4A69CC4 -A59CC4A49BC4A59BC4A59BC4A49BC4A49AC3A49AC3A39AC3A399C3A399C3A298C2A298C2A198C2 -A198C2A197C1A197C1A197C1A197C1A097C1A096C1A096C1A096C1A096C1A096C1A096C1A096C1 -A096C1A096C1A096C1A096C1A096C1A096C1A096C1A197C1A197C1A198C2A198C2A298C2A399C3 -A49AC3A59BC4A59CC4A69DC5A79DC5A99FC6AAA0C7ABA1C8ADA3C9AFA5CAB1A7CCB3AACDB6ACCF -B8AFD1BBB2D2BEB5D4C1B9D7C5BCD9CAC1DCCCC5DED2C9E0D6CEE3EBE6F1F8F5F9FFFFFEFEFEFD -F4F1F6EAE6F1E8E4F0E7E4F0EAE6F1E8E6F18A85AEE9E7F2EBE9F3EBEAF3EBEAF3F2F0F7FAFAFB -FFFFFEFFFEFDF5F5F9EBEEF6E3E8F3E1E6F3DEE5F2DAE3F1D9E2F0D7E0EFD5DFEFD3DEEED1DCED -CFDBEDCEDAECCDD9ECCCD9ECCAD7EBC9D7EBC8D6EAC7D5EAC7D5EAC6D4E9C5D4E9C5D4EAC4D3E9 -C4D2E8C4D3E9C3D3E9C3D3E9C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C4D3E9C5D4EAC5D4EAC5D4EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EA -C7D5EAC7D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC5D4EAC5D4EA -C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C4D3E9C3D3E9C3D3E9C3D3E9C3D3E9C3D3E9C3D3E9C3D3E9C3D3E9C4D3E9C4D3E9C4D3E9 -C4D3E9C5D4E9C5D4E9C6D4E9C7D5EAC7D6EAC8D6EBC9D7EBCAD7EBCCD9ECCEDAECCFDBEDD0DCEE -D2DDEED4DFEFD6E0F0D9E2F0DAE3F1DDE5F2E0E8F3E3E9F4E7ECF5EEF1F8F8F9FBFFFFFEFFFFFE -FCFCFCF8F9FBF5F7FAF5F6FAF6F7FAF6F8FAF7F8FBC1BBD4676595F9F9FBFAFAFCFAFBFCFAFBFC -FAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFEFDFCFEFDFC -FEFDFCDEE5F2BECFE7BDCEE6DAE4F1FEFDFCFEFEFCFEFEFCFEFDFCFFFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0D8E1F0 -F4F6FAFFFDFCFEFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2F4F9F0F3F9F4F6FAFCFCFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDF2EEF4938CB2515689 -5055898882ABD4CCDFFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFCFFFFFEFFFFFEFFFFFDF2EEF4ADA5C46866953E457B7D78A3C7BFD6FFFEFDFFFFFE -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF8F9FEF7F9FEF6F8FEF5F8FEF3F7 -FEF2F6FEF2F69288AF9288AFFDEEF4FDEEF4FDEBF2FDEBF2FEEFF5FFF5F8FFFFFEFFFFFEFFF5F8 -FCE9F1F9D8E7F6D1E2F5CFE1F4CADEF3C7DBF1C4DAF0C0D7F0BED6EFBBD4EEB9D2EDB6D1EDB5D0 -EDB3CEECB2CEEBB0CDEBAFCCEBADCBEAABCAEAABC9EAAAC9EAA9C8E9A9C8E9A8C7E8A7C6E8A7C6 -E8A7C6E8A7C6E8A7C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A6C6E8A5C5 -E8A6C6E8A6C6E8A7C6E8A7C6E8A7C6E9A8C7E9A8C7E9A8C8E9A8C8E9A8C8EAA9C8EAA9C8EAA9C8 -EAAAC9EAAAC9EAAAC9EAABC9EAABC9EBABC9EBACCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAACCAEAACCAEAACCAEAACCAEAACCAEAACCAEAACCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABCA -EAABCAEAABCAEAABCAEAABCAEAABCAEAABCAEAABC9EAABC9EAABC9EAABC9EAAAC9EAAAC9EAAAC9 -EAAAC9EAAAC9EAA9C8EAA9C8EAA9C8EAA9C8E9A8C8E9A8C8E9A8C8E9A8C7E8A7C7E8A7C7E8A7C6 -E8A7C6E8A6C6E8A7C6E8A6C6E8A6C6E8A6C6E8A5C5E8A6C6E8A5C5E8A5C5E8A5C5E8A5C5E8A6C6 -E8A6C6E8A6C6E8A6C6E8A6C6E8A7C6E8A7C6E8A7C6E8A7C7E9A8C7E9A9C8EAA9C8EAAAC9EAABC9 -EAACCAEAADCBEAAECBEBAFCCEBB1CDECB2CEEDB4CFEDB6D0EDB8D2EEBAD3EFBDD5F0C0D7F0C2D9 -F2C6DBF3C8DCF4CCDFF5CFE1F5D3E3FAE3EEFBEFF5FFFEFDFFFFFEFEF5F8FAE9F1F7E1EDF5E0EC -F5E0ECF5E0ECF4DEEB8F82ABF3E0ECF3DFECF2DEEBF1DEEBF1E0ECF7EBF3FEFAFBFFFFFEFEFBFC -F6EAF2E9D6E7E1C9DFDDC4DCDAC1DAD7BDD7D4B9D5D2B5D3D0B3D1CEB0CFCCADCECBABCCC9A8CA -C8A7C9C7A5C8C5A3C7C4A2C6C4A0C5C39FC4C29EC4C29DC3C19CC2C19CC2C09CC2BF9BC1BF9BC1 -BF9AC1BF9AC1BE9AC1BE9AC1BE99C0BE99C0BE99C0BE99C0BE9AC1BE9AC1BF9AC1BF9BC1BF9BC1 -BF9BC2C09CC2C09CC2C09CC2C09CC2C09CC2C19CC2C19CC2C19CC2C19DC3C29EC4C29EC4C29EC4 -C29EC4C29EC4C29FC4C29FC4C29FC4C29FC4C39FC4C39FC4C39FC4C39FC4C39FC4C29FC4C29FC4 -C29FC4C29FC4C29FC4C29FC4C29FC4C29FC4C29FC4C29EC4C29EC4C29EC4C29EC4C29EC4C19EC3 -C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3 -C19DC3C19DC3C19DC3C19CC2C19CC2C19CC2C19CC2C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3 -C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3 -C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3C19DC3 -C19CC2C19CC2C19CC2C19CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09CC2C09BC1C09BC1BF9BC1 -BF9BC1BE9AC1BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE99C0BE98C0BE98C0BE98C0BE98C0 -BE98C0BE98C0BE98C0BE98C0BE99C0BE99C0BF9AC1BE9AC1BF9BC1BF9BC1C09CC2C09CC2C19DC3 -C29EC4C39FC4C3A0C5C4A1C6C5A3C7C6A5C8C8A7CAC9A9CBCBABCCCCADCECEB0CFD0B3D2D2B6D3 -D3B8D5D6BCD7D8C1DADBC4DCDEC8DFE5D2E5F1E7F0FBF7F9FFFFFEFFFEFDF3ECF3EEE2EEE9DCEB -E9DCEBEADDEBE9DCEB8981ABE9DDECE8DCEBE8DDEBE8DDEBE6DCEBECE4EFF4F0F6FFFFFEFFFFFE -F6F2F7EBE4F0D7CDE3D0C7DFCCC3DDCABFDBC4BBD8C2B8D6BFB5D5BDB2D3B9AFD1B7ADCFB5ABCE -B3A8CCB1A7CCAFA5CAAEA3C9ACA2C9ABA1C8AAA0C7A99FC7A89EC6A79DC5A79DC5A69DC5A59CC4 -A59CC4A59BC4A59BC4A59BC4A49BC4A49BC4A49BC4A49BC4A49BC4A49AC3A49AC3A59BC4A59BC4 -A59BC4A59BC4A59BC4A59BC4A59CC4A59CC4A69DC5A69DC5A79DC5A79DC5A79DC5A79DC5A89EC6 -A89EC6A99FC6A99FC7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7AAA0C7A99FC7AAA0C7AAA0C7AAA0C7AAA0C7A99FC7A99FC7A99FC7A99FC7A99FC7A99FC7 -A99FC6A99FC6A99FC6A99FC6A99FC6A99FC7A99FC7A99FC7A99FC7A99FC7A99FC7AAA0C7AAA0C7 -AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7 -AAA0C7A99FC7A99FC7A99FC7A99FC6A99FC6A99FC6A89EC6A89EC6A89EC6A89EC6A79DC5A79DC5 -A89DC5A79DC5A69DC5A69DC5A69DC5A59CC4A59CC4A59CC4A59BC4A59BC4A59BC4A49BC4A49AC3 -A49AC3A49AC3A39AC3A39AC3A399C3A399C3A399C3A39AC3A39AC3A39AC3A39AC3A39AC3A39AC3 -A39AC3A39AC3A39AC3A39AC3A39AC3A59BC4A59BC4A59BC4A59CC4A69DC5A69DC5A79DC5A89EC6 -AAA0C7AAA0C7ABA1C8ACA3C9AEA5CAAFA6CBB1A8CCB3AACDB5ACCFB8AED0BAB0D1BDB3D3BFB6D5 -C2B9D7C5BCD9CBC1DCCDC3DDD1C9E1D5CEE3E7E1EEF3EFF6FFFEFDFFFFFEF8F6F9F0EAF3E8E4F0 -E8E4F0EAE7F2E8E6F1EAE7F28B86AEEBE9F3EBE9F3EBEAF3EBEAF3EEEDF5F4F3F8FEFDFDFFFFFE -FFFDFCF4F4F9EAEDF6E2E8F3E1E6F3DEE5F2DCE4F1D9E2F0D8E0EFD6DFEFD4DEEED1DDEED0DCED -CFDBEDCFDBEDCDD9ECCCD9ECCBD8EBCAD7EBCAD7EBC9D7EBC8D6EAC8D6EAC7D5EAC7D5EAC6D5EA -C6D5EAC5D4EAC5D4EAC6D5EAC5D4EAC5D4E9C5D4E9C6D4E9C6D5EAC6D5EAC6D5EAC6D5EAC6D5EA -C7D5EAC6D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EB -C8D6EBC8D6EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D7EBC8D6EBC8D6EBC8D6EB -C8D6EBC8D6EBC9D7EBC9D7EBC9D7EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EB -C8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EB -C8D6EBC8D6EBC8D6EBC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC7D5EAC7D5EA -C7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC7D5EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EA -C8D6EAC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EBC8D6EB -C8D6EBC8D6EBC8D6EBC8D6EBC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC8D6EAC7D5EAC7D5EAC7D5EA -C7D5EAC7D5EAC7D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D5EAC6D4E9C5D4E9 -C5D4E9C5D4E9C5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC5D4EAC6D5EAC6D5EAC7D5EAC8D6EBC8D6EA -C8D6EAC9D7EBC9D7EBCAD7EBCBD8ECCDD9ECCEDAEDCFDBEDD0DCEDD1DDEED3DEEFD5DFEFD7E1F0 -D9E3F1DCE4F1DCE4F1E0E7F3E3EAF4E6EBF5ECEFF7F6F8FAFDFEFDFFFFFEFFFEFDF9FAFBF6F7FA -F5F6FAF5F6FAF6F7FAF7F8FBF7F8FBC1BBD4676595F9FAFBFAFAFCFAFBFCFAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFDFDFCFDFCFBFFFEFCDDE5F2 -BDCEE6D3DEEEFDFDFCFEFDFCFDFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE2E9F4D8E1F0EFF2F8FFFDFCFFFDFC -FFFEFCFEFCFBFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF1F3F9F2F5F9FBFCFCFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDC7BFD67D77A2 -474E825156898881AAD5CEE0FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -E4DDE9ADA5C4726F9D3E467C5E5E8FACA4C5F3EFF5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF2F6 -9288AF9288AFFDEFF4FDEDF3FDEEF4FDEBF2FDEBF2FEF2F6FFF8FAFFFFFEFFFFFEFFF3F7FCE9F1 -F9D8E6F6D1E2F5CEE0F4CBDEF3C7DCF1C4DAF2C2D8F1BFD7F0BDD5EEBAD3EEB9D2EEB7D1EDB5D0 -EDB3CFEDB3CEECB1CDECB0CCEBAFCCEBAECBEAADCBEAADCBEAACCAEAABCAEAABC9EAABC9EAABC9 -EAABC9EAABC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAABC9EAABC9EBABC9EAAAC9EAABC9EAABC9 -EBABC9EBACCAEBABC9EAABCAEAABCAEAACCAEAACCAEAACCAEBACCAEBADCBEBADCBEBADCBEBADCB -EBADCBEBAECBEBAECBEBAECBEBAECBEAAECBEAAECBEAAECBEAAECCEAAECCEAAECCEAAECCEAAECC -EAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECBEAAECBEAAECBEAAECBEAAECBEAAECB -EBAECBEBAFCCEBAFCCEBAECBEBAECBEBAECBEBAECBEBAECBEBAECBEBAFCCEBAFCCEBAECBEAAECB -EAAECBEAAECBEAAECBEAAECBEAAECBEAAECBEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECC -EAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECCEAAECC -EAAECBEAAECBEAAECBEBAECBEBAECBEBAECBEBAECBEBAFCCEBAECBEAADCBEAADCBEAADCBEAADCB -EAADCBEAACCAEAACCAEAACCAEAACCAEAACCAEAACCAEAABCAEAABCAEAABC9EBABC9EBABC9EAAAC9 -EAABC9EAABC9EAAAC9EAAAC9EAAAC9EAABC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9EAAAC9 -EAAAC9EAAAC9EAABC9EAABC9EAABC9EAABCAEAACCAEAADCBEBADCBEBAFCCEBAFCCECB0CDECB1CD -ECB2CEEDB3CFEDB5D0EDB6D1EEB9D2EEBAD3EFBCD4F0BED6F0C1D8F1C4DAF2C6DBF3C9DDF4CEE0 -F5D0E2F5D3E4FAE3EEFCEFF4FFFEFDFFFEFDFFFBFBFBEEF4F8E4EEF7E1EDF5E0ECF5E1EDF5E1ED -F4E2ED8F82ABF4E0ECF3E1EDF2E0ECF2DFECF1DFECF3E3EEF8EEF4FFFEFDFFFEFDFDF9FAF6E9F2 -E8D6E7E0C9DFDDC5DDDAC1DAD8BED8D5BAD6D4B7D4D1B4D2D0B2D1CEAFCFCCADCECBABCCCAA9CB -C8A7CAC8A6C9C7A4C8C6A4C7C4A2C6C4A2C6C4A1C5C4A0C5C3A0C5C39FC4C29FC4C29FC4C29EC4 -C29EC4C29EC4C19EC3C19EC3C29EC4C29EC4C29EC4C29EC4C29EC4C29EC4C29FC4C29FC4C39FC4 -C39FC4C3A0C5C3A0C5C3A0C5C3A0C5C4A1C5C4A1C5C4A1C5C4A1C6C4A2C6C4A2C6C4A2C6C4A2C6 -C4A2C6C4A2C6C4A2C6C4A2C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6 -C4A1C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A1C6C3A1C6C4A1C6C4A1C6 -C4A1C6C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5 -C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5 -C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5 -C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C4A1C5C3A0C5 -C3A0C5C4A1C5C3A0C5C3A0C5C3A0C5C3A0C5C3A0C5C39FC4C29FC4C29FC4C29EC4C29EC4C19EC3 -C19DC3C19DC3C29DC3C19DC3C29DC3C19DC3C19DC3C19CC2C19DC3C19DC3C19DC3C19DC3C19DC3 -C19DC3C19DC3C29DC3C19DC3C29EC4C29EC4C29FC4C3A0C5C39FC4C3A0C5C4A2C6C5A2C6C6A4C7 -C6A5C8C7A6C9C8A7CACAAACBCBABCCCCADCECDAFCFCFB2D0D1B4D2D3B7D4D5BAD6D7BDD8DAC3DB -DDC5DDDDCAE0E5D2E4F2E7F1F9F3F7FFFFFEFFFFFEF7EFF5F2E8F1EADFECEADEECEBDEECEADFEC -EADFEC8B82ACE8DEECEAE0EDE9DFEDE8DEECE6DDECE7DEECF1EAF3FAF7F9FFFFFEFEFCFCF3EEF5 -E6E0EDD7CEE3D1C7DFCCC4DECBC0DBC6BDD9C3B9D7C0B6D5BEB4D4BBB1D2B9AFD1B7ADCFB5ABCE -B3A9CDB2A7CCB1A6CBAFA5CAAFA4CAADA3C9ACA2C9ABA1C8ABA1C8AAA0C7AAA0C7AAA0C7AAA0C7 -A99FC7A89EC6A99FC6A99FC6A89EC6A89EC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6A99FC6 -A99FC7A99FC7AAA0C7AAA0C7AAA0C7AAA0C7AAA0C7ABA1C8ABA1C8ABA1C8ABA1C8ABA2C8ACA2C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA3C9ADA3C9ADA3C9AEA3C9AEA3C9ADA3C9ADA3C9ADA3C9ADA3C9 -ADA3C9ADA3C9AEA3C9ADA4CAADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C8ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ABA1C8ABA1C8ACA2C9ACA2C8ABA1C8ABA1C8ABA1C8ABA1C8 -AAA1C8AAA0C7AAA0C7A99FC7AAA0C7AAA0C7A99FC7A99FC7A99FC6A89EC6A89EC6A89EC6A79DC5 -A79EC6A89EC6A89EC6A79DC5A79DC5A89EC6A89EC6A89EC6A89EC6A89EC6A79DC5A79DC5A89EC6 -A89EC6A89EC6A89EC6A99FC6A99FC6A99FC7AAA0C7AAA0C7ABA1C8ABA2C8ACA2C9AEA3C9AFA5CA -AFA6CBB1A7CCB2A8CCB3AACDB5ACCFB8AED0B9B0D1BBB2D2BEB4D4C1B7D6C4BAD8C6BDDACBC2DC -CDC6DFD3CBE2D5CDE3E6E0EEF2EFF6FFFEFDFFFFFEFEFBFCF2EEF5EAE6F1EAE5F0E9E6F1E9E7F1 -ECE9F2EBE8F28A86AEECEAF4EDEBF4EDECF4EDECF4EDEDF5F1F0F6F7F6FAFFFEFDFFFEFDFDFCFC -F3F4F9E9ECF5E4E9F3E1E8F4E0E6F2DCE4F1DAE2F0D8E1F0D7E0EFD5DFEFD4DEEED2DDEED1DDEE -CFDBEDCFDBEDCEDAECCDD9ECCDD9ECCCD9ECCBD8EBCAD7EBCAD8EBCAD8EBCAD7EBCAD7EBC9D7EB -C8D6EBC9D7EBC9D7EBC9D7EBC9D6EAC9D6EAC8D6EAC9D7EBC9D7EBC9D7EBC9D7EBCAD7EBC9D7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCBD8EBCBD8EBCBD8EBCBD8ECCBD8ECCBD8ECCBD8EC -CBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8ECCBD8EC -CBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EB -CBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EB -CBD8EBCBD8EBCBD8EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCBD8EBCAD7EB -CAD7EBCAD7EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EBCBD8EB -CBD8EBCBD8EBCBD8EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EBCAD7EB -CAD7EBCAD7EBCAD7EBCAD7EBC9D7EBC9D7EBC9D7EBC9D7EBC9D6EAC9D6EAC8D6EBC8D6EBC8D6EB -C9D7EBC8D6EBC8D6EBC8D6EBC9D7EBC9D7EBC9D7EBC9D7EBCAD6EACAD7EBCBD8EBCBD8ECCCD9EC -CCD9ECCDD9ECCFDBEDCFDBEDD0DCEED1DDEED2DDEED5DFEFD6E0F0D8E1F0D9E3F1DCE5F2DEE6F3 -E2E8F3E2E9F4E7ECF5ECF0F7F6F8FAFDFDFDFFFFFEFFFEFDFAFAFCF7F8FBF5F6FAF5F6FAF7F7FA -F6F8FAF7F8FBF8F8FBC1BBD4676595FAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFCFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFDFBFEFEFCFCFBFBDFE7F3CBD8ECFAFBFC -FEFDFCFEFDFCFFFDFBFDFDFCFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCE3E8F3E8ECF5FFFFFDFFFDFBFFFEFCFEFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF0F4F9FAFBFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFEFDFFFDFCFFFFFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEBAB1CC -7E79A4474D81474E83736F9CA098BBD5CDE0FFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF2EEF5BAB2CC8882AB5E5E8E3E457C736F9D -A099BBE2DBE8FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F79288AF9288AF -FDF0F5FDEFF4FDECF3FDECF3FDEDF3FDECF3FEF1F6FFFBFBFFFEFDFFFFFEFFF4F7FCEAF2F8D7E6 -F6D3E3F6CFE1F4CCDFF3C8DCF3C6DBF1C3D9F1C1D8F0BFD7F0BED6EFBBD4EEBAD3EEB8D2EEB7D1 -EDB6D0EDB4CFEDB3CFEDB3CFECB2CEECB2CEECB1CDEBB0CDEBAFCCEBAFCCEBAFCCEBAFCCEBAFCC -EBAFCCEBAECBEBAECBEBAECBEBAECBEBAFCCEBAFCCEBAFCCEBAECBEBAFCCEBAFCCEBAFCCEBAFCC -ECB0CCEBAFCCEBAFCCEBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBB1CDECB1CDECB1CDECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CE -ECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEECB2CEEBB1CDECB2CEEBB1CDEBB1CDEBB0CD -EBB0CDEBB0CDEBB0CDEBB0CDEBB0CDEBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBAFCC -EBAFCCEBAFCCEBAFCCEBAECBEBAECBEBAECBEBAECBEBAFCCEBAFCCEBAFCCEBAFCCEBAFCCEBAFCC -EBAFCCEBAFCCEBAFCCEBB0CDECB1CDECB2CEECB2CEEDB3CFEDB3CFEDB4CFEDB5D0EDB6D1EEB8D2 -EEBAD3EFBBD4F0BDD5F0BED6F0C0D8F1C2D9F2C5DBF3C8DCF2CADEF5CFE1F5D1E2F6D4E4FAE4EE -FCF0F5FFFBFBFFFFFEFFFCFCFCF0F5F9E7F0F7E1EDF7E4EEF6E3EEF6E2EDF6E3EEF5E2ED8F84AC -F4E1EDF3E1EDF2E2EEF3E1EDF2E0ECF1E1EDF5E7F0FAF1F6FFFFFEFFFFFEFCF9FAF4E9F1EAD6E7 -E0CAE0DEC6DDDBC2DAD9BFD9D6BCD7D4B9D5D3B6D3D1B4D2D0B2D1CEB0CFCDAECECBACCDCBABCC -CAA9CBC9A8CAC8A7CAC8A7C9C7A6C9C7A6C9C6A5C8C6A4C7C5A3C7C5A3C7C5A2C6C5A2C6C5A2C6 -C5A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C5A2C6C5A2C6C5A2C6C5A3C7C5A3C7C5A3C7 -C5A4C7C5A4C7C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9 -C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9 -C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A6C9C7A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8 -C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8 -C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8 -C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8 -C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A5C8C6A4C7C6A4C7 -C5A4C7C5A4C7C5A4C7C5A3C7C5A3C7C5A3C7C5A3C7C4A3C7C5A3C7C5A3C7C4A3C7C4A2C6C4A2C6 -C4A2C6C4A2C6C4A1C6C4A1C6C4A1C6C4A1C6C4A1C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6C4A2C6 -C4A2C6C4A2C6C5A2C6C5A3C7C6A3C7C6A4C7C7A5C8C7A5C8C8A6C9C8A7CAC9A8CACAAACBCBABCC -CBACCDCCAECECEB0CFCFB2D0D1B4D2D3B7D4D5BAD6D6BCD7D8BFD9DAC3DBDDC7DEDFCAE0E5D2E5 -F3E9F2F8F1F6FFFFFEFFFEFDF9F4F8F3EAF2ECE0EDEBDDEBEDE1EDEBDFECEBE1EDEBDFEC8B82AC -EAE0EDEAE0EDE9DFEDE9E0EDEAE0EDE8DFECE9E1EEF2EBF3FDFBFBFFFFFEFFFEFDF4EEF5EBE4F0 -D6CEE3D2C9E0CEC5DECCC2DCC8BFDBC4BBD8C2B8D6C0B6D5BEB4D4BCB1D2BAB0D1B8AED0B7ACCF -B5ABCEB4AACEB3A9CDB2A8CCB1A7CCB0A6CBB0A6CBAFA5CAAFA4CAAEA4CAAEA4C9AEA3C9ADA3C9 -ADA3C9ADA3C9ADA3C9ACA2C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9ADA3C9AEA3C9 -AEA3C9AEA4CAAFA4CAAFA4CAAFA5CAAFA5CAAFA5CAAFA5CAB0A6CBB0A6CBB0A6CBB0A6CBB0A6CB -B0A6CBB0A6CBB0A6CBB0A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CC -B1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB0A6CBB0A6CB -B0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CB -B0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CB -B0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CB -B0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBB0A6CBAFA5CAAFA5CAAFA5CAAFA5CAAFA5CAAFA4CA -AEA4CAAEA4CAAEA3C9AEA3C9AEA3C9AEA3C9ADA3C9ADA3C9ACA2C9ACA2C9ADA3C9ADA3C9ADA3C9 -ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C9ACA2C8ADA3C9ACA3C9ADA3C9 -ADA3C9AEA3C9AEA4CAAFA4CAAFA4CAAFA5CAB0A6CBB1A7CCB2A7CCB2A8CCB3A9CDB4AACEB6ABCE -B7ACCFB8AED0BAB0D1BCB2D3BEB4D4C0B6D5C3B9D7C5BCD9C8BFDBCCC3DDCEC7DFD3CAE1D6CDE3 -E8E1EEF2EDF4FDFDFDFFFEFDFEFCFCF4F1F6EDE8F2E9E6F1EAE5F0ECE9F2EBE6F1ECE9F2ECE9F3 -8A86AEEDEBF4EEEBF4EEECF4EEECF4EDEDF5EEEEF5F4F3F8F9FAFBFFFFFEFFFEFDFDFDFDF5F5F9 -EBEEF6E5EAF4E2E7F3E0E6F2DDE5F2DBE3F1DAE3F1D8E1F0D7E0EFD6DFEFD4DFEFD3DEEED2DDEE -D1DDEED0DCEDCFDBEDCFDBEDCFDBEDCEDAEDCEDAEDCEDAEDCDD9ECCDD8EBCCD9ECCCD9ECCCD9EC -CCDAECCBD8ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCEDAECCEDAEDCDD9ECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAEC -CEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAEC -CEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAECCEDAEC -CEDAECCEDAECCEDAECCEDAECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9EC -CEDAECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCEDAECCEDAECCEDAECCEDAECCDD9ECCDD9ECCCD9EC -CDD9ECCDD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCCD9ECCBD8EBCBD8EC -CCD9ECCCD9ECCDD9ECCDD9ECCDD9ECCDD9ECCDD9ECCEDAECCEDAECCEDAECCFDBEDCFDBEDD0DCEE -D1DDEED2DDEED4DEEED4DFEFD6DFEFD8E1F0D9E3F1DAE3F1DDE5F2DFE7F3E2E8F3E4E9F4E6EBF5 -ECF0F7F5F6FAFEFDFDFFFFFEFFFFFEFBFCFCF8F9FBF6F7FAF5F6FAF6F7FAF6F8FAF7F8FBF7F8FB -F8F8FBC1BBD4676595FAFAFCFAFBFCFAFBFCFAFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFDFDFCFFFDFCFFFEFCE3E9F4F7F8FAFDFDFCFEFDFCFEFDFC -FEFDFCFEFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFDFCFFFDFCFFFDFCFFFDFCE9EDF5FFFDFCFFFDFBFFFDFCFFFDFCFFFDFBFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -F7F9FBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFFFE -D5CDE0A099BC736E9B474D823E447B6966958781ABA098BBC7BFD6E3DCE9FFFFFEFFFFFEFFFFFE -FFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFC -C7BFD7BAB1CC928CB3746F9C5055893E467B6966958782AABAB1CDF4EEF4FFFEFDFFFFFEFFFEFC -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFEFCFFFEFD -FFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFB -FFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FEF6F8FEF5F8FEF4F7FEF3F79288AF9288AFFEF1F6FDEFF4 -FDEFF4FDEDF3FDEBF2FDECF3FDEEF4FFF3F7FFFDFCFFFFFEFFFEFDFFF6F9FCEEF4F9DBE9F8D4E4 -F6D1E2F5CDE0F4CADEF3C7DCF3C6DBF1C3D9F1C2D8F1C0D7F0BED6F0BDD5EFBBD4EEBAD3EEB9D2 -EEB9D2EEB8D2EEB7D1EEB7D1EDB6D0EDB6D0EDB5D0EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB3CF -EDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CFEDB4CFEDB4CF -EDB4CFEDB4CFEEB4CFEDB4CFEDB4CFEDB5D0EDB5D0EDB5D0EDB5D0EEB5D0EEB6D0EEB6D0EEB6D0 -EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB6D0 -EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0 -EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0 -EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1 -EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB7D1EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0 -EEB6D0EEB6D0EEB6D0EEB6D0EEB6D0EDB6D0EDB5D0EDB5D0EDB5D0EDB5D0EDB5D0EDB4CFEDB4CF -EDB4CFEDB4CFEDB4CFEDB4CFEDB4CFEDB3CFEDB3CFEDB3CFEDB3CFEDB3CEEDB3CFEDB3CFEDB3CF -EDB3CFECB3CFECB3CFEDB3CEEDB3CEEDB3CEEDB3CFEDB4CFEDB4CFEDB3CFEDB4CFEDB4CFEDB4CF -EDB5D0EDB5D0EDB6D0EEB7D1EEB7D2EEB8D2EEB8D2EEBAD3EEBAD3EFBCD4F0BDD5F0BED6F0C0D7 -F1C2D8F1C3D9F2C5DAF3C7DCF3CADEF5CDE0F5CFE1F5D2E3F7D7E6FBE9F1FDF1F6FFFDFCFFFFFE -FFFFFEFDF2F6FBEBF2F8E2EDF8E5EFF7E4EEF7E4EEF7E5EFF6E5EFF6E4EF8F84ACF5E4EEF4E4EE -F3E2EEF3E2EEF3E2EEF2E1EDF2E2EEF6EAF2FCF4F8FFFFFEFFFFFEFFFAFBF5EDF4F0E0EDE4CDE1 -E0C8DFDCC3DCDAC1DAD8BED8D6BBD6D4B9D5D3B6D3D2B5D3D1B3D1CFB2D0CEB0CFCDAECECCAECE -CBACCDCBACCDCBABCCCBAACBCAAACBCAA9CBCAA9CBC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC8A7CA -C8A7CAC8A7CAC8A7CAC8A7CAC8A7CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CA -CAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAAACBCAAACBCBAACBCBABCCCBAACBCAAACBCAAACBCAAACB -CAAACBCBABCCCBABCCCBABCCCBABCCCBAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACB -CAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAAACBCAA9CB -CAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CB -C9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CB -C9A9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CBCAA9CB -CAA9CBCAA9CBCAA9CBCAA9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A9CBC9A8CAC9A8CA -C9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC9A8CAC8A7CAC8A7CAC9A8CAC8A7C9C9A7C9C8A7C9 -C8A7C9C8A7C9C8A7CAC8A7CAC8A7CAC8A7C9C8A7C9C8A7CAC8A7CAC8A7CAC8A7CAC8A8CAC8A8CA -C9A8CAC9A8CACAA8CACAA9CBCBABCCCBABCCCBACCDCCADCECCAECECDAFCFCEB0CFCFB2D0D0B3D2 -D2B5D3D3B7D4D4B9D5D6BBD7D7BED8DAC2DBDCC5DDDFC9DFE1CCE1EADAE9F5EAF2FAF6F9FFFFFE -FFFEFDFCF9FAF5ECF3F0E3EEEBDFECEDE1EEEBE0EDEDE2EEECE0EDECE1EE8B83ACECE3EFEAE0ED -ECE2EEEBE2EEE9E1EEE9E2EEE9E0EDECE5F0F3EEF5FEFDFDFFFFFEFFFFFEF5F0F6EDE6F1DCD3E6 -D3CAE1CFC6DECDC3DDCAC0DBC6BDD9C4BBD8C3BAD8C1B7D5BFB5D5BEB3D3BBB1D2BBB0D2B9AFD1 -B8AED0B8ADD0B7ADCFB5ABCEB5ABCEB4AACEB3AACDB3A9CDB3A9CDB3A9CDB3A9CDB2A9CDB3A9CD -B2A9CDB2A8CCB2A8CCB2A8CCB2A8CCB2A7CCB2A8CCB2A8CCB2A8CCB2A8CCB3A8CCB3A9CDB3A9CD -B3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3AACDB3AACDB4AACEB4AACEB4AACEB4AACEB4ABCEB4ABCE -B4ABCEB4ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCE -B5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB5ABCEB4ABCEB4ABCEB4ABCEB4ABCE -B4ABCEB4ABCEB4ABCEB4ABCEB4AACEB4AACEB4AACEB4AACEB4AACEB4AACEB4AACEB4AACEB4AACE -B4AACEB4AACEB4AACEB4AACEB4AACEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCE -B4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4ABCEB4AACEB4AACEB4AACEB4AACE -B4AACEB4AACEB3AACDB4AACEB3AACDB3AACDB3AACDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CDB3A9CD -B3A9CDB3A8CCB3A8CCB2A8CCB2A8CCB2A8CCB1A7CCB2A7CCB2A7CCB2A7CCB1A7CCB1A7CCB1A7CC -B1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB1A7CCB2A8CCB2A8CCB2A8CCB3A8CCB3A9CD -B3A9CDB3AACDB3AACDB4AACEB5ABCEB6ACCFB7ADCFB8AED0B8AFD1B9B0D1BAB1D2BCB3D3BEB4D4 -BFB6D5C1B8D6C3BAD8C5BCD9C8BFDACBC2DCCDC5DED0C7E0D3CBE2DAD1E6ECE6F1F4F1F6FFFEFD -FFFFFEFFFEFDF5F2F7F0EBF3EAE5F0EBE6F1EBE7F2EBE7F2ECE9F2EDE9F3EDEBF48B86AEEEECF4 -EEECF4EEEDF5EFEDF5EFEEF6EFEEF6EFF0F7F4F4F9FAFAFBFFFEFDFFFFFEFDFDFDF6F7FAEFF1F7 -E6EAF4E3E8F3E1E7F3DFE6F2DDE5F2DBE3F1DAE3F1DAE3F1D8E1F0D7E0EFD5DFEFD5DFEFD4DFEF -D3DEEED3DEEED2DDEED1DDEED1DDEED0DCEDD0DCEDD0DCEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDD0DCED -D0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCED -D0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCED -D0DCEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDD0DCEDD0DCED -D0DCEDD0DCEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCED -D0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -D0DCEDD0DCEDD0DCEDD0DCEDD0DCEDD0DCEDCFDBEDCFDBEDD0DCEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBEDCFDBED -CFDBEDCFDBEDD0DCEDD0DCEDD0DCEED1DDEED2DDEED2DDEED3DEEED4DEEED4DFEFD5DFEFD6DFEF -D7E0EFD8E1F0D9E2F0DBE3F1DCE5F2DEE5F2E1E7F3E3E9F4E5E9F4E7ECF5EFF2F8F7F8FBFEFDFD -FFFFFEFFFFFEFBFCFCF9FAFBF6F7FAF5F6FAF6F7FAF6F7FAF7F8FBF7F8FBF8F8FBF8F8FBC1BBD4 -676595FAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFDFCFDFEFCFEFDFCFEFCFBFEFEFCFEFDFCFEFDFCFDFDFCFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFBFFFFFDFEFDFCFFFEFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEE4DDEAB9B1CC938CB2736F9C6866953F457B3E457B474E82686695686695686695 -8882AB938DB3938CB2938CB3938CB26866956866956866965D5E8F3E457B3E457B5E5E8E686696 -938DB2ABA4C4C7BFD6FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FA -FFF8FAFFF8FAFFF8FAFFF7F9FEF6F8FEF5F8FEF4F79289AF9288AFFEF1F6FDF0F5FDEFF4FDEEF4 -FDEEF4FDECF3FDEBF2FDEFF4FFF3F7FFFCFCFFFFFEFFFEFDFFF9FAFEF0F5FBE6EFF8D6E6F6D3E3 -F7D0E1F5CDE0F4CBDEF3C8DCF3C7DBF3C5DAF1C3D9F1C2D8F1C1D8F1BFD7F1BFD6F0BED6F0BDD5 -F0BCD5EFBBD4EFBBD4EFBBD4EEBAD3EEBAD3EEBAD3EEBAD3EFBAD3EEBAD3EEBAD3EEB9D2EEB9D2 -EEB9D2EEB9D2EEB9D2EFB9D3EFBAD3EFB9D3EFB9D3EFB8D2EFB9D3EEBAD3EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4EFBBD4 -EFBBD4EFBBD4EFBBD4EFBBD4EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3EFBBD4EFBBD4EFBBD4EFBBD4EEBAD3EEBAD3 -EEBAD3EEBAD3EEBAD3EEBAD3EFBAD3EFB9D3EFB9D3EFB9D3EFB9D3EFB9D3EEB9D2EEB8D2EEB9D2 -EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EEB9D2EFB9D3EEBAD3EEBAD3EEBAD3EEBAD3EEBAD3 -EFBBD4F0BCD5F0BDD5F0BDD5F0BED6F1BFD7F1C0D7F1C2D8F1C2D8F1C3D9F3C5DAF3C7DBF3C8DC -F3CADEF4CCDFF5CFE1F6D2E3F7D5E5F9E0ECFCECF3FEF6F8FFFEFDFFFFFEFFFDFCFDF3F7FBECF3 -F9E4EEF8E5EFF8E5EFF8E5EFF8E6EFF8E7F0F6E4EFF6E5EF8F84ADF5E5EFF5E4EEF5E4EEF4E4EE -F4E4EEF3E3EEF2E2EEF2E3EEF7EBF3FBF4F7FFFEFDFFFFFEFFFCFCF8F0F5F3E6F0E8D4E6E1CBE0 -DDC6DDDCC4DCDBC2DAD8BED9D7BDD7D5BBD6D4B9D5D4B8D4D3B6D3D1B4D2D1B4D2D0B3D1CFB2D0 -CFB1D0CFB0CFCEB0CFCEAFCFCEAFCFCDAECECDAECECDAECECDAECECDAECECCAECECDAECECCADCE -CCADCECCADCECCADCECCADCECCADCECCADCECCADCECDAECECDAECECDAECECDAECECEAFCECDAECE -CDAFCFCEAFCFCEAFCFCEAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAECECDAECECDAECECDAECECDAECE -CCAECECCAECECCAECECCAECECCAECECCAECECDAECECDAECECDAECECDAECECDAECECDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCFCDAFCF -CDAFCFCDAFCFCDAFCFCDAFCFCDAECECCAECECCAECECDAFCFCDAFCFCDAFCFCCAECECCAECECCAECE -CDAECECDAECECDAECECDAECECCADCECCADCECCADCECCADCECCADCECCADCECCADCDCBACCDCCADCD -CCADCECCADCECCADCDCCADCDCCADCDCCADCECCADCECCADCECCADCECCAECECCADCECDAECECDAECE -CEAFCFCEB0CFCEB0CFCFB1D0CFB2D0D0B3D1D1B4D2D2B5D3D3B6D3D3B7D4D5BAD6D5BBD6D6BCD7 -D8BFD9DAC2DBDCC5DDDEC8DEE0CBE0E5D1E4F0E3EEF7EEF5FDFAFBFFFFFEFFFEFDFBF7FAF4ECF4 -EFE3EFEEE2EEEEE2EEEEE2EEEDE1EEEEE3EEEDE2EEEDE2EE8B84ADECE2EEEDE2EEECE3EFEBE3EF -EBE3EFEAE1EEEAE2EEEAE1EEEEE7F1F3EEF5FEFDFDFFFFFEFFFFFEF9F7F9F1EBF3E4DDECD7CEE4 -D1C8E0CFC6DFCCC3DDCAC1DCC8BFDAC6BDDAC4BBD8C3B9D7C1B7D6C1B7D5BFB5D5BEB4D4BDB3D3 -BCB2D3BBB1D2BBB0D2BAB0D1B9B0D1B9AFD1B8AFD1B8AFD1B8AFD1B9B0D1B8AFD1B8AED0B8AED0 -B8AED0B8ADD0B8AED0B8AED0B8AED0B7AED0B8AED0B8AED0B8AED0B8AFD1B8AFD1B8AFD1B8AFD1 -B9AFD1B9AFD1B9AFD1B9B0D1B9B0D1B9B0D1B9B0D1B9AFD1B9B0D1BAB0D1BAB0D1BAB0D1BAB0D1 -BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1 -BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1BAB0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1 -B9B0D1B9B0D1B9B1D2B9B1D2B9B1D2B9B1D2B9B0D1B9AFD1B9B0D1B9B0D1B9B1D2B9B1D2B9B1D2 -B9B1D2B9B1D2B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1 -B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1B9B0D1 -B9B0D1B9B0D1B9AFD1B9AFD1B8AFD1B8AFD1B8AFD1B8AFD1B8AFD1B9AFD1B8AFD1B8AFD1B8AED0 -B8AED0B8AED0B8AED0B8ADD0B8AED0B8AED0B8ADD0B7AED0B7ADCFB7ADCFB7ADCFB7ADCFB8ADD0 -B8ADD0B8ADD0B7ADCFB8ADD0B8ADD0B8ADD0B8AED0B8ADD0B8AED0B8AED0B8AFD1B8AFD1B9AFD1 -B9B0D1BAB0D1BBB0D2BCB1D2BCB2D3BEB3D3BEB4D4BFB5D5C0B6D5C2B8D6C3BAD8C4BBD8C6BDDA -C8BFDBCBC2DCCDC4DED0C7E0D3CAE1D7CFE4E4DDECEFEAF3F8F5F9FFFEFDFFFFFEFEFCFCF5F2F7 -F0ECF4EBE6F1EBE6F1ECE8F2ECE9F2EDE9F3EDEAF3EEEAF3EDEBF48C87AFEFEDF5EFEDF5EFEEF6 -EFEEF6F0EFF6F0EFF6F0EFF6F1F1F7F5F5F9FBFAFBFFFEFDFFFFFEFDFEFDF8F8FBF4F5F9E9EDF5 -E5EAF4E3E8F3E1E7F3DFE6F2DFE6F2DCE5F2DBE3F1DAE3F1D9E2F1D8E1F0D8E1F0D7E1F0D7E0EF -D5DFEFD6E0F0D5DFEFD5DFEFD4DFEFD4DFEFD3DEEFD3DEEED3DEEFD3DEEFD3DEEFD3DEEFD2DEEE -D2DEEED2DEEED3DEEFD4DFEFD3DEEFD3DEEFD3DEEFD3DEEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DEEED4DEEED4DEEED4DEEED4DEEED4DEEED4DEEED4DEEED4DEEE -D4DEEED4DEEED4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD5DFEFD4DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D5DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D5DFEFD5DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEF -D4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DFEFD4DEEED3DEEED3DEEED4DEEED3DEEED3DEEF -D3DEEFD2DDEED2DDEED2DDEED2DDEED2DDEED3DEEED4DFEFD3DEEFD3DEEFD3DEEED3DEEED3DEEE -D4DFEFD4DFEFD5DFEFD5DFEFD6DFEFD5E0EFD6DFEFD7E1F0D8E1F0D8E1F0D9E3F1D9E3F1DBE4F2 -DDE5F2DEE5F2E0E7F3E2E9F4E4E9F4E6EBF5ECEFF7F5F6FAF9FAFBFFFEFDFFFFFEFFFFFEFBFCFC -F9FAFBF6F7FAF5F6FAF5F6FAF5F6FAF7F8FBF7F8FBF7F8FBF8F8FBF9F9FBC1BBD4676595FAFBFC -FAFBFCFBFBFCFBFBFCFCFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFEFDFCFEFDFCFEFDFCFEFDFCFFFDFCFEFDFCFDFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFC -FFFEFCFFFDFCFFFDFCFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDD4CDE0C7BFD6C7BED5C7BFD6938DB3928CB2 -938DB3928CB1938CB2ACA4C4C7BED5C7BFD6C7BFD6F2EEF4FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FA -FFF7F9FFF7F9FEF6F8FEF6F8FEF5F89289AF9289AFFEF2F6FEF1F6FEF0F5FDEFF4FDEEF4FDEDF3 -FEEDF3FDEBF2FDEEF4FFF3F7FFF9FAFFFFFEFFFFFEFFFDFCFEF5F8FDEDF3FBE4EEF8D8E7F6D1E2 -F6D0E1F5CEE0F4CCDFF4CADEF3CADEF3C7DCF3C7DBF3C5DAF2C4DAF1C3D9F1C2D9F1C2D9F1C2D8 -F1C1D8F1C1D8F1C0D7F1C0D7F1C0D7F1BFD7F1BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7 -F0BFD7F0BED6F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1C0D7 -F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7 -F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7 -F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7 -F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7 -F1C0D7F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8F0C0D8 -F0C0D8F0C0D8F0C0D8F0C0D8F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7 -F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C0D7F1C1D8F1C0D7F1C0D7F1C0D7F1C0D7F1BFD7F1BFD7 -F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F1BFD7F0BFD7F0BFD7F0BED6F0BED6F0BED6F0BED6F0BFD7 -F0BFD7F0BFD7F0BFD7F0BFD7F0BFD7F1BFD7F1BFD7F1C0D7F1C0D7F1C0D7F1C1D8F1C1D8F1C2D8 -F1C2D9F1C3D9F2C4DAF3C5DAF3C6DBF3C7DBF3C7DCF3C9DDF4C9DDF4CCDFF5CEE0F6D0E1F7D2E3 -F7D6E5F9E0ECFCEBF2FDF1F6FFFAFBFFFFFEFFFFFEFFFCFCFEF1F6FBECF3F9E6F0F9E6F0F9E6F0 -F9E6F0F8E7F0F8E6EFF7E6EFF8E7F0F7E7F08F84ADF6E6F0F5E6F0F5E6F0F4E5EFF3E4EFF3E4EF -F3E3EEF2E3EEF2E2EEF7EBF3F9F1F6FFFDFCFFFFFEFFFFFEFCF8FAF7ECF3F3E5EFE9D6E7E1CBE0 -DEC6DDDDC5DDDBC2DBDAC1DAD8BFD9D7BDD8D6BCD7D6BBD7D5BAD6D4B9D5D4B8D5D4B7D4D3B7D4 -D3B6D3D3B6D3D2B5D3D2B5D3D2B5D2D2B5D2D2B5D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2 -D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D2B5D2D2B5D3D2B5D3D2B5D3D2B5D3D2B5D2D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3D2B5D3 -D2B5D3D2B5D3D2B5D3D2B5D3D2B5D2D2B5D2D2B5D2D2B5D2D2B5D2D2B5D2D1B4D2D1B4D2D1B4D2 -D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2 -D1B4D2D1B4D2D1B4D2D1B4D2D1B4D2D2B5D2D2B5D2D2B5D2D2B5D2D2B5D2D2B5D3D2B6D3D3B6D3 -D3B7D4D3B7D4D4B8D4D4B9D5D5BBD6D6BCD7D7BDD7D7BED8D8BFD9D9C1DADBC3DBDDC6DDDEC8DE -E0CBE0E6D3E6EFE0EDF5EBF3FAF4F8FFFFFEFFFFFEFFFEFDFAF3F7F6EEF4F0E3EFEEE2EEEEE2EE -EEE3EEEFE3EFEFE3EFEEE4EFEFE5F0EEE5EF8B84ADEEE5EFEDE4EFEDE4EFECE4EFECE4EFECE4EF -EBE3EFEAE3EFEAE3EFEEE7F1F3EEF5FCF9FAFFFEFDFFFFFEFEFDFDF4F0F6F0E9F2E4DDECD7CFE4 -D1C8E0D0C7DFCEC5DECCC3DDCAC1DCC8BFDAC7BEDAC6BDD9C5BCD8C4BAD8C3BAD8C2B8D6C2B8D6 -C1B7D6C0B7D6C0B6D5BFB5D5BFB5D5BFB5D5BFB6D5BFB5D5BEB5D4BEB4D4BEB4D4BEB4D4BEB4D4 -BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BEB5D4BFB5D5BFB5D5BFB5D5BFB5D5BFB5D5 -BFB5D5BFB5D5BFB5D5BFB6D5BFB6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5 -C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5 -C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5 -BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5C0B6D5 -C0B6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB6D5BFB5D5 -BFB5D5BFB5D5BFB5D5BFB5D5BFB5D5BFB5D5BFB5D5BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4 -BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4 -BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB4D4BEB5D4BEB5D4BFB5D5BFB5D5BFB5D5C0B6D5C0B7D6 -C1B7D6C2B8D6C2B9D7C4BAD8C4BBD8C5BCD8C7BDD9C7BEDAC9C0DBCBC1DCCCC3DDCEC5DED1C8E0 -D3CAE1D8D0E5E2DCEBEFEAF3F4F1F6FCFBFBFFFFFEFFFFFEFDFBFBF4F1F6EFEBF3EBE6F1ECE7F1 -ECE8F2EDE9F3EEEAF3EEEAF3EFECF4EFECF4EFEDF58C87AFF0EEF5F1EFF6F1EFF6F1EFF6F1F0F6 -F0EFF6F0F0F7F2F1F7F1F2F8F6F6F9F9F9FBFFFEFDFFFFFEFFFFFEFCFCFCF7F8FBF2F4F9EBEEF6 -E5EAF4E3E8F3E2E8F3E0E7F3DFE7F3DEE5F2DDE5F2DCE5F2DBE4F2DBE3F1DAE3F1DAE3F1D9E2F0 -D9E2F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0D8E1F0 -D8E1F0D9E3F1D9E3F1D9E3F1DAE3F1DBE3F1DCE5F2DCE5F2DDE5F2DFE7F3E0E7F3E1E7F3E3E9F4 -E4E9F4E7ECF5ECF0F7F4F6FAF8F9FBFBFCFCFFFFFEFFFFFEFFFFFEFBFBFCF8F9FBF6F7FAF5F6FA -F5F6FAF6F7FAF6F8FAF7F8FBF7F8FBF8F8FBF9FAFBFAFAFCC2BCD4676595FAFBFCFBFBFCFBFBFC -FCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFC -FEFDFCFEFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9 -FFF7F9FEF6F8FEF5F89289AF9289AFFEF3F7FEF2F6FEF1F6FDF0F5FDEFF4FDEEF4FDEDF3FDEDF3 -FDEBF2FDEBF2FEF1F6FFF7F9FFFFFEFFFFFEFFFEFDFFFBFBFFF6F9FDEEF4FCE9F1FAE2EDF9DBE8 -F8D6E6F6D1E2F5CFE1F5CDE0F4CCDFF4CCDFF4CBDEF3CADEF3C9DDF3CADEF3C7DCF3C7DCF3C7DC -F3C7DBF3C7DBF3C7DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C5DAF3C5DAF2C5DAF2C5DAF2C5DA -F2C5DAF2C5DAF2C5DAF2C5DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DB -F3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C7DBF3C6DBF3C6DBF3C6DBF3C6DBF3C6DB -F3C6DBF3C6DBF2C5DBF2C5DBF2C5DBF2C5DBF2C5DAF2C5DAF3C5DAF3C5DAF3C5DAF3C5DAF3C5DA -F3C6DBF3C6DBF3C6DBF3C5DAF3C6DBF3C6DBF3C7DBF3C7DBF3C7DCF3C7DCF3C8DCF3C9DDF3C9DD -F4CBDEF4CBDEF4CCDFF5CDE0F5CEE0F5CFE1F6D1E2F6D4E4F8D9E7F9E0ECFCE7F0FDEEF4FEF2F6 -FFFAFBFFFFFEFFFFFEFFFFFEFFF9FAFDEFF4FBE9F1FAE8F0F9E6F0FAE8F0F9E7F0F9E8F1F8E8F1 -F9E8F1F8E8F1F8E9F1F7E7F08F85ADF6E7F0F6E7F0F5E7F0F5E7F0F4E6F0F4E5EFF3E5EFF3E5EF -F3E4EFF2E4EFF5E8F1F8F0F5FEFAFBFFFEFDFFFFFEFFFEFDFCF7F9F8EEF4F4E8F1EFE0ECEAD7E8 -E5CFE3E0C9DFDDC6DDDCC4DCDBC3DBDAC2DBD9C1DAD8C0DAD8BFD9D8BED9D8BED9D7BDD8D7BDD8 -D7BDD8D7BDD8D6BCD7D6BCD7D6BCD7D6BBD7D6BBD7D6BCD7D6BCD7D6BBD6D6BBD6D5BBD6D5BBD6 -D6BBD7D6BBD7D6BBD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BBD7D6BBD7D6BBD7 -D6BBD7D6BBD7D6BBD7D6BBD7D5BBD6D5BBD6D5BBD6D5BBD6D5BBD6D5BBD6D5BBD6D5BBD6D6BBD6 -D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D6BCD7D7BDD8D8BED8D8BED9D8BFD9 -D8BFD9D9C0DADAC2DBDBC2DBDCC3DCDCC5DDDDC6DDDFC8DEE3CFE3E8D6E7EEDEECF1E6F0F6ECF3 -FAF4F8FFFDFCFFFFFEFFFEFDFEFCFCF9F0F6F5EDF4EFE1EDEFE3EFEFE3EFEFE4EFEFE4EFF0E5F0 -F0E5F0EFE5F0F0E6F0EFE6F08C85ADEFE7F1EEE5F0EEE5F0EEE5F0EDE5F0ECE5F0ECE5F0ECE5F0 -EBE4F0EAE3EFECE5F0F1ECF4F8F5F9FFFFFEFFFFFEFFFFFEFCFBFCF7F4F8F1EBF3EBE5F0E3DCEB -DCD3E6D6CEE3D0C8E0CFC5DECDC4DECCC4DECCC3DDCBC2DCCAC1DCC9BFDAC9C0DBC8BFDAC7BEDA -C7BEDAC6BDDAC6BDD9C5BCD9C5BCD9C6BDD9C5BCD9C5BCD9C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8 -C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C6BCD9C6BCD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDAC7BEDA -C7BEDAC6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9 -C6BDD9C6BDD9C6BDD9C6BDD9C6BDD9C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8C5BCD8 -C5BCD8C5BCD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8C4BBD8 -C5BCD8C5BCD8C5BCD8C5BCD8C5BCD9C5BCD9C5BCD9C6BDD9C6BDDAC7BEDAC8BFDAC8BFDAC9C0DB -C9C0DBCAC1DCCBC3DDCCC3DDCDC4DECEC5DECFC6DFD1C8E0D5CDE3DBD3E6E2DBEBECE5F0F1ECF4 -F4F1F6FCFBFBFFFFFEFFFFFEFFFEFDF9F7F9F2EEF5EEE9F3EBE6F1ECE7F1EDE8F2EEE9F3EFEBF3 -EFEBF3EFEBF3F0ECF4F0EDF5F0EEF58C87AFF1EEF5F1EFF6F2F0F7F1F0F6F2F0F7F1F1F7F2F1F7 -F1F1F7F2F2F8F2F3F8F5F5F9F9F9FBFDFDFDFFFFFEFFFFFEFFFEFDFCFCFCF8F8FBF4F5F9F0F2F8 -ECF0F7E9ECF5E5EAF4E3E8F3E2E8F3E1E7F3DFE7F3DFE7F3DFE7F3DFE6F2DEE5F2DEE5F2DEE5F2 -DEE5F2DDE5F2DDE4F1DCE4F1DCE4F1DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2 -DCE4F1DCE4F1DCE4F1DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE5F2 -DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2 -DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE5F2DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1 -DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE5F2DCE5F2DCE5F2DCE5F2 -DCE5F2DCE5F2DCE5F2DCE5F2DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DCE5F2DCE5F2 -DCE5F2DCE5F2DCE5F2DCE4F1DCE4F1DCE4F1DCE4F1DCE4F1DDE5F2DDE5F2DEE5F2DEE5F2DEE5F2 -DEE5F2DFE7F3DFE7F3E0E7F3E0E7F3E1E7F3E2E8F3E3E9F4E5EBF5E9EDF6EDF0F7F1F3F9F5F7FA -F9FAFBFAFBFCFFFFFEFFFFFEFFFFFEFEFEFDFAFAFCF8F8FBF6F8FAF5F6FAF5F6FAF6F7FAF6F8FA -F7F8FBF7F8FBF8F8FBF9F9FBFAFAFCFAFAFCC2BCD4676595FAFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFC -FEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9FFF7F9 -FEF6F89289B09288AFFEF3F7FEF2F6FEF2F6FDF1F6FDF0F5FDEFF4FDEEF4FDEDF3FDECF3FCEDF3 -FCEBF2FEEFF5FFF3F6FFF8FAFFFFFEFFFFFEFFFFFEFFFEFDFFFAFBFFF5F8FEF2F6FDEFF4FDEEF4 -FCEDF2FCEDF2FCEDF2FCECF2FCECF2FCECF2FCEBF1FCEBF1FCECF2FCEBF1FCEBF1FCEBF1FCEBF1 -FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1FCEBF1 -FCEBF1FCEBF1FCEBF1FCEBF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1FCEAF1 -FCEAF1FCEAF1FCEAF1FCEAF1FCEBF1FCEBF1FCEBF1FCEBF1FCECF2FCEBF1FCEBF1FCEBF1FCECF2 -FCECF2FCEDF2FCEDF2FDEDF3FCEDF3FDEEF4FDEFF4FEF5F8FFF8FAFFFEFDFFFFFEFFFFFEFFFFFE -FEFAFBFEF2F6FDEEF4FBEAF1FAE7F0FAE9F1FAE8F0FAE9F1F9E9F1F9E9F1F9E9F1F9E9F1F8EAF2 -F8EAF2F8EAF28F86ADF7E9F1F7E9F1F6E9F1F5E8F1F5E7F0F5E8F1F4E6F0F4E5EFF4E5EFF2E2EE -F2E4EFF3E5EFF8EEF4F9F2F7FEFAFBFFFFFEFFFFFEFFFFFEFEFBFCFBF6F8F8F0F5F7ECF3F5EAF2 -F6EAF1F5E9F1F4E8F1F4E8F1F4E8F1F4E8F1F3E7F0F3E7F0F3E8F0F3E7F0F3E7F0F3E7F0F3E7F0 -F3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E7F0 -F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E8F0F3E7F0F3E7F0F3E6EFF3E6EFF3E6EFF3E6EF -F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0 -F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0 -F3E7F0F3E7F0F3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EF -F3E6EFF3E6EFF3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0 -F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0 -F3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E7F0 -F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0 -F3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EFF3E6EF -F3E7F0F3E6EFF3E6EFF3E6EFF3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F3E7F0F4E8F1 -F4E8F1F4E8F1F4E8F1F4EAF2F4E9F2F4E9F2F5EBF3F8EFF5FAF4F8FDF9FAFFFEFDFFFFFEFFFFFE -FFFEFDFAF4F8F7EFF5F3E8F1F1E4EFEFE4EFF0E4EFF0E4EFF1E6F0F0E6F0F1E7F0F1E7F1F0E6F0 -F1E7F1F0E7F18D85ADF0E7F1EFE7F1EFE8F1EFE8F1EEE6F1EEE6F1EDE6F0ECE5F0EDE5F0EBE4F0 -ECE4EFECE5F0F0EAF3F5EFF5F9F7F9FFFFFEFFFFFEFFFFFEFEFDFDFAF8FAF7F3F7F3EEF5F1EAF3 -F0EAF2F0E9F1F0E9F1F0E9F1EFE9F1EFE9F1EFEAF2EEE7F0EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EEE7F0EEE7F0EEE7F0EEE7F0 -EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1 -EEE8F1EEE8F1EEE8F1EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0EEE7F0 -EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0 -EEE7F0EDE6F0EDE6F0EDE6F0EDE6F0EDE6F0EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EEE8F1EFE8F1 -EFE9F1EFE9F1F0E9F1F0E9F1F0EAF3F0EAF3F1EBF3F2EDF4F6F3F8F9F8FAFDFCFCFFFFFEFFFFFE -FFFFFEFBF9FBF5F3F8F1ECF4EEE8F2EBE6F1EBE6F1EDE8F2EEE9F3EFEBF3EFEBF3F0ECF4F0EDF5 -F1EDF5F1EEF5F2EFF58D88AFF2EFF6F2F0F7F3F2F7F3F2F7F3F2F7F2F2F8F2F1F7F1F2F8F3F2F8 -F2F2F8F3F2F8F4F4F8F7F7FAFAF9FBFFFEFDFFFFFEFFFFFEFFFEFDFEFEFDFBFBFCF9F9FBF7F7FA -F6F8FAF5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8 -F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8 -F5F5F8F5F5F8F5F5F8F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9F5F6F9 -F5F6F9F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8 -F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8F5F5F8 -F5F6F9F5F6F9F5F6F9F5F6F9F5F6FAF5F6FAF6F7FAF7F9FBF8F9FBFBFBFCFEFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFCFCFCF8F9FBF6F8FAF5F6FAF6F7FAF6F7FAF6F7FAF6F8FAF7F8FBF7F8FBF7F8FB -F8F8FBFAFAFCFAFAFCFAFAFCC2BCD4676595FBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCFEFDFCFEFDFC -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FAFFF7F9FFF7F9FFF6F99289B0 -9289AFFEF4F7FEF3F7FEF2F6FEF2F6FEF1F6FDF0F5FDEFF4FDEEF4FDEDF3FDECF3FDECF3FDEBF2 -FDECF3FEF0F5FFF3F6FFF9FAFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFAFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFAFBFFF3F6FDEFF4FCEBF2 -FBE9F1FAE8F0FBE8F0FAE8F0FAEAF2FAE9F1FAE9F1FAEAF2F9EBF2F9EBF2F9EBF2F9ECF3F8EBF3 -9086AEF7EAF2F7EAF2F7EAF2F6EAF2F5E8F1F5E8F1F5E8F1F4E5EFF4E6F0F4E6F0F3E5EFF2E4EF -F3E5EFF5E8F1F8EEF4FAF2F7FEFAFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFEFAFB -FDFAFBFDFAFBFEFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDFAFBFDF9FAFDF9FAFDF8FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFBFBFFFCFCFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFAF4F8F7EDF4F5EBF3 -F1E4EFF0E3EFEFE4EFF2E4EFF1E6F0F1E6F0F2E7F1F1E7F0F1E7F1F2E9F2F1E8F2F1E8F2F1E8F2 -8D85AEF1E8F2F0E8F1F0E8F1F0E9F2F0E9F2EFE8F2EEE7F1EEE6F1EDE6F0EDE6F0ECE5F0EBE4F0 -EBE4F0EDE6F1F2EDF4F4F0F6F9F7F9FFFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFDFBFB -FCF9FAFCFAFBFCFAFBFDFAFBFCFAFBFBF9FBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBFAFBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBFAFBFBFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFBFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFBF9FBF5F1F6F2EEF5 -EEE9F3ECE6F1EDE7F1ECE7F1EFE9F2EEE9F3EEE9F3EFEBF3F0ECF4F1EDF5F1EEF5F2EFF5F2EFF6 -F3F0F68D88AFF3F1F7F3F1F7F4F2F7F4F2F7F4F2F7F3F2F8F3F2F8F3F2F8F2F2F8F3F2F8F1F2F8 -F2F3F8F3F4F9F5F6FAF9F9FBFAFBFCFEFDFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FDFDFDFDFDFDFCFCFCFDFDFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFEFDFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFEFEFDFBFCFCF8F8FB -F7F8FBF5F7FAF5F6FAF5F6FAF5F6FAF6F8FAF6F8FAF7F8FBF7F8FBF8F8FBF8F8FBF9F9FBFAFAFC -FAFAFCFAFBFCC3BCD4686695FBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCFEFDFCFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFCFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF6F99289B09289B0FEF5F8 -FEF4F7FEF3F7FEF2F6FEF2F6FEF1F6FEF0F5FDEEF4FDEFF4FDEDF3FDECF3FDECF3FDEBF2FDEBF2 -FDECF3FDEFF4FEF1F6FFF4F7FFF8FAFFFCFCFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFCFCFFF9FAFFF5F8FEF0F5FDEFF4FCEBF2FBE8F0FBE9F1FBE8F0FBE9F1 -FBEAF1FBEAF1FBEBF2FBEBF2FAEBF2FAEBF2F9EBF2FAEBF2F9EBF2F9EBF2F8EAF29086AEF8EAF2 -F7EAF2F7EAF2F7EAF2F6EAF2F6EAF2F5E8F1F5E8F1F5E7F0F5E7F0F3E6F0F5E7F0F3E5EFF3E5F0 -F3E6F0F6E9F2F8EDF4F8F0F5FAF4F8FDFAFBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFDFAFBFBF5F8F9F0F6F7EEF5F5E9F2F2E5F0F1E4EFF1E5EFF1E5EF -F1E6F0F2E6F0F2E7F1F2E7F1F3E7F1F2E8F1F2E9F2F3EAF2F2E9F2F2EAF2F2EAF28D85AEF1E9F2 -F1E9F2F1E9F2F0E9F2F0E9F2F0E9F2EFE8F1EFE8F1EEE7F1EFE8F2EEE7F1ECE5F0ECE5F0ECE5F0 -EBE4F0EFE8F2F1ECF4F3EEF5F5F2F7F9F7F9FDFBFBFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFDFBFBFAF8FAF8F4F8F3EEF5F2EDF4EEE8F2ECE7F1ECE6F1EDE6F1 -EEE8F2EEE8F2EEE9F3EFEBF3F0EBF3F1ECF4F1ECF4F2EEF5F2EFF5F2EFF5F3F0F6F3F0F68D88AF -F3F1F7F3F1F7F4F2F7F4F2F7F4F2F7F4F3F8F3F2F8F4F3F8F3F2F8F4F3F8F3F3F8F4F4F8F2F3F8 -F3F3F8F4F4F8F5F6FAF7F8FBF9FAFBFBFBFCFDFDFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFDFDFDFBFCFCFAFAFCF8F8FBF7F8FBF5F7FAF5F6FAF5F6FA -F5F6FAF6F7FAF6F7FAF7F8FBF7F8FBF7F8FBF8F8FBF9F9FBF9F9FBFAFAFCFAFAFCFAFAFCFAFBFC -C3BCD4686695FBFBFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFEFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFC -FFFDFCFFFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF8FAFFF7F9928AB09289B0FEF6F8FEF5F8FEF4F7 -FEF3F7FEF2F6FEF2F6FEF1F6FDF1F6FDEDF3FDEFF4FDEDF3FDEDF3FDECF3FDECF3FDEBF2FCEBF2 -FDEAF1FDECF3FEEFF4FEF0F5FEF1F6FEF0F5FFF2F6FFF4F7FFF4F7FFF4F7FFF3F7FFF3F7FFF3F7 -FFF3F7FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF4F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF4F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FFF3F7FFF3F7FFF3F7FFF4F7FFF4F7FFF4F7FFF3F7FFF2F6FEF1F6 -FEEFF5FEF0F5FEEFF4FDECF3FCE8F1FBE8F0FBE9F1FCEAF2FCEAF2FBEAF1FBEBF2FBEAF1FBECF3 -FBECF3FBECF3FBECF3FAECF3FAEBF2FAECF3FAECF3F9EDF3F9EDF39086AEF8EBF3F8EBF3F7EBF3 -F7EBF3F7EAF2F7EBF3F7EBF2F6EAF2F5E8F1F5E8F1F5E8F1F4E8F1F5E8F1F4E6F0F3E5F0F2E5F0 -F2E3EEF3E5F0F6E9F2F7EBF3F8EEF4F8EEF4F8EEF4F9F1F6F9F2F7F9F2F7F9F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F0F6F8F1F6F8F1F6F8F1F6F8F0F5F8F0F5F8F0F5F8F0F5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F0F5F8F0F5F8F0F5F8F0F5F8F0F5F8F0F5F8F0F5F8F0F5 -F8F1F6F8F1F6F8F2F6F8F0F5F8F1F6F8F1F6F8F1F6F9F1F6F9F1F6F9F2F7F9F2F7F8F2F6F8EFF5 -F7ECF3F6EDF4F6ECF3F5EAF2F3E7F1F1E4EFF1E6F0F2E4EFF1E6F0F2E6F0F2E7F1F3E7F1F3E8F1 -F3E8F1F3E9F2F3E9F2F3E9F2F3EAF2F3EAF2F3EAF2F3EBF3F3EBF38E86AEF2EAF3F2EAF3F2EAF3 -F1EAF3F1EAF3F1EAF3F0E9F2F0EAF2F0E9F2F0E9F2EEE7F1EEE6F1EFE8F2EEE7F1EDE7F1ECE5F0 -EBE4F0ECE5F0EFE9F2F1EBF3F3EEF5F2EFF6F3EEF5F4EFF5F6F2F7F6F3F8F6F2F7F5F2F7F5F2F7 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F4F1F6F4F1F6F4F1F6F4F1F6F4F1F6F4F1F6 -F4F1F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6 -F5F0F6F5F0F6F5F0F6F5F0F6F5F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F1F6F4F1F6F4F1F6F4F1F6F4F1F6F4F1F6 -F4F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F2F7F5F2F7F5F2F7F6F2F7F6F2F7F4F0F6 -F3EEF5F3EEF5F3EEF5F1ECF4F0E9F2EDE6F1ECE5F0EEE8F2EEE7F1EEE8F2EFEAF3EEE8F2EFE9F2 -EFEBF3F0EBF3F1ECF4F2EEF5F2EEF5F2EFF5F2EFF6F3F0F6F3F1F7F3F1F78D88AFF3F1F7F4F2F7 -F4F2F7F4F3F8F4F3F8F4F3F8F4F4F9F4F4F9F4F4F9F4F4F8F4F4F8F4F4F8F4F4F8F4F5F9F4F3F8 -F4F4F8F3F3F8F4F5F9F7F7FAF8F8FBF7F8FBF8F8FBF8F8FAFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FB -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFAFCFAFAFC -F9F9FBF8F8FBF8F8FBF7F8FBF6F8FAF6F7FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F7FAF6F8FA -F7F8FBF8F8FBF7F8FBF8F8FBF9F9FBF9FAFBFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCC3BCD4686695 -FBFBFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFEFDFCFEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFAFBFFF9FAFFF8FAFFF8FAFFF8FA938AB0938AB0FEF6F8FEF5F8FEF5F8FEF4F7FEF3F7 -FEF2F6FEF2F6FEF1F6FDF1F6FDEFF4FDEFF4FDEEF4FDEEF4FDEBF2FDECF3FDECF3FDECF3FCE9F1 -FCEAF2FCE9F1FCE8F1FDEBF2FDEBF2FDEBF2FDEBF2FDEAF1FDEAF1FDEAF1FCE9F1FCE9F1FCE9F1 -FCE7F0FCE7F0FCE7F0FCE7F0FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE6EFFBE6EFFBE6EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFCE7F0FCE7F0FCE7F0 -FCE7F0FCE8F0FCE9F1FCE9F1FDEAF1FDEAF1FDEAF1FDEAF1FDEAF1FDEBF2FCE9F1FBE7EFFCE9F1 -FCE7F0FCE9F1FCEBF2FCEAF2FCEAF2FCEBF2FCEDF3FCEBF2FCECF3FCEDF3FCEBF2FBECF3FBECF3 -FBEDF4FBEDF4FBEDF4FAEDF3FAEEF4FAEEF4FAEEF49087AEF9EEF4F9EEF4F8EDF4F8ECF3F8ECF3 -F8ECF3F8ECF3F7EBF2F6EAF2F6E9F2F6E9F2F4E8F1F6E9F2F5E8F1F4E8F1F4E7F0F3E5F0F3E6F0 -F3E5F0F2E4EFF2E4EFF2E5F0F2E5F0F3E5F0F2E6F0F2E5F0F2E4EFF2E4EFF2E4EFF1E4EFF1E4EF -F1E3EEF1E3EEF1E3EEF1E3EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E1ED -F0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1ED -F0E1EDF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1ED -F0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E1EDF0E1EDF0E1EDF0E1EDF0E1ED -F0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E0EDF0E1EDF0E1ED -F0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E4EFF1E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E5F0F2E5F0F2E6F0F2E4EFF2E4EF -F1E3EEF1E4EFF2E7F1F3E5EFF1E6F0F4E8F1F3E8F1F3E8F1F2E8F1F4EAF2F4E9F2F3EAF2F4EAF2 -F4EBF3F4EBF3F4EBF3F4EBF3F4EBF3F4ECF4F4ECF48E86AEF3ECF3F3ECF3F3EBF3F3ECF3F2EBF3 -F2ECF4F1ECF4F0EAF2F1EBF3EFE8F2F0E9F2F0EAF3EFE8F2EEE8F2EFE8F2EEE7F1EDE6F1ECE5F0 -ECE5F0ECE6F1ECE5F0EBE4F0EDE6F1EDE6F1EDE6F1ECE5F0EBE5F0ECE5F0ECE5F0EBE4F0EAE3EF -EBE4F0EAE3EFEAE3EFEAE3EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE8E2EFE8E2EFE8E2EF -E8E2EFE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E2EFE8E2EF -E8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EF -E8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE8E2EFE9E2EFE9E2EFE9E3EFE9E2EFE9E2EFE9E2EFEAE3EF -EAE3EFEAE3EFEAE3EFEBE4F0EBE4F0ECE5F0ECE5F0ECE5F0ECE5F0EBE4F0EEE8F2EDE6F1EBE5F0 -ECE5F0ECE5F0EDE6F1EDE7F1EFE8F2EDE6F1EFEAF3EFEBF3F0EAF3F0EBF3F0EDF5F1ECF4F2EDF4 -F2EEF5F2EFF6F2EFF6F3F0F6F3F0F6F3F1F7F4F2F7F4F2F78E88AFF4F2F7F4F3F8F4F3F8F5F4F8 -F5F5F9F5F5F9F5F5F9F5F4F8F5F5F9F4F4F9F5F5F9F5F5F9F5F5F9F5F5F9F5F5F9F4F5F9F4F4F8 -F4F5F9F4F5F9F3F4F9F2F4F9F4F5F9F4F5F9F5F6FAF5F6FAF4F6FAF4F6FAF4F6FAF3F5F9F3F5F9 -F3F5F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F2F4F9F3F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F3F4F9F3F4F9F3F5F9F3F5F9F3F5F9F4F6FAF4F6FAF4F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F5F9F4F5F9F4F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F7FAF6F7FAF6F8FAF8F8FBF7F8FBF8F8FB -F8F8FBF9F9FBFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCC3BCD4686695FCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FEFDFCFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFBFBFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB -FFFAFBFFF9FAFFF9FAFFF8FA938AB0938AB0FFF6F9FEF6F8FEF6F8FEF6F8FEF4F7FEF3F7FEF3F7 -FEF2F6FEF2F6FEF1F6FEF0F5FDEFF4FDEDF3FDEFF4FDEDF3FDEDF3FDECF3FCECF3FDEBF2FDEBF2 -FCEAF2FCE9F1FCE9F1FCE8F1FCE8F1FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE5EFFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EE -FAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFAE4EEFBE5EFFBE5EFFAE4EEFAE4EEFAE4EEFBE6EF -FBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE6EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FCE7F0FCE7F0FCE8F1FCE7F0FCE7F0FCE8F1FCE8F1FCE9F1FCE8F1FCE9F1FCE8F1FCEAF2FCEAF2 -FCEBF2FCECF3FCEBF2FCECF3FCEBF2FCEDF3FCECF3FCEEF4FDEEF4FCEEF4FCEEF4FBEEF4FBEEF4 -FBEFF5FBEFF5FBEFF5FAEFF5FAEFF59187AEF9EEF4F9EEF4F9EEF4F9EEF4F8EDF4F8EEF4F8EDF4 -F8EDF4F7EBF3F7ECF3F6EAF2F6EBF3F5EAF2F5E9F2F5E8F1F5E9F2F5E8F1F4E8F1F3E6F0F3E6F0 -F4E6F0F3E5EFF2E5F0F2E5F0F2E4EFF1E3EEF2E3EEF1E3EEF0E2EEF0E1EDF0E2EEF0E1EDF0E1ED -F0E1EDF0E1EDF0E1EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EDEFE0EDEFE0EDEFE0ED -EFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0EDEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0ECEFE0EC -EFE0ECEFE0EDEFE0EDEFE0EDF0E1EDEFE0EDEFE0EDEFE0EDEFE0EDF0E1EDF0E1EDF0E1EDF0E1ED -F0E2EEF0E2EEF1E2EEF1E3EEF1E3EEF1E3EEF2E4EFF2E4EFF2E4EFF2E4EFF2E5F0F2E6F0F2E6F0 -F3E6F0F4E9F1F3E7F1F3E8F1F4E9F2F3E9F2F4EAF2F4EAF2F5EBF3F4EBF3F5ECF3F5EDF4F5EDF4 -F5EDF4F5EDF4F5EDF4F5EDF4F5EDF48E88AFF4EDF4F4EDF4F4EDF4F4EDF4F4EDF4F3EDF4F2ECF4 -F2EDF4F2ECF4F1EBF3F2EBF3F0EAF3F1EBF3F0E9F2F0E9F2EFE8F2EEE8F2EEE8F2EEE8F2EDE6F1 -EDE6F1ECE5F0ECE5F0ECE5F0ECE6F1EBE5F0EAE3EFEAE3EFE9E3EFE9E3EFE9E3EFE8E1EEE8E1EE -E8E1EEE9E2EEE8E1EEE8E1EEE8E1EEE7E0EDE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE7E0EDE6E0ED -E6DFEDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE6E0EDE6E0EDE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0EDE6E0ED -E6E0EDE8E1EEE8E1EEE8E2EFE7E1EEE8E1EEE8E2EFE8E1EEE8E1EEE8E0EEE8E1EEE8E1EEE8E0EE -E8E1EEE9E3EFE9E3EFE9E3EFEAE3EFEAE3EFEBE5F0EBE5F0EBE4F0ECE5F0ECE6F1EDE6F1EDE7F1 -EEE8F2EEE8F2EFE9F2EFEAF3F0EAF3F0E9F2F1ECF4F1EDF5F2EDF4F1EDF5F2EEF5F2EFF6F3EFF6 -F3F0F6F4F1F6F4F2F7F4F2F7F4F2F7F5F3F88E89B0F5F4F8F5F4F8F5F4F8F6F5F9F5F5F9F6F5F9 -F5F5F9F5F5F9F5F5F9F5F5F9F5F6FAF5F5F9F5F5F9F6F6F9F5F5F9F5F5F9F5F5F9F5F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF3F4F9F3F4F9F4F5F9F3F4F9F3F4F9F3F3F8F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9 -F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F1F3F9F2F4F9F2F4F9F3F4F9F2F4F9 -F2F4F9F2F4F9F3F4F9F3F4F9F3F4F9F4F5F9F4F5F9F4F5F9F4F5F9F4F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF6F7FAF6F7FAF6F8FAF7F8FBF7F8FBF7F8FBF8F8FBF9F9FBF9F9FBFAF9FB -FAFAFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCC3BCD4686695FCFCFCFDFDFDFDFDFDFCFCFC -FDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFEFDFCFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFAFB -FFF9FAFFF9FA938AB0938AB0FFF7F9FEF7F9FEF6F8FEF6F8FEF5F8FEF4F7FEF3F7FEF3F7FEF3F7 -FEF2F6FEF2F6FDF1F6FDF0F5FDEFF4FDEEF4FDEEF4FDEDF3FDEDF3FDECF3FDECF3FDECF3FDEBF2 -FDEBF2FCE9F1FCE9F1FCE9F1FCE9F1FCE8F1FCE8F1FCE8F1FCE8F1FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EF -FBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFBE7EFFCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE9F1FCE9F1FCEAF2FDEBF2FDEBF2FDEBF2FCEBF2FCECF3FCECF3FCECF3FCEDF3 -FCECF3FCEDF3FCEEF4FCEEF4FCEFF4FCEFF4FCF0F5FCF0F5FCF0F5FCF0F5FBF0F5FBF0F5FBF0F5 -FBF0F5FBF0F5FAF0F59188AFFAF0F5F9EFF5F9EFF5F9EFF5F8EFF5F8EFF5F8EEF4F8EEF4F8EDF4 -F8EEF4F8EEF4F7ECF3F6EBF3F6EAF2F6EAF2F5E9F2F5E9F2F4E9F1F4E8F1F4E8F1F4E8F1F3E7F1 -F3E7F1F3E7F1F2E6F0F2E5F0F2E5F0F2E4EFF2E4EFF2E4EFF2E4EFF1E3EEF1E3EEF1E3EEF1E3EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1ED -F0E1EDF0E1EDF0E1EDF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EE -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E1ED -F0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1EDF0E1ED -F0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF0E2EEF1E2EEF1E3EEF1E3EEF1E3EEF2E4EFF2E4EF -F1E4EFF1E5EFF2E5F0F3E5F0F3E6F0F3E7F1F3E7F1F2E6F0F3E7F1F3E7F1F3E8F1F4E9F1F4E9F1 -F4E9F2F5EAF2F5EBF3F6EBF3F6ECF3F6ECF3F6ECF3F6EDF4F6EDF4F6EEF4F5EDF4F6EEF4F6EFF5 -F6EEF4F5EDF4F6EFF58E87AFF6EFF5F5EEF5F5EEF5F4EEF5F4EEF5F4EEF5F3EDF4F3EEF5F3EEF5 -F3EDF4F2ECF4F1ECF4F2EBF3F2EBF3F1EBF3F0E9F2F0E9F2EFE9F2EFE9F2EFE8F2EEE8F2EEE8F2 -EDE7F1ECE5F0EDE6F1ECE6F1ECE5F0ECE5F0EBE5F0EBE5F0EBE5F0EAE3EFEAE3EFEAE3EFEAE3EF -E9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EF -E9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE9E2EFE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EEE8E1EE -E9E3EFEAE3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFE9E3EFEAE3EFEAE3EFEAE3EFEBE4F0EBE5F0 -EBE5F0EBE5F0ECE5F0ECE5F0ECE5F0EDE6F1EDE6F1EDE7F1EDE7F1EEE8F2EFE9F2EFE9F2F0EAF3 -F0EAF3F0EAF3F1EBF4F2EDF4F2EDF4F2EDF4F2EEF5F3EFF6F3EFF6F3EFF6F4F1F6F4F2F7F5F2F7 -F5F2F7F4F2F7F5F3F8F5F3F88F89B0F6F4F8F6F4F8F6F5F9F7F5F9F6F5F9F6F5F9F6F6F9F6F6F9 -F6F6F9F7F6FAF6F6F9F6F6F9F6F6F9F6F6F9F5F5F9F5F6FAF5F6FAF5F6FAF5F5F9F5F5F9F5F5F9 -F4F5F9F5F6FAF5F6FAF5F6FAF5F6FAF4F6FAF4F5F9F4F5F9F4F5F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9F2F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F7FA -F6F7FAF6F8FAF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBFAF9FBFAF9FBFAFAFCFAFAFCFAFBFC -FAFBFCFBFBFCFBFBFCFBFCFCFCFCFCC4BCD5686695FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFFAFBFFF9FA -938AB0938AB0FFF8FAFFF7F9FFF7F9FEF6F8FEF6F8FEF5F8FEF4F7FEF4F7FEF3F7FEF2F6FEF2F6 -FEF1F6FEF1F6FDF0F5FDEFF4FDEFF4FDEEF4FDEEF4FDEDF3FDEDF3FDEDF3FDECF3FDECF3FDECF3 -FDEBF2FDEBF2FDEBF2FCEAF2FCEAF2FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0 -FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE7F0FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1 -FCE8F1FCE8F1FCE8F1FCE8F1FCE8F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCEAF2FCEAF2FDEBF2 -FDEBF2FDEBF2FDECF3FDECF3FDECF3FDECF3FCECF3FDECF3FDEDF3FDEDF3FDEEF4FDEEF4FCEEF4 -FCEFF4FDF0F5FDF1F6FDF0F5FCF0F5FBEFF5FCF0F5FCF1F6FCF1F6FCF1F6FCF1F6FBF1F6FBF1F6 -FBF1F69188AFFAF1F6FAF1F6F9F0F6FAF1F6F9EFF5F9EFF5F9EFF5F8EFF5F8EEF4F8EEF4F8EEF4 -F8EEF4F7ECF3F7ECF3F6EBF3F6EBF3F6EBF3F5EAF2F5EAF2F5E9F2F5E9F2F4E9F1F4E9F1F4E8F1 -F3E7F1F3E7F1F3E7F1F3E6F0F3E6F0F2E6F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E4EFF2E4EF -F2E4EFF2E4EFF2E5F0F2E4EFF2E4EFF2E4EFF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EE -F1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF1E3EEF2E3EEF2E4EFF2E4EFF2E4EF -F2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E4EFF2E5F0F2E5F0F2E5F0F2E5F0F3E6F0F3E6F0F3E6F0 -F3E7F1F3E7F1F3E7F1F4E7F0F4E8F1F4E9F1F4E9F1F4E9F1F4E9F1F5EAF2F5EBF3F5EBF3F5EBF3 -F6ECF3F6ECF3F6EDF4F6EEF4F6EDF4F6EEF4F7EEF5F7EFF5F6EFF5F6EFF5F7EFF5F7EFF5F6EFF5 -F7F0F68F88AFF6F0F5F6F0F5F6F0F5F5EFF5F5EFF5F5EFF5F5EFF5F4EFF5F4EFF5F3EEF5F3EEF5 -F2EEF5F3EEF5F2ECF4F1EBF3F1EBF3F1EBF3F1EBF3F1EBF3F0E9F2F0E9F2EFE9F2EFE9F2EFE8F2 -EFE8F2EEE8F2EEE8F2EDE6F1EDE6F1EDE6F1ECE6F1ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE4F0EAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EF -EAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEAE3EFEBE4F0EBE4F0EBE5F0EBE5F0EBE5F0 -EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0EBE5F0ECE5F0ECE5F0ECE6F1EDE6F1EDE6F1 -EDE6F1EEE8F2EEE8F2EFE8F2EFE8F2EFE9F2EFE9F2F0EAF3F1EBF3F1EBF3F1EBF3F1EBF4F1ECF4 -F2EDF4F2EDF4F2EEF5F3EFF6F3EFF6F4F1F6F4F1F6F4F1F6F5F2F7F5F2F7F5F2F7F6F3F8F6F4F8 -F7F5F8F7F5F98F8AB0F7F5F9F7F5F9F7F6FAF7F6FAF7F6FAF7F6FAF7F6FAF7F7FAF7F7FAF7F7FA -F7F7FAF7F7FAF7F7FAF6F7FAF6F6F9F6F7FAF6F7FAF6F7FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9 -F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F3F4F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F7FAF6F7FAF6F7FAF6F7FAF7F7FAF7F8FB -F7F8FBF8F8FBF8F8FBF8F8FBF9FAFBFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFCFCFCFCFCC4BCD5686695FDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFDFCFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFAFBFFFAFB938BB1938AB0 -FFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FEF7F9FEF6F8FEF5F8FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FEF1F6FDF1F6FDEFF4FDEFF4FDEFF4FDEEF4FDEEF4FDEDF3FDEDF3FDEDF3FDECF3FDECF3 -FDECF3FDECF3FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FCEAF2FCEAF2FCEAF2FCEAF2FCEAF2 -FCEAF2FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1 -FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCE9F1FCEAF2FCEAF2FCEAF2 -FCEAF2FCEAF2FCEAF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDECF3FDECF3FDECF3FDECF3FDECF3 -FDEDF3FDECF3FDEDF3FDEEF4FDEEF4FDEEF4FDEEF4FDEFF4FDEFF4FEF0F5FDF0F5FDF0F5FDF1F6 -FDF2F6FDF2F6FDF2F6FCF1F6FDF2F6FCF1F6FCF1F6FCF1F6FCF2F6FCF2F6FCF2F6FBF2F69189AF -FBF2F6FBF2F6FAF2F6FAF2F6FAF1F6F9F0F6F9F0F6F9F0F6F8F0F5F8EFF5F8EFF5F8EFF5F8EEF4 -F8EEF4F8EDF4F7EDF4F7ECF3F6ECF3F6EBF3F6EAF2F5EAF2F5EAF2F5EAF2F5EAF2F4E9F1F4E9F1 -F4E8F1F4E8F1F4E8F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E6F0F3E6F0F3E6F0F3E6F0F3E6F0 -F2E6F0F2E6F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0 -F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E5F0F2E6F0F3E6F0F3E6F0 -F3E6F0F3E6F0F3E6F0F3E6F0F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F4E9F1F4E8F1F4E8F1F4E9F1 -F4E9F1F5EAF2F5EAF2F5EAF2F5EAF2F5EBF3F5EBF3F6ECF3F6ECF3F6EDF4F6EDF4F6EDF4F7EDF4 -F7EFF5F7EFF5F7EFF5F7EFF5F7F0F6F7F0F6F7F0F6F8F0F6F8F0F6F8F1F6F7F1F6F7F1F68F88AF -F7F1F6F7F1F6F7F1F6F6F1F6F6F1F6F6F1F6F5F0F6F5F0F6F4F0F6F4EFF5F4EEF5F4EFF5F3EEF5 -F3EEF5F2EDF4F2EDF4F1ECF4F1ECF4F1ECF4F1EBF3F1EBF3F1EBF3F0EAF3F0E9F2F0E9F2EFE9F2 -EFE9F2EFE9F2EFE8F2EFE8F2EEE8F2EEE8F2EEE8F2EEE8F2EDE6F1EDE6F1EDE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1ECE5F0ECE5F0ECE5F0ECE5F0EBE4F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0 -ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE5F0ECE6F1EDE6F1EDE6F1 -EDE6F1EDE6F1EDE6F1EDE6F1EEE7F1EEE7F1EEE8F2EEE8F2EEE8F2EFE8F2EFE8F2EFE8F2EFE9F2 -EFE9F2F0E9F2F0E9F2F0EAF3F1EBF3F1EBF4F1EBF4F1EBF4F2EDF4F2EDF4F2EEF5F2EEF5F2EEF5 -F3EFF6F4F1F6F4F1F6F4F1F6F5F2F7F5F2F7F6F2F7F6F3F8F6F3F8F7F4F8F7F5F8F7F5F8F6F5F9 -8F8AB0F8F6F9F7F5F9F8F7FAF8F7FAF8F7FAF8F7FAF8F7FAF8F8FAF8F8FAF8F8FAF8F8FAF8F8FA -F7F7FAF7F7FAF7F7FAF7F7FAF7F7FAF7F7FAF6F7FAF5F6FAF5F6FAF5F6FAF6F7FAF6F7FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF4F6FAF4F6FAF4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9 -F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F5F9F4F5F9F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FA -F4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF4F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF6F7FAF6F7FAF5F6FAF6F8FAF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FB -F8F8FBFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FCFCFCC5BDD5686695FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFB938BB1938BB1FFF9FAFFF8FA -FFF8FAFFF7F9FFF7F9FFF7F9FEF7F9FEF6F8FEF5F8FEF5F8FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FEF1F6FEF1F6FDF1F6FDF0F5FDEFF4FDEEF4FDEEF4FDEEF4FDEEF4FDEDF3FDEDF3FDEDF3 -FDEDF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2 -FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDEBF2FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDEDF3FDEDF3FDEEF4FDEEF4FDEEF4FDEEF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDF0F5FDF0F5FDF1F6FDF3F7FDF2F6FDF2F6FDF2F6FDF2F6FDF2F6 -FDF3F7FDF3F7FDF3F7FDF3F7FCF2F6FCF3F7FCF3F7FCF3F7FCF3F7FCF3F79189AFFBF3F7FBF3F7 -FBF3F7FBF3F7FAF2F7FAF2F7FAF2F6F9F2F7F9F1F6F9F1F6F8F0F5F8F0F5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EEF4F7EDF4F7ECF3F7ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6EBF3F5EAF2F5EAF2F5EAF2 -F5EAF2F5E9F2F4E9F1F4E9F1F4E9F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F4E8F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1 -F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F3E7F1F2E7F1F3E7F1F3E7F1F4E8F1 -F4E8F1F4E8F1F4E8F1F4E9F1F4E9F1F4E9F1F4E9F2F5EAF2F5EAF2F5EAF2F5EBF3F6EBF3F6EBF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6EDF4F6EEF4F8EFF5F7EFF5F7EEF5F7EEF5F7F0F6F8F0F6 -F8F0F6F8F0F6F8F0F6F8F0F6F8F1F6F8F1F6F8F2F6F8F2F7F8F2F7F8F2F79089B0F8F2F7F8F2F7 -F8F2F7F7F3F7F7F2F7F7F2F7F5F1F6F6F1F7F6F1F7F6F1F7F6F1F7F5F0F6F4EFF5F4EFF5F4EFF5 -F4F0F6F3EEF5F3EEF5F2EDF4F1ECF4F1ECF4F1ECF4F1EBF4F1EBF4F1EBF4F0EAF3F1EBF3F0EAF3 -F0EAF3F0E9F2EFE9F2EFE9F2EFE9F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EFE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2 -EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EEE8F2EFE8F2EFE8F2 -EFE8F2EFE8F2EFE8F2EEE7F1EFE9F2EFE9F2EFE9F2F0E9F2F0EAF3F0EAF3F1EBF3F1EBF4F1EBF4 -F1EBF4F1EBF4F2EDF4F2EDF4F2EDF4F2EEF5F2EFF6F3EEF5F4F0F6F4F0F6F4F1F6F4F1F6F5F1F6 -F6F1F7F6F2F7F6F3F8F6F3F8F6F3F8F6F3F8F7F5F8F8F5F9F7F5F8F8F6F9F8F6F9908AB0F9F7FA -F9F7FAF9F7FAF9F8FAF9F8FAF9F8FAF9F8FAF9F8FAF9F8FAF9F8FAF8F8FAF8F8FAF8F8FAF8F8FA -F8F8FBF8F8FBF8F8FAF7F7FAF7F7FAF7F7FAF7F8FBF7F8FBF7F8FBF6F8FAF6F8FAF6F7FAF6F7FA -F6F7FAF6F7FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F5F9F5F6FAF5F6FAF5F6FAF5F6FAF6F7FAF6F7FAF6F7FAF6F8FA -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F9FBF8F8FBF8F8FBFAF9FBFAFAFCF9FAFB -FAFAFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFDFDFDC5BDD5 -686695FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB938BB1938BB1FFF9FAFFF9FAFFF8FAFFF8FA -FFF7F9FFF7F9FFF7F9FFF7F9FEF6F8FEF6F8FEF5F8FEF4F7FEF4F7FEF3F7FEF3F7FEF2F6FEF2F6 -FEF2F6FEF2F6FEF1F6FDF1F6FDF1F6FDF0F5FDF1F6FDF0F5FDEFF4FDEFF4FDEFF4FDEEF4FDEEF4 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3 -FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDECF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEEF4FDEEF4FDEFF4FDEFF4FDEFF4FDF0F5FDF0F5FDEFF4FDF0F5FDF1F6 -FEF1F6FDF1F6FDF1F6FDF2F6FDF2F6FDF2F6FDF2F6FDF2F6FDF2F6FDF3F7FDF3F7FDF4F7FDF4F7 -FDF4F7FDF5F8FDF5F8FDF5F8FDF5F8FCF4F8FCF4F8FCF4F89189B0FBF4F7FBF4F7FBF4F7FBF4F7 -FBF4F7FAF3F7FAF3F7FAF2F7FAF2F7FAF2F7F9F1F6F9F1F6F8F0F5F8F0F5F8EFF5F8F0F5F8EFF5 -F8EFF5F8EEF4F8EFF5F7EEF5F7EDF4F7EEF5F7EDF4F7ECF3F6ECF3F6ECF3F6ECF3F6EBF3F6EBF3 -F6EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1 -F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F1F4E9F2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EBF3F5EAF2F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6ECF3F6ECF3F7EDF4F7EDF4F7EDF4 -F7EDF4F7EDF4F7EEF5F7EEF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F0F6F8F0F6F8F2F6F8F2F6 -F8F2F6F8F1F6F8F3F7F8F3F7F8F3F7F8F3F7F8F3F7F8F4F89189B0F8F4F8F8F3F7F8F3F7F8F3F7 -F8F3F7F8F3F7F8F3F7F7F2F7F7F2F7F7F3F7F7F2F7F6F1F7F6F1F6F5EFF5F5F0F6F5F0F6F4EFF5 -F4EFF5F3EEF5F2EDF4F2EDF4F3EEF5F2EDF4F2EDF4F2EDF4F1ECF4F1ECF4F1ECF4F1EBF4F1EBF4 -F1EBF4F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2EFE9F2 -EFE9F2EFE9F2F0E9F2F0E9F2EFE9F2EFE9F2EFE9F2EEE8F2EFE9F2EFE9F2F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F1EBF4F1EBF4F1EBF4F1ECF4F1ECF4F1ECF4F2EDF4F2EDF4F2EDF4 -F3EEF5F3EEF5F3EEF5F3EEF5F4F0F6F4F0F6F5F1F6F5F1F6F5F1F6F5F2F7F6F2F7F7F3F7F7F4F8 -F7F4F8F7F5F8F8F5F9F8F5F9F8F6F9F8F6F9F8F6F9F8F6F9F9F7FA908AB1F9F7FAF9F7FAF9F8FA -F9F8FAF9F8FAFAF8FAFAF8FAF9F9FBF9F9FBF9F9FBF9F8FAF9F8FAF8F8FAF9F9FBF9F9FBF9F9FB -F8F8FBF8F8FBF7F8FBF8F8FBF8F8FBF8F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FA -F5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF5F6FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F8FAF6F8FAF6F8FAF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9FAFBFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFC -FAFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDC5BDD5686695FDFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFBFB938BB1938BB1FFFAFBFFFAFBFFF9FAFFF8FAFFF8FAFFF8FA -FFF7F9FFF7F9FFF7F9FEF6F8FEF6F8FEF6F8FEF5F8FEF5F8FEF4F7FEF3F7FEF3F7FEF3F7FEF2F6 -FEF1F6FEF2F6FEF2F6FEF1F6FEF1F6FEF1F6FEF0F5FEF0F5FDF0F5FDF0F5FDF0F5FDEFF4FDEFF4 -FDEFF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4 -FDEEF4FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3 -FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEDF3FDEEF4FDEEF4 -FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEEF4FDEFF4FDEFF4 -FDEFF4FDF0F5FDF0F5FDF0F5FEF0F5FEF0F5FEF1F6FEF1F6FEF1F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FDF2F6FDF2F6FEF3F7FEF3F7FEF4F7FEF4F7FDF4F7FDF4F7FDF5F8FEF6F8FDF5F8FDF5F8 -FDF5F8FDF5F8FDF5F8FDF5F8FCF5F8FCF6F9918AB0FCF5F8FCF5F8FBF5F8FBF5F8FBF5F8FAF4F8 -FAF3F7FBF5F8FAF4F8FAF3F7FAF2F7FAF2F7F9F2F7F8F2F6F8F1F6F8F0F5F8F0F5F8F0F5F8EFF5 -F8EFF5F8EFF5F8EFF5F7EEF5F7EEF5F7EDF4F7EDF4F7EDF4F7ECF3F7EDF4F7EDF4F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3 -F6EBF3F6EBF3F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2 -F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F5EAF2F6EAF2F6EBF3F6EBF3 -F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6EBF3F6ECF3F6ECF3 -F6ECF3F6EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EEF5F7EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8F1F6F8F1F6F8F2F6F8F2F6F8F2F6F8F2F6F8F3F7F9F3F7F9F4F8F8F3F7 -F9F3F7F9F4F8F9F3F7F9F4F8F9F4F8F8F4F89089B0F9F5F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F7F3F7F7F2F7F7F2F7F7F2F7F6F2F7F6F2F7F6F1F7F5F0F6F5F0F6F5F0F6 -F4EFF5F4F0F6F4F0F6F3EFF6F3EEF5F3EEF5F3EEF5F2EDF4F2EDF4F2EDF4F2EDF4F2ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4 -F1EBF4F1EBF4F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3 -F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F0EAF3F1EBF3 -F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1EBF4F1ECF4F1ECF4 -F1ECF4F1ECF4F2ECF4F2EDF4F2EDF4F2EDF4F2EDF4F2EEF5F4EFF5F3EEF5F4EFF5F4F0F6F4F0F6 -F4F0F6F5F0F6F5F1F6F5F1F6F6F2F7F6F2F7F6F2F7F6F2F7F7F4F8F7F4F8F8F4F8F8F4F8F8F5F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9FAF8FA908AB0F9F8FAF9F8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF9FBFAF9FBFAF9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F8FAF9F9FB -F8F8FBF9F9FBF8F8FBF7F8FBF8F8FBF8F8FBF8F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FA -F6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F7FAF6F8FAF6F8FAF6F8FA -F6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF6F8FAF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F9F9FBF9F9FBF9F9FBFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFAFBFCFBFBFC -FBFBFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDC5BDD5686695FEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFC938BB1938BB1FFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF8FAFFF8FAFFF8FA -FFF7F9FFF7F9FFF7F9FEF7F9FEF6F8FEF6F8FEF5F8FEF5F8FEF4F7FEF4F7FEF3F7FEF3F7FEF3F7 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF1F6FEF1F6FEF1F6FEF1F6FDF0F5FDF0F5FDF0F5 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4FDEFF4 -FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FDF0F5FEF1F6FEF1F6 -FEF1F6FEF1F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7 -FEF4F7FEF4F7FEF5F8FEF5F8FEF5F8FDF5F8FDF5F8FEF6F8FFF7F9FEF7F9FEF7F9FDF6F9FDF6F9 -FDF6F9FEF7F9FDF6F9FCF6F9918AB0FCF6F9FCF6F9FCF6F9FCF6F9FCF6F9FCF5F8FBF5F8FAF4F8 -FBF5F8FBF5F8FAF3F7FAF3F7FAF4F8FAF3F7F9F2F7F9F2F7F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F0F5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F7EEF5F7EEF5F7EEF5F7EEF5F7EDF4F7EDF4 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3 -F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F6ECF3F7ECF3 -F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EDF4F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F2F6F8F2F6F8F2F6F9F4F8F9F3F7F9F3F7F9F3F7F9F4F8FAF4F8FAF5F8F9F5F8F9F4F8F9F5F8 -F9F5F8F9F5F8FAF5F8F9F5F89089B0F9F5F8F9F5F8F9F5F8F9F5F8F8F4F8F8F4F8F8F4F8F8F5F9 -F8F5F9F7F4F8F7F3F7F8F3F7F7F3F7F7F3F7F7F3F7F6F2F7F6F2F7F6F1F7F6F1F7F5F1F6F5F1F6 -F5F1F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F3EFF6F3EEF5F3EEF5F3EEF5F2EDF4F2EDF4F2EDF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4F1ECF4 -F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F2EDF4F3EEF5F3EEF5 -F3EEF5F3EFF6F3EEF5F4F0F6F4F0F6F4F1F6F4F0F6F4F0F6F4F0F6F5F1F6F5F1F6F5F1F6F6F2F7 -F5F2F7F6F1F7F6F2F7F7F4F8F7F4F8F7F4F8F7F4F8F7F4F8F8F5F9F8F5F9F8F6F9F9F6F9F9F6F9 -F9F7F9F9F7F9F9F8FAFAF8FAF9F8FA908BB1FAF9FBFAF8FAFAF8FAFAFAFBFAF9FBFAF8FAFAFAFB -FAFAFBFAFAFBFAFAFBFAF9FBFAF9FBFAF9FBFAFAFBFAF9FBFAF9FBF9F9FBF9F9FBFAFAFCFAFAFC -FAFAFCFAFAFCF9F9FBF9F9FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FB -F7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF7F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9F9FBFAF9FBFAF9FBFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFEFDFDFDFDFDFDFDFDC5BDD5686695FEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFC938CB2938BB1FFFBFBFFFBFBFFFBFBFFFAFBFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF7F9 -FFF7F9FFF7F9FFF7F9FEF7F9FEF6F8FEF6F8FEF5F8FEF5F8FEF5F8FEF5F8FEF4F7FEF4F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF0F5FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF0F5FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6 -FEF1F6FEF1F6FEF1F6FEF1F6FEF1F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF4F7FEF4F7FEF4F7FEF5F8FEF5F8FEF4F7FEF5F8FEF5F8 -FEF5F8FEF6F8FEF6F8FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FDF6F9FDF6F9FEF7F9 -FDF6F9FDF6F9928AB0FDF6F9FDF6F9FDF6F9FCF6F9FCF6F9FCF6F9FCF6F9FBF5F8FBF5F8FBF5F8 -FBF5F8FBF5F8FAF4F8FAF4F8FAF3F7FAF3F7F9F3F7F9F2F7F9F3F7F9F3F7F9F2F7F9F2F7F8F1F6 -F8F1F6F8F1F6F8F1F6F8F0F5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EEF4F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5 -F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F7EEF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8F0F6F8F1F6F8F1F6F8F1F6F9F2F7F9F2F7F9F2F7F9F3F7F9F2F7F9F3F7F9F3F7 -F9F3F7F9F5F8F9F4F8FAF5F8FAF4F8FAF5F8FAF5F8FAF5F8FAF6F9FAF6F9FAF6F9FAF6F9FAF6F9 -FAF6F9FAF6F99089B0FAF6F9FAF6F9FAF6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9 -F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F6F2F7F6F2F7 -F5F1F6F5F1F6F5F1F6F5F1F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5 -F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F3EEF5F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F1F6F5F1F6F4F1F6F5F1F6F6F2F7F6F2F7F7F3F7F7F3F7F6F2F7F7F4F8 -F7F4F8F8F4F8F8F5F9F8F5F9F8F5F9F8F5F9F9F6F9F9F6F9F9F6F9F9F7FAF9F8FAF9F8FAF9F8FA -FAF9FBFAF9FBFAF9FB908BB1FAF9FBFAF9FBFAFAFBFAFAFBFAFAFBFBFAFBFBFAFBFAFAFBFAFAFB -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAF9FBFAF9FBFAF9FBFAFAFCFBFBFCFAFBFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCF9FAFBF9FAFBF9F9FBF9F9FBF9F9FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9F9FB -F9F9FBF9F9FBF9FAFBF9FAFBFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDC5BDD5686695FEFDFDFDFDFDFEFDFDFEFDFDFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC938CB2 -928BB1FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFF9FAFFF8FAFFF8FAFFF8FAFFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF6F9FEF6F8FEF6F8FEF6F8FEF5F8FEF5F8FEF5F8FEF4F7FEF4F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6 -FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF2F6FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF5F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF7F9FEF7F9 -FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF8F9FEF8F9FEF8F9FEF8F9FEF8F9FEF8F9 -918AB0FDF7F9FDF7F9FDF7F9FDF7F9FCF7F9FCF7F9FCF7F9FCF6F9FCF6F9FCF6F9FBF6F8FBF6F8 -FBF5F8FBF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8F9F3F7F9F3F7F9F3F7F9F2F7F9F2F7 -F9F2F7F9F2F7F8F2F6F8F2F6F8F1F6F8F1F6F8F1F6F8F1F6F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5 -F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8EFF5F8F1F6F8F1F6F8F1F6F8F0F5F8F0F5F8F1F6 -F9F2F7F9F2F7F9F2F7F9F3F7F9F3F7F9F4F8FAF4F8FAF4F8FAF4F8F9F4F8F9F4F8F9F4F8F9F5F8 -FAF5F8FBF6F8FBF5F8FBF6F8FAF6F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7FAFBF7FAFBF7FAFBF7FA -908AB0FAF7F9FAF7F9FAF7F9FAF7F9FAF7F9FAF7F9FAF7F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F8F5F9F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F7F3F7F7F3F7F7F3F7F7F3F7 -F6F2F7F6F1F7F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F4F0F6F4F0F6F4F0F6F4F0F6 -F3EFF6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6 -F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F4F0F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F2F7F6F2F7F6F2F7F6F2F7F7F3F7F7F3F7F8F4F8F8F5F9F8F4F8F7F4F8F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F9F7F9F9F7F9F9F6F9F9F8FAF9F8FAFAF8FAFAF8FAFAF8FAFAF9FBFAF9FBFAF9FB -FBFAFB908BB1FAF9FBFBFAFBFBFAFBFBFAFBFBFBFCFBFBFCFBFBFCFBFAFBFBFAFBFBFBFCFBFBFC -FBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCF9FAFBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FB -F8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF8F8FBF9F9FBF9F9FBF9F9FB -F9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBF9F9FBFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFC -FCFBFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FEFDFDFEFDFDC5BDD5686695FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC938BB1938BB1FFFCFC -FFFCFCFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF7F9FFF7F9FFF7F9FFF7F9FFF6F9FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF4F7FEF4F7FEF3F7FEF4F7FEF4F7FEF4F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7FEF3F7 -FEF3F7FEF3F7FEF4F7FEF4F7FEF4F7FEF3F7FEF4F7FEF4F7FEF5F8FEF5F8FEF5F8FEF5F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FFF6F9FFF7F9FFF7F9FFF7F9FEF7F9FEF7F9FEF7F9FEF7F9FEF8F9 -FEF8F9FEF8F9FEF8F9FEF8F9FEF8F9FEF9FAFEF9FAFEF9FAFEF9FAFEF9FAFEF9FA928AB1FDF8FA -FDF7F9FDF7F9FDF8FAFDF9FAFDF8FAFCF7F9FCF7F9FCF7F9FCF7F9FCF7F9FCF6F9FBF6F8FBF6F8 -FBF5F8FBF4F7FBF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8F9F4F8F9F3F7F9F3F7 -F9F3F7F9F3F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6 -F8F1F6F8F1F6F8F1F6F8F1F6F8F1F6F9F2F7F9F2F7F9F2F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -FBF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF5F8FAF5F8FBF6F8FBF6F8FBF6F8FBF7F9 -FBF7F9FBF7F9FCF7F9FBF7F9FBF7FAFBF7FAFBF7FAFBF7FAFBF7FAFBF7FAFBF7FA918AB1FBF8FA -FBF8FAFBF8FAFBF8FAFBF8FAFBF8FAFBF7FAFAF7F9FAF7F9FAF7F9FAF7F9F9F6F9F9F6F9F9F6F9 -F9F6F9F8F4F8F8F5F9F8F5F9F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F8F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6F5F1F6 -F5F1F6F5F1F6F5F1F6F6F1F7F6F1F7F6F2F7F6F2F7F6F2F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F5F9F8F5F9F8F5F9F9F6F9F8F5F9F9F7F9F9F7F9F9F7F9 -F9F7F9FAF8FAFBF8FAFAF8FAFAF8FAFAF8FAFBF8FAFBF9FBFBF9FBFBF9FBFBFAFBFBFAFB918BB1 -FBFAFBFBFAFBFCFBFBFCFBFCFCFBFCFCFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -C5BDD5686695FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFC938BB1938BB1FFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7 -FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF4F7FEF5F8FEF5F8FEF5F8FEF5F8FEF5F8 -FEF5F8FEF5F8FEF5F8FEF5F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFEF8F9FEF7F9FEF7F9FEF8F9FFF8FAFFF9FAFFF9FA -FFF9FAFEF9FAFEF9FAFEF9FAFEF9FBFEF9FBFEF9FBFEF9FBFEF9FB928AB1FEF9FBFDF9FAFDF9FA -FDF9FAFDF9FAFDF8FAFCF8FAFDF8FAFDF8FAFCF8FAFCF8FAFCF7F9FBF7F9FBF6F8FBF6F8FBF6F8 -FBF7F9FBF6F8FBF6F8FBF6F8FAF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7 -F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F2F7F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7 -F9F3F7F9F3F7F9F3F7F9F3F7F9F3F7FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FBF6F8FBF6F8FBF6F8FBF7F9FBF7F9FBF6F8FBF6F8FBF7F9FBF7F9FBF7FAFCF8FA -FCF8FAFBF7FAFBF7FAFBF7FAFBF7FAFCF9FAFCF9FAFCF9FAFCF9FA918AB1FCF9FAFBF8FAFCF9FA -FCF9FAFBF8FAFBF8FAFBF8FAFBF8FAFAF8FAFAF8FAFAF8FAFAF7F9FAF7F9FAF7F9F9F7F9F9F6F9 -F9F7F9F9F7F9F9F6F9F9F6F9F9F6F9F8F5F9F8F5F9F8F5F9F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F3F7F6F2F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7 -F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F6F2F7F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7 -F7F3F7F7F3F7F7F3F7F7F3F7F7F3F7F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F5F9 -F8F5F9F8F5F9F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF9FBFBF9FBFBF9FBFBF9FBFCFAFBFCFBFBFCFBFBFBFAFBFCFBFB918BB1FCFBFBFCFBFC -FCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFCFBFCFCFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFC -FAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFAFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDC5BDD5686695 -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFDFC938BB1938BB1FFFCFCFFFCFCFFFCFCFFFDFCFFFCFC -FFFCFCFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF6F9 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8FEF6F8 -FEF6F8FFF6F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFEF9FAFEF8F9FEF8F9FFF9FAFFF9FAFFF9FAFFFAFBFFFAFBFFFAFB -FEF9FBFEF9FBFEF9FBFEF9FBFEFAFBFEFAFBFEFAFB928AB1FEFAFBFEFAFBFDFAFBFDF9FAFDF8FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF8FAFCF8FAFCF8FAFCF7F9FCF7F9FCF7F9FCF8FAFBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF6F8FBF6F8FBF6F8FAF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8F9F4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF5F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FBF6F8FBF6F8FBF6F8FBF6F8FBF7F9 -FBF7FAFBF7F9FBF7F9FBF7F9FCF8FAFCF8FAFBF7F9FBF7F9FCF8FAFCF8FAFCF9FAFCF9FAFCF9FA -FCF9FAFCF9FAFCF9FAFCF9FAFDF9FAFDFAFBFDFAFB928AB1FCFAFBFCFAFBFCFAFBFCFAFBFCF9FA -FCF9FAFBF9FBFBF9FBFBF9FBFBF8FAFAF8FAFAF8FAFAF8FAFAF8FAFBF7FAFAF8FAFAF8FAF9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8F8F4F8 -F8F4F8F8F4F8F8F4F8F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F7F9F9F7F9F9F7F9F9F6F9FAF7F9FBF8FAFAF8FAFAF8FAFAF9FBFAF9FBFAF8FAFAF8FAFBF9FB -FBF9FBFBF9FBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFCFCFBFB918BB1FDFCFCFDFCFCFCFBFBFCFBFC -FCFBFBFCFBFCFCFBFCFCFBFCFDFCFCFCFBFCFCFBFCFCFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFC -FAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDC6BED5686695FFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFC938CB2938BB1FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF9FA -FFF9FAFFF9FAFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFEFAFB -FEF9FBFEFAFBFEFAFBFEFAFBFEFBFC938BB1FEFAFBFEFAFBFEFAFBFEFAFBFEFAFBFEFAFBFEFAFB -FDFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFCF8FAFCF8FAFCF8FAFBF7FA -FBF7F9FBF7F9FBF7F9FCF7F9FBF7F9FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8 -FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FAF4F8FCF6F9 -FCF6F9FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF7F9FBF7F9FBF7F9FBF7F9FBF7FAFCF8FA -FCF8FAFDF8FAFDF9FAFDF9FAFDF9FAFCF9FAFCF9FAFCF9FAFCF9FAFCF9FAFDFAFBFDFAFBFDF9FA -FDFAFBFCFAFBFDFAFBFDFAFBFDFAFB928BB1FDFBFBFCFAFBFCFAFBFCFAFBFCFAFBFDFAFBFCFAFB -FCFAFBFBF9FBFBF9FBFAF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFAF9FBFAF8FAFAF8FAFAF8FA -FAF7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9F8F5F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF8FA -FAF8FAFAF8FAFAF8FAFBF9FBFBF9FBFAF9FBFBF9FBFBF9FBFBF9FBFCFAFBFBFAFBFCFBFBFCFBFB -FCFBFBFCFBFBFCFBFCFCFBFCFCFBFCFDFCFC928CB2FDFCFCFDFCFCFDFCFCFDFCFCFCFBFCFDFDFD -FDFDFDFDFDFDFDFCFCFDFCFCFDFBFBFCFBFCFCFBFCFCFCFCFDFDFDFDFDFDFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFC938CB2938CB2FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9 -FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF7F9FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFFAFBFFFAFBFFFAFB -FFFAFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFEFAFBFEFAFB -FEFAFBFFFCFCFFFCFC938CB2FFFCFCFFFCFCFEFAFBFEFAFBFEFBFCFEFBFCFEFAFBFEFAFBFEFAFB -FEFAFBFEF9FBFDF9FAFDFAFBFDFAFBFDFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF8FAFCF8FAFCF8FA -FCF8FAFCF7F9FBF7F9FBF7F9FCF7F9FBF7F9FBF7F9FBF7F9FAF6F9FBF7F9FBF7F9FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF7F9FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8 -FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF6F8FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FCF8FAFCF9FAFCF8FAFCF8FAFCF8FAFDF9FAFDF9FAFDF9FA -FDFAFBFDFAFBFDFAFBFDF9FAFCF9FAFCF9FAFDFAFBFDFAFBFDF9FAFDFAFBFDFBFBFDFBFBFDFAFB -FDFAFBFDFBFBFDFCFC928BB1FDFBFBFDFBFBFCFAFBFCFAFBFDFBFBFDFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAF9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F6F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9 -F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F6F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFBF9FBFCFAFB -FBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFBF9FBFBF9FBFCFAFBFCFBFBFCFBFBFDFBFBFDFCFCFDFCFC -FCFBFCFCFBFCFCFBFCFDFCFC928CB2FDFCFCFDFCFCFDFCFCFDFCFCFEFDFDFEFDFDFDFDFDFDFDFD -FDFDFDFDFCFCFCFBFCFCFBFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFAFBFCFAFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFC -FBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -938CB2938CB2FFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FA -FFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF8FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFC938BB1FFFCFCFFFCFCFFFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFAFBFEFAFBFEFAFBFEFAFB -FEFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDF9FAFDF9FAFDF9FAFDF9FAFEF9FBFDF9FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFBF7FAFBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FCF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9 -FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7F9FBF7FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFDF9FAFDF9FAFDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFB928BB1FDFBFBFDFBFBFCFBFBFDFBFBFDFBFBFDFBFBFDFAFBFDFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FAF9FBFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAF9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9 -F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9F9F7F9FAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFDFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFBFBFCFBFBFCFBFBFCFBFBFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFC928CB2FDFCFCFDFCFCFDFCFCFEFCFCFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFEFDFFFEFD -FFFEFDFFFEFDFFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC938CB2938CB2 -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFBFBFFFCFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FA -FFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFF9FAFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC938BB1 -FFFBFBFFFCFCFFFCFCFFFCFCFEFBFCFEFBFCFEFAFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFDFAFBFDFAFBFDFAFBFDFAFBFEFAFBFDFAFBFDFAFBFDFBFBFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FA -FCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFCF8FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFBFBFEFBFCFEFBFCFEFBFC -FEFBFCFEFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFCFCFEFCFCFEFCFCFEFCFCFDFBFB928BB1 -FDFAFBFDFBFBFEFCFCFEFCFCFEFDFDFEFCFCFEFBFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFBFBFCFAFBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FA -FAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFAF8FAFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFDFAFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFDFCFCFDFCFC -928CB2FDFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC -FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDC6BED5686695FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938CB2938CB2FFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC938BB1FFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFDFBFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFEFAFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFDFBFBFDFBFBFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC938CB2FEFCFCFEFCFC -FEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFBFBFDFBFBFDFBFBFDFBFBFCFBFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFC928CB2FEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFD -FDFEFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDC6BED5 -696796FFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFDFCFFFFFEFFFDFBFFFEFDFFFEFD938CB2938CB2FFFDFCFFFDFCFFFDFBFFFEFD -FFFCFCFFFEFDFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFBFFFAFB -FFFAFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFEFBFCFFFDFCFFFDFC938CB2FFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFCFCFFFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFAFBFEFAFBFEFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FAFDF9FA -FDF9FAFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFFFDFCFFFDFC -FEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFFFDFCFFFDFC938CB2FFFDFCFEFCFCFEFCFCFEFCFC -FEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFBFBFDFBFBFDFAFBFDFAFBFDFBFBFDFBFBFDFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FBFBF9FB -FBF9FBFBF9FBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFDFAFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FEFDFDFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFCFCFEFDFDFFFEFD938CB2FFFEFDFEFDFDFEFDFD -FEFDFDFEFDFDFDFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFEFDFFFFFEC6BFD6686695FFFFFD -FEFEFDFFFFFEFEFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFDFC -FFFEFCFFFDFCFFFEFDFFFEFDFFFEFC948CB2948CB2FFFEFCFFFEFDFFFDFCFFFCFCFFFDFCFFFCFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFBFFFBFB -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFC938CB2FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFBFDFAFB -FDFBFBFDFBFBFDFBFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFCFC -FEFCFCFEFCFCFEFCFCFFFDFCFFFDFCFFFDFC938CB2FFFDFCFFFDFCFFFDFCFEFCFCFEFCFCFEFCFC -FEFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFDFDFDFDFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFBFCFAFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFCFCFEFCFCFEFCFCFFFDFCFFFEFDFFFEFDFFFEFD938CB2FFFEFDFFFEFDFFFEFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFD -FDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFEFDC6BED5696796FFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFEFCFFFEFDFFFDFCFFFDFCFFFFFEFFFDFCFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFBFBFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFC938CB2FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFCFCFEFCFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFDFBFBFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFC938CB2FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFCFBFCFDFCFCFDFCFCFDFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFAFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFDFC -FFFDFCFFFEFDFFFEFDFFFEFDFFFEFD938CB2FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFCFFFFFEFEFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFEFDFFFFFE -FFFEFDFFFEFDFFFEFDFFFDFCFFFEFDFFFEFDFFFEFDFFFEFCFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFC938CB2FFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFEFCFCFFFDFCFFFDFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFC938CB2FFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFBFDFBFB -FDFBFBFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFD938CB2FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFEFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFDFCFFFEFDFFFEFDFFFEFDFFFEFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -938CB2FFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFCFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -938CB2FFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFCFCFEFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFCFCFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFD938CB2FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFCFEFEFDFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFDFC -FFFFFEFFFEFCFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFC -FFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFCFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC938CB2FFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFEFCFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFC -FEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFBFCFEFCFCFEFCFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938CB2FFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFC -FDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFDFCFCFEFCFCFEFCFCFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938CB2 -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFEFDFFFEFDFFFEFDFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE938CB2FFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938DB2FFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD938CB2FFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFCFFFDFC -FFFDFCFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFD -FEFDFDFEFDFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE928CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB3FFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938DB3FFFFFDFFFEFDFFFEFDFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE938DB3FFFFFEFDFDFCFFFEFCFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEACA4C5FFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEACA4C5FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEADA5C6FFFEFDFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFEFDFEFEFDFFFEFDFEFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFEFDFFFDFCFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFEFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEC9C9C9F3F1F0FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7E5E3E3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFECACAC9F3F1F0FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFECACAC9828383B1B2B1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7676867D7D6D6FFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEE4E2E2181717E5E3E3FFFFFE676867B2B2B2FFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867B2B2B2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDB2B2B2656666FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE5E3E38E8F8F8E8F8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867B2B2B2FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE3B3B3AB2B2B2FFFFFE8E8F8F8E8F8EFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8E8E8F8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED8D7D7676867D7D6D6FFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFECACAC9828383B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED7D6D6686969D7D6D6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE5E3E3191818E4E2E2FFFFFE676767B2B2B2FFFFFEFFFFFDFFFFFEFFFEFD -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD676867B2B3B3FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEB2B3B3676867FFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867B2B2B2FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFECBCBCA181717676867CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -A6A7A63B3B3AFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEF3F1F02828283B3B3AB2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -D7D6D6181717E5E3E3FFFFFE676867686969FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717686969CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEC9C9C9181717CACAC9FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEA6A7A63B3B3AFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9A9B9B2A2929FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE5152528E8F8F -FFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFE191818999A9AFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -CACAC9191818D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE8E8F8F515252 -FFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFE9A9B9B282828FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFECACAC9181717C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE505050 -8F9090FFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9B9C9B656666 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFECACAC9181717CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3181717D6D6D5FFFFFEFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -1817179B9C9BFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFECACAC9181717 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3A3A39A6A7A6FFFFFEFFFFFE -676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -656666676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFECACAC9181717CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B -676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFECACAC9181717CBCBCAFFFFFEFFFFFEFFFFFEFFFEFDE4E2E21A1919D6D6D5FFFFFE -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFE1918189A9B9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE8F9090B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B686969FFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9 -191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFEA6A7A63B3B3AFFFFFEFFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE999A9A181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFED7D6D6181717E5E4E4FFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFECACAC9191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFE9A9B9B676867FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -CACAC9191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFEA7A7A73B3B3AFFFFFEFFFFFEFFFEFD181717 -9A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE181717 -9A9B9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE191818999A9AFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD6768671817171817171817179B9C9BFFFFFEFFFFFE -BEBEBE3B3B3A1817173B3B3A9A9B9BFFFFFEFFFFFEFFFFFEC9C9C91817178283822A2929181717 -A6A7A6FFFFFE3939388F9090FFFFFEFFFFFEFFFFFE515252676867FFFEFDFFFFFEFFFFFE828383 -676867FFFFFEFFFFFED7D6D6676867181717181717656666D8D7D7FFFFFEFFFEFDFFFFFE181717 -7676763B3B3A191818757676FFFFFEFFFEFDD7D6D65152521817173B3B3A8E8F8F181717C9C9C9 -FFFFFEFFFFFEFFFFFEFFFFFE5152528F9090FEFDFCFFFFFEFFFFFE181717757676535353181717 -3C3C3CB2B2B2FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F3B3B3A1918182828289B9C9BFFFFFEFFFFFE -FFFFFEFFFFFE8E8F8E282828191818676867D7D6D6FFFFFEFFFFFE1918189A9B9BFFFFFEFFFEFD -828383282828D7D6D6E5E3E3181717BEBFBEFFFFFEFFFEFDF3F1F01817179A9B9BFFFFFEFFFFFE -FFFFFE3C3C3C999A9AFFFFFEFFFFFEB2B2B2515252181717191818828382F3F1F0FFFFFEFFFFFE -C9C9C9181717828383282828181717A7A7A7FFFFFEFFFFFEB1B2B13C3C3C181717676867767676 -181717FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717191818181717676867FFFFFEFFFFFE -D7D6D66566661817172A2929828383F3F1F0FFFFFEFFFFFEFFFFFE1918187576763C3C3C181717 -767777FFFFFE838484515252FFFEFDFFFFFEFFFFFE8E8F8F181717FFFFFEFFFFFEFFFEFDB3B4B4 -181717FFFEFDFFFFFEF3F1F07677772727271918183A3A39BEBEBEFFFFFEFFFEFDFFFFFE676867 -5152526768671918183A3A39F3F1F0FFFFFEF3F0F07676761817172828289B9C9B1817179A9B9B -FFFFFEFFFFFEFFFFFEFFFFFE8E8F8E535353FFFEFDFFFFFEFFFFFE676867535353757676181717 -2828288F9090FFFEFDFFFFFEFFFFFEFFFEFDD6D6D5676867191818181717686969D6D6D5FFFFFE -FFFFFEFFFFFEB2B3B33A3A391817173B3B3ABEBEBEFFFEFDFFFFFE686969676867FFFFFEFFFFFE -B2B2B2191818B2B2B2FFFFFE3939388F9090FFFFFEFFFFFEFFFFFE515252676867FFFEFDFFFFFE -FFFFFE828383676867FFFFFEFFFFFED7D6D6676867181717181717656666D8D7D7FFFFFEFFFEFD -FFFFFE1817177676763B3B3A191818757676FFFFFEFFFEFDD7D6D65152521817173B3B3A8E8F8F -181717C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6869691817171817171817179A9B9BFFFFFE -FFFFFEBEBEBE3C3C3C1817173A3A399B9C9BFFFFFEFFFFFEFFFFFECACAC9181717828383282828 -181717A6A7A6FFFFFE3B3B3A8E8F8FFFFFFEFFFFFEFFFFFE515252676867FFFFFEFFFEFDFFFFFE -828383656666FFFFFEFFFFFED7D6D6676867181717181717676867D7D6D6FFFFFEFFFEFDFFFFFE -1817177677773B3B3A181717767676FFFEFDFFFFFED7D6D65050501817173B3B3A8E8F8F181717 -CACAC9FFFFFEFFFFFEFFFFFEFFFFFE5152528E8F8FFFFFFEFFFFFEFFFFFE181717767676535353 -1918183B3B3AB2B2B2FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F3C3C3C1817172828289A9B9BFFFFFE -FFFFFEFFFEFDF3F1F0767777181717181717828383F4F2F1FFFEFDFFFFFE1817179A9B9BFFFEFD -FFFFFE828383282828D7D6D6E4E2E2181717BEBFBEFFFEFDFFFFFEF3F1F01817179B9C9BFFFEFD -FFFFFEFFFFFE3A3A399A9B9BFFFFFEFFFFFEB2B2B2515252181717181717828382F3F1F0FFFFFE -FFFEFDCACAC9181717828382282828181717A7A7A7FFFEFDFFFFFEB2B2B23C3C3C181717676867 -757676191818FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE181717181717181717191818C9C9C9FFFFFEFFFFFE9B9C9B282828181717515252 -BEBEBEFFFEFDFFFFFE838484515252FFFEFDFFFFFEFFFFFE8E8F8F181717FFFFFEFFFFFEFFFEFD -B3B4B4181717FFFEFDFFFFFEF3F1F07677772727271918183A3A39BEBEBEFFFFFEFFFEFDFFFFFE -6768675152526768671918183A3A39F3F1F0FFFFFEF3F0F07676761817172828289A9B9B181717 -9A9B9BFFFFFEFFFFFE9A9B9B2828281817173B3B3A999A9AFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7D6D6828383505050CBCBCAE5E3E3FFFEFDCACAC9181717838484 -C9C9C99B9C9B1817179A9B9BFFFFFEFFFFFECBCBCA181717535353BDBDBDBEBEBEE4E2E2FFFFFE -8E8F8F515252FFFFFEFFFFFEE4E2E2181717181717FFFFFEFFFFFEFFFFFE2A2929A6A7A6FFFFFE -FFFFFEE5E3E38E8F8FCACAC9BEBEBE2A2929757676FFFFFEFFFFFEFFFEFD1817172A2929B2B2B2 -C9C9C9CBCBCAFFFFFEF4F2F1282828686969CBCBCAB1B2B1282828181717CACAC9FFFFFEFFFFFE -FFFEFDE5E4E4181717D7D6D6FFFFFEFEFDFCFFFFFE191818282828B2B2B2CACAC9767676181717 -CACAC9FFFFFEFFFFFEFFFFFEA5A6A6B2B2B2C9C9C9828383181717D8D7D7FFFFFEFFFFFE8E8F8F -191818A5A6A6CACAC9838484D7D6D6FFFFFEFFFFFE1817179A9B9BFFFFFE828383282828D7D6D6 -FFFFFEFFFFFE5353538E8F8EFFFFFEFFFFFEB1B2B1191818656666FFFFFEFFFFFED7D6D6181717 -D6D6D5FFFFFEFFFFFEBEBEBEA6A7A6CBCBCAA5A6A6191818A6A7A6FFFFFEFFFEFDCACAC9181717 -515252BEBEBEBEBEBEE4E2E2FFFFFEC9C9C91817178E8F8FCACAC99A9B9B181717181717FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEE4E2E2A6A7A6181717CACAC9D7D6D6FFFFFEF3F0F0282828515252 -CBCBCAB1B2B12A2929676867FFFFFEFFFFFEFFFFFE1817172A2929B2B2B2CACAC9CACAC9FFFFFE -BDBDBD181717F3F1F0FFFFFEFFFFFE3A3A39181717CACAC9FFFFFEFFFFFE757676767676FFFFFE -FFFFFEFFFFFE8E8F8FBEBEBECACAC9515252282828FFFEFDFFFFFEFFFFFE6768671817179A9B9B -C9C9C9BEBEBEFFFFFEFFFFFE6768673B3B3ABEBEBEBEBEBE5050501918189A9B9BFFFEFDFFFFFE -FFFFFEFFFFFE3C3C3CA6A7A6FFFFFEFFFFFEFFFFFE6768671918189A9B9BCACAC99A9B9B181717 -9A9B9BFFFEFDFFFFFEFFFFFEE5E3E38E8F8FCACAC9BDBDBD282828767676FFFFFEFFFFFEBEBEBE -181717828383CACAC99A9B9BB2B2B2FFFFFEFFFFFE676867676867FFFFFEB2B3B3181717B2B2B2 -FFFFFEFFFFFE8E8F8F515252FFFFFEFFFFFEE4E2E2181717181717FFFFFEFFFFFEFFFFFE2A2929 -A6A7A6FFFFFEFFFFFEE5E3E38E8F8FCACAC9BEBEBE2A2929757676FFFFFEFFFFFEFFFEFD181717 -2A2929B2B2B2C9C9C9CBCBCAFFFFFEF4F2F1282828686969CBCBCAB1B2B1282828181717CACAC9 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6828383515252CACAC9E5E3E3FFFEFDCACAC9191818 -828382CBCBCA9A9B9B181717999A9AFFFFFEFFFFFECBCBCA181717515252BEBEBEBEBEBEE5E4E4 -FEFDFC8E8F8F505050FFFFFEFFFFFEE5E4E4181717181717FFFEFDFFFFFEFFFFFE272727A6A7A6 -FFFFFEFFFFFEE5E3E38E8F8FCACAC9BEBFBE272727767676FFFEFDFFFFFEFFFEFD181717282828 -B2B2B2CBCBCAC9C9C9FFFFFEF3F0F0282828676867CACAC9B2B2B22A2929181717CBCBCAFFFFFE -FFFFFEFFFFFEE5E3E3181717D7D6D6FFFFFEFFFEFDFFFFFE181717282828B2B2B2C9C9C9767777 -181717CBCBCAFFFFFEFFFFFEFFFFFEA6A7A6B2B2B2C9C9C9828383181717D8D7D7FFFEFDFFFFFE -515252272727BDBDBDBEBEBE828383F3F1F0FFFFFEFFFEFD1817179A9B9BFFFFFE8283822A2929 -D7D6D6FFFFFEFFFFFE5152528E8F8EFFFFFEFFFFFEB2B2B2181717676867FFFFFEFFFFFED7D6D6 -181717D7D6D6FFFFFEFFFFFEBEBFBEA6A7A6CACAC9A5A6A6191818A5A6A6FFFFFEFFFFFECACAC9 -181717515252BEBFBEBEBEBEE4E2E2FFFFFEC9C9C91817178E8F8ECBCBCA9A9B9B191818181717 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -CACAC9515252828383C9C9C9F4F2F1FFFFFE9A9B9B181717A7A7A7CACAC9757676191818CACAC9 -FFFFFEBDBDBD181717F3F1F0FFFFFEFFFFFE3A3A39181717CACAC9FFFFFEFFFFFE757676767676 -FFFFFEFFFFFEFFFFFE8E8F8FBEBEBECACAC9515252282828FFFEFDFFFFFEFFFFFE676867181717 -9A9B9BC9C9C9BEBEBEFFFFFEFFFFFE6768673B3B3ABEBEBEBEBEBE5353531817179A9B9BFFFEFD -B2B2B21817179B9C9BCACAC9A5A6A69A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE999A9A676867FFFFFEFFFEFDFFFFFE767676515252FFFFFEFFFFFEFFFEFD -828383282828FFFFFEFFFFFECACAC9191818C8C8C8FFFFFEFFFFFEFFFEFDFFFFFECACAC9181717 -E5E4E4FFFEFDB2B3B3282828282828BEBEBEFFFFFED7D6D6181717E5E3E3FFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFE181717999A9AFFFFFEFFFFFEFFFFFE -FFFEFDA6A7A6181717F3F1F0FFFFFEFFFFFEBEBEBE181717CACAC9FFFFFEFFFFFEFFFFFEB2B2B2 -3B3B3AFFFEFDFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE3B3B3A767676FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD191818999A9AFFFFFEFFFFFE2727278E8F8FFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9B8E8F8F272727D7D6D6FFFFFEFFFFFEFFFFFE -9A9B9B3B3B3AFFFFFEFFFFFE8283833B3B3A191818F3F1F0FFFFFEA7A7A73B3B3AFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEC9C9C9181717CACAC9FFFFFE -FFFFFEFFFFFEFFFFFE767676505050FFFFFEFFFFFEFFFFFE8E8F8F181717FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFECACAC9191818FFFFFEFFFFFEFFFFFEA6A7A6181717F4F2F1FFFEFDFFFFFE -B2B2B2181717D7D6D6FFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE181717 -B1B2B1FFFFFEE4E2E21918183B3B3A8E8F8FFFFEFDFFFFFE282828B2B2B2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717CBCBCAFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFEFD -FFFFFED6D6D5181717BEBEBEFFFFFEFFFFFEF4F2F11817179A9B9BFFFFFEFFFEFDFFFFFEE5E3E3 -181717E4E2E2FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFE828383282828FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFE767777505050FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867BEBFBE181717B2B3B3FFFFFEFFFFFEFFFFFE -CACAC9181717E5E4E4FFFEFDB2B3B3282828282828BEBEBEFFFFFED7D6D6181717E5E3E3FFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFE181717999A9AFFFFFE -FFFFFEFFFFFEFFFEFDA6A7A6181717F3F1F0FFFFFEFFFFFEBEBEBE181717CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE9A9B9B686969FFFFFEFFFFFEFFFFFE757676515252FFFFFEFFFEFD -FFFFFE828383282828FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFEFDFFFFFEC9C9C9 -181717E5E3E3FFFFFEB1B2B1282828282828BEBEBEFFFFFED7D6D6191818E4E2E2FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFEFD -FFFFFEFFFEFDA6A7A6181717F3F1F0FFFFFEFFFFFEBEBEBE181717CACAC9FFFFFEFFFFFEFFFFFE -B2B2B23B3B3AFFFFFEFFFEFDFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFFFE3B3B3A767777 -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFED7D6D6181717BEBEBE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9B8E8F8F282828D6D6D5FFFFFEFFFFFE -FFFFFE9A9B9B3A3A39FFFFFEFFFEFD8283833B3B3A181717F3F1F0FFFFFEA6A7A63C3C3CFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD656666686969FFFFFEFFFFFECBCBCA181717CACAC9 -FFFFFEFFFEFDFFFFFEFEFDFC767777505050FFFFFEFFFFFEFFFFFE8F9090181717FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE656666 -9B9C9BFFFFFEFFFFFEFFFFFE2828288F9090FFFEFDFFFFFEFFFFFE3B3B3A767676FFFFFEFFFFFE -181717B1B2B1FFFFFEE4E2E21918183B3B3A8E8F8FFFFEFDFFFFFE282828B2B2B2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CBCBCAFFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFEFDFFFFFED6D6D5181717BEBEBEFFFFFEFFFFFEF3F0F01918189B9C9BFFFFFE9A9B9B181717 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD9B9C9B676867FFFEFDFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFEFDBEBFBE181717 -E5E3E3FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE282828B2B2B2FFFFFE -8283838384847676768F9090FFFFFEA7A7A73B3B3AFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0CACAC9 -CACAC99A9B9B181717FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE757676828383FFFFFE -FFFEFDFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE7676763B3B3AFFFFFEFFFFFEFFFFFE -FFFFFED7D6D6CACAC9E5E3E31817179A9B9BFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE181717535353181717515252FFFFFEFFFFFEFFFEFDFFFFFED7D6D6181717 -E5E3E3FFFEFD3C3C3CB2B3B3282828BEBEBEFFFFFE767676828383FFFFFEFFFFFEFFFFFEFFFFFE -E5E3E3CACAC9D7D6D6676867676867FFFEFDFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFECBCBCA181717FFFFFEFFFEFDFFFFFE656666676867FFFFFEFFFFFEFFFFFEF3F1F0181717 -B2B2B2FFFFFEFFFEFD1817179A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE767676828383FFFEFD -B2B3B33B3B3AA6A7A6515252FFFFFED7D6D6181717E5E3E3FFFFFEFFFFFEFFFFFEFFFFFECACAC9 -CACAC9BEBEBE191818C9C9C9FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFEFD9A9B9B -181717FFFFFEFFFEFDFFFFFEFFFEFD191818999A9AFFFFFEFFFFFEFFFFFEA6A7A63B3B3AFFFFFE -FFFFFEFFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFFFEA6A7A6181717E5E3E3FFFFFEFFFFFE -FFFFFEF3F1F0CACAC9C9C9C99A9B9B181717FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE6768673B3B3A282828282828E5E3E3FFFFFEFFFFFEFFFFFEFFFFFE282828 -B2B2B2FFFFFE8283838384847676768F9090FFFFFEA7A7A73B3B3AFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F0CACAC9CACAC99A9B9B181717FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFEFDBEBEBE -181717E4E2E2FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD282828B2B2B2 -FFFFFE8384848283827676768E8F8FFFFFFEA6A7A63B3B3AFFFFFEFFFFFEFFFFFEFFFFFEF3F0F0 -CBCBCACACAC99A9B9B181717FFFEFDFFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFEFFFFFE -676867686969FFFFFEFFFFFEFFFFFECACAC9191818C9C9C9FFFFFEFFFFFEFFFFFE767676828383 -FFFEFDFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE7676763B3B3AFFFFFEFFFFFE -FFFFFEFFFFFED6D6D5CACAC9E4E2E21817179A9B9BFFFFFE999A9A181717FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE181717515252181717515252FFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -191818E4E2E2FFFFFE3A3A39B2B2B2282828BEBEBEFFFFFE767676828382FFFFFEFFFFFEFFFFFE -FFFFFEE5E3E3C9C9C9D7D6D6676867676867FFFFFEFFFFFECBCBCA181717CACAC9FFFEFDFFFFFE -FFFEFDFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFE999A9A191818FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFE -FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE8F90903B3B3AFFFFFEFFFFFE767676828383 -FFFEFDB2B3B33B3B3AA6A7A6515252FFFFFED7D6D6181717E5E3E3FFFFFEFFFFFEFFFFFEFFFFFE -CACAC9CACAC9BEBEBE191818C9C9C9FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFEFD -9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFED7D6D6282828686969E5E3E3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B -676867FFFFFEFFFFFEFFFFFE181717999A9AFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFE -CACAC9181717CACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE828383828383FFFFFE3A3A39B2B3B3 -B2B2B2515252FFFFFE7676768E8F8FFFFFFEFFFFFEFFFFFE8E8F8F181717181717191818181717 -181717FFFEFDFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFE -FFFEFDFFFFFECACAC9181717CACAC9FFFFFEFFFFFEF4F2F1181717BEBEBEFFFFFEFFFFFEFFFFFE -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B191818FFFEFDFFFFFED7D6D63A3A39181717 -1817171817171918189A9B9BFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE1817171817179A9B9B181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE3B3B3AB2B3B3E5E3E3 -191818E4E2E28283838E8F8FFFFEFD2A2929BEBEBEFFFFFEFFFFFEF3F0F0676867181717181717 -181717181717676867FFFFFEFFFFFECBCBCA181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFE191818 -9A9B9BFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFECACAC9 -181717FFFFFEFFFFFEFFFFFE686969676867FFFFFEFFFFFEFFFFFEFFFEFD1817179A9B9BFFFFFE -FFFFFE1918189A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEB2B2B23B3B3AFFFEFD828383828383 -E5E3E3181717F3F0F0A7A7A7515252FFFFFEFFFFFEFFFFFEB2B2B22A2929181717181717181717 -181717CACAC9FFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFE -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE5152528E8F8FFFFFFEFFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFEFDFFFFFECACAC9181717CBCBCAFFFFFEFFFFFE8E8F8F181717 -191818181717181717181717FFFFFEFFFEFD1918189A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE6768671817178283833B3B3A828383FFFFFEFFFFFEFFFFFEFFFFFE828383838484FFFEFD -3B3B3AB1B2B1B2B2B2515252FFFFFE7676768E8F8FFFFFFEFFFFFEFFFFFE8E8F8F181717181717 -191818181717181717FFFEFDFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFECACAC9191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -9A9B9B686969FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFECACAC9181717CACAC9 -FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE838484828383FFFFFE3B3B3A -B2B2B2B1B2B1515252FFFFFE7676768E8F8FFFFFFEFFFFFEFFFFFE8E8F8F181717181717181717 -181717181717FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEF3F1F0181717BEBEBEFFFFFEFFFFFE -FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B191818FFFFFEFFFFFED7D6D63B3B3A -1817171817171817171817179A9B9BFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE1817171817179A9B9B181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE3B3B3AB2B2B2 -E5E3E3191818E5E3E38283838E8F8FFFFFFE282828BEBEBEFFFFFEFFFFFEF3F1F0676867181717 -181717181717181717676867FFFFFEFFFFFECACAC9191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFEFD9A9B9B191818FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFECACAC9 -191818C9C9C9FFFFFEFFFFFEFFFFFE999A9A181717FFFFFEFFFFFEB2B2B23B3B3AFFFEFD828383 -828383E5E3E3181717F3F0F0A7A7A7515252FFFFFEFFFFFEFFFFFEB2B2B22A2929181717181717 -181717181717CACAC9FFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFFFEFFFEFD9A9B9B181717 -FFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFED7D6D66768671918188E8F8FF3F0F0 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9B9C9B676867FFFFFE -FFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFFFEBDBDBD181717E5E3E3FFFFFECACAC9181717 -CACAC9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEB2B3B33A3A39D7D6D6191818F3F1F0E5E3E3181717 -F3F0F0191818BDBDBDFFFFFEFFFFFEB2B2B2181717A6A7A6FFFFFEFFFFFE8E8F8F181717FFFFFE -FFFEFDFFFFFE1817179B9C9BFFFFFEFFFFFEFFFEFDFFFFFE676867676867FFFEFDFFFFFEFFFEFD -CACAC9191818CACAC9FFFFFEFFFFFEB2B3B3282828FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE181717 -9B9C9BFFFFFEFFFFFEFFFFFE676867505050FFFFFEFFFFFE3B3B3A535353E4E2E2FFFFFEF3F1F0 -1817179A9B9BFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE181717 -8F9090FFFFFE8E8F8F272727F4F2F1FFFEFDFFFFFEFFFFFE828382828383A7A7A7505050FFFFFE -B2B3B3515252CBCBCA181717F4F2F1FFFEFDFFFFFE838484282828CACAC9FFFEFDFFFFFE515252 -676867FFFFFEFFFFFECACAC9181717CACAC9FFFEFDFFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFE -FFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCBCBCA181717FFFFFE -FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEF4F2F1181717B2B2B2FFFFFEFFFFFE181717 -9B9C9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEE4E2E2181717E5E3E3282828BEBFBEFFFFFE3B3B3A -BEBEBE6768678E8F8FFFFFFEFFFFFEE5E4E4181717828383F4F2F1FFFFFEBDBDBD181717CACAC9 -FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEFFFFFE -FFFFFE1817179B9C9BFFFEFDFFFFFEE5E3E3191818D7D6D6FFFFFEFFFFFEFFFEFDFFFEFD676867 -676867FFFFFEFFFFFEFFFEFD9A9B9B181717F3F0F0FFFFFEB2B3B3181717A7A7A7FFFFFEFFFFFE -8E8F8F181717FFFFFEFFFFFE1817179B9C9BFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE686969 -505050FFFFFEBEBEBE181717CACAC9FFFFFEFFFEFDFFFFFEB2B2B23B3B3AD7D6D6181717F4F2F1 -E5E3E3181717F3F0F0191818BDBDBDFFFFFEFFFFFEB2B2B2181717A6A7A6FFFFFEFFFFFE8E8F8F -181717FFFFFEFFFEFDFFFFFE1817179B9C9BFFFFFEFFFFFEFFFEFDFFFFFE676867676867FFFFFE -FFFFFEFFFFFECACAC9181717CACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B656666 -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEBEBEBE181717E5E3E3FFFEFDCBCBCA -181717CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B23B3B3AD8D7D7181717F3F1F0E5E3E3 -181717F3F1F0181717BEBEBEFFFFFEFFFEFDB2B2B2181717A6A7A6FFFFFEFFFFFE8E8F8F181717 -FFFEFDFFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFEFDFFFFFE676867676867FFFEFDFFFFFE -FFFFFEC9C9C9181717CACAC9FFFFFEFFFFFEB2B2B2282828FFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFE676867505050FFFFFEFFFFFE3B3B3A515252E5E3E3FFFFFE -F3F1F01817179A9B9BFFFFFE999A9A191818FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -1817178E8F8FFFFFFE8E8F8F282828F3F1F0FFFFFEFFFFFEFFFFFE828383828383A6A7A6515252 -FFFFFEB2B2B2515252CACAC9181717F3F1F0FFFFFEFFFFFE8283832A2929C9C9C9FFFFFEFFFFFE -535353676867FFFFFEFFFFFECACAC9181717CBCBCAFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9B -FFFEFDFFFFFEFFFFFE999A9A181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE6768679A9B9BFFFFFEFFFFFECACAC9181717CBCBCA -FFFFFEFFFFFEFFFFFE8E8F8F3B3B3AFFFFFEFFFFFEE4E2E2181717E5E3E3282828BEBFBEFFFFFE -3B3B3ABEBEBE6768678E8F8FFFFFFEFFFFFEE5E4E4181717828383F4F2F1FFFFFEBDBDBD181717 -CACAC9FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFE191818999A9AFFFFFEFFFFFEFFFFFEFFFFFEBDBDBD282828535353FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE -767676515252FFFFFEFFFFFEFFFEFD838484282828FFFFFEFFFEFDCACAC9181717C9C9C9FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEF3F1F01918188E8F8F535353FFFEFDFFFFFE5152528E8F8F272727 -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFEFFFEFDA6A7A6191818F4F2F1FFFEFDFFFFFECACAC9181717 -CACAC9FFFFFEFFFFFE767676828383FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE3B3B3A828383FFFFFE -FFFFFEFFFFFE3B3B3A838484FFFFFEFFFEFD191818999A9AFFFFFEFFFFFEFFFFFE1817179B9C9B -FFFFFEFFFFFE2828288F9090FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFD1918189A9B9BFFFFFE -F3F1F02828289A9B9BFFFFFEFFFFFEFFFEFDBEBFBE3A3A397576768F9090FFFFFEF3F1F0181717 -8E8F8F767777FFFEFDFFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFEFD676867676867FFFFFE -FFFFFECBCBCA181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFE767777515252FFFFFEFFFFFEFFFFFE -999A9A191818FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFECACAC9191818FFFEFDFFFFFEFFFFFE -A6A7A6181717F3F0F0FFFFFEFFFFFEB1B2B1181717D7D6D6FFFFFEFFFFFE1817179A9B9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5152528F9090181717F3F0F0FFFFFE8E8F8E8F9090181717 -D7D6D6FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFECBCBCA181717CACAC9FFFFFEFFFFFE -686969686969FFFFFEFFFFFEFFFFFEFFFEFDD7D6D6181717BEBEBEFFFFFEFFFFFEFFFFFE191818 -999A9AFFFFFEFFFFFEA6A7A63C3C3CFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE8283833C3C3CFFFEFD -FFFFFEFFFFFE8283833B3B3AFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFEFD767777535353FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE676867686969FFFEFD -FFFFFE676867676867FFFFFEFFFFFEFFFFFEF3F1F01817178E8F8F515252FFFEFDFFFFFE515252 -8E8F8F272727FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFEFDA6A7A6191818F3F1F0FFFFFEFFFFFE -CBCBCA181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD9B9C9B686969FFFEFDFFFFFE -FFFEFD767777505050FFFFFEFFFFFEFFFFFE8283832A2929FFFFFEFFFFFEC9C9C9191818CACAC9 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F01817178E8F8E515252FFFFFEFFFFFE5152528F9090 -282828FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFE -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEA6A7A6191818F3F1F0FFFEFDFFFFFECACAC9 -181717CACAC9FFFFFEFFFFFE767777828383FFFEFDFFFFFEFFFEFDFFFFFEFFFFFE3B3B3A828383 -FFFFFEFFFFFEFFFFFE3B3B3A828383FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE191818 -9A9B9BFFFEFDD7D6D6181717BEBEBEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE1817179A9B9B -FFFFFEF3F1F02828289B9C9BFFFFFEFFFEFDFFFFFEBEBEBE3B3B3A7676768E8F8FFFFFFEF3F1F0 -1817178E8F8F767676FFFFFEFFFEFDFFFFFE676867676867FFFFFEFFFEFDFFFEFD676867686969 -FFFFFEFFFFFECACAC9191818C9C9C9FFFFFEFFFFFEFFFFFEFFFEFD767676505050FFFFFEFFFFFE -FFFEFD9B9C9B191818FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFE676867767676FFFFFEFFFFFEFFFFFE2828288E8F8FFFFEFDFFFFFE -FFFFFE3B3B3A767676FFFFFEFFFFFEFFFFFE5152528F9090181717F3F0F0FFFFFE8E8F8E8F9090 -181717D7D6D6FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFECBCBCA181717CACAC9FFFFFE -FFFFFE686969686969FFFFFEFFFFFEFFFFFEFFFEFDD7D6D6181717BEBEBEFFFFFEFFFFFEFFFFFE -1817179B9C9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEB2B2B2181717D7D6D6FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE5E3E3828383515252CACAC9FFFFFEFFFEFDCACAC9181717 -828383CACAC99A9B9B1817179B9C9BFFFFFEFFFFFEA6A7A6181717A7A7A7E5E3E3FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE676867282828999A9AFFFFFEFFFFFE8E8F8F181717767777FFFEFDFFFFFE -FFFFFEC9C9C91817178E8F8FCACAC9B2B3B3282828191818FFFFFEFFFFFED7D6D6181717828382 -D8D7D7FFFFFEFFFFFEFFFFFEE5E3E3272727828382F4F2F1E5E3E3767676181717CACAC9FFFFFE -F3F1F0181717BEBEBEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B181717A6A7A6CACAC9767676 -181717C9C9C9FFFFFEFFFFFE6768673B3B3ABDBDBDCACAC97576761918189A9B9BFFFFFEFFFFFE -9A9B9B181717A6A7A6CACAC99A9B9BA6A7A6FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEA6A7A6 -181717E5E3E3FFFFFEFFFEFDFFFFFE1817172A2929CACAC9FFFFFEFFFFFE505050181717A5A6A6 -FFFFFEFFFFFEFFFEFD9B9C9B181717B2B2B2CACAC9999A9A191818676867FFFFFEFFFEFDA6A7A6 -181717A6A7A6E5E3E3FFFFFEFFFFFEFFFEFDBEBEBE181717A6A7A6FFFFFECACAC9535353181717 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0A5A6A6181717CBCBCAF3F0F0FFFEFDF3F0F0282828 -515252C9C9C9B2B2B2282828676867FFFFFEFFFFFED7D6D6181717828383D8D7D7FFFFFEFFFEFD -FFFFFEFFFEFDFFFFFE9B9C9B282828676867FFFFFEFFFEFDBEBEBE181717282828FFFFFEFFFEFD -FFFFFEF3F1F0282828676867CBCBCABEBEBE515252181717CACAC9FFFFFEE5E3E3515252515252 -CACAC9FFFFFEFFFEFDFFFFFEFFFEFD515252505050E5E3E3F3F1F09A9B9B1817179B9C9BFFFFFE -FFFEFD5152528E8F8FFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDCACAC9181717828383C9C9C99A9B9B -1817179B9C9BFFFEFDFFFFFECACAC91817178E8F8FCACAC9B2B2B2282828191818FFFFFEFFFFFE -CACAC9181717828383CACAC9B2B2B28E8F8FF3F1F0FFFFFE676867676867FFFFFEFFFFFED6D6D5 -191818B2B2B2FFFFFEFFFEFDFFFFFE676867282828999A9AFFFFFEFFFFFE8E8F8F181717767777 -FFFEFDFFFFFEFFFFFEC9C9C91817178E8F8FCACAC9B2B3B3282828191818FFFFFEFFFFFED7D6D6 -181717828382D8D7D7FFFFFEFFFFFEFFFFFEE5E3E3272727828383F3F1F0E5E3E3757676191818 -C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEE5E3E3828383515252CACAC9FFFFFEFFFFFECACAC9 -181717828383CBCBCA9B9C9B1817179A9B9BFFFFFEFFFEFDA7A7A7191818A5A6A6E5E3E3FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFE6768672828289A9B9BFFFEFDFFFFFE8E8F8F181717767676FFFFFE -FFFFFEFFFFFEC9C9C91817178E8F8ECACAC9B2B3B3282828181717FFFFFEFFFFFED7D6D6191818 -828383D7D6D6FFFEFDFFFFFEFFFFFEE5E3E3282828828382F4F2F1E4E2E2767777181717C8C8C8 -FFFFFEF3F1F0181717BEBEBEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717A5A6A6CACAC9 -767676181717CACAC9FFFFFEFFFFFE6768673C3C3CBDBDBDCACAC97677771817179A9B9BFFFFFE -FFFFFE676867282828BEBEBECACAC9828383CACAC9FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFE -A6A7A6181717E5E3E3FFFFFEFFFFFEFFFFFE181717282828CACAC9FFFFFEFFFFFE515252181717 -A6A7A6FFFFFEFFFFFEFFFFFE9A9B9B181717B1B2B1CBCBCA9A9B9B181717676867FFFFFEFFFFFE -A7A7A7181717A7A7A7E5E3E3FFFFFEFFFFFEFFFFFEBEBEBE181717A6A7A6FFFFFECBCBCA505050 -181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE9A9B9B272727B2B3B3F3F1F0FFFFFE9B9C9B181717A6A7A6CACAC9767676181717 -CACAC9FFFFFEFFFEFDFFFFFE9B9C9B282828676867FFFFFEFFFEFDBEBEBE181717282828FFFFFE -FFFEFDFFFFFEF3F1F0282828676867CBCBCABEBEBE515252181717CACAC9FFFFFEE5E3E3515252 -515252CACAC9FFFFFEFFFEFDFFFFFEFFFEFD515252515252E5E3E3F3F1F09B9C9B1817179A9B9B -FFFEFDBEBEBE9A9B9BE5E3E3E5E3E3828383282828FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE9B9C9B181717181717181717FFFFFEFFFFFEFFFEFDBEBEBE3B3B3A181717 -3B3B3A9B9C9BFFFEFDFFFFFEFFFFFE1817171817171817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEA6A7A6181717D8D7D7FFFEFDFFFFFECACAC9181717B2B3B3FFFFFEFFFFFEFFFEFDFFFFFE -9A9B9B3B3B3A1817173C3C3C656666181717F3F0F0FFFFFE676867181717181717676867FFFFFE -FFFFFEFFFFFEFFFFFED7D6D6515252181717282828767676181717CACAC9FFFEFDB2B2B2272727 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9A9B9B282828191818505050BEBEBEFFFFFE -FFFFFEFFFFFED7D6D67676761817171817177576762727278E8F8FFFFFFEFFFFFEFFFFFE9A9B9B -2A2929181717515252CACAC9FFFFFEFFFEFD1817179A9B9BFFFFFEFFFFFEFFFFFE3B3B3A767676 -FFFFFEFFFFFEFFFEFD7676762A2929FFFFFEFFFFFEFFFFFE9A9B9B181717E5E3E3FFFFFEFFFFFE -FFFFFEF3F1F0838484282828181717515252505050535353FFFFFEFFFFFE181717181717181717 -999A9AFFFFFEFFFFFEFFFFFEFFFFFEB2B3B33B3B3A1817173A3A39676867191818FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9191818181717181717CACAC9FFFFFEFFFFFED6D6D5686969181717 -282828838484F3F1F0FFFFFEFFFFFE676867181717181717676867FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED8D7D7181717A6A7A6FFFFFEFFFFFEFFFFFE181717828383FFFFFEFFFFFEFFFEFDFFFFFE -BEBEBE515252181717282828767676191818BDBDBDFFFFFE999A9A181717191818181717FFFFFE -FFFFFEFFFFFEFFFFFEF3F1F07676761817171817178283831817179A9B9BFFFFFEE5E3E3181717 -D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBEBEBE3C3C3C1817173C3C3C999A9AFFFFFE -FFFFFEFFFFFEFFFFFE9A9B9B3C3C3C1817173B3B3A686969181717F3F1F0FFFFFEFFFFFEBDBDBD -3C3C3C1817173B3B3AA6A7A6FFFEFDFFFFFE686969676867FFFEFDFFFFFEFFFFFE8384843B3B3A -F3F1F0FFFFFEFFFFFEA6A7A6191818D7D6D6FFFFFEFFFEFDCACAC9181717B2B3B3FFFFFEFFFFFE -FFFEFDFFFFFE9A9B9B3B3B3A1817173C3C3C656666181717F3F0F0FFFFFE676867181717181717 -676867FFFFFEFFFFFEFFFFFEFFFFFED7D6D6515252181717282828767676181717CBCBCAFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717191818181717FFFFFEFFFEFDFFFFFEBEBEBE3B3B3A -1817173B3B3A9B9C9BFFFFFEFFFFFEFFFFFE1817171817171817179B9C9BFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEA6A7A6181717D7D6D6FFFFFEFFFFFECACAC9181717B2B3B3FFFFFEFFFFFEFFFFFE -FFFFFE9A9B9B3B3B3A1817173A3A39676867181717F3F0F0FFFFFE676867181717191818676867 -FFFFFEFFFFFEFFFFFEFFFFFED7D6D65152521817172A2929757676181717CBCBCAFFFFFEB1B2B1 -282828FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B282828181717515252BEBFBE -FFFFFEFFFFFEFFFFFED7D6D67576761A19191817177676762727278F9090FFFFFEFFFFFEF3F1F0 -828382191818181717767777E4E2E2FFFFFEFFFFFE181717999A9AFFFFFEFFFEFDFFFFFE3A3A39 -767676FFFEFDFFFFFEFFFFFE7677772A2929FFFFFEFFFFFEFFFFFE999A9A181717E5E3E3FFFFFE -FFFFFEFFFEFDF4F2F1828383282828181717505050515252505050FFFFFEFFFFFE181717191818 -1817179A9B9BFFFFFEFFFEFDFFFFFEFFFFFEB2B2B23B3B3A1817173B3B3A676867181717FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE8F9090272727CACAC9FFFFFEFFFEFD9B9C9B282828181717515252BEBEBEFFFFFEFFFFFE -FFFFFEFFFFFED8D7D7181717A6A7A6FFFFFEFFFFFEFFFFFE181717828383FFFFFEFFFFFEFFFEFD -FFFFFEBEBEBE515252181717282828767676191818BDBDBDFFFFFE999A9A181717191818181717 -FFFFFEFFFFFEFFFFFEFFFFFEF3F1F07676761918181817178283831817179A9B9BFFFFFEC9C9C9 -767676181717181717515252D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8F8E8F8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEE5E3E3E5E3E3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEF3F1F0D7D6D6FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFED8D7D7F3F0F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -272727686969FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -767676191818FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -D6D6D51817179B9C9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFD686969686969FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEA6A7A6191818CBCBCAFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEBDBDBDBEBEBE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6A5A6A6 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE5E3E3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA6A7A6 -D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDE5E4E4FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE8E8F8FB2B3B3FFFFFEFFFFFEFFFFFE -F3F1F09A9B9BF3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEF3F1F0676867676867FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE8E8F8F181717FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED7D6D63B3B3A9A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867676867FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC91918188E8F8E3C3C3C1817173B3B3AD8D7D7BEBEBE3B3B3A181717 -515252D6D6D5FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F3A3A39181717282828999A9AFFFFFEFFFFFE -FFFFFE6768675152528283831817172828289A9B9BFFFFFEFFFEFDFFFFFECACAC91817178E8F8F -3B3B3A181717676867D7D6D6FFFFFEFFFFFEFFFEFD686969686969FFFEFDFFFFFEFFFFFE181717 -828383767676181717191818828382F3F1F0FFFFFEFFFFFEFFFFFED7D6D6767676181717282828 -515252828383FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE181717767676676867191818282828B2B2B2D7D6D6676867181717 -3B3B3AB2B2B2FFFFFEFFFEFDFFFFFEFFFFFEB2B2B2515252181717181717828383F3F1F0FFFEFD -FFFFFE9A9B9B1817179B9C9B282828181717828383F3F1F0FFFFFEFFFFFEFFFEFD181717767676 -6566661817173B3B3ABEBEBEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFE676867 -5152528E8F8F282828181717686969D6D6D5FFFFFEFFFFFEFFFFFEF4F2F1828382282828181717 -676867535353F3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECBCBCA1817178F90903A3A391918183B3B3AD8D7D7BEBEBE3B3B3A -191818515252D7D6D6FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F3C3C3C1817172828289B9C9BFFFEFD -FFFFFEFFFFFE6768675152528283831817172828289A9B9BFFFFFEFFFFFEFFFFFECACAC9181717 -8E8F8F3B3B3A191818656666D7D6D6FFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFECACAC9 -1817179B9C9B5152521817172828289A9B9BFFFEFDFFFFFEFFFFFEFFFFFEBEBEBE515252181717 -3B3B3A3B3B3AB2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE1817177676766768671817173B3B3ABEBEBEFFFFFEFFFFFEFFFFFE -999A9A1817178E8F8F181717272727CACAC9FFFFFEF3F1F0828383181717181717767676D7D6D6 -FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F282828181717828383515252676867FFFFFEFFFFFE999A9A -191818FFFFFEFFFFFEFFFFFEC9C9C9181717FFFFFEFFFFFEFFFFFEF3F1F0767676181717181717 -828382F3F1F0FFFFFE191818181717181717181717CACAC9FFFFFECACAC9191818CACAC9FFFFFE -FFFFFEFFFFFE9B9C9B272727181717505050BEBEBEFFFFFEFFFFFEFFFFFE6768675152528E8F8F -282828181717686969D6D6D5FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFECACAC91817172A2929B1B2B1CBCBCA505050272727282828B2B2B2CACAC9515252282828 -F3F1F0FFFFFEFFFEFDFFFFFEA6A7A6B2B2B2CACAC9828382191818D7D6D6FFFFFEFFFFFE656666 -1918189A9B9BCBCBCAA5A6A6191818999A9AFFFFFEFFFFFECACAC9181717515252BEBEBECACAC9 -515252272727F3F1F0FFFFFEFFFFFE656666656666FFFFFEFFFFFEFFFFFE181717191818828382 -CACAC9B2B2B22A29299A9B9BFFFFFEFFFFFEF4F2F1282828828382D7D6D6CACAC9676867515252 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE1817171817179A9B9BCBCBCA8283821817172828289A9B9BCACAC9828383181717 -CACAC9FFFFFEFFFFFEFFFFFEBDBDBDA7A7A7CBCBCAA6A7A6181717A7A7A7FFFFFEFFFEFD9A9B9B -181717767676CACAC9BEBEBE272727676867FFFFFEFFFFFEFFFFFE1817172A2929B2B2B2C9C9C9 -828383181717CACAC9FFFFFEFFFEFD9A9B9B191818FFFFFEFFFFFEFFFEFD676867181717676867 -BEBEBEBEBEBE515252686969FFFFFEFFFFFEFFFFFE656666535353CACAC9D6D6D58F9090282828 -E5E3E3FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFECACAC9191818282828B2B2B2CACAC9515252282828282828B1B2B1CACAC9515252 -272727F4F2F1FFFFFEFFFFFEFFFFFEA5A6A6B2B2B2CACAC9828383181717D8D7D7FFFFFEFFFFFE -6768671817179A9B9BC9C9C9A6A7A61817179A9B9BFFFFFEFFFFFECACAC9181717515252BEBFBE -CACAC9535353282828F3F1F0FFFFFEFFFEFD1918189A9B9BFFFFFEFFFFFECACAC9181717282828 -9A9B9BCBCBCA9A9B9B181717CBCBCAFFFFFEFFFFFECACAC9181717A6A7A6D7D6D6BEBEBE3B3B3A -8E8F8FFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFD191818272727B2B3B3C9C9C9828383181717CACAC9FFFFFEFFFFFE9A9B9B181717 -767676CACAC9B2B2B2FFFFFEFFFFFE6768672A2929BEBEBEBEBEBE535353272727F4F2F1FFFEFD -FFFFFE9A9B9B181717B2B2B2CBCBCA757676181717676867FFFEFDFFFFFE9B9C9B181717FFFFFE -FFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFE5152522A2929BEBEBEBEBEBE838484F3F0F0 -FFFFFEC9C9C9515252838484CACAC9F3F1F0FFFFFEC9C9C9181717CACAC9FFFFFEFFFEFD9B9C9B -181717A7A7A7C9C9C9767777181717C9C9C9FFFFFEFFFFFE676867181717676867BEBEBEBEBEBE -515252686969FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA -191818BDBDBDFFFFFEFFFEFDBEBFBE181717BEBEBEFFFFFEFFFFFED7D6D6181717C9C9C9FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFE686969656666FFFFFE -FFFEFDFFFFFE828383282828FFFFFEFFFFFECBCBCA181717CACAC9FFFFFEFFFFFEE4E2E2181717 -A7A7A7FFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFFFE1817178E8F8EFFFFFEFFFFFEFFFFFE -767676676867FFFFFEFFFFFEB1B2B1191818F3F1F0FFFFFEFFFFFEE5E3E3181717CACAC9FFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -1817178E8F8FFFFEFDFFFFFEF3F1F01817178E8F8FFFFFFEFFFFFEFFFFFE2828289A9B9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFEFDFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFEFDB2B3B3181717D8D7D7FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE3B3B3A -767676FFFFFEFFFEFD9B9C9B181717FFFFFEFFFEFDFFFFFE676867535353FFFEFDFFFFFEFFFFFE -A6A7A6181717FFFFFEFFFFFEE5E3E3181717BEBEBEFFFFFEFFFFFEFFFFFE3B3B3A9A9B9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -CACAC9181717BDBDBDFFFFFEFFFFFEBEBEBE191818BEBEBEFFFFFEFFFFFED6D6D5191818C9C9C9 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD181717999A9AFFFFFEFFFFFE676867656666 -FFFFFEFFFFFEFFFFFE828383282828FFFFFEFFFFFECACAC9181717CBCBCAFFFFFEFFFFFEE5E3E3 -191818A6A7A6FFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFECACAC9181717BEBEBEFFFFFEFFFFFE -FFFFFE2828289A9B9BFFFFFEFFFFFE828383505050FFFFFEFFFFFEFFFFFEB2B2B2181717FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFE3A3A39767676FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFE -FFFFFEFFFFFED8D7D7181717BDBDBDFFFFFEFFFFFEE5E3E3181717A6A7A6FFFFFEFFFEFD282828 -8E8F8EFFFFFEFFFEFDFFFFFE515252686969FFFFFEFFFFFE999A9A181717FFFEFDFFFFFEFFFFFE -CACAC9181717FFFFFEFFFFFED7D6D6181717BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -686969999A9AFFFFFEFFFFFEFFFEFDCACAC9181717CACAC9FFFFFEFFFFFE2828288E8F8FFFFFFE -FFFEFDFFFFFE3A3A39767676FFFFFEFFFFFE676867535353FFFEFDFFFFFEFFFFFEA6A7A6181717 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9 -FFFFFEFFFFFEC9C9C9181717CACAC9FFFEFDFFFFFEFFFEFD181717CBCBCAFFFEFDFFFEFDFFFFFE -FFFFFED8D7D7C9C9C9E5E3E31817179A9B9BFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFE -A6A7A6191818E5E3E3FFFFFEC9C9C9181717CACAC9FFFFFEFFFEFDFFFFFE272727828383FFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFE1918189A9B9BFFFFFEFFFFFEFFFFFE9A9B9B676867 -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717BDBDBDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE181717999A9A -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFE -FFFFFEE5E3E3CACAC9D7D6D6676867676867FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -D6D6D5181717B2B2B2FFFFFEFFFEFD1918189A9B9BFFFFFEFFFFFEFFFFFE7676763B3B3AFFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFECACAC9191818 -FFFEFDFFFEFDCACAC9191818C9C9C9FFFFFEFFFFFEFFFEFD6768678E8F8FFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCBCBCA181717 -CBCBCAFFFFFEFFFEFDCACAC9181717CBCBCAFFFEFDFFFFFEFFFFFE181717CBCBCAFFFEFDFFFFFE -FFFFFEFFFEFDD7D6D6CACAC9E4E2E21817179A9B9BFFFFFEFFFFFE676867676867FFFEFDFFFFFE -FFFFFEA6A7A6181717E5E3E3FFFFFECACAC9181717C9C9C9FFFFFEFFFFFEFFFEFD282828828383 -FFFEFDFFFFFE1918189A9B9BFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFEFD686969 -9A9B9BFFFFFEFFFFFE656666686969FFFFFEFFFEFDFFFFFECACAC9181717F3F1F0FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFEFD7677773A3A39FFFFFEFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFEFFFEFD -9A9B9B191818FFFFFEFFFFFEFFFFFEFFFFFE515252838484FFFEFDCBCBCA181717CACAC9FFFFFE -FFFFFEFFFFFE656666656666FFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFECACAC9191818 -FFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE6768679A9B9B -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFECACAC9181717C9C9C9FFFFFEFFFEFDFFFFFE -8E8F8F3B3B3AFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFECACAC9191818FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE -CBCBCA191818CACAC9FFFFFEFFFFFEFFFFFE181717C9C9C9FFFFFEFFFFFED7D6D63B3B3A181717 -1918181817171817179B9C9BFFFEFDFFFFFE686969656666FFFFFEFFFEFDFFFFFECACAC9181717 -CACAC9FFFFFECBCBCA181717CACAC9FFFEFDFFFFFEFFFFFE676867676867FFFFFEFFFFFE676867 -676867FFFEFDFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFE -BEBFBE181717E5E3E3FFFFFEFFFFFEC9C9C9191818D7D6D6FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1918189A9B9BFFFFFEFFFEFD -FFFFFE1918189A9B9BFFFFFEFFFEFDFFFFFE6768679A9B9BFFFFFEFFFFFEF3F1F0676867181717 -191818191818181717656666FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717 -9A9B9BFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFD9A9B9B -181717FFFFFEFFFEFDFFFFFE686969656666FFFEFDFFFFFEFFFFFECBCBCA181717FFFFFEFFFFFE -F3F1F0181717B2B2B2FFFFFEFFFEFDF3F1F0282828A5A6A6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC9C9C9181717CACAC9FFFEFD -FFFFFECBCBCA181717CACAC9FFFFFEFFFFFEFFFFFE191818C9C9C9FFFFFEFFFFFED7D6D63B3B3A -1817171817171817171817179A9B9BFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFECACAC9 -181717CACAC9FFFFFECACAC9191818CACAC9FFFEFDFFFFFEFFFFFE676867676867FFFFFEFFFEFD -1817179A9B9BFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE6768679B9C9BFFFFFE -FFFFFE8F90903A3A39FFFEFDFFFFFEFFFFFE9A9B9B272727FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1918189A9B9BFFFEFDFFFFFE -FFFFFE9A9B9B181717FFFEFDFFFFFE999A9A181717FFFFFEFFFFFEFFFEFDFFFFFE9B9C9B181717 -FFFFFEFFFFFEFFFFFEFFFFFE686969676867FFFFFECACAC9181717CACAC9FFFEFDFFFFFEFFFEFD -676867676867FFFFFEFFFFFE999A9A191818FFFEFDFFFFFEFFFFFECACAC9181717FFFFFEFFFFFE -9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE6768679B9C9BFFFEFDFFFFFE -FFFFFECBCBCA181717CACAC9FFFEFDCACAC9181717CACAC9FFFEFDFFFFFEFFFFFE999A9A181717 -FFFFFEFFFFFE686969656666FFFEFDFFFFFEFFFFFECBCBCA181717FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFECACAC9181717 -CACAC9FFFFFEFFFEFDFFFFFE181717CACAC9FFFFFEFFFFFE3B3B3A515252E5E3E3FFFFFEF3F0F0 -1817179A9B9BFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFEFDA7A7A7181717F3F1F0FFFFFE -C9C9C9181717CACAC9FFFFFEFFFFFEFFFEFD2828288E8F8FFFFFFEFFFFFE656666686969FFFFFE -FFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE676867 -535353999A9A9B9C9B3B3B3A828383FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE181717 -9A9B9BFFFEFDFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFE828383282828CBCBCAFFFFFEFFFEFD -535353676867FFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFED6D6D5181717BEBEBEFFFFFE -FFFEFD1817179B9C9BFFFEFDFFFFFEFFFEFD767676515252FFFFFEFFFFFE9A9B9B181717FFFEFD -FFFFFEFFFFFE656666686969FFFEFDFFFFFEFFFFFECACAC9181717FFFFFEFFFEFDFFFFFE9B9C9B -2828289A9B9B9B9C9B656666515252F3F1F0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFEFDCACAC9 -191818CACAC9FFFFFEFFFFFEFFFEFD191818CACAC9FFFFFEFFFFFE3B3B3A515252E5E3E3FFFFFE -F3F1F01817179A9B9BFFFFFEFFFFFE656666676867FFFFFEFFFEFDFFFFFEA6A7A6181717F3F1F0 -FFFFFECACAC9181717C9C9C9FFFFFEFFFFFEFFFFFE2828288E8F8FFFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFEFDF3F1F0 -2A29297676769A9B9B8F9090272727B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD1918189A9B9BFFFFFEFFFFFEFFFFFE767676 -505050FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFE515252828383FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE656666676867 -FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFECACAC9191818FFFFFEFFFFFE9A9B9B181717 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD6768679A9B9BFFFFFEFFFFFEFFFFFEC9C9C9 -181717CBCBCAFFFFFECACAC9181717CACAC9FFFFFEFFFEFDFFFFFE8E8F8F3B3B3AFFFFFEFFFFFE -656666686969FFFEFDFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9191818CACAC9FFFFFEFFFFFECACAC9181717CACAC9FFFFFE -FFFFFEFFFFFE181717CBCBCAFFFEFDFFFFFE1918189A9B9BFFFFFEFFFEFDFFFFFE1817179A9B9B -FFFEFDFFFFFE686969676867FFFFFEFFFFFEFFFFFE8283823A3A39FFFFFEFFFFFEC9C9C9181717 -CACAC9FFFEFDFFFFFEE5E3E3181717B2B2B2FFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B686969FFFEFDFFFEFDF3F1F01817179A9B9B777878 -818282B2B3B3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFE1817179A9B9BFFFFFE -FFFEFDFFFEFD6869699A9B9BFFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFFFE656666676867 -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDB2B3B3191818E4E2E2FFFEFDFFFFFE191818 -999A9AFFFFFEFFFFFEFFFEFD3C3C3C838484FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -676867676867FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFE535353828383828383 -767676A7A7A7F3F1F0FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA181717CBCBCAFFFEFDFFFFFECACAC9181717CACAC9 -FFFEFDFFFFFEFFFFFE181717CACAC9FFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE181717 -9A9B9BFFFFFEFFFFFE686969676867FFFEFDFFFFFEFFFEFD8384843B3B3AFFFFFEFFFFFECACAC9 -181717CBCBCAFFFFFEFFFEFDE5E4E4181717B2B3B3FFFFFEFFFFFE191818999A9AFFFFFEFFFFFE -C9C9C9181717CBCBCAFFFEFDFFFFFEFFFEFD6768679A9B9BFFFFFEFFFFFEBDBDBD282828A6A7A6 -6768678E8F8ECACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE3B3B3A828383FFFFFE -FFFFFE999A9A181717FFFFFEFFFFFEFFFFFEFFFFFED7D6D6181717BEBEBEFFFEFDFFFFFEE5E3E3 -181717A5A6A6FFFFFEFFFFFE2A29298E8F8FFFFFFEFFFFFEFFFEFD676867676867FFFFFEFFFFFE -999A9A181717FFFFFEFFFFFEFFFFFEBEBEBE181717FFFFFEFFFFFED7D6D6181717BEBFBEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867767676FFFFFEFFFFFEFFFFFECBCBCA181717C9C9C9 -FFFFFEFFFEFD2828288E8F8EFFFFFEFFFFFEFFFFFE3B3B3A767777FFFEFDFFFFFE676867676867 -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE -191818CACAC9FFFFFEFFFFFE6768673B3B3ABEBEBECACAC97676761817179B9C9BFFFFFEFFFFFE -6768672727279A9B9BCACAC99A9B9B1817179A9B9BFFFEFDFFFEFDCACAC9191818656666BEBEBE -BDBDBD535353282828F3F1F0FFFFFED7D6D6515252515252D7D6D6FFFFFEFFFFFE181717999A9A -FFFFFEFFFFFEFFFEFD9B9C9B676867FFFFFEFFFFFED7D6D6181717FFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE -6566669A9B9BFFFFFEFFFFFE9A9B9B181717B2B2B2CBCBCA9A9B9B181717676867FFFEFDFFFFFE -999A9A181717838484CACAC9B2B2B2282828676867FFFFFEFFFFFEFFFFFE1817173C3C3CB1B2B1 -CACAC9767777181717CACAC9FFFFFEE5E3E3828383181717CACAC9FFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFE282828CACAC9FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE -FFFFFE181717CBCBCAFFFFFEFFFFFE6768673B3B3ABEBEBECACAC97676761817179A9B9BFFFFFE -FFFEFD6768672828289A9B9BCACAC99A9B9B1817179A9B9BFFFFFEFFFFFECACAC9181717676867 -BEBEBEBEBEBE515252282828F3F1F0FFFFFECACAC9181717828383E5E3E3FFFEFDCACAC9181717 -C9C9C9FFFFFEFFFEFDFFFFFE6768679A9B9BFFFFFEFFFFFEA7A8A8656666FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFD1918183B3B3AB1B2B1CACAC9767676181717CACAC9FFFFFEF3F1F0828383 -181717CACAC9F3F1F0FFFFFEFFFFFEFFFFFE676867282828BEBFBEBEBEBE5050502A2929F3F1F0 -FFFFFEFFFFFE8E8F8F282828CACAC9FFFFFEB2B2B2282828676867FFFFFEFFFFFED7D6D6181717 -8E8F8ECACAC9A6A7A6282828181717FFFFFEFFFEFDFFFFFE676867282828BEBEBECACAC9828383 -C9C9C9FFFFFEFFFEFD9A9B9B282828B2B2B2F3F1F0F3F1F0A5A6A6181717A6A7A6F3F1F0FFFFFE -9A9B9B181717A6A7A6CACAC9767676191818CACAC9FFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -CACAC9181717CACAC9FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9 -FFFFFEFFFFFED6D6D57676761817171817177676762727278F9090FFFFFEFFFFFE6768673B3B3A -5152521817172828288E8F8FFFFFFEFFFFFEFFFFFECACAC9181717686969282828191818515252 -D7D6D6FFFFFEFFFFFE676867181717181717676867FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFE -FFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE3A3A39767676676867676867828383CACAC9FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE6768679A9B9B -FFFEFDFFFFFEF3F1F08283832A2929181717515252515252515252FFFFFEFFFFFE9A9B9B181717 -757676181717181717767676F3F1F0FFFFFEFFFFFEFFFFFE1817175152523B3B3A1817173B3B3A -B2B2B2FFFFFEFFFFFE9A9B9B181717181717181717FFFEFDFFFFFE676867676867FFFFFEFFFFFE -FFFFFECACAC9181717FFFFFEFFFFFEFFFFFE828383515252767676676867767676B2B2B2FFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFECACAC9181717CACAC9FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFEFD181717 -CACAC9FFFFFEFFFFFED7D6D67676761817171918187676762828288E8F8FFFFEFDFFFFFE676867 -3B3B3A5152521817172828288E8F8FFFFFFEFFFFFEFFFFFECACAC9181717676867282828181717 -535353D7D6D6FFFFFEFFFFFE1817171817171817179A9B9BFFFFFECBCBCA181717CBCBCAFFFFFE -FFFFFEFFFEFD6768679A9B9BFFFFFEFFFFFEE5E3E31817178283836768676768678F9090E5E3E3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE1817175152523B3B3A1817173B3B3AB2B2B2FFFFFEFFFFFECACAC9181717181717181717 -CACAC9FFFFFEFFFFFEFFFFFEF3F1F0828383181717181717767676D8D7D7FFFFFEFFFFFEFFFFFE -FFFFFE8E8F8F2828281817176869693B3B3A676867FFFEFDFFFFFEFFFFFEB2B2B2282828181717 -3B3B3A8E8F8F191818FFFFFEFFFFFEFFFFFEF3F1F0828383181717181717767676E5E3E3FFFFFE -FFFFFEFFFFFE8E8F8F282828CACAC9CACAC9181717181717191818C9C9C9FFFFFEFFFFFE9A9B9B -282828181717515252BEBEBEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9 -181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE686969676867FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEC9C9C9191818828383A6A7A6BEBFBE8E8F8E2828288E8F8FFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B191818FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179B9C9BFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEF3F0F0272727696A6A999A9ACACAC9999A9A3C3C3C505050FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867656666FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCACAC9191818CACAC9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD9B9C9B2727278E8F8FB2B2B2B2B2B2828383181717BDBDBDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD191818 -9A9B9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECBCBCA181717CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE767676828382FFFFFEFFFFFEFFFFFEFFFFFEB2B2B2181717FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE191818999A9AFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEA7A7A73C3C3CFFFEFDFFFFFEFFFEFDFFFFFEE5E3E3191818C9C9C9FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFE272727B2B3B3FFFFFEFFFFFEFFFFFEFFFFFE828382676867FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE757676 -828383FFFFFEFFFFFEFFFFFEFFFFFEB2B2B2181717FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE1817179A9B9BFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEA6A7A6 -3A3A39FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEC9C9C9191818C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -282828B1B2B1FFFEFDFFFFFEFFFFFEFFFFFE828383676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD1817179A9B9BFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE676867676867FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEC9C9C9 -181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFECACAC9181717828383 -B1B2B1BEBFBE8E8F8E2A29298E8F8FFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE9A9B9B191818FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -181717999A9AFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0282828656666 -A6A7A6CBCBCA999A9A3B3B3A515252FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFE686969676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -CBCBCA181717CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B2A2929 -8E8F8FBEBEBEB2B2B2828383181717BEBFBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFD8E8F8F8F9090FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6D6D5686969D7D6D6 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E38E8F8F686969656666 -838484C9C9C9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFC -FFFFFEB2B3B3676867FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE686969B2B2B2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF4F2F1A6A7A6676867676867 -767676B2B2B2FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFE8E8F8F8E8F8FFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDD7D6D6656666 -D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9828382686969 -6768678F9090E5E4E4FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE676867B2B2B2FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFEFDFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEE3DCE8E3DCE8FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDF2EEF4D3CCDEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -938CB3938CB3FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDC6BDD4696796FFFFFDFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDC7BFD6686695FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDC9C9C99A9B9BFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FEFDFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9B9C9B -181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8F272727FFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -8F9090282828FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE999A9A181717FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2767777FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD999A9AE5E3E3FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2C9C9C9FFFFFEFFFFFEFFFFFEB1B2B1767676 -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE181717CBCBCAFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFD6869699A9B9BFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD9B9C9B181717FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDB2B3B3676867FFFEFDFFFFFEFFFFFEB2B2B2676867D8D7D7828383686969 -828383E5E3E3FFFFFEFFFFFED7D6D6686969181717515252676867FFFEFDFFFFFEFFFFFECACAC9 -828383696A6A9A9B9BF3F0F0FFFFFEFFFFFEFFFFFE8E8F8F8F9090999A9A676867828383F3F1F0 -FFFFFEF3F1F08E8F8F676867767676C9C9C9FFFFFEFFFFFEFFFFFECACAC97676766869698E8F8F -E5E3E3FFFFFEFFFFFEFFFFFE8E8F8F8E8F8FBEBEBE767777686969999A9AF3F1F0FFFFFEFFFFFE -FFFFFE8E8F8F8F9090BEBEBE7676766768679A9B9BF3F1F0FFFFFEFFFFFEFFFFFEFFFEFDCACAC9 -8283836768679A9B9BF3F1F0FFFEFDFFFFFEFFFFFEF3F1F08E8F8F686969767676CACAC9FFFEFD -FFFFFE6768672828283B3B3A686969D7D6D6FFFFFEB1B2B1676867FFFEFDFFFFFEFFFFFEFFFFFE -B1B2B1676867686969A6A7A6F3F1F0FFFFFEFFFFFEFFFFFE8E8F8F8E8F8FBEBEBE767777686969 -999A9AF3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB1B2B1828383686969767676 -CACAC9FFFEFDFFFFFEFFFFFEFFFFFEBEBFBE767676676867999A9AF4F2F1FFFEFDFFFEFD8E8F8F -8E8F8F9A9B9B676867828382F3F1F0FFFEFDF4F2F19A9B9B676867767676B2B3B3FFFFFEFFFFFE -FFFFFEF3F1F09A9B9B676867676867A6A7A6F3F1F0FFFFFEFFFFFEB2B2B26768676768678E8F8F -E5E3E3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEF3F1F09A9B9B686969676867A6A7A6F3F0F0FFFFFE -FFFFFEF3F0F08E8F8F656666767777CACAC9FFFFFEFFFFFEFFFFFEB2B2B2828383656666767676 -CACAC9FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFEFFFFFEFFFEFDCACAC9828383676867 -9A9B9BF3F1F0FFFFFEFFFEFDFFFFFEB1B2B16768676768678E8F8FE5E3E3FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE999A9A181717FFFFFEFFFFFEFFFFFE9A9B9B1817171817178283839A9B9B3B3B3A3B3B3A -FFFFFEFFFFFEE5E3E3999A9A1918188283839A9B9BFFFFFEFFFFFEBDBDBD1817176768679A9B9B -3B3B3A676867FFFFFEFFFFFEFFFFFE676867181717676867999A9A8F9090FFFFFEF3F0F0515252 -2828289A9B9B838484515252FFFFFEFFFFFEBEBEBE181717767676999A9A3B3B3A282828E5E3E3 -FFFEFDFFFFFE6768671918182828288E8F8F8E8F8E2A2929828382FFFFFEFFFFFEFFFFFE676867 -1817172A29298E8F8F8E8F8E2A2929828382FFFFFEFFFFFEFFFFFEBEBFBE1817176768679A9B9B -3C3C3C656666FFFFFEFFFFFEF3F1F05152522828289A9B9B828383515252FFFFFEFFFFFE999A9A -3A3A39686969999A9AE5E3E3FFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFE8F90901817178E8F8F -8E8F8F272727515252FFFFFEFFFFFEFFFFFE6768671918182828288E8F8F8E8F8E2A2929828382 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE8283838384849A9B9B515252181717E5E3E3 -FFFEFDFFFFFEB2B2B21817177676769A9B9B3B3B3ABDBDBDFFFFFEFFFFFE656666191818676867 -999A9A8E8F8FFFFFFEFFFFFE5050502A2929999A9A8384841817178E8F8FFFFFFEFFFFFE686969 -2727278E8F8F8E8F8F3B3B3ACACAC9FFFFFE9A9B9B1918188283829A9B9B5152529A9B9BFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE6566662828288E8F8E8E8F8F3B3B3ACACAC9FFFFFEF3F1F0515252 -2828289B9C9B828382515252FFFFFEFFFFFEFFFFFE8283838283839A9B9B515252181717E5E4E4 -FFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEBEBFBE1817176768679A9B9B3C3C3C686969 -FFFFFEFFFFFE9A9B9B1918188283839A9B9B5353539A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2 -938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9A9B9B -181717FFFFFEFFFFFEFFFFFE9A9B9B181717D8D7D7FFFFFEFFFFFECACAC9181717CACAC9FFFFFE -FFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFEFD3B3B3A676867FFFFFEFFFFFECACAC9181717 -CACAC9FFFFFEFFFFFE676867505050FFFFFEFFFFFEFFFEFDFFFFFEB2B2B2181717D6D6D5FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE3B3B3A767676FFFFFEFFFFFEF3F1F0282828828383FFFFFEFFFEFD -6768673B3B3AF3F1F0FFFFFEFFFFFE999A9A181717FFFFFEFFFFFEFFFFFE6768673B3B3AF3F1F0 -FFFEFDFFFFFE999A9A181717FFFFFEFFFFFEFFFFFE3A3A39676867FFFFFEFFFFFEC9C9C9181717 -CACAC9FFFFFEB2B2B2181717D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867999A9A -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEE5E3E3181717A6A7A6FFFFFEFFFFFECBCBCA -181717B2B2B2FFFFFEFFFFFE6768673B3B3AF3F1F0FFFFFEFFFFFE999A9A181717FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0181717A6A7A6FFFFFEFFFFFE -3B3B3A767676FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD686969505050FFFFFEFFFFFEFFFFFE -FFFFFEB2B3B3181717D7D6D6FFFFFEFFFFFE9A9B9B181717E4E2E2FFFFFE1817179B9C9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE1918189B9C9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2181717D7D6D6FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF3F1F0181717A5A6A6FFFFFEFFFFFE -9A9B9B191818FFFFFEFFFFFEFFFFFE3A3A39676867FFFFFEFFFFFEC9C9C9181717CACAC9FFFFFE -676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFE -FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEE5E3E3181717B2B2B2FFFFFEFFFFFEFFFEFD1918189A9B9BFFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE767676515252FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED7D6D6181717BEBEBEFFFFFEFFFFFEFFFFFE828382535353FFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFE676867686969FFFEFDFFFFFEFFFFFE -CBCBCA181717FFFFFEFFFFFEE5E3E3181717B1B2B1FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFE -767676515252FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFE -FFFFFE9A9B9B191818FFFFFEFFFEFDA6A7A6181717F3F1F0FFFFFEFFFEFDFFFFFE3B3B3A8F9090 -FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE1817179A9B9BFFFEFDD7D6D6181717BEBEBE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD686969676867FFFEFDFFFFFEFFFFFEFFFFFE767676 -515252FFFFFEFFFFFEFFFFFEE4E2E2191818BDBDBDFFFFFE515252515252D6D6D5FFFFFEFFFFFE -FFFFFEFFFFFE8E8F8F282828BDBDBDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -515252515252D7D6D6FFFFFEFFFFFEFFFFFEFFFFFE767676515252FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD181717999A9AFFFFFEFFFEFD9A9B9B181717 -FFFFFEFFFFFEE5E3E3181717B2B2B2FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFE8E8F8F282828 -BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -C7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFD -9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9 -FFFFFEFFFEFDCACAC91817175152526768676768676768672828289B9C9BFFFFFEFFFFFE676867 -676867FFFEFDFFFEFDFFFFFEFFFEFD686969676867FFFFFEFFFEFDFFFFFEFFFEFDFFFFFECACAC9 -181717CACAC9FFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFD686969676867FFFFFEFFFFFE -FFFEFDCACAC9181717FFFFFEFFFFFEFFFFFE686969656666FFFFFEFFFFFEFFFEFDCACAC9181717 -FFFFFEFFFFFECACAC91817175152526566666768676566662828289B9C9BFFFEFD676867676867 -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD6768679A9B9BFFFFFEFFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFE999A9A191818FFFFFEFFFFFEFFFFFEFFFEFD676867676867FFFFFEFFFFFE -656666676867FFFFFEFFFFFEFFFEFDCACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F08283832828281817173C3C3C1817179A9B9BFFFFFECACAC9181717CACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFE656666676867FFFFFEFFFEFDFFFFFEFFFFFE676867676867FFFFFE -FFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEF3F1F0676867181717828383F3F1F0FFFFFEFFFFFE -FFFFFE8E8F8E191818656666D7D6D6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F0676867 -181717828383F4F2F1FFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -F4F2F18283832828281817173B3B3A1817179A9B9BFFFEFDFFFFFE9A9B9B181717FFFFFEFFFEFD -CACAC91918185050506566666768676768672727279A9B9BFFFFFEFFFFFE8E8F8E191818656666 -D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B191818FFFEFDFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFFFEFFFEFD181717CACAC9FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFEFD -CACAC91817178283839B9C9B9A9B9B9A9B9B9B9C9BC9C9C9FFFFFEFFFFFE676867686969FFFEFD -FFFFFEFFFEFDFFFFFE656666676867FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDCACAC9181717CACAC9 -FFFFFEFFFFFEFFFEFD9A9B9B2A2929FFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFECACAC9 -181717FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFECBCBCA181717FFFEFDFFFFFE -CACAC91918188283829A9B9B9A9B9B9A9B9B9A9B9BCACAC9FFFFFE676867676867FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE676867767676FFFFFEFEFDFC686969686969 -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE676867282828 -B1B2B1CACAC9BEBEBE1918189A9B9BFFFFFECACAC9191818C9C9C9FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFE676867686969FFFFFEFFFFFEFFFFFE -FFFFFE181717A6A7A6FFFFFEFFFFFEFFFFFECBCBCA3B3B3A272727D7D6D6FFFFFEFFFFFEFFFFFE -E5E3E3656666181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECBCBCA3B3B3A -272727D7D6D6FFFFFE656666686969FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD676867282828 -B2B2B2CACAC9BEBEBE181717999A9AFFFFFEFFFFFE9A9B9B191818FFFFFEFFFFFECACAC9181717 -8283829B9C9B999A9A9A9B9B9B9C9BCACAC9FFFFFEFFFFFEFFFFFEE4E2E2686969181717B2B2B2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE999A9A181717FFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFE191818C9C9C9FFFFFEFFFFFEFFFFFE191818B1B2B1FFFFFEFFFFFEF3F1F0181717 -A6A7A6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE686969676867FFFFFEFFFFFEFFFFFE -FFFFFE8E8F8F2A2929FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0181717A6A7A6FFFFFEFFFFFE -FFFFFE515252676867FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9181717FFFFFE -FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEF3F1F0181717 -A7A7A7FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE8E8F8F282828FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE676867828383FFFEFDFFFFFEFFFFFE9B9C9B181717FFFEFDFFFFFEBEBEBE -191818D7D6D6FFFFFEFFFEFDF4F2F11817179A9B9BFFFFFEFFFFFE676867676867FFFFFEFFFFFE -FFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFE -FFFFFE1817179A9B9BFFFEFDF3F1F0181717A7A7A7FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -686969676867FFFFFEFFFFFEFFFEFDFFFFFE8F9090282828FFFFFEFFFFFEFFFFFEBEBEBE181717 -CACAC9FFFFFEFFFFFEFFFFFEFFFEFDF3F1F0282828828382FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -6566663C3C3CFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDF3F1F02A2929828383 -FFFFFE8E8F8F282828FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE1918189A9B9BFFFFFEFFFFFE -FFFFFE1918189B9C9BFFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEF4F2F1181717A7A7A7FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD6869693B3B3AFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFEFFFEFDFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFE3A3A39767777F3F1F0FFFFFEFFFEFD838484282828CACAC9 -FFFFFEE5E3E39B9C9BF3F0F0FFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFFFEE5E4E4 -181717828383FFFEFDF3F1F0B2B2B2FFFFFEFFFFFE828383282828D7D6D6FFFFFEA5A6A6191818 -B2B2B2FFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFEFD -676867686969FFFFFEFFFFFEFFFFFECBCBCA181717FFFFFEFFFFFEFFFFFE828383282828CACAC9 -FFFFFEE5E3E39A9B9BF3F1F0FFFFFEE4E2E2181717828383FFFFFEF3F0F0B1B2B1FFFFFEFFFFFE -FFFFFE8384843A3A39E5E4E4FFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE3B3B3A515252 -F3F1F0F3F1F0828382181717E5E3E3FFFEFDFFFFFE676867676867FFFFFEFFFFFEFFFFFECACAC9 -181717FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE3B3B3A676867F3F1F0FFFEFDA5A6A6191818 -9A9B9BFFFFFEFFFFFE828383272727D7D6D6FFFFFECACAC9D7D6D6FFFFFEFFFFFE656666676867 -FFFFFEFFFFFEFFFFFEFFFFFEE4E2E2181717828383FFFFFEE4E2E25152523B3B3AFFFFFEFFFEFD -B2B2B2F3F1F0FFFFFEF3F1F03B3B3A8E8F8FFFFEFDBEBFBEE5E3E3FFFEFDFFFEFD767676515252 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEB2B3B3F3F1F0FFFFFEF3F0F03A3A398E8F8FFFFEFDE5E4E4 -181717828383FFFFFEF3F0F0B2B2B2FFFFFEFFFFFE3B3B3A676867F3F1F0FFFFFEA6A7A6181717 -9A9B9BFFFFFEFFFFFEA6A7A6181717F3F1F0FFFFFEFFFEFD828383272727CBCBCAFFFFFEE5E3E3 -9A9B9BF3F1F0FFFFFEBDBDBDE5E3E3FFFFFEFFFFFE767676515252FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -938CB2938CB2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE999A9A -191818181717181717FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9 -FFFFFEFFFFFEFFFFFED7D6D6272727181717FFFFFEFFFFFEF3F1F0767676181717181717181717 -676867F4F2F1FFFFFE9A9B9B181717181717181717FFFFFEFFFFFEFFFEFDFFFFFEB2B3B3282828 -181717191818505050D8D7D7FFFFFEF3F0F06768671817171817171817178E8F8FFFFFFEFFFFFE -FFFFFE676867676867FEFDFCFFFFFEFFFFFECBCBCA191818FFFFFEFFFFFEFFFFFE676867646565 -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFEFDF3F1F0767676191818181717181717 -676867F4F2F1FFFFFEFFFFFEB2B2B2272727181717191818515252D7D6D6FFFEFDFFFFFEF3F1F0 -515252181717CBCBCA9A9B9B181717181717181717FFFEFDFFFFFED7D6D63B3B3A181717191818 -282828B2B2B2FFFEFDFFFFFEFFFFFE676867676867FEFDFCFFFFFEFFFFFECBCBCA191818FFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEBEBEBE2828281817171817172828281817179A9B9BFFFEFD -FFFFFEF3F1F06768671817171817171817179A9B9BFFFFFE9A9B9B191818181717181717FFFFFE -FFFEFDFFFFFEFFFFFEB2B2B22828281817171817173B3B3AD7D6D6FFFEFDF4F2F1676867181717 -676867181717515252F3F1F0FFFFFE8E8F8E181717515252282828282828D8D7D7FFFFFEFFFFFE -FFFFFEFFFFFEF3F1F0686969181717676867181717515252F3F1F0FFFFFEFFFFFEB2B2B2282828 -181717181717505050D7D6D6FFFEFDBEBEBE2828281817171817172828281817179A9B9BFFFEFD -FFFFFEF3F1F0282828676867FFFFFEFFFFFEF4F2F1767676181717181717181717656666F4F2F1 -FFFEFD8F90901817175050502A2929282828D7D6D6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3CACAC9CBCBCA -C9C9C9FFFFFEFFFFFEE4E2E2CACAC9FFFFFEFFFFFEFFFFFEFFFFFECACAC9F5F3F2FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFECBCBCAFFFEFDFFFFFEFFFFFEFFFFFEE5E3E3CBCBCAE5E4E4FFFEFDFFFFFE -FFFFFEE5E3E3CACAC9CBCBCACACAC9FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF4F2F1C9C9C9D7D6D6 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6CBCBCAF3F0F0FFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -D7D6D6FFFFFEFFFFFEFFFFFEF3F1F0C9C9C9FFFFFEFFFFFEFFFFFED6D6D5D8D7D7FFFFFEFFFFFE -FFFFFEF3F1F0CACAC9FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDE5E3E3CACAC9E5E3E3FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDF4F2F1CACAC9D7D6D6FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFED7D6D6 -F3F1F0E5E3E3CACAC9C9C9C9CACAC9FFFFFEFFFFFEFFFEFDFFFFFECBCBCACACAC9FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED7D6D6D7D6D6FFFFFEFFFFFEFFFFFEF3F1F0C9C9C9FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFECACAC9CACAC9FFFFFED7D6D6D7D6D6FFFFFEFFFFFEFFFFFE -FFFFFED7D6D6CACAC9F3F0F0FFFFFEFFFFFEE5E3E3CACAC9CACAC9CACAC9FFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDF4F2F1C9C9C9D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE4E2E2CACAC9D7D6D6 -FFFFFEFFFFFEFFFFFEFFFFFEF3F1F0CBCBCACACAC9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDE5E4E4C9C9C9D8D7D7FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDF4F2F1C9C9C9D8D7D7 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9CACAC9FFFFFED7D6D6D7D6D6FFFFFEFFFEFDFFFFFE -FFFFFED7D6D6FFFFFEFFFFFEFFFFFEFFFFFEE5E3E3CBCBCAE5E3E3FFFFFEFFFFFEFFFFFEFFFEFD -F3F1F0CACAC9CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEC7BED5686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB2FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEC7BED5 -686695FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE938CB2938CB3FFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDC7BED5686695FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFD938CB2938CB2FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFC -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC6BED6686695FFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEBAB1CC5D5D8FFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFD8882AA8881AAFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFDFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEF1ECF3474E82E4DDE8FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE515689C7BED5FFFFFDFFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -8882AA736E9DFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFEFD -FFFFFEA099BB5E5D8EFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFEFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF2EEF4474E83 -ACA4C3FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFCFFFFFEFFFFFEFFFFFED4CCDF474E82 -C6BED5FFFFFDFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDF4E7EEEFDEE8E3CAD9DDC2D4DDC2D4DDC1D4EFDEE7F0DEE8FCF7F7FFFEFD -FFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED3CCE0474E82A099BB -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCC7BED5474E82ACA4C4FFFEFDFFFFFE -FFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF4E7EEDFC3D5D9BCCF -D8BACFE6D1DFF0DEE8F8EFF3FFFFFEFFFFFEFCF8F9F0DFE9EFDEE8DDC2D4D9BBCFDABCCFEAD7E3 -FFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED5CDE0515689696796D5CDE0 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEE4DDE98882AB474E82ACA5C5FFFFFEFFFFFEFFFDFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDE6D0DED2B0C7E3C9D9F8EEF2FFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEECD7E3D8BBCFD9BCCF -F8EFF3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEF2EDF3938DB3474E825E5E8F8882AB -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB3948DB3 -938DB26867953F457C7D78A3E4DDE9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEEAD6E2D6B6CBEFDEE7FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEF8EEF1D6B6CBD9BCCF -FCF7F8FFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDC6BDD6938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2 -938CB2938CB2938CB2938CB2938CB2938CB2938CB2938CB2938DB2928CB2938DB2938CB3BBB2CD -F2EDF2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDF7EEF3D2B0C7 -E7D0DEFFFEFCFFFFFEFFFFFEFEFDFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDF8EEF2D1B0C7EBD7E4 -FFFEFCFFFFFEFFFEFDFFFFFEFFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFEFEFDFFFDFCFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCEFDEE9D1B0C7FCF6F8FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEE2C9D9D5B5CBFFFFFE -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFFFEFCFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEE7D0DFD9BCD0FEFDFBFFFEFDFFFFFEFFFFFDFFFEFDFFFEFD -FFFEFCFEFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFDFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEF4E6ECCDA9C2FCF6F8FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEE7D0DEE7D0DEFFFFFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFEFDFFFFFEFFFFFDFEFEFDFFFEFDFFFFFEF5E8EFCCA9C2FCF7F8FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE7D1DF -E8D1DEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFEFDFFFEFDFFFEFDF4E7EECFAAC2FFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFDFFFFFDFFFEFDFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF4E6EDD6B5CBFFFEFDFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEF0DFE9D6B5CAD2B0C8FFFEFDF4E6EDD6B6CBFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFDF7F8D2B0C8FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFBF6F8E7D0DECAA3BD -CAA3BDE7D0DEFDF7F8FFFFFEFFFEFDE3C9D9EBD7E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFED9BCCFF4E7EEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFBF6F8E7D0DECDA9C1BE92B1BE92B0BE91AFBE91B0BE92B0CDA9C2E3C9D9 -F8EEF3FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDDCC1D3C297B4D5B5CAEFDEE8FFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFED2B1C8FBF5F7FFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFD -FFFFFEF5E7EDDDC3D4FFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -EBD7E3C297B4BE92B0BD91B0BE92B0BE91B0BE92B0BE91B0BE91B0BE91AFBE91B0BE92B1D5B4C9 -F8EFF3FFFEFDFFFFFEFFFFFED8BBCECAA3BEFBF7F8FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEF8EEF1D6B7CBFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFCFFFFFED1AFC7 -FDF7F8FFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFED4B5CABE91B0BE92B1 -BD91AFBE92AFBE92B1BE91B0BE91B0BD91B0BE92B0BE92B0BE91B0BE91AFBE92B0C298B5EBD7E4 -FFFFFEFFFFFDC298B5FCF7F8FFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEDDC2D4F8EEF2FFFFFEFEFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF7EEF2DEC2D4FFFFFEFFFFFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED6B6CBBE92B1BC90AFBE91B0BE91B0BE92B0 -BD91B0BE92B0BE91AFBE91B0BD91B0DABBCFD9BCCFBE92B1BE91AFBE91B0BE92B0E7CFDEFFFFFE -C69DBAF9EFF2FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDF8EFF3 -D4B4CAFFFFFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFECACAC9181717CBCBCAFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED6D6D5767676181717FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE999A9A181717FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDD9BBCFFBF6F8FFFFFEFFFFFEFFFEFDFFFFFE -FFFFFDFFFEFDFFFFFEFFFFFEDDC2D4BE91B0BE92B0BE91B0BE91B0CDA9C2CDA8C1BE91AFBE91AF -BD91B0BE92B0BE91B0FFFDFCFFFDFCCDAAC1BE91B0BE92AFBE91B0C298B5F8EEF1DABCCFD8BCD0 -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFED9BCCFFFFEFD -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFEA5A6A6 -D8D7D7FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -BEBEBEBEBFBEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD3C3C3C515252BEBEBEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFED7D6D6A5A6A6FFFFFEFFFEFDFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEBEBEBE -BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEBEBFBEBEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCD5B5CBFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFE -FFFFFEEFDDE7BD91B0BE92B1C297B4D5B5CCF8EFF2FFFFFEEFDEE8BE92B0BE92B0BE92B1BD91B0 -BE92B0D8BBCFDABBD0BE91B0BE91B0BE91B0BE92AFBE91B0D5B6CBF8EEF3C298B5FFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFEFDEBD7E4EBD6E3FFFFFEFFFFFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717CBCBCAFFFFFED7D6D6181717999A9AFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE282828656666 -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE181717B2B3B3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -767676191818FFFFFEFFFEFDFFFFFE999A9A181717FFFFFEFFFEFDFFFFFE282828676867FFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE282828676867FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDF5E7EEE7D0DFFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFCCFAAC3 -C9A3BDE7D0DEFDF7F8FFFEFDF8EFF3DABDD0C398B5BE91B0BE91B0BE91B0BE91B0BD91B0BE91B0 -BE92B0C298B5BD91AFBD91AFBE92B1BC91AFC79DB9FFFEFDD1B0C7E7D1E0FFFEFDFFFFFEFFFEFD -FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDDBBCD0FFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFD9A9B9B676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFED7D6D6F3F1F0FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFEFDFFFFFEE5E3E3E5E4E4FFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9181717FFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE191818CACAC9FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0D7D6D6 -FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFEFFFFFEE5E3E3E5E4E4FFFFFEFFFFFEFFFFFE -9B9C9B676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD191818C9C9C9FFFFFEFFFFFEFFFFFE -E5E3E3E5E4E4FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -DEC2D5F7EEF2FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFDFCF7F8EFDEE7FFFFFEFFFFFE -F4E7EED2AFC6BD91B0BE92B0BD92B0BE92AFBE91B0BD92B0BE91B0BE91B0D5B5CBEFDEE8FCF7F8 -C297B4BE91B0BE91AFBE92B1BD91B0FFFFFEEBD7E3CDA9C1FFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFED9BCCFFFFFFEFFFFFEFFFEFCFFFEFDFFFFFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDF3F1F0CACAC9CBCBCAFFFFFEFFFFFEFFFFFED7D6D6828383 -515252CACAC9E5E3E3FFFFFEFFFEFDFFFFFEF3F0F0CACAC9CACAC9FFFFFEFFFEFDFFFFFEFFFEFD -E5E4E4CACAC9FFFFFEE5E3E3CACAC9E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3 -CACAC9F3F1F09A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9CACAC9F3F1F0FFFFFE -FFFFFEFFFFFEFFFFFECBCBCAE4E2E2E5E3E3C9C9C9F3F0F0FFFFFEFFFEFDFFFFFEF3F1F0CACAC9 -E5E3E3CACAC9181717CBCBCAFFFEFDFFFFFEC9C9C9E5E3E3FFFFFEFFFFFED7D6D6CBCBCACACAC9 -CACAC9CBCBCACACAC9FFFFFEFFFFFEFFFEFDFFFFFEE5E3E3CACAC9D7D6D6FFFFFEFFFFFEFFFFFE -E5E3E3A6A7A6181717CACAC9D7D6D6FFFFFEFFFFFED7D6D6D7D6D6FFFFFEFFFFFEFFFFFEFFFFFE -F3F1F0CACAC9D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEF3F1F0C9C9C9F3F1F0F3F1F0CBCBCAD7D6D6 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEE5E3E3A6A7A6181717CACAC9D7D6D6FFFFFE -FFFEFDFFFFFEFFFFFEC9C9C9CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0 -CACAC9181717A7A7A7CACAC9FFFFFEFFFFFEFFFFFEFFFFFED7D6D6CACAC9E5E3E3FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEF3F1F0CBCBCAD7D6D6FFFFFEFFFFFEFFFFFEE5E3E3CACAC9FFFFFEFFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFED7D6D6D7D6D6FFFFFEFFFFFED7D6D6828383515252 -CACAC9E5E3E3FFFFFEFFFEFDFFFFFEF3F0F0CACAC9CACAC9FFFFFEFFFFFEFFFFFEF3F1F0CACAC9 -181717A6A7A6C9C9C9FFFFFEFFFFFEFFFFFEFFFFFEF3F1F0CACAC9E5E3E3FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEE5E3E3CACAC9E4E2E2FFFFFEFFFEFDFFFFFEFFFFFE -FFFFFECACAC9CBCBCAFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEC9C9C9E5E4E4FFFEFDCACAC9CACAC9 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFECACAC9E5E3E3FFFFFECBCBCACACAC9FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFED7D6D6CACAC9FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEE4E2E2 -CACAC9E5E3E3FFFEFDFFFFFEF4F2F1CACAC9191818A6A7A6CACAC9FFFFFEFFFFFED7D6D6D7D6D6 -FFFFFEF3F1F0CBCBCAF3F1F0FFFFFEFFFFFEFFFFFEF3F1F0CACAC9F3F1F0FFFFFEFFFFFEFFFFFE -E4E2E2CACAC9F3F0F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3CACAC9FFFFFE -D6D6D5CACAC9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFED7D6D6D7D6D6F3F1F0CACAC9E5E4E4FFFFFE -FFFFFEFFFFFEF3F0F0CACAC9D7D6D6FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDE5E4E4CACAC9 -E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEE5E3E3CACAC9F3F1F0FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFED7D6D6C9C9C9E5E3E3FFFFFEFFFFFEFFFFFEFFFEFDE5E3E3CBCBCAD7D6D6FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEF3F1F0CACAC9 -CBCBCAFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFED8BBCFFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFDF7F8E2C8D7FFFFFEF8EEF2BE91B0 -BE92B1BE91B0BE93B1BE91B0BE91B0BD91B0BE92B1F8EFF3F7EEF3D5B6CBFBF6F8D5B5CCBE91B0 -BD91AFBE91B0BE91B0FFFFFEFFFFFEC69DB9F4E7EDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFDDDC3D4FCF7F8FFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEB2B2B22828281817171817172A2929CACAC9FFFFFE686969181717181717181717 -9A9B9BFFFFFEFFFFFE9A9B9B1817171817171817173C3C3CE5E4E4FFFEFDFFFFFE9A9B9B181717 -7677771918181817171817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFE828383181717181717282828 -515252181717FFFFFEFFFFFEFFFFFEC9C9C9181717181717191818282828BEBFBEFFFFFEFFFFFE -FFFFFE181717515252181717191818686969FFFFFEFFFFFEB2B2B2191818181717181717676867 -181717CACAC9FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFE686969191818181717181717181717 -282828FFFEFDFFFFFEFFFFFE656666181717191818181717676867FFFFFEFFFFFE999A9A181717 -181717181717676867FFFFFEFFFFFE686969686969FFFFFEFFFFFEFFFFFEB2B3B3282828181717 -181717393938D7D6D6FFFFFEFFFFFEC9C9C9181717767676181717181717181717676867FFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFD9A9B9B181717181717181717676867FFFFFEFFFFFED7D6D6 -3B3B3A181717181717272727B1B2B1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9191818181717 -181717191818FFFFFEFFFFFEF3F1F02828281918181918181817179A9B9BFFFFFEFFFFFEFFFFFE -B1B2B1181717181717191818656666FFFFFEFFFFFE999A9A191818FFFFFEFFFFFEFFFFFE9B9C9B -181717FFFFFEFFFFFEFFFFFE656666676867FFFFFEFFFEFD6566661817171817171817179A9B9B -FFFFFEFFFFFE9A9B9B1817171817171817173B3B3AE5E3E3FFFFFECACAC9181717181717181717 -181717FFFFFEFFFEFDFFFFFE8E8F8F1817171817171817178F9090FFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFD828383181717181717191818999A9AFFFFFEFFFEFDD7D6D63B3B3A181717 -181717282828B1B2B1FFFFFEFFFFFEFFFFFE1817176566662828281817171817173A3A39E5E4E4 -FFFFFEFFFFFEFFFFFE1817176768672828281817171817173B3B3AE5E3E3FFFEFDFFFFFEFFFFFE -D7D6D63C3C3C1817171817173B3B3AD8D7D7FFFFFEFFFFFEFFFFFE828382191818181717181717 -9B9C9BFFFFFEC9C9C9181717181717181717181717FFFFFEFFFFFE676867676867FFFFFEFFFFFE -2727278E8F8FFFFFFEFFFFFEFFFFFEB2B2B2181717E5E3E3FFFEFDF4F2F1656666181717181717 -2A2929B1B2B1FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD9A9B9B181717676867181717181717 -3B3B3AD7D6D6FFFFFEFFFEFDFFFFFE6768673B3B3A2A2929181717282828F4F2F1FFFFFEB1B2B1 -2A29291817171817173B3B3AD7D6D6FFFFFEFFFFFEFEFDFC8384841817171817171817179A9B9B -FFFFFEFFFFFEF3F1F06768671817171817172A2929B2B2B2FFFFFEFFFFFEF3F0F0676867181717 -181717181717767676FFFFFEFFFFFE8E8F8F1817171817171918183A3A39F4F2F1FFFEFDFFFFFE -B2B2B2282828181717181717686969F3F1F0FFFFFEFFFFFEB2B2B2272727191818181717282828 -CACAC9FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFED9BCCFFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFDD5B5CABD92B0BE91AFEAD6E2FFFFFECDA9C2BE92B0BE91B0 -BE91B0BD91B0BE91B0BE91B0BE91AFC59DB9BE92B0BD91AFDDC3D5F4E7EEBE91B0BE91B0BE91B0 -BE91AFFFFFFEFFFFFEDDC2D5D5B5CBFFFFFEFFFFFEFFFFFEFFFFFDFFFFFDFFFFFEFFFEFDF9EFF3 -F8EFF3FFFFFEEFDDE7F0DEE9FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -282828767676F3F1F0F3F1F0B1B2B1F3F1F0FFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFEFD -FFFFFED6D6D5D7D6D6FFFFFED8D7D72727278E8F8FFFFFFEFFFFFE999A9A191818767676E4E2E2 -FFFFFE9A9B9B181717E5E4E4FFFFFEFFFFFEB2B2B2181717BEBEBEFFFEFDCACAC9282828181717 -FFFFFEFFFEFDFFFFFEF3F1F0BEBEBEFFFFFEF4F2F1515252515252FFFFFEFFFFFEFFFFFE181717 -515252E5E3E3FFFFFEE4E2E2FFFFFEE5E3E31918188E8F8FFFFEFDE5E4E4515252181717CACAC9 -FFFFFEFFFFFE191818999A9AFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEF3F1F02828289A9B9BFFFFFE -FFFEFDFFFFFECACAC9E5E3E3FFFEFDB2B3B3181717BEBFBEFFFFFEFFFFFEC9C9C9191818FEFDFC -FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEE5E3E3181717828383FFFFFEE5E3E3515252 -3B3B3AFFFFFEFFFFFECBCBCA181717535353CACAC9FFFFFECACAC9181717B2B2B2FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFEFDFFFFFE3B3B3A535353F3F1F0 -F3F1F0828383191818E4E2E2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE191818CBCBCAFFFFFE -FFFFFEFFFFFEFFFFFEBEBEBEF3F1F0FFFFFE828383191818F3F1F0FFFFFED6D6D5181717828383 -FFFFFEE5E3E3BDBDBDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE9B9C9B181717FFFFFE -FFFFFEFFFFFE686969656666FFFEFDFFFFFEFFFEFD9A9B9B676867FFFFFEFFFFFEFFFEFDFFFFFE -D6D6D5D7D6D6FFFFFED7D6D62828288F9090FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFE -FFFFFEB2B2B2181717A5A6A6FFFFFEBEBEBE181717CBCBCAFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -A6A7A6191818B2B2B2FFFEFDCBCBCAD7D6D6FFFFFEFFFFFE3B3B3A515252F3F1F0F4F2F1828383 -191818E5E3E3FFFFFEFFFFFE181717272727B2B3B3FFFFFEE5E4E43B3B3A828382FFFFFEFFFFFE -FFFFFE181717282828B2B2B2FFFFFEE5E3E33B3B3A828383FFFFFEFFFEFDFFFFFE3C3C3C515252 -E5E4E4F3F0F0676867676867FFFFFEFFFFFEA6A7A6191818B1B2B1FFFEFDCBCBCAD6D6D5FFFFFE -FFFEFDFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFEFD838484535353 -FFFFFEFFFFFEFFFFFE767676515252FFFFFEFFFFFE828383282828C9C9C9FFFFFE8E8F8F282828 -F3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFE9A9B9B181717A6A7A6FFFFFEF4F2F15353533A3A39 -FFFFFEFFFFFEFFFFFE6566662A2929C9C9C9FFFFFEE5E3E3FFFEFDE5E3E3191818828383FFFFFE -E5E3E35152523B3B3AFFFFFEFFFEFDA6A7A6181717B1B2B1FFFFFECACAC9D8D7D7FFFEFDFFFFFE -838484272727CACAC9FFFFFE8E8F8F282828F3F1F0FFFFFEA6A7A6181717CACAC9FFFFFED7D6D6 -BEBEBEFFFFFED7D6D61817179A9B9BFFFFFEE4E2E2B2B2B2FFFEFDFFFFFEE5E3E3181717838484 -F3F0F0E5E3E32828289A9B9BFFFFFEFFFFFE282828767676F3F0F0F3F1F0B2B2B2F4F2F1FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEDCC1D4FFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEBE92B1BD91AFBE92B0CCA9C1FFFFFDE7D0DFBE91B0BD93B1BE91B0BE91B0 -BE91B0BD91AFBE92B0BE91B0BE92B0BD92B0C59DB8FFFDFCCAA3BDBE93B1BE92B0BE92B0FFFEFD -FFFEFDFCF7F8C298B5FCF7F8FFFFFEFFFFFEFFFEFDFFFFFDE7D0DECFABC3C59DB9ECD7E3FFFFFD -F4E7EEE8D1DEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE1817178E8F8F -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDE5E3E3 -191818CACAC9FFFFFEFFFFFE515252757676FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFEFDFC9A9B9B191818FFFFFEFFFFFEFFFEFD191818999A9AFFFFFE -FFFFFEFFFFFEFFFFFE8F9090282828FFFFFEFFFFFEFFFEFDCACAC9181717CBCBCAFFFFFEFFFEFD -1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE767676515252FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFD1817179A9B9BFFFEFDFFFFFECACAC9181717FFFFFEFFFEFDFFFFFE -FFFFFE676867676867FFFFFEFFFEFD8F9090282828FFFFFEFFFFFEFFFFFEBEBEBE181717CACAC9 -FFFFFECACAC9191818C9C9C9FFFFFEFFFFFEFFFFFE3C3C3C9A9B9BFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEC9C9C9191818FFFFFEFFFFFEFFFFFEBEBEBE181717D6D6D5FFFFFEFFFEFDF3F1F0 -1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD181717CACAC9FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFECACAC9181717C9C9C9FFFFFE8F9090272727FFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFE999A9A191818FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFD -676867676867FFFFFEFFFFFEFFFFFE999A9A676867FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFE686969656666FFFFFEFFFEFDFFFFFE181717CACAC9FFFFFEFFFFFEFFFEFD676867 -515252FFFFFEFFFFFEFFFFFE535353767676FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE515252767676 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEBEBEBE181717D7D6D6FFFFFEFFFFFEF3F1F01817179A9B9B -FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE838484676867FFFFFEFFFFFEFFFEFD181717 -9A9B9BFFFFFEFFFFFEFFFFFE828383676867FFFFFEFFFFFECACAC9181717BEBFBEFFFFFEFFFFFE -BEBEBE181717D7D6D6FFFFFE515252767676FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -181717CACAC9FFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFEBEBFBE181717E5E3E3FFFFFE -F3F1F0181717B1B2B1FFFFFEFFFFFE1817178E8F8FFFFFFEFFFFFEF3F1F0191818A6A7A6FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDBEBEBE191818CACAC9FFFFFE -FFFEFD696A6A656666FFFFFEFFFFFEFFFFFEFFFFFE8E8F8F282828FFFFFEFFFFFEFFFFFEBEBEBE -181717CACAC9FFFFFE515252767676FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE1817178E8F8F -FFFFFEFFFFFEF4F2F1181717A6A7A6FFFFFE9A9B9B181717F3F0F0FFFFFEFFFFFEFFFFFEFFFFFE -CACAC9191818BDBDBDFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B181717F3F1F0FFFFFEFFFFFE -8E8F8F2A2929FFFFFEFFFFFE1817178E8F8FFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEDDC3D4FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEBE91B0BE91B0BE91B0BE92B0F9EEF3FFFFFEC298B5BE92B0BE91B0BE91B0BE91B0BD91AF -BE91B0BE92B1BE91B0BE92B0BE91AFEAD7E3E6D1DFBD91AFBD91B0BE91B0F3E6EDFFFFFEFFFFFE -D9BCD1D6B6CCFBF5F6F8EFF3DEC2D4C79EBAD1B0C7ECD7E2FFFFFEFFFFFEFFFEFDFFFFFEDCC2D5 -FFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEB2B2B2181717767676E5E3E3 -FFFFFEFFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFEFFFFFEF3F1F0B2B2B29A9B9B -A6A7A6515252676867FFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE191818C9C9C9 -FFFFFEFFFEFD1817179B9C9BFFFFFEFFFEFDFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEFFFFFE -BEBEBE9A9B9B9B9C9B828383181717FFFFFEFFFFFEFFFFFE1817179B9C9BFFFFFEFFFFFEFFFFFE -FFFFFE656666656666FFFFFEFFFEFDFFFFFECACAC9181717CACAC9FFFFFEFFFFFE1918189A9B9B -FFFFFEFFFFFEFFFEFDFFFFFECACAC9181717D7D6D6FFFFFEFFFEFDFFFFFEFFFFFEE5E3E3A6A7A6 -999A9AB2B3B31918189A9B9BFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFE676867 -676867FFFFFEFFFFFE656666676867FFFFFEFFFEFDFFFFFEFFFFFE181717A6A7A6FFFFFECACAC9 -191818CACAC9FFFFFEFFFEFDFFFFFE6768679B9C9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -CACAC9181717FFFFFEFFFFFEFFFEFD9A9B9B181717FFFFFEFFFEFDFFFFFEFFFFFE686969767676 -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFEFFFEFDD9D8D7 -999A9A9B9C9B9A9B9B181717CACAC9FFFFFE656666686969FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE676867676867 -FFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFEFFFFFEF3F1F0B2B2B29A9B9BA6A7A6 -515252686969FFFEFDFFFFFEFFFFFE181717CACAC9FFFFFEFFFEFDFFFFFE181717828383CACAC9 -CACAC9CACAC9676867676867FFFFFEFFFFFEFFFFFEFFFFFEFFFEFD1817179A9B9BFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE676867767777FFFFFEFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFFFE999A9A686969FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFE -FFFEFDFFFFFE9A9B9B676867FFFFFEFFFFFE9A9B9B191818CACAC9CACAC9CACAC9B1B2B1191818 -CACAC9FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD181717CACAC9 -FFFFFEFFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFFFE2A2929A7A7A7FFFFFEBEBEBE181717 -F5F3F2FFFFFECACAC9181717A6A7A6CACAC9CACAC9CACAC92828289A9B9BFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFEFFFFFEE5E3E3181717A7A7A7FFFFFEFFFFFE676867 -676867FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFEFDFFFFFEFFFFFEFFFFFE181717A7A7A7 -FFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDCACAC9191818A6A7A6CACAC9CACAC9 -CACAC92727279B9C9CFFFFFEF3F1F05050502A2929B2B2B2FFFFFEFFFFFEFFFFFEFFFFFE828382 -1817179A9B9BF3F0F0FFFFFEFFFEFDFFFFFE686969515252CACAC9C9C9C9CACAC98F9090181717 -FFFFFEFFFFFEB2B2B2191818757676E5E3E3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEDDC1D3FFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEC59DB8 -BE92B0BD92B0BE91B0D9BCCFFFFFFEDDC2D4BC91AFBE91B0BE91B0BE92B0BE91B0BE91B0BD92B0 -BE91B0BE91B0BE91B0D2B0C7FBF6F8C398B5BE92B0BE91B0C69EB9FCF7F8FFFFFEFCF7F9D9BBCF -C398B6C69DB9D8BBCFF9F0F3FFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEDDC1D3FFFEFDFFFFFE -FFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDCACAC96768671918189A9B9BFFFFFE -FFFFFEFFFFFE9A9B9B686969FFFFFEFFFFFEFFFFFED7D6D6282828272727676867676867191818 -676867FFFFFEFFFFFE9B9C9B191818FFFEFDFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFE -1817179A9B9BFFFFFEFFFFFEFFFEFD9B9C9B181717FFFFFEFFFFFEF3F1F0535353181717686969 -656666282828191818FFFEFDFFFFFEFFFFFE181717999A9AFFFFFEFFFFFEFFFEFDFFFFFE676867 -676867FFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE1817179A9B9BFFFFFEFFFEFD -FFFFFEF3F1F03B3B3A9A9B9BFFFFFEFFFEFDFFFFFEFFFEFDB2B2B21817173B3B3A676867515252 -1817179A9B9BFFFFFEFFFFFECACAC9181717FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFE -FFFEFD656666676867FFFEFDFFFFFEFFFEFDFFFFFE1817179B9C9BFFFEFDCACAC9181717C9C9C9 -FFFFFEFFFFFEFFFFFE6869699A9B9BFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDCACAC9181717 -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE656666686969FFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFE181717C9C9C9FFFFFEFFFFFEFFFFFE838484181717515252676867 -3B3B3A191818CACAC9FFFFFE676867676867FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE9A9B9B -181717FFFEFDFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFD686969676867FFFFFEFFFFFE -FFFFFE9A9B9B686969FFFFFEFFFFFEFFFFFED7D6D6282828272727676867686969181717676867 -FFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE181717181717181717181717181717 -181717676867FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE181717999A9AFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFEFFFFFE676867676867FFFFFEFFFFFE1817179A9B9B -FFFFFEFFFFFEFFFFFE9B9C9B676867FFFFFEFFFFFEFFFFFE1817179B9C9BFFFEFDFFFFFEFFFEFD -9A9B9B676867FFFFFEFFFFFE9B9C9B181717191818191818181717191818181717C9C9C9FFFFFE -1817179A9B9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFE -FFFFFE676867676867FFFFFEFFFFFEFFFFFE828383535353FFFFFE838484767676FFFEFDFFFFFE -CACAC91817171918181817171817171817171817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -999A9A181717FFFFFEFFFFFEFFFFFEFFFFFE1918189A9B9BFFFEFDFFFFFE676867686969FFFFFE -FFFFFEFFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFEFDFFFFFE181717999A9AFFFFFE191818 -9A9B9BFFFFFEFFFEFDFFFFFEFFFEFDFFFFFECACAC9181717181717181717191818181717191818 -999A9AFFFEFDFFFEFDF4F2F19A9B9B282828535353D6D6D5FFFFFEFFFFFEFFFFFEB2B3B33B3B3A -282828BEBEBEFFFFFEFFFFFE656666181717181717181717181717181717181717FFFFFEFFFFFE -FFFFFEC9C9C96768671817179A9B9BFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEDDC2D4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFED5B5CBBE92B0BE92B1 -BD91B0C298B5FFFEFDF8EFF3BE91B0BD91AFBE91B0BD91AFBE91AFBE91B0BE91B0BE92B1BE91B0 -BE92B0BE91B0F7EFF3D9BBCFBE92B0BE91AFBD91AFCDA9C2FEFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFDFFFEFCFFFFFEFFFFFEFFFFFEFFFEFDDEC3D5FFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEA7A7A7181717A6A7A6FFFFFEFFFFFE -9A9B9B676867FFFFFEFFFFFEFFFEFD7676763B3B3AF4F2F1FFFFFEFFFFFE676867676867FFFFFE -FFFFFE999A9A191818FFFFFEFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFE2828288E8F8F -FFFFFEFFFFFEFFFFFE9A9B9B181717FFFEFDFFFFFEA6A7A6181717D7D6D6FFFFFEFFFFFE9A9B9B -181717FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFE767676515252FFFEFD -FFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE1817179B9C9BFFFEFDFFFFFEFFFFFE8E8F8F -3C3C3CF3F0F0FFFFFEFFFFFEFFFFFEFFFFFE282828767676FFFFFEFFFFFEFFFFFE1817179B9C9B -FFFEFDFFFFFECACAC9181717FFFFFEFFFFFEFFFEFDFFFFFE656666676867FFFFFEFFFFFE767676 -515252FFFFFEFFFFFEFFFFFEE4E2E2181717BDBDBDFFFFFECBCBCA181717CBCBCAFFFFFEFFFFFE -FFFFFE6768679A9B9BFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFECACAC9191818FFFFFEFFFFFE -FFFFFEA6A7A6191818F3F1F0FFFFFEFFFFFEFFFFFE3B3B3A8E8F8EFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFE181717CACAC9FFFEFDFFFEFDD7D6D6181717A6A7A6FFFEFDFFFFFECACAC9181717 -CACAC9FFFEFD757676515252FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFE -FFFFFEFFFFFE999A9A191818FFFEFDFFFFFEFFFFFE676867676867FFFFFEFFFFFEFFFFFE9A9B9B -676867FFFFFEFFFFFEFFFEFD7676763B3B3AF4F2F1FFFFFEFFFEFD686969676867FFFFFEFFFFFE -FFFFFE181717CACAC9FFFFFEFFFFFEFFFEFD2828288F9090FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFEFD2828288F9090FFFEFDFFFEFDFFFFFEFFFEFDFFFFFEA7A7A7 -181717F3F1F0FFFFFEFFFFFEFFFEFD3B3B3A8E8F8FFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFE -FFFFFE9A9B9B676867FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B656666 -FFFFFEFFFEFDA6A7A6181717F3F1F0FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD2A29298E8F8F -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE181717CACAC9FFFFFEFFFFFEFFFFFE686969 -656666FFFFFEFFFFFEFFFFFEBEBEBE181717E5E4E4272727B2B3B3FFFFFEFFFFFED7D6D6181717 -BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717 -FFFFFEFFFFFEFFFFFECACAC9181717CACAC9FFFFFEFFFFFE676867656666FFFFFEFFFFFEFFFFFE -FFFFFE767676515252FFFFFEFFFFFEFFFFFEE5E3E3191818BEBEBEFFFFFE2828288E8F8FFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDD7D6D6181717BEBFBEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEE5E3E35152522A2929FFFEFDFFFFFEFFFEFDFFFFFEF3F0F0838484181717 -D6D6D5FFFFFE767676515252FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEA5A6A6181717A5A6A6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEDCC1D3 -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDEBD7E3BE91AFBE91B0BE91B0BE91B0 -E6D1E0FFFEFDD1AFC7BE92B1BE91B0BE91B0BE91B0BE92B0BE91B0BE92B0BD91AFBE91B0BE92B0 -D9BBCFF7EEF3BE91AFBE91B0BE92B1BE92B0F0DEE8FFFFFEFFFFFEFFFEFDFFFFFEFFFDFCFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFCF8F8DDC1D4FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE515252767676FFFFFEFFFFFE9A9B9B191818 -FFFFFEFFFFFEFFFFFE656666535353FFFEFDFFFFFEFFFFFE515252686969FFFFFEFFFEFD9A9B9B -181717FFFFFEFFFFFEFFFEFDFFFFFE181717CACAC9FFFFFEFFFFFE8283833B3B3AFFFFFEFFFFFE -FFFFFE9A9B9B181717FFFFFEFFFFFE9A9B9B181717F4F2F1FFFFFEFFFFFE8E8F8F191818FFFFFE -FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFEFFFFFEB2B2B2181717E5E3E3FFFFFEFFFFFE -CBCBCA181717CACAC9FFFFFEFFFFFE181717999A9AFFFFFEFFFFFED7D6D6181717CACAC9FFFFFE -FFFEFDFFFFFEFFFFFEFFFFFE1817178E8F8FFFFFFEFFFFFEF3F1F01817179A9B9BFFFFFEFFFFFE -CACAC9181717CBCBCAFFFFFEFFFFFEFFFFFE686969676867FFFFFEFFFFFEB2B2B2181717D7D6D6 -FFFEFDFFFFFE9A9B9B181717E5E3E3FFFFFECACAC9181717CACAC9FFFFFEFFFFFEFFFFFE676867 -999A9AFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFECACAC9181717CACAC9FFFEFDFFFFFEE4E2E2 -181717A6A7A6FFFFFEFFFFFECACAC9181717B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -181717C9C9C9FFFFFEFFFFFECACAC9181717BEBEBEFFFFFEFFFFFEBEBEBE181717CACAC9FFFFFE -B2B3B3181717D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9A9B9B181717FFFFFEFFFFFEFFFFFE -9B9C9B181717FFFFFEFFFFFEFFFFFE656666676867FFFFFEFFFFFEFFFFFE9A9B9B191818FFFFFE -FFFFFEFFFFFE656666535353FFFEFDFFFFFEFFFEFD515252656666FFFFFEFFFFFEFFFFFE181717 -9A9B9BFFFFFEFFFFFEFFFFFE8283833B3B3AF4F2F1FFFFFEFFFFFEF3F1F0FFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE8283833B3B3AF4F2F1FFFFFEFFFFFEFFFFFEFFFFFEE4E2E2191818A6A7A6 -FFFFFEFFFFFECBCBCA181717B2B2B2FFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE9B9C9B -676867FFFFFEFFFFFEFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE9A9B9B686969FFFEFDFFFFFE -E4E2E2181717A6A7A6FFFFFEFFFFFEFFFFFEF3F0F0FFFFFEFFFFFE8283833B3B3AF3F1F0FFFFFE -FFFEFDFFFEFDFFFFFEFFFEFDFFFFFE1817179A9B9BFFFFFEFFFFFEFFFFFE676867676867FFFFFE -FFFFFEFFFFFEFFFFFE282828828382181717F3F1F0FFFFFEFFFEFDFFFFFE3B3B3A767777FFFFFE -FFFFFEFFFFFEF3F0F0FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9B9C9B181717FFFFFEFFFFFE -FFFFFE9A9B9B181717F3F1F0FFFFFEFFFEFD676867676867FFFFFEFFFFFEFFFFFEFFFFFEB2B2B2 -181717D7D6D6FFFFFEFFFFFE9A9B9B181717E5E3E3FFFFFE8283833C3C3CF3F1F0FFFFFEFFFFFE -FFFEFDFFFFFEFFFFFE3B3B3A757676FFFFFEFFFFFEFFFFFEF4F2F1FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEBEBEBE181717D7D6D6FFFFFEFFFFFEFFFEFDFFFFFEF3F0F0181717A7A7A7FFFFFE -B1B2B1191818D8D7D7FFFFFEFFFFFEFFFFFEF3F1F0FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -505050767676FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEDABCCFFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFDFCFFFFFEFFFFFEC79EBABE91B0BE91B0BE92B0CEA9C2FFFFFE -ECD7E3BE92B0BE91B0BD91B0BE92B1BE91B0BE91AFBE91B0BE91B0BD91AFBE91B0C298B5FFFDFB -CCA9C2BE92B0BE92B0CCA9C1FCF8F9FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDF0DEE9EBD7E3FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F3F1F03B3B3A8E8F8FC9C9C98F9090181717BEBEBEFFFFFEFFFFFEE5E3E3282828676867CACAC9 -FFFFFEB2B2B21817178283839A9B9B676867181717676867FFFFFEFFFEFD9A9B9B181717FFFFFE -FFFFFEFFFFFEFFFFFE181717CBCBCAFFFFFEFFFFFED7D6D6282828767676CBCBCA999A9A282828 -181717FFFFFEFFFFFEE5E3E31817176768679A9B9B838484181717181717FFFFFEFFFFFEB2B3B3 -181717676867B2B2B2FFFFFEFFFFFEFFFFFEF3F1F0515252505050BEBEBEB2B2B23B3B3A181717 -CACAC9FFFFFE9A9B9B191818676867CACAC9FFFFFE5152523B3B3A9A9B9B9A9B9B9A9B9B9A9B9B -FFFFFEFFFFFE8283832828288E8F8F999A9A3B3B3A1817179A9B9BFFFFFEFFFEFDFFFFFE515252 -3B3B3AB2B3B3FFFFFEB2B3B33A3A393C3C3CB2B2B2FFFFFEFFFFFE5050502828289A9B9B828383 -1918188E8F8FFFFEFDFFFFFECACAC9181717CBCBCAFFFEFDFFFFFEFFFEFD6768679A9B9BFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE5152523B3B3AB2B2B2FFFFFEFFFEFD8E8F8F191818 -8E8F8F8E8F8F282828515252FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE999A9A181717828383 -CBCBCAFFFEFDFFFFFE3B3B3A3A3A39999A9A8E8F8F2A2929191818CACAC9FFFFFEFFFFFE515252 -2727279B9C9B8E8F8E3B3B3AD7D6D6CACAC9676867191818999A9AFFFFFEFFFFFECACAC9181717 -A6A7A6FFFFFEB2B2B23B3B3A3B3B3AB2B2B2FFFFFEFFFFFEE5E3E3282828676867CACAC9FFFFFE -B2B2B21817178283839A9B9B676867191818656666FFFFFEFFFFFEFFFFFE8E8F8F2828288E8F8E -FFFFFEFFFFFEE5E3E32828283B3B3A9A9B9B8E8F8E3B3B3AB2B2B2FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEE5E3E32828285152529A9B9B828383515252F3F1F0FFFFFE8E8F8F1817178E8F8F8E8F8E -2A2929515252FFFFFEFFFFFEFFFEFD181717999A9AFFFFFEFFFFFEFFFFFE9A9B9B656666FFFFFE -FFFFFEFFFEFD191818999A9AFFFFFEFFFFFEFFFFFE9A9B9B676867FFFFFEFFFFFEFFFEFD8F9090 -1817178283839A9B9B7676763B3B3AFFFFFEFFFFFEE5E3E32828285152529A9B9B828383515252 -F3F1F0FFFFFEFFFFFE8E8F8F2828288E8F8FFFFEFDB2B3B33B3B3A3B3B3AB2B3B3FFFFFEFFFFFE -FFFFFE828383181717767676FFFFFEFFFEFDFFFFFEFFFFFEBEBEBE1817176566669A9B9B828383 -282828E5E3E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE9B9C9B1817173C3C3C9A9B9B828383181717 -8E8F8FFFFFFEFFFFFECACAC93B3B3A3B3B3A9A9B9BFFFFFEFFFFFEFFFEFDFFFFFE515252282828 -9A9B9B8283831817178F9090FFFFFEFFFFFEE5E3E3272727515252999A9A828383515252F3F1F0 -FFFFFEBDBDBD1817176768679A9B9B828383282828E5E3E3FFFFFE9A9B9B676867B2B2B2B2B2B2 -515252515252FFFFFECACAC93B3B3AA6A7A6BEBEBE7676762A2929E5E3E3FFFFFEFFFFFE505050 -2828288E8F8F999A9A515252828383FFFFFEF3F1F03B3B3A8E8F8FCACAC98F9090181717BEBEBE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEDDC1D3FFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDE8D2DFBE91B0BE91B0BE91B0BE91B0F4E7EEFFFFFEC69EB9 -BD91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE92B0D5B5CBCAA3BDBE92B0 -CAA3BDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEEBD8E3EFDEE8FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFECACAC9 -828383676867757676BEBFBEFFFEFDFFFFFEFFFFFEFFFFFED7D6D6828383B2B2B2FFFFFEFFFFFE -B2B3B37676766869698E8F8F8F9090828383FFFFFEFFFFFEB2B2B2656666FFFFFEFFFFFEFFFFFE -FFFFFE676867D7D6D6FFFFFEFFFFFEFFFFFED8D7D7828382676867838484999A9A686969FFFEFD -FFFFFEFFFFFEC9C9C98283836768678283839A9B9B676867F3F1F0FFFFFE8E8F8E686969676867 -8E8F8FFFFFFEFFFFFEFFFFFEFFFFFEF3F1F08E8F8F676867767676A6A7A6676867D7D6D6FFFFFE -676867676867676867B2B3B3FFFEFD686969676867686969676867686969676867FFFFFEFFFFFE -F3F1F0A6A7A6676867676867A6A7A6767676A6A7A6FFFEFDFFFFFEFFFFFEF3F1F08E8F8F8E8F8E -FFFFFE8E8F8F6768676566668E8F8FFFFFFEFFFEFDF3F1F09A9B9B686969767676B1B2B1FFFFFE -FFFFFEFFFEFDD7D6D6656666D7D6D6FFFFFEFFFFFEFFFEFD8E8F8FB2B2B2FFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEF3F1F08E8F8F8F9090FFFFFEFFFFFEFFFFFEB2B2B2686969656666 -A7A7A7F3F1F0FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD676867676867686969B1B2B1FFFFFE -FFFFFEE5E3E38E8F8F686969757676A7A7A7676867CACAC9FFFFFEFFFFFEF4F2F19A9B9B676867 -767676BEBEBEFFFFFEB2B2B2676867656666676867FFFFFEFFFFFEFFFFFEA6A7A68E8F8FFFFFFE -8E8F8F6768676768678F9090FFFFFEFFFFFEFFFFFED7D6D6828383B2B2B2FFFFFEFFFFFEB2B3B3 -7676766869698F90908E8F8F828383FFFFFEFFFFFEFFFFFEFFFEFDA6A7A6676867FFFFFEFFFEFD -FFFFFEF3F1F08E8F8F686969767676B2B2B2FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -E4E2E2828383686969828382D7D6D6FFFFFEFFFFFEFFFFFEB2B2B2656666686969A4A5A5F3F1F0 -FFFFFEFFFFFEFFFFFE676867B2B3B3FFFFFEFFFFFEFFFFFEB2B2B28F9090FFFFFEFFFFFEFFFFFE -676867B2B2B2FFFFFEFFFFFEFFFFFEB2B2B28E8F8FFFFFFEFFFFFEFFFFFEFFFEFDBEBEBE767676 -6566668E8F8FE5E3E3FFFFFEFFFFFEFFFFFEE5E3E3828383676867828383D7D6D6FFFEFDFFFFFE -FFFFFEFFFFFEA6A7A6676867FFFFFE8E8F8E6869696768678E8F8FFFFEFDFFFFFEFFFFFECBCBCA -656666BEBEBEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED7D6D6828383676867828383CACAC9FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFE999A9A181717A6A7A6676867676867A6A7A6FFFFFEFFFEFD -FFFFFEB1B2B1686969656666676867FFFFFEFFFFFEFFFFFEFFFEFDF3F1F09A9B9B676867757676 -B2B2B2FFFFFEFFFFFEFFFFFEFFFEFDE5E4E4828383676867828383D7D6D6FFFFFEFFFEFDFFFFFE -D7D6D6828383676867828383CACAC9FFFFFEFFFFFEF3F1F0A6A7A66869696768678F9090F3F1F0 -FFFFFEFFFFFEB2B2B2757676686969838484D7D6D6FFFFFEFFFFFEFFFFFEFFFFFEA6A7A6656666 -676867A6A7A6F3F1F0FFFFFEFFFEFDCACAC9828383676867767777BEBEBEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFCFFFEFDFFFEFDFFFFFED5B5CBFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFDC69DB9BD91AFBE92B0BD91B0D6B5CAFFFFFEE2C8DABE91AFBE91B0 -BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE92B0BE91B0BE92B0BD91AFBF93B1FFFEFC -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDDDC1D4 -FFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFE9A9B9B181717FFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFDFFFFFEE6CFDDF4E7EFFFFFFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEEFDEE8BF92B1BD91AFBE92B0C298B5FCF6F8FCF8F9BE91B0BE91B0BE91B0BE91B0 -BE91B0BE91B0BE91B0BE91B0BE91B0BE92B1BE91B0BE91B0C298B5E6CFDDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFED8BCCEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFE9A9B9B191818FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFEFDFFFFFEF9F0F4E2C8D9FFFFFEFFFEFDFFFFFEFFFFFEFFFEFCFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFED8BACDBE92B0BD91B0BE91B0E8D1DFFFFEFDD6B6CBBE91B0BE91B0BE91B0BE91B0BE91B0 -BE91B0BE91B0BE91B0BE91B0BD91B0BE91B0BE91AFDDC2D5FFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFCF6F8D9BCD1FFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE999A9A -181717FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FEFDFCFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFED5B5CBFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFEFDFFFFFEFFFFFEFFFFFDFBF7F9 -C69DB9BE92B0BE92B1C59DB9FFFEFDE3C9D9BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0 -BE91B0BE91B0BE92B0BD91B0BE91B0EBD7E2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDE6D0DDF4E6EDFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD9B9C9B181717FFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFEFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFDFCFFFFFEFFFEFDFFFFFEE2C8D9 -F4E6EDFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEEFDEE8BD91AF -BE92B0BE92B1C79EB9BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91AF -BE91B0BE91B0BE91B0FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFED2B0C8FFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFEFDFCFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECACAC9999A9AFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFAF6F7DABCD1FFFFFE -FFFDFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDCAA3BDBE92B0BD91AF -BE91B0BE92B1BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE92B1BD91AFBE92B1 -C69DB9FFFFFEFFFFFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -EFDEE8E6D0DEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEDDC2D4F8EFF3FFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFECEA9C2BE91B0BE92B0BE91B0BE91B0 -BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0BE91B0CDA9C1CDA9C2D1B0C7F4E6EDFFFFFE -FFFEFDFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFED4B5CBFFFFFE -FFFEFDFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFCF8FAD1B0C7FFFFFEFFFFFEFFFEFDFFFFFE -FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFECDA9C2BE91B0BE91B0BE92B1BE92B0BE92B1BE91B0 -BE91B0BE91B0BE91B0BE91B0EFDEE8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEEBD7E3E8D1DFFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDEBD7E3E7D0DEFFFEFDFFFFFDFFFEFDFEFEFDFFFFFE -FFFFFEFFFEFDFFFFFDFFFFFECDA8C1BE91B0BE91B0BE92B0BE91B0BE91B0BE91B0BE92B0BE91B0 -BD91B0BE91B0FFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFBF7F9D5B6CAFFFEFDFFFFFEFFFEFDFFFFFDFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDD4B5CBF9EFF2FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFEFDFFFFFECDA9C2BE91B0BE91B0BE91B0BE92B0BE91B0BE91B0BE92B0BD91AFBE91B0BD91B0 -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFEFDFFFFFEFFFEFDD7B6CBF8EEF2FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFDF7F8D4B4CAFDF8F9FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFD -CDA9C2BE91B0BE91B0BE91B0BE91B0BE92B0BE92B0BE91B0BE91B0BD91B0BE92B1FFFEFCFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -E4CAD9E5CFDEFFFFFDFFFFFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDF4E7EECFAAC2FCF6F8FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFEFDE6D1DFE7D0DEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFD -FFFFFEF4E7EECFABC3FCF6F8FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFDE7D0DEDABCD0FFFEFDFFFFFEFFFEFCFFFEFD -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -F4E7EDD6B6CBF7EFF3FFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFEFCDABCD1E7D0DEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFDFFFFFEFBF6F7 -D5B5CBEBD7E3FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -F8EFF3D1B0C7EFDDE7FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDECD8E4 -D1AFC6F7EFF3FFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCDEC2D5DBBDD1FCF7F7 -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFDFFFEFDFFFFFEFFFFFDFCF7F8DDC1D3 -D8BBCFF4E7EEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFDFFFFFEFCF7F8E3C9D9D5B6CBF0DFE8FFFDFCFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFCF7F8E4CADA -D5B5CBE2C9D9F4E7EEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FDF7F8EBD8E3D8BBCFD8BBCFF4E6EDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFDFFFEFCFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEF8EEF3 -E3C9D9D8BBCFDDC1D3D9BCD1DCC1D3DEC3D5DDC2D4DEC2D4DEC2D4D8BBD0D9BCD1DCC1D4F0DFE8 -FFFFFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFE -FFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFDFFFFFDFFFEFDFFFEFDFFFEFDFFFEFD -FFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFE -FFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFCFFFEFDFFFFFEFFFFFDFFFFFDFFFFFE -FFFFFEFFFEFDFFFFFEFFFEFDFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFEFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFEFDFFFEFDFFFFFDFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFEFD -FFFFFEFFFFFEFFFFFEFFFEFDFFFFFEFFFFFEFFFEFDFFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFEFDFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFEFCFFFFFEFFFEFDFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE -FFFFFEFFFFFEFFFFFEFFFFFEFFFFFEFFFFFE - -end -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/conceptual_structure.png b/Content/Figures/conceptual_structure.png deleted file mode 100644 index d609451b331c7faf0147b9821ae3a51ed27c7246..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 79541 zcmXV21yCGavt8WX-Q5Z9?iw_>yD#qUnqUd8!7Vt!9fBmdTX1)RzTx{{QPkE9%pUD5+4E=)uJ|KxXm{{q}WaFP22243a<`;{5B7Xcmz$xDfAdM}^kc==<`Ee{7-W5O3t zt7Fy$BSN2P#nQ_m)Pp`ULrZNL6&W#Hnz02#8o@^!AW36GBVFQP!(c-&7*Wt8$~7fJ zBjqPUmwf+h;Wha*oNcTBd2Qk@pet{RwnIbp>(}e7eW88+c<|RSa`;ek__rSEALF|D z8WIl}4AThjx1yti!?mTbNDiRUp~caqba&)zQVwGIM*5`Rue-uIf;k+P8npgRjDDfR zr0D(cE@QJ0o<77hP%^c1|-L7{UZ_Tfj&Y^1K>eu3OOaEk5ZVyKUal7 zJ+1M`ATfD$3{0#q$=R#oOPL(h&2qEN8=ZbFw54|^OJV0-E7c@epwg)kXi$}53#ojJ z{J~shMzaWi8x-)6nv0MzKTk|;U6_CC`!pcMh9uu)wqhheJ>fB5*q;VJjbw9RorYT; zRWzTf>FNf5-Zt~U*oxwF-G)X)LgGrXtW2rts3F2Pr>AFTX9?On{I0I18(gjbqsg+Z zjUN=uVLohnnH4uO%!EvVga-^CqYYp4&-Y3ld)&$&)>Dw6b=^8p5t+Bx3M~f*f=-iT z)aTD1i3Qw8sN>@a<#91GTA>uR6gIFyVs>`M^?6<9nwpyVis2U+)bHbs9vLL}BqbCj z?SA%$kDx=uVZsVF4*Ex+)1<|0pkv?zgQ$vKcp*h0Bl^IGOvop9==qm;lNjL=0hC%J zCkxB?NxND9dh|Oen8vvirKg^rst@gdiwt2h_IJPTZ;ls-X`d9RC%f$$9gi%DJ1-z| zt;5UwX~CEZJfvhXnF-;NNFfQkbL`yJ3#=DtXj-IAc*xQszqJ_u^70ZC+=mr`pOF&6 z58h{>Gezzu76^AGAh7ve7~z(^;;b|8n%L}Ei|EdQE)uF<>;tSn<@O~PeL2&U>)EpJ zjwko2WH|AE6NQ%;)R!1O<0A$kl*vW5VNh`!lcAFKI>UT-*)yoWMwR%T zHd3I=#Rqk?5GQ_&J2725_pF`BK;u7xud@pD_Y}TCZ~IA zd~Vy=0tUI^iKncC2?4b-QLGuWj0D3$f-x+{uhAraXcYT45IrGqk+;&1nOXV&yxWdU zRR4cc(HBGPh-xX^c0ax=F}@61Kh?P`W$*>mz^{E?*?jeLmKbKus1QVA`751L6hoW% z-2c7Kd(_I}d_vNp6JLmLTc$Xnz2I9wv|0r8f0p&S81Agw`KQC>Yi1n^^i$ZHSg+X@_aKzo z4g!JoeGh+ajo^2{^UEUEIfAY7v35L{AtIN)R$l&Fc&dLbl8<)AX42-bPsb2P_}~8v z)nO11S}UfAoS}evj?nTDp*RZRhpFgPc6Lfs$-C5r*|(x(phf>@@zXNt5TimzE(eBe zAsi-ivEMNo0#%#WzQQVM5Ahj#({Lp=ZLrN=5ke$yzHgWW83iZj5bHn+*7y3$FV;91 zRy(PrA0-B~mNW-+iA`~oG0`SS-YVt$>x4xk+LZY_(PNxevYZ@zX0vzJfug-KFoaQ3wEdKb_HLcNA z2I3OXi-v%WN7sddky`_3YhLw_M{xCCT4k@+Y3Lhyepy(tqvrr+cMm+pT&;W1;wkEfj<+G_Ami*BpOORCE`&OiyQy8y?r+^$lq!X7v$^#5qtgp z`;_EWS~a`t5j&d}{1(Fhe}=SsjPTnD9G}ml(7N}B{<_t1EQL64LmZm42ahQ-K0}vD z2jm7E?V;W5EM&tW%Vy!AAxpz24>5xo-GGR6Itu8{&up9j_Cgw8nspUZBzdXrpHAUDK(c3QwIG1|5j1$%2X61#R+Axx z4Oupex6Rcbsu_!%z;u~lIZee;x>9nn-J(c+K|OndQdRatBN7Qn97xY2|1S_jc8 zZk%4JcjY_3?Wc6|f0$lE^!wiqii3tPH&jA6BGVneiDkhLY6Q`+nr}Q3r)IN(`54(P zOp%d^e|r@E7Ouw19N1KUfR}`R{0y90E;HQbl!Gei6hC^$Hq+rDdSHZ}#__{@^iLI3x+SnfdCkP>!qDwvC=jC>ooN6B4 z!DX_>5)GI=w{uj62s7j9^g3G_87kDLEth(vrCCP5OPF}8f1?6wHbVKI+ z2+mKkuxKLm$jlW%`!r;8gIzRkpB(X@Ujiwl-tBb1#^j;m!PnFH5gRjFuhi1>`EyQx zMa17%#W6qM=ih8N`KqNbFk-V#4{7C_b;enu1FH_-GewR-?lf`H@4JA5c())OXPrD z@c}N(Sv~Jn<8p3KNi6HvP&E`p_D~DDfew&u6L1VM+Dm3=j7;&?br)x^mU#~b?X}CwHZs9z=EmzJP z`~0M2`{^s~n?(s7#AJCcME@Coc+^3lf1sO$5!ew=ioOc|d~Lbd<|f)YS5fOC%@y-HTFav>n-{3@YaAgd z8r2>0J?lf4_CUc*xHv-dG`WmrQx7b_WH4Md{}uMa{(2drw`1sEid?PF^~1T*5V^+Z z@qpiezH%C`?&53mGF`NIBry2r*8mFE^VL5dy~Xng87aPwoPdXtjGD}V7LcVt;h(?) z{3mHW*q#)(vjam`C0izHULIf6DqrMiI;4!y_kLWrbKACKmpc}OA^&=eb{7nZ?!!T>p~`&No)*oWtThX^Pg2Px!v(C6*Qjg4NR_)t0)NgBH+vjUN$8WZJ3%*oEMRiw^!2Hk1wjvWY z(yH0!dpo;#ZU^&rHd7#xPdrdKhtR~JCLaIF|GhtwZ?i;f4oI<;BdQRMG7Tq|{&Fu8 z57Bwf!#7=tR4M83{TKSCl`a}2$b$hBT0ERg#vUCib}D^q_bo8A+V2`&Uli60?ZotA zkQ0%!K8%;0>+h|(`7c}WDTvQljria*vLYXx%Cj3G%Q82()-RdEAj6+u&cO%v(>p$q zAfQ|GsqJh)W#T=B#CNfuQpx1AEbGc)MmmlpgjoO4s#{ZMx6~qcHjPLkV7NWc(Z;-U zj5gA~tJuhn!EJi+ok>I|GUN4$p|qR*<0siy16IlRgB`6V!{rSltFkpglU47b%KGT( zm{ec%w6#SCCy1;1neekX=5`#vkX1GMeokIfZxKTB*Kep^1IE-(-acy9CDvo;3%?>l zkd@H3Ql|M(SMK&wRCD0|JNWQio`n*(Mcclqs#`O~&pOSY*sY;N)?2Ya>_6XbGkLB_ zmCS3R>H0Z!n2B@Mhg;9zl zqj1QOH_8*f)F~Hm`4QSWMt|2;8gMqMgz}{_TbR&<^9=rKKq^6~xAn42)MQJNq*zx+ zMtFR7MIFMo@c3|GOl*i*F>Z7(SR?M#47R(c4bDt)Xsh#IA$Dc}ZsQ4u!523i zLW67&dt_lBC9#MLF^#mP!U0=<__Bg4K~Ok-#o`}U0$BE7*LT+RZ`hY|P?* z%%M-sVHsYZ;2$H6{QZrhvdN)cLF=tKj@34_nYR%Zzkk$N)pTl^Ox>qIfr+LQndFz) zC&VVrG8pkOabihpekd+hS=zaJilv@9o}{2bGke2Uw_NS7Xtt*9!)) zO{7WP$GK2$2%`AfEx=kngzowRh7auviFKUQVcp9SCcoOfBv>tErLTh>2I3!ZQ zsoBiZ>ors=+C*bAO4miVHDkn_`zFMjo5_}mm43z%;RCSm;id|g$zo{}3m0*0oIaBe z6ti`-u2W$85$eR~9;<>?GejOao=E~(?bZH{xzuZvv;T5-!vOwqV1DBFl{1ThD&9Ul zzfNMwxqr;1Dl+P!{cPTU`AQ!idt}a1RNci|0-s))(zE~hTKQtLZF}?j$rqTX4T|+- zZpT?5ZZkdK7K4#8^prOH3XCB4iIw=KKWxnm@k2okt8P5UJ`7zRh*W*J3kpOpk=}(( z!6n>dH9vPX=+~t-z)o@&U58^I{8r*lglNnf6M~RZqF0l7NytfPKmkj{zFBK-J$>bj z2UVljfiLO5qwDaG6>Ud+=D8ISfweEb0BPrYXLr$qKf&GE+r;7CX^nz}ghYV*`O11z zIYq^_dASo&C_HuZLRqYGhUsgHMy6m8N!Pe=JS_^*CRxk9l=ghlWYY1pDe0CgnoD9< zjiRSt%hex5sks<8H>KUAdPIxLDygYW&YrKBh!SgJunLpu+a0Q?o9%)%y_0irCgqI> zuLe%htV5YgeS7vwf%?cC^&Y?f&7%V8R3N*2C^a;0_<`AHXxJYIe^@N4tXOu>l%TSA zZk7r!TD4!G5o+p&0#UhTF9Wq%RzltaUZC7i_o0vvrrT)*jOGwySia?3e%!I6V_f?h z0KZ9$WMr6>otFf}34ce!sCgC+_i2yT-DcJ~BnGcABFu1O_HcdnPYAy#?eF5X9-fcM zK$9H)J-3f)|KP1`a|maMR^Ttsfidlad26YpOP%8~;7=kXmgZi3_S` zs*b?g&;=T@Sj$Sy(0Y?7qeL8svaY;3GUk`m4NNG2SfZXgC~>srYZbR9?67Iea&1Z# z$hU4ePToYcKOu_SiBdHk)z3=lm^YJe&5?++U?q+t_xB@bxQyPR+ z$S5)A7m5!E!N~HkV+xFF$zVtTshE^EAhz|8=(kBd*T%8g$8LZT!%Zg?KgWR${Cz%* z5c8$$Z@PcjDXM##R(aSF6RBXVz*fYCDyAPCqmjqdO{Hw*Qp7V)rY>4E`vwBbNPmUl zxKwvRV1+VK0BQPKbs!_uz?)nzLwS3Q3Z!P}n3&|LWb)W+qTteHwGdm28wA@W76}cs ze{a-iCz6J0{`cbrAIRn287C+|kG}9xNskYnnGe7cx(a&1LXO2z#L(Xk!iI|bjE++R&w)!r(S1dXZ*9`hYugnmKriqyW-lhe#r8*> z;YipY8Fw2$`2nMiT(MB5Rd$2tA0KqKu4~aYe?K`54o%T!wSaeFFD;0y4cWH+x>wrs zHyjN?pm&-85ewnjiobCsc7D=j1R*ULR$r*_7Y<7PWkX#$h=M?wt{?s zYpQ7k^pNH0^d-tsQE{0;-s^V(W7atevWvtLMR@ngoc$Sm;p21OrhczHVo*<`lcbh| zw6x;4#bxh1>k}416p#(>e&2I+b2f|%ex~134(qv_Bi=n!sSGD|YafJUzw7gbZG50V z248T?eqxg|b!fD<4wnvbEdTJNV-)-59YJ(8URaeh8byI?wvV~>b1-1IJ*3VgeTXspeBK02B4qG`ah zbp6hOr*TeAToHUEt7VA62?CrP1W3D*nRqMBNph`W&?Lp;*W^Y-sp}>FYMXxb4Y?P; z*O+|!_jXZw%Fh(NI7iX&bG4R^J#`Rk8~_koyjZgEi&JCQi=5@+h&*FBt*f7+7W?QA zpPSc+4CHeZe&EuVJLoOO!jzfP9*p|BbpJ+}-Cdl6l_ud_-#t`nuGqnFhJJR4KD=>H zR1w#lKXW=Lo?n~=_0F<81p~c;sPieZWi;3Dx$M1A7+F(IpC8_~Zx`r-bv{YY=|jYb z?;%TDE2df4+V0H7Vo!#|LMJL>3L#vSD{>75Z%pM$LFriIn;|c(dvbR@-T1N7tM7cm z4x?r;Q;bdQyWjn{=psS}C1{9b1rL9G7_G49He9X~g&~DZ-71kuq7UY9op(b%59*{; znw5cx{7u_yN6>(yiagx`%76F@AqQmik49PXwm)QG1qP*}3-p@19so|)_!cJ-H(M%- zhvo8Ov3If6s=-xq&0*`{6(K}dSv-mYQwWriD=M3md$Sl?oS41?0RBNrS`i4g312)_ zWw|IVD-#3Eu#nWEx7%X|gFmboL7F>_XC#^0#CEB$b7<9i8@f>1aasejAKNi;_PtAp zT>IO0@Mr%CxEj0&q_v%>L;EabA)MK%a+n4~>y(+aipNc*n_fhJ!k_K*EVo z&4E9{E1xDj3s1OQCEK5zCKxO#AH>VP}5+0 zt|Q*IFNP-&QecqLD&y;sF8A9o9W*+YWvvSuSz|eW4TG$hc}P>0T!wp$LZVcl8cV>)U#k%f=$nL|+wQ zh>SM`(S1Z>^_SFLr_>({?umpCGgkEZgrLR)C59v3n)5mxB^>>VsZ`$IYY;hpiX5;m zL(_G(LX3)xsg~0Mw9?ZWk&gSV}7MhqUVf2i-Rnah1XQL3)47&iqzvAdtm zasMwyV&+*&*iRkJ@_g=p!xugmdZ-YhWT~~YNS{+CK4;dJe97{|?FBX3to?ejq*l>P z4I%}gTH~a^!5FCEYngw zn%9oU=n|(-50hO5%hl$Xs0GwYVS+RbTZ8QdTBNl~q?6QYY1Hf8aB~Qz?RtT7ix>n$W-7B7lgp(d6@9<=o{J zHGMq=KlNma$Q^CPjGA~t$?oKbN?ec1Se7NLHU}b#T(Ao}K&wcqo2skH@Tetx0y6XD zBPj+AJObLhJ+;uL_03&$A>H+yM&#rPY9{MH^TS!n;+*J` zx7gw|zjjfw(Ii^|XgJ@;pJLzR%UFI9Cppf=T2B{fFli9eP|B4{zfd>XX;wZE{C;eQX}Pe1$_8hJad-TdGZV`3n~sh???kCT z>QERNUm#mlYGKe3CtDIUR0&~KQSyK8t=%Xwn6n!reyRO&0;w5w8%Ruh-aK;G zouUKA{9tPTdbB`NGKRAOR|EydJiVr4?aD6mc~)nv}S zlmI3KrILiSEeGRdu9W2`23EUe^r`L} zv%k~)y2kEqfhOz*#!uVl?f$!2xsmwD+5=&pIUAI(`X}(@nSdB5PMx~nx8Eq_&Fyq} zsX|(JA>j8y81SB0JqH{ln0laSXKWGGp2OcOd@H%tJNk&NZkqt5j!$4?kyKFobfIc}h`g+8z#DN0#HzECMDHZ#(VUB9nMNNPEzBR992x`u)-$|rsB-FdZ&gg`x`VNR zfF&cWFOvU#=5D6eo&QSKPfMhSP_NCJt>N8MHg8+5^bh#KR`n+n^%nS^bEeza}kH&L6r|9P^^_xGfmeCAf*+o}4d&ik&o4>ue{XRak|IJ*^ zp@NegW|0OlIlz@Xwwm;r8lY{mAsPk-OG?s<>V>`@u4(u+^YM92*t$FBDoId$%tj1_ z+xpcBwr6ejfBK?3bQ_!$evgh80!*GG;EWMF4+|Glc+50k<3PmMFihc(Wra`34q+_eAVSUEZF`gf?ifFm+<&w-#;@qx;THst5L+UuMK^hcSYI}ZWKjPGNv2JAAZ+#fE zf-Nw4D5I=Ym=8~vhG(gqtB7WaL#}yr9OdNWt2yx}sA(_Y?yASpXEkYt_JJ7cG3@Lb zfLtIFzFl zCc8wF|2QK?CVG!%qov?Ab&O~GI`0oITsOd+H=X@(u>Z6tSEfPM?XZr4VM-~`sDk;= zt8?;rX#RJ#rnZ*aXx$hmvo;g6c4f0t^H?%VEVm*qrDAielMLz&{ydB_t8FyE>R>>< zWvlM&z}IfTIYsLIZsyWm41C>#_g$UC!84v$y41k(*|YnqTUDp2#|2^4#JFpfhGJ<; zuTiNb6Bf6#HaR9s<}ABhM)cD_YzqZ})z~~52MPq`lo#Sbrt&c`dE|a$gQx2An<#XTU{b=-w^&=Uw54nMO%Xdy}owS{bK;Z#w zBXRQQ0GNGzfdk)`4r~aHjC`$ni_u6l9hh`!3|xhU0>*ZLr;>~{YxNY9U1k4?6!>}v z?^z|1pYU-nvM~Z0Hi(=1;Lvzj#r!E&xb^uP^^M$de5rgw1X3{O>Kvb%7z-O~c;;ad zf_9~>qx#+Y>NMjxd2se#KtjRFCO|Nm-x%^zcF8mI6Fz1FYPCk^jY%s#Y8n-tC!QE@ z=S$pG!M!2S_diy%#S}*PKk6OI`vL%^*RPTFNb#Intx)X8-nN`FVS_z|V&zXQcCKe` z`yXxkGPl{!&weCw7`Q4k{SEZOjt3KU3lw?i)f<6Pxw={*^b9>PF!iWG@mnqDfwEg$ zU&e%KWS(8WGMQpZD3jxlson~jBR_cFLP#wn$m|D>+W1M@k7#KVi+V#^zcEXEa&5!> zv|&)k-nkZ2i)Xz4>j&3TaY7kEgUi1dK!D`ZxS47es`Z^7p@~Q|+$L|8wA1%q#@4mI zp@*I2*FbrHz5h$%CVkLlkKTLL^HfwT2@jSYwVY>7{g<|n*@}6 zy@iv=t1vB@H=03u1es1g)}A?j|6bG6+IsbG8WdBlmsE?Fe#=i!PEC53Ex9_|kz0n- z4X17iHbh2;vP>kT=aN3QGzRI~HDp0Tb=LH~ve} z?u0E+Y7jwcoAbMVK})Zt5|c-gC#^&)e$Qd1DQyKU<()wEemgEF0b>C(MI_o4bz2pZ zgoiHxmzUg-qOLbKJ8vZZBKUCmK!rvnLebmkwDWEM{d_e$emjfuWsfA7?#2U3lfFYl z^c`v;I=OFjL!u(+CdlV3>!J1?hB2r)Y;$M@3FMHaXzeI@XHTe1XeS7Va+Lc_V=i5V zzxpX}C$etaH@u#hyODc5yl&^ss16nTv!utnq(r%KGb)Qd@S|(gqB4$2(W95L@DSK` zZCGJ3seof!E+vui)X6C)?ITPwMapmd2~dNKBl|@&!%`}Cw+=q;tj@_s`&806I}SDC z$;5Jnzj2?i;G=ySB^$sef|^VT+z|SC@l4<7u*T&kLkp7}y7SK_IXUG}XubpIlJGlH(INmRNnamaC?dtFemKs5E;~De3W=v+I<}@t|AgP9b_3u0#eY^VP z6+-{TZYLd}OHM3`X~Nr9cN8y^M91EiT&(}SSVrH{oMZ-kG) zK<*sB0LnDl(h0&62lE@IdgZVmT(;LFj|vW>T|v>l{{Cb<`CVh+;usb&rg8C3L5jB# zTg$IRMK?!7a}mfGWXdn}fm^V2Zr8H?TYc>Pv`Ld=QrhFldr8b-uCB%uxcx7;zrTm; zCr6CyM8|=9a@b4&l=aBzi*!T?6LAKA9M%@#FI~J2 zhkJT}H#tP`VPv1r$4t1_?+(p!WJCP+ zC^9W?q_4&OTWn}Qn{32^a?~EEOt^|SHg3^r?b z2AWgR)ckVOF}uZxNlOxVKRV-bR93aaQ>EujTnmWihvs;jH%pYia=9?qG`>I?3P58} zy8zmNe#N&J>>2BXa78wF8FipK`v^tjQa*t0s-faTG=yJ6^z1djg^o4cVd`qs{-D^{ zT|v|Sy&27&N8&TQJM#rcU#*qqkbg;*Ld5!*zl4z!>1VyBf$Rk%Nx;^+*1OhT!lK*$ z0Oj#EZPiHYnWNne%H4E^%)30aI^V&W#bzG?pwLh&-Lg>dNJohi89wCtVCP(O+!B%i zincFP5?}#K)s##t&XyBJWInWyp=DGj#Nq@UjyYiJHw8myENm^-)8O?#5>YV|$?T!8 zhjCzMU_)h_16tgRqo4mC&QI`eZ=F)_k8o7Y9|CIIo5}V^@LS*kDvF${P}iuKg`$%*hUO0_^$ z2l)69|JI)o1(mkjCupe;Dui6dg|!d+qUX{^PN<&e>j?~B@;=nM4~vFy7_5%qSB}?H z`2sqqgJ}T-B)kMI)sOx9g)KQto&LXq)sbWY2c&!9VG|vlRcth6zg$LoFyqV!6j?@3 zA9u2M{`{o|GFkKki7GlTXm#3=aI<1Xs&w8ytmn!)0CjUsZV|in5^ej;grz_ zl*)uU#A_e=;#K(VLcR+%M<66m<>m0mguCp= z=IYX&on-;qAFdN;Du_}<PC%v0J#i2WDeVKEk;;$*}f%ZfnC|Bs!Yvc6V_%kCJ&s;hbZ%qNoBd;T=f`c+vYbb zLvy?&Ar{L~1L@z@G74MJ(Y^qMjflTQC)16lAoJFvF(y~~bG7_0=4kssp_UX-zi;no zRlbYT-{ZH_TD#9J7t0D498{g%;EZpW$q7&6i}TZ327Bby7?N(IH5#l(J1$EW*Yzbr zfc3ML6LB8+G-(avXD%z57R^2}3nu38CTTjM)pLxEZ0bb}HpUs_XE>R}EN5PhjyO2+ z%0#?^Km+*BMOaMN6?di1kFKd+_mI{-)n2~_DsWWQbqevwdw03{wAtQp5fXMJtn^}b z$^79#BNG#YM_Nn}lfQwHzTR#EB0w&zs4LWh;#T}5;Vb(28pEjJp(Gvchcf@D+iuc- zQE!N2kA9}twC?SHIYDF4BfS|CeHif^>=c+tNGgm-lA8ouM0}C=-9`lU2Trd9Knc;k z0aqB7m=X^l7tU4QT__wYGtjOOa&&5K=iCkzP&wrK>rEXM6Q;)Dsr`)e5 z0BU_X6%`pbH#nBgmF`!8Y55N+#%h3I$qevJMWKJ0z;|{TG zZ0vNyq4aVgxgv!+ptU1S&wJ`PSVnNKfQ0COpo23X3RPX}7>>kbFvR~zPq>YvZgd7k$eObg7$EljFg(5(v%7T0i-i_=I6evo% zs=6t2We2f*!C|r-U|{X%{^>a5UVM|c{m5-$dmDUYlXKi@n<&Ab<2e1y zxD(j^{xsX5fLy`};i)IuH#$8=k_8v`$GEno;bShzH*a;pJB-n2iG z>U=-%zf=~yhXe`_hJbv8{a{t))XvJvAhR%;!{K)qH%aGx7Xgo{5!L80L!1}%(ivDI zHib=YmEBo1e#@t$o|wHOEA4BUCxrS{px-fApRME|jq5=uI6*b3HoAHvE^v5;O$0I+ zCN2_<9thEZOp7#jDvb%rz+;d-o;cBwFs|k$Rqkf_Ar@Y0!fOQ(%5GPF^LgbQ3h~mm zGJpOO7ItL$fjGYo-6&+M9o12SQfTzcln|iP|CzA!4<=ewPV6o4B!F!U0DVEsdactx3ve?>We>53tI6!)Z}435gt%W(h8z53OjpN}>dyW; zHFi9hJ?s^le;c{h>SAI}bD@jXEomB~J7oW;dy*x$H>g!YU&AQp7bxnfN_;3B<&Gs&XyGRBRjyU^_B}pQIhuz9r1g zc7>>XBk@}2$9_+171w?BW6*HPwb?d8iU(v4a=#HDP`V;#Tpqp(i|{udIlIed90#~P zf3T!^sH|E%eOczUFZe{!IkC;)9O}A(-_Gi^MBI|pDVf)w$e!}!4ecl2J=V{R+p>MQ z6iZ!3OaBhLysMQ5OaiM+FjV3pEsjA5F0B-*UKNjwRq|8@XwB@R4F%}|JwLNHIhYp zJeQnY&qX5_@x!a%-`zbJ6^Eq<=95WbO0zdPc!7GDhdR^%T!>jT+giu@fXo_`32;8U z0b1>^HZ(<%<&PblW}i8IFVAXh7P*W*VXH__X70_5;7bCs72geT^}gBo1?I(#`MKFm zG*N$5PbduF=6$Zjo>y4IoFZi$zkr8^i9?1K^%Zb+zG z?M5e0gpf&Ag{McSF;p`EUX%dUP&0+(^ z<0_ctXfSe0Q_SN?rf90n{`b*&Os?{Rxn{nB48TLx{Vl5YHvg^Lbn$LQ5xI*^7ArcU z@2yFYImjfg*9k#4>J#E3Z2^AohR-+W_IFB0WCe^6r)RWIakAb?1dMAKINgpfICSxucIShWzFU{H{SDd-=d-S zOLF%PAPB38P~Zx0!8n5tI}cPxgDA-3nqETHmviw6f2CCmq~Igo+acn4Z%~8<0nL2y z`Yl#apuJx?)^`hk8aDH?6tY5Pv;9s5cJG6Xvm*fi@vsnZpEZLWuG+K4FFVk(sYoOq zjuy#p!#~`t{1xB-o>`dQ&JhE=ekXSve(c<#m$SlOmcl>G9k5a`CA>gcDjuM&L@Gkp zRCcYv|1Mx(;jug#M&4m3?1hYoxPT8B@dtG2C;M55a-UOM@XYxl3T*o?);rGg%gS`? zNnu8Gn1Gf>pewOS8i?GBZ!Zw5AIzjKx|K&cKf($nIcAkIbwhnMniyT=la6PTU~&o9-ag6O zZ(2ge-!IkA*JcZg53!xGJRBz`P2%8kAWX7Fh_RW-J z3k_J*c(+Tdc*AI*Dh^GLKs-t!K*_s6Y}gj?WO1_8gmj5QL=U0*!qA*81pNi`i<+9Q z$#RX(`MUS*9DnOsyHf~*D4zTwuQW#o9MsW>6s_sodAFDhvA$XA!I942OO;v%C% z_1D%eH_rqu#jxgLQ;Ib=^1dLGlWAMKR-GvzJuf+GT&>y& z?*1i&?(LeC=aF%};J~b8%=nrN3V7R-l*>tf0?y)BHJQg`jrt*n4McHuBIe98@z`2L`OCRUCzB<8#UOdan+)Y7O2 zs0Z>_PIbZ{>NLmrd^hEmq74PT@-L(cnweA8jO0qlW8x<-Hiwy}I~?J-q7$N= z2^~w+FC4Y`3#k!2ijG=;4#U`&uwg-i%7}>0Kj`#j$|$S5o?-8)yow6(?BtOjYolbg zHxgie8!!XZBgFs(wHrr@qfzb?JbKlClKz20qVQP0_3CllW!EDE62z><`TD$zt%8@` z-=;Bmw-!D(UH1u+kVjQ)8%G)A3wqI%2BUP$&%S5liEcc4Kp`(qWi;@JGeudTE?i5R z;((P*2d?ld+P|*(Zxhe+atQXDlk&RZG;D&HXI9 z^AIR+zr&A8U!SvWeLDVHu&hd!#jt?noV?^+qFE;EE&O=&xSe8Q>s>E$BB&e4hD5Fj ztdKbpzL`#ZH{PoMrQU1Gf#NyqH#vRV1W;>EodK}0cZcCodBi80d~@DPI*^fs*`r0~ z)Q!*jNR21ct1g7~c?0?U!Q~q?rNvnY<7w60ETJW*SCB^GdKi z@2ZX0pm}-qU~Cv%97}kiv0oe9DL5s{ynpd#b@Af2HoG*;EJ-kY;EI4@M?egMvKa5>_GOhz`vADf-(JWmDQgB#G*-o%Clni9H3 z-rm`H4<4jJC+e$SZ!dBVDbcJs0{^~O`HM+NFekova`u#~<#>%=(^+8L%K=(62jdR5 z>2d@XV))3YJpA~i43UtV8y_?I;4@@>#jm~X*kz3tfJ1wmeA2x1qB14p0>+0;YkL0L z|1Nw*+yCgaem6SSmd_8Nj* zO2%W#2ymJ-Z}So`0fSwo%Ur0F;qvC@efQJf zMGacjpT(y47qbPF(+TxG%=pg2=+v0HY%fsGY z8p#R~?t6Vw&E1UYNjN-^z*Nkk4JD$5CLhQmDYRr7b6$7JMaFZ@>2>UoI|s+XWIaQw zbml#$A1 zt~2NCyIw-G1(m<>rV`(5dAWQJZWA#qSz?x7us%#eb)f3rDbVD z^YnL=7Yb=Xe^`eRA-A8g+t|uS(1Ey)yjz6D>n~y=rDM>=MuY3hsU8+10&$b|21nYz z`?yCxR!Om?U*dl=gm)a~zRpIINzA))Fdf;{t2}bgnT?fAt}pq>*n-_uw?k9>@d5gD zQaOr7cL^?hT25GM*FmaZ&+b7D>2j2nK<3Z^!idJiD%_D6$_O6`{y(-vZ{4x*!Ag6Y z^sMd4rsHl;x+_*!5s~ibeU_l{{+zR$>yC=k!2+==y+~+$4vqFyHMz&x-Y-SeAAg5} zyA`Znn;i&7`K4MQ)T(bdeu5Wz;->*x5A7lJlkc}vq|bndUfG-0Is^YU%k&!qKd>ddz&rxn~ewlf!S;&^XMr}Qg=t4Y;KjTa)6r~US6 z%5FLDDoCpE)#%hOCN64HRLlmq#~1{a!zjRF;Nc+7@8%7zb&FP8?yYit%Pjfe;c zgNm0$hgZFhkI+>jF~o2#V43Do*&n`{&i*##fa{NImJ-p}LS8&@;nXZlcl8C$KHzXw zj}YikZSIN0Y?=CoRhUH{EnH=DpVp06Fc46;ZJ>p$IMm6YTe>oRgPy<}e$Z-38AeLp zot#n=JWE4Z@Sw?;ehQ`_87GO-|JuEjz_ z@45U8S<)%|6*BKzrLH;Fixt_`m)c7?FKsC8$U|Zp#r`bC`Bg;wZofjIEWGP@!ESUR z_m}KHsS?|(Vji_pxB81~+5n&%%*f)OwBU&env1cPQ~a=IaIUx$Ifng!zCZthmX&p; zF%I?q;`;&dFQ-fP5XO>5L{Pj_2rP>{%zg)xH>AvBoyhqR3^d>D=bz?k5%_ZOBxiFL z<~ev1O@#_Bb>TPc1+&COv!EYb?3QiRAa7^A#W>nzD{xMI?r8c)Q0Xq#caFOdLuu{VIa1MWYXL8u@Y~A z4X5&=A^k%*mS%Ubr`beWmbfzrW`gPb&MLY15s7)xafZj4b)(>+UQA}vTN&1ZWrLPz5+a4g*4chFSFeV#h_gnt7YyTG*7_Ki zOTM(_OMePj>>A0FR_DV%)Sa#iIFJ<&6J>|o6(rO23V1WXVhXW1p%-yc+>X`74|f9E z%X!wA*JnoclZVYrJ^Dr8^%YdDCn*29KQ*yB$X=|I`O5m1Y=3_=chG(u^V7dLHU;_j z6UWvs+UeV$o~)kW41evD#v_^ONj!95rwB}MiTmVzuj^wpR`enNtNl=(3*Wr**X;4$ zu)muWeb_Omnfrmsj)QZx6sRL<2#w^FI^ITGWQVagc}cHxw5>zmrnf5PJvbG9BK8xQ z*FnpM|Uq`9pr4p+}L1V!-h%(RF zo&0k;Wm^=E)$lC;Lx({sR6X-T%00O?7?rO^AZq5FjBP5t5+*{~&#&L(tx7hZ!$_pY zqK}7I`7~-hDd%**g!!iv$baWi&D(Up_ZJfGZAi|;C5!&ol_R#un{>%k!o)+~F>lxX zIeux`?EL;VBXi8Rm(1$pWl*m)j<#xC1a;*IQRco(cm6k|bQ&5&s@AE zLS}u>cp6WJYI2WQ8mkl0O2{PMggB&CmZcLusP?ImnRMi#L{XmuZWO6spY##)2? zw(+pn;wyf_W(yPQN2PFg3psZthM4YbC{dgbawnUx`&Cn%Ltf6fehx!)CQB(*%4saT zq8~}pnI~j^Tq21TX(V&pT*l`#A+?7EWFxlT7B-8kP1ADXr5pjmT4Sq7$ax!)<>fjU zp^%s8ot&##3Am6U3FvJlps1MK`!9a_I=WEo?Et}OF8Zc*TN^U&@j;VG<9Kp+`*Isi z`?8f>j3>91y4~aYCLr2v+n}Sf#$TZUM@x0OxQ#1GmnDAP@|Z+$ZB|cZaYkrqjNSRO z<6mUwmni6IaH$M~kDC8m4BUgy6OBZ*CbBP#o2%zmCp;dD9nJ*uOf_1HG|m?yX?62o-n;Q>iUN2-HfKw?jrxEl3%i>JDz%B;YD@o zh#L5k&Y(WVQ!>M7E7(|8tB|5w>Q$&1pNadovY=;%m`;`C4*0Bs=Y#2^oBZgN!RV0W zAcOt+)dsy2#B{uNq}tjLuMJx1+7X~%{lYqzFI7O=?h1cJFzh~_8^_!XPNTif*<|4L z{8;&CsW~ORXW2oK;>zv|P3LO`vb#@xZz>NLxp;%*qr2MSx-~#|PwyEy=2^RQb!sMj zAunh5cLecDuJcrsM=&ZS;+w$LX2QhH(N(`2dPt-7vQhVI*DFrSAoQ@LeA8|_9RKE? z@ZX^Tr3^U9vN0qb2xeax+u$$Keh_}}A#SC%TxZJPi;1cwFZ&mJSPILpzMULwzW_^ZrY)`F&A}x$)7Ec&Q( zrH?$uv&2^f*^@h_e%B7aers68tm^Rk(R%u*MYeVcY0sB8{vh)u7xJI=a2_jGA}!5J zx5Mu~0t6D6%qkUBL_A=CkpX*g#&q$84=F{bwzPB&3-}si-&D#=2hQ?xjmD`n>Hfn# zJ5t7ovY!b`o6WyyA9*v!+oQL!Rkr(=wbr*!vUHedN4{I68d*~_7KNX9>f|BcH>a^2 z@te=h($D>rA2NygeLTrXpJ7Ke-Iy!R@=3f4Qf2llZ~13nUzBqe{d185xCRfx zk|TMLP*IKIBYBjJqBPmYf4{~~xus@WB|G$O#MC?#BHaFhgNuyDVoODl3c$mjeiH#U ztM}O6|x_TT=z`mn)LCtID%!)goA+2!>{t%%{^cAlIs=SU>U_npXIJ^QC} zhQd8udcHfO8ib)ws3lGQm$5KDZ&7jSLR00GY;WYX#9}nrB?;)o2sXqDBB|QHo}fSL zCvx~nbq9r$308A;fLp}^0K&NkQYQAj<4|g9F2nV3B#szaf`PPJT+fIh%+4E{@R^Q= zcv#u1ngGdD@B1Cr%xxM}PS)-^EcC(sHDP1@@ZNwVkE>lfOxk3y18}KQy${+I((EXs z4O55ZROM7x_gP+)aEx?vFa?G6gI-1uR7Bw#j{$1+fw zuF*9*;JeM~d?j$1k)^Y{(Jng){ugufny%LCiILl5bZ8vA3ofS~eSKSC3~+T~_?0g% zo}iK3xY6;uWSmm=Ni;P7`PxtOt!eEAjvp1=A~d-CPP?LU58PJO8a;@H3uxSKmIXzj7^j}yW$UZ^e@-9~FVHbnkI@bfg00dwX1PA)$88;4JU z#O?Hc1(Z0aA^}KB!WUTFJ~u_pQBcfej!P?GiZ;G2NkcV?KQj+AQVOqG+oEX3uP`gZ za_WaZJI+#6%8Wc?=b?$O{{yPX2q3*GGqTJm_bbva>EH`ly61R!?Ht5cLcz7r7VAde z^6<}NqlWw1>hHp>PJd1hju+=r&b(dcTPu!%QAMg z^SnN)8BSXL)w9&*C!i}jy~esIBAd_oK4bWZsy@@jl(Kyywka?hXs8M{1j+!Jr+pba zta6wB2kwU|hjo^38}CDd9|r-XwEw4wM|IR}n0QQ`7u zRC&0v;@@xF+z*f}{HXw&fl0TVxB)oLt$cZF7;m{qiRlYa?{u2}@rMiBv((xiC>M+B&zwd1&A>ac#CQsiV-9%#3+&5qMe!P*j<9Tlo?9I3A z(W3yAQn+c3zh#S1zX!{N#RG1f(Oi-8oS~GTw|~oUn#_$5PmbrZ%gy_D)jdx)IXH8b z9KF;}Ta~>o5SKKL_@;fmAwVzPF0qcPzxs{%=AxU3wuAGXRJ^C_2_RC2NnK`ZJyAHJEV)ZHH?fbO~@2i%tdI*pQ zKEWq77&}azVV4cYM2+QdHD()AWTZYl11v34bnX?P&egy2+l}+_eT7HTHFtZ)wjbN{ z>H97{9XNP76g*cc{%KMnqM(&P;38IylYW@CgNft2vf0S-omZw+{0 zPN=5t*IBaVq@<`;PaK>-SI0$k=$#zBsYs%K7I;7UFJhDJYne-QVdP}rf>1t^mVDY# z!u!L_se$IMa<1hpMMKpE*F(krFN(kUh!)M_o)~?at_2i(F-czI)u&WDJC1Q*&y!CA zI}=Be`OS$T`Zws8Vb8f~{Os@pKjZ0a+=#xj`DdzqvzerEe2wK~l^%q8&_qnmucu;E zCs1ie%xtX9r!*a3e5HSnrM;ZZB@OtWeAPR`9K83cIx?K#>EaVUr z(F&(AiPjg!O?6K~V+m8q+R<27rFpVv5egH%BQIyXA{paT*MJ+LG%&N8v)(9@w>NX4 zpdbDi@};B?cB(G|_yI+!oNe~?vR+bj-nWWlGGX|VepxJCqWZNvM9sV?fX^L{X_=ua zJxDC`d90(&v39)H_WDA`3WE9DEkO|QgQCKn6<1J3Lb zGjrZ)-wd6Y@7KU0ubAfsb0=!=%g&~wfP4b4-udogR{ibxGh7+*kw;j4M%|pZ;<+d? z4xTnbuEds_+lI)aWC6Q0(JJo8WYqs=E3@|d+u&`3#?P^VKo8fV(GfiBZdrY zelR!!a#%WqJMOOI>?H;=!!Sh)GH}~Otr+XZPP{ep-l4BfMpg!9b z_P_!(KT-5VIc#W>K~5vUv#7bNGw^I>G->-)#I2dM!KgF$Cf~nmceH?bR>yqgImoqnI2Q?~58a{Dot zE6CpdpzS=f)YaN^{s2QCaSd&t^;Gg5_1Dt;|@yiBa zdLWjCFNOn=wR`e>p4-guB$DyB{_s{mqV!@UJz1x!$4%K!jV7NYJcLD;Bmcr4#Jx*L z?rVFl9v)4OsGPQHF)TH!iOs!w$4%J-h8C9iQC`AdGtW_diTS9@q;hmoV)}QogN0S8>zBF&o3&spY2!P7s%cCd=O<@yhtF{2PsCTt29P~G{ z>aEp2wa18FfKLkJYnH`Ib(u0b|4rPThed>v`0q_BshF9$(y(pdd?=9nz`P0J@NVz>VOKp|kmw57di%c46NIgMq|x?{U%C=EcIQJ&${e zYcjQ!xRs_mbCw<3B0@k&qk(H{n4~>M2G-PCv*%W}<~lN%!XVsQTW=Mk%NR3KNr`b; z{>&Tck&4Fqy&tI{k>dUiCC4-GM?UmY=!jJz`6!Avah+!s&evdJc`Ndh*UZq6CL$sN zce!;*?}t<*;oAH9U=FS-)_UjtfFGT71O$Z0^-e>xPJM}A5~--Em%b30GGyWh2Sfbw z^BDxe;EaJcBNp6WFers>r(LCik*(W$G|!iMt}lHDiw$KC8?P`Zg%vdQVO%q{_D28N z8p9F(<72r$xw)@qf!$?P#PQu?tmK1;#+co%$_BfvQc!wp&D>5QttU_IhuEsJig8-A1 z3o(l`qd-GWaVN0l;YNP`zK60ImAB`$l1TIqHD&~eru^~~h#=>~GQ`Qu{LMJ!6&MGG z*^WX=2i>1Nmy&9m$%=4z2|k`>X%iuUHJTuPTX_ly5N-R7uMEsA(wk8!ZpL?RkcgwX zdM?s8#UIx)cXs@T{b%ZUgvi1F|LDrWD+5$7X;-H~Z~PENSHtmPZ2FLRyoAb=yUPyj z^><6ujWq!8U-yx_!bz;lz zGuSHnB9Mxc0ZaY2(XRdgA9v|uERpUbas_>ic~1g-)b)2qiB$Ut_S<4NKXuvdGNpS`;kYFugncZr^Z`%H?Sfy;&6h>}8u9V7_B=gm`xZ;HbCR1Iimp!k8>#Jl)Slo@ zMUi%Ewu}oqL03Dbijf|;e-y3X2ZZY@s^|a2EeN*63HbNiKW8zN07!V>y?-C#Q{#;0 zqyiPEZA|xVC*B`YY(FEC25`0cRm)`!@M(Boq-4~?{M@fDDD0=$x^Mq^Q{w-*(+d44$dZUsVF zd)uG&!-}-$2)H4@y@Ha1$SZ)GIn~g7`g?zM8$A?bIuSm%J?eB-)>RHq%3F$z(P6=r z8yk8PXPFZ7yL;NUck%u%LsulK5%X&~6q!0>1}MjWTdSJxV@u-b26@$r6Ay71+a%l6 z6{FkW=AHo-wkYu86?8a+05vOusI?P9j}Eu?Bj^@po|)OB&i|$43pUGR?ip)Wh0Qj+ zR`Wf>NW0m)x@jBXD^Ij)YhbLPZI2nNvGi2%G%$|dNM(1Sc8EdN?0w4mJ+aks{qX$( z@kA4KiH!YyGq;(Ln$5z-beTI>OJQK3Ki{9!d9u>nhCnfxhqm(vB({9l7YfPoD4CdV zkJ-stY>Bt&aDvE5e)G1tmRck&&M~;q#7#;JFKynBjpx zt{B*g9_VQUu%#9OK)q! z1=F}yLL7fA^H8=BWsElnSiXXNv!3u+P@HV`K zK$L&2ozQ=-0Yo7(=t?_DKhZa7y0dnE{z;Ig+3m0z)VryZ-&uq3SKFZZ(W+~IldiVD z!@jwAjJ2HR7;Z}m0z3l=pkyeqD%oh+6Mqu(ctP}0$6k3GgG3*0)CoW`#Sjc!Njtc& z5PR3P|1@QsF#oe1Bb!NXMq$+uCAEXj$LdEvkq5!z{qahBq{>fUAZ%3E1!}pbn=2zd zko*9t9b^Qf?ZgF=#Zv1?;E&enhT)LLQl(tsoRMVGB0RaQ)hKoPA{GV<9P}^3u7S5} zE-AidCfuzE;r4bNX)@w7 zyHJ`|P!5@qbsgEC?7jJf7wOrv5ax+VGl&a%EW~#txTQaa2>V))%p&Fc3$2BsA2_N9 zR2!;$^vojS966Uwl-q+9yYxlbzo0GP@pRnk#m4f~9jF?6zS=-{tVamN(eii7GKIXZ zedh5+S;n1>Y=)p@IOT?0qelCgR@Ap;=Y>8bqe0GR@2lJ$shP>=bpsYf?*5HeOY;nu zpFHIfW62e4WeaK6iC1hvqtO6#U}R-XJV_(-PrS>?=TyQPXV3?J)u6PF>-tP*Og0A0 zU&n6r3wtwnpC(wq-U~HVBH5WtA7<=+X}aFZTqO4PbXBpI=xrOOqlg9KU`?Otid?B6 zQij(VIg{2I^xssZJ>w8pMn{+64;O3DC)sq41tc^NIpMH*-n;^{U~>PrC}O-pz$R1~ zQ~HHDmi}Ud+3{fy(fVb8DnzoBLEEzBYX&2Iy`E(zATq}hpW3@enrhUnX<|@31SmNL z#fv=e0?w>m6Trm*>}ONx-8zf`OrEBFMZrIdudIl5eRlAT5BrdKKC$X$ClVq3esKu} z@`Bja`_fQL^~eLA>9WP2EkVF%ST|~#BB9+H%GRJ?5=iM7 z0d`PeuAUFPNOHd`J^m_CmNBnIj{UJ5;e#abQdpQ}yz2DXY{Mf@&u+c8f77i`Avc}h zQ`FCsIcPVSdqHBfrogy|=%{-S^?0P!g^|TE6%5@*vM;72U^3;YW-1+koMR(1dSR)Je1hv4NV*k*AZ*kgX*D)ve&nt z<+uJqNVubrVDFqtCT+aI0xq^(e%39*2m3$Yt}CV%e;MfH^qa7(RaVI`F<_Wo(6K@# z$`1$iY?7+j+jhj=Q%Brbr9q&f>q_x}i_H3Bn2=`&P(N2w_?lg+i zo^!iVd+CbXU~@}@|FT9wjqE^Y&?A)ljXoK#8}Bm9;k-(oQG4Wo&c(7Jt6gKuk+Rj* zjc9F*FQgSt?~bArU>ilFhUNiR(J%{x*=qY#?wpf##Re+J82^{)Y>sU&QbiKveYClt zs92ljBFX*mV~77A%Alt$EhJ`dD8<97O0!>?95vy?!+!5@hvWw@yDmJVnwLhOmKv$c z7oj)AQTabdg}8{_+L|>c$NVj>kg;MKZd@<(ku>msq}q}P7RCH^Hqgt(3U+d9V&gHj zP~rAk{rOeaCY_-9c$2p$bk`N`{a+ zp?gCm*V<2B@2Uw#u3k2+ISHA?Q%490+BAOX@nQo6#M9Yoz6s`*LKMt(2xMy{X-gP~re&bwtFgP;6d~T@{JIZ{pz*^E-Nh%^$d8}c+X4zP%Bt;;# zRrz|@!P`d?OVptzUL4_@M{0WA(?_2xHE(h>RvIYWB!22M$BGE#ta~3A=KcoP45QvN zaUX-tC)8iUwDsm0{_%;g$g{YcXSkdO(;OzWwu72 zizvq9ZaP+&nebAj{BDGES5g5t8_ILJmLrI#{WyaO$#Zr30B*jMx^n9wcVhmv=V|;} z1j6f=RwsAYGs}^E)o3(s@VCR#4zZf|gf1^$zMA%C15Qu7Mi)_22&DI4o9y{dV$<4> z&iEKuOWF9$Jx%Dc6_=t3pLO#kcPztvKzpC=GdZJA4r`9?B*mTU6YwVMC z{jM%P35%vtY&g!V!5MDXqc>F6k{iTeQp=1{4;-U%wd#`Xe=uv-gi*l*Giv>~eJRxM zYEYJootDiJksr96*dZ@zgkfe7vv!O1@0zuByuT=*(<`K#yHTF(B6F?CdOZDjt;QR> z&((E`Xm1FZ5Q$DWXdaFC$YO2Xkd7ZqKi`IrT~4#f(TRBo~I0s7*ugzLXuOb zLEFHhsdC2xW17a94|R`nvnpk)l+bS77pp0qwE2 zuamXp71zt)n4l38QyU9Gz&td*#|GsJ-7+)HHn7ab9Xpd%Bs?x4;C&sDd?c2x@aGfq zH*U)>9oBl80@C66Bj?`j_)YTftMutP!?}u4k;bJL{btI!Ypn-W8^k9jwu}}d-Xyc_ z2-!FPi*1K>m@t2f4B}f-3(v<&O1rT=aKwZkAV9;@kZk9@wg(ok!|R!c0P`G6U7@d1;}}e?-}t_B3=IkYEWyH=Ry;>fov-o!px3gxguLm`Dj8IgQoL9fB zNgt3%=d-(aE2PoUUrfkws3C1Zw#d>DWR%i6KjT&eh1oyHA?g{sOW^fbI5wUD(FOUj zlFqAkfH58bz>2!}U(5ODAxKNfTqJXQt8EPWK~jZ)e_)#ZEXw>j6cXjg2h-CFqmqh# zJ}Jb-H~NOUJ@q$t@ziJM7iuJW8n#hAoL5pQ52(*Q@+^-3aL{qa6i_kHaL#y$A6E<& z!T&NCsC(MJ8>Z5L@BnJW|2^;Twp$(boUm9B2J8~ z*3y}~n@9UQu#!{>Klef)XZvz(Z^K7}rC;Jn;;`)p$3b|3Zws;YN6xO_0-h^3UoP~c zQW{974(B+2?)D)&E1^)#vxu(SHr%YjGeIbQ&bXQf_yX8zZ8|;Scr_U^`Kg|6XkJEh zV2L%2F?`DvL+SvkaRhxoCL=H+DRVicm@HLCy^N8S0s|2bqwidQ`!{o?(@1`_cEDOq zltmPXJ_ZDOKDIVIUW&kD8(bHhn8!h9u#+zRbl(ccM4NEYyt81a;iy+Na632vstG>^ z-%*p`y%GN(QBBoSA8w^KpyvGqMgRRrTR2K-voOx|VwBXK<~Lg(0kwBq;cl731dCvr z597G>MeBghf$KXZ?wpj)#DG_7J9G5nFi@7@D$F_)|2u0aehp^-KbV&R+yV;Gp5msG zwyRKEsm6bY5+6aF>~OEvv%?42<6r$KUx(kPlR2aF-wgBB=g}K!E$`eo7_7qWN{Vj(K}vQ#krYphU)-!J4_;7BIu%!#!0l}wG^ z4f+tvzBij1`oXffYqfm>=B%ZZAoUqawU&D8b$gl2_8fCXyOtt;n?@WTzFzEkf8RkM z37<#lu<-MK7~~wixdE6Y01}AgSl_Q@nm2(!t8~n7^4#KsefCJf#lGLR4Htp8I~>F- zNB>&e){oLD@z4}3zu3ZRnp`wws&G;SId&{~OwR1)@UxG>2em~>FOoW@uX zLe_Ds^MX*B948xoL&JE5AjtDj&q0Pfz~L0W3vx;5X@^B=0Y9;lF5M=~IOdnjIqBW!YDxqEc7a0@hc0Y^{a zyYCUkurmUE&}Vk!t`>k9_N9O1+xD2ebk!WppSM^H@*`QI0ZRyuS8H8vu9o}{DE;yd z(@G;tJ}e(I&B%4w0Qu*}7b-zNc#_qD(UxSX7mq-iV-c_u9hkO~`POMF+pvz}srPdI zm~2(_#|B`7KBM%FKE#R`CH$_+ZavMQFcD*bZ#F2V{u1|Z*lwZbI?Civ`5;XA+q1(q z!_3mTq#UGv#@hp|HCFDqmeKPD+( zeEapF7Ben`>GG)!=3=~MupnZaT~FJN0@i|9ZD<9`Z~C|n7zk?$&!+XXP|E}CR4}_3 zHd@WGcbOLvF(;NAcy)C39YhS!gQ<>+kUS~ZEOlRwD-X5h4lTUhcf*9g(iJ6jKyH&A zb}J0);GW#w{ThM_XD)}H#K7_PDnT^delj8ZROxU$11TICW;!U%-YVG&2fs@b#*<(< zq=uEDb2z+z%H91aIh){nMMohkpUwZG{VDv#k+I&4=R!TM`r3N=(qe;cV^pVqeaAJQ zOA9j^zN_kAL3cKOB^HDLzerFl7*YbPk~&08M4c9B{4f5JvER`#65&#e;zv`3Wo374 zg!?hgJcvp{J4S1j5i8x<`r4&}{)^j!lJI6Zy~e{G0MtR+bxNLZo8<?EEsUK6opoS-BOi0le7)L2gG-z2fh|FW!Jh{x7QS2pTt)tvCSRg}nZ+9{2Q(K+4ABP|rL3GnI}mYuqYjT1sVNKJR_AufJqJ8X2KKe z?)m28zb1yW`czR@5hq9$SUw;^=Bk^X0^MQUEDdf=Iz#7cpc@ZpM?CG0%9iM9F}S_h zPk!x60ns1H5b7OF^9M>vxcCM{6@D6{!38b{sZ7K{#KZR2U5eR5oT4}e|7DrvCxYa| z^%mA)ZfDZmGe!H_V!D^nCWpF0Wo9E3dm=|d(o2r9=F8WPTQo0!J(n9MdctohiBonH zNZ#w_N46P$^j}Ed)Hu)xEqu#}0l)2PV@qPCJc=vRtDwkf?c4eEyzTm2i4ObrwAOKd z8sA(q86C3JsoCB|Jbgjfk)q z1T<2wXZx<}54VY$B|tgn{GP^4m_>fFdxAUt85?}rT`HAqz{+g2xoNr@lIq7E#$C=r zAY}cRe{FyXv^FbbL^_jXkxOn8n!|jpFrb#D;i@WiDe9s01R_@200evQ{ImTz;n9~g z(9HkBnXK}uqXOq-=lGlES+HN`xs?}Pk$0RQ&oS<@nL3GVpla5IvHf?+xYwmgj@VYF*G)|LD~T_^{^ zF?nmEBngEtwcj$9$cw+Z-Le_&SHG=8SZ-Nk(-^mCzso`1Jr#QFeFHb#){uNA7R36O zQwb+X0#smci1`SI!!GXqE1SUytC|Ju?CfH? zG{>?hetl#stpbb{$9F$WCYv^tIvKjGJspwYPezBo3pV>h?^D{G&}eqQ*SQ;9o=Pkc z!(UMOHRA%0(&cx6sQ(L2kRH6u3<_UXN>izyYhTEec7C?5P;2`-B#qJs+o_x;Vn$b| zG&GPZj4c$t51ZCr)$)tSwHf7|rn;!cw=a@1^)=W23-7}BT*&TCK{bNT%TH%opjk6a3tph zb}Yop;k@FMi=ztr*g-s6EMZyM{Fi3rBGjnuCzF}o2W#^l0}PqREBpq>m`^+3O&4)< z-t)>tcB9R?`i5lzj$P;PhnYZ&kg)%{3S~x^A3VYE?#JcvajuTd{s6)PSC#;POm^O@ z4FO9hP~f==3AKw(0JOzwJ}n&J7_GgnADH3s6+BCW?|iQM)++xN4-sGmgfYPT6a&=2 z-PcPP+ly$#>x490vi>q#$_=F!h2fJw`rBVHdfHOtzSZ8mYefk*!}IhhKSF+z1||+4 zV4T0d9iCb{-t9HHVzV`kn`tuKh zz+MP*cr$dN>^UmF-d*eH&tHF^tJE@;5tkjYrW3#u|HNrL~@ZBQTVuc4b?^L=j4`ZMP9 zH(`rE>hCZ1Zil|FA3Qv$dwI=Zv2}l8QTcYRaBtL06FK|K`;Nhlwj+Y$GIc0=B86ql7@5cj!>fIzKX#sGV4n;7DZ0E6|t6 z{qL}DzqJ#sG9Jn}M$7Qo#5xU{`hU-Fj1_zD{cw)Z$rFR_6aoE@{(?+x{&tHx)rRIv zZMB5urh`I6-R?J$54#_eyThY@XCcRpPR)eyzjK zvTga*FGTa^rc0Vgr?(u8fng#pz;+2Y)$Z*&dOMgV`-^%zV*iv5Vpn7c$TP!#QhRXhRCV$Y(= zd_y|S?%8ee_s#=jv80(}^p|~PLf$YEB$dY!w*3QV6@oN=*n$h#^VVv15DZOQ8!`Jg zDdU@V5z7P)Y$0DsT@5uJcahTLKL-IIc6D8G+2A@SbgW$QRP;r7{uAK-+ge;R)EY8E zANn`V5Ds}kKv#&${}RkeAR{6TWD~kD;%(y~miF?m6^}3n$5>kH_t?k6cpt4%#dIPb z+Vr1hfN?A7w4ltU0X!eLq;u8d-;MxcdicDS^s zi({1ZsThud;&F-t9cKX%{1HZ`Mo&BfdqwUoJ`Nt(Wm_ewQTKa#sR!IMuu1J?aOW!xc2rfpx~%8 zCZBKebRAON;uVP5=RlojQyW_US${hHMd`)v2i#8b!M5$VtM#h1k^ZrVkVnspJ^Pl0 zK;mzL6oMZ=rDg|E(U60$=BgRopa5Qz@YMxYGnGlvz^N~Cz*h>0VL8kOks)@&RnEY9 z6b15stR_xeI44VUxsV7#wY8$8!NkN0Do!{hN=jR-tT(^icw&?FXj=fCz2U#1IptS)uPPjly2;#au zZmj`D3!aG020DA7%+33u%DH4g4AkA2Y#~1+*@-!}t_~U&0Rv2XfYJy?bI0WcwWcsmNQxqz@Vy{eSeW)!MgP!xgM8opggK0@zP_P7%7< zKm@noYx{VIlA7hVkmzrfrv>iH1CFyt4V5>qbJ@3XH`M;)tn1)=1*G#Xbtd zxm2wa@4k)1Fr!|BKS&ud?;gMaIolh~wi>P*?1>>A;7huGjZbgKqE&ScCvhFV&~hKi z0OS4{YQ7YrOp(01#Nz%kW5%uWuQjz-hTdBC+RlGmm-ok~tH3|4?+YDuxqkN5mfm`Gw605Z8pt*mFYf*ccRRN5n_=lav^nT{9cWk0_VAaGEZz17WvZtZ3nrHtLdk3fIX;afMcgl*qARPYL;$y#N)!1dm45>o57l43 ze4%RgFCSTccyMia1@*uP&J7Nvf{F)%;_fPiv9$gvSc!1cvsmG~-{y;xTl7ZV=oRl& z-Xph`-43ihm&YL@3XP-vVv`5BpX(V7hutx@%>(sG?;sFA$Qwzq_XseFfyCl3HcYTi z=+@P7=;0V>LiSw?6Pb^v=jB|dpQ-EmgIs&y3em=*XhHM;N3{9{cBsen=xCG34eRi`7M zXywSY)<#J&P+Jn>tn%UG72z6P}ox2bvg@t97nbT zK12_9r%D)m%gdFA{a*_eT6&^L*bj!`=Ef!!VUiZY94@56&cWs?n^YS=hN7$q{E@)f3 zKa?41?+?#cStgZd&c5A^cppohxJ4;oDwnYDKIvH4^Xesksdd7)gbuJ!*ZKH1cRQ0= z*V${WxHeRUWR9;LKi2n{7$-MeW9)FbED~Q14fU~ah%uWP{UMzpop|TsdkvkY0 zPS^e~@smT)6i7WFqL-6@MPEGk`t{N#&c10#+p>y3m$B!UHAR7Z=$P`N={K-n!&@cW z{^6-R{`sY;_1Rozg>_XSP8VvBuk9rffD@GW?uUB-l-t50h+Oe}b;#(31A8jHhjb$G zDre6kA@5%`xe}PX~tU$OEgT=fbay`P+v+G4~hCjJ8DU@&X6J@e~DSFqgXmxk_ZmzlK z^Div44c*vvmya~Jfrxm#`8d0yu+)qXlJJud$Bow+&7k!wM}btwYLz!l@Z4l*@kCvR zc|dZ94zy?T-^K4|dQ;?sruQIUlMbgbx(2lp2LV|5wdC6jS6W=6JGDzN>2z-?J8yc( z*v7F`s%V$klu5}tY=b2pTmtvEFbF`ndmHZZLdviq9>Ckm;Y(&esnTOf(4=6?$ zX^xE`fl^nG7t4;Onx>53;)~Qmv$poQ3SA>S5wx(5 zm>n1j3`J=jPh5H;owS+J%|fn8&fh0@JD>xfg6pU1MIRee&ljTa5#x%1pJ-tfR<}t= zFqz-qkDuiavKskblg)oPsM%14vv5g?{C9wxCJM(B>7Qt@`R_;KU|Dr(6-Q@?u{v}h`?36bDnznG$Y2}_LX_#Z|9+}!@s$(k&oC_ z(Xqt$?-{D`b%+z7twUsc2kPH*h*F?ASCo3hzmh%D;xbTp;&tjq#ljW2K4eYhTh zRp9>4`SHA|ZMr{!ovphvJTC=Vifn$+%cux@Kdicb=EBGRHV=6K~a-v8bih49}SMhoUZ zl--D-Rz912)KD5mnB*s_&yzN|My@&2dQW;c&*h$_R8Myn{Xy*5Z@{%aNFZq-tP+Vs zs_;C0x7)GO(3R|C>o<>W{Q22DEs^sRdaJlJ%S8Dm`MCA7I>SKT5FEz~^TKH&4vb$e zqG(w{g~=MNLzY!W$&ySv1)qbFlSJ6~#R^)ig9uB9=S*;rZrJPeGPPV1Lm(08RS0ZM zeiuPC-Z*c5&ku9&7XZUY?R%SBh;NRrg&je)hBMXOzEN;b<)|G}aFJ z6y%TVK9Z;PEazkYfqbkbieUEx^p4fOVbMM6FM z1Fnk4NcPc4ypseG(PgyxZ2pbvX70^jKNT4~B&3dA$C>qqTU&poZ+eK)iH7ZNdfV94 zjOw}^kf{^KqEPA8uJ>_WZ=8a8fwnrB(NMmojr1c9seIBPc_b_9)~bu%-DkzBwhEM$ zm;DNlU!uNIFtxKvaa%FGp%1k(X_|fOSgu~A>tXL$(Tj&D|IBQ&MC$(oMnSp0+X9Nf z*2OR~RPVAfc4INcJ&QqUq^%GQxxOv5QHr{+maT)ltk#j@gru!E)rU>eOqSyafk}q? z&=#uynKp2jss39`5nqy3h+!E0?j&VRx&0>f|wt`|=!uKAg$b-^_OX6#N>>xmoc!p@fn(5wLJf=Fm{9J=Gw+XDWW^GZsTuj+w z`VFd|#?MbP@o@0_d9@<2_1%KWsshecJH75eZ{>jSV^JG<&2LN176%~9h6deW&6Aa7 zlEh4nx!I@1SUwSgK^y@v-;Yr2D@=%4Sr(QQD0QK9V<`gJ+|8>yugC_0tBYW+k8HF% zAIz3vV>%-R8-p)ks1`tb!IL=`f{Te;MZLb6*8RvN!!aOhVn8{V^5xj!leq2XZm`N6 zQBgKArEFrW!9HnWjlrm{t@h9wVe!u2}FMEmKoNm4S>-J+sbuIid9zDNeoi` zIzVh)Q&|KRoFlqHeE>joi-v(tjcZ9Rz5w}x1-#0t`=2oV0j5ca4mFrXswylf zId=gv=a7YkSp7(VzOUL1uXb-q4AIdN9+~tuHm!LsIGDtV?+^c%udNT4WMkrD3@l25RId)A;$sjMR~Iay z9-N3o}LYxD#%n=nWpD4Z^+FZO&R;1kvp-x;~RGhzn3&j=S>VOcn zTMLG+T;V^@7?9AUK4R+EK}A^=%8JWy?ra&#%c_*ojGRL@++!w(`Ut2BBgS`EW-$Fq zlBgHPP$woDadCB#(6Aoj8pfdUMR6!TUxCUCRba9*uvfDdN_rQVI`APXT0*^;C`eHf zE>u*a?1B{)RWd3nt&q8DK@(-KCM-g`7foR})UV>dBCZhL`MNt zRWdAASrJ(M z--&52jI=+F6RF;^O>?A=xe4jGNn4h+cnjWMxfPG54?xWR5!Z>!4nDgF6BmQV zi49P%aeYX2B$S*kQ}&UeHP(PGhNGew8a0oD6di@)GiCVW$Qe{sDs^EM4U#PG5w#xF z(Q@GWJ@T&LGQM7^ zcbQl=J98Csem#z?tVgl>!>9CZJS_yVU;3CEkv`@|0KoH;mf^26=dtk34AjuO?R^|Q zRSaPS9EvXhh>HO)zJRL2^RQm1f?TO|f0+drHw!j!(;K`$o#}abrQ&W@a>0LP%WO?s z>f5{8q5x{-auy|lMN8s;6y!=PtR)vvw`C(lHLQ;)nWL(>!dz^kp@@!&M!lx7kSi=W zedG*E&zGU9!U9W`6|xXq)+(#!w5|DbY2iBz^&0`09`ve3MXd)Rf~6=4Qj~7|X4a8W$!mR6#yv{D-_XB;0QMM-GbEDlnXgj4xN__MGGWo4D9sP*zh+bLdra{+Smcbdbw**HLLiKCo7lc?+ zEszp`s3>J5Xq3cYl{qS_WHgMggZeSiKwZV!rBAIS#IVgHu||I`vHtkUax+TljXUo&O&_Ur%n>7jmu;A78 zIC$t77QQ*ow-=MMw3~*a8?7N?q38yY;$ndEDpVDmgSEU$5nNSPaEleP#R_gQ2rk)h z4Aq&~?!3Oqrs)(_$`B}Pd6n-^reaflrYPp>ck%YFiLIz8uxJ^QDC>%2XAr}hBC271 zSSu__SYhN zq9vRzEJnexv#6}JqP(mEmMR%lqAt{i-sns(+tf)ouM@fJf#mE5Ei>-sYb)#_lTm{OjWNgUZ zgFF9`iYieL7GY&HTDnXlN*yFV9Baps#fcf#86H`R#Zl%;y+{l)BycX{Y;hGBW2jd* z3bM>$v2go<&q8Gxtz6YLcbo%N78(0~Ig2h=HCEadb>NDR`L&<~?JkLj<|p6>OIJ~; z1r6fs`20NX;6uU1F?7VsSiRzD@zcqb;Hen0?Y=Y|fBX}J0M0RW(lT7stP#dPImoxA z=x9`w@m1aQ5q?|I5>USms*ax4#a5*S)`}`{A-1?xwQ?yYV7nlx+6nvzud)CD#|#*b)spml$AC1eX*ogUK>DS4JL20jMlEhx+xKqfVn(Sn|(lBSJX`>NbdhR5u#M z$IhYbTp6m$D^XctK~<#%)=CSk78w?cVtJH}R!2L3p>S+Ms;Lc|`&aEoRJyPvNKs5_ z=q)njIx?&>7ZV(FocjF?;xCFvY=e3zK2-`?62nIsL%rB&)NfD^MW;$paQqx9DlDkD zP=yN@EU2ooDk9j}t!NOzM!!6zP6Ay@{;Uu29|i#|M#f2!1W96uijoi=EeQ)D*Xpd` z_j72|zB%F=)I<4SrI4*MSQG=d0(I&z#KlIVs!B#_g%wp68H_`@FJum@_{d!EPIMG? zKGN?Gb(uPVT9O!|B?hZ1xH!PYXwP%Sm1x>926dw)SY@jkYt|f#%N5g>*4w1)TU2hr zq2odTaaRuD9S;3bjCPkK_^ar_0Th*1p+Q{mh%WC7F3zztI}ceOX6s@L@V=GFW@Mw? z@fpMPS)%|hBcY}QoLi7Ep*CZBI#T7VPcpg<17F1PQQB_f;`)^fQ zVX=y?Ue&6i6tuY>Y`Pc28rymhb)j`9s)HD!B*<1FRE5}59kEMKl_IWL97@k$fLvu& zE^)?DFTNhQRYt+FbEvGaprXQp%1R3=E2>acWi?p1gbx>2EL(abU;RB24%Ne|U16|p zLHFZ|ic+jxR%?_ZkYuGxOSMLxKV60<7sVkaCJGgmRzL=r#8J0y6u=lt%Bojg&ytlFi*LCroiZV~=HW*`x~ieQU zheu7=6}!zBbGN&s`PDI4EmlNDt71!erc_2tkeCwY;m^V%G`UErkMau^MHFx#rk-Nm zDlW62O6K@<)mQlExFN8}GAvezIi{id!zj zJZrjduvj?CD=dmnT!5)v3N)uXWzvTMcg)1bPoISrP$!6(_QFWy?mq@CsS|I$Su17E?>asF68X zl<2nN%8f0n&fHN}@QNx}N-7W?R~OtW3&(EdS|~kJrdS)TR=wLwh%IZC1+wVEGKPfE z%7TS|BjQXrnqqBgAtLm6PPz}Gz5`Ksq8KWx zqEK<63S}jgs8>H4XU}jj#t{vM=sHm-E~-#0idGr>e*6`qtQ-~@TGyluXkEL2;eH5H zU#;qJm|q4kgVU%sg^$d&kQ>T-A%{igkYtW%D1KMb2C-lmtY|7@mq#lKWCra1^(=b- ztvRBZ@54nf;WF^c@e;Ic83%xYasT*pSu7k?l8ica0vnpbJCct{7;yVcY+N&02n*S} zR-@V?F2)XBE>=AQGCy0>&9#y?j39pYABH-Xt8*E--6ph2lVOmBFkstQJ{u zmKVNTn&5J99GesRvnchv`5i~jsH%gs`UH|qBSK|0kYkht*xD63Q~C!!u?iwvt6z#xl|5VC6Fvx~vyq@cnX)lt{D2>P|pI8&zbQ3oY4 zi`b395+y;ZvcghnL1kGbqUuPHWk80EC=qD3tfWHt&dHk3mZi$7)Q?rx-uR7<*>(v+ z_zPhb?d~x8>;U=*H(89xjZ$t9wF}BpS4LHpjA$_ux8i~Yu?aDXpO7qrMMo>{4?^Ht zWR8Re@vz7;tX8EvkuyNH>H`MMG;@J#Kcr-lH%7Tb1*AMw8UYt z$f&B~s2?Nj7_w4xrWrR3Me9x}t4aC#r<3S=b#rBZUy3e6)_=|~MY~q#_1 z!U{=Jy3hlKXM)RS%76iP2(bmI<6Q%mA%_?O0A^)9iszqQj;Ef!6A6v#)jqAZ{#4xA za`6Tu8^n{r30tD0MFe4u~m| z09c`vsl>peqx5cCLm6_JBdU%BYlTGoS0AR_8@hP8td8>%orp5Tr0z1TkRZt%QIaBFWhnQ7 zvMYlOZVC(G40k%~U3K6Ewyay8|F7;nw8yy;KhxKv}h^ZW8nS-m}t=zHLGC4#Ib4X@ zJAS~6JAc68(?xo>gg?{aX!NK0MJq3^kM0x}MA>3hEQSWbt0Z0bH&MI3WUC^!w8q}B zpV3E16JOdPd4zrpWnda4qB>Cn+#p=JmBVV)Emfv!HPnqP>O=L_lC?mmTpO9F&$?jf z(z3C51-f+nUmMWMK-NZW>Sdvqp$x0&lC>B{d~%yIHHLMt${edc+m7D1bkdIFH0*=+ zh_kUkMj%>!SoQk_FvP;<`Up>18-$==>wxw;X*#AiU%bD`IR(xcWG>hKU^Nzq@;O{s zDhk36=M)r|iUD5%FbsKYTPr?Wj@g;3uwl(}eou6*VGM698jFMbe#fRY`;=wgd?=Wn zfci*9yU~Tp9VWUC6=9%H`D1M0)!(oe9{z%Jy#3?P+D$*@>wN$hLHPWe5(gp-hO!Z5 zE-X~ss{WUi5r!67ORy%S)FKvjA&b$7P#buwZ0JHX)~9V{8>%XTKE^UI&V6X?T36y^ z=@vw*#b7lQSgke183Sjk!fHSBvnC z({3{vic5p(-UI&n>x`HVRvd?O`xwuL`^4_{ji8U?$Cr5ki6*v0Sz0yGWr*0XJ)?~K z>E)>&r#4hoS@G2me`?P{f3z``RaWF3FA*6~=a=w3MI}|Js`8)6Q}I}ErH@;H2~*Pi zo?x%RBy{X@84mn#6vb!D_0eu#JHCTuhDJ#FDQ+Ik>cTa#z)WIG-NDJl=&z@TI;`0y z8O$VleE4yO?SoyEv*xU=ePpeS?aEF)j7>Cu?Ez;L651~M52N;rH0;||t}oZN(d$F~ z4#V5K@!l|wYE!Lb`a1~M{I=BN>SuJ2s7SP|81ii|JoQavF03d9ONwnwIaNIAzd8E$ z>ZFNXqqx=%AK@a)^~aa-Ib^h!bH~1krp^)b5xsJmGbLcfFUO0u`u6qxqlPUxq=_z{ zo=(js0L7eZeKmNKc=qOwVIXeJH{?CQQB)!|!`lUEuZO>)#!%2aJ|4^=5Op zx$T8vdnYq5ew?tV{|$(Zjz+WkF<5qciaLLY^J~D{X>vt;**wHl;c9B=)zyv~7;e~( z8%`$v8GSF*m^Y4+qq;JB<5L~p*xp-dawNL+*m34Eh9OeFaXKE^P(NziE)HYe=!MSB zXVMc9i6YAp4uy}sdBpa*SND>&=aaq*2QcKW6zyfvt`1xfTPi+&TxsW!+}z%qX{t_m zIcpv?Ypw02><=*lpy12}{CT!Qf57L(wAJ_#o$OV+1h~N;7-$C;hn6vOE+A9iimu=j5ZOp_=s~P z#MHr(K|L|IUw1vNYMz*b{oJU7nzyMrznnX1g*n$oGgf2g*BT#nccVx!{?|5Fg_oP6 z$6fU4S&W}*bS`tgk9X5#|8e2g5Jhe5e&p5c!?g#nwoicVh>D@tT(+*2naw`_c!ruR z>gF$;iz#?)EVud#g?-fi-|`9p4#@ft$Z9LSy7xhEp^7Tw$M!v~rtKwoKTXw%Fzvfh z(AuTdv3T_vhAYD9d0C``tHiV88P#}DGtZNW9=zbnw8 z%O!p(4Bx^{Ekt~*7_sQBA+gmqBKjBeo4c)r%g{nGH${va>Ctf32xu*;C^luG*2P%! ze$2egleE>8W@a2HZMIrzZ|RO22M&{kMN1F2e;69KQKCjmPP3zSMY@|c`+b}>Ps(yz z7ak>TuI=M4j$DT9tHZ%4MJE}wAHZNPb5k7w+N=Qj_WF0mx$6z4rzX8>gpxDiRh=l) zgqx@7aw)5<+HzrB?@F}VT6}HF7yv$5wZ*XByVBPai&phly6fAchV5%>X|p}1Gi)tk zyqXQY-U8dalkWNT3@kDeR%qXgE*TsbDy{hIOodWLeu(wRIZ#n0qsro+P*!fM3w^qt zP`7aD4^aRZ|Kwl{9r0fTPDrW^IWu4Ns^v(Cof?IWr{)&h==%;^Ra>i<&9SR%ja>;e zTibpt$v!=r!LXY1+GPXPSzW~A)ev0L_GL_++Qt(jhH9CrxpP9@-e~dC1(oA{xM?4E zsjf=&Dz~+1=w)xT6q=lYonR8XPBzxwLzsiG1F8_W{lL8j(@q#UtqnujIw@m^@9i$u zhh3T-S!%%4SX?`io-76>gtQztg{i2 z+9?fhU%Ej_PdsC_`RLh`wD0C^wB;gFz7!>yM4seuA7)d0o~O~avK&^2%_Z!-BAno$ zo6GicP&eR)g|@=V;qBqzQZinOQQCK=eazc2!$-I5F|jU6()Ur8>!Mh)scZE(QR3tD z_Nd{uw-saRhDJfepv>iGe=FG7tF-(md#L+gd{GmN=Qwfp0xGIx^9z8FHAhLQ#pma7Bk(E5!Jm(5-@^)VbEJ*z zfwU1XW0h*f^VG!XYK7VMSDDfTN3YNNItLyKZd)yEO%%3|M%xxtebX_tbmobRZI5Y8 zuKn_w(`P(AH!oCMS=&6=oJM_XXU6VYTj6VHkxX4$#(YaKnYh)5HiyAC%2-}Cbmdf+ zUt6@dA{#3Xv-zgZ(`K{ORN(ffU@$9|n$e2gfwJP9izIM|_m8a*wyTF~1ez)c)a|s8 zBuqV>o@3JkTrWPikZi1&#u_!AOU;TTG3|XwD<|Xi0j1$rmMihX^;+VF@2&+2HRVUE zLhY(IrA@nqm`#*&IH-DKnR70JY;t_FsgTbcR222XQ8M2$UfrMrmQg^?YwB66f zCQI_$1VaeLh6LDbfRIpZYO>e{OtEFa7;L%XF3DBB&%NjO$0_%mJ9ng!tdV7N9)HG~ zx#g7iJ>@;``=0lx&ui}z;x(K^iOMuckA^Gi8?WPO%O`Y;NE!yW%lL(2;QElJFz__* zXp{i&Y&?uvQ-<(NF zQZ9a`oZ$TqK2pv(d$O!^cLPB8Y5M*qQwBgAIONzMp$<^qZz%!zo=XVdU=53Cd8*~6 znxM!3hrh=qs!nH~wQO$pccm?sxVnNkUC~O56BybWUY8i;ECxJo> zAn<66qz1*HIm|a}$jOohyra+bzH%dYauJhNcgooyL662y2*meYOV&RDDZY!|OWg`d7MR=wZAT|?%M4g0CM-?g2-=*~K=)Es^qKigQ4q7Lk zIlN1r==|~e7KIE&PP}`B=p2!PvG^0zk3jiCgW$=(zKOfKZh?}ak^6JJ`hL-5;!C8_|fHf;I}X1jvrm#KiTrXfqg1qGW1l}-b3=5nqd5o z1R1Lr6`uNpKJ7Nu2RtbhQm@GV?`m~OT)sh|dfh4YCKK=hTdcr>-c8s%dpLN>!P1*B zm?nd-EQx<2m$Q7*y@ROyr22JnZW;{~#sjVsu`1Vv18-3G>f>d^v+lx4HEv4+r@g8< zl=mrxWf7UFdS8*zgZa^e#fhqYkUmz5d4~{IJ~^rTB(bi>ZX$&qU5ZyHA0{9*|doTQ0fW4Jyci_f5KGMi)oACQcz-f0uI#&DM|>tC(;n_iFASqti9J=(^ShS z7az(ZL+<(v&@c|jnN%$Bcm*0;JF$6R6DAGMNvUQ{PJ3Ky-O%hHFUv;vl4)P$&A8Fj z(utg`z8AW>7r1!i{QixX`YPMU755X<-*FN>mxBCXdh;XP@x#mdMT_Ux0LZV(eam8M zU135Y+{qz->PUp61xOoFi0VJSt-VOPo=vzLYJ=5vLuaThdLFo`h1kh|QT@PW@ z_0%NMZ_kE%xCt#g52LwqKVt2j02TRCWpY=kC(7axlK{AP$=_k8hjHe(5{wx!1e@R8 zig(s-#h`E)Gs;GR3O@xgi7Pwcyuq1BpD7_ljyiQDBIAZ(@Yq3k{r)#}K6KfX^qYR` zYnO{($i;f#v)y$UZCx2i$f6t!%TGssP8cgcKB$Yb$!M4Y z=O6ypCV|&=18NuVC(add+Vuo)sC{X4GzXEw4AeDtVDI4;G_-Weo0jF#El3k8(n^#^ ze;{yCOev~sTTzf5Mp0opT-Sw_!h@~_U8-waksi)QT9|;i%DIcFt2ta3XlachE5q(n zIUp$w*W*i8;Kp0$q_C2RuM{Cz`sic0<>s5TvZPwr0)T(LSrN95)qdQQ4x;QR5~^pS ztdJ-HGNOeTeC6qJAilHRuX9txu#QA)_igxT?t)MX`_U50ALNy zM$V8NW{TzP``zmm_`%#+_~C6|M&|HB)NQOrM~8#6 zPbtPZ=S{?C6}xcsPy?2|w-J|~J`p15CJ51+0P!Z1P*smujjov&TR1S?T-2cSoTBG!WOq5I;j*@A^0RVeH+J{fx*yy!mE?N0CC_69GBvZv&Q4dp<4XsWnTj!1gqcp2xnh#8XP_=60b0F(Ia+_ z5&&N~BNA8Xkfm$pQ?|6_8Z4i}t4jnw*L?{+`Inj8GSVzWhGZf#I0FE1;Ak5@-CfVx ziN(i8P5VC}^;}y02n9CnZ9sO$Amn7)5C_huwCohvd7zmcbPdX+p_B?;3^9kItXhX44<|KdM?`Hf=}wt4|3C~$R_RKHuG07`DYK+ael+YX{`-DgaT00KKb ztm^NBV|E2D$GzWv-!1h$Pi#{B6U3w9U8*M^rwLF@kN&*<#q@%hvcEM?z0V$ZDe_Mr zg^Vf1$h%+?@-8ezTV)N7yuI0bSyd{zE*^S&BX0k~8Tj5MXDI~|!YS7va&u8;MjEa@ zcM3Y&Vt8Wphxq1Mr^RVn2_eYL&BUBrXUls{2b%D~%OAt(bYNKo;f%1hGs+zHPZ_T` z5-p=+IUVVN88X8(**#zlnA?V>Vy5@(Zy(LVGdV5!!uv$f-Vbkd- z%!tCIsBuG?;JJz1zausgKlon}V&l(`z6(kzPM^G}IeL?uQ$p2o({#+FWex~m?p%jz!#U{wK}3KNx9*F@u6ALJnzMLGZWA8p0HBQ2m57@D7s ziNkYIG&mDQgEG+4=HUI!hv7;eS6y?e@_wK|@JF~4tlM@J(ZUQ&9KnR3lsWFhTfl7H z*NCD)87RmK0b<-pVZIbVM~92{4j1`-|N)w<1nLf~Tt53f*i(**zk_ee7izP15Y*amEy`BPZTgd*%Ky3a}iZ5K@-6vK*%Hi;2&nsNb*$bsz1*kS|O@D3XVa(jp8Yz>&8% zOJ5ivOg*t~E6Qh2h1hN#S9YpQc2dA$gXXtpoq^@+HsR7!Coo?QE;xnK!$x?gC`kfMEi?Y5nIy%JXZ%T0Xg{NZAjv5q?iAdimAw*qx zS`lo{o7JBjltQs>0hVRS30yRTq&G3B^o(PZDi*W9et$V(5@mC^D6?--;5RobeW_~= zuvo&dd>og+r4)x7+Hr7WJ4O!4!pKNAvNCMUoIDioY&zsQ(hqQ`wH5+UO>G+ra?(<6 zUQ}s*;Ak5%(z1~r^7xx7s7B}J))=xgdl1wi0lH0L-;P6=`?Yg`WG2w=DTn9&`YfvU zSD~zIGAb)K0RR>*x*I?L*-rrgzxvfZD2^7Rs=6w!aZjH<9n+^zk2h^~v108lE}MON z>P(nP!OJ)Lm9r)N4!-^gNXX)oxdkFjSNu2E<$Ic*uFP5f?{Z@0e+XbH-@S+RG=*=7 zyegCyy;-uUJGr<<1upXkqAmq23gQw_%fgYBn@~7?EYckOg8{utF^Qyk*;LlDE7z8s~px=`(lm1me4{`pv~{Uh(;vP*1a>v%#D3gSbNV zq~v5w0eJ?Z>$sq{1=n>EBLr|5g+ti4wYqy=fC+r3OesOkrTFjPzkpe1oT5$EH_n?a`|6VqzYW{AV221S%Z6=R zOq;^vV#&Bo!W0%HaCOl(B|Ur~3QdD;Qd|opoZFRMd)lT8h4dO%{X!St>E?1~xh@m7 zEDLaA?AhfnuE*Kuj>p7PBbagiSZw@sAKKbuun2`q2#(e^;*3)#VCvM7*t_RQ!X2Tn zE?bB48!wi>2?0h8%ZB4p9IDRHTp<8pY$S&XTa@C%9d$hPo=1B%cA4(yrM6L>25OT` zY#tOoQN;JQCs+%ih^Ptqa*7|SNP_Qr8HD$PODXq6VHz*TWxhvy4>jXRV+W>lJ-MOiC%{-|<~scIl-ko6N#5Ji7Ez%$YL>KmXZJ(cIXGO`A8%0qycj zF2TI=ayRycL<1oeq-6d;kvqr2@nz zOq*g85Zgu#X-6Azyq!SsG%<|mL?5{WOi=nweFTZ-7qY>f4{-9X)H1MZHXi{Gtlg;j zW(3!<3-}yMP}yBFW!s9 zKg;_j5l~Sc@9abBvd@?aV-X?*E+L?fi&c-U#uw&Y01$$+uQ>znJ^ulSrxG-Al0Je)Ce zG>#l?Msss;|9I(*wYa(bE*v=6EH%Qzi?RVqv7;y-e|_RL%>C9SQfo9ingamXy1xmn zZ7~+m)nYaD6S|0H;h_hA4*=4n zIJ~4-niI2gaxi1Y3{=;!fw*LN2_Am%K>)yWfBP!{;DJ^)B(dey1Es=BIA$_W7H zTsR5)KRb+)F@yU>YS)~+l?gfWRi@pFRn>vU99Z0BwSpePvc^M54~3AIkWEaNTYH z0=O=yO>pqF4Tya6Jm#0hN3Vz9+l2CSrf{Nq@qdzGgu41A08SqnMRjcxiU;Ll_~|9g zhvB*PAQsbX*&!SC;Z8h7cK{ABG>gTJi8B=l0hM~c)q7p?0~CjwoAKQlv*A)^%5y23 zWc|+X7O`M+4bJQLtwiJQT39Jq1rh)a9m|lOmWKI1muc5OR?Sj<5vWCOMZ%cA(3wFRKS zkn{xG*l9PJbyaZyZJnK%QaA)>j>-4+50;RqyW|J4u=B0`c<$N%J0_Y37LhNCI@{VX za#S&{`r73nV5Z!^KD`d#x@{H!AU8V$jZJN+t!u#Okx?y(aU!17Ha2_OJ?L`*1u*x9 zOJuCBQ$`oc`v+=UVOs>YZQ*EJ9sXzII{>jTBs&G;1Eo0J(t__^FdGins`~qfXWF+A z;zIW$kNzEb!wUMeD5}}G;gA1^^z<-({>!h!CQLI_b+i>@i*o=%FlA&uHtwnScmR^r zFm=2kHf#_=(AdVpMU)QD0d-yOI+4O!@Ex98_BCNrNos{I=_($pmsT5z%DW;6UVY8^T%myy)a($+la(S@kKNS^OCO z>3iRXMFH2MXy1AO=@X0i69kt`7%BZ!x-tdDL9`>yn-|zvRfFQedGfLPgY~dNHZ0pl zeW(LZVK2UX+8Ic*?UZfZetCTb2508MaoMJPM+ui8%56zM8h%U+2ugCI$W6~XmaMzP z?z&yL_t*F1hj)GtR>(qoYloy?@x&hp%r%v*;X+4B)ZX%d|>O{yu9X!FeR#YOy zwOY1C@SL>;)5nZMq+n3W__3{OFET@66lUgeVGD8nL-0dr)pEk=$QwC6WxN1@ecLzU zPY*wZuiyGL5SxNf2i3c45gk>COD;bZe|e??JNMP#jDkE}$l`6?bKqx~HgS~vEhFbE zT3b+H?OPjg_MFpEG>B>AKiXa^$AlxTb@)@|ySRAjG=%JMLjS^J#VhM8P?(X!#woD= zk<55C?Xt5|%8$xbALD2L`UDpJ_YEL~?V7CI-GH*u`6wEkiH&>expq)Dh6b(61`3!q zSlDTS>Z7eF%noB%VY<%WRLEUQzFYP+VbX|P&l$Im+m*UNW^IX}xy|XdKUcRRq3m2K z=pYsA)_KBKS4a>)CgHulfa_x2hdcTvE#a3$q$_9lje}Bz3v;}IP53`pgb7=xr&ib! z=;};5G5AWy*M2Dxa6$1YsI6^4!_hij^`3}zI&e}Nk_Dg|r!-fcg z;Lx_iGTZ~P2%f?oTsZlZlnPq{spRPz2DuO`nq4QbgK`1|t} z^2pdDjqMt}0!SL?i8hd70oc5+0WGcE%pwlD?gwdcXLU2ri>6K<;2;1T$3;uR(-yi$ zw_@6q(Z$NIV|1GLVaALZftsqBvu5F))vJ@6B>PyaC1F{8$2^OG#$06=94l|y;2hZL zA-Ek5Xv_h1T+o;++h}?;9{}JUZj#Q8b0!o1_!4IHUgYg;DM#H5Pue@G?8E1_F2toC(TDggUSOiTphKa=^Sr&?KO-dHq zQ2e#{1-%&%rq$@rMG2+I8axauUw;c1U-dpUm0qqDCR{Kf zepjrTqjdW12VpCo3)~)Y4=I!hOQtsWLcE?bA@fI z>rG-lBzKl#lA}dMMFrDZ0oYu*8I4Vi@;3l%*}MglN+-$m_V3*XLI{e7m*Dy5o&x~X z)YM?zx^!X5{7OqIh@-7T*0!TypW3F=NIIEPrXa z%&%(Set;164lf@7txO52N-4f_={dOLhnEMe0%`nrZ%?q?IuD0`cX()nn2QG={ReKJ ze+jI@EYRk5pgjiHp@8GE5D3(p!0fzCklb`QN1A0;nXu8+*5VVkD7*t+`WQ)cbZrPt z>8#@Aw5Qi&m2+1Lvw*NyVqlU?M}s1LI?`S4B|gkzRLn2 zwS&7ZHFU?Cln&8UJ!jCjav%ixMFsME7YvD*sGlVBq ze+pgQ^Spl;vl*JFQm6+kH#-+vzfAQFkNSX%(Dy7DRjz*EmW zgAYFXh&{_0IlQD8k3Igld`AdTS6*=?0ATs@m+-;*_1IsvpOt~9H)F;O6i17Z)JW{_ z8GVel&km#h!`-NTcN>npS&75{w-EW^=hvY~{)^n^OsA;HI zQV|O3zHMoGwLMq=U~+j1{M4A$Jfo1%plqn!gA3+fDz?kWCfe}9F0{SB4K=T<$AMQr zM#sU%WAfoz`{D<9|G5f0|HoBW^TG!JfZ|C}uVg&Nl;g(qa+1EM16ACA{nk;{gyOk0 zrEc^QLJo`c4s1QT4dcg;VdZiuhK(8w0BEdkKizf@cs)Q;L}x`kIC2KF2W_R^WUze!)$U$6k z^_OK7`mC%pxoCK4*?KHp@&;a7wjRr0TrahaDogJ8(PfzX<#RA@L=hG(_y%$dGXry4 zx9up_Z99T}N1E`#_M`GTrI7JcDFtGV1Hh85_o;##=Q-fpU8!E9ZVyuKDF@W=6z@O# zCT7i?0t&)I-FSprxAidAZ99T>+m7JF?MLy^j#_-OyB?eOHsG_GX4KZV_n&(77%`zZ z7ulK2%tkD$f0T<97&R=Dwcj2JKt0Zi*T=F5($no8k7M0y`;ttr_Gm5Ety_oEvQmIj zTyP;%KR@`u0{~%B;P+Qo;quEa$J(_O_|Xr3h%2wWf(c55us9_NAfM%e7%0Wl&pwMt zL^-3&SMl3!y%kqpaXDtpn8C{67qGhX{UQX@&lr1*?CA#Gw2ig{^**&fg+(c5r4`^G zpM0nUzU+I57(XtEveSp(Qv&12xsxiwRthE%Ndo|HR&7L1P8J3Y9t6I95`)fWJHMKC z8~`ZA&chA-Xc?tKy(t^7>W91c%Wx6Jr$$*>cr2=~ViaE6@DXB8C(lo498SrQScS&UW?XUYl`=@`$mz_7>a!1a1B9SG=6IV&j-~!Q{i0!m zP*YPcF2Z%0phqdim*_ZbJy?UIjdfBW?t4CXb#aycA^HmKqF>4l7sA|!?$6vzs!aU- z`kh-)Sdfd1OtvEsF2(e-#{z`lXmuk1VE@5Gaf>73`*qFSbMez3e--0PixXr>}(9w(Dy~NBZQ!)`3PJ};kXVQN zLxcb??W#Do0?^<~1VF){JbdHd%K^U0!0n8|&Pqpk!Z7XOL(Q!iJ46YEpanYXd3i3I zI*A8>WfeQ)vZ?s+)lWbOkk=l<{Llof|8x)DrDBy&`dq_A0Ms-cfkP=A*M$oTmvU!7 zp*xWLV8^G#D8-iAKH6<71v;+5qXcPbVSN3DucDx^5Khd28*_2$oXMWsz}9LIO0j0g z9?YINnulvTw$}N3?6t$nV;uZRV6prGz zc^oS@fV|;R)HENJ{GilT{DwS1$|itCY}9qM;KmQChv|G+!$^s;$j8|_y@p>PY zL}yrfdK&)iC)Xh(I~_5xNCR-{IHr}Y*m5+Ex77FLM9^(b8$SpI*&#;demGc~5Vk>L zLP<`)I!ICg`PsccSFu}x>(YzQNUAc6@4FwHH&@Cq4+jq(!o2cw85O>|rWy8bbiDLlhKo`G#?p=Hzwrtsqii!&S=m$T*HFM`;%jPX{&wj9O9p;sn zc~4=P&|pnml`~45{|yV4HjjS>9@ioabu<>LnDau6fJqg zk4P|yO$Wa3GI-;5?q49&urv>3PlG@~X$(_;^J5v`CNS^rVymg&Dd4&;;5cwyfVeKG z!+hbWOX0>GP?uuJ)zbg~vHf*ii$ZbMh+$a1X*X`Z^fb0bIY}W~YLH|nrg-jyjhK7p zWKb7ax#Vrkxn&j#Mh!w%eim9ATH%5%7EZ%poDmuZSU||OnK{^IXJK0WOib+<7vFvq zPnoHYzG`%Hvc47Kyg~I`Mb*EHaz|%MfLp%vEqD(8Uj9TWKpaa{6PQaq%>dURi8B9+X-}3W~SaeTws^Pi3}0b<)xT>H5kgcP3CNl%;2+ z!KF;6TifKtU^{p65WKhPF!NEhfU`;_(1@Qq*^BMi*xGqQ_`}E5ThUfW z2WKHahiNqXL)ZcUxD*pcpyp5S@<`h397R}!|K=Jz9_U5xO!8MR(RMALivwjFjQCHc%~Eyf zQmG~U26XAQ3PyDCp;RuVl#p3a$5j}6LSE^WfA5%_C5M0h!6@W zMRP|CIhkp&!XY5dhMgXUos)s=vSMV89E93WtI*lupnwOr-C404%?&MRZ|OisYX>^o zIB!Db$7yE{$FSmj?E35|9G4<9 zGmPSrJRCUKjKd8bXzg^+9&^zVbMZfqEW_7txsnlxYgNNG!TD2%0ffMDT)e;OFgumO z5*k>*W(VPEAsUjIE)%eZk&jZjFzhNVLU=pYgzWBxtFCssiiH}b?A$%7v=d4xVh)81 z;JmWI@=)&;>kmNPAqoJ*V%pGf$U<7kMrOK=p}A=oHaHV4tue$LijeKm%p#DB2Q}1% zD!{7kXje@Ob{%X^g3{fCEyRHfPaVp%`NDNU&6vmI+On^yPx2I)G(5-qkwD06XzJ{< z{0IRu(rkpo$0krFwM+3&|NABu{QUalO4UtTNeN2brPEa!i6)~SO250Rj`Wn4#}4X~ zdcbzLv{%=meRGX8Ew+5L2aT2cnNOF+)cUY3xT;^8Pn+VWfm|tevAj}4S;#?6Nkh{F z5W+M)RDC)wH<_Z?vn0x(PWp0!;WHF*sXWBmbt&Mw$Qm&Od9x=-K36SW1siP3uFx9f zq=&I$>wbJ;$|!aScM=Yjo}fz5))7M_KUddyxfE|d{XV`te-7-7FwXtj4AkyAijQ9V zg!znF7F@@L9kSsPzTy)*j{@4I_f$$1h#hqCCcwdUhW) zfeS80T4oqCZ#stw!yS$;Z1MDp@^kRkmR-2;lyScLbOWBo;UjezJE|D2<3jF|B*30M zN3i*$DwLic#rRW-FnYoeJoUu;tbf=R;JR#bvY9|Yq;|z81e3&*t~w!$CLV)632TRu z2hGleu=XqX;2*j)?s^woA5(&~Tw-!}T^Fw7V*G?6oPEJKnZYBASIBa!3#h{U+#tPP zVh}3p@b=%=;TyNIO-e2$Ofye_P8V3aRW*LTW~UE10OSV@hRbYnSkwN^?9>&t%MIQo5vGR$fA_8^`YY;KPMfhjLDY;Si9vY zgsy{op6S9rdOT(IJ1C_%V;m1IOnQIZO_G_(70QI+xsb6ntklOSqX3JE7PgMreA&Ig zMF?Jb`(rGi*Cn43A;H?M?qZGfm=XbLC31%E>e&GN^X2Du`%LPfbZXay3xdOMZ$@ra zE%GiZL)NsB$U1!lXj41dK0AcAgAM3B+N20tmglnMn^3eI{L8w4-&8boaoacZNS7R+ z6^3**a{+n`GG*1S%WG@}?^24i!MOd`l)gFgTsV3FOsXkrOA z>^p>U(ZR^iOhZzjEry_S zv56!-D;-(+Sty=RgrO5X?RR5U1Kxh>Jt-tfBPSPl&!0FN>vvY+%!wnD;{}*Gd;P{8 zC>uW#ZS7*!%2xG4z+Snk5>@+aana?I5y}Wj&CaF|_F>=tIvhFF0OGjZl%*U`L-k`w zq?uMHkw*&R=aXj|b5)yHJed_`E|q}-G!2)=HY(rox`R*a$oWFSCiNjh^H4IP5L3=5 z(c0D{i&rQ|Kq*240n)-@yt(!hd~wzp(v_hbW&i-5e(V)ocjF~+TxEx{;0pyBS~~I0 zr-v}}l%dGY4&%HjL*c|+R3B|aLrW*>TRK4;uiX)gEvy1TC<0|L?V8{Tw9=^0s(s6E zJ@pThaU~%H)TJJuq30tsTmS)eU8JYk$Vv}mSV0B~^Yn4&txpc2GvQ2PQ?FX3C-bG~qAt1RK$UJQXGQmuZ!WV^F zu9SMDikbKZ5u%S{VsHq3)wya#kYT3@L;{Mn4NvhYtk_+xXS8_wbXiT^P5GU-&o^UbiRzQGu_{IvpMD zop3rGy&hnb8wkOBf2%-NeikmgWi|l7P7h)1xnlqTD;`<}2Vhziizo++d;I8Ws|p%} z6Pj0i*Sg9}3g!V?6lpT%G#1*vVWWp)+_|H*_m1v7iua#iCwZp(1A@&iA%fFK7o)8` zhJSp#75{wMIgD3+s~Uf)xuqQ|Re7zFvu<7IIhF{6GT=qfD; zT2bU?rLo@-EdOI@CtFiwD+tZ?FodWfV1t{ZN>2>)325x#WQw3JnH zV1Nguhcp$!m}`++oVuR-%?2Vtj&kayZBWKJvs(nBn8D&UPSK24t- zAOcJn>i58fmEXT7!74r(n}jy`YyJzmFN2)m)#YS+C)z$cjE0Z*AlB5zv@To#P<-5V zI?5lwf~%O;a?yP+AyPaTrO_dnT3Uj&?{34}?{7vX1ui^&0&e)yS!fdnFw5Qt>2t>Z zuryohTkz^{{|-V3#-1?-C6k6BJCetI%q$C(I$du0C*4V2@yag!yQ4Snm{PqumD0(``Hm}S@Ri=R@E{dif4FG&A^p9b&-)4#uewBf)6+C!mAaVaN+r< zpeR2NE`Sd{_zWNa&n{%Ar(yD>(fGp5)6m@7Aq%Mr=?1>xdy~3x7J2n> za&eDoMyNb(Liln4K-JD#ta_sojZJN!F5Au_1R|}}zIAV2eh#9=gK_j|BYyMS7jV|J z@t8PyG_rCsuyxaZJolH?*js%B-@5g3eDTV2&>4%DP;|e0PuO1ZQ4K%{#ujB`SYZaT zGD3)PZ4todPTKPYNYCMEw>0@CXmHft@j6IXnkNd#U5Kv3=yRmL9iP=Sp`p3c8=r)B zl4`@t39%ayV5ajkCl+ukUmsho0yAX!6cut!VG14dh1QX0i@dD9ja;9U(>wrN@a3Q5 z&AW#K+TCbvYDG&^JK9^?5$kl| zbUJYOZb&^B$Q8OuYXX39Um^c}H7c>bTd_;05pBtpNd8iv?KTFE&_ej$57cVGo3PbM zUpj63OjVxGm&SfcFUukbg>6`28);eT$QhJ_@zX~mdr%g3eo_UO0)@kJF>F);*1x+8 zM~^h2sksBqE$!&&h@q{mlkLiLg|0>#T{Uek0n3X5JYqLdcC8V)lU6(nK$^K_d**6k zsfpFhPKq{)C^S=fBlr;Pk=)Tfgy4HOTzX=O;XMVf=M#^-!GtZ~xT|H9_$>iA}2zX?kdy!gcJ*=97?E`4H`QkpmD zD(O;6Wf)QdfO2)T^j#uQ{8!lEWdYFQXc14_CRV0gyAF%+3l66V*KQGJ!}0_`H(+A` zxW>k}+}0FVLKEndkSGy#;I!sW+krbp;~JN;DMDF!yIM2x(h)mF0dMslq?Pp3NESoU zw5q;O#IM>A<0%(}gpi-e&j}!&7D%1e2!-SFcF1>)$=z^-ziTmnBccdvycuzAgd$9; zOJA9{=nHD&;xtlBR}?~1P2^ucTzFb4nT8OwROf2BC=m-0ubr~Bo@5xOu3&;9pep0I z>$;#M6j&x=sr{Pr#U1ek@GhVVn|^JlLlo{)Du)V7jwkWyB^WmJAqENw)v<&S5H95? z#shEh2nxU2!N+c|Z9waST7A{Ew*jby*L~wW%rAeW+m3cZLO9_8ShnKBzD>I~e9{IKr5B4GI9%9L zwP~)nFI5nbabM(pEf2AhrokVcw;VkDOF07O~x{lIDBu!ZXT!-y?6MjIh^xNT@ z4do-t%hT{=SY5jyH+M)T_-ISj(m`qp{ZLK2fFf{+a=2dj3b|#Um)oV(tCOIioQXX$ z2-U2%qb#nwFuJ%ZuU&QbpxSO#O`!5oc*z0{^YXafZ%5?8>%{88!a%TluE!59+^Jee zs#Z{vwyWchR32D9O;959o2O}!w33TK-vUf4N4y{--%$FCzd=h)YruW=LVLRi=XH4W)M22X16*$Jd>#J9i`W*iwmN|iR`s$HGs zpbJF)N+xWd$#o>+`x3VuT%7^@%W4`hIdB??SZTtHCf*RpAfMLBs` zP)I9jPo#4+@s|S-vI;m}K4 z7eWUT)Y6O|mW`|oi}#rn3qGQ~02mwL8xQ&+pehC1k(ilgr;HcfniN$#w=}i&kv((3 zfY;^M55I)xp80=$lb+Nd;h42tY8lmg(li2(N5aG)hM3G~0n&={(YpUAVztd)IxaqG6qt9;sUy(%$zENBtdt}Flo6=^bf2840e}*M{3*lHyz>y8mUb^e;w6(k zb{MRzbhIC+NBhABx$+bQlPhsW%f*uM5mVLC2hc4}AQ69jf}XT~Cc!7U689BJM0OWK zt}2KYMhY;fxDa&*>QQ%~-d7HS!lHcS73Jf=jss|GW;7dp`Y0BEj1cVnaHrEUOGylzQ-miLg*u82v^ia!h~Axi=zS~;2dngxrG=JgGAfiP@X z9-`3#9H^WDo3Url5lDl}p5jT)8>LV(=|o8!%X6v)p_ zM}1Q}AO1YEum}ii@rgP=I}Q2SVYIY%;&5Y!u3h8#sCDXeT!ZWKbs3 zZGzh7PSiDZus#(R(~HP9sO9N5#|wT12$x;WwW&O_P_&ZV%rHhrvKY_$E0R1RC>@#0 zY0^J=T7>UNOrbIS_EqJW%YBvrLI z>TRAV^^LYv84=Tp@{u*M2t%%#CeG22(dpBR@{l#Y$Qwn4Da|4%ICBiL#tlQ{U(RD< zzh!x=4E}7^w2_GZ%Xv&oBciL@7P3wsflzLSry1k#6|?V%LtfNsyj2u_!cA9nm%aC^a#ne6^Iri7kRb#RZ5? z9ER!FO=Aw+mIY#2^7|Qcr(yhgW00Af3Cm&;>g#LjF?Qxy?B1{kR>)?j3J`+m_#%99 z{)Gsqhq3G9Js<@5(j6CJ{Mq9?LBk>#KXWYV4%B1!#=Y46>0a#qbRTA1bsDCAVTvr9 z#gBvf;_Y*A;mzlxxvm8}*6+r_Jx6fvKb?h(zk88RGgVtj64Nivd_@B27028FaA8dP zUO}I<1@#2{nnegbPDKv`F!c635hH!S-5J`87YpqI0=3{67lwurRS;;z@ zI>_;}e>drsqga*t%(FzH2eB-4wsm^fxnK(Q%uB%&o4^WLo<=|kV_;bX zQ!bv2HP5U={hBjx?T1#s? zo_S)8Cp6du*L`(50N|;|-$%@GVG{z|vhc#+K16d}D{i{uLS`Q0=?h^*Y%1_6ofEdv zga%#SL5TlWS6Y=s*L|AiM2jUMObG2}b8E~?m$w~@07LWB@L5f>d|lP7Sp>*c&b54b_D}W#Vi7crOND zJxy172KaR4&K!@}o?87l75=^9?X5^JWtz4)lZfA5l}PCH^VUyeCBHJwO_F7eHYjp)cK&629$u5PrqCOVEmOTv^HYh{! z$%7oHlGR7(TG)8nk_6xT5)|y*z=slTsHxCruijjkqYdDa|)QVAB+#=K>cY zIQzmf{Qi-b0pSmEqM8^faLF~l#DD(sYrGEKh8vbN=>8Fs@Od@TwQS2$C+>Tm1SXz* z1v%V~7|`jUVA^O!@2+%jWuz&XF&6F-=I_7+I~J<6rLOWDw^RcF?6ib z$n=I4WT2_3!_z|f&25ArWD!&!ZNc`cCQKNfs}E@avNCM!J=h}6sXR!A+SLOoDFj8E z?^I*sgN4yWIdWk|l)gv!2A7&zPdE=`gO3hUyXYHph;lD6Uz2YFJpz~B&nX+^38Vd? zOmQhjMRHih2-p7igG^zo3XFb0@4V3{#e9tjUR@(_qKr$pk;q;;_UdK z)4E|F248VHi0wBM>Ann3XN)JLv=>D~nm#PgzpV7i={HaKM^{aF6t5CbmQ>84>g*D? z14x>BKaP@p=c-lS`nYNTKn4-0t6wVGQ=nR z62&CvQI5pDPZT11&C^?8C0c6|5`R%l9Y-76r4J1OFeZ|XZPiU4Pkb$GaBjNH_h@5> zMiM!85`y|>Zp!EVp85)-@-r_h%$)19!YCe`g&7kEp|!)|e4xn738S$k<_Ve*%5CnT zuL#I$L8wY{EnlKNE?=>N`$H zcSd50(R0J4Hwxg@Wk16uS1-bAFZ^`i3tdEK=70R;&-ne~Tl%>S&}c;9g#-{22~}3z z@+EQTp?`MaTV}igz&~T@*~j=Ux zw7CkIQ-_0uY`9_g!wliE369Drk+k#~96A0G8MdtL#Y@ zLO?)&(0C>2N<7DX;Txv*YXK1eQuGaraQ7P5E0-$w2fCR0%Axsj`5?xZwhjjwVLOhx z1i-}MIjA|(ro2Qkx+n*`4mNvXOB6Q?tq-g8P>6fVm;x=mO}iUV-`W|s=+FctUI`KZ z&Euy!f{T+n0{G$+NTnRC^!0cqDuQ$TtsX&iXN%V>BhB{wsZzBgk!K)IYsk$CBQMkD z8xrl*HqQL|HZ%k+cn53%sRF-lcZPt z?l|QyQ8X`d0`i=x6RMU2ENyW@fR+~

      ;OyF*2qOR~}O|I)v>`1c1R8l*tcmYDea2 zBcv0fdQ66Rw{yoK4F2L2Z6J{TGC`&Z|7c4HoThet1sbHi=xSuqMs{U$fY7K2!HdIE z>p~FcsIG1lP>Q6RToPz4+uP!w6&eqCW4H)PI;c1w z$>PHoKgOy@-^Qw?Z_Bh?CDq#MI>|;Vy0qYxKO})tU!u(nUGYN^ZaCd6i){=LyV0b8 zD@jVU*DYn@Q61MM&y;rpWp5(1SUPW1Ws4AA*S)(7r=K}e8NT8ZR9U`p<9=-XbRRzb zbRRZsU^^7$WT}*E|K20`)6#cvU|&5h|H|ny*@HYph{%a5?@C&5Go!jo)2BpMCg=F| zmfj`w#U2Qe8!gn2=+_AyrG)?s;t693nn0jWdV=2vjU6U7hw$D;=Hk%O;dl#OO3~EP z>1p8t+G}Ek16385agVD4mZkiayDc@1e1hzHA#tfgl?Z8bZs{OC7N#&10~fYj%EGl2 z56R$hP5UY21lLv`5A?i-dc;G3QoQ!U&v3~#cY8ii15wk(i}W8q`7{3Q&TEl7C<`)T zV2bjJGs?#=mo?3cw$n)yRK)vw9{z)mb%%5RU$(}IHL+D;)~F$I#ijs4!wb;#{th&L zx(`ho_oHd!el)KAjAf~WUl1k`;iy~t;ZBg8beWeHw3N4*ys0BR8YuU|h1me5=xp*< ztR${N=wbqpL}EXcU0~n>lWlup7!s`%nJ~bf5j*q5s^8nCr)XNd9OG%J1hbShaVd`M zKZ-%)hQM_x(sR<$T-)q(uGNp`k>sNkhqoU_!H5FoC>z8DnN*{eLt(>ve_o3*XOGr` zI@TX#6MiT?B$cRYTX41C@tYOA1%yW%X^Qoo8!2{X5}Qc+ijUB$S;`r4f{*MO_Sd%9 znTWQ!TTtPL%1ys4s41c}Cv)#|RaGrUj2nz`ci0@JGd zKK}33PXX#hx<7ER0RRvV+fuvhirt=~R9qWODUB1t6G5xH+J?ohS$Jpmu@CDXc8K$X z(_icuR_W*oW}fCz3moe;2XDwz1qDTj()$arqox@nBiR@m&B4x^<~Z}8z|efQD|+wY zR_r^}f;|VDv29#}`7x0i*y9)V2k_O8G(D zxtZQ1E_TbRf>|70l)R-PUeXlWj#Nn`pU~wu>-Gey)({l9aOzOj5Bn+Z6#+1@IGY`L z*3%u!$AFyd<0EVVz147uzsl#e7k`QiF8&YxkSdh9$64bg)XD^#KHP(U{nx9JD>Pe# z;F$fk66wU{eIy(qiO|g}ajaBrm#!TWi3KQ`cm z$dI)o%7Y0I^*h4n^ zZd(Yahv39qnV#1_L`*D2VCEm&jt|iwCwH|oC}zYst+21N2toDCS!1x~{T-e#tL*-B z1I99<2t@1{8+Oc*BO;tD`5xF??+Nn!{cFE^CKulL(M;Tb=7KLw_KL0cdFflPiu>O5 zDYbzj51-ac2u(I$T-YHCwrwM1TL`Hdl>l;y6A)x*4MO5Vk@(w(uM2p=a>dvqS-`&K z=Y(;vwl(gaIQD3KaW;02bHg@TVV7rB(OSX-=7bxEUR%~RDqWMzi5_TAq& zMrlLuMQ{FnA#S+wer)=1uh*F6V3z_-Qn$sE$MfP>3;%}AoA)7aP>Rfm{-w2l;1`p- zG82>Z5L>;6Y&p3T+g1cH&%szuW+EE5+Ub;D==UvG*dqm__QQ<;fb^0=h|BW!(Pkb< zQvWo*w*zV8hshkoATc?!OFHGuY zB;PH4!WSk${?`iGu);P-$OZ{nu);R%kS#S0mc355s9dp?pMmL02DoaFTSfgsU5d_*80z=bV&*r`h8?zL zUKf0OCdQpLN}j9fX~(E1__`GD{&_7Xoi{<20{~V${3h)55Kg^lveI%WMoccjut~#E zwXH@G`n>^P)4;+Lt^|X`t~^gmWpfRR4LclSlRW2z9kzg&%QTE)@jxjuGsEn;kOkW! zOdzm5AxsDkx=Bs-i}VBzzcyIbl$(r1ORxNJzxJEDuKX>IFYW9tzS%-6vgO?L-72c*XbrxqG)hAPoUC3?1Gez zI9}tlASQE53cI0@g;2tb6~6NVI|%Q2y$sRIrLW=y zGc^5^uOfu)J5_EwK&3ROFCo4TPQm9T#A@mhD$0`$-IE<$ z)cpBR1!hl2x8t_C4Y?jT$M5|bqRP6Q=_TM?H6ELGSF*(^dk|5)M^wqa+d z!D;P;Wf8a_aAFQ%TgWcRLT7snu}%keI0V1$dRn?-MD z0#*p2v=E!r(?SS^LrBj_M>s1D4F{TF*%n+%5$kXOLXe%C4*Rgp1cI;)$E66zY`%El z6EmeCaN#Lv)iKG_%mq#UswPqV{cznb6c5k$%(9}XI;VK-~KcTRVv@{zT*n>r%Y+>7g#ny-IvB zafJ)bx}e3hw;|3a+agR$=d%oSQ5zP`l@Q4GcOXl?66TU#euTRPCu8AE5xMXb|-!w+zl+9v9?Bd?t(+Arcwe9|Ol zTe1$em~@0jg%G)D5%r@gJp`ZpV}ja1Mf*)ONmAWZDP#$k_jgxmXA}sor_W@kY9g8T z(UMvzD`X)Yve_psgzW4zWTc0YnVpUy!*Vfd!eBHUZADXa2mbWr3ViE3UqnHE1~M{3 z*nhAEE$t3E9T%MrMa*##b158`!g0K|BaU05zP2Y#ZQOJw7G;)Pkb1)opbka;MP2}8 zLh*|nt;s9Aloyq9vIT|mU8Kd^f#e18^78l=aJFSYyAVbX5H4I>uX>ubgajS4a!-bICVgn)%NfF;d~ZbKWaf=q<- zv(O26D^j}?)V4r69nhEy>Nry95<;9Ga?Vo+c;W>WB+75^0sUS1y$h3>6xf2uk%&gx zGu|*r_=G`h$Qec|1r?#yFWkj76(LxPqfbIMU~@B7I0P#_1S=eZoe_qWm4=KFg+NCP zolWgBV4>?$v>$0k*03B5>2z>pZ!JrjJ8Q=}Vz5Fs+?az{r^B>fz6oBfvo;8-f|x9? z!X}kKHj$I9M^rAPhAcT-sB1#Y$Hd@fo~Z4U_`8-eLD@o^CnisC0@<&po9A*MnW@Z{Pv(k{AlaAqI3J~jX(AwH5 z1yS1~Xm065MrH^@3o}?a1_BU5VcP_Dj0s(?&HUCVrJ&sPA$~otZ;TLamZ;iDBE|}( zO^Zb%O;mG0?N~&+O!VP7=sneJ3r{<*H4B?4_jG?Mk0(Sk>x>HsL>?l8(%EIZf3!@tZDD+IR&tf-16YIw zukEj6dy+wFOTt_EfBy380DuR6^D^F8Q;9_j{s~jg9I2ZlMT79EI%(3m001>VNkl*NQvudICcS<>42<{5s}-{ao}+x!OnYt6;=6)t({h_2d-lSj>~*WTng7!eBpGfhi*#Yqm-OCq>06^tncIc`^pv%s^3>87^z`X zmW?DpnDO#bc62HN7YSL+jF=XZACewII9dRNZFC-NWLhw=op_c@(caXKw7d-DMDozu z*v?ky7V{$!rZFeR{OqLGk^ADrX*m48PHGcS)%HaD6HhX~8M7;NIin;AMdPJj3!FFu z+c}AIlD9(4Cr+3V?XZn-W*BMdVGJJ0R@d##9g3ETzyd{kTMW(hZO9**gJ_3~{d?K5 zP%hW>S+)f`<|1TUQs8o3S89M%&4a3e6lL{?U+@b7$&yQ5YsC{L-lWzQ>%^i%@SA|O zPyN7Zk0-iduESEs0U2vc@!JZA6oD%vjEu}MN=6pK4%w(b^6b8{!MbJCER z&L(KfauJKUtiSOMGLE8=6M~m3>7>UCiWd z36|n7QOt=pGbM&>!u^bxz?Gj9MmS`lqtlV$3t8+&Xxgo$OU?N*EI%DZh3QP|s%mso zY=Igd?T0W-YJG`vMq+(U0sHBDl67u6&LZfhs3 zL0L!}UI4ncRt`q4%>)J-b3lZ!<#4A@)u~$0Mx(V)SmpV3HP9VTh{;hC8si_*>!Z}q zGo1pknCXhxLg3=&#ITLD;f1jCGvU;?!fA_nv9(+Z8nQrK7p+H{krm0q;BkXN05sLL zFwH=R1t;Xdi8-)Cs)h@ouB&Oe;-*_o02amW>BQc9tA8&TqM4~g&rv6Ry@Dz`6eo6N zm!}=F5DGJ4E0i8WI6aIZqXr>oSPq&FHNok0c*J>b%Ao`y0yNjRAu~ISA;q}>fa?8q zaKTosu^88G#cV#wyKJIQU{-{$*qWc6UlW@oe^SYpI5Sv)`L`>nLU3R^Nio13pXIvs>N9Skl=$I<$Bw6=4eyA-zL z!l8gI&AVRtTy;^EKtLcQ!Pwtx`o&SE54jUBNC$Nf!AJj@lB#*zB48%P5ZfUt1g`w- zFf!9ah&e7ChiXDvT+q`b+p9$g(n1zSN7#{4s=r#Qg^@|a6({*rPe8n(<*I>A2Y|2z zq*~zeY70+g!A6Szy!&gC2>U-fjOU+!9~-ys#m<@|7!w(c(Zh!!JB!72+PHNun%g?C zyZSIDk14?y&Yz0wzkV(j{QSCre0<;KWS#0N28@831FzE12w^q^mjcZlKu$W+#|}a4 zNHcJx308;0BDOm=^ObQtU$D3XYL)MVcqR^-U@~E^_}&S)-t+1wCU95jdfUde^`Tdf zpbo0!Wl8@n3$T@N5M0A$=Vc;1EC(br4Q^9AoThfRA}8Eh9U`zP1+^?Voi5rAHzQ+k z7KTn7ip+yeIJ&JPV| zU|0@@l;j~T-NvpRM-U2Gh{YVlVlJGREBT=cTtZPUH#`v4x5>Bg=z*3Xj%GnLR(!tV z2-t&!{hCIZq3Gt)#3`c96K#wk+=ME_omhlv8*K~Wu!V3qg!GIM#!MWF^sF#i8r#v@ z+{t~bJRdh1zl#8Etuf@~reRP)I$B#}sBi8>%%N~?!v0doF-n-%ROP4;gRQR2eBG;{ zdW}@}KcCW`)zk9KpnB{+$Z#6chsz?!NVAcf9YR{zM$B>1*~u1kGQg}buOe`^>spfv zpkzn}e~#$wv%dtA{&12XAi`A;QZI1H$_Hp(I7-G2!5#m4h5lYpZ|sfP!U*t1xM^gQw}TEEf79BaBd9CamlJfeuT$Ix=H z37LbkkQ2>AW??4U>f6v#+lrQkR&;j6q`wdpVN2b)==q+J6NmQ6@WeM&1qsnaCTGjft6I zG}X7E{%8xDnmgDg21=!{0&2IbYYOrmZQfHc7h(_&hB z2)TI~$S=%9c78f++d^Y)tK6Ar$wQkh&Qslf)zTV6Mn(wPSz%91hf#Xf4qAN3*xIYl3SRrK5;A>joOiQd%323JS zdZZavx(#Hf!_LToJ&c)A5OaKWKi-ubfKZ!)?b~hB)CQ+5#x#WhU#TzLM&&L~VsXDMcxG_b4@^rd$tkh_j?htHge?FAQQ+!o3;VIC=u?G2Qz8`Se?C)5 zI~ie16_<4;>Uht)Z84y=lf~h(nAuBgb7s}@HogcTq| zZl|}|L)A5i=cQ&VLBo~q&%v4MKaH?;Trsc&t{`Dcb%OCigmi69S(oK(=$OP2q`EhvR(`uy*&oRJr4a*#D3$ImINhAI0H38J>kyU1Z*Jz zai6$eRWh+ z-T&^;C?MT23P?&yH%LeeQqmGiNJ`g`@=~I7NlHlxBGN+$h^VB}Lw64`uDut)%{exWy&r>GY0&$4sX^Q`e;wi5l=^N z%64`cBcgGyPHe*3NmpedAFTZ@;A>#CSyY}Bi4OYtvG9VRanj2)RMgo}9hDW!?5sf% zA9TBHOPeOG2iJ;-YRtYb_Yu83u?NR~J9P*kR3c>R2xj2L)+IC|g`_jkYR3FhZDlJ^ zX5wi;kP%3?Y-b6&#T*kRVr%iKR1~IdNZfl^8M12Dim#mcCY3pEeeqlE;XPrQ zs#veAwKo@!Z%F5iOp%l3$cn15}pwy2DJhuVc^{%wZJEQ;TY_XXbY!Atd-Fj6-6 zV`>q_3PyR}g30jGchSf@DZ*;DDiN$-!nQ7kj=gmM+_g21h!%U&P3c;2>Tjl;O*N+e zt_*hes7w0FnFF5W6r}*$70d4$N42Q_ zkc@xs^kqA7E2YnN-wZOiFW?zKfOtUBmDU*=Mc#N$p{SJZWNIKPX!HCgl}kEVbA7(@ zzE=DP_J!zX*s0xv!UU=qBOj#}3R?fU^!G``cxD@qH8Nq$c!Y-G`VXz7SQCwt!p*{C zmJY>edUeOJ>epQ49k7i#={9wvo&9?XCR3Co#f5W6I??8N0;__hoGUVKNYMwt?A zK9Qx(Q6a*6@#pRR9|o~s+;To$uJycMuP~$a=soJ6O^SeLh_Dl-q&Eu1p3Ou!OeuR< ziyR&M)?%SPy^7UIH>s;Dm+72C>C%Gp1D%gx{1q3!rpe3^rc z@aiMwe$g|R-j%*ayXV-GUjvPrujFZBPkb0ozH!(~Ir3>bCbCkYDvi8BM}jV_qGmyy z^E|luaxivQ*6ANC`xxEkfa~`(bpbJr9ic`uJEvD9%1vsrFq)?&pzhuLP1S<0U{Lm6 z+&Tw)Pt(9la->h3sZr~GCAUago@DWlE%+xh#M_A+>wmPN0rS7sC=Ah?d%*y}3fx_yyd8RjVp z&LrUnKHBhx6s( z$IqT9w5Si}JF~MsCYz0@rgYHIPzpku3i6)i-X6v`O$vny`<1{0-+Wy(Vv?4t!S*&~T^od$j#LV)@PXBi7&m5)a*nV4PSfbl4K_=dn+WP0S_<5$1i7EEdPn z{&JE6R;*HL3hRlt4zc7>zOk&t3g}3ToMp?@GL)|wyg`xa+7ett%CT=ZddgH=v^Uj)VZp{RNgMwcZUDX%m zX-Y_o*}Gp`c9HEyMw2(brlsJUrIfXG-(DA13ZS@L=O>BCWuw<-dy@irHbk%nM&f@rePT9udbLUJ-Gl13uugR>rSc0&x+-FPCN5@^=xLT3Br%l~af&DL7}#NWpT+-b7axb* zhTJ{;i+0h1u!NjME_1YgrG?oY_y95}*BE)#lZb1Y^&$A8?V?adb>R24_tFj!VIP-I z;&ZY(DM-#N#h1mo!`b=~4_w;3gbjve(bzI%`^Md;PBE&5Q+v>>_2})mshFzWmhKTX z=#~eOVE+N>@umfdtofC}PEFTHv1Xv*i_8Sw&~?Kzf|1w+eFN9Y z@ZS~2ocwOS<6~QL^7+*wM&h$Ulz>ChE6-B6eph2Db^R)=?Cz3%)A^J$g*@Bl2(v)I zKUaaMjjJNwtc%^Z%0agZ4-^W&DCS|<1SisSk3Q}85?`|};kt^00U_afdZr8GF#f}9 zT&*NRk;*&u*_rpF`!K7_@zJQnUhCnqv=ULB`|vCz!-t(AX7SJTDwZ|x@e{!F`U}q& zE5&Bld%VxlW%m?~(vxzefXtt7!NVs%4W^?o)KjrVJyT8}Dqqx%ebxJp=FOJDGrTyl zUHM=LDb9Lj-9Ms+1$kN1!a_vLr@#5~%b3YMvv#K8hg8#FTo~za2=6p*ey^~T#kI(0 zU;xirGx7CqPp;W^TFCbnw!pZpC$^KGazJzIfY6Sw9s|WC5{oobo1HAcI zN*}E|Ex35IEA5#RXa@FtV=r2z%eG#&VoHyP)c`#|qAT%Dt@|tX?u29KM7scP6`1_)H z3rpk4HQ8~jvZyvPyd~rZqKFD`X!RW@?xE)ixOjPSATQ<`NP32C+*ns+Xs_za3$TVC zrmU!ObCsR};;n(!yNPGZ+=zF9SH`Vks@#RcHvJbX16JS%>1lA8el5;PoTLo)tG>*z z&We8j&M|OO_L^Sl4TVcli_n95agE6q`{dI1s+4ok{ITLyTe&N=2lM&2q`OGe=a*~x z8W!hqQAFIu{1z=fB*E8LC~j}&W}h8~X4sru^NTZ2Q&Uq7Zg0o;We+u-`$vjB#;-5O z@*Hi0EoP200qZaC;5%PL`PFMx))f78oh%V`pxnHnzmxUQdG*JkgKaQ#@Md{w{hC|0 zFJtjoF_<|8&g0c@$7`Ba88pf@VS#&XeR;Gwubj?URa8=%U%$^j<=cffZmTrA4YC-) z#@_}FBaAn7Euvkg>fctI)GD>WVSARCFRz|#_7;BueQ8*zjc6Cwd^gkkH8P^#Y}0eo zw8`9^u3mc>GSk>{_n35i_*{(%PSqT9!f4>8I3R)k;F5J1uu-JBR9!yk zeD&rUz0-yo(asig@{a)$o~7vR;_iXln_MHF?=qGT+u~@UzAPEKNa(PohNkA-yq*c3 zUSgqDKC^~<0*C=4;Lr$A5ZN<%ADQgRJ-kmuIG6z3d>>znwBX}P>TYZ@(e)G zZ3WPR&ezJL$x)Z%0tZ`G*9;K%H49%XYld>5$#jkWl-J`JiwHW@US3{t9M588taV=~ zY-GI}Ox6V==D%{v9V<4sHtW~WSI_0+T8uus$>;iSI^MhLhSu)W!XW_I{FDkGdSsGT zZ3Ev%4q!nfB_;c^8N(WZ4G=MuJIGuLxvH=N)q0sQxXcwXFlc&WnT}N@TDgV8gWj@- z8(={96ROBPN(~+%tj6^)dY&63=Dkq2O#aug3yc+l^Uf=|yMk9~zo190>FVbG05rvYK z(8tlRG4SCRSND?IJV_dyoWx0n;&+nm6t`FFG!$^=`C*5OKf6574ctE(9h?VG`9g-S zGQeFpd%*+;VrhbI=%Dgp*#sA6*2GFM>t)g9B0dykp)?P9-#e!wHMQAbI%8JxV6J< zJY~K1^INU-h0Rw5BFn7iUIHSO3OX28D|*T~3)+Vv^aC7yBX%dKN-7N?#xRoum-KQ9obXSNIwjPx$n*(c{IZp9+lfE!_u3wV8u!C`xXg5iQBLg{oUx@!@w!_S+H0z}LM2J^?>rc*%k$EiUOvsRZ_eti;1RUPt7aG8;L@_HQH= zYi?wTI%DpYCQA7{qoWkR4~m}URzwB1jP0m@3(Z|-t`Fpx6#g)Ht6m|w?MB1oQ+kZnzch3cOXgvXLfQD^1 zB@WI~x4pId4~b6OZeqWql!j+Ey0U-2i9jr}Ggu{n;B)?gqvMmsY}p%Sj_%v}RDiwG zjB9!?fFcI}1pnS@3|gWky6iI_7KzU2a}zMO2z0_I*{ z;+a3&^l13&%2bT7SbO;Ysjhl6`0en>k7_fO*SOyhS#|gw(^d~^Hj(sCl_q*{)W4aACJF`Om7@KpRS`!?ADkJvB75q{mgeUKYF zf@E^6;VlgBEEBxiK?tI5D@xo`XFpKJKy498{b>#nU~#vlTUM_?l^Qv6v{gFmCl!SRB%Pi^bGP4A{*d9SaYlmqhefH$&#P+HqX* z_CjhM?xe|`)49Ggehnx?cTU&j_x8yj4{7Hxfjr_Ky#w96i#+)?p`wnCj`c^&??08{ zSJxp4ctpEhix<0nNtP^RZtmC$jyT<~sQt%(9~jGhNc@a`EWRAr?v=dL9chBNzzJfy z#k_}2NB5qBfOPCDa}=xAUARd-VdTfTgamCQdZ9bIw#oCp#(+lZjo8`1gEQLw{Rq;< zKiO_b3K28J(%ai<`W7yKnWlkSRN6QX56^y;+iWP1d&C%c7^~qjg~BO0+GI#3y?#XpZx>fzsD^jQY(xW(BSH? zWey}fk;q3zVoy#yus-i$oC_Gs@tk=<*eTf0e`dU%L$8XTPRR$Wlw8HB#O;GA3S>F9 zJoeg9*pGs`bRZcL=J zWG*fyRliH44v;^mGi!~9ir@Nz@YJ*+2#la)OtAq;V+Wu3+}IW>u{<$1KX}HWkyy@n z{lMv4X*oCi$|q>2!V0eg2x4b?<6}Ma3J*oTJJ%+RWN%={ouQNQBXezAc?Ri#U0$vo z_|xM)c=wSiK>cMv-7q4Ua?TBXAzn69PkviDSJ&zEKoW0fN@jM48`p{PXii>nItAqU zASI+q=16r)_w@8s7*bg~-U(>g=w;NCyY@**N%5;dQPv-#h??_Bye)hhzqolOQc>U4 z84%w`Uws}I1UBW&|Ex?-z2S8!(+Bw+w=Q1Zr54)Mtwn{CM&GeD37~`b6a+RCaF{$M z6crC%vctO*AiwkTz-sn$LN#tBrNJ9<4wZ;Og7Xg%KEAs}ir2SZg=qh{Aw`Db4R~o; z5~j$Cn^8g%{y!lJkx~Dm5Q6_J48gmS9|OytkN=Bg$VO#K>paY`h%LuYy%wU2R>D9L z5s0oA?h;R*ikO$bV%X}11%+*h{5`rK0RNmK0M~)OVUAo3n`?a`6_3F&6bBU{&xC|H zdML?z-%r%s7G&*6sf^o-`^dN%&e};nmU%@O9lq4yeb3LWvj%Bcjk%wZl`JSh9 zhP#i)wfV0NhWImsQl7H}Z`XdUC;H$98|&`qn8%=Q#Kbye81HqVG=bGH<~`|)ZgHAJ z&(lWWLeQ^I(%*a?yqnDd3julmG76ZR*cRP;yiJ!a1EVl_%kxWr_B%{HvPoq>B0omA zR78h`b*@ohAR-C9+ZSATBp zhN3n0a9iA7GJFrD{4_Jiw)dW#mtD32+W<0gHQ=FwbXGf~;xSrvz<)wIKsp(NJo|zJ z*<{>Ykp>+dfJr?the06DE~h_xVOdWiSGe+EEn1`yOmiaQV%RB*h#piw671T5iJ1n! zys1D4@|yY}Kw|yr{6<(j*}dQ+A#_NQ(euz7abJG%jw5Nx%F6cF6}Z#*tg44~R^DQU z1HOiZliU^RY!)UUy=yO+M|t=OeS3O-(Ad7810qHf!hY@0XVpAqor7OO`{eVQZ`5DQ8EjXjzbCe@<*X7Vv z)8tQV>}N0Vk+4-2OLfujC+2yQhcbJ)Ti?#h1~KvA?(`?MBK5+-5j9y;CwpV0@#yim z=FH&wmua5ri115!7N5rdGv4BdtVXp%t{&x~BKfgr62!W`)Wd*Cfk((6&Wk^ok zn*dqWo8&fl znw;KGUUX@@j1J0Bf)DC`7*~+OfahxgLDI1&Pl=2k6oN@DA&@UKL6nwP7h4kz-b96O z%f_;RK?RQIlWL3i)*oOhfLhX%$pMYx6U_lLZZjZ+a%+qU^Zzc>Qb8ab+F8rRE?~Y5 z;VJdCK)|%^4~y-$Iv{8Lj@ry(@ZVdAW{K4eCDY205Gu$U23~^F@14FlzZJv;`K=on zXlwiUQ5epsv#V2A=5w9#?<;ET6pG&3qLe`tH!?2U#Esi-gl2N;W=m0nOD(IeR+?Pq zE~}i0{IJP06EH1v&;RsJf*eNp*bgNjgcqt2t~~O!SdBl>d72>8kw2=`Uc8uDk=cd z$>o32Y!FyoU!S7NMvloI#QyjX#$I%38R^v;T~w`(n^U4ls>0#nl}t z%s^q_<|!;LE(SGYb54$}l0Tp8>&JN01!Q5tX?$j?p!Jb$zvae@XAX2bog9K-CxhO)1M@e1!`^=%G+v*wvks=HBj4(1Q*) z%U)*r<{y=jBp7_S`IVJ3Pe|UksWHl??LNY#?%#tZ7Y9BkJ==DFapHAuoyex5ii{xr ziOtf9KpaBgLrJ+3oW4gU4OV%%VGQTc11`m=Jd@_|KA1EjN(1|Yb@40Bw_PR_wJ057 z0Ncywi+sS7hqI)cx2?Y%ANq?*2Vk*Sqpl3I-zLAiQ9>^TPP^4&WNb4aFP0y&rWi^l zvGeZqh4*a5<+6(?F}^77yG_? z!anN<{CYNA?N3r`LPF~_f2|wUK04bZ$dFhwn4ovu4&TE5(_cX#j6LoFDNb>WOi25S zdC%KHip!?G>6+dKO=LP+$n|k5_&bjBLamYZ&vTD%9dp)jNrv8usv6Af&d1n~PIW>J zy-!cYZ}t*zm`-3fDyXCwb8}evaLAnwY%W>Er2w3~4<}_YQmBg&;}DpjIk)4Gt65UY zC9h-i{!pY^P4+w_R9xZRa$hxmR*3ven&@k&f74c9L~xx?$Me`1{##P7@(yrxVMHs- zao|Kdz&y)Re&$EZGk1=g&#yqpkz?^{;kovkJ^0nP3W?*z4KBL-TJ4n1j%r-Ivja=) z3`BnuvLX0BRBvoHUy2NWHtZ2TXb`(t{)OLDk`l{cBlBw$|7+n#kH~ENL(HfMi=%}u z8Z-}1*lKJ}T+$&!I87lZCmiwbWF`6YlCgT5k(z`X>jjF)}X z|9E@N@2FX-*ag)-52up*nIim@cYbCf8SAg-F*?Q1W`U1udhyPaSy?M8xo@>1+iReA z8XbPA0Qg~7tQ_OUDp0_r@KsUvxD{8vKpyaihjku=QG69yewk!-y)DhvV$HJ}gwj~P z)sLeP=}E*3yQbj6lbVtiTqrCrJF~0F<%cph)SNCy(h~$=V+tfk6!!MXz}R8ZFyNQ~ z_S6fi0yrI!1rF>tAH^0Y%Duw#y`md_Xn>#{EK5ECnk+yM7=vS*GOQfB5kP<{4^GrQ z4~zHSTP}wHs7?!yzefa_Zoq;JSOw4nL>mZe<^Bll3~wPzP?p8|C*8u54Hu&l1Twk0 zl>vJ+$l&UjfNkGIPypnkfD;8W z@HXFI!1018zlWfI`FeCejYQ2n}NX1J~wX%c22_rkZ852TDG_#TvD2E0qmz3cs3@0;{Pd?RqDN7nvnkb69Owk!XgFWH$whySAxjY2^+hc{&E6}c=LS6F!;K$X) z>HufnZQiOL%}o_?XZ{ywPF95-_<|@HDe198OGF#szuyedn)e6lDcUk@-*?ucPp3_+ z)G(0w(o|T!q&G9h0)M{<$#w9LJE3`#$TiC7)=J(-dMypyc`*9mc#;~`reHjCjeQYv zP2|-REHESvm`AD`uT`2C(XdsVRr3N@UH90wI@GZ5!&Bw8w@8NcG*#&VtUe zd7LhOX7ffEr=%2u>cbMJ)*CsptTdjmNqvXst3R5^pl(BnlM*XqkL{=O4bp5cUNd9r z7KELt##U9Siq^xk@UJslfVL2J`hX1E$QAEBQSu!%aK7yZCFcSV zSV@vI^F?^4|1iU7zD-FB$X$nv&|CT(+%?tX@@}i+Mw_Ku1PSE^oI64~khE6uMF5aS z`@*|1YPmH0=D3i?OC;~dCeN3*uNK>RGlcDLVzSemij3<&uphYH9!q@%;1Z`BT!#_< z$e6wr-_MolRzChpMox9m;>M!^S|DG3)9|;U#8xGJ2CR?S!O39=LB2wEdNvpm8x=>h zum%KQ6w2>efrx5}DB8ZZnI8nyK|6WvT~SYr5ws!}Ao6bnNWWgl#g6bErov(6+K2^O ztVBfKmKLW?P0e;6&WVFSK&6$Q2La1VPW>iKD04X<;kUAqt}Ayxq4Pj7oJ2BH^2u$8 zT)+vl))g{yTdwx@`{)7oX~n0W_+C?t|9D3P@$;AzzGv}4?zf-)Dy};G5bKfm`c>b-{q9`6fJG;fcY}B)!ptqZ zk0V$G#~0Hku%)Ngvr-sj0^n)ZEA5M(tyjOK^|`L*BfRT!;1)qOl~BkG06a_@*IgkU zB;tsFfcLRI*`7p(=;(+ka9akhP-9N#oeR<&p@v|JK$y2++zr&FfgNK@f4ownQ5$L! z-XzDH2mp$MGO4hQ1SnlN^C%tcQ(Rt_%6GP*u5V?F-#3M=^)g~6 ze74wqtP_m19dO0mehB~Z#M;v^0tf_*hem*%>aSOVnb~@Fc+j>Nycao@VGR&2heE#= zskLb<2%d_|Pd#FOJ}l`M*-FakiQZm?3mtl7O4g-O*vT?=C^Fq??P_99LM`7=2J4cBlTIgib02L-@zo$(y?P139>713?5 z#O5qG>B!F`AGfk7FPK6mCVqr_3Y3`pF}&WDkI!6J-FM+J;#@o;Uu)spR%R-7Crtzoeb1m7-@5NhG8AD5_jp$;>$XG4>~R@a%J5 zl56+}AH$kz#7+TO-|IKhy+;(oGMPThrSFD4>6wTc>1&&s)2#NVR^JO~<0#Z_{3OBZ zqH*?(0g;i`gj5VJ9~LGAVIpeInn})FZyE9NibCKE?eH}ZREQt%&uzu}v=u-0C7g(K z*V7`SF)P-CuJhOS7roK{z0+l3=yA`(@;Why;utgZ$B}hqmR$OA92VQA?TMv zctPeSJahV;0MV9QnZS@-h>2nWEV8G-?IgCXx?Hbke&c6XPRQvGr!i<*LSWD@RJBHi zL1h(Xfmct>7CU8Q{HuRghvfU-#_i^y?siE8YQm7qQggpS{BY-OQdh)au68fq0&e8+ ze=Rm)!r{tt-hBHu4{zFcOjnpu0}|`v78HKNDkESdw}|k+FF2Vu>A0%0sbVgh4yJpc zp_vkBv3KrLn5r*NT+R+D^{fJ2exx()HsrgyeL(z5ND4m?i`1 zlH2{V{OC9N`;w_KQRLrkUH0-u1|Id<{_-iP6UhsXnj7C=o1aj9)#l*|*sh7Q!t*1Ts0}&P! z66F&V=Mxq;5EhaW6qFK{%3;Nq7D8eVmC+L)*3aHp1O#dFLW$$DE0-|W=W@FEHpI`8{ b%A?1sn4O#1?k!8;IEcE6j&ik1@BX-d_O4me zy?XUj?V8;qR4S6vOl-`Y2von%e-t8ck+PCHnb{!-3bH6zI$FEikaB+^YAn*W_U@Lh zq%6|*rtX%KmgY_tmcqgaZtkv@rVa?++3o?dsZ^Z_8*eq_TBv5*)uOjA@=@xQBBQwF zoHGwn9FTyH?S(Nh7?;fxNb zpLS(e3-=LXYfrWC%KKL_PR%cd0&76MH=&@kLY_mfk#fDaDO?R`X}RiK0nG{WAg?!r z&LFc|oZ!wiR^A=v+P_kwH(nH%BacHec75Nm9dCI$7!gl~4DbgGqWe@P`2t}TIMS|G z>pbnYfezOZ5@w&57(x$Mp={MG%Q2o$O1NS>2z&AAGurULW{hpPXTOVt#Y4d*MhMg$ zhgzlgglAtfvQnuQKMeZcqJAb#N4o-Sq?)Q0?cz2d{X7zY$rZ{K`m z7AQtth#uReIT2iSW%c}An#!KCt5q$$o!A_XM|*np4LqK4cc>E#K3_!M#x;QF-60gp zI_X4aLTDQbW!$$Wx6g?d0}QrBu`#MMs{d*AJGjmw=$sGlr zAp-^aqt9K;`lHT0Jd1h~Lpp~XTGw=zY2sg>kG9Xkxz6i50MRt}kD@bDyR(KIJ13uD z-x#m+&QefB4>6qp^u>7X(7DC9ID};_x_Ll|HE6~4h)(Mk>~`F>Jz&|=h6DZVk4fTW z(q&ekJ5D&iv(V~$McBp&T}e;zIY&bQ7~CJRATLvIRa&*_aK8kLi$P(o#MwGePv1^5 z0)Y&g1D4=;)1U*SddrvF2Irvq^b*hRR_RHB>SV5*!(hE7Jac)>MhgL1Xg6aDrm?^u zqVsmO=Ajw?(AOt9UEZF5fdf9Y=coP-4B^k(p%^00Dtqek()ova-P_f<`5dE5|M@d@ zqNaPqv2^>o#?fvQjgw+{AwefKE8j-oOIETADg8stpgz0vVtE1_Oe|=N7E|l@LKpqj z&Nd|9Yq|ZvXM_o)z)-6{?f}lE{*HCxdi81|Dh#@VQg86kHMi}M@+a|;u--Ao7~iA1 zE^vPDeu)1geqDR0O|sX)|D(Sg+mi#P;o+HdBvR%4g7ZAvVf2Of0nTx`R){P3npbj5 zOfSiap7~|19&Mdgz&5^XN-n;`VW9^{3Pg|*-@OH@)rVzJHmY8?a)=ZJmNMZpjNFsD z`r!a0qHBo?IBf6AFlUWE1Fnh4uN0dAN&B|<+%cuLSzazySSXTZ(X(q(7sLHX4qA~4 zjgsja%{i@bcV-Du9l5gIy#%n}AF&$!9Xh`#v8jy>!m!6~5g`R&V9yQcq`HOz^KU6@ zk$+WI3B{LeM*8FO{Bo=cW_z|h-sLea3rmx`&k-I?tj18sc~^>H0ljvl{$9_|Y{6=f zGRg6w&}RHVg+er_(qUo-+bR#>`S+B0!niyQd>%EfC97^~h3ifqyp*vtOd-cI6zJt| zu`6yaGkhQM8s*#LipdQS=l;93=?{i2yc_~fiP40}J_9TN`#%p%&3l3Y`2$z^z zd)3FG6mE~j&fSp8`Rbjb@lriX>Rh>)G_;R0w}$UizBGe;z|Lm58~~5(^k&M&#+b{y zK2VH30d;$xc?-3E!dP?~^N`9O+MzPdD%c_KB`(KM)-2fkRKj5vTUl?OH{;QAQ&qpX zmo|O`3ZmTEAjT)nB^fp%=Eb|0)@f24=zf+((8ST`;ug))X3lIGoA}oQvr%cy{~b z9xwWS+nLc?=SxP;fN^TRaR`HAe+Z=+@4sRa+ua^)4-U*zbSx6iW-1na_9HEL_PN}I zJA>Wd@$P~-!LFgss&_`IaK=m;`u!p8fN!-NFOZr1twHrg;9@uJEke{xI&Vv27t5;$Eyrb} zC^-E@;!f&OHrwIv{Dv|ve)iQy)LQn5bcxP#{7F8Jk^F=MTMS(^XWcg9Tg4xZM6g`W!6d*T#H-8Ff7l1XU>c$Ll$$qvFQd-!9;Dwh=Snp*NKZ&!(8Y*|CLsZ@H4uoQo zzc_{EM>px**?YfMa?CCZYWMw75lQazDjglQGk2Kbp28H;vm0ro_?kRP@cUHnr)@#T zKT+m)FYwA)c!;HNhGrOu- z2yK<=hXX*uejI~q{8V32jV@%*%li<%#XT`=J{152K0-sit>b3jI*VPZtxr3IYTmhK zjf|}8Hk98LCVjB~{9QO6#~(GU>lm-N;4$PQ&rj+Bss5$B4LjBti^!-A<%P2wM?j1P z=}nc}vAZrhSY#K*33E@`PuX6A{i<(XVwX;MJIXJ>A2X!uhPVW+U+9M-^>U2s!8At3 zo`?`7M!+;r_WD0n$s#E3@l9dGeblUz%YN2|-UgQznZGN|s*d&|%V9t$pP%1MO7wOf zLjkTf$4qA?!D=<0pjwD?f+LuRMm#2Bog`t(lBhZEF1qJc8yAV~wCf@%z|O&GzlXyS z!Pz(42kw~Rute({RbTzv9Re8LZ?gS7U6I3%hpz-<&5hQWi30C&YS|wdk$)hpOFzDw z5BND7RkQ}%P{gNJQflQPGZ9~F?(6m_S)U+5(uO|ZTe=g;ctmFl__^kHo zkLqv{*p_CS+iMmpky>tnUnIggNHNFWfRZj6FwM!~pd$URm{ zYDG}@=BF4SDU*qANIjifkZySDiTHa4p)q73Y{&Ij3_N&yvwtFkG7V~^vC=<Y=1z8^G zR&v=p5SmcAiF7r3UwNzC*IFIS+jD89VhEfqB)n0m=hnnaD&l)uskEtE)(bt?j#x`1 z;zZxPP;v~0pCeR1Ip9v}9!PVrpE0Za?+rJC~i%hWcRq`DxkiHkt=%>yd?VUZXr3c($#^`;($!KyfOAI60?bzT}lk z+S==y|KRxzoG_Y-y^f+q>1;i0vFB{d?Ht8&mclFOZ+DKh^ii;u=T0I(n1$tfp7|MA2VEQM@&I=T+5)rNAPy!o zBu?IjC-9*J-nwm+sU0rz_QuniAZqA-dmO2qv-8c$yrk_oP{xem7p$A}Uw1jLov!l0 zElCot<1W%ye-U(&(5DXAia3wdgG3Zo%Q zY$Lsg3ct-jaWK7ap9|mUpiezAS=cwz_%kAkZ6<=sa2s2Ljc#7iSR9 z?j~tt=ovy9JPz-g*G+-Y^MA)gTe@LMiw|$(xeaWOibx#>Y3)Iij5WfDK)1Eb!@z-= zU^gf)2^mapUR5xel6mFd?q@g2jVWNm*ycOI4&J{B`0yZ;9b7V7A9i;C=@*+tL`wyg z&eGXOZvmotHV3xoPfG1qZtizM!5(T!(z?!n=WI?g%NPrHEL^d<863!(kD1Qhw0&>& zh$C0%tY8gX)z_%`jg0hR>?b^K&Fj9qIcaCFAL$O98lcuDY`+yCsLv}~-!A?=86;Zj z<*x1YpEQD%vAai^6A%VmJ&|_rh216KoDi}6ukD?NL(2aT^gow6i3HNN*XQr{ zy8^jGUR_aN6g_)V{=Z|N5>R#pjQ%eq`#(r|cRkb~Wb_sG#F_}bk}rFTa^xZcl|xXO zH-y91FW4g(=V)T;RPh!)=bs*G6|9woR^=>rMdl=)0F70XDlj1T*!?4B1hcx8=!Chy zXG)b5X3WuJj*W9*;G4bTYB>P?dkvB;^Z7HwoM(f~+&;Cox_{%^7TE_jWk8m5q&i!{ z3~r>#B>!-(qZ)UtH+>K(B11e(N4Rv_IW6d~Pm~2UO&DN8adfoylKVIFr{!om)ZVu}*_!~hsh2ZL${+iN%3$bpQ>M!_) zC#;H3#PS=7SBA8Z$r{dxBi4b?c>ePAp?u_}^}ds>RGE|`6P+oLSSS~gw&ETwPJvU^ z=YDyA%r({njkCDd&h(gXcGAP&fFT{6QrN3ObEOyl{I)@>P=Ugwlu3&qZ*Pwr7e(TpjiuF2V7aK97YU$?U*>ylJ;_EsZF0Soy5L8 zceB-gV3viuGtSV42DVirw%Zi23X6oepB=4wM4)ojm6st^ z^vX~6rQ;%J#n33{-7LTPVmAB{TvSGQgbd)fU*KJaBSv%a0%R@(eu7h~CX3#oN=DOu zlaf>FfW2P~fyK{hnRy%w7;H*3fnWz#@EDDVwNFlJsPi6a5LxL%Zj<&_cO1lY+8VU_0 z!R{T(+k^o7!2}45dPjpq$@AS%kY)ad#cge{8W(_Pqy4@W7a%T*?EHHsjcc5i+OOrL z!g+1DI39BBymElfzc5nLOtYwK(tPe?h(NVXB}OnEYl#ljKw0*Luq&XPm2RUEaYYm1 zSb$kF<(3I56d2q+q-dphROg!Cw?lEw-8g>=@cV5Kc*yyE@dIm|kmYsAQ|TtBk{67W zkWN76J62dGiCbQeg{lMNv%tYLl|cz&D>wfgYxaqz6^?qj7%m#Z zFmnFJkWaiu?!P)EjtK2Z}Xadm$T-*Mk_YH%FeuaVIV<>(~FzTkoL5nzNzm)S%M)6SaINE;$i;kny zi3DHrHMp_jsyY0#WLwAttEf+G?t2z?W!vz+|pLfoUVcsYk1U59(kpgd-uV@W7^hMwY#dKZ8_5X z?&f7I)!AKF2zd<{{c5iN^}#Cn_!XlTWF!Sg6<{P4_1oV_N_0E`>)PH(8%^uT1?%9h zE5_B==zm^F4OLNphn6+JkA68rF>Y(4Ie$gY7yXK;-cv_jWcErA!JMa!W+wU-Zt=@x z_pK|2+rn5%y5LdsyYPP+zTQ}!b>z&e?J>AkzQ$53M9Z4VhXGhFgCe!$_P@Uf4!-1V zK2#lpxnqIfE^At_{rk`2mR|1G2g?*@x@uH>q3(alB%gkP_W@X@f?vsw-_r9t^u}-x z)fQ@yXro2GekJ8+B*jbq6>#t?g}JZ1@&R9sqWiCWyp5!a?T+Yu(F9_jQ{sMFDnECV zD)De|vIN<}-qvihbb(jcPp2UzCdt*3FF9|Av(spMMmv;1>IE26g~Q^kAE>|_9v%%T zC&Z6}Sx3=z0B-`1M9%{`;d0#aA!J$QIo8ttemi5t{85(L1Tl^9JFxQR3}hh6r}&1+?l;tf`HI>raA?&`SZgSa#@#9d9@<9 zJ?JrPbg$7C<^qN9JW1~cMN=K~ir021&-)8)rq`xeg9KoYTv>*+wKs*{?qaS6Dlh+22^tmeCa zZbgV(#th54PnSZ#)fpp#F~yL?k$SJ8Yclq^GjZ(}%yXv3f_G-Kua?+@cg|;txQb>y zzvX6k#LDhWYjaSXQuE;ZDpZtJoKpP=zb z_mu#Pps}onEbPBpWiPfpjH9l{gViV2sgzmql|xtZlB-3p#9kz+&Qfqj9V_HCsZRG& zba}riJzVISaH#WjzdL~X3dFJa6oMRfzCLdJ0tNUX2WTze;S;fp2usq$|K?(4LlCV} zC%n4mL7y4U+ZJ0(HuP+k9EfRF>#~Z`o%seRGmq%6yofeGt)~fvHj@8G9ZJCSJD@da z|3uQ$b@uk8KeoRZOzgt|-IhM!juIi`-c4)L+0F`^9r%{>1-pA0w7Xp9 zLbrEJ`3U$v>F1#aA%4Ji^P$((qYmKY`PoT4T(6>X(EPAd7)!prb{=sc$}=%d zMjv_e#4U+oYaL``$C_Wh4)GHsTE?Ku5S`lNDBQnw^GC&|i%OV|n%-+#e|@qa)s087 z+XZ!(f6URCkmRA|a39Cuy5RPg?YEVZ3)rU4{-Gv_O*ckd*X>%M!#6zdbRC)1mf$<{Y7SpkK|f>UFX|K`BPxt}czA zdnmae^`{Os`9K$*>mdU;6uc{C_xUQV@9~WKm;tbya5tgXK$N+(g)$fHoTd#C0)$4~ z{dh{(h?ihfHiiKQ^VPYHZfqT3ZJ%G>@)dL<4u*^(l6oS}se$}Z%NVoLOzjqB@C*{^ zpFTT;I9vS5nw{V}Sz!cJ+;@o{Bd5|6J`x*6##)sA$0U^5bw3yGVtK53KU_7J3nztT zooCuc?_?ps^2ak{Lf}kUdmbz2IWeK?5kZ0+NqEtk%(KC_XUNGkOdnEajycvh5V@t1 zuo~qaItyK6_}fo%JW@Z|#Aat>HA*5(Vl~Q|{WMHj$ZIO8xivreM9wZ_wcNacD_N;OW)$L!0Hs8L3G$R^%({VE=XfgF*DDPH`dv*qY12IxgO(YZFXpwPKS zW1`UAG#kbUqRJ*#Me4^`=$tS~b-=F{1DKbnq-y!PiUBWK25OW@1Nt!rI$uf#?h?tT zsgp3Dw<6Xu_o$@MU1byBPQT>re1gbLcX~?z_#IzzqBqs{GoP8H=EM$ulDF4=Y4Q4? zlDe@Vr28pzL?+c^EtQv#x#lIDO%kRwcFc84V8?1Qlr?L`Bgx){%@jXSa%L|}*_e3xpyQwSXU(X<`=MoW8h?+#&WxQAZS93uOmGr!BFmaN z_llcQ5%NaEmy1CW4>R5TP90BE0G<+rj-P)`&1u5zD4sMPI|B;ofK!xH7H?Y5nz4^U z%S0YCf z!(5uaZh#zK?Pqk2TBl*+_bp%TeR}Nkn0`cFG>KsatqSX3vaDPGxiEdTA06~r6((rZ z7q-tsIt=;quu4j1&^kTuxqbwl2*mdNWuI5|-Wbrj;kbTe_n*y)1WBuMae3gHFo7A@ z7l}mqf#s{gMcGAD%2Ry+_Yl)p#Q(fQMjuw?yjO(v;aS#?@D~Oj+9TfU18SqY?enr< z{_}{uNc!c!B22(u@}EZe;V+GRz4m#qyRFJSZmYtpM_)kwwxE5ULBpSi3aa($&&-wi zhjy^G3pcXe#sF@~$uBt@r)d{%EhJwdxxWPOWJf)lzZy)YT_njIH3rl^3_gtEeKBP3 zeuba8sSiMR_|M$9bsE}dMR-~5t4n)5iO@dkYiQEeAKEin)@hbc8v|~>8@DPGmquQ= zDZUrX>HjBH=FIe!(z3%ouh`)C!!xz#KZ%L_s$XNL^*c?F71(cyDPiv{!De#Nw^Oji z3W%|SAhCNd?%L}9fyUAl49It_COcC%wFR-TjDqQVQFF%$EljY)q>smkY2q~SDN%VY zr?lItkWsV^GQP3Km2`u)8qb2;X*=ye2%{Zu10&DXY^NojjODlHGNLi0cITvY#$ya; z)blHU@n)qUVJ+lk-9yc0tq%I-?JH>b!^z|(gE(T;OtYnQyth+q*Wy*!5&lNj-u6!7FO!oJ_Js*z4tzavkMasLp=Op)9s$_(c`NdW3gRT9L%$8 zEn@7xxL;%I-B?2~!?=CuBVp8aj;3v{Y6lV6)aU^3xl~@sj3>o(z^GgY1Ig@HuHoRD zl@5}42_(m}+NaMR{^yn{n+F$XIR9&zZM2^{f%2|QH>`pZnerOK0#>JIA`6zJPm3Pm zajKl4FJArbnQ`kE{R^vgxSUUxdg;=Q;OtmgL!?xLTdI?xguiEcg0&<}U*Ft6q;0d9 zfBsGbB#sJh1$BwjZwTy9*l4Y5aton?%@}(&->Ubt3wzdi$6y4M|C&YJEs4kUx4YC1 z)4@f%_T-N48qJ1b|3TK&VkR;}IYW|16CsnS<^nWg3)1;a?;e>O34XVX8qsL~^J#=? zyRx*zh%jyk_|pj|Z?*NeII$ofHtu#9j(&6BP1Tz$4S!*Vo9SqTr_vh&xEH_M)I!5v zM7s)^KpiqOt-!nDyLkB`Y?;leUWDG>hl-HSOtl=T{0&Hh7<4-ez(^8lM zS`a-I0@zVzO=fe+IpD{%uUhp~ZPF#0=CmWtJFq+9&*2d>Xy*iKxDBJ?;{IjA3`m-f-3E_=r=60RV;gM)x&nj>q?N`KOiI@W?=zq;o9<`!1 zW_XO;72{nUve}-N^{FGgIT96bS^4+AL}St0;)(EXl3p~2UTtMVF1-cHcJE|YWQa0A zPa5qCksu6eqCt0%NJfjXq$lwb(8(=Df*;Rn^@BqwT;CR5`L3f)0xix!TfRbD!7qct zjRGY2gFWvv&~>l~xeCY7{Iy;du0@CwfTaE(QPz1ObdT}Uki5mo}H05na1%}iK z@!PC?lA03~)R!OC5k*&ilXbIDg*K&g&tbC)hX*1&C7u=i^6K)lB zkMdt_nbz*#1N4Z{H8jm1`!>?={lOT_t*0aUnxt)q8W+}d?_{&*PrtTO;o!e5(ZkA% z*+a7!{i&dfJdHmzX{=$9JdSMOjv{YG5$IQx`A~FesLHvQU6L(Nh&1!44&9&_-6(0Q z;#er3@aXXJ$sMn_P_}4?#L;=8ReCg`JD~GY?I9NsHBfuFS5yjW*zCbB%T-Jmc1*Q2 zRNuqV3$(|nD!S*AVB8C< z3FtMT#D_Dsh-A zYgWS#eUF}5;yPOW&pg9|L57Rbr>3@poJZX$NtJdRR#Yi0!#HHTazBXN*1{*Trq&gz zIwP4Z#ARA7(lgV@-df_DVvw-Pm_G40wN`p%_ttgLAkle`2w9C&6p2K~rv)uQM_oJ% z)HDyzmNkyAsA;x|FMAg||RS*sS%$@Lhul&(Oo&oe_6JBD3i%ugmcFg$!4S?WT<8;mJ2_^LSE99Ij%dY;?{ zL+5Mly8LGHfX0POtmC+A{ylDaL359TW3!JBK^AB7%m(0J=@ilVz%zIOI{UT2Gx&ZQ zIpIH=DsS=FO?K&%ndqFOTge=C(27P0OX(n;|&%CCFb@Tm1q|A~S2|Piv5q{@nB0R)sG?x3P%kW%>`uX7VRpJ~_34(2YRBfi@ z6ebxI^I7If-mvStrx@j!|XZF z+l0wpYdWu*)Vr>_5qTtUd;DI$8|;nv(53!}=Bj6R+N)?Oub7x93Y>gf>o~ zKkR3e%r{~4V-|O4;FBgPDO@uU;R|~>kHQN;-674852~kKp>QaNY8-UkGDxpNIHu4|@2kZBOW8zMw zL2MW`Gxq&k$xJ!UVnSOyC76l+J?5fjIO;$2vC7F-t00A5l_V;(pR#XYl}+5QSetf@ zY_7K|HL2>Y&3%hE0LuvD8zeTAG4^3j99we?p$&E?5M+)>a5jS6f>yb>j4)Iwi&HI! zR6?k2doGGIGvDOeKZu663ur>iWnZH z+yh#!bu3vg3#HQP-w09^wmKjSpA~~;aW5vP4}jRxA0IH?m#=EIn-Qw(PrmquEdxcE z!ETJ*o@Yk2w?EQ!3( zcASs|BonMp-#__O&n}6mm3K!$^;B7m&gEz>Nw zb%JD8vK#VuSkS=CK7}*m3*0MqB=K2ainmA}Gq_Neu6>}P z(Ej~pyf-#VhWco=AKd+axPgDiMqB<_?c=iev$^W@#U=v(PL6gjWxF?LsK29OXHvoN z4Gcs;;jCuXT#o2^Rai@mx|w$M6M8nKfOTs@R{wPyo+>N+yG6Fl@!VZmC+ln$um)XH zT>dr5GI$L`tY8;i3wzyWU%4I_I6M!UO(X7Yst?Nh?G=(ivf4l_R%SJ;+QSEedWd-;%TeXW)`u_+Rcg@*a zSnODB&5gcQ<5l!{%)K#^ukwsFE|!tmjasW5WvO!hgm(>tGq5gnb^VwVzqhU6#JWsV zj!1q-7GDkrrXg*Zf4hx6@u zw5jtwF{A8AEe$8G2z?{8i`-k}kN~?e%)(<^E~dEZ#qM+eL&vH(e$#rt zgsF0(=&rDN5}KekA+*QS!~5T{t7#*uUO~A%Eobm4#bz%{qpc+qPN|DtWXuRnGtbV; z*4FO>n;Y`BU|PlF0wFy=1#3SpDhXiMN6_v9N$)RtLH*-w ztM^l*Pfm&y{G-n-fKpw{dW}Tj`jsbV>|zKhD|x^LaVRP+Xs|rqlg))oFJ*Jl0YHmaM8>=&N@Ue{Lovj4D{a`maw1FS26aY` z(l@+ftSi*Rf@{=DJ+kqa8UwFybx4L8Ywrs{=MMf&b6q;JVwms116H53DX6JzkHC`` z*2IXcgGH=sk2OCdWcZ|r;Y|t9ukK#74yI{h=yUg2_*ORZ*(2Xe#)LJUDcdD$A+Q$L zUq(kOf9^xR&Z4amL$C`JqdlT}y`DE9&2oC7L`1yD$CnEsNR*(=vA!F@S1Va?yE7P~ z^wuG*L^6|4XbrP$gUXBFcqr9NNV<+YEdlTim5$DAshs4=+CVv!Ik;D-*jQ|Y6F2ek ziOy~ zmuD`(%Fdorjg9uJ9AUj_VJr89{|&F@dKEFD_`F86!Rm}q@Tw+OhzX<)PafW{r8d(p zG;0IcW>g63jq5VwGppK+7hRYd9Mp>~Zw|qgt)88SuufDu5kak5*D41Kmj=S1?OS)j zwy(RG_micHE&IV~HO%yy4yRs6#D^xXKSji|ms7SWQ+S783QfNU|LqrWR>)E2Wez|U zZ;tIm#0#*Zn1yV4NT^`nwX(;Z4l`5m4$GFgZre4cDW2 zwP(?_twJ;?iQY>uqctw=cz%TO91w-shB(BHSLq1u=iPfBd=@z4T$b48I+_S(guklT zPn8k+I;?ZGokcrtd7{IR8{{`~m({3q7-tk1Fs?{S&T0sgI~iM#lF6=?bw%3n;htk; zv8|Zz7^d_*;PPBI>Jr`@-rms=qELd~O%Q~*yG?&VB@X8kF3&c%^Ggr!n*;gLwrP$r z%*wuoOTup!;#cy?{bE4!%f4~cr; z5W;F}7J@Suc_fYR+?ZcEr%C!|_(l_^=o6>#Q(;vwEBn(zknU>SmM<`d&o?|t zqDAnqfoxaA3uRa2k%s%T9oF>ih`4y~r3GK)2bL=gC;P^yJ*9uki)3dk)r?@KBf3T8yGn-dK>9qqgieP$Pc# z3=yC`g=7DXHoI26hRyeDlD)`29Y{Vu)VK5g=R~NmN=ld_JQ9C;q~{!f%ESWxlRNV3 zup+{{J`D=;P!|lcr0NoKwC>`;amVn}y4HTTPyzi9U3zad)}e1lwM?kCFb`Vn2g5Lc z>CWv0*T=OSiWH%?o**Gl`5mjG*j%E`5t8nKGry%mDv2H^{fHkEs2?8to9SO$JBa8^ z9me5<*9DFi^FWdjg%MqI%gicU3&pL;vaekn)IWjbK($pV8O%({EvZMUuy!9v+pK-F zp^;01tl@T$f1ymVw_?t*=)FTB?d<&Fqv#ZOa4c@!Z%DjL)T(&!yn55YVQBqQqGD4q z-v$M*y)-f?Y1RuYTh}h6%UFbd$mqYoUSh1VMv;2%UR5R%h%tkYHHqfv3t64lBlA;b z_j9*Kvhan3W4P(V87csy-=`7^GYjHGGtIJ1FrCo z&X=)J{DpVgsi)vNI6eHnd#Z4T1jre=VH3~2CSzh5b|k=y!&Z#en}>${RME|;##i9P zKP2uURfh%A7U^nM6rmri`K>uPK}2d88vXOQpq>jQ2~j@eEJ&kYj-qXrV z%2b$1@w)y+@cL~-n|CykI`vxc#Mvw1S@^U^@2I?Y2}LP^3YzhCw>R*Uu4r{T=;Jx< zCXaK-07pp10+`KhzXO>uvmyn<*@MG0}>z zU!2k|!uRth9j+v_4yXTs26?f&`yC+J&@B2RkWAkGvO|7{t``|Q%Bwj|VOg}N&oi~8 zi6Y!bos3R)Z4sI_pHdJ@e5t2FP^9RA-Z=^O5Wg6_R`%;& zNN}&~z3)Sq*IAx0$SPvveGYa9zc!qJCLJQwvQSxEq1Amm#@N)4l}~_0mpO*M4I57g zPE1?@iVv2#6Wx_vb-%B#PniaC7D6PXf#Y5P3qcRD-P%P9%%c@Z?_9n_E zS%P9;kJa~tH{4arAs!3i1D>!8Doxx9R}($dMaFXa$5C!S)T0vz@=*UFA96giO8N=% zQ4hoH>^6iqjrIcD{m~>M`$GvVD=)vxi8Yvzdjd}4wCg@4*-F+wXM!iB^j^Kt0W?eK zmOV~JlYSiRosV5@K+S=LTgf9EZ-_>!D{7B_2u+$T@fZ^cwB7YQxpFl2k#1_W4zO|C<}ec9#fCvJj&^H+$ru8$7jUzSl9N|H#_o7HvPJUcSU6JZ|a zHqutoM(#Z$(yH!axn;I`hLC)nDoy3ReRlET!Aes&{0#+A(zwiE$x*8fhI2vQPjnRz0W}VFm&IBf_r!!4AMs%fB*P=6@vi2t?Zk59hFfp= za>3hgYmCZ)4u?Fw+_y=_SQkQH*7Yo7x6uL& z^R8#ENPF^@&Sxoi^LI(H6&rTZr6{Gisn@ghajf+$gqVttXgHyNgVCD)pNl=i6H zf_M|j6HBN7{ZwT+mhiIrX#UENp;0&!&bgKR3;~24ptO!M7l*3m@J;;vOUFvC_Yj59aZ(hINo0eEWdi@Lzm=X-2_ zv~+0ClLg@DI>rC8)iUqC4W_)+wg`MS4UM%ahIj0=dG(`;gnY*N`aaW zibSZo4ik-GH+@--YPE{ejQ8+%S4aXL7F_^Oz+Co+1f04H@Xxev_!?+m|Ea5c^Hfdv zE@;)`pY3NHGS@S=Scg^>Vd-ecDTF#v05iNU8LMiyIuevu78ePMQriPE@Qqzj9!09E z`~)sePm#y847>4~vTGt8CuCL+7CUY2V^XxWZGI*>5*GwwJYrjNY$%iN&qa49;h(0& z;ONk>v7^V@o2r`PS54mDnS7nH=XJ<9k0!s0T(mY@ zmHqbH&stHA)JQf!hX}n|S50BjRt6`Vo3e`k=OdU?i0TDoh3`A@CocltH+P$`rb;ls zr%t)P+?~JyR1oG{ud2Hp6d!UoWy9VIJ8Lhtwg(67CeYug7e|tsQFCv z4^kE@$7R&j?ySsm^{W`SOM~4D1yCW*Mj_%UQ0-pmTp$wUt5o5T*FY841Xd!rY=b1Q zy7PKPBdYH3;Dw}ULh5QI$CPLa00bwcNejVC5;UFU$UIn3H2Nr;`#%As>&oBg+|An7 zYBpJ|2z?wTJ8;#KI2RoO&a@CQUVgsa9FfI+b{^Qjle^R!PdG5#Bq+Ca;00z8cp1{! zsHkWwRcL@lXYenOC(#gk+U zwovDyD3L$;sVB2%We>0}$w=h|6<;4x8J_HG;`N1FHB(<{rkehh_7J@#->g}u27W`L zSps}&#@AE?DmRMD3(70vs<7=NILQ9G#I;X-`xPDxWd!_ylGEheMHa$unCm|4tf`ywO;VhtAY{kKPkR5|UJjsyN8+HKLm0J?bshr6 zsqUxt%DQhkpS!^9#O7#E=si!rV*;2|Mmb5Io5hd4ZjnpwGcZ%Y|A8Z)Mm_iQdspLv z=27)_P9Ksc0hz9{EP}g>ght-EXLewV!|04A8)m)|xq;#;(#DA4y6SU5>rQY)uwQD}F(T;@zYigPTd|dak7meyseY@ZPRDEAS4?keS_HKEMX>}8@S@&3E z1*p0}oj2W0j^9*OoCYS||76hO_8N0}bTdWznxYVaP_oV+e#x@j3B?0dEu30G5yeNP zlDfRCR)7T0A^hPt-WE@x6Gp1}B8?%I+di7r)Sb^n57d0H$I`O7ZLov9D(qilgMXF< zDjek|lWChRR0IkZz=1PrWCE51fBO^lJq*$B0(H5onSM%SCuNSO^1B~CAuUZ#&TUf@ zchV#_*_AjAw2@`~n|z}5uSYWY?i9iEH;ZL}C-1vc7yS0I@&M0E(!clz>i>_ecZ{xV zZNheA+g8W6ZQHh2YGvEjm_Cgn&xe(~=6LUxYPxn6y;(7xv;6GDf3xBNojF;N*!w20%43EAd=8U=k zH6y(x%+OX5{U*1=xx=d8@R6rDwB~-+Oz?+-4+z!8S#{7m@|{Lyn@ug};P7NtH29)9 zi!BJ6f7aK>3CB6fQSce-Uq62a!E@!Fy8<(zq7@QsDId69A9mmws~pYuuS zAXNi?B>Hye!th>M-{S{$aG@b2@?MQ8$nvJ>)VqBn4nxkiGUw8WGkgjVv-Qwx>j4{n z!S)RmLI(rohOjJ9L|Fb~I<7^M=;YKOT>@W~2a(d)M7b{yvMCU$koL^}jDD&LI~qa-b4;6fnjSjy{m-n6`T%uQ<7`4jC~|&BnFL$O zU=yHBz886uoly192hmvRZwAf9bARDP+tAH;`G6*t9inEH6ifUkf*7M=`w#}&j5IHk z6`JURxie&)3<$@?sa1)S&q(vk;)zCwd1u40U@~hSO!DzWJiquO*&Tq=Q!}YmWxqx` zaeT}l;2mfmoArFEVok^+*K7+pAWk?hth#En6*dIulIj3TwK94;I%E%obCCFAq8Brn>a>SLy3Bc06+`+6!Gk1MvxlOnifgFaQ^e!3 zSQYZ%c?YU*ujv4J+M$g{5 zG@zR1PiLp4heV=Mn@K-5wQkPa$XT4_^W0rzt?;B1?N&$Mv3XJYz#CV+p3U?oJ9NxI zz;4ZE(dE&GuK$tUCWMN}ltZ*0BfDClQ$_ErTHPoa3t-N9s`&oL;aas4KT&3JMeIN@ zf0VOo99b<)_w{ULy02QbGWq;%)u$re#m!OCN!Z3viG2}I4ZSaT*|d7fOz#A%!}!*D z+oJOO{Z{x|)+R)+InsKlTd%}9NL3eA;-mdKnVdQOAYH5$k2;Tv?8G8(s{gK;%P`ML(O4r|xj@I@rzQS8_DA45Ba&Yo<_OL*j?^J}sU zj_uqjRg_eRv<@uV+FWDAkSZi{N~vz$$4XnevXJ{IdwHasmoz<4SWLR5FHI#VrZ}&w zxa6=KnU3k%I<5_k>jWa0z~*(k^2RzV4+_^^sp_rjdYiU+2PN}$ z`4AM72MuG1?3W|;n~yqy&Jy~~A(QMq?63*4cN^bEO%eejLNH(93{xQf+q_~M=p%CV z59<3)$+=w$&7I7ARI<7qW8}<`HXAF-MbBJi(-DV&PiFmfY<}VJY?_wC=2+-j3$D5V z$6Og4h(-D&rF!u4#DvH{z08TKp7RpIJYzd<6W07OH^#3WNJ7tReIYg007`#$!hu=M zi-DHN5#^J4UDpTJPMt>?KIoiPlO?TeP>hZs6@A-nH8z;!VQu8|g2jT~3&)4nd{Rtg$!^d^umF2`Tk6mI8-w5WL-R z#7*NS^DQP%CT*8xrm1c0tm|TU8T%A5%_xS&Wuz6SVt5H#K7w17Og66$ZVyZiOixXCX?}F_zOQl+_wJf7Q1yDlc-G}3G`36x~sW%RExNtFURfkQKF@R4nZ)ZOVYk5EtcM&z*I9I+x8M;&RWKVIl`haBW8YzEmL%t3tyN?+;~Tr6cNJ-t_y)(mZ=$+O!g&{MUIj2XN~50| z2q?cJH|pTZd>b~b(>3cZ03nl9VbxTq82KbolUu)Y|IPDEP)CKfdSvK^ltuCFg6}8& zgv0PeOnV=7*VMrfpMmdH&y+EO9|BdU@r}I_(N_o*ySE zx$xy6K0GXbgKPS%TbIYMl$S=XZ%9E;Ai5KuNkax`9=qtm{_gWMZQ87kxsV)VbKMai zOGOmaM@XPor+(E=EwTm}tYuQRt5vlN6^mQ+84THxl@fUtBcnlVI5wmHP|B(-JmQ3Z zCQT>eGtfsPNiBvMVAx#Ql)|`Z?F0n|U3e}JSSQ1FKwLOXcV3syf%VwcznfOQG3Cr} z%~e{uvXQu&B8WOS=*zCX3pugb$T)^*k>N;5CG_ylbKhFn|wu0Nn{R zF4@4ON4N|0E5)h8=u+QV2(NKP#3W?#%HQ}46+=?%p9P%aTf`Tjaw;jT4v~hZj9(;E`7kDILco^H z8QEbT5KlxUQ0$at^PnhTxT`mju8q_L7y_Q{E1&IpJVQ^TP`Ui{#&SqLjqFc($-KI$?4ahXaFO_j!4>&pwEDp$&Vd>57)&TAZFJyoO)*&7AgJcJpoFdY1N~t%&tV6lQ^&+qa1%mNIS%4=KG_1wU#S10? zyl-0zG1i14I7(K_btuQ8$kQ#X2TkWxTCjU!xDNV#a;Y1kb(!^A+@cUGpuOkSU)I#u z!=erJ0ERyhB^pTGE<9w9dYegoOLInFH;+s-^~-v0vB&7Kz934mpG_N3FfF5pPw{?w znQFTbk-^G}qg(8t;)-Z901mTGn88JQ#}iqkk6|&P?Z(8RZD5BlWLm?ll1+zo#fal~ zqlqe!Hq6wV^28x~-xNPSzbk_#V4M%X%dBb|7ut!Xkz+K;90FFtPV7mkI@vp%>N)X1 z4j?Fbi1c}|)zgV4ZT2Bk2KkhVNlk^3ss_d;stS2~Rhy&r565T`-n#n_c%9Z(<2uD^ ze`rQL8j<*RT{sAWOefWlufM3TSjMDyI%+jyrkAp{6`xy}9EF{BS6137R9?5xh^q!| zMTe1FsPHI(?EhiZ4=~87rdNv$;?Z9>k zxPsK?&GQXflAbjjI|X+5T>l`*^Cb-*H5}VDW13nvOt0%<7J3@+yM_!+6?zU9n^~BB zHcTh>H4%IU8}Ye@{B7%h1t}h~?MqsA40O?hJ>}z*J2u-BfA7n5@Ua1}J^0Ud3%<^M z*-&{&lQDY18A%KUv?{~Bh^qmjV;#{*zz#Rj4j%1>?XzQ$zv z>6w^6FeMHI1698Uxt_O;N;H4|6D18z^yjr~mqud) z%{01e0hmpj8KfYNjxdb~_0Od&D_y7?^Wra``V;ea5JumcSY*&N^66Mk@n5%3XBT`d zab&3jc_(hEs{-a7Tn5`?Ghu7gI~=45VnrL5O_Kzs_rQ1Scpv!CDuQrQC2=l!qsOMy zNkz%n$tfpq{v;Bv6-P;pGf(O{N^MqkKC>^~K!uZ?$;=6J-?cBvM-dud*dB6O=af4qLeW!*9DTqV!Gk35e z`ZF>FD1C<|9pGC@U&~u*Zx*rFUneoDD!^2Q6uc^_5U)p4LH(s0P4FuUjLbG=-COL( zN#fJ*zLm|Uv##Mrn@ zeR_*;_uJ@$UaQ^>!vg`-h6q{GA+#a5%rk4r4m1`$0v-!G;qtB^b?wXHkwokZR8Tc_ zo|z@b3L|n^;N0j*iC1jl%!_POgGf%Am(7t7E>G{U-$bSx5!gOmm#|vgZB-4;v|J2y z1E_^O-U&)Ps8PpzpOqQh!vuHD1CfK=BA{i&+;|U?xU)l)T!G2uPFsVwZtdu!#rI6H zr1^^jjDSF0eeY>HUqz*`#rVN*dKJQ;altow7#y*AMXE_>@29Tnv> z%ss(D5k(?vmBqeUh^kC8+3HfFozLQb7e??rDi_$!=w@?KUqq%*l@9({fjm7Fvv?MkY$baJ!Z4F}L#p zcG#B5Rm|o{&!QH)8w@mjGzp8hIR~;xT#sR^S>m7`VBUe=S454JDp(}eWfW7c@W67R z*H;AM%>yb@`9i%(&3K8{qviBKQ6f!avJlvM z23+^i>$iC4&ec_k0T>MSV;R8wnup8zO!R*I6%F~033(JLUZ@$4Oj5EK7<7tlaj&cN zT%=tz5w-RfQ)1|}Xn-ktO{x0gaU{Qju_|0-=}#GQnN;!-(|wXu5vP^#zJVB{aM2lS zwIs&{k}sk$O8v2tg~@G@Y1P(CV9hm)j%^MiESgGYmHSchY}Q?ILPtY0iE8&AJL|9{ zx|~V3a-0V{XWId=e41m%b>LYK8ZDgyuD=@OgU4-`IC-Q3%O@$uh5yy|yttCNW z>>B{Nq8=i*1-XBSQ}v7xsZTqj=Ixyum6pA(s#k+lh~HsxPBS;dYN-7~=t(>Z27)Nc z6k^V$HJVjSe5dSK%_@|4G z1zbDi(x=J~&S<;8gL49j5%0o_r6tRV2JLsb{j;Olz>K=|hrP&APIBMO29wgnU&2vT zM81zj+_u&z;k!8rovYPptaxm~>CieE)Ohx+)8rnId7-A3M4NI9zq{Qn5n}9-83>Zf z@sK_u1&0BiazFXZ=c}kJlkJHeNiV?YBxS!jTxs!Lk7 z`lO%M7s2azwA~xVJS_CIq6jIY5*qmKA&JymXqdC&hUlhv^RBd3TPo_t+rpuoiiyGa zsz!HsK9*SV=15LIqvtf}ao+P9ARn+9(WmO%vAbHnr4p?L2lV(iF0{1~`J}cHt&zSX zZ2)nNtweZ4W_X-+sd%8oS^L(u3TLSt=<3zz>i!3x0#7U0IwA#nIJDP zVHU6xBp$6jjhu6Ty6ryW3sLI21>OuFFl*cd!q6H%v-&xrf4qTm_BF@DH3>N7Jq{a! zPMdjcp5-5@aTO%gCcF8BUFNwKNuTjXUbxlY<^`5O<+zGroV7^deY1+2=^%}}7CYY9 z^E=7LFLaHY@#cDNCO~1}_Y!oQc?Z`c?hfDSL?bS2ptW+(PAj-yC~?*N?b_`l&6Lx` z8ue_4aa-Ujc-h4J&*tB=CwAeT*m1X1hl+ua+YDkyLY%|VGl*_;HaUZofoop8nAc~` zFX7UXeL!kJ795y!9Vo^YT)T}dyJHl5BM2O znnsKu|IR`pJu(t#Op;k2&{zf=TFu86>RUZObcSO<{bpz%QWK{XL73us0isW4c zj`aii_*2hw`bi~or*ex+iM0uz@6rpp@8@EQ+RMNY)%!Y$1OF*e`lG~J6Cb$JwDZ^h6);}}ca~{B zd`nb-?J!?l3K%P8XiKx7IN6fp1at_QFQ$$Hcf1Av8>$H{v+o2!UTsc!iC0)2GHg5z zvtNDa{jcgg(bi_h8ALWMpQ9=)4B>16{XwZ3zt$A9kssas)4ZjoM78k-|~4G`l+ba7&p z{h3+_1FMjsVPh>)W!O(tt|-N-Af_(M!}Kb8%nUrTMI$-kIoC6?UU^jNDLSdPm`a7sZc#0R5^u>e|1uHUzAq^b zKaAp|tzz1lGsmgp(DEi0I^kDqyR?w8CMUx6P}!ha#!~VEWGVImror#${49lV84BLK zP`CiCbx8Id!Z#925V|}4IzO{9k-27j(hE#?>4%(f&veqsk!ZmR&p&Gx7U) zQ1A8S9awx+f`5}eW_DCSjUOB(8x^@|syTvQQd;(TIDgtO^GQ=1dO*Zp$e&P}Ac9IaX zDS5To3iczR$IaA6M^!$_J6bA`(OC&~meJq^ke17zBG8A;gm0;xZ_TBvB78(J!{Krl|(v4;8K>a#}k`aA6!N>@~T1yGEn zR;Z3lJ^I&wa(LH3UJr2pHxSk1^x7RoLba)dN{6Dar9yjMWi9rk@ef(YG$rGlR`${# zlO^SkJErsaj0S}BwKHbPZF|(hKVbu*LP)b!)ZxcKr2tIA@3n;lM8K}=stAXP{{egU zfoz_r*{X=uiQ1|NvU7LL{>yi7%zpQe-Y8XXLy59Wt@*GOpx8dGX;|~9MrccC9ob|` zGZP*`>GA)A{Moe@s3TJ@{Ra%xSz8D^wp!J<$5?uAz9d-=17=?dr32;( zBKYH|2H^Le_t}4~ zw(#7vRO~Tu=(WSCzcjv(66-WI4LFx?an0HRuM7y0okQ%W((hNOjK3`#d4t;refiO6 zSgbZqI%rvM#V7vEOt$8`2_8!bZ86#vu(H$~O5XLtg6Hc)m^R>i*By(lPY+j&M^|Bx zO}V@zp4?2SqrwnS!UGosCGvB?OTad1 zyXg5Q{0w*xN&9d}J5xbGVqt`@46UHcb*O>69JEZF?_ySs;Z*hVGimUO`uV-@vn3{L z2t#?qOJF|P*z4{^m{|PV?hUt*X{LG{Eb)4%M;y^= zhfhNli{zP}R_Z@1oAOyIe=&sAQ)Hk?oLfD)vLeDoZxMw@HWq@d(xkwaH6hsXXYfy1 zMdP2A;OPPNC-jJBMY7iqah6n*3tjcSKVz~Bb`@`wYH@bs!ZbTa&K0B3kOJ+e{+cw_>_RT+FtEURXGyka^4V9ye@x* zW&zZ=dz274>zJ>`2Xh09pjGsFF2}`^q*(na^I~*v#`WqCbGzGS4T>oys@7d@DH@2)+H zw?!*vF6)L*CJ|{P{?#N@-~lIrCt77Yg)p+xyNWN;p>)ec*WOT4fq;5#B7K&b*UO8) z$Ff_;bd3Nd3Ow{&c3_+W(Gq%^0TzY3xg(gJ5_rx+y}F9*F`gee`ip)ryZ~fo9YXh) zL6^Tv`d-t7=#N^7VW>A_jie_s#@&&Q#EepnwM~%4eR>EFz+buZ5s2Z=*6xSs>bUDG zkylaV16e)e$L}u)(SvvUAsD*Px2u=_eh4mgBhVbD_wIfkT*Tk~{UqJi^69{0Ey!My zKTd+Urcx^1^XS`ZF^vdT{Q@tX`U>m?$>Vli%7o^tA4V|XIq8SRab|)M@9+D$GtQ^R z`06f~N0gB&Eth(A(t+1>Go0C$e(&G)ahidrbjD^h)sp4-dpZuw-!;tZtDQwOLaNNm zSLqyhZPrZES|pr~M-FSWRuEQ+%`JHm0Jc1LEpe9w0w##6eiY1Ww(RLiO=EkuU_%cN z{huUFS>DJ7DbCMalAPEs_@Q1R2wVa~a(N>yCr$bb|&oXS~p_As4n5X&@=3mtbUcezz(|9p;yc0q`|@c$8eWP!wH+CFs@X&|iS*AD5{bzI#be;kGz;6#G^(oa31q{4oB#28Fo=N$ zV}a5M;y}7iB9y+Wd6PV!UKEA_pDOv}uD?N0QaVnjlUo96^ zJaivVM#H18TD%buqj{3(CH+5G51Zq|GUx9<1WYuE@jx(;7I2&PEEe@}KK2Sh+Y5yC z)H(vGJp0lKx!ZFk(pTr<7~?sCG70>+Qc(x1H+~Kg#)TO)UrV#B- zpR{mqd~+AewApCXSl3;)_G8VRQd!P(%z##)wv4h_Pqik1b*X{L9Jtht)$FPE{cC z6qPl1@IuLs-v}Gi(*%q7)(wj&_(sldBM7U2rzD#6mNl2Jy{TZW>W`MGZWsy$N#Y<1 zZuAQX_IUytnTCe_C`2v@Dq0SitG68^Wv>u`MXZbg%2#7@6_`KD~JCPYEnlBpH}&|Bb*r-p3^RybTFgu z#eG)$U}tN1Y&;TKldB`b6eL1k%y+rDS#v#H$kBLQ*zH$!Ba%9 zRYBmLM5~e_5dFhhg#|?N?A-xbLFMW$tAbkZzyR*I2cNu29NrK3fHC_6XTG%y{J*3g zp`H^UE(mM`*zM!6Ugme_uuj$XKj_bW^YoK9C^wbq7f?;+t=|9c1jrj&3Rn^32?@Vc z`>JZYOzO=7dbRHQ4?WZ008`Kghx+AjRKo3~lXC&ah_2x*ByH-Ql zz_xOJm<_Gbn2m3vdU$h%d4+}U*pqtWZ`SF24gsAryky05V2i_^$4iMvsxC4THpgFS z3M}jiofc%=!%>uC!>-Iqj)B^5J*&52i$4B{PfCQdMSe1mXVh@c{GIW_KkcAcAcY~t zKR7N6j(b<@wds}7wI51FWR$K(829d_(uskQ!Q)u^t5wvanS_{~`&Sf<@T%&&Jg z0OvaUm~US(l)06m%SWNKn`$1L2{}H{y-t?Q-R@>gkn5qMO%BbF#1_fIX5Stp-% zUR5X6ui}Z4YZQ+0iwIifQk+)T^$A?Oj$sdi)YQbo$L)P@+$zZAWb(#vp32Yi?>G2Q zvhPYJT+70fn3qV2RAI%#Z@Io($!~&8rbqoq-+&xnOT;;vNrziyv{?@h0co%{$V$~Q z)M%Vre}GM~3=k?nF?3MqJkQ)d-GEga$6V7)#%I9|A)+@qbGQzzz;C4D^(qzu;hmp= z09=e1k?>j22LJ5emzT@HqYtyxolu|k;q#nOXHMgPlm&LJSo-81kyQkuQEhtjjx1!gJeNN1pW+TjYnIVF7r5cPjMDP?%&aDUYGzYu zm&&gYd!^`wup+wDaAXG$zQ7;YX8=>TjHRfhF29KAMS0#B>`^CDP20i=3kd8M zDy(XaA^G3%P&^MQzqygsK7+4l*e{$LjWD(z{_RJ&Z>?08HvTO2cfN}u3+{3a?)kHk zc-;FORARaLPO@|?_`Umm1G<9$S%h}hKYqfOxcFlOx}4JQ5*#BV;40+dFWkF}{iHL6 zi~#VSraUAlU31Pwi-C0J)Rt82^&LC&$npy0rSZ)UJ3t1dXqNfFm+-`ALmT+gWzIFQ zI^@xeuzHp^!ZrW}>0!f{aEEcml`#3v0NT;&nV0&}5E`e;moWKQ7n&0|nEYe_J?6o` z40?2}51qd2OXzo`KfbIGRU1-5851MSuU6=UrCk}z6^mh9ab(RR8&!Rl0F#P0{JjAo zs!w$v5L6=hiBF%xz-(x3Tp_b~YFu#Y-trz0;e;U z*9Ujf1xAkj>=RJfj#Vj{Ov+dwDe29`T2@}95&|W<%^emMvtl;RdDYNs6~f~_O|R9I z43mO~Aw}BK1qrZ1dAVUZ1x%yF(iHFj3~&}~YRt)ELv@Qy9jbr(;Z|OfD&N=kCw9dt z{cic~$yvBSj1lwGWrq)H7=5A#DjfJ-Gn}fGeT8Y?O5l9_VBh6>ZW<4vbcLSLgQ;Wi z{EDBr{OEg71^>hz`^-XFl`H9JApxaDN(6IAO5~I);)LC`giH1=$Onf0Y2_oQffrzr zCD(kH^*^YJqjDkr>r$@XF}55gtKe3~AW~urw#8bYx@&C`lY54W5iT2}1(7mAzC=;{ zd&sqiE?%_>r!ZcXEomRCK$%$91QXCY)piiL*kzouF3}UmcBUSQfI;9yVN_ zjX(4Rkq_tH*TwcYYvyc^*riBByCRjG6(X7NFcd@l5hFE=$@RgCh!#zIi7~ zRJNr#PP^n;9@x3x3b*=G`7oTA>2R${kXdl-CZ5vH=3eg&8Cp<>`pXq)oM8NbKXam( zJAb{$3n*69OVMJQP1Kyl!`4@nRU;eu6P4BSN)!mnD@0byE5;RI3QG4}2z^D%D?&lo zB}opJ5>MBYP=oOk{`BY8n@(_sup=o6<}&*#r&pwge#UdzL?dSy49LgykWBra-I{~k zy71XbuPB6oK95^_4MB;|`7okw~^?v z^$guA*5o<74rx?L_^eSFM}X=m2T!e$aT=9B4C=#-uTbDYk&CbB6Da+DbPJKvbN=h^ z8U}IB2>W~>2}Ez}uRDqZ#0(!Lf}}E7Lv#Gh*ywx+VO!$6L!xAvR+6#bf|rbFuI2sJ zkoNRB`A8XS%ee?4@(SJ0V=)s6o5!b?$8)bKUWF@~%_VqoUM0v-}r*%C31d;z+^RD?FKCtLZ^dkA%p8z={dj=xv zfrUzlF-~glPNkROsm>YRx5}`Z9@~`ov6hlNPHG`!8|uH~Xn-t(ac@fb^)+Ss74>`9Znydsda*kgamSC@2dq z>Xv=C6sb6&P}OHyDkB*jG>cc3LdtFBH$OKb&i z*~i0l!~^|VWx{|!<=C_Vz%#{5_);EViO$tW9gIo; zoPd~iR0uI?HOCbS*3mwKNznclDg8>F6^vaCUnu4wj0vO!q5Huyai|%`Nlsv)I1K#T zJMMt!*c*ZgEYtyv2@iR-sCGnM9%=Q`FH-u8S+>xYT)xnjGp^8<3BrLW8>N8i9iX#E zN0@W5-Ot_HH`SoO=s=R}rUS(X)r54=BtAytE0UrKuZY^w)?RA8yjLk46S5P^BAr6U zaV!_VMYO%RDPz^AxTg}6NTk5Dc?cSpz)t?qG=7CT9h0N--qR&5&LifH(?rAE8sW_f z1hSXgq#BDi^~q^2=4>s0>Ox8R@vZ>JeE{{UjXdu#p+{QydnsGGGI>;#7GA_Ib9H{B85Lyph z&v$VRP6~AJ-*kNyAwGVjE}y@l8o8Q-6x=qK-s@ZRuFd%iM3}>1DKrPob1^InY)Nu{ zym4o}f>UUso9K5r8|ScEX#T>mtj|O)v~@XX$;!-@6f8~1Z_11mI>9lq$aeNl{jvlQ z&d;mHQt{rRr;&g-tMoW8rljabp0v=IN6Iq~EJJYp+{?|iqHCKpwBCq)0AHgz;@3i8 z^xF>ejDx9lOi2;Uf?ae~wkM#+D_3j9p?2MilZdN8ED1$zbmUlQE!w63vL|pTePSsN zLGvq~T94lfy`n;014ugt<1b{1igl)W;4V16auze_`Qk4?S^MHFKw0_XE^Ji-r%Z$) z69GwWe1$)$Q~3jN7EB98X`_gJwJ{p$#%P{pvv)yE(wsa z4QNYIU&3iTm+2RreI>K06AqvJK!>R(a-=h2JwyKfpUnWy!6TxEqbf-CHxjSVO2mUl z7!6MdhFWEJuKIYw%Bxw|AC;co&*vSYOI=U}S?BnCu@^Nr(oJowIDu0$BL_KJhgZ1#B(^89zqt=v7~3_a9G7MXy2;RMwiMC`w!=$9GXyvE=+b5UmZBvTw2YBf~;LA+Yw#?xRRh&WA zXY86`59Jrle#h79Hcg3P%cbYYgV5bETgiQ%7L)9+T>Tp*8#Y|l$5*98A+cX^fiB%m z_%-`*M`y3c`*6Io%6~`i5&ZIDpdJGQ@;|ena~~Yn;@5xKh)K5Y|82wmD~4_;$ZO@@ z^5L1$^S)cb^z0khi??{sIQ#d*C{RO8EHD65uB-g}DJyk}=j+~-uzxsupn!5dig&2k zl9Tw?xqtdevdidkrN9MaVvgFEb_D9>#hT8 z?E4^8$K8e2{o}6H)XNRH*2?i9E;PyhATCJrXgK^6_}7GVz+XS^V>dr;y&wPVJkuVFz;t%rVjWN9l4k` z%*K_gimD+eI#lb0S&@Q}SF5z``XO9&*r{FN$|t|{z8d29#8V2vpy&ylvKvm2=w|Iw zlJ)c#@dvU?uHUnt5Tl^+!?P@^H=^in3!`X0$rjJn)oNC}MU>x8jib=pJvq3pRYg(8 z`*gcx_O%dt>4vYc+FUWYQ`R$fRI)mpg6gxh(Cf|q{(!+|d)Z21OMz9-h$#7+Zf){x zNQE!xT2kbQY&P*7$$#3>%hIxupQm28xvtzv9x93(DG`cAia2Y-CXxx4wBFUZI}5@S z)MB!?ia@N34V3P%VXi%m10H(VvVff~twO{*9AqRwhXo#d+siYyCA%o|2gKtlxjgYV z$+$MOQ?uk>4WU7g%ashf4q3ceO`un)B@YclR0x*uCU`07sPxrv2S+s?z3}TxBld<>zA_` zmsM4lck|#XTT!SKi|>fLX`MnhvGdBd#CqRFAheU#u+98t2RPU=zl7v*2GQ;yO^knR zmbT$glPP)UV>zdd76xc1OghE~R*eSNbX?udGpNWOir@Id&{?A0fzurQU|>GkxSPZu ziz$72r}T@cD*KDGAMu=cn0?_x=g1R>yqr>~@btbCM0bhw>N{_u;rA2fSNG`8=`}N- zI9|u1V_S*4cP|Yix%Wk7y0^OuGa+vO9plAdOZ zegoH}%!<;SWaD>=yUn+%B+*#@lyS13u2#`y_a{Q%Z{Zhlq0n6GscGw8&?P+i@14nG zz8Zbx1KcK6PO*-Ca4iVohO(|PVZfe*VohJxE~e?NjoLOPC;!q7F9Vt;qf2rq+tG16 zEICo}Y~(w$ZoH=T%s+HNj}69mYF5Zox{8r*LR`(3;^q3lwHQGtuu~n*a?;d)HKED1 z30X1_p%vfnO?^Vt?T91RtWmGFn|n#+?S9jRYN70U(2s^Ghy0|r%V4>OiSc;>`LoH) z$1^yOOnx9ZwUkXd5KbYW9qibuwq;vNm=gB)xgY78Uzcd3K`om&v6(H-UPuH6l@AjF zYTJ8;Lr+rUu^*i3LCKs^PTntPNN9LXl`CMo$5e6VqcUA_mG&sTEh@6hO9|8UXI&J} zTa9UKKvnwOvLmJ|e_Iq!uHLXXmT(FSd48kdrLR8_iRNLBjVkS0qHVy&qU zzW=f>6Q|Klz!jAP=Ax8sRk~nmt?8S#-0;IV45nJBGRtVU`V@=9|3{%bee8}~U4A2i zfcB^ysIQ-B00lz@zh&O}6eL`{t8`de%m!tJQSH17~g`7z>iTn!-M+>^$W{;dT9GKq+P93%NCezPz(Ue_5 z*?SRg2SdsW;)kV~VcKr^zQqkc;Ijn6PqBrf+mA24cXxNaNw4A|Mw9s%3^%NA;n?5D zw%(UmzUqh-sFg)np{16{Ge$4y`0SSyVxgDUWpD8Lsg?X}{F7qlHpB&?a_ddxcKr2y z)D6}t1wrK61P=RgyQtLtgwAJ|_QJ|DCLF5x85wbmW@ERjFfUXMePNm-T%u_WFu!8+ zIat`Aki1?P1is&F9lzar`YV@>0=Nrc4Z zV#T=Rw0=3PRIV4YDCZ6qM!LAsQA?aCp8{pTO}xt?9Wu&;4$f_V-G3}0MMK^DYqM7c z(BtLvWn)d#t`|0JkBTP`7T!K@6y8R)Nfa?%v)Hvs+~c|%Vo$+9)=Gs*eo#@jn)p)U zENhH$W7>R>P%B?vhUss?r`;A5W*2&Li8A5klxI#371?>EswIcn2!sG%sF)mDSgaWf z4Wsww#;?(T&?g(=8f2-4zCa|)45B#LQb<@O2dz$FK&z}MfCzW<-O$>{VmkgU?vrP8 zFpoDt^b1q785ch}q$491lRdI%Nv{Y$h5fGKtB3rmONfjJ*KriZ4JaF;Y~9toW5|Qi zNW9eMRSE9%z#n(Qq{@Q5BrEN874p*rV*tFGHS?ZX_^@+QfiUXk&XMQ?V-Z zu&lsC{^9Uz>E1JUKhlA#EI-V=!@j2;kum4;$O5I2 zsP8q|A`4pHF^xvNXv0eu=?{n(YvbaAX>h_19BL|hi{W5>Dqq>z!W8|esouQ_VJuHREUOF_6MXEU($I6W*oxZQcH%!IoBE*mWS z^CYsiY%zh%2H5UpmPBc@Hd^2dcqon~meZ%n>!KaioXG+h>j~iL(QQyB@O+lpOdRXC z${3)CzJ8EN$|Wa>!4EX{z)Z)1_DNOCl}=I+ukl}M_XmJ|f&4UPDY_vfi8gqn;xOkd zziwlw0;mK|v6p!8l+M!pAl%PyGwN1_epe!*>w~a3%-6{$eAW+cT6MqGPDz(>c-3TjAo~RuXRi(5A)m^5Z0T+oK%hNkGgu zI#jHSY3#9o1`9>_^f`gWH3Uy61wa>{Wg*UxAKY?Y9=R~HmZ}m}BM~wkql-_7;iB~= z_FHGojZh&2vG$z+#z_N~Bkhz2uNw}CVAKQOz8AyR3}=ynuiLu6UsYfUgUuJTJ|a5qg+oT|aJ_}Xq|FzsySjlIe0X1ed&M0Op4*T$RlFy6+ z>zSDOe0pLPk^LTYSmnH%?8%#cY254E~i zPMIPqFY$x~XX3K1&qS&gIo7vs1m3smK11F4Cc}^SO>61jL*w)cDrxVE z+Jj;lfqr`pV#8giXHj^#hv_-_&DFb_h&iT|z4Hcc;&k~&J(qEsvQLsiqP$W{`>;sj z>iG##N<-R}s4RbM4?H=U#g-V6ES58IT`~PoX_Kfq=-9=}$1*W_D_cPu_hgr5z?Lpd z${g(JC)$yJ45DB>lA#yDJ@QxQ${M+N7%+GtC30tI(9uF9#hV?D<4X)&KS7$A7yEIhq&!xmKCUt5 zfl^_5{tFItB^7beOiC-nE+c?VsrJWf!Dx=X9LcV^o-u0?WzGI5@kdPk|$zhRc4tlO{q^z6qy(Yq7}SYVh^oRF!DTHLAu!$+#=XMvI5gSbf(7 zH~Ni09hPq?al6=uIK7mf<|w=x&{<~GbDPVSN#8fmkLJS$fAwu5oOc#d-9N-HcR$nR z#plL--|Azfcq4tdXK#M!P&OGw)_ZelTNT&9agR;_wPG!tq8+Tay!7TF0c=cJ`w&B{ z2N^=7UH;@{PELYC##qZdEOf1nvshs4*zqyppEp-mdHOAHuX^LZy%=K4KjT18FHrNQ z2=%@RIpUe`ZX_sIW)EJUdc5C+AltsPSCfbFN?#xJIVuxz&R$Q@`(pJxF)+a0{#>Off_SN?ho zX%tA_K4m=$TlaFDH__@PDg>v#4nLv3#~=(_`6VHR+jequhearoa00^mMZ=2_cZxZjoU>w;>S+ayg24f$?%wX)K6UvgZX3J7UD0>ox zq#-3m_84O+lAVO-GwLkg^L$^=?|Gir`TSw-&vn1A>w4e!bzk>&zdqyj8HA~{rB+^k z%4y2&mxa?s8}bh4(TU(UI&;ZlvwbM@p zNAvcd-r^UkWpR=(3Ose|#=pG_ET*l<9Hywj{-d6`j>>>xHRwD=%>ubYB3#(}Q zqL^pzUB$Nj$0CY;bF9)F%b$jPJ-aFpI{9p}E$HD~z_O#Lv%?BIOKH2D>ZA(Nr}jk7 zAP?)859$j2;EP(88E2M4=fLjQ)VXZ9xFhQ}`A~}8&6#BhynFFp`T?)w&7AJ*AF7zx z;=_Fk5*`xzNRS#eKbl!s9Q7?>c(gNZKc&J$*W^+z`EpCk7@5aTx$vab@?6wf^O#L{ zrKT*lP$nz<4Y?yUQw@dRsZ{LWxo@_rxpZR-wdhR?g%bP4`A5r_Qnp@yqiwqkS2W$R zS*=}8-a4@`V4MUr7n8U41Yq!*;ZKbE=NXXANZyJa=2}=y-pccS3#9q=S>no#E!Rca zO`8o`sK^~OUNipfjB}R(J>WtkM!L)qV1$bF6qqV&&D6+VXbmImXq@_u1v`{Wjah`!#F< zvGBbF=ABNLT-mQ9iIuff-7Y`tyP2s%=%8zs6SJi|eCQGa037HAB*MYEU2+xTfW8{L z<-~mn#(Z?<6Nd4`{ne?fnHDGY5;7n1Bq9Zb&?PB7^^z{cS2^w0x`AWynHG`i6b`g!uS{>1(B7zSW%;w8{4Tp>wXO#!$l&d_p@28>nL-H|373nF&JA4X9Lu%<6N#qp7Nc09srMCOlJtgE zAADvL!?-Pgb>Bduk6mI!1G4k;$(-0F%-dw(77^f-*>|=pcBxiSXzEBzhJM?I&9+mf z+H*wLmQM$&Hc*28eQP?)XPcLaNmQdZ>>KoS$!yXX5t^z_kO%BeAIjC2M=qk5M&(`R$%Z~@HvhQ zuyEZ5{#0D%COE{}WJFg~aX?RJ2-16H+P=Fp`&-jeRp7m)hMmjrWt!&Mt@Y^`(_dvjW6-9!PqKdeOaA@w*1=V^lj z-1a2Si*K^`Y=6k(>VKHWw?wG4)fn=7GlAqOH!S_X*d?%rm=ButOdW*J2 z-6zFoUSIf*oh&SnT{+s_dc)FW)*y$=ibbrm7$~mUX?+VMcr?WG^4g|F=SxNT%C9$R zk3EdWRy@vXB^I`7CMs)=9O#JDa!wgwC#VMEiyHmFHEtuXoI{f7kjTsBj|WVjDdemx z-ah?KYV%PapTQ@?hJq2jQn=W*tvH-`Ghy1l6V9FBmjgWbymY(t_iLxRM8z0i>VGpi zK;XG7b5}G!&to-l0=bHxnSHwDYFxci0iyf(D^zi?bb%IIWuJH|ByQ4jqK~k)Y9bx2 z4s<5msq8BQ-z`}gp;?lZ*{-ZbUK{QlEh)4Z=&Fsqf0A{O`OrN@)bYSzi9+}w*~rHO z>A82}ykZYqeHQ9jW~tOO4r4X0nKYGcE@7pf4+3vo_0(hz*P1zAyc#~efAtOyGCtnn z|Ei^r-Of(aoOq}s&l!b2Z(Vd>U(-NDV=?u{Gy6 zvbgOI=yklvmkU#2jXBwn_F0n_iRvzSIfjXDt~}X3{v}h=UY72B#S)noPBxk_eyV|x z-`a`@7^Cg+eH$)V%nQ64DGxm>m<;K9Cdvr~ex$PI*jFuquP6D0<9rTuvdf0Y6bg)& ze{7dJC!cg9_3^J8`Hgo6kaf2pPfLH-4!9f?CU&ieKMv9D=$KIJ|Nta}9d5dSviOgTWj&E&UsVf4=sicII+VyI|7<&i;_? zsdrch*P{vVzI}k!re;?3*UTs7@Q)f^fuuLeNsGi38uU+=n$~Ps$PU(7&{VvV5wzTW zEV^>|cfTbguw!!gst7r}(pgSNiiEkrV@|qGn!hotqOy(WwGP}caz4@N09vX9) zzc}e^ggI?przokL{a#Y{$+%^I#Zd93N(+N^f^jnMsD=g2u1QYX%K&Xb8)5o+>@jC5 zo4@a#-vUS9R>Pq(kwD>GlwLV?`1ybwUbxnvzfJ#+=hit{8}8({pZ&C)9)PQm%J5PoD`xg6q10TW;&dv<$cs{Sh)Spw)v3EgVHg>@CM;HMGNYI_Np<9 zQ(xWGmk0Zw1>KBh@5Me=A1dYLKdu1{`g)8r^5Zs#$fiWks$SBK&|IGpQDS{+*v|9= z_%)w&TG;j_;o;uA!J_@}2u$Xl-&oAvMi{&utuP;O$X5Owkz_CBan3%{c%ev_r|$SX zR*iK=p{^ZAI{i3`brkmgL7kd-Y53^=ynXUc$B7Y_S~ovBw5iR=Ef)3&Mp-MbeCoqg$8kGS$%0tEBdc}L}Tw!7EJ>Z_B{g{?2)V!YNF4##_xkCWe^9$epf zN;Rn-GAfWwk3~{>lzM`*AM6G7SYP`6>0ANnZuGLhPkDvgx#A~I+DowgU-~{l_`(~i<0LR;}_|ZJ|?r1o&{WID_=C~4X@`} z!voeNx>-7_(37aOjoEi*Avv2m8`zyQB9jO(+ct?Yt*n-oCv9Maag$;k2mhX`ji#M? z5mz9>DCp5Kjn5NlRyYoP9FWsr;INF(J7gZ87h@Wd$CoR@(7FAH8V;kF#)Stv7IEbs zW9Wd?-1N{KlSa4BCMAePpLo?in(DwW&i=gJ2K1zTaQ9nh zM$PvQDub53$@lS9C<^*(NYM0ab#gh!=TDNnp2L} z-UMIL4iaw7eG=0Z{)7)e`S?s@pj@_7soH(MKGXGHTyuZjLn(<^+>nq4Qp7U6J$iYEi4)EK#eip;OiFxeK^? zJ~V{@I0z(9pC@uo%N=0hk%xu@d=vq5lfIN((FOe5Dg>4VG2l@t5r z2d0Hz2R-z^yGGW0<`e#cj@B!dV)V9J3Am5Kd(}rpZk{b@V2gNQe@mo5T9RX!ckh`# zl}2_|E#My`@FjCT4}!VLBLgaF2TWbB9UU>~xg@-4eAazONycv`STR0Is?7bHRORpk zqZ+gHkmq;;;^QNSV1@bzt=EjH=9OI8BJ%mkU+*>=R_u+Hj+5H5vC~+(VXwj(J-uJX z#a*3;YQ%NgS@Mc2)nV~^!f_pu?~okPW?SUtl#kIqLPu?Dk0cGXz7uA96f>hb31!Hn zKV8lrs%bA$nTr>g;y97f?36cj**Sv0&q@4^oBV(#HB$AYW9eQ;d3rJ7k(QyivfYt! ze8aO2ja9x#NfW^kS{zuS=AeXX)=aTFIXOA|mpB?VCDkU5h{BUogA@$C{i80~hknR0 z^zoTr3GTp1WsOOzfW7;uhtyE}pxjgXsARWC$3A>37*|~L`Rph5>|B@!Eq7u}?!T40T@6sY{Q<^>$uiU)cIMlixHaj6ugHCttveJs841XvTX_DM)x*#UG?qJeiu7lwNT&5Gkq=c~Kt!gyr_ zBbipb%I_9aQ#DnoY_%WwQYb8|>fnDM=$YK3hG*60bGS z`{ms#y@aZ`0AYe-Xj}~(5G@b7lD~fhWPZYg{9(O})Y|Sz{`r}r+U~oH@bN%8m;oEm zdmLBOO$4xjdK&=s`Jw*si!!PQU-jy{@_=(=oJtNwh>&A}lYjI5d8!ZVD8uc-t59J} z?~38J_nx&r%7cUp0RbgkMm}_!$8{e@4m+JT2%^(6ra5o>w{%4RD*x6~~zeu*%1x-b)>TK0YaV4dl~p*qt|huA4&xEO+JiISwZeEznzD0+&#j$lh3x$YLD42K0gsTv);i+ zwVQOBS?}@Ja;e{1wwPnIMp+-jnD$3SN@qwv5HWngeS6}0#^`LcOSNE}ccVgr2EE3U z-g-gy+P(E*+tVvYN>iCLX3FGMfYaAKCeUYjD2?OaRG4^d&< zqjP&7&xT|PMB3Ij#)Acxz9O}+NiQgB?i93jc(Y~iSfwoANWvRyAZfm@v&=rg<572w zPjwy;R)v7GQ;fS`5MMO^GoMQ9p)60WqWv_v^M_0hMZC3Perx8<_ddYYhX zXUlxH(Xwe;)Tk|2ReOa#zgOy3u%*d^7YfSnni$Fy$D%g}(N0a zM8lPle+ZR+3f0x2<^kS#s0q#m4>iO)x#3O_sURB|(5<4X1X4vHY&n5W65fjfLIOfl zPN*rKO!Or=;>m!n35n=vhNsv-O?31Cpe~i7Z$`mU@F3JK7K`PCY7@OEfHoPV{DH087f0Tz4#?{H4Q+D}#ZpQ=AKwQ&@jC(-2( z6F-?6;wd;Mpa+EhhildU)c=b&C)C))5Cq3!e>!3g;|E8msVXN^&Gau8OshXTcjxdA zcbrf&Uk3_vR;>)rK+oX4Tqv#}I1&Yz{TUf`O{zD}(F0EbIpAH~yfnb`kDI_CHzy6S zrLrN+&|4et>UJ`agf|N`GItF0a6~(SHL;xPnm8b!cnB5e4RLn!q~J+p5T5L)A)#%0 zMo)qXpkk;5ZvrrC5S8HRMaEDyz`H6Kpv@FR!Ju6T#X|#ZWoQDT5Q&~1ZWItg5v>S^ zz>x|dXA+Kp_a~A(KyXDBFkq78#Bar}gvx34EVbDJu=>Wqaxp`CE zh+ZJ3W1Iugm!bjo^>uT?DB;lvWwa9lq6Aj~xWb)b5EyVlR8>^aDvk(8XD7VFAMU*W zM)N=X0UdxtBrp#^3j?fPC*ZeINg7~%lQSTFS0b76!#@a^4j35vbNK%jD(Q8?Wevr$D_)M0dO+g$(_P zhW_BRYxt)fbtp56f1AI5dq#2IhKB#=IVBL7i=K(Y=nx%!3BXo#O6UJ&N&VZaz{&AX z!rs0l&)xiSa)jbN@l0-HU?IQ(#!ikHV5SK;VD;m?y*=F=am=KE0;?8`RR=mLZWK>E zb~ih5E*{bwaa{Iy~Kk^0B~Tjt9GRg0NO zz>G6f>9`JtnTIeH7y^z$!go^;41<9I7?7&}1L9{o9RL4IDZqs}Gt$TZjG^qGwTVi? zJ9EN7a2O|ZAN+BFRFsvG${=UZ4;d1zqy$tc<^}TlDN};Olz{U7A2K8wiT>YZz;^o& z9H0aT%J@HY5lEm+{zIk=2Ws#?Wy(NF|ECP~Hynk8bMwTLc25LmZh?4UY#^v9kq8uj zX5|GzPkA{LLCh!u$B;TyA!GeM<}UqN=xe+>v8@sG;wly diff --git a/Content/Figures/mongodb_on_local_host.eps b/Content/Figures/mongodb_on_local_host.eps deleted file mode 100644 index 2d59ce0d0..000000000 --- a/Content/Figures/mongodb_on_local_host.eps +++ /dev/null @@ -1,4221 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%Creator: jlibeps 0.1, https://sourceforge.net/projects/jlibeps/ -%%Title: LaTeXDraw -%%CreationDate: Tue May 05 20:03:28 CEST 2015 -%%BoundingBox: 0 0 674 722 -%%DocumentData: Clean7Bit -%%DocumentProcessColors: Black -%%ColorUsage: Color -%%Origin: 0 0 -%%Pages: 1 -%%Page: 1 1 -%%EndComments - -gsave --23.0 796.0 translate -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -281.23956 -130.0 moveto -441.73956 -130.0 lineto -441.73956 -158.0 lineto -281.23956 -158.0 lineto -281.23956 -130.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -281.23956 -370.0 moveto -441.73956 -370.0 lineto -441.73956 -398.0 lineto -281.23956 -398.0 lineto -281.23956 -370.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -281.23956 -610.0 moveto -441.73956 -610.0 lineto -441.73956 -638.0 lineto -281.23956 -638.0 lineto -281.23956 -610.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -45.23958 -370.0 moveto -215.73958 -370.0 lineto -215.73958 -400.0 lineto -45.23958 -400.0 lineto -45.23958 -370.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -555.5755 -376.47656 moveto -555.5755 -377.9922 lineto -555.1172 -377.76303 554.6432 -377.58853 554.1536 -377.46875 curveto -553.66406 -377.34897 553.1536 -377.28906 552.6224 -377.28906 curveto -551.8203 -377.28906 551.21875 -377.41406 550.8177 -377.66406 curveto -550.4166 -377.91406 550.2161 -378.28384 550.2161 -378.77344 curveto -550.2161 -379.14844 550.3594 -379.44272 550.6458 -379.65625 curveto -550.93225 -379.86978 551.5078 -380.07553 552.3724 -380.27344 curveto -552.9349 -380.3828 lineto -554.0807 -380.6328 554.8958 -380.98178 555.3802 -381.4297 curveto -555.86456 -381.8776 556.10675 -382.5026 556.10675 -383.3047 curveto -556.10675 -384.22134 555.74475 -384.9453 555.0208 -385.47656 curveto -554.2969 -386.0078 553.3047 -386.27344 552.04425 -386.27344 curveto -551.513 -386.27344 550.96094 -386.22397 550.388 -386.125 curveto -549.81506 -386.02603 549.21094 -385.8724 548.5755 -385.66406 curveto -548.5755 -383.9922 lineto -549.1797 -384.3047 549.7708 -384.53906 550.34894 -384.6953 curveto -550.92706 -384.85156 551.50256 -384.9297 552.0755 -384.9297 curveto -552.83594 -384.9297 553.4219 -384.79947 553.8333 -384.53906 curveto -554.24475 -384.27866 554.4505 -383.90884 554.4505 -383.4297 curveto -554.4505 -382.9922 554.30206 -382.65625 554.0052 -382.42188 curveto -553.7083 -382.1875 553.0599 -381.96094 552.0599 -381.7422 curveto -551.4974 -381.6172 lineto -550.48694 -381.39844 549.7604 -381.0729 549.3177 -380.64062 curveto -548.875 -380.20834 548.6536 -379.60678 548.6536 -378.83594 curveto -548.6536 -377.91928 548.98175 -377.20834 549.638 -376.70312 curveto -550.29425 -376.1979 551.22656 -375.9453 552.4349 -375.9453 curveto -553.0286 -375.9453 553.5885 -375.9896 554.11456 -376.07812 curveto -554.6406 -376.16666 555.12756 -376.29947 555.5755 -376.47656 curveto -closepath -558.9036 -373.3828 moveto -558.9036 -376.1797 lineto -562.23175 -376.1797 lineto -562.23175 -377.4297 lineto -558.9036 -377.4297 lineto -558.9036 -382.77344 lineto -558.9036 -383.57553 559.013 -384.09116 559.23175 -384.3203 curveto -559.4505 -384.54947 559.89844 -384.66406 560.5755 -384.66406 curveto -562.23175 -384.66406 lineto -562.23175 -386.02344 lineto -560.5755 -386.02344 lineto -559.3255 -386.02344 558.4635 -385.79166 557.98956 -385.32812 curveto -557.5156 -384.8646 557.2786 -384.01303 557.2786 -382.77344 curveto -557.2786 -377.4297 lineto -556.0911 -377.4297 lineto -556.0911 -376.1797 lineto -557.2786 -376.1797 lineto -557.2786 -373.3828 lineto -558.9036 -373.3828 lineto -closepath -568.7786 -381.0703 moveto -567.4661 -381.0703 566.5599 -381.22134 566.0599 -381.52344 curveto -565.5599 -381.82553 565.3099 -382.33594 565.3099 -383.0547 curveto -565.3099 -383.6276 565.4974 -384.08334 565.8724 -384.42188 curveto -566.2474 -384.7604 566.763 -384.9297 567.41925 -384.9297 curveto -568.31506 -384.9297 569.0338 -384.61197 569.5755 -383.97656 curveto -570.1172 -383.34116 570.388 -382.4922 570.388 -381.4297 curveto -570.388 -381.0703 lineto -568.7786 -381.0703 lineto -closepath -571.9974 -380.41406 moveto -571.9974 -386.02344 lineto -570.388 -386.02344 lineto -570.388 -384.52344 lineto -570.013 -385.1276 569.55206 -385.5703 569.0052 -385.85156 curveto -568.4583 -386.1328 567.7838 -386.27344 566.98175 -386.27344 curveto -565.9713 -386.27344 565.16925 -385.9922 564.5755 -385.4297 curveto -563.98175 -384.8672 563.6849 -384.11197 563.6849 -383.16406 curveto -563.6849 -382.04947 564.05725 -381.21094 564.80206 -380.64844 curveto -565.5469 -380.08594 566.6536 -379.8047 568.1224 -379.8047 curveto -570.388 -379.8047 lineto -570.388 -379.64844 lineto -570.388 -378.90884 570.1432 -378.33594 569.6536 -377.9297 curveto -569.16406 -377.52344 568.47656 -377.3203 567.5911 -377.3203 curveto -567.0286 -377.3203 566.48175 -377.3854 565.9505 -377.51562 curveto -565.41925 -377.64584 564.9036 -377.84634 564.4036 -378.1172 curveto -564.4036 -376.6328 lineto -564.9974 -376.40366 565.5729 -376.23178 566.1302 -376.1172 curveto -566.6875 -376.0026 567.23175 -375.9453 567.763 -375.9453 curveto -569.1797 -375.9453 570.23956 -376.3151 570.9427 -377.0547 curveto -571.6458 -377.79428 571.9974 -378.91406 571.9974 -380.41406 curveto -closepath -580.013 -377.6953 moveto -579.8255 -377.59116 579.625 -377.51303 579.41144 -377.46094 curveto -579.1979 -377.40884 578.96094 -377.3828 578.7005 -377.3828 curveto -577.79425 -377.3828 577.0963 -377.6797 576.60675 -378.27344 curveto -576.1172 -378.8672 575.8724 -379.72134 575.8724 -380.83594 curveto -575.8724 -386.02344 lineto -574.2474 -386.02344 lineto -574.2474 -376.1797 lineto -575.8724 -376.1797 lineto -575.8724 -377.71094 lineto -576.2057 -377.10678 576.6458 -376.66147 577.1927 -376.375 curveto -577.73956 -376.08853 578.4036 -375.9453 579.1849 -375.9453 curveto -579.28906 -375.9453 579.4088 -375.95312 579.54425 -375.96875 curveto -579.6797 -375.98438 579.8307 -376.0026 579.9974 -376.02344 curveto -580.013 -377.6953 lineto -closepath -583.9036 -373.3828 moveto -583.9036 -376.1797 lineto -587.23175 -376.1797 lineto -587.23175 -377.4297 lineto -583.9036 -377.4297 lineto -583.9036 -382.77344 lineto -583.9036 -383.57553 584.013 -384.09116 584.23175 -384.3203 curveto -584.4505 -384.54947 584.89844 -384.66406 585.5755 -384.66406 curveto -587.23175 -384.66406 lineto -587.23175 -386.02344 lineto -585.5755 -386.02344 lineto -584.3255 -386.02344 583.4635 -385.79166 582.98956 -385.32812 curveto -582.5156 -384.8646 582.2786 -384.01303 582.2786 -382.77344 curveto -582.2786 -377.4297 lineto -581.0911 -377.4297 lineto -581.0911 -376.1797 lineto -582.2786 -376.1797 lineto -582.2786 -373.3828 lineto -583.9036 -373.3828 lineto -closepath -589.138 -382.1328 moveto -589.138 -376.1797 lineto -590.7474 -376.1797 lineto -590.7474 -382.0703 lineto -590.7474 -383.0078 590.9297 -383.70834 591.29425 -384.17188 curveto -591.6588 -384.6354 592.2057 -384.8672 592.9349 -384.8672 curveto -593.8099 -384.8672 594.5 -384.58853 595.0052 -384.03125 curveto -595.5104 -383.47397 595.763 -382.71616 595.763 -381.7578 curveto -595.763 -376.1797 lineto -597.388 -376.1797 lineto -597.388 -386.02344 lineto -595.763 -386.02344 lineto -595.763 -384.5078 lineto -595.3672 -385.11197 594.91144 -385.55728 594.3958 -385.84375 curveto -593.8802 -386.13022 593.2786 -386.27344 592.5911 -386.27344 curveto -591.4557 -386.27344 590.5963 -385.92188 590.013 -385.21875 curveto -589.4297 -384.51562 589.138 -383.48697 589.138 -382.1328 curveto -closepath -593.2005 -375.9453 moveto -593.2005 -375.9453 lineto -closepath -601.8724 -384.53906 moveto -601.8724 -389.77344 lineto -600.2474 -389.77344 lineto -600.2474 -376.1797 lineto -601.8724 -376.1797 lineto -601.8724 -377.6797 lineto -602.2057 -377.08594 602.6328 -376.64844 603.1536 -376.3672 curveto -603.67444 -376.08594 604.29425 -375.9453 605.013 -375.9453 curveto -606.21094 -375.9453 607.18225 -376.41928 607.92706 -377.3672 curveto -608.6719 -378.3151 609.04425 -379.5651 609.04425 -381.1172 curveto -609.04425 -382.65884 608.6719 -383.90366 607.92706 -384.85156 curveto -607.18225 -385.79947 606.21094 -386.27344 605.013 -386.27344 curveto -604.29425 -386.27344 603.67444 -386.1328 603.1536 -385.85156 curveto -602.6328 -385.5703 602.2057 -385.1328 601.8724 -384.53906 curveto -closepath -607.3724 -381.1172 moveto -607.3724 -379.91928 607.12756 -378.98178 606.638 -378.3047 curveto -606.14844 -377.6276 605.47656 -377.28906 604.6224 -377.28906 curveto -603.7682 -377.28906 603.0963 -377.6276 602.60675 -378.3047 curveto -602.1172 -378.98178 601.8724 -379.91928 601.8724 -381.1172 curveto -601.8724 -382.3047 602.1172 -383.23697 602.60675 -383.91406 curveto -603.0963 -384.59116 603.7682 -384.9297 604.6224 -384.9297 curveto -605.47656 -384.9297 606.14844 -384.59116 606.638 -383.91406 curveto -607.12756 -383.23697 607.3724 -382.3047 607.3724 -381.1172 curveto -closepath -618.7786 -389.0078 moveto -618.7786 -390.27344 lineto -609.4349 -390.27344 lineto -609.4349 -389.0078 lineto -618.7786 -389.0078 lineto -closepath -620.3099 -372.35156 moveto -621.91925 -372.35156 lineto -621.91925 -386.02344 lineto -620.3099 -386.02344 lineto -620.3099 -372.35156 lineto -closepath -629.1224 -377.3203 moveto -628.2474 -377.3203 627.5599 -377.65625 627.0599 -378.32812 curveto -626.5599 -379.0 626.3099 -379.9297 626.3099 -381.1172 curveto -626.3099 -382.29428 626.5599 -383.22134 627.0599 -383.89844 curveto -627.5599 -384.57553 628.2474 -384.91406 629.1224 -384.91406 curveto -629.97656 -384.91406 630.65625 -384.5729 631.16144 -383.89062 curveto -631.6666 -383.20834 631.91925 -382.28384 631.91925 -381.1172 curveto -631.91925 -379.95053 631.6666 -379.02603 631.16144 -378.34375 curveto -630.65625 -377.66147 629.97656 -377.3203 629.1224 -377.3203 curveto -closepath -629.1224 -375.9453 moveto -630.5286 -375.9453 631.6328 -376.40103 632.4349 -377.3125 curveto -633.23694 -378.22397 633.638 -379.4922 633.638 -381.1172 curveto -633.638 -382.72134 633.23694 -383.98178 632.4349 -384.89844 curveto -631.6328 -385.8151 630.5286 -386.27344 629.1224 -386.27344 curveto -627.7057 -386.27344 626.59894 -385.8151 625.80206 -384.89844 curveto -625.0052 -383.98178 624.60675 -382.72134 624.60675 -381.1172 curveto -624.60675 -379.4922 625.0052 -378.22397 625.80206 -377.3125 curveto -626.59894 -376.40103 627.7057 -375.9453 629.1224 -375.9453 curveto -closepath -642.7786 -380.9922 moveto -642.7786 -379.8151 642.53644 -378.90366 642.05206 -378.2578 curveto -641.5677 -377.61197 640.8932 -377.28906 640.0286 -377.28906 curveto -639.1536 -377.28906 638.47394 -377.61197 637.98956 -378.2578 curveto -637.5052 -378.90366 637.263 -379.8151 637.263 -380.9922 curveto -637.263 -382.15884 637.5052 -383.0625 637.98956 -383.70312 curveto -638.47394 -384.34375 639.1536 -384.66406 640.0286 -384.66406 curveto -640.8932 -384.66406 641.5677 -384.34375 642.05206 -383.70312 curveto -642.53644 -383.0625 642.7786 -382.15884 642.7786 -380.9922 curveto -closepath -644.4036 -384.8047 moveto -644.4036 -386.48178 644.03125 -387.72916 643.28644 -388.54688 curveto -642.5416 -389.3646 641.39844 -389.77344 639.85675 -389.77344 curveto -639.29425 -389.77344 638.7604 -389.72916 638.2552 -389.64062 curveto -637.75 -389.5521 637.263 -389.41928 636.79425 -389.2422 curveto -636.79425 -387.6797 lineto -637.263 -387.9401 637.7291 -388.13022 638.1927 -388.25 curveto -638.65625 -388.36978 639.12756 -388.4297 639.60675 -388.4297 curveto -640.66925 -388.4297 641.4635 -388.15366 641.98956 -387.60156 curveto -642.5156 -387.04947 642.7786 -386.21094 642.7786 -385.08594 curveto -642.7786 -384.28906 lineto -642.4453 -384.8724 642.0182 -385.30728 641.4974 -385.59375 curveto -640.97656 -385.88022 640.35156 -386.02344 639.6224 -386.02344 curveto -638.41406 -386.02344 637.4427 -385.5625 636.7083 -384.64062 curveto -635.97394 -383.71875 635.60675 -382.5026 635.60675 -380.9922 curveto -635.60675 -379.46094 635.97394 -378.23697 636.7083 -377.3203 curveto -637.4427 -376.40366 638.41406 -375.9453 639.6224 -375.9453 curveto -640.35156 -375.9453 640.97656 -376.08853 641.4974 -376.375 curveto -642.0182 -376.66147 642.4453 -377.09634 642.7786 -377.6797 curveto -642.7786 -376.1797 lineto -644.4036 -376.1797 lineto -644.4036 -384.8047 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -557.60156 -616.35156 moveto -559.21094 -616.35156 lineto -559.21094 -630.02344 lineto -557.60156 -630.02344 lineto -557.60156 -616.35156 lineto -closepath -567.0703 -625.0703 moveto -565.7578 -625.0703 564.85156 -625.2214 564.35156 -625.52344 curveto -563.85156 -625.8255 563.60156 -626.33594 563.60156 -627.0547 curveto -563.60156 -627.6276 563.78906 -628.0833 564.16406 -628.4219 curveto -564.53906 -628.76044 565.0547 -628.9297 565.71094 -628.9297 curveto -566.60675 -628.9297 567.3255 -628.612 567.8672 -627.97656 curveto -568.4089 -627.3411 568.6797 -626.4922 568.6797 -625.4297 curveto -568.6797 -625.0703 lineto -567.0703 -625.0703 lineto -closepath -570.28906 -624.41406 moveto -570.28906 -630.02344 lineto -568.6797 -630.02344 lineto -568.6797 -628.52344 lineto -568.3047 -629.1276 567.84375 -629.5703 567.2969 -629.85156 curveto -566.75 -630.1328 566.0755 -630.27344 565.27344 -630.27344 curveto -564.263 -630.27344 563.46094 -629.9922 562.8672 -629.4297 curveto -562.27344 -628.8672 561.97656 -628.112 561.97656 -627.16406 curveto -561.97656 -626.0495 562.34894 -625.21094 563.09375 -624.64844 curveto -563.83856 -624.08594 564.9453 -623.8047 566.41406 -623.8047 curveto -568.6797 -623.8047 lineto -568.6797 -623.64844 lineto -568.6797 -622.9089 568.4349 -622.33594 567.9453 -621.9297 curveto -567.45575 -621.52344 566.76825 -621.3203 565.8828 -621.3203 curveto -565.3203 -621.3203 564.77344 -621.38544 564.2422 -621.5156 curveto -563.71094 -621.6458 563.1953 -621.8464 562.6953 -622.1172 curveto -562.6953 -620.6328 lineto -563.28906 -620.4036 563.86456 -620.23175 564.4219 -620.1172 curveto -564.9792 -620.0026 565.52344 -619.9453 566.0547 -619.9453 curveto -567.4714 -619.9453 568.53125 -620.3151 569.2344 -621.0547 curveto -569.9375 -621.79425 570.28906 -622.91406 570.28906 -624.41406 curveto -closepath -572.4297 -626.1328 moveto -572.4297 -620.1797 lineto -574.03906 -620.1797 lineto -574.03906 -626.0703 lineto -574.03906 -627.0078 574.2214 -627.7083 574.58594 -628.1719 curveto -574.9505 -628.63544 575.4974 -628.8672 576.22656 -628.8672 curveto -577.10156 -628.8672 577.7917 -628.58856 578.2969 -628.03125 curveto -578.80206 -627.47394 579.0547 -626.7161 579.0547 -625.7578 curveto -579.0547 -620.1797 lineto -580.6797 -620.1797 lineto -580.6797 -630.02344 lineto -579.0547 -630.02344 lineto -579.0547 -628.5078 lineto -578.6589 -629.112 578.2031 -629.5573 577.6875 -629.84375 curveto -577.1719 -630.1302 576.5703 -630.27344 575.8828 -630.27344 curveto -574.7474 -630.27344 573.888 -629.9219 573.3047 -629.21875 curveto -572.7214 -628.5156 572.4297 -627.487 572.4297 -626.1328 curveto -closepath -576.4922 -619.9453 moveto -576.4922 -619.9453 lineto -closepath -591.77344 -624.08594 moveto -591.77344 -630.02344 lineto -590.16406 -630.02344 lineto -590.16406 -624.1328 lineto -590.16406 -623.20575 589.98175 -622.51044 589.6172 -622.0469 curveto -589.2526 -621.5833 588.70575 -621.35156 587.97656 -621.35156 curveto -587.10156 -621.35156 586.41406 -621.6302 585.91406 -622.1875 curveto -585.41406 -622.7448 585.16406 -623.5026 585.16406 -624.46094 curveto -585.16406 -630.02344 lineto -583.53906 -630.02344 lineto -583.53906 -620.1797 lineto -585.16406 -620.1797 lineto -585.16406 -621.71094 lineto -585.5495 -621.1172 586.0052 -620.6745 586.53125 -620.3828 curveto -587.0573 -620.0911 587.6589 -619.9453 588.33594 -619.9453 curveto -589.4714 -619.9453 590.3281 -620.29425 590.90625 -620.9922 curveto -591.4844 -621.6901 591.77344 -622.7214 591.77344 -624.08594 curveto -closepath -601.6797 -620.5547 moveto -601.6797 -622.0703 lineto -601.2214 -621.8203 600.763 -621.6328 600.3047 -621.5078 curveto -599.8464 -621.3828 599.3828 -621.3203 598.91406 -621.3203 curveto -597.862 -621.3203 597.0469 -621.65106 596.46875 -622.3125 curveto -595.8906 -622.97394 595.60156 -623.9089 595.60156 -625.1172 curveto -595.60156 -626.3151 595.8906 -627.2474 596.46875 -627.91406 curveto -597.0469 -628.58075 597.862 -628.91406 598.91406 -628.91406 curveto -599.3828 -628.91406 599.8464 -628.84894 600.3047 -628.71875 curveto -600.763 -628.58856 601.2214 -628.39844 601.6797 -628.14844 curveto -601.6797 -629.64844 lineto -601.23175 -629.85675 600.7656 -630.013 600.28125 -630.1172 curveto -599.7969 -630.2214 599.2839 -630.27344 598.7422 -630.27344 curveto -597.2526 -630.27344 596.07294 -629.8073 595.2031 -628.875 curveto -594.3333 -627.9427 593.89844 -626.6901 593.89844 -625.1172 curveto -593.89844 -623.5026 594.33856 -622.237 595.21875 -621.3203 curveto -596.09894 -620.4036 597.3047 -619.9453 598.83594 -619.9453 curveto -599.33594 -619.9453 599.82294 -619.9948 600.2969 -620.09375 curveto -600.7708 -620.1927 601.23175 -620.3464 601.6797 -620.5547 curveto -closepath -611.77344 -624.08594 moveto -611.77344 -630.02344 lineto -610.16406 -630.02344 lineto -610.16406 -624.1328 lineto -610.16406 -623.20575 609.98175 -622.51044 609.6172 -622.0469 curveto -609.2526 -621.5833 608.70575 -621.35156 607.97656 -621.35156 curveto -607.10156 -621.35156 606.41406 -621.6302 605.91406 -622.1875 curveto -605.41406 -622.7448 605.16406 -623.5026 605.16406 -624.46094 curveto -605.16406 -630.02344 lineto -603.53906 -630.02344 lineto -603.53906 -616.35156 lineto -605.16406 -616.35156 lineto -605.16406 -621.71094 lineto -605.5495 -621.1172 606.0052 -620.6745 606.53125 -620.3828 curveto -607.0573 -620.0911 607.6589 -619.9453 608.33594 -619.9453 curveto -609.4714 -619.9453 610.3281 -620.29425 610.90625 -620.9922 curveto -611.4844 -621.6901 611.77344 -622.7214 611.77344 -624.08594 curveto -closepath -623.0078 -624.6953 moveto -623.0078 -625.4922 lineto -615.58594 -625.4922 lineto -615.64844 -626.60675 615.98175 -627.45575 616.58594 -628.03906 curveto -617.1901 -628.6224 618.0286 -628.91406 619.10156 -628.91406 curveto -619.7161 -628.91406 620.3151 -628.83594 620.89844 -628.6797 curveto -621.48175 -628.52344 622.0599 -628.29425 622.6328 -627.9922 curveto -622.6328 -629.52344 lineto -622.0599 -629.77344 621.46875 -629.96094 620.8594 -630.08594 curveto -620.25 -630.21094 619.6276 -630.27344 618.9922 -630.27344 curveto -617.4297 -630.27344 616.1901 -629.8177 615.27344 -628.90625 curveto -614.35675 -627.9948 613.89844 -626.7578 613.89844 -625.1953 curveto -613.89844 -623.58075 614.3333 -622.30206 615.2031 -621.3594 curveto -616.07294 -620.4167 617.2422 -619.9453 618.71094 -619.9453 curveto -620.04425 -619.9453 621.09375 -620.3698 621.8594 -621.21875 curveto -622.625 -622.0677 623.0078 -623.22656 623.0078 -624.6953 curveto -closepath -621.39844 -624.22656 moveto -621.388 -623.3411 621.1406 -622.63544 620.65625 -622.1094 curveto -620.1719 -621.5833 619.5339 -621.3203 618.7422 -621.3203 curveto -617.83594 -621.3203 617.112 -621.57294 616.5703 -622.0781 curveto -616.0286 -622.5833 615.7161 -623.2995 615.6328 -624.22656 curveto -621.39844 -624.22656 lineto -closepath -631.8672 -620.47656 moveto -631.8672 -621.9922 lineto -631.4089 -621.763 630.9349 -621.58856 630.4453 -621.46875 curveto -629.95575 -621.34894 629.4453 -621.28906 628.91406 -621.28906 curveto -628.112 -621.28906 627.51044 -621.41406 627.1094 -621.66406 curveto -626.7083 -621.91406 626.5078 -622.2839 626.5078 -622.77344 curveto -626.5078 -623.14844 626.65106 -623.4427 626.9375 -623.65625 curveto -627.22394 -623.8698 627.7995 -624.0755 628.66406 -624.27344 curveto -629.22656 -624.3828 lineto -630.3724 -624.6328 631.1875 -624.98175 631.6719 -625.4297 curveto -632.15625 -625.8776 632.39844 -626.5026 632.39844 -627.3047 curveto -632.39844 -628.2214 632.03644 -628.9453 631.3125 -629.47656 curveto -630.58856 -630.0078 629.5964 -630.27344 628.33594 -630.27344 curveto -627.8047 -630.27344 627.2526 -630.22394 626.6797 -630.125 curveto -626.10675 -630.02606 625.5026 -629.8724 624.8672 -629.66406 curveto -624.8672 -627.9922 lineto -625.4714 -628.3047 626.0625 -628.53906 626.6406 -628.6953 curveto -627.21875 -628.85156 627.79425 -628.9297 628.3672 -628.9297 curveto -629.1276 -628.9297 629.71356 -628.7995 630.125 -628.53906 curveto -630.53644 -628.2786 630.7422 -627.9089 630.7422 -627.4297 curveto -630.7422 -626.9922 630.59375 -626.65625 630.2969 -626.4219 curveto -630.0 -626.1875 629.35156 -625.96094 628.35156 -625.7422 curveto -627.78906 -625.6172 lineto -626.7786 -625.39844 626.05206 -625.07294 625.6094 -624.6406 curveto -625.1667 -624.2083 624.9453 -623.60675 624.9453 -622.83594 curveto -624.9453 -621.91925 625.27344 -621.2083 625.9297 -620.7031 curveto -626.58594 -620.19794 627.51825 -619.9453 628.72656 -619.9453 curveto -629.3203 -619.9453 629.8802 -619.98956 630.40625 -620.0781 curveto -630.9323 -620.1667 631.41925 -620.2995 631.8672 -620.47656 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -535.72394 -664.72656 moveto -535.72394 -666.2422 lineto -535.2656 -666.013 534.7916 -665.83856 534.30206 -665.71875 curveto -533.8125 -665.59894 533.30206 -665.53906 532.7708 -665.53906 curveto -531.96875 -665.53906 531.3672 -665.66406 530.9661 -665.91406 curveto -530.56506 -666.16406 530.36456 -666.5339 530.36456 -667.02344 curveto -530.36456 -667.39844 530.5078 -667.6927 530.79425 -667.90625 curveto -531.0807 -668.1198 531.65625 -668.3255 532.5208 -668.52344 curveto -533.0833 -668.6328 lineto -534.2291 -668.8828 535.04425 -669.23175 535.5286 -669.6797 curveto -536.013 -670.1276 536.2552 -670.7526 536.2552 -671.5547 curveto -536.2552 -672.4714 535.8932 -673.1953 535.16925 -673.72656 curveto -534.4453 -674.2578 533.4531 -674.52344 532.1927 -674.52344 curveto -531.66144 -674.52344 531.1094 -674.47394 530.53644 -674.375 curveto -529.9635 -674.27606 529.3594 -674.1224 528.72394 -673.91406 curveto -528.72394 -672.2422 lineto -529.3281 -672.5547 529.91925 -672.78906 530.4974 -672.9453 curveto -531.0755 -673.10156 531.651 -673.1797 532.22394 -673.1797 curveto -532.9844 -673.1797 533.5703 -673.0495 533.98175 -672.78906 curveto -534.3932 -672.5286 534.59894 -672.1589 534.59894 -671.6797 curveto -534.59894 -671.2422 534.4505 -670.90625 534.1536 -670.6719 curveto -533.85675 -670.4375 533.2083 -670.21094 532.2083 -669.9922 curveto -531.6458 -669.8672 lineto -530.6354 -669.64844 529.9088 -669.32294 529.4661 -668.8906 curveto -529.02344 -668.4583 528.80206 -667.85675 528.80206 -667.08594 curveto -528.80206 -666.16925 529.1302 -665.4583 529.78644 -664.9531 curveto -530.4427 -664.44794 531.375 -664.1953 532.5833 -664.1953 curveto -533.17706 -664.1953 533.73694 -664.23956 534.263 -664.3281 curveto -534.78906 -664.4167 535.276 -664.5495 535.72394 -664.72656 curveto -closepath -541.55206 -675.1953 moveto -541.09375 -676.362 540.64844 -677.125 540.2161 -677.4844 curveto -539.7838 -677.84375 539.2031 -678.02344 538.47394 -678.02344 curveto -537.17706 -678.02344 lineto -537.17706 -676.66406 lineto -538.1302 -676.66406 lineto -538.5781 -676.66406 538.92444 -676.5599 539.16925 -676.35156 curveto -539.41406 -676.14325 539.6875 -675.64325 539.98956 -674.85156 curveto -540.2708 -674.1172 lineto -536.28644 -664.4297 lineto -538.0052 -664.4297 lineto -541.0833 -672.1328 lineto -544.16144 -664.4297 lineto -545.86456 -664.4297 lineto -541.55206 -675.1953 lineto -closepath -554.72394 -664.72656 moveto -554.72394 -666.2422 lineto -554.2656 -666.013 553.7916 -665.83856 553.30206 -665.71875 curveto -552.8125 -665.59894 552.30206 -665.53906 551.7708 -665.53906 curveto -550.96875 -665.53906 550.3672 -665.66406 549.9661 -665.91406 curveto -549.56506 -666.16406 549.36456 -666.5339 549.36456 -667.02344 curveto -549.36456 -667.39844 549.5078 -667.6927 549.79425 -667.90625 curveto -550.0807 -668.1198 550.65625 -668.3255 551.5208 -668.52344 curveto -552.0833 -668.6328 lineto -553.2291 -668.8828 554.04425 -669.23175 554.5286 -669.6797 curveto -555.013 -670.1276 555.2552 -670.7526 555.2552 -671.5547 curveto -555.2552 -672.4714 554.8932 -673.1953 554.16925 -673.72656 curveto -553.4453 -674.2578 552.4531 -674.52344 551.1927 -674.52344 curveto -550.66144 -674.52344 550.1094 -674.47394 549.53644 -674.375 curveto -548.9635 -674.27606 548.3594 -674.1224 547.72394 -673.91406 curveto -547.72394 -672.2422 lineto -548.3281 -672.5547 548.91925 -672.78906 549.4974 -672.9453 curveto -550.0755 -673.10156 550.651 -673.1797 551.22394 -673.1797 curveto -551.9844 -673.1797 552.5703 -673.0495 552.98175 -672.78906 curveto -553.3932 -672.5286 553.59894 -672.1589 553.59894 -671.6797 curveto -553.59894 -671.2422 553.4505 -670.90625 553.1536 -670.6719 curveto -552.85675 -670.4375 552.2083 -670.21094 551.2083 -669.9922 curveto -550.6458 -669.8672 lineto -549.6354 -669.64844 548.9088 -669.32294 548.4661 -668.8906 curveto -548.02344 -668.4583 547.80206 -667.85675 547.80206 -667.08594 curveto -547.80206 -666.16925 548.1302 -665.4583 548.78644 -664.9531 curveto -549.4427 -664.44794 550.375 -664.1953 551.5833 -664.1953 curveto -552.17706 -664.1953 552.73694 -664.23956 553.263 -664.3281 curveto -553.78906 -664.4167 554.276 -664.5495 554.72394 -664.72656 curveto -closepath -558.05206 -661.6328 moveto -558.05206 -664.4297 lineto -561.3802 -664.4297 lineto -561.3802 -665.6797 lineto -558.05206 -665.6797 lineto -558.05206 -671.02344 lineto -558.05206 -671.8255 558.16144 -672.3411 558.3802 -672.5703 curveto -558.59894 -672.7995 559.0469 -672.91406 559.72394 -672.91406 curveto -561.3802 -672.91406 lineto -561.3802 -674.27344 lineto -559.72394 -674.27344 lineto -558.47394 -674.27344 557.61194 -674.0417 557.138 -673.5781 curveto -556.66406 -673.11456 556.42706 -672.263 556.42706 -671.02344 curveto -556.42706 -665.6797 lineto -555.23956 -665.6797 lineto -555.23956 -664.4297 lineto -556.42706 -664.4297 lineto -556.42706 -661.6328 lineto -558.05206 -661.6328 lineto -closepath -571.86456 -668.9453 moveto -571.86456 -669.7422 lineto -564.4427 -669.7422 lineto -564.5052 -670.85675 564.8385 -671.70575 565.4427 -672.28906 curveto -566.0469 -672.8724 566.8854 -673.16406 567.9583 -673.16406 curveto -568.5729 -673.16406 569.1719 -673.08594 569.7552 -672.9297 curveto -570.3385 -672.77344 570.9166 -672.54425 571.48956 -672.2422 curveto -571.48956 -673.77344 lineto -570.9166 -674.02344 570.3255 -674.21094 569.7161 -674.33594 curveto -569.10675 -674.46094 568.4844 -674.52344 567.84894 -674.52344 curveto -566.28644 -674.52344 565.0469 -674.0677 564.1302 -673.15625 curveto -563.2135 -672.2448 562.7552 -671.0078 562.7552 -669.4453 curveto -562.7552 -667.83075 563.19006 -666.55206 564.0599 -665.6094 curveto -564.9297 -664.6667 566.09894 -664.1953 567.5677 -664.1953 curveto -568.901 -664.1953 569.9505 -664.6198 570.7161 -665.46875 curveto -571.48175 -666.3177 571.86456 -667.47656 571.86456 -668.9453 curveto -closepath -570.2552 -668.47656 moveto -570.24475 -667.5911 569.9974 -666.88544 569.513 -666.3594 curveto -569.0286 -665.8333 568.3906 -665.5703 567.59894 -665.5703 curveto -566.6927 -665.5703 565.96875 -665.82294 565.42706 -666.3281 curveto -564.8854 -666.8333 564.5729 -667.5495 564.48956 -668.47656 curveto -570.2552 -668.47656 lineto -closepath -582.11456 -666.3203 moveto -582.5208 -665.5911 583.0052 -665.0547 583.5677 -664.71094 curveto -584.1302 -664.3672 584.7916 -664.1953 585.55206 -664.1953 curveto -586.5729 -664.1953 587.36194 -664.5547 587.91925 -665.27344 curveto -588.47656 -665.9922 588.7552 -667.013 588.7552 -668.33594 curveto -588.7552 -674.27344 lineto -587.1302 -674.27344 lineto -587.1302 -668.3828 lineto -587.1302 -667.4453 586.9635 -666.7474 586.6302 -666.28906 curveto -586.2969 -665.83075 585.78644 -665.60156 585.09894 -665.60156 curveto -584.2656 -665.60156 583.60675 -665.8802 583.1224 -666.4375 curveto -582.638 -666.9948 582.3958 -667.7526 582.3958 -668.71094 curveto -582.3958 -674.27344 lineto -580.7552 -674.27344 lineto -580.7552 -668.3828 lineto -580.7552 -667.4349 580.5885 -666.7344 580.2552 -666.28125 curveto -579.9219 -665.8281 579.40625 -665.60156 578.7083 -665.60156 curveto -577.8854 -665.60156 577.23175 -665.8802 576.7474 -666.4375 curveto -576.263 -666.9948 576.0208 -667.7526 576.0208 -668.71094 curveto -576.0208 -674.27344 lineto -574.3958 -674.27344 lineto -574.3958 -664.4297 lineto -576.0208 -664.4297 lineto -576.0208 -665.96094 lineto -576.3854 -665.35675 576.8255 -664.91144 577.3411 -664.625 curveto -577.85675 -664.33856 578.46875 -664.1953 579.17706 -664.1953 curveto -579.8958 -664.1953 580.5052 -664.3776 581.0052 -664.7422 curveto -581.5052 -665.10675 581.875 -665.6328 582.11456 -666.3203 curveto -closepath -591.67706 -672.03906 moveto -593.53644 -672.03906 lineto -593.53644 -674.27344 lineto -591.67706 -674.27344 lineto -591.67706 -672.03906 lineto -closepath -597.4583 -664.4297 moveto -599.0677 -664.4297 lineto -599.0677 -674.27344 lineto -597.4583 -674.27344 lineto -597.4583 -664.4297 lineto -closepath -597.4583 -660.60156 moveto -599.0677 -660.60156 lineto -599.0677 -662.64844 lineto -597.4583 -662.64844 lineto -597.4583 -660.60156 lineto -closepath -610.6302 -668.33594 moveto -610.6302 -674.27344 lineto -609.0208 -674.27344 lineto -609.0208 -668.3828 lineto -609.0208 -667.45575 608.8385 -666.76044 608.47394 -666.2969 curveto -608.1094 -665.8333 607.5625 -665.60156 606.8333 -665.60156 curveto -605.9583 -665.60156 605.2708 -665.8802 604.7708 -666.4375 curveto -604.2708 -666.9948 604.0208 -667.7526 604.0208 -668.71094 curveto -604.0208 -674.27344 lineto -602.3958 -674.27344 lineto -602.3958 -664.4297 lineto -604.0208 -664.4297 lineto -604.0208 -665.96094 lineto -604.40625 -665.3672 604.86194 -664.9245 605.388 -664.6328 curveto -605.91406 -664.3411 606.5156 -664.1953 607.1927 -664.1953 curveto -608.3281 -664.1953 609.1849 -664.54425 609.763 -665.2422 curveto -610.3411 -665.9401 610.6302 -666.9714 610.6302 -668.33594 curveto -closepath -619.92706 -665.9297 moveto -619.92706 -660.60156 lineto -621.55206 -660.60156 lineto -621.55206 -674.27344 lineto -619.92706 -674.27344 lineto -619.92706 -672.78906 lineto -619.59375 -673.3828 619.1666 -673.8203 618.6458 -674.10156 curveto -618.125 -674.3828 617.5 -674.52344 616.7708 -674.52344 curveto -615.5833 -674.52344 614.6172 -674.0495 613.8724 -673.10156 curveto -613.12756 -672.1536 612.7552 -670.9089 612.7552 -669.3672 curveto -612.7552 -667.8151 613.12756 -666.5651 613.8724 -665.6172 curveto -614.6172 -664.66925 615.5833 -664.1953 616.7708 -664.1953 curveto -617.5 -664.1953 618.125 -664.33594 618.6458 -664.6172 curveto -619.1666 -664.89844 619.59375 -665.33594 619.92706 -665.9297 curveto -closepath -614.41144 -669.3672 moveto -614.41144 -670.5547 614.65625 -671.487 615.1458 -672.16406 curveto -615.6354 -672.8411 616.3125 -673.1797 617.17706 -673.1797 curveto -618.03125 -673.1797 618.7031 -672.8411 619.1927 -672.16406 curveto -619.68225 -671.487 619.92706 -670.5547 619.92706 -669.3672 curveto -619.92706 -668.16925 619.68225 -667.23175 619.1927 -666.5547 curveto -618.7031 -665.8776 618.03125 -665.53906 617.17706 -665.53906 curveto -616.3125 -665.53906 615.6354 -665.8776 615.1458 -666.5547 curveto -614.65625 -667.23175 614.41144 -668.16925 614.41144 -669.3672 curveto -closepath -632.86456 -668.9453 moveto -632.86456 -669.7422 lineto -625.4427 -669.7422 lineto -625.5052 -670.85675 625.8385 -671.70575 626.4427 -672.28906 curveto -627.0469 -672.8724 627.8854 -673.16406 628.9583 -673.16406 curveto -629.5729 -673.16406 630.1719 -673.08594 630.7552 -672.9297 curveto -631.3385 -672.77344 631.9166 -672.54425 632.48956 -672.2422 curveto -632.48956 -673.77344 lineto -631.9166 -674.02344 631.3255 -674.21094 630.7161 -674.33594 curveto -630.10675 -674.46094 629.4844 -674.52344 628.84894 -674.52344 curveto -627.28644 -674.52344 626.0469 -674.0677 625.1302 -673.15625 curveto -624.2135 -672.2448 623.7552 -671.0078 623.7552 -669.4453 curveto -623.7552 -667.83075 624.19006 -666.55206 625.0599 -665.6094 curveto -625.9297 -664.6667 627.09894 -664.1953 628.5677 -664.1953 curveto -629.901 -664.1953 630.9505 -664.6198 631.7161 -665.46875 curveto -632.48175 -666.3177 632.86456 -667.47656 632.86456 -668.9453 curveto -closepath -631.2552 -668.47656 moveto -631.24475 -667.5911 630.9974 -666.88544 630.513 -666.3594 curveto -630.0286 -665.8333 629.3906 -665.5703 628.59894 -665.5703 curveto -627.6927 -665.5703 626.96875 -665.82294 626.42706 -666.3281 curveto -625.8854 -666.8333 625.5729 -667.5495 625.48956 -668.47656 curveto -631.2552 -668.47656 lineto -closepath -643.6302 -664.4297 moveto -640.0677 -669.22656 lineto -643.8177 -674.27344 lineto -641.91144 -674.27344 lineto -639.05206 -670.39844 lineto -636.17706 -674.27344 lineto -634.2708 -674.27344 lineto -638.09894 -669.1172 lineto -634.59894 -664.4297 lineto -636.5052 -664.4297 lineto -639.11456 -667.9297 lineto -641.72394 -664.4297 lineto -643.6302 -664.4297 lineto -closepath -654.86456 -668.9453 moveto -654.86456 -669.7422 lineto -647.4427 -669.7422 lineto -647.5052 -670.85675 647.8385 -671.70575 648.4427 -672.28906 curveto -649.0469 -672.8724 649.8854 -673.16406 650.9583 -673.16406 curveto -651.5729 -673.16406 652.1719 -673.08594 652.7552 -672.9297 curveto -653.3385 -672.77344 653.9166 -672.54425 654.48956 -672.2422 curveto -654.48956 -673.77344 lineto -653.9166 -674.02344 653.3255 -674.21094 652.7161 -674.33594 curveto -652.10675 -674.46094 651.4844 -674.52344 650.84894 -674.52344 curveto -649.28644 -674.52344 648.0469 -674.0677 647.1302 -673.15625 curveto -646.2135 -672.2448 645.7552 -671.0078 645.7552 -669.4453 curveto -645.7552 -667.83075 646.19006 -666.55206 647.0599 -665.6094 curveto -647.9297 -664.6667 649.09894 -664.1953 650.5677 -664.1953 curveto -651.901 -664.1953 652.9505 -664.6198 653.7161 -665.46875 curveto -654.48175 -666.3177 654.86456 -667.47656 654.86456 -668.9453 curveto -closepath -653.2552 -668.47656 moveto -653.24475 -667.5911 652.9974 -666.88544 652.513 -666.3594 curveto -652.0286 -665.8333 651.3906 -665.5703 650.59894 -665.5703 curveto -649.6927 -665.5703 648.96875 -665.82294 648.42706 -666.3281 curveto -647.8854 -666.8333 647.5729 -667.5495 647.48956 -668.47656 curveto -653.2552 -668.47656 lineto -closepath -663.72394 -664.72656 moveto -663.72394 -666.2422 lineto -663.2656 -666.013 662.7916 -665.83856 662.30206 -665.71875 curveto -661.8125 -665.59894 661.30206 -665.53906 660.7708 -665.53906 curveto -659.96875 -665.53906 659.3672 -665.66406 658.9661 -665.91406 curveto -658.56506 -666.16406 658.36456 -666.5339 658.36456 -667.02344 curveto -658.36456 -667.39844 658.5078 -667.6927 658.79425 -667.90625 curveto -659.0807 -668.1198 659.65625 -668.3255 660.5208 -668.52344 curveto -661.0833 -668.6328 lineto -662.2291 -668.8828 663.04425 -669.23175 663.5286 -669.6797 curveto -664.013 -670.1276 664.2552 -670.7526 664.2552 -671.5547 curveto -664.2552 -672.4714 663.8932 -673.1953 663.16925 -673.72656 curveto -662.4453 -674.2578 661.4531 -674.52344 660.1927 -674.52344 curveto -659.66144 -674.52344 659.1094 -674.47394 658.53644 -674.375 curveto -657.9635 -674.27606 657.3594 -674.1224 656.72394 -673.91406 curveto -656.72394 -672.2422 lineto -657.3281 -672.5547 657.91925 -672.78906 658.4974 -672.9453 curveto -659.0755 -673.10156 659.651 -673.1797 660.22394 -673.1797 curveto -660.9844 -673.1797 661.5703 -673.0495 661.98175 -672.78906 curveto -662.3932 -672.5286 662.59894 -672.1589 662.59894 -671.6797 curveto -662.59894 -671.2422 662.4505 -670.90625 662.1536 -670.6719 curveto -661.85675 -670.4375 661.2083 -670.21094 660.2083 -669.9922 curveto -659.6458 -669.8672 lineto -658.6354 -669.64844 657.9088 -669.32294 657.4661 -668.8906 curveto -657.02344 -668.4583 656.80206 -667.85675 656.80206 -667.08594 curveto -656.80206 -666.16925 657.1302 -665.4583 657.78644 -664.9531 curveto -658.4427 -664.44794 659.375 -664.1953 660.5833 -664.1953 curveto -661.17706 -664.1953 661.73694 -664.23956 662.263 -664.3281 curveto -662.78906 -664.4167 663.276 -664.5495 663.72394 -664.72656 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -348.4922 -137.55469 moveto -348.4922 -140.35156 lineto -351.8203 -140.35156 lineto -351.8203 -141.60156 lineto -348.4922 -141.60156 lineto -348.4922 -146.94531 lineto -348.4922 -147.74739 348.60156 -148.26302 348.8203 -148.49219 curveto -349.03906 -148.72136 349.48697 -148.83594 350.16406 -148.83594 curveto -351.8203 -148.83594 lineto -351.8203 -150.19531 lineto -350.16406 -150.19531 lineto -348.91406 -150.19531 348.0521 -149.96355 347.57812 -149.5 curveto -347.10416 -149.03645 346.8672 -148.18489 346.8672 -146.94531 curveto -346.8672 -141.60156 lineto -345.6797 -141.60156 lineto -345.6797 -140.35156 lineto -346.8672 -140.35156 lineto -346.8672 -137.55469 lineto -348.4922 -137.55469 lineto -closepath -362.3047 -144.86719 moveto -362.3047 -145.66406 lineto -354.8828 -145.66406 lineto -354.9453 -146.77864 355.27866 -147.62761 355.8828 -148.21094 curveto -356.48697 -148.79427 357.32553 -149.08594 358.39844 -149.08594 curveto -359.01303 -149.08594 359.61197 -149.00781 360.1953 -148.85156 curveto -360.77866 -148.69531 361.35678 -148.46614 361.9297 -148.16406 curveto -361.9297 -149.69531 lineto -361.35678 -149.94531 360.76562 -150.13281 360.15625 -150.25781 curveto -359.54688 -150.38281 358.92447 -150.44531 358.28906 -150.44531 curveto -356.72656 -150.44531 355.48697 -149.98958 354.5703 -149.07812 curveto -353.65366 -148.16667 353.1953 -146.92969 353.1953 -145.36719 curveto -353.1953 -143.75261 353.63022 -142.47395 354.5 -141.53125 curveto -355.36978 -140.58855 356.53906 -140.11719 358.0078 -140.11719 curveto -359.34116 -140.11719 360.39062 -140.54167 361.15625 -141.39062 curveto -361.92188 -142.23958 362.3047 -143.39844 362.3047 -144.86719 curveto -closepath -360.6953 -144.39844 moveto -360.6849 -143.51302 360.4375 -142.8073 359.95312 -142.28125 curveto -359.46875 -141.7552 358.83072 -141.49219 358.03906 -141.49219 curveto -357.1328 -141.49219 356.40884 -141.7448 355.8672 -142.25 curveto -355.32553 -142.7552 355.01303 -143.47136 354.9297 -144.39844 curveto -360.6953 -144.39844 lineto -closepath -371.16406 -140.64844 moveto -371.16406 -142.16406 lineto -370.70572 -141.93489 370.23178 -141.76042 369.7422 -141.64062 curveto -369.2526 -141.52083 368.7422 -141.46094 368.21094 -141.46094 curveto -367.40884 -141.46094 366.80728 -141.58594 366.40625 -141.83594 curveto -366.00522 -142.08594 365.8047 -142.45573 365.8047 -142.94531 curveto -365.8047 -143.32031 365.9479 -143.61458 366.23438 -143.82812 curveto -366.52084 -144.04167 367.09634 -144.24739 367.96094 -144.44531 curveto -368.52344 -144.55469 lineto -369.66928 -144.80469 370.48438 -145.15364 370.96875 -145.60156 curveto -371.45312 -146.04948 371.6953 -146.67448 371.6953 -147.47656 curveto -371.6953 -148.39323 371.33334 -149.11719 370.60938 -149.64844 curveto -369.8854 -150.17969 368.89322 -150.44531 367.6328 -150.44531 curveto -367.10156 -150.44531 366.54947 -150.39583 365.97656 -150.29688 curveto -365.40366 -150.19792 364.79947 -150.04427 364.16406 -149.83594 curveto -364.16406 -148.16406 lineto -364.76822 -148.47656 365.35938 -148.71094 365.9375 -148.86719 curveto -366.51562 -149.02344 367.09116 -149.10156 367.66406 -149.10156 curveto -368.42447 -149.10156 369.0104 -148.97136 369.42188 -148.71094 curveto -369.83334 -148.45052 370.03906 -148.08073 370.03906 -147.60156 curveto -370.03906 -147.16406 369.89062 -146.82812 369.59375 -146.59375 curveto -369.29688 -146.35938 368.64844 -146.13281 367.64844 -145.91406 curveto -367.08594 -145.78906 lineto -366.07553 -145.57031 365.34897 -145.2448 364.90625 -144.8125 curveto -364.46353 -144.3802 364.2422 -143.77864 364.2422 -143.00781 curveto -364.2422 -142.09114 364.5703 -141.3802 365.22656 -140.875 curveto -365.8828 -140.3698 366.8151 -140.11719 368.02344 -140.11719 curveto -368.6172 -140.11719 369.1771 -140.16145 369.70312 -140.25 curveto -370.22916 -140.33855 370.71616 -140.47136 371.16406 -140.64844 curveto -closepath -374.4922 -137.55469 moveto -374.4922 -140.35156 lineto -377.8203 -140.35156 lineto -377.8203 -141.60156 lineto -374.4922 -141.60156 lineto -374.4922 -146.94531 lineto -374.4922 -147.74739 374.60156 -148.26302 374.8203 -148.49219 curveto -375.03906 -148.72136 375.48697 -148.83594 376.16406 -148.83594 curveto -377.8203 -148.83594 lineto -377.8203 -150.19531 lineto -376.16406 -150.19531 lineto -374.91406 -150.19531 374.0521 -149.96355 373.57812 -149.5 curveto -373.10416 -149.03645 372.8672 -148.18489 372.8672 -146.94531 curveto -372.8672 -141.60156 lineto -371.6797 -141.60156 lineto -371.6797 -140.35156 lineto -372.8672 -140.35156 lineto -372.8672 -137.55469 lineto -374.4922 -137.55469 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -343.4453 -377.03906 moveto -345.0547 -377.03906 lineto -345.0547 -390.71094 lineto -343.4453 -390.71094 lineto -343.4453 -377.03906 lineto -closepath -352.2578 -382.0078 moveto -351.3828 -382.0078 350.6953 -382.34375 350.1953 -383.01562 curveto -349.6953 -383.6875 349.4453 -384.6172 349.4453 -385.8047 curveto -349.4453 -386.98178 349.6953 -387.90884 350.1953 -388.58594 curveto -350.6953 -389.26303 351.3828 -389.60156 352.2578 -389.60156 curveto -353.11197 -389.60156 353.79166 -389.2604 354.29688 -388.57812 curveto -354.8021 -387.89584 355.0547 -386.97134 355.0547 -385.8047 curveto -355.0547 -384.63803 354.8021 -383.71353 354.29688 -383.03125 curveto -353.79166 -382.34897 353.11197 -382.0078 352.2578 -382.0078 curveto -closepath -352.2578 -380.6328 moveto -353.66406 -380.6328 354.76822 -381.08853 355.5703 -382.0 curveto -356.3724 -382.91147 356.77344 -384.1797 356.77344 -385.8047 curveto -356.77344 -387.40884 356.3724 -388.66928 355.5703 -389.58594 curveto -354.76822 -390.5026 353.66406 -390.96094 352.2578 -390.96094 curveto -350.84116 -390.96094 349.73438 -390.5026 348.9375 -389.58594 curveto -348.14062 -388.66928 347.7422 -387.40884 347.7422 -385.8047 curveto -347.7422 -384.1797 348.14062 -382.91147 348.9375 -382.0 curveto -349.73438 -381.08853 350.84116 -380.6328 352.2578 -380.6328 curveto -closepath -366.52344 -381.2422 moveto -366.52344 -382.7578 lineto -366.0651 -382.5078 365.60678 -382.3203 365.14844 -382.1953 curveto -364.6901 -382.0703 364.22656 -382.0078 363.7578 -382.0078 curveto -362.70572 -382.0078 361.89062 -382.33853 361.3125 -383.0 curveto -360.73438 -383.66147 360.4453 -384.59634 360.4453 -385.8047 curveto -360.4453 -387.0026 360.73438 -387.9349 361.3125 -388.60156 curveto -361.89062 -389.26822 362.70572 -389.60156 363.7578 -389.60156 curveto -364.22656 -389.60156 364.6901 -389.53647 365.14844 -389.40625 curveto -365.60678 -389.27603 366.0651 -389.08594 366.52344 -388.83594 curveto -366.52344 -390.33594 lineto -366.07553 -390.54428 365.60938 -390.70053 365.125 -390.8047 curveto -364.64062 -390.90884 364.1276 -390.96094 363.58594 -390.96094 curveto -362.09634 -390.96094 360.91666 -390.49478 360.04688 -389.5625 curveto -359.1771 -388.63022 358.7422 -387.3776 358.7422 -385.8047 curveto -358.7422 -384.1901 359.18228 -382.92447 360.0625 -382.0078 curveto -360.94272 -381.09116 362.14844 -380.6328 363.6797 -380.6328 curveto -364.1797 -380.6328 364.66666 -380.68228 365.14062 -380.78125 curveto -365.6146 -380.88022 366.07553 -381.03384 366.52344 -381.2422 curveto -closepath -372.91406 -385.7578 moveto -371.60156 -385.7578 370.6953 -385.90884 370.1953 -386.21094 curveto -369.6953 -386.51303 369.4453 -387.02344 369.4453 -387.7422 curveto -369.4453 -388.3151 369.6328 -388.77084 370.0078 -389.10938 curveto -370.3828 -389.4479 370.89844 -389.6172 371.5547 -389.6172 curveto -372.45053 -389.6172 373.16928 -389.29947 373.71094 -388.66406 curveto -374.2526 -388.02866 374.52344 -387.1797 374.52344 -386.1172 curveto -374.52344 -385.7578 lineto -372.91406 -385.7578 lineto -closepath -376.1328 -385.10156 moveto -376.1328 -390.71094 lineto -374.52344 -390.71094 lineto -374.52344 -389.21094 lineto -374.14844 -389.8151 373.6875 -390.2578 373.14062 -390.53906 curveto -372.59375 -390.8203 371.91928 -390.96094 371.1172 -390.96094 curveto -370.10678 -390.96094 369.3047 -390.6797 368.71094 -390.1172 curveto -368.1172 -389.5547 367.8203 -388.79947 367.8203 -387.85156 curveto -367.8203 -386.73697 368.19272 -385.89844 368.9375 -385.33594 curveto -369.68228 -384.77344 370.78906 -384.4922 372.2578 -384.4922 curveto -374.52344 -384.4922 lineto -374.52344 -384.33594 lineto -374.52344 -383.59634 374.27866 -383.02344 373.78906 -382.6172 curveto -373.29947 -382.21094 372.61197 -382.0078 371.72656 -382.0078 curveto -371.16406 -382.0078 370.6172 -382.0729 370.08594 -382.20312 curveto -369.5547 -382.33334 369.03906 -382.53384 368.53906 -382.8047 curveto -368.53906 -381.3203 lineto -369.1328 -381.09116 369.70834 -380.91928 370.26562 -380.8047 curveto -370.8229 -380.6901 371.3672 -380.6328 371.89844 -380.6328 curveto -373.3151 -380.6328 374.375 -381.0026 375.07812 -381.7422 curveto -375.78125 -382.48178 376.1328 -383.60156 376.1328 -385.10156 curveto -closepath -378.4453 -377.03906 moveto -380.0547 -377.03906 lineto -380.0547 -390.71094 lineto -378.4453 -390.71094 lineto -378.4453 -377.03906 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -326.22394 -617.03906 moveto -326.22394 -618.3828 lineto -324.67706 -618.3828 lineto -324.09372 -618.3828 323.6901 -618.5 323.46613 -618.7344 curveto -323.24216 -618.96875 323.1302 -619.388 323.1302 -619.9922 curveto -323.1302 -620.8672 lineto -325.78644 -620.8672 lineto -325.78644 -622.1172 lineto -323.1302 -622.1172 lineto -323.1302 -630.71094 lineto -321.48956 -630.71094 lineto -321.48956 -622.1172 lineto -319.9427 -622.1172 lineto -319.9427 -620.8672 lineto -321.48956 -620.8672 lineto -321.48956 -620.1797 lineto -321.48956 -619.08594 321.74478 -618.28906 322.2552 -617.78906 curveto -322.7656 -617.28906 323.5781 -617.03906 324.6927 -617.03906 curveto -326.22394 -617.03906 lineto -closepath -327.23956 -620.8672 moveto -328.84894 -620.8672 lineto -328.84894 -630.71094 lineto -327.23956 -630.71094 lineto -327.23956 -620.8672 lineto -closepath -327.23956 -617.03906 moveto -328.84894 -617.03906 lineto -328.84894 -619.08594 lineto -327.23956 -619.08594 lineto -327.23956 -617.03906 lineto -closepath -337.9427 -622.3828 moveto -337.7552 -622.2786 337.55466 -622.2005 337.34113 -622.14844 curveto -337.1276 -622.0964 336.8906 -622.0703 336.6302 -622.0703 curveto -335.72394 -622.0703 335.02603 -622.3672 334.53644 -622.96094 curveto -334.04684 -623.5547 333.80206 -624.4089 333.80206 -625.52344 curveto -333.80206 -630.71094 lineto -332.17706 -630.71094 lineto -332.17706 -620.8672 lineto -333.80206 -620.8672 lineto -333.80206 -622.39844 lineto -334.1354 -621.79425 334.5755 -621.34894 335.12238 -621.0625 curveto -335.66925 -620.77606 336.3333 -620.6328 337.11456 -620.6328 curveto -337.21872 -620.6328 337.33853 -620.6406 337.47394 -620.65625 curveto -337.60934 -620.6719 337.7604 -620.6901 337.92706 -620.71094 curveto -337.9427 -622.3828 lineto -closepath -348.6458 -625.3828 moveto -348.6458 -626.1797 lineto -341.22394 -626.1797 lineto -341.28644 -627.29425 341.61978 -628.14325 342.22394 -628.72656 curveto -342.8281 -629.3099 343.66666 -629.60156 344.73956 -629.60156 curveto -345.35416 -629.60156 345.9531 -629.52344 346.53644 -629.3672 curveto -347.11978 -629.21094 347.6979 -628.98175 348.2708 -628.6797 curveto -348.2708 -630.21094 lineto -347.6979 -630.46094 347.10675 -630.64844 346.49738 -630.77344 curveto -345.888 -630.89844 345.2656 -630.96094 344.6302 -630.96094 curveto -343.0677 -630.96094 341.8281 -630.5052 340.91144 -629.59375 curveto -339.99478 -628.6823 339.53644 -627.4453 339.53644 -625.8828 curveto -339.53644 -624.26825 339.97134 -622.98956 340.84113 -622.0469 curveto -341.7109 -621.1042 342.8802 -620.6328 344.34894 -620.6328 curveto -345.68228 -620.6328 346.73175 -621.0573 347.49738 -621.90625 curveto -348.263 -622.7552 348.6458 -623.91406 348.6458 -625.3828 curveto -closepath -347.03644 -624.91406 moveto -347.02603 -624.0286 346.77863 -623.32294 346.29425 -622.7969 curveto -345.80988 -622.2708 345.17184 -622.0078 344.3802 -622.0078 curveto -343.47394 -622.0078 342.74997 -622.26044 342.2083 -622.7656 curveto -341.66666 -623.2708 341.35416 -623.987 341.2708 -624.91406 curveto -347.03644 -624.91406 lineto -closepath -350.28644 -620.8672 moveto -351.91144 -620.8672 lineto -353.92706 -628.5547 lineto -355.9427 -620.8672 lineto -357.84894 -620.8672 lineto -359.8802 -628.5547 lineto -361.8802 -620.8672 lineto -363.5052 -620.8672 lineto -360.92706 -630.71094 lineto -359.0208 -630.71094 lineto -356.8958 -622.64844 lineto -354.7708 -630.71094 lineto -352.86456 -630.71094 lineto -350.28644 -620.8672 lineto -closepath -371.05206 -622.0078 moveto -370.17706 -622.0078 369.48956 -622.34375 368.98956 -623.0156 curveto -368.48956 -623.6875 368.23956 -624.6172 368.23956 -625.8047 curveto -368.23956 -626.98175 368.48956 -627.9089 368.98956 -628.58594 curveto -369.48956 -629.263 370.17706 -629.60156 371.05206 -629.60156 curveto -371.90622 -629.60156 372.5859 -629.26044 373.09113 -628.5781 curveto -373.59634 -627.8958 373.84894 -626.9714 373.84894 -625.8047 curveto -373.84894 -624.638 373.59634 -623.71356 373.09113 -623.03125 curveto -372.5859 -622.34894 371.90622 -622.0078 371.05206 -622.0078 curveto -closepath -371.05206 -620.6328 moveto -372.4583 -620.6328 373.56247 -621.08856 374.36456 -622.0 curveto -375.16666 -622.91144 375.5677 -624.1797 375.5677 -625.8047 curveto -375.5677 -627.4089 375.16666 -628.66925 374.36456 -629.58594 curveto -373.56247 -630.5026 372.4583 -630.96094 371.05206 -630.96094 curveto -369.6354 -630.96094 368.52863 -630.5026 367.73175 -629.58594 curveto -366.93488 -628.66925 366.53644 -627.4089 366.53644 -625.8047 curveto -366.53644 -624.1797 366.93488 -622.91144 367.73175 -622.0 curveto -368.52863 -621.08856 369.6354 -620.6328 371.05206 -620.6328 curveto -closepath -383.9427 -622.3828 moveto -383.7552 -622.2786 383.55466 -622.2005 383.34113 -622.14844 curveto -383.1276 -622.0964 382.8906 -622.0703 382.6302 -622.0703 curveto -381.72394 -622.0703 381.02603 -622.3672 380.53644 -622.96094 curveto -380.04684 -623.5547 379.80206 -624.4089 379.80206 -625.52344 curveto -379.80206 -630.71094 lineto -378.17706 -630.71094 lineto -378.17706 -620.8672 lineto -379.80206 -620.8672 lineto -379.80206 -622.39844 lineto -380.1354 -621.79425 380.5755 -621.34894 381.12238 -621.0625 curveto -381.66925 -620.77606 382.3333 -620.6328 383.11456 -620.6328 curveto -383.21872 -620.6328 383.33853 -620.6406 383.47394 -620.65625 curveto -383.60934 -620.6719 383.7604 -620.6901 383.92706 -620.71094 curveto -383.9427 -622.3828 lineto -closepath -386.17706 -617.03906 moveto -387.80206 -617.03906 lineto -387.80206 -625.1172 lineto -392.6302 -620.8672 lineto -394.6927 -620.8672 lineto -389.47394 -625.47656 lineto -394.91144 -630.71094 lineto -392.80206 -630.71094 lineto -387.80206 -625.89844 lineto -387.80206 -630.71094 lineto -386.17706 -630.71094 lineto -386.17706 -617.03906 lineto -closepath -402.5052 -621.16406 moveto -402.5052 -622.6797 lineto -402.04684 -622.4505 401.5729 -622.27606 401.0833 -622.15625 curveto -400.59372 -622.03644 400.0833 -621.97656 399.55206 -621.97656 curveto -398.74997 -621.97656 398.1484 -622.10156 397.74738 -622.35156 curveto -397.34634 -622.60156 397.1458 -622.9714 397.1458 -623.46094 curveto -397.1458 -623.83594 397.28903 -624.1302 397.5755 -624.34375 curveto -397.86197 -624.5573 398.43747 -624.763 399.30206 -624.96094 curveto -399.86456 -625.0703 lineto -401.0104 -625.3203 401.8255 -625.66925 402.30988 -626.1172 curveto -402.79425 -626.5651 403.03644 -627.1901 403.03644 -627.9922 curveto -403.03644 -628.9089 402.67447 -629.6328 401.9505 -630.16406 curveto -401.22653 -630.6953 400.23434 -630.96094 398.97394 -630.96094 curveto -398.4427 -630.96094 397.8906 -630.91144 397.3177 -630.8125 curveto -396.74478 -630.71356 396.1406 -630.5599 395.5052 -630.35156 curveto -395.5052 -628.6797 lineto -396.10934 -628.9922 396.7005 -629.22656 397.27863 -629.3828 curveto -397.85675 -629.53906 398.43228 -629.6172 399.0052 -629.6172 curveto -399.7656 -629.6172 400.35153 -629.487 400.763 -629.22656 curveto -401.17447 -628.9661 401.3802 -628.5964 401.3802 -628.1172 curveto -401.3802 -627.6797 401.23175 -627.34375 400.93488 -627.1094 curveto -400.638 -626.875 399.98956 -626.64844 398.98956 -626.4297 curveto -398.42706 -626.3047 lineto -397.41666 -626.08594 396.6901 -625.76044 396.24738 -625.3281 curveto -395.80466 -624.8958 395.5833 -624.29425 395.5833 -623.52344 curveto -395.5833 -622.60675 395.91144 -621.8958 396.5677 -621.3906 curveto -397.22394 -620.88544 398.15622 -620.6328 399.36456 -620.6328 curveto -399.9583 -620.6328 400.51822 -620.67706 401.04425 -620.7656 curveto -401.57028 -620.8542 402.05728 -620.987 402.5052 -621.16406 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -91.59375 -376.5625 moveto -94.234375 -376.5625 lineto -97.59375 -385.5 lineto -100.953125 -376.5625 lineto -103.59375 -376.5625 lineto -103.59375 -389.6875 lineto -101.875 -389.6875 lineto -101.875 -378.17188 lineto -98.484375 -387.17188 lineto -96.703125 -387.17188 lineto -93.3125 -378.17188 lineto -93.3125 -389.6875 lineto -91.59375 -389.6875 lineto -91.59375 -376.5625 lineto -closepath -111.34375 -380.98438 moveto -110.46875 -380.98438 109.78125 -381.3203 109.28125 -381.9922 curveto -108.78125 -382.66406 108.53125 -383.59375 108.53125 -384.78125 curveto -108.53125 -385.95834 108.78125 -386.8854 109.28125 -387.5625 curveto -109.78125 -388.2396 110.46875 -388.57812 111.34375 -388.57812 curveto -112.197914 -388.57812 112.8776 -388.23697 113.38281 -387.5547 curveto -113.88802 -386.8724 114.140625 -385.9479 114.140625 -384.78125 curveto -114.140625 -383.6146 113.88802 -382.6901 113.38281 -382.0078 curveto -112.8776 -381.32553 112.197914 -380.98438 111.34375 -380.98438 curveto -closepath -111.34375 -379.60938 moveto -112.75 -379.60938 113.854164 -380.0651 114.65625 -380.97656 curveto -115.458336 -381.88803 115.859375 -383.15625 115.859375 -384.78125 curveto -115.859375 -386.3854 115.458336 -387.64584 114.65625 -388.5625 curveto -113.854164 -389.47916 112.75 -389.9375 111.34375 -389.9375 curveto -109.927086 -389.9375 108.82031 -389.47916 108.02344 -388.5625 curveto -107.22656 -387.64584 106.828125 -386.3854 106.828125 -384.78125 curveto -106.828125 -383.15625 107.22656 -381.88803 108.02344 -380.97656 curveto -108.82031 -380.0651 109.927086 -379.60938 111.34375 -379.60938 curveto -closepath -126.703125 -383.75 moveto -126.703125 -389.6875 lineto -125.09375 -389.6875 lineto -125.09375 -383.79688 lineto -125.09375 -382.86978 124.91146 -382.17447 124.546875 -381.71094 curveto -124.18229 -381.2474 123.635414 -381.01562 122.90625 -381.01562 curveto -122.03125 -381.01562 121.34375 -381.29428 120.84375 -381.85156 curveto -120.34375 -382.40884 120.09375 -383.16666 120.09375 -384.125 curveto -120.09375 -389.6875 lineto -118.46875 -389.6875 lineto -118.46875 -379.84375 lineto -120.09375 -379.84375 lineto -120.09375 -381.375 lineto -120.479164 -380.78125 120.9349 -380.33853 121.46094 -380.04688 curveto -121.98698 -379.75522 122.58854 -379.60938 123.265625 -379.60938 curveto -124.40104 -379.60938 125.25781 -379.95834 125.83594 -380.65625 curveto -126.41406 -381.35416 126.703125 -382.3854 126.703125 -383.75 curveto -closepath -136.0 -384.65625 moveto -136.0 -383.47916 135.75781 -382.56772 135.27344 -381.92188 curveto -134.78906 -381.27603 134.11458 -380.95312 133.25 -380.95312 curveto -132.375 -380.95312 131.69531 -381.27603 131.21094 -381.92188 curveto -130.72656 -382.56772 130.48438 -383.47916 130.48438 -384.65625 curveto -130.48438 -385.8229 130.72656 -386.72656 131.21094 -387.3672 curveto -131.69531 -388.0078 132.375 -388.32812 133.25 -388.32812 curveto -134.11458 -388.32812 134.78906 -388.0078 135.27344 -387.3672 curveto -135.75781 -386.72656 136.0 -385.8229 136.0 -384.65625 curveto -closepath -137.625 -388.46875 moveto -137.625 -390.14584 137.25261 -391.39322 136.50781 -392.21094 curveto -135.76302 -393.02866 134.6198 -393.4375 133.07812 -393.4375 curveto -132.51562 -393.4375 131.98177 -393.39322 131.47656 -393.3047 curveto -130.97136 -393.21616 130.48438 -393.08334 130.01562 -392.90625 curveto -130.01562 -391.34375 lineto -130.48438 -391.60416 130.95052 -391.79428 131.41406 -391.91406 curveto -131.87761 -392.03384 132.34895 -392.09375 132.82812 -392.09375 curveto -133.89062 -392.09375 134.68489 -391.81772 135.21094 -391.26562 curveto -135.73698 -390.71353 136.0 -389.875 136.0 -388.75 curveto -136.0 -387.95312 lineto -135.66667 -388.53647 135.23958 -388.97134 134.71875 -389.2578 curveto -134.19792 -389.54428 133.57292 -389.6875 132.84375 -389.6875 curveto -131.63542 -389.6875 130.66406 -389.22656 129.92969 -388.3047 curveto -129.19531 -387.3828 128.82812 -386.16666 128.82812 -384.65625 curveto -128.82812 -383.125 129.19531 -381.90103 129.92969 -380.98438 curveto -130.66406 -380.06772 131.63542 -379.60938 132.84375 -379.60938 curveto -133.57292 -379.60938 134.19792 -379.7526 134.71875 -380.03906 curveto -135.23958 -380.32553 135.66667 -380.7604 136.0 -381.34375 curveto -136.0 -379.84375 lineto -137.625 -379.84375 lineto -137.625 -388.46875 lineto -closepath -144.34375 -380.98438 moveto -143.46875 -380.98438 142.78125 -381.3203 142.28125 -381.9922 curveto -141.78125 -382.66406 141.53125 -383.59375 141.53125 -384.78125 curveto -141.53125 -385.95834 141.78125 -386.8854 142.28125 -387.5625 curveto -142.78125 -388.2396 143.46875 -388.57812 144.34375 -388.57812 curveto -145.19792 -388.57812 145.87761 -388.23697 146.38281 -387.5547 curveto -146.88802 -386.8724 147.14062 -385.9479 147.14062 -384.78125 curveto -147.14062 -383.6146 146.88802 -382.6901 146.38281 -382.0078 curveto -145.87761 -381.32553 145.19792 -380.98438 144.34375 -380.98438 curveto -closepath -144.34375 -379.60938 moveto -145.75 -379.60938 146.85417 -380.0651 147.65625 -380.97656 curveto -148.45833 -381.88803 148.85938 -383.15625 148.85938 -384.78125 curveto -148.85938 -386.3854 148.45833 -387.64584 147.65625 -388.5625 curveto -146.85417 -389.47916 145.75 -389.9375 144.34375 -389.9375 curveto -142.92708 -389.9375 141.82031 -389.47916 141.02344 -388.5625 curveto -140.22656 -387.64584 139.82812 -386.3854 139.82812 -384.78125 curveto -139.82812 -383.15625 140.22656 -381.88803 141.02344 -380.97656 curveto -141.82031 -380.0651 142.92708 -379.60938 144.34375 -379.60938 curveto -closepath -153.375 -378.03125 moveto -153.375 -388.23438 lineto -155.51562 -388.23438 lineto -157.32812 -388.23438 158.65364 -387.8229 159.49219 -387.0 curveto -160.33073 -386.1771 160.75 -384.88022 160.75 -383.10938 curveto -160.75 -381.34897 160.33073 -380.0625 159.49219 -379.25 curveto -158.65364 -378.4375 157.32812 -378.03125 155.51562 -378.03125 curveto -153.375 -378.03125 lineto -closepath -151.59375 -376.5625 moveto -155.25 -376.5625 lineto -157.79167 -376.5625 159.65625 -377.09116 160.84375 -378.14844 curveto -162.03125 -379.20572 162.625 -380.85938 162.625 -383.10938 curveto -162.625 -385.36978 162.02864 -387.03125 160.83594 -388.09375 curveto -159.64323 -389.15625 157.78125 -389.6875 155.25 -389.6875 curveto -151.59375 -389.6875 lineto -151.59375 -376.5625 lineto -closepath -167.375 -383.42188 moveto -167.375 -388.23438 lineto -170.21875 -388.23438 lineto -171.17708 -388.23438 171.88542 -388.03647 172.34375 -387.64062 curveto -172.80208 -387.24478 173.03125 -386.6354 173.03125 -385.8125 curveto -173.03125 -385.0 172.80208 -384.39844 172.34375 -384.0078 curveto -171.88542 -383.6172 171.17708 -383.42188 170.21875 -383.42188 curveto -167.375 -383.42188 lineto -closepath -167.375 -378.03125 moveto -167.375 -381.98438 lineto -170.0 -381.98438 lineto -170.86458 -381.98438 171.51042 -381.8203 171.9375 -381.4922 curveto -172.36458 -381.16406 172.57812 -380.66666 172.57812 -380.0 curveto -172.57812 -379.34375 172.36458 -378.85156 171.9375 -378.52344 curveto -171.51042 -378.1953 170.86458 -378.03125 170.0 -378.03125 curveto -167.375 -378.03125 lineto -closepath -165.59375 -376.5625 moveto -170.125 -376.5625 lineto -171.47917 -376.5625 172.52344 -376.84375 173.25781 -377.40625 curveto -173.99219 -377.96875 174.35938 -378.77084 174.35938 -379.8125 curveto -174.35938 -380.6146 174.17188 -381.2526 173.79688 -381.72656 curveto -173.42188 -382.20053 172.8698 -382.49478 172.14062 -382.60938 curveto -173.01562 -382.79688 173.69531 -383.1875 174.17969 -383.78125 curveto -174.66406 -384.375 174.90625 -385.11978 174.90625 -386.01562 curveto -174.90625 -387.18228 174.50781 -388.08594 173.71094 -388.72656 curveto -172.91406 -389.3672 171.78125 -389.6875 170.3125 -389.6875 curveto -165.59375 -389.6875 lineto -165.59375 -376.5625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -443.0 -383.0 moveto -509.0 -383.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -559.7344 -517.35156 moveto -559.7344 -518.6953 lineto -558.1875 -518.6953 lineto -557.6042 -518.6953 557.2005 -518.8125 556.97656 -519.0469 curveto -556.7526 -519.28125 556.6406 -519.7005 556.6406 -520.3047 curveto -556.6406 -521.1797 lineto -559.2969 -521.1797 lineto -559.2969 -522.4297 lineto -556.6406 -522.4297 lineto -556.6406 -531.02344 lineto -555.0 -531.02344 lineto -555.0 -522.4297 lineto -553.4531 -522.4297 lineto -553.4531 -521.1797 lineto -555.0 -521.1797 lineto -555.0 -520.4922 lineto -555.0 -519.39844 555.2552 -518.60156 555.7656 -518.10156 curveto -556.27606 -517.60156 557.08856 -517.35156 558.2031 -517.35156 curveto -559.7344 -517.35156 lineto -closepath -560.75 -521.1797 moveto -562.3594 -521.1797 lineto -562.3594 -531.02344 lineto -560.75 -531.02344 lineto -560.75 -521.1797 lineto -closepath -560.75 -517.35156 moveto -562.3594 -517.35156 lineto -562.3594 -519.39844 lineto -560.75 -519.39844 lineto -560.75 -517.35156 lineto -closepath -571.4531 -522.6953 moveto -571.2656 -522.5911 571.0651 -522.513 570.85156 -522.46094 curveto -570.638 -522.4089 570.40106 -522.3828 570.1406 -522.3828 curveto -569.2344 -522.3828 568.53644 -522.6797 568.0469 -523.27344 curveto -567.5573 -523.8672 567.3125 -524.7214 567.3125 -525.83594 curveto -567.3125 -531.02344 lineto -565.6875 -531.02344 lineto -565.6875 -521.1797 lineto -567.3125 -521.1797 lineto -567.3125 -522.71094 lineto -567.6458 -522.10675 568.08594 -521.66144 568.6328 -521.375 curveto -569.1797 -521.08856 569.84375 -520.9453 570.625 -520.9453 curveto -570.7292 -520.9453 570.84894 -520.9531 570.9844 -520.96875 curveto -571.1198 -520.9844 571.2708 -521.0026 571.4375 -521.02344 curveto -571.4531 -522.6953 lineto -closepath -582.15625 -525.6953 moveto -582.15625 -526.4922 lineto -574.7344 -526.4922 lineto -574.7969 -527.60675 575.1302 -528.45575 575.7344 -529.03906 curveto -576.33856 -529.6224 577.17706 -529.91406 578.25 -529.91406 curveto -578.86456 -529.91406 579.46356 -529.83594 580.0469 -529.6797 curveto -580.6302 -529.52344 581.2083 -529.29425 581.78125 -528.9922 curveto -581.78125 -530.52344 lineto -581.2083 -530.77344 580.6172 -530.96094 580.0078 -531.08594 curveto -579.39844 -531.21094 578.77606 -531.27344 578.1406 -531.27344 curveto -576.5781 -531.27344 575.33856 -530.8177 574.4219 -529.90625 curveto -573.5052 -528.9948 573.0469 -527.7578 573.0469 -526.1953 curveto -573.0469 -524.58075 573.48175 -523.30206 574.35156 -522.3594 curveto -575.2214 -521.4167 576.3906 -520.9453 577.8594 -520.9453 curveto -579.1927 -520.9453 580.2422 -521.3698 581.0078 -522.21875 curveto -581.77344 -523.0677 582.15625 -524.22656 582.15625 -525.6953 curveto -closepath -580.5469 -525.22656 moveto -580.53644 -524.3411 580.28906 -523.63544 579.8047 -523.1094 curveto -579.3203 -522.5833 578.6823 -522.3203 577.8906 -522.3203 curveto -576.9844 -522.3203 576.26044 -522.57294 575.71875 -523.0781 curveto -575.17706 -523.5833 574.86456 -524.2995 574.78125 -525.22656 curveto -580.5469 -525.22656 lineto -closepath -583.7969 -521.1797 moveto -585.4219 -521.1797 lineto -587.4375 -528.8672 lineto -589.4531 -521.1797 lineto -591.3594 -521.1797 lineto -593.3906 -528.8672 lineto -595.3906 -521.1797 lineto -597.0156 -521.1797 lineto -594.4375 -531.02344 lineto -592.53125 -531.02344 lineto -590.40625 -522.96094 lineto -588.28125 -531.02344 lineto -586.375 -531.02344 lineto -583.7969 -521.1797 lineto -closepath -604.5625 -522.3203 moveto -603.6875 -522.3203 603.0 -522.65625 602.5 -523.3281 curveto -602.0 -524.0 601.75 -524.9297 601.75 -526.1172 curveto -601.75 -527.29425 602.0 -528.2214 602.5 -528.89844 curveto -603.0 -529.5755 603.6875 -529.91406 604.5625 -529.91406 curveto -605.4167 -529.91406 606.0964 -529.57294 606.60156 -528.8906 curveto -607.10675 -528.2083 607.3594 -527.2839 607.3594 -526.1172 curveto -607.3594 -524.9505 607.10675 -524.02606 606.60156 -523.34375 curveto -606.0964 -522.66144 605.4167 -522.3203 604.5625 -522.3203 curveto -closepath -604.5625 -520.9453 moveto -605.96875 -520.9453 607.07294 -521.40106 607.875 -522.3125 curveto -608.67706 -523.22394 609.0781 -524.4922 609.0781 -526.1172 curveto -609.0781 -527.7214 608.67706 -528.98175 607.875 -529.89844 curveto -607.07294 -530.8151 605.96875 -531.27344 604.5625 -531.27344 curveto -603.1458 -531.27344 602.03906 -530.8151 601.2422 -529.89844 curveto -600.4453 -528.98175 600.0469 -527.7214 600.0469 -526.1172 curveto -600.0469 -524.4922 600.4453 -523.22394 601.2422 -522.3125 curveto -602.03906 -521.40106 603.1458 -520.9453 604.5625 -520.9453 curveto -closepath -617.4531 -522.6953 moveto -617.2656 -522.5911 617.0651 -522.513 616.85156 -522.46094 curveto -616.638 -522.4089 616.40106 -522.3828 616.1406 -522.3828 curveto -615.2344 -522.3828 614.53644 -522.6797 614.0469 -523.27344 curveto -613.5573 -523.8672 613.3125 -524.7214 613.3125 -525.83594 curveto -613.3125 -531.02344 lineto -611.6875 -531.02344 lineto -611.6875 -521.1797 lineto -613.3125 -521.1797 lineto -613.3125 -522.71094 lineto -613.6458 -522.10675 614.08594 -521.66144 614.6328 -521.375 curveto -615.1797 -521.08856 615.84375 -520.9453 616.625 -520.9453 curveto -616.7292 -520.9453 616.84894 -520.9531 616.9844 -520.96875 curveto -617.1198 -520.9844 617.2708 -521.0026 617.4375 -521.02344 curveto -617.4531 -522.6953 lineto -closepath -619.6875 -517.35156 moveto -621.3125 -517.35156 lineto -621.3125 -525.4297 lineto -626.1406 -521.1797 lineto -628.2031 -521.1797 lineto -622.9844 -525.78906 lineto -628.4219 -531.02344 lineto -626.3125 -531.02344 lineto -621.3125 -526.21094 lineto -621.3125 -531.02344 lineto -619.6875 -531.02344 lineto -619.6875 -517.35156 lineto -closepath -636.0156 -521.47656 moveto -636.0156 -522.9922 lineto -635.5573 -522.763 635.0833 -522.58856 634.59375 -522.46875 curveto -634.1042 -522.34894 633.59375 -522.28906 633.0625 -522.28906 curveto -632.26044 -522.28906 631.6589 -522.41406 631.2578 -522.66406 curveto -630.85675 -522.91406 630.65625 -523.2839 630.65625 -523.77344 curveto -630.65625 -524.14844 630.7995 -524.4427 631.08594 -524.65625 curveto -631.3724 -524.8698 631.94794 -525.0755 632.8125 -525.27344 curveto -633.375 -525.3828 lineto -634.5208 -525.6328 635.33594 -525.98175 635.8203 -526.4297 curveto -636.3047 -526.8776 636.5469 -527.5026 636.5469 -528.3047 curveto -636.5469 -529.2214 636.1849 -529.9453 635.46094 -530.47656 curveto -634.737 -531.0078 633.7448 -531.27344 632.4844 -531.27344 curveto -631.9531 -531.27344 631.40106 -531.22394 630.8281 -531.125 curveto -630.2552 -531.02606 629.65106 -530.8724 629.0156 -530.66406 curveto -629.0156 -528.9922 lineto -629.6198 -529.3047 630.21094 -529.53906 630.78906 -529.6953 curveto -631.3672 -529.85156 631.9427 -529.9297 632.5156 -529.9297 curveto -633.27606 -529.9297 633.862 -529.7995 634.27344 -529.53906 curveto -634.6849 -529.2786 634.8906 -528.9089 634.8906 -528.4297 curveto -634.8906 -527.9922 634.7422 -527.65625 634.4453 -527.4219 curveto -634.14844 -527.1875 633.5 -526.96094 632.5 -526.7422 curveto -631.9375 -526.6172 lineto -630.92706 -526.39844 630.2005 -526.07294 629.7578 -525.6406 curveto -629.3151 -525.2083 629.09375 -524.60675 629.09375 -523.83594 curveto -629.09375 -522.91925 629.4219 -522.2083 630.0781 -521.7031 curveto -630.7344 -521.19794 631.6667 -520.9453 632.875 -520.9453 curveto -633.46875 -520.9453 634.0286 -520.98956 634.5547 -521.0781 curveto -635.08075 -521.1667 635.5677 -521.2995 636.0156 -521.47656 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -539.2708 -565.35156 moveto -539.2708 -566.6953 lineto -537.72394 -566.6953 lineto -537.1406 -566.6953 536.73694 -566.8125 536.513 -567.0469 curveto -536.28906 -567.28125 536.17706 -567.7005 536.17706 -568.3047 curveto -536.17706 -569.1797 lineto -538.8333 -569.1797 lineto -538.8333 -570.4297 lineto -536.17706 -570.4297 lineto -536.17706 -579.02344 lineto -534.53644 -579.02344 lineto -534.53644 -570.4297 lineto -532.98956 -570.4297 lineto -532.98956 -569.1797 lineto -534.53644 -569.1797 lineto -534.53644 -568.4922 lineto -534.53644 -567.39844 534.7916 -566.60156 535.30206 -566.10156 curveto -535.8125 -565.60156 536.625 -565.35156 537.73956 -565.35156 curveto -539.2708 -565.35156 lineto -closepath -539.3333 -569.1797 moveto -540.9583 -569.1797 lineto -542.97394 -576.8672 lineto -544.98956 -569.1797 lineto -546.8958 -569.1797 lineto -548.92706 -576.8672 lineto -550.92706 -569.1797 lineto -552.55206 -569.1797 lineto -549.97394 -579.02344 lineto -548.0677 -579.02344 lineto -545.9427 -570.96094 lineto -543.8177 -579.02344 lineto -541.91144 -579.02344 lineto -539.3333 -569.1797 lineto -closepath -563.7552 -582.0078 moveto -563.7552 -583.27344 lineto -554.41144 -583.27344 lineto -554.41144 -582.0078 lineto -563.7552 -582.0078 lineto -closepath -565.28644 -569.1797 moveto -566.8958 -569.1797 lineto -566.8958 -579.02344 lineto -565.28644 -579.02344 lineto -565.28644 -569.1797 lineto -closepath -565.28644 -565.35156 moveto -566.8958 -565.35156 lineto -566.8958 -567.39844 lineto -565.28644 -567.39844 lineto -565.28644 -565.35156 lineto -closepath -576.7552 -570.6797 moveto -576.7552 -565.35156 lineto -578.3802 -565.35156 lineto -578.3802 -579.02344 lineto -576.7552 -579.02344 lineto -576.7552 -577.53906 lineto -576.4219 -578.1328 575.99475 -578.5703 575.47394 -578.85156 curveto -574.9531 -579.1328 574.3281 -579.27344 573.59894 -579.27344 curveto -572.41144 -579.27344 571.4453 -578.7995 570.7005 -577.85156 curveto -569.9557 -576.9036 569.5833 -575.6589 569.5833 -574.1172 curveto -569.5833 -572.5651 569.9557 -571.3151 570.7005 -570.3672 curveto -571.4453 -569.41925 572.41144 -568.9453 573.59894 -568.9453 curveto -574.3281 -568.9453 574.9531 -569.08594 575.47394 -569.3672 curveto -575.99475 -569.64844 576.4219 -570.08594 576.7552 -570.6797 curveto -closepath -571.23956 -574.1172 moveto -571.23956 -575.3047 571.4844 -576.237 571.97394 -576.91406 curveto -572.4635 -577.5911 573.1406 -577.9297 574.0052 -577.9297 curveto -574.8594 -577.9297 575.53125 -577.5911 576.0208 -576.91406 curveto -576.5104 -576.237 576.7552 -575.3047 576.7552 -574.1172 curveto -576.7552 -572.91925 576.5104 -571.98175 576.0208 -571.3047 curveto -575.53125 -570.6276 574.8594 -570.28906 574.0052 -570.28906 curveto -573.1406 -570.28906 572.4635 -570.6276 571.97394 -571.3047 curveto -571.4844 -571.98175 571.23956 -572.91925 571.23956 -574.1172 curveto -closepath -588.7552 -582.0078 moveto -588.7552 -583.27344 lineto -579.41144 -583.27344 lineto -579.41144 -582.0078 lineto -588.7552 -582.0078 lineto -closepath -594.7552 -574.0703 moveto -593.4427 -574.0703 592.53644 -574.2214 592.03644 -574.52344 curveto -591.53644 -574.8255 591.28644 -575.33594 591.28644 -576.0547 curveto -591.28644 -576.6276 591.47394 -577.0833 591.84894 -577.4219 curveto -592.22394 -577.76044 592.73956 -577.9297 593.3958 -577.9297 curveto -594.2916 -577.9297 595.0104 -577.612 595.55206 -576.97656 curveto -596.09375 -576.3411 596.36456 -575.4922 596.36456 -574.4297 curveto -596.36456 -574.0703 lineto -594.7552 -574.0703 lineto -closepath -597.97394 -573.41406 moveto -597.97394 -579.02344 lineto -596.36456 -579.02344 lineto -596.36456 -577.52344 lineto -595.98956 -578.1276 595.5286 -578.5703 594.98175 -578.85156 curveto -594.4349 -579.1328 593.7604 -579.27344 592.9583 -579.27344 curveto -591.9479 -579.27344 591.1458 -578.9922 590.55206 -578.4297 curveto -589.9583 -577.8672 589.66144 -577.112 589.66144 -576.16406 curveto -589.66144 -575.0495 590.0338 -574.21094 590.7786 -573.64844 curveto -591.52344 -573.08594 592.6302 -572.8047 594.09894 -572.8047 curveto -596.36456 -572.8047 lineto -596.36456 -572.64844 lineto -596.36456 -571.9089 596.11975 -571.33594 595.6302 -570.9297 curveto -595.1406 -570.52344 594.4531 -570.3203 593.5677 -570.3203 curveto -593.0052 -570.3203 592.4583 -570.38544 591.92706 -570.5156 curveto -591.3958 -570.6458 590.8802 -570.8464 590.3802 -571.1172 curveto -590.3802 -569.6328 lineto -590.97394 -569.4036 591.54944 -569.23175 592.10675 -569.1172 curveto -592.66406 -569.0026 593.2083 -568.9453 593.73956 -568.9453 curveto -595.15625 -568.9453 596.2161 -569.3151 596.91925 -570.0547 curveto -597.6224 -570.79425 597.97394 -571.91406 597.97394 -573.41406 curveto -closepath -606.55206 -569.47656 moveto -606.55206 -570.9922 lineto -606.09375 -570.763 605.61975 -570.58856 605.1302 -570.46875 curveto -604.6406 -570.34894 604.1302 -570.28906 603.59894 -570.28906 curveto -602.7969 -570.28906 602.1953 -570.41406 601.79425 -570.66406 curveto -601.3932 -570.91406 601.1927 -571.2839 601.1927 -571.77344 curveto -601.1927 -572.14844 601.33594 -572.4427 601.6224 -572.65625 curveto -601.9088 -572.8698 602.4844 -573.0755 603.34894 -573.27344 curveto -603.91144 -573.3828 lineto -605.05725 -573.6328 605.8724 -573.98175 606.35675 -574.4297 curveto -606.8411 -574.8776 607.0833 -575.5026 607.0833 -576.3047 curveto -607.0833 -577.2214 606.7213 -577.9453 605.9974 -578.47656 curveto -605.27344 -579.0078 604.28125 -579.27344 603.0208 -579.27344 curveto -602.48956 -579.27344 601.9375 -579.22394 601.36456 -579.125 curveto -600.7916 -579.02606 600.1875 -578.8724 599.55206 -578.66406 curveto -599.55206 -576.9922 lineto -600.15625 -577.3047 600.7474 -577.53906 601.3255 -577.6953 curveto -601.9036 -577.85156 602.4791 -577.9297 603.05206 -577.9297 curveto -603.8125 -577.9297 604.39844 -577.7995 604.8099 -577.53906 curveto -605.2213 -577.2786 605.42706 -576.9089 605.42706 -576.4297 curveto -605.42706 -575.9922 605.2786 -575.65625 604.98175 -575.4219 curveto -604.6849 -575.1875 604.03644 -574.96094 603.03644 -574.7422 curveto -602.47394 -574.6172 lineto -601.4635 -574.39844 600.73694 -574.07294 600.29425 -573.6406 curveto -599.85156 -573.2083 599.6302 -572.60675 599.6302 -571.83594 curveto -599.6302 -570.91925 599.9583 -570.2083 600.61456 -569.7031 curveto -601.2708 -569.19794 602.2031 -568.9453 603.41144 -568.9453 curveto -604.0052 -568.9453 604.56506 -568.98956 605.0911 -569.0781 curveto -605.6172 -569.1667 606.1041 -569.2995 606.55206 -569.47656 curveto -closepath -614.55206 -569.47656 moveto -614.55206 -570.9922 lineto -614.09375 -570.763 613.61975 -570.58856 613.1302 -570.46875 curveto -612.6406 -570.34894 612.1302 -570.28906 611.59894 -570.28906 curveto -610.7969 -570.28906 610.1953 -570.41406 609.79425 -570.66406 curveto -609.3932 -570.91406 609.1927 -571.2839 609.1927 -571.77344 curveto -609.1927 -572.14844 609.33594 -572.4427 609.6224 -572.65625 curveto -609.9088 -572.8698 610.4844 -573.0755 611.34894 -573.27344 curveto -611.91144 -573.3828 lineto -613.05725 -573.6328 613.8724 -573.98175 614.35675 -574.4297 curveto -614.8411 -574.8776 615.0833 -575.5026 615.0833 -576.3047 curveto -615.0833 -577.2214 614.7213 -577.9453 613.9974 -578.47656 curveto -613.27344 -579.0078 612.28125 -579.27344 611.0208 -579.27344 curveto -610.48956 -579.27344 609.9375 -579.22394 609.36456 -579.125 curveto -608.7916 -579.02606 608.1875 -578.8724 607.55206 -578.66406 curveto -607.55206 -576.9922 lineto -608.15625 -577.3047 608.7474 -577.53906 609.3255 -577.6953 curveto -609.9036 -577.85156 610.4791 -577.9297 611.05206 -577.9297 curveto -611.8125 -577.9297 612.39844 -577.7995 612.8099 -577.53906 curveto -613.2213 -577.2786 613.42706 -576.9089 613.42706 -576.4297 curveto -613.42706 -575.9922 613.2786 -575.65625 612.98175 -575.4219 curveto -612.6849 -575.1875 612.03644 -574.96094 611.03644 -574.7422 curveto -610.47394 -574.6172 lineto -609.4635 -574.39844 608.73694 -574.07294 608.29425 -573.6406 curveto -607.85156 -573.2083 607.6302 -572.60675 607.6302 -571.83594 curveto -607.6302 -570.91925 607.9583 -570.2083 608.61456 -569.7031 curveto -609.2708 -569.19794 610.2031 -568.9453 611.41144 -568.9453 curveto -612.0052 -568.9453 612.56506 -568.98956 613.0911 -569.0781 curveto -613.6172 -569.1667 614.1041 -569.2995 614.55206 -569.47656 curveto -closepath -616.28644 -569.1797 moveto -617.8958 -569.1797 lineto -617.8958 -579.02344 lineto -616.28644 -579.02344 lineto -616.28644 -569.1797 lineto -closepath -616.28644 -565.35156 moveto -617.8958 -565.35156 lineto -617.8958 -567.39844 lineto -616.28644 -567.39844 lineto -616.28644 -565.35156 lineto -closepath -627.7552 -573.9922 moveto -627.7552 -572.8151 627.513 -571.9036 627.0286 -571.2578 curveto -626.54425 -570.612 625.86975 -570.28906 625.0052 -570.28906 curveto -624.1302 -570.28906 623.4505 -570.612 622.9661 -571.2578 curveto -622.48175 -571.9036 622.23956 -572.8151 622.23956 -573.9922 curveto -622.23956 -575.1589 622.48175 -576.0625 622.9661 -576.7031 curveto -623.4505 -577.34375 624.1302 -577.66406 625.0052 -577.66406 curveto -625.86975 -577.66406 626.54425 -577.34375 627.0286 -576.7031 curveto -627.513 -576.0625 627.7552 -575.1589 627.7552 -573.9922 curveto -closepath -629.3802 -577.8047 moveto -629.3802 -579.48175 629.0078 -580.7292 628.263 -581.5469 curveto -627.5182 -582.36456 626.375 -582.77344 624.8333 -582.77344 curveto -624.2708 -582.77344 623.73694 -582.7292 623.23175 -582.6406 curveto -622.72656 -582.55206 622.23956 -582.41925 621.7708 -582.2422 curveto -621.7708 -580.6797 lineto -622.23956 -580.9401 622.7057 -581.1302 623.16925 -581.25 curveto -623.6328 -581.3698 624.1041 -581.4297 624.5833 -581.4297 curveto -625.6458 -581.4297 626.44006 -581.1536 626.9661 -580.60156 curveto -627.4922 -580.0495 627.7552 -579.21094 627.7552 -578.08594 curveto -627.7552 -577.28906 lineto -627.4219 -577.8724 626.99475 -578.3073 626.47394 -578.59375 curveto -625.9531 -578.8802 625.3281 -579.02344 624.59894 -579.02344 curveto -623.3906 -579.02344 622.41925 -578.5625 621.6849 -577.6406 curveto -620.9505 -576.71875 620.5833 -575.5026 620.5833 -573.9922 curveto -620.5833 -572.46094 620.9505 -571.237 621.6849 -570.3203 curveto -622.41925 -569.4036 623.3906 -568.9453 624.59894 -568.9453 curveto -625.3281 -568.9453 625.9531 -569.08856 626.47394 -569.375 curveto -626.99475 -569.66144 627.4219 -570.0964 627.7552 -570.6797 curveto -627.7552 -569.1797 lineto -629.3802 -569.1797 lineto -629.3802 -577.8047 lineto -closepath -640.4583 -573.08594 moveto -640.4583 -579.02344 lineto -638.84894 -579.02344 lineto -638.84894 -573.1328 lineto -638.84894 -572.20575 638.6666 -571.51044 638.30206 -571.0469 curveto -637.9375 -570.5833 637.3906 -570.35156 636.66144 -570.35156 curveto -635.78644 -570.35156 635.09894 -570.6302 634.59894 -571.1875 curveto -634.09894 -571.7448 633.84894 -572.5026 633.84894 -573.46094 curveto -633.84894 -579.02344 lineto -632.22394 -579.02344 lineto -632.22394 -569.1797 lineto -633.84894 -569.1797 lineto -633.84894 -570.71094 lineto -634.2344 -570.1172 634.69006 -569.6745 635.2161 -569.3828 curveto -635.7422 -569.0911 636.34375 -568.9453 637.0208 -568.9453 curveto -638.15625 -568.9453 639.013 -569.29425 639.5911 -569.9922 curveto -640.16925 -570.6901 640.4583 -571.7214 640.4583 -573.08594 curveto -closepath -651.6927 -573.6953 moveto -651.6927 -574.4922 lineto -644.2708 -574.4922 lineto -644.3333 -575.60675 644.6666 -576.45575 645.2708 -577.03906 curveto -645.875 -577.6224 646.7135 -577.91406 647.78644 -577.91406 curveto -648.401 -577.91406 649.0 -577.83594 649.5833 -577.6797 curveto -650.1666 -577.52344 650.74475 -577.29425 651.3177 -576.9922 curveto -651.3177 -578.52344 lineto -650.74475 -578.77344 650.1536 -578.96094 649.54425 -579.08594 curveto -648.9349 -579.21094 648.3125 -579.27344 647.67706 -579.27344 curveto -646.11456 -579.27344 644.875 -578.8177 643.9583 -577.90625 curveto -643.0416 -576.9948 642.5833 -575.7578 642.5833 -574.1953 curveto -642.5833 -572.58075 643.0182 -571.30206 643.888 -570.3594 curveto -644.7578 -569.4167 645.92706 -568.9453 647.3958 -568.9453 curveto -648.7291 -568.9453 649.7786 -569.3698 650.54425 -570.21875 curveto -651.3099 -571.0677 651.6927 -572.22656 651.6927 -573.6953 curveto -closepath -650.0833 -573.22656 moveto -650.0729 -572.3411 649.8255 -571.63544 649.3411 -571.1094 curveto -648.85675 -570.5833 648.21875 -570.3203 647.42706 -570.3203 curveto -646.5208 -570.3203 645.7969 -570.57294 645.2552 -571.0781 curveto -644.7135 -571.5833 644.401 -572.2995 644.3177 -573.22656 curveto -650.0833 -573.22656 lineto -closepath -659.98956 -570.6953 moveto -659.80206 -570.5911 659.60156 -570.513 659.388 -570.46094 curveto -659.17444 -570.4089 658.9375 -570.3828 658.67706 -570.3828 curveto -657.7708 -570.3828 657.0729 -570.6797 656.5833 -571.27344 curveto -656.09375 -571.8672 655.84894 -572.7214 655.84894 -573.83594 curveto -655.84894 -579.02344 lineto -654.22394 -579.02344 lineto -654.22394 -569.1797 lineto -655.84894 -569.1797 lineto -655.84894 -570.71094 lineto -656.18225 -570.10675 656.6224 -569.66144 657.16925 -569.375 curveto -657.7161 -569.08856 658.3802 -568.9453 659.16144 -568.9453 curveto -659.2656 -568.9453 659.3854 -568.9531 659.5208 -568.96875 curveto -659.65625 -568.9844 659.80725 -569.0026 659.97394 -569.02344 curveto -659.98956 -570.6953 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -550.375 -711.1797 moveto -552.0 -711.1797 lineto -554.0156 -718.8672 lineto -556.03125 -711.1797 lineto -557.9375 -711.1797 lineto -559.96875 -718.8672 lineto -561.96875 -711.1797 lineto -563.59375 -711.1797 lineto -561.0156 -721.02344 lineto -559.1094 -721.02344 lineto -556.9844 -712.96094 lineto -554.8594 -721.02344 lineto -552.9531 -721.02344 lineto -550.375 -711.1797 lineto -closepath -571.1406 -712.3203 moveto -570.2656 -712.3203 569.5781 -712.65625 569.0781 -713.3281 curveto -568.5781 -714.0 568.3281 -714.9297 568.3281 -716.1172 curveto -568.3281 -717.29425 568.5781 -718.2214 569.0781 -718.89844 curveto -569.5781 -719.5755 570.2656 -719.91406 571.1406 -719.91406 curveto -571.9948 -719.91406 572.6745 -719.57294 573.1797 -718.8906 curveto -573.6849 -718.2083 573.9375 -717.2839 573.9375 -716.1172 curveto -573.9375 -714.9505 573.6849 -714.02606 573.1797 -713.34375 curveto -572.6745 -712.66144 571.9948 -712.3203 571.1406 -712.3203 curveto -closepath -571.1406 -710.9453 moveto -572.5469 -710.9453 573.65106 -711.40106 574.4531 -712.3125 curveto -575.2552 -713.22394 575.65625 -714.4922 575.65625 -716.1172 curveto -575.65625 -717.7214 575.2552 -718.98175 574.4531 -719.89844 curveto -573.65106 -720.8151 572.5469 -721.27344 571.1406 -721.27344 curveto -569.72394 -721.27344 568.6172 -720.8151 567.8203 -719.89844 curveto -567.02344 -718.98175 566.625 -717.7214 566.625 -716.1172 curveto -566.625 -714.4922 567.02344 -713.22394 567.8203 -712.3125 curveto -568.6172 -711.40106 569.72394 -710.9453 571.1406 -710.9453 curveto -closepath -584.03125 -712.6953 moveto -583.84375 -712.5911 583.64325 -712.513 583.4297 -712.46094 curveto -583.2161 -712.4089 582.9792 -712.3828 582.71875 -712.3828 curveto -581.8125 -712.3828 581.11456 -712.6797 580.625 -713.27344 curveto -580.13544 -713.8672 579.8906 -714.7214 579.8906 -715.83594 curveto -579.8906 -721.02344 lineto -578.2656 -721.02344 lineto -578.2656 -711.1797 lineto -579.8906 -711.1797 lineto -579.8906 -712.71094 lineto -580.22394 -712.10675 580.66406 -711.66144 581.21094 -711.375 curveto -581.7578 -711.08856 582.4219 -710.9453 583.2031 -710.9453 curveto -583.3073 -710.9453 583.42706 -710.9531 583.5625 -710.96875 curveto -583.69794 -710.9844 583.84894 -711.0026 584.0156 -711.02344 curveto -584.03125 -712.6953 lineto -closepath -586.2656 -707.35156 moveto -587.8906 -707.35156 lineto -587.8906 -715.4297 lineto -592.71875 -711.1797 lineto -594.78125 -711.1797 lineto -589.5625 -715.78906 lineto -595.0 -721.02344 lineto -592.8906 -721.02344 lineto -587.8906 -716.21094 lineto -587.8906 -721.02344 lineto -586.2656 -721.02344 lineto -586.2656 -707.35156 lineto -closepath -601.3125 -707.35156 moveto -601.3125 -708.6953 lineto -599.7656 -708.6953 lineto -599.1823 -708.6953 598.7786 -708.8125 598.5547 -709.0469 curveto -598.33075 -709.28125 598.21875 -709.7005 598.21875 -710.3047 curveto -598.21875 -711.1797 lineto -600.875 -711.1797 lineto -600.875 -712.4297 lineto -598.21875 -712.4297 lineto -598.21875 -721.02344 lineto -596.5781 -721.02344 lineto -596.5781 -712.4297 lineto -595.03125 -712.4297 lineto -595.03125 -711.1797 lineto -596.5781 -711.1797 lineto -596.5781 -710.4922 lineto -596.5781 -709.39844 596.8333 -708.60156 597.34375 -708.10156 curveto -597.8542 -707.60156 598.6667 -707.35156 599.78125 -707.35156 curveto -601.3125 -707.35156 lineto -closepath -602.3281 -707.35156 moveto -603.9375 -707.35156 lineto -603.9375 -721.02344 lineto -602.3281 -721.02344 lineto -602.3281 -707.35156 lineto -closepath -611.1406 -712.3203 moveto -610.2656 -712.3203 609.5781 -712.65625 609.0781 -713.3281 curveto -608.5781 -714.0 608.3281 -714.9297 608.3281 -716.1172 curveto -608.3281 -717.29425 608.5781 -718.2214 609.0781 -718.89844 curveto -609.5781 -719.5755 610.2656 -719.91406 611.1406 -719.91406 curveto -611.9948 -719.91406 612.6745 -719.57294 613.1797 -718.8906 curveto -613.6849 -718.2083 613.9375 -717.2839 613.9375 -716.1172 curveto -613.9375 -714.9505 613.6849 -714.02606 613.1797 -713.34375 curveto -612.6745 -712.66144 611.9948 -712.3203 611.1406 -712.3203 curveto -closepath -611.1406 -710.9453 moveto -612.5469 -710.9453 613.65106 -711.40106 614.4531 -712.3125 curveto -615.2552 -713.22394 615.65625 -714.4922 615.65625 -716.1172 curveto -615.65625 -717.7214 615.2552 -718.98175 614.4531 -719.89844 curveto -613.65106 -720.8151 612.5469 -721.27344 611.1406 -721.27344 curveto -609.72394 -721.27344 608.6172 -720.8151 607.8203 -719.89844 curveto -607.02344 -718.98175 606.625 -717.7214 606.625 -716.1172 curveto -606.625 -714.4922 607.02344 -713.22394 607.8203 -712.3125 curveto -608.6172 -711.40106 609.72394 -710.9453 611.1406 -710.9453 curveto -closepath -617.375 -711.1797 moveto -619.0 -711.1797 lineto -621.0156 -718.8672 lineto -623.03125 -711.1797 lineto -624.9375 -711.1797 lineto -626.96875 -718.8672 lineto -628.96875 -711.1797 lineto -630.59375 -711.1797 lineto -628.0156 -721.02344 lineto -626.1094 -721.02344 lineto -623.9844 -712.96094 lineto -621.8594 -721.02344 lineto -619.9531 -721.02344 lineto -617.375 -711.1797 lineto -closepath -640.59375 -711.47656 moveto -640.59375 -712.9922 lineto -640.13544 -712.763 639.66144 -712.58856 639.1719 -712.46875 curveto -638.6823 -712.34894 638.1719 -712.28906 637.6406 -712.28906 curveto -636.83856 -712.28906 636.237 -712.41406 635.83594 -712.66406 curveto -635.4349 -712.91406 635.2344 -713.2839 635.2344 -713.77344 curveto -635.2344 -714.14844 635.3776 -714.4427 635.66406 -714.65625 curveto -635.9505 -714.8698 636.52606 -715.0755 637.3906 -715.27344 curveto -637.9531 -715.3828 lineto -639.09894 -715.6328 639.91406 -715.98175 640.39844 -716.4297 curveto -640.8828 -716.8776 641.125 -717.5026 641.125 -718.3047 curveto -641.125 -719.2214 640.763 -719.9453 640.03906 -720.47656 curveto -639.3151 -721.0078 638.32294 -721.27344 637.0625 -721.27344 curveto -636.53125 -721.27344 635.9792 -721.22394 635.40625 -721.125 curveto -634.8333 -721.02606 634.2292 -720.8724 633.59375 -720.66406 curveto -633.59375 -718.9922 lineto -634.19794 -719.3047 634.78906 -719.53906 635.3672 -719.6953 curveto -635.9453 -719.85156 636.5208 -719.9297 637.09375 -719.9297 curveto -637.8542 -719.9297 638.4401 -719.7995 638.85156 -719.53906 curveto -639.263 -719.2786 639.46875 -718.9089 639.46875 -718.4297 curveto -639.46875 -717.9922 639.3203 -717.65625 639.02344 -717.4219 curveto -638.72656 -717.1875 638.0781 -716.96094 637.0781 -716.7422 curveto -636.5156 -716.6172 lineto -635.5052 -716.39844 634.7786 -716.07294 634.33594 -715.6406 curveto -633.89325 -715.2083 633.6719 -714.60675 633.6719 -713.83594 curveto -633.6719 -712.91925 634.0 -712.2083 634.65625 -711.7031 curveto -635.3125 -711.19794 636.2448 -710.9453 637.4531 -710.9453 curveto -638.0469 -710.9453 638.60675 -710.98956 639.1328 -711.0781 curveto -639.6589 -711.1667 640.1458 -711.2995 640.59375 -711.47656 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -530.3177 -138.47656 moveto -530.3177 -139.99219 lineto -529.8594 -139.76302 529.3854 -139.58855 528.8958 -139.46875 curveto -528.40625 -139.34895 527.8958 -139.28906 527.36456 -139.28906 curveto -526.5625 -139.28906 525.96094 -139.41406 525.5599 -139.66406 curveto -525.1588 -139.91406 524.9583 -140.28386 524.9583 -140.77344 curveto -524.9583 -141.14844 525.10156 -141.4427 525.388 -141.65625 curveto -525.67444 -141.8698 526.25 -142.07552 527.11456 -142.27344 curveto -527.67706 -142.38281 lineto -528.8229 -142.63281 529.638 -142.98177 530.1224 -143.42969 curveto -530.60675 -143.87761 530.84894 -144.50261 530.84894 -145.30469 curveto -530.84894 -146.22136 530.48694 -146.94531 529.763 -147.47656 curveto -529.03906 -148.00781 528.0469 -148.27344 526.78644 -148.27344 curveto -526.2552 -148.27344 525.7031 -148.22395 525.1302 -148.125 curveto -524.55725 -148.02605 523.9531 -147.87239 523.3177 -147.66406 curveto -523.3177 -145.99219 lineto -523.9219 -146.30469 524.513 -146.53906 525.0911 -146.69531 curveto -525.66925 -146.85156 526.24475 -146.92969 526.8177 -146.92969 curveto -527.5781 -146.92969 528.16406 -146.79948 528.5755 -146.53906 curveto -528.98694 -146.27864 529.1927 -145.90886 529.1927 -145.42969 curveto -529.1927 -144.99219 529.04425 -144.65625 528.7474 -144.42188 curveto -528.4505 -144.1875 527.80206 -143.96094 526.80206 -143.74219 curveto -526.23956 -143.61719 lineto -525.2291 -143.39844 524.50256 -143.07292 524.0599 -142.64062 curveto -523.6172 -142.20833 523.3958 -141.60677 523.3958 -140.83594 curveto -523.3958 -139.91927 523.72394 -139.20833 524.3802 -138.70312 curveto -525.03644 -138.19792 525.96875 -137.94531 527.17706 -137.94531 curveto -527.7708 -137.94531 528.3307 -137.98958 528.85675 -138.07812 curveto -529.3828 -138.16667 529.86975 -138.29948 530.3177 -138.47656 curveto -closepath -531.8802 -144.13281 moveto -531.8802 -138.17969 lineto -533.48956 -138.17969 lineto -533.48956 -144.07031 lineto -533.48956 -145.00781 533.6719 -145.70833 534.03644 -146.17188 curveto -534.401 -146.63542 534.9479 -146.86719 535.67706 -146.86719 curveto -536.55206 -146.86719 537.2422 -146.58855 537.7474 -146.03125 curveto -538.25256 -145.47395 538.5052 -144.71614 538.5052 -143.75781 curveto -538.5052 -138.17969 lineto -540.1302 -138.17969 lineto -540.1302 -148.02344 lineto -538.5052 -148.02344 lineto -538.5052 -146.50781 lineto -538.1094 -147.11198 537.6536 -147.5573 537.138 -147.84375 curveto -536.6224 -148.1302 536.0208 -148.27344 535.3333 -148.27344 curveto -534.1979 -148.27344 533.3385 -147.92188 532.7552 -147.21875 curveto -532.1719 -146.51562 531.8802 -145.48698 531.8802 -144.13281 curveto -closepath -535.9427 -137.94531 moveto -535.9427 -137.94531 lineto -closepath -548.7552 -139.69531 moveto -548.5677 -139.59114 548.3672 -139.51302 548.1536 -139.46094 curveto -547.94006 -139.40886 547.7031 -139.38281 547.4427 -139.38281 curveto -546.53644 -139.38281 545.8385 -139.67969 545.34894 -140.27344 curveto -544.8594 -140.86719 544.61456 -141.72136 544.61456 -142.83594 curveto -544.61456 -148.02344 lineto -542.98956 -148.02344 lineto -542.98956 -138.17969 lineto -544.61456 -138.17969 lineto -544.61456 -139.71094 lineto -544.9479 -139.10677 545.388 -138.66145 545.9349 -138.375 curveto -546.48175 -138.08855 547.1458 -137.94531 547.92706 -137.94531 curveto -548.03125 -137.94531 548.151 -137.95312 548.28644 -137.96875 curveto -548.4219 -137.98438 548.5729 -138.00261 548.73956 -138.02344 curveto -548.7552 -139.69531 lineto -closepath -556.7552 -139.69531 moveto -556.5677 -139.59114 556.3672 -139.51302 556.1536 -139.46094 curveto -555.94006 -139.40886 555.7031 -139.38281 555.4427 -139.38281 curveto -554.53644 -139.38281 553.8385 -139.67969 553.34894 -140.27344 curveto -552.8594 -140.86719 552.61456 -141.72136 552.61456 -142.83594 curveto -552.61456 -148.02344 lineto -550.98956 -148.02344 lineto -550.98956 -138.17969 lineto -552.61456 -138.17969 lineto -552.61456 -139.71094 lineto -552.9479 -139.10677 553.388 -138.66145 553.9349 -138.375 curveto -554.48175 -138.08855 555.1458 -137.94531 555.92706 -137.94531 curveto -556.03125 -137.94531 556.151 -137.95312 556.28644 -137.96875 curveto -556.4219 -137.98438 556.5729 -138.00261 556.73956 -138.02344 curveto -556.7552 -139.69531 lineto -closepath -562.86456 -139.32031 moveto -561.98956 -139.32031 561.30206 -139.65625 560.80206 -140.32812 curveto -560.30206 -141.0 560.05206 -141.92969 560.05206 -143.11719 curveto -560.05206 -144.29427 560.30206 -145.22136 560.80206 -145.89844 curveto -561.30206 -146.57552 561.98956 -146.91406 562.86456 -146.91406 curveto -563.71875 -146.91406 564.39844 -146.57292 564.9036 -145.89062 curveto -565.4088 -145.20833 565.66144 -144.28386 565.66144 -143.11719 curveto -565.66144 -141.95052 565.4088 -141.02605 564.9036 -140.34375 curveto -564.39844 -139.66145 563.71875 -139.32031 562.86456 -139.32031 curveto -closepath -562.86456 -137.94531 moveto -564.2708 -137.94531 565.375 -138.40105 566.17706 -139.3125 curveto -566.9791 -140.22395 567.3802 -141.49219 567.3802 -143.11719 curveto -567.3802 -144.72136 566.9791 -145.98177 566.17706 -146.89844 curveto -565.375 -147.81511 564.2708 -148.27344 562.86456 -148.27344 curveto -561.4479 -148.27344 560.3411 -147.81511 559.54425 -146.89844 curveto -558.7474 -145.98177 558.34894 -144.72136 558.34894 -143.11719 curveto -558.34894 -141.49219 558.7474 -140.22395 559.54425 -139.3125 curveto -560.3411 -138.40105 561.4479 -137.94531 562.86456 -137.94531 curveto -closepath -576.5208 -142.99219 moveto -576.5208 -141.81511 576.2786 -140.90364 575.79425 -140.25781 curveto -575.3099 -139.61198 574.6354 -139.28906 573.7708 -139.28906 curveto -572.8958 -139.28906 572.2161 -139.61198 571.73175 -140.25781 curveto -571.2474 -140.90364 571.0052 -141.81511 571.0052 -142.99219 curveto -571.0052 -144.15886 571.2474 -145.0625 571.73175 -145.70312 curveto -572.2161 -146.34375 572.8958 -146.66406 573.7708 -146.66406 curveto -574.6354 -146.66406 575.3099 -146.34375 575.79425 -145.70312 curveto -576.2786 -145.0625 576.5208 -144.15886 576.5208 -142.99219 curveto -closepath -578.1458 -146.80469 moveto -578.1458 -148.48177 577.77344 -149.72917 577.0286 -150.54688 curveto -576.2838 -151.36458 575.1406 -151.77344 573.59894 -151.77344 curveto -573.03644 -151.77344 572.50256 -151.72917 571.9974 -151.64062 curveto -571.4922 -151.55208 571.0052 -151.41927 570.53644 -151.24219 curveto -570.53644 -149.67969 lineto -571.0052 -149.94011 571.4713 -150.1302 571.9349 -150.25 curveto -572.39844 -150.3698 572.86975 -150.42969 573.34894 -150.42969 curveto -574.41144 -150.42969 575.2057 -150.15364 575.73175 -149.60156 curveto -576.2578 -149.04948 576.5208 -148.21094 576.5208 -147.08594 curveto -576.5208 -146.28906 lineto -576.1875 -146.87239 575.7604 -147.3073 575.23956 -147.59375 curveto -574.71875 -147.8802 574.09375 -148.02344 573.36456 -148.02344 curveto -572.15625 -148.02344 571.1849 -147.5625 570.4505 -146.64062 curveto -569.7161 -145.71875 569.34894 -144.50261 569.34894 -142.99219 curveto -569.34894 -141.46094 569.7161 -140.23698 570.4505 -139.32031 curveto -571.1849 -138.40364 572.15625 -137.94531 573.36456 -137.94531 curveto -574.09375 -137.94531 574.71875 -138.08855 575.23956 -138.375 curveto -575.7604 -138.66145 576.1875 -139.09636 576.5208 -139.67969 curveto -576.5208 -138.17969 lineto -578.1458 -138.17969 lineto -578.1458 -146.80469 lineto -closepath -585.5208 -143.07031 moveto -584.2083 -143.07031 583.30206 -143.22136 582.80206 -143.52344 curveto -582.30206 -143.82552 582.05206 -144.33594 582.05206 -145.05469 curveto -582.05206 -145.62761 582.23956 -146.08333 582.61456 -146.42188 curveto -582.98956 -146.76042 583.5052 -146.92969 584.16144 -146.92969 curveto -585.05725 -146.92969 585.776 -146.61198 586.3177 -145.97656 curveto -586.8594 -145.34114 587.1302 -144.49219 587.1302 -143.42969 curveto -587.1302 -143.07031 lineto -585.5208 -143.07031 lineto -closepath -588.73956 -142.41406 moveto -588.73956 -148.02344 lineto -587.1302 -148.02344 lineto -587.1302 -146.52344 lineto -586.7552 -147.12761 586.29425 -147.57031 585.7474 -147.85156 curveto -585.2005 -148.13281 584.526 -148.27344 583.72394 -148.27344 curveto -582.7135 -148.27344 581.91144 -147.99219 581.3177 -147.42969 curveto -580.72394 -146.86719 580.42706 -146.11198 580.42706 -145.16406 curveto -580.42706 -144.04948 580.79944 -143.21094 581.54425 -142.64844 curveto -582.28906 -142.08594 583.3958 -141.80469 584.86456 -141.80469 curveto -587.1302 -141.80469 lineto -587.1302 -141.64844 lineto -587.1302 -140.90886 586.8854 -140.33594 586.3958 -139.92969 curveto -585.90625 -139.52344 585.21875 -139.32031 584.3333 -139.32031 curveto -583.7708 -139.32031 583.22394 -139.38542 582.6927 -139.51562 curveto -582.16144 -139.64583 581.6458 -139.84636 581.1458 -140.11719 curveto -581.1458 -138.63281 lineto -581.73956 -138.40364 582.31506 -138.23177 582.8724 -138.11719 curveto -583.4297 -138.00261 583.97394 -137.94531 584.5052 -137.94531 curveto -585.9219 -137.94531 586.98175 -138.31511 587.6849 -139.05469 curveto -588.388 -139.79427 588.73956 -140.91406 588.73956 -142.41406 curveto -closepath -592.6458 -135.38281 moveto -592.6458 -138.17969 lineto -595.97394 -138.17969 lineto -595.97394 -139.42969 lineto -592.6458 -139.42969 lineto -592.6458 -144.77344 lineto -592.6458 -145.57552 592.7552 -146.09114 592.97394 -146.32031 curveto -593.1927 -146.54948 593.6406 -146.66406 594.3177 -146.66406 curveto -595.97394 -146.66406 lineto -595.97394 -148.02344 lineto -594.3177 -148.02344 lineto -593.0677 -148.02344 592.2057 -147.79167 591.73175 -147.32812 curveto -591.2578 -146.86458 591.0208 -146.01302 591.0208 -144.77344 curveto -591.0208 -139.42969 lineto -589.8333 -139.42969 lineto -589.8333 -138.17969 lineto -591.0208 -138.17969 lineto -591.0208 -135.38281 lineto -592.6458 -135.38281 lineto -closepath -606.4583 -142.69531 moveto -606.4583 -143.49219 lineto -599.03644 -143.49219 lineto -599.09894 -144.60677 599.43225 -145.45573 600.03644 -146.03906 curveto -600.6406 -146.62239 601.4791 -146.91406 602.55206 -146.91406 curveto -603.1666 -146.91406 603.7656 -146.83594 604.34894 -146.67969 curveto -604.93225 -146.52344 605.5104 -146.29427 606.0833 -145.99219 curveto -606.0833 -147.52344 lineto -605.5104 -147.77344 604.91925 -147.96094 604.3099 -148.08594 curveto -603.7005 -148.21094 603.0781 -148.27344 602.4427 -148.27344 curveto -600.8802 -148.27344 599.6406 -147.8177 598.72394 -146.90625 curveto -597.80725 -145.9948 597.34894 -144.75781 597.34894 -143.19531 curveto -597.34894 -141.58073 597.7838 -140.30208 598.6536 -139.35938 curveto -599.52344 -138.41667 600.6927 -137.94531 602.16144 -137.94531 curveto -603.49475 -137.94531 604.54425 -138.3698 605.3099 -139.21875 curveto -606.0755 -140.0677 606.4583 -141.22656 606.4583 -142.69531 curveto -closepath -604.84894 -142.22656 moveto -604.8385 -141.34114 604.5911 -140.63542 604.10675 -140.10938 curveto -603.6224 -139.58333 602.9844 -139.32031 602.1927 -139.32031 curveto -601.28644 -139.32031 600.5625 -139.57292 600.0208 -140.07812 curveto -599.4791 -140.58333 599.1666 -141.29948 599.0833 -142.22656 curveto -604.84894 -142.22656 lineto -closepath -616.5208 -151.00781 moveto -616.5208 -152.27344 lineto -607.17706 -152.27344 lineto -607.17706 -151.00781 lineto -616.5208 -151.00781 lineto -closepath -625.7083 -140.07031 moveto -626.11456 -139.34114 626.59894 -138.80469 627.16144 -138.46094 curveto -627.72394 -138.11719 628.3854 -137.94531 629.1458 -137.94531 curveto -630.1666 -137.94531 630.9557 -138.30469 631.513 -139.02344 curveto -632.0703 -139.74219 632.34894 -140.76302 632.34894 -142.08594 curveto -632.34894 -148.02344 lineto -630.72394 -148.02344 lineto -630.72394 -142.13281 lineto -630.72394 -141.19531 630.55725 -140.49739 630.22394 -140.03906 curveto -629.8906 -139.58073 629.3802 -139.35156 628.6927 -139.35156 curveto -627.8594 -139.35156 627.2005 -139.6302 626.7161 -140.1875 curveto -626.23175 -140.7448 625.98956 -141.50261 625.98956 -142.46094 curveto -625.98956 -148.02344 lineto -624.34894 -148.02344 lineto -624.34894 -142.13281 lineto -624.34894 -141.18489 624.18225 -140.48438 623.84894 -140.03125 curveto -623.5156 -139.57812 623.0 -139.35156 622.30206 -139.35156 curveto -621.4791 -139.35156 620.8255 -139.6302 620.3411 -140.1875 curveto -619.85675 -140.7448 619.61456 -141.50261 619.61456 -142.46094 curveto -619.61456 -148.02344 lineto -617.98956 -148.02344 lineto -617.98956 -138.17969 lineto -619.61456 -138.17969 lineto -619.61456 -139.71094 lineto -619.9791 -139.10677 620.41925 -138.66145 620.9349 -138.375 curveto -621.4505 -138.08855 622.0625 -137.94531 622.7708 -137.94531 curveto -623.48956 -137.94531 624.09894 -138.12761 624.59894 -138.49219 curveto -625.09894 -138.85677 625.46875 -139.38281 625.7083 -140.07031 curveto -closepath -638.86456 -139.32031 moveto -637.98956 -139.32031 637.30206 -139.65625 636.80206 -140.32812 curveto -636.30206 -141.0 636.05206 -141.92969 636.05206 -143.11719 curveto -636.05206 -144.29427 636.30206 -145.22136 636.80206 -145.89844 curveto -637.30206 -146.57552 637.98956 -146.91406 638.86456 -146.91406 curveto -639.71875 -146.91406 640.39844 -146.57292 640.9036 -145.89062 curveto -641.4088 -145.20833 641.66144 -144.28386 641.66144 -143.11719 curveto -641.66144 -141.95052 641.4088 -141.02605 640.9036 -140.34375 curveto -640.39844 -139.66145 639.71875 -139.32031 638.86456 -139.32031 curveto -closepath -638.86456 -137.94531 moveto -640.2708 -137.94531 641.375 -138.40105 642.17706 -139.3125 curveto -642.9791 -140.22395 643.3802 -141.49219 643.3802 -143.11719 curveto -643.3802 -144.72136 642.9791 -145.98177 642.17706 -146.89844 curveto -641.375 -147.81511 640.2708 -148.27344 638.86456 -148.27344 curveto -637.4479 -148.27344 636.3411 -147.81511 635.54425 -146.89844 curveto -634.7474 -145.98177 634.34894 -144.72136 634.34894 -143.11719 curveto -634.34894 -141.49219 634.7474 -140.22395 635.54425 -139.3125 curveto -636.3411 -138.40105 637.4479 -137.94531 638.86456 -137.94531 curveto -closepath -652.5208 -139.67969 moveto -652.5208 -134.35156 lineto -654.1458 -134.35156 lineto -654.1458 -148.02344 lineto -652.5208 -148.02344 lineto -652.5208 -146.53906 lineto -652.1875 -147.13281 651.7604 -147.57031 651.23956 -147.85156 curveto -650.71875 -148.13281 650.09375 -148.27344 649.36456 -148.27344 curveto -648.17706 -148.27344 647.21094 -147.79948 646.4661 -146.85156 curveto -645.7213 -145.90364 645.34894 -144.65886 645.34894 -143.11719 curveto -645.34894 -141.56511 645.7213 -140.31511 646.4661 -139.36719 curveto -647.21094 -138.41927 648.17706 -137.94531 649.36456 -137.94531 curveto -650.09375 -137.94531 650.71875 -138.08594 651.23956 -138.36719 curveto -651.7604 -138.64844 652.1875 -139.08594 652.5208 -139.67969 curveto -closepath -647.0052 -143.11719 moveto -647.0052 -144.30469 647.25 -145.23698 647.73956 -145.91406 curveto -648.2291 -146.59114 648.90625 -146.92969 649.7708 -146.92969 curveto -650.625 -146.92969 651.2969 -146.59114 651.78644 -145.91406 curveto -652.276 -145.23698 652.5208 -144.30469 652.5208 -143.11719 curveto -652.5208 -141.91927 652.276 -140.98177 651.78644 -140.30469 curveto -651.2969 -139.62761 650.625 -139.28906 649.7708 -139.28906 curveto -648.90625 -139.28906 648.2291 -139.62761 647.73956 -140.30469 curveto -647.25 -140.98177 647.0052 -141.91927 647.0052 -143.11719 curveto -closepath -665.4583 -142.69531 moveto -665.4583 -143.49219 lineto -658.03644 -143.49219 lineto -658.09894 -144.60677 658.43225 -145.45573 659.03644 -146.03906 curveto -659.6406 -146.62239 660.4791 -146.91406 661.55206 -146.91406 curveto -662.1666 -146.91406 662.7656 -146.83594 663.34894 -146.67969 curveto -663.93225 -146.52344 664.5104 -146.29427 665.0833 -145.99219 curveto -665.0833 -147.52344 lineto -664.5104 -147.77344 663.91925 -147.96094 663.3099 -148.08594 curveto -662.7005 -148.21094 662.0781 -148.27344 661.4427 -148.27344 curveto -659.8802 -148.27344 658.6406 -147.8177 657.72394 -146.90625 curveto -656.80725 -145.9948 656.34894 -144.75781 656.34894 -143.19531 curveto -656.34894 -141.58073 656.7838 -140.30208 657.6536 -139.35938 curveto -658.52344 -138.41667 659.6927 -137.94531 661.16144 -137.94531 curveto -662.49475 -137.94531 663.54425 -138.3698 664.3099 -139.21875 curveto -665.0755 -140.0677 665.4583 -141.22656 665.4583 -142.69531 curveto -closepath -663.84894 -142.22656 moveto -663.8385 -141.34114 663.5911 -140.63542 663.10675 -140.10938 curveto -662.6224 -139.58333 661.9844 -139.32031 661.1927 -139.32031 curveto -660.28644 -139.32031 659.5625 -139.57292 659.0208 -140.07812 curveto -658.4791 -140.58333 658.1666 -141.29948 658.0833 -142.22656 curveto -663.84894 -142.22656 lineto -closepath -668.05206 -134.35156 moveto -669.66144 -134.35156 lineto -669.66144 -148.02344 lineto -668.05206 -148.02344 lineto -668.05206 -134.35156 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -535.72394 -186.72656 moveto -535.72394 -188.24219 lineto -535.2656 -188.01302 534.7916 -187.83855 534.30206 -187.71875 curveto -533.8125 -187.59895 533.30206 -187.53906 532.7708 -187.53906 curveto -531.96875 -187.53906 531.3672 -187.66406 530.9661 -187.91406 curveto -530.56506 -188.16406 530.36456 -188.53386 530.36456 -189.02344 curveto -530.36456 -189.39844 530.5078 -189.6927 530.79425 -189.90625 curveto -531.0807 -190.1198 531.65625 -190.32552 532.5208 -190.52344 curveto -533.0833 -190.63281 lineto -534.2291 -190.88281 535.04425 -191.23177 535.5286 -191.67969 curveto -536.013 -192.12761 536.2552 -192.75261 536.2552 -193.55469 curveto -536.2552 -194.47136 535.8932 -195.19531 535.16925 -195.72656 curveto -534.4453 -196.25781 533.4531 -196.52344 532.1927 -196.52344 curveto -531.66144 -196.52344 531.1094 -196.47395 530.53644 -196.375 curveto -529.9635 -196.27605 529.3594 -196.12239 528.72394 -195.91406 curveto -528.72394 -194.24219 lineto -529.3281 -194.55469 529.91925 -194.78906 530.4974 -194.94531 curveto -531.0755 -195.10156 531.651 -195.17969 532.22394 -195.17969 curveto -532.9844 -195.17969 533.5703 -195.04948 533.98175 -194.78906 curveto -534.3932 -194.52864 534.59894 -194.15886 534.59894 -193.67969 curveto -534.59894 -193.24219 534.4505 -192.90625 534.1536 -192.67188 curveto -533.85675 -192.4375 533.2083 -192.21094 532.2083 -191.99219 curveto -531.6458 -191.86719 lineto -530.6354 -191.64844 529.9088 -191.32292 529.4661 -190.89062 curveto -529.02344 -190.45833 528.80206 -189.85677 528.80206 -189.08594 curveto -528.80206 -188.16927 529.1302 -187.45833 529.78644 -186.95312 curveto -530.4427 -186.44792 531.375 -186.19531 532.5833 -186.19531 curveto -533.17706 -186.19531 533.73694 -186.23958 534.263 -186.32812 curveto -534.78906 -186.41667 535.276 -186.54948 535.72394 -186.72656 curveto -closepath -541.55206 -197.19531 moveto -541.09375 -198.36198 540.64844 -199.125 540.2161 -199.48438 curveto -539.7838 -199.84375 539.2031 -200.02344 538.47394 -200.02344 curveto -537.17706 -200.02344 lineto -537.17706 -198.66406 lineto -538.1302 -198.66406 lineto -538.5781 -198.66406 538.92444 -198.55989 539.16925 -198.35156 curveto -539.41406 -198.14323 539.6875 -197.64323 539.98956 -196.85156 curveto -540.2708 -196.11719 lineto -536.28644 -186.42969 lineto -538.0052 -186.42969 lineto -541.0833 -194.13281 lineto -544.16144 -186.42969 lineto -545.86456 -186.42969 lineto -541.55206 -197.19531 lineto -closepath -554.72394 -186.72656 moveto -554.72394 -188.24219 lineto -554.2656 -188.01302 553.7916 -187.83855 553.30206 -187.71875 curveto -552.8125 -187.59895 552.30206 -187.53906 551.7708 -187.53906 curveto -550.96875 -187.53906 550.3672 -187.66406 549.9661 -187.91406 curveto -549.56506 -188.16406 549.36456 -188.53386 549.36456 -189.02344 curveto -549.36456 -189.39844 549.5078 -189.6927 549.79425 -189.90625 curveto -550.0807 -190.1198 550.65625 -190.32552 551.5208 -190.52344 curveto -552.0833 -190.63281 lineto -553.2291 -190.88281 554.04425 -191.23177 554.5286 -191.67969 curveto -555.013 -192.12761 555.2552 -192.75261 555.2552 -193.55469 curveto -555.2552 -194.47136 554.8932 -195.19531 554.16925 -195.72656 curveto -553.4453 -196.25781 552.4531 -196.52344 551.1927 -196.52344 curveto -550.66144 -196.52344 550.1094 -196.47395 549.53644 -196.375 curveto -548.9635 -196.27605 548.3594 -196.12239 547.72394 -195.91406 curveto -547.72394 -194.24219 lineto -548.3281 -194.55469 548.91925 -194.78906 549.4974 -194.94531 curveto -550.0755 -195.10156 550.651 -195.17969 551.22394 -195.17969 curveto -551.9844 -195.17969 552.5703 -195.04948 552.98175 -194.78906 curveto -553.3932 -194.52864 553.59894 -194.15886 553.59894 -193.67969 curveto -553.59894 -193.24219 553.4505 -192.90625 553.1536 -192.67188 curveto -552.85675 -192.4375 552.2083 -192.21094 551.2083 -191.99219 curveto -550.6458 -191.86719 lineto -549.6354 -191.64844 548.9088 -191.32292 548.4661 -190.89062 curveto -548.02344 -190.45833 547.80206 -189.85677 547.80206 -189.08594 curveto -547.80206 -188.16927 548.1302 -187.45833 548.78644 -186.95312 curveto -549.4427 -186.44792 550.375 -186.19531 551.5833 -186.19531 curveto -552.17706 -186.19531 552.73694 -186.23958 553.263 -186.32812 curveto -553.78906 -186.41667 554.276 -186.54948 554.72394 -186.72656 curveto -closepath -558.05206 -183.63281 moveto -558.05206 -186.42969 lineto -561.3802 -186.42969 lineto -561.3802 -187.67969 lineto -558.05206 -187.67969 lineto -558.05206 -193.02344 lineto -558.05206 -193.82552 558.16144 -194.34114 558.3802 -194.57031 curveto -558.59894 -194.79948 559.0469 -194.91406 559.72394 -194.91406 curveto -561.3802 -194.91406 lineto -561.3802 -196.27344 lineto -559.72394 -196.27344 lineto -558.47394 -196.27344 557.61194 -196.04167 557.138 -195.57812 curveto -556.66406 -195.11458 556.42706 -194.26302 556.42706 -193.02344 curveto -556.42706 -187.67969 lineto -555.23956 -187.67969 lineto -555.23956 -186.42969 lineto -556.42706 -186.42969 lineto -556.42706 -183.63281 lineto -558.05206 -183.63281 lineto -closepath -571.86456 -190.94531 moveto -571.86456 -191.74219 lineto -564.4427 -191.74219 lineto -564.5052 -192.85677 564.8385 -193.70573 565.4427 -194.28906 curveto -566.0469 -194.87239 566.8854 -195.16406 567.9583 -195.16406 curveto -568.5729 -195.16406 569.1719 -195.08594 569.7552 -194.92969 curveto -570.3385 -194.77344 570.9166 -194.54427 571.48956 -194.24219 curveto -571.48956 -195.77344 lineto -570.9166 -196.02344 570.3255 -196.21094 569.7161 -196.33594 curveto -569.10675 -196.46094 568.4844 -196.52344 567.84894 -196.52344 curveto -566.28644 -196.52344 565.0469 -196.0677 564.1302 -195.15625 curveto -563.2135 -194.2448 562.7552 -193.00781 562.7552 -191.44531 curveto -562.7552 -189.83073 563.19006 -188.55208 564.0599 -187.60938 curveto -564.9297 -186.66667 566.09894 -186.19531 567.5677 -186.19531 curveto -568.901 -186.19531 569.9505 -186.6198 570.7161 -187.46875 curveto -571.48175 -188.3177 571.86456 -189.47656 571.86456 -190.94531 curveto -closepath -570.2552 -190.47656 moveto -570.24475 -189.59114 569.9974 -188.88542 569.513 -188.35938 curveto -569.0286 -187.83333 568.3906 -187.57031 567.59894 -187.57031 curveto -566.6927 -187.57031 565.96875 -187.82292 565.42706 -188.32812 curveto -564.8854 -188.83333 564.5729 -189.54948 564.48956 -190.47656 curveto -570.2552 -190.47656 lineto -closepath -582.11456 -188.32031 moveto -582.5208 -187.59114 583.0052 -187.05469 583.5677 -186.71094 curveto -584.1302 -186.36719 584.7916 -186.19531 585.55206 -186.19531 curveto -586.5729 -186.19531 587.36194 -186.55469 587.91925 -187.27344 curveto -588.47656 -187.99219 588.7552 -189.01302 588.7552 -190.33594 curveto -588.7552 -196.27344 lineto -587.1302 -196.27344 lineto -587.1302 -190.38281 lineto -587.1302 -189.44531 586.9635 -188.74739 586.6302 -188.28906 curveto -586.2969 -187.83073 585.78644 -187.60156 585.09894 -187.60156 curveto -584.2656 -187.60156 583.60675 -187.8802 583.1224 -188.4375 curveto -582.638 -188.9948 582.3958 -189.75261 582.3958 -190.71094 curveto -582.3958 -196.27344 lineto -580.7552 -196.27344 lineto -580.7552 -190.38281 lineto -580.7552 -189.43489 580.5885 -188.73438 580.2552 -188.28125 curveto -579.9219 -187.82812 579.40625 -187.60156 578.7083 -187.60156 curveto -577.8854 -187.60156 577.23175 -187.8802 576.7474 -188.4375 curveto -576.263 -188.9948 576.0208 -189.75261 576.0208 -190.71094 curveto -576.0208 -196.27344 lineto -574.3958 -196.27344 lineto -574.3958 -186.42969 lineto -576.0208 -186.42969 lineto -576.0208 -187.96094 lineto -576.3854 -187.35677 576.8255 -186.91145 577.3411 -186.625 curveto -577.85675 -186.33855 578.46875 -186.19531 579.17706 -186.19531 curveto -579.8958 -186.19531 580.5052 -186.37761 581.0052 -186.74219 curveto -581.5052 -187.10677 581.875 -187.63281 582.11456 -188.32031 curveto -closepath -591.67706 -194.03906 moveto -593.53644 -194.03906 lineto -593.53644 -196.27344 lineto -591.67706 -196.27344 lineto -591.67706 -194.03906 lineto -closepath -597.4583 -186.42969 moveto -599.0677 -186.42969 lineto -599.0677 -196.27344 lineto -597.4583 -196.27344 lineto -597.4583 -186.42969 lineto -closepath -597.4583 -182.60156 moveto -599.0677 -182.60156 lineto -599.0677 -184.64844 lineto -597.4583 -184.64844 lineto -597.4583 -182.60156 lineto -closepath -610.6302 -190.33594 moveto -610.6302 -196.27344 lineto -609.0208 -196.27344 lineto -609.0208 -190.38281 lineto -609.0208 -189.45573 608.8385 -188.76042 608.47394 -188.29688 curveto -608.1094 -187.83333 607.5625 -187.60156 606.8333 -187.60156 curveto -605.9583 -187.60156 605.2708 -187.8802 604.7708 -188.4375 curveto -604.2708 -188.9948 604.0208 -189.75261 604.0208 -190.71094 curveto -604.0208 -196.27344 lineto -602.3958 -196.27344 lineto -602.3958 -186.42969 lineto -604.0208 -186.42969 lineto -604.0208 -187.96094 lineto -604.40625 -187.36719 604.86194 -186.92448 605.388 -186.63281 curveto -605.91406 -186.34114 606.5156 -186.19531 607.1927 -186.19531 curveto -608.3281 -186.19531 609.1849 -186.54427 609.763 -187.24219 curveto -610.3411 -187.94011 610.6302 -188.97136 610.6302 -190.33594 curveto -closepath -619.92706 -187.92969 moveto -619.92706 -182.60156 lineto -621.55206 -182.60156 lineto -621.55206 -196.27344 lineto -619.92706 -196.27344 lineto -619.92706 -194.78906 lineto -619.59375 -195.38281 619.1666 -195.82031 618.6458 -196.10156 curveto -618.125 -196.38281 617.5 -196.52344 616.7708 -196.52344 curveto -615.5833 -196.52344 614.6172 -196.04948 613.8724 -195.10156 curveto -613.12756 -194.15364 612.7552 -192.90886 612.7552 -191.36719 curveto -612.7552 -189.81511 613.12756 -188.56511 613.8724 -187.61719 curveto -614.6172 -186.66927 615.5833 -186.19531 616.7708 -186.19531 curveto -617.5 -186.19531 618.125 -186.33594 618.6458 -186.61719 curveto -619.1666 -186.89844 619.59375 -187.33594 619.92706 -187.92969 curveto -closepath -614.41144 -191.36719 moveto -614.41144 -192.55469 614.65625 -193.48698 615.1458 -194.16406 curveto -615.6354 -194.84114 616.3125 -195.17969 617.17706 -195.17969 curveto -618.03125 -195.17969 618.7031 -194.84114 619.1927 -194.16406 curveto -619.68225 -193.48698 619.92706 -192.55469 619.92706 -191.36719 curveto -619.92706 -190.16927 619.68225 -189.23177 619.1927 -188.55469 curveto -618.7031 -187.87761 618.03125 -187.53906 617.17706 -187.53906 curveto -616.3125 -187.53906 615.6354 -187.87761 615.1458 -188.55469 curveto -614.65625 -189.23177 614.41144 -190.16927 614.41144 -191.36719 curveto -closepath -632.86456 -190.94531 moveto -632.86456 -191.74219 lineto -625.4427 -191.74219 lineto -625.5052 -192.85677 625.8385 -193.70573 626.4427 -194.28906 curveto -627.0469 -194.87239 627.8854 -195.16406 628.9583 -195.16406 curveto -629.5729 -195.16406 630.1719 -195.08594 630.7552 -194.92969 curveto -631.3385 -194.77344 631.9166 -194.54427 632.48956 -194.24219 curveto -632.48956 -195.77344 lineto -631.9166 -196.02344 631.3255 -196.21094 630.7161 -196.33594 curveto -630.10675 -196.46094 629.4844 -196.52344 628.84894 -196.52344 curveto -627.28644 -196.52344 626.0469 -196.0677 625.1302 -195.15625 curveto -624.2135 -194.2448 623.7552 -193.00781 623.7552 -191.44531 curveto -623.7552 -189.83073 624.19006 -188.55208 625.0599 -187.60938 curveto -625.9297 -186.66667 627.09894 -186.19531 628.5677 -186.19531 curveto -629.901 -186.19531 630.9505 -186.6198 631.7161 -187.46875 curveto -632.48175 -188.3177 632.86456 -189.47656 632.86456 -190.94531 curveto -closepath -631.2552 -190.47656 moveto -631.24475 -189.59114 630.9974 -188.88542 630.513 -188.35938 curveto -630.0286 -187.83333 629.3906 -187.57031 628.59894 -187.57031 curveto -627.6927 -187.57031 626.96875 -187.82292 626.42706 -188.32812 curveto -625.8854 -188.83333 625.5729 -189.54948 625.48956 -190.47656 curveto -631.2552 -190.47656 lineto -closepath -643.6302 -186.42969 moveto -640.0677 -191.22656 lineto -643.8177 -196.27344 lineto -641.91144 -196.27344 lineto -639.05206 -192.39844 lineto -636.17706 -196.27344 lineto -634.2708 -196.27344 lineto -638.09894 -191.11719 lineto -634.59894 -186.42969 lineto -636.5052 -186.42969 lineto -639.11456 -189.92969 lineto -641.72394 -186.42969 lineto -643.6302 -186.42969 lineto -closepath -654.86456 -190.94531 moveto -654.86456 -191.74219 lineto -647.4427 -191.74219 lineto -647.5052 -192.85677 647.8385 -193.70573 648.4427 -194.28906 curveto -649.0469 -194.87239 649.8854 -195.16406 650.9583 -195.16406 curveto -651.5729 -195.16406 652.1719 -195.08594 652.7552 -194.92969 curveto -653.3385 -194.77344 653.9166 -194.54427 654.48956 -194.24219 curveto -654.48956 -195.77344 lineto -653.9166 -196.02344 653.3255 -196.21094 652.7161 -196.33594 curveto -652.10675 -196.46094 651.4844 -196.52344 650.84894 -196.52344 curveto -649.28644 -196.52344 648.0469 -196.0677 647.1302 -195.15625 curveto -646.2135 -194.2448 645.7552 -193.00781 645.7552 -191.44531 curveto -645.7552 -189.83073 646.19006 -188.55208 647.0599 -187.60938 curveto -647.9297 -186.66667 649.09894 -186.19531 650.5677 -186.19531 curveto -651.901 -186.19531 652.9505 -186.6198 653.7161 -187.46875 curveto -654.48175 -188.3177 654.86456 -189.47656 654.86456 -190.94531 curveto -closepath -653.2552 -190.47656 moveto -653.24475 -189.59114 652.9974 -188.88542 652.513 -188.35938 curveto -652.0286 -187.83333 651.3906 -187.57031 650.59894 -187.57031 curveto -649.6927 -187.57031 648.96875 -187.82292 648.42706 -188.32812 curveto -647.8854 -188.83333 647.5729 -189.54948 647.48956 -190.47656 curveto -653.2552 -190.47656 lineto -closepath -663.72394 -186.72656 moveto -663.72394 -188.24219 lineto -663.2656 -188.01302 662.7916 -187.83855 662.30206 -187.71875 curveto -661.8125 -187.59895 661.30206 -187.53906 660.7708 -187.53906 curveto -659.96875 -187.53906 659.3672 -187.66406 658.9661 -187.91406 curveto -658.56506 -188.16406 658.36456 -188.53386 658.36456 -189.02344 curveto -658.36456 -189.39844 658.5078 -189.6927 658.79425 -189.90625 curveto -659.0807 -190.1198 659.65625 -190.32552 660.5208 -190.52344 curveto -661.0833 -190.63281 lineto -662.2291 -190.88281 663.04425 -191.23177 663.5286 -191.67969 curveto -664.013 -192.12761 664.2552 -192.75261 664.2552 -193.55469 curveto -664.2552 -194.47136 663.8932 -195.19531 663.16925 -195.72656 curveto -662.4453 -196.25781 661.4531 -196.52344 660.1927 -196.52344 curveto -659.66144 -196.52344 659.1094 -196.47395 658.53644 -196.375 curveto -657.9635 -196.27605 657.3594 -196.12239 656.72394 -195.91406 curveto -656.72394 -194.24219 lineto -657.3281 -194.55469 657.91925 -194.78906 658.4974 -194.94531 curveto -659.0755 -195.10156 659.651 -195.17969 660.22394 -195.17969 curveto -660.9844 -195.17969 661.5703 -195.04948 661.98175 -194.78906 curveto -662.3932 -194.52864 662.59894 -194.15886 662.59894 -193.67969 curveto -662.59894 -193.24219 662.4505 -192.90625 662.1536 -192.67188 curveto -661.85675 -192.4375 661.2083 -192.21094 660.2083 -191.99219 curveto -659.6458 -191.86719 lineto -658.6354 -191.64844 657.9088 -191.32292 657.4661 -190.89062 curveto -657.02344 -190.45833 656.80206 -189.85677 656.80206 -189.08594 curveto -656.80206 -188.16927 657.1302 -187.45833 657.78644 -186.95312 curveto -658.4427 -186.44792 659.375 -186.19531 660.5833 -186.19531 curveto -661.17706 -186.19531 661.73694 -186.23958 662.263 -186.32812 curveto -662.78906 -186.41667 663.276 -186.54948 663.72394 -186.72656 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -80.0 moveto -679.73956 -80.0 lineto -679.73956 -106.625 lineto -513.23956 -106.625 lineto -513.23956 -80.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -522.03644 -88.47656 moveto -522.03644 -89.99219 lineto -521.5781 -89.76302 521.1041 -89.58854 520.61456 -89.46875 curveto -520.125 -89.34896 519.61456 -89.28906 519.0833 -89.28906 curveto -518.28125 -89.28906 517.6797 -89.41406 517.2786 -89.66406 curveto -516.87756 -89.91406 516.67706 -90.28385 516.67706 -90.77344 curveto -516.67706 -91.14844 516.8203 -91.44271 517.10675 -91.65625 curveto -517.3932 -91.86979 517.96875 -92.07552 518.8333 -92.27344 curveto -519.3958 -92.38281 lineto -520.5416 -92.63281 521.35675 -92.98177 521.8411 -93.42969 curveto -522.3255 -93.8776 522.5677 -94.5026 522.5677 -95.30469 curveto -522.5677 -96.22135 522.2057 -96.94531 521.48175 -97.47656 curveto -520.7578 -98.00781 519.7656 -98.27344 518.5052 -98.27344 curveto -517.97394 -98.27344 517.4219 -98.22396 516.84894 -98.125 curveto -516.276 -98.02604 515.6719 -97.8724 515.03644 -97.66406 curveto -515.03644 -95.99219 lineto -515.6406 -96.30469 516.23175 -96.53906 516.8099 -96.69531 curveto -517.388 -96.85156 517.9635 -96.92969 518.53644 -96.92969 curveto -519.2969 -96.92969 519.8828 -96.79948 520.29425 -96.53906 curveto -520.7057 -96.27865 520.91144 -95.90885 520.91144 -95.42969 curveto -520.91144 -94.99219 520.763 -94.65625 520.4661 -94.421875 curveto -520.16925 -94.1875 519.5208 -93.96094 518.5208 -93.74219 curveto -517.9583 -93.61719 lineto -516.9479 -93.39844 516.2213 -93.072914 515.7786 -92.640625 curveto -515.33594 -92.208336 515.11456 -91.60677 515.11456 -90.83594 curveto -515.11456 -89.91927 515.4427 -89.208336 516.09894 -88.703125 curveto -516.7552 -88.197914 517.6875 -87.94531 518.8958 -87.94531 curveto -519.48956 -87.94531 520.04944 -87.989586 520.5755 -88.078125 curveto -521.10156 -88.166664 521.5885 -88.29948 522.03644 -88.47656 curveto -closepath -523.59894 -94.13281 moveto -523.59894 -88.17969 lineto -525.2083 -88.17969 lineto -525.2083 -94.07031 lineto -525.2083 -95.00781 525.3906 -95.708336 525.7552 -96.171875 curveto -526.11975 -96.635414 526.6666 -96.86719 527.3958 -96.86719 curveto -528.2708 -96.86719 528.96094 -96.58854 529.4661 -96.03125 curveto -529.9713 -95.47396 530.22394 -94.71615 530.22394 -93.75781 curveto -530.22394 -88.17969 lineto -531.84894 -88.17969 lineto -531.84894 -98.02344 lineto -530.22394 -98.02344 lineto -530.22394 -96.50781 lineto -529.8281 -97.11198 529.3724 -97.55729 528.85675 -97.84375 curveto -528.3411 -98.13021 527.73956 -98.27344 527.05206 -98.27344 curveto -525.9166 -98.27344 525.05725 -97.921875 524.47394 -97.21875 curveto -523.8906 -96.515625 523.59894 -95.48698 523.59894 -94.13281 curveto -closepath -527.66144 -87.94531 moveto -527.66144 -87.94531 lineto -closepath -540.47394 -89.69531 moveto -540.28644 -89.59115 540.08594 -89.51302 539.8724 -89.46094 curveto -539.6588 -89.40885 539.4219 -89.38281 539.16144 -89.38281 curveto -538.2552 -89.38281 537.55725 -89.67969 537.0677 -90.27344 curveto -536.5781 -90.86719 536.3333 -91.72135 536.3333 -92.83594 curveto -536.3333 -98.02344 lineto -534.7083 -98.02344 lineto -534.7083 -88.17969 lineto -536.3333 -88.17969 lineto -536.3333 -89.71094 lineto -536.6666 -89.10677 537.10675 -88.66146 537.6536 -88.375 curveto -538.2005 -88.08854 538.86456 -87.94531 539.6458 -87.94531 curveto -539.75 -87.94531 539.86975 -87.953125 540.0052 -87.96875 curveto -540.1406 -87.984375 540.2916 -88.0026 540.4583 -88.02344 curveto -540.47394 -89.69531 lineto -closepath -548.47394 -89.69531 moveto -548.28644 -89.59115 548.08594 -89.51302 547.8724 -89.46094 curveto -547.6588 -89.40885 547.4219 -89.38281 547.16144 -89.38281 curveto -546.2552 -89.38281 545.55725 -89.67969 545.0677 -90.27344 curveto -544.5781 -90.86719 544.3333 -91.72135 544.3333 -92.83594 curveto -544.3333 -98.02344 lineto -542.7083 -98.02344 lineto -542.7083 -88.17969 lineto -544.3333 -88.17969 lineto -544.3333 -89.71094 lineto -544.6666 -89.10677 545.10675 -88.66146 545.6536 -88.375 curveto -546.2005 -88.08854 546.86456 -87.94531 547.6458 -87.94531 curveto -547.75 -87.94531 547.86975 -87.953125 548.0052 -87.96875 curveto -548.1406 -87.984375 548.2916 -88.0026 548.4583 -88.02344 curveto -548.47394 -89.69531 lineto -closepath -554.5833 -89.32031 moveto -553.7083 -89.32031 553.0208 -89.65625 552.5208 -90.328125 curveto -552.0208 -91.0 551.7708 -91.92969 551.7708 -93.11719 curveto -551.7708 -94.29427 552.0208 -95.22135 552.5208 -95.89844 curveto -553.0208 -96.57552 553.7083 -96.91406 554.5833 -96.91406 curveto -555.4375 -96.91406 556.1172 -96.572914 556.6224 -95.890625 curveto -557.12756 -95.208336 557.3802 -94.28385 557.3802 -93.11719 curveto -557.3802 -91.95052 557.12756 -91.02604 556.6224 -90.34375 curveto -556.1172 -89.66146 555.4375 -89.32031 554.5833 -89.32031 curveto -closepath -554.5833 -87.94531 moveto -555.98956 -87.94531 557.09375 -88.40104 557.8958 -89.3125 curveto -558.6979 -90.22396 559.09894 -91.49219 559.09894 -93.11719 curveto -559.09894 -94.72135 558.6979 -95.98177 557.8958 -96.89844 curveto -557.09375 -97.8151 555.98956 -98.27344 554.5833 -98.27344 curveto -553.1666 -98.27344 552.0599 -97.8151 551.263 -96.89844 curveto -550.4661 -95.98177 550.0677 -94.72135 550.0677 -93.11719 curveto -550.0677 -91.49219 550.4661 -90.22396 551.263 -89.3125 curveto -552.0599 -88.40104 553.1666 -87.94531 554.5833 -87.94531 curveto -closepath -568.23956 -92.99219 moveto -568.23956 -91.8151 567.9974 -90.90365 567.513 -90.25781 curveto -567.0286 -89.61198 566.3541 -89.28906 565.48956 -89.28906 curveto -564.61456 -89.28906 563.9349 -89.61198 563.4505 -90.25781 curveto -562.9661 -90.90365 562.72394 -91.8151 562.72394 -92.99219 curveto -562.72394 -94.15885 562.9661 -95.0625 563.4505 -95.703125 curveto -563.9349 -96.34375 564.61456 -96.66406 565.48956 -96.66406 curveto -566.3541 -96.66406 567.0286 -96.34375 567.513 -95.703125 curveto -567.9974 -95.0625 568.23956 -94.15885 568.23956 -92.99219 curveto -closepath -569.86456 -96.80469 moveto -569.86456 -98.48177 569.4922 -99.729164 568.7474 -100.546875 curveto -568.00256 -101.364586 566.8594 -101.77344 565.3177 -101.77344 curveto -564.7552 -101.77344 564.2213 -101.729164 563.7161 -101.640625 curveto -563.21094 -101.552086 562.72394 -101.41927 562.2552 -101.24219 curveto -562.2552 -99.67969 lineto -562.72394 -99.9401 563.19006 -100.13021 563.6536 -100.25 curveto -564.1172 -100.36979 564.5885 -100.42969 565.0677 -100.42969 curveto -566.1302 -100.42969 566.92444 -100.15365 567.4505 -99.60156 curveto -567.97656 -99.04948 568.23956 -98.21094 568.23956 -97.08594 curveto -568.23956 -96.28906 lineto -567.90625 -96.8724 567.4791 -97.30729 566.9583 -97.59375 curveto -566.4375 -97.88021 565.8125 -98.02344 565.0833 -98.02344 curveto -563.875 -98.02344 562.9036 -97.5625 562.16925 -96.640625 curveto -561.4349 -95.71875 561.0677 -94.5026 561.0677 -92.99219 curveto -561.0677 -91.46094 561.4349 -90.23698 562.16925 -89.32031 curveto -562.9036 -88.40365 563.875 -87.94531 565.0833 -87.94531 curveto -565.8125 -87.94531 566.4375 -88.08854 566.9583 -88.375 curveto -567.4791 -88.66146 567.90625 -89.09635 568.23956 -89.67969 curveto -568.23956 -88.17969 lineto -569.86456 -88.17969 lineto -569.86456 -96.80469 lineto -closepath -577.23956 -93.07031 moveto -575.92706 -93.07031 575.0208 -93.22135 574.5208 -93.52344 curveto -574.0208 -93.82552 573.7708 -94.33594 573.7708 -95.05469 curveto -573.7708 -95.6276 573.9583 -96.083336 574.3333 -96.421875 curveto -574.7083 -96.760414 575.22394 -96.92969 575.8802 -96.92969 curveto -576.776 -96.92969 577.49475 -96.61198 578.03644 -95.97656 curveto -578.5781 -95.34115 578.84894 -94.49219 578.84894 -93.42969 curveto -578.84894 -93.07031 lineto -577.23956 -93.07031 lineto -closepath -580.4583 -92.41406 moveto -580.4583 -98.02344 lineto -578.84894 -98.02344 lineto -578.84894 -96.52344 lineto -578.47394 -97.1276 578.013 -97.57031 577.4661 -97.85156 curveto -576.91925 -98.13281 576.24475 -98.27344 575.4427 -98.27344 curveto -574.43225 -98.27344 573.6302 -97.99219 573.03644 -97.42969 curveto -572.4427 -96.86719 572.1458 -96.11198 572.1458 -95.16406 curveto -572.1458 -94.04948 572.5182 -93.21094 573.263 -92.64844 curveto -574.0078 -92.08594 575.11456 -91.80469 576.5833 -91.80469 curveto -578.84894 -91.80469 lineto -578.84894 -91.64844 lineto -578.84894 -90.90885 578.6041 -90.33594 578.11456 -89.92969 curveto -577.625 -89.52344 576.9375 -89.32031 576.05206 -89.32031 curveto -575.48956 -89.32031 574.9427 -89.385414 574.41144 -89.515625 curveto -573.8802 -89.645836 573.36456 -89.84635 572.86456 -90.11719 curveto -572.86456 -88.63281 lineto -573.4583 -88.40365 574.0338 -88.23177 574.5911 -88.11719 curveto -575.14844 -88.0026 575.6927 -87.94531 576.22394 -87.94531 curveto -577.6406 -87.94531 578.7005 -88.3151 579.4036 -89.05469 curveto -580.10675 -89.79427 580.4583 -90.91406 580.4583 -92.41406 curveto -closepath -584.36456 -85.38281 moveto -584.36456 -88.17969 lineto -587.6927 -88.17969 lineto -587.6927 -89.42969 lineto -584.36456 -89.42969 lineto -584.36456 -94.77344 lineto -584.36456 -95.57552 584.47394 -96.09115 584.6927 -96.32031 curveto -584.91144 -96.54948 585.3594 -96.66406 586.03644 -96.66406 curveto -587.6927 -96.66406 lineto -587.6927 -98.02344 lineto -586.03644 -98.02344 lineto -584.78644 -98.02344 583.92444 -97.791664 583.4505 -97.328125 curveto -582.97656 -96.864586 582.73956 -96.01302 582.73956 -94.77344 curveto -582.73956 -89.42969 lineto -581.55206 -89.42969 lineto -581.55206 -88.17969 lineto -582.73956 -88.17969 lineto -582.73956 -85.38281 lineto -584.36456 -85.38281 lineto -closepath -598.17706 -92.69531 moveto -598.17706 -93.49219 lineto -590.7552 -93.49219 lineto -590.8177 -94.60677 591.151 -95.45573 591.7552 -96.03906 curveto -592.3594 -96.6224 593.1979 -96.91406 594.2708 -96.91406 curveto -594.8854 -96.91406 595.4844 -96.83594 596.0677 -96.67969 curveto -596.651 -96.52344 597.2291 -96.29427 597.80206 -95.99219 curveto -597.80206 -97.52344 lineto -597.2291 -97.77344 596.638 -97.96094 596.0286 -98.08594 curveto -595.41925 -98.21094 594.7969 -98.27344 594.16144 -98.27344 curveto -592.59894 -98.27344 591.3594 -97.81771 590.4427 -96.90625 curveto -589.526 -95.99479 589.0677 -94.75781 589.0677 -93.19531 curveto -589.0677 -91.58073 589.50256 -90.302086 590.3724 -89.359375 curveto -591.2422 -88.416664 592.41144 -87.94531 593.8802 -87.94531 curveto -595.2135 -87.94531 596.263 -88.36979 597.0286 -89.21875 curveto -597.79425 -90.06771 598.17706 -91.22656 598.17706 -92.69531 curveto -closepath -596.5677 -92.22656 moveto -596.55725 -91.34115 596.3099 -90.635414 595.8255 -90.109375 curveto -595.3411 -89.583336 594.7031 -89.32031 593.91144 -89.32031 curveto -593.0052 -89.32031 592.28125 -89.572914 591.73956 -90.078125 curveto -591.1979 -90.583336 590.8854 -91.29948 590.80206 -92.22656 curveto -596.5677 -92.22656 lineto -closepath -608.23956 -101.00781 moveto -608.23956 -102.27344 lineto -598.8958 -102.27344 lineto -598.8958 -101.00781 lineto -608.23956 -101.00781 lineto -closepath -614.7552 -84.35156 moveto -614.7552 -85.69531 lineto -613.2083 -85.69531 lineto -612.625 -85.69531 612.2213 -85.8125 611.9974 -86.046875 curveto -611.77344 -86.28125 611.66144 -86.70052 611.66144 -87.30469 curveto -611.66144 -88.17969 lineto -614.3177 -88.17969 lineto -614.3177 -89.42969 lineto -611.66144 -89.42969 lineto -611.66144 -98.02344 lineto -610.0208 -98.02344 lineto -610.0208 -89.42969 lineto -608.47394 -89.42969 lineto -608.47394 -88.17969 lineto -610.0208 -88.17969 lineto -610.0208 -87.49219 lineto -610.0208 -86.39844 610.276 -85.60156 610.78644 -85.10156 curveto -611.2969 -84.60156 612.1094 -84.35156 613.22394 -84.35156 curveto -614.7552 -84.35156 lineto -closepath -615.59894 -94.13281 moveto -615.59894 -88.17969 lineto -617.2083 -88.17969 lineto -617.2083 -94.07031 lineto -617.2083 -95.00781 617.3906 -95.708336 617.7552 -96.171875 curveto -618.11975 -96.635414 618.6666 -96.86719 619.3958 -96.86719 curveto -620.2708 -96.86719 620.96094 -96.58854 621.4661 -96.03125 curveto -621.9713 -95.47396 622.22394 -94.71615 622.22394 -93.75781 curveto -622.22394 -88.17969 lineto -623.84894 -88.17969 lineto -623.84894 -98.02344 lineto -622.22394 -98.02344 lineto -622.22394 -96.50781 lineto -621.8281 -97.11198 621.3724 -97.55729 620.85675 -97.84375 curveto -620.3411 -98.13021 619.73956 -98.27344 619.05206 -98.27344 curveto -617.9166 -98.27344 617.05725 -97.921875 616.47394 -97.21875 curveto -615.8906 -96.515625 615.59894 -95.48698 615.59894 -94.13281 curveto -closepath -619.66144 -87.94531 moveto -619.66144 -87.94531 lineto -closepath -634.9427 -92.08594 moveto -634.9427 -98.02344 lineto -633.3333 -98.02344 lineto -633.3333 -92.13281 lineto -633.3333 -91.20573 633.151 -90.510414 632.78644 -90.046875 curveto -632.4219 -89.583336 631.875 -89.35156 631.1458 -89.35156 curveto -630.2708 -89.35156 629.5833 -89.63021 629.0833 -90.1875 curveto -628.5833 -90.74479 628.3333 -91.5026 628.3333 -92.46094 curveto -628.3333 -98.02344 lineto -626.7083 -98.02344 lineto -626.7083 -88.17969 lineto -628.3333 -88.17969 lineto -628.3333 -89.71094 lineto -628.71875 -89.11719 629.17444 -88.67448 629.7005 -88.38281 curveto -630.22656 -88.09115 630.8281 -87.94531 631.5052 -87.94531 curveto -632.6406 -87.94531 633.4974 -88.29427 634.0755 -88.99219 curveto -634.6536 -89.6901 634.9427 -90.72135 634.9427 -92.08594 curveto -closepath -644.84894 -88.55469 moveto -644.84894 -90.07031 lineto -644.3906 -89.82031 643.93225 -89.63281 643.47394 -89.50781 curveto -643.0156 -89.38281 642.55206 -89.32031 642.0833 -89.32031 curveto -641.03125 -89.32031 640.2161 -89.65104 639.638 -90.3125 curveto -639.0599 -90.97396 638.7708 -91.90885 638.7708 -93.11719 curveto -638.7708 -94.3151 639.0599 -95.2474 639.638 -95.91406 curveto -640.2161 -96.58073 641.03125 -96.91406 642.0833 -96.91406 curveto -642.55206 -96.91406 643.0156 -96.84896 643.47394 -96.71875 curveto -643.93225 -96.58854 644.3906 -96.39844 644.84894 -96.14844 curveto -644.84894 -97.64844 lineto -644.401 -97.85677 643.9349 -98.01302 643.4505 -98.11719 curveto -642.9661 -98.22135 642.4531 -98.27344 641.91144 -98.27344 curveto -640.4219 -98.27344 639.2422 -97.80729 638.3724 -96.875 curveto -637.50256 -95.94271 637.0677 -94.6901 637.0677 -93.11719 curveto -637.0677 -91.5026 637.5078 -90.23698 638.388 -89.32031 curveto -639.2682 -88.40365 640.47394 -87.94531 642.0052 -87.94531 curveto -642.5052 -87.94531 642.9922 -87.99479 643.4661 -88.09375 curveto -643.94006 -88.19271 644.401 -88.34635 644.84894 -88.55469 curveto -closepath -648.36456 -85.38281 moveto -648.36456 -88.17969 lineto -651.6927 -88.17969 lineto -651.6927 -89.42969 lineto -648.36456 -89.42969 lineto -648.36456 -94.77344 lineto -648.36456 -95.57552 648.47394 -96.09115 648.6927 -96.32031 curveto -648.91144 -96.54948 649.3594 -96.66406 650.03644 -96.66406 curveto -651.6927 -96.66406 lineto -651.6927 -98.02344 lineto -650.03644 -98.02344 lineto -648.78644 -98.02344 647.92444 -97.791664 647.4505 -97.328125 curveto -646.97656 -96.864586 646.73956 -96.01302 646.73956 -94.77344 curveto -646.73956 -89.42969 lineto -645.55206 -89.42969 lineto -645.55206 -88.17969 lineto -646.73956 -88.17969 lineto -646.73956 -85.38281 lineto -648.36456 -85.38281 lineto -closepath -653.7708 -88.17969 moveto -655.3802 -88.17969 lineto -655.3802 -98.02344 lineto -653.7708 -98.02344 lineto -653.7708 -88.17969 lineto -closepath -653.7708 -84.35156 moveto -655.3802 -84.35156 lineto -655.3802 -86.39844 lineto -653.7708 -86.39844 lineto -653.7708 -84.35156 lineto -closepath -662.5833 -89.32031 moveto -661.7083 -89.32031 661.0208 -89.65625 660.5208 -90.328125 curveto -660.0208 -91.0 659.7708 -91.92969 659.7708 -93.11719 curveto -659.7708 -94.29427 660.0208 -95.22135 660.5208 -95.89844 curveto -661.0208 -96.57552 661.7083 -96.91406 662.5833 -96.91406 curveto -663.4375 -96.91406 664.1172 -96.572914 664.6224 -95.890625 curveto -665.12756 -95.208336 665.3802 -94.28385 665.3802 -93.11719 curveto -665.3802 -91.95052 665.12756 -91.02604 664.6224 -90.34375 curveto -664.1172 -89.66146 663.4375 -89.32031 662.5833 -89.32031 curveto -closepath -662.5833 -87.94531 moveto -663.98956 -87.94531 665.09375 -88.40104 665.8958 -89.3125 curveto -666.6979 -90.22396 667.09894 -91.49219 667.09894 -93.11719 curveto -667.09894 -94.72135 666.6979 -95.98177 665.8958 -96.89844 curveto -665.09375 -97.8151 663.98956 -98.27344 662.5833 -98.27344 curveto -661.1666 -98.27344 660.0599 -97.8151 659.263 -96.89844 curveto -658.4661 -95.98177 658.0677 -94.72135 658.0677 -93.11719 curveto -658.0677 -91.49219 658.4661 -90.22396 659.263 -89.3125 curveto -660.0599 -88.40104 661.1666 -87.94531 662.5833 -87.94531 curveto -closepath -677.9427 -92.08594 moveto -677.9427 -98.02344 lineto -676.3333 -98.02344 lineto -676.3333 -92.13281 lineto -676.3333 -91.20573 676.151 -90.510414 675.78644 -90.046875 curveto -675.4219 -89.583336 674.875 -89.35156 674.1458 -89.35156 curveto -673.2708 -89.35156 672.5833 -89.63021 672.0833 -90.1875 curveto -671.5833 -90.74479 671.3333 -91.5026 671.3333 -92.46094 curveto -671.3333 -98.02344 lineto -669.7083 -98.02344 lineto -669.7083 -88.17969 lineto -671.3333 -88.17969 lineto -671.3333 -89.71094 lineto -671.71875 -89.11719 672.17444 -88.67448 672.7005 -88.38281 curveto -673.22656 -88.09115 673.8281 -87.94531 674.5052 -87.94531 curveto -675.6406 -87.94531 676.4974 -88.29427 677.0755 -88.99219 curveto -677.6536 -89.6901 677.9427 -90.72135 677.9427 -92.08594 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -443.0 -143.0 moveto -512.0 -143.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -442.0 -141.0 moveto -512.0 -92.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -443.0 -142.0 moveto -512.0 -194.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -443.0 -623.0 moveto -512.0 -623.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -442.0 -622.0 moveto -512.0 -522.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -442.0 -621.0 moveto -512.0 -573.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -443.0 -622.0 moveto -512.0 -718.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -444.0 -623.0 moveto -512.0 -670.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -384.0 moveto -281.0 -138.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -383.0 moveto -280.0 -383.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -385.0 moveto -281.0 -623.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -178.0 moveto -679.73956 -178.0 lineto -679.73956 -204.625 lineto -513.23956 -204.625 lineto -513.23956 -178.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -130.0 moveto -679.73956 -130.0 lineto -679.73956 -156.625 lineto -513.23956 -156.625 lineto -513.23956 -130.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -561.0 moveto -679.73956 -561.0 lineto -679.73956 -587.625 lineto -513.23956 -587.625 lineto -513.23956 -561.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -511.0 moveto -679.73956 -511.0 lineto -679.73956 -537.625 lineto -513.23956 -537.625 lineto -513.23956 -511.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -368.0 moveto -679.73956 -368.0 lineto -679.73956 -394.625 lineto -513.23956 -394.625 lineto -513.23956 -368.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -610.0 moveto -679.73956 -610.0 lineto -679.73956 -636.625 lineto -513.23956 -636.625 lineto -513.23956 -610.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -656.0 moveto -679.73956 -656.0 lineto -679.73956 -682.625 lineto -513.23956 -682.625 lineto -513.23956 -656.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -513.23956 -701.0 moveto -679.73956 -701.0 lineto -679.73956 -727.625 lineto -513.23956 -727.625 lineto -513.23956 -701.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -newpath -363.31412 -766.5 moveto -366.23334 -739.3578 456.0 -766.5 447.97208 -741.2297 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -newpath -364.0439 -766.5 moveto -359.66504 -738.4219 266.97916 -766.5 277.1965 -742.16565 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -newpath -598.3141 -766.5 moveto -601.23334 -739.3578 691.0 -766.5 682.9721 -741.2297 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -newpath -599.0439 -766.5 moveto -594.66504 -738.4219 501.97916 -766.5 512.1965 -742.16565 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -newpath -132.3141 -766.5 moveto -135.23334 -739.3578 225.0 -766.5 216.97209 -741.2297 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -0.9882353 0.007843138 0.0627451 setrgbcolor -newpath -133.04391 -766.5 moveto -128.66505 -738.4219 35.979153 -766.5 46.1965 -742.16565 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.9764706 0.023529412 0.023529412 setrgbcolor -newpath -560.78125 -777.53125 moveto -560.78125 -779.0469 lineto -560.32294 -778.7969 559.86456 -778.6094 559.40625 -778.4844 curveto -558.94794 -778.3594 558.4844 -778.2969 558.0156 -778.2969 curveto -556.96356 -778.2969 556.14844 -778.6276 555.5703 -779.28906 curveto -554.9922 -779.9505 554.7031 -780.88544 554.7031 -782.09375 curveto -554.7031 -783.2917 554.9922 -784.22394 555.5703 -784.8906 curveto -556.14844 -785.5573 556.96356 -785.8906 558.0156 -785.8906 curveto -558.4844 -785.8906 558.94794 -785.8255 559.40625 -785.6953 curveto -559.86456 -785.5651 560.32294 -785.375 560.78125 -785.125 curveto -560.78125 -786.625 lineto -560.3333 -786.8333 559.8672 -786.98956 559.3828 -787.09375 curveto -558.89844 -787.19794 558.38544 -787.25 557.84375 -787.25 curveto -556.3542 -787.25 555.1745 -786.7839 554.3047 -785.85156 curveto -553.4349 -784.91925 553.0 -783.6667 553.0 -782.09375 curveto -553.0 -780.4792 553.4401 -779.21356 554.3203 -778.2969 curveto -555.2005 -777.3802 556.40625 -776.9219 557.9375 -776.9219 curveto -558.4375 -776.9219 558.9245 -776.9714 559.39844 -777.0703 curveto -559.8724 -777.16925 560.3333 -777.32294 560.78125 -777.53125 curveto -closepath -566.5156 -778.2969 moveto -565.6406 -778.2969 564.9531 -778.6328 564.4531 -779.3047 curveto -563.9531 -779.97656 563.7031 -780.90625 563.7031 -782.09375 curveto -563.7031 -783.2708 563.9531 -784.19794 564.4531 -784.875 curveto -564.9531 -785.55206 565.6406 -785.8906 566.5156 -785.8906 curveto -567.3698 -785.8906 568.0495 -785.5495 568.5547 -784.8672 curveto -569.0599 -784.1849 569.3125 -783.26044 569.3125 -782.09375 curveto -569.3125 -780.92706 569.0599 -780.0026 568.5547 -779.3203 curveto -568.0495 -778.638 567.3698 -778.2969 566.5156 -778.2969 curveto -closepath -566.5156 -776.9219 moveto -567.9219 -776.9219 569.02606 -777.3776 569.8281 -778.28906 curveto -570.6302 -779.2005 571.03125 -780.46875 571.03125 -782.09375 curveto -571.03125 -783.69794 570.6302 -784.9583 569.8281 -785.875 curveto -569.02606 -786.7917 567.9219 -787.25 566.5156 -787.25 curveto -565.09894 -787.25 563.9922 -786.7917 563.1953 -785.875 curveto -562.39844 -784.9583 562.0 -783.69794 562.0 -782.09375 curveto -562.0 -780.46875 562.39844 -779.2005 563.1953 -778.28906 curveto -563.9922 -777.3776 565.09894 -776.9219 566.5156 -776.9219 curveto -closepath -573.7031 -773.3281 moveto -575.3125 -773.3281 lineto -575.3125 -787.0 lineto -573.7031 -787.0 lineto -573.7031 -773.3281 lineto -closepath -578.7031 -773.3281 moveto -580.3125 -773.3281 lineto -580.3125 -787.0 lineto -578.7031 -787.0 lineto -578.7031 -773.3281 lineto -closepath -592.1094 -781.6719 moveto -592.1094 -782.46875 lineto -584.6875 -782.46875 lineto -584.75 -783.5833 585.0833 -784.4323 585.6875 -785.0156 curveto -586.2917 -785.59894 587.1302 -785.8906 588.2031 -785.8906 curveto -588.8177 -785.8906 589.4167 -785.8125 590.0 -785.65625 curveto -590.5833 -785.5 591.16144 -785.2708 591.7344 -784.96875 curveto -591.7344 -786.5 lineto -591.16144 -786.75 590.5703 -786.9375 589.96094 -787.0625 curveto -589.35156 -787.1875 588.7292 -787.25 588.09375 -787.25 curveto -586.53125 -787.25 585.2917 -786.79425 584.375 -785.8828 curveto -583.4583 -784.9714 583.0 -783.7344 583.0 -782.1719 curveto -583.0 -780.5573 583.4349 -779.2786 584.3047 -778.33594 curveto -585.1745 -777.39325 586.34375 -776.9219 587.8125 -776.9219 curveto -589.1458 -776.9219 590.1953 -777.3464 590.96094 -778.1953 curveto -591.72656 -779.04425 592.1094 -780.2031 592.1094 -781.6719 curveto -closepath -590.5 -781.2031 moveto -590.48956 -780.3177 590.2422 -779.612 589.7578 -779.08594 curveto -589.27344 -778.5599 588.63544 -778.2969 587.84375 -778.2969 curveto -586.9375 -778.2969 586.21356 -778.5495 585.6719 -779.0547 curveto -585.1302 -779.5599 584.8177 -780.27606 584.7344 -781.2031 curveto -590.5 -781.2031 lineto -closepath -601.78125 -777.53125 moveto -601.78125 -779.0469 lineto -601.32294 -778.7969 600.86456 -778.6094 600.40625 -778.4844 curveto -599.94794 -778.3594 599.4844 -778.2969 599.0156 -778.2969 curveto -597.96356 -778.2969 597.14844 -778.6276 596.5703 -779.28906 curveto -595.9922 -779.9505 595.7031 -780.88544 595.7031 -782.09375 curveto -595.7031 -783.2917 595.9922 -784.22394 596.5703 -784.8906 curveto -597.14844 -785.5573 597.96356 -785.8906 599.0156 -785.8906 curveto -599.4844 -785.8906 599.94794 -785.8255 600.40625 -785.6953 curveto -600.86456 -785.5651 601.32294 -785.375 601.78125 -785.125 curveto -601.78125 -786.625 lineto -601.3333 -786.8333 600.8672 -786.98956 600.3828 -787.09375 curveto -599.89844 -787.19794 599.38544 -787.25 598.84375 -787.25 curveto -597.3542 -787.25 596.1745 -786.7839 595.3047 -785.85156 curveto -594.4349 -784.91925 594.0 -783.6667 594.0 -782.09375 curveto -594.0 -780.4792 594.4401 -779.21356 595.3203 -778.2969 curveto -596.2005 -777.3802 597.40625 -776.9219 598.9375 -776.9219 curveto -599.4375 -776.9219 599.9245 -776.9714 600.39844 -777.0703 curveto -600.8724 -777.16925 601.3333 -777.32294 601.78125 -777.53125 curveto -closepath -605.2969 -774.3594 moveto -605.2969 -777.15625 lineto -608.625 -777.15625 lineto -608.625 -778.40625 lineto -605.2969 -778.40625 lineto -605.2969 -783.75 lineto -605.2969 -784.55206 605.40625 -785.0677 605.625 -785.2969 curveto -605.84375 -785.52606 606.2917 -785.6406 606.96875 -785.6406 curveto -608.625 -785.6406 lineto -608.625 -787.0 lineto -606.96875 -787.0 lineto -605.71875 -787.0 604.85675 -786.76825 604.3828 -786.3047 curveto -603.9089 -785.8411 603.6719 -784.98956 603.6719 -783.75 curveto -603.6719 -778.40625 lineto -602.4844 -778.40625 lineto -602.4844 -777.15625 lineto -603.6719 -777.15625 lineto -603.6719 -774.3594 lineto -605.2969 -774.3594 lineto -closepath -610.7031 -777.15625 moveto -612.3125 -777.15625 lineto -612.3125 -787.0 lineto -610.7031 -787.0 lineto -610.7031 -777.15625 lineto -closepath -610.7031 -773.3281 moveto -612.3125 -773.3281 lineto -612.3125 -775.375 lineto -610.7031 -775.375 lineto -610.7031 -773.3281 lineto -closepath -619.5156 -778.2969 moveto -618.6406 -778.2969 617.9531 -778.6328 617.4531 -779.3047 curveto -616.9531 -779.97656 616.7031 -780.90625 616.7031 -782.09375 curveto -616.7031 -783.2708 616.9531 -784.19794 617.4531 -784.875 curveto -617.9531 -785.55206 618.6406 -785.8906 619.5156 -785.8906 curveto -620.3698 -785.8906 621.0495 -785.5495 621.5547 -784.8672 curveto -622.0599 -784.1849 622.3125 -783.26044 622.3125 -782.09375 curveto -622.3125 -780.92706 622.0599 -780.0026 621.5547 -779.3203 curveto -621.0495 -778.638 620.3698 -778.2969 619.5156 -778.2969 curveto -closepath -619.5156 -776.9219 moveto -620.9219 -776.9219 622.02606 -777.3776 622.8281 -778.28906 curveto -623.6302 -779.2005 624.03125 -780.46875 624.03125 -782.09375 curveto -624.03125 -783.69794 623.6302 -784.9583 622.8281 -785.875 curveto -622.02606 -786.7917 620.9219 -787.25 619.5156 -787.25 curveto -618.09894 -787.25 616.9922 -786.7917 616.1953 -785.875 curveto -615.39844 -784.9583 615.0 -783.69794 615.0 -782.09375 curveto -615.0 -780.46875 615.39844 -779.2005 616.1953 -778.28906 curveto -616.9922 -777.3776 618.09894 -776.9219 619.5156 -776.9219 curveto -closepath -634.875 -781.0625 moveto -634.875 -787.0 lineto -633.2656 -787.0 lineto -633.2656 -781.1094 lineto -633.2656 -780.1823 633.0833 -779.487 632.71875 -779.02344 curveto -632.3542 -778.5599 631.8073 -778.3281 631.0781 -778.3281 curveto -630.2031 -778.3281 629.5156 -778.60675 629.0156 -779.16406 curveto -628.5156 -779.7214 628.2656 -780.4792 628.2656 -781.4375 curveto -628.2656 -787.0 lineto -626.6406 -787.0 lineto -626.6406 -777.15625 lineto -628.2656 -777.15625 lineto -628.2656 -778.6875 lineto -628.65106 -778.09375 629.10675 -777.65106 629.6328 -777.3594 curveto -630.1589 -777.0677 630.76044 -776.9219 631.4375 -776.9219 curveto -632.57294 -776.9219 633.4297 -777.2708 634.0078 -777.96875 curveto -634.58594 -778.6667 634.875 -779.69794 634.875 -781.0625 curveto -closepath -643.96875 -777.4531 moveto -643.96875 -778.96875 lineto -643.51044 -778.73956 643.03644 -778.5651 642.5469 -778.4453 curveto -642.0573 -778.3255 641.5469 -778.2656 641.0156 -778.2656 curveto -640.21356 -778.2656 639.612 -778.3906 639.21094 -778.6406 curveto -638.8099 -778.8906 638.6094 -779.26044 638.6094 -779.75 curveto -638.6094 -780.125 638.7526 -780.41925 639.03906 -780.6328 curveto -639.3255 -780.8464 639.90106 -781.05206 640.7656 -781.25 curveto -641.3281 -781.3594 lineto -642.47394 -781.6094 643.28906 -781.9583 643.77344 -782.40625 curveto -644.2578 -782.8542 644.5 -783.4792 644.5 -784.28125 curveto -644.5 -785.19794 644.138 -785.9219 643.41406 -786.4531 curveto -642.6901 -786.9844 641.69794 -787.25 640.4375 -787.25 curveto -639.90625 -787.25 639.3542 -787.2005 638.78125 -787.10156 curveto -638.2083 -787.0026 637.6042 -786.84894 636.96875 -786.6406 curveto -636.96875 -784.96875 lineto -637.57294 -785.28125 638.16406 -785.5156 638.7422 -785.6719 curveto -639.3203 -785.8281 639.8958 -785.90625 640.46875 -785.90625 curveto -641.2292 -785.90625 641.8151 -785.77606 642.22656 -785.5156 curveto -642.638 -785.2552 642.84375 -784.88544 642.84375 -784.40625 curveto -642.84375 -783.96875 642.6953 -783.6328 642.39844 -783.39844 curveto -642.10156 -783.16406 641.4531 -782.9375 640.4531 -782.71875 curveto -639.8906 -782.59375 lineto -638.8802 -782.375 638.1536 -782.0495 637.71094 -781.6172 curveto -637.26825 -781.1849 637.0469 -780.5833 637.0469 -779.8125 curveto -637.0469 -778.8958 637.375 -778.1849 638.03125 -777.6797 curveto -638.6875 -777.1745 639.6198 -776.9219 640.8281 -776.9219 curveto -641.4219 -776.9219 641.98175 -776.9661 642.5078 -777.0547 curveto -643.0339 -777.14325 643.5208 -777.27606 643.96875 -777.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.9843137 0.015686275 0.015686275 setrgbcolor -newpath -328.17188 -778.65625 moveto -328.17188 -773.3281 lineto -329.79688 -773.3281 lineto -329.79688 -787.0 lineto -328.17188 -787.0 lineto -328.17188 -785.5156 lineto -327.83853 -786.1094 327.41147 -786.5469 326.89062 -786.8281 curveto -326.36978 -787.1094 325.74478 -787.25 325.01562 -787.25 curveto -323.82812 -787.25 322.86197 -786.77606 322.1172 -785.8281 curveto -321.3724 -784.8802 321.0 -783.63544 321.0 -782.09375 curveto -321.0 -780.5417 321.3724 -779.2917 322.1172 -778.34375 curveto -322.86197 -777.3958 323.82812 -776.9219 325.01562 -776.9219 curveto -325.74478 -776.9219 326.36978 -777.0625 326.89062 -777.34375 curveto -327.41147 -777.625 327.83853 -778.0625 328.17188 -778.65625 curveto -closepath -322.65625 -782.09375 moveto -322.65625 -783.28125 322.90103 -784.21356 323.39062 -784.8906 curveto -323.88022 -785.5677 324.55728 -785.90625 325.42188 -785.90625 curveto -326.27603 -785.90625 326.9479 -785.5677 327.4375 -784.8906 curveto -327.9271 -784.21356 328.17188 -783.28125 328.17188 -782.09375 curveto -328.17188 -780.8958 327.9271 -779.9583 327.4375 -779.28125 curveto -326.9479 -778.6042 326.27603 -778.2656 325.42188 -778.2656 curveto -324.55728 -778.2656 323.88022 -778.6042 323.39062 -779.28125 curveto -322.90103 -779.9583 322.65625 -780.8958 322.65625 -782.09375 curveto -closepath -337.17188 -782.0469 moveto -335.85938 -782.0469 334.95312 -782.19794 334.45312 -782.5 curveto -333.95312 -782.80206 333.70312 -783.3125 333.70312 -784.03125 curveto -333.70312 -784.6042 333.89062 -785.0599 334.26562 -785.39844 curveto -334.64062 -785.737 335.15625 -785.90625 335.8125 -785.90625 curveto -336.70834 -785.90625 337.4271 -785.58856 337.96875 -784.9531 curveto -338.5104 -784.3177 338.78125 -783.46875 338.78125 -782.40625 curveto -338.78125 -782.0469 lineto -337.17188 -782.0469 lineto -closepath -340.39062 -781.3906 moveto -340.39062 -787.0 lineto -338.78125 -787.0 lineto -338.78125 -785.5 lineto -338.40625 -786.1042 337.9453 -786.5469 337.39844 -786.8281 curveto -336.85156 -787.1094 336.1771 -787.25 335.375 -787.25 curveto -334.3646 -787.25 333.5625 -786.96875 332.96875 -786.40625 curveto -332.375 -785.84375 332.07812 -785.08856 332.07812 -784.1406 curveto -332.07812 -783.02606 332.45053 -782.1875 333.1953 -781.625 curveto -333.9401 -781.0625 335.04688 -780.78125 336.51562 -780.78125 curveto -338.78125 -780.78125 lineto -338.78125 -780.625 lineto -338.78125 -779.88544 338.53647 -779.3125 338.04688 -778.90625 curveto -337.55728 -778.5 336.86978 -778.2969 335.98438 -778.2969 curveto -335.42188 -778.2969 334.875 -778.362 334.34375 -778.4922 curveto -333.8125 -778.6224 333.29688 -778.82294 332.79688 -779.09375 curveto -332.79688 -777.6094 lineto -333.39062 -777.3802 333.96616 -777.2083 334.52344 -777.09375 curveto -335.08072 -776.9792 335.625 -776.9219 336.15625 -776.9219 curveto -337.5729 -776.9219 338.6328 -777.2917 339.33594 -778.03125 curveto -340.03906 -778.7708 340.39062 -779.8906 340.39062 -781.3906 curveto -closepath -344.29688 -774.3594 moveto -344.29688 -777.15625 lineto -347.625 -777.15625 lineto -347.625 -778.40625 lineto -344.29688 -778.40625 lineto -344.29688 -783.75 lineto -344.29688 -784.55206 344.40625 -785.0677 344.625 -785.2969 curveto -344.84375 -785.52606 345.29166 -785.6406 345.96875 -785.6406 curveto -347.625 -785.6406 lineto -347.625 -787.0 lineto -345.96875 -787.0 lineto -344.71875 -787.0 343.85678 -786.76825 343.3828 -786.3047 curveto -342.90884 -785.8411 342.67188 -784.98956 342.67188 -783.75 curveto -342.67188 -778.40625 lineto -341.48438 -778.40625 lineto -341.48438 -777.15625 lineto -342.67188 -777.15625 lineto -342.67188 -774.3594 lineto -344.29688 -774.3594 lineto -closepath -354.17188 -782.0469 moveto -352.85938 -782.0469 351.95312 -782.19794 351.45312 -782.5 curveto -350.95312 -782.80206 350.70312 -783.3125 350.70312 -784.03125 curveto -350.70312 -784.6042 350.89062 -785.0599 351.26562 -785.39844 curveto -351.64062 -785.737 352.15625 -785.90625 352.8125 -785.90625 curveto -353.70834 -785.90625 354.4271 -785.58856 354.96875 -784.9531 curveto -355.5104 -784.3177 355.78125 -783.46875 355.78125 -782.40625 curveto -355.78125 -782.0469 lineto -354.17188 -782.0469 lineto -closepath -357.39062 -781.3906 moveto -357.39062 -787.0 lineto -355.78125 -787.0 lineto -355.78125 -785.5 lineto -355.40625 -786.1042 354.9453 -786.5469 354.39844 -786.8281 curveto -353.85156 -787.1094 353.1771 -787.25 352.375 -787.25 curveto -351.3646 -787.25 350.5625 -786.96875 349.96875 -786.40625 curveto -349.375 -785.84375 349.07812 -785.08856 349.07812 -784.1406 curveto -349.07812 -783.02606 349.45053 -782.1875 350.1953 -781.625 curveto -350.9401 -781.0625 352.04688 -780.78125 353.51562 -780.78125 curveto -355.78125 -780.78125 lineto -355.78125 -780.625 lineto -355.78125 -779.88544 355.53647 -779.3125 355.04688 -778.90625 curveto -354.55728 -778.5 353.86978 -778.2969 352.98438 -778.2969 curveto -352.42188 -778.2969 351.875 -778.362 351.34375 -778.4922 curveto -350.8125 -778.6224 350.29688 -778.82294 349.79688 -779.09375 curveto -349.79688 -777.6094 lineto -350.39062 -777.3802 350.96616 -777.2083 351.52344 -777.09375 curveto -352.08072 -776.9792 352.625 -776.9219 353.15625 -776.9219 curveto -354.5729 -776.9219 355.6328 -777.2917 356.33594 -778.03125 curveto -357.03906 -778.7708 357.39062 -779.8906 357.39062 -781.3906 curveto -closepath -366.76562 -782.09375 moveto -366.76562 -780.8958 366.52084 -779.9583 366.03125 -779.28125 curveto -365.54166 -778.6042 364.86978 -778.2656 364.01562 -778.2656 curveto -363.16147 -778.2656 362.4896 -778.6042 362.0 -779.28125 curveto -361.5104 -779.9583 361.26562 -780.8958 361.26562 -782.09375 curveto -361.26562 -783.28125 361.5104 -784.21356 362.0 -784.8906 curveto -362.4896 -785.5677 363.16147 -785.90625 364.01562 -785.90625 curveto -364.86978 -785.90625 365.54166 -785.5677 366.03125 -784.8906 curveto -366.52084 -784.21356 366.76562 -783.28125 366.76562 -782.09375 curveto -closepath -361.26562 -778.65625 moveto -361.59897 -778.0625 362.02603 -777.625 362.54688 -777.34375 curveto -363.06772 -777.0625 363.6875 -776.9219 364.40625 -776.9219 curveto -365.60416 -776.9219 366.57553 -777.3958 367.3203 -778.34375 curveto -368.0651 -779.2917 368.4375 -780.5417 368.4375 -782.09375 curveto -368.4375 -783.63544 368.0651 -784.8802 367.3203 -785.8281 curveto -366.57553 -786.77606 365.60416 -787.25 364.40625 -787.25 curveto -363.6875 -787.25 363.06772 -787.1094 362.54688 -786.8281 curveto -362.02603 -786.5469 361.59897 -786.1094 361.26562 -785.5156 curveto -361.26562 -787.0 lineto -359.64062 -787.0 lineto -359.64062 -773.3281 lineto -361.26562 -773.3281 lineto -361.26562 -778.65625 lineto -closepath -375.17188 -782.0469 moveto -373.85938 -782.0469 372.95312 -782.19794 372.45312 -782.5 curveto -371.95312 -782.80206 371.70312 -783.3125 371.70312 -784.03125 curveto -371.70312 -784.6042 371.89062 -785.0599 372.26562 -785.39844 curveto -372.64062 -785.737 373.15625 -785.90625 373.8125 -785.90625 curveto -374.70834 -785.90625 375.4271 -785.58856 375.96875 -784.9531 curveto -376.5104 -784.3177 376.78125 -783.46875 376.78125 -782.40625 curveto -376.78125 -782.0469 lineto -375.17188 -782.0469 lineto -closepath -378.39062 -781.3906 moveto -378.39062 -787.0 lineto -376.78125 -787.0 lineto -376.78125 -785.5 lineto -376.40625 -786.1042 375.9453 -786.5469 375.39844 -786.8281 curveto -374.85156 -787.1094 374.1771 -787.25 373.375 -787.25 curveto -372.3646 -787.25 371.5625 -786.96875 370.96875 -786.40625 curveto -370.375 -785.84375 370.07812 -785.08856 370.07812 -784.1406 curveto -370.07812 -783.02606 370.45053 -782.1875 371.1953 -781.625 curveto -371.9401 -781.0625 373.04688 -780.78125 374.51562 -780.78125 curveto -376.78125 -780.78125 lineto -376.78125 -780.625 lineto -376.78125 -779.88544 376.53647 -779.3125 376.04688 -778.90625 curveto -375.55728 -778.5 374.86978 -778.2969 373.98438 -778.2969 curveto -373.42188 -778.2969 372.875 -778.362 372.34375 -778.4922 curveto -371.8125 -778.6224 371.29688 -778.82294 370.79688 -779.09375 curveto -370.79688 -777.6094 lineto -371.39062 -777.3802 371.96616 -777.2083 372.52344 -777.09375 curveto -373.08072 -776.9792 373.625 -776.9219 374.15625 -776.9219 curveto -375.5729 -776.9219 376.6328 -777.2917 377.33594 -778.03125 curveto -378.03906 -778.7708 378.39062 -779.8906 378.39062 -781.3906 curveto -closepath -386.96875 -777.4531 moveto -386.96875 -778.96875 lineto -386.5104 -778.73956 386.03647 -778.5651 385.54688 -778.4453 curveto -385.05728 -778.3255 384.54688 -778.2656 384.01562 -778.2656 curveto -383.21353 -778.2656 382.61197 -778.3906 382.21094 -778.6406 curveto -381.8099 -778.8906 381.60938 -779.26044 381.60938 -779.75 curveto -381.60938 -780.125 381.7526 -780.41925 382.03906 -780.6328 curveto -382.32553 -780.8464 382.90103 -781.05206 383.76562 -781.25 curveto -384.32812 -781.3594 lineto -385.47397 -781.6094 386.28906 -781.9583 386.77344 -782.40625 curveto -387.2578 -782.8542 387.5 -783.4792 387.5 -784.28125 curveto -387.5 -785.19794 387.13803 -785.9219 386.41406 -786.4531 curveto -385.6901 -786.9844 384.6979 -787.25 383.4375 -787.25 curveto -382.90625 -787.25 382.35416 -787.2005 381.78125 -787.10156 curveto -381.20834 -787.0026 380.60416 -786.84894 379.96875 -786.6406 curveto -379.96875 -784.96875 lineto -380.5729 -785.28125 381.16406 -785.5156 381.7422 -785.6719 curveto -382.3203 -785.8281 382.89584 -785.90625 383.46875 -785.90625 curveto -384.22916 -785.90625 384.8151 -785.77606 385.22656 -785.5156 curveto -385.63803 -785.2552 385.84375 -784.88544 385.84375 -784.40625 curveto -385.84375 -783.96875 385.6953 -783.6328 385.39844 -783.39844 curveto -385.10156 -783.16406 384.45312 -782.9375 383.45312 -782.71875 curveto -382.89062 -782.59375 lineto -381.88022 -782.375 381.15366 -782.0495 380.71094 -781.6172 curveto -380.26822 -781.1849 380.04688 -780.5833 380.04688 -779.8125 curveto -380.04688 -778.8958 380.375 -778.1849 381.03125 -777.6797 curveto -381.6875 -777.1745 382.61978 -776.9219 383.82812 -776.9219 curveto -384.42188 -776.9219 384.98178 -776.9661 385.5078 -777.0547 curveto -386.03384 -777.14325 386.52084 -777.27606 386.96875 -777.4531 curveto -closepath -397.10938 -781.6719 moveto -397.10938 -782.46875 lineto -389.6875 -782.46875 lineto -389.75 -783.5833 390.08334 -784.4323 390.6875 -785.0156 curveto -391.29166 -785.59894 392.13022 -785.8906 393.20312 -785.8906 curveto -393.81772 -785.8906 394.41666 -785.8125 395.0 -785.65625 curveto -395.58334 -785.5 396.16147 -785.2708 396.73438 -784.96875 curveto -396.73438 -786.5 lineto -396.16147 -786.75 395.5703 -786.9375 394.96094 -787.0625 curveto -394.35156 -787.1875 393.72916 -787.25 393.09375 -787.25 curveto -391.53125 -787.25 390.29166 -786.79425 389.375 -785.8828 curveto -388.45834 -784.9714 388.0 -783.7344 388.0 -782.1719 curveto -388.0 -780.5573 388.4349 -779.2786 389.3047 -778.33594 curveto -390.17447 -777.39325 391.34375 -776.9219 392.8125 -776.9219 curveto -394.14584 -776.9219 395.1953 -777.3464 395.96094 -778.1953 curveto -396.72656 -779.04425 397.10938 -780.2031 397.10938 -781.6719 curveto -closepath -395.5 -781.2031 moveto -395.4896 -780.3177 395.2422 -779.612 394.7578 -779.08594 curveto -394.27344 -778.5599 393.6354 -778.2969 392.84375 -778.2969 curveto -391.9375 -778.2969 391.21353 -778.5495 390.67188 -779.0547 curveto -390.13022 -779.5599 389.81772 -780.27606 389.73438 -781.2031 curveto -395.5 -781.2031 lineto -closepath -405.96875 -777.4531 moveto -405.96875 -778.96875 lineto -405.5104 -778.73956 405.03647 -778.5651 404.54688 -778.4453 curveto -404.05728 -778.3255 403.54688 -778.2656 403.01562 -778.2656 curveto -402.21353 -778.2656 401.61197 -778.3906 401.21094 -778.6406 curveto -400.8099 -778.8906 400.60938 -779.26044 400.60938 -779.75 curveto -400.60938 -780.125 400.7526 -780.41925 401.03906 -780.6328 curveto -401.32553 -780.8464 401.90103 -781.05206 402.76562 -781.25 curveto -403.32812 -781.3594 lineto -404.47397 -781.6094 405.28906 -781.9583 405.77344 -782.40625 curveto -406.2578 -782.8542 406.5 -783.4792 406.5 -784.28125 curveto -406.5 -785.19794 406.13803 -785.9219 405.41406 -786.4531 curveto -404.6901 -786.9844 403.6979 -787.25 402.4375 -787.25 curveto -401.90625 -787.25 401.35416 -787.2005 400.78125 -787.10156 curveto -400.20834 -787.0026 399.60416 -786.84894 398.96875 -786.6406 curveto -398.96875 -784.96875 lineto -399.5729 -785.28125 400.16406 -785.5156 400.7422 -785.6719 curveto -401.3203 -785.8281 401.89584 -785.90625 402.46875 -785.90625 curveto -403.22916 -785.90625 403.8151 -785.77606 404.22656 -785.5156 curveto -404.63803 -785.2552 404.84375 -784.88544 404.84375 -784.40625 curveto -404.84375 -783.96875 404.6953 -783.6328 404.39844 -783.39844 curveto -404.10156 -783.16406 403.45312 -782.9375 402.45312 -782.71875 curveto -401.89062 -782.59375 lineto -400.88022 -782.375 400.15366 -782.0495 399.71094 -781.6172 curveto -399.26822 -781.1849 399.04688 -780.5833 399.04688 -779.8125 curveto -399.04688 -778.8958 399.375 -778.1849 400.03125 -777.6797 curveto -400.6875 -777.1745 401.61978 -776.9219 402.82812 -776.9219 curveto -403.42188 -776.9219 403.98178 -776.9661 404.5078 -777.0547 curveto -405.03384 -777.14325 405.52084 -777.27606 405.96875 -777.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.99215686 0.007843138 0.007843138 setrgbcolor -newpath -30.765625 -772.125 moveto -33.40625 -772.125 lineto -36.765625 -781.0625 lineto -40.125 -772.125 lineto -42.765625 -772.125 lineto -42.765625 -785.25 lineto -41.046875 -785.25 lineto -41.046875 -773.7344 lineto -37.65625 -782.7344 lineto -35.875 -782.7344 lineto -32.484375 -773.7344 lineto -32.484375 -785.25 lineto -30.765625 -785.25 lineto -30.765625 -772.125 lineto -closepath -50.515625 -776.5469 moveto -49.640625 -776.5469 48.953125 -776.8828 48.453125 -777.5547 curveto -47.953125 -778.22656 47.703125 -779.15625 47.703125 -780.34375 curveto -47.703125 -781.5208 47.953125 -782.44794 48.453125 -783.125 curveto -48.953125 -783.80206 49.640625 -784.1406 50.515625 -784.1406 curveto -51.369793 -784.1406 52.04948 -783.7995 52.554688 -783.1172 curveto -53.059895 -782.4349 53.3125 -781.51044 53.3125 -780.34375 curveto -53.3125 -779.17706 53.059895 -778.2526 52.554688 -777.5703 curveto -52.04948 -776.888 51.369793 -776.5469 50.515625 -776.5469 curveto -closepath -50.515625 -775.1719 moveto -51.921875 -775.1719 53.026043 -775.6276 53.828125 -776.53906 curveto -54.630207 -777.4505 55.03125 -778.71875 55.03125 -780.34375 curveto -55.03125 -781.94794 54.630207 -783.2083 53.828125 -784.125 curveto -53.026043 -785.0417 51.921875 -785.5 50.515625 -785.5 curveto -49.098957 -785.5 47.992188 -785.0417 47.195312 -784.125 curveto -46.398438 -783.2083 46.0 -781.94794 46.0 -780.34375 curveto -46.0 -778.71875 46.398438 -777.4505 47.195312 -776.53906 curveto -47.992188 -775.6276 49.098957 -775.1719 50.515625 -775.1719 curveto -closepath -65.875 -779.3125 moveto -65.875 -785.25 lineto -64.265625 -785.25 lineto -64.265625 -779.3594 lineto -64.265625 -778.4323 64.083336 -777.737 63.71875 -777.27344 curveto -63.354168 -776.8099 62.807293 -776.5781 62.078125 -776.5781 curveto -61.203125 -776.5781 60.515625 -776.85675 60.015625 -777.41406 curveto -59.515625 -777.9714 59.265625 -778.7292 59.265625 -779.6875 curveto -59.265625 -785.25 lineto -57.640625 -785.25 lineto -57.640625 -775.40625 lineto -59.265625 -775.40625 lineto -59.265625 -776.9375 lineto -59.651043 -776.34375 60.10677 -775.90106 60.632812 -775.6094 curveto -61.158855 -775.3177 61.760418 -775.1719 62.4375 -775.1719 curveto -63.572918 -775.1719 64.42969 -775.5208 65.00781 -776.21875 curveto -65.58594 -776.9167 65.875 -777.94794 65.875 -779.3125 curveto -closepath -75.171875 -780.21875 moveto -75.171875 -779.0417 74.92969 -778.1302 74.44531 -777.4844 curveto -73.96094 -776.83856 73.28646 -776.5156 72.421875 -776.5156 curveto -71.546875 -776.5156 70.86719 -776.83856 70.38281 -777.4844 curveto -69.89844 -778.1302 69.65625 -779.0417 69.65625 -780.21875 curveto -69.65625 -781.38544 69.89844 -782.28906 70.38281 -782.9297 curveto -70.86719 -783.5703 71.546875 -783.8906 72.421875 -783.8906 curveto -73.28646 -783.8906 73.96094 -783.5703 74.44531 -782.9297 curveto -74.92969 -782.28906 75.171875 -781.38544 75.171875 -780.21875 curveto -closepath -76.796875 -784.03125 moveto -76.796875 -785.7083 76.42448 -786.95575 75.67969 -787.77344 curveto -74.9349 -788.5911 73.791664 -789.0 72.25 -789.0 curveto -71.6875 -789.0 71.15365 -788.95575 70.64844 -788.8672 curveto -70.14323 -788.7786 69.65625 -788.6458 69.1875 -788.46875 curveto -69.1875 -786.90625 lineto -69.65625 -787.1667 70.1224 -787.35675 70.58594 -787.47656 curveto -71.04948 -787.5964 71.520836 -787.65625 72.0 -787.65625 curveto -73.0625 -787.65625 73.85677 -787.3802 74.38281 -786.8281 curveto -74.90885 -786.27606 75.171875 -785.4375 75.171875 -784.3125 curveto -75.171875 -783.5156 lineto -74.83854 -784.09894 74.41146 -784.5339 73.890625 -784.8203 curveto -73.36979 -785.10675 72.74479 -785.25 72.015625 -785.25 curveto -70.80729 -785.25 69.83594 -784.78906 69.10156 -783.8672 curveto -68.36719 -782.9453 68.0 -781.7292 68.0 -780.21875 curveto -68.0 -778.6875 68.36719 -777.46356 69.10156 -776.5469 curveto -69.83594 -775.6302 70.80729 -775.1719 72.015625 -775.1719 curveto -72.74479 -775.1719 73.36979 -775.3151 73.890625 -775.60156 curveto -74.41146 -775.888 74.83854 -776.32294 75.171875 -776.90625 curveto -75.171875 -775.40625 lineto -76.796875 -775.40625 lineto -76.796875 -784.03125 lineto -closepath -83.515625 -776.5469 moveto -82.640625 -776.5469 81.953125 -776.8828 81.453125 -777.5547 curveto -80.953125 -778.22656 80.703125 -779.15625 80.703125 -780.34375 curveto -80.703125 -781.5208 80.953125 -782.44794 81.453125 -783.125 curveto -81.953125 -783.80206 82.640625 -784.1406 83.515625 -784.1406 curveto -84.36979 -784.1406 85.04948 -783.7995 85.55469 -783.1172 curveto -86.0599 -782.4349 86.3125 -781.51044 86.3125 -780.34375 curveto -86.3125 -779.17706 86.0599 -778.2526 85.55469 -777.5703 curveto -85.04948 -776.888 84.36979 -776.5469 83.515625 -776.5469 curveto -closepath -83.515625 -775.1719 moveto -84.921875 -775.1719 86.02604 -775.6276 86.828125 -776.53906 curveto -87.63021 -777.4505 88.03125 -778.71875 88.03125 -780.34375 curveto -88.03125 -781.94794 87.63021 -783.2083 86.828125 -784.125 curveto -86.02604 -785.0417 84.921875 -785.5 83.515625 -785.5 curveto -82.09896 -785.5 80.99219 -785.0417 80.19531 -784.125 curveto -79.39844 -783.2083 79.0 -781.94794 79.0 -780.34375 curveto -79.0 -778.71875 79.39844 -777.4505 80.19531 -776.53906 curveto -80.99219 -775.6276 82.09896 -775.1719 83.515625 -775.1719 curveto -closepath -92.546875 -773.59375 moveto -92.546875 -783.7969 lineto -94.6875 -783.7969 lineto -96.5 -783.7969 97.82552 -783.38544 98.66406 -782.5625 curveto -99.5026 -781.73956 99.921875 -780.4427 99.921875 -778.6719 curveto -99.921875 -776.91144 99.5026 -775.625 98.66406 -774.8125 curveto -97.82552 -774.0 96.5 -773.59375 94.6875 -773.59375 curveto -92.546875 -773.59375 lineto -closepath -90.765625 -772.125 moveto -94.421875 -772.125 lineto -96.96354 -772.125 98.828125 -772.6536 100.015625 -773.71094 curveto -101.203125 -774.76825 101.796875 -776.4219 101.796875 -778.6719 curveto -101.796875 -780.9323 101.20052 -782.59375 100.00781 -783.65625 curveto -98.8151 -784.71875 96.953125 -785.25 94.421875 -785.25 curveto -90.765625 -785.25 lineto -90.765625 -772.125 lineto -closepath -106.546875 -778.9844 moveto -106.546875 -783.7969 lineto -109.390625 -783.7969 lineto -110.34896 -783.7969 111.05729 -783.59894 111.515625 -783.2031 curveto -111.97396 -782.8073 112.203125 -782.19794 112.203125 -781.375 curveto -112.203125 -780.5625 111.97396 -779.96094 111.515625 -779.5703 curveto -111.05729 -779.1797 110.34896 -778.9844 109.390625 -778.9844 curveto -106.546875 -778.9844 lineto -closepath -106.546875 -773.59375 moveto -106.546875 -777.5469 lineto -109.171875 -777.5469 lineto -110.03646 -777.5469 110.68229 -777.3828 111.109375 -777.0547 curveto -111.53646 -776.72656 111.75 -776.2292 111.75 -775.5625 curveto -111.75 -774.90625 111.53646 -774.41406 111.109375 -774.08594 curveto -110.68229 -773.7578 110.03646 -773.59375 109.171875 -773.59375 curveto -106.546875 -773.59375 lineto -closepath -104.765625 -772.125 moveto -109.296875 -772.125 lineto -110.65104 -772.125 111.69531 -772.40625 112.42969 -772.96875 curveto -113.16406 -773.53125 113.53125 -774.3333 113.53125 -775.375 curveto -113.53125 -776.17706 113.34375 -776.8151 112.96875 -777.28906 curveto -112.59375 -777.763 112.041664 -778.0573 111.3125 -778.1719 curveto -112.1875 -778.3594 112.86719 -778.75 113.35156 -779.34375 curveto -113.83594 -779.9375 114.078125 -780.6823 114.078125 -781.5781 curveto -114.078125 -782.7448 113.67969 -783.64844 112.88281 -784.28906 curveto -112.08594 -784.9297 110.953125 -785.25 109.484375 -785.25 curveto -104.765625 -785.25 lineto -104.765625 -772.125 lineto -closepath -126.515625 -776.5469 moveto -125.640625 -776.5469 124.953125 -776.8828 124.453125 -777.5547 curveto -123.953125 -778.22656 123.703125 -779.15625 123.703125 -780.34375 curveto -123.703125 -781.5208 123.953125 -782.44794 124.453125 -783.125 curveto -124.953125 -783.80206 125.640625 -784.1406 126.515625 -784.1406 curveto -127.36979 -784.1406 128.04948 -783.7995 128.55469 -783.1172 curveto -129.05989 -782.4349 129.3125 -781.51044 129.3125 -780.34375 curveto -129.3125 -779.17706 129.05989 -778.2526 128.55469 -777.5703 curveto -128.04948 -776.888 127.36979 -776.5469 126.515625 -776.5469 curveto -closepath -126.515625 -775.1719 moveto -127.921875 -775.1719 129.02605 -775.6276 129.82812 -776.53906 curveto -130.6302 -777.4505 131.03125 -778.71875 131.03125 -780.34375 curveto -131.03125 -781.94794 130.6302 -783.2083 129.82812 -784.125 curveto -129.02605 -785.0417 127.921875 -785.5 126.515625 -785.5 curveto -125.09896 -785.5 123.99219 -785.0417 123.19531 -784.125 curveto -122.39844 -783.2083 122.0 -781.94794 122.0 -780.34375 curveto -122.0 -778.71875 122.39844 -777.4505 123.19531 -776.53906 curveto -123.99219 -775.6276 125.09896 -775.1719 126.515625 -775.1719 curveto -closepath -141.875 -779.3125 moveto -141.875 -785.25 lineto -140.26562 -785.25 lineto -140.26562 -779.3594 lineto -140.26562 -778.4323 140.08333 -777.737 139.71875 -777.27344 curveto -139.35417 -776.8099 138.8073 -776.5781 138.07812 -776.5781 curveto -137.20312 -776.5781 136.51562 -776.85675 136.01562 -777.41406 curveto -135.51562 -777.9714 135.26562 -778.7292 135.26562 -779.6875 curveto -135.26562 -785.25 lineto -133.64062 -785.25 lineto -133.64062 -775.40625 lineto -135.26562 -775.40625 lineto -135.26562 -776.9375 lineto -135.65105 -776.34375 136.10677 -775.90106 136.63281 -775.6094 curveto -137.15886 -775.3177 137.76042 -775.1719 138.4375 -775.1719 curveto -139.57292 -775.1719 140.42969 -775.5208 141.00781 -776.21875 curveto -141.58594 -776.9167 141.875 -777.94794 141.875 -779.3125 curveto -closepath -150.70312 -771.5781 moveto -152.3125 -771.5781 lineto -152.3125 -785.25 lineto -150.70312 -785.25 lineto -150.70312 -771.5781 lineto -closepath -159.51562 -776.5469 moveto -158.64062 -776.5469 157.95312 -776.8828 157.45312 -777.5547 curveto -156.95312 -778.22656 156.70312 -779.15625 156.70312 -780.34375 curveto -156.70312 -781.5208 156.95312 -782.44794 157.45312 -783.125 curveto -157.95312 -783.80206 158.64062 -784.1406 159.51562 -784.1406 curveto -160.3698 -784.1406 161.04948 -783.7995 161.55469 -783.1172 curveto -162.05989 -782.4349 162.3125 -781.51044 162.3125 -780.34375 curveto -162.3125 -779.17706 162.05989 -778.2526 161.55469 -777.5703 curveto -161.04948 -776.888 160.3698 -776.5469 159.51562 -776.5469 curveto -closepath -159.51562 -775.1719 moveto -160.92188 -775.1719 162.02605 -775.6276 162.82812 -776.53906 curveto -163.6302 -777.4505 164.03125 -778.71875 164.03125 -780.34375 curveto -164.03125 -781.94794 163.6302 -783.2083 162.82812 -784.125 curveto -162.02605 -785.0417 160.92188 -785.5 159.51562 -785.5 curveto -158.09895 -785.5 156.99219 -785.0417 156.19531 -784.125 curveto -155.39844 -783.2083 155.0 -781.94794 155.0 -780.34375 curveto -155.0 -778.71875 155.39844 -777.4505 156.19531 -776.53906 curveto -156.99219 -775.6276 158.09895 -775.1719 159.51562 -775.1719 curveto -closepath -173.78125 -775.78125 moveto -173.78125 -777.2969 lineto -173.32292 -777.0469 172.86458 -776.8594 172.40625 -776.7344 curveto -171.94792 -776.6094 171.48438 -776.5469 171.01562 -776.5469 curveto -169.96355 -776.5469 169.14844 -776.8776 168.57031 -777.53906 curveto -167.99219 -778.2005 167.70312 -779.13544 167.70312 -780.34375 curveto -167.70312 -781.5417 167.99219 -782.47394 168.57031 -783.1406 curveto -169.14844 -783.8073 169.96355 -784.1406 171.01562 -784.1406 curveto -171.48438 -784.1406 171.94792 -784.0755 172.40625 -783.9453 curveto -172.86458 -783.8151 173.32292 -783.625 173.78125 -783.375 curveto -173.78125 -784.875 lineto -173.33333 -785.0833 172.86719 -785.23956 172.38281 -785.34375 curveto -171.89844 -785.44794 171.38542 -785.5 170.84375 -785.5 curveto -169.35417 -785.5 168.17448 -785.0339 167.30469 -784.10156 curveto -166.43489 -783.16925 166.0 -781.9167 166.0 -780.34375 curveto -166.0 -778.7292 166.44011 -777.46356 167.32031 -776.5469 curveto -168.20052 -775.6302 169.40625 -775.1719 170.9375 -775.1719 curveto -171.4375 -775.1719 171.92448 -775.2214 172.39844 -775.3203 curveto -172.87239 -775.41925 173.33333 -775.57294 173.78125 -775.78125 curveto -closepath -180.17188 -780.2969 moveto -178.85938 -780.2969 177.95312 -780.44794 177.45312 -780.75 curveto -176.95312 -781.05206 176.70312 -781.5625 176.70312 -782.28125 curveto -176.70312 -782.8542 176.89062 -783.3099 177.26562 -783.64844 curveto -177.64062 -783.987 178.15625 -784.15625 178.8125 -784.15625 curveto -179.70833 -784.15625 180.42708 -783.83856 180.96875 -783.2031 curveto -181.51042 -782.5677 181.78125 -781.71875 181.78125 -780.65625 curveto -181.78125 -780.2969 lineto -180.17188 -780.2969 lineto -closepath -183.39062 -779.6406 moveto -183.39062 -785.25 lineto -181.78125 -785.25 lineto -181.78125 -783.75 lineto -181.40625 -784.3542 180.94531 -784.7969 180.39844 -785.0781 curveto -179.85156 -785.3594 179.17708 -785.5 178.375 -785.5 curveto -177.36458 -785.5 176.5625 -785.21875 175.96875 -784.65625 curveto -175.375 -784.09375 175.07812 -783.33856 175.07812 -782.3906 curveto -175.07812 -781.27606 175.45052 -780.4375 176.19531 -779.875 curveto -176.94011 -779.3125 178.04688 -779.03125 179.51562 -779.03125 curveto -181.78125 -779.03125 lineto -181.78125 -778.875 lineto -181.78125 -778.13544 181.53645 -777.5625 181.04688 -777.15625 curveto -180.5573 -776.75 179.8698 -776.5469 178.98438 -776.5469 curveto -178.42188 -776.5469 177.875 -776.612 177.34375 -776.7422 curveto -176.8125 -776.8724 176.29688 -777.07294 175.79688 -777.34375 curveto -175.79688 -775.8594 lineto -176.39062 -775.6302 176.96614 -775.4583 177.52344 -775.34375 curveto -178.08073 -775.2292 178.625 -775.1719 179.15625 -775.1719 curveto -180.57292 -775.1719 181.63281 -775.5417 182.33594 -776.28125 curveto -183.03906 -777.0208 183.39062 -778.1406 183.39062 -779.6406 curveto -closepath -185.70312 -771.5781 moveto -187.3125 -771.5781 lineto -187.3125 -785.25 lineto -185.70312 -785.25 lineto -185.70312 -771.5781 lineto -closepath -204.875 -779.3125 moveto -204.875 -785.25 lineto -203.26562 -785.25 lineto -203.26562 -779.3594 lineto -203.26562 -778.4323 203.08333 -777.737 202.71875 -777.27344 curveto -202.35417 -776.8099 201.8073 -776.5781 201.07812 -776.5781 curveto -200.20312 -776.5781 199.51562 -776.85675 199.01562 -777.41406 curveto -198.51562 -777.9714 198.26562 -778.7292 198.26562 -779.6875 curveto -198.26562 -785.25 lineto -196.64062 -785.25 lineto -196.64062 -771.5781 lineto -198.26562 -771.5781 lineto -198.26562 -776.9375 lineto -198.65105 -776.34375 199.10677 -775.90106 199.63281 -775.6094 curveto -200.15886 -775.3177 200.76042 -775.1719 201.4375 -775.1719 curveto -202.57292 -775.1719 203.42969 -775.5208 204.00781 -776.21875 curveto -204.58594 -776.9167 204.875 -777.94794 204.875 -779.3125 curveto -closepath -211.51562 -776.5469 moveto -210.64062 -776.5469 209.95312 -776.8828 209.45312 -777.5547 curveto -208.95312 -778.22656 208.70312 -779.15625 208.70312 -780.34375 curveto -208.70312 -781.5208 208.95312 -782.44794 209.45312 -783.125 curveto -209.95312 -783.80206 210.64062 -784.1406 211.51562 -784.1406 curveto -212.3698 -784.1406 213.04948 -783.7995 213.55469 -783.1172 curveto -214.05989 -782.4349 214.3125 -781.51044 214.3125 -780.34375 curveto -214.3125 -779.17706 214.05989 -778.2526 213.55469 -777.5703 curveto -213.04948 -776.888 212.3698 -776.5469 211.51562 -776.5469 curveto -closepath -211.51562 -775.1719 moveto -212.92188 -775.1719 214.02605 -775.6276 214.82812 -776.53906 curveto -215.6302 -777.4505 216.03125 -778.71875 216.03125 -780.34375 curveto -216.03125 -781.94794 215.6302 -783.2083 214.82812 -784.125 curveto -214.02605 -785.0417 212.92188 -785.5 211.51562 -785.5 curveto -210.09895 -785.5 208.99219 -785.0417 208.19531 -784.125 curveto -207.39844 -783.2083 207.0 -781.94794 207.0 -780.34375 curveto -207.0 -778.71875 207.39844 -777.4505 208.19531 -776.53906 curveto -208.99219 -775.6276 210.09895 -775.1719 211.51562 -775.1719 curveto -closepath -224.96875 -775.7031 moveto -224.96875 -777.21875 lineto -224.51042 -776.98956 224.03645 -776.8151 223.54688 -776.6953 curveto -223.0573 -776.5755 222.54688 -776.5156 222.01562 -776.5156 curveto -221.21355 -776.5156 220.61198 -776.6406 220.21094 -776.8906 curveto -219.80989 -777.1406 219.60938 -777.51044 219.60938 -778.0 curveto -219.60938 -778.375 219.75261 -778.66925 220.03906 -778.8828 curveto -220.32552 -779.0964 220.90105 -779.30206 221.76562 -779.5 curveto -222.32812 -779.6094 lineto -223.47395 -779.8594 224.28906 -780.2083 224.77344 -780.65625 curveto -225.25781 -781.1042 225.5 -781.7292 225.5 -782.53125 curveto -225.5 -783.44794 225.13802 -784.1719 224.41406 -784.7031 curveto -223.69011 -785.2344 222.69792 -785.5 221.4375 -785.5 curveto -220.90625 -785.5 220.35417 -785.4505 219.78125 -785.35156 curveto -219.20833 -785.2526 218.60417 -785.09894 217.96875 -784.8906 curveto -217.96875 -783.21875 lineto -218.57292 -783.53125 219.16406 -783.7656 219.74219 -783.9219 curveto -220.32031 -784.0781 220.89583 -784.15625 221.46875 -784.15625 curveto -222.22917 -784.15625 222.81511 -784.02606 223.22656 -783.7656 curveto -223.63802 -783.5052 223.84375 -783.13544 223.84375 -782.65625 curveto -223.84375 -782.21875 223.69531 -781.8828 223.39844 -781.64844 curveto -223.10156 -781.41406 222.45312 -781.1875 221.45312 -780.96875 curveto -220.89062 -780.84375 lineto -219.8802 -780.625 219.15364 -780.2995 218.71094 -779.8672 curveto -218.26823 -779.4349 218.04688 -778.8333 218.04688 -778.0625 curveto -218.04688 -777.1458 218.375 -776.4349 219.03125 -775.9297 curveto -219.6875 -775.4245 220.6198 -775.1719 221.82812 -775.1719 curveto -222.42188 -775.1719 222.98177 -775.2161 223.50781 -775.3047 curveto -224.03386 -775.39325 224.52083 -775.52606 224.96875 -775.7031 curveto -closepath -228.29688 -772.6094 moveto -228.29688 -775.40625 lineto -231.625 -775.40625 lineto -231.625 -776.65625 lineto -228.29688 -776.65625 lineto -228.29688 -782.0 lineto -228.29688 -782.80206 228.40625 -783.3177 228.625 -783.5469 curveto -228.84375 -783.77606 229.29167 -783.8906 229.96875 -783.8906 curveto -231.625 -783.8906 lineto -231.625 -785.25 lineto -229.96875 -785.25 lineto -228.71875 -785.25 227.85677 -785.01825 227.38281 -784.5547 curveto -226.90886 -784.0911 226.67188 -783.23956 226.67188 -782.0 curveto -226.67188 -776.65625 lineto -225.48438 -776.65625 lineto -225.48438 -775.40625 lineto -226.67188 -775.40625 lineto -226.67188 -772.6094 lineto -228.29688 -772.6094 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -grestore -showpage - -%%EOF \ No newline at end of file diff --git a/Content/Figures/mongodb_on_local_host.png b/Content/Figures/mongodb_on_local_host.png deleted file mode 100644 index 0c9ad06aae9b35c8b57aae1fd10ca0b55b0cd96b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 14404 zcmch8bzD?k*ES)dNa%>5bPS!6H(dh^odeP!J(R-GDTp|d(j7xL$j~LAbPWwMpwg|h zke|_^ioH_g2*IIj>YwtO+*9NYsu1G{cL4bvYMWh4vczc`ZhB4^Xzar`aDm%c^AzOvUywbz%zwm z5Mtc>t><*JoZ&4frTGDRxB0CNKYz204gX+?CkXTw!tj9M0UA=0lCq12?0ODj&}JT( zC#E&*=PHUIthad7U`*le3$TG3=KJOtjHS@$Ac=(~D536RdFMju?wl5XG~xgR00pRiV09{O`&L zE15QpOZN%j!;hIz;{0K1Pd2D(E=c*bukSS;wt&}Q>~0+4OJKG!vI*Hhpm*2V#3r=6 z9EVwXw%=W;!v2YA;2+Z^EwYFj>snnvq??YCJz4i$@kNBSEN#4dcWiu0Ea*`<9czS) z^dg_XI^5%%v84$DAwH;zG?haP*Rof}tg9+POiwcjWvz+1yI^UcaytKf2_qR6JZ}c! zM4Jtblo-&w9n%bh7NwI8#)1x&Qu7vKvgV(kA+1ToTFckp1Wer`DY+5@KvoV*-iIq& zi$DQud=;RYM3CE7AwBBMFlN0)%fQYweg~lhO0YECIYzxt>XU=bo_@u4PTpvF`_k#@q zN_5hB|Bl13DQRreFxp7C40>&$_hz~<-9ZLX!(_t#WqhKkSV04lX$+^&o6|r+O!kq5 z#-4dRe$Wh-YAtn6%MbFk%l>W^j)^=^Hx0wnh~0&QfLl|qg$p+^F5Il;4T@@UinBF> z=|;`Q>A*sG+5zb<#VFPB_eI~KHT1jk_c^DirV*HNgC{7s0=XX9#SGf4E7yUB_l%g) zeiuEVyXMxcG7(+8!mr{8J@M7IqKVKs)dUU2HAsQLh)*9f;~^% zD+x6QEclGTFm7E8klcLh^s9j2q%vS-1o&4uWRTUZ=ZX{lIWL5eyLvHaE@p*TTAXf-t~UJD%zAU-pLVcZ*?xb-ZgfcYb( zfFSl%cJbXGx7E~w1nrl|{hl>^G=W2O5^6=E(o1Lu{hm1-HGzYBqPQlGlu=WgA8$-F z)a<-OO_Df0(|LFTtJAs1-XPVqpF`vX{T@F&>XL|e#4ZwJho4SkLVlb>?-U0x2%&7p>k|i4-H>iM2U>Hk)@F|LkVdj@=;Cc@Ab6p)3g#A`c7ng~Y4y~y6 zTx@+I`hhOMB%Ban!t%K7y>wMIHR~TA&4EXw#C#=v2}KK!MT{V61NeCW_ebqls(l(| zPKyEvqR&VknKW-}nZ|n|w#NIbLkYsFUtU>T!903aZiRyC=}%P-LqZ~;uE3_)YE}?4 z1t5QiRQ_^fK$X?{k!T)|-2iC6mXsmZJNC{aJn!+Wl!$qbV%A=@Wyzh9_1f?K{SE2a zG3!DX9RMQ!C+CuvA9CIePFIHpaMyr!ZEs6InW9$^6ahq9JNZ~#yM5@?k zvdg6H*!Cq6*N=(0rzxk;CiW#os09Lkl6v(lz~wz zoz5hb1@P=u;M;dmj9L~eGck6KfzdNQs4qbZoAKy2v6{3{d>L~>oE{@qbP1JHq_JtV zIIL&oHs(C<6DHZUz7n*)r^;Ft|O0$qTaro1R!tT#x4fQF0#M?Yh)SbC)G0&uR)X5c+ zQ2o?h?)_k7ncl0>Iy=r#`?P(CF~fr1X!Fa@oA0bfZ%1PK-R8A1aZ(W%kGx8>JtUSG z;b$jz?_41_PDot`-N2n>Qdbnf;yCP-`o;Z8x!k7l`))!oe}jBoQ`;19^HY9^_1Qah zOds>7a1xJtW|XEXN;9Q^TjYxZmN-?{I|zJj?oZ0)b_Pfbx2CDjUC#(b-li18Bg@a) zFI0}SF;ibkNluj1G70)Kh4JT&Zj!qwjHt$+k-lj(}!{hsUflYxH zBN7?t;tVl*K@+z?m;;H^NN1+6sBoUgDrmy7?-Ermg}fy2H6z0gT+r(3uzPDSK646e zGP8)D1S`B1l2`n(E=n^;6WaQt2Yc$s{mxDq-Y#r~qbv1i2ly@VXh?uRp?x<#BfXH$ z!|whd8$Vv+2sY8@MOD$7GaAWN=~_aDcJan2`0SMJjQb9}^`0%Mb7wa}lua&A6F2VW6Q)-=w zpw0kS)n3wCOf}g!pS)8l#?#%WpHb+hD%z9L$C}?X21#p4XNm*(2+h(`SdexjK(n^l z2ZSc}a4uwmldZ)_AkN^bJ+GTpY(bH=oCOIyDjc4Qc(dD?d2Z#1o9M%uQo;sZ=iH`8 zX+2P#BCUmy9>=T~C4XRpKI7SrWbwTZ@}ACqQv6DZC^_Mio5BXJ9#3OqF6 zTT>#r!vZM~+G|rYs;cEOg=9uW9K$0oN3FbbX1i3x5&&xUEbFR!ZCff*CzdIpn-Mkd z!mE7!R*+_LCBh$%F2$$QxEf#GqcBo13J|L}em;~I3=%xxl_xqHj&Oo=t7^r1c{{7K z)W&hGGg9kbpOjD8Jt;$&GIl8osBaU0m&`D;gNwczH|8FDX4dXe&OOy)298gLvq6hI zY#dbtSj(wfpSCRc)VcBj)Q09$;?;lo+-j(efj%*SkBQ6`^E`F9kCF^URu^HfjAn_sSdnEyI46*2`(eWvf5DLMb~ zjOM~4e&sWTG$Qp^GUB$*Or?Gj!%AkD!t(+oPlhtQ+hb+9J1UbJa8%|Xhj2G%Zy0ph zZPJ@|ndbm*4h@jjvK4e*T}CMshGtVYK=8!NQsGD)w%#V>1_!F>aEi4j&bZo6-oRuL z55Qz&{mxKV=G@e_xoGNHdNXAL2g?`x__YKFDR{wZ;iNkQOBH*4r}T6^MFr#*aSZFz zP{RE52f`&;3f1v-Xst^!$&Q**b~gspUgPfc!TFQ6W$dDJTp-7-B2h1bMuM*LVo z=B){@$X6Yp;uBhW>zbva4gb~-JWf`X!Yd4%k;NE#jkrdU_7ZUa|V z-`bW&90fZ>QjB#6IEalP8CQq&$L#`Eb7EDkk5tKsAdzuXDXNI9zDio+?%~5} z5`0G6+go8FFaH-FuROMk`8%A|K}U>N$B74ZJ@Cye2_-S9q= z;tjrHBk`*t?N$}=hdJ>S z3I1;fzbSu(({jTQ`OVl0!(BDMeDRU;MuC4t(t?Tj zMj~GPa3P#O8JJL#e~0q7mwzaK1^e5_e|o*K`FF7Y(ai65|MB`ee2jMgLBVMEJCeU8 z_)2sm!SC?@3U=WydH-(aD-oH~tv?xmhw{Ht{_gS{ADDLk<@GPwz7qYLf;r*eKK?_t zg`4ny51ju^BtI}i=TBj&{yxFqW9DDM{@38+oV)W|SeJi#@GoWmi}GjhRDMcYGDqkD zE#8?9eFBOmF2^fTdY7lp_mKR$6}7U8VhSr_v+CJ>z&esU;wMC+jYW@@WQC zB*hksBp8{ICu21GLSw5r(GDsu+&0w{by_#0mr#j}-fPuvUb4LRn)l!hfZoGNR^I}W zP4}`54hbBHjTLa@paf4?JW^qEvoHkU@C;5U8Yho##_MPDo{(y8SPy>+U#(pae4t}I zC$p^0tuH~)Y^kKnWN$#TedartC8q#CFRveEQ|j`7P_d$DI>Jo8nJ5eNxoN%4=XqZ2 z`tH*K|545WtJ!MX+m?Nh9O9SuofMWx2X9@u-q3xG{`-7n3`jJ z?xr6O-Rr!n5&7-(HOQfp&!vi~Hqj*3cDV|sAplgieb-HQcRykE@c#HS6QKm}66y*a zgbl!#F6o#+iC&g#4hSBvs;cG!z4z)se3O|u7c$7XBs&^bz<8V@2?IIkxuzJ7OfeA! z)5R^vG_X(rCT(438^}KA%TuyT)x9R4X4iTU_c8v%;3JrKM%Wo^{{V3;nEcz>%#rz? zSgwN}V8`fMONrnO=KlQ{&YW|nOeVbo1g^B8AZ2(Q5bDW>(w)tGGRaW}Ag|jhpK?qB zp&!=roU?8mhZ=-3wwS^R5=sky@m1kO=qu%fd9ZT53-uw9%b4aKlO3r2CZqd)CNNx+ zoUm1soT?$*Ttfqpo(H!@;n!>suSu|m(+%nl}S8&j}Nr6h|QgQWT6#&Mc1W3R#^?} zQl%=OoKqDj%=2JxUlkW(L)n41Itv2}MDMs&5}Y+~X>owr_i)MZT9Z~Xvyv{~pYgF7 zBz1nuOM7#%Pm@Zs?O(ZW&yHP6k;_xlX1S#c`*ox;(c=2Rn#|knS+;jeZfwzhF~O;> z6yV!zwVvDfqYJ6W?w+4jTPO&|lioJI2Xwutx&&`xRmrrdOw zq0C|ht!YADVDmsLv6_SakL-Z+^sGO)4!@8^6lIeKJiaBniX6_FQQE^xg>n0A zv;Ts0?0i{kc}w7fOrecdM&vxL(X9=3-Tmkn?Wc%11~uu@8dv~J%6F^0xy~xfg%*)t zG{^m44gnyajU6jvQX8FL6+cb@97S+UuBXwwZWU%H+^+x34WMpF8p3oS|0PHTIe2}L z{ykEGNz1*K?nPQ&9Nmn$D_3xKM3SGoo=cpK6+%&LNQ)^|^ZDQ-KfZqLMcpM1_$J$n z@N{BI8nAisMi*;4moJZPDfb^`ZX5RjYJ=1o@wha z5i$Ww#$!-&yC_;WPWYPu@1LPA1W@aePYjcVFulFBvayqUI!A62tO(ab_|>YSyvvYQ z>}?{L=vxpZKgm?&+{dN_N~e3Z5uQ(##MMMHd1tKTo5f|oM&G#>k6cKHx%kVOqqfS{ zXw!91-Xc>Go}68zYQojB?kESeg;41m{U2v_A}bR z#}Penhr}Xoy#2042Io;%S%VXi;ugH<;g2{ixEIOY+UTfa2TSK`~t z*sJCqcg%@x!mxHRi1~jXxgp8kA3sM|kCUh85JY*S3G#ak`6wt%rb z!S)V~zjp2kUQia8rgmdCQw3+Lq!hVTtF|V1kRD%u*bs|VfqYtPzS=%WSRce+W@_9v z8x>}PDrXH|_yI>`wS^3d2qEi_E&Y{O@@rjW^vC5qzxyfTI9N=E(~c2+uOcu>s<(tLWKPuQ*kU*^`2YFXjFh4Vq#er3QGzod7=XA#@%<6@QndM z{5c4MAs~5Qgi*R~oqdF6e{KkG;fx7<(?*Mjj9s@*PQrW`kg>BJlOTY%PY3t8$6pBw z3_t4mK=rMme-fU~7xV_iR&Vl&lyxzOg4Y&4Joz|3(cPaH#%l_=)$s-zEn1^kv|D7u ziE1S7HR_)S-&&HNL0Y2;^y&x;9)C~n*q@cI&e<{~xUZll$8&EX15f;m%YP+k@HF$eD0j+EX-zV9uyei^f7mQNrYOk&_@?$H|K;ymvAC?8 z+G_rz-?b7CX@A@D@7&a;;>2a%)Uxre%+eb*C-5qHbE2j> zdv^m0sJeUfLeR=F>vqW{PkkWuW4GbVohQP=$Ki&&{wIaxAp*DIK5^7Bp4Ro+^&rSX zvl=2mA}?pJjrJ;A>pte4yARu2-;={#1v%rK66T)g&qP5Cod^NJ*@lTXP~{U`TBs3O zwR&X%C;y7T4UgR)IB^l zIP(7Bw>U1;aGj%pvGtGefjL3xl<-xb_A^~u;{Nc3DfPxPM6Nv^U{cjt+7$ChV?=QF zI+({28hMbG>j-u!PSl@^FFHcqNc0Y}6S(6`pZhCPv9!k9>ZzkQg8;6S3YGRP|tkymN81 z2Oka%h7S=p`qXJtDE(R>gDbc`=+*4CnjFiiJW=Exgv{%Bbjfez_qPmwLYyIGV2KnI z@G*KN-GnQj;uqTA3JTc36TIaZxkvO6seSvGTmT~LoWn-C1R;sqBRw;I9#!tm{BL|L zIt>@|%vy_%P|O3W{?i)+caD77e!tpUlu|-#K!GXRdP-Zpd4l_HKas=GbOO3EQ<4ol z%DO&)Wnp<8yPFmYB8p3;cEt<^*@TY)uJX-A#eSuZRZRDFPEZov)f`&6b#u?z)l`m( z9iBBBne2-*qCP!Mp-1hg+W#I*@uAMM+h3G*?cC~~IW&(c8}>)^A1cW39PqO0cI@7j zBE*4Oe#mmz(X9pbJ%(hyQmq@h?~5S19NQegW@nheB%YzXdc2 z*ONJ-b+*KT(B#3OmU6UmKWCof(7t+4I5Tk3Jo9VxdFD+7tGE87oI3IFXa+ z1^uVtu4_B;ix0za0bD7cf?9^q%JHGAT=LI%#~PA9ZO25Sm9dGY9J7K!iru#`ZEos) zpw4viGq`oZhVk{2r1#52d0tNhY`NlDq?J`ffb>FvbACye+s_Ax2QAC4-jF6Bn>52JSs)(;{D-y;+ddwreDPcj7K*jfD6 zCzat0eHCgG_QEW`t762WDdBd+lW&>B3Q!q&PPyIaVMzgWxj~c>NU?;ju8sxMwcFyNa7@bmK0)x|CCM_js5m|9eQf^%R&3)7lujw6a3bI9;rK6)zxvq|>p2=G`NSJ3HyO zSKI9$YfGvQ=DQqhu^>}qJ^)HH@jSCl5rLu~li#D6C^++n+MG}_cQtu7KR9NnF}O>T zZ#f%i((H&D~eqXV>$80KC+#|1X2 zS6OmHfh8Xz%=7WnZ-)oh5luCb`tWm>>#evv;bf2yDn3+e4**YQKDxZu8Ni{o9(;A* ze^E>YIY-sVrbPjvj(Nd&5Sy=7-^m}gVane{hawJ`UL<3R)C1-q3xAQ^~NF-1$MSXZw;eJnmLA~JtC);MH57KM2=kCVICW5 zb8-t-voYwAK8*$U;FU&j*naztuY4#ig_P~TUT7vV zHy15MLg59CiA8KrQUON;`FNDhYD#2cQGTy5?`?Eim#3t6pCqQxgpsZ&yte5m0v2*k zzAqXpD&gTm(x>jwX;E;WNxdmwL^gvgA>cAtb2Z;nImq{Vpz`=-aQ53NwBCF6gC&OS zug%t%m=riJP?;!4g}Q?6F5Qe~0?x_oDcW`)+&Q~j$~8sSpQrnXw*L`s z)-bTmWotA3`jeq1=10Ni_dv7AD{M3NO4F70L*hD3$j>n!qdnlAri#+-AGLlNb+;;s zJz5RGNZj2e){qkC0@n@f0l2G%Er0FDSLeByoB2Vi0g0;nzR zdqvk$R#WuZeY;-Y3?tL+ocDk5@>?`+S!z>vGH{dlW49h*5K}bTLK&I^2Vd}^htZvCIOTq3VaK*m5S2!hudgnBTwc$2FqkZV?k%u3c)EIxDB9VoN zOLwssj7jB5!y@m2KP@B$g9^LfB(kWLQU~57^U}(jP9*OhyBr6DSQM-BA0b7m?aATC z3+qT<5^FH&AC6G(v4)*f#rJl?F|058Hb2u&y<`?D|0|VekydzNy^}YHzeuv<>BM>G zuTlgbm7+5V85md%wp=(_3zx8XauoFP$5ER-tK!Aw2& zEec0gwjH`jB^neBuV<(a%;5TRk3Xu%3mtSfddB!7=j1?z@~GcDFPrk9m~$>a?&XPvdX)GBPLk{*d!Few|cZC?5wN(vV=PTehIcMlhsnyxe{ z4HpaovGk3ZT;$;92=Cfql6h-V8)^xMb!G{1@9m&()C!LRlsmnOtgV=o*X%6&K5Y{+ z$K#+sB8$;uq*t{Lqm6-bVMIyW_*8=CM#rZ^ zo6GSrqE%NMi~BdcIx_lRpUcTJ)dB&-VsGh3w&%jt_R1kii23bs5P(15e?wPUpw1y+ z3bB(|WNShRD94>Xz&4rQJR8cBM#O=7OAX`o1}bjSc{@kCm~@^%MTWA>l>AFGxI%ut zf=K4_J9&=&%`@(pb={x!wc-h;O}dUA+JpXzZ2f&66f3onUo;TK6Didd4@F)JewO&LA$vS=&lmZP?Ie~M|b37JT3Vyi;y-)k#N0~EC&(?^Os#TVW89=6$)0E${y z*m=*fqR_&TQVcQcc|TX`=I=k0`&b+2?BpE`>Nu*|G`;A+g5%sS;}J6q$%x0sZAzr( z>VN`+aE%NztK#^~WnQi%vtU&u?Qm&e8H;@(3&aY-?Wjv+!FpWf{u3Xwx1ZI*O0M$8 z?7cJ{%`UKm9Bko!ji*E94SuHSWRi3E_DFBbN zIEh*!9VB0l0G$S~5*M+9VF9|~QdH`QBj!4R^$`+$XXqC!KnA__!1z-jG|}@7sDpR= zI|(i@RVdm)DV58$#Zd!M$8mPD3`VPsde5Q98&f+tK7mZ*B-y~m-W_ITYni=M2gT|p zs3I#l7?!zit>`<4c)9ES%eDAwYl^+O)Yh&JpI@zvow+8rkWp(I6V1TY(ltFQMV3oL zf~iEeK1QCN{1rNQcsFu;dXm8`FUC&O`%=LTBSqCtqA-+Bk`U?Mmgz}))RS?21c#Emt2WWhG|^#OAHzVh zc&S#sXYuj$JBA6OiIrNs zZpbkR-|V7HB>7@1d3G@p_A3&@EoMIAcdyoP@k5$5O`zxJkF_s;#%-?5a!qNt1bm<; zpNYe?ys30)IkKHK9N>Czu&LkhvSw@Le9$}R8YY(@Av~#OI+Q~@;}|DWljr>XgmzJ& zazb&3xI9`)a96R9B}NtK&Z3H-P(mc)l^92Hv4K~u;?8>qvlZiAs}7 ze3fVxtHB6y5q^zT%xbmSEY)|Cl9Wn{RIwt>d8wqAS6wwy)qA0Gd~2z?5P^%W_%Z%H zD|P;2;o+;bS;dFSBQ0^5p1CrZoeX&s6&-?!I#ub?%+@y7Nkop%_Wi`Q|8Zc&IoVA( zl-Fm0*Ng6pII-|NoIlr81DrGF7di%Z;*6&KyS_Fx_y+_i($0%YNuedm2w>2Jy!MQ& zg$Jrc%pH%)b76a zb4jdTU4w!~nF!tLd8Kx=^FFtAx1oPaNIWLVH#*C23GMH5cDk^^SjmNAZ+Q47I6YIm z$@A*;@KE_PNj@7&P<~ho!NZ+3-c!$$NqayOPpm$iz~;Gjk(juS?kQ=}8@b@#khTAI znEs)t`DBDvs?jsc?++SwB8mKvBV(jk#by%`3H!XiHFJ8&LuHqfK51t#vh9)Zn6E~r zxMUzc!2j2W*!6+EL&b9NbWXoPdG7b-q#fL~x73RPE+l2^setm~IXMm#!O0hW2d&-k zv5skF0?$3EpGc4fEa&p|#7ozJYlo5ZH&p6iKF_Qek{-GIoG&ohOED1pwA z`DP5^)ZEV%jqWrNucMH)KYlKqXYugxn6=X_X;ZJu&c82`JYRK*>LE}1B*v|NOKr~@NkTh$px|1DG!OS;3w>n?;ONVW%k^nbxNyjBIPAyaMcVjz=KJ-= z2dGvzpZz8pcOPes6pXG$h{K&@d#hP~i77Z6_ z6NHq>#rOBfHcf+UkJF#uc`)}b(UyG2gPqSRJ@2iQ#d#aILbYu+K1FBo1agzG;`+&$ zIl$XSqZUouUW(5Jn`U|9u)zZ~Od+e@zfQiL$cr|Va<+=)gCZYmjFhr0Cfe=fjEyoD z&b0fQ_Em{hoHbR1m56-X_|+O0=aN~+G}rcsdVIWRZKBNA3f|V5eZ4r_`D?bumL%TB z!3gO(8mUdf-3FstY!hrV-C%9ui4Ra=3213V>Mc3=|F~Rn&_}p%A2o(;8n2)diXQeB z&HCmNo3+!J#*K-3xdvRhvuQCR&eaT3aLy|J422EyzTagH@*Yi{%2bt|UM4mcElGQqpX7^{Q3p0Qc%A2tZGZm4^H!f-6C=jJ2k|yOLAE95eoA6pb0t(Ysk`;{m<=L>8Tv;{dXt-PxHH$~ z(3~q?tb#B^Waozjqcsywsgcqw)6C7#3EZxa+n?nGm@k5_ov@Yw1gUyX0JMvzN-XSuDtG13HY$ zC0CLuOjQ!x<^j~byn0prh`o2iuD)5gax2(0&{zlvrKY5D^4Q31cU02-x#QB6di({D zAEjwxVBf!q@?SZf5K>8?aiqSQN9HCi?oLo=qhE?lmrJnv>UsY3t>4?Sc@>F~WM<1= z&U&q)`s$)+XaFCGy2mA1QYXdFP)bdcoc?q2vu9MUg7;-HQ=csr)0taw-eM8=?&Z5+UHL9t=PSh+_+v7UT;>?Poi|#6P}fM z`D4q7scMgVK|5DxCmVX$e)XdZ^D}R1GnMcvh~m!lKhYDBINxV^B)D~CzuX!jp^jeEUMg~ex#EZb{13kWI%vPV+%Ia?AQKx~UT=-y z{Iy?Ra(;nG+f8`l{d0>a9{*}zPZ+IF+)w5&@3hZjVz!L9RY5q)bBMyN^!VPR?^2X; zX*+WM#Q~aHC_8W8G_7{fWZiyz8a?ek?oZvDP(P; zB(wHSbOZ6^OZOk>8a`I)+Vs<(lLu>yn;~l>Vtj2b4%7X)D*AK;{78Hxt!J;SpKD7e z>AxP$u%d>q@$WTKr-Sgev@kdmO#T_n$^vFBYUyf?`NHDkeJaSsE6l|wtjqUQl$TeO zpO=G|4|AaGo>KQ822L(k_BP)CX9F=-`kR05qrGY2g_|hYUfbGD*2Ue~%HG*l*2N1; zNLav2n2(PGy2-!zo@F#9@dUnGFC3nt-1KQdFkXebrfz62-03OFJX9CO7iNU J3R&~u{{faY4ut>! diff --git a/Content/Figures/mongodb_on_local_host.svg b/Content/Figures/mongodb_on_local_host.svg deleted file mode 100644 index 8a869f8df..000000000 --- a/Content/Figures/mongodb_on_local_host.svg +++ /dev/null @@ -1,250 +0,0 @@ - - - - - - - - - - - - - - - - - - startup_log - - - launches - - - system.indexes - - - test - - - local - - - fireworks - - - MongoDB - - - - - - fireworks - - - fw_id_assigner - - - workflows - - - surrogate_model - - - system.indexes - - - - - - surrogate_function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \definecolor{color2218}{rgb}{0.9764705882352941,0.023529411764705882,0.023529411764705882}\color{color2218}collections - - - \definecolor{color2221}{rgb}{0.984313725490196,0.01568627450980392,0.01568627450980392}\color{color2221}databases - - - \definecolor{color2224}{rgb}{0.9921568627450981,0.00784313725490196,0.00784313725490196}\color{color2224}MongoDB on local host - - - - - false - true - 50 - 1.0 - cm - false - 10 - 0 - true - false - true - 2.0.8 - - 1855 - 1056 - - - 65 - 24 - - 0.8776280323450135 - true - true - true - 130 - - - diff --git a/Content/Figures/mongodb_on_local_host.tex b/Content/Figures/mongodb_on_local_host.tex deleted file mode 100644 index d697d5820..000000000 --- a/Content/Figures/mongodb_on_local_host.tex +++ /dev/null @@ -1,79 +0,0 @@ -% Generated with LaTeXDraw 2.0.8 -% Tue May 05 19:06:09 CEST 2015 -% \usepackage[usenames,dvipsnames]{pstricks} -% \usepackage{epsfig} -% \usepackage{pst-grad} % For gradients -% \usepackage{pst-plot} % For axes -\scalebox{1} % Change this value to rescale the drawing. -{ -\begin{pspicture}(0,-7.14)(13.224688,7.1) -\definecolor{color304}{rgb}{0.9764705882352941,0.023529411764705882,0.023529411764705882} -\definecolor{color2221}{rgb}{0.984313725490196,0.01568627450980392,0.01568627450980392} -\definecolor{color2224}{rgb}{0.9921568627450981,0.00784313725490196,0.00784313725490196} -\definecolor{color2195}{rgb}{0.9882352941176471,0.00784313725490196,0.06274509803921569} -\psframe[linewidth=0.04,dimen=outer](8.239479,6.1)(4.989479,5.5) -\psframe[linewidth=0.04,dimen=outer](8.239479,1.3)(4.989479,0.7) -\psframe[linewidth=0.04,dimen=outer](8.239479,-3.5)(4.989479,-4.1) -\psframe[linewidth=0.04,dimen=outer](3.719479,1.3)(0.26947904,0.66) -\usefont{T1}{ppl}{m}{n} -\rput(11.295104,1.0695312){startup_log} -\usefont{T1}{ppl}{m}{n} -\rput(11.250625,-3.8104687){launches} -\usefont{T1}{ppl}{m}{n} -\rput(11.295104,-4.695469){system.indexes} -\usefont{T1}{ppl}{m}{n} -\rput(6.61,5.7860937){test} -\usefont{T1}{ppl}{m}{n} -\rput(6.585625,0.97578126){local} -\usefont{T1}{ppl}{m}{n} -\rput(6.606354,-3.8242188){fireworks} -\usefont{T1}{ppl}{m}{n} -\rput(2.014375,0.99625){MongoDB} -\psline[linewidth=0.04cm](8.244687,1.02)(9.564688,1.02) -\usefont{T1}{ppl}{m}{n} -\rput(11.276563,-1.8304688){fireworks} -\usefont{T1}{ppl}{m}{n} -\rput(11.3063545,-2.7904687){fw_id_assigner} -\usefont{T1}{ppl}{m}{n} -\rput(11.284687,-5.630469){workflows} -\usefont{T1}{ppl}{m}{n} -\rput(11.295104,5.829531){surrogate_model} -\usefont{T1}{ppl}{m}{n} -\rput(11.295104,4.864531){system.indexes} -\psframe[linewidth=0.04,dimen=outer](12.999479,7.1)(9.629479,6.5275) -\usefont{T1}{ppl}{m}{n} -\rput(11.295104,6.829531){surrogate_function} -\psline[linewidth=0.04cm](8.244687,5.82)(9.624687,5.82) -\psline[linewidth=0.04cm](8.224688,5.86)(9.624687,6.84) -\psline[linewidth=0.04cm](8.244687,5.84)(9.624687,4.8) -\psline[linewidth=0.04cm](8.244687,-3.78)(9.624687,-3.78) -\psline[linewidth=0.04cm](8.224688,-3.76)(9.624687,-1.76) -\psline[linewidth=0.04cm](8.224688,-3.74)(9.624687,-2.78) -\psline[linewidth=0.04cm](8.244687,-3.76)(9.624687,-5.68) -\psline[linewidth=0.04cm](8.264688,-3.78)(9.624687,-4.72) -\psline[linewidth=0.04cm](3.7446876,1.0)(5.0046873,5.92) -\psline[linewidth=0.04cm](3.7446876,1.02)(4.9846873,1.02) -\psline[linewidth=0.04cm](3.7446876,0.98)(5.0046873,-3.78) -\psframe[linewidth=0.04,dimen=outer](12.999479,5.14)(9.629479,4.5675) -\psframe[linewidth=0.04,dimen=outer](12.999479,6.1)(9.629479,5.5275) -\psframe[linewidth=0.04,dimen=outer](12.999479,-2.52)(9.629479,-3.0925) -\psframe[linewidth=0.04,dimen=outer](12.999479,-1.52)(9.629479,-2.0925) -\psframe[linewidth=0.04,dimen=outer](12.999479,1.34)(9.629479,0.7675) -\psframe[linewidth=0.04,dimen=outer](12.999479,-3.5)(9.629479,-4.0725) -\psframe[linewidth=0.04,dimen=outer](12.999479,-4.42)(9.629479,-4.9925) -\psframe[linewidth=0.04,dimen=outer](12.999479,-5.32)(9.629479,-5.8925) -\psbezier[linewidth=0.04,linecolor=color2195](6.6509695,-6.6499996)(6.7093544,-6.1071563)(8.504687,-6.6499996)(8.34413,-6.1445937) -\psbezier[linewidth=0.04,linecolor=color2195](6.665566,-6.6499996)(6.5779886,-6.0884376)(4.724271,-6.6499996)(4.9286175,-6.1633124) -\psbezier[linewidth=0.04,linecolor=color2195](11.350969,-6.6499996)(11.409354,-6.1071563)(13.204687,-6.6499996)(13.044129,-6.1445937) -\psbezier[linewidth=0.04,linecolor=color2195](11.365565,-6.6499996)(11.277988,-6.0884376)(9.424271,-6.6499996)(9.628617,-6.1633124) -\psbezier[linewidth=0.04,linecolor=color2195](2.0309696,-6.6499996)(2.0893543,-6.1071563)(3.8846874,-6.6499996)(3.7241292,-6.1445937) -\psbezier[linewidth=0.04,linecolor=color2195](2.0455658,-6.6499996)(1.9579885,-6.0884376)(0.10427059,-6.6499996)(0.30861744,-6.1633124) -\usefont{T1}{ppl}{m}{n} -\rput(11.339687,-6.95){\color{color304}collections} -\usefont{T1}{ppl}{m}{n} -\rput(6.6396875,-6.95){\color{color2221}databases} -\usefont{T1}{ppl}{m}{n} -\rput(1.9732813,-6.915){\color{color2224}MongoDB on local host} -\end{pspicture} -} - diff --git a/Content/Figures/out.txt b/Content/Figures/out.txt deleted file mode 100644 index 5f832b91d..000000000 --- a/Content/Figures/out.txt +++ /dev/null @@ -1,5500 +0,0 @@ -0.001 3.48163 299872 10012.8 -0.002 3.48015 299745 10025.5 -0.003 3.47867 299618 10038.2 -0.004 3.47719 299490 10051 -0.005 3.47571 299363 10063.7 -0.006 3.47423 299236 10076.4 -0.007 3.47276 299108 10089.2 -0.008 3.47128 298981 10101.9 -0.009 3.4698 298854 10114.6 -0.01 3.46833 298727 10127.3 -0.011 3.46685 298600 10140 -0.012 3.46538 298473 10152.7 -0.013 3.46391 298346 10165.4 -0.014 3.46243 298219 10178.1 -0.015 3.46096 298093 10190.7 -0.016 3.45949 297966 10203.4 -0.017 3.45802 297839 10216.1 -0.018 3.45655 297713 10228.7 -0.019 3.45508 297586 10241.4 -0.02 3.45361 297460 10254 -0.021 3.45214 297333 10266.7 -0.022 3.45068 297207 10279.3 -0.023 3.44921 297080 10292 -0.024 3.44774 296954 10304.6 -0.025 3.44628 296828 10317.2 -0.026 3.44481 296702 10329.8 -0.027 3.44335 296576 10342.4 -0.028 3.44188 296449 10355.1 -0.029 3.44042 296323 10367.7 -0.03 3.43896 296197 10380.3 -0.031 3.4375 296072 10392.8 -0.032 3.43603 295946 10405.4 -0.033 3.43457 295820 10418 -0.034 3.43311 295694 10430.6 -0.035 3.43165 295568 10443.2 -0.036 3.4302 295443 10455.7 -0.037 3.42874 295317 10468.3 -0.038 3.42728 295192 10480.8 -0.039 3.42582 295066 10493.4 -0.04 3.42437 294941 10505.9 -0.041 3.42291 294815 10518.5 -0.042 3.42146 294690 10531 -0.043 3.42 294565 10543.5 -0.044 3.41855 294439 10556.1 -0.045 3.41709 294314 10568.6 -0.046 3.41564 294189 10581.1 -0.047 3.41419 294064 10593.6 -0.048 3.41274 293939 10606.1 -0.049 3.41129 293814 10618.6 -0.05 3.40984 293689 10631.1 -0.051 3.40839 293564 10643.6 -0.052 3.40694 293440 10656 -0.053 3.40549 293315 10668.5 -0.054 3.40404 293190 10681 -0.055 3.4026 293066 10693.4 -0.056 3.40115 292941 10705.9 -0.057 3.3997 292816 10718.4 -0.058 3.39826 292692 10730.8 -0.059 3.39681 292567 10743.3 -0.06 3.39537 292443 10755.7 -0.061 3.39393 292319 10768.1 -0.062 3.39248 292195 10780.5 -0.063 3.39104 292070 10793 -0.064 3.3896 291946 10805.4 -0.065 3.38816 291822 10817.8 -0.066 3.38672 291698 10830.2 -0.067 3.38528 291574 10842.6 -0.068 3.38384 291450 10855 -0.069 3.3824 291326 10867.4 -0.07 3.38096 291202 10879.8 -0.071 3.37952 291078 10892.2 -0.072 3.37809 290955 10904.5 -0.073 3.37665 290831 10916.9 -0.074 3.37522 290707 10929.3 -0.075 3.37378 290584 10941.6 -0.076 3.37235 290460 10954 -0.077 3.37091 290337 10966.3 -0.078 3.36948 290213 10978.7 -0.079 3.36805 290090 10991 -0.08 3.36662 289967 11003.3 -0.081 3.36519 289843 11015.7 -0.082 3.36375 289720 11028 -0.083 3.36232 289597 11040.3 -0.084 3.3609 289474 11052.6 -0.085 3.35947 289351 11064.9 -0.086 3.35804 289228 11077.2 -0.087 3.35661 289105 11089.5 -0.088 3.35518 288982 11101.8 -0.089 3.35376 288859 11114.1 -0.09 3.35233 288736 11126.4 -0.091 3.35091 288614 11138.6 -0.092 3.34948 288491 11150.9 -0.093 3.34806 288368 11163.2 -0.094 3.34664 288246 11175.4 -0.095 3.34521 288123 11187.7 -0.096 3.34379 288001 11199.9 -0.097 3.34237 287878 11212.2 -0.098 3.34095 287756 11224.4 -0.099 3.33953 287634 11236.6 -0.1 3.33811 287511 11248.9 -0.101 3.33669 287389 11261.1 -0.102 3.33527 287267 11273.3 -0.103 3.33385 287145 11285.5 -0.104 3.33244 287023 11297.7 -0.105 3.33102 286901 11309.9 -0.106 3.3296 286779 11322.1 -0.107 3.32819 286657 11334.3 -0.108 3.32677 286535 11346.5 -0.109 3.32536 286413 11358.7 -0.11 3.32394 286291 11370.9 -0.111 3.32253 286170 11383 -0.112 3.32112 286048 11395.2 -0.113 3.31971 285926 11407.4 -0.114 3.3183 285805 11419.5 -0.115 3.31689 285683 11431.7 -0.116 3.31548 285562 11443.8 -0.117 3.31407 285440 11456 -0.118 3.31266 285319 11468.1 -0.119 3.31125 285198 11480.2 -0.12 3.30984 285077 11492.3 -0.121 3.30843 284955 11504.5 -0.122 3.30703 284834 11516.6 -0.123 3.30562 284713 11528.7 -0.124 3.30422 284592 11540.8 -0.125 3.30281 284471 11552.9 -0.126 3.30141 284350 11565 -0.127 3.3 284229 11577.1 -0.128 3.2986 284109 11589.1 -0.129 3.2972 283988 11601.2 -0.13 3.2958 283867 11613.3 -0.131 3.2944 283746 11625.4 -0.132 3.293 283626 11637.4 -0.133 3.2916 283505 11649.5 -0.134 3.2902 283385 11661.5 -0.135 3.2888 283264 11673.6 -0.136 3.2874 283144 11685.6 -0.137 3.286 283023 11697.7 -0.138 3.28461 282903 11709.7 -0.139 3.28321 282783 11721.7 -0.14 3.28181 282663 11733.7 -0.141 3.28042 282542 11745.8 -0.142 3.27902 282422 11757.8 -0.143 3.27763 282302 11769.8 -0.144 3.27624 282182 11781.8 -0.145 3.27484 282062 11793.8 -0.146 3.27345 281942 11805.8 -0.147 3.27206 281822 11817.8 -0.148 3.27067 281703 11829.7 -0.149 3.26928 281583 11841.7 -0.15 3.26789 281463 11853.7 -0.151 3.2665 281344 11865.6 -0.152 3.26511 281224 11877.6 -0.153 3.26372 281104 11889.6 -0.154 3.26233 280985 11901.5 -0.155 3.26095 280865 11913.5 -0.156 3.25956 280746 11925.4 -0.157 3.25818 280627 11937.3 -0.158 3.25679 280507 11949.3 -0.159 3.25541 280388 11961.2 -0.16 3.25402 280269 11973.1 -0.161 3.25264 280150 11985 -0.162 3.25126 280031 11996.9 -0.163 3.24987 279912 12008.8 -0.164 3.24849 279793 12020.7 -0.165 3.24711 279674 12032.6 -0.166 3.24573 279555 12044.5 -0.167 3.24435 279436 12056.4 -0.168 3.24297 279317 12068.3 -0.169 3.24159 279198 12080.2 -0.17 3.24022 279080 12092 -0.171 3.23884 278961 12103.9 -0.172 3.23746 278843 12115.7 -0.173 3.23608 278724 12127.6 -0.174 3.23471 278606 12139.4 -0.175 3.23333 278487 12151.3 -0.176 3.23196 278369 12163.1 -0.177 3.23059 278250 12175 -0.178 3.22921 278132 12186.8 -0.179 3.22784 278014 12198.6 -0.18 3.22647 277896 12210.4 -0.181 3.2251 277777 12222.3 -0.182 3.22372 277659 12234.1 -0.183 3.22235 277541 12245.9 -0.184 3.22098 277423 12257.7 -0.185 3.21961 277305 12269.5 -0.186 3.21825 277188 12281.2 -0.187 3.21688 277070 12293 -0.188 3.21551 276952 12304.8 -0.189 3.21414 276834 12316.6 -0.19 3.21278 276717 12328.3 -0.191 3.21141 276599 12340.1 -0.192 3.21005 276481 12351.9 -0.193 3.20868 276364 12363.6 -0.194 3.20732 276246 12375.4 -0.195 3.20595 276129 12387.1 -0.196 3.20459 276011 12398.9 -0.197 3.20323 275894 12410.6 -0.198 3.20187 275777 12422.3 -0.199 3.20051 275660 12434 -0.2 3.19915 275542 12445.8 -0.201 3.19779 275425 12457.5 -0.202 3.19643 275308 12469.2 -0.203 3.19507 275191 12480.9 -0.204 3.19371 275074 12492.6 -0.205 3.19235 274957 12504.3 -0.206 3.19099 274840 12516 -0.207 3.18964 274723 12527.7 -0.208 3.18828 274607 12539.3 -0.209 3.18693 274490 12551 -0.21 3.18557 274373 12562.7 -0.211 3.18422 274257 12574.3 -0.212 3.18286 274140 12586 -0.213 3.18151 274023 12597.7 -0.214 3.18016 273907 12609.3 -0.215 3.17881 273791 12620.9 -0.216 3.17745 273674 12632.6 -0.217 3.1761 273558 12644.2 -0.218 3.17475 273442 12655.8 -0.219 3.1734 273325 12667.5 -0.22 3.17205 273209 12679.1 -0.221 3.17071 273093 12690.7 -0.222 3.16936 272977 12702.3 -0.223 3.16801 272861 12713.9 -0.224 3.16666 272745 12725.5 -0.225 3.16532 272629 12737.1 -0.226 3.16397 272513 12748.7 -0.227 3.16263 272397 12760.3 -0.228 3.16128 272281 12771.9 -0.229 3.15994 272166 12783.4 -0.23 3.1586 272050 12795 -0.231 3.15725 271934 12806.6 -0.232 3.15591 271819 12818.1 -0.233 3.15457 271703 12829.7 -0.234 3.15323 271588 12841.2 -0.235 3.15189 271472 12852.8 -0.236 3.15055 271357 12864.3 -0.237 3.14921 271241 12875.9 -0.238 3.14787 271126 12887.4 -0.239 3.14653 271011 12898.9 -0.24 3.14519 270896 12910.4 -0.241 3.14386 270780 12922 -0.242 3.14252 270665 12933.5 -0.243 3.14118 270550 12945 -0.244 3.13985 270435 12956.5 -0.245 3.13851 270320 12968 -0.246 3.13718 270205 12979.5 -0.247 3.13585 270090 12991 -0.248 3.13451 269976 13002.4 -0.249 3.13318 269861 13013.9 -0.25 3.13185 269746 13025.4 -0.251 3.13052 269631 13036.9 -0.252 3.12919 269517 13048.3 -0.253 3.12786 269402 13059.8 -0.254 3.12653 269288 13071.2 -0.255 3.1252 269173 13082.7 -0.256 3.12387 269059 13094.1 -0.257 3.12254 268944 13105.6 -0.258 3.12121 268830 13117 -0.259 3.11989 268716 13128.4 -0.26 3.11856 268602 13139.8 -0.261 3.11723 268487 13151.3 -0.262 3.11591 268373 13162.7 -0.263 3.11458 268259 13174.1 -0.264 3.11326 268145 13185.5 -0.265 3.11194 268031 13196.9 -0.266 3.11061 267917 13208.3 -0.267 3.10929 267803 13219.7 -0.268 3.10797 267689 13231.1 -0.269 3.10665 267576 13242.4 -0.27 3.10533 267462 13253.8 -0.271 3.10401 267348 13265.2 -0.272 3.10269 267235 13276.5 -0.273 3.10137 267121 13287.9 -0.274 3.10005 267007 13299.3 -0.275 3.09873 266894 13310.6 -0.276 3.09742 266780 13322 -0.277 3.0961 266667 13333.3 -0.278 3.09478 266554 13344.6 -0.279 3.09347 266440 13356 -0.28 3.09215 266327 13367.3 -0.281 3.09084 266214 13378.6 -0.282 3.08952 266101 13389.9 -0.283 3.08821 265988 13401.2 -0.284 3.0869 265874 13412.6 -0.285 3.08559 265761 13423.9 -0.286 3.08427 265648 13435.2 -0.287 3.08296 265536 13446.4 -0.288 3.08165 265423 13457.7 -0.289 3.08034 265310 13469 -0.29 3.07903 265197 13480.3 -0.291 3.07772 265084 13491.6 -0.292 3.07641 264972 13502.8 -0.293 3.07511 264859 13514.1 -0.294 3.0738 264746 13525.4 -0.295 3.07249 264634 13536.6 -0.296 3.07119 264521 13547.9 -0.297 3.06988 264409 13559.1 -0.298 3.06858 264296 13570.4 -0.299 3.06727 264184 13581.6 -0.3 3.06597 264072 13592.8 -0.301 3.06466 263960 13604 -0.302 3.06336 263847 13615.3 -0.303 3.06206 263735 13626.5 -0.304 3.06076 263623 13637.7 -0.305 3.05946 263511 13648.9 -0.306 3.05816 263399 13660.1 -0.307 3.05686 263287 13671.3 -0.308 3.05556 263175 13682.5 -0.309 3.05426 263063 13693.7 -0.31 3.05296 262951 13704.9 -0.311 3.05166 262840 13716 -0.312 3.05036 262728 13727.2 -0.313 3.04907 262616 13738.4 -0.314 3.04777 262504 13749.6 -0.315 3.04647 262393 13760.7 -0.316 3.04518 262281 13771.9 -0.317 3.04389 262170 13783 -0.318 3.04259 262058 13794.2 -0.319 3.0413 261947 13805.3 -0.32 3.04 261836 13816.4 -0.321 3.03871 261724 13827.6 -0.322 3.03742 261613 13838.7 -0.323 3.03613 261502 13849.8 -0.324 3.03484 261391 13860.9 -0.325 3.03355 261280 13872 -0.326 3.03226 261168 13883.2 -0.327 3.03097 261057 13894.3 -0.328 3.02968 260946 13905.4 -0.329 3.02839 260836 13916.4 -0.33 3.02711 260725 13927.5 -0.331 3.02582 260614 13938.6 -0.332 3.02453 260503 13949.7 -0.333 3.02325 260392 13960.8 -0.334 3.02196 260282 13971.8 -0.335 3.02068 260171 13982.9 -0.336 3.01939 260060 13994 -0.337 3.01811 259950 14005 -0.338 3.01683 259839 14016.1 -0.339 3.01554 259729 14027.1 -0.34 3.01426 259618 14038.2 -0.341 3.01298 259508 14049.2 -0.342 3.0117 259398 14060.2 -0.343 3.01042 259287 14071.3 -0.344 3.00914 259177 14082.3 -0.345 3.00786 259067 14093.3 -0.346 3.00658 258957 14104.3 -0.347 3.0053 258847 14115.3 -0.348 3.00403 258737 14126.3 -0.349 3.00275 258627 14137.3 -0.35 3.00147 258517 14148.3 -0.351 3.0002 258407 14159.3 -0.352 2.99892 258297 14170.3 -0.353 2.99765 258187 14181.3 -0.354 2.99637 258078 14192.2 -0.355 2.9951 257968 14203.2 -0.356 2.99382 257858 14214.2 -0.357 2.99255 257749 14225.1 -0.358 2.99128 257639 14236.1 -0.359 2.99001 257529 14247.1 -0.36 2.98874 257420 14258 -0.361 2.98747 257310 14269 -0.362 2.9862 257201 14279.9 -0.363 2.98493 257092 14290.8 -0.364 2.98366 256982 14301.8 -0.365 2.98239 256873 14312.7 -0.366 2.98112 256764 14323.6 -0.367 2.97985 256655 14334.5 -0.368 2.97859 256546 14345.4 -0.369 2.97732 256437 14356.3 -0.37 2.97606 256328 14367.2 -0.371 2.97479 256219 14378.1 -0.372 2.97353 256110 14389 -0.373 2.97226 256001 14399.9 -0.374 2.971 255892 14410.8 -0.375 2.96974 255783 14421.7 -0.376 2.96847 255675 14432.5 -0.377 2.96721 255566 14443.4 -0.378 2.96595 255457 14454.3 -0.379 2.96469 255349 14465.1 -0.38 2.96343 255240 14476 -0.381 2.96217 255132 14486.8 -0.382 2.96091 255023 14497.7 -0.383 2.95965 254915 14508.5 -0.384 2.95839 254806 14519.4 -0.385 2.95713 254698 14530.2 -0.386 2.95588 254590 14541 -0.387 2.95462 254482 14551.8 -0.388 2.95336 254373 14562.7 -0.389 2.95211 254265 14573.5 -0.39 2.95085 254157 14584.3 -0.391 2.9496 254049 14595.1 -0.392 2.94835 253941 14605.9 -0.393 2.94709 253833 14616.7 -0.394 2.94584 253725 14627.5 -0.395 2.94459 253617 14638.3 -0.396 2.94334 253510 14649 -0.397 2.94208 253402 14659.8 -0.398 2.94083 253294 14670.6 -0.399 2.93958 253186 14681.4 -0.4 2.93833 253079 14692.1 -0.401 2.93708 252971 14702.9 -0.402 2.93584 252864 14713.6 -0.403 2.93459 252756 14724.4 -0.404 2.93334 252649 14735.1 -0.405 2.93209 252541 14745.9 -0.406 2.93085 252434 14756.6 -0.407 2.9296 252327 14767.3 -0.408 2.92836 252219 14778.1 -0.409 2.92711 252112 14788.8 -0.41 2.92587 252005 14799.5 -0.411 2.92462 251898 14810.2 -0.412 2.92338 251791 14820.9 -0.413 2.92214 251684 14831.6 -0.414 2.92089 251577 14842.3 -0.415 2.91965 251470 14853 -0.416 2.91841 251363 14863.7 -0.417 2.91717 251256 14874.4 -0.418 2.91593 251149 14885.1 -0.419 2.91469 251042 14895.8 -0.42 2.91345 250936 14906.4 -0.421 2.91221 250829 14917.1 -0.422 2.91098 250722 14927.8 -0.423 2.90974 250616 14938.4 -0.424 2.9085 250509 14949.1 -0.425 2.90726 250403 14959.7 -0.426 2.90603 250296 14970.4 -0.427 2.90479 250190 14981 -0.428 2.90356 250083 14991.7 -0.429 2.90232 249977 15002.3 -0.43 2.90109 249871 15012.9 -0.431 2.89986 249765 15023.5 -0.432 2.89862 249658 15034.2 -0.433 2.89739 249552 15044.8 -0.434 2.89616 249446 15055.4 -0.435 2.89493 249340 15066 -0.436 2.8937 249234 15076.6 -0.437 2.89247 249128 15087.2 -0.438 2.89124 249022 15097.8 -0.439 2.89001 248917 15108.3 -0.44 2.88878 248811 15118.9 -0.441 2.88755 248705 15129.5 -0.442 2.88633 248599 15140.1 -0.443 2.8851 248494 15150.6 -0.444 2.88387 248388 15161.2 -0.445 2.88265 248282 15171.8 -0.446 2.88142 248177 15182.3 -0.447 2.8802 248071 15192.9 -0.448 2.87897 247966 15203.4 -0.449 2.87775 247860 15214 -0.45 2.87652 247755 15224.5 -0.451 2.8753 247650 15235 -0.452 2.87408 247544 15245.6 -0.453 2.87286 247439 15256.1 -0.454 2.87164 247334 15266.6 -0.455 2.87041 247229 15277.1 -0.456 2.86919 247124 15287.6 -0.457 2.86797 247019 15298.1 -0.458 2.86676 246914 15308.6 -0.459 2.86554 246809 15319.1 -0.46 2.86432 246704 15329.6 -0.461 2.8631 246599 15340.1 -0.462 2.86188 246494 15350.6 -0.463 2.86067 246389 15361.1 -0.464 2.85945 246285 15371.5 -0.465 2.85824 246180 15382 -0.466 2.85702 246075 15392.5 -0.467 2.85581 245971 15402.9 -0.468 2.85459 245866 15413.4 -0.469 2.85338 245761 15423.9 -0.47 2.85217 245657 15434.3 -0.471 2.85095 245553 15444.7 -0.472 2.84974 245448 15455.2 -0.473 2.84853 245344 15465.6 -0.474 2.84732 245240 15476 -0.475 2.84611 245135 15486.5 -0.476 2.8449 245031 15496.9 -0.477 2.84369 244927 15507.3 -0.478 2.84248 244823 15517.7 -0.479 2.84127 244719 15528.1 -0.48 2.84006 244615 15538.5 -0.481 2.83886 244511 15548.9 -0.482 2.83765 244407 15559.3 -0.483 2.83644 244303 15569.7 -0.484 2.83524 244199 15580.1 -0.485 2.83403 244095 15590.5 -0.486 2.83283 243991 15600.9 -0.487 2.83162 243888 15611.2 -0.488 2.83042 243784 15621.6 -0.489 2.82922 243680 15632 -0.49 2.82801 243577 15642.3 -0.491 2.82681 243473 15652.7 -0.492 2.82561 243370 15663 -0.493 2.82441 243266 15673.4 -0.494 2.82321 243163 15683.7 -0.495 2.82201 243059 15694.1 -0.496 2.82081 242956 15704.4 -0.497 2.81961 242853 15714.7 -0.498 2.81841 242750 15725 -0.499 2.81721 242646 15735.4 -0.5 2.81601 242543 15745.7 -0.501 2.81482 242440 15756 -0.502 2.81362 242337 15766.3 -0.503 2.81242 242234 15776.6 -0.504 2.81123 242131 15786.9 -0.505 2.81003 242028 15797.2 -0.506 2.80884 241925 15807.5 -0.507 2.80764 241822 15817.8 -0.508 2.80645 241720 15828 -0.509 2.80526 241617 15838.3 -0.51 2.80407 241514 15848.6 -0.511 2.80287 241411 15858.9 -0.512 2.80168 241309 15869.1 -0.513 2.80049 241206 15879.4 -0.514 2.7993 241104 15889.6 -0.515 2.79811 241001 15899.9 -0.516 2.79692 240899 15910.1 -0.517 2.79573 240796 15920.4 -0.518 2.79454 240694 15930.6 -0.519 2.79335 240592 15940.8 -0.52 2.79217 240489 15951.1 -0.521 2.79098 240387 15961.3 -0.522 2.78979 240285 15971.5 -0.523 2.78861 240183 15981.7 -0.524 2.78742 240081 15991.9 -0.525 2.78624 239979 16002.1 -0.526 2.78505 239877 16012.3 -0.527 2.78387 239775 16022.5 -0.528 2.78269 239673 16032.7 -0.529 2.7815 239571 16042.9 -0.53 2.78032 239469 16053.1 -0.531 2.77914 239367 16063.3 -0.532 2.77796 239265 16073.5 -0.533 2.77678 239164 16083.6 -0.534 2.7756 239062 16093.8 -0.535 2.77442 238960 16104 -0.536 2.77324 238859 16114.1 -0.537 2.77206 238757 16124.3 -0.538 2.77088 238656 16134.4 -0.539 2.7697 238554 16144.6 -0.54 2.76852 238453 16154.7 -0.541 2.76735 238352 16164.8 -0.542 2.76617 238250 16175 -0.543 2.76499 238149 16185.1 -0.544 2.76382 238048 16195.2 -0.545 2.76264 237946 16205.4 -0.546 2.76147 237845 16215.5 -0.547 2.7603 237744 16225.6 -0.548 2.75912 237643 16235.7 -0.549 2.75795 237542 16245.8 -0.55 2.75678 237441 16255.9 -0.551 2.7556 237340 16266 -0.552 2.75443 237239 16276.1 -0.553 2.75326 237138 16286.2 -0.554 2.75209 237038 16296.2 -0.555 2.75092 236937 16306.3 -0.556 2.74975 236836 16316.4 -0.557 2.74858 236735 16326.5 -0.558 2.74741 236635 16336.5 -0.559 2.74625 236534 16346.6 -0.56 2.74508 236434 16356.6 -0.561 2.74391 236333 16366.7 -0.562 2.74275 236233 16376.7 -0.563 2.74158 236132 16386.8 -0.564 2.74041 236032 16396.8 -0.565 2.73925 235932 16406.8 -0.566 2.73808 235831 16416.9 -0.567 2.73692 235731 16426.9 -0.568 2.73576 235631 16436.9 -0.569 2.73459 235531 16446.9 -0.57 2.73343 235430 16457 -0.571 2.73227 235330 16467 -0.572 2.73111 235230 16477 -0.573 2.72995 235130 16487 -0.574 2.72879 235030 16497 -0.575 2.72763 234930 16507 -0.576 2.72647 234831 16516.9 -0.577 2.72531 234731 16526.9 -0.578 2.72415 234631 16536.9 -0.579 2.72299 234531 16546.9 -0.58 2.72183 234432 16556.8 -0.581 2.72068 234332 16566.8 -0.582 2.71952 234232 16576.8 -0.583 2.71836 234133 16586.7 -0.584 2.71721 234033 16596.7 -0.585 2.71605 233934 16606.6 -0.586 2.7149 233834 16616.6 -0.587 2.71374 233735 16626.5 -0.588 2.71259 233635 16636.5 -0.589 2.71144 233536 16646.4 -0.59 2.71028 233437 16656.3 -0.591 2.70913 233338 16666.2 -0.592 2.70798 233238 16676.2 -0.593 2.70683 233139 16686.1 -0.594 2.70568 233040 16696 -0.595 2.70453 232941 16705.9 -0.596 2.70338 232842 16715.8 -0.597 2.70223 232743 16725.7 -0.598 2.70108 232644 16735.6 -0.599 2.69993 232545 16745.5 -0.6 2.69879 232446 16755.4 -0.601 2.69764 232348 16765.2 -0.602 2.69649 232249 16775.1 -0.603 2.69534 232150 16785 -0.604 2.6942 232051 16794.9 -0.605 2.69305 231953 16804.7 -0.606 2.69191 231854 16814.6 -0.607 2.69076 231756 16824.4 -0.608 2.68962 231657 16834.3 -0.609 2.68848 231559 16844.1 -0.61 2.68733 231460 16854 -0.611 2.68619 231362 16863.8 -0.612 2.68505 231263 16873.7 -0.613 2.68391 231165 16883.5 -0.614 2.68277 231067 16893.3 -0.615 2.68163 230969 16903.1 -0.616 2.68049 230870 16913 -0.617 2.67935 230772 16922.8 -0.618 2.67821 230674 16932.6 -0.619 2.67707 230576 16942.4 -0.62 2.67593 230478 16952.2 -0.621 2.67479 230380 16962 -0.622 2.67366 230282 16971.8 -0.623 2.67252 230184 16981.6 -0.624 2.67138 230086 16991.4 -0.625 2.67025 229989 17001.1 -0.626 2.66911 229891 17010.9 -0.627 2.66798 229793 17020.7 -0.628 2.66684 229695 17030.5 -0.629 2.66571 229598 17040.2 -0.63 2.66458 229500 17050 -0.631 2.66344 229403 17059.7 -0.632 2.66231 229305 17069.5 -0.633 2.66118 229208 17079.2 -0.634 2.66005 229110 17089 -0.635 2.65892 229013 17098.7 -0.636 2.65779 228915 17108.5 -0.637 2.65666 228818 17118.2 -0.638 2.65553 228721 17127.9 -0.639 2.6544 228623 17137.7 -0.64 2.65327 228526 17147.4 -0.641 2.65214 228429 17157.1 -0.642 2.65102 228332 17166.8 -0.643 2.64989 228235 17176.5 -0.644 2.64876 228138 17186.2 -0.645 2.64764 228041 17195.9 -0.646 2.64651 227944 17205.6 -0.647 2.64539 227847 17215.3 -0.648 2.64426 227750 17225 -0.649 2.64314 227653 17234.7 -0.65 2.64201 227557 17244.3 -0.651 2.64089 227460 17254 -0.652 2.63977 227363 17263.7 -0.653 2.63865 227267 17273.3 -0.654 2.63752 227170 17283 -0.655 2.6364 227073 17292.7 -0.656 2.63528 226977 17302.3 -0.657 2.63416 226880 17312 -0.658 2.63304 226784 17321.6 -0.659 2.63192 226688 17331.2 -0.66 2.6308 226591 17340.9 -0.661 2.62969 226495 17350.5 -0.662 2.62857 226399 17360.1 -0.663 2.62745 226302 17369.8 -0.664 2.62633 226206 17379.4 -0.665 2.62522 226110 17389 -0.666 2.6241 226014 17398.6 -0.667 2.62299 225918 17408.2 -0.668 2.62187 225822 17417.8 -0.669 2.62076 225726 17427.4 -0.67 2.61964 225630 17437 -0.671 2.61853 225534 17446.6 -0.672 2.61741 225438 17456.2 -0.673 2.6163 225342 17465.8 -0.674 2.61519 225246 17475.4 -0.675 2.61408 225151 17484.9 -0.676 2.61297 225055 17494.5 -0.677 2.61186 224959 17504.1 -0.678 2.61075 224863 17513.7 -0.679 2.60964 224768 17523.2 -0.68 2.60853 224672 17532.8 -0.681 2.60742 224577 17542.3 -0.682 2.60631 224481 17551.9 -0.683 2.6052 224386 17561.4 -0.684 2.60409 224291 17570.9 -0.685 2.60299 224195 17580.5 -0.686 2.60188 224100 17590 -0.687 2.60077 224005 17599.5 -0.688 2.59967 223909 17609.1 -0.689 2.59856 223814 17618.6 -0.69 2.59746 223719 17628.1 -0.691 2.59635 223624 17637.6 -0.692 2.59525 223529 17647.1 -0.693 2.59415 223434 17656.6 -0.694 2.59304 223339 17666.1 -0.695 2.59194 223244 17675.6 -0.696 2.59084 223149 17685.1 -0.697 2.58974 223054 17694.6 -0.698 2.58864 222959 17704.1 -0.699 2.58754 222865 17713.5 -0.7 2.58644 222770 17723 -0.701 2.58534 222675 17732.5 -0.702 2.58424 222580 17742 -0.703 2.58314 222486 17751.4 -0.704 2.58204 222391 17760.9 -0.705 2.58094 222297 17770.3 -0.706 2.57985 222202 17779.8 -0.707 2.57875 222108 17789.2 -0.708 2.57765 222013 17798.7 -0.709 2.57656 221919 17808.1 -0.71 2.57546 221825 17817.5 -0.711 2.57437 221730 17827 -0.712 2.57327 221636 17836.4 -0.713 2.57218 221542 17845.8 -0.714 2.57109 221448 17855.2 -0.715 2.56999 221353 17864.7 -0.716 2.5689 221259 17874.1 -0.717 2.56781 221165 17883.5 -0.718 2.56672 221071 17892.9 -0.719 2.56563 220977 17902.3 -0.72 2.56453 220883 17911.7 -0.721 2.56344 220789 17921.1 -0.722 2.56235 220696 17930.4 -0.723 2.56127 220602 17939.8 -0.724 2.56018 220508 17949.2 -0.725 2.55909 220414 17958.6 -0.726 2.558 220321 17967.9 -0.727 2.55691 220227 17977.3 -0.728 2.55583 220133 17986.7 -0.729 2.55474 220040 17996 -0.73 2.55365 219946 18005.4 -0.731 2.55257 219853 18014.7 -0.732 2.55148 219759 18024.1 -0.733 2.5504 219666 18033.4 -0.734 2.54931 219572 18042.8 -0.735 2.54823 219479 18052.1 -0.736 2.54715 219386 18061.4 -0.737 2.54606 219292 18070.8 -0.738 2.54498 219199 18080.1 -0.739 2.5439 219106 18089.4 -0.74 2.54282 219013 18098.7 -0.741 2.54174 218920 18108 -0.742 2.54066 218827 18117.3 -0.743 2.53958 218734 18126.6 -0.744 2.5385 218641 18135.9 -0.745 2.53742 218548 18145.2 -0.746 2.53634 218455 18154.5 -0.747 2.53526 218362 18163.8 -0.748 2.53418 218269 18173.1 -0.749 2.53311 218176 18182.4 -0.75 2.53203 218084 18191.6 -0.751 2.53095 217991 18200.9 -0.752 2.52988 217898 18210.2 -0.753 2.5288 217806 18219.4 -0.754 2.52773 217713 18228.7 -0.755 2.52665 217621 18237.9 -0.756 2.52558 217528 18247.2 -0.757 2.5245 217436 18256.4 -0.758 2.52343 217343 18265.7 -0.759 2.52236 217251 18274.9 -0.76 2.52129 217158 18284.2 -0.761 2.52021 217066 18293.4 -0.762 2.51914 216974 18302.6 -0.763 2.51807 216881 18311.9 -0.764 2.517 216789 18321.1 -0.765 2.51593 216697 18330.3 -0.766 2.51486 216605 18339.5 -0.767 2.51379 216513 18348.7 -0.768 2.51272 216421 18357.9 -0.769 2.51166 216329 18367.1 -0.77 2.51059 216237 18376.3 -0.771 2.50952 216145 18385.5 -0.772 2.50845 216053 18394.7 -0.773 2.50739 215961 18403.9 -0.774 2.50632 215869 18413.1 -0.775 2.50526 215778 18422.2 -0.776 2.50419 215686 18431.4 -0.777 2.50313 215594 18440.6 -0.778 2.50206 215503 18449.7 -0.779 2.501 215411 18458.9 -0.78 2.49994 215319 18468.1 -0.781 2.49887 215228 18477.2 -0.782 2.49781 215136 18486.4 -0.783 2.49675 215045 18495.5 -0.784 2.49569 214954 18504.6 -0.785 2.49463 214862 18513.8 -0.786 2.49357 214771 18522.9 -0.787 2.49251 214679 18532.1 -0.788 2.49145 214588 18541.2 -0.789 2.49039 214497 18550.3 -0.79 2.48933 214406 18559.4 -0.791 2.48827 214315 18568.5 -0.792 2.48721 214224 18577.6 -0.793 2.48615 214132 18586.8 -0.794 2.4851 214041 18595.9 -0.795 2.48404 213950 18605 -0.796 2.48299 213860 18614 -0.797 2.48193 213769 18623.1 -0.798 2.48087 213678 18632.2 -0.799 2.47982 213587 18641.3 -0.8 2.47877 213496 18650.4 -0.801 2.47771 213405 18659.5 -0.802 2.47666 213315 18668.5 -0.803 2.47561 213224 18677.6 -0.804 2.47455 213133 18686.7 -0.805 2.4735 213043 18695.7 -0.806 2.47245 212952 18704.8 -0.807 2.4714 212862 18713.8 -0.808 2.47035 212771 18722.9 -0.809 2.4693 212681 18731.9 -0.81 2.46825 212590 18741 -0.811 2.4672 212500 18750 -0.812 2.46615 212410 18759 -0.813 2.4651 212319 18768.1 -0.814 2.46405 212229 18777.1 -0.815 2.46301 212139 18786.1 -0.816 2.46196 212049 18795.1 -0.817 2.46091 211958 18804.2 -0.818 2.45987 211868 18813.2 -0.819 2.45882 211778 18822.2 -0.82 2.45778 211688 18831.2 -0.821 2.45673 211598 18840.2 -0.822 2.45569 211508 18849.2 -0.823 2.45464 211418 18858.2 -0.824 2.4536 211328 18867.2 -0.825 2.45256 211239 18876.1 -0.826 2.45151 211149 18885.1 -0.827 2.45047 211059 18894.1 -0.828 2.44943 210969 18903.1 -0.829 2.44839 210880 18912 -0.83 2.44735 210790 18921 -0.831 2.44631 210700 18930 -0.832 2.44527 210611 18938.9 -0.833 2.44423 210521 18947.9 -0.834 2.44319 210432 18956.8 -0.835 2.44215 210342 18965.8 -0.836 2.44111 210253 18974.7 -0.837 2.44007 210164 18983.6 -0.838 2.43904 210074 18992.6 -0.839 2.438 209985 19001.5 -0.84 2.43696 209896 19010.4 -0.841 2.43593 209806 19019.4 -0.842 2.43489 209717 19028.3 -0.843 2.43386 209628 19037.2 -0.844 2.43282 209539 19046.1 -0.845 2.43179 209450 19055 -0.846 2.43075 209361 19063.9 -0.847 2.42972 209272 19072.8 -0.848 2.42869 209183 19081.7 -0.849 2.42765 209094 19090.6 -0.85 2.42662 209005 19099.5 -0.851 2.42559 208916 19108.4 -0.852 2.42456 208827 19117.3 -0.853 2.42353 208739 19126.1 -0.854 2.4225 208650 19135 -0.855 2.42147 208561 19143.9 -0.856 2.42044 208472 19152.8 -0.857 2.41941 208384 19161.6 -0.858 2.41838 208295 19170.5 -0.859 2.41735 208207 19179.3 -0.86 2.41633 208118 19188.2 -0.861 2.4153 208030 19197 -0.862 2.41427 207941 19205.9 -0.863 2.41325 207853 19214.7 -0.864 2.41222 207765 19223.5 -0.865 2.41119 207676 19232.4 -0.866 2.41017 207588 19241.2 -0.867 2.40915 207500 19250 -0.868 2.40812 207411 19258.9 -0.869 2.4071 207323 19267.7 -0.87 2.40607 207235 19276.5 -0.871 2.40505 207147 19285.3 -0.872 2.40403 207059 19294.1 -0.873 2.40301 206971 19302.9 -0.874 2.40199 206883 19311.7 -0.875 2.40096 206795 19320.5 -0.876 2.39994 206707 19329.3 -0.877 2.39892 206619 19338.1 -0.878 2.3979 206531 19346.9 -0.879 2.39688 206444 19355.6 -0.88 2.39587 206356 19364.4 -0.881 2.39485 206268 19373.2 -0.882 2.39383 206180 19382 -0.883 2.39281 206093 19390.7 -0.884 2.39179 206005 19399.5 -0.885 2.39078 205918 19408.2 -0.886 2.38976 205830 19417 -0.887 2.38874 205743 19425.7 -0.888 2.38773 205655 19434.5 -0.889 2.38671 205568 19443.2 -0.89 2.3857 205480 19452 -0.891 2.38469 205393 19460.7 -0.892 2.38367 205306 19469.4 -0.893 2.38266 205218 19478.2 -0.894 2.38165 205131 19486.9 -0.895 2.38063 205044 19495.6 -0.896 2.37962 204957 19504.3 -0.897 2.37861 204870 19513 -0.898 2.3776 204783 19521.7 -0.899 2.37659 204695 19530.5 -0.9 2.37558 204608 19539.2 -0.901 2.37457 204521 19547.9 -0.902 2.37356 204434 19556.6 -0.903 2.37255 204348 19565.2 -0.904 2.37154 204261 19573.9 -0.905 2.37053 204174 19582.6 -0.906 2.36952 204087 19591.3 -0.907 2.36852 204000 19600 -0.908 2.36751 203914 19608.6 -0.909 2.3665 203827 19617.3 -0.91 2.3655 203740 19626 -0.911 2.36449 203654 19634.6 -0.912 2.36349 203567 19643.3 -0.913 2.36248 203481 19651.9 -0.914 2.36148 203394 19660.6 -0.915 2.36047 203308 19669.2 -0.916 2.35947 203221 19677.9 -0.917 2.35847 203135 19686.5 -0.918 2.35746 203048 19695.2 -0.919 2.35646 202962 19703.8 -0.92 2.35546 202876 19712.4 -0.921 2.35446 202790 19721 -0.922 2.35346 202703 19729.7 -0.923 2.35246 202617 19738.3 -0.924 2.35146 202531 19746.9 -0.925 2.35046 202445 19755.5 -0.926 2.34946 202359 19764.1 -0.927 2.34846 202273 19772.7 -0.928 2.34746 202187 19781.3 -0.929 2.34646 202101 19789.9 -0.93 2.34547 202015 19798.5 -0.931 2.34447 201929 19807.1 -0.932 2.34347 201843 19815.7 -0.933 2.34248 201757 19824.3 -0.934 2.34148 201672 19832.8 -0.935 2.34048 201586 19841.4 -0.936 2.33949 201500 19850 -0.937 2.3385 201415 19858.5 -0.938 2.3375 201329 19867.1 -0.939 2.33651 201243 19875.7 -0.94 2.33551 201158 19884.2 -0.941 2.33452 201072 19892.8 -0.942 2.33353 200987 19901.3 -0.943 2.33254 200901 19909.9 -0.944 2.33155 200816 19918.4 -0.945 2.33055 200731 19926.9 -0.946 2.32956 200645 19935.5 -0.947 2.32857 200560 19944 -0.948 2.32758 200475 19952.5 -0.949 2.32659 200390 19961 -0.95 2.3256 200304 19969.6 -0.951 2.32462 200219 19978.1 -0.952 2.32363 200134 19986.6 -0.953 2.32264 200049 19995.1 -0.954 2.32165 199964 20003.6 -0.955 2.32067 199879 20012.1 -0.956 2.31968 199794 20020.6 -0.957 2.31869 199709 20029.1 -0.958 2.31771 199624 20037.6 -0.959 2.31672 199539 20046.1 -0.96 2.31574 199454 20054.6 -0.961 2.31475 199370 20063 -0.962 2.31377 199285 20071.5 -0.963 2.31278 199200 20080 -0.964 2.3118 199115 20088.5 -0.965 2.31082 199031 20096.9 -0.966 2.30984 198946 20105.4 -0.967 2.30885 198862 20113.8 -0.968 2.30787 198777 20122.3 -0.969 2.30689 198693 20130.7 -0.97 2.30591 198608 20139.2 -0.971 2.30493 198524 20147.6 -0.972 2.30395 198439 20156.1 -0.973 2.30297 198355 20164.5 -0.974 2.30199 198271 20172.9 -0.975 2.30101 198186 20181.4 -0.976 2.30004 198102 20189.8 -0.977 2.29906 198018 20198.2 -0.978 2.29808 197934 20206.6 -0.979 2.2971 197850 20215 -0.98 2.29613 197765 20223.5 -0.981 2.29515 197681 20231.9 -0.982 2.29418 197597 20240.3 -0.983 2.2932 197513 20248.7 -0.984 2.29223 197429 20257.1 -0.985 2.29125 197345 20265.5 -0.986 2.29028 197262 20273.8 -0.987 2.2893 197178 20282.2 -0.988 2.28833 197094 20290.6 -0.989 2.28736 197010 20299 -0.99 2.28638 196926 20307.4 -0.991 2.28541 196843 20315.7 -0.992 2.28444 196759 20324.1 -0.993 2.28347 196675 20332.5 -0.994 2.2825 196592 20340.8 -0.995 2.28153 196508 20349.2 -0.996 2.28056 196425 20357.5 -0.997 2.27959 196341 20365.9 -0.998 2.27862 196258 20374.2 -0.999 2.27765 196174 20382.6 -1 2.27668 196091 20390.9 -1.001 2.27572 196007 20399.3 -1.002 2.27475 195924 20407.6 -1.003 2.27378 195841 20415.9 -1.004 2.27281 195758 20424.2 -1.005 2.27185 195674 20432.6 -1.006 2.27088 195591 20440.9 -1.007 2.26992 195508 20449.2 -1.008 2.26895 195425 20457.5 -1.009 2.26799 195342 20465.8 -1.01 2.26702 195259 20474.1 -1.011 2.26606 195176 20482.4 -1.012 2.2651 195093 20490.7 -1.013 2.26413 195010 20499 -1.014 2.26317 194927 20507.3 -1.015 2.26221 194844 20515.6 -1.016 2.26125 194761 20523.9 -1.017 2.26029 194678 20532.2 -1.018 2.25932 194596 20540.4 -1.019 2.25836 194513 20548.7 -1.02 2.2574 194430 20557 -1.021 2.25644 194348 20565.2 -1.022 2.25549 194265 20573.5 -1.023 2.25453 194182 20581.8 -1.024 2.25357 194100 20590 -1.025 2.25261 194017 20598.3 -1.026 2.25165 193935 20606.5 -1.027 2.2507 193852 20614.8 -1.028 2.24974 193770 20623 -1.029 2.24878 193688 20631.2 -1.03 2.24783 193605 20639.5 -1.031 2.24687 193523 20647.7 -1.032 2.24592 193441 20655.9 -1.033 2.24496 193358 20664.2 -1.034 2.24401 193276 20672.4 -1.035 2.24305 193194 20680.6 -1.036 2.2421 193112 20688.8 -1.037 2.24115 193030 20697 -1.038 2.24019 192948 20705.2 -1.039 2.23924 192866 20713.4 -1.04 2.23829 192784 20721.6 -1.041 2.23734 192702 20729.8 -1.042 2.23639 192620 20738 -1.043 2.23544 192538 20746.2 -1.044 2.23448 192456 20754.4 -1.045 2.23354 192374 20762.6 -1.046 2.23259 192293 20770.7 -1.047 2.23164 192211 20778.9 -1.048 2.23069 192129 20787.1 -1.049 2.22974 192047 20795.3 -1.05 2.22879 191966 20803.4 -1.051 2.22784 191884 20811.6 -1.052 2.2269 191803 20819.7 -1.053 2.22595 191721 20827.9 -1.054 2.225 191640 20836 -1.055 2.22406 191558 20844.2 -1.056 2.22311 191477 20852.3 -1.057 2.22217 191395 20860.5 -1.058 2.22122 191314 20868.6 -1.059 2.22028 191233 20876.7 -1.06 2.21933 191151 20884.9 -1.061 2.21839 191070 20893 -1.062 2.21745 190989 20901.1 -1.063 2.21651 190908 20909.2 -1.064 2.21556 190826 20917.4 -1.065 2.21462 190745 20925.5 -1.066 2.21368 190664 20933.6 -1.067 2.21274 190583 20941.7 -1.068 2.2118 190502 20949.8 -1.069 2.21086 190421 20957.9 -1.07 2.20992 190340 20966 -1.071 2.20898 190259 20974.1 -1.072 2.20804 190178 20982.2 -1.073 2.2071 190098 20990.2 -1.074 2.20616 190017 20998.3 -1.075 2.20522 189936 21006.4 -1.076 2.20429 189855 21014.5 -1.077 2.20335 189775 21022.5 -1.078 2.20241 189694 21030.6 -1.079 2.20148 189613 21038.7 -1.08 2.20054 189533 21046.7 -1.081 2.19961 189452 21054.8 -1.082 2.19867 189372 21062.8 -1.083 2.19774 189291 21070.9 -1.084 2.1968 189211 21078.9 -1.085 2.19587 189130 21087 -1.086 2.19493 189050 21095 -1.087 2.194 188969 21103.1 -1.088 2.19307 188889 21111.1 -1.089 2.19214 188809 21119.1 -1.09 2.1912 188728 21127.2 -1.091 2.19027 188648 21135.2 -1.092 2.18934 188568 21143.2 -1.093 2.18841 188488 21151.2 -1.094 2.18748 188408 21159.2 -1.095 2.18655 188328 21167.2 -1.096 2.18562 188248 21175.2 -1.097 2.18469 188168 21183.2 -1.098 2.18376 188088 21191.2 -1.099 2.18283 188008 21199.2 -1.1 2.18191 187928 21207.2 -1.101 2.18098 187848 21215.2 -1.102 2.18005 187768 21223.2 -1.103 2.17913 187688 21231.2 -1.104 2.1782 187608 21239.2 -1.105 2.17727 187529 21247.1 -1.106 2.17635 187449 21255.1 -1.107 2.17542 187369 21263.1 -1.108 2.1745 187289 21271.1 -1.109 2.17357 187210 21279 -1.11 2.17265 187130 21287 -1.111 2.17173 187051 21294.9 -1.112 2.1708 186971 21302.9 -1.113 2.16988 186892 21310.8 -1.114 2.16896 186812 21318.8 -1.115 2.16803 186733 21326.7 -1.116 2.16711 186653 21334.7 -1.117 2.16619 186574 21342.6 -1.118 2.16527 186495 21350.5 -1.119 2.16435 186416 21358.4 -1.12 2.16343 186336 21366.4 -1.121 2.16251 186257 21374.3 -1.122 2.16159 186178 21382.2 -1.123 2.16067 186099 21390.1 -1.124 2.15975 186020 21398 -1.125 2.15884 185941 21405.9 -1.126 2.15792 185861 21413.9 -1.127 2.157 185782 21421.8 -1.128 2.15608 185703 21429.7 -1.129 2.15517 185625 21437.5 -1.13 2.15425 185546 21445.4 -1.131 2.15334 185467 21453.3 -1.132 2.15242 185388 21461.2 -1.133 2.1515 185309 21469.1 -1.134 2.15059 185230 21477 -1.135 2.14968 185152 21484.8 -1.136 2.14876 185073 21492.7 -1.137 2.14785 184994 21500.6 -1.138 2.14694 184916 21508.4 -1.139 2.14602 184837 21516.3 -1.14 2.14511 184758 21524.2 -1.141 2.1442 184680 21532 -1.142 2.14329 184601 21539.9 -1.143 2.14238 184523 21547.7 -1.144 2.14147 184444 21555.6 -1.145 2.14055 184366 21563.4 -1.146 2.13964 184288 21571.2 -1.147 2.13874 184209 21579.1 -1.148 2.13783 184131 21586.9 -1.149 2.13692 184053 21594.7 -1.15 2.13601 183974 21602.6 -1.151 2.1351 183896 21610.4 -1.152 2.13419 183818 21618.2 -1.153 2.13329 183740 21626 -1.154 2.13238 183662 21633.8 -1.155 2.13147 183584 21641.6 -1.156 2.13057 183506 21649.4 -1.157 2.12966 183428 21657.2 -1.158 2.12876 183350 21665 -1.159 2.12785 183272 21672.8 -1.16 2.12695 183194 21680.6 -1.161 2.12604 183116 21688.4 -1.162 2.12514 183038 21696.2 -1.163 2.12423 182960 21704 -1.164 2.12333 182883 21711.7 -1.165 2.12243 182805 21719.5 -1.166 2.12153 182727 21727.3 -1.167 2.12062 182649 21735.1 -1.168 2.11972 182572 21742.8 -1.169 2.11882 182494 21750.6 -1.17 2.11792 182417 21758.3 -1.171 2.11702 182339 21766.1 -1.172 2.11612 182261 21773.9 -1.173 2.11522 182184 21781.6 -1.174 2.11432 182107 21789.3 -1.175 2.11342 182029 21797.1 -1.176 2.11252 181952 21804.8 -1.177 2.11163 181874 21812.6 -1.178 2.11073 181797 21820.3 -1.179 2.10983 181720 21828 -1.18 2.10893 181643 21835.7 -1.181 2.10804 181565 21843.5 -1.182 2.10714 181488 21851.2 -1.183 2.10625 181411 21858.9 -1.184 2.10535 181334 21866.6 -1.185 2.10446 181257 21874.3 -1.186 2.10356 181180 21882 -1.187 2.10267 181103 21889.7 -1.188 2.10177 181026 21897.4 -1.189 2.10088 180949 21905.1 -1.19 2.09999 180872 21912.8 -1.191 2.09909 180795 21920.5 -1.192 2.0982 180718 21928.2 -1.193 2.09731 180641 21935.9 -1.194 2.09642 180564 21943.6 -1.195 2.09553 180488 21951.2 -1.196 2.09464 180411 21958.9 -1.197 2.09375 180334 21966.6 -1.198 2.09286 180258 21974.2 -1.199 2.09197 180181 21981.9 -1.2 2.09108 180104 21989.6 -1.201 2.09019 180028 21997.2 -1.202 2.0893 179951 22004.9 -1.203 2.08841 179875 22012.5 -1.204 2.08752 179798 22020.2 -1.205 2.08664 179722 22027.8 -1.206 2.08575 179645 22035.5 -1.207 2.08486 179569 22043.1 -1.208 2.08398 179493 22050.7 -1.209 2.08309 179416 22058.4 -1.21 2.0822 179340 22066 -1.211 2.08132 179264 22073.6 -1.212 2.08043 179188 22081.2 -1.213 2.07955 179112 22088.8 -1.214 2.07867 179035 22096.5 -1.215 2.07778 178959 22104.1 -1.216 2.0769 178883 22111.7 -1.217 2.07602 178807 22119.3 -1.218 2.07513 178731 22126.9 -1.219 2.07425 178655 22134.5 -1.22 2.07337 178579 22142.1 -1.221 2.07249 178503 22149.7 -1.222 2.07161 178427 22157.3 -1.223 2.07073 178352 22164.8 -1.224 2.06985 178276 22172.4 -1.225 2.06897 178200 22180 -1.226 2.06809 178124 22187.6 -1.227 2.06721 178049 22195.1 -1.228 2.06633 177973 22202.7 -1.229 2.06545 177897 22210.3 -1.23 2.06457 177822 22217.8 -1.231 2.06369 177746 22225.4 -1.232 2.06282 177670 22233 -1.233 2.06194 177595 22240.5 -1.234 2.06106 177519 22248.1 -1.235 2.06019 177444 22255.6 -1.236 2.05931 177368 22263.2 -1.237 2.05844 177293 22270.7 -1.238 2.05756 177218 22278.2 -1.239 2.05669 177142 22285.8 -1.24 2.05581 177067 22293.3 -1.241 2.05494 176992 22300.8 -1.242 2.05406 176917 22308.3 -1.243 2.05319 176841 22315.9 -1.244 2.05232 176766 22323.4 -1.245 2.05145 176691 22330.9 -1.246 2.05057 176616 22338.4 -1.247 2.0497 176541 22345.9 -1.248 2.04883 176466 22353.4 -1.249 2.04796 176391 22360.9 -1.25 2.04709 176316 22368.4 -1.251 2.04622 176241 22375.9 -1.252 2.04535 176166 22383.4 -1.253 2.04448 176091 22390.9 -1.254 2.04361 176016 22398.4 -1.255 2.04274 175941 22405.9 -1.256 2.04187 175866 22413.4 -1.257 2.041 175792 22420.8 -1.258 2.04014 175717 22428.3 -1.259 2.03927 175642 22435.8 -1.26 2.0384 175568 22443.2 -1.261 2.03754 175493 22450.7 -1.262 2.03667 175418 22458.2 -1.263 2.0358 175344 22465.6 -1.264 2.03494 175269 22473.1 -1.265 2.03407 175195 22480.5 -1.266 2.03321 175120 22488 -1.267 2.03234 175046 22495.4 -1.268 2.03148 174971 22502.9 -1.269 2.03062 174897 22510.3 -1.27 2.02975 174823 22517.7 -1.271 2.02889 174748 22525.2 -1.272 2.02803 174674 22532.6 -1.273 2.02717 174600 22540 -1.274 2.0263 174526 22547.4 -1.275 2.02544 174451 22554.9 -1.276 2.02458 174377 22562.3 -1.277 2.02372 174303 22569.7 -1.278 2.02286 174229 22577.1 -1.279 2.022 174155 22584.5 -1.28 2.02114 174081 22591.9 -1.281 2.02028 174007 22599.3 -1.282 2.01942 173933 22606.7 -1.283 2.01856 173859 22614.1 -1.284 2.01771 173785 22621.5 -1.285 2.01685 173711 22628.9 -1.286 2.01599 173637 22636.3 -1.287 2.01513 173564 22643.6 -1.288 2.01428 173490 22651 -1.289 2.01342 173416 22658.4 -1.29 2.01257 173342 22665.8 -1.291 2.01171 173269 22673.1 -1.292 2.01085 173195 22680.5 -1.293 2.01 173121 22687.9 -1.294 2.00915 173048 22695.2 -1.295 2.00829 172974 22702.6 -1.296 2.00744 172901 22709.9 -1.297 2.00658 172827 22717.3 -1.298 2.00573 172754 22724.6 -1.299 2.00488 172680 22732 -1.3 2.00403 172607 22739.3 -1.301 2.00317 172533 22746.7 -1.302 2.00232 172460 22754 -1.303 2.00147 172387 22761.3 -1.304 2.00062 172313 22768.7 -1.305 1.99977 172240 22776 -1.306 1.99892 172167 22783.3 -1.307 1.99807 172094 22790.6 -1.308 1.99722 172021 22797.9 -1.309 1.99637 171948 22805.2 -1.31 1.99552 171874 22812.6 -1.311 1.99467 171801 22819.9 -1.312 1.99383 171728 22827.2 -1.313 1.99298 171655 22834.5 -1.314 1.99213 171582 22841.8 -1.315 1.99129 171509 22849.1 -1.316 1.99044 171436 22856.4 -1.317 1.98959 171364 22863.6 -1.318 1.98875 171291 22870.9 -1.319 1.9879 171218 22878.2 -1.32 1.98706 171145 22885.5 -1.321 1.98621 171072 22892.8 -1.322 1.98537 171000 22900 -1.323 1.98452 170927 22907.3 -1.324 1.98368 170854 22914.6 -1.325 1.98284 170782 22921.8 -1.326 1.98199 170709 22929.1 -1.327 1.98115 170636 22936.4 -1.328 1.98031 170564 22943.6 -1.329 1.97947 170491 22950.9 -1.33 1.97862 170419 22958.1 -1.331 1.97778 170347 22965.3 -1.332 1.97694 170274 22972.6 -1.333 1.9761 170202 22979.8 -1.334 1.97526 170129 22987.1 -1.335 1.97442 170057 22994.3 -1.336 1.97358 169985 23001.5 -1.337 1.97274 169912 23008.8 -1.338 1.97191 169840 23016 -1.339 1.97107 169768 23023.2 -1.34 1.97023 169696 23030.4 -1.341 1.96939 169624 23037.6 -1.342 1.96855 169552 23044.8 -1.343 1.96772 169480 23052 -1.344 1.96688 169407 23059.3 -1.345 1.96605 169335 23066.5 -1.346 1.96521 169263 23073.7 -1.347 1.96437 169192 23080.8 -1.348 1.96354 169120 23088 -1.349 1.9627 169048 23095.2 -1.35 1.96187 168976 23102.4 -1.351 1.96104 168904 23109.6 -1.352 1.9602 168832 23116.8 -1.353 1.95937 168760 23124 -1.354 1.95854 168689 23131.1 -1.355 1.9577 168617 23138.3 -1.356 1.95687 168545 23145.5 -1.357 1.95604 168474 23152.6 -1.358 1.95521 168402 23159.8 -1.359 1.95438 168330 23167 -1.36 1.95355 168259 23174.1 -1.361 1.95272 168187 23181.3 -1.362 1.95189 168116 23188.4 -1.363 1.95106 168044 23195.6 -1.364 1.95023 167973 23202.7 -1.365 1.9494 167902 23209.8 -1.366 1.94857 167830 23217 -1.367 1.94774 167759 23224.1 -1.368 1.94691 167687 23231.3 -1.369 1.94608 167616 23238.4 -1.37 1.94526 167545 23245.5 -1.371 1.94443 167474 23252.6 -1.372 1.9436 167403 23259.7 -1.373 1.94278 167331 23266.9 -1.374 1.94195 167260 23274 -1.375 1.94113 167189 23281.1 -1.376 1.9403 167118 23288.2 -1.377 1.93948 167047 23295.3 -1.378 1.93865 166976 23302.4 -1.379 1.93783 166905 23309.5 -1.38 1.937 166834 23316.6 -1.381 1.93618 166763 23323.7 -1.382 1.93536 166692 23330.8 -1.383 1.93453 166621 23337.9 -1.384 1.93371 166551 23344.9 -1.385 1.93289 166480 23352 -1.386 1.93207 166409 23359.1 -1.387 1.93125 166338 23366.2 -1.388 1.93043 166268 23373.2 -1.389 1.9296 166197 23380.3 -1.39 1.92878 166126 23387.4 -1.391 1.92796 166056 23394.4 -1.392 1.92714 165985 23401.5 -1.393 1.92633 165914 23408.6 -1.394 1.92551 165844 23415.6 -1.395 1.92469 165773 23422.7 -1.396 1.92387 165703 23429.7 -1.397 1.92305 165632 23436.8 -1.398 1.92223 165562 23443.8 -1.399 1.92142 165492 23450.8 -1.4 1.9206 165421 23457.9 -1.401 1.91978 165351 23464.9 -1.402 1.91897 165281 23471.9 -1.403 1.91815 165210 23479 -1.404 1.91734 165140 23486 -1.405 1.91652 165070 23493 -1.406 1.91571 165000 23500 -1.407 1.91489 164930 23507 -1.408 1.91408 164860 23514 -1.409 1.91326 164789 23521.1 -1.41 1.91245 164719 23528.1 -1.411 1.91164 164649 23535.1 -1.412 1.91083 164579 23542.1 -1.413 1.91001 164509 23549.1 -1.414 1.9092 164439 23556.1 -1.415 1.90839 164370 23563 -1.416 1.90758 164300 23570 -1.417 1.90677 164230 23577 -1.418 1.90596 164160 23584 -1.419 1.90515 164090 23591 -1.42 1.90434 164021 23597.9 -1.421 1.90353 163951 23604.9 -1.422 1.90272 163881 23611.9 -1.423 1.90191 163811 23618.9 -1.424 1.9011 163742 23625.8 -1.425 1.90029 163672 23632.8 -1.426 1.89948 163603 23639.7 -1.427 1.89868 163533 23646.7 -1.428 1.89787 163464 23653.6 -1.429 1.89706 163394 23660.6 -1.43 1.89626 163325 23667.5 -1.431 1.89545 163255 23674.5 -1.432 1.89464 163186 23681.4 -1.433 1.89384 163116 23688.4 -1.434 1.89303 163047 23695.3 -1.435 1.89223 162978 23702.2 -1.436 1.89142 162908 23709.2 -1.437 1.89062 162839 23716.1 -1.438 1.88982 162770 23723 -1.439 1.88901 162701 23729.9 -1.44 1.88821 162632 23736.8 -1.441 1.88741 162562 23743.8 -1.442 1.88661 162493 23750.7 -1.443 1.8858 162424 23757.6 -1.444 1.885 162355 23764.5 -1.445 1.8842 162286 23771.4 -1.446 1.8834 162217 23778.3 -1.447 1.8826 162148 23785.2 -1.448 1.8818 162079 23792.1 -1.449 1.881 162010 23799 -1.45 1.8802 161942 23805.8 -1.451 1.8794 161873 23812.7 -1.452 1.8786 161804 23819.6 -1.453 1.8778 161735 23826.5 -1.454 1.877 161666 23833.4 -1.455 1.87621 161598 23840.2 -1.456 1.87541 161529 23847.1 -1.457 1.87461 161460 23854 -1.458 1.87381 161392 23860.8 -1.459 1.87302 161323 23867.7 -1.46 1.87222 161254 23874.6 -1.461 1.87143 161186 23881.4 -1.462 1.87063 161117 23888.3 -1.463 1.86983 161049 23895.1 -1.464 1.86904 160980 23902 -1.465 1.86824 160912 23908.8 -1.466 1.86745 160844 23915.6 -1.467 1.86666 160775 23922.5 -1.468 1.86586 160707 23929.3 -1.469 1.86507 160638 23936.2 -1.47 1.86428 160570 23943 -1.471 1.86348 160502 23949.8 -1.472 1.86269 160434 23956.6 -1.473 1.8619 160366 23963.4 -1.474 1.86111 160297 23970.3 -1.475 1.86032 160229 23977.1 -1.476 1.85953 160161 23983.9 -1.477 1.85874 160093 23990.7 -1.478 1.85795 160025 23997.5 -1.479 1.85716 159957 24004.3 -1.48 1.85637 159889 24011.1 -1.481 1.85558 159821 24017.9 -1.482 1.85479 159753 24024.7 -1.483 1.854 159685 24031.5 -1.484 1.85321 159617 24038.3 -1.485 1.85242 159549 24045.1 -1.486 1.85164 159482 24051.8 -1.487 1.85085 159414 24058.6 -1.488 1.85006 159346 24065.4 -1.489 1.84928 159278 24072.2 -1.49 1.84849 159210 24079 -1.491 1.8477 159143 24085.7 -1.492 1.84692 159075 24092.5 -1.493 1.84613 159008 24099.2 -1.494 1.84535 158940 24106 -1.495 1.84456 158872 24112.8 -1.496 1.84378 158805 24119.5 -1.497 1.843 158737 24126.3 -1.498 1.84221 158670 24133 -1.499 1.84143 158602 24139.8 -1.5 1.84065 158535 24146.5 -1.501 1.83986 158468 24153.2 -1.502 1.83908 158400 24160 -1.503 1.8383 158333 24166.7 -1.504 1.83752 158266 24173.4 -1.505 1.83674 158198 24180.2 -1.506 1.83596 158131 24186.9 -1.507 1.83518 158064 24193.6 -1.508 1.8344 157997 24200.3 -1.509 1.83362 157929 24207.1 -1.51 1.83284 157862 24213.8 -1.511 1.83206 157795 24220.5 -1.512 1.83128 157728 24227.2 -1.513 1.8305 157661 24233.9 -1.514 1.82972 157594 24240.6 -1.515 1.82894 157527 24247.3 -1.516 1.82817 157460 24254 -1.517 1.82739 157393 24260.7 -1.518 1.82661 157326 24267.4 -1.519 1.82584 157259 24274.1 -1.52 1.82506 157192 24280.8 -1.521 1.82428 157126 24287.4 -1.522 1.82351 157059 24294.1 -1.523 1.82273 156992 24300.8 -1.524 1.82196 156925 24307.5 -1.525 1.82118 156859 24314.1 -1.526 1.82041 156792 24320.8 -1.527 1.81964 156725 24327.5 -1.528 1.81886 156659 24334.1 -1.529 1.81809 156592 24340.8 -1.53 1.81732 156525 24347.5 -1.531 1.81654 156459 24354.1 -1.532 1.81577 156392 24360.8 -1.533 1.815 156326 24367.4 -1.534 1.81423 156260 24374 -1.535 1.81346 156193 24380.7 -1.536 1.81269 156127 24387.3 -1.537 1.81192 156060 24394 -1.538 1.81115 155994 24400.6 -1.539 1.81038 155928 24407.2 -1.54 1.80961 155861 24413.9 -1.541 1.80884 155795 24420.5 -1.542 1.80807 155729 24427.1 -1.543 1.8073 155663 24433.7 -1.544 1.80653 155596 24440.4 -1.545 1.80576 155530 24447 -1.546 1.805 155464 24453.6 -1.547 1.80423 155398 24460.2 -1.548 1.80346 155332 24466.8 -1.549 1.80269 155266 24473.4 -1.55 1.80193 155200 24480 -1.551 1.80116 155134 24486.6 -1.552 1.8004 155068 24493.2 -1.553 1.79963 155002 24499.8 -1.554 1.79887 154936 24506.4 -1.555 1.7981 154870 24513 -1.556 1.79734 154805 24519.5 -1.557 1.79657 154739 24526.1 -1.558 1.79581 154673 24532.7 -1.559 1.79505 154607 24539.3 -1.56 1.79428 154542 24545.8 -1.561 1.79352 154476 24552.4 -1.562 1.79276 154410 24559 -1.563 1.79199 154345 24565.5 -1.564 1.79123 154279 24572.1 -1.565 1.79047 154213 24578.7 -1.566 1.78971 154148 24585.2 -1.567 1.78895 154082 24591.8 -1.568 1.78819 154017 24598.3 -1.569 1.78743 153951 24604.9 -1.57 1.78667 153886 24611.4 -1.571 1.78591 153820 24618 -1.572 1.78515 153755 24624.5 -1.573 1.78439 153690 24631 -1.574 1.78363 153624 24637.6 -1.575 1.78287 153559 24644.1 -1.576 1.78212 153494 24650.6 -1.577 1.78136 153428 24657.2 -1.578 1.7806 153363 24663.7 -1.579 1.77984 153298 24670.2 -1.58 1.77909 153233 24676.7 -1.581 1.77833 153168 24683.2 -1.582 1.77758 153103 24689.7 -1.583 1.77682 153038 24696.2 -1.584 1.77606 152972 24702.8 -1.585 1.77531 152907 24709.3 -1.586 1.77455 152842 24715.8 -1.587 1.7738 152777 24722.3 -1.588 1.77305 152712 24728.8 -1.589 1.77229 152648 24735.2 -1.59 1.77154 152583 24741.7 -1.591 1.77079 152518 24748.2 -1.592 1.77003 152453 24754.7 -1.593 1.76928 152388 24761.2 -1.594 1.76853 152323 24767.7 -1.595 1.76778 152259 24774.1 -1.596 1.76703 152194 24780.6 -1.597 1.76627 152129 24787.1 -1.598 1.76552 152065 24793.5 -1.599 1.76477 152000 24800 -1.6 1.76402 151935 24806.5 -1.601 1.76327 151871 24812.9 -1.602 1.76252 151806 24819.4 -1.603 1.76177 151742 24825.8 -1.604 1.76102 151677 24832.3 -1.605 1.76028 151613 24838.7 -1.606 1.75953 151548 24845.2 -1.607 1.75878 151484 24851.6 -1.608 1.75803 151419 24858.1 -1.609 1.75728 151355 24864.5 -1.61 1.75654 151291 24870.9 -1.611 1.75579 151226 24877.4 -1.612 1.75504 151162 24883.8 -1.613 1.7543 151098 24890.2 -1.614 1.75355 151034 24896.6 -1.615 1.75281 150969 24903.1 -1.616 1.75206 150905 24909.5 -1.617 1.75132 150841 24915.9 -1.618 1.75057 150777 24922.3 -1.619 1.74983 150713 24928.7 -1.62 1.74908 150649 24935.1 -1.621 1.74834 150585 24941.5 -1.622 1.7476 150521 24947.9 -1.623 1.74686 150457 24954.3 -1.624 1.74611 150393 24960.7 -1.625 1.74537 150329 24967.1 -1.626 1.74463 150265 24973.5 -1.627 1.74389 150201 24979.9 -1.628 1.74315 150137 24986.3 -1.629 1.7424 150073 24992.7 -1.63 1.74166 150009 24999.1 -1.631 1.74092 149946 25005.4 -1.632 1.74018 149882 25011.8 -1.633 1.73944 149818 25018.2 -1.634 1.7387 149755 25024.5 -1.635 1.73796 149691 25030.9 -1.636 1.73723 149627 25037.3 -1.637 1.73649 149564 25043.6 -1.638 1.73575 149500 25050 -1.639 1.73501 149437 25056.3 -1.64 1.73427 149373 25062.7 -1.641 1.73354 149309 25069.1 -1.642 1.7328 149246 25075.4 -1.643 1.73206 149183 25081.7 -1.644 1.73133 149119 25088.1 -1.645 1.73059 149056 25094.4 -1.646 1.72985 148992 25100.8 -1.647 1.72912 148929 25107.1 -1.648 1.72838 148866 25113.4 -1.649 1.72765 148802 25119.8 -1.65 1.72691 148739 25126.1 -1.651 1.72618 148676 25132.4 -1.652 1.72545 148613 25138.7 -1.653 1.72471 148550 25145 -1.654 1.72398 148486 25151.4 -1.655 1.72325 148423 25157.7 -1.656 1.72251 148360 25164 -1.657 1.72178 148297 25170.3 -1.658 1.72105 148234 25176.6 -1.659 1.72032 148171 25182.9 -1.66 1.71959 148108 25189.2 -1.661 1.71886 148045 25195.5 -1.662 1.71813 147982 25201.8 -1.663 1.7174 147919 25208.1 -1.664 1.71667 147856 25214.4 -1.665 1.71594 147794 25220.6 -1.666 1.71521 147731 25226.9 -1.667 1.71448 147668 25233.2 -1.668 1.71375 147605 25239.5 -1.669 1.71302 147542 25245.8 -1.67 1.71229 147480 25252 -1.671 1.71156 147417 25258.3 -1.672 1.71084 147354 25264.6 -1.673 1.71011 147292 25270.8 -1.674 1.70938 147229 25277.1 -1.675 1.70865 147166 25283.4 -1.676 1.70793 147104 25289.6 -1.677 1.7072 147041 25295.9 -1.678 1.70648 146979 25302.1 -1.679 1.70575 146916 25308.4 -1.68 1.70503 146854 25314.6 -1.681 1.7043 146791 25320.9 -1.682 1.70358 146729 25327.1 -1.683 1.70285 146667 25333.3 -1.684 1.70213 146604 25339.6 -1.685 1.70141 146542 25345.8 -1.686 1.70068 146480 25352 -1.687 1.69996 146417 25358.3 -1.688 1.69924 146355 25364.5 -1.689 1.69851 146293 25370.7 -1.69 1.69779 146231 25376.9 -1.691 1.69707 146169 25383.1 -1.692 1.69635 146106 25389.4 -1.693 1.69563 146044 25395.6 -1.694 1.69491 145982 25401.8 -1.695 1.69419 145920 25408 -1.696 1.69347 145858 25414.2 -1.697 1.69275 145796 25420.4 -1.698 1.69203 145734 25426.6 -1.699 1.69131 145672 25432.8 -1.7 1.69059 145610 25439 -1.701 1.68987 145548 25445.2 -1.702 1.68915 145487 25451.3 -1.703 1.68843 145425 25457.5 -1.704 1.68771 145363 25463.7 -1.705 1.687 145301 25469.9 -1.706 1.68628 145239 25476.1 -1.707 1.68556 145178 25482.2 -1.708 1.68485 145116 25488.4 -1.709 1.68413 145054 25494.6 -1.71 1.68341 144993 25500.7 -1.711 1.6827 144931 25506.9 -1.712 1.68198 144869 25513.1 -1.713 1.68127 144808 25519.2 -1.714 1.68055 144746 25525.4 -1.715 1.67984 144685 25531.5 -1.716 1.67913 144623 25537.7 -1.717 1.67841 144562 25543.8 -1.718 1.6777 144500 25550 -1.719 1.67698 144439 25556.1 -1.72 1.67627 144377 25562.3 -1.721 1.67556 144316 25568.4 -1.722 1.67485 144255 25574.5 -1.723 1.67413 144193 25580.7 -1.724 1.67342 144132 25586.8 -1.725 1.67271 144071 25592.9 -1.726 1.672 144009 25599.1 -1.727 1.67129 143948 25605.2 -1.728 1.67058 143887 25611.3 -1.729 1.66987 143826 25617.4 -1.73 1.66916 143765 25623.5 -1.731 1.66845 143704 25629.6 -1.732 1.66774 143642 25635.8 -1.733 1.66703 143581 25641.9 -1.734 1.66632 143520 25648 -1.735 1.66561 143459 25654.1 -1.736 1.66491 143398 25660.2 -1.737 1.6642 143337 25666.3 -1.738 1.66349 143276 25672.4 -1.739 1.66278 143216 25678.4 -1.74 1.66208 143155 25684.5 -1.741 1.66137 143094 25690.6 -1.742 1.66066 143033 25696.7 -1.743 1.65996 142972 25702.8 -1.744 1.65925 142911 25708.9 -1.745 1.65855 142851 25714.9 -1.746 1.65784 142790 25721 -1.747 1.65714 142729 25727.1 -1.748 1.65643 142669 25733.1 -1.749 1.65573 142608 25739.2 -1.75 1.65502 142547 25745.3 -1.751 1.65432 142487 25751.3 -1.752 1.65362 142426 25757.4 -1.753 1.65292 142366 25763.4 -1.754 1.65221 142305 25769.5 -1.755 1.65151 142245 25775.5 -1.756 1.65081 142184 25781.6 -1.757 1.65011 142124 25787.6 -1.758 1.6494 142063 25793.7 -1.759 1.6487 142003 25799.7 -1.76 1.648 141942 25805.8 -1.761 1.6473 141882 25811.8 -1.762 1.6466 141822 25817.8 -1.763 1.6459 141762 25823.8 -1.764 1.6452 141701 25829.9 -1.765 1.6445 141641 25835.9 -1.766 1.6438 141581 25841.9 -1.767 1.6431 141521 25847.9 -1.768 1.64241 141460 25854 -1.769 1.64171 141400 25860 -1.77 1.64101 141340 25866 -1.771 1.64031 141280 25872 -1.772 1.63962 141220 25878 -1.773 1.63892 141160 25884 -1.774 1.63822 141100 25890 -1.775 1.63752 141040 25896 -1.776 1.63683 140980 25902 -1.777 1.63613 140920 25908 -1.778 1.63544 140860 25914 -1.779 1.63474 140800 25920 -1.78 1.63405 140740 25926 -1.781 1.63335 140681 25931.9 -1.782 1.63266 140621 25937.9 -1.783 1.63196 140561 25943.9 -1.784 1.63127 140501 25949.9 -1.785 1.63058 140442 25955.8 -1.786 1.62988 140382 25961.8 -1.787 1.62919 140322 25967.8 -1.788 1.6285 140263 25973.7 -1.789 1.62781 140203 25979.7 -1.79 1.62711 140143 25985.7 -1.791 1.62642 140084 25991.6 -1.792 1.62573 140024 25997.6 -1.793 1.62504 139965 26003.5 -1.794 1.62435 139905 26009.5 -1.795 1.62366 139846 26015.4 -1.796 1.62297 139786 26021.4 -1.797 1.62228 139727 26027.3 -1.798 1.62159 139667 26033.3 -1.799 1.6209 139608 26039.2 -1.8 1.62021 139549 26045.1 -1.801 1.61952 139489 26051.1 -1.802 1.61883 139430 26057 -1.803 1.61814 139371 26062.9 -1.804 1.61746 139312 26068.8 -1.805 1.61677 139252 26074.8 -1.806 1.61608 139193 26080.7 -1.807 1.61539 139134 26086.6 -1.808 1.61471 139075 26092.5 -1.809 1.61402 139016 26098.4 -1.81 1.61334 138957 26104.3 -1.811 1.61265 138898 26110.2 -1.812 1.61196 138838 26116.2 -1.813 1.61128 138779 26122.1 -1.814 1.61059 138720 26128 -1.815 1.60991 138661 26133.9 -1.816 1.60922 138603 26139.7 -1.817 1.60854 138544 26145.6 -1.818 1.60786 138485 26151.5 -1.819 1.60717 138426 26157.4 -1.82 1.60649 138367 26163.3 -1.821 1.60581 138308 26169.2 -1.822 1.60512 138249 26175.1 -1.823 1.60444 138191 26180.9 -1.824 1.60376 138132 26186.8 -1.825 1.60308 138073 26192.7 -1.826 1.6024 138014 26198.6 -1.827 1.60172 137956 26204.4 -1.828 1.60103 137897 26210.3 -1.829 1.60035 137838 26216.2 -1.83 1.59967 137780 26222 -1.831 1.59899 137721 26227.9 -1.832 1.59831 137663 26233.7 -1.833 1.59763 137604 26239.6 -1.834 1.59696 137546 26245.4 -1.835 1.59628 137487 26251.3 -1.836 1.5956 137429 26257.1 -1.837 1.59492 137370 26263 -1.838 1.59424 137312 26268.8 -1.839 1.59356 137254 26274.6 -1.84 1.59289 137195 26280.5 -1.841 1.59221 137137 26286.3 -1.842 1.59153 137079 26292.1 -1.843 1.59086 137020 26298 -1.844 1.59018 136962 26303.8 -1.845 1.5895 136904 26309.6 -1.846 1.58883 136846 26315.4 -1.847 1.58815 136788 26321.2 -1.848 1.58748 136729 26327.1 -1.849 1.5868 136671 26332.9 -1.85 1.58613 136613 26338.7 -1.851 1.58545 136555 26344.5 -1.852 1.58478 136497 26350.3 -1.853 1.58411 136439 26356.1 -1.854 1.58343 136381 26361.9 -1.855 1.58276 136323 26367.7 -1.856 1.58209 136265 26373.5 -1.857 1.58141 136207 26379.3 -1.858 1.58074 136149 26385.1 -1.859 1.58007 136091 26390.9 -1.86 1.5794 136034 26396.6 -1.861 1.57873 135976 26402.4 -1.862 1.57806 135918 26408.2 -1.863 1.57738 135860 26414 -1.864 1.57671 135802 26419.8 -1.865 1.57604 135745 26425.5 -1.866 1.57537 135687 26431.3 -1.867 1.5747 135629 26437.1 -1.868 1.57403 135572 26442.8 -1.869 1.57337 135514 26448.6 -1.87 1.5727 135456 26454.4 -1.871 1.57203 135399 26460.1 -1.872 1.57136 135341 26465.9 -1.873 1.57069 135284 26471.6 -1.874 1.57002 135226 26477.4 -1.875 1.56936 135169 26483.1 -1.876 1.56869 135111 26488.9 -1.877 1.56802 135054 26494.6 -1.878 1.56736 134996 26500.4 -1.879 1.56669 134939 26506.1 -1.88 1.56602 134882 26511.8 -1.881 1.56536 134824 26517.6 -1.882 1.56469 134767 26523.3 -1.883 1.56403 134710 26529 -1.884 1.56336 134652 26534.8 -1.885 1.5627 134595 26540.5 -1.886 1.56203 134538 26546.2 -1.887 1.56137 134481 26551.9 -1.888 1.56071 134424 26557.6 -1.889 1.56004 134366 26563.4 -1.89 1.55938 134309 26569.1 -1.891 1.55872 134252 26574.8 -1.892 1.55805 134195 26580.5 -1.893 1.55739 134138 26586.2 -1.894 1.55673 134081 26591.9 -1.895 1.55607 134024 26597.6 -1.896 1.55541 133967 26603.3 -1.897 1.55474 133910 26609 -1.898 1.55408 133853 26614.7 -1.899 1.55342 133796 26620.4 -1.9 1.55276 133739 26626.1 -1.901 1.5521 133683 26631.7 -1.902 1.55144 133626 26637.4 -1.903 1.55078 133569 26643.1 -1.904 1.55012 133512 26648.8 -1.905 1.54946 133455 26654.5 -1.906 1.54881 133399 26660.1 -1.907 1.54815 133342 26665.8 -1.908 1.54749 133285 26671.5 -1.909 1.54683 133229 26677.1 -1.91 1.54617 133172 26682.8 -1.911 1.54552 133115 26688.5 -1.912 1.54486 133059 26694.1 -1.913 1.5442 133002 26699.8 -1.914 1.54355 132946 26705.4 -1.915 1.54289 132889 26711.1 -1.916 1.54223 132833 26716.7 -1.917 1.54158 132776 26722.4 -1.918 1.54092 132720 26728 -1.919 1.54027 132663 26733.7 -1.92 1.53961 132607 26739.3 -1.921 1.53896 132551 26744.9 -1.922 1.5383 132494 26750.6 -1.923 1.53765 132438 26756.2 -1.924 1.537 132382 26761.8 -1.925 1.53634 132325 26767.5 -1.926 1.53569 132269 26773.1 -1.927 1.53504 132213 26778.7 -1.928 1.53438 132157 26784.3 -1.929 1.53373 132100 26790 -1.93 1.53308 132044 26795.6 -1.931 1.53243 131988 26801.2 -1.932 1.53178 131932 26806.8 -1.933 1.53113 131876 26812.4 -1.934 1.53048 131820 26818 -1.935 1.52982 131764 26823.6 -1.936 1.52917 131708 26829.2 -1.937 1.52852 131652 26834.8 -1.938 1.52787 131596 26840.4 -1.939 1.52722 131540 26846 -1.94 1.52658 131484 26851.6 -1.941 1.52593 131428 26857.2 -1.942 1.52528 131372 26862.8 -1.943 1.52463 131316 26868.4 -1.944 1.52398 131261 26873.9 -1.945 1.52333 131205 26879.5 -1.946 1.52269 131149 26885.1 -1.947 1.52204 131093 26890.7 -1.948 1.52139 131037 26896.3 -1.949 1.52074 130982 26901.8 -1.95 1.5201 130926 26907.4 -1.951 1.51945 130870 26913 -1.952 1.51881 130815 26918.5 -1.953 1.51816 130759 26924.1 -1.954 1.51752 130704 26929.6 -1.955 1.51687 130648 26935.2 -1.956 1.51623 130592 26940.8 -1.957 1.51558 130537 26946.3 -1.958 1.51494 130481 26951.9 -1.959 1.51429 130426 26957.4 -1.96 1.51365 130371 26962.9 -1.961 1.51301 130315 26968.5 -1.962 1.51236 130260 26974 -1.963 1.51172 130204 26979.6 -1.964 1.51108 130149 26985.1 -1.965 1.51043 130094 26990.6 -1.966 1.50979 130038 26996.2 -1.967 1.50915 129983 27001.7 -1.968 1.50851 129928 27007.2 -1.969 1.50787 129873 27012.7 -1.97 1.50723 129817 27018.3 -1.971 1.50659 129762 27023.8 -1.972 1.50594 129707 27029.3 -1.973 1.5053 129652 27034.8 -1.974 1.50466 129597 27040.3 -1.975 1.50403 129542 27045.8 -1.976 1.50339 129487 27051.3 -1.977 1.50275 129432 27056.8 -1.978 1.50211 129377 27062.3 -1.979 1.50147 129322 27067.8 -1.98 1.50083 129267 27073.3 -1.981 1.50019 129212 27078.8 -1.982 1.49956 129157 27084.3 -1.983 1.49892 129102 27089.8 -1.984 1.49828 129047 27095.3 -1.985 1.49764 128992 27100.8 -1.986 1.49701 128937 27106.3 -1.987 1.49637 128882 27111.8 -1.988 1.49573 128828 27117.2 -1.989 1.4951 128773 27122.7 -1.99 1.49446 128718 27128.2 -1.991 1.49383 128663 27133.7 -1.992 1.49319 128609 27139.1 -1.993 1.49256 128554 27144.6 -1.994 1.49192 128499 27150.1 -1.995 1.49129 128445 27155.5 -1.996 1.49066 128390 27161 -1.997 1.49002 128336 27166.4 -1.998 1.48939 128281 27171.9 -1.999 1.48875 128226 27177.4 -2 1.48812 128172 27182.8 -2.001 1.48749 128117 27188.3 -2.002 1.48686 128063 27193.7 -2.003 1.48622 128009 27199.1 -2.004 1.48559 127954 27204.6 -2.005 1.48496 127900 27210 -2.006 1.48433 127845 27215.5 -2.007 1.4837 127791 27220.9 -2.008 1.48307 127737 27226.3 -2.009 1.48244 127682 27231.8 -2.01 1.48181 127628 27237.2 -2.011 1.48118 127574 27242.6 -2.012 1.48055 127520 27248 -2.013 1.47992 127465 27253.5 -2.014 1.47929 127411 27258.9 -2.015 1.47866 127357 27264.3 -2.016 1.47803 127303 27269.7 -2.017 1.4774 127249 27275.1 -2.018 1.47678 127195 27280.5 -2.019 1.47615 127141 27285.9 -2.02 1.47552 127087 27291.3 -2.021 1.47489 127033 27296.7 -2.022 1.47427 126979 27302.1 -2.023 1.47364 126925 27307.5 -2.024 1.47301 126871 27312.9 -2.025 1.47239 126817 27318.3 -2.026 1.47176 126763 27323.7 -2.027 1.47114 126709 27329.1 -2.028 1.47051 126655 27334.5 -2.029 1.46988 126601 27339.9 -2.03 1.46926 126547 27345.3 -2.031 1.46864 126494 27350.6 -2.032 1.46801 126440 27356 -2.033 1.46739 126386 27361.4 -2.034 1.46676 126332 27366.8 -2.035 1.46614 126279 27372.1 -2.036 1.46552 126225 27377.5 -2.037 1.46489 126171 27382.9 -2.038 1.46427 126118 27388.2 -2.039 1.46365 126064 27393.6 -2.04 1.46303 126010 27399 -2.041 1.4624 125957 27404.3 -2.042 1.46178 125903 27409.7 -2.043 1.46116 125850 27415 -2.044 1.46054 125796 27420.4 -2.045 1.45992 125743 27425.7 -2.046 1.4593 125689 27431.1 -2.047 1.45868 125636 27436.4 -2.048 1.45806 125582 27441.8 -2.049 1.45744 125529 27447.1 -2.05 1.45682 125476 27452.4 -2.051 1.4562 125422 27457.8 -2.052 1.45558 125369 27463.1 -2.053 1.45496 125316 27468.4 -2.054 1.45434 125263 27473.7 -2.055 1.45372 125209 27479.1 -2.056 1.45311 125156 27484.4 -2.057 1.45249 125103 27489.7 -2.058 1.45187 125050 27495 -2.059 1.45125 124996 27500.4 -2.06 1.45064 124943 27505.7 -2.061 1.45002 124890 27511 -2.062 1.4494 124837 27516.3 -2.063 1.44879 124784 27521.6 -2.064 1.44817 124731 27526.9 -2.065 1.44756 124678 27532.2 -2.066 1.44694 124625 27537.5 -2.067 1.44633 124572 27542.8 -2.068 1.44571 124519 27548.1 -2.069 1.4451 124466 27553.4 -2.07 1.44448 124413 27558.7 -2.071 1.44387 124360 27564 -2.072 1.44325 124307 27569.3 -2.073 1.44264 124255 27574.5 -2.074 1.44203 124202 27579.8 -2.075 1.44141 124149 27585.1 -2.076 1.4408 124096 27590.4 -2.077 1.44019 124043 27595.7 -2.078 1.43958 123991 27600.9 -2.079 1.43896 123938 27606.2 -2.08 1.43835 123885 27611.5 -2.081 1.43774 123833 27616.7 -2.082 1.43713 123780 27622 -2.083 1.43652 123727 27627.3 -2.084 1.43591 123675 27632.5 -2.085 1.4353 123622 27637.8 -2.086 1.43469 123570 27643 -2.087 1.43408 123517 27648.3 -2.088 1.43347 123465 27653.5 -2.089 1.43286 123412 27658.8 -2.09 1.43225 123360 27664 -2.091 1.43164 123307 27669.3 -2.092 1.43103 123255 27674.5 -2.093 1.43042 123202 27679.8 -2.094 1.42982 123150 27685 -2.095 1.42921 123098 27690.2 -2.096 1.4286 123045 27695.5 -2.097 1.42799 122993 27700.7 -2.098 1.42739 122941 27705.9 -2.099 1.42678 122888 27711.2 -2.1 1.42617 122836 27716.4 -2.101 1.42557 122784 27721.6 -2.102 1.42496 122732 27726.8 -2.103 1.42435 122680 27732 -2.104 1.42375 122627 27737.3 -2.105 1.42314 122575 27742.5 -2.106 1.42254 122523 27747.7 -2.107 1.42193 122471 27752.9 -2.108 1.42133 122419 27758.1 -2.109 1.42073 122367 27763.3 -2.11 1.42012 122315 27768.5 -2.111 1.41952 122263 27773.7 -2.112 1.41891 122211 27778.9 -2.113 1.41831 122159 27784.1 -2.114 1.41771 122107 27789.3 -2.115 1.41711 122055 27794.5 -2.116 1.4165 122003 27799.7 -2.117 1.4159 121952 27804.8 -2.118 1.4153 121900 27810 -2.119 1.4147 121848 27815.2 -2.12 1.4141 121796 27820.4 -2.121 1.41349 121744 27825.6 -2.122 1.41289 121693 27830.7 -2.123 1.41229 121641 27835.9 -2.124 1.41169 121589 27841.1 -2.125 1.41109 121537 27846.3 -2.126 1.41049 121486 27851.4 -2.127 1.40989 121434 27856.6 -2.128 1.40929 121382 27861.8 -2.129 1.40869 121331 27866.9 -2.13 1.4081 121279 27872.1 -2.131 1.4075 121228 27877.2 -2.132 1.4069 121176 27882.4 -2.133 1.4063 121125 27887.5 -2.134 1.4057 121073 27892.7 -2.135 1.40511 121022 27897.8 -2.136 1.40451 120970 27903 -2.137 1.40391 120919 27908.1 -2.138 1.40331 120867 27913.3 -2.139 1.40272 120816 27918.4 -2.14 1.40212 120765 27923.5 -2.141 1.40153 120713 27928.7 -2.142 1.40093 120662 27933.8 -2.143 1.40033 120611 27938.9 -2.144 1.39974 120559 27944.1 -2.145 1.39914 120508 27949.2 -2.146 1.39855 120457 27954.3 -2.147 1.39795 120406 27959.4 -2.148 1.39736 120355 27964.5 -2.149 1.39677 120303 27969.7 -2.15 1.39617 120252 27974.8 -2.151 1.39558 120201 27979.9 -2.152 1.39499 120150 27985 -2.153 1.39439 120099 27990.1 -2.154 1.3938 120048 27995.2 -2.155 1.39321 119997 28000.3 -2.156 1.39261 119946 28005.4 -2.157 1.39202 119895 28010.5 -2.158 1.39143 119844 28015.6 -2.159 1.39084 119793 28020.7 -2.16 1.39025 119742 28025.8 -2.161 1.38966 119691 28030.9 -2.162 1.38907 119640 28036 -2.163 1.38848 119589 28041.1 -2.164 1.38789 119539 28046.1 -2.165 1.3873 119488 28051.2 -2.166 1.38671 119437 28056.3 -2.167 1.38612 119386 28061.4 -2.168 1.38553 119335 28066.5 -2.169 1.38494 119285 28071.5 -2.17 1.38435 119234 28076.6 -2.171 1.38376 119183 28081.7 -2.172 1.38317 119133 28086.7 -2.173 1.38258 119082 28091.8 -2.174 1.382 119031 28096.9 -2.175 1.38141 118981 28101.9 -2.176 1.38082 118930 28107 -2.177 1.38023 118880 28112 -2.178 1.37965 118829 28117.1 -2.179 1.37906 118779 28122.1 -2.18 1.37848 118728 28127.2 -2.181 1.37789 118678 28132.2 -2.182 1.3773 118627 28137.3 -2.183 1.37672 118577 28142.3 -2.184 1.37613 118526 28147.4 -2.185 1.37555 118476 28152.4 -2.186 1.37496 118426 28157.4 -2.187 1.37438 118375 28162.5 -2.188 1.37379 118325 28167.5 -2.189 1.37321 118275 28172.5 -2.19 1.37263 118224 28177.6 -2.191 1.37204 118174 28182.6 -2.192 1.37146 118124 28187.6 -2.193 1.37088 118074 28192.6 -2.194 1.37029 118023 28197.7 -2.195 1.36971 117973 28202.7 -2.196 1.36913 117923 28207.7 -2.197 1.36855 117873 28212.7 -2.198 1.36797 117823 28217.7 -2.199 1.36738 117773 28222.7 -2.2 1.3668 117723 28227.7 -2.201 1.36622 117673 28232.7 -2.202 1.36564 117623 28237.7 -2.203 1.36506 117573 28242.7 -2.204 1.36448 117523 28247.7 -2.205 1.3639 117473 28252.7 -2.206 1.36332 117423 28257.7 -2.207 1.36274 117373 28262.7 -2.208 1.36216 117323 28267.7 -2.209 1.36158 117273 28272.7 -2.21 1.361 117223 28277.7 -2.211 1.36042 117173 28282.7 -2.212 1.35985 117124 28287.6 -2.213 1.35927 117074 28292.6 -2.214 1.35869 117024 28297.6 -2.215 1.35811 116974 28302.6 -2.216 1.35754 116924 28307.6 -2.217 1.35696 116875 28312.5 -2.218 1.35638 116825 28317.5 -2.219 1.3558 116775 28322.5 -2.22 1.35523 116726 28327.4 -2.221 1.35465 116676 28332.4 -2.222 1.35408 116627 28337.3 -2.223 1.3535 116577 28342.3 -2.224 1.35293 116527 28347.3 -2.225 1.35235 116478 28352.2 -2.226 1.35177 116428 28357.2 -2.227 1.3512 116379 28362.1 -2.228 1.35063 116329 28367.1 -2.229 1.35005 116280 28372 -2.23 1.34948 116231 28376.9 -2.231 1.3489 116181 28381.9 -2.232 1.34833 116132 28386.8 -2.233 1.34776 116082 28391.8 -2.234 1.34718 116033 28396.7 -2.235 1.34661 115984 28401.6 -2.236 1.34604 115934 28406.6 -2.237 1.34547 115885 28411.5 -2.238 1.3449 115836 28416.4 -2.239 1.34432 115787 28421.3 -2.24 1.34375 115737 28426.3 -2.241 1.34318 115688 28431.2 -2.242 1.34261 115639 28436.1 -2.243 1.34204 115590 28441 -2.244 1.34147 115541 28445.9 -2.245 1.3409 115492 28450.8 -2.246 1.34033 115442 28455.8 -2.247 1.33976 115393 28460.7 -2.248 1.33919 115344 28465.6 -2.249 1.33862 115295 28470.5 -2.25 1.33805 115246 28475.4 -2.251 1.33748 115197 28480.3 -2.252 1.33691 115148 28485.2 -2.253 1.33634 115099 28490.1 -2.254 1.33578 115050 28495 -2.255 1.33521 115002 28499.8 -2.256 1.33464 114953 28504.7 -2.257 1.33407 114904 28509.6 -2.258 1.33351 114855 28514.5 -2.259 1.33294 114806 28519.4 -2.26 1.33237 114757 28524.3 -2.261 1.33181 114708 28529.2 -2.262 1.33124 114660 28534 -2.263 1.33067 114611 28538.9 -2.264 1.33011 114562 28543.8 -2.265 1.32954 114514 28548.6 -2.266 1.32898 114465 28553.5 -2.267 1.32841 114416 28558.4 -2.268 1.32785 114368 28563.2 -2.269 1.32728 114319 28568.1 -2.27 1.32672 114270 28573 -2.271 1.32616 114222 28577.8 -2.272 1.32559 114173 28582.7 -2.273 1.32503 114125 28587.5 -2.274 1.32447 114076 28592.4 -2.275 1.3239 114028 28597.2 -2.276 1.32334 113979 28602.1 -2.277 1.32278 113931 28606.9 -2.278 1.32221 113882 28611.8 -2.279 1.32165 113834 28616.6 -2.28 1.32109 113786 28621.4 -2.281 1.32053 113737 28626.3 -2.282 1.31997 113689 28631.1 -2.283 1.31941 113640 28636 -2.284 1.31885 113592 28640.8 -2.285 1.31828 113544 28645.6 -2.286 1.31772 113496 28650.4 -2.287 1.31716 113447 28655.3 -2.288 1.3166 113399 28660.1 -2.289 1.31604 113351 28664.9 -2.29 1.31548 113303 28669.7 -2.291 1.31493 113255 28674.5 -2.292 1.31437 113206 28679.4 -2.293 1.31381 113158 28684.2 -2.294 1.31325 113110 28689 -2.295 1.31269 113062 28693.8 -2.296 1.31213 113014 28698.6 -2.297 1.31158 112966 28703.4 -2.298 1.31102 112918 28708.2 -2.299 1.31046 112870 28713 -2.3 1.3099 112822 28717.8 -2.301 1.30935 112774 28722.6 -2.302 1.30879 112726 28727.4 -2.303 1.30823 112678 28732.2 -2.304 1.30768 112630 28737 -2.305 1.30712 112582 28741.8 -2.306 1.30657 112535 28746.5 -2.307 1.30601 112487 28751.3 -2.308 1.30546 112439 28756.1 -2.309 1.3049 112391 28760.9 -2.31 1.30435 112343 28765.7 -2.311 1.30379 112296 28770.4 -2.312 1.30324 112248 28775.2 -2.313 1.30268 112200 28780 -2.314 1.30213 112152 28784.8 -2.315 1.30158 112105 28789.5 -2.316 1.30102 112057 28794.3 -2.317 1.30047 112009 28799.1 -2.318 1.29992 111962 28803.8 -2.319 1.29936 111914 28808.6 -2.32 1.29881 111867 28813.3 -2.321 1.29826 111819 28818.1 -2.322 1.29771 111772 28822.8 -2.323 1.29716 111724 28827.6 -2.324 1.2966 111676 28832.4 -2.325 1.29605 111629 28837.1 -2.326 1.2955 111582 28841.8 -2.327 1.29495 111534 28846.6 -2.328 1.2944 111487 28851.3 -2.329 1.29385 111439 28856.1 -2.33 1.2933 111392 28860.8 -2.331 1.29275 111345 28865.5 -2.332 1.2922 111297 28870.3 -2.333 1.29165 111250 28875 -2.334 1.2911 111203 28879.7 -2.335 1.29055 111155 28884.5 -2.336 1.29 111108 28889.2 -2.337 1.28946 111061 28893.9 -2.338 1.28891 111014 28898.6 -2.339 1.28836 110966 28903.4 -2.34 1.28781 110919 28908.1 -2.341 1.28727 110872 28912.8 -2.342 1.28672 110825 28917.5 -2.343 1.28617 110778 28922.2 -2.344 1.28562 110731 28926.9 -2.345 1.28508 110684 28931.6 -2.346 1.28453 110637 28936.3 -2.347 1.28399 110590 28941 -2.348 1.28344 110543 28945.7 -2.349 1.28289 110496 28950.4 -2.35 1.28235 110449 28955.1 -2.351 1.2818 110402 28959.8 -2.352 1.28126 110355 28964.5 -2.353 1.28071 110308 28969.2 -2.354 1.28017 110261 28973.9 -2.355 1.27963 110214 28978.6 -2.356 1.27908 110167 28983.3 -2.357 1.27854 110120 28988 -2.358 1.27799 110074 28992.6 -2.359 1.27745 110027 28997.3 -2.36 1.27691 109980 29002 -2.361 1.27636 109933 29006.7 -2.362 1.27582 109887 29011.3 -2.363 1.27528 109840 29016 -2.364 1.27474 109793 29020.7 -2.365 1.2742 109746 29025.4 -2.366 1.27365 109700 29030 -2.367 1.27311 109653 29034.7 -2.368 1.27257 109607 29039.3 -2.369 1.27203 109560 29044 -2.37 1.27149 109513 29048.7 -2.371 1.27095 109467 29053.3 -2.372 1.27041 109420 29058 -2.373 1.26987 109374 29062.6 -2.374 1.26933 109327 29067.3 -2.375 1.26879 109281 29071.9 -2.376 1.26825 109234 29076.6 -2.377 1.26771 109188 29081.2 -2.378 1.26717 109141 29085.9 -2.379 1.26663 109095 29090.5 -2.38 1.26609 109049 29095.1 -2.381 1.26556 109002 29099.8 -2.382 1.26502 108956 29104.4 -2.383 1.26448 108910 29109 -2.384 1.26394 108863 29113.7 -2.385 1.26341 108817 29118.3 -2.386 1.26287 108771 29122.9 -2.387 1.26233 108725 29127.5 -2.388 1.2618 108678 29132.2 -2.389 1.26126 108632 29136.8 -2.39 1.26072 108586 29141.4 -2.391 1.26019 108540 29146 -2.392 1.25965 108494 29150.6 -2.393 1.25912 108448 29155.2 -2.394 1.25858 108401 29159.9 -2.395 1.25804 108355 29164.5 -2.396 1.25751 108309 29169.1 -2.397 1.25698 108263 29173.7 -2.398 1.25644 108217 29178.3 -2.399 1.25591 108171 29182.9 -2.4 1.25537 108125 29187.5 -2.401 1.25484 108079 29192.1 -2.402 1.25431 108033 29196.7 -2.403 1.25377 107987 29201.3 -2.404 1.25324 107942 29205.8 -2.405 1.25271 107896 29210.4 -2.406 1.25217 107850 29215 -2.407 1.25164 107804 29219.6 -2.408 1.25111 107758 29224.2 -2.409 1.25058 107712 29228.8 -2.41 1.25005 107667 29233.3 -2.411 1.24952 107621 29237.9 -2.412 1.24898 107575 29242.5 -2.413 1.24845 107529 29247.1 -2.414 1.24792 107484 29251.6 -2.415 1.24739 107438 29256.2 -2.416 1.24686 107392 29260.8 -2.417 1.24633 107347 29265.3 -2.418 1.2458 107301 29269.9 -2.419 1.24527 107255 29274.5 -2.42 1.24474 107210 29279 -2.421 1.24421 107164 29283.6 -2.422 1.24368 107119 29288.1 -2.423 1.24316 107073 29292.7 -2.424 1.24263 107027 29297.3 -2.425 1.2421 106982 29301.8 -2.426 1.24157 106937 29306.3 -2.427 1.24104 106891 29310.9 -2.428 1.24052 106846 29315.4 -2.429 1.23999 106800 29320 -2.43 1.23946 106755 29324.5 -2.431 1.23893 106709 29329.1 -2.432 1.23841 106664 29333.6 -2.433 1.23788 106619 29338.1 -2.434 1.23735 106573 29342.7 -2.435 1.23683 106528 29347.2 -2.436 1.2363 106483 29351.7 -2.437 1.23578 106438 29356.2 -2.438 1.23525 106392 29360.8 -2.439 1.23473 106347 29365.3 -2.44 1.2342 106302 29369.8 -2.441 1.23368 106257 29374.3 -2.442 1.23315 106211 29378.9 -2.443 1.23263 106166 29383.4 -2.444 1.2321 106121 29387.9 -2.445 1.23158 106076 29392.4 -2.446 1.23106 106031 29396.9 -2.447 1.23053 105986 29401.4 -2.448 1.23001 105941 29405.9 -2.449 1.22949 105896 29410.4 -2.45 1.22897 105851 29414.9 -2.451 1.22844 105806 29419.4 -2.452 1.22792 105761 29423.9 -2.453 1.2274 105716 29428.4 -2.454 1.22688 105671 29432.9 -2.455 1.22636 105626 29437.4 -2.456 1.22583 105581 29441.9 -2.457 1.22531 105536 29446.4 -2.458 1.22479 105491 29450.9 -2.459 1.22427 105446 29455.4 -2.46 1.22375 105402 29459.8 -2.461 1.22323 105357 29464.3 -2.462 1.22271 105312 29468.8 -2.463 1.22219 105267 29473.3 -2.464 1.22167 105223 29477.7 -2.465 1.22115 105178 29482.2 -2.466 1.22063 105133 29486.7 -2.467 1.22011 105088 29491.2 -2.468 1.2196 105044 29495.6 -2.469 1.21908 104999 29500.1 -2.47 1.21856 104954 29504.6 -2.471 1.21804 104910 29509 -2.472 1.21752 104865 29513.5 -2.473 1.217 104821 29517.9 -2.474 1.21649 104776 29522.4 -2.475 1.21597 104732 29526.8 -2.476 1.21545 104687 29531.3 -2.477 1.21494 104643 29535.7 -2.478 1.21442 104598 29540.2 -2.479 1.2139 104554 29544.6 -2.48 1.21339 104509 29549.1 -2.481 1.21287 104465 29553.5 -2.482 1.21236 104420 29558 -2.483 1.21184 104376 29562.4 -2.484 1.21133 104332 29566.8 -2.485 1.21081 104287 29571.3 -2.486 1.2103 104243 29575.7 -2.487 1.20978 104199 29580.1 -2.488 1.20927 104154 29584.6 -2.489 1.20875 104110 29589 -2.49 1.20824 104066 29593.4 -2.491 1.20773 104021 29597.9 -2.492 1.20721 103977 29602.3 -2.493 1.2067 103933 29606.7 -2.494 1.20619 103889 29611.1 -2.495 1.20567 103845 29615.5 -2.496 1.20516 103801 29619.9 -2.497 1.20465 103756 29624.4 -2.498 1.20414 103712 29628.8 -2.499 1.20362 103668 29633.2 -2.5 1.20311 103624 29637.6 -2.501 1.2026 103580 29642 -2.502 1.20209 103536 29646.4 -2.503 1.20158 103492 29650.8 -2.504 1.20107 103448 29655.2 -2.505 1.20056 103404 29659.6 -2.506 1.20005 103360 29664 -2.507 1.19954 103316 29668.4 -2.508 1.19903 103272 29672.8 -2.509 1.19852 103228 29677.2 -2.51 1.19801 103184 29681.6 -2.511 1.1975 103141 29685.9 -2.512 1.19699 103097 29690.3 -2.513 1.19648 103053 29694.7 -2.514 1.19597 103009 29699.1 -2.515 1.19546 102965 29703.5 -2.516 1.19496 102922 29707.8 -2.517 1.19445 102878 29712.2 -2.518 1.19394 102834 29716.6 -2.519 1.19343 102790 29721 -2.52 1.19292 102747 29725.3 -2.521 1.19242 102703 29729.7 -2.522 1.19191 102659 29734.1 -2.523 1.1914 102616 29738.4 -2.524 1.1909 102572 29742.8 -2.525 1.19039 102528 29747.2 -2.526 1.18989 102485 29751.5 -2.527 1.18938 102441 29755.9 -2.528 1.18887 102398 29760.2 -2.529 1.18837 102354 29764.6 -2.53 1.18786 102311 29768.9 -2.531 1.18736 102267 29773.3 -2.532 1.18685 102224 29777.6 -2.533 1.18635 102180 29782 -2.534 1.18584 102137 29786.3 -2.535 1.18534 102093 29790.7 -2.536 1.18484 102050 29795 -2.537 1.18433 102007 29799.3 -2.538 1.18383 101963 29803.7 -2.539 1.18333 101920 29808 -2.54 1.18282 101877 29812.3 -2.541 1.18232 101833 29816.7 -2.542 1.18182 101790 29821 -2.543 1.18132 101747 29825.3 -2.544 1.18081 101703 29829.7 -2.545 1.18031 101660 29834 -2.546 1.17981 101617 29838.3 -2.547 1.17931 101574 29842.6 -2.548 1.17881 101531 29846.9 -2.549 1.17831 101487 29851.3 -2.55 1.1778 101444 29855.6 -2.551 1.1773 101401 29859.9 -2.552 1.1768 101358 29864.2 -2.553 1.1763 101315 29868.5 -2.554 1.1758 101272 29872.8 -2.555 1.1753 101229 29877.1 -2.556 1.1748 101186 29881.4 -2.557 1.1743 101143 29885.7 -2.558 1.1738 101100 29890 -2.559 1.17331 101057 29894.3 -2.56 1.17281 101014 29898.6 -2.561 1.17231 100971 29902.9 -2.562 1.17181 100928 29907.2 -2.563 1.17131 100885 29911.5 -2.564 1.17081 100842 29915.8 -2.565 1.17032 100799 29920.1 -2.566 1.16982 100756 29924.4 -2.567 1.16932 100714 29928.6 -2.568 1.16882 100671 29932.9 -2.569 1.16833 100628 29937.2 -2.57 1.16783 100585 29941.5 -2.571 1.16733 100543 29945.7 -2.572 1.16684 100500 29950 -2.573 1.16634 100457 29954.3 -2.574 1.16585 100414 29958.6 -2.575 1.16535 100372 29962.8 -2.576 1.16486 100329 29967.1 -2.577 1.16436 100286 29971.4 -2.578 1.16387 100244 29975.6 -2.579 1.16337 100201 29979.9 -2.58 1.16288 100158 29984.2 -2.581 1.16238 100116 29988.4 -2.582 1.16189 100073 29992.7 -2.583 1.16139 100031 29996.9 -2.584 1.1609 99988.3 30001.2 -2.585 1.16041 99945.8 30005.4 -2.586 1.15991 99903.3 30009.7 -2.587 1.15942 99860.8 30013.9 -2.588 1.15893 99818.4 30018.2 -2.589 1.15843 99775.9 30022.4 -2.59 1.15794 99733.5 30026.6 -2.591 1.15745 99691.1 30030.9 -2.592 1.15696 99648.7 30035.1 -2.593 1.15647 99606.4 30039.4 -2.594 1.15597 99564 30043.6 -2.595 1.15548 99521.7 30047.8 -2.596 1.15499 99479.4 30052.1 -2.597 1.1545 99437.1 30056.3 -2.598 1.15401 99394.8 30060.5 -2.599 1.15352 99352.6 30064.7 -2.6 1.15303 99310.3 30069 -2.601 1.15254 99268.1 30073.2 -2.602 1.15205 99225.9 30077.4 -2.603 1.15156 99183.7 30081.6 -2.604 1.15107 99141.6 30085.8 -2.605 1.15058 99099.4 30090.1 -2.606 1.15009 99057.3 30094.3 -2.607 1.1496 99015.2 30098.5 -2.608 1.14911 98973.1 30102.7 -2.609 1.14862 98931 30106.9 -2.61 1.14814 98889 30111.1 -2.611 1.14765 98846.9 30115.3 -2.612 1.14716 98804.9 30119.5 -2.613 1.14667 98762.9 30123.7 -2.614 1.14618 98720.9 30127.9 -2.615 1.1457 98678.9 30132.1 -2.616 1.14521 98637 30136.3 -2.617 1.14472 98595.1 30140.5 -2.618 1.14424 98553.1 30144.7 -2.619 1.14375 98511.3 30148.9 -2.62 1.14326 98469.4 30153.1 -2.621 1.14278 98427.5 30157.2 -2.622 1.14229 98385.7 30161.4 -2.623 1.14181 98343.8 30165.6 -2.624 1.14132 98302 30169.8 -2.625 1.14084 98260.2 30174 -2.626 1.14035 98218.5 30178.2 -2.627 1.13987 98176.7 30182.3 -2.628 1.13938 98135 30186.5 -2.629 1.1389 98093.3 30190.7 -2.63 1.13841 98051.6 30194.8 -2.631 1.13793 98009.9 30199 -2.632 1.13745 97968.2 30203.2 -2.633 1.13696 97926.6 30207.3 -2.634 1.13648 97884.9 30211.5 -2.635 1.136 97843.3 30215.7 -2.636 1.13551 97801.7 30219.8 -2.637 1.13503 97760.2 30224 -2.638 1.13455 97718.6 30228.1 -2.639 1.13407 97677.1 30232.3 -2.64 1.13358 97635.5 30236.4 -2.641 1.1331 97594 30240.6 -2.642 1.13262 97552.5 30244.7 -2.643 1.13214 97511.1 30248.9 -2.644 1.13166 97469.6 30253 -2.645 1.13118 97428.2 30257.2 -2.646 1.13069 97386.8 30261.3 -2.647 1.13021 97345.4 30265.5 -2.648 1.12973 97304 30269.6 -2.649 1.12925 97262.6 30273.7 -2.65 1.12877 97221.3 30277.9 -2.651 1.12829 97179.9 30282 -2.652 1.12781 97138.6 30286.1 -2.653 1.12733 97097.3 30290.3 -2.654 1.12686 97056 30294.4 -2.655 1.12638 97014.8 30298.5 -2.656 1.1259 96973.5 30302.6 -2.657 1.12542 96932.3 30306.8 -2.658 1.12494 96891.1 30310.9 -2.659 1.12446 96849.9 30315 -2.66 1.12398 96808.7 30319.1 -2.661 1.12351 96767.6 30323.2 -2.662 1.12303 96726.5 30327.4 -2.663 1.12255 96685.3 30331.5 -2.664 1.12207 96644.2 30335.6 -2.665 1.1216 96603.1 30339.7 -2.666 1.12112 96562.1 30343.8 -2.667 1.12064 96521 30347.9 -2.668 1.12017 96480 30352 -2.669 1.11969 96439 30356.1 -2.67 1.11921 96398 30360.2 -2.671 1.11874 96357 30364.3 -2.672 1.11826 96316 30368.4 -2.673 1.11779 96275.1 30372.5 -2.674 1.11731 96234.2 30376.6 -2.675 1.11684 96193.3 30380.7 -2.676 1.11636 96152.4 30384.8 -2.677 1.11589 96111.5 30388.9 -2.678 1.11541 96070.6 30392.9 -2.679 1.11494 96029.8 30397 -2.68 1.11447 95989 30401.1 -2.681 1.11399 95948.2 30405.2 -2.682 1.11352 95907.4 30409.3 -2.683 1.11305 95866.6 30413.3 -2.684 1.11257 95825.8 30417.4 -2.685 1.1121 95785.1 30421.5 -2.686 1.11163 95744.4 30425.6 -2.687 1.11115 95703.7 30429.6 -2.688 1.11068 95663 30433.7 -2.689 1.11021 95622.3 30437.8 -2.69 1.10974 95581.7 30441.8 -2.691 1.10927 95541.1 30445.9 -2.692 1.10879 95500.4 30450 -2.693 1.10832 95459.8 30454 -2.694 1.10785 95419.3 30458.1 -2.695 1.10738 95378.7 30462.1 -2.696 1.10691 95338.1 30466.2 -2.697 1.10644 95297.6 30470.2 -2.698 1.10597 95257.1 30474.3 -2.699 1.1055 95216.6 30478.3 -2.7 1.10503 95176.1 30482.4 -2.701 1.10456 95135.7 30486.4 -2.702 1.10409 95095.2 30490.5 -2.703 1.10362 95054.8 30494.5 -2.704 1.10315 95014.4 30498.6 -2.705 1.10268 94974 30502.6 -2.706 1.10221 94933.6 30506.6 -2.707 1.10174 94893.3 30510.7 -2.708 1.10128 94852.9 30514.7 -2.709 1.10081 94812.6 30518.7 -2.71 1.10034 94772.3 30522.8 -2.711 1.09987 94732 30526.8 -2.712 1.0994 94691.7 30530.8 -2.713 1.09894 94651.5 30534.9 -2.714 1.09847 94611.2 30538.9 -2.715 1.098 94571 30542.9 -2.716 1.09754 94530.8 30546.9 -2.717 1.09707 94490.6 30550.9 -2.718 1.0966 94450.5 30555 -2.719 1.09614 94410.3 30559 -2.72 1.09567 94370.2 30563 -2.721 1.09521 94330.1 30567 -2.722 1.09474 94290 30571 -2.723 1.09427 94249.9 30575 -2.724 1.09381 94209.8 30579 -2.725 1.09334 94169.8 30583 -2.726 1.09288 94129.7 30587 -2.727 1.09241 94089.7 30591 -2.728 1.09195 94049.7 30595 -2.729 1.09149 94009.7 30599 -2.73 1.09102 93969.8 30603 -2.731 1.09056 93929.8 30607 -2.732 1.09009 93889.9 30611 -2.733 1.08963 93850 30615 -2.734 1.08917 93810.1 30619 -2.735 1.08871 93770.2 30623 -2.736 1.08824 93730.3 30627 -2.737 1.08778 93690.5 30631 -2.738 1.08732 93650.6 30634.9 -2.739 1.08686 93610.8 30638.9 -2.74 1.08639 93571 30642.9 -2.741 1.08593 93531.3 30646.9 -2.742 1.08547 93491.5 30650.8 -2.743 1.08501 93451.8 30654.8 -2.744 1.08455 93412 30658.8 -2.745 1.08409 93372.3 30662.8 -2.746 1.08363 93332.6 30666.7 -2.747 1.08316 93292.9 30670.7 -2.748 1.0827 93253.3 30674.7 -2.749 1.08224 93213.6 30678.6 -2.75 1.08178 93174 30682.6 -2.751 1.08132 93134.4 30686.6 -2.752 1.08086 93094.8 30690.5 -2.753 1.0804 93055.2 30694.5 -2.754 1.07995 93015.7 30698.4 -2.755 1.07949 92976.1 30702.4 -2.756 1.07903 92936.6 30706.3 -2.757 1.07857 92897.1 30710.3 -2.758 1.07811 92857.6 30714.2 -2.759 1.07765 92818.1 30718.2 -2.76 1.07719 92778.7 30722.1 -2.761 1.07674 92739.2 30726.1 -2.762 1.07628 92699.8 30730 -2.763 1.07582 92660.4 30734 -2.764 1.07536 92621 30737.9 -2.765 1.07491 92581.6 30741.8 -2.766 1.07445 92542.3 30745.8 -2.767 1.07399 92502.9 30749.7 -2.768 1.07354 92463.6 30753.6 -2.769 1.07308 92424.3 30757.6 -2.77 1.07262 92385 30761.5 -2.771 1.07217 92345.7 30765.4 -2.772 1.07171 92306.5 30769.4 -2.773 1.07126 92267.2 30773.3 -2.774 1.0708 92228 30777.2 -2.775 1.07034 92188.8 30781.1 -2.776 1.06989 92149.6 30785 -2.777 1.06944 92110.4 30789 -2.778 1.06898 92071.3 30792.9 -2.779 1.06853 92032.1 30796.8 -2.78 1.06807 91993 30800.7 -2.781 1.06762 91953.9 30804.6 -2.782 1.06716 91914.8 30808.5 -2.783 1.06671 91875.8 30812.4 -2.784 1.06626 91836.7 30816.3 -2.785 1.0658 91797.7 30820.2 -2.786 1.06535 91758.6 30824.1 -2.787 1.0649 91719.6 30828 -2.788 1.06444 91680.6 30831.9 -2.789 1.06399 91641.7 30835.8 -2.79 1.06354 91602.7 30839.7 -2.791 1.06309 91563.8 30843.6 -2.792 1.06264 91524.8 30847.5 -2.793 1.06218 91485.9 30851.4 -2.794 1.06173 91447 30855.3 -2.795 1.06128 91408.2 30859.2 -2.796 1.06083 91369.3 30863.1 -2.797 1.06038 91330.5 30867 -2.798 1.05993 91291.6 30870.8 -2.799 1.05948 91252.8 30874.7 -2.8 1.05903 91214 30878.6 -2.801 1.05858 91175.2 30882.5 -2.802 1.05813 91136.5 30886.4 -2.803 1.05768 91097.7 30890.2 -2.804 1.05723 91059 30894.1 -2.805 1.05678 91020.3 30898 -2.806 1.05633 90981.6 30901.8 -2.807 1.05588 90942.9 30905.7 -2.808 1.05543 90904.3 30909.6 -2.809 1.05498 90865.6 30913.4 -2.81 1.05453 90827 30917.3 -2.811 1.05409 90788.4 30921.2 -2.812 1.05364 90749.8 30925 -2.813 1.05319 90711.2 30928.9 -2.814 1.05274 90672.7 30932.7 -2.815 1.05229 90634.1 30936.6 -2.816 1.05185 90595.6 30940.4 -2.817 1.0514 90557.1 30944.3 -2.818 1.05095 90518.6 30948.1 -2.819 1.05051 90480.1 30952 -2.82 1.05006 90441.6 30955.8 -2.821 1.04961 90403.2 30959.7 -2.822 1.04917 90364.7 30963.5 -2.823 1.04872 90326.3 30967.4 -2.824 1.04828 90287.9 30971.2 -2.825 1.04783 90249.5 30975 -2.826 1.04738 90211.2 30978.9 -2.827 1.04694 90172.8 30982.7 -2.828 1.04649 90134.5 30986.6 -2.829 1.04605 90096.2 30990.4 -2.83 1.0456 90057.9 30994.2 -2.831 1.04516 90019.6 30998 -2.832 1.04472 89981.3 31001.9 -2.833 1.04427 89943.1 31005.7 -2.834 1.04383 89904.8 31009.5 -2.835 1.04338 89866.6 31013.3 -2.836 1.04294 89828.4 31017.2 -2.837 1.0425 89790.2 31021 -2.838 1.04205 89752.1 31024.8 -2.839 1.04161 89713.9 31028.6 -2.84 1.04117 89675.8 31032.4 -2.841 1.04072 89637.6 31036.2 -2.842 1.04028 89599.5 31040 -2.843 1.03984 89561.4 31043.9 -2.844 1.0394 89523.4 31047.7 -2.845 1.03896 89485.3 31051.5 -2.846 1.03851 89447.3 31055.3 -2.847 1.03807 89409.2 31059.1 -2.848 1.03763 89371.2 31062.9 -2.849 1.03719 89333.2 31066.7 -2.85 1.03675 89295.3 31070.5 -2.851 1.03631 89257.3 31074.3 -2.852 1.03587 89219.4 31078.1 -2.853 1.03543 89181.4 31081.9 -2.854 1.03499 89143.5 31085.6 -2.855 1.03455 89105.6 31089.4 -2.856 1.03411 89067.7 31093.2 -2.857 1.03367 89029.9 31097 -2.858 1.03323 88992 31100.8 -2.859 1.03279 88954.2 31104.6 -2.86 1.03235 88916.4 31108.4 -2.861 1.03191 88878.6 31112.1 -2.862 1.03147 88840.8 31115.9 -2.863 1.03103 88803 31119.7 -2.864 1.0306 88765.3 31123.5 -2.865 1.03016 88727.5 31127.2 -2.866 1.02972 88689.8 31131 -2.867 1.02928 88652.1 31134.8 -2.868 1.02885 88614.4 31138.6 -2.869 1.02841 88576.8 31142.3 -2.87 1.02797 88539.1 31146.1 -2.871 1.02753 88501.5 31149.9 -2.872 1.0271 88463.8 31153.6 -2.873 1.02666 88426.2 31157.4 -2.874 1.02622 88388.6 31161.1 -2.875 1.02579 88351.1 31164.9 -2.876 1.02535 88313.5 31168.6 -2.877 1.02492 88276 31172.4 -2.878 1.02448 88238.4 31176.2 -2.879 1.02404 88200.9 31179.9 -2.88 1.02361 88163.4 31183.7 -2.881 1.02317 88126 31187.4 -2.882 1.02274 88088.5 31191.2 -2.883 1.0223 88051 31194.9 -2.884 1.02187 88013.6 31198.6 -2.885 1.02143 87976.2 31202.4 -2.886 1.021 87938.8 31206.1 -2.887 1.02057 87901.4 31209.9 -2.888 1.02013 87864 31213.6 -2.889 1.0197 87826.7 31217.3 -2.89 1.01927 87789.4 31221.1 -2.891 1.01883 87752 31224.8 -2.892 1.0184 87714.7 31228.5 -2.893 1.01797 87677.4 31232.3 -2.894 1.01753 87640.2 31236 -2.895 1.0171 87602.9 31239.7 -2.896 1.01667 87565.7 31243.4 -2.897 1.01624 87528.4 31247.2 -2.898 1.0158 87491.2 31250.9 -2.899 1.01537 87454 31254.6 -2.9 1.01494 87416.9 31258.3 -2.901 1.01451 87379.7 31262 -2.902 1.01408 87342.6 31265.7 -2.903 1.01365 87305.4 31269.5 -2.904 1.01322 87268.3 31273.2 -2.905 1.01279 87231.2 31276.9 -2.906 1.01235 87194.1 31280.6 -2.907 1.01192 87157.1 31284.3 -2.908 1.01149 87120 31288 -2.909 1.01106 87083 31291.7 -2.91 1.01063 87045.9 31295.4 -2.911 1.0102 87008.9 31299.1 -2.912 1.00978 86972 31302.8 -2.913 1.00935 86935 31306.5 -2.914 1.00892 86898 31310.2 -2.915 1.00849 86861.1 31313.9 -2.916 1.00806 86824.2 31317.6 -2.917 1.00763 86787.2 31321.3 -2.918 1.0072 86750.4 31325 -2.919 1.00677 86713.5 31328.7 -2.92 1.00635 86676.6 31332.3 -2.921 1.00592 86639.8 31336 -2.922 1.00549 86602.9 31339.7 -2.923 1.00506 86566.1 31343.4 -2.924 1.00464 86529.3 31347.1 -2.925 1.00421 86492.5 31350.7 -2.926 1.00378 86455.8 31354.4 -2.927 1.00336 86419 31358.1 -2.928 1.00293 86382.3 31361.8 -2.929 1.0025 86345.5 31365.4 -2.93 1.00208 86308.8 31369.1 -2.931 1.00165 86272.1 31372.8 -2.932 1.00122 86235.5 31376.5 -2.933 1.0008 86198.8 31380.1 -2.934 1.00037 86162.2 31383.8 -2.935 0.999948 86125.5 31387.4 -2.936 0.999523 86088.9 31391.1 -2.937 0.999098 86052.3 31394.8 -2.938 0.998673 86015.7 31398.4 -2.939 0.998249 85979.2 31402.1 -2.94 0.997825 85942.6 31405.7 -2.941 0.9974 85906.1 31409.4 -2.942 0.996976 85869.6 31413 -2.943 0.996553 85833.1 31416.7 -2.944 0.996129 85796.6 31420.3 -2.945 0.995705 85760.1 31424 -2.946 0.995282 85723.6 31427.6 -2.947 0.994859 85687.2 31431.3 -2.948 0.994436 85650.8 31434.9 -2.949 0.994013 85614.4 31438.6 -2.95 0.993591 85578 31442.2 -2.951 0.993168 85541.6 31445.8 -2.952 0.992746 85505.2 31449.5 -2.953 0.992324 85468.9 31453.1 -2.954 0.991902 85432.5 31456.7 -2.955 0.991481 85396.2 31460.4 -2.956 0.991059 85359.9 31464 -2.957 0.990638 85323.6 31467.6 -2.958 0.990217 85287.4 31471.3 -2.959 0.989796 85251.1 31474.9 -2.96 0.989375 85214.9 31478.5 -2.961 0.988954 85178.6 31482.1 -2.962 0.988534 85142.4 31485.8 -2.963 0.988114 85106.2 31489.4 -2.964 0.987694 85070.1 31493 -2.965 0.987274 85033.9 31496.6 -2.966 0.986854 84997.7 31500.2 -2.967 0.986435 84961.6 31503.8 -2.968 0.986015 84925.5 31507.5 -2.969 0.985596 84889.4 31511.1 -2.97 0.985177 84853.3 31514.7 -2.971 0.984758 84817.2 31518.3 -2.972 0.98434 84781.2 31521.9 -2.973 0.983921 84745.1 31525.5 -2.974 0.983503 84709.1 31529.1 -2.975 0.983085 84673.1 31532.7 -2.976 0.982667 84637.1 31536.3 -2.977 0.982249 84601.1 31539.9 -2.978 0.981831 84565.1 31543.5 -2.979 0.981414 84529.2 31547.1 -2.98 0.980997 84493.3 31550.7 -2.981 0.98058 84457.3 31554.3 -2.982 0.980163 84421.4 31557.9 -2.983 0.979746 84385.5 31561.4 -2.984 0.97933 84349.7 31565 -2.985 0.978913 84313.8 31568.6 -2.986 0.978497 84278 31572.2 -2.987 0.978081 84242.1 31575.8 -2.988 0.977666 84206.3 31579.4 -2.989 0.97725 84170.5 31582.9 -2.99 0.976834 84134.8 31586.5 -2.991 0.976419 84099 31590.1 -2.992 0.976004 84063.2 31593.7 -2.993 0.975589 84027.5 31597.3 -2.994 0.975174 83991.8 31600.8 -2.995 0.97476 83956.1 31604.4 -2.996 0.974346 83920.4 31608 -2.997 0.973931 83884.7 31611.5 -2.998 0.973517 83849 31615.1 -2.999 0.973103 83813.4 31618.7 -3 0.97269 83777.8 31622.2 -3.001 0.972276 83742.2 31625.8 -3.002 0.971863 83706.6 31629.3 -3.003 0.97145 83671 31632.9 -3.004 0.971037 83635.4 31636.5 -3.005 0.970624 83599.8 31640 -3.006 0.970211 83564.3 31643.6 -3.007 0.969799 83528.8 31647.1 -3.008 0.969387 83493.3 31650.7 -3.009 0.968975 83457.8 31654.2 -3.01 0.968563 83422.3 31657.8 -3.011 0.968151 83386.8 31661.3 -3.012 0.967739 83351.4 31664.9 -3.013 0.967328 83316 31668.4 -3.014 0.966917 83280.5 31671.9 -3.015 0.966506 83245.1 31675.5 -3.016 0.966095 83209.7 31679 -3.017 0.965684 83174.4 31682.6 -3.018 0.965274 83139 31686.1 -3.019 0.964863 83103.7 31689.6 -3.02 0.964453 83068.3 31693.2 -3.021 0.964043 83033 31696.7 -3.022 0.963633 82997.7 31700.2 -3.023 0.963223 82962.4 31703.8 -3.024 0.962814 82927.2 31707.3 -3.025 0.962405 82891.9 31710.8 -3.026 0.961996 82856.7 31714.3 -3.027 0.961587 82821.5 31717.9 -3.028 0.961178 82786.2 31721.4 -3.029 0.960769 82751.1 31724.9 -3.03 0.960361 82715.9 31728.4 -3.031 0.959953 82680.7 31731.9 -3.032 0.959544 82645.6 31735.4 -3.033 0.959137 82610.4 31739 -3.034 0.958729 82575.3 31742.5 -3.035 0.958321 82540.2 31746 -3.036 0.957914 82505.1 31749.5 -3.037 0.957507 82470 31753 -3.038 0.9571 82435 31756.5 -3.039 0.956693 82399.9 31760 -3.04 0.956286 82364.9 31763.5 -3.041 0.955879 82329.9 31767 -3.042 0.955473 82294.9 31770.5 -3.043 0.955067 82259.9 31774 -3.044 0.954661 82224.9 31777.5 -3.045 0.954255 82190 31781 -3.046 0.953849 82155 31784.5 -3.047 0.953444 82120.1 31788 -3.048 0.953039 82085.2 31791.5 -3.049 0.952633 82050.3 31795 -3.05 0.952228 82015.4 31798.5 -3.051 0.951824 81980.6 31801.9 -3.052 0.951419 81945.7 31805.4 -3.053 0.951015 81910.9 31808.9 -3.054 0.95061 81876.1 31812.4 -3.055 0.950206 81841.3 31815.9 -3.056 0.949802 81806.5 31819.4 -3.057 0.949398 81771.7 31822.8 -3.058 0.948995 81736.9 31826.3 -3.059 0.948591 81702.2 31829.8 -3.06 0.948188 81667.4 31833.3 -3.061 0.947785 81632.7 31836.7 -3.062 0.947382 81598 31840.2 -3.063 0.946979 81563.3 31843.7 -3.064 0.946577 81528.7 31847.1 -3.065 0.946174 81494 31850.6 -3.066 0.945772 81459.4 31854.1 -3.067 0.94537 81424.7 31857.5 -3.068 0.944968 81390.1 31861 -3.069 0.944566 81355.5 31864.4 -3.07 0.944165 81320.9 31867.9 -3.071 0.943764 81286.4 31871.4 -3.072 0.943362 81251.8 31874.8 -3.073 0.942961 81217.3 31878.3 -3.074 0.94256 81182.7 31881.7 -3.075 0.94216 81148.2 31885.2 -3.076 0.941759 81113.7 31888.6 -3.077 0.941359 81079.2 31892.1 -3.078 0.940959 81044.8 31895.5 -3.079 0.940559 81010.3 31899 -3.08 0.940159 80975.9 31902.4 -3.081 0.939759 80941.5 31905.9 -3.082 0.93936 80907 31909.3 -3.083 0.93896 80872.6 31912.7 -3.084 0.938561 80838.3 31916.2 -3.085 0.938162 80803.9 31919.6 -3.086 0.937763 80769.6 31923 -3.087 0.937365 80735.2 31926.5 -3.088 0.936966 80700.9 31929.9 -3.089 0.936568 80666.6 31933.3 -3.09 0.93617 80632.3 31936.8 -3.091 0.935772 80598 31940.2 -3.092 0.935374 80563.8 31943.6 -3.093 0.934976 80529.5 31947 -3.094 0.934579 80495.3 31950.5 -3.095 0.934181 80461 31953.9 -3.096 0.933784 80426.8 31957.3 -3.097 0.933387 80392.7 31960.7 -3.098 0.932991 80358.5 31964.2 -3.099 0.932594 80324.3 31967.6 -3.1 0.932197 80290.2 31971 -3.101 0.931801 80256 31974.4 -3.102 0.931405 80221.9 31977.8 -3.103 0.931009 80187.8 31981.2 -3.104 0.930613 80153.7 31984.6 -3.105 0.930218 80119.7 31988 -3.106 0.929822 80085.6 31991.4 -3.107 0.929427 80051.5 31994.8 -3.108 0.929032 80017.5 31998.2 -3.109 0.928637 79983.5 32001.7 -3.11 0.928242 79949.5 32005.1 -3.111 0.927848 79915.5 32008.4 -3.112 0.927453 79881.5 32011.8 -3.113 0.927059 79847.6 32015.2 -3.114 0.926665 79813.6 32018.6 -3.115 0.926271 79779.7 32022 -3.116 0.925877 79745.8 32025.4 -3.117 0.925483 79711.9 32028.8 -3.118 0.92509 79678 32032.2 -3.119 0.924697 79644.1 32035.6 -3.12 0.924304 79610.3 32039 -3.121 0.923911 79576.4 32042.4 -3.122 0.923518 79542.6 32045.7 -3.123 0.923125 79508.8 32049.1 -3.124 0.922733 79475 32052.5 -3.125 0.922341 79441.2 32055.9 -3.126 0.921948 79407.4 32059.3 -3.127 0.921557 79373.7 32062.6 -3.128 0.921165 79339.9 32066 -3.129 0.920773 79306.2 32069.4 -3.13 0.920382 79272.5 32072.8 -3.131 0.91999 79238.8 32076.1 -3.132 0.919599 79205.1 32079.5 -3.133 0.919208 79171.4 32082.9 -3.134 0.918818 79137.8 32086.2 -3.135 0.918427 79104.1 32089.6 -3.136 0.918037 79070.5 32093 -3.137 0.917646 79036.9 32096.3 -3.138 0.917256 79003.3 32099.7 -3.139 0.916866 78969.7 32103 -3.14 0.916477 78936.1 32106.4 -3.141 0.916087 78902.6 32109.7 -3.142 0.915698 78869 32113.1 -3.143 0.915308 78835.5 32116.5 -3.144 0.914919 78802 32119.8 -3.145 0.91453 78768.5 32123.2 -3.146 0.914141 78735 32126.5 -3.147 0.913753 78701.5 32129.8 -3.148 0.913364 78668.1 32133.2 -3.149 0.912976 78634.6 32136.5 -3.15 0.912588 78601.2 32139.9 -3.151 0.9122 78567.8 32143.2 -3.152 0.911812 78534.4 32146.6 -3.153 0.911425 78501 32149.9 -3.154 0.911037 78467.6 32153.2 -3.155 0.91065 78434.3 32156.6 -3.156 0.910263 78400.9 32159.9 -3.157 0.909876 78367.6 32163.2 -3.158 0.909489 78334.3 32166.6 -3.159 0.909102 78301 32169.9 -3.16 0.908716 78267.7 32173.2 -3.161 0.908329 78234.4 32176.6 -3.162 0.907943 78201.2 32179.9 -3.163 0.907557 78167.9 32183.2 -3.164 0.907172 78134.7 32186.5 -3.165 0.906786 78101.5 32189.9 -3.166 0.9064 78068.3 32193.2 -3.167 0.906015 78035.1 32196.5 -3.168 0.90563 78001.9 32199.8 -3.169 0.905245 77968.7 32203.1 -3.17 0.90486 77935.6 32206.4 -3.171 0.904475 77902.5 32209.8 -3.172 0.904091 77869.4 32213.1 -3.173 0.903707 77836.2 32216.4 -3.174 0.903322 77803.2 32219.7 -3.175 0.902938 77770.1 32223 -3.176 0.902555 77737 32226.3 -3.177 0.902171 77704 32229.6 -3.178 0.901787 77670.9 32232.9 -3.179 0.901404 77637.9 32236.2 -3.18 0.901021 77604.9 32239.5 -3.181 0.900638 77571.9 32242.8 -3.182 0.900255 77538.9 32246.1 -3.183 0.899872 77506 32249.4 -3.184 0.89949 77473 32252.7 -3.185 0.899107 77440.1 32256 -3.186 0.898725 77407.2 32259.3 -3.187 0.898343 77374.3 32262.6 -3.188 0.897961 77341.4 32265.9 -3.189 0.897579 77308.5 32269.1 -3.19 0.897198 77275.6 32272.4 -3.191 0.896816 77242.8 32275.7 -3.192 0.896435 77209.9 32279 -3.193 0.896054 77177.1 32282.3 -3.194 0.895673 77144.3 32285.6 -3.195 0.895292 77111.5 32288.8 -3.196 0.894912 77078.7 32292.1 -3.197 0.894531 77046 32295.4 -3.198 0.894151 77013.2 32298.7 -3.199 0.893771 76980.5 32302 -3.2 0.893391 76947.8 32305.2 -3.201 0.893011 76915 32308.5 -3.202 0.892631 76882.3 32311.8 -3.203 0.892252 76849.7 32315 -3.204 0.891873 76817 32318.3 -3.205 0.891494 76784.3 32321.6 -3.206 0.891115 76751.7 32324.8 -3.207 0.890736 76719.1 32328.1 -3.208 0.890357 76686.5 32331.4 -3.209 0.889979 76653.9 32334.6 -3.21 0.8896 76621.3 32337.9 -3.211 0.889222 76588.7 32341.1 -3.212 0.888844 76556.1 32344.4 -3.213 0.888466 76523.6 32347.6 -3.214 0.888088 76491.1 32350.9 -3.215 0.887711 76458.5 32354.1 -3.216 0.887334 76426 32357.4 -3.217 0.886956 76393.5 32360.6 -3.218 0.886579 76361.1 32363.9 -3.219 0.886202 76328.6 32367.1 -3.22 0.885826 76296.2 32370.4 -3.221 0.885449 76263.7 32373.6 -3.222 0.885073 76231.3 32376.9 -3.223 0.884696 76198.9 32380.1 -3.224 0.88432 76166.5 32383.3 -3.225 0.883944 76134.1 32386.6 -3.226 0.883569 76101.8 32389.8 -3.227 0.883193 76069.4 32393.1 -3.228 0.882817 76037.1 32396.3 -3.229 0.882442 76004.7 32399.5 -3.23 0.882067 75972.4 32402.8 -3.231 0.881692 75940.1 32406 -3.232 0.881317 75907.9 32409.2 -3.233 0.880943 75875.6 32412.4 -3.234 0.880568 75843.3 32415.7 -3.235 0.880194 75811.1 32418.9 -3.236 0.87982 75778.9 32422.1 -3.237 0.879446 75746.6 32425.3 -3.238 0.879072 75714.4 32428.6 -3.239 0.878698 75682.3 32431.8 -3.24 0.878324 75650.1 32435 -3.241 0.877951 75617.9 32438.2 -3.242 0.877578 75585.8 32441.4 -3.243 0.877205 75553.6 32444.6 -3.244 0.876832 75521.5 32447.8 -3.245 0.876459 75489.4 32451.1 -3.246 0.876086 75457.3 32454.3 -3.247 0.875714 75425.2 32457.5 -3.248 0.875342 75393.2 32460.7 -3.249 0.87497 75361.1 32463.9 -3.25 0.874598 75329.1 32467.1 -3.251 0.874226 75297.1 32470.3 -3.252 0.873854 75265.1 32473.5 -3.253 0.873483 75233.1 32476.7 -3.254 0.873111 75201.1 32479.9 -3.255 0.87274 75169.1 32483.1 -3.256 0.872369 75137.2 32486.3 -3.257 0.871998 75105.2 32489.5 -3.258 0.871628 75073.3 32492.7 -3.259 0.871257 75041.4 32495.9 -3.26 0.870887 75009.5 32499.1 -3.261 0.870516 74977.6 32502.2 -3.262 0.870146 74945.7 32505.4 -3.263 0.869776 74913.8 32508.6 -3.264 0.869407 74882 32511.8 -3.265 0.869037 74850.2 32515 -3.266 0.868668 74818.3 32518.2 -3.267 0.868298 74786.5 32521.3 -3.268 0.867929 74754.7 32524.5 -3.269 0.86756 74723 32527.7 -3.27 0.867192 74691.2 32530.9 -3.271 0.866823 74659.5 32534.1 -3.272 0.866454 74627.7 32537.2 -3.273 0.866086 74596 32540.4 -3.274 0.865718 74564.3 32543.6 -3.275 0.86535 74532.6 32546.7 -3.276 0.864982 74500.9 32549.9 -3.277 0.864614 74469.2 32553.1 -3.278 0.864247 74437.6 32556.2 -3.279 0.863879 74405.9 32559.4 -3.28 0.863512 74374.3 32562.6 -3.281 0.863145 74342.7 32565.7 -3.282 0.862778 74311.1 32568.9 -3.283 0.862411 74279.5 32572.1 -3.284 0.862045 74247.9 32575.2 -3.285 0.861678 74216.3 32578.4 -3.286 0.861312 74184.8 32581.5 -3.287 0.860946 74153.2 32584.7 -3.288 0.86058 74121.7 32587.8 -3.289 0.860214 74090.2 32591 -3.29 0.859848 74058.7 32594.1 -3.291 0.859483 74027.2 32597.3 -3.292 0.859117 73995.8 32600.4 -3.293 0.858752 73964.3 32603.6 -3.294 0.858387 73932.9 32606.7 -3.295 0.858022 73901.4 32609.9 -3.296 0.857657 73870 32613 -3.297 0.857293 73838.6 32616.1 -3.298 0.856928 73807.2 32619.3 -3.299 0.856564 73775.8 32622.4 -3.3 0.8562 73744.5 32625.6 -3.301 0.855836 73713.1 32628.7 -3.302 0.855472 73681.8 32631.8 -3.303 0.855108 73650.5 32635 -3.304 0.854745 73619.2 32638.1 -3.305 0.854381 73587.9 32641.2 -3.306 0.854018 73556.6 32644.3 -3.307 0.853655 73525.3 32647.5 -3.308 0.853292 73494.1 32650.6 -3.309 0.852929 73462.8 32653.7 -3.31 0.852567 73431.6 32656.8 -3.311 0.852204 73400.4 32660 -3.312 0.851842 73369.2 32663.1 -3.313 0.85148 73338 32666.2 -3.314 0.851118 73306.8 32669.3 -3.315 0.850756 73275.6 32672.4 -3.316 0.850395 73244.5 32675.6 -3.317 0.850033 73213.3 32678.7 -3.318 0.849672 73182.2 32681.8 -3.319 0.84931 73151.1 32684.9 -3.32 0.848949 73120 32688 -3.321 0.848589 73088.9 32691.1 -3.322 0.848228 73057.9 32694.2 -3.323 0.847867 73026.8 32697.3 -3.324 0.847507 72995.8 32700.4 -3.325 0.847146 72964.7 32703.5 -3.326 0.846786 72933.7 32706.6 -3.327 0.846426 72902.7 32709.7 -3.328 0.846066 72871.7 32712.8 -3.329 0.845707 72840.7 32715.9 -3.33 0.845347 72809.8 32719 -3.331 0.844988 72778.8 32722.1 -3.332 0.844629 72747.9 32725.2 -3.333 0.84427 72716.9 32728.3 -3.334 0.843911 72686 32731.4 -3.335 0.843552 72655.1 32734.5 -3.336 0.843193 72624.2 32737.6 -3.337 0.842835 72593.4 32740.7 -3.338 0.842477 72562.5 32743.7 -3.339 0.842118 72531.7 32746.8 -3.34 0.84176 72500.8 32749.9 -3.341 0.841403 72470 32753 -3.342 0.841045 72439.2 32756.1 -3.343 0.840687 72408.4 32759.2 -3.344 0.84033 72377.6 32762.2 -3.345 0.839973 72346.9 32765.3 -3.346 0.839616 72316.1 32768.4 -3.347 0.839259 72285.4 32771.5 -3.348 0.838902 72254.6 32774.5 -3.349 0.838545 72223.9 32777.6 -3.35 0.838189 72193.2 32780.7 -3.351 0.837833 72162.5 32783.7 -3.352 0.837476 72131.8 32786.8 -3.353 0.83712 72101.2 32789.9 -3.354 0.836764 72070.5 32792.9 -3.355 0.836409 72039.9 32796 -3.356 0.836053 72009.3 32799.1 -3.357 0.835698 71978.6 32802.1 -3.358 0.835342 71948 32805.2 -3.359 0.834987 71917.5 32808.3 -3.36 0.834632 71886.9 32811.3 -3.361 0.834278 71856.3 32814.4 -3.362 0.833923 71825.8 32817.4 -3.363 0.833568 71795.2 32820.5 -3.364 0.833214 71764.7 32823.5 -3.365 0.83286 71734.2 32826.6 -3.366 0.832506 71703.7 32829.6 -3.367 0.832152 71673.2 32832.7 -3.368 0.831798 71642.8 32835.7 -3.369 0.831445 71612.3 32838.8 -3.37 0.831091 71581.9 32841.8 -3.371 0.830738 71551.4 32844.9 -3.372 0.830385 71521 32847.9 -3.373 0.830032 71490.6 32850.9 -3.374 0.829679 71460.2 32854 -3.375 0.829326 71429.8 32857 -3.376 0.828973 71399.5 32860.1 -3.377 0.828621 71369.1 32863.1 -3.378 0.828269 71338.8 32866.1 -3.379 0.827917 71308.5 32869.2 -3.38 0.827565 71278.1 32872.2 -3.381 0.827213 71247.8 32875.2 -3.382 0.826861 71217.6 32878.2 -3.383 0.82651 71187.3 32881.3 -3.384 0.826158 71157 32884.3 -3.385 0.825807 71126.8 32887.3 -3.386 0.825456 71096.5 32890.3 -3.387 0.825105 71066.3 32893.4 -3.388 0.824754 71036.1 32896.4 -3.389 0.824404 71005.9 32899.4 -3.39 0.824053 70975.7 32902.4 -3.391 0.823703 70945.5 32905.4 -3.392 0.823353 70915.4 32908.5 -3.393 0.823003 70885.2 32911.5 -3.394 0.822653 70855.1 32914.5 -3.395 0.822303 70825 32917.5 -3.396 0.821954 70794.9 32920.5 -3.397 0.821604 70764.8 32923.5 -3.398 0.821255 70734.7 32926.5 -3.399 0.820906 70704.6 32929.5 -3.4 0.820557 70674.6 32932.5 -3.401 0.820208 70644.5 32935.5 -3.402 0.819859 70614.5 32938.6 -3.403 0.819511 70584.5 32941.6 -3.404 0.819162 70554.5 32944.6 -3.405 0.818814 70524.5 32947.6 -3.406 0.818466 70494.5 32950.6 -3.407 0.818118 70464.5 32953.5 -3.408 0.81777 70434.6 32956.5 -3.409 0.817423 70404.6 32959.5 -3.41 0.817075 70374.7 32962.5 -3.411 0.816728 70344.8 32965.5 -3.412 0.816381 70314.9 32968.5 -3.413 0.816034 70285 32971.5 -3.414 0.815687 70255.1 32974.5 -3.415 0.81534 70225.2 32977.5 -3.416 0.814993 70195.4 32980.5 -3.417 0.814647 70165.5 32983.4 -3.418 0.814301 70135.7 32986.4 -3.419 0.813954 70105.9 32989.4 -3.42 0.813608 70076.1 32992.4 -3.421 0.813262 70046.3 32995.4 -3.422 0.812917 70016.5 32998.3 -3.423 0.812571 69986.8 33001.3 -3.424 0.812226 69957 33004.3 -3.425 0.81188 69927.3 33007.3 -3.426 0.811535 69897.5 33010.2 -3.427 0.81119 69867.8 33013.2 -3.428 0.810845 69838.1 33016.2 -3.429 0.810501 69808.4 33019.2 -3.43 0.810156 69778.8 33022.1 -3.431 0.809812 69749.1 33025.1 -3.432 0.809468 69719.4 33028.1 -3.433 0.809123 69689.8 33031 -3.434 0.808779 69660.2 33034 -3.435 0.808436 69630.6 33036.9 -3.436 0.808092 69601 33039.9 -3.437 0.807748 69571.4 33042.9 -3.438 0.807405 69541.8 33045.8 -3.439 0.807062 69512.2 33048.8 -3.44 0.806719 69482.7 33051.7 -3.441 0.806376 69453.1 33054.7 -3.442 0.806033 69423.6 33057.6 -3.443 0.80569 69394.1 33060.6 -3.444 0.805348 69364.6 33063.5 -3.445 0.805005 69335.1 33066.5 -3.446 0.804663 69305.6 33069.4 -3.447 0.804321 69276.2 33072.4 -3.448 0.803979 69246.7 33075.3 -3.449 0.803637 69217.3 33078.3 -3.45 0.803296 69187.9 33081.2 -3.451 0.802954 69158.5 33084.2 -3.452 0.802613 69129 33087.1 -3.453 0.802272 69099.7 33090 -3.454 0.801931 69070.3 33093 -3.455 0.80159 69040.9 33095.9 -3.456 0.801249 69011.6 33098.8 -3.457 0.800908 68982.2 33101.8 -3.458 0.800568 68952.9 33104.7 -3.459 0.800228 68923.6 33107.6 -3.46 0.799887 68894.3 33110.6 -3.461 0.799547 68865 33113.5 -3.462 0.799207 68835.7 33116.4 -3.463 0.798868 68806.5 33119.4 -3.464 0.798528 68777.2 33122.3 -3.465 0.798189 68748 33125.2 -3.466 0.797849 68718.8 33128.1 -3.467 0.79751 68689.5 33131 -3.468 0.797171 68660.3 33134 -3.469 0.796832 68631.2 33136.9 -3.47 0.796493 68602 33139.8 -3.471 0.796155 68572.8 33142.7 -3.472 0.795816 68543.7 33145.6 -3.473 0.795478 68514.5 33148.5 -3.474 0.79514 68485.4 33151.5 -3.475 0.794802 68456.3 33154.4 -3.476 0.794464 68427.2 33157.3 -3.477 0.794126 68398.1 33160.2 -3.478 0.793789 68369 33163.1 -3.479 0.793451 68339.9 33166 -3.48 0.793114 68310.9 33168.9 -3.481 0.792777 68281.9 33171.8 -3.482 0.79244 68252.8 33174.7 -3.483 0.792103 68223.8 33177.6 -3.484 0.791766 68194.8 33180.5 -3.485 0.791429 68165.8 33183.4 -3.486 0.791093 68136.8 33186.3 -3.487 0.790757 68107.9 33189.2 -3.488 0.790421 68078.9 33192.1 -3.489 0.790085 68050 33195 -3.49 0.789749 68021.1 33197.9 -3.491 0.789413 67992.1 33200.8 -3.492 0.789077 67963.2 33203.7 -3.493 0.788742 67934.3 33206.6 -3.494 0.788407 67905.5 33209.5 -3.495 0.788071 67876.6 33212.3 -3.496 0.787736 67847.7 33215.2 -3.497 0.787402 67818.9 33218.1 -3.498 0.787067 67790.1 33221 -3.499 0.786732 67761.2 33223.9 -3.5 0.786398 67732.4 33226.8 -3.501 0.786063 67703.6 33229.6 -3.502 0.785729 67674.9 33232.5 -3.503 0.785395 67646.1 33235.4 -3.504 0.785061 67617.3 33238.3 -3.505 0.784728 67588.6 33241.1 -3.506 0.784394 67559.9 33244 -3.507 0.784061 67531.1 33246.9 -3.508 0.783727 67502.4 33249.8 -3.509 0.783394 67473.7 33252.6 -3.51 0.783061 67445 33255.5 -3.511 0.782728 67416.4 33258.4 -3.512 0.782395 67387.7 33261.2 -3.513 0.782063 67359.1 33264.1 -3.514 0.78173 67330.4 33267 -3.515 0.781398 67301.8 33269.8 -3.516 0.781066 67273.2 33272.7 -3.517 0.780734 67244.6 33275.5 -3.518 0.780402 67216 33278.4 -3.519 0.78007 67187.4 33281.3 -3.52 0.779739 67158.9 33284.1 -3.521 0.779407 67130.3 33287 -3.522 0.779076 67101.8 33289.8 -3.523 0.778744 67073.3 33292.7 -3.524 0.778413 67044.7 33295.5 -3.525 0.778083 67016.2 33298.4 -3.526 0.777752 66987.8 33301.2 -3.527 0.777421 66959.3 33304.1 -3.528 0.777091 66930.8 33306.9 -3.529 0.77676 66902.4 33309.8 -3.53 0.77643 66873.9 33312.6 -3.531 0.7761 66845.5 33315.5 -3.532 0.77577 66817.1 33318.3 -3.533 0.77544 66788.7 33321.1 -3.534 0.775111 66760.3 33324 -3.535 0.774781 66731.9 33326.8 -3.536 0.774452 66703.5 33329.6 -3.537 0.774122 66675.2 33332.5 -3.538 0.773793 66646.8 33335.3 -3.539 0.773464 66618.5 33338.2 -3.54 0.773136 66590.2 33341 -3.541 0.772807 66561.9 33343.8 -3.542 0.772478 66533.6 33346.6 -3.543 0.77215 66505.3 33349.5 -3.544 0.771822 66477 33352.3 -3.545 0.771494 66448.8 33355.1 -3.546 0.771166 66420.5 33357.9 -3.547 0.770838 66392.3 33360.8 -3.548 0.77051 66364 33363.6 -3.549 0.770183 66335.8 33366.4 -3.55 0.769855 66307.6 33369.2 -3.551 0.769528 66279.4 33372.1 -3.552 0.769201 66251.3 33374.9 -3.553 0.768874 66223.1 33377.7 -3.554 0.768547 66194.9 33380.5 -3.555 0.76822 66166.8 33383.3 -3.556 0.767894 66138.7 33386.1 -3.557 0.767567 66110.6 33388.9 -3.558 0.767241 66082.5 33391.8 -3.559 0.766915 66054.4 33394.6 -3.56 0.766589 66026.3 33397.4 -3.561 0.766263 65998.2 33400.2 -3.562 0.765937 65970.2 33403 -3.563 0.765611 65942.1 33405.8 -3.564 0.765286 65914.1 33408.6 -3.565 0.764961 65886.1 33411.4 -3.566 0.764635 65858.1 33414.2 -3.567 0.76431 65830.1 33417 -3.568 0.763985 65802.1 33419.8 -3.569 0.763661 65774.1 33422.6 -3.57 0.763336 65746.1 33425.4 -3.571 0.763012 65718.2 33428.2 -3.572 0.762687 65690.2 33431 -3.573 0.762363 65662.3 33433.8 -3.574 0.762039 65634.4 33436.6 -3.575 0.761715 65606.5 33439.3 -3.576 0.761391 65578.6 33442.1 -3.577 0.761067 65550.7 33444.9 -3.578 0.760744 65522.9 33447.7 -3.579 0.76042 65495 33450.5 -3.58 0.760097 65467.2 33453.3 -3.581 0.759774 65439.3 33456.1 -3.582 0.759451 65411.5 33458.8 -3.583 0.759128 65383.7 33461.6 -3.584 0.758806 65355.9 33464.4 -3.585 0.758483 65328.1 33467.2 -3.586 0.75816 65300.4 33470 -3.587 0.757838 65272.6 33472.7 -3.588 0.757516 65244.9 33475.5 -3.589 0.757194 65217.1 33478.3 -3.59 0.756872 65189.4 33481.1 -3.591 0.75655 65161.7 33483.8 -3.592 0.756229 65134 33486.6 -3.593 0.755907 65106.3 33489.4 -3.594 0.755586 65078.6 33492.1 -3.595 0.755265 65050.9 33494.9 -3.596 0.754944 65023.3 33497.7 -3.597 0.754623 64995.6 33500.4 -3.598 0.754302 64968 33503.2 -3.599 0.753981 64940.4 33506 -3.6 0.753661 64912.8 33508.7 -3.601 0.75334 64885.2 33511.5 -3.602 0.75302 64857.6 33514.2 -3.603 0.7527 64830 33517 -3.604 0.75238 64802.5 33519.8 -3.605 0.75206 64774.9 33522.5 -3.606 0.75174 64747.4 33525.3 -3.607 0.751421 64719.9 33528 -3.608 0.751101 64692.4 33530.8 -3.609 0.750782 64664.9 33533.5 -3.61 0.750463 64637.4 33536.3 -3.611 0.750144 64609.9 33539 -3.612 0.749825 64582.4 33541.8 -3.613 0.749506 64555 33544.5 -3.614 0.749188 64527.5 33547.2 -3.615 0.748869 64500.1 33550 -3.616 0.748551 64472.7 33552.7 -3.617 0.748232 64445.3 33555.5 -3.618 0.747914 64417.9 33558.2 -3.619 0.747596 64390.5 33561 -3.62 0.747279 64363.1 33563.7 -3.621 0.746961 64335.7 33566.4 -3.622 0.746643 64308.4 33569.2 -3.623 0.746326 64281.1 33571.9 -3.624 0.746009 64253.7 33574.6 -3.625 0.745692 64226.4 33577.4 -3.626 0.745375 64199.1 33580.1 -3.627 0.745058 64171.8 33582.8 -3.628 0.744741 64144.5 33585.5 -3.629 0.744424 64117.3 33588.3 -3.63 0.744108 64090 33591 -3.631 0.743792 64062.8 33593.7 -3.632 0.743475 64035.5 33596.4 -3.633 0.743159 64008.3 33599.2 -3.634 0.742843 63981.1 33601.9 -3.635 0.742528 63953.9 33604.6 -3.636 0.742212 63926.7 33607.3 -3.637 0.741896 63899.5 33610 -3.638 0.741581 63872.4 33612.8 -3.639 0.741266 63845.2 33615.5 -3.64 0.740951 63818.1 33618.2 -3.641 0.740636 63790.9 33620.9 -3.642 0.740321 63763.8 33623.6 -3.643 0.740006 63736.7 33626.3 -3.644 0.739691 63709.6 33629 -3.645 0.739377 63682.5 33631.7 -3.646 0.739063 63655.5 33634.5 -3.647 0.738749 63628.4 33637.2 -3.648 0.738434 63601.4 33639.9 -3.649 0.738121 63574.3 33642.6 -3.65 0.737807 63547.3 33645.3 -3.651 0.737493 63520.3 33648 -3.652 0.73718 63493.3 33650.7 -3.653 0.736866 63466.3 33653.4 -3.654 0.736553 63439.3 33656.1 -3.655 0.73624 63412.3 33658.8 -3.656 0.735927 63385.4 33661.5 -3.657 0.735614 63358.4 33664.2 -3.658 0.735301 63331.5 33666.9 -3.659 0.734989 63304.6 33669.5 -3.66 0.734676 63277.7 33672.2 -3.661 0.734364 63250.8 33674.9 -3.662 0.734052 63223.9 33677.6 -3.663 0.73374 63197 33680.3 -3.664 0.733428 63170.1 33683 -3.665 0.733116 63143.3 33685.7 -3.666 0.732804 63116.4 33688.4 -3.667 0.732493 63089.6 33691 -3.668 0.732181 63062.8 33693.7 -3.669 0.73187 63036 33696.4 -3.67 0.731559 63009.2 33699.1 -3.671 0.731248 62982.4 33701.8 -3.672 0.730937 62955.6 33704.4 -3.673 0.730626 62928.9 33707.1 -3.674 0.730316 62902.1 33709.8 -3.675 0.730005 62875.4 33712.5 -3.676 0.729695 62848.6 33715.1 -3.677 0.729385 62821.9 33717.8 -3.678 0.729075 62795.2 33720.5 -3.679 0.728765 62768.5 33723.1 -3.68 0.728455 62741.8 33725.8 -3.681 0.728145 62715.2 33728.5 -3.682 0.727836 62688.5 33731.2 -3.683 0.727526 62661.8 33733.8 -3.684 0.727217 62635.2 33736.5 -3.685 0.726908 62608.6 33739.1 -3.686 0.726599 62582 33741.8 -3.687 0.72629 62555.4 33744.5 -3.688 0.725981 62528.8 33747.1 -3.689 0.725673 62502.2 33749.8 -3.69 0.725364 62475.6 33752.4 -3.691 0.725056 62449.1 33755.1 -3.692 0.724748 62422.5 33757.7 -3.693 0.724439 62396 33760.4 -3.694 0.724131 62369.4 33763.1 -3.695 0.723824 62342.9 33765.7 -3.696 0.723516 62316.4 33768.4 -3.697 0.723208 62289.9 33771 -3.698 0.722901 62263.5 33773.7 -3.699 0.722594 62237 33776.3 -3.7 0.722286 62210.5 33778.9 -3.701 0.721979 62184.1 33781.6 -3.702 0.721672 62157.6 33784.2 -3.703 0.721366 62131.2 33786.9 -3.704 0.721059 62104.8 33789.5 -3.705 0.720752 62078.4 33792.2 -3.706 0.720446 62052 33794.8 -3.707 0.72014 62025.6 33797.4 -3.708 0.719834 61999.3 33800.1 -3.709 0.719528 61972.9 33802.7 -3.71 0.719222 61946.6 33805.3 -3.711 0.718916 61920.2 33808 -3.712 0.71861 61893.9 33810.6 -3.713 0.718305 61867.6 33813.2 -3.714 0.717999 61841.3 33815.9 -3.715 0.717694 61815 33818.5 -3.716 0.717389 61788.7 33821.1 -3.717 0.717084 61762.5 33823.8 -3.718 0.716779 61736.2 33826.4 -3.719 0.716475 61710 33829 -3.72 0.71617 61683.7 33831.6 -3.721 0.715866 61657.5 33834.2 -3.722 0.715561 61631.3 33836.9 -3.723 0.715257 61605.1 33839.5 -3.724 0.714953 61578.9 33842.1 -3.725 0.714649 61552.7 33844.7 -3.726 0.714345 61526.6 33847.3 -3.727 0.714042 61500.4 33850 -3.728 0.713738 61474.3 33852.6 -3.729 0.713435 61448.1 33855.2 -3.73 0.713131 61422 33857.8 -3.731 0.712828 61395.9 33860.4 -3.732 0.712525 61369.8 33863 -3.733 0.712222 61343.7 33865.6 -3.734 0.711919 61317.6 33868.2 -3.735 0.711617 61291.6 33870.8 -3.736 0.711314 61265.5 33873.5 -3.737 0.711012 61239.5 33876.1 -3.738 0.71071 61213.4 33878.7 -3.739 0.710407 61187.4 33881.3 -3.74 0.710105 61161.4 33883.9 -3.741 0.709804 61135.4 33886.5 -3.742 0.709502 61109.4 33889.1 -3.743 0.7092 61083.4 33891.7 -3.744 0.708899 61057.4 33894.3 -3.745 0.708597 61031.5 33896.9 -3.746 0.708296 61005.5 33899.4 -3.747 0.707995 60979.6 33902 -3.748 0.707694 60953.7 33904.6 -3.749 0.707393 60927.8 33907.2 -3.75 0.707092 60901.9 33909.8 -3.751 0.706792 60876 33912.4 -3.752 0.706491 60850.1 33915 -3.753 0.706191 60824.2 33917.6 -3.754 0.705891 60798.4 33920.2 -3.755 0.705591 60772.5 33922.7 -3.756 0.705291 60746.7 33925.3 -3.757 0.704991 60720.9 33927.9 -3.758 0.704691 60695.1 33930.5 -3.759 0.704392 60669.3 33933.1 -3.76 0.704092 60643.5 33935.7 -3.761 0.703793 60617.7 33938.2 -3.762 0.703494 60591.9 33940.8 -3.763 0.703195 60566.2 33943.4 -3.764 0.702896 60540.4 33946 -3.765 0.702597 60514.7 33948.5 -3.766 0.702298 60488.9 33951.1 -3.767 0.702 60463.2 33953.7 -3.768 0.701701 60437.5 33956.2 -3.769 0.701403 60411.8 33958.8 -3.77 0.701105 60386.2 33961.4 -3.771 0.700807 60360.5 33964 -3.772 0.700509 60334.8 33966.5 -3.773 0.700211 60309.2 33969.1 -3.774 0.699913 60283.5 33971.6 -3.775 0.699616 60257.9 33974.2 -3.776 0.699318 60232.3 33976.8 -3.777 0.699021 60206.7 33979.3 -3.778 0.698724 60181.1 33981.9 -3.779 0.698427 60155.5 33984.4 -3.78 0.69813 60129.9 33987 -3.781 0.697833 60104.4 33989.6 -3.782 0.697537 60078.8 33992.1 -3.783 0.69724 60053.3 33994.7 -3.784 0.696944 60027.8 33997.2 -3.785 0.696647 60002.2 33999.8 -3.786 0.696351 59976.7 34002.3 -3.787 0.696055 59951.2 34004.9 -3.788 0.695759 59925.7 34007.4 -3.789 0.695463 59900.3 34010 -3.79 0.695168 59874.8 34012.5 -3.791 0.694872 59849.4 34015.1 -3.792 0.694577 59823.9 34017.6 -3.793 0.694282 59798.5 34020.2 -3.794 0.693986 59773.1 34022.7 -3.795 0.693691 59747.6 34025.2 -3.796 0.693397 59722.2 34027.8 -3.797 0.693102 59696.9 34030.3 -3.798 0.692807 59671.5 34032.9 -3.799 0.692513 59646.1 34035.4 -3.8 0.692218 59620.8 34037.9 -3.801 0.691924 59595.4 34040.5 -3.802 0.69163 59570.1 34043 -3.803 0.691336 59544.7 34045.5 -3.804 0.691042 59519.4 34048.1 -3.805 0.690748 59494.1 34050.6 -3.806 0.690454 59468.8 34053.1 -3.807 0.690161 59443.6 34055.6 -3.808 0.689868 59418.3 34058.2 -3.809 0.689574 59393 34060.7 -3.81 0.689281 59367.8 34063.2 -3.811 0.688988 59342.5 34065.7 -3.812 0.688695 59317.3 34068.3 -3.813 0.688402 59292.1 34070.8 -3.814 0.68811 59266.9 34073.3 -3.815 0.687817 59241.7 34075.8 -3.816 0.687525 59216.5 34078.3 -3.817 0.687233 59191.3 34080.9 -3.818 0.68694 59166.2 34083.4 -3.819 0.686648 59141 34085.9 -3.82 0.686356 59115.9 34088.4 -3.821 0.686065 59090.8 34090.9 -3.822 0.685773 59065.6 34093.4 -3.823 0.685482 59040.5 34095.9 -3.824 0.68519 59015.4 34098.5 -3.825 0.684899 58990.3 34101 -3.826 0.684608 58965.3 34103.5 -3.827 0.684317 58940.2 34106 -3.828 0.684026 58915.1 34108.5 -3.829 0.683735 58890.1 34111 -3.83 0.683444 58865.1 34113.5 -3.831 0.683154 58840 34116 -3.832 0.682863 58815 34118.5 -3.833 0.682573 58790 34121 -3.834 0.682283 58765 34123.5 -3.835 0.681993 58740 34126 -3.836 0.681703 58715.1 34128.5 -3.837 0.681413 58690.1 34131 -3.838 0.681123 58665.2 34133.5 -3.839 0.680834 58640.2 34136 -3.84 0.680544 58615.3 34138.5 -3.841 0.680255 58590.4 34141 -3.842 0.679966 58565.5 34143.5 -3.843 0.679677 58540.6 34145.9 -3.844 0.679388 58515.7 34148.4 -3.845 0.679099 58490.8 34150.9 -3.846 0.67881 58465.9 34153.4 -3.847 0.678522 58441.1 34155.9 -3.848 0.678233 58416.2 34158.4 -3.849 0.677945 58391.4 34160.9 -3.85 0.677657 58366.6 34163.3 -3.851 0.677369 58341.8 34165.8 -3.852 0.677081 58317 34168.3 -3.853 0.676793 58292.2 34170.8 -3.854 0.676505 58267.4 34173.3 -3.855 0.676218 58242.6 34175.7 -3.856 0.67593 58217.9 34178.2 -3.857 0.675643 58193.1 34180.7 -3.858 0.675356 58168.4 34183.2 -3.859 0.675068 58143.6 34185.6 -3.86 0.674781 58118.9 34188.1 -3.861 0.674495 58094.2 34190.6 -3.862 0.674208 58069.5 34193 -3.863 0.673921 58044.8 34195.5 -3.864 0.673635 58020.2 34198 -3.865 0.673348 57995.5 34200.5 -3.866 0.673062 57970.8 34202.9 -3.867 0.672776 57946.2 34205.4 -3.868 0.67249 57921.6 34207.8 -3.869 0.672204 57896.9 34210.3 -3.87 0.671918 57872.3 34212.8 -3.871 0.671633 57847.7 34215.2 -3.872 0.671347 57823.1 34217.7 -3.873 0.671062 57798.6 34220.1 -3.874 0.670777 57774 34222.6 -3.875 0.670491 57749.4 34225.1 -3.876 0.670206 57724.9 34227.5 -3.877 0.669921 57700.3 34230 -3.878 0.669637 57675.8 34232.4 -3.879 0.669352 57651.3 34234.9 -3.88 0.669067 57626.8 34237.3 -3.881 0.668783 57602.3 34239.8 -3.882 0.668499 57577.8 34242.2 -3.883 0.668214 57553.3 34244.7 -3.884 0.66793 57528.8 34247.1 -3.885 0.667646 57504.4 34249.6 -3.886 0.667363 57479.9 34252 -3.887 0.667079 57455.5 34254.4 -3.888 0.666795 57431.1 34256.9 -3.889 0.666512 57406.7 34259.3 -3.89 0.666229 57382.3 34261.8 -3.891 0.665945 57357.9 34264.2 -3.892 0.665662 57333.5 34266.7 -3.893 0.665379 57309.1 34269.1 -3.894 0.665096 57284.8 34271.5 -3.895 0.664814 57260.4 34274 -3.896 0.664531 57236.1 34276.4 -3.897 0.664249 57211.7 34278.8 -3.898 0.663966 57187.4 34281.3 -3.899 0.663684 57163.1 34283.7 -3.9 0.663402 57138.8 34286.1 -3.901 0.66312 57114.5 34288.5 -3.902 0.662838 57090.2 34291 -3.903 0.662556 57066 34293.4 -3.904 0.662274 57041.7 34295.8 -3.905 0.661993 57017.4 34298.3 -3.906 0.661711 56993.2 34300.7 -3.907 0.66143 56969 34303.1 -3.908 0.661149 56944.8 34305.5 -3.909 0.660868 56920.5 34307.9 -3.91 0.660587 56896.3 34310.4 -3.911 0.660306 56872.2 34312.8 -3.912 0.660025 56848 34315.2 -3.913 0.659745 56823.8 34317.6 -3.914 0.659464 56799.7 34320 -3.915 0.659184 56775.5 34322.4 -3.916 0.658904 56751.4 34324.9 -3.917 0.658624 56727.3 34327.3 -3.918 0.658344 56703.1 34329.7 -3.919 0.658064 56679 34332.1 -3.92 0.657784 56654.9 34334.5 -3.921 0.657504 56630.9 34336.9 -3.922 0.657225 56606.8 34339.3 -3.923 0.656945 56582.7 34341.7 -3.924 0.656666 56558.7 34344.1 -3.925 0.656387 56534.6 34346.5 -3.926 0.656108 56510.6 34348.9 -3.927 0.655829 56486.6 34351.3 -3.928 0.65555 56462.5 34353.7 -3.929 0.655272 56438.5 34356.1 -3.93 0.654993 56414.5 34358.5 -3.931 0.654715 56390.6 34360.9 -3.932 0.654436 56366.6 34363.3 -3.933 0.654158 56342.6 34365.7 -3.934 0.65388 56318.7 34368.1 -3.935 0.653602 56294.7 34370.5 -3.936 0.653324 56270.8 34372.9 -3.937 0.653046 56246.9 34375.3 -3.938 0.652769 56223 34377.7 -3.939 0.652491 56199.1 34380.1 -3.94 0.652214 56175.2 34382.5 -3.941 0.651937 56151.3 34384.9 -3.942 0.651659 56127.4 34387.3 -3.943 0.651382 56103.6 34389.6 -3.944 0.651106 56079.7 34392 -3.945 0.650829 56055.9 34394.4 -3.946 0.650552 56032 34396.8 -3.947 0.650275 56008.2 34399.2 -3.948 0.649999 55984.4 34401.6 -3.949 0.649723 55960.6 34403.9 -3.95 0.649447 55936.8 34406.3 -3.951 0.64917 55913 34408.7 -3.952 0.648894 55889.3 34411.1 -3.953 0.648619 55865.5 34413.4 -3.954 0.648343 55841.8 34415.8 -3.955 0.648067 55818 34418.2 -3.956 0.647792 55794.3 34420.6 -3.957 0.647516 55770.6 34422.9 -3.958 0.647241 55746.9 34425.3 -3.959 0.646966 55723.2 34427.7 -3.96 0.646691 55699.5 34430.1 -3.961 0.646416 55675.8 34432.4 -3.962 0.646141 55652.1 34434.8 -3.963 0.645866 55628.5 34437.2 -3.964 0.645592 55604.8 34439.5 -3.965 0.645317 55581.2 34441.9 -3.966 0.645043 55557.6 34444.2 -3.967 0.644769 55533.9 34446.6 -3.968 0.644495 55510.3 34449 -3.969 0.644221 55486.7 34451.3 -3.97 0.643947 55463.2 34453.7 -3.971 0.643673 55439.6 34456 -3.972 0.6434 55416 34458.4 -3.973 0.643126 55392.4 34460.8 -3.974 0.642853 55368.9 34463.1 -3.975 0.642579 55345.4 34465.5 -3.976 0.642306 55321.8 34467.8 -3.977 0.642033 55298.3 34470.2 -3.978 0.64176 55274.8 34472.5 -3.979 0.641487 55251.3 34474.9 -3.98 0.641215 55227.8 34477.2 -3.981 0.640942 55204.3 34479.6 -3.982 0.64067 55180.9 34481.9 -3.983 0.640397 55157.4 34484.3 -3.984 0.640125 55134 34486.6 -3.985 0.639853 55110.5 34488.9 -3.986 0.639581 55087.1 34491.3 -3.987 0.639309 55063.7 34493.6 -3.988 0.639037 55040.3 34496 -3.989 0.638766 55016.9 34498.3 -3.99 0.638494 54993.5 34500.7 -3.991 0.638223 54970.1 34503 -3.992 0.637951 54946.7 34505.3 -3.993 0.63768 54923.4 34507.7 -3.994 0.637409 54900 34510 -3.995 0.637138 54876.7 34512.3 -3.996 0.636867 54853.4 34514.7 -3.997 0.636596 54830 34517 -3.998 0.636326 54806.7 34519.3 -3.999 0.636055 54783.4 34521.7 -4 0.635785 54760.2 34524 -4.001 0.635515 54736.9 34526.3 -4.002 0.635244 54713.6 34528.6 -4.003 0.634974 54690.3 34531 -4.004 0.634704 54667.1 34533.3 -4.005 0.634435 54643.9 34535.6 -4.006 0.634165 54620.6 34537.9 -4.007 0.633895 54597.4 34540.3 -4.008 0.633626 54574.2 34542.6 -4.009 0.633356 54551 34544.9 -4.01 0.633087 54527.8 34547.2 -4.011 0.632818 54504.6 34549.5 -4.012 0.632549 54481.5 34551.9 -4.013 0.63228 54458.3 34554.2 -4.014 0.632011 54435.1 34556.5 -4.015 0.631743 54412 34558.8 -4.016 0.631474 54388.9 34561.1 -4.017 0.631206 54365.7 34563.4 -4.018 0.630937 54342.6 34565.7 -4.019 0.630669 54319.5 34568 -4.02 0.630401 54296.4 34570.4 -4.021 0.630133 54273.4 34572.7 -4.022 0.629865 54250.3 34575 -4.023 0.629597 54227.2 34577.3 -4.024 0.62933 54204.2 34579.6 -4.025 0.629062 54181.1 34581.9 -4.026 0.628795 54158.1 34584.2 -4.027 0.628527 54135.1 34586.5 -4.028 0.62826 54112.1 34588.8 -4.029 0.627993 54089.1 34591.1 -4.03 0.627726 54066.1 34593.4 -4.031 0.627459 54043.1 34595.7 -4.032 0.627193 54020.1 34598 -4.033 0.626926 53997.1 34600.3 -4.034 0.626659 53974.2 34602.6 -4.035 0.626393 53951.2 34604.9 -4.036 0.626127 53928.3 34607.2 -4.037 0.625861 53905.4 34609.5 -4.038 0.625595 53882.5 34611.8 -4.039 0.625329 53859.6 34614 -4.04 0.625063 53836.7 34616.3 -4.041 0.624797 53813.8 34618.6 -4.042 0.624531 53790.9 34620.9 -4.043 0.624266 53768 34623.2 -4.044 0.624001 53745.2 34625.5 -4.045 0.623735 53722.3 34627.8 -4.046 0.62347 53699.5 34630.1 -4.047 0.623205 53676.7 34632.3 -4.048 0.62294 53653.8 34634.6 -4.049 0.622675 53631 34636.9 -4.05 0.622411 53608.2 34639.2 -4.051 0.622146 53585.4 34641.5 -4.052 0.621882 53562.7 34643.7 -4.053 0.621617 53539.9 34646 -4.054 0.621353 53517.1 34648.3 -4.055 0.621089 53494.4 34650.6 -4.056 0.620825 53471.6 34652.8 -4.057 0.620561 53448.9 34655.1 -4.058 0.620297 53426.2 34657.4 -4.059 0.620033 53403.5 34659.7 -4.06 0.61977 53380.8 34661.9 -4.061 0.619506 53358.1 34664.2 -4.062 0.619243 53335.4 34666.5 -4.063 0.61898 53312.7 34668.7 -4.064 0.618716 53290 34671 -4.065 0.618453 53267.4 34673.3 -4.066 0.618191 53244.8 34675.5 -4.067 0.617928 53222.1 34677.8 -4.068 0.617665 53199.5 34680.1 -4.069 0.617402 53176.9 34682.3 -4.07 0.61714 53154.3 34684.6 -4.071 0.616878 53131.7 34686.8 -4.072 0.616615 53109.1 34689.1 -4.073 0.616353 53086.5 34691.3 -4.074 0.616091 53063.9 34693.6 -4.075 0.615829 53041.4 34695.9 -4.076 0.615568 53018.8 34698.1 -4.077 0.615306 52996.3 34700.4 -4.078 0.615044 52973.8 34702.6 -4.079 0.614783 52951.2 34704.9 -4.08 0.614521 52928.7 34707.1 -4.081 0.61426 52906.2 34709.4 -4.082 0.613999 52883.7 34711.6 -4.083 0.613738 52861.3 34713.9 -4.084 0.613477 52838.8 34716.1 -4.085 0.613216 52816.3 34718.4 -4.086 0.612956 52793.9 34720.6 -4.087 0.612695 52771.4 34722.9 -4.088 0.612435 52749 34725.1 -4.089 0.612174 52726.6 34727.3 -4.09 0.611914 52704.2 34729.6 -4.091 0.611654 52681.7 34731.8 -4.092 0.611394 52659.4 34734.1 -4.093 0.611134 52637 34736.3 -4.094 0.610874 52614.6 34738.5 -4.095 0.610614 52592.2 34740.8 -4.096 0.610355 52569.9 34743 -4.097 0.610095 52547.5 34745.2 -4.098 0.609836 52525.2 34747.5 -4.099 0.609577 52502.9 34749.7 -4.1 0.609318 52480.5 34751.9 -4.101 0.609059 52458.2 34754.2 -4.102 0.6088 52435.9 34756.4 -4.103 0.608541 52413.6 34758.6 -4.104 0.608282 52391.3 34760.9 -4.105 0.608024 52369.1 34763.1 -4.106 0.607765 52346.8 34765.3 -4.107 0.607507 52324.6 34767.5 -4.108 0.607249 52302.3 34769.8 -4.109 0.60699 52280.1 34772 -4.11 0.606732 52257.9 34774.2 -4.111 0.606474 52235.6 34776.4 -4.112 0.606217 52213.4 34778.7 -4.113 0.605959 52191.2 34780.9 -4.114 0.605701 52169 34783.1 -4.115 0.605444 52146.9 34785.3 -4.116 0.605186 52124.7 34787.5 -4.117 0.604929 52102.5 34789.7 -4.118 0.604672 52080.4 34792 -4.119 0.604415 52058.3 34794.2 -4.12 0.604158 52036.1 34796.4 -4.121 0.603901 52014 34798.6 -4.122 0.603644 51991.9 34800.8 -4.123 0.603388 51969.8 34803 -4.124 0.603131 51947.7 34805.2 -4.125 0.602875 51925.6 34807.4 -4.126 0.602619 51903.5 34809.6 -4.127 0.602362 51881.5 34811.9 -4.128 0.602106 51859.4 34814.1 -4.129 0.60185 51837.4 34816.3 -4.13 0.601594 51815.3 34818.5 -4.131 0.601339 51793.3 34820.7 -4.132 0.601083 51771.3 34822.9 -4.133 0.600828 51749.3 34825.1 -4.134 0.600572 51727.3 34827.3 -4.135 0.600317 51705.3 34829.5 -4.136 0.600062 51683.3 34831.7 -4.137 0.599807 51661.3 34833.9 -4.138 0.599552 51639.4 34836.1 -4.139 0.599297 51617.4 34838.3 -4.14 0.599042 51595.5 34840.5 -4.141 0.598787 51573.5 34842.6 -4.142 0.598533 51551.6 34844.8 -4.143 0.598278 51529.7 34847 -4.144 0.598024 51507.8 34849.2 -4.145 0.59777 51485.9 34851.4 -4.146 0.597516 51464 34853.6 -4.147 0.597262 51442.1 34855.8 -4.148 0.597008 51420.3 34858 -4.149 0.596754 51398.4 34860.2 -4.15 0.5965 51376.6 34862.3 -4.151 0.596247 51354.7 34864.5 -4.152 0.595993 51332.9 34866.7 -4.153 0.59574 51311.1 34868.9 -4.154 0.595486 51289.3 34871.1 -4.155 0.595233 51267.4 34873.3 -4.156 0.59498 51245.7 34875.4 -4.157 0.594727 51223.9 34877.6 -4.158 0.594475 51202.1 34879.8 -4.159 0.594222 51180.3 34882 -4.16 0.593969 51158.6 34884.1 -4.161 0.593717 51136.8 34886.3 -4.162 0.593464 51115.1 34888.5 -4.163 0.593212 51093.3 34890.7 -4.164 0.59296 51071.6 34892.8 -4.165 0.592708 51049.9 34895 -4.166 0.592456 51028.2 34897.2 -4.167 0.592204 51006.5 34899.3 -4.168 0.591952 50984.8 34901.5 -4.169 0.591701 50963.2 34903.7 -4.17 0.591449 50941.5 34905.9 -4.171 0.591198 50919.8 34908 -4.172 0.590946 50898.2 34910.2 -4.173 0.590695 50876.6 34912.3 -4.174 0.590444 50854.9 34914.5 -4.175 0.590193 50833.3 34916.7 -4.176 0.589942 50811.7 34918.8 -4.177 0.589691 50790.1 34921 -4.178 0.58944 50768.5 34923.1 -4.179 0.58919 50746.9 34925.3 -4.18 0.588939 50725.4 34927.5 -4.181 0.588689 50703.8 34929.6 -4.182 0.588439 50682.2 34931.8 -4.183 0.588189 50660.7 34933.9 -4.184 0.587939 50639.2 34936.1 -4.185 0.587689 50617.6 34938.2 -4.186 0.587439 50596.1 34940.4 -4.187 0.587189 50574.6 34942.5 -4.188 0.586939 50553.1 34944.7 -4.189 0.58669 50531.6 34946.8 -4.19 0.586441 50510.1 34949 -4.191 0.586191 50488.7 34951.1 -4.192 0.585942 50467.2 34953.3 -4.193 0.585693 50445.7 34955.4 -4.194 0.585444 50424.3 34957.6 -4.195 0.585195 50402.9 34959.7 -4.196 0.584946 50381.4 34961.9 -4.197 0.584698 50360 34964 -4.198 0.584449 50338.6 34966.1 -4.199 0.584201 50317.2 34968.3 -4.2 0.583952 50295.8 34970.4 -4.201 0.583704 50274.4 34972.6 -4.202 0.583456 50253.1 34974.7 -4.203 0.583208 50231.7 34976.8 -4.204 0.58296 50210.3 34979 -4.205 0.582712 50189 34981.1 -4.206 0.582464 50167.7 34983.2 -4.207 0.582217 50146.3 34985.4 -4.208 0.581969 50125 34987.5 -4.209 0.581722 50103.7 34989.6 -4.21 0.581475 50082.4 34991.8 -4.211 0.581227 50061.1 34993.9 -4.212 0.58098 50039.8 34996 -4.213 0.580733 50018.6 34998.1 -4.214 0.580486 49997.3 35000.3 -4.215 0.58024 49976 35002.4 -4.216 0.579993 49954.8 35004.5 -4.217 0.579746 49933.6 35006.6 -4.218 0.5795 49912.3 35008.8 -4.219 0.579254 49891.1 35010.9 -4.22 0.579007 49869.9 35013 -4.221 0.578761 49848.7 35015.1 -4.222 0.578515 49827.5 35017.2 -4.223 0.578269 49806.3 35019.4 -4.224 0.578023 49785.2 35021.5 -4.225 0.577778 49764 35023.6 -4.226 0.577532 49742.8 35025.7 -4.227 0.577287 49721.7 35027.8 -4.228 0.577041 49700.6 35029.9 -4.229 0.576796 49679.4 35032.1 -4.23 0.576551 49658.3 35034.2 -4.231 0.576305 49637.2 35036.3 -4.232 0.576061 49616.1 35038.4 -4.233 0.575816 49595 35040.5 -4.234 0.575571 49573.9 35042.6 -4.235 0.575326 49552.8 35044.7 -4.236 0.575082 49531.8 35046.8 -4.237 0.574837 49510.7 35048.9 -4.238 0.574593 49489.7 35051 -4.239 0.574348 49468.6 35053.1 -4.24 0.574104 49447.6 35055.2 -4.241 0.57386 49426.6 35057.3 -4.242 0.573616 49405.6 35059.4 -4.243 0.573372 49384.6 35061.5 -4.244 0.573129 49363.6 35063.6 -4.245 0.572885 49342.6 35065.7 -4.246 0.572641 49321.6 35067.8 -4.247 0.572398 49300.6 35069.9 -4.248 0.572155 49279.7 35072 -4.249 0.571911 49258.7 35074.1 -4.25 0.571668 49237.8 35076.2 -4.251 0.571425 49216.9 35078.3 -4.252 0.571182 49195.9 35080.4 -4.253 0.57094 49175 35082.5 -4.254 0.570697 49154.1 35084.6 -4.255 0.570454 49133.2 35086.7 -4.256 0.570212 49112.3 35088.8 -4.257 0.569969 49091.5 35090.9 -4.258 0.569727 49070.6 35092.9 -4.259 0.569485 49049.7 35095 -4.26 0.569243 49028.9 35097.1 -4.261 0.569001 49008 35099.2 -4.262 0.568759 48987.2 35101.3 -4.263 0.568517 48966.4 35103.4 -4.264 0.568275 48945.6 35105.4 -4.265 0.568034 48924.8 35107.5 -4.266 0.567792 48904 35109.6 -4.267 0.567551 48883.2 35111.7 -4.268 0.56731 48862.4 35113.8 -4.269 0.567069 48841.6 35115.8 -4.27 0.566827 48820.8 35117.9 -4.271 0.566586 48800.1 35120 -4.272 0.566346 48779.3 35122.1 -4.273 0.566105 48758.6 35124.1 -4.274 0.565864 48737.9 35126.2 -4.275 0.565624 48717.2 35128.3 -4.276 0.565383 48696.5 35130.4 -4.277 0.565143 48675.8 35132.4 -4.278 0.564903 48655.1 35134.5 -4.279 0.564662 48634.4 35136.6 -4.28 0.564422 48613.7 35138.6 -4.281 0.564182 48593 35140.7 -4.282 0.563943 48572.4 35142.8 -4.283 0.563703 48551.7 35144.8 -4.284 0.563463 48531.1 35146.9 -4.285 0.563224 48510.5 35149 -4.286 0.562984 48489.8 35151 -4.287 0.562745 48469.2 35153.1 -4.288 0.562506 48448.6 35155.1 -4.289 0.562267 48428 35157.2 -4.29 0.562028 48407.4 35159.3 -4.291 0.561789 48386.9 35161.3 -4.292 0.56155 48366.3 35163.4 -4.293 0.561311 48345.7 35165.4 -4.294 0.561072 48325.2 35167.5 -4.295 0.560834 48304.6 35169.5 -4.296 0.560595 48284.1 35171.6 -4.297 0.560357 48263.6 35173.6 -4.298 0.560119 48243 35175.7 -4.299 0.559881 48222.5 35177.7 -4.3 0.559643 48202 35179.8 -4.301 0.559405 48181.5 35181.8 -4.302 0.559167 48161.1 35183.9 -4.303 0.558929 48140.6 35185.9 -4.304 0.558692 48120.1 35188 -4.305 0.558454 48099.7 35190 -4.306 0.558217 48079.2 35192.1 -4.307 0.55798 48058.8 35194.1 -4.308 0.557742 48038.3 35196.2 -4.309 0.557505 48017.9 35198.2 -4.31 0.557268 47997.5 35200.2 -4.311 0.557031 47977.1 35202.3 -4.312 0.556795 47956.7 35204.3 -4.313 0.556558 47936.3 35206.4 -4.314 0.556321 47915.9 35208.4 -4.315 0.556085 47895.6 35210.4 -4.316 0.555848 47875.2 35212.5 -4.317 0.555612 47854.9 35214.5 -4.318 0.555376 47834.5 35216.5 -4.319 0.55514 47814.2 35218.6 -4.32 0.554904 47793.9 35220.6 -4.321 0.554668 47773.5 35222.6 -4.322 0.554432 47753.2 35224.7 -4.323 0.554196 47732.9 35226.7 -4.324 0.553961 47712.6 35228.7 -4.325 0.553725 47692.4 35230.8 -4.326 0.55349 47672.1 35232.8 -4.327 0.553255 47651.8 35234.8 -4.328 0.553019 47631.6 35236.8 -4.329 0.552784 47611.3 35238.9 -4.33 0.552549 47591.1 35240.9 -4.331 0.552314 47570.8 35242.9 -4.332 0.55208 47550.6 35244.9 -4.333 0.551845 47530.4 35247 -4.334 0.55161 47510.2 35249 -4.335 0.551376 47490 35251 -4.336 0.551141 47469.8 35253 -4.337 0.550907 47449.6 35255 -4.338 0.550673 47429.5 35257.1 -4.339 0.550439 47409.3 35259.1 -4.34 0.550205 47389.1 35261.1 -4.341 0.549971 47369 35263.1 -4.342 0.549737 47348.9 35265.1 -4.343 0.549503 47328.7 35267.1 -4.344 0.54927 47308.6 35269.1 -4.345 0.549036 47288.5 35271.2 -4.346 0.548803 47268.4 35273.2 -4.347 0.54857 47248.3 35275.2 -4.348 0.548336 47228.2 35277.2 -4.349 0.548103 47208.1 35279.2 -4.35 0.54787 47188.1 35281.2 -4.351 0.547637 47168 35283.2 -4.352 0.547405 47148 35285.2 -4.353 0.547172 47127.9 35287.2 -4.354 0.546939 47107.9 35289.2 -4.355 0.546707 47087.8 35291.2 -4.356 0.546474 47067.8 35293.2 -4.357 0.546242 47047.8 35295.2 -4.358 0.54601 47027.8 35297.2 -4.359 0.545778 47007.8 35299.2 -4.36 0.545546 46987.8 35301.2 -4.361 0.545314 46967.9 35303.2 -4.362 0.545082 46947.9 35305.2 -4.363 0.54485 46927.9 35307.2 -4.364 0.544619 46908 35309.2 -4.365 0.544387 46888.1 35311.2 -4.366 0.544156 46868.1 35313.2 -4.367 0.543924 46848.2 35315.2 -4.368 0.543693 46828.3 35317.2 -4.369 0.543462 46808.4 35319.2 -4.37 0.543231 46788.5 35321.2 -4.371 0.543 46768.6 35323.1 -4.372 0.542769 46748.7 35325.1 -4.373 0.542538 46728.8 35327.1 -4.374 0.542308 46709 35329.1 -4.375 0.542077 46689.1 35331.1 -4.376 0.541847 46669.3 35333.1 -4.377 0.541616 46649.4 35335.1 -4.378 0.541386 46629.6 35337 -4.379 0.541156 46609.8 35339 -4.38 0.540926 46590 35341 -4.381 0.540696 46570.1 35343 -4.382 0.540466 46550.3 35345 -4.383 0.540236 46530.6 35346.9 -4.384 0.540007 46510.8 35348.9 -4.385 0.539777 46491 35350.9 -4.386 0.539548 46471.2 35352.9 -4.387 0.539318 46451.5 35354.9 -4.388 0.539089 46431.7 35356.8 -4.389 0.53886 46412 35358.8 -4.39 0.538631 46392.3 35360.8 -4.391 0.538402 46372.5 35362.7 -4.392 0.538173 46352.8 35364.7 -4.393 0.537944 46333.1 35366.7 -4.394 0.537715 46313.4 35368.7 -4.395 0.537487 46293.7 35370.6 -4.396 0.537258 46274.1 35372.6 -4.397 0.53703 46254.4 35374.6 -4.398 0.536802 46234.7 35376.5 -4.399 0.536573 46215.1 35378.5 -4.4 0.536345 46195.4 35380.5 -4.401 0.536117 46175.8 35382.4 -4.402 0.535889 46156.2 35384.4 -4.403 0.535662 46136.5 35386.3 -4.404 0.535434 46116.9 35388.3 -4.405 0.535206 46097.3 35390.3 -4.406 0.534979 46077.7 35392.2 -4.407 0.534751 46058.1 35394.2 -4.408 0.534524 46038.6 35396.1 -4.409 0.534297 46019 35398.1 -4.41 0.53407 45999.4 35400.1 -4.411 0.533843 45979.9 35402 -4.412 0.533616 45960.3 35404 -4.413 0.533389 45940.8 35405.9 -4.414 0.533162 45921.2 35407.9 -4.415 0.532935 45901.7 35409.8 -4.416 0.532709 45882.2 35411.8 -4.417 0.532482 45862.7 35413.7 -4.418 0.532256 45843.2 35415.7 -4.419 0.53203 45823.7 35417.6 -4.42 0.531804 45804.2 35419.6 -4.421 0.531577 45784.8 35421.5 -4.422 0.531351 45765.3 35423.5 -4.423 0.531126 45745.8 35425.4 -4.424 0.5309 45726.4 35427.4 -4.425 0.530674 45707 35429.3 -4.426 0.530449 45687.5 35431.2 -4.427 0.530223 45668.1 35433.2 -4.428 0.529998 45648.7 35435.1 -4.429 0.529772 45629.3 35437.1 -4.43 0.529547 45609.9 35439 -4.431 0.529322 45590.5 35440.9 -4.432 0.529097 45571.1 35442.9 -4.433 0.528872 45551.7 35444.8 -4.434 0.528647 45532.4 35446.8 -4.435 0.528422 45513 35448.7 -4.436 0.528198 45493.7 35450.6 -4.437 0.527973 45474.3 35452.6 -4.438 0.527749 45455 35454.5 -4.439 0.527524 45435.7 35456.4 -4.44 0.5273 45416.4 35458.4 -4.441 0.527076 45397.1 35460.3 -4.442 0.526852 45377.8 35462.2 -4.443 0.526628 45358.5 35464.2 -4.444 0.526404 45339.2 35466.1 -4.445 0.52618 45319.9 35468 -4.446 0.525957 45300.6 35469.9 -4.447 0.525733 45281.4 35471.9 -4.448 0.52551 45262.1 35473.8 -4.449 0.525286 45242.9 35475.7 -4.45 0.525063 45223.7 35477.6 -4.451 0.52484 45204.4 35479.6 -4.452 0.524617 45185.2 35481.5 -4.453 0.524394 45166 35483.4 -4.454 0.524171 45146.8 35485.3 -4.455 0.523948 45127.6 35487.2 -4.456 0.523725 45108.4 35489.2 -4.457 0.523502 45089.3 35491.1 -4.458 0.52328 45070.1 35493 -4.459 0.523057 45050.9 35494.9 -4.46 0.522835 45031.8 35496.8 -4.461 0.522613 45012.6 35498.7 -4.462 0.522391 44993.5 35500.6 -4.463 0.522169 44974.4 35502.6 -4.464 0.521947 44955.3 35504.5 -4.465 0.521725 44936.1 35506.4 -4.466 0.521503 44917 35508.3 -4.467 0.521281 44897.9 35510.2 -4.468 0.52106 44878.9 35512.1 -4.469 0.520838 44859.8 35514 -4.47 0.520617 44840.7 35515.9 -4.471 0.520395 44821.6 35517.8 -4.472 0.520174 44802.6 35519.7 -4.473 0.519953 44783.5 35521.6 -4.474 0.519732 44764.5 35523.5 -4.475 0.519511 44745.5 35525.5 -4.476 0.51929 44726.5 35527.4 -4.477 0.519069 44707.4 35529.3 -4.478 0.518849 44688.4 35531.2 -4.479 0.518628 44669.4 35533.1 -4.48 0.518408 44650.4 35535 -4.481 0.518187 44631.5 35536.9 -4.482 0.517967 44612.5 35538.8 -4.483 0.517747 44593.5 35540.6 -4.484 0.517527 44574.6 35542.5 -4.485 0.517307 44555.6 35544.4 -4.486 0.517087 44536.7 35546.3 -4.487 0.516867 44517.7 35548.2 -4.488 0.516647 44498.8 35550.1 -4.489 0.516428 44479.9 35552 -4.49 0.516208 44461 35553.9 -4.491 0.515989 44442.1 35555.8 -4.492 0.515769 44423.2 35557.7 -4.493 0.51555 44404.3 35559.6 -4.494 0.515331 44385.4 35561.5 -4.495 0.515112 44366.6 35563.3 -4.496 0.514893 44347.7 35565.2 -4.497 0.514674 44328.9 35567.1 -4.498 0.514455 44310 35569 -4.499 0.514236 44291.2 35570.9 -4.5 0.514018 44272.3 35572.8 -4.501 0.513799 44253.5 35574.6 -4.502 0.513581 44234.7 35576.5 -4.503 0.513362 44215.9 35578.4 -4.504 0.513144 44197.1 35580.3 -4.505 0.512926 44178.3 35582.2 -4.506 0.512708 44159.5 35584 -4.507 0.51249 44140.8 35585.9 -4.508 0.512272 44122 35587.8 -4.509 0.512054 44103.2 35589.7 -4.51 0.511837 44084.5 35591.6 -4.511 0.511619 44065.8 35593.4 -4.512 0.511402 44047 35595.3 -4.513 0.511184 44028.3 35597.2 -4.514 0.510967 44009.6 35599 -4.515 0.51075 43990.9 35600.9 -4.516 0.510533 43972.2 35602.8 -4.517 0.510316 43953.5 35604.7 -4.518 0.510099 43934.8 35606.5 -4.519 0.509882 43916.1 35608.4 -4.52 0.509665 43897.4 35610.3 -4.521 0.509448 43878.8 35612.1 -4.522 0.509232 43860.1 35614 -4.523 0.509015 43841.5 35615.9 -4.524 0.508799 43822.8 35617.7 -4.525 0.508583 43804.2 35619.6 -4.526 0.508366 43785.6 35621.4 -4.527 0.50815 43767 35623.3 -4.528 0.507934 43748.4 35625.2 -4.529 0.507718 43729.8 35627 -4.53 0.507502 43711.2 35628.9 -4.531 0.507287 43692.6 35630.7 -4.532 0.507071 43674 35632.6 -4.533 0.506856 43655.5 35634.5 -4.534 0.50664 43636.9 35636.3 -4.535 0.506425 43618.4 35638.2 -4.536 0.506209 43599.8 35640 -4.537 0.505994 43581.3 35641.9 -4.538 0.505779 43562.8 35643.7 -4.539 0.505564 43544.2 35645.6 -4.54 0.505349 43525.7 35647.4 -4.541 0.505134 43507.2 35649.3 -4.542 0.50492 43488.7 35651.1 -4.543 0.504705 43470.2 35653 -4.544 0.50449 43451.8 35654.8 -4.545 0.504276 43433.3 35656.7 -4.546 0.504062 43414.8 35658.5 -4.547 0.503847 43396.4 35660.4 -4.548 0.503633 43377.9 35662.2 -4.549 0.503419 43359.5 35664.1 -4.55 0.503205 43341 35665.9 -4.551 0.502991 43322.6 35667.7 -4.552 0.502777 43304.2 35669.6 -4.553 0.502563 43285.8 35671.4 -4.554 0.50235 43267.4 35673.3 -4.555 0.502136 43249 35675.1 -4.556 0.501923 43230.6 35676.9 -4.557 0.501709 43212.2 35678.8 -4.558 0.501496 43193.9 35680.6 -4.559 0.501283 43175.5 35682.5 -4.56 0.50107 43157.1 35684.3 -4.561 0.500857 43138.8 35686.1 -4.562 0.500644 43120.5 35688 -4.563 0.500431 43102.1 35689.8 -4.564 0.500218 43083.8 35691.6 -4.565 0.500006 43065.5 35693.5 -4.566 0.499793 43047.2 35695.3 -4.567 0.499581 43028.9 35697.1 -4.568 0.499368 43010.6 35698.9 -4.569 0.499156 42992.3 35700.8 -4.57 0.498944 42974 35702.6 -4.571 0.498732 42955.8 35704.4 -4.572 0.49852 42937.5 35706.3 -4.573 0.498308 42919.2 35708.1 -4.574 0.498096 42901 35709.9 -4.575 0.497884 42882.8 35711.7 -4.576 0.497672 42864.5 35713.5 -4.577 0.497461 42846.3 35715.4 -4.578 0.497249 42828.1 35717.2 -4.579 0.497038 42809.9 35719 -4.58 0.496827 42791.7 35720.8 -4.581 0.496616 42773.5 35722.7 -4.582 0.496404 42755.3 35724.5 -4.583 0.496193 42737.1 35726.3 -4.584 0.495982 42719 35728.1 -4.585 0.495772 42700.8 35729.9 -4.586 0.495561 42682.7 35731.7 -4.587 0.49535 42664.5 35733.5 -4.588 0.49514 42646.4 35735.4 -4.589 0.494929 42628.2 35737.2 -4.59 0.494719 42610.1 35739 -4.591 0.494508 42592 35740.8 -4.592 0.494298 42573.9 35742.6 -4.593 0.494088 42555.8 35744.4 -4.594 0.493878 42537.7 35746.2 -4.595 0.493668 42519.6 35748 -4.596 0.493458 42501.6 35749.8 -4.597 0.493248 42483.5 35751.7 -4.598 0.493039 42465.4 35753.5 -4.599 0.492829 42447.4 35755.3 -4.6 0.49262 42429.3 35757.1 -4.601 0.49241 42411.3 35758.9 -4.602 0.492201 42393.3 35760.7 -4.603 0.491992 42375.2 35762.5 -4.604 0.491782 42357.2 35764.3 -4.605 0.491573 42339.2 35766.1 -4.606 0.491364 42321.2 35767.9 -4.607 0.491156 42303.2 35769.7 -4.608 0.490947 42285.2 35771.5 -4.609 0.490738 42267.3 35773.3 -4.61 0.490529 42249.3 35775.1 -4.611 0.490321 42231.3 35776.9 -4.612 0.490112 42213.4 35778.7 -4.613 0.489904 42195.4 35780.5 -4.614 0.489696 42177.5 35782.2 -4.615 0.489488 42159.6 35784 -4.616 0.48928 42141.6 35785.8 -4.617 0.489072 42123.7 35787.6 -4.618 0.488864 42105.8 35789.4 -4.619 0.488656 42087.9 35791.2 -4.62 0.488448 42070 35793 -4.621 0.48824 42052.1 35794.8 -4.622 0.488033 42034.3 35796.6 -4.623 0.487825 42016.4 35798.4 -4.624 0.487618 41998.5 35800.1 -4.625 0.487411 41980.7 35801.9 -4.626 0.487204 41962.8 35803.7 -4.627 0.486996 41945 35805.5 -4.628 0.486789 41927.2 35807.3 -4.629 0.486582 41909.3 35809.1 -4.63 0.486376 41891.5 35810.8 -4.631 0.486169 41873.7 35812.6 -4.632 0.485962 41855.9 35814.4 -4.633 0.485756 41838.1 35816.2 -4.634 0.485549 41820.3 35818 -4.635 0.485343 41802.6 35819.7 -4.636 0.485136 41784.8 35821.5 -4.637 0.48493 41767 35823.3 -4.638 0.484724 41749.3 35825.1 -4.639 0.484518 41731.5 35826.8 -4.64 0.484312 41713.8 35828.6 -4.641 0.484106 41696 35830.4 -4.642 0.4839 41678.3 35832.2 -4.643 0.483694 41660.6 35833.9 -4.644 0.483489 41642.9 35835.7 -4.645 0.483283 41625.2 35837.5 -4.646 0.483078 41607.5 35839.3 -4.647 0.482873 41589.8 35841 -4.648 0.482667 41572.1 35842.8 -4.649 0.482462 41554.5 35844.6 -4.65 0.482257 41536.8 35846.3 -4.651 0.482052 41519.1 35848.1 -4.652 0.481847 41501.5 35849.9 -4.653 0.481642 41483.8 35851.6 -4.654 0.481437 41466.2 35853.4 -4.655 0.481233 41448.6 35855.1 -4.656 0.481028 41431 35856.9 -4.657 0.480824 41413.3 35858.7 -4.658 0.480619 41395.7 35860.4 -4.659 0.480415 41378.1 35862.2 -4.66 0.480211 41360.5 35863.9 -4.661 0.480007 41343 35865.7 -4.662 0.479803 41325.4 35867.5 -4.663 0.479599 41307.8 35869.2 -4.664 0.479395 41290.3 35871 -4.665 0.479191 41272.7 35872.7 -4.666 0.478987 41255.2 35874.5 -4.667 0.478784 41237.6 35876.2 -4.668 0.47858 41220.1 35878 -4.669 0.478377 41202.6 35879.7 -4.67 0.478173 41185.1 35881.5 -4.671 0.47797 41167.5 35883.2 -4.672 0.477767 41150 35885 -4.673 0.477564 41132.6 35886.7 -4.674 0.477361 41115.1 35888.5 -4.675 0.477158 41097.6 35890.2 -4.676 0.476955 41080.1 35892 -4.677 0.476752 41062.7 35893.7 -4.678 0.476549 41045.2 35895.5 -4.679 0.476347 41027.7 35897.2 -4.68 0.476144 41010.3 35899 -4.681 0.475942 40992.9 35900.7 -4.682 0.47574 40975.4 35902.5 -4.683 0.475537 40958 35904.2 -4.684 0.475335 40940.6 35905.9 -4.685 0.475133 40923.2 35907.7 -4.686 0.474931 40905.8 35909.4 -4.687 0.474729 40888.4 35911.2 -4.688 0.474527 40871 35912.9 -4.689 0.474326 40853.7 35914.6 -4.69 0.474124 40836.3 35916.4 -4.691 0.473922 40818.9 35918.1 -4.692 0.473721 40801.6 35919.8 -4.693 0.47352 40784.2 35921.6 -4.694 0.473318 40766.9 35923.3 -4.695 0.473117 40749.6 35925 -4.696 0.472916 40732.2 35926.8 -4.697 0.472715 40714.9 35928.5 -4.698 0.472514 40697.6 35930.2 -4.699 0.472313 40680.3 35932 -4.7 0.472112 40663 35933.7 -4.701 0.471912 40645.7 35935.4 -4.702 0.471711 40628.5 35937.2 -4.703 0.47151 40611.2 35938.9 -4.704 0.47131 40593.9 35940.6 -4.705 0.47111 40576.7 35942.3 -4.706 0.470909 40559.4 35944.1 -4.707 0.470709 40542.2 35945.8 -4.708 0.470509 40524.9 35947.5 -4.709 0.470309 40507.7 35949.2 -4.71 0.470109 40490.5 35951 -4.711 0.469909 40473.3 35952.7 -4.712 0.469709 40456.1 35954.4 -4.713 0.46951 40438.9 35956.1 -4.714 0.46931 40421.7 35957.8 -4.715 0.469111 40404.5 35959.5 -4.716 0.468911 40387.3 35961.3 -4.717 0.468712 40370.2 35963 -4.718 0.468513 40353 35964.7 -4.719 0.468313 40335.8 35966.4 -4.72 0.468114 40318.7 35968.1 -4.721 0.467915 40301.6 35969.8 -4.722 0.467716 40284.4 35971.6 -4.723 0.467518 40267.3 35973.3 -4.724 0.467319 40250.2 35975 -4.725 0.46712 40233.1 35976.7 -4.726 0.466922 40216 35978.4 -4.727 0.466723 40198.9 35980.1 -4.728 0.466525 40181.8 35981.8 -4.729 0.466326 40164.7 35983.5 -4.73 0.466128 40147.6 35985.2 -4.731 0.46593 40130.6 35986.9 -4.732 0.465732 40113.5 35988.7 -4.733 0.465534 40096.4 35990.4 -4.734 0.465336 40079.4 35992.1 -4.735 0.465138 40062.4 35993.8 -4.736 0.46494 40045.3 35995.5 -4.737 0.464743 40028.3 35997.2 -4.738 0.464545 40011.3 35998.9 -4.739 0.464348 39994.3 36000.6 -4.74 0.46415 39977.3 36002.3 -4.741 0.463953 39960.3 36004 -4.742 0.463756 39943.3 36005.7 -4.743 0.463559 39926.3 36007.4 -4.744 0.463362 39909.3 36009.1 -4.745 0.463165 39892.4 36010.8 -4.746 0.462968 39875.4 36012.5 -4.747 0.462771 39858.5 36014.2 -4.748 0.462574 39841.5 36015.8 -4.749 0.462378 39824.6 36017.5 -4.75 0.462181 39807.6 36019.2 -4.751 0.461984 39790.7 36020.9 -4.752 0.461788 39773.8 36022.6 -4.753 0.461592 39756.9 36024.3 -4.754 0.461396 39740 36026 -4.755 0.461199 39723.1 36027.7 -4.756 0.461003 39706.2 36029.4 -4.757 0.460807 39689.3 36031.1 -4.758 0.460611 39672.5 36032.8 -4.759 0.460416 39655.6 36034.4 -4.76 0.46022 39638.7 36036.1 -4.761 0.460024 39621.9 36037.8 -4.762 0.459829 39605 36039.5 -4.763 0.459633 39588.2 36041.2 -4.764 0.459438 39571.4 36042.9 -4.765 0.459243 39554.6 36044.5 -4.766 0.459047 39537.7 36046.2 -4.767 0.458852 39520.9 36047.9 -4.768 0.458657 39504.1 36049.6 -4.769 0.458462 39487.3 36051.3 -4.77 0.458267 39470.6 36052.9 -4.771 0.458072 39453.8 36054.6 -4.772 0.457878 39437 36056.3 -4.773 0.457683 39420.2 36058 -4.774 0.457488 39403.5 36059.7 -4.775 0.457294 39386.7 36061.3 -4.776 0.4571 39370 36063 -4.777 0.456905 39353.2 36064.7 -4.778 0.456711 39336.5 36066.3 -4.779 0.456517 39319.8 36068 -4.78 0.456323 39303.1 36069.7 -4.781 0.456129 39286.4 36071.4 -4.782 0.455935 39269.7 36073 -4.783 0.455741 39253 36074.7 -4.784 0.455547 39236.3 36076.4 -4.785 0.455354 39219.6 36078 -4.786 0.45516 39202.9 36079.7 -4.787 0.454967 39186.3 36081.4 -4.788 0.454773 39169.6 36083 -4.789 0.45458 39153 36084.7 -4.79 0.454387 39136.3 36086.4 -4.791 0.454193 39119.7 36088 -4.792 0.454 39103 36089.7 -4.793 0.453807 39086.4 36091.4 -4.794 0.453614 39069.8 36093 -4.795 0.453422 39053.2 36094.7 -4.796 0.453229 39036.6 36096.3 -4.797 0.453036 39020 36098 -4.798 0.452844 39003.4 36099.7 -4.799 0.452651 38986.8 36101.3 -4.8 0.452459 38970.3 36103 -4.801 0.452266 38953.7 36104.6 -4.802 0.452074 38937.1 36106.3 -4.803 0.451882 38920.6 36107.9 -4.804 0.45169 38904 36109.6 -4.805 0.451498 38887.5 36111.3 -4.806 0.451306 38871 36112.9 -4.807 0.451114 38854.4 36114.6 -4.808 0.450922 38837.9 36116.2 -4.809 0.45073 38821.4 36117.9 -4.81 0.450539 38804.9 36119.5 -4.811 0.450347 38788.4 36121.2 -4.812 0.450156 38771.9 36122.8 -4.813 0.449964 38755.4 36124.5 -4.814 0.449773 38739 36126.1 -4.815 0.449582 38722.5 36127.8 -4.816 0.449391 38706 36129.4 -4.817 0.4492 38689.6 36131 -4.818 0.449009 38673.1 36132.7 -4.819 0.448818 38656.7 36134.3 -4.82 0.448627 38640.3 36136 -4.821 0.448436 38623.8 36137.6 -4.822 0.448246 38607.4 36139.3 -4.823 0.448055 38591 36140.9 -4.824 0.447865 38574.6 36142.5 -4.825 0.447674 38558.2 36144.2 -4.826 0.447484 38541.8 36145.8 -4.827 0.447294 38525.4 36147.5 -4.828 0.447104 38509 36149.1 -4.829 0.446914 38492.7 36150.7 -4.83 0.446724 38476.3 36152.4 -4.831 0.446534 38460 36154 -4.832 0.446344 38443.6 36155.6 -4.833 0.446154 38427.3 36157.3 -4.834 0.445964 38410.9 36158.9 -4.835 0.445775 38394.6 36160.5 -4.836 0.445585 38378.3 36162.2 -4.837 0.445396 38362 36163.8 -4.838 0.445207 38345.6 36165.4 -4.839 0.445017 38329.3 36167.1 -4.84 0.444828 38313.1 36168.7 -4.841 0.444639 38296.8 36170.3 -4.842 0.44445 38280.5 36172 -4.843 0.444261 38264.2 36173.6 -4.844 0.444072 38247.9 36175.2 -4.845 0.443883 38231.7 36176.8 -4.846 0.443695 38215.4 36178.5 -4.847 0.443506 38199.2 36180.1 -4.848 0.443318 38182.9 36181.7 -4.849 0.443129 38166.7 36183.3 -4.85 0.442941 38150.5 36185 -4.851 0.442752 38134.3 36186.6 -4.852 0.442564 38118.1 36188.2 -4.853 0.442376 38101.9 36189.8 -4.854 0.442188 38085.7 36191.4 -4.855 0.442 38069.5 36193.1 -4.856 0.441812 38053.3 36194.7 -4.857 0.441624 38037.1 36196.3 -4.858 0.441437 38020.9 36197.9 -4.859 0.441249 38004.8 36199.5 -4.86 0.441061 37988.6 36201.1 -4.861 0.440874 37972.5 36202.8 -4.862 0.440686 37956.3 36204.4 -4.863 0.440499 37940.2 36206 -4.864 0.440312 37924.1 36207.6 -4.865 0.440125 37907.9 36209.2 -4.866 0.439938 37891.8 36210.8 -4.867 0.439751 37875.7 36212.4 -4.868 0.439564 37859.6 36214 -4.869 0.439377 37843.5 36215.6 -4.87 0.43919 37827.4 36217.3 -4.871 0.439003 37811.3 36218.9 -4.872 0.438817 37795.3 36220.5 -4.873 0.43863 37779.2 36222.1 -4.874 0.438444 37763.1 36223.7 -4.875 0.438257 37747.1 36225.3 -4.876 0.438071 37731 36226.9 -4.877 0.437885 37715 36228.5 -4.878 0.437698 37699 36230.1 -4.879 0.437512 37682.9 36231.7 -4.88 0.437326 37666.9 36233.3 -4.881 0.437141 37650.9 36234.9 -4.882 0.436955 37634.9 36236.5 -4.883 0.436769 37618.9 36238.1 -4.884 0.436583 37602.9 36239.7 -4.885 0.436398 37586.9 36241.3 -4.886 0.436212 37571 36242.9 -4.887 0.436027 37555 36244.5 -4.888 0.435841 37539 36246.1 -4.889 0.435656 37523.1 36247.7 -4.89 0.435471 37507.1 36249.3 -4.891 0.435286 37491.2 36250.9 -4.892 0.435101 37475.2 36252.5 -4.893 0.434916 37459.3 36254.1 -4.894 0.434731 37443.4 36255.7 -4.895 0.434546 37427.4 36257.3 -4.896 0.434361 37411.5 36258.8 -4.897 0.434177 37395.6 36260.4 -4.898 0.433992 37379.7 36262 -4.899 0.433808 37363.8 36263.6 -4.9 0.433623 37348 36265.2 -4.901 0.433439 37332.1 36266.8 -4.902 0.433255 37316.2 36268.4 -4.903 0.43307 37300.3 36270 -4.904 0.432886 37284.5 36271.6 -4.905 0.432702 37268.6 36273.1 -4.906 0.432518 37252.8 36274.7 -4.907 0.432334 37237 36276.3 -4.908 0.432151 37221.1 36277.9 -4.909 0.431967 37205.3 36279.5 -4.91 0.431783 37189.5 36281.1 -4.911 0.4316 37173.7 36282.6 -4.912 0.431416 37157.9 36284.2 -4.913 0.431233 37142.1 36285.8 -4.914 0.431049 37126.3 36287.4 -4.915 0.430866 37110.5 36288.9 -4.916 0.430683 37094.7 36290.5 -4.917 0.4305 37079 36292.1 -4.918 0.430317 37063.2 36293.7 -4.919 0.430134 37047.4 36295.3 -4.92 0.429951 37031.7 36296.8 -4.921 0.429768 37016 36298.4 -4.922 0.429586 37000.2 36300 -4.923 0.429403 36984.5 36301.6 -4.924 0.429221 36968.8 36303.1 -4.925 0.429038 36953 36304.7 -4.926 0.428856 36937.3 36306.3 -4.927 0.428673 36921.6 36307.8 -4.928 0.428491 36905.9 36309.4 -4.929 0.428309 36890.3 36311 -4.93 0.428127 36874.6 36312.5 -4.931 0.427945 36858.9 36314.1 -4.932 0.427763 36843.2 36315.7 -4.933 0.427581 36827.6 36317.2 -4.934 0.427399 36811.9 36318.8 -4.935 0.427218 36796.3 36320.4 -4.936 0.427036 36780.6 36321.9 -4.937 0.426855 36765 36323.5 -4.938 0.426673 36749.3 36325.1 -4.939 0.426492 36733.7 36326.6 -4.94 0.42631 36718.1 36328.2 -4.941 0.426129 36702.5 36329.7 -4.942 0.425948 36686.9 36331.3 -4.943 0.425767 36671.3 36332.9 -4.944 0.425586 36655.7 36334.4 -4.945 0.425405 36640.1 36336 -4.946 0.425224 36624.6 36337.5 -4.947 0.425043 36609 36339.1 -4.948 0.424863 36593.4 36340.7 -4.949 0.424682 36577.9 36342.2 -4.95 0.424502 36562.3 36343.8 -4.951 0.424321 36546.8 36345.3 -4.952 0.424141 36531.2 36346.9 -4.953 0.42396 36515.7 36348.4 -4.954 0.42378 36500.2 36350 -4.955 0.4236 36484.7 36351.5 -4.956 0.42342 36469.2 36353.1 -4.957 0.42324 36453.7 36354.6 -4.958 0.42306 36438.2 36356.2 -4.959 0.42288 36422.7 36357.7 -4.96 0.4227 36407.2 36359.3 -4.961 0.422521 36391.7 36360.8 -4.962 0.422341 36376.2 36362.4 -4.963 0.422161 36360.8 36363.9 -4.964 0.422341 36376.2 36362.4 -4.965 0.422161 36360.8 36363.9 -4.966 0.422341 36376.2 36362.4 -4.967 0.422161 36360.8 36363.9 -4.968 0.422341 36376.2 36362.4 -4.969 0.422161 36360.8 36363.9 -4.97 0.422341 36376.2 36362.4 -4.971 0.422161 36360.7 36363.9 -4.972 0.422341 36376.2 36362.4 -4.973 0.422161 36360.7 36363.9 -4.974 0.422341 36376.2 36362.4 -4.975 0.422161 36360.7 36363.9 -4.976 0.422341 36376.2 36362.4 -4.977 0.422161 36360.7 36363.9 -4.978 0.422341 36376.2 36362.4 -4.979 0.422161 36360.7 36363.9 -4.98 0.42234 36376.2 36362.4 -4.981 0.422161 36360.7 36363.9 -4.982 0.42234 36376.2 36362.4 -4.983 0.422161 36360.7 36363.9 -4.984 0.42234 36376.2 36362.4 -4.985 0.422161 36360.7 36363.9 -4.986 0.42234 36376.2 36362.4 -4.987 0.422161 36360.7 36363.9 -4.988 0.42234 36376.2 36362.4 -4.989 0.422161 36360.7 36363.9 -4.99 0.42234 36376.2 36362.4 -4.991 0.422161 36360.7 36363.9 -4.992 0.42234 36376.2 36362.4 -4.993 0.422161 36360.7 36363.9 -4.994 0.42234 36376.1 36362.4 -4.995 0.422161 36360.7 36363.9 -4.996 0.42234 36376.1 36362.4 -4.997 0.42216 36360.7 36363.9 -4.998 0.42234 36376.1 36362.4 -4.999 0.42216 36360.7 36363.9 -5 0.42234 36376.1 36362.4 -5.001 0.42216 36360.7 36363.9 -5.002 0.42234 36376.1 36362.4 -5.003 0.42216 36360.7 36363.9 -5.004 0.42234 36376.1 36362.4 -5.005 0.42216 36360.7 36363.9 -5.006 0.42234 36376.1 36362.4 -5.007 0.42216 36360.7 36363.9 -5.008 0.42234 36376.1 36362.4 -5.009 0.42216 36360.6 36363.9 -5.01 0.42234 36376.1 36362.4 -5.011 0.42216 36360.6 36363.9 -5.012 0.42234 36376.1 36362.4 -5.013 0.42216 36360.6 36363.9 -5.014 0.422339 36376.1 36362.4 -5.015 0.42216 36360.6 36363.9 -5.016 0.422339 36376.1 36362.4 -5.017 0.42216 36360.6 36363.9 -5.018 0.422339 36376.1 36362.4 -5.019 0.42216 36360.6 36363.9 -5.02 0.422339 36376.1 36362.4 -5.021 0.42216 36360.6 36363.9 -5.022 0.422339 36376.1 36362.4 -5.023 0.42216 36360.6 36363.9 -5.024 0.422339 36376.1 36362.4 -5.025 0.42216 36360.6 36363.9 -5.026 0.422339 36376.1 36362.4 -5.027 0.42216 36360.6 36363.9 -5.028 0.422339 36376.1 36362.4 -5.029 0.422159 36360.6 36363.9 -5.03 0.422339 36376.1 36362.4 -5.031 0.422159 36360.6 36363.9 -5.032 0.422339 36376.1 36362.4 -5.033 0.422159 36360.6 36363.9 -5.034 0.422339 36376 36362.4 -5.035 0.422159 36360.6 36363.9 -5.036 0.422339 36376 36362.4 -5.037 0.422159 36360.6 36363.9 -5.038 0.422339 36376 36362.4 -5.039 0.422159 36360.6 36363.9 -5.04 0.422339 36376 36362.4 -5.041 0.422159 36360.6 36363.9 -5.042 0.422339 36376 36362.4 -5.043 0.422159 36360.6 36363.9 -5.044 0.422339 36376 36362.4 -5.045 0.422159 36360.6 36363.9 -5.046 0.422338 36376 36362.4 -5.047 0.422159 36360.6 36363.9 -5.048 0.422338 36376 36362.4 -5.049 0.422159 36360.5 36363.9 -5.05 0.422338 36376 36362.4 -5.051 0.422159 36360.5 36363.9 -5.052 0.422338 36376 36362.4 -5.053 0.422159 36360.5 36363.9 -5.054 0.422338 36376 36362.4 -5.055 0.422159 36360.5 36363.9 -5.056 0.422338 36376 36362.4 -5.057 0.422159 36360.5 36363.9 -5.058 0.422338 36376 36362.4 -5.059 0.422159 36360.5 36363.9 -5.06 0.422338 36376 36362.4 -5.061 0.422159 36360.5 36363.9 -5.062 0.422338 36376 36362.4 -5.063 0.422158 36360.5 36363.9 -5.064 0.422338 36376 36362.4 -5.065 0.422158 36360.5 36363.9 -5.066 0.422338 36376 36362.4 -5.067 0.422158 36360.5 36364 -5.068 0.422338 36376 36362.4 -5.069 0.422158 36360.5 36364 -5.07 0.422338 36376 36362.4 -5.071 0.422158 36360.5 36364 -5.072 0.422338 36375.9 36362.4 -5.073 0.422158 36360.5 36364 -5.074 0.422338 36375.9 36362.4 -5.075 0.422158 36360.5 36364 -5.076 0.422338 36375.9 36362.4 -5.077 0.422158 36360.5 36364 -5.078 0.422338 36375.9 36362.4 -5.079 0.422158 36360.5 36364 -5.08 0.422337 36375.9 36362.4 -5.081 0.422158 36360.5 36364 -5.082 0.422337 36375.9 36362.4 -5.083 0.422158 36360.5 36364 -5.084 0.422337 36375.9 36362.4 -5.085 0.422158 36360.5 36364 -5.086 0.422337 36375.9 36362.4 -5.087 0.422158 36360.4 36364 -5.088 0.422337 36375.9 36362.4 -5.089 0.422158 36360.4 36364 -5.09 0.422337 36375.9 36362.4 -5.091 0.422158 36360.4 36364 -5.092 0.422337 36375.9 36362.4 -5.093 0.422158 36360.4 36364 -5.094 0.422337 36375.9 36362.4 -5.095 0.422158 36360.4 36364 -5.096 0.422337 36375.9 36362.4 -5.097 0.422157 36360.4 36364 -5.098 0.422337 36375.9 36362.4 -5.099 0.422157 36360.4 36364 -5.1 0.422337 36375.9 36362.4 -5.101 0.422157 36360.4 36364 -5.102 0.422337 36375.9 36362.4 -5.103 0.422157 36360.4 36364 -5.104 0.422337 36375.9 36362.4 -5.105 0.422157 36360.4 36364 -5.106 0.422337 36375.9 36362.4 -5.107 0.422157 36360.4 36364 -5.108 0.422337 36375.9 36362.4 -5.109 0.422157 36360.4 36364 -5.11 0.422337 36375.9 36362.4 -5.111 0.422157 36360.4 36364 -5.112 0.422337 36375.8 36362.4 -5.113 0.422157 36360.4 36364 -5.114 0.422336 36375.8 36362.4 -5.115 0.422157 36360.4 36364 -5.116 0.422336 36375.8 36362.4 -5.117 0.422157 36360.4 36364 -5.118 0.422336 36375.8 36362.4 -5.119 0.422157 36360.4 36364 -5.12 0.422336 36375.8 36362.4 -5.121 0.422157 36360.4 36364 -5.122 0.422336 36375.8 36362.4 -5.123 0.422157 36360.4 36364 -5.124 0.422336 36375.8 36362.4 -5.125 0.422157 36360.4 36364 -5.126 0.422336 36375.8 36362.4 -5.127 0.422157 36360.3 36364 -5.128 0.422336 36375.8 36362.4 -5.129 0.422157 36360.3 36364 -5.13 0.422336 36375.8 36362.4 -5.131 0.422156 36360.3 36364 -5.132 0.422336 36375.8 36362.4 -5.133 0.422156 36360.3 36364 -5.134 0.422336 36375.8 36362.4 -5.135 0.422156 36360.3 36364 -5.136 0.422336 36375.8 36362.4 -5.137 0.422156 36360.3 36364 -5.138 0.422336 36375.8 36362.4 -5.139 0.422156 36360.3 36364 -5.14 0.422336 36375.8 36362.4 -5.141 0.422156 36360.3 36364 -5.142 0.422336 36375.8 36362.4 -5.143 0.422156 36360.3 36364 -5.144 0.422336 36375.8 36362.4 -5.145 0.422156 36360.3 36364 -5.146 0.422336 36375.8 36362.4 -5.147 0.422156 36360.3 36364 -5.148 0.422335 36375.8 36362.4 -5.149 0.422156 36360.3 36364 -5.15 0.422335 36375.8 36362.4 -5.151 0.422156 36360.3 36364 -5.152 0.422335 36375.7 36362.4 -5.153 0.422156 36360.3 36364 -5.154 0.422335 36375.7 36362.4 -5.155 0.422156 36360.3 36364 -5.156 0.422335 36375.7 36362.4 -5.157 0.422156 36360.3 36364 -5.158 0.422335 36375.7 36362.4 -5.159 0.422156 36360.3 36364 -5.16 0.422335 36375.7 36362.4 -5.161 0.422156 36360.3 36364 -5.162 0.422335 36375.7 36362.4 -5.163 0.422156 36360.3 36364 -5.164 0.422335 36375.7 36362.4 -5.165 0.422155 36360.3 36364 -5.166 0.422335 36375.7 36362.4 -5.167 0.422155 36360.2 36364 -5.168 0.422335 36375.7 36362.4 -5.169 0.422155 36360.2 36364 -5.17 0.422335 36375.7 36362.4 -5.171 0.422155 36360.2 36364 -5.172 0.422335 36375.7 36362.4 -5.173 0.422155 36360.2 36364 -5.174 0.422335 36375.7 36362.4 -5.175 0.422155 36360.2 36364 -5.176 0.422335 36375.7 36362.4 -5.177 0.422155 36360.2 36364 -5.178 0.422335 36375.7 36362.4 -5.179 0.422155 36360.2 36364 -5.18 0.422335 36375.7 36362.4 -5.181 0.422155 36360.2 36364 -5.182 0.422335 36375.7 36362.4 -5.183 0.422155 36360.2 36364 -5.184 0.422334 36375.7 36362.4 -5.185 0.422155 36360.2 36364 -5.186 0.422334 36375.7 36362.4 -5.187 0.422155 36360.2 36364 -5.188 0.422334 36375.7 36362.4 -5.189 0.422155 36360.2 36364 -5.19 0.422334 36375.7 36362.4 -5.191 0.422155 36360.2 36364 -5.192 0.422334 36375.6 36362.4 -5.193 0.422155 36360.2 36364 -5.194 0.422334 36375.6 36362.4 -5.195 0.422155 36360.2 36364 -5.196 0.422334 36375.6 36362.4 -5.197 0.422155 36360.2 36364 -5.198 0.422334 36375.6 36362.4 -5.199 0.422155 36360.2 36364 -5.2 0.422334 36375.6 36362.4 -5.201 0.422154 36360.2 36364 -5.202 0.422334 36375.6 36362.4 -5.203 0.422154 36360.2 36364 -5.204 0.422334 36375.6 36362.4 -5.205 0.422154 36360.2 36364 -5.206 0.422334 36375.6 36362.4 -5.207 0.422154 36360.1 36364 -5.208 0.422334 36375.6 36362.4 -5.209 0.422154 36360.1 36364 -5.21 0.422334 36375.6 36362.4 -5.211 0.422154 36360.1 36364 -5.212 0.422334 36375.6 36362.4 -5.213 0.422154 36360.1 36364 -5.214 0.422334 36375.6 36362.4 -5.215 0.422154 36360.1 36364 -5.216 0.422334 36375.6 36362.4 -5.217 0.422154 36360.1 36364 -5.218 0.422333 36375.6 36362.4 -5.219 0.422154 36360.1 36364 -5.22 0.422333 36375.6 36362.4 -5.221 0.422154 36360.1 36364 -5.222 0.422333 36375.6 36362.4 -5.223 0.422154 36360.1 36364 -5.224 0.422333 36375.6 36362.4 -5.225 0.422154 36360.1 36364 -5.226 0.422333 36375.6 36362.4 -5.227 0.422154 36360.1 36364 -5.228 0.422333 36375.6 36362.4 -5.229 0.422154 36360.1 36364 -5.23 0.422333 36375.6 36362.4 -5.231 0.422154 36360.1 36364 -5.232 0.422333 36375.5 36362.4 -5.233 0.422154 36360.1 36364 -5.234 0.422333 36375.5 36362.4 -5.235 0.422153 36360.1 36364 -5.236 0.422333 36375.5 36362.4 -5.237 0.422153 36360.1 36364 -5.238 0.422333 36375.5 36362.4 -5.239 0.422153 36360.1 36364 -5.24 0.422333 36375.5 36362.4 -5.241 0.422153 36360.1 36364 -5.242 0.422333 36375.5 36362.4 -5.243 0.422153 36360.1 36364 -5.244 0.422333 36375.5 36362.4 -5.245 0.422153 36360.1 36364 -5.246 0.422333 36375.5 36362.4 -5.247 0.422153 36360 36364 -5.248 0.422333 36375.5 36362.4 -5.249 0.422153 36360 36364 -5.25 0.422333 36375.5 36362.4 -5.251 0.422153 36360 36364 -5.252 0.422333 36375.5 36362.5 -5.253 0.422153 36360 36364 -5.254 0.422332 36375.5 36362.5 -5.255 0.422153 36360 36364 -5.256 0.422332 36375.5 36362.5 -5.257 0.422153 36360 36364 -5.258 0.422332 36375.5 36362.5 -5.259 0.422153 36360 36364 -5.26 0.422332 36375.5 36362.5 -5.261 0.422153 36360 36364 -5.262 0.422332 36375.5 36362.5 -5.263 0.422153 36360 36364 -5.264 0.422332 36375.5 36362.5 -5.265 0.422153 36360 36364 -5.266 0.422332 36375.5 36362.5 -5.267 0.422153 36360 36364 -5.268 0.422332 36375.5 36362.5 -5.269 0.422153 36360 36364 -5.27 0.422332 36375.5 36362.5 -5.271 0.422152 36360 36364 -5.272 0.422332 36375.4 36362.5 -5.273 0.422152 36360 36364 -5.274 0.422332 36375.4 36362.5 -5.275 0.422152 36360 36364 -5.276 0.422332 36375.4 36362.5 -5.277 0.422152 36360 36364 -5.278 0.422332 36375.4 36362.5 -5.279 0.422152 36360 36364 -5.28 0.422332 36375.4 36362.5 -5.281 0.422152 36360 36364 -5.282 0.422332 36375.4 36362.5 -5.283 0.422152 36360 36364 -5.284 0.422332 36375.4 36362.5 -5.285 0.422152 36360 36364 -5.286 0.422332 36375.4 36362.5 -5.287 0.422152 36360 36364 -5.288 0.422331 36375.4 36362.5 -5.289 0.422152 36359.9 36364 -5.29 0.422331 36375.4 36362.5 -5.291 0.422152 36359.9 36364 -5.292 0.422331 36375.4 36362.5 -5.293 0.422152 36359.9 36364 -5.294 0.422331 36375.4 36362.5 -5.295 0.422152 36359.9 36364 -5.296 0.422331 36375.4 36362.5 -5.297 0.422152 36359.9 36364 -5.298 0.422331 36375.4 36362.5 -5.299 0.422152 36359.9 36364 -5.3 0.422331 36375.4 36362.5 -5.301 0.422152 36359.9 36364 -5.302 0.422331 36375.4 36362.5 -5.303 0.422152 36359.9 36364 -5.304 0.422331 36375.4 36362.5 -5.305 0.422151 36359.9 36364 -5.306 0.422331 36375.4 36362.5 -5.307 0.422151 36359.9 36364 -5.308 0.422331 36375.4 36362.5 -5.309 0.422151 36359.9 36364 -5.31 0.422331 36375.4 36362.5 -5.311 0.422151 36359.9 36364 -5.312 0.422331 36375.4 36362.5 -5.313 0.422151 36359.9 36364 -5.314 0.422331 36375.3 36362.5 -5.315 0.422151 36359.9 36364 -5.316 0.422331 36375.3 36362.5 -5.317 0.422151 36359.9 36364 -5.318 0.422331 36375.3 36362.5 -5.319 0.422151 36359.9 36364 -5.32 0.422331 36375.3 36362.5 -5.321 0.422151 36359.9 36364 -5.322 0.422331 36375.3 36362.5 -5.323 0.422151 36359.9 36364 -5.324 0.42233 36375.3 36362.5 -5.325 0.422151 36359.9 36364 -5.326 0.42233 36375.3 36362.5 -5.327 0.422151 36359.9 36364 -5.328 0.42233 36375.3 36362.5 -5.329 0.422151 36359.9 36364 -5.33 0.42233 36375.3 36362.5 -5.331 0.422151 36359.8 36364 -5.332 0.42233 36375.3 36362.5 -5.333 0.422151 36359.8 36364 -5.334 0.42233 36375.3 36362.5 -5.335 0.422151 36359.8 36364 -5.336 0.42233 36375.3 36362.5 -5.337 0.422151 36359.8 36364 -5.338 0.42233 36375.3 36362.5 -5.339 0.422151 36359.8 36364 -5.34 0.42233 36375.3 36362.5 -5.341 0.42215 36359.8 36364 -5.342 0.42233 36375.3 36362.5 -5.343 0.42215 36359.8 36364 -5.344 0.42233 36375.3 36362.5 -5.345 0.42215 36359.8 36364 -5.346 0.42233 36375.3 36362.5 -5.347 0.42215 36359.8 36364 -5.348 0.42233 36375.3 36362.5 -5.349 0.42215 36359.8 36364 -5.35 0.42233 36375.3 36362.5 -5.351 0.42215 36359.8 36364 -5.352 0.42233 36375.3 36362.5 -5.353 0.42215 36359.8 36364 -5.354 0.42233 36375.3 36362.5 -5.355 0.42215 36359.8 36364 -5.356 0.42233 36375.2 36362.5 -5.357 0.42215 36359.8 36364 -5.358 0.42233 36375.2 36362.5 -5.359 0.42215 36359.8 36364 -5.36 0.422329 36375.2 36362.5 -5.361 0.42215 36359.8 36364 -5.362 0.422329 36375.2 36362.5 -5.363 0.42215 36359.8 36364 -5.364 0.422329 36375.2 36362.5 -5.365 0.42215 36359.8 36364 -5.366 0.422329 36375.2 36362.5 -5.367 0.42215 36359.8 36364 -5.368 0.422329 36375.2 36362.5 -5.369 0.42215 36359.8 36364 -5.37 0.422329 36375.2 36362.5 -5.371 0.42215 36359.8 36364 -5.372 0.422329 36375.2 36362.5 -5.373 0.42215 36359.7 36364 -5.374 0.422329 36375.2 36362.5 -5.375 0.42215 36359.7 36364 -5.376 0.422329 36375.2 36362.5 -5.377 0.422149 36359.7 36364 -5.378 0.422329 36375.2 36362.5 -5.379 0.422149 36359.7 36364 -5.38 0.422329 36375.2 36362.5 -5.381 0.422149 36359.7 36364 -5.382 0.422329 36375.2 36362.5 -5.383 0.422149 36359.7 36364 -5.384 0.422329 36375.2 36362.5 -5.385 0.422149 36359.7 36364 -5.386 0.422329 36375.2 36362.5 -5.387 0.422149 36359.7 36364 -5.388 0.422329 36375.2 36362.5 -5.389 0.422149 36359.7 36364 -5.39 0.422329 36375.2 36362.5 -5.391 0.422149 36359.7 36364 -5.392 0.422329 36375.2 36362.5 -5.393 0.422149 36359.7 36364 -5.394 0.422329 36375.2 36362.5 -5.395 0.422149 36359.7 36364 -5.396 0.422328 36375.2 36362.5 -5.397 0.422149 36359.7 36364 -5.398 0.422328 36375.1 36362.5 -5.399 0.422149 36359.7 36364 -5.4 0.422328 36375.1 36362.5 -5.401 0.422149 36359.7 36364 -5.402 0.422328 36375.1 36362.5 -5.403 0.422149 36359.7 36364 -5.404 0.422328 36375.1 36362.5 -5.405 0.422149 36359.7 36364 -5.406 0.422328 36375.1 36362.5 -5.407 0.422149 36359.7 36364 -5.408 0.422328 36375.1 36362.5 -5.409 0.422149 36359.7 36364 -5.41 0.422328 36375.1 36362.5 -5.411 0.422149 36359.7 36364 -5.412 0.422328 36375.1 36362.5 -5.413 0.422149 36359.7 36364 -5.414 0.422328 36375.1 36362.5 -5.415 0.422148 36359.6 36364 -5.416 0.422328 36375.1 36362.5 -5.417 0.422148 36359.6 36364 -5.418 0.422328 36375.1 36362.5 -5.419 0.422148 36359.6 36364 -5.42 0.422328 36375.1 36362.5 -5.421 0.422148 36359.6 36364 -5.422 0.422328 36375.1 36362.5 -5.423 0.422148 36359.6 36364 -5.424 0.422328 36375.1 36362.5 -5.425 0.422148 36359.6 36364 -5.426 0.422328 36375.1 36362.5 -5.427 0.422148 36359.6 36364 -5.428 0.422328 36375.1 36362.5 -5.429 0.422148 36359.6 36364 -5.43 0.422328 36375.1 36362.5 -5.431 0.422148 36359.6 36364 -5.432 0.422327 36375.1 36362.5 -5.433 0.422148 36359.6 36364 -5.434 0.422327 36375.1 36362.5 -5.435 0.422148 36359.6 36364 -5.436 0.422327 36375.1 36362.5 -5.437 0.422148 36359.6 36364 -5.438 0.422327 36375.1 36362.5 -5.439 0.422148 36359.6 36364 -5.44 0.422327 36375 36362.5 -5.441 0.422148 36359.6 36364 -5.442 0.422327 36375 36362.5 -5.443 0.422148 36359.6 36364 -5.444 0.422327 36375 36362.5 -5.445 0.422148 36359.6 36364 -5.446 0.422327 36375 36362.5 -5.447 0.422148 36359.6 36364 -5.448 0.422327 36375 36362.5 -5.449 0.422148 36359.6 36364 -5.45 0.422327 36375 36362.5 -5.451 0.422147 36359.6 36364 -5.452 0.422327 36375 36362.5 -5.453 0.422147 36359.6 36364 -5.454 0.422327 36375 36362.5 -5.455 0.422147 36359.6 36364 -5.456 0.422327 36375 36362.5 -5.457 0.422147 36359.5 36364 -5.458 0.422327 36375 36362.5 -5.459 0.422147 36359.5 36364 -5.46 0.422327 36375 36362.5 -5.461 0.422147 36359.5 36364 -5.462 0.422327 36375 36362.5 -5.463 0.422147 36359.5 36364 -5.464 0.422327 36375 36362.5 -5.465 0.422147 36359.5 36364 -5.466 0.422327 36375 36362.5 -5.467 0.422147 36359.5 36364 -5.468 0.422327 36375 36362.5 -5.469 0.422147 36359.5 36364 -5.47 0.422326 36375 36362.5 -5.471 0.422147 36359.5 36364 -5.472 0.422326 36375 36362.5 -5.473 0.422147 36359.5 36364 -5.474 0.422326 36375 36362.5 -5.475 0.422147 36359.5 36364 -5.476 0.422326 36375 36362.5 -5.477 0.422147 36359.5 36364 -5.478 0.422326 36375 36362.5 -5.479 0.422147 36359.5 36364.1 -5.48 0.422326 36375 36362.5 -5.481 0.422147 36359.5 36364.1 -5.482 0.422326 36375 36362.5 -5.483 0.422147 36359.5 36364.1 -5.484 0.422326 36374.9 36362.5 -5.485 0.422147 36359.5 36364.1 -5.486 0.422326 36374.9 36362.5 -5.487 0.422147 36359.5 36364.1 -5.488 0.422326 36374.9 36362.5 -5.489 0.422146 36359.5 36364.1 -5.49 0.422326 36374.9 36362.5 -5.491 0.422146 36359.5 36364.1 -5.492 0.422326 36374.9 36362.5 -5.493 0.422146 36359.5 36364.1 -5.494 0.422326 36374.9 36362.5 -5.495 0.422146 36359.5 36364.1 -5.496 0.422326 36374.9 36362.5 -5.497 0.422146 36359.5 36364.1 -5.498 0.422326 36374.9 36362.5 -5.499 0.422146 36359.5 36364.1 -5.5 0.422326 36374.9 36362.5 \ No newline at end of file diff --git a/Content/Figures/output.txt b/Content/Figures/output.txt deleted file mode 100644 index e8d5aef1f..000000000 --- a/Content/Figures/output.txt +++ /dev/null @@ -1,102 +0,0 @@ -1.2917614157 0.437733255229 -1.29176137932 0.437733157241 -1.29176129369 0.43773294912 -1.29176132995 0.437733026438 -1.29176133948 0.437733044293 -1.29176137099 0.437733099609 -1.29176132264 0.437733020884 -1.29176129983 0.437732984877 -1.29176132008 0.437733014402 -1.29176130736 0.437732997058 -1.29176135598 0.437733060572 -1.29176133691 0.437733036806 -1.29176127522 0.437732963339 -1.29176133901 0.437733037698 -1.29176128846 0.437732981472 -1.29176129277 0.43773298625 -1.29176130538 0.437732999483 -1.29176132233 0.437733016708 -1.29176135251 0.437733047757 -1.29176138095 0.437733076622 -1.29176141831 0.437733112726 -1.2917613168 0.437733015503 -1.29176135933 0.437733055724 -1.29176135228 0.437733049177 -1.29176131366 0.437733013976 -1.29176133117 0.437733030063 -1.29176142887 0.437733117294 -1.29176135409 0.437733052245 -1.2917613232 0.437733025582 -1.29176129873 0.43773300465 -1.29176135486 0.43773305359 -1.29176137007 0.437733066274 -1.29176129672 0.437733005136 -1.29176136679 0.437733062896 -1.29176127301 0.437732987216 -1.29176134191 0.437733042389 -1.29157754339 0.437584899252 -1.29163340476 0.437629588929 -1.29110366096 0.437205270585 -1.29140611786 0.437442536782 -1.2912777951 0.437343020646 -1.28964615586 0.436091124134 -1.2894022892 0.435898924344 -1.2881899905 0.434968240948 -1.28615197523 0.433452799565 -1.28740853559 0.434408337449 -1.28271770833 0.430725485713 -1.28769621257 0.434558155702 -1.28332253855 0.431179784533 -1.27873640941 0.427830214045 -1.28321262957 0.43109701211 -1.2816678406 0.429965455973 -1.27722476581 0.426607680093 -1.27869497698 0.427836222832 -1.27612217067 0.425758018977 -1.27413613763 0.424315467167 -1.26796606645 0.41981580014 -1.25894150111 0.413359176341 -1.26029765288 0.414137942845 -1.26120698428 0.414913363002 -1.25901340304 0.413487375186 -1.25653443977 0.411654992347 -1.26237573714 0.415967761535 -1.2571083782 0.41222026851 -1.25815360875 0.412948915362 -1.25656860857 0.412018809236 -1.2548908228 0.410680888798 -1.26073267431 0.414868911151 -1.26744849022 0.419473973141 -1.26416845368 0.417216726763 -1.25762932363 0.412821589111 -1.26060178593 0.414733346597 -1.25481152747 0.410888085749 -1.25881152124 0.413677570376 -1.25497451065 0.411140838369 -1.25661545277 0.412120555599 -1.25300140432 0.409923287401 -1.25309103999 0.410049285676 -1.25133997302 0.40891318796 -1.25474002715 0.411121607283 -1.25486517462 0.41129095549 -1.2483753917 0.407196808397 -1.25233826805 0.409657110148 -1.25130145756 0.409234381032 -1.24453800623 0.404662996669 -1.25180475905 0.409376528836 -1.25129008262 0.409201598917 -1.25411456051 0.411011665468 -1.24753352745 0.406856475644 -1.24951630344 0.40801757121 -1.25029949623 0.408576808916 -1.25410443769 0.411156678726 -1.25374669909 0.411053554859 -1.24974854687 0.408470870958 -1.25357191644 0.41085467926 -1.24414815263 0.405353628951 -1.24971464714 0.408539248845 -1.24998537275 0.408809490465 -1.25161817491 0.409797822245 -1.25797523381 0.413700908876 -1.25212027884 0.410266685561 -1.24581257608 0.406579349862 diff --git a/Content/Figures/plotparams-eps-converted-to.pdf b/Content/Figures/plotparams-eps-converted-to.pdf deleted file mode 100644 index 2c89925b1accb5ff2612614c4e359829600a6243..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 58520 zcmeFZWmuKnw?4WML8O(E4n)}v@=Yp7!Epv??cOu;N=4SEp;4a8g=Bvc&0swjAV zx6x2AurM}spkTe~SQ!;8lUdZ(#sTzdPjR(9zy9=RYFESj-YyE}tGQA9nw&iavy8cs zJ%u*v)zp+M{g_Qq@UKL!Pu_km2fq~Bc8>cxTJkMClQE}w!IS~RAfBz`MGH}r52GO= zpRc}TyCAw~B$JE}YuBi$mEjU!VBgZ3nW73zGO9KTH8%{wglk(ZUYw+#u&qofM z8}_@egkU}J#G}@qm*)+a5)kmC_!%9$@#+^;a*=!B!~4%yBX4YE@Rb75hvn)iA%zbD z_-KPrqJs}%WEB0Yzp@FVAcBu@g#W+k|NCvCee5IPerPpS>-zfjYjv1zNJvOhxVBXo^x9b1cey}!D>UGc@M8Kp~_St@^ zXSO+rMj<(WDmgK+OSk;hT+8yZnTpB)t6@tpDPIKz)|Dx~TzsE3XYiVh5Sq!#~ zj5u%psG9aX(vj!8b@S%)&o94@kDoMQ2^sNNZH$*ogpo~_7}8AbFD*p>anSeUv*AsFs4A76@q`|$X<){+cAKmRaHkDP>LeR=sF0YNriqizHA z>HvBLPpy7@ewCG#6;EmP^$k*~X>Vv~s7ZiG`9h;F+Qvks*IGd388(AYW>!EzfM%sl zQf%x9bHiC971u;h1pXJ{*?A zU9GLA$J;YwM-8v$#PgmN9Bxi_irZ^zPpng3?diqE1!KB^$8iz#`~>U|bpZ~Id=Ylm z6b~I;j)*Vn=H@2j=*rUZO*H*=y@lnzjP6P32pf@a?-4tsx8SZg2j z+?NRbQR}+b8OwYyVh5(u7VzPNW|JQV78(Disk?Z1##UDA3k#X`W}glhyNSV1#pQ5; z_SnEWB_j(uANaDwe5$Rh zvz@BdEYRZYz;9HwZ;t1-t#{osk*=x4qRf9WZ!NC@gj8eI;8G-NZ=r2(skhYYZnt`| z*9DlLgt$1q>KxFs-Z^S{!_f@t9QJYL<&G8>tKgCjY1>tk5R#GE*x1yY^`$>~i=0#O zn1`piwKav$xzJ&ypHZf`w*1A{8;2KadC$}~Y|YJiye`hb?N!a!CZRidUgzM z#?V$k=liV(wv<*qi9GAsu=qEz1K&Jwa3aAo%lcJtA#H|ohrooG7#UI5AwI17jXrn` z&)OzY7ryo~^=@Z$vY##Qq6<~mR=Msy>{PfsoxZ%-y1Y=Rdo|zo9-Om6GJjuuTyJ_b z_*v`(-^Ma!2$HtCF2sQDSe%_r=e-r9^WsJ7YJHn#sfn1F*w7~>(Q+M5RDoD1Ct0!hkh;IoLPMk$*Y`-Si1 zY_IodYns`aA?lV;C4W=cqkkqUzO?NIz`($yD=v+G z_+-j`%N#16jPZ&XE`sep{k1HCP}?N zI<`hB^(F?9;^hU$3katCj-9kh7HYPB4ZjR_Th zOb#bT&+XSgfH9?I`702q;p@{1b?%XoI1Rj24s=X<^3n8twXPgi_v&1p5HRsCUVe_{t4~PEC>V_{jWGG z&Ic2T`C|>#xqqg*4QYOR-NsHn`D0Jg%9(3PNkk1D1cD^|SG;j~Y^M}A#yvT6GSYPFIf1!@YN`D0PuV>J|7vXjK@(&(e(aU+M)j_GNdCbRN4;QGc(mohP zLTcVkRF!Z860Uc>lkeiWLb$Bc+awuJF(A@3e^(#)>GC{Gt1>G?Vr4+#*I4!M{<(Co zsRGZJIN38oNzKpQes#!v-QjY)KmzpaJ(=LgBOse#ZLa_7wD9K(i{W7CX-Hz?{MFi~ zuIEn`;#)+cVAg?4#2ZDg8eYQ*T3#PUVA({a`4sOSxW$pOv=(?x)!V*j18u+&s-T1!Zd z8Uyt8U5GH{b)SuA`#2$_GM5)J2Wy>^xDan=s=phAyV#7Ds~&c8xIq040*SglK-%6j z`22#HzP^#sgR9Fp^(cGhV64=%)TA4@{^~%RR#m}+3E58$){cgq4gclc4-uR8B)V?@ z{JOop{qf@iLqkJ8KE8@fpxSd`etv$#y-o)&T0==a$C%69-eNz*5V=PyYQAhw-&Fkrwx0i)$Wp{iC5*zof5^0c(H_wV~as4+MJ zy0Zj!OJ83pO~f}m92*NOY;aKZFjYF5KI%?mOBngq`g%T83K&NH}9! zPF9vtEf?3a1q6Q8&Rc~kO>+Lf537AB?;G!GDCs`to(2NM=%c+0Cp)|4Xwl5qx3`A0 z)6>&~Lqh6mYqLNEa)1fE(&FM`{ZlYXv;Y`0JtM<%C^ys1%G|ul>+)ipaILnOx%&fq z>(o@eNq4-yzCLi_4Q6^ljJNzf?c}j8-tVRA3!X>K&MtT0v9W|-T}Pe{ud59YsH{Bd zPTd1GY1$t%<@YJKpuQ4wHh8v@kesCC3s>6H1<9DmN4mA2rXmKwuQ6TS-I|3& z9A@DbL6MOv9v){^_Dj;Sk94wRKdfW8Z2x?nld}Q>2(ROrTS-ht?|ZttH-IzCh_<*S zY5)57V6t{>Y6a2*S$+AMzYa`-*MH>weTkCP!})fcf&e(9mZqkrdHvaZd!$aaLm#{c z=b@}dh1G{1W)QT&q#_^2n~rl(`rz@P=%@1Qc|2idbyy7k0gOZ2`<@v!H8GJ=0}HTB zHEMeF68T~v04S)a%0k9te#WqG-@b(qa}yC0bAy29)VbDvDHL2_;O;mi-*!JgajbFL zpaNlTMh3<{R}v!dQG8ew$;iox1mekrvO1!#bf>osxR#ihn7IZ8jFRxvQ%ihHQZB2w zl$7bo8t1jaoXB$wYinz8--qz_U^+EiuV%jqdY;6^$H&kry|LD-_i(kd+g<34Rbx)! zFuyDF6v#bTRs#@&T(vw6Lk&M-ewU()P@><1CvU&3k1`U59IV`jm#^>53^SD!eHSeS zN3_6E`;eNtJCTQ-f`a1Fqn^gb#_n!8&u3lD&Az@xAlA=`CF>uovN!EEC}3q}RmqYC zA&G~os;aa!Dw;0PD0}b0^IaSq2GvjB3w8MLJJ;9O_g%lE=-)Lz zi0I3J@3K^NE-)_EoUKzQ-Sk`|UOm9964{iFZ;kM`P3n!6al1U4&c-A?K6BA&D8LJR zDA(2zI1GzDYaGbVQK6}J4wIEdtycq3);IoEAO#`Mm$HDgc1dcBiCr#Pk#* z?0}-b?F5{_wuWODUZ-G8(pl>J=@|puF^p0}c`D6;`@KROuc(-`K2~-ddYyem^Fu;X z+FR7DXz*xE;rz(+QUFAN_r;g9jUkZ4Yg;RvljE@WP>5131386OFa2i2 zy=oH-&r_zcv7G@mKfe!r4Q^uEmHo^Oif@r?d(_v4jcnvybBNj+pAF@5m}0`z(#)HX ziMWEtE2u-*_%+eVdldY-*znD!pag>=UB zy}fnzRL$st9zq2CCt^KzU$x_YpTymU*O52^Uh=JBrZ)PQM+ux6;n*kJqJe?^=k&L3 z@w!Ew9MOct2LeY#{@M`<<#Ybz?o8(Ihn~iyy}Y7A#PKerT6r=dF8oXEo3rW5Wqn3}BD_KV%Ux$F+<*x?=em;;-sk4_tsh6p+k?;F>i04j!z zR!@(^?t`l8{*O{0*D5TbZe86WDU>qWWE)B6N93GVk_{Kq0&X8|iz}BprQKY2ZZSeu z=}p>b@(J%Lj+K1C83R$lwbjLacqp{HAVcPEw|mS=NW8cHO*x*!#AGlNtw5)fT(3r) zN$dOJhDV|1T#Li(&9QNdtzN3MG)f_Dr)6wv>K&Oh2;>B~8@WHR4}oC;rUMBX87M?f zE-oke_(Z2EfWZK8fmyHq41i%ooED>_qg_dSmHJJ7tE2$7*_fFrHtvjRYio<=wB+UE z^E#Sz9*aH0EsYgc8fXy0Qlg~1i`EcAu5fy^m#(*NtmoCevqjy^to zR&Y#CPQGzIb{YEq{z@~NV60a&>d9il4GTetHy5k_$SigvnGp0jfZBeDYB&K$!uH4K zoitJZ(YZ{SSotL017JT)OiXfN;ArZAK?C^H*-CZ_haNQ;pQ>#jlAqsY1+}}{z;@~9 zmkbR_lm?P2E6tM@-MV9rva(Aw&8`ok_4Q}?keK69!5{(x$xZ}F368xB9*56loqOy; z!EKy}jG84r0tdUhAWB}Wb3a-g%F7;~Ioz07TwDYYosj)v@FH6CIV<7h#5!$u{b+;Y!7tpUWe1`6-Q5M{&N>N_4lyrDqQPzf59 zRaA7IKL?Td(fSw&S)7MjfJ66CE}kElfPpMI;IP%doVhXKUsnLIJIUbz#9zZfFOvwI z>pVU%o9-8mULLvb9e3;zRU+^C-akE<<7}c=?R-(4tsfpB@cGxx@V2jYzn zf}~=RdwioaP5!{s8SCxs9UIf!les)UnpW5Ibfhd`bb;?K06cc7JHgc4+;x9hse4kj z?jsOuKO**5$RFuGBi?YKp`$w^lc34o@6dB?t*$HQL_*%}(6?BROcOzZ`dRH7>BXMhbVzA0qrxMru*m zEtmsCLsx#3pr9ado88yk<>NWpM@EiPye@JyOS2Z80EU693Bm)5jwJ`VMB3t)d0B(1 z^eW;tD9s0JgS9+K0-Xf8!GY;obx~oppuO_@fi4|Ks8{I@?a3Y2Zv`4NS3YH|GeH+FG_-G0&3)~>0knOLS5e{`i0f{{K((wNVQLkZ^AM$ST8+9T;KLuQ=6 z=ir3dPE?xO?ChlVWvmP_(5nRsadIzxkk!#bholOF=#ie!2Tu^}D6NRd4I%25l7WLY zhf^mLydvk_A$44$4s}}P1c3yans@K^vvq2A#hQ;cnZ6(+LO%VCJQ0vw4};ZHj@Q|f zQy;|fL{`{jmhE+{Jb&(@RJ^w|kP=GNoL8Y+r{yh&1W^P!;5UYKqhoh2tQPs=U@fYc z|C~>wGPEUlCWs*CkszCv+HPGPJUvn&8P~-U0U|m04{}A@xi&KRnYG+X3Ml9v7>`Rh z3F$!gOrDwCjftwr=^NPO%&!Wh|1-)oU3(_jxz>neF|s+Si%rsH>79eBtf-Yayt@EL zox!2W+IqQi*9+EgnH5YNhyXzi|Lch;CUV=h^+)8YWz4ls7eF-(sMKn@4QPO zp_aG15ZvEU|B{teH3M0wayT#cA|3-e98wAx$dLEf`$=tZSt@i9Hv+GA2#}6)@h9N0Y{~OIKfdqf z@e`ugNJ~W}voZ2eZaGrHY(ZLp^B&~s!|SMeb>EyUkAs z^3PFxPW(=E^kYIUi1(Z87EyWH+|~B}Hb2@J1>R=>zf%^fMqQ*?+SVI3&6pF=T%wZg zvV!)XO=KKZ=K3=BSF&v`=>v2x?8I<5OFUp}-Vv%K`C}4J62&>(RtieDf*^Y%nku zXu3m5X4D@E9ee8~C9+WRe1MHjW-E;2wXHWdfkg1T>mx7Ywq0(*G9P8p`phzNuJMyz zC*H%ug=g4e$n41GWLHKlC(v@l&pczfL3VUhPYc?;O2Z)T zcZy?qtw2=cTKYWhB@3iDOfL=-_B;yP8J9P!)QcBXHPY? z`r&&<#?(g$2*SnJFjU~JTeqa8(u6MO!_*dbm~|iE;6QmIn)7w**gA^Y0LD4ntX{ZX zlD{^*Q);|It%ZXFZ!g}MF#iH^4MTzi5?=2Wf4)wq!dn54Hv2&d^7mCd8`HhE;rSZx zVYl1u2vVYLjlMab&)gys(siucof6P(iuUC)T`F_VQTE-+IdD z+e7(M8RC6Es?4|gbMY?c<}yy*(TQ7ZKcb`06L26vrat_Yc3Lit(Oj))5fPWr@j5=w zxmdm30Jub0mH;bvw%3J{jwgvgeD8(9>s--Wf=M7#RYvM|w7Az9N;+_kQSFe1L*qgn zw9tt*^AeIedJPmdx1@`4c=E!SU!C)Enn%>X8s~s6t~FftCy!3-c}F{4X1qnz6SdpY zg}SYcmk00St7L7n;X7|GUm!nxSo=fF7qxbH?R1Nv@eYFU4#oAshj?8sQ19GAZ+l!2 zZ8FJA#O|l(cbb=sV# z8IHR+htFUBe38#~8?r@}Ju@^lbpePGQ&UqQ<^YK6-ob&f7gk%juET%BTQ$?!SXqmU ziasf(iAYMm^Y@pqu%LHW%#_9(!YnK-)ULEKo|q^zw?E$2Ka?9YM+sQ$NAsLqYR=12HHLwW+mS2=QK|zSbx#JB&O#c3#NNr(vZzXt1JS zN*fE(k!|lH;If?>85!Bo&~UOI`}QqjkR0&MsHLO6!v(MMcp_ut<0Z8C#Kd`ojb%k~ zz=`_<&=zH{TPJYaZmz8Gc%C>6VS-r7=mR4aRXRwmA~_{$Qu;`}#YS%Kk7IQ>;V@6E z$c8m69yIo(D0rQ8bAvogrdK=<-ySM%w!C?ROafP}cpi+|>ueE&S$$?c>e)?v$WJB* zOc+=^0s_L$&dzFExnV1&sp%4kxV1{BksWuow_jAzKYl#g*T)J{oUzzW3mwrF))O{U zweUPxy@3J&qXvunAs|sKub$yQ*!&koLKr0ynG!uP)40>@&`K~`#&f4gg@%o*C*P>p z0I8~KCol3W^7~{Gvn(!I;rS!Ay#D$24-7=ziS28ePsMf!O(Bq~exBNrkIl-cXril3 zAoUC+aBpXaP|(BWkh|*D9I|^P2>n3*d1!d}ndw!$CM7Rl547OtS91VXF9dF5;d7pf zq+jHTr+K}XIH%uaauw6w)YR~yIU#wJ5n?xfe1h`U!2A*_NW;j+R_Y)&S^W*l^Sp@S zJSUe$Oyl0PywGLW$UYR#Cc`rfj0Z?a`SO5yXQ827G-T!IO18im_=yuzKm9m)e(e6H|8EBSsqjh1gS+f8KU&X{jd zee01&_J;nLXB-+Qfs+3VyxiP43^-39&;*nl9rle%1s@h9VX%5BH6IZj=Qj&^;vsBQ z>hbeN^`dTsXhX4Kr1$x1x++I&V(X9J7#Os*(b~_Q9L%qFWFMJ!6$3KdjzR`BK0N%( zuHs?mdqx_aS{J1{>g>+ms6HR(|L^6Jt7Zw)0 zZu`sR(Bs$rk0bz?a0VjLRnnI{C2in5W;;gXm^C?U$-MFltF;=Sip3N&*rf5}_pRZ^k2O6v`ehmYNwG8)w3I!8fOsez7G!g*X;{ z!pr&oG=M0{#d9bnneXlICvsXo1JG&+5vQu2nq1d(y{9`km_09V-aj`=tu?gv=|zS0 zS#cPa(A>eU@wi0gYM1+65lS}dYvPTD@>Ajb9#ED2ChM%gKnZ=Mkl$*W1 zez;Laqs6Vj2JBH=g>A~==`&bQY)Yblc9`5P$U>*Ni{s0eig=dBPda`PAJ&TWo6gS8 zHmB;eX-<_Z%sE!GehF+)#Zgp)g}&2 z$@=zyg2$7#rQQMgFbu-Rxwz`!dxkdhDW2k;v6cni98Qz+t~Xsh zL;TwaqgD-9X)4r$KBcn3>`s`u*2%$K`{waZ<6~rqBI94HPw_@3*5&Zz)K=H5vF%+p zU4hKInHdkHcEnr9z7pfLA4UefF8J%P*WTVzt>HR9)IRyfDi@C?eFHLojhMcp;EDmk zp-#Mp4Kz5dLm7NF1)@_`3y>X<{RsKKS(fgF^e(a7aA&QgKI%xI1~p`CJ&tHx~>TJcU9%VlRvqK$B#-AEoF2Dv@2GkFC=?y$QH%pA+93DgYL%`yh z)~2UB)UIqyfEYRjXSk|#3Jav$ul;nCbXz^QvpAZfl>xW|EO_?ahaW#&)B=l&%4jf% zl>sfmh1HAS2t{ucWXefxPj;!pEQz_ci2#e1=i2>y^U`^#Sxd8o*CWnmvcI^gC8RbN zs;oTj;K9dNZvYrUXK19n+j)`ZL5r)Yn!z9kO>liGC_~a=n3!h(iR5)s>~3g)Cc(sj z*L-SwGJSbWU@@{tQ@z+ba$ZmFC7YGykt+ld#{BCfc~i(I&*M~f#4a)1-5EO?`}R#S zgs99EOD{KpU%deqoHxtr&C z>a|)Rq^UkqntZY{C+g9iez-x$5>9pBH7&4+CFZ9e=EAGBU1N($tvOC&uJ7A3`?E;V zk925T5g;AcfzCI5{jb^cdR2{)G4i>5v~c>TeSNB>4>u+|MMr&Z^BYDpj-?@{a4*hA zIJV!fIHE~0VsyC)NxkMsVEaenz`hU>%c$ipPd#zGMGaH_D#+UrJ;&ZeMFoH{-Sjsg z)P=8>Rc_vZSWHv4OV20ueU9-kitv=P_K?vp99==nh+{)n&(LJb+6B zvLXNg@SxXJzT2r05TKfKm-#2JCvUGwB#kM^lKF1cnP7z6Q_=v-LjBjWUhO?hS>Svj z9Li^;$x))sT~GA@O@Cv&Z@gR`cK6iw)eaSKa|s@8cZPjf(3O)tPH=O@>v#h3-n|xg z#h~E%a`mIF?9IslnC3STO_$HBe(m0n)sZm0jB`kw<>f|+jc-JORK!-kDiV{Po*=^drVf-eB7r-s;pdDfTnhst7XMc` zAaZ&hY4PtAJi4jWo)nc$&~d8M81UUA9$4-p9QZOi{Ppe17(0{*142Rk_eMbCv*hNo zzko>NI9?23PTEv+bM0SJ#W7A6iR0O6JS#zf6F3F7Vp0M=qBmH4-`8iGm>yv5*G#Zf z^GRO8`9r|U}JzmF_E`f!LQt`*q-KKs~4v5tT3@^X>)Qg8;d!v zH+zZuR}?`^Ka`#U|Hc|K{&M7j_x8Vfaoh8Q?bSJ$$CPT3k(C)B={-|cF{4e%^*UzZ zdHgX6KTq*>??V;s^1zm`r93y9hy5UwR9-_!mAppgQkxs!EYZhQ5Bj0cM1DDrmcY=Q z9dCONh%KkgQSb$Tw$z@#LxILpUx*^Sllu!}c*kr`x{3`?d-eWkyrI_QH@}o!mu=zN zP7bBe%{SOFfPPgLE6=TjF=LtLsqZx)2*0@A!ZO*!wk03HM5xMibA(o})ohg=t@pi+ zh+O&kWY!WN|mtFKMEH-3qRb&&@e^R=AmhIDvE6(L@c7q%RPBKjI~KWMzEXx?NJuwu7m0V-Bvy3m zJ*o_v1DUide0+VQne~z#-vBa?wzjrqT^Jx43U?;))y{q+_xetgvYidgy11nWzYuxW z!tty6USO&|rM2`=vzzwEbJji;Tj}@6h2}kTIAlzDh73suN2>M`1(2Gp$4W9YGmQZ^ z)x*xP@~DQrr$;$9I=nBvs~tPzG8+t#Qktf#>`(Yv4t4S9!z;NxPp#9) z5FxnKzcN0r6edJo_t%c)4Hx6mAGksQJxJ zIoPP2exz6be9!ZWiaAzH0+N#r)9(rS<5GzEoaI|>a&pejMjCz1?{xOPSD;GZiB!N; zNfEz)A#+!#I7{n<7~=C_aa)T-WOS}I46rtm-BCIV0r?!TF9aQyvE36RB9s9YLS20X zuxxVb!v_F5RUcUm2lG0nlY2dY zUe4#J@VjsPXzzTRV{*Vg*V0#PsA*Gi6Y}*c0Y=ma{7_316D~lWrX~#f1ojqGa)fDD zSgin2c>bKk9fS*gGO>?}^RwV0AmbqHlq>9b&g=EOfJiP*xYT52YA=X+)RxoZk&s@g z+2(WTPO)ACW3;ZO$LYyh*D4-_f((f99Z?Nw>A<8U9YsaOmoJMzCe@7(O&351x#W_Q z)s9CS6C)yy%yr1W24H+zRWnd(S}Q0PP48g?y}YPCN)$|T+AwHac3QzsgCid7?^oVi04Y81b)ZB?y2IY3wnwZ7|YR)Y( z4C^%wC%k90xwDAT0J9rrOdf#Pr6GJqk(w1Z4=bAPm(A>eL-h?5itC!;DG+*yhmb=dK@vlOpIN~;44w_}!8f&2H{ zN8=8+mP~t&jb(1#f}SgP4(9N`_VrsWZHFj209Y*WZsVwab#*n!uJwV!iP0i`Ej^$& z7=!e{;i-&ChA#qzf{%|6$Y&;`BK8X40KMf8R(I@Q9Bu8vbxnI0KNFt@=P15j?9Pyi zw1dKu_~40bhkRk;bc7IW|G1{S646nR!j6cD0Nkq%JGB&!Z!&jy01Z6GdS`F1#{I}9 ziP!Pn^bH}KgViCB2Q*fa^=tzXEl3AbXNqwU6DI&_xA{O;&Z19&R{84w$^ekvzFG^Z zbij8`5`_Ec>7ZlL*xQen(NzjCF}V^30kqH+D`t*}qm6bI719W7u9_1HJ0~Xw8k!*% zI(k2rkHBZ=EnOg%ATg|gq9X8Y0~9nAIu<>A_|O^7q)j4Y2N+>vb?%iGW9cAMTy#Y< zNIf70S#Jn$2ub@$kkKU)jod7rhW%HlP+-{7fu{Yp3tJ+>zT=$-nd9UTTw)+L9hmyQ z3gGgl4$L-#)ZYlqycJUy&Oora33$Yr=PgmCg*q#BN6VGdsAVCLRCLhf4=vnbye5{w z!1&@wsN-DdTT2Mw{{oJSamRcu4w^%KJuY5!rW+FE-IHq*C_e&I*;_n&VnCJRmJ-Bn z`bqQ_D&``mrhS<$`N4X7c3fun+)YT@wXgP_jxL}hHk*i(miL6oUC=|49NN~KSR567 zUyUwE4?2VP7Sa2~wRxZS$$Y4y0!?RdUN_8ArUq14w!km*XHKGi;n}8NIk6#8*OL*J zcRQHP!)DSsITX+?pY`(aD6u+Q1sqhnmf&Dul6D6yTSM_&_z+UxU1uG`BL`J4oCEIK zPM3OlL5Ftd+q;;)ejUsw$n z)|{_6>^=_8YTw&ug;C|j5XI4dt$rH5H&`!#gsdEdf41@lX@2I(ojXRx&3R>oTG7SR z03ck(2Ar2%Uj!8D{{ts>L6?{p!#yB7+cff_T%oC~v&+f;3YO5>OHil+ii(81E`AIS zI($!kG7UYoUI}i;0$f(0V@BLkKylSR;9XFJDscb803f@IJBHBiS0j&BCld(9xLMOS zCxI(TB$)U}C*5*{?a=UczBV`N?X)n#h|(%hS7}G2yRoqWdtNoWv0-gu0uV+nJw3g{ zBX0ymJJ-A~UxY0!E&o)s5t2Xp`t>WIzmYwD`2r-^>7V6a%@bJR@zGI|&d)fKcvsw6 zSe1zbpaA3nGxfbS{`N0+o_DQ&3deee)i{Tp{hZ7_45BFA8ppL~(6IRo3Dp9vaVWFi zuG-h7u9=z}-YftYy@f^Q0LXtwN9rl(b}wI|fbu3REavx37*7Cb3o1K`uL{~2LFou- zW3rH!&5IX`6;_%D$-qtlZLzB7b>5tQ&)BC3P&Z{krdIFPhu?5F#C5oWse!=m-0dRO z&KMBDY-_zzR);eM-22sqXWjOHc6z1=GU>@6q!z7^=z>x`#2Yte=jMjq1DPc4>FEJr ze0fF1FkFy~jBITLhJ}gg4Kq-r1u5yrkWdwIqlLe#7fy0S+P!g{*@r;J=<1coDQE>PD9I9tV} z@g>uk>>?Tf>cqjpk%^{nj%Nj%1d3q@mX$0-f5E{Ny^B4W<(6=&h;@~n#qO?EgYkhz z06dJB!#QO_J`h3_Yr&GcySj+DtN=On$wADgPqe^OWM+neby?Om0sqm;%4+oD3anQE z6^d3h(a~yv4(S947~^+INd-)MNZj2|L9W8j*B7YbKwlv}y=kD@@wd|~enZj}y{al- zH4eeEdiX>8n!_>{={(r1nVA{b`_5X`v0S1&A1~v~cz`%SuX0`aR&_TaCj?`d$)^Y+RAm7~7Dc+6{IVmdB2(sz99WZ10L_ zya&mKaB@(_VW`#|I6hIH?VFi(_Y}i%`-N87r%jBfL}-qNo9M1}O=NDgcba!4(~09OebAA|as$ zP!P7tpKWYu2}&9B3ggIea15=jyG4co=bw{du5_d%s)Y>P#{g=o3I$-z0dudxVu*hD zUd#+KNO>F}|2jp8=XX{nt1aD&`5sc~Q#^b~U?oU{0T=26yD9R`o8Ow7H8nIoS5@Wo z23CFkT!aneudaH1?tTIwDguVFnhuPE<$I_A;QyU()@*@du}a|jIWP4j0Y)<_9(|eR zNN6(~s4%D_u}1!_GWUIqnIt4a%=Hygb_WcC2nLRK?6}Y%sMiHF-Xbhk_fkSr7M$#E z-KrmdpIagb!L_`$9jISpm^`SUG3J1c-Z$TlOAwoxiUh%x_}70tad|wH7wf1sT4ir! zC<+YncsdnCG5Bxh5rLKjT*%F-g@jPDOa-B6u+gbr|7zb_r0=jpg>=gl5YrMnqVEd{ z>DJ$X1abmeVEVnr#-^2dseV)a&{`Z&^o1KL;11m6lOsJ{VIiGNX%0(#xg>hiQi$*+ zE>G=4nmwt!p}fdvoFmx^E2~4!n%fz)enpctIeJ2Fd*Yi;%js>vFTs|QGBSE#xl{p zi5iiC;4XAB(^0))i(M-(Usxjm*W5JWY7Shrn`5G$C);{=CMq&e)V(I6B0p2o*_F`GQ`VX8J?)<>46M$ESJ&Ddfic=8w!Kc8$E{?UJlZ-z_kW15O^9D{zZropE=96 zLC#(96%|O_dNCn-8_4N5fhvPDb#VYM0AlokBd>Foo|o}0m5-uvIdo%VeZ4|!7xa%L zZoKR2d*5pz;K{oYP|3~oTykfJt@8G-N#vzbVlikj$dK`f04D~1Y-2N+Dbt6c&&W8{ z&>KtJcbgJj*ytB5&CJTx78eduBv-EMoc0Z_=@Ih6E%eJb~9$lmW_EG0;) z1S+wv?ewC4o|jihvkhk=kEqv$l>K7ufi+0hDQPexC}yQV(_hUUTfbME;-BSofx>;= z4kBu;*}Ajthwp_sbudB&<%DBEx@&L4_F zE>LCU4!d@#aO*+Zqy^n={~f)Px!ig~LRi=jrW+7}YcxplxUumV12{(m-q!N9 z^?MiRc9kfQeaWsFwMFd16HYzT0M9S$IZc)q zcEO31>&Y=dGkEs*MQR6^l&1OX6g;J7(6V9h9(|#h?78WJ{k+pp@#(WKzVgLzJcVvJqj^z6tj4VNl36< zxOmRhk%@@Hc}vwzFAaDuWdLFii$jAnM=AS{oGsk@AUaxX2poCO-P<4wpl8wkg5MjM2-r7ax);5wxF6)jR89gr@vx0EptIj_#GUccwED0UQ z0F`pG%21Vn_)pi!j^N-ez`;M1kZ{`)I5~Jq9nTq*B_CbG14+HAeG{Yh0R@C9&J*cK z(ag-wDt3Tpj1V4_$AE;~zmUDiA9_`gb~QS#Q0*dJYa4mv*;!k62yDdig>WqMo~xDT zX@7RgF4i=apAWAh{Y*W#o}b@yVg1~%^8 zHFgy`=a89GNLkd@t&1qu;ZeTYldLbo7Gn{Otu7;D72&gU3pSXbJo2Bz1fE!#4e7yV zQsxey(|4cSxTH*fhYKT9I#_iu{;~KhuYR$!ESm2AmGCqFJs`o$#Jf1~=z+n(t`_GF zX+OU+>_Cc45X>4Iq@Xi8Z;-v(-y6d8Ak1((n76qDS@!*B(0i5zAsC#t@`%Xaqv+;0 zdticRa2lQJr`_@GqlF}NO#nh8Oxf=SRO={l2SRl=)9@SHFBcUeR5$(}7n{&8e2f zwIF>Z!^J?OBcUxzH4P8u;t925L7LzH+LSn88Re6x+}#InBSLH@xIigKL=A7W8|)^m z74e^cy5}mQp@@CiR9_l|)}1VeL1Y94-23tBXamC_vsYHX*3au20W1QI=W_;MTWi35iFG>6Pld<8|4dGX5>oc4%9`OroE?Y8S z+(1kggbwa0XKb~@OkP+`Rr|!F$*4)7VFElU;-af-PF^B{N}~1kD>=gDN5X=^+rWhb zJkhH{)y))RK-1p$WsYUe)`O-sT>QE^FTvHxhc#psCG;vhr)yrg1cH0_T!6O;C?Y)OcH^!93I}=rS`YZ{)q5lcKj|A9 zvV%Cv4}&qg$VIbyw?64fZh<|nb)Y^6N59L3qA9Q1k`cL*}UY#YXu6z^2 z|M2b_cmIB@b!t$T0tgRP(DQ1G&Vg(NP~zu*^)8Tl&r|U37Vv_Tx5yYLhZD9STrGgA z+1atV4*~W8sHGdj1aGk+1g{m)u2+HD1+P=)i(_b21S4a1^&fX9jD>}5PJ4A)YT8-+ zSLA%jF+M*(KUW<#m8Z^(U)$K!G^PN*I6ozL^!)gpu|_&@?Mqp*t1hSN-0SM$T8<$3>O!;RAU2ObEu&`W6Br z^8D^IE8)tD3N8)~4mP%Gr;T_E!jG|?bXw{~Ka2Dzkv7(}aF|gPr6;r=AMTnb)g;u*F->vsgJq@hk z!ayllz}R-8*417?p%+BLc~19u>>hL)0X{##JbQ{Ke;Jt~uggp>>rcwm7nYkH(X}U+ z(_VY=qw8C42U7=f|E*@Hcz8%W`tsrw21q6VsRl^G$jM!id%`pB+ujx=Rh`IIynitALfIa+@7N=mYAV4K-4ob44*$wq85+E8`yX%6X}SVwDs3-gaBRVRcVj=jNcj}`urI}{KY?4dhIfiDF5|#orU3jkNJCW(YTJz z*xEMDg$`HEB1wzusvrZYvC&bDwLDNjlcQZ(2+G+`V|y;Nz^kn^2Xn>pCTup#w=C-) z+k9aAby4GbW`?@D@n9zT4`}P}FR@#YZNQtd0G{$J?^%c)hCTrE0F1||UibrOhyRPS zw+stv>$-+PQBn{jrKP*OTe@2brBje@kWT6D?gr@+>Fy5c?v8J9&V8T9b3O0({&@N6 zbqRZ~wf0$cjoXFh3ZHlFS9e;OR&otxm4tXIuNkVt}2DZ8y< zLO?T5<|6Qh?EcjDOr!2@pyS77cbA`yboUDgk+FXO7ix#|{W;a@Y{1ejKtZE^Z~Q-c zJ+E&5LR~7Xmi|wmixJE6KeV$?4E)vl<9YJnHzZ6oSFQh*t*iB2?&_#K2UwqA&Re~vb7<%gzr=MrvytQUEO1#0|4~UlA4JGF+HdOC8X9Z zSA~%o%>4YF%FDI>FFdD!W!MxztU%jMS+zebAfUXaCKPCxfvLicw;X%bJDO*r!I)t3 z6CDUA0CWYP$H@kSe0X$fz%CZG*dP4sDlf-p;i?bzpo-7WH&#=_bZ$i{-}%?5)csr@ zUg3ovvf8eW`fGznhn-w-k=%mr<5%qm7*H;wi-nyi^J`79x*irnu5D9*QXSEx z?wf`({;RYcnu#}~a|n6=K_U#lZvlN9op$YwSX?5TBM%`&x5R%F^}RbsAZJoznOn48 zA4vO@LairqM)z81anV^&laMJ+a)!XsTfMu!J>9YjqolTszBfdi#{xf5kNnd{E8wsyW4lHB^A zGRn-{k*ku;)12E%F!W_phyo}sPF_HLx8&2RiWU^g*W#&5B$D481mrA0dM9z45rE)V z`Oiv~zR98fYhCRxsHLy20O?Cowe%!{yZ4iB+hJ&toabawdK~8ZN0}GHO#egC5D_pU zpNU_r6AIb7vU2+*u1=}C@#b`(KTnk|&>!&ob|Cmg`d6yodzX1b0c6JMnz0WMB=t?C zOP+WGB5j4LN`+Ep)XKm6*4>VM<_E&PTUHJu*aQI!v{` zf;dY};v*VL%*Q7oJzy;|(dx0-7+$K*p=bv(>>q*ai^RNiBF)XrW^wc8;qSPUWIu7a z#O>|pnna%DBw+cB|!a z&EgIJ$Ui8DN;5YuJ3lU`T)qOJ*VA$L?JY?D?i#zlWvrnRd)ltfcCysrn-C6TC@VXjpq<*BvH96Wjg=4hT>MdY7cc;T|E^{rL(}(zS^T@$0lN+yPD+Fi+M|=EL$$Na#U3_n6vL z2@#ZW`*79vZ0{Mi2y(*%=~01>j;=lYC;NASAp~~zpLE&m>@)JF$;q?5{B@o^48^O* z=&OHv;a=8%&CT0P?`*#@=(JR~#B(`+7?5U|^pe3$?JD22PK(cIvZBWW!?1_mYz zWpP6%{WgqrvX)}b=TS9pz}L%14nmh#Jr;fUZj0c;{m~7?wpX{&1PPoHn505FmPiw- z({{yIFcu3EyUlq*U7?Vr?*g4t#;08!se64UfyW(_?wPfG3!Xf+do~^93qZ^>jNr1{Z7gGrjgT%VB!soSz{8 zevn9lkyBa-#?6z zoeWSY5D%WThZ7l36?>2Tz3?6oMw(G35IqtQ#!#xIK&Fh;u~9>|NXJY{#ZW*Xjjsax z>bfnO%6Ng}&(|zcqS*OzN4wm{W;vQ6B%c2F%ksJLqb_D;R^FBCiHWMk8+wpw9Da#4i6Eu4vRuib}(~f3k{JdE(Bw5AXLm#Y^ zJ9YN1o!8C#aOpRWc&d2qC=Lliq+6aAu7$(;q-_e~?_b%r+7VqIkg0S${f{R#EqwaH z!T7TB+?JLepE}dD`Qn(!{(gjzRINveuB;{)Fjg(0 z&lP49s0PdEaqO`~>jGwg+Pk_`OYrfY>|*E*B5>IY4yBy^?3=2AfvKpBVHxmDsVJN;muWfdqXmbl=x6MUK z=9s-^s}Dt{jMi&u>A$-mbAC0zsER!e9iYfos% z+ZSZA?WYtaN;_+FYy~`B^bunJd@i=TqpM)#dHhi-etDYVra=tJ;S45)SNdt8|6UQZ zd6-o5t}rIvg7Z5^a73{j90jr^aN$4F7=GSZBj&2Hr7{mf;Bz1qbC#SXGd7CL`KT9X zOAsc6yn z77Mn{y6uzSavS1{{5<)tP~%wsQ+(?6Wd$;!NHZU$O{IX#xGRKx71Vq6o zz9V{ge7+pYcKcpXF8$YXRQHX&SWyS`_~1JX_j# z8;7gGa_(~T$UR$$#Jc-6zxoAxKZMhz!I+CLWJscxqIg$U2ux);y}7vma%!87p&H$8w>#AVB<6M> zcMM7tVAtkIu|(UArq2>2I7!WgG2L8o=^=8YBk!H=*sCmFK|(4GvnFTiK1KO=%C=e# z57f{Ybb=keV6(D}Cig`6OA;(E(qRCu&30Kn`!ts|yB6+=Z5o zx?#hv8nVHjs%5%@r0PVQum9`oyBm=gvY4W?|5?!iVYO8wle82A>5xL=&`kYT=(|2_bv3f=LXGA=%Q5caqM$Z)gXv0E!Ns57l& zAmMn>;u5)=>W^tO#CSO)5SeFjG*!STA{m3YEUs!c4H5rxT5ZZX$M&~VK{7Mv+p21c z2D?p}twkQ&!R=L)?X?IN>b17#c`DM^or!EcTDPj6?doEPA-33`F!SFHY)6a4Ilcc1 z-mQMM71CkMYCf;xKwXPlx;oPBir}ldjTIrro|0~VT$yX`N#i9P+%s3#bqrURG$o2F zg&fg?oO7M?oxfiYR=O0776K(VAan8x7M23YK>c(yW_&vDF~qa^H~57;x8 z1F7*9hje#Wgz~hKS(#s9$Cz9{EHvCMAW>f5+?8rm)+pTH!E$mQl}PlhW>i z^v+S0l+}yh##l`!8s|pbR z_LWC!0g56192H&~LLo-IM7#os3-vu|8W5>e;BcHEkt-@v?NLBNav=$Z? zii?WCkSs}<8;j}W9w7Mu9jka0`T!sYU-Yq|rml`dq8tb~iXi)XiAg$qLcr&B0pub| zB3%HaU~<`+?JQ|MD+31tT^Av8BP}Oh&7})*>jg6McOK`RB%3i(>jN-5Blro-kqmNB zDX}MJ*L|!3LNEDlxFk!@KKgA4lq~Nia;oZKhKQ`6aRPa0fK$3W+^N&n&Ckz+{j%Dh zWdVG#=uImd8z8*?8}QFHt4+{QP%_Bd*NES>ZvaFbz)Ir{#l$+uIe66Vn4|;O54fBL z_V#`%Rq^F&<>MUNNgQQ16u~&+?(TPSoSXfr?vlCY-G+@ zE$D=h84uP)-Z)(X2y*A#b%R0C0;T*4iv>=gzJ5h^d~(tri32440HqE5xD&R+p_0Ew zM~@+qMBn@MGvJM8?kCt+%Ku#vJo>3-tK(P-8mZns->mPt9odIy&w~%G2O>VdAF?JeCd<%yzwGCoGq&!CxkT=A}!m9giUxNAU*)!0* z*x1`MGc?S#@de~JCMG7cmXBXvE2(+|RWv{uTL5Zg@5A2#g(J{*5IY7cXfFZ%c)W4w z$3M?xq_#DajfA#*qMxVDXFE8Z{#<05RLbL5$Vw+Xxh88i+1a^I1c@^mw=w&VnZ22U zM5zQQx{sE7Nc1m~$O@Fi|9UX-IvC9|9nYYkr`{1foVM{eny!Sfs3<_%rlzJaI@LG& z;}vZzVLRSQ@u+!&+^MxuaJbXZXXQxOXpFQ?)YG$S$ZDfsFPgAGl`fCJ^VD{~L6*(8 z(oj4w`}WRTPa-;cBI3mus*+pq(bk{YhW{901m!djTk-yIWi2tTLf6&rb@i%4=)g zFZQrZ+FF_ie(L_`=|d>*FbJw)`_ZkoV1xjY~cM@h1gSp|At zDXVjIT8-0r@wfYW~lSbV5qWiVq(e=QD#{=gs+hYfmv+h*Yo`sJabvKb9cZ?$#> zalqKhXE{yh?2*+KSwE58ZPO4;NX6Wosvy(JJ1kyq$?+koDaOQv0t@SPIA$Y=@VZmO znp7AGl4kb@Z;);4_eI%#(`AMNPXxYgz&g+0ikk&}qLB18<)2}_eY`X$)FOQh zRQYm7ZcIl-nEMSRWF(0OvBrlNoGelC29(_-zL851mI zNRF>w?%AXwlpDF#;vzt`akoOVHcciu>cU%>+0#2`%HQ7~xQ&22hm4pw3)nOO(aw`R z;7Y&}SjJ|#h>3~$lP?{pxksq)g2{q4P2B1#y_;O^7PrKsM;3^2O#s}xp6@8Dsi~EG zsN0z=4yq`EbxXdD{pY*>V&!>*_)4lFI;)6|=@mu(Bg)^@QEQh?x%A)FXRSNBtclqYMj@s9g6s!dobO z-fq1RiKHaAI_goxTcs=*DT?2$dnWc*cUUJI(()MRXLcA^O*ySm@E9nj`nr&;=|N5{ zaS}YSeY{p2EMkb5+?eRp@8#JrMTNd^ob`gJmGy+fG=Zs62en`h)$Cu{POko7QFMuzux&d%V@JnB@SHC z-~|Q21^EsQ5fLVDlEN>jW;dS?bspAplFoX(SiN~e!DN90wcq?>VaUrnb3O>nB=t^%`+0lZHss8fh%G^H^|q(5H~Oz{ANH4!k~!D?ma|K) z->AP3u{-c?OC_x#w9rpd;6c0{ODiWo~ff*XPsK{oceiXw z^_1w-r3qTCZ7;9Cn5nqGd6AP-g&t3bzqQ>qLgY>^QsnBaFQkO*@^WXZpXSH%#|C5~ zu~ECu;a&qrlc;p&iWY;JiY?eTOpiBiH&rTQIRPwULI4gJovfhi4;uDQ<|fU}KyjxCOdJ7`ov7Kr@@&qm;>Gih)c)n;&k{Nq zRS5d7wgQ(oT@+^o-QT3F|fWD+{t9hJ-t z$g#noEKSC-N0Q!8*N9Cm-Hs6Dec&kf&BLZr^04d-wsE%ca6H|TOXWQ}qnNLIj^qu2 zwMUtzPRzqj2BxEgoJQuxB1Io`wFs3otgSoRkZFNpA% z6Lj9%(1%*Z)}L*kZim(`RuhNjWT>d>fuY6|qO zGI_UKaj-B57zJ(bq+|faAtgm?_1zvwQl~{9o>bAn6eO5FspQQOoZlMB1nwkj+uH$M zZ|Y+HD#V0l6QS@L)uBRh(xEQ2n%;-pUuqkX*RB74{JA-#NQ%b02q;tO)}7DVINf)Y z);VXome`=Yk#xTdmtf|j36r0hRj(7+Cs8K}QTh}4>sa6})} zdp3gunRBOt3EF|ubyjI<>JOM8+3nHnr}>7}pRj4fOO_74pf?WEZiZuf@u%vIGfQ$V z)j4!)*o@5(arrR}8fmpHg{SAk>Pm-NA{hK5N7>karLjM^Qpr)QSmLueoxouTFAW8Z2lU8F@2#zKVQxI5pVf)pZ){#?z`#r||Q z2?m`n{>xvp$#Z!Zrkz|>Wdx<}q#qe9@g}-&&L|kZ>WHF&YL|qv9T*6K?l2I-ZQ^&R z|5#_84LavvH~Npy&jEeJURYQdR5C!;e}*wd{`=qiVP>w|xv|ITD}2XWwASX* z$97#4N3aW3d}b;SS#eYwSetCxYyz(v%$Iiy?*JUIwV3R7bdgiUMtbk@`*09fLjaGB zwzwff7hG4-F)$s8faC zosQRFrsg(EOKIR7puq!UkqWmhXmo{h)%)7$L(Mj@{R33`j=VMj$7QwzQ9JU7nsm}N;5QQnxkbP@80EhsnN2P#v<^K3^jD2?r zbQMzhE-x+yMb6!fTe8B#<+CNCfnQhVwA5ei8o~^|-M-kWhT-|7UJRh5kVeBFO zy=!9`_2J7N=K4<1@^heLMiIYhP>au^AGn7}S=E<)t32W+@awZXAhF3a8R!SVG}t3W zoF=`dW_%DfoR|dJO=l4{TW|;ko0KND)}E`w&)Ryp78P#GfrP3B2um^!N5lTdm+4=) zLf%Jxl7LhtrFgm=YhbvnRzYm~3FwgWseu&WJ__cYou_txCm=%A$%fyU9JE zEA+m;i>G#}GL2w(O1A#`cUKm&J1XNaqLbg@tCYqv9f4WCqhliKG9~C3~Ww{fSeQx&X7MNe59LEVhp$Ri&10$oYZ%f=qtW|n! zUVOle?iU!Bo}GOw5_eTOJvud|x@`dF1$`)`A9lfbIt~ub0gPrd@bWMiN-552NLOu++u0j=op7AxgKFSQK!&5~}ARL8mlM{t|_wi>RJf-ptQb|AeZK?}JrMafj zozp^ht`IpEl_dJi$d=IwafhW-faWsMLVZ)qV|wt=wO)PGOXx9*Zy`Gy?zY(HlL0u% z8Z}uk_yzqk$q&N28^hMtfxo8$M_;#S;_*nNJb)Zy+k?s__l@0Q4&@#;>vzw<9}0ti z1@i=&_J_;AGceHaIZ3Fke2#%3QMfZkR{kqI95w1KFOC74n#AGtiI2+dcTl;DM=~Du z-mAx3uj_?~g?QmZ%NDs#MX1DjTUtHMQ&)n)UsCjdv9z}P?-9w(=89K=v6zC8Rt_3q zBwNg{ZOHOheTIWi82-wId26ZXl4Q)-w$TfCj9<+wd+MM^tJRox5WrVv>Bb597;n&@ zX8p=`ho4b3GamC_>F;u;q-rd>3mjU;5BbR=@v6hc;YzTz9%$X z!Y&9yv_HmP2cfqOQpg@Wk0TO9CRT?@WQbSE9vOjC^h`Pdq!(@Z;q0w zC;nv&TNlLzVX@J8#B0^CD=ZT)vtAg#kd;=gStp6+8I@{#90ReSd_EeDM2QkWC@&@Y z`CdGJ1olk2--z@c-A)ibM}+)Yk-kwPfP_Simk53H^J0Ivf$i#66g~etMvgR5rE1zc zCcYdlw24=*U<1qpDsydf%jmnGbJ_Rq{SXbyVadT}BWGpNeI~+%BG`SVtzvdCz?pfp z&;vE3QLDE+nxFchRPZ4U;^QkWOf->^da~-<=&`^C5uLU7aK4U?Bh_W+KdcCr6kD@s zlDQ(a_*@erE(`{|%0G|Q3nh5}`Ha9Li30QNg2v}(#M&5{M)>>>rO$ZKK(+FPG%Xl}pT0)=j!Z42VRD zYd{JNkROHi^f5G6ufNbdFA zv>ZZzZ=h%_`C0rL;U9p&FP(NMxX(>XPBMkYZ_;z@MSx}BeL!1!=-gCskhw2XXA;Ls zxqzh5@1m>#(4R#uj-k<~yWA3(qtTcqZdqr8qL!^IWfbG_m>*_-F6 zNO`?Ii`L7{b+BfPwmU_6AU54tx3%ULg56P5Pi4fx_)gH)Fz%5gJe+t;wba-1xiM1r zdLMP@gkZuL6+p+nKgHSLww}o0j2GMu*jgnPT58pSq>@CL(U7=a`x_J-Jek~@sgB>( z*Yr_%lnXr6M&JMJ_-5BsR~IfEI5b&2T$;*y_rpn3v*pX&)bTGg6@Ch|wZ37o55Jg_eRxn3p^yL35b5_AgfX74->1|4dgho!Qm5I~e<|!) zxm&Tl`D6&pP~+d_ESD4XNnv{E0gF zrn|XTR86b8Ft6`&J3u&|*nInVFKcf)%Pdpb_D$f>d)I8Kd99kRb}E*L(>A|InZw25 zsIAY3&*9-J-Pfl8^Mht%95o{9ezx2P+k-nYPG=b~Gwbv!o&{c|XnOBNKq*A2x<@Hh zg&|i~b@Q{%17v$kjFiJdT?crOKbuj$kkxSN=_QM?`KE>vEhh6nAU|mAPNWI?un%ku z`rv+D;xS>1*4XT)z`MKS$T?!;Wj%&XE0vAzh~64r>HKCHGeWl1temMTAW+qjrYpo~ z1oFe`D)7{MM&iYv~2yBiNe12pj%!2uj_$hW>d5ZTzP&^ z;L`C?+Phh7)}LypK{R;W1eb6kI};6O`J++o*ri(F*+xdH_5zSTD~?SEO8EDeR%=9h z{kqm?EHseLlkcGX@|+du$xAWq-TOu^I-L*?Vi^t+GcjpvzYg4Fe1r!!V@Eqd7-y9~ z>ONnX)xb&e{?T95!*qMdGD4RL{jGv6PrlvZmr>Vzymz1jiWg z#3@d^-y&vX5Rz(Z|KNvDdM9Y18f)e!^>H>7uUM;8qm~pu_-fZLCx`xMXx7c%SAM2f zG8SYQxqhjtW~MItZ$&obpnY$l3~80l4!Z)}x@!#n7OReSUxz76~`gt|^+! zCTy^W_sQkng#W}BRoosC@ULx8qRrnspXO7H-NwB$xc;Mg;zn=Qux$iQIj{0bq^ z5QKt~%c86?8Of8cdOkQ6YcfvI74|J!nZdz**`U1Mc49ZWmd&`~@j;OnudCE{Q-=Mk zfm3X*>6D-jK{cI9u*v%x%@J=U!V4&G&Zwaj`IHCG=cvscco?)rTB>m^5PX{%BJw0` zaZ5M7Xo1leLo{kWJ(6+^;(uOlFEc-K&0ag?Y#Q`IW;+$tmQ^c{yi|_$gI4F++Lo6S zS5k+8O9a)CVd^uSRf9gwTJjp-BJD@RqvfIzKG#J<gBL_`wz+S3S*Cq?DURBe6gj=Xr=HRV$b1kTc5~OwL zi74xE;h`}U75**@Y?G_L#Pc+Gi6%yHe$+)-Sr!1{Rd(19C;Lq9$K@dscG8Q&vggnQ z*DS)>e`bPM!ChfJ&Yw1YBsrB;Z^k*dFj@|CxvrLTXET0ACJUpYd!hg>rSK=D-PYQrwbHIv zcYeciy}UV4m@#mBnKg<|7lXag#puo}l`KJV_yP_>WK{0PUtzGfw}WYH_>-8${QK&X zKm#oN0=9|UjUa`?03`yDRcp2N4C7 z&*oUJ(sabv{x|J|h!^{(oHz9fB!E@u_DGs8o2oXJV}=$Z^=EG2U~?!_f=FK0-aa0K zj?Wh{Xk~}KH|+k9rJQT^TW6N}s^yXEB7IOLlEwKlM}tq_t=P7xZ(-W2C1v^|U;pq~ zUVk8Zw(3xFW?J9rrp|mG`!-8sVKUd}rC`3xz4#2qQHQ~SMB~q(Dvh!;Fpgiv?oC_X zynDE>Gmbq<{k+UiS&8=+E^DyTK) zrJ{~kQOL)itfv<{{q8EX@9FR}hNjrTL@iiohdb%quP;G^+VWMZ9cfdZC9Jc&*Fvtm$^^81Iz#=J@cIt?2C;Ck!6x=ayPtKCt;LGD5Ue+r*=ylt-= znUa}8>_{|CC#f;`3eZZ6v3(5W`uoYNea!lsUDBJ)auTA*3>La?jG zDh;Homx7Xqk`q}=DdB*oQU%&fz4Ezc3^gH8_Z7}~ViBkw&NE;u_jUW1e2Xyq3G)S$ z{EcB%O&_t(A6H_q#B41zK7N8%&z7Jz-%gmyWL_$tyK%O~#fVn=gY*~r`3AAMH`>j_ zsxBPlA#d4o;y;&_lEVpgwkjZB3RqHa6&prdUu8M)CQ>44RDT>8Vo6i2jUB<8qXB6N!fzm0~aX%!j+H{6wO$ zM#nSpOyZ!xcNFhcbjg!qsjqJ%C13uLr(;G7i$*{TZVu`NKmf1V=Wh1 zmfS)dKADW28{75ouXx+f&+;PJdl7!Nd7_iw-&435d=_&2z(Hd&M*7S#R4GC#UJzE= z0ZxSWLz*yy#5r9eTx}FgXecq(*ENDfKlRFSx7&6fz3H5+T7Zo_OOWW55=OYy?-On7 zXj$xFcVyg~$FhDj_k4C%p6P|l8r(>M$Njpf{b-G$K_&jFclF<9x34%17gq(2P-jNw z^MM5Uaf*pTr~tQOD%DZ+?sgxa`#3A(>F)~D$LxXa5hN4{l_t^DvH`&ztgkXqsXE8+ ze+n#kSVM`Vz9Vk|(mz0HHva*4ATiPn4lxG~%Dwz6n$KpY*xE`?cY}S^qo8q!f-v)M z{_ZKN8RM@KXWP#g7sIAL6f5{t#pY9BUDK-Zvq1vI#V@2Bzla3@55&RY$G2}Cpc^P8 zDA*fI$7ej61zJ#~j;thfkyz zVEK`rz5?1&zCkbAAFu#j|C4U%A{oB%`j(R_kC_$Gl_GZc!+4i||KF2Km!WA$B(ji-&(MHo zXkw3sKc0Af;@QMA-z=S;|AuUwSE$K}7(Lqh=s4$OEnO~so=*yKaihxk>{~4x=GzDT zT5OhQuJ>cC7J2QRUlM=FenYoZ?axf2uNX3nAV}Yy7#%$UW0at^3w&O|h&7P8eEt9$ zS(m~x=gV!+-@J(g$mtH~p-{TqmsM8-14a|jVg=x@PplAb&e<<88V}0ng^`hR!1p7Q zP5BwLI&{HK@c7RtO@+&csG?FZmiqwBu`%t8>Zsi;N6GVWeJ0*i8`KvH zq(NxNbw3L|3g%Ts@!u;|Q_>JNG$<}kgXG2NVs9B(@tRjP_LXYMAK(;l1?|6VG zX7UH2WT+YyYbdpi0!yon)vfo3g6e6?O>f0Lt4$-DNB3sVQkHel)OVy4NAnfS*&SWv zSYJX7`~A>|@9vQ35tC|FttfWiw9p z)Y0h9cg12`>}W{XA~2`3Geov22M3kTx<(cDxr>F1$c1+UYb}j8y^`jpG+RBfoBcclEvRdFw&%vUFpwoK0CoLsI%Kby!Y-s2UgMxxWrBdmi znVF&0g7y9{Z`1YG?oRn5vVpNNkil?{vI>N@wXrEGE(WZK*h#44ctg+dcp z6NpBEaA7}!Xa#wB?;I)9iCSoyLEq6_`T;g8nak#VI8h7p`+u=NGoTERV+eHtFHp+m zh{ME8s&oWQj|Wb(CyI{+2|(ip3tlo?|6r)@$Rmnepb9fB(Dru-vp(k@+od- z@i@OnCI#w!5mqH7lv*f#SkkF7>v3zr!4yU6h3NO{l^d4zO)AqaH>ZX@qw(_H1Mx&$ z!R^#v4d6rroynBhgWjine0HMU;&N>b+)S_f!pWm8DB=!Ds&KYBLarpQO6ay%;Ewv|J zxjp)7w{)*6!A4o=_qNtlFOg^VwR!|sB(RZXpD#mZ2U4whPaZ}G3ZEnNEsdIi@z>5K%ZG&>`d@|_%%QdA}aK&x88y@%*;v@ z4EWi~Ja@F|t(`#_*y)SPoq(Q#0gSaBgtKA3T3bKqnZm%3E9HH65SHo(V&sOk?&S-j z|DnWVl1fiECB_g<&;aZB*N%#L7jPoTD)lxvmg-U8nG6Nh;&v~j@^FHKyXl^3uHZ+R zH2hlJW-dhxsMwiMv?hX8D8ZR28hMuDQD5lrN!L@DQbt4bTP#NRXG-=|Jp)Mjexj_m}XLe47Uwk6UP|>0SVt)k?aE}3^00~?vEyE-===x&N zP*$yyvH)Ay^>nXX*niVnvF>OyJS31e*4LGRs~7OG3SdAd`v#4KPD6R}z~qPgpJ0Od z>KVyE977enoQU*swj_mo{}R48)Y}Ya`%yU6($Kdeuz+;lRU_ial<{rpr+%mM?cnbh z0P=kCvqhBJGk@!7q>S*Ra(9^wdajH-|L(b|LJXxq0Ea2M`FB(@OZh5XUa57yV_#4y zH^J`!!bP&)&bVJODg4ZJ)D|5|L(7;gk5A`O?s)NT%F25qC-cdoc%#WcK@(uF7HCim zNE7z9w&xcYw4RS}$MkG$K;TuyrvLKzxQ@t7b_P)7f$TaEGYLZJ9v*&OO2vxF{$&{` z=HlSu0{K8&z(xZ6h(Vy20?fVthXSk1?B5qF-tUiR(3|E#t`XIUy;j}S7o9mO*%!lN z#9vBoz%Y^je1b}>WUfHkwi+5yiFe{?MK8zw=4|OU8IK(Tmn#B_TI+)yl;KP({|Ub& zX%L3uMBmX7l;Y(4f;jKZ)o?}8ovIbr?%oWs>f^igp`L)nTi~+6^+K}-N?ZGT5TuoH z?1eoqMle$ps{!LNc<~T_|2Uv(0xm=#4@#+&r(q%~2B1WptnC%;RA-7A zGaNk4&xG6&>`Zl~YHt=9=%E%W3j^o(YSyqK+iq>Q4qtY%fY6*GJCMCM9i0*5#&|?K zeo6}#8hB@B_EVgK{&nD37VwQ9I$(zA*Ov0lb+2ydK|d8G$292k(06utzA zxspnQ0(rTO_<=tUF?0u-j)2-G<3rn{o7R3zv8BCS80O~wT zb&uDGg8Z}28Ts&KXQ?jIi?;xaFXh9<{hblfdZyTy%Y*TJ)Ezh&|1pz$Cnp~3;WDYI z-xCv}6JzPmNv<#`1g(2}1CvPQ@&YcZDFv*~u9*PjY=O-Pb+Vr6kra#Zq64ZhP&%=7 zXkTK);#K!_k;`?Kr2=6eUi4bMZ5Ef6wa_bO6V#s?!sq*vyMSpQ5!E05jWRV;P3Y*C zeA2=XNUM)XC_*-KVfkX?CAh^Rl=)+n%B}5QKWU7mnV902Kcn#fPmd9d&kDSltTb$w zG!Mg%RAc|*F@GwrT%_su4sK#3;Ek0=K+RFQos1*v&%#0;XIAs7yDRw`3ru8zKseiJ zKcoUGK2cExWk@ArAGmP7o$ax+Uw7B*hWsR8CSrc!zTQBUsMpeRo_#yqth_J&9xh5J@T`YIY&SRnL6sXdj<2Y890 ztJgzm_QAhJCWvQbB0EfFBf)di5JmJ~Z-Jc2ErAxYD%Zejoc49|XSdw(s?xX79txSr z+skwV>7$h9i7y6x5_Jk^_=lrDXE7N)G2{U#vq*Va4ssmD+Ok&E>Gc^#vtc;X$4#!X zC@Jz%BxyWH>(gF*53E;<8z5Rbx*}k;@@77Gz5OA%UdYb z&ccxYalRXSR{h%Dy`Ck?=JPLq=p&)Z@^leRk(USr<@UF%-+gu`9FT=cY5(<^!ovk8 zaZqfVZVf|e6n&teqH{gn=o+;>Kkvb0{RPGEOP*9Rz-`LelyCiU9}cZs&-VJ{|7-89 zqv~3+?oo1MSb}?Sw;Y_{K@J3Ww;bHvHMlzj3&9S3Qq~r#hOhnCyB%}w>#G&#o?wj_=@U2OV1UnxttGD|@ZRfB7a3BIBP7(4DDxE2G=s{~JgV?HW*Y>Gi z>Z8;H+Ggx=7_SxxP|_CC(e9thXZ@w)iqOsFq#B=AwTY zuqJZfn_c5fPTB!c{N~>6O;S6Q?u9Hs)-JWQNqtOAEWwlW4GxAey4ocKSVZ*WGp42Ep}gG6feupuKZaBJ~B$a0Yg`62Zl~7 z!?i*&c1WfE*8*$bCA?nfnEryBqj>Qr-So~HRLl?#j`&(2D&+FH!*7dczCn0hMdWy& zx@MDp%A40!$hnK+cZ5W^=*sdR_CLRQh%5V5ZqIVkXw{3Mpg*Hq(-=sRJG#3qnN0{& zNbinJAe?VaQ@LFx5YI3WPGI$H48<5o6?;IfY;ND?J$m^uo4jkr>-rr=K&kll9H^z; zkhOt;&$CI)Ib}Mn;YZx3&eN4iyN^6Cqmw(gCv$eWojU#8+#H7G0Bpt^Lr*{CV4u|T zG4vw097AEQ=3UF@RFy|i)wN#V*Nl6TTm}*g=2BY!V%qUP+-TP3tmc>L(xMPy1=n$| zy~!kz&(ecxeAKKE>Jm5Lxz>p%@2arL+$l&SG>mTXES|#$Ew>$u;px#GK|bxfMMvcP zOW`AK=u1`AFHXhdnCPwrh#2erc;(fY+O7L-(^YXqiXzo|H~WI+&x8f(sFD%PKY?BC zoo69i^PHmu)(YMTK4gyF$ZFNW46OU%zNvxV+%jLS4y9MqE272cxgH@RI1!T3vK3S= zV_^9G9?cZRK!xiH9WK(&lfsOlRSaxa1NtG!lFS@|Eaa*$d($dwlx@++P|o(gwD3ll zJV1Gz1|Q19YwAI-#v55FZ1}d&SXRPR>;fYyS5kZ|(6V`YP*fGw&_yJ#}W z_tDbD}3DmdZ#<{v!(~Ft!RGzAq;WD$w;zGCt!bDKau-KDZjB#{MG=H|#*fM<%aS6fY$Z zOocANgK0faRyES(Y`VtGKbo)j?Q5Gnq|zmtQtd%*L3TlC`jC~ru&?NvgkBs~{ArE5 z^R;TDQ!ccnShdFniGA@`OAw2*nXK!t%S(g>Tp3uYModAow*XtbUB@y`uLxF97SaiJ zZh@9a~ldMLcS8Lg!n>gUnrpu9>m!vMtU zKN?(^qt%OJ(9(j$;eLyICLxO|VFnlh(#;iy3Ma;p*nOJ>yrbi-@0t7VCE9rpuSD#h zqACvo%tuE&NOQYCWosUbmVt2 zC#H)Mw)p3p#U;Z#f)tBX!h^$u!!H@VbKWcpXv7pAUOo$v~Lw)Q!}eC{T;%xp^4tP#)>^=d2a>t8i5t_vJW6;Nmf?w7FY}4oyydDtys-E+l*IIy3{|` zCvC*3#P%^7q}k^tEk#h&SFu&3WsK$xU&!k!M9xlCRIjrhTyr1*%*x*}-NueUOi@>@ez=+mm)+Tf1Fs66*_?V)W^bFx|Dj^TJ9KGn}r2SUw*} zWPf1q);QX9Os?h%ISMjafBjv)haygM2E(aR%GKM`N z5;W^Jn0#$AQcd9Z5)|2&Epfc~hJ<$`x)OeY`p}^j)fE zDhEaJa(uqWf$u7g1e-WG2RjD zVQ(t#Qx(I#xy&^&N&#i&S6FC*bXKtgLCp5b4c99dN2}tUOcRUgP9LeN4MGnwquRVt zy7&<}y|&-iBlmWS{pLDR38Q0*{2|2PR&S0&*%j6oj^IOQe4erRysCz_c)mMuBuB36 z)vI_$$y5D;C0<@V6{;?>$k2sLGK4V(Axi%NtYYFNa_qI7%7ORe$<(15F3^KTkO(%!9Vv1)N-6#3$qo2qDP6%>f z#?CgEvV>`_h`Q2Vj2Q$5uHM)z`|Einm^59UGb*~xzRDZs{_`d zQaaMz(-2@eG~*DNu-& z=U^&lInZp@{WOggVV3Yzs|4z0^=_0jbessmKT_r7daP0N z`Qya^gVPNiB7bw4uugYQemSw7h$3@yR(n=H`n}jsf4V?IDdVcDU`>M!X^lM7GkvAs z(&zyB%msjWydoFtwfMYj{F$B%Lo{GEy53|eS|cc+VYg?jg(tv6?nbHPO=ii;*ML(0 zyu5hqT37oIits?}{l*m=U&2-8@C8e};P5c!Y^>jmNguWgr#(g~N>+D_d9h9l4Y6*| zj&8Yji$e$*48g|@Y3S~{VQ2F5YYCogT;-?SYfa8Jn{~LTvzS*z6(l3ulN2-Rs;mziekwbPav&5s&uavM*YA_4$qCKR|yS25&)T4+(Y=&2^J@Q>R9+zdSvxJKj_IA_}twUxx<^6Q(;i8ad zzaxo7(zHGOB~<=dE~JK?wvERbz4=oz-t^9B;KS<-V%|3;h5s^F_k7lBAj4FCMAxBR zX`shw*lx15BSo+J{eAn^IBcbRFire(ngGPyj||!HNpIC$T%dwzqaHU7DE6W&q5)6& z?0CYmx@2N(Fdnn-$i6%lyVZ+XR4me>`X6CYhpDPqEVJ9g!vm?bOo1tYS-h)inKv(A zOhbZHQ5SERP52{QVB*JDG4CN&1|cCv>NC+aO3CW}4B6A?xVe%}@WA=TB4lYgCljk{FZ1J=p>060v{iie& zv(MK=UwU>18WqZ{Y;5d!_W(D>mmndsfX+HMHj0=QNxGE}t;~HJyWz%<OtPC>P`Hc--(ch>q6 zb6k^MexJmdNJJXs>a}z(3T~M))ePSLIQlMB;2zJQ1FcwUyR?ZR-8DHWl_Q--@?G4% z`Lb>HsrF{yha%>U%d66D+Hs>!a&GSG>nUp$)5F^ooW;ry zv<1a1pDxuLBd>TAH%Fw)AhK6=9sDJ@wsI>0b>$$TyrszRVT1Ac)u^2rS;mIhh{zO7 z{rG9J0Y%|V4uB{A1Bi}H?mJ?BTp*zM(}0@K;kG$0u76RIIeF*ExN=^gwKsq5yMjT? zVoCCS$%X@c>hg&SOXKPCVnHIlQ8hyW{buHLRnHNb4->is&BKS&GkRnU>Ou{=OG^&; zJMkVcIi&~`740&PvGDN0eVo-(%K}YKQpokUH;9O}<~XUyiKxpxWm=gs3UW5*`>&c_ z|B0Uf2v;N&lytzT0;0>jyu7}Ce)&igV=h2M9uUE_+ONw1iOEc%fd2k|qy8jVPC1jc zl@*9t8+O&PSuf1Z&uee;-lL#9n8=iiV;d%WB@+rSzh7UpxD6N0)tKAP1V7IWOY=r1 z#Nphx-@@cqBXqlZ;b{_WFox(KUfk>ovp!(XS?wR_@!r{;J%7N~{KBmDV8zfpEQCZW z-B%$9rDL@xr@PaEeVBD;u4p|X@I7@Mvu#yDDgmBHK%jzPu1m1!1<=41X0rwPCr#1g zibdL~3*}y(Bb*R`i~m0%c;D~ut-76Tf&CLeXG|23SXNdR7dHyt*lM9!UH-b8JosLK z3D8J?TZ{!luRypf_vjuHgWM6E5!~~U@HvC0STC9CCm<^$Qw{U8tBR%UdEhu$Vr*5U^?{s*{V7t11vo7%K3uwUoTnpjkNG^_#46Ru~o&aZrf} zGBHp8ARY8-eytbEe@9bYUZF>9w+fd(EuT$gkd2+b~sF*>67(GHe-5jL`92cEXH4h*$s0}zGFqo|dY1-xb`P%Q+ z(4qH8H(XJJLxZUbVU=~w>Tnz9`~-2znVM_{ud`p+@fB_6i904z17!5YopaJ_U=SpR zz4DSTj(MDGJl|YciD$;!Rnyg3s7(Mw=FyC-i51PY0CX5#n^kpF{xhQNQ(tQJOrdHT zJe0At!NKYQ66d{~GI-xq?+U%+hA&yrRqCq~bM!!qSdo;`Vi9OkU0q#8#liiq6N4HF zksz8AfP`yn&zF~%17>R=S~l?Iiy-yK+>iIbT&D1Ep;#2TAR>k3b6BiQKhA&U7tkwu z*5{b-QH+FRAm)DR52QR@b%Y+ozuOgl(Yd?~BPz2WXUckXo+-Ri7ZRE^R#9GVP>SqZ z-syTkrX0#^=Wju~3R2$QSM?34kU&Ee5SW=rgezT;GJqKR7y(v_UQAEt=CB_ofhY3S zsgD|r#QS!&Rh2Dsy=PP0 z<_HNkzT4JG{&n01rsUoYY7zT5d5(pqlS&uBv3L!^+Hy3d` z6cc6n=W1G=<3rn%rtT&zcmhO`L|A4)VLUJ6;)eblxDqn{P%$x}ko;?=#vBy16szrN zm*H?06u^rGT=w5;4vSJfx##wR;i6#@8yWrB6c2MNkR{?*BJ>q{%;7+D?c~tIX8lrK zC0MEOu;x8-$Yf9N;=Siuen7)pGfq^C|>m{30{X;YYtVd%|LM?5xmql5WJ z`5V1r%B}4yM|@?ElX&+t60Rc)mse}U*&_-U)vfkH{Va`+$%Td7JkyficgfQ<0JTkPX&F^mrryX)B?lTgPBXCiYE_ zi*Bvn)R&K;c5PnLzUKY7=vv9FAit!1_u5rrl$b5JR)(tT$ga~-dHSb}JXa-r*nO62 zVK7tkz{K6elFu1jC^!A;UBXO%vAUS&B!j*TV8QTa&@ z_x}QX1wy`*67iq?$VJ1|0FXZ-;+X{V1tZ{ennc}_*J`lqnx1X|$m=Iho-DR`e;xg# z+qN(_cio@ND)A@s6*n-3Tm=JYCQFdgVd#Ru$=KDOB%5E&DJTBW@ywXxIyex%DPSe@UosNGMtZcTg*ke@m%hluByIL z0AjP+WMtpuo?VqpkmZemxOLGqSwA4N7uzo$9*LcYzuo^iKrp5NV7fHzo#|cg0WF6F zr)H57t&-{MSp%IYeD*ESz0>(U+gSlYob&dCB_KLeuQF0@%=(+zc!5djdKi5+UT;eQ zsWgzEFM0hS>D9|#D>IJd;zBuA6BY0DG}UJx`6Tyh8Xf&mh-m^Ts9z<$f4n|~gS?@L z!fZ*eH*~P0U1Cx(IuiTnM<`Y*hfgUZqh!%cO5qdNBL(GL1Pq13COk9{#rp?N6}jWv z=4cR^@OY6t109<8wnW04PmI&r{!$%zvN-10C)<}d((eXyC3{*XlIn?YzWp4irpGW; zSZb$jM52^Qr;0SU>gdPE8$tdibGV4u{__wsxo6qq#a$^-X>-rPL`a1*t&g>xT^8AlT}g>a>e5;t zZDYVWpc!%8`W#1IMqkTJ7IwEc-{rxH=@CUd>ePcdl7p}|LV4Fs`TMc~ncR3&VFojq z8U-0oND~JmOBHfB+8E#R*f1zF1I-LudEm4}@L}b=EY)nS{EyvP&Y4&QUuhgV0VShs z(cEkP<^4-`<+x^tRY^Y%S6T$`9`s@4fst4=! z-0-eSAa8L>%INYfzT$xkA9C-!&Zaoos(IH>0o5;PwK4mFDC`G-kZs$ zi%1u%+^9^FeeE_xP!B5*UEz3lt4Tc0Q}8rM+KuJLs)oA?=?d@40{;_>W*tZ8H&H<%mNC-%?x-X&0^n^-?5d&-995-_uEdN zVyy`dW^i3vS*xDxJDK!BHO;E0W0%J<(zbY~S`?4Jj{5OUg-{Ho8wVoW+QJ}!enFOd zHox_wUU6!wL#@h{(pXDMa&lL9_eYcjXuRAO1-svA-TJnnA)RZj<<&pA>!*F+|@LU!Zs}f%C+uIX*`qb&$ zM6o~#tV%)j3CJjLJXTllpRO922Iw+5Q1SC6v z^?n{PQWhHv%M_^A;^Qk|_Vx6jJ%e#`a|60KpgKKg4rIBWAtQ5G&27B)zVa5Hx@U>( zPbTlUxrX>N9RO_@IHkDA=c8rB80W^urxsd9KdXrmG42$?L(r_r7Z&dNPlX9{qoNo> zFHkr+PfJX3dpb9##qV!uVBoMd)-yD8FZXmE$Iiw!HZ~^n zk+tw?inu* zmlAM(_{UT_$OLJ02`qMZQ_<0d9^xHY!<$c68hUwo0oubtT+B(3 ziD_8VLHYMSDt&qiq%Z81Pb7bSL(4Ok-Oa13u1+e|?3#U}hO2Mdv!Ia_OEw!L(@?Fd z)G4Q6Fjb|olY30SQSMHP_3`7*+ARvv8)Net*@k&@;L`#|F43M4-Pq*h!mO-Hpr@S3 zveMP!eYf!W^Sh74n3y60?-5~NzI<5(%1vurgfVDhJG;Apzz~$p-0ed`!rI!Jp^?!9 zP-{CrJ_gB&qj3-aWX7UsY7vFUKoP=)d(H0Z%IxDK)lDOI`m=jTKvg;-{>Nu@PPNIo zh8@&vmXqzWos1G7*3;2}E+JV|WbvrFJbLhy(^5~2$NfqL@l0bvf|#fs&_PxJ9XgP& z0&=QD3!UI+tBhp$(lUg?AMIya>Thi zK1*Vbh`eoo)AV}emurHvTu(~3b$x~?*lUA8HcBg3o4J#ap56xHN?2G402VPK z)N5I$(-ImLwN9ojB^BPX>0l{UDA3xUM0rKn;B5rPOKp5V2|Hl_Vm{iCVzhq%)X;?Q2rZ*t; z4OfsiSvDP0;iZ0K(*GfHeO}gM&$3(h^cEp&uw3w=(XPhNuf)^DVo^p5E&3v#;1hkH z6Hd7^wlwE73}|F$?bT#te4d}b`Rwzsp`ig_BoUU90K#Yrv3&4;xK0cnSW~8S_mO6j) z^zQ?p%+=nhmkejrJT>cSzr&}ip99pM)^BHPcOEdIpqw&$c5iQ#KmC-mkfPUD%T z?MP*VQ8QdFJvFtuOW&j|llb?C8_m7?IZS?vcvjYCgov1g82HDzl9~n!BI3?B{5tC@ zv95xtjzDqyE6Mjv1e}$^0fOr7J346Xo#g#0f54F>bJ~vFNMU5e(!fY}! z?Tgz2uPaW0!u9;aFr2D0sF9I`>(#-*j?Kk&#x;q=Z|)cch@R>jbyHAR)rm{oa61=j zHodoXG$dbH?U7PICuh;mbl~;skMy-YXL6TAl|VB(1M<*Buv&CDxE{Iq;V}atp()tL z1)dMTIwr>M&Qw+O#6);3ItD)7+Aa=G)jH?J!CS%j-(Txl^->fPj-n=!1u= z+8Gi+H;JH)h)*v(JSm1eS-Cjpj(%)>+B9r#KDTWxMdtVNb`V}Mvm3T|OxujMwlpIt z6^7wVH@%9B#kI6N_41vr%DtmsXfxg#kGnN8fAE`67_F8sV}Y6d==5|qpP#K`Aa$q4 zTr9GD(jp+RQa|;J82N8?i9R}Eq^Cda+LX?p;4EJho6tp642U(-^a;+GybOMCZ)S7z zQ;p(2euIo#B9)4(()8WhLX!t63C_F|KlO_V(yUsjm{ilm8 zYzAKiZ;shb+li2Ym}HAsrIog8qUf97yRlvvHnU_Ri~iTjQ5Ww^Zbv;Legk9rMrYXt zC>rkX?={sO5gv!ZL;iiH=J2Hi`|Ew*T6UY7DggajziYg}{An7wO zfVVbFVhfoD?s3cPg3iAc?i>{jt^a!_yME5O>rqkyy}6V@iS+MpN#fyw3k<@{b*tx^ zHm1+--OFdHI^^O&?B_JAsJQsQ-4``@$KvPtL5eMkAmi^12ggGBTQmOu|NY%K{1J5|X!ja}Bu@i1(%*?wb;Hp8n*7h=>Tte)bOxjDP>GR&R5UVgwm=EuE8- zb%3WD@WA0{djZ8%pzR7)C;$Yesjhx;bp_m<6kU))&*L@@sIRLkE4iKbc2-x}0BF&4 z_iclj4ZNhJ);u}N1b7U0XIt-&VU5e7n>9%u8;hcBT6er|ENMKXE?+##7;6pHd^ zW=2NX1O!dMO9ag3JF|6BjqaCihxn0EQIn&iiYh93@1U+>x6Tz`z@fu^Jgj~U^g2B3J1f^|s)`EO zf^h@6)I>ys5Z9~I()aJ*2LyoF0V`;va8xSCbBkEyE$P3iFt8|2>i@i^a&ud=`Z_xc zD06qk#l^vmfaBr;-}mj?##muodio+zE<2|-H!&$FEKK8djU~D|KX-9+Gcq)k&-yXZ z-PyUZy{+o{V^Ls-n#z^%p1PPo?6<^Q7nJ=4htGJ-xYvkYP|Ll!}T9tX|{m08qC+0JvF=jg4)0 zw>+g1l9IykagRMX#Gm|I3)X;TJQz~htDTUZ{{Eaucd%f)78hOsofxctH!i?qj`a&s zv0uEnzByY|{0Q1{Nf(IZwgFKPFpgL$ankSGOYg%52No6X%7tx zD-;6g;^&0i29}lsjH@!FXWNrex42S0ly?b1OqUPOfTF+_kHR*Pv@KJw5?ugUlXBMg zeG6Hc8gw)Ru+1q>x+yG#dolyW7xH(j!GcK;{>r3?xZT7!AHcZTTY;Xe?MnAS-zH>z zWd(zPV7Agw@)GRwT|In)tk&pI2(ZlejQ3@?*#dV!LI8{>ifqpZaB!%3pjdKZ03_z_ z6#__xZEXQEDe;^VER%8~HGylrxR@S`UDw&$O9z2K=;(?7$T>cjj++pVkWhL$jFyYg z6$Au;aD*45jF^ffyD)CzX8;4P(f|6KhlgiaIo`fO|E*!y*RSA}WgWzgLQo(az(DQK zB%*5HiwvWq9|Gcf1)QIX)%ZaDVuO{Oj4V7NqHn&Ws_F;;Qt29*bhWi_fB?qv6wrSF zUF-4;SV24U2BafDKfkt{Q%%~vJeo{@rkMeNPXabDZutm+I3-I#u%OoDJh$xur5=!C z2P60Si&y31aa5Ib+@JtT@0N$Z0ajd>2t3w6O%}aQc&p%0ZpW=){v#mk0D8}L)Yzut zY46ZbzLzc(darIP)f1fg_r(ukVg-lw0gu9A zYE{C3VB1Ad@JkpDghq8bJ|h4OF#w#-q6A2CFyJy*C6SE#lPW-kf>Oz2t~fV18srG&~3ekuN2xx>QHA-T-p_!R58JWn9;0r+E3&hkx@INv#GKyG0 zr{0E?Q?1z7_m8tj68fN90wfm^o5^=#@9U-Yb5-pPW#?*sN7eI7owv$qGCvuj&h zy~J4bhL06pk261EoTxFBc( zVCnQKB^lNPb`1N}^h``PGu5W|?8OJmkK0gdR6_uQ_x$n_Sfpm4IS2wt*tE=7ncsDNV=S% zb}5iX07^Qhrly444oOTf-_%qBzN3{re-9-E$F8ofV%4(eC@8YPQehY5<#B-NYzvkU zA1_iT7gqe7v_yj<>9tZ4P_hTz5aY59Oti;u!R)PM4IqU;H$JNd%&#NE! zg?f!$U0sg{G5PS3rFxF>m3;257Vi!vZII;M6X2ge&l`j4M$ib$wE#dqn4sd2Ufl^T6;}P_&S0ED8 zus*g|Bn)4i@(3dsaRO}TUZ~e4#oAv0Yq>pJ_X~`*Fl@%w%Po3u?>nI0 zowY!Bw!hQ?hU{|!4hw);o!fk~wGZwwQKIfwRQzU|Lf%kYUMmCtB@N9FNG*9a8qoW( zdN1r#AOjD?>L-D~RU{z~nChVd6PJIszM8$NPr)xRi~jiH7q44WT@B)7fyj7d+&_sF z?cPp<%pwPWJ)f(esn$dSULJdMTy6~b_k{%8l^NDUh=_>yb(*kwxYnnmqm%A=It{F> zytQ&8h=mu(XM?E6*PB=76D6SMv6|Rn(Wg=rmC#!q(;^yV&2COt83V7Uy`w|GY;&!s z7xjHijNl^TMlp|otbA!1w|{vN@G`nbM@NBJ3$Q4+2VaTtJn~e9O-yLICj5cma4-zD zy(nTK6AT!vvBIQr!+oykRVdJc@D=$D+Edv{mY$*;w9&BIAuZ&MQ!0OD8E)Es>{ zrU`Amy);Ke1);6$2BJL!IT4XZ(5Gw-cH$n~hoEY%3BCOl${HG6cVFeJNGJH0H#hSF zdJf>@-?KGXFScGEYUnz`!<36}A7y=3zlO-l%6h@%K3(Zx5+YWShD5Lbe zH0oXPd$muxaCGlgr@*doL5m$1H@6jFN4J32tkCNM(hzdi2^ks+^70o)Ljo6+V8DSO z@hqS@sWu&zb6lf4YrpOlm@9aS2U>i(xDVQvhbRao4VQci2-n9jFPxe4CsYZA)W(Yh zd}x^N7ObHMVM1z!%8OoCjGi5>?q{DiwC6zNGq)~|SK`tX^n_=g-}f0q7m`4z9L#QG z*BUiu<4w-iV>(bEKxJuUMCDdDwl!W{Xf&8EVEy*(JGWwgKuQ68e+dbRI4bFSO5nI> zm!$z;uBNtDbUdMWjzZp5TmD-{IlbEzMN1PVit?CXMSi zQw%igvo|p2Iy!_^RTCGAB;PY+x(JH<3brWIF))O;V=K>qOA3WH%;8RK%*@Py)c`Sd zvGD|SA|f3*x!2Y`VCgaY58t4u@)J$Ou&Uza$JdNUy$STkQ-gz6V8XJS&y32?D$2eK zdPd*`^rwIglY4wPlwZ=Fj#n^$Z%Y^xfSt<%(oUwbtAU@LL+{>qW%G zM#ZjyMF`+Ul1QKe)R3g%#LVe}yUIJDIKV*x@^(M1Qb0rUdOiawgg+*L1+l%ocHLS< z$G`w^sG=eTs_Y?7uYD<{G@6++;6LQ8vPN9RXFt8(8CIUa5;&6q%ZSZ+X-^3d`&_Lg zC)R~3t7>UU!NPREWtU|DTA3f-C0(GTPk;wN^7MX-3l7fi-T$|LNwk`lou#?CX`M87 zjCZG9?K}4TwR`H94L2yil2HnX^V_U^?tFkT9zT8_fDtJbEEOe{mOvM_sOD^|eYxmd z|Erx8=^`N4Omu5(vcSA{ocDI#R^8$SoEakUe3t02*zarfp@T8jW;OkTL4z z?e$|B(boqMFTGJ~tG&rVZ{J|O9=PHRJ;4(2P=wo$A@zR%pJ+0cWMk0&(Vs8NeDuSp zQi9SZxo_w??sr~<&t*bRqDC3)k3m+bBF^nhyFEjT00oO5!C}>KfJE=xVk^x_MD~9fzGC zUg!Jk?o{qtYi>ELZf8w~kz@aAtGF8u6DuXCyA@hNBGxCSgi=~DI_C|E&-U!f)@jOG z7t$6pe%ED^H`jwEye74196WaZwYV!W<>-ECIUKuB8txS56qH4JM>kBC%O|;ASsT_? zcz3mYMxf8hPwSGEomJIk7S>qVxUN3rIeFINcGg>8#ms0rUY}q>O8qQp6>G_n`b;J$ zkMM(In(@ZqkGk|bDsS=CSYb{S+bfgN*>2-{S^a=+k7U!QSJj(Urz11*&G9GL+xgEv zP%SJH!SO!;eX^YrpS=K*PlA>50-u#KP?INP{@s%kd?_A&OXv1I^~NfxrX+=hEQ9DX zZpatXOzAj|;}_ZUqLWo+oTlG9yFTYyr?xt7kL`|?U<5Gr61Qla+2L;Na~^R%jtROz zp)F%Gp9lC{3*%^oS8Jq`VNfJB;dKB&f^j#CBnfZXXrxi_p5LGND9j){D_>!>Em(VI_^cRVm^C(o5}6!dkSe zmQA(0KO+2MFvx<6o-x*;*Q5UAA8Xle{G@w!>vo3Il*|GuyXv{(diXrvt#TH0SqL|` z<<|0Q7Nt7>GWqJO79HG8!I)f6Ueq%_*aGnpO&bxBdy+d>K>3+>TbXM9f?h}0?(O8u z4Y%*Dou2Vp>sv#)HJCHVPPlT{b_B~4WtMF@U&X`7u%B57>{suaw)WEvDA9~CvZ=j+ zMwyAz!8`hMt>k;AEu=09M2ZPFO zYIAiy4zvBdS%^kI;u&GnxZ8I8P#zQI#m}B%>bm^Jy{QuNoAbPlh+aCZ)CG>z5{?8- z1TAtOHi|-5Xx9gD(N%f;j%x(Hh?fs)yE4Hp%hPMVAWt`qOKRQ@pxaOz?qTVTbm*le|gLdtyn%tYNLnO()TpsO?y9{x1yUAo3zAxw1tSR< zIGM)bVK4Kw{>b{{W54%ErLCkDBUWCrF6%bY#24MCtdtj`xyij<;y4$Hijfuz1sA_o zydZVx=cuR417V-G8=r461y@EsBJH;E;ke=eH0f8x2$&A#ab;M+4c4o})=?T~)qAb2S1ohyxxMQ7GHK!usVoU? z1iWejY5z%ev3LAkKnM>0gf-1&d*BKFsp)7CtvGctJayX9%}IJXSZqHPoB+G zu8@cgr{JNnk=;pqjjht$Do>D3a1t$|wopmUp^83Gs$LL@^53+c^gh|cQYFnQcsu9$ zFw5}CyA-7RdX}K{YoK2L6sdmGdxIsgAUNh%K*|$%eK-K&@U-Zi_pK)l&kCLTDgjxt%<~o@Z?T<$uJ!a-O>KWz{e0C;#%Nn<3YPQBO~2L+Ba`0u1Gl zxO4ieynF+7(k^?`2ixQ(s{XTP$c^MBv$(c;3pXe@KH^^mpFe1#CQ932?+^P!uBGwh zvTnCbPWH#vg^|AfNZQ`iZ!zR8p)CmQxI0NaTaStah&{>lb)2efweSVWjORV z%j%1&V)hO}-tghT=hBBOEGruibXm17Ma%g~nZAJLx(m`uDc)}-N*$KUu~-GMqz%Iauj zRx_z5(QTC>r*K0KJ3a?faFtAd7ABO|p9AYH{#!f?(;TbLbWcrZ)A<=mb6ThGW!VNs zvy1PuNW0kg$}todUcp*BJRAD@k`A9_LwG*>7gYNEbm%p$YB7qRJx?KZ$2h&zK9(Gi z+?~myUmIKebv=kvIETvNF|_Z;@f0eYWTI>z@Zr_l<*Z<+v)x_+n__Yt;r@u4v=l_j(8}1sgoK%u zjgz1MuRHJxxY)q-%?%w$^bCznt@x;aHMLQbm>Td=tFlWoN!th;nwY+Evoln5lTp%l zGuP)bpcddq{2+aj~?p zvgdZ;qyF;}Zt(s7Foc@q&r=-C`KZ;TW>xSSzK57#O2ODk(#M#;Tr8DbGYdd2IGl-W#m{=ezER5g` zMtfH)2bc?^l|4Cl-k$|ARr|+fR`xIdEYnMUYfFf!8ie^J6Xfp?5&^GcXKLeMYHdYw z|6rJ&wW9+cwWFh{0XGMXOV8-lD-K3BW)1^JW@aNMMkerKf1J&4 z#r&7&fgivFSwTI3Z`^Wr)&`FHhIV|^VscU>VkXx14u5+-38)SxYRF%&|KBPVXq*4J z7C?jkRSmr09ByfA15+bc5txG^KMNBxJ0lYZBNK}fGZ!~ICpQ}_JrfHz6B94w-_8V$ z4=xo39n`__|H-Alo%!3P)^4UK%d*l+RhRNIyKD3#==w|cHh?_pfghQ^MW58OdTu?`Trbrf));c`(j~w zKZv+3U{=O_)Gmw$hDI<)3kPa`8XF612OAg|u=XzvZR|li-M5N`DgWQT{CPd(pZEM9 z+U(CmU~q%xgZ#sE@FSA^mp=c!8~xK>0^7?+?R;+y|HB@${L>u&ePGl4Pve>v5%One z1{HrlP-sNB??)LE2NMf37dz*l1B{x9i5i>+2IBv6#$Tg?M(g(xqeTm@Rl09UaQt5z z3H-#*|JVHCVrOWC$V9@-f_QJo{`Mi^U}tA#Cov-V`!PVLLGtHMBvyYNW9Q^zXZp8e zOiZlIum0m0GY9K`90PCqAIF&4{__|c8>r6v&p)2a#KitT9AkU+pU+@t{`YIyIoMe^ z{&_zKJD913p&ghwNg#@*Zib)^NFWN<)(#~1Q>p?9MBK{An&iGc6%ZlfA|#r;uY}oO zF@ujFyP%LLREV8PM1)<09m>omB*-kn!NtP=zn`Iv$j^^x?*OxN__N}{{a82iJl_`iif zPQj1-mmv@r0SIK(1OmC22!YT#e5%!u1iv6KRgye{jBtC4_%^E@>$pE_b@H9t+|NQ^#=pqR8?_95wvzlj zj5oeUdsC^Q@3Km!rjm-xgn;1!xm z;QwF0G)a){Ki>KKyWC36-OI~tcfM2SXuQ_tj_3YzfWJTF`1CYGzsfH33``tme4Mc* zh(znGAI#Hw-(;N|?B>k~@TRvxL8e3bPu?-_H50PP6jU$=iM$&5W$NYXD$1djO027^ zEApZr?*w?S9_q-2Btwz98m6eqZHcEoks_Sp^^W)L4B#z}!dFbvg9z;y9xh(j4 zu_vIoxOiyeXmhe$Pt0@QS~=~(P5sJOvQ54h+ox;Af^(L5<+nZNAKUmBrsvVan>%>e=O?xUWEG*bWM5q|W?2rly*Y-Ud>QxGc=2nLa zws&@*kkwVT00^;UX#dM5F5a&rFHRb#H~^Kx=>=B5WGCJcyK9x&k&5UZbm zY6&JY`}6hb@kZ5js57&hn_Kebq$`^B1z4V4FEur_tgNh#?(8inrn|d)?iegRf`cR9 zhaSvB{@&5ij{sc4^nsOmmlNE$4MxrLnkAH)ny#eU3r93-r?!m^cad=u zU(VWlW~or42G7p%y zh`{~!fdR^3GM2|-G`tRf+er-STveF2Z8s#pwDARIsU(ZCNlD#&@!|zKGV({#-Iu@W z-0Z7sYS_5BuVZ(li3w|}_b%$2&CqpT{Ys>zB}Y7;VJLsoxh82;rR{hSvy`XF)>H$X zfC*&E=g9Drl$XxVCzT`-Sv|ePu>?C>n?GMWy`CWJbGq7MIWfnKG)zaRB1x_|h zFeE@_%11ta`0!1Az2||A0r-Hdtn9C~gI$y2U>0Axmw&!CzrnweK4b%9W`3`0Y3t!ZI zGM2UQ{(wDL*REZ|U=L7K6uCE8e9;EJIzFhnjtB$E+}zx8QyF}9yo&!%p?;35@H);G z_2~7cstz5d6?=GK7Th7r{u&&f@kYFV8X24$3-%XM+u;AB0NrOJhS~gd58vFXU^28n z=eOQ82g;_Z$osVmK7)vQ9W}Uh7af9H_c1|KoJHe%*|%nO&P3P92<@f`vQ_aXCj48G zCesgg4)$MQK1$mlk%vJ|HDLu$?o{Z@Ec~u`iP>txeH4WLY9IsoRmuA+1AqH`4?`v` zpbjF6@Ohz%HiLnIf1^*pHxU@(qpPt_KHl;HW_Mw(;dgT&+?_!X$9jV9mlK*5rs45@ zx(oRQRZzh+9hbsehT7c3^d@7xwxErTn9B=H&&LcUyH)LUc`}nZWJR$*8cm#tf^*;S zIm3~@z*}~PCp&L2s23)U{As9jhsv}BVdgvW$+9@%8A8p<6dF%G=7^%7)VlHW%XIPI z!goJ1tk73PB2A)@+KrMIA|*C)V}&4(g7nC3oa#ZKpzv>M@CZ=I1toKYfGbZ_a)GN7 z8qLHUh{)Kr+%_>;QmxRJMb2;2Az*Q08{@AHC}0{AAnE4T|F#JzZp67fezXx!4wDeU zUPI&J6w?)FQ}qVj@fqZ2?nvKDdcAtOkrLT|@8S9Po^s2%gVh4l2jXxz_iL~nx(X^@ z2K1!_U}Q|r-7EATA?F>$-551IhDzABTgc{oo+Tyzw7v38S7EHse~g?b2lG)zIFt`P zScR5b=1o$-;la(UAst3c_X%E&6Pzze+f=N_UD0)JTkw1L z7@$z-H4>7xd^lC>#Y`Ys`cP6Z8zqObjJ5S`5ar&1z%{#&U@SUbG-ShTRM{$sLLQp$ zTbrCZW9Pv<+wba9++hY{*^?M>adu?Z5yeI)>FyBlqvxYAVPj*X<(l1eW5iOb7byq? z&23?{J0P*J-@1jLnwq-%00gbJ@}Cd%IfmQ76Q>U5b8}NinxB)C zFqrh_LuY4^)1xi>O54-@6$dxBAMBBmZw}UmL8b-kKAL%Y5a7BoXonAjK@wep=@VjO zV|fpgrMyJ%xow6kCGb7H_zD6PlawbFAsKUP1f!V4Qr}IFWTWCA;O|kXsqbyaE1&mg zp*nhdD@I*P>moXs8%{X3N6fHWg$WZ%eW%2kVfT3XSuv4P`N_APB~_(erU5C}+uZ{NLR44he})sB>8h0x1@bK;Z4{>?DfWGrMk0@!GS9 z*)aj65cTn6$kpXh6FMxc<^EQ^S^1i26w|97a51tzA>7@|!)^%fS_GsF#YQ^OR;w3NV$H$qn1_n&uzklCeE%5)Y_s#q4PBDL1N~P;7 z)PrL2v?oj!CpXPJN!p~g0-5wb{VXz|Ki=08B(wb(7K+n&QR)6;eT0ppPs-0ol1m<` zO`PpVdFP&GOz28M@t_?vPG0)*n)0V>JcdbCsyVp%x`fPrOo{`Mxzn8F=) z5!)wA7)murUY^I9m1QWN`qmW2Z92qEai8jC95-gMH-4?yn2>_vLu8HjQ*ZEa8{?0W z+C|s^C8v^%Lnei|Zibto&&MfG)$txpj$%<$n~Br)C%x%E?Tef0dA-^ZH&L3!eet7d zs>7l(h#CIhzSX-Vi{bJ&URxi}@eX$+pRcsFndSq}7$HlcL7!{Pf{wta;icH=j=AOW zH~Zxv1kNtEl9}d5^E4N}Hguz-uW#)ku7AzzfTgr5-=2l;43_Qh_!agyU>Y^;Ahw1N z=Ca|WpX}Y3vL7uo^|o&ClnErjWUH8-ENjd}O8eh)`N|R-PvE?M&7dy(ke3b4J-jZY zu)Do21F)EY&ERe2k3wy$z8m9J@?gFZs46mb2 z8)LXcZjoU?RFo+*6+KaPHN@B(T3w67E+2XzE8BJUQbfkR`nCcJiPRaj;ONXPp-{_) zQa~n}{8#{R7tkLrHkLl|xw^a%e9@1n;16R;)VZ-fhVOl1AxN69iJ$nuu>So`$_r1( z_I69xS#WSzdcGEC1%CoM*PwijHBa2h$w|Qb*dd%ztnbxDU&{U7DNb4)u9%K?=X)lz z-%V*S>q9r(PhaenDg*>{v6z1Ke7gRD8WwF<+PzsBgANV-zByS3BPVAqE--F-Fy*my z6Vz645JW)+@dr?ROy$=1*%ldtPjsf*hzJH~nzv~q-)#jdt1juPWI+Yf3R`#v&XZ$h zP`-eRJsd7FjE;-5sN4YAquTpKC`r^dw4+0TNz(n-t86oPh4=Aix-{n_I~dt7Yh(&k zi%gp5bW{0DcIX=w$geM9%c-EEk)yt+5Q89Mmw(^d|3yjAd0D;SY{mIrb#1LFC<4G; zH0wr@=uir1|JB7bt~WZ3#bGDoq*f`xf2^YIEQ(xbk^|1|50E7r8ymG*s5hsj9E^WC#rmo?MQm|IZ@qGyFP;6DITxuH_TL|D8TSM#m!rH6 z6YZtF^@tZa;P4yRIF4NC!VKn_QcRc%5};ztM=uCUx+BmX*Fny3HSZu#e_C!zlO*C= zGg*s2QD;??VrYj%hGG*UjFWR_SwpZKZDjlwH|cJ-*LPk&T}FuHK6#04@>qf#QkxG% zmoj07h}`xDS6i4X>GiH|gkdcrgGcLY901#pQdn#IjJ-2giPjRZ z7heHbGY|gW5~jz`b^DqE3bs(kZ`_w$)q7ibi+T8Pu#pNID6vCNl45kfx_IasiYA8*6&YfruOKkk@rGFG>WCoZ^Jkd~8yn;6 zAl|eBB%&%I5t4*bT!567`A--?;<%xgmmYytFNfPl%jY&e3X}h)Cw__Iy~7k z?KhB6xK1QE`Vox|$4-B#RT{qMA)b*ZiU&{(tDGtyP0O@?yqB@erfVf(!FM$@4H?3dW3xLd1`zOAqKe;hHdtl1rJO4r{)mh7z{`!S2Z5z-!^ zbtV*o?qUL<`FgssG%K5|c})1~knkwmZG}DrecG}8$S-p*@aES`{w%)aF8BapU;D2& z&wRA<&sN#{GgLrmZpBE0g9~M0fh@|#oU4zwg#~?AJTbQllbsf`PZ}gxyb``sJ}FUsosZ+i&WdTP5=(qC;SJ@f(kE=)}pZJ)itL zZo=3P=VD}HpP>kre&V{Ug&rNOe*6FxuLAw$-wkFNY~+D+2X9U_gn?Qd z4-bzO5FrIRh1~mzWDkxZ&k8;0gr0xL1B6iqKx(e@X|vP<|6wXcZHF@mf_C6UL8ov{iteg+4%ow0>Rt>an*7SP9*Uqt+10 zTnV9C+V z4a?y?2SsEv{om9uTHd8n7gtf@DN#~w%`OglVbo*&DxBfsf6xC|=c`^oqt6*AKmP}T zWZDF9#~k1h-uy3Uo}Hcj(bSL5PNL_}pJQ{YvERkJm4O_6DK$^e+Bpx!8`vY#GcC=p zpc(4-@F8(vRp1-s$IbKmHFaU3li3KaX){Npb~FjS5Z>CK!dPQP)l^BM1|xocmiw;6 zy-9b=NB9A+28ynCIXRq?Qc|T}M|SS+?lTtv%bZUD;_IAU`Z*3@{cwksIp!-}Q~SSz z?TWKDN;y&{SAVs}pRRgyZ$nKI`f3D{?qo3&Ezgs~x$;K^Pc6H?L4u7B_7QN;{#8|C zG`!E=YGgj11vQ8qC;Df`mqO}ub|{zL zIX_|SdvXg0R5r_*k=Sx1&F`{Cr5K>>Q2$$y4uFygzr7@6lDu7}X!Zk##W%6)VoomF zFa`mc_TjX_qw~9EP=mvC57DoZJ>^5IR}mUO5gq81)fBRB$DWS~kDW-Bx|40(orcOc zWOQ)3%QHWn`@s`O?@kDsiQwPD4p8Q5u-k9DUM9*HP#fAoc2gaML0G`XdW}?K0NLJP zw_Lyrk&NVxqiHBDtxVpr?bcL~n5?Wv9w+2@Pc2=Mx*PYNo6cDoNQ!vaix&C%M5C^g z(tON3XAl+P%CJpR0hc_%H8hm7g~BtgzsH`F;qn~1^vQ~X-NUJd0F`9o8|^7VLjEcD z3;nDU_-u@6V9~uGYvj*_OIa(ngh4b8m#6)rs|Gg4WdQMZF>FjtT6XvxiKPA)!ueQb z!sW|ohOI?7WHlWG9A@7<)g3Qx!XYG`zkeHn*U_VmrP^NsIHG}{GlVl)r@v)~+lsM+ z$ebN!Bps&tg*GcgMD3{BskveQJqz~gN#V0b6)7=(Q1rI|9vMu3u*PVE+l8-TnSe&t?pWW{e5eIPuq| zig-#8h?SMj1V_g8NB|FTt^2cPHUK@c*c!pX%Ezy=^Le`IP! z*@5V77KKFS8c&;VyQ;oFepbbIc_Obp|Hs;2&}^5Z8y^Fp*b{ehYg+?BATwE{;NX)wJy*Ig5l!i zo(+PTA>DwxFO^BnMMKcs0$})WPY>EYRS*%8-;GiZ<^D*3B4NZa_I|FHtKBK20Ir@W zEWgnWsvm0X{iCC07P^A?s=!bxUP2)iHqhDG#k2NyhE;C4$InQoE)VrhzT>gpQQA;~ z!#z!~A5m4!2v%XPw>3$U6Uqm*>=Fz5mDZ)Q=EhhC#nH}R8)FLCZ(Qv7AyfqR?DoH0 zFE2#x-saZ&EJr1-kwCIla8*k&Co@-*C<3AVmr%NywvS75E*6BmswKj=C;p}qT z7wbW_3%O61csRV+;bqd;oBLmjDJ$QLkGLDN`|=m&S2qn4kIpA){@P(sz;w^ff>V@n zy_qi%K}JUAywZ=K`8eYH2QICzo5PJhUi%y4v`Xb^ZV#1 zJ)m-1$0}Z831C1_75I1{^8qplR}mWfMr1wE?$q>yg;wo*^RVuR-Kk0vkPcY671sq` zB_>t^)~s)I!M+SgMNmjgZ0ydvbIGzVfCg$AAJ;e99ILp4C6V9Vpv8fJy#Ef6T&kqs z?zyg`>4hy>C9nQUg6*pLrGB2=WLZ;-oE%bJ%RmzzSoJdn_j2oM_dzaTQ~86@%K_NJ zP9Y`>rz)910pf6V=`)zC@yN(`DaCEOo4;vh*x0WP++@3*(SD|4*hmW;ZtZ~r-Knz( z#<-*3HYxdks1XJc3r@31GNHpLecX{q*RCQU>cFU} z-vQZ$ot0I_=m`5XfVyh|OR&9G+>`;ry}0*r2`Kn9RW43tG-E6pvd)3zFc>ECVD?XC z;Rz`y|Cpxbk*-DG2~jZ!tf*jE=PIYu$c@=s`uPJ$L4p880pvp1bai>(^Kd=SH8wnZIT}V5P*gCrNMMULHxyWC~6u_EK?Q{Q_jotRCKFdh>TVIml@8(Sk}bRqHo zjRw;G{$>~;GR=;+XPpG*=jPu0`lSxZKw{)seBSQwJAbqOjdOLe<+lSeSw42RogNv_ z%*mxYnysB#i~LFR6)yK{Qn(L;jj}~(kFcBK{m-Bbp8VPo_BTSO2#b#&Y|2^O_Qa)exwvBU2JjEUws zJ`EKd#g9gG6FK&VGXtfE;Cwf1Ea4GS8x9UzM|hK8b6{me{*ycA1~E-d?xj=^*eEu_ znrGYUryJINKLTe^NWpU!A27YK)U&hL57~__4A>&g?@M19e7gW#m0tab_avD#x>!R4 zlo0-TS^+e?gN+Dy2E}uZ5VT^JEH0~{Mvo#6Iz}N=KJ4heE1j#&AL47*HS6+_$Xftg zpcPy7F0BVRc8~_$@fccTG*AD0XHbd=!^~Q7043+39Up8|{b#Dw?8-_AI0B~NVEnSV zLB(8_~fx!P|P z8u2cA#y zGK%YWL)*ObfR^_*IhhfX4m4aWCtPG$_p8)Q-XkqNo%LI)#*{e!Ay!9WdGWzKg#z<$o9G@)L`4T}V64D`54rwovM2a5SQ8518?= zTd0*mg!}-`sfwrUrz`guN6a3_$S8>V`Ez*k{(8BM*hjRsi2al#(D7&(L!%6R=R!Eu zfj(UBG7adkbKepB`0GneEg|MTyWU9CI&hK45Sqk9NQr7XlxLacSZmjnf zoN=_~H78a!uJ<`}b*^0YB5aRji3A@!K0cNy7%~N%GhkcX|3-+-`%q9&kW)~+0pVeG zzB5+m=gRtexNIQ7?D}ZAXdU0bd0}S$vs4@rBKXvL@>!3|LnL)Sh)kuHy$l{6EB#-r zbJXKRIXE8s0-l`&t5qs16Ss%c4K)Tv=rhGeho@S2q=mfgVE?~=9ZRoO;;EE zK=b8J`#~e3`IMBhN{bZYU*F-He|;D(}>3UJ(7VGl5RKYtyW`U zh3j>gJ1GLsfCB`H6s4pmIzP~DjMFX7pX32QJb0?ZWS^GI#?#m6%?+p zxRA?>0Km0(L&&2i)p-^AZ35E#bk24|a=#Adv8R6TwWH|*Ff%UV?1<&|2zW#O6D94x zx8Oez`M>BQbEhO#e)2X9J&fjKc#eVQv zE!FYq%ikN8r*n8!Na}98Nb|pb!#ewzTF?)q(5LSH{*Q(zAl>l`77e7#RI%gSD&9&+>PPP4CH5@4 z*_?oftgz^Az4{g2OrSoGeYO_|Hn0hw9eh@lsiF1l?Z1&W6`(rcWtEW}$v(13V1&g* zCm7*8tLnQU>JKMm%*RIomErvIzJQbYRPFnlZS(a=ZNYcJVJoO2cVQ5LEas1<16V>p(%W3_OlMyL4R;?T8G!3Nwcy)+E@g0)WPx!B1bB!eIw?cD;^Dx zfN_;G7dd_2zqi^9;c!2}DOz^nxs5_vm^I_H5RY?&(!I((bOvrBOrk!2keNeZyff{Fv-Z z0`0Hd=%hlnjIx<6vQLdqZzw2g)^Q={uhlw30g`sz;C3zfyoy(Kb_hLK3oEL69N~{k z*y;(-uO6$!KfL)1Czz~Yk_zsGcXk+3+-`z<+o?pO=wZyhv!GD`nw!thuSHxDaHtBr za>Sxt^>rH^upJz%h@+a)HD2k!re19Hvel^i# zJa3ZO6Ns?42U)Teu-HcoDYHiHm{`;36ab%CPMim`$tkXG?53IfLb2vle| z-eRwCT3z8wU6V19if3Rg<@z{o-pl&;T*+c;&RQS)CUsh|yJn@EALN(TYQ$e>Zl6;K zqgehBc%(Z_3E)GPT~sEm*Y;}0u`5M`;MIeKGZOAEM^}MbSVIg{Qlfr-kf8!$5F*DJ z#Yh1N*mD8%19m`6Y=BN-&+wP5`6n}cXkeeIbzXS`fbH|H4_rD&FQ*%&P7gQ2ZYjl^ zoa`=GkA34({Upw2KMkP9=vu?kRLl2wH->6&AxSfB^;rv^-Uh*%8=WfU^&OaQZqV|z z=4xc7^FF)@7ZVc$?yqu}si`US`}geth6`A9QE7J`i41o{v(GLr27%m;C1rwRW3^@@ zy0JU-hA2cvvonezJA3XQi~W4H3B{Z$dsoNkKYbHkcu(EEHoFwh=EHvd@yXw zZos-E@Ehw)9D$sUrFrso3iJQ)vN_Q~p%`AVoByT`YqA0$V|TaYc}t1gmQleOFzei8 z@jEYVn|1_~SiZ2m?NHt{9)oxe*iXx)(Rz>9%@K7DZ1$U#{Eg&!>mXI-_fGyvhejn` zH#djaH<7rzL#BOS*6jhJFCD0FdX3&SbBC%a_dcUyIcz3L;lUK-kn?bzTra1_F%`B9 zO)S7G=c@#4pxJ1d1#k!ojPr|$(Sr3sUYs7xZf+XQSOMD;6;^ZyfNtIe==(vDk&*Sl zapmQGH0eesWR5-{Q&gcgE;fKQKNh?$lz*?87nFiYk}IZKre^M#3TuXD+3O|Mkh z2LzJ3^?yNW!$m1=zJh{+yD!HpZLLSkZULvEfMpLI1Ow_T7(G1^s8i|atR3qgXEwV{ z`&hZA0+$^1M72&~tBAs_Yogj~c4tS%CV-ugerIJfkgcMirY8UF8N=M)zgQ@^zd6Zh zXJ?0HQn3^|9Ua#2Wx6xhM)$y5+|}fRMlnbDuMD}6A|-a}Lv&)qSA9b7ZK%V3E`t?6^Z#51W?X-i3GHVH`nz`&^O7?^|cCd=S#EJ~ayFhO}sdQNzw4sK@ zecA6~E~!)h3t+f?BlK~EX5B5MHdTXH7?)J7>s@2xxBp;)oniV@VXUL+83@k##w^w8 zc{hwJ7&R%B;{UmYc6IC1g5W%Qk#?%^dJp6WTJ!XlE2Vtc3Fc}Om{<7ylDas#k0^mm&nh7N z{H#~yEUBT&&1!KmfREpPqH>!zlI_k>|_ zgy0rinS2hLOzKHmWFyZCbbwn-rpXuUjtVs$ucTnfKb^1zi8Oyadv_=aaH9%2xOUCB z)fR+p{oz7F5MyK34_f);qjBR^0qpVsV6b5UMpq{k$a8wNgOWG0e{X+=!R2S>aLje{ zxN67O+YZ(;>UeMGwyJfLYtRErNIb7F86P$+i8|cpQ4UXzK>&?UFhcQY)6|<9CJ|Ii z@(Jmd+#v2v_mr%HqRGVA6SeUNOzt;p=tNT*?W_4k8VT%80fpjU|5?zO#iudGG>19B!N<-DY%0&dW@-V+mJ zm3Uf615n%E{@Y1>RNf2Kx#rkk>VoCsusC~qdbk3>0y5EoBmnD$PzFr<5dv>pxC#KH zIjJ~0#X1E**8Q_O9PHy#MNi-hJPryf$)!3J(Nf13ZaYKZmKE4rGFD4jDo>pqyU!#T z`^&T7Gu+ku_rdkjIui1~Rg{zg5P(p+nrdFR>6(>%{*6Z2hsjhZ$0ReBm<7ADP$9B) zp8F%`^;U-ofm+COqajW=m@LywUgMhEZ#cS#B21AY&i*7YV%X@;E*4xxFyb!#EO2p! zbCXF*K~?Pd9FB^{RJbN4>o5&o0G|)k5RyGSkNg1W=aa+#M6qBN9Ic%Ee;=_K5~?o^ z<`a9Qo1B)0iW)3o10?z`Fd)vXk5b&se-^dh&X}Ps>rirX2Z8)IcLlmXx7(Qs>>1lx z-UR{M1_K8Ti>R`8>#dC4J7ToUe+rQxQUW(?S}QyJ$NZ{|yBX(4M4pqyvh&>0%LoSY z1Kst{1yLQ*QZjDItFNmjtJ$tUPr42$k|#)QolV_*0x_=+#7&7egZFrU=f}~7ikRZH zve#T*+Ej(3L+9q?_7>oHjQIp8tsI@57SM&!WD$3ksM8U5nySCO6hCCYbWk1*3{)*cA7`jH|xM zO78od`xime^1U^2qv&4B7%zLqo1R2y{T^vl+^sheTTQg|NpN)#9jYBMwJvi$z-jb@ z1vi!xH_bO6KxhS$tHnROSGZNTh{T=n2+Q=l3K+y_;;LXY*{*BoT-LQeA+N#(M-&tQ za0L%Dzs|$)x6o*E`@^-?znJzT1CrGrVCJhC?R3dv8P}l)(5P(P<@wg|nr{xQhvF7gQR|z)?dvwwy za9dH&LAj-!%4^Km$PgH@IuynPP9?`mX5{YF))@X*1ET#ET<4XHe}kx+fvT+X{{CXY zr2ce@?mEh->+r7r#_IL;rmv6I@^gml*kDi1KB333#|)#yPrai4^U#AFppP|C*nNtgL`)+D1%%bg1B0T@Cw1qsJMDgsy43t#|Im41#MdxLq|S z{yLnJ0!$MHKBL9dq^NgwVsW0_jh*|YPYTNHps+a3CH3L$Y$mrFur-nc3VC!Q>7YDU zY3%~yKzAoGD{)-?a7{Exl=t_K4;~yVz#?@th0E+`z#}h@J6r_3wPgFHNb{V{I(Nv& z+tYzn#YS@ZVQF$1cR*AklA{m?-qldSkwkF~p5X%B3{V9KqjZaLQtl@g*SP{LFN<7w z*FNy59;Nc6j_Z$MLnx!FZ-+5O-c#Xp&08RKaNF+^GN#;5xIJ=vPg&Eh=(dJQQpy8Y z;*QQvealf8{KxEQ2jh{wHt%E}3e-857rK%pnhft*HElnf@={fLIIkxu6(F*tnVK};bVZFnuXsnH zf6Z|-mF4`LM{LEJTy4>?sn25q-4**L)#Q$8iN@ljt*1{jKY;@B{TEr>8A-*ORaXNh zhXuvF%GZ-$bZ9;zF!R!xO!X?-z8^HfwiHCc;WFkicJuL0LmREFn)XXB$1*RHL{mtk zL>S&H!SnsG985lVinUSZC{0B{1tBUw9$twdsVIC}U_kZrWBoA@jFr29wFIp_lpc^9 z_u!q)0z|feSF+yW z_3J=BV^7ysG|YOUS`c_Qae(VH%<1UBXr0j5SWw>5myb`z$>OFB=gq2}6gYQNrQIa(n(CNr&opB_wt#m7KFvY`B?$=$ z_k}oJhYI$2q+GCj~)3)0gc!63*m$ zNZ>y9?Zy9Qw2jUOMs%+@DaE5lz#}D~-ZQzME+iZs_4)j`>37Z9JyuXjs#b3F!nt#R zn#~&@OYO@H=tx0eXan}EbmS5}7!*KWFL|DQyH-aLXk+Lz;i z%S*UIt@l%6PfzmUqS-VN>9@;Yx13JjKR45)06xFHGdc5OpiKk=2dydS6S{TpGTFW{ zdYX($oP1-f;*p(Q(cJNueyr-3SEQL)`)+H0E(`;VjVpV;O4lE4M_n@+E+Vv_m~9#H zET7q|oQ@%8lyFaG8U!T;wsB(tcoH*TUrKa9!dax5J3Bjp-z)%h>j23c;BkQ8?WxW_ z_4W19iCB|^O5o)`|0^=TVDkw*z3P*%TMpZ-+d!byXlGHN;4?pApRHwdSm_TG;}e95 z%@~@v>2nxF>rb|n5zAO|lsKA=P9WjblMP<9pfe&m0hl900Y-hgPD@G2-h^%8i09RZ zb8rxtwTE*ZN|cwCl>h^+2r%C{La}>%6_6MdpT3&MirV2ltD=GSTctrcRjJOO|A_p% z6js=F)(=vZI7I5x^&SKib0G6h2$Cs}+u)VZtAfzf0KgnLdrAEK{IIQ6Kt0)IT?d}z zS+FG_{-6fyECzFuY1x~!JeWrb8jA>J@O1yMC~+kIz7Gb6?HN z5dh0K0TLlP?TWa-N>jTfizw+jMS9RkcEXkqA}Rs zAAoF5;lG!biT=@}JhS}!VcppG@BS$(pZ!-L{T_SBhU|`xvZl{SZSH?-0^*K-M*>Pw z5y!F@2h=6{IRilG#rMC$yE*yB7 z63}%NTta30Uh2}J}E zI_%Neq0CYrCM9@GdV~^`ZjX#dzbH)F25;VdJJp*NF8i2Zd+a4#UC4+QHcDMb9D`K| zu>1*V(F5M}%Gzn5;|f~;VtxDeEi3S600Vk`+k=&r6|Bh?xU6Ou7T)L7<#Wpj{M>iuGrg2R1Ra!I=8A&oH%WE|QK$mm3{j4>!hS)XAgfn2#|Z zvv~Ng;4W2A26NA(^^tsP^)I1lh|*uK`=B+$l^)UiNrDnI-ZkfGPs=T_74YsMaESqe2it%~PfuU%vB$AGTwHv(0Fyx2Uesc0UV}~;%(Nda zFumV>f_Nh&)H-6z!t#h>W$dm=J8?HzNEj|_j2Q4D*r~|x&^4lN&6r9!Kxlow18KXt z?ye1@&#m*0@>k#?aNkq;YD`vL`I4)hlWVk+1PJyO_EIy{^x%COBAC*plY9{P&OwoOMAyjFp3=*%>7FVcTB&b>Yx{)W* z@jT^$-94gY(U2Gt9clT7JE4Er~W?&vyj z{b*9CTXn`zH?S#;l@ngO{(Y*U#P@RFS>p%SgT|h%y9=*R%4QkEIzF}Fp&kX3%7J!7 zL9fGCvcniwMaz%*?r{LWJDS`zxr&qdE9N&q-97{ZtN}(@kkN{!TA~g_NbLOc~0k@ z>cYWE%bvG4#nan2IJCe#DTj|0raN`8W#5WM5OpW;|0uKQ=Bad9{sjf99RvbcEv9cm zVQ!%R1a!-B@fYh?0ShraUmesk7w11eAM7-Ldm&S0Co^6de|E4*l9i2fm&JFati)WC zB1WB7WuBVB+Y z`F75#H%*!a_|$+Zt?_Os9qPd6K(~tP;7S0BM2{w2WBede{Km6oLyQ0y2jpbuN;-ug zqu}|I-Xu)ZgPXtW-@eXWsMT!=*$cBFx~vPe0&hn#nABR zm9NW9m)Gl$f$}vNAH^CP1XRZB>t%JefbG#Mw;RR)SF{P=|!p@;BD?9F0){<0^aSo{iQGn^X8qq|-({DQpGDh@}Tf<$nyG5-7BU0KUjvegbmgIcOVjaCB^b{Zon%oR)9)(?0&Kpxl?Ib2w(1>#?CP->iIm z?@U}4i1(G$_FP!*8|R5w>YDMJ z4CU9S+|i|3YI1xOuI{(WRdGecG*Inm$~2m%g&C`mxdH`m?!;^0ro+12GeYGvVUA%H z^zzE!5HLwzL!5l;VXRO2@RoR(!Qr4InITK{=8W>=#+m^R6`V?Y`Oj^U2%;t7i@nxHOg@xAInYEq-&ZZuT{goBvbd81Lwyabn(i zTzc$uTpS;z$Sv45FoO{AF~9KnnAuc~a8%H0^-c2*gv%BX>TfekghdiI9)CYYseZz! z5!sq7JSCMY)W@~{Lo9vHnr(~Qifda3gRYNTHSWc#%>hb;UH)8AcRoO z%{_={e4xRaC)BzKhYz_rQ5f2Vgovj-pOVV{jpnODF3HS9h#{pX|3)rtI9%4#1!o`x zVW?l!_Z7PODtX>`oVzyiH3?feh^50~Vu+<|pFYjFb}LS*VMX;qS@t`l`igvX}B6Q~nc&Q8dy1{4ZH_?Sws1aP+`%# zJj(ks^oyf$g=*HMd5TkdTwnErhZ5u-k=?|Z+34jHyIWyzznrWhd>%+n^v{~&vT=R+ zz9f&(L-NS0rJv_`gt$!;n>fmeti`cu`|Xt8Ks#=%G!2YC@I5+h6vDae@*)_5;!cquF6IwjIRuc zJL0&{!_ps<+$KZ`TQP9tvnS^p>U*=edxSt=5yx}@yC%F$Kjl8|R?jf>Q7}AH^RBjU zuB?%3JL}b_A!9$1`h)nyF+Bg>>UIIU`q3Yd@_HHg!o zUAVC^L;V;uyPZx}v>xBigyJG=Hi6+FD~@l@njE-Xo;^QFAE-!B907#Y?bUzMGN425WWj&{EC;!PasiX_Ru#Q&q(JU0jmWg1*N0hma&cP{+{rl{=L@(5C_S+=+Wsp zP`SKv0z>qikxBg0%4a~XRs3NPP=g1nA>TimZ|+(kZgtw@TgLup+k2&X!^;#HRCeC) z9nzGxB-`USI6`Uo2~^X9oR0-Wr>^l=97;$)ZO0ive@$zbv`zCgf?#hO;(HFm#H!(3 zov}a!7rL@gCP9sr%rrpfnRKkOP-K_fV}4nScZbIUZ9RzD=7EdUoz z>2X$>h(jJ7-BTMKj@>N{QRJ+*bIpG|*hQnrl!}co3C0iEQJ~Ay6Hr13iNRc$YO2UI z$8gN~0)wI_xOh51vD5$FkdP7ZqQ(AA@K)ayBMJ*j84GaG% z$~F!Ez+<7aT<7leUv}j5Gki6=~gKdK9K}B zpY7Rsd%efgW#dahdvuVfoLmU!oN|~Ujpewgvq)Mg}D=svn>YXZJ4w z0|}^9F{?veXKw4)zP)<7TiM>;rD8kzto1`_Df!)UQ`1*|#T|Uu0Q2Uyyz?@-KWOgL zc|w@tCrBtx4Hr;1=T=RnYDrVR+pFtvHX)%QU*_=|LMDX=kjnWhP2f7V;dacr9YZ1S*nKn87 zU*|bFfz~*#xH&-%4N?2Pv+?Pykk5>KJUvc01}_nvLSg3ntg>>?onFgXsQO*Sq{y$F z+6)J^g|~fan`aqKL@A;KTg`hA)cT+&v=sCPDJO{#&CbpO9a`b@|7gnhJz1c|e(?rq z3JH8X>o^3=f@Z*qi2Zhr(}T6(;k}<6hFzb!4@H5?NG*aftY#20j)#Ic9GAGeD{(1! zF0<`?JNy1l#yVGTY0)xKas8bD>@Ag?W{gvmc0;W#p*@QfciH{R%Qi-7d^ARt3xv4V z2#vXw6O)5XKI8bUSk;81EuV$!zh(|?e@ngis;T&H415y~wpXS(kkAZN(FzI*{zk>R zJp@o0RaH_Wj|FO`2i_yEE&v<3F!SGvJM(C$|F{1SLZwKSh>%3~J=wDxln_d`kg{iA zvnKmCh*C(FG)l;lecvTpwy`V8KDO-l_3m>o-}`rd_c`}DzdwGR&PmMM%zNgwT(9eT zJ|CAVCquEvnwih;d=8Q?2(ur`?;x?%cgN|vH5K{iE7RBU4mHJ#-9(CF$-EV#@cB~>f~d%! zQ@H3?%i*CUk8%-%^ugx`=zt9u)Aj^Rsi-)jj!%E$E#kn}97 zkyPJv>&^opihWQKPPU#Wgbj6&(ttd=8wN;9o%< zUuh|Ijt(>SY@rU;llO@2SqE!%X-$?wSSN}HY8f*#97f)_8QlO1Oid9r#?d!lwqag7Uu z>PH#y`Hcm{$npiA6DysTo+`17@{D5Bas7SgyV~v)X`H7uuFPU7DvB6pj`2DFt9E$3 zQV1vQ7ltT@im@9jI>g{Bx%ulxxl*aaL^Nb2?=6Y}I*E;gqoJjR6jG6rZi@&~iNT># zD{~!@+zx7lCpI@XbEW2dMixAwwZ)>^yt^eki;3JHS_u7}RzfGW*cgB?f zC1`}k>iv{tmN-^cVLrfBF#7Ct?cPd6f!+!6%fCpt-@ler(q~{{Eu5B_a+{0ZBpC7E zNw-G}Wq!Yf*XRZ3YO&2F@nI?RD-SV&fyrpDY+!kq!Cc1U!SdYm(MU4l0HhSNgD?`m z6+Tc0Q=TcX7?dPp{#8gZ{LiRMjH?U!Kv7lj^UE9@MtHnmp+dFB)BI9PD<4q`_*?_m z{@m^y^W>O&090>FaK~xhHYbue9L>p6=*8`I(oa@xnsn~7 z?MQ+?_KntCO!4-hNxLJHjzZ*;xwg*EM(}j}kU)2( zh^gFQkO^*uGsindn{h)QQFhHv56?E|E&`~ZKe|HBT%sXlRQ;Rhqy|@%`bfpOUp)#w zykV23>v79XU2LLOtb}EObVX>Dn4beT@%Ta+|FM^gwv?V;o)9G>KlwrI&f7P)nV~Q%{7;p}P(xxb9_SNgxYdtE= z7r}bRp_$6#MDjipneB<@Oia@;rDn0mLitKAsWf^kTx|O+(t%jgrrV14Em0d>iNdtZq~-vS{7%LD&m}dnHfd)a#er9CyjTx>#OpD8D8=%*uV4 zTB`w|JCbg993o4_CKq{{nRxG!t~mU<4=4+@a+2?=Rz z(Fil70#(sM@K4vAzMjQ)e(=j+5e5xBL7T3?9z!)TxqshF`#1bDLKup$1<)#o4 z-k!XZDx}^^{nocWj0*pX=d}dE(IGd}v`xQiqz)-dN!qoGKV90oM7!B&9%4qJ@+vPs ztCYng2S+!=)}Z(U*Qc4{PWHm;yT&ozgFPZGtujZ2PK6w{YPEZmv&p*?M~ZGutz$+~ zcF!HkkH26Gi`0dn3e1z|@^PQ!77ORRqlcM?SXoW?9F@BUkYD&@M!Y&4Q$GCw12)VB)gM2@%TspRs2CX1zF!Ifphf7rS6IU@ zv6$;ntA1_pxpu0-)4ApaC@a)=QR|8H^k$z*9bL+DvHBm<_$M+ml`GsMj%jG04L6SJ z6ZrnC@q~hYQb2rsEBkAy6I$H4;Cfh7B|8^BE<;^B;-vhnwS3?m!F9IugzN^a(Y?qe zWz+P{T$TZ5FqD#%bIqlu6D+I=fq`ty z%uNIEw2n&n$));a4O<3g2m0ezt;~*NJ{uI6o@HxlVc;U5F0Qa^I;r)$wsxe!z1W6f zgqgZA7aa=YE>7BGSzIg9X-dB5fR@&>HIt5>WR>S`#=gjth3~bgRH9Is=!(hJQR&RH zd9OsaFlGn#ppPGEu@sDFoa>(j)0Y=$ke#_(sYcbt`*@Z*npQ}V66_?q&Bgp|XN>>EG9c4JUnn2NR@)^^-n9M0IkbtkzM zZ4#?qUNQjFxqExnfGU;qZ6TN;bA9zN1aj#c^Ctf_vs=; z?gutm`0QZq7_3Ctvofyvr8FSkJd2Q5uN1p=^z_Ed6+-Y2Of-O!RS>TyU0bPE+?&2+ zW{Kf5Iy;<1excD5r9kf=cv1~?hsQA_rvM`3v}i6@&GdnmPF&lVe=xs)A)x>EdeGNY z8k4Ba1ZuX+cbV_;b*t8EVE%cg9Ah6XwxGy7>0y#t;$v+e2|S(C#3i|9ug=XS<-dF@ zcQe{7)Sy~syPX&XF#u}8voH!&SbO%rI_8mc;aB+$bRl? zn6I#=CU%=ou;92HY-Yjk^xDD5jA^|oYQt_#mX#U$qsqHUXIagl_^c7S;LDU}JdT_W z1qGh!CpSn`8Qk@p_RGxNN8yeAm>Cmu90Q`TvP)mv<8e@cbHf#@^Br!?#F)t&Uq0Bo zr`LSArXm9ENLPClfj=LfP?jP^BSP$@|wU8=`yj@kjWB)Och4Uym6K5DV zwKGW+(fx^*O&4qVF43a?58JC84#ms_SyeUFTYR(+z~>oh6r{JEs~s$d3Hm!;TJ-X1 zy29Ql^tR4nIcc+LXL#8) ztv9s>^*q;xzIAM^Hu%(c)gfC#p}D=inPIQK$=wxeVWEyyMp@9HUh~x6NQdlNYI_oC zAh*&P{ru_P%YxYzHiMP9qxiv${&@|iXyIzKI#o|}{k1oNglyNP@+>2ZqnW$!t<0bJ zfwq7Bs_`?co?+#k$Fyw|6S3%%C(YQ~{&_;@37<<$KfUm6f!j7?BdfFD-za4Gi1`=W zH2tx=&X^X<^7{hkcLfPAYVdf-9`Q7bRD21eyDTx{Q~F6@jfK&_vTpRro`JH?8EKCo z5*pkx&QMT{m!;W+KIc)cJ_T!hg5RWD5+8Br@l$|y$~W+ou^XWiLSK*!7gN*RjZ*-i ziK4~aX9FPGEr27rvykJ(i`F*EVmfB8D-N!=&U`W@h@GE$csFxxL=@#|Uh2Ml3^&$P zcCl%_tSmI4GnfpjNWbhmIAp3?r?kTFH(?JZ#n87HUN2Qx!USM7L6b&1%eT@RlH zVjxwWk?VWFv&H*P8KV`?K7B$AEkuEVO0$a?zt(nJayhtFN$t{PDI)2#R(JLfPG>>& z_AHEFT4el^Qc|-O3O#luE_bPe)P2{>40o;?1#Ry2Ty!)uDccEOU;k3~@!#)td1G81 z1&;|$O=VR4ZlF-|dr|)ts~3hpMm+yFJF9j0Yip_Ur5b?kPS`&)OMdt@G=FdV-i6Pv z<1ZD0DV|r@=^%4=bKP1ZPNA@a#cKc0+OOdvj>@VkK~KB|cJG5x1#J+?X?ft4%FD~I z`c$9Y1n3yJ%q;n#f}oKT6v}5%+8joef#vlRGXnNa@Lu&#op`$Pkp%YOVlO6hc20pa zp^=}5T9WCxG~(IK?!-FE;9}1dj5iReD)SbYc6!m=x@0w@yr5Kj5(2268TVNhmQT38zyKty2Q|q6O3if;QiIB1K;8k)nXGNdf^zO=u`r;r9<03+0O} zr*hKpBz7q$PZLj18+8ezRiaU%Htj*#WK^^yacBuwwM>8NL#lFD?2pejYF=B^Rjz;# zlR9u2mvZp+tu5HwYTtA1dh6}8>A8&sQlA6YsX43`(W7s*pS~4b5=N7Ef`$50 zn+ryncsyJDK4|I4lh#kyaxV(Q%Q)NTh~8e|rZC-F7fv|Ynuf-2^6Igpd+D`>qRw+J zJMWjZo}y8H+s2TT;1}!OZpR^btxY7}A{fgpV4>PG!v8Qn8SV7Q?E)Lk;1}n)Zz2<# zLvXy)!s_w%=bJDyU%4G{nf1Nu{(+KMQrvvJowBd*vp=mOszMs*3<2&i*4N}^3-_z^ zwCwpl`97J_ETI>*BE)@pdxkBmwo~*!s+6E=KRnnr@$mAR1`D+=;yJxaMf+Sow!qZ}Ko%WO2gK_PCX}!HH;qo-Mk}+H*CodpROL)~ z4PaKdg}VwT>pZ9-`-0v0?WC!o`(14eJ{{8J7z>r?(0nobNyV(^md>APGOcwR_U(2) z+i;NF;x{s=OwZD~bbbE5WsycNuiy2Tw7UYqoD~T2P@ZS-8bIt%$7C9)nHGbF~?*Y7=Ockxg>jdv{I9iLMVO)WF*QlOi@pt9`p2sb7a}$DZ;?OK#;lp;P`$OI3^&wN6g&d3PAZ!PMW?F z&a@~t;Fa0^bqQDLNfmWo^q=~$2)q_`4eG=~Nq4>Rh(U_#IXb*a5D9 zv)9-Ecm}YKy6S>hO?SHe@>crZ)A%RQBCM(JjT0y2nq*>f-zX5=+aIZ#9HFBiFjL&^ z&mAf@PI%&F?DzWrdJ`==$O4aH!GI8eEZ$zaK*=Sp`KR)oP+xxRqmuY%djhcX7~ZdQ|6cPpaDBr<2o7m0zrwp-Ke+M#WkGlPT{Db-7uJ(A+&^?C7$=^apPO5-~xf zO5d#;kDKmp^wvbb6b&ev6PaEs4LzQ2t@}#GNa9D-*EBI|EL#X-QEw%HLinoNYjRcB zO)6K+GEUAQar*QKNn>()CY$NHCAbnl%+?02t_tKPS_l=`S-F%Fbh3*}Ag4L*yQSWXX!An`fsPEK7iJZBS_&h8$;th6}S+tp`(6Ynymv z3m(rN$81!;)6Vjk6Vw~Ksa|x0wr%L9=iyZauROP<`UT{PqNa z@iM?regux37l!9R2&|a-Yn3wUm;31F6O#NSG@efP-hL9$y1(al#63>U)^yRmR7oY` z9Z8lLhh56myu{nL!E@a-Sr_!<2W$cDO0U)>|4Z%J)|3`S&Unoqlu~VVx*#J_dNXI$ zmt8kDb|FRze;mXd4j{3E@ue7!!I-`yMj2K-gSwo*k8@q3kfx?q45yer&)jUnc)A@> zG{5%s^_jt%H*8h|$(Fyo?~}j$x{mHE90P-&?5T;xyX*+5-DYm@nWYE?q}DCiz9J3~ zz3N<=9}@uIuLHOn0Z;91*;!avBww&;@8HhA^Gj^PCy0QE#1s&?NNy|pM#?kbwf=i< zH!cHbIBBmNhi>oW@nz4o)*W@%r;jIZuEA#Ms-BJYUSX6;`3(F40Ga6fa*BK6*$}V1 z&*G4vh|Tv-vzo}rQ;`=WX@Q!%y0Os+&_&4U2LP$mWPI*d&s)ouD^G6TMZDdLdRe#e z@e_N0-i@7ChXm8YhkMftO%Y&_$yy&ig?V~W;hE`Jxhr11?SJRQGPCWYfN+r15PV<1 zCTeP?|5FtT5ryU8SD444c_SRb9S0AZmh8F70s_pGF+~rX@E?t`wucD_%nWI4F4OSw z@`BECP6=MP}D`iMw_JF9aUpT=5c8Dg(pRWP( zxS^wi43Gn-m7~sIPRjvU(<&Y>|G}VmwO>c`J_vg7p0)viLJd{b0(H@jh97upu9bFl zj3jWJk3xT7LnZMgF3&lyy7iP*RG1&`?kOK6`&G#NA zIJwaWZP)znSv`zH#i7fcl$N;JijjN^tJ2n4Hu{QDTN*Z_nvYvF7y~5t7nkwv*5roO zKx|-4pTqveuV$lS6jj@X{?C_>g=2OTHMcGp$iCBa zd?8kojaQ70lKucEm_$cIZO@<6gtv1EXJ->u3Un;|{@$Bz)`4o(2M;g8MDC=C_mdWB z|9tn&8|%{aN52P(x;)sNY$LzG2EgUr#^&iEpqkO!@^>78){>gtn&18Rz)ZRw*At{1 z@a}qC99;L9i7CrO6@z4!pkAt}NrJw;d+l)wbZi*M0>psueJD_{;m`li_7?%5@l%=TkkKq|zW5vbydo<4U0R1MJut$b$GZi*Xl7WIvbP@S(!ng!tvKNpv>k36JaO;#^Y{As z(I7W7{Nh9m60~}d&Vf4p!*UvI8Njr0S;h_9K7qL+Xpg(LI8sa|W{(35@!QqSL6eSA zBaq%gMH7~&S5ls50p!sDa9dk9BM{8eqcOK9-2jGL^x*Z)5YRiOeCTLzuLnc#w`|~- z1O6zqmG6JXqVOI@Ghcg*;;&o{e04uOG_)2ZzdQ~}Y;8Oh(2PUCcD!=fa`3^RoVFvZ z9^?>$LazX@Qp2iDef}{e%(Fr$vnIQ~7IheB1h{ngUMi??(tPkIaARXMrKOL0>TP$R zPYB){xPibSp`J%NO=v6|iwgiY7TH395P~lUz7GQRdDxwbaF|X?9YP7$+9YsH^~Q}R zs8$ZxKQo%FV!b!DO`CZ6zf%MO1T_gsETu!9zV5b~uCXzrHE6YPF%V+*Pd+KVz ze5Z?j-c*1z>r!Vv*%2!e|Ffc=CsJ*j%8r($)Kfl$`Opwl?%dkcS8WK(-Gl*s4iZQ-JZ` zae~*b{(}>2f}rJxD-#nFVrPd%n*gN}!=#jNTs6Cto#y;cpNZ1|gC~aa*buZzvFc;b z%*nX~n*w|&NC4usy?h#^uOQw;sOSJ^X|&0&dd3g5P7wX80O{)t0|OZ%7Jl}O(0{mf z58U)XHYpE(yOvme5$1@hfJ~w6zx0wgN_}}~^z}&Ws*uoG#9xd@3SnF;m&H?PX zwqm6^0t_APqbiYf0TA`WK%z%<-9Vp;OGyEf1(HtK_|*eN=-4FveB&s1LY6C6j>FwE zJ*|S8KJZ_7j4SCtu}Ojgvd#?Lw6zH#C8bvI|CK;KKk;K9pR_iQ`yzbR9v2GmN3+GD zf?s_(6kNLR*&L4W9sB@M27BZaYM>7PfwQBX_x-bXH=((UI(*#P02|Frxp;YRcQdk$3(wrX-5J_Z@}>V zbGWy%_EmDFbs=iI{ZCbsH?h?IYD1aJ{8^c!eP^llPT^#s2jP`n8xPlDvXSo;!D;e8 zn*Pw$i9M0$vPFRZZ#5guCokKvBQ|mB6PP9A1pO zzDCtPch3u3MowRysSv;^bET5Ig`Qj8^zO3wQHNeTnlANMrf%va|TBZspw#e@k5*8k? zfBzmJN?cDi2lQdFvXsLpzl|GY5XT?<9x29t_FT8j1-byHsHg~eIjR6=ien4gRttlB z6nQ*(9p;&HFX&kQ&ISw{&7Y!Qq4v14`&%kCpZ3<5D^|d8JtjQ5ytKqC4dqd56SWsO z?7p0~FPzEa;1I&kZzFO(Vo#THInjt5$49nfBRI=%s^keDXVBjEih2Fh6X8l#AfdR3 zJ`2mxW!aMXP~>ND=U41Ijt+jbZZ7~J7uop7{f?eMI5}C+!ql)f)3OF3`?@hFG(M06 z5WQBuu`~)W|25<&;zJ(oscjB%ae5#YSdL0dN!c2deKSV(V5L|^L~a+n(^peF3EgOuwfCi{C3I8$?4c`O}I3{4=6=ghlp0d&x>eikdiixuVmqe*Mm&{Y0U2^}XETnjbhPmC8|gCF1zL#f3*g*YwE5!23)*cgD~_84 ztq0p?eO_tExBwZ8~MR#qcbiXLw0VWLpG!Q`uKnT>g#~Z)2ip&{ze2c9I)Eujn-%eF&uYOaYcyZ8KY}H2s z+sQkVn(BcxC9Xg2G%SZC$-enUfQ$fN-Bn)0JL9nEkiog91=6u^Jectl`QeZA>Dcb} z07Sp&V_cSc66-&+j2q&tW@sSvsN^f8)t*2h1g`qw3IUJ;$f^eHKU%v;T!200S#mNR zBCdcRAdR1ZGA48Q#~fi8${uXQ`*iaeSN{68ZBy${04;~!R_>2F)DWP+#KbYdeMzN8 z-#>Z3FFEd*KbSq!!H4%4GM0OHD?QdS8jg5gwjWh+9UaUMV9!C9C9ahkmw9d2b)+`? zb*#mVXqr*;u)G5^Bdf^`T9LtEy||n>5|q(i1i4NlWYtFY42Z09Vb8cMB&3Z@Q2suG zH*h0K5dCBUtn8YF-Sc`V&Ue|0^YPvMJziCD`>pcn?}u@X>BEqV%hk?O>wS8HDl;#S z$Mc?{;j4XE5ig@b`w|OHVJ`3N?WqIpRA-4sZs^ zyAeTXQUVmi(Qs&+V7#tPM;HS~Z0t+ZlI1KD{Ce5RFayX=fxeyYINBLvwI$;6U@n9djAf2oGJeS{%kew z=rU@ZCxQ+A$LT2P9Ue{N@pZLv=ib~8bJir~j2->1f=l;Fak8#0MK)={ZiTeYZryb_ zX=g1v15uYhB|*cUsdv{;$;*(*wLZM);kHy%=CQ|$iff|(>~#iyfjr#G1C{3lsBGIb zR_2tr_<-$_>X6uO`CH!hcKZ)!{5oYSy2E9L_E#*QKB0QXZX!~LQBXfw`Sa-W0mc5@ zZiihfzmrvFlk~|Qo@1!T7dHtlS5l+sB_F1L-IoY8JRjC4rfI&ISQ7 zn&)TxepM9m+mF=*U)JQSi(D2Ka5_*eGN&++jug8z-pC*1Cl^vno?PTjj+!*yl6Em3 zp`TzrU`k0FjdYi&4yxwfeR*N8W8P%-22N}UzfUX0xbcZ=;*z4p>!OjB?NW^sDdQ(f?t!Yo!%}?Uj5J$C)D6v@E7l&W?tL#&`*MMTj!J8Hv^aVedxoy z-+TiF_gj%z^N;>|OSa$D`;Uw2Q2v}oik7PU^J^YKEmLAG6sSqvCbCWGg@%?f6&XL@ zdtdGA@|cQNEknczPyqu(1&gghk;fSbP^#5wkz-mFS`}V)QU~Aq{;cEDf{nM!wq^wE z=0tq9``u|r6D-Xzv87)d28e2;*2z$lRUs1!8$TbtI_$Rc+~a02mh;k+z;Ra)p)kD| zfzJcCP_=J2nU%WcMFq2$=zOZTof#|KPVFf#DwLUd@1bhTCR*Bz9&Z<|m@l;z<7I9C0XIm^Hp2$+PNlK- z?~JOh0zzn*xXb4y&F%}GiknS1l{vG$;H9Q&+3r#gW8aDT(%@;C?7{I5_F_eL?m{b* zF-3lpqY4x9{PR6Ok49Rz@4oFZT?(t*+c#XFqhkTF7VzrD>GHXZp}FIbxGjg_E2G&> zzMGya5yEskZq0U;eQOsYSFSOkVqe6E&3d;f$;har1*L4;*JH!aq2lHRtNqU8mw3`p z@O#q1zXP^a*dpw(6aHY9^t{jOgy$9oAN3LqRzFUk-d0<_vp;KAWS2dd-M^`#_=6PT zc=O>*A}L0^J^5dKzM1^}$$9$+IQf_rZ_^)r+*8JF7qFUn%48F?kAC-2`+IKd+_x_K zUi;8nHpoxZ&rr3>zbWM0+j4bRPj7~!s~$7kV(9~q)?&96R$bObBoBLbV^~e?QS4Ge z1iIY%O)7%S7a#bv6PdVQ&QWXanKS*9-_Z44b5V*iNROgE^b@6r`$9!o;+m;ueHKo$ zuD3ybN`HVtmhpf<*t=5^X3Eg+w4PMqETvR2o|DJdNpJ(hG{Lk>>!4g2mVRE2!sm&i zg*Spk_ty}n?!M|rd#PSIygK?fbEd5$7d_0HsLIlunU@Gh+FEGE zih3_+k~KSAhzZiCn2tGjD6k-Z@*{oZrNQX*4tJwZQ=KFcTL)5q9#-}op5_s+Jm$RJ z+4SwXf>v9ucHGAg0>b6ppRQ#qn36V5gtq8#r`7MpRK~PUwi4!x9qni&iJm`Q?{Yu6 z=plKk!4CD7;doG~L?tomop$cYL#8b;W9!YcyLrEY>TF0Zeez-nv>{1qmKCH-B#6os z36FylXlvcyw4q|AKa!%Nj3Y#<6pDY>N%$`(Qu2p$^#Ah@1CL1OLgo$YNY{m-^Xz38 zr8_Pb_gx-Hm^(dye^5dKf}*?vV!T3Pw}k{H1Oz06g}DWU;0y29LEQiC0y_r_D@)J+ z`GS+Rl1Xp@Gx7|Noh4MQv>!OjJGk0gSlK_6ckn=oUK8~Y5fS7S;1wWjDnwf0GXDER sH6FMF$2#IVk?_`}v;lxySgv_x%-g-@e9dVofb!<}-rT&K?tuKnHIwnZnWWysQH#j&v*lka*obve8(Rv}hOZYQw zJQD#n)&m**`v&Ivzej<;p`VO?9_BYY?(hG({&!9aj+O>&GDt%MHc110W2CT!1C=^E zT;}58qPl*aLlYM+S{azzP+ddM8kbGZz}mvrO3%O=-bcpDLQmenMx71bn2JsO5sY#N zZV+*>5tFxpx1zdvaF2?#u8D!34HXA^U^!fPO}0B0<~A^@H5Gb!F#q*?YUsxtEEg3U zdTvyh$yrmeNf_%}Q>o*kr!I%9Nd+U=!mK#Zqy4^>zJ7YZqIWb{eHf3XdFc}^WPF%Ko2F8X) zHdHsze-}2kv6eBgx?}Ok(!w0QJv_L-E$W{Jg$pC04GXsL(ZPnn9_!gySW$6sVIFAv z$lUs1aLm)KsjdkK{4vvO?A+IR1OyH(a%SM93eou1jfImnM~)~lU+^!xd-f|99XY-yYr>5IqROGDsbx9&0*>8l|K`$t7o7H{r@K+&`{jpzG6+2US zw&_eRA8LEBf+^yAc+Y_M7)Q%&^9-Np{<{0V7y^D0G)1wI=)d%O6P$owR7XA8(f_JikZ;Fr*egAZ{EVIPHm24M+bfL|V`2rA(hLf_;6-unN2nR@Y%#>U3f)YOJ8 zab?cyAAEeoo5ERKU0uceNt612v>$;peCE`9l^Fc=dOQbj>QNtq=>Z)RpzSyj~&k}9zC>B&(f5^2~R%fZDp zJ5;g1v$@Q|!V2MY_UGecQgQZiE|=S|V)?i@Y%QMJj-%agcw??phs!-$?H@Ma@i2HCnZeHAQ^=@};|T`g<0)#h^=LC2ck7Ki>;F4!Yy1TQoQkaa4Y)t`Pl(5hc zC(r=Zo+2H=q#U4Wpl&zY8^&+4v#~g1;^gFnvYWk3L!-(=SV+ljeyK?x9;mM>*<^tS zvs(~qCg`eg-?tub&iSDzBcp>ve&!^R5NUMYUYWEWYYbZ+Z^>&?|7iBu-rms1*MMPh z@cnycCZ>!RFR&M@7!3`_)eFrH^!4c}o7>baE!j~yT4hc%EhkQsW~=Y)?uL=&n{-a? zt`7}WxC;`ye<2|usg28n=?$076wJ)d_Dly{;1FJ(KL%5=6zijYS*C$R{;cxGx1a03 zY25ZMNg_fjlKly7W>=;E#Df}iS;+cpbIrrc%I3-5gHrCQcJ z_Kr+-ZjwX|P0cWMQ4tX@PtX2hYuFWD0Re#+Zi|Oc9;~LRfknO(4{_aI%V`Q@R9sqH zQ`)7H?EhJ0JKcq>dR|jgQ(Rn}<`yJc!*@wfS2vE|89lK5@-N9w{IPOz$WZdTcWzO7mbmQak?pk>d{T(iZyLn~v)ilnrpzREqLPBFttVTP|fh44p z(kL_^nC&Z^AF9Y|p1bEI{Q2oCtD_PUO@V@YD*fcfa4aV#=xyz<;F&Nx%P!8c&c_pj_%N_rj%-|Xbfe;#kZYcgy0bs`^=*T_Q@U*+JJS{U zZ{5=3W#6Cb%!rDLnpuKv0^gvx^l7KQzW&oEA-k}o9GH0ME%tcY(h}S0^0`ktqW+|` zSFU6?%{U6*xl#px}u%5PkkS42#H`; zy=+gsb#h)k?Pn$vSE+5%^TH1{aNNg#{aUM|bkDv=WzW(}V~9=0?{r;4nOUmyy=sWT zYcM435*u+_A7A741aA>Dux7K8#ncT;b<`ZNOk>yE@egYo?H#|Mcn8 zwb?#(6_qP=bbftcgsO=$?~;;yBotm;^y6==tMk@0nEcw?%ge}kKdP-Zkdlp6RyI?O zt24TWVC|>3`@3W}BmH-;*BdNPU10wK8x@Yi-F>#6*|E?SMmks`SEa7ZJM18W-A+Ve zpRSZ?VrZxgX5+j*Hwy*?Cz*NW1=Ew)g6?qxNhK<#=H{$T518Y9@C}Wb;fJ2SzNcps zR%0gD+xw)1>~L92yr5ylt;ab^5)u;Ooz*pJg#=WDvMqEfJ0P z1;SpqjY~Hy1}{-in46l$L`K%f(OteQyb~!I)=hiY{SwatGE1x1Vdxaj-jD*X!_fWH z7Mg#S`WZp8D%$$8kyXXk<0>Vb*RGikmG8pa30RHZ8#^&`o`8TLC^%Tx%&b2{Ig2~? zV=6cSEiEmG9N_1a2btnN8bN%(^?C!R4m=HuWAEkgS(WT-TwDgmW}lxPZyei5+o-x0 zUJ{zZvb4Osyt>M=DgQ#VE%__uuV0i`=?Dc*g&frN6l( zxU(bhGB8D2;1!Ch?CCyt*qOmX^je!ZOru|9lFIXQpO0p6^j6(y10^F-XtXbW)s^lN zTc&0q8Qgz=*%KBiGr@I%f;$s5y=5^cP6wl|!YSYfFk+F?ODiQ6`dTtYT7L07E1bH7 zP=d-IvkIsyv|cl_#(g(PZ#sRmzdyOdcN42Jc-F7FI z40xTxU;2-I03>6BkkDaK%MU`~4%q&z^iuxC?#b?eiYOTk6s+$G*VQ#zF)C&Ph(k^l z;M3jR-Ie)RH_Y8(IeG&dxnM_&(r=~WwSLZdZF1f~8w=r~?eZMQwsiCL&t=y;*dfXK z5!uHc>fIS~lhCVcR3`=W6xhO^c*Zk3n4t2Vqd~+eN~wkho5jnD=~wiO0cr^fRC)3e zRNfcH4*3h9>U>CQ%SnRIMyj>p5n5!9~_BImO!wQ~Nw8rBiF zT<%Fmx2DSGyA-cUz>;r1K6jOZ->DK7I%ya%gC1rh4HS=gym9 zXAhPuQ}Z0TWMZPtUTIJ*U=;2X1Xlq7^}Z7)#K#Zx@bCa6LL(M%%YCmD4#BmDUo7qH zND4RSQ1i6`lU-;yq-pLy^Z5% zxS`aP1lzoGit51&>M!5EEq;l*Hrrb;4S&Gh1IB26qoSb^n~}lPSNrv=zvke_M==hH z3Mwi_NTjTc%mR21T-xR_?}LG-Y#O4ut|N~mCCQ@fdYMln5Tk|&r0^-^Oy$aC``fo~ zYsh+}JCY>MU%QrP`u#&xOiW)-&#vryc!Tu7M|~e>!5?sPazd!vY-_*l8RkiF)t^^$ zY52J7!jo*XZng@eyz79?O= z+N5be0|h5EgI`{#bXuEn{P78^vk!b0&%-Z~4Iy-FTBR4L-#?)86o30Lf`}N$y`Z~- zQsvAw&Nek$F#BuIHm{gfzc>pxN4AWgn)+vmw7}xh(iZH_U^X8o4b2F+=Wg<}Gho{t z^TD3Srurh*W)j_Y^X1W2)`Fy&v8TctMQM?qHC4jl%+*E zY_W-ohpRdW1p9Tcj?g+!%?h`HFJB%wqEb@ElO!3jY#HcIlQw zYePdC#0T#)#}d%H_W2vRK>E z(ZQ-&5*ZWY*DwQaNHXRI8r05L?C)g_-{}La(FHcFR~Jy0Z|-$YSVbHg*>-O>_{q`9 zFBg$n?lr#Atbc65_BFeysj0K`HlO{R*-&{|LIM>ltNBE0;_ySk-Iewr>N||e9{^l0 z00h|IS#E(OKxaLdMf-5F1rlxTUY(WYd(q`Pa_#>x-uCuu?Ch;WL;GP&zx;wjLTD~u zmXnhUrCZorYGU)(T6VpDa4;D}B3_b92<`|)u*w#gkh1)l*~Ll)Y4Mf018ELX3wW1(ajf4}YuPguFvtz=MU0@ONC9IA+kFmPjalxFRUXYwK%fc3lDEQ~r8T2HS{Ihue?(M z?{6UxI;sC~k@l0plx_(v0&lDDZjE!hU?DzPE?m6Y@#Ns>&9~9cytcDUpp)(n`Egei zfq3rocU;Fh*0a+3`No9Bs0hb@_sat){dxl4$4{H%=?Ft|G0RbB7%6k|U>i%FBQ#3y zQMw47Jv%zD{SmVe|Cki#WH4KK!q=F|C4+R;yi*u2xA=Ef25q$V^SGvkPR@9AYv7mf zRQ??~R59YNXxn?$&?s@q=upLfn^yAslDmlsBrK^C=X;Cu-rq;N&wmcwO&i1A4k2Uo zMYaQE>K9H(Ro=aQ`!l48ZEbCUoWowd`uyR8CaMeIDdEpY9_ZQ`u50r4|)t3IGJ~$%sA2pY@=Q}dV9`)a& zpqSs&N5?j)%4)y!Y-b=Al)E~UR6hI~&1Kkp$unC{2qNVdlzun+)_TQc{5g3k%rrbL!MBtI>K$iTG?L*!5~pjVr(20l(4#!IWW{wb&_4t>BFZ zBAOp{ct7~kfPetVZjHZx(1bsb1eUpO+mX}^4-Z57pxsMxaQnBr5yy^y;~v7M<1}ea zcprBT9*_Kgcf}dzfdon>V53HFBq;db{QBC^6Q!%yG{u005Tck0#Hqm(`BnBnvZFO! ziK!hoImxZ)LS?#QhTTZ5KOX4oX7z!Odmup*;yguAQIDb>6G@1>aQ@pnb^ElV?%~n}^T)sX`8}RqBv4 zHH(c*dJb{mdC9x%pzh_UD4dg%WEaDJ5*|f(C|&$QholjG*_~_PH#LicgA?zvB{^Q)DKAg?HW?z+a}v><}O7= zhHhHJm^Us6MaobR+U;)HUb}W}Y&I?~F6PD~UmqXHSd|C5?UTjmvV<#j2 z-si@*l#x{)E$CkEpl4!Y62YnoXifY6Lr;RWGq9=OY$6^+2~T%@tMOAP{BSjn0)e>R z1kQen7unU-wYIhf8A1;j)9u^0H8lDmi>&$j>uXFz6vL(V@bK{3kNPoOrd=;JZ7nSw z#>B5200q%@&7}qE9104apgqS98U$kEweg0x6t$3Yqmq4i+B+8q_9& zpB_OL`!XtewmU~Kr6isQ29?SU}z+wU1=N<7C; zsq*%kmrzqNT7e*$zfjFk)p>zBvAhKPoymN4bp-*rq6Q(Po8S6 z%mAl}8vctb^ZRLMBH9bHvOV0Kcojdq_d0(J*r0#-D5DAq&T9?5YCJs5SMKt$VIvSp z|L~3VZM5wv?Tul=q^7Mxrdc>}_4D6Z!_`0vSwE7>rOdvM#el!|Vx*?3nltgw_`)24iVC(s)+Ea$>4W(PH6*nre&gXAOU__qDE(pn%aqPZ=!mh3#)zgpSa z0*S}Eod;-Ort*!5pPalr5KcpH#qb%=AR)ZpvY807awa4sgn&QR2?P&GFXY2c>vOKd z)jqAQGJs>joL{W}8XwP7SfBXz)^Yh)=Lb#a&80DB|C|mqqhKBs8afI;!^4$rigtE( zLP7|ao*X;=~tY%Y;C=)e3e}oyFDKg0FuB^Wnh4M->c?*eAKtMHJzn!snTwK@T*)0 z6Q%S1-tPLKbKs*qlTOCP@YGcL@T%rGekQj;l-1aMLBR^Z>=0;jGQ7OJZrr$Wz!4G_ z&I6gDr8NjNQWJ4JVa%hR0#oI+Q~*tR8IzNffUW&rzSRHupx+HVC3DC?sbh!%SLc2G zncxsQpIu9dh_(!YL+K3l;9nMX2!o=$D|-5O5F{@d4w+@))% znQz?aYHM2p@{9S#=}SD8&9OHdr4v=!d;dimqI}nj4`bo&m87%~Z6f1X?{yyyJb9jxNsyIIDNI6Rp%Fm7(jo-#NLt4LMkE z-O?y9b3~2qxtjC@3v7DsIc{8ndAZ%eZfE4?E_}^rPr+x0&LL)|f@vjQzI@sH@lg{i zC2%v-Srz8p**^iWXDFlzSJDZg*|g@SCVAKAaExvkx9Ja+yUti8-481*D^vcUkyfhw zPeLsxLVlOZ-`Ad}wz~S3^BPcl$T{%GY_9kTR%4AoNHmfsT<$^X?>a55)t*J;H5q-% ztlS_vPcR9QyLXu(`v6nV>em7O@Xqs7NLjPCcjBG|$!}6$T)ITh9U=AlO+|$QxZ8vw z%#GBZUs*{mUc7kW!bZs>6-8h-Sy@?`1-}iUXozt|48p9}Rn*knb{6Y~=k75vF^P$Z zrJ-n4W%PRdeC@?3ZaJ{?@u@q`$JmSU^6)5RC`mewywIIrio0j^>r@Vj|H~_3H2v_f zm4+_e#tc9`Vu2Ju9lh^y2UBpadMF|y!hFgnm_}7CyyLTm3`~!dCV?~U)soM0ybc3$F&;epd;YC3S?^rNivPBYa`LtnmVt2 z0O^g;99-D0+(eoY#io4H%3naUS^s)KQlWzFyd2JFH={E-9%E6yIqb*Q-RX@_*_EX| z)ZQ*%T=j}JJt!z>WyK~usk;+RkH_-JMz!JM;`SC=SRj#*!84l=60hGae;6W42Ch8qJ zIcL4HMf^yB2`-b47hv{IE2sAp17roRne3*Oe#lkHZcQi-FuQ@Tn%P(!Y0SDKDk_@0 zLPA6|Iy2+4G%9Y_Q&sgWiGFc#yd^$QJFZA2BPoft$z)hJ^URqu!zX5L_WWhf2rpcq zXYEo;6h8j==wf!>!h)r`dS7+*-L+e1&z_~VkDQWXg8&QnO zKVRvzGVyq{{#ArlbA5ekb~ZaV_jiD{9cl7VKA16iE9ws%Inkv{X6EJ}N^+L+MSz1` zURuJ%!C}xYFJ01F%olN9n~|j_BImV<KqJ*Qx z?b}!qnvLxwoA9%>6~4n@lOoYg)`Q~SU9YfNV@_l4N7Gd9Hio4pgi=3P{H1IgyzulN zNj`b9^05pB6Xumnsm(y=L2pep&yk2OkK<83FZ-ph0hgSFzSm~h9b5{I5Ciyx!%Y3; z<;&3z5Y!VCY#x=GoCM6s+fD1d7Ubt=DbhY=9*=x2^L%{>7jjg;+qd4Bn|sJ zSHVwuxV3&=Og9GDI`J?<1BFHcBema#Ypfz*hpAqh2PjJdaV2Vq(%*Bz#eEY(Ctf!N zR~-0WlV_270j_MeYw$a-Zz@5|*qWoKZ^mrT1v8bKm~rT&2V`PXEFl$3Af=!0z#$pO zY|ntXw&c)x34N_pqI~1&4YP!or((Ow;9U6x1S+4t4Nt2>jeeu~iS4S?D=moZfofwb z8LxmA*D*kx1M|PLxcQ2d&(AP#C&XVOsKtc^7t1CfXZ9MYYJUATUGd=BX(tY?rc3bV zPTv3{Ve`?71tt?SjiOgY=zpPI>RBL!w?Xe_1~9DbE~h}Zr@cCY}fC2RZJMYZQ>pqjf>TTkA~-Zo~378tj9w1&vx{kFQ%aH;QOM+q10l^+_S zuV5L{`CD!JW+;%;!ot>R9(-FdP;?){Di@vXqc5W`;Fwm0qZHX;r&3?qM z*q4^$q3W9ZYygSdY%eWlGW+i;MpiY^6aB84YfV>Ng6n?f;$_Sw#uca1aCFk* zG(bC}%SEF7_GqXa%fu`LX9?)BU45_u!sn0Fn7AQuP>_c!rELA ziZJUI(yPTDikRtB#%zS|#ZL|_$6+$35+u6Wc18jju7$L1S>Cc$5H&MTPSB$t_lf`6#jId>1wD2^I#;T* z-ZS&MMyD&hLIIudBj)oig6;6o3~N5`BJMtJ51S{)ufvThevo zbGvI~t1}Fk5jl>MWto7n)P5>?m-+&dB_`zw!TrzNw2-geIB`R(6V1f^w8fFo>FT;} zLX@eBdGAk5Rb*Mf;D*#vq4ZZxqS>FEJLkDt1+SIgLRB}d4ko4-q081!AAG;`g`vNdYhDrENeFv}6k z@ndldYV>UvEF-c-brz>v1ih^9ccoIJ&F>T8QHm@J511p;zG1enBl)!J63(L@%(i|a ztfI)udIr}%+vE6Yo15pm@)eh0jL5R;N8L0N`gseQmA%Mrc3w*%mGS~NSImYBT-b4N zrG*`Em3n`5%va(5^^#^fO(&t zw3#A`ifYgVR_g-&U~L9AjCck$T6z5E4|aQdwK6rdQGOD7%%cUgJEH)~vnC6N(5QuC z>bo@N3c=z{t+SQye&$J3TRW#Dw?$o3ND1ig1n2Pir*-LNPw^_l2=<-y#GhXOb>14$Wu#et?5EK!RmQ*eQ%II~PIhSPE zk}6M!9PsT>;N-xVF+0)WMa7F3D_KZe!)HS}u z%2`?kxw%Wg8k{-vP@Qr9YeNGPKQJ&*nVtx;o1Z^_&WI~ey8Za{Bs)9%nqhNfbo3gi z3-)$4fthG@)-H88d+}m16r!P=zgALSUJmjKT6bIl)Lrt67xfLrXhd5}Y%wQ!>v_v! zdKtm5sVPVWHP;M*UFr4$1eTPXJU3KP0ibkd@XMDk0pxtSg#zsC>}+g-V|joJlarF5 zKrG?naQE&p6bC(hs{Q;Rom4FL>C>wV3o7UWwuPIUfP`%z1wT4Rg-k1gO}n}6f`le8 zX2T}{!%0a=q4Bh)fuZ5aW5=?o>Ty&5d$~o~iaac|NpI1s(o#>F6*2!{w9&RQfn5S( z{BM%SZz@tHE}OYgQ5R88yIZS}EJ#OjdU-M0t?un^gAyYSh1ZuK12Q@VUKA~UtivLat>WjldmpzK3j3O&XSmOaUd{Kx`RTExY~3a$p0|AI z;3&$qSF9V z6(Ln&bkr&5Y{YN1%!JRAA1F4oj~Kxa5~2UL9{5(y{NVLX{V^D2%T1T zwHPX}y>3rQvo^G{ep_IQiGVg_@gs^E)Mj)2#o(3n7yZ1lBj$8f#}|H90sAVa`9`-l z-O}(dLbiL|dl^Tg#KIa#EX_G!8pIHivucf4<^e4e;oPh;5Ve^C{yb+vR z*R2)g%?GO@s<++@^9KWmmF`#Y>({T`FA8}NB_Ce{IhYe3F0PfGoq*%g71YenpP%JI z9p<4X(8DIJ@xHUIE!cny6d5N^o_zf5-McGmLg&v%;1FH~QY>5f?0M5nnZ&0>PaL{c zL1dJf`AApyvU40zZDVKTX(3!`IylQ~#AfSy`TJw0_F)(^wbhAlBlWLn*vevGy^=*D z6CI*uB_}5{`?IKI3l(1iL6$?UTmc>jt0a#tY| zFY5BTM3&fM;6y9OAH)#MDJw%Y^QzS06`EgBJ_1pd;1CxyHooTTNIdGgfVI2Dl;)Cx z&ISMCf;-;$c=6uHkI5_^u>?SR z{Yp5|Z}MPEydaKmA%yIr<_|Xc z7F6b(=I$PSQ+@+#Mh>-y{~xt@?ZE&1KSCk!L7~&YUsrk;A~5 ztAA#3&fjU}1+VQnsTtQDp5Mr%{>kA?jK^E>PEPXO{I)(cLgk7;P#nUbe9#+Bwo5Zy ze){wvPt6ZFyo>yrVOxJO5v8>2HU{(>o&U3EclmsMJ@KmoD2UITsk#lEn8qP&H2V5h z49c2bUczU9o5IXe{SeXg+Dx9aouS`3Pbodtgn>^+#}CJBI&&#Oz}09;U#&<6jq`+< z{@zz;!yp-bmyA2u+Z$uzzy7{Jplwnh{-fTz-uUtntQe3@dbpggYL>@4GR|w3-b+hc z8Fa>6jjsN)qOT;R&h+#KCnaT@d!-$?(b_{3(hm(61*lCI-?}!-^Y$ztV>nd@$hdyG zj&d@u1u&bJcN02oHactkNHTk32J^W?}KCZ(WPuh4NuNcD$x zX*zLbZeHFaGczkItI)!10-#vmf#l+r!-5XDVLTG%R{dAJo-M53xS$Buol_k>_Zwn2 z0_;`HBv|WI)@IQvjnqt4NRtCJN9>)QCZBTVBBwqur~q03!F4$#l{|qFZc|f(9Ei`Z zwKWmr8s=XDtW?4_?M&~4Dg{VLqJo3v-in^y;``0UcDz?z2Esa;O_2_O9q)^R%osE) zz^sO}U_-m51#?(+6EAi`!jPSv9gz5biRQ}CSS;47CO~ttq@*ThW;;8Z)?Xvi2_a`0 z2#uF6bC!4FO?oG@{0n10^Kign3Q#tbrziUS`7?m#bZT@(6r?9y+}!&>M_<=Ym->+> zVbk^OWM!QW<|rsippQaAKIZA!P=|P^uYcWQFt$vL*-G{?HW`m)0yuV{_5A(6!eaax z0XC=d4Y6cQn?=PdA0NyPq=7|s;v(CVCAXoJ(c=Y-AUyn;rcu{>RVAe^sHk=uxV!H| znZ>w7hWxW(#6%Gx9hB@+wFP_2U;7HC0;$9gUPY0~Gv`Mq%%m=mGNLrYq%$4zg-i&Z zCrsK!(1x=O8Q1j}yQWWyRGE(>J|&=^tNDHvq}QPPbYt)aVb6STK~qD6__cz`%a8-G zF>Brrxr)P7Bo&LHFsRPLc2^qvfte^}X#q5@5Oi2bfC@U)KmikE$fpE|PPcQxv&tiH zMFIao>3-$>c?|MlI9MkLg)}s885PsBx$og|O>)9Rw24SSYA^@b=iN|o9tQjL9(;Id ztSL{h?&U>L3afpMc-Icw#~&O)$4n9a>UPDxRHhmxUrvSK0^66Nm;t+k4>UE|xpQy4 zqHQk5YrfH@5V&&kq|;7haEMQg#Y;%;xZ$LzQJaAV3@S7>wzdPHj3O~gR=yQm15X8kiT0}Q zS*XEkLRf;GK*ws(ke+AL(vJX9c~8EvJp6Q?2Hinw+7a7RFgYl#gO+P@B+z(Vit`30 z3OVp&p7*|=EP|SwlamqTo~U3OQuuJi@CbNy<1ZJ~@}BeTAF#S3TkZ3DlbtB(6Ums_-`}UpZ2W|@x>p}L-fe;ZHos)t>5)MwsTW|D6eG-H@ zfa!kE(so}y0mC!Db+RFk*VMfbCz!Ig>y`C@Lg2y1EEZyd2<@Ow{;Dv4#J*_E7_#;1pj!??11P+d8z96;lchnk03Nz9OJ-SWpbvC) z=K9Z)v>QsguF!X8GGTa~Y4nnl3%IDPnz*^`)%cwU;k+%t9mp|G9zPEGg{J)RsS7al zf=2P>(d=k01_m6uh+~K#%J`9jm7xF^C^N!2EinCVH`C4Gu<#?7MZ$2ghxP;m&9h77 zX^z%gtIC|$LeM5r4zE09?Bn~2M$EkL2AonfNw>6W2p~6Zp-9(I zMLP%{2wg0$*y!3L6k%XWAo5-UKmF$c%nUwTD`)qr#LKY|`Vh$AJ-E#KRcw85*MgvB z0TR|l6Hutk50+&dn2m1t@QCpbAtdc?w+f@S7Wx@Qa39Mv3o#J+e}LmYbHB|P%=vR) zS&W8e!&iS5nu^(sPY8s}8Z7ZVX(b5m-8aV~rutnzzieUs`T64`;07I?+ow9~k%^{g1M-4Rb0hk3M49! z-S+5xhyDfAF6Omcjn1m6y^sk*JvX#4GBQ#{U7aaQ^zPm4*=PSv>A$bHR{-RRgQbq| z<3Qb=cO6m)P>L4ahUx;I-#_>o1*m3oaTS2}VfX|{4MFu_AovFd-xE2_8)HpgY|1{?6rWan#S_Wf9e33?|(G?9mx zQ@PR`IpoIVVtNkrL7oSgf`bFeVS0d}bmqSS4gl-;H9gG-inH(}@a|UD)}8JRP)`R1 z1xg>g4?NIFU7+?R0m-(?h90KVCj7s4+N8~u#{yUOA2!;A5MLc^(rOwUj4PXaah67b z30Pu>+C4Xy&7_4e@$f2veN0i~6w!ehfzdQYuzgRJt?KMVw?xc@L*q*(@Ov<^eGt5W zn91&E-U8cUI3HWm>R6Lj4Qt+_pRr#ob2ZXkx=SMwqM%-kUdl>T+fWP=!##Z9M(_40&{H?3X3rQ-Zs|6cy~#|0yPL0RLhwBC_9ve7|1j zk8#F#4m>6ZVa$OzY|H>P$IY8J0soTVch7&%8e*&1d9x=`&gsdbnp+J8SU3$cOF&8h zT{ZpuG+Ep&$K3m2j58#Zl<~mdjE{|_2}r{Mj=64}YcV8XS1gxwe{gURcs_+era8-g zXkCFr2AVw}O%w$05xS?sSpkp*wA2@nge)h`V`WpeHZ@5UA62L}j6iIwa~j~fE}ss- zKZK7^Rw617$m{RN>~j zsx9}Lpf)`>JKOT{W8|jK-XM9J486kniNgH+osE&ent@l$XLxye?+=hSJSA+;+^5T65rWU#m-`(W1|u|l+ss@y9+OD>5=f_-x4C_*Uh5leDubWDu% z%7m;ZyT3f0CowT`&Z(8jlz3n2m%DM$-vbRmE{k|EGmH{?puwhh)Y$`ZI*@4FB}bRZ zxJ*KWfi2>AfZ^CoWOUqIz( zSGd8}nVXwKD*$Lqa5Cr^7<_8707#Pyx@m0Mg0HIwzCIy=3Oefm|K~PAYvQmnSJeL` zRrsXE%FZrx(C9OKVi;)%xy;9pA0d9tI9|Sd`G|x|7vv8@;%Cnikuth4*0x<}UOtUj z2*BWNc9K9ip0&f@-S@YLpjENJ=$r7WmbUhgK~s3zvMwAlbmt;5iS`%(VyaSpn9bY-_KWP7X1L+#{RYgTd=U)G)^Z6+#ofzg>=;?LR zB%n7)P*8A4*%dFKh4qQDZve^Ky%Q(#oatUcp>hy726Wo_`6Q+O!-pj(R9$uTd-cL* z5Gp~H1OzW=?zSfhTs>&F)KV4CL)2X0^*i65Z#+8B7P~-p^AsYX;~>c(K ziAYF%r=P4&e}_lAf+3v2!}G(C%W3FBMK1|HWG)VQVN71c8gx?c44P6m{3t=@a2oR# zN&vCop*%NlJ{l}7Myv92i|nevUe2?qU5Sg8#VeRPB7izJXfnXNw3sOS)@avhYr6?F zs0pkXkMiIa|Jk%lGVYUYNmnJKU&8yq5ra*KB1`K*(v4*c;uLf9l?J-X<6$CRSco69 z2UCYF4Y+ts)Ug0w82EL_Bp_mHLCy(~RhgJ=DcazTh z*!o;1=(NHk4p@gq%ihanwT2NMSKRl+Dcv7{GC}upX9h-@umw4}S~Nj8bh?(iI6_yg zB+rdwb{l3R_?< zz=eX7C(V?zhq=h$e*f?)gph$~hV2Zrr=YW#i5uwTg!+NTxd)EWs0fXL1<+{gl^q#* zft#D#Uoll39!&rGJu|XmG*dk^Na*87G;felb+Cxgq66JQse_fm-GB=-Gc()U+ktSo zNJf^CgKLWyuX!YCZGn1qTFkJe4GQDybC{bm4sO2v>;$w=NY7M4T={4*B<1eS4zUOf z7Z#S0hUU&l*whL1=0mzPV?nUHJ(O>qvQPsGBYK~MtXDpz8TwrXw`cO8@=~s`Xsimn z2L*)y$kJo^&i(khv}|0B{j(}N@&f5i48@4%Y2oZB0Y-iL^ax4u(`U~V?{ovO1@c@y zQP|7nhW^GU!-!8PCi;XNJ>wBkwNe$HK5hge73i}2Jocl|@V7TxIF$Z8TUucA3N>{i z088l2{!P%xTfMra-ty_1c_;{frI@ z7j@m13uDZ87vy?`A;)vki^FF>3iu6rSSW8f$bj>Qb{PN}CLcHl01S9Mht!ifZU4J= zz6E7sBErKE6FDLyA|imz2hef!$dP;*Od2UvG!XM=xwUPu5F3<#9LOt3enD;t;JiR4ycx1QAwH!KL;^U|L-E7Io=4ZApMN zP{48D-(8=XnE|ZV+t;W3UPYEKZ1O7HHd?u7$Eqsap8V~{XTTs)k@cDc2#<%bpc|{jdmF^H_$FarVAF*0vD<6wmAmOn8e`R z^fbz>hf`8135B+YsG^g_vf#^6a6JhaJ?g_JL(0gWUmC>^Xm~;lCs1OJ)u)71nkI?+i zT1>WBTZe**$d_h}DrOM08V6dNBU=--r+;>crbz8tVBx*Ld;(Ddg!}JnPK<)_$x=yS zObu1flrk?95*FhfK{%ZLQ>Vb0DCk!C8Im2&;-y#}eH|_E@lZZ23wf0DSwBC4pX|JD zwES>tNE_{S??Y5SsHk{g)qkaxmIjRv?&&1eylkiAhzXLzfiFCNb2(ZtURXHQ*&fM~ z1CD|f8}Y;9aJkv9h>Ks>Jw{A|d-F?!IC^AXu#JP){q$*cGzi7FyOpt!24M>={k#p@ zy1!$`!Pwk^m6i3MZ>y*bHQtBS^!Ufn3St4+sH@tg1mQUo1L`og$KP#c*MYV-)Kx-4 z1|F4-t}AwuM?9F}&>e_(bh@i8B%ePIF5?I3&+2p&oc@Kwy5^Bv8|xKb)^6kD?OUs( z!PpAt)N;bJEMs)Tw#_7i57F<8t~q<;!n z$BKw4*<#oFx+8UUvx6=mj0g^|IM|H`1XZ0QG@erMeF+!|y$h#+;y(~g9ph0}xGNDZ zqeBHkrr42G=zan7c=p#Wb)ZiBie|Er_~*M2Z8!0;#s*lD3j~L6?Lp5L`1I*SjKx8F zk<-2_dVo7%`UiwEmW=H}f@P?RIV+3ieF_SdPe%}q=&F zh9vR>9=k{2t3(1R1ydN}oY`0^h%aZqb7@8v4F4l$#+LAlm;>3B{<5 za$g)4(bpe^aGjf*+daJnKbxCjI}G4hJtB5i&r3#MaWSy^Aq4EZ$@g$LfUVYGt+QV2 zByqe@T8D2G0ntzvXiK1G10^V#!I-G1o*X@~wXTyVP5_;hgQ5^{sXwQlsa8;Z8ZxnN ze`pp1b&J5`;k!mgsUWr>U8~sF1@$%{_y1H1_5VPveFH+86~1tRmp5ATA=`SJG^Bfo z(l&g-puoTd@$TLN$j{NiWDC3iW7S+eu$<~@YUM3(e`&Nu?gFI`8k6JW5y8Q2Y4UV-1=-oHwYAUrJ9G5vs%KRz^?K$Yi5c_7 zr+cXWpL`Qd0q{G=e%R*bd0kptZmB%eNGp+QqKGz`UC8~zs67GaX2C$|)bA4#K2=se zHDC_+4UJiyY##?Y4>DuJh(fcT;kmiybHq(@!)1U;!5%=LKkTgt(HPkG#`=00f!L(N zA3t>L^vax8yW>xjUe_rEeH|0G5fmVyo(125P1lHYK)!agJWdv0N&VHTfm zHFoDPARG^FoqfEXBH3=fhP}^~tSb}La2hcZKi;#IDs3hMB?U{?4Byb{8=F>aM1*pV zu1I+Po40R)oi@?cebev3FAk(MWHdbn;rW0{${+RJ7%N*`Tm;S(@^oOEnT=Ox`#>dE z#@x-oeSz1;$jXYd$#8~KLJiu#b*UdXvN^Lrn*+%Re0P$f-*}z`VsL6o5itI{D@)67 zQ|TG^?vf#d&}E(1*huD6kWBcC&?_q|k3EFl1KWUZMIa&r0s~vXW>u-=UE}_1R}Dy+ z2<>@5-D3-tvd51f16Pqw`A&B6Ox?dQUh=EYt|$L(s(}p@A{P;tT48|G zDmq$WG;E&mjTRocHk+KTdpF4im@hHia2E(TcN9?ok<9k8XIe3zT%t_2&b$6k(4sUF zC`e*22CZ^8{|i9{bXlYGP$^&A=g)~i7&MZJ5iw<~pA;G*CjM49lv`0*y%(O1hgLWc zASU86YeJP_vEWGg5+py)y2V}r87r_UY~+#dKyE_YJ>#CDKPgxG=#x!Ar%#?d`Jd@3 zVnJKNd1Cx8fqs5u0xm@+i!P$J9&$x?fMc0CWK~*i7j@HR??BuU@`kVl@5aGAeF^%S zfL%zJP=kXiPq#T9s&{7IS!sw{} z<86@rL0X%ifBmr!E{9%@*k(4v?drCef&yCwg;35Ue@a0ujW@!pglxkF5{Ua^JHw-) z4Enml8A>=zs3V9{K%8i`6|fUPw7NpEtFUmrRd=Qqa^0xN$XG%5!RBTu+nlccevR-b zldks+0^vzH|Am2K7V%jZaNmpFU4rkJfp6zhRU$lZ3SF%P+|Z?}i*NJzaTGgJSW4=Q zGx6h`F5pF8kiGDJ?d9za#RB+prrdF#7cU3|AIjIDeUhJgVRwZINSN0wSbjbbW28%m zN)9?9QM#i7)tW3#)Ya1TZ~Iyinnh4M1KnNP#{ZTtn4tkQikN?~YdcgD27MuoVT9$k zZ<<|b=D|ViLt&`~r!)!pazx`@yN}tv-RnajCCbte_a{XMyNOeW!A|Jn*4X)_)uiop z<2AGBTT$?}E)Y%8Y3T20nqbE7_5g{jbZfAi_2gonnL$U}Q2^M#gJG*@hXN^IcysL8 zHQDFhA;rc0$FV$I4x>DR6qMpaE_bdy#Ljq;sdD@133U2V4`qhmU@k#cISXBtv!HZc zi^_g3vb%+b5o(7bDXiA(Yx{}hd`4|ooVG$AetpAM@vb6b;V6Rj5J@8PX}BYV?|2og z3T_B>^P&3|z_+m+!ZO68tz~KC{OIBc)PeCxT8HRtjw9~;;}vq>Tvn@yJ92cg1`l#8 z!mBzrIS@zx&LF5}cbkal?sONVo7sW6)`n>3?th3V5%m)rk74+D_uxYAuQ6hbhAzhu zRe#|^kTQ}wQ}qrtb>&!39w=@$=B{`=`Fr=o)7VQtQ6bY^veR8q!oJCeMrfhrhdbmk z$76e6MQUb37U{TKN|UnoHa?H}09$otf&E<(bz{kwWi4Qsv(* zehk?2q;FCZPQ16sU74!q=$C@pl1E^$1c`UAPnZB5kLI@ z@sWuYc4_5la62b|RJL39vtw-QDCJa>b~8gb(NC8LBNKD7FN4B`HF zK`*>S*)uTuLJPY|r)T?OVZ?YCR8Hg}9Q zJ$?S@22xwZPD4n9gG#tMvz}c!KR8Z+RmFr=HN10MAl$;dNP*SJgx`Rle{JhlGVse~ zs>aDt+ri;+M7+#X~1h0aLyyyU+cL2?65K~XbEmuQtiJxcmBvpBYmrI z$T4k4FVP}6>Ddgm-5P#18^E{l(Z&6ceQ&D#&Gkso^TTI&+*)z^_?V_*PG9cacHfZ0 zTWdq~2R#0Mz|4mCqZ|LwMZ3kzWW1sC6nOaO2k1PmN;WS+_zQ@AdrU}*sHW?~*m(9m zafs`;dF@aG1&+X%K>b;C zM8Blt&FwXHx9+{gk)2!Hi;HFpI(In`oukZ`E;&c74puGSJt5j4@Rh> zytdyM3+x~0ao;`fJVyL$mZd}*@$2vEA|3<}K#yUf($qkBdQncgpE5TZ!{p_WIxm-G${vWXRRU zh8Ag?LWF1V-_JY`iv2R^9vMIK`xNBw>K_e{k zJ!@ZNY+TLA>OCrRZfH0CR{YZ9hoP=B5ou{q+c=ih+P2&G!^>xYDa7j3`KleD6*|;= z&&)X+NhG}{kqwbZs-l~!;ai6J})~*X!VtsgZI~2`rP)r&-^T5je+;5 zYxk*+_|5Ukc>qS5y((ZkVf*%kl1-|8iMKfd2uN2Y3MSQ*OXwA#d<>D%EJ>gV~4vo~y>X?yg(iN z<+G;er=dwjiH^nCY}ovGtjCPR?@HN86TTI@S~eVZc6KNT?ZGDHMSW6|TO>X;l$(A= z$47H(#hRBHxc!u#9}<>LPR^Mc_S~8HP;oPSF_w>P|i!|785&XXjraW@j$u$`mT^1b_D^> zHYZ+fNs)UEXFITouy=6KZ~#p$9B5W~^uk$!-;ZY1hYugZzMc)vxZxOus8v}8xYHls zN1x7T78QvfJZJ@MDgOh%=@XTy6miP1r60Y~8o3f|;2amP?#&Rs-o+)%rJfjiW7jA1rIB*#eHW! zU8Pp@AXpC#Gd%1&!Qm1T9DKev%mg%*u#RtWAo&5{k9Q{C)7(f|i7~PbuV;$!8%ikG z<62;699vy{uIj*o?(1LW1R{+z$m$JFS65Z(X%~BpC4dkeO;bbTTW3y>Lspr}{Xi#M z0%3N39{5iqu+=kePsON8An;{S;iXK(fiE2Nc)Vu5f7;C9bIWOPat@rxb9!J6z4lap z)vl4k55BpX9`{rofQog8eX>OZZS?gz%x22Mf(b^)RZBrHk*Bd|RyuMGZwq$OgtL)`HbI96x&^o?z&imub8u;mbmemQe2ACj zU}G~Ul)u?aE*%5yxw}+q=eu_XE#{>jXZ7@MgZ?mn)0`gI74XT)qFfmWZVmQF0p8{F zBPE~>37V|;0jWyOWA`4)0mO@5ws1NIq}f1fLr*rXMF$ouDEVFH0`ot;W2+0C2wYqM zg-gYH?Vvq^UVf1P!%w8f77b0!6L5wF&7rKc6wb6jdo`3wRnohDY3G&us_dTr2Ms}C z5Wff-E;BPTP!#Z8X+?{V<$~0iyzRmUP`H6ER1PXv_EO^Fn&Ft|9;%V!7kl97PW8ra zM5(JeQFZU=@k8jRGl=g_giR~Vw-zRB)JRJ9t$vKUwbZ%qi#9*HJv%Y6)eDQt)7$t1 zqkG#nY?0lsiEq>srzaCHexNt-|SU=uaLSiV2JQGn3rwd_s$In|+tL^Mt zRVc5QC-MfI|7{?4fwS%4huPC0SB)jy_nCTs;`TH zHp47=6Aw#DzNOJ<+214RCZ7V>nqSY7UB@~~Y~nRvzPSpSe3h|(zS>DHgXxvi`AwA# z01kp4bjUw~p39$zV*^bK@Uw*Mmnx{eIJ>jacWKexc*_HGA6D!NMX=XVhc%Y0mJw2$jlWw;ri#P$tu3o@vp}bx-%c%g0i2G3S1Yv@PKUZ08iwJ(vv!VA=7%mge!ykr5=du0@#!i@iYnMQ zNBt$TRz*!GWZz1K^~Y>!5&-pcQe!{wXcYV7k6+^_aK-4hZA;P`{rWW`I=U42bU0z5BRrya0E8WA-Bmhu!&&gp{IAC9#Kx&p}GCQbock5`#@8aS#gamEs6 zX(1tu1d(2wjOOO%S~@_>C2y{-uGWsk@g6#K**D1Lu`!4V9bKd%o$gK0XDia9h2>+ose#1ww{-%qlpDwG1rLxwToP16H*LxS`RrQ!&JZ5G<`0$G>lZyi zei1pi0d)^>jkGy;C4g(}CWjo1)7_AxbCye20z%b=aUDd-0sPp8wovN2c_}70S2#I` zOXKct?U!Ut*e#%R%PErQKBDFa`Pg5zw1k&Pm1}b)=Um)iR<)U(b3YjDi9bf;05Y1| zaT;D?-T~8@{JFuMuFj`7{P7*fvbWCXyt4atwlzy#`9nn>x6dz%FxqV1{yj>@>pRUF zr>yj`DJMl|b!v;p5^TPs4MC||ZXM~^x^m~D(CWDlqMI#_0GBmEX8n#2Q>)#Vkcf{V*2CFlHnxaDiPM8k6-ZljGio?h8>SA8|l zXFgy0#wSkbvH{eTK)~wguu9L_b(4L9^1b<A~>*Et$I&wyTJbq*7OGtXa(_SvO6iApJ zDbfw~TwPS7vh559LPKXhEy(?RWxeN0u5H82CO+O^y(9GWl{KfU?yM}DQFcNwy4Rse z9fItywzGdpJvcGZL)45whIcu$)wLiBr&d)ZeN~SwQFH2Bmd{l)UESW19NF`5?mzIe zMrpMc<7?^~ZM~-qM-FJHf9B9tQTiUj?>%i><~5dk``G0*wRo$xw@x}x??~d;7OtmB z2B{Vo>)%;WmLdmRALgGeWhSoq6pZ0QtnLB#-D>CNf&yBp-&GHDyHRWY5L5;Rh^)^>0H zY};8Y!&Mww%$@Y^?l+PA%oM(kwq)*ho$oq3aAqAIWJd$fh%$!U z!rYv~+=ARk1-W$|7xi6;YBYx|AiyiWk$scHHy`qB9mm~{Ei>p$CSv~dvy#?(B3}x%?v#;9m z!fZUNV}_-Lp}C=H>3HVjgIwG+EOD{Mo_8IU96b~rO^S&gjt={y!LuYm z@5%e3lg;tllo$>lejv44^$%F*To!3UJ5E{39H(*FwmDx54Gs$qDhmpV3BqeXe|76l zwBsmy(nwx(A5=x~lk4*4tF;{;&sxuXQte_ve0E-TeBOoSPpQu6tsV{xV9vGw`QWC4 zPS}FYalO*Bg}sI7yuuuEUdB4zkk#!%Bs16XUWbWMrr1aRkEAxGmkeJ?IR2*oshRLq z+svs<^~-(gQGL~V*RQ79SJBk67+8#;WoLWVUTe)kWHDO z+~#*PI84j+WnaVo$P$Snn!PwKwV)+lLd!@YEU1irN_pM2gDXAxG@F+vuOOeXf|0gb zRjJoIJGEoPW0M@8N&TegIFHKi;q80s9(=O-X1I7l3w642^{a0XDUm~=L+PK>(?j`_ zk4;Dg9F454t$QT>zPY`*vbmDhOsjloHDZTba@Z=e?KyqF5bD;&l^x2fc+FEPvubLF z)XZ(cgJMB-fx#ShRp~qeyft5)?$H*C zdBv8@Lye-7mkh`r*LLM5Z0YS8>goAh*&h%P6jGQgCSs@ETwBwq_Hkl8s_4*41AXAG zUR`YIv8eJXc(1aUlfzD0yeQ4VM^8@5K}s<}e?7}5k8haFs2t8S)MqJh+?sg;ngB=z5SK@*=v`Rk>_J8}VaVNC!{l53kjhj$*6)P5s zFRo~*Z~znw%L$_thbtZ1JcIfolq2$O`MWbskE_w2+Px7~v(h17J%nzY5O%=UDB^|= z-(cTI6*Ia$^r&a6{xq#HB(tjY0u68>}cc4v|@@2*1i)P=PR)^9=5=DZ{ld*F2_irAYq2Iu6Lau0*wn_@<%!! zXF}lTwma=%mudsfwv0Rf*kZ^2akP))BTG}UnS=dqtGlUpxUE=F7kE~>lI^AH zqg;-ujn_KmVR;cGdo%F&F{;?F#~n&T8<~XCZgq9=v%^erDvpDh&Z_M*)F!(wU#oRb6AIZ zCI45`P8u1{pH+XRULz9OpR_ykz;OTPj_$}OGrhFN)A)r~c%(%>I=^D>9N|T;!Zh7AnUwTEx0%%GxzaH7DdOfs| zhd5Rm7Upvx)hhNpXdhe~$+t3I*Ra8(#f5w-qEOnSd;ILwb1d?dD)U{F0HzeWo@WVatfyT9x)l$ajeJ-|L-(|@?Q2e`Ujk>@VJ}Ch1GY=f_sYw+r9m$kzJ`?7F)XWil^7nSK)2hkuISFD?1eCl#vdK2t^fIR;5}FnX%6c3kP%@i)N+sY2R%Q;*Vh^n|Sly(A>$Ipm>|_z1VxECzqrzlQJB?-Jb@Q zzU|fn+w9%ZiH8$;Dw&=slqv2f?PrT0MINAo z2TZ2*63`voXSm~v&V7C{x#N1r4qk8G{$7_nH=k$I>lDAxO*2fN9V1eoLZyWB`ePoP zWJpv>YmIFb*Sf8-)sk9FO8=-ov%XGO6LFUKZ|p`>uGW zxc~eWgU-(eb+4R1I7eRqsJ8qrC`gQudU5@5%eVWMwKp@FMwy}oK*ivrC8z(f;pHtA zieYsm1rr@x>Cf=(IG&Z!8Kf%y;98jvK_Di6WeA0YY}CIx9GH2{_ylFO(_I-K4ryT$l4l>w) z?8z-C5KTYQ&+`xsFyb$ur=vVwF@Cz__oGKDQ-qg&m+39^=+f-7J>ZGmr}*V9z@!1g z%g8Rhd)F?4saB(&{;BV8ZP@-H*MubHsLzl#fD7{5%E-9%<&I9Q-%rm<1qoHP^Uodb z5VL8T0a|B-NRmj2Rgl5W`0La85s>wO5=Y@{0LyD$=oEA776zO~|Knq7MhG_95r90` zoXiUVytLHAvBX59ue&^K`}_S+BRD`7zQWE z!8sUbnry%aF$fTRV7l$3-LAe2<*H&mbpkj&0K*8|FahBqel#gE?#c4ZxO7bxtb{WY z;JY@WoT#uR?FU3zlKVN+v$GUvN>or?WYE{v!xIQx1!ORK(+^I6nvnBHdDu&X9FA$Z z@8W))b~?DDi)N~D;)O_4At4_idKXZXKqB2DHrrIQ$mQ0(BHPJlZ-s)8D@jv}e4FmT*m)8!sT*Wmmm? z3Gf3+Vd2)A8eVbnnJ^Q}J-`DR@HLAC&K7ucnyadkSuq6-7)ascah*Ok>{kzU_8KJh1@c020f@@J}2gJ$+*JV?v!B6WmV(C`3YuZTl3^tv~>4U;xT$(dvzwGf9q`=xa!{ zIa2I!*FQmyLE6NmV}UNA#Cn9vbobV+(+i_&dv6^~e`aYG2xik8WW!p$fQCkVb+X9$ z6VSV0Bz$H{?XM^g{#j?jrZ~+v&$|zq$ z2X2~%c6I{s(gJYAKt{9HG0mVdsl2m)b?ZRFycM2j1V|Q$zqFE3ZYPa(9aDw9$x8=s z#RjMDQnlOb4-8p0rAe0^lLp;kc-3yN9m;!$KUW1MNLgXqGf&PBre#5mp6jcR0Q@kQ z0`hJ|a12;>fg?dzJk!>fsnTtM-T#^wGgXY}fm$voGXY9WXS6_hx@vvXQo3bU>a?~Y z>(bBZa=-7-H-pkDGmW>-8890F7y< zvxm1B&2nM=#xkvh0KlsQnuho4^^x0EyG2Q+Dk{~0!Fv$QWULAxDj?i{1yUiPuUuTl zL0lL@AwkD30YXRfNnv*Y+dw=!XyKqdl=OXW;Fd0kvXM0^_ zI)@%OISKw>S%@Ha@070@iv3dNhk_4DmFmT%e)`UyV>^g$RM2Pes=IXTNP* zeA}%HK^0p|C+~r6f<}Up0Z!HCzjcRmONx1NN(%5%e%^GKnS5gaQgg&FKTUDV{!DLg z@8=kzfPtE~XI%wG9ko=ak{h7ljVHnZGkb%hL+ONNmz;pymMuHeUKV%1C zhJe-twb7nuE}(2wS;uB{6%HVP{dv!FLs?lF@K=0uXt|ugj05K`Xc3h!j0X)o4KD$? zGzd|^Z<>7?jx%aQ0ggz9KzU%Sd!M2hU_83y;Qb*8yo;iS5e8I-;YT1fP#*>vc$w4BE@YMe zG^dm=k4GQhc28fjjG|81v`CQ%rFxew??YohRP11z0pkwv)6&K{)T6YsI)Vm6m1lqg z^jon25LhtW0Ne{Xv;lhHP8vE02f}f5cyVjri~)f;)>A&m&<>!~MXdx>;X_Tz@LMD3 zQ0%u!!d3ok0^T7UuBdW@yf+=bT5W6#c5J6q=3V<@$zHojr z&8GYPEudZzTJC!vICF#0Z+o9QpiqppEVaE@|j$IgcNMPBj}KdLcj( z?frYUg|77%e3oKOhW*b6C)pnmL+@&AVB=JU#UW zkuZNwP$^SDm_Q2%WVA2@TEVPrEiW&BUKY4i5Xux|G0j{t&<&bkMa9Js@aRNpD=$3~ zu1z~SJSGOvsrCdl1%(O-I`se{+Q7?>I_O^r3Jz|w&j*noGcPYm0Z%x&W85d+)byGa zWpf#+}M}M^YJp`Td#&#J#av$$>7B)6U~Nj$3X8t zIG7i;7G= z-+=r-hzO_#BOw(*BcBbh*FYo`q1e`hav7v(J{(Qmf&%qjXd`au1L=8rhFww0j6Se% zc=%~_lq|lX3;G>ErWJ!hsRO!W6dQQj;Y7^++t$Tr08%}2`0$%)gN-PN2(s=%MDabQ zl#Xu1gj97Y0ul8J?x89A5&l>;vx4m0CsXkRdw&-sO-II&1Q8wBsE*!I#N zP8;LI&sNmc)qM}jGam-OK2HR1NjofU=%H(bKdjz{ul{h8)SOTSj1ppOT$~>?WEtG9!Lt6zsOwuDwo620lgVOVc*4CyN?sD(b`fdPvvV+R`yG9&D`9aNPKwps_OCM$0?K_umT4BI9spUh6_r+qTFu$75kRycSKyI zalsE32+05bKi~YgwC>bQc^wjf`M-ypUJkANJIwKNgz3M6F4Lj^ih69SrTJH+VXQDt zVkOY9w44XTKz1NdIIRe0h)y!xqb23soJ1QLZW9qLjFz(^!H#&`%Y|UzrEO^K0)CmsSlyAf4va?CBtn;p*TyT(eCcDBxAf4*^MH@?dC?b zkrWlN5yRocMFntJQ5yj)))pfG8mt%rF(Dg_l^FbIC1mwicFt>x`QP$`8<3$e)C2q_ z39-Fx+^h*MGTf@Vnw+Y3WLL_s{5hdIFx=?hpZ{-_3T*SwwEzbFT@BKZMpBDxL$vi& zg5ct^LKv)w07g^*BV>q`kQ5P<6c*vb2uWfv(&+z43C4#<6(O=ZL|XrUcyvw5HII^A z453NL@+^nz*2145T08Lm%4#|N@7vO7#5ilJ<=?I-yt9_p|6Em$j!0WZ(n%_jt=$|U zJh+gwh~ za3+x{f&^z*uoPk!5>fWoAIon*ufFvkthRg!x;GdQy)t;n(sBMvzklyVt0N|i!!q3N z$awg-5m{(8?)+a}o9CZ;HZR15M>+~rJpez0_ zDSr10o)c^P%n4q2))28JT>noq!A)6NC_6HBc(@R3=`frS?H(D+e*HK_MMQ)}IBhxq zx+W|p#<_fp)9Lp$VIc{u_lZri2TDf zocQ1K5W)WEv%*-M#F}dq7d(+faG{fy=0qD1y$DbToM?SAnZk($E9!Hi)tqd}oQOsB z>CkFQoEFj&5=zR77z|ECL>wofAR!E&A*zJMC}T0=N=gzqG1>n;#Ys9@Svpq=-i5MU S@xsCw2~j#OE@d4Ry8i-P(dp;_ diff --git a/Content/Figures/pressureplot.eps b/Content/Figures/pressureplot.eps deleted file mode 100644 index a241ee8c9..000000000 --- a/Content/Figures/pressureplot.eps +++ /dev/null @@ -1,38506 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%Creator: (ImageMagick) -%%Title: (pressureplot.eps) -%%CreationDate: (2015-05-08T18:47:54+02:00) -%%BoundingBox: -0 -0 585 441 -%%HiResBoundingBox: 0 0 584.64 441 -%%DocumentData: Clean7Bit -%%LanguageLevel: 1 -%%Pages: 1 -%%EndComments - -%%BeginDefaults -%%EndDefaults - -%%BeginProlog -% -% Display a color image. The image is displayed in color on -% Postscript viewers or printers that support color, otherwise -% it is displayed as grayscale. -% -/DirectClassPacket -{ - % - % Get a DirectClass packet. - % - % Parameters: - % red. - % green. - % blue. - % length: number of pixels minus one of this color (optional). - % - currentfile color_packet readhexstring pop pop - compression 0 eq - { - /number_pixels 3 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add 3 mul def - } ifelse - 0 3 number_pixels 1 sub - { - pixels exch color_packet putinterval - } for - pixels 0 number_pixels getinterval -} bind def - -/DirectClassImage -{ - % - % Display a DirectClass image. - % - systemdict /colorimage known - { - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { DirectClassPacket } false 3 colorimage - } - { - % - % No colorimage operator; convert to grayscale. - % - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { GrayDirectClassPacket } image - } ifelse -} bind def - -/GrayDirectClassPacket -{ - % - % Get a DirectClass packet; convert to grayscale. - % - % Parameters: - % red - % green - % blue - % length: number of pixels minus one of this color (optional). - % - currentfile color_packet readhexstring pop pop - color_packet 0 get 0.299 mul - color_packet 1 get 0.587 mul add - color_packet 2 get 0.114 mul add - cvi - /gray_packet exch def - compression 0 eq - { - /number_pixels 1 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add def - } ifelse - 0 1 number_pixels 1 sub - { - pixels exch gray_packet put - } for - pixels 0 number_pixels getinterval -} bind def - -/GrayPseudoClassPacket -{ - % - % Get a PseudoClass packet; convert to grayscale. - % - % Parameters: - % index: index into the colormap. - % length: number of pixels minus one of this color (optional). - % - currentfile byte readhexstring pop 0 get - /offset exch 3 mul def - /color_packet colormap offset 3 getinterval def - color_packet 0 get 0.299 mul - color_packet 1 get 0.587 mul add - color_packet 2 get 0.114 mul add - cvi - /gray_packet exch def - compression 0 eq - { - /number_pixels 1 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add def - } ifelse - 0 1 number_pixels 1 sub - { - pixels exch gray_packet put - } for - pixels 0 number_pixels getinterval -} bind def - -/PseudoClassPacket -{ - % - % Get a PseudoClass packet. - % - % Parameters: - % index: index into the colormap. - % length: number of pixels minus one of this color (optional). - % - currentfile byte readhexstring pop 0 get - /offset exch 3 mul def - /color_packet colormap offset 3 getinterval def - compression 0 eq - { - /number_pixels 3 def - } - { - currentfile byte readhexstring pop 0 get - /number_pixels exch 1 add 3 mul def - } ifelse - 0 3 number_pixels 1 sub - { - pixels exch color_packet putinterval - } for - pixels 0 number_pixels getinterval -} bind def - -/PseudoClassImage -{ - % - % Display a PseudoClass image. - % - % Parameters: - % class: 0-PseudoClass or 1-Grayscale. - % - currentfile buffer readline pop - token pop /class exch def pop - class 0 gt - { - currentfile buffer readline pop - token pop /depth exch def pop - /grays columns 8 add depth sub depth mul 8 idiv string def - columns rows depth - [ - columns 0 0 - rows neg 0 rows - ] - { currentfile grays readhexstring pop } image - } - { - % - % Parameters: - % colors: number of colors in the colormap. - % colormap: red, green, blue color packets. - % - currentfile buffer readline pop - token pop /colors exch def pop - /colors colors 3 mul def - /colormap colors string def - currentfile colormap readhexstring pop pop - systemdict /colorimage known - { - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { PseudoClassPacket } false 3 colorimage - } - { - % - % No colorimage operator; convert to grayscale. - % - columns rows 8 - [ - columns 0 0 - rows neg 0 rows - ] - { GrayPseudoClassPacket } image - } ifelse - } ifelse -} bind def - -/DisplayImage -{ - % - % Display a DirectClass or PseudoClass image. - % - % Parameters: - % x & y translation. - % x & y scale. - % label pointsize. - % image label. - % image columns & rows. - % class: 0-DirectClass or 1-PseudoClass. - % compression: 0-none or 1-RunlengthEncoded. - % hex color packets. - % - gsave - /buffer 512 string def - /byte 1 string def - /color_packet 3 string def - /pixels 768 string def - - currentfile buffer readline pop - token pop /x exch def - token pop /y exch def pop - x y translate - currentfile buffer readline pop - token pop /x exch def - token pop /y exch def pop - currentfile buffer readline pop - token pop /pointsize exch def pop - /Times-Roman findfont pointsize scalefont setfont - x y scale - currentfile buffer readline pop - token pop /columns exch def - token pop /rows exch def pop - currentfile buffer readline pop - token pop /class exch def pop - currentfile buffer readline pop - token pop /compression exch def pop - class 0 gt { PseudoClassImage } { DirectClassImage } ifelse - grestore -} bind def -%%EndProlog -%%Page: 1 1 -%%PageBoundingBox: 0 0 585 441 -userdict begin -DisplayImage -0 0 -584.64 440.64 -12 -812 612 -0 -0 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFCF4A4A4A1E1E1E090909121212 -393939A4A4A4FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD4343430C0C0C101010525252DEDEDEFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF929292272727070707212121818181FBFBFBFFFFFFFFFFFFFFFFFF -FFFFFFE9E9E95F5F5F1414140A0A0A393939BDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBBB -3838380A0A0A141414606060EAEAEAFFFFFFFFFFFFFFFFFFFFFFFFFAFAFA8080801F1F1F070707 -282828939393FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFC0C0C0686868A5A5A5C0C0C0B4B4B4595959010101848484FFFFFFFFFFFFD7D7D70D0D0D -3F3F3FB7B7B7AEAEAE2C2C2C1B1B1BEBEBEBFFFFFFFFFFFFFFFFFF8484840202027B7B7BC1C1C1 -8B8B8B070707666666FFFFFFFFFFFFFFFFFFF8F8F82C2C2C1E1E1EA6A6A6BCBCBC505050050505 -C1C1C1FFFFFFFFFFFFFFFFFFC0C0C0040404515151BCBCBCA5A5A51C1C1C2D2D2DF9F9F9FFFFFF -FFFFFFFFFFFF6464640808088C8C8CC1C1C1797979020202868686FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -3838381E1E1EFFFFFFFFFFFF555555161616F3F3F3FFFFFFFFFFFFE1E1E1060606777777FFFFFF -FFFFFFECECEC080808686868FFFFFFFFFFFFFFFFFF868686020202D6D6D6FFFFFFFFFFFF959595 -010101C8C8C8FFFFFFFFFFFFFCFCFC2B2B2B373737FFFFFFFFFFFFFFFFFF3535352C2C2CFDFDFD -FFFFFFFFFFFFC6C6C6010101979797FFFFFFFFFFFFD4D4D4020202888888FFFFFFFFFFFFFFFFFF -6666660A0A0AEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4B4B4B222222FFFFFFFBFBFB090909696969FFFFFF -FFFFFFFFFFFFFFFFFF474747262626FFFFFFFFFFFFA4A4A4010101C9C9C9FFFFFFFFFFFFFFFFFF -E7E7E7010101868686FFFFFFFFFFFF444444292929FFFFFFFFFFFFFFFFFFFFFFFF878787010101 -E6E6E6FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFFFFFFFF272727464646FFFFFFFFFFFF -848484010101E9E9E9FFFFFFFFFFFFFFFFFFC7C7C7010101A6A6A6FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEFBFBFBEAEAEA959595040404 -969696FFFFFFD8D8D8010101979797FFFFFFFFFFFFFFFFFFFFFFFF747474020202F9F9F9FFFFFF -787878010101F6F6F6FFFFFFFFFFFFFFFFFFFFFFFF1515155B5B5BFFFFFFFFFFFF181818575757 -FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFF -FFFFFFFFFFFF5454541A1A1AFFFFFFFFFFFF585858171717FFFFFFFFFFFFFFFFFFFFFFFFF4F4F4 -0101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF676767010101010101040404909090FFFFFFFFFFFFC5C5C5010101A9A9A9FFFFFFFFFFFF -FFFFFFFFFFFF868686010101E8E8E8FFFFFF656565080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -262626484848FFFFFFFFFFFF060606696969FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8 -FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF666666070707FFFFFFFFFFFF454545 -292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE2E2E2CDCDCDB7B7B7696969020202888888 -FFFFFFC5C5C5010101A9A9A9FFFFFFFFFFFFFFFFFFFFFFFF868686010101E8E8E8FFFFFF656565 -080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF060606696969FFFFFF -FFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFF -FFFFFF666666070707FFFFFFFFFFFF454545292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707 -686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE6E6E6CDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDE6E6E6 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF696969050505EBEBEBD8D8D8010101979797FFFFFFFFFFFFFFFFFF -FFFFFF747474020202F9F9F9FFFFFF787878010101F7F7F7FFFFFFFFFFFFFFFFFFFFFFFF141414 -5B5B5BFFFFFFFFFFFF191919575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFF -B8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541B1B1BFFFFFFFFFFFF585858161616 -FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE6E6E6 -06061A000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -0000000000000000000000000000001A1A1AE6E6E6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9E9E9E010101C9C9C9 -FBFBFB0A0A0A696969FFFFFFFFFFFFFFFFFFFFFFFF474747272727FFFFFFFFFFFFA6A6A6010101 -C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101878787FFFFFFFFFFFF464646292929FFFFFFFFFFFF -FFFFFFFFFFFF878787010101E7E7E7FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFFFFFFFF -272727474747FFFFFFFFFFFF858585010101E8E8E8FFFFFFFFFFFFFFFFFFC7C7C7010101A7A7A7 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD0000007C7CA4CDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDA4A4A4000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF5D5D5D040404ECECECFFFFFF575757171717F3F3F3FFFFFFFFFFFFE1E1E1 -060606797979FFFFFFFFFFFFEEEEEE090909696969FFFFFFFFFFFFFFFFFF878787020202D7D7D7 -FFFFFFFFFFFF979797010101C9C9C9FFFFFFFFFFFFFBFBFB2B2B2B393939FFFFFFFFFFFFFFFFFF -3737372D2D2DFDFDFDFFFFFFFFFFFFC7C7C7010101999999FFFFFFFFFFFFD5D5D5020202898989 -FFFFFFFFFFFFFFFFFF6767670B0B0BEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -3232CDFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF656565747474A9A9A9C0C0C0ACACAC575757010101777777FFFFFFFFFFFF -D8D8D80D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1C1C1CECECECFFFFFFFFFFFFFFFFFF858585020202 -7B7B7BC0C0C08B8B8B080808676767FFFFFFFFFFFFFFFFFFF9F9F92C2C2C1E1E1EA6A6A6BBBBBB -515151060606C2C2C2FFFFFFFFFFFFFFFFFFC0C0C0050505525252BBBBBBA5A5A51D1D1D2E2E2E -FAFAFAFFFFFFFFFFFFFFFFFF6565650808088C8C8CC0C0C07A7A7A020202878787FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD0000000000CDBCBCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9F9F3E3E3E151515050505 -111111414141A5A5A5FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD4444440B0B0B0F0F0F525252DEDEDE -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707202020818181FCFCFCFFFFFFFFFFFF -FFFFFFFFFFFFE9E9E95F5F5F1313130909093A3A3ABDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -BBBBBB393939090909131313606060EBEBEBFFFFFFFFFFFFFFFFFFFFFFFFFBFBFB8080801F1F1F -070707282828949494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD0000002B2BCD -3838FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4D -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4D -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD0000009494CD0000FFB5B5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CCCCCD3C3CFF -3232FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -A6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFA6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDC0C0FF0000FFAEAEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF4343FF -2C2CFFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFC6C6FF0000FFA8A8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDADADACDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDDADADAFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF4A4AFF -2727FFFBFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDADADA -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000DADADAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFCCCCFF0000FFA1A1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000A4A4A4CDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDA4A4A4000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF5050FF -2222FFFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFD1D1FF0000FF9A9AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF5757FF -1D1DFFF8F8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFD7D7FF0202FF9494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D5DFF -1919FFF5F5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDCDCFF0404FF8A8AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6969FF -1111FFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE6E6FF0909FF7A7AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFC5C5C54949491111110909092E2E2E909090FDFDFDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7979FF -0A0AFFE7E7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB0B0B00303030D0D0D646464767676282828 -010101555555FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEFF1010FF6B6BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1F1 -141414080808CDCDCDFFFFFFFFFFFFF8F8F83A3A3A010101A8A8A8FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8888FF -0404FFDDDDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101606060D7D7D74F4F4F1111110B0B0B -3C3C3CBABABAFFFFFFFFFFFFFFFFFF9C9C9C010101616161FFFFFFFFFFFFFFFFFFFFFFFFBEBEBE -0101013E3E3EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF1919FF5B5BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF -0101013F3F3F1111113F3F3F7A7A7A606060090909030303A9A9A9FFFFFFFFFFFF5B5B5B010101 -A9A9A9FFFFFFFFFFFFFFFFFFFFFFFFFCFCFC0A0A0A060606FAFAFAFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9898FF -0101FFD1D1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101767676FFFFFFFFFFFFFFFFFFCCCCCC -050505111111F2F2F2FFFFFF343434010101CECECEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2B2B2B -020202D8D8D8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFF2424FF4C4CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF -CDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFF -CDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFF -CDCDFFCDCDFFCDCDFFF5F5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101 -111111F4F4F4FFFFFFFFFFFFFFFFFFFFFFFF606060010101A2A2A2FFFFFF252525020202DDDDDD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3A3A3A010101C8C8C8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA8A8FF -0000FFC3C3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDFF0000FF0000FF0000FF0000FF0000FF0000FF0000FF -0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF -0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FF0000FFCDCDFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101434343FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9F9F -010101717171FFFFFF252525020202DDDDDDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3A3A3A010101 -C8C8C8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF3030FF3B3BFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FFCDCDFF -CDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFF -CDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFFCDCDFF -CDCDFFCDCDFFF5F5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF0101015A5A5A -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB7B7B7010101626262FFFFFF343434010101CECECEFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF2B2B2B010101D8D8D8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB7B7FF -0000FFB4B4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFDFDFDF010101434343FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9F9F010101 -717171FFFFFF5B5B5B010101A7A7A7FFFFFFFFFFFFFFFFFFFFFFFFFBFBFB0A0A0A060606FAFAFA -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF3F3FFF2D2DFFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101111111F3F3F3 -FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F010101A2A2A2FFFFFF9E9E9E0101015F5F5FFFFFFFFFFFFF -FFFFFFFFFFFFBDBDBD010101404040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC6C6FF -0000FFA4A4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFDFDFDF010101010101757575FFFFFFFFFFFFFFFFFFCBCBCB040404111111F3F3F3 -FFFFFFF2F2F2151515070707CCCCCCFFFFFFFFFFFFF7F7F7393939010101A9A9A9FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4F4FFF2121FFF9F9FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF0101013F3F3F1111113E3E3E -7878785F5F5F080808040404AAAAAAFFFFFFFFFFFFFFFFFFB0B0B00404040C0C0C646464757575 -272727010101565656FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD4D4FF -0202FF9191FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFDFDFDF010101616161D9D9D94F4F4F1111110B0B0B3C3C3CBABABAFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFC5C5C54A4A4A1111110909092E2E2E909090FEFEFEFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6464FF1313FFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101616161FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5E5FF -0909FF7878FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DFDFDF010101616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7C7CFF0808FFE2E2FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101616161FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2F2FF -1515FF5F5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF -010101616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9595FF0101FFD0D0FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFF -2626FF4747FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAEAEFF0000FFBABAFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -3B3BFF2F2FFFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC6C6FF0000FFA2A2FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -5353FF1D1DFFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDADAFF0404FF8989FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -6C6CFF0F0FFFECECFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEAEAFF0D0DFF7070FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -8585FF0505FFDDDDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF1B1BFF5454FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -A2A2FF0000FFC2C2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFB9090906060602F2F2F0505050101019C9C9CFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF3434FF3333FFFDFDFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEF010101 -0202021919191E1E1E0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -C4C4FF0000FFA0A0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFAFAFAB8B8B8E8E8E8FFFFFF7F7F7F0101019D9D9DFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5656FF1A1AFFF4F4FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101 -606060D7D7D74F4F4F1111110B0B0B3C3C3CBABABAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF7F7F7F0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DFDFFF0707FF7E7EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDFDFDF0101013F3F3F1111113F3F3F7A7A7A606060090909030303 -A9A9A9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F0101019D9D9DFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7878FF0909FFE2E2FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101 -767676FFFFFFFFFFFFFFFFFFCCCCCC050505111111F2F2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -7F7F7F0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F1F1FF1616FF5B5BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF5FAF5CDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CD -CDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CD -CDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDF5FAF5FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFDFDFDF010101111111F4F4F4FFFFFFFFFFFFFFFFFFFFFFFF606060010101 -A1A1A1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9A9AFF0000FFC9C9FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDE6CD008000008000 -008000008000008000008000008000008000008000008000008000008000008000008000008000 -008000008000008000008000008000008000008000008000008000008000008000008000008000 -008000CDE6CDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101434343FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF9F9F9F010101717171FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F -0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FCFCFF2E2EFF3A3AFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFF5FAF5CDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CD -CDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CD -CDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDCDE6CDF5FAF5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFDFDFDF0101015A5A5AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB7B7B7010101626262 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBDBDFF0000FFA8A8FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101434343FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF9F9F9F010101717171FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F010101 -9D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4E4EFF1F1FFFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFDFDFDF010101111111F3F3F3FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F010101A2A2A2FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF7F7F7F0101019D9D9DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD9D9FF0404FF8585FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101757575FFFFFFFFFFFF -FFFFFFCBCBCB040404111111F3F3F3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F0101019D9D9D -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF7070FF0C0CFFE7E7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DFDFDF0101013F3F3F1111113E3E3E7878785F5F5F080808040404AAAAAAFFFFFFFFFFFFFFFFFF -8787875F5F5F5F5F5F2F2F2F0101013B3B3B5F5F5F5F5F5F9C9C9CFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEFF1212FF6262FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101616161D9D9D94F4F4F1111110B0B0B -3C3C3CBABABAFFFFFFFFFFFFFFFFFFFFFFFF404040010101020202020202020202020202010101 -020202616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF9494FF0101FFCBCBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF -010101616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFF2D2DFF3838FFFDFDFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFC0C0FF0000FFA0A0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101 -616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5757FF1717FFF1F1FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFE2E2FF0A0AFF7474FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8484FF0404FFD7D7FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF7F7FF2121FF4646FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB0B0FF0000FFB1B1FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFEFEFF4747FF2222FFF7F7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD7D7FF0404FF8484FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF7474FF0A0AFFE2E2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1FF1717FF5757FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000A4A4A4CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDA4A4A4000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -BCBCBC5E5E5E2525250A0A0A1B1B1B4F4F4FCDCDCDFFFFFFFFFFFFFFFFFF5F5F5F010101010101 -010101010101010101292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707212121 -818181FBFBFBFFFFFFFFFFFFFFFFFFFFFFFFE9E9E95F5F5F1414140A0A0A393939BDBDBDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFBBBBBB3838380A0A0A141414606060EAEAEAFFFFFFFFFFFFFFFFFF -FFFFFFFAFAFA8080801F1F1F070707282828939393FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFA0A0FF0000FFC0C0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDADADA000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000DADADAFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF555555404040969696C1C1C1ACACAC393939050505 -BEBEBEFFFFFFFFFFFF5F5F5F0A0A0AC9C9C9C9C9C9C9C9C9C9C9C9D2D2D2FFFFFFFFFFFFFFFFFF -FFFFFF8484840202027B7B7BC1C1C18B8B8B070707666666FFFFFFFFFFFFFFFFFFF8F8F82C2C2C -1E1E1EA6A6A6BCBCBC505050050505C1C1C1FFFFFFFFFFFFFFFFFFC0C0C0040404515151BCBCBC -A5A5A51C1C1C2D2D2DF9F9F9FFFFFFFFFFFFFFFFFF6464640808088C8C8CC1C1C1797979020202 -868686FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF3838FF2D2DFFFBFBFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DADADACDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDDADADAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9E9E9 -FFFFFFFFFFFFFFFFFFFFFFFFF4F4F4181818444444FFFFFFFFFFFF5F5F5F0D0D0DFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECECEC080808686868FFFFFFFFFFFFFFFFFF868686 -020202D6D6D6FFFFFFFFFFFF959595010101C8C8C8FFFFFFFFFFFFFCFCFC2B2B2B373737FFFFFF -FFFFFFFFFFFF3535352C2C2CFDFDFDFFFFFFFFFFFFC6C6C6010101979797FFFFFFFFFFFFD4D4D4 -020202888888FFFFFFFFFFFFFFFFFF6666660A0A0AEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCACAFF0101FF9393FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF414141282828 -FFFFFFFFFFFF5F5F5F0C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA4A4A4 -010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101868686FFFFFFFFFFFF444444292929FFFFFF -FFFFFFFFFFFFFFFFFF878787010101E6E6E6FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFF -FFFFFF272727464646FFFFFFFFFFFF848484010101E9E9E9FFFFFFFFFFFFFFFFFFC7C7C7010101 -A6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6565FF0F0FFFE8E8FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFF0F0F00F0F0F535353FFFFFFFFFFFF5F5F5F0303031818180303031C1C1C -6C6C6CEEEEEEFFFFFFFFFFFFFFFFFF787878010101F6F6F6FFFFFFFFFFFFFFFFFFFFFFFF151515 -5B5B5BFFFFFFFFFFFF181818575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFF -B8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541A1A1AFFFFFFFFFFFF585858171717 -FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFECECFF1313FF5D5DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5B5B5B060606CECECEFFFFFF -FFFFFF8F8F8F909090BCBCBCBCBCBC7C7C7C0B0B0B292929F4F4F4FFFFFFFFFFFF656565080808 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF060606696969FFFFFFFFFFFF -FFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF -666666070707FFFFFFFFFFFF454545292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707686868 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9D9DFF0000FFC0C0FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF7C7C7C010101959595FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFADADAD -010101909090FFFFFFFFFFFF656565080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848 -FFFFFFFFFFFF060606696969FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5 -010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF666666070707FFFFFFFFFFFF454545292929FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF070707686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFDFDFF3A3AFF2A2AFFF9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF808080010101878787FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFE0C0C0C595959FFFFFFFFFFFF787878010101F7F7F7 -FFFFFFFFFFFFFFFFFFFFFFFF1414145B5B5BFFFFFFFFFFFF191919575757FFFFFFFFFFFFFFFFFF -FFFFFFB4B4B4010101BBBBBBFFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF545454 -1B1B1BFFFFFFFFFFFF585858161616FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7BFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD0000003D3D3D4D4D4D4D4D4D4D4D4D4D4D4DA6A6A6FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD1D1FF0303FF8989FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFA6A6A64D4D4D4D4D4D4D4D4D4D4D4D3D3D3D000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF808080010101 -828282FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFD0A0A0A -595959FFFFFFFFFFFFA6A6A6010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101878787FFFFFF -FFFFFF464646292929FFFFFFFFFFFFFFFFFFFFFFFF878787010101E7E7E7FFFFFFE4E4E4010101 -898989FFFFFFFFFFFFFFFFFFFFFFFF272727474747FFFFFFFFFFFF858585010101E8E8E8FFFFFF -FFFFFFFFFFFFC7C7C7010101A7A7A7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF7070FF0A0AFFE1E1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF8282820101017E7E7EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFA9A9A9010101929292FFFFFFFFFFFFEEEEEE090909696969FFFFFF -FFFFFFFFFFFF878787020202D7D7D7FFFFFFFFFFFF979797010101C9C9C9FFFFFFFFFFFFFBFBFB -2B2B2B393939FFFFFFFFFFFFFFFFFF3737372D2D2DFDFDFDFFFFFFFFFFFFC7C7C7010101999999 -FFFFFFFFFFFFD5D5D5020202898989FFFFFFFFFFFFFFFFFF6767670B0B0BEFEFEFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1FF1919FF5151FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8C8C8C010101494949C8C8C8C7C7C7 -C7C7C7C7C7C7C7C7C7FFFFFFE0E0E03C3C3C969696B8B8B8B7B7B77878780909092D2D2DF6F6F6 -FFFFFFFFFFFFFFFFFF8585850202027B7B7BC0C0C08B8B8B080808676767FFFFFFFFFFFFFFFFFF -F9F9F92C2C2C1E1E1EA6A6A6BBBBBB515151060606C2C2C2FFFFFFFFFFFFFFFFFFC0C0C0050505 -525252BBBBBBA5A5A51D1D1D2E2E2EFAFAFAFFFFFFFFFFFFFFFFFF6565650808088C8C8CC0C0C0 -7A7A7A020202878787FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFA8A8FF0000FFB5B5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF404040020202010101010101010101010101010101020202FFFFFFEFEFEF525252212121 -0A0A0A070707272727787878F2F2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707 -202020818181FCFCFCFFFFFFFFFFFFFFFFFFFFFFFFE9E9E95F5F5F1313130909093A3A3ABDBDBD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBBB393939090909131313606060EBEBEBFFFFFFFFFFFF -FFFFFFFFFFFFFBFBFB8080801F1F1F070707282828949494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF4444FF2222FFF6F6FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFD9D9FF0606FF7E7EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7C7CFF0606FFDADAFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFF6F6FF2121FF4646FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB3B3FF0000FFAAAAFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF5050FF1A1AFFF2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0FF0A0AFF7171FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF8989FF0202FFCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFF2E2EFF3333FF -FBFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFC9C9FF0101FF8F8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6C6CFF0B0BFF -E1E1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF1F1FF1B1BFF4D4DFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAEAEFF0000FF -ACACFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4F4FFF1919FFF0F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE2E2FF0C0CFF -6A6AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9191FF0101FFC6C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFF3535FF -2C2CFFFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFFF0303FF8686FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7575FF -0707FFD8D8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF2424FF3C3CFFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0C0FF -0000FF9494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6868FF0C0CFFE0E0FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1FF -1D1DFF4646FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB5B5FF0000FF9F9FFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -5C5CFF1010FFE7E7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECECFF1616FF5252FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -AAAAFF0000FFABABFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF5151FF1616FFEDEDFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -E6E6FF1010FF5E5EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9E9EFF0000FFB6B6FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FEFEFF4545FF1D1DFFF2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFFF0B0BFF6A6AFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF9292FF0000FFC1C1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF3B3BFF2323FFF4F4FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFDADAFF0909FF6C6CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9191FF0000FFBDBDFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFDFDFF4040FF1F1FFFF2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDEDEFF0B0BFF6666FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF9797FF0000FFB8B8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF4545FF1B1BFFEFEFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFE2E2FF0E0EFF6060FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9D9DFF0000FFB3B3FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFEFEFF4A4AFF1818FFEDEDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5E5FF1010FF5A5AFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFA4A4FF0000FFA9A9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF5555FF1111FFE4E4FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFECECFF1919FF4646FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB8B8FF0000FF9494FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF6B6BFF0909FFD7D7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF2626FF3434FF -FAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCACAFF0303FF7E7EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8181FF0303FF -C7C7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFBFBFF3636FF2424FFF3F3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD9D9FF0A0AFF -6767FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9797FF0000FFB4B4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF4A4AFF -1616FFE8E8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8E8FF1616FF4949FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB5B5FF -0000FF9191FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F6FFF0606FFD1D1FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7FF -2E2EFF2A2AFFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD5D5FF0808FF6A6AFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -9696FF0000FFB1B1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF4E4EFF1313FFE5E5FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -EBEBFF1919FF4343FFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBFF0000FF8B8BFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF7575FF0505FFCCCCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FF3333FF2525FFF2F2FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFDADAFF0C0CFF5A5AFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6FF0000FF9D9DFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF6464FF0909FFD4D4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF2B2BFF2A2AFFF5F5FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBCBCBC5E5E5E -2525250A0A0A1B1B1B4F4F4FCDCDCDFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD4343430C0C0C101010 -525252DEDEDEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707212121818181FBFBFB -FFFFFFFFFFFFFFFFFFFFFFFFE9E9E95F5F5F1414140A0A0A393939BDBDBDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFBBBBBB3838380A0A0A141414606060EAEAEAFFFFFFFFFFFFFFFFFFFFFFFFFAFAFA -8080801F1F1F070707282828939393FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFD5D5FF0A0AFF6363FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF555555404040969696C1C1C1ACACAC393939050505BEBEBEFFFFFF -FFFFFFD7D7D70D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1B1B1BEBEBEBFFFFFFFFFFFFFFFFFF848484 -0202027B7B7BC1C1C18B8B8B070707666666FFFFFFFFFFFFFFFFFFF8F8F82C2C2C1E1E1EA6A6A6 -BCBCBC505050050505C1C1C1FFFFFFFFFFFFFFFFFFC0C0C0040404515151BCBCBCA5A5A51C1C1C -2D2D2DF9F9F9FFFFFFFFFFFFFFFFFF6464640808088C8C8CC1C1C1797979020202868686FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FFF0000FFA4A4FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9E9E9FFFFFFFFFFFF -FFFFFFFFFFFFF4F4F4181818444444FFFFFFFFFFFF555555161616F3F3F3FFFFFFFFFFFFE1E1E1 -060606777777FFFFFFFFFFFFECECEC080808686868FFFFFFFFFFFFFFFFFF868686020202D6D6D6 -FFFFFFFFFFFF959595010101C8C8C8FFFFFFFFFFFFFCFCFC2B2B2B373737FFFFFFFFFFFFFFFFFF -3535352C2C2CFDFDFDFFFFFFFFFFFFC6C6C6010101979797FFFFFFFFFFFFD4D4D4020202888888 -FFFFFFFFFFFFFFFFFF6666660A0A0AEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFEFEFF5D5DFF0B0BFFD9D9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF414141282828FFFFFFFBFBFB -090909696969FFFFFFFFFFFFFFFFFFFFFFFF474747262626FFFFFFFFFFFFA4A4A4010101C9C9C9 -FFFFFFFFFFFFFFFFFFE7E7E7010101868686FFFFFFFFFFFF444444292929FFFFFFFFFFFFFFFFFF -FFFFFF878787010101E6E6E6FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFFFFFFFF272727 -464646FFFFFFFFFFFF848484010101E9E9E9FFFFFFFFFFFFFFFFFFC7C7C7010101A6A6A6FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3FF2626FF2F2FFFF7F7FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF0F0F00F0F0F535353FFFFFFD8D8D8010101979797FFFFFFFFFFFFFFFFFFFFFFFF747474 -020202F9F9F9FFFFFF787878010101F6F6F6FFFFFFFFFFFFFFFFFFFFFFFF1515155B5B5BFFFFFF -FFFFFF181818575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFFB8B8B8010101 -B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541A1A1AFFFFFFFFFFFF585858171717FFFFFFFFFFFF -FFFFFFFFFFFFF4F4F40101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFD0D0FF0707FF6A6AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5B5B5B060606CECECEFFFFFFC5C5C5010101 -A9A9A9FFFFFFFFFFFFFFFFFFFFFFFF868686010101E8E8E8FFFFFF656565080808FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF060606696969FFFFFFFFFFFFFFFFFFFFFFFF -C6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF666666070707 -FFFFFFFFFFFF454545292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707686868FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9797FF0000FFABABFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7C7C7C -010101959595FFFFFFFFFFFFC5C5C5010101A9A9A9FFFFFFFFFFFFFFFFFFFFFFFF868686010101 -E8E8E8FFFFFF656565080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF -060606696969FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9 -FFFFFFFFFFFFFFFFFFFFFFFF666666070707FFFFFFFFFFFF454545292929FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF070707686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFEFEFF5555FF0E0EFFDCDCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF808080010101878787FFFFFFFFFFFFFFFFFFD8D8D8010101979797 -FFFFFFFFFFFFFFFFFFFFFFFF747474020202F9F9F9FFFFFF787878010101F7F7F7FFFFFFFFFFFF -FFFFFFFFFFFF1414145B5B5BFFFFFFFFFFFF191919575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4 -010101BBBBBBFFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541B1B1BFFFFFF -FFFFFF585858161616FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7BFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD0000003D3D3D4D4D4D4D4D4D4D4D4D4D4D4DA6A6A6FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0F0FF2323FF3030FF -F6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFA6A6A64D4D4D4D4D4D4D4D4D4D4D4D3D3D3D000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF808080010101828282FFFFFF -FFFFFFFFFFFFFFFFFFFBFBFB0A0A0A696969FFFFFFFFFFFFFFFFFFFFFFFF474747272727FFFFFF -FFFFFFA6A6A6010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101878787FFFFFFFFFFFF464646 -292929FFFFFFFFFFFFFFFFFFFFFFFF878787010101E7E7E7FFFFFFE4E4E4010101898989FFFFFF -FFFFFFFFFFFFFFFFFF272727474747FFFFFFFFFFFF858585010101E8E8E8FFFFFFFFFFFFFFFFFF -C7C7C7010101A7A7A7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFD0D0FF0808FF6464FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF8282820101017E7E7EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF575757171717F3F3F3 -FFFFFFFFFFFFE1E1E1060606797979FFFFFFFFFFFFEEEEEE090909696969FFFFFFFFFFFFFFFFFF -878787020202D7D7D7FFFFFFFFFFFF979797010101C9C9C9FFFFFFFFFFFFFBFBFB2B2B2B393939 -FFFFFFFFFFFFFFFFFF3737372D2D2DFDFDFDFFFFFFFFFFFFC7C7C7010101999999FFFFFFFFFFFF -D5D5D5020202898989FFFFFFFFFFFFFFFFFF6767670B0B0BEFEFEFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9E9EFF0000FF -9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8C8C8C010101494949C8C8C8C7C7C7C7C7C7C7C7C7 -C7C7C7FFFFFFFFFFFFD8D8D80D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1C1C1CECECECFFFFFFFFFFFF -FFFFFF8585850202027B7B7BC0C0C08B8B8B080808676767FFFFFFFFFFFFFFFFFFF9F9F92C2C2C -1E1E1EA6A6A6BBBBBB515151060606C2C2C2FFFFFFFFFFFFFFFFFFC0C0C0050505525252BBBBBB -A5A5A51D1D1D2E2E2EFAFAFAFFFFFFFFFFFFFFFFFF6565650808088C8C8CC0C0C07A7A7A020202 -878787FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6262FF0808FFD0D0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF404040 -020202010101010101010101010101010101020202FFFFFFFFFFFFFFFFFFCDCDCD4444440B0B0B -0F0F0F525252DEDEDEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707202020818181 -FCFCFCFFFFFFFFFFFFFFFFFFFFFFFFE9E9E95F5F5F1313130909093A3A3ABDBDBDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFBBBBBB393939090909131313606060EBEBEBFFFFFFFFFFFFFFFFFFFFFFFF -FBFBFB8080801F1F1F070707282828949494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F6FF3030FF -2424FFF0F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDCDCFF0F0FFF5252FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFFF -0000FF8D8DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7575FF0303FFC3C3FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFF -3E3EFF1919FFE8E8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE6E6FF1717FF4141FFFCFCFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -BFBFFF0202FF7979FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8989FF0000FFAEAEFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FEFEFF5454FF0C0CFFD6D6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3FF2B2BFF2626FFF0F0FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFDBDBFF1010FF4D4DFFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB5B5FF0101FF8080FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF8383FF0000FFB1B1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF5050FF0E0EFFD8D8FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFF1F1FF2828FF2929FFF2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD8D8FF0D0DFF5151FFFDFDFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFB1B1FF0000FF8585FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7E7EFF0101FFB6B6FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFDFDFF4C4CFF0F0FFFD8D8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1FF2929FF2626FF -EFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDBDBFF1111FF4747FFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBFF0303FF -7373FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9191FF0000FFA0A0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF6464FF -0606FFC6C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FF3C3CFF1717FFE3E3FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9E9FF -1D1DFF3232FFF5F5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFFF0A0AFF5454FFFDFDFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -AFAFFF0101FF7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8989FF0000FFA2A2FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FEFEFF6161FF0606FFC4C4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FF3E3EFF1414FFDDDDFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFECECFF2323FF2A2AFFF0F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF9F9F9A6A6A66C6C6C585858B4B4B4EBEBEBD9D9D9D9D9D9FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD7D7FF0F0FFF4848FFFBFBFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0D0D02222220101010101010101018D8D8DB3B3B3 -010101020202C4C4C4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFBBBBFF0303FF6969FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8E8E8171717 -0101010101010101010101018D8D8DFCFCFC131313010101747474FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9B9BFF0000FF8B8BFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF7373730101010101010808080101010101018D8D8DFFFFFF535353 -010101393939FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF7A7AFF0000FFAAAAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF272727010101282828 -EFEFEF0101010101018D8D8DFFFFFF7C7C7C010101141414FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF5A5AFF0707FFC5C5FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF0808080101017F7F7FFFFFFF0101010101018D8D8DFFFFFF858585010101 -050505FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFF8F8FF3E3EFF1313FFDADAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0B0B0B0101017B7B7BFFFFFF -0101010101018D8D8DFFFFFF6666660101010E0E0EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEDEDFF2727FF2424FF -EBEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF2B2B2B010101262626F4F4F40101010101018D8D8DDDDDDD111111010101303030 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDEDEFF1616FF3939FFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7272720101010101011E1E1E010101 -0101012525250D0D0D010101010101777777FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC9C9FF0909FF -5454FFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFE2E2E20E0E0E010101010101010101010101010101010101010101101010E4E4E4FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB0B0FF0101FF7474FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBBB0E0E0E010101010101010101 -0101010101010E0E0EBBBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9191FF -0000FF9595FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFE9E9E9818181464646343434474747818181E8E8E8FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F6FFF0202FFB2B2FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0C0C0C1C1C1CCCCCCFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFF -5151FF0A0AFFC7C7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF020202 -020202646464FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F6FF3C3CFF1212FFD7D7FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF131313010101848484FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -EEEEFF2B2BFF1E1EFFE4E4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF565656010101 -575757FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3E3FF1D1DFF2C2CFFEEEEFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDEDEDE161616030303989898FEFEFEFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFD6D6FF1212FF3C3CFFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF404040262626010101 -010101141414373737414141414141414141414141414141FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7C7FF0909FF5050FFFBFBFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF010101010101010101010101010101010101010101010101010101010101 -020202FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFB4B4FF0303FF6565FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101010101 -010101010101010101010101010101010101010101FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA0A0FF0000FF7D7DFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F5F606060 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF8989FF0000FF9595FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF7171FF0101FFABABFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFDFDFF5A5AFF0606FFBEBEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1 -E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FF4545FF0D0DFF -CDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -010101020202020202020202020202020202020202020202020202010101020202FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF3F3FF3636FF1414FFD7D7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101010101010101010101010101 -010101010101010101020202FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEDEDFF2C2CFF -1B1BFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101 -010101010101010101010101010101010101010101010101010101010101FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE6E6FF2222FF2424FFE7E7FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFB8B8B89393932A2A2A -010101474747C0C0C0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDEDEFF -1A1AFF2D2DFFEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2F2F2212121020202ACACACFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD5D5FF1313FF3838FFF3F3FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF595959 -010101363636FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CBCBFF0D0DFF4343FFF7F7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDEDEDE1A1A1A0101010A0A0AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0C0FF0808FF5050FFFBFBFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF202020212121212121212121212121202020171717010101010101010101 -141414FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFB4B4FF0404FF5858FFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101010101 -010101010101010101010101010101010101616161FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFADADFF0303FF5F5FFFFDFDFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF0101010101010101010101010101010101010101010101010101013B3B3BEEEEEE -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFA7A7FF0202FF6565FFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F -7F7F7F818181919191C6C6C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA1A1FF0101FF6B6BFFFEFEFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF9B9BFF0000FF7272FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEEEEEEF7F7F7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9494FF0000FF7979FF -FEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -D7D7D7989898999999E9E9E9FFFFFFC0C0C0202020020202080808747474FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF8E8EFF0000FF8080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF747474010101080808F6F6F6F8F8F8151515010101 -010101010101020202A2A2A2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8787FF0000FF -8787FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3F3F -010101444444FFFFFFB8B8B8010101010101010101010101010101454545FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3F3757575454545141414 -010101808080FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F010101010101010101010101010101292929 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707212121818181FBFBFBFFFFFFFFFFFF -FFFFFFFFFFFFE9E9E95F5F5F1414140A0A0A393939BDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -BBBBBB3838380A0A0A141414606060EAEAEAFFFFFFFFFFFFFFFFFFFFFFFFFAFAFA8080801F1F1F -070707282828939393FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8080FF0000FF8E8EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1D1D1D0101016D6D6DFFFFFF838383010101262626CECECE -2C2C2C010101171717FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFDFDFDF101010404040656565010101818181FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F -0A0A0AC9C9C9C9C9C9C9C9C9C9C9C9D2D2D2FFFFFFFFFFFFFFFFFFFFFFFF8484840202027B7B7B -C1C1C18B8B8B070707666666FFFFFFFFFFFFFFFFFFF8F8F82C2C2C1E1E1EA6A6A6BCBCBC505050 -050505C1C1C1FFFFFFFFFFFFFFFFFFC0C0C0040404515151BCBCBCA5A5A51C1C1C2D2D2DF9F9F9 -FFFFFFFFFFFFFFFFFF6464640808088C8C8CC1C1C1797979020202868686FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF7979FF -0000FF9494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707010101 -878787FFFFFF5C5C5C0101016F6F6FFFFFFF7E7E7E010101060606FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECECEC010101 -818181FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F0D0D0DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFECECEC080808686868FFFFFFFFFFFFFFFFFF868686020202D6D6D6FFFFFFFFFFFF -959595010101C8C8C8FFFFFFFFFFFFFCFCFC2B2B2B373737FFFFFFFFFFFFFFFFFF3535352C2C2C -FDFDFDFFFFFFFFFFFFC6C6C6010101979797FFFFFFFFFFFFD4D4D4020202888888FFFFFFFFFFFF -FFFFFF6666660A0A0AEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF7272FF0000FF9A9AFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF080808010101747474FFFFFF323232010101949494FFFFFF818181 -0101010F0F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F0C0C0C -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA4A4A4010101C9C9C9FFFFFFFFFFFF -FFFFFFE7E7E7010101868686FFFFFFFFFFFF444444292929FFFFFFFFFFFFFFFFFFFFFFFF878787 -010101E6E6E6FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFFFFFFFF272727464646FFFFFF -FFFFFF848484010101E9E9E9FFFFFFFFFFFFFFFFFFC7C7C7010101A6A6A6FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -6C6CFF0101FF9B9BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF242424010101131313 -696969010101010101BEBEBEFFFFFF676767010101252525FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181 -FFFFFFFFFFFFFFFFFFFFFFFF5F5F5F0303031818180303031C1C1C6C6C6CEEEEEEFFFFFFFFFFFF -FFFFFF787878010101F6F6F6FFFFFFFFFFFFFFFFFFFFFFFF1515155B5B5BFFFFFFFFFFFF181818 -575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFFB8B8B8010101B7B7B7FFFFFF -FFFFFFFFFFFFFFFFFF5454541A1A1AFFFFFFFFFFFF585858171717FFFFFFFFFFFFFFFFFFFFFFFF -F4F4F40101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF6B6BFF0000FF9898FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF6666660101010101010101010101010D0D0DF7F7F7FFFFFF3F3F3F010101 -4C4C4CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFF8F8F8F909090BCBCBC -BCBCBC7C7C7C0B0B0B292929F4F4F4FFFFFFFFFFFF656565080808FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF262626484848FFFFFFFFFFFF060606696969FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101 -A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF666666070707FFFFFFFFFFFF -454545292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707686868FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FEFEFF6F6FFF0000FF9494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0E0151515010101010101 -020202909090FFFFFFE8E8E8020202010101868686FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFADADAD010101909090FFFFFFFFFFFF -656565080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF060606696969 -FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFF -FFFFFFFFFFFF666666070707FFFFFFFFFFFF454545292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -070707686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF7373FF0000FF8F8FFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFE9E9E99696968F8F8FCACACAFFFFFFFFFFFFE6E6E6A7A7A7A8A8A8E4E4E4 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFEFEFE0C0C0C595959FFFFFFFFFFFF787878010101F7F7F7FFFFFFFFFFFFFFFFFFFFFFFF -1414145B5B5BFFFFFFFFFFFF191919575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBB -FFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541B1B1BFFFFFFFFFFFF585858 -161616FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD0000003D3D3D4D4D4D4D4D4D4D4D4D4D4D4DA6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFEFEFF7777FF0000FF8B8BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -A6A6A64D4D4D4D4D4D4D4D4D4D4D4D3D3D3D000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFD0A0A0A595959FFFFFFFFFFFFA6A6A6 -010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101878787FFFFFFFFFFFF464646292929FFFFFF -FFFFFFFFFFFFFFFFFF878787010101E7E7E7FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFF -FFFFFF272727474747FFFFFFFFFFFF858585010101E8E8E8FFFFFFFFFFFFFFFFFFC7C7C7010101 -A7A7A7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF7C7CFF0000FF8787FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEA0A0A06E6E6E7E7E7EE1E1E1FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -A9A9A9010101929292FFFFFFFFFFFFEEEEEE090909696969FFFFFFFFFFFFFFFFFF878787020202 -D7D7D7FFFFFFFFFFFF979797010101C9C9C9FFFFFFFFFFFFFBFBFB2B2B2B393939FFFFFFFFFFFF -FFFFFF3737372D2D2DFDFDFDFFFFFFFFFFFFC7C7C7010101999999FFFFFFFFFFFFD5D5D5020202 -898989FFFFFFFFFFFFFFFFFF6767670B0B0BEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF8080FF0000FF8282FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF979797181818191919DFDFDFFFFFFF575757 -010101010101010101141414E1E1E1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB6B6B6ABABAB9E9E9E010101565656ABABABABABABF6F6F6 -E0E0E03C3C3C969696B8B8B8B7B7B77878780909092D2D2DF6F6F6FFFFFFFFFFFFFFFFFF858585 -0202027B7B7BC0C0C08B8B8B080808676767FFFFFFFFFFFFFFFFFFF9F9F92C2C2C1E1E1EA6A6A6 -BBBBBB515151060606C2C2C2FFFFFFFFFFFFFFFFFFC0C0C0050505525252BBBBBBA5A5A51D1D1D -2E2E2EFAFAFAFFFFFFFFFFFFFFFFFF6565650808088C8C8CC0C0C07A7A7A020202878787FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8484FF0000FF7E7EFF -FEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -595959010101212121FFFFFFDBDBDB0101010101010101010101010101016C6C6CFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF202020010101 -010101020202010101010101020202E1E1E1EFEFEF5252522121210A0A0A070707272727787878 -F2F2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707202020818181FCFCFCFFFFFF -FFFFFFFFFFFFFFFFFFE9E9E95F5F5F1313130909093A3A3ABDBDBDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFBBBBBB393939090909131313606060EBEBEBFFFFFFFFFFFFFFFFFFFFFFFFFBFBFB808080 -1F1F1F070707282828949494FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF8888FF0000FF7A7AFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2929290101015E5E5EFFFFFF9B9B9B010101050505 -4E4E4E0505050101012A2A2AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8D8DFF0000FF -7676FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF111111 -0101017B7B7BFFFFFF6F6F6F010101545454FFFFFF6363630101010C0C0CFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9191FF0000FF7171FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF040404010101868686FFFFFF4A4A4A010101828282FFFFFF -868686010101070707FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9595FF -0000FF6A6AFFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF131313010101 -454545E8E8E8131313010101A7A7A7FFFFFF7474740101011A1A1AFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9B9BFF0101FF5C5CFFFAFAFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF3F3F3F010101010101020202010101010101DDDDDDFFFFFF5A5A5A -010101353535FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -A8A8FF0404FF4E4EFFF7F7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9F9F010101010101 -010101010101393939FFFFFFFDFDFD191919010101696969FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB6B6FF0909FF4242FFF2F2FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF7F7F7F1616160F0F0F4C4C4CE3E3E3FFFFFFD0D0D0272727282828 -AFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFC2C2FF0E0EFF3636FFEDEDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDFF1414FF2C2CFFE6E6FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F8F8FBFBFBFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFD7D7FF1C1CFF2222FFDEDEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBABABA4646460C0C0C -0202028D8D8DC1C1C1787878797979F4F4F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0FF2424FF1A1AFFD5D5FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF8686860101010101010101010101018D8D8DD8D8D8010101020202A3A3A3FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFE7E7FF2E2EFF1313FFCBCBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0C0C0010101010101010101010101010101 -8D8D8DFFFFFF2C2C2C0101015B5B5BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEFF3939FF0D0DFF -C0C0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -5050500101010101015858580101010101018D8D8DFFFFFF656565010101292929FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF3F3FF4444FF0808FFB3B3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF161616010101535353FFFFFF0101010101018D8D8D -FFFFFF8383830101010C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F8FF5151FF -0404FFA5A5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF050505 -010101858585FFFFFF0101010101018D8D8DFFFFFF7E7E7E010101060606FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFF6060FF0000FF8E8EFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF131313010101656565FFFFFF0101010101018D8D8DFFFFFF -494949010101171717FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -7878FF0000FF7474FFFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF414141010101 -0B0B0BB1B1B10101010101017E7E7E898989020202010101464646FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9191FF0101FF5C5CFFF9F9FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF9A9A9A010101010101010101010101010101010101010101010101 -0101019F9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFA8A8FF0606FF4646FFF3F3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFB393939010101 -0101010101010101010101010101010101013A3A3AFCFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBDBDFF0D0DFF3434FFE9E9FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF1F1F1575757010101010101010101010101010101565656F1F1F1 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCFCFFF1818FF2323FFDCDCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0E0 -A6A6A6949494A7A7A7E1E1E1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDEDEFF2525FF1616FFCDCDFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF606060616161888888FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFEAEAFF3636FF0B0BFFB3B3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF050505010101797979FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4F4FF5050FF0202FF -9292FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF2525250101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFCFCFF7272FF0000FF6F6FFFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF838383010101303030FBFBFBFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9595FF -0202FF4E4EFFF4F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DBDBDB3B3B3B0101013F3F3FB1B1B1D7D7D7E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB5B5FF0C0CFF3232FFE6E6FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101010101010101020202020202 -020202020202010101020202FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CFCFFF1B1BFF1D1DFFD2D2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101 -010101010101010101010101010101010101010101010101010101020202FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3E3FF2F2FFF0D0DFFB8B8FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101010101010101010101010101010101 -010101010101010101FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF2F2FF4A4AFF0303FF9999FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBFC0C0C0 -BFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFC0C0C0FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFF6B6BFF0000FF7676FFFDFDFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFF9F9F9BEBEBEA7A7A7BFBFBFF9F9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFEFEFF8E8EFF0101FF5454FFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBCBCBC191919010101010101010101 -191919BABABAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFFF0909FF3737FF -E9E9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DEDEDE0B0B0B0101010101010101010101010101010A0A0ADDDDDDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCBCBFF1717FF2121FFD4D4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6D6D6D010101010101010101010101010101010101 -0101016C6C6CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0FF2C2CFF -0C0CFFB1B1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2A2A2A -0101010101015C5C5C9494945B5B5B0101010101012A2A2AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3FF5151FF0000FF8383FFFEFEFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0B0B0B0101014D4D4DFFFFFFFFFFFFFFFFFF4D4D4D010101 -0B0B0BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF -8080FF0000FF5555FFF4F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101 -868686FFFFFFFFFFFFFFFFFF858585010101020202FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAEAEFF0B0BFF2F2FFFDFDFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF0101010101018D8D8DFFFFFFFFFFFFFFFFFF8C8C8C010101020202 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFD2D2FF2121FF1414FFC0C0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101595959 -A1A1A1A1A1A1A0A0A0585858010101010101A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECECFF4242FF0404FF9696FFFEFEFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF010101010101010101010101010101010101010101010101010101010101 -010101010101010101020202FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFAFAFF6E6EFF0000FF6666FFF9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101010101 -010101010101010101010101010101010101010101010101010101020202FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9D9DFF0505FF3C3CFF -E9E9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF010101010101010101010101010101010101010101010101010101010101010101 -010101010101010101FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFC5C5FF1717FF1D1DFFCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBF -BFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFC0C0C0FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE3E3FF3434FF -0909FFA7A7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F6FF5B5BFF0000FF7878FFFCFCFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -8A8AFF0202FF4545FFEBEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBCBCFF1414FF1E1EFFCACAFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFE2E2FF3737FF0606FF9898FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F8FF6A6AFF0000FF5F5FFFF6F6FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFA3A3FF0909FF3030FFDDDDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD1D1FF2424FF1010FF -B3B3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFEFEFFF4F4FFF0000FF7C7CFFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF8787FF -0202FF4141FFE6E6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0C0FF1919FF1616FFBBBBFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -E9E9FF4646FF0101FF7C7CFFFBFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF8585FF0202FF3F3FFFE5E5FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFC1C1FF1A1AFF1515FFB9B9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEAEAFF4747FF0101FF7B7BFF -FBFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFDFDFF8787FF0303FF3D3DFFE4E4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC3C3FF1B1BFF -1414FFB2B2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBFF4D4DFF0000FF6B6BFFF6F6FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -9595FF0808FF2B2BFFD2D2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD3D3FF2C2CFF0707FF9393FFFEFEFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF6F6FF6D6DFF0000FF4B4BFFEAEAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB4B4FF1414FF1818FFB9B9FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFE6E6FF4646FF0000FF7272FFF8F8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF8D8DFF0505FF -3030FFD6D6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCECEFF2828FF0707FF8F8FFFFDFDFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F6FF -6F6FFF0000FF4040FFE0E0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBDBDFF1D1DFF0D0DFF9F9FFFFEFEFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF3F3F3757575454545141414010101808080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -4343430C0C0C101010525252DEDEDEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707 -212121818181FBFBFBFFFFFFFFFFFFFFFFFFFFFFFFE9E9E95F5F5F1414140A0A0A393939BDBDBD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBBB3838380A0A0A141414606060EAEAEAFFFFFFFFFFFF -FFFFFFFFFFFFFAFAFA8080801F1F1F070707282828939393FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF0F0FF5F5FFF0000FF5050FFE9E9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF101010404040656565010101818181 -FFFFFFFFFFFFFFFFFFFFFFFFD7D7D70D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1B1B1BEBEBEBFFFFFF -FFFFFFFFFFFF8484840202027B7B7BC1C1C18B8B8B070707666666FFFFFFFFFFFFFFFFFFF8F8F8 -2C2C2C1E1E1EA6A6A6BCBCBC505050050505C1C1C1FFFFFFFFFFFFFFFFFFC0C0C0040404515151 -BCBCBCA5A5A51C1C1C2D2D2DF9F9F9FFFFFFFFFFFFFFFFFF6464640808088C8C8CC1C1C1797979 -020202868686FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAEAEFF1414FF1515FFB0B0FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFECECEC010101818181FFFFFFFFFFFFFFFFFFFFFFFF555555161616F3F3F3 -FFFFFFFFFFFFE1E1E1060606777777FFFFFFFFFFFFECECEC080808686868FFFFFFFFFFFFFFFFFF -868686020202D6D6D6FFFFFFFFFFFF959595010101C8C8C8FFFFFFFFFFFFFCFCFC2B2B2B373737 -FFFFFFFFFFFFFFFFFF3535352C2C2CFDFDFDFFFFFFFFFFFFC6C6C6010101979797FFFFFFFFFFFF -D4D4D4020202888888FFFFFFFFFFFFFFFFFF6666660A0A0AEEEEEEFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFE8E8FF4E4EFF0000FF6060FFF0F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFF -FFFFFFFFFFFFFBFBFB090909696969FFFFFFFFFFFFFFFFFFFFFFFF474747262626FFFFFFFFFFFF -A4A4A4010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101868686FFFFFFFFFFFF444444292929 -FFFFFFFFFFFFFFFFFFFFFFFF878787010101E6E6E6FFFFFFE4E4E4010101898989FFFFFFFFFFFF -FFFFFFFFFFFF272727464646FFFFFFFFFFFF848484010101E9E9E9FFFFFFFFFFFFFFFFFFC7C7C7 -010101A6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF9E9EFF0D0DFF -1E1EFFBEBEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFD8D8D8010101979797FFFFFFFFFFFF -FFFFFFFFFFFF747474020202F9F9F9FFFFFF787878010101F6F6F6FFFFFFFFFFFFFFFFFFFFFFFF -1515155B5B5BFFFFFFFFFFFF181818575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBB -FFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541A1A1AFFFFFFFFFFFF585858 -171717FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFFF3F3FFF0000FF6C6CFFF3F3FFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFF -FFFFFFC5C5C5010101A9A9A9FFFFFFFFFFFFFFFFFFFFFFFF868686010101E8E8E8FFFFFF656565 -080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF060606696969FFFFFF -FFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFF -FFFFFF666666070707FFFFFFFFFFFF454545292929FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707 -686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF -9090FF0909FF2020FFBCBCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFC5C5C5010101A9A9A9FFFFFFFFFFFFFFFFFF -FFFFFF868686010101E8E8E8FFFFFF656565080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626 -484848FFFFFFFFFFFF060606696969FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFF -A5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF666666070707FFFFFFFFFFFF454545292929 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF070707686868FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDCDCFF4040FF0000FF6666FFF0F0FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFF -D8D8D8010101979797FFFFFFFFFFFFFFFFFFFFFFFF747474020202F9F9F9FFFFFF787878010101 -F7F7F7FFFFFFFFFFFFFFFFFFFFFFFF1414145B5B5BFFFFFFFFFFFF191919575757FFFFFFFFFFFF -FFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF -5454541B1B1BFFFFFFFFFFFF585858161616FFFFFFFFFFFFFFFFFFFFFFFFF4F4F40101017B7B7B -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD0000003D3D3D4D4D4D4D4D4D4D4D4D4D4D4DA6A6A6 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFDFDFF9797FF0C0CFF1C1CFFB6B6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A64D4D4D4D4D4D4D4D4D4D4D4D3D3D3D000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -EBEBEB010101818181FFFFFFFFFFFFFFFFFFFBFBFB0A0A0A696969FFFFFFFFFFFFFFFFFFFFFFFF -474747272727FFFFFFFFFFFFA6A6A6010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101878787 -FFFFFFFFFFFF464646292929FFFFFFFFFFFFFFFFFFFFFFFF878787010101E7E7E7FFFFFFE4E4E4 -010101898989FFFFFFFFFFFFFFFFFFFFFFFF272727474747FFFFFFFFFFFF858585010101E8E8E8 -FFFFFFFFFFFFFFFFFFC7C7C7010101A7A7A7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0FF4646FF0000FF5F5FFF -EDEDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFF -575757171717F3F3F3FFFFFFFFFFFFE1E1E1060606797979FFFFFFFFFFFFEEEEEE090909696969 -FFFFFFFFFFFFFFFFFF878787020202D7D7D7FFFFFFFFFFFF979797010101C9C9C9FFFFFFFFFFFF -FBFBFB2B2B2B393939FFFFFFFFFFFFFFFFFF3737372D2D2DFDFDFDFFFFFFFFFFFFC7C7C7010101 -999999FFFFFFFFFFFFD5D5D5020202898989FFFFFFFFFFFFFFFFFF6767670B0B0BEFEFEFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFEFEFF9E9EFF0F0FFF1818FFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB6B6B6ABABAB9E9E9E -010101565656ABABABABABABF6F6F6FFFFFFD8D8D80D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1C1C1C -ECECECFFFFFFFFFFFFFFFFFF8585850202027B7B7BC0C0C08B8B8B080808676767FFFFFFFFFFFF -FFFFFFF9F9F92C2C2C1E1E1EA6A6A6BBBBBB515151060606C2C2C2FFFFFFFFFFFFFFFFFFC0C0C0 -050505525252BBBBBBA5A5A51D1D1D2E2E2EFAFAFAFFFFFFFFFFFFFFFFFF6565650808088C8C8C -C0C0C07A7A7A020202878787FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE4E4FF4C4CFF -0000FF5858FFEAEAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF202020010101010101020202010101010101020202E1E1E1FFFFFFFFFFFF -CDCDCD4444440B0B0B0F0F0F525252DEDEDEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727 -070707202020818181FCFCFCFFFFFFFFFFFFFFFFFFFFFFFFE9E9E95F5F5F1313130909093A3A3A -BDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBBB393939090909131313606060EBEBEBFFFFFF -FFFFFFFFFFFFFFFFFFFBFBFB8080801F1F1F070707282828949494FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFA5A5FF1212FF1414FFA7A7FFFEFEFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -E8E8FF5454FF0000FF4949FFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB2B2FF1D1DFF0A0AFF8B8BFFFBFBFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFF2F2FF6F6FFF0202FF3030FFCACAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCBCBFF3030FF0202FF -6E6EFFF2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFBFBFF8C8CFF0A0AFF1C1CFFB1B1FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFFF -4949FF0000FF5252FFE4E4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFA8A8FF1717FF0C0CFF8C8CFFFAFAFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEFEFFF6B6BFF0202FF2C2CFFC1C1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDFF3737FF0000FF5D5DFF -E8E8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFDFDFF9B9BFF1313FF0E0EFF9292FFFBFBFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECECFF6565FF -0101FF3030FFC7C7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC8C8FF3232FF0000FF6363FFEBEBFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FCFCFF9595FF1010FF1010FF9191FFFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9E9FF6565FF0101FF2A2AFFBABAFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCECEFF3D3DFF0000FF4E4EFFDCDCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFA8A8FF1D1DFF -0606FF7878FFF2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF7F7FFF0808FF1919FFA1A1FFFDFDFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -E1E1FF5656FF0000FF3636FFC8C8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC1C1FF3030FF0000FF5C5CFFE1E1FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFCFCFF9A9AFF1717FF0707FF7878FFF0F0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2F2FF7D7DFF0909FF -1414FF9494FFFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE4E4FF6161FF0101FF2626FFB0B0FFFEFEFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -D0D0FF4444FF0000FF3E3EFFCACAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFB7B7FF2B2BFF0000FF5A5AFFDFDFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFBFBFF9B9BFF1818FF0707FF7373FFECECFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3FF8080FF0C0CFF -0E0EFF8282FFF3F3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEAEAFF7171FF0606FF1616FF9292FFF8F8FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -E0E0FF6161FF0202FF2020FFA2A2FFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD5D5FF5151FF0000FF2C2CFFB1B1FF -FEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFC8C8FF4141FF0000FF3939FFC1C1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFBABAFF3232FF -0000FF4747FFC8C8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFFAAAAFF2929FF0000FF4B4BFFCCCCFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FCFCFFA6A6FF2626FF0000FF4F4FFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFFA2A2FF2323FF0000FF5353FF -D2D2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFBFBFF9F9FFF2121FF0000FF5656FFD5D5FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFF9B9BFF -1E1EFF0101FF5959FFD7D7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FF9898FF1C1CFF0101FF5757FFD1D1FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF8F8FF9999FF2020FF0000FF4E4EFFCACAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFFA1A1FF2727FF0000FF -4747FFC2C2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFCFCFFA9A9FF2D2DFF0000FF3E3EFFBBBBFFFEFEFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF -B1B1FF3434FF0000FF3737FFB2B2FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFB9B9FF3C3CFF0000FF2F2FFFA7A7FF -FBFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFC1C1FF4646FF0000FF2121FF9494FFF5F5FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFFF5959FF -0303FF1313FF8080FFEBEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDEDEFF6C6CFF0909FF0A0AFF6D6DFFDFDFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEBEBFF8080FF1313FF0303FF5959FFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FF9393FF2020FF0000FF -4646FFBABAFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFBFBFFA7A7FF3030FF0000FF2D2DFF9D9DFFF7F7FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -BEBEFF4D4DFF0101FF1616FF7F7FFFE8E8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDADAFF6B6BFF0A0AFF0606FF6262FF -D2D2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFEDEDFF8888FF1B1BFF0000FF4444FFB5B5FFFDFDFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFAFFA6A6FF -3535FF0000FF2828FF9696FFF3F3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFC4C4FF5353FF0202FF0E0EFF6E6EFFD8D8FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFE1E1FF7A7AFF1414FF0000FF4646FFB2B2FFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F7FFA2A2FF3535FF -0000FF2121FF8B8BFFEDEDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC9C9FF5E5EFF0606FF0808FF6262FFCECEFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFE9E9FF8585FF1C1CFF0000FF3A3AFFA2A2FFF6F6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFFADADFF4242FF0000FF -1111FF7070FFD7D7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDADAFF7474FF1414FF0000FF3E3EFFA5A5FFF8F8FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F8F8FFA6A6FF3F3FFF0000FF1414FF7474FFDADAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD7D7FF7171FF1212FF0000FF -4242FFA9A9FFF9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF7F7FFA3A3FF3C3CFF0000FF1515FF7373FFD5D5FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -D4D4FF6F6FFF1313FF0000FF3838FF9A9AFFF1F1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F8FFACACFF4949FF0202FF0909FF -5E5EFFC0C0FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFE3E3FF8585FF2323FF0000FF2323FF8585FFE4E4FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF -C1C1FF5E5EFF0909FF0202FF4949FFAAAAFFF7F7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1FF9A9AFF3737FF0000FF1010FF -6666FFC3C3FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFD8D8FF7B7BFF1E1EFF0000FF2222FF7F7FFFDCDCFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFF -C0C0FF6262FF0D0DFF0000FF3A3AFF9797FFEDEDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5FFA7A7FF4949FF0303FF0606FF -5252FFB0B0FFF9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF010101010101010101 -010101010101010101C9C9C9FFFFFFFFFFFFFFFFFFCDCDCD4343430C0C0C101010525252DEDEDE -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707212121818181FBFBFBFFFFFFFFFFFF -FFFFFFFFFFFFE9E9E95F5F5F1414140A0A0A393939BDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -BBBBBB3838380A0A0A141414606060EAEAEAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFE7E7FF8E8EFF3131FF0000FF1313FF6767FFC0C0FFFDFDFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFBFBFBF010101888888C9C9C9C9C9C9C9C9C9C9C9C9F4F4F4FFFFFFFFFFFFD7D7D7 -0D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1B1B1BEBEBEBFFFFFFFFFFFFFFFFFF8484840202027B7B7B -C1C1C18B8B8B070707666666FFFFFFFFFFFFFFFFFFF8F8F82C2C2C1E1E1EA6A6A6BCBCBC505050 -050505C1C1C1FFFFFFFFFFFFFFFFFFC0C0C0040404515151BCBCBCA5A5A51C1C1C2D2D2DF9F9F9 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -D3D3FF7777FF1F1FFF0000FF1B1BFF7272FFCBCBFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF010101ADADADFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF555555161616F3F3F3FFFFFFFFFFFFE1E1E1060606777777 -FFFFFFFFFFFFECECEC080808686868FFFFFFFFFFFFFFFFFF868686020202D6D6D6FFFFFFFFFFFF -959595010101C8C8C8FFFFFFFFFFFFFCFCFC2B2B2B373737FFFFFFFFFFFFFFFFFF3535352C2C2C -FDFDFDFFFFFFFFFFFFC6C6C6010101979797FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFFC5C5FF6C6CFF1616FF0000FF -2424FF7D7DFFD6D6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFBFBFBF010101ACACACFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFB090909696969 -FFFFFFFFFFFFFFFFFFFFFFFF474747262626FFFFFFFFFFFFA4A4A4010101C9C9C9FFFFFFFFFFFF -FFFFFFE7E7E7010101868686FFFFFFFFFFFF444444292929FFFFFFFFFFFFFFFFFFFFFFFF878787 -010101E6E6E6FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFFFFFFFF272727464646FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFBFBFFBABAFF6161FF0F0FFF0000FF2F2FFF8888FFE0E0FFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF0101011717170404040E0E0E474747 -C4C4C4FFFFFFFFFFFFD8D8D8010101979797FFFFFFFFFFFFFFFFFFFFFFFF747474020202F9F9F9 -FFFFFF787878010101F6F6F6FFFFFFFFFFFFFFFFFFFFFFFF1515155B5B5BFFFFFFFFFFFF181818 -575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBBFFFFFFB8B8B8010101B7B7B7FFFFFF -FFFFFFFFFFFFFFFFFF5454541A1A1AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F8F8FFB0B0FF5757FF0909FF0000FF3939FF9292FFE5E5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CFCFCF717171B1B1B1C4C4C49F9F9F2A2A2A040404B9B9B9FFFFFFC5C5C5010101A9A9A9FFFFFF -FFFFFFFFFFFFFFFFFF868686010101E8E8E8FFFFFF656565080808FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF262626484848FFFFFFFFFFFF060606696969FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101 -A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFF666666070707FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3FFA5A5FF4C4CFF0505FF -0101FF3C3CFF9090FFE3E3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0F0F01D1D1D -303030FFFFFFC5C5C5010101A9A9A9FFFFFFFFFFFFFFFFFFFFFFFF868686010101E8E8E8FFFFFF -656565080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF262626484848FFFFFFFFFFFF060606696969 -FFFFFFFFFFFFFFFFFFFFFFFFC6C6C6010101A8A8A8FFFFFFA5A5A5010101C9C9C9FFFFFFFFFFFF -FFFFFFFFFFFF666666080808FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEFFA1A1FF4C4CFF0606FF0000FF3939FF8D8DFFE1E1FF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF686868010101F8F8F8D8D8D8010101979797FFFFFFFFFFFF -FFFFFFFFFFFF747474020202F9F9F9FFFFFF787878010101F7F7F7FFFFFFFFFFFFFFFFFFFFFFFF -1414145B5B5BFFFFFFFFFFFF191919575757FFFFFFFFFFFFFFFFFFFFFFFFB4B4B4010101BBBBBB -FFFFFFB8B8B8010101B7B7B7FFFFFFFFFFFFFFFFFFFFFFFF5454541B1B1BFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD0000003D3D3D4D4D4D4D4D4D4D4D4D4D4D4DA6A6A6FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF0F0FFA3A3FF4F4FFF0707FF0000FF3636FF8B8BFFDEDEFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFA6A6A64D4D4D4D4D4D4D4D4D4D4D4D3D3D3D000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF686868010101 -F9F9F9FBFBFB0A0A0A696969FFFFFFFFFFFFFFFFFFFFFFFF474747272727FFFFFFFFFFFFA6A6A6 -010101C9C9C9FFFFFFFFFFFFFFFFFFE7E7E7010101878787FFFFFFFFFFFF464646292929FFFFFF -FFFFFFFFFFFFFFFFFF878787010101E7E7E7FFFFFFE4E4E4010101898989FFFFFFFFFFFFFFFFFF -FFFFFF272727474747FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1FFA6A6FF5151FF -0808FF0000FF3434FF8888FFDADAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFEEEEEE1B1B1B323232FFFFFFFFFFFF575757171717F3F3F3FFFFFFFFFFFF -E1E1E1060606797979FFFFFFFFFFFFEEEEEE090909696969FFFFFFFFFFFFFFFFFF878787020202 -D7D7D7FFFFFFFFFFFF979797010101C9C9C9FFFFFFFFFFFFFBFBFB2B2B2B393939FFFFFFFFFFFF -FFFFFF3737372D2D2DFDFDFDFFFFFFFFFFFFC7C7C7010101999999FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3FFA8A8FF5454FF0909FF0000FF2B2BFF7B7BFF -CBCBFFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF5A5A5A7B7B7BADADADBFBFBF9A9A9A272727060606BDBDBDFFFFFF -FFFFFFD8D8D80D0D0D3F3F3FB7B7B7AEAEAE2C2C2C1C1C1CECECECFFFFFFFFFFFFFFFFFF858585 -0202027B7B7BC0C0C08B8B8B080808676767FFFFFFFFFFFFFFFFFFF9F9F92C2C2C1E1E1EA6A6A6 -BBBBBB515151060606C2C2C2FFFFFFFFFFFFFFFFFFC0C0C0050505525252BBBBBBA5A5A51D1D1D -2E2E2EFAFAFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFF5F5FFAFAFFF5F5FFF1212FF0000FF1C1CFF6B6BFFBBBBFFFAFAFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF888888313131101010 -040404161616535353CCCCCCFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD4444440B0B0B0F0F0F525252 -DEDEDEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF929292272727070707202020818181FCFCFCFFFFFF -FFFFFFFFFFFFFFFFFFE9E9E95F5F5F1313130909093A3A3ABDBDBDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFBBBBBB393939090909131313606060EBEBEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFFBFBFFF -6E6EFF1E1EFF0000FF1010FF5C5CFFACACFFF3F3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFCECEFF7E7EFF2D2DFF0000FF0707FF -4C4CFF9C9CFFE9E9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDCDCFF8D8DFF3D3DFF0101FF0101FF3737FF8383FFCFCFFFFEFEFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -E9E9FFA0A0FF5454FF0D0DFF0000FF1B1BFF6767FFB3B3FFF5F5FFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9FFBCBCFF7070FF2424FF -0000FF0808FF4B4BFF9797FFE2E2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD9D9FF8D8DFF4141FF0303FF0000FF2F2FFF7B7BFF -C7C7FFFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFEFEFFFA9A9FF5D5DFF1313FF0000FF1212FF5858FF9F9FFFE6E6FFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFFC5C5FF -7D7DFF3636FF0101FF0000FF2E2EFF7676FFBEBEFFF9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBFFA6A6FF5E5EFF1717FF0000FF -0B0BFF4D4DFF9595FFDCDCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFDFDFFCFCFFF8787FF3F3FFF0404FF0000FF2424FF6B6BFFB3B3FF -F4F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF1F1FFB0B0FF6868FF2020FF0000FF0505FF3E3EFF8282FFC5C5FFFAFAFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFD8D8FF9292FF -4F4FFF0E0EFF0000FF0D0DFF4C4CFF8F8FFFD3D3FFFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFFC8C8FF8484FF4141FF0606FF0000FF -1717FF5A5AFF9D9DFFE0E0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF5F5FFBABAFF7777FF3333FF0101FF0000FF2424FF6767FFABABFF -ECECFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEDEDFFADADFF6969FF2626FF0000FF0101FF3030FF6F6FFFAFAFFFEDEDFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE2E2FF9F9FFF -5F5FFF1F1FFF0000FF0000FF2E2EFF6D6DFFADADFFEBEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFFFA0A0FF6161FF2121FF0000FF -0000FF2C2CFF6B6BFFABABFFE9E9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFCFDFCF6FAF6F0F7F0CFD9EA919FE45666DE1E32D80016D20019CC203DC64F6EC0 -7395BA749AB47099AE6C98A86C98A86C98A86C98A86C98A86C98A86C98A86C98A86C98A86C98A8 -6C98A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A8 -6D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A8 -6D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A86D99A8 -6D99A86D99A86D99A86E99A96D98A9B1C6D6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFDFCF5FAF5EDF6EDE5F2E5 -DEEEDED6EAD6CEE6CEC6E2C6BFDFBFB7DBB7AFD7AFA7D3A7A0CFA098CB9890C79088C38881C081 -7BBD7B75BA756FB76F69B46963B1635DAE5D57AB5751A8514BA54B45A2453F9F3F399C39339933 -2D962D2793272190211B8D1B158A150F870F088408028102008000008000008000008000008000 -008000008000008000008000008000008000008000008000008000008000008000008000008000 -008000008000008000008000008000008000008000008000008000008000008000008000008000 -008000008000008000008000008000008000008000008000008000008000008000008000008000 -008000008000008000008000008000008000008000008000008000008000008000008000008000 -008000008000008000008000008000008000008000008000008000008000008000478387FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEF6FAF6EDF6EDE5F2E5DEEEDE -D6EAD6CEE6CEC6E2C6BFDFBFB7DBB7AFD7AFA7D3A7A0CFA098CB9890C79088C38881C08179BC79 -71B87169B46962B0625AAD5A52A9524AA54A42A1423B9D3B3399332B952B2391231C8E1C148A14 -0C860C048204008000008000008000008000008000008000008000008000008000008000008000 -0080000080000281020A850A128912198C192090202693262C962C329932389C383E9F3E44A244 -4AA54A50A85056AB565CAE5C62B06268B3686EB66E74B9747ABC7A80BF8086C2868CC58C92C892 -98CB989ECE9EA4D1A4AAD4AAB0D7B0B6DAB6BCDDBCC2E0C2C8E3C8CEE6CED4E9D4DAECDAD8E7E0 -DBE7E6E0EAECE5ECF1E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E7EEF2E7EEF2E7EEF2E7EEF2 -E6EDF2E6EDF2E7EEF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2 -E6EDF2E6EDF2E6EDF2E6EDF2E7EEF2E6EDF2E7EEF2E7EEF2E6EDF2E6EDF2E7EEF2E6EDF2E6EDF2 -E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E6EDF2E7EEF2E6EDF2 -E6EDF2E7EEF2E7EEF2E8EFF2F4F7F8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFE -F8FBF8EFF7EFE5F2E5DCEDDCD3E9D3CAE4CAC0DFC0B7DBB7AED6AEA5D2A59CCD9C92C89289C489 -80BF8077BB776EB66E64B1645BAD5B52A95249A4493F9F3F369B362D962D2492241B8D1B118811 -088408008000008000008000008000008000008000008000008000008000008000008000008000 -0080000281020A850A1289121A8D1A229122299429319831399C3941A04148A44850A85058AC58 -60B06067B3676FB76F77BB777FBF7F87C3878EC68E96CA969ECE9EA6D2A6ADD6ADB5DAB5BDDEBD -C5E2C5CCE5CCD4E9D4DCEDDCE4F1E4EBF5EBF3F9F3FBFDFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEF7FBF7ECF5ECE1F0E1D6EAD6CCE5CCC1E0C1 -B6DAB6ABD5ABA0CFA095CA958AC48A7FBF7F74B9746AB46A5FAF5F54AA544BA54B42A142389C38 -2F972F2693261D8E1D1389130A850A018001008000008000008000008000008000008000008000 -008000008000008000008000078307108810198C192391232C962C359A353E9F3E48A44851A851 -5AAD5A63B1636DB66D76BA767FBF7F88C38892C8929BCD9BA4D1A4ACD5ACB5DAB5BDDEBDC5E2C5 -CCE5CCD4E9D4DCEDDCE4F1E4EBF5EBF3F9F3FBFDFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFCFDFCF2F8F2E7F3E7DCEDDCD1E8D1C6E2C6BBDDBBB0D7B0A5D2A59BCD9B90C790 -85C2857ABC7A6FB76F64B16459AC594EA74E43A143399C392E972E239123188C180D860D028102 -0080000080000080000080000080000080000080000080000080000381030E870E198C19249224 -2F972F3A9D3A44A2444EA74E57AB5760B0606AB46A73B9737CBD7C85C2858FC78F98CB98A1D0A1 -AAD4AAB4D9B4BDDEBDC6E2C6CFE7CFD9ECD9E2F0E2EBF5EBF4F9F4FDFEFDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FEFEFEF5FAF5E8F3E8DCEDDCCFE7CFC2E0C2B5DAB5A9D4A99CCD9C8FC78F82C08276BA7669B469 -5CAE5C4FA74F43A143369B362994291D8E1D128912088408008000008000008000008000008000 -008000008000008000008000008000098409148A141F8F1F2A952A359A3540A0404BA54B56AB56 -60B0606BB56B76BA7681C0818CC58C97CB97A2D0A2ADD6ADB7DBB7C2E0C2CDE6CDD8EBD8E3F1E3 -EEF6EEF9FCF9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFE -F5FAF5E7F3E7DBEDDBCEE6CEC1E0C1B4D9B4A8D3A89BCD9B8EC68E81C08175BA7568B3685BAD5B -4EA74E42A142359A352894281B8D1B0F870F028102008000008000008000008000008000008000 -0080000080000A850A178B172492243098303D9E3D4AA54A57AB5763B16370B7707CBD7C87C387 -92C8929DCE9DA8D3A8B2D8B2BDDEBDC8E3C8D3E9D3DEEEDEE9F4E9F4F9F4FDFEFDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFBFDFBEEF6EEDFEFDFD0E7D0C2E0C2B3D9B3A4D1A496CA9687C38778BB786AB46A5BAD5B -4CA64C3E9F3E2F972F209020128912048204008000008000008000008000008000008000008000 -0080000B850B188C182592253198313E9F3E4BA54B58AC5864B16471B8717EBE7E8BC58B97CB97 -A4D1A4B1D8B1BEDEBECAE4CAD7EBD7E4F1E4F1F8F1FCFDFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFBFDFBECF5ECDBEDDBCBE5CBBBDDBBACD5AC9ECE9E8FC78F80BF8072B872 -63B16354AA5446A346379B372894281A8D1A0B850B008000008000008000008000008000008000 -0080000381031289122190212F972F3E9F3E4DA64D5BAD5B6AB46A79BC7987C38796CA96A4D1A4 -B2D8B2BFDFBFCBE5CBD8EBD8E5F2E5F2F8F2FDFEFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEF4F9F4E3F1E3D3E9D3C2E0C2B2D8B2A1D0A1 -91C89180BF8070B7705FAF5F4FA74F3E9F3E2E972E1D8E1D0D860D008000008000008000008000 -0080000080000080000A850A198C19289428369B3645A24554AA5462B06271B87180BF808EC68E -9DCE9DACD5ACBADCBAC9E4C9D8EBD8E6F2E6F5FAF5FEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FBF7E5F2E5 -D2E8D2BFDFBFADD6AD9ACC9A88C38878BB7867B36757AB5746A346369B36259225158A15058205 -008000008000008000008000008000008000088408198C192994293A9D3A4AA54A5BAD5B6BB56B -7CBD7C8CC58C9DCE9DADD6ADBEDEBECFE7CFDEEEDEEDF6EDFBFDFBFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFAFCFAE9F4E9D6EAD6C4E1C4B1D8B19ECE9E8CC58C79BC7967B36754AA54 -41A0412F972F1C8E1C0A850A008000008000008000008000008000018001108810219021329932 -42A14253A95363B16374B97484C18495CA95A5D2A5B6DAB6C6E2C6D7EBD7E7F3E7F7FBF7FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEF2F8F2DEEEDEC9E4C9B5DAB5 -A3D1A390C7907EBE7E6BB56B58AC5846A3463399332190210E870E008000008000008000008000 -0080000080000D860D20902032993245A24557AB576AB46A7DBE7D8FC78FA2D0A2B4D9B4C7E3C7 -D9ECD9ECF5ECFCFDFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFDFEFDEDF6EDD8EBD8C3E1C3AED6AE99CC9984C1846FB76F5BAD5B46A346319831 -1C8E1C0783070080000080000080000080000080000984091C8E1C2E972E41A04154AA5466B266 -79BC798BC58B9ECE9EB0D7B0C3E1C3D6EAD6E8F3E8FAFCFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFDFBE7F3E7D2E8D2BDDEBD -A8D3A893C9937FBF7F6AB46A55AA5540A0402B952B168B16038103008000008000008000008000 -018001148A142994293E9F3E53A95368B3687DBE7D92C892A7D3A7BBDDBBD0E7D0E4F1E4F6FAF6 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFBFDFBE7F3E7CFE7CFB8DBB8A1D0A189C48972B8725BAD5B43A143 -2C962C158A150180010080000080000080000080000582051A8D1A2F972F44A24459AC596EB66E -82C08297CB97ACD5ACC1E0C1D6EAD6EBF5EBFCFDFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFDFC -E7F3E7D0E7D0B8DBB8A1D0A18AC48A72B8725BAD5B44A2442C962C158A15018001008000008000 -0080000080000F870F2693263E9F3E55AA556CB56C84C1849BCD9BB1D8B1C7E3C7DCEDDCF0F7F0 -FEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F9F3DAECDAC0DFC0A6D2A68CC58C -73B9735BAD5B44A2442D962D168B160180010080000080000080000080000F870F2693263E9F3E -55AA556CB56C84C1849BCD9BB2D8B2C9E4C9E1F0E1F7FBF7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFF6FAF6DDEEDDC3E1C3A9D4A98FC78F75BA755BAD5B41A041279327 -0D860D0080000080000080000080000E870E2693263E9F3E55AA556CB56C84C1849BCD9BB2D8B2 -C9E4C9E1F0E1F7FBF7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F8FBF8E0EFE0C6E2C6ACD5AC92C89278BB785EAF5E45A2452B952B118811008000008000008000 -0080000984092492243E9F3E58AC5872B8728CC58CA6D2A6C0DFC0DAECDAF3F9F3FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FBF7DCEDDCBFDFBF -A3D1A386C2866AB46A4DA64D319831158A150080000080000080000080000683062090203A9D3A -54AA546EB66E88C388A2D0A2BCDDBCD6EAD6F0F7F0FEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FBF7DCEDDCBFDFBFA3D1A386C2866AB46A -4EA74E319831158A150080000080000080000080001188112E972E4AA54A67B36782C0829ECE9E -B8DBB8D2E8D2ECF5ECFEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFEFEFEE9F4E9CAE4CAABD5AB8CC58C6DB66D4EA74E319831158A15 -0080000080000080000080001188112E972E4AA54A67B36783C1839FCF9FBCDDBCD8EBD8F4F9F4 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFBFDFBE0EFE0C1E0C1A2D0A283C18364B16446A346279327098409008000008000 -0080000B850B2A952A49A44967B36783C1839FCF9FBCDDBCD8EBD8F4F9F4FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F7FBF7D8EBD8B9DCB99ACC9A7BBD7B5CAE5C3D9E3D1E8F1E038103008000008000008000138913 -32993251A85170B7708FC78FAED6AECDE6CDECF5ECFEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFEFDE5F2E5 -C3E1C3A1D0A180BF805EAF5E3D9E3D1B8D1B0080000080000080000281021C8E1C3B9D3B5AAD5A -79BC7998CB98B7DBB7D6EAD6F4F9F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F8F1D0E7D0AED6AE -8DC68D6BB56B4AA54A289428078307008000008000008000178B17399C395AAD5A7CBD7C9DCE9D -BEDEBEDEEEDEFAFCFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEE6F2E6C2E0C29ECE9E79BC79 -57AB57359A351389130080000080000080000A850A2C962C4DA64D6FB76F91C891B2D8B2D4E9D4 -F4F9F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEE6F2E6C1E0C19DCE9D78BB7854AA54 -2F972F0B850B0080000080000180011E8F1E40A04062B06284C184A6D2A6C7E3C7E9F4E9FEFEFE -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEE5F2E5C0DFC09CCD9C77BB7753A9532F972F -0B850B0080000080000180011E8F1E43A14367B3678CC58CB0D7B0D5EAD5F6FAF6FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFF7EFC8E3C8A0CFA078BB7852A9522E972E0A850A -0080000080000180011F8F1F43A14368B3688CC58CB1D8B1D5EAD5F7FBF7FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFDFCDCEDDCB5DAB58DC68D66B2663E9F3E178B17008000 -0080000080001D8E1D43A14368B3688DC68DB1D8B1D6EAD6F7FBF7FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F8F1CAE4CAA2D0A27BBD7B53A9532C962C078307008000 -00800009840930983057AB577FBF7FA6D2A6CEE6CEF4F9F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9F4E9BFDFBF94C99469B46941A041198C19008000008000 -0080001B8D1B43A1436AB46A92C892B9DCB9E1F0E1FDFEFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFEFEFEE8F3E8BEDEBE93C99369B4693E9F3E148A14008000008000 -0582052C962C55AA557DBE7DA4D1A4CCE5CCF2F8F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFEFEFEE8F3E8BDDEBD93C99368B3683E9F3E138913008000008000 -0582052C962C57AB5781C081ACD5ACD7EBD7FAFCFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F8F1C5E2C597CB976AB46A3D9E3D138913008000008000 -0582052C962C57AB5782C082ACD5ACD7EBD7FAFCFAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFDFBD7EBD7AAD4AA7CBD7C4EA74E209020008000008000 -0381032A952A57AB5782C082ACD5ACD7EBD7FBFDFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9F4E9BCDDBC8EC68E60B060339933088408008000 -008000188C1846A34674B974A1D0A1CFE7CFF8FBF8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFDFCD7EBD7A6D2A675BA7545A245178B17008000 -008000088408349A3462B0628FC78FBDDEBDEAF4EAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8FBF8CCE5CC9BCD9B6AB46A399C390B850B -0080000080001D8E1D4EA74E7DBE7DABD5ABD9ECD9FCFDFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFF1F8F1C1E0C190C7905FAF5F2E972E -0482040080000281022994295AAD5A8AC48ABBDDBBECF5ECFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000438843 -239123008000008000078307349A3465B26596CA96C7E3C7F4F9F4FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000327F3270B770A1D0A1D2E8D2FAFCFAFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -CDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD -000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3F3 -6F6F6F1A1A1A080808303030A8A8A8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000 -CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4545451111119A9A9AC0C0C0656565010101A6A6A6FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA6A6A6FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB5B5B5010101A8A8A8 -FFFFFFFFFFFFFFFFFF4646461B1B1BFDFDFDFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCD -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4D -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4D -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF6464640E0E0EFDFDFDFFFFFFFFFFFFFFFFFFA7A7A7010101C6C6C6FFFFFF -FFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF383838373737FFFFFFFFFFFF -FFFFFFFFFFFFD4D4D40101019B9B9BFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4D -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF252525494949FFFFFFFFFFFFFFFFFFFFFFFFE6E6E6010101888888FFFFFFFFFFFF -FFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000CDCDCDFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF252525494949FFFFFFFFFFFFFFFFFF -FFFFFFE6E6E6010101888888FFFFFFFFFFFFFFFFFFFFFFFFCDCDCD000000A4A4A4CDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3DCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD3D3D3D -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -3D3D3DCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -A4A4A4000000CDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF383838363636FFFFFFFFFFFFFFFFFFFFFFFFD4D4D40101019B9B9BFFFFFFFFFFFFFFFFFF -FFFFFFE6E6E61A1A1A000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -000000000000000000000000000000000000000000000000000000000000000000000000000000 -0000000000000000000000000000000000000000001A1A1AE6E6E6FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6666660D0D0DFDFDFDFFFFFFFFFFFFFFFFFF -A7A7A7010101C7C7C7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE6E6E6CDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD -E6E6E6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -B7B7B7010101A9A9A9FFFFFFFFFFFFFFFFFF4747471C1C1CFEFEFEFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4646461212129B9B9BBEBEBE656565010101 -A6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F4F4F46F6F6F191919070707303030A9A9A9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3F36F6F6F1A1A1A080808303030 -A8A8A8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F3F3757575454545141414 -010101808080FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBCBCBC5E5E5E252525 -0A0A0A1B1B1B4F4F4FCDCDCDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCFCFCF4A4A4A1E1E1E -090909121212393939A4A4A4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF9B9B9B0101010C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF -010101010101010101010101010101010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFC3C3C3494949111111090909252525838383FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4545451111119A9A9AC0C0C0656565010101A6A6A6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFDFDFDF101010404040656565010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF555555404040969696C1C1C1ACACAC393939050505BEBEBEFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFC0C0C0686868A5A5A5C0C0C0B4B4B4595959010101848484FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE4E4E40F0F0F1B1B1B0D0D0DFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF010101888888C9C9C9C9C9C9C9C9C9C9C9C9F4F4F4 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA5A5A50303035A5A5AB4B4B4C0C0C09C9C9C -838383FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB5B5B5010101A8A8A8FFFFFFFFFFFFFFFFFF464646 -1B1B1BFDFDFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFECECEC010101 -818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9E9E9FFFFFFFFFFFFFFFFFF -FFFFFFF4F4F4181818444444FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF3838381E1E1EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF4C4C4C5050506060600C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF010101 -ADADADFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE4E4E4 -0B0B0B6B6B6BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF646464 -0E0E0EFDFDFDFFFFFFFFFFFFFFFFFFA7A7A7010101C6C6C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF414141282828FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4B4B4B222222FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA3A3A30F0F0FE5E5E55F5F5F0C0C0CFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFBFBFBF010101ACACACFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF808080010101E2E2E2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF383838373737FFFFFFFFFFFFFFFFFFFFFFFFD4D4D4010101 -9B9B9BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F0F0F00F0F0F535353FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFEFBFBFBEAEAEA -959595040404969696FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE8E8E8131313 -979797FFFFFF5F5F5F0C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFBFBF010101171717 -0404040E0E0E474747C4C4C4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF424242141414 -B8B8B82F2F2F040404161616686868F2F2F2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF252525494949 -FFFFFFFFFFFFFFFFFFFFFFFFE6E6E6010101888888FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5B5B5B060606CECECEFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF676767010101010101040404909090FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF5353533D3D3DFFFFFFFFFFFF5F5F5F0C0C0CFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFCFCFCF717171B1B1B1C4C4C49F9F9F2A2A2A040404B9B9B9FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF2727270909090E0E0E888888C1C1C18B8B8B0A0A0A3C3C3CFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF252525494949FFFFFFFFFFFFFFFFFFFFFFFFE6E6E6010101888888 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7C7C7C010101 -959595FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE2E2E2CDCDCDB7B7B7696969 -020202888888FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFABABAB070707D8D8D8FFFFFF -FFFFFF5F5F5F0C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF0F0F01D1D1D303030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF252525010101898989 -FFFFFFFFFFFFFFFFFF919191010101BDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF383838363636FFFFFF -FFFFFFFFFFFFFFFFFFD4D4D40101019B9B9BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF808080010101878787FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF696969050505EAEAEAFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFF3F3F3171717757575EFEFEFEFEFEFEFEFEF5959590C0C0CF0F0F0F4F4F4FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF686868010101F8F8F8FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF383838010101D0D0D0FFFFFFFFFFFFFFFFFFD9D9D90101018C8C8CFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF6666660D0D0DFDFDFDFFFFFFFFFFFFFFFFFFA7A7A7010101C7C7C7FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBEBEB010101818181FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF808080010101828282FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9E9E9E -010101C9C9C9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101010101010101010101 -010101010101010101515151FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF686868010101F9F9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF686868010101D0D0D0FFFFFF -FFFFFFFFFFFFD9D9D90101018D8D8DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB7B7B7010101A9A9A9FFFFFF -FFFFFFFFFFFF4747471C1C1CFEFEFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFEBEBEB010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -8282820101017E7E7EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D5D5D040404ECECECFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -F8F8F8C0C0C0C1C1C1C1C1C1C1C1C1C0C0C0484848090909C1C1C1D5D5D5FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEEEEE1B1B1B323232FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFBBBBBB010101868686FFFFFFFFFFFFFFFFFF8E8E8E010101C4C4C4FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFF4646461212129B9B9BBEBEBE656565010101A6A6A6FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB6B6B6ABABAB9E9E9E010101565656ABABABABABABF6F6F6 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8C8C8C010101494949C8C8C8C7C7C7C7C7C7C7C7C7C7C7C7 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF656565747474A9A9A9C0C0C0ACACAC575757010101777777 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F5F5F -0C0C0CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5A5A5A7B7B7BADADADBFBFBF9A9A9A272727 -060606BDBDBDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D4D4D080808848484BBBBBB -8787870909094E4E4EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4F4F46F6F6F191919070707 -303030A9A9A9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF202020010101 -010101020202010101010101020202E1E1E1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF404040020202 -010101010101010101010101010101020202FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F9F9F3E3E3E -151515050505111111414141A5A5A5FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6060600D0D0DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -888888313131101010040404161616535353CCCCCCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFF7F7F77878781E1E1E0505052020207B7B7BFAFAFAFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF010101010101010101A0A0A0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F1F1F010101010101010101 -010101010101010101010101010101010101010101010101010101C0C0C0010101010101020202 -A1A1A1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF202020010101010101010101010101010101010101010101010101010101010101 -010101020202C0C0C08D8D8D8D8D8D8D8D8DD6D6D6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9B9B9B8D8D8D8D8D8D8D8D8D7B7B7B -0101010101010101014747478D8D8D8D8D8D8D8D8D8D8D8DE3E3E3FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0E0E0010101010101010101818181FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFF010101010101010101A0A0A0FFFFFFFFFFFF9F9F9F010101010101010101F1F1F1 -6D6D6D1818180A0A0A3B3B3BBEBEBEFFFFFFD1D1D14C4C4C0E0E0E0C0C0C484848D4D4D4FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFD6D6D66767672525250909090A0A0A2E2E2E818181F1F1F1FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101 -010101010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101A1A1A1FFFFFF -FFFFFF9F9F9F0101010101010101013333330101010101010101010101010404048D8D8D090909 -010101010101010101010101141414EBEBEBFFFFFFFFFFFFFFFFFFA3A3A3070707010101010101 -010101010101010101010101252525E2E2E2FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101010101818181FFFFFFFFFFFFFFFFFFFFFFFF -FFFFFF010101010101010101A1A1A1FFFFFFFFFFFF9F9F9F010101010101010101030303666666 -7272720505050101010101010101010C0C0C727272606060010101010101010101888888FFFFFF -FFFFFFD2D2D20505050101010101013333338080807979791C1C1C0101010101013B3B3BFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101 -010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101A1A1A1FFFFFFFFFFFF -9F9F9F010101010101010101868686FFFFFFFFFFFF595959010101010101010101A9A9A9FFFFFF -FFFFFF363636010101010101535353FFFFFFFFFFFF616161010101010101363636FCFCFCFFFFFF -FFFFFFD8D8D8010101010101010101C6C6C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFDFDFDF010101010101010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -010101010101010101A1A1A1FFFFFFFFFFFF9F9F9F010101010101020202E1E1E1FFFFFFFFFFFF -787878010101010101070707FDFDFDFFFFFFFFFFFF5B5B5B010101010101434343FFFFFFFFFFFF -2626260101010101010101010101010101010101010101010101010101010101018C8C8CFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101010101 -818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101A1A1A1FFFFFFFFFFFF9F9F9F -010101010101020202FCFCFCFFFFFFFFFFFF7F7F7F0101010101011D1D1DFFFFFFFFFFFFFFFFFF -5F5F5F010101010101414141FFFFFFFFFFFF141414010101010101010101010101010101010101 -010101010101010101020202787878FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFDFDFDF010101010101010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101 -010101010101A1A1A1FFFFFFFFFFFF9F9F9F010101010101020202FFFFFFFFFFFFFFFFFF7F7F7F -010101010101212121FFFFFFFFFFFFFFFFFF5F5F5F010101010101414141FFFFFFFFFFFF272727 -0101010101013737378D8D8D8D8D8D8D8D8D8D8D8D8D8D8D8D8D8D8D8D8DC2C2C2FFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101010101818181 -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101010101A1A1A1FFFFFFFFFFFF9F9F9F010101 -010101020202FFFFFFFFFFFFFFFFFF7F7F7F010101010101212121FFFFFFFFFFFFFFFFFF5F5F5F -010101010101414141FFFFFFFFFFFF6161610101010101011D1D1DECECECFFFFFFFFFFFFFFFFFF -FFFFFFF8F8F8A6A6A6FCFCFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFDFDFDF010101010101010101818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101010101 -010101A1A1A1FFFFFFFFFFFF9F9F9F010101010101020202FFFFFFFFFFFFFFFFFF7F7F7F010101 -010101212121FFFFFFFFFFFFFFFFFF5F5F5F010101010101414141FFFFFFFFFFFFD2D2D2050505 -0101010101011919196E6E6E8686867878784C4C4C0C0C0C010101F9F9F9FFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFDFDF010101010101010101818181FFFFFF -FFFFFFFFFFFFFFFFFFFFFFFF010101010101010101A1A1A1FFFFFFFFFFFF9F9F9F010101010101 -010101FFFFFFFFFFFFFFFFFF7F7F7F010101010101202020FFFFFFFFFFFFFFFFFF5F5F5F010101 -010101414141FFFFFFFFFFFFFFFFFFA3A3A3080808010101010101010101010101010101010101 -010101020202F9F9F9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -DFDFDF010101020202020202818181FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF010101020202020202 -A1A1A1FFFFFFFFFFFFA0A0A0010101020202020202FFFFFFFFFFFFFFFFFF808080010101020202 -212121FFFFFFFFFFFFFFFFFF606060010101020202414141FFFFFFFFFFFFFFFFFFFFFFFFD9D9D9 -6C6C6C2A2A2A0C0C0C0606061717173F3F3F7C7C7CD0D0D0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - -end -%%PageTrailer -%%Trailer -%%EOF diff --git a/Content/Figures/pressureplot.png b/Content/Figures/pressureplot.png deleted file mode 100644 index a067abcd3c0fd52d64bb53fde5e918e9e2d8fd73..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 18714 zcmdsfXH*nh*JdFiR}j4hR8T;rkqjyz*hmmXXmZX$K}0}u&X^Suq$Ovho1Ak7BO(IQ zv~ty-PKj+oZ4saXFvPd^-4`ej)9Ju4nYtGoct{f z1lfl}5UPrQ4!|cd8%g=_vfuKC@(lzj2%+D)O9StzoHgWRkldEDWO#GVTwX&NLA)*^ zNWfDB*?^A%{vwF$B?OtggCN)_1UcmpSE+s-zBpi}D0d6lMgL2xNqYyM9CVP^cZOH_ zz5j1F+DIaZTs7|24K0s8%Alu*R_Cv;^X?bDWdbly_lIfAavh8<#FXrNOsB0+|A3K( zSF4z3C-d8dllxEbmM3>Gez;Jcq>+$yk1{%e0vMzefMmrlvSm^JAQPY;8^FfAQ;`bwn+F^xb2qJxr3swUePr^_k zNZ6DAuf7Q8;l`QzE{Eq<&0wFsc)@$|;_b%9M%J-2qIO!VGlPtbjKrPo&BVgpASR&` z%*>go%CVDea%{_|o4$Sf`S$$H6Gx9G|Nec?ccs^obxbi*KwCotZ)R>T;__E5qyUdU zrW_}x{^pFR&g+x>OIwSrx{a}i5v1BQJdBVc7m|7R({qDrkAfkOF$NL40X@xBrBDo! zNX&o}@$mC^X6qL%QObrV=YD-^sf91wzJ;^xevNVvU*Qn4w;zg%888-G|fFC zwWa3h=s4My@Hpg9SXR2BvDVF$dy5aEsl&-!K zo6h8$v^Y}o%@<1>Q+YN&qAueJ!&`qu`zl?tie@`9G+p~`%Q8%Ayqu~AW3aB7x8E?2 z2bp?PN;a0-RpTclUH-nE?8@QA8C1FDxKa9uv38Y>pAEtCs^!C5a4>7_`}b4tx5Q=8 zvU*74we3MMeD`2o4G9j^H2m^Wx@?kbNH;-Io$V_mKBe+BcCLmVIG*E z#`eZ?$=y!}I zNbvl_)PC7#-z*~!eVt)CU!<{H^kLTP@;I#N^CN7z1|`;HxO?5dKD}6mm9_3jSD*Zu z{N$?LK>7-$-v*Yla<+DJ=^J~cs*sz?&SGOW9Eq~;n|W$NacD5$D-kA8U_U(gaSZqxQ&7V9yWG*h!`;yTr(eB;KAmbD+z zLLy#E51OMc-<+-6txfQrsc5f#9>Gt1!Im52e*!`7BouHUKCha_NsFy%lY;(MoI^RL zU0J$XUG*p^x+ z6-aq5i_N4kZVkWMy(6xmM~DvPPh2$iNdE6nT0X4JYursH!^&(G4)5-)1_lS~fFUhU z7qw<)Xa8`)PN6g68it#6;>?*TqaVJoHM}O`-A|nUMmyktkb`_y zRu(5%gP{yqVGknpY!!oc3@lhJ-;E`8*sNf$$sCFiVq;*WxrK#=apMd!GBU!R3-{U! zeD`sXufKc~&g%Kug$@a*1CJFMeD>P=qwKdI)CW*a_7ox&Sf__oY~8iUh!Kta_^Fk0t#g(7*SpU5spU{eI-6K?nG<1@>%yHU6z z%Qx(}@R4xc>CW=i84*|;WXm9opm2=I%Cw&WLDnv+lxgD+9-p?U9Q3d2s4O81BLS0v z^qo4a3K|?0Qv#b|hOt*yuxRWmbEwQYwoGQ%9p(WxSq zuiI_I`M7bF3ku|s8&(}$?N$J4WF0XXbOWAgOFibPngD!?K7OU$Irn$jF_Vl|GwP z_Vq&w8jKsW{uJDR^Peb{eaPIY2#XBQ#XlR9S$V>4(|Q#~0_~wb2RJh5VA!PkN2H#D zR6v56^kw}y5Lz=;6D83leZwqLe6R7C<#jGD`EC>M9CDQ8t5^Nn)08seW%KFR!&e{N z!7?C8*eD^(;D&MB<0ntFQ*JYWdBz6+Y3ITn2x2lfExk8mgpSmby$)k)^`gCH%K2(u zyV0*3zb2N>me_Q!^ngjnioB>`nFzw)lWvY#;Tc#R;&uJIck1_~!)fHgNI~(u)@bZ? zZOUYcc-q8+?iS}=aGaX>7HS3j`KAaQi@4LgAu`7S-@jWH-T6cjj4HSNrmc&s@xsy2 zpi}c1{QBmMM5(5RhLT+7NiqDrpLIJNvbPn)-Q?%zQ`_MH?JS*~jtXZ>4o=Rgkq=M2 z7Mn$vSNiS6$28Mav<(bmYBwf%JJZ!~^6KV>VVV;p`dwV|ZsV@-iRm$ms+iddBK3Kl z#a5ay`zd0iiH4(N!AX7tLRMaFAJZ<1JNhS&oPe1{HocAW5)<9l<3b4NPy_w(b7|Y2lSbR<*{x*TmTo( z9S_EMzT!*_yQo}PM~$edbLJJlS$xfoGkJf5nq0F=u*n-QJ_A@f0RLMy!Ovi$)ql^a zfVDeRHosn);kWI-$Z=7Dg9E+%$gmjxw*|PF+reQg|Jf6}Uqdm1!hY4lKIKbYhOmkO zyFI10vE+YD9RN-10%BP{t*WG?m2&${@x$IL%anfI4jzKh-_Rg<<`#NpFw@M9j zbo>UzKg)*wvLJp(2b(2m(~#QRB}zlsr0iU0hX%ocRZ>d(v%h`&);@EFnb~^Kb0WTF z#XLmfzU^RTXRlj@5sEPRn+mhR&1G3MMYQN`u26EGKHWd{`PFgAP`V~NvvT~m#@JfQ z`za`Vn0$DIO>zLRnIy*(46let3C|Eu!^U#NxRW+HWIr-;DtayUfkOCMT&7`JZiAbZ zRfctE=J>;jiHR)0sOU6jDkfM%8cs4Yk~7j0oJt#lm{PbkQ^oqJX%B0GOXI*%QBiq~ zzTzx)A#31B06Ug`zf=8ADK)(hi0Gnn%o=K^CJZqu(?iiueRDS)LT_Ym-SP;EJ$amcdohs|$hdb-|4g6Jm9_aX5&NO*=&A6+ zPQT?XvklAatouuIOnjHM2i=E#Q-{ywy^Z68gkfnsl7wr|0oTWoMPkRHL=F4#qj*bq_i)Px)CLAagq6mS||(^CvO zIr!X)+kt^sQ1`v7VZmWVBH&PH_%(#h|7!!kUcNLAhih?r@F4wuYXaqAYl4I!ERJJo zJBbu`40d#8h4TcDq@)SH15yf@K{vOBO?R#~#M3xmV}Zy&KcdIx2PC|f(lg5lA1|te zslyJ+l#t2*C2kgq=-=gCt0L?6`_SC?aFVzwY0YC zf^DLy8{Dh(@^U>$7TmucVZjojg)DilUpI;uckhCPXd)=bxJpM=VmU0ge3Y&;LsL$$ zW(f~qc_!!-BV$HVlJtM2abZzW>0qR>JEGTQn`1~j+a%djsE6rH=9h2(wOV?x`3;=KMUST8&zbcWIG=Cn>ZFbgH0F%3ap5HIkua#Qa34m)V8CRE zP1$V&x%6b)&A=dGz#svW;8Z04emhFG_ZI?C7BKk+|NBYs+0Y37cLH?-s4vPC zRKOphqr;nc%J!AF{r4v!lRrO5zVFD2{Coj&nmGS344Y0->Qb8=X>&Ff_OA5uP27TG zjkh8vzZx9Sa$Er)Vp#suNQ-J{Acc zV{d*Nh|LbUT)0jpSVsRH_U34FzW|B^h|343K}9OjVFl*vBNiU znSV_DqBZRRYcRvmavjadJ(tO&uZh*y(O5sn5{8i)aZ{u{ET1B`ch=b?%=)Xb24Zt8 zguEoKbBu+cFbvd>iK8(@*y@6E>_y*=40NC#QVRIQibWNx5oxQxYUl#a z*}+MdmfA_vy?Zx&kPGMc7a$Sf>sb4%=*F3q#Vu$qPbn_`!Od3hEx^z#{O^VXhw>-5 zD8u&XiVSi7bU~sPTf|p52L-Ct3i$7IA;?xM%qN61&x5Z_jO0 z?Dt%R1Q+ftMq=TmutgvWUp$T|9K+zu8x$gq@0*SR&QinArPNDX4Pv>kXrQ1Imf=ze ze*clW-I|)7dtR03q@rYTk6-8)P0tzuG8>uY!p;4A%92gix=U%}&zZenyud$oQjX^t zba|(xb_X5EeKovV?oTzcpnvGcPsAfqdp4XYhx=$X=$QuAC=m)#(f=mAuP`FnF zkbc0tQl1Fnjj+@#Bs>Qz>vRstnA+K*baYNj~hk1RR0Y#uAxX+%0?G zzI{PE=4+3eV~MnEVHYkaf%zxl^|jAQNDP{9f*;obz6lL|RMZFbAPp^n>!-cwi#n;G(y z&MmUN8F<-5ai`xeJL~-Yn+m7#&Q6X6d{xya7#XjPt*@`Mj)@NY6ghkUOuE5p4(VQ9 z4w{i|3Yb*)m{$XeXrYvsi-i=7HG~+BeSIUoth|t7`m*TgF*AMlK?^Jmq$}&~!?)O- z@iVoXcHmlDdV_<5ch=kZ$AABp$3r@I;^fIcmlMLnUHg1fQc_yQ{89@5)Py+3^$NAh z3t7gfP$AOe=?i#azby}R*=_qvMYj7KgLk$pt?Ci-<}8Z+N4By^_}^|-jAzeg7rx7N zJbLnEDo_O>4I(yOO2C)l3Gd%uK!FmII1p1<_nGO3yFSB=ygG4?)j-0vP>PF%iD_x# z{ScUzdrn#Yae`gS&ViBt^gLRH8mV8`{$Il0tm7_&=s?oyu)k?T2wNnE(pw}4nXU8J zn>TNYc&|LP^ah@3vOO)NC_WW(F!$xDA0BYjCbI5@?PV zY8b2VUiz!9ZI3It?3}tZnMK0wDuG9=&5T+Tw(S$1(0pLimF-vyHyVr>fR%if^F&M6 z=4{=b4ZJwQ=C%@l#UgOrtttoRJ=MsWSS)k%rbL4H`STyFd-9V@Aic=4AFkB_noB4G zk2eDrMIVM-G~~0WoOR>L0iFLgWnN+7j+m>qF(Qz@G*R3lV@>^pag^@LZMUY4UMa{z zm>1IOUgffxUTUcycj6Wi(Wdm32(f(0^4+Zwwhk-4^T?OyFrv1-2De>j;H#%|n=C{j zMO7(V)MZQr1? zS4UoI^Bg;ZNIt_qRZutJq4b=Wy&VIwpg!*=PKM}ELFhJ(WEQ~(vx=bMsYnh!%uv7C zSFIlyh`*?^=Ov2JBfXc@tv>E2e>#GiOVa2*Wm@TFQMc@{7#;@J9~q)Z!0d?pF`oE- ze&4xA#eOv%d5JEh!Lm z2kamZC7RR_*yWVcz#^C6Fed=e(b1$gqE6&vNWkiQ%!ilL56P=_WqHdmSW$Q%q_U!#1*D2d7{(*?lxY~&wUGWef~2bBM?@Y!A+8QbT6d1h zlq1L@j~2dmXT!!A7$IPA;hz_PT670N4xt@)=7T2$V&B#H?d{wubUJHAbm5Ta)aX>X zQ5MPtu~>r$3oA(TQ%$Keli@-;^GEiGgKQZNZg%#YktSXlg#ax#ZwH+|kBgD;E+uyd zSpN+cpXQ*Fxk>EIQby02Lf4987Jl#+C_u`?7tfyI@WEF+_lJKT$79`!1)o=$zd((_ zU-K7U%fMi=pvHUE4!6szC~dJeLY<+)vWc|^_(7zLBs8#kD?tv8$JDHizV;dq*Trnl z7N1dLdY?ip7WOV^q@vafKZB^b!lW;-vvc6QS7*X8zN>@ocmhh10_k^on|Xv5>+*KU zTh;6Dc{GyjyqDo1|7}abg2T9|6qVEj+*-Gh^BbU7)8pdK8asTTfyr;((vQ~CxInXi zFZ-u`#OV3+dpIv6R14%-J#U3LJmNns>|0rE8B*+)Q-g)b7EY9r!&kadGEbTMw7KX= zQ&FvK5vFpBCU_vq>B9i|nl$X}a>>~N7;ZkLjSU-ej13{~ENTm#+Rqd;9zM)I$)}eD z3*6{pB8_+X^^BC3*k{AVcp?fMReCUwFlPp2W#51N=y-XQ9p&zMuU{W9-+}^x&^C7D zg+cLK4Naodj=I;XF?YU9T{A49(zBiHX)&vcvE`}m*p@?L3yZ{S&V;0MjfLo~*WzU4 z!IcepO<6Sn#Yyf)q}=;$HM}Z?ol{-9jZr+D`I;^qBVa~vFKQizQi$8Din6kMUpxV; zk?>vtFAE7~swr&}?A9wn#5ZSv`Q0Er8;^z*)pZ(P1G;`{mIm!hcw(<(euAT_eh3-a)g zf?32}Ans4b*yOfFT{c&$J5YbK#*0KEx~YF}41NDz2|eF?xUzt8rN=|GXkk#}RRS|a zgVKY+N>>=^NHXrY)vjO0edUasv{k|YVXyKOkGgs4Wb2*B^;LTo!9v7!$+6+GbZ|r> z>KJ^Kp9Nz?Z2LMYZ1p36HV+F8J&#Mvu4V9e*Ah>pp(lKJLacD6(Er|ts2znRmD-xS zS+U9qEJzAaklV}wLX|UEZqe?YrT)YnOwCpy`4)nhswLx5e%|9@)u5d*FoFsS3RmLU z(%+u34-0%vJb#lAX@b||VnyZ@jk@x-4*3J62aaEPBJY?$q#}fU>jt`KosXM1-Y~H% zN6YB%3n&^_^*_!l?6?W!38_i2E*q%59K8Y=OwkDPl0U>>GS7A`y?dJMDQXPQw@}>*gJ^Nv+KX$83`K z)%VUrpkOrFcc&-+F66uIP=#=9t04k^hS|aQ|V}tU? zg$oyo{kFX(rtU#4OkG+!KquEI12VpNr$E8Wm(^jTlL{@GI?C)#X=rK1&3SdQ)zsA9 zZY)ow0rQptv5ZGRKyq9}IZ@KsydhW{Ve?%$lOm^RVX;CkJ!NtU;>5@s9$`mA{A73D z?7$2##lRI10aS5ua!#CD1$wo>$;l}!JRG=j-{mm0`r!%%hXG$s)r4%A#MF1*ybhF5 zhPof15oI7l-ePQf3uPfhs{@tL30ZWB-C$qu>IYgjEyz(z?tIt>%(jRX=~mJGW>UQS z5H~JH#3lkQ?QJjT`G;dHEG)P=Ipx&(+NMt#36OVpR5zMT301RK(ZSmC_+YqEs=yak zPfX4jibyf!- zRHGPJuj|>BZC`nZ$1lOSJhlcBrB*o;eKcO#i&i%mTe;zQ(yFMDEu&|Oq$P4YAPJOX z+$O8~JLOKSR1I&>#O(ugd>cwSU9kKp979<;PfyPl4={@c_0+XB4r`r~ZU1Dau4yN@Ys-zAM{J%OR@|4~YT5%ymhm%`0M;8G9-aY} z2W~-t!fN{Z(O-j@oK2{g$?Xkek1N2wSl?BkJOB`x;{Dv*+^m~6?yp74iW-lk?x~A1=0RO;}`o@Zm8H zE3fB^=g+MHAeE*V9WZZ8hAxQx_O;Yc*6jP7iRK%HX8hnxePlMEW~wa2q1 z2k+}gU|lB(Q2n=FUl_*|z&{Qw*&sZFNjFF@*c7^rImiFRpmCOt(LiY-E#zn7bQ(J@ zpzd$4X5j00F;~M!$B4?YXnfI1Ei&Om%g105sm|25i)}c4cPdfy&RLO4n$PRrFp}@ZFGios>UwHA-bal70vx2byS& z*FtLgy^zm$p^+1C$emjXfgRb=E}hzFDB}5~A8&UC49IyiP4UG;s29N`f?fvVcNW<) z%;m_#yQpJvsD&j|PPneWIMM1}I@Os4bgRCN<2eKELq7nSiA`Vi$v?`2=3 zk=rIL9C!0YU!qsjH`H~*FSPKI>%WgPoE7^yRtrh=gZa@fbpQNwX`30zbL!M4eGk`g zD*PNKfy^1hT0!|stH0D1HsK$in(dW-qk)rRZ?4)BL~ICBJE5wzQ~`OJYI_JZm{r0W z%R8cJW=?FCeCM?qasS8O1xtCh$XClYv-9rkTdR5bkJWE^@{l)W7N{omdN3Aa@f?wlK($Yc` z3b0xTGOuw0rnOte7T>;5TW%hH5YzvBMu^G^Xn1T1Ws;UFS*eRx94$i|ij zwRM`Jpi2%d_kX+v8OX+zDe>TOLjEPRN-gEy*KP|4Ujt$+N~KEe%!gD?W@e#(1AiLR za%k;(q+;c+pZBwwi^{M~DD4hFZ8`Sgf%{SgKU6ocNfjqG)zzy=<1%>RMi%~SAA2E)CCz}2Hqrg3s;G?)$#O|Y27EKz7quF7Ji^wV z^vI=wWkuFWzw{8obA;pI+zr9%bHM(iHavcUD#=L=j&g0{hdMTCcRNucBlh4R;^2q= zR;Q}8=I?I+X}YHTEY}~vkhR#tF!c=;gQUN0Btv`L&F4M+;C(cy0%lV%RGqg5D@mhY zNWU93R%cd-$_P@&%5gCL_JEz$w4QhP%vD>|0}tQE?aNHw-lT+AQd1Lo^NP!;5KG7~ zwKVO@!tiE-N9)x&5HasCOcHa|C>>;}-0Yufi*YiKVM-(7T(|%>$jJq3^XsH`tMBQj z9;XUer59#Fq&wy1-*)9eZJnqp8EWEh9QZ~A_J8#$m@)g^yDRFjO(=|2$B#iSS0ork zkIdb|?b}kT@mh&dNKPhMCgM!}tYC&7Y=1CRe%~n(T{-XQ=!upIq2Irw?sirN4%h21 zC6(H0Wa(&(ebs1=QJOpukf?>jVg0tsL7qhH>Cpoe21>0qb02V_lS4IC@87@gsPo^| zTuHoa{v2>KT3D3W_?yCN&cwuoN^t;-qVyqDet($zkV!;vOlS)B{4mSpWsu6ee|4NQ z({b#pb=&)A3I03lJf7`T_RiphQk6C8{8n^tKZj+xV*(r-vxxQIS^wQCpl>iZfygGN zGhz-&UMtfX&*)F_0Q6Ip+Ah8w!b%B(JlG0cCJ!H92Ot)x>k|NDUK<1Mi21VF(}jhF zrS*x#sUh!K*RPP8CIJOx3I$aSP*b6bA2h3EI>Nx94b>RbW25*K%1|0AD!~>04E0F{ zC4}B0A|&k38Hyt5#k@LPc#unJ3aVxL<7XRoSL=3j(DDkb7M=hlu*oM!BptrK4h*~= zjG(#<`cncfrLm&+xsYKg;2~1EH1U`Hg(5DVz;Nd3gSn9pPF0l1=&-Qg^8*nU@e2ch zMsV7-90A?0UcWmj5O%-0Q1uhPsU6(NsJlKYsQv)*?{UXrC}5?Hj+$ADU%uQ{!2(_i z(6|^Xwz_kb0!@|NXm;Lg%)ufy){t_2uB~7 zNgYV`E%YNwfZIStb}b%ydQl=~pZ~GkoNr(&1MvIjAy9-ikd#7MR0oH9)mdnvXqgR( zjgFbwd)Lv=2O+N5G{=Z^DGJv74gyCv^@=mWp>%g^Ldp8JaY7l z__B2Pn>I$M0r5nkSSu?V1L?~*G#df1nf-{G)&LdTgeNB218~s~4GqH{JGb4dl{L>o%wff+BD)hbcSnvb3i0v$p<18 z$b<_aH?yn(^?}Zl0}R>defEKrPzOvD(q&;AkkLf+Qv`NV>iD0e3oDc&zQ#hk>bAlw zSHL5wh3~P{;RMhX7{bPZOtEDZCCgzwAiqV~^c*lEl*|;j7@kP*ZlODPuz*?AZrbq# z;3Hn3-S>*op#I^#cCFW-^kH~Mg0*jTa-mLu zkwoa~yTPx=i9UKnGTpUi(+8E<EC>h`6u|SLl;=J* z?gI>Xz*SDp#Nq80lLB#xLHJ3!n8L9Dg)*;_rSH5NMfXWTOd3`h;EzxS6G5p?sNng! zkZU)mRXXCH0fy7(O03xV_03@W z#s%W{*T1ZEg^F3MsA6yLO6H*X*Pi1wRP|>dV4WU!>U9nW6%-A(U`>Z42QA7#A|B7? z95zo3%=&S1aNwr8qE+_S52GKydCovA8!nAJwD#u=x8#r{jr&qM`5v-$l;dDP_rZVi z1*3ooT$(N-eL1BlSbYb}h}M+$jg(wqhoTR+kY?p5o%fE$L<^nL^9dc#%kV- zn^&=N{XY2x8?2JrAY5oIh*g4+R}1pSAGHoM)JFhMCt=axgtXkgljJg&R zx;tWJy1<^ge*I%8oQ?OY&c=!%xpHcnU2%6S%>@`LEl}`)Vmh%aJyh5x0uVh4y_Y*7 zW*0jVVdy?A90#RK+6q#NA4Y3w-Sejlrs1ZFgP#Oge;LOEg!Yipt33l* zyMTVxK#4eT=q;b3LAhFAWv75DD7A{M-jQ7p9~$&@Cr@)Ru=3UHR2Dm?bYzAb$3UeL z)_U#P`J2=9e`^;4(SqQ72!z}@H&_Kfb}sqKvBMeJKO_q~2(NsZbKULR8xaq770LiADwr@lktYS+??JZ~-Gz?-O&kTEK4mQ|<+xW}gPDY{t7$Cig zFQ+;cHrO;YXaRtM5u)*ftFnQT5dJT z#L{X)g`E6?Fz3L1L1yC@Eeu7A5r(q$80Y{AZ-ROX;k96Cc5Cwg85 z<0=IUyb%uQn8hWTPgV| z!t)pu^WhKY?o@GY&$yGy9aq|jf_1|2boGMCunLU8BJ@@1GE13QcdKkr?1}z6?XXGH zz?1`cw90aY-Lh+9Rx`C%zPOm1Q#4%`|Mb4Aqw=7I5uJ8v8gMrK;|i*5h?R?`>}#mO#ZFf3TvUG!cFwpCXwb!cknM1U361i@miWRw#yPz-NB zNVN-i2@&ipBo_PE)x=3_g`Hp%9CVA7NIWP#4vrw;6#c=_jn&AL{CFUP0Wkp42zTzB zG_b}3`Sc(bJ%+6P8`)%{F!J*}`O7J^0PD3(klKxASE^q}ug<1blq&o%DlFn66t0&V zInm8~{9=^K0TiPmb9W<6c$5?PC`0`JDH|;5I^GQp?H`H#61vR8oN8&;Bo~*wk>}|CI4xTMfD(FAa?+<$z+hly?YNpz8LuC zjkc3hA*y8#@r@KP&IErC@|p+0lR+F7-gZOkuN^#6HX%sq=Y*;@C<{CDAc;619v-bi zyLNJngUm^Pk`LvRzJLFYDpw|U5+uB>q2}?uv9YaPRVoKAEN-r^ua8RN0oD~ePpCju zjT?jc%oGCBb)etFqN6ifrFM;0hrII|TB~<=HcPBKc|bFcQl6l@6576s)O#LRC&%It6+(@h|^v`&2OtAX67W=5^Lc5XFqL zspi`cRqI2AyhYE)ryA6xV-F+CW`U20^KCjq8!*Xt>8D8>#2}Mur_oy(j^(m?*a8cRENJ# z96MbKc14}?bWC8bb`SRsG zf&JGas6|~kar}77$B!~7TnUPF-%O)KMV+=BUihkN`TJWas*Ww%{`G<_#xDyQseToR zx2x&gi4pHM8Lv`jhZ+D{Y<@(m#QBsP=#uU&kk>X``m}JRx3?FqiN&F1a9&Z-ZqU8~ zRaXXu=;`?$5F?BAgIc~E*wlDiVDdn(+X6@MaB~*`5FyVOfd(N5NB}(mGr%4f7zyZB zL}O4~lRC_dT)F_~+nJ+nqN6X$j^O9F84zpQ7^QE|xDyB*o3I~-4BZ1dz?gL88jAyk zj7kt(@I4U#VDYt|k4g8ukKK~!TF;xDh6+Vfg(h0N|c zYll6rb}gtC2Q+#(s>PH7*4PWw@!@aZCS~PTerHm};nabmhpZ{{eshc!=rUM0r51k( z8RXx2Wa9CQ<_(k3ZNcif$3mqbRdl8FX|E1AhkypH#ADtp#P<}O5-b^&^FvEXER6U5 z1_eR#7+LL1#RVjc4Qh=bM3E=6h)`i!9eNkcCK~^*Se=m+EA|spxsd?CU%0z&sVPW+ z?#7O{x9e=;9|6$4ni}T1+IU|O%RJ)05&K|E9*V20#x9{t{=1f@9;?gU!~+b3Qd`RG z?oOF+=HWRJ@LTnsnq|2z{kAJ-Q;CWc)vsWGP$xC^uPJuVBR`e?0w@Cse{U#CCZ|zc zqv+_S*%fTMdYTTE8@V}Fk}r}Q=+7f2kWC}$SEy+f?5od1xz-ZE-mj1W!(cp~HYBsS8E?c#k2u~{bj+|dOQO{ zt1X2XcEakHjQ2J%M5?q&bE1Vb*{OkhMGl+egpmhylLz}vik&7@tTtRALamgoTu(h? z_x7rNX^1pc_$wIGoPj{3ORL06C`S`Mn5F1c0hA7yg>E}l?YdjrLD*}siK3nWD1wYQ z=hhm;V70M6JtmaR$t=qF0U*sn*(n;X&ut>88PV9Xmi_lZhN+a*AEixsP5tPlA3`fz zsUed1n5!ir!WBj*URN7A<-drYPOnDA=fb*D5*q zB&#;O_*Q+Z^(D-`3{-f%|7B@^JC1`Qd5{=?k^hG?KC(^D%~ zdu%i?Mx5LkZFQ*{pkp|sP5Ie}zT~_$fR_^c7YQz#4VyMEx^(2FzwO%5J{Q}3zW-_Z zjphTan+Gb_+xO4b+h0IVtLYh}SC3vF5C6?AB&g}h;rabrlf%p=+3kLQNaN}sn&Uhqkl&bE*6C-flrHUtK9S0!zIak%jKf|gWat@ZwHwR`e}Nx3fF_CDqK zev!vE>3;Wo)3!Q7vh%*ZmG3;1VYOk4jBvnCYf&(9OmL!eF6On23_ig+UtTlyO*mw@4_?bKAIV(z=9&zAXA zYZ3s9z!Z3@&KZJ*^o7>kgqQCE-@0D6yUxZR_u z>D-7|Vd5PmfJqSu^S)o|mBs1JK$R1o)6RFB=^0s0=0xS6Ha_P2%IqU$ zw(V|P;K2~}26`+Hme1e@)s0kBR%C6z!ZEck3QYh-beZZgs9 z(Hk2-yA@g$bvNc+eBb?qs{i%$?SR zrb*+}8wZ~#)xpk(&Q%BpL%s-wv0w9JWN16TIRE2gxF&k2r$epyKb=?q%Rh2mfJ2h#qv70drHmNF%B z(>hbx=gb$`&*Y)Qs~V4ydQ~<2$ReF0eaUW*Uruk?ZSRno&KO^t;@KWaig;=3dbyW_ zbUtc(+ut@StB1yStBiM@V0(7dM^G!*9YO*kLFr@Zlek^8!rGtZ+puEQJS5T=Y2z>D zIhc_ClZ!({UgHHlHr;-)cGBSnZ7105)5?Q<^8X-WykVHr>IOQQ+YKu=t8Ie@72ZTQ zw%(l9Ri9i5xmDCP;eGXA@t!fxcwWLh`7!1c5BVd;SZ`6LByZTHthn;a5-41?oI%r6 zNqJF*o}$n9UYX8J0e#zKO_u9N?0FpOSW^1lbS#c0SZh^@{mm`O%wUQ59jO+aiGexm~fzfwPM=#GSgBp-#E&b$*^E?cb7@ws)~u1W8N6 z{0ic0A|;Q#SZZ`nd?2@Sn18TBOWfIwC+nOd-nW2cr(Bs~rKKtI#yS)I)Bp8OWyx|* zY6>WURk&~tdJ#l)ma~O*?ZMeB23vz>zLDGU3knO+BgbGZqPBW*uyd0%uFpWsU@ObC)Fjax7S*F65>gl*%%`^B0_P zbHA`^EJ@T#^Xo<5+6iZz##?duZG$CEST>QQam4t9>rvuAfI4pDGH=07?hC8MIg2)T zrYPZT-LP>QqR5E83fO+=6qdCBhxuaLZr2?Zpzg zs;YO!ty#Ja{OdMm(fH8wQg82Y!6ZyPF}zB5vgwJbb(d~Yv50dP_>s={D)c2e-8#0T zeScR<%cfF4$1bgA?b>0Xn^ufAj6la+axctpZT859XHX&Of4FdrOA2|qC`fL<3~dpNj%af> zh(N&k|L@z~w`wsgQhr8g?GWhLzEWEoEc{~bn4d8o#katg0)mHT0Gf@3CPCL<&ra=i zJ_;wIZK3T)eGdGm9k;$>acWO%!FA<|2K9kM4m08oBLUDWYl#Kn`lTOviX=!OJKxLF zR}3cDe*#>qBnL{S=j+RX{g75xf|jkRW_JQO;QQFzRx!}%LgVfO>~qzT8X1dU?(|~r zFdj2Av+w-3Akks%2lZArWPN7XT-A!{!X_oTIi_mebiOUS(4}2D)f`&xKEX<%>FhwcqZc#`qjT|HACF9BhwlVOx)bf*5kSl<0Z-V_MjqnD`H8?5mRx9>19GySY+HPK_1z-|=Y=t?mLv&oU@_(m@@YnzHs3d)8m3k%=h2*lbEZg2K8EMibqKU zo4*l=h+S(Tzq7*PyJJM{6DnQE@BMcc6VYb?kj1n=&Z?Hhw?KJ2EH)OE-r@=;1W@@9 zv_J{5G-sh&psQCSw3}LGOiU64YS+v_=KTO@_0%zs8c5)Q#sBJZD9`;9gDBUfOKKor z)_61!WAunJ7UnE0;*+`G8P7#!LG1O4uI zuo2xU&WSakP=-(=-|;3 zkcK8hkpOL8LiNTlfmzYI^*1xsiz@Axt4%-yvkbe77bXR)k2WwkOYlg91{c1(Vpwt1 z=+LHIVDr%$?=}e2MOm^)>Ufp033`S5XlLY8>j$HsUqRJEOV}AXi*ua3AuNgVGeU z(ET82rFekF>)MbAuiR#b_#>M*nhJkARTKmJCi1Z7r;Bjj@qhny_>OV^FEK;#A6Jlm zWdo%{hWZ$)N`msX``-}%trW7JWC~>eKu|@IPn&??C*ddh7zx<^%QJ(9=3j$;dAVDv z!Gj>sWdbIna^x{R`dADeF0OAb*$QZ)i*V6GHDxc(?!AFr6iGS@IRX-Z*2(|pF9LKO z_GHbd+=|SFoPz{62@h>~J>1f1n+DLyf$_f4Jn0A0(b^|AWmM@}@MMkrqR~a_BiBa; zq@XM{u_AlQ_;bk@#Dhg=;DDNiU*(-*f~G>7s(D`BPNiKHD#KHgUaj6~!=^>VN-9yMrD7g#sZA&(TyX7M0s*3ex5&wxE}+Xp6Bs8)r7rc;8ygZZXO7^ zv4_xgN8Vl?7G54Op3ViOP#~I>)W9dAwk%k;MOre1war%nt-SO#F(5kr zA3g78Y?o?7koQ+WV>a}fAsjBUdM@|wx>#V%oh;x5xpL{U2>&Hf{wtzdS1w~OUBU`o z;k|SP{urEmnfSl_z}Ehr)qT(Z^AEDiE=Fa2)0j>s2761SM diff --git a/Content/Figures/surrogate_function-eps-converted-to.pdf b/Content/Figures/surrogate_function-eps-converted-to.pdf deleted file mode 100644 index d642a9f7f26e4f2bde7d54c22496d41c88127f28..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 55144 zcmbTec|4Tw`!}2z(pZWZDcQF$lr@PWvJD|i3`Rx9*4U|#QA8BkmsEDyrffsPAldh2 zY#Bn9>^tE(htK!>``*v}`#rDwx&OGvb=z?EDn>bB8~E)ebwxBL%NpZM#9XE+})q_OvGypmX}FczeCe%9Rn?wCfk zt;64goy@=42WNH!4-WPg{q{=_d=6Iq_WcerqsgBEN_(qS2UYu->(U3?ZSaF0!zrbC zk%PaZ2k#HI{R(~e^MCGo?(O&qDeW%q==t@R9t6$yykE4wy1xjPdCak{d*vYMa(?67 z`vYvoywd7>uyE|>gWUB*tl#S5o6NtvN(XbZQ#+EgN}2hK?QC8vPMZ{;w))RZ_AOc- z5O__Oms*Va-jCEss*bhij_!2ZJZ@tQ+nZJ_b1eDL1}`=YQ!4k_)#a>0r#0mV2c{Ou%W!X>D+*>e5-Uf&HG-nn<%smgH*II?rJlOWq!3$4=8v4)gaDECzn9Jb(OS^2Fi? z>YTp}*^uqu9aqz0+*2MVa`1GE*XfIJC*uTP7Svp=OEiM6m-JmO{V{s5t>mOD684z5 zpYWZ(_YA$tXE}P4HC|2K;Gi(UoQMB#GU?<^G zbUw3)Z^tFR{6Jsg++OW1>D*`sneD4GMuw})q#l~5=XmQZmL2CGnFc=!Qwq5F-Tg1? z$+*)z-Hb#{5iT9B`1+LcnXljSwLQAW1b@PHA$6^z%C;qeTTZ1Te<^#l-H_-6&8qn5 z{hBv__+Tq%EXt=BYtK6e{J7Q2&e?m=^s7CekM|~zeioHDa&E7nlt%QT_AhKjUk3#B z>w3$l(oLBzc1L3WF;P<+s5^)*gETpx#0TFo3i+y_)Vq7tT8#$G)CWqF!Z1I z?NSHjQ!xgG3k`FGXAfw<>=W7^TLZE9Iw%)~X?OQL8fvwcEs zUc>2awxOOZz=O}*X%1FOJ14kMIMY)dNV&?b6WT+@F;8} zGLCv zuIBn@f?-Oi6XtW3`6iwzUwtRuh!|f;UHACKF%j4_220W7yF`<+KC|+Ch?+%ju7tt! z<CFXytKU3Smu5@@Y~8% zU(0e>N881NP#@m$u&z=aRRQ#Uz0c11zH2MGW+|4V#S4!e`WUkpt8&m$FAYCe?lwVp z1t9Z7$;SCS29SQ^wf5-x#^}=mHs5Y6yt*t+8neuzW@FUFGbTq}r3tp()xdM^{jU6M zAXJ{9wl~?tmJrGH{iCH6oqhBSjDz-v*0As-WXV{qepc&=bN&LY5XH+b zJi-<__4W9ov_S> zBTXYl-(-H)4+;d;pK7hr<27lQrgQ0>2uRjXPi64dDztFp{(}uv=#J13Y`qFCtK|Om zN&EY`@u1kO26JPJd(`z8uf4_|qnmuKg}1q%duFFOT7=$zE}`*Dn>DgFlIC&_#?S6u z$N8tXQZq+36xi~fjYVes_|SEwQ4h*rieVu3qbU&s!&J8*{3oJh&$~JUG{-PI|k4uIM;+CT=-l z4r4dwI`>teIl$NX$4%#W-_G#iZ#V6c0XLKi;@~5u%_di(1E}I}_#CLGr6{UJ=uJN6 zOUJ9JZAM&=`QG;;YDI9rM=H&+>rRRW>Cc>akBdu?2|ep=o|~R*?+4}5XpnMWPt>PC zHS90gjW7=-{`Gn+dTC}vH1g#wm83s$pYsBS(^|x2zrE5MVqI_%N={5TJ_%=6U_9RL zm;dn+;!5F?1KZC>d?}|p|6qekXWApB6`Nl(C z{AFeTs{5V8*yC{H@sM{vPWE>`_ILuou^}eEPWi}PI&0G74*5@I-_W;RPkE*EOHnskb6szJ zJl6Mf!{VY|OpmL6T+#=_hK^eF$EB#LixLCO-`AUe$fc4X#(`yp7stQm@10mSr_Y#J z*g0O0dAHX{DO;=Ezx47zRth%RxX+kO>uK5Gtgfg~VFy`LdE%JAiQs)Mn@x}}d+(hk z;(F%vS^APIKkR5vqByJWM;@f#8rC7^exDAer|mhH#p_?L5Dq^GB-G^&R;9(C;lJ2! z*dfe*yfcF>M6ve60~EC%3yJfXsBMOsljP+kAqV})EP-n!zM>XE6feg$rbo|3-&~Bc zxhK!c@#S_c+_@w9yy%^cOMD4Nr)K79r9`VH7nknj7Kf*0Nk=`ip*Crd+|7MX6u;4Z z{()65Qpn%AoCD-q70?#03*v%L>PP6b% zgz+wdw}t7Rt%% z<|<+RjzL-r@2|%pJG>G!_8yS~95cZSwwJ&1?)g7V&|b2=7T6Fe&|PYDDpNZH&3G!q zUglKdwU3vB?=NOe`Q$-b+p|3F#DpzQXXbdk)UIM<`cPCCE}>2DrJ8UN?yDMf5X?=C z7P;|P{eA*-G#?M)fvk$u10lrfI&Du~o%Hlo34fBjGY3iQi@~gIWn12|Z1E|Y3w9qr zvt_6YrSyA*S+Dg#N~m-x603$5u%TI7#Sf(zVq~8tod2WWx-fix#kD1{7TQqUrJxTP zU!x5{vv_w+=kZ21A-L0a-ZxL(6tBvcA1nOb&)aR1ePd6GA489jId>=3XqK6D+~>wp z_#ML21{NvUZ?)^SYcJv-%_*NxOreeUWVy^?+cLX3$Dd5?FI)K~MQbd~Gn0X*oBp2W zuKJeiW@TQ0gz|ipj*ZZb@Um6rtf9?wK5lI_7~HD-v8ixm3hybyg(-oPP5Na|k*SF^ zmxxfCuf|gYs;39Nn8%(E+@o-OYF#JU(uBg_8ek7hS!0ElCq!A)El0rI64Bn~^-DYVn zHyt}GMQ>qV6_gZ8h=ROEYU1N^BADg4SYTjLa{!xni zS@~t=mpq(Umc-ZPybX-*JPZOdBjmoew9?eef=(;6nP~@0t1#OFe(| z27MbU+`&kr*R3pjP8o6LZ{;c?5#%wZKDP&qIV-3N6p>f*6^Gdsau|&x!2lNYx_@X} z4&!WwpP$#|e8oT4-uDI#op3H23o`jNTf1j}G#S5AxPx1yQpi7?{&G5palrhuQTK@Ufi7xh_wx~2Uc>*Tb-qB0h6ciTdj{Jtmi5crxlqRE-Wk9(^sJ@D|U`O z+?}PAziHxg-BTTmqOe*gm>L*yDnDtSRS~-6U8@|N!+5HDmQo75D38lk3_owgS(FXT zw?0z1^Xw9b5huyV(&zeIS}%=T9B${?GMf?SosC|aUZK?j-Hvn$zaaPpb^fT_KKXJ5 zpz66jAb)19okcfLUBbh1%3fRjSO0+VDvbj{XA zcmIbumw;nm0Dl0CPzWpLDh_9@fRCxB9LA(#pY^eQzC6Wa#z2H)uYgVs=@ZweEPbA3 zRVXE&G2-mF3hW{Oz{KZR4*-HQUA9enFAZHYZs(N#=iYHJiQd-c*$aijcFn9k!8}DT z6L(lLe&-nuSWYUwPVGv&Y3-wgo%`!n%nZ6fM$YzGl^%(L0`|$h0)U8o=s&`<>L3)` zXDO4wjxvM<+zyU*3&4%6mR;fi_sS?|ABc&$!H4TNq$_tmuyY@Xa{*r^a+x80u73yM z-Pbhrd0C%h^P`t$s~=dKZG4uJOBa}n957c*;0b;K8FiC^#!{SerFp!y#+-LjE0lK7 zK&^{9IgD<@!XTE81M_qz10#MlGWDrW;sPPJeb=Y@uV}6!m&J=-nrNSOf|kVU8^Ntv zN{a|1&fCGjT$+KsLAHT*V8(UkpkA8f>(6^>Hqr|e@dd8-Wa}tY?w~%ZXZgLhu9SP0 znbu3gURE;r40YCsGsXPV3<%nXwabw8yFU19TzQHOX`K!o8tLJ?8xJ$~=lcx>pMp0y z_J%=hZ^y)Pu3}vD#&ZtKrE58i3o7{^%H(8~O?-$_V<9<=aThXrXX<$h!IjRjRJSB;)iD7z!q+wb&9etw?GIYmB7rcUSm#)T3~H5 zmq-{hf*ZgkC!PX}F#DSOTrUCN=oC%QQl7}b?R@YeOl|-GF#zyZQv<``*ul7>TP8jo z7esRye-fd|7}=(*)+u_dfQN?pz*m*wNAHlW zM{(hgmN)ac{z&^s6{lDLx;RRp;RV;qLqa;1%LbPJ3zmoQ-Ss(f%+TnNOqZgDz}Me_ zXg^N_tp>Md1E}Txn8B!BeXhC^KHY|IH3dT}T_&)EMJl*gr$0`-X>|;HLl^=cXc>QF z2~Pyzab;J2V+)e-sOWdl4W<^z=m9URV!B#$9J_b`CL8g=y#~BPKX~I&{c^C1%EdA4 zqZ#%6{ZqFlu*=icklM;>h@h9f2i6o z2z;yW?-;f~gc%mPe+Exd6}-y?dnz3awQ$qt#}F?5sF!1e(N&5$6Xv4oAmZ|OS@0zH z*;K}T!NL#FTF9k5k11@tg8Kq2pAm_B9nt`)g++i>+=MU$j3o)n zEeL00U_?qxR6}z9AaRHMj3=c(T#kYUo&`#9LXk_-b7NRXH%{6Ich8jc#gC3kNxKp- zC9Z_&Q(%CnI#S~CbrLpD`UR9>UJQv5qJYO)|H5($z}XV2A!aaUcpO;V-ryG8t8u&J z06WD8XZz_1XUmJkqukt%Vdk;)lm| zTX{jkvKt_CF6lvri>K1G7X$lh5E$Yi)IqR26DC+iejH0T46U0=1Vh1a204F+O2Cdj1db z6s#*PiXz+_S{+g}cTJ>Wnj}L;0~6p$fyfRa)*(l_y`BcSS4fE(r*Uk7(gnDjU7WRH z*caT~Re+{U1t4_lSAS>;#?Ivl9wjG?Av8z;BV5n{FGNlNB$dQ-@Eq(}`AlFRRe9l2 zy>hTz_K)`-%?2YSF6&KT^*#ecmxpm-2%TQNQ2--VZ4ll|H{opIf*69a4geIvrStDO zscUbm3TzcI8G5$@L9FSqdNi^?n!1m(2m1+@GZ zA=bkQCn`sr`h31Q>64+?EK(v2`OEjTC?)LtynZY2T>D{}5Dcxa1Gc@4Uh6{#Lrauk z@r>(rkf7htNPFp18U1#)E53MCq5gZ!I20R{c5><;P9|X&#V^A`XROAtm&AZ5x+Y1` zdMbWrLYxy7oOtRJhCuQ0By&w;&|~RmQOt(_j-@7#{T@ z7c3tRft#GYG=_b5nHf$zXhTYbtCO(nVQr999e=1zo88UrF)RT_1;D0&A$(u}EL5fe z=&dUg4B6BSiG5o} z(wBrG2f^)z3n7CRiJ1WtitMiqM=ys6j%X?yba{z1Zm;C={eJR@|H{=-O&5>y=!riq zkfG5@qqnQ+W*TjqKQ&!+Dx;sXi@OlgE0CD%_#=_3z+&K**OkEYqn=G1rk!+i3ftU* z#KePd=O(euCy^2(9cRl>5tJ|o{^wA*h$~^!nGuFG0>hfXFmV`i0|@pGPx=C61h?HU zVj`ddS6m1@G;pHk37GccOC;v*KQmg8xX_R~NbEX>U~LVL8-|sUzF5HH&R-})z2$|8 zx&YoJccmI2vD;vT4ICfZ0%1mkKjQD~6zdOv;M`gKC4PHPweSKwE{Ow=nmrW(%~%L8 zL(Nh|K>Pacz==aAQ+X5P2jEM)$3y&(NtvAaMu;I4GVd6vntLuUm$1@xL} z-1LAGwHosHc8;wZ0NNXQY44jK50yDr1AI_X`Znnu@Pi2O!_*TIT9bDe5!&@C@bRh* z@~Xy(pZgMUMm>15d}Y~)>9JKsG}Slh5lxrACnAk^w~gLPuIBO82~PsAwScAK!BVT= zqU$ulc5AOOU`Tr&-$U@$?P_l0D42339y*oF;lzK%68IORS|0uUnJQTF;ryEZ8?x`! zi*~P1Yb*mi0ZR|c0{`2<ZABBrz~nU&#}^6k?jSq08Km~(?l`vDyNq<%0xoC!+?plqGY;4k-x3RjOS%%+ zbr3%RkaR+jnC;6jWE(JHWEtvn>%5#eOf;bm(!b+ENTEgIY@z)KN$lqOv;G~@I6GE$c$07g+oRq0!ar#O4{FVl)Av{OSvt0AxIO^9DE z!?d&HT>pg?a)6wf=7AwKr?6VUF)i)mz#|jDl;A;}TNc{^h)cVm0f`X?_y*@TfsSm4 z*oZQeHWv?!&XO8VeEQCe*O|cN1&)c2>cJ*;U#|DYtOL|g!{e~l6W9RrPvqd?AJtUO zZw3AlAJwdhRD1LexV%%TIht$7{+m?Y`vUF!zU%Q8c^@0+C$YVnPip9pn5A$GVM=8R z+xoriG!Sv47Q}%IL8|!(ff=+wW_0=KGL&jo6XdG0;ZgMHzC=p6mjMx@@u;TgYavI$ zI?-PZVNPg9V$Q}xGs+%MV72`4DF1i z+@NiP1Z=!4eXGvcXQq)GFb7cV39$VKBNF^f3*>D$>ZAqlb?sHgYSM$BPC|f0I~vJC-YXq5pT@`P8jBM zAyBmgrT-x@sxe^fgfhsgHvmhND1k93G|Y3xfJt8WKl&XA+zD9Gsml zH1If_$rN^m15iw#0EWOs;(-mf7mAy(G(k2aHzAgQcZ{`>7$t8@jM8Ey`M|&^p^xr; zS1L*1`d5;>8My)3TwQ=J2reF`xN)IvNL=~MC}(mgm;>hecBzp#?+wC+b$=dR?O(<5 z?<>GnBu>tr<`-MQo=1yRvS=eE*u^n~y^3AzZsR|f_vWEcWWjRIpZhfeMExr66;<)i zgAtng-K0eXRd9$bsi3zH*<IqwA-Eo7_^Jz>d9YfV_FT390q*hX#VYUJe|1;gm<)q)6xAAYpHLZ$N56 z45hw-!13=rEpcHBy#AuWsTE(J`E@JoV#geQV>`LQ>ADaO61Ha`^zBc=&JUX5Nw<$9 zC7SCYDnMZ=kYd3FkP?ml(7ueCcaI4?oFLQkP&4)oJIomtCBdOv**k&_yD*Qi$rIs_1>&~yY9Voi4AV&!2Dn+i5a z1^6N(qgSR_WwJ^s_YHDM2)zC$fxV>x-U832-t&i6X7It~*b5Sh#M$=U;cUU&E`(dv#G2_~i!4FecGPW-% zL6H*UhNL6&(b3kTfu#Xk-vRc?dO*Uap8W)*`|mQ>wFPL&ZN8hLKQ3q5Era^5yFq#Z zMgVDlC!B0Kg>xIQ>f)o_Vl+}qb$-Ge{A_soe9hf!Ho;W(6W#XGQrjai2csrtB4h^4XzL1p`k7L)<8 zS|Fhd2N}KbhL8Y2KXAM+u#jX@-J!ql=U>2+e3N|$C!T^l`nhEp>cMU`=}3@92=(je~s+l=*JV57#nfK47+{{PKb)f(vkAtJyEbgR{n0C^B|Qvydm ztXu(waVxkGJ4QNOC2RAyXX!%CHqE5(nWM!%|*nIfQ+S zfzxlS|923ho**I41r;_spi-o6I}&#>3Yw47PdaQGh`9f$h8WAgUREtrL}Jp)X&1r@lxBa0#QYUuSVAaV9d(0r~E za5By4V;%}wF1ImLg8LI7R~A8dg4?Q93?W(uPXouV#M4h=b1sbCh7{umq1RnAW(XhgX*S}5}-Fv7>TicG=^27#Slc#!RUaOJ3uj3 z9)}_D0k%(+cOk5Y20`oNfFKo%NC{I=Y)*q>x895Huea;2Y|@wgn4ZvNWGWik-* zKuboG^Scfbvu6V=E(>z@6jwsZZ8+OK5_seU7Wn|WCuHu`45DR*Jr&slUS;?Q%-h9X zTn*`ebPd2Lz|kL?KdSl9j#JoWhTm9`cP_8Msve+4G5!x4)}vYun+bR(u?u(<3G`|x zO#oOUw6gDP1c=B{C?sKYf$@SGb2 z&3_1*DS(AR_oY??2+qZn1a(S3sufKf4X)nV->uzgfRuJ!fSX9SL2}fxh(>l3STm3% zs(lAQasL%fo=cf{1x9xu4-2h3Rff8r3~V9E1j}6+?P&TnhJ`3*ox9NKL()!tP4^oM zb{E}2ld%3F%mCh+AjW_waT|Pa{J7L7S3(>!2(9EDkPp2Fc5O<(=X8sl-4YZ;lS#n# z5qQ$4-ySb!RQW+yp!IeuAdLh7Wd(l#tKF_L)TX;rSXK6mwpxgp5ED<#{dj|7FVN~k zPq1&kLXn#fv34M|yk*W?-o60G&$^qNswPV%(0hmdJ3D|#vRC{bKDq$;pIlZd?F((^e*TDde@92B?N>3ow|YAJ`j*G17PLD zLM{0eXnU1`>YZT*1UNq%Cps@_K)eFjG42WUcS{gW;D~K!O1SW72`vZ1~TM~hV zI)D;R&=fQd2%vHB9SZLUu6jHa0Vp{Dl;}nvhyQR5WyidYjq5*z+1NyEa&$3qeeOn+L265$4=dhlUIKl2Ch6q?3;0^7XlLKr{% zS2t&ZTODXnSo5uHvOFBe0#=^De)a)gw5~u(w1Vzb%R`w^XdmzSddS@93(zibCcnWY zM;d1sziuk4uz=%1w;@*Cl`si<3!os)=LZdip!%%INvu666iq>EzcIB@ICzRItu+DV2W+vaXThJbMG<~$B6R2B9G56ImxOj z+re5$WFaL?n*;D&4+k*bH7*yzU_uk*$rF*oG&}GQQX&}002(EO-=hxC#`J6eRZ!jb zzb!*0`MbZ4G!=9u^jHC-|D#_g8>5J>L`vUJt2=Pxnk<#<)W&4#T=S8Y^ChYn1s=7DLS`wc$$!0Loq zkmZzSvB4a!8bv{EUN{r@z+n^>3l&flbRn$OG(hfOMUP{(o|K_5pz)Z&vfluKzCVXY z4Q7Kbnm+IbD9XrX{tO3rYv2TsLGDjI1pO9J!-Ibxh$sfekUen|9*0pK$I_aB8=hFb zY->Jv+|Bz|Ga3l7 z0yJ#a{s4~yTGO07`u75(q2bq{KlBMS`yKa#phh5j`J{KTB)p z1~qP5z7(V;{7Y1D6O{<2&o8b0Kc#1aTDPwnVgRg#!D&eYFUQdb!L~BI^RO2E>4p>J z>=)!=`*&ZO>=o-5TNzYJl$lamKQ0aw@DqpS{_nr(01dWzKsZC7&=v*$kHZ0U2nd1B zzzhHw%g2kbKPLfu^pYZs||JlXia}YKvO2Ct=Znpifh74px{15+(&f zGpYf_xBxyGP;?=v6|upzsSGBt5b)~^3%JRntNQRb;)ezZa}Ma9Tp`>;;?_`;*u8P+ z77ZysUE+u zo~H#o#Ky3)@336gH7)D++1n|zT)PEp=B$#m5#@^9R?ni)wxX|l6Z7#rkKiNL+{>tK z#n7QiBOwXzqWm|z^5$hK-yV#qm4~6{KCoZHq?moBo^8=1K6p%fR`%mfmlul=%4sdl~hl+LooRMdqhw z=Y6uEsF?41Odh)NsIP`l;}7IR!xk8!B?2$JFb$hKNb}kSvCP7%6>_g@80p2 zqitX>F0>YZiGNy{t~i!iUuxM!ubEYXabot%){;fJ=$3tnaC$1urADDH%dYpc5tcWZ z0^6n5R*WU_SMu_Pf#0o1*R1rQmphqQ#vgrUnVC-Oc6vd9X!Q%u_m#0#WW?CR8VE+z4?GrH{&FfM3tay)Xgjxg&oZ$ zlZ*I0?2I0(N)Ab1OBW+@bg}-?LBE>cC`va%54wDncJ!vzF|#Yp5Gyt7ib=>5R&Dht zyM}K5<1hf_xhKFJ+4Cr2J1s9q13kAdke>G@9HnW-2H|!@3-%XHre5!ki6s@ic>JR1 zMMMmcyAT&%LK+S)ag+K{l-~Ck>%5CdrM&68^3q6A!97aQFR-AfJ+|ScAVtY^`rg9Hg`~KX*E~ zJn4!t751KGQQ^(cH2Z3!h=z{Hr-`}Eg_q#XeiVHl8SIYv?xbVJU7|Jk<@no@Q^VIB z^&HyK&|*6D+~bSsVvLK)B^zE3&7MpQ^j+{Sai0`)G)HKXA7h$gN-B^Q&NR^p-Conw4{(ZT+W)KIy&IvT2@iJmh8^2&*&iA7&KG^DW(dam-9 zhM9z9TAo=WSmUhjAk$T8k#FN*I|-oQf9n9NH)_d_Wg~A(dK?hKb|uY=4oCKX?di0h zIQ8yOxJ_B$&25eU+4#L_MUdZtMd_(mGQ^7em_vsiB_wAU7s&axm25nHX!eO#_ub;~ ztZZxhK+Nlhx@M-_jhY2=KL=RlJ=D#niQJ9^U13M(AALpE0ny!u)&_PEI|r;@V;fTh zT%aEkW)nF&aAf%(S4(#gt8FD6c`Ad-r3~m-U){CMhV!mD-u*LG#B%RznwSU|8cG=H zX8pdARC2o+U_DcRaAj!$ZJ)Q3mUlHCfu7SD&>t*ci7d$nxGGlDG`navxNBA;1QJmuZhm%uxf%{dNkO!+hNcCk?0(tg)ig7X1c7+2E9Ui7TuG0qu7pz++U;3`?uE{#ADIh>xOZ)04ZVlB7F`9RLtp2rof- zYMMEeW{MSScE=3mp_{cZgZhAl{saB18fG>Rn=NiHD`)_?ZvGefXb9fWAFL5Nf!4ZO zmLbLoNg$J+SdU1WSZGmHi2%bZuR*M<%3xRL`R*9gIokSpPeicyY>=04THf~hp%bEC zYo_z9CuSU|o5?31Kogi&dl;PoeUO>Q?GNCt%%~Flefz;LgeJ5|sEvl1#k201F!0w( z3Q$R>sPK2S!bTvUUHSwWj&A`uE^3%f_i;OZGz$X6BcCC*(3e~y>ft(g^0RqY3`=;? z3(^Am)x9S=W?9ziX8i`jj^19IMedoObO+g8(~G310AV!g4wfeX?9u^(juvzDrqD6l zqyW)=B_q!)6~O$R!618~652jgd@9>GX-~uK{_D7s1tOW6z^L33w3i_>~UuFBpIJv}4;mKgvNeyr^ zakgii6?Xi19|WjUdeL_dv+fvrBb`H&llcIU{?SPQ{2(lofLPES)ED8`{dUi`Zr#nk zKUeV3_Ai{k$>up12Tp(|gI|cPXpuS(4Kt(bU98xznPMUHR~$daa66jorWZ|)jdU9& zifa&U1Zam^_^kfx_T&FR{>960pF8pyEd_0XzXETU{uBO#EqovUIekSki`+*6<;0!s z>dSkeY1SVq=otJiA=>w)xWGWC!nAgYAuq-$muO+IiBX)E2s9-PDcj@bhV`aKSj zKeU(<4o$zUkF7#myj}Xgw0vmY$;$D+8cZeIZ=aL7Uz~p{aY|4l>(_SG2aQ}3<1#;O z=Vw6PWCHTlM8CRPk|B03H|db=$uuwkSf53$FpYc!=sQT|C|JC`ofoCB9vuHGF8n-TWS6fP z@j3I2?gbC?JL_{U8f#qeLTxlz>E`AfR!e&vZFh0~1z z*Zv~3O1(N^aUMnZRbOAp1QkcA@@0aLWCBCNYgAE_Q;}U=(_0^|@uf#?8rzmq`z+;s zX+PiM@VY-o)oW%e?)z_=R#JLS z9)EZ~t9evOTGbfq8-FPuIDGE6ZUA-vc}Mw9H5yBKMZfZyt<&sUN`B?e9WV%{wKHS&mYcaotgdv&Ht$L4 zk;=*IL8WMvX>k25nVoRnAs5!nxlLWqd4(mn`)=QZsz3c{lj>A#vN~DTHNDKsdHem- zl+3wOUGv)0YMgJ=xqlaJAJcn?`6A+XuH0jPMOZsUCEC2|spiZByX-sl*>ka< z>VD>PE`7NFqW4Tb z{tIuFh9fZ7D0MgUpRA=_Tc=_$e%Ueo_{_1dq6&srI7imMW==`&{mB-Y@ZdG1+rBPY zEcuqfZ|%%A|NFV?96L2EFJOZb%Hf~xQ7vmsnr=N?>=0)o6b?b7c!i%;d58RL;kHrpeC^aXwWh3_n?(orO{$t8yKMpIwuPaSw6`zd014w#lY+7u^@x*p0c2`>sS z*qw|yH(KYT_0jL3IVd;%k#baX$Q{u?ii2z-V*4Le-R_9ZNb)odeAqXvlo?|st*Ws8 zS)^3x_>$3xR+=?RnNhf|9PiLnMIqy3eGNAwa+Q!#@RU}@XYvWE+qjY{vC@UfL4Uw1 zG8RR2dmoPKj;3_jY0|;X^j#rjh!3aKB>3pmX}sBrUarn4XaU2&FgajjdBB+0I9f$0 zPQy9~@rmMSipZQlLgLat<1Swy^2uDh`1q#mfV3n*AnrVhSsN@XGGrAwR9n^|W<;Fe zXOk)Gq)SWz*RXA%lv7dDFMouMb)%xtc-kU`MiqL4670te7LO&%N|)HNN9oYjCWdQ# zQdJ`$UX7zIK8d5{6+P03P)Z>)Bg6o<*z-qx(j%@#Cj)JG9d_)5aBA znR!#GAU!INFbV)fpm!#OF5>P|V6&Si}i9Lt;1#IPR|ui$CHeKZVR)8y4aj zmx5{maRQEZ@dS=`S)3p+F?uYKw8J#HOeup-b0@By-h7XWWMKA32(UU^Hsc!ASZW2B zCml@BGCHiF3UI==V2+Ax zVn}qbLtI8?Xv*b9Vorup_qBRv52n%CA4!i42ca>REa$r z2bI2|xEYT+m`rbj_&5D~D0YLq+yBi5>`t$d?o{y>&8Ud8cK1V;#$TwQ#g~ ztSDwDW?+bZMrz{o*Jn`7U+!QL>>pWVMk3w;dwo26p@g>C@U+Yb{5^^pz5~V4245lw znBI^iy1n>cP?9$1%#e6W^SDEeVE~1URk#50dByl z)fwSWAcqe0y7de}=L#IXPmiO`XT)g)sXRxpqd8FpyO#k0NnFXxLUwXNM3>4K^K0aa^`wPUY7(X(;o+FI4fqV(5?iA=*psgGK{bz_* z3&-4uMT6dl7;~Eh&ha?pJ9EIQsE(|g9jxr3e3zuZ`ExF_E&|q%R4Z2T1D=gqnHi(YcfQXa5F|Atcy&+e)*4q5S>2R z6fz%qAw;*4Rj^RU$wbz?Hh^!yFA-MVv%Iw#s+&k^ViAsQ4h$~l0TBxrMm08^ikS9= zARxkpqg8=d3p_RrM4SL5B37O#Se?OdoG0g?Y^#BzC49GHUb*)SkpMu!9YaNY5O0Vw zX!v&gFc2zut2280DHFr}C>=~)zE590&*RXgPTt4G8HMp6*y-|m#7_8 zSoRILBH&w1#)s3y=T6Zm1JOuCFb>_prGZ1MC+QKT9wTt*+a&O`22A^5$cFM?#}xU^ zOcR9+{jlep1e$A5&07hFK4mtUH64WKBuWWI0sTkAk5Dwt|G%J!t4hwH{EZ(tis-=N zMNr&K!cw)sXFa`6MrS2JKr}?ENJ15YK>XLQOKw zIo0qdqr+tptquQ|QcFzgI|zddL@A6?VQt2Z(p74r)Ct9##ODi~s7Mbdf5gvS78!4f zKtz_|GlYu%*IF`f(pJ*rG;TRRL!{=>$YiTobw>kU`3Fcv@u+TFa1I(rg1^^lGH&<_ z6Ebed=Ft$POm+VqM_>ZGqXID3{2D`|THfVF64==*86CM{L!cu|R~65VpnSTR3kJv^rFP=ZO|)!^4s z@*zdOcSCrgB8gd9(=0>eFKG_Hq>5yAxR(f#DZ2(TntLx0fbjtD;Dp&*$pBLSrIzz| z!SM(<^COLGiBtczrQ78Hp59~^SCk&6H+?HV1-4{>8NO4<6a%I7!)h|XcNu+M;3EGe zUq8Pg@+QHR4lbY+S?T{!{Lm&~s-4*U;l+~(94ffCyK@OF1*WoFO>p0}Lq9Ue@qR>x zqn$JuC%p)+dB^`G9i!2sZETB={oB@L#v$A0Fry*M8m%I!@FX#xr}j`Xkg1U0&e)wl z^h~w`uJPmvhnjFGE;u>Hidk9X*`eTUX|yujMSR5Pq;VXr_oZrq)*^6*X&ra?(sB_e zJYnHaHYfAX(qHluU!5wbOddI@2*t;EBy_21X;)i$X#9mQUFPllT>YntyHam zYyx-KxxAHTnfPe_-RpJRE?S_HFPX7pa!8OYL>RZ>Xh)Q)1?GnV)ozM7tQ@CHyq$9_ zQKANj2=GlBI+o~m1`x!L=0i3)AMf}tHhJB0C>EJa&Idb|kAq+pAY=du)4tS_d5z2r zBNr8LGj==<3A~>X4?sxFrukVasU5C{e%=}MK=?CRY4XU{2qJl|)UA7oH{FP7elX%q zL%`X9$0hrxP$UvkUnk8 zRtw-OZ*B_?{l9sGyzfAkY1c!hAvey0Y5~TLlZjY06mz*D7V%kI<^`&|?n{r-6W^_- zald>nF4tEr0;PWsZj0{S3*4W`ROTM8E8pg#4{S|~<~n|TErLJfaov4Z1!curg zn+H|RRZ62fc(*B5+57)O3^w^}>8Fz`)V`-z=sps#-A4|MQ-f?60o9H1kTw8#>AgiA7R~PT%Fq(IGMF zk}UZC+HP8Ox+9P2TcvF$i0x405=}UZYrS!Yg6#`UThF)hpKRw-LTa|u{1h20`<%q% zZdFb?7;?3{ebN7OCvj&|divw_zOIen3jzA^Gs9@o1&Ae=?W-{8(Gl3VUBY-a;rtEy%0P*;_7|2T8Jm z1K_6wEsl%tIT?lXM*mVRgh0T5=JXiqxA6Dc@!f3_$Hb0Xd4gDl*+#tGh<3?fqS~Ks zn%wzzkN)YQR_{B~s}37Jc5kj`rdVmscWyHarx2iMgIU$j#|Bjtg;d`c--YrgN{%*0m5n%K7ObZpz0 z*tV02ZQGpKb|$uyiH-U7^ZCAOz5mpzs(WhJsk7FtzP+o?9_+e-G(=}3&BP=d@5o5>>E?>bDvzQp{?=x~QY{R?(M>0rU_hSvFZY2_bDlG4>zKhU^c zXA*EpKpK>TPcQ=bs_kzVY2{T*I_gFTN{1HCDpGUkJ92r z%wZ+7dC}BQKPVN6BTHx%f^&OY|3SY-x|$roXGJ-IhLL@lKo6z4x-~Db&V~9G8PRoW zX8P1l1b0DcsD|~7o~dhSROBRBa4Pdb`3#2#@1koWB}fc^bicd~Z^=4q)sSa+_6kpq z>ksU{Nzs<7N*B1u(Qa}-%ke2oWxHeWDOp*B<+8=PWi{vh=lC;_Rnyr_08%JkEc4@~ z7{F|h9odOrUwH5*B(2NmMl#N!D#rUS1Wu)SG;!nV3lnL_iKp`rVQdnEn?h19cCo4Pz*0I z-94gQB5#2{e%&`#+%-iVJZ<9Egnz$*afef;EKo+Eypj>NjFj(Pd?aXd@7+c&ijbxW z^|g8A|9Ee}uTe%c@Tw8)^)qszW(+Xtuq%dhXJgM*al}X=Tr53{+Q4zU$U6$ccxTUn z&A7dF;RuL>w1l*LzRK1YPWtUlKTcy@%ooVtH;eq02$v3B;`euN3Bod^;#OXvU9Qs+ zg*cl%{T=t zw*S`HuF^Slo3cIzylSaI^UFzXo6E#3uTv)f=fLp!b?&W7?c$-L_hN+a2Ux3KE`cto z1Luj-@@CW8a|eH`u|lRFxJNw{BiWK908?t)hU)u~sv`R}VeLf0wB772lw_*$$n z;@^7+_o6&Uy_k+XS_j&R0f|W;%KPXDQ z5yO1gWNoONF4ZehXEsYKivfM<(d({x{(4^3-Dpt`8ig4qm1w) zKMu=_C>WGVB8`3t@>ALzoNW$n;9I zAN(O~6^M1(gHq_mlxLA5nJDhk@1x-f6cihWn`|PPW8geV6mLQH#gR+-@K%KwmwY-( z@SQW}OJbj09{=?SoJ(YuV|67^oF6e1OWW(jNN{hl#IPxaqM(WO56BK^EKT58U>7MJ zEdoWkkUQyH`|GA6ch%w1jnoINIBDydXK$cwXHdW3I=@-{{~I+NG1zpTjgsg?WN}W;H63cxc-X<-p;k^x$t1hb*(p6;Ryo|} zg)WOfkm6vcK?8+~?W<(~MeeOR%s6fB2S~CY)xyCChN~Yhf@?oEtVm5*)IC9Cacbs% z9@5&h$sJQdK`la|EBX{mB+{K*gB4RjNKc=InREI$qlZ7RSM=ce0ZURzt|-+j;!pC5H5R^1>DsIcf5xlxA|=je+6Iyi;TZ-n!Pdm zxN&iH#506E`(ifY^ad0J>iy>8^-r=y%pI7SVa*fg6j}JyINq7yfLq89pWE@8TuF!G zz6~FmWMU0Lnj5#qa$Lp*>pIFJwa)3C3q&yjjv$a)w&g;h;gD}nms82?k9B0Jx;a@k2TU39xYwW4+ZZ(WP@Z6 zX*K=kNQyJQn|Dv85@Y+N_)iZBGDGzQhXPrLG+v&{EN8>LkF9QEa#s*NUj z9{P_W<$KR&e}$TgkD2OZGR0QYtj(G&OB>ALP@KMZ(P>$I9;WIv(7zHk(GAVPqZ*kN znEPfEh0`C=y;dG14Cj_4>aGOIfj&n_FQnf>7%qTsarW@a+R+TM>e{lfq$^ao=BJYl zTs!ps4pTgTW@$yEZ-NGl=b%z2okRXdqpLt2qCXPQi#rvV7Mjk8wtFpz-BLVhCG@vKJj~2K_ovPTy-d zT^5~s7g9$LReTp0ZwPO~Uop&y-62Ij%*HBu*ee)wLY^PRB-m^ACmn}oxzC4=z7k4y zyP5jxzys=LK?xP1rdLi1-A*QDSYQDP;1+ujPhE*WrGbbjxfi|XB;V};ZO6J{a_;wi zJxeBbE_80|j(k+UPdVn#i*>SAhxdGkAro$vN5od4im7Cekx7)o%A|Rs!?t*Abkj}P zH0?b_7fIgf`5VS;WX-HgPwc82Wlf*U8zk`o;h|Ybh;=EmuHFp$*HXR37h>;QfmQS+ zk>sqq`TWF=7IGfLKk=gLM}yC$8#PCzruj%{dX~hOZ=*9L&=FSbS&sDdNwy34)Jm^O z2@73gLc5_Au3I;o>i8jH1MPuK05HB87ll|#@+tGOQUnK7pX<5XJlJug$v z*>N`0m0thQV6LEXJ#F;YzWD#-y%MI8&X7cTLTECjiS!5hKgK6{FhEHeFm>;{Py$|v z(}bt>s6;DAFeZ&zZRd=dHA%kq!{^w0lR)BLCx=uVXYaRkAby{RbS6h zQWt`Z=_f;2$rFMJxO1s<^W9-IU5KShv`4U)-#z~)@}*0~{(mB0%`C=qBodXkC(!&c z^RQ{#9cj18tu>T~hW-8{3Bh`n57L_dFdpj}L*+8x7P*h}EAAKwubN@v!S6}zdn^P0 zqz+%affH}Sxd@!nDRabmM$Jgx@DdsS$TgPwcU05i%v2C!vZX0Z;6v4Gq8>!P8m1t! zzz}(VOZZ6s>}(j$0gQSTK$!_QxweG7O15J_{LKKNd1_Eg(k)VNbJyy<=_TAYslJ^U zx2s-Nd&h=C1irx)R${ps9LRs3a?OH*L#^%blHNVJ%BEb?^EeYtW^6yzESxg9Rh!sl zC^nc%96mS0{^CeFtg2;@_W^6@^^|OPZWM3=^M@OxBKc}ePTbDY>94Tu8{^4iz3a-v zVZAPzAeHT{pSLwOv`oy<5)$OLT#weFb$>dUDdxd-LU2`RfFqphp=sL=1;9&O z?&!PDUt5#Xc%140eaL^xH%(alB#eLMew$nRUee_5>1vG?QJ5)a}pW`K%c1G+><(Dl)DjffolAnl9Q@e*KZ25E3WT_^Jz`TlY;{C{*aQQ{#hlK>j`LR4H)WWaH3|ZgRg?-dJ)=hT<;NlvE{z{}*m`{Ae z$QBYk8KCgvXJg?pX_MYL701thf_dvUvG^HaLfIW)v}>e2=jhjZU!$%a)M3yK{y`gF zG#?)OHw)U)Xu{G5TS8LE!sR^%#@sFw`=1dSNSYAaGM|3I=3ixlXX@v9IFt@f(!PmD zkM`rnJns01B5$KF`^TC$93dWrwh;wQ(V=T8fgrAZo+7xV%O;so#XF za4hXm9wDI%gdSI05Tr6;;I31cE`&N01W=$ctPsw95-|1{J+f8R`&O}M{`M?6NPKt& ziy2=4DE(GS&BB~>aiC?QY&hdwukkVA6u&r1YjknrDxov;vF%q@6W~y&pV4bqmsGBI zLmEDRA#N>X z_*Pefj!sdc`uAha?q?kj^WM?ZFeehiz&(HulTu-bOP?Nd9sM>!vz5LH9Fb7RBsVk- zNc9X)-f0><-h6cI!Ev3Kr#I2Sp-iBwqSl9>lf?+v`DxM3Cgr_; zcL0(HOuiio#%s}+zrW@X!ut0KhlgRetp)N-Yn^tXhY!`IJ)QO!&R)yT>+`o${laxu z6^*jv9>IB_-UsR)kB5eL{AoRj!})&K53v!xw?WB`7Kp2?jI6xzuFe<2 zjCEfPjj~{r8jh`%Va`jGVAf#WIEM?g>9UQ^7ubij{Np;R$!Awb^3x5e?uKYutuWh5 zV_MCSHQUlJz3v}*L9BxFlvl1MSl(zm-J>H6T%B@Tt0~&)(pVjT#HZe7*%7kp#v+5#T|y;RYxE4mRm038VD=FRA4A=fuQs~cF%OBhw})HkWZT>u2*j`9IAmKwyhQTyd+yxJ zIa@G~{VR?Z2}gS8TGYj_ANw%rJ4>!Of+eI^83wx z>ycX)OM8BH%v07wp_^tRmp&-V_B&Yqse`Q}D8`8){$?ez!q&w^Xz-S`!oy-xY#)5GHyNEZ(m~#S8<}M3{G1)9TB6IRbGc~4ji-hqxi>0{pV%4wc-b5u zf94y}M5ad2$VkEwab}o1Gkkb_yf5TClmweO7?2TbwmcQ^C%dZ}Cy-0CtFBl0e;T&P z|8-jE_expGZQRbp&D6;3<%FHjElv+P-F{9FF?A@QAYOOGNkRd>nxL_){YtPo%>I;< zj^HpoCR?(Q7ir#OpeX3sArq_WVupQWq%82uB@@%}HbyI)9%P2ixE%8HOqx58(RV6$ zKvRx=5ci%UbwWF*1lc*E6~em7hK;VotLu4Vd#KmOA`uAjqxImH8L^821VUS4&AT1w(MM{3ylmHqUPdIXeTibM`*EV1OondaeSVm;B)5t^CV zA!AvfC8Q*wJf?%{$e?;s63SKLxU}U`a)>R86q*-QXg2%-p0-UBBy>)_%igvpdGj)H zhy&L38DfoQVZi8`ra&hq$=_`1@4+O;8)P*@Z(JfsYwMJ06zT#sz%2a zujmuSBF6A2->RJdxt)Zk>XL4x@KV9ND=eF*>mWhcJnsc{D(v0D`jDT54~F!e|MX!n zV|zM$-wY2X*!}56h)NtPtC|Uez{hEapiWLG`2BCak49xtr-cw}!R*FY;#R~ok?0+d z^9_kQYL%GgZ`}!Yomn>exZoPUPL$v2sjuQi4trHn{t=rZ>VuNHokVuTE6WWzKy)Dd z;o4Q9AjTqR__%}LJc7ldrHXpa;99fJEKgaJ6?9{hRj{#oj#v2|7+|F%87S(mfx`y< zB1x-cHD~Wv+Gv$UBajWm)1CfnyDoWcIa4akkO(B5=9(zIMIW)S#r2YGy;o#3AiD&uNwaW|M-o2+arQWX_W(U&y7kRD4{M1I$__^gZm zVXHnADYM0O>nVp?ycQ9yq{@1Vq}vSt()z=;jjwUkDw1Y58f23U1pm|@#pD2bE1NE& z;I=ke1qA)Y5h%p*k#t|DV-zx77r5l1ScI|Mg5%04y(%-sb@C>V9A`_laAX0p%a@WX zz-5G~hKQg31#6*_6wiVztyRR;$7c5Ylz#K=HS>Rqh<=jU?7A7AqKn zG2MycD*~3ay}+Z6xR1Hgv>y~#cppe+3%lc}8O`7p)F~7xmogAxqc)5+&3UfSeTrSy>jes3)^oQfO*N>-b@|v^=d2ts2figFguYE^NtvH!hFan& zOo{j&)0sA!5wB9^q&6z%Ibfc%S`fd6m5^uj?9hox9*JO*aL}6*D^fDUqqdm!=t98HqDiD!>^&7PLzNa@FFH^W|AU{ z-p7|LtF!4`>SVRwbEdnV+L7;UWf0N&$2ilL)Y>}q^|;tGcJ%eIU_LoeH z*hxSjHLgMUu=CwtRqcb~r5u?-7(4lr+lW|I?Xgxa&Q}!#^QuzrlqX;kgRSE^Sl^D$xyqk)cUET%|u#7!#4_9#CzGXslsz?JA4p*^)b&1K{%r6v0 z@E%Z@j!?y2)u~`pln>)M3=0b2fyx`@ToRVH4@KnzFx5$w z-&0+$jXTY~rSmqy;ZU@GkGG`}LtJRnoO{C<9i}v?>v^5x@J|KX(^g2pl7_>- zv&te4w-Km3ZUn6UB;%m7ZK?)s<0?&;5h&a`5309j2xp$KWGbDVq<%XFqE-?e;fx=r`DYiY6SjkgqRuAqinlDBSp- zDf+9|=cgZhJ+(o7V6S?}SGYU&y|^#tB1OlW%k8!T*hQq$E_e)5MVrbCZV>-ryDo3H zunzmbPV+#4*8dV1{}~8Bk5_2=pHr6U>NR0HuYXnLWzNowxNUN8*42&y2TJ$gTs!a5 z{%H_@A;2*gE;!4+I9M1ujgHeW}EK-2PqP_2axCR3YX>9CQv@JY$LByFV+{bvyFC zAn1g7QO!4~;m&rS?aJT0MwM+{5i~jSd-~s`ln{9MgDwkj+INOMLvNsCK0$BLrp}Pm zphZ7J>yTqT>84}IKAEOxyt&^F?9&q*mz87*OeICTho+aUCL0`bNOWmz57)YVo@7qz zIPlUR_G@&rw;f#YUsB0o@WwSy3h9}u7hpGVJP$AsAt>X7?I~l?3xz$*5($~dJV33B zvWa3;t4L!^GuhxT-t_2r5A6GPJjIppy4PSvQ#xyp5A%jkMU{9*Ps!8v+t=?jWqm-N zOV$K=>Q}xrL$o2;i58Mr_WhIFJE*!Vm^NU$D+w>|=MI&Bhv!^t{kH1GzcBw2l%umM zk)}L<#p7PN8ksD~xz7*%n;D>#5ycs|r5?1J^9L*GkXj+3LZS?rWgm;{dE=}q$Audq zwgitrPrxaq&}vg2KlW9eSbB=^HUhp$VZkM?J34KdSFb;Qk1KG7XX`8;iTSnKsmy_L z?nn> z^lZs@w#xLpgN(S)t2o@YGk(jxntmM-xc;dDOk*|tsv^pKl$KzE+_9fOgTRW>9dpak zwDmewF5ckv_e0e)+ffRUW$U=!x?Sf*$E5l9=oLw^q^iB{M`CPbDPmmqJ8hFXz@RgG zN6%*BtV2F;C1btA0rF*%H@cMgl#ImB$4%bM9adm@-GA9bGKJ_<(UzOynFA-&F+wkE z?f1W+u)Uj4f~#_oeABzbiS&E$(0L&;{WH+<-@wutNl{_nW$K*H8#~wYy~H)cPH`(5 z+f~I!hzM|G6c=@-WIX+wc2-B_w&x(?cOQjDk7dB)fy_KzElXq9&q{ZJWOuV_=0(Pr z2XdByVwrilKvbl+JxcDHvE5=kTdJ_DLI$D_=1Oq`L++njyVa^(Cu1ejZItjf8)qY- z-=zX7G>N(mtm(g?N+)&h)2&|oQsSb`SO4|ax=SwVt)@VHvPR+ezYcM72Q^mxMM<5v zyS#e%h*cK@`%$55W`@=)b_*LM1U85Iow-Ej?3O_?dS0;->_+pq>6T){3O%|Ix4?V9 zOO(CT?Rx@Xn;S;&qX7-J--to`A|<<0$c`RKD#j#`MU9u*e1UpU1Alv5nwQ6sff~Cj zMu~2LxXmV4KrP&Gh+@^ZF|`oIcvKpm|Bg#u+fvpQQ#PS8D8{~{^ao)IRBGU{j4K0c zd4<3PbB284AO&=8O{T7KiGW)OkTvh;3ES<#LW`q^HN(Dabg1qT>PUL?CDnCRSdNbyY8vsacI`O@LoyO%k@@X|l zjy)fx)>;*y^4mf}aWq|Zcy+9lL6)K=K(Rs9G26V+8)H-&4k4V8EykARwGnChc>2WS zB)4gNuu;>cjBgkx=U17NpE`W!dur9h8kcwObgp8+P@C;ck@SlaqeWUThZ)UI%PQC) zb$0g$9_kLIb|4r67`YcMy^ZU`;DiUbjkjPuO7;48uKdG9TDn#h{j~8%#9l| z%B`c*V3j%90Nk4IVhUhx>%EF}BQ2cyRPMhx86{qGp<#%#jzz}a(X>ibUVsvY6{Zai z8D4qT1^zc`WV#}>H_h^_VI|+{=O!idvROLxKI}s7%OxMzROZFN6V?cB{2dG_(l(on zbsq?(CFP%$j*5&9xRZ1#H&n@N@1@G9;Q&PwT}#cd#yaQoQ)nN)%X$n$Ti{U_)}($CUT#c zswesKjj`%bC8i2ol_h4(P$PVFu<+0Fo+p5w?0tF9(ZWZM;7<9F$G~tb82sOzW&r$d z=Wj3#10^CXAB}{fOZV{ZkS}w*1~C)V)4LlzfHu`H)41680x3@}`X`-D!l1^wZ0Ty)2 ztl3F!7xkftOM)d(yT)a-dJWo_;UBd7M}ePYbNvyDrY&GOnhI&0KU4dT^MgK*_-JfR z4*VHOsZEo4xUQEK(?q%zcVgv^-uiwY77P=|ccj@zM0^EJMt~=uLtMTO5s%YL9P8Jw z*~$KD&f#PqebLlkvpp!cDTT0Wu0AV6wlZJ_^95u-DXe=puuT_lU#X7fZeO{~K{YNN zp|WcPS>O%AyvXQDvN2q9HJMLx?9a9F_?&*7@$m9SEmk>tA`#`&^1@#Z0>s$qzZ^gu zn7P7Ou$jhOUe(tMAa|xErl(LB{_K%Fn+x*FP( z_GM|E(+EJSbpaG z*IaPa#=^%KwbHx$$X(%5on6E|Lje^GJ(pIUnk3IwSAc^# zrSUTCGWKNo6Dz&k_ht#*rHf_>=l>8rb61875w3tS%v)vbj|m`Dr}yj?NDQK~M}3IW z^LIKp`s7#cnqI)!+sJb>l1vN{JHb_5a?Kjv4rl^LZRmbi-vfaf{>mGHnm`s_1skxw znZ?ejYpW~7jWSn7+tw3T?KH>imG+6;GIsk_kc)E`qgIG~Yo6MYYYH}$_=C#5AiJj^ zyB*Mybq+ZF@>asGs?BUZvK!g`7GFwjK8}k{7iw?u+-B@!ck;uMMoHxN&nX+2t@8m6 z>iTAD>k1xyyo)c()&=6C2jMr#WKw$?(c-Ucp*sv4?I0;CKQ#{&{iOVxs^#yIp#yc= z5A@*on8in)*i34;g3&4l(Ka8I0L2#D*gTi8m^GQ$od@iy(%a~p{sJ;>Ot3%fev`%t zN?T?1GX)omi1Pqn<*$3Xf?uZE2(2}z;Q6`mX_t67@++zE=^>VcbY&AQ?0$6!U|?}2 z{iOZ~;zWg`Eas)uZ|TR)QKBtmTcvJFa``GE^Wi8r_=qYGYSC7fK@t^&Kj;Cz*@Y-^ zGAZyz*=5Tju294)Sh*{;<5XR_T=8G(E;KcW}GiBE2$#*dy2dVkfxpampN=t|wXW zl-`-&Ie+ZuPMo5^2|}+Ag=lZgSrZd^z-Td{*;5Q>z^B+TqLD@d=#?Hya%=0;NN$^( z^tR3}gb-F5RQ>wlYv|=w@bZ>8U11^9fw^+Fzej~QIZwIs&U(4;fYpU-?tic+Cz zhtb`MyOnF&F%K6BT+GH0X^qsj(7Up`MB(T_+AUGemi{MnMyy#;6KG0rOZ`COyj+7j zeiWalh@9C!DCigcy8A`hnf|0ywJM)6M}iA^@N2z|+)WT>EQ|W8_w+2i6tO6q^(NNU znR69ApQU%$gm^CM-+F!F6<#G?kn&0*gt?&8;gSh^C#52f%Xi{qmm>TG)q_KKGNU|( z&JO-~dEyjvP+b&APU?hx2E)TK)0r0)?uRTVGM@7~o<NEgKrz)rIb(?8;0`S$lKpB>vwS53IlyN71!%$qfHp zieqXMPH1;F{oFIz3L;n9arkPKdW$vWzQ>_it!LmW$>NpGJ?0K#g`ULxMG(&|{x4k% zdwsbGjy(LN022R*Zs6#RIP7tu)&yw~?8cjK9@cZ0(~^mKHh0-Ld=m3bxlzuh2euM# zq83Q(+fw6#Ad%YB>CA%OXoW7f20OkFW?VpjU!g;fl3!D?Ezvd+)2Xf2afc{hlXfcs zu7KaayWsepZ4gfAOHmj! z-lW{rW2ia~=~^{Wo&&M?Yrcmt?4G*vM#?m%Smn@1Gk_DEFaD4PewN^Aabau5j@&-ecD2gi@QbYXHPT3Z+ zrSz{mR+Ju$s5N&fcUgpmhOZ< zmgwFX*DB79c8bF}JyFs@!M}g=f7Topq0$$oqN}AkQt_Ew(a7MVLrQ&HhsblVQ21zU zevdLF90flRuz3MG5*Lw~gSp}y z*gf6vpproS#$iAW-YO3Gfg1c5+3G?<#_5a;(?|KP{1c*tjw1?l$XsXYgHqP|iPs|k zM~@Uz|5cYoM||`XR|mKF1W-EFdw|{oOMJ((I3_sGMOn;{1@60FSq^jSm)YrVJRX%u6FJ#lHw(-d4x4a}?B0B1Nj3=H=4kx0r-B>|-evz;OjPJR?Y8EcCy0p7}Dtv2YU#dWt7drk?a&v?KVI8_DyjhSij!Jhcp|h{02y zeQy&;tF)1#f~Y9?o^d~~=-!;NuTM38lYt>uqbW>PUq$qY(2=780uI(C; zl~MeSR4zjH|I0AW!3{LlG|F<3sn0lv{&0|i2hZw#%(`p0TYz!Suye{Z<(cNNsx5U6 zvs0ELu~%BBNORC?0y3b}pKv645P$|o{ju&g7B2wPET(QowEK=Di(zaSR}X}fCL2%b zvj)O&K-wj#tLME2p+42aa6WL#AUJeCW;G6QfKC)Cn~oSy5M*w~wR^LhR-&Cr*muUc zZQh;a(?jHEv_^-yFFu^)A*8vvE%Z1~Y-fkLQ9UWRC_ki z#5_{7oL5|(XLuNAv`)gESNt4j*6nAsF4CM=oSbL0k!C7He#&FS{$C3;S!fyJ^-ajfcOs9?Tuo*bq7QOBt;%73-Z~uo` zc6`CRq5Z9NO>?W@hp?4>!L_5s0zsWZmy!$(jc>Ye6E~n396alvioibTkcZt)YK^tHh93Z7;m-UY-J83(8&%Vmj#N@u zfRM2E5e`(ifeU)1f7_SV_MT)>uOzn;b?CM5a3Uj(TrP0m8xdmv(05L%m%9oJmrFwc zij$gP!O918ksy_nsQYC>80!MnxeQb=uIdYaT}6aFV!+@QAR%u>^Wotdks}#GWj{a< zXRr|oFa*uSQ03M4p4v~Wy zEx>=V5jm=N>GJ)9p`QC%;=amoF~m9g-gc>o;=JNdjRbiX64VU=iUwxQQhhp7=!@3c z{~WU>Ma%p7S!h~LrEyXvY!wvrVEdM7&JI}YaS0A`8D(}67Un7V(Z2(VA~f{nXJ=&^ z162gJE=HLr0#yNNJt*u7U~t9)zn1hI1suL4s9;1knRL@6#T_Km#vK-V7Ko({$U7?lwnCA{a1p1@4m32YQoA7RjR`rXZYe?x-W6{lwjlG;`1o+p!6p_=ee9B%$Fcw_?+UiE0XUuSjb zCTs%;m?#D{v`~>ZaHF6{ifqTE3u3|ycWU?vCt#!qlmHW!Y!3M%IO3k2#Jp7J2MM1~ zI((SP{Qt0IoSJR}kcE{l`^&0w;1j`{3ULr$J7}1t?s7R0RMpvvm|GC+I=5MLXMS4> z#cw}>gT*HhTR1lWfoJv6A4E;VGqN$J0Q6}Tm)Dan00jD2PX?9hhqq$xjh);+9=(#k z5aSw$ZI~gZ4@Vu4#hhR6_xT!~;SY)(IjAE|juPrV!g{=?gUCJM4>+t)D_FkJHzHzB zbF~@7K4~vBO6@p_hC7)2Fco}rBMh*2zPB$iyFEMG*zzb_oY-olu6ldT*IECt^q%|%4;$+OgN;xfH z4F_wa%K#@;>C&2}@73IbNolpm|9T4>#)NME-dn2b^TjwtIeKz-`H_GeWn6VI2)0F zMj3{)Qw00G&3z1%J4s*3q_*QE=YqA}|G06G8Kb#fVU)RoIzSXjy8p25X{A%u)+kv% z07qw0zWiBQLkPyedzB>~azQ=e?=~3Y#J0?3(QQ0jn*=5v6nefuV-#FTKe*2fmA~() z+bslMnNvB9S)1m~(Vc)AXEZ*e<)`#?^QO~FJzd+p6NwH=72@%~Hu%Prt73={1@%M! z6>#v{q>i=ZUc>O+UZzDT^c}<{(Q~Cf@KG9kY6#CvY;(AvrRG=b;N8JDeuOC0!gnK+ z#|7E`o*dXfb6^#SaaHLI{o}mWjZ-<+^KB&a5zz(`rwX#=z|;1}_iITebqV*2R}YeT zi5c9?!t&(;1;EcYltGZS20&B4ZsJHbc_(Dy5e-w%8hG7Tmu%gwrdR-GJ}dkChzbp>Wg9lU+LUO3le01X`o+M9Kb|++{a`9=)yF!seVs78KNE#tUIHw3pD_E3Hju+l=&mtVp7w-> zQkUmukS|g1C|*#!;7uZ~r4t4X-y_De3V+88Vd#Wx4&w;LJ4KEo9Job{JG_!oq-85G z<2de#z%g)d89R;7l2f2#I7N(;*TkpG#Y_=XV3|^L4;|{|;+Z)=GRLaO#qA&aeSH{E zQ3oJjpe3!%h{`dHsrW>WU!DuO?&KXY&9ITcGb?>)@O~S=K0>2+eb{_uR)zNkE? z`46Gh;x>`$p!`6cGGQSz{^^EZnHoZ4gVSE?Rd3onl?Ht9PU^UCu2DyQhao3sqmRjh z1mN#wn!=*%3Opa<`xq9S#peejZ;}GVd}W`J*1Dvy;My3?dB09gC`@X!wvEd0vB;Ou z!7Dx7WTAs*I`T~i12CuVVr1iVs>j#VQ_CFAjZ@Uc?Qp|LY_#mCYqH&7%@2iD#fVi!7r;zlCZ$m=WZEQjPZ4 zQ?GAsaqg61vxq3B_T}q+FG^N2BA()T#x#}V?@Ec z+M1!!G$W=FFVR}A+VH+lU$VY>h*TIB?$mU)j=gW4H}P&w(Bq18^K9AQ)*X2x+-b1g zoq$;G`SK33ys3{`AM?#Gw%)G%UxObEw!g%RDAN0yFnUTJUG*t!sV0f}`c3y%u<*H< zG?#KHGoifwMfwyqLw_OKvDXhZBz1I!FPJ8d!#klS?^%}Kj;;Shc_40=DS97#n3(e% z#E(8LE}ffm!yd=L4B|u_e|DtCH`5_?vBO{gcPpeP^N;kx0LQPcJnmUNS&lZ?LjPerf z@g@0qJg-p`+lzT|-4b$&f7!|%dFUsS&PQq9V-(Mm;JtkODxy1u5X)f%SHH5cjObMvTnY__J z7XO#}hi2r%rGo*Tf2d$$R^b`-K7nsr(`&Xzy;8(LHdAJVwc1a9@$TrmCix~v>L?E^ zcD@*o69W$~k0c#*LeK*W0ZiWIx109xYWD@dXJ(H|@$h;jFYTeEdPkqkVNl7DvZk*< zh+(c`yMgO>tHSqGHhbg{HOl(opW=JMoY_H?rJEPkK}1VBq{H!S;^>_^{mI2Henxxj zmkqOWhaHWe+U1rJMo)101ra0EL$K$^mu4rK(NcOXao?TSgEy^zel)rjpJN=%`p&Md zzlqOc{Q`_k=5qd<1NMASv2?i!3rDjFD5wj2Z-DrD1(Av23irk{+8*oqH^j`n`ZEN; zPgi6qOs3OLWT6to=`1*dSIqChDAN0RU_NK+clPsnLU?^{tukO_ehbBX5 zoAFv@=65-Ta2w~F-B8GO+ScBG}ZiU>ozK+ z0YJPyIjW0&l$V6|cT|4-*zZFV>6h))dqZ8arg-$<(Op+Td<}G#h+4%yF~)z1DQcxZ zybIwk;TcBtrO2gbtp1KRraBAKYzkq9Qyu&1#+ukl1*llJ6LIPosQn$a!=Y6nLoh^c zVkWLK=EH?LL4~tw&xq@uP-tz|{)tm^e?IcZHmRgAkZ#W}JC++06jflt^ykYqz}y)` zp~)b%#FOBL#1%;)obg39b3ZFRq=M)=dJsG4F0C(_7^D17^*#8HBr3;|Cm@pe>VF&} zT-5bnFAxhD6Kt`1leI62s^f?+ZfZOV8Y?J?>g|ay4)_k@_72<##Ha9G@x^C8uBb@D zyW&XXXB+{JcX34#S>8nAAmwAd?kY6}#3~yL!a?`nQdK$0L#YgRDS36jvd~>y{lAK4 z_Yh5aUX2D=GHY>OGIWw|;eUO*Pg)?t*~<(5G3uch)zB5pV&;q`zCCYCp5y)G_POmFAJvvb3@2^MZ^M;XB+tlAl6e4=%evbjdu zDIgoKL{JgU=vn#${Rw19=rYC%*;%QRTXB?XK^I^?#;UX(C^RXV`x*x#X?>4y%Kj9K zvF8;Y;-pI;d4?eh9^!;~bRXj2c7j?J>aBbSo=zgUM#edynX~4IXS?BVNN4AOj|mp( zeaHXj12B>A|FQO#VRba!nlSF}?iw6|I|O$L65QS0U4mPX;7)=|aCdjt4Fq=yF4KAD zdFPxt*ZlZ?d|W_RSFLp~?cTk*t84es_2}d{>0G5+G?z3A+yG0MT3BYb?ctODVw$p* zO`jcQnlcZ4&6y6-^VkQDycDxB3pqg7h2V(0zyy*cEDIo?=b9 zqMovi8six6|FwrdAhvmpgn6TTjRbp>U?Gt1oTba@_ZvU{sWq3bNdQvthG}ZveT<_P zUOwm179nHyH`9JC8)$GPMz4j?f*Ymk^YnNS*Fuf?@@T_kD$PNYrDt3Gm2llwv0nl% z54(W4Uh*$y`f7`B^a@s5D=gn<*^7zm3u`Y!(UB$A<~O)E^yCwDxame1E#vc3>S8P> zmQ>x#MRls?k|o=i=AN{j_2i~c&En$VP2NHay5)XE5VUr?&_}TSnAsU2na%nACE4_j ziba?WGVOcVV%f?2h6y%s4Lmv@HEPb!u&BwAg^jqcGVYiPU%Vn%+if6akPHPI0LtIs zZtJp7xCOTfgvR+&5?X|S?Y|QIp*zZC?8n*T z=#NxJq2KDk1C7=-ACo8Jpbe5%_mon$RngDP7aFzFCm3lZILo!=s&tBGPB-h>m9eDw z!-1*zQ_h6i4(?$BbipeME|w=q2qH6CLNVbZJ@~s-{@Pastrg~e&V#x3%q6mFAhUKu zosC>PoB%Mh?=l#R)~Lza*4E&+Inu>6e)SpSb!L^sM(i%K$s^+imh2hm^1U42a5#87 zx}@y2#&a+txI76?Rj|f5Up7>J`di-DhP2OEEWs3J3{;#^t}>c`UQx&~qTx7~pIiM= z)2mfdX_d+@`ruVsSS+7FZC1z0JpsJxvd^v^FR}cZ5-kCjX(jk@ElmTaUY|n0j>Lju zPCtf(kQW9cm%&nJnp)>GV?~ZZ_8gkQxT3I-5`I}l0Xbn#lPruTY~;>PZHuwiL*>f9 z@7n1hfyhf0D0G^7pcGSaruEa@N-BUoewdl-+n*rw2o?4K>6_|Cp_i66D25EV!VsG; zhW3SIAsu>=OE-|oTLpNuu|l@N?X2|jiHw6$gQX3ytQ78>R1FP=1wK@`&U;>u@z=wo zSiS9A*&N^Xs5v^CV6>wKvMKY-l#c>G{}eZ3MK@nDgF@nXjil3+DSY=tzFgLK8{h`D z3jKDmi3KY>8kxD;X4t;EYl+N!pbwcD!k*}!4TAWfU?K6nA zfvBg?e43-XgqSA&lh|bwAZ0$8-{K`48K^IB!j%Gv*_cN3wRrO#WU=&k$NF4y2R}k*V&ARP*mdOW(;JSJTF74eKFOXSgXjo>Np+wVl}@Y@ z8HJlRfe9xBdI@2*iSB1Fpvq3@w-zlCJL)ixrTKE%rB@`xeaV^dI8LVE!lNzrjPvMsGoiaDKt|zlM^`@S|=sQy=LM# z1$;&jaANwcXoIlujEQSI@}+fkgXz!MaYKcLJnwC@yUbUC9Ic<*f;7h@^dwZRK5JU+ zKfxE&32aU|H|0O#FI)E2Sw}0sT1Vg}=;Ny*#QvDWd0yip(MT5A(7)q>%a5x31a3Xu zw{$0~>X^7JBLg1%s@c-PHX0`5AWb{r^s|bJVHn|=oti}ULIEtoIA0Yf%tUCDqEUUn zGUNd4N@Sxd?C}ffg_lH?j9m#k0`hTwjTTno;20M=Y#3%xTF$GNL zl|4zL?(S&&^zK2M(s*B9c6oYBIUUj92N?Sf?5Z8b$S#p?O7O)ZR#Obp+8CGou|TF> z&Ep;~>phd@EOs)QZ=}^dE+3=_JUk|AxLo;@E56o#s>B?kFc)dv1rN5yUk&;(8(#b| zAl?B{G$IC3I7&GYTb22TA9PY|T0BW4yF7BmJvkmT&L8lYnd$j5XrfQ?*4%Myofg~Q z@iYCcsec&8LMNJi9=h$76Q>`hwPAxv_9E|z(w(2DmmTzUP4#&^OjQf#CBF1K4V67W z_sfeIOZf%n^YwK2izWX=>A<~F6;$g}bt~z)2X@LuneJEd`=z;h!qh6eNaNel&1ij{ zfrFaEIUmq`jbP3FG(&4{Om=$D2Th_{T1)kyh_c<*Z+7uIrR|Jp_`4KHEmsep1RygVpyvDK_`+!ZvA37?%$0j6T;F%?yGjl5qEiN6T*hPOvn-MF%h(f zwP*_IP06b%zPli5FR#UEMXpgyiA5_dXFN!J;Vqo!Ff^)`Y8UG=^=$98U)xdYXE23h z5z6-r8-!xiHL8Jg5x6$Mu1H{Pt%TE9KI$;SFDpwEF`-We^NO=^alomlxfxcLt)##a z<(&`4MzJ>4fnxY=_Nl}gQ9~N1XF6i`3<{D}GbcnstEShpHyAsKR=I7>Gv;Ttt&L3)HgnTwgAiXKGY z2H{-8ZB~8xwMwCX6Mac^`+`at@-1}gg`_TNmI1Z-v-$H!Q}_ZEcx$Y5tIRMVZCQ<(Zek!8H0 z1p29>rO_=#CX!I(z^Beh56wgv#(J&LYmhx^;F;pb98&NShW9Y8L>EAQiJrmfErziS z>o`!Z_K0XCmI+MVdlOr!*J{jjgYs~>6bLY4H>yyiX6*+lRI>4y6qT+hUPFb8G&BAl z(U&!(!_?42Fgd4=hdMT+R+WpNXLO@?Gx9EyDj!qDHU61r@k8zhVoPnUS&^zD&7c>) zc;Fd9SC@m}SPra#h-9Rsy;-aFH3iiNU0Gc?{m*P}lkN zLTdc+rJuv(CB+Kkf!qu_(fFE`C>xZWn=_1mgtMRA;2cDu(9iF<0^yP#8zeuqn-yIY z;#qJ=v{wh^Tm3|EEigIE{)K02d^f8+l$e>XpC`KRzzIe67E9$e_mAc%)*{b`M=Zg3 z7cM=k>`{Qo9^__?xkvGbu?3>XQ%lMA*ENsD?`Z745g7~xRw~cKc=Q)bnU(RMc$aL1 zZP&^Jfl)SJu*PhZx>R`r(jfg{3={h{^>TV2y70ahmHvt9nyz^`o${XPd-Ed{$umiq65UN+`)y7W8?z+HmC0Ft%SaqTMC*|96+ zZ}(vn{0W&@-uYEJ7A8$*ZnE6a$#MT)fz!dn9Wm_agEQapjyXTk17d`O6?ktADkPb~SBHRn??lRLM z1jE4K4hTFG+v>mzTNmhxx-jiB2W|r~(^4tSAUw*+m>XYmNJ0rm*4R&{^Mea?^QN`OeV#|iFe=$ zkJAur2a-)_28vMBA@8DR3d&H`+shTcfL@H+tVB$CZ?K7-j4|8j{3j3oz&AyCSB!wL z*^eWU`4g0`tJlc!6z z6fuMYEs;Y^(oVgDACN*YSe)&O1>g4DBP+l)wx_c#)z&E;yVT0iKV>VI&HspOwObv5 zyqM{!R!l@h z#+XvWbW4*5S$ebwumqG>GMTZX*kI%~2R&6dt|~&q#X9@IrTK@J$lbO*TwwCvZ%8VX zr47P5@P&x=(}LT*(mLg5zX4>@Ht78P%3=HFs>}}|Ua7>t0+b_HrI5cMe=@yAJ0beD zCEkc@-BsN@u5u?5?PlF}3`NKL!}IhjV+t&E2vu}l3RB#wMHz%XY}jgPm8MjYvaE`` z;Ie4#*d1>i(GuDuaV;sG5gYrW z0=n2c2OpE9+MS~@(Xw=3@-vPWq(;!6r%TIWHvageiH530Br}i3EpK6w->LMaE0lkA zw-qiYu8ZFTYsYg-ui*-7j6lR$wY8&-I322CiZ})4ox0gZkv*r|A4Nc~kgj}_>v^idXqX>RQ}6qNk?&@c=hsjK65Vw|j^?1Zyxm<5q6J%+mWa@L z?Ln)Rk&k@#R_|hjFYik0%3v2-125(8WvMag+X08|dBl!$`gO})tR=tZc_bIe;l)1| zf*XyFkgn)aQ(GaKW%zx1FKT8|tNTWVhC{kHBi;cyEvVqLB=72vjShnua|5xiTAq^J z{@B_;sbQ0ea|4qHm34eX&jfM8UguAmS0GL_2NTsd{(&JihxKBk#h|H|z;Y%I9hV{1 zT(p!UGFw)p5pG%u)l|oo+15lgv^0edT@EJlZ!79wSTcj}gJW*Q)3EgJQbbBVJ^DdT z>e)d-XN+3wedt0&T{Wo}U)GjEt~<6AZk|z)rSCQ8*s^LgDzUAh?>E1|jhxVj@=0IV zG4rZvkw$QLU;WJ%uZ7J|c}azahi_d75t$WH%{`cl(+UsNtN$ zl5)3tPdyi5oM*MFC1!QONt<%#fgJqJ@IfJkBae%2mKVNkfnbx3_pN11Gc5YURja`MbP3WNIkihmJ6%67AGM(D z>P_mmIz$u{WXKt&?+(E?A1yi&1g)mDQVj=MfQok9aUA~2?L@-DihK(}| zCQ5Q{J-IV^2tMot0=dD6-+9#DR+cNji*C)mfxfPHb~Vd?-907AdB$N)B^Y=9#c58( z7-ip%U$#z2Dx;CRZt?XK<&qOHW~arOen!{xMdLbtB~EqLX}hsd&wWirIWFhJ>AnG7 zBSk@y(u|!HOEI_=Fa%ZZMK5g6FZ*@*Ew_fam})G3EiS2nx()^0rki89a)sVtkuv=? zSuf5=FxbMnr9w&uJipHy3$eRGDi>N5(&T67n*6~-u_OJS*_W}Q0)Nz)sx2c9#I1DY6d2RaH0!nd%RIH?Sy!%$U51x2ExWgf9B zf6iM=qm!xeji>jiLlYrZiZ@AENL29HE_f+>t}4;J{j!~U2p@lN`<(2AA#X9V`c*!) z7K+`ic8j`a0IJFRj7~18o_?hTJ}`jk$UTs%P5OKL_-`-}yl!gt5xb0HaP;*uO_4fQ z(bUwcdh0}a?%xC6ln@hNI_d#aCKpmG>GN5Sg%-aW_}DS=Z7*mpyj( z5rnCIt-adWw}g`QFzxPKQ%;=fq0yM@9OA+UA?8u{!&ZL(!bzI}b%as(ct!TS^D~ID zi;n!!=0-fJ{0w$fLWJEEzi4ac@MW+|PNC6Pqp9-bqR=PLTb}g z&lB8%>VeEWAE%!KX{is<653n$JL=IBKhFogYBTK2X8tUoI z)Cmn0@w*{dMOxk=)o)T0b>uk#Vvv7R_K zunj)t#0oDVg_VV0V!}ejqL-clD*-?nD?Jpe59w+KDt?#3?Cs|c`Ig!+Ce@Th@odv> zf4A}=qUBf!Z@&8nhoCyX<*GgqUbHE4?WdwjKnsG2qq@N6U0dS_|i90k%XJt6;q`?Yl1_~8H(A?$#uiKUU!N;*khn(a8= zwhkAU)OCXIUY_IVpx-Rn(gVp#5-^(r6j~= zu-zv7Gbq$q$ELflw1Q_|qQ-T8!ax{*kQ%!^6fio7Q}&z?E7fVXs|7(r7?28ejdFi0 zaEb13*m~}mM|#`xl>6@5I!D?iFY(gN;_}YEd2i9O>6PU~zY>$i7Dy^Y+-3-zzvH2=oc0Prj9_qS`5PRI%D z0D8nO#y3@;dWW|^Y4fvJ(SI6xzsA3xq=_yyds^IjzpCD|Og&}`efK{~-+D0HxM;B2 zO=WHQY&W*|8c+-j@21thIds)z53x}D8;vIJrr~tWU%wbwGth71LnJ=1SZ!RK8ni0( zjscHvOR&trIViuZeRuQeh4}Y^*W?F{*6(b1fi~QQ zYB!B-Nk&j@nNE|L6N_&b@6Q1VyE>ZhN0W7m;N3b^wfN`m)eU!C7&K4`< zA3sJ{LD%FSprqIqn7|_i$}1vc5AD8H;AeOpw$vCBO=X{}UJ8h^pY|hOU8}DQbMT&V z_wNTUKMbpJQF3VpuX0#R+A@FWF=g-`YhD~(trT;kmBenV3Aid4aEbg`+EzO_lqO)- zVYULMzUjzPcy_$xAG{H+22sJy#>^nJO-b9XjdXg8dp<&iM1sMoKC~cc7NQ!;;I)Qa zjv{DpNMthU<;&GJMdic3mk^eBGu!|rg$x;K0ai?gO>>{($FKV1;wx>D)-vbtb$~wv z?p`h7w%(Pbx7Sphns?oHBf)q-))wCRAVFoivumt|VvCf7aEZ^Tq|)D8?3y6TU&7la zN3oZ+car|*;v>lHDh5{Gh7m|32n2$KrlEG$VOwYNPI1rBzZp)!TZ*#~d%IVG<(r3S7u2kX8gcrH?Z1xx7$0!!1t5D_Q4?(&j8q+|T|LmTS?6gEU zO$Z7&d=Y}+H-)N~u_o=-Q`r=Bls(v(-MTgDC=6n_8w z^WNiYe;hH?qH{Eb5V+ddE)1t&u&B8&5p&`|C<*0>Dt&@xO1wROG2Pd|j$Av@M_ASI z=wBceM;M3vhkUngFKViXw4)UV5&eT#3K6z)V$R+0n*BG|T;4AO@9_hn1s)??H_Sc* zL+Q(U0lLI|AQ%fRHM(gqA z5>$kgJd2h(K9m?woqkTVkoh^6E20H)1r>@i3Ra6!3pM7EG{2HREn3ZLucMX+qPv)J zm8~rtv>8Sq{++u#KDU;@7@X2HbDwi>?4WpIAz-wdfW=2A`N8Wj4{xk!T9j?k`7m-s zI>%xYKE5<#2(cMU2!Xf=fnI!io3gJ{cnp;j>r3EtWfvlR^C%P!nDkAEe(FkSA7?L3}01;15~laEjy^ zmnj2ZE#=dK^2#}Ymzh=4$F87uI#N20L6A}4GGo1mY*LUfT3bJVI=f@Za7Ury?tLgd z6n=*vozW!yWq|dy;cZZleMrlD4!ty&B&cy&ma$o?DoJ^Eocd9tKGME30t;$g_41QB z4_&3c_wo6+4m_9ffRJFh&w{$Ea?iIJwMuEO<1#$&=_icC7ap81Ds|aCrc}>a&&nyR zPzk}mFu>=8mHc=X|Mew1qGOEe?nkeZcfXcQ~`unI+y#l?%+ z?#qiL#yLib?Z2SxP3n#y{G)`rpXyphC>AwiXA{dF5#GA!2@$eHHO6pA-W#@Sm~oqH z4kpwpMiqj@f#j*sQ(mxscS$Jm>g(P4w()Alw(~^ZE@Na7UGM|-ZoW_J!y2d0=;7_< zj?lA;g8PObbfF*#T9%2&$2G4O{-1a^ZG|$dNrz?M;^PPgxK8<6iHny{uWlVivG8t5 zq174Nt=L#6AkSDXjF2$y(!sGyL&W9;F;YC!OdKc0kn}2crM};q6bnZMwB%ZjWfkIo zJ4pO&eg?|X>(Zg>jF=Q>9`@z7`CV3;Pb+rKQ!EKag2bQxAfsI;RerFp6ZR5H?u9mD zA4U1RY9J2|pEHpl@VMD=GOLOMs+HC#)Y#B*B7nWvcu*Lm~z z_EFwORTNi&k@IMu)$IYiw1q;F2woB_^XWxAgVv{T<;0#6`~+C>AMZIENt4h}E2a4}SZs!S5PAkWrxu@4nZzWAsCgMDhL)u5 znE;U)BMTJ=Ngb1ZFc@D1WZ0v>$+%2^Y|*Jm!eSSGqV!&3i<6a>%}68AF7UY^kmz~y z+Eu0b3q}OhGPL_g$Oig#H^$qfXQl)WttSQgRF2^>gq2<>toHd8N3u*rU_BV$ zZ+7H7*6dH}>>Bo>LFmhQ)pYMG6YQfi$_l@_jEbeAaT{rih63rp(b2Z`5=Bff4o+ue zgJ8T*TWhdz6MpJMbDr!O(ezQL40Z+fcTKzs3oE# zhl!Zy%r_9+*=Zc4MuqcmgMp|#M~>6|e2RgXfC)lF^cL=ipn+R97OjrZnjT}qxqZP# z%nK442+l#N4Gd$#sW~(T*B2OoQ1^?5?pQYl56;gu24{t7(h_0pC&!t7zd}QNdWwR^ zn^$AJbo*`GV^N$)*csv%1?~9CKL8;iv1KeuYETQN9HGVtX1a@oi1+OdP`zy+Sl^)* z%;p{kFryy=&s?z<%x4=1aZ=wZS%u|Q+##kvuox~Sj8ZX>2w9u_4V=+};H<+W8g%#=HShluh?+ri# ze|R6lccKI-Uj^Der5`EhsS~#; zjOC!oVm70B5L+I!R!TbXrVQf*ee+-Z;|T#z@9INY9#ROkhIYW{G$=ewTMCP(5&N8N zR9$F0cVRYm3$M=3ysd|hi3na8oxj-1gZeR+=T{pA4NfowCN!@57dCh`j!u{*c#46Y zn4+7soi?`a+G54I7;+e-Z~poYUaS<9(6TtrpYqIRl2F7^wGRi$ zJE4fRC>ZYNpH=Ab@k{VRUP#2!fYOzrj|iM)Gsldzmp+kM>)<@vJ4_X*X7U&4xt;mqnjpRK5yF{~F| z44Sj7-)R5LA2wOC!~{t^b%2>%Ba!0t>U{7O`vBD|pM++#au@ILDVaP3BD3mmvG)blDzN{`suu_Cxa5?_^&lAkDoZ$Y#vnk&WFh1>*GaVW-OB z$lk7L54?Vn8Cuk|NAa^=`1riVU@*p4Cy;8>VGdHE-reA&Rq#z-@rW0~j?E$2MaoE+ ztLgJ+?|lv}$;?!B>gX5yn5yX%k@;xorMpg~THEd+t#--JaQY}m&qEy1S`2cwpC#1_b~`fI@Rz^Vy!pCEI4t*#~SV|X8ZxUVKWPuxO90~ z)}82rWJ9t)J;&bgUFWp~FC|LFqPL%qE#Z;J;Y$q}?I6hxhkX0N`n*MFw6l)2_6gev zUn8AotFD!lW-?0aU$qb z44!?!CTLs@1=Av>uOB~UV=1+z@?9+7m~69I&SP4q&vB&a-qWOAe!MJAFpv~ z?p;~S8k<2VIN{xnI;g7KuWG6w0fq&hSCL?iGDK&D3QK4#r*GX!l3r5@Y69m;ONOiq z50YToh1f7|za*_uwQ+p|v{BEv-L`6fv5A0p#-iWiNelIokW3vI<`yZk?dM~adRW;I zy&i30<$gYwd`SB3HQAsNcb`}5i5k0w_1w7Rlm?OhqWU}FKv0~lT*!SY$gAR&C^MgE zlFj?le!AKH435-=2ZuMZ(7pdSV@Q|0RK3L<6MuQ1ZHtLNO5&tvbSR2Vwt~K#d@;*! zSL@qilvdLXUwH@YP_NX*j>U=hDIsZAN4@WZ?aAZe)8xxI-93kEDZPQf5?v2;xakcD z=s4TlVRWLE zRWe`ak25i_GhbO*Sf4EIhcH{;1$SvIZd^!Mf9T8 zQK_XEiYz&GL&NQd(88~U$S~Y@Tv4K5aI?Hn`VU-!&@c@S{GDP(*EHt^TA|F}Zx4I; zTU4LY-1r9g53oHCUJ-pf+mVF=7rO^9~yedISNlW z49AEvHBgu9BpqOEc_lS#_Ac~i-j25TJJjxo-6t-xH|d`hNwKDySuglszi;use!0&k ziR{@`eAf>X_IQG62RW5GbhDCpJl*}C%I*~0Yn|h!vJ^VMRf*&GQ!c1Jv&sdwbeDsK z9`xt8EWmJArNG54a!Y45|LfYsiQ+p-f9G6R*o|V>qEo5CP3IgX#jszg!EWc=v-)%P zTRmQl2!ZprT#qMI@TSN?X_K>VM((TuUTE_cqul8fx@l*~t-eI!yuI+&KE2t!xKNxv?gGHj@+9e(zuBvCD8?(-OS+adoAjPn-CK!^AQf`@` z^BC!1^!>-w5BNM=(5cc;E}g~sm*6g)`3m@GNGxkxNV7Pm zO=GV>8hImMRG};^v{meVP*$BvZROeilsB}UVui4BAL{kkA@#01syaoQ@Y4*qdSJQ8 z!7=%|^Ja#&`DBj<9ITvJNPoH47j}=4tPZ-|@7AdX51%5eCf?hyDP4vkIl%KgT7J2^ zb&xeY)Q{@_*vH15<#B6}+`dvnZ6g#oeriDoZfcM7$Fcg&_sD}c)wKB;{!`s?kf}Xu zbj_)MgqquJK_RahSk@rPhMC${f=@Ds11COt@CJU(fFuWHe3ps=Yq(* zDUFYKsL>)IRRIMM#>t3ag4_!RdpGofh+59}aB&b* zYTJi@#edc!GbYg`NMA~Y=$H?TD&Aa}B11VH57LkNV|rM85jFQgeuoO&kOJBw8$A6% z&s$tJ-BP+dED-^0ZcR1kCyJqUcS{vh|J>&QIhzZJqK}OMB<2PS9pB`5rXV}|B__wR z14NcoB3PUyujg1zLYn3)u|yZts71=GB{2k^VW?=NH*`o zU|Ov9LD*VvhS7WeyOcIRO%k(nl&GZ6pXkwABiDO=aLIwxiTFA%E=Y_WAm0c zY8E?~)4%0pYRt=ofVF%(UGsBVASZXXih_DoYR<6XDU6N%A1_6Z6&Ro2z;i+qspk`a zh^t0#(04+JwUOx27GN1APS`458lC3-3u};m-~g<%GU$7@vuo~S{_GZA&`fNTKcFm; z+4gtB+3V};gI%`IW}xpndh{X_$R!NUuJ{#%*I=Y*`@(Gs;MOQnG^<-Rzl72XUAEpa zIh|pw?cH3%Ivo|X#DlGGCZLmlH0mJF6PZDBNqou^DvBbvC}Aw{HpH=4CPiG_^f$WT~C?8ieZBe7v5PavM%Q@ zGsvg+Ok1#ld3r(-Den;&$pl-Fk{p+aV5w~&i(Vc0cL1c2qz*hUPlqee$A1`RnA&9& zX7_OvX80a}uHne43rcIU1!1Kj=RFFUL0S$vtbje%qpleK4k7NPaUFx{F3zdzIc%~G zL_-4p1qqr#8YnRn`f3n8ZXW`w-0E<3dnm1dp@DR`L}H@VxbXg@A`ha|K*gs4647^3 zkZVF6Rt$>(jgL~1YZRDQKywV|+=16$c)KT%tDeeXnp=AQbX0+Ha~qP)@pMnbK5Y|# z_QOBvJ0!O`$H?%oI=W<{UJ$|9-|d96bC*pdeml%F{eYJ>o8b3bZy&|p{&Im7w(*gA z+GwtJ0-0x$7jkVKj8PZ1Aww^i5q)}}Yf;MJPh_wz4K=5_;du3*TEC5?B`D?uG9k!M%qYS_Kc7^#SOy;jHbSLf|l0^cnb zfJ`GFAOj%>fL`5KFsJu0FNT&-+YLhOA9|lT`)dR*{gGFPWAANJZ-=h@k?|1#i{Sgewq1~yu9nuUv$JLyBP6e=mYm%6}jO-*!?aN@dM1nbmKJF zV3xp@ze4~^`xZY5?&bv(AXs-DcJqRGHuk>0H>a!i%Ae@?UxS3jiJR@HVR}T>*{8nQ=GcIov?6%^9fe zq)n56&*;;H4vD`5e#r(1hC@)=NxkNS?w_wYVUVF|E_d8S;q{k-C?Qu&Y4 z*d+;Gpi=BV;j=G=1?t439XI0T4M2$gZS2w?3culNl-O9mjPJot6fS|wb1~$9Or0wTSrJ2C>F%iH4sgGA}a>JrOgrX1ZQ8TgW50UeGZs=5T zSDy@@_+Peq5CBdoAZll(11uB^BLPfudj9Q}^&@1-iG#E~PUiqnA7vD_`XtcHK_Bq; z6;ND-0JRnI-_j}t)bx7|g&-vX)~AwmLQT0BrIo(%tF@0J|DjG*6Y*{F_#Db=kekqH zUPs(PW5}I#UbZI$!HXU2SvQ}7`?O-iO=C#sp4+NuA(8uZ-f3s!ygk3Aav4P=_qpn_ zsL$slx~35Kz>Fs12Jz3%E20LYE~}zj_DeM(?o`gG{D=JEf~R@JEkr2%meomPjl>O< z9eqZyu|K%@4?Wl{gUFCKjbLBV9C;7()ts{Ql#w16+L$E7!`(n0EVeFEUrvDIIEY=a zW}@Sjk0i19v75_-Ob*r7#lbyoeamum8ne>!Rm@O|7lb0pMx{S*DBbZO8K_i%9ex+B z!RPVE-}dc9@DHsoRXYr6`71K1fZC07MD!vH4Ww0pztgzwXYLBE0@-Try-X^59g#)FB_$Bd4j2AA{xy9?Rwn_y& zaqsnWd1&^XW^j#Ok-XHi*w(9^uIUfyA=tV^=$`{Rbh`oSSZEw#uB}I)y|8)v@opX8 zgdY51&c%5?6C4EwFW{i`t5$4}0HFR)JT((4LK-nD#tPcVwfm=pLq8id`df*Yw9f>2 zaNqdi-2a~y6U7(Z<^4P;+{0G@B+rEfa6s@qAiUoY!0V8M;PqSxymXRI-o>YF%ph(7 zoFe@ja*fFEN&|RC7_XMa;DbE*>yc=loTe7@uR}M22E*;ngG}9{6{XI%fiT09ZY=N9k?vYx^>Ild_i_!< z60H&0p*8Y;x0DP${FILWBoElxwdZA=$!|D_+t`8`)m}SsaVSjN_)m?L$OhC%wl2OD zH4`&%0K|XQNFu*{M%Sk?NtgFghW~`wojYO(17^s$q1d{l#8=@^V|@*z%*uH1{h{Ovnr^~3wZO@P7q&la5eHq4b8Ggc}y}~PCnz_U3wDw zf>j3j1m?!;4D&MuI_UrPW@8JB%Nz#~$4w_7Yv%O;ZL0+ofqgD(U_W?Bf2@%5>>|kS zeB8bPfc3sXTwBL)Gcn10{%9Z%=>DjMP@l8BU)EDIaTPnE*nu5x7pL*0f9rp`VNDzh zYfFT*Mns9dY)&fM_4!d6ag9iAdwHLXr!j+tXxV(BsdnOJ2e4BPOk;@4LnN4Z?d6V6 zEXLy#g(IKiHXt=p)X6B5pFNs*d0)tf(cTcHz;|3SenDXY!)AHe+<&*1s~#D)G2@J% z%CO;eQ1%vewS|E@!z8mUzn!~LyAZ%VGs`OPH8)e!a2ShM~Pzx&2#aze*e}-8$k7BlkMSM1RKNuN^qa;AA6DQ|L0lp zLha1sY09`8!mG=F>qr=CodPC_#$b6LTzxRej$~vyF5He}nH#s!OT@_CFcWs_YlomD zd%Co3d{7#y?Tv`*66D%Ts-|IP#`S(TkX}y4nT15Gzyf{x#F@Tn5b8KUI-=h0c5|Vg z_8_hau;RcrdIf$4P6JI@DAFs^l(~SUxmQ3E4==OrO(4x{H&?tVIdqJfM9Uek<ahS}kgDna_Qeir1S-+Y&H zl$riOKV|#@(9v%u2sEeMcGDym&*Nzk@D2xAkUu4LT*?*VMSa*_YEXQc1@nIFXWu&|t<+Gi}1HjNP zCU2*8GANc$J01raQ0#THT(tr0U?aZUX)raHf19TMptQ}-?Ag_|3;!LUa~#(HtK35` zi&G-$1GRlHWLLkP^G;f4$Bs-?#RP66FWrt5XKwqbTqf<`02LDCYynO+a%BM``PIcF zQ|fcwv|)2it={s!iY>z+X1JMqDv|WQ;Ru|M8<0!makO%GKrN%F!ae53_|4%q%kzob ztlqT$j<04Sq_&Hz(F^Rv*C=yk3J7+TEl2IVQGEOFKOS^rKzt*4d;tguD*)TW8R&=` z!D)PKBWT7oyaLX$ioC5`WNM{dDiGy_z{D*);2hV>70);K)y{uxZ;-1ig=BfZhev=A z$lak>yErarz?R0=Gh~K|V;~_JZ-9gpVF!+a`^HruJIa7UWsS(}@0kTJCKdRk!Msa& z;_sp(9C^uRw7+T`jkS|}Th{q}krHc1qWm$pyDjLl{$8SZ4BOo#6Sk1G-}7$HA1xQo z)%8@Nd~sLACxnhKTBa-WJEm=4T3xmvFSzpMw!gG1s{Th?nPLbAQ7K08&o1Em+YtJ>jj_7>xdAU67hCSK$6LfPvp-1}WnBw@MM`!rNmY1Z(me zg(=(sv}pSuMN0nee3LEMC_N#lt<<*L)-TN#jPZq@5J(q*LAS1FxXG4vmWj|1eygs> z(|!dk69iN&|EW^I{-%S7W%L5Xnt=HcEfCWYAf~W?`u;lK#V~X0%L(A^8yVQfm1x2d zfjq7*Acx9!fRG2K3ITbL&xK-p1NQK!XA@^f0wxT646z*c%E1=nDW8b_*Cd2`7#y!BUJAfVg_PoNl#{6yOdUXTW`Ho$AaOd1* z4eO3w;IS+4_k@AxBtWyQy6+Vxu%7UooAEN@RYS3vRO%x589CUJ8{kB1+xCb2`Gk0m zo6?@9-3s!ra2CISF>J$KkLPghCj2PACi3il2zgIft`9&7Jb?qK-Ug1sRcDar_o>|L zQwTn9PvOr_WvImK0#!B{g%gN5g%l)6ukNaZw(k^~4PJYA*KT#a1K$awyt6%s;V5qGe61-M!Q z{^}(lK=zLgWdA7PLdGIzW$HqvgYZ{HRRldU0KpBA&V~S>{maVse^~$J6gP4;vURZd z55&KkDww$%nF1qZy#GTq_y5iRUwR|3C@CwDu?Y$NE9kEo|64~ERc?g8Y^wjI#b4Ba z2mkTmf5aiMsJR)t{`IPsf;@}7nZ1RpB^etB4*>gbWCVmg9gR$E%v{Ng%`B|!1!*tZ zx@gI)Oa*B*ITctH9L3Ent)#u3&D6XV)lIx@On6Ocg@q6VgpGiJnlX7AIWn1B*}9rJ zyO5c=m68OuqQ}s>FVmp z$HL;_;lb>|!R+8{!NSJN%ge&b&ce>l1W+)!c-gxec{16%Py+J)QN&8?|FGG+F#n?y zvx$QpiQg zKvy<%Rwh>9hl!n=os*k~&Dhk$#N~FaLSF6?1+As`*@A(zJjHHLn&a+8q16|!gVP&xOFc>?S#2FdRgT$p} zzkYJk_sYsfd@`z}sQUEja|3vHtWN=NephgbtGfK;v25_x8+SFeiMM%1SfO~-zrH)l zs>R~>p60n4dgT|=GG67distk$Bh~j5B=NrBYE_GtKS_+a;HtI;2El}ilQ@J<=M1Kw zRh7tMrbvNdYV~LYKgvuB9<}V82-#gkrq~t=R(y>0&27R{wh~g09@&z=(weP1I7Ak8 zmo^X|l3f6+H39trH@sgik%oFY{UthVRM^~OeXaH-+)kCyIxOrR^^Hr+AAo8pB0}-zfgS4L7tib+h^T~NE1eqY?XR$*c8hdK9i3?(RZVNz8&upf3 zFy i5ZjxOspon3(RGh^^{!|nt7Y3z*BJ&xySbS?J!szs%3aI= diff --git a/Content/Figures/surrogate_function.eps b/Content/Figures/surrogate_function.eps deleted file mode 100644 index ce4228941..000000000 --- a/Content/Figures/surrogate_function.eps +++ /dev/null @@ -1,6820 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%Creator: jlibeps 0.1, https://sourceforge.net/projects/jlibeps/ -%%Title: LaTeXDraw -%%CreationDate: Tue May 05 20:02:49 CEST 2015 -%%BoundingBox: 0 0 822 931 -%%DocumentData: Clean7Bit -%%DocumentProcessColors: Black -%%ColorUsage: Color -%%Origin: 0 0 -%%Pages: 1 -%%Page: 1 1 -%%EndComments - -gsave --42.0 946.0 translate -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -21.0 moveto -439.0 -21.0 lineto -439.0 -49.0 lineto -278.5 -49.0 lineto -278.5 -21.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -861.0 moveto -439.0 -861.0 lineto -439.0 -889.0 lineto -278.5 -889.0 lineto -278.5 -861.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -141.0 moveto -439.0 -141.0 lineto -439.0 -169.0 lineto -278.5 -169.0 lineto -278.5 -141.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -261.0 moveto -439.0 -261.0 lineto -439.0 -289.0 lineto -278.5 -289.0 lineto -278.5 -261.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -381.0 moveto -439.0 -381.0 lineto -439.0 -409.0 lineto -278.5 -409.0 lineto -278.5 -381.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -501.0 moveto -439.0 -501.0 lineto -439.0 -529.0 lineto -278.5 -529.0 lineto -278.5 -501.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -621.0 moveto -439.0 -621.0 lineto -439.0 -649.0 lineto -278.5 -649.0 lineto -278.5 -621.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -278.5 -741.0 moveto -439.0 -741.0 lineto -439.0 -769.0 lineto -278.5 -769.0 lineto -278.5 -741.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -356.10938 -41.984375 moveto -356.10938 -43.25 lineto -346.76562 -43.25 lineto -346.76562 -41.984375 lineto -356.10938 -41.984375 lineto -closepath -357.64062 -29.15625 moveto -359.25 -29.15625 lineto -359.25 -39.0 lineto -357.64062 -39.0 lineto -357.64062 -29.15625 lineto -closepath -357.64062 -25.328125 moveto -359.25 -25.328125 lineto -359.25 -27.375 lineto -357.64062 -27.375 lineto -357.64062 -25.328125 lineto -closepath -369.10938 -30.65625 moveto -369.10938 -25.328125 lineto -370.73438 -25.328125 lineto -370.73438 -39.0 lineto -369.10938 -39.0 lineto -369.10938 -37.515625 lineto -368.77603 -38.109375 368.34897 -38.546875 367.82812 -38.828125 curveto -367.30728 -39.109375 366.68228 -39.25 365.95312 -39.25 curveto -364.76562 -39.25 363.79947 -38.776043 363.0547 -37.828125 curveto -362.3099 -36.880207 361.9375 -35.635418 361.9375 -34.09375 curveto -361.9375 -32.541668 362.3099 -31.291666 363.0547 -30.34375 curveto -363.79947 -29.395834 364.76562 -28.921875 365.95312 -28.921875 curveto -366.68228 -28.921875 367.30728 -29.0625 367.82812 -29.34375 curveto -368.34897 -29.625 368.77603 -30.0625 369.10938 -30.65625 curveto -closepath -363.59375 -34.09375 moveto -363.59375 -35.28125 363.83853 -36.213543 364.32812 -36.890625 curveto -364.81772 -37.567707 365.49478 -37.90625 366.35938 -37.90625 curveto -367.21353 -37.90625 367.8854 -37.567707 368.375 -36.890625 curveto -368.8646 -36.213543 369.10938 -35.28125 369.10938 -34.09375 curveto -369.10938 -32.895832 368.8646 -31.958334 368.375 -31.28125 curveto -367.8854 -30.604166 367.21353 -30.265625 366.35938 -30.265625 curveto -365.49478 -30.265625 364.81772 -30.604166 364.32812 -31.28125 curveto -363.83853 -31.958334 363.59375 -32.895832 363.59375 -34.09375 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -352.2578 -163.98438 moveto -352.2578 -165.25 lineto -342.91406 -165.25 lineto -342.91406 -163.98438 lineto -352.2578 -163.98438 lineto -closepath -360.8672 -151.53125 moveto -360.8672 -153.04688 lineto -360.40884 -152.79688 359.95053 -152.60938 359.4922 -152.48438 curveto -359.03384 -152.35938 358.5703 -152.29688 358.10156 -152.29688 curveto -357.04947 -152.29688 356.23438 -152.62761 355.65625 -153.28906 curveto -355.07812 -153.95052 354.78906 -154.88542 354.78906 -156.09375 curveto -354.78906 -157.29167 355.07812 -158.22395 355.65625 -158.89062 curveto -356.23438 -159.5573 357.04947 -159.89062 358.10156 -159.89062 curveto -358.5703 -159.89062 359.03384 -159.82552 359.4922 -159.69531 curveto -359.95053 -159.56511 360.40884 -159.375 360.8672 -159.125 curveto -360.8672 -160.625 lineto -360.41928 -160.83333 359.95312 -160.98958 359.46875 -161.09375 curveto -358.98438 -161.19792 358.47134 -161.25 357.9297 -161.25 curveto -356.4401 -161.25 355.2604 -160.78386 354.39062 -159.85156 curveto -353.52084 -158.91927 353.08594 -157.66667 353.08594 -156.09375 curveto -353.08594 -154.47917 353.52603 -153.21355 354.40625 -152.29688 curveto -355.28647 -151.3802 356.4922 -150.92188 358.02344 -150.92188 curveto -358.52344 -150.92188 359.0104 -150.97136 359.48438 -151.07031 curveto -359.95834 -151.16927 360.41928 -151.32292 360.8672 -151.53125 curveto -closepath -362.78906 -147.32812 moveto -364.39844 -147.32812 lineto -364.39844 -161.0 lineto -362.78906 -161.0 lineto -362.78906 -147.32812 lineto -closepath -374.0547 -151.45312 moveto -374.0547 -152.96875 lineto -373.59634 -152.73958 373.1224 -152.56511 372.6328 -152.44531 curveto -372.14322 -152.32552 371.6328 -152.26562 371.10156 -152.26562 curveto -370.29947 -152.26562 369.6979 -152.39062 369.29688 -152.64062 curveto -368.89584 -152.89062 368.6953 -153.26042 368.6953 -153.75 curveto -368.6953 -154.125 368.83853 -154.41927 369.125 -154.63281 curveto -369.41147 -154.84636 369.98697 -155.05208 370.85156 -155.25 curveto -371.41406 -155.35938 lineto -372.5599 -155.60938 373.375 -155.95833 373.85938 -156.40625 curveto -374.34375 -156.85417 374.58594 -157.47917 374.58594 -158.28125 curveto -374.58594 -159.19792 374.22397 -159.92188 373.5 -160.45312 curveto -372.77603 -160.98438 371.78384 -161.25 370.52344 -161.25 curveto -369.9922 -161.25 369.4401 -161.20052 368.8672 -161.10156 curveto -368.29428 -161.00261 367.6901 -160.84895 367.0547 -160.64062 curveto -367.0547 -158.96875 lineto -367.65884 -159.28125 368.25 -159.51562 368.82812 -159.67188 curveto -369.40625 -159.82812 369.98178 -159.90625 370.5547 -159.90625 curveto -371.3151 -159.90625 371.90103 -159.77605 372.3125 -159.51562 curveto -372.72397 -159.2552 372.9297 -158.88542 372.9297 -158.40625 curveto -372.9297 -157.96875 372.78125 -157.63281 372.48438 -157.39844 curveto -372.1875 -157.16406 371.53906 -156.9375 370.53906 -156.71875 curveto -369.97656 -156.59375 lineto -368.96616 -156.375 368.2396 -156.04948 367.79688 -155.61719 curveto -367.35416 -155.18489 367.1328 -154.58333 367.1328 -153.8125 curveto -367.1328 -152.89583 367.46094 -152.18489 368.1172 -151.67969 curveto -368.77344 -151.17448 369.70572 -150.92188 370.91406 -150.92188 curveto -371.5078 -150.92188 372.06772 -150.96614 372.59375 -151.05469 curveto -373.11978 -151.14323 373.60678 -151.27605 374.0547 -151.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -48.0 -441.0 moveto -218.5 -441.0 lineto -218.5 -471.0 lineto -48.0 -471.0 lineto -48.0 -441.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -171.0 moveto -650.5 -171.0 lineto -650.5 -197.0 lineto -507.5 -197.0 lineto -507.5 -171.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -427.04688 moveto -724.5703 -427.04688 723.66406 -427.1979 723.16406 -427.5 curveto -722.66406 -427.8021 722.41406 -428.3125 722.41406 -429.03125 curveto -722.41406 -429.60416 722.60156 -430.0599 722.97656 -430.39844 curveto -723.35156 -430.73697 723.8672 -430.90625 724.52344 -430.90625 curveto -725.41925 -430.90625 726.138 -430.58853 726.6797 -429.95312 curveto -727.2214 -429.31772 727.4922 -428.46875 727.4922 -427.40625 curveto -727.4922 -427.04688 lineto -725.8828 -427.04688 lineto -closepath -729.10156 -426.39062 moveto -729.10156 -432.0 lineto -727.4922 -432.0 lineto -727.4922 -430.5 lineto -727.1172 -431.10416 726.65625 -431.54688 726.1094 -431.82812 curveto -725.5625 -432.10938 724.888 -432.25 724.08594 -432.25 curveto -723.0755 -432.25 722.27344 -431.96875 721.6797 -431.40625 curveto -721.08594 -430.84375 720.78906 -430.08853 720.78906 -429.14062 curveto -720.78906 -428.02603 721.16144 -427.1875 721.90625 -426.625 curveto -722.65106 -426.0625 723.7578 -425.78125 725.22656 -425.78125 curveto -727.4922 -425.78125 lineto -727.4922 -425.625 lineto -727.4922 -424.8854 727.2474 -424.3125 726.7578 -423.90625 curveto -726.26825 -423.5 725.58075 -423.29688 724.6953 -423.29688 curveto -724.1328 -423.29688 723.58594 -423.36197 723.0547 -423.4922 curveto -722.52344 -423.6224 722.0078 -423.8229 721.5078 -424.09375 curveto -721.5078 -422.60938 lineto -722.10156 -422.38022 722.67706 -422.20834 723.2344 -422.09375 curveto -723.7917 -421.97916 724.33594 -421.92188 724.8672 -421.92188 curveto -726.2839 -421.92188 727.34375 -422.29166 728.0469 -423.03125 curveto -728.75 -423.77084 729.10156 -424.89062 729.10156 -426.39062 curveto -closepath -737.1172 -423.67188 moveto -736.9297 -423.56772 736.7292 -423.4896 736.5156 -423.4375 curveto -736.30206 -423.3854 736.0651 -423.35938 735.8047 -423.35938 curveto -734.89844 -423.35938 734.2005 -423.65625 733.71094 -424.25 curveto -733.2214 -424.84375 732.97656 -425.6979 732.97656 -426.8125 curveto -732.97656 -432.0 lineto -731.35156 -432.0 lineto -731.35156 -422.15625 lineto -732.97656 -422.15625 lineto -732.97656 -423.6875 lineto -733.3099 -423.08334 733.75 -422.63803 734.2969 -422.35156 curveto -734.84375 -422.0651 735.5078 -421.92188 736.28906 -421.92188 curveto -736.39325 -421.92188 736.513 -421.9297 736.64844 -421.9453 curveto -736.7839 -421.96094 736.9349 -421.97916 737.10156 -422.0 curveto -737.1172 -423.67188 lineto -closepath -745.8828 -426.96875 moveto -745.8828 -425.79166 745.6406 -424.88022 745.15625 -424.23438 curveto -744.6719 -423.58853 743.9974 -423.26562 743.1328 -423.26562 curveto -742.2578 -423.26562 741.5781 -423.58853 741.09375 -424.23438 curveto -740.6094 -424.88022 740.3672 -425.79166 740.3672 -426.96875 curveto -740.3672 -428.1354 740.6094 -429.03906 741.09375 -429.6797 curveto -741.5781 -430.3203 742.2578 -430.64062 743.1328 -430.64062 curveto -743.9974 -430.64062 744.6719 -430.3203 745.15625 -429.6797 curveto -745.6406 -429.03906 745.8828 -428.1354 745.8828 -426.96875 curveto -closepath -747.5078 -430.78125 moveto -747.5078 -432.45834 747.13544 -433.70572 746.3906 -434.52344 curveto -745.6458 -435.34116 744.5026 -435.75 742.96094 -435.75 curveto -742.39844 -435.75 741.86456 -435.70572 741.3594 -435.6172 curveto -740.8542 -435.52866 740.3672 -435.39584 739.89844 -435.21875 curveto -739.89844 -433.65625 lineto -740.3672 -433.91666 740.8333 -434.10678 741.2969 -434.22656 curveto -741.76044 -434.34634 742.23175 -434.40625 742.71094 -434.40625 curveto -743.77344 -434.40625 744.5677 -434.13022 745.09375 -433.57812 curveto -745.6198 -433.02603 745.8828 -432.1875 745.8828 -431.0625 curveto -745.8828 -430.26562 lineto -745.5495 -430.84897 745.1224 -431.28384 744.60156 -431.5703 curveto -744.08075 -431.85678 743.45575 -432.0 742.72656 -432.0 curveto -741.51825 -432.0 740.5469 -431.53906 739.8125 -430.6172 curveto -739.0781 -429.6953 738.71094 -428.47916 738.71094 -426.96875 curveto -738.71094 -425.4375 739.0781 -424.21353 739.8125 -423.29688 curveto -740.5469 -422.38022 741.51825 -421.92188 742.72656 -421.92188 curveto -743.45575 -421.92188 744.08075 -422.0651 744.60156 -422.35156 curveto -745.1224 -422.63803 745.5495 -423.0729 745.8828 -423.65625 curveto -745.8828 -422.15625 lineto -747.5078 -422.15625 lineto -747.5078 -430.78125 lineto -closepath -752.2578 -420.34375 moveto -752.2578 -425.26562 lineto -754.4922 -425.26562 lineto -755.3151 -425.26562 755.9531 -425.0521 756.40625 -424.625 curveto -756.8594 -424.1979 757.08594 -423.58853 757.08594 -422.79688 curveto -757.08594 -422.01562 756.8594 -421.41147 756.40625 -420.98438 curveto -755.9531 -420.55728 755.3151 -420.34375 754.4922 -420.34375 curveto -752.2578 -420.34375 lineto -closepath -750.47656 -418.875 moveto -754.4922 -418.875 lineto -755.96094 -418.875 757.0703 -419.20834 757.8203 -419.875 curveto -758.5703 -420.54166 758.9453 -421.51562 758.9453 -422.79688 curveto -758.9453 -424.08853 758.5703 -425.0651 757.8203 -425.72656 curveto -757.0703 -426.38803 755.96094 -426.71875 754.4922 -426.71875 curveto -752.2578 -426.71875 lineto -752.2578 -432.0 lineto -750.47656 -432.0 lineto -750.47656 -418.875 lineto -closepath -765.22656 -423.29688 moveto -764.35156 -423.29688 763.66406 -423.6328 763.16406 -424.3047 curveto -762.66406 -424.97656 762.41406 -425.90625 762.41406 -427.09375 curveto -762.41406 -428.27084 762.66406 -429.1979 763.16406 -429.875 curveto -763.66406 -430.5521 764.35156 -430.89062 765.22656 -430.89062 curveto -766.08075 -430.89062 766.76044 -430.54947 767.2656 -429.8672 curveto -767.7708 -429.1849 768.02344 -428.2604 768.02344 -427.09375 curveto -768.02344 -425.9271 767.7708 -425.0026 767.2656 -424.3203 curveto -766.76044 -423.63803 766.08075 -423.29688 765.22656 -423.29688 curveto -closepath -765.22656 -421.92188 moveto -766.6328 -421.92188 767.737 -422.3776 768.53906 -423.28906 curveto -769.3411 -424.20053 769.7422 -425.46875 769.7422 -427.09375 curveto -769.7422 -428.6979 769.3411 -429.95834 768.53906 -430.875 curveto -767.737 -431.79166 766.6328 -432.25 765.22656 -432.25 curveto -763.8099 -432.25 762.7031 -431.79166 761.90625 -430.875 curveto -761.1094 -429.95834 760.71094 -428.6979 760.71094 -427.09375 curveto -760.71094 -425.46875 761.1094 -424.20053 761.90625 -423.28906 curveto -762.7031 -422.3776 763.8099 -421.92188 765.22656 -421.92188 curveto -closepath -778.6797 -422.45312 moveto -778.6797 -423.96875 lineto -778.2214 -423.7396 777.7474 -423.5651 777.2578 -423.4453 curveto -776.76825 -423.32553 776.2578 -423.26562 775.72656 -423.26562 curveto -774.9245 -423.26562 774.32294 -423.39062 773.9219 -423.64062 curveto -773.5208 -423.89062 773.3203 -424.2604 773.3203 -424.75 curveto -773.3203 -425.125 773.46356 -425.41928 773.75 -425.6328 curveto -774.03644 -425.84634 774.612 -426.0521 775.47656 -426.25 curveto -776.03906 -426.35938 lineto -777.1849 -426.60938 778.0 -426.95834 778.4844 -427.40625 curveto -778.96875 -427.85416 779.21094 -428.47916 779.21094 -429.28125 curveto -779.21094 -430.1979 778.84894 -430.92188 778.125 -431.45312 curveto -777.40106 -431.98438 776.4089 -432.25 775.14844 -432.25 curveto -774.6172 -432.25 774.0651 -432.20053 773.4922 -432.10156 curveto -772.91925 -432.0026 772.3151 -431.84897 771.6797 -431.64062 curveto -771.6797 -429.96875 lineto -772.2839 -430.28125 772.875 -430.51562 773.4531 -430.67188 curveto -774.03125 -430.82812 774.60675 -430.90625 775.1797 -430.90625 curveto -775.9401 -430.90625 776.52606 -430.77603 776.9375 -430.51562 curveto -777.34894 -430.25522 777.5547 -429.8854 777.5547 -429.40625 curveto -777.5547 -428.96875 777.40625 -428.6328 777.1094 -428.39844 curveto -776.8125 -428.16406 776.16406 -427.9375 775.16406 -427.71875 curveto -774.60156 -427.59375 lineto -773.5911 -427.375 772.86456 -427.04947 772.4219 -426.6172 curveto -771.9792 -426.1849 771.7578 -425.58334 771.7578 -424.8125 curveto -771.7578 -423.89584 772.08594 -423.1849 772.7422 -422.6797 curveto -773.39844 -422.17447 774.33075 -421.92188 775.53906 -421.92188 curveto -776.1328 -421.92188 776.6927 -421.96616 777.21875 -422.0547 curveto -777.7448 -422.14322 778.23175 -422.27603 778.6797 -422.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -231.0 moveto -650.5 -231.0 lineto -650.5 -257.0 lineto -507.5 -257.0 lineto -507.5 -231.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -291.0 moveto -650.5 -291.0 lineto -650.5 -317.0 lineto -507.5 -317.0 lineto -507.5 -291.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -351.0 moveto -650.5 -351.0 lineto -650.5 -377.0 lineto -507.5 -377.0 lineto -507.5 -351.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -501.0 moveto -650.5 -501.0 lineto -650.5 -527.0 lineto -507.5 -527.0 lineto -507.5 -501.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -781.0 moveto -650.5 -781.0 lineto -650.5 -807.0 lineto -507.5 -807.0 lineto -507.5 -781.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -507.5 -722.0 moveto -650.5 -722.0 lineto -650.5 -748.0 lineto -507.5 -748.0 lineto -507.5 -722.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -506.5 moveto -788.5 -506.5 lineto -788.5 -530.5 lineto -711.5 -530.5 lineto -711.5 -506.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -478.0 moveto -788.5 -478.0 lineto -788.5 -502.0 lineto -711.5 -502.0 lineto -711.5 -478.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -535.0 moveto -788.5 -535.0 lineto -788.5 -559.0 lineto -711.5 -559.0 lineto -711.5 -535.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -709.5 moveto -788.5 -709.5 lineto -788.5 -733.5 lineto -711.5 -733.5 lineto -711.5 -709.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -681.0 moveto -788.5 -681.0 lineto -788.5 -705.0 lineto -711.5 -705.0 lineto -711.5 -681.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -738.0 moveto -788.5 -738.0 lineto -788.5 -762.0 lineto -711.5 -762.0 lineto -711.5 -738.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -795.5 moveto -788.5 -795.5 lineto -788.5 -819.5 lineto -711.5 -819.5 lineto -711.5 -795.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -767.0 moveto -788.5 -767.0 lineto -788.5 -791.0 lineto -711.5 -791.0 lineto -711.5 -767.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -824.0 moveto -788.5 -824.0 lineto -788.5 -848.0 lineto -711.5 -848.0 lineto -711.5 -824.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -129.5 moveto -788.5 -129.5 lineto -788.5 -153.5 lineto -711.5 -153.5 lineto -711.5 -129.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -101.0 moveto -788.5 -101.0 lineto -788.5 -125.0 lineto -711.5 -125.0 lineto -711.5 -101.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -158.0 moveto -788.5 -158.0 lineto -788.5 -182.0 lineto -711.5 -182.0 lineto -711.5 -158.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -215.5 moveto -788.5 -215.5 lineto -788.5 -239.5 lineto -711.5 -239.5 lineto -711.5 -215.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -187.0 moveto -788.5 -187.0 lineto -788.5 -211.0 lineto -711.5 -211.0 lineto -711.5 -187.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -244.0 moveto -788.5 -244.0 lineto -788.5 -268.0 lineto -711.5 -268.0 lineto -711.5 -244.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -300.5 moveto -788.5 -300.5 lineto -788.5 -324.5 lineto -711.5 -324.5 lineto -711.5 -300.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -272.0 moveto -788.5 -272.0 lineto -788.5 -296.0 lineto -711.5 -296.0 lineto -711.5 -272.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -329.0 moveto -788.5 -329.0 lineto -788.5 -353.0 lineto -711.5 -353.0 lineto -711.5 -329.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -386.5 moveto -788.5 -386.5 lineto -788.5 -410.5 lineto -711.5 -410.5 lineto -711.5 -386.5 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -358.0 moveto -788.5 -358.0 lineto -788.5 -382.0 lineto -711.5 -382.0 lineto -711.5 -358.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -711.5 -415.0 moveto -788.5 -415.0 lineto -788.5 -439.0 lineto -711.5 -439.0 lineto -711.5 -415.0 lineto -closepath -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -171.04688 moveto -724.5703 -171.04688 723.66406 -171.19792 723.16406 -171.5 curveto -722.66406 -171.80208 722.41406 -172.3125 722.41406 -173.03125 curveto -722.41406 -173.60417 722.60156 -174.05989 722.97656 -174.39844 curveto -723.35156 -174.73698 723.8672 -174.90625 724.52344 -174.90625 curveto -725.41925 -174.90625 726.138 -174.58855 726.6797 -173.95312 curveto -727.2214 -173.3177 727.4922 -172.46875 727.4922 -171.40625 curveto -727.4922 -171.04688 lineto -725.8828 -171.04688 lineto -closepath -729.10156 -170.39062 moveto -729.10156 -176.0 lineto -727.4922 -176.0 lineto -727.4922 -174.5 lineto -727.1172 -175.10417 726.65625 -175.54688 726.1094 -175.82812 curveto -725.5625 -176.10938 724.888 -176.25 724.08594 -176.25 curveto -723.0755 -176.25 722.27344 -175.96875 721.6797 -175.40625 curveto -721.08594 -174.84375 720.78906 -174.08855 720.78906 -173.14062 curveto -720.78906 -172.02605 721.16144 -171.1875 721.90625 -170.625 curveto -722.65106 -170.0625 723.7578 -169.78125 725.22656 -169.78125 curveto -727.4922 -169.78125 lineto -727.4922 -169.625 lineto -727.4922 -168.88542 727.2474 -168.3125 726.7578 -167.90625 curveto -726.26825 -167.5 725.58075 -167.29688 724.6953 -167.29688 curveto -724.1328 -167.29688 723.58594 -167.36198 723.0547 -167.49219 curveto -722.52344 -167.62239 722.0078 -167.82292 721.5078 -168.09375 curveto -721.5078 -166.60938 lineto -722.10156 -166.3802 722.67706 -166.20833 723.2344 -166.09375 curveto -723.7917 -165.97917 724.33594 -165.92188 724.8672 -165.92188 curveto -726.2839 -165.92188 727.34375 -166.29167 728.0469 -167.03125 curveto -728.75 -167.77083 729.10156 -168.89062 729.10156 -170.39062 curveto -closepath -737.1172 -167.67188 moveto -736.9297 -167.5677 736.7292 -167.48958 736.5156 -167.4375 curveto -736.30206 -167.38542 736.0651 -167.35938 735.8047 -167.35938 curveto -734.89844 -167.35938 734.2005 -167.65625 733.71094 -168.25 curveto -733.2214 -168.84375 732.97656 -169.69792 732.97656 -170.8125 curveto -732.97656 -176.0 lineto -731.35156 -176.0 lineto -731.35156 -166.15625 lineto -732.97656 -166.15625 lineto -732.97656 -167.6875 lineto -733.3099 -167.08333 733.75 -166.63802 734.2969 -166.35156 curveto -734.84375 -166.06511 735.5078 -165.92188 736.28906 -165.92188 curveto -736.39325 -165.92188 736.513 -165.92969 736.64844 -165.94531 curveto -736.7839 -165.96094 736.9349 -165.97917 737.10156 -166.0 curveto -737.1172 -167.67188 lineto -closepath -745.8828 -170.96875 moveto -745.8828 -169.79167 745.6406 -168.8802 745.15625 -168.23438 curveto -744.6719 -167.58855 743.9974 -167.26562 743.1328 -167.26562 curveto -742.2578 -167.26562 741.5781 -167.58855 741.09375 -168.23438 curveto -740.6094 -168.8802 740.3672 -169.79167 740.3672 -170.96875 curveto -740.3672 -172.13542 740.6094 -173.03906 741.09375 -173.67969 curveto -741.5781 -174.32031 742.2578 -174.64062 743.1328 -174.64062 curveto -743.9974 -174.64062 744.6719 -174.32031 745.15625 -173.67969 curveto -745.6406 -173.03906 745.8828 -172.13542 745.8828 -170.96875 curveto -closepath -747.5078 -174.78125 moveto -747.5078 -176.45833 747.13544 -177.70573 746.3906 -178.52344 curveto -745.6458 -179.34114 744.5026 -179.75 742.96094 -179.75 curveto -742.39844 -179.75 741.86456 -179.70573 741.3594 -179.61719 curveto -740.8542 -179.52864 740.3672 -179.39583 739.89844 -179.21875 curveto -739.89844 -177.65625 lineto -740.3672 -177.91667 740.8333 -178.10677 741.2969 -178.22656 curveto -741.76044 -178.34636 742.23175 -178.40625 742.71094 -178.40625 curveto -743.77344 -178.40625 744.5677 -178.1302 745.09375 -177.57812 curveto -745.6198 -177.02605 745.8828 -176.1875 745.8828 -175.0625 curveto -745.8828 -174.26562 lineto -745.5495 -174.84895 745.1224 -175.28386 744.60156 -175.57031 curveto -744.08075 -175.85677 743.45575 -176.0 742.72656 -176.0 curveto -741.51825 -176.0 740.5469 -175.53906 739.8125 -174.61719 curveto -739.0781 -173.69531 738.71094 -172.47917 738.71094 -170.96875 curveto -738.71094 -169.4375 739.0781 -168.21355 739.8125 -167.29688 curveto -740.5469 -166.3802 741.51825 -165.92188 742.72656 -165.92188 curveto -743.45575 -165.92188 744.08075 -166.06511 744.60156 -166.35156 curveto -745.1224 -166.63802 745.5495 -167.07292 745.8828 -167.65625 curveto -745.8828 -166.15625 lineto -747.5078 -166.15625 lineto -747.5078 -174.78125 lineto -closepath -752.2578 -164.34375 moveto -752.2578 -169.26562 lineto -754.4922 -169.26562 lineto -755.3151 -169.26562 755.9531 -169.05208 756.40625 -168.625 curveto -756.8594 -168.19792 757.08594 -167.58855 757.08594 -166.79688 curveto -757.08594 -166.01562 756.8594 -165.41145 756.40625 -164.98438 curveto -755.9531 -164.5573 755.3151 -164.34375 754.4922 -164.34375 curveto -752.2578 -164.34375 lineto -closepath -750.47656 -162.875 moveto -754.4922 -162.875 lineto -755.96094 -162.875 757.0703 -163.20833 757.8203 -163.875 curveto -758.5703 -164.54167 758.9453 -165.51562 758.9453 -166.79688 curveto -758.9453 -168.08855 758.5703 -169.06511 757.8203 -169.72656 curveto -757.0703 -170.38802 755.96094 -170.71875 754.4922 -170.71875 curveto -752.2578 -170.71875 lineto -752.2578 -176.0 lineto -750.47656 -176.0 lineto -750.47656 -162.875 lineto -closepath -765.22656 -167.29688 moveto -764.35156 -167.29688 763.66406 -167.63281 763.16406 -168.30469 curveto -762.66406 -168.97656 762.41406 -169.90625 762.41406 -171.09375 curveto -762.41406 -172.27083 762.66406 -173.19792 763.16406 -173.875 curveto -763.66406 -174.55208 764.35156 -174.89062 765.22656 -174.89062 curveto -766.08075 -174.89062 766.76044 -174.54948 767.2656 -173.86719 curveto -767.7708 -173.18489 768.02344 -172.26042 768.02344 -171.09375 curveto -768.02344 -169.92708 767.7708 -169.00261 767.2656 -168.32031 curveto -766.76044 -167.63802 766.08075 -167.29688 765.22656 -167.29688 curveto -closepath -765.22656 -165.92188 moveto -766.6328 -165.92188 767.737 -166.37761 768.53906 -167.28906 curveto -769.3411 -168.20052 769.7422 -169.46875 769.7422 -171.09375 curveto -769.7422 -172.69792 769.3411 -173.95833 768.53906 -174.875 curveto -767.737 -175.79167 766.6328 -176.25 765.22656 -176.25 curveto -763.8099 -176.25 762.7031 -175.79167 761.90625 -174.875 curveto -761.1094 -173.95833 760.71094 -172.69792 760.71094 -171.09375 curveto -760.71094 -169.46875 761.1094 -168.20052 761.90625 -167.28906 curveto -762.7031 -166.37761 763.8099 -165.92188 765.22656 -165.92188 curveto -closepath -778.6797 -166.45312 moveto -778.6797 -167.96875 lineto -778.2214 -167.73958 777.7474 -167.56511 777.2578 -167.44531 curveto -776.76825 -167.32552 776.2578 -167.26562 775.72656 -167.26562 curveto -774.9245 -167.26562 774.32294 -167.39062 773.9219 -167.64062 curveto -773.5208 -167.89062 773.3203 -168.26042 773.3203 -168.75 curveto -773.3203 -169.125 773.46356 -169.41927 773.75 -169.63281 curveto -774.03644 -169.84636 774.612 -170.05208 775.47656 -170.25 curveto -776.03906 -170.35938 lineto -777.1849 -170.60938 778.0 -170.95833 778.4844 -171.40625 curveto -778.96875 -171.85417 779.21094 -172.47917 779.21094 -173.28125 curveto -779.21094 -174.19792 778.84894 -174.92188 778.125 -175.45312 curveto -777.40106 -175.98438 776.4089 -176.25 775.14844 -176.25 curveto -774.6172 -176.25 774.0651 -176.20052 773.4922 -176.10156 curveto -772.91925 -176.00261 772.3151 -175.84895 771.6797 -175.64062 curveto -771.6797 -173.96875 lineto -772.2839 -174.28125 772.875 -174.51562 773.4531 -174.67188 curveto -774.03125 -174.82812 774.60675 -174.90625 775.1797 -174.90625 curveto -775.9401 -174.90625 776.52606 -174.77605 776.9375 -174.51562 curveto -777.34894 -174.2552 777.5547 -173.88542 777.5547 -173.40625 curveto -777.5547 -172.96875 777.40625 -172.63281 777.1094 -172.39844 curveto -776.8125 -172.16406 776.16406 -171.9375 775.16406 -171.71875 curveto -774.60156 -171.59375 lineto -773.5911 -171.375 772.86456 -171.04948 772.4219 -170.61719 curveto -771.9792 -170.18489 771.7578 -169.58333 771.7578 -168.8125 curveto -771.7578 -167.89583 772.08594 -167.18489 772.7422 -166.67969 curveto -773.39844 -166.17448 774.33075 -165.92188 775.53906 -165.92188 curveto -776.1328 -165.92188 776.6927 -165.96614 777.21875 -166.05469 curveto -777.7448 -166.14323 778.23175 -166.27605 778.6797 -166.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -258.04688 moveto -724.5703 -258.04688 723.66406 -258.1979 723.16406 -258.5 curveto -722.66406 -258.8021 722.41406 -259.3125 722.41406 -260.03125 curveto -722.41406 -260.60416 722.60156 -261.0599 722.97656 -261.39844 curveto -723.35156 -261.73697 723.8672 -261.90625 724.52344 -261.90625 curveto -725.41925 -261.90625 726.138 -261.58853 726.6797 -260.95312 curveto -727.2214 -260.31772 727.4922 -259.46875 727.4922 -258.40625 curveto -727.4922 -258.04688 lineto -725.8828 -258.04688 lineto -closepath -729.10156 -257.39062 moveto -729.10156 -263.0 lineto -727.4922 -263.0 lineto -727.4922 -261.5 lineto -727.1172 -262.10416 726.65625 -262.54688 726.1094 -262.82812 curveto -725.5625 -263.10938 724.888 -263.25 724.08594 -263.25 curveto -723.0755 -263.25 722.27344 -262.96875 721.6797 -262.40625 curveto -721.08594 -261.84375 720.78906 -261.08853 720.78906 -260.14062 curveto -720.78906 -259.02603 721.16144 -258.1875 721.90625 -257.625 curveto -722.65106 -257.0625 723.7578 -256.78125 725.22656 -256.78125 curveto -727.4922 -256.78125 lineto -727.4922 -256.625 lineto -727.4922 -255.88542 727.2474 -255.3125 726.7578 -254.90625 curveto -726.26825 -254.5 725.58075 -254.29688 724.6953 -254.29688 curveto -724.1328 -254.29688 723.58594 -254.36198 723.0547 -254.49219 curveto -722.52344 -254.62239 722.0078 -254.82292 721.5078 -255.09375 curveto -721.5078 -253.60938 lineto -722.10156 -253.3802 722.67706 -253.20833 723.2344 -253.09375 curveto -723.7917 -252.97917 724.33594 -252.92188 724.8672 -252.92188 curveto -726.2839 -252.92188 727.34375 -253.29167 728.0469 -254.03125 curveto -728.75 -254.77083 729.10156 -255.89062 729.10156 -257.39062 curveto -closepath -737.1172 -254.67188 moveto -736.9297 -254.5677 736.7292 -254.48958 736.5156 -254.4375 curveto -736.30206 -254.38542 736.0651 -254.35938 735.8047 -254.35938 curveto -734.89844 -254.35938 734.2005 -254.65625 733.71094 -255.25 curveto -733.2214 -255.84375 732.97656 -256.6979 732.97656 -257.8125 curveto -732.97656 -263.0 lineto -731.35156 -263.0 lineto -731.35156 -253.15625 lineto -732.97656 -253.15625 lineto -732.97656 -254.6875 lineto -733.3099 -254.08333 733.75 -253.63802 734.2969 -253.35156 curveto -734.84375 -253.06511 735.5078 -252.92188 736.28906 -252.92188 curveto -736.39325 -252.92188 736.513 -252.92969 736.64844 -252.94531 curveto -736.7839 -252.96094 736.9349 -252.97917 737.10156 -253.0 curveto -737.1172 -254.67188 lineto -closepath -745.8828 -257.96875 moveto -745.8828 -256.79166 745.6406 -255.8802 745.15625 -255.23438 curveto -744.6719 -254.58855 743.9974 -254.26562 743.1328 -254.26562 curveto -742.2578 -254.26562 741.5781 -254.58855 741.09375 -255.23438 curveto -740.6094 -255.8802 740.3672 -256.79166 740.3672 -257.96875 curveto -740.3672 -259.1354 740.6094 -260.03906 741.09375 -260.6797 curveto -741.5781 -261.3203 742.2578 -261.64062 743.1328 -261.64062 curveto -743.9974 -261.64062 744.6719 -261.3203 745.15625 -260.6797 curveto -745.6406 -260.03906 745.8828 -259.1354 745.8828 -257.96875 curveto -closepath -747.5078 -261.78125 moveto -747.5078 -263.45834 747.13544 -264.70572 746.3906 -265.52344 curveto -745.6458 -266.34116 744.5026 -266.75 742.96094 -266.75 curveto -742.39844 -266.75 741.86456 -266.70572 741.3594 -266.6172 curveto -740.8542 -266.52866 740.3672 -266.39584 739.89844 -266.21875 curveto -739.89844 -264.65625 lineto -740.3672 -264.91666 740.8333 -265.10678 741.2969 -265.22656 curveto -741.76044 -265.34634 742.23175 -265.40625 742.71094 -265.40625 curveto -743.77344 -265.40625 744.5677 -265.13022 745.09375 -264.57812 curveto -745.6198 -264.02603 745.8828 -263.1875 745.8828 -262.0625 curveto -745.8828 -261.26562 lineto -745.5495 -261.84897 745.1224 -262.28384 744.60156 -262.5703 curveto -744.08075 -262.85678 743.45575 -263.0 742.72656 -263.0 curveto -741.51825 -263.0 740.5469 -262.53906 739.8125 -261.6172 curveto -739.0781 -260.6953 738.71094 -259.47916 738.71094 -257.96875 curveto -738.71094 -256.4375 739.0781 -255.21355 739.8125 -254.29688 curveto -740.5469 -253.3802 741.51825 -252.92188 742.72656 -252.92188 curveto -743.45575 -252.92188 744.08075 -253.06511 744.60156 -253.35156 curveto -745.1224 -253.63802 745.5495 -254.07292 745.8828 -254.65625 curveto -745.8828 -253.15625 lineto -747.5078 -253.15625 lineto -747.5078 -261.78125 lineto -closepath -752.2578 -251.34375 moveto -752.2578 -256.26562 lineto -754.4922 -256.26562 lineto -755.3151 -256.26562 755.9531 -256.0521 756.40625 -255.625 curveto -756.8594 -255.19792 757.08594 -254.58855 757.08594 -253.79688 curveto -757.08594 -253.01562 756.8594 -252.41145 756.40625 -251.98438 curveto -755.9531 -251.5573 755.3151 -251.34375 754.4922 -251.34375 curveto -752.2578 -251.34375 lineto -closepath -750.47656 -249.875 moveto -754.4922 -249.875 lineto -755.96094 -249.875 757.0703 -250.20833 757.8203 -250.875 curveto -758.5703 -251.54167 758.9453 -252.51562 758.9453 -253.79688 curveto -758.9453 -255.08855 758.5703 -256.0651 757.8203 -256.72656 curveto -757.0703 -257.38803 755.96094 -257.71875 754.4922 -257.71875 curveto -752.2578 -257.71875 lineto -752.2578 -263.0 lineto -750.47656 -263.0 lineto -750.47656 -249.875 lineto -closepath -765.22656 -254.29688 moveto -764.35156 -254.29688 763.66406 -254.63281 763.16406 -255.30469 curveto -762.66406 -255.97656 762.41406 -256.90625 762.41406 -258.09375 curveto -762.41406 -259.27084 762.66406 -260.1979 763.16406 -260.875 curveto -763.66406 -261.5521 764.35156 -261.89062 765.22656 -261.89062 curveto -766.08075 -261.89062 766.76044 -261.54947 767.2656 -260.8672 curveto -767.7708 -260.1849 768.02344 -259.2604 768.02344 -258.09375 curveto -768.02344 -256.9271 767.7708 -256.0026 767.2656 -255.32031 curveto -766.76044 -254.63802 766.08075 -254.29688 765.22656 -254.29688 curveto -closepath -765.22656 -252.92188 moveto -766.6328 -252.92188 767.737 -253.37761 768.53906 -254.28906 curveto -769.3411 -255.20052 769.7422 -256.46875 769.7422 -258.09375 curveto -769.7422 -259.6979 769.3411 -260.95834 768.53906 -261.875 curveto -767.737 -262.79166 766.6328 -263.25 765.22656 -263.25 curveto -763.8099 -263.25 762.7031 -262.79166 761.90625 -261.875 curveto -761.1094 -260.95834 760.71094 -259.6979 760.71094 -258.09375 curveto -760.71094 -256.46875 761.1094 -255.20052 761.90625 -254.28906 curveto -762.7031 -253.37761 763.8099 -252.92188 765.22656 -252.92188 curveto -closepath -778.6797 -253.45312 moveto -778.6797 -254.96875 lineto -778.2214 -254.73958 777.7474 -254.56511 777.2578 -254.44531 curveto -776.76825 -254.32552 776.2578 -254.26562 775.72656 -254.26562 curveto -774.9245 -254.26562 774.32294 -254.39062 773.9219 -254.64062 curveto -773.5208 -254.89062 773.3203 -255.26042 773.3203 -255.75 curveto -773.3203 -256.125 773.46356 -256.41928 773.75 -256.6328 curveto -774.03644 -256.84634 774.612 -257.0521 775.47656 -257.25 curveto -776.03906 -257.35938 lineto -777.1849 -257.60938 778.0 -257.95834 778.4844 -258.40625 curveto -778.96875 -258.85416 779.21094 -259.47916 779.21094 -260.28125 curveto -779.21094 -261.1979 778.84894 -261.92188 778.125 -262.45312 curveto -777.40106 -262.98438 776.4089 -263.25 775.14844 -263.25 curveto -774.6172 -263.25 774.0651 -263.20053 773.4922 -263.10156 curveto -772.91925 -263.0026 772.3151 -262.84897 771.6797 -262.64062 curveto -771.6797 -260.96875 lineto -772.2839 -261.28125 772.875 -261.51562 773.4531 -261.67188 curveto -774.03125 -261.82812 774.60675 -261.90625 775.1797 -261.90625 curveto -775.9401 -261.90625 776.52606 -261.77603 776.9375 -261.51562 curveto -777.34894 -261.25522 777.5547 -260.8854 777.5547 -260.40625 curveto -777.5547 -259.96875 777.40625 -259.6328 777.1094 -259.39844 curveto -776.8125 -259.16406 776.16406 -258.9375 775.16406 -258.71875 curveto -774.60156 -258.59375 lineto -773.5911 -258.375 772.86456 -258.04947 772.4219 -257.6172 curveto -771.9792 -257.1849 771.7578 -256.58334 771.7578 -255.8125 curveto -771.7578 -254.89583 772.08594 -254.18489 772.7422 -253.67969 curveto -773.39844 -253.17448 774.33075 -252.92188 775.53906 -252.92188 curveto -776.1328 -252.92188 776.6927 -252.96614 777.21875 -253.05469 curveto -777.7448 -253.14323 778.23175 -253.27605 778.6797 -253.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -343.04688 moveto -724.5703 -343.04688 723.66406 -343.1979 723.16406 -343.5 curveto -722.66406 -343.8021 722.41406 -344.3125 722.41406 -345.03125 curveto -722.41406 -345.60416 722.60156 -346.0599 722.97656 -346.39844 curveto -723.35156 -346.73697 723.8672 -346.90625 724.52344 -346.90625 curveto -725.41925 -346.90625 726.138 -346.58853 726.6797 -345.95312 curveto -727.2214 -345.31772 727.4922 -344.46875 727.4922 -343.40625 curveto -727.4922 -343.04688 lineto -725.8828 -343.04688 lineto -closepath -729.10156 -342.39062 moveto -729.10156 -348.0 lineto -727.4922 -348.0 lineto -727.4922 -346.5 lineto -727.1172 -347.10416 726.65625 -347.54688 726.1094 -347.82812 curveto -725.5625 -348.10938 724.888 -348.25 724.08594 -348.25 curveto -723.0755 -348.25 722.27344 -347.96875 721.6797 -347.40625 curveto -721.08594 -346.84375 720.78906 -346.08853 720.78906 -345.14062 curveto -720.78906 -344.02603 721.16144 -343.1875 721.90625 -342.625 curveto -722.65106 -342.0625 723.7578 -341.78125 725.22656 -341.78125 curveto -727.4922 -341.78125 lineto -727.4922 -341.625 lineto -727.4922 -340.8854 727.2474 -340.3125 726.7578 -339.90625 curveto -726.26825 -339.5 725.58075 -339.29688 724.6953 -339.29688 curveto -724.1328 -339.29688 723.58594 -339.36197 723.0547 -339.4922 curveto -722.52344 -339.6224 722.0078 -339.8229 721.5078 -340.09375 curveto -721.5078 -338.60938 lineto -722.10156 -338.38022 722.67706 -338.20834 723.2344 -338.09375 curveto -723.7917 -337.97916 724.33594 -337.92188 724.8672 -337.92188 curveto -726.2839 -337.92188 727.34375 -338.29166 728.0469 -339.03125 curveto -728.75 -339.77084 729.10156 -340.89062 729.10156 -342.39062 curveto -closepath -737.1172 -339.67188 moveto -736.9297 -339.56772 736.7292 -339.4896 736.5156 -339.4375 curveto -736.30206 -339.3854 736.0651 -339.35938 735.8047 -339.35938 curveto -734.89844 -339.35938 734.2005 -339.65625 733.71094 -340.25 curveto -733.2214 -340.84375 732.97656 -341.6979 732.97656 -342.8125 curveto -732.97656 -348.0 lineto -731.35156 -348.0 lineto -731.35156 -338.15625 lineto -732.97656 -338.15625 lineto -732.97656 -339.6875 lineto -733.3099 -339.08334 733.75 -338.63803 734.2969 -338.35156 curveto -734.84375 -338.0651 735.5078 -337.92188 736.28906 -337.92188 curveto -736.39325 -337.92188 736.513 -337.9297 736.64844 -337.9453 curveto -736.7839 -337.96094 736.9349 -337.97916 737.10156 -338.0 curveto -737.1172 -339.67188 lineto -closepath -745.8828 -342.96875 moveto -745.8828 -341.79166 745.6406 -340.88022 745.15625 -340.23438 curveto -744.6719 -339.58853 743.9974 -339.26562 743.1328 -339.26562 curveto -742.2578 -339.26562 741.5781 -339.58853 741.09375 -340.23438 curveto -740.6094 -340.88022 740.3672 -341.79166 740.3672 -342.96875 curveto -740.3672 -344.1354 740.6094 -345.03906 741.09375 -345.6797 curveto -741.5781 -346.3203 742.2578 -346.64062 743.1328 -346.64062 curveto -743.9974 -346.64062 744.6719 -346.3203 745.15625 -345.6797 curveto -745.6406 -345.03906 745.8828 -344.1354 745.8828 -342.96875 curveto -closepath -747.5078 -346.78125 moveto -747.5078 -348.45834 747.13544 -349.70572 746.3906 -350.52344 curveto -745.6458 -351.34116 744.5026 -351.75 742.96094 -351.75 curveto -742.39844 -351.75 741.86456 -351.70572 741.3594 -351.6172 curveto -740.8542 -351.52866 740.3672 -351.39584 739.89844 -351.21875 curveto -739.89844 -349.65625 lineto -740.3672 -349.91666 740.8333 -350.10678 741.2969 -350.22656 curveto -741.76044 -350.34634 742.23175 -350.40625 742.71094 -350.40625 curveto -743.77344 -350.40625 744.5677 -350.13022 745.09375 -349.57812 curveto -745.6198 -349.02603 745.8828 -348.1875 745.8828 -347.0625 curveto -745.8828 -346.26562 lineto -745.5495 -346.84897 745.1224 -347.28384 744.60156 -347.5703 curveto -744.08075 -347.85678 743.45575 -348.0 742.72656 -348.0 curveto -741.51825 -348.0 740.5469 -347.53906 739.8125 -346.6172 curveto -739.0781 -345.6953 738.71094 -344.47916 738.71094 -342.96875 curveto -738.71094 -341.4375 739.0781 -340.21353 739.8125 -339.29688 curveto -740.5469 -338.38022 741.51825 -337.92188 742.72656 -337.92188 curveto -743.45575 -337.92188 744.08075 -338.0651 744.60156 -338.35156 curveto -745.1224 -338.63803 745.5495 -339.0729 745.8828 -339.65625 curveto -745.8828 -338.15625 lineto -747.5078 -338.15625 lineto -747.5078 -346.78125 lineto -closepath -752.2578 -336.34375 moveto -752.2578 -341.26562 lineto -754.4922 -341.26562 lineto -755.3151 -341.26562 755.9531 -341.0521 756.40625 -340.625 curveto -756.8594 -340.1979 757.08594 -339.58853 757.08594 -338.79688 curveto -757.08594 -338.01562 756.8594 -337.41147 756.40625 -336.98438 curveto -755.9531 -336.55728 755.3151 -336.34375 754.4922 -336.34375 curveto -752.2578 -336.34375 lineto -closepath -750.47656 -334.875 moveto -754.4922 -334.875 lineto -755.96094 -334.875 757.0703 -335.20834 757.8203 -335.875 curveto -758.5703 -336.54166 758.9453 -337.51562 758.9453 -338.79688 curveto -758.9453 -340.08853 758.5703 -341.0651 757.8203 -341.72656 curveto -757.0703 -342.38803 755.96094 -342.71875 754.4922 -342.71875 curveto -752.2578 -342.71875 lineto -752.2578 -348.0 lineto -750.47656 -348.0 lineto -750.47656 -334.875 lineto -closepath -765.22656 -339.29688 moveto -764.35156 -339.29688 763.66406 -339.6328 763.16406 -340.3047 curveto -762.66406 -340.97656 762.41406 -341.90625 762.41406 -343.09375 curveto -762.41406 -344.27084 762.66406 -345.1979 763.16406 -345.875 curveto -763.66406 -346.5521 764.35156 -346.89062 765.22656 -346.89062 curveto -766.08075 -346.89062 766.76044 -346.54947 767.2656 -345.8672 curveto -767.7708 -345.1849 768.02344 -344.2604 768.02344 -343.09375 curveto -768.02344 -341.9271 767.7708 -341.0026 767.2656 -340.3203 curveto -766.76044 -339.63803 766.08075 -339.29688 765.22656 -339.29688 curveto -closepath -765.22656 -337.92188 moveto -766.6328 -337.92188 767.737 -338.3776 768.53906 -339.28906 curveto -769.3411 -340.20053 769.7422 -341.46875 769.7422 -343.09375 curveto -769.7422 -344.6979 769.3411 -345.95834 768.53906 -346.875 curveto -767.737 -347.79166 766.6328 -348.25 765.22656 -348.25 curveto -763.8099 -348.25 762.7031 -347.79166 761.90625 -346.875 curveto -761.1094 -345.95834 760.71094 -344.6979 760.71094 -343.09375 curveto -760.71094 -341.46875 761.1094 -340.20053 761.90625 -339.28906 curveto -762.7031 -338.3776 763.8099 -337.92188 765.22656 -337.92188 curveto -closepath -778.6797 -338.45312 moveto -778.6797 -339.96875 lineto -778.2214 -339.7396 777.7474 -339.5651 777.2578 -339.4453 curveto -776.76825 -339.32553 776.2578 -339.26562 775.72656 -339.26562 curveto -774.9245 -339.26562 774.32294 -339.39062 773.9219 -339.64062 curveto -773.5208 -339.89062 773.3203 -340.2604 773.3203 -340.75 curveto -773.3203 -341.125 773.46356 -341.41928 773.75 -341.6328 curveto -774.03644 -341.84634 774.612 -342.0521 775.47656 -342.25 curveto -776.03906 -342.35938 lineto -777.1849 -342.60938 778.0 -342.95834 778.4844 -343.40625 curveto -778.96875 -343.85416 779.21094 -344.47916 779.21094 -345.28125 curveto -779.21094 -346.1979 778.84894 -346.92188 778.125 -347.45312 curveto -777.40106 -347.98438 776.4089 -348.25 775.14844 -348.25 curveto -774.6172 -348.25 774.0651 -348.20053 773.4922 -348.10156 curveto -772.91925 -348.0026 772.3151 -347.84897 771.6797 -347.64062 curveto -771.6797 -345.96875 lineto -772.2839 -346.28125 772.875 -346.51562 773.4531 -346.67188 curveto -774.03125 -346.82812 774.60675 -346.90625 775.1797 -346.90625 curveto -775.9401 -346.90625 776.52606 -346.77603 776.9375 -346.51562 curveto -777.34894 -346.25522 777.5547 -345.8854 777.5547 -345.40625 curveto -777.5547 -344.96875 777.40625 -344.6328 777.1094 -344.39844 curveto -776.8125 -344.16406 776.16406 -343.9375 775.16406 -343.71875 curveto -774.60156 -343.59375 lineto -773.5911 -343.375 772.86456 -343.04947 772.4219 -342.6172 curveto -771.9792 -342.1849 771.7578 -341.58334 771.7578 -340.8125 curveto -771.7578 -339.89584 772.08594 -339.1849 772.7422 -338.6797 curveto -773.39844 -338.17447 774.33075 -337.92188 775.53906 -337.92188 curveto -776.1328 -337.92188 776.6927 -337.96616 777.21875 -338.0547 curveto -777.7448 -338.14322 778.23175 -338.27603 778.6797 -338.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -548.0469 moveto -724.5703 -548.0469 723.66406 -548.19794 723.16406 -548.5 curveto -722.66406 -548.80206 722.41406 -549.3125 722.41406 -550.03125 curveto -722.41406 -550.6042 722.60156 -551.0599 722.97656 -551.39844 curveto -723.35156 -551.737 723.8672 -551.90625 724.52344 -551.90625 curveto -725.41925 -551.90625 726.138 -551.58856 726.6797 -550.9531 curveto -727.2214 -550.3177 727.4922 -549.46875 727.4922 -548.40625 curveto -727.4922 -548.0469 lineto -725.8828 -548.0469 lineto -closepath -729.10156 -547.3906 moveto -729.10156 -553.0 lineto -727.4922 -553.0 lineto -727.4922 -551.5 lineto -727.1172 -552.1042 726.65625 -552.5469 726.1094 -552.8281 curveto -725.5625 -553.1094 724.888 -553.25 724.08594 -553.25 curveto -723.0755 -553.25 722.27344 -552.96875 721.6797 -552.40625 curveto -721.08594 -551.84375 720.78906 -551.08856 720.78906 -550.1406 curveto -720.78906 -549.02606 721.16144 -548.1875 721.90625 -547.625 curveto -722.65106 -547.0625 723.7578 -546.78125 725.22656 -546.78125 curveto -727.4922 -546.78125 lineto -727.4922 -546.625 lineto -727.4922 -545.88544 727.2474 -545.3125 726.7578 -544.90625 curveto -726.26825 -544.5 725.58075 -544.2969 724.6953 -544.2969 curveto -724.1328 -544.2969 723.58594 -544.362 723.0547 -544.4922 curveto -722.52344 -544.6224 722.0078 -544.82294 721.5078 -545.09375 curveto -721.5078 -543.6094 lineto -722.10156 -543.3802 722.67706 -543.2083 723.2344 -543.09375 curveto -723.7917 -542.9792 724.33594 -542.9219 724.8672 -542.9219 curveto -726.2839 -542.9219 727.34375 -543.2917 728.0469 -544.03125 curveto -728.75 -544.7708 729.10156 -545.8906 729.10156 -547.3906 curveto -closepath -737.1172 -544.6719 moveto -736.9297 -544.5677 736.7292 -544.48956 736.5156 -544.4375 curveto -736.30206 -544.38544 736.0651 -544.3594 735.8047 -544.3594 curveto -734.89844 -544.3594 734.2005 -544.65625 733.71094 -545.25 curveto -733.2214 -545.84375 732.97656 -546.69794 732.97656 -547.8125 curveto -732.97656 -553.0 lineto -731.35156 -553.0 lineto -731.35156 -543.15625 lineto -732.97656 -543.15625 lineto -732.97656 -544.6875 lineto -733.3099 -544.0833 733.75 -543.638 734.2969 -543.35156 curveto -734.84375 -543.0651 735.5078 -542.9219 736.28906 -542.9219 curveto -736.39325 -542.9219 736.513 -542.9297 736.64844 -542.9453 curveto -736.7839 -542.96094 736.9349 -542.9792 737.10156 -543.0 curveto -737.1172 -544.6719 lineto -closepath -745.8828 -547.96875 moveto -745.8828 -546.7917 745.6406 -545.8802 745.15625 -545.2344 curveto -744.6719 -544.58856 743.9974 -544.2656 743.1328 -544.2656 curveto -742.2578 -544.2656 741.5781 -544.58856 741.09375 -545.2344 curveto -740.6094 -545.8802 740.3672 -546.7917 740.3672 -547.96875 curveto -740.3672 -549.13544 740.6094 -550.03906 741.09375 -550.6797 curveto -741.5781 -551.3203 742.2578 -551.6406 743.1328 -551.6406 curveto -743.9974 -551.6406 744.6719 -551.3203 745.15625 -550.6797 curveto -745.6406 -550.03906 745.8828 -549.13544 745.8828 -547.96875 curveto -closepath -747.5078 -551.78125 moveto -747.5078 -553.4583 747.13544 -554.70575 746.3906 -555.52344 curveto -745.6458 -556.3411 744.5026 -556.75 742.96094 -556.75 curveto -742.39844 -556.75 741.86456 -556.70575 741.3594 -556.6172 curveto -740.8542 -556.5286 740.3672 -556.3958 739.89844 -556.21875 curveto -739.89844 -554.65625 lineto -740.3672 -554.9167 740.8333 -555.10675 741.2969 -555.22656 curveto -741.76044 -555.3464 742.23175 -555.40625 742.71094 -555.40625 curveto -743.77344 -555.40625 744.5677 -555.1302 745.09375 -554.5781 curveto -745.6198 -554.02606 745.8828 -553.1875 745.8828 -552.0625 curveto -745.8828 -551.2656 lineto -745.5495 -551.84894 745.1224 -552.2839 744.60156 -552.5703 curveto -744.08075 -552.85675 743.45575 -553.0 742.72656 -553.0 curveto -741.51825 -553.0 740.5469 -552.53906 739.8125 -551.6172 curveto -739.0781 -550.6953 738.71094 -549.4792 738.71094 -547.96875 curveto -738.71094 -546.4375 739.0781 -545.21356 739.8125 -544.2969 curveto -740.5469 -543.3802 741.51825 -542.9219 742.72656 -542.9219 curveto -743.45575 -542.9219 744.08075 -543.0651 744.60156 -543.35156 curveto -745.1224 -543.638 745.5495 -544.07294 745.8828 -544.65625 curveto -745.8828 -543.15625 lineto -747.5078 -543.15625 lineto -747.5078 -551.78125 lineto -closepath -752.2578 -541.34375 moveto -752.2578 -546.2656 lineto -754.4922 -546.2656 lineto -755.3151 -546.2656 755.9531 -546.05206 756.40625 -545.625 curveto -756.8594 -545.19794 757.08594 -544.58856 757.08594 -543.7969 curveto -757.08594 -543.0156 756.8594 -542.41144 756.40625 -541.9844 curveto -755.9531 -541.5573 755.3151 -541.34375 754.4922 -541.34375 curveto -752.2578 -541.34375 lineto -closepath -750.47656 -539.875 moveto -754.4922 -539.875 lineto -755.96094 -539.875 757.0703 -540.2083 757.8203 -540.875 curveto -758.5703 -541.5417 758.9453 -542.5156 758.9453 -543.7969 curveto -758.9453 -545.08856 758.5703 -546.0651 757.8203 -546.72656 curveto -757.0703 -547.388 755.96094 -547.71875 754.4922 -547.71875 curveto -752.2578 -547.71875 lineto -752.2578 -553.0 lineto -750.47656 -553.0 lineto -750.47656 -539.875 lineto -closepath -765.22656 -544.2969 moveto -764.35156 -544.2969 763.66406 -544.6328 763.16406 -545.3047 curveto -762.66406 -545.97656 762.41406 -546.90625 762.41406 -548.09375 curveto -762.41406 -549.2708 762.66406 -550.19794 763.16406 -550.875 curveto -763.66406 -551.55206 764.35156 -551.8906 765.22656 -551.8906 curveto -766.08075 -551.8906 766.76044 -551.5495 767.2656 -550.8672 curveto -767.7708 -550.1849 768.02344 -549.26044 768.02344 -548.09375 curveto -768.02344 -546.92706 767.7708 -546.0026 767.2656 -545.3203 curveto -766.76044 -544.638 766.08075 -544.2969 765.22656 -544.2969 curveto -closepath -765.22656 -542.9219 moveto -766.6328 -542.9219 767.737 -543.3776 768.53906 -544.28906 curveto -769.3411 -545.2005 769.7422 -546.46875 769.7422 -548.09375 curveto -769.7422 -549.69794 769.3411 -550.9583 768.53906 -551.875 curveto -767.737 -552.7917 766.6328 -553.25 765.22656 -553.25 curveto -763.8099 -553.25 762.7031 -552.7917 761.90625 -551.875 curveto -761.1094 -550.9583 760.71094 -549.69794 760.71094 -548.09375 curveto -760.71094 -546.46875 761.1094 -545.2005 761.90625 -544.28906 curveto -762.7031 -543.3776 763.8099 -542.9219 765.22656 -542.9219 curveto -closepath -778.6797 -543.4531 moveto -778.6797 -544.96875 lineto -778.2214 -544.73956 777.7474 -544.5651 777.2578 -544.4453 curveto -776.76825 -544.3255 776.2578 -544.2656 775.72656 -544.2656 curveto -774.9245 -544.2656 774.32294 -544.3906 773.9219 -544.6406 curveto -773.5208 -544.8906 773.3203 -545.26044 773.3203 -545.75 curveto -773.3203 -546.125 773.46356 -546.41925 773.75 -546.6328 curveto -774.03644 -546.8464 774.612 -547.05206 775.47656 -547.25 curveto -776.03906 -547.3594 lineto -777.1849 -547.6094 778.0 -547.9583 778.4844 -548.40625 curveto -778.96875 -548.8542 779.21094 -549.4792 779.21094 -550.28125 curveto -779.21094 -551.19794 778.84894 -551.9219 778.125 -552.4531 curveto -777.40106 -552.9844 776.4089 -553.25 775.14844 -553.25 curveto -774.6172 -553.25 774.0651 -553.2005 773.4922 -553.10156 curveto -772.91925 -553.0026 772.3151 -552.84894 771.6797 -552.6406 curveto -771.6797 -550.96875 lineto -772.2839 -551.28125 772.875 -551.5156 773.4531 -551.6719 curveto -774.03125 -551.8281 774.60675 -551.90625 775.1797 -551.90625 curveto -775.9401 -551.90625 776.52606 -551.77606 776.9375 -551.5156 curveto -777.34894 -551.2552 777.5547 -550.88544 777.5547 -550.40625 curveto -777.5547 -549.96875 777.40625 -549.6328 777.1094 -549.39844 curveto -776.8125 -549.16406 776.16406 -548.9375 775.16406 -548.71875 curveto -774.60156 -548.59375 lineto -773.5911 -548.375 772.86456 -548.0495 772.4219 -547.6172 curveto -771.9792 -547.1849 771.7578 -546.5833 771.7578 -545.8125 curveto -771.7578 -544.8958 772.08594 -544.1849 772.7422 -543.6797 curveto -773.39844 -543.1745 774.33075 -542.9219 775.53906 -542.9219 curveto -776.1328 -542.9219 776.6927 -542.9661 777.21875 -543.0547 curveto -777.7448 -543.14325 778.23175 -543.27606 778.6797 -543.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -752.0469 moveto -724.5703 -752.0469 723.66406 -752.19794 723.16406 -752.5 curveto -722.66406 -752.80206 722.41406 -753.3125 722.41406 -754.03125 curveto -722.41406 -754.6042 722.60156 -755.0599 722.97656 -755.39844 curveto -723.35156 -755.737 723.8672 -755.90625 724.52344 -755.90625 curveto -725.41925 -755.90625 726.138 -755.58856 726.6797 -754.9531 curveto -727.2214 -754.3177 727.4922 -753.46875 727.4922 -752.40625 curveto -727.4922 -752.0469 lineto -725.8828 -752.0469 lineto -closepath -729.10156 -751.3906 moveto -729.10156 -757.0 lineto -727.4922 -757.0 lineto -727.4922 -755.5 lineto -727.1172 -756.1042 726.65625 -756.5469 726.1094 -756.8281 curveto -725.5625 -757.1094 724.888 -757.25 724.08594 -757.25 curveto -723.0755 -757.25 722.27344 -756.96875 721.6797 -756.40625 curveto -721.08594 -755.84375 720.78906 -755.08856 720.78906 -754.1406 curveto -720.78906 -753.02606 721.16144 -752.1875 721.90625 -751.625 curveto -722.65106 -751.0625 723.7578 -750.78125 725.22656 -750.78125 curveto -727.4922 -750.78125 lineto -727.4922 -750.625 lineto -727.4922 -749.88544 727.2474 -749.3125 726.7578 -748.90625 curveto -726.26825 -748.5 725.58075 -748.2969 724.6953 -748.2969 curveto -724.1328 -748.2969 723.58594 -748.362 723.0547 -748.4922 curveto -722.52344 -748.6224 722.0078 -748.82294 721.5078 -749.09375 curveto -721.5078 -747.6094 lineto -722.10156 -747.3802 722.67706 -747.2083 723.2344 -747.09375 curveto -723.7917 -746.9792 724.33594 -746.9219 724.8672 -746.9219 curveto -726.2839 -746.9219 727.34375 -747.2917 728.0469 -748.03125 curveto -728.75 -748.7708 729.10156 -749.8906 729.10156 -751.3906 curveto -closepath -737.1172 -748.6719 moveto -736.9297 -748.5677 736.7292 -748.48956 736.5156 -748.4375 curveto -736.30206 -748.38544 736.0651 -748.3594 735.8047 -748.3594 curveto -734.89844 -748.3594 734.2005 -748.65625 733.71094 -749.25 curveto -733.2214 -749.84375 732.97656 -750.69794 732.97656 -751.8125 curveto -732.97656 -757.0 lineto -731.35156 -757.0 lineto -731.35156 -747.15625 lineto -732.97656 -747.15625 lineto -732.97656 -748.6875 lineto -733.3099 -748.0833 733.75 -747.638 734.2969 -747.35156 curveto -734.84375 -747.0651 735.5078 -746.9219 736.28906 -746.9219 curveto -736.39325 -746.9219 736.513 -746.9297 736.64844 -746.9453 curveto -736.7839 -746.96094 736.9349 -746.9792 737.10156 -747.0 curveto -737.1172 -748.6719 lineto -closepath -745.8828 -751.96875 moveto -745.8828 -750.7917 745.6406 -749.8802 745.15625 -749.2344 curveto -744.6719 -748.58856 743.9974 -748.2656 743.1328 -748.2656 curveto -742.2578 -748.2656 741.5781 -748.58856 741.09375 -749.2344 curveto -740.6094 -749.8802 740.3672 -750.7917 740.3672 -751.96875 curveto -740.3672 -753.13544 740.6094 -754.03906 741.09375 -754.6797 curveto -741.5781 -755.3203 742.2578 -755.6406 743.1328 -755.6406 curveto -743.9974 -755.6406 744.6719 -755.3203 745.15625 -754.6797 curveto -745.6406 -754.03906 745.8828 -753.13544 745.8828 -751.96875 curveto -closepath -747.5078 -755.78125 moveto -747.5078 -757.4583 747.13544 -758.70575 746.3906 -759.52344 curveto -745.6458 -760.3411 744.5026 -760.75 742.96094 -760.75 curveto -742.39844 -760.75 741.86456 -760.70575 741.3594 -760.6172 curveto -740.8542 -760.5286 740.3672 -760.3958 739.89844 -760.21875 curveto -739.89844 -758.65625 lineto -740.3672 -758.9167 740.8333 -759.10675 741.2969 -759.22656 curveto -741.76044 -759.3464 742.23175 -759.40625 742.71094 -759.40625 curveto -743.77344 -759.40625 744.5677 -759.1302 745.09375 -758.5781 curveto -745.6198 -758.02606 745.8828 -757.1875 745.8828 -756.0625 curveto -745.8828 -755.2656 lineto -745.5495 -755.84894 745.1224 -756.2839 744.60156 -756.5703 curveto -744.08075 -756.85675 743.45575 -757.0 742.72656 -757.0 curveto -741.51825 -757.0 740.5469 -756.53906 739.8125 -755.6172 curveto -739.0781 -754.6953 738.71094 -753.4792 738.71094 -751.96875 curveto -738.71094 -750.4375 739.0781 -749.21356 739.8125 -748.2969 curveto -740.5469 -747.3802 741.51825 -746.9219 742.72656 -746.9219 curveto -743.45575 -746.9219 744.08075 -747.0651 744.60156 -747.35156 curveto -745.1224 -747.638 745.5495 -748.07294 745.8828 -748.65625 curveto -745.8828 -747.15625 lineto -747.5078 -747.15625 lineto -747.5078 -755.78125 lineto -closepath -752.2578 -745.34375 moveto -752.2578 -750.2656 lineto -754.4922 -750.2656 lineto -755.3151 -750.2656 755.9531 -750.05206 756.40625 -749.625 curveto -756.8594 -749.19794 757.08594 -748.58856 757.08594 -747.7969 curveto -757.08594 -747.0156 756.8594 -746.41144 756.40625 -745.9844 curveto -755.9531 -745.5573 755.3151 -745.34375 754.4922 -745.34375 curveto -752.2578 -745.34375 lineto -closepath -750.47656 -743.875 moveto -754.4922 -743.875 lineto -755.96094 -743.875 757.0703 -744.2083 757.8203 -744.875 curveto -758.5703 -745.5417 758.9453 -746.5156 758.9453 -747.7969 curveto -758.9453 -749.08856 758.5703 -750.0651 757.8203 -750.72656 curveto -757.0703 -751.388 755.96094 -751.71875 754.4922 -751.71875 curveto -752.2578 -751.71875 lineto -752.2578 -757.0 lineto -750.47656 -757.0 lineto -750.47656 -743.875 lineto -closepath -765.22656 -748.2969 moveto -764.35156 -748.2969 763.66406 -748.6328 763.16406 -749.3047 curveto -762.66406 -749.97656 762.41406 -750.90625 762.41406 -752.09375 curveto -762.41406 -753.2708 762.66406 -754.19794 763.16406 -754.875 curveto -763.66406 -755.55206 764.35156 -755.8906 765.22656 -755.8906 curveto -766.08075 -755.8906 766.76044 -755.5495 767.2656 -754.8672 curveto -767.7708 -754.1849 768.02344 -753.26044 768.02344 -752.09375 curveto -768.02344 -750.92706 767.7708 -750.0026 767.2656 -749.3203 curveto -766.76044 -748.638 766.08075 -748.2969 765.22656 -748.2969 curveto -closepath -765.22656 -746.9219 moveto -766.6328 -746.9219 767.737 -747.3776 768.53906 -748.28906 curveto -769.3411 -749.2005 769.7422 -750.46875 769.7422 -752.09375 curveto -769.7422 -753.69794 769.3411 -754.9583 768.53906 -755.875 curveto -767.737 -756.7917 766.6328 -757.25 765.22656 -757.25 curveto -763.8099 -757.25 762.7031 -756.7917 761.90625 -755.875 curveto -761.1094 -754.9583 760.71094 -753.69794 760.71094 -752.09375 curveto -760.71094 -750.46875 761.1094 -749.2005 761.90625 -748.28906 curveto -762.7031 -747.3776 763.8099 -746.9219 765.22656 -746.9219 curveto -closepath -778.6797 -747.4531 moveto -778.6797 -748.96875 lineto -778.2214 -748.73956 777.7474 -748.5651 777.2578 -748.4453 curveto -776.76825 -748.3255 776.2578 -748.2656 775.72656 -748.2656 curveto -774.9245 -748.2656 774.32294 -748.3906 773.9219 -748.6406 curveto -773.5208 -748.8906 773.3203 -749.26044 773.3203 -749.75 curveto -773.3203 -750.125 773.46356 -750.41925 773.75 -750.6328 curveto -774.03644 -750.8464 774.612 -751.05206 775.47656 -751.25 curveto -776.03906 -751.3594 lineto -777.1849 -751.6094 778.0 -751.9583 778.4844 -752.40625 curveto -778.96875 -752.8542 779.21094 -753.4792 779.21094 -754.28125 curveto -779.21094 -755.19794 778.84894 -755.9219 778.125 -756.4531 curveto -777.40106 -756.9844 776.4089 -757.25 775.14844 -757.25 curveto -774.6172 -757.25 774.0651 -757.2005 773.4922 -757.10156 curveto -772.91925 -757.0026 772.3151 -756.84894 771.6797 -756.6406 curveto -771.6797 -754.96875 lineto -772.2839 -755.28125 772.875 -755.5156 773.4531 -755.6719 curveto -774.03125 -755.8281 774.60675 -755.90625 775.1797 -755.90625 curveto -775.9401 -755.90625 776.52606 -755.77606 776.9375 -755.5156 curveto -777.34894 -755.2552 777.5547 -754.88544 777.5547 -754.40625 curveto -777.5547 -753.96875 777.40625 -753.6328 777.1094 -753.39844 curveto -776.8125 -753.16406 776.16406 -752.9375 775.16406 -752.71875 curveto -774.60156 -752.59375 lineto -773.5911 -752.375 772.86456 -752.0495 772.4219 -751.6172 curveto -771.9792 -751.1849 771.7578 -750.5833 771.7578 -749.8125 curveto -771.7578 -748.8958 772.08594 -748.1849 772.7422 -747.6797 curveto -773.39844 -747.1745 774.33075 -746.9219 775.53906 -746.9219 curveto -776.1328 -746.9219 776.6927 -746.9661 777.21875 -747.0547 curveto -777.7448 -747.14325 778.23175 -747.27606 778.6797 -747.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -725.8828 -837.0469 moveto -724.5703 -837.0469 723.66406 -837.19794 723.16406 -837.5 curveto -722.66406 -837.80206 722.41406 -838.3125 722.41406 -839.03125 curveto -722.41406 -839.6042 722.60156 -840.0599 722.97656 -840.39844 curveto -723.35156 -840.737 723.8672 -840.90625 724.52344 -840.90625 curveto -725.41925 -840.90625 726.138 -840.58856 726.6797 -839.9531 curveto -727.2214 -839.3177 727.4922 -838.46875 727.4922 -837.40625 curveto -727.4922 -837.0469 lineto -725.8828 -837.0469 lineto -closepath -729.10156 -836.3906 moveto -729.10156 -842.0 lineto -727.4922 -842.0 lineto -727.4922 -840.5 lineto -727.1172 -841.1042 726.65625 -841.5469 726.1094 -841.8281 curveto -725.5625 -842.1094 724.888 -842.25 724.08594 -842.25 curveto -723.0755 -842.25 722.27344 -841.96875 721.6797 -841.40625 curveto -721.08594 -840.84375 720.78906 -840.08856 720.78906 -839.1406 curveto -720.78906 -838.02606 721.16144 -837.1875 721.90625 -836.625 curveto -722.65106 -836.0625 723.7578 -835.78125 725.22656 -835.78125 curveto -727.4922 -835.78125 lineto -727.4922 -835.625 lineto -727.4922 -834.88544 727.2474 -834.3125 726.7578 -833.90625 curveto -726.26825 -833.5 725.58075 -833.2969 724.6953 -833.2969 curveto -724.1328 -833.2969 723.58594 -833.362 723.0547 -833.4922 curveto -722.52344 -833.6224 722.0078 -833.82294 721.5078 -834.09375 curveto -721.5078 -832.6094 lineto -722.10156 -832.3802 722.67706 -832.2083 723.2344 -832.09375 curveto -723.7917 -831.9792 724.33594 -831.9219 724.8672 -831.9219 curveto -726.2839 -831.9219 727.34375 -832.2917 728.0469 -833.03125 curveto -728.75 -833.7708 729.10156 -834.8906 729.10156 -836.3906 curveto -closepath -737.1172 -833.6719 moveto -736.9297 -833.5677 736.7292 -833.48956 736.5156 -833.4375 curveto -736.30206 -833.38544 736.0651 -833.3594 735.8047 -833.3594 curveto -734.89844 -833.3594 734.2005 -833.65625 733.71094 -834.25 curveto -733.2214 -834.84375 732.97656 -835.69794 732.97656 -836.8125 curveto -732.97656 -842.0 lineto -731.35156 -842.0 lineto -731.35156 -832.15625 lineto -732.97656 -832.15625 lineto -732.97656 -833.6875 lineto -733.3099 -833.0833 733.75 -832.638 734.2969 -832.35156 curveto -734.84375 -832.0651 735.5078 -831.9219 736.28906 -831.9219 curveto -736.39325 -831.9219 736.513 -831.9297 736.64844 -831.9453 curveto -736.7839 -831.96094 736.9349 -831.9792 737.10156 -832.0 curveto -737.1172 -833.6719 lineto -closepath -745.8828 -836.96875 moveto -745.8828 -835.7917 745.6406 -834.8802 745.15625 -834.2344 curveto -744.6719 -833.58856 743.9974 -833.2656 743.1328 -833.2656 curveto -742.2578 -833.2656 741.5781 -833.58856 741.09375 -834.2344 curveto -740.6094 -834.8802 740.3672 -835.7917 740.3672 -836.96875 curveto -740.3672 -838.13544 740.6094 -839.03906 741.09375 -839.6797 curveto -741.5781 -840.3203 742.2578 -840.6406 743.1328 -840.6406 curveto -743.9974 -840.6406 744.6719 -840.3203 745.15625 -839.6797 curveto -745.6406 -839.03906 745.8828 -838.13544 745.8828 -836.96875 curveto -closepath -747.5078 -840.78125 moveto -747.5078 -842.4583 747.13544 -843.70575 746.3906 -844.52344 curveto -745.6458 -845.3411 744.5026 -845.75 742.96094 -845.75 curveto -742.39844 -845.75 741.86456 -845.70575 741.3594 -845.6172 curveto -740.8542 -845.5286 740.3672 -845.3958 739.89844 -845.21875 curveto -739.89844 -843.65625 lineto -740.3672 -843.9167 740.8333 -844.10675 741.2969 -844.22656 curveto -741.76044 -844.3464 742.23175 -844.40625 742.71094 -844.40625 curveto -743.77344 -844.40625 744.5677 -844.1302 745.09375 -843.5781 curveto -745.6198 -843.02606 745.8828 -842.1875 745.8828 -841.0625 curveto -745.8828 -840.2656 lineto -745.5495 -840.84894 745.1224 -841.2839 744.60156 -841.5703 curveto -744.08075 -841.85675 743.45575 -842.0 742.72656 -842.0 curveto -741.51825 -842.0 740.5469 -841.53906 739.8125 -840.6172 curveto -739.0781 -839.6953 738.71094 -838.4792 738.71094 -836.96875 curveto -738.71094 -835.4375 739.0781 -834.21356 739.8125 -833.2969 curveto -740.5469 -832.3802 741.51825 -831.9219 742.72656 -831.9219 curveto -743.45575 -831.9219 744.08075 -832.0651 744.60156 -832.35156 curveto -745.1224 -832.638 745.5495 -833.07294 745.8828 -833.65625 curveto -745.8828 -832.15625 lineto -747.5078 -832.15625 lineto -747.5078 -840.78125 lineto -closepath -752.2578 -830.34375 moveto -752.2578 -835.2656 lineto -754.4922 -835.2656 lineto -755.3151 -835.2656 755.9531 -835.05206 756.40625 -834.625 curveto -756.8594 -834.19794 757.08594 -833.58856 757.08594 -832.7969 curveto -757.08594 -832.0156 756.8594 -831.41144 756.40625 -830.9844 curveto -755.9531 -830.5573 755.3151 -830.34375 754.4922 -830.34375 curveto -752.2578 -830.34375 lineto -closepath -750.47656 -828.875 moveto -754.4922 -828.875 lineto -755.96094 -828.875 757.0703 -829.2083 757.8203 -829.875 curveto -758.5703 -830.5417 758.9453 -831.5156 758.9453 -832.7969 curveto -758.9453 -834.08856 758.5703 -835.0651 757.8203 -835.72656 curveto -757.0703 -836.388 755.96094 -836.71875 754.4922 -836.71875 curveto -752.2578 -836.71875 lineto -752.2578 -842.0 lineto -750.47656 -842.0 lineto -750.47656 -828.875 lineto -closepath -765.22656 -833.2969 moveto -764.35156 -833.2969 763.66406 -833.6328 763.16406 -834.3047 curveto -762.66406 -834.97656 762.41406 -835.90625 762.41406 -837.09375 curveto -762.41406 -838.2708 762.66406 -839.19794 763.16406 -839.875 curveto -763.66406 -840.55206 764.35156 -840.8906 765.22656 -840.8906 curveto -766.08075 -840.8906 766.76044 -840.5495 767.2656 -839.8672 curveto -767.7708 -839.1849 768.02344 -838.26044 768.02344 -837.09375 curveto -768.02344 -835.92706 767.7708 -835.0026 767.2656 -834.3203 curveto -766.76044 -833.638 766.08075 -833.2969 765.22656 -833.2969 curveto -closepath -765.22656 -831.9219 moveto -766.6328 -831.9219 767.737 -832.3776 768.53906 -833.28906 curveto -769.3411 -834.2005 769.7422 -835.46875 769.7422 -837.09375 curveto -769.7422 -838.69794 769.3411 -839.9583 768.53906 -840.875 curveto -767.737 -841.7917 766.6328 -842.25 765.22656 -842.25 curveto -763.8099 -842.25 762.7031 -841.7917 761.90625 -840.875 curveto -761.1094 -839.9583 760.71094 -838.69794 760.71094 -837.09375 curveto -760.71094 -835.46875 761.1094 -834.2005 761.90625 -833.28906 curveto -762.7031 -832.3776 763.8099 -831.9219 765.22656 -831.9219 curveto -closepath -778.6797 -832.4531 moveto -778.6797 -833.96875 lineto -778.2214 -833.73956 777.7474 -833.5651 777.2578 -833.4453 curveto -776.76825 -833.3255 776.2578 -833.2656 775.72656 -833.2656 curveto -774.9245 -833.2656 774.32294 -833.3906 773.9219 -833.6406 curveto -773.5208 -833.8906 773.3203 -834.26044 773.3203 -834.75 curveto -773.3203 -835.125 773.46356 -835.41925 773.75 -835.6328 curveto -774.03644 -835.8464 774.612 -836.05206 775.47656 -836.25 curveto -776.03906 -836.3594 lineto -777.1849 -836.6094 778.0 -836.9583 778.4844 -837.40625 curveto -778.96875 -837.8542 779.21094 -838.4792 779.21094 -839.28125 curveto -779.21094 -840.19794 778.84894 -840.9219 778.125 -841.4531 curveto -777.40106 -841.9844 776.4089 -842.25 775.14844 -842.25 curveto -774.6172 -842.25 774.0651 -842.2005 773.4922 -842.10156 curveto -772.91925 -842.0026 772.3151 -841.84894 771.6797 -841.6406 curveto -771.6797 -839.96875 lineto -772.2839 -840.28125 772.875 -840.5156 773.4531 -840.6719 curveto -774.03125 -840.8281 774.60675 -840.90625 775.1797 -840.90625 curveto -775.9401 -840.90625 776.52606 -840.77606 776.9375 -840.5156 curveto -777.34894 -840.2552 777.5547 -839.88544 777.5547 -839.40625 curveto -777.5547 -838.96875 777.40625 -838.6328 777.1094 -838.39844 curveto -776.8125 -838.16406 776.16406 -837.9375 775.16406 -837.71875 curveto -774.60156 -837.59375 lineto -773.5911 -837.375 772.86456 -837.0495 772.4219 -836.6172 curveto -771.9792 -836.1849 771.7578 -835.5833 771.7578 -834.8125 curveto -771.7578 -833.8958 772.08594 -833.1849 772.7422 -832.6797 curveto -773.39844 -832.1745 774.33075 -831.9219 775.53906 -831.9219 curveto -776.1328 -831.9219 776.6927 -831.9661 777.21875 -832.0547 curveto -777.7448 -832.14325 778.23175 -832.27606 778.6797 -832.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -779.0469 moveto -743.0078 -778.3177 743.4922 -777.78125 744.0547 -777.4375 curveto -744.6172 -777.09375 745.2786 -776.9219 746.03906 -776.9219 curveto -747.0599 -776.9219 747.84894 -777.28125 748.40625 -778.0 curveto -748.96356 -778.71875 749.2422 -779.73956 749.2422 -781.0625 curveto -749.2422 -787.0 lineto -747.6172 -787.0 lineto -747.6172 -781.1094 lineto -747.6172 -780.1719 747.4505 -779.47394 747.1172 -779.0156 curveto -746.7839 -778.5573 746.27344 -778.3281 745.58594 -778.3281 curveto -744.7526 -778.3281 744.09375 -778.60675 743.6094 -779.16406 curveto -743.125 -779.7214 742.8828 -780.4792 742.8828 -781.4375 curveto -742.8828 -787.0 lineto -741.2422 -787.0 lineto -741.2422 -781.1094 lineto -741.2422 -780.16144 741.0755 -779.46094 740.7422 -779.0078 curveto -740.4089 -778.5547 739.89325 -778.3281 739.1953 -778.3281 curveto -738.3724 -778.3281 737.71875 -778.60675 737.2344 -779.16406 curveto -736.75 -779.7214 736.5078 -780.4792 736.5078 -781.4375 curveto -736.5078 -787.0 lineto -734.8828 -787.0 lineto -734.8828 -777.15625 lineto -736.5078 -777.15625 lineto -736.5078 -778.6875 lineto -736.8724 -778.0833 737.3125 -777.638 737.8281 -777.35156 curveto -738.34375 -777.0651 738.95575 -776.9219 739.66406 -776.9219 curveto -740.3828 -776.9219 740.9922 -777.1042 741.4922 -777.46875 curveto -741.9922 -777.8333 742.362 -778.3594 742.60156 -779.0469 curveto -closepath -751.9453 -777.15625 moveto -753.5547 -777.15625 lineto -753.5547 -787.0 lineto -751.9453 -787.0 lineto -751.9453 -777.15625 lineto -closepath -751.9453 -773.3281 moveto -753.5547 -773.3281 lineto -753.5547 -775.375 lineto -751.9453 -775.375 lineto -751.9453 -773.3281 lineto -closepath -765.1172 -781.0625 moveto -765.1172 -787.0 lineto -763.5078 -787.0 lineto -763.5078 -781.1094 lineto -763.5078 -780.1823 763.3255 -779.487 762.96094 -779.02344 curveto -762.5964 -778.5599 762.0495 -778.3281 761.3203 -778.3281 curveto -760.4453 -778.3281 759.7578 -778.60675 759.2578 -779.16406 curveto -758.7578 -779.7214 758.5078 -780.4792 758.5078 -781.4375 curveto -758.5078 -787.0 lineto -756.8828 -787.0 lineto -756.8828 -777.15625 lineto -758.5078 -777.15625 lineto -758.5078 -778.6875 lineto -758.89325 -778.09375 759.34894 -777.65106 759.875 -777.3594 curveto -760.40106 -777.0677 761.0026 -776.9219 761.6797 -776.9219 curveto -762.8151 -776.9219 763.6719 -777.2708 764.25 -777.96875 curveto -764.8281 -778.6667 765.1172 -779.69794 765.1172 -781.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -111.046875 moveto -743.0078 -110.31771 743.4922 -109.78125 744.0547 -109.4375 curveto -744.6172 -109.09375 745.2786 -108.921875 746.03906 -108.921875 curveto -747.0599 -108.921875 747.84894 -109.28125 748.40625 -110.0 curveto -748.96356 -110.71875 749.2422 -111.739586 749.2422 -113.0625 curveto -749.2422 -119.0 lineto -747.6172 -119.0 lineto -747.6172 -113.109375 lineto -747.6172 -112.171875 747.4505 -111.47396 747.1172 -111.015625 curveto -746.7839 -110.55729 746.27344 -110.328125 745.58594 -110.328125 curveto -744.7526 -110.328125 744.09375 -110.60677 743.6094 -111.16406 curveto -743.125 -111.72135 742.8828 -112.479164 742.8828 -113.4375 curveto -742.8828 -119.0 lineto -741.2422 -119.0 lineto -741.2422 -113.109375 lineto -741.2422 -112.16146 741.0755 -111.46094 740.7422 -111.00781 curveto -740.4089 -110.55469 739.89325 -110.328125 739.1953 -110.328125 curveto -738.3724 -110.328125 737.71875 -110.60677 737.2344 -111.16406 curveto -736.75 -111.72135 736.5078 -112.479164 736.5078 -113.4375 curveto -736.5078 -119.0 lineto -734.8828 -119.0 lineto -734.8828 -109.15625 lineto -736.5078 -109.15625 lineto -736.5078 -110.6875 lineto -736.8724 -110.083336 737.3125 -109.63802 737.8281 -109.35156 curveto -738.34375 -109.0651 738.95575 -108.921875 739.66406 -108.921875 curveto -740.3828 -108.921875 740.9922 -109.104164 741.4922 -109.46875 curveto -741.9922 -109.833336 742.362 -110.359375 742.60156 -111.046875 curveto -closepath -751.9453 -109.15625 moveto -753.5547 -109.15625 lineto -753.5547 -119.0 lineto -751.9453 -119.0 lineto -751.9453 -109.15625 lineto -closepath -751.9453 -105.328125 moveto -753.5547 -105.328125 lineto -753.5547 -107.375 lineto -751.9453 -107.375 lineto -751.9453 -105.328125 lineto -closepath -765.1172 -113.0625 moveto -765.1172 -119.0 lineto -763.5078 -119.0 lineto -763.5078 -113.109375 lineto -763.5078 -112.18229 763.3255 -111.48698 762.96094 -111.02344 curveto -762.5964 -110.5599 762.0495 -110.328125 761.3203 -110.328125 curveto -760.4453 -110.328125 759.7578 -110.60677 759.2578 -111.16406 curveto -758.7578 -111.72135 758.5078 -112.479164 758.5078 -113.4375 curveto -758.5078 -119.0 lineto -756.8828 -119.0 lineto -756.8828 -109.15625 lineto -758.5078 -109.15625 lineto -758.5078 -110.6875 lineto -758.89325 -110.09375 759.34894 -109.65104 759.875 -109.359375 curveto -760.40106 -109.06771 761.0026 -108.921875 761.6797 -108.921875 curveto -762.8151 -108.921875 763.6719 -109.270836 764.25 -109.96875 curveto -764.8281 -110.666664 765.1172 -111.697914 765.1172 -113.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -199.04688 moveto -743.0078 -198.3177 743.4922 -197.78125 744.0547 -197.4375 curveto -744.6172 -197.09375 745.2786 -196.92188 746.03906 -196.92188 curveto -747.0599 -196.92188 747.84894 -197.28125 748.40625 -198.0 curveto -748.96356 -198.71875 749.2422 -199.73958 749.2422 -201.0625 curveto -749.2422 -207.0 lineto -747.6172 -207.0 lineto -747.6172 -201.10938 lineto -747.6172 -200.17188 747.4505 -199.47395 747.1172 -199.01562 curveto -746.7839 -198.5573 746.27344 -198.32812 745.58594 -198.32812 curveto -744.7526 -198.32812 744.09375 -198.60677 743.6094 -199.16406 curveto -743.125 -199.72136 742.8828 -200.47917 742.8828 -201.4375 curveto -742.8828 -207.0 lineto -741.2422 -207.0 lineto -741.2422 -201.10938 lineto -741.2422 -200.16145 741.0755 -199.46094 740.7422 -199.00781 curveto -740.4089 -198.55469 739.89325 -198.32812 739.1953 -198.32812 curveto -738.3724 -198.32812 737.71875 -198.60677 737.2344 -199.16406 curveto -736.75 -199.72136 736.5078 -200.47917 736.5078 -201.4375 curveto -736.5078 -207.0 lineto -734.8828 -207.0 lineto -734.8828 -197.15625 lineto -736.5078 -197.15625 lineto -736.5078 -198.6875 lineto -736.8724 -198.08333 737.3125 -197.63802 737.8281 -197.35156 curveto -738.34375 -197.06511 738.95575 -196.92188 739.66406 -196.92188 curveto -740.3828 -196.92188 740.9922 -197.10417 741.4922 -197.46875 curveto -741.9922 -197.83333 742.362 -198.35938 742.60156 -199.04688 curveto -closepath -751.9453 -197.15625 moveto -753.5547 -197.15625 lineto -753.5547 -207.0 lineto -751.9453 -207.0 lineto -751.9453 -197.15625 lineto -closepath -751.9453 -193.32812 moveto -753.5547 -193.32812 lineto -753.5547 -195.375 lineto -751.9453 -195.375 lineto -751.9453 -193.32812 lineto -closepath -765.1172 -201.0625 moveto -765.1172 -207.0 lineto -763.5078 -207.0 lineto -763.5078 -201.10938 lineto -763.5078 -200.1823 763.3255 -199.48698 762.96094 -199.02344 curveto -762.5964 -198.55989 762.0495 -198.32812 761.3203 -198.32812 curveto -760.4453 -198.32812 759.7578 -198.60677 759.2578 -199.16406 curveto -758.7578 -199.72136 758.5078 -200.47917 758.5078 -201.4375 curveto -758.5078 -207.0 lineto -756.8828 -207.0 lineto -756.8828 -197.15625 lineto -758.5078 -197.15625 lineto -758.5078 -198.6875 lineto -758.89325 -198.09375 759.34894 -197.65105 759.875 -197.35938 curveto -760.40106 -197.0677 761.0026 -196.92188 761.6797 -196.92188 curveto -762.8151 -196.92188 763.6719 -197.27083 764.25 -197.96875 curveto -764.8281 -198.66667 765.1172 -199.69792 765.1172 -201.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -284.04688 moveto -743.0078 -283.31772 743.4922 -282.78125 744.0547 -282.4375 curveto -744.6172 -282.09375 745.2786 -281.92188 746.03906 -281.92188 curveto -747.0599 -281.92188 747.84894 -282.28125 748.40625 -283.0 curveto -748.96356 -283.71875 749.2422 -284.7396 749.2422 -286.0625 curveto -749.2422 -292.0 lineto -747.6172 -292.0 lineto -747.6172 -286.10938 lineto -747.6172 -285.17188 747.4505 -284.47397 747.1172 -284.01562 curveto -746.7839 -283.55728 746.27344 -283.32812 745.58594 -283.32812 curveto -744.7526 -283.32812 744.09375 -283.60678 743.6094 -284.16406 curveto -743.125 -284.72134 742.8828 -285.47916 742.8828 -286.4375 curveto -742.8828 -292.0 lineto -741.2422 -292.0 lineto -741.2422 -286.10938 lineto -741.2422 -285.16147 741.0755 -284.46094 740.7422 -284.0078 curveto -740.4089 -283.5547 739.89325 -283.32812 739.1953 -283.32812 curveto -738.3724 -283.32812 737.71875 -283.60678 737.2344 -284.16406 curveto -736.75 -284.72134 736.5078 -285.47916 736.5078 -286.4375 curveto -736.5078 -292.0 lineto -734.8828 -292.0 lineto -734.8828 -282.15625 lineto -736.5078 -282.15625 lineto -736.5078 -283.6875 lineto -736.8724 -283.08334 737.3125 -282.63803 737.8281 -282.35156 curveto -738.34375 -282.0651 738.95575 -281.92188 739.66406 -281.92188 curveto -740.3828 -281.92188 740.9922 -282.10416 741.4922 -282.46875 curveto -741.9922 -282.83334 742.362 -283.35938 742.60156 -284.04688 curveto -closepath -751.9453 -282.15625 moveto -753.5547 -282.15625 lineto -753.5547 -292.0 lineto -751.9453 -292.0 lineto -751.9453 -282.15625 lineto -closepath -751.9453 -278.32812 moveto -753.5547 -278.32812 lineto -753.5547 -280.375 lineto -751.9453 -280.375 lineto -751.9453 -278.32812 lineto -closepath -765.1172 -286.0625 moveto -765.1172 -292.0 lineto -763.5078 -292.0 lineto -763.5078 -286.10938 lineto -763.5078 -285.18228 763.3255 -284.48697 762.96094 -284.02344 curveto -762.5964 -283.5599 762.0495 -283.32812 761.3203 -283.32812 curveto -760.4453 -283.32812 759.7578 -283.60678 759.2578 -284.16406 curveto -758.7578 -284.72134 758.5078 -285.47916 758.5078 -286.4375 curveto -758.5078 -292.0 lineto -756.8828 -292.0 lineto -756.8828 -282.15625 lineto -758.5078 -282.15625 lineto -758.5078 -283.6875 lineto -758.89325 -283.09375 759.34894 -282.65103 759.875 -282.35938 curveto -760.40106 -282.06772 761.0026 -281.92188 761.6797 -281.92188 curveto -762.8151 -281.92188 763.6719 -282.27084 764.25 -282.96875 curveto -764.8281 -283.66666 765.1172 -284.6979 765.1172 -286.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -368.04688 moveto -743.0078 -367.31772 743.4922 -366.78125 744.0547 -366.4375 curveto -744.6172 -366.09375 745.2786 -365.92188 746.03906 -365.92188 curveto -747.0599 -365.92188 747.84894 -366.28125 748.40625 -367.0 curveto -748.96356 -367.71875 749.2422 -368.7396 749.2422 -370.0625 curveto -749.2422 -376.0 lineto -747.6172 -376.0 lineto -747.6172 -370.10938 lineto -747.6172 -369.17188 747.4505 -368.47397 747.1172 -368.01562 curveto -746.7839 -367.55728 746.27344 -367.32812 745.58594 -367.32812 curveto -744.7526 -367.32812 744.09375 -367.60678 743.6094 -368.16406 curveto -743.125 -368.72134 742.8828 -369.47916 742.8828 -370.4375 curveto -742.8828 -376.0 lineto -741.2422 -376.0 lineto -741.2422 -370.10938 lineto -741.2422 -369.16147 741.0755 -368.46094 740.7422 -368.0078 curveto -740.4089 -367.5547 739.89325 -367.32812 739.1953 -367.32812 curveto -738.3724 -367.32812 737.71875 -367.60678 737.2344 -368.16406 curveto -736.75 -368.72134 736.5078 -369.47916 736.5078 -370.4375 curveto -736.5078 -376.0 lineto -734.8828 -376.0 lineto -734.8828 -366.15625 lineto -736.5078 -366.15625 lineto -736.5078 -367.6875 lineto -736.8724 -367.08334 737.3125 -366.63803 737.8281 -366.35156 curveto -738.34375 -366.0651 738.95575 -365.92188 739.66406 -365.92188 curveto -740.3828 -365.92188 740.9922 -366.10416 741.4922 -366.46875 curveto -741.9922 -366.83334 742.362 -367.35938 742.60156 -368.04688 curveto -closepath -751.9453 -366.15625 moveto -753.5547 -366.15625 lineto -753.5547 -376.0 lineto -751.9453 -376.0 lineto -751.9453 -366.15625 lineto -closepath -751.9453 -362.32812 moveto -753.5547 -362.32812 lineto -753.5547 -364.375 lineto -751.9453 -364.375 lineto -751.9453 -362.32812 lineto -closepath -765.1172 -370.0625 moveto -765.1172 -376.0 lineto -763.5078 -376.0 lineto -763.5078 -370.10938 lineto -763.5078 -369.18228 763.3255 -368.48697 762.96094 -368.02344 curveto -762.5964 -367.5599 762.0495 -367.32812 761.3203 -367.32812 curveto -760.4453 -367.32812 759.7578 -367.60678 759.2578 -368.16406 curveto -758.7578 -368.72134 758.5078 -369.47916 758.5078 -370.4375 curveto -758.5078 -376.0 lineto -756.8828 -376.0 lineto -756.8828 -366.15625 lineto -758.5078 -366.15625 lineto -758.5078 -367.6875 lineto -758.89325 -367.09375 759.34894 -366.65103 759.875 -366.35938 curveto -760.40106 -366.06772 761.0026 -365.92188 761.6797 -365.92188 curveto -762.8151 -365.92188 763.6719 -366.27084 764.25 -366.96875 curveto -764.8281 -367.66666 765.1172 -368.6979 765.1172 -370.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -490.04688 moveto -743.0078 -489.31772 743.4922 -488.78125 744.0547 -488.4375 curveto -744.6172 -488.09375 745.2786 -487.92188 746.03906 -487.92188 curveto -747.0599 -487.92188 747.84894 -488.28125 748.40625 -489.0 curveto -748.96356 -489.71875 749.2422 -490.7396 749.2422 -492.0625 curveto -749.2422 -498.0 lineto -747.6172 -498.0 lineto -747.6172 -492.10938 lineto -747.6172 -491.17188 747.4505 -490.47397 747.1172 -490.01562 curveto -746.7839 -489.55728 746.27344 -489.32812 745.58594 -489.32812 curveto -744.7526 -489.32812 744.09375 -489.60678 743.6094 -490.16406 curveto -743.125 -490.72134 742.8828 -491.47916 742.8828 -492.4375 curveto -742.8828 -498.0 lineto -741.2422 -498.0 lineto -741.2422 -492.10938 lineto -741.2422 -491.16147 741.0755 -490.46094 740.7422 -490.0078 curveto -740.4089 -489.5547 739.89325 -489.32812 739.1953 -489.32812 curveto -738.3724 -489.32812 737.71875 -489.60678 737.2344 -490.16406 curveto -736.75 -490.72134 736.5078 -491.47916 736.5078 -492.4375 curveto -736.5078 -498.0 lineto -734.8828 -498.0 lineto -734.8828 -488.15625 lineto -736.5078 -488.15625 lineto -736.5078 -489.6875 lineto -736.8724 -489.08334 737.3125 -488.63803 737.8281 -488.35156 curveto -738.34375 -488.0651 738.95575 -487.92188 739.66406 -487.92188 curveto -740.3828 -487.92188 740.9922 -488.10416 741.4922 -488.46875 curveto -741.9922 -488.83334 742.362 -489.35938 742.60156 -490.04688 curveto -closepath -751.9453 -488.15625 moveto -753.5547 -488.15625 lineto -753.5547 -498.0 lineto -751.9453 -498.0 lineto -751.9453 -488.15625 lineto -closepath -751.9453 -484.32812 moveto -753.5547 -484.32812 lineto -753.5547 -486.375 lineto -751.9453 -486.375 lineto -751.9453 -484.32812 lineto -closepath -765.1172 -492.0625 moveto -765.1172 -498.0 lineto -763.5078 -498.0 lineto -763.5078 -492.10938 lineto -763.5078 -491.18228 763.3255 -490.48697 762.96094 -490.02344 curveto -762.5964 -489.5599 762.0495 -489.32812 761.3203 -489.32812 curveto -760.4453 -489.32812 759.7578 -489.60678 759.2578 -490.16406 curveto -758.7578 -490.72134 758.5078 -491.47916 758.5078 -492.4375 curveto -758.5078 -498.0 lineto -756.8828 -498.0 lineto -756.8828 -488.15625 lineto -758.5078 -488.15625 lineto -758.5078 -489.6875 lineto -758.89325 -489.09375 759.34894 -488.65103 759.875 -488.35938 curveto -760.40106 -488.06772 761.0026 -487.92188 761.6797 -487.92188 curveto -762.8151 -487.92188 763.6719 -488.27084 764.25 -488.96875 curveto -764.8281 -489.66666 765.1172 -490.6979 765.1172 -492.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -742.60156 -694.0469 moveto -743.0078 -693.3177 743.4922 -692.78125 744.0547 -692.4375 curveto -744.6172 -692.09375 745.2786 -691.9219 746.03906 -691.9219 curveto -747.0599 -691.9219 747.84894 -692.28125 748.40625 -693.0 curveto -748.96356 -693.71875 749.2422 -694.73956 749.2422 -696.0625 curveto -749.2422 -702.0 lineto -747.6172 -702.0 lineto -747.6172 -696.1094 lineto -747.6172 -695.1719 747.4505 -694.47394 747.1172 -694.0156 curveto -746.7839 -693.5573 746.27344 -693.3281 745.58594 -693.3281 curveto -744.7526 -693.3281 744.09375 -693.60675 743.6094 -694.16406 curveto -743.125 -694.7214 742.8828 -695.4792 742.8828 -696.4375 curveto -742.8828 -702.0 lineto -741.2422 -702.0 lineto -741.2422 -696.1094 lineto -741.2422 -695.16144 741.0755 -694.46094 740.7422 -694.0078 curveto -740.4089 -693.5547 739.89325 -693.3281 739.1953 -693.3281 curveto -738.3724 -693.3281 737.71875 -693.60675 737.2344 -694.16406 curveto -736.75 -694.7214 736.5078 -695.4792 736.5078 -696.4375 curveto -736.5078 -702.0 lineto -734.8828 -702.0 lineto -734.8828 -692.15625 lineto -736.5078 -692.15625 lineto -736.5078 -693.6875 lineto -736.8724 -693.0833 737.3125 -692.638 737.8281 -692.35156 curveto -738.34375 -692.0651 738.95575 -691.9219 739.66406 -691.9219 curveto -740.3828 -691.9219 740.9922 -692.1042 741.4922 -692.46875 curveto -741.9922 -692.8333 742.362 -693.3594 742.60156 -694.0469 curveto -closepath -751.9453 -692.15625 moveto -753.5547 -692.15625 lineto -753.5547 -702.0 lineto -751.9453 -702.0 lineto -751.9453 -692.15625 lineto -closepath -751.9453 -688.3281 moveto -753.5547 -688.3281 lineto -753.5547 -690.375 lineto -751.9453 -690.375 lineto -751.9453 -688.3281 lineto -closepath -765.1172 -696.0625 moveto -765.1172 -702.0 lineto -763.5078 -702.0 lineto -763.5078 -696.1094 lineto -763.5078 -695.1823 763.3255 -694.487 762.96094 -694.02344 curveto -762.5964 -693.5599 762.0495 -693.3281 761.3203 -693.3281 curveto -760.4453 -693.3281 759.7578 -693.60675 759.2578 -694.16406 curveto -758.7578 -694.7214 758.5078 -695.4792 758.5078 -696.4375 curveto -758.5078 -702.0 lineto -756.8828 -702.0 lineto -756.8828 -692.15625 lineto -758.5078 -692.15625 lineto -758.5078 -693.6875 lineto -758.89325 -693.09375 759.34894 -692.65106 759.875 -692.3594 curveto -760.40106 -692.0677 761.0026 -691.9219 761.6797 -691.9219 curveto -762.8151 -691.9219 763.6719 -692.2708 764.25 -692.96875 curveto -764.8281 -693.6667 765.1172 -694.69794 765.1172 -696.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -805.0469 moveto -740.41406 -804.3177 740.89844 -803.78125 741.46094 -803.4375 curveto -742.02344 -803.09375 742.6849 -802.9219 743.4453 -802.9219 curveto -744.4661 -802.9219 745.2552 -803.28125 745.8125 -804.0 curveto -746.3698 -804.71875 746.64844 -805.73956 746.64844 -807.0625 curveto -746.64844 -813.0 lineto -745.02344 -813.0 lineto -745.02344 -807.1094 lineto -745.02344 -806.1719 744.85675 -805.47394 744.52344 -805.0156 curveto -744.1901 -804.5573 743.6797 -804.3281 742.9922 -804.3281 curveto -742.1589 -804.3281 741.5 -804.60675 741.0156 -805.16406 curveto -740.53125 -805.7214 740.28906 -806.4792 740.28906 -807.4375 curveto -740.28906 -813.0 lineto -738.64844 -813.0 lineto -738.64844 -807.1094 lineto -738.64844 -806.16144 738.48175 -805.46094 738.14844 -805.0078 curveto -737.8151 -804.5547 737.2995 -804.3281 736.60156 -804.3281 curveto -735.7786 -804.3281 735.125 -804.60675 734.6406 -805.16406 curveto -734.15625 -805.7214 733.91406 -806.4792 733.91406 -807.4375 curveto -733.91406 -813.0 lineto -732.28906 -813.0 lineto -732.28906 -803.15625 lineto -733.91406 -803.15625 lineto -733.91406 -804.6875 lineto -734.2786 -804.0833 734.71875 -803.638 735.2344 -803.35156 curveto -735.75 -803.0651 736.362 -802.9219 737.0703 -802.9219 curveto -737.78906 -802.9219 738.39844 -803.1042 738.89844 -803.46875 curveto -739.39844 -803.8333 739.76825 -804.3594 740.0078 -805.0469 curveto -closepath -753.8203 -808.0469 moveto -752.5078 -808.0469 751.60156 -808.19794 751.10156 -808.5 curveto -750.60156 -808.80206 750.35156 -809.3125 750.35156 -810.03125 curveto -750.35156 -810.6042 750.53906 -811.0599 750.91406 -811.39844 curveto -751.28906 -811.737 751.8047 -811.90625 752.46094 -811.90625 curveto -753.35675 -811.90625 754.0755 -811.58856 754.6172 -810.9531 curveto -755.1589 -810.3177 755.4297 -809.46875 755.4297 -808.40625 curveto -755.4297 -808.0469 lineto -753.8203 -808.0469 lineto -closepath -757.03906 -807.3906 moveto -757.03906 -813.0 lineto -755.4297 -813.0 lineto -755.4297 -811.5 lineto -755.0547 -812.1042 754.59375 -812.5469 754.0469 -812.8281 curveto -753.5 -813.1094 752.8255 -813.25 752.02344 -813.25 curveto -751.013 -813.25 750.21094 -812.96875 749.6172 -812.40625 curveto -749.02344 -811.84375 748.72656 -811.08856 748.72656 -810.1406 curveto -748.72656 -809.02606 749.09894 -808.1875 749.84375 -807.625 curveto -750.58856 -807.0625 751.6953 -806.78125 753.16406 -806.78125 curveto -755.4297 -806.78125 lineto -755.4297 -806.625 lineto -755.4297 -805.88544 755.1849 -805.3125 754.6953 -804.90625 curveto -754.20575 -804.5 753.51825 -804.2969 752.6328 -804.2969 curveto -752.0703 -804.2969 751.52344 -804.362 750.9922 -804.4922 curveto -750.46094 -804.6224 749.9453 -804.82294 749.4453 -805.09375 curveto -749.4453 -803.6094 lineto -750.03906 -803.3802 750.61456 -803.2083 751.1719 -803.09375 curveto -751.7292 -802.9792 752.27344 -802.9219 752.8047 -802.9219 curveto -754.2214 -802.9219 755.28125 -803.2917 755.9844 -804.03125 curveto -756.6875 -804.7708 757.03906 -805.8906 757.03906 -807.3906 curveto -closepath -767.52344 -803.15625 moveto -763.96094 -807.9531 lineto -767.71094 -813.0 lineto -765.8047 -813.0 lineto -762.9453 -809.125 lineto -760.0703 -813.0 lineto -758.16406 -813.0 lineto -761.9922 -807.84375 lineto -758.4922 -803.15625 lineto -760.39844 -803.15625 lineto -763.0078 -806.65625 lineto -765.6172 -803.15625 lineto -767.52344 -803.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -139.04688 moveto -740.41406 -138.3177 740.89844 -137.78125 741.46094 -137.4375 curveto -742.02344 -137.09375 742.6849 -136.92188 743.4453 -136.92188 curveto -744.4661 -136.92188 745.2552 -137.28125 745.8125 -138.0 curveto -746.3698 -138.71875 746.64844 -139.73958 746.64844 -141.0625 curveto -746.64844 -147.0 lineto -745.02344 -147.0 lineto -745.02344 -141.10938 lineto -745.02344 -140.17188 744.85675 -139.47395 744.52344 -139.01562 curveto -744.1901 -138.5573 743.6797 -138.32812 742.9922 -138.32812 curveto -742.1589 -138.32812 741.5 -138.60677 741.0156 -139.16406 curveto -740.53125 -139.72136 740.28906 -140.47917 740.28906 -141.4375 curveto -740.28906 -147.0 lineto -738.64844 -147.0 lineto -738.64844 -141.10938 lineto -738.64844 -140.16145 738.48175 -139.46094 738.14844 -139.00781 curveto -737.8151 -138.55469 737.2995 -138.32812 736.60156 -138.32812 curveto -735.7786 -138.32812 735.125 -138.60677 734.6406 -139.16406 curveto -734.15625 -139.72136 733.91406 -140.47917 733.91406 -141.4375 curveto -733.91406 -147.0 lineto -732.28906 -147.0 lineto -732.28906 -137.15625 lineto -733.91406 -137.15625 lineto -733.91406 -138.6875 lineto -734.2786 -138.08333 734.71875 -137.63802 735.2344 -137.35156 curveto -735.75 -137.06511 736.362 -136.92188 737.0703 -136.92188 curveto -737.78906 -136.92188 738.39844 -137.10417 738.89844 -137.46875 curveto -739.39844 -137.83333 739.76825 -138.35938 740.0078 -139.04688 curveto -closepath -753.8203 -142.04688 moveto -752.5078 -142.04688 751.60156 -142.19792 751.10156 -142.5 curveto -750.60156 -142.80208 750.35156 -143.3125 750.35156 -144.03125 curveto -750.35156 -144.60417 750.53906 -145.05989 750.91406 -145.39844 curveto -751.28906 -145.73698 751.8047 -145.90625 752.46094 -145.90625 curveto -753.35675 -145.90625 754.0755 -145.58855 754.6172 -144.95312 curveto -755.1589 -144.3177 755.4297 -143.46875 755.4297 -142.40625 curveto -755.4297 -142.04688 lineto -753.8203 -142.04688 lineto -closepath -757.03906 -141.39062 moveto -757.03906 -147.0 lineto -755.4297 -147.0 lineto -755.4297 -145.5 lineto -755.0547 -146.10417 754.59375 -146.54688 754.0469 -146.82812 curveto -753.5 -147.10938 752.8255 -147.25 752.02344 -147.25 curveto -751.013 -147.25 750.21094 -146.96875 749.6172 -146.40625 curveto -749.02344 -145.84375 748.72656 -145.08855 748.72656 -144.14062 curveto -748.72656 -143.02605 749.09894 -142.1875 749.84375 -141.625 curveto -750.58856 -141.0625 751.6953 -140.78125 753.16406 -140.78125 curveto -755.4297 -140.78125 lineto -755.4297 -140.625 lineto -755.4297 -139.88542 755.1849 -139.3125 754.6953 -138.90625 curveto -754.20575 -138.5 753.51825 -138.29688 752.6328 -138.29688 curveto -752.0703 -138.29688 751.52344 -138.36198 750.9922 -138.49219 curveto -750.46094 -138.62239 749.9453 -138.82292 749.4453 -139.09375 curveto -749.4453 -137.60938 lineto -750.03906 -137.3802 750.61456 -137.20833 751.1719 -137.09375 curveto -751.7292 -136.97917 752.27344 -136.92188 752.8047 -136.92188 curveto -754.2214 -136.92188 755.28125 -137.29167 755.9844 -138.03125 curveto -756.6875 -138.77083 757.03906 -139.89062 757.03906 -141.39062 curveto -closepath -767.52344 -137.15625 moveto -763.96094 -141.95312 lineto -767.71094 -147.0 lineto -765.8047 -147.0 lineto -762.9453 -143.125 lineto -760.0703 -147.0 lineto -758.16406 -147.0 lineto -761.9922 -141.84375 lineto -758.4922 -137.15625 lineto -760.39844 -137.15625 lineto -763.0078 -140.65625 lineto -765.6172 -137.15625 lineto -767.52344 -137.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -225.04688 moveto -740.41406 -224.3177 740.89844 -223.78125 741.46094 -223.4375 curveto -742.02344 -223.09375 742.6849 -222.92188 743.4453 -222.92188 curveto -744.4661 -222.92188 745.2552 -223.28125 745.8125 -224.0 curveto -746.3698 -224.71875 746.64844 -225.73958 746.64844 -227.0625 curveto -746.64844 -233.0 lineto -745.02344 -233.0 lineto -745.02344 -227.10938 lineto -745.02344 -226.17188 744.85675 -225.47395 744.52344 -225.01562 curveto -744.1901 -224.5573 743.6797 -224.32812 742.9922 -224.32812 curveto -742.1589 -224.32812 741.5 -224.60677 741.0156 -225.16406 curveto -740.53125 -225.72136 740.28906 -226.47917 740.28906 -227.4375 curveto -740.28906 -233.0 lineto -738.64844 -233.0 lineto -738.64844 -227.10938 lineto -738.64844 -226.16145 738.48175 -225.46094 738.14844 -225.00781 curveto -737.8151 -224.55469 737.2995 -224.32812 736.60156 -224.32812 curveto -735.7786 -224.32812 735.125 -224.60677 734.6406 -225.16406 curveto -734.15625 -225.72136 733.91406 -226.47917 733.91406 -227.4375 curveto -733.91406 -233.0 lineto -732.28906 -233.0 lineto -732.28906 -223.15625 lineto -733.91406 -223.15625 lineto -733.91406 -224.6875 lineto -734.2786 -224.08333 734.71875 -223.63802 735.2344 -223.35156 curveto -735.75 -223.06511 736.362 -222.92188 737.0703 -222.92188 curveto -737.78906 -222.92188 738.39844 -223.10417 738.89844 -223.46875 curveto -739.39844 -223.83333 739.76825 -224.35938 740.0078 -225.04688 curveto -closepath -753.8203 -228.04688 moveto -752.5078 -228.04688 751.60156 -228.19792 751.10156 -228.5 curveto -750.60156 -228.80208 750.35156 -229.3125 750.35156 -230.03125 curveto -750.35156 -230.60417 750.53906 -231.05989 750.91406 -231.39844 curveto -751.28906 -231.73698 751.8047 -231.90625 752.46094 -231.90625 curveto -753.35675 -231.90625 754.0755 -231.58855 754.6172 -230.95312 curveto -755.1589 -230.3177 755.4297 -229.46875 755.4297 -228.40625 curveto -755.4297 -228.04688 lineto -753.8203 -228.04688 lineto -closepath -757.03906 -227.39062 moveto -757.03906 -233.0 lineto -755.4297 -233.0 lineto -755.4297 -231.5 lineto -755.0547 -232.10417 754.59375 -232.54688 754.0469 -232.82812 curveto -753.5 -233.10938 752.8255 -233.25 752.02344 -233.25 curveto -751.013 -233.25 750.21094 -232.96875 749.6172 -232.40625 curveto -749.02344 -231.84375 748.72656 -231.08855 748.72656 -230.14062 curveto -748.72656 -229.02605 749.09894 -228.1875 749.84375 -227.625 curveto -750.58856 -227.0625 751.6953 -226.78125 753.16406 -226.78125 curveto -755.4297 -226.78125 lineto -755.4297 -226.625 lineto -755.4297 -225.88542 755.1849 -225.3125 754.6953 -224.90625 curveto -754.20575 -224.5 753.51825 -224.29688 752.6328 -224.29688 curveto -752.0703 -224.29688 751.52344 -224.36198 750.9922 -224.49219 curveto -750.46094 -224.62239 749.9453 -224.82292 749.4453 -225.09375 curveto -749.4453 -223.60938 lineto -750.03906 -223.3802 750.61456 -223.20833 751.1719 -223.09375 curveto -751.7292 -222.97917 752.27344 -222.92188 752.8047 -222.92188 curveto -754.2214 -222.92188 755.28125 -223.29167 755.9844 -224.03125 curveto -756.6875 -224.77083 757.03906 -225.89062 757.03906 -227.39062 curveto -closepath -767.52344 -223.15625 moveto -763.96094 -227.95312 lineto -767.71094 -233.0 lineto -765.8047 -233.0 lineto -762.9453 -229.125 lineto -760.0703 -233.0 lineto -758.16406 -233.0 lineto -761.9922 -227.84375 lineto -758.4922 -223.15625 lineto -760.39844 -223.15625 lineto -763.0078 -226.65625 lineto -765.6172 -223.15625 lineto -767.52344 -223.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -310.04688 moveto -740.41406 -309.31772 740.89844 -308.78125 741.46094 -308.4375 curveto -742.02344 -308.09375 742.6849 -307.92188 743.4453 -307.92188 curveto -744.4661 -307.92188 745.2552 -308.28125 745.8125 -309.0 curveto -746.3698 -309.71875 746.64844 -310.7396 746.64844 -312.0625 curveto -746.64844 -318.0 lineto -745.02344 -318.0 lineto -745.02344 -312.10938 lineto -745.02344 -311.17188 744.85675 -310.47397 744.52344 -310.01562 curveto -744.1901 -309.55728 743.6797 -309.32812 742.9922 -309.32812 curveto -742.1589 -309.32812 741.5 -309.60678 741.0156 -310.16406 curveto -740.53125 -310.72134 740.28906 -311.47916 740.28906 -312.4375 curveto -740.28906 -318.0 lineto -738.64844 -318.0 lineto -738.64844 -312.10938 lineto -738.64844 -311.16147 738.48175 -310.46094 738.14844 -310.0078 curveto -737.8151 -309.5547 737.2995 -309.32812 736.60156 -309.32812 curveto -735.7786 -309.32812 735.125 -309.60678 734.6406 -310.16406 curveto -734.15625 -310.72134 733.91406 -311.47916 733.91406 -312.4375 curveto -733.91406 -318.0 lineto -732.28906 -318.0 lineto -732.28906 -308.15625 lineto -733.91406 -308.15625 lineto -733.91406 -309.6875 lineto -734.2786 -309.08334 734.71875 -308.63803 735.2344 -308.35156 curveto -735.75 -308.0651 736.362 -307.92188 737.0703 -307.92188 curveto -737.78906 -307.92188 738.39844 -308.10416 738.89844 -308.46875 curveto -739.39844 -308.83334 739.76825 -309.35938 740.0078 -310.04688 curveto -closepath -753.8203 -313.04688 moveto -752.5078 -313.04688 751.60156 -313.1979 751.10156 -313.5 curveto -750.60156 -313.8021 750.35156 -314.3125 750.35156 -315.03125 curveto -750.35156 -315.60416 750.53906 -316.0599 750.91406 -316.39844 curveto -751.28906 -316.73697 751.8047 -316.90625 752.46094 -316.90625 curveto -753.35675 -316.90625 754.0755 -316.58853 754.6172 -315.95312 curveto -755.1589 -315.31772 755.4297 -314.46875 755.4297 -313.40625 curveto -755.4297 -313.04688 lineto -753.8203 -313.04688 lineto -closepath -757.03906 -312.39062 moveto -757.03906 -318.0 lineto -755.4297 -318.0 lineto -755.4297 -316.5 lineto -755.0547 -317.10416 754.59375 -317.54688 754.0469 -317.82812 curveto -753.5 -318.10938 752.8255 -318.25 752.02344 -318.25 curveto -751.013 -318.25 750.21094 -317.96875 749.6172 -317.40625 curveto -749.02344 -316.84375 748.72656 -316.08853 748.72656 -315.14062 curveto -748.72656 -314.02603 749.09894 -313.1875 749.84375 -312.625 curveto -750.58856 -312.0625 751.6953 -311.78125 753.16406 -311.78125 curveto -755.4297 -311.78125 lineto -755.4297 -311.625 lineto -755.4297 -310.8854 755.1849 -310.3125 754.6953 -309.90625 curveto -754.20575 -309.5 753.51825 -309.29688 752.6328 -309.29688 curveto -752.0703 -309.29688 751.52344 -309.36197 750.9922 -309.4922 curveto -750.46094 -309.6224 749.9453 -309.8229 749.4453 -310.09375 curveto -749.4453 -308.60938 lineto -750.03906 -308.38022 750.61456 -308.20834 751.1719 -308.09375 curveto -751.7292 -307.97916 752.27344 -307.92188 752.8047 -307.92188 curveto -754.2214 -307.92188 755.28125 -308.29166 755.9844 -309.03125 curveto -756.6875 -309.77084 757.03906 -310.89062 757.03906 -312.39062 curveto -closepath -767.52344 -308.15625 moveto -763.96094 -312.95312 lineto -767.71094 -318.0 lineto -765.8047 -318.0 lineto -762.9453 -314.125 lineto -760.0703 -318.0 lineto -758.16406 -318.0 lineto -761.9922 -312.84375 lineto -758.4922 -308.15625 lineto -760.39844 -308.15625 lineto -763.0078 -311.65625 lineto -765.6172 -308.15625 lineto -767.52344 -308.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -516.0469 moveto -740.41406 -515.3177 740.89844 -514.78125 741.46094 -514.4375 curveto -742.02344 -514.09375 742.6849 -513.9219 743.4453 -513.9219 curveto -744.4661 -513.9219 745.2552 -514.28125 745.8125 -515.0 curveto -746.3698 -515.71875 746.64844 -516.73956 746.64844 -518.0625 curveto -746.64844 -524.0 lineto -745.02344 -524.0 lineto -745.02344 -518.1094 lineto -745.02344 -517.1719 744.85675 -516.47394 744.52344 -516.0156 curveto -744.1901 -515.5573 743.6797 -515.3281 742.9922 -515.3281 curveto -742.1589 -515.3281 741.5 -515.60675 741.0156 -516.16406 curveto -740.53125 -516.7214 740.28906 -517.4792 740.28906 -518.4375 curveto -740.28906 -524.0 lineto -738.64844 -524.0 lineto -738.64844 -518.1094 lineto -738.64844 -517.16144 738.48175 -516.46094 738.14844 -516.0078 curveto -737.8151 -515.5547 737.2995 -515.3281 736.60156 -515.3281 curveto -735.7786 -515.3281 735.125 -515.60675 734.6406 -516.16406 curveto -734.15625 -516.7214 733.91406 -517.4792 733.91406 -518.4375 curveto -733.91406 -524.0 lineto -732.28906 -524.0 lineto -732.28906 -514.15625 lineto -733.91406 -514.15625 lineto -733.91406 -515.6875 lineto -734.2786 -515.0833 734.71875 -514.638 735.2344 -514.35156 curveto -735.75 -514.0651 736.362 -513.9219 737.0703 -513.9219 curveto -737.78906 -513.9219 738.39844 -514.1042 738.89844 -514.46875 curveto -739.39844 -514.8333 739.76825 -515.3594 740.0078 -516.0469 curveto -closepath -753.8203 -519.0469 moveto -752.5078 -519.0469 751.60156 -519.19794 751.10156 -519.5 curveto -750.60156 -519.80206 750.35156 -520.3125 750.35156 -521.03125 curveto -750.35156 -521.6042 750.53906 -522.0599 750.91406 -522.39844 curveto -751.28906 -522.737 751.8047 -522.90625 752.46094 -522.90625 curveto -753.35675 -522.90625 754.0755 -522.58856 754.6172 -521.9531 curveto -755.1589 -521.3177 755.4297 -520.46875 755.4297 -519.40625 curveto -755.4297 -519.0469 lineto -753.8203 -519.0469 lineto -closepath -757.03906 -518.3906 moveto -757.03906 -524.0 lineto -755.4297 -524.0 lineto -755.4297 -522.5 lineto -755.0547 -523.1042 754.59375 -523.5469 754.0469 -523.8281 curveto -753.5 -524.1094 752.8255 -524.25 752.02344 -524.25 curveto -751.013 -524.25 750.21094 -523.96875 749.6172 -523.40625 curveto -749.02344 -522.84375 748.72656 -522.08856 748.72656 -521.1406 curveto -748.72656 -520.02606 749.09894 -519.1875 749.84375 -518.625 curveto -750.58856 -518.0625 751.6953 -517.78125 753.16406 -517.78125 curveto -755.4297 -517.78125 lineto -755.4297 -517.625 lineto -755.4297 -516.88544 755.1849 -516.3125 754.6953 -515.90625 curveto -754.20575 -515.5 753.51825 -515.2969 752.6328 -515.2969 curveto -752.0703 -515.2969 751.52344 -515.362 750.9922 -515.4922 curveto -750.46094 -515.6224 749.9453 -515.82294 749.4453 -516.09375 curveto -749.4453 -514.6094 lineto -750.03906 -514.3802 750.61456 -514.2083 751.1719 -514.09375 curveto -751.7292 -513.9792 752.27344 -513.9219 752.8047 -513.9219 curveto -754.2214 -513.9219 755.28125 -514.2917 755.9844 -515.03125 curveto -756.6875 -515.7708 757.03906 -516.8906 757.03906 -518.3906 curveto -closepath -767.52344 -514.15625 moveto -763.96094 -518.9531 lineto -767.71094 -524.0 lineto -765.8047 -524.0 lineto -762.9453 -520.125 lineto -760.0703 -524.0 lineto -758.16406 -524.0 lineto -761.9922 -518.84375 lineto -758.4922 -514.15625 lineto -760.39844 -514.15625 lineto -763.0078 -517.65625 lineto -765.6172 -514.15625 lineto -767.52344 -514.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -719.0469 moveto -740.41406 -718.3177 740.89844 -717.78125 741.46094 -717.4375 curveto -742.02344 -717.09375 742.6849 -716.9219 743.4453 -716.9219 curveto -744.4661 -716.9219 745.2552 -717.28125 745.8125 -718.0 curveto -746.3698 -718.71875 746.64844 -719.73956 746.64844 -721.0625 curveto -746.64844 -727.0 lineto -745.02344 -727.0 lineto -745.02344 -721.1094 lineto -745.02344 -720.1719 744.85675 -719.47394 744.52344 -719.0156 curveto -744.1901 -718.5573 743.6797 -718.3281 742.9922 -718.3281 curveto -742.1589 -718.3281 741.5 -718.60675 741.0156 -719.16406 curveto -740.53125 -719.7214 740.28906 -720.4792 740.28906 -721.4375 curveto -740.28906 -727.0 lineto -738.64844 -727.0 lineto -738.64844 -721.1094 lineto -738.64844 -720.16144 738.48175 -719.46094 738.14844 -719.0078 curveto -737.8151 -718.5547 737.2995 -718.3281 736.60156 -718.3281 curveto -735.7786 -718.3281 735.125 -718.60675 734.6406 -719.16406 curveto -734.15625 -719.7214 733.91406 -720.4792 733.91406 -721.4375 curveto -733.91406 -727.0 lineto -732.28906 -727.0 lineto -732.28906 -717.15625 lineto -733.91406 -717.15625 lineto -733.91406 -718.6875 lineto -734.2786 -718.0833 734.71875 -717.638 735.2344 -717.35156 curveto -735.75 -717.0651 736.362 -716.9219 737.0703 -716.9219 curveto -737.78906 -716.9219 738.39844 -717.1042 738.89844 -717.46875 curveto -739.39844 -717.8333 739.76825 -718.3594 740.0078 -719.0469 curveto -closepath -753.8203 -722.0469 moveto -752.5078 -722.0469 751.60156 -722.19794 751.10156 -722.5 curveto -750.60156 -722.80206 750.35156 -723.3125 750.35156 -724.03125 curveto -750.35156 -724.6042 750.53906 -725.0599 750.91406 -725.39844 curveto -751.28906 -725.737 751.8047 -725.90625 752.46094 -725.90625 curveto -753.35675 -725.90625 754.0755 -725.58856 754.6172 -724.9531 curveto -755.1589 -724.3177 755.4297 -723.46875 755.4297 -722.40625 curveto -755.4297 -722.0469 lineto -753.8203 -722.0469 lineto -closepath -757.03906 -721.3906 moveto -757.03906 -727.0 lineto -755.4297 -727.0 lineto -755.4297 -725.5 lineto -755.0547 -726.1042 754.59375 -726.5469 754.0469 -726.8281 curveto -753.5 -727.1094 752.8255 -727.25 752.02344 -727.25 curveto -751.013 -727.25 750.21094 -726.96875 749.6172 -726.40625 curveto -749.02344 -725.84375 748.72656 -725.08856 748.72656 -724.1406 curveto -748.72656 -723.02606 749.09894 -722.1875 749.84375 -721.625 curveto -750.58856 -721.0625 751.6953 -720.78125 753.16406 -720.78125 curveto -755.4297 -720.78125 lineto -755.4297 -720.625 lineto -755.4297 -719.88544 755.1849 -719.3125 754.6953 -718.90625 curveto -754.20575 -718.5 753.51825 -718.2969 752.6328 -718.2969 curveto -752.0703 -718.2969 751.52344 -718.362 750.9922 -718.4922 curveto -750.46094 -718.6224 749.9453 -718.82294 749.4453 -719.09375 curveto -749.4453 -717.6094 lineto -750.03906 -717.3802 750.61456 -717.2083 751.1719 -717.09375 curveto -751.7292 -716.9792 752.27344 -716.9219 752.8047 -716.9219 curveto -754.2214 -716.9219 755.28125 -717.2917 755.9844 -718.03125 curveto -756.6875 -718.7708 757.03906 -719.8906 757.03906 -721.3906 curveto -closepath -767.52344 -717.15625 moveto -763.96094 -721.9531 lineto -767.71094 -727.0 lineto -765.8047 -727.0 lineto -762.9453 -723.125 lineto -760.0703 -727.0 lineto -758.16406 -727.0 lineto -761.9922 -721.84375 lineto -758.4922 -717.15625 lineto -760.39844 -717.15625 lineto -763.0078 -720.65625 lineto -765.6172 -717.15625 lineto -767.52344 -717.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -740.0078 -396.04688 moveto -740.41406 -395.31772 740.89844 -394.78125 741.46094 -394.4375 curveto -742.02344 -394.09375 742.6849 -393.92188 743.4453 -393.92188 curveto -744.4661 -393.92188 745.2552 -394.28125 745.8125 -395.0 curveto -746.3698 -395.71875 746.64844 -396.7396 746.64844 -398.0625 curveto -746.64844 -404.0 lineto -745.02344 -404.0 lineto -745.02344 -398.10938 lineto -745.02344 -397.17188 744.85675 -396.47397 744.52344 -396.01562 curveto -744.1901 -395.55728 743.6797 -395.32812 742.9922 -395.32812 curveto -742.1589 -395.32812 741.5 -395.60678 741.0156 -396.16406 curveto -740.53125 -396.72134 740.28906 -397.47916 740.28906 -398.4375 curveto -740.28906 -404.0 lineto -738.64844 -404.0 lineto -738.64844 -398.10938 lineto -738.64844 -397.16147 738.48175 -396.46094 738.14844 -396.0078 curveto -737.8151 -395.5547 737.2995 -395.32812 736.60156 -395.32812 curveto -735.7786 -395.32812 735.125 -395.60678 734.6406 -396.16406 curveto -734.15625 -396.72134 733.91406 -397.47916 733.91406 -398.4375 curveto -733.91406 -404.0 lineto -732.28906 -404.0 lineto -732.28906 -394.15625 lineto -733.91406 -394.15625 lineto -733.91406 -395.6875 lineto -734.2786 -395.08334 734.71875 -394.63803 735.2344 -394.35156 curveto -735.75 -394.0651 736.362 -393.92188 737.0703 -393.92188 curveto -737.78906 -393.92188 738.39844 -394.10416 738.89844 -394.46875 curveto -739.39844 -394.83334 739.76825 -395.35938 740.0078 -396.04688 curveto -closepath -753.8203 -399.04688 moveto -752.5078 -399.04688 751.60156 -399.1979 751.10156 -399.5 curveto -750.60156 -399.8021 750.35156 -400.3125 750.35156 -401.03125 curveto -750.35156 -401.60416 750.53906 -402.0599 750.91406 -402.39844 curveto -751.28906 -402.73697 751.8047 -402.90625 752.46094 -402.90625 curveto -753.35675 -402.90625 754.0755 -402.58853 754.6172 -401.95312 curveto -755.1589 -401.31772 755.4297 -400.46875 755.4297 -399.40625 curveto -755.4297 -399.04688 lineto -753.8203 -399.04688 lineto -closepath -757.03906 -398.39062 moveto -757.03906 -404.0 lineto -755.4297 -404.0 lineto -755.4297 -402.5 lineto -755.0547 -403.10416 754.59375 -403.54688 754.0469 -403.82812 curveto -753.5 -404.10938 752.8255 -404.25 752.02344 -404.25 curveto -751.013 -404.25 750.21094 -403.96875 749.6172 -403.40625 curveto -749.02344 -402.84375 748.72656 -402.08853 748.72656 -401.14062 curveto -748.72656 -400.02603 749.09894 -399.1875 749.84375 -398.625 curveto -750.58856 -398.0625 751.6953 -397.78125 753.16406 -397.78125 curveto -755.4297 -397.78125 lineto -755.4297 -397.625 lineto -755.4297 -396.8854 755.1849 -396.3125 754.6953 -395.90625 curveto -754.20575 -395.5 753.51825 -395.29688 752.6328 -395.29688 curveto -752.0703 -395.29688 751.52344 -395.36197 750.9922 -395.4922 curveto -750.46094 -395.6224 749.9453 -395.8229 749.4453 -396.09375 curveto -749.4453 -394.60938 lineto -750.03906 -394.38022 750.61456 -394.20834 751.1719 -394.09375 curveto -751.7292 -393.97916 752.27344 -393.92188 752.8047 -393.92188 curveto -754.2214 -393.92188 755.28125 -394.29166 755.9844 -395.03125 curveto -756.6875 -395.77084 757.03906 -396.89062 757.03906 -398.39062 curveto -closepath -767.52344 -394.15625 moveto -763.96094 -398.95312 lineto -767.71094 -404.0 lineto -765.8047 -404.0 lineto -762.9453 -400.125 lineto -760.0703 -404.0 lineto -758.16406 -404.0 lineto -761.9922 -398.84375 lineto -758.4922 -394.15625 lineto -760.39844 -394.15625 lineto -763.0078 -397.65625 lineto -765.6172 -394.15625 lineto -767.52344 -394.15625 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -570.8203 -187.51562 moveto -570.8203 -192.75 lineto -569.1953 -192.75 lineto -569.1953 -179.15625 lineto -570.8203 -179.15625 lineto -570.8203 -180.65625 lineto -571.1536 -180.0625 571.58075 -179.625 572.10156 -179.34375 curveto -572.6224 -179.0625 573.2422 -178.92188 573.96094 -178.92188 curveto -575.1589 -178.92188 576.1302 -179.39583 576.875 -180.34375 curveto -577.6198 -181.29167 577.9922 -182.54167 577.9922 -184.09375 curveto -577.9922 -185.63542 577.6198 -186.8802 576.875 -187.82812 curveto -576.1302 -188.77605 575.1589 -189.25 573.96094 -189.25 curveto -573.2422 -189.25 572.6224 -189.10938 572.10156 -188.82812 curveto -571.58075 -188.54688 571.1536 -188.10938 570.8203 -187.51562 curveto -closepath -576.3203 -184.09375 moveto -576.3203 -182.89583 576.0755 -181.95833 575.58594 -181.28125 curveto -575.0964 -180.60417 574.4245 -180.26562 573.5703 -180.26562 curveto -572.7161 -180.26562 572.04425 -180.60417 571.5547 -181.28125 curveto -571.0651 -181.95833 570.8203 -182.89583 570.8203 -184.09375 curveto -570.8203 -185.28125 571.0651 -186.21355 571.5547 -186.89062 curveto -572.04425 -187.5677 572.7161 -187.90625 573.5703 -187.90625 curveto -574.4245 -187.90625 575.0964 -187.5677 575.58594 -186.89062 curveto -576.0755 -186.21355 576.3203 -185.28125 576.3203 -184.09375 curveto -closepath -584.27344 -177.04688 moveto -583.35675 -177.04688 582.66925 -177.49739 582.21094 -178.39844 curveto -581.7526 -179.29948 581.52344 -180.65105 581.52344 -182.45312 curveto -581.52344 -184.2552 581.7526 -185.60417 582.21094 -186.5 curveto -582.66925 -187.39583 583.35675 -187.84375 584.27344 -187.84375 curveto -585.2005 -187.84375 585.89325 -187.39583 586.35156 -186.5 curveto -586.8099 -185.60417 587.03906 -184.2552 587.03906 -182.45312 curveto -587.03906 -180.65105 586.8099 -179.29948 586.35156 -178.39844 curveto -585.89325 -177.49739 585.2005 -177.04688 584.27344 -177.04688 curveto -closepath -584.27344 -175.64062 moveto -585.7422 -175.64062 586.86456 -176.22136 587.6406 -177.38281 curveto -588.4167 -178.54427 588.8047 -180.23438 588.8047 -182.45312 curveto -588.8047 -184.66145 588.4167 -186.34636 587.6406 -187.50781 curveto -586.86456 -188.66927 585.7422 -189.25 584.27344 -189.25 curveto -582.8047 -189.25 581.6823 -188.66927 580.90625 -187.50781 curveto -580.1302 -186.34636 579.7422 -184.66145 579.7422 -182.45312 curveto -579.7422 -180.23438 580.1302 -178.54427 580.90625 -177.38281 curveto -581.6823 -176.22136 582.8047 -175.64062 584.27344 -175.64062 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -565.46094 -243.67188 moveto -565.27344 -243.5677 565.07294 -243.48958 564.8594 -243.4375 curveto -564.6458 -243.38542 564.4089 -243.35938 564.14844 -243.35938 curveto -563.2422 -243.35938 562.54425 -243.65625 562.0547 -244.25 curveto -561.5651 -244.84375 561.3203 -245.69792 561.3203 -246.8125 curveto -561.3203 -252.0 lineto -559.6953 -252.0 lineto -559.6953 -242.15625 lineto -561.3203 -242.15625 lineto -561.3203 -243.6875 lineto -561.6536 -243.08333 562.09375 -242.63802 562.6406 -242.35156 curveto -563.1875 -242.06511 563.85156 -241.92188 564.6328 -241.92188 curveto -564.737 -241.92188 564.85675 -241.92969 564.9922 -241.94531 curveto -565.1276 -241.96094 565.2786 -241.97917 565.4453 -242.0 curveto -565.46094 -243.67188 lineto -closepath -575.9297 -246.0625 moveto -575.9297 -252.0 lineto -574.3203 -252.0 lineto -574.3203 -246.10938 lineto -574.3203 -245.1823 574.138 -244.48698 573.77344 -244.02344 curveto -573.4089 -243.55989 572.862 -243.32812 572.1328 -243.32812 curveto -571.2578 -243.32812 570.5703 -243.60677 570.0703 -244.16406 curveto -569.5703 -244.72136 569.3203 -245.47917 569.3203 -246.4375 curveto -569.3203 -252.0 lineto -567.6953 -252.0 lineto -567.6953 -238.32812 lineto -569.3203 -238.32812 lineto -569.3203 -243.6875 lineto -569.70575 -243.09375 570.16144 -242.65105 570.6875 -242.35938 curveto -571.21356 -242.0677 571.8151 -241.92188 572.4922 -241.92188 curveto -573.6276 -241.92188 574.4844 -242.27083 575.0625 -242.96875 curveto -575.6406 -243.66667 575.9297 -244.69792 575.9297 -246.0625 curveto -closepath -582.5703 -243.29688 moveto -581.6953 -243.29688 581.0078 -243.63281 580.5078 -244.30469 curveto -580.0078 -244.97656 579.7578 -245.90625 579.7578 -247.09375 curveto -579.7578 -248.27083 580.0078 -249.19792 580.5078 -249.875 curveto -581.0078 -250.55208 581.6953 -250.89062 582.5703 -250.89062 curveto -583.4245 -250.89062 584.1042 -250.54948 584.6094 -249.86719 curveto -585.11456 -249.18489 585.3672 -248.26042 585.3672 -247.09375 curveto -585.3672 -245.92708 585.11456 -245.00261 584.6094 -244.32031 curveto -584.1042 -243.63802 583.4245 -243.29688 582.5703 -243.29688 curveto -closepath -582.5703 -241.92188 moveto -583.97656 -241.92188 585.08075 -242.37761 585.8828 -243.28906 curveto -586.6849 -244.20052 587.08594 -245.46875 587.08594 -247.09375 curveto -587.08594 -248.69792 586.6849 -249.95833 585.8828 -250.875 curveto -585.08075 -251.79167 583.97656 -252.25 582.5703 -252.25 curveto -581.1536 -252.25 580.0469 -251.79167 579.25 -250.875 curveto -578.4531 -249.95833 578.0547 -248.69792 578.0547 -247.09375 curveto -578.0547 -245.46875 578.4531 -244.20052 579.25 -243.28906 curveto -580.0469 -242.37761 581.1536 -241.92188 582.5703 -241.92188 curveto -closepath -593.77344 -240.04688 moveto -592.85675 -240.04688 592.16925 -240.49739 591.71094 -241.39844 curveto -591.2526 -242.29948 591.02344 -243.65105 591.02344 -245.45312 curveto -591.02344 -247.2552 591.2526 -248.60417 591.71094 -249.5 curveto -592.16925 -250.39583 592.85675 -250.84375 593.77344 -250.84375 curveto -594.7005 -250.84375 595.39325 -250.39583 595.85156 -249.5 curveto -596.3099 -248.60417 596.53906 -247.2552 596.53906 -245.45312 curveto -596.53906 -243.65105 596.3099 -242.29948 595.85156 -241.39844 curveto -595.39325 -240.49739 594.7005 -240.04688 593.77344 -240.04688 curveto -closepath -593.77344 -238.64062 moveto -595.2422 -238.64062 596.36456 -239.22136 597.1406 -240.38281 curveto -597.9167 -241.54427 598.3047 -243.23438 598.3047 -245.45312 curveto -598.3047 -247.66145 597.9167 -249.34636 597.1406 -250.50781 curveto -596.36456 -251.66927 595.2422 -252.25 593.77344 -252.25 curveto -592.3047 -252.25 591.1823 -251.66927 590.40625 -250.50781 curveto -589.6302 -249.34636 589.2422 -247.66145 589.2422 -245.45312 curveto -589.2422 -243.23438 589.6302 -241.54427 590.40625 -240.38281 curveto -591.1823 -239.22136 592.3047 -238.64062 593.77344 -238.64062 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -548.3203 -307.51562 moveto -548.3203 -312.75 lineto -546.6953 -312.75 lineto -546.6953 -299.15625 lineto -548.3203 -299.15625 lineto -548.3203 -300.65625 lineto -548.6536 -300.0625 549.08075 -299.625 549.60156 -299.34375 curveto -550.1224 -299.0625 550.7422 -298.92188 551.46094 -298.92188 curveto -552.6589 -298.92188 553.6302 -299.39584 554.375 -300.34375 curveto -555.1198 -301.29166 555.4922 -302.54166 555.4922 -304.09375 curveto -555.4922 -305.6354 555.1198 -306.88022 554.375 -307.82812 curveto -553.6302 -308.77603 552.6589 -309.25 551.46094 -309.25 curveto -550.7422 -309.25 550.1224 -309.10938 549.60156 -308.82812 curveto -549.08075 -308.54688 548.6536 -308.10938 548.3203 -307.51562 curveto -closepath -553.8203 -304.09375 moveto -553.8203 -302.89584 553.5755 -301.95834 553.08594 -301.28125 curveto -552.5964 -300.60416 551.9245 -300.26562 551.0703 -300.26562 curveto -550.2161 -300.26562 549.54425 -300.60416 549.0547 -301.28125 curveto -548.5651 -301.95834 548.3203 -302.89584 548.3203 -304.09375 curveto -548.3203 -305.28125 548.5651 -306.21353 549.0547 -306.89062 curveto -549.54425 -307.56772 550.2161 -307.90625 551.0703 -307.90625 curveto -551.9245 -307.90625 552.5964 -307.56772 553.08594 -306.89062 curveto -553.5755 -306.21353 553.8203 -305.28125 553.8203 -304.09375 curveto -closepath -558.28906 -307.5 moveto -561.1953 -307.5 lineto -561.1953 -297.5 lineto -558.03906 -298.125 lineto -558.03906 -296.51562 lineto -561.16406 -295.875 lineto -562.9453 -295.875 lineto -562.9453 -307.5 lineto -565.85156 -307.5 lineto -565.85156 -309.0 lineto -558.28906 -309.0 lineto -558.28906 -307.5 lineto -closepath -570.60156 -302.73438 moveto -570.60156 -307.54688 lineto -573.4453 -307.54688 lineto -574.4036 -307.54688 575.112 -307.34897 575.5703 -306.95312 curveto -576.0286 -306.55728 576.2578 -305.9479 576.2578 -305.125 curveto -576.2578 -304.3125 576.0286 -303.71094 575.5703 -303.3203 curveto -575.112 -302.9297 574.4036 -302.73438 573.4453 -302.73438 curveto -570.60156 -302.73438 lineto -closepath -570.60156 -297.34375 moveto -570.60156 -301.29688 lineto -573.22656 -301.29688 lineto -574.0911 -301.29688 574.737 -301.1328 575.16406 -300.8047 curveto -575.5911 -300.47656 575.8047 -299.97916 575.8047 -299.3125 curveto -575.8047 -298.65625 575.5911 -298.16406 575.16406 -297.83594 curveto -574.737 -297.5078 574.0911 -297.34375 573.22656 -297.34375 curveto -570.60156 -297.34375 lineto -closepath -568.8203 -295.875 moveto -573.35156 -295.875 lineto -574.70575 -295.875 575.75 -296.15625 576.4844 -296.71875 curveto -577.21875 -297.28125 577.58594 -298.08334 577.58594 -299.125 curveto -577.58594 -299.9271 577.39844 -300.5651 577.02344 -301.03906 curveto -576.64844 -301.51303 576.0964 -301.80728 575.3672 -301.92188 curveto -576.2422 -302.10938 576.9219 -302.5 577.40625 -303.09375 curveto -577.8906 -303.6875 578.1328 -304.43228 578.1328 -305.32812 curveto -578.1328 -306.49478 577.7344 -307.39844 576.9375 -308.03906 curveto -576.1406 -308.6797 575.0078 -309.0 573.53906 -309.0 curveto -568.8203 -309.0 lineto -568.8203 -295.875 lineto -closepath -584.85156 -309.92188 moveto -584.39325 -311.08853 583.94794 -311.85156 583.5156 -312.21094 curveto -583.0833 -312.5703 582.5026 -312.75 581.77344 -312.75 curveto -580.47656 -312.75 lineto -580.47656 -311.39062 lineto -581.4297 -311.39062 lineto -581.8776 -311.39062 582.22394 -311.28647 582.46875 -311.07812 curveto -582.71356 -310.86978 582.987 -310.36978 583.28906 -309.57812 curveto -583.5703 -308.84375 lineto -579.58594 -299.15625 lineto -581.3047 -299.15625 lineto -584.3828 -306.85938 lineto -587.46094 -299.15625 lineto -589.16406 -299.15625 lineto -584.85156 -309.92188 lineto -closepath -593.3203 -307.51562 moveto -593.3203 -312.75 lineto -591.6953 -312.75 lineto -591.6953 -299.15625 lineto -593.3203 -299.15625 lineto -593.3203 -300.65625 lineto -593.6536 -300.0625 594.08075 -299.625 594.60156 -299.34375 curveto -595.1224 -299.0625 595.7422 -298.92188 596.46094 -298.92188 curveto -597.6589 -298.92188 598.6302 -299.39584 599.375 -300.34375 curveto -600.1198 -301.29166 600.4922 -302.54166 600.4922 -304.09375 curveto -600.4922 -305.6354 600.1198 -306.88022 599.375 -307.82812 curveto -598.6302 -308.77603 597.6589 -309.25 596.46094 -309.25 curveto -595.7422 -309.25 595.1224 -309.10938 594.60156 -308.82812 curveto -594.08075 -308.54688 593.6536 -308.10938 593.3203 -307.51562 curveto -closepath -598.8203 -304.09375 moveto -598.8203 -302.89584 598.5755 -301.95834 598.08594 -301.28125 curveto -597.5964 -300.60416 596.9245 -300.26562 596.0703 -300.26562 curveto -595.2161 -300.26562 594.54425 -300.60416 594.0547 -301.28125 curveto -593.5651 -301.95834 593.3203 -302.89584 593.3203 -304.09375 curveto -593.3203 -305.28125 593.5651 -306.21353 594.0547 -306.89062 curveto -594.54425 -307.56772 595.2161 -307.90625 596.0703 -307.90625 curveto -596.9245 -307.90625 597.5964 -307.56772 598.08594 -306.89062 curveto -598.5755 -306.21353 598.8203 -305.28125 598.8203 -304.09375 curveto -closepath -606.77344 -297.04688 moveto -605.85675 -297.04688 605.16925 -297.4974 604.71094 -298.39844 curveto -604.2526 -299.29947 604.02344 -300.65103 604.02344 -302.45312 curveto -604.02344 -304.25522 604.2526 -305.60416 604.71094 -306.5 curveto -605.16925 -307.39584 605.85675 -307.84375 606.77344 -307.84375 curveto -607.7005 -307.84375 608.39325 -307.39584 608.85156 -306.5 curveto -609.3099 -305.60416 609.53906 -304.25522 609.53906 -302.45312 curveto -609.53906 -300.65103 609.3099 -299.29947 608.85156 -298.39844 curveto -608.39325 -297.4974 607.7005 -297.04688 606.77344 -297.04688 curveto -closepath -606.77344 -295.64062 moveto -608.2422 -295.64062 609.36456 -296.22134 610.1406 -297.3828 curveto -610.9167 -298.54428 611.3047 -300.23438 611.3047 -302.45312 curveto -611.3047 -304.66147 610.9167 -306.34634 610.1406 -307.5078 curveto -609.36456 -308.66928 608.2422 -309.25 606.77344 -309.25 curveto -605.3047 -309.25 604.1823 -308.66928 603.40625 -307.5078 curveto -602.6302 -306.34634 602.2422 -304.66147 602.2422 -302.45312 curveto -602.2422 -300.23438 602.6302 -298.54428 603.40625 -297.3828 curveto -604.1823 -296.22134 605.3047 -295.64062 606.77344 -295.64062 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -575.2656 -361.34375 moveto -575.2656 -371.54688 lineto -577.40625 -371.54688 lineto -579.21875 -371.54688 580.54425 -371.1354 581.3828 -370.3125 curveto -582.2214 -369.4896 582.6406 -368.19272 582.6406 -366.42188 curveto -582.6406 -364.66147 582.2214 -363.375 581.3828 -362.5625 curveto -580.54425 -361.75 579.21875 -361.34375 577.40625 -361.34375 curveto -575.2656 -361.34375 lineto -closepath -573.4844 -359.875 moveto -577.1406 -359.875 lineto -579.6823 -359.875 581.5469 -360.40366 582.7344 -361.46094 curveto -583.9219 -362.51822 584.5156 -364.17188 584.5156 -366.42188 curveto -584.5156 -368.68228 583.91925 -370.34375 582.72656 -371.40625 curveto -581.5339 -372.46875 579.6719 -373.0 577.1406 -373.0 curveto -573.4844 -373.0 lineto -573.4844 -359.875 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -546.4297 -506.32812 moveto -546.4297 -507.67188 lineto -544.8828 -507.67188 lineto -544.2995 -507.67188 543.8958 -507.78906 543.6719 -508.02344 curveto -543.44794 -508.2578 543.33594 -508.6771 543.33594 -509.28125 curveto -543.33594 -510.15625 lineto -545.9922 -510.15625 lineto -545.9922 -511.40625 lineto -543.33594 -511.40625 lineto -543.33594 -520.0 lineto -541.6953 -520.0 lineto -541.6953 -511.40625 lineto -540.14844 -511.40625 lineto -540.14844 -510.15625 lineto -541.6953 -510.15625 lineto -541.6953 -509.46875 lineto -541.6953 -508.375 541.9505 -507.57812 542.46094 -507.07812 curveto -542.9714 -506.57812 543.7839 -506.32812 544.89844 -506.32812 curveto -546.4297 -506.32812 lineto -closepath -547.4453 -506.32812 moveto -549.0547 -506.32812 lineto -549.0547 -520.0 lineto -547.4453 -520.0 lineto -547.4453 -506.32812 lineto -closepath -556.2578 -511.29688 moveto -555.3828 -511.29688 554.6953 -511.6328 554.1953 -512.3047 curveto -553.6953 -512.97656 553.4453 -513.90625 553.4453 -515.09375 curveto -553.4453 -516.2708 553.6953 -517.19794 554.1953 -517.875 curveto -554.6953 -518.55206 555.3828 -518.8906 556.2578 -518.8906 curveto -557.112 -518.8906 557.7917 -518.5495 558.2969 -517.8672 curveto -558.80206 -517.1849 559.0547 -516.26044 559.0547 -515.09375 curveto -559.0547 -513.92706 558.80206 -513.0026 558.2969 -512.3203 curveto -557.7917 -511.63803 557.112 -511.29688 556.2578 -511.29688 curveto -closepath -556.2578 -509.92188 moveto -557.66406 -509.92188 558.76825 -510.3776 559.5703 -511.28906 curveto -560.3724 -512.2005 560.77344 -513.46875 560.77344 -515.09375 curveto -560.77344 -516.69794 560.3724 -517.9583 559.5703 -518.875 curveto -558.76825 -519.7917 557.66406 -520.25 556.2578 -520.25 curveto -554.8411 -520.25 553.7344 -519.7917 552.9375 -518.875 curveto -552.1406 -517.9583 551.7422 -516.69794 551.7422 -515.09375 curveto -551.7422 -513.46875 552.1406 -512.2005 552.9375 -511.28906 curveto -553.7344 -510.3776 554.8411 -509.92188 556.2578 -509.92188 curveto -closepath -562.4922 -510.15625 moveto -564.1172 -510.15625 lineto -566.1328 -517.84375 lineto -568.14844 -510.15625 lineto -570.0547 -510.15625 lineto -572.08594 -517.84375 lineto -574.08594 -510.15625 lineto -575.71094 -510.15625 lineto -573.1328 -520.0 lineto -571.22656 -520.0 lineto -569.10156 -511.9375 lineto -566.97656 -520.0 lineto -565.0703 -520.0 lineto -562.4922 -510.15625 lineto -closepath -585.72656 -513.84375 moveto -586.112 -513.9792 586.4844 -514.2578 586.84375 -514.6797 curveto -587.2031 -515.10156 587.5651 -515.67706 587.9297 -516.40625 curveto -589.72656 -520.0 lineto -587.8203 -520.0 lineto -586.14844 -516.6406 lineto -585.71094 -515.7552 585.28906 -515.16925 584.8828 -514.8828 curveto -584.47656 -514.5964 583.91925 -514.4531 583.21094 -514.4531 curveto -581.28906 -514.4531 lineto -581.28906 -520.0 lineto -579.5078 -520.0 lineto -579.5078 -506.875 lineto -583.52344 -506.875 lineto -585.02344 -506.875 586.1406 -507.1901 586.875 -507.8203 curveto -587.6094 -508.45053 587.97656 -509.39584 587.97656 -510.65625 curveto -587.97656 -511.47916 587.78644 -512.16406 587.40625 -512.71094 curveto -587.02606 -513.2578 586.4661 -513.63544 585.72656 -513.84375 curveto -closepath -581.28906 -508.34375 moveto -581.28906 -513.0 lineto -583.52344 -513.0 lineto -584.3776 -513.0 585.02344 -512.80206 585.46094 -512.40625 curveto -585.89844 -512.01044 586.1172 -511.4271 586.1172 -510.65625 curveto -586.1172 -509.8854 585.89844 -509.30728 585.46094 -508.92188 curveto -585.02344 -508.53647 584.3776 -508.34375 583.52344 -508.34375 curveto -581.28906 -508.34375 lineto -closepath -596.91406 -515.0469 moveto -595.60156 -515.0469 594.6953 -515.19794 594.1953 -515.5 curveto -593.6953 -515.80206 593.4453 -516.3125 593.4453 -517.03125 curveto -593.4453 -517.6042 593.6328 -518.0599 594.0078 -518.39844 curveto -594.3828 -518.737 594.89844 -518.90625 595.5547 -518.90625 curveto -596.4505 -518.90625 597.16925 -518.58856 597.71094 -517.9531 curveto -598.2526 -517.3177 598.52344 -516.46875 598.52344 -515.40625 curveto -598.52344 -515.0469 lineto -596.91406 -515.0469 lineto -closepath -600.1328 -514.3906 moveto -600.1328 -520.0 lineto -598.52344 -520.0 lineto -598.52344 -518.5 lineto -598.14844 -519.1042 597.6875 -519.5469 597.1406 -519.8281 curveto -596.59375 -520.1094 595.91925 -520.25 595.1172 -520.25 curveto -594.10675 -520.25 593.3047 -519.96875 592.71094 -519.40625 curveto -592.1172 -518.84375 591.8203 -518.08856 591.8203 -517.1406 curveto -591.8203 -516.02606 592.1927 -515.1875 592.9375 -514.625 curveto -593.6823 -514.0625 594.78906 -513.78125 596.2578 -513.78125 curveto -598.52344 -513.78125 lineto -598.52344 -513.625 lineto -598.52344 -512.88544 598.2786 -512.3125 597.78906 -511.90625 curveto -597.2995 -511.5 596.612 -511.29688 595.72656 -511.29688 curveto -595.16406 -511.29688 594.6172 -511.36197 594.08594 -511.4922 curveto -593.5547 -511.6224 593.03906 -511.8229 592.53906 -512.09375 curveto -592.53906 -510.60938 lineto -593.1328 -510.38022 593.7083 -510.20834 594.2656 -510.09375 curveto -594.82294 -509.97916 595.3672 -509.92188 595.89844 -509.92188 curveto -597.3151 -509.92188 598.375 -510.29166 599.0781 -511.03125 curveto -599.78125 -511.77084 600.1328 -512.8906 600.1328 -514.3906 curveto -closepath -604.03906 -507.35938 moveto -604.03906 -510.15625 lineto -607.3672 -510.15625 lineto -607.3672 -511.40625 lineto -604.03906 -511.40625 lineto -604.03906 -516.75 lineto -604.03906 -517.55206 604.14844 -518.0677 604.3672 -518.2969 curveto -604.58594 -518.52606 605.0339 -518.6406 605.71094 -518.6406 curveto -607.3672 -518.6406 lineto -607.3672 -520.0 lineto -605.71094 -520.0 lineto -604.46094 -520.0 603.59894 -519.76825 603.125 -519.3047 curveto -602.65106 -518.8411 602.41406 -517.98956 602.41406 -516.75 curveto -602.41406 -511.40625 lineto -601.22656 -511.40625 lineto -601.22656 -510.15625 lineto -602.41406 -510.15625 lineto -602.41406 -507.35938 lineto -604.03906 -507.35938 lineto -closepath -617.85156 -514.6719 moveto -617.85156 -515.46875 lineto -610.4297 -515.46875 lineto -610.4922 -516.5833 610.8255 -517.4323 611.4297 -518.0156 curveto -612.0339 -518.59894 612.8724 -518.8906 613.9453 -518.8906 curveto -614.5599 -518.8906 615.1589 -518.8125 615.7422 -518.65625 curveto -616.3255 -518.5 616.9036 -518.2708 617.47656 -517.96875 curveto -617.47656 -519.5 lineto -616.9036 -519.75 616.3125 -519.9375 615.7031 -520.0625 curveto -615.09375 -520.1875 614.4714 -520.25 613.83594 -520.25 curveto -612.27344 -520.25 611.0339 -519.79425 610.1172 -518.8828 curveto -609.2005 -517.9714 608.7422 -516.7344 608.7422 -515.1719 curveto -608.7422 -513.5573 609.17706 -512.2786 610.0469 -511.33594 curveto -610.9167 -510.39322 612.08594 -509.92188 613.5547 -509.92188 curveto -614.888 -509.92188 615.9375 -510.34634 616.7031 -511.1953 curveto -617.46875 -512.04425 617.85156 -513.2031 617.85156 -514.6719 curveto -closepath -616.2422 -514.2031 moveto -616.23175 -513.3177 615.9844 -512.612 615.5 -512.08594 curveto -615.0156 -511.5599 614.3776 -511.29688 613.58594 -511.29688 curveto -612.6797 -511.29688 611.95575 -511.54947 611.41406 -512.0547 curveto -610.8724 -512.5599 610.5599 -513.27606 610.47656 -514.2031 curveto -616.2422 -514.2031 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -548.5469 -739.5156 moveto -548.5469 -744.75 lineto -546.9219 -744.75 lineto -546.9219 -731.15625 lineto -548.5469 -731.15625 lineto -548.5469 -732.65625 lineto -548.8802 -732.0625 549.3073 -731.625 549.8281 -731.34375 curveto -550.34894 -731.0625 550.96875 -730.9219 551.6875 -730.9219 curveto -552.88544 -730.9219 553.85675 -731.3958 554.60156 -732.34375 curveto -555.3464 -733.2917 555.71875 -734.5417 555.71875 -736.09375 curveto -555.71875 -737.63544 555.3464 -738.8802 554.60156 -739.8281 curveto -553.85675 -740.77606 552.88544 -741.25 551.6875 -741.25 curveto -550.96875 -741.25 550.34894 -741.1094 549.8281 -740.8281 curveto -549.3073 -740.5469 548.8802 -740.1094 548.5469 -739.5156 curveto -closepath -554.0469 -736.09375 moveto -554.0469 -734.8958 553.80206 -733.9583 553.3125 -733.28125 curveto -552.82294 -732.6042 552.15106 -732.2656 551.2969 -732.2656 curveto -550.4427 -732.2656 549.7708 -732.6042 549.28125 -733.28125 curveto -548.7917 -733.9583 548.5469 -734.8958 548.5469 -736.09375 curveto -548.5469 -737.28125 548.7917 -738.21356 549.28125 -738.8906 curveto -549.7708 -739.5677 550.4427 -739.90625 551.2969 -739.90625 curveto -552.15106 -739.90625 552.82294 -739.5677 553.3125 -738.8906 curveto -553.80206 -738.21356 554.0469 -737.28125 554.0469 -736.09375 curveto -closepath -562.4531 -736.0469 moveto -561.1406 -736.0469 560.2344 -736.19794 559.7344 -736.5 curveto -559.2344 -736.80206 558.9844 -737.3125 558.9844 -738.03125 curveto -558.9844 -738.6042 559.1719 -739.0599 559.5469 -739.39844 curveto -559.9219 -739.737 560.4375 -739.90625 561.09375 -739.90625 curveto -561.98956 -739.90625 562.7083 -739.58856 563.25 -738.9531 curveto -563.7917 -738.3177 564.0625 -737.46875 564.0625 -736.40625 curveto -564.0625 -736.0469 lineto -562.4531 -736.0469 lineto -closepath -565.6719 -735.3906 moveto -565.6719 -741.0 lineto -564.0625 -741.0 lineto -564.0625 -739.5 lineto -563.6875 -740.1042 563.22656 -740.5469 562.6797 -740.8281 curveto -562.1328 -741.1094 561.4583 -741.25 560.65625 -741.25 curveto -559.6458 -741.25 558.84375 -740.96875 558.25 -740.40625 curveto -557.65625 -739.84375 557.3594 -739.08856 557.3594 -738.1406 curveto -557.3594 -737.02606 557.73175 -736.1875 558.47656 -735.625 curveto -559.2214 -735.0625 560.3281 -734.78125 561.7969 -734.78125 curveto -564.0625 -734.78125 lineto -564.0625 -734.625 lineto -564.0625 -733.88544 563.8177 -733.3125 563.3281 -732.90625 curveto -562.83856 -732.5 562.15106 -732.2969 561.2656 -732.2969 curveto -560.7031 -732.2969 560.15625 -732.362 559.625 -732.4922 curveto -559.09375 -732.6224 558.5781 -732.82294 558.0781 -733.09375 curveto -558.0781 -731.6094 lineto -558.6719 -731.3802 559.2474 -731.2083 559.8047 -731.09375 curveto -560.362 -730.9792 560.90625 -730.9219 561.4375 -730.9219 curveto -562.8542 -730.9219 563.91406 -731.2917 564.6172 -732.03125 curveto -565.3203 -732.7708 565.6719 -733.8906 565.6719 -735.3906 curveto -closepath -573.6875 -732.6719 moveto -573.5 -732.5677 573.2995 -732.48956 573.08594 -732.4375 curveto -572.8724 -732.38544 572.63544 -732.3594 572.375 -732.3594 curveto -571.46875 -732.3594 570.7708 -732.65625 570.28125 -733.25 curveto -569.7917 -733.84375 569.5469 -734.69794 569.5469 -735.8125 curveto -569.5469 -741.0 lineto -567.9219 -741.0 lineto -567.9219 -731.15625 lineto -569.5469 -731.15625 lineto -569.5469 -732.6875 lineto -569.8802 -732.0833 570.3203 -731.638 570.8672 -731.35156 curveto -571.41406 -731.0651 572.0781 -730.9219 572.8594 -730.9219 curveto -572.96356 -730.9219 573.0833 -730.9297 573.21875 -730.9453 curveto -573.3542 -730.96094 573.5052 -730.9792 573.6719 -731.0 curveto -573.6875 -732.6719 lineto -closepath -580.4531 -736.0469 moveto -579.1406 -736.0469 578.2344 -736.19794 577.7344 -736.5 curveto -577.2344 -736.80206 576.9844 -737.3125 576.9844 -738.03125 curveto -576.9844 -738.6042 577.1719 -739.0599 577.5469 -739.39844 curveto -577.9219 -739.737 578.4375 -739.90625 579.09375 -739.90625 curveto -579.98956 -739.90625 580.7083 -739.58856 581.25 -738.9531 curveto -581.7917 -738.3177 582.0625 -737.46875 582.0625 -736.40625 curveto -582.0625 -736.0469 lineto -580.4531 -736.0469 lineto -closepath -583.6719 -735.3906 moveto -583.6719 -741.0 lineto -582.0625 -741.0 lineto -582.0625 -739.5 lineto -581.6875 -740.1042 581.22656 -740.5469 580.6797 -740.8281 curveto -580.1328 -741.1094 579.4583 -741.25 578.65625 -741.25 curveto -577.6458 -741.25 576.84375 -740.96875 576.25 -740.40625 curveto -575.65625 -739.84375 575.3594 -739.08856 575.3594 -738.1406 curveto -575.3594 -737.02606 575.73175 -736.1875 576.47656 -735.625 curveto -577.2214 -735.0625 578.3281 -734.78125 579.7969 -734.78125 curveto -582.0625 -734.78125 lineto -582.0625 -734.625 lineto -582.0625 -733.88544 581.8177 -733.3125 581.3281 -732.90625 curveto -580.83856 -732.5 580.15106 -732.2969 579.2656 -732.2969 curveto -578.7031 -732.2969 578.15625 -732.362 577.625 -732.4922 curveto -577.09375 -732.6224 576.5781 -732.82294 576.0781 -733.09375 curveto -576.0781 -731.6094 lineto -576.6719 -731.3802 577.2474 -731.2083 577.8047 -731.09375 curveto -578.362 -730.9792 578.90625 -730.9219 579.4375 -730.9219 curveto -580.8542 -730.9219 581.91406 -731.2917 582.6172 -732.03125 curveto -583.3203 -732.7708 583.6719 -733.8906 583.6719 -735.3906 curveto -closepath -593.6406 -733.0469 moveto -594.0469 -732.3177 594.53125 -731.78125 595.09375 -731.4375 curveto -595.65625 -731.09375 596.3177 -730.9219 597.0781 -730.9219 curveto -598.09894 -730.9219 598.888 -731.28125 599.4453 -732.0 curveto -600.0026 -732.71875 600.28125 -733.73956 600.28125 -735.0625 curveto -600.28125 -741.0 lineto -598.65625 -741.0 lineto -598.65625 -735.1094 lineto -598.65625 -734.1719 598.48956 -733.47394 598.15625 -733.0156 curveto -597.82294 -732.5573 597.3125 -732.3281 596.625 -732.3281 curveto -595.7917 -732.3281 595.1328 -732.60675 594.64844 -733.16406 curveto -594.16406 -733.7214 593.9219 -734.4792 593.9219 -735.4375 curveto -593.9219 -741.0 lineto -592.28125 -741.0 lineto -592.28125 -735.1094 lineto -592.28125 -734.16144 592.11456 -733.46094 591.78125 -733.0078 curveto -591.44794 -732.5547 590.9323 -732.3281 590.2344 -732.3281 curveto -589.41144 -732.3281 588.7578 -732.60675 588.27344 -733.16406 curveto -587.78906 -733.7214 587.5469 -734.4792 587.5469 -735.4375 curveto -587.5469 -741.0 lineto -585.9219 -741.0 lineto -585.9219 -731.15625 lineto -587.5469 -731.15625 lineto -587.5469 -732.6875 lineto -587.91144 -732.0833 588.35156 -731.638 588.8672 -731.35156 curveto -589.3828 -731.0651 589.9948 -730.9219 590.7031 -730.9219 curveto -591.4219 -730.9219 592.03125 -731.1042 592.53125 -731.46875 curveto -593.03125 -731.8333 593.40106 -732.3594 593.6406 -733.0469 curveto -closepath -603.5156 -739.5 moveto -606.4219 -739.5 lineto -606.4219 -729.5 lineto -603.2656 -730.125 lineto -603.2656 -728.5156 lineto -606.3906 -727.875 lineto -608.1719 -727.875 lineto -608.1719 -739.5 lineto -611.0781 -739.5 lineto -611.0781 -741.0 lineto -603.5156 -741.0 lineto -603.5156 -739.5 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -548.6172 -798.5156 moveto -548.6172 -803.75 lineto -546.9922 -803.75 lineto -546.9922 -790.15625 lineto -548.6172 -790.15625 lineto -548.6172 -791.65625 lineto -548.9505 -791.0625 549.3776 -790.625 549.89844 -790.34375 curveto -550.41925 -790.0625 551.03906 -789.9219 551.7578 -789.9219 curveto -552.95575 -789.9219 553.92706 -790.3958 554.6719 -791.34375 curveto -555.4167 -792.2917 555.78906 -793.5417 555.78906 -795.09375 curveto -555.78906 -796.63544 555.4167 -797.8802 554.6719 -798.8281 curveto -553.92706 -799.77606 552.95575 -800.25 551.7578 -800.25 curveto -551.03906 -800.25 550.41925 -800.1094 549.89844 -799.8281 curveto -549.3776 -799.5469 548.9505 -799.1094 548.6172 -798.5156 curveto -closepath -554.1172 -795.09375 moveto -554.1172 -793.8958 553.8724 -792.9583 553.3828 -792.28125 curveto -552.89325 -791.6042 552.2214 -791.2656 551.3672 -791.2656 curveto -550.513 -791.2656 549.8411 -791.6042 549.35156 -792.28125 curveto -548.862 -792.9583 548.6172 -793.8958 548.6172 -795.09375 curveto -548.6172 -796.28125 548.862 -797.21356 549.35156 -797.8906 curveto -549.8411 -798.5677 550.513 -798.90625 551.3672 -798.90625 curveto -552.2214 -798.90625 552.89325 -798.5677 553.3828 -797.8906 curveto -553.8724 -797.21356 554.1172 -796.28125 554.1172 -795.09375 curveto -closepath -562.52344 -795.0469 moveto -561.21094 -795.0469 560.3047 -795.19794 559.8047 -795.5 curveto -559.3047 -795.80206 559.0547 -796.3125 559.0547 -797.03125 curveto -559.0547 -797.6042 559.2422 -798.0599 559.6172 -798.39844 curveto -559.9922 -798.737 560.5078 -798.90625 561.16406 -798.90625 curveto -562.0599 -798.90625 562.7786 -798.58856 563.3203 -797.9531 curveto -563.862 -797.3177 564.1328 -796.46875 564.1328 -795.40625 curveto -564.1328 -795.0469 lineto -562.52344 -795.0469 lineto -closepath -565.7422 -794.3906 moveto -565.7422 -800.0 lineto -564.1328 -800.0 lineto -564.1328 -798.5 lineto -563.7578 -799.1042 563.2969 -799.5469 562.75 -799.8281 curveto -562.2031 -800.1094 561.5286 -800.25 560.72656 -800.25 curveto -559.7161 -800.25 558.91406 -799.96875 558.3203 -799.40625 curveto -557.72656 -798.84375 557.4297 -798.08856 557.4297 -797.1406 curveto -557.4297 -796.02606 557.80206 -795.1875 558.5469 -794.625 curveto -559.2917 -794.0625 560.39844 -793.78125 561.8672 -793.78125 curveto -564.1328 -793.78125 lineto -564.1328 -793.625 lineto -564.1328 -792.88544 563.888 -792.3125 563.39844 -791.90625 curveto -562.9089 -791.5 562.2214 -791.2969 561.33594 -791.2969 curveto -560.77344 -791.2969 560.22656 -791.362 559.6953 -791.4922 curveto -559.16406 -791.6224 558.64844 -791.82294 558.14844 -792.09375 curveto -558.14844 -790.6094 lineto -558.7422 -790.3802 559.3177 -790.2083 559.875 -790.09375 curveto -560.4323 -789.9792 560.97656 -789.9219 561.5078 -789.9219 curveto -562.9245 -789.9219 563.9844 -790.2917 564.6875 -791.03125 curveto -565.3906 -791.7708 565.7422 -792.8906 565.7422 -794.3906 curveto -closepath -573.7578 -791.6719 moveto -573.5703 -791.5677 573.3698 -791.48956 573.15625 -791.4375 curveto -572.9427 -791.38544 572.70575 -791.3594 572.4453 -791.3594 curveto -571.53906 -791.3594 570.8411 -791.65625 570.35156 -792.25 curveto -569.862 -792.84375 569.6172 -793.69794 569.6172 -794.8125 curveto -569.6172 -800.0 lineto -567.9922 -800.0 lineto -567.9922 -790.15625 lineto -569.6172 -790.15625 lineto -569.6172 -791.6875 lineto -569.9505 -791.0833 570.3906 -790.638 570.9375 -790.35156 curveto -571.4844 -790.0651 572.14844 -789.9219 572.9297 -789.9219 curveto -573.0339 -789.9219 573.1536 -789.9297 573.28906 -789.9453 curveto -573.4245 -789.96094 573.5755 -789.9792 573.7422 -790.0 curveto -573.7578 -791.6719 lineto -closepath -580.52344 -795.0469 moveto -579.21094 -795.0469 578.3047 -795.19794 577.8047 -795.5 curveto -577.3047 -795.80206 577.0547 -796.3125 577.0547 -797.03125 curveto -577.0547 -797.6042 577.2422 -798.0599 577.6172 -798.39844 curveto -577.9922 -798.737 578.5078 -798.90625 579.16406 -798.90625 curveto -580.0599 -798.90625 580.7786 -798.58856 581.3203 -797.9531 curveto -581.862 -797.3177 582.1328 -796.46875 582.1328 -795.40625 curveto -582.1328 -795.0469 lineto -580.52344 -795.0469 lineto -closepath -583.7422 -794.3906 moveto -583.7422 -800.0 lineto -582.1328 -800.0 lineto -582.1328 -798.5 lineto -581.7578 -799.1042 581.2969 -799.5469 580.75 -799.8281 curveto -580.2031 -800.1094 579.5286 -800.25 578.72656 -800.25 curveto -577.7161 -800.25 576.91406 -799.96875 576.3203 -799.40625 curveto -575.72656 -798.84375 575.4297 -798.08856 575.4297 -797.1406 curveto -575.4297 -796.02606 575.80206 -795.1875 576.5469 -794.625 curveto -577.2917 -794.0625 578.39844 -793.78125 579.8672 -793.78125 curveto -582.1328 -793.78125 lineto -582.1328 -793.625 lineto -582.1328 -792.88544 581.888 -792.3125 581.39844 -791.90625 curveto -580.9089 -791.5 580.2214 -791.2969 579.33594 -791.2969 curveto -578.77344 -791.2969 578.22656 -791.362 577.6953 -791.4922 curveto -577.16406 -791.6224 576.64844 -791.82294 576.14844 -792.09375 curveto -576.14844 -790.6094 lineto -576.7422 -790.3802 577.3177 -790.2083 577.875 -790.09375 curveto -578.4323 -789.9792 578.97656 -789.9219 579.5078 -789.9219 curveto -580.9245 -789.9219 581.9844 -790.2917 582.6875 -791.03125 curveto -583.3906 -791.7708 583.7422 -792.8906 583.7422 -794.3906 curveto -closepath -593.71094 -792.0469 moveto -594.1172 -791.3177 594.60156 -790.78125 595.16406 -790.4375 curveto -595.72656 -790.09375 596.388 -789.9219 597.14844 -789.9219 curveto -598.16925 -789.9219 598.9583 -790.28125 599.5156 -791.0 curveto -600.07294 -791.71875 600.35156 -792.73956 600.35156 -794.0625 curveto -600.35156 -800.0 lineto -598.72656 -800.0 lineto -598.72656 -794.1094 lineto -598.72656 -793.1719 598.5599 -792.47394 598.22656 -792.0156 curveto -597.89325 -791.5573 597.3828 -791.3281 596.6953 -791.3281 curveto -595.862 -791.3281 595.2031 -791.60675 594.71875 -792.16406 curveto -594.2344 -792.7214 593.9922 -793.4792 593.9922 -794.4375 curveto -593.9922 -800.0 lineto -592.35156 -800.0 lineto -592.35156 -794.1094 lineto -592.35156 -793.16144 592.1849 -792.46094 591.85156 -792.0078 curveto -591.51825 -791.5547 591.0026 -791.3281 590.3047 -791.3281 curveto -589.48175 -791.3281 588.8281 -791.60675 588.34375 -792.16406 curveto -587.8594 -792.7214 587.6172 -793.4792 587.6172 -794.4375 curveto -587.6172 -800.0 lineto -585.9922 -800.0 lineto -585.9922 -790.15625 lineto -587.6172 -790.15625 lineto -587.6172 -791.6875 lineto -587.98175 -791.0833 588.4219 -790.638 588.9375 -790.35156 curveto -589.4531 -790.0651 590.0651 -789.9219 590.77344 -789.9219 curveto -591.4922 -789.9219 592.10156 -790.1042 592.60156 -790.46875 curveto -593.10156 -790.8333 593.4714 -791.3594 593.71094 -792.0469 curveto -closepath -604.8047 -798.5 moveto -611.0078 -798.5 lineto -611.0078 -800.0 lineto -602.66406 -800.0 lineto -602.66406 -798.5 lineto -603.3411 -797.80206 604.26044 -796.8672 605.4219 -795.6953 curveto -606.5833 -794.52344 607.3151 -793.7656 607.6172 -793.4219 curveto -608.1901 -792.78644 608.58856 -792.2474 608.8125 -791.8047 curveto -609.03644 -791.362 609.14844 -790.92706 609.14844 -790.5 curveto -609.14844 -789.80206 608.9036 -789.2344 608.41406 -788.7969 curveto -607.9245 -788.3594 607.28906 -788.1406 606.5078 -788.1406 curveto -605.9453 -788.1406 605.35675 -788.237 604.7422 -788.4297 curveto -604.1276 -788.6224 603.4661 -788.91144 602.7578 -789.2969 curveto -602.7578 -787.5156 lineto -603.47656 -787.22394 604.1458 -787.0052 604.7656 -786.8594 curveto -605.38544 -786.71356 605.9505 -786.6406 606.46094 -786.6406 curveto -607.8255 -786.6406 608.91144 -786.9792 609.71875 -787.65625 curveto -610.52606 -788.3333 610.9297 -789.2448 610.9297 -790.3906 curveto -610.9297 -790.9219 610.8281 -791.4297 610.625 -791.91406 curveto -610.4219 -792.39844 610.0547 -792.96875 609.52344 -793.625 curveto -609.3776 -793.7917 608.91144 -794.28125 608.125 -795.09375 curveto -607.33856 -795.90625 606.23175 -797.0417 604.8047 -798.5 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -332.85156 -271.15625 moveto -334.46094 -271.15625 lineto -334.46094 -281.0 lineto -332.85156 -281.0 lineto -332.85156 -271.15625 lineto -closepath -332.85156 -267.32812 moveto -334.46094 -267.32812 lineto -334.46094 -269.375 lineto -332.85156 -269.375 lineto -332.85156 -267.32812 lineto -closepath -346.02344 -275.0625 moveto -346.02344 -281.0 lineto -344.41406 -281.0 lineto -344.41406 -275.10938 lineto -344.41406 -274.18228 344.23178 -273.48697 343.8672 -273.02344 curveto -343.5026 -272.5599 342.95572 -272.32812 342.22656 -272.32812 curveto -341.35156 -272.32812 340.66406 -272.60678 340.16406 -273.16406 curveto -339.66406 -273.72134 339.41406 -274.47916 339.41406 -275.4375 curveto -339.41406 -281.0 lineto -337.78906 -281.0 lineto -337.78906 -271.15625 lineto -339.41406 -271.15625 lineto -339.41406 -272.6875 lineto -339.79947 -272.09375 340.25522 -271.65103 340.78125 -271.35938 curveto -341.30728 -271.06772 341.90884 -270.92188 342.58594 -270.92188 curveto -343.72134 -270.92188 344.57812 -271.27084 345.15625 -271.96875 curveto -345.73438 -272.66666 346.02344 -273.6979 346.02344 -275.0625 curveto -closepath -350.41406 -279.51562 moveto -350.41406 -284.75 lineto -348.78906 -284.75 lineto -348.78906 -271.15625 lineto -350.41406 -271.15625 lineto -350.41406 -272.65625 lineto -350.7474 -272.0625 351.17447 -271.625 351.6953 -271.34375 curveto -352.21616 -271.0625 352.83594 -270.92188 353.5547 -270.92188 curveto -354.7526 -270.92188 355.72397 -271.39584 356.46875 -272.34375 curveto -357.21353 -273.29166 357.58594 -274.54166 357.58594 -276.09375 curveto -357.58594 -277.6354 357.21353 -278.88022 356.46875 -279.82812 curveto -355.72397 -280.77603 354.7526 -281.25 353.5547 -281.25 curveto -352.83594 -281.25 352.21616 -281.10938 351.6953 -280.82812 curveto -351.17447 -280.54688 350.7474 -280.10938 350.41406 -279.51562 curveto -closepath -355.91406 -276.09375 moveto -355.91406 -274.89584 355.66928 -273.95834 355.1797 -273.28125 curveto -354.6901 -272.60416 354.01822 -272.26562 353.16406 -272.26562 curveto -352.3099 -272.26562 351.63803 -272.60416 351.14844 -273.28125 curveto -350.65884 -273.95834 350.41406 -274.89584 350.41406 -276.09375 curveto -350.41406 -277.28125 350.65884 -278.21353 351.14844 -278.89062 curveto -351.63803 -279.56772 352.3099 -279.90625 353.16406 -279.90625 curveto -354.01822 -279.90625 354.6901 -279.56772 355.1797 -278.89062 curveto -355.66928 -278.21353 355.91406 -277.28125 355.91406 -276.09375 curveto -closepath -359.6797 -277.10938 moveto -359.6797 -271.15625 lineto -361.28906 -271.15625 lineto -361.28906 -277.04688 lineto -361.28906 -277.98438 361.47134 -278.6849 361.83594 -279.14844 curveto -362.20053 -279.61197 362.7474 -279.84375 363.47656 -279.84375 curveto -364.35156 -279.84375 365.04166 -279.5651 365.54688 -279.0078 curveto -366.0521 -278.45053 366.3047 -277.69272 366.3047 -276.73438 curveto -366.3047 -271.15625 lineto -367.9297 -271.15625 lineto -367.9297 -281.0 lineto -366.3047 -281.0 lineto -366.3047 -279.48438 lineto -365.90884 -280.08853 365.45312 -280.53384 364.9375 -280.8203 curveto -364.42188 -281.10678 363.8203 -281.25 363.1328 -281.25 curveto -361.9974 -281.25 361.13803 -280.89844 360.5547 -280.1953 curveto -359.97134 -279.4922 359.6797 -278.46353 359.6797 -277.10938 curveto -closepath -363.7422 -270.92188 moveto -363.7422 -270.92188 lineto -closepath -372.4453 -268.35938 moveto -372.4453 -271.15625 lineto -375.77344 -271.15625 lineto -375.77344 -272.40625 lineto -372.4453 -272.40625 lineto -372.4453 -277.75 lineto -372.4453 -278.5521 372.5547 -279.06772 372.77344 -279.29688 curveto -372.9922 -279.52603 373.4401 -279.64062 374.1172 -279.64062 curveto -375.77344 -279.64062 lineto -375.77344 -281.0 lineto -374.1172 -281.0 lineto -372.8672 -281.0 372.00522 -280.76822 371.53125 -280.3047 curveto -371.05728 -279.84116 370.8203 -278.9896 370.8203 -277.75 curveto -370.8203 -272.40625 lineto -369.6328 -272.40625 lineto -369.6328 -271.15625 lineto -370.8203 -271.15625 lineto -370.8203 -268.35938 lineto -372.4453 -268.35938 lineto -closepath -384.1172 -271.45312 moveto -384.1172 -272.96875 lineto -383.65884 -272.7396 383.1849 -272.5651 382.6953 -272.4453 curveto -382.20572 -272.32553 381.6953 -272.26562 381.16406 -272.26562 curveto -380.36197 -272.26562 379.7604 -272.39062 379.35938 -272.64062 curveto -378.95834 -272.89062 378.7578 -273.2604 378.7578 -273.75 curveto -378.7578 -274.125 378.90103 -274.41928 379.1875 -274.6328 curveto -379.47397 -274.84634 380.04947 -275.0521 380.91406 -275.25 curveto -381.47656 -275.35938 lineto -382.6224 -275.60938 383.4375 -275.95834 383.92188 -276.40625 curveto -384.40625 -276.85416 384.64844 -277.47916 384.64844 -278.28125 curveto -384.64844 -279.1979 384.28647 -279.92188 383.5625 -280.45312 curveto -382.83853 -280.98438 381.84634 -281.25 380.58594 -281.25 curveto -380.0547 -281.25 379.5026 -281.20053 378.9297 -281.10156 curveto -378.35678 -281.0026 377.7526 -280.84897 377.1172 -280.64062 curveto -377.1172 -278.96875 lineto -377.72134 -279.28125 378.3125 -279.51562 378.89062 -279.67188 curveto -379.46875 -279.82812 380.04428 -279.90625 380.6172 -279.90625 curveto -381.3776 -279.90625 381.96353 -279.77603 382.375 -279.51562 curveto -382.78647 -279.25522 382.9922 -278.8854 382.9922 -278.40625 curveto -382.9922 -277.96875 382.84375 -277.6328 382.54688 -277.39844 curveto -382.25 -277.16406 381.60156 -276.9375 380.60156 -276.71875 curveto -380.03906 -276.59375 lineto -379.02866 -276.375 378.3021 -276.04947 377.85938 -275.6172 curveto -377.41666 -275.1849 377.1953 -274.58334 377.1953 -273.8125 curveto -377.1953 -272.89584 377.52344 -272.1849 378.1797 -271.6797 curveto -378.83594 -271.17447 379.76822 -270.92188 380.97656 -270.92188 curveto -381.5703 -270.92188 382.13022 -270.96616 382.65625 -271.0547 curveto -383.18228 -271.14322 383.66928 -271.27603 384.1172 -271.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -330.51562 -512.2969 moveto -329.64062 -512.2969 328.95312 -512.6328 328.45312 -513.3047 curveto -327.95312 -513.97656 327.70312 -514.90625 327.70312 -516.09375 curveto -327.70312 -517.2708 327.95312 -518.19794 328.45312 -518.875 curveto -328.95312 -519.55206 329.64062 -519.8906 330.51562 -519.8906 curveto -331.36978 -519.8906 332.04947 -519.5495 332.5547 -518.8672 curveto -333.0599 -518.1849 333.3125 -517.26044 333.3125 -516.09375 curveto -333.3125 -514.92706 333.0599 -514.0026 332.5547 -513.3203 curveto -332.04947 -512.638 331.36978 -512.2969 330.51562 -512.2969 curveto -closepath -330.51562 -510.92188 moveto -331.92188 -510.92188 333.02603 -511.3776 333.82812 -512.28906 curveto -334.63022 -513.2005 335.03125 -514.46875 335.03125 -516.09375 curveto -335.03125 -517.69794 334.63022 -518.9583 333.82812 -519.875 curveto -333.02603 -520.7917 331.92188 -521.25 330.51562 -521.25 curveto -329.09897 -521.25 327.9922 -520.7917 327.1953 -519.875 curveto -326.39844 -518.9583 326.0 -517.69794 326.0 -516.09375 curveto -326.0 -514.46875 326.39844 -513.2005 327.1953 -512.28906 curveto -327.9922 -511.3776 329.09897 -510.92188 330.51562 -510.92188 curveto -closepath -337.53125 -517.1094 moveto -337.53125 -511.15625 lineto -339.14062 -511.15625 lineto -339.14062 -517.0469 lineto -339.14062 -517.9844 339.3229 -518.6849 339.6875 -519.14844 curveto -340.0521 -519.612 340.59897 -519.84375 341.32812 -519.84375 curveto -342.20312 -519.84375 342.89322 -519.5651 343.39844 -519.0078 curveto -343.90366 -518.4505 344.15625 -517.6927 344.15625 -516.7344 curveto -344.15625 -511.15625 lineto -345.78125 -511.15625 lineto -345.78125 -521.0 lineto -344.15625 -521.0 lineto -344.15625 -519.4844 lineto -343.7604 -520.08856 343.3047 -520.5339 342.78906 -520.8203 curveto -342.27344 -521.10675 341.67188 -521.25 340.98438 -521.25 curveto -339.84897 -521.25 338.9896 -520.89844 338.40625 -520.1953 curveto -337.8229 -519.4922 337.53125 -518.46356 337.53125 -517.1094 curveto -closepath -341.59375 -510.92188 moveto -341.59375 -510.92188 lineto -closepath -350.29688 -508.35938 moveto -350.29688 -511.15625 lineto -353.625 -511.15625 lineto -353.625 -512.40625 lineto -350.29688 -512.40625 lineto -350.29688 -517.75 lineto -350.29688 -518.55206 350.40625 -519.0677 350.625 -519.2969 curveto -350.84375 -519.52606 351.29166 -519.6406 351.96875 -519.6406 curveto -353.625 -519.6406 lineto -353.625 -521.0 lineto -351.96875 -521.0 lineto -350.71875 -521.0 349.85678 -520.76825 349.3828 -520.3047 curveto -348.90884 -519.8411 348.67188 -518.98956 348.67188 -517.75 curveto -348.67188 -512.40625 lineto -347.48438 -512.40625 lineto -347.48438 -511.15625 lineto -348.67188 -511.15625 lineto -348.67188 -508.35938 lineto -350.29688 -508.35938 lineto -closepath -357.26562 -519.5156 moveto -357.26562 -524.75 lineto -355.64062 -524.75 lineto -355.64062 -511.15625 lineto -357.26562 -511.15625 lineto -357.26562 -512.65625 lineto -357.59897 -512.0625 358.02603 -511.625 358.54688 -511.34375 curveto -359.06772 -511.0625 359.6875 -510.92188 360.40625 -510.92188 curveto -361.60416 -510.92188 362.57553 -511.39584 363.3203 -512.34375 curveto -364.0651 -513.2917 364.4375 -514.5417 364.4375 -516.09375 curveto -364.4375 -517.63544 364.0651 -518.8802 363.3203 -519.8281 curveto -362.57553 -520.77606 361.60416 -521.25 360.40625 -521.25 curveto -359.6875 -521.25 359.06772 -521.1094 358.54688 -520.8281 curveto -358.02603 -520.5469 357.59897 -520.1094 357.26562 -519.5156 curveto -closepath -362.76562 -516.09375 moveto -362.76562 -514.8958 362.52084 -513.9583 362.03125 -513.28125 curveto -361.54166 -512.6042 360.86978 -512.2656 360.01562 -512.2656 curveto -359.16147 -512.2656 358.4896 -512.6042 358.0 -513.28125 curveto -357.5104 -513.9583 357.26562 -514.8958 357.26562 -516.09375 curveto -357.26562 -517.28125 357.5104 -518.21356 358.0 -518.8906 curveto -358.4896 -519.5677 359.16147 -519.90625 360.01562 -519.90625 curveto -360.86978 -519.90625 361.54166 -519.5677 362.03125 -518.8906 curveto -362.52084 -518.21356 362.76562 -517.28125 362.76562 -516.09375 curveto -closepath -366.53125 -517.1094 moveto -366.53125 -511.15625 lineto -368.14062 -511.15625 lineto -368.14062 -517.0469 lineto -368.14062 -517.9844 368.3229 -518.6849 368.6875 -519.14844 curveto -369.0521 -519.612 369.59897 -519.84375 370.32812 -519.84375 curveto -371.20312 -519.84375 371.89322 -519.5651 372.39844 -519.0078 curveto -372.90366 -518.4505 373.15625 -517.6927 373.15625 -516.7344 curveto -373.15625 -511.15625 lineto -374.78125 -511.15625 lineto -374.78125 -521.0 lineto -373.15625 -521.0 lineto -373.15625 -519.4844 lineto -372.7604 -520.08856 372.3047 -520.5339 371.78906 -520.8203 curveto -371.27344 -521.10675 370.67188 -521.25 369.98438 -521.25 curveto -368.84897 -521.25 367.9896 -520.89844 367.40625 -520.1953 curveto -366.8229 -519.4922 366.53125 -518.46356 366.53125 -517.1094 curveto -closepath -370.59375 -510.92188 moveto -370.59375 -510.92188 lineto -closepath -379.29688 -508.35938 moveto -379.29688 -511.15625 lineto -382.625 -511.15625 lineto -382.625 -512.40625 lineto -379.29688 -512.40625 lineto -379.29688 -517.75 lineto -379.29688 -518.55206 379.40625 -519.0677 379.625 -519.2969 curveto -379.84375 -519.52606 380.29166 -519.6406 380.96875 -519.6406 curveto -382.625 -519.6406 lineto -382.625 -521.0 lineto -380.96875 -521.0 lineto -379.71875 -521.0 378.85678 -520.76825 378.3828 -520.3047 curveto -377.90884 -519.8411 377.67188 -518.98956 377.67188 -517.75 curveto -377.67188 -512.40625 lineto -376.48438 -512.40625 lineto -376.48438 -511.15625 lineto -377.67188 -511.15625 lineto -377.67188 -508.35938 lineto -379.29688 -508.35938 lineto -closepath -390.96875 -511.45312 moveto -390.96875 -512.96875 lineto -390.5104 -512.73956 390.03647 -512.5651 389.54688 -512.4453 curveto -389.05728 -512.3255 388.54688 -512.2656 388.01562 -512.2656 curveto -387.21353 -512.2656 386.61197 -512.3906 386.21094 -512.6406 curveto -385.8099 -512.8906 385.60938 -513.26044 385.60938 -513.75 curveto -385.60938 -514.125 385.7526 -514.41925 386.03906 -514.6328 curveto -386.32553 -514.8464 386.90103 -515.05206 387.76562 -515.25 curveto -388.32812 -515.3594 lineto -389.47397 -515.6094 390.28906 -515.9583 390.77344 -516.40625 curveto -391.2578 -516.8542 391.5 -517.4792 391.5 -518.28125 curveto -391.5 -519.19794 391.13803 -519.9219 390.41406 -520.4531 curveto -389.6901 -520.9844 388.6979 -521.25 387.4375 -521.25 curveto -386.90625 -521.25 386.35416 -521.2005 385.78125 -521.10156 curveto -385.20834 -521.0026 384.60416 -520.84894 383.96875 -520.6406 curveto -383.96875 -518.96875 lineto -384.5729 -519.28125 385.16406 -519.5156 385.7422 -519.6719 curveto -386.3203 -519.8281 386.89584 -519.90625 387.46875 -519.90625 curveto -388.22916 -519.90625 388.8151 -519.77606 389.22656 -519.5156 curveto -389.63803 -519.2552 389.84375 -518.88544 389.84375 -518.40625 curveto -389.84375 -517.96875 389.6953 -517.6328 389.39844 -517.39844 curveto -389.10156 -517.16406 388.45312 -516.9375 387.45312 -516.71875 curveto -386.89062 -516.59375 lineto -385.88022 -516.375 385.15366 -516.0495 384.71094 -515.6172 curveto -384.26822 -515.1849 384.04688 -514.5833 384.04688 -513.8125 curveto -384.04688 -512.8958 384.375 -512.1849 385.03125 -511.6797 curveto -385.6875 -511.17447 386.61978 -510.92188 387.82812 -510.92188 curveto -388.42188 -510.92188 388.98178 -510.96616 389.5078 -511.0547 curveto -390.03384 -511.14322 390.52084 -511.27603 390.96875 -511.45312 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -313.26562 -757.5156 moveto -313.26562 -762.75 lineto -311.64062 -762.75 lineto -311.64062 -749.15625 lineto -313.26562 -749.15625 lineto -313.26562 -750.65625 lineto -313.59897 -750.0625 314.02603 -749.625 314.54688 -749.34375 curveto -315.06772 -749.0625 315.6875 -748.9219 316.40625 -748.9219 curveto -317.60416 -748.9219 318.57553 -749.3958 319.3203 -750.34375 curveto -320.0651 -751.2917 320.4375 -752.5417 320.4375 -754.09375 curveto -320.4375 -755.63544 320.0651 -756.8802 319.3203 -757.8281 curveto -318.57553 -758.77606 317.60416 -759.25 316.40625 -759.25 curveto -315.6875 -759.25 315.06772 -759.1094 314.54688 -758.8281 curveto -314.02603 -758.5469 313.59897 -758.1094 313.26562 -757.5156 curveto -closepath -318.76562 -754.09375 moveto -318.76562 -752.8958 318.52084 -751.9583 318.03125 -751.28125 curveto -317.54166 -750.6042 316.86978 -750.2656 316.01562 -750.2656 curveto -315.16147 -750.2656 314.4896 -750.6042 314.0 -751.28125 curveto -313.5104 -751.9583 313.26562 -752.8958 313.26562 -754.09375 curveto -313.26562 -755.28125 313.5104 -756.21356 314.0 -756.8906 curveto -314.4896 -757.5677 315.16147 -757.90625 316.01562 -757.90625 curveto -316.86978 -757.90625 317.54166 -757.5677 318.03125 -756.8906 curveto -318.52084 -756.21356 318.76562 -755.28125 318.76562 -754.09375 curveto -closepath -327.17188 -754.0469 moveto -325.85938 -754.0469 324.95312 -754.19794 324.45312 -754.5 curveto -323.95312 -754.80206 323.70312 -755.3125 323.70312 -756.03125 curveto -323.70312 -756.6042 323.89062 -757.0599 324.26562 -757.39844 curveto -324.64062 -757.737 325.15625 -757.90625 325.8125 -757.90625 curveto -326.70834 -757.90625 327.4271 -757.58856 327.96875 -756.9531 curveto -328.5104 -756.3177 328.78125 -755.46875 328.78125 -754.40625 curveto -328.78125 -754.0469 lineto -327.17188 -754.0469 lineto -closepath -330.39062 -753.3906 moveto -330.39062 -759.0 lineto -328.78125 -759.0 lineto -328.78125 -757.5 lineto -328.40625 -758.1042 327.9453 -758.5469 327.39844 -758.8281 curveto -326.85156 -759.1094 326.1771 -759.25 325.375 -759.25 curveto -324.3646 -759.25 323.5625 -758.96875 322.96875 -758.40625 curveto -322.375 -757.84375 322.07812 -757.08856 322.07812 -756.1406 curveto -322.07812 -755.02606 322.45053 -754.1875 323.1953 -753.625 curveto -323.9401 -753.0625 325.04688 -752.78125 326.51562 -752.78125 curveto -328.78125 -752.78125 lineto -328.78125 -752.625 lineto -328.78125 -751.88544 328.53647 -751.3125 328.04688 -750.90625 curveto -327.55728 -750.5 326.86978 -750.2969 325.98438 -750.2969 curveto -325.42188 -750.2969 324.875 -750.362 324.34375 -750.4922 curveto -323.8125 -750.6224 323.29688 -750.82294 322.79688 -751.09375 curveto -322.79688 -749.6094 lineto -323.39062 -749.3802 323.96616 -749.2083 324.52344 -749.09375 curveto -325.08072 -748.9792 325.625 -748.9219 326.15625 -748.9219 curveto -327.5729 -748.9219 328.6328 -749.2917 329.33594 -750.03125 curveto -330.03906 -750.7708 330.39062 -751.8906 330.39062 -753.3906 curveto -closepath -338.40625 -750.6719 moveto -338.21875 -750.5677 338.01822 -750.48956 337.8047 -750.4375 curveto -337.59116 -750.38544 337.35416 -750.3594 337.09375 -750.3594 curveto -336.1875 -750.3594 335.4896 -750.65625 335.0 -751.25 curveto -334.5104 -751.84375 334.26562 -752.69794 334.26562 -753.8125 curveto -334.26562 -759.0 lineto -332.64062 -759.0 lineto -332.64062 -749.15625 lineto -334.26562 -749.15625 lineto -334.26562 -750.6875 lineto -334.59897 -750.0833 335.03906 -749.638 335.58594 -749.35156 curveto -336.1328 -749.0651 336.79688 -748.9219 337.57812 -748.9219 curveto -337.68228 -748.9219 337.8021 -748.9297 337.9375 -748.9453 curveto -338.0729 -748.96094 338.22397 -748.9792 338.39062 -749.0 curveto -338.40625 -750.6719 lineto -closepath -345.17188 -754.0469 moveto -343.85938 -754.0469 342.95312 -754.19794 342.45312 -754.5 curveto -341.95312 -754.80206 341.70312 -755.3125 341.70312 -756.03125 curveto -341.70312 -756.6042 341.89062 -757.0599 342.26562 -757.39844 curveto -342.64062 -757.737 343.15625 -757.90625 343.8125 -757.90625 curveto -344.70834 -757.90625 345.4271 -757.58856 345.96875 -756.9531 curveto -346.5104 -756.3177 346.78125 -755.46875 346.78125 -754.40625 curveto -346.78125 -754.0469 lineto -345.17188 -754.0469 lineto -closepath -348.39062 -753.3906 moveto -348.39062 -759.0 lineto -346.78125 -759.0 lineto -346.78125 -757.5 lineto -346.40625 -758.1042 345.9453 -758.5469 345.39844 -758.8281 curveto -344.85156 -759.1094 344.1771 -759.25 343.375 -759.25 curveto -342.3646 -759.25 341.5625 -758.96875 340.96875 -758.40625 curveto -340.375 -757.84375 340.07812 -757.08856 340.07812 -756.1406 curveto -340.07812 -755.02606 340.45053 -754.1875 341.1953 -753.625 curveto -341.9401 -753.0625 343.04688 -752.78125 344.51562 -752.78125 curveto -346.78125 -752.78125 lineto -346.78125 -752.625 lineto -346.78125 -751.88544 346.53647 -751.3125 346.04688 -750.90625 curveto -345.55728 -750.5 344.86978 -750.2969 343.98438 -750.2969 curveto -343.42188 -750.2969 342.875 -750.362 342.34375 -750.4922 curveto -341.8125 -750.6224 341.29688 -750.82294 340.79688 -751.09375 curveto -340.79688 -749.6094 lineto -341.39062 -749.3802 341.96616 -749.2083 342.52344 -749.09375 curveto -343.08072 -748.9792 343.625 -748.9219 344.15625 -748.9219 curveto -345.5729 -748.9219 346.6328 -749.2917 347.33594 -750.03125 curveto -348.03906 -750.7708 348.39062 -751.8906 348.39062 -753.3906 curveto -closepath -358.35938 -751.0469 moveto -358.76562 -750.3177 359.25 -749.78125 359.8125 -749.4375 curveto -360.375 -749.09375 361.03647 -748.9219 361.79688 -748.9219 curveto -362.81772 -748.9219 363.60678 -749.28125 364.16406 -750.0 curveto -364.72134 -750.71875 365.0 -751.73956 365.0 -753.0625 curveto -365.0 -759.0 lineto -363.375 -759.0 lineto -363.375 -753.1094 lineto -363.375 -752.1719 363.20834 -751.47394 362.875 -751.0156 curveto -362.54166 -750.5573 362.03125 -750.3281 361.34375 -750.3281 curveto -360.5104 -750.3281 359.85156 -750.60675 359.3672 -751.16406 curveto -358.8828 -751.7214 358.64062 -752.4792 358.64062 -753.4375 curveto -358.64062 -759.0 lineto -357.0 -759.0 lineto -357.0 -753.1094 lineto -357.0 -752.16144 356.83334 -751.46094 356.5 -751.0078 curveto -356.16666 -750.5547 355.65103 -750.3281 354.95312 -750.3281 curveto -354.13022 -750.3281 353.47656 -750.60675 352.9922 -751.16406 curveto -352.5078 -751.7214 352.26562 -752.4792 352.26562 -753.4375 curveto -352.26562 -759.0 lineto -350.64062 -759.0 lineto -350.64062 -749.15625 lineto -352.26562 -749.15625 lineto -352.26562 -750.6875 lineto -352.63022 -750.0833 353.0703 -749.638 353.58594 -749.35156 curveto -354.10156 -749.0651 354.71353 -748.9219 355.42188 -748.9219 curveto -356.14062 -748.9219 356.75 -749.1042 357.25 -749.46875 curveto -357.75 -749.8333 358.11978 -750.3594 358.35938 -751.0469 curveto -closepath -376.10938 -753.6719 moveto -376.10938 -754.46875 lineto -368.6875 -754.46875 lineto -368.75 -755.5833 369.08334 -756.4323 369.6875 -757.0156 curveto -370.29166 -757.59894 371.13022 -757.8906 372.20312 -757.8906 curveto -372.81772 -757.8906 373.41666 -757.8125 374.0 -757.65625 curveto -374.58334 -757.5 375.16147 -757.2708 375.73438 -756.96875 curveto -375.73438 -758.5 lineto -375.16147 -758.75 374.5703 -758.9375 373.96094 -759.0625 curveto -373.35156 -759.1875 372.72916 -759.25 372.09375 -759.25 curveto -370.53125 -759.25 369.29166 -758.79425 368.375 -757.8828 curveto -367.45834 -756.9714 367.0 -755.7344 367.0 -754.1719 curveto -367.0 -752.5573 367.4349 -751.2786 368.3047 -750.33594 curveto -369.17447 -749.39325 370.34375 -748.9219 371.8125 -748.9219 curveto -373.14584 -748.9219 374.1953 -749.3464 374.96094 -750.1953 curveto -375.72656 -751.04425 376.10938 -752.2031 376.10938 -753.6719 curveto -closepath -374.5 -753.2031 moveto -374.4896 -752.3177 374.2422 -751.612 373.7578 -751.08594 curveto -373.27344 -750.5599 372.6354 -750.2969 371.84375 -750.2969 curveto -370.9375 -750.2969 370.21353 -750.5495 369.67188 -751.0547 curveto -369.13022 -751.5599 368.81772 -752.27606 368.73438 -753.2031 curveto -374.5 -753.2031 lineto -closepath -380.29688 -746.3594 moveto -380.29688 -749.15625 lineto -383.625 -749.15625 lineto -383.625 -750.40625 lineto -380.29688 -750.40625 lineto -380.29688 -755.75 lineto -380.29688 -756.55206 380.40625 -757.0677 380.625 -757.2969 curveto -380.84375 -757.52606 381.29166 -757.6406 381.96875 -757.6406 curveto -383.625 -757.6406 lineto -383.625 -759.0 lineto -381.96875 -759.0 lineto -380.71875 -759.0 379.85678 -758.76825 379.3828 -758.3047 curveto -378.90884 -757.8411 378.67188 -756.98956 378.67188 -755.75 curveto -378.67188 -750.40625 lineto -377.48438 -750.40625 lineto -377.48438 -749.15625 lineto -378.67188 -749.15625 lineto -378.67188 -746.3594 lineto -380.29688 -746.3594 lineto -closepath -394.10938 -753.6719 moveto -394.10938 -754.46875 lineto -386.6875 -754.46875 lineto -386.75 -755.5833 387.08334 -756.4323 387.6875 -757.0156 curveto -388.29166 -757.59894 389.13022 -757.8906 390.20312 -757.8906 curveto -390.81772 -757.8906 391.41666 -757.8125 392.0 -757.65625 curveto -392.58334 -757.5 393.16147 -757.2708 393.73438 -756.96875 curveto -393.73438 -758.5 lineto -393.16147 -758.75 392.5703 -758.9375 391.96094 -759.0625 curveto -391.35156 -759.1875 390.72916 -759.25 390.09375 -759.25 curveto -388.53125 -759.25 387.29166 -758.79425 386.375 -757.8828 curveto -385.45834 -756.9714 385.0 -755.7344 385.0 -754.1719 curveto -385.0 -752.5573 385.4349 -751.2786 386.3047 -750.33594 curveto -387.17447 -749.39325 388.34375 -748.9219 389.8125 -748.9219 curveto -391.14584 -748.9219 392.1953 -749.3464 392.96094 -750.1953 curveto -393.72656 -751.04425 394.10938 -752.2031 394.10938 -753.6719 curveto -closepath -392.5 -753.2031 moveto -392.4896 -752.3177 392.2422 -751.612 391.7578 -751.08594 curveto -391.27344 -750.5599 390.6354 -750.2969 389.84375 -750.2969 curveto -388.9375 -750.2969 388.21353 -750.5495 387.67188 -751.0547 curveto -387.13022 -751.5599 386.81772 -752.27606 386.73438 -753.2031 curveto -392.5 -753.2031 lineto -closepath -402.40625 -750.6719 moveto -402.21875 -750.5677 402.01822 -750.48956 401.8047 -750.4375 curveto -401.59116 -750.38544 401.35416 -750.3594 401.09375 -750.3594 curveto -400.1875 -750.3594 399.4896 -750.65625 399.0 -751.25 curveto -398.5104 -751.84375 398.26562 -752.69794 398.26562 -753.8125 curveto -398.26562 -759.0 lineto -396.64062 -759.0 lineto -396.64062 -749.15625 lineto -398.26562 -749.15625 lineto -398.26562 -750.6875 lineto -398.59897 -750.0833 399.03906 -749.638 399.58594 -749.35156 curveto -400.1328 -749.0651 400.79688 -748.9219 401.57812 -748.9219 curveto -401.68228 -748.9219 401.8021 -748.9297 401.9375 -748.9453 curveto -402.0729 -748.96094 402.22397 -748.9792 402.39062 -749.0 curveto -402.40625 -750.6719 lineto -closepath -410.96875 -749.4531 moveto -410.96875 -750.96875 lineto -410.5104 -750.73956 410.03647 -750.5651 409.54688 -750.4453 curveto -409.05728 -750.3255 408.54688 -750.2656 408.01562 -750.2656 curveto -407.21353 -750.2656 406.61197 -750.3906 406.21094 -750.6406 curveto -405.8099 -750.8906 405.60938 -751.26044 405.60938 -751.75 curveto -405.60938 -752.125 405.7526 -752.41925 406.03906 -752.6328 curveto -406.32553 -752.8464 406.90103 -753.05206 407.76562 -753.25 curveto -408.32812 -753.3594 lineto -409.47397 -753.6094 410.28906 -753.9583 410.77344 -754.40625 curveto -411.2578 -754.8542 411.5 -755.4792 411.5 -756.28125 curveto -411.5 -757.19794 411.13803 -757.9219 410.41406 -758.4531 curveto -409.6901 -758.9844 408.6979 -759.25 407.4375 -759.25 curveto -406.90625 -759.25 406.35416 -759.2005 405.78125 -759.10156 curveto -405.20834 -759.0026 404.60416 -758.84894 403.96875 -758.6406 curveto -403.96875 -756.96875 lineto -404.5729 -757.28125 405.16406 -757.5156 405.7422 -757.6719 curveto -406.3203 -757.8281 406.89584 -757.90625 407.46875 -757.90625 curveto -408.22916 -757.90625 408.8151 -757.77606 409.22656 -757.5156 curveto -409.63803 -757.2552 409.84375 -756.88544 409.84375 -756.40625 curveto -409.84375 -755.96875 409.6953 -755.6328 409.39844 -755.39844 curveto -409.10156 -755.16406 408.45312 -754.9375 407.45312 -754.71875 curveto -406.89062 -754.59375 lineto -405.88022 -754.375 405.15366 -754.0495 404.71094 -753.6172 curveto -404.26822 -753.1849 404.04688 -752.5833 404.04688 -751.8125 curveto -404.04688 -750.8958 404.375 -750.1849 405.03125 -749.6797 curveto -405.6875 -749.1745 406.61978 -748.9219 407.82812 -748.9219 curveto -408.42188 -748.9219 408.98178 -748.9661 409.5078 -749.0547 curveto -410.03384 -749.14325 410.52084 -749.27606 410.96875 -749.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -304.1797 -389.32812 moveto -304.1797 -390.67188 lineto -302.6328 -390.67188 lineto -302.04947 -390.67188 301.64584 -390.78906 301.42188 -391.02344 curveto -301.1979 -391.2578 301.08594 -391.6771 301.08594 -392.28125 curveto -301.08594 -393.15625 lineto -303.7422 -393.15625 lineto -303.7422 -394.40625 lineto -301.08594 -394.40625 lineto -301.08594 -403.0 lineto -299.4453 -403.0 lineto -299.4453 -394.40625 lineto -297.89844 -394.40625 lineto -297.89844 -393.15625 lineto -299.4453 -393.15625 lineto -299.4453 -392.46875 lineto -299.4453 -391.375 299.70053 -390.57812 300.21094 -390.07812 curveto -300.72134 -389.57812 301.53384 -389.32812 302.64844 -389.32812 curveto -304.1797 -389.32812 lineto -closepath -305.02344 -399.10938 moveto -305.02344 -393.15625 lineto -306.6328 -393.15625 lineto -306.6328 -399.04688 lineto -306.6328 -399.98438 306.8151 -400.6849 307.1797 -401.14844 curveto -307.54428 -401.61197 308.09116 -401.84375 308.8203 -401.84375 curveto -309.6953 -401.84375 310.3854 -401.5651 310.89062 -401.0078 curveto -311.39584 -400.45053 311.64844 -399.69272 311.64844 -398.73438 curveto -311.64844 -393.15625 lineto -313.27344 -393.15625 lineto -313.27344 -403.0 lineto -311.64844 -403.0 lineto -311.64844 -401.48438 lineto -311.2526 -402.08853 310.79688 -402.53384 310.28125 -402.8203 curveto -309.76562 -403.10678 309.16406 -403.25 308.47656 -403.25 curveto -307.34116 -403.25 306.48178 -402.89844 305.89844 -402.1953 curveto -305.3151 -401.4922 305.02344 -400.46353 305.02344 -399.10938 curveto -closepath -309.08594 -392.92188 moveto -309.08594 -392.92188 lineto -closepath -324.3672 -397.0625 moveto -324.3672 -403.0 lineto -322.7578 -403.0 lineto -322.7578 -397.10938 lineto -322.7578 -396.18228 322.57553 -395.48697 322.21094 -395.02344 curveto -321.84634 -394.5599 321.29947 -394.32812 320.5703 -394.32812 curveto -319.6953 -394.32812 319.0078 -394.60678 318.5078 -395.16406 curveto -318.0078 -395.72134 317.7578 -396.47916 317.7578 -397.4375 curveto -317.7578 -403.0 lineto -316.1328 -403.0 lineto -316.1328 -393.15625 lineto -317.7578 -393.15625 lineto -317.7578 -394.6875 lineto -318.14322 -394.09375 318.59897 -393.65103 319.125 -393.35938 curveto -319.65103 -393.06772 320.2526 -392.92188 320.9297 -392.92188 curveto -322.0651 -392.92188 322.92188 -393.27084 323.5 -393.96875 curveto -324.07812 -394.66666 324.3672 -395.6979 324.3672 -397.0625 curveto -closepath -334.27344 -393.53125 moveto -334.27344 -395.04688 lineto -333.8151 -394.79688 333.35678 -394.60938 332.89844 -394.48438 curveto -332.4401 -394.35938 331.97656 -394.29688 331.5078 -394.29688 curveto -330.45572 -394.29688 329.64062 -394.6276 329.0625 -395.28906 curveto -328.48438 -395.95053 328.1953 -396.8854 328.1953 -398.09375 curveto -328.1953 -399.29166 328.48438 -400.22397 329.0625 -400.89062 curveto -329.64062 -401.55728 330.45572 -401.89062 331.5078 -401.89062 curveto -331.97656 -401.89062 332.4401 -401.82553 332.89844 -401.6953 curveto -333.35678 -401.5651 333.8151 -401.375 334.27344 -401.125 curveto -334.27344 -402.625 lineto -333.82553 -402.83334 333.35938 -402.9896 332.875 -403.09375 curveto -332.39062 -403.1979 331.8776 -403.25 331.33594 -403.25 curveto -329.84634 -403.25 328.66666 -402.78384 327.79688 -401.85156 curveto -326.9271 -400.91928 326.4922 -399.66666 326.4922 -398.09375 curveto -326.4922 -396.47916 326.93228 -395.21353 327.8125 -394.29688 curveto -328.69272 -393.38022 329.89844 -392.92188 331.4297 -392.92188 curveto -331.9297 -392.92188 332.41666 -392.97134 332.89062 -393.0703 curveto -333.3646 -393.16928 333.82553 -393.3229 334.27344 -393.53125 curveto -closepath -337.78906 -390.35938 moveto -337.78906 -393.15625 lineto -341.1172 -393.15625 lineto -341.1172 -394.40625 lineto -337.78906 -394.40625 lineto -337.78906 -399.75 lineto -337.78906 -400.5521 337.89844 -401.06772 338.1172 -401.29688 curveto -338.33594 -401.52603 338.78384 -401.64062 339.46094 -401.64062 curveto -341.1172 -401.64062 lineto -341.1172 -403.0 lineto -339.46094 -403.0 lineto -338.21094 -403.0 337.34897 -402.76822 336.875 -402.3047 curveto -336.40103 -401.84116 336.16406 -400.9896 336.16406 -399.75 curveto -336.16406 -394.40625 lineto -334.97656 -394.40625 lineto -334.97656 -393.15625 lineto -336.16406 -393.15625 lineto -336.16406 -390.35938 lineto -337.78906 -390.35938 lineto -closepath -343.1953 -393.15625 moveto -344.8047 -393.15625 lineto -344.8047 -403.0 lineto -343.1953 -403.0 lineto -343.1953 -393.15625 lineto -closepath -343.1953 -389.32812 moveto -344.8047 -389.32812 lineto -344.8047 -391.375 lineto -343.1953 -391.375 lineto -343.1953 -389.32812 lineto -closepath -352.0078 -394.29688 moveto -351.1328 -394.29688 350.4453 -394.6328 349.9453 -395.3047 curveto -349.4453 -395.97656 349.1953 -396.90625 349.1953 -398.09375 curveto -349.1953 -399.27084 349.4453 -400.1979 349.9453 -400.875 curveto -350.4453 -401.5521 351.1328 -401.89062 352.0078 -401.89062 curveto -352.86197 -401.89062 353.54166 -401.54947 354.04688 -400.8672 curveto -354.5521 -400.1849 354.8047 -399.2604 354.8047 -398.09375 curveto -354.8047 -396.9271 354.5521 -396.0026 354.04688 -395.3203 curveto -353.54166 -394.63803 352.86197 -394.29688 352.0078 -394.29688 curveto -closepath -352.0078 -392.92188 moveto -353.41406 -392.92188 354.51822 -393.3776 355.3203 -394.28906 curveto -356.1224 -395.20053 356.52344 -396.46875 356.52344 -398.09375 curveto -356.52344 -399.6979 356.1224 -400.95834 355.3203 -401.875 curveto -354.51822 -402.79166 353.41406 -403.25 352.0078 -403.25 curveto -350.59116 -403.25 349.48438 -402.79166 348.6875 -401.875 curveto -347.89062 -400.95834 347.4922 -399.6979 347.4922 -398.09375 curveto -347.4922 -396.46875 347.89062 -395.20053 348.6875 -394.28906 curveto -349.48438 -393.3776 350.59116 -392.92188 352.0078 -392.92188 curveto -closepath -367.3672 -397.0625 moveto -367.3672 -403.0 lineto -365.7578 -403.0 lineto -365.7578 -397.10938 lineto -365.7578 -396.18228 365.57553 -395.48697 365.21094 -395.02344 curveto -364.84634 -394.5599 364.29947 -394.32812 363.5703 -394.32812 curveto -362.6953 -394.32812 362.0078 -394.60678 361.5078 -395.16406 curveto -361.0078 -395.72134 360.7578 -396.47916 360.7578 -397.4375 curveto -360.7578 -403.0 lineto -359.1328 -403.0 lineto -359.1328 -393.15625 lineto -360.7578 -393.15625 lineto -360.7578 -394.6875 lineto -361.14322 -394.09375 361.59897 -393.65103 362.125 -393.35938 curveto -362.65103 -393.06772 363.2526 -392.92188 363.9297 -392.92188 curveto -365.0651 -392.92188 365.92188 -393.27084 366.5 -393.96875 curveto -367.07812 -394.66666 367.3672 -395.6979 367.3672 -397.0625 curveto -closepath -370.2578 -389.875 moveto -372.64844 -389.875 lineto -378.46094 -400.85938 lineto -378.46094 -389.875 lineto -380.1953 -389.875 lineto -380.1953 -403.0 lineto -377.8047 -403.0 lineto -371.97656 -392.01562 lineto -371.97656 -403.0 lineto -370.2578 -403.0 lineto -370.2578 -389.875 lineto -closepath -388.66406 -398.04688 moveto -387.35156 -398.04688 386.4453 -398.1979 385.9453 -398.5 curveto -385.4453 -398.8021 385.1953 -399.3125 385.1953 -400.03125 curveto -385.1953 -400.60416 385.3828 -401.0599 385.7578 -401.39844 curveto -386.1328 -401.73697 386.64844 -401.90625 387.3047 -401.90625 curveto -388.20053 -401.90625 388.91928 -401.58853 389.46094 -400.95312 curveto -390.0026 -400.31772 390.27344 -399.46875 390.27344 -398.40625 curveto -390.27344 -398.04688 lineto -388.66406 -398.04688 lineto -closepath -391.8828 -397.39062 moveto -391.8828 -403.0 lineto -390.27344 -403.0 lineto -390.27344 -401.5 lineto -389.89844 -402.10416 389.4375 -402.54688 388.89062 -402.82812 curveto -388.34375 -403.10938 387.66928 -403.25 386.8672 -403.25 curveto -385.85678 -403.25 385.0547 -402.96875 384.46094 -402.40625 curveto -383.8672 -401.84375 383.5703 -401.08853 383.5703 -400.14062 curveto -383.5703 -399.02603 383.94272 -398.1875 384.6875 -397.625 curveto -385.43228 -397.0625 386.53906 -396.78125 388.0078 -396.78125 curveto -390.27344 -396.78125 lineto -390.27344 -396.625 lineto -390.27344 -395.8854 390.02866 -395.3125 389.53906 -394.90625 curveto -389.04947 -394.5 388.36197 -394.29688 387.47656 -394.29688 curveto -386.91406 -394.29688 386.3672 -394.36197 385.83594 -394.4922 curveto -385.3047 -394.6224 384.78906 -394.8229 384.28906 -395.09375 curveto -384.28906 -393.60938 lineto -384.8828 -393.38022 385.45834 -393.20834 386.01562 -393.09375 curveto -386.5729 -392.97916 387.1172 -392.92188 387.64844 -392.92188 curveto -389.0651 -392.92188 390.125 -393.29166 390.82812 -394.03125 curveto -391.53125 -394.77084 391.8828 -395.89062 391.8828 -397.39062 curveto -closepath -401.85156 -395.04688 moveto -402.2578 -394.31772 402.7422 -393.78125 403.3047 -393.4375 curveto -403.8672 -393.09375 404.52866 -392.92188 405.28906 -392.92188 curveto -406.3099 -392.92188 407.09897 -393.28125 407.65625 -394.0 curveto -408.21353 -394.71875 408.4922 -395.7396 408.4922 -397.0625 curveto -408.4922 -403.0 lineto -406.8672 -403.0 lineto -406.8672 -397.10938 lineto -406.8672 -396.17188 406.70053 -395.47397 406.3672 -395.01562 curveto -406.03384 -394.55728 405.52344 -394.32812 404.83594 -394.32812 curveto -404.0026 -394.32812 403.34375 -394.60678 402.85938 -395.16406 curveto -402.375 -395.72134 402.1328 -396.47916 402.1328 -397.4375 curveto -402.1328 -403.0 lineto -400.4922 -403.0 lineto -400.4922 -397.10938 lineto -400.4922 -396.16147 400.32553 -395.46094 399.9922 -395.0078 curveto -399.65884 -394.5547 399.14322 -394.32812 398.4453 -394.32812 curveto -397.6224 -394.32812 396.96875 -394.60678 396.48438 -395.16406 curveto -396.0 -395.72134 395.7578 -396.47916 395.7578 -397.4375 curveto -395.7578 -403.0 lineto -394.1328 -403.0 lineto -394.1328 -393.15625 lineto -395.7578 -393.15625 lineto -395.7578 -394.6875 lineto -396.1224 -394.08334 396.5625 -393.63803 397.07812 -393.35156 curveto -397.59375 -393.0651 398.20572 -392.92188 398.91406 -392.92188 curveto -399.6328 -392.92188 400.2422 -393.10416 400.7422 -393.46875 curveto -401.2422 -393.83334 401.61197 -394.35938 401.85156 -395.04688 curveto -closepath -419.60156 -397.67188 moveto -419.60156 -398.46875 lineto -412.1797 -398.46875 lineto -412.2422 -399.58334 412.57553 -400.43228 413.1797 -401.01562 curveto -413.78384 -401.59897 414.6224 -401.89062 415.6953 -401.89062 curveto -416.3099 -401.89062 416.90884 -401.8125 417.4922 -401.65625 curveto -418.07553 -401.5 418.65366 -401.27084 419.22656 -400.96875 curveto -419.22656 -402.5 lineto -418.65366 -402.75 418.0625 -402.9375 417.45312 -403.0625 curveto -416.84375 -403.1875 416.22134 -403.25 415.58594 -403.25 curveto -414.02344 -403.25 412.78384 -402.79428 411.8672 -401.8828 curveto -410.95053 -400.97134 410.4922 -399.73438 410.4922 -398.17188 curveto -410.4922 -396.55728 410.9271 -395.27866 411.79688 -394.33594 curveto -412.66666 -393.39322 413.83594 -392.92188 415.3047 -392.92188 curveto -416.63803 -392.92188 417.6875 -393.34634 418.45312 -394.1953 curveto -419.21875 -395.04428 419.60156 -396.20312 419.60156 -397.67188 curveto -closepath -417.9922 -397.20312 moveto -417.98178 -396.31772 417.73438 -395.61197 417.25 -395.08594 curveto -416.76562 -394.5599 416.1276 -394.29688 415.33594 -394.29688 curveto -414.4297 -394.29688 413.70572 -394.54947 413.16406 -395.0547 curveto -412.6224 -395.5599 412.3099 -396.27603 412.22656 -397.20312 curveto -417.9922 -397.20312 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -307.70312 -627.3281 moveto -309.3125 -627.3281 lineto -309.3125 -641.0 lineto -307.70312 -641.0 lineto -307.70312 -627.3281 lineto -closepath -312.70312 -631.15625 moveto -314.3125 -631.15625 lineto -314.3125 -641.0 lineto -312.70312 -641.0 lineto -312.70312 -631.15625 lineto -closepath -312.70312 -627.3281 moveto -314.3125 -627.3281 lineto -314.3125 -629.375 lineto -312.70312 -629.375 lineto -312.70312 -627.3281 lineto -closepath -324.76562 -636.09375 moveto -324.76562 -634.8958 324.52084 -633.9583 324.03125 -633.28125 curveto -323.54166 -632.6042 322.86978 -632.2656 322.01562 -632.2656 curveto -321.16147 -632.2656 320.4896 -632.6042 320.0 -633.28125 curveto -319.5104 -633.9583 319.26562 -634.8958 319.26562 -636.09375 curveto -319.26562 -637.28125 319.5104 -638.21356 320.0 -638.8906 curveto -320.4896 -639.5677 321.16147 -639.90625 322.01562 -639.90625 curveto -322.86978 -639.90625 323.54166 -639.5677 324.03125 -638.8906 curveto -324.52084 -638.21356 324.76562 -637.28125 324.76562 -636.09375 curveto -closepath -319.26562 -632.65625 moveto -319.59897 -632.0625 320.02603 -631.625 320.54688 -631.34375 curveto -321.06772 -631.0625 321.6875 -630.9219 322.40625 -630.9219 curveto -323.60416 -630.9219 324.57553 -631.3958 325.3203 -632.34375 curveto -326.0651 -633.2917 326.4375 -634.5417 326.4375 -636.09375 curveto -326.4375 -637.63544 326.0651 -638.8802 325.3203 -639.8281 curveto -324.57553 -640.77606 323.60416 -641.25 322.40625 -641.25 curveto -321.6875 -641.25 321.06772 -641.1094 320.54688 -640.8281 curveto -320.02603 -640.5469 319.59897 -640.1094 319.26562 -639.5156 curveto -319.26562 -641.0 lineto -317.64062 -641.0 lineto -317.64062 -627.3281 lineto -319.26562 -627.3281 lineto -319.26562 -632.65625 lineto -closepath -334.40625 -632.6719 moveto -334.21875 -632.5677 334.01822 -632.48956 333.8047 -632.4375 curveto -333.59116 -632.38544 333.35416 -632.3594 333.09375 -632.3594 curveto -332.1875 -632.3594 331.4896 -632.65625 331.0 -633.25 curveto -330.5104 -633.84375 330.26562 -634.69794 330.26562 -635.8125 curveto -330.26562 -641.0 lineto -328.64062 -641.0 lineto -328.64062 -631.15625 lineto -330.26562 -631.15625 lineto -330.26562 -632.6875 lineto -330.59897 -632.0833 331.03906 -631.638 331.58594 -631.35156 curveto -332.1328 -631.0651 332.79688 -630.9219 333.57812 -630.9219 curveto -333.68228 -630.9219 333.8021 -630.9297 333.9375 -630.9453 curveto -334.0729 -630.96094 334.22397 -630.9792 334.39062 -631.0 curveto -334.40625 -632.6719 lineto -closepath -341.17188 -636.0469 moveto -339.85938 -636.0469 338.95312 -636.19794 338.45312 -636.5 curveto -337.95312 -636.80206 337.70312 -637.3125 337.70312 -638.03125 curveto -337.70312 -638.6042 337.89062 -639.0599 338.26562 -639.39844 curveto -338.64062 -639.737 339.15625 -639.90625 339.8125 -639.90625 curveto -340.70834 -639.90625 341.4271 -639.58856 341.96875 -638.9531 curveto -342.5104 -638.3177 342.78125 -637.46875 342.78125 -636.40625 curveto -342.78125 -636.0469 lineto -341.17188 -636.0469 lineto -closepath -344.39062 -635.3906 moveto -344.39062 -641.0 lineto -342.78125 -641.0 lineto -342.78125 -639.5 lineto -342.40625 -640.1042 341.9453 -640.5469 341.39844 -640.8281 curveto -340.85156 -641.1094 340.1771 -641.25 339.375 -641.25 curveto -338.3646 -641.25 337.5625 -640.96875 336.96875 -640.40625 curveto -336.375 -639.84375 336.07812 -639.08856 336.07812 -638.1406 curveto -336.07812 -637.02606 336.45053 -636.1875 337.1953 -635.625 curveto -337.9401 -635.0625 339.04688 -634.78125 340.51562 -634.78125 curveto -342.78125 -634.78125 lineto -342.78125 -634.625 lineto -342.78125 -633.88544 342.53647 -633.3125 342.04688 -632.90625 curveto -341.55728 -632.5 340.86978 -632.2969 339.98438 -632.2969 curveto -339.42188 -632.2969 338.875 -632.362 338.34375 -632.4922 curveto -337.8125 -632.6224 337.29688 -632.82294 336.79688 -633.09375 curveto -336.79688 -631.6094 lineto -337.39062 -631.3802 337.96616 -631.2083 338.52344 -631.09375 curveto -339.08072 -630.9792 339.625 -630.9219 340.15625 -630.9219 curveto -341.5729 -630.9219 342.6328 -631.2917 343.33594 -632.03125 curveto -344.03906 -632.7708 344.39062 -633.8906 344.39062 -635.3906 curveto -closepath -352.40625 -632.6719 moveto -352.21875 -632.5677 352.01822 -632.48956 351.8047 -632.4375 curveto -351.59116 -632.38544 351.35416 -632.3594 351.09375 -632.3594 curveto -350.1875 -632.3594 349.4896 -632.65625 349.0 -633.25 curveto -348.5104 -633.84375 348.26562 -634.69794 348.26562 -635.8125 curveto -348.26562 -641.0 lineto -346.64062 -641.0 lineto -346.64062 -631.15625 lineto -348.26562 -631.15625 lineto -348.26562 -632.6875 lineto -348.59897 -632.0833 349.03906 -631.638 349.58594 -631.35156 curveto -350.1328 -631.0651 350.79688 -630.9219 351.57812 -630.9219 curveto -351.68228 -630.9219 351.8021 -630.9297 351.9375 -630.9453 curveto -352.0729 -630.96094 352.22397 -630.9792 352.39062 -631.0 curveto -352.40625 -632.6719 lineto -closepath -358.79688 -641.9219 moveto -358.33853 -643.08856 357.89322 -643.85156 357.46094 -644.21094 curveto -357.02866 -644.5703 356.4479 -644.75 355.71875 -644.75 curveto -354.42188 -644.75 lineto -354.42188 -643.3906 lineto -355.375 -643.3906 lineto -355.8229 -643.3906 356.16928 -643.28644 356.41406 -643.0781 curveto -356.65884 -642.8698 356.93228 -642.3698 357.23438 -641.5781 curveto -357.51562 -640.84375 lineto -353.53125 -631.15625 lineto -355.25 -631.15625 lineto -358.32812 -638.8594 lineto -361.40625 -631.15625 lineto -363.10938 -631.15625 lineto -358.79688 -641.9219 lineto -closepath -365.76562 -627.875 moveto -368.15625 -627.875 lineto -373.96875 -638.8594 lineto -373.96875 -627.875 lineto -375.70312 -627.875 lineto -375.70312 -641.0 lineto -373.3125 -641.0 lineto -367.48438 -630.0156 lineto -367.48438 -641.0 lineto -365.76562 -641.0 lineto -365.76562 -627.875 lineto -closepath -384.17188 -636.0469 moveto -382.85938 -636.0469 381.95312 -636.19794 381.45312 -636.5 curveto -380.95312 -636.80206 380.70312 -637.3125 380.70312 -638.03125 curveto -380.70312 -638.6042 380.89062 -639.0599 381.26562 -639.39844 curveto -381.64062 -639.737 382.15625 -639.90625 382.8125 -639.90625 curveto -383.70834 -639.90625 384.4271 -639.58856 384.96875 -638.9531 curveto -385.5104 -638.3177 385.78125 -637.46875 385.78125 -636.40625 curveto -385.78125 -636.0469 lineto -384.17188 -636.0469 lineto -closepath -387.39062 -635.3906 moveto -387.39062 -641.0 lineto -385.78125 -641.0 lineto -385.78125 -639.5 lineto -385.40625 -640.1042 384.9453 -640.5469 384.39844 -640.8281 curveto -383.85156 -641.1094 383.1771 -641.25 382.375 -641.25 curveto -381.3646 -641.25 380.5625 -640.96875 379.96875 -640.40625 curveto -379.375 -639.84375 379.07812 -639.08856 379.07812 -638.1406 curveto -379.07812 -637.02606 379.45053 -636.1875 380.1953 -635.625 curveto -380.9401 -635.0625 382.04688 -634.78125 383.51562 -634.78125 curveto -385.78125 -634.78125 lineto -385.78125 -634.625 lineto -385.78125 -633.88544 385.53647 -633.3125 385.04688 -632.90625 curveto -384.55728 -632.5 383.86978 -632.2969 382.98438 -632.2969 curveto -382.42188 -632.2969 381.875 -632.362 381.34375 -632.4922 curveto -380.8125 -632.6224 380.29688 -632.82294 379.79688 -633.09375 curveto -379.79688 -631.6094 lineto -380.39062 -631.3802 380.96616 -631.2083 381.52344 -631.09375 curveto -382.08072 -630.9792 382.625 -630.9219 383.15625 -630.9219 curveto -384.5729 -630.9219 385.6328 -631.2917 386.33594 -632.03125 curveto -387.03906 -632.7708 387.39062 -633.8906 387.39062 -635.3906 curveto -closepath -397.35938 -633.0469 moveto -397.76562 -632.3177 398.25 -631.78125 398.8125 -631.4375 curveto -399.375 -631.09375 400.03647 -630.9219 400.79688 -630.9219 curveto -401.81772 -630.9219 402.60678 -631.28125 403.16406 -632.0 curveto -403.72134 -632.71875 404.0 -633.73956 404.0 -635.0625 curveto -404.0 -641.0 lineto -402.375 -641.0 lineto -402.375 -635.1094 lineto -402.375 -634.1719 402.20834 -633.47394 401.875 -633.0156 curveto -401.54166 -632.5573 401.03125 -632.3281 400.34375 -632.3281 curveto -399.5104 -632.3281 398.85156 -632.60675 398.3672 -633.16406 curveto -397.8828 -633.7214 397.64062 -634.4792 397.64062 -635.4375 curveto -397.64062 -641.0 lineto -396.0 -641.0 lineto -396.0 -635.1094 lineto -396.0 -634.16144 395.83334 -633.46094 395.5 -633.0078 curveto -395.16666 -632.5547 394.65103 -632.3281 393.95312 -632.3281 curveto -393.13022 -632.3281 392.47656 -632.60675 391.9922 -633.16406 curveto -391.5078 -633.7214 391.26562 -634.4792 391.26562 -635.4375 curveto -391.26562 -641.0 lineto -389.64062 -641.0 lineto -389.64062 -631.15625 lineto -391.26562 -631.15625 lineto -391.26562 -632.6875 lineto -391.63022 -632.0833 392.0703 -631.638 392.58594 -631.35156 curveto -393.10156 -631.0651 393.71353 -630.9219 394.42188 -630.9219 curveto -395.14062 -630.9219 395.75 -631.1042 396.25 -631.46875 curveto -396.75 -631.8333 397.11978 -632.3594 397.35938 -633.0469 curveto -closepath -415.10938 -635.6719 moveto -415.10938 -636.46875 lineto -407.6875 -636.46875 lineto -407.75 -637.5833 408.08334 -638.4323 408.6875 -639.0156 curveto -409.29166 -639.59894 410.13022 -639.8906 411.20312 -639.8906 curveto -411.81772 -639.8906 412.41666 -639.8125 413.0 -639.65625 curveto -413.58334 -639.5 414.16147 -639.2708 414.73438 -638.96875 curveto -414.73438 -640.5 lineto -414.16147 -640.75 413.5703 -640.9375 412.96094 -641.0625 curveto -412.35156 -641.1875 411.72916 -641.25 411.09375 -641.25 curveto -409.53125 -641.25 408.29166 -640.79425 407.375 -639.8828 curveto -406.45834 -638.9714 406.0 -637.7344 406.0 -636.1719 curveto -406.0 -634.5573 406.4349 -633.2786 407.3047 -632.33594 curveto -408.17447 -631.39325 409.34375 -630.9219 410.8125 -630.9219 curveto -412.14584 -630.9219 413.1953 -631.3464 413.96094 -632.1953 curveto -414.72656 -633.04425 415.10938 -634.2031 415.10938 -635.6719 curveto -closepath -413.5 -635.2031 moveto -413.4896 -634.3177 413.2422 -633.612 412.7578 -633.08594 curveto -412.27344 -632.5599 411.6354 -632.2969 410.84375 -632.2969 curveto -409.9375 -632.2969 409.21353 -632.5495 408.67188 -633.0547 curveto -408.13022 -633.5599 407.81772 -634.27606 407.73438 -635.2031 curveto -413.5 -635.2031 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -351.59375 -869.8906 moveto -351.59375 -871.7656 lineto -351.0 -871.2031 350.3646 -870.7839 349.6875 -870.5078 curveto -349.0104 -870.23175 348.29166 -870.09375 347.53125 -870.09375 curveto -346.03125 -870.09375 344.8828 -870.55206 344.08594 -871.46875 curveto -343.28906 -872.38544 342.89062 -873.71356 342.89062 -875.4531 curveto -342.89062 -877.1823 343.28906 -878.5052 344.08594 -879.4219 curveto -344.8828 -880.33856 346.03125 -880.7969 347.53125 -880.7969 curveto -348.29166 -880.7969 349.0104 -880.6589 349.6875 -880.3828 curveto -350.3646 -880.10675 351.0 -879.6927 351.59375 -879.1406 curveto -351.59375 -880.9844 lineto -350.96875 -881.41144 350.3099 -881.7292 349.6172 -881.9375 curveto -348.92447 -882.1458 348.19272 -882.25 347.42188 -882.25 curveto -345.43228 -882.25 343.8672 -881.64325 342.72656 -880.4297 curveto -341.58594 -879.2161 341.01562 -877.5573 341.01562 -875.4531 curveto -341.01562 -873.33856 341.58594 -871.6745 342.72656 -870.46094 curveto -343.8672 -869.2474 345.43228 -868.6406 347.42188 -868.6406 curveto -348.20312 -868.6406 348.9401 -868.7448 349.6328 -868.9531 curveto -350.32553 -869.16144 350.97916 -869.47394 351.59375 -869.8906 curveto -closepath -361.78125 -872.53125 moveto -361.78125 -874.0469 lineto -361.3229 -873.7969 360.8646 -873.6094 360.40625 -873.4844 curveto -359.9479 -873.3594 359.48438 -873.2969 359.01562 -873.2969 curveto -357.96353 -873.2969 357.14844 -873.6276 356.5703 -874.28906 curveto -355.9922 -874.9505 355.70312 -875.88544 355.70312 -877.09375 curveto -355.70312 -878.2917 355.9922 -879.22394 356.5703 -879.8906 curveto -357.14844 -880.5573 357.96353 -880.8906 359.01562 -880.8906 curveto -359.48438 -880.8906 359.9479 -880.8255 360.40625 -880.6953 curveto -360.8646 -880.5651 361.3229 -880.375 361.78125 -880.125 curveto -361.78125 -881.625 lineto -361.33334 -881.8333 360.8672 -881.98956 360.3828 -882.09375 curveto -359.89844 -882.19794 359.3854 -882.25 358.84375 -882.25 curveto -357.35416 -882.25 356.17447 -881.7839 355.3047 -880.85156 curveto -354.4349 -879.91925 354.0 -878.6667 354.0 -877.09375 curveto -354.0 -875.4792 354.4401 -874.21356 355.3203 -873.2969 curveto -356.20053 -872.3802 357.40625 -871.9219 358.9375 -871.9219 curveto -359.4375 -871.9219 359.92447 -871.9714 360.39844 -872.0703 curveto -360.8724 -872.16925 361.33334 -872.32294 361.78125 -872.53125 curveto -closepath -367.51562 -873.2969 moveto -366.64062 -873.2969 365.95312 -873.6328 365.45312 -874.3047 curveto -364.95312 -874.97656 364.70312 -875.90625 364.70312 -877.09375 curveto -364.70312 -878.2708 364.95312 -879.19794 365.45312 -879.875 curveto -365.95312 -880.55206 366.64062 -880.8906 367.51562 -880.8906 curveto -368.36978 -880.8906 369.04947 -880.5495 369.5547 -879.8672 curveto -370.0599 -879.1849 370.3125 -878.26044 370.3125 -877.09375 curveto -370.3125 -875.92706 370.0599 -875.0026 369.5547 -874.3203 curveto -369.04947 -873.638 368.36978 -873.2969 367.51562 -873.2969 curveto -closepath -367.51562 -871.9219 moveto -368.92188 -871.9219 370.02603 -872.3776 370.82812 -873.28906 curveto -371.63022 -874.2005 372.03125 -875.46875 372.03125 -877.09375 curveto -372.03125 -878.69794 371.63022 -879.9583 370.82812 -880.875 curveto -370.02603 -881.7917 368.92188 -882.25 367.51562 -882.25 curveto -366.09897 -882.25 364.9922 -881.7917 364.1953 -880.875 curveto -363.39844 -879.9583 363.0 -878.69794 363.0 -877.09375 curveto -363.0 -875.46875 363.39844 -874.2005 364.1953 -873.28906 curveto -364.9922 -872.3776 366.09897 -871.9219 367.51562 -871.9219 curveto -closepath -381.17188 -873.65625 moveto -381.17188 -868.3281 lineto -382.79688 -868.3281 lineto -382.79688 -882.0 lineto -381.17188 -882.0 lineto -381.17188 -880.5156 lineto -380.83853 -881.1094 380.41147 -881.5469 379.89062 -881.8281 curveto -379.36978 -882.1094 378.74478 -882.25 378.01562 -882.25 curveto -376.82812 -882.25 375.86197 -881.77606 375.1172 -880.8281 curveto -374.3724 -879.8802 374.0 -878.63544 374.0 -877.09375 curveto -374.0 -875.5417 374.3724 -874.2917 375.1172 -873.34375 curveto -375.86197 -872.3958 376.82812 -871.9219 378.01562 -871.9219 curveto -378.74478 -871.9219 379.36978 -872.0625 379.89062 -872.34375 curveto -380.41147 -872.625 380.83853 -873.0625 381.17188 -873.65625 curveto -closepath -375.65625 -877.09375 moveto -375.65625 -878.28125 375.90103 -879.21356 376.39062 -879.8906 curveto -376.88022 -880.5677 377.55728 -880.90625 378.42188 -880.90625 curveto -379.27603 -880.90625 379.9479 -880.5677 380.4375 -879.8906 curveto -380.9271 -879.21356 381.17188 -878.28125 381.17188 -877.09375 curveto -381.17188 -875.8958 380.9271 -874.9583 380.4375 -874.28125 curveto -379.9479 -873.6042 379.27603 -873.2656 378.42188 -873.2656 curveto -377.55728 -873.2656 376.88022 -873.6042 376.39062 -874.28125 curveto -375.90103 -874.9583 375.65625 -875.8958 375.65625 -877.09375 curveto -closepath -394.10938 -876.6719 moveto -394.10938 -877.46875 lineto -386.6875 -877.46875 lineto -386.75 -878.5833 387.08334 -879.4323 387.6875 -880.0156 curveto -388.29166 -880.59894 389.13022 -880.8906 390.20312 -880.8906 curveto -390.81772 -880.8906 391.41666 -880.8125 392.0 -880.65625 curveto -392.58334 -880.5 393.16147 -880.2708 393.73438 -879.96875 curveto -393.73438 -881.5 lineto -393.16147 -881.75 392.5703 -881.9375 391.96094 -882.0625 curveto -391.35156 -882.1875 390.72916 -882.25 390.09375 -882.25 curveto -388.53125 -882.25 387.29166 -881.79425 386.375 -880.8828 curveto -385.45834 -879.9714 385.0 -878.7344 385.0 -877.1719 curveto -385.0 -875.5573 385.4349 -874.2786 386.3047 -873.33594 curveto -387.17447 -872.39325 388.34375 -871.9219 389.8125 -871.9219 curveto -391.14584 -871.9219 392.1953 -872.3464 392.96094 -873.1953 curveto -393.72656 -874.04425 394.10938 -875.2031 394.10938 -876.6719 curveto -closepath -392.5 -876.2031 moveto -392.4896 -875.3177 392.2422 -874.612 391.7578 -874.08594 curveto -391.27344 -873.5599 390.6354 -873.2969 389.84375 -873.2969 curveto -388.9375 -873.2969 388.21353 -873.5495 387.67188 -874.0547 curveto -387.13022 -874.5599 386.81772 -875.27606 386.73438 -876.2031 curveto -392.5 -876.2031 lineto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -newpath -58.796875 -451.45312 moveto -58.796875 -452.96875 lineto -58.338543 -452.7396 57.864582 -452.5651 57.375 -452.4453 curveto -56.885418 -452.32553 56.375 -452.26562 55.84375 -452.26562 curveto -55.041668 -452.26562 54.440105 -452.39062 54.039062 -452.64062 curveto -53.63802 -452.89062 53.4375 -453.2604 53.4375 -453.75 curveto -53.4375 -454.125 53.58073 -454.41928 53.867188 -454.6328 curveto -54.153645 -454.84634 54.729168 -455.0521 55.59375 -455.25 curveto -56.15625 -455.35938 lineto -57.302082 -455.60938 58.117188 -455.95834 58.601562 -456.40625 curveto -59.085938 -456.85416 59.328125 -457.47916 59.328125 -458.28125 curveto -59.328125 -459.1979 58.966145 -459.92188 58.242188 -460.45312 curveto -57.51823 -460.98438 56.526043 -461.25 55.265625 -461.25 curveto -54.734375 -461.25 54.182293 -461.20053 53.609375 -461.10156 curveto -53.036457 -461.0026 52.432293 -460.84897 51.796875 -460.64062 curveto -51.796875 -458.96875 lineto -52.401043 -459.28125 52.992188 -459.51562 53.570312 -459.67188 curveto -54.148438 -459.82812 54.723957 -459.90625 55.296875 -459.90625 curveto -56.057293 -459.90625 56.64323 -459.77603 57.054688 -459.51562 curveto -57.466145 -459.25522 57.671875 -458.8854 57.671875 -458.40625 curveto -57.671875 -457.96875 57.523438 -457.6328 57.226562 -457.39844 curveto -56.929688 -457.16406 56.28125 -456.9375 55.28125 -456.71875 curveto -54.71875 -456.59375 lineto -53.708332 -456.375 52.98177 -456.04947 52.539062 -455.6172 curveto -52.096355 -455.1849 51.875 -454.58334 51.875 -453.8125 curveto -51.875 -452.89584 52.203125 -452.1849 52.859375 -451.6797 curveto -53.515625 -451.17447 54.447918 -450.92188 55.65625 -450.92188 curveto -56.25 -450.92188 56.809895 -450.96616 57.335938 -451.0547 curveto -57.86198 -451.14322 58.348957 -451.27603 58.796875 -451.45312 curveto -closepath -60.359375 -457.10938 moveto -60.359375 -451.15625 lineto -61.96875 -451.15625 lineto -61.96875 -457.04688 lineto -61.96875 -457.98438 62.151043 -458.6849 62.515625 -459.14844 curveto -62.880207 -459.61197 63.427082 -459.84375 64.15625 -459.84375 curveto -65.03125 -459.84375 65.72135 -459.5651 66.22656 -459.0078 curveto -66.73177 -458.45053 66.984375 -457.69272 66.984375 -456.73438 curveto -66.984375 -451.15625 lineto -68.609375 -451.15625 lineto -68.609375 -461.0 lineto -66.984375 -461.0 lineto -66.984375 -459.48438 lineto -66.58854 -460.08853 66.13281 -460.53384 65.61719 -460.8203 curveto -65.10156 -461.10678 64.5 -461.25 63.8125 -461.25 curveto -62.677082 -461.25 61.817707 -460.89844 61.234375 -460.1953 curveto -60.651043 -459.4922 60.359375 -458.46353 60.359375 -457.10938 curveto -closepath -64.421875 -450.92188 moveto -64.421875 -450.92188 lineto -closepath -77.234375 -452.67188 moveto -77.046875 -452.56772 76.84635 -452.4896 76.63281 -452.4375 curveto -76.41927 -452.3854 76.18229 -452.35938 75.921875 -452.35938 curveto -75.015625 -452.35938 74.31771 -452.65625 73.828125 -453.25 curveto -73.33854 -453.84375 73.09375 -454.6979 73.09375 -455.8125 curveto -73.09375 -461.0 lineto -71.46875 -461.0 lineto -71.46875 -451.15625 lineto -73.09375 -451.15625 lineto -73.09375 -452.6875 lineto -73.427086 -452.08334 73.86719 -451.63803 74.41406 -451.35156 curveto -74.96094 -451.0651 75.625 -450.92188 76.40625 -450.92188 curveto -76.510414 -450.92188 76.63021 -450.9297 76.765625 -450.9453 curveto -76.90104 -450.96094 77.052086 -450.97916 77.21875 -451.0 curveto -77.234375 -452.67188 lineto -closepath -85.234375 -452.67188 moveto -85.046875 -452.56772 84.84635 -452.4896 84.63281 -452.4375 curveto -84.41927 -452.3854 84.18229 -452.35938 83.921875 -452.35938 curveto -83.015625 -452.35938 82.31771 -452.65625 81.828125 -453.25 curveto -81.33854 -453.84375 81.09375 -454.6979 81.09375 -455.8125 curveto -81.09375 -461.0 lineto -79.46875 -461.0 lineto -79.46875 -451.15625 lineto -81.09375 -451.15625 lineto -81.09375 -452.6875 lineto -81.427086 -452.08334 81.86719 -451.63803 82.41406 -451.35156 curveto -82.96094 -451.0651 83.625 -450.92188 84.40625 -450.92188 curveto -84.510414 -450.92188 84.63021 -450.9297 84.765625 -450.9453 curveto -84.90104 -450.96094 85.052086 -450.97916 85.21875 -451.0 curveto -85.234375 -452.67188 lineto -closepath -91.34375 -452.29688 moveto -90.46875 -452.29688 89.78125 -452.6328 89.28125 -453.3047 curveto -88.78125 -453.97656 88.53125 -454.90625 88.53125 -456.09375 curveto -88.53125 -457.27084 88.78125 -458.1979 89.28125 -458.875 curveto -89.78125 -459.5521 90.46875 -459.89062 91.34375 -459.89062 curveto -92.197914 -459.89062 92.8776 -459.54947 93.38281 -458.8672 curveto -93.88802 -458.1849 94.140625 -457.2604 94.140625 -456.09375 curveto -94.140625 -454.9271 93.88802 -454.0026 93.38281 -453.3203 curveto -92.8776 -452.63803 92.197914 -452.29688 91.34375 -452.29688 curveto -closepath -91.34375 -450.92188 moveto -92.75 -450.92188 93.854164 -451.3776 94.65625 -452.28906 curveto -95.458336 -453.20053 95.859375 -454.46875 95.859375 -456.09375 curveto -95.859375 -457.6979 95.458336 -458.95834 94.65625 -459.875 curveto -93.854164 -460.79166 92.75 -461.25 91.34375 -461.25 curveto -89.927086 -461.25 88.82031 -460.79166 88.02344 -459.875 curveto -87.22656 -458.95834 86.828125 -457.6979 86.828125 -456.09375 curveto -86.828125 -454.46875 87.22656 -453.20053 88.02344 -452.28906 curveto -88.82031 -451.3776 89.927086 -450.92188 91.34375 -450.92188 curveto -closepath -105.0 -455.96875 moveto -105.0 -454.79166 104.75781 -453.88022 104.27344 -453.23438 curveto -103.78906 -452.58853 103.114586 -452.26562 102.25 -452.26562 curveto -101.375 -452.26562 100.69531 -452.58853 100.21094 -453.23438 curveto -99.72656 -453.88022 99.484375 -454.79166 99.484375 -455.96875 curveto -99.484375 -457.1354 99.72656 -458.03906 100.21094 -458.6797 curveto -100.69531 -459.3203 101.375 -459.64062 102.25 -459.64062 curveto -103.114586 -459.64062 103.78906 -459.3203 104.27344 -458.6797 curveto -104.75781 -458.03906 105.0 -457.1354 105.0 -455.96875 curveto -closepath -106.625 -459.78125 moveto -106.625 -461.45834 106.2526 -462.70572 105.50781 -463.52344 curveto -104.76302 -464.34116 103.61979 -464.75 102.078125 -464.75 curveto -101.515625 -464.75 100.98177 -464.70572 100.47656 -464.6172 curveto -99.97135 -464.52866 99.484375 -464.39584 99.015625 -464.21875 curveto -99.015625 -462.65625 lineto -99.484375 -462.91666 99.95052 -463.10678 100.41406 -463.22656 curveto -100.8776 -463.34634 101.34896 -463.40625 101.828125 -463.40625 curveto -102.890625 -463.40625 103.6849 -463.13022 104.21094 -462.57812 curveto -104.73698 -462.02603 105.0 -461.1875 105.0 -460.0625 curveto -105.0 -459.26562 lineto -104.666664 -459.84897 104.239586 -460.28384 103.71875 -460.5703 curveto -103.197914 -460.85678 102.572914 -461.0 101.84375 -461.0 curveto -100.635414 -461.0 99.66406 -460.53906 98.92969 -459.6172 curveto -98.19531 -458.6953 97.828125 -457.47916 97.828125 -455.96875 curveto -97.828125 -454.4375 98.19531 -453.21353 98.92969 -452.29688 curveto -99.66406 -451.38022 100.635414 -450.92188 101.84375 -450.92188 curveto -102.572914 -450.92188 103.197914 -451.0651 103.71875 -451.35156 curveto -104.239586 -451.63803 104.666664 -452.0729 105.0 -452.65625 curveto -105.0 -451.15625 lineto -106.625 -451.15625 lineto -106.625 -459.78125 lineto -closepath -114.0 -456.04688 moveto -112.6875 -456.04688 111.78125 -456.1979 111.28125 -456.5 curveto -110.78125 -456.8021 110.53125 -457.3125 110.53125 -458.03125 curveto -110.53125 -458.60416 110.71875 -459.0599 111.09375 -459.39844 curveto -111.46875 -459.73697 111.984375 -459.90625 112.640625 -459.90625 curveto -113.53646 -459.90625 114.25521 -459.58853 114.796875 -458.95312 curveto -115.33854 -458.31772 115.609375 -457.46875 115.609375 -456.40625 curveto -115.609375 -456.04688 lineto -114.0 -456.04688 lineto -closepath -117.21875 -455.39062 moveto -117.21875 -461.0 lineto -115.609375 -461.0 lineto -115.609375 -459.5 lineto -115.234375 -460.10416 114.77344 -460.54688 114.22656 -460.82812 curveto -113.67969 -461.10938 113.00521 -461.25 112.203125 -461.25 curveto -111.19271 -461.25 110.390625 -460.96875 109.796875 -460.40625 curveto -109.203125 -459.84375 108.90625 -459.08853 108.90625 -458.14062 curveto -108.90625 -457.02603 109.27865 -456.1875 110.02344 -455.625 curveto -110.76823 -455.0625 111.875 -454.78125 113.34375 -454.78125 curveto -115.609375 -454.78125 lineto -115.609375 -454.625 lineto -115.609375 -453.8854 115.364586 -453.3125 114.875 -452.90625 curveto -114.385414 -452.5 113.697914 -452.29688 112.8125 -452.29688 curveto -112.25 -452.29688 111.703125 -452.36197 111.171875 -452.4922 curveto -110.640625 -452.6224 110.125 -452.8229 109.625 -453.09375 curveto -109.625 -451.60938 lineto -110.21875 -451.38022 110.79427 -451.20834 111.35156 -451.09375 curveto -111.90885 -450.97916 112.453125 -450.92188 112.984375 -450.92188 curveto -114.40104 -450.92188 115.46094 -451.29166 116.16406 -452.03125 curveto -116.86719 -452.77084 117.21875 -453.89062 117.21875 -455.39062 curveto -closepath -121.125 -448.35938 moveto -121.125 -451.15625 lineto -124.453125 -451.15625 lineto -124.453125 -452.40625 lineto -121.125 -452.40625 lineto -121.125 -457.75 lineto -121.125 -458.5521 121.234375 -459.06772 121.453125 -459.29688 curveto -121.671875 -459.52603 122.11979 -459.64062 122.796875 -459.64062 curveto -124.453125 -459.64062 lineto -124.453125 -461.0 lineto -122.796875 -461.0 lineto -121.546875 -461.0 120.6849 -460.76822 120.21094 -460.3047 curveto -119.73698 -459.84116 119.5 -458.9896 119.5 -457.75 curveto -119.5 -452.40625 lineto -118.3125 -452.40625 lineto -118.3125 -451.15625 lineto -119.5 -451.15625 lineto -119.5 -448.35938 lineto -121.125 -448.35938 lineto -closepath -134.9375 -455.67188 moveto -134.9375 -456.46875 lineto -127.515625 -456.46875 lineto -127.578125 -457.58334 127.91146 -458.43228 128.51562 -459.01562 curveto -129.1198 -459.59897 129.95833 -459.89062 131.03125 -459.89062 curveto -131.64583 -459.89062 132.2448 -459.8125 132.82812 -459.65625 curveto -133.41145 -459.5 133.98958 -459.27084 134.5625 -458.96875 curveto -134.5625 -460.5 lineto -133.98958 -460.75 133.39844 -460.9375 132.78906 -461.0625 curveto -132.17969 -461.1875 131.5573 -461.25 130.92188 -461.25 curveto -129.35938 -461.25 128.1198 -460.79428 127.203125 -459.8828 curveto -126.28646 -458.97134 125.828125 -457.73438 125.828125 -456.17188 curveto -125.828125 -454.55728 126.26302 -453.27866 127.13281 -452.33594 curveto -128.00261 -451.39322 129.17188 -450.92188 130.64062 -450.92188 curveto -131.97395 -450.92188 133.02344 -451.34634 133.78906 -452.1953 curveto -134.55469 -453.04428 134.9375 -454.20312 134.9375 -455.67188 curveto -closepath -133.32812 -455.20312 moveto -133.3177 -454.31772 133.07031 -453.61197 132.58594 -453.08594 curveto -132.10156 -452.5599 131.46355 -452.29688 130.67188 -452.29688 curveto -129.76562 -452.29688 129.04167 -452.54947 128.5 -453.0547 curveto -127.958336 -453.5599 127.645836 -454.27603 127.5625 -455.20312 curveto -133.32812 -455.20312 lineto -closepath -145.0 -463.98438 moveto -145.0 -465.25 lineto -135.65625 -465.25 lineto -135.65625 -463.98438 lineto -145.0 -463.98438 lineto -closepath -151.51562 -447.32812 moveto -151.51562 -448.67188 lineto -149.96875 -448.67188 lineto -149.38542 -448.67188 148.98177 -448.78906 148.75781 -449.02344 curveto -148.53386 -449.2578 148.42188 -449.6771 148.42188 -450.28125 curveto -148.42188 -451.15625 lineto -151.07812 -451.15625 lineto -151.07812 -452.40625 lineto -148.42188 -452.40625 lineto -148.42188 -461.0 lineto -146.78125 -461.0 lineto -146.78125 -452.40625 lineto -145.23438 -452.40625 lineto -145.23438 -451.15625 lineto -146.78125 -451.15625 lineto -146.78125 -450.46875 lineto -146.78125 -449.375 147.03645 -448.57812 147.54688 -448.07812 curveto -148.0573 -447.57812 148.8698 -447.32812 149.98438 -447.32812 curveto -151.51562 -447.32812 lineto -closepath -152.35938 -457.10938 moveto -152.35938 -451.15625 lineto -153.96875 -451.15625 lineto -153.96875 -457.04688 lineto -153.96875 -457.98438 154.15105 -458.6849 154.51562 -459.14844 curveto -154.8802 -459.61197 155.42708 -459.84375 156.15625 -459.84375 curveto -157.03125 -459.84375 157.72136 -459.5651 158.22656 -459.0078 curveto -158.73177 -458.45053 158.98438 -457.69272 158.98438 -456.73438 curveto -158.98438 -451.15625 lineto -160.60938 -451.15625 lineto -160.60938 -461.0 lineto -158.98438 -461.0 lineto -158.98438 -459.48438 lineto -158.58855 -460.08853 158.13281 -460.53384 157.61719 -460.8203 curveto -157.10156 -461.10678 156.5 -461.25 155.8125 -461.25 curveto -154.67708 -461.25 153.8177 -460.89844 153.23438 -460.1953 curveto -152.65105 -459.4922 152.35938 -458.46353 152.35938 -457.10938 curveto -closepath -156.42188 -450.92188 moveto -156.42188 -450.92188 lineto -closepath -171.70312 -455.0625 moveto -171.70312 -461.0 lineto -170.09375 -461.0 lineto -170.09375 -455.10938 lineto -170.09375 -454.18228 169.91145 -453.48697 169.54688 -453.02344 curveto -169.1823 -452.5599 168.63542 -452.32812 167.90625 -452.32812 curveto -167.03125 -452.32812 166.34375 -452.60678 165.84375 -453.16406 curveto -165.34375 -453.72134 165.09375 -454.47916 165.09375 -455.4375 curveto -165.09375 -461.0 lineto -163.46875 -461.0 lineto -163.46875 -451.15625 lineto -165.09375 -451.15625 lineto -165.09375 -452.6875 lineto -165.47917 -452.09375 165.93489 -451.65103 166.46094 -451.35938 curveto -166.98698 -451.06772 167.58855 -450.92188 168.26562 -450.92188 curveto -169.40105 -450.92188 170.25781 -451.27084 170.83594 -451.96875 curveto -171.41406 -452.66666 171.70312 -453.6979 171.70312 -455.0625 curveto -closepath -181.60938 -451.53125 moveto -181.60938 -453.04688 lineto -181.15105 -452.79688 180.6927 -452.60938 180.23438 -452.48438 curveto -179.77605 -452.35938 179.3125 -452.29688 178.84375 -452.29688 curveto -177.79167 -452.29688 176.97656 -452.6276 176.39844 -453.28906 curveto -175.82031 -453.95053 175.53125 -454.8854 175.53125 -456.09375 curveto -175.53125 -457.29166 175.82031 -458.22397 176.39844 -458.89062 curveto -176.97656 -459.55728 177.79167 -459.89062 178.84375 -459.89062 curveto -179.3125 -459.89062 179.77605 -459.82553 180.23438 -459.6953 curveto -180.6927 -459.5651 181.15105 -459.375 181.60938 -459.125 curveto -181.60938 -460.625 lineto -181.16145 -460.83334 180.69531 -460.9896 180.21094 -461.09375 curveto -179.72656 -461.1979 179.21355 -461.25 178.67188 -461.25 curveto -177.1823 -461.25 176.00261 -460.78384 175.13281 -459.85156 curveto -174.26302 -458.91928 173.82812 -457.66666 173.82812 -456.09375 curveto -173.82812 -454.47916 174.26823 -453.21353 175.14844 -452.29688 curveto -176.02864 -451.38022 177.23438 -450.92188 178.76562 -450.92188 curveto -179.26562 -450.92188 179.75261 -450.97134 180.22656 -451.0703 curveto -180.70052 -451.16928 181.16145 -451.3229 181.60938 -451.53125 curveto -closepath -185.125 -448.35938 moveto -185.125 -451.15625 lineto -188.45312 -451.15625 lineto -188.45312 -452.40625 lineto -185.125 -452.40625 lineto -185.125 -457.75 lineto -185.125 -458.5521 185.23438 -459.06772 185.45312 -459.29688 curveto -185.67188 -459.52603 186.1198 -459.64062 186.79688 -459.64062 curveto -188.45312 -459.64062 lineto -188.45312 -461.0 lineto -186.79688 -461.0 lineto -185.54688 -461.0 184.68489 -460.76822 184.21094 -460.3047 curveto -183.73698 -459.84116 183.5 -458.9896 183.5 -457.75 curveto -183.5 -452.40625 lineto -182.3125 -452.40625 lineto -182.3125 -451.15625 lineto -183.5 -451.15625 lineto -183.5 -448.35938 lineto -185.125 -448.35938 lineto -closepath -190.53125 -451.15625 moveto -192.14062 -451.15625 lineto -192.14062 -461.0 lineto -190.53125 -461.0 lineto -190.53125 -451.15625 lineto -closepath -190.53125 -447.32812 moveto -192.14062 -447.32812 lineto -192.14062 -449.375 lineto -190.53125 -449.375 lineto -190.53125 -447.32812 lineto -closepath -199.34375 -452.29688 moveto -198.46875 -452.29688 197.78125 -452.6328 197.28125 -453.3047 curveto -196.78125 -453.97656 196.53125 -454.90625 196.53125 -456.09375 curveto -196.53125 -457.27084 196.78125 -458.1979 197.28125 -458.875 curveto -197.78125 -459.5521 198.46875 -459.89062 199.34375 -459.89062 curveto -200.19792 -459.89062 200.87761 -459.54947 201.38281 -458.8672 curveto -201.88802 -458.1849 202.14062 -457.2604 202.14062 -456.09375 curveto -202.14062 -454.9271 201.88802 -454.0026 201.38281 -453.3203 curveto -200.87761 -452.63803 200.19792 -452.29688 199.34375 -452.29688 curveto -closepath -199.34375 -450.92188 moveto -200.75 -450.92188 201.85417 -451.3776 202.65625 -452.28906 curveto -203.45833 -453.20053 203.85938 -454.46875 203.85938 -456.09375 curveto -203.85938 -457.6979 203.45833 -458.95834 202.65625 -459.875 curveto -201.85417 -460.79166 200.75 -461.25 199.34375 -461.25 curveto -197.92708 -461.25 196.82031 -460.79166 196.02344 -459.875 curveto -195.22656 -458.95834 194.82812 -457.6979 194.82812 -456.09375 curveto -194.82812 -454.46875 195.22656 -453.20053 196.02344 -452.28906 curveto -196.82031 -451.3776 197.92708 -450.92188 199.34375 -450.92188 curveto -closepath -214.70312 -455.0625 moveto -214.70312 -461.0 lineto -213.09375 -461.0 lineto -213.09375 -455.10938 lineto -213.09375 -454.18228 212.91145 -453.48697 212.54688 -453.02344 curveto -212.1823 -452.5599 211.63542 -452.32812 210.90625 -452.32812 curveto -210.03125 -452.32812 209.34375 -452.60678 208.84375 -453.16406 curveto -208.34375 -453.72134 208.09375 -454.47916 208.09375 -455.4375 curveto -208.09375 -461.0 lineto -206.46875 -461.0 lineto -206.46875 -451.15625 lineto -208.09375 -451.15625 lineto -208.09375 -452.6875 lineto -208.47917 -452.09375 208.93489 -451.65103 209.46094 -451.35938 curveto -209.98698 -451.06772 210.58855 -450.92188 211.26562 -450.92188 curveto -212.40105 -450.92188 213.25781 -451.27084 213.83594 -451.96875 curveto -214.41406 -452.66666 214.70312 -453.6979 214.70312 -455.0625 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -652.0 -185.0 moveto -711.0 -172.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -651.0 -185.0 moveto -711.0 -141.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -185.0 moveto -712.0 -112.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -651.0 -246.0 moveto -712.0 -199.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -246.0 moveto -712.0 -228.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -652.0 -246.0 moveto -710.0 -256.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -301.0 moveto -711.0 -284.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -300.0 moveto -710.0 -312.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -302.0 moveto -712.0 -340.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -362.0 moveto -710.0 -370.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -360.0 moveto -712.0 -398.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -651.0 -362.0 moveto -712.0 -428.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -651.0 -512.0 moveto -711.0 -489.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -513.0 moveto -711.0 -518.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -652.0 -514.0 moveto -712.0 -547.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -735.0 moveto -711.0 -693.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -648.0 -735.0 moveto -711.0 -722.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -734.0 moveto -712.0 -752.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -794.0 moveto -712.0 -778.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -651.0 -794.0 moveto -710.0 -808.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -650.0 -794.0 moveto -711.0 -837.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -440.0 -754.0 moveto -507.0 -734.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -440.0 -754.0 moveto -507.0 -795.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -440.0 -514.0 moveto -506.0 -514.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -439.0 -273.0 moveto -507.0 -182.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -439.0 -272.0 moveto -507.0 -244.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -440.0 -271.0 moveto -508.0 -304.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -441.0 -272.0 moveto -507.0 -363.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -454.0 moveto -278.0 -32.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -452.0 moveto -278.0 -152.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -452.0 moveto -278.0 -273.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -453.0 moveto -278.0 -394.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -451.0 moveto -278.0 -516.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -452.0 moveto -278.0 -634.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -219.0 -456.0 moveto -278.0 -756.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -newpath -218.0 -456.0 moveto -278.0 -877.0 lineto -stroke -newpath -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -newpath -367.87103 -922.4219 moveto -370.9447 -893.4219 465.4599 -922.4219 457.00732 -895.4219 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -newpath -368.63947 -922.4219 moveto -364.02896 -892.4219 266.4401 -922.4219 277.19794 -896.4219 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -newpath -560.91113 -922.4219 moveto -563.9848 -893.4219 658.5 -922.4219 650.0474 -895.4219 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -newpath -561.67957 -922.4219 moveto -557.0691 -892.4219 459.4802 -922.4219 470.23804 -896.4219 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -newpath -760.41113 -922.4219 moveto -763.4848 -893.4219 858.0 -922.4219 849.5474 -895.4219 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -2.0 setlinewidth -10.0 setmiterlimit -0 setlinejoin -0 setlinecap -[ ] 0 setdash -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -0.9764706 0.03529412 0.023529412 setrgbcolor -newpath -761.17957 -922.4219 moveto -756.5691 -892.4219 658.9802 -922.4219 669.73804 -896.4219 curveto -stroke -newpath -0.0 0.0 0.0 setrgbcolor -0.9764706 0.023529412 0.023529412 setrgbcolor -newpath -306.37186 -927.65625 moveto -306.37186 -922.3281 lineto -307.99686 -922.3281 lineto -307.99686 -936.0 lineto -306.37186 -936.0 lineto -306.37186 -934.5156 lineto -306.0385 -935.1094 305.61145 -935.5469 305.0906 -935.8281 curveto -304.56976 -936.1094 303.94476 -936.25 303.2156 -936.25 curveto -302.0281 -936.25 301.06195 -935.77606 300.31717 -934.8281 curveto -299.5724 -933.8802 299.19998 -932.63544 299.19998 -931.09375 curveto -299.19998 -929.5417 299.5724 -928.2917 300.31717 -927.34375 curveto -301.06195 -926.3958 302.0281 -925.9219 303.2156 -925.9219 curveto -303.94476 -925.9219 304.56976 -926.0625 305.0906 -926.34375 curveto -305.61145 -926.625 306.0385 -927.0625 306.37186 -927.65625 curveto -closepath -300.85623 -931.09375 moveto -300.85623 -932.28125 301.101 -933.21356 301.5906 -933.8906 curveto -302.0802 -934.5677 302.75726 -934.90625 303.62186 -934.90625 curveto -304.476 -934.90625 305.1479 -934.5677 305.63748 -933.8906 curveto -306.12708 -933.21356 306.37186 -932.28125 306.37186 -931.09375 curveto -306.37186 -929.8958 306.12708 -928.9583 305.63748 -928.28125 curveto -305.1479 -927.6042 304.476 -927.2656 303.62186 -927.2656 curveto -302.75726 -927.2656 302.0802 -927.6042 301.5906 -928.28125 curveto -301.101 -928.9583 300.85623 -929.8958 300.85623 -931.09375 curveto -closepath -314.7156 -927.2969 moveto -313.8406 -927.2969 313.1531 -927.6328 312.6531 -928.3047 curveto -312.1531 -928.97656 311.9031 -929.90625 311.9031 -931.09375 curveto -311.9031 -932.2708 312.1531 -933.19794 312.6531 -933.875 curveto -313.1531 -934.55206 313.8406 -934.8906 314.7156 -934.8906 curveto -315.56976 -934.8906 316.24945 -934.5495 316.75467 -933.8672 curveto -317.2599 -933.1849 317.51248 -932.26044 317.51248 -931.09375 curveto -317.51248 -929.92706 317.2599 -929.0026 316.75467 -928.3203 curveto -316.24945 -927.638 315.56976 -927.2969 314.7156 -927.2969 curveto -closepath -314.7156 -925.9219 moveto -316.12186 -925.9219 317.226 -926.3776 318.0281 -927.28906 curveto -318.8302 -928.2005 319.23123 -929.46875 319.23123 -931.09375 curveto -319.23123 -932.69794 318.8302 -933.9583 318.0281 -934.875 curveto -317.226 -935.7917 316.12186 -936.25 314.7156 -936.25 curveto -313.29895 -936.25 312.19217 -935.7917 311.3953 -934.875 curveto -310.59842 -933.9583 310.19998 -932.69794 310.19998 -931.09375 curveto -310.19998 -929.46875 310.59842 -928.2005 311.3953 -927.28906 curveto -312.19217 -926.3776 313.29895 -925.9219 314.7156 -925.9219 curveto -closepath -328.98123 -926.53125 moveto -328.98123 -928.0469 lineto -328.5229 -927.7969 328.06458 -927.6094 327.60623 -927.4844 curveto -327.1479 -927.3594 326.68436 -927.2969 326.2156 -927.2969 curveto -325.1635 -927.2969 324.34842 -927.6276 323.7703 -928.28906 curveto -323.19217 -928.9505 322.9031 -929.88544 322.9031 -931.09375 curveto -322.9031 -932.2917 323.19217 -933.22394 323.7703 -933.8906 curveto -324.34842 -934.5573 325.1635 -934.8906 326.2156 -934.8906 curveto -326.68436 -934.8906 327.1479 -934.8255 327.60623 -934.6953 curveto -328.06458 -934.5651 328.5229 -934.375 328.98123 -934.125 curveto -328.98123 -935.625 lineto -328.53333 -935.8333 328.06717 -935.98956 327.5828 -936.09375 curveto -327.09842 -936.19794 326.5854 -936.25 326.04373 -936.25 curveto -324.55414 -936.25 323.37445 -935.7839 322.50467 -934.85156 curveto -321.6349 -933.91925 321.19998 -932.6667 321.19998 -931.09375 curveto -321.19998 -929.4792 321.64008 -928.21356 322.5203 -927.2969 curveto -323.4005 -926.3802 324.60623 -925.9219 326.13748 -925.9219 curveto -326.63748 -925.9219 327.12445 -925.9714 327.59842 -926.0703 curveto -328.0724 -926.16925 328.53333 -926.32294 328.98123 -926.53125 curveto -closepath -330.73123 -932.1094 moveto -330.73123 -926.15625 lineto -332.3406 -926.15625 lineto -332.3406 -932.0469 lineto -332.3406 -932.9844 332.5229 -933.6849 332.88748 -934.14844 curveto -333.25208 -934.612 333.79895 -934.84375 334.5281 -934.84375 curveto -335.4031 -934.84375 336.0932 -934.5651 336.59842 -934.0078 curveto -337.10364 -933.4505 337.35623 -932.6927 337.35623 -931.7344 curveto -337.35623 -926.15625 lineto -338.98123 -926.15625 lineto -338.98123 -936.0 lineto -337.35623 -936.0 lineto -337.35623 -934.4844 lineto -336.9604 -935.08856 336.50467 -935.5339 335.98904 -935.8203 curveto -335.47342 -936.10675 334.87186 -936.25 334.18436 -936.25 curveto -333.04895 -936.25 332.18958 -935.89844 331.60623 -935.1953 curveto -331.0229 -934.4922 330.73123 -933.46356 330.73123 -932.1094 curveto -closepath -334.79373 -925.9219 moveto -334.79373 -925.9219 lineto -closepath -349.55936 -928.0469 moveto -349.9656 -927.3177 350.44998 -926.78125 351.01248 -926.4375 curveto -351.57498 -926.09375 352.23645 -925.9219 352.99686 -925.9219 curveto -354.0177 -925.9219 354.80676 -926.28125 355.36404 -927.0 curveto -355.92133 -927.71875 356.19998 -928.73956 356.19998 -930.0625 curveto -356.19998 -936.0 lineto -354.57498 -936.0 lineto -354.57498 -930.1094 lineto -354.57498 -929.1719 354.40833 -928.47394 354.07498 -928.0156 curveto -353.74164 -927.5573 353.23123 -927.3281 352.54373 -927.3281 curveto -351.7104 -927.3281 351.05154 -927.60675 350.56717 -928.16406 curveto -350.0828 -928.7214 349.8406 -929.4792 349.8406 -930.4375 curveto -349.8406 -936.0 lineto -348.19998 -936.0 lineto -348.19998 -930.1094 lineto -348.19998 -929.16144 348.03333 -928.46094 347.69998 -928.0078 curveto -347.36664 -927.5547 346.851 -927.3281 346.1531 -927.3281 curveto -345.3302 -927.3281 344.67654 -927.60675 344.19217 -928.16406 curveto -343.7078 -928.7214 343.4656 -929.4792 343.4656 -930.4375 curveto -343.4656 -936.0 lineto -341.8406 -936.0 lineto -341.8406 -926.15625 lineto -343.4656 -926.15625 lineto -343.4656 -927.6875 lineto -343.8302 -927.0833 344.2703 -926.638 344.78592 -926.35156 curveto -345.30154 -926.0651 345.9135 -925.9219 346.62186 -925.9219 curveto -347.3406 -925.9219 347.94998 -926.1042 348.44998 -926.46875 curveto -348.94998 -926.8333 349.31976 -927.3594 349.55936 -928.0469 curveto -closepath -367.30936 -930.6719 moveto -367.30936 -931.46875 lineto -359.88748 -931.46875 lineto -359.94998 -932.5833 360.28333 -933.4323 360.88748 -934.0156 curveto -361.49164 -934.59894 362.3302 -934.8906 363.4031 -934.8906 curveto -364.0177 -934.8906 364.61664 -934.8125 365.19998 -934.65625 curveto -365.78333 -934.5 366.36145 -934.2708 366.93436 -933.96875 curveto -366.93436 -935.5 lineto -366.36145 -935.75 365.7703 -935.9375 365.16092 -936.0625 curveto -364.55154 -936.1875 363.92914 -936.25 363.29373 -936.25 curveto -361.73123 -936.25 360.49164 -935.79425 359.57498 -934.8828 curveto -358.65833 -933.9714 358.19998 -932.7344 358.19998 -931.1719 curveto -358.19998 -929.5573 358.6349 -928.2786 359.50467 -927.33594 curveto -360.37445 -926.39325 361.54373 -925.9219 363.01248 -925.9219 curveto -364.34583 -925.9219 365.3953 -926.3464 366.16092 -927.1953 curveto -366.92654 -928.04425 367.30936 -929.2031 367.30936 -930.6719 curveto -closepath -365.69998 -930.2031 moveto -365.68958 -929.3177 365.44217 -928.612 364.9578 -928.08594 curveto -364.47342 -927.5599 363.8354 -927.2969 363.04373 -927.2969 curveto -362.13748 -927.2969 361.4135 -927.5495 360.87186 -928.0547 curveto -360.3302 -928.5599 360.0177 -929.27606 359.93436 -930.2031 curveto -365.69998 -930.2031 lineto -closepath -378.07498 -930.0625 moveto -378.07498 -936.0 lineto -376.4656 -936.0 lineto -376.4656 -930.1094 lineto -376.4656 -929.1823 376.28333 -928.487 375.91873 -928.02344 curveto -375.55414 -927.5599 375.00726 -927.3281 374.2781 -927.3281 curveto -373.4031 -927.3281 372.7156 -927.60675 372.2156 -928.16406 curveto -371.7156 -928.7214 371.4656 -929.4792 371.4656 -930.4375 curveto -371.4656 -936.0 lineto -369.8406 -936.0 lineto -369.8406 -926.15625 lineto -371.4656 -926.15625 lineto -371.4656 -927.6875 lineto -371.851 -927.09375 372.30676 -926.65106 372.8328 -926.3594 curveto -373.35883 -926.0677 373.9604 -925.9219 374.63748 -925.9219 curveto -375.7729 -925.9219 376.62967 -926.2708 377.2078 -926.96875 curveto -377.78592 -927.6667 378.07498 -928.69794 378.07498 -930.0625 curveto -closepath -382.49686 -923.3594 moveto -382.49686 -926.15625 lineto -385.82498 -926.15625 lineto -385.82498 -927.40625 lineto -382.49686 -927.40625 lineto -382.49686 -932.75 lineto -382.49686 -933.55206 382.60623 -934.0677 382.82498 -934.2969 curveto -383.04373 -934.52606 383.49164 -934.6406 384.16873 -934.6406 curveto -385.82498 -934.6406 lineto -385.82498 -936.0 lineto -384.16873 -936.0 lineto -382.91873 -936.0 382.05676 -935.76825 381.5828 -935.3047 curveto -381.10883 -934.8411 380.87186 -933.98956 380.87186 -932.75 curveto -380.87186 -927.40625 lineto -379.68436 -927.40625 lineto -379.68436 -926.15625 lineto -380.87186 -926.15625 lineto -380.87186 -923.3594 lineto -382.49686 -923.3594 lineto -closepath -393.8406 -922.3281 moveto -395.4656 -922.3281 lineto -395.4656 -930.40625 lineto -400.29373 -926.15625 lineto -402.35623 -926.15625 lineto -397.13748 -930.7656 lineto -402.57498 -936.0 lineto -400.4656 -936.0 lineto -395.4656 -931.1875 lineto -395.4656 -936.0 lineto -393.8406 -936.0 lineto -393.8406 -922.3281 lineto -closepath -412.30936 -930.6719 moveto -412.30936 -931.46875 lineto -404.88748 -931.46875 lineto -404.94998 -932.5833 405.28333 -933.4323 405.88748 -934.0156 curveto -406.49164 -934.59894 407.3302 -934.8906 408.4031 -934.8906 curveto -409.0177 -934.8906 409.61664 -934.8125 410.19998 -934.65625 curveto -410.78333 -934.5 411.36145 -934.2708 411.93436 -933.96875 curveto -411.93436 -935.5 lineto -411.36145 -935.75 410.7703 -935.9375 410.16092 -936.0625 curveto -409.55154 -936.1875 408.92914 -936.25 408.29373 -936.25 curveto -406.73123 -936.25 405.49164 -935.79425 404.57498 -934.8828 curveto -403.65833 -933.9714 403.19998 -932.7344 403.19998 -931.1719 curveto -403.19998 -929.5573 403.6349 -928.2786 404.50467 -927.33594 curveto -405.37445 -926.39325 406.54373 -925.9219 408.01248 -925.9219 curveto -409.34583 -925.9219 410.3953 -926.3464 411.16092 -927.1953 curveto -411.92654 -928.04425 412.30936 -929.2031 412.30936 -930.6719 curveto -closepath -410.69998 -930.2031 moveto -410.68958 -929.3177 410.44217 -928.612 409.9578 -928.08594 curveto -409.47342 -927.5599 408.8354 -927.2969 408.04373 -927.2969 curveto -407.13748 -927.2969 406.4135 -927.5495 405.87186 -928.0547 curveto -405.3302 -928.5599 405.0177 -929.27606 404.93436 -930.2031 curveto -410.69998 -930.2031 lineto -closepath -418.99686 -936.9219 moveto -418.5385 -938.08856 418.0932 -938.85156 417.66092 -939.21094 curveto -417.22864 -939.5703 416.6479 -939.75 415.91873 -939.75 curveto -414.62186 -939.75 lineto -414.62186 -938.3906 lineto -415.57498 -938.3906 lineto -416.0229 -938.3906 416.36926 -938.28644 416.61404 -938.0781 curveto -416.85883 -937.8698 417.13226 -937.3698 417.43436 -936.5781 curveto -417.7156 -935.84375 lineto -413.73123 -926.15625 lineto -415.44998 -926.15625 lineto -418.5281 -933.8594 lineto -421.60623 -926.15625 lineto -423.30936 -926.15625 lineto -418.99686 -936.9219 lineto -closepath -432.16873 -926.4531 moveto -432.16873 -927.96875 lineto -431.7104 -927.73956 431.23645 -927.5651 430.74686 -927.4453 curveto -430.25726 -927.3255 429.74686 -927.2656 429.2156 -927.2656 curveto -428.4135 -927.2656 427.81195 -927.3906 427.41092 -927.6406 curveto -427.0099 -927.8906 426.80936 -928.26044 426.80936 -928.75 curveto -426.80936 -929.125 426.95258 -929.41925 427.23904 -929.6328 curveto -427.5255 -929.8464 428.101 -930.05206 428.9656 -930.25 curveto -429.5281 -930.3594 lineto -430.67395 -930.6094 431.48904 -930.9583 431.97342 -931.40625 curveto -432.4578 -931.8542 432.69998 -932.4792 432.69998 -933.28125 curveto -432.69998 -934.19794 432.338 -934.9219 431.61404 -935.4531 curveto -430.89008 -935.9844 429.8979 -936.25 428.63748 -936.25 curveto -428.10623 -936.25 427.55414 -936.2005 426.98123 -936.10156 curveto -426.40833 -936.0026 425.80414 -935.84894 425.16873 -935.6406 curveto -425.16873 -933.96875 lineto -425.7729 -934.28125 426.36404 -934.5156 426.94217 -934.6719 curveto -427.5203 -934.8281 428.09583 -934.90625 428.66873 -934.90625 curveto -429.42914 -934.90625 430.01508 -934.77606 430.42654 -934.5156 curveto -430.838 -934.2552 431.04373 -933.88544 431.04373 -933.40625 curveto -431.04373 -932.96875 430.8953 -932.6328 430.59842 -932.39844 curveto -430.30154 -932.16406 429.6531 -931.9375 428.6531 -931.71875 curveto -428.0906 -931.59375 lineto -427.0802 -931.375 426.35364 -931.0495 425.91092 -930.6172 curveto -425.4682 -930.1849 425.24686 -929.5833 425.24686 -928.8125 curveto -425.24686 -927.8958 425.57498 -927.1849 426.23123 -926.6797 curveto -426.88748 -926.1745 427.81976 -925.9219 429.0281 -925.9219 curveto -429.62186 -925.9219 430.18176 -925.9661 430.7078 -926.0547 curveto -431.23383 -926.14325 431.72083 -926.27606 432.16873 -926.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.9764706 0.023529412 0.023529412 setrgbcolor -newpath -484.2245 -926.4531 moveto -484.2245 -927.96875 lineto -483.76614 -927.73956 483.2922 -927.5651 482.8026 -927.4453 curveto -482.31302 -927.3255 481.8026 -927.2656 481.27136 -927.2656 curveto -480.46927 -927.2656 479.8677 -927.3906 479.46667 -927.6406 curveto -479.06564 -927.8906 478.8651 -928.26044 478.8651 -928.75 curveto -478.8651 -929.125 479.00833 -929.41925 479.2948 -929.6328 curveto -479.58127 -929.8464 480.15677 -930.05206 481.02136 -930.25 curveto -481.58386 -930.3594 lineto -482.7297 -930.6094 483.5448 -930.9583 484.02917 -931.40625 curveto -484.51355 -931.8542 484.75574 -932.4792 484.75574 -933.28125 curveto -484.75574 -934.19794 484.39377 -934.9219 483.6698 -935.4531 curveto -482.94583 -935.9844 481.95364 -936.25 480.69324 -936.25 curveto -480.162 -936.25 479.6099 -936.2005 479.037 -936.10156 curveto -478.46408 -936.0026 477.8599 -935.84894 477.2245 -935.6406 curveto -477.2245 -933.96875 lineto -477.82864 -934.28125 478.4198 -934.5156 478.99792 -934.6719 curveto -479.57605 -934.8281 480.15158 -934.90625 480.7245 -934.90625 curveto -481.4849 -934.90625 482.07083 -934.77606 482.4823 -934.5156 curveto -482.89377 -934.2552 483.0995 -933.88544 483.0995 -933.40625 curveto -483.0995 -932.96875 482.95105 -932.6328 482.65417 -932.39844 curveto -482.3573 -932.16406 481.70886 -931.9375 480.70886 -931.71875 curveto -480.14636 -931.59375 lineto -479.13596 -931.375 478.4094 -931.0495 477.96667 -930.6172 curveto -477.52396 -930.1849 477.3026 -929.5833 477.3026 -928.8125 curveto -477.3026 -927.8958 477.63074 -927.1849 478.287 -926.6797 curveto -478.94324 -926.1745 479.87552 -925.9219 481.08386 -925.9219 curveto -481.6776 -925.9219 482.23752 -925.9661 482.76355 -926.0547 curveto -483.28958 -926.14325 483.77658 -926.27606 484.2245 -926.4531 curveto -closepath -485.787 -932.1094 moveto -485.787 -926.15625 lineto -487.39636 -926.15625 lineto -487.39636 -932.0469 lineto -487.39636 -932.9844 487.57864 -933.6849 487.94324 -934.14844 curveto -488.30783 -934.612 488.8547 -934.84375 489.58386 -934.84375 curveto -490.45886 -934.84375 491.14896 -934.5651 491.65417 -934.0078 curveto -492.1594 -933.4505 492.412 -932.6927 492.412 -931.7344 curveto -492.412 -926.15625 lineto -494.037 -926.15625 lineto -494.037 -936.0 lineto -492.412 -936.0 lineto -492.412 -934.4844 lineto -492.01614 -935.08856 491.56042 -935.5339 491.0448 -935.8203 curveto -490.52917 -936.10675 489.9276 -936.25 489.2401 -936.25 curveto -488.1047 -936.25 487.24533 -935.89844 486.662 -935.1953 curveto -486.07864 -934.4922 485.787 -933.46356 485.787 -932.1094 curveto -closepath -489.8495 -925.9219 moveto -489.8495 -925.9219 lineto -closepath -504.02136 -931.09375 moveto -504.02136 -929.8958 503.77658 -928.9583 503.287 -928.28125 curveto -502.7974 -927.6042 502.12552 -927.2656 501.27136 -927.2656 curveto -500.4172 -927.2656 499.74533 -927.6042 499.25574 -928.28125 curveto -498.76614 -928.9583 498.52136 -929.8958 498.52136 -931.09375 curveto -498.52136 -932.28125 498.76614 -933.21356 499.25574 -933.8906 curveto -499.74533 -934.5677 500.4172 -934.90625 501.27136 -934.90625 curveto -502.12552 -934.90625 502.7974 -934.5677 503.287 -933.8906 curveto -503.77658 -933.21356 504.02136 -932.28125 504.02136 -931.09375 curveto -closepath -498.52136 -927.65625 moveto -498.8547 -927.0625 499.28177 -926.625 499.8026 -926.34375 curveto -500.32346 -926.0625 500.94324 -925.9219 501.662 -925.9219 curveto -502.8599 -925.9219 503.83127 -926.3958 504.57605 -927.34375 curveto -505.32083 -928.2917 505.69324 -929.5417 505.69324 -931.09375 curveto -505.69324 -932.63544 505.32083 -933.8802 504.57605 -934.8281 curveto -503.83127 -935.77606 502.8599 -936.25 501.662 -936.25 curveto -500.94324 -936.25 500.32346 -936.1094 499.8026 -935.8281 curveto -499.28177 -935.5469 498.8547 -935.1094 498.52136 -934.5156 curveto -498.52136 -936.0 lineto -496.89636 -936.0 lineto -496.89636 -922.3281 lineto -498.52136 -922.3281 lineto -498.52136 -927.65625 lineto -closepath -514.4276 -927.65625 moveto -514.4276 -922.3281 lineto -516.0526 -922.3281 lineto -516.0526 -936.0 lineto -514.4276 -936.0 lineto -514.4276 -934.5156 lineto -514.0943 -935.1094 513.6672 -935.5469 513.14636 -935.8281 curveto -512.62555 -936.1094 512.00055 -936.25 511.27136 -936.25 curveto -510.08386 -936.25 509.1177 -935.77606 508.37292 -934.8281 curveto -507.62814 -933.8802 507.25574 -932.63544 507.25574 -931.09375 curveto -507.25574 -929.5417 507.62814 -928.2917 508.37292 -927.34375 curveto -509.1177 -926.3958 510.08386 -925.9219 511.27136 -925.9219 curveto -512.00055 -925.9219 512.62555 -926.0625 513.14636 -926.34375 curveto -513.6672 -926.625 514.0943 -927.0625 514.4276 -927.65625 curveto -closepath -508.912 -931.09375 moveto -508.912 -932.28125 509.15677 -933.21356 509.64636 -933.8906 curveto -510.13596 -934.5677 510.81302 -934.90625 511.6776 -934.90625 curveto -512.5318 -934.90625 513.2037 -934.5677 513.69324 -933.8906 curveto -514.1828 -933.21356 514.4276 -932.28125 514.4276 -931.09375 curveto -514.4276 -929.8958 514.1828 -928.9583 513.69324 -928.28125 curveto -513.2037 -927.6042 512.5318 -927.2656 511.6776 -927.2656 curveto -510.81302 -927.2656 510.13596 -927.6042 509.64636 -928.28125 curveto -509.15677 -928.9583 508.912 -929.8958 508.912 -931.09375 curveto -closepath -522.77136 -927.2969 moveto -521.89636 -927.2969 521.20886 -927.6328 520.70886 -928.3047 curveto -520.20886 -928.97656 519.95886 -929.90625 519.95886 -931.09375 curveto -519.95886 -932.2708 520.20886 -933.19794 520.70886 -933.875 curveto -521.20886 -934.55206 521.89636 -934.8906 522.77136 -934.8906 curveto -523.62555 -934.8906 524.30524 -934.5495 524.8104 -933.8672 curveto -525.3156 -933.1849 525.56824 -932.26044 525.56824 -931.09375 curveto -525.56824 -929.92706 525.3156 -929.0026 524.8104 -928.3203 curveto -524.30524 -927.638 523.62555 -927.2969 522.77136 -927.2969 curveto -closepath -522.77136 -925.9219 moveto -524.1776 -925.9219 525.2818 -926.3776 526.08386 -927.28906 curveto -526.8859 -928.2005 527.287 -929.46875 527.287 -931.09375 curveto -527.287 -932.69794 526.8859 -933.9583 526.08386 -934.875 curveto -525.2818 -935.7917 524.1776 -936.25 522.77136 -936.25 curveto -521.3547 -936.25 520.2479 -935.7917 519.45105 -934.875 curveto -518.6542 -933.9583 518.25574 -932.69794 518.25574 -931.09375 curveto -518.25574 -929.46875 518.6542 -928.2005 519.45105 -927.28906 curveto -520.2479 -926.3776 521.3547 -925.9219 522.77136 -925.9219 curveto -closepath -537.037 -926.53125 moveto -537.037 -928.0469 lineto -536.5787 -927.7969 536.1203 -927.6094 535.662 -927.4844 curveto -535.2037 -927.3594 534.7401 -927.2969 534.27136 -927.2969 curveto -533.2193 -927.2969 532.4042 -927.6276 531.82605 -928.28906 curveto -531.2479 -928.9505 530.95886 -929.88544 530.95886 -931.09375 curveto -530.95886 -932.2917 531.2479 -933.22394 531.82605 -933.8906 curveto -532.4042 -934.5573 533.2193 -934.8906 534.27136 -934.8906 curveto -534.7401 -934.8906 535.2037 -934.8255 535.662 -934.6953 curveto -536.1203 -934.5651 536.5787 -934.375 537.037 -934.125 curveto -537.037 -935.625 lineto -536.58905 -935.8333 536.1229 -935.98956 535.63855 -936.09375 curveto -535.1542 -936.19794 534.6412 -936.25 534.0995 -936.25 curveto -532.6099 -936.25 531.43024 -935.7839 530.5604 -934.85156 curveto -529.6906 -933.91925 529.25574 -932.6667 529.25574 -931.09375 curveto -529.25574 -929.4792 529.69586 -928.21356 530.57605 -927.2969 curveto -531.45624 -926.3802 532.662 -925.9219 534.19324 -925.9219 curveto -534.69324 -925.9219 535.18024 -925.9714 535.6542 -926.0703 curveto -536.1281 -926.16925 536.58905 -926.32294 537.037 -926.53125 curveto -closepath -538.787 -932.1094 moveto -538.787 -926.15625 lineto -540.39636 -926.15625 lineto -540.39636 -932.0469 lineto -540.39636 -932.9844 540.5787 -933.6849 540.94324 -934.14844 curveto -541.3078 -934.612 541.8547 -934.84375 542.58386 -934.84375 curveto -543.45886 -934.84375 544.149 -934.5651 544.6542 -934.0078 curveto -545.15936 -933.4505 545.412 -932.6927 545.412 -931.7344 curveto -545.412 -926.15625 lineto -547.037 -926.15625 lineto -547.037 -936.0 lineto -545.412 -936.0 lineto -545.412 -934.4844 lineto -545.0162 -935.08856 544.5604 -935.5339 544.0448 -935.8203 curveto -543.5292 -936.10675 542.9276 -936.25 542.2401 -936.25 curveto -541.1047 -936.25 540.2453 -935.89844 539.662 -935.1953 curveto -539.0787 -934.4922 538.787 -933.46356 538.787 -932.1094 curveto -closepath -542.8495 -925.9219 moveto -542.8495 -925.9219 lineto -closepath -557.6151 -928.0469 moveto -558.02136 -927.3177 558.50574 -926.78125 559.06824 -926.4375 curveto -559.63074 -926.09375 560.2922 -925.9219 561.0526 -925.9219 curveto -562.0734 -925.9219 562.8625 -926.28125 563.4198 -927.0 curveto -563.9771 -927.71875 564.25574 -928.73956 564.25574 -930.0625 curveto -564.25574 -936.0 lineto -562.63074 -936.0 lineto -562.63074 -930.1094 lineto -562.63074 -929.1719 562.46405 -928.47394 562.13074 -928.0156 curveto -561.7974 -927.5573 561.287 -927.3281 560.5995 -927.3281 curveto -559.7662 -927.3281 559.1073 -927.60675 558.6229 -928.16406 curveto -558.13855 -928.7214 557.89636 -929.4792 557.89636 -930.4375 curveto -557.89636 -936.0 lineto -556.25574 -936.0 lineto -556.25574 -930.1094 lineto -556.25574 -929.16144 556.08905 -928.46094 555.75574 -928.0078 curveto -555.4224 -927.5547 554.9068 -927.3281 554.20886 -927.3281 curveto -553.3859 -927.3281 552.7323 -927.60675 552.2479 -928.16406 curveto -551.76355 -928.7214 551.52136 -929.4792 551.52136 -930.4375 curveto -551.52136 -936.0 lineto -549.89636 -936.0 lineto -549.89636 -926.15625 lineto -551.52136 -926.15625 lineto -551.52136 -927.6875 lineto -551.8859 -927.0833 552.32605 -926.638 552.8417 -926.35156 curveto -553.3573 -926.0651 553.9693 -925.9219 554.6776 -925.9219 curveto -555.39636 -925.9219 556.00574 -926.1042 556.50574 -926.46875 curveto -557.00574 -926.8333 557.37555 -927.3594 557.6151 -928.0469 curveto -closepath -575.3651 -930.6719 moveto -575.3651 -931.46875 lineto -567.94324 -931.46875 lineto -568.00574 -932.5833 568.33905 -933.4323 568.94324 -934.0156 curveto -569.5474 -934.59894 570.3859 -934.8906 571.45886 -934.8906 curveto -572.0734 -934.8906 572.6724 -934.8125 573.25574 -934.65625 curveto -573.83905 -934.5 574.4172 -934.2708 574.9901 -933.96875 curveto -574.9901 -935.5 lineto -574.4172 -935.75 573.82605 -935.9375 573.2167 -936.0625 curveto -572.6073 -936.1875 571.9849 -936.25 571.3495 -936.25 curveto -569.787 -936.25 568.5474 -935.79425 567.63074 -934.8828 curveto -566.71405 -933.9714 566.25574 -932.7344 566.25574 -931.1719 curveto -566.25574 -929.5573 566.6906 -928.2786 567.5604 -927.33594 curveto -568.43024 -926.39325 569.5995 -925.9219 571.06824 -925.9219 curveto -572.40155 -925.9219 573.45105 -926.3464 574.2167 -927.1953 curveto -574.9823 -928.04425 575.3651 -929.2031 575.3651 -930.6719 curveto -closepath -573.75574 -930.2031 moveto -573.7453 -929.3177 573.4979 -928.612 573.01355 -928.08594 curveto -572.5292 -927.5599 571.8912 -927.2969 571.0995 -927.2969 curveto -570.19324 -927.2969 569.4693 -927.5495 568.9276 -928.0547 curveto -568.3859 -928.5599 568.0734 -929.27606 567.9901 -930.2031 curveto -573.75574 -930.2031 lineto -closepath -586.13074 -930.0625 moveto -586.13074 -936.0 lineto -584.52136 -936.0 lineto -584.52136 -930.1094 lineto -584.52136 -929.1823 584.33905 -928.487 583.9745 -928.02344 curveto -583.6099 -927.5599 583.06305 -927.3281 582.33386 -927.3281 curveto -581.45886 -927.3281 580.77136 -927.60675 580.27136 -928.16406 curveto -579.77136 -928.7214 579.52136 -929.4792 579.52136 -930.4375 curveto -579.52136 -936.0 lineto -577.89636 -936.0 lineto -577.89636 -926.15625 lineto -579.52136 -926.15625 lineto -579.52136 -927.6875 lineto -579.9068 -927.09375 580.3625 -926.65106 580.88855 -926.3594 curveto -581.4146 -926.0677 582.0162 -925.9219 582.69324 -925.9219 curveto -583.8287 -925.9219 584.6854 -926.2708 585.26355 -926.96875 curveto -585.8417 -927.6667 586.13074 -928.69794 586.13074 -930.0625 curveto -closepath -590.5526 -923.3594 moveto -590.5526 -926.15625 lineto -593.88074 -926.15625 lineto -593.88074 -927.40625 lineto -590.5526 -927.40625 lineto -590.5526 -932.75 lineto -590.5526 -933.55206 590.662 -934.0677 590.88074 -934.2969 curveto -591.0995 -934.52606 591.5474 -934.6406 592.2245 -934.6406 curveto -593.88074 -934.6406 lineto -593.88074 -936.0 lineto -592.2245 -936.0 lineto -590.9745 -936.0 590.1125 -935.76825 589.63855 -935.3047 curveto -589.1646 -934.8411 588.9276 -933.98956 588.9276 -932.75 curveto -588.9276 -927.40625 lineto -587.7401 -927.40625 lineto -587.7401 -926.15625 lineto -588.9276 -926.15625 lineto -588.9276 -923.3594 lineto -590.5526 -923.3594 lineto -closepath -601.89636 -922.3281 moveto -603.52136 -922.3281 lineto -603.52136 -930.40625 lineto -608.3495 -926.15625 lineto -610.412 -926.15625 lineto -605.19324 -930.7656 lineto -610.63074 -936.0 lineto -608.52136 -936.0 lineto -603.52136 -931.1875 lineto -603.52136 -936.0 lineto -601.89636 -936.0 lineto -601.89636 -922.3281 lineto -closepath -620.3651 -930.6719 moveto -620.3651 -931.46875 lineto -612.94324 -931.46875 lineto -613.00574 -932.5833 613.33905 -933.4323 613.94324 -934.0156 curveto -614.5474 -934.59894 615.3859 -934.8906 616.45886 -934.8906 curveto -617.0734 -934.8906 617.6724 -934.8125 618.25574 -934.65625 curveto -618.83905 -934.5 619.4172 -934.2708 619.9901 -933.96875 curveto -619.9901 -935.5 lineto -619.4172 -935.75 618.82605 -935.9375 618.2167 -936.0625 curveto -617.6073 -936.1875 616.9849 -936.25 616.3495 -936.25 curveto -614.787 -936.25 613.5474 -935.79425 612.63074 -934.8828 curveto -611.71405 -933.9714 611.25574 -932.7344 611.25574 -931.1719 curveto -611.25574 -929.5573 611.6906 -928.2786 612.5604 -927.33594 curveto -613.43024 -926.39325 614.5995 -925.9219 616.06824 -925.9219 curveto -617.40155 -925.9219 618.45105 -926.3464 619.2167 -927.1953 curveto -619.9823 -928.04425 620.3651 -929.2031 620.3651 -930.6719 curveto -closepath -618.75574 -930.2031 moveto -618.7453 -929.3177 618.4979 -928.612 618.01355 -928.08594 curveto -617.5292 -927.5599 616.8912 -927.2969 616.0995 -927.2969 curveto -615.19324 -927.2969 614.4693 -927.5495 613.9276 -928.0547 curveto -613.3859 -928.5599 613.0734 -929.27606 612.9901 -930.2031 curveto -618.75574 -930.2031 lineto -closepath -627.0526 -936.9219 moveto -626.5943 -938.08856 626.149 -938.85156 625.7167 -939.21094 curveto -625.28436 -939.5703 624.7037 -939.75 623.9745 -939.75 curveto -622.6776 -939.75 lineto -622.6776 -938.3906 lineto -623.63074 -938.3906 lineto -624.0787 -938.3906 624.425 -938.28644 624.6698 -938.0781 curveto -624.9146 -937.8698 625.18805 -937.3698 625.4901 -936.5781 curveto -625.77136 -935.84375 lineto -621.787 -926.15625 lineto -623.50574 -926.15625 lineto -626.58386 -933.8594 lineto -629.662 -926.15625 lineto -631.3651 -926.15625 lineto -627.0526 -936.9219 lineto -closepath -640.2245 -926.4531 moveto -640.2245 -927.96875 lineto -639.7662 -927.73956 639.2922 -927.5651 638.8026 -927.4453 curveto -638.31305 -927.3255 637.8026 -927.2656 637.27136 -927.2656 curveto -636.4693 -927.2656 635.86774 -927.3906 635.4667 -927.6406 curveto -635.0656 -927.8906 634.8651 -928.26044 634.8651 -928.75 curveto -634.8651 -929.125 635.00836 -929.41925 635.2948 -929.6328 curveto -635.58124 -929.8464 636.1568 -930.05206 637.02136 -930.25 curveto -637.58386 -930.3594 lineto -638.7297 -930.6094 639.5448 -930.9583 640.0292 -931.40625 curveto -640.51355 -931.8542 640.75574 -932.4792 640.75574 -933.28125 curveto -640.75574 -934.19794 640.39374 -934.9219 639.6698 -935.4531 curveto -638.94586 -935.9844 637.9537 -936.25 636.69324 -936.25 curveto -636.162 -936.25 635.6099 -936.2005 635.037 -936.10156 curveto -634.46405 -936.0026 633.8599 -935.84894 633.2245 -935.6406 curveto -633.2245 -933.96875 lineto -633.8287 -934.28125 634.4198 -934.5156 634.9979 -934.6719 curveto -635.57605 -934.8281 636.15155 -934.90625 636.7245 -934.90625 curveto -637.4849 -934.90625 638.07086 -934.77606 638.4823 -934.5156 curveto -638.89374 -934.2552 639.0995 -933.88544 639.0995 -933.40625 curveto -639.0995 -932.96875 638.95105 -932.6328 638.6542 -932.39844 curveto -638.3573 -932.16406 637.70886 -931.9375 636.70886 -931.71875 curveto -636.14636 -931.59375 lineto -635.1359 -931.375 634.40936 -931.0495 633.9667 -930.6172 curveto -633.524 -930.1849 633.3026 -929.5833 633.3026 -928.8125 curveto -633.3026 -927.8958 633.63074 -927.1849 634.287 -926.6797 curveto -634.94324 -926.1745 635.87555 -925.9219 637.08386 -925.9219 curveto -637.6776 -925.9219 638.2375 -925.9661 638.76355 -926.0547 curveto -639.2896 -926.14325 639.77655 -926.27606 640.2245 -926.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -0.9764706 0.023529412 0.023529412 setrgbcolor -newpath -683.7245 -926.4531 moveto -683.7245 -927.96875 lineto -683.2662 -927.73956 682.7922 -927.5651 682.3026 -927.4453 curveto -681.81305 -927.3255 681.3026 -927.2656 680.77136 -927.2656 curveto -679.9693 -927.2656 679.36774 -927.3906 678.9667 -927.6406 curveto -678.5656 -927.8906 678.3651 -928.26044 678.3651 -928.75 curveto -678.3651 -929.125 678.50836 -929.41925 678.7948 -929.6328 curveto -679.08124 -929.8464 679.6568 -930.05206 680.52136 -930.25 curveto -681.08386 -930.3594 lineto -682.2297 -930.6094 683.0448 -930.9583 683.5292 -931.40625 curveto -684.01355 -931.8542 684.25574 -932.4792 684.25574 -933.28125 curveto -684.25574 -934.19794 683.89374 -934.9219 683.1698 -935.4531 curveto -682.44586 -935.9844 681.4537 -936.25 680.19324 -936.25 curveto -679.662 -936.25 679.1099 -936.2005 678.537 -936.10156 curveto -677.96405 -936.0026 677.3599 -935.84894 676.7245 -935.6406 curveto -676.7245 -933.96875 lineto -677.3287 -934.28125 677.9198 -934.5156 678.4979 -934.6719 curveto -679.07605 -934.8281 679.65155 -934.90625 680.2245 -934.90625 curveto -680.9849 -934.90625 681.57086 -934.77606 681.9823 -934.5156 curveto -682.39374 -934.2552 682.5995 -933.88544 682.5995 -933.40625 curveto -682.5995 -932.96875 682.45105 -932.6328 682.1542 -932.39844 curveto -681.8573 -932.16406 681.20886 -931.9375 680.20886 -931.71875 curveto -679.64636 -931.59375 lineto -678.6359 -931.375 677.90936 -931.0495 677.4667 -930.6172 curveto -677.024 -930.1849 676.8026 -929.5833 676.8026 -928.8125 curveto -676.8026 -927.8958 677.13074 -927.1849 677.787 -926.6797 curveto -678.44324 -926.1745 679.37555 -925.9219 680.58386 -925.9219 curveto -681.1776 -925.9219 681.7375 -925.9661 682.26355 -926.0547 curveto -682.7896 -926.14325 683.27655 -926.27606 683.7245 -926.4531 curveto -closepath -685.287 -932.1094 moveto -685.287 -926.15625 lineto -686.89636 -926.15625 lineto -686.89636 -932.0469 lineto -686.89636 -932.9844 687.0787 -933.6849 687.44324 -934.14844 curveto -687.8078 -934.612 688.3547 -934.84375 689.08386 -934.84375 curveto -689.95886 -934.84375 690.649 -934.5651 691.1542 -934.0078 curveto -691.65936 -933.4505 691.912 -932.6927 691.912 -931.7344 curveto -691.912 -926.15625 lineto -693.537 -926.15625 lineto -693.537 -936.0 lineto -691.912 -936.0 lineto -691.912 -934.4844 lineto -691.5162 -935.08856 691.0604 -935.5339 690.5448 -935.8203 curveto -690.0292 -936.10675 689.4276 -936.25 688.7401 -936.25 curveto -687.6047 -936.25 686.7453 -935.89844 686.162 -935.1953 curveto -685.5787 -934.4922 685.287 -933.46356 685.287 -932.1094 curveto -closepath -689.3495 -925.9219 moveto -689.3495 -925.9219 lineto -closepath -703.52136 -931.09375 moveto -703.52136 -929.8958 703.27655 -928.9583 702.787 -928.28125 curveto -702.2974 -927.6042 701.62555 -927.2656 700.77136 -927.2656 curveto -699.9172 -927.2656 699.2453 -927.6042 698.75574 -928.28125 curveto -698.2662 -928.9583 698.02136 -929.8958 698.02136 -931.09375 curveto -698.02136 -932.28125 698.2662 -933.21356 698.75574 -933.8906 curveto -699.2453 -934.5677 699.9172 -934.90625 700.77136 -934.90625 curveto -701.62555 -934.90625 702.2974 -934.5677 702.787 -933.8906 curveto -703.27655 -933.21356 703.52136 -932.28125 703.52136 -931.09375 curveto -closepath -698.02136 -927.65625 moveto -698.3547 -927.0625 698.7818 -926.625 699.3026 -926.34375 curveto -699.8234 -926.0625 700.44324 -925.9219 701.162 -925.9219 curveto -702.3599 -925.9219 703.33124 -926.3958 704.07605 -927.34375 curveto -704.82086 -928.2917 705.19324 -929.5417 705.19324 -931.09375 curveto -705.19324 -932.63544 704.82086 -933.8802 704.07605 -934.8281 curveto -703.33124 -935.77606 702.3599 -936.25 701.162 -936.25 curveto -700.44324 -936.25 699.8234 -936.1094 699.3026 -935.8281 curveto -698.7818 -935.5469 698.3547 -935.1094 698.02136 -934.5156 curveto -698.02136 -936.0 lineto -696.39636 -936.0 lineto -696.39636 -922.3281 lineto -698.02136 -922.3281 lineto -698.02136 -927.65625 lineto -closepath -713.9276 -927.65625 moveto -713.9276 -922.3281 lineto -715.5526 -922.3281 lineto -715.5526 -936.0 lineto -713.9276 -936.0 lineto -713.9276 -934.5156 lineto -713.5943 -935.1094 713.1672 -935.5469 712.64636 -935.8281 curveto -712.12555 -936.1094 711.50055 -936.25 710.77136 -936.25 curveto -709.58386 -936.25 708.61774 -935.77606 707.8729 -934.8281 curveto -707.1281 -933.8802 706.75574 -932.63544 706.75574 -931.09375 curveto -706.75574 -929.5417 707.1281 -928.2917 707.8729 -927.34375 curveto -708.61774 -926.3958 709.58386 -925.9219 710.77136 -925.9219 curveto -711.50055 -925.9219 712.12555 -926.0625 712.64636 -926.34375 curveto -713.1672 -926.625 713.5943 -927.0625 713.9276 -927.65625 curveto -closepath -708.412 -931.09375 moveto -708.412 -932.28125 708.6568 -933.21356 709.14636 -933.8906 curveto -709.6359 -934.5677 710.31305 -934.90625 711.1776 -934.90625 curveto -712.0318 -934.90625 712.7037 -934.5677 713.19324 -933.8906 curveto -713.6828 -933.21356 713.9276 -932.28125 713.9276 -931.09375 curveto -713.9276 -929.8958 713.6828 -928.9583 713.19324 -928.28125 curveto -712.7037 -927.6042 712.0318 -927.2656 711.1776 -927.2656 curveto -710.31305 -927.2656 709.6359 -927.6042 709.14636 -928.28125 curveto -708.6568 -928.9583 708.412 -929.8958 708.412 -931.09375 curveto -closepath -722.27136 -927.2969 moveto -721.39636 -927.2969 720.70886 -927.6328 720.20886 -928.3047 curveto -719.70886 -928.97656 719.45886 -929.90625 719.45886 -931.09375 curveto -719.45886 -932.2708 719.70886 -933.19794 720.20886 -933.875 curveto -720.70886 -934.55206 721.39636 -934.8906 722.27136 -934.8906 curveto -723.12555 -934.8906 723.80524 -934.5495 724.3104 -933.8672 curveto -724.8156 -933.1849 725.06824 -932.26044 725.06824 -931.09375 curveto -725.06824 -929.92706 724.8156 -929.0026 724.3104 -928.3203 curveto -723.80524 -927.638 723.12555 -927.2969 722.27136 -927.2969 curveto -closepath -722.27136 -925.9219 moveto -723.6776 -925.9219 724.7818 -926.3776 725.58386 -927.28906 curveto -726.3859 -928.2005 726.787 -929.46875 726.787 -931.09375 curveto -726.787 -932.69794 726.3859 -933.9583 725.58386 -934.875 curveto -724.7818 -935.7917 723.6776 -936.25 722.27136 -936.25 curveto -720.8547 -936.25 719.7479 -935.7917 718.95105 -934.875 curveto -718.1542 -933.9583 717.75574 -932.69794 717.75574 -931.09375 curveto -717.75574 -929.46875 718.1542 -928.2005 718.95105 -927.28906 curveto -719.7479 -926.3776 720.8547 -925.9219 722.27136 -925.9219 curveto -closepath -736.537 -926.53125 moveto -736.537 -928.0469 lineto -736.0787 -927.7969 735.6203 -927.6094 735.162 -927.4844 curveto -734.7037 -927.3594 734.2401 -927.2969 733.77136 -927.2969 curveto -732.7193 -927.2969 731.9042 -927.6276 731.32605 -928.28906 curveto -730.7479 -928.9505 730.45886 -929.88544 730.45886 -931.09375 curveto -730.45886 -932.2917 730.7479 -933.22394 731.32605 -933.8906 curveto -731.9042 -934.5573 732.7193 -934.8906 733.77136 -934.8906 curveto -734.2401 -934.8906 734.7037 -934.8255 735.162 -934.6953 curveto -735.6203 -934.5651 736.0787 -934.375 736.537 -934.125 curveto -736.537 -935.625 lineto -736.08905 -935.8333 735.6229 -935.98956 735.13855 -936.09375 curveto -734.6542 -936.19794 734.1412 -936.25 733.5995 -936.25 curveto -732.1099 -936.25 730.93024 -935.7839 730.0604 -934.85156 curveto -729.1906 -933.91925 728.75574 -932.6667 728.75574 -931.09375 curveto -728.75574 -929.4792 729.19586 -928.21356 730.07605 -927.2969 curveto -730.95624 -926.3802 732.162 -925.9219 733.69324 -925.9219 curveto -734.19324 -925.9219 734.68024 -925.9714 735.1542 -926.0703 curveto -735.6281 -926.16925 736.08905 -926.32294 736.537 -926.53125 curveto -closepath -738.287 -932.1094 moveto -738.287 -926.15625 lineto -739.89636 -926.15625 lineto -739.89636 -932.0469 lineto -739.89636 -932.9844 740.0787 -933.6849 740.44324 -934.14844 curveto -740.8078 -934.612 741.3547 -934.84375 742.08386 -934.84375 curveto -742.95886 -934.84375 743.649 -934.5651 744.1542 -934.0078 curveto -744.65936 -933.4505 744.912 -932.6927 744.912 -931.7344 curveto -744.912 -926.15625 lineto -746.537 -926.15625 lineto -746.537 -936.0 lineto -744.912 -936.0 lineto -744.912 -934.4844 lineto -744.5162 -935.08856 744.0604 -935.5339 743.5448 -935.8203 curveto -743.0292 -936.10675 742.4276 -936.25 741.7401 -936.25 curveto -740.6047 -936.25 739.7453 -935.89844 739.162 -935.1953 curveto -738.5787 -934.4922 738.287 -933.46356 738.287 -932.1094 curveto -closepath -742.3495 -925.9219 moveto -742.3495 -925.9219 lineto -closepath -757.1151 -928.0469 moveto -757.52136 -927.3177 758.00574 -926.78125 758.56824 -926.4375 curveto -759.13074 -926.09375 759.7922 -925.9219 760.5526 -925.9219 curveto -761.5734 -925.9219 762.3625 -926.28125 762.9198 -927.0 curveto -763.4771 -927.71875 763.75574 -928.73956 763.75574 -930.0625 curveto -763.75574 -936.0 lineto -762.13074 -936.0 lineto -762.13074 -930.1094 lineto -762.13074 -929.1719 761.96405 -928.47394 761.63074 -928.0156 curveto -761.2974 -927.5573 760.787 -927.3281 760.0995 -927.3281 curveto -759.2662 -927.3281 758.6073 -927.60675 758.1229 -928.16406 curveto -757.63855 -928.7214 757.39636 -929.4792 757.39636 -930.4375 curveto -757.39636 -936.0 lineto -755.75574 -936.0 lineto -755.75574 -930.1094 lineto -755.75574 -929.16144 755.58905 -928.46094 755.25574 -928.0078 curveto -754.9224 -927.5547 754.4068 -927.3281 753.70886 -927.3281 curveto -752.8859 -927.3281 752.2323 -927.60675 751.7479 -928.16406 curveto -751.26355 -928.7214 751.02136 -929.4792 751.02136 -930.4375 curveto -751.02136 -936.0 lineto -749.39636 -936.0 lineto -749.39636 -926.15625 lineto -751.02136 -926.15625 lineto -751.02136 -927.6875 lineto -751.3859 -927.0833 751.82605 -926.638 752.3417 -926.35156 curveto -752.8573 -926.0651 753.4693 -925.9219 754.1776 -925.9219 curveto -754.89636 -925.9219 755.50574 -926.1042 756.00574 -926.46875 curveto -756.50574 -926.8333 756.87555 -927.3594 757.1151 -928.0469 curveto -closepath -774.8651 -930.6719 moveto -774.8651 -931.46875 lineto -767.44324 -931.46875 lineto -767.50574 -932.5833 767.83905 -933.4323 768.44324 -934.0156 curveto -769.0474 -934.59894 769.8859 -934.8906 770.95886 -934.8906 curveto -771.5734 -934.8906 772.1724 -934.8125 772.75574 -934.65625 curveto -773.33905 -934.5 773.9172 -934.2708 774.4901 -933.96875 curveto -774.4901 -935.5 lineto -773.9172 -935.75 773.32605 -935.9375 772.7167 -936.0625 curveto -772.1073 -936.1875 771.4849 -936.25 770.8495 -936.25 curveto -769.287 -936.25 768.0474 -935.79425 767.13074 -934.8828 curveto -766.21405 -933.9714 765.75574 -932.7344 765.75574 -931.1719 curveto -765.75574 -929.5573 766.1906 -928.2786 767.0604 -927.33594 curveto -767.93024 -926.39325 769.0995 -925.9219 770.56824 -925.9219 curveto -771.90155 -925.9219 772.95105 -926.3464 773.7167 -927.1953 curveto -774.4823 -928.04425 774.8651 -929.2031 774.8651 -930.6719 curveto -closepath -773.25574 -930.2031 moveto -773.2453 -929.3177 772.9979 -928.612 772.51355 -928.08594 curveto -772.0292 -927.5599 771.3912 -927.2969 770.5995 -927.2969 curveto -769.69324 -927.2969 768.9693 -927.5495 768.4276 -928.0547 curveto -767.8859 -928.5599 767.5734 -929.27606 767.4901 -930.2031 curveto -773.25574 -930.2031 lineto -closepath -785.63074 -930.0625 moveto -785.63074 -936.0 lineto -784.02136 -936.0 lineto -784.02136 -930.1094 lineto -784.02136 -929.1823 783.83905 -928.487 783.4745 -928.02344 curveto -783.1099 -927.5599 782.56305 -927.3281 781.83386 -927.3281 curveto -780.95886 -927.3281 780.27136 -927.60675 779.77136 -928.16406 curveto -779.27136 -928.7214 779.02136 -929.4792 779.02136 -930.4375 curveto -779.02136 -936.0 lineto -777.39636 -936.0 lineto -777.39636 -926.15625 lineto -779.02136 -926.15625 lineto -779.02136 -927.6875 lineto -779.4068 -927.09375 779.8625 -926.65106 780.38855 -926.3594 curveto -780.9146 -926.0677 781.5162 -925.9219 782.19324 -925.9219 curveto -783.3287 -925.9219 784.1854 -926.2708 784.76355 -926.96875 curveto -785.3417 -927.6667 785.63074 -928.69794 785.63074 -930.0625 curveto -closepath -790.0526 -923.3594 moveto -790.0526 -926.15625 lineto -793.38074 -926.15625 lineto -793.38074 -927.40625 lineto -790.0526 -927.40625 lineto -790.0526 -932.75 lineto -790.0526 -933.55206 790.162 -934.0677 790.38074 -934.2969 curveto -790.5995 -934.52606 791.0474 -934.6406 791.7245 -934.6406 curveto -793.38074 -934.6406 lineto -793.38074 -936.0 lineto -791.7245 -936.0 lineto -790.4745 -936.0 789.6125 -935.76825 789.13855 -935.3047 curveto -788.6646 -934.8411 788.4276 -933.98956 788.4276 -932.75 curveto -788.4276 -927.40625 lineto -787.2401 -927.40625 lineto -787.2401 -926.15625 lineto -788.4276 -926.15625 lineto -788.4276 -923.3594 lineto -790.0526 -923.3594 lineto -closepath -801.39636 -922.3281 moveto -803.02136 -922.3281 lineto -803.02136 -930.40625 lineto -807.8495 -926.15625 lineto -809.912 -926.15625 lineto -804.69324 -930.7656 lineto -810.13074 -936.0 lineto -808.02136 -936.0 lineto -803.02136 -931.1875 lineto -803.02136 -936.0 lineto -801.39636 -936.0 lineto -801.39636 -922.3281 lineto -closepath -819.8651 -930.6719 moveto -819.8651 -931.46875 lineto -812.44324 -931.46875 lineto -812.50574 -932.5833 812.83905 -933.4323 813.44324 -934.0156 curveto -814.0474 -934.59894 814.8859 -934.8906 815.95886 -934.8906 curveto -816.5734 -934.8906 817.1724 -934.8125 817.75574 -934.65625 curveto -818.33905 -934.5 818.9172 -934.2708 819.4901 -933.96875 curveto -819.4901 -935.5 lineto -818.9172 -935.75 818.32605 -935.9375 817.7167 -936.0625 curveto -817.1073 -936.1875 816.4849 -936.25 815.8495 -936.25 curveto -814.287 -936.25 813.0474 -935.79425 812.13074 -934.8828 curveto -811.21405 -933.9714 810.75574 -932.7344 810.75574 -931.1719 curveto -810.75574 -929.5573 811.1906 -928.2786 812.0604 -927.33594 curveto -812.93024 -926.39325 814.0995 -925.9219 815.56824 -925.9219 curveto -816.90155 -925.9219 817.95105 -926.3464 818.7167 -927.1953 curveto -819.4823 -928.04425 819.8651 -929.2031 819.8651 -930.6719 curveto -closepath -818.25574 -930.2031 moveto -818.2453 -929.3177 817.9979 -928.612 817.51355 -928.08594 curveto -817.0292 -927.5599 816.3912 -927.2969 815.5995 -927.2969 curveto -814.69324 -927.2969 813.9693 -927.5495 813.4276 -928.0547 curveto -812.8859 -928.5599 812.5734 -929.27606 812.4901 -930.2031 curveto -818.25574 -930.2031 lineto -closepath -826.5526 -936.9219 moveto -826.0943 -938.08856 825.649 -938.85156 825.2167 -939.21094 curveto -824.78436 -939.5703 824.2037 -939.75 823.4745 -939.75 curveto -822.1776 -939.75 lineto -822.1776 -938.3906 lineto -823.13074 -938.3906 lineto -823.5787 -938.3906 823.925 -938.28644 824.1698 -938.0781 curveto -824.4146 -937.8698 824.68805 -937.3698 824.9901 -936.5781 curveto -825.27136 -935.84375 lineto -821.287 -926.15625 lineto -823.00574 -926.15625 lineto -826.08386 -933.8594 lineto -829.162 -926.15625 lineto -830.8651 -926.15625 lineto -826.5526 -936.9219 lineto -closepath -839.7245 -926.4531 moveto -839.7245 -927.96875 lineto -839.2662 -927.73956 838.7922 -927.5651 838.3026 -927.4453 curveto -837.81305 -927.3255 837.3026 -927.2656 836.77136 -927.2656 curveto -835.9693 -927.2656 835.36774 -927.3906 834.9667 -927.6406 curveto -834.5656 -927.8906 834.3651 -928.26044 834.3651 -928.75 curveto -834.3651 -929.125 834.50836 -929.41925 834.7948 -929.6328 curveto -835.08124 -929.8464 835.6568 -930.05206 836.52136 -930.25 curveto -837.08386 -930.3594 lineto -838.2297 -930.6094 839.0448 -930.9583 839.5292 -931.40625 curveto -840.01355 -931.8542 840.25574 -932.4792 840.25574 -933.28125 curveto -840.25574 -934.19794 839.89374 -934.9219 839.1698 -935.4531 curveto -838.44586 -935.9844 837.4537 -936.25 836.19324 -936.25 curveto -835.662 -936.25 835.1099 -936.2005 834.537 -936.10156 curveto -833.96405 -936.0026 833.3599 -935.84894 832.7245 -935.6406 curveto -832.7245 -933.96875 lineto -833.3287 -934.28125 833.9198 -934.5156 834.4979 -934.6719 curveto -835.07605 -934.8281 835.65155 -934.90625 836.2245 -934.90625 curveto -836.9849 -934.90625 837.57086 -934.77606 837.9823 -934.5156 curveto -838.39374 -934.2552 838.5995 -933.88544 838.5995 -933.40625 curveto -838.5995 -932.96875 838.45105 -932.6328 838.1542 -932.39844 curveto -837.8573 -932.16406 837.20886 -931.9375 836.20886 -931.71875 curveto -835.64636 -931.59375 lineto -834.6359 -931.375 833.90936 -931.0495 833.4667 -930.6172 curveto -833.024 -930.1849 832.8026 -929.5833 832.8026 -928.8125 curveto -832.8026 -927.8958 833.13074 -927.1849 833.787 -926.6797 curveto -834.44324 -926.1745 835.37555 -925.9219 836.58386 -925.9219 curveto -837.1776 -925.9219 837.7375 -925.9661 838.26355 -926.0547 curveto -838.7896 -926.14325 839.27655 -926.27606 839.7245 -926.4531 curveto -closepath -fill -newpath -0.0 0.0 0.0 setrgbcolor -grestore -showpage - -%%EOF \ No newline at end of file diff --git a/Content/Figures/surrogate_function.png b/Content/Figures/surrogate_function.png deleted file mode 100644 index a4fe26891626a3b275f2e4da740e8a41009e4f29..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 27989 zcmdqJWmuKn*Dt#0MiHbzx>I1$(xs#{0uqZ}bc2+jfp z1^%Gh$f(JHK(%prH|7{X8pZv!k}Rldn0g0D&{-H`iYCg9|*r}(2l+QZ|ux;7}nx>Z1)fk=1JyX<$);NfylaeC@j z$IJ+wbYl0e!>@(7lYg4tAOE?k*4z)f_;S=c?s91iFB(Fwot}-}P2be#Z}N4j_y369 zj%XzkkS|MT(6wG1{Ouiia=M?>@bjjisWPHfz&c-g84&V2eNne;(3=2e3$zIkip47> zc~ArfjWUqHaZxsO2mU^MD}xmK9A1Dx_Sh=&GCDqU2knvf1tJ-n;UJmEGGkd?9v40b z4JKUC#+}#E4rJ!R!CSrIWvEuVJM`MaN z5hNQ-d%7#rhKmXa`S&MS_s7ru<_mVzTs#O`r)`?q1HEaORjufC6PwdH97V{Eey{BL4scK&S5rQO9wo8M}viN#2 zgKLcyz#(kgmZ->J&nG4d-~_ik3JBV?iq})5OG3CY7y=+OuW}%8Wc}K?03|pgSyN&3 z8xmR88i0aS#y7Z!^B_J#mOuhPdqNgkHF_%3;(?Xa!wNJA+NPo)3<}Zc=F%i~S)<`jBLPC^dLUW=P)HfVxrdDT2rT;{20?LQe4i zo~4NPKdA5ks{bqNf${%jas3DD|6~dNkF47NA@P4uk>L?1y`SI0UXkJ@?cH?h3^L_` z_Gi4<8P+Gmf1;HMo^hGkK+Sh+nS~rp&vH_XST*C=0LK&5!Vh0DaU? zbUW)EdYUGImEg77AvcOoYS{vxB41O_%5W;)@+Q5C&ZCcrA9_$NO^PBJ7NJWg^HzzW z6e9O36uR;P2N?qbbWjOmq!sPp>o%-fb!HK-ZgX;bzd~oVj*6f_0Ss_^yh^-9X8d+i zxq|el7ZZ4I|xi2kdBNev!)xH!?bAX7Tk?Ey^W0?wZiJf@258ENnZ z{fGND2@5S)cNp|H8lZ>FbY1fd{jZ4tz%e4d^5qQZ|H`3GKxBWD47qO;d>OLv!yD`F zy2|J|G+qpI>7Ui4Q$NfJ9tNr!(HHhF;W zClJY|36M0{8?Yl$2W6PQ!EZF3K^#l(91K*u<8G?X$%=A zM?)MH_|K>NRCEh{xnOU7RM<+~A0$jiH6E!a^O@K6yD0DWdY5lD-UYUOZ+BAFJw9@f zm?blo)r6-BdfH@9h0C^DBI@fe^DX0ApN@*RM7cIzFME5)3J+#teAzr(aY!2_a$PP(>=)Nw<+i$N+v4gx zp9Ev{1WDfT)+fK?HR$(sb7Su9j$2aO;$V%{_%bon*KJNV(V31IPWqUaDO@akM}bJE zXubQR#v=dK;SL44khzqGh_s+Y-M@Dbm@)ep5!+GdQM^fg)Gvh!o=Pf3=n) zm45uQkl9oIkr5b@*2we67y1g^K8b=dGXIE^9zH*Dl5?5N9yBgX5|h&WNsXQGT5^CV zpw&hj;aW)eSk#$UdNbnh=7KRnt&7Xk0%tN?{q$?Rw>hL8|jqOLYoKG!#4L#DM+c{%Q zaOF3^s{-F?guV|`(Xy^Vf45UWSfV%)+&XcVb6J4sZ&(gS-sayDSGrENu=k|1Jkw{gz-Z|fYic26YK=r#?&H@1i0au zu3tHMhWi_zBI{pc&F0&Qtuzk};j~hO;U3MiYh(rz&-Ak7k6d>7FGoO)O3{n}3Td!# zxaYHZ?4zA}R-RuHjW13HTI=WIVUCjCiW8^PVNfU4nV=$mRCg&?csxw?&<&er}(eL-O;TC`x9P>Os_H z)CD96BUH9eKe(}TZm$;m4$JD%Qj4R>dE9QbOC%{<``diy@a!A~G}lwpfAXp>6OvzD z(SMd{-2fd&^Cd|4qYCL}^jg*nhe~W;jTEv0!=`p2AvvwuM4s+MpH)%Cj`caEKr;Iz zf}H{RuJ2FW9-U>eX{)2u`NVVH^VDcAelA$V1<`X*VvkHTwIYIWqQOxV&@A|ieCr5Xptn1& z05Y)_H3ie+fYypPwoCeV-f+du6=!=na8u#h1CUwjG@*NFr2NzzQ)&Y^hpqI+zbL`{ zSK(#gx2HRQM&PdKkUBrt_@X;yBvaCgn4F3x;;1teS>5S-Yi&xT~6MYH;Deuoy z#q90_g>*0nvj7h~Rib<1>sJf4J&9L*oVts#`Tg4Wb5e9v=+_~&9RtuCS9J14S{~tC ziskZYF;Y=jRHj*SCk7Teav>JrCQ_0fQ3JToCyBKppW8l0Mygt~Hfw@?oZRKa?oPne zAvzuI?*Mcz2y@B=yM+b{k}DkGBT%9nkG$qd9Rh~#fjq#z??h&sK!<#@4^64R-BJ@l zZQDIEH4y(iKpjjQKjdb6J@Uo{ecbQ)VER<-d@l>I_!Frk7LXDf8X%<(L4z6U0quA} z5&S}q!rIGXQ>iCtDVVW_?DI=WaNV3M6_RQHw7wMRFemwIQq{{u5tT~5b!xmmm`V;U zzCo;>+%)Y1qh~oYhu8(_Q*BN%U}L_bW8Z&Nx3INjG7QB86Hp-T?;G#i0+n)iW-DSe zu&k1_V+FOM(8O)KO75-f6JtZNx&9^bQ|jEEt-$j&i_3iLlJZMnjGJOe)(n!5_y9rs zhVd_rmlB=n4!J_cu-v=Nn|^Ye=FuMvKFm}Nr+j=6Duk$du|S=hQtni(A(3EKPyVm3 z1h-?CqTI-u-DMs+_!{7!260r*gW0g=UT=IvGmYcD??!B=m^fIF-iZh+eu%*CdSuTF zeHvMtN4=L!kBexg2S}#=lAQWw`t3eKF2n=Y*ejW(&`{}Z8H7Wflm~)L8yIW4V+n>{ z8%S>VM58t3b0-UlqdM%*{`7TtM+0%^oVz=Tq6rc5f}U3z;sP`G*m;irK6XX5r5qX> zt^*UxlNXDz0IaE!SpW_E%eIbV@1~dh`Ho>VW6jrC7$v#Op)B;%r~5XezXXVEG28_d za}97akanbj+nY(_4YOEP{<M4erM?u#{IERL21k9=rMB_y9-dkr2_>*{ca@lkccLAfj6H1y8T~DarU!tbZR;U%@ zLFLa-w&~!QDWfX5ESl@kRUMD)@N}9m#RKjTSmQN&0>9|Q0K89)J+g*-0xTCj;flqQscegu(>86Kb zMD~-ueTBUkZiMQ{^8hQ_iZ;}l$PnnqhnjOozYzo1r2?Sj5vb!elS8V_ug+@!^s@Aw z#D}}d*~fZMeiGg4_yGM_J2KQyjWQBD1WbP3y)Ig zMdSl!tH|r?TXwsoTNxn%jOaKg2|JZw*nw1aKhZyd7Qo~>#u002))~8Fz4^F^6`Wnq z)XCD=D&XLTev>l`3_Y`5JB0Yk-^LFsoT%vPz`wF$FbG6{5fAaMAG11%si4p<6GR=s|Kplc?Ui1`e7cAwHTzSW)abV11}HtlgbZ&Y|usoG|2D*;Cq%pcX37U z_JDrh9-R9&c!Qw|qgC&Xn?$NzoUSSI?n@wVuq^)gZuY_G;Z$aSiQB}%k$y|2?*gsk zt?vuJC9*ILD4dZZZjNJA2w&)C_?~Xrc-jE5C(EpjHFIpRbI-?etlw7eyq3G~ULlBl zbEQ~x9kjD&=59VT&nPjUkh|<~P0QOnLAY81tELj)%aJ{oheqwHa&}}!7{Gx{qvIy_;F%h~$)wUUq2}pIqB>Y7 z!V6%+MlPUp<{E}Gy0lm(l_e)rl>f*nh2(RG#QQ}@+WUIhWQ`3+qrDsXT=uK4z-N_+ z>XF=K_8(tlzBJIGKQOu=ER*;+Mg9tB$33U=o1EL(@D%|YO~4gyEyOzHG`fMeb*Q14^ouhpO8UTi+LhU;)XI0YB0=p>w!K;Az3YCL={Xax8vq{6w#SB~2 zdt{pWX(BbPAaVJ6>tJAte#Uk0ixJ!D($jqor-2WZdBw1)FZ0%bt^M>+irk6@Mrzvx zHlc6VVbCXuYRdUxxGi=?e^>UyY<-P2z@CLTYA6l7ae2Ygy1~-J722_qWNqmgt^BaM zmvc>FkQ}l{_7cv9?1B~@7>M-x#J2n_HbXuAP1_jxMr(I2ha|0YOh@q!$m;FIng{&` z-&3yr@RT63N0MmeJ$dRvlX0s&T(! z7WqWlKQF;r@)u9)bO;nv7CSz#S7o8#0Ss-7E4#BIx0||_QyvsCu2rA;vy$r=;V)^d z?aEM__t>T=Df*8thbY zvg(CyP1bQbhH>Bt{Rp5=7;7y?{rsE&`+f7~Q?R1iCi_}lKs(;jJVj0IjZG6{4LOpe zvY93JYN)*XCE`=G7s>*py(ZYdP)FZm~erjviN0M%gu z-!QG8&R%>!s;9-Ld6OSX>T-4{w;;&>FP#`FMI5=qj~)P6iPu1OHNx}l=4zHB8P6`C zms!k%;6ycu74x*)GbSZ*dpt*KQ6w-uy!uwDApKQi<(jb~P<^PNCqBAUfu_Y%NZJ}lv?2)19R zBXE8G%#O{R5ze8^dF&qeo$hB4(@&|qPx#;I<4ynB6}&r%XLR9U9DS?^wq6$t&_N}b zddFvil+QlN6({1Dy^a&WRzgD>X93o`p&t)Gv~3=jzm4ahK_JI6NwzY2NKD2ZvgpI| zgP~RGTGt~$?Wo_FTOg^a5jamW#)N=bEeV>KIVXf2{y@R~iC!s}BuFd;I!G0!dP}xl zusZDyua`K%ElmuUT?9?W*W1pIIMcx$k|r%E+|b=z)03?G6k#oe_#7=g`C;}_zhg!+ zXd3-oSIj6mzxw|2nK=~^YiEG0 z7pe`g3~~H&HW67Oi+MA#ZPHf9U0bcOAf1(BpP>q#3?RZdyB2LH`tg|~+Ma|YRf7Jp zu27+=KNSyJ( zaXB$38+g%Q+EBlK1PQX>AVvdDqK=TdG1ml7CJf566Yl3e&A&@6J<>p9Kc=I?@-$fU zLT6Ki@BTD7Y-lLT+utNxNOKuCNvGLi+Wn;#d6#i4ONA`ad5`Rjknb(hSd(g{L5UjM z3|g)DgGe0$0~;j8W@tb1Ed@-Jz6DCLQEl9>%WA-eIFTiV;UNXoz$TwJ;MB!fP?znA zl&e=$#i(AE!pj8zuTH<1%uC1N8{vGSb4__tVwM@qRC>4bUHjE{G$pryhjK0IFLOj% z_g$Cb!1_GY!?+WJX&*@u&CeU|_r1_{Vj43cjYWfJY^@)sa9NShJV=M!W~iwl?pF5q z$OG&Waz}GSDHgI`h5f0{*D|f_ome|Gy1Axn_xPcd(p#Hi#`qSeg*w(D%#ShDG_;bf z{y!r7DGwV^;%l?k4CvtHuc=VfmFP%P+uVJH|CnWoGh{ONu{ctIsw_jGRVoL7A3}b} z+C*CX(2gg>wE>3uFCs9M&K_rA9R_}NASF%{V%2Rczn<}JBKN~Yxtl;a&F@vFJTU0^ z*tW&Ace7>ku5Nb7G;1!%OAPfDYz%dVDVv-6 zyJ)pnfi(*`Wyg?4dvWJQUQ@yhd#n}6Cv98#kB13h@f3xDQw*u*P+#0qlK*#6B`{XY z?cU-J?k5^i^U~eKKVQRbo)%NuetLGET^0(hdbRPO;YPP@NLfMG(KUipU9$g#8W|x` zW|hR>-EYqM-bssj+3NerRCAfgksTUnA!GMBz=6?Y8$tabJew)UytN3?{Vay0ouHc$Cb>_>H8S-cM{ag{^T?HJjRD@His(*M0Gaygw-K zr=-V@JpU!!86GKh-7^O=TRX9E2eaF5%>kYnATscXQKUASsC=Y}*Yg%EYlWy1|F9eP zNv+H+dbhdH(#WFnUCHYom%87B?8RQ??2nYxZ_gX20AA}_ABY`8^(S1&C;#s+~^*$##5ASN_6XZk;uYO5@nQdA=h%b15v!LYm&qG944j zaK@VVVP0?4ZAex9#UUCen<#t?f}O} za&FB~sKmtdp8>^7_jH{5IRt-}Jj-(;FFkd6Qrqyk4v{_?+thE}a({VlY*HC(qR6>( z{|H>{EyeKVM$^P4tIB4?B=hURo`{e?l3j{BUh2nkT`_;*mJHfJ@faHPF&6*PW0B}O zt!CgR_VEK$Oy{od2a$nN4C%HE*p%~XKvCBKG5EfBa=}m4$ULLbzMIH@<5c?5O@Mae zR9C4rju&4E%|)#|0}D}i8J$jSd}Glxw0J~oy=^mIExbR-O9YiOa_qg{i!)-@A05sU z5Cm;5pN8igCo3buSh!22K;+~XQ7+E`ejiIQB-1ci>)6P!v&1Yp-`yE9yl^WG)UVDX zv>lU_AAZ9rBXn@HdS;hozjfrL?(mXZYI(RwPhd@D7Cmwsk~z8f`tD1jSB6cQ+UC1X z&#(tu+?R=z1D^SCp;XI&iThb%+=#BL_Rj>^%b%@M=Zy`sq9N=gj^y#)GzPWh#yVzh zU3M~uL&eCOMS!sz`GWJCb3DxX09(TvL6~p5)sC=nwTPO0N2ykrl{c+;Xz(;rU4>fL zL|}^L5&HXhHTb{gMvb9*z7@Ikn*AF_o<3$h4pcixgHE<5LXz-Uu1)-0MQ1TGk&(^f zDfbKB=z34{F#TjD-muxqY_mi2XaT4(0dVx?m zmMFlgc^^}sB?&9<8E$-~0~6Q>c0Z!WP*XH+<+t7uA;x|564b< z^84m3?0tQzd<>49E3wy1lhnR8l*TBg?KWes=uv0D_(}<>i>1a9s`4%xYig#SIP!A+Y};sfee8UMG84dNwQwaToH~*a2!FZY)BG0AW}2mr$YX_5t(? z0G+3Uf83;xbyh2Wr&0WzSr!at5!(|%rHUAPKLya2ETz*Xj2PkL3)bkrhuQ%*s$F27xE~D4o-O>38*>6hH`ey7;-4 zaJ$G5wy2ggY(Mo9UP2sbd*8f<4P{iso1}v`Okm`Ah+vW#1vRNSl4v;Ka; z3%!vvAHy$xsC~eNU_avpUwP+O;S8ZlEV-Uc_lse0tdq@LZ0Dv$y;)(kUv|k3P9)=W zKzg)yBR9b8h7Jb$@;M#cN)>OTXDnlQ$9yPaQ4TCL7vv<0N)s8v#2A5b3hO4#z$n z=gmfSM}Q*gyVIP1>dw)T#%LQ-fUVt@f);~pmGpxmH;^b4vYbiDXa)-?WPi(KVr~00 zDjp`o-W@y8NSm)RuJT@RF|e3;;X~RVsw1)>yR(6l5=frS+M3Bkv(go9Z+GsE%{Yn#^m2~%98$9v4I@9}0{fYw^8SJbC`o7M_ zE_|>*hNTH8iVn3==Hz!&Gp80+73z!e?*X3p#28G@ot6)^HQGZ603nB5T(`~kMYCBl zD5JF0<==ZMzo-eEaIz5fuIRvsQkM*yhB;uK5yM7mpl&Za=wG^;VO5f!b*OFx@x&#g zZ-4BzH-DT@q}|Vw@!9#u+Mv#TIk6rSH4=q{uwbAp#qW1M~_nJelgu8 znnoQ_NijJh0bKY&O_R|7#MlX_n$)Z4JzV?+Z>mcLF9~fdTjq8Uh!A*!Z*0n?Ldn(m z>*mZi@+&zKqC&<%~TXV!{4=`#e=w`Ojfd2OdbOw)29eq zMN~{R*e$FzrA~lYAL}1Vm%)OZT zE&>R$(T;PdltBD*4DlDu))5`RYzf_d4iS)Cml6i#)>}Qs^&d1ydlq0riAbkC&T&xc zCE6v7TMkd%8=!4uuwl-`I@BOr1rH(ZNM)oV~q$=;gtD3z#@LMXY3PuIOzR z^~hysFg@Jf$7m?SJHcLS77x!g zsRc~qUUiPb|6~;?IFo)p7oWf!X2Ey}h)R}=kNu``kb@WwK1Lt*vg}SBS&B(2ywD|b zJY~Uk-}0z>#3zoYMSzo(q1)Z%Fy(zf`x8S}h`_VNwv7Cyyo<+JBaSS9if-rMR7{?J94;(LZ9zW>{F^lH2}M=<`$SX1w>zSq%f|C(+&l!7Hq2zbgz@YcwNny zZ{j7>n9AMPT?q$tiyxZQ>?m?Wf7g@WtU*o8sx8}#>uAmU?8Qj}g&->O55u8;?0nW= zI3aN@9bij02JEt$A>T9I&TIFg{9{Q{hPaAfxgvvhSBVwzg`UdX^?n^U(&JFRHlMa4``chMkdN6rq_EH%1 zygrN4zED5%wN=frUru2;Ry{uwf2SzW#_vl}aTb-9TZj04v-bq zGMr5$;1-Qgy%o2KvC528y;JjO*SqhX`dXpONJLWK@JY?XtUh)U*1N%x5P^8lZ$8T zaA-<4S>>O<>5o&nb@_&Fr&CR=dpVIA*kG6f$zQUaL8y545l(TW&!Hsgi%xYruu~t} zII4qh&B0I0p5A+`yx&N^5{;f*d}aEfB-fuRYbz0~Nvw4m0!7`BqEhPQRZJ@DlR8Qv z2v``{Ypxcqfz(w$m)t+l)qR0Ir#sb@=WAKlX0(y(6l`3$tPgkBH*92un=h7xi>wOt z2q&oAR=}OCWg7%XCbe~j_avSH3&vpk*&ut4bp05`vdHveXfl4OY28(#5rThsUVZ4v z>*_Ly+z{*&Y_|j3$fWvn>TUoj(XWhqhfoB?G|VqzEyG&u`81x%AaI=J5y$cGJ*=i* zsK}D+zx_nePw_Fn`Md@QDz)k2oEl4UI!kH)+P0t68YVuY3jf2=f%y866w0+_aHE^4t#Q^r#RI0tEy z6Zo+&Lfk9|_RGm^Uh1DKg7&5iVwpyrr^5XHa06#+5-xAwL$@by-A}g14!}l&mN~I~ zEQNo*Y@^%h9^V?Y6TFuEtuummN|GRn)Qr!i^)9;*XGn!k{%G5EwTHv{t<8Kgs-Y02 z=j+L0QFE0vS^hS&gh)-1>k&`yHAsxLN#YtSkC*yImfMmu>62j%;Ikr#%D}_sReg(e__!IhkfyV5Z6Quo*hvWXxGr0{!;;YEB_B(M3FcS$}Ka@*6EH?auuKfsDMD-T#Y0K)(2Apa@bS zF}Ahb22FEA&*Z1nsUu7qwIkclaN6<(yW>nbOn`zlw-j++dq-UXpha#jJ%BVL%^wpL z8N=lgBgv>n9Z&^PiqGwzQUhf&6k`P=cXY4nS={E^pbT#4#t(?J%EEeTHew@n{ho;f zBd#^6iL+$BjPNi>{*wu^b@IZ8bDHS}$O)oPg(mjFjl@{=fyCI8KZfo_)BJlTcW zAw=XG86!rjr(yeL24Oa59++=Z2^u&TAFN_jQ=9qk_ozssa7JqQn z%Z!ZdO^cBq5>1dg#&XdCafDXn&LhD*O3w34@XjF=zAk&?E3O!7KOLz%p_{!GI@OdA z4H?;}+3Qt|(}=dH`_OCAGYrO&#Bk~Y>gi>z!9%4Fo#}9Ta7GtE&K~`_ z+@*p{J4h#|&bxSv zQyXsI$(8mJthDRDpJdPt9YLTwZBWs7>??Xx z2WN^r|0-@+)ryGrFTX4NBVK|zh{jBn^$n)W>!4l6&T?*F_GhIikaj>Pe{s)uRGyS%PLrtE+De=l98O=|7_WqUGn@ttE8=v3G07BW25ZU4kC*1>y ze8H)yw>+Fe+P*R#tMPJG)BUPO4u;LIx<%T{IPM#bKGcv9S*rLiV^}6fhfPcMW+_aa zzXVS^8N|rDt4fZaL5qV-_??pU$O7H69la?%yR!0*(rlmb=ld+W zvGyr5SsQdey^;DAKQ#PKu$90FQ5!g5B=o2K4;4S(6gQ|z0mH6vzdX5B zeQMg|wEx$0cczFo`W}=)+?c6&jw5;ubQApWzRd|G(5_|_gBqoujA(x z0TXF9-y!8$e-Te`$q29f&Sa!Y7)wfj zBmRveHP|l(cQIJpJr;T%&L)<*ohp3!tB9j?DSvmmm*?q6WU#nfWs|rakMEF<|0H6} zk=g_3q@UezbhIdeuYu2y6aCNN9B=YzoZmg)At$YKk)8htx=4{SQ_b%sG~mWC3)4rK-1_{N*z(E%Gl3-HZNJn%$ZIzq%>gIzBJ-RhFp=z!cN};H{=Hy93|Yv|`kd=IQzsHO@C^ ztp<#iR~*Hq4m;afjwmb)$LN`WJL@P{kA=~IMXHAOOh)J=vZfnA}&;Eb$Xc#WgAuwOSj_! zE{S}OgVJRUZdwszA60))#(L2D7gG#nMhtVP&?0a}Fe9TndwYsYGU8`55hMvGdrx$B z(FV1}kjsu-OHP|Z+`|BD-<*v-ok&oAcYunBMAvS1IImKX#lhb*W)U3A-d{f)k_0wq zNPIDqS>q!@Fe!dakSc#R4sL^@I`>+?PK!uprOU6s?c^98`p(BAy;sW&5nz8Ufa8n$ zLyPjGCr?z^MmL5n3Q`r9j6pNI(QwMQ~0JrQ|NNS>y$7I0-qc5t~YO<$BD)SuRD z1}SX@eSj7fl5pu|caE`Dmcx-#B`;EQGLSUu(pIoVo=%}Ss}qDd0qS?(DmL}*h>YM!jvxwwJZ z7Y_CHRe5|WIFXTTL$uSPb(B+EdI%K*k`G*BchBE`XC~`7v>{{Fi?cbAXn$(< zbPxLbGrX+(SS$n15F}P$I=sI585_#=1gONU<0r<*K$=!l4DR2)t^ImY<68 z>`?X8e15#;#7IT4F~Af0X-K^U!uug|!E4t?*7MmoR?7DC+V@&z&{4mewh^2ZeQl%AXdv$Qel=b*kEwo5 z;^1lhD<%zYapgtp^|%4fXFIVoOJP`pSq<0-oO-mOa{Eud?cEeoV%p#_A0&G1zHKz{ zKJpJCLaX-EU6M`V&FyEt%gfV*0@1VmCyP}|FToy~wbhGx__oJNgp1;Es8wL4iAceRaI<;7DTQ4^4a@(F==JO zd@DcqSJI1>8)_N9L0B7D@e}6L&%MJFJrsbqBk$_$p&#Fplm)%&@`3(gVPLMe*_W1C z-Z|n+;HX=w#bL9fd)$RC1Kgn%*X4xBm3%7Vt5mIcYbf5eP3%3ICtyP9`6j70HEUO9 zaq77*(e>Mm=fkF8|AcTvadoUb<|ltoi*nk0!ir>sTkV#)`U_Py+~>J{&7VAP*SV~9 zUAMn!48N;-UBSd8E{Dv8p2ki!=>ICTt9gG#H!Q(V6->R25F-xMn%gF3-RKq3cFe%n zJ3rMw21vtG$1O=$s_ zZxt|zdoICO!_s?pU-XPKRp8V^-F#CxqN}O*J7vM>i1Y`yt-NaJ$|ScKCX0U{@D!rdtT}mIoy@21?vPPYaiXNdOzw{DM-u6 z@RPg%&^+-SG&*@-if{cCI=7wk^7RO;DqHpF&>1`5R$6liT4u2_MRQZ9j(!6!rQz;Vf8bDSgg9)k-x zHPTTzvaA<}%fUoQm3kchiZp1ni*t`-b3A8tqC$){s%##ypnP;wkJEGq>piVJjTpBE zHXM>n`5ZA9sHI4It?eh1(HdB5PW~-mgqxXlsvQDb$fa7<1e4jp8p+^RU=9FwdOv1T zx)4i)XQYuRFuPTvLK*PM>UuC0q$-`ZNJ(AqffUoaI}+t#(?L@F7V}*|==srj=b*@o z6--0XVkLH#N=X!6UV_2cS~RE54<+7Wbyv5f@^*Mu3&B(_^!*`?n6K$xzTuEVa~f@G zM(q!Al0X4UyCqkE+hq^Q#7c&jZv?AQgn^eA7&>xEMurZL3%MzJf~k5pakncBV64Gx zj=xSZ7o@@Z(o%J`5+NqUH6aS)6fSFTCfcoQ-b3*@UermTP!wh*&Cm`;Ob1gf1Lsho zy57vaih0zw1H>hD^Y1Y%3BDYqs`VN8e&+~<;sa_)0%|zq0`GLHcD(#NXcBbEveS1S zd6@nb+^Nv3L`Slna*lm^kWHh5<^-Jajl5DwpTJ9LQ5SXg_y0_?yElDeyc7HS;iM9C zv9cB`jPd0g9KTLj3R+8cYE+`szz9DxiPbfOGbG=-26xZ5YFxsGp3}koDT3b?YwjHV zabYDUrOOG{k>Qz!zbQvRyKdE1eflR($R0xO9J1_~>^+kJfx<*1KrB%YSvj2PFG*PfWLHZ6Mz7UX|Aa2yLw>m8KPe|Vc! z&{0>JPqY0qa0F9pE~>`f&tT-0E^trpyXd|cVr*@KO*mvu7E)_zL)EihS^H3NoZqW< z(00Zy+C{P8zE!K!3&6+wgUuH@6aSu9zY{@vqGv^NBxu0KqVz@!P%^%8M2fh zGcD0kNsU}#bpnuC3H5e1;5~w1di&aIjuQU0$!WKCB;bF4y@36AP(3)wuLULiK_3un1KPnq54#lI?4By;XYKI zk@?BPjZ))DxrW?$u%J`nKw2E_!I2^*G}~DYUWEUC+7|znfi-kOnfmV+pvyTr5b1&Z z1PSX~&HI1~9W8Xt&B~V6WO#{|t8^gUDj7oaP(DfM!I(=5*ttChA#(9U6?ng@SAWusm^XSj_kfaSpf$?$G`B|5evl21M1o z?Nfq?u#ciNEGnUNF156zbc2*ivvfBIiXgCnlyrCQf^><}CB3vR-LZ8256|=b-uL%@ z`0tlztsjwFT^8Aa+}@`-{WW+sYn6(ei=%+}6x!@Wu zQ2NH}oTC&Cje|9mti1Va#alAEH{df&Knt%Me>RDUk9rU9{fG&~t26f@rYp6IYtb3| zvsIUcLb9cIj)q;eX1Mx|Z5fOB>U+Y@d(*ECKH;)cj1ZgQ+AC?nomOyb90a5w2y1y4 z{s?y6$Rzt75`=P5LR|4dB7@HK^K6hJak{M`|fhr4)TfGZD zeX?a;(;ZWSt4hbo#f;qg9z_~hc0Uw&v={PgY)Z8s5{9qgTsdV1;GzPl-$nXz;ODQH z&Lh-kLJxR(?UFX)3a?daUS2Cc+!{}|d1hnpYWuFNIGdZD31A0#_LSOrgPz*)9UDOd z%^uz$u(V2{bB8WZJUnvCpC+z(z|T^Aw^^GVrB)kCk%WVdz!vD-__aj<#STE}NhXsi zBxs9R(QPbIPM(iVxV@-$_9=lNdQ`iCmm|>WoEds6r>1M{)fX@Cdc$DbBU_#?epp;k zv0c4W90}_s4gLctw`F@Kad&l*D*(0h(_VM&r0_@ul)cpW)S(A()qBVbQZ&zCaxR+& za8S!0P_|Hfz_eJL0J`>8nFy(U#M+D*LKU1B35%8Dcz(=|8tZrv0n2^6ur~P>Iaw*@R1nBB7}i!+MYGoIqqO{EcV-L! ze&b=#KT+7KrW&Y9`6W%&JR(%!>vy(4w+WTlQmke-@6g>ALyrU#$Q+oMjlK3(2pBO~ zK-d4g42&;qfM$gw;dUTK_mkb;r2#|epSVZ`d+fcAsD2Wc-A*hn5R4$%DA|WFFw#_L zm}U+StErO4$`&67tL?!Si83Tfn-I(N&5-zARV*w{7y(r}z>72`hDCnX{290HVI{4V zCl1!>n*wwQGgcsZ0xmHiCJrlVBgJYXnhE-N8~F`4?KT)XAzw`cq^6r9as8_uh#>f% z=griqn;<}o2rvt+-)Y1#Wd&rSKlhAU;8aTetFxMBO=lDriz0JbqT~N$eyfqwpn~Xc z9SOu(KoD#|!Ux61^0g8g<_4}%;L2`7%mxp$)R9#6h)&R0BxC~&F`a4}p!C3=dQmfg zsWTvPeID+UNMHzHky#Chl_J)K$%t=nfxLpuaZ$73$G&PYQwxm}i@x+JuYb8`eto`c zMDHjD5DQrSG~dG`i}X;2=ZvySLAn5i|AbfR^uy^>-c@VncaZAw09#>ie)qWDMu45Z z0}*nz-lf+WfXhja$2YI(TSa$}7jqKItM98)@%#3aK0W0I0I%K@6fHz3nw)K*=6Y<_ zLV^(ypP`m)qZPWM1mSeAe5|Hj6V2b$qY8uB+%snYVA1~+kLsccGE5JEQ6GeV z(`}QI&n_+^1X^pvJu_G;mCgfu<$F|e^7(-zL?CxtC{ghB=O?0fWAw>EoFo7S7U(^u z+*=LO@90ygffT<9*+SxAt46jD04Qs;N;0!2&gVe@)dCsP5A7s1}}zjNwOogf_~Tbr4Ub$4L;z|3V^+RkTW zmdR!GIv9G+yq21IKfTRY!CdnT@!SO9otWTCvxYl339|;}uLE>9u~D~0D<3vZzLb}v zMbtCWk_G}~K#VvXr!i38d)?;p{YmypvQo<-;UVa!!D%vGlyn)l;D ze~68Bde6<{_bxGc*CM#Yw7|e^E2W@Q8a0=PC|nt3J46HURQe0P!9!nDwYz36;X7Q_ z>|QveaCEXi!&FQ=AH=Eq9ydL;UuyA{s^MgoyN&Pi_!e^-Q|^}G&_$Z0zik!H%a!zT zw@-?d2|mR^IW?94Kls$fMg)LCcggkXKn=4h))vyHX3+JGut%W@Ee%;^F^_mR^fU&C z{M_%cHIQIFLW4>sNe(_-txgw*k5Vd;3Rvj>kZQ_@fPjZ8W+xmYWp&=$pF+0k;c>+L z{2#3U>ShBLCuAA(o-dd!?zrxR8c~)dsn_HbRZpz*!~4zH>!&9QIZ-7~xY1@g_@kFO*hpCHyZWm^ z9mPr9sVL?}&J@GSD@o!Sa>jRg-PWDU5n{E8Yx;dIyoo~Gija&~<5wId13Uo&*Z`81 zWK#(x#FgZ0$ME|%2>499nJ5os+8h|$cb6=FL%zhX&oj^$5V%JCzLDndWb#Ncmy=Ad zrXF?6tX(AhQA(jMQYZFI#4jLBXmumVM}4=rZ zNImNJ)8Z(-P31`TWvBlxJ9S=Y-1U~5c-qUiROYr}vD%vt(4Qt`FJ&)P14^h;r0aHw zD(}VG;PCK`?mR-(U;CvPKt$9-pjEOm$BC(|)Y_?L4!vE`bZ#rI8Qo>yq^+co z=k`0CDN;8=czGL$9|(xhc%V{8Yxu?ole70i-C5)Pk;PM zBcxq2EVtTh^tE#l?2~5&*hSW7K^8zP@Xt*!8m2L;g^Fz(2!0P7lpb9BdC~mb{gR#y zg-Osu{EpknHtVnWvcRE2MU|E)k|7KDWZ5fE21R|4w>dCMD5v%M*c14xy@5IuvTPgkm+PyM?F>Z*S^kPIZ_aLPh7@o_BH!P_ABQ^omuV0pNO}u;O7hss>$n%m6V38%YIK8W&~jel8<6u_%Fo ztQ}I^slcoQWi4X!0zt@z_Fa?A-K|nIK37-$5!s0Fbk1Qo`tCVyVMjfa8wrS?IM-FFKj$ntX^p$yz zY&xBZj|H2P1xL4n zXxk0pYMjwRyI#TYp~x&vc?lnNI_#49^;EN!RM&)m^P4%@aUvg4tc@elE?d>4*u1f; z8R>3whT~MI5U;G(#LlQ%Nj|S=36`eN=<=$b@nY)sXTZDKIY=tY7{u~C(fgLNCYcm) ze9d2#2>m0#47k8Gb{nq0yff=M6HBB$J8Kjh$}%3^fXrhw+BVX*eP*lB+-%^?NB)UD zWv*}-COV}mU6x#~B9*+%k{D!=t&v;sw}S<`fQO&$)BMv7gAdV>AW;J0=m6DT`6O;e5Ox=!|#pSo^7OmoQU=I@zOu>afd~yYAYqky}z^TcfO+kOybcFwIaDTK+6$qdz%sW4V!@!KWPZ z5y;e=gzqpWQZa~pLiEA(k57d)FUM_Y%|^{1dA(FaT=b4tC9Z9sY!uB`WlUZySOFXG zMe9ySvDWMg+ zn{BC@mt~B~jtMkrS>gCRG#NMMul2kpU4WhB^w$Vf%y{ZDEvnnzvK!>;^7bE4Z_qOg zbHmjSX-F}5CX~Ga9jlL6XSX)fG?)Wl{W2Kw#_EOl$%;<&4Ojir<2M>$ajXP*c^(X0 zQ~_=$;@FunR9Wt5!y%P+E>VJM^bhVB@xix;^y{`3Q(WY|EgwxcfV9V|SATh)k^<=57u^=BDrDxK z%H3G($G3AN6^bH2D{@I~eBM~2PnKP9h0rRiM5xO#ESQv>OjK&2<3m)xg!Db7o@QQqh@26 zO3lVSe<-_P-siD}XOG-?OG5lHG;4Qym@@gU&aU74m0>gZHsD5a4;QG+GII7QN%Z}g z(&v2#d(^!`0tli6M(uVve@fFh`q1bL0!QTAoy!7V%izH9a@=M?)S9Kc=Omuc$25isuQFqThKMF-KDP6VOsvNqklUbi1=4f7lX13Zyyjfa}W1fByN&dLW2Ke z;J1|8rO%WR*8)_BmsS&>1cXtlVdu8th}l`k9_!q z>z8Awn#n{g&(|4F6xU8)}D%RSALn_iF)Y)gGHl120n2Jda--;9dbw ztVswk05Bj+9T8|aI-$P`AdT2WC=yIR-2&Z;3u@C0VtiH4-hh1^?xPG7yLoXQvkTw61PnD=?=ScBazs* zapEg1QHf?uz?nd2#$%CTV(+@hv#uIj0&?^2j@c94hM((={m&pRcY(+JBEw`8kM88y z$dTIWr+sEvXIH1?_mYephwpW-%)d~vi> z;36}fx3=yq5-7i15hivV}e`_;z;>hg1+V!8EY zNNd#mci6J_W7yz&MFnpd-Y(2Mc)ZHivj((CW2HC2v=pdzKQS`7Wmf{(TJlL@;QfpK zRR80LD1gCkK+kxBNt*$Rq~h9N3+cOW(S1(4hJW#6nEtjx%}ckp zPu-}j@$F>RX)pX0W6zKa(mZ`{iAY?7lexwk9W-wU-Bd-3$&VA(jF64bKYOdugrFRGC2sUFpT=A$jM${Y%H z8XfbZ;xeljv~cEh0Dm(Ti(5vqU-zYRsgOBoEVNsC=HVI#Frl6ZbUq4|Q-QzK@{n_(rqlgs3-n za`&3-4L>p8CY?1c6*uGkSVsBWB|ehsO4Idq0s~A~i0UG-@<>Hsm9FNG>$l&R&<;+VKuW^Z>=T6^Wrz z_v-MRQY()}wF|ss>0eJ!OK}mrpLrCGS#_iC$qEUdVB{6f+(YlACVfTn6L?$HZc zV6GszddFy0aL9$5BZI&Z!A;=3f*>rEi=_pde$fKSh*L&KimC8ZrAX~f{qVr-HdA=# zVIwGiP5|>Ra!6EGnK?g=AH48HgXldS?ucg^r&wO_{{!Hq^}N0Ws= zmHuAvVk#N8887J>QH2YC0Lt;+h}k4lSiJ6HBQF=$OcHMM-9IqTX(awFJ!ZLv8X?b! zdoY}aK1Cfi5M+$cC(kavJnngHC(n}|_j%x)VAUde;Q60Oq2X6=JfX{ug$=l0MTKLjuW&z>8OaXb|^b?3p#A)WV6T$`P zQ~~iveFVAd1!Hkb z$}76JG?ogk3B8Akz%PKs@FlYUU(!Ww(&GKn^lf}MQy>F!1EAq|HP`Z!el ztXUC5|3C%XNbS=@f@FS;Vfe^>=vL|(Q)u-E^yg!UN%gxye4r=)_ygbf#3AsG0Zg(y zIdMHd>iSQ{cjw#y!=gZ@3iZ7=3>Ot4_em4ito^bQ@B{Y7_;FI(8-PAW39as=VT-6b?oxJ}rtYF`Eitc}be|Xr@1D=k93EjU+68;AK(c@^FLIHuh#^Eizw^v|qi&Aj- z6&|8qz%dhGf2OelNSq0%077Uv?AyxySJZx65WqG4f1-YIJy3@JSf`r3V8b4M|M@-w z+mxp2FC-j5+HwhmoZ{Vvzn%i5-KI1#o_M!p*SCz4AN#PUV1T$EOE7-JH z8)Wd=nP~=W1Ki>kT}dJBD!miO)-N#CCpHE>@`Nl2BmM4*kc~~)Y+M$=-A%itfqHq& zDq_v_w6piQyt6t&V@W{*jJl?mhgd%$iC9MGPk*@8sRyYyD(SP~(VoNSKDR7ldMy+U z!<^Qd8RFx1Oh6Aa3OBTCf2{xb%@aBNqG689Pu8_~(V4+2ucf9aJ(H zMep{XwP+bJ4dUH#G+cV(SK3O_r;dvclt-K+;DvD5SWT|#*;#CnhnscCWd;vKNjUaXX+lOUd?RFP41~*EUK7qIoajgvD>Wv!`Ds)?BoBE zfB?MWJuskqnBD$a!N0#YMX$@Bi2%WS9>HFh5BZyWE$8R^&7U1PTTWMIfG{6e+<*KM zy_p9NTxsNNY4s?QJv>E|0}0YjkI`Mr;|<_agOlZlpvA5h7+t{S%6uNxfJaLFfG#+o z!Q(;a;m@v>c+o-9M==Sa4CYfpnSl3k5wh5nJ7=j6{E|j~VC0!&|6wSc~zZvI>5J zviM>O++?867$7v(`ncuN+9`4K z;v1-@>HIjYq=8-a+Qh#K)%j6aps(0{!GFJMF6GSY4Z+^>Bsgt+y8tfE!J>4rQ?Lzz z9I#wJulV!UJ14-GjdKD$VdoV@uvb%J6ccH++HKLFxX{x$sk$)NNO2Ovu>@N16~8F} zFZdmH$R)lc3&2Vi?@d14|J-%hitBs98}BMa)jDCVX89WpH}O3@U9D(wo^0W4b$0v` zuGo5ch^}y>6u&-2qThbSJ$=(cu-6O?%=idu+d~>Jf99kUzuqZ%;#41nCJW8-Kifxh z`fHhAuBV*!U2OPXG&g|Kf0Db#cNq$4w7=7jd^Fd5g^`i2l^6HBx>Ae3I5;NQ8_*|k zlqwAHz5HNVr9^IH)F=+Ditl|u zjz8E==&!cD7|FWw_H;r7?^N*)J$$qG9F5+c9XUH_%ojRUpIcZb*=?r*ErynW1GR-K zqBUsu(86)?+tWk1-)6x9_K#kG(9~WO3l}t=blqFo1)5JI!oZxWDwVeOb6475L(_h`dJ$23^$UHl6%1i0` zYXIj|L$}evJnyxk>pO7ZC2|;-%eTVq*^RHuZg${kp-t_QV(lp|*Yi0E{#TL{b>J3# z=e%b*}gder6cN>oP$3W zfHb#@-11DI(0ZBm3vpyWdOhCz`-1HY^M+BRUA_psjI|j!)j04he~~iL@+5`O6P4O! zIWVHjNn5h9YtmdS;D?%4cC1crcHRDU#>-q->t%kWr0II$X-sUt1Wng{7qvQ`*QH60 zx)h6VKwX<3`c$M7JD6Rq^<66-jXXnC>58@drPbtnzPEQCCJe8bheDxES055uyblcg z{dJ85&JFy1pC*bD8aMfQdfpTptn-&iEc6WR8sDi7|FLE0aNV~#Ig}iq(KGkZfzG&l zILLqHs_vE9w{`OEB9^#APn?terhK%QY}X;epvVQvNz--sK8o2YYPCoxeKjX)^())+ zZ3*2sHLC?6t%OMy7GI7N3?^7C!1;Gaitdr@LG(0r&j*K$BF&pD+qOAer;fL!*jk{v@h6G!%wd3aKsIYh%#Um zAMZLmchiJqprd8{ua^cIzu_3S3NT*FOiY7zwPgz62VxQgCrZ6?{ySFN+oQ}tyS1w8 z%3Wi4g((kWTlf}wko!EI*9l}gcYKODPe^^1$r+wDFo2U0LD*u2J~sr#7UyVAt+b3y z5s%?=3((Nmha5%+uyIek)s?P;Nh{Anv-j2FU7Pg6{2qg|dIL1BQM$|9tpZSacC#8d zfV=fDHEOkfve)$d2(beh;zW>AP4O!R_LeCx{3BGFWF;l4X!+% z(Fo+&_nF>D7F)FP6P%=qiFv?Y%CWf}hLbhrH2x&gP8S&W$hRtUp=k20I5sc4)OnnK z9gxGZ{{B~OZy?L1rkjaQWV^^!mF9q!jF%eoNf>lyS8H4YJm8_)SYUXKjwInMjW=md zc&u-dTOeFa@lyn;Tw>+QnxK8A{MbhALx3(owy9r)4_~bj#?~qq@E&D$HaeW6uD8DN z9HaedAe8AYTbs3e319t6cz@NKW#M=65|W*?vD1rlgg&*pg4o(ODf{CQyvXYE z>mA0hf@dj~720f86{YrOt%Yr6EYuWjsRIR|Be`Nv)tPqRaq>*K@L)i;j<@14?XYjb zLeO}oS187yl7%W7ETK@QL;ZjH$67)SC=g6RlfPP z25}x*55+!nLRSoxfIzAjlG8+wb45$;!T!_~u%ut+X{!~$=0(TGuQ2<1tR;7~?%24Y zeBtP?TLzfm>VikPMJ@-Q?~SByJWkiyH*nN~43%a$^mN+bEsIy%Z^bW*&qJ-V`z?3D z!}IsE*ayj{9}Y7g*e#Rbjr$q;&3zdN&2M-;zLm$0V^F?{BJkNi46W5+UW^amxApWa z?l`anMKVfwT!OUsfDY3aIvFqWmsZs!k{}V5F0fn~#a#JHt}o-o#aVsxX<}&Yw>qGe zE$!u;*7RXrjDXd;WliHDP< z-4@Zh72x!yOiR2CH1+wZq|dL`CeL!3G-gh*Cih<1attPsycOy-S8ib@Q+xmQQBnuc zMUyi*hc*QOLGEm@GIV?s2S4{46XC% zeesO*{O4z8@cRi_x1MSVj3PMwTX6NNS<(!C^+aS1f`@*gy4QVoTF4~5$kKWPS`0sb zGRb=6xm9*>wEWZQ*bak!`50$rTuC&QS7fqJThvxZhjpW6`(i>`P<&o%hL15ol2HqO z*+1fO?m0i{;}F#~|Ea}mS|q(-8}0R5IDK`Z*XF0kHo`0QWD=C$jfq=7A}9-7ttiRI1PZS5>xiBLyX_t zRN&eE<@%_}j?u?3xaFl@DCGfWT_l3|KQ=pXHI=#!ux?E$C6ig<1%iyOGJ39NZ(PlV z-#MED7c3qwZhm$y0d^h%Ego)RE-qnSZdNWH;ARUa_V$mS{x^Z0gPFC3*Z)63nh8q_ zkN|wE!O=xn-de-lMasd=-ptzGQp&*-OOS`hQ|LB#R<4@;5*5EWx15;`~L?&FOLlX diff --git a/Content/Figures/surrogate_function.svg b/Content/Figures/surrogate_function.svg deleted file mode 100644 index fdbae07ef..000000000 --- a/Content/Figures/surrogate_function.svg +++ /dev/null @@ -1,564 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _id - - - _cls - - - - - - - - - argPos - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - argPos - - - argPos - - - argPos - - - argPos - - - argPos - - - argPos - - - min - - - min - - - min - - - min - - - min - - - min - - - min - - - max - - - max - - - max - - - max - - - max - - - max - - - max - - - p0 - - - rho0 - - - p1Byp0 - - - D - - - flowRate - - - param1 - - - param2 - - - inputs - - - outputs - - - parameters - - - functionName - - - libraryName - - - Ccode - - - surrogate_function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \definecolor{color237}{rgb}{0.9764705882352941,0.023529411764705882,0.023529411764705882}\color{color237}document keys - - - \definecolor{color237}{rgb}{0.9764705882352941,0.023529411764705882,0.023529411764705882}\color{color237}subdocument keys - - - \definecolor{color237}{rgb}{0.9764705882352941,0.023529411764705882,0.023529411764705882}\color{color237}subdocument keys - - - - - false - true - 50 - 1.0 - cm - false - 10 - 0 - true - false - true - 2.0.8 - - 1855 - 1084 - - - 65 - 24 - - 0.9083557951482479 - true - true - true - 130 - - - diff --git a/Content/Figures/surrogate_function.tex b/Content/Figures/surrogate_function.tex deleted file mode 100644 index 957fd321c..000000000 --- a/Content/Figures/surrogate_function.tex +++ /dev/null @@ -1,173 +0,0 @@ -% Generated with LaTeXDraw 2.0.8 -% Tue May 05 19:05:49 CEST 2015 -% \usepackage[usenames,dvipsnames]{pstricks} -% \usepackage{epsfig} -% \usepackage{pst-grad} % For gradients -% \usepackage{pst-plot} % For axes -\scalebox{1} % Change this value to rescale the drawing. -{ -\begin{pspicture}(0,-9.2375)(16.24,9.1975) -\definecolor{color304}{rgb}{0.9764705882352941,0.023529411764705882,0.023529411764705882} -\definecolor{color281}{rgb}{0.9764705882352941,0.03529411764705882,0.023529411764705882} -\psframe[linewidth=0.04,dimen=outer](7.86,9.1975)(4.61,8.5975) -\psframe[linewidth=0.04,dimen=outer](7.86,-7.6025)(4.61,-8.2025) -\psframe[linewidth=0.04,dimen=outer](7.86,6.7975)(4.61,6.1975) -\psframe[linewidth=0.04,dimen=outer](7.86,4.3975)(4.61,3.7975) -\psframe[linewidth=0.04,dimen=outer](7.86,1.9975)(4.61,1.3975) -\psframe[linewidth=0.04,dimen=outer](7.86,-0.4025)(4.61,-1.0025) -\psframe[linewidth=0.04,dimen=outer](7.86,-2.8025)(4.61,-3.4025) -\psframe[linewidth=0.04,dimen=outer](7.86,-5.2025)(4.61,-5.8025) -\usefont{T1}{ppl}{m}{n} -\rput(6.2384377,8.9275){_id} -\usefont{T1}{ppl}{m}{n} -\rput(6.2384377,6.4875){_cls} -\psframe[linewidth=0.04,dimen=outer](3.45,0.7975)(0.0,0.1575) -\psframe[linewidth=0.04,dimen=outer](12.09,6.1975)(9.19,5.6375) -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,1.0675){argPos} -\psframe[linewidth=0.04,dimen=outer](12.09,4.9975)(9.19,4.4375) -\psframe[linewidth=0.04,dimen=outer](12.09,3.7975)(9.19,3.2375) -\psframe[linewidth=0.04,dimen=outer](12.09,2.5975)(9.19,2.0375) -\psframe[linewidth=0.04,dimen=outer](12.09,-0.4025)(9.19,-0.9625) -\psframe[linewidth=0.04,dimen=outer](12.09,-6.0025)(9.19,-6.5625) -\psframe[linewidth=0.04,dimen=outer](12.09,-4.8225)(9.19,-5.3825) -\psframe[linewidth=0.04,dimen=outer](14.85,-0.5125)(13.27,-1.0325) -\psframe[linewidth=0.04,dimen=outer](14.85,0.0575)(13.27,-0.4625) -\psframe[linewidth=0.04,dimen=outer](14.85,-1.0825)(13.27,-1.6025) -\psframe[linewidth=0.04,dimen=outer](14.85,-4.5725)(13.27,-5.0925) -\psframe[linewidth=0.04,dimen=outer](14.85,-4.0025)(13.27,-4.5225) -\psframe[linewidth=0.04,dimen=outer](14.85,-5.1425)(13.27,-5.6625) -\psframe[linewidth=0.04,dimen=outer](14.85,-6.2925)(13.27,-6.8125) -\psframe[linewidth=0.04,dimen=outer](14.85,-5.7225)(13.27,-6.2425) -\psframe[linewidth=0.04,dimen=outer](14.85,-6.8625)(13.27,-7.3825) -\psframe[linewidth=0.04,dimen=outer](14.85,7.0275)(13.27,6.5075) -\psframe[linewidth=0.04,dimen=outer](14.85,7.5975)(13.27,7.0775) -\psframe[linewidth=0.04,dimen=outer](14.85,6.4575)(13.27,5.9375) -\psframe[linewidth=0.04,dimen=outer](14.85,5.3075)(13.27,4.7875) -\psframe[linewidth=0.04,dimen=outer](14.85,5.8775)(13.27,5.3575) -\psframe[linewidth=0.04,dimen=outer](14.85,4.7375)(13.27,4.2175) -\psframe[linewidth=0.04,dimen=outer](14.85,3.6075)(13.27,3.0875) -\psframe[linewidth=0.04,dimen=outer](14.85,4.1775)(13.27,3.6575) -\psframe[linewidth=0.04,dimen=outer](14.85,3.0375)(13.27,2.5175) -\psframe[linewidth=0.04,dimen=outer](14.85,1.8875)(13.27,1.3675) -\psframe[linewidth=0.04,dimen=outer](14.85,2.4575)(13.27,1.9375) -\psframe[linewidth=0.04,dimen=outer](14.85,1.3175)(13.27,0.7975) -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,6.1875){argPos} -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,4.4475){argPos} -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,2.7475){argPos} -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,-1.3525){argPos} -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,-5.4325){argPos} -\usefont{T1}{ppl}{m}{n} -\rput(14.038438,-7.1325){argPos} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,-6.0325){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,7.3275){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,5.5675){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,3.8675){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,2.1875){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,-0.2525){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,-4.3325){min} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,-6.5525){max} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,6.7675){max} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,5.0475){max} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,3.3475){max} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,-0.7725){max} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,-4.8325){max} -\usefont{T1}{ppl}{m}{n} -\rput(14.027187,1.6275){max} -\usefont{T1}{ppl}{m}{n} -\rput(10.607187,5.9275){p0} -\usefont{T1}{ppl}{m}{n} -\rput(10.607187,4.6675){rho0} -\usefont{T1}{ppl}{m}{n} -\rput(10.607187,3.5275){p1Byp0} -\usefont{T1}{ppl}{m}{n} -\rput(10.604688,2.2475){D} -\usefont{T1}{ppl}{m}{n} -\rput(10.631875,-0.6925){flowRate} -\usefont{T1}{ppl}{m}{n} -\rput(10.607187,-5.1125){param1} -\usefont{T1}{ppl}{m}{n} -\rput(10.607187,-6.2925){param2} -\usefont{T1}{ppl}{m}{n} -\rput(6.2009373,4.0875){inputs} -\usefont{T1}{ppl}{m}{n} -\rput(6.215,-0.7125){outputs} -\usefont{T1}{ppl}{m}{n} -\rput(6.2585936,-5.4725){parameters} -\usefont{T1}{ppl}{m}{n} -\rput(6.226875,1.6475){functionName} -\usefont{T1}{ppl}{m}{n} -\rput(6.2540627,-3.1125){libraryName} -\usefont{T1}{ppl}{m}{n} -\rput(6.3909373,-7.9325){Ccode} -\usefont{T1}{ppl}{m}{n} -\rput(1.705625,0.4875){surrogate_function} -\psline[linewidth=0.04cm](12.1,5.8975)(13.28,6.1575) -\psline[linewidth=0.04cm](12.08,5.8975)(13.28,6.7775) -\psline[linewidth=0.04cm](12.06,5.8975)(13.3,7.3575) -\psline[linewidth=0.04cm](12.08,4.6775)(13.3,5.6175) -\psline[linewidth=0.04cm](12.06,4.6775)(13.3,5.0375) -\psline[linewidth=0.04cm](12.1,4.6775)(13.26,4.4775) -\psline[linewidth=0.04cm](12.06,3.5775)(13.28,3.9175) -\psline[linewidth=0.04cm](12.06,3.5975)(13.26,3.3575) -\psline[linewidth=0.04cm](12.06,3.5575)(13.3,2.7975) -\psline[linewidth=0.04cm](12.06,2.3575)(13.26,2.1975) -\psline[linewidth=0.04cm](12.06,2.3975)(13.3,1.6375) -\psline[linewidth=0.04cm](12.08,2.3575)(13.3,1.0375) -\psline[linewidth=0.04cm](12.08,-0.6425)(13.28,-0.1825) -\psline[linewidth=0.04cm](12.06,-0.6625)(13.28,-0.7625) -\psline[linewidth=0.04cm](12.1,-0.6825)(13.3,-1.3425) -\psline[linewidth=0.04cm](12.06,-5.1025)(13.28,-4.2625) -\psline[linewidth=0.04cm](12.02,-5.1025)(13.28,-4.8425) -\psline[linewidth=0.04cm](12.06,-5.0825)(13.3,-5.4425) -\psline[linewidth=0.04cm](12.06,-6.2825)(13.3,-5.9625) -\psline[linewidth=0.04cm](12.08,-6.2825)(13.26,-6.5625) -\psline[linewidth=0.04cm](12.06,-6.2825)(13.28,-7.1425) -\psline[linewidth=0.04cm](7.86,-5.4825)(9.2,-5.0825) -\psline[linewidth=0.04cm](7.86,-5.4825)(9.2,-6.3025) -\psline[linewidth=0.04cm](7.86,-0.6825)(9.18,-0.6825) -\psline[linewidth=0.04cm](7.84,4.1375)(9.2,5.9575) -\psline[linewidth=0.04cm](7.84,4.1575)(9.2,4.7175) -\psline[linewidth=0.04cm](7.86,4.1775)(9.22,3.5175) -\psline[linewidth=0.04cm](7.88,4.1575)(9.2,2.3375) -\psline[linewidth=0.04cm](3.42,0.5175)(4.62,8.9575) -\psline[linewidth=0.04cm](3.42,0.5575)(4.62,6.5575) -\psline[linewidth=0.04cm](3.42,0.5575)(4.62,4.1375) -\psline[linewidth=0.04cm](3.42,0.5375)(4.62,1.7175) -\psline[linewidth=0.04cm](3.42,0.5775)(4.62,-0.7225) -\psline[linewidth=0.04cm](3.42,0.5575)(4.62,-3.0825) -\psline[linewidth=0.04cm](3.44,0.4775)(4.62,-5.5225) -\psline[linewidth=0.04cm](3.42,0.4775)(4.62,-7.9425) -\psbezier[linewidth=0.04,linecolor=color281](6.417421,-8.850938)(6.478894,-8.270938)(8.369198,-8.850938)(8.200147,-8.310938) -\psbezier[linewidth=0.04,linecolor=color281](6.432789,-8.850938)(6.340579,-8.250937)(4.388802,-8.850938)(4.6039586,-8.330937) -\psbezier[linewidth=0.04,linecolor=color281](10.278223,-8.850938)(10.339696,-8.270938)(12.23,-8.850938)(12.060948,-8.310938) -\psbezier[linewidth=0.04,linecolor=color281](10.2935915,-8.850938)(10.201382,-8.250937)(8.249604,-8.850938)(8.464761,-8.330937) -\psbezier[linewidth=0.04,linecolor=color281](14.268223,-8.850938)(14.329697,-8.270938)(16.22,-8.850938)(16.05095,-8.310938) -\psbezier[linewidth=0.04,linecolor=color281](14.283591,-8.850938)(14.191381,-8.250937)(12.239604,-8.850938)(12.454761,-8.330937) -\usefont{T1}{ppl}{m}{n} -\rput(6.3589997,-9.0125){\color{color304}document keys} -\usefont{T1}{ppl}{m}{n} -\rput(10.220427,-9.0125){\color{color304}subdocument keys} -\usefont{T1}{ppl}{m}{n} -\rput(14.210427,-9.0125){\color{color304}subdocument keys} -\end{pspicture} -} - diff --git a/Content/Figures/surrogate_model-eps-converted-to.pdf b/Content/Figures/surrogate_model-eps-converted-to.pdf deleted file mode 100644 index e41bbf27bbfcd5571478ee0b34b386d4bb3f26d2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 97137 zcmZs?b981;&_5VsVsnyA>^!lpi6^#gJ+W=uwr$(C?TMX9HsAO6?%A_v_m8?=x4P<6 zRhM_We6pW%22JlDr{<}kVXw!=7MA$%( z+qvu_-MBe}UbnhNm3GjJ(KH2g4+W0cl{aX2YC#=)`n)!Ovr9F7H zd95gl?J<0Ld)BR#`}Y^`zJrl5@p{?swuX=KqT`7tbskb_Sc^x7YE__0;3i9n*5A@`Z;kq z@$u`S1~%lH4Wz)f?&%{7EA*}*;IiYN&by1ahoNT+2nSAPPXI2ZO8)b;f@#=3Zzk^< z^k#pH*A0QmRD^+UH@l|!O>czo(uK$HztjG8DRz1h* zxrSZyBUX7lqes*0zQqtxh06BRd+FX|>FT4a-1$={bZF`#LvHf;nvY6B@Ire1lN(U6 zz#DTd|24=1y7}ng`REtc<}>1LNKpF}xZwgGg;r7rt&D5xx8sM(4|nBtJPDxd9L5UlyRvj6S3|iHmyyRWnTr9@5}l z76UT-I+G=G8%YiP1iIg9pM|#lj=}_Ot>#ZpS-Tu8|4}8 zmixW(^;f%Jm@8Gbe2f`L;&jC89~rA>j6R#8R4wx^B40$K(pN- zW6oFf*#q7{?z!|3CJ|$pUbU7g+OYQ3i}7rhe*98OlD;@!>d2bM;FoTvVD=PML8EUk z{ex|xcnovmx0Xr=#4;03LpazR=09SATIyPYk~eI@a>im>RPM}%u&|)CEI%zA$1*uY z3fsD%J8gOWEG{BW+o0OPf0s^BA=0ga?UV9p^cbGg;Q$IcJWF0i$1!-I;pg3-6YLQ- zOJggWbX@yUO5aK_C&$?N>%$%+gCSAMQ|@_rVkvu2#M9S8X8?1-Mmc~WJG~|sYp(F= z5Ua0G&%)AEAN$l&otq@QMFD1~z$?z132ffwr$*O6VAc{Nl}5hO82koH|_g%oBZ>NjInJ9%D4N_ASQ)Jh>X zgLZ@d3M(Foc7mP^eml7!zg9cBeriay1f|<)`r662+Ce)|M(7$*I{}cXxFS7RW{HaZ zHOq?UtnH{L-Oy=H_4brfy_U+FR#7Y$d6B->CACuf6;i$T@@*mTPk4n?!RI1fqA#Ud z!leHSb#I;(_C;}}@I|ZLr2pHl_98tht~%}J8+F*{4EJt1&l0tq4=CfW?sk?g!@0r= zJ&d*2|9geB(d9H9wg)&>cwA)pdrNp_(z_FgaOQEE4k7$G%UbwUWQhv%y@x(fWJ&%p z&kEN7l<9vUY!80m1|q0lf7{G`hf+Bvyb^0muPv;B-)^FC{~b%>H{{`WK$nn2+V?ud zi>y@L%?5Z4g_hJcRjb11Dprq{ z)|lZZ}58ZWG2vt?dw|2^zE_@IOT~&d#OH{+Hnk zUa!Q!vYsYSTwA*9)PNuVs*ZFYH=R0?b(Oy& zw~QZVXUYg7=A>M9G>u&&b&s+Yk}oyxo<}(7|IlXY2$ufYnV!mYERVJwMvD0)EA*}( z_6mR>#&S#&@~=YWl|nCoYMd(>tgs-7y|_>0rYc2Kte06mwrKvj4tlN6VS!^1s0QXW?7Ysh(Zd>L92$?@SI9AzBO7ALFHJ&+#4=NDt=(+AkyXln9wh$kwPT0cL>N^b5&h5jb~@)9>Ya?1 zR4XkFu7;c6tOKUp%YWpIDL3ZM8A0L66`|-zpd`{K0-!=E6Flo z;u`^=iJAP3uwpp9zt%FL&a?MTAx{pNjYdQqAalC}I8H5}SjvrVnh_gld~?LKq;5?PtI(Fjs{Uol-Obyvxc<|o_1q1{WD zK8oBHTyL{b7>_R+M5Wn3DEpw|-P2ItfXJSr8Otg)=Sv+?SZnfPUa7N-U5%+|SEI3| zHh!2uQ&3-R8cQatLxXBZ2Jt5lnt<~v%ewIgDZBHG@VKRjx-o;te?oBee*~R>BXgXo z8_*Z%fVf;ir(0u_KaO$lu7iMOfZ|m|?n9=S5u554k8!k_^^XOjPR*@}Fp`OI?Zes0 zFC>F)22!~rGODgDo5|ZanDI$Tx6NAP1vIIgG?!x06_S2tSo*)Wu89paX5hg%qe1E1 zXLjU!MY?+GA9Ij9{c;RXMJQG@q_L5dFKJjJ)u!^cJ6R;P7%KNAr9_>{-NH@LlT}k> zs1orQFV+U*o>A9BYj_?oH+{qAS@d*)S|B2@%Md2oQK}@sQgyuMZcV30p{QHg_Q(uUC+^|D=AG`RMf37{ z^jq`DjEW1jxLQAGeA+%}^uD&&=y~R_?tJ3duIU<4Pc1t9D2O^;At-6`h*>!QkD5lz zAGZ%^U9ar%9g!)%mEjsfJGW>=c`} zsFvnoscEaxO{TYGZ$CvCB8pAfz8fzcJi#H7W=vwy#_OC?_&$PN^k9XNs4>*NsTt3p z|0vwHI!fmQeY`X7c^K0>s@45%w}E$94Qn4kA?g*EG8ABqKv8Q2Eph$Vz`pJ^9mv%G zVpkEpQN?A`a{eEeqUqGRS$;53#ie7jbn8$Njns1P+NL}*QN_jgEk9EE$?z@cP#(GZ zAMQVsZ;h94{r|fEpXPt9{}=AtjPU=!{U_M^zj6N8;pTVO-v0sq_7tM&x#I74)or8KS%MS~fNljgwwl{piNwle=d@7;2H6?-LqH%V-{TJea>f&%-DH(r zFC&y1(^6A;u@pZ~0AtTq&-#e+vWZ7}lc3@!2b7GeHrJLT3Bqh0r1P?USPkrC3}=}G z=%!Q_NDsMC4?VxzW>;z%=MG;#$?e$GC|devpDkF@By*qrw!)9Y2U<^a6HBuL;_I3M zUr7gM5l1C?3T%3`((PQ90*t860i0>7$5no_OO<*GcpQe*SUjqcT1FkdO)=@t+b_577JH~D5?0*_4mhzKlz^R%{d+ku2= ze&{%kdUJtY5y+W#{NG6j8Moka6c9wSg`gy$$!+U4`4tH^2kB!&CJeDe=EV5fqx?$(jlCOX|J7 z$p?sET(M>Ub{ysgt#2$yKvdP$hYRrHPOtsJv_;neIamvP9D5_;-#jmXvnL!%-shWE z?mydQ4&NyFj&&_L?QdF8b;+(n*~0}2DbbH0j&acMz^Au8o?jKOQQc*^H_3H z->e0z{WXY9?7eG;*A%p$DmPj>KBTP{SO2P_-zXwqrO1(7?1FIKF;|!56pot~keZNe zK2(jWZh>xXB%97Sd>`sCpNE97$Sa824i`zEge6A5s=I{D;$>gz{W?R;irs=GpT5i3 zTn}DNl}_T$@hHDq3_7y-T%4>lE7(WP=$7?F^8_}F5a0pvdP-{3-nOW)atTD+3YvEq zu;itK|47&E@aM!}y(VuKxtC2nYvVf0-w3G->OcY}0fbhI-Qp~)E3g=?53U-6i#SDh zvLpA>*BLid!YnC1hgbazQl;1IVzQQw0uMy%5J)k#T$3*4MqGkh2yd+0$`?T1M;?{EQfope&+$BnC^Q9#D~unYJ09!-OQ4JNK+ zgbv;;tDO^j^5*>K2Y(TH&+Dn!&g@cA2ZGX=;>E*>utwsn4%`#Z7W<(0i=VE2zR*gF zK!u!pxoDiTt+8K6?BR7J@_PVp=g$QMSxFPW*pP|lp)Q7TTs2d7qWq4M)mnTW!_;-N zoGcq0m+2#k9ffNeBAKWbzrUi_$j9M`m^#ab{R_?p z2jbQOmi)g@6Bok99x8S&NAD(_Z~C~P_)c(IJ}y1?7d|TBWD7)Od=_gN@}+Kf>7M?L zF)*r6z%!SzdM66vA+kt@6zZW2l7ysC;YCBq1VZo4T@IjqO=chT+WTn@-{>=zuQjwu z^c&P3+(9%}cFk<-wnt(@NcE4P61_QIUjE1Ks{Stdfl_|9y>jc39*(R2mpB-`fUN(VTxB!J} zdXC$!h-ae@0a<-!0HjXUs^4tf-&CfnELrut-w-<3nGq_HDD(>@b8DJ#n0k;_gpDJJ zIoZ<)vO|5G%OlL9FoKfPWwO{Mdp94xc)iYvy?m*Fe}5E9guv^%L;fCuh*MRh79;Wb zD&v7Ta`WhOd9P7GYS2pWVTEoy+Uoi2PsWzjS0Ug2WZBz=&wVo8M4$jZ^+-h6a> z8YOPNPt*n67DLXNfgZS;)f`zt&o^g{9F|!H!*estrEEWsOU;vOP*(|@7dgogr*G@L zAhIm>-8$m9cHv(7OiQpyo{Yg)h`9lv`s=u0oV?A~RH>D&+5TXu@#{h;m$O$pau$BgP}ur41N5VZ#7=EnYUB zRK*TJtZ)ZOD7+Oi*<6%VRhhO1*`r!@DkoI~lU%q{85^DmlPf3ukd%Uwi6xMDVqZT* zLU5Y&z|eAo32`Jk(Ol|>*sGu_?2ANZ8_wKzl+F+=a>j%xlX<;1Qc3MkJv?Wv4nTrB zGD`qSDsA;XYmg0-Z`oLtx|f=qsl4eLeE}qH1n|)eWYBT za9Rwgc&ws*RdB_ozY~YBb3p$U^_m#~+lmM09kml%=^9sql;IgfC~S zE^E}D&wZV#vky!2t>}B1gxpp`vxAX{pRw>wi&>Df%x7uo?LHcl4UWGLHQ*EntPPm(#Ums~t}ma_s=QCkwXi#X=T`ACrA(mrqv8 zAjA!hz+#@B?I?^n4lucl7gMJg3F#b1GQ?;W!K+W3C5PWFOjVCo+UQy|a`wxv?NZcK z!Hc%~xw){Ayfl2&cQeP?)%dEo4|~{lx<|Y=f%FeAL^Qb|jnR@--v$x>gxsh~Jh+Gg z)~RxJ+smd@&rXcD8#Al!Q*EHjxiMQSp2gw6!K+GtRI4K&1Jt5_*SAa1P!OJPL1~5V z>+5xxYZ51k3AXZ6E87t!rG-46&#etxcG3Gz}_&ZF4Ip5kbPTwr_>+?N+CNSk2 zm$wG>Jq^betqs!^ObjIA*`kb&2ad^MI;#boVA+JwgJEDX5vGcsJ}yy+p*_7b203hr z;Ap|1W=){}I<9UBeB}jbv_JI!-tI<$KC@VA%UO}YYUZut~`_Dkn{}>`jeHFM@%%9UKvTd!|~k zl?T=;)tu@kN5ietn%K-VC>S2!s21H*l7(PgQnmMLMq|x8CV`Z# zrl7?b+)B)aq$v?g%I z8J*}w8HeJBMrpUzW#=K){jEkcbg<0vo;f;T-oj{AH-V2KC^_5tak7I~t!%v<&g-TQ z6ofbFG9y4(AS$6XuzodACIq<9s>T*TU3=l)>p(tM6rm3z>s%EC4oMs^g&m8iERcLI z5lE6E2T8T>LRUbsF(xn|no3V!Y)4OjcSNUKYh!jBL09cYHPncTUs{=0-=dgJ3P)*k z9A9Fe-PAhpYw>Nie$Bu(m7@i9^!(62;r1HofC6@+P9n|dn8ZLe?vV-tR&x4;?vV5a z6#@UZetMX;i$DCW2N6MwLP*y5_TY@etdS&~LBoD)5B5pCWC7hNuxsPZ@beb!LTS*R;)X_xyIytELkm5B)`HbE&Mr&sAkz33+zc3?|S zwlv_q^;{gD;BosL)Nl>Jb3t@a5a6@}g5J_sm1BJalO62Je4fizp}QEs4TtASL9b;* z>mx^-+S#u=Eo-Uvg$UozRWT~Y)c05Vlx61U@4|DVVRg&&V?-WOo>XaHJXy690B&H! zK&EKca5ZXBMvnG?RuIS4mW&Z~=N7an>2<+?r2{6E;Ockf9`fsFM-T;Ny7?n0ff#no z_6Ub7Q;(QFpu5(-8dWSrIRMR~Wv}o-hoh`2;aSVhdzTtf4Mh(=DO%>u!qIGkjqk97h0lx=UE5~5P5cFEr{uEofZnB>D5LGb=ShNv_X{GP8@ zdA!Kj3&NZz)C(QzAVT(Mlav`;y`=!p$KoKArnHet!iF0huIEw2(O zB7S*9^vr|4`gIH$%}=ct9pINtH$>vfXmMo4+KZ?KJbqv zDA^lIohqzW0+G2&S$aFiG()S*3b29z_ByJgEP#SLVb*+2o51g07R_^2!tfuj(6ORi zwwIGSyu9?-&X)_PSEsE`#Df09^JViC#k-~iy5PH*&?iNXGbey>DU)l|pk&Mr-+u$l zLz5tpny=_2GwAC`xRmflsemGZ6V`I?-m|$a|DZFeI=(pXYkoj02r4wA&J0Dd1HxxH zL%`wbrVg*2E{GUV99()jy>^Cc7*BA2n5r*~(dQ({2(=~%G9mLP@fT%ZlL+?m_pBAVqjx$oMS@E1md|A2FGUV}|2;TCL=&1+w-!l|6J@;7ee5+=G4*ATd zRC^TbG{)sJVshqm?7vEBJhlhNKD%(pGVckcrp98jbneXR)5c z4eWN`tyB{M$i16xNEcAIgQ|({mPG$xS*${T-|xM9cN~(y?9MCPcHoYUfsuX3v;Hhf zXZz{y_Yv?+)bUg7(^xgCr>Eu8z{1M9PUA2&-3>N4js}D71`NV0>VNfXcoGyBm2&Wu zz(8jIJi6tipp8SXZEXyv2{^*+3~mP82HRaIg|q%Tj%TzT;6 zHDMO22AhcLv1kL}5{zTMK2_ghTfYX0x=@>5-p&_K@|cpVUU*1 zxm%dfx#rJ6MP5aiy9X2rC}5HbzY1z?-f9RdN`uy!sBJr27g2D`nuHB&eMT!-1=T@{ z_@Q@)Ux$rw1KuwNrKBr9{o%I5bk&gT9<*KDDhIn)qr{#gZxGqs>&Il0DG zzlrjSbRs?Mglgs|^-y5K)%U9Wk{x(+(K{?NDB*-(ZHKJ|qJ%1CO@@W~IqB4<_+kdd z)aCipR?O)kMs5#i6IGYfv* zN^NKK+YX6VTmQo#eZ0A$ifkXLf(hkTdZ(LOKxghJCqh|aeQ`@M%-`Qk8Rn9q9jzYv zd;8zgQ_&8#mG43S>^8j`Qdok7Wrkv+XG+Y)pC-@&9(9aoX#L~l$qphs`ZYS|k=10k zC11s?0@y)nXcvKcv{i_~nk|VaD|&;wT7Sa0aw=c zn_wA)&ocy{+d#`CuakPu)0+{Isxm%bl(sVk zENeAOc&M+=5jq73Ixs__S+LK}1R5M6ZA=sAKzrq%AzYUyv)z?%)#b#Q9yWN~BuGcJ zBjba2yRvS;n5&T7f(%mhVFE%NPh)cpt>O#XTkHc73GgD?^sL3d5YQHLoKf># zid+kZx<%HdlXIkEVX@fHuMHM=#IpGI_HFWHkk;lxphr(I_cBCYaY~y^Z$yz*L40hkzFFt@`sT`&q zeAg86U2BY1Mo~CgQXHirSxrVZ&xTc%eCCxA}^#7QY6L zWW&aXZo_7&$Esrqyx~d(ddgMt`5POm#rtoH^~s`obC%+aRfnin!__vL)W)xn?>_tmoN&So z=Bh*$7A?EZD}MuM8bt->VBwD| z4Bo((Xe2f91~V^E@lFY!t(zzw4Z;9A1)_e<8XGc0-aBZ=>PmR?D=G5PzRwaJ&hX#? zHxqGrkUa6ZkLt`zE3x}zKbsH+bbXubw<%t+f-Si^ff=iW8sSu{Q3aYOOVyR(7xqO9Ya#>CV^6T`&h zAsXK=G=08pu)E1d z9`Tvl^Hsw16@YlabrB#BRTKy$epqEwHwKjG<8yh!Z!t23s|_^Pa@Q1-mLW_;JddTK$j4xdFF;EgD=@B(0&S*-gvHLO;zlWnCNwNM&Nd7MAs&@Nkn z-}C>1f9M+66X}_+kS1@H!_TiNOj`cxdKtv4Ki~!E?QlvD1u7?0?pv6J6X@_#T_|2?vMa$z#+p zeBn8;AIJqt^t=oR-TxE@x!9w;Wrycjy3dCfxniH4W3#=-M&PwP#2^-{OR3n2P-}FU z5eQ2xQX<^$09LU&LyoZ{;O}vfjeb!0w#?P1)o;TVCWVyW$Pznx@t;s=vfVKBbk-d zG1&XTqVsQ!sgPJ+6mFk2VjZ4gOi{QVvWu}j!qs~zkaL`9^`DTE<@gE@(z|6FAT(;I zR`sQKfO)#GyTPr29GkzlT!dFl;pq$JdGd!#-wd+4g z8^X`{6$~%;y|vQIi?U?2OdKNM*L1gqy&MaoSUA( zSYm~5|8k2dGo@kttMBLwThz2zy$l?*u@i{XUWYh+M~^CqaJYF&rrj@ZIvF8#5*W(& z{XN$-qPwdd$_2SvYMWKU#&fXsM4GfUWLk@rH==scuiuCULG_ zk6}~J3pC z_b5x^nvfeVw{LoUE+(QY;m)wyBYDO8sL?jg9VZ|U5kUHMH`{12!@tfk3z1Ezz!+D< zc)0sVnR$7tbJ}9m)AAt_aq{*faG@T`NhgNDe~6k2_wLWho1~)4)nihJwa+Yq1kzYr z^-O7Tb8M`Wkf=|^!8$4-s-%DW;g7qF5&GEDCe`wL1@9I(e%2+*t*V>&?~m8)pC?h(V4jdu~uHJPQezZLK0a;#e1vHq8It~(`mSCs}$> zy1^*E6*?b&TYeU`raRSsiw>(Y8VY3p+(_Lj;hQ|U^}`vzaWX(9G|mJtT(WL9!hobb z7w;t@(08t;iB|j?H!JT875C=Sf1=w@Ba`mzdjWZWvQI4StlL0_L_~JUg4GZTf?*(M z44ckcZE#`q6=uVqlIQ`92qaW>B28v5E6-4ffu8s7a;^qX-?NYi`5VSevWrne6|lTU z%3kqlb*c_e(36JZ%fLh*nze5iFsGtNc>;%};EN!vgjaqO2W&~qmm5u@^flDV&(5rs z4Z)3G@O5u@_C<8adEQR+)1s2O_TJ^B4l&@7c&FWrF`#`*2em$!hNl=@HII(5T+!sb z`wTgtdweC?dm`QM;ZBZsQy>|Uwh_JJnkuzC5F^gh6&{Ny6sKJTMxchagj>M-w%(km&$Y5ul`>Vz*1$IZYHumL1?pl^Xym4f??@ed}dYN(t zImUUl*qi-Fy{ghelD+LED>*C}I4e)Uj6Tk2XPu;6&yU5r7~E7-r5H-RRCivimE+U3 z>rVIhY%6fW$+)`Rx_L)hX#)c9W#rMG&es$Ili20)g-fOM-CdQ#W!IP3ag)wC8AUEj zC=Z4SDTtyveMr$WXEfCj$@7c{Wb#8%eG_#fzTonoMSc34_pErH!yz8__b#W6ef$?4gjhZn|k z5>QYC>a6_Zo+Bu~enIZma(&%1;vYpsxw~V)sZ_)uNuaYvMy|L9o7%-ecdG|^)@$eL za7K;Kjg5&sk%^q8ZOV+Eyu^ONi?9!}R)CO5N3{1Ebv|hzx{BgYq_B+2ASA2*m^!K) z9QPM)Xz9dnz>qFwXzKt-(OkRpG19xB^=oU!Z3gYaN}`FhO+a!{DMBhrH(x~F! zZ8g)GO7K$`4{f>{7CbZrZofimWfTvRH65{t5*sEgPIlnH_Zke~uaqOglht*ZZZSdk zTrLFSb*Ff>12RJYE4garezsgG)|gkcZl!A$bQH56H_D|6rX1qSQ>5TEyhUje$-SVF zpxr#boP&cirffvHB}y}fM$a9QgO9&%64XkdOcco?S^ z0v5f#pT_E-yd2EDPa+c&6zx3|v(J)ad^W9JnR}TVZxFv8m!2Mi&Pxxm z?C|l!ukV)(@-Y6YJF$*j9E&~wHdC1ULA9!!%4A@ca^)1#B?j$@mWX?d-JLUmyN@d) zzpO)4iy#`5+Xku%9?lr|+SKr~grn0o!T7CaR!iHx!H=b>4dfCXaMyRL4g^38`Lc)L zU$LxZDN`N75ffX&Giv=rY>lS~6(bkkaf87?jt1rYz zhw8c$*Fl(1++$?|CVBxnwD{iv8mv>EOh@|D$H5VKqs5y3+hi;+;tY$sM@!0JG4)3U z!G&38HsJK^*|%y8%W9P=a5|2SfKYW<-HKq)wpkavW;}|TGAtl;Va?J+UO)pYV!&-s z)S?szStnGL#u-8%yA+aZ-G8e}dzb1^oYTmgk{rp|!% zz`}{MK#uB-v&Ec=vqsmxOj(BQKhA>B2a*`y6VG!||BlxF^;)5NxjHYLt+7h4af^*= zyE^Bz9x(~I8*q`aKWNKpHoLGpN0DAS@q|Im{H@c+$5c2yH>Nbc$@2}?=~k!yu{q!d zz-Znj6Zm;xF>7hZdS-1UdfsKHY?%d=xhz<1Umt0c#Qv$Z!ClnMyW7YT&?j;AG-#R5 z`6#@`iiFVuAP4SYQZz|Z9u$Hd-(qfHOPp%f8p;V8Tlw#xujS#MR@#b(wPz7j=2?}5 zG|6wC>36AxpqwB1ufWqqQVG`dB^9>REtNj^V^lrQW7NeMR#^Pcg{8)dUG=>POy+th zzxnZwl`y@a5@9Sh>Fc_;GANiw?%6;KoAw25&RFce>#1)F`#@u%w41DvTLM<+!Aw&~ z?RqqO(X${Dw_V4T9b5OIOTq{i!e%3wVUKY?WX-eb>d+&9M)6@t&r?7wmbT?$)FFeN zhrr|B!qBtywQp$a3CkqxMf;jUj6!%&&8{AGa&ntyvFY|nwIAolYk|AML7vu&Ry_Cv zK-{lN&B(v}B))i)|0z3my*$pe6gE6TDEGA)K3y&Woixqr*o}yz`^h61H@`iJRSD!b}(#_~pINC*%@u_c!(^(!W*KYv02#k8@?a|B1lW zskd}~h~ORQ

      ozge?=!ax60ak*a;_uKn=hLd;CUW1pP;$zA|nySG!-d&ge$Wb&rT%5nwBOq`k zuo-?Ob2aeh`9mK@abNl4s_^@PCZy*0b&_$m(#w;eoEUv;!V}@~$iEscKJ(Wdzec#} zF1BOoC&MBjmH%KM=__eO*LxzulAdR&9BFK8?PU%(B< z$0dw$-p3D| zC0SPX-Z$!WdpMTg_neIUABNseBJ`-+!I@6t@6vFrB7Cv@*Xhld+JBc4f5(v&{`&Cq|(9u~5RgkM)^lx=6R|1>SC5-?dgNAIAwi9x0;_ksT#YyL*4V5Bn(2{kxoTN=>bQ;NLIuA_ z35HrnUq);4Z&(V<{WC5V5+4vQozQTzyED<4zslu~AKhmVdV=pzN1{A6Clww%(@C=4X6l|lP&*0PQnJi`>HoJsk)N`+ICE0PiRSz4 zHkqj=0FQ+Jd1b_c6K&t1eakSdqYwc)5Yl;c^qQ7oF(C#jjrcy5{SBJ8irT&!%BblZYJ&*g4Er7 zPS5gw-3!^O!!>Zs)^C;GAGUg3Knv`&m2WB?^m{7bWDJa)Q;o4Vx1AFftYSRj78BFZT`XsucR8j5hA3faK7;IvTFil3ye`%YS%c_R z5`FjG8+l=qxD_h%pqAj3<+0Gn6sb4XfAe+gzOllSQVT=M5>N{dg0$EH*+V1mc?cLK z%pBUyFKyj`1WV>joaUX{6$$~|#Yq*V?P+x)LCc|M1r6(;`hCwD`^!Y^Md>x$TyKxeB`A9v&U5x;F(+Pp++vp zYU?}c(nl!Bhu>$GEPl;U0y9AYs(18YxW=!&BEw_VpGMS zuJiojvRcg{g8EMIeer$PG1c-IDImq9-z9?oI{W_PCKvy8on4!3G>907ZALl4b;`t2 z`>BYi5u4)dYlT#(Rge1B^61fIEQXfaI>!7s0AwEug~LYQAbru2QP2V}(E9HF%_sfu z^UhJzYtKEWZ7Mvl)ut)9SQ7<3&MJNkKrCXjnxkf7|Lah*7ke6=Q zCWYL}R^1~q&yn$CXnBajk$_`r0Tg&n7Gpxa*H&#V_CkMAi%9a5gv03kBEN)rWw>FN zZ$0$BeUMP-Pht#+FD1(?TB#Nk5afWOpK*IUXv93FRRBFy_YKr8Uc2)CQ>7_WHX8j|!N0@6?Y7?Qf}xQ0 z{W-US~0z5^GF;H+n%~W<)XWeiHmPm;>@4lp>{K<+U-&KK8T73lmyZA(4s6^@>Ep>X*$zkBG8T5( z_nz0iaexz=9=v#;~#LvgjObKc`QiaKYs~mbFw>YmC-P2JzLX|6YXsmX!j!q7OVZ=|+Z|9^KK( zUp5$_j8pH@j*~6Eh4((mAk%PAipfd)@B1#C;WumUd|iC+KV^dkAX-6zAmjI{Mo}?S z1ts)P@Fb4^AQLR(nfi}Msy1ntg6kFJE0#luu)#wsE4wbxxCvpuxFY_zg+K4Q2lz7t zY|7o8D&IY|dfbTCQPUl2RpohaaNjiJtMKQt?(YmwL_C#sa=NP#G{|$qHhWv5#~DOG ztD#F#)nXD8oCEYEWHW$+zNlnBtGH{w&5TBG5p(!(Kl;|7) zDp#v-(B;bj4Okfhl&4Xk#vIC+YpMP5skurQu*%FdVz;1~hryDlC`mYlo+6k4I_l{* zVbOTDW&b&TP5li&CzwMa#=0_UcU$ypzwuS#+KtoF^*H$Gi#-G6S14sBG> zW3lDZ5Ka|lbY5*&^oY6l9u|bwLT?~Szs??Vr@E^&wKmS0FbNc9t9`^51GB_aedHI% z(m~UUp2vxsuki9fT`TZSjW#)N`jaEc)q|Dl+@qtBo3vB2?Db%aqZ?XVQlqH)Y))`V zvH?Wg^?IPcuc?hZCD_(P^DZ#^>W3StZPwj*FCCc9>Ew{kPRN*!$g8O|gr83ZT_cCy z@1HYHgb{SsYt829g#HkrJs7BSOep@|)n$Y-xRuOYNP`PZ_g2h*1#)p#dvQ7X_;bj| z(|l*N*ZovU@>lL1!^E8j?#FVJfNf-^Z$zzwa*5~@IV>m@QQ2Vej`!QF&A;h1(DjAD zOe%Zv>wK;BhsR>m1jpik@BUTQtCOgND~=D;E`)+mA8HkI5s^wuyDJNrYR zZmh^&H&!2UZhy26%@Xat2!R|OA=bnei4ai@;5^|(Z<-c^m{OGL>_LzHImHSN*w5A* z$PJB1>h{3n!12G<13dh~Eg%oX!-#b3`)6}OyV$J68Wz^~$rrfYGlAjWqfZX@1X`%} zQJ_;zbD{*M=L-*ai3ESKASDAN%525f5*-9*(z&1sQv1knsKqn2Im10oI~8XC?*6%% zLdSs}Kbg`UZ$|7*fsIJ$nhpnO&abFTGJpC0DL8;Zak=qVX3L_1nb8|bZJQWq`!-!Ec~=zWKm>Mn~cvzvLDKu zL$V0E8~+vQAoy2;7P9)UuRw+KgL3I$pdGU~9R@h*)wT3b26|DjxZERhLFl_jf?P#2 zpP)*ZP#{G7$|S~bH%b(I{IK@S8K{5h3~|lk!Bl^~?WLEQSH0a@ZuD`Q1l^UaTnB!z z(-ME%wT_$izT^iqh+@~b$H$Q{2?8Bl+dNR>z|76>EDSBFD^+rI(=QUQAPf@g|ISRT zcgHj!;Nzns3BSLmWjC7j!DLt6)qhLO9O#vgv&X15Xb(di7K&TQFnx#(zEz5LT?u?FI|!KlG{l z82ejPoO-Oe!ZHMvZRA7#hj31%ex-860l)PArOsX`If>R1Oz!rUXolgD*b%n6K zv#2m5%==5cuZ9ny(ZY>JT9k0b7iU{UKU~rgDgif0r9icu zCd7?@Ecf4sEh6TzNMP@D6N!t2->QUPo?S9(js~-64rJeY_($5DU9PV`zOT;T=6%;K zDz?(!jGz_-ACK0*#EaSlgisB625!e}%SZTAa4%01USl=j>4p(RsH1B$#>}+Bc(564 z3p&sre6<8l*A22oy>fC~=aXIx^zTqF+U4fatll#0UB}H+hGWXB_UH zkVA=ON$9CFC4TTzC{ntUV+gkhd-|ypIdq%IV}m`d<<9En%+6~g5e=nlNoznBL@;8j zfJFGz-H~be2o}X7iXGG!om*k`netfw={lq3|NB#kX7TN#eIE+WOTyM{V1tD;CLcdd zqxPo95}{$}kk0l;1R!>!g_vtH63KX$s=0(Tuer=eY>qURraFS8i_Y}q*ix&k z`2;qZdPXimI=P{ejcYD1paB}wqXJStbCuW^3PM&%QeF)AJA{Mgw1Dxbck)J3b-KAB zWYa%Iz1IF8)$4G1s;lOomRaGD<+0IwQp<3AV9C`oq0CRh0rItFXUikSaIaOl4lpPj zWgA$w;?31crIuo+>cLxIplY<3GMd69WR=1{@|(S0Mmz&=r8?q=&qNy*%b<5SI2iU~ zbw0B6^wxVdy&$bw(ViYbi-h1vpf%Ztt{M?nD15HOjgdclxV|S}GgS~m(?)`q z+ZkAB0E~oJJk{+uhz6Tky62Qyy%vBlN?NtW5_Bvf6Q(EJ<(waUc{(n$=h~8eplGsl@iu~;V=6e9cZxb0QX0`c< zapvoAE99Kc?_*gpA1e{nl=6}`P+FfdYm&Ul3tg62|CuD(C48l=rRhUlexg$b7(or*O9D;C$xaCLaMf`P3x8dBEL;Rzd1nRmv3BDT0` zK?ROy%*(%l1HdAIMtUR4v(%m8kn5tBY-G|Af;}~?POdYnuKN}^gPuiWvbJ}JK@+(Y z>~hGUOQgJaG-%O{eAMgDK~zr3SfP?>pt zwG#PVK^1TFiRH0<)#))0J zH^D0c7D6HajTN*AQ}TO}h!3{HJjDHv=?oOW-!Mz0)3&rk27O6^c^OgdUy|91?{Z}G zisITW9FU)lpHlS6nzqq_@AsX5%zVup#n%^@N~RuGTta#eeoG*NAlbG3i-w&dr4;DDnK9ug~5j$KP6%} z2R>4~;~8biG7Db25?OQ{oC|>Y$ozjlypO{FOZ>D7n;IM}@|o2d7)0rRx(xpRy9CRW z8qu2leP`c4$DYCD@{u1@1!+xZuQiH>Zx&EXh+3tAT0~>Z4sev`?z*T{AwC#I+bry! ze)!VGD>igq2cCLHp(*UI6Q`V8*T-~ISF2}3uOMVyKbiYBL-sdfLPx}mGYhrr!maA} zQwA6B50V8~@a%-S4mmaJ!u*o^px#sfVL-Vin++*tDZorR$)II?{m6=$8k6rv1K|K) z+k7WK?qmrlIxn7<^DqnnEOHY#9zs&>ozifRKVDgBcUVTJ>N^F)+^8&VkKoz#SK*x@ zCR^OD;GMsvM4lr7aX4U_^3Y>D&BEDVbwZ;BQ=?!!b12pjbs9_e>8l|E3^omrw zP-};K{!{rkJah9inB7pbAIxs%Cs|MCJKpTCJm7C=wET8OdXxDewG32s{qPB)m7kf0 z_HrEu=Jq7o!6i4Bo3HW8Zb)+&t;t`=g72-;5=47Kp)Wq7EG4h;D1Pm7#uHz0 z9{dym*%IK_K*H;RIW|Q;jTh0;`)wPQmp~W-0AJ`J6n_`cP6IDvN{Z^YyJpTPO)M@;#C`_Iq zIn~+?hx`G405|EVDnomrQ{;8IEY7r2oMFNB(tr;XxtlgXCKLp{--fpy z^EpeAEPGBKU%}q3MTn-kE{dOiRIuMHyTXTz2OIrW_C=mbtRM0C4P<|{3dtNoKwzrp zJCG}?CiNNxh4OITLKG;~q#axpJy|+<0o(eOba;xLG)oae<8y2;*P3TYF(0brzjTHX zu4hJK;<*FFS;8515Dz&uXo2h}eet&i6$1O7(oqp>IW}oh{jPDC;MctmSU(NQe-u#4 zg*P&trg)#pp+M5mQIwunY<|AgFv=`I2vK@#E5TNY_2l7XwQi;mep!h^X>{@oP?=zJ zBew9y%D0v{2PMif6k{FN!W%m8KG&%z$r+px<5_uJ#=q$wK+Z5fBcC9>XX{QKbKb}6 z=Y-pf3OaV8$eayP4y%J5@>+%a&kJPRJoAeAnuO4CR8!6vq zr!dHM;0%VJK**I!jNBxVK9Kcj4u)Q=Eek1##~{Hs?ZU8fHg!!8S}91yzSWFA1qtL5 z9`lkIlJ;!c{bd|AYg7*vxDAQ0NEYsuNxuwp%|(O3&1GDg9{R^#HfR@r0@_qk3dyDE zrBJpAI|@3fq8761Bcw@|&CDBc`#u!mosxOiB)cMHCp>$0yIPlKqc4+Mj^b9@NP^6f zAlMBYij}?nMHTns@Xt_lBWA^+{K4ZhNVE0Za4bl3E(LRp3iqX6OJI}8rHApL6InAP z0YvLp7;H}(MPyZJkcbl_K=P>^rIGGo&Xg0Nbx7$8o+f$edfdFF{o#1;TX0?WAK@{cTPcH*#2)i z$iF@b&= znxUkz;Il`7F$$Ni8r(tB#+vW3{|yjZQdcox4_R&`(wW-`O*0v_wGLtpRECx3+3=`f(ksuptU5Z?FJc;z%%G>Ufxvs4Z3|l33ZDf~H=iue5 zkRKsNu7<`7ZwFx>-1haQM#)$0Ut!%~>c3H^j6%!-b3ug1p+{-oUB%k#;2r9M8a))` z5b09%s3twdR=No2&_A)phV#d3~!||1LF#Nb_T6_CD-1 z4c{=?T==zT3gKMD5@)C!euPrZ+Ko!92FIWCz zv!Lj;h-(z1njs`|;6-)o#wg3GV>QNfhQ%}q?3;jVlQuCTM$~%BC2GBaSe&MebM+Jz z=isyh;|*0x!27M*^j9NLU9o~mDt8W()2}`6-~^&eMrPlE)w-0z)u1+G;^xLZsYX~P zZ1(PuRW0nDE(^L!IQFZz`qW9;2Dzjh;1}Sl4T`qkaei8{=^&EWY1i@YTH7lpah34V zSGE*csvRc-zBa(2b&IKL0?GFt6ut?d|Ce_kD7t5B1Furh4!Zk?S!ebd9{ZMj19-~= zv&Soa4=ZyIYf;O0*1#7M9}lkpCyx*(pAd|XSCofG^rZkh48wiahJj_?oeEc6?b!H&cE)bzlIEt4X6C}e=&o)q=EnBuUYVI~Bh@V6N?M+Zib2j0#eG6_KX}u0WrmRc zN>}97)UMNlx@3{WrkW-!%@F>JEZjUu$M(tB2lk4il2*1S%h%W2Q<2xLfb@#jr+^pr zd1deZqt};`)|a?|@*Mx!XN>2H)|Y>;R}%r=NjXQ&(lvYYU;X;!hk+vYG4pnhV~?*H z)7j^)Nx3Vxmo?TEO(Jfq*BbpyA`@-P6BC)YN9zGEDf6#SM?J6CBBxp+M(7%r$oe>PGA0IqYV$J2fW;`zd&BCFy{)mDjsTwMzM6l+g&Y!`^1{`pSK#sX5jPuH&tdUhPJ{V(_C)sN3!E+)P7B>iSSKeXARYb>=S;eD0sng^?CDRICmx-t1?p z<;(?SKY#X-XxlTGxxaAqdRz~9$gW(ISCRAfx6!#rwxwKmioEV#hqgTd2RdG#PVW_B zVIdbN9pb06Ezf0PhJGp_)%oP0S5Ijj<$Dr$&pg9<<G< zsn0%^2*>|uZi3y7<&>TDPb^`kB-Zy?+LDh#i$&p<>(*PPs*}b_6RPWz78{p8dq2GI z8OxrZBlP`aDpr2^yS;9@+wtOeU4U=GhkBEs_QT7ErV96~Jy$)m@s{zNvd?i{v8%8# z!~r9jrh3why}vhKEBxDi?TV&)*?1RTj``+m5(-vC3bGJMS`vKv;=0!APU5naS54XZ zQiXDs!gH^jF>fdy$8`T$1PBlGbqNnsz*~*I0O1QC3Z= zZTp&pJcD}ww@!ol{Wf18#Zsscdu6>L>ROMBee&w@d5j6R-<8z!--#Ma)bwv;QdjJ# zx{Zf(ve%1$BX!oE_@-7AP_mav8`Y?1!2t{|kC1uIDEA3MX~cEohWgn*&_MeSlrO&Q zH(?!d_B6)6dEDoB3?hWswc)R)iwknCXA#Xr&B4`DmaowCL-=o)giV&VV^-=?<2gr9 zNDsMtIrbtWFVh-VVMFVu>x9=v;wb;D)v!^Pkt9|n7FGoBI=P^vsnK z?Ga{aYnKR->nbe_p#1HS$}MO!|K@4I{*r7KWAe8Rd6B_Ib-13>C)1vNYN8vzpqt40 zZgqyQemDUDJSLlZ~?*0^OII|kXb%~`7Yr4YvDtXZ}suZZt5IOhx z?BBmn(YiUQgu_uBq{^Bo7rS zFXHj&RoL@&TV5xbGS;X*nYuVslePkMCR47~MU~Ku}%3fM20`T)_$$zetXCN6+~Dx4k{@?c@-x@bZ+0 zGa3RWfRb2*LvcCo_s(7S$z`Q*66N6`tL64Ja``e|>qnMKRy!>Y5XHW_oYmh?0E7{= zBF+P{=E%jb<>?vqNoX(a^f-8q_-)Jcj7)3AzubP6+)1$_0t{O7G|_oFIR6lbwp|L( z2$B8cIpr?WS?nX0B$tYG#&(@>J2c5aa)Q;2d!x6naeqGGu3x`YSp1d{6=1E}zm{F< zJSc}Vnjc-((ivu<%Kt@IfK|@WrC>GxY7F!j^7$ac(LzW;Zk-fb$v}>OQz&&1((0p~ z7;8U7{=Uf3A+N^xCjT_nd9ypeb~d2@JgUCM>6VAl-Z8}dVXTnnPW*$t+;RZ)B16$S z9_GG80LuF+L_)~lV6FbOt+IySPHvfIq=_$M8vUN$POes8HrR-l*1(9j$X-Be_)Ufu zBV5tCY|tcCaq*EuVZ>N{>3xECNwY&n0Tj1|A0i+;XRS`^!D5X=I@ey7M%462`Cudn-2&&GYgJ@s&x`giVcCT+&pT;IpH_XY6TIXDf!)#$pG{ybtb zVZXOVEumhl93v#ySnztLk9a@RT7?5wndx$p!&r5xM^t42G2^I`D6g(N{|ZJmX>re9 z-{u9#2yL@sE|CiQqfju{a7OcI3mGXgNk3ZbD&sFca^I(_F>y%u$(|sR=}0zcIRosS zfL=qVGSzhSOqOU`z|DI)aUNDJGsi)Xn!Va{L*2p94tsb?-jwc;NU_EKnIVSh>bkQ2 zT<{Q$ATlo-@N?$TL-_rA2XynAJ<<30a`lxQe!PxkFMP6#N5O;srR}jw1ch^Mo^;`s zh&tf;zWkLPH-jtBu-`V$AyDWgn}8E)0cj>Qsd%Ks7n|yLG8jm%`U!s?H^!+uu)d8N zn$iF`aeBPX#&Vc*-NN#@eTgr)5y3HDOeA}csR@KVz`tU!aw- z$S4~#1u=Ns1b8y1lPaF{)i+ZrEgW&p^abfZ*t))im3cufYoP{I3t=j_0&R*TbE^|K zAdXQCn|EAX4H7F=DQrepD5}%3o+qr2Mk*#5RPS1z_%MKzAdTfDKYO266b%!)*Jn!s zhUd*ug>T2Uk7VkuKE|JJzQx++CtSDk9NULMbT4jg|kIVDAsWSRRwB-Yo z%42UJWKE%juNkBI9$1CFM3~&hkh1g`_9UbyqVO^&S^3%};bZ32eLhVyD47wMLH6al%=7KWVx2 z)P@qb?%3hcn%yS%eFtU{b}#eOdVfOysZDXbFtJ`}hSh!9W%ZaHPqhWcHIE~Vz-$lp z=9LI`>DfzN&|lfVym7q=zqVSQXlsI&cHxboTz;}D!M#}u$AN|E_n)YuT;@+ecgai} z*~j;HHDp)n_YjxjsIAV{cEiQ}7CJLi`=dC=R!>%%j{AU_y{xlR%SzfdS2lmA^CU-n z@4|<|0z&|6we=uVXW&f~tLgI)5!F(EME1(%q|d5&TQ&Z8>%Q6Fp%Z)NpHW#qIZmAw z?}ow-gJH2n>={oy;}|5^Q#%-nc1Q-3XA@yBSPvVqdD`!a%;YpCSv+{ujleC$w#p3f&a)P3nJ*SRwWCS$VcsBuZin-|GjKHqI3*4NE@> zwLim(REeHUuoI5M&35=TrR__19&qE9+4V9uvlPt{bUWD5 zIukLKA~kCl{&42o$**bFI`|Q;%K_YxxeTA(aERCj~axH8~62GN!$EciEFL*%1f07fBzHAo9c2OQIffbDtgq zv|(+3MBOP{3-;W_J#selFeXFAE#k>%!YUTZ0}FXjg_%**RL|a5w_A!6*<1XDuhltD zXsL23T_H7LUtH=bGxSS((}Qkhey=ll4gc&^TFgfMR~2O~c8Zqz?sHcxwJ7FI=gpPE z{Xf|gqXGFGr8TbYKHtUsHa6t>Y&r^=V{D53W?DojRLC|V2bHm_y|tJa%N1R5c&#Y@ z=VC*7-hA-ji9vA3kEUY!CeWSmX#I2kg8E>gh{%$|Q+_IYaONE^ou?3^ZkWn=Ot207 z??It2fD&yp(jxSgaQIHl#=V%{Aym!kM3K6CzwePTKu z^}CYWMQlsP{4hDs%?1U>y%x3$cL5`V!|`@1|9lzxq$p z8wC6QCuy`i%JlS*N||r-xQX!Wv5)Z9L9ngi*0A@)`h6eEk&xddoMhH^cD|(YkJfdH zjuNRGe}xNU+s0-Lg2x)EYQiJ_b-o3ZL&L0`!{?{UC`JgT!U`N9dbY9-gh$bRDXq0kVvaLNLD&!Abd3-$9{!x4RE{GL8HQ|MN9da_F_wL*lRXg~$o@ z4w>z37XeOyuWbJAMGgUDV2}!*jsZFx=hV1=3xeo;A$bv8zlTt5Lka?Ms`!bCK0M~# zvtKxZ=$;S8J*Cqj3A59^a`Mk7Y`ZKAv;&I1qVXM(rsW+GMmAVTUc_GEm-*^^Ob3eW z_*d1UN*COQ55+?1y#YK9-ue%mZV%kl&${@{2f0`DNAeGxZA<8BXM0cbcX5OTR{`Zz zeE|lm^(9MRpM)5QM&79&E)i4cDex&QU_U_OXsJ#=v1;-WP5@M?(p!m zwHv{NFlwgxJ!>;G(05(2XxO$gn2`KF-OiTwEKt33MmK2zgH*!nKJ1IsLb=M<%AS?{ zSer_h5?|xI$OsGx_gjONqr>SG#4Uq`n+{^{CA)~UYI{Wup0oaB3Fo4&K8KhnTd@M| z2vp|P1y;cU_DX?x+Y+K<_9^g~@-gM`MwOBvOlAuE8W;RL@&$y5!51wYrn>b`qTKqj z5-hCEYr&MdRO`moR{WsO67Su{*KxZCmZW9;#l7tNxDsijd$u7>lGQ4fn3r(LJVLsd z0Ncq!|N3@4!T2cl=+%eENup6s+#kM}zN^7W=drGl5tA7eG^qTeZ8;Wun4R!M688@D zUeVT%?s?q@-*=a(v4FQ*CqNBa+0_IBJ=O&*MUQ1u;OSOSS}#n4M4rcQF? z^Ie8HS|pkdOzpCGa(4}V)dWbSKBK;tH?ceSN$!*E_-%2YiFWzKZuZpN$t0m`P3}#; z8m+6sIy9p??RHRQTvNu?!(2~6f2`y$M)?F?{w0ce_rD4fs{pnyTRS&II&C{a*T|Hx z#kF2qzJ^X5kuz0-7eg+>iR@fwOL6ETcTMetap$dd%I2K#2@2=X*B;kzDj+`lzn?r@ zzbdHXN3attJKgR|4aTR^-ImeVpFa`&lMM4q*2PGP&*`ncz`&Y5OQi9x8f==ER+r(J zd@$W}BU_Nz*bl9aw`ojol4PTGN z6lqKS)hh$rs#{;HF?-n~uQ3MRDNxw6fS%m4Ol63zleKnx^57d0#dK(UF&33(@hUx_ zT}@<6?uD)CLnTihsQa=(SBHo>4$Zys4c4^p7j7NQTdwu6u=$A=1nu^Re)Iu`xO~a4 zj`c3jDkbnUAmr&wg2$6PRjqlju^taoBY=l?lv8C-b}A(6Mw;TLL@Gb+>sd;oq3FQt zO9&nXi2%&;#zv@E`)4=H@fCy@9{IrFvo_IT{KUeAIF>CVy?LB`6HdT>8~cI>d*Rma zkV+!aTa_`!4~vEvjC2R?hjz6G6x!{V>j9c*pGFbZ!hj)}mUOCGs+9m8;rE-Ys8goj zd`8%prt{HLbIUM)EoX<>Z71$h$Qt-0+$-~#1GFW9P5U_7N_>vutu4HD(3(EqyOCH!?D5 zarW`x(yu4Nb}v#GM&9v*9ejs04`jp@8{|v+O}tAa*Ge|D^e7+|p)Ne@zd!#}d`xR~4f}0Kzov?|Q4FwKv;Cx3}n9W3=RaIPf&&2_JsfFH!`**B>%~q zUxQ0Eg!-K_O_6{~EP~snERj=@6;ST?Fjz5Er(;L(XMPNykXbg?SIwE8d`vsyU&!nN z7`;6k#Z_p^rf&KYIqqam|<55fUDzLOV zfkr}`VuKlWD2&FqUzILqOip|o$Dr;k_jR{>n4{kLIC$*y>&(%%%7AD90WRB_yK(Ef zJTZp;Z(Vrlq*Utn{P<~)Q$afwDeVmQwg79^?q)wl>5$6;K!XiDg8Y% zFZ4|qnV^s7RWJ&mzy#-$-Igg(Q2txAo9c6)LN5P~e+D!8-uI!>QiX}8aJn{APKIeg z3J*5oKh;Nka_Hy3Ns3rxG~~E%Ej)Fp(zp-bL*O0}*J{9A`VD-sDxtd>vr{PX4P^`yG6 zuz^Ml>~YM;&Pq`soF|pb4y7zyT?sPW;zTWAe=fPvi0v-}f>3Q0KX0p0%Ro>ade-)m zmy>w~1+MZ1kzhqKJ4Y3`y|V0iwFaZiD!VkqeYj{0_ZY26|D02EDLys0jDMa)j-5eG zWi@LT2gV$7z6b!LMT#@Gj7fkgzD77oTJ;GS{~)~iF}oO-wYOBTuY>D=k|QUr3Bo{E z<*5F7*!O`sbMRUc_>pdjc~!#L+bm4R@=#UYQKnT;dQ?5Ot-}xT8e?a_Zxfd~4p%)k zJxuru1Q46SDnt5h!NNpOkkn5hsis!hqOw)-2BNYb4Y=@{Ra*|BLJ{N42>uRY#XnS3 zUHE?Nc@>fr_bjucDTvv;oDw6&?8JBZsOqW^A+7Ciww*`iq)douNYa;N5!!#IY_ylx zi6-q~STg@HG55?Gl(&yu4ZB^N*KHVBPGX@cyaP(DJH1i83?Z zI&8org2j)4Pq{=EqWov1h1I+5J8m1ul~qV@ltn#YseJR+N!n*nuUv8V$57mC!HGny zX<`GRdnDJg9u6|cmw=9CspvcebX}^Vqd)zzq`x0`!jOPqeV^OD+wpl`rRhUYT+at# zv?201W1g~o+NjTj?dcw3n#?hMjLNk-S_by?7PJUroM~GK(_h+E9WE_CrpPj_YrY>c zuGGAD&y?+=S@&4k>;BnksKANTh+d$S=fJ_eN-*u~yqOyG)6q)?_p7=!%ifEi5}s`h z{jcl!y~DKlakjesWi$GZw={G9*AE z&fO_4x(D7?$0Jy5M~xNx42R+GrBlHL3CmRfQv3PQXWt&J~6LA_IolO4k6^A?7~ zzHgWQbR%ABrU52gUshCE+V9;@z&cNx5(Q;uBnnBmIP8>6|E^?sw-DNx*S-E;2z7ve zy9?NC<|ONopK`}uNDOl@oxssdggBqlrt_`zC12w8M5eW{({6Lr4Gv>k&18Bznpk@Q z=^4+Ka;Nr zO`{|s${7Cpv&G~O{MuzH>b_y$IJDn|1j$J1t8zeh%JMpKPoyL1fLBRoUhBlT3z*4L zF1jW7bBwj0LG)kO%}kiLtdH3m^jl+te*#$%yzs}*ld6;BQR_vfueUiURmS`LEL=gC zH0-t=iBo_3*68}1ptxNMy&;1L9P`PEWC_}F&eG-757CEh zdmnpKd^4l<)SF@SVVQ0KAQI>Nu=9zb3RN|8j>I&`+2+t@0ECfC_Y3TsiNt_@1XF}r zP#xyx-WdaXSU}=RpUCtnu3oBP>k+ESaz|+*T{=y+nW0hO1|V&%R>wrPFXkXeJ)6{c zbki#ZLDj2+;Z>M|Ao_UqmHH(CP_s#`+vBnL)f}&Jd5mtw%uSum;j==dy!RJJJGJ)Z z7&ebz@Y1i0E@}iwOIfFhG>o8tt5Jzt0$^JRK1Fj0H1Qwl9(UwazkoAWM@K-CEO@a3 z+{>`$7^IN(0Y5X>R^I~ckn@vpWo9b`(ydo@TEB@@d{+Z2re>%nKS$tZJ&)iJUPGx- znv$w9;QU_c$f-~h$cbe^ZJOU5+W#f}N6c^D55Oo~4}teAn4T=wf~N8mr&mEcS~2#c zS*Z1q{$yKWB6y|N6!Mi0qcNPGO4&6XU@2+}-p7(Bg&w(Y2@Da77&352m%vxh6e(($ z_Sz(A^wr)wCkA;(1-o#=M6dtw_c8w`h-?dd>ttA=7!JzgEhPf~m)i!!+6^LF|JVEa zR}l_COso{x2uKRVIR1>)pVw6rcvJnM6)QXJ<4i0q@3;4~Z*zK4{0MJTbt*HHfJMHU zHoZ?q!1P0tx3MZ0X?OziDf`kg9r&$D6`z`KP>`2E5HNF-UgKVA<_Gali4dQHU={(5 zasL_|MOgsQ+8bdgFRwcMoJGdPN_`_!(&cO&^s~nwr7lGRd}l|ODA7}H?UMr7nS|y# zWF4viu#%MJN=XtWMjOPyJT$h*KP4oF;(OB2jHi)zWdSYvSZL84igOAdA$LLXz)f!n z7bp=+CH+Sfk1i)rWP7e)GBwx16oz#3E%GY=E|NLx>BsFthk&s z3+kMz{}~)o-E01Wyq#t%3g(%?sO}zD?%_*BH6}*hfwO}{SU?@hn_>;1jh8@-{8Vrk ztRTKIGy9b2yfvqK$wUQ_rvKywTq1ZW*aGnod=)B=Q(Sn@O^&=Z3GIxf00FSvz4<-Z zfRJ#xyd}h8;|4Uf1Is}&CJJw>e|bPsxo1rb2FPl5C0gvxq{>L&esc)8wgkszXbMPb z+hUUoKK3Ar5=fVj==--1zc;C}JZsVU=A(+o2^HpeUR5~LBpGRBX{G0g2hpg!TA*zm z!ekzN;vEzGe&w>fGALIfh7HiD7fquT51F9fzDWug#W<|M*727kQpdTS0yiZ7PV|vUX*(uZH%HB52@R=J5Llhr>u=YfL+a< z#CHIU5vHgTISpTIg*#^(v@43FvCBLK{MDP9hWD1WAak9!u_F4J1n5+hHyp$@cQe$S z1BAk~L_LLi=$HYy_y)dQOT>cag~{ zUm;5k@ezyIg%UtqohF7ifGf&!Ae7s2;CRrQE(Q;zIDbbgA3Q0tkhx(6h>;rc%mq(2 zGLIQs0eE&7kV&A?3MKY{o!aGc!Hq3DR)94n9>`sv zQ-BUT2M1&e19=z6kAnlnlZkvZsDKI~Aq4D{*{PK^-p(h11K90MOBWZ#NtKYu0|%mF z{Rujm6U^{1p<$>piv4#M7EJq5d`+w=G@gM4<@CELm?zva@57s&b~+A0%+anV^8pvC z*F*Ro7pf4%(D_Or1Dxx-cWMrge}=<+5U`yML^odSre`PbgOB19vWPU-;l-s~EUZ z$Zhi7Z71+cmr!k}i<9oIC|0dLKRFC0PfYvyx2CUGT12vV>=Gth_@GTbbKe{=7DV7L(tpx@iV9$RiiO7i9}%7ctv+=^XMBu>LaQB7 zvDh9Kd4{lq->u^U_0Gt zWQvT~e*&0+m{q#;iNy#4lhd!`12siyNvKQh95Q~}1 z8M2KnOG77_pfrIkuIfh=$M1&3UJ|XHon*1fZ-kpT6l+Qb(Gkj^eYFk65>`TSJo_cV zVL$q%vW{^-5mE8FL@yJH#mM}b5rMi&;)KG==`1|lG?!0I{B2dC#oadtRw_YWAp=KbFweaXNlM`t2h8Tzq?=WcftMb~tT3 za1c`F>V%DNqWpacUSqSKj*I1}lPI9_MhKT6K|dM%}$ofc~pr?*E941ur%J2&pa z;X#t@n4LjwE6oG&KoCGom^e@(nkTV(EEFCDRNrZZB^qxQ?RfH*t~RjkF%-LMB&K6fJYWB=irjs-$P}Mu zqO6f4|N0N0UiM(~E4cwDSrLK6s{6&f(j7|(Z`?JOpQC?$2BK?Ck3nb#`TM@7<4Vx3 zWx!G)A1cbJmkH=jnw}E~h%^S>siSSi6R?kr5?2?1fCLiGpzMeJiJ+}cNs_owaBN6P zR$J@zr$z~|S3Y;%+x{LgO2vSpoI{$3xJ4x)i_sI}fIs^L*n$4Qhq%b9n=N3?9856l zj{5LBAuey{@8B|3d>QYaP*zV-4$CCwcqKLZ;Mpu0R z_wtbbL{!{)FD2sw6;~O@9PHvYN85H%StB~d8tm#%2LYN6W0%ju@*#Nj8yH;(c7Ua` zFrzr%t8J_vYAG6qa|#K&JMl9jvhi*r@$;xS%<>Hkq}>gyn+-B4LSeM|vzVU=x5CBv z-5bOuxVeuSlVqXR2l}6O@-1p~rsQ!3MHUM`?8IXo$dVI;Q>0Xv=dZO1ewYagw~D^0CXG zI@kWq^5HW>&S@&}dtI@tS$_6b0w>E)zHMLB=T-Si91JL$O))!(wUdAyQEoZZL=z1g zRR&9KK*qFo*;{AOyRQw12Br6+jdVTp4!AgVj8_3y_T*V03}@UdD7TZqrY;Nw{E-b9 zk$aZoWK8lNpIe;EO)%1}DwmZuz;TNzxrcL_R&k%3ng!xo9=a1>!^i>2v=0K`xqM9R zsWK6FxKjjuyjPTJ4+3wm2{WLRFIRcS0Uw+0qJaX*Au_S#BVBwSV|Q@!Ohv?x^GqQw zXOmSDV6**&JfNW4u?j%7#8##tj$a?qbRvvY!A&bbo&n|xF*7_y(bkpCfI6%_u|N z;{6End%)<_{M#V3;`o15wPB{om{ZidQ)i?m*#+d)n*>p{p!^V-ubX7J*5^vvxqZ0g zf|Hxy0VGxt&dmngk|@}uu+xa=z4{;cqnN6h-;^J~0bp zva97sAb^LZl|U&FPz8s)-#Mg`R0+@DxWp?6DXuAo-=B1iKo-9E?HVRgUnGzz z;njq^2hErZb#)3FDPjtFjE^f4*Z_|2xJBZv0`{QSw{OiX0oopPt*i&^l@-(j2EH_I zfI|)V1R)EYB-x0FB;g0tq9}3F0>u)E@?^yl(j{*vvk~NA6Sb67fMeq0p76(i9OT5C z+uETAPMM0F3Mk*Q%fQ7FsDF(4f#?Gq2000FI|{_C!pSJ9R^b|79E#rn+ukf9y32*0 z0lPOaXhrBTA?%@dPXj4yM&vhu>|5*?AqEh|KW;>LO%s(QdMMdNiX8m{?mhBvS#3zT z*~>8Z4OTE8l5Ls#UB(3tsxIVeIfgF|)VJ=CxFBeW4ht`60nX*E$~Mjfx?A10V%jX5 zj7Yz!di7SKUc`tqgW4HEh#u%*+=*+i94zdhf=vgiY7yew=Xa$c%JR`nyJMmxpeorJ zVk-#+-`c#U`?t!HM$W$ICrb9O^bh82y?n%9$jW!glTI3Q+e2F6m=g_jBcy^xWb(A zUOjPq%?D{ggb8Z8-bS$H=pwl*KVC!S z^^e&SYQTxSEgvGvf>=oeukZDvF61O3Pm0@s3&tL|g>};KUZY%qOn`9z zHS%G6i2JWFU}*^db_n3mNdK;WlRg z8Bby9YvfaC>&tDfEa{VPi+og0ptAP`_XV4ifB4$=6!s#d^?}hh!BV8~bn|53PMz{j zEMT4(@D57amxmyZ1Wp(IMFk-PWvdMGt}%25H#p)=Q~A&ihV0jJ;Kquf@pR3W8#8TZ z-sQT?y&Hk1ud0&iU0N>NOQ@L%ZDLvIZ;}}YwBlDQPf2kba)xs_amsQBaiUq!n5K7! z_e-WH#YFHj1DSEd1>Q5Wc(PaunvRg4UOB&Eapt2rsIhNY+(?)No}e|G{8_1T45zzN zR!!TzB;$MDdq&W|?mEhR$@@Q{K1zXa^+23(wdg$N2+f=Og5&DfOpR~lW|5a)@U-=9 zqsgLf%Zmg7O`2qXJq=n@G*cQjdq=b8F|?p-Xz?g~jINsP!NQoOeo|7)bfemHMaOBK@aMl?7y#K^6r{GyAcKl8{`4MPCB%sQ}F-E)QOy*Fd?}fQ7kSB+i*_i(r#PoYB z2>-hk=VGeF>Urn3GSXl{ZgIx&Po|eo3)JQp`wXngFWo?l8tPLVOygO4z%>Oi%9=EpeBSbp1g@BY;vieKER8h>hg(zYh5fK{OiEJ89ctQ^oJ!sf7z#KlPu0^v z-ez9y=Vx~b(#vX)*=vm^+{Pwaa%kHV&Gpv<`?jY)*O6$AFa!yGSWJPLGF77s>sxtu zhWjXm8K*s075_Q*QzTP1DXv+(n^ zR~I9o>wTB+htA_YIqjHDuoE9dImuo`j)@4b?F0YF2PF?{&}H+u2F+Z>ZO9u6*^9N5 zjH*Qv+R^HfdDt#GO8=-P68z|Hx{uIWlSbu|jCTAW_)}1Oa^zETEHWQi>rv#RQcIp?o}; zW79Psqo#?Hm^#{@k|QJKcOs-u=7$S2_g`XWs+()-Hq#B2%zWJFqK>JvKA9T~6R=dC z%u#jR!^j*2qh$!2iWtsg)fUlZIki$$0T_hIR+7cTLnk*`ka-P%xs zrJvq;94^bx7t5~ql0>ME#{6eatKX4t4~9vo#L}8s#T;C{Dj*QMYb_;h@vmFJ-~)0)nq(d-qZz0{B6z6|CDsH+b2q(eSlBu zsGVkYX_t}B5m`%pHEKF~mr-5fbmckRrx6rzabcScE^p2HE($*}ao}bLQ+6_D(2MqI zG9}DD!%O{8`|QDHJMXn$N~rkBZ@dI8sLpZ>!`<6#){QoLl>H zfa;jm4IkWVZmVCxfoz#4LdnS!TkDur+v5f-ia|bu!!ET~a?Spntr*?|+1nod-2B(4 z3>q(?77?F@zxSG9sql;0#lR4}s9E?{;SM#o+?zrUhT3%>5iat>AqNc7+4#xxtQH%h zvr3cP&DxWMaTm(^hA9nv;8V4LN@~WUeT$+5+&`b2QCzHp&d@meof0kYFlxh7Jcg>? zje29PzdSS2n!w1qBWwpiKqAHD#3_LfDt>T+(KT70AgGh+Ps#2 zpbJ6@%+k|y%+iOLa>>5s2?3-;XrHiNQuDKD)5_qlF~D7u7b!!`TJ4_^j{X7$Z8f)+cgxC|hA!!DV6>d6JPD8PM4k!&@8# zcky9yU?`e11nR(S$kgFL^&GZLa6r4%k|*Usl}M3svFPkgN*K;-q3qK+f+AO6fabDO z*xe(&;zNN9-7^R@H82Fi&wC|!iTE{x-z~Bco}_+P65K%j#2H2R#7AROay(&CuEny3 zqONjxo;RhmfgOqV%F=gIOfsk5l0;KTsbAp0bC8o#zTxuL9$6B-dLMLi61^@5n(IF~ zBIYZeV;6Is4~SX#_w-Ui*y@H{&OL7c2cF{JAM6)8>HBy}heXD=jvO$DL;y1L5B1S0 z_Irvi&Y*8MiLc(P^^DHb!{B=oMkq~X?=n~rDk_|^!m@_+VY-BwhkM;G7Ti%*Z=y7>VTiv=l}c~ znva2%@>ej#&q%diU89k?Gm8J#T|eBKFG&jssYY5gInL7pwldKM1ewNa#R&*7an-ge zD+m+rIxgw+@4DwzhRg$mN*zmO@kZj>v5YZvbefwMG6I9#;X$I5aNCN_eX> z73>uECTA0px*n};IPZK~(yL$2CT?m^WX5hwgh~H7ESc~`2mv8MeZ(Ir!g;^`SlX4U zIgbnh%Qq6-AKP6lDfPy%7ksUNGJlK=JmM%NL^)9 zb6j38>S10>lANL=SUqL=CoD=_t~tM9(=EwiA<28g`On1#6-`P0f}*V(Ix|371x1?y z({=H1`O6o5GbH!$&RtU?LKmNvxNFsn;7x~G|DeNc|JE)f`VLOYmi~cnoRrHlI_zEI z&1G`~oX<PB^C&?*v+A%d+715o@=yUR6VZ~GmouGeu1PKD9*8#EVwmN*BNH( zb*7?@l7l7bzNeb5_{{%4qVzi&`(ayHzQ}>!>M?18o@bUwl-DST8!Fm4X1VM+p4VvN z7(=K#aUL}s7%0W5l3B7`_l&_X;d5cp9l5pNdVvaMWS2{@3}_yj|3+49Ynl^o**f;K zrcTk+sZH?`qL-?n)5pHWt-~2SG;h;fK5(^AJssR<(?28(W4eLu2$xOkl|D((+%5%+!$?8f|At!Xmv%y5^+hP9A+yhEBpDjr<7p_Hbn``BzC;&WsyO06?f7?i;^)9Ba!bo@?URO$r;#J+mX(PvNGOrkOUFD24-h{VJb%us^+rshEm! z-hcJqDH$^K{qT;UjTk~IA*L#@O(v7-{mhoX($?4DwnD33HaX|&rqh<Vs zQ53Sp;-yHN+`%6Ks&D42u9ORybhfOra0|N$Sg5ePq8pPmY@&29GTqVY{no#Fh{E$^ zhZrq+dFb+UhIb?@rdsySPwOvf?7BBZvE^!~88!Bo9+U)m4#fAYy$ZTAJKl-8Mmo<5w&o}1xi{)vn6CPtQ|N5gF(;~&kmK@kz z*Yj~D<%T6Bj8kM87I(jRdK1C>7yd<8OSNVzfUjs@YiZwTEZjP^(5*w}ii>6BuN*1% z@G<&~mr9fVUq6*$-slNe;p-`KyY5@plzgP-GGEVg@sGVUPM3XjSg}0bJ=c6Is?0Dn zpYv3UIgQp9zY!7@F8783WdqA06lqDQ3TNEE)qh;!|CX-DX!4%ApJWJb%ym)RCX3U2 zk6(iMB40O~C-}bf3C22p@gA1bJ@JUh5Gbkh4k^V;@!hQUiPL$iCNdxDxblWxBUUKT zI7Y75*}6tZ%t)!n{0{(nK!v|T+G|Qw;_l_m6_*T*vS(OCUJ!6nK9=y0SZ|eZ+Up?e z8Rg&y+{yBVV9$WiEcEf4;xV_)|6TE=-;{jny*KJ2N-C~$N{3VORmi|HwEdeBFURxq zJ4LBfK2;TO`Aw--TAWY)qFDJ4o(LQ^l-Bdiq2viET=mxN87?*eCL=cttiZ#8DeWd^3-MDmyXJk(#p|` zY6>BGIV_@3Rq@e)!P)1_ZfR|T0)2S~zu|1=%u8MY_^X1IW7csn@?CA>Fy1Kflu@dM zuTa>Cj36Dp!49%bY2(G!_)J$3ny&z|W>4OA&33hmO{+TAg`{lS6U}C~X+L~{6-(Sh z*>6%t4{y5RP~ozjF3vZi&E2-{`sEXs+%t;1E>wi|{?QTPLMcQjQpoo&N;56ZD%;DRrN6#iJ!q|BuWz8;lilR_mc%iX%v z0+YBXHAS0i=p}WVQVbZp@St5+IgM94?she=ZtW8jI;XkycR47h{l`{m86vdSrV(1)z z;>r!+hpWCauG|oJ*TONb+yJPkqF`=Y8qSf;b_A9iaZXzVmK$LlO9Ym;AP-JK1eP0* zwXO&(H=Ne2nJ909mOLEZtv#0B;lC&hqobv+xy}0 zvb>%3vvPPFvW52uhj+I({qT1i@}gsezq{LyWr4h+-rDZ*CWRrHe1SqT@db~_unY7G zOv#{&8IWm6#?u=JA8kDA49IX6?u;xq;DXj8?#qc>R*u2tE=#sc@s?PMh{$lU#yoz} ztuEBxFm8*#_$P3taUOlRy>zcy^OX`MkMwXLlW1fPo8Cg!Q*ED~K z1tQB0NTSd4CMr%*lz?r9ffPm9?V?zS#~C;fy3C41?DlQ(v#zrWca3D+E#blj-3*gX z{PhUgP;|OgQ{+^1uUOT|@ViaTuHr4ZJ|2;2I5c}iWO!U>o^LSGIljUBAhQ$Kbw*?w zj`h}a6hdFlaf0dAF%PJfPJ|fjbQr~Tj0a>IK%=j$u#c&>cuVRnkH~Pj+VO*~l%?Xz zySWr)jt`7sfoAIh4!nC*nS#VUyGNDDaXN>fLAomTIRMX+zhahxt8E^G>usJtDYOHiV@7J2x0Zbih5#u*eMR{#{TSMb-Gn0h60MuY$c9gOBHJyDEQ1&*0}c1 zEDGV090tYP*-yL!Q z{2WCGycNpz9uWcTC<{UhOHbS@DvEByqT-H7v1%PPKV#SX)#WTY_>&Y#8&`B$a@h%S z=7#dfOR=m-a5$>Ke8uS%-LPaaTV54Ph|~~J95^0l(3ewVg{94K{|@I6IKku>#JsB3 z->TCU=*-2bL!b`t%V*-*n-o{s}V>4phQ5xANnL@ zIA9^Y`i&5h_%R;&w(C|6NeyK`c(gEA7+UmIE z@j9!vdZ|s8@fRh^dOE^W^Z7=J#p$>&vbiyGplmB2~J@ ziPn-@?N-Mk5x010`yTvQZXR6VTW3>IO-AX2RMVl0_)#|vU@fzbTiq{Jx9Y7F0ab5x9L6n2^;Rx{ zs<)0sQ~dp75p|thMGxDdiGq^iN_HDxDXw2T4x_d26j!iv%kHlf*Rc82FG}h-%zF7w zaUJ(LE@?f)@A}(daraxbhz9d9WJgMMQiR%iyc}CG9#&1ts+wC@)*V-WeNb>g&KdCf z><>lFfCn=}({Z?>$4SACTgPZM6<+PQgH8DW%g}T~3G~ba+n3bpJ!x z9XIh+D@lRP$DApM&)o-SmE7dJ56VJTS>&>4^YOWGvW5sz$X~*}jaW^mByZpDz5Sxt zQ<#i3?9j6-e}KcS`;9W>nx?3lzoAPsFwdotPHDh6JLMryq}DJa2X!wKB}ZDn`EBQ`SK- z^uBnn>MMfmoXTm{EnM(D)x)ead@5gzh~sm)dO3bEpemp$@Tp!M4+7|)g6^ts^r&sK~$j?tJ9&-47*S{C&BaMioW;d ziDgCSb6q@s-%%&1kfHseOv4+nH%MrXPh3{U>78)L6+J}N*4552JlL!ryL6Ui9kcK} z%QE;rPtRj;5;l{-b6YcKI@&2APEk~Ow;zp3QRn=I$EC9ua@^QUMY1*H7zbYu%F&N$^`9mah`7vTtTsxg~|CZ$H|3+PL{0;XIBc#wXU_VNkr%Sz`xbD+Bs~JXi|GvstAC%|Jst?rq6$^=Oqci|Q zXR&;4TQ*@tNDa5xVi0~5y0Ptoddn-_6oZALcfIH7iXyzm>v{cPo#B3Lif}lz9otQX zqpiy1Xg4YCgF^S4ZF0%h))(7dF%cYZ*8@_%W}J50_IaJC+FU#C^9a*%jzJ#U0HR+t z-@I@sZJVbk4Cl$uT1R8@{zP1a_;yN&SYv3`oB15F3tU+{v?*Aa96c>M7rx1|G!ro^ zl^rO6&B>EX@HxGj@@`o<`MQ4(3ZXrcdj#*b+ZOlEm39^`)H$J@Y=^*Z4nyy{#@o0A z;=)zDGiaPMRSj~F`inc#%3Bup>|0%hb8NA*?P{N^D$22{zG37Nwl{+DiU_fUR?fcL zj{$ykV;yHdSgrO*Rz3B~8^vwtX2v*Krn&`n!pSRHxW(y}p&QQ7wg47!IaZ8CQ=cnn zcFJlxBF-3;)Zq283XI%9yX_V?OLK~-IU|OL7ubZXk#9NZOx+V{s62l4cbril6HA)&1 zCDu)VZ-!ZjGH!mt@Y+y}PE4qwSU6!``9PQSUA%ob(AUakIA+!?O+c1GSS%d>^G`s^ zeW4WQw@%9S2$AiUCNH|cIH0MnwG1Q7p{cIb1ym=r&fPA8dz>maLK*&0$0iT+p{Sk^ zZU&x5@v^yw62in79^|7~Au8I5lUV8bp`4v~kV`lV);46SmOpURF?+rhZ4C1RKr?DR zyTCZ8t;JP@jMkgRU^t6)#3+fhS((1Q7PA3_rQ#>n(iKF3_*SkiC`ZHMEI8V9G@(+| zC#S?}Ax(0Ruav?=n8)$^R3T4sS1l)3|v|qILHZhI}g>MKp52fnYR3{n% zv~+q5a*nfa0Mr^ws;IvKXknm08pC}!i_*Y|{B9GHlv>##x8yIn{tG5rjBrOAz}wu& z9F*JGOmBcH7**eZjM8V+$OrGK+?1|y452?lTL7D{ccLwK?5P|*OHxZe2mS6Uo}-t^ zxsv`W)o$?%xH5Q3M9ZoQS<;C?uW%zA-dKlej;>2wJ7C8-@}goHcwb`uN+;4&5RW=XgJNPk%R=QMthvYiHE+Ag!%3+H7rD`x( z4O@kxGAC4^0D{J$?NBz+A1N(m-yMF^k=5cCDpraY^rngc8K!>)-p1+;?}Rh(!$fql zJXDq8!xgaxkN^P)XEi?nCda}KCl#G6+9{$)VSGeTBUM zaQP%g;7!)!N^_#QlEfz7>!64%+HjO&UDW~}l#F}DMcn0-u%Y%5v^7h$!l0jLIL zJOZZGfskIbUST5{JZau5uB{Xytq)hW(|M^~2S6yp0uF}i!4?s_9kOsy)(2AGi1(;U zKJ1@#L>C5$Vkkwy>A(03<^n3NUwin?OV~ppC2a}Q&~ZVT! z|Kg^yqqPlu$D-O0GX&(%#=^(lzPWcR!a&(=LBm18>iDzcE^0^F>dNqY$U z8kEX&a=R^G3+DbNWEH{A3QqwL(n{rs*Sdw8We`^Gn@y|IgXi@a#+a(`aK4wAa>LwO zfs)dRz6Fwedue{N>=ClFN1Lf`^lGKfWW~g#DQ* zWoSm?wgR%EBr-m;ge_s#jsRlxY98vj01N{IT!Q5>{4eO|YEW@Q`knY;MV>FhkA|^> zfFx~sF*rP1oz5DE&-Eh=(zHU$V@;jXnGj{iXeP{um{uoQB)_&sG~{Dx@avKNgWa2n zrUpwS$Hwv2P$39M=6<{)lAiXSPID{gZQEe1qpA#PGxz+vd6M?W3Q7Af(~`KIP2X4+ z5O9ixDY%M)sXZyGCG=1R&ZNl^7f{V@m4oSKI}jq=Y=FYti{+qTX#&(O-|N{eaGV}W zrAzhBlI2EyxyiF5i50H?(?t-QKP07)JtgK4iFQop$%=}G4 z{Hk3zk6pe|+%~nVsF3+L!TZw?#(C>=QsSYvz8EY)c`TY@>=+a?@_3Pz>ini;my4AG z|E3%r^7s6v&<*-?eEb(7o~dof>G(y-Z-0!+hI$*Hpwj!KU&Q(}R3s$SIH}TO%x{zw_*l%OEY+bQ=B8s#4#)wELVyTE0x*w) zZR#kG+ii-fSYe_%pQw?L;d-rRnULFoFP2J`;m7a+-L9mR4x3Xcgd(s4f#|svWt-MW zQCGG-RBsD>Q1lDk*OYI#8Fx9qp(@nqgT+kcY3=r7`GFjRN|bYyivIg7;BM~gZJt1p zZPrXe{OU2&Xe$+R`|09l8^~BMV2!_ zjEOOcxbFJOgh;!swk7fg?Zz>Wdi=u51#IvQ)w$ZkIn)krcvSYnKx~wg+W8Bs&x#k=8Svv1)AYP|;!%lN^zpgn+9MGq{<8qB4HFyqVv$S& z8#u?tJOxj8;&LR<+f08*g&-H6ZlMvEl%zc3Tb#XndB|)xi?*cNDsyBOE*y40BqL2X z!Sg8v%}j+IcE8h@=o-gi(NH-Pw-p8DL=4MDPsT9=s08uM=Ug4NDJCk(j$c&WjSz1z zvB^)A5hiijm6$pYXMMcxIEQDWFwBk^=VgY(CSfcK+r~5vMQ&mu5jvtxw0X{U2#Ql` zGuah14$JP&Z=ko$8DHiMMunZEf|1bgw(d=e9d!&el$zmESp7jN7$x*5DtF}9IB=V5 z%fF@4@;p58Gp^_Oh3e}pPO#ViGJ6-FxP@;OotSc1EHFS(Vr_u$Bf)ZvPsc!|ihUX$ z0u>z7WGrp-7#wf&{2>!|p4(IR9_~qsnUu$Fp|TKOd+e4fkKt{CrO3qzfzaTS|7^WP z?d>rxz%HMamL?ccs%+pZO<59n|2MF+lQ&kDkFr~W>v*g+Eb^b&7HdX z>>yZSj!}sG&@9%&ONanon_UHE5x@&dgzJdq zFy9E%{1cN)$IY<#UBD_t{H_7xo6#G^?+BzoRbX=Z*wt{UZXUZF&H{LWIO0y?V>N%&!!W2jC2etimTD!U4d1{clhr91u_a zqGUJ#7|wNmrG#XDj7lex0K|$6X$}?8zQs0ghMW)-ZQqvm1s;by+7^c-CBu-}6o{KQ zJqSqxljXMg&NjEvN85ssLCMjfkbaGClw*Zf*RI1U``5*+jRheO%CcabSuh15JD^FQ z(|8<|sTwD1TM&}%5t*x_sUtdQ(-Tk-GTRn}OhWcrmplC;#MnQV)xj?6p}hfKV0aU@ zY2l%NQzl7)u5EAc-r{+kGfi!08|A5oa6IoM)N8$mHa|KebcJCCPf8gb#ARpnl5{2- z4C43&%yGgMSTE1K^}L9&>}sg zhdUR?T!06Kzzq`k?5R8`Ja7xP*{VD`683jbF+i#0ZGt0o1w)m$3XM4HZabQ6`~LEv zsQv(NF!t~KLXQoO4ur=yxA*ZJU1BLjM~MM_sb)p$9pyc${F3X@?`GLLU80V{hH15B z(%qOQZi%W8Zet>=;4V>2p%t|Xw+@uly3Y0c;0&Qxj1_}7gbk<22=;EU{^sa)L>rmP zm4|A5lh6uK5|Q1OQSgpP?PXO&nqR1us3T(El{`|lI;x1o=F{ib*-C{)9Wl^mnhe$h zwJ0S$#eWYDch4{>jWu;-R?Foa6oD%krK5mJ^>%_QL7gG@)47tkGn{X|1$lu}S5r%0 zZ0vOFIEPN25p}9 za#WoWJSdmYHc}~dyFDQ(h(eBjTFfzQF@thn>pfxk*&lMAqb8&g1%)eQMsyhVzN>!R z^kATMZ#AR~%)xlbbsNQ#!55Vo(D+GC8%$_(7b0qGz!nMYG5679R3 zMl>kLFIs(j!PVctphL}WMaN$IRnm&0P5BBd>L4IyMMoFda7;rVmQ8mn3iJj#P(GEt z$v~SG9bFL0X+?qdare_^0v}doxIuYeLfIeOkNB3!3rb}24vH?(%(e<8qwSfzgQ5Xs zn~5~G-!geg5v=WO*OAG~rmGnI{K({WTze(0nt|QJeFY$?J&3zh&||s$QPwjRJJ3Gm{6(%QJbqG0sdL+i#h?j=K+!Odi`u zCXem6OdjDgj!a&_X;>z2x9eLbkA%$R?PfVMd2GLB@;YK`M<%ZW_4ml+?e_DY$vY^Y zzwkFa@0q-VqE1CqxJc3VOddOtnY?UL4M)o|c}_SMs`mFxUQp6~ip5L{?AMveBjw2C zb%X$qOdi{BnY@lj_L0eB`^e;Vgbm*^d89nUGkG0h#LVQed1mrD;)q8kkL@Fq$M#z$ z?~S5gj5CwR_FE>eBW<9NuJz$QGkN`1Y4zI}=9$UsxEA!t$I6( z*Lx<9BK(%g+pb}M&*TLq*Zo67n%bQGG@5^tlCOGj`0V~l@f`usPtVv+5#FrMM{9vU2kJB)i&bpwqb>qHq_*H>ZR3u=;R~W!YXufxeQ_EpjZJ$oR=hJ96aJ}1=W|r+IWBz=? zHg`HIu-iJ2XY)O9WgMl_Pc@IL6~hj-MIBeS^I1uGSEqmMM7zMCBi)@8W${L_t2L}J zWH3kkys|K4z?WjpzYUODZblk!6iaAFWe9OD80}VRNMN;CX-FKtkJ6C9V6f5&bs&QP@XZY#!4 zSqaJ`zO}m#tfYacMg5gE4*~FERS^MNWHClU#wdt31E)f!$|^62=W}Oe25@c8iD=C- zqf59K)lU?%@FQ2pOG603a`)pG($M(^ub}WxTy|xRcYw*wEMFN^mG?OW9(K+Wm~nZ5 zlTE^9SK8z>U7o72dAt+=^l6S}2#OI@ufWF@lVCkVe!%Tjc7de`#4ssYF2ONy+u@1Y z7^UkpdJ5y^B^jw+yl7*Xvtwl;G0#@?kqXPpLbz53fCJ%N$`ko#A{agQ+b8z)jCyp! z>*dxJ5Lir*dTNh=Lp)w?19e4g^WZ33IZ?sUHkHBgHq{?8A()haqVUwhsJ9(a@~?$3dA_*g_yZ8L)<>7Dlx+exw#gwM4$<7TA5NH02fs zKx0@>=edP}o3@S?C9>h`$1J{i)RIb#*0M-i^-ct($=sQY2Ftv~q zsm(3tSu1L(g#mzz)!)|doih;N<(H_6J++V&#l!|seUv5b>Z>82L~4P3quEkwVE{Sk z%9;}PRS8J#$cDqKD7CQrKCRf0TfO1%ED<409uz_EEB#4&$4?!g`^(B7!!h3;}t!bKfKU#s6JDe&>0 z-xMJz{6Tk$9liJ81hPXuh3bJP%nW}s<%h=CKZd2#tOg&$!lT8Lk4d=}tRwV1$0NKcNKOM)%Y&TR@0#i{oNOfQ8=9y? zsQ`WR8;F`S44y~g@OdTw+(dyt+QT73g0hUm^nzIhM^Nb~>Q*ETx^gS8YpyVa%9H;r z*TY#;K!TE|m2ozNsq0p0-3$mS)=!oygeu(shzdYM{ke4g6Rv8)iDDp?a;93n+T5 zW>q^-&f*8{vJ1lWd{ap=KQK-3Sj!Y$a4tp{?-6YOjLVQ9071q(%(_A8G}_JG9)d+{ zMAz7DbBQZaNHMDY7htjw+>&h_x^`>u)W^;wyKteb_u?5`K&x@4wtrSez>BGjH?Y|F z%4M(M$*oPfC9lAd(xKB=!Z=emhQx^Rc+7f-ck zJyu6;1FbuMV44+eK(m-z#!m?Ft*Q!_oq(RIto7YZ?)XC(F^bEik!Vkx>~;q>AGw$+ z!&$IZ!wQ1D-eUW4zZ~q3s{v$|Y!AZ&ND7fX3=MEg+9PZ~Gn0_K5@>)foiv=YXeJA> z$SS-#oce<_m+4AK)zbneGYm<}e9_LkHbXNr zLAi7o-IXm0v}@VqL%ek3~Wk#3a%I2|W98l4FcSQ#{Uei9bR00)u9X32P$ z6u6@XKB})zSI&T01SsTw(BA-y3eU)J-O{(Rdx_0cA~sKz@pJ#|F)P!iru(Vp5fp=J zXuP|x4*}v$vnhQEO>mk`!TDPL`cAJ27)o|)&~85h`11C=&8u;WsX_wcbsaAFMVa#v zK<`1}-i|F{6FX%3sc0r8CU3qmc*E;J@O=u#4~ zh=MT;3fdvBIL7;SKrFhjgjEt=7AHyIG^o>Cq)bE9Q>8e(E#c>Rd;J(HV>3hOYh?&U zUnp3;KHe#Wts`0(T^DtPI7qi#>t%3a&7AE^&|gd5y7|h66z0b%4C4$Y0ernU@-FYa zF_Ui~X@_87rk^`S2MBxDeTde(@JS+Z0`k#Yw#nTBi3%^u!!{_Dg9lm>1>!eFPZ68w z;jZeFVD1N=*)ws!5pD)#oKkT+HeIS6U&?dnXvn^15}l4c(m#J0XfDg@B&_Z0qqmda#tLr z8)kikOBvt1gy$H2GHWrG9g2}H;1d@O4s<_EJMKar=~d&-C7FWDT--5@H*sbwClZ>z zXr8s4z8Anr-s?G6@0}|UT;gYN!~-K|aOt2haaVD?mIr6*w0@Rwv>1)%0%~>%09A2b zm#4HE17Ykb?SH!smuF1ft?s@S?yIULe65N*ik|dh{yo^rd@oc>(t9_z2Q`f=n*Sy< z8|7s0MTdvXJ8W+gl-m@KC>3{DX%z(QIc}jx9LqS1c35WgaoIZ$eqGFW?lu)7{fcH! z*v_SKHpTqc)WDx2CuKW2Q_SwuuZ>GCk8N8%7SI5R%CNwL%m1xw7Y}K_bs*pyB^c)3 zYd-I9loWVW5S4ezX5p2T-Cj}}(f|Nm(uTq{z$_+grUGz@^OG82Vqg568UQ7JJS=A# zVAhf1j|#%IPVq+#q93?~_@i)$dma=2Y`gdeMdFX9CSCH67t%is`Hzp9{HsSM{Du~G zaLq(b$dkf95skW2`e$kK8bbP~4%E2x`y`t5V~VwyF8#14w7Ic#A51~<2Pzx|EyO=5 zEpX$+U(x97Cofw8^yTT1X3>Uwnf*5Rv(tWWA_{XOP6`@bP(h1SL%gi*XBt z@FLF`%>N27u{0yXgb;Q@!;$qOi)-)|zwE!m=2VNGhuAq)$0wvI%$~~Gq`U>WoN}tr1evS6BuWb`6AA*afKDjA0ufLkC6j_(0Ug0Fz+eeC=r0`Xs81aj#A*Fu z7oTyQurYi(E?b2l7FQY;=*!?NP|5F?_T?iO9W0n|;V_e7N8(~%zISXV@=9zw5|*kT zh9nqTB-r@{l`v_?C$Jls=k8A6FC2zD`SeE{yZ?Y?~fK_`gCQIp4{OH=g^z_I4>f;cz(6S!B# z*nOBPv6X#iIoiiT3CcseX@RMo z%Jn12(f9-s+@)ScC&0zX9H$jcsoNZeoC4FJ(=pKCYM2O$c(x=Yi=j7!CuRK!=SNO- z=*hvbQjx}NlyUr^5SKL#7q~Tvy%Mi~nUFcex-ChHfgrGz3?x~M5hRldA-TRETx?+yPcDYQ;d>lE7}K&V&EZQ4iHE&? z(ZE1q7FNXdG^@Lei72Rt$Ya!&ZwJI=%ls{yKSDjpCvDP2SSB^c7z1}0XD>dnPbWI@96Su290w0W_&6;G$-@v5UN;Lv`1Z*{jI+9V%xagt z=i*|kjda+8NiF$$4mO5x`TMXKE@j%LJuuGAb_$~u;z|=?L0v<3+6F?LBg$ndc%jnh zZN^*H-lgHCUetW-zxB44I0_k^=d9YJi(juM;k8dgy9PntR-BSPbXWYOEIQ1AoO&(I z#7~O4MGDWOM^X{--1fNF@kP&AWfnMbI%?>Hp`4?7kX-M;reG%YlyMic1sD+ zQ=k+d!A+S>dRthJD?)$!X-}@V68Mg%zWM{5`+bf=Qc<>UMKB@-EBTo#vNme4?usya zvM{+daXUO_#Vq_=5!*P)O9ae++)ybvNXRFk!z4)xKK!m6ET9NA~)iBL66# zs&f1Opujsh`uWr^6b1GWGTA^^KPfqhpQAGNalOo>VyHnOP#WK~DNL`~ZON!dyLzK; z3U|?NN^C>B)kBs#DDwQFEqmA$_;Iwux>b8w*5`FX(Z03??QJ_$g|Q5LAYxP8iNeIR z>|^OR7t}yMR>?~alYJ;Y(Q?VNec7r^mwW)*9#h`t`r?uRoS-pVPnptfn_2_{9@0Z^ zdbOIWFB7e;2&lJpMfQ09n<{NPbfCgJCdt+H>MKAkcrwf`(H@rIAkv^s`&k*r#Dn+o zDIqVjDPNB+<_25U)a2go(C!f=HzGsH^pq^6qE#{wqh`xnO>c%JHInAN1XQ`uw; z#nCP*??j3W8&ZLHn^wT1-Bgx1DaU##bMP0+KKi+)n=+T48Y@7MRhBdEYPJb4IHo|5 zQAp^|4wWN8m%9Y=rlRr@!pJs7yX8aIo+?{4r8hPy;!w7Gn@wDnk{^HGBtlU(e4E{p z;UyUEr>Dr~B|a$e3wm+l1%txPe!l=1^ZO3$kO0p1`s}_?kN5bNEvYg7MG0rPy$qp^wxt8Tqvh#l&=_pzV0qp)`sx6xX2&+1pYaprBzXuA@4VRuXF+ z#s1HbY3oq2-u;W)x4Q-pu+u}JC3tG>DbZH=ovD{eqODzZe78hPT;fquqOILvuoh`6 zfIjMTh_n?>TIqU}Y2UWPU?kJ-cF43zv56($U>i$*BW)}d-qx}?3%tgR7>m2)Y4S*< zBxZQzFtP-SY*<+W6n0x#-kH4h30Ya*xxaK@$%v9`k!BXI)-#S@GzWOb8xY|6@rids zP`Zmw%m{qzhIs8V?1b_k_{cd>gR+LLI5zE`sMysu73Z#xss1__LO-4n9h+yx6dM2n zzc>s8Z~K;=!xjW?{o2yRK;-A17Kl2AZ>z9T1XOfbF${;B;smC0)sLBI5p}ANs=^by#_G7rTlx{%{zn23HT$1LEq1*EOE z@e|>8nn%Nm=R8OII4VJrp@nZyWU~~k_(U37vJ*D6)UKS@Fth{$^ER~PIFqwoiaNEW zW%C$YS~!)m9!mg=skR+uv#qeSaJBk6e$j|>9|q&My=*{^PxNjJviqQ%wJ;d-DA6Yt z2IH6F*gB6hxv}Q~dzLP*oT=E=F_(D`Jl9|6!lTxl^$5}!Y44kD)1z+d3Ioy}-$k|i69|5kr@ZQNB+zYM6H_tT zXT`6s!sT}u1o_l$9b0Js zMt`Q&R#JDhVR*}moJ1+HhD}yzE^{Mdec;s??a%iL3Iq9Sc9G|*nqnt6|80)e%}^M} z`?gr3v87u^LF^C%#kP)9BA-gFOWuwQiE(d*X*xv()&xT!kCpL4Jb%L>2Qo-glIuHc z8c)>w3@P|;Q+)EctPZo-lt`uV>15a^8N!h4M6Un7#Z3#^&;G0dQBL*9B6*71{)pKDjE zTDPB+?7-KzjLO@GwJ=9Z3odrcvczT$`>YU#lvt2Kp-d;fceFI|g=9mX&Pu&?vqiKt zlL%+-Q-Um9+eN^P<~SFEq*WqK#7h&Ir0jU<-Hv$aq~xSA(>1bHJ}DV5eNdv_N_Bkn z$dR=(UYZ%V_l}olMlL5=@zTuL?Pt6+vq9UAmnLG<{U=-zobJnWqq%Ay!Onpg99MFn z6z@x$I7H<>elhHJjyKHfeE*bLAUhyfW(G^M3U57wrCHoK1}K>PsVl6z_~UbiN;7fW zs-#e6!@p#J-)t*VIthD~O2jDrpk$=Qa$$}P;SZ)-r#NvHv(-6Uy(I(P{dAZ z1b!L%Y`2?n=z?-|9FlVXjj|`;Yk3XrJgcKEEy8Sy1k*qs4#AXQ$zkCdh8{Lgkzh)| z<$I)HN_g5i55bg>wspJ62+u2@n*j9;n!6=a0#1wXt9)ZCx0tjB(^@#)LNz|dPX+sThNl--~%$L}E zil*-u>OWgn{VxeAhBnkCU(Y8+p{l;`n?oTimo`+1m-J$}^zFAoXDpWzE4tQ{OSxUo zz$rpDmziQ|KsJY18j#IfEHz|vNTqwVB$a-zp7?VMZ+Y_PpzQtI!-e{j5;AD(caaC= zCndzt2HTjF%x_9cqWRP>loSNJJ;T3H@?3t6%ixt){LFFt4XU^z-W;XhMlG7=pOgsf zZm7z%`frpyMNrx6Cj~O@rUVvf1n#%tT4foy-%wv!O07`T5!k(U1f-qw<$c+4YBoY+xhsy`e(=P z?{6x0fA>k@`|LA886xbvA&8syZiVkRgt$|9QTTpCSU4l@B7DCwa-1s7B<$*n`-Vu3 znCWpQ@)N|EQd+Ly*WMuZ_l$uHa^6je7%1*WgPA!Og6#Eo2kx^^%F8LnWwqPToD7{D z4gwRHHB6#R?N;D^V8ccfSOC^;&)D8m3fzBp-8k}e8fuLz0XleHZ061Ea(hRVeuFiN z()K}lBpZqnP`nYiA2_(j5+c%{xA8JkZurg>x!;Bh^=0IKLso+Lg+TLj^DApgc^MDyStq>}UX52x?})usMeD25NH!UxAr2 zy_dB#`z@H2_fCSJ7`W%%srLkQWJO+qWUxpL3+mo;V^XkOuD)Rqimv)t36s*RaT8XQ z@QtWX;3TL>FDd_R3QXAq+s^FlgCaYg2~4i1Z4!Zez{Q{=svG>0@GdldHujg9(=_5Y z<>Mev8WtlsB8D@aWr;l4^E#HRnTrm5!s%9pE5WG4=CdlvgV`zD# zV;^g3%22HoYYH=@b`|D(4m20H{}oCFzah$ho6_Zt=kgU<;SY+y4@@bB=&Hcf zX9l+66adqI8Iea`1Va4}0j6*_7elhh_>LUZfP9g2ybJ!9bH{*+L18?hDEjo~7ZL>= zdF4o+hbKYl_aCe0V+uQqxAI>%_pWV#G%LSSRPg~R;)~!8zfrDB!bw48lUaYGAWxKP zT0Zp)ML`n$y6l|4Q1UdMBNAW}X84-tFme9pJfCWU+2cr?(n~J|dmWU@vP9%iO9WX~ zkXOm{$Ew7ZK5nIo)<+Bq=*&v|tTJJGkqZiEuz;}2UKf@UU%4spL{l7TZ%!s{N(o{4 z2R>1G@aZ1c1B&6^Kae@UtBQ5O51-9N`GhP9yAzHk%1$!e1#Eb^Pdc|4CzG5zk)QWG zbjRgzqL}vCbkK7yhp=zX+5KE4E#0`4KCqWAD0@prM%gcv+>&IAzf*EcLcCMC+;7U> zlJV3pl-!aKz<5l5QgXX}jZ1@t>U_0xutC|g1gjZ#?oZ189Q;nL`~bK>N54wR4t#w} z9az?LyYdtN9u(i%5!a488`+V|RsgKDL#vyN7T7He_jb-gT-va(7v0%Hs#?}CyO2GY z2GO|>hJx?!M_i7WXpGgpX$S8rdC5@RITTkmrt&s8w`wEy_EFM8{$k3s9hdww6lK~4 zN5Yg6SxC@{@h5YlLat!;!>v)ADNwyTqsdt>KKKRlKgTp?ovo9 zxMOYl8bVOYG#-mu-1D**q9;`u4wME9fxvJCB)SQe0|@#o>kGpfr%HiZ5Q2DOUUtW* zl06fb?_2CwoRCW$Qazu&IBN5RI9?-uF(rEV1#w{Z7f@p2p1TjoZDe(0_YvD?e2gNp zv|^CZyIajUfYMDNIwuKgH{&%tjSr%1?mf-XJ`PDxo~~2kR5D0J&;A6WjJk6j)d%Yw z%oHPQ8T8q56l>pv&fy$~4)VBoJ+8!laF*7EZq1qOx0o@$;EBdHUQTAEHrMVlKi4mi zdq9!Ef+kjbjq?-WknEHCfIOjlZoxA0%DRdJaQj^!!%P0k32F#X&($$)hPNSGHAJ<=^9hB7C9UemHSx^X{urhkjEk znIc@8yac@XyS)_Gf(Ob>UHffo&3(OAxIig$)XQ^IuKVnPgR9)bTLvZXoPUwup*#Q# z5)vYOs8qoaHdWCcj@N6B`v)R)WGPhTD0Rl+9RwsO=QAK6x!fiQoE@}zQE7?T=1#k( z;|Ed6ZmvD~Xge$vM*-OA3=%{%(a-}^vXv^`uzmTayZM5l+rF@FJ)clWlclqYS}bu} z!hVHzb#SAHe#^;@qlrz;vJzYy{D0Bf$I5NO$6w>gVyS3J*gYuGn`mpt?6%hJR!)Lv z>}V@9YqzW8vVyXg2~}Mpo8*(SnPDvDCiJ+b9tX*QLhGF5YPQ$5kW`eG;Ge5=qF6zR zHy?d}Y|Esgz+9Gbv#zUy2FkQqhRff5)jEcm3Z<(J@AwMz+c- z5WD@})JjIGIxQsBO( z5wMY^o)qu==KT%8KkVKn6V;Yw4~p!%*_I8iHa`j5)KGRxQltW-P5JI(?ozaBB-e;= z^jan5exdBqf32u9`Wjtz-im*dupdLJ+~?s4%HF?7&$;@qlatp|5gNlkYGRtX$#NK-PY*=z-Zl4VcD)sHNVP&Uz`fMPs!kiO6n@foT z>9e`|NE~tbY%Uc%NuSNt4dHE{joXLM#+1Wn!|J;0^w}H~`D{!`pUtg`QR%i}8R2!h zZCDbkZnq69SG4W6Vd0f_x@~Sjl!V&`r5A{)Znq7JH^`I~ZW{yv(x@NnQ&>AJ!6th!w{tef&|*NxkU>&BGBb%WAaqn)mslOorRDe1a_dc?8Vb;GhH?R4E- z%I*!<&80e)>AGR%q33knATNB>?Ycp_JE4*7xH4Qla~)9~8{-DyOIB7fPPWb3FFl*f*gL z{@sNA5Lo2uzfp2jO(g(-A>`D+gutWrlM)Yo_Qehgu!yK14Dr%j1bu8~UGNP739t!70jIhAA+{h^ zvn`{az=S|uqRY)oGoi$5KzP7PNIutxjaZ;azSd!~)sl;Y9)Elic!R90}HK6p8+u^0{hu5#7>Hyu8q1-$(y2%=~58 z|M&l)Uk#b&_ofWW-a1G+x!Z4)eLxY`M98L}l-zJ%-%>Z9!40&(Z^AxY0hsg)C5{`a z(XRR%Avw`fhUIURTa^U#Q(cm%1iIRx4EbiD`8v{Z?U{ouO=1N@)C_+&*na9hureg z61x5|`k>@`y_dDH;ton}GUSLt^CiY)f$4qQO{-Z7Olh*Tz?23`3rz3m75J0_Q=*_) zVB!VKTTc=b;b7JwFmVB{k^<9SAPG$0ODGGbt(wQO21NoBI|g=bf$42ic}RJwq7W&~ zOD&`id6FzI5uD{d#3dT4$x$RO(egN3a!{J7`+bN@X}h$z^tP2yWnt)DASPIBajBw0 z?z07||28FsBicwu{h*-C@cs?)h3-4WC2p^_4snUwhC-OZP_Pv>Yu=jU(ximE#OdKh zCV7dQT+8XpbSmCDtYxmi$?i0205(gV|$ zqv*rXjqV-_8~{U5_Bf0gg+E|f&x#sbJi1kIZ>Yl6d5TYFK_w=6M_xKWjwc2K!S*i!qQxp`Xb!U* z?d~Gu`K8Y*sh`!Rm)g2<9qD>d;ui?5il=3%Ki=(|J-*E}E_1fG8316r>vA9L!96md z#L(rAI44I&;herovv|&KmAlyU&$BGS;8>%lNx1w$IZp2!s4gx%ESR9m=5f5CJ6oqC0YZJXImm+(zt)<`trWA2R zzW}8~YuR5g<7AhFQ(&%w9*#rez!;|G3GG!_F>c$hFdtR$brjcd!UGTubyfulgP9!O zd)Nn6AVTC=9F>;BO*}Atv&9ck@$EidfNb$`exhAw@9qS)i^LptvfZ|Tp%|xjpdEJ} zXA8GnQ{H~;**#I-)R;-UDfhf5`s-9sWNf$MLXMLXl%fh%NN=MXrKqS5lAOrQC75z# z50zxZfZ{Wk@5&}K7|sECd3QDMin>#_utD;N%_S^sy=pF{B6}ui_ot%=GdoARb+AOS zG{cqLUqZ-}{sBM+?&AeMHT(4~Tw?yd@+fxys@EN6Qklb~D*OhmCgDg+m^I`SK+{w?op^g>D+J4yE9D8gEUExeP+noIY9F6iHZevgmV}fL z!f}pn4@0U_yT->rlM!nkPz8-wQ%+QFX-{Qtc~AA%p^yv?$Bf*>p7C8{HZ+PAGNw9uFXXmU&8z=>?z!|=9msWsM;`rVU3NoB?&-j>W6pnl0LA1X7J zr_4Wx%8az#c6u0+vK8dE;_L+li#qpj-ku11B~)f?uG7K5Wu9|u%mIlRhZX5bl$n#~ zV0!xYFmU?TAto}D;8d6yfOsg(u|U?BKNrwP)#z$lT@K3LzsOY!%i_pT2ba`wcjZFb5jM_ zf1_jvzP@E3m%8n!gIH{cYo{EKz%70b!Kc0bM)6Zbi5WTGPs(1Q1)lRsxr^r3YzQHx zJbZT1Af}We&#a2KtB6^y_I`qcB8F79CCT>)3GJIN{VPNp+8Bn=T32fs-GT!T*!IhE z+SCKnCNLo`EpW0!AlmH^+>#=$!gk$)9A0=^1e0Q(-z+Kwnteh?1A+$uV3Jn=+F#81 za9j}q2=(MEY3g@_lU#f^IKYQN+jx zp_(^E*p+C@q#^E!<$AWA)IHPe%2|Oh;dyXVpzt@|6H`%TtAv+_o)+{y{I{KLc~Q63 zBRADhGAbgO=jN^z83Fx1xovLnM(e5OR2THDUaHthl7Gi|Wrc3DOR^tHw@ z1>s^1r)j&x#p+o!vX%X&?G_%`cAPexVcHkMP1>NHeiA;{PCG6@e^Nf(6e%4IAssXt zO6h2@j`Sn4sUd!aF+@^28tg0FH&QwpqDY=Y=XeR1wyboHR#qGi>Kv^+!;U-a9Id!2 zm358=F!@7JXt2W1-Nq9);a2x_ zd@O2E#JJfrZdhp@t-1_cY8_mp+rD|6va%#O_}*-Y9+IaeK#35AR7&2HoUeQPW*SP^ z^QH~0qm>zsY@X0o!Wpkyj!SgyTMtjvYEjAeU{X@Yc;9k=HYIPF@_tk$lC5&QZHY#y zb2Qk1DLYE%Xb6C-BXth$SNh;W=iubXsZE`OlQ&c4;Ox@R8#)Ki1mz{^9D9AFbbPO% zG0c`~EJMoeL;?xQ-saUNik}oeMffbG{%q!t;JJB!P?kIoDNH1k(Ed$xM(g?1M-Rnf zdRMk#L@Fg=_mSzNzYyZ0ZYW6IpWg_1e3|_=ex<}ipFJ@aPc2S&uzhk<%m4x1Q)`;? z+YHA$$b`3=b_ z?b%F;sU{zHIR;9$E;D&Uyi+k#2Vxm!>NySV?_ApFD^on@S{mP@VR<#un4j=C`HOc- zLSg0`3>&n+5l}Hl^ZFY0QsZyC*8PwROO~?LF0B2ZI+2 z^7W~-?ZXljnVB0flBEyO4Bdb@Fit}?VU`r|aT`2p%D7M6m51TBkNGhQlMH&cmM4CZ zt?3N_@8vMJ6P}2iO7?i729XUk;a$b@gh9UnI{P_);Z&Af=9mb1MNOHgEG<{Kgs1lWb~jkHr| zFC@#clZsIabaUmt#MfN6WJ?98XQ^kfK9v3dCFbwnao}9nf^K#x~^fS z>Xrg-NCZvo@CH>7FDT?~BIM^K)5Pq0Ad_5kCF%OPlaSqEj`ypIbxofP>L zL%2rJptvgSXm7_Z^Sfq^=9%5T`HHbM1Se9_oV55h;40|Q8noc0OdClgem_gF23GXm zc5$%oQq8oN(sa?~F-ls$LQ3ehzG0@{fN9zIS$ zg5r$~+qd;@fADTGY;QE!^Xk-8QU|{;b#b-R!Np-m*gogc?gc>yHKg))>XeURUl(PI zMKr*DP8M(b?~}x<=$Vf6QncCMgCeHOFX04 zY91r^&HmU$io2!zY_XCNj1o705OYc4;CpU0-%n4qzf-47%Ay-McMVo?_<(8^W07;? zUV=mo?qqd=-KsmM>KNF?qPko}o@g44bDm_0C2pixL9pp^t6yuYm>h?8-=%m&j%z+CP3OpcgZW64b5G70k0?cc##eE2 z`N=sgG3NB!46_%EmizAo^c_{ksTTa*lw{rgD!Olfp@d=ufSK_tA?&FALMHd~D7w4w4`h+w76ix6`>~xve%$H}||w4W3X1qe}_I9kTJWgFU!{V~dV>Kr6L>(T9~(zX5X5{P@IZ zPPTF<#*;DHuY}ic*Tlgvcz<_DB-29L`>wY=EnG6uuOnVmL6|Nj*%1W09P4-ConU*i z{?v6eS4^!4$9kG(?wNkFe(BK zc9{Rl*rO`0N)w|hQ>DCeR2_E9e*QuL(J@mUaQzW9$zbkYT)iwdGU9lLO^`3w@5Oa9 z9UO}%fKEbd3ssN*K$)q%U3jKGinyg~_U(ick~NcfLt_MuRk^p>e83sp`?h@;c`!IC zvrEr(aXq})K&3x zF(wPYSj{<16nZ*Lv-33Xb{J=+WihU~XO{GP%6oOm9Gv#YKMxEhF}~P756gM)ro)mq zVR?J`@kOW)en3)@3pe-3?j`GI7cK{Q&^FwW?JEPWaVa|t(A_3otSmGLicL%{?XX`* zs@0=ueH7YaIjY08As-Ln_7I20Lcr7!xz=JKJlCz{7_WQt3{sEeZ@Bp4sMhih~VaYo86(PQ>U&9Y|Abs&Q$%!xnb;rira)&sfw|PO{ovcsU29Xj)r9H9X=*z8*7&ig!<(%%(m&tFY(_?#0g;%F#S&>pNv z8*a4Qp*nGEcyHdc_;ol4*UoC_)iwVpxJ!(=9d&dw&9yU+VkHmn)l~q^^AAxe?g;=< z2(IAPDJ;bqOIFw^ic!{;VP=bFGR%C*ZkFecI6JD8N!bb{N^h_FE5#aQuSdkwCm|Kc zR;AJYLJ0+OKlOvM6-ZPcufJ15f&3noR7zms=u)(weN$w?=m3gjRE>fsI_mmf89DyW zFfgRnPIK-EA)Z?(Lkx1Y*G+6LAf#;q?tyCU;E5j4+ZjC30s1g3r-Kb58u$pu?)|n0 zJxsj4jcJiMh98u@U|piaNx5fgqU>3542!P`V2igi%ef;YTVNBs>^j2L757F1?mJeM zNzeERPS3rwoH>2NHb3Z?fZUpAn)AB?j?s`~Wv`IpC%)GZwl2=Pgp*v?pvY#&p0z`i zK^$d=$Y*Eo6g^OGL!9x_ zeCNOA5d!1yPBuvUWk-GWc}5W?C2d>1-*=*s1SRt7Wy9#jN;}6HYquYy@ z-Y=9r`mdEWj8379NLY)z5l6?A{b1J(`U}NR5&EZTCVx`0OF$7W?N>@Z_0=C^>5O%D z>F=f>!uJ-I4g`q$8|CQs(*^hZMc5t6xBR34Yg+{Z;@dwd`>9tTX#F?J{`l9Z0>_2M zgJY;c*{?$V>z>rw`RFQ1L6i0T5{mI#3ZaGz>RtsEwl+ERMB1`3!+=ix={N&QdYv zhQwGw$(rDW##{+r_^;4yu8&E_vu%7(E`~$IQ>G9n9?`ZX5ygetjh+cDo{0KQ(EAtN zx_b#OqG|JMgyO%9``wB>m84uH%RLlC=}&Tcf`qcoF`{;wmgK6MScTWIP4s*fUyOPI zf!fa}DC6XPg!a|7M8h!mX3 z(nr0n@p+9WymeYZ5 zv5To>f|nye!b5eBN601$6MQMRQ>B{kv*Dcgp}V!pz(9@jwg95Ye8#=8_JVZkI~#;! zV%Gcq^Ssa7krwca=OfT{py6>-be8}SSUh`3ncg+g;Efjgkcy&ln=q`4m(n!sM6DW+ z7Vux8@Gs3F)4+@G*htcgwiW>o1SK#Z^a3RG&BO zPaDwuc>P_>-rWHxgk|gw-U_Sb5Snm%6hfDSq@C>cAs&0L?rHL7#ypOIODcPszfJ?Q zj-l=HXzddclww1RV*OZ5Mo0ohC00-bxW|rf7B_54<7G*mv&0>>0=d299Wt$XskDs4 zfbQ#K60WA3XE^_NJ(}2|oB=J18U};o#UFp3Q>Aj^aUYib0qCc?0`+}^!Dav8{o_rR z1AuviSBa9@b!T|&I9e)T6O(hbDS0VC5`^`Y)0^#mI)ZXBI0r8n)M^B1;4iT3iSXHa zTwCEZ6{aczL74H}gT+skInObghh0&-WvqXWIRZ=T8pE6_I3oa7P4P3r8+B*nU!l-r zJ>$bIuHWPB2KSH8!)QvTxUNPYJ7= zQkc>ZluBfC1vEWtVaG>B6GIxcGVm_OV7g-!bEvltjQ|OUgYhXA|4(p1PDtZ3h703@}hT6(D z7IhUXU!?rEDL!^wLV|{UP^M)U9nGRJz_+bDWb7^4!N!!Mv=+tr@u&`tg|O{;Rx$eL zIav+nha&8wNNe~UOHXMqVDSp#L>WC0RRIcPoZFwhK$qe*zLrp@m8pYUt^2zvdk?qk z(hdBR61sndXJh(hrS7^{RarsZyB&5%Qo5Cp?q8^_xQgAj-I0`s8ZPgrqfM>(Xv^-Hggw6Is6<%WF2I4cmy?3x3=$+*br0Mmu@T?A6R!w z4uab(xK9-rpz%hiFD_beP(Ihsh%Qy0c=O zv^)wP`Hhmy`m4vrg}L=J1l$*@IIvyFI#pDDj^*gr`iRoWG!M}_rVWSvXrx-XDHMVN=Opz^fPLsfG}4E^SA-#!{VB@lGj<4za7v@X z|Iy-e%SDZURhE+{_-$W2Q`a&Fhv2?!fQJh)C-D+2FD6;b*;H@GurkNmeeDW?!rWI5 z-QXcX@imAp%)Z4vI8kcY$wsUm)kh)U7$_*EKlF6j;ws=O975{TU06NHhbd+$2tvc1 zqFrvI?A}s?VI&o@R4H3NgsgSQi~k$LEVMh# zpL-!8vuPoz1XdjRZd*bf!mFXtPr|lWlFopl#JSx3g(?UqnBOc*!6|zQs-kK4qIDq% zeJ-NX7cSNO-gjsNO1JEoabqr(_Bbh>K|u#wg7{NEZbR4|@B6qh+jU>xl>X(w`tA=Q zQ?4s44ZcGgtejy;e$T<%?qPXgQss4>H|X1Jz5sc1yltAJeS^NuB9mC$pfAN0rFDa{ zJ(6*-d9~wmYXCcMo8x}8*HW84inu@ziZ0NFVD^1~qB+WWe}Z!LeSxlJ$AB-;wWh@X zyg-+d#Pb4OOHMG~pKEp7zT*OAS<8KY0+na&3sfLI$NjnHwA078<-2!kdNWMNTET|=zT;kj!F2|YY_Y=3y}0$k@fM2O-0ke?f( zr#?J)q#T|*whzx;yJWQ9o;y+w&mG%`=dLl?_w?M6a(M3AB`qL4cWhHg49{IdHqGI= zWBc&jvHjt>YnNjjtkJQ3cb+qNVBjNDe9qlf5 zlWlwMl5(uqY@eRHq@)0~*EA_u_YcoqyH)8Yd=hN4e6_3$4aW8l*Bz0r4%Z#q+jYn0 zhwH8(3F&a%0a@u!c+Cj2^x?WA<#62*nCWoc1yIv=-EGS8i+R3ae7f#PIb3%HhuW^Y zz>fMD!lO8k9OU}vV+z)%>yGGEhwF~*=a^-oUv1YNPwj{6uHCDDy6%#4oa0YEDdq_X z`HxVRr0iEAD(PvzQbGY}rQN5-c2dHA(-0B$zo6KFvmg2&B-=5^B@7grgI8Q!?_BA%wYLMbmvgHHA z7biU*Y%7>e@&sVQOFcx{1|)j_T5<30ks1Z_IW zj!}fK$>Y41txTSW>ycc`c>;hE>Xd!3m^!4+9F%%XNl%HbHjAB`GB2$h>yo}r;^NV6 zNjxrCKy?%_@;X_Ob(@f0O4IR{)8cJ+8A2y(IJ5l}oo3-D0A75U17N-ZV6FYdgub`^ z*cjVAR3sXEg~x(LH9IA zR(Rr?W1RNXHizxR2Ar{Tq&9KQ>6y$&FxzhQh2p zH`M?0KO|_!fYCRgZ`Yo8&fD%>+&PR60RnII=wcr-bNfnZodsfJckqcvhflJ=+h!4! znCW*~Ws-jcf7YH`R=~ZGYf1Lrlu!04o{EBTRKmiqy(x0v5zc8iY~kJ@I6L$skgRfa zCle`>uI<9?j}r?_qswq8cccgqekpULs8l3%McURAK$nN?r42lkcse* zhU(LFWyUYU`>WA6L`}0-5&rS6DVvP_Xx*U~_AoZUw)1t4{dl*~N;w0vJ|MumeV7m1 zb`nMS$4imB%JCl!5aHAo6#uc?;a=So1t#Phf{DjB(gej`JabE@=;hP4MuK6;tP-kf zS4p;rufQxw5m5X^LplU?n26BeOww@45DreXOyN|*b15;h?qH)o7Z~}K62jO92N7g?P0g_vG&r@t_o96bW_e_5s3j%haNcHo1RDz-y z1%jv1prjZEf~(O68Bq>|U*omQFo*`@|LqWo2FpE-1Q9{eU=*KrPXUGm7VWZQFgTH6 zxz|Jxar{q&aWt5;W#OWhxYs5EK^ls%m;3ldXCPd@Ai_5G7g~4xjr-6POA}qJ#DF;m z5m8DQV~+?X4!;+dY^uLwV4*m_~#9(F^{>mVX%~c{wgA=&qEdGmZNKrXmdFr92i^{EMea43Mw+ zU2+w8K0ffCmpeN!A_z{NWuBet{u}n}nja%f=Ia?it#!Joa*ARbdk%A#Ylgp$f$WA8 zzOHRI{wq{ExufkVXk!)ypZ%buZMluE-Sv~Qbr-liu1`w2PW|R>PsgOucM!;X+jsC% z6dGgS!P|ca8_;?1Hix0-+-$!)NEBDVp1I!+avQvD)#A0=;B6}|DE$WS^jK1q z-(XLm{05w0Ev5VhZAN%PuG`m+pyhV9;JWr3Y>EtCY}1@2F_P=VNweF4J>&Hxzrovf ze7HIPtd8wYWoy=L#=}jHzDEEd6pD$GZCu$f3FUT@-+<7NM;r;!>}vb7{RVq$hu>gR z!b@Nbybr>Zo-RrNPKMinfRl9A?1e1L3rV*D5hooYSJ`Z`pM}@pr3?vy@*3=IFRuaH z{A73y_5#Rja4eauRbNY}(=XVlLoa_+lB~eTFb!#Ui*GIlIGvPKFXtn%`J1p0dOY(B z<))*6SW>sFiu*UuZHXi)p&#_rf~NDuRpI^a9!_KzVP3>;a>Ud zX5-(#?<6ADlAmX7C{H5h#FY1?3Xz05H+Qo%1F$6J5;u<*+_>sEiTXseF^O>OjHDnO z`I&vcA=>*JK~X2-1<}XvQD74P_doyJ|Hs(#rF-mOl>h$!y$2J}Je*jF4@$h}Wp!6s z>v@^^@BjO5>jn!pgeM~ZGFSx&kvK_=fK$LDY!Lf5tc(3#CiS4O!Wi^JM8Q3(-;DHQ zq&{M=DuV01E9*f(LJ~G7qSzjrqyDMa@eI-d7ZV`k8Db)0L-flk?|Zusn0~S^-(%v& zgnBUWU=9>n^BI(`#q{Ms2V@N}wCv0Gm^jdfNwNJH=mg3GB#j&>pkE*Ob@ren&yiSvu;%Yi;9O)<{h^*tsr z>g!g#0T3A|k0vF5wt&=D`)?FK^->rB@;k+Sya5M@jq#HZ&wTerT?EJlv|`38vx`Zo zw4dBA+fa&-;%)>|LwPJ0WUd>LzC37)SM`k=4j9f;^zwkB|+JT9auOi@J-F2eE^!nfj%S;WwZHrXRVh4wE7?VQ9id099zFJQ30 z6|jv5g}r_&=KDsJJEXH)W??*V(_7D4%lN>h;EQ`zaqNo_SePW?P2Dc& zQcyMeW${3TYE`rR3g5e}b>IW045Bjb7fhP%`3YD&us-?(IsqvJFeL9jWglUN0m#U^ ze{TS4T+C~qvWeXE#Nl|9po zx*M_Ou##~rYZJz%o;0ZKO+T2f^?fWTgoOqXx_V{#8xh+$Ex4KS+x@Z3v+okXZ@IrTUqpgQo1o+ z7eS$mD~jwDQkxRlEi8ig#iag_Zvd{uD(5$Vt#sGj3&3AMFO6P?_kWLr{?f8X8b02b z31o?YIptI#1B*=8b4fghwdXq9d0>)KnZn06;Cd>IRoGv+tsAosyudDc{%`wm?-hqZ z4%7QtQm}3pK_YYGAiBInh@XJ`7Hnn~=`oy1gaiT1y5g0dX~2S=r^RiamPS1~eo>rc z9&f;CaHa{$^=O9_p1|k?pvI;-FgOb(@B17E(mlu>8G4fpIi>+K43Ey9sNC18E57%A zZ8~3{CxhzPjhc|FpT{LBzFGRED3Z8Y!dc*(1;r`JgnhHLM-H>NTG}HY-@aNJtz&t! zw88pVd9yTUyY8E%L9rkEWI1;lJEB3z7%=@r&@%#nn=Q=+n=urFP1^dA9&^ zNP9qcORb8++jk4(P_3XY7mBz0Zo&Qi)bnluCKTsicMDD>_E6j{+0LVq6yGiR0^cn@ z`N!RYI>Z!3eYd~~%bUY@3rYg_cHS)&nKWaw?b?}_l58CUd0*$*RCoA#zb(EZCB5?283EcHZa3 zl6%@0OYV7JEMKRB7fYM;MC^kS1hcv}eIU&W+hl3A%_~FC4`$kw0+h_Qja!#QvSYaZ zc#WH3hkr8|dNV}BF%|XJFMKH=#9{V*Y2@nUwE|7(+851@^4t_h{01DII?iu|n?8C` zhp}kf%PQ2sV;r?B@+U?bkpM9hwe`=b!tS8dgzK)UfX_3El;D%qi%on91LRGJJwM z(Z=6@m;b%U)cP%Sv;w|Zsc$OO0{>E$5})F~lU(YScZU3`nv)Wjs?gR}5U|uKmnlmH zK!EPjwdYK0zl45d9w-hN$vLu=+Lbt<-bhBA3hmNw(`LQF(0_e-FL4P(#|%B;3>r)h)rzHWHCO|{?jPCF z-Nvd8MZ=o%-=@?;U^lLzavV+y!B>M)kl5I~Sk&BLg}QZ*HshcTZGhTRbEtW>bHf%N z(J2_Tvb>suv0QkSR_FF%Xwvz*0rB}R-bkZbY=||JQ1`Wl{~Gn}$u0fY&Aoe@QwV;c zlrD=B7kvIosSiQE2ni-Up5^ziSd?57Y% zvifh7JuX-YA$|Ws$@zh+pQr67C7=50kD<;UK^g6}fIW{>)b9WeyDd^C1<7^y2UF^E zSwaZPa4<2t#3Be~wDnC{j}_Q_>a#yENEZ~n0z)<{K_8p>m-B|uzIdpa;WSv%maK@N z^#!?>b?A`Or@<1o1+ki#5mebCv%8JbOA7dOocW=UT^#x9X5o^!q}e-KMg4kmk2aw- z*{*!yH0ai*>|fmH3xdn+PY{@rod7>V(KD?lfri=U8My<-XgJszi#bvA*afc9(yt< zd*{rDamc?=_91Vv;_BCwnut71ZXaS3flRKEViR#jbqP^y zBDAh9sXMSu#-r;?VpHO%SZqq?FX zTaniX1>w;9DtfyVqc0>ms`Di0D1^tcx7=Moa119J{T{IRS-d0ez&7V+y9RVXfe*&}cftrj+1Jo3b9Kqz0v3taN#_8v!MDd+K7@ z6f*v!$y6P-aU-?c#nlhWBJ6sA&S0$x>62|ntN96WN9~3peC^yVMRmIPjj0EwZ}jNI z(3S2kDtEsr&DC%xrD&Aw!tlwxjOgPCBy4bl1Q{MCIYfn(j!Tl18*F*xQ>1j7kw9S; z+qX^4>QYT1_+I&$sJyVauLnGZeI`FXmZArcl-7s|MtvY1D!Q3sa19^^)-U_k8^EZfG+8929jZ znwL@dvptl9#U60OXxfgpvHaZjE3n6TQy1mVytM@(v%6 zbMb5~T(!EV;7sL6)If+t#)&`|?zt}2J5 zz|xM@#!Ta$fEkvf(o(pI2d3|~_`xF(n0&$N(uDF80Z|p5z;=k9SIV1q&s6N{MOd`G={?h5$AVHLE)1TieN=+-sI(wH$CJ7kDP3^~QJczDpokRh9EiNuoOLa?eD4EFyyQRF&1GR*m`t zu{Oo2T`wVIO8)>wv+m;sJ~qeuTg%IkJ*Z2jhUj7KwjbsYYO#=@L1N3zdrv}DvcjGu za0MEYJ&THx+q0bQeNK`>!L#DbQY9FKs@R|C(^5oq!g?AzNd|+^b?p0Uo}VIY3^ceJ zCW3aLs+u#&VXBH{b1tP`KN`2^8l8cv7(7c&9u&!R`2!WKO~D)*O=;&BmW_?kg(X2H z>sx8YMpZ)7!uW80l@;>tn6?YX!;wFyrH6QBAPUjGRE) zKCCkb5?m_HSfDz#(u~q9W&0X9?D?TJ2X&G zIGCQkeGQzxb%=>@^qHwiXT}1wLubwflgj+Lem<#BbLc>5%t6_^cg!cPi(iy5-6h7| zPfD8ZDxzGk`YR<&cl)WIlrY^@*uW*J{h;Kj{2G^$=9DUW3^pifCauU`S?xE<{@i@* z%K1sj4t#w}9Y7*@+u>)#h_koVaw?GBZZ&ZqBL`Y4_mBy?B4=6-0LsP{S=T*0S3t`e zm(;Q1s;3oc!R@f`0K``tQMU$Cd{?SBgz*YTuc{g$2!0I-vfxJ99+#@cC1p<<67t6S zje=|N{-hvI5*?X%KxDr!Wbtv5D{D7Zr16n!sqPx5%Wgx3 z&Q#zaP$;jeHHQ@P$Gc0j^^Cl=?t z?;|^DX)yplXr6uJx19nfq0dZbtD-y{M~2tnH=pnRPWqNFhK1eF*oeYRa!_U+Xdu z;G=uQnivwYld%i>X<+u4-H2cAN5Kw(FWP+Mpz}S*nHl3uW_c0F~vh zG+pvB2uH6cYuf!n$H>!(cG805NT(zktydrKxw z(4mw`8)A%}Et57_E9>^jD}X6~&Q%S9gi`jZZlSaxDEB^uQm#9{_ zT0e1S!2Y*WC{4=VzPwKFUnwDiHsHjUUnwbqHkb}d{go0T=zi)aB_zNGCi)?!Zb}}@ zuW=ccOVylknO!$gx$aBev_Y&NqCgc#68xa(DNwp{PreCzeqfRLFd7HAS8xCrfuwaZ z>ZCEy63sxW!5^3bTf0!P1Q$t;P>fb2Md6ZVyEzgQZ?5;BLn!>h+a4!5tqvf!wxi+x`xueaTamhs%RMNH%QYe6 za!Uxe>&__aBPbV{L<(-b9N`|fn1XWYF?0;Gf^zA~4mlM~2P!)#*OA{xQ0~2yCz-4B z*gN#Oejib}$C?J^v0d6xxwk-oBPjP4DDe@MTdpG{w_MA14+X0hoNR>-J0#Z$Ng0w0 zUo3m+kX*W2^@KxmoeYp6xpa+|9g^$z5t3`l5t55aT*G123dubw3duDkLvoSSMoG^h zxh!1mLc9p;SqiN3uWF?(e_h6DTQcNNA&G4lst{+ zh#ZgGwdeLQQ6YWK^QrbICzCaMa5a@~aPNas1^W*UrNCO1fRAJ~wz>P8s<61y_}ga1 zkALxmQmnkl1(swcr&Xd@7Fs@6ZVEinq!nS;V6nTA&#|xg&Bk22!USnO;1tOGfhs}Z z1%sb7PZSsZcgF|sPAKnTck*G@Ni)(S2|Nu=laCtg*K^E6SD2zE3J*NZd4@5UC^qtZ z&iCgkIZF9uXLmW5E+~6T0zjwqUn#jIBjWWZWpBxO4QJ2%pyZa!r+!j$OQH%fkLgcJ zZnv*-IY_oDJaP{h7b4bLdTTpF)KG7Ep zYI|Gk2W}WsMsL^fS=Dn}T=MoY$ZGy#N=uDP9@bZKPD~Rw?Bl#PbYlErc{suoSgrt! z4POW`lD}_64#lx0)N1weMyVg@70h$JxD#N03wb z_;Ss7f1q5|m50#jn%W42)s@fly6Mhb1 zA!_rMD9Yr`x+f{OGb(XBfA)6wG=Cik3PHw!G#e2G3F7qPG&oL9Or|tN!s2a^GgymQqwg24( zpYs<}qK97)2WEc(n74$daUbB~7IZ?T#HIupHJ<(rhLLS%%WQMhL_A?gUT#Id`;a)0BJiS0q zcNw^AC~n~v&^Dv&SAOSh`uxr;{@Mld>^xFNr$jn%`l-%1zOg1j^L;_(@4IC6gCU3e6BEFbjcd9}HEGI#0DPcqE4RhZs#9 zsxlG`=8%))sLg->Cvy}m1?BAe5Oe;eZH>%X&SVzbpi972QnOtZ)Pe`fOkMkJ7vm*OMgLyH2FUDjP|hA)!ZLIZ zF|?XH2a()M>IS=x=gG97tQcr2UWuEL5beDeNlco z+O9WUC2nZOvdsmqXL~v%D=E25sB(R+-zb|IdMOV=k87$pIt3J3=OkCNy|#s<0uG4R zx3Sh=g28(P7Q?noDhkNOjaRJeI%T3O(iFERm%sa}tGxKxrirT#$BaNXqM4vFH~RdCv*$<=^U#i&7%G`^ z%+;{w7L)0$ik$2rF7D;vi6%Jqv1H`v^Eb*~`7i#cfTCh-;)7|LvR?(8=l%Rj2{k{f zA^)VLn$M8f{{?VMUyN)UMq|n?faBv4+^bQN4qOv9v*4iriOy>gVGhYk2W3vLif>{J~$>E zy&jLv_1}~|`mYsr2Ef&SrDTUt7UQYEQu3+K-pBw1 z!#5Chp!XE`Y&QiZC4`b7oBl79xt0Rp@~K}aEiot4CI_F&-M0A;xS@kfdWQQY1(G6ob1_D0u&HsCw?)d>!Rigu*r}@ zt_Kh<20~XbElStC-1vrRZbe23KG`i}l%_z18xZXDWfm4ydE2^Om}IcBjVIt-d-gA? ziigJZ$-&1yxU3$Xx)TILeM|;1vy;xv0npgQ1j=(V2z_@GU9~D&h<%vO`sy?)aH517 zfG|0}ayh$R0hpL)`;gq$LhuPwifnlChNlWfKfdt@;($-^01&X4IbMpTykV}oBgTns z-&^um;~hhKFr29cZy0t^KTH9*Stw3Usnzw38M&j4a|sjITzfU##%d^hasLANP5C&m z(EIs;#<0Td0rm^W;2vT_5!Cw~L%+2JyT;&Awy`t?&=+IJ?n#P0{kXDU?03)d=XszN z3w4D0{c%Q;q6%P$HvmKfiZpYGok=S1SBrrx$QhUV!DOFKT>Kkg3q;;&v<2O;H4aS! zMa~fcz6{L%W#Y5V;%}UDm>oPiN@^IxD~JwD>K5d+Em(j|3c+~^9^xs_BZGV zZ@U+)pS3%Q?E?t#90jsjh#u}?V!w?&3yh_?&v{}*P~9_$2#NXZncnR@CP6{0^;C!j z1~r$gw(*U*Zk0!iPT*`ZVsK9Jm+54Phc>jg-T(2RImlpXRnginH<-@1HFp`!c6~bg z@x<7$O6<~bSb1J zIm~3lo(Ak$0Hy7Did`KunY-RI{dF$nB<(6`MPAGL6s3c+<0)qM!+Ukp&HM|+55dQ{ zJjp*OdBOFrA#TE;Im3j~-=lvGHK9QEX?}@yY;v{HL3^_(**oj~8Dd65ZWR=cspdUR zK1r2dy%Atf2cZgv-Y|wjDea4IA}^xmUQk?y45%rK6PXNT4L%XsP6o9pl~O9&KpYH) zg^EUt94kP>@~cJ0?d%n_bG8|C`L?@kMlXd$Utdb0C!wpX=DQ?|N}`>RZ`+|TFXh(F za4Fd)XVYn#m~GD0Rcr?(?EbleUt5E)MO{GO9Dd_&2|{Bm0NWURYwl?A^trYWJEjR% z!m&Y?@;X5MCf*Ls&XumRujFC$JkMJ!rz^jzLmFrMiTRC<)s=gLa$Wj_>eM2!s+Mg3 zdu(x0&P@+kYf)73_@t;}R8Zcwj^uL-w+)c`yleM5P70PUMNW)92@KDbr#pHIDDo+n zgI`cctQGB*;R)p#KuASVdr|6m9EK7r0RP?kbF5hV^R;~90H|6sx3mS3B&*;r^Rh6E^Clx-So*s^`i+&Fwd+fSEM z0Z2a&J3J0!>DJFpG8DvpqjbsS4}^%C4_EC7f@tygMN4Ja<-rJ8_72%BW8JzKckeG9 zVh<1PcJJYj$Gf-~yrYa^j-Hb^nlAi<0!}R9N`~|yDEO1oZ{0ns$)5UB7&Y-yE&*V5 zNfz@_MflNu_aJIrlhYX{kyi=oOFg_=WU3pADu3HDvb_XGN#J(+!^XqgQ1MTrKe}c{ zL^6#|KM*fB?CPP&X-eCe+d&5h?=~Zm4MrxX7BY14vV)h~gG0EzsfU81Uy2;2V-UFE zZA*zB>I^4A-mEc%)H@%ArHx@t?vWQ|D0Kd~KZn$Xmm;*PG3YAb)T@_b8*}v-_%p@0 zbGeW~rb{j76D}V}8_q|sLZEcZm&m0Od^`b?F`vUc{>a#Zis#5Xx$ZY~jzeBey zDBUD2jr;2V`5#iGd@9fnZEB8&h)3ZoF7j+LHWw6ok{A`;WFYZ7u#38Rxn_O_SwS*9Fi%Mt0Hr5>*9!9xrWrT7bgXb|N3ANU~1R=psad+{J$UF;av{i*U6HJt%okQD=%|ahpo$OQvq6FkGyP} ztGq@u$PM>2EAG`Pv7__n+{n1u6j{iM6wCb}e6F2ioECE~4_O{1F4u=JzXUq} z3uOy_>w0oSe^OF*U(jPd2&yw2!u)zJErf;n^>oYnA#D zc?CcB1{uIwRU0#e`6O7FNBdq|n#Y>W4{07<(+o?RUyp=?kmlDjY@!HBZ9Ua0m&Ey{ z!U`$QuQ@H8hd7^G%i{b}4eJ!=QL(b!r#PRRJjMB>r0|ZXDA8>SD_f^D&nnV=OY;bF zkhwUdd6bX4+m_~m#z^*PX?{Jd%6>@mOA!Al&F3MoG>>vjWCbbB=Mq?)-)q+Xd@Z0{ z@^B9DGo4>sEWW+=nHy^<3Ar(V;W zA_+p6G@+uv5pPZ6tiOF2Hl(ibD_1E5L#QIR3VH|osR&t`-j+(yhmVsdyVGjRiQ`)8 zaBymAI<1DT<>Ye*$$Yj~rcfFAS~>=tAmpCvU#?~lic#ds);cQUOlM2(<;BtVSsM4f zPBn|Z_g-~-HM_ts8!CB%E7DT$C+}=JvsV+>74p-yicV60go^nL-H1AUT$*bg=QARg z_W4YT4QT%*1nUQ7X(x&Dez!|z9W=eZJth1Tx29dm*AN?&O!|(E`SoFSi&%s-9ddeT z*qZ#8(?|D+^pTYT^KkI($8o!-0O2y1x$P_ppR&$F`fPn*5IhfXQjG21DwJU zDhCB&UOEJP>c1cFkta@oX4L)!_!0ypzyfdR_Gz0;E2&84;AJm;l>lZ8Udeey`Uiz* z9q@XoxCpA-E#Xuy6|00#h`5&PmXk^Tnu>xY6k_{rq_^^1(jgV~RZ+lXZPl1inzNrQ zz`pf^1q3Bed{LC!L6{cJ!~zOr;FU5-MWL?CJVBU&k4gi9DFEB8EE^jO8(mM2?z4q7 z87`Vx1k!UP(NG+H+f8Rrq9tc`_$)z~BvM?xb@=Xawj+8XDdHh~fett?FD?yjQnd!Y z-PL?0T*9Bas_c9!5?)cwgtCNyXwP9-g28G&<}d^{T$UkqtMLif7`=zU5o6wPobZOH z+UVa5*MrQYp{te4y{a!xia`65*oz*xHW`GX>(MYM1E6}m=7C?7Y1=S;lA`W_*^|61 zRKKEgzgXsrn0r+wkaY`WFHQ}$!mmR_PFx^_VQnBJ{5{%};H~cfuPu9W3bywLGcX_B zFA{4is>t03lg!PVOcIfh_2iL3(7K!({-8Xv%Ej7E6(5S*0!M(d=X<+#_iO0_kVL{m z5&MHMxQIyZf5O4TwbW_Gj$+Sa=$4Vuerzi9VPAH9GMyx6PD1zR#Cocyj15wZ|DKcu zCrEA>h%xoi;cVyn#-_y%AVV=rg4)BQzvR9X$IBtTyKHLlc#tJ;?>V}|*7n%Hy$5vdTrMo3|XSE8spD z)9`KB<{q*=P(H?F(=xYk&SqL$IH&TfHMx5CtXnqRt3qqb_qyq_LzZwo4IxCQEB9gd z2-Llk0t>`x2_anI)jlY4P;a|Ot;>ujDa^_~ZLZ(_fg)6qA6&MmhD&o@wjbZRH6L#Q z>F~sGlwZS^kO%<^J3s|C!LlWU4XG$Lg;XRla|cG64}HwWy{!Y z**X}xL}O%FLp~_+i$2dcRC$<>Z){ua|OlwF5V%2k6Lu%tWItX9u=a8hkYR=^?M@-V?V=fAj0z)u` z_}q|``DeS&D=M-{7bP37$fTUxe_m0;?T$NusB}}Gw0!}w3*GjG#dgv3h5x*wTr)3l zvDez*9k(lReYEYf-4tDY`38G^`HknaYqJ;6_8ha9Hnzizf>Cfq5p)BbZ}r+&wj+ji#|#*MS?au`AiAghQ4enh6Y{w85%V$ z>MG$tIKsy~^3fB*Vq`EDC;GBWcWN5%s#_&uu_{Umk~#YqI1_EVvEI#~NnEDYCRa^80BP^80g%=Se%G3A>aZ<>|%8QgDy}^ z=JJgNUWdtUJNPP>BZINHe&na|3xSHJ4&#k%tA)4J<)|Sdu#Vedg^G=akD3;6dqN4( zN*47vZv;o7Zzn)S%CusFWHLaKb%Z_%;ZMk>VFTpZ8#}-&cPYA14VBt#I?*)~r#pn> zIRCz=I1hH5TekuO;pzk{|77+OJ;uCbnM%=P6o+vU(wRV&O};h?O9vt41w=ut=Qm2~ znSSO+TiOf=FK6iG{Kdl{*n?1S*-^#!L0PxtwfyeaaEwlg1AYz>B5C<}&R)RnyeH*6 z4R#fWce~P0Xf=~Z7LG#cncO98*RuDBCBW^yuV#y(AJL%FEDg>1I9AR^;mV_5wirPP za~@AKG$r>eJ;{B`3}|2O9!zm`5SFw5|1Vu{l4Lm!Y>Uln6|sUc5)DZ#L#8F9eUk>2 z1HHl5_Qlh``0$Zzk1O^uFKo_>AdwL_p`qJOIX^ zedwR}c`DpglJ27~!uK6PO-&3Ht>GA#*0nM+7vcAPrhkJx&UkN-@=_5ll^YHF`tLV6|+y(a-nuQ9vvV8mG zJXoHJl1FTr5;l-q@>|rF7CtqU37?MWb*DdzuTZWa&!Vpgf3x`P0rHO1?VMlf)xHCN ztqA*DUSAcq?^Fur$1puU4pM?0f+6w<+fypPUGX=Ufquh^>lQNC9V525V$R|W1nyfT7gFmT@=@y_G~ctqK= z%@Fu`TIhQ$(LEn=`wj{QDpxinQNGTyB%jmh$cWp&l0~0E)pAK`wIvCEh49#p+jn{_ z_zQVx;I9}xd;2XL1ru?5^4p%DV=C_2UGlMeYDdMTXLp&5;20eN9SQUF0h7>&z`*R< z9n9dnNto@te;wJ&=SO{((9GL2pOvAtiX>>B6=|)SY&EyzWq4}XSmvnRtku;t6~j&g zMSC`aadO6rNW{LiF>w#0JWLm0Aml0JjzGXVPeCn*jV6CuJ0lVnC zUAjPt(>^4hV<$F2+@7|@+yB0j;jn2$=?CJ>&-hJ}5#8Xa{Y4Ub#y~pqu8EL!wWlE1 zV?)0jM}R9MZadsIZvU1axfnHh#u2dHh}(}N;I4|> z4@3yhirZH?wD(QI$QR#m6$tk&8?G3E`}(Tf-c>6F?gye+#}2|Bh)B)yTEAsu02R1@ zdqOKd1NQ^>q1_d@uijMPKB#*ua6b^Hj6g^iE$;mdjPZZ}!!Mm%;JyS3+`nZWxmL&C zqEk^KZqHFXDsDfH0AEXIXHD;2MH@)4Zxy#6NWqUK&zUk;21wn*3A1I~ejH*!3Xk?X z7X>U#mv>F_@OhUcqV(@mk34fF0RS=u1BvRR;`Rd<+dbFEKwi#KQQUsuUcg=`+yU-@ zYmeKrdsfBmYY`}J&ki1Y+&)J@Vf$^w#@DyuGkt0^aLR$+5*%PPPRJm2jREd}$X8-e zeIT3iGGOl@FY+`7lMax91a0|X9Jdcf{@~oPIBd9VAV==a;+sqOd=f~%Oo@DW*Inwm+X|B6_CaEu z>+>{jx7O#$3A-&%3o>jGgw(r)c0>q*hdJUFoK?~t9kk~V--RX~;9H!sX0QeZGO_1Z zx+~c+!~RTgL7VS8bVo8)2VPo-1^Qm$K*sEAY!tKqHh5Z}V&*Mp^5`Pu3CZYUp$cd6 zKtAW%6TU|8LVL@ZJbJ+XelL3QJoQYSAKv6a;{2MHe8Q7o-sFL}=TTmT zt!zJ8N#sq=H`tpzKuRgg%0|sF#d&N!tmP_qGMhmYCB}zWENtV)yV$ODgAU%r*1yu7 zJivw8T1}ZQvZU}9k1i&oawm^|ow9)A7uVEQC4cfj&RNCINMUObgxtxai*zU4$pc{w zVUy)g9t@S#Zi;vg(R4Jq2ckhVPQsr&5Ro|h)+?(=K>1+Nj^A)64_q?FgFoEK15u8{ zuz8T8BXjet9M&;Jrd00a0TSEGwtdq#ugr=a2w`z3!<{_3NCCo~JeXDMTwbt#Bfxgr z_xtFH>(RMGck<|lG|N}aH8RR~%%PledB-n=2#zCzl;^CHoyo(O35GM7^KXo5!zraL zoyh|Th}NrDfN$XBkTZF-<+$Rb&0h@D;Yl6{a?;Z%PjZ!Wg``BD=qK-aL(EolCoT#guWp8;?$>8WdQVWU{lIlqoc)n& zKjslY|3^c$eEfR7A(Tg-Rjx?nOZUG0;__zdC5d1RE0s$Usm}rEY^2B*3g1f-iLKge zV@aBqyEdwRIJZPg5{b{BtJ2)xxhj!@zOTwG=c-JJS7p2*R%Lvn7N%*@b777iYG89M zmuGn_&9~)3DSCAxBUg5;Rwp7xip?C!3V&(wdv&6-uUd^c9JM+zV58FU-@YF5MEeaG z^0j|ro=dm^S7Pd@&q^W$cz&oIp!RKBLlK^74s`XNleT&)W_8%kIpy8g-xdY+U2u8a zp9`gZM6%!VV-rfc2_jq6>{ENeRex)ielum6r~ZTGFft*KePOt(HK=K@z7;I=<=m+U z26B=ELP7fd)%Jw?8lTt$-VuCkPWTtM<23OGFQ4rj*I_MMweVdASxH1D<%@GG$fr`R z#H@R^UKqn5j_fB~UO>N;d(xK~WKUN)S4&8&<>3y9vogi=8>Qt%EkesfC9g^$WGni; zX?fAi*xb+!PiZH$&qPK%yK-48W5eCm&Z)1xE3)q2;Sv@;f3cP=1u2TS-cRB5_y(4b zg3qeOjJyczqF7DsP92MruzfT%_hfg(6pnK1s+ic(nK|*@+259i4i=+F)qi-vAUc*u4(;8+-%A%jQ z$N7gOO?sr|kG=^m@r+U1zCH!?A+fBmOuChlOq}$;S zz4(JDYoxQBBMk}98I5!mHPTg%kq$|<4jJ8}|0c;Uxpl4lCV+jj4Rn?@&M3-hrE$Ik zD4ye75{+|~JO79IpPX+~ z*E0UmCnZ7;;Z4FxiA=DzACyS^lKWQ&C2qfK1+II`2Ft}kxh`uEJ}K9AX_$Ocu4@+fi@u$d$WA*~9Uv>PLRm06O|Z_|5cp&qMbbmpkN@Xertq z!bTs3u6xT$rAT+k+mW|SBf3N0;^|P$tzJBaJYQ*jtz~qPj4vc|Zu#B=DTX3j3*&1A zy3@uN<{w==GQO5UYh`>bu?nW~1!DM7;JSfZKm&X&<7e<0{++fC2rqfEW z-O#M}Xr%GQ;k)kb7p+M8TF+UWo)J!{X_vu$X$qbNuA2xwMRuL1{kf5z{HJwrI8gVF zBWI!VXXzMu%a^(`93z~Sz0h@Bd1s;Pa+aoJBp0t8Be}Tk7|G?Io{`)j>>1(yan$bq zeYd9yJ4ppv5&pj=$&+Ft;jXpcBzd|`h8lkp_=udRac@5b`N+4r=!`-zHzzfrs*bwr%FMNX$7Bzqpgy3A;J6 zgr42)`bx|=pl#+gdc+gty|N9l+vGO$N`@gl+I(^I#a-LX1UqNz+cq5=3=asHV@nX-ez7&U=z5_up{o;X5R9$ zKh@jJ+n0B;ZFD@L7Um`rqfy%o#%tSUm|IpL;0dR%BA)RHUa?$tfYbaKRY&B;j9r!D zq?_BGpzG$s!;`bNIx6P1T|7DG-P50I0uCO|V{QqxPEzt{;`XJewv?^OJG=Jq6sP{V zQem6C(r%_gH*sg$m8eg4#BdCaD&fSHX`|BW*p>JF(G$noDG{gdyvv;|M<;f&iFCCM zIsBH-ot81yPJIGdr963D31oZqs$;uahLbh%XKe9mWt#?;xEI>A1(5xOi%Nszi&JWv z%gsGqb&I9Aeg^$U#UsuZ}1SkTq?Z|Iu2tb?ya49%MBXqLvv8Q7E}?pEez z>|Vf}9ecPlXLa;s&U*Lsw{@YTaa@YEry)4|+I>4wq`8lR9JDg`xAOFn5ge{E_qQ_5 z{VIpKPsx+!{#K;9zm;w7r=$+*;0FCE$#XdQM^kVKsB3e-$~5;`6v-vc{ppMHw(%(m z&HXCN+-G_0=Kdz3xz94kOXhx+!`x3v)%rO<^@|Wx)4vU<8Kr%?Or^;DEeURb;}sr5 z?y^gq3U65*a6$1T3rXH!k+*#No*~}`84_Oj$s1bg87BwiD+T7?zG?J5D#d%a zpt^5$zLZ~bb>AM%O0rve)8!HuZ$WaWxJlJzKBBK<>3)`rI(GKCiWn4T@2Dm&=1BSOxp4Mg2qXL|NhB=%qKj~`9`;@KIxf~mGVr=N_(ztt@3O{MiIK% zGc~)#b9w7H&vr0)a$sV8Ji3UY)(dZd{qti5X<79vYC?=LZtfgHnpwgdO2rK4ISKl7 zz(A~%rtoSGDTUO_nP%V@V>5IBhR!ZpPjj{OZ^Xnug3YE?nm z5LHDPv1o)i--BixGoGx^7me9(=W8NkHL0ccsf4*Mo7`~6o1+cX| zu3vY#s{!2)oSdqcmQh2pDU6Kj0^#Sc5f@t_{B}NDH{$N39jZGfpg2pBg{5<2Cch;% z94}0AY@R+g9+Pkiq|3ZteBivanM|>%-G-(j?e`KnrJ;=8gh^XFM^4W7htLQ^jCK#@WL98!?QNMLe>` z7~^cgf<(IF^~C9=t9)mkBy6xa+~Y(CG4$bm`e0d>$`nrm`&1-VQyc*`BnKINzYm%i zsC_l%b|8QOiMw*{|FF=m`$K~G>pt`0w_hJ?0Y)0mpW6SCCiYEY*x2^eXLZDt+LTCB zM*@J{_*EPU2*q)VdM|^qKCk^qKw2E4gvbBFxP;+4& za+Lj)_@V!FZ)%^vN^-|VIOFWUO7f}C+9(+j5rwC3OM@3@N{Nky5HypUR_iGs zZc6%bT-woNCG?}s?-DSFjE|>2>%)A+!;qO=8?QtlSg(z@EcSGdD9dNx)!`Ifs^3RecpS}AATw|R=3(JP}PeyEiaouGN0ON0Egt8E==K3cDhxBM`=QfmXj z<36^Pkkpx*eW66-V|CHK5B}lD9ai ztP#Csk&VH`)Tkl{<)n@z1|3|~$9LlX9oWo%3T-Tat^jW;n<8~x@WKRG2k@^$W-V0?hX98>Boi`@K@>ARIrCzz*1L(MYvxUTDJ z@kVanV3N@TVpzW#0f29LXa*`HjYCM~62bA0Ml@eSdOb3Y&c|0Riuei+9bch&Nl(7c z>5D7faiV06i!I-B^D^)ik(7Yl#n&~SxKDxeEWUZHY`13Gb(jhC7G~l)rfPXV>A72? z0)4Eb9*6ENeVQiLx;4=rG0demgX?3^HaRp!as^%DC;ePe;&;{6m2~k9UMQRr1rpCvzy}wS6feSMfb+>YaOyCb7-05MSY%4%Ph&6m&?XeB^f@rVl(cj181aBKD}oE5G8x(l9LdhRH|C zyIXJ0E%G;KPaVVo;(>ANfIOzyhlfbLa=OA~8Cl+kRFZ8-WhuOmEYA2SdXh|TO&U6I z1(D+!+sVpp`_Df)=^)`&qFcEsR&o$2ioKEITshJ4FX3*gF~vvi|2Z##-YH)_+< z$GQ=Meew)ZH$su-f9fvq26F?oc2i|4KPZk50Xk%;lvC!Bu}fACiyJ z`!6Xi>7IX1{Oa!}xoOg|d}?-+ZOkA~F9tAyHKBOyP4D9rif7{fO%%oA>zD%`I2qCp zy=aJ0fO^pc-R*j0xIE@{?aQjwxWs5{K1n2ZfLO5K)5h{Np&i`9*Zzy4bPH1B;S*hq zPHAL~YJnz-PMe69xF+rP_w{Y=%IoBUnp zbesZpV#T_GeJ0kwAwuam{8>eXjTpMjjR5alen)dqr+KZ4r|uFEIQJG_`XyxTxsrVuCfPAR7RmXT^4YuWDdIJxZZm9tUZ&e>aKH8Xc$XwDtyd5Q9OzDDWN~C-qT4nU0HY zsl^a5(lItvlmb!G@v&8yla8^Og-Pic8-`*6wbJ1#!4HIL>C_UTNeT7Rq3_k%dhpzI&TLlp99#_q zPY8q5p=UATB#cs(1H_b)(1qd+20`UF5+;?k0EjB9=*=n{kr=FOrcqki4RNeQN0kW} zT`3$`_Oy@N9EyaN?QGmvhol-<-4Tm6+1i zX)){XwH&mI0s0Ok?eGXR^6(1fD~~j(Qxy}}$xWVK zD)DkG5LVk#iTv|V5(US(3nEi$P~#NaZIq>`@`;dW#DaR*PQYLq#*ulO4A>vF!#V5Z zBaZ0OJ5Mk^Vcpj5V&YT3(gq+ERoC&P>xzhB#$vF)E<5sQ;=DCryKI*`5Pdm%`<$R( zh{+UFO+UB=mt={G7x!3ONl`t!J8xRkx(zmmqC;k7CGZ47;jNf~9a=DW!U+$d9^OWZ zTRjw2uGOwTHKVL5277SmX}oVWi+^ewmuER80O*-XSung!GL)fY2`PaU5ulPmHfAov z8p7EDQ6-Hj?R~nwGEC;tZ&071>!Me zy)=lB)FNHDBKY}Lk_rQ8DzD!qsW3b%pcFqOsW9YIKP06vfR=XrE=d*QTf0nKdKwWG zjUBk`a_+E=zJ`)OHpv!^`%fgU<3n9p#%GtG6={+ml7XbSdk=7buZ)OtpO&YbT(8Kr zy$iI_k%PQ8-z&;-3hHoQ_mcK%wztJYa6N6EdyWj@h8(EX+nn_T`*=FC71V z1g4So{LHN*FQX;lc}3#(xg$1S8>2}jNHw0tCUl5oaFN@Am6|pm{b}SwjRhfWc*;7it*Gn$qD3p zC4!b&NgOArXez$&nn;)2y%CirG4Jy+p(V&&f`ql}+$Fg1u+`r3mX|#q^l!YiF#auI zd;|9vHtTFRYTm7I;dm#TLF3@T}NNi3FlEr!rWNKJPK2y5ZwF7U^QLDXg-d}4FvD* z!t!xKotsCPV@vRbuzUkIRnlckEZ@L&rS!B1mXDn>3!VR#4H-IEu!#~tKKA-7hi;9E zfPCM_%_O$QeL52Qca!A2Zh?aRDbZ785fu|@ZTKKFJ$88iXi@-6ix>#ioa5s+k7(#N z$!86`^!IDeDm8BK!E4`^6Pa?Orj0K{*Sdg`-2sw4+`e1&Q9cawPM zW7MN*=X*fsbLoD|jF=8YB$~riBs21@tFiMtWid4@jCT@5sI8i2f%#*{; zaVQfgg{m;{&U1JxoZW099E3aBtB^HR-uFw5B zIP4sqCOZ}H#zQ-??Tz6LTZtZT`S$c5|BA?MI9ev^4H9J8{j|2ChJwHE0fks!`Lr=J z`T8_+$f;*fFxl(ou$r#zD46B)1RqFtAZq5K4b3hvmMFNhsEi^=&fg;j#r4v}-?fIV zb8eM63h7QyGPV3g6YXxiA&BMj6POCLE?ox<9~r#z%{6O zV!~EG#gvxux2*y8^S31-BDzTSuVs>wTT^y8j3lS)K!mgv^xTtPC_09$-ty_}4jQck z7aCFfxq$sWH4s^014N9DVtmA6;QCI~)$A@e3&6T%xjz@llzp8v-zs;O__KB`FAc-B`^KSnJ#2s0z^J+-u+S7%impOp|Vf}9c%BWnAOpfIqTii-`0iBYuq)&t_h51Nrdqna9u@~A6|pZj^Pvn&49ZZ7GO;U zsUT17#YnQ4&LR{i-+exYbc)95J`EG#_CAmmb2t(45*69eeDqQg9M{{#E%ECuAG>l5 z?zT_R=YJ)sWA`#zZ<8zsDy&W;D`r@oepoXF9TMXCN|rVX1rXU31wlnDej|U0TcjbL z19>xNY1~MtSXbJ10|^ytrlrOQ94(e@#_m46XrFU08{%0KspSJH7c{4lmza-6nwNKpqXZt^jxr zWZKZrB!Fi!;MrqWpA3L!&NBl%*$Qe^f&#D?+L`MCPjsWJ1@Pq5=Cl%IVc?>!^Zu%s z5*GtiXvLJa<-^tZeL3+wLemfX^a$`QiMCz#MtBg8soqf1kO7|L*}HvwkREaAGVHKD zaw@0o5d?~5d!!`bob^;m*5Pr{K;nWkx#eVu!IdYMm?546DMmz+$*cC3heM!Eqi|gR zR(z8WJf2*a1~MA210Lgk`G8p_E<65poOzF7tqZ8y=-6C9D zl13WjIgs(lZwAV~1nGiF|E`jXGKTYv@Ki&Xm>7C17o3b={qd_}wkaxPB&T@8&ObT>|VU zQpiPlHD6{DlCs3txU}+rNF4RtC0e&|CR5kb{>paIiyZ_ohG` z3B)9WUh^c!N?*R57K^|flM!*3S1cI$pe&x~%=-f`$nk5XJd&7B7wpw9mNNYP0_{5c zCzg|7SciEW&ERWpDdc-R4Xq|?3bKBpl_Xa@#W@CjvV)cm=c={IM?`iee8V#9q=a*X z5_hl6t-PjsHYGV+Ndfs&l5`FwA^GQ9)IG1R2nqMjYug_ta?oVDQ@@DmVB2no&(<*q)?e(vxNk>U8{RI3@WLvCKlPBDsSFY*T0MVtNiTIuH04iCJ z4V&lbX`+TqxD?0Mu8BL*j_n7yX>4Uzy+y^JXK)$%CSgzG`2-60gxSCJ^;idWb7=RaW-*>(( zCBzBtJ8^fLEEB?gCvJk9Eo~dmdPQn4v5H>Lu4hj~0T`_ayzj()baJ9})%!BTk|G|t z@)GYmai<;KMG8hwT)ubpREw(|c;8JztAlU2ue3TQuJh}T5&9FxKMDrQW>D$T0m+7M zj1X+NSssM>WoH)Jmg{hpFPx)i_>K^}6A_TJ5WQS?S2-;?Jp`Q3U-&-nd_%kJv^3_I z>uMG7IH#~p_MG&I`JD&{a*h!5JCRVzaIP@F+_#(E{_0x9!8UK-M55bijP6xOK?X~6 zVI}N$BJx)G(5&R?Y-p|p2cR$gG_IGZZC=Yod|-hf^y_>p&;@^3{wd> zM*Z^qxD9sZadQ4!nBE$jK>c#`?q0u$UDc>xu0}=BR_GJ~YLk`9)p%ASW39&UhH$s< zj??v~(;xsxB(9Aq7{Fhy*O>RSY5gi=y61X648b-h!+xpbOmEK* zfAOf*+Ri8PSbKr(Hk~QYi|L4|KmrqKiA-V)!<}jvRbRPiHpPuDn(vC7wY%ro`NjU0 zB(2Grq;@|gVNFilOnCk-32TysvSyt$NE4}N3fIw}I=igKfKSXWOg-FT0Z?>0TYvmeJNJy=R=z=Ah-lT5J|TQY+wEe?x*8Qc>9irH^t19j?6 zTvPTWKyo5?!l@PNsA2vVMt3H_^aR=nLBXy)b{-`5{T7U>u_1!u`{0S0cUc$60WAsb zW7g^}9;Ar`wVerRB1>Qu6H+pL8bC4oZDyJPP|SV@?aLva-RlGNG|e%W_=$;(j=QLk zCekOir1a#;P9Ns%zEwVbm?@Ea>wUyw85d`0&}T9j+qpH9tuD0dE;Tyf6BC!mok@kn zDY_}s>>}~U7(T&CJ&Ov7eR}UyNL&ac&q>8Gw>Z@r7m{ujx4o17<~ z`XOo8?WY>t(%*_eZXA!^DL=$764mX$AGI}yqVa)Uakam@L@cty_`Xh!tRVslU7!oQ z{s+v6sM!+hCIYC~JHfvU_D5g~F7|epr=bCTfY1pJkat8I?)rlH+r*6ZmJjLzAiic~ zxeaIor&@pDonR7VnL)mW^kwX$F5?MYW_;Bzg5%iz*N~UQTEXc++9+K32y+3o0FxM2 zD16IE(FRFutY9Ymi+l4D+gf|*OHSTP+}PPpF=e7%U66e;V@j{?GUryU5(zmg1Z@0jU#?2b)zewkfY%;MxzPwn7??f2{_U64dYOq@*9{FP{myb zOqr)w6%p3Q1nBbCa1Kr$ztPNb=>{1zA5>;JYqO(rS`QwEHSOKi-xdZr0D<&*KGuo_ zx+e84Dlr;I#lfumnQLoKN^ce4oDya!4~bFZbEt2#&rkVE;0|> z{)F=b9*ymKaOs|)rxKG9hKAC zU75>39sRi~q*x$?GPU1cr#N?YRcwC^kw?6#r%dIa555ler+B3?k~6cnZwzvU$)Dj z;u^irSt0V{N7)4Ap{5E|67%{#x{(Mc#?YaJ2IbycuL|h@({T&o;Rw*{6G_mxWVT z$ts)VqK7Ud4dw!uVyB0;!Cbh;$1vXFXYJTs5F9!$jXFm}q=ukQSo-xtGYPWGarxCvq+N5s&1Mq@Kv07gPBbKiHG=}rPTm{ z!qJ%QWtO>wb$XKNc1fd{v=GTCyqe|=W-rPx&OB%M1gD-)qy|tIRgR0^L6&ub#S{U% z?QEJ^=+M+8;zb|TLz8qeE#*}$vtrr>%x=Gt>tY{uYlU(ysoxldKGyUgQy1%2?voBG%)kjtV-UF#r@paDlm?fV!^(xZS!0b`pi zE_E8~H>I2Bxk;}L&rQag8lC=4{f@)@y0mMYBU=2(Q(r>`Tu=WH2qqT~QF3XoKZEmF z$tCesl4U=8y@IIP6-QAP9a|O5;@RpTQSJxdE=+&)8OpTgR&g>5?H=6@;9K7;M3k>v zGes8w+{6aH0v>Cm^CpeI2R^9JYi2-luQVzfuyZobIG6tSKa^ZH@=tzLjxJ1|ixlA( zl|}e1qy<1iu}rOg>VeB@ z7CE;XE+5jVFEtEhnJr=IK3$0tc7SYUQnj(nT~J{jKM|7n1s7<(L8sgP4W?#v@fkGS zvL&Aj!$+#4W%B0U3TsOx}BRZl<O@+s0pzTA2U&wT8ze!5xTZgdfKP9EJ17g-cCHG*X zti%H)!*Q?@znpJUN<8lWrAA;a9@Xb!v=+a7d3$Q{9ofU<%SwFmQ+xI#wQ(x(Nrr4C zp7hBY2T=fJIh6QK(!{Qe{lrQF~fF^$#6>EdgFbhtGbL4v%i;c!my79_movJbIt=f~y}NI>y(g#Fs=$JWywBy_IFaA#;A28be@FiC@;Zk8 z4tDfweQgSSPVH3SQwTZON2kqZB9T%5h9 zwjS|hAR6B6LM54OvkyX>&s+AHAsQG&yScE%Si`=Xxi;9j*O}Y%pJLOMx2#47*Z=Ni zjh~2!;Yd0^#xy0IU8t1KOPL!TF?#uyTMQ3R5jlf85FDF{#Wr&RUP0z@3e^-VxSv9v z$AR5}rqUKWO$LSmjILQ6K&9Sz5prnyvn|tpIL9xSX-e!dVe1+^DsguNec3{!C(4;=HcWrQ)T)N#h%IGMo z;b|rv{~SQCRMWtdELil?#^m=!k~2`s9$FP80Tuky^Qr%SyhpS`Ffphm9E|?`EeRGi z#s^mgbHOcAg1_ZcU1ZY7Lm5rct+<)C_gdk!A?W^`X6;1mgadIm^87NSs2EMhd+FG` zme{v2ddtfjJZ^kVX{sGRJjTBK+vzPNmw!lVvA0Vou}yM|Z93L}Gy2}jNQYfQo%vZF zd{`Zvw~uZKfR(|eg-AHdVuI{CWMN`(%)C9I!?~+V5ACqTxQR=tWY1n+N@9lWhbZl^ z_|R8XJ{5y0i8c|IsUJ<|1oMqFW@d2rW3)J9<&Nms+v&g>Q+%k0u+pI7T>YaRR$wsq zPwy}oz%{hGyE$**8_+(*-1_RaE+SGcKcBBUBY1l7d_6VfINr*OSzlCA8e5?`)|(j! z5sh2YiAXqj2n?vTj0#AfzVK9gnK@fLK%ZTm?IPRD{7qjt)i#ko^9XOq=VnGz1qKJ`oRctA9O zxaVa%F|ZJ%ey-rehUfK6{e(*+=19LaqMAd71>~y6tYXEZ=~k1u!`eqCI!AQYVLux7 z-s(=VvVH4bce$8PZ65#KB{#ROoH-}GOkASW2y>`&`kp-QwK>7^nUAVDW-3T~!yRDz2Do1`#5G4(XtR>ok2LqzvZ% zD4$5jf$@}6gjBc+3)v|`31_980pwGq#UZZ{{5vYxjy! zGHmH^U(fO*YTIWxyk)P*heW^V84b}Jx+Bc>jq-_ffY`KGnalY(?L@IpBq@LG6Cu&; zm|Hj8#Nnq;gk0VC+^K9MA14;Kizk?Dd6!MEX)N;Hu#@D-7Az>5xL zVp#H)4{NB5op%sntUY%A?rW;Mw(>q6&o_n6J1&Ff3nFyh!AEj`rJDh`1$MR~=Wn?= zl5SE`KpnVaYLD&U?%+AD$a$3`Ub{)ehnH_qy!R~&VVoZ14$_0OV#cf^7rCMVY{i

    @j!HD#l;DP@C) zf>#1n=!f{)w~=iVj}V)8_`$_0)W@(vE$ZNSq9A*)wLykmWwWon><0H50hRMZ9V06c>;+tdVKE6#HvzL2Z_h*qkm#RH?oWwZ1B%^}u}vkHa_u_o%Js{X%+2XLo#)H~wwu2!#!mwu(3v&1v zT-(IYq*0tw8Q*+kL!i>0Au+`pD}qL(C<0uj>o5Kx`Ff)PM+7RFeu+50a7QQVmK^si zUieaXXsa2VKe3a2Yrc*!OGT<1K;szFeJb)P);vksY130{G5!iFwI(9o6M?Bc<{dBn za_lK98L=}~XUv(_+{1>uw5@K$^D|{E`AK0MC77}#djgInvx`)J%Ir&4OB>?#w7IJf zODZdeR)C*8spbK*`Ic)TVqir^H8Y@lwqRFEG#8G>IMkbIF^n8xS!!e!6N?3iUt~Fg{>Mr^IB{p1Pi%KxY6gS6$TCw*@d=F(EKSMTZYBge& zhrSmI3V|TKy--sZR=}6QrNdokzu1|BWeqvki-lC-j4>B?LN+Q9<+H=kG&uAtjAHcCt#V@4Q5!9cUy;#eogS5-x!j72&o_VDtt;>e!Y5I38 zo61+Nu6r6nRM1Y0EqmF@3cFoSqw~oEXM{(B#%5apNjpPoYsQb5R=)Ql0d9Q)>OyB= z3BRXY*6o98%E-(lqX_u$#FfujaH){G8qb)7NEv}Li2Sh0oUe@5u_7Khr@UDk^QL*H zB7+2j)BN(FEoP7DBGp=!eIwdh-+!_ghbeJ1-O^O}zz!j@e8+o9P2chqDNw=~UQ(;l;#-vQSlITp}|D^*Yi86?2gd)>toN^keEA40wF=50_wHBT2FY5rI{NN2*7RIkC?f(ZEA!FjPN6pmK#24NtTMEe+ID!#wW623!2I&ci>1bF)~u9u<}|hWo26f z@K;c%67zB_Au|y1yE=|jRvQTa3`3a{89$BZ&uH>Rl;U6wP0OYQi(&bWk)35!qiOwq{q-of_Vedvy+sCc*DtioW$=5{`4~n`9d&>w|5GQ znW>Q$S;%sdpM)FZ5?6xD27xWXQz!xh2*L}JC*_EgMq_Nrr=0k72`y4Zm9&Z#sd2VzJ#!URk(g(Ri>K_S>gzc}~w+-Gm_+?5k z?|@#6At^7#S8-m&>APqU+8tIG+|uXBw%9|kBFY=Xa10jVPs1vOQFwxyLW)J{S> z5z*Yf_ceki?L6Yq4!4Dr2{{|kR~ksD=@kKIONr@pViui{g4na;gPECKCe>!YYcE^|b6CI^*`xp0CLuXlQ%9g>?FYlc8ZcP6J)iAt(J zE73YXw-BDqws5_36Gg`JCF`HQveuX5B4vf52w66a9dhR7H99KO#x#oLT^bR_1cxe$ zj^?7YD0JQ&Sy5`pH~Qox2@?>UQF~zvgAA+FHkp>?F0O5giGhwb2T5!brE?)TOmZPo z4K`~=#0?3qHzQKGj1KkK1&yUwhy)SuaR^pHtpZ>iACRTi>!o69sl+o1;hv;>O*L^! z*NtL#0K#F2MTvnviB!;)?|%2qqvpjWga6XR7C&wB9OJa4vbk-6O_*ZnaIX z&J)Lr1}ee!=K+WrB!`cZlP`74*kF@vNhr1+V=klSauSUA4WeO^AQLW`93-7IoDa-^RfZ#(sFw)V&RCK13i4ldBrm1k%o*yWDxQ1iR{$KND_E>O*GP zb|}&i(cTd;u&yVqFZ=(0#`?Ohw$n$)%IEYCkDq-u4pzs#`|Q&ZwjS0ee(Dho1BeNV z;4!DC4zI^ckP4^WV?dm)5)P)xs6zFymDA1da83t62wb8uy-x=}4&Zl)2#365pRF8H zUql2Thz0ENf>!|5sE)PE*--L;7{PFF%I;~fO$sD?3liC7v^jru@nMd;$Ul}N5O!bN z)yMlj?ss!8`ZRwu-8_OhZlizfVWK(iGXI#wwefGjb%DpVIl^_Re@x=Kpb6I^X6WX9 zuIu=;f4(?Eb|Igl+g@HCu;;{rKK`8d^8Ty!_W^*dv^VIo}I3@|Ml^l^zX_^|IK49XXOODkMn+z=Pi$z_eXNl@0XMQ=Hs&Q zALs`{fdA2)^z(AkA9Ri(_%`YHL*8q~)&X|sPR&U_kduBSC;bIE=|7c|{`{Qur<|Kz z{~xSqs=5N!<)ptqC;if+49`y9uj2h33$yY6!JQ6}-3cehlxY@b1N)7jXnfw@|)$x%SHw3!28uwOWpRbL}vouyla? zSi|lxx$Mbi9j+aAZeRP7rK?Yuu(9?FnzLQcnm8Q>K)d{sH3-*^W6FTf?g&GmZ^W9A zFXfUyig+h`ZY2Ys>X=uyt2S(h&l}IG+S+lp6r$X^_CEa(98=o?e9sa6vK*!@Er);J z(u-vN)U@_~>;{lO?OKXq?7`YtJG@kS3|@P=uV);4B6TSTaQi7XyMHeAz{fG+e~HQ9 zpFuDG2n)wPu|8EbkLiRcM@42dbZUMiX>n0!+|B^O&iC7WU;qz~tTfi^pHWJXL zzv4gp#E<&aiNDGGV{;1%A7lRG^;i5S%)bh+_Qii+{&jN;_~qPn1YFUgKONPlqndRd z&vLx}rb%Tjt8No$5&ri&{uWJ!Oi-snSQ?gSKxgz{~qSwM@s%qNr4q5&%efax( zNd1yT{yogU=WopaAo2?ReEAPD|AT*H{zs8lSj6X_W&T;__b+7p$mQ$r`{6$UOO`)7 zV(p(DvG%t~ro`p*`}S-@*m+VMjSq$zyChS-!^Lb+eR&ahuxUlxwh!Z z9$vsraQR|3zt!@uf2(C&uxO_r$(o@}|Hgmz;!*0~5rg!}=U*DYC9PckJ|7SM+1}XS zX_mhyU|3IgpZ4&a{PlNQ{g?Hp5rkzOmy`diPl&W~?ylGPlI$Ml@65?RafFNt=&^e( zpZ^=?KZp54`nCSd@}IZE=d`=e@9(RaKb^|Ci+W{LIrl1`kO_jH?!uh>^|Iw}6Qz;3 zLi&r{>Uk%T%w1Ep{H374;HUPzmwn0n+r}(^;S7VGfLjs&J>Pr%A-$Yc{_Qtg{`*d| z{QhrPzK3VsTTr|1xrL@zEs)mUPD;LPK~22C>2nJ-a@)Kt_&hh83EvNP zMOOOx&f5*iLR#GZZa3|LH2eVP^?VwBp!51W4L`_vy_|+0?7Y5B!@;{=k0xHUK+=2t zm;i%n3tT;89@63tfgW3(OsdZ*DGoG%beF2Y52>X*8^$z z;m*tVG#uRM<#ysli+hFh@;CuTdtd3ioK3^Uns2^Z9F4)?Rg0sM*91?A?C5QaJ34w! zKD4;D!2Yw6jcduWf_|K(~ zzKigQ3k}}QdOk|{mo7EcJutk=KJ zO%gsGz~7yN=L3KXKm6l!GV+~UNJHf##N)hOOZ+z~e1Y3c{o*C;S99>^$*VgQ&!O(= z%hG!4dkSxsV^Vw;ogdWn&3fmjfIH~5P=7s3xSwxHD!KLr*w_N8b+@6zvYfS&OkFHekEbYdzob)>Z zm--YA`4KAXT!G_sn(%4%m%haN+lc@BFDz61+gblRa`69}=^yG^q3J(}-*Wv4cPV$~ z1*5~PLY;dl>Z|nmiNTGFoO=!7yYDx+ug@C7pJP4!_`Qtqj$m9j02ex+c1b}?+)dT} zA*NqT{MxNZ@nucV$|Y{!&VfHgJe%KUWE1!Lob;C|ywyFtYPr_( zBR0)&1H^M3+w1FdCE@Pv>3+G9@L5EWl54XVAh`aQ;Q!#`S5au6KUf1A;6{nC$U_Qe>dT6-?#egV4epE zpMKxF!5O%Ayi)H^DgIXXty8Sr_mNNjK=?DCGyZu!;V%-;j)x5YHsU{Gf2+?-NKe3p z&sYAopec`~=`C)xtbP%9O&0uJ#Pj$%qno$vzXW(&#{A-6bMV{?xX{h*y2(`Cu9DX4 zafQe8FHg^Bn0_blZG` zjh8m&`8na&JiJ9AzCJG!UjMPdJ$;UVoXeum$$$&~9mM~%xt-i;gpcn(sQA$xdTmrZ zt?pM(S$n5i4E`pjF9h;-lIb76!g}yssGnT#C;YgpjXvKX-9AeA4;LBzKg0UmMEGlW zS-E!*&)tA){U5RR?lSc5VNK5;iQ8|PemWSZtp{b(=M2CF{|x1cr}OJIeXIN2m#v$L7afj%5IS^|uRI;P0GIKy-)%;RAG7{{&-C*H{=As*O&>FU_IL(}r@qPb+9yyC zx!%I`j(WeKQ0G2C_%!*=%hj8RXWnD0G^LkU|H|~;9KT-9{DAPbU#0uyDZ*dJ^z2@@ zA6!e)-p3ophvNU0>rlXjK6?VYX&wYhE z$J{#zf+Z9i;CiZ+k)3*in zpVjoOu5;4r(@92rhVX;>tbez$e_tS;r-Siz80;FMv*Y~T_v4ugZ?4a}9QY>U**j(Q zzmoE50C1thF6tNGzyC;h{Q=_#FF!x;(+BeZ4&vW@sl{2SpsV)dr_*-Sp@3(}`F4f3x{cp5zFo@(FD9O8j;~8tF+z=`sFpO&zF6A%9(CMqBiQBplwH2MNDn>O3vG0l6>N zQ-q(n$)xq>_>@Ta8bE^rz zCa^!Z5?HB_b^$|a;TwhSQJtzNuGY9?{ z@m~|nNB)cWKfJ=m-CFX`t6paGSrE+A&jMWN^BC=@yS`P3(Cc@eBp@nIxX) zzhdn=iv9afOusX*$Nq)sUs!9D_jbb972aI#w{zgXB>o-j7fJm`e-}x540NoMt~wY@+SZ8gZ(PfuGhWS`0)4Cozd`f`HHKgm3<%mFwpn?Z;i)dsANMo;CpH<~{66`I0oQijke2_y%fa&(rk@V%iuvdzY1iFn?XiXqC>%TocDc~8owzavYroxX6>qEhhKGZ!TB2PydwFzs{-I6X@7QGHQj-rN*4Yj zbKo6-3q7w1woz_WW~z%Q{ZD?`U7FKL}qnzF~CuPK)6=81Mz4Tm4^*Zw-pHn%@74?_Gck zo%aOtVO>u8UZyVu>38I$zd_-x?s)nSyJ$b(N<1B$x1yPP-S6?!o;2z?_lq3-FB1Rd zw;Da)O*$Xcmd$Uk1YFv?D;O7x32)*2dif^8-TM6@S#WWj z-bwfj`N#9gLmq$7k3S=Peqa~<1#lTJp?z`y^h}n#TBvaBPy3|t!yExyGe{H7kG@azHhV(xL)t{(>D=y1RV|I=Kr=_8&KnSMc_FD};f zOq96w<-oTR&kI3&KTi01uDkj1dt(lsdvf4U63=vC=j_$=t?r_St>2Hrd{wTO9-qx8 zrvfhhJ`>mve@FP{fNwVvzB`bsTNQt+>-&k(|ArPT_Z>`sWk83UG`*!s{=JXs+XDQ* zAiN_O7jsX@Zr95d-s;Z$s?Afj?qj7K4Y;(|J+~z_P8a3iS;h35DNi=dH9UQU@AUpg zHsVUcXM=J5(H#7@C>;9Fvx zI=o!^E#Yp#pUuLgT$=ytY`PrBpIV5AA%fA3v0n{*D~@f8@aTInl=H z*losFuOR&o1zhU+_Mo1x)AUA@610I=f4ooO5t-0Jxb`nygh{0q0P(3H1;zH)T|E_Azwe9PqS0>WozP5%3N$`-1f zVod+}6yRC<=vIZdx}PpJI{yUgTXNk)`0utD{A-jOdk9~!q@d}J25_lQf#cWn^J@uzE||Y>B79e1Pd0q|hqh=9Iel>-Al$8LH_<@(^Etvd z6aOlR`>CCYmuxk%C(sARWBNSK1%_y5^&|)kEiFGml0kdef)UY zPWVaW6A%9=@h>{k`0%}?+ouS>>UOKogU48XzDhi9{xPZfuf`ric$!{BhaDTQR5Vh} z>z8dPp1=CSjYS;khbTb(IL<*LRMv1*7J}!GBC=8ws3?K67~2uiw;H3x(l}0=#hImu zC)-zUKXcKdGZ5biz5Njr*KZRMA9pd*J@M9lK7Pjp<_wc;OGe)OvE5Y z<>LAk8!zmQel1_QvAA;0#_)HsoPsP{wPf{Lg%sr|C^>Rcf*d03+nRODak}6HB4i>M z6XKHMrJ&RdL=t8x2bmC^$7fr<`oi_ae^|aGRk#PnbwYc1{#X=1k(IM3k_Odc^hj=y zsOd$c6A^K3{}7IQMgTy>z(>Sr z33r4rTnL$mC`tga$5tUe5*TZP!G^V&YsV3h2`8L|X(fV0d)MN#aM*5XxJ#bSl&4O4 zIzyfo$y2wRM5;487P$)%{0qm1twxAh#Qf8MwbtzypT7bjt*Ta<{0K`*pEVhuLAjD= zLuxg{koT)mJ;Xwd1B8Vkwj`MIF!;K?^X$bq^wj_AI%`o!95ibUI1z&`dfRz+_nFSZ zwU4%Up4HxUMkkITO$L=(xnaqg6~z^6mm^!TCx*&Zro7ODV}YwaK8CdY zU=j%y2moY-oDEq=Jmo^+yp`)VY}~M9ZLzbx17|hL*m6S}N(=AKU%hl$5q;UNq5-ck zRD}Iy+->VD6%i)4D1n?oHXyYc)W!#TT~F_L??@$CtOhC+W|H#zao6+QQstxKBNFz` zpIn^PKAc!A6q5Gg9NDUbUbkZ9m}5kTFWMPo;Y&ollVh}sMLAFy8MOsC53cA%;x>iI z5ru$xAycU#tf9WpCmcCHFamjzT?S6J9hNdQ&K_9;;|tBrB!dKmPPM)x2QMUDJ<)v; z9p#KA4f2*rNsDXQk1-9j&D0vgQL)wB0;>(Y5>BY}4kx=Dal>)MHDaM6lJgLfD07PZ zV6;$S3pw@{rys|$?Cf++J<+N!yE5b2Z&F@@y|yC;?U$J~UArl(XzgV|vsW;sTB!7@df{IgHVH$IWNH=f?E!{4hlw)+G;P3qJSu=;HU{4#yADZrDq09NzJS~JkWz) zL1aj6|Jjnrk5@AasNvN>z=6jcvk~h=14u?-=Gf78TEIn#VVNkPTt%eO$#RKOL4UFc zg*xd88x}alR9G|7V@*w;>VgFAa>do_kfjWBMh_;*rfy$xNTgL3qYWXVM!9BPWCos{ z@Z`ytW+wch6g^k$=`A5}rK3HX+0WZMWz;qIzr>j>*;%^i9T+%z!fz2L&@(yX$f9#$8&@YZ z{;lbVYPkqCRdaR74ei%F0oLh{qD~xC4Xux&$(R*%2aJ>{D815n9imB&+Qn(h2&9Pu zwAOJoSg$m>d+IpQ37w|LS*meeIlDuekk!R9e8eb7P*^PYk{oQ2Ed+y6R^E=I0BAJJ zspvAQ5pz06-hd~goKHJDJ8Ylt8U_XrXcXou#&%QQA zs~V)JF;Ss{$HppMNFGaNphn-8YeJ8pC1Q4Tp@JEl(OZ`TT+q(MVe(n&a3)bKGel>V zw<9>XXaZ@gnxo(yDLZK`faiOft3&bCbdaZK#`L(UBUl@&p5}(~)_QiEwr(|+Rg)0N zVAf?dsWu90J{=@BFl~nW8&yno`jB!g>>3=^SVS0d31*99LgXAcFmeT_E)U=w?5?64 zu#*eW%|jVIqGGJm>>e7KXYufn*bGu(i>jx%U>HY22}y*DOLo>&(Fx5dc!I7UD~;p$ zOOXm*;AhEWoQbXiZX06jmVqJ7S{QR0DLOdFUYeCP@E~jCWLc$#n2%X$wpA;5(=4dQ zaMpOeQQC$RQbb!p|J7&yiZHrVl zs+UEI9*C;U7yV-TX}rO>Q)NVAK*GEn?+NM&I@KzbGFaH3V{RvOB;-{}^At&Y1o z4nq!Yq$GJeRRlLp$_Ee*90w98t0KmI6+wj2r_k7_Wx%9Uol0W5DWolxBp~8gc>_B_ z42pX1XbGpDW^-4m7snuE6(h!jOuw4TH+VBc;*iw7hKQLa(^IOEQ+|K7M-B`J|4yn# zccWVyfdHvMa%T5Cjse18WSsa>L^(%H$)Vy%&lV`tVtK1KQ_W^|7`aW>hcJ7hyTvqw zNMr^RQKcbtOh!*^>&l>;H#b#rkr6U#~GBE7xvNzV=^`{V#E%(rB0!_|Ok zY1s|*K^4_X!^1_KpE6Ws)62Co;%vly zZZsH<*|n`D6?AIE$n4Sv&7=tVEc;EYv#$loa+dwZQF*EK!$LNgs3)DM2&_luG9l3 zFi4}8qTbDJA#qD3=?ZOUG z{&Z7tq_7N}M!6DHM10GBhA=RWF!|#cJ*t>QUC4Z)-mpoN=Ze(81U~((({0R!Aq-T= z$qYdv>SJ;P0Vn=Fc#pAU(5JRUKsHEh(OsNbi1|-pbSAQ5nu&%3NhP5HnkbLyfeWWf zGHlf2iQ_>seV$Dg!N}y+Lg9jomMmYhWaBFJjItt&gyhY=D13kyo-#IGM8k9Bs22hW zg7!{Pg*PKC4**{@EK21q<2bN87|ALxWL^NbwjALA{2SLS^X_FFSS0T7N;z%+X4M{D z6b+4_hG0*;0_LnC)99CTg5ZS3;lzJUyYxUw;7EFvtyy*OA}Gh>sG9fn6U7Z&*jk3k z$*9sisBpO`l(Xgpo=L1Sl#3PN{;bB7#aRaj2sksXF<_?rw}b7kw;kR~EUnaWYExfM z;T29?ja@K7m+7aBAPgTp;I?<9fpgk)^5>aM4agoHb>d^Bi*BF~XXd2lV%@?R$xQX0 z@u5M*Zh1OUmaHIolUg;n=kv7mfFN9?BQdtYVlIu;l+5)yySg((`C=X0u;;S821)(5 zSjx}R?qUGQbSvm~j3iies`LDUhYr)A`olFlvlEV3Sgd|(quy&Zzp@xZ&CBKz?NG!f z11~XZq0F!xI~porSbhniDD6zmiDe)(%Y%|kpm54vnlfx0$5SLX8HFi64M( zPNb;JIORXqE8!5U)ka}N!!(E6xB}JP++xgZ%<~e^UZr*y5tgfv@$iE641fz0)@IYm zI#L6S;Sn5AXmei?@Ue9&#mBzX2{_tS`RE}mkzAyi6UfEv@h!{IBVyR&2)1BWnVq4G zsp59bmZH+2b+g==l)&-XLPEMMM#^197#fyNABSH8HA^|dDsan0vIDM>zTWbuGSyew_6i0n#x60rW zxgIo8ykfbN%pq8D>?E=DGX}iQ)n$5*!xBso>cl%VOUzlOvv1$T(D;yT9#%pi49jpi z`sp=}!KJS*yE@yuM9ujk)T;qSNxbo>4d;|<5>n?Ur?wPG4r+wDRbBFa?g(dob&H&P zD5uP!kbtx`b(W+La?;Al(sYwVmdcu!2t}1)EsYF!sXqf8gxN`Hc+lK)a`I(wdXS3^|F1BXLC!4IOCtDXRAt^mGce&RSh_;I0@gjCIbLvb5cba*=)<*SJ@s{!37yIRCc6EOP}X09Sg zv;vUkFz>vf_Sbud_N1(N#Y`I6X||=SdBVLIwaBU^XY*O8P>^j#2)jIH3r_7beG8Z*;W!gJxi`RTDFy4lMa+$wKU~;QWhBCYuy2A%*Z}rACvXsiH7v`9<$#A1=y}>w8{vX43G8qm%NCRaQ z+m?}G2^Y?Y96XsrpJwkV5~fsi1Ar{194HP=h+!n8laf{C^bU$gT?&h|gf24lV3@%} z#9bd|?aJ|}MVz^;UMk;rk#EB`6WGrz4==SiW)Fc#ASsO7V(tkwq}L{5T?~cmpaFGN z%7p8bIb;E~bKa=aHrvBJKo55_lgg%xu_?(FiYME`kl8h(vS)z=!ipd}LuYlm!7mih z0csE(6I5Z?6eFmuCW|i>?3$C8SoSmvNq5*a*S!o|0_SYe=D><(ya`7*JCm=ogakI? zh-6GlgQot3XJ3j5& literal 0 HcmV?d00001 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/SolverSetup.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/SolverSetup.F90 new file mode 100644 index 000000000..2caad6f44 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/SolverSetup.F90 @@ -0,0 +1,299 @@ + +Subroutine SolverSetup + +Use BASIC_VARIABLES, Only: ncomp + +!PETSc modules +Use PetscManagement +Use f90moduleinterfaces +Use Global_x !(snes,ngrid,ngp,x,r,timer) + +Implicit None + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +DM :: da +PetscErrorCode :: ierr +type (userctx) :: user +Mat :: J +PetscReal :: erel +PetscBool :: flg +INTEGER :: jac_id +PetscInt :: JacLocal + +character(80) :: filename='' + +!external subroutines associated with Solver +external FormInitialGuess +external FormFunction +external Jac_Shell_AD +external Jac_Matrix_Empty +external MonitorTimer + + + call MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr) + call MPI_Comm_size(PETSC_COMM_WORLD,user%num_procs,ierr) + + +! Create solver context + call SNESCreate(PETSC_COMM_WORLD,snes,ierr) + +! Create distributed array (DMDA) to manage parallel grid and vectors + call DMDACreate1d(PETSC_COMM_WORLD, & !MPI communicator + & DMDA_BOUNDARY_GHOSTED, & !Boundary type at boundary of physical domain + & ngrid, & !global dimension of array (if negative number, then value can be changed by user via command line!) + & ncomp, & !number of degrees of freedom per grid point (number of unknowns at each grid point) + & ngp, & !number of ghost points accessible for local vectors + & PETSC_NULL_INTEGER, & !could be an array to specify the number of grid points per processor + & da, & !the resulting distributed array object + & ierr) + +! Extract global arrays from DMDA: x: unknowns, r: residual + call DMCreateGlobalVector(da,x,ierr) + call VecDuplicate(x,r,ierr) + +! Get local grid boundaries (for 1-dimensional DMDA) + call DMDAGetCorners(da, & !the distributed array + & user%xs, & !corner index in x direction + & PETSC_NULL_INTEGER, & !corner index in y direction + & PETSC_NULL_INTEGER, & !corner index in z direction + & user%xm, & !width of locally owned part in x direction + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction + & ierr) !error check + + call DMDAGetGhostCorners(da, & !the distributed array + & user%gxs, & !corner index in x direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in y direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in z direction (but now counting includes ghost points) + & user%gxm, & !width of locally owned part in x direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction (but now including ghost points) + & ierr) !error check + +! Here we shift the starting indices up by one so that we can easily +! use the Fortran convention of 1-based indices (rather 0-based indices). + user%xs = user%xs+1 + user%gxs = user%gxs+1 + user%xe = user%xs+user%xm-1 + user%gxe = user%gxs+user%gxm-1 + + call SNESSetFunction(snes,r,FormFunction,user,ierr) + call SNESSetApplicationContext(snes,user,ierr) + call SNESSetDM(snes,da,ierr) + +! !Set up matrix free jacobian +! erel = 1e-08 +! call MatCreateSNESMF(snes,J,ierr) !matrix free jacobi matrix +! call MatMFFDSetFunctionError(J,erel,ierr) +! call SNESSetJacobian(snes,J,J,MatMFFDComputeJacobian,PETSC_NULL_OBJECT,ierr) + + +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +! Set up nonlinear solver depending on option set in makefile (with -jac) +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-jac',jac_id,flg,ierr) + If(flg) Then + + Else + jac_id = 0 + write(*,*)'Option -jac not set in makefile, using matrix-free with numerical approximations.' + End If + + Select Case(jac_id) + + Case(-1) !for options that dont need a jacobian: Anderson mixing, Picard + + Case (0) !matrix-free with numerical approximation of J(x)v + !default value of erel + erel = 1e-08 + !check if value for erel is specified in makefile + call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-erel',erel,flg,ierr) + If(user%rank == 0) write(*,*)'Using matrix-free Jacobian with numerical approximations. erel:',erel + call MatCreateSNESMF(snes,J,ierr) !matrix free jacobi matrix + call MatMFFDSetFunctionError(J,erel,ierr) + call SNESSetJacobian(snes,J,J,MatMFFDComputeJacobian,PETSC_NULL_OBJECT,ierr) + + Case (1) !matrix-free with AD-calculated J(x)v + If(user%rank == 0) write(*,*)'Using matrix-free AD Jacobian.' + !determine local size of shell matrix + JacLocal = INT(ngrid / user%num_procs) + If(mod(ngrid,user%num_procs) /= 0 ) Stop 'Dimensions and number of cores dont match! mod(ngrid,nc) must equal 0' + !Make sure that local parts of JacShell have the same size as the local DMDA-Arrays (local size JacShell != user%xm!!) + If(JacLocal /= user%xm) Stop 'Shell-Jacobi-Matrix and DMDA have to be parallelized accordingly!!(JacLocal = user%xm)' + call MatCreateShell(PETSC_COMM_WORLD,ncomp*JacLocal,ncomp*JacLocal,ncomp*ngrid,ncomp*ngrid,PETSC_NULL_OBJECT,J,ierr) + call MatShellSetOperation( J, MATOP_MULT, Jac_Shell_AD, ierr ) + call SNESSetJacobian( snes, J, J, Jac_Matrix_Empty, PETSC_NULL_OBJECT, ierr) + + Case (2) !build complete Jacobi matrix via finite-differences + If(user%rank == 0) write(*,*)'Using finite-difference Jacobian.' +!Now in makefile: -snes_fd +! call MatCreate(PETSC_COMM_WORLD,J,ierr) +! call MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,ngrid,ngrid,ierr) +! call MatSetFromOptions(J,ierr) +! call MatSetUp(J,ierr) !!sets up the internal matrix data structure +! call SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,PETSC_NULL_OBJECT,ierr) + + + Case (3) !build the complete Jacobi matrix via AD + If(user%rank == 0) write(*,*)'Using AD-generated Jacobian.' + write(*,*)'Funktioniert noch nicht!' + stop + !create Matrix that has the appropriate sparsity pattern for the da + !But that also means that when values are inserted in positions that + !dont fit this structure, an error occurs! + !i.e. when calculating the jacobi matrix it is not possible anymore + !to ignore the sparsity pattern and just create a dense jacobian!! + + !call DMCreateMatrix(da,MATMPIAIJ,J,ierr) !CAUTION: in newer PETSc Versions DMCreateMatrix does not contain the MatType argument anymore! + !call SNESSetJacobian(snes,J,J,Jac_AD,PETSC_NULL_OBJECT,ierr) + + Case default + write(*,*) 'No valid option set for -jac in makefile, using full Jacobi via finite-differences.' + call SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,PETSC_NULL_OBJECT,ierr) + + End Select + +!Set monitoring function that ouputs the surface tension at every iteration + call SNESMonitorSet(snes,MonitorTimer,PETSC_NULL_OBJECT,PETSC_NULL_FUNCTION,ierr) + +!Enable modification from makefile + call SNESSetFromOptions(snes,ierr) + +!Evaluate Initial Guess + call FormInitialGuess(snes,x,ierr) + write(filename,*)'0_initial_profile_global.xlo' + call PrintGlobalVec(x,filename) + + !start timer + total_time = 0.0 + timer_old = MPI_WTIME() + +!Solve system + call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr) + write(filename,*)'1_final_profile_global.xlo' + call PrintGlobalVec(x,filename) + write(filename,'(a,I3.3,a)') '2_final_profile_local_proc_',user%rank,'.xlo' + call PrintLocalVec(x,da,filename) + + !plot residual vs time graph + !call system('gnuplot gnuplot_script.srp') + + +End Subroutine SolverSetup + + + + + + + +subroutine MonitorTimer(snes,its,norm,dummy,ierr) + + Use Global_x, Only: timer,timer_old,total_time,r + Use mod_DFT, Only: free + Use PARAMETERS, Only: KBOL,PI + Use BASIC_VARIABLES, Only: t,parame, ncomp + Use VLE_VAR, Only: rhob,tc + +! ! !PETSc modules +! ! use f90module +! ! !DFT modules +! ! use DFT_MODULE, ONLY: free +! ! use VLE_VAR, ONLY: tc,rhob +! ! use BASIC_VARIABLES, ONLY:t,parame,ncomp +! ! use PARAMETERS, ONLY: PI,KBOL + + implicit none + +#include +#include + +! Input/output variables: + SNES snes + PetscInt dummy + Integer :: its + REAL :: norm + PetscErrorCode ierr +! local + PetscReal :: f2norm + Vec :: current_solution + DOUBLE PRECISION :: delta_time + INTEGER :: rank + REAL :: m_average,surftens,st_macro + character(80) :: filename='' + + + + !calculate interfacial tension + !sum up the variable free from all procs on proc 0 + call MPI_Reduce(free,free,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,PETSC_COMM_WORLD,ierr) + + !Only proc 0 calculates surface tension + call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr) + IF(rank == 0) THEN + + !calculate surface tension + surftens = KBOL * t *1.E20*1000.0 *free + m_average = SUM( rhob(1,1:ncomp)*parame(1:ncomp,1) ) / rhob(1,0) + + st_macro = surftens / ( 1.0 + 3.0/8.0/PI *t/tc & + * (1.0/2.55)**2 / (0.0674*m_average+0.0045) ) + write(*,*)'ST',st_macro + + !write result to outputfile + filename='./out.txt' + CALL file_open(filename,99) + WRITE (99,*) st_macro + close(99) + + End If + + + + + + !calculate elapsed time + timer = MPI_WTIME() + delta_time = timer - timer_old + timer_old = timer + total_time = total_time + delta_time + + !get norm of residual array + call VecNorm(r,2,f2norm,ierr) + + IF(rank == 0) THEN + !print results to file + filename = 'ItsTimeNorm.dat' + open(unit = 44, file = filename) + write(44,*) its,total_time,f2norm + End If + +end subroutine MonitorTimer + + + + + + + + + + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Spline_Integration_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Spline_Integration_d.F90 new file mode 100644 index 000000000..dc143ece7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/Spline_Integration_d.F90 @@ -0,0 +1,217 @@ + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +! Differentiation of spline in forward (tangent) mode: +! variations of useful results: y2 +! with respect to varying inputs: y2 y +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE SPLINE_D(x, y, yd, n, yp1, ypn, y2, y2d) + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yd(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) + REAL, INTENT(OUT) :: y2d(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: nmax=1000 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(nmax) + REAL :: pd, und, ud(nmax) +! ---------------------------------------------------------------------- + IF (yp1 .GT. 0.99e30) THEN + y2d(1) = 0.0 + y2(1) = 0.0 + u(1) = 0.0 + ud = 0.0 + ELSE + y2d(1) = 0.0 + y2(1) = -0.5 + ud = 0.0 + ud(1) = 3.0*(yd(2)-yd(1))/(x(2)-x(1))**2 + u(1) = 3.0/(x(2)-x(1))*((y(2)-y(1))/(x(2)-x(1))-yp1) + END IF + DO i=2,n-1 + IF ((x(i+1) - x(i) .EQ. 0.0 .OR. x(i) - x(i-1) .EQ. 0.0) .OR. x(i+1)& +& - x(i-1) .EQ. 0.0) THEN + GOTO 100 + ELSE + sig = (x(i)-x(i-1))/(x(i+1)-x(i-1)) + pd = sig*y2d(i-1) + p = sig*y2(i-1) + 2.0 + y2d(i) = -((sig-1.0)*pd/p**2) + y2(i) = (sig-1.0)/p + ud(i) = ((6.0*((yd(i+1)-yd(i))/(x(i+1)-x(i))-(yd(i)-yd(i-1))/(x(i)& +& -x(i-1)))/(x(i+1)-x(i-1))-sig*ud(i-1))*p-(6.0*((y(i+1)-y(i))/(x(& +& i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-& +& 1))*pd)/p**2 + u(i) = (6.0*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1& +& )))/(x(i+1)-x(i-1))-sig*u(i-1))/p + END IF + END DO + IF (ypn .GT. 0.99e30) THEN + qn = 0.0 + un = 0.0 + und = 0.0 + ELSE + qn = 0.5 + und = -(3.0*(yd(n)-yd(n-1))/(x(n)-x(n-1))**2) + un = 3.0/(x(n)-x(n-1))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2d(n) = ((und-qn*ud(n-1))*(qn*y2(n-1)+1.0)-(un-qn*u(n-1))*qn*y2d(n-1)& +& )/(qn*y2(n-1)+1.0)**2 + y2(n) = (un-qn*u(n-1))/(qn*y2(n-1)+1.0) + DO k=n-1,1,-1 + y2d(k) = y2d(k)*y2(k+1) + y2(k)*y2d(k+1) + ud(k) + y2(k) = y2(k)*y2(k+1) + u(k) + END DO + GOTO 110 + 100 WRITE(*, *) 'i x', i, x(i+1), x(i), x(i-1) + WRITE(*, *) 'error in spline-interpolation' + STOP + 110 CONTINUE +END SUBROUTINE SPLINE_D + + + + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +! Differentiation of splint_integral in forward (tangent) mode: +! variations of useful results: integral +! with respect to varying inputs: y2a ya +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE SPLINT_INTEGRAL_D(xa, ya, yad, y2a, y2ad, n, xlo, xhi, & +& integral, integrald) + IMPLICIT NONE +! the -1 in (khi_L-1) because khi_L was already counted up +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: yad(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: y2ad(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral + REAL, INTENT(OUT) :: integrald +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, int, x0, x1, y0, y1, y20, y21 + REAL :: intd, y0d, y1d, y20d, y21d +! ---------------------------------------------------------------------- + integral = 0.0 + klo_l = 1 + khi_l = n + 1 IF (khi_l - klo_l .GT. 1) THEN + k = (khi_l+klo_l)/2 + IF (xa(k) .GT. xlo) THEN + khi_l = k + ELSE + klo_l = k + END IF + GOTO 1 + END IF + klo_h = 1 + khi_h = n + 2 IF (khi_h - klo_h .GT. 1) THEN + k = (khi_h+klo_h)/2 + IF (xa(k) .GT. xhi) THEN + khi_h = k + ELSE + klo_h = k + END IF + GOTO 2 + END IF +! integration in spline pieces, the lower interval, bracketed +! by xa(klo_L) and xa(khi_L) is in steps shifted upward. +! first: determine upper integration bound + xl = xlo + integrald = 0.0 + 3 IF (khi_h .GT. khi_l) THEN + xh = xa(khi_l) + ELSE IF (khi_h .EQ. khi_l) THEN + xh = xhi + ELSE + WRITE(*, *) 'error in spline-integration' + PAUSE + END IF + h = xa(khi_l) - xa(klo_l) + IF (h .EQ. 0.0) PAUSE'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0d = yad(klo_l) + y0 = ya(klo_l) + y1d = yad(khi_l) + y1 = ya(khi_l) + y20d = y2ad(klo_l) + y20 = y2a(klo_l) + y21d = y2ad(khi_l) + y21 = y2a(khi_l) +! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & +! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & +! -y20/6.*h*h*(x1-.5*xL) & +! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & +! -y21/6.*h*h*(.5*xL-x0) ) +! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & +! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & +! -y20/6.*h*h*(x1-.5*xH) & +! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & +! -y21/6.*h*h*(.5*xH-x0) ) + intd = -((xl*((x1-.5*xl)*y0d+(0.5*xl-x0)*y1d)-(x1-xl)**4*y20d/24.+(0.5& +& *xl*xl-x1*xl)*h**2*y20d/6.+(xl-x0)**4*y21d/24.-(0.5*xl*xl-x0*xl)*h**& +& 2*y21d/6.)/h) + int = -(1.0/h*(xl*((x1-.5*xl)*y0+(0.5*xl-x0)*y1)-y20/24.*(x1-xl)**4+& +& y20/6.*(0.5*xl*xl-x1*xl)*h*h+y21/24.*(xl-x0)**4-y21/6.*(0.5*xl*xl-x0& +& *xl)*h*h)) + intd = intd + (xh*((x1-.5*xh)*y0d+(0.5*xh-x0)*y1d)-(x1-xh)**4*y20d/24.& +& +(0.5*xh*xh-x1*xh)*h**2*y20d/6.+(xh-x0)**4*y21d/24.-(0.5*xh*xh-x0*xh& +& )*h**2*y21d/6.)/h + int = int + 1.0/h*(xh*((x1-.5*xh)*y0+(0.5*xh-x0)*y1)-y20/24.*(x1-xh)**& +& 4+y20/6.*(0.5*xh*xh-x1*xh)*h*h+y21/24.*(xh-x0)**4-y21/6.*(0.5*xh*xh-& +& x0*xh)*h*h) + integrald = integrald + intd + integral = integral + int +! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h .NE. khi_l - 1) GOTO 3 +END SUBROUTINE SPLINT_INTEGRAL_D + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_main.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_main.F90 new file mode 100644 index 000000000..3b0217a66 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_main.F90 @@ -0,0 +1,90 @@ +SUBROUTINE VLE_MIX(rhob,density,chemPot_total,user) + + +!Petsc modules + USE PetscManagement + + +!VLE modules + USE parameters, ONLY: PI, RGAS, KBOL, muhs,muhc,mudisp + USE basic_variables + USE EOS_VARIABLES, ONLY: fres, eta, eta_start, dhs, mseg, uij, sig_ij, rho, x, z3t + USE DFT_MODULE + USE EOS_NUMERICAL_DERIVATIVES + USE DFT_FCN_MODULE, ONLY: chemPot_res + IMPLICIT NONE + +! --------------------------------------------------------------------- +! Variables +! --------------------------------------------------------------------- + +!passed + type (userctx) user + REAL :: chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + +!local + REAL, DIMENSION(nc) :: dhs_star + REAL :: w(np,nc), lnphi(np,nc) + INTEGER :: converg + + ! --------------------------------------------------------------------- + ! prepare for phase equilibrium calculation for given T + ! --------------------------------------------------------------------- + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12*EXP( -3.0*parame(1:ncomp,3)/t ) ) ! needed for rdf_matrix + dhs_star(1:ncomp) = dhs(1:ncomp)/parame(1:ncomp,2) + + nphas = 2 + outp = 0 ! output to terminal + + CALL START_VAR (converg,user) ! gets starting values, sets "val_init" + + IF ( converg /= 1 ) THEN + IF(user%rank == 0) THEN + WRITE (*,*) 'no VLE found' + END IF + RETURN + END IF + +! rhob(phase,0): molecular density + rhob(1,0) = dense(1) / ( PI/6.0* SUM( xi(1,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + rhob(2,0) = dense(2) / ( PI/6.0* SUM( xi(2,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + ! rhob(phase,i): molecular component density (with i=(1,...ncomp) ) in units (1/A^3) + rhob(1,1:ncomp) = rhob(1,0)*xi(1,1:ncomp) + rhob(2,1:ncomp) = rhob(2,0)*xi(2,1:ncomp) + +! --- get density in SI-units (kg/m**3) ------------------------------- + CALL SI_DENS ( density, w ) + +!--- calculate residual chemical potentials + ensemble_flag = 'tv' ! this flag is for: mu_res=mu_res(T,rho) + densta(1) = dense(1) ! Index 1 is for liquid density (here: packing fraction eta) + densta(2) = dense(2) ! Index 2 is for vapour density (here: packing fraction eta) + CALL fugacity (lnphi) + chemPot_res(1:ncomp) = lnphi(1,1:ncomp) + chemPot_total(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhob(1,1:ncomp) ) ! my0 = mu_res(T,rho_bulk_L) + ln(rho_bulk_l) + + +! --------------------------------------------------------------------- +! Output results of phase equilibrim calculation +! --------------------------------------------------------------------- + + +IF(user%rank == 0) THEN + WRITE(*,*) '--------------------------------------------------' + WRITE(*,*)'RESULT OF PHASE EQUILIBRIUM CALCULATION' + WRITE (*,*) ' ' + WRITE (*,*) 'temperature ',t, 'K, and p=', p/1.E5,' bar' + WRITE (*,*) 'x1_liquid ',xi(1,1),' x1_vapor', xi(2,1) + WRITE (*,*) 'densities ',rhob(1,0), rhob(2,0) + WRITE (*,*) 'dense ',dense(1), dense(2) + WRITE (*,*) 'density [kg/m3] ',density(1), density(2) + write (*,*) 'chemical potentials comp1' , lnphi(1,1) + LOG( rhob(1,1) ), lnphi(2,1) + lnx(2,1) + LOG(rhob(2,0)) !LOG( rhob(2,1) ) + write (*,*) 'chemical potentials comp2' ,lnphi(1,2) + LOG( rhob(1,2) ), lnphi(2,2) + LOG( rhob(2,2) ) +END IF + + + + +END SUBROUTINE VLE_MIX diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.F90 new file mode 100644 index 000000000..66391e045 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/VLE_subroutines.F90 @@ -0,0 +1,7607 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE start_var +! +! This subroutine generates a converged solution for binary systems +! or performes a flash calculation for mixtues. This routine is a +! fairly weak point of the program. +! +! IF a polymer is considered, starting values for mole fractions +! are determined from the SUBROUTINGE POLY_STA_VAR (see below). The +! polymer needs to be placed as component 1 (first line) in INPUT +! file. +! +! A phase equilib. iteration is started at the end of this routine. +! If no solution is found (converg=0), the program will stop within +! this routine. +! +! Currently, this routine assumes two-phase equilibrium and derives +! starting values (xi,density) only for two phases. +! +! Prerequisites are: +! SUBROUTINE INPUT needs to be called prior to this routine, because +! all pure comp. parameters as well as (T,P,kij) need to be in place. +! Also, the variable to be iterated "it(i)" and the variables to be +! calculated through the summation relation "sum_rel(i)" have to be +! defined. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE start_var(converg,user) + +!Petsc modules + USE PetscManagement + +!VLE modules + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +type (userctx) user + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: ph, i, k + INTEGER :: ncompsav, n_unkwsav, ph_split + LOGICAL :: lle_check, flashcase, renormalize + REAL :: den1, den2, x_1, x_2 + CHARACTER (LEN=50) :: filename +! ---------------------------------------------------------------------- + +converg = 0 + +! CALL RACHFORD_RICE (converg) +! CALL Heidemann_Khalil + +! ---------------------------------------------------------------------- +! This first condition (eos >= 4) is for LJ models, not for PC-SAFT +! ---------------------------------------------------------------------- + +IF (eos >= 4) THEN + + ncomp = 2 ! set number of components to 2 + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + filename = 'LJ_START_VAL.INC' + CALL file_open(filename,84) + READ (84,*) den1,den2 + READ (84,*) x_1,x_2 + CLOSE (84) + + xi(1,1) = x_1 + xi(2,1) = x_2 + xi(1,2) = 1.0 - xi(1,1) + xi(2,2) = 1.0 - xi(2,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,2) = LOG(xi(2,2)) + + val_init(1) = den1 + val_init(2) = den2 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = LOG(xi(ph,k)) + END DO + END DO + + CALL objective_ctrl (converg) + + IF(user%rank == 0) THEN + IF (converg == 1) WRITE (*,*) t, p/1.0E5, xi(1,1), xi(2,1) + IF (converg == 0) WRITE (*,*) ' weak starting values' + END IF + +! ---------------------------------------------------------------------- +! ELSE: PC-SAFT equation of state +! ---------------------------------------------------------------------- + +ELSE + + renormalize = .false. ! for renormalization group theory (RGT) + IF (num == 2) renormalize = .true. + IF (num == 2) num = 0 ! if RGT: initial phase equilibr. is for non-renormalized model + + flashcase = .false. ! .true. when a specific feed conc. xif is given + IF (xif(1) /= 0.0) flashcase = .true. + + lle_check = .true. + +! ---------------------------------------------------------------------- +! IF: non-polymeric system +! ---------------------------------------------------------------------- + IF (mm(1) < 2000.0) THEN + + DO i=1,ncomp ! setting mole-fractions for the case that + ! anything goes wrong in the coming routines + xi(1,i) = 1.0 / REAL(ncomp) + xi(2,i) = 1.0 / REAL(ncomp) + END DO + + + ! ------------------------------------------------------------------ + ! determine an initial conc. (phase 1) that will phase split + ! ------------------------------------------------------------------ + IF( ncomp == 2 .AND. .NOT.flashcase ) THEN + CALL vle_min( lle_check ) + IF(user%rank == 0) THEN + WRITE(*,*)' INITIAL FEED-COMPOSITION',(xi(1,i), i=1,ncomp),converg + END IF + END IF + + ! ------------------------------------------------------------------ + ! perform a phase stability test + ! ------------------------------------------------------------------ + ph_split = 0 + CALL phase_stability ( .false., flashcase, ph_split,user ) + IF(user%rank == 0) THEN + write (*,*) 'stability analysis I indicates phase-split is:',ph_split + END IF + + ! ------------------------------------------------------------------ + ! determine species i, for which x(i) is calc from summation relation + ! ------------------------------------------------------------------ + CALL select_sum_rel (1,0,1) ! synthax (m,n,o): phase m + ! exclude comp. n + ! assign it(o) and higher + CALL select_sum_rel (2,0,2) ! for ncomp>=3, the quantities + ! to be iterated will be overwritten + + ! ------------------------------------------------------------------ + ! if 2 phases (VLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + ! --- perform tangent plane minimization ------------------------ + CALL tangent_plane + ph_split = 0 + + ! --- determine, for which substance summation relation is used -- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + CALL objective_ctrl (converg) + IF(user%rank == 0) THEN + IF (converg == 1 ) write (*,*) ' converged (maybe a VLE)',dense(1),dense(2) + END IF + END IF + + ! ------------------------------------------------------------------ + ! test for LLE + ! ------------------------------------------------------------------ + ph_split = 0 + + IF (lle_check) CALL phase_stability (lle_check,flashcase,ph_split) + IF(user%rank == 0) THEN + IF (lle_check) write (*,*) 'stability analysis II, phase-split is:',ph_split + END IF + + ! ------------------------------------------------------------------ + ! if two phases (LLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + IF(user%rank == 0) THEN + write (*,*) ' LLE-stability test indicates 2 phases (VLE or LLE)' + END IF + + ! --- perform tangent plane minimization ------------------------ + IF (flashcase) CALL select_sum_rel (1,0,1) + IF (flashcase) CALL select_sum_rel (2,0,2) + + CALL tangent_plane + + ! --- determine, for which substance summation relation ---------- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + val_conv(2) = 0.0 + CALL objective_ctrl (converg) + IF(user%rank == 0) THEN + IF (converg == 1 ) write (*,*) ' converged (maybe an LLE)',dense(1),dense(2) + END IF + END IF + + ! ------------------------------------------------------------------ + ! equilibr. calc. converged: set initial var. for further calc. + ! ------------------------------------------------------------------ + IF (converg == 1) THEN + val_init = val_conv + DO ph = 1,nphas + DO i = 1,ncomp + xi(ph,i) = EXP( val_conv(4+i+(ph-1)*ncomp) ) + END DO + END DO + dense(1:2) = val_conv(1:2) + ELSE + IF(user%rank == 0) THEN + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + END IF + STOP + END IF + + + ! --------------------------------------------------------------------- + ! ELSE: for systems with polymers + ! --------------------------------------------------------------------- + + ELSE + + ncompsav = ncomp + ncomp = 2 ! set number of components to 2 + n_unkwsav = n_unkw + + CALL poly_sta_var(converg) + + IF (converg == 1) THEN + val_init = val_conv + ELSE + + IF(user%rank == 0) THEN + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + END IF + STOP + END IF + + ncomp = ncompsav + n_unkw = n_unkwsav ! number of quantities to be iterated + + END IF + +! --- for RGT: set flag back to num=2 indicating an RGT calculation ---- + IF (renormalize) num = 2 + +END IF + +END SUBROUTINE start_var + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE objective_ctrl +! +! This subroutine controls the iso-fugacity iteration. It uses +! the variables defined in the array "val_init". If successfull, +! the converged values are written to "val_conv", and the flag +! converg is set to 1. +! See also above desciption for subroutine PHASE_EQUILIB +! This routine calls SUBROUTINE HYBRID, which is a solver (modified +! POWELL HYBRID METHOD). HYBRID is freely available for non-commercial +! applications. HYBRID requires three definitions: +! 1.the number of equations to be solved (=No. of variables to be +! iterated). The appropriate parameter is: "n_unkw" +! 2.the equations to be iterated, they are here gathered in the SUB- +! ROUTINE OBJEC_FCT (see below). Since HYBRID is a root finder, +! these objective functions are iterated to be zero (essentially, +! OBJEC_FCT contains the iso-fugacity relation. +! 3.an array of variables is required, containing the quatities to be +! iterated. This array is termed "y(i)" +! +! INPUT VARIABLES: +! val_init(i) array containing (densities,T,P,lnx's) serving as +! starting values for the phase equilibrium calculation +! it(i) contains the information, which variable is deter- +! mined iteratively. For syntax refer e.g.to SUB BINMIX. +! sum_rel(i) indicates, which mole fraction is determined from the +! summation relation sum(xi)=1 +! +! OUTPUT VARIABLES: +! val_conv(i) array containing the converged system variables +! analogous to "val_init" +! converg 0 if no convergence achieved, 1 if converged solution +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objective_ctrl (converg) +! + USE BASIC_VARIABLES + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE objec_fct + END INTERFACE +! + INTEGER :: info,k,posn,i + INTEGER, PARAMETER :: mxr = nc*(nc+1)/2 + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + REAL :: x_init, x_solut, r_diff1, r_diff2, totres + REAL :: r_thrash, x_thrash + CHARACTER (LEN=2) :: compon + LOGICAL :: convergence +! ---------------------------------------------------------------------- + +info=1 + +ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + +IF (num == 0) acc_a = 1.E-7 +IF (num == 0) step_a = 2.E-8 +IF (num == 1) acc_a = 1.E-7 +IF (num == 1) step_a = 2.E-8 +IF (num == 2) acc_a = 5.E-7 +IF (num == 2) step_a = 1.E-7 + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') y(posn) = val_init(3) + IF (it(i) == 'p') y(posn) = val_init(4) + IF (it(i) == 'lnp') y(posn) = LOG( val_init(4) ) + IF (it(i) == 'fls') y(posn) = alpha + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') y(posn) = val_init(4+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') y(posn) = val_init(4+ncomp+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') y(posn) = val_init(4+ncomp+ncomp+k) +END DO + +CALL init_vars + +x_init = 0.0 +DO i = 1,ncomp + IF (lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0) THEN + x_init = x_init + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + x_init = x_init + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO + +CALL hbrd (objec_fct, n_unkw, y, residu, step_a, acc_a, info, diag) + +x_solut = 0.0 +DO i = 1,ncomp + IF ( lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0 ) THEN + x_solut = x_solut + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + IF (lnx(1,i) < 1E300 .AND. lnx(1,i) > -1.E300 ) & + x_solut = x_solut + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO +r_diff1 = ABS( 1.0 - dense(1)/dense(2) ) +IF ( val_conv(2) > 0.0 ) THEN + r_diff2 = ABS( 1.0 - val_conv(1)/val_conv(2) ) +ELSE + r_diff2 = 0.0 +END IF + +totres = SUM( ABS( residu(1:n_unkw) ) ) + +r_thrash = 0.0005 +x_thrash = 0.0005 +if (num > 0 ) r_thrash = r_thrash * 10.0 +if (num > 0 ) x_thrash = x_thrash * 100.0 + +convergence = .true. + +IF ( info >= 2 ) convergence = .false. +IF ( ABS( 1.0- dense(1)/dense(2) ) < r_thrash .AND. x_solut < x_thrash ) THEN + IF ( x_init > 0.050 ) convergence = .false. + IF ( ( ABS( 1.0- dense(1)/dense(2) ) + x_solut ) < 1.E-7 ) convergence = .false. +ENDIF +IF ( r_diff2 /= 0.0 .AND. r_diff2 > (4.0*r_diff1) .AND. bindiag == 1 ) convergence = .false. +IF ( ncomp == 1 .AND. totres > 100.0*acc_a ) convergence = .false. +IF ( totres > 1000.0*acc_a ) convergence = .false. +IF ( ncomp == 1 .AND. r_diff1 < 1.d-5 ) convergence = .false. + +IF ( convergence ) THEN + converg = 1 + ! write (*,*) residu(1),residu(2) + CALL converged + IF (num <= 1) CALL enthalpy_etc +ELSE + converg = 0 +END IF + +DEALLOCATE( y, diag, residu ) + +END SUBROUTINE objective_ctrl + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE objec_fct +! +! This subroutine contains the equations to be solved numerically +! (iso-fugacity: fi'-fi''=0) as well as other dependent equations, +! which can be solved analytically, namely the summation relation +! xi=1-sum(xj) or the condition of equal charge for electrolyte +! solutions. +! This subroutine is required and controlled by the solver HBRD ! +! HBRD varies the variables "y(i)" and eveluates the result of +! these changes from this routine. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: density_error + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph,k,posn, skip,phase + REAL :: lnphi(np,nc),isofugacity + CHARACTER (LEN=2) :: compon +! ---------------------------------------------------------------------- + + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') t = y(posn) + IF (it(i) == 'p') p = y(posn) + IF (it(i) == 'lnp') p = EXP( y(posn) ) + IF (it(i) == 'fls') alpha = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') lnx(1,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') lnx(2,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') lnx(3,k) = y(posn) +END DO + +DO k = 1,ncomp + IF (lnx(1,k) > 0.0) lnx(1,k) = 0.0 + IF (lnx(2,k) > 0.0) lnx(2,k) = 0.0 +END DO + +IF (p < 1.E-100) p = 1.E-12 +!IF ( IsNaN( p ) ) p = 1000.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( t ) ) t = 300.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( alpha ) ) alpha = 0.5 ! rebounce for the case of NaN-solver output +IF ( p /= p ) p = 1000.0 ! rebounce for the case of NaN-solver output +IF ( t /= t ) t = 300.0 ! rebounce for the case of NaN-solver output +IF ( alpha /= alpha ) alpha = 0.5 ! rebounce for the case of NaN-solver output + +! --- setting of mole fractions ---------------------------------------- +DO ph = 1, nphas + DO i = 1, ncomp + IF ( lnx(ph,i) < -300.0 ) THEN + xi(ph,i) = 0.0 + ELSE + xi(ph,i) = EXP( lnx(ph,i) ) + END IF + END DO +END DO + +IF (ncomp > 1) CALL x_summation + +CALL fugacity (lnphi) + +phase = 2 +DO i = 1,n_unkw + skip = 0 !for ions/polymers, the isofug-eq. is not always solved + IF (n_unkw < (ncomp*(nphas-1))) skip = ncomp*(nphas-1) - n_unkw + IF ((i+skip-ncomp*(phase-2)) > ncomp) phase = phase + 1 + residu(i) = isofugacity((i+skip-ncomp*(phase-2)),phase,lnphi) + if ( density_error(phase) /= 0.0 ) residu(i) = residu(i) + SIGN( density_error(phase), residu(i) ) * 0.001 +END DO + +END SUBROUTINE objec_fct + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! REAL FUNCTION isofugacity +! +! calculates the deviation from the condition of equal fugacities in +! logarithmic form. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION isofugacity (i,phase,lnphi) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i + INTEGER, INTENT(IN) :: phase + REAL, INTENT(IN) :: lnphi(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: p1, p2 +! ---------------------------------------------------------------------- + + +! p1=1 +p1 = phase-1 +p2 = phase + +isofugacity = scaling(i) *( lnphi(p2,i)+lnx(p2,i)-lnx(p1,i)-lnphi(p1,i) ) +! write (*,'(a, 4G18.8)') ' t, p ',t,p,dense(1),dense(2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_V',i,p2,lnx(p2,i),lnphi(p2,i),dense(p2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_L',i,p1,lnx(p1,i),lnphi(p1,i),dense(p1) +! write (*,*) ' ISOFUGACITY',i,ISOFUGACITY, scaling(i) +! write (*,'(a,i3,4G18.8)') ' ISOFUGACITY',i,ISOFUGACITY, lnphi(p2,i)+lnx(p2,i), -lnx(p1,i)-lnphi(p1,i) +! pause + +END FUNCTION isofugacity + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vle_min(lle_check) +! + USE PARAMETERS, ONLY: RGAS + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL, INTENT(OUT) :: lle_check + + INTEGER :: i,j,k,phasen(0:40),steps + REAL :: lnphi(np,nc) + REAL :: vlemin(0:40),llemin(0:40),xval(0:40) + REAL :: start_xv(0:40),start_xl(0:40),x_sav,dg_dx2 +! ---------------------------------------------------------------------- + + + +j = 0 +k = 0 +nphas = 2 + +steps = 40 + +x_sav = xi(1,1) +sum_rel(1) = 'x12' ! summation relation +sum_rel(2) = 'x22' ! summation relation + +DO i = 0, steps + densta(1) = 0.45 + densta(2) = 1.d-6 + xi(1,1) = 1.0 - REAL(i) / REAL(steps) + IF ( xi(1,1) <= 1.E-50 ) xi(1,1) = 1.E-50 + xi(2,1) = xi(1,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + + CALL x_summation + CALL fugacity (lnphi) + CALL enthalpy_etc !!KANN DAS RAUS???? + + + + + xval(i) = xi(1,1) + llemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t + + IF ( ABS(1.0-dense(1)/dense(2)) > 0.0001 ) THEN + vlemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t & + - ( gibbs(2) +(xi(2,1)*lnx(2,1)+xi(2,2)*lnx(2,2))*RGAS*t ) + phasen(i) = 2 + ELSE + phasen(i) = 1 + END IF + + IF (i > 0 .AND. phasen(i) == 2) THEN + IF (phasen(i-1) == 2 .AND. ABS(vlemin(i)+vlemin(i-1)) < & + ABS(vlemin(i))+ABS(vlemin(i-1))) THEN + j = j + 1 + start_xv(j)=xval(i-1) + (xval(i)-xval(i-1)) & + * ABS(vlemin(i-1))/ABS(vlemin(i)-vlemin(i-1)) + END IF + END IF + +END DO + + +DO i=2,steps-2 + dg_dx2 = (-llemin(i-2)+16.0*llemin(i-1)-30.0*llemin(i) & + +16.0*llemin(i+1)-llemin(i+2)) / (12.0*((xval(i)-xval(i-1))**2)) + IF (dg_dx2 < 0.0) THEN + k = k + 1 + start_xl(k)=xval(i) + END IF +END DO + + +IF (start_xl(1) == 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + lle_check=.false. + ! write (*,*) 'VLE is likely', xi(1,1),xi(1,2) +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) == 0.0) THEN + xi(1,1) = start_xl(1) + xi(1,2) = 1.0-xi(1,1) + ! write (*,*) 'LLE is likely', xi(1,1),xi(1,2) + lle_check=.true. +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + ! write(*,*) 'starting with VLE and check for LLE' + lle_check=.true. +ELSE + xi(1,1) = x_sav + xi(1,2) = 1.0 - xi(1,1) +END IF + + +CALL x_summation + +END SUBROUTINE vle_min + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_stability +! +! the index 'LLE_check' is for the starting density (which determines +! whether a liquid or vapor phase is found) of the trial phase. The +! feed-point exits either as a vapor or as a liquid. If it can exist as +! both (feedphases=2), then both states are tested. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_stability ( lle_check, flashcase, ph_split,user ) + +!Petsc modules + USE PetscManagement + +!VLE modules + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI, x, eta, eta_start, z3t, fres + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + type (userctx) user + LOGICAL :: lle_check + LOGICAL, INTENT(IN OUT) :: flashcase + INTEGER, INTENT(OUT) :: ph_split +! ---------------------------------------------------------------------- + + INTERFACE + REAL FUNCTION F_STABILITY ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) + END FUNCTION + END INTERFACE + +!INTERFACE +! SUBROUTINE F_STABILITY (fmin, optpara, n) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE F_STABILITY +! +! SUBROUTINE stability_grad (g, optpara, n) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_grad +! +! SUBROUTINE stability_hessian (hessian, g, fmin, optpara, n) +! REAL, INTENT(IN OUT) :: hessian(:,:) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_hessian +!END INTERFACE + + INTEGER :: n, PRIN + REAL :: fmin, t0, h0, MACHEP, PRAXIS + REAL, ALLOCATABLE :: optpara(:) + + INTEGER :: i, feedphases, trial + REAL :: rhoi(nc),rho_start + REAL :: feeddens, rho_phas(np) + REAL :: fden + REAL :: dens + REAL :: rhot + REAL :: lnphi(np,nc) + REAL :: w(np,nc), mean_mass +! ---------------------------------------------------------------------- + +n = ncomp +ALLOCATE( optpara(n) ) + + +IF(user%rank == 0) THEN + IF (lle_check) WRITE (*,*) ' stability test starting with dense phase' +END IF + +DO i = 1, ncomp ! setting feed-phase x's + IF (.NOT.flashcase) xif(i) = xi(1,i) + IF (flashcase) xi(1,i) = xif(i) + xi(2,i) = xif(i) ! feed is tested for both: V and L density +END DO + +densta(1) = 0.45 +densta(2) = 1.d-6 + +CALL dens_calc(rho_phas) +IF ( ABS(1.0-dense(1)/dense(2)) > 0.0005 ) THEN + feedphases=2 ! feed-composition can exist both, in V and L +ELSE + feedphases=1 ! feed-composition can exist either in V or L +END IF +densta(1) = dense(1) +feeddens = dense(2) +!write (*,*) 'feedphases',dense(1), dense(2),feedphases + +10 CONTINUE ! IF FeedPhases=2 THEN there is a second cycle + + trial = 1 + + ! -------------------------------------------------------------------- + ! setting trial-phase mole-fractions + ! if there is no phase-split then further trial-phases are + ! considered (loop: 20 CONTINUE) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + w(2,i) = 1.0 / REAL(ncomp) + END DO + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + + 20 CONTINUE + + DO i = 1, ncomp + rhoif(i) = rho_phas(1) * xif(i) + rhoi(i) = rhoif(i) + END DO + + !write (*,'(a,6G16.8)') 'startval',rho_phas(2),xi(2,1:ncomp) + + ! -------------------------------------------------------------------- + ! calc Helmholtz energy density and derivative (numerical) to rhoif(i). + ! The derivative is taken around the "feed-point" not the trial phase + ! -------------------------------------------------------------------- + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + CALL PERTURBATION_PARAMETER + xi(1,1:ncomp) = x(1:ncomp) + eta = rhot * z3t + eta_start = eta + densta(1) = eta_start + ensemble_flag = 'tv' + CALL FUGACITY (lnphi) + ensemble_flag = 'tp' + + call fden_calc ( fden, rhoi ) + fdenf = fden + + grad_fd(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + + ! -------------------------------------------------------------------- + ! starting values for iteration (optpara) + ! -------------------------------------------------------------------- + rho_start = 1.E-5 + IF (lle_check) THEN + densta(2) = 0.45 + CALL dens_calc(rho_phas) + rho_start = rho_phas(2)*0.45/dense(2) + END IF + DO i = 1,ncomp + rhoi(i) = xi(2,i)*rho_start + optpara(i) = LOG( rhoi(i) ) + END DO + + ! -------------------------------------------------------------------- + ! minimizing the objective fct. Phase split for values of fmin < 0.0 + ! -------------------------------------------------------------------- + t0 = 5.E-5 + h0 = 0.5 + PRIN = 0 + MACHEP = 1.E-15 + + fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, F_STABILITY, fmin ) + + + ! -------------------------------------------------------------------- + ! updating the ln(x) valus from optpara. The optimal optpara-vector is + ! not necessarily the one that was last evaluated. At the very end, + ! cg_decent writes the best values to optpara + ! -------------------------------------------------------------------- + fmin = F_STABILITY( optpara, n ) + + + + ! IF ( n == 2 ) THEN + ! CALL Newton_Opt_2D ( stability_hessian, F_stability, optpara, n, 1.E-8, 1.E-8, g, fmin) + ! ELSE + ! CALL cg_descent (1.d-5, optpara, n, F_STABILITY, stability_grad, STATUS, & + ! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) + ! ENDIF + ! CALL F_STABILITY (fmin, optpara, n) + + + ! -------------------------------------------------------------------- + ! determine instability & non-trivial solution + ! -------------------------------------------------------------------- + ph_split = 0 + IF (fmin < -1.E-7 .AND. & + ABS( 1.0 - maxval(EXP(optpara),mask=optpara /= 0.0) /maxval(rhoif) ) > 0.0005) THEN + ph_split = 1 + END IF + + IF (ph_split == 1) THEN + + ! ------------------------------------------------------------------ + ! here, there should be IF FeedPhases=2 THEN GOTO 10 + ! and test for another phase (while saving optpara) + ! ------------------------------------------------------------------ + + rhoi2(1:ncomp) = EXP( optpara(1:ncomp) ) + dens = PI/6.0 * SUM( rhoi2(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + rhot = SUM( rhoi2(1:ncomp) ) + xi(2,1:ncomp) = rhoi2(1:ncomp) / rhot + + ELSE + + IF (trial <= ncomp + ncomp) THEN + ! ---------------------------------------------------------------- + ! setting trial-phase x's + ! ---------------------------------------------------------------- + IF (trial <= ncomp) THEN + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.05 + END DO + w(2,trial) = 0.95 + ELSE + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.00001 + END DO + w(2,trial-ncomp) = 0.99999 + END IF + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + trial = trial + 1 + GO TO 20 + END IF + ! IF (.NOT.LLE_check) write (*,*) 'no phase split detected' + ! IF (.NOT.LLE_check) pause + IF (feedphases > 1 .AND. .NOT.lle_check .AND. densta(1) > 0.2) THEN + densta(1) = feeddens ! this will be the lower-valued density (vapor) + CALL dens_calc(rho_phas) + ! WRITE (*,*) 'try feed as vapor-phase' + GO TO 10 + END IF + + END IF + +DEALLOCATE( optpara ) + +END SUBROUTINE phase_stability + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE select_sum_rel +! +! This subroutine determines which component of a phase "ph" is calculated +! from the summation relation x_i = 1 - sum(x_j). The other components are, +! by default, said to be iterated during the phase equilibrium calculation. +! +! Note that for flash calculations not all of these mole fractions are in +! fact iterated - this is raken care of in "determine_flash_it". +! +! ph phase +! excl exclude comp. n +! startindex assign it(startindex) for quantities to be iterated +! (further it(startindex+1) is assigned, for a ternary +! mixture, etc.) +! +! sum_index indicates the component, with the largest mole +! fraction. If ph=1 and sum_index=2, we define +! sum_rel(ph=1)='x12', so that this component is +! calculated from the summation relation. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE select_sum_rel (ph,excl,startindex) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph + INTEGER, INTENT(IN) :: excl + INTEGER, INTENT(IN) :: startindex +! ---------------------------------------------------------------------- + INTEGER :: i,j, sum_index + REAL :: xmax(np) + ! CHARACTER :: compNo*2,phasNo*2 +! ---------------------------------------------------------------------- + +xmax(ph) = 0.0 +DO i = 1, ncomp + + IF ( xi(ph,i) > xmax(ph) ) THEN + xmax(ph) = xi(ph,i) + sum_index = i + + IF (ph == 1 .AND. i == 1) sum_rel(1) = 'x11' + IF (ph == 1 .AND. i == 2) sum_rel(1) = 'x12' + IF (ph == 1 .AND. i == 3) sum_rel(1) = 'x13' + IF (ph == 1 .AND. i == 4) sum_rel(1) = 'x14' + IF (ph == 1 .AND. i == 5) sum_rel(1) = 'x15' + + IF (ph == 2 .AND. i == 1) sum_rel(2) = 'x21' + IF (ph == 2 .AND. i == 2) sum_rel(2) = 'x22' + IF (ph == 2 .AND. i == 3) sum_rel(2) = 'x23' + IF (ph == 2 .AND. i == 4) sum_rel(2) = 'x24' + IF (ph == 2 .AND. i == 5) sum_rel(2) = 'x25' + + IF (ph == 3 .AND. i == 1) sum_rel(3) = 'x31' + IF (ph == 3 .AND. i == 2) sum_rel(3) = 'x32' + IF (ph == 3 .AND. i == 3) sum_rel(3) = 'x33' + IF (ph == 3 .AND. i == 4) sum_rel(3) = 'x34' + IF (ph == 3 .AND. i == 5) sum_rel(3) = 'x35' +! write (*,*) ph,i,xi(ph,i),sum_rel(ph) + END IF + +END DO + +j = 0 +DO i = 1, ncomp + + IF ( i /= sum_index .AND. i /= excl ) THEN + IF (ph == 1 .AND. i == 1) it(startindex+j) = 'x11' + IF (ph == 1 .AND. i == 2) it(startindex+j) = 'x12' + IF (ph == 1 .AND. i == 3) it(startindex+j) = 'x13' + IF (ph == 1 .AND. i == 4) it(startindex+j) = 'x14' + IF (ph == 1 .AND. i == 5) it(startindex+j) = 'x15' + + IF (ph == 2 .AND. i == 1) it(startindex+j) = 'x21' + IF (ph == 2 .AND. i == 2) it(startindex+j) = 'x22' + IF (ph == 2 .AND. i == 3) it(startindex+j) = 'x23' + IF (ph == 2 .AND. i == 4) it(startindex+j) = 'x24' + IF (ph == 2 .AND. i == 5) it(startindex+j) = 'x25' + + IF (ph == 3 .AND. i == 1) it(startindex+j) = 'x31' + IF (ph == 3 .AND. i == 2) it(startindex+j) = 'x32' + IF (ph == 3 .AND. i == 3) it(startindex+j) = 'x33' + IF (ph == 3 .AND. i == 4) it(startindex+j) = 'x34' + IF (ph == 3 .AND. i == 5) it(startindex+j) = 'x35' +! write (*,*) 'iter ',it(startindex+j) + j = j + 1 + END IF + +END DO + +END SUBROUTINE select_sum_rel + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE tangent_plane +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +!!$ INTERFACE +!!$ SUBROUTINE tangent_value (fmin, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: fmin +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_value +!!$ +!!$ SUBROUTINE tangent_grad (g, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: g(:) +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_grad +!!$ END INTERFACE + +! +! ---------------------------------------------------------------------- + INTERFACE + REAL FUNCTION PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE, fmin ) + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: optpara(n) + REAL, EXTERNAL :: TANGENT_VALUE + REAL, INTENT(IN OUT) :: fmin + END FUNCTION + + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + END FUNCTION + END INTERFACE +! +! ---------------------------------------------------------------------- + INTEGER :: n + INTEGER :: i, k, ph + INTEGER :: small_i, min_ph, other_ph + INTEGER :: PRIN + REAL :: fmin , t0, h0, MACHEP + REAL :: lnphi(np,nc) + REAL, ALLOCATABLE :: optpara(:) + +! INTEGER :: STATUS, iter, nfunc, ngrad +! REAL :: gnorm +! REAL, ALLOCATABLE :: d(:), g(:), xtemp(:), gtemp(:) +! ---------------------------------------------------------------------- + +n = ncomp +t0 = 1.E-4 +h0 = 0.1 +PRIN = 0 +MACHEP = 1.E-15 + +ALLOCATE( optpara(n) ) +!ALLOCATE( d(n) ) +!ALLOCATE( g(n) ) +!ALLOCATE( xtemp(n) ) +!ALLOCATE( gtemp(n) ) + +DO i = 1,ncomp + rhoi1(i) = rhoif(i) + lnx(1,i) = LOG(xi(1,i)) + lnx(2,i) = LOG(xi(2,i)) +END DO + +DO i = 1,ncomp + optpara(i) = LOG( xi(2,i) * 0.001 ) +END DO + +! CALL cg_descent (1.d-4, optpara, n, tangent_value, tangent_grad, STATUS, & +! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) +! +! updating the ln(x) valus from optpara. The optimal optpara-vector is not necessarily +! the one that was last evaluated. At the very end, cg_decent writes the best values to optpara +! CALL tangent_value (fmin, optpara, n) + + + +fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE2, fmin ) + +! The optimal optpara-vector is not necessarily the one that was last evaluated. +! TANGENT_VALUE is reexecuted with the optimal vector optpara, in order to update the ln(x) values +fmin = TANGENT_VALUE2( optpara, n ) + + +! ---------------------------------------------------------------------- +! If one component is a polymer (indicated by a low component-density) +! then get an estimate of the polymer-lean composition, by solving for +! xi_p1 = ( xi_p2 * phii_p2) / phii_p1 (phase equilibrium condition, +! with p1 for phase 1) +! ---------------------------------------------------------------------- +IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + min_ph = 1 + other_ph = 2 +ELSE + min_ph = 2 + other_ph = 1 +ENDIF +small_i = MINLOC( lnx(min_ph,1:ncomp), 1 ) +! --- if one component is a polymer ------------------------------------ +IF ( MINVAL( lnx(min_ph,1:ncomp) ) < -20.0 ) THEN + CALL FUGACITY ( lnphi ) + lnx(min_ph,small_i) = lnx(other_ph,small_i)+lnphi(other_ph,small_i) - lnphi(min_ph,small_i) + optpara(small_i) = lnx(2,small_i) + LOG( SUM( EXP( optpara(1:ncomp) ) ) ) +END IF + +! ---------------------------------------------------------------------- +! caution: these initial values are for a flashcase overwritten in +! SUBROUTINE determine_flash_it2, because in that case, the lnx-values +! treated as ln(mole_number). +! ---------------------------------------------------------------------- +val_init(1) = dense(1) +val_init(2) = dense(2) +val_init(3) = t +val_init(4) = p +DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO +END DO +!alpha = optpara(1) + + +!DEALLOCATE( optpara, d, g, xtemp, gtemp ) +DEALLOCATE( optpara ) + +END SUBROUTINE tangent_plane + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE determine_flash_it2 +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, ph + REAL :: n_phase1, n_phase2, max_x_diff +! ---------------------------------------------------------------------- + + IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + it(1) = 'x11' + it(2) = 'x12' + IF (ncomp >= 3) it(3) = 'x13' + IF (ncomp >= 4) it(4) = 'x14' + IF (ncomp >= 5) it(5) = 'x15' + sum_rel(1) = 'nfl' + ELSE + it(1) = 'x21' + it(2) = 'x22' + IF (ncomp >= 3) it(3) = 'x23' + IF (ncomp >= 4) it(4) = 'x24' + IF (ncomp >= 5) it(5) = 'x25' + sum_rel(2) = 'nfl' + ENDIF + max_x_diff = 0.0 + DO i = 1,ncomp + IF ( ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) > max_x_diff ) THEN + max_x_diff = ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase1 = ( xif(i) - EXP( lnx(2,i) ) ) / ( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase2 = 1.0 - n_phase1 + END IF + END DO + lnx(1,1:ncomp) = lnx(1,1:ncomp) + LOG( n_phase1 ) ! these x's are treated as mole numbers + lnx(2,1:ncomp) = lnx(2,1:ncomp) + LOG( n_phase2 ) ! these x's are treated as mole numbers + + + val_init(1) = dense(1) + val_init(2) = dense(2) + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) ! - LOG( SUM( EXP( lnx(ph,1:ncomp) ) ) ) + ! write (*,*) ph,k, lnx(ph,k) + END DO + END DO + +END SUBROUTINE determine_flash_it2 + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE poly_sta_var +! +! This subroutine generates starting values for mole fractons of +! polymer-solvent systems. +! The determination of these starting values follows a two-step +! procedure. Fist, the equilibrium concentration of the polymer-rich +! phase is estimated with the assumption of zero concentration +! of polymer in the polymer-lean-phase. This is achieved in the +! SUBROUTINE POLYMER_FREE. (Only one equation has to be iterated +! for this case). Once this is achieved, the rigorous calculation +! is triggered. If it converges, fine! If no solution is obtained, +! the pressure is somewhat reduced, the procedure is repeated and +! a calculation is started to approach the originally specified +! pressure. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE poly_sta_var (converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k,ph,sol + REAL :: p_spec,solution(10,4+nc*np) +! ---------------------------------------------------------------------- + + p_spec = p + + find_equilibrium: DO + + CALL polymer_free(p_spec,sol,solution) + + WRITE (*,*) ' ' + WRITE (*,*) ' GENERATING STARTING VALUES' + + val_init(1) = solution(1,1) ! approx.solutions for next iteration + val_init(2) = solution(1,2) ! approx.solutions for next iteration + val_init(3) = solution(1,3) ! approx.solutions for next iteration + val_init(4) = solution(1,4) ! approx.solutions for next iteration + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = solution(1,4+k+(ph-1)*ncomp) + END DO + END DO + val_init(7) = -10000.0 ! start.val. for lnx(2,1) for iterat. + + IF (p /= p_spec) & + WRITE (*,*) ' INITIAL EQUILIBRIUM CALC. FAILD. NEXT STEP STARTS' + + IF (p == p_spec) THEN + n_unkw = ncomp ! number of quantities to be iterated + it(1)='x11' ! iteration of mol fraction of comp.1 phase 1 + it(2)='x21' ! iteration of mol fraction of comp.1 phase 2 + CALL objective_ctrl (converg) + ELSE + outp = 0 ! output to terminal + running ='p' ! Pressure is running var. in PHASE_EQUILIB + CALL phase_equilib(p_spec,5.0,converg) + END IF + + IF (converg == 1) EXIT find_equilibrium + p = p * 0.9 + IF ( p < (0.7*p_spec) ) WRITE (*,*) ' NO SOLUTION FOUND' + IF ( p < (0.7*p_spec) ) STOP + + END DO find_equilibrium + + WRITE (*,*) ' FINISHED: POLY_STA_VAR' + +END SUBROUTINE poly_sta_var + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE x_summation +! +! This subroutine solves the summation relation: xi=1-sum(xj) +! The variable "sum_rel(i)" contains the information, which mole +! fraction is the one to be calculated here. Consider the example +! sum_rel(1)='x12'. The fist letter 'x' of this variable indicates, +! that this subroutine needs to be executed and that the mole +! fraction of a component has to be calculated. The second letter +! of the string points to phase 1, the third letter to component 2. +! If the fist letter is 'e', not 'x', then the subroutine +! NEUTR_CHARGE is called. This is the case of electrolyte solutions, +! neutral charges have to be enforced in all phases (see below). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE x_summation +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, ph_i + REAL :: sum_x + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno + LOGICAL :: flashcase2 +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF (sum_rel(j)(1:3) == 'nfl') THEN + CALL new_flash (j) + RETURN + END IF +END DO + + + +flashcase2 = .false. + +DO j = 1, nphas + + IF (sum_rel(j)(1:1) == 'x') THEN + + phasno = sum_rel(j)(2:2) + READ(phasno,*) ph_i + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( sum_rel(nphas+j)(1:1) == 'e' ) CALL neutr_charge(nphas+j) + + sum_x = 0.0 + DO i = 1, ncomp + IF ( i /= comp_i ) sum_x = sum_x + xi(ph_i,i) + END DO + xi(ph_i,comp_i) = 1.0 - sum_x + IF ( xi(ph_i,comp_i ) < 0.0 ) xi(ph_i,comp_i) = 0.0 + IF ( xi(ph_i,comp_i ) /= 0.0 ) THEN + lnx(ph_i,comp_i) = LOG( xi(ph_i,comp_i) ) + ELSE + lnx(ph_i,comp_i) = -100000.0 + END IF + ! write (*,*) 'sum_x',ph_i,comp_i,lnx(ph_i,comp_i),xi(ph_i,comp_i) + + ELSE IF ( sum_rel(j)(1:2) == 'fl' ) THEN + + flashcase2 = .true. + ! ------------------------------------------------------------------ + ! This case is true when all molefractions of one phase are + ! determined from a component balance. What is needed to + ! calculate all molefractions of that phase are all mole- + ! fractions of the other phase (nphas=2, so far) and the + ! phase fraction alpha. + ! Alpha is calculated (in FLASH_ALPHA) from the mole fraction + ! of component {sum_rel(j)(3:3)}. IF sum_rel(2)='fl3', then + ! the alpha is determined from the molefraction of comp. 3 and + ! the molefraction of phase 2 is then completely determined ELSE + ! ------------------------------------------------------------------ + + ELSE + WRITE (*,*) 'summation relation not defined' + STOP + END IF + +END DO + +IF ( it(1) == 'fls' ) CALL flash_sum +IF ( flashcase2 ) CALL flash_alpha + +END SUBROUTINE x_summation + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE FUGACITY +! +! This subroutine serves as an interface to the eos-subroutines. +! (1) case 1, when ensemble_flag = 'tp' +! The subroutine gives the residual chemical potential: +! mu_i^res(T,p,x)/kT = ln( phi_i ) +! and in addition, the densities that satisfy the specified p +! (2) case 2, when ensemble_flag = 'tv' +! The subroutine gives the residual chemical potential: +! --> mu_i^res(T,rho,x)/kT +! and in addition the resulting pressure for the given density. +! The term "residual" means difference of the property and the same +! property for an ideal gas mixture. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE FUGACITY (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + DO ph = 1,nphas + + phas = ph + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(ph) = eta + ln_phi(ph,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE FUGACITY +! +! This subroutine serves as an interface to the eos-subroutines. +! (1) case 1, when ensemble_flag = 'tp' +! The subroutine gives the residual chemical potential: +! mu_i^res(T,p,x)/kT = ln( phi_i ) +! and in addition, the densities that satisfy the specified p +! (2) case 2, when ensemble_flag = 'tv' +! The subroutine gives the residual chemical potential: +! --> mu_i^res(T,rho,x)/kT +! and in addition the resulting pressure for the given density. +! The term "residual" means difference of the property and the same +! property for an ideal gas mixture. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE FUGACITY2 (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + ! DO ph = 1,nphas + + phas = 2! ph + eta_start = densta(2) + x(1:ncomp) = xi(2,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS2 + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(2) = eta + ln_phi(2,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + ! END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY2 + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE enthalpy_etc +! +! This subroutine serves as an interface to the EOS-routines. The +! residual enthalpy h_res, residual entropy s_res, residual Gibbs +! enthalpy g_res, and residual heat capacity at constant pressure +! (cp_res) corresponding to converged conditions are calculated. +! The conditions in (T,P,xi,rho) need to be converged equilibrium +! conditions !! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE enthalpy_etc +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! + INTEGER :: ph +! ------------------------------------------------------------------ + +IF (eos <= 1) THEN + + DO ph=1,nphas + + phas = ph + eta = dense(ph) +! eta_start = dense(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF(num == 0) THEN + CALL H_EOS + ELSE + IF(num == 1) CALL H_numerical + IF(num == 2) write (*,*) 'enthalpy_etc: incorporate H_EOS_RN' + IF(num == 2) stop +! IF(num == 2) CALL H_EOS_rn + END IF + enthal(ph) = h_res + entrop(ph) = s_res + ! gibbs(ph) = h_res - t * s_res ! already defined in eos.f90 (including ideal gas) + cpres(ph) = cp_res + + END DO + IF (nphas == 2) h_lv = enthal(2)-enthal(1) + +ENDIF + +END SUBROUTINE enthalpy_etc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dens_calc +! +! This subroutine serves as an interface to the EOS-routines. The +! densities corresponding to given (P,T,xi) are calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dens_calc(rho_phas) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! +!------------------------------------------------------------------ + REAL, INTENT(OUT) :: rho_phas(np) +! + INTEGER :: ph +!------------------------------------------------------------------ + + +DO ph = 1, nphas + + IF (eos < 2) THEN + + phas = ph + eta = densta(ph) + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + CALL PERTURBATION_PARAMETER + CALL DENSITY_ITERATION + + dense(ph)= eta + rho_phas(ph) = eta/z3t + + ELSE + write (*,*) ' SUBROUTINE DENS_CALC not available for cubic EOS' + stop + END IF + +END DO + +END SUBROUTINE dens_calc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE fden_calc (fden, rhoi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fden + REAL, INTENT(IN OUT) :: rhoi(nc) +! ---------------------------------------------------------------------- + REAL :: rhot, fden_id +! ---------------------------------------------------------------------- + + +IF (eos < 2) THEN + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + + CALL PERTURBATION_PARAMETER + eta = rhot * z3t + eta_start = eta + + IF (num == 0) THEN + CALL F_EOS + ELSE IF(num == 1) THEN + CALL F_NUMERICAL + ELSE + write (*,*) 'deactivated this line when making a transition to f90' + stop + ! CALL F_EOS_rn + END IF + + fden_id = SUM( rhoi(1:ncomp) * ( LOG( rhoi(1:ncomp) ) - 1.0 ) ) + + fden = fres * rhot + fden_id + +ELSE + write (*,*) ' SUBROUTINE FDEN_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE fden_calc + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE polymer_free +! +! This subroutine performes a phase equilibrium calculation assuming +! the polymer-lean hase to be polymer-free (x_poly=0). Only the +! equality of the solvent-fugacities has to be ensured (only one +! equation to be iterated). This procedure delivers very good +! appoximations for the polymer-rich phase up-to fairly close to the +! mixture critical point. Both, liquid-liquid and vapor-liquid +! equilibria can be calculated. +! See also comments to SUBROUTINE POLY_STA_VAR. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE polymer_free (p_spec,sol,solution) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: p_spec + INTEGER, INTENT(OUT) :: sol + REAL, INTENT(OUT) :: solution(10,4+nc*np) +! +! ---------------------------------------------------------------------- + INTEGER :: k,j,ph, converg + REAL :: grid(10) +! ---------------------------------------------------------------------- + + sol = 0 + + grid(1)=0.98 + grid(2)=0.9 + grid(3)=0.7 + grid(4)=0.5 + grid(5)=0.3 + grid(6)=0.2 + grid(7)=0.1 + grid(8)=0.05 + + DO WHILE ( sol == 0 ) + + DO j = 1,8 + ! Phase 2 is solvent-phase + ! starting value for xi(1,1) of polymer-phase 1: w_polymer=0.95 to 0.05 + ! from simple approximate equation + xi(1,1) = grid(j) / ( (1.0-grid(j)) * mm(1) / mm(2) ) !xi(1,1) Phase 1 Komponente 1 + IF ( mm(1) < 5000.0 ) xi(1,1) = xi(1,1) * 0.8 + xi(1,2) = 1.0 - xi(1,1) !xi(1,2) Phase 1 Komponente 2 + lnx(1,1) = LOG(xi(1,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,1) = -1.E10 !ln(xi) Phase 2 Komponente 1 + lnx(2,2) = 0.0 !ln(xi) Phase 2 Komponente 2 + + + + val_init(1) = 0.45 ! starting density targeting at a liquid phase + val_init(2) = 0.0001 ! starting density targeting at a vapor phase + ! val_init(2) = 0.45 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO + END DO + + + + + n_unkw = ncomp-1 ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = ' ' + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' + + CALL objective_ctrl (converg) + + IF (converg == 1 .AND. ABS(dense(1)/dense(2)-1.0) > 1.d-3 .AND. dense(1) > 0.1) THEN + IF (sol == 0) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + ELSE IF (ABS(solution(sol,5)/lnx(1,1)-1.0) > 1.d-2) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + END IF + END IF + + END DO + + + + + + IF (sol == 0) THEN + WRITE (*,*) ' no initial solution found' + p = p*0.9 + IF (p < (0.7*p_spec)) WRITE (*,*) ' NO SOLUTION FOUND' + IF (p < (0.7*p_spec)) STOP + ELSE IF (sol > 1) THEN + ! write (*,*) ' ' + ! write (*,*) ' ',sol,' solutions found:' + ! write (*,*) ' lnx(1,1), dichte_1, dichte_2' + ! DO k = 1,sol + ! write (*,*) solution(k,5),solution(k,1),solution(k,2) + ! END DO + END IF + END DO + + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + + END SUBROUTINE polymer_free + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE phase_equilib +! +! This subroutine varies a predefined "running variable" and +! organizes phase equilibrium calculations. For an isotherm +! calculation e.g., the running variable is often the pressure. The +! code is designed to deliver only converged solutions. In order to +! enforce convergence, a step-width adjustment (reduction) is +! implemented. + +! VARIABLE LIST: +! running defines the running variable. For example: if you want +! to calculate the vapor pressure curve of a component +! starting from 100�C to 200�C, then running is 't'. The +! temperature is step-wise increased until the end- +! -temperature of 200�C is reached. +! (in this example end_x=200+273.15) +! end_x end point for running variable +! steps No. of calculation steps towards the end point of calc. +! converg 0 if no convergence achieved, 1 if converged solution +! +! PREREQUISITES: +! prior to execution of this routine, the follwing variables have to +! be defined: "val_init" an array containing the starting values for +! this iteration, "it(i)" provides the information, which variable is +! determined iteratively, "sum_rel(i)" indicates, which mole fraction +! is determined from the summation relation sum(xi)=1. Furthermore, +! the number of phases and the variables provided by the subroutine +! INPUT are required. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE phase_equilib (end_x,steps,converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: end_x + REAL, INTENT(IN) :: steps + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k, count1,count2,runindex,maxiter + REAL :: delta_x,delta_org,val_org,runvar + CHARACTER (LEN=2) :: compon + LOGICAL :: continue_cycle +! ---------------------------------------------------------------------- + +IF (running(1:2) == 'd1') runindex = 1 +IF (running(1:2) == 'd2') runindex = 2 +IF (running(1:1) == 't') runindex = 3 +IF (running(1:1) == 'p') runindex = 4 +IF (running(1:2) == 'x1') compon = running(3:3) +IF (running(1:2) == 'x1') READ(compon,*) k +IF (running(1:2) == 'x1') runindex = 4+k +IF (running(1:2) == 'x2') compon = running(3:3) +IF (running(1:2) == 'x2') READ(compon,*) k +IF (running(1:2) == 'x2') runindex = 4+ncomp+k +IF (running(1:2) == 'l1') compon = running(3:3) +IF (running(1:2) == 'l1') READ(compon,*) k +IF (running(1:2) == 'l1') runindex = 4+k +IF (running(1:2) == 'l2') compon = running(3:3) +IF (running(1:2) == 'l2') READ(compon,*) k +IF (running(1:2) == 'l2') runindex = 4+ncomp+k + +maxiter = 200 +IF ( ncomp >= 3 ) maxiter = 1000 +count1 = 0 +count2 = 0 +delta_x = ( end_x - val_init(runindex) ) / steps !J: calc increment in running var = (phi_end - phi_init)/steps +delta_org = ( end_x - val_init(runindex) ) / steps +val_org = val_init(runindex) +IF ( running(1:1) == 'x' ) THEN + delta_x = ( end_x - EXP(val_init(runindex)) ) / steps + delta_org = ( end_x - EXP(val_init(runindex)) ) / steps + val_org = EXP(val_init(runindex)) +END IF + +continue_cycle = .true. + +DO WHILE ( continue_cycle ) + + count1 = count1 + 1 + count2 = count2 + 1 + ! val_org = val_init(runindex) + + + CALL objective_ctrl (converg) + + IF (converg == 1) THEN + val_init( 1:(4+ncomp*nphas) ) = val_conv( 1:(4+ncomp*nphas) ) + IF (outp == 1 .AND. (ABS(delta_x) > 0.1*ABS(delta_org) .OR. count2 == 2)) CALL output + ELSE + delta_x = delta_x / 2.0 + IF (num == 2) delta_x = delta_x / 2.0 + val_init(runindex) = val_org + IF (running(1:1) == 'x') val_init(runindex) = LOG(val_org) + continue_cycle = .true. + count2 = 0 + END IF + runvar = val_init(runindex) + IF (running(1:1) == 'x') runvar = EXP(val_init(runindex)) + + IF ( end_x == 0.0 .AND. running(1:1) /= 'x' ) THEN + IF ( ABS(runvar-end_x) < 1.E-8 ) continue_cycle = .false. + ELSE IF ( ABS((runvar-end_x)/end_x) < 1.E-8 ) THEN + ! IF(delta_org.NE.0.0) WRITE (*,*)' FINISHED ITERATION',count1 + continue_cycle = .false. + ELSE IF ( count1 == maxiter ) THEN + WRITE (*,*) ' MAX. NO OF ITERATIONS',count1 + converg = 0 + continue_cycle = .false. + ELSE IF ( ABS(delta_x) < 1.E-5*ABS(delta_org) ) THEN + ! WRITE (*,*) ' CLOSEST APPROACH REACHED',count1 + converg = 0 + continue_cycle = .false. + ELSE + continue_cycle = .true. + val_org = runvar + IF (ABS(runvar+delta_x-end_x) > ABS(runvar-end_x)) delta_x = end_x - runvar ! if end-point passed + val_init(runindex) = runvar + delta_x + IF (running(1:1) == 'x') val_init(runindex) = LOG(runvar+delta_x) + END IF + + IF (ABS(delta_x) < ABS(delta_org) .AND. count2 >= 5) THEN + delta_x = delta_x * 2.0 + count2 = 0 + END IF + +END DO ! continue_cycle + +END SUBROUTINE phase_equilib + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE new_flash (ph_it) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph_it +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph_cal + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + ph_cal = 3 - ph_it ! for two phases only + + DO i = 1, ncomp + IF ( lnx(ph_it,i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( lnx(ph_it,i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i)-ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(ph_it,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + DO i = 1, ncomp + IF ( xi(ph_it,i) >= 1.E-300 ) lnx(ph_it,i) = LOG( xi(ph_it,i) ) + END DO + xi(ph_cal,1:ncomp) = ni_1(1:ncomp) / SUM( ni_1(1:ncomp) ) + lnx(ph_cal,1:ncomp) = LOG( xi(ph_cal,1:ncomp) ) + +END SUBROUTINE new_flash + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PHI_EOS +! +! This subroutine gives the residual chemical potential: +! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! The required input for this case (T, p, x(nc)) and as a starting value +! eta_start +! +! or it gives +! +! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! The required input for this case (T, eta_start, x(nc)). Note that +! eta_start is the specified density (packing fraction) in this case. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_EOS +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + + + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + + + + +END DO + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + +END SUBROUTINE PHI_EOS + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PHI_EOS +! +! This subroutine gives the residual chemical potential: +! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! The required input for this case (T, p, x(nc)) and as a starting value +! eta_start +! +! or it gives +! +! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! The required input for this case (T, eta_start, x(nc)). Note that +! eta_start is the specified density (packing fraction) in this case. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_EOS2 +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + + + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + + +END DO + + + + +muhs(1:ncomp) = mhs(1:ncomp) +muhc(1:ncomp) = mhc(1:ncomp) +mudisp(1:ncomp) = mdsp(1:ncomp) + + + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + + +write(*,*)'tp?',myres(1), lnphi(1) + +END SUBROUTINE PHI_EOS2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE, ONLY: z_ges, fres_temp + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + INTEGER :: k + REAL :: zres, zges + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: delta_rho + REAL, DIMENSION(nc) :: myres + REAL, DIMENSION(nc) :: rhoi, rhoi_0 + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +!----------------------------------------------------------------------- +! density iteration or pressure calculation +!----------------------------------------------------------------------- + +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_NUMERICAL +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (tv) or (tp)' + stop +END IF + +!----------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +!----------------------------------------------------------------------- + +zges = (p * 1.E-30) / (kbol*t*eta/z3t) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.E-30) / (kbol*t*eta/z3t) +zres = zges - 1.0 +z_ges = zges + +rhoi_0(1:ncomp) = x(1:ncomp) * eta/z3t +rhoi(1:ncomp) = rhoi_0(1:ncomp) + + +!----------------------------------------------------------------------- +! derivative to rho_k (keeping other rho_i's constant +!----------------------------------------------------------------------- + +DO k = 1, ncomp + + IF ( rhoi_0(k) > 1.d-9 ) THEN + delta_rho = 1.E-13 * 10.0**(0.5*(15.0+LOG10(rhoi_0(k)))) + ELSE + delta_rho = 1.E-10 + END IF + + rhoi(k) = rhoi_0(k) + delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres1 = fres*rho + tfr_1 = tfr*rho + + rhoi(k) = rhoi_0(k) + 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres2 = fres*rho + tfr_2 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + rhoi(k) = rhoi_0(k) - 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres4 = fres*rho + tfr_4 = tfr*rho + + rhoi(k) = rhoi_0(k) - delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres5 = fres*rho + tfr_5 = tfr*rho + END IF + + rhoi(k) = rhoi_0(k) + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres3 = fres*rho + tfr_3 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + myres(k) = ( fres5 - 8.0*fres4 + 8.0*fres2 - fres1 ) / ( 6.0*delta_rho ) + ELSE + myres(k) = ( -3.0*fres3 + 4.0*fres2 - fres1 ) / delta_rho + END IF + +END DO + + +!----------------------------------------------------------------------- +! residual Helmholtz energy +!----------------------------------------------------------------------- + +fres_temp = fres + +!----------------------------------------------------------------------- +! residual chemical potential +!----------------------------------------------------------------------- + +DO k = 1, ncomp + IF (ensemble_flag == 'tp') lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' .AND. eta >= 0.0) lnphi(k) = myres(k) !+LOG(rho) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta + ! IF (DFT.GE.98) write (*,*) dft + ! write (*,*) 'lnphi',k,LNPHI(k),x(k),MYRES(k), -LOG(ZGES) + ! pause + ! write (*,*) k, myres(k), fres, ZRES +END DO + +END SUBROUTINE PHI_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +! SUBROUTINE H_EOS (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! IMPLICIT NONE +! INTEGER nc +! PARAMETER (nc=20) +! INTEGER phas,ncomp,eos,i +! REAL kij(nc,nc),lij(nc,nc),x(nc),t,p,parame(nc,25) +! REAL eta_start,eta,tfr,h_res,cp_res,s_res + + +! i=1 + +! IF (i.EQ.1) THEN +! CALL H_EOS_1(phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ELSE +! CALL H_EOS_NUM (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ENDIF + +! RETURN +! END + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS +! + USE PARAMETERS, ONLY: RGAS + USE EOS_CONSTANTS + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL :: zges, df_dt, dfdr, ddfdrdr + REAL :: cv_res, df_dt2, df_drdt + REAL :: fact, dist, t_tmp, rho_0 + REAL :: fdr1, fdr2, fdr3, fdr4 + + INTEGER :: i, m + REAL :: dhsdt(nc), dhsdt2(nc) + REAL :: z0, z1, z2, z3, z1tdt, z2tdt, z3tdt + REAL :: z1dt, z2dt, z3dt, zms, gii + REAL :: fhsdt, fhsdt2 + REAL :: fchdt, fchdt2 + REAL :: fdspdt, fdspdt2 + REAL :: fhbdt, fhbdt2 + REAL :: sumseg, I1, I2, I1dt, I2dt, I1dt2, I2dt2 + REAL :: c1_con, c2_con, c3_con, c1_dt, c1_dt2 + REAL :: z1tdt2, z2tdt2, z3tdt2 + REAL :: z1dt2, z2dt2, z3dt2 + + INTEGER :: j, k, l, no, ass_cnt, max_eval + LOGICAL :: assoc + REAL :: dij, dijdt, dijdt2 + REAL :: gij1dt, gij2dt, gij3dt + REAL :: gij1dt2, gij2dt2, gij3dt2 + REAL, DIMENSION(nc,nc) :: gijdt, gijdt2, kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: ass_d_dt, ass_d_dt2, eps_hb, delta, deltadt, deltadt2 + REAL, DIMENSION(nc,nsite) :: mxdt, mxdt2, mx_itr, mx_itrdt, mx_itrdt2 + REAL :: attenu, tol, suma, sumdt, sumdt2, err_sum + + INTEGER :: dipole + REAL :: fdddt, fdddt2 + REAL, DIMENSION(nc) :: my2dd, my0 + REAL, DIMENSION(nc,nc) :: idd2, idd2dt, idd2dt2, idd4, idd4dt, idd4dt2 + REAL, DIMENSION(nc,nc,nc) :: idd3, idd3dt, idd3dt2 + REAL :: factor2, factor3 + REAL :: fdd2, fdd3, fdd2dt, fdd3dt, fdd2dt2, fdd3dt2 + REAL :: eij, xijmt, xijkmt + + INTEGER :: qudpole + REAL :: fqqdt, fqqdt2 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: iqq2, iqq2dt, iqq2dt2, iqq4, iqq4dt, iqq4dt2 + REAL, DIMENSION(nc,nc,nc) :: iqq3, iqq3dt, iqq3dt2 + REAL :: fqq2, fqq2dt, fqq2dt2, fqq3, fqq3dt, fqq3dt2 + + INTEGER :: dip_quad + REAL :: fdqdt, fdqdt2 + REAL, DIMENSION(nc) :: myfac, q_fac + REAL, DIMENSION(nc,nc) :: idq2, idq2dt, idq2dt2, idq4, idq4dt, idq4dt2 + REAL, DIMENSION(nc,nc,nc) :: idq3, idq3dt, idq3dt2 + REAL :: fdq2, fdq2dt, fdq2dt2, fdq3, fdq3dt, fdq3dt2 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! Initializing +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +sumseg = z0t / (PI/6.0) +zms = 1.0 - z3 + + +! ---------------------------------------------------------------------- +! first and second derivative of f to density (dfdr,ddfdrdr) +! ---------------------------------------------------------------------- +CALL P_EOS + +zges = (pges * 1.E-30)/(kbol*t*rho) + +dfdr = pges/(eta*rho*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + + +! ---------------------------------------------------------------------- +! Helmholtz Energy f/kT = fres +! ---------------------------------------------------------------------- +CALL F_EOS + + +! ---------------------------------------------------------------------- +! derivative of some auxilliary properties to temperature +! ---------------------------------------------------------------------- +DO i = 1,ncomp + dhsdt(i)=parame(i,2) *(-3.0*parame(i,3)/t/t)*0.12*EXP(-3.0*parame(i,3)/t) + dhsdt2(i) = dhsdt(i)*3.0*parame(i,3)/t/t & + + 6.0*parame(i,2)*parame(i,3)/t**3 *0.12*EXP(-3.0*parame(i,3)/t) +END DO + +z1tdt = 0.0 +z2tdt = 0.0 +z3tdt = 0.0 +DO i = 1,ncomp + z1tdt = z1tdt + x(i) * mseg(i) * dhsdt(i) + z2tdt = z2tdt + x(i) * mseg(i) * 2.0*dhs(i)*dhsdt(i) + z3tdt = z3tdt + x(i) * mseg(i) * 3.0*dhs(i)*dhs(i)*dhsdt(i) +END DO +z1dt = PI / 6.0*z1tdt *rho +z2dt = PI / 6.0*z2tdt *rho +z3dt = PI / 6.0*z3tdt *rho + + +z1tdt2 = 0.0 +z2tdt2 = 0.0 +z3tdt2 = 0.0 +DO i = 1,ncomp + z1tdt2 = z1tdt2 + x(i)*mseg(i)*dhsdt2(i) + z2tdt2 = z2tdt2 + x(i)*mseg(i)*2.0 *( dhsdt(i)*dhsdt(i) +dhs(i)*dhsdt2(i) ) + z3tdt2 = z3tdt2 + x(i)*mseg(i)*3.0 *( 2.0*dhs(i)*dhsdt(i)* & + dhsdt(i) +dhs(i)*dhs(i)*dhsdt2(i) ) +END DO +z1dt2 = PI / 6.0*z1tdt2 *rho +z2dt2 = PI / 6.0*z2tdt2 *rho +z3dt2 = PI / 6.0*z3tdt2 *rho + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT hard spheres to temp. (fhsdt) +! ---------------------------------------------------------------------- +fhsdt = 6.0/PI/rho*( 3.0*(z1dt*z2+z1*z2dt)/zms + 3.0*z1*z2*z3dt/zms/zms & + + 3.0*z2*z2*z2dt/z3/zms/zms & + + z2**3 *(2.0*z3*z3dt-z3dt*zms)/(z3*z3*zms**3 ) & + + (3.0*z2*z2*z2dt*z3-2.0*z2**3 *z3dt)/z3**3 *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3dt/zms ) + +fhsdt2= 6.0/PI/rho*( 3.0*(z1dt2*z2+2.0*z1dt*z2dt+z1*z2dt2)/zms & + + 6.0*(z1dt*z2+z1*z2dt)*z3dt/zms/zms & + + 3.0*z1*z2*z3dt2/zms/zms + 6.0*z1*z2*z3dt*z3dt/zms**3 & + + 3.0*z2*(2.0*z2dt*z2dt+z2*z2dt2)/z3/zms/zms & + - z2*z2*(6.0*z2dt*z3dt+z2*z3dt2)/(z3*z3*zms*zms) & + + 2.0*z2**3 *z3dt*z3dt/(z3**3 *zms*zms) & + - 4.0*z2**3 *z3dt*z3dt/(z3*z3 *zms**3 ) & + + (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/(z3*zms**3 ) & + + 6.0*z2**3 *z3dt*z3dt/(z3*zms**4 ) & + - 2.0*(3.0*z2*z2*z2dt/z3/z3-2.0*z2**3 *z3dt/z3**3 ) *z3dt/zms & + -(z2**3 /z3/z3-z0)*(z3dt2/zms+z3dt*z3dt/zms/zms) & + + ( (6.0*z2*z2dt*z2dt+3.0*z2*z2*z2dt2)/z3/z3 & + - (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/z3**3 & + + 6.0*z2**3 *z3dt*z3dt/z3**4 )* LOG(zms) ) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT of chain term to T (fchdt) +! ---------------------------------------------------------------------- +fchdt = 0.0 +fchdt2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + dij=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + dijdt =(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) / (dhs(i)+dhs(j)) & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) + dijdt2=(dhsdt2(i)*dhs(j) + 2.0*dhsdt(i)*dhsdt(j) & + + dhs(i)*dhsdt2(j)) / (dhs(i)+dhs(j)) & + - 2.0*(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) & + / (dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) & + + 2.0* dhs(i)*dhs(j) / (dhs(i)+dhs(j))**3 & + * (dhsdt(i)+dhsdt(j))**2 & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt2(i)+dhsdt2(j)) + gij1dt = z3dt/zms/zms + gij2dt = 3.0*( z2dt*dij+z2*dijdt )/zms/zms +6.0*z2*dij*z3dt/zms**3 + gij3dt = 4.0*(dij*z2)* (dijdt*z2 + dij*z2dt) /zms**3 & + + 6.0*(dij*z2)**2 * z3dt /zms**4 + gij1dt2 = z3dt2/zms/zms +2.0*z3dt*z3dt/zms**3 + gij2dt2 = 3.0*( z2dt2*dij+2.0*z2dt*dijdt+z2*dijdt2 )/zms/zms & + + 6.0*( z2dt*dij+z2*dijdt )/zms**3 * z3dt & + + 6.0*(z2dt*dij*z3dt+z2*dijdt*z3dt+z2*dij*z3dt2) /zms**3 & + + 18.0*z2*dij*z3dt*z3dt/zms**4 + gij3dt2 = 4.0*(dijdt*z2+dij*z2dt)**2 /zms**3 & + + 4.0*(dij*z2)* (dijdt2*z2+2.0*dijdt*z2dt+dij*z2dt2) /zms**3 & + + 24.0*(dij*z2) *(dijdt*z2+dij*z2dt)/zms**4 *z3dt & + + 6.0*(dij*z2)**2 * z3dt2 /zms**4 & + + 24.0*(dij*z2)**2 * z3dt*z3dt /zms**5 + gijdt(i,j) = gij1dt + gij2dt + gij3dt + gijdt2(i,j) = gij1dt2 + gij2dt2 + gij3dt2 + END DO +END DO + +DO i = 1, ncomp + gii = 1.0/zms + 3.0*dhs(i)/2.0*z2/zms/zms + 2.0*dhs(i)*dhs(i)/4.0*z2*z2/zms**3 + fchdt = fchdt + x(i) * (1.0-mseg(i)) * gijdt(i,i) / gii + fchdt2= fchdt2+ x(i) * (1.0-mseg(i)) & + * (gijdt2(i,i) / gii - (gijdt(i,i)/gii)**2 ) +END DO + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT dispersion term to T (fdspdt) +! ---------------------------------------------------------------------- +I1 = 0.0 +I2 = 0.0 +I1dt = 0.0 +I2dt = 0.0 +I1dt2= 0.0 +I2dt2= 0.0 +DO m = 0, 6 + I1 = I1 + apar(m)*z3**REAL(m) + I2 = I2 + bpar(m)*z3**REAL(m) + I1dt = I1dt + apar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I2dt = I2dt + bpar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I1dt2= I1dt2+ apar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + apar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) + I2dt2= I2dt2+ bpar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + bpar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) +END DO + +c1_con= 1.0/ ( 1.0 + sumseg*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - sumseg)*(20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) +c2_con= - c1_con*c1_con *(sumseg*(-4.0*z3**2 +20.0*z3+8.0)/zms**5 & + + (1.0 - sumseg) *(2.0*z3**3 +12.0*z3**2 -48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) +c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( sumseg*(-12.0*z3**2 +72.0*z3+60.0)/zms**6 + (1.0 - sumseg) & + *(-6.0*z3**4 -48.0*z3**3 +288.0*z3**2 -480.0*z3+264.0) & + /(zms*(2.0-z3))**4 ) +c1_dt = c2_con*z3dt +c1_dt2 = c3_con*z3dt*z3dt + c2_con*z3dt2 + +fdspdt = - 2.0*PI*rho*(I1dt-I1/t)*order1 & + - PI*rho*sumseg*(c1_dt*I2+c1_con*I2dt-2.0*c1_con*I2/t)*order2 + +fdspdt2 = - 2.0*PI*rho*(I1dt2-2.0*I1dt/t+2.0*I1/t/t)*order1 & + - PI*rho*sumseg*order2*( c1_dt2*I2 +2.0*c1_dt*I2dt -4.0*c1_dt*I2/t & + + 6.0*c1_con*I2/t/t -4.0*c1_con*I2dt/t +c1_con*I2dt2) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT association term to T (fhbdt) +! ---------------------------------------------------------------------- +fhbdt = 0.0 +fhbdt2 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) THEN + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1,nhb_typ(i) + DO k = 1,nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO j = 1,nhb_typ(i) + no = no + 1 + END DO + ELSE + kap_hb(i,i) = 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0) ) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + ! kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l)=(eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l)=eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN + eps_hb(1,2,3,1)=0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1)=0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ! ass_d(i,j,k,l)=kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + ass_d_dt(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) + ass_d_dt2(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 & + * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) & + * (-2.0/t - eps_hb(i,j,k,l)/t/t) + END DO + END DO + END DO + END DO + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l)=gij(i,j)*ass_d(i,j,k,l) + deltadt(i,j,k,l) = gijdt(i,j)*ass_d(i,j,k,l) + gij(i,j)*ass_d_dt(i,j,k,l) + deltadt2(i,j,k,l)= gijdt2(i,j)*ass_d(i,j,k,l) & + + 2.0*gijdt(i,j)*ass_d_dt(i,j,k,l) +gij(i,j)*ass_d_dt2(i,j,k,l) + END DO + END DO + END DO + END DO + + +! ------ constants for iteration --------------------------------------- + attenu = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-12 + max_eval = 200 + +! ------ initialize mxdt(i,j) ------------------------------------------ + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + mxdt(i,k) = 0.0 + mxdt2(i,k) = 0.0 + END DO + END DO + + +! ------ iterate over all components and all sites --------------------- + DO ass_cnt = 1, max_eval + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + suma = 0.0 + sumdt = 0.0 + sumdt2= 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + suma = suma + x(j)*nhb_no(j,l)* mx(j,l) *delta(i,j,k,l) + sumdt = sumdt + x(j)*nhb_no(j,l)*( mx(j,l) *deltadt(i,j,k,l) & + + mxdt(j,l)*delta(i,j,k,l) ) + sumdt2 = sumdt2 + x(j)*nhb_no(j,l)*( mx(j,l)*deltadt2(i,j,k,l) & + + 2.0*mxdt(j,l)*deltadt(i,j,k,l) + mxdt2(j,l)*delta(i,j,k,l) ) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + suma * rho) + mx_itrdt(i,k)= - mx_itr(i,k)**2 * sumdt*rho + mx_itrdt2(i,k)= +2.0*mx_itr(i,k)**3 * (sumdt*rho)**2 - mx_itr(i,k)**2 *sumdt2*rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) & + + ABS(mx_itrdt(i,k) - mxdt(i,k)) + ABS(mx_itrdt2(i,k) - mxdt2(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + mxdt(i,k)=mx_itrdt(i,k)*attenu +mxdt(i,k)* (1.0 - attenu) + mxdt2(i,k)=mx_itrdt2(i,k)*attenu +mxdt2(i,k)* (1.0 - attenu) + END DO + END DO + IF(err_sum <= tol) GO TO 10 + + END DO + WRITE(6,*) 'CAL_PCSAFT: max_eval violated err_sum = ',err_sum,tol + STOP + 10 CONTINUE + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + ! fhb = fhb + x(i)* nhb_no(i,k)* ( 0.5 * ( 1.0 - mx(i,k) ) + LOG(mx(i,k)) ) + fhbdt = fhbdt + x(i)*nhb_no(i,k) *mxdt(i,k)*(1.0/mx(i,k)-0.5) + fhbdt2= fhbdt2 + x(i)*nhb_no(i,k) *(mxdt2(i,k)*(1.0/mx(i,k)-0.5) & + -(mxdt(i,k)/mx(i,k))**2 ) + END DO + END DO + +END IF + + +! ---------------------------------------------------------------------- +! derivatives of f/kT of dipole-dipole term to temp. (fdddt) +! ---------------------------------------------------------------------- +fdddt = 0.0 +fdddt2 = 0.0 +dipole = 0 +DO i = 1,ncomp + my2dd(i) = 0.0 + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 ) THEN + dipole = 1 + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END IF + my0(i) = my2dd(i) ! needed for dipole-quadrupole-term +END DO + +IF (dipole == 1) THEN + DO i = 1,ncomp + DO j = 1,ncomp + idd2(i,j) =0.0 + idd4(i,j) =0.0 + idd2dt(i,j) =0.0 + idd4dt(i,j) =0.0 + idd2dt2(i,j)=0.0 + idd4dt2(i,j)=0.0 + DO m=0,4 + idd2(i,j) = idd2(i,j) +ddp2(i,j,m)*z3**REAL(m) + idd4(i,j) = idd4(i,j) +ddp4(i,j,m)*z3**REAL(m) + idd2dt(i,j)= idd2dt(i,j) +ddp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd4dt(i,j)= idd4dt(i,j) +ddp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd2dt2(i,j)=idd2dt2(i,j)+ddp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idd4dt2(i,j)=idd4dt2(i,j)+ddp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + idd3(i,j,k) =0.0 + idd3dt(i,j,k) =0.0 + idd3dt2(i,j,k)=0.0 + DO m = 0, 4 + idd3(i,j,k) = idd3(i,j,k) +ddp3(i,j,k,m)*z3**REAL(m) + idd3dt(i,j,k) = idd3dt(i,j,k)+ddp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idd3dt2(i,j,k)= idd3dt2(i,j,k)+ddp3(i,j,k,m)*z3dt2*REAL(m) & + *z3**REAL(m-1) +ddp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1) *z3**REAL(m-2) + END DO + END DO + END DO + END DO + + + factor2= -PI *rho + factor3= -4.0/3.0*PI**2 * rho**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2dt= 0.0 + fdd3dt= 0.0 + fdd2dt2= 0.0 + fdd3dt2= 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + xijmt = x(i)*parame(i,3)*parame(i,2)**3 *x(j)*parame(j,3)*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2* xijmt/t/t*(idd2(i,j)+eij/t*idd4(i,j)) + fdd2dt= fdd2dt+ factor2* xijmt/t/t*(idd2dt(i,j)-2.0*idd2(i,j)/t & + +eij/t*idd4dt(i,j)-3.0*eij/t/t*idd4(i,j)) + fdd2dt2=fdd2dt2+factor2*xijmt/t/t*(idd2dt2(i,j)-4.0*idd2dt(i,j)/t & + +6.0*idd2(i,j)/t/t+eij/t*idd4dt2(i,j) & + -6.0*eij/t/t*idd4dt(i,j)+12.0*eij/t**3 *idd4(i,j)) + DO k = 1, ncomp + xijkmt=x(i)*parame(i,3)*parame(i,2)**3 & + *x(j)*parame(j,3)*parame(j,2)**3 & + *x(k)*parame(k,3)*parame(k,2)**3 & + /((parame(i,2)+parame(j,2))/2.0) /((parame(i,2)+parame(k,2))/2.0) & + /((parame(j,2)+parame(k,2))/2.0) *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 =fdd3 +factor3*xijkmt/t**3 *idd3(i,j,k) + fdd3dt =fdd3dt +factor3*xijkmt/t**3 * (idd3dt(i,j,k)-3.0*idd3(i,j,k)/t) + fdd3dt2=fdd3dt2+factor3*xijkmt/t**3 & + *( idd3dt2(i,j,k)-6.0*idd3dt(i,j,k)/t+12.0*idd3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fdd2 < -1.E-100 .AND. fdd3 /= 0.0 ) THEN + fdddt = fdd2* (fdd2*fdd2dt - 2.0*fdd3*fdd2dt+fdd2*fdd3dt) / (fdd2-fdd3)**2 + fdddt2 = ( 2.0*fdd2*fdd2dt*fdd2dt +fdd2*fdd2*fdd2dt2 & + -2.0*fdd2dt**2 *fdd3 -2.0*fdd2*fdd2dt2*fdd3 +fdd2*fdd2*fdd3dt2 ) & + /(fdd2-fdd3)**2 + fdddt * 2.0*(fdd3dt-fdd2dt)/(fdd2-fdd3) + END IF +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of quadrupole-quadrup. term to T (fqqdt) +! ---------------------------------------------------------------------- +fqqdt = 0.0 +fqqdt2 = 0.0 +qudpole = 0 +DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + IF (qq2(i) /= 0.0) qudpole = 1 +END DO + +IF (qudpole == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + iqq2(i,j) = 0.0 + iqq4(i,j) = 0.0 + iqq2dt(i,j) = 0.0 + iqq4dt(i,j) = 0.0 + iqq2dt2(i,j)= 0.0 + iqq4dt2(i,j)= 0.0 + DO m = 0, 4 + iqq2(i,j) = iqq2(i,j) + qqp2(i,j,m)*z3**REAL(m) + iqq4(i,j) = iqq4(i,j) + qqp4(i,j,m)*z3**REAL(m) + iqq2dt(i,j) = iqq2dt(i,j)+ qqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq4dt(i,j) = iqq4dt(i,j)+ qqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq2dt2(i,j)= iqq2dt2(i,j)+qqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + iqq4dt2(i,j)= iqq4dt2(i,j)+qqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + iqq3(i,j,k) =0.0 + iqq3dt(i,j,k) =0.0 + iqq3dt2(i,j,k)=0.0 + DO m = 0, 4 + iqq3(i,j,k) = iqq3(i,j,k) + qqp3(i,j,k,m)*z3**REAL(m) + iqq3dt(i,j,k) = iqq3dt(i,j,k)+ qqp3(i,j,k,m)*z3dt*REAL(m) * z3**REAL(m-1) + iqq3dt2(i,j,k)= iqq3dt2(i,j,k)+qqp3(i,j,k,m)*z3dt2*REAL(m) * z3**REAL(m-1) & + + qqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END DO + END DO + END DO + + factor2 = -9.0/16.0 * PI *rho + factor3 = 9.0/16.0 * PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2dt = 0.0 + fqq3dt = 0.0 + fqq2dt2= 0.0 + fqq3dt2= 0.0 + DO i = 1,ncomp + DO j = 1,ncomp + xijmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2 = fqq2 +factor2* xijmt/t/t*(iqq2(i,j)+eij/t*iqq4(i,j)) + fqq2dt= fqq2dt +factor2* xijmt/t/t*(iqq2dt(i,j)-2.0*iqq2(i,j)/t & + + eij/t*iqq4dt(i,j)-3.0*eij/t/t*iqq4(i,j)) + fqq2dt2=fqq2dt2+factor2*xijmt/t/t*(iqq2dt2(i,j)-4.0*iqq2dt(i,j)/t & + + 6.0*iqq2(i,j)/t/t+eij/t*iqq4dt2(i,j) & + - 6.0*eij/t/t*iqq4dt(i,j)+12.0*eij/t**3 *iqq4(i,j)) + DO k = 1,ncomp + xijkmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /sig_ij(i,j)**3 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,k)**3 & + * x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /sig_ij(j,k)**3 + fqq3 = fqq3 +factor3*xijkmt/t**3 *iqq3(i,j,k) + fqq3dt = fqq3dt +factor3*xijkmt/t**3 *(iqq3dt(i,j,k)-3.0*iqq3(i,j,k)/t) + fqq3dt2= fqq3dt2+factor3*xijkmt/t**3 & + * ( iqq3dt2(i,j,k)-6.0*iqq3dt(i,j,k)/t+12.0*iqq3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fqq2 /= 0.0 .AND. fqq3 /= 0.0 ) THEN + fqqdt = fqq2* (fqq2*fqq2dt - 2.0*fqq3*fqq2dt+fqq2*fqq3dt) / (fqq2-fqq3)**2 + fqqdt2 = ( 2.0*fqq2*fqq2dt*fqq2dt +fqq2*fqq2*fqq2dt2 & + - 2.0*fqq2dt**2 *fqq3 -2.0*fqq2*fqq2dt2*fqq3 +fqq2*fqq2*fqq3dt2 ) & + / (fqq2-fqq3)**2 + fqqdt * 2.0*(fqq3dt-fqq2dt)/(fqq2-fqq3) + END IF + +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of dipole-quadruppole term to T (fdqdt) +! ---------------------------------------------------------------------- +fdqdt = 0.0 +fdqdt2= 0.0 +dip_quad = 0 +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,7) /= 0.0) dip_quad = 1 + END DO + myfac(i) = parame(i,3)*parame(i,2)**4 *my0(i) + q_fac(i) = parame(i,3)*parame(i,2)**4 *qq2(i) +END DO + +IF (dip_quad == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + idq2(i,j) = 0.0 + idq4(i,j) = 0.0 + idq2dt(i,j) = 0.0 + idq4dt(i,j) = 0.0 + idq2dt2(i,j)= 0.0 + idq4dt2(i,j)= 0.0 + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + DO m = 0, 4 + idq2(i,j) = idq2(i,j) + dqp2(i,j,m)*z3**REAL(m) + idq4(i,j) = idq4(i,j) + dqp4(i,j,m)*z3**REAL(m) + idq2dt(i,j) = idq2dt(i,j)+ dqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq4dt(i,j) = idq4dt(i,j)+ dqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq2dt2(i,j)= idq2dt2(i,j)+dqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idq4dt2(i,j)= idq4dt2(i,j)+dqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + + DO k = 1,ncomp + idq3(i,j,k) = 0.0 + idq3dt(i,j,k) = 0.0 + idq3dt2(i,j,k)= 0.0 + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + DO m = 0, 4 + idq3(i,j,k) = idq3(i,j,k) + dqp3(i,j,k,m)*z3**REAL(m) + idq3dt(i,j,k)= idq3dt(i,j,k)+ dqp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idq3dt2(i,j,k)= idq3dt2(i,j,k)+dqp3(i,j,k,m)*z3dt2*REAL(m) *z3**REAL(m-1) & + + dqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/4.0 * PI * rho + factor3= PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2dt= 0.0 + fdq3dt= 0.0 + fdq2dt2=0.0 + fdq3dt2=0.0 + DO i = 1,ncomp + DO j = 1,ncomp + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + xijmt = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 + factor2* xijmt/t/t*(idq2(i,j)+eij/t*idq4(i,j)) + fdq2dt= fdq2dt+ factor2* xijmt/t/t*(idq2dt(i,j)-2.0*idq2(i,j)/t & + + eij/t*idq4dt(i,j)-3.0*eij/t/t*idq4(i,j)) + fdq2dt2 = fdq2dt2+factor2*xijmt/t/t*(idq2dt2(i,j)-4.0*idq2dt(i,j)/t & + + 6.0*idq2(i,j)/t/t+eij/t*idq4dt2(i,j) & + - 6.0*eij/t/t*idq4dt(i,j)+12.0*eij/t**3 *idq4(i,j)) + DO k = 1,ncomp + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + xijkmt= x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + * ( myfac(i)*q_fac(j)*myfac(k) & + + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + + fdq3 =fdq3 + factor3*xijkmt/t**3 *idq3(i,j,k) + fdq3dt=fdq3dt+ factor3*xijkmt/t**3 * (idq3dt(i,j,k)-3.0*idq3(i,j,k)/t) + fdq3dt2=fdq3dt2+factor3*xijkmt/t**3 & + *( idq3dt2(i,j,k)-6.0*idq3dt(i,j,k)/t+12.0*idq3(i,j,k)/t/t ) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 /= 0.0 .AND. fdq3 /= 0.0) THEN + fdqdt = fdq2* (fdq2*fdq2dt - 2.0*fdq3*fdq2dt+fdq2*fdq3dt) / (fdq2-fdq3)**2 + fdqdt2 = ( 2.0*fdq2*fdq2dt*fdq2dt +fdq2*fdq2*fdq2dt2 & + - 2.0*fdq2dt**2 *fdq3 -2.0*fdq2*fdq2dt2*fdq3 +fdq2*fdq2*fdq3dt2 ) & + / (fdq2-fdq3)**2 + fdqdt * 2.0*(fdq3dt-fdq2dt)/(fdq2-fdq3) + END IF + +END IF +! ---------------------------------------------------------------------- + + + + +! ---------------------------------------------------------------------- +! total derivative of fres/kT to temperature +! ---------------------------------------------------------------------- + +df_dt = fhsdt + fchdt + fdspdt + fhbdt + fdddt + fqqdt + fdqdt + + + +! ---------------------------------------------------------------------- +! second derivative of fres/kT to T +! ---------------------------------------------------------------------- + +df_dt2 = fhsdt2 +fchdt2 +fdspdt2 +fhbdt2 +fdddt2 +fqqdt2 +fdqdt2 + + + +! ---------------------------------------------------------------------- +! ------ derivatives of fres/kt to density and to T -------------------- +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! the analytic derivative of fres/kT to (density and T) (df_drdt) +! is still missing. A numerical differentiation is implemented. +! ---------------------------------------------------------------------- +fact = 1.0 +dist = t * 100.E-5 * fact +t_tmp = t +rho_0 = rho + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr1 = pges / (eta*rho_0*(kbol*t)/1.E-30) +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr2 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr3 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr4 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + + +df_drdt = (-fdr4+8.0*fdr3-8.0*fdr2+fdr1)/(12.0*dist) + + + + + +! ---------------------------------------------------------------------- +! thermodynamic properties +! ---------------------------------------------------------------------- + +s_res = ( - df_dt *t - fres )*RGAS + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS *t +cv_res = - ( t*df_dt2 + 2.0*df_dt ) * RGAS*t +cp_res = cv_res - RGAS + RGAS*(zges +eta*t*df_drdt)**2 & + / (1.0 + 2.0*eta*dfdr +eta**2 *ddfdrdr) + +! write (*,*) 'df_... ', df_dt,df_dt2 +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h,cv,cp', h_res,cv_res,cp_res + + +END SUBROUTINE H_EOS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE H_EOS_num +! +! This subroutine calculates enthalpies and heat capacities (cp) by +! taking numerical derivatieves. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS_num +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: df_dt, df_dtdt, df_drdt, dfdr, ddfdrdr + +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +df_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +df_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +s_res = (- df_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*df_dtdt + 2.0*df_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_1 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_2 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_3 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_4 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + +dfdr = pges / (eta*rho_0*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho_0*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + +df_drdt = ( -f_4 +8.0*f_3 -8.0*f_2 +f_1) / (12.0*dist) + +cp_res = cv_res - RGAS +RGAS*(zges+eta*t*df_drdt)**2 & + * 1.0/(1.0 + 2.0*eta*dfdr + eta**2 *ddfdrdr) + +! write (*,*) 'n',df_dt,df_dtdt +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h, cv', h_res, cv_res +! write (*,*) h_res - t*s_res +! write (*,*) cv_res,cp_res,eta +! pause + +END SUBROUTINE H_EOS_num + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE DENSITY_ITERATION +! +! iterates the density until the calculated pressure 'pges' is equal to +! the specified pressure 'p'. A Newton-scheme is used for determining +! the root to the objective function f(eta) = (pges / p ) - 1.0. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE DENSITY_ITERATION +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, start, max_i + REAL :: eta_iteration + REAL :: error, dydx, acc_i, delta_eta +! ---------------------------------------------------------------------- + + +IF ( densav(phas) /= 0.0 .AND. eta_start == denold(phas) ) THEN + denold(phas) = eta_start + eta_start = densav(phas) +ELSE + denold(phas) = eta_start + densav(phas) = eta_start +END IF + + +acc_i = 1.d-9 +max_i = 30 +density_error(:) = 0.0 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- +iterate_density: DO + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = (pges / p ) - 1.0 + + ! --- instable region correction ------------------------------------- + IF ( pgesdz < 0.0 .AND. i < max_i ) THEN + IF ( error > 0.0 .AND. pgesd2 > 0.0 ) THEN ! no liquid density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) > 0.0 ) eta_iteration = 0.001 ! no solution possible + IF ( ((pges/p ) -1.0) <=0.0 ) eta_iteration = eta_iteration * 1.1 ! no solution found so far + ELSE IF ( error < 0.0 .AND. pgesd2 < 0.0 ) THEN ! no vapor density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) < 0.0 ) eta_iteration = 0.5 ! no solution possible + IF ( ((pges/p ) -1.0) >=0.0 ) eta_iteration = eta_iteration * 0.9 ! no solution found so far + ELSE + eta_iteration = (eta_iteration + eta_start) / 2.0 + IF (eta_iteration == eta_start) eta_iteration = eta_iteration + 0.2 + END IF + CYCLE iterate_density + END IF + + + dydx = pgesdz/p + delta_eta = error/ dydx + IF ( delta_eta > 0.05 ) delta_eta = 0.05 + IF ( delta_eta < -0.05 ) delta_eta = -0.05 + + eta_iteration = eta_iteration - delta_eta + + IF (eta_iteration > 0.9) eta_iteration = 0.6 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + start = 1 + + IF ( ABS(error*p/pgesdz) < 1.d-12 ) start = 0 + IF ( ABS(error) < acc_i ) start = 0 + IF ( i > max_i ) THEN + start = 0 + density_error(phas) = ABS( error ) + ! write (*,*) 'density iteration failed' + END IF + + IF (start /= 1) EXIT iterate_density + +END DO iterate_density + +eta = eta_iteration + +IF ((eta > 0.3 .AND. densav(phas) > 0.3) .OR. & + (eta < 0.1 .AND. densav(phas) < 0.1)) densav(phas) = eta + +END SUBROUTINE DENSITY_ITERATION + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE F_EOS +! +! calculates the Helmholtz energy f/kT. The input to the subroutine is +! (T,eta,x), where eta is the packing fraction. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_EOS +! + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean ! ,lij(nc,nc) + REAL :: I1,I2, c1_con + REAL :: fhs, fdsp, fhc + + LOGICAL :: assoc + INTEGER :: ass_cnt,max_eval + REAL :: delta(nc,nc,nsite,nsite) + REAL :: mx_itr(nc,nsite), err_sum, sum, attenu, tol, fhb + REAL :: ass_s1, ass_s2 + + REAL :: fdd, fqq, fdq +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t / ( PI / 6.0 ) +zms = 1.0 - eta + +! m_mean2 = 0.0 +! lij(1,2) = -0.05 +! lij(2,1) = lij(1,2) +! DO i = 1, ncomp +! DO j = 1, ncomp +! m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : hard sphere contribution +! ---------------------------------------------------------------------- +fhs= m_mean*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + +! ---------------------------------------------------------------------- +! Helmholtz energy : chain term +! ---------------------------------------------------------------------- +fhc = 0.0 +DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : PC-SAFT dispersion contribution +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + +! ---------------------------------------------------------------------- +! Helmholtz energy : SAFT (Chen, Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdsp = 0.0 + DO n = 1,4 + DO m = 1,9 + fdsp = fdsp + dnm(n,m) * (um/t)**REAL(n) *(eta/tau)**REAL(m) + END DO + END DO + fdsp = m_mean * fdsp + +END IF + + +! ---------------------------------------------------------------------- +! TPT-1-association according to Chapman et al. +! ---------------------------------------------------------------------- +fhb = 0.0 +assoc = .false. +DO i = 1, ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + IF (mx(i,k) == 0.0) mx(i,k) = 1.0 ! Initialize mx(i,j) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l) = gij(i,j) * ass_d(i,j,k,l) + END DO + END DO + END DO + END DO + + +! --- constants for iteration ------------------------------------------ + attenu = 0.70 + tol = 1.d-10 + IF (eta < 0.2) tol = 1.d-12 + IF (eta < 0.01) tol = 1.d-13 + max_eval = 200 + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum = sum + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,j,k,l) +! if (ass_cnt == 1) write (*,*) j,l,x(j), mx(j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum * rho) +! if (ass_cnt == 1) write (*,*) 'B',ass_cnt,sum, rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF (ass_cnt >= max_eval) WRITE(*,'(a,2G15.7)') 'F_EOS: Max_eval violated (mx) Err_Sum = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG( mx(i,k) ) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1 / 2.0 ) + END DO + +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! polar terms +! ---------------------------------------------------------------------- + CALL F_POLAR ( fdd, fqq, fdq ) + + +! ---------------------------------------------------------------------- +! resid. Helmholtz energy f/kT +! ---------------------------------------------------------------------- +fres = fhs + fhc + fdsp + fhb + fdd + fqq + fdq + +tfr= fres + +END SUBROUTINE F_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE EOS_NUMERICAL_DERIVATIVES, ONLY: ideal_gas, hard_sphere, chain_term, & + disp_term, hb_term, LC_term, branch_term, & + II_term, ID_term, subtract1, subtract2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + +!-----local variables------------------------------------------------- + INTEGER :: i, j + REAL :: m_mean2 + REAL :: fid, fhs, fdsp, fhc + REAL :: fhb, fdd, fqq, fdq + REAL :: fhend, fcc + REAL :: fbr, flc + REAL :: fref + + REAL :: eps_kij, k_kij +!--------------------------------------------------------------------- + +eps_kij = 0.0 +k_kij = 0.0 + +fid = 0.0 +fhs = 0.0 +fhc = 0.0 +fdsp= 0.0 +fhb = 0.0 +fdd = 0.0 +fqq = 0.0 +fdq = 0.0 +fcc = 0.0 +fbr = 0.0 +flc = 0.0 + + +CALL PERTURBATION_PARAMETER + +! ---------------------------------------------------------------------- +! overwrite the standard mixing rules by those published by Tang & Gross +! using an additional lij parameter +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*mseg(i)/t*( x(j)*mseg(j) & + *sig_ij(i,j)*(uij(i,i)*uij(j,j))**(1.0/6.0) )**3 *lij(i,j) + END DO +END DO + + +! ---------------------------------------------------------------------- +! a non-standard mixing rule scaling the hard-sphere term +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! (uses an additional lij parameter) +! ---------------------------------------------------------------------- +m_mean2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + ! m_mean2=m_mean2+x(i)*(x(j)*((mseg(i)+mseg(j))*0.5)**(1.0/3.0) *lij(i,j) )**3 + END DO +END DO + +! --- ideal gas contribution ------------------------------------------- +IF ( ideal_gas == 'yes' ) CALL F_IDEAL_GAS ( fid ) +! ---------------------------------------------------------------------- + +! --- hard-sphere contribution ----------------------------------------- +IF ( hard_sphere == 'CSBM' ) CALL F_HARD_SPHERE ( m_mean2, fhs ) +! ---------------------------------------------------------------------- + +! -- chain term -------------------------------------------------------- +IF ( chain_term == 'TPT1' ) CALL F_CHAIN_TPT1 ( fhc ) +IF ( chain_term == 'TPT2' ) CALL F_CHAIN_TPT_D ( fhc ) +IF ( chain_term == 'HuLiu' ) CALL F_CHAIN_HU_LIU ( fhc ) +IF ( chain_term == 'HuLiu_rc' ) CALL F_CHAIN_HU_LIU_RC ( fhs, fhc ) +!!IF ( chain_term == 'SPT' ) CALL F_SPT ( fhs, fhc ) +IF ( chain_term == 'SPT' ) WRITE(*,*) 'SPT NOT INCLUDED YET' +! ---------------------------------------------------------------------- + +! --- dispersive attraction -------------------------------------------- +IF ( disp_term == 'PC-SAFT') CALL F_DISP_PCSAFT ( fdsp ) +IF ( disp_term == 'CK') CALL F_DISP_CKSAFT ( fdsp ) +IF ( disp_term(1:2) == 'PT') CALL F_pert_theory ( fdsp ) +! ---------------------------------------------------------------------- + +! --- H-bonding contribution / Association ----------------------------- +IF ( hb_term == 'TPT1_Chap') CALL F_ASSOCIATION( eps_kij, k_kij, fhb ) +! ---------------------------------------------------------------------- + +! --- polar terms ------------------------------------------------------ + CALL F_POLAR ( fdd, fqq, fdq ) +! ---------------------------------------------------------------------- + +! --- ion-dipole term -------------------------------------------------- +IF ( ID_term == 'TBH') CALL F_ION_DIPOLE_TBH ( fhend ) +! ---------------------------------------------------------------------- + +! --- ion-ion term ----------------------------------------------------- +IF ( II_term == 'primMSA') CALL F_ION_ION_PrimMSA ( fcc ) +IF ( II_term == 'nprMSA') CALL F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! ---------------------------------------------------------------------- + +! --- liquid-crystal term ---------------------------------------------- +IF ( LC_term == 'MSaupe') CALL F_LC_MayerSaupe ( flc ) + +!!IF ( LC_term == 'OVL') fref = fhs + fhc +IF ( LC_term == 'OVL') WRITE(*,*) 'OVL NOT INCLUDED YET' +!IF ( LC_term == 'OVL') CALL F_LC_OVL ( fref, flc ) +!! IF ( LC_term == 'SPT') fref = fhs + fhc +IF ( LC_term == 'SPT') WRITE(*,*) 'SPT NOT INCLUDED YET' +!!IF ( LC_term == 'SPT') CALL F_LC_SPT( fref, flc ) +! ---------------------------------------------------------------------- + +! ====================================================================== +! SUBTRACT TERMS (local density approximation) FOR DFT +! ====================================================================== + +!IF ( subtract1 == '1PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract1 == '2PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract2 =='ITTpolar') CALL F_local_ITT_polar ( fdd ) +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! residual Helmholtz energy F/(NkT) +! ---------------------------------------------------------------------- +fres = fid + fhs + fhc + fdsp + fhb + fdd + fqq + fdq + fcc + flc + +tfr = 0.0 + +END SUBROUTINE F_NUMERICAL + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE P_EOS +! +! calculates the pressure in units (Pa). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_EOS +! +! ---------------------------------------------------------------------- + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + INTEGER :: ass_cnt,max_eval + LOGICAL :: assoc + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean + REAL :: zges, zgesdz, zgesd2, zgesd3 + REAL :: zhs, zhsdz, zhsd2, zhsd3 + REAL :: zhc, zhcdz, zhcd2, zhcd3 + REAL, DIMENSION(nc,nc) :: dgijdz, dgijd2, dgijd3, dgijd4 + REAL :: zdsp, zdspdz, zdspd2, zdspd3 + REAL :: c1_con, c2_con, c3_con, c4_con, c5_con + REAL :: I2, edI1dz, edI2dz, edI1d2, edI2d2 + REAL :: edI1d3, edI2d3, edI1d4, edI2d4 + REAL :: fdspdz,fdspd2 + REAL :: zhb, zhbdz, zhbd2, zhbd3 + REAL, DIMENSION(nc,nc,nsite,nsite) :: delta, dq_dz, dq_d2, dq_d3, dq_d4 + REAL, DIMENSION(nc,nsite) :: mx_itr, dmx_dz, ndmxdz, dmx_d2, ndmxd2 + REAL, DIMENSION(nc,nsite) :: dmx_d3, ndmxd3, dmx_d4, ndmxd4 + REAL :: err_sum, sum0, sum1, sum2, sum3, sum4, attenu, tol + REAL :: sum_d1, sum_d2, sum_d3, sum_d4 + REAL :: zdd, zddz, zddz2, zddz3 + REAL :: zqq, zqqz, zqqz2, zqqz3 + REAL :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t/(PI/6.0) +zms = 1.0 -eta + +! m_mean2=0.0 +! lij(1,2)= -0.050 +! lij(2,1)=lij(1,2) +! DO i =1,ncomp +! DO j =1,ncomp +! m_mean2=m_mean2+x(i)*x(j) * (mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij , and derivatives +! dgijdz=d(gij)/d(eta) and dgijd2 = dd(gij)/d(eta)**2 +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + ! j=i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + dgijd2(i,j) = 2.0/zms**3 & + + 6.0*dij_ab(i,j)*z2/z3/zms**4 *(2.0+z3) & + + (2.0*dij_ab(i,j)*z2/z3)**2 /zms**5 *(1.0+4.0*z3+z3*z3) + dgijd3(i,j) = 6.0/zms**4 & + + 18.0*dij_ab(i,j)*z2/z3/zms**5 *(3.0+z3) & + + 12.0*(dij_ab(i,j)*z2/z3/zms**3 )**2 *(3.0+6.0*z3+z3*z3) + dgijd4(i,j) = 24.0/zms**5 & + + 72.0*dij_ab(i,j)*z2/z3/zms**6 *(4.0+z3) & + + 48.0*(dij_ab(i,j)*z2/z3)**2 /zms**7 *(6.0+8.0*z3+z3*z3) + END DO +END DO + + +! ---------------------------------------------------------------------- +! p : hard sphere contribution +! ---------------------------------------------------------------------- +zhs = m_mean* ( z3/zms + 3.0*z1*z2/z0/zms/zms + z2**3 /z0*(3.0-z3)/zms**3 ) +zhsdz = m_mean*( 1.0/zms/zms + 3.0*z1*z2/z0/z3*(1.0+z3)/zms**3 & + + 6.0*z2**3 /z0/z3/zms**4 ) +zhsd2 = m_mean*( 2.0/zms**3 + 6.0*z1*z2/z0/z3*(2.0+z3)/zms**4 & + + 6.0*z2**3 /z0/z3/z3*(1.0+3.0*z3)/zms**5 ) +zhsd3 = m_mean*( 6.0/zms**4 + 18.0*z1*z2/z0/z3*(3.0+z3)/zms**5 & + + 24.0*z2**3 /z0/z3/z3*(2.0+3.0*z3)/zms**6 ) + + +! ---------------------------------------------------------------------- +! p : chain term +! ---------------------------------------------------------------------- +zhc = 0.0 +zhcdz = 0.0 +zhcd2 = 0.0 +zhcd3 = 0.0 +DO i= 1, ncomp + zhc = zhc + x(i)*(1.0-mseg(i))*eta/gij(i,i)* dgijdz(i,i) + zhcdz = zhcdz + x(i)*(1.0-mseg(i)) *(-eta*(dgijdz(i,i)/gij(i,i))**2 & + + dgijdz(i,i)/gij(i,i) + eta/gij(i,i)*dgijd2(i,i)) + zhcd2 = zhcd2 + x(i)*(1.0-mseg(i)) & + *( 2.0*eta*(dgijdz(i,i)/gij(i,i))**3 & + -2.0*(dgijdz(i,i)/gij(i,i))**2 & + -3.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) & + +2.0/gij(i,i)*dgijd2(i,i) +eta/gij(i,i)*dgijd3(i,i) ) + zhcd3 = zhcd3 + x(i)*(1.0-mseg(i)) *( 6.0*(dgijdz(i,i)/gij(i,i))**3 & + -6.0*eta*(dgijdz(i,i)/gij(i,i))**4 & + +12.0*eta/gij(i,i)**3 *dgijdz(i,i)**2 *dgijd2(i,i) & + -9.0/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) +3.0/gij(i,i)*dgijd3(i,i) & + -3.0*eta*(dgijd2(i,i)/gij(i,i))**2 & + -4.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd3(i,i) & + +eta/gij(i,i)*dgijd4(i,i) ) +END DO + +! ---------------------------------------------------------------------- +! p : PC-SAFT dispersion contribution +! note: edI1dz is equal to d(eta*I1)/d(eta), analogous for edI2dz +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I2 = 0.0 + edI1dz = 0.0 + edI2dz = 0.0 + edI1d2 = 0.0 + edI2d2 = 0.0 + edI1d3 = 0.0 + edI2d3 = 0.0 + edI1d4 = 0.0 + edI2d4 = 0.0 + DO m=0,6 + I2 = I2 + bpar(m)*z3**REAL(m) + edI1dz= edI1dz+apar(m)*REAL(m+1)*z3**REAL(m) + edI2dz= edI2dz+bpar(m)*REAL(m+1)*z3**REAL(m) + edI1d2= edI1d2+apar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI2d2= edI2d2+bpar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI1d3= edI1d3+apar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI2d3= edI2d3+bpar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI1d4= edI1d4+apar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + edI2d4= edI2d4+bpar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + c2_con= - c1_con*c1_con & + *(m_mean*(-4.0*eta**2 +20.0*eta+8.0)/zms**5 + (1.0 - m_mean) & + *(2.0*eta**3 +12.0*eta**2 -48.0*eta+40.0) & + /(zms*(2.0-eta))**3 ) + c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( m_mean*(-12.0*eta**2 +72.0*eta+60.0)/zms**6 & + + (1.0 - m_mean) & + *(-6.0*eta**4 -48.0*eta**3 +288.0*eta**2 & + -480.0*eta+264.0) /(zms*(2.0-eta))**4 ) + c4_con= 6.0*c2_con*c3_con/c1_con -6.0*c2_con**3 /c1_con**2 & + - c1_con*c1_con & + *( m_mean*(-48.0*eta**2 +336.0*eta+432.0)/zms**7 & + + (1.0 - m_mean) & + *(24.0*eta**5 +240.0*eta**4 -1920.0*eta**3 & + +4800.0*eta**2 -5280.0*eta+2208.0) /(zms*(2.0-eta))**5 ) + c5_con= 6.0*c3_con**2 /c1_con - 36.0*c2_con**2 /c1_con**2 *c3_con & + + 8.0*c2_con/c1_con*c4_con+24.0*c2_con**4 /c1_con**3 & + - c1_con*c1_con & + *( m_mean*(-240.0*eta**2 +1920.0*eta+3360.0)/zms**8 & + + (1.0 - m_mean) & + *(-120.0*eta**6 -1440.0*eta**5 +14400.0*eta**4 & + -48000.0*eta**3 +79200.0*eta**2 -66240.0*eta+22560.0) & + /(zms*(2.0-eta))**6 ) + + zdsp = - 2.0*PI*rho*edI1dz*order1 & + - PI*rho*order2*m_mean*(c2_con*I2*eta + c1_con*edI2dz) + zdspdz= zdsp/eta - 2.0*PI*rho*edI1d2*order1 & + - PI*rho*order2*m_mean*(c3_con*I2*eta & + + 2.0*c2_con*edI2dz + c1_con*edI2d2) + zdspd2= -2.0*zdsp/eta/eta +2.0*zdspdz/eta & + - 2.0*PI*rho*edI1d3*order1 - PI*rho*order2*m_mean*(c4_con*I2*eta & + + 3.0*c3_con*edI2dz +3.0*c2_con*edI2d2 +c1_con*edI2d3) + zdspd3= 6.0*zdsp/eta**3 -6.0*zdspdz/eta/eta & + + 3.0*zdspd2/eta - 2.0*PI*rho*edI1d4*order1 & + - PI*rho*order2*m_mean*(c5_con*I2*eta & + + 4.0*c4_con*edI2dz +6.0*c3_con*edI2d2 & + + 4.0*c2_con*edI2d3 + c1_con*edI2d4) + + +! ---------------------------------------------------------------------- +! p : SAFT (Chen & Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdspdz = 0.0 + fdspd2 = 0.0 + DO n = 1,4 + DO m = 1,9 + fdspdz = fdspdz + m_mean/tau * dnm(n,m) * (um/t)**REAL(n) *REAL(m)*(eta/tau)**REAL(m-1) + END DO + DO m= 2,9 + fdspd2= fdspd2 + m_mean/tau * dnm(n,m)*(um/t)**REAL(n) *REAL(m)*REAL(m-1) & + * (eta/tau)**REAL(m-2) * 1.0/tau + END DO + END DO + zdsp = eta * fdspdz + zdspdz = (2.0*fdspdz + eta*fdspd2) - zdsp/z3 + +END IF +! --- end of dispersion contribution ----------------------------------- + + +! ---------------------------------------------------------------------- +! p: TPT-1-association accord. to Chapman et al. +! ---------------------------------------------------------------------- +zhb = 0.0 +zhbdz = 0.0 +zhbd2 = 0.0 +zhbd3 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO j = 1, ncomp + DO i = 1, nhb_typ(j) + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + delta(j,k,i,l) = gij(j,k) * ass_d(j,k,i,l) + dq_dz(j,k,i,l) = dgijdz(j,k) * ass_d(j,k,i,l) + dq_d2(j,k,i,l) = dgijd2(j,k) * ass_d(j,k,i,l) + dq_d3(j,k,i,l) = dgijd3(j,k) * ass_d(j,k,i,l) + dq_d4(j,k,i,l) = dgijd4(j,k) * ass_d(j,k,i,l) + END DO + END DO + END DO + END DO + +! --- constants for iteration ------------------------------------------ + attenu = 0.7 + tol = 1.d-10 + IF ( eta < 0.2 ) tol = 1.d-12 + IF ( eta < 0.01 ) tol = 1.d-13 + IF ( eta < 1.E-6) tol = 1.d-15 + max_eval = 1000 + +! --- initialize mx(i,j) ----------------------------------------------- + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + mx(i,j) = 1.0 + dmx_dz(i,j) = 0.0 + dmx_d2(i,j) = 0.0 + dmx_d3(i,j) = 0.0 + dmx_d4(i,j) = 0.0 + END DO + END DO + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + err_sum = tol + 1.0 + DO WHILE ( err_sum > tol .AND. ass_cnt <= max_eval) + ass_cnt = ass_cnt + 1 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + sum0 = 0.0 + sum1 = 0.0 + sum2 = 0.0 + sum3 = 0.0 + sum4 = 0.0 + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + sum0 =sum0 +x(k)*nhb_no(k,l)* mx(k,l)* delta(i,k,j,l) + sum1 =sum1 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_dz(i,k,j,l) & + + dmx_dz(k,l)* delta(i,k,j,l)) + sum2 =sum2 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d2(i,k,j,l) & + + 2.0*dmx_dz(k,l)* dq_dz(i,k,j,l) & + + dmx_d2(k,l)* delta(i,k,j,l)) + sum3 =sum3 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d3(i,k,j,l) & + + 3.0*dmx_dz(k,l)* dq_d2(i,k,j,l) & + + 3.0*dmx_d2(k,l)* dq_dz(i,k,j,l) & + + dmx_d3(k,l)* delta(i,k,j,l)) + sum4 =sum4 + x(k)*nhb_no(k,l)*( mx(k,l)* dq_d4(i,k,j,l) & + + 4.0*dmx_dz(k,l)* dq_d3(i,k,j,l) & + + 6.0*dmx_d2(k,l)* dq_d2(i,k,j,l) & + + 4.0*dmx_d3(k,l)* dq_dz(i,k,j,l) & + + dmx_d4(k,l)* delta(i,k,j,l)) + END DO + END DO + mx_itr(i,j)= 1.0 / (1.0 + sum0 * rho) + ndmxdz(i,j)= -(mx_itr(i,j)*mx_itr(i,j))* (sum0/z3t +sum1*rho) + ndmxd2(i,j)= + 2.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxdz(i,j) & + - (mx_itr(i,j)*mx_itr(i,j)) * (2.0/z3t*sum1 + rho*sum2) + ndmxd3(i,j)= - 6.0/mx_itr(i,j)**2 *ndmxdz(i,j)**3 & + + 6.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd2(i,j) - mx_itr(i,j)*mx_itr(i,j) & + * (3.0/z3t*sum2 + rho*sum3) + ndmxd4(i,j)= 24.0/mx_itr(i,j)**3 *ndmxdz(i,j)**4 & + -36.0/mx_itr(i,j)**2 *ndmxdz(i,j)**2 *ndmxd2(i,j) & + +6.0/mx_itr(i,j)*ndmxd2(i,j)**2 & + +8.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd3(i,j) - mx_itr(i,j)**2 & + *(4.0/z3t*sum3 + rho*sum4) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,j) - mx(i,j)) & + + ABS(ndmxdz(i,j) - dmx_dz(i,j)) + ABS(ndmxd2(i,j) - dmx_d2(i,j)) + mx(i,j) = mx_itr(i,j)*attenu + mx(i,j) * (1.0-attenu) + dmx_dz(i,j) = ndmxdz(i,j)*attenu + dmx_dz(i,j) * (1.0-attenu) + dmx_d2(i,j) = ndmxd2(i,j)*attenu + dmx_d2(i,j) * (1.0-attenu) + dmx_d3(i,j) = ndmxd3(i,j)*attenu + dmx_d3(i,j) * (1.0-attenu) + dmx_d4(i,j) = ndmxd4(i,j)*attenu + dmx_d4(i,j) * (1.0-attenu) + END DO + END DO + END DO + + IF ( ass_cnt >= max_eval .AND. err_sum > SQRT(tol) ) THEN + WRITE (*,'(a,2G15.7)') 'P_EOS: Max_eval violated (mx) Err_Sum= ',err_sum,tol + ! stop + END IF + + + ! --- calculate the hydrogen-bonding contribution -------------------- + DO i = 1, ncomp + sum_d1 = 0.0 + sum_d2 = 0.0 + sum_d3 = 0.0 + sum_d4 = 0.0 + DO j = 1, nhb_typ(i) + sum_d1= sum_d1 +nhb_no(i,j)* dmx_dz(i,j)*(1.0/mx(i,j)-0.5) + sum_d2= sum_d2 +nhb_no(i,j)*(dmx_d2(i,j)*(1.0/mx(i,j)-0.5) & + -(dmx_dz(i,j)/mx(i,j))**2 ) + sum_d3= sum_d3 +nhb_no(i,j)*(dmx_d3(i,j)*(1.0/mx(i,j)-0.5) & + -3.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d2(i,j) + 2.0*(dmx_dz(i,j)/mx(i,j))**3 ) + sum_d4= sum_d4 +nhb_no(i,j)*(dmx_d4(i,j)*(1.0/mx(i,j)-0.5) & + -4.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d3(i,j) & + + 12.0/mx(i,j)**3 *dmx_dz(i,j)**2 *dmx_d2(i,j) & + - 3.0/mx(i,j)**2 *dmx_d2(i,j)**2 - 6.0*(dmx_dz(i,j)/mx(i,j))**4 ) + END DO + zhb = zhb + x(i) * eta * sum_d1 + zhbdz = zhbdz + x(i) * eta * sum_d2 + zhbd2 = zhbd2 + x(i) * eta * sum_d3 + zhbd3 = zhbd3 + x(i) * eta * sum_d4 + END DO + zhbdz = zhbdz + zhb/eta + zhbd2 = zhbd2 + 2.0/eta*zhbdz-2.0/eta**2 *zhb + zhbd3 = zhbd3 - 6.0/eta**2 *zhbdz+3.0/eta*zhbd2 + 6.0/eta**3 *zhb +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! p: polar terms +! ---------------------------------------------------------------------- +CALL P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) + + +! ---------------------------------------------------------------------- +! compressibility factor z and total p +! as well as derivatives d(z)/d(eta) and d(p)/d(eta) with unit [Pa] +! ---------------------------------------------------------------------- +zges = 1.0 + zhs + zhc + zdsp + zhb + zdd + zqq + zdq +zgesdz = zhsdz + zhcdz + zdspdz + zhbdz + zddz + zqqz + zdqz +zgesd2 = zhsd2 + zhcd2 + zdspd2 + zhbd2 + zddz2 +zqqz2+zdqz2 +zgesd3 = zhsd3 + zhcd3 + zdspd3 + zhbd3 + zddz3 +zqqz3+zdqz3 + +pges = zges *rho *(kbol*t)/1.d-30 +pgesdz = ( zgesdz*rho + zges*rho/z3 )*(kbol*t)/1.d-30 +pgesd2 = ( zgesd2*rho + 2.0*zgesdz*rho/z3 )*(kbol*t)/1.d-30 +pgesd3 = ( zgesd3*rho + 3.0*zgesd2*rho/z3 )*(kbol*t)/1.d-30 + +END SUBROUTINE P_EOS + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(OUT) :: fdd_rk, fqq_rk, fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd_rk = 0.0 + fqq_rk = 0.0 + fdq_rk = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) + ! IF (dd_term == 'SF') CALL PHI_DD_SAAGER_FISCHER( k ) + + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL PHI_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL PHI_QQ_GROSS( k, z3_rk, fqq_rk ) + + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) + + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE PHI_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdd_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdd2, fdd3, fdd2x, fdd3x + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd4, Idd2x, Idd4x + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3x +! ---------------------------------------------------------------------- + + + fdd_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2x(i,j) = 0.0 + Idd4x(i,j) = 0.0 + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + DO m=0,4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m)*z3**m + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m)*z3**m + Idd2x(i,j) =Idd2x(i,j)+ ddp2(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + Idd4x(i,j) =Idd4x(i,j)+ ddp4(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Idd3(i,j,l) = 0.0 + Idd3x(i,j,l) = 0.0 + IF (parame(l,6) /= 0.0) THEN + DO m=0,4 + Idd3(i,j,l) =Idd3(i,j,l) +ddp3(i,j,l,m)*z3**m + Idd3x(i,j,l)=Idd3x(i,j,l)+ddp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -PI + factor3= -4.0/3.0*PI**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2x = 0.0 + fdd3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(i,k)**3 + eij = (parame(i,3)*parame(k,3))**0.5 + fdd2x = fdd2x + factor2*xijfa_x*( Idd2(i,k) + eij/t*Idd4(i,k) ) + DO j = 1, ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,j)**3 + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j) ) + fdd2x =fdd2x +factor2*xijfa*(Idd2x(i,j)+eij/t*Idd4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t/sig_ij(i,j) & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,k) & + *3.0* uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(j,k) + fdd3x=fdd3x+factor3*xijkf_x*Idd3(i,j,k) + DO l=1,ncomp + IF (parame(l,6) /= 0.0) THEN + xijkfa= x(i)*rho*uij(i,i)/t*my2dd(i)*sig_ij(i,i)**3 & + *x(j)*rho*uij(j,j)/t*my2dd(j)*sig_ij(j,j)**3 & + *x(l)*rho*uij(l,l)/t*my2dd(l)*sig_ij(l,l)**3 & + /sig_ij(i,j)/sig_ij(i,l)/sig_ij(j,l) + fdd3 =fdd3 + factor3 * xijkfa *Idd3(i,j,l) + fdd3x =fdd3x + factor3 * xijkfa *Idd3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2x /= 0.0 .AND. fdd3x /= 0.0)THEN + + fdd_rk = fdd2* (fdd2*fdd2x - 2.0*fdd3*fdd2x+fdd2*fdd3x) / (fdd2-fdd3)**2 + + END IF + +END SUBROUTINE PHI_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_QQ_GROSS( k, z3_rk, fqq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fqq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fqq2, fqq3, fqq2x, fqq3x + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4, Iqq2x, Iqq4x + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3x +! ---------------------------------------------------------------------- + + + fqq_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_QQ_GROSS: do not use dimensionless units' + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2x(i,j) = 0.0 + Iqq4x(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m) * z3**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m) * z3**m + Iqq2x(i,j) = Iqq2x(i,j) + qqp2(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + Iqq4x(i,j) = Iqq4x(i,j) + qqp4(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Iqq3(i,j,l) = 0.0 + Iqq3x(i,j,l) = 0.0 + IF (parame(l,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,l) = Iqq3(i,j,l) + qqp3(i,j,l,m)*z3**m + Iqq3x(i,j,l) = Iqq3x(i,j,l) + qqp3(i,j,l,m)*REAL(m) *z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/16.0*PI + factor3= 9.0/16.0*PI**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2x = 0.0 + fqq3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(i,k)**7.0 + eij = (parame(i,3)*parame(k,3))**0.5 + fqq2x =fqq2x +factor2*xijfa_x*(Iqq2(i,k)+eij/t*Iqq4(i,k)) + DO j=1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2x =fqq2x +factor2*xijfa*(Iqq2x(i,j)+eij/t*Iqq4x(i,j)) + ! ------------------ + xijkf_x=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *3.0* uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3x = fqq3x + factor3*xijkf_x*Iqq3(i,j,k) + DO l = 1, ncomp + IF (parame(l,7) /= 0.0) THEN + xijkfa=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,l)**3 & + *x(l)*rho*uij(l,l)*qq2(l)*sig_ij(l,l)**5 /t/sig_ij(j,l)**3 + fqq3 =fqq3 + factor3 * xijkfa *Iqq3(i,j,l) + fqq3x =fqq3x + factor3 * xijkfa *Iqq3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2x /= 0.0 .AND. fqq3x /= 0.0) THEN + fqq_rk = fqq2* (fqq2*fqq2x - 2.0*fqq3*fqq2x+fqq2*fqq3x) / (fqq2-fqq3)**2 + END IF + +END SUBROUTINE PHI_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdq2, fdq3, fdq2x, fdq3x + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4, Idq2x, Idq4x + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3x +! ---------------------------------------------------------------------- + + fdq_rk = 0.0 + z3 = eta + DO i=1,ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2x(i,j) = 0.0 + Idq4x(i,j) = 0.0 + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*z3**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*z3**m + Idq2x(i,j) = Idq2x(i,j) + dqp2(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + Idq4x(i,j) = Idq4x(i,j) + dqp4(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + END DO + DO l = 1, ncomp + Idq3(i,j,l) = 0.0 + Idq3x(i,j,l) = 0.0 + DO m = 0, 4 + Idq3(i,j,l) =Idq3(i,j,l) +dqp3(i,j,l,m)*z3**m + Idq3x(i,j,l)=Idq3x(i,j,l)+dqp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END DO + END DO + END DO + + factor2= -9.0/4.0*PI + factor3= PI**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2x = 0.0 + fdq3x = 0.0 + DO i = 1, ncomp + xijfa_x = x(i)*rho*( myfac(i)*q_fac(k) + myfac(k)*q_fac(i) ) / sig_ij(i,k)**5 + eij = (parame(i,3)*parame(k,3))**0.5 + fdq2x =fdq2x +factor2*xijfa_x*(Idq2(i,k)+eij/t*Idq4(i,k)) + DO j=1,ncomp + xijfa =x(i)*rho*myfac(i) * x(j)*rho*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2x =fdq2x +factor2*xijfa*(Idq2x(i,j) +eij/t*Idq4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*x(j)*rho/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(k)*myfac(j) & + + myfac(k)*q_fac(i)*myfac(j) +myfac(i)*q_fac(j)*q_fac(k)*1.1937350 & + +myfac(i)*q_fac(k)*q_fac(j)*1.193735 & + +myfac(k)*q_fac(i)*q_fac(j)*1.193735 ) + fdq3x = fdq3x + factor3*xijkf_x*Idq3(i,j,k) + DO l = 1, ncomp + xijkfa=x(i)*rho*x(j)*rho*x(l)*rho/(sig_ij(i,j)*sig_ij(i,l)*sig_ij(j,l))**2 & + *( myfac(i)*q_fac(j)*myfac(l) & + +myfac(i)*q_fac(j)*q_fac(l)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa *Idq3(i,j,l) + fdq3x =fdq3x + factor3 * xijkfa *Idq3x(i,j,l) + END DO + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2x /= 0.0 .AND. fdq3x /= 0.0)THEN + + fdq_rk = fdq2* (fdq2*fdq2x - 2.0*fdq3*fdq2x+fdq2*fdq3x) / (fdq2-fdq3)**2 + + END IF + +END SUBROUTINE PHI_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_NUMERICAL +! + USE EOS_VARIABLES + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + REAL :: dzetdv, eta_0, dist, fact + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: df_dr, df_drdr, pideal, dpiddz + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +IF (eta > 0.1) THEN + fact = 1.0 +ELSE IF (eta <= 0.1 .AND. eta > 0.01) THEN + fact = 10.0 +ELSE + fact = 10.0 +END IF +dist = eta*3.d-3 *fact +! dist = eta*4.d-3 *fact +!***************************** +! fuer MC simulation: neues dist: +! dist = eta*5.d-3*fact + +eta_0 = eta +eta = eta_0 - 2.0*dist +CALL F_NUMERICAL +fres1 = fres +tfr_1 = tfr +eta = eta_0 - dist +CALL F_NUMERICAL +fres2 = fres +tfr_2 = tfr +eta = eta_0 + dist +CALL F_NUMERICAL +fres3 = fres +tfr_3 = tfr +eta = eta_0 + 2.0*dist +CALL F_NUMERICAL +fres4 = fres +tfr_4 = tfr +eta = eta_0 +CALL F_NUMERICAL +fres5 = fres +tfr_5 = tfr + +!--------------------------------------------------------- +! ptfr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! & *dzetdv*(KBOL*T)/1.E-30 +! ztfr =ptfr /( rho * (KBOL*t) / 1.E-30) +! ptfrdz = (-tfr_4+16.0*tfr_3-3.d1*tfr_5+16.0*tfr_2-tfr_1) +! & /(12.0*(dist**2 ))* dzetdv*(KBOL*T)/1.E-30 +! & + (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1) +! & /(12.0*dist) * 2.0 *eta*6.0/PI/D +! & *(KBOL*T)/1.E-30 +! ztfrdz=ptfrdz/( rho*(kbol*T)/1.E-30 ) - ztfr/eta +! write (*,*) eta,ztfr,ztfrdz + +! dtfr_dr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! write (*,*) eta,dtfr_dr +! stop +!--------------------------------------------------------- + +df_dr = (-fres4+8.0*fres3-8.0*fres2+fres1) / (12.0*dist) +df_drdr = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +dzetdv = eta*rho + +pges = (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) *dzetdv*(kbol*t)/1.E-30 + +dpiddz = 1.0/z3t*(kbol*t)/1.E-30 +pgesdz = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 ))* dzetdv*(kbol*t)/1.E-30 & + + (-fres4+8.0*fres3-8.0*fres2+fres1) /(12.0*dist) * 2.0 *rho & + *(kbol*t)/1.E-30 + dpiddz + +pgesd2 = (fres4-2.0*fres3+2.0*fres2-fres1) /(2.0*dist**3 ) & + * dzetdv*(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) & + * 4.0 *rho *(kbol*t)/1.E-30 + (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) * 2.0 /z3t *(kbol*t)/1.E-30 +pgesd3 = (fres4-4.0*fres3+6.0*fres5-4.0*fres2+fres1) /(dist**4 ) & + * dzetdv*(kbol*t)/1.E-30 + (fres4-2.0*fres3+2.0*fres2-fres1) & + /(2.0*dist**3 ) * 6.0 *rho *(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*dist**2 )* 6.0 /z3t *(kbol*t)/1.E-30 + +!------------------p ideal------------------------------------ +pideal = rho * (kbol*t) / 1.E-30 + +!------------------p summation, p comes out in Pa ------------ +pges = pideal + pges + +END SUBROUTINE P_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_numerical +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1,fres2,fres3,fres4,fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: f_dt, f_dtdt, f_dr, f_drdr, f_drdt +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +f_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +f_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) + +s_res = (- f_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*f_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*f_dtdt + 2.0*f_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_1 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_2 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_3 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_4 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL + +f_dr = pges / (eta*rho_0*(KBOL*T)/1.E-30) +f_drdr = pgesdz/ (eta*rho_0*(KBOL*T)/1.E-30) - f_dr*2.0/eta - 1.0/eta**2 + +f_drdt = ( - f_4 + 8.0*f_3 - 8.0*f_2 + f_1 ) / ( 12.0*dist ) + +cp_res = cv_res - RGAS + RGAS*( zges + eta*t*f_drdt)**2 / (1.0 + 2.0*eta*f_dr + eta**2 *f_drdr) +! write (*,*) cv_res,cp_res,eta + + +END SUBROUTINE H_numerical + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_POLAR ( fdd, fqq, fdq ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fdd, fqq, fdq +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL F_DD_GROSS_VRABEC( fdd ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL F_QQ_GROSS( fqq ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL F_DQ_VRABEC_GROSS( fdq ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE F_POLAR + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PRESSURE_SPINODAL +! +! iterates the density until the derivative of pressure 'pges' to +! density is equal to zero. A Newton-scheme is used for determining +! the root to the objective function. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRESSURE_SPINODAL +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, max_i + REAL :: eta_iteration + REAL :: error, acc_i, delta_eta +! ---------------------------------------------------------------------- + +acc_i = 1.d-6 +max_i = 30 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- + +error = acc_i + 1.0 +DO WHILE ( ABS(error) > acc_i .AND. i < max_i ) + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = pgesdz + + delta_eta = error/ pgesd2 + IF ( delta_eta > 0.02 ) delta_eta = 0.02 + IF ( delta_eta < -0.02 ) delta_eta = -0.02 + + eta_iteration = eta_iteration - delta_eta + ! write (*,'(a,i3,3G18.10)') 'iter',i, error, eta_iteration, pgesdz + + IF (eta_iteration > 0.9) eta_iteration = 0.5 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + +END DO + +eta = eta_iteration + +END SUBROUTINE PRESSURE_SPINODAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_IDEAL_GAS ( fid ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, x, rho, PI, KBOL, NAv + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fid +!--------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi +!---------------------------------------------------------------------- + + !h_Planck = 6.62606896E-34 ! Js + DO i = 1, ncomp + rhoi(i) = x(i) * rho + ! debroglie(i) = h_Planck *1d10 & ! in units Angstrom + ! *SQRT( 1.0 / (2.0*PI *1.0 / NAv / 1000.0 * KBOL*T) ) + ! ! *SQRT( 1.0 / (2.0*PI *mm(i) /NAv/1000.0 * KBOL*T) ) + ! fid = fid + x(i) * ( LOG(rhoi(i)*debroglie(i)**3) - 1.0 ) + fid = fid + x(i) * ( LOG(rhoi(i)) - 1.0 ) + END DO + + END SUBROUTINE F_IDEAL_GAS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_HARD_SPHERE ( m_mean2, fhs ) +! + USE EOS_VARIABLES, ONLY: z0t, z1t, z2t, z3t, eta, rho + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: m_mean2 + REAL, INTENT(IN OUT) :: fhs +!--------------------------------------------------------------------- + REAL :: z0, z1, z2, z3, zms +!---------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + fhs= m_mean2*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + + END SUBROUTINE F_HARD_SPHERE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT1 ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, & + rho, eta, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + fhc = 0.0 + DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) + END DO + + END SUBROUTINE F_CHAIN_TPT1 + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT_D ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, rho, eta, & + dhs, mseg, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL, DIMENSION(nc) :: gij_hd + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + DO i = 1, ncomp + gij_hd(i) = 1.0/(2.0*zms) + 3.0*dij_ab(i,i)*z2 / zms**2 + END DO + + fhc = 0.0 + DO i = 1, ncomp + IF ( mseg(i) >= 2.0 ) THEN + fhc = fhc - x(i) * ( mseg(i)/2.0 * LOG( gij(i,i) ) + ( mseg(i)/2.0 - 1.0 ) * LOG( gij_hd(i)) ) + ELSE + fhc = fhc + x(i) * ( 1.0 - mseg(i) ) * LOG( gij(i,i) ) + END IF + END DO + + END SUBROUTINE F_CHAIN_TPT_D + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, rho, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: a20, b20, c20, a30, b30, c30 + REAL :: sum1, sum2, am, bm, cm + REAL :: zms +!--------------------------------------------------------------------- + + zms = 1.0 - eta + + sum1 = SUM( x(1:ncomp)*(mseg(1:ncomp)-1.0) ) + sum2 = SUM( x(1:ncomp)/mseg(1:ncomp)*(mseg(1:ncomp)-1.0)*(mseg(1:ncomp)-2.0) ) + + a2 = 0.45696 + a3 = -0.74745 + b2 = 2.10386 + b3 = 3.49695 + c2 = 1.75503 + c3 = 4.83207 + a20 = - a2 + b2 - 3.0*c2 + b20 = - a2 - b2 + c2 + c20 = c2 + a30 = - a3 + b3 - 3.0*c3 + b30 = - a3 - b3 + c3 + c30 = c3 + am = (3.0 + a20) * sum1 + a30 * sum2 + bm = (1.0 + b20) * sum1 + b30 * sum2 + cm = (1.0 + c20) * sum1 + c30 * sum2 + + fhc = - ( (am*eta - bm) / (2.0*zms) + bm/2.0/zms**2 - cm *LOG(ZMS) ) + + + END SUBROUTINE F_CHAIN_HU_LIU + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU_RC ( fhs, fhc ) +! + USE EOS_VARIABLES, ONLY: mseg, chiR, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: fhs + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: para1,para2,para3,para4 + REAL :: aLH,bLH,cLH +!--------------------------------------------------------------------- + +! This routine is only for pure components + + a2 = 0.45696 + b2 = 2.10386 + c2 = 1.75503 + + para1 = -0.74745 + para2 = 0.299154629727814 + para3 = 1.087271036653154 + para4 = -0.708979110326831 + a3 = para1 + para2*chiR(1) + para3*chiR(1)**2 + para4*chiR(1)**3 + b3 = 3.49695 - (3.49695 + 0.317719074806190)*chiR(1) + c3 = 4.83207 - (4.83207 - 3.480163780334421)*chiR(1) + + aLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*a2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*a3 ) + bLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*b2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*b3 ) + cLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*c2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*c3 ) + + fhc = ((3.0 + aLH - bLH + 3.0*cLH)*eta - (1.0 + aLH + bLH - cLH)) / (2.0*(1.0-eta)) + & + (1.0 + aLH + bLH - cLH) / ( 2.0*(1.0-eta)**2 ) + (cLH - 1.0)*LOG(1.0-eta) + + fhc = fhc - fhs + + END SUBROUTINE F_CHAIN_HU_LIU_RC + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_PCSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: PI, rho, eta, z0t, apar, bpar, order1, order2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: m + REAL :: I1, I2, c1_con, z3, zms, m_mean +!--------------------------------------------------------------------- + + z3 = eta + zms = 1.0 - eta + m_mean = z0t / ( PI / 6.0 ) + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m) * z3**m + I2 = I2 + bpar(m) * z3**m + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0-m_mean)*( 20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 )/(zms*(2.0-z3))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + + END SUBROUTINE F_DISP_PCSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_CKSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, PI, TAU, t, rho, eta, x, z0t, mseg, vij, uij, parame, um + USE EOS_CONSTANTS, ONLY: DNM + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: i, j, n, m + REAL :: zmr, nmr, m_mean +!--------------------------------------------------------------------- + + m_mean = z0t / ( PI / 6.0 ) + + DO i = 1, ncomp + DO j = 1, ncomp + vij(i,j)=(0.5*((parame(i,2)*(1.0-0.12 *EXP(-3.0*parame(i,3)/t))**3 )**(1.0/3.0) & + +(parame(j,2)*(1.0-0.12 *EXP(-3.0*parame(j,3)/t))**3 )**(1.0/3.0)))**3 + END DO + END DO + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr + fdsp = 0.0 + DO n = 1, 4 + DO m = 1, 9 + fdsp = fdsp + DNM(n,m) * (um/t)**n *(eta/TAU)**m + END DO + END DO + fdsp = m_mean * fdsp + + + END SUBROUTINE F_DISP_CKSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ASSOCIATION ( eps_kij, k_kij, fhb ) +! + USE EOS_VARIABLES, ONLY: nc, nsite, ncomp, t, z0t, z1t, z2t, z3t, rho, eta, x, & + parame, sig_ij, dij_ab, gij, nhb_typ, mx, nhb_no + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: eps_kij, k_kij + REAL, INTENT(IN OUT) :: fhb +!--------------------------------------------------------------------- + LOGICAL :: assoc + INTEGER :: i, j, k, l, no, ass_cnt, max_eval + REAL, DIMENSION(nc,nc) :: kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nsite,nc,nsite) :: delta + REAL, DIMENSION(nc,nsite) :: mx_itr + REAL :: err_sum, sum0, amix, tol, ass_s1, ass_s2 + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + assoc = .false. + DO i = 1,ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + + DO i = 1, ncomp + IF ( NINT(parame(i,12)) /= 0 ) THEN + nhb_typ(i) = NINT( parame(i,12) ) + kap_hb(i,i) = parame(i,13) + no = 0 + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(i) + eps_hb(i,i,k,l) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO k = 1,nhb_typ(i) + nhb_no(i,k) = parame(i,(14+no)) + no = no + 1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0.AND.nhb_typ(j) /= 0) ) THEN + ! kap_hb(i,j)= (kap_hb(i,i)+kap_hb(j,j))/2.0 + ! kap_hb(i,j)= ( ( kap_hb(i,i)**(1.0/3.0) + kap_hb(j,j)**(1.0/3.0) )/2.0 )**3 + kap_hb(i,j) = (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + / (0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF ( k /= l .AND. nhb_typ(i) >= 2 .AND. nhb_typ(j) >= 2 ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)*eps_hb(j,j,l,k))**0.5 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + ELSE IF ( nhb_typ(i) == 1 .AND. l > k ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(j,i,l,k) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + eps_hb(j,i,l,k) = eps_hb(j,i,l,k)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + +!-----setting the self-association to zero for ionic compounds------ + DO i = 1,ncomp + IF ( parame(i,10) /= 0) kap_hb(i,i)=0.0 + DO j = 1,ncomp + IF ( parame(i,10) /= 0 .AND. parame(j,10) /= 0 ) kap_hb(i,j) = 0.0 + END DO + END DO + ! kap_hb(1,2)=0.050 + ! kap_hb(2,1)=0.050 + ! eps_hb(2,1,1,1)=465.0 + ! eps_hb(1,2,1,1)=465.0 + ! nhb_typ(1) = 1 + ! nhb_typ(2) = 1 + ! nhb_no(1,1)= 1.0 + ! nhb_no(2,1)= 1.0 + + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,k,j,l)=gij(i,j)*kap_hb(i,j)*(EXP(eps_hb(i,j,k,l)/t)-1.0) *sig_ij(i,j)**3 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! IF ((i+j).EQ.3) delta(i,k,j,l)=94.0 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + END DO + END DO + IF ( mx(i,k) == 0.0 ) mx(i,k) = 1.0 + END DO + END DO + +!------constants for Iteration --------------------------------------- + amix = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-14 + max_eval = 200 + +! --- Iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum0 = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum0 = sum0 + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,k,j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum0*rho) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS( mx_itr(i,k) - mx(i,k) ) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * amix + mx(i,k) * (1.0 - amix) + IF ( mx(i,k) <= 0.0 ) mx(i,k)=1.E-50 + IF ( mx(i,k) > 1.0 ) mx(i,k)=1.0 + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF ( ass_cnt >= max_eval ) WRITE(*,*) 'F_NUMERICAL: Max_eval violated = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG(mx(i,k)) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1/2.0 ) + END DO + + END IF + + END SUBROUTINE F_ASSOCIATION + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_DIPOLE_TBH ( fhend ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, eta, x, z0t, parame, uij, sig_ij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhend +!--------------------------------------------------------------------- + INTEGER :: i, dipole, ions + REAL :: m_mean + REAL :: fh32, fh2, fh52, fh3 + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: polabil, ydd, kappa, x_dipol, x_ions + REAL, DIMENSION(nc) :: my2dd, z_ii, e_cd, x_dd, x_ii + REAL :: sig_c, sig_d, sig_cd, r_s + REAL :: I0cc, I1cc, I2cc, Icd, Idd + REAL :: Iccc, Iccd, Icdd, Iddd +!--------------------------------------------------------------------- + +m_mean = z0t / ( PI / 6.0 ) + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + + 2.78E1*(t/293.15))*rho_sol**2 & + + (-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + - 1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + + 8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Dipole-Ion Term----------------------------------- +dipole = 0 +ions = 0 +fhend = 0.0 +DO i = 1, ncomp + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*sig_ij(i,i)**3 *1.E-30) + dipole = 1 + ELSE + my2dd(i) = 0.0 + END IF + + z_ii(i) = parame(i,10) + IF ( z_ii(i) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + e_cd(i) = ( parame(i,10)*e_elem* 1.E5 / SQRT(1.11265005) )**2 & + / ( uij(i,i)*kbol*sig_ij(i,i)*1.E-10 ) + ions = 1 + ELSE + e_cd(i) = 0.0 + END IF +END DO + + +IF ( dipole == 1 .AND. ions == 1 ) THEN + + ydd = 0.0 + kappa = 0.0 + x_dipol = 0.0 + x_ions = 0.0 + polabil = 0.0 + DO i = 1, ncomp + ydd = ydd + x(i)*(parame(i,6))**2 *1.E-49/ (kbol*t*1.E-30) + kappa = kappa + x(i) & + *(parame(i,10)*e_elem* 1.E5/SQRT(1.11265005))**2 /(KBOL*t*1.E-10) + IF (parame(i,10) /= 0.0) THEN + x_ions = x_ions + x(i) + ELSE + polabil = polabil + 4.0*PI*x(i)*rho*1.4573 *1.E-30 & + / (sig_ij(3,3)**3 *1.E-30) + END IF + IF (parame(i,6) /= 0.0) x_dipol= x_dipol+ x(i) + END DO + ydd = ydd * 4.0/9.0 * PI * rho + kappa = SQRT( 4.0 * PI * rho * kappa ) + + fh2 = 0.0 + sig_c = 0.0 + sig_d = 0.0 + DO i=1,ncomp + x_ii(i) = 0.0 + x_dd(i) = 0.0 + IF(parame(i,10) /= 0.0 .AND. x_ions /= 0.0) x_ii(i) = x(i)/x_ions + IF(parame(i,6) /= 0.0 .AND. x_dipol /= 0.0) x_dd(i) = x(i)/x_dipol + sig_c = sig_c + x_ii(i)*parame(i,2) + sig_d = sig_d + x_dd(i)*parame(i,2) + END DO + sig_cd = 0.5 * (sig_c + sig_d) + + r_s = 0.0 + ! DO i=1,ncomp + ! r_s=r_s + rho * x(i) * dhs(i)**3 + ! END DO + r_s = eta*6.0 / PI / m_mean + + I0cc = - (1.0 + 0.97743 * r_s + 0.05257*r_s*r_s) & + /(1.0 + 1.43613 * r_s + 0.41580*r_s*r_s) + ! I1cc = - (10.0 - 2.0*z3 + z3*z3) /20.0/(1.0 + 2.0*z3) + I1cc = - (10.0 - 2.0*r_s*pi/6.0 + r_s*r_s*pi/6.0*pi/6.0) & + /20.0/(1.0 + 2.0*r_s*pi/6.0) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + ! I2cc = + (z3-4.0)*(z3*z3+2.0) /24.0/(1.0+2.0*z3) + ! relation of Stell and Lebowitz + I2cc = -0.33331+0.7418*r_s - 1.2047*r_s*r_s & + + 1.6139*r_s**3 - 1.5487*r_s**4 + 0.6626*r_s**5 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Icd = (1.0 + 0.79576 *r_s + 0.104556 *r_s*r_s) & + /(1.0 + 0.486704*r_s - 0.0222903*r_s*r_s) + Idd = (1.0 + 0.18158*r_s - 0.11467*r_s*r_s) & + /3.0/(1.0 - 0.49303*r_s + 0.06293*r_s*r_s) + Iccc= 3.0*(1.0 - 1.05560*r_s + 0.26591*r_s*r_s) & + /2.0/(1.0 + 0.53892*r_s - 0.94236*r_s*r_s) + Iccd= 11.0*(1.0 + 2.25642 *r_s + 0.05679 *r_s*r_s) & + /6.0/(1.0 + 2.64178 *r_s + 0.79783 *r_s*r_s) + Icdd= 0.94685*(1.0 + 2.97323 *r_s + 3.11931 *r_s*r_s) & + /(1.0 + 2.70186 *r_s + 1.22989 *r_s*r_s) + Iddd= 5.0*(1.0 + 1.12754*r_s + 0.56192*r_s*r_s) & + /24.0/(1.0 - 0.05495*r_s + 0.13332*r_s*r_s) + + IF ( sig_c <= 0.0 ) WRITE (*,*) 'error in Henderson ion term' + + fh32= - kappa**3 /(12.0*pi*rho) + fh2 = - 3.0* kappa**2 * ydd*Icd /(8.0*pi*rho) / sig_cd & + - kappa**4 *sig_c/(16.0*pi*rho)*I0cc + IF (sig_d /= 0.0) fh2 = fh2 - 27.0* ydd * ydd*Idd & + /(8.0*pi*rho) / sig_d**3 + fh52= (3.0*kappa**3 * ydd + kappa**5 *sig_c**2 *I1cc) & + /(8.0*pi*rho) + fh3 = - kappa**6 * sig_c**3 /(8.0*pi*rho) *(I2cc-Iccc/6.0) & + + kappa**4 * ydd *sig_c/(16.0*pi*rho) & + *( (6.0+5.0/3.0*sig_d/sig_c)*I0cc + 3.0*sig_d/sig_c*Iccd ) & + + 3.0*kappa**2 * ydd*ydd /(8.0*pi*rho) / sig_cd & + *( (2.0-3.21555*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + IF (sig_d /= 0.0) fh3 = fh3 + 27.0*ydd**3 & + /(16.0*pi*rho)/sig_d**3 *Iddd + + fhend = ( fh32 + (fh32*fh32*fh3-2.0*fh32*fh2*fh52+fh2**3 ) & + /(fh2*fh2-fh32*fh52) ) & + / ( 1.0 + (fh32*fh3-fh2*fh52) /(fh2*fh2-fh32*fh52) & + - (fh2*fh3-fh52*fh52) /(fh2*fh2-fh32*fh52) ) +!---------- +! fH32= - kappa**3 /(12.0*PI*rho) +! fH2 = - 3.0* kappa**2 * ydd*Icd /(8.0*PI*rho) / sig_cd +! fH52= (3.0*kappa**3 * ydd)/(8.0*PI*rho) +! fH3 = + kappa**4 * ydd *sig_c/(16.0*PI*rho) & +! *( (6.0+5.0/3.0*sig_d/sig_c)*0.0*I0cc + 3.0*sig_d/sig_c*Iccd) & +! + 3.0*kappa**2 * ydd*ydd /(8.0*PI*rho) / sig_cd & +! *( (2.0-3.215550*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + +! fHcd = ( + (fH32*fH32*fH3-2.0*fH32*fH2*fH52+fH2**3 ) & +! /(fH2*fH2-fH32*fH52) ) & +! / ( 1.0 + (fH32*fH3-fH2*fH52) /(fH2*fH2-fH32*fH52) & +! - (fH2*fH3-fH52*fH52) /(fH2*fH2-fH32*fH52) ) + +END IF + + END SUBROUTINE F_ION_DIPOLE_TBH + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_PrimMSA ( fcc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, x, parame, mx + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fcc +!--------------------------------------------------------------------- + INTEGER :: i, j, cc_it, ions + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: x_ions + REAL :: cc_sig1, cc_sig2, cc_sig3 + REAL, DIMENSION(nc) :: z_ii, x_ii, sigm_i, my2dd + REAL :: alpha_2, kappa, ii_par + REAL :: cc_omeg, p_n, q2_i, cc_q2, cc_gam + REAL :: cc_error(2), cc_delt + REAL :: rhs, lambda, lam_s +!--------------------------------------------------------------------- + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + +2.78E1*(t/293.15))*rho_sol**2 & + +(-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + -1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + +8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Ion-Ion: primitive MSA ------------------------------- +! the (dipole moment)**2 [my**2] corresponds to an attraction from +! point charges of [ SUM(xi * zi**2 * e_elem**2) * 3 * di**2 ] + +! parame(ion,6))**2 * 1.E-49 / (kbol*T) +! = (e_elem* 1.E5/SQRT(1.112650050))**2 +! *x(i)*zi**2 *3.0*sig_ij(1,1)**2 *1.E-20 + +! parame(ion,6))**2 = (e_elem* 1.E5/SQRT(1.112650050))**2 /1.E-49 +! *x(i)*zi**2 *3.0*sig_ij(i,i)**2 *1.E-20 + +! with the units +! my**2 [=] D**2 = 1.E-49 J*m3 +! e_elem **2 [=] C**2 = 1.E5 / SQRT(1.112650050) J*m + + +ions = 0 +x_ions = 0.0 +fcc = 0.0 +DO i = 1, ncomp + z_ii(i) = parame(i,10) + IF (z_ii(i) /= 0.0) THEN + sigm_i(i) = parame(i,2) + ELSE + sigm_i(i) = 0.0 + END IF + IF (z_ii(i) /= 0.0) ions = 1 + IF (z_ii(i) /= 0.0) x_ions = x_ions + x(i) +END DO + +IF (ions == 1 .AND. x_ions > 0.0) THEN + + cc_sig1 = 0.0 + cc_sig2 = 0.0 + cc_sig3 = 0.0 + DO i=1,ncomp + IF (z_ii(i) /= 0.0) THEN + x_ii(i) = x(i)/x_ions + ELSE + x_ii(i) =0.0 + END IF + cc_sig1 = cc_sig1 +x_ii(i)*sigm_i(i) + cc_sig2 = cc_sig2 +x_ii(i)*sigm_i(i)**2 + cc_sig3 = cc_sig3 +x_ii(i)*sigm_i(i)**3 + END DO + + + ! alpha_2 = 4.0*PI*e_elem**2 /eps_cc0/dielec/kbol/T + alpha_2 = e_elem**2 /eps_cc0 / dielec / KBOL/t + kappa = 0.0 + DO i = 1, ncomp + kappa = kappa + x(i)*z_ii(i)*z_ii(i)*mx(i,1) + END DO + kappa = SQRT( rho * alpha_2 * kappa ) + ii_par= kappa * cc_sig1 + + ! Temporaer: nach der Arbeit von Krienke verifiziert + ! noch nicht fuer Mischungen mit unterschiedl. Ladung erweitert + ! ii_par = DSQRT( e_elem**2 /eps_cc0/dielec/kbol/T & + ! *rho*(x(1)*Z_ii(1)**2 + x(2)*Z_ii(2)**2 ) )*cc_sig1 + + + cc_gam = kappa/2.0 + + ! noch offen !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + cc_delt = 0.0 + DO i = 1, ncomp + cc_delt = cc_delt + x(i)*mx(i,1)*rho*sigm_i(i)**3 + END DO + cc_delt= 1.0 - PI/6.0*cc_delt + + cc_it = 0 + 13 CONTINUE + j = 0 + cc_it = cc_it + 1 + 131 CONTINUE + j = j + 1 + cc_omeg = 0.0 + DO i = 1, ncomp + cc_omeg = cc_omeg +x(i)*mx(i,1)*sigm_i(i)**3 /(1.0+cc_gam*sigm_i(i)) + END DO + cc_omeg = 1.0 + PI/2.0 / cc_delt * rho * cc_omeg + p_n = 0.0 + DO i = 1, ncomp + p_n = p_n + x(i)*mx(i,1)*rho / cc_omeg*sigm_i(i)*z_ii(i) / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = 0.0 + cc_q2= 0.0 + DO i = 1, ncomp + q2_i = q2_i + rho*x(i)*mx(i,1)*( (z_ii(i)-pi/2.0/cc_delt*sigm_i(i)**2 *p_n) & + /(1.0+cc_gam*sigm_i(i)) )**2 + cc_q2 = cc_q2 + x(i)*mx(i,1)*rho*z_ii(i)**2 / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = q2_i*alpha_2 / 4.0 + + cc_error(j) = cc_gam - SQRT(q2_i) + IF (j == 1) cc_gam = cc_gam*1.000001 + IF (j == 2) cc_gam = cc_gam - cc_error(2)* (cc_gam-cc_gam/1.000001)/(cc_error(2)-cc_error(1)) + + IF ( j == 1 .AND. ABS(cc_error(1)) > 1.E-15 ) GO TO 131 + IF ( cc_it >= 10 ) THEN + WRITE (*,*) ' cc error' + STOP + END IF + IF ( j /= 1 ) GO TO 13 + + fcc= - alpha_2 / PI/4.0 /rho* (cc_gam*cc_q2 & + + pi/2.0/cc_delt *cc_omeg*p_n**2 ) + cc_gam**3 /pi/3.0/rho + ! Restricted Primitive Model + ! fcc=-(3.0*ii_par*ii_par+6.0*ii_par+2.0 & + ! -2.0*(1.0+2.0*ii_par)**1.50) & + ! /(12.0*PI*rho *cc_sig1**3 ) + + ! fcc = x_ions * fcc + + my2dd(3) = (parame(3,6))**2 *1.E-19 /(KBOL*t) + my2dd(3) = (1.84)**2 *1.E-19 /(kbol*t) + + rhs = 12.0 * PI * rho * x(3) * my2dd(3) + lam_s = 1.0 + 12 CONTINUE + lambda = (rhs/((lam_s+2.0)**2 ) + 16.0/((1.0+lam_s)**4 ) )**0.5 + IF ( ABS(lam_s-lambda) > 1.E-10 )THEN + lam_s = ( lambda + lam_s ) / 2.0 + GO TO 12 + END IF + + ! f_cd = -(ii_par*ii_par)/(4.0*PI*rho*m_mean *cc_sig1**3 ) & + ! *(dielec-1.0)/(1.0 + parame(3,2)/cc_sig1/lambda) + ! write (*,*) ' ',f_cd,fcc,x_ions + ! f_cd = f_cd/(1.0 - fcc/f_cd) + ! fcc = 0.0 + +END IF + + +END SUBROUTINE F_ION_ION_PrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, eta, x, parame, mseg + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd, fqq, fdq, fcc +!--------------------------------------------------------------------- + INTEGER :: dipole + !REAL :: A_MSA !, A_CC, A_CD, A_DD, U_MSA, chempot + REAL, DIMENSION(nc) :: x_export, msegm +!--------------------------------------------------------------------- + + dipole = 0 + IF ( SUM( parame(1:ncomp,6) ) > 1.E-5 ) dipole = 1 + + IF ( dipole /= 0 ) THEN ! alternatively ions and dipoles = 1 + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + fcc = 0.0 + msegm(:) = mseg(:) ! the entries of the vector mseg and x are changed + x_export(:) = x(:) ! in SEMIRESTRICTED because the ions should be positioned first + ! that is why dummy vectors msegm and x_export are defined + !CALL SEMIRESTRICTED (A_MSA,A_CC,A_CD,A_DD,U_MSA, & + ! chempot,ncomp,parame,t,eta,x_export,msegm,0) + !fdd = A_MSA + write (*,*) 'why are individual contrib. A_CC,A_CD,A_DD not used' + stop + END IF + + END SUBROUTINE F_ION_ION_nonPrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_LC_MayerSaupe ( flc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, phas, t, rho, eta, & + x, mseg, parame, E_lc, S_lc, dhs + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: flc +!--------------------------------------------------------------------- + INTEGER :: i, j, k + INTEGER :: liq_crystal, count_lc, steps_lc + REAL :: alpha_lc, tolerance, deltay + REAL :: integrand1, integrand2, accel_lc + REAL :: error_lc, u_term, sphase + REAL, DIMENSION(nc) :: z_lc, S_lc1, S_lc2, sumu + REAL, DIMENSION(nc,nc) :: u_lc, klc +!--------------------------------------------------------------------- +INTEGER :: stabil +COMMON /stabil / stabil +!--------------------------------------------------------------------- + + + klc(1,2) = 0.0 + klc(2,1) = klc(1,2) + + alpha_lc = 1.0 + accel_lc = 4.0 + IF ( eta < 0.35 ) accel_lc = 1.3 + IF ( eta < 0.15 ) accel_lc = 1.0 + + liq_crystal = 0 + DO i = 1, ncomp + DO j = 1, ncomp + E_lc(i,j) = (E_lc(i,i)*E_lc(j,j))**0.5 *(1.0-klc(i,j)) !combining rule + ! E_LC(i,j)= ( E_LC(i,i)+E_LC(j,j) ) * 0.5 !combining rule + ! S_LC(i,j)= ( S_LC(i,i)+S_LC(j,j) ) * 0.5 !combining rule + IF (E_lc(i,j) /= 0.0) liq_crystal = 1 + END DO + END DO + ! S_LC(1,2) = 0.0 + ! S_LC(2,1) = S_LC(1,2) + ! E_LC(1,2) = 60.0 + ! E_LC(2,1) = E_LC(1,2) + + IF ( liq_crystal == 1 .AND. phas == 1 .AND. stabil == 0 ) THEN + + count_lc = 0 + tolerance = 1.E-6 + + steps_lc = 200 + deltay = 1.0 / REAL(steps_lc) + + ! --- dimensionless function U_LC repres. anisotr. intermolecular interactions in l.c. + + DO i = 1, ncomp + DO j = 1, ncomp + u_lc(i,j) = 2.0/3.0*pi*mseg(i)*mseg(j) *(0.5*(dhs(i)+dhs(j)))**3 & ! sig_ij(i,j)**3 + *(E_lc(i,j)/t+S_lc(i,j))*rho + END DO + END DO + + + DO i=1,ncomp + ! S_lc2(i) = 0.0 !for isotropic + S_lc2(i) = 0.5 !for nematic + S_lc1(i) = S_lc2(i) + END DO + + 1 CONTINUE + + DO i = 1, ncomp + IF (S_lc2(i) <= 0.3) S_lc1(i) = S_lc2(i) + IF (S_lc2(i) > 0.3) S_lc1(i) = S_lc1(i) + (S_lc2(i)-S_lc1(i))*accel_lc + END DO + + count_lc = count_lc + 1 + + ! --- single-particle orientation partition function Z_LC in liquid crystals + + DO i = 1, ncomp + sumu(i) = 0.0 + DO j = 1, ncomp + sumu(i) = sumu(i) + x(j)*u_lc(i,j)*S_lc1(j) + END DO + END DO + + DO i = 1, ncomp + z_lc(i) = 0.0 + integrand1 = EXP(-0.5*sumu(i)) !eq. for Z_LC with y=0 + DO k = 1, steps_lc + integrand2 = EXP(0.5*sumu(i)*(3.0*(deltay*REAL(k)) **2 -1.0)) + z_lc(i) = z_lc(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + END DO !i-index Z_LC(i) calculation + + ! --- order parameter S_lc in liquid crystals ----------------------- + + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i) = 0.0 + integrand1 = -1.0/z_lc(i)*0.5*EXP(-0.5*sumu(i)) !for S_lc with y=0 + DO k = 1, steps_lc + integrand2 = 1.0/z_lc(i)*0.5*(3.0*(deltay*REAL(k)) & + **2 -1.0)*EXP(0.5*sumu(i)*(3.0 *(deltay*REAL(k))**2 -1.0)) + S_lc2(i) = S_lc2(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + error_lc = error_lc + ABS(S_lc2(i)-S_lc1(i)) + END DO !i-index Z_LC(i) calculation + + sphase = 0.0 + DO i = 1, ncomp + sphase = sphase + S_lc2(i) + END DO + IF (sphase < 1.E-4) THEN + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i)= 0.0 + z_lc(i) = 1.0 + END DO + END IF + + + ! write (*,*) count_LC,S_lc2(1)-S_lc1(1),S_lc2(2)-S_lc1(2) + IF (error_lc > tolerance .AND. count_lc < 400) GO TO 1 + ! write (*,*) 'done',eta,S_lc2(1),S_lc2(2) + + IF (count_lc == 400) WRITE (*,*) 'LC iteration not converg.' + + ! --- the anisotropic contribution to the Helmholtz energy ---------- + + u_term = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + u_term = u_term + 0.5*x(i)*x(j)*S_lc2(i) *S_lc2(j)*u_lc(i,j) + END DO + END DO + + flc = 0.0 + DO i = 1, ncomp + IF (z_lc(i) /= 0.0) flc = flc - x(i) * LOG(z_lc(i)) + END DO + flc = flc + u_term + ! pause + + END IF + ! write (*,'(i2,i2,4(f15.8))') phas,stabil,flc,eta,S_lc2(1),x(1) + + + END SUBROUTINE F_LC_MayerSaupe + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: zdd, zddz, zddz2, zddz3 + REAL, INTENT(OUT) :: zqq, zqqz, zqqz2, zqqz3 + REAL, INTENT(OUT) :: zdq, zdqz, zdqz2, zdqz3 +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE P_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdd, zddz, zddz2, zddz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdddr, fddd2, fddd3, fddd4 + REAL :: fdd2, fdd2z, fdd2z2, fdd2z3, fdd2z4 + REAL :: fdd3, fdd3z, fdd3z2, fdd3z3, fdd3z4 + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd2z, Idd2z2, Idd2z3, Idd2z4 + REAL, DIMENSION(nc,nc) :: Idd4, Idd4z, Idd4z2, Idd4z3, Idd4z4 + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3z, Idd3z2, Idd3z3, Idd3z4 +! ---------------------------------------------------------------------- + + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2z(i,j) = 0.0 + Idd4z(i,j) = 0.0 + Idd2z2(i,j) = 0.0 + Idd4z2(i,j) = 0.0 + Idd2z3(i,j) = 0.0 + Idd4z3(i,j) = 0.0 + Idd2z4(i,j) = 0.0 + Idd4z4(i,j) = 0.0 + ! IF (paramei,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m) *z3**(m+1) + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m) *z3**(m+1) + Idd2z(i,j) =Idd2z(i,j) +ddp2(i,j,m)*REAL(m+1) *z3**m + Idd4z(i,j) =Idd4z(i,j) +ddp4(i,j,m)*REAL(m+1) *z3**m + Idd2z2(i,j)=Idd2z2(i,j)+ddp2(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd4z2(i,j)=Idd4z2(i,j)+ddp4(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd2z3(i,j)=Idd2z3(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd4z3(i,j)=Idd4z3(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd2z4(i,j)=Idd2z4(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idd4z4(i,j)=Idd4z4(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + Idd3z(i,j,k) = 0.0 + Idd3z2(i,j,k) = 0.0 + Idd3z3(i,j,k) = 0.0 + Idd3z4(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) =Idd3(i,j,k) +ddp3(i,j,k,m)*z3**(m+2) + Idd3z(i,j,k) =Idd3z(i,j,k) +ddp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idd3z2(i,j,k)=Idd3z2(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1))*z3**m + Idd3z3(i,j,k)=Idd3z3(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m)*z3**(m-1) + Idd3z4(i,j,k)=Idd3z4(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2= -PI *rho/z3 + factor3= -4.0/3.0*PI**2 * (rho/z3)**2 + + fdd2 = 0.0 + fdd2z = 0.0 + fdd2z2 = 0.0 + fdd2z3 = 0.0 + fdd2z4 = 0.0 + fdd3 = 0.0 + fdd3z = 0.0 + fdd3z2 = 0.0 + fdd3z3 = 0.0 + fdd3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j)) + fdd2z = fdd2z +factor2*xijfa*(Idd2z(i,j) +eij/t*Idd4z(i,j)) + fdd2z2 = fdd2z2+factor2*xijfa*(Idd2z2(i,j)+eij/t*Idd4z2(i,j)) + fdd2z3 = fdd2z3+factor2*xijfa*(Idd2z3(i,j)+eij/t*Idd4z3(i,j)) + fdd2z4 = fdd2z4+factor2*xijfa*(Idd2z4(i,j)+eij/t*Idd4z4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa= x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) & + *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 = fdd3 + factor3 * xijkfa*Idd3(i,j,k) + fdd3z = fdd3z + factor3 * xijkfa*Idd3z(i,j,k) + fdd3z2 = fdd3z2 + factor3 * xijkfa*Idd3z2(i,j,k) + fdd3z3 = fdd3z3 + factor3 * xijkfa*Idd3z3(i,j,k) + fdd3z4 = fdd3z4 + factor3 * xijkfa*Idd3z4(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2z /= 0.0 .AND. fdd3z /= 0.0) THEN + + fdddr= fdd2* (fdd2*fdd2z - 2.0*fdd3*fdd2z+fdd2*fdd3z) / (fdd2-fdd3)**2 + fddd2=(2.0*fdd2*fdd2z*fdd2z +fdd2*fdd2*fdd2z2 & + -2.0*fdd2z**2 *fdd3-2.0*fdd2*fdd2z2*fdd3+fdd2*fdd2*fdd3z2) & + /(fdd2-fdd3)**2 + fdddr * 2.0*(fdd3z-fdd2z)/(fdd2-fdd3) + fddd3=(2.0*fdd2z**3 +6.0*fdd2*fdd2z*fdd2z2+fdd2*fdd2*fdd2z3 & + -6.0*fdd2z*fdd2z2*fdd3-2.0*fdd2z**2 *fdd3z & + -2.0*fdd2*fdd2z3*fdd3 -2.0*fdd2*fdd2z2*fdd3z & + +2.0*fdd2*fdd2z*fdd3z2+fdd2*fdd2*fdd3z3) /(fdd2-fdd3)**2 & + + 2.0/(fdd2-fdd3)* ( 2.0*fddd2*(fdd3z-fdd2z) & + + fdddr*(fdd3z2-fdd2z2) & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)**2 ) + fddd4=( 12.0*fdd2z**2 *fdd2z2+6.0*fdd2*fdd2z2**2 & + +8.0*fdd2*fdd2z*fdd2z3+fdd2*fdd2*fdd2z4-6.0*fdd2z2**2 *fdd3 & + -12.0*fdd2z*fdd2z2*fdd3z -8.0*fdd2z*fdd2z3*fdd3 & + -2.0*fdd2*fdd2z4*fdd3-4.0*fdd2*fdd2z3*fdd3z & + +4.0*fdd2*fdd2z*fdd3z3+fdd2**2 *fdd3z4 ) /(fdd2-fdd3)**2 & + + 6.0/(fdd2-fdd3)* ( fddd3*(fdd3z-fdd2z) & + -fddd2/(fdd2-fdd3)*(fdd3z-fdd2z)**2 & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)*(fdd3z2-fdd2z2) & + + fddd2*(fdd3z2-fdd2z2) +1.0/3.0*fdddr*(fdd3z3-fdd2z3) ) + zdd = fdddr*eta + zddz = fddd2*eta + fdddr + zddz2 = fddd3*eta + 2.0* fddd2 + zddz3 = fddd4*eta + 3.0* fddd3 + + END IF + + +END SUBROUTINE P_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zqq, zqqz, zqqz2, zqqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fqqdr, fqqd2, fqqd3, fqqd4 + REAL :: fqq2, fqq2z, fqq2z2, fqq2z3, fqq2z4 + REAL :: fqq3, fqq3z, fqq3z2, fqq3z3, fqq3z4 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq2z, Iqq2z2, Iqq2z3, Iqq2z4 + REAL, DIMENSION(nc,nc) :: Iqq4, Iqq4z, Iqq4z2, Iqq4z3, Iqq4z4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3z, Iqq3z2, Iqq3z3, Iqq3z4 +! ---------------------------------------------------------------------- + + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + z3 = eta + DO i=1,ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2z(i,j) = 0.0 + Iqq4z(i,j) = 0.0 + Iqq2z2(i,j) = 0.0 + Iqq4z2(i,j) = 0.0 + Iqq2z3(i,j) = 0.0 + Iqq4z3(i,j) = 0.0 + Iqq2z4(i,j) = 0.0 + Iqq4z4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) =Iqq2(i,j) + qqp2(i,j,m)*z3**(m+1) + Iqq4(i,j) =Iqq4(i,j) + qqp4(i,j,m)*z3**(m+1) + Iqq2z(i,j) =Iqq2z(i,j) +qqp2(i,j,m)*REAL(m+1)*z3**m + Iqq4z(i,j) =Iqq4z(i,j) +qqp4(i,j,m)*REAL(m+1)*z3**m + Iqq2z2(i,j)=Iqq2z2(i,j)+qqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq4z2(i,j)=Iqq4z2(i,j)+qqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq2z3(i,j)=Iqq2z3(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq4z3(i,j)=Iqq4z3(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq2z4(i,j)=Iqq2z4(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Iqq4z4(i,j)=Iqq4z4(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k=1,ncomp + Iqq3(i,j,k) = 0.0 + Iqq3z(i,j,k) = 0.0 + Iqq3z2(i,j,k) = 0.0 + Iqq3z3(i,j,k) = 0.0 + Iqq3z4(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m=0,4 + Iqq3(i,j,k) =Iqq3(i,j,k) + qqp3(i,j,k,m)*z3**(m+2) + Iqq3z(i,j,k)=Iqq3z(i,j,k)+qqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Iqq3z2(i,j,k)=Iqq3z2(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Iqq3z3(i,j,k)=Iqq3z3(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Iqq3z4(i,j,k)=Iqq3z4(i,j,k)+qqp3(i,j,k,m) *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/16.0*PI *rho/z3 + factor3= 9.0/16.0*PI**2 * (rho/z3)**2 + + fqq2 = 0.0 + fqq2z = 0.0 + fqq2z2 = 0.0 + fqq2z3 = 0.0 + fqq2z4 = 0.0 + fqq3 = 0.0 + fqq3z = 0.0 + fqq3z2 = 0.0 + fqq3z3 = 0.0 + fqq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2z =fqq2z +factor2*xijfa*(Iqq2z(i,j) +eij/t*Iqq4z(i,j) ) + fqq2z2=fqq2z2+factor2*xijfa*(Iqq2z2(i,j)+eij/t*Iqq4z2(i,j)) + fqq2z3=fqq2z3+factor2*xijfa*(Iqq2z3(i,j)+eij/t*Iqq4z3(i,j)) + fqq2z4=fqq2z4+factor2*xijfa*(Iqq2z4(i,j)+eij/t*Iqq4z4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa*Iqq3(i,j,k) + fqq3z = fqq3z + factor3 * xijkfa*Iqq3z(i,j,k) + fqq3z2 = fqq3z2 + factor3 * xijkfa*Iqq3z2(i,j,k) + fqq3z3 = fqq3z3 + factor3 * xijkfa*Iqq3z3(i,j,k) + fqq3z4 = fqq3z4 + factor3 * xijkfa*Iqq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2z /= 0.0 .AND. fqq3z /= 0.0) THEN + fqqdr = fqq2* (fqq2*fqq2z - 2.0*fqq3*fqq2z+fqq2*fqq3z) /(fqq2-fqq3)**2 + fqqd2= (2.0*fqq2*fqq2z*fqq2z +fqq2*fqq2*fqq2z2 & + -2.0*fqq2z**2 *fqq3-2.0*fqq2*fqq2z2*fqq3+fqq2*fqq2*fqq3z2) & + /(fqq2-fqq3)**2 + fqqdr * 2.0*(fqq3z-fqq2z)/(fqq2-fqq3) + fqqd3=(2.0*fqq2z**3 +6.0*fqq2*fqq2z*fqq2z2+fqq2*fqq2*fqq2z3 & + -6.0*fqq2z*fqq2z2*fqq3-2.0*fqq2z**2 *fqq3z & + -2.0*fqq2*fqq2z3*fqq3 -2.0*fqq2*fqq2z2*fqq3z & + +2.0*fqq2*fqq2z*fqq3z2+fqq2*fqq2*fqq3z3) /(fqq2-fqq3)**2 & + + 2.0/(fqq2-fqq3)* ( 2.0*fqqd2*(fqq3z-fqq2z) & + + fqqdr*(fqq3z2-fqq2z2) - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)**2 ) + fqqd4=( 12.0*fqq2z**2 *fqq2z2+6.0*fqq2*fqq2z2**2 & + +8.0*fqq2*fqq2z*fqq2z3+fqq2*fqq2*fqq2z4-6.0*fqq2z2**2 *fqq3 & + -12.0*fqq2z*fqq2z2*fqq3z -8.0*fqq2z*fqq2z3*fqq3 & + -2.0*fqq2*fqq2z4*fqq3-4.0*fqq2*fqq2z3*fqq3z & + +4.0*fqq2*fqq2z*fqq3z3+fqq2**2 *fqq3z4 ) /(fqq2-fqq3)**2 & + + 6.0/(fqq2-fqq3)* ( fqqd3*(fqq3z-fqq2z) & + -fqqd2/(fqq2-fqq3)*(fqq3z-fqq2z)**2 & + - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)*(fqq3z2-fqq2z2) & + + fqqd2*(fqq3z2-fqq2z2) +1.0/3.0*fqqdr*(fqq3z3-fqq2z3) ) + zqq = fqqdr*eta + zqqz = fqqd2*eta + fqqdr + zqqz2 = fqqd3*eta + 2.0* fqqd2 + zqqz3 = fqqd4*eta + 3.0* fqqd3 + END IF + + +END SUBROUTINE P_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdqdr, fdqd2, fdqd3, fdqd4 + REAL :: fdq2, fdq2z, fdq2z2, fdq2z3, fdq2z4 + REAL :: fdq3, fdq3z, fdq3z2, fdq3z3, fdq3z4 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq2z, Idq2z2, Idq2z3, Idq2z4 + REAL, DIMENSION(nc,nc) :: Idq4, Idq4z, Idq4z2, Idq4z3, Idq4z4 + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3z, Idq3z2, Idq3z3, Idq3z4 +! ---------------------------------------------------------------------- + + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2z(i,j) = 0.0 + Idq4z(i,j) = 0.0 + Idq2z2(i,j) = 0.0 + Idq4z2(i,j) = 0.0 + Idq2z3(i,j) = 0.0 + Idq4z3(i,j) = 0.0 + Idq2z4(i,j) = 0.0 + Idq4z4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) =Idq2(i,j) + dqp2(i,j,m)*z3**(m+1) + Idq4(i,j) =Idq4(i,j) + dqp4(i,j,m)*z3**(m+1) + Idq2z(i,j) =Idq2z(i,j) +dqp2(i,j,m)*REAL(m+1)*z3**m + Idq4z(i,j) =Idq4z(i,j) +dqp4(i,j,m)*REAL(m+1)*z3**m + Idq2z2(i,j)=Idq2z2(i,j)+dqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq4z2(i,j)=Idq4z2(i,j)+dqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq2z3(i,j)=Idq2z3(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq4z3(i,j)=Idq4z3(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq2z4(i,j)=Idq2z4(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idq4z4(i,j)=Idq4z4(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + Idq3z(i,j,k) = 0.0 + Idq3z2(i,j,k) = 0.0 + Idq3z3(i,j,k) = 0.0 + Idq3z4(i,j,k) = 0.0 + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) =Idq3(i,j,k) + dqp3(i,j,k,m)*z3**(m+2) + Idq3z(i,j,k)=Idq3z(i,j,k)+dqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idq3z2(i,j,k)=Idq3z2(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Idq3z3(i,j,k)=Idq3z3(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Idq3z4(i,j,k)=Idq3z4(i,j,k)+dqp3(i,j,k,m) & + *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/4.0*PI *rho/z3 + factor3= PI**2 * (rho/z3)**2 + + fdq2 = 0.0 + fdq2z = 0.0 + fdq2z2 = 0.0 + fdq2z3 = 0.0 + fdq2z4 = 0.0 + fdq3 = 0.0 + fdq3z = 0.0 + fdq3z2 = 0.0 + fdq3z3 = 0.0 + fdq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa =x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2z =fdq2z +factor2*xijfa*(Idq2z(i,j) +eij/t*Idq4z(i,j) ) + fdq2z2=fdq2z2+factor2*xijfa*(Idq2z2(i,j)+eij/t*Idq4z2(i,j)) + fdq2z3=fdq2z3+factor2*xijfa*(Idq2z3(i,j)+eij/t*Idq4z3(i,j)) + fdq2z4=fdq2z4+factor2*xijfa*(Idq2z4(i,j)+eij/t*Idq4z4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa*Idq3(i,j,k) + fdq3z =fdq3z + factor3 * xijkfa*Idq3z(i,j,k) + fdq3z2=fdq3z2 + factor3 * xijkfa*Idq3z2(i,j,k) + fdq3z3=fdq3z3 + factor3 * xijkfa*Idq3z3(i,j,k) + fdq3z4=fdq3z4 + factor3 * xijkfa*Idq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2z /= 0.0 .AND. fdq3z /= 0.0) THEN + fdqdr = fdq2* (fdq2*fdq2z - 2.0*fdq3*fdq2z+fdq2*fdq3z) /(fdq2-fdq3)**2 + fdqd2= (2.0*fdq2*fdq2z*fdq2z +fdq2*fdq2*fdq2z2 & + -2.0*fdq2z**2 *fdq3-2.0*fdq2*fdq2z2*fdq3+fdq2*fdq2*fdq3z2) & + /(fdq2-fdq3)**2 + fdqdr * 2.0*(fdq3z-fdq2z)/(fdq2-fdq3) + fdqd3=(2.0*fdq2z**3 +6.0*fdq2*fdq2z*fdq2z2+fdq2*fdq2*fdq2z3 & + -6.0*fdq2z*fdq2z2*fdq3-2.0*fdq2z**2 *fdq3z & + -2.0*fdq2*fdq2z3*fdq3 -2.0*fdq2*fdq2z2*fdq3z & + +2.0*fdq2*fdq2z*fdq3z2+fdq2*fdq2*fdq3z3) /(fdq2-fdq3)**2 & + + 2.0/(fdq2-fdq3)* ( 2.0*fdqd2*(fdq3z-fdq2z) & + + fdqdr*(fdq3z2-fdq2z2) - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)**2 ) + fdqd4=( 12.0*fdq2z**2 *fdq2z2+6.0*fdq2*fdq2z2**2 & + +8.0*fdq2*fdq2z*fdq2z3+fdq2*fdq2*fdq2z4-6.0*fdq2z2**2 *fdq3 & + -12.0*fdq2z*fdq2z2*fdq3z -8.0*fdq2z*fdq2z3*fdq3 & + -2.0*fdq2*fdq2z4*fdq3-4.0*fdq2*fdq2z3*fdq3z & + +4.0*fdq2*fdq2z*fdq3z3+fdq2**2 *fdq3z4 ) /(fdq2-fdq3)**2 & + + 6.0/(fdq2-fdq3)* ( fdqd3*(fdq3z-fdq2z) & + -fdqd2/(fdq2-fdq3)*(fdq3z-fdq2z)**2 & + - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)*(fdq3z2-fdq2z2) & + + fdqd2*(fdq3z2-fdq2z2) +1.0/3.0*fdqdr*(fdq3z3-fdq2z3) ) + zdq = fdqdr*eta + zdqz = fdqd2*eta + fdqdr + zdqz2 = fdqd3*eta + 2.0* fdqd2 + zdqz3 = fdqd4*eta + 3.0* fdqd3 + END IF + + +END SUBROUTINE P_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_pert_theory ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, p, rho, eta, & + x, z0t, mseg, parame, order1, order2 + USE EOS_NUMERICAL_DERIVATIVES, ONLY: disp_term + USE DFT_MODULE + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + REAL :: I1, I2 + REAL :: z3, zms, c1_con, m_mean +!--------------------------------------------------------------------- + + ! caution: positive sign of correlation integral is used here ! + ! (the Helmholtz energy terms are written with a negative sign, while I1 and I2 are positive) + + IF (disp_term == 'PT1') THEN + + CALL f_dft ( I1, I2) + c1_con = 0.0 + I2 = 0.0 + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + + ELSEIF (disp_term == 'PT2') THEN + + CALL f_dft ( I1, I2) + z3 = eta + zms = 1.0 - z3 + m_mean = z0t / ( PI / 6.0 ) + c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + ELSEIF (disp_term == 'PT_MIX') THEN + + CALL f_pert_theory_mix ( fdsp ) + + ELSEIF (disp_term == 'PT_MF') THEN + + ! mean field theory + I1 = - ( - 8.0/9.0 - 4.0/9.0*(rc**(-9) -3.0*rc**(-3) ) - tau_cut/3.0*(rc**3 -1.0) ) + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + write (*,*) 'caution: not thoroughly checked and tested' + + ELSE + write (*,*) 'define the type of perturbation theory' + stop + END IF + + ! I1 = I1 + 4.0/9.0*(2.5**-9 -3.0*2.5**-3 ) + ! fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + END SUBROUTINE F_pert_theory + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_pert_theory_mix ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1 + REAL :: int10, int11 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + + DO l = 1, ncomp + DO m = 1, ncomp + + rad = rc + + int10 = rc * rc * ua_c + ! intgrid(0)= int10 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int11 = rdf * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int11 + int10 ) / 2.0 + + int10 = int11 + ! intgrid(k)= int11 + + END DO + + ! stepno = k + ! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) + ! CALL SPLINE_INT (I1_spline,dzr,intgrid,utri,stepno) + + + ! caution: 1st order integral is in F_EOS.f defined with negative sign + ! --------------------------------------------------------------- + ! cut-off corrections + ! --------------------------------------------------------------- + ! I1(l,m) = I1(l,m) + ( 4.0/9.0 * rc**-9 - 4.0/3.0 * rc**-3 ) + ! I2(l,m) = I2(l,m) + 16.0/21.0 * rc**-21 - 32.0/15.0 * rc**-15 + 16.0/9.0 * rc**-9 + + END DO + END DO + + + fdsp = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + fdsp = fdsp + 2.0*PI*rho*x(l)*x(m)* mseg(l)*mseg(m)*sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! ( 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + END DO + END DO + + +!!$ IF (disp_term == 'PT1') THEN +!!$ c1_con = 0.0 +!!$ I2 = 0.0 +!!$ ELSEIF (disp_term == 'PT2') THEN +!!$ zms = 1.0 - z3 +!!$ c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & +!!$ + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & +!!$ /(zms*(2.0-z3))**2 ) +!!$ ELSE +!!$ write (*,*) 'define the type of perturbation theory' +!!$ stop +!!$ END IF + + +END SUBROUTINE f_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE mu_pert_theory_mix ( mu_dsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: mu_dsp(nc) +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1, I2 + REAL :: int1_0, int1_1, int2_0, int2_1 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + REAL :: term1(nc), term2 + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + I2(:,:) = 0.0 + + DO l = 1, ncomp + + term1(l) = 0.0 + + DO m = 1, ncomp + + rad = rc + + int1_0 = rc * rc * ua_c + int2_0 = 0.0 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int1_1 = rdf * rad * rad * ua + int2_1 = dg_dz3 * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int1_1 + int1_0 ) / 2.0 + I2(l,m) = I2(l,m) + dzr_local * ( int2_1 + int2_0 ) / 2.0 + + int1_0 = int1_1 + int2_0 = int2_1 + + term1(l) = term1(l) +4.0*PI*rho*x(m)* mseg(l)*mseg(m) *sig_ij(l,m)**3 *uij(l,m)/t* dzr_local*(int1_1+int1_0)/2.0 + + END DO + + END DO + END DO + + + ! DO l = 1, ncomp + ! term1(l) = 0.0 + ! DO m = 1, ncomp + ! term1(l) = term1(l) + 4.0*PI*rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! END DO + ! END DO + + term2 = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + term2 = term2 + 2.0*PI*rho*x(l) * rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I2(l,m) + END DO + END DO + + DO l = 1, ncomp + mu_dsp(l) = term1(l) + term2 * PI/ 6.0 * mseg(l)*dhs(l)**3 + END DO + +END SUBROUTINE mu_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DD_GROSS_VRABEC( fdd ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + INTEGER :: ddit, ddmax + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, xijf_j, xijkf_j, eij + REAL :: fdd2, fdd3 + REAL, DIMENSION(nc) :: my2dd, my0, alph_tst, z1dd, z2dd, dderror + REAL, DIMENSION(nc) :: fdd2m, fdd3m, fdd2m2, fdd3m2, fddm, fddm2 + REAL, DIMENSION(nc,nc) :: Idd2, Idd4 + REAL, DIMENSION(nc,nc,nc) :: Idd3 +! ---------------------------------------------------------------------- + + fdd = 0.0 + ddit = 0 + ddmax = 0 ! value assigned, if polarizable compound is present + fddm(:) = 0.0 + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'F_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + alph_tst(i) = parame(i,11) / (mseg(i)*sig_ij(i,i)**3 ) * t/parame(i,3) + IF ( alph_Tst(i) /= 0.0 ) ddmax = 25 ! set maximum number of polarizable RGT-iterations + z1dd(i) = my2dd(i) + 3.0*alph_tst(i) + z2dd(i) = 3.0*alph_tst(i) + my0(i) = my2dd(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) = Idd2(i,j) + ddp2(i,j,m)*eta**m + Idd4(i,j) = Idd4(i,j) + ddp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) = Idd3(i,j,k) + ddp3(i,j,k,m)*eta**m + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2 = -PI *rho + factor3 = -4.0/3.0*PI**2 * rho**2 + +9 CONTINUE + + fdd2m(:) = 0.0 + fdd2m2(:) = 0.0 + fdd3m(:) = 0.0 + fdd3m2(:) = 0.0 + fdd2 = 0.0 + fdd3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa =x(i)*parame(i,3)/t*parame(i,2)**3 * x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 * (z1dd(i)*z1dd(j)-z2dd(i)*z2dd(j)) ! * (1.0-lij(i,j)) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 + factor2 * xijfa * ( Idd2(i,j) + eij/t*Idd4(i,j) ) + xijf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 ! * (1.0-lij(i,j)) + fdd2m(i)=fdd2m(i)+4.0*SQRT(my2dd(i))*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + fdd2m2(i)=fdd2m2(i) + 4.0*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + IF (j == i) fdd2m2(i) =fdd2m2(i) +8.0*factor2* xijf_j*my2dd(i) *(Idd2(i,j)+eij/t*Idd4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 / ((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) / ((parame(j,2)+parame(k,2))/2.0) & + *(z1dd(i)*z1dd(j)*z1dd(k)-z2dd(i)*z2dd(j)*z2dd(k)) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3 = fdd3 + factor3 * xijkfa * Idd3(i,j,k) + xijkf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3m(i)=fdd3m(i)+6.0*factor3*SQRT(my2dd(i))*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + fdd3m2(i)=fdd3m2(i)+6.0*factor3*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + IF(j == i) fdd3m2(i) =fdd3m2(i)+24.0*factor3*my2dd(i)*z1dd(k) *xijkf_j*Idd3(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0) THEN + fdd = fdd2 / ( 1.0 - fdd3/fdd2 ) + IF ( ddmax /= 0 ) THEN + DO i = 1, ncomp + ddit = ddit + 1 + fddm(i) =fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i)+fdd2*fdd3m(i)) /(fdd2-fdd3)**2 + fddm2(i) = fdd2m(i) * (fdd2*fdd2m(i)-2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) / (fdd2-fdd3)**2 & + + fdd2*(fdd2*fdd2m2(i) -2.0*fdd3*fdd2m2(i)+fdd2m(i)**2 & + -fdd2m(i)*fdd3m(i) +fdd2*fdd3m2(i)) / (fdd2-fdd3)**2 & + - 2.0*fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) /(fdd2-fdd3)**3 & + *(fdd2m(i)-fdd3m(i)) + dderror(i)= SQRT( my2dd(i) ) - SQRT( my0(i) ) + alph_Tst(i)*fddm(i) + my2dd(i) = ( SQRT( my2dd(i) ) - dderror(i) / (1.0+alph_Tst(i)*fddm2(i)) )**2 + z1dd(i) = my2dd(i) + 3.0 * alph_Tst(i) + ENDDO + DO i = 1, ncomp + IF (ABS(dderror(i)) > 1.E-11 .AND. ddit < ddmax) GOTO 9 + ENDDO + fdd = fdd + SUM( 0.5*x(1:ncomp)*alph_Tst(1:ncomp)*fddm(1:ncomp)**2 ) + ENDIF + END IF + + +END SUBROUTINE F_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_QQ_GROSS( fqq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fqq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fqq2, fqq3 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3 +! ---------------------------------------------------------------------- + + + fqq = 0.0 + DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m)*eta**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Iqq3(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,k) = Iqq3(i,j,k) + qqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/16.0*PI *rho + factor3 = 9.0/16.0*PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2* xijfa * (Iqq2(i,j)+eij/t*Iqq4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa * Iqq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF ( fqq2 < -1.E-50 .AND. fqq3 /= 0.0 ) THEN + fqq = fqq2 / ( 1.0 - fqq3/fqq2 ) + END IF + + + +END SUBROUTINE F_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DQ_VRABEC_GROSS( fdq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fdq2, fdq3 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4 + REAL, DIMENSION(nc,nc,nc) :: Idq3 +! ---------------------------------------------------------------------- + + + fdq = 0.0 + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + ! myfac(i)=parame(i,3)/T*parame(i,2)**4 *my2dd_renormalized(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*eta**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) = Idq3(i,j,k) + dqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/4.0 * PI *rho + factor3 = PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 +factor2* xijfa*(Idq2(i,j)+eij/t*Idq4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.1937350 ) + fdq3 = fdq3 + factor3*xijkfa*Idq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0) THEN + fdq = fdq2 / ( 1.0 - fdq3/fdq2 ) + END IF + +END SUBROUTINE F_DQ_VRABEC_GROSS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_dft ( I1_dft, I2_dft ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, mseg, parame + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: I1_dft + REAL, INTENT(OUT) :: I2_dft +! +! ---------------------------------------------------------------------- + INTEGER :: k,ih + ! REAL :: z3 + REAL :: ua, ua_c, ua_2, ua_c_2, rm + REAL :: int10, int11, int20, int21 + REAL :: dg_drho + REAL :: rad, xg, rdf, rho_st, msegm + REAL :: sig_ij + REAL :: dg_dr, dzr_org !,rdf_d + ! REAL :: intgrid(0:NDFT),intgri2(0:NDFT) +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- +msegm = parame(1,1) +rho_st = rho * parame(1,2)**3 + +ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) +ua_c_2 = ua_c * ua_c +rm = 2.0**(1.0/6.0) + +int10 = rc*rc* ua_c +int20 = rc*rc* ua_c_2 +! intgrid(0)= int10 +! intgri2(0)= int20 + + +sig_ij = parame(1,2) + + +I1_dft = 0.0 +I2_dft = 0.0 +rad = rc +!dzr = dzp / 2.0 ! this line is obsolete. dzr is defined in DFT-nMF2 (dimensionless) +dzr_org= dzr +k = 0 +ih = 85 + +DO WHILE ( rad-dzr+1.E-9 >= 1.0 ) + + rad = rad - dzr + ! IF (rad <= 8.0) dzr = dzp + ! IF (rad <= rg) dzr = dzp/2.0 + k = k + 1 + xg = rad / dhs_st + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + ua_2 = ua * ua + rdf = 1.0 + dg_drho = 0.0 + IF ( rad <= rg ) THEN + CALL BI_CUB_SPLINE (rho_st,xg,ya,x1a,x2a,y1a,y2a,y12a, & + c_bicub,rdf,dg_drho,dg_dr,den_step,ih,k) + END IF + + int11 = rdf*rad*rad* ua + int21 = rdf*rad*rad* ua_2 + I1_dft= I1_dft + dzr*(int11+int10)/2.0 + I2_dft= I2_dft + dzr*(int21+int20)/2.0 + int10 = int11 + int20 = int21 + +END DO + +dzr = dzr_org + +! stepno = k +! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) +! CALL SPLINE_INT (I1,dzr,intgrid,utri,stepno) + +! caution: 1st order integral is in F_EOS.f defined with negative sign +I1_dft= - I1_dft - ( 4.0/9.0 * rc**(-9) - 4.0/3.0 * rc**(-3) ) + +! CALL SPLINE_PARA (dzr,intgri2,utri,stepno) +! CALL SPLINE_INT (I2,dzr,intgri2,utri,stepno) + +I2_dft = I2_dft + 16.0/21.0 * rc**(-21) - 32.0/15.0 * rc**(-15) + 16.0/9.0 * rc**(-9) + + +END SUBROUTINE f_dft + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) +! SUBROUTINE TANGENT_VALUE ( fmin, optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + !REAL, INTENT(IN) :: optpara(:) + !REAL, INTENT(IN OUT) :: fmin +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: lnphi(np,nc),ph_frac, gibbs_full(np),xlnx1,xlnx2 + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + + ! --- setting of mole fractions --------------------------------------- + DO i = 1, ncomp + IF ( optpara(i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( optpara(i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i) - ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(2,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + lnx(2,1:ncomp) = optpara(1:ncomp) - LOG( SUM( ni_2(1:ncomp) ) ) + + ph_frac = SUM( ni_1(1:ncomp) ) + xi(1,1:ncomp) = ni_1(1:ncomp) / ph_frac + lnx(1,1:ncomp) = LOG( ni_1(1:ncomp) ) - LOG( ph_frac ) + ! write (*,'(a,4G18.8)') 'FF',(xif(i),i=1,ncomp) + ! write (*,'(a,4G18.8)') 'AA',(xi(1,i),i=1,ncomp) + ! write (*,'(a,3G18.8)') 'BB',(xi(2,i),i=1,ncomp) + + CALL fugacity (lnphi) + !CALL enthalpy_etc + + gibbs(1) = SUM( xi(1,1:ncomp) * lnphi(1,1:ncomp) ) ! dimensionless g/RT + gibbs(2) = SUM( xi(2,1:ncomp) * lnphi(2,1:ncomp) ) + + xlnx1 = SUM( xi(1,1:ncomp)*lnx(1,1:ncomp) ) ! dimensionless s/RT + xlnx2 = SUM( xi(2,1:ncomp)*lnx(2,1:ncomp) ) + + gibbs_full(1) = gibbs(1) + xlnx1 + gibbs_full(2) = gibbs(2) + xlnx2 + + TANGENT_VALUE2 = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !fmin = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !write (*,'(a,4G18.8)') 'TP',TANGENT_VALUE2,(lnx(1,i),i=1,ncomp) + !write (*,'(a,4G18.8)') 'al',ph_frac,(lnx(2,i), i=1,ncomp) + !write (*,*) ' ' + !pause + +END FUNCTION TANGENT_VALUE2 + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/crit_point_mixtures.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/crit_point_mixtures.F90 new file mode 100644 index 000000000..2df622679 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/crit_point_mixtures.F90 @@ -0,0 +1,471 @@ + +SUBROUTINE CRIT_POINT_MIX(tc,user) + +!PETSc module +USE PetscManagement + +!VLE and DFT modules +USE BASIC_VARIABLES + +IMPLICIT NONE + +#include + +type (userctx) user +REAL :: tc +!local +REAL :: tc_L, tc_V, xi_save(np,nc),p_save +PetscErrorCode ierr + + +!!J:save value of pressure because it is changed during the calculation +p_save = p + +! --------------------------------------------------------------------- + ! determine the critical temp. to xi of liquid and to xi of vapor + ! --------------------------------------------------------------------- + + + xi_save(:,:) = xi(:,:) + dense(1) = 0.15 + + !call MPI_Barrier(PETSC_COMM_WORLD,ierr) + + !only proc 0 reads in the estimate and then sends it to all other procs using MPI_Bcast +! IF(user%rank == 0) THEN +! WRITE (*,*) 'provide an estimate of the crit. Temp. of the mixture' +! READ (*,*) t +! END IF + + t = 1.2 * t !initial estimate of critical temperature + + CALL MPI_Bcast(t,1,MPI_DOUBLE_PRECISION,0,PETSC_COMM_WORLD,ierr) + + xiF(1:ncomp) = xi_save(1,1:ncomp) + CALL Heidemann_Khalil + tc_L = t +! IF(user%rank == 0) THEN +! WRITE (*,*) 'critical temperature to xi_liquid',tc_L +! END IF + + xiF(1:ncomp) = xi_save(2,1:ncomp) + ! dense(1) = 0.15 + ! WRITE (*,*) 'provide an estimate of the crit. Temp. of the mixture' + ! READ (*,*) t + CALL Heidemann_Khalil + tc_V = t +! IF(user%rank == 0) THEN +! WRITE (*,*) 'critical temperature to xi_vapor ',tc_V +! END IF + + ! tc_L = 600.0 + ! WRITE (*,*) 'I have tentitativly set tc=700 ' + ! pause + + + !tc = ( tc_L + tc_V ) / 2.0 + tc = tc_L + xi(:,:) = xi_save(:,:) + densta(1:nphas) = val_conv(1:nphas) + dense(1:nphas) = val_conv(1:nphas) + t = val_conv(3) + IF(user%rank == 0) THEN + WRITE (*,*) 'estimate of critical temperature:',tc,'K' + WRITE (*,*) ' ' + END IF + +!!J: set pressure to its regular value +p = p_save + + +END SUBROUTINE CRIT_POINT_MIX + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE Heidemann_Khalil +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE Heidemann_Khalil_obj ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE Heidemann_Khalil_obj + END INTERFACE +! + INTEGER :: info + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + + INTEGER :: i, count, nphas_save + REAL :: error0, error1, dense0, dfdx, delta_rho + CHARACTER (LEN=2) :: ensemble_save +! ---------------------------------------------------------------------- + + ensemble_save = ensemble_flag + ensemble_flag = 'tv' + + nphas_save = nphas + nphas = 1 + + ! xiF(2) = 0.5 * ( 0.71928411 + 0.72025642 ) + ! xiF(1) = 1.0 - xiF(2) + ! dense(1) = 0.5 * ( 0.159315 + 0.158817 ) + 0.02 + ! t = 500.0 + + dense0 = dense(1) + + info = 1 + n_unkw = ncomp + 1 + acc_a = 5.E-8 + step_a = 1.E-8 + + + ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + DO i = 1,ncomp + y(i) = 1.0 / SQRT( REAL( ncomp ) ) + END DO + y(ncomp+1) = t + count = 0 + error0 = 1.0 + + DO WHILE ( ABS( error0) > 0.001 .AND. count < 20 ) + count = count + 1 + + dense(1) = dense0 + 0.0001 + CALL hbrd (Heidemann_Khalil_obj, n_unkw, y, residu, step_a, acc_a, info, diag) + error1 = error_condition2 + IF (SUM( ABS( residu(1:n_unkw) ) ) > 1.E-5) write (*,*) 'caution: error 1st inner loop', SUM( ABS( residu(1:n_unkw) ) ) + + dense(1) = dense0 + CALL hbrd (Heidemann_Khalil_obj, n_unkw, y, residu, step_a, acc_a, info, diag) + IF (SUM( ABS( residu(1:n_unkw) ) ) > 1.E-5) write (*,*) 'caution: error 2nd inner loop', SUM( ABS( residu(1:n_unkw) ) ) + error0 = error_condition2 + + ! write (*,'(a,4G18.10)') ' t, p, eta error', t, p, dense(1), error0 + ! pause + dfdx = ( error1 - error0 ) / 0.0001 + delta_rho = MIN( error0 / dfdx, 0.02) + delta_rho = MAX( delta_rho, -0.02) + dense0 = dense0 - delta_rho + dense(1) = dense0 + + END DO + + !tc = t + !pc = p + + DEALLOCATE( y, diag, residu ) + + ensemble_flag = ensemble_save + nphas = nphas_save + IF ( ABS( error_condition2 ) > 1.E-1 ) write (*,*) 'caution: error outer loop', ABS( error_condition2 ) + +END SUBROUTINE Heidemann_Khalil + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE Heidemann_Khalil_obj ( iter_no, y, residu, dummy ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL, DIMENSION(nc) :: dn + REAL, DIMENSION(nc) :: dhs, rhoi00, rhoi0 + REAL :: rho, d_rho + ! REAL :: lnphi(np,nc) + REAL :: qij(nc,nc), qij0(nc,nc), qijk(nc,nc,nc) + ! CHARACTER (LEN=3) :: char_len +! ---------------------------------------------------------------------- + + dn(1:ncomp) = y(1:ncomp) + t = y(ncomp+1) + !dense(1) = y(ncomp+2) + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(1:ncomp,3)/t ) ) + rho = dense(1) / SUM( PI/6.0*xiF(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + rhoi00(1:ncomp) = xiF(1:ncomp)*rho + + d_rho = 0.000001 + + DO k = 1, ncomp + + rhoi0(1:ncomp) = rhoi00(1:ncomp) + rhoi0(k) = rhoi00(k) + d_rho + CALL qij_matrix ( rhoi0, dhs, d_rho, qij ) + qij0(:,:) = qij(:,:) + + rhoi0(1:ncomp) = rhoi00(1:ncomp) + CALL qij_matrix ( rhoi0, dhs, d_rho, qij ) + + DO i = 1, ncomp + DO j = 1, ncomp + qijk(i,j,k) = ( qij0(i,j) - qij(i,j) ) / d_rho + ! write(*,*) i,j,k,qijk(i,j,k) + END DO + END DO + + END DO + + ! write (*,'(a,4G18.10)') 'det',qij(2,2)*qij(1,1) - qij(2,1)*qij(1,2) + ! write (*,'(a,3G18.10)') ' t,p,eta ', t, p, dense(1) + DO j = 1, ncomp + residu(j) = SUM( qij(1:ncomp,j)*dn(1:ncomp) ) + END DO + residu(ncomp+1) = 1.0 - SUM( dn(1:ncomp)*dn(1:ncomp) ) + + error_condition2 = 0.0 + DO k = 1, ncomp + DO i = 1, ncomp + DO j = 1, ncomp + error_condition2 = error_condition2 + qijk(i,j,k) * dn(i) * dn(j) * dn(k) + END DO + END DO + END DO + error_condition2 = error_condition2 * 1.E-4 ! the values are scaled down to prevent numerical dominance of this error + !residu(ncomp+2) = error_condition2 + + !write (char_len,'(I3)') ncomp+2 + !write (*,'(a,'//char_len//'G18.10)') ' error',residu(1:ncomp+1) + !write (*,*) ' ' + !pause + +END SUBROUTINE Heidemann_Khalil_obj + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine calculates the spinodal for a binary mixture to given +! T, p and for a given starting value of the density vector rhoi +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE binary_tp_spinodal ( rhoi, p_sp ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE binary_spinodal_obj ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE binary_spinodal_obj + END INTERFACE + + REAL, dimension(nc) :: rhoi + REAL :: p_sp +! ---------------------------------------------------------------------- + + INTEGER :: info + REAL, ALLOCATABLE :: y(:), diag(:), residu(:) + + INTEGER :: i, nphas_save + CHARACTER (LEN=2) :: ensemble_save +! ---------------------------------------------------------------------- + + ensemble_save = ensemble_flag + ensemble_flag = 'tv' + + nphas_save = nphas + nphas = 1 + + info = 1 + n_unkw = ncomp + 2 + acc_a = 5.E-8 + step_a = 1.E-8 + + + ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + DO i = 1, ncomp + y(i) = 1.0 / SQRT( REAL( ncomp ) ) + END DO + DO i = 1, ncomp + y( ncomp + i ) = rhoi( i ) + END DO + + CALL hbrd (binary_spinodal_obj, n_unkw, y, residu, step_a, acc_a, info, diag) + + DO i = 1, ncomp + rhoi( i ) = y( ncomp + i ) + END DO + write (*,*) 'info',info + write (*,*) 'rhoi',rhoi(1:ncomp) + !write (*,*) 'eta',PI / 6.0 * sum( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + write (*,*) 'x',rhoi(1:ncomp) / sum( rhoi(1:ncomp) ) + + DEALLOCATE( y, diag, residu ) + + ensemble_flag = ensemble_save + nphas = nphas_save + +END SUBROUTINE binary_tp_spinodal + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE binary_spinodal_obj ( iter_no, y, residu, dummy ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: j, k + REAL :: p_calculated, zges, p_sp + REAL :: d_rho + REAL, DIMENSION(nc) :: dn + REAL, DIMENSION(nc) :: dhs, rhoi + REAL, DIMENSION(nc,nc) :: qij +! ---------------------------------------------------------------------- + + dn(1:ncomp) = y(1:ncomp) + rhoi(1:ncomp) = y( (ncomp+1) : (ncomp+ncomp) ) + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(1:ncomp,3)/t ) ) ! is this calc. needed? + + call p_calc ( p_calculated, zges ) + + d_rho = 0.000001 + + DO k = 1, ncomp + + CALL qij_matrix ( rhoi, dhs, d_rho, qij ) + + END DO + + !write (*,'(a,4G18.10)') 'det',qij(2,2)*qij(1,1) - qij(2,1)*qij(1,2) + write (*,'(a,3G18.10)') ' t,p,eta ', t, p, dense(1) + DO j = 1, ncomp + residu(j) = SUM( qij(1:ncomp,j)*dn(1:ncomp) ) + END DO + residu(ncomp+1) = 1.0 - SUM( dn(1:ncomp)*dn(1:ncomp) ) + write (*,*) 'p_sp has to be handed over to the obj fct properly!' + write (*,*) 'Can I simply set p = p_sp? In other words is p altered during the calculation?' + stop + residu(ncomp+2) = p_sp - p_calculated + + write (*,'(a,4G18.10)') ' error',residu(1:4) + write (*,*) ' ' + pause + +END SUBROUTINE binary_spinodal_obj + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qij_matrix ( rhoi0, dhs, d_rho, qij ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: pges + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, DIMENSION(nc), INTENT(IN) :: rhoi0 + REAL, DIMENSION(nc), INTENT(IN) :: dhs + REAL, INTENT(IN) :: d_rho + REAL, DIMENSION(nc,nc), INTENT(OUT) :: qij +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi, lnf0, lnf1, lnf2 + REAL :: lnphi(np,nc), zges +! ---------------------------------------------------------------------- + + + DO i = 1, ncomp + rhoi(1:ncomp) = rhoi0(1:ncomp) + rhoi(i) = rhoi0(i) + d_rho + dense(1) = SUM( PI/6.0*rhoi(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + densta(1) = dense(1) + xi(1,1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + CALL FUGACITY ( lnphi ) + p = pges + zges = (pges * 1.d-30) / ( KBOL*t*SUM(rhoi(1:ncomp)) ) + lnf1(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + IF (rhoi0(i) - d_rho > 0.0 ) THEN + rhoi(1:ncomp) = rhoi0(1:ncomp) + rhoi(i) = rhoi0(i) - d_rho + dense(1) = SUM( PI/6.0*rhoi(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + densta(1) = dense(1) + xi(1,1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + CALL FUGACITY ( lnphi ) + p = pges + zges = (pges * 1.d-30) / ( KBOL*t*SUM(rhoi(1:ncomp)) ) + lnf2(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + END IF + + rhoi(1:ncomp) = rhoi0(1:ncomp) + dense(1) = SUM( PI/6.0*rhoi(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + densta(1) = dense(1) + xi(1,1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + CALL FUGACITY ( lnphi ) + p = pges + zges = (pges * 1.d-30) / ( KBOL*t*SUM(rhoi(1:ncomp)) ) + lnf0(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + IF (rhoi0(i) - d_rho > 0.0 ) THEN + qij(i,1:ncomp) = ( lnf1(1:ncomp) - lnf2(1:ncomp) ) / (2.0*d_rho) ! qij = d(F/V) / (d_rho_i*d_rho_j) + ELSE + qij(i,1:ncomp) = ( lnf1(1:ncomp) - lnf0(1:ncomp) ) / d_rho ! qij = d(F/V) / (d_rho_i*d_rho_j) + END IF + ! write (*,*) i,1,qij(i,1) + ! write (*,*) i,2,qij(i,2) + END DO + +END SUBROUTINE qij_matrix + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/fort.40 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/fort.40 new file mode 100644 index 000000000..b01fbd7fd --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/fort.40 @@ -0,0 +1 @@ + x1_ph1 x2_ph1 x3_ph1 x1_ph2 x2_ph2 x3_ph2 T P rho1 rho2 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.F90 new file mode 100644 index 000000000..4d469c5c8 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/getting_started_subroutines.F90 @@ -0,0 +1,4121 @@ +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE eos_const +! +! This subroutine provides the constants of the PC-SAFT EOS. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE eos_const (ap,bp,dnm) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ap(0:6,3) + REAL, INTENT(OUT) :: bp(0:6,3) + REAL, INTENT(OUT) :: dnm(4,9) +! ---------------------------------------------------------------------- + + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +! square-well fluid +! ap(1,1)= 0.79152347258784 +! ap(1,2)= -0.62269805320654 +! ap(1,3)= -0.06798823934067 +! ap(2,1)= 1.07120982251709 +! ap(2,2)= 0.48628215731716 +! ap(2,3)= 0.02837828512515 +! ap(3,1)= 0.92084839459226 +! ap(3,2)= 1.11652038059747 +! ap(3,3)= 0.09713202077943 +! ap(4,1)= -7.84708350369249 +! ap(4,2)= -2.04200599876547 +! ap(4,3)= 0.06475764015088 +! ap(5,1)= 25.90284137818050 +! ap(5,2)= 9.27791640100603 +! ap(5,3)= 0.07729792971827 +! ap(6,1)= -57.1528726997640 +! ap(6,2)= -16.8377999920957 +! ap(6,3)= 0.24883598436184 +! ap(7,1)= 42.02314637860930 +! ap(7,2)= 7.62432635016420 +! ap(7,3)= -0.72472024688888 + +! bp(1,1)= 0.79152347258784 +! bp(1,2)= -0.62269805320654 +! bp(1,3)= -0.06798823934067 +! bp(2,1)= 1.07120982251709 *2.0 +! bp(2,2)= 0.48628215731716 *2.0 +! bp(2,3)= 0.02837828512515 *2.0 +! bp(3,1)= 0.92084839459226 *3.0 +! bp(3,2)= 1.11652038059747 *3.0 +! bp(3,3)= 0.09713202077943 *3.0 +! bp(4,1)= -7.84708350369249 *4.0 +! bp(4,2)= -2.04200599876547 *4.0 +! bp(4,3)= 0.06475764015088 *4.0 +! bp(5,1)= 25.90284137818050 *5.0 +! bp(5,2)= 9.27791640100603 *5.0 +! bp(5,3)= 0.07729792971827 *5.0 +! bp(6,1)= -57.1528726997640 *6.0 +! bp(6,2)= -16.8377999920957 *6.0 +! bp(6,3)= 0.24883598436184 *6.0 +! bp(7,1)= 42.02314637860930 *7.0 +! bp(7,2)= 7.62432635016420 *7.0 +! bp(7,3)= -0.72472024688888 *7.0 + + +dnm(1,1) = -8.8043 +dnm(1,2) = +4.1646270 +dnm(1,3) = -48.203555 +dnm(1,4) = +140.43620 +dnm(1,5) = -195.23339 +dnm(1,6) = +113.51500 +dnm(2,1) = +2.9396 +dnm(2,2) = -6.0865383 +dnm(2,3) = +40.137956 +dnm(2,4) = -76.230797 +dnm(2,5) = -133.70055 +dnm(2,6) = +860.25349 +dnm(2,7) = -1535.3224 +dnm(2,8) = +1221.4261 +dnm(2,9) = -409.10539 +dnm(3,1) = -2.8225 +dnm(3,2) = +4.7600148 +dnm(3,3) = +11.257177 +dnm(3,4) = -66.382743 +dnm(3,5) = +69.248785 +dnm(4,1) = +0.3400 +dnm(4,2) = -3.1875014 +dnm(4,3) = +12.231796 +dnm(4,4) = -12.110681 + +END SUBROUTINE eos_const + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dq_const +! +! This subr. provides the constants of the dipole-quadrupole term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dq_const ( dqp2,dqp3,dqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: dqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: dqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: dqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mdq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i=1,ncomp + mdq(i) = parame(i,1) + IF (mdq(i) > 2.0) mdq(i) = 2.0 +END DO + + +DO i=1,ncomp + DO j=1,ncomp + + msegij=(mdq(i)*mdq(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + dqp2(i,j,0) = 0.697094963 + mf1*(-0.673459279) + mf2*0.670340770 + dqp2(i,j,1) = -0.633554144 + mf1*(-1.425899106) + mf2*(-4.338471826) + dqp2(i,j,2) = 2.945509028 + mf1 * 4.19441392 + mf2*7.234168360 + dqp2(i,j,3) = -1.467027314 + mf1 * 1.0266216 + dqp2(i,j,4) = 0.0 + + dqp4(i,j,0) = -0.484038322 + mf1 * 0.67651011 + mf2*(-1.167560146) + dqp4(i,j,1) = 1.970405465 + mf1*(-3.013867512) + mf2*2.13488432 + dqp4(i,j,2) = -2.118572671 + mf1 * 0.46742656 + dqp4(i,j,3) = 0.0 + dqp4(i,j,4) = 0.0 + + + DO k=1,ncomp + msegij=(mdq(i)*mdq(j)*mdq(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = (msegij-2.0)/msegij + dqp3(i,j,k,0) = 0.795009692 + mf1*(-2.099579397) + dqp3(i,j,k,1) = 3.386863396 + mf1*(-5.941376392) + dqp3(i,j,k,2) = 0.475106328 + mf1*(-0.178820384) + dqp3(i,j,k,3) = 0.0 + dqp3(i,j,k,4) = 0.0 + END DO + + END DO +END DO + +END SUBROUTINE dq_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dd_const +! +! This subroutine provides the constants of the dipole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dd_const ( ddp2,ddp3,ddp4 ) +! + USE PARAMETERS, ONLY: nc, PI + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ddp2(nc,nc,0:8) + REAL, INTENT(OUT) :: ddp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: ddp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: pardd(nc) + REAL :: mf1,mf2,msegij,sin2t +! ---------------------------------------------------------------------- + +sin2t = SIN( 0.0 * PI / 180.0 ) +sin2t = sin2t*sin2t + +DO i = 1, ncomp + pardd(i) = parame(i,1) + IF (pardd(i) > 2.0) pardd(i) = 2.0 +END DO + +DO i=1,ncomp + DO j=1,ncomp +! IF (parame(i,6).NE.0.0.AND.parame(j,6).NE.0.0) THEN + + msegij=(pardd(i)*pardd(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + ddp2(i,j,0) = 0.30435038064 + mf1*(0.95346405973+0.201436*sin2t) & + + mf2*(-1.16100802773-1.74114*sin2t) + ddp2(i,j,1) = -0.13585877707 + mf1*(-1.83963831920+1.31649*sin2t) & + + mf2*4.52586067320 + ddp2(i,j,2) = 1.44933285154 + mf1 * 2.01311801180 + mf2*0.97512223853 + ddp2(i,j,3) = 0.35569769252 + mf1*(-7.37249576667) + mf2*(-12.2810377713) + ddp2(i,j,4) = -2.06533084541 + mf1 * 8.23741345333 + mf2*5.93975747420 + + ddp4(i,j,0) = 0.21879385627 + mf1*(-0.58731641193) + mf2*3.48695755800 + ddp4(i,j,1) = -1.18964307357 + mf1 * 1.24891317047 + mf2*(-14.9159739347) + ddp4(i,j,2) = 1.16268885692 + mf1*(-0.50852797392) + mf2*15.3720218600 + ddp4(i,j,3) = 0.0 + ddp4(i,j,4) = 0.0 + + DO k=1,ncomp +! IF (parame(k,6).NE.0.0) THEN + msegij=(pardd(i)*pardd(j)*pardd(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + ddp3(i,j,k,0) = -0.06467735252 + mf1*(-0.95208758351+0.28503*sin2t) & + + mf2*(-0.62609792333+2.2195*sin2t) + ddp3(i,j,k,1) = 0.19758818347 + mf1 * 2.99242575222 + mf2*1.29246858189 + ddp3(i,j,k,2) = -0.80875619458 + mf1*(-2.38026356489) + mf2*1.65427830900 + ddp3(i,j,k,3) = 0.69028490492 + mf1*(-0.27012609786) + mf2*(-3.43967436378) + ddp3(i,j,k,4) = 0.0 + +! ENDIF + END DO + +! ENDIF + END DO +END DO + +END SUBROUTINE dd_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE qq_const +! +! This subroutine provides the constants of the quadrupole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qq_const ( qqp2,qqp3,qqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: qqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: qqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: qqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mqq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i = 1,ncomp + mqq(i) = parame(i,1) + IF (mqq(i) > 2.0) mqq(i) = 2.0 +END DO + +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + + msegij=(mqq(i)*mqq(j))**0.5 +! msegij=(parame(i,1)*parame(j,1))**0.50 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + qqp2(i,j,0) = 1.237830788 + mf1 * 1.285410878 + mf2*1.794295401 + qqp2(i,j,1) = 2.435503144 + mf1*(-11.46561451) + mf2*0.769510293 + qqp2(i,j,2) = 1.633090469 + mf1 *22.08689285 + mf2*7.264792255 + qqp2(i,j,3) = -1.611815241 + mf1 * 7.46913832 + mf2*94.48669892 + qqp2(i,j,4) = 6.977118504 + mf1*(-17.19777208) + mf2*(-77.1484579) + + qqp4(i,j,0) = 0.454271755 + mf1*(-0.813734006) + mf2*6.868267516 + qqp4(i,j,1) = -4.501626435 + mf1 * 10.06402986 + mf2*(-5.173223765) + qqp4(i,j,2) = 3.585886783 + mf1*(-10.87663092) + mf2*(-17.2402066) + qqp4(i,j,3) = 0.0 + qqp4(i,j,4) = 0.0 + + DO k = 1,ncomp + IF (parame(k,7) /= 0.0) THEN + msegij=(mqq(i)*mqq(j)*mqq(k))**(1.0/3.0) +! msegij=(parame(i,1)*parame(j,1)*parame(k,1))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + qqp3(i,j,k,0) = -0.500043713 + mf1 * 2.000209381 + mf2*3.135827145 + qqp3(i,j,k,1) = 6.531869153 + mf1*(-6.78386584) + mf2*7.247588801 + qqp3(i,j,k,2) = -16.01477983 + mf1 * 20.38324603 + mf2*3.075947834 + qqp3(i,j,k,3) = 14.42597018 + mf1*(-10.89598394) + qqp3(i,j,k,4) = 0.0 + END IF + END DO + + END IF + END DO +END DO + +END SUBROUTINE qq_const + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SET_DEFAULT_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + + ideal_gas = 'no' ! ( yes, no ) + hard_sphere = 'CSBM' ! ( CSBM, no ) + chain_term = 'TPT1' ! ( TPT1, HuLiu, no ) + disp_term = 'PC-SAFT' ! ( PC-SAFT, CK, PT1, PT2, PT_MF, PT_MIX, no ) + hb_term = 'TPT1_Chap' ! ( TPT1_Chap, no ) + LC_term = 'no' ! ( MSaupe, OVL, no ) + branch_term = 'no' ! ( TPT2, no ) + II_term = 'no' + ID_term = 'no' + + subtract1 = 'no' ! (1PT, 2PT, no) + subtract2 = 'no' ! (ITTpolar, no) + +END SUBROUTINE SET_DEFAULT_EOS_NUMERICAL + + + + + + + + + +SUBROUTINE READ_INPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: reading2,reading3,sumfeed + CHARACTER (LEN=4) :: uoutp, uinp + CHARACTER (LEN=1) :: uoutt, uint + CHARACTER (LEN=50) :: filename + CHARACTER (LEN=30) :: reading1 +! ---------------------------------------------------------------------- + + filename='./input_file/INPUT.INP' + CALL file_open(filename,30) + READ (30,*) eos, pol !J: specify by numbers! eos(1=pcsaft, 2=SRK,...) pol (=polar) yes(1) no(0) + READ (30,*) t, uint, p, uinp !J: t: value of temp, uint: unit of temp, p: value of pressure, uinp: unit of pressure + + ncomp = 0 + i = 0 + sumfeed = 0.0 + read_loop: DO + READ (30,*) reading1,reading2,reading3 + IF (reading1 == 'end') EXIT read_loop + ncomp = ncomp + 1 + i = i + 1 + compna(i)= reading1 ! comp.name + mm(i) = reading2 ! molec.mass (mandatory only for polymers) + xif(i) = reading3 !J: molefractions + sumfeed = sumfeed + xif(i) + ENDDO read_loop + + CLOSE (30) + + IF (sumfeed /= 0.0 .AND. sumfeed /= 1.0) THEN !J: in case mole fractions dont sum up to 1?? + xif(1:ncomp) = xif(1:ncomp)/sumfeed + END IF + + uoutt = uint + uoutp = uinp + IF (uint == 'C') THEN !J: unit stuff + u_in_t = 273.15 + ELSE + u_in_t = 0.0 + END IF + IF (uinp == 'bar') THEN + u_in_p = 1.E5 + ELSE IF (uinp == 'mbar') THEN + u_in_p = 1.E2 + ELSE IF (uinp == 'MPa') THEN + u_in_p = 1.E6 + ELSE IF (uinp == 'kPa') THEN + u_in_p = 1.E3 + ELSE + u_in_p = 1.E0 + END IF + + IF (uoutt == 'C') THEN + u_out_t = 273.15 + ELSE + u_out_t = 0.0 + END IF + IF (uoutp == 'bar') THEN + u_out_p = 1.E5 + ELSE IF (uoutp == 'mbar') THEN + u_out_p = 1.E2 + ELSE IF (uoutp == 'MPa') THEN + u_out_p = 1.E6 + ELSE IF (uoutp == 'kPa') THEN + u_out_p = 1.E3 + ELSE + u_out_p = 1.0 + END IF + + t = t + u_in_t !J: calculate temp in Kelvin + p = p * u_in_p !J: calculate pressure in Pascal + + CALL para_input ! retriev pure comp. parameters + + IF (ncomp == 1) THEN + WRITE (40,*) ' T P rho_1 rho_2 h_LV' + ELSE IF (ncomp == 2) THEN + ! WRITE (40,*) ' x2_phase1 x2_phase2 w1_phase1 w2_phase2 T P rho1 rho2' + WRITE (40,*) ' ' + ELSE IF (ncomp == 3) THEN + WRITE (40,*) ' x1_ph1 x2_ph1 x3_ph1 x1_ph2', & + ' x2_ph2 x3_ph2 T P rho1 rho2' + END IF + + END SUBROUTINE READ_INPUT + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE file_open +! +! This subroutine opens files for reading. Beforehand, it checks +! whether this file is available. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE file_open(filename,file_number) +! +! ---------------------------------------------------------------------- + CHARACTER (LEN=50) :: filename + INTEGER :: file_number + LOGICAL :: filefound +! ---------------------------------------------------------------------- + +INQUIRE (FILE=filename, EXIST = filefound) +IF (filefound) THEN + OPEN (file_number, FILE = filename) +ELSE + write (*,*) ' FOLLOWING FILE CAN NOT BE OPENED', filename + stop +END IF + +END SUBROUTINE file_open + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE para_input +! +! This subroutine provides pure component parameters and kij parameters. +! The following syntax applies: +! +! compna(i) component name +! parame(i,k) pure comp. parameter: +! parame(i,1): segment number [/] +! parame(i,2): segment diameter "sigma" [Angstrom] +! parame(i,3): segment energy param. epsilon/k [K] +! parame(i,4): model parameter; not used for PC-SAFT (=0) +! it is 10K most of the time for SAFT [K] +! parame(i,5): Param. for T-dependent segment diameter [/] +! parame(i,6): dipolar moment [debye] +! parame(i,7): quadrupolar moment [debye] +! parame(i,8): number of segments that are part of a branching 4-mer [/] +! parame(i,9): +! parame(i,10): ionic charge number (positiv or negativ) [/] +! parame(i,11): polarizability [A**3] +! parame(i,12): number of association sites [/] +! parame(i,13): (=kap_hb, see below) [/] +! parame(i,14 to 25): (=eps_hb, see below) [K] +! nhb_typ(i) number of different types of association sites (comp. i) +! nhb_no(i,k) number of association sites of type k +! eps_hb depth of association potential [K] +! kap_hb effective width of assoc. potential (angle-averg.) +! mm molec. mass +! scaling param. for roughly scaling the set of objective functions +! +! As opposed to low-molec mass compounds, the molecular mass of a +! polymer is not obtained from this routine. Rather, it is a +! user-specification given in the file INPUT.INP +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE para_input +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i +!---------------------------------------------------------------------- + +IF (eos == 1) THEN + CALL pcsaft_par +ELSE IF (eos == 4 .OR. eos == 5 .OR. eos == 6 .OR. eos == 8) THEN + ! CALL lj_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 7) THEN + ! CALL sw_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 10) THEN + i = 1 + IF (compna(i) == 'LC_generic' .AND. ncomp == 1 ) THEN + mm(i) = 1.0 + parame(i,1) = 7.0 + parame(i,2) = 1.0 + parame(i,3) = 0.0 + ELSE + write (*,*) 'PARA_INPUT: define the component !' + stop + ENDIF +ELSE + !CALL saft_par +END IF + +DO i = 1, ncomp + IF ( mm(i) >= 1.0 .AND. mm(i) < 45.0 ) THEN + scaling(i) = 10000.0 + ELSE IF( mm(i) >= 45.0 .AND. mm(i) < 90.0 ) THEN + scaling(i) = 1000.0 + ELSE IF( mm(i) >= 90.0 .AND. mm(i) < 150.0 ) THEN + scaling(i) = 100.0 + ELSE IF( mm(i) >= 150.0 .AND. mm(i) < 250.0 ) THEN + scaling(i) = 10.0 + ELSE + scaling(i) = 1.0 + END IF + IF (parame(i,10) /= 0.0) scaling(i) = scaling(i) / 1.E4 ! Electrolytes +END DO + +END SUBROUTINE para_input + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE pcsaft_par +! +! pure component parameters and kij parameters +! (as described in SUBROUTINE para_input) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE pcsaft_par +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i, j, k, no + INTEGER, DIMENSION(nc) :: nhb_typ + INTEGER, DIMENSION(nc,nsite) :: nhb_no + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb +!---------------------------------------------------------------------- + + +DO i = 1, ncomp + parame(i,4) = 0.0 ! T correct. required for SAFT, not PC-SAFT + parame(i,5) = 0.12 ! Param. for T-dependent segment diameter + parame(i,6) = 0.0 ! dipolar moment + parame(i,7) = 0.0 ! quadrupolar moment + parame(i,8) = 0.0 ! number of segments that are part of a branching 4-mer + parame(i,9) = 0.0 + parame(i,10)= 0.0 ! ionic charge number + parame(i,11)= 0.0 ! polarizability + lli(i) = 0.0 + phi_criti(i)= 0.0 + chap(i) = 0.0 + + nhb_typ(i) = 0 + kap_hb(i,i) = 0.0 + ! irgendwann sollten nhb_typ und kap_hb durch parame(i,12) und (i,13) + ! ersetzt werden. + IF (compna(i) == 'ps') THEN + parame(i,1) = mm(i)*1.9E-2 + parame(i,2) = 4.10705961 + parame(i,3) = 267.0 + ELSE IF (compna(i) == 'ps_J') THEN !from Xu,Diego: DFT for polymer-co2 mixtures: A PC-SAFT approach + parame(i,1) = mm(i)*0.0253 + parame(i,2) = 3.45 + parame(i,3) = 328.1 + ELSE IF (compna(i) == 'co2_J') THEN !from Xu,Diego: DFT for polymer-co2 mixtures: A PC-SAFT approach + parame(i,1) = 2.0 + parame(i,2) = 2.79 + parame(i,3) = 170.5 + + + + ELSE IF (compna(i) == 'pg2') THEN !Polyglycerol 2 + mm(i) = 2000.0 + parame(i,1) = mm(i)*2.37E-2 ! from figure 5 PCSAFT paper + parame(i,2) = 3.8 ! from figure 5 PCSAFT paper + parame(i,3) = 270.0 ! starting value for iteration + ! this is the extra parameter + parame(i,8) = mm(i)*2.37E-2 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 27 ! no. of sites of type 1 + nhb_no(i,2) = 27 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2544.6 ! taken from butanol (same M/OH) + eps_hb(i,i,2,1)= 2544.6 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i)= .00489087833 ! taken from butanol (same M/OH) + ELSE IF (compna(i) == 'peva') THEN + parame(i,1) = mm(i)*2.63E-2 + ! -- 0 Gew.% VA------------- + ! parame(i,2) = 4.021767 + ! parame(i,3) = 249.5 + ! -- 7.5 Gew.% VA------------- + ! parame(i,2) = 4.011 + ! parame(i,3) = 248.1864 + ! parame(i,3) = 247.6286 + ! ---12.7 Gew.% VA------------ + ! parame(i,2) = 4.0028 + ! parame(i,3) = 247.2075 + ! parame(i,3) = 246.24454 + ! ---27.3 Gew.% VA------------ + ! parame(i,2) = 3.9762 + ! parame(i,3) = 244.114 + ! parame(i,3) = 241.9345 + ! ---31.8 Gew.% VA------------ + parame(i,2) = 3.9666 + parame(i,3) = 243.0436 + ! parame(i,3) = 240.46 + ! ---42.7 Gew.% VA------------ + ! parame(i,2) = 3.9400 + ! parame(i,3) = 240.184 + ! parame(i,3) = 236.62 + ! --------------- + ELSE IF (compna(i) == 'pp') THEN + parame(i,1) = mm(i)*2.2E-2 + parame(i,2) = 4.2 + parame(i,3) = 220.0 + + parame(i,1) = mm(i)*0.0230487701 + parame(i,2) = 4.1 + parame(i,3) = 217.0 + ELSE IF (compna(i) == 'pe') THEN + parame(i,1) = mm(i)*2.622E-2 + parame(i,2) = 4.021767 + parame(i,3) = 252.0 + ! HDPE: extrapolated from pure comp. param. of n-alkane series! + ! parame(i,1) = mm(i)*2.4346E-2 + ! parame(i,2) = 4.07182 + ! parame(i,3) = 269.67 + !! parame(i,3) = 252.5 + ELSE IF (compna(i) == 'ldpe') THEN + parame(i,1) = mm(i)*2.63E-2 + parame(i,2) = 4.021767 + parame(i,3) = 249.5 + ELSE IF (compna(i) == 'pba') THEN + parame(i,1) = mm(i)*2.5872E-2 + parame(i,2) = 3.95 + parame(i,3) = 229.0 + ELSE IF (compna(i) == 'dextran') THEN + parame(i,1) = mm(i)*2.E-2 + parame(i,2) = 4.0 + parame(i,3) = 300.0 + ELSE IF (compna(i) == 'glycol-ethers') THEN + ! mm(i) = 218.0 + ! parame(i,1) = 7.4044 + ! parame(i,2) = 3.61576 + ! parame(i,3) = 244.0034598 + mm(i) = 222.0 + parame(i,1) = 7.994 + parame(i,2) = 3.445377778 + parame(i,3) = 234.916506 + ELSE IF (compna(i) == 'LJ') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 1.0 + ELSE IF (compna(i) == 'LJ1205') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 140.0 + ELSE IF (compna(i) == 'adamantane') THEN + mm(i) = 136.235000000000 + parame(i,1) = 4.81897145432221 + parame(i,2) = 3.47128575274660 + parame(i,3) = 266.936967922521 + + Else IF (compna(i) == '14-butandiol') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + Else IF(compna(i) == 'po') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + ELSE IF (compna(i) == 'air') THEN + mm(i) = 28.899 !n2 and o2 according to mole fractions + parame(i,1) = 1.18938 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,2) = 3.28694 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,3) = 95.672 !n2 and o2 according to mole fractions (weighted artihm. avg) + + + + Else IF(compna(i) == 'mdi') THEN + mm(i) = 2.50252E+02 + parame(i,1) = mm(i)*0.030769 + parame(i,2) = 2.886003 + parame(i,3) = 283.052778 + + Else IF(compna(i) == 'pu') THEN +! mm(i) = 2042.22 !pu n = 5 +! parame(i,1) = mm(i)*0.008845 +! parame(i,2) = 5.680270 +! parame(i,3) = 497.997594 + mm(i) = 340.37 !pu n = 0 + parame(i,1) = mm(i)*0.043312 + parame(i,2) = 3.008359 + parame(i,3) = 273.445205 +! mm(i) = 680.74 !pu n = 1 +! parame(i,1) = mm(i)*0.024106 +! parame(i,2) = 3.744327 +! parame(i,3) = 321.486386 +! mm(i) = 1021.11 !pu n = 2 +! parame(i,1) = mm(i)*0.015076 +! parame(i,2) = 4.537837 +! parame(i,3) = 400.036950 + + + Else IF(compna(i) == 'tpg') THEN + mm(i) = 192.25 + parame(i,1) = mm(i)*0.01239 + parame(i,2) = 4.549 + parame(i,3) = 148.678 + parame(i,6) = 0.41 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 2 ! no. of sites of type 1 + nhb_no(i,2) = 2 ! no. of sites of type 2 + + eps_hb(i,i,1,2)= 5597.844 + eps_hb(i,i,2,1)= 5597.844 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.03 + + + ELSE IF (compna(i) == 'methane') THEN + mm(i) = 16.043 + parame(i,1) = 1.0 + parame(i,2) = 3.70388767 + parame(i,3) = 150.033987 + ! LLi(i) = 1.185*parame(i,2) + ! phi_criti(i)= 11.141 + ! chap(i) = 0.787 + lli(i) = 1.398*parame(i,2) + phi_criti(i)= 16.01197 + chap(i) = 0.6 + IF (pol == 2) parame(i,11)= 2.593 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 16.0430000000000 + ! parame(i,1) = 1.03353666429362 + ! parame(i,2) = 3.64824920605089 + ! parame(i,3) = 147.903953522994 + lli(i) = 2.254442763775*parame(i,2) + phi_criti(i)= 42.060975627454 + chap(i) = 0.704895924 + lli(i) = 1.935801125833*parame(i,2) + phi_criti(i)= 26.363325937261 + chap(i) = 0.700112854298 + lli(i) = 2.610103087662*parame(i,2) + phi_criti(i)= 38.192854403173 + chap(i) = 0.812100472735 + ! 2.122960316503 34.937141524804 0.734513223627 + ! 2.082897379591 33.036391564859 0.877578492999 + ELSE IF (compna(i) == 'ethane') THEN + mm(i) = 30.070 + parame(i,1) =mm(i)* .0534364758 + parame(i,2) = 3.5205923 + parame(i,3) = 191.423815 + lli(i) = 1.40*parame(i,2) + phi_criti(i)= 15.38 + chap(i) = 0.520 + IF (pol == 2) parame(i,11)= 4.3 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 30.069 + ! parame(i,1) = 1.74034548122 + ! parame(i,2) = 3.4697441893134 + ! parame(i,3) = 181.90770083591 + IF (pol >= 1) mm(i) = 30.0700000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 5.341907666260094E-002 + IF (pol >= 1) parame(i,2) = 3.52104466654628 + IF (pol >= 1) parame(i,3) = 191.449300423694 + IF (pol >= 1) parame(i,7) = 0.650000000000000 + IF (pol >= 1) lli(i) = 0.0 + IF (pol >= 1) phi_criti(i)= 0.0 + IF (pol >= 1) chap(i) = 0.0 + ELSE IF (compna(i) == 'propane') THEN + mm(i) = 44.096 + parame(i,1) = mm(i)* .0453970622 + parame(i,2) = 3.61835302 + parame(i,3) = 208.110116 + lli(i) = 1.8*parame(i,2) + phi_criti(i)= 21.0 + chap(i) = 1.0 + lli(i) = 1.63*parame(i,2) + phi_criti(i)= 20.37 + chap(i) = 0.397 + IF (pol == 2) parame(i,11)= 6.29 + ELSE IF (compna(i) == 'butane_debug') THEN + mm(i) = 58.123 + parame(i,1) = 2.3374 + parame(i,2) = 3.6655 + parame(i,3) = 214.805 + ELSE IF (compna(i) == 'butane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0401146927 + parame(i,2) = 3.70860139 + parame(i,3) = 222.877405 + lli(i) = 1.75*parame(i,2) + phi_criti(i)= 23.43 + chap(i) = 0.304 + ! LLi(i) = 1.942079633622*parame(i,2) + ! phi_criti(i)= 24.527323443155 + ! chap(i) = 0.734064026277 + ! LLi(i) = 1.515115760477*parame(i,2) + ! phi_criti(i)= 17.682929717796 + ! chap(i) = 0.335848717079 + IF (pol == 2) parame(i,11)= 8.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 58.1230000000 + ! parame(i,1) = 2.45352304112 + ! parame(i,2) = 3.74239117802 + ! parame(i,3) = 214.185157925 + ELSE IF (compna(i) == 'pentane') THEN + mm(i) = 72.146 + parame(i,1) = mm(i)* .03727896 + parame(i,2) = 3.77293174 + parame(i,3) = 231.197015 + IF (pol == 2) parame(i,11)= 9.99 + ELSE IF (compna(i) == 'hexane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0354812325 + parame(i,2) = 3.79829291 + parame(i,3) = 236.769054 + lli(i) = 2.24*parame(i,2) + phi_criti(i)= 33.25 + chap(i) = 0.205 + IF (pol == 2) parame(i,11)= 11.9 + ELSE IF (compna(i) == 'heptane') THEN + mm(i) = 100.203 + parame(i,1) = mm(i)* .034762384 + parame(i,2) = 3.80487025 + parame(i,3) = 238.400913 + lli(i) = 2.35*parame(i,2) + phi_criti(i)= 38.10 + chap(i) = 0.173 + IF (pol == 2) parame(i,11)= 13.61 + ELSE IF (compna(i) == 'octane') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* .0334228038 + parame(i,2) = 3.83732677 + parame(i,3) = 242.775853 + ! LLi(i) = 2.0*parame(i,2) + ! phi_criti(i)= 18.75 + ! chap(i) = 1.0 + lli(i) = 2.63*parame(i,2) + phi_criti(i)= 42.06 + chap(i) = 0.155 + IF (pol == 2) parame(i,11)= 15.9 + ELSE IF (compna(i) == 'nonane') THEN + mm(i) = 128.25 + parame(i,1) = mm(i)* .0328062594 + parame(i,2) = 3.84483643 + parame(i,3) = 244.508457 + ELSE IF (compna(i) == 'decane') THEN + mm(i) = 142.285 + parame(i,1) = mm(i)* .03277373 + parame(i,2) = 3.8384498 + parame(i,3) = 243.866074 + lli(i) = 1.845*parame(i,2) + phi_criti(i)= 21.27 + chap(i) = 1.0 + lli(i) = 2.68*parame(i,2) + phi_criti(i)= 45.0 + chap(i) = 0.15 + IF (pol == 2) parame(i,11)= 19.1 + ! --- adjusted to Tc, Pc und omega --- + ! parame(i,1) = 4.794137228322 + ! parame(i,2) = 4.030446690586 + ! parame(i,3) = 236.5884493386 + ELSE IF (compna(i) == 'dodecane') THEN + mm(i) = 170.338 + parame(i,1) = mm(i)* .0311484156 + parame(i,2) = 3.89589236 + parame(i,3) = 249.214532 +ELSE IF (compna(i) == 'tetradecane') THEN + mm(i) = 198.39 + parame(i,1) = 5.9002!mm(i)* .0311484156 + parame(i,2) = 3.9396 + parame(i,3) = 254.21 + ELSE IF (compna(i) == 'hexadecane') THEN + mm(i) = 226.446 + parame(i,1) = mm(i)* .0293593045 + parame(i,2) = 3.95516743 + parame(i,3) = 254.700131 + ELSE IF (compna(i) == 'octadecane') THEN + mm(i) = 254.5 + parame(i,1) = 7.3271 + parame(i,2) = 3.9668 + parame(i,3) = 256.20 + IF (pol == 2) parame(i,11)= 30.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 226.446000000000 + ! parame(i,1) = 6.66976520488694 + ! parame(i,2) = 4.25025597912511 + ! parame(i,3) = 249.582941976119 + ELSE IF (compna(i) == 'eicosane') THEN + mm(i) = 282.553 + parame(i,1) = mm(i)* .0282572812 + parame(i,2) = 3.98692612 + parame(i,3) = 257.747939 + ELSE IF (compna(i) == 'triacontane') THEN + ! mm(i) = 422.822 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 422.822 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'octaeicosane') THEN + mm(i) = 395.0 ! param. by extrapolation of n-alkanes (sloppy!!) + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'tetracontane') THEN + ! mm(i) = 563.1 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 563.1 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)*0.026287593 + parame(i,2) = 4.023277 + parame(i,3) = 264.10466 + ELSE IF (compna(i) == 'isobutane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0389105395 + parame(i,2) = 3.75735249 + parame(i,3) = 216.528584 + ELSE IF (compna(i) == 'isopentane') THEN + mm(i) = 72.15 + parame(i,1) = 2.5620 + parame(i,2) = 3.8296 + parame(i,3) = 230.75 + ELSE IF (compna(i) == '2-methylpentane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0340166994 + parame(i,2) = 3.85354665 + parame(i,3) = 235.5801 + ELSE IF (compna(i) == '23-dimethylbutane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0311599207 + parame(i,2) = 3.9544545 + parame(i,3) = 246.068188 + ELSE IF (compna(i) == 'ethylene') THEN + mm(i) = 28.05 + parame(i,1) = mm(i)* .0567939013 + parame(i,2) = 3.44499904 + parame(i,3) = 176.468725 + IF (pol == 2) parame(i,11)= 4.252 +! eigener 3-ter Anlauf. + IF (pol >= 1) parame(i,1) = mm(i)* 5.574644443117726E-002 + IF (pol >= 1) parame(i,2) = 3.43281482228714 + IF (pol >= 1) parame(i,3) = 178.627308564610 + IF (pol >= 1) parame(i,7) = 1.56885870200446 + IF (pol == 2) parame(i,11)= 4.252 + ELSE IF (compna(i) == 'propylene') THEN + mm(i) = 42.081 + parame(i,1) = mm(i)* .0465710324 + parame(i,2) = 3.53559831 + parame(i,3) = 207.189309 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 42.081 + ! parame(i,1) = 2.086735327675 + ! parame(i,2) = 3.536779407969 + ! parame(i,3) = 198.3529810625 + ELSE IF (compna(i) == '1-butene') THEN + mm(i) = 56.107 + parame(i,1) = mm(i)* .0407524782 + parame(i,2) = 3.64305136 + parame(i,3) = 222.002756 + IF (pol == 2) parame(i,11)= 7.97 + ELSE IF (compna(i) == '1-pentene') THEN + mm(i) = 70.134 + parame(i,1) = 2.6006 + parame(i,2) = 3.7399 + parame(i,3) = 231.99 + ELSE IF (compna(i) == '1-hexene') THEN + mm(i) = 84.616 + parame(i,1) = mm(i)* .0352836857 + parame(i,2) = 3.77529612 + parame(i,3) = 236.810973 + ELSE IF (compna(i) == '1-octene') THEN + mm(i) = 112.215 + parame(i,1) = mm(i)* .033345175 + parame(i,2) = 3.81329011 + parame(i,3) = 243.017587 + ELSE IF (compna(i) == 'cyclopentane') THEN + mm(i) = 70.13 + parame(i,1) = mm(i)* .0337262571 + parame(i,2) = 3.71139254 + parame(i,3) = 265.828755 + ELSE IF (compna(i) == 'cyclohexane') THEN + mm(i) = 84.147 + parame(i,1) = mm(i)* .0300695505 + parame(i,2) = 3.84990887 + parame(i,3) = 278.108786 + IF (pol == 2) parame(i,11)= 10.87 + ELSE IF (compna(i) == 'toluene') THEN + mm(i) = 92.141 + parame(i,1) = mm(i)* .0305499338 + parame(i,2) = 3.71689689 + parame(i,3) = 285.68996 + IF (pol == 2) parame(i,11)= 11.8 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 92.141 + ! parame(i,1) = 3.002119827762 + ! parame(i,2) = 3.803702734224 + ! parame(i,3) = 271.9428642880 + ELSE IF (compna(i) == 'm-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .030011086 + parame(i,2) = 3.75625585 + parame(i,3) = 283.977525 + ELSE IF (compna(i) == 'o-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0295409161 + parame(i,2) = 3.76000631 + parame(i,3) = 291.049123 + ELSE IF (compna(i) == 'thf') THEN + mm(i) = 72.1057000000000 + ! parame(i,1) = mm(i)* 0.34311391E-01 + parame(i,1) = 2.47404685540709 + parame(i,2) = 3.51369375633677 + parame(i,3) = 274.181927093696 + parame(i,6) = 1.63100000000000 + ELSE IF (compna(i) == 'co2') THEN + mm(i) = 44.01 + parame(i,1) = mm(i)* .0470968503 + parame(i,2) = 2.7851954 + parame(i,3) = 169.207418 + IF (pol >= 1) parame(i,1) = mm(i)* 3.438191426159075E-002 + IF (pol >= 1) parame(i,2) = 3.18693935424469 + IF (pol >= 1) parame(i,3) = 163.333232725156 + IF (pol >= 1) parame(i,7) = 4.400000000000 + IF (pol >= 1) lli(i) = 1.472215*parame(i,2) + IF (pol >= 1) phi_criti(i)= 17.706567 + IF (pol >= 1) chap(i) = 0.5 + IF (pol == 2) parame(i,11)= 2.911 + ELSE IF (compna(i) == 'co') THEN + IF (pol /= 1) write (*,*) 'parameters for co missing' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 28.01 + IF (pol >= 1) parame(i,1) = mm(i)* 5.126059746332587E-002 ! 1.43580933494776 + IF (pol >= 1) parame(i,2) = 3.13556624711756 + IF (pol >= 1) parame(i,3) = 87.7191028693595 + IF (pol >= 1) parame(i,6) = 0.1098 + ELSE IF (compna(i) == 'n2') THEN + mm(i) = 28.01 + parame(i,1) = mm(i)* .0430301713 + parame(i,2) = 3.3129702 + parame(i,3) = 90.9606924 + IF (pol >= 1) parame(i,1) = mm(i)* 3.971157114787596E-002 + IF (pol >= 1) parame(i,2) = 3.42116853868336 + IF (pol >= 1) parame(i,3) = 92.3972606842862 + IF (pol >= 1) parame(i,7) = 1.52000000000000 + IF (pol >= 1) lli(i) = 1.5188*parame(i,2) + IF (pol >= 1) phi_criti(i)= 19.9247 + IF (pol >= 1) chap(i) = 0.375 + ! better RGT-results came later, with: 1.5822 21.201 0.3972 + ELSE IF (compna(i) == 'o2') THEN + mm(i) = 32.05 + parame(i,1) = mm(i)* .0353671563 + parame(i,2) = 3.19465166 + parame(i,3) = 114.430197 + ELSE IF (compna(i) == 'hydrogen') THEN + mm(i) = 2.016 + parame(i,1) = mm(i)* .258951975 + parame(i,2) = 4.43304935 + parame(i,3) = 29.6509579 + + mm(i) = 2.016 + parame(i,1) = 1.0 + parame(i,2) = 2.915 + parame(i,3) = 38.0 + + ! mm(i) = 2.016 ! Ghosh et al. 2003 + ! parame(i,1) = 1.0 + ! parame(i,2) = 2.986 + ! parame(i,3) = 19.2775 + ELSE IF (compna(i) == 'argon') THEN + ! mm(i) = 39.948 ! adjusted m !! + ! parame(i,1) = 0.9285 + ! parame(i,2) = 3.4784 + ! parame(i,3) = 122.23 + mm(i) = 39.948 ! enforced m=1 !! + parame(i,1) = 1.0 + parame(i,2) = 3.3658 + parame(i,3) = 118.34 + IF (pol == 2) parame(i,11)= 1.6411 + ELSE IF (compna(i) == 'xenon') THEN + mm(i) = 131.29 + parame(i,1) = 1.0 + parame(i,2) = 3.93143 + parame(i,3) = 227.749 + ELSE IF (compna(i) == 'chlorine') THEN ! Cl2 + mm(i) = 70.906 + parame(i,1) = 1.5514 + parame(i,2) = 3.3672 + parame(i,3) = 265.67 + ELSE IF (compna(i) == 'SF6') THEN + mm(i) = 146.056 ! adjusted m !! + parame(i,1) = 2.48191 + parame(i,2) = 3.32727 + parame(i,3) = 161.639 + ! mm(i) = 146.056 ! enforced m=1 !! + ! parame(i,1) = 1.0 + ! parame(i,2) = 4.55222 + ! parame(i,3) = 263.1356 + ELSE IF (compna(i) == 'benzene') THEN + mm(i) = 78.114 + parame(i,1) = mm(i)* .0315590546 + parame(i,2) = 3.64778975 + parame(i,3) = 287.354574 + IF (pol >= 1) mm(i) = 78.114 ! PCP-SAFT with m=2 in QQ term + IF (pol >= 1) parame(i,1) = mm(i)* 2.932783311E-2 ! = 2.29091435590515 + IF (pol >= 1) parame(i,2) = 3.7563854 + IF (pol >= 1) parame(i,3) = 294.06253 + IF (pol >= 1) parame(i,7) = 5.5907 + ELSE IF (compna(i) == 'ethylbenzene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0290120497 + parame(i,2) = 3.79741116 + parame(i,3) = 287.348098 + IF (pol == 2) parame(i,11)= 13.3 + ELSE IF (compna(i) == 'propylbenzene') THEN + mm(i) = 120.194 + parame(i,1) = mm(i)* .0278171627 + parame(i,2) = 3.8437772 + parame(i,3) = 288.128269 + ELSE IF (compna(i) == 'n-butylbenzene') THEN + mm(i) = 134.221 + parame(i,1) = mm(i)* .0280642225 + parame(i,2) = 3.87267961 + parame(i,3) = 283.072331 + ELSE IF (compna(i) == 'tetralin') THEN + mm(i) = 132.205 + parame(i,1) = mm(i)* .0250640795 + parame(i,2) = 3.87498866 + parame(i,3) = 325.065688 + ELSE IF (compna(i) == 'methylcyclohexane') THEN + mm(i) = 98.182 + parame(i,1) = mm(i)* .0271259953 + parame(i,2) = 3.99931892 + parame(i,3) = 282.334148 + IF (pol == 2) parame(i,11)= 13.1 + ELSE IF (compna(i) == 'methylcyclopentane') THEN + mm(i) = 84.156 + parame(i,1) = mm(i)* .0310459009 + parame(i,2) = 3.82534693 + parame(i,3) = 265.122799 + ELSE IF (compna(i) == 'acetone') THEN + mm(i) = 58.0800000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.870380408159182E-002 ! =2.82871694105885 + parame(i,2) = 3.24969003020675 + parame(i,3) = 250.262241927379 + lli(i) = 2.0021*parame(i,2) + phi_criti(i)= 21.336 + chap(i) = 0.24931 + IF (pol >= 1) mm(i) = 58.0800000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.725811736856114E-002 ! =2.74475145676603 + IF (pol >= 1) parame(i,2) = 3.27423145271184 + IF (pol >= 1) parame(i,3) = 232.990879135326 + IF (pol >= 1) parame(i,6) = 2.88000000000000 + IF (pol >= 1) lli(i) = 2.0641*parame(i,2) + IF (pol >= 1) phi_criti(i)= 28.1783 + IF (pol >= 1) chap(i) = 0.22695 + IF (pol >= 2) mm(i) = 58.0800000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.902301475689938E-002 ! =2.84725669708072 + IF (pol >= 2) parame(i,2) = 3.23880349104868 + IF (pol >= 2) parame(i,3) = 220.884202656054 + IF (pol >= 2) parame(i,6) = 2.88000000000000 + IF (pol == 2) parame(i,11)= 6.40000000000000 + ELSE IF (compna(i) == 'butanone') THEN + mm(i) = 72.1066 ! PC-SAFT + parame(i,1) = mm(i)* 4.264192830122321E-002 ! =3.07476446724498 + parame(i,2) = 3.39324011060028 + parame(i,3) = 252.267273608975 + IF (pol >= 1) mm(i) = 72.1066 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.137668924230600E-002 ! =2.98353238051926 + IF (pol >= 1) parame(i,2) = 3.42393701353423 + IF (pol >= 1) parame(i,3) = 244.994381354681 + IF (pol >= 1) parame(i,6) = 2.78000000000000 + IF (pol >= 2) mm(i) = 72.1066 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.254697075199448E-002 ! =3.06791740122577 + IF (pol >= 2) parame(i,2) = 3.39138375903252 + IF (pol >= 2) parame(i,3) = 236.527763837528 + IF (pol >= 2) parame(i,6) = 2.78000000000000 + IF (pol == 2) parame(i,11)= 8.13000000000000 + ELSE IF (compna(i) == '2-pentanone') THEN + ! mm(i) = 86.134 ! PC-SAFT + ! parame(i,1) = mm(i)* 3.982654501296355E-002 ! =3.43041962814660 + ! parame(i,2) = 3.46877976946838 + ! parame(i,3) = 249.834724442656 + ! mm(i) = 86.134 ! PCP-SAFT + ! parame(i,1) = mm(i)* 3.893594769994072E-002 ! =3.35370891918669 + ! parame(i,2) = 3.49417356096593 + ! parame(i,3) = 246.656329096835 + ! parame(i,6) = 2.70000000000000 + mm(i) = 86.134 ! PCIP-SAFT + parame(i,1) = mm(i)* 3.973160761515879E-002 ! =3.42224229032409 + parame(i,2) = 3.46827593107280 + parame(i,3) = 240.904278156822 + parame(i,6) = 2.70000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == '3-pentanone') THEN + mm(i) = 86.134 ! PC-SAFT + parame(i,1) = 3.36439508013322 + parame(i,2) = 3.48770251979329 + parame(i,3) = 252.695415552376 + IF (pol >= 1) mm(i) = 86.134 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.27863398611842 + IF (pol >= 1) parame(i,2) = 3.51592571835030 + IF (pol >= 1) parame(i,3) = 248.690775540981 + IF (pol >= 1) parame(i,6) = 2.82000000000000 + IF (pol == 2) mm(i) = 86.134 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 3.34821857026283 + IF (pol == 2) parame(i,2) = 3.48903345340516 + IF (pol == 2) parame(i,3) = 242.314578558329 + IF (pol == 2) parame(i,6) = 2.82000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == 'cyclohexanone') THEN ! from DIPPR + ! IF (pol.GE.1) mm(i) = 98.1430 ! PCP-SAFT + ! IF (pol.GE.1) parame(i,1) = 3.084202 + ! IF (pol.GE.1) parame(i,2) = 3.613681 + ! IF (pol.GE.1) parame(i,3) = 286.15865 + ! IF (pol.GE.1) parame(i,6) = 3.087862 + IF (pol >= 1) mm(i) = 98.1500000000000 + IF (pol >= 1) parame(i,1) = 2.72291913132818 + IF (pol >= 1) parame(i,2) = 3.79018433908522 + IF (pol >= 1) parame(i,3) = 314.772193827344 + IF (pol >= 1) parame(i,6) = 3.24600000000000 + IF (pol /= 1) WRITE (*,*) 'no non-polar param. for cyclohexanone' + IF (pol /= 1) STOP + ELSE IF (compna(i) == 'propanal') THEN + mm(i) = 58.08 ! PC-SAFT + parame(i,1) = 2.67564746980910 + parame(i,2) = 3.26295953984941 + parame(i,3) = 251.888982765626 + IF (pol >= 1) mm(i) = 58.08 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.60007872084995 + IF (pol >= 1) parame(i,2) = 3.28720732189761 + IF (pol >= 1) parame(i,3) = 235.205188090107 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + IF (pol >= 2) mm(i) = 58.08 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.72471167411028 + IF (pol >= 2) parame(i,2) = 3.24781643022922 + IF (pol >= 2) parame(i,3) = 221.642071811094 + IF (pol >= 2) parame(i,6) = 2.72000000000000 + IF (pol >= 2) parame(i,11)= 6.50000000000000 + ELSE IF (compna(i) == 'butanal') THEN + mm(i) = 72.1066000000000 ! PC-SAFT + parame(i,1) = 2.96824823599784 + parame(i,2) = 3.44068916025889 + parame(i,3) = 253.929404992884 + IF (pol >= 1) mm(i) = 72.1066000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.86783706423953 + IF (pol >= 1) parame(i,2) = 3.47737904036296 + IF (pol >= 1) parame(i,3) = 247.543312127310 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + ELSE IF (compna(i) == 'dmso') THEN + mm(i) = 78.1300000000000 ! PC-SAFT + parame(i,1) = 2.92225114054231 + parame(i,2) = 3.27780791606297 + parame(i,3) = 355.688793038512 + IF (pol >= 1) mm(i) = 78.1300000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.02433694138348 + IF (pol >= 1) parame(i,2) = 3.24270742566613 + IF (pol >= 1) parame(i,3) = 309.357476696679 + IF (pol >= 1) parame(i,6) = 3.96000000000000 + IF (pol >= 2) mm(i) = 78.1300000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 3.19078234633277 + IF (pol >= 2) parame(i,2) = 3.19778269816832 + IF (pol >= 2) parame(i,3) = 286.337981216861 + IF (pol >= 2) parame(i,6) = 3.96000000000000 + IF (pol >= 2) parame(i,11)= 7.97000000000000 + ELSE IF (compna(i) == 'acetone_JC') THEN ! Jog-Chapman + ! mm(i) = 58.0800000000000 ! Dominik et al.2005 + ! parame(i,1) = 2.221 + ! parame(i,2) = 3.607908 + ! parame(i,3) = 259.99 + ! parame(i,6) = 2.7 + ! parame(i,8) = 0.2258 + ! mm(i) = 58.0800000000000 + ! parame(i,1) = mm(i)* 3.556617369195472E-002 + ! parame(i,2) = 3.58780367502515 + ! parame(i,3) = 273.025100470307 + ! parame(i,6) = 2.70000000000000 + ! parame(i,8) = 0.229800000000000 + + mm(i) = 58.08 ! Tumakaka Sadowski 2004 + parame(i,1) = mm(i)* 3.766E-2 + parame(i,2) = 3.6028 + parame(i,3) = 245.49 + parame(i,6) = 2.72 + parame(i,8) = 0.2969 + ! mm(i) = 58.0800000000000 ! no adjust. DD-param. + ! parame(i,1) = 1.87041620247774 + ! parame(i,2) = 3.79783535570774 + ! parame(i,3) = 208.885730881588 + ! parame(i,6) = 2.88000000000000 + ! parame(i,8) = 1.0/parame(i,1) + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = -0.005 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'acetone_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = mm(i)* 4.603296414764944E-002 + parame(i,2) = 3.29454924451643 + parame(i,3) = 221.052649057645 + parame(i,6) = 2.70000000000000 + parame(i,8) = 0.625410000000000 + mm(i) = 58.08 ! form as expected from me - no DD-param adjusted.dat + parame(i,1) = mm(i)* 4.364264724158790E-002 ! =2.53476495179143 + parame(i,2) = 3.37098670735567 + parame(i,3) = 254.366379701851 + parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 - no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.694644361257521E-002 ! =2.72664944501837 + ! parame(i,2) = 3.27842292595463 + ! parame(i,3) = 238.398883501772 + ! parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 and fdd*sumseg- no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.458214655521766E-002 ! =2.58933107192704 + ! parame(i,2) = 3.32050824493493 + ! parame(i,3) = 218.285994651271 + ! parame(i,6) = 2.88000000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = 0.035 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'ethylacetate_JC') THEN ! Jog-Chapman + ! mm(i) = 88.11 + ! parame(i,1) = 2.7481 + ! parame(i,2) = 3.6511 + ! parame(i,3) = 236.99 + ! parame(i,6) = 1.84 + ! parame(i,8) = 0.5458 + mm(i) = 88.1060000000000 + parame(i,1) = mm(i)* 0.03117 ! 2.74626402 + parame(i,2) = 3.6493 + parame(i,3) = 236.75 + parame(i,6) = 1.8 + parame(i,8) = 0.5462 + ELSE IF (compna(i) == 'ethylacetate_SF') THEN ! Saager-Fischer + mm(i) = 88.106 + parame(i,1) = mm(i)* 3.564165384763394E-002 + parame(i,2) = 3.447379322 + parame(i,3) = 226.0930487 + parame(i,6) = 1.8 + parame(i,8) = 0.849967000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_JC') THEN ! Jog-Chapman + mm(i) = 58.08 + parame(i,1) = 2.0105 + parame(i,2) = 3.6095 + parame(i,3) = 258.82 + parame(i,6) = 2.0 + parame(i,8) = 0.3979 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = 2.1341 + parame(i,2) = 3.4739 + parame(i,3) = 252.95 + parame(i,6) = 2.0 + parame(i,8) = 0.916 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == 'acrylonitrile') THEN + IF (pol >= 2) mm(i) = 53.06 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.168 + IF (pol >= 2) parame(i,2) = 3.575 + IF (pol >= 2) parame(i,3) = 214.83 + IF (pol >= 2) parame(i,6) = 3.91 + IF (pol == 2) parame(i,11)= 8.04 + IF (pol >= 2) mm(i) = 53.0000000000000 ! second parameter set ?? + IF (pol >= 2) parame(i,1) = 2.45403467006041 + IF (pol >= 2) parame(i,2) = 3.41276825781723 + IF (pol >= 2) parame(i,3) = 195.194353082408 + IF (pol >= 2) parame(i,6) = 3.91000000000000 + IF (pol == 2) parame(i,11)= 8.04000000000000 + ELSE IF (compna(i) == 'butyronitrile') THEN + ! mm(i) = 69.11 + ! parame(i,1) = 2.860 + ! parame(i,2) = 3.478 + ! parame(i,3) = 253.21 + ! parame(i,6) = 4.07 + mm(i) = 69.11 + parame(i,1) = 2.989 + parame(i,2) = 3.441 + parame(i,3) = 234.04 + parame(i,6) = 4.07 + IF (pol == 2) parame(i,11)= 8.4 + ELSE IF (compna(i) == 'propionitrile') THEN + mm(i) = 55.079 ! PC-SAFT + parame(i,1) = 2.66211021227108 + parame(i,2) = 3.34032231132738 + parame(i,3) = 294.078737359580 + IF (pol >= 1) mm(i) = 55.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.50958981615666 + IF (pol >= 1) parame(i,2) = 3.39806320429568 + IF (pol >= 1) parame(i,3) = 239.152759066148 + IF (pol >= 1) parame(i,6) = 4.05000000000000 + IF (pol >= 2) mm(i) = 55.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.54684827683436 + IF (pol >= 2) parame(i,2) = 3.41240089912190 + IF (pol >= 2) parame(i,3) = 218.299491580335 + IF (pol >= 2) parame(i,6) = 4.05000000000000 + IF (pol == 2) parame(i,11)= 6.24000000000000 + ! IF (pol.GE.2) mm(i) = 55.079 ! PCIP-SAFT my_DD adjusted + ! IF (pol.GE.2) parame(i,1) = 2.61175151088002 + ! IF (pol.GE.2) parame(i,2) = 3.37194293181453 + ! IF (pol.GE.2) parame(i,3) = 233.346110749402 + ! IF (pol.GE.2) parame(i,6) = 3.74682245835235 + ! IF (pol.EQ.2) parame(i,11)= 6.24000000000000 + ELSE IF (compna(i) == 'nitromethane') THEN + mm(i) = 61.04 ! PC-SAFT + parame(i,1) = mm(i)* 4.233767489308791E-002 ! =2.58429167547409 + parame(i,2) = 3.10839592337018 + parame(i,3) = 310.694151426943 + IF (pol >= 1) mm(i) = 61.04 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.191475020685036E-002 ! =2.55847635262615 + IF (pol >= 1) parame(i,2) = 3.10129282495975 + IF (pol >= 1) parame(i,3) = 256.456941430554 + IF (pol >= 1) parame(i,6) = 3.46000000000000 + IF (pol >= 2) mm(i) = 61.04 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.394323357988009E-002 ! =2.68229497771588 + IF (pol >= 2) parame(i,2) = 3.10654492320028 + IF (pol >= 2) parame(i,3) = 225.973607468282 + IF (pol >= 2) parame(i,6) = 3.46000000000000 + IF (pol >= 2) parame(i,11)= 7.37000000000000 + ELSE IF (compna(i) == 'nitroethane') THEN + mm(i) = 75.067 ! PC-SAFT + parame(i,1) = mm(i)* 4.019977215251163E-002 ! =3.01767629617259 + parame(i,2) = 3.21364231060938 + parame(i,3) = 286.571650044235 + IF (pol >= 1) mm(i) = 75.067 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.928506808347654E-002 ! =2.94901220582233 + IF (pol >= 1) parame(i,2) = 3.23117331990738 + IF (pol >= 1) parame(i,3) = 265.961000131109 + IF (pol >= 1) parame(i,6) = 3.23000000000000 + IF (pol >= 2) mm(i) = 75.067 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.117677400894779E-002 ! =3.09101689452968 + IF (pol >= 2) parame(i,2) = 3.19364569858756 + IF (pol >= 2) parame(i,3) = 246.676040248662 + IF (pol >= 2) parame(i,6) = 3.23000000000000 + IF (pol >= 2) parame(i,11)= 9.63000000000000 + ELSE IF (compna(i) == 'acetonitrile') THEN + mm(i) = 41.052 ! PC-SAFT + parame(i,1) = mm(i)* 5.673187410405271E-002 ! =2.32895689571957 + parame(i,2) = 3.18980108373791 + parame(i,3) = 311.307486044181 + IF (pol >= 1) mm(i) = 41.052 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 5.254832931037250E-002 ! =2.15721401484941 + IF (pol >= 1) parame(i,2) = 3.27301469369132 + IF (pol >= 1) parame(i,3) = 216.888948676921 + IF (pol >= 1) parame(i,6) = 3.92520000000000 + IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 5.125846581157176E-002 ! =2.10426253849664 + IF (pol >= 2) parame(i,2) = 3.39403305120647 + IF (pol >= 2) parame(i,3) = 199.070191065791 + IF (pol >= 2) parame(i,6) = 3.92520000000000 + IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT my_DD adjusted + ! IF (pol >= 2) parame(i,1) = mm(i)* 5.755347845863738E-002 ! =2.36268539768398 + ! IF (pol >= 2) parame(i,2) = 3.18554306395900 + ! IF (pol >= 2) parame(i,3) = 225.143934506015 + ! IF (pol >= 2) parame(i,6) = 3.43151866932598 + ! IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! mm(i) = 41.053 ! PCP-SAFT dipole and quadrupole + ! parame(i,1) = 1.79993 + ! parame(i,2) = 3.47366 + ! parame(i,3) = 211.001 + ! parame(i,6) = 3.93800 + ! parame(i,7) = 2.44000 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'dmf') THEN + mm(i) = 73.09 ! PC-SAFT + parame(i,1) = 2.388 + parame(i,2) = 3.658 + parame(i,3) = 363.77 + IF (pol >= 1) mm(i) = 73.09 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.269 + IF (pol >= 1) parame(i,2) = 3.714 + IF (pol >= 1) parame(i,3) = 331.56 + IF (pol >= 1) parame(i,6) = 3.82 + IF (pol >= 2) mm(i) = 73.09 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.375 + IF (pol >= 2) parame(i,2) = 3.667 + IF (pol >= 2) parame(i,3) = 308.42 + IF (pol >= 2) parame(i,6) = 3.82 + IF (pol >= 2) parame(i,11)= 7.81 + ELSE IF (compna(i) == 'chloroform') THEN + mm(i) = 119.377 ! PCIP-SAFT + parame(i,1) = 2.5957 + parame(i,2) = 3.4299 + parame(i,3) = 264.664 + parame(i,6) = 1.04 + IF (pol == 2) parame(i,11)= 8.23 + ELSE IF (compna(i) == 'dimethyl-ether') THEN + mm(i) = 46.069 ! PC-SAFT + parame(i,1) = mm(i)* 0.049107715 ! =2.26234331 + parame(i,2) = 3.276640534 + parame(i,3) = 212.9343244 + IF (pol >= 1) mm(i) = 46.0690000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.048170452 ! =2.219164566 + IF (pol >= 1) parame(i,2) = 3.296939638 + IF (pol >= 1) parame(i,3) = 212.1048888 + IF (pol >= 1) parame(i,6) = 1.30000000000000 + IF (pol >= 2) mm(i) = 46.0690000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.939183716945787E-002 ! =2.27543254655976 + IF (pol >= 2) parame(i,2) = 3.26584718800835 + IF (pol >= 2) parame(i,3) = 206.904551967059 + IF (pol >= 2) parame(i,6) = 1.30000000000000 + IF (pol == 2) parame(i,11)= 5.29000000000000 + ELSE IF (compna(i) == 'methyl-ethyl-ether') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0442404671 + parame(i,2) = 3.37282595 + parame(i,3) = 216.010217 + IF (pol >= 1) mm(i) = 60.096 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.3971676124088D-002 ! =2.64252184835325 + IF (pol >= 1) parame(i,2) = 3.37938465390 + IF (pol >= 1) parame(i,3) = 215.787173860 + IF (pol >= 1) parame(i,6) = 1.17000000000 + IF (pol >= 2) mm(i) = 60.096 ! PICP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.4580196137984D-002 ! =2.67909146710834 + IF (pol >= 2) parame(i,2) = 3.36105342286 + IF (pol >= 2) parame(i,3) = 212.871911999 + IF (pol >= 2) parame(i,6) = 1.17000000000 + IF (pol >= 2) parame(i,11) = 7.93000000000 + ELSE IF (compna(i) == 'diethyl-ether') THEN + mm(i) = 74.123 ! PC-SAFT + parame(i,1) = mm(i)* .0409704089 + parame(i,2) = 3.48569553 + parame(i,3) = 217.64113 + IF (pol >= 1) mm(i) = 74.123 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.0103121403686E-2 ! =2.97256367 + IF (pol >= 1) parame(i,2) = 3.51268687697978 + IF (pol >= 1) parame(i,3) = 219.527376572135 + IF (pol >= 1) parame(i,6) = 1.15000000000000 + IF (pol >= 2) mm(i) = 74.123 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.04144179873E-2 ! =2.9956379 + IF (pol >= 2) parame(i,2) = 3.501724569 + IF (pol >= 2) parame(i,3) = 217.8941822 + IF (pol >= 2) parame(i,6) = 1.15 + IF (pol == 2) parame(i,11)= 8.73 + ELSE IF (compna(i) == 'vinylacetate') THEN + mm(i) = 86.092 + parame(i,1) = mm(i)* .0374329292 + parame(i,2) = 3.35278602 + parame(i,3) = 240.492049 + ELSE IF (compna(i) == 'chloromethane') THEN ! R40 + mm(i) = 50.488 ! PC-SAFT + parame(i,1) = mm(i)* 0.039418879 ! 1.9902 + parame(i,2) = 3.1974 + parame(i,3) = 237.27 + IF (pol >= 1) mm(i) = 50.488 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.035790801 ! 1.8070 + IF (pol >= 1) parame(i,2) = 3.3034 + IF (pol >= 1) parame(i,3) = 229.97 + IF (pol >= 1) parame(i,6) = 1.8963 + IF (pol >= 1) lli(i) = 1.67703*parame(i,2) + IF (pol >= 1) phi_criti(i)= 20.75417 + IF (pol >= 1) chap(i) = 0.5 + IF (pol >= 2) mm(i) = 50.488 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.68559992E-2 ! 1.86078 + IF (pol >= 2) parame(i,2) = 3.275186 + IF (pol >= 2) parame(i,3) = 216.4621 + IF (pol >= 2) parame(i,6) = 1.8963 + IF (pol == 2) parame(i,11)= 4.72 + ELSE IF (compna(i) == 'fluoromethane') THEN ! R41 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for fluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 34.0329000000000 + IF (pol >= 1) parame(i,1) = 1.94494757526896 + IF (pol >= 1) parame(i,2) = 2.96858005012635 + IF (pol >= 1) parame(i,3) = 168.938697391009 + IF (pol >= 1) parame(i,6) = 1.57823038894029 + ELSE IF (compna(i) == 'dichloromethane') THEN ! R30 + mm(i) = 84.932 ! PC-SAFT + parame(i,1) = 2.3117 + parame(i,2) = 3.3161 + parame(i,3) = 270.98 + IF (pol >= 1) mm(i) = 84.932 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.2687 + IF (pol >= 1) parame(i,2) = 3.3373 + IF (pol >= 1) parame(i,3) = 269.08 + IF (pol >= 1) parame(i,6) = 1.6 + IF (pol >= 2) mm(i) = 84.932 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.3435 + IF (pol >= 2) parame(i,2) = 3.2987 + IF (pol >= 2) parame(i,3) = 260.66 + IF (pol >= 2) parame(i,6) = 1.6 + IF (pol == 2) parame(i,11)= 6.48 + ELSE IF (compna(i) == 'difluoromethane') THEN ! R32 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for difluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 52.0236 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.814700934384165E-002 ! 2.50478075530028 + IF (pol >= 1) parame(i,2) = 2.79365980535456 + IF (pol >= 1) parame(i,3) = 160.893555378523 + IF (pol >= 1) parame(i,6) = 1.97850000000000 + ELSE IF (compna(i) == 'trifluoromethane') THEN ! R23 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 70.0138000000000 + IF (pol >= 1) parame(i,1) = 2.66039274225485 + IF (pol >= 1) parame(i,2) = 2.82905884530501 + IF (pol >= 1) parame(i,3) = 149.527709542333 + IF (pol >= 1) parame(i,6) = 1.339963415253999E-002 + ELSE IF (compna(i) == 'tetrachloromethane') THEN ! R10 + mm(i) = 153.822 + parame(i,1) = mm(i)* .0150432213 + parame(i,2) = 3.81801454 + parame(i,3) = 292.838632 + ELSE IF (compna(i) == 'trichlorofluoromethane') THEN ! R11 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trichlorofluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 137.368000000000 + IF (pol >= 1) parame(i,1) = 2.28793359008803 + IF (pol >= 1) parame(i,2) = 3.69013104930876 + IF (pol >= 1) parame(i,3) = 248.603173885090 + IF (pol >= 1) parame(i,6) = 0.23225538492979 + ELSE IF (compna(i) == 'chlorodifluoromethane') THEN ! R22 ( CHClF2 or CHF2Cl) + IF (pol /= 1) write (*,*) 'non-polar parameters missing for chlorodifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 86.4684000000000 + IF (pol >= 1) parame(i,1) = 2.47218586047893 + IF (pol >= 1) parame(i,2) = 3.13845692489930 + IF (pol >= 1) parame(i,3) = 187.666355083434 + IF (pol >= 1) parame(i,6) = 1.04954264812860 + ELSE IF (compna(i) == 'chloroethane') THEN + mm(i) = 64.514 + parame(i,1) = mm(i)* .0350926868 + parame(i,2) = 3.41602397 + parame(i,3) = 245.42626 + ELSE IF (compna(i) == '11difluoroethane') THEN + ! mm(i) = 66.0500000000000 ! PC-SAFT + ! parame(i,1) = mm(i)* 4.109944338817734E-002 + ! parame(i,2) = 3.10257444633546 + ! parame(i,3) = 192.177159144029 + ! mm(i) = 66.05 ! PC-SAFT assoc + ! parame(i,1)= 2.984947188 + ! parame(i,2)= 2.978630027 + ! parame(i,3)= 137.8192282 + ! nhb_typ(i) = 2 + ! nhb_no(i,1)= 1 + ! nhb_no(i,2)= 1 + ! eps_hb(i,i,1,2)= 823.3478288 + ! eps_hb(i,i,2,1)= 823.3478288 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.96345994 + IF (pol >= 1) mm(i) = 66.0500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.949665745363346E-002 ! =2.60875422481249 + IF (pol >= 1) parame(i,2) = 3.13758353925036 + IF (pol >= 1) parame(i,3) = 179.517952627836 + IF (pol >= 1) parame(i,6) = 2.27000000000000 + IF (pol >= 1) lli(i) = 2.03907*parame(i,2) + IF (pol >= 1) phi_criti(i)= 26.5 + IF (pol >= 1) chap(i) = 0.4 + IF (pol >= 2) mm(i) = 66.0500000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.093647666154238E-002 ! =2.70385428349487 + IF (pol >= 2) parame(i,2) = 3.10437129415885 + IF (pol >= 2) parame(i,3) = 170.464400902455 + IF (pol >= 2) parame(i,6) = 2.27000000000000 + IF (pol == 2) parame(i,11)= 5.01000000000000 + ELSE IF (compna(i) == '1-chlorobutane') THEN + mm(i) = 92.568 + parame(i,1) = mm(i)* .0308793201 + parame(i,2) = 3.64240187 + parame(i,3) = 258.655298 + ELSE IF (compna(i) == 'chlorobenzene') THEN + ! mm(i) = 112.558 + ! parame(i,1) = mm(i)* .0235308686 + ! parame(i,2) = 3.75328494 + ! parame(i,3) = 315.039018 + mm(i) = 112.558 ! PCIP-SAFT + parame(i,1) = mm(i)* 0.023824167 ! =2.6816 + parame(i,2) = 3.7352 + parame(i,3) = 308.82 + parame(i,6) = 1.69 + IF (pol == 2) parame(i,11)= 14.1 + ELSE IF (compna(i) == 'styrene') THEN + mm(i) = 104.150 + parame(i,1) = mm(i)* 2.9124104853E-2 + parame(i,2) = 3.760233548 + parame(i,3) = 298.51287564 + ELSE IF (compna(i) == 'methylmethanoate') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0446000264 + parame(i,2) = 3.08753499 + parame(i,3) = 242.626755 + IF (pol >= 1) mm(i) = 60.053 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.366991153963102E-002 ! =2.62250919768946 + IF (pol >= 1) parame(i,2) = 3.10946396964 + IF (pol >= 1) parame(i,3) = 239.051951942 + IF (pol >= 1) parame(i,6) = 1.77 + IF (pol >= 2) mm(i) = 60.053 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.492572388931002E-2 ! 2.69792449 + IF (pol >= 2) parame(i,2) = 3.078467837 + IF (pol >= 2) parame(i,3) = 232.1842551 + IF (pol >= 2) parame(i,6) = 1.77 + IF (pol == 2) parame(i,11)= 5.05 + ELSE IF (compna(i) == 'ethylmethanoate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* .03898009 + parame(i,2) = 3.31087192 + parame(i,3) = 246.465646 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.825407152074255E-002 ! =2.83382336418509 + IF (pol >= 1) parame(i,2) = 3.33160046679 + IF (pol >= 1) parame(i,3) = 244.495680932 + IF (pol >= 1) parame(i,6) = 1.93000000000 + ELSE IF (compna(i) == 'propylmethanoate') THEN + mm(i) = 88.106 + parame(i,1) = mm(i)* .0364206062 + parame(i,2) = 3.41679642 + parame(i,3) = 246.457732 + IF (pol >= 1) mm(i) = 88.106 + IF (pol >= 1) parame(i,1) = mm(i)* 3.60050739149E-2 ! =3.17226304235232 + IF (pol >= 1) parame(i,2) = 3.42957609309 + IF (pol >= 1) parame(i,3) = 245.637644107 + IF (pol >= 1) parame(i,6) = 1.89 + ELSE IF (compna(i) == 'methylacetate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* 4.286817177E-2 ! =3.175631296 + parame(i,2) = 3.18722021277843 + parame(i,3) = 234.106931032456 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.228922065E-2 ! =3.132743176 + IF (pol >= 1) parame(i,2) = 3.2011401688 + IF (pol >= 1) parame(i,3) = 233.17562886 + IF (pol >= 1) parame(i,6) = 1.72 + IF (pol >= 2) mm(i) = 74.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.298900538E-2 ! =3.18458252 + IF (pol >= 2) parame(i,2) = 3.180642322 + IF (pol >= 2) parame(i,3) = 229.3132680 + IF (pol >= 2) parame(i,6) = 1.72 + IF (pol == 2) parame(i,11)= 6.94 + ELSE IF (compna(i) == 'ethylacetate') THEN + mm(i) = 88.106 ! PC-SAFT + parame(i,1) = mm(i)* .0401464427 ! =3.537142481 + parame(i,2) = 3.30789258 + parame(i,3) = 230.800689 + IF (pol >= 1) mm(i) = 88.106 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.039792575 ! =3.505964572 + IF (pol >= 1) parame(i,2) = 3.317655188 + IF (pol >= 1) parame(i,3) = 230.2434769 + IF (pol >= 1) parame(i,6) = 1.78 + IF (pol >= 2) mm(i) = 88.106 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 0.040270267 ! =3.548052143 + IF (pol >= 2) parame(i,2) = 3.302097562 + IF (pol >= 2) parame(i,3) = 227.5026191 + IF (pol >= 2) parame(i,6) = 1.78 + IF (pol == 2) parame(i,11)= 8.62 + ELSE IF (compna(i) == 'ethyl-propanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0375692464 + parame(i,2) = 3.40306071 + parame(i,3) = 232.778374 + ELSE IF (compna(i) == 'propyl-ethanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0370721275 + parame(i,2) = 3.42272266 + parame(i,3) = 235.758378 + IF (pol >= 1) mm(i) = 102.133 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.687149995200072E-2 ! =3.76579690459769 + IF (pol >= 1) parame(i,2) = 3.4289353421006 + IF (pol >= 1) parame(i,3) = 235.41679442910 + IF (pol >= 1) parame(i,6) = 1.78 + ! IF (pol.EQ.2) parame(i,11)= 10.41 + ELSE IF (compna(i) == 'nbutyl-ethanoate') THEN + mm(i) = 116.16 ! PC-SAFT + parame(i,1) = mm(i)* .03427004 + parame(i,2) = 3.54269638 + parame(i,3) = 242.515768 + IF (pol >= 1) mm(i) = 116.16 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.411585209773470E-002 ! =3.96289737967286 + IF (pol >= 1) parame(i,2) = 3.54821589228130 + IF (pol >= 1) parame(i,3) = 242.274388267447 + IF (pol >= 1) parame(i,6) = 1.87000000000000 + IF (pol >= 2) mm(i) = 116.16 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.442139015733717E-002 ! =3.99838868067629 + IF (pol >= 2) parame(i,2) = 3.53576054452119 + IF (pol >= 2) parame(i,3) = 240.154409609249 + IF (pol >= 2) parame(i,6) = 1.87000000000000 + IF (pol == 2) parame(i,11)= 14.2000000000000 + ELSE IF (compna(i) == 'methyl-octanoate') THEN + mm(i) = 158.24 ! PC-SAFT + parame(i,1) = 5.2074 + parame(i,2) = 3.6069 + parame(i,3) = 244.12 + ELSE IF (compna(i) == 'methyl-decanoate') THEN + mm(i) = 186.2912 ! PC-SAFT + parame(i,1) = 5.8402 + parame(i,2) = 3.6871 + parame(i,3) = 248.27 + + mm(i) = 186.2912 ! PC-SAFT from GC-method Tim + parame(i,1) = 7.716 + parame(i,2) = 3.337303029 + parame(i,3) = 204.250907 + + mm(i) = 186.2912 ! PC-SAFT from GC-method (tightly fit) Tim + parame(i,1) = 7.728 + parame(i,2) = 3.334023322 + parame(i,3) = 206.9099379 + + ! mm(i) = 186.2912 ! PC-SAFT from fit to DIPPR + ! parame(i,1) = 6.285005 + ! parame(i,2) = 3.594888 + ! parame(i,3) = 236.781461 + ! ! parame(i,6) = 2.08056 + + ! mm(i) = 186.291000000000 + ! parame(i,1) = 6.28500485898895 + ! parame(i,2) = 3.59488828061149 + ! parame(i,3) = 236.781461491921 + ! parame(i,6) = 2.08055996894836 + ! parame(i,8) = 1.00000000000000 + mm(i) = 186.291000000000 + parame(i,1) = 6.14436331493372 + parame(i,2) = 3.61977264863944 + parame(i,3) = 242.071887817656 + + ELSE IF (compna(i) == 'methyl-dodecanoate') THEN + mm(i) = 214.344 ! PC-SAFT + parame(i,1) = 6.5153 + parame(i,2) = 3.7406 + parame(i,3) = 250.7 + ELSE IF (compna(i) == 'methyl-tetradecanoate') THEN + mm(i) = 242.398 ! PC-SAFT + parame(i,1) = 7.1197 + parame(i,2) = 3.7968 + parame(i,3) = 253.77 + ELSE IF (compna(i) == 'methyl-hexadecanoate') THEN + mm(i) = 270.451 ! PC-SAFT + parame(i,1) = 7.891 + parame(i,2) = 3.814 + parame(i,3) = 253.71 + ELSE IF (compna(i) == 'methyl-octadecanoate') THEN + mm(i) = 298.504 ! PC-SAFT + parame(i,1) = 8.8759 + parame(i,2) = 3.7932 + parame(i,3) = 250.81 + ELSE IF (compna(i) == 'CH2F2') THEN + mm(i) = 52.02 + parame(i,1) = 3.110084171 + parame(i,2) = 2.8145230485 + parame(i,3) = 158.98060151 + ELSE IF (compna(i) == 'naphthalene') THEN + ! mm(i) = 128.174000000 + ! parame(i,1) = mm(i)* 2.4877834216412E-2 + ! parame(i,2) = 3.82355815011 + ! parame(i,3) = 341.560675334 + + mm(i) = 128.17400000000 + parame(i,1) = mm(i)* 2.6400924157729E-2 + parame(i,2) = 3.8102186020014 + parame(i,3) = 328.96792935903 + ELSE IF (compna(i) == 'h2s') THEN + mm(i) = 34.0820000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.838886696385162E-002 ! = 1.64918936386199 + parame(i,2) = 3.05478289838459 + parame(i,3) = 229.838873939562 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 536.634834731413 + eps_hb(i,i,2,1)= 536.634834731413 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.000000000000000E-003 +! PC-SAFT from Xiaohua + mm(i) = 34.082 ! PC-SAFT + parame(i,1) = 1.63677 + parame(i,2) = 3.06565 + parame(i,3) = 230.2121 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 275.1088 + eps_hb(i,i,2,1)= 275.1088 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.E-2 + ! IF (pol.GE.1) mm(i) = 34.082 ! PCP-SAFT with quadrupole + ! IF (pol.GE.1) parame(i,1) = mm(i)* 3.03171032558E-2 ! =1.03326751316478 + ! IF (pol.GE.1) parame(i,2) = 3.6868189914018 + ! IF (pol.GE.1) parame(i,3) = 246.862831266172 + ! IF (pol.GE.1) nhb_typ(i) = 2 + ! IF (pol.GE.1) nhb_no(i,1) = 1 + ! IF (pol.GE.1) nhb_no(i,2) = 1 + ! IF (pol.GE.1) eps_hb(i,i,1,2)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,2,1)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.GE.1) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.GE.1) kap_hb(i,i) = 5.5480659623d-4 + ! IF (pol.GE.1) parame(i,6) = 0.97833 + ! IF (pol.GE.1) parame(i,7) = 3.8623 + ! IF (pol.GE.1) LLi(i) = 1.2737*parame(i,2) + ! IF (pol.GE.1) phi_criti(i)= 14.316 + ! IF (pol.GE.1) chap(i) = 0.4473 + IF (pol >= 1) mm(i) = 34.0820000000000 ! PCP-SAFT no quadrupoLE + IF (pol >= 1) parame(i,1) = mm(i)* 4.646468487062725E-002 ! 1.58360938976072 + IF (pol >= 1) parame(i,2) = 3.10111012646306 + IF (pol >= 1) parame(i,3) = 230.243457544889 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,2,1)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1) parame(i,6) = 0.978330000000000 + + IF (pol >= 1) lli(i) = 1.2737*parame(i,2) + IF (pol >= 1) phi_criti(i)= 14.316 + IF (pol >= 1) chap(i) = 0.4473 + + + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) mm(i) = 34.0820000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.806418212963168E-002 ! 1.63812345534211 + IF (pol == 2) parame(i,2) = 3.06556006883749 + IF (pol == 2) parame(i,3) = 221.746622243054 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,2,1)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol == 2) parame(i,6) = 0.978330000000000 + IF (pol == 2) parame(i,11) = 3.60200000000000 + IF (pol == 2) parame(i,7) = 0.0 + + IF (pol >= 1)mm(i) = 34.0820000000000 !PCP-SAFT D&Q + IF (pol >= 1)parame(i,1) = mm(i)* 3.974667896078737E-002 ! = 1.35464631234155 + IF (pol >= 1)parame(i,2) = 3.30857082333438 + IF (pol >= 1)parame(i,3) = 234.248947273191 + IF (pol >= 1)nhb_typ(i) = 2 + IF (pol >= 1)nhb_no(i,1) = 1 + IF (pol >= 1)nhb_no(i,2) = 1 + IF (pol >= 1)eps_hb(i,i,1,2)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,2,1)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1)eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1)kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1)parame(i,6) = 0.978330000000000 + IF (pol >= 1)parame(i,7) = 2.93750500000000 + + ELSE IF (compna(i) == 'methanol') THEN + mm(i) = 32.042 ! PC-SAFT + parame(i,1) = mm(i)* .0476100379 + parame(i,2) = 3.23000005 + parame(i,3) = 188.904644 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2899.49055 + eps_hb(i,i,2,1)= 2899.49055 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0351760892 + IF (pol >= 1) mm(i) = 32.042 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 7.213091821E-2 ! =2.31121888139672 + IF (pol >= 1) parame(i,2) = 2.8270129502 + IF (pol >= 1) parame(i,3) = 176.3760515 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,2,1)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 8.9248658086E-2 + IF (pol >= 1) parame(i,6) = 1.7 + IF (pol >= 1) lli(i) = 1.75*parame(i,2) + IF (pol >= 1) phi_criti(i)= 23.43 + IF (pol >= 1) chap(i) = 0.304 + IF (pol == 2) mm(i) = 32.042 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 2.0693 + IF (pol == 2) parame(i,2) = 2.9547 + IF (pol == 2) parame(i,3) = 174.51 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2418.5 + IF (pol == 2) eps_hb(i,i,2,1)= 2418.5 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 0.06319 + IF (pol == 2) parame(i,6) = 1.7 + IF (pol == 2) parame(i,11)= 3.29 + ! mm(i) = 32.0420000000000 ! PCP-SAFT with adjusted QQ + ! parame(i,1) = mm(i)* 6.241807629559099E-002 + ! ! parame(i,1) = 2.00000000066333 + ! parame(i,2) = 2.97610169698593 + ! parame(i,3) = 163.268505098639 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2449.55621933612 + ! eps_hb(i,i,2,1)= 2449.55621933612 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 8.431015160393653E-002 + ! parame(i,6) = 1.72000000000000 + ! parame(i,7) = 1.59810028824523 + ELSE IF (compna(i) == 'ethanol') THEN + mm(i) = 46.069 + parame(i,1) = mm(i)* .0517195521 + parame(i,2) = 3.17705595 + parame(i,3) = 198.236542 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2653.38367 + eps_hb(i,i,2,1)= 2653.38367 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0323840159 + IF (pol >= 1) mm(i) = 46.0690000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 4.753626908781145E-002 ! =2.18994838060639 + IF (pol >= 1) parame(i,2) = 3.30120000000000 + IF (pol >= 1) parame(i,3) = 209.824555801706 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,2,1)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.349382956935725E-002 + IF (pol >= 1) parame(i,6) = 1.69000000000000 + ! mm(i) = 46.0690000000000 + ! parame(i,1) = mm(i)* 5.117957752785066E-002 ! =2.357791957 + ! parame(i,2) = 3.24027031244304 + ! parame(i,3) = 175.657110615456 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2273.62670516146 + ! eps_hb(i,i,2,1)= 2273.62670516146 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 7.030279197039477E-002 + ! parame(i,6) = 1.69000000000000 + ! parame(i,7) = 3.63701294195013 + IF (pol == 2) mm(i) = 46.0690000000000 + IF (pol == 2) parame(i,1) = mm(i)* 4.733436280008321E-002 ! =2.18064676 + IF (pol == 2) parame(i,2) = 3.31260000000000 + IF (pol == 2) parame(i,3) = 207.594119926613 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,2,1)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 2.132561218631547E-002 + IF (pol == 2) parame(i,6) = 1.69000000000000 + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) parame(i,11)= 5.11000000000000 + ELSE IF (compna(i) == '1-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0499154461 + parame(i,2) = 3.25221234 + parame(i,3) = 233.396705 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2276.77867 + eps_hb(i,i,2,1)= 2276.77867 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0152683094 + ELSE IF (compna(i) == '1-butanol') THEN + mm(i) = 74.123 + parame(i,1) = mm(i)* .0341065046 + parame(i,2) = 3.72361538 + parame(i,3) = 269.798048 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2661.37119 + eps_hb(i,i,2,1)= 2661.37119 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00489087833 + mm(i) = 74.1230000000000 + parame(i,1) = mm(i)* 3.329202420547412E-002 ! =2.46770471018236 + parame(i,2) = 3.76179376417092 + parame(i,3) = 270.237284242002 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 2669.28754983370 + eps_hb(i,i,2,1)= 2669.28754983370 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 4.855584122733399E-003 + parame(i,6) = 1.66000000000000 + ELSE IF (compna(i) == '1-pentanol') THEN + mm(i) = 88.15 ! PC-SAFT + parame(i,1) = mm(i)* .041134139 + parame(i,2) = 3.45079143 + parame(i,3) = 247.278748 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2252.09237 + eps_hb(i,i,2,1)= 2252.09237 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0103189939 + IF (pol >= 1) mm(i) = 88.1500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.138903382168521E-002 ! =3.64844333138155 + IF (pol >= 1) parame(i,2) = 3.44250118689142 + IF (pol >= 1) parame(i,3) = 246.078034174947 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,2,1)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.040067895187016E-002 + IF (pol >= 1) parame(i,6) = 1.70000000000000 + IF (pol == 2) mm(i) = 88.1500000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.161521814399406E-002 ! =3.66838147939308 + IF (pol == 2) parame(i,2) = 3.43496654431777 + IF (pol == 2) parame(i,3) = 244.177313808431 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,2,1)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.049516309928397E-002 + IF (pol == 2) parame(i,6) = 1.70000000000000 + IF (pol == 2) parame(i,11)= 10.8000000000000 + ELSE IF (compna(i) == '1-octanol') THEN + mm(i) = 130.23 + parame(i,1) = mm(i)* .0334446084 + parame(i,2) = 3.714535 + parame(i,3) = 262.740637 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2754.77272 + eps_hb(i,i,2,1)= 2754.77272 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00219656803 + ELSE IF (compna(i) == '1-nonanol') THEN + mm(i) = 144.257 + parame(i,1) = mm(i)* .0324692669 + parame(i,2) = 3.72924286 + parame(i,3) = 263.636673 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2941.9231 + eps_hb(i,i,2,1)= 2941.9231 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00142696883 + ELSE IF (compna(i) == '2-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0514663133 + parame(i,2) = 3.20845858 + parame(i,3) = 208.420809 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2253.91064 + eps_hb(i,i,2,1)= 2253.91064 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0246746934 + ELSE IF (compna(i) == '2-methyl-2-butanol') THEN + mm(i) = 88.15 + parame(i,1) = mm(i)* .0289135026 + parame(i,2) = 3.90526707 + parame(i,3) = 266.011828 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2618.80124 + eps_hb(i,i,2,1)= 2618.80124 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00186263367 + ELSE IF (compna(i) == 'acetic-acid') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0227076949 + parame(i,2) = 3.79651163 + parame(i,3) = 199.225066 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3092.40109 + eps_hb(i,i,2,1)= 3092.40109 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0870093874 + + + mm(i) = 60.053 + parame(i,1) = mm(i)* .0181797646 + parame(i,2) = 4.13711044 + parame(i,3) = 207.552969 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3198.84362 + eps_hb(i,i,2,1)= 3198.84362 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0586552968 + +! mit gesetztem Dipol-Moment + mm(i) = 60.0530000000000 + parame(i,1) = mm(i)* 1.736420143637533E-002 + parame(i,2) = 4.25220708070687 + parame(i,3) = 190.957247854820 + parame(i,6) = 3.50000000000000 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3096.36190957945 + eps_hb(i,i,2,1)= 3096.36190957945 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 6.154307094782551E-002 + + ELSE IF (compna(i) == 'propionic-acid') THEN + mm(i) = 74.0800000000000 + parame(i,1) = mm(i)* 2.359519915877884E-002 + parame(i,2) = 3.99339224153844 + parame(i,3) = 295.947729838532 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2668.97826430874 + eps_hb(i,i,2,1)= 2668.97826430874 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 3.660242292423115E-002 + ELSE IF (compna(i) == 'acrylic-acid') THEN + mm(i) = 72.0636 + parame(i,1) = mm(i)* .0430585424 + parame(i,2) = 3.0545415 + parame(i,3) = 164.115604 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3065.40667 + eps_hb(i,i,2,1)= 3065.40667 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .336261669 + ELSE IF (compna(i) == 'caproic-acid') THEN + mm(i) = 116.16 + parame(i,1) = 5.87151 + parame(i,2) = 3.0694697 + parame(i,3) = 241.4569 + nhb_typ(i) = 1 + eps_hb(i,i,1,1)= 2871.37 + kap_hb(i,i) = 3.411613D-3 + ELSE IF (compna(i) == 'aniline') THEN + mm(i) = 93.13 + parame(i,1) = mm(i)* .0285695992 + parame(i,2) = 3.70214085 + parame(i,3) = 335.471062 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 1351.64234 + eps_hb(i,i,2,1)= 1351.64234 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0748830615 + + mm(i) = 93.1300000000000 + parame(i,1) = mm(i)* 2.834372610192228E-002 ! =2.63965121187202 + parame(i,2) = 3.71326867619433 + parame(i,3) = 332.253796842009 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 1392.14266886674 + eps_hb(i,i,2,1)= 1392.14266886674 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 7.424612087328866E-002 + parame(i,6) = 1.55000000000000 + IF (pol == 2) parame(i,11)= 12.1000000000000 + ELSE IF (compna(i) == 'HF') THEN + ! mm(i) = 20.006 ! PC-SAFT + ! parame(i,1) = 0.87731 + ! parame(i,2) = 3.0006 + ! parame(i,3) = 112.24 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2208.22 + ! eps_hb(i,i,2,1)= 2208.22 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.71265 + mm(i) = 20.0060000000000 ! PCP-SAFT + parame(i,1) = 1.00030000000000 + parame(i,2) = 3.17603622195029 + parame(i,3) = 331.133373208282 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 348.251433080979 + eps_hb(i,i,2,1)= 348.251433080979 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 2.868887975449893E-002 + parame(i,6) = 1.82600000000000 + ELSE IF (compna(i) == 'HCl') THEN + ! mm(i) = 36.4610000000000 + ! parame(i,1) = mm(i)* 3.922046741026943E-002 + ! parame(i,2) = 3.08731180727493 + ! parame(i,3) = 203.898845304388 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 245.462773177367 + ! eps_hb(i,i,2,1)= 245.462773177367 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.256454187330899 + mm(i) = 36.461 ! PCIP-SAFT + parame(i,1) = 1.6335 + parame(i,2) = 2.9066 + parame(i,3) = 190.17 + parame(i,6) = 1.1086 + IF (pol == 2) parame(i,11)= 2.63 + ELSE IF (compna(i) == 'gen') THEN + mm(i) = 302.0 + parame(i,1) = 8.7563 + parame(i,2) = 3.604243 + parame(i,3) = 255.6434 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 0.0 + eps_hb(i,i,2,1)= 0.0 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.02 + ELSE IF (compna(i) == 'h2o') THEN + mm(i) = 18.015 + parame(i,1) = mm(i)* .05915 + parame(i,2) = 3.00068335 + parame(i,3) = 366.512135 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2500.6706 + eps_hb(i,i,2,1)= 2500.6706 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0348679836 + + ! mm(i) = 18.015 + ! parame(i,1) = 1.706 + ! parame(i,2) = 2.429 + ! parame(i,3) = 242.19 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 2644.2 + ! eps_hb(i,i,2,1)= 2644.2 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.153 + + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* .0588185709 + ! parame(i,2) = 3.02483704 + ! parame(i,3) = 382.086672 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 2 ! no. of sites of type 2 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! eps_hb(i,i,1,2)= 2442.49782 + ! eps_hb(i,i,2,1)= 2442.49782 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = .0303754635 + + ! mit gefittetem Dipol-Moment - Haarlem-night + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* 7.0037160952278E-2 + ! parame(i,2) = 2.79276650240763 + ! parame(i,3) = 270.970053834558 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 1427.8287 + ! eps_hb(i,i,2,1)= 1427.8287 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = 4.335167238E-2 + ! parame(i,6) = 3.968686856378 + + IF (pol >= 1) mm(i) = 18.015 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 0.922688825223317 + IF (pol >= 1) parame(i,2) = 3.17562052023944 + IF (pol >= 1) parame(i,3) = 388.462197714696 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,2,1)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.040614952751225E-003 + IF (pol >= 1) parame(i,6) = 1.85500000000000 + IF (pol >= 1) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_RPT + ! IF (pol.EQ.2) parame(i,1) = 1.0 + ! IF (pol.EQ.2) parame(i,2) = 3.14540664928026 + ! IF (pol.EQ.2) parame(i,3) = 320.283823615925 + ! IF (pol.EQ.2) nhb_typ(i) = 2 + ! IF (pol.EQ.2) nhb_no(i,1) = 2 + ! IF (pol.EQ.2) nhb_no(i,2) = 2 + ! IF (pol.EQ.2) eps_hb(i,i,1,2)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,2,1)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.EQ.2) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.EQ.2) kap_hb(i,i) = 4.162619960844732E-003 + ! IF (pol.EQ.2) parame(i,6) = 1.85500000000000 + ! IF (pol.EQ.2) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.0150000000000 + ! parame(i,1) = 1.0 + ! parame(i,2) = 3.11505069470915 + ! parame(i,3) = 320.991387913502 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2037.76329812542 + ! eps_hb(i,i,2,1)= 2037.76329812542 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 3.763148982832804E-003 + ! parame(i,6) = 1.85500000000000 + ! parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + IF (pol == 2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_0 + IF (pol == 2) parame(i,1) = 1.0 + IF (pol == 2) parame(i,2) = 3.11574491885322 + IF (pol == 2) parame(i,3) = 322.699984283499 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,2,1)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 3.815764667176484E-003 + IF (pol == 2) parame(i,6) = 1.85500000000000 + IF (pol == 2) parame(i,7) = 2.00000000000000 + IF (pol == 2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.015 ! Dortmund + ! parame(i,1) = 0.11065254*mm(i) + ! parame(i,2) = 2.36393615 + ! parame(i,3) = 300.288589 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 1193.45585 + ! eps_hb(i,i,2,1)= 1193.45585 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.091203519 + ! parame(i,6) = 1.8546 + ! parame(i,7) = 0.0 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'MBBA') THEN + mm(i) = 267.37 + parame(i,1) = 12.194 + parame(i,2) = 3.064 + parame(i,3) = 270.7 + e_lc(i,i) = 13.7 !Hino & Prausnitz + s_lc(i,i) = 0.176 !Hino & Prausnitz + ELSE IF (compna(i) == 'PCH5') THEN + mm(i) = 255.41 + parame(i,1) = 11.6 + parame(i,2) = 3.2 + parame(i,3) = 270.7 + ! E_LC(i,i) = 16.7 !Hino & Prausnitz + ! S_LC(i,i) = 0.176 !Hino & Prausnitz + e_lc(i,i) = 8.95 + s_lc(i,i) = 0.2 + + ! mm(i) = 255.41 + ! parame(i,1) = 11.6 + ! parame(i,2) = 3.2 + ! parame(i,3) = 290.7 + ! E_LC(i,i) = 7.18 + ! S_LC(i,i) = 0.2 + + ELSE IF (compna(i) == 'Li') THEN + mm(i) = 6.9 + parame(i,1) = 1.0 + parame(i,2) = 1.4 + parame(i,3) = 96.83 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.008 + ELSE IF (compna(i) == 'Na') THEN + mm(i) = 23.0 + parame(i,1) = 1.0 + parame(i,2) = 1.9 + parame(i,3) = 147.38 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 8946.28257 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.001648933 + ELSE IF (compna(i) == 'Ka') THEN + mm(i) = 39.1 + parame(i,1) = 1.0 + parame(i,2) = 2.66 + parame(i,3) = 221.44 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 3118.336216 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cs') THEN + mm(i) = 132.9 + parame(i,1) = 1.0 + parame(i,2) = 3.38 + parame(i,3) = 523.28 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cl') THEN + mm(i) = 35.5 + parame(i,1) = 1.0 + parame(i,2) = 3.62 + parame(i,3) = 225.44 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 6744.12509 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00155252 + ELSE IF (compna(i) == 'Br') THEN + mm(i) = 79.9 + parame(i,1) = 1.0 + parame(i,2) = 3.9 + parame(i,3) = 330.82 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 4516.033227 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Io') THEN + mm(i) = 126.9 + parame(i,1) = 1.0 + parame(i,2) = 4.4 + parame(i,3) = 380.60 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 1631.203342 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'OH') THEN + mm(i) = 17.0 + parame(i,1) = 1.0 + parame(i,2) = 3.06 + parame(i,3) = 217.26 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 14118.68089 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'NO3') THEN + mm(i) = 62.0 + parame(i,1) = 1.0 + parame(i,2) = 4.12 + parame(i,3) = 239.48 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 4 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'bf4') THEN + mm(i) = 86.8 + parame(i,1) = 1.0 + parame(i,2) = 4.51 ! *0.85 + parame(i,3) = 164.7 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'pf6') THEN + mm(i) = 145.0 + parame(i,1) = 1.0 + parame(i,2) = 5.06 + parame(i,3) = 224.9 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'emim') THEN + mm(i) = 111.16 + parame(i,1) = 3.11 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'bmim') THEN + mm(i) = 139.21 + ! parame(i,1) = 2.81 + ! parame(i,2) = 3.5 + parame(i,1) = 3.81 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,6) = 0.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'hmim') THEN + mm(i) = 167.27 + parame(i,1) = 4.53 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'omim') THEN + mm(i) = 195.32 + parame(i,1) = 5.30 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'sw') THEN + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 100.0 + parame(i,4) = 0.0 + parame(i,5) = 0.0 + mm(i) = 1.0 + parame(i,6) = 0.1175015839*2.0 + ! use Temp. in Kelvin in the input-file. For dimensionless quantities + ! (P*=P*sig**3/epsilon, T*=T*kBol/epsilon, rho*=rho*sig**3) calculate + ! P* = P *1E5 * (1.e-10)^3 / (100*8.31441/6.022045E+23) + ! T* = (T+273.15)/100 + ! for rho* go to utilities.f (subroutine SI_DENS) and write + ! density(ph) = dense(ph)*6.0/PI + ELSE IF (compna(i) == 'c8-sim') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* 4.095944E-2 ! =4.67883774717337 + parame(i,2) = 3.501769 + parame(i,3) = 163.8606 + ! mm(i) = 114.231000000000 + ! parame(i,1) = mm(i)* 3.547001476437745E-002 ! =4.05177525654960 + ! parame(i,2) = 3.70988567055814 + ! parame(i,3) = 192.787548176343 + ELSE IF (compna(i) == 'argon_ge') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 100.188975 + ELSE IF (compna(i) == 'argon_ge2') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 0.8*100.188975 + ELSE + WRITE (*,*) ' pure component parameters missing for ',compna(i) + STOP + END IF + + IF (pol == 2.AND.parame(i,11) == 0.0) THEN + WRITE (*,*) ' polarizability missing for comp. ',compna(i) + STOP + END IF + + IF (nhb_typ(i) /= 0) THEN + parame(i,12) = DBLE(nhb_typ(i)) + parame(i,13) = kap_hb(i,i) + no = 0 + DO j=1,nhb_typ(i) + DO k=1,nhb_typ(i) + parame(i,(14+no))=eps_hb(i,i,j,k) + no=no+1 + END DO + END DO + DO j=1,nhb_typ(i) + parame(i,(14+no))=DBLE(nhb_no(i,j)) + no=no+1 + END DO + ELSE + DO k=12,25 + parame(i,k)=0.0 + END DO + END IF + +END DO + + +DO i = 1,ncomp + DO j = 1,ncomp + IF (compna(i) == 'ps'.AND.compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.0075 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'ethylene')THEN +! -- 0 Gew.% VA------------- + ! kij(i,j) = 0.039 +! -- 7.5 Gew.% VA------------- + ! kij(i,j) = 0.0377325 + ! kij(i,j) = 0.0374867 +! ---12.7 Gew.% VA------------ + ! kij(i,j) = 0.036854 + ! kij(i,j) = 0.0366508 +! ---27.3 Gew.% VA------------ + ! kij(i,j) = 0.034386 + ! kij(i,j) = 0.0352375 +! ---31.8 Gew.% VA------------ + kij(i,j) = 0.033626 + ! kij(i,j) = 0.0350795 +! ---42.7 Gew.% VA------------ + ! kij(i,j) = 0.031784 + ! kij(i,j) = 0.035239 + ELSE IF(compna(i) == 'ps_J'.AND.compna(j) == 'co2_J')THEN !from: Xu, Diego: DFT for polymer-co2 mixtures: A PC-SAFT approach + kij(i,j) = - 0.00296 + ELSE IF(compna(i) == 'gen'.AND.compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'vinylacetate')THEN + kij(i,j) = 0.019 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'co2') THEN + IF ( pol == 0 ) kij(i,j) = 0.195 + IF ( pol == 1 ) kij(i,j) = 0.06 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.021 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'hexane') THEN + kij(i,j) = 0.012 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'pentane')THEN + kij(i,j) = 0.005 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'methylcyclohexane') THEN + kij(i,j) = 0.0073 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'ethylbenzene')THEN + kij(i,j) = 0.008 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.181 + kij(i,j) = 0.088 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0206 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'argon') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'pentane') THEN + ! kij(i,j) = -0.0195 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'hexane') THEN + ! kij(i,j) = 0.008 + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.0404 + ! kij(i,j) = 0.0423 + ! kij(i,j) = 0.044 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'ldpe'.AND.compna(j) == 'cyclopentane')THEN + kij(i,j) = -0.016 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0242 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'pentane') THEN + kij(i,j) = 0.0137583176 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.1767 ! without quadrupol-term + kij(i,j) = 0.063 ! with quadrupol-term + ELSE IF(compna(i) == 'pba'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'n2'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = -0.04 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.051875 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.0353125 ! PCP-SAFT + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co') THEN + ! IF (pol == 1) kij(i,j) = -0.003 ! PCP-SAFT + IF (pol == 1) kij(i,j) = 0.018 ! PCP-SAFT + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.095 + kij(i,j) = 0.021 + ! kij(i,j) = 0.024 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.042 + ELSE IF(compna(i) == 'argon_ge'.AND.compna(j) == 'argon_ge2') THEN + read (*,*) kij(i,j) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.115 + ! kij(i,j) = 0.048 + kij(i,j) = 0.036 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.143 ! without quadrupol-term + kij(i,j) = 0.0 ! with quadrupol-term + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.125 ! without quadrupol-term + kij(i,j) = 0.0495 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.11 ! without quadrupol-term + ! kij(i,j) = 0.05 + ! kij(i,j) = 0.039 ! with quadrupol-term + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.128 ! without quadrupol-term + kij(i,j) = 0.053 ! with quadrupol-term + ELSE IF(compna(i) == 'dodecane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.12 ! without quadrupol-term + kij(i,j) = 0.0508 ! with quadrupol-term + ELSE IF(compna(i) == 'benzene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.087968750000 ! without quadrupol-term + ! kij(i,j) = 0.008203125 ! only co2 quadrupol + kij(i,j) = 0.042 ! both quadrupol + ! kij(i,j) = 0.003 ! both quadrupol + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.110784912 ! without quadrupol-term + kij(i,j) = 0.0305 ! with quadrupol-term + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.13 + lij(i,j) = - 0.00 + ! kij(i,j) = 0.045 + ELSE IF(compna(i) == 'chloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.04 ! PC-SAFT + kij(i,j) = 0.025 ! PCP-SAFT + ! kij(i,j) = 0.083 ! PCIP-SAFT + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'n2')THEN + kij(i,j) = 0.035211 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + kij(i,j) = 0.023 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + !kij(i,j) = 1.722238535635467E-002 ! PCP-SAFT + !lij(i,j) = 2.815974678394451E-003 ! PCP-SAFT + !kij(i,j) = 1.931522058164026E-002 ! PCP-SAFT + !lij(i,j) = 0.0 ! PCP-SAFT + !kij(i,j) = 1.641053794134795E-002 ! PCP-SAFT + !lij(i,j) = -5.850421759950764E-003 ! PCP-SAFT + if ( num == 0 ) write (*,*) 'calculation with lij only possible with num=1' + if ( num == 0 ) stop + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.015 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.02 ! PCP-SAFT + IF (pol == 2) kij(i,j) = -0.005 ! PCIP-SAFT where DQ with my=my_vacuum + ! IF (pol.EQ.2) kij(i,j) = 0.0 ! PCIP-SAFT where DQ with my=my_RPT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.0288 ! PC-SAFT + ! kij(i,j) = - 0.035 ! PCP-SAFT for co2 and PC-SAFT methanol + ! kij(i,j) = - 0.035 ! PCP-SAFT + ! lij(i,j) = 0.3 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.00896894 ! PC-SAFT + ! kij(i,j) = - 0.015 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'h2o')THEN + ! kij(i,j) = -0.134 ! PC-SAFT + ELSE IF(compna(i) == 'dichloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.06881725 ! PC-SAFT + ! kij(i,j) = 0.05839145 ! PCP-SAFT + kij(i,j) = -0.00944346 ! PCP-SAFT co2 dichloromethane PC-SAFT + ! kij(i,j) = 0.06 ! PCIP-SAFT + ELSE IF(compna(i) == 'h2s'.AND.compna(j) == 'methane')THEN + ! kij(i,j) = 0.0414 ! PC-SAFT + kij(i,j) = 0.0152 ! PCP-SAFT Dipole momnet (d with Q) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'h2s')THEN + kij(i,j) = -0.002 ! PCP-SAFT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'h2s')THEN + kij(i,j) = 0.0 ! PCP-SAFT + lij(i,j) = 0.0 ! PCP-SAFT + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hydrogen') THEN + ! lij(i,j) = -0.08 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.0251171875 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hexadecane') THEN + ! kij(i,j) = 0.1194 ! PC-SAFT ohne QQ + kij(i,j) = 0.0588 + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.038 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.037 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.072 ! no DD + ! kij(i,j) = 0.041 ! DD non-polarizable + kij(i,j) = 0.039 ! DD polarizable + ! kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.063 + kij(i,j) = 0.038 ! PCP-SAFT + ! kij(i,j) = 0.036 ! PCIP-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.035 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.059 ! no DD + ! kij(i,j) = 0.03281250 ! DD non-polarizable + kij(i,j) = 0.028 ! DD polarizable + ELSE IF(compna(i) == 'hexadecane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.07 ! no DD + ! kij(i,j) = 0.0415 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.027 ! PCP-SAFT + ! kij(i,j) = 0.033 ! PCP-SAFT with lij + ! lij(i,j) = 0.13 ! PCP-SAFT + ! kij(i,j) = 0.042 ! PC-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.042 ! no DD + ! kij(i,j) = 0.027 ! DD non-polarizable + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == '2-pentanone')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.031 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '3-pentanone')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.055 ! no DD + kij(i,j) = 0.027 ! DD non-polarizable + ! kij(i,j) = 0.026 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.036 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable 22 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanal')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.025 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'octane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'dmso')THEN + ! kij(i,j) = 0.025 ! no DD + kij(i,j) = - 0.0105 ! DD non-polarizable + ! kij(i,j) = - 0.019 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acrylonitrile')THEN + kij(i,j) = - 0.05 ! DD polarizable + ELSE IF(compna(i) == 'heptane' .AND. compna(j) == 'butyronitrile')THEN + kij(i,j) = - 0.002 ! DD polarizable 11 + kij(i,j) = 0.002 ! DD polarizable 22 + ELSE IF(compna(i) == '1-butene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.04 ! no DD + ! kij(i,j) = 0.004 ! DD non-polarizable + kij(i,j) = 0.005 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'dmf')THEN + kij(i,j) = 0.0135 ! DD polarizable 11 + kij(i,j) = 0.022 ! DD polarizable 22 + ELSE IF(compna(i) == 'ethylene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = - 0.0215 ! DD polarizable 11 + kij(i,j) = - 0.01 ! DD polarizable 22 + ELSE IF(compna(i) == 'nbutyl-ethanoate'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.016 ! no DD + ! kij(i,j) = -0.01 ! DD non-polarizable + kij(i,j) = - 0.015 ! DD polarizable 22 + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.066 ! PC-SAFT + ! kij(i,j) = 0.061 ! PCP-SAFT + ! kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate'.AND.compna(j) == 'decane')THEN + kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'methanol')THEN + ! kij(i,j) = -0.07 ! PCIP-SAFT + ELSE IF(compna(i) == 'pentane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0498 + IF (pol >= 1) kij(i,j) = -0.01 + IF (pol >= 2) kij(i,j) = -0.027 + ELSE IF(compna(i) == 'hexane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.05 + IF (pol >= 1) kij(i,j) = 0.0 + IF (pol >= 2) kij(i,j) = -0.03 + ELSE IF(compna(i) == 'octane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitromethane')THEN + kij(i,j) = 0.14 ! no DD + ! kij(i,j) = 0.07 ! DD non-polarizable + ! kij(i,j) = 0.055 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitroethane')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.03 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'nitromethane')THEN + ! kij(i,j) = - 0.017 ! no DD + kij(i,j) = - 0.021 ! DD non-polarizable + ! kij(i,j) = - 0.023 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 ! PCP-SAFT (no cross-association) + ELSE IF(compna(i) == 'methylcyclohexane' .AND. compna(j) == 'acetonitrile')THEN + ! kij(i,j) = 0.09 ! no DD + ! kij(i,j) = 0.033 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable 22 + kij(i,j) = 0.04 ! DD polarizable 22 und my angepasst + ELSE IF(compna(i) == 'ethylacetate' .AND. compna(j) == 'acetonitrile')THEN + kij(i,j) = 0.007 ! no DD + ! kij(i,j) = -0.045 ! DD polarizable 22 + ELSE IF(compna(i) == 'dimethyl-ether' .AND. compna(j) == 'propane')THEN + ! kij(i,j) = 0.03 ! no DD + kij(i,j) = 0.0225 ! DD non-polarizable + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'pentane')THEN + ! kij(i,j) = 0.012968750 ! ohne QQ + ! kij(i,j) = 0.004921875 ! mit QQ=5.6D (gefittet) + ! kij(i,j) = -0.006406250 ! mit QQ=7.45D (Literatur) + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.01328125 + ! kij(i,j) = 0.0038 + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == '1-hexene')THEN + kij(i,j) = 0.0067 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.04 + kij(i,j) = -0.029 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'vinylacetate') THEN + kij(i,j) = - 0.013847 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'ethylene') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.061953125 ! polyethylene parameters + kij(i,j) = 0.039609375 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.06515625 ! polyethylene parameters + kij(i,j) = 0.04453125 ! param. by extrapolation of n-alkanes + ! --- kij and lij adjusted ------- + ! kij(i,j) = 0.045786119 ! param. by extrapolation of n-alkanes + ! lij(i,j) = +8.53466437d-4 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'eicosane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 ! assumed equal to eicosane-C1 + ELSE IF(compna(i) == 'chlorobenzene' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.013 + ELSE IF(compna(i) == 'chloroethane' .AND. compna(j) == 'butane')THEN + kij(i,j) = 0.025 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.0070105 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'hydrogen' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.1501 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'co2') THEN + ! kij(i,j) = -0.08 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'propane') THEN + kij(i,j) = - 0.07 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'ethane') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.028 + kij(i,j) = 0.016 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.037 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '1-octanol')THEN + kij(i,j) = 0.06 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.0508 + ! kij(i,j) = 0.03 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.034 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'decane')THEN + ! kij(i,j) = 0.042 ! PC-SAFT + ! kij(i,j) = 0.011 ! PCP-SAFT + kij(i,j) = 0.000 ! PCIP-SAFT + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'isobutane') THEN + kij(i,j) = 0.051 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == '1-octanol') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == '1-butanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.015 + ELSE IF(compna(i) == '1-nonanol' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.076 + kij(i,j) = 0.01443 + ELSE IF(compna(i) == '1-propanol' .AND. compna(j) == 'ethylbenzene') THEN + kij(i,j) = 0.0251757813 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = 0.085 + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '1-chlorobutane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'aniline'.AND.compna(j) == 'methylcyclopentane') THEN + kij(i,j) = 0.0153 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'nbutyl-ethanoate')THEN + kij(i,j) = 0.027 + ELSE IF(compna(i) == '1-hexene'.AND.compna(j) == 'ethyl-ethanoate')THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == '1-butanol')THEN + ! kij(i,j) = 0.075 + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'acrylic-acid'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'bmim'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'bf4'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'butane')THEN !K.R.Hall FPE 2007 254 112-125 kij=0.1850 + kij(i,j) = -0.07 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-butanol')THEN + kij(i,j) = -0.12 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'aniline')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methanol') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = -0.027 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'styrene') THEN + kij(i,j) = 0.1 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propyl-ethanoate') THEN + kij(i,j) = -0.205 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethyl-propanoate') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-pentanol') THEN + kij(i,j) = 0.0165 + ! kij(i,j) = 0.0294 + ! kij(i,j) = -0.082 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methane') THEN + ! kij(i,j) = +0.06 + kij(i,j) = -0.08 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'hexane') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'co2') THEN + if (pol == 0) kij(i,j) = 0.0030625 ! for T=50C, according to X.Tang + stop ! very T-dependent + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'caproic-acid'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.041531 + ELSE IF(compna(i) == '1-octanol'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.07 + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02132466 ! PC-SAFT + ! kij(i,j) = 0.01495148 ! PCP-SAFT + ! kij(i,j) = -0.00735575 ! PCP-SAFT but non-polar benzene + ELSE IF(compna(i) == '1-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02017 + ELSE IF(compna(i) == '2-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.021386 + ELSE IF(compna(i) == '1-pentanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.0129638671875 + ELSE IF(compna(i) == 'CH2F2' .AND. compna(j) == 'co2') THEN + kij(i,j) = 2.2548828125E-2 + ELSE IF(compna(i) == 'dmso' .AND. compna(j) == 'co2') THEN + kij(i,j) = -0.00 + ELSE IF(compna(i) == 'dmf'.AND.compna(j) == 'h2o')THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = 0.032 ! association: eps_kij = 0.16 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.004 ! PCP-SAFT (taken from simulation) + ELSE IF(compna(i) == 'difluoromethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'naphthalene'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.137 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + kij(i,j) = 0.09 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'methanol')THEN + kij(i,j) = 0.03 + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.05 + ELSE IF(compna(i) == 'PCH5'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = -0.047 + kij(i,j) = +0.055 + ! kij(i,j) = +0.036 + ELSE + END IF + kij(j,i) = kij(i,j) + lij(j,i) = -lij(i,j) + + END DO +END DO + +END SUBROUTINE pcsaft_par + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE init_vars +! +! This subroutine writes variables from an array "val_init" to the +! system-variables. Those variables +! include some specifications but also some starting values for a +! phase equilibrium calculation. (val_init stands for 'initial value') + +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(5+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE init_vars +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +densta(3)=val_init(0) +densta(1)=val_init(1) +densta(2)=val_init(2) +t = val_init(3) +p = val_init(4) +DO ph = 1,nphas + DO i = 1,ncomp + lnx(ph,i) = val_init(4+i+(ph-1)*ncomp) + END DO +END DO + +END SUBROUTINE init_vars + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE converged +! +! Once a converged solution for an equilibrium calculation is found, +! this subroutine writes variables to an array "val_conv". +! (= short for converged values) +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(4+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE converged +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +val_conv(0) = dense(3) +val_conv(1) = dense(1) +val_conv(2) = dense(2) +val_conv(3) = t +val_conv(4) = p +DO ph = 1,nphas + DO i = 1,ncomp + val_conv(4+i+(ph-1)*ncomp) = lnx(ph,i) + END DO +END DO + +END SUBROUTINE converged + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PERTURBATION_PARAMETER +! +! calculates density-independent parameters of the equation of state. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PERTURBATION_PARAMETER +! + USE PARAMETERS, ONLY: PI, KBOL, RGAS, NAV, TAU + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, no + LOGICAL :: assoc, qudpole, dipole + REAL :: m_mean + REAL, DIMENSION(nc) :: v00, v0, d00, u + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb + REAL :: zmr, nmr + REAL :: eps_kij, k_kij +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- +DO i = 1, ncomp + u(i) = parame(i,3) * (1.0 + parame(i,4)/t) + mseg(i) = parame(i,1) + IF (eos == 0) THEN + v00(i) = parame(i,2) + v0(i) = v00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t))**3 + d00(i) = (1.d30/1.d6 *tau *v00(i)*6.0/PI /NAV)**(1.0/3.0) + dhs(i) = d00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + ELSE + dhs(i) = parame(i,2)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + d00(i) = parame(i,2) + END IF +END DO + + +! ---------------------------------------------------------------------- +! combination rules +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j = 1, ncomp + sig_ij(i,j) = 0.5 * ( d00(i) + d00(j) ) + uij(i,j) = ( 1.0 - kij(i,j) ) * ( u(i)*u(j) )**0.5 + vij(i,j) = ( 0.5*( v0(i)**(1.0/3.0) + v0(j)**(1.0/3.0) ) )**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +z0t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + +m_mean = z0t/(PI/6.0) + +DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO +END DO + +! ---------------------------------------------------------------------- +! dispersion term parameters for chain molecules +! ---------------------------------------------------------------------- +DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +END DO + + +! ---------------------------------------------------------------------- +! van der Waals mixing rules for perturbation terms +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO + + +! ---------------------------------------------------------------------- +! SAFT parameters +! ---------------------------------------------------------------------- +IF (eos == 0) THEN + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr +END IF + + + +! ---------------------------------------------------------------------- +! association and polar parameters +! ---------------------------------------------------------------------- +assoc = .false. +qudpole = .false. +dipole = .false. +DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + IF (parame(i,7) /= 0.0) qudpole = .true. + IF (parame(i,6) /= 0.0) dipole = .true. +END DO + +! --- dipole and quadrupole constants ---------------------------------- +IF (qudpole) CALL qq_const ( qqp2, qqp3, qqp4 ) +IF (dipole) CALL dd_const ( ddp2, ddp3, ddp4 ) +IF (dipole .AND. qudpole) CALL dq_const ( dqp2, dqp3, dqp4 ) + + +! --- TPT-1-association parameters ------------------------------------- +IF (assoc) THEN + + eps_kij = 0.0 + k_kij = 0.0 + + DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) THEN + nhb_typ(i) = NINT(parame(i,12)) + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1, nhb_typ(i) + DO k = 1, nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no=no+1 + END DO + END DO + DO j = 1, nhb_typ(i) + nhb_no(i,j) = parame(i,(14+no)) + no=no+1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1, nsite + DO l = 1, nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + IF (i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0)) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1, nhb_typ(i) + DO l = 1, nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN +! write(*,*)'eps_hb manuell eingegeben' + eps_hb(1,2,3,1) = 0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1) = 0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ass_d(i,j,k,l) = kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + END DO + END DO + END DO + END DO + +END IF + +END SUBROUTINE PERTURBATION_PARAMETER + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE OUTPUT +! +! The purpose of this subroutine is obvious. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE OUTPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + CHARACTER (LEN=4) :: t_ind + CHARACTER (LEN=4) :: p_ind + CHARACTER (LEN=4) :: char_ncomp + REAL :: density(np),w(np,nc) +! ---------------------------------------------------------------------- + + CALL si_dens (density,w) + + IF (u_in_p == 1.E5) THEN + p_ind = ' bar' + ELSE IF (u_in_p == 1.E2) THEN + p_ind = 'mbar' + ELSE IF (u_in_p == 1.E6) THEN + p_ind = ' MPa' + ELSE IF (u_in_p == 1.E3) THEN + p_ind = ' kPa' + ELSE + p_ind = ' Pa' + END IF + IF (u_in_t == 273.15) THEN + t_ind = ' C' + ELSE + t_ind = ' K' + END IF + + WRITE(*,*) '--------------------------------------------------' + WRITE (char_ncomp,'(I3)') ncomp + WRITE(*,'(t2,a,f7.2,2a,f9.4,a)') ' T =',t-u_out_t,t_ind & + ,' P =',p/u_out_p,p_ind + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,'(2x,a,2(g13.6,1x))') 'DENSITY ', density(1),density(2) + + !-----output to files-------------------------------------------------- + IF (ncomp == 1) THEN + WRITE (40,'(7(2x,f18.8))') t-u_out_t, p/u_out_p, & + density(1), density(2),h_lv,cpres(1),cpres(2) + ! & ,(enthal(2)-enthal(1))/mm(1) + ! WRITE (40,'(4(2x,f15.8))') t, p, 0.3107*dense(1) + ! & /0.1617*(0.689+0.311*(T/1.328)**0.3674),0.3107 + ! & *dense(2)/0.1617*(0.689+0.311*(T/1.328)**0.3674) + ELSE IF (ncomp == 2) THEN + WRITE (40,'(12(2x,G15.8))') 1.0-xi(1,1),1.0-xi(2,1), & + w(1,1),w(2,1),t-u_out_t, p/u_out_p, density(1),density(2) & + ,enthal(1),enthal(2),cpres(1),cpres(2) + ELSE IF (ncomp == 3) THEN + WRITE (40,'(10(2x,f15.8))') xi(1,1),xi(1,2),xi(1,3),xi(2,1),xi(2,2), & + xi(2,3),t-u_out_t, p/u_out_p, density(1),density(2) + END IF + + END SUBROUTINE OUTPUT + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE neutr_charge +! +! This subroutine is called for electrolye solutions, where a +! neutral overall-charge has to be enforced in all phases. The basic +! philosophy is similar to the above described routine X_SUMMATION. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE neutr_charge(i) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i +! +! ---------------------------------------------------------------------- + INTEGER :: comp_e, ph_e + REAL :: sum_c + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + +phasno = sum_rel(i)(2:2) +READ(phasno,*) ph_e +compno = sum_rel(i)(3:3) +READ(compno,*) comp_e + +sum_c = 0.0 +write (*,*) 'there must be an error in neutr_charge' +stop +! there is an error in the following passage. The index i is an +! argument to this subroutine - I guess it is INTENT(IN), so the +! index in the following loop can not be i. +! +! I have commented the loop until I check the code. +!DO i=1,ncomp +! IF ( comp_e /= i .AND. parame(i,10) /= 0.0) & +! sum_c = sum_c + xi(ph_e,i)*parame(i,10) +!END DO + +xi(ph_e,comp_e) = - sum_c +IF (xi(ph_e,comp_e) < 0.0) xi(ph_e,comp_e)=0.0 +IF (xi(ph_e,comp_e) /= 0.0) THEN + lnx(ph_e,comp_e) = LOG(xi(ph_e,comp_e)) +ELSE + lnx(ph_e,comp_e) = -100000.0 +END IF + +! xi(2,1) = xi(2,2) +! IF (xi(2,1).NE.0.0) lnx(2,1) = LOG(xi(2,1)) + +END SUBROUTINE neutr_charge + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_sum +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, j, ph_i, phase1, phase2 +! ---------------------------------------------------------------------- + +phase1=0 +phase2=0 +DO j=1,ncomp + IF (it(j)(2:2) == '1') phase1=phase1+1 + IF (it(j)(2:2) == '2') phase2=phase2+1 +END DO + +IF (phase1 == ncomp-1) THEN + ph_i = 1 +ELSE IF (phase2 == ncomp-1) THEN + ph_i = 2 +ELSE + WRITE (*,*) ' FLASH_SUM: undefined flash-case' + STOP +END IF + + + +IF (ph_i == 1) THEN + DO i=1,ncomp + IF (alpha > DMIN1(1.0,xif(i)/xi(1,i), & + (xif(i)-1.0)/(xi(1,i)-1.0),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 1st alpha-bound' + alpha=DMIN1(1.0,xif(i)/xi(1,i),(xif(i)-1.0)/(xi(1,i)-1.0)) + END IF + END DO + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF (xi(2,i) > 0.0) THEN + lnx(2,i) = LOG(xi(2,i)) + ELSE + xi(2,i) = 0.0 + lnx(2,i) = -100000.0 + END IF + END DO +ELSE IF (ph_i == 2) THEN + DO i=1,ncomp + IF (alpha > DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), & + 1.0-xif(i)/xi(2,i),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 2nd alpha-bound' + WRITE (*,*) 0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i) + alpha=DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i)) + END IF + END DO + DO i=1,ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) / alpha +! write (*,*) 'x1,i',xi(1,i),xi(2,i),alpha + IF (xi(1,i) > 0.0) THEN + lnx(1,i) = LOG(xi(1,i)) + ELSE + xi(1,i) = 0.0 + lnx(1,i) = -100000.0 + END IF + END DO +END IF + +! pause + +RETURN +END SUBROUTINE flash_sum + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE flash_alpha +! +! This subroutine calculates all molefractions of one phase +! from a component balance. What is needed for this calculation +! are all molefractions of the other phase (nphas=2, so far) +! and the phase fraction alpha. +! Alpha is calculated from the mole fraction +! of component {sum_rel(j)(3:3)}. If for example sum_rel(2)='fl3', +! then the alpha is determined from the molefraction of comp. 3 and +! all molefractions of one phase are calculated using that alpha-value. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_alpha +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, phase1, phase2 + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! first calculate the phase fraction alpha from a known composition +! of component sum_rel(j)(3:3). +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF ( sum_rel(j)(1:2) == 'fl' ) THEN + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( (xi(1,comp_i)-xi(2,comp_i)) /= 0.0 ) THEN + alpha = (xif(comp_i)-xi(2,comp_i)) / (xi(1,comp_i)-xi(2,comp_i)) + write (*,*) 'flsh',(xif(comp_i)-xi(2,comp_i)),(xi(1,comp_i)-xi(2,comp_i)) + ELSE + alpha = 0.5 + WRITE (*,*) 'FLASH_ALPHA:error in calc. of phase fraction',comp_i + END IF + ! IF (alpha <= 0.0 .OR. alpha >= 1.0) WRITE(*,*) 'FLASH_ALPHA: error',alpha + IF (alpha > 1.0) alpha = 1.0 + IF (alpha < 0.0) alpha = 0.0 + END IF +END DO + +! ---------------------------------------------------------------------- +! determine which phase is fully determined by iterated molefractions (+ summation relation) +! ---------------------------------------------------------------------- +phase1 = 0 +phase2 = 0 +DO i = 1, ncomp + IF ( it(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( it(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO +DO i = 1, ncomp + IF ( sum_rel(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( sum_rel(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO + + +IF ( phase1 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 1 is defined by iterated molefractions + summation relation + ! phase 2 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + IF ( alpha == 1.0 ) alpha = 1.0 - 1.0E-10 + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF ( xi(2,i) < 0.0 ) xi(2,i) = 0.0 + IF ( xi(2,i) > 1.0 ) xi(2,i) = 1.0 + IF ( xi(2,i) /= 0.0 ) THEN + lnx(2,i) = LOG( xi(2,i) ) + ELSE + lnx(2,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=2',i,lnx(2,i),xi(2,i) + END DO +ELSE IF ( phase2 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 2 is defined by iterated molefractions + summation relation + ! phase 1 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) /alpha + IF ( xi(1,i) < 0.0 ) xi(1,i) = 0.0 + IF ( xi(1,i) > 1.0 ) xi(1,i) = 1.0 + IF ( xi(1,i) /= 0.0 ) THEN + lnx(1,i) = LOG( xi(1,i) ) + ELSE + lnx(1,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=1',i,lnx(1,i),xi(1,i),alpha + END DO +ELSE + WRITE (*,*) ' FLASH_ALPHA: undefined flash-case' + STOP +END IF + +END SUBROUTINE flash_alpha + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE SI_DENS (density,w) +! +! This subroutine calculates the (macroskopic) fluid-density in +! units [kg/m3] from the dimensionless density (eta=zeta3). +! Further, mass fractions are calculated from mole fractions. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SI_DENS (density,w) +! + USE PARAMETERS, ONLY: pi, nav, tau + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: density(np) + REAL, INTENT(OUT) :: w(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph + REAL :: mm_mean, rho, z3t + REAL :: dhs(nc), d00(nc), t_p, pcon, l_st +! ---------------------------------------------------------------------- + + +DO i = 1,ncomp + IF (eos == 1) THEN + dhs(i) = parame(i,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 0) THEN + d00(i) = ( 1.E30/1.E6*tau*parame(i,2)*6.0/pi/nav )**(1.0/3.0) + dhs(i) = d00(i) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 4) THEN + dhs(i) = ( 0.1617/0.3107 / ( 0.689+0.311*(t/parame(i,3)/1.328)**0.3674 ) & + / ( pi/6.0 ) )**(1.0/3.0) * parame(i,2) + ELSE IF (eos == 5.OR.eos == 6) THEN + l_st = parame(1,25) + IF (ncomp /= 1) write (*,*) ' ERROR for EOS = 5' + t_p =((34.037352+17.733741*l_st) /(1.0+0.53237307*l_st+12.860239*l_st**2 ))**0.5 + IF (l_st == 0.0) t_p = t_p/4.0 + IF (eos == 5 .AND. l_st /= 0.0) t_p = t_p/4.0*parame(1,1)**2 + t_p = t/parame(i,3)/t_p + pcon =0.5256+3.2088804*l_st**2 -3.1499114*l_st**2.5 +0.43049357*l_st**4 + dhs(i) = ( pcon/(0.67793+0.32207*(t_p)**0.3674) /(pi/6.0) )**(1.0/3.0) *parame(i,2) + ELSE IF (eos == 8) THEN + dhs(i) = parame(i,2)*(1.0+0.2977*t/parame(i,3)) & + /(1.0+0.33163*t/parame(i,3) +1.0477E-3*(t/parame(i,3))**2 ) + ELSE + write (*,*) 'define EOS in subroutine: SI_DENS' + stop + END IF +END DO + +DO ph = 1,nphas + mm_mean = 0.0 + z3t = 0.0 + DO i = 1, ncomp + mm_mean = mm_mean + xi(ph,i)*mm(i) + z3t = z3t + xi(ph,i) * parame(i,1) * dhs(i)**3 + END DO + z3t = pi/6.0 * z3t + rho = dense(ph)/z3t + density(ph) = rho * mm_mean * 1.E27 /nav + DO i = 1, ncomp + w(ph,i) = xi(ph,i) * mm(i)/mm_mean + END DO +! write (*,*) density(ph),rho,mm_mean,1.d27 /NAV +END DO + +END SUBROUTINE SI_DENS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION F_STABILITY ( optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) +! +! ---------------------------------------------------------------------- + INTEGER :: i, stabil + REAL :: rhoi(nc),gradterm + REAL :: fden,punish + REAL :: dens +! ---------------------------------------------------------------------- + +COMMON /stabil / stabil + +punish = 0.0 +stabil = 1 + +DO i = 1, n + IF ( optpara(i) < 0.5 ) rhoi(i) = EXP(optpara(i) ) + IF ( optpara(i) >= 0.5) rhoi(i) = EXP(0.5) +END DO + +dens = PI/6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + +IF (dens > 0.65) THEN + punish = punish + (dens-0.65)*10000.0 + rhoi(1:n) = rhoi(1:n)*0.65/dens +END IF + +CALL fden_calc (fden, rhoi) + +gradterm = sum( grad_fd(1:n) * ( rhoi(1:n) - rhoif(1:n) ) ) + +f_stability = fden - fdenf - gradterm + punish + +! write (*,'(5G16.8)') F_STABILITY,(rhoi(i),i=1,n) +! pause + +stabil = 0 + +END FUNCTION F_STABILITY + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE p_calc (pges_transfer, zges) +! +! This subroutine serves as an iterface to the EOS-routines. The +! system pressure corresponding to given (desity,T,xi) is calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. This +! routine is only used for one-phase systems, e.g. calculation of +! virial coefficients) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE p_calc (pges_transfer, zges) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: pges_transfer + REAL, INTENT(OUT) :: zges +! ---------------------------------------------------------------------- + +IF (nphas /= 1 ) THEN + write (*,*) 'P_CALC: can only be called for single phases' + stop +ENDIF + +IF (eos < 2) THEN + + phas = 1 + eta = dense(1) + x(1:ncomp) = xi(1,1:ncomp) + + CALL PERTURBATION_PARAMETER + IF (num == 0) CALL P_EOS + IF(num == 1) CALL P_NUMERICAL + !! IF(num == 2) CALL F_EOS_RN + + pges_transfer = pges + rho = eta/z3t + zges = (pges * 1.E-30) / (kbol*t*rho) + +ELSE + write (*,*) ' SUBROUTINE P_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE p_calc + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL ( only_term, type_of_term ) +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! + character (LEN=9) :: only_term, type_of_term +! ---------------------------------------------------------------------- + + save_eos_terms(1) = ideal_gas + save_eos_terms(2) = hard_sphere + save_eos_terms(3) = chain_term + save_eos_terms(4) = disp_term + save_eos_terms(5) = hb_term + save_eos_terms(6) = LC_term + save_eos_terms(7) = branch_term + save_eos_terms(8) = II_term + save_eos_terms(9) = ID_term + + ideal_gas = 'no' + hard_sphere = 'no' + chain_term = 'no' + disp_term = 'no' + hb_term = 'no' + LC_term = 'no' + branch_term = 'no' + II_term = 'no' + ID_term = 'no' + + IF ( only_term == 'ideal_gas' ) ideal_gas = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hard_sphere' ) hard_sphere = trim( adjustl( type_of_term ) ) + IF ( only_term == 'chain_term' ) chain_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'disp_term' ) disp_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hb_term' ) hb_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'LC_term' ) LC_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'branch_term' ) branch_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'II_term' ) II_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'ID_term' ) ID_term = trim( adjustl( type_of_term ) ) + +END SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + ideal_gas = trim( adjustl( save_eos_terms(1) ) ) + hard_sphere = trim( adjustl( save_eos_terms(2) ) ) + chain_term = trim( adjustl( save_eos_terms(3) ) ) + disp_term = trim( adjustl( save_eos_terms(4) ) ) + hb_term = trim( adjustl( save_eos_terms(5) ) ) + LC_term = trim( adjustl( save_eos_terms(6) ) ) + branch_term = trim( adjustl( save_eos_terms(7) ) ) + II_term = trim( adjustl( save_eos_terms(8) ) ) + ID_term = trim( adjustl( save_eos_terms(9) ) ) + +END SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/gnuplot_script.srp b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/gnuplot_script.srp new file mode 100644 index 000000000..393ce9af6 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/gnuplot_script.srp @@ -0,0 +1,55 @@ + + +plotfile = 'ItsTimeNorm.eps' +readfile = 'ItsTimeNorm.dat' +Titel = 'Zeitverlauf der Residuen' +NameX = 'Zeit t' +NameY1 = '|F|' +#NameY2 = 'rho(r)exp(...)-rho(r)' + +set terminal postscript eps +set output plotfile + + +#Set labels +set title Titel +set xlabel NameX +set ylabel NameY1 +#set y2label NameY2 +#set ytics +#set y2tics +#set ytics nomirror + +##Read min and max values to scale the axes +#stats readfile using 2 nooutput +#y1max = STATS_max +#y1min = STATS_min +#stats readfile using 3 nooutput +#y2max = STATS_max +#y2min = STATS_min +#this is needed to get a symmetric plot about 0 where the 0 is at the same height for +#both y axes +#if (abs(y1max) > abs(y1min)) { +# y1range = y1max +# } else { +# y1range = abs(y1min) +# } + +#if (abs(y2max) > abs(y2min)) { +# y2range = y2max +# } else { +# y2range = abs(y2min) +# } + +#set yrange[-1.1*y1range:1.1*y1range] +#set y2range[-1.1*y2range:1.1*y2range] + +#set size square + +#set autoscale y +#set autoscale y2 + + +#plot readfile using 1:2 with lines axes x1y1 title NameY1 , readfile using 1:3 with lines axes x2y2 title NameY2 +plot readfile using 2:3 title NameY1 + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/in.txt b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/in.txt new file mode 100644 index 000000000..2d712ecf4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/in.txt @@ -0,0 +1,6 @@ +260.0 +2 +air +thf +0. +0. \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/makefile b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/makefile new file mode 100644 index 000000000..ab6537b9f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/makefile @@ -0,0 +1,344 @@ + +#include /usr/ITT/mhofer/Documents/Diss/NumericalMethods/Libraries/Petsc/petsc-3.4.4/conf/variables +#include /usr/ITT/mhofer/Documents/Diss/NumericalMethods/Libraries/Petsc/petsc-3.4.4/conf/rules + +#include ~/NumLib/PETSc/petsc-3.4.4/conf/variables +#include ~/NumLib/PETSc/petsc-3.4.4/conf/rules + + +include /${PETSC_DIR}/conf/variables +include /${PETSC_DIR}/conf/rules + + + +SOURCE = Modules.F90 \ + mod_PETSc.F90 \ + mod_DFT_FMT.F90 \ + mod_DFT_FMT_d.F90 \ + mod_DFT_CHAIN.F90 \ + mod_DFT_CHAIN_d.F90 \ + mod_DFT_DISP_WDA.F90 \ + mod_DFT_DISP_WDA_d.F90 \ + module_solve_nonlinear.F90 \ + getting_started_subroutines.F90 \ + Helfer_Routinen.F90 \ + Numeric_subroutines.F90 \ + Spline_Integration_d.F90 \ + VLE_main.F90 \ + VLE_subroutines.F90 \ + crit_point_mixtures.F90 \ + Function.F90 \ + AD_Routines.F90 \ + InitialGuess.F90 \ + SolverSetup.F90 \ + Main.F90 \ + +#Object files +OBJECT = $(SOURCE:%.F90=%.o) + +#define target for non-PETSc files +%.o: %.F90 + ${PETSC_FCOMPILE} -fdefault-real-8 -c $< -o $@ + +DFT: $(OBJECT) + -${FLINKER} -o PCSAFT_SurfaceTension $(OBJECT) ${PETSC_SNES_LIB} + +#-------------------------------------------------------------------------- + +#Anzahl Prozessoren +NP = 1 + +#Initial profile: 0: normal, 1-3: add perturbation to regular initial profile +PERT = 0 + +#DFT Settings +NGRID = 800 +CUTOFF = 9.0 +BOXSIZE = 300.0 + +#Solver Settings +ITS_SNES = 20 +ITS_KSP = 15 +E_REL = 1e-08 + +#Its for Anderson Mixing +ITS_SNES_ANDERSON = 100 +#Its for Picard Iterations +ITS_SNES_PICARD = 100 + +#Toleranzen +ATOL_SNES = 1e-08 +RTOL_SNES = 1e-08 +STOL_SNES = 1e-08 + +ATOL_KSP = 1e-08 +RTOL_KSP = 1e-04 + +#D�mpfungsfaktoren +DAMP = 0.3 +DAMP_LBFGS = 1.0 +DAMP_ANDERSON = 0.01 +DAMP_PICARD = 0.01 + +#------------------------------------------------------------------------------ +#1) Inexact-Newton type solvers (iterative solver for linear system) +#------------------------------------------------------------------------------ + +#matrix-free, numerical approximation of directional derivatives (choose between trust region and line search) +run_mf: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -erel $(E_REL) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 0 \ + -pc_type none \ + + + +#matrix-free, AD-calculation directional derivatives (choose between trust region and line search) +run_ad: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 1 \ +# -pc_type none + +#finite-difference approximation of Jacobi matrix (-> PC can be used!) (choose between trust region and line search) +run_fd: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_fd -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 2 \ + -dm_mat_type aij \ +# -pc_type ilu + +#Build complete Jacobi matrix with AD (-> PC can be used!) (choose between trust region and line search) +run_anad: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 3 \ + + + +#------------------------------------------------------------------------------ +#2) Newton type solvers (direct solver for linear system) +#------------------------------------------------------------------------------ + +#finite-difference approximation of Jacobi matrix (-> PC can be used!) (choose between trust region and line search) +run_fdmumps: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 2 \ + -dm_mat_type aij \ + -pc_type lu -pc_factor_mat_solver_package mumps \ + +#Build complete Jacobi matrix with AD (-> PC can be used!) (choose between trust region and line search) +run_anadmumps: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 3 \ + -pc_type lu -pc_factor_mat_solver_package mumps \ + + +#------------------------------------------------------------------------------ +#3) Quasi-Newton type solvers (secant updates for approximation to inverse Jacobian) +#------------------------------------------------------------------------------ + +#limitd memory quasi newton with BFGS updates -> choose restart parameter +run_LBFGS: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type qn -snes_qn_type lbfgs \ + -snes_converged_reason \ + -snes_linesearch_type cp -snes_linesearch_damping $(DAMP_LBFGS) \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac -1 \ + +#limitd memory quasi newton with BFGS updates -> choose restart parameter +#calculate initial jacobian with AD, then use BFGS updates in later iterations + +#anpassen damping, jac 0/1 + +run_LBFGSinitJac: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type qn -snes_qn_type lbfgs -snes_qn_scale_type jacobian \ + -snes_converged_reason \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP_LBFGS) \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 0 \ + + +#use a direct solver for linear system + +#limitd memory quasi newton with BFGS updates -> choose restart parameter +#calculate initial jacobian with AD, then use BFGS updates in later iterations +run_LBFGSinitJac2: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type qn -snes_qn_type lbfgs -snes_qn_scale_type jacobian \ + -snes_converged_reason \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP_LBFGS) \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 3 \ + + + +#------------------------------------------------------------------------------ +#4) Simple Fixpoint Iterations +#------------------------------------------------------------------------------ + + +#Anderson mixing +run_Anderson: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type anderson \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES_ANDERSON) \ + -snes_converged_reason \ + -snes_linesearch_type l2 -snes_linesearch_damping $(DAMP_ANDERSON) -snes_linesearch_monitor \ + -jac -1 \ + + +#Picard Iteration +run_Picard: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type nrichardson \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES_PICARD) \ + -snes_converged_reason \ + -snes_linesearch_type l2 -snes_linesearch_damping $(DAMP_PICARD) -snes_linesearch_monitor \ + -jac -1 \ + + + + +# # #-------------------------------------------------------------------------- +# # +# # #Anzahl Prozessoren +# # NP = 1 +# # +# # +# # #DFT Settings +# # NGRID = 800 +# # CUTOFF = 9.0 +# # BOXSIZE = 10.0 +# # +# # #Solver Settings +# # ITS_SNES = 40 +# # ITS_KSP = 20 +# # E_REL = 1e-11 +# # +# # #Its for Anderson Mixing +# # ITS_SNES_ANDERSON = 250 +# # #Its for Picard Iterations +# # ITS_SNES_PICARD = 250 +# # +# # #Toleranzen +# # ATOL_SNES = 1e-08 +# # RTOL_SNES = 1e-08 +# # STOL_SNES = 1e-08 +# # +# # ATOL_KSP = 1e-08 +# # RTOL_KSP = 1e-04 +# # +# # #D�mpfungsfaktoren +# # DAMP = 0.5 +# # DAMP_LBFGS = 0.5 +# # DAMP_ANDERSON = 0.5 +# # DAMP_PICARD = 0.01 +# # +# # #------------------------------------------------------------------------------ +# # #1) Inexact-Newton type solvers (iterative solver for linear system) +# # #------------------------------------------------------------------------------ +# # +# # #matrix-free, numerical approximation of directional derivatives (choose between trust region and line search) +# # runNLsolver_mf: +# # -@${MPIEXEC} -n $(NP) ./NLsolver -snes_monitor_short -ksp_monitor_short \ +# # -nx $(NGRID) \ +# # -rc $(CUTOFF) \ +# # -box $(BOXSIZE) \ +# # -erel $(E_REL) \ +# # -snes_type newtonls -snes_converged_reason \ +# # -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ +# # -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ +# # -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ +# # -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ +# # -ksp_gmres_cgs_refinement_type refine_always \ +# # -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ +# # -jac 0 \ +# # -pc_type none \ diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_ChemPot.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_ChemPot.F90 new file mode 100644 index 000000000..6f1b96c1c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_ChemPot.F90 @@ -0,0 +1,250 @@ +Module mod_ChemPot + + + +Implicit None + + + +private + +public :: Chemical_Potential +public :: PCSAFT_const +REAL, public, allocatable :: ChemPot_tot(:) +REAL, public, allocatable :: ChemPot_res(:) + + contains + + + + +Subroutine Chemical_Potential + +Use BASIC_VARIABLES +Use EOS_VARIABLES +Use PARAMETERS +USe EOS_CONSTANTS + +Integer :: k,i,j +REAL :: z0t,z1t,z2t,z3t +REAL :: z0,z1,z2,z3,zms +REAL :: z0_rk,z1_rk,z2_rk,z3_rk +REAL, allocatable :: mhs(:), mhc(:) +REAL, allocatable :: gij(:,:), gij_rk(:,:), dij_ab(:,:) + +!DISP HERE!!! +INTEGER :: m +REAL :: m_mean,I1,I2,I1_rk,I2_rk +REAL :: ord1_rk,ord2_rk +REAL :: c1_con,c2_con,c1_rk +REAL :: order1,order2 +REAL :: apar(0:6),bpar(0:6) +REAL, allocatable :: m_rk(:),mdsp(:) +REAL, allocatable :: ap_rk(:,:),bp_rk(:,:) + +Allocate(mdsp(ncomp),m_rk(ncomp),ap_rk(ncomp,0:6),bp_rk(ncomp,0:6)) +Allocate(sig_ij(ncomp,ncomp),uij(ncomp,ncomp)) + +kij = 0.0 + + + +Allocate(mhs(ncomp), mhc(ncomp), ChemPot_res(ncomp), ChemPot_tot(ncomp) ) +Allocate(gij(ncomp,ncomp), gij_rk(ncomp,ncomp), dij_ab(ncomp,ncomp) ) + + +!belege dichteunabh�ngige Parameter (z0z,z1t,z2t,z3t) +z0t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t !total number density [particles/A^3] +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +zms = 1.0 - eta + +call PCSAFT_const(ap,bp) !get PCSAFT constants + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + xx(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + + m_mean = z0t / (PI/6.0) + m_rk(k) = ( mseg(k) - m_mean ) / rho + + + DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) + + ! --- derivatives of apar, bpar to rho_k --------------------------- + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + order1 = 0.0 + order2 = 0.0 + DO i = 1,ncomp + sig_ij(i,k) = 0.5 * ( dhs(i) + dhs(k) ) + uij(i,k) = (1.0 - kij(i,k)) * SQRT( eps(i) * eps(k) ) + order1 = order1 + xx(i)*xx(k)* mseg(i)*mseg(k)*sig_ij(i,k)**3 * uij(i,k)/t + order2 = order2 + xx(i)*xx(k)* mseg(i)*mseg(k)*sig_ij(i,k)**3 * (uij(i,k)/t)**2 + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*xx(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*xx(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + +End Do + +!residual + ChemPot_res(1:ncomp) = mhs(1:ncomp) + mhc(1:ncomp) + mdsp(1:ncomp) ! /kT [-] +!total + ChemPot_tot(1:ncomp) = ChemPot_res(1:ncomp) + log( xx(1:ncomp)*rho ) ! /kT [-] + +write(*,*)'rhob',xx(1:ncomp)*rho + +End Subroutine Chemical_Potential + + + + + + + + + +Subroutine PCSAFT_const(ap,bp) + +Implicit None + +!passed +REAL, INTENT(OUT) :: ap(0:6,3) +REAL, INTENT(OUT) :: bp(0:6,3) + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +End Subroutine PCSAFT_const + + + +End Module mod_ChemPot diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN.F90 new file mode 100644 index 000000000..909d7bf7c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN.F90 @@ -0,0 +1,347 @@ +Module mod_DFT_CHAIN + +Implicit None +private + + +public :: Chain_aux +public :: Chain_dFdrho + + + contains + + + +Subroutine Chain_aux(rhop,rhobar,lambda,user) + +Use BASIC_VARIABLES, Only: ncomp +Use EOS_VARIABLES, Only: dhs,rho +Use mod_DFT, Only: zp,dzp,fa + + +!PETSc module +Use PetscManagement + +#include + +!passed +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL,INTENT(OUT) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: lambda(user%gxs:user%gxe,ncomp) + +!local +INTEGER :: i,j,k +REAL :: dhsk +INTEGER :: fak,n +REAL :: zz,dz,xlo,xhi,integral_lamb,integral_rb +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int, lamb_int, rb_int +REAL,dimension(NMAX) :: y2_lamb, y2_rb +REAL :: rhopjk,rhopjp1k + + +!fak = maxval(fa(1:ncomp)) + +Do k = 1,ncomp + dhsk = dhs(k) + fak = fa(k) + 1 + + Do i = user%xs-fak,user%xe+fak !lambda und rhobar werden bis i+-sig gebraucht -> Schleife bis +- fa + n = 1 !this is the index of the arrays that will be passed to the spline integration routines + x_int = 0.0 + lamb_int = 0.0 + rb_int = 0.0 + + Do j = i-fak,i+fak !um lambda bei i zu berechnen, muss bis +- sig um i integriert werden -> Schleife bis +- fa + rhopjk = rhop(k,j) + rhopjp1k = rhop(k,j+1) + + + If( ( zp(i)-zp(j+1) ) < dhsk .and. ( zp(i) - zp(j) ) >= dhsk ) Then !the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand + + If(n/= 1) stop 'n /=1 in Chain_aux' !here always n=1! + zz = zp(j) - zp(i) !distance between grid points j and i + dz = zp(j+1) - (zp(i) - dhsk) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d + !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation + x_int(n) = 0.0 !array containing x-values for spline integration + + lamb_int(n) = rhopjk + (rhopjp1k - rhopjk)/dzp * (dzp-dz) !lineare interpolation analog zum FMT Teil + rb_int(n) = 0.0 !erklärung analog wie bei n3_int in FMT Teil + + + Else If (zp(j) > (zp(i)-dhsk) .and. zp(j) <= (zp(i)+dhsk)) Then !grid point j within i+-d + + n = n + 1 + x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! + zz = zp(j) - zp(i) + dz = dzp + lamb_int(n) = rhopjk + rb_int(n) = rhopjk * ( dhsk**2 - zz**2 ) + + If (zp(j) < (zp(i)+dhsk) .and. zp(j+1) >= (zp(i)+dhsk) ) Then !zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + + dz = zp(i) + dhsk - zp(j) + !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + rb_int(n) = 0.0 + lamb_int(n) = rhopjk + (rhopjp1k - rhopjk)/dzp * dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + + End If + End If + End Do + + + + !spline integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in Chain_aux (auch in AD Routine!!)' + + call spline ( x_int, lamb_int, n, 1.E30, 1.E30, y2_lamb ) + call spline ( x_int, rb_int, n, 1.E30, 1.E30, y2_rb ) + + call splint_integral ( x_int, lamb_int, y2_lamb, n, xlo, xhi, integral_lamb ) + call splint_integral ( x_int, rb_int, y2_rb, n, xlo, xhi, integral_rb ) + lambda(i,k) = 0.5 * integral_lamb / dhsk + rhobar(i,k) = 0.75 * integral_rb / dhsk**3 + + If(lambda(i,k) < epsilon(dz) ) lambda(i,k) = epsilon(dz) + !If ( lambda(i,k) < 0.5*xx(k)*rho ) write (*,*) 'warning: lambda too low',i,lambda(i,k) + !If ( k == 1 .AND. lambda(i,k) < 0.5*rhob(2,k) ) lambda(i,k) = 0.5*rhob(2,k) + + + End Do + +End Do + + +End Subroutine Chain_aux + + + + + + + + +Subroutine Chain_dFdrho(i,rhop,lambda,rhobar,dF_drho_CHAIN,f_ch,user) + +Use BASIC_VARIABLES, Only: ncomp,parame +Use EOS_VARIABLES, Only: dhs +Use mod_DFT, Only: zp,dzp,fa + +!PETSc module +Use PetscManagement + +#include + +!passed +INTEGER, INTENT(IN) :: i !the grid point to calculate dFdrho at +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL,INTENT(IN) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: lambda(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: dF_drho_CHAIN(user%xs:user%xe,ncomp) +REAL, INTENT(OUT) :: f_ch + + +!local +INTEGER :: j,k,n +REAL :: dhsk +INTEGER :: fak +REAL :: rhopjk,rhopjp1k,logrho,xlo,xhi +REAL :: ycorr(ncomp),dlny(ncomp,ncomp) +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int, int_1,int_2 !Fehlerwarnung falls 800 ueberschritten einbauen +REAL,dimension(NMAX) :: y2_1, y2_2 +REAL :: dz,zz,integral_1,integral_2 +REAL :: lamy + + + call Cavity_mix(rhobar(i,1:ncomp),ycorr,dlny) + + f_ch = 0.0 + + Do k = 1,ncomp + fak = fa(k) + dhsk = dhs(k) + n = 1 + x_int = 0.0 + int_1 = 0.0 + int_2 = 0.0 + + + Do j = i-fak,i+fak !es muss bis +- sig um i integriert werden + rhopjk = rhop(k,j) + rhopjp1k = rhop(k,j+1) + + If( ( zp(i)-zp(j+1) ) < dhsk .and. ( zp(i) - zp(j) ) >= dhsk ) Then !the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand + + If(n/= 1) stop 'n /=1 in Chain_dFdrho' !here always n=1! + zz = zp(j) - zp(i) !distance between grid points j and i + dz = zp(j+1) - (zp(i) - dhsk) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d + !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation + x_int(n) = 0.0 !array containing x-values for spline integration + int_1(n) = 0.0 !erklärung analog wie bei n3_int in FMT Teil + int_2(n) = rhopjk*lambda(j,k) + (rhopjp1k*lambda(j+1,k) - rhopjk*lambda(j,k) )/dzp * (dzp-dz) !lineare interpolation analog zum FMT Teil + + Else If (zp(j) > (zp(i)-dhsk) .and. zp(j) <= (zp(i)+dhsk)) Then !grid point j within i+-d + + n = n + 1 + x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! + zz = zp(j) - zp(i) + dz = dzp + int_1(n) = SUM( ( parame(1:ncomp,1)-1.0 ) * rhop(1:ncomp,j)*dlny(1:ncomp,k) ) & + * 0.75/dhsk**3 * (dhsk**2-zz**2) + int_2(n) = rhopjk / lambda(j,k) + + If (zp(j) < (zp(i)+dhsk) .and. zp(j+1) >= (zp(i)+dhsk) ) Then !zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + + dz = zp(i) + dhsk - zp(j) + !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + int_1(n) = 0.0 + int_2(n) = rhopjk*lambda(j,k) + (rhopjp1k*lambda(j+1,k) - rhopjk*lambda(j,k) )/dzp * dz + +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + + End If + End If + End Do + + !Spline Integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in Chain_dFdrho (auch in AD Routine!!)' + + CALL spline ( x_int, int_1, n, 1.E30, 1.E30, y2_1 ) + CALL splint_integral( x_int, int_1, y2_1, n, xlo, xhi, integral_1 ) + CALL spline ( x_int, int_2, n, 1.E30, 1.E30, y2_2 ) + CALL splint_integral( x_int, int_2, y2_2, n, xlo, xhi, integral_2 ) + + If(rhop(k,i) < epsilon(dz)) rhop = epsilon(dz) + + dF_drho_CHAIN(i,k) = (parame(k,1) - 1.0)*log(rhop(k,i)) & + - (parame(k,1) - 1.0) * ( log(ycorr(k)*lambda(i,k))-1.0 + 0.5*integral_2/dhsk ) - integral_1 + + + f_ch = f_ch + ( parame(k,1) - 1.0 ) * rhop(k,i) * ( log(rhop(k,i)) - 1.0 ) & + - ( parame(k,1) - 1.0 ) * rhop(k,i) * ( log(ycorr(k)*lambda(i,k)) - 1.0 ) + + + + + +End Do + + + + + + + + + + + + +End Subroutine Chain_dFdrho + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE Cavity_mix ( rhoi, ycorr, dlnydr ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES, ONLY: ncomp,parame + USE EOS_VARIABLES, Only: dhs + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: rhoi(ncomp) + REAL, INTENT(OUT) :: ycorr(ncomp) + REAL, INTENT(OUT) :: dlnydr(ncomp,ncomp) ! this is: d( ln( yij ) ) / d( rho(k) ) used with i=j +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: z0, z1, z2, z3, zms, z1_rk, z2_rk, z3_rk + REAL, DIMENSION(ncomp,ncomp) :: dij_ab, gij, gij_rk +! ---------------------------------------------------------------------- + + z0 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) ) + z1 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp) ) + z2 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**2 ) + z3 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + + zms = 1.0 - z3 + + DO i = 1,ncomp + DO j=1,ncomp + dij_ab(i,j)=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + ENDDO + END DO + + DO k = 1, ncomp + DO i = 1, ncomp + z1_rk = PI/6.0 * parame(k,1) * dhs(k) + z2_rk = PI/6.0 * parame(k,1) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * parame(k,1) * dhs(k)**3 + !DO j = 1, ncomp + j = i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms & + + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + !dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + ! + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + !END DO + + ycorr(i) = gij(i,i) + dlnydr(i,k) = gij_rk(i,i) / gij(i,i) + + END DO + END DO + +END SUBROUTINE Cavity_mix + + + + + + + + + + +End Module mod_DFT_CHAIN \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN_d.F90 new file mode 100644 index 000000000..1a774a042 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_CHAIN_d.F90 @@ -0,0 +1,427 @@ + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +MODULE MOD_DFT_CHAIN_D + IMPLICIT NONE + PRIVATE + PUBLIC chain_aux_d + PUBLIC chain_dfdrho_d + +CONTAINS +! Differentiation of chain_aux in forward (tangent) mode: +! variations of useful results: rhobar lambda +! with respect to varying inputs: rhop + SUBROUTINE CHAIN_AUX_D(rhop, rhopd, rhobar, rhobard, lambda, lambdad, & +& user) + USE BASIC_VARIABLES, ONLY : ncomp + USE EOS_VARIABLES, Only: dhs,rho + USE MOD_DFT, ONLY : zp, dzp, fa + + !PETSc module + Use PetscManagement + + IMPLICIT NONE + +#include + + +!passed +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL,INTENT(OUT) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: rhobard(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: lambda(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: lambdad(user%gxs:user%gxe,ncomp) + +!local + INTEGER :: i, j, k + REAL :: dhsk + INTEGER :: fak, n + REAL :: zz, dz, xlo, xhi, integral_lamb, integral_rb + REAL :: integral_lambd, integral_rbd + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, lamb_int, rb_int + REAL, DIMENSION(NMAX) :: lamb_intd, rb_intd + REAL, DIMENSION(NMAX) :: y2_lamb, y2_rb + REAL, DIMENSION(NMAX) :: y2_lambd, y2_rbd + REAL :: rhopjk, rhopjp1k + REAL :: rhopjkd, rhopjp1kd + INTRINSIC EPSILON + REAL :: result1 + + + + rhobard = 0.0 + lambdad = 0.0 + y2_rbd = 0.0 + y2_lambd = 0.0 +!fak = maxval(fa(1:ncomp)) + DO k=1,ncomp + dhsk = dhs(k) + fak = fa(k) + 1 + + Do i = user%xs-fak,user%xe+fak !lambda und rhobar werden bis i+-sig gebraucht -> Schleife bis +- fa + n = 1 + x_int = 0.0 + lamb_int = 0.0 + rb_int = 0.0 + rb_intd = 0.0 + lamb_intd = 0.0 +!um lambda bei i zu berechnen, muss bis +- sig um i integriert werden -> Schleife bis +- fa + DO j=i-fak,i+fak + rhopjkd = rhopd(k, j) + rhopjk = rhop(k, j) + rhopjp1kd = rhopd(k, j+1) + rhopjp1k = rhop(k, j+1) + IF (zp(i) - zp(j+1) .LT. dhsk .AND. zp(i) - zp(j) .GE. dhsk) & +& THEN +!the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is j +!ust the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand +!here always n=1! + IF (n .NE. 1) THEN + GOTO 100 + ELSE +!distance between grid points j and i + zz = zp(j) - zp(i) +!the part of the intervall between zp(j) and zp(j+1) which is already within i-d + dz = zp(j+1) - (zp(i)-dhsk) +!if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +!liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +!array containing x-values for spline integration + x_int(n) = 0.0 +!lineare interpolation analog zum FMT Teil + lamb_intd(n) = rhopjkd + (dzp-dz)*(rhopjp1kd-rhopjkd)/dzp + lamb_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*(dzp-dz) +!erklärung analog wie bei n3_int in FMT Teil + rb_intd(n) = 0.0 + rb_int(n) = 0.0 + END IF + ELSE IF (zp(j) .GT. zp(i) - dhsk .AND. zp(j) .LE. zp(i) + dhsk& +& ) THEN +!grid point j within i+-d + n = n + 1 +!first time in this If condition, dz is stil the old value from above! + x_int(n) = x_int(n-1) + dz + zz = zp(j) - zp(i) + dz = dzp + lamb_intd(n) = rhopjkd + lamb_int(n) = rhopjk + rb_intd(n) = (dhsk**2-zz**2)*rhopjkd + rb_int(n) = rhopjk*(dhsk**2-zz**2) + IF (zp(j) .LT. zp(i) + dhsk .AND. zp(j+1) .GE. zp(i) + dhsk& +& ) THEN +!zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + dz = zp(i) + dhsk - zp(j) +!If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +!= x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + rb_intd(n) = 0.0 + rb_int(n) = 0.0 + lamb_intd(n) = rhopjkd + dz*(rhopjp1kd-rhopjkd)/dzp + lamb_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + END IF + END IF + END DO +!spline integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, lamb_int, lamb_intd, n, 1.e30, 1.e30, & +& y2_lamb, y2_lambd) + CALL SPLINE_D(x_int, rb_int, rb_intd, n, 1.e30, 1.e30, y2_rb, & +& y2_rbd) + CALL SPLINT_INTEGRAL_D(x_int, lamb_int, lamb_intd, y2_lamb, & +& y2_lambd, n, xlo, xhi, integral_lamb, & +& integral_lambd) + CALL SPLINT_INTEGRAL_D(x_int, rb_int, rb_intd, y2_rb, y2_rbd, n& +& , xlo, xhi, integral_rb, integral_rbd) + lambdad(i, k) = 0.5*integral_lambd/dhsk + lambda(i, k) = 0.5*integral_lamb/dhsk + rhobard(i, k) = 0.75*integral_rbd/dhsk**3 + rhobar(i, k) = 0.75*integral_rb/dhsk**3 + result1 = EPSILON(dz) + IF (lambda(i, k) .LT. result1) lambda(i, k) = EPSILON(dz) + END DO + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE CHAIN_AUX_D + + + + +! Differentiation of chain_dfdrho in forward (tangent) mode: +! variations of useful results: df_drho_chain rhop +! with respect to varying inputs: rhobar df_drho_chain lambda +! rhop + SUBROUTINE CHAIN_DFDRHO_D(i, rhop, rhopd, lambda, lambdad, rhobar, & +& rhobard, df_drho_chain, df_drho_chaind, user) + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + USE MOD_DFT, ONLY : zp, dzp, fa + + !PETSc module + Use PetscManagement + IMPLICIT NONE + +#include + + +!passed +INTEGER, INTENT(IN) :: i !the grid point to calculate dFdrho at +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL,INTENT(IN) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: rhobard(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: lambda(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: lambdad(user%gxs:user%gxe,ncomp) + + + +REAL,INTENT(OUT) :: dF_drho_CHAIN(user%xs:user%xe,ncomp) +REAL,INTENT(OUT) :: dF_drho_CHAINd(user%xs:user%xe,ncomp) + + +!local + INTEGER :: j, k, n + REAL :: dhsk + INTEGER :: fak + REAL :: rhopjk, rhopjp1k, logrho, xlo, xhi + REAL :: rhopjkd, rhopjp1kd + REAL :: ycorr(ncomp), dlny(ncomp, ncomp) + REAL :: ycorrd(ncomp), dlnyd(ncomp, ncomp) + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, int_1, int_2 + REAL, DIMENSION(NMAX) :: int_1d, int_2d + REAL, DIMENSION(NMAX) :: y2_1, y2_2 + REAL, DIMENSION(NMAX) :: y2_1d, y2_2d + REAL :: dz, zz, integral_1, integral_2 + REAL :: integral_1d, integral_2d + REAL :: lamy + INTRINSIC SUM + INTRINSIC EPSILON + INTRINSIC LOG + REAL, DIMENSION(ncomp) :: arg1 + REAL, DIMENSION(ncomp) :: arg1d + REAL :: result1 + REAL :: arg10 + REAL :: arg10d + + + + + + CALL CAVITY_MIX_D(rhobar(i, 1:ncomp), rhobard(i, 1:ncomp), ycorr, & +& ycorrd, dlny, dlnyd) + y2_1d = 0.0 + y2_2d = 0.0 + DO k=1,ncomp + fak = fa(k) + dhsk = dhs(k) + n = 1 + x_int = 0.0 + int_1 = 0.0 + int_2 = 0.0 + int_1d = 0.0 + int_2d = 0.0 +!es muss bis +- sig um i integriert werden + DO j=i-fak,i+fak + rhopjkd = rhopd(k, j) + rhopjk = rhop(k, j) + rhopjp1kd = rhopd(k, j+1) + rhopjp1k = rhop(k, j+1) + IF (zp(i) - zp(j+1) .LT. dhsk .AND. zp(i) - zp(j) .GE. dhsk) & +& THEN +!the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is j +!ust the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand +!here always n=1! + IF (n .NE. 1) THEN + GOTO 100 + ELSE +!distance between grid points j and i + zz = zp(j) - zp(i) +!the part of the intervall between zp(j) and zp(j+1) which is already within i-d + dz = zp(j+1) - (zp(i)-dhsk) +!if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +!liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +!array containing x-values for spline integration + x_int(n) = 0.0 +!erklärung analog wie bei n3_int in FMT Teil + int_1d(n) = 0.0 + int_1(n) = 0.0 +!lineare interpolation analog zum FMT Teil + int_2d(n) = rhopjkd*lambda(j, k) + rhopjk*lambdad(j, k) + (& +& dzp-dz)*(rhopjp1kd*lambda(j+1, k)+rhopjp1k*lambdad(j+1, k)& +& -rhopjkd*lambda(j, k)-rhopjk*lambdad(j, k))/dzp + int_2(n) = rhopjk*lambda(j, k) + (rhopjp1k*lambda(j+1, k)-& +& rhopjk*lambda(j, k))/dzp*(dzp-dz) + END IF + ELSE IF (zp(j) .GT. zp(i) - dhsk .AND. zp(j) .LE. zp(i) + dhsk) & +& THEN +!grid point j within i+-d + n = n + 1 +!first time in this If condition, dz is stil the old value from above! + x_int(n) = x_int(n-1) + dz + zz = zp(j) - zp(i) + dz = dzp + arg1d(:) = (parame(1:ncomp,1)-1.0)*(rhopd(1:ncomp, j)*dlny(1:ncomp& +& , k)+rhop(1:ncomp, j)*dlnyd(1:ncomp, k)) + arg1(:) = (parame(1:ncomp,1)-1.0)*rhop(1:ncomp, j)*dlny(1:ncomp, k& +& ) + int_1d(n) = (dhsk**2-zz**2)*0.75*SUM(arg1d(:))/dhsk**3 + int_1(n) = SUM(arg1(:))*0.75/dhsk**3*(dhsk**2-zz**2) + int_2d(n) = (rhopjkd*lambda(j, k)-rhopjk*lambdad(j, k))/lambda& +& (j, k)**2 + int_2(n) = rhopjk/lambda(j, k) + IF (zp(j) .LT. zp(i) + dhsk .AND. zp(j+1) .GE. zp(i) + dhsk) & +& THEN +!zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + dz = zp(i) + dhsk - zp(j) +!If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +!= x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + int_1d(n) = 0.0 + int_1(n) = 0.0 + int_2d(n) = rhopjkd*lambda(j, k) + rhopjk*lambdad(j, k) + dz& +& *(rhopjp1kd*lambda(j+1, k)+rhopjp1k*lambdad(j+1, k)-& +& rhopjkd*lambda(j, k)-rhopjk*lambdad(j, k))/dzp + int_2(n) = rhopjk*lambda(j, k) + (rhopjp1k*lambda(j+1, k)-& +& rhopjk*lambda(j, k))/dzp*dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + END IF + END IF + END DO +!Spline Integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, int_1, int_1d, n, 1.e30, 1.e30, y2_1, y2_1d) + CALL SPLINT_INTEGRAL_D(x_int, int_1, int_1d, y2_1, y2_1d, n, xlo, & +& xhi, integral_1, integral_1d) + CALL SPLINE_D(x_int, int_2, int_2d, n, 1.e30, 1.e30, y2_2, y2_2d) + CALL SPLINT_INTEGRAL_D(x_int, int_2, int_2d, y2_2, y2_2d, n, xlo, & +& xhi, integral_2, integral_2d) + result1 = EPSILON(dz) + IF (rhop(k, i) .LT. result1) THEN + rhop = EPSILON(dz) + rhopd = 0.0 + END IF + arg10d = ycorrd(k)*lambda(i, k) + ycorr(k)*lambdad(i, k) + arg10 = ycorr(k)*lambda(i, k) + df_drho_chaind(i, k) = (parame(k,1)-1.0)*rhopd(k, i)/rhop(k, i) - (& +& parame(k,1)-1.0)*(arg10d/arg10+0.5*integral_2d/dhsk) - integral_1d + df_drho_chain(i, k) = (parame(k,1)-1.0)*LOG(rhop(k, i)) - (parame(k,1)-1.0& +& )*(LOG(arg10)-1.0+0.5*integral_2/dhsk) - integral_1 + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE CHAIN_DFDRHO_D + + + +! Differentiation of cavity_mix in forward (tangent) mode: +! variations of useful results: ycorr dlnydr +! with respect to varying inputs: rhoi +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE CAVITY_MIX_D(rhoi, rhoid, ycorr, ycorrd, dlnydr, dlnydrd) +! + USE PARAMETERS, ONLY : pi + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: rhoi(ncomp) + REAL, INTENT(IN) :: rhoid(ncomp) + REAL, INTENT(OUT) :: ycorr(ncomp) + REAL, INTENT(OUT) :: ycorrd(ncomp) +! this is: d( ln( yij ) ) / d( rho(k) ) used with i=j + REAL, INTENT(OUT) :: dlnydr(ncomp, ncomp) + REAL, INTENT(OUT) :: dlnydrd(ncomp, ncomp) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: z0, z1, z2, z3, zms, z1_rk, z2_rk, z3_rk + REAL :: z2d, z3d, zmsd + REAL, DIMENSION(ncomp, ncomp) :: dij_ab, gij, gij_rk + REAL, DIMENSION(ncomp, ncomp) :: gijd, gij_rkd + INTRINSIC SUM + REAL, DIMENSION(ncomp) :: arg1 + REAL, DIMENSION(ncomp) :: arg1d +! ---------------------------------------------------------------------- + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1) + z0 = pi/6.0*SUM(arg1(:)) + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1)*dhs(1:ncomp) + z1 = pi/6.0*SUM(arg1(:)) + arg1d(:) = parame(1:ncomp,1)*dhs(1:ncomp)**2*rhoid(1:ncomp) + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1)*dhs(1:ncomp)**2 + z2d = pi*SUM(arg1d(:))/6.0 + z2 = pi/6.0*SUM(arg1(:)) + arg1d(:) = parame(1:ncomp,1)*dhs(1:ncomp)**3*rhoid(1:ncomp) + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1)*dhs(1:ncomp)**3 + z3d = pi*SUM(arg1d(:))/6.0 + z3 = pi/6.0*SUM(arg1(:)) + zmsd = -z3d + zms = 1.0 - z3 + DO i=1,ncomp + DO j=1,ncomp + dij_ab(i, j) = dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + END DO + END DO + ycorrd = 0.0 + dlnydrd = 0.0 + gij_rkd = 0.0 + gijd = 0.0 + DO k=1,ncomp + DO i=1,ncomp + z1_rk = pi/6.0*parame(k,1)*dhs(k) + z2_rk = pi/6.0*parame(k,1)*dhs(k)*dhs(k) + z3_rk = pi/6.0*parame(k,1)*dhs(k)**3 +!DO j = 1, ncomp + j = i + gijd(i, j) = ((3.0*dij_ab(i, j)*z2d*zms-3.0*dij_ab(i, j)*z2*zmsd& +& )/zms-3.0*dij_ab(i, j)*z2*zmsd/zms)/zms**2 - zmsd/zms**2 + (& +& 2.0*2*dij_ab(i, j)**2*z2*z2d*zms**3-2.0*dij_ab(i, j)**2*z2**2*& +& 3*zms**2*zmsd)/(zms**3)**2 + gij(i, j) = 1.0/zms + 3.0*dij_ab(i, j)*z2/zms/zms + 2.0*(dij_ab(& +& i, j)*z2)**2/zms**3 +!dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & +! + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + gij_rkd(i, j) = (-2)*(z3_rk*zmsd/zms)/zms**2 + ((3.0*dij_ab(i, j& +& )*(2.0*z3_rk*z2d*zms-2.0*z2*z3_rk*zmsd)/zms-3.0*dij_ab(i, j)*(& +& z2_rk+2.0*z2*z3_rk/zms)*zmsd)/zms-3.0*dij_ab(i, j)*(z2_rk+2.0*& +& z2*z3_rk/zms)*zmsd/zms)/zms**2 + (dij_ab(i, j)**2*z2d*zms**3-& +& dij_ab(i, j)**2*z2*3*zms**2*zmsd)*(4.0*z2_rk+6.0*z2*z3_rk/zms)& +& /zms**6 + dij_ab(i, j)**2*z2*(6.0*z3_rk*z2d*zms-6.0*z2*z3_rk*& +& zmsd)/zms**5 + gij_rk(i, j) = z3_rk/zms/zms + 3.0*dij_ab(i, j)*(z2_rk+2.0*z2*& +& z3_rk/zms)/zms/zms + dij_ab(i, j)**2*z2/zms**3*(4.0*z2_rk+6.0*& +& z2*z3_rk/zms) +!END DO + ycorrd(i) = gijd(i, i) + ycorr(i) = gij(i, i) + dlnydrd(i, k) = (gij_rkd(i, i)*gij(i, i)-gij_rk(i, i)*gijd(i, i)& +& )/gij(i, i)**2 + dlnydr(i, k) = gij_rk(i, i)/gij(i, i) + END DO + END DO + END SUBROUTINE CAVITY_MIX_D + +END MODULE MOD_DFT_CHAIN_D diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA.F90 new file mode 100644 index 000000000..6893cfef3 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA.F90 @@ -0,0 +1,688 @@ +Module mod_DFT_DISP_WDA + + +Implicit None + +Private + +Public :: rhoi_disp_wd +Public :: a_disp_pcsaft +Public :: dF_disp_drho_wda + + + + + + Contains + + + + SUBROUTINE rhoi_disp_wd ( discret, fa_psi, fa_psi_max, psi_j, rhop, rhoi_disp,user ) + + + Use PetscManagement + Use basic_variables, ONLY: ncomp, t, parame + Use mod_DFT, Only: zp,dzp + IMPLICIT NONE + +#include + +! +! ---------------------------------------------------------------------- + Type (userctx) :: user + PetscScalar :: rhop(ncomp,user%gxs:user%gxe) + INTEGER, INTENT(IN) :: discret + INTEGER, INTENT(IN) :: fa_psi(ncomp) + INTEGER, INTENT(IN) :: fa_psi_max +! REAL, INTENT(IN) :: dzp + REAL, INTENT(IN) :: psi_j(ncomp) +! REAL, INTENT(IN) :: zp(user%gxs:user%gxe) + REAL, INTENT(OUT) :: rhoi_disp(user%gxs:user%gxe,ncomp) +! ---------------------------------------------------------------------- + INTEGER :: ii, jj, icomp, nn + REAL :: zmin, zl, zr + REAL :: int1, zz1, xl, xh + REAL, DIMENSION(700) :: y2, rx, ry1 +! ---------------------------------------------------------------------- + +!write(*,*)'rhoi_wd' + + zmin = 1d-6 + DO icomp = 1, ncomp + DO ii = (user%xs-fa_psi_max),(user%xe+fa_psi_max)!(-fa_psi_max), (discret+fa_psi_max) + nn = 0 + zl = zp(ii) - psi_j(icomp) + zr = zp(ii) + psi_j(icomp) + DO jj = (ii-fa_psi(icomp)), (ii+fa_psi(icomp)) + IF ( zp(jj+1) > (zl+zmin) ) THEN + ! first position: left side of the sphere: zl. Linear Interpolation of h's + IF ( nn == 0 ) THEN + nn = nn + 1 + rx(1) = zl + ry1(1) = 0.0 ! = 0.75*rhop(ii-fa,icomp)*( d.**2 -d.**2 ) +!write(*,*)'FIRST',nn,rx(nn),ry1(nn) + ! middle position: within the sphere: zl < jj < zr + ELSE + nn = nn + 1 + zz1 = zp(jj)-zp(ii) ! distance z12 between 1 and 2 + rx(nn) = zp(jj) + ry1(nn) = rhop(icomp,jj) * (psi_j(icomp)*psi_j(icomp) - zz1*zz1) +!write(*,*)'MIDDLE',nn,rx(nn),ry1(nn) + ! last position: right side of the sphere: zr. Linear Interpolation of h's + IF ( zp(jj+1) > (zr-zmin) ) THEN + nn = nn + 1 + rx(nn) = zr + ry1(nn) = 0.0 +!write(*,*)'LAST',nn,rx(nn),ry1(nn) + EXIT + END IF + END IF + END IF + END DO + xl = rx(1) + xh = rx(nn) + + if( nn >= 700 ) then + write(*,*) 'rhoi_disp_wd: bigger vectors rx, ry1, ry2, ... required!', nn + pause + end if + + CALL spline ( rx(1:nn), ry1(1:nn), nn, 1.E30, 1.E30, y2(1:nn) ) + CALL splint_integral ( rx(1:nn), ry1(1:nn), y2(1:nn), nn, xl, xh, int1 ) + rhoi_disp(ii,icomp) = int1 * 0.75/psi_j(icomp)**3 + + if ( rhoi_disp(ii,icomp) < 0.0 ) then + rhoi_disp(ii,icomp) = 0.0 + do jj = 2, nn + rhoi_disp(ii,icomp) = rhoi_disp(ii,icomp) + (ry1(jj)+ry1(jj-1))/2.0 *(rx(jj)-rx(jj-1)) + end do + end if + if ( rhoi_disp(ii,icomp) < 0.0 ) rhoi_disp(ii,icomp) = rhop(icomp,ii) + END DO + END DO + + +END SUBROUTINE rhoi_disp_wd + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE a_disp_pcsaft +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE a_disp_pcsaft( discret, fa_psi, fa_psi_max, rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr,user ) + + Use PetscManagement +! + USE parameters, ONLY: PI, np, nc + USE basic_variables, ONLY: ncomp, t, parame, xi, densta, ensemble_flag + USE eos_variables, ONLY: dhs, sig_ij, uij + USE eos_constants, ONLY: ap, bp + IMPLICIT NONE + +#include + + + + +! +! ---------------------------------------------------------------------- + Type (userctx) :: user + INTEGER, INTENT(IN) :: discret + INTEGER, INTENT(IN) :: fa_psi(ncomp) + INTEGER, INTENT(IN) :: fa_psi_max + REAL, INTENT(IN) :: rhoi_disp(user%gxs:user%gxe,ncomp) + REAL, INTENT(OUT) :: rho_disp(user%gxs:user%gxe) + REAL, INTENT(OUT) :: adisp(user%gxs:user%gxe) + REAL, INTENT(OUT) :: mydisp(user%gxs:user%gxe,ncomp) + REAL, INTENT(OUT) :: dadisp_dr(user%gxs:user%gxe,ncomp) +! ---------------------------------------------------------------------- + INTEGER :: jj, m + INTEGER :: icomp, jcomp, kcomp + REAL, DIMENSION(ncomp) :: x_disp + REAL :: eta_disp, zms_disp + REAL, DIMENSION(0:6) :: apar, bpar, apar_rk, bpar_rk + REAL :: m_mean, C1, I1, I2 + REAL :: r2_ord1, r2_ord2 + REAL :: eta_rk, m_mean_rk, zms2eta + REAL :: C1_m_mean, C1_eta, C1_rk + REAL :: I1_rk, I2_rk + REAL :: r2_ord1_rk, r2_ord2_rk + REAL :: term1, term2, term3 + INTEGER :: iphas + REAL, DIMENSION(np,nc) :: mydisp2 +! ---------------------------------------------------------------------- + + DO icomp = 1, ncomp + DO jj = (user%xs-fa_psi_max),(user%xe+fa_psi_max)!(-fa_psi_max), (discret+fa_psi_max) + m_mean = 0. + eta_disp = 0. +! rho_disp(jj) = sum( rhop(jj,1:ncomp) ) + rho_disp(jj) = sum( rhoi_disp(jj,1:ncomp) ) + do kcomp=1, ncomp +! x_disp(kcomp) = rhop(jj,kcomp) / rho_disp(jj) + x_disp(kcomp) = rhoi_disp(jj,kcomp) / rho_disp(jj) + m_mean = m_mean + x_disp(kcomp) * parame(kcomp,1) +! eta_disp = eta_disp + rhop(jj,kcomp) * parame(kcomp,1) * dhs(kcomp)**3. + eta_disp = eta_disp + rhoi_disp(jj,kcomp) * parame(kcomp,1) * dhs(kcomp)**3. + end do + eta_disp = eta_disp * PI / 6. + zms_disp = 1. - eta_disp + if( zms_disp <= 0. ) write(*,'(a56,i6,f12.5)') 'system too dense for disp contribution ( jj, eta_disp ):', jj, eta_disp + + + ! quantities of the dispersive free energy contribution + I1 = 0. + I2 = 0. + do m = 0, 6 + apar(m) = ap(m,1) + (1.-1./m_mean)*ap(m,2) + (1.-1./m_mean)*(1.-2./m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.-1./m_mean)*bp(m,2) + (1.-1./m_mean)*(1.-2./m_mean)*bp(m,3) + I1 = I1 + apar(m) * eta_disp**m + I2 = I2 + bpar(m) * eta_disp**m + end do + + r2_ord1 = 0. + r2_ord2 = 0. + do kcomp = 1, ncomp + do jcomp = 1, ncomp + r2_ord1 = r2_ord1 + rhoi_disp(jj,kcomp)*rhoi_disp(jj,jcomp)*parame(kcomp,1) & + *parame(jcomp,1)*sig_ij(kcomp,jcomp)**3 * uij(kcomp,jcomp)/t + r2_ord2 = r2_ord2 + rhoi_disp(jj,kcomp)*rhoi_disp(jj,jcomp)*parame(kcomp,1) & + *parame(jcomp,1)*sig_ij(kcomp,jcomp)**3 * (uij(kcomp,jcomp)/t)**2 + end do + end do + + C1 = (1.-m_mean)*(20.*eta_disp-27.*eta_disp**2 +12.*eta_disp**3 -2.*eta_disp**4 )/(zms_disp*(2.-eta_disp))**2 + C1 = 1. + m_mean*(8.*eta_disp-2.*eta_disp**2)/zms_disp**4 + C1 + C1 = 1. / C1 + + + ! dispersive free energy contribution + adisp(jj) = -2.*PI*I1*r2_ord1/rho_disp(jj) - PI*C1*m_mean*I2*r2_ord2/rho_disp(jj) + + + ! quantity-derivatives of the dispersive free energy contribution + m_mean_rk = ( parame(icomp,1) - m_mean ) / rho_disp(jj) + + do m = 0, 6 + apar_rk(m) = m_mean_rk/m_mean**2 * ( ap(m,2) + (3. - 4./m_mean) * ap(m,3) ) + bpar_rk(m) = m_mean_rk/m_mean**2 * ( bp(m,2) + (3. - 4./m_mean) * bp(m,3) ) + end do + eta_rk = parame(icomp,1) * dhs(icomp)**3. * PI / 6. + I1_rk = apar_rk(0) + apar(1)*eta_rk + apar_rk(1)*eta_disp + I2_rk = bpar_rk(0) + bpar(1)*eta_rk + bpar_rk(1)*eta_disp + do m = 2, 6 + I1_rk = I1_rk + apar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + apar_rk(m)*eta_disp**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + bpar_rk(m)*eta_disp**REAL(m) + end do + + r2_ord1_rk = 0. + r2_ord2_rk = 0. + do kcomp = 1,ncomp + r2_ord1_rk = r2_ord1_rk + rhoi_disp(jj,kcomp) * parame(kcomp,1) * sig_ij(icomp,kcomp)**3 * uij(icomp,kcomp)/t + r2_ord2_rk = r2_ord2_rk + rhoi_disp(jj,kcomp) * parame(kcomp,1) * sig_ij(icomp,kcomp)**3 *(uij(icomp,kcomp)/t)**2 + end do + r2_ord1_rk = 2. * parame(icomp,1) * r2_ord1_rk + r2_ord2_rk = 2. * parame(icomp,1) * r2_ord2_rk + + zms2eta = zms_disp * (2.-eta_disp) + C1_m_mean = ( 8.*eta_disp - 2.*eta_disp*eta_disp ) / zms_disp**4 & + - ( 20.*eta_disp - 27.*eta_disp*eta_disp + 12.*eta_disp**3 - 2.*eta_disp**4 ) / zms2eta**2 + C1_eta = m_mean * ( 8. + 20.*eta_disp - 4.*eta_disp*eta_disp ) / zms_disp**5 & + + (1. - m_mean) * ( 40. - 48.*eta_disp + 12.*eta_disp*eta_disp + 2.*eta_disp**3 ) / zms2eta**3 + C1_rk = - C1 * C1 * ( eta_rk * C1_eta + m_mean_rk * C1_m_mean ) + + + ! chemical potential and derivative of adisp (analytically) + term1 = - 2. * PI * ( I1 * r2_ord1_rk + r2_ord1 * I1_rk ) + term2 = - PI * C1 * m_mean * ( I2 * r2_ord2_rk + r2_ord2 * I2_rk ) + term3 = - PI * I2 * r2_ord2 * ( m_mean * C1_rk + C1 * m_mean_rk ) + mydisp(jj,icomp) = term1 + term2 + term3 + dadisp_dr(jj,icomp) = ( mydisp(jj,icomp) - adisp(jj) ) / rho_disp(jj) + + + ! chemical potential and derivative of adisp (numerically) +! do kcomp=1, ncomp +! xi(1,kcomp) = x_disp(kcomp) +! end do +! iphas = 1 +! ensemble_flag = 'tv' +! densta(1) = eta_disp +! call ONLY_ONE_TERM_EOS_NUMERICAL ( 'disp_term', 'PC-SAFT ' ) +! if( rho_disp(jj) /= 0. ) CALL FUGACITY(mydisp2) +! call RESTORE_PREVIOUS_EOS_NUMERICAL +! mydisp(jj,1:ncomp) = mydisp2(iphas,1:ncomp) +! dadisp_dr(jj,icomp) = ( mydisp(jj,icomp) - adisp(jj) ) / rho_disp(jj) + + + if( rho_disp(jj) == 0. ) then + adisp(jj) = 0. + mydisp(jj,icomp) = 0. + dadisp_dr(jj,icomp) = 0. + end if + + END DO + END DO + + +END SUBROUTINE a_disp_pcsaft + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dF_disp_drho_wda +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dF_disp_drho_wda( ii, WDA_var, fa_psi, psi_j, rhop, rhop_sum, & + rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr, dF_drho_att,user ) + + Use PetscManagement + Use basic_variables, ONLY: ncomp + Use mod_DFT, Only: zp + IMPLICIT NONE + +#include + +! +! ---------------------------------------------------------------------- + Type (userctx) :: user + PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ii, WDA_var + INTEGER, INTENT(IN) :: fa_psi(ncomp) + REAL, INTENT(IN) :: psi_j(ncomp) +! REAL, INTENT(IN) :: zp(user%gxs:user%gxe) + REAL, INTENT(IN) :: adisp(user%gxs:user%gxe) + REAL, INTENT(IN) :: mydisp(user%gxs:user%gxe,ncomp) + REAL, INTENT(IN) :: rhop_sum(user%gxs:user%gxe) + REAL, INTENT(IN) :: rhoi_disp(user%gxs:user%gxe,ncomp) + REAL, INTENT(IN) :: rho_disp(user%gxs:user%gxe) + REAL, INTENT(IN) :: dadisp_dr(user%gxs:user%gxe,ncomp) + REAL, INTENT(OUT) :: dF_drho_att(ncomp) +! ---------------------------------------------------------------------- + INTEGER :: jj, icomp, nn + REAL :: int3 + REAL :: zmin, zl, zr, zz1, xl, xh + REAL, DIMENSION(700) :: y2, hx, hy3 +! ---------------------------------------------------------------------- + + zmin = 1d-6 + DO icomp = 1, ncomp + nn = 0 + zl = zp(ii) - psi_j(icomp) + zr = zp(ii) + psi_j(icomp) + DO jj = (ii-fa_psi(icomp)), (ii+fa_psi(icomp)) + IF ( zp(jj+1) > (zl+zmin) ) THEN + ! first position: left side of the sphere: zl. Linear Interpolation of h's + IF ( nn == 0 ) THEN + nn = nn + 1 + hx(1) = zl + hy3(1) = 0. +!write(*,*)'FIRST',nn,hx(nn),hy3(nn) + ! middle position: within the sphere: zl < jj < zr + ELSE + nn = nn + 1 + zz1 = zp(jj) - zp(ii) ! distance z12 between 1 and 2 + hx(nn) = zp(jj) + if(WDA_var == 1) hy3(nn) = mydisp(jj,icomp) * ( psi_j(icomp)*psi_j(icomp) - zz1**2 ) + if(WDA_var == 2) hy3(nn) = rhop_sum(jj) * dadisp_dr(jj,icomp) * ( psi_j(icomp)*psi_j(icomp) - zz1**2 ) +!write(*,*)'MIDDLE',nn,hx(nn),hy3(nn) + ! last position: right side of the sphere: zr. Linear Interpolation of h's + IF ( zp(jj+1) > (zr-zmin) ) THEN + nn = nn + 1 + hx(nn) = zr + hy3(nn) = 0. +!write(*,*)'LAST',nn,hx(nn),hy3(nn) + + EXIT + END IF + END IF + END IF + END DO + xl = hx(1) + xh = hx(nn) + + if( nn >= 700 ) then + write(*,*) 'dF_disp_wd_pcsaft: bigger vectors hx, hy3, ... required!', nn + pause + end if + + CALL spline ( hx(1:nn), hy3(1:nn), nn, 1.E30, 1.E30, y2(1:nn) ) + CALL splint_integral( hx(1:nn), hy3(1:nn), y2(1:nn), nn, xl, xh, int3 ) + + if(WDA_var == 1) dF_drho_att(icomp) = int3 * 0.75 / psi_j(icomp)**3. + if(WDA_var == 2) dF_drho_att(icomp) = int3 * 0.75 / psi_j(icomp)**3. + adisp(ii) + END DO + + +END SUBROUTINE dF_disp_drho_wda + + + +End Module mod_DFT_DISP_WDA + + +! ! ! +! ! ! Subroutine DISP_Weighted_Densities(rhop, rhop_wd, user) +! ! ! +! ! ! Use PetscManagement +! ! ! Use BASIC_VARIABLES, Only: ncomp +! ! ! Use mod_DFT, Only: fa_disp,ab_disp,zp,dzp +! ! ! Implicit None +! ! ! +! ! ! #include +! ! ! +! ! ! !passed +! ! ! Type (userctx) :: user +! ! ! PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +! ! ! REAL, INTENT(OUT) :: rhop_wd(user%gxs:user%gxe,ncomp) +! ! ! +! ! ! +! ! ! !local +! ! ! INTEGER :: i,j,k +! ! ! INTEGER :: n +! ! ! INTEGER, parameter :: NMAX = 800 +! ! ! REAL :: x_int(NMAX),y_int(NMAX),y2(NMAX) !Fehlermeldung einbauen, falls dim > 400!! +! ! ! REAL :: zmin,dz,zz +! ! ! REAL :: xlo,xhi,int1 +! ! ! INTEGER :: fa_disp_max +! ! ! +! ! ! +! ! ! +! ! ! zmin = 1d-6 +! ! ! fa_disp_max = maxval(fa_disp(1:ncomp)) +! ! ! +! ! ! Do k = 1,ncomp +! ! ! +! ! ! Do i = user%xs - fa_disp_max , user%xe + fa_disp_max +! ! ! n = 1 +! ! ! x_int = 0.0 +! ! ! y_int = 0.0 +! ! ! +! ! ! Do j = i-fa_disp(k),i+fa_disp(k) +! ! ! +! ! ! If( ( zp(i)-zp(j+1) ) < ab_disp(k) .and. ( zp(i) - zp(j) ) >= ab_disp(k) ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! ! +! ! ! If(n/= 1) stop 'n /=1 in DISP_Weighted_Densities' !here always n=1! +! ! ! zz = zp(j) - zp(i) !distance between grid points j and i +! ! ! dz = zp(j+1) - (zp(i) - ab_disp(k)) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! ! x_int(n) = 0.0 !array containing x-values for spline integration +! ! ! y_int(n) = 0.0 +! ! ! +! ! ! +! ! ! Else If (zp(j) > (zp(i)-ab_disp(k)) .and. zp(j) <= (zp(i)+ab_disp(k))) Then !grid point j within i+-d2 +! ! ! +! ! ! n = n + 1 +! ! ! x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! +! ! ! zz = zp(j) - zp(i) +! ! ! dz = dzp +! ! ! y_int(n) = rhop(k,j) * (ab_disp(k)*ab_disp(k) - zz*zz ) +! ! ! +! ! ! +! ! ! If (zp(j) < (zp(i)+ab_disp(k)) .and. zp(j+1) >= (zp(i)+ab_disp(k)) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! ! dz = zp(i) + ab_disp(k) - zp(j) +! ! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! ! zz = zp(j) - zp(i) +! ! ! n = n + 1 +! ! ! x_int(n) = x_int(n-1) + dz +! ! ! y_int(n) = 0.0 +! ! ! +! ! ! +! ! ! End If +! ! ! End If +! ! ! End Do +! ! ! +! ! ! +! ! ! xlo = x_int(1) +! ! ! xhi = x_int(n) +! ! ! +! ! ! If(n > NMAX) stop 'Increase NMAX in DISP_Weighted_Densities (auch in AD Routine!!)' +! ! ! +! ! ! write(*,*)'n',n +! ! ! pause +! ! ! write(*,*)'rx',x_int(1:n) +! ! ! pause +! ! ! write(*,*)'ry',y_int(1:n) +! ! ! pause +! ! ! +! ! ! +! ! ! +! ! ! CALL spline( x_int(1:n), y_int(1:n), n, 1.E30, 1.E30, y2(1:n) ) +! ! ! CALL splint_integral ( x_int(1:n), y_int(1:n), y2(1:n), n, xlo, xhi, int1 ) +! ! ! rhop_wd(i,k) = 0.75 * int1 / ab_disp(k)**3 +! ! ! +! ! ! if ( rhop_wd(i,k) < 0.0 ) then +! ! ! rhop_wd(i,k) = 0.0 +! ! ! do j = 2, n +! ! ! rhop_wd(i,k) = rhop_wd(i,k) + (y_int(j)+y_int(j-1))/2.0 *(x_int(j)-x_int(j-1)) +! ! ! end do +! ! ! end if +! ! ! if ( rhop_wd(i,k) < 0.0 ) rhop_wd(i,k) = rhop(k,i) +! ! ! +! ! ! End Do +! ! ! End Do +! ! ! +! ! ! +! ! ! End Subroutine DISP_Weighted_Densities +! ! ! +! ! ! +! ! ! +! ! ! Subroutine DISP_mu(rhop_wd,f_disp,my_disp,df_disp_drk,user) +! ! ! +! ! ! Use PetscManagement +! ! ! Use PARAMETERS, Only: PI +! ! ! Use EOS_CONSTANTS, Only: ap,bp +! ! ! Use BASIC_VARIABLES, Only: ncomp,t,parame +! ! ! Use EOS_VARIABLES, Only: dhs,sig_ij,uij +! ! ! Use mod_DFT, Only: fa_disp +! ! ! Implicit None +! ! ! +! ! ! #include +! ! ! +! ! ! !passed +! ! ! Type (userctx) :: user +! ! ! REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +! ! ! REAL, INTENT(OUT) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +! ! ! REAL, INTENT(OUT) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +! ! ! REAL, INTENT(OUT) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho +! ! ! +! ! ! ! ! !local +! ! ! ! ! INTEGER :: k,ii,kk,m +! ! ! ! ! REAL :: m_mean, m_rk(ncomp) +! ! ! ! ! REAL :: apar(0:6),bpar(0:6) +! ! ! ! ! REAL :: ap_rk(ncomp,0:6),bp_rk(ncomp,0:6) +! ! ! ! ! REAL :: xi(ncomp),z3 +! ! ! ! ! REAL :: I1,I2,I1_rk,I2_rk +! ! ! ! ! REAL :: order1,order2,ord1_rk,ord2_rk +! ! ! ! ! REAL :: c1_con,c2_con, c1_rk,rho2 +! ! ! ! ! REAL :: rhop_wd_sum, eta_disp, eta_rk, zms +! ! ! ! ! INTEGER :: fa_disp_max +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! fa_disp_max = maxval(fa_disp(1:ncomp)) +! ! ! ! ! +! ! ! ! ! Do k = 1,ncomp +! ! ! ! ! Do ii = user%xs-fa_disp_max,user%xe+fa_disp_max +! ! ! ! ! +! ! ! ! ! rhop_wd_sum = SUM(rhop_wd(ii,1:ncomp)) +! ! ! ! ! +! ! ! ! ! m_mean = 0.0 +! ! ! ! ! eta_disp = 0.0 +! ! ! ! ! Do kk = 1,ncomp +! ! ! ! ! xi(kk) = rhop_wd(ii,kk) / rhop_wd_sum +! ! ! ! ! m_mean = m_mean + xi(kk)*parame(kk,1) +! ! ! ! ! eta_disp = eta_disp + rhop_wd(ii,kk)*parame(kk,1)*dhs(kk)**3 +! ! ! ! ! End Do +! ! ! ! ! +! ! ! ! ! eta_disp = eta_disp * PI / 6.0 +! ! ! ! ! eta_rk = parame(k,1) * dhs(k)**3 * PI / 6.0 +! ! ! ! ! +! ! ! ! ! m_rk(k) = ( parame(k,1) - m_mean ) / rhop_wd_sum +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! DO m = 0, 6 +! ! ! ! ! apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & +! ! ! ! ! + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) +! ! ! ! ! bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & +! ! ! ! ! + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +! ! ! ! ! +! ! ! ! ! ! --- derivatives of apar, bpar to rho_k --------------------------- +! ! ! ! ! ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) +! ! ! ! ! bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) +! ! ! ! ! END DO +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! I1 = 0.0 +! ! ! ! ! I2 = 0.0 +! ! ! ! ! I1_rk = 0.0 +! ! ! ! ! I2_rk = 0.0 +! ! ! ! ! DO m = 0, 6 +! ! ! ! ! I1 = I1 + apar(m)*eta_disp**REAL(m) +! ! ! ! ! I2 = I2 + bpar(m)*eta_disp**REAL(m) +! ! ! ! ! I1_rk = I1_rk + apar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + ap_rk(k,m)*eta_disp**REAL(m) +! ! ! ! ! I2_rk = I2_rk + bpar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + bp_rk(k,m)*eta_disp**REAL(m) +! ! ! ! ! END DO +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! ord1_rk = 0.0 +! ! ! ! ! ord2_rk = 0.0 +! ! ! ! ! order1 = 0.0 +! ! ! ! ! order2 = 0.0 +! ! ! ! ! DO kk = 1,ncomp +! ! ! ! ! !sig_ij(kk,k) = 0.5 * ( dhs(kk) + dhs(k) ) +! ! ! ! ! !uij(kk,k) = (1.0 - kij(kk,k)) * SQRT( eps(kk) * eps(k) ) +! ! ! ! ! order1 = order1 + xi(kk)*xi(k)* parame(kk,1)*parame(k,1)*sig_ij(kk,k)**3 * uij(kk,k)/t +! ! ! ! ! order2 = order2 + xi(kk)*xi(k)* parame(kk,1)*parame(k,1)*sig_ij(kk,k)**3 * (uij(kk,k)/t)**2 +! ! ! ! ! ord1_rk = ord1_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*sig_ij(kk,k)**3 *uij(kk,k)/t +! ! ! ! ! ord2_rk = ord2_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*sig_ij(kk,k)**3 *(uij(kk,k)/t)**2 +! ! ! ! ! END DO +! ! ! ! ! +! ! ! ! ! z3 = eta_disp +! ! ! ! ! zms = 1.0 - z3 +! ! ! ! ! +! ! ! ! ! c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & +! ! ! ! ! + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & +! ! ! ! ! /(zms*(2.0-z3))**2 ) +! ! ! ! ! c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & +! ! ! ! ! + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & +! ! ! ! ! /(zms*(2.0-z3))**3 ) +! ! ! ! ! c1_rk= c2_con*eta_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & +! ! ! ! ! - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! rho2 = rhop_wd_sum * rhop_wd_sum +! ! ! ! ! +! ! ! ! ! my_disp(ii,k) = -2.0*PI* ( order1*rho2*I1_rk + ord1_rk*I1 ) & +! ! ! ! ! - PI* c1_con*m_mean * ( order2*rho2*I2_rk + ord2_rk*I2 ) & +! ! ! ! ! - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho2*I2 +! ! ! ! ! +! ! ! ! ! f_disp(ii) = -2.0 * PI * rhop_wd_sum * I1 * order1 & !hier * rho_wd_sum, bei Elmar/rho_wd_sum, da in order1 bei Elmar mit rhoi, hier mit xi!! +! ! ! ! ! -PI * rhop_wd_sum * c1_con * m_mean * I2 * order2 +! ! ! ! ! +! ! ! ! ! df_disp_drk(ii,k) = ( my_disp(ii,k) - f_disp(ii) ) / rhop_wd_sum +! ! ! ! ! +! ! ! ! ! End Do +! ! ! ! ! +! ! ! ! ! End Do +! ! ! +! ! ! +! ! ! End Subroutine DISP_mu +! ! ! +! ! ! +! ! ! +! ! ! Subroutine DISP_dFdrho_wda(ii,rhop,rhop_wd,my_disp,f_disp,df_disp_drk,dF_drho_disp,user) +! ! ! +! ! ! Use PetscManagement +! ! ! +! ! ! Use BASIC_VARIABLES, Only: ncomp +! ! ! Use mod_DFT, Only: zp,dzp,fa_disp,ab_disp +! ! ! +! ! ! Implicit None +! ! ! #include +! ! ! +! ! ! !passed +! ! ! INTEGER, INTENT(IN) :: ii +! ! ! Type (userctx) :: user +! ! ! PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +! ! ! REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +! ! ! REAL, INTENT(IN) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +! ! ! REAL, INTENT(IN) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +! ! ! REAL, INTENT(IN) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho +! ! ! REAL, INTENT(OUT) :: dF_drho_disp(ncomp) +! ! ! +! ! ! ! ! !local +! ! ! ! ! INTEGER :: n,icomp,jj +! ! ! ! ! REAL :: zmin,zz,dz +! ! ! ! ! INTEGER, parameter :: NMAX = 800 +! ! ! ! ! REAL :: x_int(NMAX), y_int(NMAX), y2(NMAX) +! ! ! ! ! REAL :: xhi,xlo,int2 +! ! ! ! ! REAL :: rhop_sum +! ! ! ! ! +! ! ! ! ! zmin = 1d-6 +! ! ! ! ! DO icomp = 1, ncomp +! ! ! ! ! n = 1 +! ! ! ! ! x_int = 0.0 +! ! ! ! ! y_int = 0.0 +! ! ! ! ! +! ! ! ! ! DO jj = (ii-fa_disp(icomp)), (ii+fa_disp(icomp)) +! ! ! ! ! +! ! ! ! ! !IF ( zp(jj+1) > (zl+zmin) ) THEN +! ! ! ! ! If( ( zp(ii)-zp(jj+1) ) < ab_disp(icomp) .and. ( zp(ii) - zp(jj) ) >= ab_disp(icomp) ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! ! ! ! +! ! ! ! ! If(n/= 1) stop 'n /=1 in DISP_Weighted_Densities' !here always n=1! +! ! ! ! ! zz = zp(jj) - zp(ii) !distance between grid points j and i +! ! ! ! ! dz = zp(jj+1) - (zp(ii) - ab_disp(icomp)) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! ! ! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! ! ! ! x_int(n) = 0.0 !array containing x-values for spline integration +! ! ! ! ! y_int(n) = 0.0 +! ! ! ! ! +! ! ! ! ! Else If (zp(jj) > (zp(ii)-ab_disp(icomp)) .and. zp(jj) <= (zp(ii)+ab_disp(icomp))) Then !grid point j within i+-d2 +! ! ! ! ! +! ! ! ! ! n = n + 1 +! ! ! ! ! x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! +! ! ! ! ! zz = zp(jj) - zp(ii) +! ! ! ! ! dz = dzp +! ! ! ! ! y_int(n) = my_disp(jj,icomp) * (ab_disp(icomp)*ab_disp(icomp) - zz*zz ) +! ! ! ! ! +! ! ! ! ! !rhop_sum = sum(rhop(1:ncomp,jj)) +! ! ! ! ! !y_int(n) = rhop_sum * df_disp_drk(jj,icomp) * (ab_disp(icomp)*ab_disp(icomp) - zz*zz) +! ! ! ! ! +! ! ! ! ! If (zp(jj) < (zp(ii)+ab_disp(icomp)) .and. zp(jj+1) >= (zp(ii)+ab_disp(icomp)) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! ! ! ! dz = zp(ii) + ab_disp(icomp) - zp(jj) +! ! ! ! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! ! ! ! zz = zp(jj) - zp(ii) +! ! ! ! ! n = n + 1 +! ! ! ! ! x_int(n) = x_int(n-1) + dz +! ! ! ! ! y_int(n) = 0.0 +! ! ! ! ! +! ! ! ! ! End If +! ! ! ! ! End If +! ! ! ! ! END DO +! ! ! ! ! xlo = x_int(1) +! ! ! ! ! xhi = x_int(n) +! ! ! ! ! +! ! ! ! ! If(n > NMAX) stop 'Increase NMAX in DISP_dFdrho_wda (auch in AD Routine!!)' +! ! ! ! ! +! ! ! ! ! CALL spline ( x_int(1:n), y_int(1:n), n, 1.E30, 1.E30, y2(1:n) ) +! ! ! ! ! CALL splint_integral( x_int(1:n), y_int(1:n), y2(1:n), n, xlo, xhi, int2 ) +! ! ! ! ! +! ! ! ! ! dF_drho_disp(icomp) = int2 * 0.75 / ab_disp(icomp)**3 +! ! ! ! ! !dF_drho_disp(icomp) = int2 * 0.75 / ab_disp(icomp)**3 + f_disp(ii) +! ! ! ! ! END DO +! ! ! ! ! +! ! ! +! ! ! End Subroutine DISP_dFdrho_wda +! ! ! + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA_d.F90 new file mode 100644 index 000000000..e943abde0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_DISP_WDA_d.F90 @@ -0,0 +1,505 @@ +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +MODULE MOD_DFT_DISP_WDA_D + IMPLICIT NONE + PRIVATE + PUBLIC disp_weighted_densities_d + PUBLIC disp_mu_d + PUBLIC disp_dfdrho_wda_d + + CONTAINS + + ! Differentiation of disp_weighted_densities in forward (tangent) mode: +! variations of useful results: rhop_wd +! with respect to varying inputs: rhop + SUBROUTINE DISP_WEIGHTED_DENSITIES_D(rhop, rhopd, rhop_wd, rhop_wdd, & +& user) + Use PetscManagement + USE BASIC_VARIABLES, ONLY : ncomp + USE MOD_DFT, ONLY : fa_disp, ab_disp, zp, dzp + IMPLICIT NONE + +#include + +!passed +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL, INTENT(OUT) :: rhop_wd(user%gxs:user%gxe,ncomp) +REAL, INTENT(OUT) :: rhop_wdd(user%gxs:user%gxe,ncomp) + + +! ! !local +! ! INTEGER :: i, j, k +! ! INTEGER :: n +! ! !Fehlermeldung einbauen, falls dim > 400!! +! ! REAL :: x_int(400), y_int(400), y2(400) +! ! REAL :: y_intd(400), y2d(400) +! ! REAL :: zmin, dz, zz +! ! REAL :: xlo, xhi, int1 +! ! REAL :: int1d +! ! INTEGER :: fa_disp_max +! ! INTRINSIC MAXVAL +! ! zmin = 1d-6 +! ! fa_disp_max = MAXVAL(fa_disp(1:ncomp)) +! ! rhop_wdd = 0.0 +! ! y2d = 0.0 +! ! DO k=1,ncomp +! ! Do i = user%xs - fa_disp_max , user%xe + fa_disp_max +! ! n = 1 +! ! x_int = 0.0 +! ! y_int = 0.0 +! ! y_intd = 0.0 +! ! DO j=i-fa_disp(k),i+fa_disp(k) +! ! IF (zp(i) - zp(j+1) .LT. ab_disp(k) .AND. zp(i) - zp(j) .GE. & +! ! & ab_disp(k)) THEN +! ! !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! ! ! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! !here always n=1! +! ! IF (n .NE. 1) THEN +! ! GOTO 100 +! ! ELSE +! ! !distance between grid points j and i +! ! zz = zp(j) - zp(i) +! ! !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! dz = zp(j+1) - (zp(i)-ab_disp(k)) +! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +! ! !liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! !array containing x-values for spline integration +! ! x_int(n) = 0.0 +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! ELSE IF (zp(j) .GT. zp(i) - ab_disp(k) .AND. zp(j) .LE. zp(i) & +! ! & + ab_disp(k)) THEN +! ! !grid point j within i+-d2 +! ! n = n + 1 +! ! !first time in this If condition, dz is stil the old value from above! +! ! x_int(n) = x_int(n-1) + dz +! ! zz = zp(j) - zp(i) +! ! dz = dzp +! ! y_intd(n) = (ab_disp(k)*ab_disp(k)-zz*zz)*rhopd(k, j) +! ! y_int(n) = rhop(k, j)*(ab_disp(k)*ab_disp(k)-zz*zz) +! ! IF (zp(j) .LT. zp(i) + ab_disp(k) .AND. zp(j+1) .GE. zp(i) +& +! ! & ab_disp(k)) THEN +! ! !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! dz = zp(i) + ab_disp(k) - zp(j) +! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +! ! != x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! zz = zp(j) - zp(i) +! ! n = n + 1 +! ! x_int(n) = x_int(n-1) + dz +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! END IF +! ! END DO +! ! xlo = x_int(1) +! ! xhi = x_int(n) +! ! CALL SPLINE_D(x_int(1:n), y_int(1:n), y_intd(1:n), n, 1.e30, & +! ! & 1.e30, y2(1:n), y2d(1:n)) +! ! CALL SPLINT_INTEGRAL_D(x_int(1:n), y_int(1:n), y_intd(1:n), y2(1& +! ! & :n), y2d(1:n), n, xlo, xhi, int1, int1d) +! ! rhop_wdd(i, k) = 0.75*int1d/ab_disp(k)**3 +! ! rhop_wd(i, k) = 0.75*int1/ab_disp(k)**3 +! ! IF (rhop_wd(i, k) .LT. 0.0) THEN +! ! rhop_wdd(i, k) = 0.0 +! ! rhop_wd(i, k) = 0.0 +! ! DO j=2,n +! ! rhop_wdd(i, k) = rhop_wdd(i, k) + (x_int(j)-x_int(j-1))*(& +! ! & y_intd(j)+y_intd(j-1))/2.0 +! ! rhop_wd(i, k) = rhop_wd(i, k) + (y_int(j)+y_int(j-1))/2.0*(& +! ! & x_int(j)-x_int(j-1)) +! ! END DO +! ! END IF +! ! IF (rhop_wd(i, k) .LT. 0.0) THEN +! ! rhop_wdd(i, k) = rhopd(k, i) +! ! rhop_wd(i, k) = rhop(k, i) +! ! END IF +! ! END DO +! ! END DO +! ! GOTO 110 +! ! 100 STOP +! ! 110 CONTINUE + END SUBROUTINE DISP_WEIGHTED_DENSITIES_D + + + +! Differentiation of disp_mu in forward (tangent) mode: +! variations of useful results: my_disp +! with respect to varying inputs: rhop_wd + SUBROUTINE DISP_MU_D(rhop_wd, rhop_wdd, f_disp, my_disp, my_dispd, & +& df_disp_drk, user) + + Use PetscManagement + USE PARAMETERS, ONLY : pi + USE EOS_CONSTANTS, ONLY : ap, bp + USE BASIC_VARIABLES, ONLY : ncomp, t, parame + USE EOS_VARIABLES, Only: dhs, sig_ij, uij + USE MOD_DFT, ONLY : fa_disp + IMPLICIT NONE +#include + +!passed +Type (userctx) :: user +REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +REAL, INTENT(IN) :: rhop_wdd(user%gxs:user%gxe,ncomp) +REAL, INTENT(OUT) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(OUT) :: my_dispd(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(OUT) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +REAL, INTENT(OUT) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho + +! ! !local +! ! INTEGER :: k, ii, kk, m +! ! REAL :: m_mean, m_rk(ncomp) +! ! REAL :: m_meand, m_rkd(ncomp) +! ! REAL :: apar(0:6), bpar(0:6) +! ! REAL :: apard(0:6), bpard(0:6) +! ! REAL :: ap_rk(ncomp, 0:6), bp_rk(ncomp, 0:6) +! ! REAL :: ap_rkd(ncomp, 0:6), bp_rkd(ncomp, 0:6) +! ! REAL :: xi(ncomp), z3 +! ! REAL :: xid(ncomp), z3d +! ! REAL :: i1, i2, i1_rk, i2_rk +! ! REAL :: i1d, i2d, i1_rkd, i2_rkd +! ! REAL :: order1, order2, ord1_rk, ord2_rk +! ! REAL :: order1d, order2d, ord1_rkd, ord2_rkd +! ! REAL :: c1_con, c2_con, c1_rk, rho2 +! ! REAL :: c1_cond, c2_cond, c1_rkd, rho2d +! ! REAL :: rhop_wd_sum, eta_disp, eta_rk, zms +! ! REAL :: rhop_wd_sumd, eta_dispd, zmsd +! ! INTEGER :: fa_disp_max +! ! INTRINSIC MAXVAL +! ! INTRINSIC SUM +! ! INTRINSIC REAL +! ! REAL :: pwy1 +! ! REAL :: pwr1 +! ! REAL :: pwr1d +! ! REAL :: pwy2 +! ! REAL :: pwr2 +! ! REAL :: pwr2d +! ! fa_disp_max = MAXVAL(fa_disp(1:ncomp)) +! ! my_dispd = 0.0 +! ! xid = 0.0 +! ! m_rkd = 0.0 +! ! ap_rkd = 0.0 +! ! bpard = 0.0 +! ! apard = 0.0 +! ! bp_rkd = 0.0 +! ! DO k=1,ncomp +! ! Do ii = user%xs-fa_disp_max,user%xe+fa_disp_max +! ! rhop_wd_sumd = SUM(rhop_wdd(ii, 1:ncomp)) +! ! rhop_wd_sum = SUM(rhop_wd(ii, 1:ncomp)) +! ! m_mean = 0.0 +! ! eta_disp = 0.0 +! ! eta_dispd = 0.0 +! ! m_meand = 0.0 +! ! DO kk=1,ncomp +! ! xid(kk) = (rhop_wdd(ii, kk)*rhop_wd_sum-rhop_wd(ii, kk)*& +! ! & rhop_wd_sumd)/rhop_wd_sum**2 +! ! xi(kk) = rhop_wd(ii, kk)/rhop_wd_sum +! ! m_meand = m_meand + parame(kk,1)*xid(kk) +! ! m_mean = m_mean + xi(kk)*parame(kk,1) +! ! eta_dispd = eta_dispd + parame(kk,1)*dhs(kk)**3*rhop_wdd(ii, kk) +! ! eta_disp = eta_disp + rhop_wd(ii, kk)*parame(kk,1)*dhs(kk)**3 +! ! END DO +! ! eta_dispd = pi*eta_dispd/6.0 +! ! eta_disp = eta_disp*pi/6.0 +! ! eta_rk = parame(k,1)*dhs(k)**3*pi/6.0 +! ! m_rkd(k) = (-(m_meand*rhop_wd_sum)-(parame(k,1)-m_mean)*rhop_wd_sumd& +! ! & )/rhop_wd_sum**2 +! ! m_rk(k) = (parame(k,1)-m_mean)/rhop_wd_sum +! ! DO m=0,6 +! ! apard(m) = ap(m, 2)*m_meand/m_mean**2 + ap(m, 3)*(m_meand*(1.0& +! ! & -2.0/m_mean)/m_mean**2+(1.0-1.0/m_mean)*2.0*m_meand/m_mean**& +! ! & 2) +! ! apar(m) = ap(m, 1) + (1.0-1.0/m_mean)*ap(m, 2) + (1.0-1.0/& +! ! & m_mean)*(1.0-2.0/m_mean)*ap(m, 3) +! ! bpard(m) = bp(m, 2)*m_meand/m_mean**2 + bp(m, 3)*(m_meand*(1.0& +! ! & -2.0/m_mean)/m_mean**2+(1.0-1.0/m_mean)*2.0*m_meand/m_mean**& +! ! & 2) +! ! bpar(m) = bp(m, 1) + (1.0-1.0/m_mean)*bp(m, 2) + (1.0-1.0/& +! ! & m_mean)*(1.0-2.0/m_mean)*bp(m, 3) +! ! ! --- derivatives of apar, bpar to rho_k --------------------------- +! ! ap_rkd(k, m) = (m_rkd(k)*m_mean**2-m_rk(k)*2*m_mean*m_meand)*(& +! ! & ap(m, 2)+(3.0-4.0/m_mean)*ap(m, 3))/m_mean**4 + m_rk(k)*ap(m& +! ! & , 3)*4.0*m_meand/m_mean**4 +! ! ap_rk(k, m) = m_rk(k)/m_mean**2*(ap(m, 2)+(3.0-4.0/m_mean)*ap(& +! ! & m, 3)) +! ! bp_rkd(k, m) = (m_rkd(k)*m_mean**2-m_rk(k)*2*m_mean*m_meand)*(& +! ! & bp(m, 2)+(3.0-4.0/m_mean)*bp(m, 3))/m_mean**4 + m_rk(k)*bp(m& +! ! & , 3)*4.0*m_meand/m_mean**4 +! ! bp_rk(k, m) = m_rk(k)/m_mean**2*(bp(m, 2)+(3.0-4.0/m_mean)*bp(& +! ! & m, 3)) +! ! END DO +! ! i1 = 0.0 +! ! i2 = 0.0 +! ! i1_rk = 0.0 +! ! i2_rk = 0.0 +! ! i1_rkd = 0.0 +! ! i1d = 0.0 +! ! i2d = 0.0 +! ! i2_rkd = 0.0 +! ! DO m=0,6 +! ! pwy1 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! i1d = i1d + apard(m)*pwr1 + apar(m)*pwr1d +! ! i1 = i1 + apar(m)*pwr1 +! ! pwy1 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! i2d = i2d + bpard(m)*pwr1 + bpar(m)*pwr1d +! ! i2 = i2 + bpar(m)*pwr1 +! ! pwy1 = REAL(m - 1) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! pwy2 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy2 .EQ. & +! ! & INT(pwy2))) THEN +! ! pwr2d = pwy2*eta_disp**(pwy2-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy2 .EQ. 1.0) THEN +! ! pwr2d = eta_dispd +! ! ELSE +! ! pwr2d = 0.0 +! ! END IF +! ! pwr2 = eta_disp**pwy2 +! ! i1_rkd = i1_rkd + REAL(m)*eta_rk*(apard(m)*pwr1+apar(m)*pwr1d)& +! ! & + ap_rkd(k, m)*pwr2 + ap_rk(k, m)*pwr2d +! ! i1_rk = i1_rk + apar(m)*REAL(m)*pwr1*eta_rk + ap_rk(k, m)*pwr2 +! ! pwy1 = REAL(m - 1) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! pwy2 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy2 .EQ. & +! ! & INT(pwy2))) THEN +! ! pwr2d = pwy2*eta_disp**(pwy2-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy2 .EQ. 1.0) THEN +! ! pwr2d = eta_dispd +! ! ELSE +! ! pwr2d = 0.0 +! ! END IF +! ! pwr2 = eta_disp**pwy2 +! ! i2_rkd = i2_rkd + REAL(m)*eta_rk*(bpard(m)*pwr1+bpar(m)*pwr1d)& +! ! & + bp_rkd(k, m)*pwr2 + bp_rk(k, m)*pwr2d +! ! i2_rk = i2_rk + bpar(m)*REAL(m)*pwr1*eta_rk + bp_rk(k, m)*pwr2 +! ! END DO +! ! ord1_rk = 0.0 +! ! ord2_rk = 0.0 +! ! order1 = 0.0 +! ! order2 = 0.0 +! ! order1d = 0.0 +! ! order2d = 0.0 +! ! ord2_rkd = 0.0 +! ! ord1_rkd = 0.0 +! ! DO kk=1,ncomp +! ! !sig_ij(kk,k) = 0.5 * ( dhs(kk) + dhs(k) ) +! ! !uij(kk,k) = (1.0 - kij(kk,k)) * SQRT( eps(kk) * eps(k) ) +! ! order1d = order1d + parame(kk,1)*parame(k,1)*sig_ij(kk, k)**3*uij(kk, & +! ! & k)*(xid(kk)*xi(k)+xi(kk)*xid(k))/t +! ! order1 = order1 + xi(kk)*xi(k)*parame(kk,1)*parame(k,1)*sig_ij(kk, k)& +! ! & **3*uij(kk, k)/t +! ! order2d = order2d + parame(kk,1)*parame(k,1)*sig_ij(kk, k)**3*uij(kk, & +! ! & k)**2*(xid(kk)*xi(k)+xi(kk)*xid(k))/t**2 +! ! order2 = order2 + xi(kk)*xi(k)*parame(kk,1)*parame(k,1)*sig_ij(kk, k)& +! ! & **3*(uij(kk, k)/t)**2 +! ! ord1_rkd = ord1_rkd + 2.0*parame(k,1)*parame(kk,1)*sig_ij(kk, k)**3*& +! ! & uij(kk, k)*(rhop_wd_sumd*xi(kk)+rhop_wd_sum*xid(kk))/t +! ! ord1_rk = ord1_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*& +! ! & sig_ij(kk, k)**3*uij(kk, k)/t +! ! ord2_rkd = ord2_rkd + 2.0*parame(k,1)*parame(kk,1)*sig_ij(kk, k)**3*& +! ! & uij(kk, k)**2*(rhop_wd_sumd*xi(kk)+rhop_wd_sum*xid(kk))/t**2 +! ! ord2_rk = ord2_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*& +! ! & sig_ij(kk, k)**3*(uij(kk, k)/t)**2 +! ! END DO +! ! z3d = eta_dispd +! ! z3 = eta_disp +! ! zmsd = -z3d +! ! zms = 1.0 - z3 +! ! c1_cond = -((((m_meand*(8.0*z3-2.0*z3*z3)+m_mean*(8.0*z3d-2.0*(& +! ! & z3d*z3+z3*z3d)))*zms**4-m_mean*(8.0*z3-2.0*z3*z3)*4*zms**3*& +! ! & zmsd)/(zms**4)**2+(((1.0-m_mean)*(20.0*z3d-27.0*(z3d*z3+z3*z3d& +! ! & )+12.0*3*z3**2*z3d-2.0*4*z3**3*z3d)-m_meand*(20.0*z3-27.0*z3*& +! ! & z3+12.0*z3**3-2.0*z3**4))*zms**2*(2.0-z3)**2-(1.0-m_mean)*(& +! ! & 20.0*z3-27.0*z3*z3+12.0*z3**3-2.0*z3**4)*2*zms*(2.0-z3)*(zmsd*& +! ! & (2.0-z3)-zms*z3d))/((zms*(2.0-z3))**2)**2)/(1.0+m_mean*(8.0*z3& +! ! & -2.0*z3*z3)/zms**4+(1.0-m_mean)*(20.0*z3-27.0*z3*z3+12.0*z3**3& +! ! & -2.0*z3**4)/(zms*(2.0-z3))**2)**2) +! ! c1_con = 1.0/(1.0+m_mean*(8.0*z3-2.0*z3*z3)/zms**4+(1.0-m_mean)*& +! ! & (20.0*z3-27.0*z3*z3+12.0*z3**3-2.0*z3**4)/(zms*(2.0-z3))**2) +! ! c2_cond = -((c1_cond*c1_con+c1_con*c1_cond)*(m_mean*(-(4.0*z3*z3& +! ! & )+20.0*z3+8.0)/zms**5+(1.0-m_mean)*(2.0*z3**3+12.0*z3*z3-48.0*& +! ! & z3+40.0)/(zms*(2.0-z3))**3)+c1_con**2*(((m_meand*(-(4.0*z3*z3)& +! ! & +20.0*z3+8.0)+m_mean*(20.0*z3d-4.0*(z3d*z3+z3*z3d)))*zms**5-& +! ! & m_mean*(-(4.0*z3*z3)+20.0*z3+8.0)*5*zms**4*zmsd)/(zms**5)**2+(& +! ! & ((1.0-m_mean)*(2.0*3*z3**2*z3d+12.0*(z3d*z3+z3*z3d)-48.0*z3d)-& +! ! & m_meand*(2.0*z3**3+12.0*z3*z3-48.0*z3+40.0))*zms**3*(2.0-z3)**& +! ! & 3-(1.0-m_mean)*(2.0*z3**3+12.0*z3*z3-48.0*z3+40.0)*3*zms**2*(& +! ! & 2.0-z3)**2*(zmsd*(2.0-z3)-zms*z3d))/((zms*(2.0-z3))**3)**2)) +! ! c2_con = -(c1_con*c1_con*(m_mean*(-(4.0*z3*z3)+20.0*z3+8.0)/zms& +! ! & **5+(1.0-m_mean)*(2.0*z3**3+12.0*z3*z3-48.0*z3+40.0)/(zms*(2.0& +! ! & -z3))**3)) +! ! c1_rkd = eta_rk*c2_cond - ((c1_cond*c1_con+c1_con*c1_cond)*m_rk(& +! ! & k)+c1_con**2*m_rkd(k))*((8.0*z3-2.0*z3*z3)/zms**4-(-(2.0*z3**4& +! ! & )+12.0*z3**3-27.0*z3*z3+20.0*z3)/(zms*(2.0-z3))**2) - c1_con**& +! ! & 2*m_rk(k)*(((8.0*z3d-2.0*(z3d*z3+z3*z3d))*zms**4-(8.0*z3-2.0*& +! ! & z3*z3)*4*zms**3*zmsd)/(zms**4)**2-((12.0*3*z3**2*z3d-2.0*4*z3& +! ! & **3*z3d-27.0*(z3d*z3+z3*z3d)+20.0*z3d)*zms**2*(2.0-z3)**2-(-(& +! ! & 2.0*z3**4)+12.0*z3**3-27.0*z3*z3+20.0*z3)*2*zms*(2.0-z3)*(zmsd& +! ! & *(2.0-z3)-zms*z3d))/((zms*(2.0-z3))**2)**2) +! ! c1_rk = c2_con*eta_rk - c1_con*c1_con*m_rk(k)*((8.0*z3-2.0*z3*z3& +! ! & )/zms**4-(-(2.0*z3**4)+12.0*z3**3-27.0*z3*z3+20.0*z3)/(zms*(& +! ! & 2.0-z3))**2) +! ! rho2d = rhop_wd_sumd*rhop_wd_sum + rhop_wd_sum*rhop_wd_sumd +! ! rho2 = rhop_wd_sum*rhop_wd_sum +! ! my_dispd(ii, k) = -(2.0*pi*((order1d*rho2+order1*rho2d)*i1_rk+& +! ! & order1*rho2*i1_rkd+ord1_rkd*i1+ord1_rk*i1d)) - pi*((c1_cond*& +! ! & m_mean+c1_con*m_meand)*(order2*rho2*i2_rk+ord2_rk*i2)+c1_con*& +! ! & m_mean*((order2d*rho2+order2*rho2d)*i2_rk+order2*rho2*i2_rkd+& +! ! & ord2_rkd*i2+ord2_rk*i2d)) - pi*((c1_cond*m_rk(k)+c1_con*m_rkd(& +! ! & k)+c1_rkd*m_mean+c1_rk*m_meand)*order2*rho2*i2+(c1_con*m_rk(k)& +! ! & +c1_rk*m_mean)*((order2d*rho2+order2*rho2d)*i2+order2*rho2*i2d& +! ! & )) +! ! my_disp(ii, k) = -(2.0*pi*(order1*rho2*i1_rk+ord1_rk*i1)) - pi*& +! ! & c1_con*m_mean*(order2*rho2*i2_rk+ord2_rk*i2) - pi*(c1_con*m_rk& +! ! & (k)+c1_rk*m_mean)*order2*rho2*i2 +! ! f_disp(ii) = -(2.0*pi*rhop_wd_sum*i1*order1) - pi*rhop_wd_sum*& +! ! & c1_con*m_mean*i2*order2 +! ! df_disp_drk(ii, k) = (my_disp(ii, k)-f_disp(ii))/rhop_wd_sum +! ! END DO +! ! END DO + END SUBROUTINE DISP_MU_D + + + +! Differentiation of disp_dfdrho_wda in forward (tangent) mode: +! variations of useful results: df_drho_disp +! with respect to varying inputs: my_disp df_drho_disp + SUBROUTINE DISP_DFDRHO_WDA_D(ii, rhop, rhop_wd, my_disp, my_dispd, & +& f_disp, df_disp_drk, df_drho_disp, df_drho_dispd, user) + + Use PetscManagement + USE BASIC_VARIABLES, ONLY : ncomp + USE MOD_DFT, ONLY : zp, dzp, fa_disp, ab_disp + IMPLICIT NONE +#include + +!passed +INTEGER, INTENT(IN) :: ii +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +REAL, INTENT(IN) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(IN) :: my_dispd(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(IN) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +REAL, INTENT(IN) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho +REAL, INTENT(OUT) :: dF_drho_disp(ncomp) +REAL, INTENT(OUT) :: dF_drho_dispd(ncomp) + +! ! !local +! ! INTEGER :: n, icomp, jj +! ! REAL :: zmin, zz, dz +! ! REAL :: x_int(400), y_int(400), y2(400) +! ! REAL :: y_intd(400), y2d(400) +! ! REAL :: xhi, xlo, int2 +! ! REAL :: int2d +! ! REAL :: rhop_sum +! ! zmin = 1d-6 +! ! y2d = 0.0 +! ! DO icomp=1,ncomp +! ! n = 1 +! ! x_int = 0.0 +! ! y_int = 0.0 +! ! y_intd = 0.0 +! ! DO jj=ii-fa_disp(icomp),ii+fa_disp(icomp) +! ! !IF ( zp(jj+1) > (zl+zmin) ) THEN +! ! IF (zp(ii) - zp(jj+1) .LT. ab_disp(icomp) .AND. zp(ii) - zp(jj) & +! ! & .GE. ab_disp(icomp)) THEN +! ! !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! ! ! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! !here always n=1! +! ! IF (n .NE. 1) THEN +! ! GOTO 100 +! ! ELSE +! ! !distance between grid points j and i +! ! zz = zp(jj) - zp(ii) +! ! !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! dz = zp(jj+1) - (zp(ii)-ab_disp(icomp)) +! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +! ! !liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! !array containing x-values for spline integration +! ! x_int(n) = 0.0 +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! ELSE IF (zp(jj) .GT. zp(ii) - ab_disp(icomp) .AND. zp(jj) .LE. & +! ! & zp(ii) + ab_disp(icomp)) THEN +! ! !grid point j within i+-d2 +! ! n = n + 1 +! ! !first time in this If condition, dz is stil the old value from above! +! ! x_int(n) = x_int(n-1) + dz +! ! zz = zp(jj) - zp(ii) +! ! dz = dzp +! ! y_intd(n) = (ab_disp(icomp)*ab_disp(icomp)-zz*zz)*my_dispd(jj& +! ! & , icomp) +! ! y_int(n) = my_disp(jj, icomp)*(ab_disp(icomp)*ab_disp(icomp)-& +! ! & zz*zz) +! ! !rhop_sum = sum(rhop(1:ncomp,jj)) +! ! !y_int(n) = rhop_sum * df_disp_drk(jj,icomp) * (ab_disp(icomp)*ab_disp(icomp) - zz*zz) +! ! IF (zp(jj) .LT. zp(ii) + ab_disp(icomp) .AND. zp(jj+1) .GE. zp& +! ! & (ii) + ab_disp(icomp)) THEN +! ! !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! dz = zp(ii) + ab_disp(icomp) - zp(jj) +! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +! ! != x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! zz = zp(jj) - zp(ii) +! ! n = n + 1 +! ! x_int(n) = x_int(n-1) + dz +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! END IF +! ! END DO +! ! xlo = x_int(1) +! ! xhi = x_int(n) +! ! CALL SPLINE_D(x_int(1:n), y_int(1:n), y_intd(1:n), n, 1.e30, 1.e30& +! ! & , y2(1:n), y2d(1:n)) +! ! CALL SPLINT_INTEGRAL_D(x_int(1:n), y_int(1:n), y_intd(1:n), y2(1:n& +! ! & ), y2d(1:n), n, xlo, xhi, int2, int2d) +! ! df_drho_dispd(icomp) = 0.75*int2d/ab_disp(icomp)**3 +! ! df_drho_disp(icomp) = int2*0.75/ab_disp(icomp)**3 +! ! END DO +! ! GOTO 110 +! ! 100 STOP +! ! 110 CONTINUE + END SUBROUTINE DISP_DFDRHO_WDA_D + +END MODULE MOD_DFT_DISP_WDA_D diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT.F90 new file mode 100644 index 000000000..6629cb83c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT.F90 @@ -0,0 +1,346 @@ + + +!All equations are taken from the appendix of: +!Gross: 'A density functional theory for vapor-liquid interfaces using the PCP-SAFT eos' +!But: here we dont treat chain-molecules!! -> no multiplications with segment number + + + +Module mod_DFT_FMT + +Implicit None + +Private + +Public :: FMT_Weighted_Densities +Public :: FMT_dFdrho + + Contains + + + + + +Subroutine FMT_Weighted_Densities(rhop,n0,n1,n2,n3,nv1,nv2,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,user) + +Use PARAMETERS, ONLY: PI +Use BASIC_VARIABLES, Only: ncomp,parame +Use EOS_VARIABLES, Only: dhs +Use mod_DFT, Only: zp,dzp,fa + +!PETSc module +Use PetscManagement + +#include + +!passed +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 + +!local +Integer :: k,i,j +Integer :: fa2 +REAL :: dz,d2,zz +INTEGER :: n +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int,n2_int,n3_int,nv2_int !Fehlerwarnung falls 200 ueberschritten einbauen +REAL,dimension(NMAX) :: y2_n2, y2_n3,y2_nv2 +REAL :: int_n2,int_n3,int_nv2,xhi,xlo +REAL :: zms,zms2,zms3,logzms +REAL :: nn0,nn1,nn2,nn3,nnv1,nnv2 +REAL :: rhopjk, rhopjp1k + + + n0 = 0.0 + n1 = 0.0 + n2 = 0.0 + n3 = 0.0 + nv1 = 0.0 + nv2 = 0.0 + + fa2 = maxval(fa(1:ncomp) + 5) / 2 + +Do k=1,ncomp + !fa2 = (fa(k) + 5) / 2 !grid points in sig/2 + d2 = dhs(k) / 2.0 !half of dhs [A] + + + Do i=user%xs-fa2,user%xe+fa2 !to evaluate dF/drho at any point, the derivatives dphi/dn have to be evaluated at +-d/2 around this point + n = 1 !this is the index of the arrays that will be passed to the spline integration routines + x_int = 0.0 + n2_int = 0.0 + n3_int = 0.0 + nv2_int = 0.0 + + Do j=i-fa2,i+fa2 !to evaluate dphi/dn at a given point, the weighted densities are needed at +-d/2 around this point + + rhopjk = rhop(k,j) * parame(k,1) + rhopjp1k = rhop(k,j+1) * parame(k,1) + + If( ( zp(i)-zp(j+1) ) < d2 .and. ( zp(i) - zp(j) ) >= d2 ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand + + If(n/= 1) stop 'n /=1 in FMT_Weighted_Densities' !here always n=1! + zz = zp(j) - zp(i) !distance between grid points j and i + dz = zp(j+1) - (zp(i) - d2) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 + !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation + x_int(n) = 0.0 !array containing x-values for spline integration + n2_int(n) = rhopjk + (rhopjp1k-rhopjk) / (dzp) * (dzp-dz) !integrand f�r n2 (=rhop) linear interpoliert f�r den Punk zp(i)-d/2 + n3_int(n) = 0.0 !integrand f�r n3: rhop*(d2**2 - z'**2), da hier gerade z' = d2 -> integrand wird hier = 0!! + nv2_int(n) = rhopjk*zz +(rhopjp1k*(zp(j+1)-zp(i))-rhopjk*zz)/(dzp)*(dzp-dz) !analog + + + Else If (zp(j) > (zp(i)-d2) .and. zp(j) <= (zp(i)+d2)) Then !grid point j within i+-d2 + + n = n + 1 + x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! + zz = zp(j) - zp(i) + dz = dzp + n2_int(n) = rhopjk + n3_int(n) = rhopjk * (d2**2 - zz**2) + nv2_int(n) = rhopjk * zz + + If (zp(j) < (zp(i)+d2) .and. zp(j+1) >= (zp(i)+d2) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 + + dz = zp(i) + d2 - zp(j) + !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + n2_int(n) = rhopjk + (rhopjp1k-rhopjk) / (dzp) * dz + n3_int(n) = 0.0 !Begr�ndung wie oben + nv2_int(n) = rhopjk*zz + (rhopjp1k*(zp(j+1)-zp(i)) - rhopjk*zz) / (dzp) * dz + + End If + + End If + + + End Do + + !spline integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in FMT_Weighted_Densities (auch in AD Routine!!)' + + call spline ( x_int, n2_int, n, 1.E30, 1.E30, y2_n2 ) + call spline ( x_int, n3_int, n, 1.E30, 1.E30, y2_n3 ) + call spline ( x_int, nv2_int, n, 1.E30, 1.E30, y2_nv2 ) + + call splint_integral ( x_int, n2_int, y2_n2, n, xlo, xhi, int_n2 ) + call splint_integral ( x_int, n3_int, y2_n3, n, xlo, xhi, int_n3 ) + call splint_integral ( x_int, nv2_int, y2_nv2, n, xlo, xhi, int_nv2 ) + + !weighted densities + n2(i) = n2(i) + PI * dhs(k) * int_n2 + n1(i) = n1(i) + 0.5 * int_n2 + n0(i) = n0(i) + int_n2/dhs(k) + n3(i) = n3(i) + PI * int_n3 + nv2(i) = nv2(i) -2.0 * PI * int_nv2 + nv1(i) = nv1(i) -int_nv2 / dhs(k) + +! If(i < 5) Then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! end if +! +! If(i > 95) then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! End If +! + End Do + + ! pause + +End Do + + +!derivatives of FMT helmholtz energy density w.r.t. weighted densities +Do i=user%xs-maxval((fa(1:ncomp)+1)/2),user%xe+maxval((fa(1:ncomp)+1)/2) + !weils k�rzer ist + nn0 = n0(i) + nn1 = n1(i) + nn2 = n2(i) + nn3 = n3(i) + nnv1 = nv1(i) + nnv2 = nv2(i) + + zms = 1.0 - nn3 + zms2 = zms*zms + zms3 = zms2*zms + logzms = log(zms) + if(isnan(logzms)) stop 'zms < 0, log(zms) undefined FMT_Weighted_Densities' + + phi_dn0(i) = -logzms + phi_dn1(i) = nn2/zms + phi_dn2(i) = nn1/zms + 3.0*(nn2*nn2-nnv2*nnv2) * (nn3+zms2*logzms) / (36.0*PI*nn3*nn3*zms2) + + phi_dn3(i) = nn0/zms + (nn1*nn2-nnv1*nnv2)/zms2 - (nn2**3-3.0*nn2*nnv2*nnv2) * (nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms) & + / (36.0*PI*nn3**3*zms3) + + phi_dnv1(i) = -nnv2/zms + + phi_dnv2(i) = -nnv1/zms - 6.0*nn2*nnv2*(nn3+zms2*logzms)/(36.0*PI*nn3**2*zms2) + +End Do + +End Subroutine FMT_Weighted_Densities + + + + + + + +Subroutine FMT_dFdrho(i,fa,user,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,dF_drho_FMT) + +Use BASIC_VARIABLES, Only: ncomp,parame +Use EOS_VARIABLES, Only: dhs +Use mod_DFT, Only: zp,dzp +Use PARAMETERS, ONLY: PI + +!PETSc module +Use PetscManagement + +!passed +INTEGER, INTENT(IN) :: i !the grid point at which to calculate dFdrho +INTEGER, INTENT(IN) :: fa(ncomp) +Type (userctx) :: user +REAL,dimension(user%gxs:user%gxe),INTENT(IN) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 +REAL,dimension(user%xs:user%xe,ncomp), INTENT(OUT) :: dF_drho_FMT + + +!local +INTEGER :: j,k,n +INTEGER :: fa2 +REAL :: dz,d2,zz, zz_jp1 +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int,y_int,y0_int,y1_int,y2_int,y3_int,yv1_int,yv2_int,y2 +REAL :: xhi,xlo,integral,int0,int1,int2,int3,intv1,intv2 +REAL :: at_j, at_jp1 + + +!Das Integral (Gleichung A1 in Gross DFT 2009) wird hier in einem Schlag berechnet! +!Falls die einzelnen Terme einzeln integriert werden sollen, einfach die auskommentierte Version verwenden + +Do k=1,ncomp !das einzige, das hier von k abhaengt, sind fa und dhs!! die Ableitungen phi_dn... sind nicht Komponentenspez, da die + !gewichteten Dichten ja uch nicht mehr Komponentenspez sind (n_i = sum n_i(k)) + + n = 1 + fa2 = ( fa(k) + 5 ) / 2 !number of grid points within dhs/2 + d2 = dhs(k)/2.0 + + Do j = i-fa2,i+fa2 + + If( ( zp(i)-zp(j+1) ) < d2 .and. ( zp(i) - zp(j) ) >= d2 ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand + x_int(n) = 0.0 + If(n/=1) stop 'error in FMT_dFdrho, n should be 1 here!' + dz = zp(j+1) - (zp(i) - d2) + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + PI*dhs(k)*phi_dn2(j) & + + PI*phi_dn3(j)*(d2**2 - zz**2) + phi_dnv1(j)*zz/dhs(k) + 2.0*PI*phi_dnv2(j)*zz + + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + PI*dhs(k)*phi_dn2(j+1) & + + PI*phi_dn3(j+1)*(d2**2 - zz_jp1**2) + phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*PI*phi_dnv2(j+1)*zz_jp1 + + y_int(n) = at_j + (at_jp1-at_j)/dzp * (dzp-dz) !lineare interpolation genau, wie in FMT_Weighted_Densities +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) -phi_dn0(j))/dzp * (dzp-dz) +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) -phi_dn1(j))/dzp * (dzp-dz) +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) -phi_dn2(j))/dzp * (dzp-dz) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) + (phi_dn3(j+1)*(d2**2-zz_jp1**2) - phi_dn3(j)*(d2**2-zz**2) )/dzp * (dzp-dz) +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * (dzp-dz) +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * (dzp-dz) +! + + Else If (zp(j) > (zp(i)-d2) .and. zp(j) <= (zp(i)+d2)) Then !grid points j and j+1 are completely within i+-d2 + + n = n + 1 + zz = zp(j) - zp(i) + x_int(n) = x_int(n-1) + dz + + + y_int(n) = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + PI*dhs(k)*phi_dn2(j) & + + PI*phi_dn3(j)*(d2**2 - zz**2) + phi_dnv1(j)*zz/dhs(k) + 2.0*PI*phi_dnv2(j)*zz + + +! y0_int(n) = phi_dn0(j) +! y1_int(n) = phi_dn1(j) +! y2_int(n) = phi_dn2(j) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) +! yv1_int(n) = phi_dnv1(j)*zz +! yv2_int(n) = phi_dnv2(j)*zz +! + + dz = dzp + + If (zp(j) < (zp(i)+d2) .and. zp(j+1) > (zp(i)+d2) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already out side zp(i)+d2 + + n = n + 1 + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + dz = zp(i) + d2 - zp(j) + x_int(n) = x_int(n-1) + dz + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + PI*dhs(k)*phi_dn2(j) & + + PI*phi_dn3(j)*(d2**2 - zz**2) + phi_dnv1(j)*zz/dhs(k) + 2.0*PI*phi_dnv2(j)*zz + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + PI*dhs(k)*phi_dn2(j+1) & + + PI*phi_dn3(j+1)*(d2**2 - zz_jp1**2) + phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*PI*phi_dnv2(j+1)*zz_jp1 + y_int(n) = at_j + (at_jp1-at_j)/dzp * dz + + +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) - phi_dn0(j))/dzp * dz +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) - phi_dn1(j))/dzp * dz +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) - phi_dn2(j))/dzp * dz +! y3_int(n) = phi_dn3(j)*(d2**2 - zz**2) + (phi_dn3(j+1)*(d2**2 - zz_jp1**2) - phi_dn3(j)*(d2**2 - zz**2))/dzp * dz +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * dz +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * dz +! + + + End If + + End If + + + End Do + + !spline integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in FMT_dFdrho (auch in AD Routine!!)' + + call spline(x_int,y_int,n,1.E30,1.E30,y2) + call splint_integral(x_int,y_int,y2,n,xlo,xhi,integral) + +! call spline ( x_int, y0_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y0_int, y2, n, xlo, xhi, int0 ) +! call spline ( x_int, y1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y1_int, y2, n, xlo, xhi, int1 ) +! call spline ( x_int, y2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y2_int, y2, n, xlo, xhi, int2 ) +! call spline ( x_int, y3_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y3_int, y2, n, xlo, xhi, int3 ) +! call spline ( x_int, yv1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv1_int, y2, n, xlo, xhi, intv1 ) +! call spline ( x_int, yv2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv2_int, y2, n, xlo, xhi, intv2 ) +! + + !dF_drho_FMT(i,k) = int0/dhs(k) + 0.5*int1 + PI*dhs(k)*int2 + PI*int3 + intv1/dhs(k) + 2.0*PI*intv2 + dF_drho_FMT(i,k) = integral*parame(k,1) + +End Do + + +End Subroutine FMT_dFdrho + + +End Module mod_DFT_FMT diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT_d.F90 new file mode 100644 index 000000000..38d8ee77a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_DFT_FMT_d.F90 @@ -0,0 +1,457 @@ +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +!All equations are taken from the appendix of: +!Gross: 'A density functional theory for vapor-liquid interfaces using the PCP-SAFT eos' +!But: here we dont treat chain-molecules!! -> no multiplications with segment number +MODULE MOD_DFT_FMT_D + IMPLICIT NONE + PRIVATE + PUBLIC fmt_weighted_densities_d + PUBLIC fmt_dfdrho_d + +CONTAINS +! Differentiation of fmt_weighted_densities in forward (tangent) mode: +! variations of useful results: phi_dn0 phi_dn1 phi_dn2 phi_dnv1 +! phi_dn3 phi_dnv2 +! with respect to varying inputs: rhop + SUBROUTINE FMT_WEIGHTED_DENSITIES_D(rhop, rhopd, n0, n1, n2, n3, nv1, & +& nv2, phi_dn0, phi_dn0d, phi_dn1, phi_dn1d, phi_dn2, phi_dn2d, & +& phi_dn3, phi_dn3d, phi_dnv1, phi_dnv1d, phi_dnv2, phi_dnv2d, user) + USE PARAMETERS, ONLY : pi + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + USE MOD_DFT, ONLY : zp, dzp, fa + + +!PETSc module +Use PetscManagement +IMPLICIT NONE + +#include + +!passed +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: phi_dn0d,phi_dn1d,phi_dn2d,phi_dn3d,phi_dnv1d,phi_dnv2d + + + + +!local + REAL, DIMENSION(user%gxs:user%gxe) :: n0d,n1d,n2d,n3d,nv1d,nv2d + INTEGER :: k, i, j + INTEGER :: fa2 + REAL :: dz, d2, zz + INTEGER :: n + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, n2_int, n3_int, nv2_int + REAL, DIMENSION(NMAX) :: n2_intd, n3_intd, nv2_intd + REAL, DIMENSION(NMAX) :: y2_n2, y2_n3, y2_nv2 + REAL, DIMENSION(NMAX) :: y2_n2d, y2_n3d, y2_nv2d + REAL :: int_n2, int_n3, int_nv2, xhi, xlo + REAL :: int_n2d, int_n3d, int_nv2d + REAL :: zms, zms2, zms3, logzms + REAL :: zmsd, zms2d, zms3d, logzmsd + REAL :: nn0, nn1, nn2, nn3, nnv1, nnv2 + REAL :: nn0d, nn1d, nn2d, nn3d, nnv1d, nnv2d + REAL :: rhopjk, rhopjp1k + REAL :: rhopjkd, rhopjp1kd + INTRINSIC MAXVAL + INTRINSIC LOG + REAL :: result1 + + + + n0 = 0.0 + n1 = 0.0 + n2 = 0.0 + n3 = 0.0 + nv1 = 0.0 + nv2 = 0.0 + result1 = MAXVAL(fa(1:ncomp) + 5) + fa2 = result1/2 + nv1d = 0.0 + nv2d = 0.0 + n0d = 0.0 + n1d = 0.0 + n2d = 0.0 + n3d = 0.0 + y2_n2d = 0.0 + y2_n3d = 0.0 + y2_nv2d = 0.0 + DO k=1,ncomp +!fa2 = (fa(k) + 5) / 2 !grid points in sig/2 +!half of dhs [A] + d2 = dhs(k)/2.0 + + + + + Do i=user%xs-fa2,user%xe+fa2 !to evaluate dF/drho at any point, the derivatives dphi/dn have to be evaluated at +-d/2 around this point + + n = 1 + x_int = 0.0 + n2_int = 0.0 + n3_int = 0.0 + nv2_int = 0.0 + n2_intd = 0.0 + nv2_intd = 0.0 + n3_intd = 0.0 +!to evaluate dphi/dn at a given point, the weighted densities are needed at +-d/2 around this point + DO j=i-fa2,i+fa2 + rhopjkd = parame(k,1)*rhopd(k, j) + rhopjk = rhop(k, j)*parame(k,1) + rhopjp1kd = parame(k,1)*rhopd(k, j+1) + rhopjp1k = rhop(k, j+1)*parame(k,1) + IF (zp(i) - zp(j+1) .LT. d2 .AND. zp(i) - zp(j) .GE. d2) THEN +!the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +!here always n=1! + IF (n .NE. 1) THEN + GOTO 100 + ELSE +!distance between grid points j and i + zz = zp(j) - zp(i) +!the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 + dz = zp(j+1) - (zp(i)-d2) +!if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +!liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +!array containing x-values for spline integration + x_int(n) = 0.0 +!integrand f�r n2 (=rhop) linear interpoliert f�r den Punk zp(i)-d/2 + n2_intd(n) = rhopjkd + (dzp-dz)*(rhopjp1kd-rhopjkd)/dzp + n2_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*(dzp-dz) +!integrand f�r n3: rhop*(d2**2 - z'**2), da hier gerade z' = d2 -> integrand wird hier = 0!! + n3_intd(n) = 0.0 + n3_int(n) = 0.0 +!analog + nv2_intd(n) = zz*rhopjkd + (dzp-dz)*((zp(j+1)-zp(i))*& +& rhopjp1kd-zz*rhopjkd)/dzp + nv2_int(n) = rhopjk*zz + (rhopjp1k*(zp(j+1)-zp(i))-rhopjk*& +& zz)/dzp*(dzp-dz) + END IF + ELSE IF (zp(j) .GT. zp(i) - d2 .AND. zp(j) .LE. zp(i) + d2) & +& THEN +!grid point j within i+-d2 + n = n + 1 +!first time in this If condition, dz is stil the old value from above! + x_int(n) = x_int(n-1) + dz + zz = zp(j) - zp(i) + dz = dzp + n2_intd(n) = rhopjkd + n2_int(n) = rhopjk + n3_intd(n) = (d2**2-zz**2)*rhopjkd + n3_int(n) = rhopjk*(d2**2-zz**2) + nv2_intd(n) = zz*rhopjkd + nv2_int(n) = rhopjk*zz + IF (zp(j) .LT. zp(i) + d2 .AND. zp(j+1) .GE. zp(i) + d2) & +& THEN +!zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 + dz = zp(i) + d2 - zp(j) +!If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +!= x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + n2_intd(n) = rhopjkd + dz*(rhopjp1kd-rhopjkd)/dzp + n2_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*dz +!Begr�ndung wie oben + n3_intd(n) = 0.0 + n3_int(n) = 0.0 + nv2_intd(n) = zz*rhopjkd + dz*((zp(j+1)-zp(i))*rhopjp1kd-& +& zz*rhopjkd)/dzp + nv2_int(n) = rhopjk*zz + (rhopjp1k*(zp(j+1)-zp(i))-rhopjk*& +& zz)/dzp*dz + END IF + END IF + END DO +!spline integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, n2_int, n2_intd, n, 1.e30, 1.e30, y2_n2, & +& y2_n2d) + CALL SPLINE_D(x_int, n3_int, n3_intd, n, 1.e30, 1.e30, y2_n3, & +& y2_n3d) + CALL SPLINE_D(x_int, nv2_int, nv2_intd, n, 1.e30, 1.e30, y2_nv2& +& , y2_nv2d) + CALL SPLINT_INTEGRAL_D(x_int, n2_int, n2_intd, y2_n2, y2_n2d, n& +& , xlo, xhi, int_n2, int_n2d) + CALL SPLINT_INTEGRAL_D(x_int, n3_int, n3_intd, y2_n3, y2_n3d, n& +& , xlo, xhi, int_n3, int_n3d) + CALL SPLINT_INTEGRAL_D(x_int, nv2_int, nv2_intd, y2_nv2, y2_nv2d& +& , n, xlo, xhi, int_nv2, int_nv2d) +!weighted densities + n2d(i) = n2d(i) + pi*dhs(k)*int_n2d + n2(i) = n2(i) + pi*dhs(k)*int_n2 + n1d(i) = n1d(i) + 0.5*int_n2d + n1(i) = n1(i) + 0.5*int_n2 + n0d(i) = n0d(i) + int_n2d/dhs(k) + n0(i) = n0(i) + int_n2/dhs(k) + n3d(i) = n3d(i) + pi*int_n3d + n3(i) = n3(i) + pi*int_n3 + nv2d(i) = nv2d(i) - 2.0*pi*int_nv2d + nv2(i) = nv2(i) - 2.0*pi*int_nv2 + nv1d(i) = nv1d(i) - int_nv2d/dhs(k) + nv1(i) = nv1(i) - int_nv2/dhs(k) + END DO + END DO + phi_dn0d = 0.0 + phi_dn1d = 0.0 + phi_dn2d = 0.0 + phi_dnv1d = 0.0 + phi_dn3d = 0.0 + phi_dnv2d = 0.0 +! If(i < 5) Then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! end if +! +! If(i > 95) then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! End If +! +! pause + + +!derivatives of FMT helmholtz energy density w.r.t. weighted densities +Do i=user%xs-maxval((fa(1:ncomp)+1)/2),user%xe+maxval((fa(1:ncomp)+1)/2) +!weils k�rzer ist + nn0d = n0d(i) + nn0 = n0(i) + nn1d = n1d(i) + nn1 = n1(i) + nn2d = n2d(i) + nn2 = n2(i) + nn3d = n3d(i) + nn3 = n3(i) + nnv1d = nv1d(i) + nnv1 = nv1(i) + nnv2d = nv2d(i) + nnv2 = nv2(i) + zmsd = -nn3d + zms = 1.0 - nn3 + zms2d = zmsd*zms + zms*zmsd + zms2 = zms*zms + zms3d = zms2d*zms + zms2*zmsd + zms3 = zms2*zms + logzmsd = zmsd/zms + logzms = LOG(zms) +!if(isnan(logzms)) stop 'zms < 0, log(zms) undefined FMT_Weighted_Densities' + phi_dn0d(i) = -logzmsd + phi_dn0(i) = -logzms + phi_dn1d(i) = (nn2d*zms-nn2*zmsd)/zms**2 + phi_dn1(i) = nn2/zms + phi_dn2d(i) = (nn1d*zms-nn1*zmsd)/zms**2 + (3.0*((nn2d*nn2+nn2*& +& nn2d-nnv2d*nnv2-nnv2*nnv2d)*(nn3+zms2*logzms)+(nn2*nn2-nnv2*nnv2& +& )*(nn3d+zms2d*logzms+zms2*logzmsd))*36.0*pi*nn3**2*zms2-3.0*(nn2& +& *nn2-nnv2*nnv2)*(nn3+zms2*logzms)*36.0*pi*((nn3d*nn3+nn3*nn3d)*& +& zms2+nn3**2*zms2d))/(36.0*pi*nn3*nn3*zms2)**2 + phi_dn2(i) = nn1/zms + 3.0*(nn2*nn2-nnv2*nnv2)*(nn3+zms2*logzms)/(& +& 36.0*pi*nn3*nn3*zms2) + phi_dn3d(i) = (nn0d*zms-nn0*zmsd)/zms**2 + ((nn1d*nn2+nn1*nn2d-& +& nnv1d*nnv2-nnv1*nnv2d)*zms2-(nn1*nn2-nnv1*nnv2)*zms2d)/zms2**2 -& +& (((3*nn2**2*nn2d-3.0*((nn2d*nnv2+nn2*nnv2d)*nnv2+nn2*nnv2*nnv2d)& +& )*(nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms)+(nn2**3-3.0*nn2*& +& nnv2*nnv2)*(nn3d*(nn3**2-5.0*nn3+2.0)+nn3*(2*nn3*nn3d-5.0*nn3d)+& +& 2.0*(zms3d*logzms+zms3*logzmsd)))*36.0*pi*nn3**3*zms3-(nn2**3-& +& 3.0*nn2*nnv2*nnv2)*(nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms)*& +& 36.0*pi*(3*nn3**2*nn3d*zms3+nn3**3*zms3d))/(36.0*pi*nn3**3*zms3)& +& **2 + phi_dn3(i) = nn0/zms + (nn1*nn2-nnv1*nnv2)/zms2 - (nn2**3-3.0*nn2*& +& nnv2*nnv2)*(nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms)/(36.0*pi*& +& nn3**3*zms3) + phi_dnv1d(i) = -((nnv2d*zms-nnv2*zmsd)/zms**2) + phi_dnv1(i) = -(nnv2/zms) + phi_dnv2d(i) = -((nnv1d*zms-nnv1*zmsd)/zms**2) - (6.0*((nn2d*nnv2+& +& nn2*nnv2d)*(nn3+zms2*logzms)+nn2*nnv2*(nn3d+zms2d*logzms+zms2*& +& logzmsd))*36.0*pi*nn3**2*zms2-6.0*nn2*nnv2*(nn3+zms2*logzms)*& +& 36.0*pi*(2*nn3*nn3d*zms2+nn3**2*zms2d))/(36.0*pi*nn3**2*zms2)**2 + phi_dnv2(i) = -(nnv1/zms) - 6.0*nn2*nnv2*(nn3+zms2*logzms)/(36.0*& +& pi*nn3**2*zms2) + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE FMT_WEIGHTED_DENSITIES_D + + + +! Differentiation of fmt_dfdrho in forward (tangent) mode: +! variations of useful results: df_drho_fmt +! with respect to varying inputs: df_drho_fmt phi_dn0 phi_dn1 +! phi_dn2 phi_dnv1 phi_dn3 phi_dnv2 + SUBROUTINE FMT_DFDRHO_D(i, fa, user, phi_dn0, phi_dn0d, phi_dn1, & +& phi_dn1d, phi_dn2, phi_dn2d, phi_dn3, phi_dn3d, phi_dnv1, phi_dnv1d& +& , phi_dnv2, phi_dnv2d, df_drho_fmt, df_drho_fmtd) + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + USE MOD_DFT, ONLY : zp, dzp + USE PARAMETERS, ONLY : pi + + +!PETSc module +Use PetscManagement + + IMPLICIT NONE + +!passed +INTEGER, INTENT(IN) :: i !the grid point at which to calculate dFdrho +INTEGER, INTENT(IN) :: fa(ncomp) +Type (userctx) :: user +REAL,dimension(user%gxs:user%gxe),INTENT(IN) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 +REAL,dimension(user%gxs:user%gxe),INTENT(IN) :: phi_dn0d,phi_dn1d,phi_dn2d,phi_dn3d,phi_dnv1d,phi_dnv2d + +REAL,dimension(user%xs:user%xe,ncomp), INTENT(OUT) :: dF_drho_FMT +REAL,dimension(user%xs:user%xe,ncomp), INTENT(OUT) :: dF_drho_FMTd + + +!local + INTEGER :: j, k, n + INTEGER :: fa2 + REAL :: dz, d2, zz, zz_jp1 + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, y_int, y0_int, y1_int, y2_int, y3_int& +& , yv1_int, yv2_int, y2 + REAL, DIMENSION(NMAX) :: y_intd, y2d + REAL :: xhi, xlo, integral, int0, int1, int2, int3, intv1, intv2 + REAL :: integrald + REAL :: at_j, at_jp1 + REAL :: at_jd, at_jp1d + + + y2d = 0.0 + y_intd = 0.0 +!Das Integral (Gleichung A1 in Gross DFT 2009) wird hier in einem Schlag berechnet! +!Falls die einzelnen Terme einzeln integriert werden sollen, einfach die auskommentierte Version verwenden +!das einzige, das hier von k abhaengt, sind fa und dhs!! die Ableitungen phi_dn... sind nicht Komponentenspez, da die + DO k=1,ncomp +!gewichteten Dichten ja uch nicht mehr Komponentenspez sind (n_i = sum n_i(k)) + n = 1 +!number of grid points within dhs/2 + fa2 = (fa(k)+5)/2 + d2 = dhs(k)/2.0 + DO j=i-fa2,i+fa2 + IF (zp(i) - zp(j+1) .LT. d2 .AND. zp(i) - zp(j) .GE. d2) THEN +!the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand + x_int(n) = 0.0 + IF (n .NE. 1) THEN + GOTO 100 + ELSE + dz = zp(j+1) - (zp(i)-d2) + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + at_jd = phi_dn0d(j)/dhs(k) + 0.5*phi_dn1d(j) + pi*dhs(k)*& +& phi_dn2d(j) + pi*(d2**2-zz**2)*phi_dn3d(j) + zz*phi_dnv1d(& +& j)/dhs(k) + 2.0*pi*zz*phi_dnv2d(j) + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + pi*dhs(k)*& +& phi_dn2(j) + pi*phi_dn3(j)*(d2**2-zz**2) + phi_dnv1(j)*zz/& +& dhs(k) + 2.0*pi*phi_dnv2(j)*zz + at_jp1d = phi_dn0d(j+1)/dhs(k) + 0.5*phi_dn1d(j+1) + pi*dhs(& +& k)*phi_dn2d(j+1) + pi*(d2**2-zz_jp1**2)*phi_dn3d(j+1) + & +& zz_jp1*phi_dnv1d(j+1)/dhs(k) + 2.0*pi*zz_jp1*phi_dnv2d(j+1& +& ) + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + pi*dhs(k)*& +& phi_dn2(j+1) + pi*phi_dn3(j+1)*(d2**2-zz_jp1**2) + & +& phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*pi*phi_dnv2(j+1)*zz_jp1 +!lineare interpolation genau, wie in FMT_Weighted_Densities + y_intd(n) = at_jd + (dzp-dz)*(at_jp1d-at_jd)/dzp + y_int(n) = at_j + (at_jp1-at_j)/dzp*(dzp-dz) +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) -phi_dn0(j))/dzp * (dzp-dz) +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) -phi_dn1(j))/dzp * (dzp-dz) +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) -phi_dn2(j))/dzp * (dzp-dz) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) + (phi_dn3(j+1)*(d2**2-zz_jp1**2) - phi_dn3(j)*(d2**2-zz**2) )/dzp * (dzp-dz) +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * (dzp-dz) +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * (dzp-dz) +! + END IF + ELSE IF (zp(j) .GT. zp(i) - d2 .AND. zp(j) .LE. zp(i) + d2) THEN +!grid points j and j+1 are completely within i+-d2 + n = n + 1 + zz = zp(j) - zp(i) + x_int(n) = x_int(n-1) + dz + y_intd(n) = phi_dn0d(j)/dhs(k) + 0.5*phi_dn1d(j) + pi*dhs(k)*& +& phi_dn2d(j) + pi*(d2**2-zz**2)*phi_dn3d(j) + zz*phi_dnv1d(j)& +& /dhs(k) + 2.0*pi*zz*phi_dnv2d(j) + y_int(n) = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + pi*dhs(k)*& +& phi_dn2(j) + pi*phi_dn3(j)*(d2**2-zz**2) + phi_dnv1(j)*zz/& +& dhs(k) + 2.0*pi*phi_dnv2(j)*zz +! y0_int(n) = phi_dn0(j) +! y1_int(n) = phi_dn1(j) +! y2_int(n) = phi_dn2(j) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) +! yv1_int(n) = phi_dnv1(j)*zz +! yv2_int(n) = phi_dnv2(j)*zz +! + dz = dzp + IF (zp(j) .LT. zp(i) + d2 .AND. zp(j+1) .GT. zp(i) + d2) THEN +!zp(j) is still within zp(i)+d2 but zp(j+1) is already out side zp(i)+d2 + n = n + 1 + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + dz = zp(i) + d2 - zp(j) + x_int(n) = x_int(n-1) + dz + at_jd = phi_dn0d(j)/dhs(k) + 0.5*phi_dn1d(j) + pi*dhs(k)*& +& phi_dn2d(j) + pi*(d2**2-zz**2)*phi_dn3d(j) + zz*phi_dnv1d(& +& j)/dhs(k) + 2.0*pi*zz*phi_dnv2d(j) + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + pi*dhs(k)*& +& phi_dn2(j) + pi*phi_dn3(j)*(d2**2-zz**2) + phi_dnv1(j)*zz/& +& dhs(k) + 2.0*pi*phi_dnv2(j)*zz + at_jp1d = phi_dn0d(j+1)/dhs(k) + 0.5*phi_dn1d(j+1) + pi*dhs(& +& k)*phi_dn2d(j+1) + pi*(d2**2-zz_jp1**2)*phi_dn3d(j+1) + & +& zz_jp1*phi_dnv1d(j+1)/dhs(k) + 2.0*pi*zz_jp1*phi_dnv2d(j+1& +& ) + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + pi*dhs(k)*& +& phi_dn2(j+1) + pi*phi_dn3(j+1)*(d2**2-zz_jp1**2) + & +& phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*pi*phi_dnv2(j+1)*zz_jp1 + y_intd(n) = at_jd + dz*(at_jp1d-at_jd)/dzp + y_int(n) = at_j + (at_jp1-at_j)/dzp*dz +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) - phi_dn0(j))/dzp * dz +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) - phi_dn1(j))/dzp * dz +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) - phi_dn2(j))/dzp * dz +! y3_int(n) = phi_dn3(j)*(d2**2 - zz**2) + (phi_dn3(j+1)*(d2**2 - zz_jp1**2) - phi_dn3(j)*(d2**2 - zz**2))/dzp * dz +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * dz +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * dz +! + END IF + END IF + END DO +!spline integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, y_int, y_intd, n, 1.e30, 1.e30, y2, y2d) + CALL SPLINT_INTEGRAL_D(x_int, y_int, y_intd, y2, y2d, n, xlo, xhi& +& , integral, integrald) +! call spline ( x_int, y0_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y0_int, y2, n, xlo, xhi, int0 ) +! call spline ( x_int, y1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y1_int, y2, n, xlo, xhi, int1 ) +! call spline ( x_int, y2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y2_int, y2, n, xlo, xhi, int2 ) +! call spline ( x_int, y3_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y3_int, y2, n, xlo, xhi, int3 ) +! call spline ( x_int, yv1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv1_int, y2, n, xlo, xhi, intv1 ) +! call spline ( x_int, yv2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv2_int, y2, n, xlo, xhi, intv2 ) +! +!dF_drho_FMT(i,k) = int0/dhs(k) + 0.5*int1 + PI*dhs(k)*int2 + PI*int3 + intv1/dhs(k) + 2.0*PI*intv2 + df_drho_fmtd(i, k) = parame(k,1)*integrald + df_drho_fmt(i, k) = integral*parame(k,1) + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE FMT_DFDRHO_D + +END MODULE MOD_DFT_FMT_D + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_PETSc.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_PETSc.F90 new file mode 100644 index 000000000..4527bb698 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/mod_PETSc.F90 @@ -0,0 +1,63 @@ +Module PetscManagement + + type userctx +#include +#include +#include + PetscInt xs,xe,xm,gxs,gxe,gxm,mx + PetscMPIInt rank + PetscMPIInt num_procs + end type userctx + +End Module + + + + + +Module Global_x +Implicit None +#include +#include +#include + +SNES :: snes !nonlinear solver context +Vec :: x !array of unknowns +Vec :: r !array of residuals +PetscInt :: ngrid !number of grid points +PetscInt :: ngp !number of ghost points + +DOUBLE PRECISION :: timer ! timer +DOUBLE PRECISION :: timer_old ! timer +DOUBLE PRECISION :: total_time ! timer + + +End Module Global_x + + + +Module f90moduleinterfaces +Use PetscManagement +#include + + Interface SNESSetApplicationContext + Subroutine SNESSetApplicationContext(snes,ctx,ierr) + use PetscManagement + SNES snes + type(userctx) ctx + PetscErrorCode ierr + End Subroutine + End Interface SNESSetApplicationContext + + Interface SNESGetApplicationContext + Subroutine SNESGetApplicationContext(snes,ctx,ierr) + use PetscManagement + SNES snes + type(userctx), pointer :: ctx + PetscErrorCode ierr + End Subroutine + End Interface SNESGetApplicationContext + +End Module f90moduleinterfaces + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.F90 new file mode 100644 index 000000000..595a8ba80 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/module_solve_nonlinear.F90 @@ -0,0 +1,1645 @@ + +MODULE Solve_NonLin + +! Corrections to FUNCTION Enorm - 28 November 2003 + +IMPLICIT NONE +INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HBRD + +! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +! FINAL ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +! PRECISION. + +! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +! IS AT MOST TOL. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +! BETWEEN X AND THE SOLUTION IS AT MOST TOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). + +! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... HYBRD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! Reference: +! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +! Breach, London 1970. +! ********** +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 1.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0 + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0 + alpha = delta / qnorm + IF (gnorm /= 0.0) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0 + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0 + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0-(delta/qnorm)**2)*(1.0-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/out.txt b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/out.txt new file mode 100644 index 000000000..247f493f1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/src/srcDetailedCode/out.txt @@ -0,0 +1 @@ + 33.518519488031210 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/workflow b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/workflow new file mode 100755 index 000000000..aab826a04 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/ExampleOfUsage/workflow @@ -0,0 +1,57 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + A simple workflow + +Authors + Henrik Rusche + +Contributors +''' + +from fireworks import Firework, Workflow, LaunchPad +from fireworks.core.rocket_launcher import rapidfire +import SurfaceTension +from modulefinder import ModuleFinder + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +# create the individual FireWorks and Workflow +# Source code in src/twoTanksMacroscopicProblem.C +wf = Workflow([Firework(SurfaceTension.m)], {}, name="simulation") + +# store workflow and launch it locally +launchpad.add_wf(wf) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/SurfaceTension.py b/applications/PUfoam/MoDeNaModels/SurfaceTension/SurfaceTension.py new file mode 100644 index 000000000..18a5cd77e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/SurfaceTension.py @@ -0,0 +1,198 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks +This is the Surface Tension python module. Basically, it contains the following: + +The FireTask which controls the call of the detailed model. This detailed model is called +at the very beginning of the simulation in order to generate initial data points +which can be used to fit the parameters of the surrogate model and during a running simulation +as soon as the Surface Tension model is called with input parameters which lie outside the range +the parameters of the surrogate model was so far fitted for. This FireTask is stored in the class +"SurfaceTensionExactSim" and a more detailed description of the detailed model can be found +in the description of this class. + +Furthermore, this module contains the code of the surrogate model function as well as the +definitions of its input and output values and its fittable parameters. Care should be +taken to set reasonable bounds for these variables. + +Also, this module contains the backward mapping model. This model consits of the +surrogate model function, an initialisation strategy, the out of bounds strategy and the +parameter fitting strategy. The initialisation strategy defines the initial data points where the +detailed model will be evaluated at simulation start for an initial fit of the surrogate model parameters. +The out of bounds strategy determines, how many new points and where to place these new +points, once the Surface Tension model is called for input values outside of the +fitted range. The parameter fitting strategy defines tolerances and maximal iterations +which are passed to the numerical solver which performs the actual fitting of the +surrogate model parameters. + + +@author Jonas Mairhofer +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +""" + +import os +import modena +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, CFunction, IndexSet, ModenaFireTask +import modena.Strategy as Strategy +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from jinja2 import Template + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# ********************************* Class ********************************** # +@explicit_serialize +class SurfaceTensionExactSim(ModenaFireTask): + """ + This FireTask controls the execution of the detailed model of the Surface Tension model. + The detailed model is a density functional theory implementation based on PC-SAFT. A + detailed description of this model can be found in Deliverable 1.3 on the MoDeNa website. + + In order to start the detailed model, the input values for the model are first written to the + file "in.txt". The detailed model code picks them up from this file and performs the according + calculation. Once it is done, the output value is written to the file "out.txt". This FireTask + then reads in the calculated surface tension from "out.txt" and inserts this value into the + database. + """ + + def task(self, fw_spec): + # Write input for detailed model + ff = open('in.txt', 'w') + Tstr = str(self['point']['T']) + ff.write('%s \n' %(Tstr)) + + + ##TODO INPUT SHOULD COME FROM IndexSet + + ff.write('2 \n') #number of components in system + ff.write('air \n') #component 1 + ff.write('thf \n') #component 2 + ff.write('0. \n') #molar feed (initial) composition component 1 + ff.write('0. \n') #molar feed (initial) composition component 2 + ff.close() + + #create output file for detailed code + fff = open('out.txt', 'w+') + fff.close() + + # Execute detailed model + run_command = os.path.dirname(os.path.abspath(__file__))+'/src/PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx 800 -rc 9.0 -box 300 -erel 1e-08 -init_pert 0 \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol 1e-07 -snes_rtol 1e-07 -snes_stol 1e-07 -snes_max_it 20 \ + -ksp_max_it 15 -ksp_gmres_restart 50 \ + -snes_linesearch_type l2 -snes_linesearch_damping 0.3 -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 0 -pc_type none > log' + + + ret = os.system(run_command) + # This call enables backward mapping capabilities (not needed in this example) + self.handleReturnCode(ret) + + # Analyse output + f = open('out.txt', 'r') + self['point']['ST'] = float(f.readline()) + f.close() + + +f = CFunction( + Ccode= r''' +#include "modena.h" +#include "math.h" + +void surroSurfaceTension +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + const double T = inputs[0]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + const double P2 = parameters[2]; + + outputs[0] = P0 + T*P1 + P2*T*T; +} +''', + # These are global bounds for the function + inputs={ + 'T': { 'min': 270.0, 'max': 310.0, 'argPos': 0 }, #check if boundaries reasonable, from this range, the random values for the DOE are chosen! + }, + outputs={ + 'ST': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': -1E10, 'max': 1E10, 'argPos': 0 }, #check if boundaries are reasonable!!! + 'param1': { 'min': -1E10, 'max': 1E10, 'argPos': 1 }, + 'param2': { 'min': -1E10, 'max': 1E10, 'argPos': 2 }, + }, +) + +m = BackwardMappingModel( + _id= 'SurfaceTension', + surrogateFunction= f, + exactTask= SurfaceTensionExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'T': [270.0, 290.0, 300.0], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 30.0, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/__init__.py b/applications/PUfoam/MoDeNaModels/SurfaceTension/__init__.py new file mode 100644 index 000000000..e1447e6fe --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/__init__.py @@ -0,0 +1,39 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from SurfaceTension import m diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/initModels b/applications/PUfoam/MoDeNaModels/SurfaceTension/initModels new file mode 100755 index 000000000..5dc3db8c0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/initModels @@ -0,0 +1,62 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script for the flowRate model. The script calculates a few + data points and fits the surrogate model. Then the model is inserted into + the database. + +Authors + Henrik Rusche + +Contributors +''' + +from modena import SurrogateModel +from modena.Strategy import Workflow2 +#import flowRate +import SurfaceTension +from fireworks import LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from fireworks.utilities.fw_serializers import load_object + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +initWfs = Workflow2([]) +for m in SurrogateModel.get_instances(): + initWfs.addNoLink(m.initialisationStrategy().workflow(m)) + +# store workflow and launch it locally +launchpad.add_wf(initWfs) +rapidfire(launchpad) + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 0_initial_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 0_initial_profile_global.xlo new file mode 100644 index 000000000..a3e56c411 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 0_initial_profile_global.xlo @@ -0,0 +1,1603 @@ +Vector Object:Vec_0x84000000_0 1 MPI processes + type: mpi +Process [0] +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764801 +8.60376e-06 +0.00764801 +8.60377e-06 +0.00764801 +8.60377e-06 +0.00764801 +8.60377e-06 +0.007648 +8.60378e-06 +0.007648 +8.60379e-06 +0.00764799 +8.6038e-06 +0.00764798 +8.60381e-06 +0.00764797 +8.60383e-06 +0.00764795 +8.60386e-06 +0.00764793 +8.6039e-06 +0.00764789 +8.60395e-06 +0.00764785 +8.60402e-06 +0.0076478 +8.60412e-06 +0.00764772 +8.60425e-06 +0.00764762 +8.60442e-06 +0.00764749 +8.60466e-06 +0.00764731 +8.60499e-06 +0.00764707 +8.60544e-06 +0.00764674 +8.60606e-06 +0.00764632 +8.60689e-06 +0.00764574 +8.60803e-06 +0.00764498 +8.60958e-06 +0.00764396 +8.61169e-06 +0.00764259 +8.61458e-06 +0.00764077 +8.6185e-06 +0.00763833 +8.62386e-06 +0.00763508 +8.63115e-06 +0.00763073 +8.64108e-06 +0.00762493 +8.65461e-06 +0.0076172 +8.67302e-06 +0.00760688 +8.69807e-06 +0.00759314 +8.7321e-06 +0.00757486 +8.7783e-06 +0.00755056 +8.84092e-06 +0.00751833 +8.9256e-06 +0.00747569 +9.0398e-06 +0.00741944 +9.1932e-06 +0.00734559 +9.39817e-06 +0.00724916 +9.67017e-06 +0.00712416 +1.00278e-05 +0.0069637 +1.04923e-05 +0.00676022 +1.10861e-05 +0.00650614 +1.18303e-05 +0.00619499 +1.27397e-05 +0.00582284 +1.38175e-05 +0.00539012 +1.50496e-05 +0.00490317 +1.64009e-05 +0.00437499 +1.78178e-05 +0.00382444 +1.92346e-05 +0.0032739 +2.0586e-05 +0.00274571 +2.1818e-05 +0.00225877 +2.28958e-05 +0.00182605 +2.38052e-05 +0.00145389 +2.45494e-05 +0.00114274 +2.51433e-05 +0.000888669 +2.56077e-05 +0.000685182 +2.59654e-05 +0.00052472 +2.62373e-05 +0.000399729 +2.64423e-05 +0.000303294 +2.65957e-05 +0.00022944 +2.67099e-05 +0.000173197 +2.67946e-05 +0.000130552 +2.68572e-05 +9.83223e-05 +2.69034e-05 +7.40243e-05 +2.69375e-05 +5.57402e-05 +2.69625e-05 +4.20009e-05 +2.69809e-05 +3.16877e-05 +2.69944e-05 +2.39523e-05 +2.70044e-05 +1.81538e-05 +2.70117e-05 +1.38092e-05 +2.7017e-05 +1.0555e-05 +2.70209e-05 +8.11816e-06 +2.70238e-05 +6.29374e-06 +2.70259e-05 +4.92801e-06 +2.70275e-05 +3.90575e-06 +2.70286e-05 +3.14065e-06 +2.70295e-05 +2.56804e-06 +2.70301e-05 +2.13952e-06 +2.70305e-05 +1.81884e-06 +2.70309e-05 +1.57887e-06 +2.70311e-05 +1.39929e-06 +2.70313e-05 +1.26492e-06 +2.70314e-05 +1.16437e-06 +2.70315e-05 +1.08912e-06 +2.70316e-05 +1.03282e-06 +2.70316e-05 +9.9069e-07 +2.70317e-05 +9.59165e-07 +2.70317e-05 +9.35575e-07 +2.70317e-05 +9.17924e-07 +2.70317e-05 +9.04716e-07 +2.70317e-05 +8.94833e-07 +2.70317e-05 +8.87437e-07 +2.70317e-05 +8.81903e-07 +2.70318e-05 +8.77763e-07 +2.70318e-05 +8.74664e-07 +2.70318e-05 +8.72346e-07 +2.70318e-05 +8.70611e-07 +2.70318e-05 +8.69313e-07 +2.70318e-05 +8.68342e-07 +2.70318e-05 +8.67615e-07 +2.70318e-05 +8.67071e-07 +2.70318e-05 +8.66664e-07 +2.70318e-05 +8.66359e-07 +2.70318e-05 +8.66132e-07 +2.70318e-05 +8.65961e-07 +2.70318e-05 +8.65833e-07 +2.70318e-05 +8.65738e-07 +2.70318e-05 +8.65667e-07 +2.70318e-05 +8.65613e-07 +2.70318e-05 +8.65573e-07 +2.70318e-05 +8.65543e-07 +2.70318e-05 +8.65521e-07 +2.70318e-05 +8.65504e-07 +2.70318e-05 +8.65491e-07 +2.70318e-05 +8.65482e-07 +2.70318e-05 +8.65475e-07 +2.70318e-05 +8.6547e-07 +2.70318e-05 +8.65466e-07 +2.70318e-05 +8.65463e-07 +2.70318e-05 +8.65461e-07 +2.70318e-05 +8.65459e-07 +2.70318e-05 +8.65458e-07 +2.70318e-05 +8.65457e-07 +2.70318e-05 +8.65456e-07 +2.70318e-05 +8.65456e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65455e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 10_initial_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 10_initial_profile_global.xlo new file mode 100644 index 000000000..eb02ec18f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 10_initial_profile_global.xlo @@ -0,0 +1,3072 @@ +#Vector Object:Vec_0x84000000_0 1 MPI processes +# type: mpi +#Process [0] +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.00196551 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192566 +0.00132797 +0.0019655 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196549 +0.00192565 +0.00132796 +0.00196548 +0.00192565 +0.00132796 +0.00196548 +0.00192565 +0.00132796 +0.00196548 +0.00192564 +0.00132796 +0.00196548 +0.00192564 +0.00132796 +0.00196548 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196547 +0.00192564 +0.00132796 +0.00196546 +0.00192563 +0.00132796 +0.00196546 +0.00192563 +0.00132796 +0.00196546 +0.00192563 +0.00132796 +0.00196545 +0.00192563 +0.00132795 +0.00196545 +0.00192562 +0.00132795 +0.00196545 +0.00192562 +0.00132795 +0.00196544 +0.00192562 +0.00132795 +0.00196544 +0.00192561 +0.00132795 +0.00196543 +0.00192561 +0.00132795 +0.00196543 +0.00192561 +0.00132795 +0.00196542 +0.0019256 +0.00132795 +0.00196541 +0.0019256 +0.00132794 +0.00196541 +0.00192559 +0.00132794 +0.0019654 +0.00192559 +0.00132794 +0.00196539 +0.00192558 +0.00132794 +0.00196538 +0.00192558 +0.00132794 +0.00196538 +0.00192557 +0.00132793 +0.00196537 +0.00192556 +0.00132793 +0.00196536 +0.00192556 +0.00132793 +0.00196534 +0.00192555 +0.00132792 +0.00196533 +0.00192554 +0.00132792 +0.00196532 +0.00192553 +0.00132792 +0.00196531 +0.00192552 +0.00132791 +0.00196529 +0.00192551 +0.00132791 +0.00196528 +0.0019255 +0.00132791 +0.00196526 +0.00192549 +0.0013279 +0.00196525 +0.00192548 +0.0013279 +0.00196523 +0.00192546 +0.00132789 +0.00196521 +0.00192545 +0.00132788 +0.00196519 +0.00192543 +0.00132788 +0.00196516 +0.00192542 +0.00132787 +0.00196514 +0.0019254 +0.00132786 +0.00196511 +0.00192538 +0.00132785 +0.00196508 +0.00192536 +0.00132785 +0.00196505 +0.00192534 +0.00132784 +0.00196502 +0.00192531 +0.00132783 +0.00196499 +0.00192529 +0.00132782 +0.00196495 +0.00192526 +0.0013278 +0.00196491 +0.00192523 +0.00132779 +0.00196487 +0.0019252 +0.00132778 +0.00196483 +0.00192517 +0.00132776 +0.00196478 +0.00192513 +0.00132775 +0.00196473 +0.00192509 +0.00132773 +0.00196467 +0.00192505 +0.00132771 +0.00196461 +0.001925 +0.00132769 +0.00196455 +0.00192495 +0.00132767 +0.00196448 +0.0019249 +0.00132765 +0.00196441 +0.00192485 +0.00132762 +0.00196433 +0.00192479 +0.0013276 +0.00196425 +0.00192472 +0.00132757 +0.00196416 +0.00192466 +0.00132754 +0.00196407 +0.00192458 +0.0013275 +0.00196396 +0.0019245 +0.00132747 +0.00196386 +0.00192442 +0.00132743 +0.00196374 +0.00192433 +0.00132739 +0.00196361 +0.00192423 +0.00132734 +0.00196348 +0.00192412 +0.00132729 +0.00196334 +0.00192401 +0.00132724 +0.00196319 +0.00192389 +0.00132719 +0.00196302 +0.00192376 +0.00132712 +0.00196285 +0.00192362 +0.00132706 +0.00196266 +0.00192347 +0.00132699 +0.00196246 +0.00192331 +0.00132691 +0.00196225 +0.00192314 +0.00132683 +0.00196202 +0.00192296 +0.00132675 +0.00196177 +0.00192276 +0.00132665 +0.00196151 +0.00192255 +0.00132655 +0.00196123 +0.00192232 +0.00132644 +0.00196093 +0.00192208 +0.00132632 +0.0019606 +0.00192182 +0.0013262 +0.00196026 +0.00192154 +0.00132606 +0.00195989 +0.00192124 +0.00132591 +0.0019595 +0.00192091 +0.00132575 +0.00195907 +0.00192057 +0.00132558 +0.00195862 +0.00192019 +0.0013254 +0.00195814 +0.0019198 +0.0013252 +0.00195762 +0.00191937 +0.00132499 +0.00195707 +0.00191891 +0.00132476 +0.00195648 +0.00191842 +0.00132451 +0.00195584 +0.00191789 +0.00132425 +0.00195517 +0.00191732 +0.00132396 +0.00195444 +0.00191672 +0.00132365 +0.00195367 +0.00191607 +0.00132332 +0.00195284 +0.00191537 +0.00132296 +0.00195195 +0.00191462 +0.00132258 +0.001951 +0.00191382 +0.00132217 +0.00194999 +0.00191296 +0.00132172 +0.00194891 +0.00191203 +0.00132124 +0.00194775 +0.00191104 +0.00132072 +0.00194651 +0.00190998 +0.00132017 +0.00194518 +0.00190885 +0.00131957 +0.00194377 +0.00190763 +0.00131893 +0.00194225 +0.00190632 +0.00131824 +0.00194064 +0.00190493 +0.00131749 +0.00193891 +0.00190343 +0.00131669 +0.00193706 +0.00190182 +0.00131583 +0.00193509 +0.0019001 +0.0013149 +0.00193298 +0.00189826 +0.0013139 +0.00193073 +0.00189628 +0.00131283 +0.00192832 +0.00189417 +0.00131168 +0.00192576 +0.00189191 +0.00131044 +0.00192302 +0.00188949 +0.00130911 +0.00192009 +0.00188689 +0.00130768 +0.00191697 +0.00188412 +0.00130614 +0.00191364 +0.00188115 +0.00130448 +0.00191009 +0.00187798 +0.00130271 +0.00190631 +0.00187458 +0.0013008 +0.00190227 +0.00187096 +0.00129876 +0.00189797 +0.00186708 +0.00129656 +0.00189338 +0.00186293 +0.0012942 +0.0018885 +0.00185851 +0.00129167 +0.0018833 +0.00185378 +0.00128896 +0.00187777 +0.00184873 +0.00128605 +0.00187189 +0.00184335 +0.00128293 +0.00186563 +0.0018376 +0.00127959 +0.00185897 +0.00183148 +0.00127602 +0.0018519 +0.00182495 +0.00127219 +0.00184439 +0.001818 +0.00126809 +0.00183642 +0.0018106 +0.00126371 +0.00182796 +0.00180273 +0.00125903 +0.00181899 +0.00179435 +0.00125403 +0.00180949 +0.00178545 +0.00124869 +0.00179942 +0.001776 +0.001243 +0.00178878 +0.00176596 +0.00123692 +0.00177752 +0.00175532 +0.00123045 +0.00176562 +0.00174404 +0.00122356 +0.00175306 +0.0017321 +0.00121624 +0.00173981 +0.00171946 +0.00120845 +0.00172585 +0.00170611 +0.00120018 +0.00171115 +0.00169201 +0.00119141 +0.00169569 +0.00167713 +0.00118212 +0.00167945 +0.00166146 +0.00117229 +0.00166241 +0.00164496 +0.00116189 +0.00164454 +0.00162762 +0.00115092 +0.00162584 +0.00160942 +0.00113934 +0.00160628 +0.00159033 +0.00112716 +0.00158586 +0.00157035 +0.00111435 +0.00156457 +0.00154946 +0.0011009 +0.00154241 +0.00152765 +0.00108681 +0.00151936 +0.00150492 +0.00107206 +0.00149545 +0.00148128 +0.00105666 +0.00147067 +0.00145672 +0.00104061 +0.00144504 +0.00143126 +0.00102391 +0.00141858 +0.00140491 +0.00100656 +0.00139131 +0.0013777 +0.000988594 +0.00136325 +0.00134965 +0.000970014 +0.00133444 +0.0013208 +0.000950847 +0.00130493 +0.00129119 +0.000931119 +0.00127475 +0.00126086 +0.000910864 +0.00124395 +0.00122987 +0.000890117 +0.00121259 +0.00119826 +0.00086892 +0.00118072 +0.00116612 +0.000847318 +0.00114842 +0.0011335 +0.000825361 +0.00111574 +0.00110047 +0.000803102 +0.00108276 +0.00106711 +0.000780597 +0.00104956 +0.00103351 +0.000757906 +0.00101619 +0.000999737 +0.00073509 +0.000982756 +0.000965881 +0.00071221 +0.000949317 +0.000932025 +0.00068933 +0.000915955 +0.000898253 +0.000666514 +0.000882748 +0.000864649 +0.000643823 +0.000849769 +0.000831294 +0.000621318 +0.000817093 +0.000798267 +0.000599059 +0.000784789 +0.000765644 +0.000577102 +0.000752926 +0.000733498 +0.0005555 +0.000721565 +0.000701897 +0.000534303 +0.000690767 +0.000670903 +0.000513556 +0.000660585 +0.000640573 +0.000493301 +0.000631069 +0.000610961 +0.000473573 +0.000602263 +0.000582111 +0.000454406 +0.000574206 +0.000554063 +0.000435826 +0.000546932 +0.000526852 +0.000417856 +0.000520468 +0.000500505 +0.000400513 +0.000494839 +0.000475044 +0.00038381 +0.000470061 +0.000450486 +0.000367756 +0.000446147 +0.00042684 +0.000352356 +0.000423106 +0.000404114 +0.000337611 +0.000400941 +0.000382307 +0.000323518 +0.000379651 +0.000361415 +0.00031007 +0.000359232 +0.000341432 +0.00029726 +0.000339676 +0.000322345 +0.000285075 +0.000320972 +0.00030414 +0.000273503 +0.000303106 +0.0002868 +0.000262528 +0.000286061 +0.000270304 +0.000252133 +0.000269819 +0.000254631 +0.000242299 +0.00025436 +0.000239756 +0.000233008 +0.000239661 +0.000225655 +0.000224239 +0.0002257 +0.0002123 +0.000215971 +0.000212452 +0.000199666 +0.000208184 +0.000199892 +0.000187723 +0.000200857 +0.000187995 +0.000176445 +0.000193969 +0.000176735 +0.000165802 +0.000187498 +0.000166087 +0.000155768 +0.000181425 +0.000156024 +0.000146313 +0.000175728 +0.000146522 +0.000137412 +0.000170389 +0.000137554 +0.000129037 +0.000165388 +0.000129096 +0.000121161 +0.000160706 +0.000121123 +0.00011376 +0.000156326 +0.000113613 +0.000106808 +0.000152231 +0.000106541 +0.000100282 +0.000148403 +9.98862e-05 +9.41586e-05 +0.000144827 +9.36258e-05 +8.84151e-05 +0.000141487 +8.77393e-05 +8.30305e-05 +0.00013837 +8.22067e-05 +7.79843e-05 +0.000135462 +7.70087e-05 +7.32571e-05 +0.000132749 +7.21267e-05 +6.88302e-05 +0.00013022 +6.75432e-05 +6.46859e-05 +0.000127862 +6.32413e-05 +6.08073e-05 +0.000125665 +5.92048e-05 +5.71784e-05 +0.000123618 +5.54185e-05 +5.37841e-05 +0.000121711 +5.18677e-05 +5.06099e-05 +0.000119936 +4.85387e-05 +4.76424e-05 +0.000118283 +4.54183e-05 +4.48687e-05 +0.000116745 +4.2494e-05 +4.22765e-05 +0.000115313 +3.97542e-05 +3.98546e-05 +0.000113981 +3.71876e-05 +3.75921e-05 +0.000112742 +3.47837e-05 +3.54789e-05 +0.000111589 +3.25326e-05 +3.35054e-05 +0.000110517 +3.04249e-05 +3.16627e-05 +0.00010952 +2.84518e-05 +2.99423e-05 +0.000108592 +2.66049e-05 +2.83364e-05 +0.000107731 +2.48763e-05 +2.68375e-05 +0.000106929 +2.32588e-05 +2.54385e-05 +0.000106185 +2.17452e-05 +2.4133e-05 +0.000105492 +2.03291e-05 +2.29149e-05 +0.000104849 +1.90044e-05 +2.17784e-05 +0.000104251 +1.77652e-05 +2.07181e-05 +0.000103696 +1.66061e-05 +1.9729e-05 +0.00010318 +1.55221e-05 +1.88064e-05 +0.0001027 +1.45083e-05 +1.79459e-05 +0.000102254 +1.35603e-05 +1.71432e-05 +0.00010184 +1.26738e-05 +1.63947e-05 +0.000101456 +1.1845e-05 +1.56967e-05 +0.000101099 +1.107e-05 +1.50458e-05 +0.000100767 +1.03455e-05 +1.44388e-05 +0.000100459 +9.66826e-06 +1.38728e-05 +0.000100173 +9.03511e-06 +1.33451e-05 +9.99068e-05 +8.44327e-06 +1.28531e-05 +9.966e-05 +7.89005e-06 +1.23944e-05 +9.94307e-05 +7.37296e-06 +1.19668e-05 +9.92177e-05 +6.88965e-06 +1.15681e-05 +9.902e-05 +6.43794e-06 +1.11965e-05 +9.88364e-05 +6.01576e-06 +1.085e-05 +9.86659e-05 +5.62121e-06 +1.05271e-05 +9.85075e-05 +5.25248e-06 +1.0226e-05 +9.83605e-05 +4.90789e-06 +9.94541e-06 +9.8224e-05 +4.58587e-06 +9.68385e-06 +9.80972e-05 +4.28494e-06 +9.44004e-06 +9.79795e-05 +4.00374e-06 +9.21279e-06 +9.78702e-05 +3.74097e-06 +9.00098e-06 +9.77687e-05 +3.49543e-06 +8.80356e-06 +9.76744e-05 +3.26599e-06 +8.61956e-06 +9.75869e-05 +3.05161e-06 +8.44806e-06 +9.75057e-05 +2.85129e-06 +8.28823e-06 +9.74303e-05 +2.66412e-06 +8.13926e-06 +9.73603e-05 +2.48924e-06 +8.00042e-06 +9.72952e-05 +2.32583e-06 +7.87103e-06 +9.72349e-05 +2.17316e-06 +7.75043e-06 +9.71788e-05 +2.03051e-06 +7.63805e-06 +9.71268e-05 +1.89723e-06 +7.5333e-06 +9.70785e-05 +1.77271e-06 +7.43569e-06 +9.70336e-05 +1.65637e-06 +7.34472e-06 +9.6992e-05 +1.54767e-06 +7.25994e-06 +9.69533e-05 +1.44611e-06 +7.18093e-06 +9.69175e-05 +1.35123e-06 +7.1073e-06 +9.68841e-05 +1.26259e-06 +7.03868e-06 +9.68532e-05 +1.17977e-06 +6.97474e-06 +9.68245e-05 +1.10239e-06 +6.91514e-06 +9.67978e-05 +1.03011e-06 +6.85961e-06 +9.67731e-05 +9.62571e-07 +6.80786e-06 +9.67501e-05 +8.99476e-07 +6.75963e-06 +9.67287e-05 +8.4053e-07 +6.71468e-06 +9.67089e-05 +7.8546e-07 +6.6728e-06 +9.66905e-05 +7.34012e-07 +6.63377e-06 +9.66735e-05 +6.85948e-07 +6.59739e-06 +9.66576e-05 +6.41044e-07 +6.5635e-06 +9.66429e-05 +5.99094e-07 +6.53191e-06 +9.66293e-05 +5.59903e-07 +6.50248e-06 +9.66166e-05 +5.23289e-07 +6.47505e-06 +9.66048e-05 +4.89085e-07 +6.44949e-06 +9.65939e-05 +4.5713e-07 +6.42567e-06 +9.65837e-05 +4.27277e-07 +6.40347e-06 +9.65743e-05 +3.99388e-07 +6.38278e-06 +9.65656e-05 +3.73334e-07 +6.36351e-06 +9.65574e-05 +3.48994e-07 +6.34554e-06 +9.65499e-05 +3.26255e-07 +6.32881e-06 +9.65429e-05 +3.05013e-07 +6.31321e-06 +9.65364e-05 +2.85168e-07 +6.29867e-06 +9.65304e-05 +2.66628e-07 +6.28513e-06 +9.65248e-05 +2.49309e-07 +6.2725e-06 +9.65196e-05 +2.33129e-07 +6.26074e-06 +9.65148e-05 +2.18013e-07 +6.24978e-06 +9.65103e-05 +2.03892e-07 +6.23956e-06 +9.65061e-05 +1.90701e-07 +6.23005e-06 +9.65023e-05 +1.78377e-07 +6.22118e-06 +9.64987e-05 +1.66864e-07 +6.21291e-06 +9.64953e-05 +1.56109e-07 +6.20521e-06 +9.64923e-05 +1.46061e-07 +6.19803e-06 +9.64894e-05 +1.36675e-07 +6.19134e-06 +9.64867e-05 +1.27906e-07 +6.18511e-06 +9.64843e-05 +1.19715e-07 +6.1793e-06 +9.6482e-05 +1.12062e-07 +6.17389e-06 +9.64798e-05 +1.04913e-07 +6.16885e-06 +9.64779e-05 +9.82344e-08 +6.16415e-06 +9.6476e-05 +9.19953e-08 +6.15977e-06 +9.64743e-05 +8.61668e-08 +6.15569e-06 +9.64727e-05 +8.07218e-08 +6.15188e-06 +9.64713e-05 +7.56352e-08 +6.14834e-06 +9.64699e-05 +7.08833e-08 +6.14504e-06 +9.64686e-05 +6.64441e-08 +6.14196e-06 +9.64675e-05 +6.2297e-08 +6.13909e-06 +9.64664e-05 +5.84229e-08 +6.13642e-06 +9.64654e-05 +5.48037e-08 +6.13393e-06 +9.64644e-05 +5.14227e-08 +6.13161e-06 +9.64635e-05 +4.82642e-08 +6.12945e-06 +9.64627e-05 +4.53135e-08 +6.12743e-06 +9.6462e-05 +4.25571e-08 +6.12555e-06 +9.64613e-05 +3.9982e-08 +6.1238e-06 +9.64606e-05 +3.75764e-08 +6.12217e-06 +9.646e-05 +3.53291e-08 +6.12066e-06 +9.64595e-05 +3.32297e-08 +6.11924e-06 +9.6459e-05 +3.12685e-08 +6.11792e-06 +9.64585e-05 +2.94363e-08 +6.11669e-06 +9.6458e-05 +2.77247e-08 +6.11554e-06 +9.64576e-05 +2.61258e-08 +6.11448e-06 +9.64572e-05 +2.4632e-08 +6.11348e-06 +9.64569e-05 +2.32366e-08 +6.11256e-06 +9.64565e-05 +2.1933e-08 +6.11169e-06 +9.64562e-05 +2.07153e-08 +6.11089e-06 +9.64559e-05 +1.95776e-08 +6.11014e-06 +9.64557e-05 +1.85148e-08 +6.10944e-06 +9.64554e-05 +1.7522e-08 +6.10879e-06 +9.64552e-05 +1.65945e-08 +6.10818e-06 +9.6455e-05 +1.57281e-08 +6.10761e-06 +9.64548e-05 +1.49186e-08 +6.10709e-06 +9.64546e-05 +1.41625e-08 +6.10659e-06 +9.64544e-05 +1.34561e-08 +6.10614e-06 +9.64543e-05 +1.27962e-08 +6.10571e-06 +9.64541e-05 +1.21797e-08 +6.10531e-06 +9.6454e-05 +1.16038e-08 +6.10494e-06 +9.64539e-05 +1.10658e-08 +6.1046e-06 +9.64538e-05 +1.05632e-08 +6.10428e-06 +9.64536e-05 +1.00936e-08 +6.10398e-06 +9.64535e-05 +9.65502e-09 +6.1037e-06 +9.64535e-05 +9.24526e-09 +6.10344e-06 +9.64534e-05 +8.86248e-09 +6.10319e-06 +9.64533e-05 +8.50488e-09 +6.10297e-06 +9.64532e-05 +8.17082e-09 +6.10276e-06 +9.64531e-05 +7.85874e-09 +6.10256e-06 +9.64531e-05 +7.5672e-09 +6.10238e-06 +9.6453e-05 +7.29485e-09 +6.10221e-06 +9.6453e-05 +7.04043e-09 +6.10205e-06 +9.64529e-05 +6.80274e-09 +6.1019e-06 +9.64529e-05 +6.5807e-09 +6.10176e-06 +9.64528e-05 +6.37327e-09 +6.10164e-06 +9.64528e-05 +6.1795e-09 +6.10152e-06 +9.64527e-05 +5.99847e-09 +6.1014e-06 +9.64527e-05 +5.82936e-09 +6.1013e-06 +9.64527e-05 +5.67138e-09 +6.1012e-06 +9.64526e-05 +5.5238e-09 +6.10111e-06 +9.64526e-05 +5.38593e-09 +6.10103e-06 +9.64526e-05 +5.25713e-09 +6.10095e-06 +9.64526e-05 +5.13681e-09 +6.10088e-06 +9.64525e-05 +5.02441e-09 +6.10081e-06 +9.64525e-05 +4.91941e-09 +6.10075e-06 +9.64525e-05 +4.82131e-09 +6.10069e-06 +9.64525e-05 +4.72967e-09 +6.10063e-06 +9.64525e-05 +4.64407e-09 +6.10058e-06 +9.64524e-05 +4.56409e-09 +6.10053e-06 +9.64524e-05 +4.48938e-09 +6.10049e-06 +9.64524e-05 +4.41959e-09 +6.10045e-06 +9.64524e-05 +4.35439e-09 +6.10041e-06 +9.64524e-05 +4.29348e-09 +6.10037e-06 +9.64524e-05 +4.23658e-09 +6.10034e-06 +9.64524e-05 +4.18343e-09 +6.10031e-06 +9.64524e-05 +4.13377e-09 +6.10028e-06 +9.64524e-05 +4.08738e-09 +6.10025e-06 +9.64523e-05 +4.04404e-09 +6.10022e-06 +9.64523e-05 +4.00356e-09 +6.1002e-06 +9.64523e-05 +3.96574e-09 +6.10018e-06 +9.64523e-05 +3.93041e-09 +6.10016e-06 +9.64523e-05 +3.8974e-09 +6.10014e-06 +9.64523e-05 +3.86657e-09 +6.10012e-06 +9.64523e-05 +3.83776e-09 +6.10011e-06 +9.64523e-05 +3.81086e-09 +6.10009e-06 +9.64523e-05 +3.78572e-09 +6.10008e-06 +9.64523e-05 +3.76223e-09 +6.10006e-06 +9.64523e-05 +3.7403e-09 +6.10005e-06 +9.64523e-05 +3.7198e-09 +6.10004e-06 +9.64523e-05 +3.70066e-09 +6.10003e-06 +9.64523e-05 +3.68277e-09 +6.10002e-06 +9.64523e-05 +3.66606e-09 +6.10001e-06 +9.64523e-05 +3.65046e-09 +6.1e-06 +9.64523e-05 +3.63587e-09 +6.09999e-06 +9.64523e-05 +3.62225e-09 +6.09998e-06 +9.64523e-05 +3.60953e-09 +6.09998e-06 +9.64523e-05 +3.59764e-09 +6.09997e-06 +9.64523e-05 +3.58653e-09 +6.09996e-06 +9.64523e-05 +3.57616e-09 +6.09996e-06 +9.64523e-05 +3.56647e-09 +6.09995e-06 +9.64523e-05 +3.55741e-09 +6.09995e-06 +9.64523e-05 +3.54896e-09 +6.09994e-06 +9.64523e-05 +3.54105e-09 +6.09994e-06 +9.64523e-05 +3.53367e-09 +6.09993e-06 +9.64523e-05 +3.52678e-09 +6.09993e-06 +9.64523e-05 +3.52034e-09 +6.09993e-06 +9.64523e-05 +3.51432e-09 +6.09992e-06 +9.64523e-05 +3.5087e-09 +6.09992e-06 +9.64523e-05 +3.50344e-09 +6.09992e-06 +9.64522e-05 +3.49854e-09 +6.09991e-06 +9.64522e-05 +3.49395e-09 +6.09991e-06 +9.64522e-05 +3.48967e-09 +6.09991e-06 +9.64522e-05 +3.48567e-09 +6.09991e-06 +9.64522e-05 +3.48194e-09 +6.09991e-06 +9.64522e-05 +3.47845e-09 +6.0999e-06 +9.64522e-05 +3.47518e-09 +6.0999e-06 +9.64522e-05 +3.47214e-09 +6.0999e-06 +9.64522e-05 +3.46929e-09 +6.0999e-06 +9.64522e-05 +3.46663e-09 +6.0999e-06 +9.64522e-05 +3.46415e-09 +6.0999e-06 +9.64522e-05 +3.46183e-09 +6.0999e-06 +9.64522e-05 +3.45966e-09 +6.09989e-06 +9.64522e-05 +3.45764e-09 +6.09989e-06 +9.64522e-05 +3.45575e-09 +6.09989e-06 +9.64522e-05 +3.45398e-09 +6.09989e-06 +9.64522e-05 +3.45233e-09 +6.09989e-06 +9.64522e-05 +3.45079e-09 +6.09989e-06 +9.64522e-05 +3.44935e-09 +6.09989e-06 +9.64522e-05 +3.448e-09 +6.09989e-06 +9.64522e-05 +3.44674e-09 +6.09989e-06 +9.64522e-05 +3.44557e-09 +6.09989e-06 +9.64522e-05 +3.44447e-09 +6.09989e-06 +9.64522e-05 +3.44345e-09 +6.09989e-06 +9.64522e-05 +3.44249e-09 +6.09989e-06 +9.64522e-05 +3.44159e-09 +6.09988e-06 +9.64522e-05 +3.44076e-09 +6.09988e-06 +9.64522e-05 +3.43998e-09 +6.09988e-06 +9.64522e-05 +3.43925e-09 +6.09988e-06 +9.64522e-05 +3.43857e-09 +6.09988e-06 +9.64522e-05 +3.43793e-09 +6.09988e-06 +9.64522e-05 +3.43734e-09 +6.09988e-06 +9.64522e-05 +3.43678e-09 +6.09988e-06 +9.64522e-05 +3.43626e-09 +6.09988e-06 +9.64522e-05 +3.43578e-09 +6.09988e-06 +9.64522e-05 +3.43532e-09 +6.09988e-06 +9.64522e-05 +3.4349e-09 +6.09988e-06 +9.64522e-05 +3.43451e-09 +6.09988e-06 +9.64522e-05 +3.43414e-09 +6.09988e-06 +9.64522e-05 +3.43379e-09 +6.09988e-06 +9.64522e-05 +3.43347e-09 +6.09988e-06 +9.64522e-05 +3.43317e-09 +6.09988e-06 +9.64522e-05 +3.43289e-09 +6.09988e-06 +9.64522e-05 +3.43262e-09 +6.09988e-06 +9.64522e-05 +3.43238e-09 +6.09988e-06 +9.64522e-05 +3.43215e-09 +6.09988e-06 +9.64522e-05 +3.43194e-09 +6.09988e-06 +9.64522e-05 +3.43174e-09 +6.09988e-06 +9.64522e-05 +3.43155e-09 +6.09988e-06 +9.64522e-05 +3.43137e-09 +6.09988e-06 +9.64522e-05 +3.43121e-09 +6.09988e-06 +9.64522e-05 +3.43106e-09 +6.09988e-06 +9.64522e-05 +3.43092e-09 +6.09988e-06 +9.64522e-05 +3.43078e-09 +6.09988e-06 +9.64522e-05 +3.43066e-09 +6.09988e-06 +9.64522e-05 +3.43054e-09 +6.09988e-06 +9.64522e-05 +3.43043e-09 +6.09988e-06 +9.64522e-05 +3.43033e-09 +6.09988e-06 +9.64522e-05 +3.43024e-09 +6.09988e-06 +9.64522e-05 +3.43015e-09 +6.09988e-06 +9.64522e-05 +3.43007e-09 +6.09988e-06 +9.64522e-05 +3.42999e-09 +6.09988e-06 +9.64522e-05 +3.42992e-09 +6.09988e-06 +9.64522e-05 +3.42985e-09 +6.09988e-06 +9.64522e-05 +3.42979e-09 +6.09988e-06 +9.64522e-05 +3.42973e-09 +6.09988e-06 +9.64522e-05 +3.42967e-09 +6.09988e-06 +9.64522e-05 +3.42962e-09 +6.09988e-06 +9.64522e-05 +3.42958e-09 +6.09988e-06 +9.64522e-05 +3.42953e-09 +6.09988e-06 +9.64522e-05 +3.42949e-09 +6.09988e-06 +9.64522e-05 +3.42945e-09 +6.09988e-06 +9.64522e-05 +3.42941e-09 +6.09988e-06 +9.64522e-05 +3.42938e-09 +6.09988e-06 +9.64522e-05 +3.42935e-09 +6.09988e-06 +9.64522e-05 +3.42932e-09 +6.09988e-06 +9.64522e-05 +3.42929e-09 +6.09988e-06 +9.64522e-05 +3.42926e-09 +6.09988e-06 +9.64522e-05 +3.42924e-09 +6.09988e-06 +9.64522e-05 +3.42922e-09 +6.09988e-06 +9.64522e-05 +3.4292e-09 +6.09988e-06 +9.64522e-05 +3.42918e-09 +6.09988e-06 +9.64522e-05 +3.42916e-09 +6.09988e-06 +9.64522e-05 +3.42914e-09 +6.09988e-06 +9.64522e-05 +3.42912e-09 +6.09988e-06 +9.64522e-05 +3.42911e-09 +6.09988e-06 +9.64522e-05 +3.4291e-09 +6.09988e-06 +9.64522e-05 +3.42908e-09 +6.09988e-06 +9.64522e-05 +3.42907e-09 +6.09988e-06 +9.64522e-05 +3.42906e-09 +6.09988e-06 +9.64522e-05 +3.42905e-09 +6.09988e-06 +9.64522e-05 +3.42904e-09 +6.09988e-06 +9.64522e-05 +3.42903e-09 +6.09988e-06 +9.64522e-05 +3.42902e-09 +6.09988e-06 +9.64522e-05 +3.42901e-09 +6.09988e-06 +9.64522e-05 +3.429e-09 +6.09988e-06 +9.64522e-05 +3.429e-09 +6.09988e-06 +9.64522e-05 +3.42899e-09 +6.09988e-06 +9.64522e-05 +3.42898e-09 +6.09988e-06 +9.64522e-05 +3.42898e-09 +6.09988e-06 +9.64522e-05 +3.42897e-09 +6.09988e-06 +9.64522e-05 +3.42897e-09 +6.09988e-06 +9.64522e-05 +3.42896e-09 +6.09988e-06 +9.64522e-05 +3.42896e-09 +6.09988e-06 +9.64522e-05 +3.42895e-09 +6.09988e-06 +9.64522e-05 +3.42895e-09 +6.09988e-06 +9.64522e-05 +3.42895e-09 +6.09988e-06 +9.64522e-05 +3.42894e-09 +6.09988e-06 +9.64522e-05 +3.42894e-09 +6.09988e-06 +9.64522e-05 +3.42894e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42893e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42892e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.42891e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 +3.4289e-09 +6.09988e-06 +9.64522e-05 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 11_final_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 11_final_profile_global.xlo new file mode 100644 index 000000000..222875201 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 11_final_profile_global.xlo @@ -0,0 +1,3072 @@ +#Vector Object:Vec_0x84000000_0 1 MPI processes +# type: mpi +#Process [0] +0.001997 +0.00189502 +0.00131238 +0.00199685 +0.00189393 +0.00131183 +0.00199673 +0.00189286 +0.00131129 +0.00199666 +0.00189182 +0.00131078 +0.00199661 +0.00189081 +0.00131028 +0.00199661 +0.00188983 +0.0013098 +0.00199664 +0.00188887 +0.00130933 +0.00199671 +0.00188794 +0.00130889 +0.00199682 +0.00188704 +0.00130846 +0.00199696 +0.00188617 +0.00130805 +0.00199714 +0.00188532 +0.00130766 +0.00199735 +0.00188449 +0.00130728 +0.00199759 +0.00188368 +0.00130692 +0.00199787 +0.0018829 +0.00130657 +0.00199817 +0.00188213 +0.00130623 +0.0019985 +0.00188138 +0.00130591 +0.00199886 +0.00188064 +0.00130559 +0.00199924 +0.00187992 +0.00130529 +0.00199965 +0.00187921 +0.00130499 +0.00200008 +0.00187852 +0.0013047 +0.00200052 +0.00187783 +0.00130441 +0.00200099 +0.00187715 +0.00130414 +0.00200147 +0.00187648 +0.00130386 +0.00200196 +0.00187581 +0.0013036 +0.00200248 +0.00187515 +0.00130333 +0.002003 +0.00187449 +0.00130307 +0.00200354 +0.00187383 +0.00130281 +0.00200409 +0.00187317 +0.00130255 +0.00200465 +0.00187252 +0.00130229 +0.00200522 +0.00187186 +0.00130203 +0.00200579 +0.0018712 +0.00130178 +0.00200638 +0.00187054 +0.00130152 +0.00200698 +0.00186988 +0.00130126 +0.00200758 +0.00186922 +0.001301 +0.00200819 +0.00186855 +0.00130073 +0.0020088 +0.00186788 +0.00130048 +0.00200942 +0.00186718 +0.00130038 +0.00201003 +0.00186653 +0.00130035 +0.00201067 +0.00186634 +0.00130032 +0.00201124 +0.00186618 +0.00130025 +0.00201128 +0.00186598 +0.00130017 +0.00201131 +0.00186578 +0.00130008 +0.00201132 +0.00186556 +0.00129997 +0.00201132 +0.00186534 +0.00129987 +0.00201132 +0.00186512 +0.00129976 +0.00201131 +0.00186489 +0.00129965 +0.00201129 +0.00186468 +0.00129954 +0.00201128 +0.00186447 +0.00129944 +0.00201128 +0.00186427 +0.00129934 +0.00201128 +0.00186408 +0.00129925 +0.00201128 +0.00186391 +0.00129916 +0.0020113 +0.00186375 +0.00129909 +0.00201132 +0.0018636 +0.00129901 +0.00201136 +0.00186347 +0.00129895 +0.0020114 +0.00186335 +0.00129889 +0.00201145 +0.00186325 +0.00129884 +0.0020115 +0.00186315 +0.0012988 +0.00201157 +0.00186308 +0.00129877 +0.00201164 +0.00186301 +0.00129874 +0.00201171 +0.00186296 +0.00129871 +0.00201179 +0.00186291 +0.00129869 +0.00201187 +0.00186288 +0.00129868 +0.00201195 +0.00186286 +0.00129867 +0.00201204 +0.00186284 +0.00129866 +0.00201212 +0.00186284 +0.00129866 +0.0020122 +0.00186284 +0.00129866 +0.00201228 +0.00186285 +0.00129866 +0.00201236 +0.00186286 +0.00129867 +0.00201243 +0.00186288 +0.00129867 +0.0020125 +0.0018629 +0.00129868 +0.00201256 +0.00186293 +0.00129868 +0.00201261 +0.00186296 +0.00129869 +0.00201265 +0.00186299 +0.00129869 +0.00201269 +0.00186302 +0.00129869 +0.00201272 +0.00186306 +0.00129869 +0.00201273 +0.0018631 +0.00129869 +0.00201274 +0.00186313 +0.00129869 +0.00201274 +0.00186316 +0.00129867 +0.00201272 +0.00186318 +0.00129866 +0.00201269 +0.00186319 +0.00129864 +0.00201265 +0.0018632 +0.00129862 +0.00201261 +0.00186321 +0.0012986 +0.00201257 +0.00186321 +0.00129858 +0.00201253 +0.00186321 +0.00129855 +0.00201249 +0.00186322 +0.00129853 +0.00201245 +0.00186322 +0.00129851 +0.00201241 +0.00186322 +0.00129849 +0.00201238 +0.00186323 +0.00129847 +0.00201235 +0.00186324 +0.00129846 +0.00201233 +0.00186326 +0.00129845 +0.00201232 +0.00186327 +0.00129844 +0.0020123 +0.00186329 +0.00129843 +0.0020123 +0.00186332 +0.00129842 +0.00201229 +0.00186334 +0.00129842 +0.00201229 +0.00186337 +0.00129842 +0.0020123 +0.0018634 +0.00129842 +0.00201231 +0.00186343 +0.00129842 +0.00201232 +0.00186347 +0.00129842 +0.00201233 +0.0018635 +0.00129843 +0.00201234 +0.00186353 +0.00129843 +0.00201235 +0.00186357 +0.00129843 +0.00201237 +0.0018636 +0.00129844 +0.00201238 +0.00186364 +0.00129844 +0.00201239 +0.00186367 +0.00129845 +0.0020124 +0.0018637 +0.00129845 +0.00201241 +0.00186373 +0.00129845 +0.00201242 +0.00186376 +0.00129846 +0.00201242 +0.00186378 +0.00129846 +0.00201242 +0.0018638 +0.00129846 +0.00201242 +0.00186382 +0.00129846 +0.00201241 +0.00186384 +0.00129845 +0.00201241 +0.00186385 +0.00129845 +0.0020124 +0.00186386 +0.00129845 +0.00201238 +0.00186387 +0.00129844 +0.00201237 +0.00186388 +0.00129844 +0.00201235 +0.00186388 +0.00129843 +0.00201234 +0.00186388 +0.00129842 +0.00201232 +0.00186389 +0.00129841 +0.0020123 +0.00186389 +0.00129841 +0.00201228 +0.00186388 +0.0012984 +0.00201226 +0.00186388 +0.00129839 +0.00201225 +0.00186388 +0.00129838 +0.00201223 +0.00186388 +0.00129838 +0.00201222 +0.00186388 +0.00129837 +0.00201221 +0.00186388 +0.00129837 +0.0020122 +0.00186388 +0.00129836 +0.0020122 +0.00186389 +0.00129836 +0.0020122 +0.00186389 +0.00129836 +0.0020122 +0.0018639 +0.00129836 +0.0020122 +0.0018639 +0.00129835 +0.00201221 +0.00186391 +0.00129835 +0.00201222 +0.00186391 +0.00129835 +0.00201223 +0.00186392 +0.00129836 +0.00201224 +0.00186393 +0.00129836 +0.00201225 +0.00186394 +0.00129836 +0.00201227 +0.00186394 +0.00129836 +0.00201228 +0.00186395 +0.00129836 +0.0020123 +0.00186396 +0.00129836 +0.00201231 +0.00186397 +0.00129837 +0.00201233 +0.00186397 +0.00129837 +0.00201234 +0.00186398 +0.00129837 +0.00201235 +0.00186399 +0.00129837 +0.00201236 +0.00186399 +0.00129837 +0.00201237 +0.00186399 +0.00129837 +0.00201238 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.001864 +0.00129837 +0.00201239 +0.00186399 +0.00129836 +0.00201238 +0.00186399 +0.00129836 +0.00201238 +0.00186399 +0.00129836 +0.00201237 +0.00186398 +0.00129836 +0.00201236 +0.00186398 +0.00129836 +0.00201235 +0.00186397 +0.00129835 +0.00201234 +0.00186397 +0.00129835 +0.00201233 +0.00186396 +0.00129835 +0.00201231 +0.00186396 +0.00129835 +0.0020123 +0.00186396 +0.00129834 +0.00201229 +0.00186395 +0.00129834 +0.00201228 +0.00186395 +0.00129834 +0.00201227 +0.00186394 +0.00129834 +0.00201226 +0.00186394 +0.00129834 +0.00201225 +0.00186394 +0.00129834 +0.00201225 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201224 +0.00186394 +0.00129834 +0.00201225 +0.00186394 +0.00129834 +0.00201225 +0.00186395 +0.00129834 +0.00201225 +0.00186395 +0.00129834 +0.00201226 +0.00186395 +0.00129834 +0.00201227 +0.00186395 +0.00129834 +0.00201227 +0.00186396 +0.00129834 +0.00201228 +0.00186396 +0.00129835 +0.00201229 +0.00186396 +0.00129835 +0.0020123 +0.00186396 +0.00129835 +0.0020123 +0.00186396 +0.00129835 +0.00201231 +0.00186396 +0.00129835 +0.00201232 +0.00186396 +0.00129835 +0.00201232 +0.00186396 +0.00129835 +0.00201232 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129836 +0.00201233 +0.00186396 +0.00129837 +0.00201233 +0.00186396 +0.00129837 +0.00201233 +0.00186396 +0.00129837 +0.00201232 +0.00186396 +0.00129837 +0.00201232 +0.00186396 +0.00129837 +0.00201232 +0.00186396 +0.00129838 +0.00201231 +0.00186396 +0.00129838 +0.00201231 +0.00186396 +0.00129838 +0.0020123 +0.00186396 +0.00129838 +0.0020123 +0.00186396 +0.00129838 +0.00201229 +0.00186396 +0.00129839 +0.00201228 +0.00186396 +0.00129839 +0.00201228 +0.00186397 +0.00129839 +0.00201227 +0.00186397 +0.00129839 +0.00201227 +0.00186397 +0.00129839 +0.00201226 +0.00186397 +0.0012984 +0.00201225 +0.00186398 +0.0012984 +0.00201225 +0.00186398 +0.0012984 +0.00201224 +0.00186398 +0.0012984 +0.00201223 +0.00186399 +0.0012984 +0.00201223 +0.00186399 +0.00129841 +0.00201222 +0.00186399 +0.00129841 +0.00201222 +0.00186399 +0.00129841 +0.00201221 +0.001864 +0.00129841 +0.0020122 +0.001864 +0.00129842 +0.0020122 +0.001864 +0.00129842 +0.0020122 +0.001864 +0.00129842 +0.00201219 +0.001864 +0.00129843 +0.00201219 +0.001864 +0.00129843 +0.00201218 +0.001864 +0.00129843 +0.00201218 +0.00186401 +0.00129844 +0.00201218 +0.00186401 +0.00129844 +0.00201218 +0.00186401 +0.00129845 +0.00201218 +0.00186401 +0.00129845 +0.00201217 +0.00186401 +0.00129846 +0.00201217 +0.00186401 +0.00129846 +0.00201217 +0.00186401 +0.00129847 +0.00201216 +0.00186401 +0.00129848 +0.00201216 +0.00186401 +0.00129848 +0.00201215 +0.00186402 +0.00129849 +0.00201215 +0.00186402 +0.0012985 +0.00201214 +0.00186402 +0.00129851 +0.00201213 +0.00186403 +0.00129851 +0.00201213 +0.00186403 +0.00129852 +0.00201212 +0.00186404 +0.00129853 +0.0020121 +0.00186405 +0.00129854 +0.00201209 +0.00186405 +0.00129855 +0.00201208 +0.00186406 +0.00129856 +0.00201206 +0.00186407 +0.00129857 +0.00201205 +0.00186408 +0.00129858 +0.00201203 +0.00186409 +0.00129859 +0.00201202 +0.0018641 +0.0012986 +0.002012 +0.00186412 +0.00129861 +0.00201198 +0.00186413 +0.00129862 +0.00201196 +0.00186414 +0.00129863 +0.00201194 +0.00186415 +0.00129864 +0.00201192 +0.00186416 +0.00129866 +0.00201191 +0.00186417 +0.00129867 +0.00201189 +0.00186418 +0.00129868 +0.00201187 +0.00186419 +0.0012987 +0.00201186 +0.0018642 +0.00129871 +0.00201184 +0.00186421 +0.00129872 +0.00201182 +0.00186422 +0.00129874 +0.0020118 +0.00186423 +0.00129875 +0.00201179 +0.00186423 +0.00129877 +0.00201177 +0.00186424 +0.00129879 +0.00201175 +0.00186425 +0.0012988 +0.00201174 +0.00186425 +0.00129882 +0.00201172 +0.00186426 +0.00129884 +0.0020117 +0.00186427 +0.00129886 +0.00201168 +0.00186427 +0.00129888 +0.00201166 +0.00186428 +0.0012989 +0.00201164 +0.00186429 +0.00129892 +0.00201162 +0.0018643 +0.00129894 +0.00201159 +0.0018643 +0.00129896 +0.00201157 +0.00186431 +0.00129899 +0.00201153 +0.00186432 +0.00129901 +0.00201151 +0.00186434 +0.00129904 +0.00201148 +0.00186435 +0.00129906 +0.00201145 +0.00186436 +0.00129909 +0.00201141 +0.00186438 +0.00129912 +0.00201138 +0.0018644 +0.00129915 +0.00201134 +0.00186442 +0.00129918 +0.00201131 +0.00186443 +0.00129921 +0.00201127 +0.00186445 +0.00129925 +0.00201124 +0.00186447 +0.00129928 +0.0020112 +0.0018645 +0.00129932 +0.00201116 +0.00186452 +0.00129936 +0.00201112 +0.00186454 +0.00129939 +0.00201108 +0.00186456 +0.00129944 +0.00201104 +0.00186459 +0.00129948 +0.00201099 +0.00186461 +0.00129952 +0.00201095 +0.00186463 +0.00129956 +0.0020109 +0.00186465 +0.00129961 +0.00201085 +0.00186467 +0.00129966 +0.0020108 +0.00186469 +0.00129971 +0.00201074 +0.00186471 +0.00129975 +0.00201068 +0.00186472 +0.00129981 +0.00201062 +0.00186474 +0.00129986 +0.00201055 +0.00186475 +0.00129991 +0.00201048 +0.00186477 +0.00129997 +0.00201041 +0.00186479 +0.00130003 +0.00201033 +0.0018648 +0.00130009 +0.00201025 +0.00186481 +0.00130016 +0.00201017 +0.00186483 +0.00130022 +0.00201009 +0.00186485 +0.00130029 +0.00201 +0.00186487 +0.00130036 +0.00200991 +0.00186489 +0.00130043 +0.00200982 +0.00186491 +0.00130051 +0.00200974 +0.00186493 +0.00130059 +0.00200964 +0.00186496 +0.00130068 +0.00200955 +0.00186499 +0.00130076 +0.00200946 +0.00186502 +0.00130085 +0.00200937 +0.00186506 +0.00130095 +0.00200928 +0.0018651 +0.00130105 +0.00200918 +0.00186514 +0.00130115 +0.00200908 +0.00186519 +0.00130126 +0.00200898 +0.00186524 +0.00130137 +0.00200887 +0.00186529 +0.00130149 +0.00200876 +0.00186534 +0.0013016 +0.00200864 +0.0018654 +0.00130173 +0.00200852 +0.00186546 +0.00130186 +0.00200839 +0.00186552 +0.00130199 +0.00200824 +0.00186559 +0.00130213 +0.0020081 +0.00186565 +0.00130227 +0.00200794 +0.00186572 +0.00130242 +0.00200777 +0.00186579 +0.00130257 +0.00200759 +0.00186585 +0.00130273 +0.00200741 +0.00186592 +0.00130289 +0.00200721 +0.001866 +0.00130307 +0.00200701 +0.00186607 +0.00130324 +0.00200679 +0.00186615 +0.00130342 +0.00200657 +0.00186622 +0.00130361 +0.00200634 +0.00186631 +0.0013038 +0.0020061 +0.00186639 +0.001304 +0.00200585 +0.00186648 +0.00130421 +0.00200559 +0.00186657 +0.00130442 +0.00200533 +0.00186666 +0.00130465 +0.00200505 +0.00186676 +0.00130488 +0.00200477 +0.00186687 +0.00130511 +0.00200448 +0.00186698 +0.00130536 +0.00200418 +0.0018671 +0.00130562 +0.00200388 +0.00186723 +0.00130588 +0.00200356 +0.00186737 +0.00130616 +0.00200323 +0.00186751 +0.00130645 +0.0020029 +0.00186767 +0.00130675 +0.00200255 +0.00186783 +0.00130706 +0.00200219 +0.001868 +0.00130739 +0.00200182 +0.00186819 +0.00130773 +0.00200144 +0.00186839 +0.00130808 +0.00200104 +0.00186859 +0.00130844 +0.00200061 +0.00186881 +0.00130882 +0.00200018 +0.00186904 +0.00130921 +0.00199972 +0.00186927 +0.00130962 +0.00199925 +0.00186952 +0.00131005 +0.00199874 +0.00186978 +0.00131049 +0.00199822 +0.00187005 +0.00131095 +0.00199767 +0.00187033 +0.00131142 +0.00199709 +0.00187062 +0.00131191 +0.00199649 +0.00187093 +0.00131242 +0.00199586 +0.00187124 +0.00131295 +0.00199519 +0.00187157 +0.00131349 +0.00199451 +0.0018719 +0.00131406 +0.00199379 +0.00187225 +0.00131464 +0.00199305 +0.00187262 +0.00131525 +0.00199229 +0.001873 +0.00131588 +0.00199149 +0.0018734 +0.00131653 +0.00199066 +0.00187381 +0.00131721 +0.0019898 +0.00187425 +0.00131791 +0.00198891 +0.0018747 +0.00131863 +0.001988 +0.00187518 +0.00131938 +0.00198704 +0.00187568 +0.00132016 +0.00198606 +0.0018762 +0.00132097 +0.00198505 +0.00187675 +0.00132181 +0.001984 +0.00187733 +0.00132268 +0.00198291 +0.00187794 +0.00132358 +0.00198179 +0.00187858 +0.00132452 +0.00198062 +0.00187925 +0.00132549 +0.00197942 +0.00187995 +0.0013265 +0.00197816 +0.00188069 +0.00132755 +0.00197685 +0.00188146 +0.00132864 +0.0019755 +0.00188227 +0.00132977 +0.0019741 +0.00188311 +0.00133095 +0.00197263 +0.00188398 +0.00133217 +0.0019711 +0.0018849 +0.00133344 +0.0019695 +0.00188585 +0.00133475 +0.00196784 +0.00188684 +0.00133612 +0.00196611 +0.00188787 +0.00133754 +0.00196431 +0.00188894 +0.00133901 +0.00196243 +0.00189005 +0.00134053 +0.00196047 +0.0018912 +0.00134212 +0.00195844 +0.00189238 +0.00134375 +0.00195633 +0.00189362 +0.00134545 +0.00195414 +0.00189489 +0.00134721 +0.00195187 +0.00189621 +0.00134903 +0.00194952 +0.00189758 +0.00135091 +0.00194708 +0.00189899 +0.00135286 +0.00194455 +0.00190045 +0.00135487 +0.00194193 +0.00190197 +0.00135695 +0.00193922 +0.00190354 +0.00135911 +0.00193642 +0.00190517 +0.00136134 +0.00193352 +0.00190686 +0.00136365 +0.00193051 +0.00190861 +0.00136605 +0.0019274 +0.00191043 +0.00136852 +0.00192419 +0.00191233 +0.00137109 +0.00192086 +0.00191429 +0.00137375 +0.00191743 +0.00191633 +0.00137651 +0.00191387 +0.00191845 +0.00137936 +0.00191019 +0.00192065 +0.00138232 +0.00190639 +0.00192293 +0.00138538 +0.00190246 +0.00192529 +0.00138855 +0.0018984 +0.00192774 +0.00139183 +0.00189421 +0.00193026 +0.00139523 +0.00188987 +0.00193288 +0.00139874 +0.00188538 +0.00193558 +0.00140238 +0.00188075 +0.00193837 +0.00140614 +0.00187595 +0.00194124 +0.00141002 +0.001871 +0.0019442 +0.00141404 +0.00186587 +0.00194724 +0.00141818 +0.00186058 +0.00195036 +0.00142245 +0.00185512 +0.00195356 +0.00142687 +0.00184947 +0.00195684 +0.00143142 +0.00184365 +0.0019602 +0.00143611 +0.00183763 +0.00196363 +0.00144094 +0.00183143 +0.00196714 +0.00144592 +0.00182503 +0.00197072 +0.00145105 +0.00181843 +0.00197437 +0.00145632 +0.00181162 +0.00197808 +0.00146175 +0.0018046 +0.00198186 +0.00146733 +0.00179736 +0.00198571 +0.00147307 +0.0017899 +0.00198961 +0.00147897 +0.00178222 +0.00199357 +0.00148503 +0.00177431 +0.00199759 +0.00149126 +0.00176617 +0.00200167 +0.00149765 +0.00175778 +0.0020058 +0.00150422 +0.00174916 +0.00200999 +0.00151096 +0.00174029 +0.00201423 +0.00151787 +0.00173117 +0.00201853 +0.00152496 +0.0017218 +0.00202287 +0.00153223 +0.00171217 +0.00202727 +0.00153968 +0.00170229 +0.00203171 +0.00154732 +0.00169216 +0.00203621 +0.00155514 +0.00168179 +0.00204074 +0.00156315 +0.00167118 +0.00204532 +0.00157135 +0.00166032 +0.00204992 +0.00157973 +0.00164922 +0.00205455 +0.0015883 +0.00163787 +0.0020592 +0.00159705 +0.00162628 +0.00206386 +0.00160599 +0.00161443 +0.00206851 +0.0016151 +0.00160233 +0.00207316 +0.00162439 +0.00158996 +0.00207777 +0.00163386 +0.00157732 +0.00208235 +0.0016435 +0.0015644 +0.00208688 +0.00165331 +0.0015512 +0.00209134 +0.00166328 +0.00153772 +0.00209572 +0.0016734 +0.00152395 +0.00209999 +0.00168368 +0.00150991 +0.00210416 +0.00169411 +0.00149558 +0.00210819 +0.00170467 +0.00148096 +0.00211207 +0.00171536 +0.00146607 +0.00211579 +0.00172618 +0.00145089 +0.00211932 +0.00173711 +0.00143543 +0.00212265 +0.00174815 +0.00141967 +0.00212576 +0.00175929 +0.00140363 +0.00212864 +0.00177053 +0.0013873 +0.00213127 +0.00178185 +0.0013707 +0.00213362 +0.00179324 +0.00135379 +0.0021357 +0.00180471 +0.00133663 +0.00213748 +0.00181623 +0.0013192 +0.00213895 +0.00182781 +0.00130153 +0.00214009 +0.00183943 +0.00128364 +0.0021409 +0.0018511 +0.00126553 +0.00214136 +0.0018628 +0.00124724 +0.00214146 +0.00187452 +0.00122876 +0.00214118 +0.00188627 +0.00121012 +0.00214052 +0.00189803 +0.00119131 +0.00213946 +0.0019098 +0.00117235 +0.00213798 +0.00192157 +0.00115322 +0.00213608 +0.00193333 +0.00113394 +0.00213373 +0.00194507 +0.0011145 +0.00213092 +0.00195679 +0.00109492 +0.00212763 +0.00196846 +0.0010752 +0.00212384 +0.00198007 +0.00105535 +0.00211952 +0.0019916 +0.0010354 +0.00211465 +0.00200305 +0.00101534 +0.0021092 +0.00201436 +0.000995216 +0.00210315 +0.00202554 +0.000975017 +0.00209646 +0.00203653 +0.000954764 +0.00208911 +0.00204732 +0.000934457 +0.00208105 +0.00205786 +0.000914103 +0.00207225 +0.00206812 +0.000893704 +0.00206268 +0.00207804 +0.000873262 +0.0020523 +0.00208758 +0.000852781 +0.00204106 +0.00209669 +0.000832264 +0.00202892 +0.00210531 +0.00081171 +0.00201586 +0.00211337 +0.000791129 +0.00200182 +0.00212082 +0.000770522 +0.00198676 +0.00212758 +0.000749895 +0.00197066 +0.0021336 +0.000729256 +0.00195347 +0.00213878 +0.00070861 +0.00193516 +0.00214306 +0.00068797 +0.0019157 +0.00214635 +0.000667344 +0.00189506 +0.0021486 +0.000646742 +0.00187322 +0.0021497 +0.000626183 +0.00185016 +0.00214959 +0.000605675 +0.00182587 +0.0021482 +0.000585241 +0.00180034 +0.00214544 +0.000564895 +0.00177358 +0.00214125 +0.000544658 +0.00174558 +0.00213557 +0.000524554 +0.00171637 +0.00212833 +0.000504604 +0.00168597 +0.00211948 +0.000484833 +0.0016544 +0.00210897 +0.000465268 +0.00162171 +0.00209677 +0.000445936 +0.00158794 +0.00208284 +0.000426864 +0.00155315 +0.00206717 +0.000408082 +0.00151739 +0.00204973 +0.000389617 +0.00148073 +0.00203053 +0.000371491 +0.00144325 +0.00200957 +0.00035373 +0.00140502 +0.00198688 +0.000336358 +0.00136615 +0.00196248 +0.000319396 +0.00132671 +0.00193642 +0.000302863 +0.00128681 +0.00190875 +0.00028678 +0.00124654 +0.00187952 +0.000271164 +0.00120601 +0.00184882 +0.000256033 +0.00116532 +0.00181671 +0.0002414 +0.00112457 +0.00178328 +0.000227278 +0.00108388 +0.00174864 +0.000213679 +0.00104334 +0.00171288 +0.000200609 +0.00100305 +0.00167611 +0.000188075 +0.000963126 +0.00163845 +0.000176078 +0.000923647 +0.00159999 +0.00016462 +0.00088471 +0.00156087 +0.000153697 +0.0008464 +0.0015212 +0.000143305 +0.000808795 +0.0014811 +0.000133437 +0.000771971 +0.00144069 +0.000124084 +0.000735993 +0.00140007 +0.000115235 +0.00070092 +0.00135937 +0.00010688 +0.000666802 +0.0013187 +9.90043e-05 +0.000633687 +0.00127815 +9.15955e-05 +0.00060161 +0.00123783 +8.46394e-05 +0.000570602 +0.00119784 +7.81211e-05 +0.000540686 +0.00115826 +7.20246e-05 +0.000511877 +0.00111917 +6.63331e-05 +0.000484186 +0.00108066 +6.10279e-05 +0.000457616 +0.00104279 +5.60912e-05 +0.000432166 +0.00100563 +5.15046e-05 +0.000407828 +0.000969234 +4.72469e-05 +0.000384591 +0.000933646 +4.32994e-05 +0.000362437 +0.000898916 +3.96474e-05 +0.000341348 +0.000865077 +3.62731e-05 +0.0003213 +0.000832161 +3.3156e-05 +0.000302268 +0.000800192 +3.02805e-05 +0.000284222 +0.000769188 +2.76332e-05 +0.000267132 +0.000739164 +2.51966e-05 +0.000250967 +0.000710128 +2.29578e-05 +0.000235693 +0.000682081 +2.09067e-05 +0.000221276 +0.000655025 +1.90314e-05 +0.000207681 +0.000628952 +1.73134e-05 +0.000194874 +0.000603858 +1.57434e-05 +0.000182819 +0.000579728 +1.43108e-05 +0.000171483 +0.000556548 +1.3005e-05 +0.000160829 +0.000534301 +1.18155e-05 +0.000150826 +0.000512969 +1.07321e-05 +0.000141439 +0.000492531 +9.74527e-06 +0.000132635 +0.000472964 +8.84613e-06 +0.000124385 +0.000454244 +8.02671e-06 +0.000116657 +0.000436348 +7.27988e-06 +0.000109421 +0.000419248 +6.59941e-06 +0.00010265 +0.000402921 +5.97988e-06 +9.63161e-05 +0.000387339 +5.41604e-06 +9.03935e-05 +0.000372476 +4.90383e-06 +8.48573e-05 +0.000358306 +4.44143e-06 +7.96838e-05 +0.000344802 +4.02481e-06 +7.48503e-05 +0.000331939 +3.65047e-06 +7.03356e-05 +0.00031969 +3.31479e-06 +6.61193e-05 +0.000308032 +3.01395e-06 +6.21823e-05 +0.000296938 +2.74281e-06 +5.85064e-05 +0.000286385 +2.49624e-06 +5.50746e-05 +0.000276349 +2.27006e-06 +5.18707e-05 +0.000266809 +2.06057e-06 +4.88798e-05 +0.00025774 +1.86438e-06 +4.60875e-05 +0.000249123 +1.67995e-06 +4.34806e-05 +0.000240936 +1.50927e-06 +4.10465e-05 +0.00023316 +1.35158e-06 +3.87737e-05 +0.000225775 +1.2e-06 +3.66512e-05 +0.000218763 +1.05864e-06 +3.46687e-05 +0.000212106 +9.45199e-07 +3.28168e-05 +0.000205787 +8.55887e-07 +3.10865e-05 +0.00019979 +7.77761e-07 +2.94697e-05 +0.0001941 +6.99805e-07 +2.79584e-05 +0.000188701 +6.26693e-07 +2.65456e-05 +0.00018358 +5.64428e-07 +2.52245e-05 +0.000178723 +5.17878e-07 +2.3989e-05 +0.000174116 +4.71723e-07 +2.28331e-05 +0.000169748 +4.15409e-07 +2.17515e-05 +0.000165606 +3.5756e-07 +2.07392e-05 +0.00016168 +3.25266e-07 +1.97915e-05 +0.000157959 +2.97552e-07 +1.89041e-05 +0.000154433 +2.72834e-07 +1.8073e-05 +0.000151091 +2.50293e-07 +1.72943e-05 +0.000147926 +2.29408e-07 +1.65646e-05 +0.000144928 +2.10144e-07 +1.58807e-05 +0.000142088 +1.9247e-07 +1.52395e-05 +0.0001394 +1.76178e-07 +1.46383e-05 +0.000136855 +1.61058e-07 +1.40745e-05 +0.000134447 +1.47176e-07 +1.35456e-05 +0.000132168 +1.34724e-07 +1.30494e-05 +0.000130012 +1.23867e-07 +1.25838e-05 +0.000127973 +1.17197e-07 +1.21468e-05 +0.000126045 +1.13814e-07 +1.17367e-05 +0.000124223 +1.05745e-07 +1.13518e-05 +0.000122501 +9.69907e-08 +1.09904e-05 +0.000120875 +8.92414e-08 +1.06511e-05 +0.000119339 +8.31828e-08 +1.03326e-05 +0.000117889 +7.77179e-08 +1.00336e-05 +0.00011652 +7.22022e-08 +9.75284e-06 +0.000115229 +6.62106e-08 +9.48928e-06 +0.000114012 +6.09797e-08 +9.24188e-06 +0.000112864 +5.72356e-08 +9.00965e-06 +0.000111783 +5.66647e-08 +8.7917e-06 +0.000110765 +5.49652e-08 +8.58719e-06 +0.000109806 +5.15828e-08 +8.39531e-06 +0.000108903 +4.81733e-08 +8.21534e-06 +0.000108054 +4.50364e-08 +8.04657e-06 +0.000107256 +4.20585e-08 +7.88837e-06 +0.000106506 +3.92201e-08 +7.7401e-06 +0.000105802 +3.65529e-08 +7.60122e-06 +0.00010514 +3.40577e-08 +7.47117e-06 +0.000104519 +3.17419e-08 +7.34946e-06 +0.000103937 +2.96175e-08 +7.23561e-06 +0.000103391 +2.76683e-08 +7.12917e-06 +0.00010288 +2.58781e-08 +7.02973e-06 +0.000102401 +2.42523e-08 +6.93688e-06 +0.000101953 +2.27551e-08 +6.85027e-06 +0.000101533 +2.1331e-08 +6.76952e-06 +0.000101141 +1.99598e-08 +6.69433e-06 +0.000100775 +1.8687e-08 +6.62436e-06 +0.000100432 +1.75061e-08 +6.55933e-06 +0.000100113 +1.64086e-08 +6.49896e-06 +9.98148e-05 +1.53856e-08 +6.44298e-06 +9.95369e-05 +1.44309e-08 +6.39115e-06 +9.92779e-05 +1.35445e-08 +6.34322e-06 +9.90367e-05 +1.27281e-08 +6.29897e-06 +9.88122e-05 +1.1978e-08 +6.25819e-06 +9.86034e-05 +1.12846e-08 +6.22068e-06 +9.84093e-05 +1.06397e-08 +6.18624e-06 +9.82289e-05 +1.00403e-08 +6.15469e-06 +9.80614e-05 +9.50376e-09 +6.12586e-06 +9.79059e-05 +9.09902e-09 +6.09959e-06 +9.77617e-05 +8.85535e-09 +6.07571e-06 +9.76281e-05 +8.6467e-09 +6.05409e-06 +9.75043e-05 +8.43129e-09 +6.03457e-06 +9.73897e-05 +8.21296e-09 +6.01702e-06 +9.72837e-05 +7.97959e-09 +6.00132e-06 +9.71857e-05 +7.71277e-09 +5.98735e-06 +9.70952e-05 +7.43832e-09 +5.97498e-06 +9.70116e-05 +7.17371e-09 +5.9641e-06 +9.69344e-05 +6.90939e-09 +5.95462e-06 +9.68633e-05 +6.63409e-09 +5.94644e-06 +9.67978e-05 +6.35794e-09 +5.93945e-06 +9.67374e-05 +6.10238e-09 +5.93357e-06 +9.66819e-05 +5.86228e-09 +5.92872e-06 +9.66309e-05 +5.63724e-09 +5.92481e-06 +9.6584e-05 +5.42947e-09 +5.92178e-06 +9.6541e-05 +5.23945e-09 +5.91954e-06 +9.65015e-05 +5.06591e-09 +5.91803e-06 +9.64654e-05 +4.90675e-09 +5.91718e-06 +9.64323e-05 +4.75977e-09 +5.91694e-06 +9.6402e-05 +4.62334e-09 +5.91725e-06 +9.63744e-05 +4.49614e-09 +5.91806e-06 +9.63492e-05 +4.377e-09 +5.91931e-06 +9.63262e-05 +4.26614e-09 +5.92096e-06 +9.63052e-05 +4.16432e-09 +5.92296e-06 +9.62862e-05 +4.06978e-09 +5.92527e-06 +9.62689e-05 +3.97934e-09 +5.92786e-06 +9.62532e-05 +3.8915e-09 +5.93069e-06 +9.6239e-05 +3.80665e-09 +5.93372e-06 +9.62262e-05 +3.72498e-09 +5.93693e-06 +9.62146e-05 +3.64664e-09 +5.94028e-06 +9.62042e-05 +3.57177e-09 +5.94375e-06 +9.61948e-05 +3.50062e-09 +5.94731e-06 +9.61865e-05 +3.4335e-09 +5.95094e-06 +9.6179e-05 +3.3707e-09 +5.95462e-06 +9.61723e-05 +3.31237e-09 +5.95833e-06 +9.61664e-05 +3.25857e-09 +5.96205e-06 +9.61611e-05 +3.20929e-09 +5.96577e-06 +9.61565e-05 +3.16439e-09 +5.96947e-06 +9.61525e-05 +3.12327e-09 +5.97313e-06 +9.6149e-05 +3.08508e-09 +5.97676e-06 +9.6146e-05 +3.0496e-09 +5.98032e-06 +9.61434e-05 +3.01715e-09 +5.98383e-06 +9.61412e-05 +2.98808e-09 +5.98726e-06 +9.61393e-05 +2.96301e-09 +5.99061e-06 +9.61378e-05 +2.94256e-09 +5.99388e-06 +9.61366e-05 +2.9268e-09 +5.99705e-06 +9.61356e-05 +2.91581e-09 +6.00013e-06 +9.61349e-05 +2.90992e-09 +6.00312e-06 +9.61344e-05 +2.90908e-09 +6.00599e-06 +9.61341e-05 +2.91234e-09 +6.00877e-06 +9.61339e-05 +2.91826e-09 +6.01144e-06 +9.6134e-05 +2.92598e-09 +6.014e-06 +9.61341e-05 +2.93495e-09 +6.01645e-06 +9.61344e-05 +2.94456e-09 +6.0188e-06 +9.61347e-05 +2.9543e-09 +6.02104e-06 +9.61352e-05 +2.9639e-09 +6.02317e-06 +9.61358e-05 +2.9733e-09 +6.0252e-06 +9.61364e-05 +2.98262e-09 +6.02713e-06 +9.6137e-05 +2.99204e-09 +6.02896e-06 +9.61377e-05 +3.00181e-09 +6.03069e-06 +9.61385e-05 +3.01218e-09 +6.03233e-06 +9.61392e-05 +3.02339e-09 +6.03387e-06 +9.614e-05 +3.03565e-09 +6.03532e-06 +9.61408e-05 +3.04919e-09 +6.03669e-06 +9.61416e-05 +3.06415e-09 +6.03797e-06 +9.61424e-05 +3.08066e-09 +6.03917e-06 +9.61432e-05 +3.09883e-09 +6.0403e-06 +9.6144e-05 +3.11869e-09 +6.04135e-06 +9.61448e-05 +3.14019e-09 +6.04233e-06 +9.61456e-05 +3.1632e-09 +6.04325e-06 +9.61463e-05 +3.18752e-09 +6.0441e-06 +9.6147e-05 +3.21289e-09 +6.0449e-06 +9.61477e-05 +3.23903e-09 +6.04563e-06 +9.61484e-05 +3.26564e-09 +6.04632e-06 +9.6149e-05 +3.29241e-09 +6.04695e-06 +9.61497e-05 +3.31913e-09 +6.04754e-06 +9.61502e-05 +3.3456e-09 +6.04808e-06 +9.61508e-05 +3.37169e-09 +6.04859e-06 +9.61513e-05 +3.39725e-09 +6.04905e-06 +9.61518e-05 +3.42207e-09 +6.04949e-06 +9.61523e-05 +3.44593e-09 +6.04988e-06 +9.61527e-05 +3.46868e-09 +6.05025e-06 +9.61531e-05 +3.4902e-09 +6.0506e-06 +9.61534e-05 +3.51041e-09 +6.05091e-06 +9.61538e-05 +3.52927e-09 +6.05121e-06 +9.61541e-05 +3.54677e-09 +6.05148e-06 +9.61544e-05 +3.56294e-09 +6.05174e-06 +9.61546e-05 +3.57779e-09 +6.05197e-06 +9.61549e-05 +3.59138e-09 +6.0522e-06 +9.61551e-05 +3.60379e-09 +6.05241e-06 +9.61552e-05 +3.61511e-09 +6.0526e-06 +9.61554e-05 +3.62542e-09 +6.05279e-06 +9.61555e-05 +3.63481e-09 +6.05297e-06 +9.61557e-05 +3.64333e-09 +6.05314e-06 +9.61558e-05 +3.65104e-09 +6.0533e-06 +9.61558e-05 +3.65795e-09 +6.05346e-06 +9.61559e-05 +3.6641e-09 +6.05361e-06 +9.6156e-05 +3.66947e-09 +6.05375e-06 +9.6156e-05 +3.67408e-09 +6.05389e-06 +9.6156e-05 +3.6779e-09 +6.05403e-06 +9.6156e-05 +3.68095e-09 +6.05417e-06 +9.61561e-05 +3.6832e-09 +6.0543e-06 +9.61561e-05 +3.68467e-09 +6.05443e-06 +9.61561e-05 +3.68533e-09 +6.05456e-06 +9.6156e-05 +3.68519e-09 +6.05469e-06 +9.6156e-05 +3.68427e-09 +6.05481e-06 +9.6156e-05 +3.68257e-09 +6.05494e-06 +9.6156e-05 +3.68014e-09 +6.05506e-06 +9.6156e-05 +3.67703e-09 +6.05518e-06 +9.61559e-05 +3.67331e-09 +6.0553e-06 +9.61559e-05 +3.66906e-09 +6.05542e-06 +9.61559e-05 +3.66437e-09 +6.05554e-06 +9.61559e-05 +3.65934e-09 +6.05565e-06 +9.61558e-05 +3.65408e-09 +6.05577e-06 +9.61558e-05 +3.64868e-09 +6.05588e-06 +9.61558e-05 +3.64325e-09 +6.05599e-06 +9.61558e-05 +3.63789e-09 +6.05609e-06 +9.61557e-05 +3.63269e-09 +6.0562e-06 +9.61557e-05 +3.62774e-09 +6.0563e-06 +9.61557e-05 +3.6231e-09 +6.05639e-06 +9.61557e-05 +3.61884e-09 +6.05649e-06 +9.61557e-05 +3.61499e-09 +6.05658e-06 +9.61557e-05 +3.61157e-09 +6.05667e-06 +9.61557e-05 +3.60859e-09 +6.05675e-06 +9.61557e-05 +3.60606e-09 +6.05683e-06 +9.61558e-05 +3.60395e-09 +6.0569e-06 +9.61558e-05 +3.60224e-09 +6.05697e-06 +9.61558e-05 +3.60088e-09 +6.05703e-06 +9.61558e-05 +3.59985e-09 +6.05709e-06 +9.61558e-05 +3.59909e-09 +6.05715e-06 +9.61559e-05 +3.59857e-09 +6.0572e-06 +9.61559e-05 +3.59824e-09 +6.05724e-06 +9.61559e-05 +3.59809e-09 +6.05728e-06 +9.6156e-05 +3.59809e-09 +6.05731e-06 +9.6156e-05 +3.59821e-09 +6.05734e-06 +9.6156e-05 +3.59845e-09 +6.05736e-06 +9.61561e-05 +3.5988e-09 +6.05738e-06 +9.61561e-05 +3.59925e-09 +6.05739e-06 +9.61562e-05 +3.59981e-09 +6.0574e-06 +9.61562e-05 +3.60047e-09 +6.0574e-06 +9.61563e-05 +3.60123e-09 +6.05739e-06 +9.61563e-05 +3.60211e-09 +6.05738e-06 +9.61563e-05 +3.60309e-09 +6.05737e-06 +9.61564e-05 +3.60417e-09 +6.05735e-06 +9.61564e-05 +3.60536e-09 +6.05732e-06 +9.61565e-05 +3.60665e-09 +6.0573e-06 +9.61565e-05 +3.60803e-09 +6.05726e-06 +9.61566e-05 +3.60949e-09 +6.05722e-06 +9.61566e-05 +3.61102e-09 +6.05718e-06 +9.61567e-05 +3.6126e-09 +6.05714e-06 +9.61567e-05 +3.61424e-09 +6.05709e-06 +9.61567e-05 +3.61591e-09 +6.05704e-06 +9.61568e-05 +3.61759e-09 +6.05698e-06 +9.61568e-05 +3.61929e-09 +6.05693e-06 +9.61568e-05 +3.62097e-09 +6.05686e-06 +9.61569e-05 +3.62264e-09 +6.0568e-06 +9.61569e-05 +3.62429e-09 +6.05674e-06 +9.61569e-05 +3.62589e-09 +6.05667e-06 +9.6157e-05 +3.62744e-09 +6.0566e-06 +9.6157e-05 +3.62894e-09 +6.05653e-06 +9.6157e-05 +3.63038e-09 +6.05646e-06 +9.6157e-05 +3.63174e-09 +6.05639e-06 +9.6157e-05 +3.63303e-09 +6.05632e-06 +9.6157e-05 +3.63424e-09 +6.05625e-06 +9.61571e-05 +3.63537e-09 +6.05618e-06 +9.61571e-05 +3.63641e-09 +6.0561e-06 +9.61571e-05 +3.63738e-09 +6.05603e-06 +9.61571e-05 +3.63826e-09 +6.05596e-06 +9.61571e-05 +3.63906e-09 +6.05589e-06 +9.61571e-05 +3.63977e-09 +6.05582e-06 +9.61571e-05 +3.64042e-09 +6.05575e-06 +9.61571e-05 +3.64098e-09 +6.05569e-06 +9.61571e-05 +3.64146e-09 +6.05562e-06 +9.61571e-05 +3.64188e-09 +6.05556e-06 +9.61571e-05 +3.64222e-09 +6.0555e-06 +9.61571e-05 +3.64248e-09 +6.05544e-06 +9.61571e-05 +3.64268e-09 +6.05538e-06 +9.61571e-05 +3.64281e-09 +6.05533e-06 +9.61571e-05 +3.64287e-09 +6.05527e-06 +9.61571e-05 +3.64288e-09 +6.05522e-06 +9.6157e-05 +3.64282e-09 +6.05517e-06 +9.6157e-05 +3.64271e-09 +6.05513e-06 +9.6157e-05 +3.64256e-09 +6.05509e-06 +9.6157e-05 +3.64236e-09 +6.05505e-06 +9.6157e-05 +3.64213e-09 +6.05501e-06 +9.6157e-05 +3.64188e-09 +6.05498e-06 +9.6157e-05 +3.6416e-09 +6.05494e-06 +9.6157e-05 +3.64133e-09 +6.05491e-06 +9.6157e-05 +3.64105e-09 +6.05489e-06 +9.6157e-05 +3.64079e-09 +6.05486e-06 +9.61569e-05 +3.64055e-09 +6.05484e-06 +9.61569e-05 +3.64035e-09 +6.05483e-06 +9.61569e-05 +3.64019e-09 +6.05481e-06 +9.61569e-05 +3.64008e-09 +6.0548e-06 +9.61569e-05 +3.64004e-09 +6.05479e-06 +9.61569e-05 +3.64007e-09 +6.05478e-06 +9.61569e-05 +3.64017e-09 +6.05477e-06 +9.61569e-05 +3.64036e-09 +6.05477e-06 +9.61569e-05 +3.64064e-09 +6.05477e-06 +9.61569e-05 +3.641e-09 +6.05477e-06 +9.61568e-05 +3.64146e-09 +6.05477e-06 +9.61568e-05 +3.64201e-09 +6.05478e-06 +9.61568e-05 +3.64265e-09 +6.05478e-06 +9.61568e-05 +3.64338e-09 +6.05479e-06 +9.61568e-05 +3.6442e-09 +6.0548e-06 +9.61568e-05 +3.64509e-09 +6.05482e-06 +9.61568e-05 +3.64606e-09 +6.05483e-06 +9.61568e-05 +3.6471e-09 +6.05484e-06 +9.61568e-05 +3.64821e-09 +6.05486e-06 +9.61568e-05 +3.64936e-09 +6.05487e-06 +9.61568e-05 +3.65057e-09 +6.05489e-06 +9.61568e-05 +3.65182e-09 +6.05491e-06 +9.61568e-05 +3.6531e-09 +6.05493e-06 +9.61568e-05 +3.65441e-09 +6.05495e-06 +9.61568e-05 +3.65573e-09 +6.05497e-06 +9.61568e-05 +3.65707e-09 +6.05499e-06 +9.61568e-05 +3.65841e-09 +6.05501e-06 +9.61568e-05 +3.65974e-09 +6.05503e-06 +9.61568e-05 +3.66107e-09 +6.05505e-06 +9.61568e-05 +3.66238e-09 +6.05507e-06 +9.61568e-05 +3.66367e-09 +6.0551e-06 +9.61568e-05 +3.66493e-09 +6.05512e-06 +9.61568e-05 +3.66615e-09 +6.05514e-06 +9.61568e-05 +3.66733e-09 +6.05516e-06 +9.61568e-05 +3.66847e-09 +6.05518e-06 +9.61568e-05 +3.66955e-09 +6.0552e-06 +9.61568e-05 +3.67058e-09 +6.05522e-06 +9.61568e-05 +3.67155e-09 +6.05524e-06 +9.61568e-05 +3.67245e-09 +6.05526e-06 +9.61568e-05 +3.67329e-09 +6.05527e-06 +9.61568e-05 +3.67406e-09 +6.05529e-06 +9.61568e-05 +3.67475e-09 +6.05531e-06 +9.61568e-05 +3.67537e-09 +6.05532e-06 +9.61568e-05 +3.67591e-09 +6.05534e-06 +9.61568e-05 +3.67637e-09 +6.05535e-06 +9.61568e-05 +3.67675e-09 +6.05537e-06 +9.61568e-05 +3.67705e-09 +6.05538e-06 +9.61568e-05 +3.67727e-09 +6.05539e-06 +9.61568e-05 +3.67741e-09 +6.0554e-06 +9.61568e-05 +3.67748e-09 +6.05541e-06 +9.61568e-05 +3.67746e-09 +6.05542e-06 +9.61568e-05 +3.67737e-09 +6.05543e-06 +9.61568e-05 +3.6772e-09 +6.05544e-06 +9.61568e-05 +3.67697e-09 +6.05544e-06 +9.61568e-05 +3.67666e-09 +6.05545e-06 +9.61568e-05 +3.67628e-09 +6.05545e-06 +9.61568e-05 +3.67584e-09 +6.05546e-06 +9.61568e-05 +3.67534e-09 +6.05546e-06 +9.61568e-05 +3.67479e-09 +6.05546e-06 +9.61568e-05 +3.67417e-09 +6.05546e-06 +9.61568e-05 +3.67351e-09 +6.05546e-06 +9.61568e-05 +3.6728e-09 +6.05546e-06 +9.61568e-05 +3.67205e-09 +6.05546e-06 +9.61569e-05 +3.67125e-09 +6.05546e-06 +9.61569e-05 +3.67042e-09 +6.05546e-06 +9.61569e-05 +3.66956e-09 +6.05546e-06 +9.61569e-05 +3.66868e-09 +6.05545e-06 +9.61569e-05 +3.66777e-09 +6.05545e-06 +9.61568e-05 +3.66684e-09 +6.05544e-06 +9.61569e-05 +3.6659e-09 +6.05544e-06 +9.61569e-05 +3.66494e-09 +6.05543e-06 +9.61569e-05 +3.66399e-09 +6.05543e-06 +9.61568e-05 +3.66303e-09 +6.05542e-06 +9.61568e-05 +3.66207e-09 +6.05541e-06 +9.61568e-05 +3.66112e-09 +6.0554e-06 +9.61568e-05 +3.66018e-09 +6.05539e-06 +9.61568e-05 +3.65926e-09 +6.05538e-06 +9.61568e-05 +3.65836e-09 +6.05537e-06 +9.61568e-05 +3.65748e-09 +6.05536e-06 +9.61568e-05 +3.65662e-09 +6.05535e-06 +9.61568e-05 +3.6558e-09 +6.05534e-06 +9.61568e-05 +3.65501e-09 +6.05533e-06 +9.61568e-05 +3.65425e-09 +6.05532e-06 +9.61568e-05 +3.65353e-09 +6.05531e-06 +9.61568e-05 +3.65285e-09 +6.0553e-06 +9.61568e-05 +3.65222e-09 +6.05528e-06 +9.61568e-05 +3.65163e-09 +6.05527e-06 +9.61568e-05 +3.65109e-09 +6.05526e-06 +9.61568e-05 +3.65059e-09 +6.05524e-06 +9.61568e-05 +3.65014e-09 +6.05523e-06 +9.61568e-05 +3.64974e-09 +6.05521e-06 +9.61568e-05 +3.64939e-09 +6.0552e-06 +9.61568e-05 +3.64909e-09 +6.05519e-06 +9.61568e-05 +3.64884e-09 +6.05517e-06 +9.61568e-05 +3.64864e-09 +6.05516e-06 +9.61568e-05 +3.64848e-09 +6.05514e-06 +9.61568e-05 +3.64838e-09 +6.05512e-06 +9.61568e-05 +3.64832e-09 +6.05511e-06 +9.61568e-05 +3.64831e-09 +6.05509e-06 +9.61568e-05 +3.64834e-09 +6.05508e-06 +9.61568e-05 +3.64842e-09 +6.05506e-06 +9.61568e-05 +3.64853e-09 +6.05504e-06 +9.61568e-05 +3.64869e-09 +6.05503e-06 +9.61567e-05 +3.64888e-09 +6.05501e-06 +9.61567e-05 +3.64911e-09 +6.05499e-06 +9.61567e-05 +3.64937e-09 +6.05497e-06 +9.61567e-05 +3.64966e-09 +6.05496e-06 +9.61567e-05 +3.64998e-09 +6.05494e-06 +9.61567e-05 +3.65033e-09 +6.05492e-06 +9.61567e-05 +3.6507e-09 +6.0549e-06 +9.61567e-05 +3.65109e-09 +6.05488e-06 +9.61567e-05 +3.6515e-09 +6.05486e-06 +9.61566e-05 +3.65192e-09 +6.05484e-06 +9.61566e-05 +3.65236e-09 +6.05482e-06 +9.61566e-05 +3.65281e-09 +6.0548e-06 +9.61566e-05 +3.65328e-09 +6.05478e-06 +9.61566e-05 +3.65374e-09 +6.05476e-06 +9.61565e-05 +3.65422e-09 +6.05474e-06 +9.61565e-05 +3.65465e-09 +6.05472e-06 +9.61565e-05 +3.65506e-09 +6.05469e-06 +9.61565e-05 +3.65544e-09 +6.05467e-06 +9.61565e-05 +3.65579e-09 +6.05465e-06 +9.61564e-05 +3.65612e-09 +6.05463e-06 +9.61564e-05 +3.6564e-09 +6.05461e-06 +9.61564e-05 +3.65666e-09 +6.0546e-06 +9.61563e-05 +3.65688e-09 +6.05459e-06 +9.61563e-05 +3.65707e-09 +6.05458e-06 +9.61563e-05 +3.65722e-09 +6.05458e-06 +9.61562e-05 +3.65734e-09 +6.05458e-06 +9.61562e-05 +3.65742e-09 +6.05458e-06 +9.61562e-05 +3.65746e-09 +6.05458e-06 +9.61562e-05 +3.65747e-09 +6.05459e-06 +9.61562e-05 +3.65744e-09 +6.0546e-06 +9.61562e-05 +3.65737e-09 +6.05462e-06 +9.61562e-05 +3.65726e-09 +6.05463e-06 +9.61562e-05 +3.65712e-09 +6.05465e-06 +9.61562e-05 +3.65694e-09 +6.05467e-06 +9.61563e-05 +3.65672e-09 +6.05469e-06 +9.61563e-05 +3.65646e-09 +6.05472e-06 +9.61563e-05 +3.65617e-09 +6.05475e-06 +9.61563e-05 +3.65583e-09 +6.05478e-06 +9.61564e-05 +3.65547e-09 +6.05481e-06 +9.61564e-05 +3.65506e-09 +6.05485e-06 +9.61564e-05 +3.65462e-09 +6.05488e-06 +9.61565e-05 +3.65415e-09 +6.05492e-06 +9.61565e-05 +3.65364e-09 +6.05496e-06 +9.61566e-05 +3.6531e-09 +6.05501e-06 +9.61566e-05 +3.65252e-09 +6.05506e-06 +9.61567e-05 +3.65191e-09 +6.0551e-06 +9.61567e-05 +3.65127e-09 +6.05515e-06 +9.61568e-05 +3.6506e-09 +6.05521e-06 +9.61569e-05 +3.6499e-09 +6.05526e-06 +9.61569e-05 +3.64916e-09 +6.05532e-06 +9.6157e-05 +3.6484e-09 +6.05538e-06 +9.6157e-05 +3.64761e-09 +6.05544e-06 +9.61571e-05 +3.64679e-09 +6.0555e-06 +9.61572e-05 +3.64603e-09 +6.05557e-06 +9.61572e-05 +3.64251e-09 +6.05563e-06 +9.61573e-05 +3.6394e-09 +6.05573e-06 +9.61574e-05 +3.63634e-09 +6.05619e-06 +9.61574e-05 +3.6333e-09 +6.05669e-06 +9.61576e-05 +3.63027e-09 +6.05717e-06 +9.61598e-05 +3.62727e-09 +6.05765e-06 +9.61623e-05 +3.62429e-09 +6.05813e-06 +9.61646e-05 +3.62134e-09 +6.0586e-06 +9.6167e-05 +3.61841e-09 +6.05907e-06 +9.61693e-05 +3.6155e-09 +6.05954e-06 +9.61716e-05 +3.61261e-09 +6.06e-06 +9.61739e-05 +3.60975e-09 +6.06046e-06 +9.61761e-05 +3.60691e-09 +6.06091e-06 +9.61784e-05 +3.60409e-09 +6.06136e-06 +9.61806e-05 +3.6013e-09 +6.06181e-06 +9.61828e-05 +3.59853e-09 +6.06225e-06 +9.6185e-05 +3.59579e-09 +6.06269e-06 +9.61871e-05 +3.59306e-09 +6.06313e-06 +9.61893e-05 +3.59036e-09 +6.06356e-06 +9.61914e-05 +3.58769e-09 +6.06399e-06 +9.61935e-05 +3.58503e-09 +6.06442e-06 +9.61956e-05 +3.5824e-09 +6.06484e-06 +9.61977e-05 +3.57979e-09 +6.06527e-06 +9.61997e-05 +3.5772e-09 +6.06568e-06 +9.62017e-05 +3.57463e-09 +6.0661e-06 +9.62037e-05 +3.57208e-09 +6.06651e-06 +9.62057e-05 +3.56955e-09 +6.06692e-06 +9.62077e-05 +3.56705e-09 +6.06733e-06 +9.62097e-05 +3.56456e-09 +6.06773e-06 +9.62116e-05 +3.56209e-09 +6.06813e-06 +9.62136e-05 +3.55964e-09 +6.06853e-06 +9.62155e-05 +3.55721e-09 +6.06893e-06 +9.62174e-05 +3.5548e-09 +6.06932e-06 +9.62193e-05 +3.5524e-09 +6.06972e-06 +9.62212e-05 +3.55002e-09 +6.07011e-06 +9.6223e-05 +3.54766e-09 +6.07049e-06 +9.62249e-05 +3.54532e-09 +6.07088e-06 +9.62267e-05 +3.54299e-09 +6.07126e-06 +9.62286e-05 +3.54068e-09 +6.07164e-06 +9.62304e-05 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 1_final_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 1_final_profile_global.xlo new file mode 100644 index 000000000..a96b03920 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 1_final_profile_global.xlo @@ -0,0 +1,1603 @@ +Vector Object:Vec_0x84000000_0 1 MPI processes + type: mpi +Process [0] +8.53993e-06 +0.00767819 +8.53423e-06 +0.00767285 +8.52913e-06 +0.00766694 +8.52432e-06 +0.0076603 +8.51976e-06 +0.00765335 +8.5156e-06 +0.00764689 +8.51213e-06 +0.00764185 +8.50956e-06 +0.00763885 +8.50838e-06 +0.00763824 +8.50905e-06 +0.00763941 +8.50952e-06 +0.00764083 +8.51025e-06 +0.007643 +8.51146e-06 +0.00764595 +8.51313e-06 +0.00764977 +8.51516e-06 +0.00765444 +8.51728e-06 +0.00765954 +8.5191e-06 +0.00766413 +8.52009e-06 +0.00766694 +8.5198e-06 +0.00766675 +8.5181e-06 +0.00766314 +8.51541e-06 +0.00765692 +8.51234e-06 +0.00764963 +8.50953e-06 +0.00764294 +8.50747e-06 +0.00763809 +8.50635e-06 +0.00763561 +8.50613e-06 +0.00763531 +8.50659e-06 +0.00763661 +8.50753e-06 +0.00763884 +8.50882e-06 +0.00764157 +8.51048e-06 +0.00764471 +8.51254e-06 +0.00764833 +8.51497e-06 +0.0076525 +8.51761e-06 +0.0076571 +8.52021e-06 +0.0076618 +8.52248e-06 +0.00766614 +8.52417e-06 +0.00766962 +8.52517e-06 +0.00767189 +8.5255e-06 +0.00767281 +8.52526e-06 +0.00767246 +8.52464e-06 +0.0076711 +8.52379e-06 +0.00766903 +8.52284e-06 +0.00766659 +8.52187e-06 +0.00766404 +8.52092e-06 +0.00766156 +8.52002e-06 +0.00765929 +8.5192e-06 +0.0076573 +8.51847e-06 +0.00765562 +8.51787e-06 +0.00765428 +8.51742e-06 +0.00765328 +8.51714e-06 +0.00765264 +8.51707e-06 +0.00765242 +8.51724e-06 +0.00765267 +8.51766e-06 +0.00765349 +8.51836e-06 +0.00765492 +8.51931e-06 +0.00765696 +8.52047e-06 +0.00765949 +8.52175e-06 +0.0076623 +8.52301e-06 +0.00766509 +8.52411e-06 +0.00766753 +8.52492e-06 +0.00766932 +8.52533e-06 +0.00767027 +8.5253e-06 +0.00767027 +8.52484e-06 +0.00766937 +8.52402e-06 +0.00766773 +8.52297e-06 +0.00766556 +8.5218e-06 +0.00766315 +8.52065e-06 +0.00766074 +8.51959e-06 +0.00765853 +8.51867e-06 +0.0076566 +8.5179e-06 +0.00765497 +8.51723e-06 +0.00765355 +8.51661e-06 +0.00765223 +8.516e-06 +0.0076509 +8.51537e-06 +0.00764952 +8.51473e-06 +0.00764814 +8.51414e-06 +0.00764688 +8.51366e-06 +0.00764593 +8.51338e-06 +0.00764548 +8.51337e-06 +0.00764567 +8.51365e-06 +0.00764655 +8.51422e-06 +0.00764804 +8.51501e-06 +0.00764995 +8.51591e-06 +0.00765201 +8.5168e-06 +0.00765393 +8.51753e-06 +0.00765545 +8.51802e-06 +0.00765638 +8.51821e-06 +0.00765664 +8.51812e-06 +0.00765629 +8.5178e-06 +0.00765548 +8.51733e-06 +0.00765441 +8.51683e-06 +0.00765329 +8.51637e-06 +0.0076523 +8.516e-06 +0.00765153 +8.51573e-06 +0.007651 +8.51553e-06 +0.00765064 +8.51536e-06 +0.00765035 +8.51517e-06 +0.00765002 +8.51491e-06 +0.00764957 +8.51458e-06 +0.00764897 +8.51419e-06 +0.00764826 +8.51378e-06 +0.00764752 +8.51341e-06 +0.00764685 +8.51313e-06 +0.00764636 +8.513e-06 +0.00764615 +8.51305e-06 +0.00764627 +8.5133e-06 +0.00764673 +8.51372e-06 +0.0076475 +8.51429e-06 +0.00764851 +8.51496e-06 +0.00764968 +8.51565e-06 +0.00765092 +8.51633e-06 +0.00765215 +8.51695e-06 +0.00765331 +8.51748e-06 +0.00765439 +8.51793e-06 +0.00765535 +8.5183e-06 +0.0076562 +8.5186e-06 +0.00765693 +8.51882e-06 +0.00765751 +8.51897e-06 +0.0076579 +8.51902e-06 +0.00765804 +8.51895e-06 +0.00765787 +8.51875e-06 +0.00765737 +8.51841e-06 +0.00765653 +8.51795e-06 +0.00765541 +8.5174e-06 +0.0076541 +8.51682e-06 +0.00765274 +8.51625e-06 +0.00765147 +8.51576e-06 +0.00765043 +8.5154e-06 +0.00764973 +8.51519e-06 +0.00764944 +8.51516e-06 +0.00764955 +8.5153e-06 +0.00765001 +8.51558e-06 +0.00765073 +8.51595e-06 +0.00765156 +8.51636e-06 +0.0076524 +8.51676e-06 +0.00765315 +8.51711e-06 +0.00765377 +8.51739e-06 +0.00765425 +8.51759e-06 +0.00765463 +8.51772e-06 +0.00765497 +8.51779e-06 +0.00765531 +8.51784e-06 +0.00765569 +8.51788e-06 +0.00765611 +8.51793e-06 +0.00765657 +8.51801e-06 +0.00765701 +8.51811e-06 +0.00765741 +8.51822e-06 +0.00765769 +8.51831e-06 +0.00765782 +8.51836e-06 +0.00765775 +8.51833e-06 +0.00765749 +8.51823e-06 +0.00765706 +8.51803e-06 +0.00765651 +8.51776e-06 +0.00765591 +8.51742e-06 +0.00765532 +8.51704e-06 +0.00765476 +8.51661e-06 +0.00765422 +8.51614e-06 +0.00765362 +8.51563e-06 +0.00765288 +8.51506e-06 +0.00765192 +8.51445e-06 +0.00765072 +8.51382e-06 +0.00764933 +8.51324e-06 +0.00764786 +8.51274e-06 +0.00764647 +8.51241e-06 +0.00764533 +8.51229e-06 +0.00764463 +8.51243e-06 +0.00764451 +8.51285e-06 +0.00764507 +8.51355e-06 +0.00764637 +8.51452e-06 +0.00764842 +8.51572e-06 +0.00765118 +8.51711e-06 +0.00765454 +8.51861e-06 +0.00765827 +8.52011e-06 +0.00766208 +8.52148e-06 +0.00766558 +8.52257e-06 +0.00766834 +8.52321e-06 +0.00766995 +8.52328e-06 +0.0076701 +8.52267e-06 +0.00766865 +8.52139e-06 +0.00766565 +8.51951e-06 +0.00766137 +8.51719e-06 +0.00765627 +8.51468e-06 +0.00765092 +8.51223e-06 +0.00764592 +8.51008e-06 +0.00764179 +8.50841e-06 +0.00763888 +8.5073e-06 +0.00763731 +8.50677e-06 +0.00763698 +8.50676e-06 +0.00763766 +8.50724e-06 +0.0076391 +8.50816e-06 +0.00764118 +8.50954e-06 +0.00764395 +8.51133e-06 +0.00764753 +8.51344e-06 +0.00765194 +8.5157e-06 +0.0076569 +8.51782e-06 +0.00766182 +8.51947e-06 +0.00766588 +8.5204e-06 +0.00766832 +8.52047e-06 +0.00766869 +8.51975e-06 +0.007667 +8.51846e-06 +0.00766373 +8.51689e-06 +0.00765968 +8.51532e-06 +0.0076557 +8.51394e-06 +0.00765252 +8.51285e-06 +0.00765054 +8.51208e-06 +0.00764986 +8.5117e-06 +0.00765036 +8.51181e-06 +0.00765181 +8.5125e-06 +0.00765401 +8.51378e-06 +0.00765671 +8.51543e-06 +0.00765955 +8.51707e-06 +0.00766194 +8.51818e-06 +0.00766314 +8.5183e-06 +0.00766249 +8.51722e-06 +0.00765967 +8.51504e-06 +0.0076549 +8.51216e-06 +0.00764896 +8.50919e-06 +0.00764295 +8.5067e-06 +0.00763799 +8.50512e-06 +0.00763493 +8.50468e-06 +0.00763424 +8.50538e-06 +0.00763593 +8.50708e-06 +0.0076397 +8.50957e-06 +0.00764503 +8.51254e-06 +0.00765128 +8.51568e-06 +0.00765775 +8.51859e-06 +0.00766369 +8.52091e-06 +0.00766835 +8.52228e-06 +0.00767104 +8.52253e-06 +0.00767135 +8.52161e-06 +0.00766923 +8.51974e-06 +0.00766505 +8.5173e-06 +0.00765959 +8.51479e-06 +0.00765389 +8.51276e-06 +0.00764913 +8.51162e-06 +0.00764627 +8.51157e-06 +0.0076458 +8.51251e-06 +0.00764756 +8.51401e-06 +0.00765073 +8.51546e-06 +0.0076541 +8.51629e-06 +0.00765644 +8.51617e-06 +0.00765689 +8.5151e-06 +0.00765533 +8.51341e-06 +0.0076523 +8.51159e-06 +0.0076488 +8.51008e-06 +0.00764584 +8.50917e-06 +0.00764415 +8.50904e-06 +0.00764405 +8.50975e-06 +0.00764556 +8.51135e-06 +0.00764859 +8.51376e-06 +0.00765297 +8.51673e-06 +0.00765841 +8.51976e-06 +0.0076642 +8.52216e-06 +0.0076692 +8.52334e-06 +0.00767215 +8.52298e-06 +0.00767219 +8.52129e-06 +0.00766936 +8.51886e-06 +0.00766461 +8.5165e-06 +0.00765938 +8.51483e-06 +0.00765511 +8.5142e-06 +0.00765277 +8.51455e-06 +0.00765269 +8.51554e-06 +0.00765453 +8.51668e-06 +0.00765735 +8.51743e-06 +0.00765989 +8.51733e-06 +0.00766074 +8.51605e-06 +0.00765879 +8.51355e-06 +0.00765362 +8.51016e-06 +0.0076459 +8.50661e-06 +0.00763747 +8.50388e-06 +0.00763088 +8.5029e-06 +0.00762852 +8.50417e-06 +0.00763166 +8.50752e-06 +0.00763987 +8.51211e-06 +0.00765105 +8.51662e-06 +0.00766205 +8.51963e-06 +0.00766956 +8.52008e-06 +0.00767109 +8.5176e-06 +0.0076657 +8.51274e-06 +0.00765444 +8.50685e-06 +0.00764034 +8.50178e-06 +0.00762767 +8.49932e-06 +0.00762079 +8.50062e-06 +0.0076227 +8.50576e-06 +0.0076339 +8.51359e-06 +0.007652 +8.52202e-06 +0.00767226 +8.52861e-06 +0.00768889 +8.53128e-06 +0.00769675 +8.529e-06 +0.00769285 +8.52202e-06 +0.0076773 +8.51186e-06 +0.00765329 +8.50075e-06 +0.00762619 +8.49109e-06 +0.00760209 +8.48477e-06 +0.0075862 +8.48281e-06 +0.0075816 +8.48519e-06 +0.00758851 +8.49092e-06 +0.00760439 +8.49835e-06 +0.00762454 +8.50552e-06 +0.0076434 +8.51059e-06 +0.0076559 +8.51236e-06 +0.00765894 +8.5106e-06 +0.00765233 +8.50617e-06 +0.00763901 +8.50078e-06 +0.00762413 +8.49645e-06 +0.00761325 +8.49483e-06 +0.0076104 +8.49662e-06 +0.00761672 +8.50134e-06 +0.00763016 +8.50752e-06 +0.00764638 +8.51325e-06 +0.00766037 +8.51683e-06 +0.00766808 +8.51733e-06 +0.00766772 +8.51484e-06 +0.00766004 +8.51028e-06 +0.00764783 +8.50506e-06 +0.00763475 +8.50051e-06 +0.00762407 +8.49746e-06 +0.0076177 +8.4961e-06 +0.00761581 +8.49604e-06 +0.00761715 +8.49659e-06 +0.00761978 +8.49705e-06 +0.00762175 +8.49696e-06 +0.00762171 +8.49617e-06 +0.00761915 +8.49489e-06 +0.00761461 +8.49366e-06 +0.00760971 +8.49321e-06 +0.00760687 +8.49424e-06 +0.00760846 +8.49711e-06 +0.00761576 +8.50166e-06 +0.00762808 +8.50707e-06 +0.00764265 +8.51216e-06 +0.00765567 +8.5158e-06 +0.00766396 +8.51742e-06 +0.00766642 +8.51727e-06 +0.00766426 +8.51622e-06 +0.00766009 +8.51528e-06 +0.00765649 +8.51515e-06 +0.00765501 +8.51603e-06 +0.00765609 +8.51782e-06 +0.00765975 +8.52034e-06 +0.00766608 +8.5232e-06 +0.00767453 +8.52558e-06 +0.00768249 +8.52618e-06 +0.00768526 +8.52386e-06 +0.00767868 +8.51852e-06 +0.00766272 +8.5114e-06 +0.00764251 +8.50435e-06 +0.00762505 +8.49875e-06 +0.00761422 +8.49499e-06 +0.00760847 +8.49292e-06 +0.0076038 +8.49269e-06 +0.00759933 +8.49498e-06 +0.00759946 +8.50025e-06 +0.00760907 +8.50773e-06 +0.00762677 +8.51546e-06 +0.00764366 +8.52159e-06 +0.00765065 +8.52584e-06 +0.00764731 +8.52965e-06 +0.00764195 +8.53499e-06 +0.00764322 +8.5429e-06 +0.00765243 +8.55307e-06 +0.0076626 +8.5646e-06 +0.00766572 +8.5775e-06 +0.00766236 +8.5929e-06 +0.00766115 +8.6118e-06 +0.00766821 +8.63395e-06 +0.00768071 +8.6581e-06 +0.0076891 +8.68379e-06 +0.00768489 +8.7127e-06 +0.00766861 +8.748e-06 +0.00764979 +8.79245e-06 +0.00763729 +8.84737e-06 +0.00763021 +8.91327e-06 +0.0076191 +8.99161e-06 +0.00759711 +9.08713e-06 +0.00756994 +9.20739e-06 +0.00755037 +9.35979e-06 +0.00754594 +9.55014e-06 +0.00755383 +9.78325e-06 +0.00756263 +1.00644e-05 +0.00756076 +1.04011e-05 +0.00754448 +1.08049e-05 +0.00751873 +1.12908e-05 +0.00749481 +1.18769e-05 +0.0074672 +1.25855e-05 +0.00742647 +1.34442e-05 +0.00737955 +1.44833e-05 +0.0073315 +1.57304e-05 +0.00727546 +1.72113e-05 +0.00720159 +1.89539e-05 +0.00710352 +2.09981e-05 +0.00697734 +2.34148e-05 +0.00681323 +2.63093e-05 +0.00663935 +2.9832e-05 +0.00647397 +3.41763e-05 +0.0063046 +3.95489e-05 +0.00612369 +4.61259e-05 +0.00592686 +5.39887e-05 +0.00569188 +6.30401e-05 +0.00539067 +7.29374e-05 +0.00500171 +8.3065e-05 +0.0045172 +9.25713e-05 +0.00394654 +0.000100518 +0.00332955 +0.000106078 +0.0027124 +0.000108691 +0.00213329 +0.000108193 +0.0016205 +0.000104846 +0.00118996 +9.92489e-05 +0.000849471 +9.21626e-05 +0.000593958 +8.43389e-05 +0.000408923 +7.64039e-05 +0.000278055 +6.88105e-05 +0.000187106 +6.18449e-05 +0.000124963 +5.56556e-05 +8.37297e-05 +5.02898e-05 +5.67227e-05 +4.57271e-05 +3.88538e-05 +4.19063e-05 +2.68089e-05 +3.87472e-05 +1.86365e-05 +3.61638e-05 +1.31273e-05 +3.40726e-05 +9.41029e-06 +3.23966e-05 +6.8703e-06 +3.10671e-05 +5.10435e-06 +3.00243e-05 +3.85822e-06 +2.92162e-05 +2.97799e-06 +2.85986e-05 +2.36392e-06 +2.81335e-05 +1.93942e-06 +2.77889e-05 +1.64549e-06 +2.75379e-05 +1.43877e-06 +2.73585e-05 +1.28749e-06 +2.72327e-05 +1.17018e-06 +2.71465e-05 +1.07534e-06 +2.70887e-05 +9.9784e-07 +2.7051e-05 +9.3473e-07 +2.70271e-05 +8.84074e-07 +2.70126e-05 +8.4515e-07 +2.70041e-05 +8.17756e-07 +2.69995e-05 +8.01144e-07 +2.69972e-05 +7.93642e-07 +2.69963e-05 +7.93059e-07 +2.6996e-05 +7.97246e-07 +2.69961e-05 +8.0443e-07 +2.69964e-05 +8.13294e-07 +2.69966e-05 +8.22909e-07 +2.69969e-05 +8.32578e-07 +2.6997e-05 +8.41714e-07 +2.69972e-05 +8.49826e-07 +2.69972e-05 +8.56568e-07 +2.69973e-05 +8.61789e-07 +2.69973e-05 +8.6551e-07 +2.69974e-05 +8.67878e-07 +2.69974e-05 +8.69119e-07 +2.69974e-05 +8.69511e-07 +2.69974e-05 +8.69357e-07 +2.69974e-05 +8.68954e-07 +2.69974e-05 +8.68554e-07 +2.69975e-05 +8.68327e-07 +2.69975e-05 +8.68358e-07 +2.69975e-05 +8.68653e-07 +2.69975e-05 +8.69163e-07 +2.69975e-05 +8.69807e-07 +2.69975e-05 +8.70496e-07 +2.69976e-05 +8.71144e-07 +2.69976e-05 +8.71686e-07 +2.69976e-05 +8.72079e-07 +2.69976e-05 +8.72304e-07 +2.69976e-05 +8.72365e-07 +2.69976e-05 +8.72285e-07 +2.69976e-05 +8.72096e-07 +2.69976e-05 +8.71834e-07 +2.69976e-05 +8.71538e-07 +2.69976e-05 +8.71238e-07 +2.69976e-05 +8.70963e-07 +2.69976e-05 +8.7073e-07 +2.69976e-05 +8.70551e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70367e-07 +2.69976e-05 +8.70353e-07 +2.69976e-05 +8.70378e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70499e-07 +2.69976e-05 +8.70571e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70696e-07 +2.69976e-05 +8.70738e-07 +2.69976e-05 +8.70764e-07 +2.69976e-05 +8.70775e-07 +2.69976e-05 +8.70773e-07 +2.69976e-05 +8.70761e-07 +2.69976e-05 +8.70742e-07 +2.69976e-05 +8.7072e-07 +2.69976e-05 +8.70698e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70661e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70641e-07 +2.69976e-05 +8.70638e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70643e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70656e-07 +2.69976e-05 +8.70663e-07 +2.69976e-05 +8.7067e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70681e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70685e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70682e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70683e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70693e-07 +2.69976e-05 +8.707e-07 +2.69976e-05 +8.70708e-07 +2.69976e-05 +8.70718e-07 +2.69976e-05 +8.70728e-07 +2.69976e-05 +8.7074e-07 +2.69976e-05 +8.70753e-07 +2.69976e-05 +8.70767e-07 +2.69976e-05 +8.70783e-07 +2.69976e-05 +8.70796e-07 +2.69976e-05 +8.70802e-07 +2.69976e-05 +8.70803e-07 +2.69975e-05 +8.708e-07 +2.69975e-05 +8.70791e-07 +2.69974e-05 +8.70778e-07 +2.69974e-05 +8.70761e-07 +2.69973e-05 +8.70739e-07 +2.69972e-05 +8.70714e-07 +2.69971e-05 +8.70517e-07 +2.69975e-05 +8.70284e-07 +2.69979e-05 +8.70066e-07 +2.69984e-05 +8.69852e-07 +2.69988e-05 +8.69645e-07 +2.69992e-05 +8.69444e-07 +2.69996e-05 +8.69248e-07 +2.69999e-05 +8.69058e-07 +2.70003e-05 +8.68872e-07 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 40_initial_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 40_initial_profile_global.xlo new file mode 100644 index 000000000..e62eda62f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 40_initial_profile_global.xlo @@ -0,0 +1,2052 @@ +#Vector Object:Vec_0x84000004_0 4 MPI processes +# type: mpi +##ppcess [0] +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +#ppcess [1] +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307905 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307904 +0.00115798 +0.00307903 +0.00115798 +0.00307903 +0.00115798 +0.00307903 +0.00115798 +0.00307903 +0.00115798 +0.00307902 +0.00115798 +0.00307902 +0.00115798 +0.00307902 +0.00115798 +0.00307901 +0.00115798 +0.00307901 +0.00115798 +0.003079 +0.00115798 +0.003079 +0.00115798 +0.00307899 +0.00115798 +0.00307899 +0.00115798 +0.00307898 +0.00115798 +0.00307898 +0.00115797 +0.00307897 +0.00115797 +0.00307896 +0.00115797 +0.00307896 +0.00115797 +0.00307895 +0.00115797 +0.00307894 +0.00115797 +0.00307893 +0.00115797 +0.00307892 +0.00115797 +0.00307891 +0.00115796 +0.0030789 +0.00115796 +0.00307888 +0.00115796 +0.00307887 +0.00115796 +0.00307885 +0.00115796 +0.00307884 +0.00115795 +0.00307882 +0.00115795 +0.0030788 +0.00115795 +0.00307878 +0.00115794 +0.00307876 +0.00115794 +0.00307874 +0.00115794 +0.00307871 +0.00115793 +0.00307869 +0.00115793 +0.00307866 +0.00115792 +0.00307863 +0.00115792 +0.00307859 +0.00115791 +0.00307856 +0.00115791 +0.00307852 +0.0011579 +0.00307848 +0.00115789 +0.00307843 +0.00115789 +0.00307839 +0.00115788 +0.00307833 +0.00115787 +0.00307828 +0.00115786 +0.00307822 +0.00115785 +0.00307815 +0.00115784 +0.00307809 +0.00115783 +0.00307801 +0.00115781 +0.00307793 +0.0011578 +0.00307785 +0.00115778 +0.00307775 +0.00115777 +0.00307765 +0.00115775 +0.00307755 +0.00115773 +0.00307743 +0.00115771 +0.00307731 +0.00115768 +0.00307717 +0.00115766 +0.00307703 +0.00115763 +0.00307688 +0.0011576 +0.00307671 +0.00115757 +0.00307653 +0.00115753 +0.00307634 +0.0011575 +0.00307613 +0.00115746 +0.00307591 +0.00115741 +0.00307567 +0.00115736 +0.00307541 +0.00115731 +0.00307513 +0.00115726 +0.00307484 +0.0011572 +0.00307452 +0.00115713 +0.00307417 +0.00115706 +0.0030738 +0.00115698 +0.0030734 +0.0011569 +0.00307297 +0.00115681 +0.00307251 +0.00115671 +0.00307201 +0.0011566 +0.00307148 +0.00115649 +0.0030709 +0.00115636 +0.00307028 +0.00115623 +0.00306962 +0.00115608 +0.0030689 +0.00115592 +0.00306813 +0.00115575 +0.00306731 +0.00115557 +0.00306642 +0.00115537 +0.00306546 +0.00115515 +0.00306443 +0.00115491 +0.00306333 +0.00115466 +0.00306214 +0.00115438 +0.00306086 +0.00115408 +0.00305949 +0.00115376 +0.00305801 +0.00115341 +0.00305642 +0.00115303 +0.00305472 +0.00115262 +0.00305288 +0.00115218 +0.00305091 +0.0011517 +0.0030488 +0.00115118 +0.00304652 +0.00115061 +0.00304408 +0.00115 +0.00304145 +0.00114934 +0.00303863 +0.00114863 +0.0030356 +0.00114786 +0.00303235 +0.00114703 +0.00302886 +0.00114612 +0.00302512 +0.00114515 +0.00302109 +0.00114409 +0.00301678 +0.00114295 +0.00301215 +0.00114172 +0.00300719 +0.00114039 +0.00300187 +0.00113895 +0.00299616 +0.0011374 +0.00299004 +0.00113572 +0.00298349 +0.00113391 +0.00297647 +0.00113196 +0.00296896 +0.00112985 +0.00296092 +0.00112757 +0.00295231 +0.00112512 +0.00294311 +0.00112248 +0.00293327 +0.00111963 +0.00292276 +0.00111656 +0.00291153 +0.00111326 +0.00289955 +0.0011097 +0.00288677 +0.00110588 +0.00287314 +0.00110178 +0.00285862 +0.00109737 +0.00284315 +0.00109263 +0.0028267 +0.00108756 +0.00280921 +0.00108212 +0.00279064 +0.00107629 +0.00277092 +0.00107006 +0.00275001 +0.00106339 +0.00272787 +0.00105628 +0.00270444 +0.00104869 +0.00267968 +0.0010406 +0.00265353 +0.001032 +0.00262597 +0.00102285 +0.00259694 +0.00101314 +0.00256641 +0.00100286 +0.00253436 +0.000991977 +0.00250076 +0.000980482 +0.00246558 +0.00096836 +0.00242882 +0.000955602 +0.00239048 +0.000942198 +0.00235055 +0.000928146 +0.00230905 +0.000913446 +0.00226601 +0.0008981 +0.00222145 +0.00088212 +0.00217542 +0.000865517 +0.00212799 +0.000848313 +0.0020792 +0.00083053 +0.00202915 +0.000812199 +0.00197792 +0.000793356 +0.00192561 +0.000774041 +0.00187234 +0.000754301 +0.00181821 +0.000734186 +0.00176336 +0.000713751 +0.00170793 +0.000693055 +0.00165205 +0.000672161 +0.00159587 +0.000651134 +0.00153954 +0.000630039 +0.0014832 +0.000608944 +#ppcess [2] +0.00142702 +0.000587917 +0.00137114 +0.000567023 +0.00131571 +0.000546328 +0.00126086 +0.000525893 +0.00120673 +0.000505778 +0.00115346 +0.000486037 +0.00110115 +0.000466722 +0.00104992 +0.000447879 +0.000999868 +0.000429548 +0.000951084 +0.000411766 +0.000903647 +0.000394561 +0.000857622 +0.000377959 +0.000813065 +0.000361978 +0.00077002 +0.000346633 +0.000728522 +0.000331932 +0.000688593 +0.00031788 +0.000650247 +0.000304477 +0.000613489 +0.000291718 +0.000578314 +0.000279596 +0.00054471 +0.000268101 +0.000512658 +0.000257219 +0.000482134 +0.000246934 +0.000453106 +0.000237228 +0.00042554 +0.000228083 +0.000399395 +0.000219478 +0.00037463 +0.000211392 +0.0003512 +0.000203802 +0.000329056 +0.000196687 +0.000308152 +0.000190023 +0.000288435 +0.000183789 +0.000269858 +0.000177962 +0.000252369 +0.000172521 +0.000235918 +0.000167444 +0.000220456 +0.000162711 +0.000205934 +0.000158301 +0.000192304 +0.000154195 +0.00017952 +0.000150374 +0.000167537 +0.000146821 +0.00015631 +0.000143519 +0.000145798 +0.000140451 +0.00013596 +0.000137603 +0.000126757 +0.000134959 +0.000118153 +0.000132506 +0.00011011 +0.000130232 +0.000102596 +0.000128123 +9.55787e-05 +0.000126168 +8.90267e-05 +0.000124357 +8.29114e-05 +0.000122679 +7.72054e-05 +0.000121126 +7.18827e-05 +0.000119688 +6.69187e-05 +0.000118357 +6.22905e-05 +0.000117125 +5.79763e-05 +0.000115985 +5.39556e-05 +0.00011493 +5.02091e-05 +0.000113955 +4.67187e-05 +0.000113053 +4.34676e-05 +0.000112219 +4.04397e-05 +0.000111447 +3.76201e-05 +0.000110734 +3.49949e-05 +0.000110075 +3.2551e-05 +0.000109466 +3.0276e-05 +0.000108903 +2.81587e-05 +0.000108383 +2.61881e-05 +0.000107902 +2.43544e-05 +0.000107458 +2.26482e-05 +0.000107048 +2.10607e-05 +0.000106669 +1.95838e-05 +0.000106318 +1.82099e-05 +0.000105995 +1.69319e-05 +0.000105696 +1.57431e-05 +0.00010542 +1.46375e-05 +0.000105165 +1.36091e-05 +0.000104929 +1.26528e-05 +0.000104712 +1.17634e-05 +0.000104511 +1.09364e-05 +0.000104326 +1.01673e-05 +0.000104154 +9.4522e-06 +0.000103996 +8.78728e-06 +0.00010385 +8.16903e-06 +0.000103715 +7.59421e-06 +0.000103591 +7.05978e-06 +0.000103476 +6.56291e-06 +0.00010337 +6.10097e-06 +0.000103272 +5.67152e-06 +0.000103181 +5.27228e-06 +0.000103097 +4.90113e-06 +0.00010302 +4.5561e-06 +0.000102949 +4.23536e-06 +0.000102883 +3.9372e-06 +0.000102823 +3.66004e-06 +0.000102766 +3.4024e-06 +0.000102715 +3.16292e-06 +0.000102667 +2.9403e-06 +0.000102623 +2.73337e-06 +0.000102582 +2.54103e-06 +0.000102544 +2.36224e-06 +0.00010251 +2.19606e-06 +0.000102478 +2.04159e-06 +0.000102448 +1.89801e-06 +0.000102421 +1.76456e-06 +0.000102396 +1.64051e-06 +0.000102372 +1.52522e-06 +0.000102351 +1.41806e-06 +0.000102331 +1.31845e-06 +0.000102313 +1.22587e-06 +0.000102296 +1.13983e-06 +0.00010228 +1.05985e-06 +0.000102266 +9.85513e-07 +0.000102252 +9.16422e-07 +0.00010224 +8.52207e-07 +0.000102229 +7.92522e-07 +0.000102218 +7.37049e-07 +0.000102209 +6.8549e-07 +0.0001022 +6.37569e-07 +0.000102191 +5.9303e-07 +0.000102184 +5.51635e-07 +0.000102177 +5.1316e-07 +0.00010217 +4.77401e-07 +0.000102164 +4.44166e-07 +0.000102159 +4.13276e-07 +0.000102154 +3.84567e-07 +0.000102149 +3.57883e-07 +0.000102145 +3.33083e-07 +0.000102141 +3.10034e-07 +0.000102137 +2.88611e-07 +0.000102133 +2.68701e-07 +0.00010213 +2.50196e-07 +0.000102127 +2.32997e-07 +0.000102125 +2.17012e-07 +0.000102122 +2.02155e-07 +0.00010212 +1.88347e-07 +0.000102118 +1.75514e-07 +0.000102116 +1.63586e-07 +0.000102114 +1.52501e-07 +0.000102112 +1.42198e-07 +0.000102111 +1.32623e-07 +0.000102109 +1.23723e-07 +0.000102108 +1.15451e-07 +0.000102107 +1.07764e-07 +0.000102106 +1.00619e-07 +0.000102105 +9.39786e-08 +0.000102104 +8.78068e-08 +0.000102103 +8.20708e-08 +0.000102102 +7.67397e-08 +0.000102101 +7.17849e-08 +0.000102101 +6.71799e-08 +0.0001021 +6.29e-08 +0.000102099 +5.89222e-08 +0.000102099 +5.52252e-08 +0.000102098 +5.17892e-08 +0.000102098 +4.85958e-08 +0.000102097 +4.56278e-08 +0.000102097 +4.28693e-08 +0.000102097 +4.03056e-08 +0.000102096 +3.79229e-08 +0.000102096 +3.57083e-08 +0.000102096 +3.36501e-08 +0.000102096 +3.17372e-08 +0.000102095 +2.99593e-08 +0.000102095 +2.8307e-08 +0.000102095 +2.67713e-08 +0.000102095 +2.5344e-08 +0.000102094 +2.40175e-08 +0.000102094 +2.27846e-08 +0.000102094 +2.16387e-08 +0.000102094 +2.05738e-08 +0.000102094 +1.9584e-08 +0.000102094 +1.86641e-08 +0.000102094 +1.78091e-08 +0.000102094 +1.70145e-08 +0.000102093 +1.6276e-08 +0.000102093 +1.55897e-08 +0.000102093 +1.49517e-08 +0.000102093 +1.43589e-08 +0.000102093 +1.38078e-08 +0.000102093 +1.32957e-08 +0.000102093 +1.28197e-08 +0.000102093 +1.23774e-08 +0.000102093 +1.19662e-08 +0.000102093 +1.15841e-08 +0.000102093 +1.1229e-08 +0.000102093 +1.08989e-08 +0.000102093 +1.05921e-08 +0.000102093 +1.0307e-08 +0.000102093 +1.0042e-08 +0.000102093 +9.79575e-09 +0.000102093 +9.56686e-09 +0.000102093 +9.35413e-09 +0.000102093 +9.15641e-09 +0.000102093 +8.97266e-09 +0.000102093 +8.80188e-09 +0.000102093 +8.64315e-09 +0.000102093 +8.49563e-09 +0.000102093 +8.35852e-09 +0.000102093 +8.23109e-09 +0.000102093 +8.11266e-09 +0.000102092 +8.00259e-09 +0.000102092 +7.90029e-09 +0.000102092 +7.80521e-09 +0.000102092 +7.71685e-09 +0.000102092 +7.63472e-09 +0.000102092 +7.55839e-09 +0.000102092 +7.48745e-09 +0.000102092 +7.42151e-09 +0.000102092 +7.36024e-09 +0.000102092 +7.30328e-09 +0.000102092 +7.25035e-09 +0.000102092 +7.20116e-09 +0.000102092 +7.15544e-09 +0.000102092 +7.11294e-09 +0.000102092 +7.07345e-09 +0.000102092 +7.03674e-09 +0.000102092 +7.00263e-09 +0.000102092 +6.97092e-09 +0.000102092 +6.94145e-09 +0.000102092 +6.91406e-09 +0.000102092 +6.88861e-09 +0.000102092 +6.86495e-09 +0.000102092 +6.84296e-09 +0.000102092 +6.82253e-09 +0.000102092 +6.80354e-09 +0.000102092 +6.78589e-09 +0.000102092 +6.76948e-09 +0.000102092 +6.75423e-09 +0.000102092 +6.74006e-09 +0.000102092 +6.72689e-09 +0.000102092 +6.71465e-09 +0.000102092 +6.70327e-09 +0.000102092 +6.6927e-09 +0.000102092 +6.68287e-09 +0.000102092 +6.67374e-09 +0.000102092 +6.66525e-09 +0.000102092 +6.65736e-09 +0.000102092 +6.65003e-09 +0.000102092 +6.64322e-09 +0.000102092 +6.63688e-09 +0.000102092 +6.631e-09 +0.000102092 +6.62553e-09 +0.000102092 +6.62044e-09 +0.000102092 +6.61572e-09 +0.000102092 +6.61132e-09 +0.000102092 +6.60724e-09 +0.000102092 +6.60345e-09 +0.000102092 +6.59992e-09 +0.000102092 +6.59664e-09 +0.000102092 +6.5936e-09 +0.000102092 +6.59077e-09 +0.000102092 +6.58814e-09 +0.000102092 +6.58569e-09 +0.000102092 +6.58342e-09 +0.000102092 +6.58131e-09 +0.000102092 +6.57935e-09 +0.000102092 +6.57752e-09 +0.000102092 +6.57583e-09 +0.000102092 +6.57425e-09 +0.000102092 +#ppcess [3] +6.57278e-09 +0.000102092 +6.57142e-09 +0.000102092 +6.57016e-09 +0.000102092 +6.56898e-09 +0.000102092 +6.56789e-09 +0.000102092 +6.56687e-09 +0.000102092 +6.56593e-09 +0.000102092 +6.56505e-09 +0.000102092 +6.56424e-09 +0.000102092 +6.56348e-09 +0.000102092 +6.56277e-09 +0.000102092 +6.56212e-09 +0.000102092 +6.56151e-09 +0.000102092 +6.56095e-09 +0.000102092 +6.56042e-09 +0.000102092 +6.55993e-09 +0.000102092 +6.55948e-09 +0.000102092 +6.55906e-09 +0.000102092 +6.55866e-09 +0.000102092 +6.5583e-09 +0.000102092 +6.55796e-09 +0.000102092 +6.55765e-09 +0.000102092 +6.55735e-09 +0.000102092 +6.55708e-09 +0.000102092 +6.55683e-09 +0.000102092 +6.55659e-09 +0.000102092 +6.55638e-09 +0.000102092 +6.55617e-09 +0.000102092 +6.55598e-09 +0.000102092 +6.55581e-09 +0.000102092 +6.55565e-09 +0.000102092 +6.5555e-09 +0.000102092 +6.55535e-09 +0.000102092 +6.55522e-09 +0.000102092 +6.5551e-09 +0.000102092 +6.55499e-09 +0.000102092 +6.55488e-09 +0.000102092 +6.55479e-09 +0.000102092 +6.5547e-09 +0.000102092 +6.55461e-09 +0.000102092 +6.55453e-09 +0.000102092 +6.55446e-09 +0.000102092 +6.55439e-09 +0.000102092 +6.55433e-09 +0.000102092 +6.55427e-09 +0.000102092 +6.55422e-09 +0.000102092 +6.55417e-09 +0.000102092 +6.55412e-09 +0.000102092 +6.55408e-09 +0.000102092 +6.55404e-09 +0.000102092 +6.554e-09 +0.000102092 +6.55396e-09 +0.000102092 +6.55393e-09 +0.000102092 +6.5539e-09 +0.000102092 +6.55387e-09 +0.000102092 +6.55385e-09 +0.000102092 +6.55382e-09 +0.000102092 +6.5538e-09 +0.000102092 +6.55378e-09 +0.000102092 +6.55376e-09 +0.000102092 +6.55374e-09 +0.000102092 +6.55372e-09 +0.000102092 +6.55371e-09 +0.000102092 +6.55369e-09 +0.000102092 +6.55368e-09 +0.000102092 +6.55367e-09 +0.000102092 +6.55366e-09 +0.000102092 +6.55365e-09 +0.000102092 +6.55364e-09 +0.000102092 +6.55363e-09 +0.000102092 +6.55362e-09 +0.000102092 +6.55361e-09 +0.000102092 +6.5536e-09 +0.000102092 +6.55359e-09 +0.000102092 +6.55359e-09 +0.000102092 +6.55358e-09 +0.000102092 +6.55358e-09 +0.000102092 +6.55357e-09 +0.000102092 +6.55357e-09 +0.000102092 +6.55356e-09 +0.000102092 +6.55356e-09 +0.000102092 +6.55355e-09 +0.000102092 +6.55355e-09 +0.000102092 +6.55355e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55354e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55353e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55352e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.55351e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 +6.5535e-09 +0.000102092 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 41_final_profile_global.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 41_final_profile_global.xlo new file mode 100644 index 000000000..06e3e5921 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ 41_final_profile_global.xlo @@ -0,0 +1,2052 @@ +#Vector Object:Vec_0x84000004_0 4 MPI processes +# type: mpi +##ppcess [0] +0.0030982 +0.0011394 +0.00309711 +0.00113882 +0.00309609 +0.00113826 +0.00309515 +0.00113773 +0.00309429 +0.00113722 +0.0030935 +0.00113673 +0.00309279 +0.00113627 +0.00309216 +0.00113583 +0.00309159 +0.00113541 +0.00309111 +0.00113501 +0.00309069 +0.00113464 +0.00309033 +0.00113428 +0.00309004 +0.00113395 +0.00308981 +0.00113363 +0.00308964 +0.00113332 +0.00308952 +0.00113303 +0.00308944 +0.00113276 +0.00308941 +0.00113249 +0.00308942 +0.00113224 +0.00308947 +0.001132 +0.00308956 +0.00113176 +0.00308967 +0.00113154 +0.00308981 +0.00113132 +0.00308998 +0.0011311 +0.00309017 +0.00113089 +0.00309039 +0.00113068 +0.00309062 +0.00113048 +0.00309086 +0.00113028 +0.00309112 +0.00113008 +0.00309139 +0.00112988 +0.00309167 +0.00112968 +0.00309196 +0.00112947 +0.00309226 +0.00112927 +0.00309256 +0.00112907 +0.00309286 +0.00112886 +0.00309318 +0.00112867 +0.00309348 +0.00112866 +0.00309376 +0.00112869 +0.00309409 +0.00112869 +0.00309437 +0.00112867 +0.00309426 +0.00112862 +0.00309413 +0.00112857 +0.00309396 +0.0011285 +0.00309377 +0.00112842 +0.00309357 +0.00112835 +0.00309336 +0.00112827 +0.00309317 +0.0011282 +0.00309298 +0.00112813 +0.00309281 +0.00112806 +0.00309265 +0.00112801 +0.00309252 +0.00112796 +0.00309242 +0.00112791 +0.00309233 +0.00112788 +0.00309227 +0.00112785 +0.00309224 +0.00112783 +0.00309222 +0.00112782 +0.00309223 +0.00112781 +0.00309226 +0.00112781 +0.0030923 +0.00112782 +0.00309236 +0.00112783 +0.00309244 +0.00112785 +0.00309252 +0.00112787 +0.00309261 +0.00112789 +0.00309271 +0.00112791 +0.00309281 +0.00112794 +0.00309291 +0.00112796 +0.00309301 +0.00112799 +0.00309311 +0.00112801 +0.0030932 +0.00112804 +0.00309328 +0.00112806 +0.00309336 +0.00112808 +0.00309343 +0.00112809 +0.00309348 +0.00112811 +0.00309352 +0.00112812 +0.00309355 +0.00112812 +0.00309357 +0.00112812 +0.00309357 +0.00112811 +0.00309355 +0.0011281 +0.00309352 +0.00112809 +0.00309347 +0.00112807 +0.00309341 +0.00112805 +0.00309335 +0.00112803 +0.00309328 +0.001128 +0.00309321 +0.00112798 +0.00309315 +0.00112796 +0.00309309 +0.00112795 +0.00309303 +0.00112793 +0.00309299 +0.00112792 +0.00309295 +0.00112791 +0.00309292 +0.0011279 +0.0030929 +0.00112789 +0.00309289 +0.00112789 +0.00309289 +0.00112789 +0.0030929 +0.0011279 +0.00309291 +0.0011279 +0.00309293 +0.00112791 +0.00309295 +0.00112792 +0.00309298 +0.00112793 +0.00309302 +0.00112794 +0.00309305 +0.00112795 +0.00309309 +0.00112796 +0.00309312 +0.00112797 +0.00309315 +0.00112798 +0.00309319 +0.00112798 +0.00309322 +0.00112799 +0.00309324 +0.00112799 +0.00309326 +0.001128 +0.00309328 +0.001128 +0.00309329 +0.001128 +0.0030933 +0.001128 +0.00309331 +0.00112799 +0.00309331 +0.00112799 +0.0030933 +0.00112798 +0.00309329 +0.00112797 +0.00309328 +0.00112796 +0.00309327 +0.00112795 +0.00309325 +0.00112794 +0.00309323 +0.00112793 +0.00309322 +0.00112792 +0.0030932 +0.00112791 +0.00309318 +0.0011279 +0.00309316 +0.00112789 +0.00309315 +0.00112789 +0.00309314 +0.00112788 +0.00309313 +0.00112788 +0.00309313 +0.00112788 +0.00309312 +0.00112787 +0.00309313 +0.00112788 +0.00309313 +0.00112788 +0.00309314 +0.00112788 +0.00309314 +0.00112788 +0.00309316 +0.00112789 +0.00309317 +0.0011279 +0.00309318 +0.0011279 +0.00309319 +0.00112791 +0.00309321 +0.00112791 +0.00309322 +0.00112792 +0.00309324 +0.00112792 +0.00309325 +0.00112793 +0.00309326 +0.00112793 +0.00309327 +0.00112794 +0.00309328 +0.00112794 +0.00309329 +0.00112794 +0.00309329 +0.00112794 +0.00309329 +0.00112794 +0.0030933 +0.00112794 +0.00309329 +0.00112793 +0.00309329 +0.00112793 +0.00309328 +0.00112793 +0.00309328 +0.00112792 +0.00309327 +0.00112792 +0.00309326 +0.00112791 +0.00309325 +0.0011279 +0.00309323 +0.0011279 +0.00309322 +0.00112789 +0.00309321 +0.00112788 +0.0030932 +0.00112788 +0.00309318 +0.00112788 +0.00309317 +0.00112787 +0.00309316 +0.00112787 +0.00309315 +0.00112787 +0.00309314 +0.00112787 +0.00309313 +0.00112787 +0.00309313 +0.00112787 +0.00309312 +0.00112787 +0.00309312 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112789 +0.00309313 +0.00112789 +0.00309313 +0.0011279 +0.00309314 +0.0011279 +0.00309315 +0.00112791 +0.00309317 +0.00112791 +0.00309318 +0.00112792 +0.00309319 +0.00112792 +0.00309321 +0.00112792 +0.00309322 +0.00112793 +0.00309324 +0.00112793 +0.00309325 +0.00112793 +0.00309327 +0.00112792 +0.00309328 +0.00112792 +0.00309329 +0.00112792 +0.00309331 +0.00112792 +0.00309332 +0.00112791 +0.00309332 +0.00112791 +0.00309333 +0.0011279 +0.00309333 +0.0011279 +0.00309334 +0.00112789 +0.00309333 +0.00112789 +0.00309333 +0.00112789 +0.00309332 +0.00112788 +0.00309331 +0.00112788 +0.0030933 +0.00112788 +0.00309329 +0.00112788 +0.00309327 +0.00112788 +0.00309326 +0.00112788 +0.00309324 +0.00112788 +0.00309322 +0.00112788 +0.0030932 +0.00112789 +0.00309317 +0.00112789 +0.00309315 +0.0011279 +0.00309314 +0.0011279 +0.00309312 +0.00112791 +0.0030931 +0.00112792 +0.00309308 +0.00112793 +0.00309307 +0.00112793 +0.00309306 +0.00112794 +0.00309306 +0.00112795 +0.00309305 +0.00112795 +0.00309305 +0.00112796 +0.00309306 +0.00112797 +0.00309306 +0.00112797 +0.00309307 +0.00112798 +0.00309309 +0.00112798 +0.0030931 +0.00112798 +0.00309312 +0.00112799 +0.00309313 +0.00112799 +0.00309315 +0.00112799 +0.00309317 +0.00112799 +0.00309319 +0.00112799 +0.00309321 +0.00112799 +0.00309322 +0.00112799 +0.00309324 +0.00112799 +0.00309325 +0.00112799 +0.00309326 +0.00112799 +0.00309326 +0.00112799 +0.00309326 +0.00112799 +0.00309326 +0.00112799 +0.00309325 +0.00112799 +0.00309324 +0.00112799 +0.00309323 +0.001128 +0.00309321 +0.00112801 +0.00309319 +0.00112801 +0.00309317 +0.00112802 +0.00309315 +0.00112803 +0.00309312 +0.00112804 +0.00309309 +0.00112805 +0.00309307 +0.00112806 +0.00309304 +0.00112807 +0.00309302 +0.00112809 +0.00309299 +0.0011281 +0.00309297 +0.00112811 +0.00309295 +0.00112813 +0.00309294 +0.00112815 +0.00309293 +0.00112816 +0.00309292 +0.00112817 +0.00309291 +0.00112818 +0.00309291 +0.00112819 +0.00309291 +0.0011282 +0.00309292 +0.00112822 +0.00309293 +0.00112822 +0.00309293 +0.00112823 +0.00309294 +0.00112824 +0.00309296 +0.00112824 +0.00309297 +0.00112825 +#ppcess [1] +0.00309298 +0.00112826 +0.00309298 +0.00112826 +0.00309299 +0.00112827 +0.003093 +0.00112827 +0.003093 +0.00112828 +0.00309299 +0.00112829 +0.00309299 +0.00112829 +0.00309298 +0.0011283 +0.00309296 +0.00112831 +0.00309294 +0.00112832 +0.00309292 +0.00112834 +0.00309289 +0.00112835 +0.00309286 +0.00112838 +0.00309283 +0.0011284 +0.00309279 +0.00112842 +0.00309276 +0.00112845 +0.00309272 +0.00112847 +0.00309268 +0.00112851 +0.00309263 +0.00112854 +0.00309259 +0.00112858 +0.00309255 +0.00112862 +0.00309251 +0.00112866 +0.00309248 +0.0011287 +0.00309244 +0.00112875 +0.00309241 +0.0011288 +0.00309238 +0.00112885 +0.00309236 +0.0011289 +0.00309233 +0.00112895 +0.00309231 +0.001129 +0.00309229 +0.00112906 +0.00309227 +0.00112911 +0.00309226 +0.00112917 +0.00309224 +0.00112922 +0.00309222 +0.00112927 +0.0030922 +0.00112933 +0.00309218 +0.00112939 +0.00309216 +0.00112944 +0.00309213 +0.0011295 +0.0030921 +0.00112955 +0.00309206 +0.00112961 +0.00309202 +0.00112966 +0.00309197 +0.00112972 +0.00309192 +0.00112978 +0.00309186 +0.00112984 +0.00309179 +0.0011299 +0.00309171 +0.00112997 +0.00309163 +0.00113004 +0.00309155 +0.00113011 +0.00309146 +0.0011302 +0.00309136 +0.00113028 +0.00309126 +0.00113037 +0.00309115 +0.00113047 +0.00309104 +0.00113057 +0.00309093 +0.00113069 +0.00309082 +0.0011308 +0.00309071 +0.00113092 +0.00309059 +0.00113105 +0.00309048 +0.00113119 +0.00309037 +0.00113134 +0.00309026 +0.0011315 +0.00309014 +0.00113166 +0.00309003 +0.00113182 +0.00308992 +0.001132 +0.00308981 +0.00113218 +0.0030897 +0.00113237 +0.00308959 +0.00113256 +0.00308948 +0.00113275 +0.00308936 +0.00113297 +0.00308924 +0.00113317 +0.00308911 +0.00113339 +0.00308898 +0.00113361 +0.00308883 +0.00113383 +0.00308868 +0.00113407 +0.00308852 +0.0011343 +0.00308835 +0.00113454 +0.00308817 +0.00113479 +0.00308798 +0.00113504 +0.00308777 +0.00113529 +0.00308755 +0.00113556 +0.00308731 +0.00113583 +0.00308706 +0.00113612 +0.0030868 +0.00113641 +0.00308652 +0.00113672 +0.00308622 +0.00113703 +0.00308591 +0.00113736 +0.00308559 +0.00113771 +0.00308525 +0.00113808 +0.0030849 +0.00113847 +0.00308453 +0.00113887 +0.00308416 +0.00113929 +0.00308376 +0.00113975 +0.00308336 +0.00114023 +0.00308294 +0.00114072 +0.00308252 +0.00114125 +0.00308208 +0.00114181 +0.00308162 +0.00114239 +0.00308116 +0.001143 +0.00308068 +0.00114364 +0.00308019 +0.00114431 +0.00307969 +0.00114501 +0.00307917 +0.00114574 +0.00307864 +0.0011465 +0.00307809 +0.00114729 +0.00307752 +0.00114812 +0.00307694 +0.00114897 +0.00307633 +0.00114985 +0.00307569 +0.00115077 +0.00307504 +0.00115172 +0.00307435 +0.0011527 +0.00307363 +0.00115371 +0.00307288 +0.00115476 +0.0030721 +0.00115585 +0.00307128 +0.00115697 +0.00307042 +0.00115812 +0.00306952 +0.00115932 +0.00306857 +0.00116056 +0.00306758 +0.00116184 +0.00306653 +0.00116316 +0.00306544 +0.00116455 +0.0030643 +0.00116598 +0.0030631 +0.00116747 +0.00306185 +0.00116902 +0.00306054 +0.00117063 +0.00305918 +0.0011723 +0.00305775 +0.00117405 +0.00305627 +0.00117588 +0.00305474 +0.00117777 +0.00305314 +0.00117976 +0.00305149 +0.00118182 +0.00304977 +0.00118398 +0.003048 +0.00118622 +0.00304617 +0.00118856 +0.00304428 +0.00119101 +0.00304232 +0.00119355 +0.0030403 +0.00119619 +0.00303822 +0.00119895 +0.00303607 +0.00120182 +0.00303385 +0.0012048 +0.00303156 +0.0012079 +0.0030292 +0.00121112 +0.00302675 +0.00121445 +0.00302422 +0.00121793 +0.0030216 +0.00122152 +0.00301889 +0.00122525 +0.00301607 +0.00122911 +0.00301315 +0.0012331 +0.00301011 +0.00123723 +0.00300695 +0.00124151 +0.00300366 +0.00124593 +0.00300024 +0.00125051 +0.00299667 +0.00125523 +0.00299295 +0.00126012 +0.00298907 +0.00126517 +0.00298502 +0.00127038 +0.0029808 +0.00127577 +0.00297639 +0.00128133 +0.0029718 +0.00128709 +0.00296701 +0.00129303 +0.00296203 +0.00129918 +0.00295684 +0.00130552 +0.00295143 +0.00131209 +0.00294582 +0.00131887 +0.00293998 +0.00132589 +0.00293393 +0.00133312 +0.00292764 +0.00134062 +0.00292113 +0.00134836 +0.00291439 +0.00135637 +0.00290742 +0.00136465 +0.0029002 +0.0013732 +0.00289275 +0.00138204 +0.00288506 +0.00139116 +0.00287712 +0.00140059 +0.00286893 +0.00141033 +0.00286048 +0.00142038 +0.00285177 +0.00143074 +0.00284278 +0.00144141 +0.00283352 +0.00145241 +0.00282398 +0.00146373 +0.00281413 +0.00147537 +0.00280397 +0.00148733 +0.00279348 +0.00149961 +0.00278266 +0.00151219 +0.00277148 +0.00152511 +0.00275992 +0.00153831 +0.00274798 +0.00155184 +0.00273564 +0.00156568 +0.00272287 +0.0015798 +0.00270967 +0.00159424 +0.00269602 +0.00160897 +0.00268189 +0.00162401 +0.00266728 +0.00163936 +0.00265217 +0.00165502 +0.00263655 +0.00167097 +0.00262042 +0.00168723 +0.00260376 +0.00170381 +0.00258656 +0.0017207 +0.00256883 +0.00173791 +0.00255055 +0.00175543 +0.00253174 +0.0017733 +0.00251239 +0.00179147 +0.0024925 +0.00181 +0.00247208 +0.00182885 +0.00245114 +0.00184806 +0.00242967 +0.0018676 +0.00240769 +0.0018875 +0.0023852 +0.00190776 +0.00236221 +0.00192837 +0.00233872 +0.00194932 +0.00231474 +0.00197064 +0.00229026 +0.00199232 +0.00226527 +0.00201432 +0.00223979 +0.00203665 +0.0022138 +0.00205931 +0.00218729 +0.00208222 +0.00216024 +0.00210538 +0.00213265 +0.00212876 +0.00210449 +0.00215229 +0.00207573 +0.00217591 +0.00204636 +0.00219957 +0.00201634 +0.00222318 +0.00198565 +0.00224666 +0.00195427 +0.00226991 +0.00192216 +0.00229287 +0.0018893 +0.00231537 +0.00185566 +0.00233733 +0.00182122 +0.00235863 +0.00178597 +0.00237911 +0.00174988 +0.00239866 +0.00171295 +0.0024171 +0.00167519 +0.00243431 +0.00163659 +0.00245013 +0.00159717 +0.00246439 +0.00155695 +0.00247698 +0.00151596 +0.00248767 +0.00147424 +0.00249637 +0.00143185 +0.00250289 +0.00138883 +0.00250713 +0.00134527 +0.00250894 +0.00130122 +0.00250821 +0.00125679 +0.00250484 +0.00121206 +0.00249872 +0.00116712 +0.00248979 +0.00112209 +0.00247799 +0.00107708 +0.00246328 +0.00103218 +0.00244563 +0.000987525 +0.00242506 +0.000943219 +0.00240158 +0.000899377 +0.00237523 +0.000856111 +0.00234608 +0.000813525 +0.00231419 +0.000771725 +0.00227968 +0.000730805 +0.00224268 +0.000690854 +0.00220329 +0.000651957 +0.00216172 +0.000614186 +0.0021181 +0.00057761 +0.00207259 +#ppcess [2] +0.000542285 +0.00202541 +0.000508259 +0.00197674 +0.000475571 +0.0019268 +0.000444249 +0.00187577 +0.000414314 +0.00182389 +0.000385776 +0.00177133 +0.000358638 +0.0017183 +0.000332893 +0.001665 +0.000308529 +0.00161163 +0.000285526 +0.00155833 +0.000263857 +0.00150531 +0.000243492 +0.00145271 +0.000224394 +0.00140068 +0.000206521 +0.00134936 +0.00018983 +0.00129884 +0.000174272 +0.00124928 +0.0001598 +0.00120074 +0.000146361 +0.00115332 +0.000133904 +0.00110709 +0.000122379 +0.00106211 +0.000111733 +0.00101842 +0.000101916 +0.000976074 +9.28758e-05 +0.000935096 +8.45647e-05 +0.000895504 +7.69346e-05 +0.00085732 +6.99391e-05 +0.000820533 +6.35337e-05 +0.00078515 +5.7676e-05 +0.000751156 +5.23254e-05 +0.000718533 +4.74434e-05 +0.000687269 +4.29936e-05 +0.000657332 +3.89419e-05 +0.000628698 +3.5256e-05 +0.00060133 +3.19059e-05 +0.000575197 +2.88635e-05 +0.000550264 +2.61027e-05 +0.000526491 +2.35992e-05 +0.000503839 +2.13306e-05 +0.000482272 +1.92761e-05 +0.000461751 +1.74165e-05 +0.000442235 +1.57342e-05 +0.000423686 +1.4213e-05 +0.000406067 +1.28381e-05 +0.000389338 +1.15957e-05 +0.000373464 +1.04736e-05 +0.000358406 +9.46043e-06 +0.00034413 +8.54577e-06 +0.000330599 +7.72028e-06 +0.00031778 +6.97538e-06 +0.00030564 +6.30332e-06 +0.000294144 +5.69707e-06 +0.000283262 +5.15024e-06 +0.000272965 +4.65708e-06 +0.000263221 +4.21235e-06 +0.000254004 +3.81132e-06 +0.000245286 +3.44965e-06 +0.000237041 +3.12341e-06 +0.000229246 +2.82905e-06 +0.000221876 +2.5634e-06 +0.000214909 +2.32361e-06 +0.000208323 +2.10715e-06 +0.000202099 +1.91172e-06 +0.000196215 +1.73527e-06 +0.000190656 +1.57593e-06 +0.000185402 +1.43199e-06 +0.000180439 +1.30194e-06 +0.000175748 +1.18439e-06 +0.000171318 +1.0781e-06 +0.000167132 +9.81946e-07 +0.000163178 +8.94929e-07 +0.000159444 +8.16145e-07 +0.000155917 +7.4479e-07 +0.000152587 +6.80143e-07 +0.000149442 +6.21555e-07 +0.000146474 +5.6844e-07 +0.000143673 +5.20262e-07 +0.000141029 +4.76535e-07 +0.000138535 +4.36822e-07 +0.000136182 +4.0073e-07 +0.000133964 +3.67912e-07 +0.000131873 +3.38054e-07 +0.000129902 +3.10875e-07 +0.000128045 +2.86124e-07 +0.000126296 +2.63569e-07 +0.00012465 +2.43006e-07 +0.000123101 +2.24245e-07 +0.000121644 +2.07118e-07 +0.000120274 +1.91473e-07 +0.000118986 +1.77172e-07 +0.000117777 +1.64091e-07 +0.000116642 +1.52117e-07 +0.000115577 +1.41149e-07 +0.000114578 +1.31096e-07 +0.000113642 +1.21875e-07 +0.000112765 +1.13409e-07 +0.000111945 +1.05632e-07 +0.000111177 +9.84831e-08 +0.00011046 +9.19064e-08 +0.00010979 +8.58532e-08 +0.000109165 +8.02785e-08 +0.000108582 +7.51417e-08 +0.000108038 +7.04054e-08 +0.000107532 +6.60354e-08 +0.000107061 +6.20004e-08 +0.000106624 +5.82721e-08 +0.000106217 +5.48246e-08 +0.00010584 +5.16345e-08 +0.00010549 +4.86806e-08 +0.000105165 +4.59439e-08 +0.000104865 +4.3407e-08 +0.000104588 +4.10541e-08 +0.000104331 +3.88705e-08 +0.000104095 +3.68427e-08 +0.000103876 +3.4958e-08 +0.000103676 +3.32046e-08 +0.000103491 +3.15717e-08 +0.000103321 +3.00495e-08 +0.000103165 +2.86291e-08 +0.000103022 +2.7303e-08 +0.000102892 +2.60639e-08 +0.000102772 +2.49056e-08 +0.000102663 +2.38222e-08 +0.000102564 +2.28084e-08 +0.000102474 +2.18591e-08 +0.000102392 +2.09696e-08 +0.000102317 +2.01358e-08 +0.00010225 +1.93537e-08 +0.000102189 +1.86194e-08 +0.000102135 +1.79296e-08 +0.000102086 +1.7281e-08 +0.000102042 +1.66707e-08 +0.000102002 +1.60957e-08 +0.000101967 +1.55536e-08 +0.000101936 +1.5042e-08 +0.000101909 +1.4559e-08 +0.000101884 +1.41028e-08 +0.000101863 +1.36715e-08 +0.000101844 +1.32637e-08 +0.000101828 +1.28779e-08 +0.000101814 +1.25127e-08 +0.000101801 +1.21667e-08 +0.000101791 +1.18386e-08 +0.000101782 +1.15274e-08 +0.000101774 +1.12319e-08 +0.000101768 +1.09513e-08 +0.000101763 +1.06845e-08 +0.000101759 +1.04308e-08 +0.000101755 +1.01895e-08 +0.000101753 +9.95978e-09 +0.000101751 +9.74098e-09 +0.000101749 +9.53247e-09 +0.000101748 +9.33368e-09 +0.000101747 +9.14407e-09 +0.000101747 +8.96319e-09 +0.000101747 +8.79062e-09 +0.000101747 +8.626e-09 +0.000101748 +8.469e-09 +0.000101748 +8.31929e-09 +0.000101749 +8.17656e-09 +0.000101749 +8.0405e-09 +0.00010175 +7.91082e-09 +0.000101751 +7.78721e-09 +0.000101752 +7.66941e-09 +0.000101753 +7.55715e-09 +0.000101754 +7.45017e-09 +0.000101755 +7.34825e-09 +0.000101755 +7.25115e-09 +0.000101756 +7.15867e-09 +0.000101757 +7.07061e-09 +0.000101758 +6.98681e-09 +0.000101759 +6.90709e-09 +0.00010176 +6.8313e-09 +0.000101761 +6.7593e-09 +0.000101761 +6.69097e-09 +0.000101762 +6.62616e-09 +0.000101763 +6.56476e-09 +0.000101764 +6.50665e-09 +0.000101765 +6.45173e-09 +0.000101765 +6.39988e-09 +0.000101766 +6.351e-09 +0.000101767 +6.30501e-09 +0.000101768 +6.26181e-09 +0.000101768 +6.22134e-09 +0.000101769 +6.18351e-09 +0.00010177 +6.14825e-09 +0.000101771 +6.1155e-09 +0.000101771 +6.0852e-09 +0.000101772 +6.05728e-09 +0.000101773 +6.03169e-09 +0.000101773 +6.00837e-09 +0.000101774 +5.98727e-09 +0.000101775 +5.96835e-09 +0.000101775 +5.95155e-09 +0.000101776 +5.93683e-09 +0.000101777 +5.92415e-09 +0.000101777 +5.91346e-09 +0.000101778 +5.9047e-09 +0.000101779 +5.89785e-09 +0.000101779 +5.89283e-09 +0.00010178 +5.88962e-09 +0.00010178 +5.88815e-09 +0.000101781 +5.88838e-09 +0.000101782 +5.89027e-09 +0.000101782 +5.89376e-09 +0.000101783 +5.8988e-09 +0.000101783 +5.90536e-09 +0.000101784 +5.91338e-09 +0.000101784 +5.92282e-09 +0.000101784 +5.93363e-09 +0.000101785 +5.94576e-09 +0.000101785 +5.95918e-09 +0.000101786 +5.97383e-09 +0.000101786 +5.98967e-09 +0.000101786 +6.00665e-09 +0.000101786 +6.02473e-09 +0.000101787 +6.04386e-09 +0.000101787 +6.06399e-09 +0.000101787 +6.08508e-09 +0.000101787 +6.10708e-09 +0.000101787 +6.12994e-09 +0.000101788 +6.15362e-09 +0.000101788 +6.17806e-09 +0.000101788 +6.20323e-09 +0.000101788 +6.22906e-09 +0.000101788 +6.25552e-09 +0.000101788 +6.28255e-09 +0.000101788 +6.31011e-09 +0.000101788 +6.33814e-09 +0.000101788 +6.36659e-09 +0.000101788 +6.39541e-09 +0.000101788 +6.42455e-09 +0.000101788 +6.45395e-09 +0.000101788 +6.48356e-09 +0.000101788 +6.51333e-09 +0.000101787 +6.54321e-09 +0.000101787 +6.57313e-09 +0.000101787 +6.60304e-09 +0.000101787 +6.63289e-09 +0.000101787 +6.66262e-09 +0.000101787 +6.69218e-09 +0.000101787 +6.72152e-09 +0.000101787 +6.75057e-09 +0.000101787 +6.7793e-09 +0.000101787 +6.80764e-09 +0.000101786 +6.83554e-09 +0.000101786 +6.86296e-09 +0.000101786 +6.88985e-09 +0.000101786 +6.91617e-09 +0.000101786 +6.94185e-09 +0.000101786 +6.96687e-09 +0.000101786 +6.99118e-09 +0.000101786 +7.01475e-09 +0.000101786 +7.03752e-09 +0.000101786 +7.05948e-09 +0.000101785 +7.08059e-09 +0.000101785 +7.10082e-09 +0.000101785 +#ppcess [3] +7.12014e-09 +0.000101785 +7.13853e-09 +0.000101785 +7.15596e-09 +0.000101785 +7.17243e-09 +0.000101785 +7.18791e-09 +0.000101785 +7.2024e-09 +0.000101785 +7.21588e-09 +0.000101785 +7.22835e-09 +0.000101785 +7.2398e-09 +0.000101785 +7.25023e-09 +0.000101785 +7.25965e-09 +0.000101785 +7.26807e-09 +0.000101785 +7.27547e-09 +0.000101785 +7.28189e-09 +0.000101785 +7.28732e-09 +0.000101785 +7.29179e-09 +0.000101785 +7.2953e-09 +0.000101785 +7.29788e-09 +0.000101785 +7.29955e-09 +0.000101785 +7.30033e-09 +0.000101785 +7.30024e-09 +0.000101785 +7.29931e-09 +0.000101785 +7.29756e-09 +0.000101785 +7.29503e-09 +0.000101785 +7.29174e-09 +0.000101785 +7.28773e-09 +0.000101785 +7.28302e-09 +0.000101785 +7.27764e-09 +0.000101785 +7.27164e-09 +0.000101785 +7.26503e-09 +0.000101785 +7.25787e-09 +0.000101786 +7.25018e-09 +0.000101786 +7.242e-09 +0.000101786 +7.23336e-09 +0.000101786 +7.2243e-09 +0.000101786 +7.21486e-09 +0.000101786 +7.20507e-09 +0.000101786 +7.19496e-09 +0.000101786 +7.18458e-09 +0.000101786 +7.17395e-09 +0.000101786 +7.16312e-09 +0.000101786 +7.15211e-09 +0.000101786 +7.14095e-09 +0.000101786 +7.1297e-09 +0.000101786 +7.11836e-09 +0.000101786 +7.10698e-09 +0.000101786 +7.09559e-09 +0.000101786 +7.08422e-09 +0.000101786 +7.07289e-09 +0.000101786 +7.06163e-09 +0.000101786 +7.05048e-09 +0.000101786 +7.03945e-09 +0.000101786 +7.02857e-09 +0.000101786 +7.01787e-09 +0.000101786 +7.00736e-09 +0.000101786 +6.99708e-09 +0.000101786 +6.98704e-09 +0.000101786 +6.97725e-09 +0.000101786 +6.96774e-09 +0.000101786 +6.95853e-09 +0.000101786 +6.94963e-09 +0.000101786 +6.94105e-09 +0.000101786 +6.93281e-09 +0.000101786 +6.92492e-09 +0.000101786 +6.91738e-09 +0.000101786 +6.91023e-09 +0.000101786 +6.90344e-09 +0.000101786 +6.89705e-09 +0.000101786 +6.89105e-09 +0.000101786 +6.88545e-09 +0.000101786 +6.88025e-09 +0.000101786 +6.87545e-09 +0.000101786 +6.87107e-09 +0.000101786 +6.86709e-09 +0.000101786 +6.86351e-09 +0.000101786 +6.86035e-09 +0.000101786 +6.85759e-09 +0.000101786 +6.85523e-09 +0.000101786 +6.85327e-09 +0.000101786 +6.8517e-09 +0.000101786 +6.85052e-09 +0.000101786 +6.84972e-09 +0.000101786 +6.84929e-09 +0.000101786 +6.84923e-09 +0.000101786 +6.84952e-09 +0.000101786 +6.85016e-09 +0.000101786 +6.85114e-09 +0.000101786 +6.85244e-09 +0.000101786 +6.85406e-09 +0.000101786 +6.85598e-09 +0.000101786 +6.85819e-09 +0.000101786 +6.86068e-09 +0.000101786 +6.86344e-09 +0.000101786 +6.86644e-09 +0.000101786 +6.86969e-09 +0.000101786 +6.87315e-09 +0.000101786 +6.87683e-09 +0.000101786 +6.8807e-09 +0.000101786 +6.88476e-09 +0.000101786 +6.88897e-09 +0.000101786 +6.89334e-09 +0.000101786 +6.89785e-09 +0.000101786 +6.90247e-09 +0.000101786 +6.9072e-09 +0.000101786 +6.91203e-09 +0.000101786 +6.91693e-09 +0.000101786 +6.92189e-09 +0.000101786 +6.9269e-09 +0.000101786 +6.93194e-09 +0.000101786 +6.937e-09 +0.000101786 +6.94207e-09 +0.000101786 +6.94713e-09 +0.000101786 +6.95217e-09 +0.000101786 +6.95718e-09 +0.000101786 +6.96214e-09 +0.000101786 +6.96704e-09 +0.000101786 +6.97188e-09 +0.000101786 +6.97664e-09 +0.000101786 +6.98131e-09 +0.000101786 +6.98588e-09 +0.000101786 +6.99034e-09 +0.000101786 +6.99468e-09 +0.000101786 +6.9989e-09 +0.000101786 +7.00298e-09 +0.000101786 +7.00693e-09 +0.000101786 +7.01073e-09 +0.000101786 +7.01437e-09 +0.000101786 +7.01786e-09 +0.000101786 +7.02118e-09 +0.000101786 +7.02434e-09 +0.000101786 +7.02733e-09 +0.000101786 +7.03014e-09 +0.000101786 +7.03278e-09 +0.000101786 +7.03524e-09 +0.000101786 +7.03753e-09 +0.000101786 +7.03963e-09 +0.000101786 +7.04156e-09 +0.000101786 +7.04331e-09 +0.000101786 +7.04488e-09 +0.000101786 +7.04627e-09 +0.000101786 +7.04748e-09 +0.000101786 +7.04852e-09 +0.000101786 +7.04939e-09 +0.000101786 +7.05008e-09 +0.000101786 +7.05061e-09 +0.000101786 +7.05098e-09 +0.000101786 +7.05118e-09 +0.000101786 +7.05123e-09 +0.000101786 +7.05113e-09 +0.000101786 +7.05088e-09 +0.000101786 +7.05048e-09 +0.000101786 +7.04996e-09 +0.000101786 +7.0493e-09 +0.000101786 +7.04851e-09 +0.000101786 +7.04761e-09 +0.000101786 +7.0466e-09 +0.000101786 +7.04548e-09 +0.000101786 +7.04426e-09 +0.000101786 +7.04295e-09 +0.000101786 +7.04155e-09 +0.000101785 +7.04007e-09 +0.000101786 +7.03852e-09 +0.000101785 +7.03691e-09 +0.000101785 +7.03523e-09 +0.000101785 +7.0335e-09 +0.000101785 +7.03173e-09 +0.000101785 +7.02992e-09 +0.000101785 +7.02807e-09 +0.000101785 +7.0262e-09 +0.000101785 +7.02431e-09 +0.000101785 +7.02241e-09 +0.000101785 +7.0205e-09 +0.000101785 +7.01859e-09 +0.000101785 +7.01668e-09 +0.000101785 +7.01478e-09 +0.000101785 +7.01289e-09 +0.000101785 +7.01103e-09 +0.000101785 +7.0091e-09 +0.000101785 +7.00714e-09 +0.000101785 +7.00516e-09 +0.000101785 +7.00315e-09 +0.000101785 +7.00113e-09 +0.000101785 +6.99909e-09 +0.000101785 +6.99704e-09 +0.000101785 +6.99499e-09 +0.000101785 +6.99294e-09 +0.000101785 +6.9909e-09 +0.000101785 +6.98886e-09 +0.000101784 +6.98684e-09 +0.000101784 +6.98482e-09 +0.000101784 +6.98283e-09 +0.000101784 +6.98085e-09 +0.000101784 +6.9789e-09 +0.000101784 +6.97697e-09 +0.000101784 +6.97506e-09 +0.000101784 +6.97318e-09 +0.000101784 +6.97133e-09 +0.000101784 +6.96951e-09 +0.000101784 +6.96771e-09 +0.000101784 +6.96595e-09 +0.000101784 +6.96422e-09 +0.000101784 +6.96251e-09 +0.000101784 +6.96084e-09 +0.000101784 +6.9592e-09 +0.000101784 +6.95758e-09 +0.000101784 +6.95599e-09 +0.000101784 +6.95443e-09 +0.000101784 +6.95289e-09 +0.000101784 +6.95138e-09 +0.000101784 +6.94989e-09 +0.000101784 +6.94842e-09 +0.000101784 +6.94697e-09 +0.000101784 +6.94553e-09 +0.000101785 +6.94411e-09 +0.000101785 +6.9427e-09 +0.000101785 +6.94145e-09 +0.000101785 +6.93505e-09 +0.000101785 +6.92945e-09 +0.000101785 +6.92399e-09 +0.000101785 +6.91859e-09 +0.000101785 +6.91328e-09 +0.000101787 +6.90804e-09 +0.00010179 +6.90287e-09 +0.000101792 +6.89778e-09 +0.000101794 +6.89276e-09 +0.000101797 +6.8878e-09 +0.000101799 +6.88291e-09 +0.000101802 +6.87807e-09 +0.000101804 +6.8733e-09 +0.000101806 +6.86859e-09 +0.000101808 +6.86393e-09 +0.000101811 +6.85932e-09 +0.000101813 +6.85476e-09 +0.000101815 +6.85024e-09 +0.000101817 +6.84578e-09 +0.000101819 +6.84135e-09 +0.000101822 +6.83696e-09 +0.000101824 +6.83261e-09 +0.000101826 +6.8283e-09 +0.000101828 +6.82402e-09 +0.00010183 +6.81976e-09 +0.000101832 +6.81554e-09 +0.000101834 +6.81135e-09 +0.000101836 +6.80717e-09 +0.000101838 +6.80303e-09 +0.00010184 +6.7989e-09 +0.000101842 +6.79479e-09 +0.000101844 +6.7907e-09 +0.000101846 +6.78662e-09 +0.000101848 +6.78256e-09 +0.00010185 +6.77851e-09 +0.000101852 +6.77447e-09 +0.000101854 +6.77045e-09 +0.000101856 +6.76643e-09 +0.000101858 +6.76242e-09 +0.000101859 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_000.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_000.xlo new file mode 100644 index 000000000..b46b35607 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_000.xlo @@ -0,0 +1,1734 @@ +Vector Object: 1 MPI processes + type: seq +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.60376e-06 +0.00764802 +8.53993e-06 +0.00767819 +8.53423e-06 +0.00767285 +8.52913e-06 +0.00766694 +8.52432e-06 +0.0076603 +8.51976e-06 +0.00765335 +8.5156e-06 +0.00764689 +8.51213e-06 +0.00764185 +8.50956e-06 +0.00763885 +8.50838e-06 +0.00763824 +8.50905e-06 +0.00763941 +8.50952e-06 +0.00764083 +8.51025e-06 +0.007643 +8.51146e-06 +0.00764595 +8.51313e-06 +0.00764977 +8.51516e-06 +0.00765444 +8.51728e-06 +0.00765954 +8.5191e-06 +0.00766413 +8.52009e-06 +0.00766694 +8.5198e-06 +0.00766675 +8.5181e-06 +0.00766314 +8.51541e-06 +0.00765692 +8.51234e-06 +0.00764963 +8.50953e-06 +0.00764294 +8.50747e-06 +0.00763809 +8.50635e-06 +0.00763561 +8.50613e-06 +0.00763531 +8.50659e-06 +0.00763661 +8.50753e-06 +0.00763884 +8.50882e-06 +0.00764157 +8.51048e-06 +0.00764471 +8.51254e-06 +0.00764833 +8.51497e-06 +0.0076525 +8.51761e-06 +0.0076571 +8.52021e-06 +0.0076618 +8.52248e-06 +0.00766614 +8.52417e-06 +0.00766962 +8.52517e-06 +0.00767189 +8.5255e-06 +0.00767281 +8.52526e-06 +0.00767246 +8.52464e-06 +0.0076711 +8.52379e-06 +0.00766903 +8.52284e-06 +0.00766659 +8.52187e-06 +0.00766404 +8.52092e-06 +0.00766156 +8.52002e-06 +0.00765929 +8.5192e-06 +0.0076573 +8.51847e-06 +0.00765562 +8.51787e-06 +0.00765428 +8.51742e-06 +0.00765328 +8.51714e-06 +0.00765264 +8.51707e-06 +0.00765242 +8.51724e-06 +0.00765267 +8.51766e-06 +0.00765349 +8.51836e-06 +0.00765492 +8.51931e-06 +0.00765696 +8.52047e-06 +0.00765949 +8.52175e-06 +0.0076623 +8.52301e-06 +0.00766509 +8.52411e-06 +0.00766753 +8.52492e-06 +0.00766932 +8.52533e-06 +0.00767027 +8.5253e-06 +0.00767027 +8.52484e-06 +0.00766937 +8.52402e-06 +0.00766773 +8.52297e-06 +0.00766556 +8.5218e-06 +0.00766315 +8.52065e-06 +0.00766074 +8.51959e-06 +0.00765853 +8.51867e-06 +0.0076566 +8.5179e-06 +0.00765497 +8.51723e-06 +0.00765355 +8.51661e-06 +0.00765223 +8.516e-06 +0.0076509 +8.51537e-06 +0.00764952 +8.51473e-06 +0.00764814 +8.51414e-06 +0.00764688 +8.51366e-06 +0.00764593 +8.51338e-06 +0.00764548 +8.51337e-06 +0.00764567 +8.51365e-06 +0.00764655 +8.51422e-06 +0.00764804 +8.51501e-06 +0.00764995 +8.51591e-06 +0.00765201 +8.5168e-06 +0.00765393 +8.51753e-06 +0.00765545 +8.51802e-06 +0.00765638 +8.51821e-06 +0.00765664 +8.51812e-06 +0.00765629 +8.5178e-06 +0.00765548 +8.51733e-06 +0.00765441 +8.51683e-06 +0.00765329 +8.51637e-06 +0.0076523 +8.516e-06 +0.00765153 +8.51573e-06 +0.007651 +8.51553e-06 +0.00765064 +8.51536e-06 +0.00765035 +8.51517e-06 +0.00765002 +8.51491e-06 +0.00764957 +8.51458e-06 +0.00764897 +8.51419e-06 +0.00764826 +8.51378e-06 +0.00764752 +8.51341e-06 +0.00764685 +8.51313e-06 +0.00764636 +8.513e-06 +0.00764615 +8.51305e-06 +0.00764627 +8.5133e-06 +0.00764673 +8.51372e-06 +0.0076475 +8.51429e-06 +0.00764851 +8.51496e-06 +0.00764968 +8.51565e-06 +0.00765092 +8.51633e-06 +0.00765215 +8.51695e-06 +0.00765331 +8.51748e-06 +0.00765439 +8.51793e-06 +0.00765535 +8.5183e-06 +0.0076562 +8.5186e-06 +0.00765693 +8.51882e-06 +0.00765751 +8.51897e-06 +0.0076579 +8.51902e-06 +0.00765804 +8.51895e-06 +0.00765787 +8.51875e-06 +0.00765737 +8.51841e-06 +0.00765653 +8.51795e-06 +0.00765541 +8.5174e-06 +0.0076541 +8.51682e-06 +0.00765274 +8.51625e-06 +0.00765147 +8.51576e-06 +0.00765043 +8.5154e-06 +0.00764973 +8.51519e-06 +0.00764944 +8.51516e-06 +0.00764955 +8.5153e-06 +0.00765001 +8.51558e-06 +0.00765073 +8.51595e-06 +0.00765156 +8.51636e-06 +0.0076524 +8.51676e-06 +0.00765315 +8.51711e-06 +0.00765377 +8.51739e-06 +0.00765425 +8.51759e-06 +0.00765463 +8.51772e-06 +0.00765497 +8.51779e-06 +0.00765531 +8.51784e-06 +0.00765569 +8.51788e-06 +0.00765611 +8.51793e-06 +0.00765657 +8.51801e-06 +0.00765701 +8.51811e-06 +0.00765741 +8.51822e-06 +0.00765769 +8.51831e-06 +0.00765782 +8.51836e-06 +0.00765775 +8.51833e-06 +0.00765749 +8.51823e-06 +0.00765706 +8.51803e-06 +0.00765651 +8.51776e-06 +0.00765591 +8.51742e-06 +0.00765532 +8.51704e-06 +0.00765476 +8.51661e-06 +0.00765422 +8.51614e-06 +0.00765362 +8.51563e-06 +0.00765288 +8.51506e-06 +0.00765192 +8.51445e-06 +0.00765072 +8.51382e-06 +0.00764933 +8.51324e-06 +0.00764786 +8.51274e-06 +0.00764647 +8.51241e-06 +0.00764533 +8.51229e-06 +0.00764463 +8.51243e-06 +0.00764451 +8.51285e-06 +0.00764507 +8.51355e-06 +0.00764637 +8.51452e-06 +0.00764842 +8.51572e-06 +0.00765118 +8.51711e-06 +0.00765454 +8.51861e-06 +0.00765827 +8.52011e-06 +0.00766208 +8.52148e-06 +0.00766558 +8.52257e-06 +0.00766834 +8.52321e-06 +0.00766995 +8.52328e-06 +0.0076701 +8.52267e-06 +0.00766865 +8.52139e-06 +0.00766565 +8.51951e-06 +0.00766137 +8.51719e-06 +0.00765627 +8.51468e-06 +0.00765092 +8.51223e-06 +0.00764592 +8.51008e-06 +0.00764179 +8.50841e-06 +0.00763888 +8.5073e-06 +0.00763731 +8.50677e-06 +0.00763698 +8.50676e-06 +0.00763766 +8.50724e-06 +0.0076391 +8.50816e-06 +0.00764118 +8.50954e-06 +0.00764395 +8.51133e-06 +0.00764753 +8.51344e-06 +0.00765194 +8.5157e-06 +0.0076569 +8.51782e-06 +0.00766182 +8.51947e-06 +0.00766588 +8.5204e-06 +0.00766832 +8.52047e-06 +0.00766869 +8.51975e-06 +0.007667 +8.51846e-06 +0.00766373 +8.51689e-06 +0.00765968 +8.51532e-06 +0.0076557 +8.51394e-06 +0.00765252 +8.51285e-06 +0.00765054 +8.51208e-06 +0.00764986 +8.5117e-06 +0.00765036 +8.51181e-06 +0.00765181 +8.5125e-06 +0.00765401 +8.51378e-06 +0.00765671 +8.51543e-06 +0.00765955 +8.51707e-06 +0.00766194 +8.51818e-06 +0.00766314 +8.5183e-06 +0.00766249 +8.51722e-06 +0.00765967 +8.51504e-06 +0.0076549 +8.51216e-06 +0.00764896 +8.50919e-06 +0.00764295 +8.5067e-06 +0.00763799 +8.50512e-06 +0.00763493 +8.50468e-06 +0.00763424 +8.50538e-06 +0.00763593 +8.50708e-06 +0.0076397 +8.50957e-06 +0.00764503 +8.51254e-06 +0.00765128 +8.51568e-06 +0.00765775 +8.51859e-06 +0.00766369 +8.52091e-06 +0.00766835 +8.52228e-06 +0.00767104 +8.52253e-06 +0.00767135 +8.52161e-06 +0.00766923 +8.51974e-06 +0.00766505 +8.5173e-06 +0.00765959 +8.51479e-06 +0.00765389 +8.51276e-06 +0.00764913 +8.51162e-06 +0.00764627 +8.51157e-06 +0.0076458 +8.51251e-06 +0.00764756 +8.51401e-06 +0.00765073 +8.51546e-06 +0.0076541 +8.51629e-06 +0.00765644 +8.51617e-06 +0.00765689 +8.5151e-06 +0.00765533 +8.51341e-06 +0.0076523 +8.51159e-06 +0.0076488 +8.51008e-06 +0.00764584 +8.50917e-06 +0.00764415 +8.50904e-06 +0.00764405 +8.50975e-06 +0.00764556 +8.51135e-06 +0.00764859 +8.51376e-06 +0.00765297 +8.51673e-06 +0.00765841 +8.51976e-06 +0.0076642 +8.52216e-06 +0.0076692 +8.52334e-06 +0.00767215 +8.52298e-06 +0.00767219 +8.52129e-06 +0.00766936 +8.51886e-06 +0.00766461 +8.5165e-06 +0.00765938 +8.51483e-06 +0.00765511 +8.5142e-06 +0.00765277 +8.51455e-06 +0.00765269 +8.51554e-06 +0.00765453 +8.51668e-06 +0.00765735 +8.51743e-06 +0.00765989 +8.51733e-06 +0.00766074 +8.51605e-06 +0.00765879 +8.51355e-06 +0.00765362 +8.51016e-06 +0.0076459 +8.50661e-06 +0.00763747 +8.50388e-06 +0.00763088 +8.5029e-06 +0.00762852 +8.50417e-06 +0.00763166 +8.50752e-06 +0.00763987 +8.51211e-06 +0.00765105 +8.51662e-06 +0.00766205 +8.51963e-06 +0.00766956 +8.52008e-06 +0.00767109 +8.5176e-06 +0.0076657 +8.51274e-06 +0.00765444 +8.50685e-06 +0.00764034 +8.50178e-06 +0.00762767 +8.49932e-06 +0.00762079 +8.50062e-06 +0.0076227 +8.50576e-06 +0.0076339 +8.51359e-06 +0.007652 +8.52202e-06 +0.00767226 +8.52861e-06 +0.00768889 +8.53128e-06 +0.00769675 +8.529e-06 +0.00769285 +8.52202e-06 +0.0076773 +8.51186e-06 +0.00765329 +8.50075e-06 +0.00762619 +8.49109e-06 +0.00760209 +8.48477e-06 +0.0075862 +8.48281e-06 +0.0075816 +8.48519e-06 +0.00758851 +8.49092e-06 +0.00760439 +8.49835e-06 +0.00762454 +8.50552e-06 +0.0076434 +8.51059e-06 +0.0076559 +8.51236e-06 +0.00765894 +8.5106e-06 +0.00765233 +8.50617e-06 +0.00763901 +8.50078e-06 +0.00762413 +8.49645e-06 +0.00761325 +8.49483e-06 +0.0076104 +8.49662e-06 +0.00761672 +8.50134e-06 +0.00763016 +8.50752e-06 +0.00764638 +8.51325e-06 +0.00766037 +8.51683e-06 +0.00766808 +8.51733e-06 +0.00766772 +8.51484e-06 +0.00766004 +8.51028e-06 +0.00764783 +8.50506e-06 +0.00763475 +8.50051e-06 +0.00762407 +8.49746e-06 +0.0076177 +8.4961e-06 +0.00761581 +8.49604e-06 +0.00761715 +8.49659e-06 +0.00761978 +8.49705e-06 +0.00762175 +8.49696e-06 +0.00762171 +8.49617e-06 +0.00761915 +8.49489e-06 +0.00761461 +8.49366e-06 +0.00760971 +8.49321e-06 +0.00760687 +8.49424e-06 +0.00760846 +8.49711e-06 +0.00761576 +8.50166e-06 +0.00762808 +8.50707e-06 +0.00764265 +8.51216e-06 +0.00765567 +8.5158e-06 +0.00766396 +8.51742e-06 +0.00766642 +8.51727e-06 +0.00766426 +8.51622e-06 +0.00766009 +8.51528e-06 +0.00765649 +8.51515e-06 +0.00765501 +8.51603e-06 +0.00765609 +8.51782e-06 +0.00765975 +8.52034e-06 +0.00766608 +8.5232e-06 +0.00767453 +8.52558e-06 +0.00768249 +8.52618e-06 +0.00768526 +8.52386e-06 +0.00767868 +8.51852e-06 +0.00766272 +8.5114e-06 +0.00764251 +8.50435e-06 +0.00762505 +8.49875e-06 +0.00761422 +8.49499e-06 +0.00760847 +8.49292e-06 +0.0076038 +8.49269e-06 +0.00759933 +8.49498e-06 +0.00759946 +8.50025e-06 +0.00760907 +8.50773e-06 +0.00762677 +8.51546e-06 +0.00764366 +8.52159e-06 +0.00765065 +8.52584e-06 +0.00764731 +8.52965e-06 +0.00764195 +8.53499e-06 +0.00764322 +8.5429e-06 +0.00765243 +8.55307e-06 +0.0076626 +8.5646e-06 +0.00766572 +8.5775e-06 +0.00766236 +8.5929e-06 +0.00766115 +8.6118e-06 +0.00766821 +8.63395e-06 +0.00768071 +8.6581e-06 +0.0076891 +8.68379e-06 +0.00768489 +8.7127e-06 +0.00766861 +8.748e-06 +0.00764979 +8.79245e-06 +0.00763729 +8.84737e-06 +0.00763021 +8.91327e-06 +0.0076191 +8.99161e-06 +0.00759711 +9.08713e-06 +0.00756994 +9.20739e-06 +0.00755037 +9.35979e-06 +0.00754594 +9.55014e-06 +0.00755383 +9.78325e-06 +0.00756263 +1.00644e-05 +0.00756076 +1.04011e-05 +0.00754448 +1.08049e-05 +0.00751873 +1.12908e-05 +0.00749481 +1.18769e-05 +0.0074672 +1.25855e-05 +0.00742647 +1.34442e-05 +0.00737955 +1.44833e-05 +0.0073315 +1.57304e-05 +0.00727546 +1.72113e-05 +0.00720159 +1.89539e-05 +0.00710352 +2.09981e-05 +0.00697734 +2.34148e-05 +0.00681323 +2.63093e-05 +0.00663935 +2.9832e-05 +0.00647397 +3.41763e-05 +0.0063046 +3.95489e-05 +0.00612369 +4.61259e-05 +0.00592686 +5.39887e-05 +0.00569188 +6.30401e-05 +0.00539067 +7.29374e-05 +0.00500171 +8.3065e-05 +0.0045172 +9.25713e-05 +0.00394654 +0.000100518 +0.00332955 +0.000106078 +0.0027124 +0.000108691 +0.00213329 +0.000108193 +0.0016205 +0.000104846 +0.00118996 +9.92489e-05 +0.000849471 +9.21626e-05 +0.000593958 +8.43389e-05 +0.000408923 +7.64039e-05 +0.000278055 +6.88105e-05 +0.000187106 +6.18449e-05 +0.000124963 +5.56556e-05 +8.37297e-05 +5.02898e-05 +5.67227e-05 +4.57271e-05 +3.88538e-05 +4.19063e-05 +2.68089e-05 +3.87472e-05 +1.86365e-05 +3.61638e-05 +1.31273e-05 +3.40726e-05 +9.41029e-06 +3.23966e-05 +6.8703e-06 +3.10671e-05 +5.10435e-06 +3.00243e-05 +3.85822e-06 +2.92162e-05 +2.97799e-06 +2.85986e-05 +2.36392e-06 +2.81335e-05 +1.93942e-06 +2.77889e-05 +1.64549e-06 +2.75379e-05 +1.43877e-06 +2.73585e-05 +1.28749e-06 +2.72327e-05 +1.17018e-06 +2.71465e-05 +1.07534e-06 +2.70887e-05 +9.9784e-07 +2.7051e-05 +9.3473e-07 +2.70271e-05 +8.84074e-07 +2.70126e-05 +8.4515e-07 +2.70041e-05 +8.17756e-07 +2.69995e-05 +8.01144e-07 +2.69972e-05 +7.93642e-07 +2.69963e-05 +7.93059e-07 +2.6996e-05 +7.97246e-07 +2.69961e-05 +8.0443e-07 +2.69964e-05 +8.13294e-07 +2.69966e-05 +8.22909e-07 +2.69969e-05 +8.32578e-07 +2.6997e-05 +8.41714e-07 +2.69972e-05 +8.49826e-07 +2.69972e-05 +8.56568e-07 +2.69973e-05 +8.61789e-07 +2.69973e-05 +8.6551e-07 +2.69974e-05 +8.67878e-07 +2.69974e-05 +8.69119e-07 +2.69974e-05 +8.69511e-07 +2.69974e-05 +8.69357e-07 +2.69974e-05 +8.68954e-07 +2.69974e-05 +8.68554e-07 +2.69975e-05 +8.68327e-07 +2.69975e-05 +8.68358e-07 +2.69975e-05 +8.68653e-07 +2.69975e-05 +8.69163e-07 +2.69975e-05 +8.69807e-07 +2.69975e-05 +8.70496e-07 +2.69976e-05 +8.71144e-07 +2.69976e-05 +8.71686e-07 +2.69976e-05 +8.72079e-07 +2.69976e-05 +8.72304e-07 +2.69976e-05 +8.72365e-07 +2.69976e-05 +8.72285e-07 +2.69976e-05 +8.72096e-07 +2.69976e-05 +8.71834e-07 +2.69976e-05 +8.71538e-07 +2.69976e-05 +8.71238e-07 +2.69976e-05 +8.70963e-07 +2.69976e-05 +8.7073e-07 +2.69976e-05 +8.70551e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70367e-07 +2.69976e-05 +8.70353e-07 +2.69976e-05 +8.70378e-07 +2.69976e-05 +8.70431e-07 +2.69976e-05 +8.70499e-07 +2.69976e-05 +8.70571e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70696e-07 +2.69976e-05 +8.70738e-07 +2.69976e-05 +8.70764e-07 +2.69976e-05 +8.70775e-07 +2.69976e-05 +8.70773e-07 +2.69976e-05 +8.70761e-07 +2.69976e-05 +8.70742e-07 +2.69976e-05 +8.7072e-07 +2.69976e-05 +8.70698e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70661e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70641e-07 +2.69976e-05 +8.70638e-07 +2.69976e-05 +8.70639e-07 +2.69976e-05 +8.70643e-07 +2.69976e-05 +8.70649e-07 +2.69976e-05 +8.70656e-07 +2.69976e-05 +8.70663e-07 +2.69976e-05 +8.7067e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70681e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70686e-07 +2.69976e-05 +8.70685e-07 +2.69976e-05 +8.70684e-07 +2.69976e-05 +8.70682e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70677e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70674e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70675e-07 +2.69976e-05 +8.70676e-07 +2.69976e-05 +8.70678e-07 +2.69976e-05 +8.7068e-07 +2.69976e-05 +8.70683e-07 +2.69976e-05 +8.70687e-07 +2.69976e-05 +8.70693e-07 +2.69976e-05 +8.707e-07 +2.69976e-05 +8.70708e-07 +2.69976e-05 +8.70718e-07 +2.69976e-05 +8.70728e-07 +2.69976e-05 +8.7074e-07 +2.69976e-05 +8.70753e-07 +2.69976e-05 +8.70767e-07 +2.69976e-05 +8.70783e-07 +2.69976e-05 +8.70796e-07 +2.69976e-05 +8.70802e-07 +2.69976e-05 +8.70803e-07 +2.69975e-05 +8.708e-07 +2.69975e-05 +8.70791e-07 +2.69974e-05 +8.70778e-07 +2.69974e-05 +8.70761e-07 +2.69973e-05 +8.70739e-07 +2.69972e-05 +8.70714e-07 +2.69971e-05 +8.70517e-07 +2.69975e-05 +8.70284e-07 +2.69979e-05 +8.70066e-07 +2.69984e-05 +8.69852e-07 +2.69988e-05 +8.69645e-07 +2.69992e-05 +8.69444e-07 +2.69996e-05 +8.69248e-07 +2.69999e-05 +8.69058e-07 +2.70003e-05 +8.68872e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 +2.70318e-05 +8.65454e-07 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_001.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_001.xlo new file mode 100644 index 000000000..9483ff66f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_001.xlo @@ -0,0 +1,1014 @@ +Vector Object: 1 MPI processes + type: seq +0.00309313 +0.00112788 +0.00309314 +0.00112788 +0.00309315 +0.00112789 +0.00309317 +0.00112789 +0.00309318 +0.00112789 +0.0030932 +0.0011279 +0.00309321 +0.0011279 +0.00309323 +0.0011279 +0.00309324 +0.0011279 +0.00309325 +0.00112791 +0.00309326 +0.00112791 +0.00309327 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309327 +0.0011279 +0.00309327 +0.0011279 +0.00309326 +0.00112789 +0.00309325 +0.00112789 +0.00309324 +0.00112789 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309322 +0.00112788 +0.00309321 +0.00112788 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309321 +0.00112787 +0.00309321 +0.00112787 +0.00309322 +0.00112788 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_002.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_002.xlo new file mode 100644 index 000000000..9e3e3ebdf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_002.xlo @@ -0,0 +1,1014 @@ +Vector Object: 1 MPI processes + type: seq +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309322 +0.00112788 +0.00309322 +0.00112788 +0.00309321 +0.00112787 +0.00309321 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309321 +0.00112787 +0.00309321 +0.00112788 +0.00309322 +0.00112788 +0.00309323 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112789 +0.00309325 +0.00112789 +0.00309326 +0.00112789 +0.00309327 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309329 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309327 +0.00112791 +0.00309326 +0.00112791 +0.00309325 +0.00112791 +0.00309324 +0.0011279 +0.00309323 +0.0011279 +0.00309321 +0.0011279 +0.0030932 +0.00112789 +0.00309318 +0.00112789 +0.00309316 +0.00112789 +0.00309315 +0.00112788 +0.00309314 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112788 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_003.xlo b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_003.xlo new file mode 100644 index 000000000..7b6b66d10 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/2_final_profile_local_proc_003.xlo @@ -0,0 +1,1012 @@ +Vector Object: 1 MPI processes + type: seq +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112787 +0.00309324 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309322 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309323 +0.00112787 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309325 +0.00112788 +0.00309324 +0.00112788 +0.00309324 +0.00112788 +0.00309323 +0.00112788 +0.00309323 +0.00112788 +0.00309322 +0.00112788 +0.00309322 +0.00112788 +0.00309321 +0.00112787 +0.00309321 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.00309319 +0.00112787 +0.0030932 +0.00112787 +0.0030932 +0.00112787 +0.00309321 +0.00112787 +0.00309321 +0.00112788 +0.00309322 +0.00112788 +0.00309323 +0.00112788 +0.00309324 +0.00112788 +0.00309325 +0.00112789 +0.00309325 +0.00112789 +0.00309326 +0.00112789 +0.00309327 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309328 +0.0011279 +0.00309329 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309328 +0.00112791 +0.00309327 +0.00112791 +0.00309326 +0.00112791 +0.00309325 +0.00112791 +0.00309324 +0.0011279 +0.00309323 +0.0011279 +0.00309321 +0.0011279 +0.0030932 +0.00112789 +0.00309318 +0.00112789 +0.00309316 +0.00112789 +0.00309315 +0.00112788 +0.00309314 +0.00112788 +0.00309312 +0.00112788 +0.00309312 +0.00112788 +0.00309311 +0.00112788 +0.0030931 +0.00112788 +0.0030931 +0.00112788 +0.00309311 +0.00112788 +0.00309311 +0.00112788 +0.00309312 +0.00112788 +0.00309314 +0.00112789 +0.00309315 +0.00112789 +0.00309317 +0.0011279 +0.0030932 +0.00112791 +0.00309322 +0.00112792 +0.00309324 +0.00112793 +0.00309327 +0.00112793 +0.00309329 +0.00112794 +0.00309331 +0.00112795 +0.00309333 +0.00112796 +0.00309334 +0.00112797 +0.00309335 +0.00112797 +0.00309336 +0.00112798 +0.00309336 +0.00112798 +0.00309335 +0.00112799 +0.00309334 +0.00112799 +0.00309333 +0.00112799 +0.00309331 +0.00112798 +0.00309328 +0.00112798 +0.00309325 +0.00112797 +0.00309321 +0.00112797 +0.00309318 +0.00112796 +0.00309314 +0.00112795 +0.0030931 +0.00112794 +0.00309306 +0.00112793 +0.00309302 +0.00112792 +0.00309298 +0.00112791 +0.00309294 +0.0011279 +0.00309291 +0.0011279 +0.00309289 +0.00112789 +0.00309287 +0.00112788 +0.00309286 +0.00112788 +0.00309286 +0.00112788 +0.00309287 +0.00112788 +0.00309289 +0.00112789 +0.00309292 +0.0011279 +0.00309296 +0.00112791 +0.00309301 +0.00112792 +0.00309307 +0.00112793 +0.00309313 +0.00112795 +0.0030932 +0.00112797 +0.00309327 +0.00112799 +0.00309334 +0.00112801 +0.00309341 +0.00112803 +0.00309347 +0.00112805 +0.00309352 +0.00112807 +0.00309355 +0.00112808 +0.00309357 +0.00112809 +0.00309356 +0.0011281 +0.00309355 +0.0011281 +0.00309352 +0.00112809 +0.00309347 +0.00112809 +0.00309342 +0.00112807 +0.00309335 +0.00112806 +0.00309327 +0.00112804 +0.00309319 +0.00112801 +0.00309309 +0.00112799 +0.003093 +0.00112797 +0.0030929 +0.00112794 +0.0030928 +0.00112792 +0.0030927 +0.00112789 +0.0030926 +0.00112787 +0.00309251 +0.00112785 +0.00309243 +0.00112783 +0.00309236 +0.00112782 +0.0030923 +0.00112781 +0.00309226 +0.0011278 +0.00309223 +0.0011278 +0.00309223 +0.00112781 +0.00309225 +0.00112782 +0.00309229 +0.00112784 +0.00309235 +0.00112787 +0.00309244 +0.00112791 +0.00309255 +0.00112795 +0.00309269 +0.001128 +0.00309285 +0.00112806 +0.00309302 +0.00112812 +0.00309322 +0.00112819 +0.00309342 +0.00112826 +0.00309363 +0.00112834 +0.00309384 +0.00112842 +0.00309404 +0.00112849 +0.00309421 +0.00112856 +0.00309436 +0.00112862 +0.00309447 +0.00112866 +0.00309406 +0.00112869 +0.00309373 +0.00112868 +0.00309345 +0.00112865 +0.00309315 +0.00112866 +0.00309284 +0.00112886 +0.00309254 +0.00112907 +0.00309223 +0.00112927 +0.00309194 +0.00112947 +0.00309165 +0.00112967 +0.00309137 +0.00112988 +0.00309109 +0.00113008 +0.00309083 +0.00113028 +0.00309059 +0.00113048 +0.00309036 +0.00113069 +0.00309014 +0.0011309 +0.00308995 +0.00113111 +0.00308978 +0.00113133 +0.00308964 +0.00113155 +0.00308952 +0.00113178 +0.00308944 +0.00113201 +0.00308939 +0.00113226 +0.00308938 +0.00113251 +0.00308941 +0.00113277 +0.00308949 +0.00113305 +0.00308961 +0.00113334 +0.00308979 +0.00113364 +0.00309003 +0.00113396 +0.00309032 +0.0011343 +0.00309068 +0.00113466 +0.0030911 +0.00113503 +0.00309159 +0.00113543 +0.00309216 +0.00113584 +0.0030928 +0.00113628 +0.00309351 +0.00113674 +0.0030943 +0.00113723 +0.00309517 +0.00113774 +0.00309612 +0.00113827 +0.00309713 +0.00113883 +0.00309822 +0.00113941 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 +0.00307906 +0.00115799 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/AD_Routines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/AD_Routines.F90 new file mode 100644 index 000000000..a1d654a65 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/AD_Routines.F90 @@ -0,0 +1,242 @@ +!>This file contains subroutines neccessary for running the code using analytical +!!derivations obtained from automatic differentiation. + + + + + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +! Differentiation of formfunctionlocal in forward (tangent) mode: +! variations of useful results: f rhop +! with respect to varying inputs: rhop +! RW status of diff variables: f:out rhop:in-out +SUBROUTINE FORMFUNCTIONLOCAL_D(rhop, rhopd_nogp, fd, user, ierr) + + +!PETSc modules + Use PetscManagement + + +!DFT modules + USE MOD_DFT_FMT + USE MOD_DFT_CHAIN + USE MOD_DFT_FMT_d + USE MOD_DFT_CHAIN_d + USE MOD_DFT_DISP_WDA_D + + + USE BASIC_VARIABLES, ONLY : ncomp + USE EOS_VARIABLES, Only:dhs, rho + USE VLE_VAR, Only: rhob + USE MOD_DFT, ONLY : fa, zp + USE DFT_FCN_MODULE, ONLY : chempot_res + USE GLOBAL_X, ONLY : ngrid, ngp + IMPLICIT NONE + +#include + +! Input/output variables: + type (userctx) user + PetscScalar rhop(ncomp,user%gxs:user%gxe) + PetscScalar rhopd_nogp(ncomp,user%xs:user%xe) + !PetscScalar f(ncomp,user%xs:user%xe) + PetscScalar fd(ncomp,user%xs:user%xe) + PetscErrorCode ierr + +! Local variables: + PetscInt i + PetscInt k + REAL,dimension(user%gxs:user%gxe) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! + REAL,dimension(user%gxs:user%gxe) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 + REAL,dimension(user%gxs:user%gxe) :: phi_dn0d,phi_dn1d,phi_dn2d,phi_dn3d,phi_dnv1d,phi_dnv2d + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_FMT,dF_drho_FMTd + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhobar,lambda,rhobard,lambdad + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_CHAIN,dF_drho_CHAINd + REAL :: Vext(ncomp) + + !DISP VAR + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhop_wd,my_disp,df_disp_drk + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhop_wdd,my_dispd + REAL,dimension(user%gxs:user%gxe) :: f_disp + REAL, dimension(ncomp) :: dF_drho_disp + REAL, dimension(ncomp) :: dF_drho_dispd + + + + INTRINSIC EXP + REAL :: arg1 + REAL :: arg1d + PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) + + rhopd = 0.0 + rhopd(1:ncomp,user%xs:user%xe) = rhopd_nogp(1:ncomp,user%xs:user%xe) + + + +!calculate weighted densities + CALL FMT_WEIGHTED_DENSITIES_D(rhop, rhopd, n0, n1, n2, n3, nv1, nv2, & +& phi_dn0, phi_dn0d, phi_dn1, phi_dn1d, phi_dn2& +& , phi_dn2d, phi_dn3, phi_dn3d, phi_dnv1, & +& phi_dnv1d, phi_dnv2, phi_dnv2d, user) +!calculate averaged density rhobar and lambda (both needed for chain term) + CALL CHAIN_AUX_D(rhop, rhopd, rhobar, rhobard, lambda, lambdad, user) +!HIER DISP!!! + CALL DISP_WEIGHTED_DENSITIES_D(rhop, rhopd, rhop_wd, rhop_wdd, user) + CALL DISP_MU_D(rhop_wd, rhop_wdd, f_disp, my_disp, my_dispd, & +& df_disp_drk, user) + + fd = 0.0 + df_drho_chaind = 0.0 + df_drho_fmtd = 0.0 + df_drho_dispd = 0.0 + + DO i = user%xs,user%xe + CALL FMT_DFDRHO_D(i, fa, user, phi_dn0, phi_dn0d, phi_dn1, phi_dn1d& +& , phi_dn2, phi_dn2d, phi_dn3, phi_dn3d, phi_dnv1, & +& phi_dnv1d, phi_dnv2, phi_dnv2d, df_drho_fmt, & +& df_drho_fmtd) + CALL CHAIN_DFDRHO_D(i, rhop, rhopd, lambda, lambdad, rhobar, rhobard& +& , df_drho_chain, df_drho_chaind, user) + +!HIER DISP!!! + CALL DISP_DFDRHO_WDA_D(i, rhop, rhop_wd, my_disp, my_dispd, f_disp, & +& df_disp_drk, df_drho_disp, df_drho_dispd, user) + + + vext(1:ncomp) = 0.0 + DO k=1,ncomp + IF (zp(i) .LT. dhs(k)/2.0) vext(k) = 100000.0 +! If( zp(ngrid) - zp(i) < dhs(k)/2.0 ) Vext(k) = 100000.0 + arg1d = -df_drho_fmtd(i,k)-df_drho_chaind(i,k)-df_drho_dispd(k) + arg1 = chempot_res(k) - vext(k) - df_drho_fmt(i, k) - & +& df_drho_chain(i, k) - df_drho_disp(k) + + fd(k, i) = rhob(1,k)*arg1d*EXP(arg1) - rhopd(k, i) + !f(k, i) = xx(k)*rho*EXP(arg1) - rhop(k, i) + END DO + END DO +END SUBROUTINE FORMFUNCTIONLOCAL_D + + + + + + + + + +!------------------------------------------------------------------------------------------------ +!This Subroutine calculates the Jacobi-Vector product using derivatives obtained via AD +!------------------------------------------------------------------------------------------------ +Subroutine Jac_Shell_AD(Jshell,v_in,v_out) + +use Global_x, only: x,snes +Use PetscManagement + +#include "finclude/petsc.h90" + + +!passed + Mat :: Jshell + Vec :: v_in !has global size discret (NOT discret +- ghost points!!) + Vec :: v_out +!local + PetscScalar, pointer :: xd(:), rhop_loc(:,:),fd(:) !for dof2, xd and fd are twice the size as for dof1 + PetscErrorCode :: ierr + Type (userctx) :: user + DM :: da + Vec :: rhop_local + + + +!get the user context and DM which are associated with nonlinear solver + call SNESGetApplicationContext(snes,user,ierr) + call SNESGetDM(snes,da,ierr) + +!get local vector for x (needed because we need the ghost point values of x) + call DMGetLocalVector(da,rhop_local,ierr) + +!copy global to local for x (then x_local also contains ghost points) + call DMGlobalToLocalBegin(da,x,INSERT_VALUES,rhop_local,ierr) + call DMGlobalToLocalEnd(da,x,INSERT_VALUES,rhop_local,ierr) + +!get pointers to the vectors x_local,v_in and v_out + call DMDAVecGetArrayF90(da,rhop_local,rhop_loc,ierr) + call VecGetArrayF90(v_in, xd, ierr ) + call VecGetArrayF90(v_out, fd, ierr ) + +! Get local grid boundaries (dont know why this is neccessary again!) + call DMDAGetCorners(da, & !the distributed array + & user%xs, & !corner index in x direction + & PETSC_NULL_INTEGER, & !corner index in y direction + & PETSC_NULL_INTEGER, & !corner index in z direction + & user%xm, & !width of locally owned part in x direction + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction + & ierr) !error check + + call DMDAGetGhostCorners(da, & !the distributed array + & user%gxs, & !corner index in x direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in y direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in z direction (but now counting includes ghost points) + & user%gxm, & !width of locally owned part in x direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction (but now including ghost points) + & ierr) !error check + + +! Here we shift the starting indices up by one so that we can easily +! use the Fortran convention of 1-based indices (rather 0-based indices). + user%xs = user%xs+1 + user%gxs = user%gxs+1 + + user%xe = user%xs+user%xm-1 + user%gxe = user%gxs+user%gxm-1 + + +!--------------------------------------------------------- +!call AD generated Routine + !x_loc: x + !xd : direction which the derivative is calculated for + !fd : the directional derivative in direction xd + + call FORMFUNCTIONLOCAL_D(rhop_loc,xd,fd,user,ierr) +!--------------------------------------------------------- + + + + +!restore arrays + call DMDAVecRestoreArrayF90(da,rhop_local,rhop_loc,ierr ) + call VecRestoreArrayF90( v_in, xd, ierr ) + call VecRestoreArrayF90( v_out, fd, ierr ) + call DMRestoreLocalVector(da,rhop_local,ierr) + + +End Subroutine Jac_Shell_AD + + + + +! empty subroutine for shell jacobian; probably should copy v_x to x, as they might not be same +Subroutine Jac_Matrix_Empty(snes,v_x,jac,B,flag,dummy,ierr) + implicit none +#include "finclude/petsc.h90" + SNES :: snes + Vec :: v_x + Mat :: jac,B + MatStructure :: flag + PetscErrorCode :: ierr + integer dummy(*) +End Subroutine Jac_Matrix_Empty + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Function.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Function.F90 new file mode 100644 index 000000000..0080485a0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Function.F90 @@ -0,0 +1,251 @@ +!>This file contains the residual function of the density functional theory +!!calculation. + + + +!>The subroutine FormFunction is a wrapper function which takes care of +!!handling the global PETSc data structures and creates local copys for +!!every processor. It then calls the subroutine FormFunctionLocal which +!!performs the actual calculation of the residual at every grid point. + + +Subroutine FormFunction(snes,X,F,user,ierr) +Use PetscManagement +Implicit None +#include +#include +#include +#include +#include +#include +#include +#include + +! Input/output variables: + SNES snes + Vec X,F + PetscErrorCode ierr + type (userctx) user + DM da + +! Declarations for use with local arrays: + PetscScalar,pointer :: lx_v(:,:),lf_v(:,:) + Vec localX + +! Scatter ghost points to local vector, using the 2-step process +! DMGlobalToLocalBegin(), DMGlobalToLocalEnd(). +! By placing code between these two statements, computations can +! be done while messages are in transition. + call SNESGetDM(snes,da,ierr) + call DMGetLocalVector(da,localX,ierr) + call DMGlobalToLocalBegin(da,X,INSERT_VALUES, & + & localX,ierr) + call DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr) + + + !call VecGetArrayF90(localX,lx_v,ierr) !only for DOF=1 + !call VecGetArrayF90(F,lf_v,ierr) !only for DOF=1 + call DMDAVecGetArrayF90(da,localX,lx_v,ierr) + call DMDAVecGetArrayF90(da,F,lf_v,ierr) + +! Compute function over the locally owned part of the grid + call FormFunctionLocal(lx_v,lf_v,user,ierr) + +! Restore vectors + !call VecRestoreArrayF90(localX,lx_v,ierr) !only for DOF=1 + !call VecRestoreArrayF90(F,lf_v,ierr) !only for DOF=1 + call DMDAVecRestoreArrayF90(da,localX,lx_v,ierr) + call DMDAVecRestoreArrayF90(da,F,lf_v,ierr) + + +! Insert values into global vector + + call DMRestoreLocalVector(da,localX,ierr) + + return +End Subroutine FormFunction + + + + + + + + + + + +!>This subroutine performs the local evaluation of the residual function. +!!It calls the subroutines which calculate the different contributions to +!!the Helmholtz energy functional. + + +Subroutine FormFunctionLocal(rhop,f,user,ierr) +!PETSc modules + Use PetscManagement +!DFT modules + Use mod_DFT_FMT + Use mod_DFT_CHAIN + Use mod_DFT_DISP_WDA + Use PARAMETERS, Only: PI ,muhs,muhc,mudisp + Use BASIC_VARIABLES, Only: ncomp,nc,np ,nphas,xi,dense,parame,ensemble_flag !nphas nur fur fugacity call + Use EOS_VARIABLES, Only:dhs,rho ,phas,eta_start,x,mseg,eta !letze 4 nur zum Test for aufruf eos_phi!! + Use mod_DFT, Only: fa,zp,dzp,free,pbulk, fa_disp, ab_disp !letzen beiden nur fur elmars version + Use VLE_VAR, Only: rhob + Use DFT_FCN_MODULE, Only: ChemPot_res,ChemPot_total + Use Global_x, Only: ngrid, ngp + + +Implicit None + +! Input/output variables: + type (userctx) user + PetscScalar rhop(ncomp,user%gxs:user%gxe) + PetscScalar f(ncomp,user%xs:user%xe) + PetscErrorCode ierr + +! Local variables: + PetscInt i + PetscInt k + + !FMT + REAL,dimension(user%gxs:user%gxe) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! + REAL,dimension(user%gxs:user%gxe) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 + REAL :: f_fmt,temp,zs + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_FMT + + !Chain + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhobar,lambda + REAL :: f_ch + REAL,dimension(user%xs:user%xe,ncomp) :: dF_drho_CHAIN + + !DISP VAR + REAL,dimension(user%gxs:user%gxe,ncomp) :: rhop_wd,my_disp,df_disp_drk + REAL,dimension(user%gxs:user%gxe) :: f_disp + REAL, dimension(ncomp) :: dF_drho_disp + !for Elmars Version + REAL, DIMENSION(user%gxs:user%gxe,ncomp):: rhoi_disp,mydisp,dadisp_dr + REAL, DIMENSION(user%gxs:user%gxe) :: adisp,rho_disp,rhop_sum + REAL :: dF_drho_att(ncomp) + INTEGER :: fa_psi_max,WDA_var + + + !polar + REAL :: fres_polar,fdd,fqq,fdq,mu_polar(nc) + REAL :: fdd_rk, fqq_rk, fdq_rk, z3_rk + INTEGER :: ik + !association + REAL :: f_assoc + REAL :: mu_assoc(nc) + REAL :: lnphi(np,nc), fres + + REAL :: f_tot, delta_f + REAL :: Vext(ncomp) + + + Do k = 1,ncomp + Do i= user%xs,user%xe + If( rhop(k,i) < epsilon(dhs) ) rhop(k,i) = epsilon(dhs) + End Do + End Do + + DO i = user%gxs,user%gxe + rhop_sum(i) = sum( rhop(1:ncomp,i) ) + END DO + + + + !calculate weighted densities + call FMT_Weighted_Densities(rhop,n0,n1,n2,n3,nv1,nv2,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,user) + + !calculate averaged density rhobar and lambda (both needed for chain term) + call Chain_aux(rhop,rhobar,lambda,user) + + + !weighted densities for Dispersion +! call DISP_Weighted_Densities(rhop, rhop_wd, user) +! call DISP_mu(rhop_wd,f_disp,my_disp,df_disp_drk,user) + + !Elmars Version + fa_psi_max = maxval(fa_disp(1:ncomp)) + call rhoi_disp_wd ( ngrid, fa_disp, fa_psi_max, ab_disp, rhop, rhoi_disp,user ) + CALL a_disp_pcsaft ( ngrid, fa_disp, fa_psi_max, rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr,user ) + + + free = 0.0 + + DO i = user%xs,user%xe + + !FMT + call FMT_dFdrho(i,fa,user,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,dF_drho_FMT) + zs = 1.0 - n3(i) + temp = log(zs) + f_fmt = - n0(i)*temp + n1(i)*n2(i)/zs - nv1(i)*nv2(i)/zs & !see for example eq. 30 in "Fundamental measure theory for hard-sphere mixtures revisited: the White bear version (Roth) + + (n2(i)**3 -3.0*n2(i)*nv2(i)*nv2(i)) *(n3(i)+zs*zs*temp) & + /36.0/PI/zs/zs/n3(i)**2 + + !Chain + call Chain_dFdrho(i,rhop,lambda,rhobar,dF_drho_CHAIN,f_ch,user) + + !Dispersion + WDA_var = 1 + call dF_disp_drho_wda( i, WDA_var, fa_disp, ab_disp, rhop, rhop_sum, & + rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr, dF_drho_att,user ) + + if(WDA_var == 1) adisp(i) = rho_disp(i) * adisp(i) + if(WDA_var == 2) adisp(i) = rhop_sum(i) * adisp(i) + + + !polar as LDA + fres_polar = 0.0 + mu_polar(:) = 0.0 + dense(1) = PI / 6.0 * SUM( rhop(1:ncomp,i) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + xi(1,1:ncomp) = rhop(1:ncomp,i) / SUM( rhop(1:ncomp,i) ) + ensemble_flag = 'tv' + IF ( SUM( parame(1:ncomp,6) ) > 1.E-10 .OR. SUM( parame(1:ncomp,7) ) > 1.E-10 ) THEN + eta = dense(1) + rho = SUM(rhop(1:ncomp,i)) + x(1:ncomp) = xi(1,1:ncomp) + call F_POLAR ( fdd, fqq, fdq ) + fres_polar = ( fdd + fqq + fdq ) * SUM( rhop(1:ncomp,i) ) + DO ik = 1, ncomp + z3_rk = PI/6.0 * mseg(ik) * dhs(ik)**3 + call PHI_POLAR ( ik, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + mu_polar(ik) = fdd_rk + fqq_rk + fdq_rk + END DO + END IF + + !association as LDA + f_assoc = 0.0 + mu_assoc(:) = 0.0 + IF ( SUM( NINT(parame(1:ncomp,12)) ) > 0) THEN + call ONLY_ONE_TERM_EOS_NUMERICAL ( 'hb_term ', 'TPT1_Chap' ) + call FUGACITY ( lnphi ) + call RESTORE_PREVIOUS_EOS_NUMERICAL + f_assoc = fres * SUM( rhop(1:ncomp,i) ) + mu_assoc(1:ncomp) = lnphi(1,1:ncomp) + END IF + + f_tot = f_fmt + f_ch + adisp(i) + fres_polar + f_assoc & + + SUM( rhop(1:ncomp,i)*( LOG(rhop(1:ncomp,i)/rhob(1,1:ncomp))-1.0 ) ) + delta_f = f_tot - ( SUM(rhop(1:ncomp,i)*chemPot_res(1:ncomp)) - pbulk) ! all quantities .../(kT) + free = free + delta_f*dzp + + + + Do k=1,ncomp + f(k,i) = -(rhob(1,k) * exp(ChemPot_res(k)-dF_drho_FMT(i,k)-dF_drho_CHAIN(i,k)-dF_drho_att(k) & + -mu_polar(k) - mu_assoc(k)) - rhop(k,i)) + End Do + + END DO + + + +End Subroutine FormFunctionLocal + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Helfer_Routinen.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Helfer_Routinen.F90 new file mode 100644 index 000000000..a4adc4019 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Helfer_Routinen.F90 @@ -0,0 +1,56 @@ + +!>This file contains subroutines that make printing of +!!local and global PETSc arrays easier. + + + +Subroutine PrintGlobalVec(GlobalVec,filename) +Implicit None +#include +#include +#include +#include + + + Vec :: GlobalVec + character(80) :: filename + + PetscViewer viewer + PetscErrorCode ierr + +!Print global vector to a file + call PetscViewerASCIIOpen(PETSC_COMM_WORLD,filename,viewer,ierr) + call VecView(GlobalVec,viewer,ierr) + + call PetscViewerDestroy(viewer,ierr) + +End Subroutine PrintGlobalVec + + + +Subroutine PrintLocalVec(GlobalVec,da,filename) +Implicit None +#include +#include +#include +#include +#include +#include + + Vec GlobalVec + Vec LocalVec + DM da + character(80) :: filename + + PetscViewer viewer + PetscErrorCode ierr + + call DMGetLocalVector(da,LocalVec,ierr) !create a locally owned part of a global distribued array + call DMGlobalToLocalBegin(da,GlobalVec,INSERT_VALUES,LocalVec,ierr) !copy values from global array to local arrays + call DMGlobalToLocalEnd(da,GlobalVec,INSERT_VALUES,LocalVec,ierr) + call PetscViewerASCIIOpen(PETSC_COMM_SELF,filename,viewer,ierr) !associate viewer with file + call VecView(LocalVec,viewer,ierr) !every processor prints his local array to a file + call DMRestoreLocalVector(da,LocalVec,ierr) !Free memory of local vector + + +End Subroutine PrintLocalVec diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/InitialGuess.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/InitialGuess.F90 new file mode 100644 index 000000000..d40b9d993 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/InitialGuess.F90 @@ -0,0 +1,260 @@ +!>This file contains the subroutines to set the initial density profile. + + + + +!>The subroutine FormFunction is a wrapper function which takes care of +!!handling the global PETSc data structures and creates local copys for +!!every processor. It then calls the subroutine InitialGuessLocal which +!!sets the initial density values. + +Subroutine FormInitialGuess(snes,X,ierr) +Use PetscManagement +Use f90moduleinterfaces + +Implicit None + + +#include +#include +#include +#include +#include +#include +#include +#include + +! Input/output variables: + SNES snes + type(userctx), pointer:: puser + Vec X + PetscErrorCode ierr + DM da + +! Declarations for use with local arrays: + PetscScalar,pointer :: lx_v(:,:) + Vec :: localX + + ierr = 0 + call SNESGetDM(snes,da,ierr) + call SNESGetApplicationContext(snes,puser,ierr) + +! Get a pointer to vector data. + call DMGetLocalVector(da,localX,ierr) + !call VecGetArrayF90(localX,lx_v,ierr) !only for DOF=1 + call DMDAVecGetArrayF90(da,localX,lx_v,ierr) + + + +! Compute initial guess over the locally owned part of the grid + call InitialGuessLocal(puser,lx_v,ierr) + +! Restore vector + !call VecRestoreArrayF90(localX,lx_v,ierr) !only for DOF=1 + call DMDAVecRestoreArrayF90(da,localX,lx_v,ierr) + + +! Insert values into global vector + call DMLocalToGlobalBegin(da,localX,INSERT_VALUES,X,ierr) + call DMLocalToGlobalEnd(da,localX,INSERT_VALUES,X,ierr) + call DMRestoreLocalVector(da,localX,ierr) + +End Subroutine FormInitialGuess + + + + + +!>In this subroutine every processor sets the initial density values +!!at its locally owned part of the grid. + +Subroutine InitialGuessLocal(user,rhop,ierr) + +!PETSc modules + use PetscManagement +!VLE and DFT modules + Use BASIC_VARIABLES, ONLY: ncomp,t,parame + Use EOS_VARIABLES, Only:rho + Use VLE_VAR, Only: rhob,tc + Use PARAMETERS, Only: PI + Use mod_DFT, Only: box,zp,dzp + Use Global_x, Only: ngrid + + + implicit none + +#include +#include +#include +#include +#include +#include +#include +#include + +! Input/output variables: + type (userctx) :: user + PetscScalar :: rhop(ncomp,user%gxs:user%gxe) + PetscErrorCode :: ierr + + +! Local variables: + PetscInt i,k + PetscBool flg + REAL :: arg + INTEGER :: pert + REAL :: tanhfac + REAL :: zp_i + REAL :: zp_middle + + + +!normal or perturbed inital profile? + call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-init_pert',pert,flg,ierr) + + + zp_middle = (ngrid/2)*dzp + tanhfac = -2.3625*t/tc + 2.4728 + + + !default: no perturbation, start with bulk density + + +IF(user%num_procs == 1) THEN !if only one processor involved + + Do k = 1,ncomp + Do i=user%gxs,user%gxe !proc 0 has to calculate values for ghost points out of physical domain (from -irc to -1 and discret to discret+irc) and its regular part + zp_i = zp(i) + rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 +!rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + + +Else !parallel simulation + + + + IF(user%rank == 0) THEN !watch the user%xs vs user%gxs (first no ghost points, second with ghost points) + + Do k=1,ncomp !loop over dof = loop over components + Do i=user%gxs,user%xe !proc 0 has to calculate values for ghost points out of physical domain (from -irc to -1) and its regular part + zp_i = zp(i) + !perturb = (rhob(1,j)-rhob(2,j))/2.0 * i * (discret - i) / (damp*discret)**2 + !rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + ! - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 !+ perturb +rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + + ELSE IF(user%rank == user%num_procs-1) THEN + + Do k=1,ncomp !loop over dof = loop over components + Do i=user%gxs,user%gxe !last proc has to calculate values for ghost points out of physical domain (from discret to discret+irc) and its regular part + zp_i = zp(i) + !perturb = (rhob(1,j)-rhob(2,j))/2.0 * i * (discret - i) / (damp*discret)**2 + !rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + ! - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 !+ perturb +rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + + ELSE + + Do k=1,ncomp !loop over dof = loop over components + Do i=user%xs,user%xe !middle procs have to calculate only their regular part + zp_i = zp(i) + !perturb = (rhob(1,j)-rhob(2,j))/2.0 * i * (discret - i) / (damp*discret)**2 + !rhop(k,i) = ( TANH(-(zp_i -zp_middle) / parame(k,2) *tanhfac) + 1.0 ) * rhob(1,k)/2.0 & + ! - ( TANH(-(zp_i - zp_middle) / parame(k,2) *tanhfac) - 1.0 ) * rhob(2,k)/2.0 !+ perturb +rhop(k,i) = rhob(1,k) + !make sure density is nonzero + If(rhop(k,i) == 0.0) rhop(k,i) = rhop(k,i-1) + End Do + End Do + + END IF + + +End If + + + + + + + + + + + + + + + + + + + +! If(pert == 1) Then +! Do i=user%xs,user%xe +! arg = zp(i) * PI / box +! rhop(k,i) = rhob(1,k) + 0.5*rhob(1,k) * sin(arg) +! End Do +! End If +! +! If(pert == 2) Then +! Do i=user%xs,user%xe +! arg = zp(i) * 2.0 * PI / box +! rhop(k,i) = rhob(1,k) + 0.5*rhob(1,k) * sin(arg) +! End Do +! End If +! +! If(pert == 3) Then +! Do i=user%xs,user%xe +! arg = zp(i) * 3.0 * PI / box +! rhop(k,i) = rhob(1,k) + 0.5*rhob(1,k) * sin(arg) +! End Do +! End If + + + + + + + + + + + + +End Subroutine InitialGuessLocal + + + + + + + + + + + + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.dat b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.dat new file mode 100644 index 000000000..8ac4e3c34 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.dat @@ -0,0 +1,101 @@ + 0 3.81476879119873046875000000000000000E-0002 1.9167311725546882E-002 + 1 7.08925724029541015625000000000000000E-0002 1.0836690899012666 + 2 0.103237867355346679687500000000000000 1.2806490342739463 + 3 0.139061689376831054687500000000000000 6.5940382426207811E-002 + 4 0.170719385147094726562500000000000000 0.24470442484251823 + 5 0.202053070068359375000000000000000000 7.5699804616868427E-002 + 6 0.233716487884521484375000000000000000 2.9935146336645967E-002 + 7 0.266644716262817382812500000000000000 2.8517064587568634E-002 + 8 0.299265861511230468750000000000000000 2.1226271363242205E-002 + 9 0.331297397613525390625000000000000000 3.2229032075324938E-002 + 10 0.363489151000976562500000000000000000 1.4409028319962571E-002 + 11 0.396240472793579101562500000000000000 1.1938199301249447E-002 + 12 0.428606271743774414062500000000000000 1.0061916564162688E-002 + 13 0.460750579833984375000000000000000000 1.0450622302202749E-002 + 14 0.493036508560180664062500000000000000 1.0482425070118429E-002 + 15 0.525337934494018554687500000000000000 7.2030360826592236E-003 + 16 0.559576034545898437500000000000000000 6.6769113322842156E-003 + 17 0.594073534011840820312500000000000000 7.0437254531792006E-003 + 18 0.628280639648437500000000000000000000 5.4357998400072867E-003 + 19 0.660691738128662109375000000000000000 4.4458668714974893E-003 + 20 0.693190813064575195312500000000000000 3.8788899742853997E-003 + 21 0.725594282150268554687500000000000000 3.6409716238687390E-003 + 22 0.757995367050170898437500000000000000 3.6865362002240182E-003 + 23 0.790662050247192382812500000000000000 3.6814362166097446E-003 + 24 0.823435306549072265625000000000000000 3.4901569956928068E-003 + 25 0.855906248092651367187500000000000000 3.3574723884623832E-003 + 26 0.888554334640502929687500000000000000 3.2940926700628292E-003 + 27 0.922744750976562500000000000000000000 3.2635523729511342E-003 + 28 0.956001996994018554687500000000000000 3.2482281898823036E-003 + 29 0.989588499069213867187500000000000000 3.2304252753728806E-003 + 30 1.02266049385070800781250000000000000 3.2042967415078041E-003 + 31 1.05561280250549316406250000000000000 3.1760638230831483E-003 + 32 1.08916354179382324218750000000000000 2.6457666806156584E-003 + 33 1.12364792823791503906250000000000000 1.0082364203677448E-002 + 34 1.15826272964477539062500000000000000 5.9982827208021998E-003 + 35 1.19197607040405273437500000000000000 6.6747262482266612E-003 + 36 1.22450017929077148437500000000000000 2.7084035605368221E-003 + 37 1.25709438323974609375000000000000000 2.3565922114504490E-003 + 38 1.28959250450134277343750000000000000 1.1716157985450606E-002 + 39 1.32186341285705566406250000000000000 4.2006166011576357E-003 + 40 1.35462236404418945312500000000000000 3.2385624754675286E-003 + 41 1.38799214363098144531250000000000000 5.1127523380772181E-003 + 42 1.42280745506286621093750000000000000 2.0104539401779968E-003 + 43 1.45606207847595214843750000000000000 3.1863352886919638E-003 + 44 1.48914194107055664062500000000000000 3.8145741584364569E-003 + 45 1.52246117591857910156250000000000000 2.8978851599061658E-003 + 46 1.55622410774230957031250000000000000 2.0314208240652045E-003 + 47 1.58982396125793457031250000000000000 1.4916462262275464E-003 + 48 1.62329626083374023437500000000000000 1.7158181848659960E-003 + 49 1.65646409988403320312500000000000000 1.3182946385892061E-003 + 50 1.69007468223571777343750000000000000 1.3060534560984771E-003 + 51 1.72560310363769531250000000000000000 1.6036940364319251E-003 + 52 1.76056408882141113281250000000000000 2.6792379034752899E-003 + 53 1.79407477378845214843750000000000000 2.3866749839249139E-003 + 54 1.82702112197875976562500000000000000 2.2827864862889681E-003 + 55 1.86016821861267089843750000000000000 1.3909295078892131E-003 + 56 1.89312934875488281250000000000000000 1.9013031251392041E-003 + 57 1.92628431320190429687500000000000000 2.0159091682661161E-003 + 58 1.95966291427612304687500000000000000 1.8630591172467837E-003 + 59 1.99260973930358886718750000000000000 1.2357315673359509E-003 + 60 2.02576398849487304687500000000000000 1.3411544737972523E-003 + 61 2.05865955352783203125000000000000000 1.3885701672690153E-003 + 62 2.09150886535644531250000000000000000 1.2585764876761546E-003 + 63 2.12424826622009277343750000000000000 3.8510755951043684E-003 + 64 2.15704941749572753906250000000000000 1.9774769364787684E-003 + 65 2.19120430946350097656250000000000000 1.9398772043784835E-003 + 66 2.22409176826477050781250000000000000 1.5448347759751041E-002 + 67 2.25706124305725097656250000000000000 8.3198794014145722E-003 + 68 2.29224538803100585937500000000000000 1.2828626127386325E-002 + 69 2.32933902740478515625000000000000000 1.0037861486634421E-002 + 70 2.36444735527038574218750000000000000 9.6339139883187350E-003 + 71 2.39814281463623046875000000000000000 8.8494631809062519E-003 + 72 2.43165779113769531250000000000000000 8.0006047030193317E-003 + 73 2.46501588821411132812500000000000000 1.2259175012800532E-002 + 74 2.49842572212219238281250000000000000 1.0481899515214407E-002 + 75 2.53221726417541503906250000000000000 4.2168736312156348E-003 + 76 2.56626939773559570312500000000000000 4.3869079478197027E-003 + 77 2.60000753402709960937500000000000000 5.5337875080241862E-003 + 78 2.63379144668579101562500000000000000 3.4587309132970518E-003 + 79 2.66746735572814941406250000000000000 4.0981342426075831E-003 + 80 2.70127940177917480468750000000000000 3.6711438721485539E-003 + 81 2.73489165306091308593750000000000000 2.2651549246537122E-003 + 82 2.76860332489013671875000000000000000 4.5317581922638657E-003 + 83 2.80242776870727539062500000000000000 3.7009675876052707E-003 + 84 2.83616971969604492187500000000000000 4.8083299811888308E-003 + 85 2.87218594551086425781250000000000000 4.3778135761167311E-003 + 86 2.91212081909179687500000000000000000 2.6654328383714401E-003 + 87 2.94773960113525390625000000000000000 3.3361037433498495E-003 + 88 2.98277425765991210937500000000000000 2.7285610168273624E-003 + 89 3.01725769042968750000000000000000000 1.7102257723570899E-003 + 90 3.05120515823364257812500000000000000 1.2301916644188592E-003 + 91 3.08512568473815917968750000000000000 9.5262926064714638E-003 + 92 3.11896014213562011718750000000000000 6.7252753873397993E-003 + 93 3.15312480926513671875000000000000000 3.6638553854348105E-003 + 94 3.18717241287231445312500000000000000 4.4371287673171346E-003 + 95 3.22239208221435546875000000000000000 3.3345545843416809E-003 + 96 3.25672459602355957031250000000000000 9.3686951766994275E-003 + 97 3.29098415374755859375000000000000000 1.2905937279128693E-002 + 98 3.32508039474487304687500000000000000 1.8428935540252375E-002 + 99 3.35754752159118652343750000000000000 6.8753675149365112E-003 + 100 3.39160776138305664062500000000000000 1.1164950460488118E-002 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.eps b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.eps new file mode 100644 index 000000000..6afee5dbf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/ItsTimeNorm.eps @@ -0,0 +1,732 @@ +%!PS-Adobe-2.0 EPSF-2.0 +%%Title: ItsTimeNorm.eps +%%Creator: gnuplot 4.6 patchlevel 5 +%%CreationDate: Fri Sep 25 23:58:14 2015 +%%DocumentFonts: (atend) +%%BoundingBox: 50 50 410 302 +%%EndComments +%%BeginProlog +/gnudict 256 dict def +gnudict begin +% +% The following true/false flags may be edited by hand if desired. +% The unit line width and grayscale image gamma correction may also be changed. +% +/Color false def +/Blacktext false def +/Solid false def +/Dashlength 1 def +/Landscape false def +/Level1 false def +/Rounded false def +/ClipToBoundingBox false def +/SuppressPDFMark false def +/TransparentPatterns false def +/gnulinewidth 5.000 def +/userlinewidth gnulinewidth def +/Gamma 1.0 def +/BackgroundColor {-1.000 -1.000 -1.000} def +% +/vshift -46 def +/dl1 { + 10.0 Dashlength mul mul + Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if +} def +/dl2 { + 10.0 Dashlength mul mul + Rounded { currentlinewidth 0.75 mul add } if +} def +/hpt_ 31.5 def +/vpt_ 31.5 def +/hpt hpt_ def +/vpt vpt_ def +/doclip { + ClipToBoundingBox { + newpath 50 50 moveto 410 50 lineto 410 302 lineto 50 302 lineto closepath + clip + } if +} def +% +% Gnuplot Prolog Version 4.6 (September 2012) +% +%/SuppressPDFMark true def +% +/M {moveto} bind def +/L {lineto} bind def +/R {rmoveto} bind def +/V {rlineto} bind def +/N {newpath moveto} bind def +/Z {closepath} bind def +/C {setrgbcolor} bind def +/f {rlineto fill} bind def +/g {setgray} bind def +/Gshow {show} def % May be redefined later in the file to support UTF-8 +/vpt2 vpt 2 mul def +/hpt2 hpt 2 mul def +/Lshow {currentpoint stroke M 0 vshift R + Blacktext {gsave 0 setgray show grestore} {show} ifelse} def +/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R + Blacktext {gsave 0 setgray show grestore} {show} ifelse} def +/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R + Blacktext {gsave 0 setgray show grestore} {show} ifelse} def +/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def + /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def +/DL {Color {setrgbcolor Solid {pop []} if 0 setdash} + {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def +/BL {stroke userlinewidth 2 mul setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +/AL {stroke userlinewidth 2 div setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +/UL {dup gnulinewidth mul /userlinewidth exch def + dup 1 lt {pop 1} if 10 mul /udl exch def} def +/PL {stroke userlinewidth setlinewidth + Rounded {1 setlinejoin 1 setlinecap} if} def +3.8 setmiterlimit +% Default Line colors +/LCw {1 1 1} def +/LCb {0 0 0} def +/LCa {0 0 0} def +/LC0 {1 0 0} def +/LC1 {0 1 0} def +/LC2 {0 0 1} def +/LC3 {1 0 1} def +/LC4 {0 1 1} def +/LC5 {1 1 0} def +/LC6 {0 0 0} def +/LC7 {1 0.3 0} def +/LC8 {0.5 0.5 0.5} def +% Default Line Types +/LTw {PL [] 1 setgray} def +/LTb {BL [] LCb DL} def +/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def +/LT0 {PL [] LC0 DL} def +/LT1 {PL [4 dl1 2 dl2] LC1 DL} def +/LT2 {PL [2 dl1 3 dl2] LC2 DL} def +/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def +/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def +/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def +/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def +/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def +/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def +/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def +/Dia {stroke [] 0 setdash 2 copy vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke + Pnt} def +/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V + currentpoint stroke M + hpt neg vpt neg R hpt2 0 V stroke + } def +/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke + Pnt} def +/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M + hpt2 vpt2 neg V currentpoint stroke M + hpt2 neg 0 R hpt2 vpt2 V stroke} def +/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke + Pnt} def +/Star {2 copy Pls Crs} def +/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath fill} def +/TriUF {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath fill} def +/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke + Pnt} def +/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath fill} def +/DiaF {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath fill} def +/Pent {stroke [] 0 setdash 2 copy gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore Pnt} def +/PentF {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath fill grestore} def +/Circle {stroke [] 0 setdash 2 copy + hpt 0 360 arc stroke Pnt} def +/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def +/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def +/C1 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + vpt 0 360 arc closepath} bind def +/C2 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C3 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C4 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C5 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc + 2 copy moveto + 2 copy vpt 180 270 arc closepath fill + vpt 0 360 arc} bind def +/C6 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C7 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 270 arc closepath fill + vpt 0 360 arc closepath} bind def +/C8 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C9 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 270 450 arc closepath fill + vpt 0 360 arc closepath} bind def +/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill + 2 copy moveto + 2 copy vpt 90 180 arc closepath fill + vpt 0 360 arc closepath} bind def +/C11 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 180 arc closepath fill + 2 copy moveto + 2 copy vpt 270 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C12 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C13 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 0 90 arc closepath fill + 2 copy moveto + 2 copy vpt 180 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/C14 {BL [] 0 setdash 2 copy moveto + 2 copy vpt 90 360 arc closepath fill + vpt 0 360 arc} bind def +/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill + vpt 0 360 arc closepath} bind def +/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto + neg 0 rlineto closepath} bind def +/Square {dup Rec} bind def +/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def +/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def +/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def +/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def +/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def +/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def +/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill + exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def +/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def +/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill + 2 copy vpt Square fill Bsquare} bind def +/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def +/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def +/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill + Bsquare} bind def +/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill + Bsquare} bind def +/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def +/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy vpt Square fill Bsquare} bind def +/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill + 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def +/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def +/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def +/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def +/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def +/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def +/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def +/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def +/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def +/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def +/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def +/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def +/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def +/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def +/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def +/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def +/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def +/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def +/DiaE {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V closepath stroke} def +/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V closepath stroke} def +/TriUE {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V closepath stroke} def +/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V closepath stroke} def +/PentE {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + closepath stroke grestore} def +/CircE {stroke [] 0 setdash + hpt 0 360 arc stroke} def +/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def +/DiaW {stroke [] 0 setdash vpt add M + hpt neg vpt neg V hpt vpt neg V + hpt vpt V hpt neg vpt V Opaque stroke} def +/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M + 0 vpt2 neg V hpt2 0 V 0 vpt2 V + hpt2 neg 0 V Opaque stroke} def +/TriUW {stroke [] 0 setdash vpt 1.12 mul add M + hpt neg vpt -1.62 mul V + hpt 2 mul 0 V + hpt neg vpt 1.62 mul V Opaque stroke} def +/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M + hpt neg vpt 1.62 mul V + hpt 2 mul 0 V + hpt neg vpt -1.62 mul V Opaque stroke} def +/PentW {stroke [] 0 setdash gsave + translate 0 hpt M 4 {72 rotate 0 hpt L} repeat + Opaque stroke grestore} def +/CircW {stroke [] 0 setdash + hpt 0 360 arc Opaque stroke} def +/BoxFill {gsave Rec 1 setgray fill grestore} def +/Density { + /Fillden exch def + currentrgbcolor + /ColB exch def /ColG exch def /ColR exch def + /ColR ColR Fillden mul Fillden sub 1 add def + /ColG ColG Fillden mul Fillden sub 1 add def + /ColB ColB Fillden mul Fillden sub 1 add def + ColR ColG ColB setrgbcolor} def +/BoxColFill {gsave Rec PolyFill} def +/PolyFill {gsave Density fill grestore grestore} def +/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def +% +% PostScript Level 1 Pattern Fill routine for rectangles +% Usage: x y w h s a XX PatternFill +% x,y = lower left corner of box to be filled +% w,h = width and height of box +% a = angle in degrees between lines and x-axis +% XX = 0/1 for no/yes cross-hatch +% +/PatternFill {gsave /PFa [ 9 2 roll ] def + PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate + PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec + TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse + clip + currentlinewidth 0.5 mul setlinewidth + /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def + 0 0 M PFa 5 get rotate PFs -2 div dup translate + 0 1 PFs PFa 4 get div 1 add floor cvi + {PFa 4 get mul 0 M 0 PFs V} for + 0 PFa 6 get ne { + 0 1 PFs PFa 4 get div 1 add floor cvi + {PFa 4 get mul 0 2 1 roll M PFs 0 V} for + } if + stroke grestore} def +% +/languagelevel where + {pop languagelevel} {1} ifelse + 2 lt + {/InterpretLevel1 true def} + {/InterpretLevel1 Level1 def} + ifelse +% +% PostScript level 2 pattern fill definitions +% +/Level2PatternFill { +/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} + bind def +/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} +>> matrix makepattern +/Pat1 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke + 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} +>> matrix makepattern +/Pat2 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L + 8 8 L 8 0 L 0 0 L fill} +>> matrix makepattern +/Pat3 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L + 0 12 M 12 0 L stroke} +>> matrix makepattern +/Pat4 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L + 0 -4 M 12 8 L stroke} +>> matrix makepattern +/Pat5 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L + 0 12 M 8 -4 L 4 12 M 10 0 L stroke} +>> matrix makepattern +/Pat6 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L + 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} +>> matrix makepattern +/Pat7 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L + 12 0 M -4 8 L 12 4 M 0 10 L stroke} +>> matrix makepattern +/Pat8 exch def +<< Tile8x8 + /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L + -4 0 M 12 8 L -4 4 M 8 10 L stroke} +>> matrix makepattern +/Pat9 exch def +/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def +/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def +/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def +/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def +/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def +/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def +/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def +} def +% +% +%End of PostScript Level 2 code +% +/PatternBgnd { + TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse +} def +% +% Substitute for Level 2 pattern fill codes with +% grayscale if Level 2 support is not selected. +% +/Level1PatternFill { +/Pattern1 {0.250 Density} bind def +/Pattern2 {0.500 Density} bind def +/Pattern3 {0.750 Density} bind def +/Pattern4 {0.125 Density} bind def +/Pattern5 {0.375 Density} bind def +/Pattern6 {0.625 Density} bind def +/Pattern7 {0.875 Density} bind def +} def +% +% Now test for support of Level 2 code +% +Level1 {Level1PatternFill} {Level2PatternFill} ifelse +% +/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont +dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall +currentdict end definefont pop +Level1 SuppressPDFMark or +{} { +/SDict 10 dict def +systemdict /pdfmark known not { + userdict /pdfmark systemdict /cleartomark get put +} if +SDict begin [ + /Title (ItsTimeNorm.eps) + /Subject (gnuplot plot) + /Creator (gnuplot 4.6 patchlevel 5) + /Author (jonas) +% /Producer (gnuplot) +% /Keywords () + /CreationDate (Fri Sep 25 23:58:14 2015) + /DOCINFO pdfmark +end +} ifelse +end +%%EndProlog +%%Page: 1 1 +gnudict begin +gsave +doclip +50 50 translate +0.050 0.050 scale +0 setgray +newpath +(Helvetica) findfont 140 scalefont setfont +BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {BackgroundColor C 1.000 0 0 7200.00 5040.00 BoxColFill} if +1.000 UL +LTb +686 448 M +63 0 V +6198 0 R +-63 0 V +602 448 M +( 0) Rshow +1.000 UL +LTb +686 1044 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.2) Rshow +1.000 UL +LTb +686 1640 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.4) Rshow +1.000 UL +LTb +686 2236 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.6) Rshow +1.000 UL +LTb +686 2831 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 0.8) Rshow +1.000 UL +LTb +686 3427 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 1) Rshow +1.000 UL +LTb +686 4023 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 1.2) Rshow +1.000 UL +LTb +686 4619 M +63 0 V +6198 0 R +-63 0 V +-6282 0 R +( 1.4) Rshow +1.000 UL +LTb +686 448 M +0 63 V +0 4108 R +0 -63 V +686 308 M +( 0) Cshow +1.000 UL +LTb +1580 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 0.5) Cshow +1.000 UL +LTb +2475 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 1) Cshow +1.000 UL +LTb +3369 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 1.5) Cshow +1.000 UL +LTb +4264 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 2) Cshow +1.000 UL +LTb +5158 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 2.5) Cshow +1.000 UL +LTb +6053 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 3) Cshow +1.000 UL +LTb +6947 448 M +0 63 V +0 4108 R +0 -63 V +0 -4248 R +( 3.5) Cshow +1.000 UL +LTb +1.000 UL +LTb +686 4619 N +686 448 L +6261 0 V +0 4171 V +-6261 0 V +Z stroke +LCb setrgbcolor +112 2533 M +currentpoint gsave translate -270 rotate 0 0 M +(|F|) Cshow +grestore +LTb +LCb setrgbcolor +3816 98 M +(Zeit t) Cshow +LTb +3816 4829 M +(Zeitverlauf der Residuen) Cshow +1.000 UP +1.000 UL +LTb +% Begin plot #1 +1.000 UP +1.000 UL +LT0 +LCb setrgbcolor +6296 4486 M +(|F|) Rshow +LT0 +754 505 Pls +813 3677 Pls +871 4263 Pls +935 644 Pls +991 1177 Pls +1047 674 Pls +1104 537 Pls +1163 533 Pls +1221 511 Pls +1279 544 Pls +1336 491 Pls +1395 484 Pls +1453 478 Pls +1510 479 Pls +1568 479 Pls +1626 469 Pls +1687 468 Pls +1749 469 Pls +1810 464 Pls +1868 461 Pls +1926 460 Pls +1984 459 Pls +2042 459 Pls +2100 459 Pls +2159 458 Pls +2217 458 Pls +2275 458 Pls +2337 458 Pls +2396 458 Pls +2456 458 Pls +2515 458 Pls +2574 457 Pls +2634 456 Pls +2696 478 Pls +2758 466 Pls +2818 468 Pls +2876 456 Pls +2935 455 Pls +2993 483 Pls +3051 461 Pls +3109 458 Pls +3169 463 Pls +3231 454 Pls +3291 457 Pls +3350 459 Pls +3409 457 Pls +3470 454 Pls +3530 452 Pls +3590 453 Pls +3649 452 Pls +3709 452 Pls +3773 453 Pls +3835 456 Pls +3895 455 Pls +3954 455 Pls +4014 452 Pls +4073 454 Pls +4132 454 Pls +4192 454 Pls +4250 452 Pls +4310 452 Pls +4369 452 Pls +4427 452 Pls +4486 459 Pls +4545 454 Pls +4606 454 Pls +4665 494 Pls +4724 473 Pls +4786 486 Pls +4853 478 Pls +4916 477 Pls +4976 474 Pls +5036 472 Pls +5096 485 Pls +5155 479 Pls +5216 461 Pls +5277 461 Pls +5337 464 Pls +5397 458 Pls +5458 460 Pls +5518 459 Pls +5578 455 Pls +5639 462 Pls +5699 459 Pls +5760 462 Pls +5824 461 Pls +5895 456 Pls +5959 458 Pls +6022 456 Pls +6083 453 Pls +6144 452 Pls +6205 476 Pls +6265 468 Pls +6326 459 Pls +6387 461 Pls +6450 458 Pls +6512 476 Pls +6573 486 Pls +6634 503 Pls +6692 468 Pls +6753 481 Pls +6579 4486 Pls +% End plot #1 +1.000 UL +LTb +686 4619 N +686 448 L +6261 0 V +0 4171 V +-6261 0 V +Z stroke +1.000 UP +1.000 UL +LTb +stroke +grestore +end +showpage +%%Trailer +%%DocumentFonts: Helvetica diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Main.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Main.F90 new file mode 100644 index 000000000..3ad6d2814 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Main.F90 @@ -0,0 +1,234 @@ + +!> +!!THIS CODE WAS WRITTEN AT +!!UNIVERSITY OF STUTTGART, +!!INSTITUTE OF TECHNICAL THERMODYNAMICS AND THERMAL PROCESS ENGINEERING +!!BY +!!JOACHIM GROSS +!!JONAS MAIRHOFER +!! +!! + + + + + + + + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This program calculates surface tensions using the a Density Functional +!! Theory based on the PC-SAFTequation of state. +!! The contributions to the Helmholtz energy functional are calculated +!! as folows: +!! Hard Sphere Contribution: White-Bear Version of the Fundamental Measure Theory +!! Chain Formation: TPT1 +!! Dispersion is treated in a weighted density approximation +!! Associative and polar contributions are treated in a local density approximation +!! +!! +!! The input parameters are read from the file "in.txt" which has to +!! be in the same directory as the executable. +!! +!! The input file must have the following format: +!! Line1: Value of temperature in Kelvin +!! Line2: Number of components present in the system (ncomp) +!! Line3 Name of component 1 +!! ... +!! Line3+ncomp Name of component ncomp +!! Line3+ncomp+1 Molar (overall) concentration of component 1 +!! ... +!! Line3+2ncomp Molar (overall) concentration of component ncomp +!! +!! For a binary system, these molar fractions are only treated as an initial guess and may be set to e.g. 0. +!! +!! +!! So far, pressure is set to 1bar in all calculaions +!! +!! +!!If you would like to use this code in your work, please cite the +!!following publications: +!! +!!Gross, Joachim, and Gabriele Sadowski. "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules." Industrial & engineering chemistry research 40.4 (2001): 1244-1260. +!!Gross, Joachim, and Gabriele Sadowski. "Application of the perturbed-chain SAFT equation of state to associating systems." Industrial & engineering chemistry research 41.22 (2002): 5510-5515. +!!Gross, Joachim, and Jadran Vrabec. "An equation?of?state contribution for polar components: Dipolar molecules." AIChE journal 52.3 (2006): 1194-1204. +!!Gross, Joachim. "A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state." The Journal of chemical physics 131.20 (2009): 204705. +!!Klink, Christoph, and Joachim Gross. "A density functional theory for vapor?liquid interfaces of mixtures using the perturbed-chain polar statistical associating fluid theory equation of state." Industrial & Engineering Chemistry Research 53.14 (2014): 6169-6178. +!! +!! +!! In order to run this code, PETSc 3.4.4 has to be installed +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + + +Program DFT + +Use PARAMETERS, Only: np,nc,KBOL +Use BASIC_VARIABLES, Only: ncomp,t,p,ensemble_flag,num,parame,eos,pol,xif,compna +Use EOS_VARIABLES, Only: dhs,mseg,eta,dd_term,dq_term,qq_term +Use EOS_CONSTANTS, Only: ap,bp,dnm +Use mod_DFT, Only: box,dzp,fa,zp,fa_disp,ab_disp,pbulk +Use VLE_VAR, ONLY: tc,pc,rhob,density +USE DFT_FCN_MODULE, ONLY: chemPot_total + +!PETSc modules +Use PetscManagement +Use f90moduleinterfaces +Use Global_x !(snes,ngrid,ngp,x,r,timer) + + +Implicit None + +#include + +!> ---------------------------------------------------------------------- +!!Variables +!! ---------------------------------------------------------------------- + +PetscErrorCode :: ierr +type (userctx) :: user +PetscBool :: flg +INTEGER :: i +character(80) :: filename='' +REAL :: zges(np) +REAL :: dhs_save(nc) +REAL :: cif(nc) +REAL :: psi_factor + +!external subroutines associated with Solver +external FormInitialGuess +external FormFunction + + +!> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +!! Initialize program +!! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + call PetscInitialize(PETSC_NULL_CHARACTER,ierr) + call MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr) + call MPI_Comm_size(PETSC_COMM_WORLD,user%num_procs,ierr) + +!> ---------------------------------------------------------------------- +!!Read information from inputfile "in.txt" +!! ---------------------------------------------------------------------- + + filename='./in.txt' + CALL file_open(filename,77) ! open input file + READ (77,*) t ! read temperature + READ (77,*) ncomp ! read number of components in the system + Do i = 1,ncomp ! read component names + READ (77,*) compna(i) + End Do + Do i = 1,ncomp ! read component overall molar concentrations + READ (77,*) xif(i) + End Do + +! !calculate molar fractions from molar concentrations +! xif(1:ncomp) =cif(1:ncomp) / sum(cif(1:ncomp)) + + +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +! GENERAL SIMULATION SET UP +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + num = 0 ! (num=0: using analytical derivatives of EOS) + ! (num=1: using numerical derivatives of EOS) + ! (num=2: White's renormalization group theory) + IF ( num /= 0 ) CALL SET_DEFAULT_EOS_NUMERICAL + + eos = 1 + pol = 1 + + p = 1.000e05 + + CALL para_input ! retriev pure comp. parameters + + ensemble_flag = 'tp' ! this specifies, whether the eos-subroutines + ! are executed for constant 'tp' or for constant 'tv' + + + +!> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +!! Start phase equilibrium calculation and determine critical point +!! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + CALL EOS_CONST (ap, bp, dnm) + + dd_term = 'GV' ! dipole-dipole term of Gross & Vrabec (2006) + qq_term = 'JG' ! quadrupole-quadrupole term of Gross (2005) + dq_term = 'VG' ! dipole-quadrupole term of Vrabec & Gross (2008) + + CALL VLE_MIX(rhob,density,chemPot_total,user) !user is passed so user%rank is known and only node 0 prints out the reslts of the VLE calculation + + !determine critical point + num = 0 + dhs_save = dhs !needed because subroutine CRIT_POINT_MIX changes the value + CALL CRIT_POINT_MIX(tc,user) !of the global variable dhs! In cases where Tc doesnt converge + dhs = dhs_save !dhs can be NAN after CRIT_POINT_MIX!! + !chance to overwite NAN results +! IF(user%rank == 0) THEN +! WRITE (*,*) 'Give final value of Tc:' +! READ (*,*) tc +! END IF +! CALL MPI_Bcast(tc,1,MPI_DOUBLE_PRECISION,0,PETSC_COMM_WORLD,ierr) + + + + +!>------------------------------------------- +!!DFT Set Up +!!------------------------------------------- + + num = 1 + CALL SET_DEFAULT_EOS_NUMERICAL + + !set default values (overwritten from makefile) + box = 45.0 !box length [A] + ngrid = 614 !grid points + + !overwrite box size and ngrid if options are set in makefile + call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-box',box,flg,ierr) + call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-nx',ngrid,flg,ierr) + + + dzp = box / REAL(ngrid) !grid spacing [A] + Allocate(fa(ncomp)) + fa(1:ncomp) = NINT( parame(1:ncomp,2) / dzp ) !grid points per sigma [-] + + !FOR DISP + ALLOCATE(fa_disp(ncomp),ab_disp(ncomp)) + psi_factor = 1.5 + fa_disp(1:ncomp) = NINT( psi_factor * REAL(fa(1:ncomp)) ) + Do i=1,ncomp + if( MOD(fa_disp(i),2) /= 0 ) fa_disp(i) = fa_disp(i) + 1 + End Do + + + ab_disp(1:ncomp) = psi_factor * dhs(1:ncomp) + + + ngp = 2 * maxval(fa_disp(1:ncomp)) + 5 !number of ghost points (+5 kann eig weg) + + Allocate(zp(-ngp:ngrid+ngp)) + + Do i=-ngp,ngrid+ngp + zp(i) = REAL(i) * dzp !z-distance from origin of grid points [A] + End Do + + pbulk = ( p * 1.E-30 ) / ( KBOL*t* rhob(1,0) ) * rhob(1,0) !p/kT + + + !update z3t, the T-dependent quantity that relates eta and rho, as eta = z3t*rho + CALL PERTURBATION_PARAMETER + +!>------------------------------------------- +!!Evaluate Initial Guess,Set up solver,solve system +!!------------------------------------------- + call SolverSetup + + + +End Program DFT diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Modules.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Modules.F90 new file mode 100644 index 000000000..d8045cdfb --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Modules.F90 @@ -0,0 +1,527 @@ +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains constants and upper boundaries for the number of +!! components and phases in the system +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module PARAMETERS + + implicit none + save + + integer, parameter :: nc = 3 + integer, parameter :: np = 3 + integer, parameter :: nsite = 5 + + real, parameter :: PI = 3.141592653589793 + real, parameter :: RGAS = 8.31441 + real, parameter :: NAv = 6.022045E23 + real, parameter :: KBOL = RGAS / NAv + real, parameter :: TAU = PI / 3.0 / SQRT(2.0) + +real :: muhs(3) +real :: muhc(3) +real :: mudisp(3) + + + +End Module PARAMETERS + + + + + +Module VLE_VAR +USE PARAMETERS, ONLY: nc,np +implicit none + +REAL :: tc +REAL :: pc +REAL :: rhob(2,0:nc) +REAL :: density(np) + +End Module VLE_VAR + + + + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables that define the +!! thermodynamic state of the system as well as simulation parameters +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module BASIC_VARIABLES + + use PARAMETERS, only: nc, np, nsite + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture +! ---------------------------------------------------------------------- + integer :: ncomp + integer :: nphas + + real :: t + !real :: tc + real :: p + real, dimension(np) :: dense + !real, dimension(np) :: rhob + + real, dimension(np, nc) :: xi + real, dimension(np, nc) :: lnx + real, dimension(nc) :: xiF + + real, dimension(nc) :: mm + real, dimension(np, nc, nsite) :: mxx + + real :: alpha + + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- + real, dimension(nc, 25) :: parame = 0.0 + real, dimension(nc) :: chiR + character*30, dimension(nc) :: compna + real, dimension(nc, nc) :: kij, lij + real, dimension(nc, nc) :: E_LC, S_LC + real, dimension(nc) :: LLi, phi_criti, chap + + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real, dimension(np) :: densta + real, dimension(0:nc*np+6) :: val_init, val_conv + + real :: h_lv + real, dimension(np) :: cpres, enthal, entrop, gibbs, f_res + + real, dimension(np) :: dp_dz, dp_dz2 + + +! ---------------------------------------------------------------------- +! choice of EOS-model and solution method +! ---------------------------------------------------------------------- + integer :: eos, pol + integer :: num + character (LEN=2) :: ensemble_flag + character (LEN=10) :: RGT_variant + + +! ---------------------------------------------------------------------- +! for input/output +! ---------------------------------------------------------------------- + integer :: outp, bindiag + real :: u_in_T, u_out_T, u_in_P, u_out_P + + +! ---------------------------------------------------------------------- +! quantities defining the numerical procedure +! ---------------------------------------------------------------------- + integer :: n_unkw + + real :: step_a, acc_a !, acc_i + real, dimension(nc) :: scaling + real, dimension(3500) :: plv_kon + real, dimension(2, 3500) :: d_kond + + character*3, dimension(10) :: it, sum_rel + character*3 :: running + + +End Module BASIC_VARIABLES + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables to identify thermodynamic +!! properties +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_VARIABLES + + use PARAMETERS, only: nc, nsite, PI, KBOL, TAU, NAv + use BASIC_VARIABLES, only: ncomp, eos, t, p, parame, E_LC, S_LC, chiR, & + LLi, phi_criti, chap, kij, lij, ensemble_flag + implicit none + save + +! ---------------------------------------------------------------------- +! basic quantities defining the mixture (single phase) +! ---------------------------------------------------------------------- + real :: x(nc) + real :: eta_start + real :: eta + real :: rho + +! ---------------------------------------------------------------------- +! thermodynamic quantities +! ---------------------------------------------------------------------- + real :: fres + real :: lnphi(nc) + real :: pges + real :: pgesdz + real :: pgesd2 + real :: pgesd3 + + real :: h_res + real :: cp_res + real :: s_res + +! ---------------------------------------------------------------------- +! quantities of fluid theory +! ---------------------------------------------------------------------- + real :: gij(nc,nc) + real :: mx(nc,nsite) + + real :: mseg(nc) + real :: dhs(nc) + real :: uij(nc,nc) + real :: sig_ij(nc,nc) + real :: vij(nc,nc) + + real :: um + real :: order1 + real :: order2 + real :: apar(0:6) + real :: bpar(0:6) + + real :: z0t + real :: z1t + real :: z2t + real :: z3t + + integer :: nhb_typ(nc) + real :: ass_d(nc,nc,nsite,nsite) + real :: nhb_no(nc,nsite) + real :: dij_ab(nc,nc) + +! ---------------------------------------------------------------------- +! auxilliary quantities +! ---------------------------------------------------------------------- + real :: tfr + integer :: phas + + character (LEN = 2) :: dd_term, qq_term, dq_term + + real :: densav(3), denold(3) + real :: density_error(3) + + real :: alpha_nematic + real :: alpha_test(2) + +End Module EOS_VARIABLES + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains variables to store the EOS model constants +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_CONSTANTS + + use PARAMETERS, only: nc + implicit none + save + + real, dimension(0:6,3) :: ap, bp + real, dimension(4,9) :: dnm + + real, dimension(28) :: c_dd, n_dd, m_dd, k_dd, o_dd + real, dimension(nc,nc,0:8) :: qqp2, qqp4, ddp2, ddp4, dqp2, dqp4 + real, dimension(nc,nc,nc,0:8) :: qqp3, ddp3, dqp3 + +End Module EOS_CONSTANTS + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains parameters and variables for the numerical +!! evaluation of derivatives of the EOS +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +Module EOS_NUMERICAL_DERIVATIVES + + use EOS_VARIABLES, only: dd_term, qq_term, dq_term + + implicit none + save + + character (LEN=9) :: ideal_gas ! (yes, no) + character (LEN=9) :: hard_sphere ! (CSBM, no) + character (LEN=9) :: chain_term ! (TPT1, no) + character (LEN=9) :: disp_term ! (PC-SAFT, CK, no) + character (LEN=9) :: hb_term ! (TPT1_Chap, no) + character (LEN=9) :: LC_term ! (MSaupe, no) + character (LEN=9) :: branch_term ! (TPT2, no) + character (LEN=9) :: II_term ! (......., no) + character (LEN=9) :: ID_term ! (......., no) + + character (LEN=9) :: subtract1 ! (1PT, 2PT, no) + character (LEN=9) :: subtract2 ! (ITTpolar, no) + + character (LEN=9) :: save_eos_terms(10) + +End Module EOS_NUMERICAL_DERIVATIVES + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! Module STARTING_VALUES +!! This module contains parameters and variables for a phase stability +!! analyis as part of a flash calculation. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + Module STARTING_VALUES + + use PARAMETERS, only: nc + implicit none + save + + REAL, DIMENSION(nc) :: rhoif, rhoi1, rhoi2, grad_fd + REAL :: fdenf + + End Module STARTING_VALUES + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! Module DFT_MODULE +!! This module contains parameters and variables for DFT calculations. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + Module DFT_MODULE + + use PARAMETERS, only: nc + implicit none + save + +INTEGER, PARAMETER :: NDFT = 4000 +INTEGER, PARAMETER :: NDFT2 = 4000 + +INTEGER, PARAMETER :: r_grid = 200 + integer :: discret + REAL :: box_l_no_unit +! REAL :: pbulk + INTEGER :: kmax, den_step + LOGICAL :: shift, WCA, MFT + REAL :: rc, rg, dzr, tau_cut + REAL :: d_hs, dhs_st, z3t_st + REAL :: z_ges + REAL, DIMENSION(r_grid) :: x1a + REAL, DIMENSION(NDFT) :: x2a + REAL, DIMENSION(r_grid,NDFT) :: ya, y1a, y2a, y12a + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub + REAL :: fres_temp +! REAL :: free + + REAL, DIMENSION(r_grid) :: x1a_11 + REAL, DIMENSION(NDFT) :: x2a_11 + REAL, DIMENSION(r_grid,NDFT) :: ya_11, y1a_11, y2a_11, y12a_11 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_11 + REAL, DIMENSION(r_grid) :: x1a_12 + REAL, DIMENSION(NDFT) :: x2a_12 + REAL, DIMENSION(r_grid,NDFT) :: ya_12, y1a_12, y2a_12, y12a_12 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_12 + REAL, DIMENSION(r_grid) :: x1a_22 + REAL, DIMENSION(NDFT) :: x2a_22 + REAL, DIMENSION(r_grid,NDFT) :: ya_22, y1a_22, y2a_22, y12a_22 + REAL, DIMENSION(r_grid,NDFT,4,4) :: c_bicub_22 + + End Module DFT_MODULE + + +Module rdf_variables + + implicit none + save + + real, dimension(0:20) :: fac(0:20) + +End Module rdf_variables + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This module contains the variavles that are needed in the core DFT_FCN +!! They are not passed directly to DFT_FCN because the nonlinear solver +!! needs a certain calling structure: fcn(x,fvec,n) +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +Module DFT_FCN_MODULE + +use PARAMETERS, only: nc + implicit none + +!INTEGER :: irc(nc),irc_j,ih,fa(nc) +! REAL, DIMENSION(-NDFT:NDFT) :: zp +! REAL, DIMENSION(-NDFT:NDFT) :: f_tot +! REAL, DIMENSION(-NDFT:NDFT,2) :: dF_drho_tot +! REAL :: rhob_dft(2,0:nc) + !REAL :: my0(nc) + REAL :: chemPot_total(nc) + REAL :: chemPot_res(nc) + +End Module DFT_FCN_MODULE + + +Module mod_DFT + +Implicit None + +REAL :: box !box length [A] +!INTEGER :: ngrid !grid points +!INTEGER :: ngp !ghost points +REAL :: dzp !grid spacing [A] +INTEGER,allocatable :: fa(:) !grid points per sigma [-] +REAL, allocatable :: zp(:) !z-distance from origin [A] +INTEGER,allocatable :: fa_disp(:) !integraition interval for dispersion wda +REAL,allocatable :: ab_disp(:) !integraition interval for dispersion wda +REAL :: pbulk, free + + + +End Module mod_DFT + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! Module Module_Heidemann_Khalil +! +! This module .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + Module Module_Heidemann_Khalil + + implicit none + save + + real :: error_condition2 + + End Module + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +! ! ! Module PARAMETERS +! ! ! +! ! ! Implicit None +! ! ! +! ! ! REAL, parameter :: PI = 3.141592653589793 +! ! ! Integer, parameter :: nc = 3 +! ! ! Integer, parameter :: np = 3 +! ! ! +! ! ! End Module PARAMETERS +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! Module BASIC_VARIABLES +! ! ! +! ! ! Use Parameters, Only: nc +! ! ! +! ! ! Implicit None +! ! ! +! ! ! INTEGER :: ncomp +! ! ! REAL :: t +! ! ! REAL :: kij(nc,nc) +! ! ! Integer :: eos, pol +! ! ! Integer :: num +! ! ! character (LEN=2) :: ensemble_flag +! ! ! +! ! ! +! ! ! End Module BASIC_VARIABLES +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! Module EOS_VARIABLES +! ! ! +! ! ! Implicit None +! ! ! +! ! ! +! ! ! REAL, allocatable :: mseg(:) +! ! ! REAL, allocatable :: eps(:) +! ! ! REAL, allocatable :: sig(:) +! ! ! REAL, allocatable :: dhs(:) +! ! ! +! ! ! REAL :: eta +! ! ! REAL :: rho +! ! ! REAL, allocatable :: xx(:) +! ! ! REAL,allocatable :: sig_ij(:,:), uij(:,:) +! ! ! +! ! ! character (LEN = 2) :: dd_term, qq_term, dq_term +! ! ! +! ! ! End Module EOS_VARIABLES +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! Module EOS_CONSTANTS +! ! ! +! ! ! Implicit None +! ! ! +! ! ! REAL :: ap(0:6,3),bp(0:6,3) +! ! ! +! ! ! End Module EOS_CONSTANTS +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! +! ! ! diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Numeric_subroutines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Numeric_subroutines.F90 new file mode 100644 index 000000000..fe8f1c1bf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Numeric_subroutines.F90 @@ -0,0 +1,1676 @@ +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! This file contains subroutines for subtasks like spline interpolations, +!! spline integration and function minimization +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + + + + + +SUBROUTINE bicub_derivative ( ya, x1a, x2a, y1a, y2a, y12a, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(OUT) :: y1a(r_grid,NDFT) + REAL, INTENT(OUT) :: y2a(r_grid,NDFT) + REAL, INTENT(OUT) :: y12a(r_grid,NDFT) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k +! ---------------------------------------------------------------------- + + +DO i = 2, i_max-1 + DO k = 2, k_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k+1)-ya(i+1,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) + END DO +END DO + +i = 1 +DO k = 1, k_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + +k = 1 +DO i = 1, i_max + y1a(i,k) = 0.0 + y2a(i,k) = 0.0 + y12a(i,k)= 0.0 +END DO + + +i = i_max +DO k = 2, k_max-1 + y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) + y2a(i,k) = (ya(i,k+1)-ya(i,k-1)) / (x2a(k+1)-x2a(k-1)) + y12a(i,k)= (ya(i,k+1)-ya(i,k-1)-ya(i-1,k+1)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k+1)-x2a(k-1))) +END DO + + +k = k_max +DO i = 2, i_max-1 + y1a(i,k) = (ya(i+1,k)-ya(i-1,k)) / (x1a(i+1)-x1a(i-1)) + y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) + y12a(i,k)= (ya(i+1,k)-ya(i+1,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i+1)-x1a(i-1))*(x2a(k)-x2a(k-1))) +END DO + +k = k_max +i = i_max +y1a(i,k) = (ya(i,k)-ya(i-1,k)) / (x1a(i)-x1a(i-1)) +y2a(i,k) = (ya(i,k)-ya(i,k-1)) / (x2a(k)-x2a(k-1)) +y12a(i,k)= (ya(i,k)-ya(i,k-1)-ya(i-1,k)+ya(i-1,k-1)) & + /((x1a(i)-x1a(i-1))*(x2a(k)-x2a(k-1))) + +END SUBROUTINE bicub_derivative + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bicub_c ( ya, x1a, x2a, y1a, y2a, y12a, c_bicub, i_max, k_max ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(OUT) :: c_bicub(r_grid,NDFT,4,4) + INTEGER, INTENT(IN) :: i_max + INTEGER, INTENT(IN) :: k_max +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, m, n + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +DO i = 1, i_max-1 + DO k = 1, k_max-1 + y(1)=ya(i,k) + y(2)=ya(i+1,k) + y(3)=ya(i+1,k+1) + y(4)=ya(i,k+1) + + y1(1)=y1a(i,k) + y1(2)=y1a(i+1,k) + y1(3)=y1a(i+1,k+1) + y1(4)=y1a(i,k+1) + + y2(1)=y2a(i,k) + y2(2)=y2a(i+1,k) + y2(3)=y2a(i+1,k+1) + y2(4)=y2a(i,k+1) + + y12(1)=y12a(i,k) + y12(2)=y12a(i+1,k) + y12(3)=y12a(i+1,k+1) + y12(4)=y12a(i,k+1) + + x1l=x1a(i) + x1u=x1a(i+1) + x2l=x2a(k) + x2u=x2a(k+1) + + CALL bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) + DO m=1,4 + DO n=1,4 + c_bicub(i,k,m,n)=c(m,n) + END DO + END DO + + END DO +END DO + +END SUBROUTINE bicub_c + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: y(4) + REAL, INTENT(IN) :: y1(4) + REAL, INTENT(IN) :: y2(4) + REAL, INTENT(IN) :: y12(4) + REAL, INTENT(IN) :: d1 + REAL, INTENT(IN) :: d2 + REAL, INTENT(OUT) :: c(4,4) +! +! ---------------------------------------------------------------------- + INTEGER :: i,j,k,l + REAL :: d1d2,xx,cl(16),wt(16,16),x(16) + SAVE wt + DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4,10* & + 0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4, & + 1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0, & + -6,4,2*0,3,-2,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2, & + 10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4, & + -2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0, & + 2,-2,2*0,-1,1/ +! ---------------------------------------------------------------------- + +d1d2 = d1 * d2 +DO i = 1, 4 + x(i) = y(i) + x(i+4) = y1(i)*d1 + x(i+8) = y2(i)*d2 + x(i+12) = y12(i)*d1d2 +END DO +DO i = 1, 16 + xx = 0.0 + DO k = 1, 16 + xx = xx + wt(i,k) * x(k) + END DO + cl(i) = xx +END DO +l = 0 +DO i = 1, 4 + DO j = 1, 4 + l = l + 1 + c(i,j) = cl(l) + END DO +END DO + +END SUBROUTINE bcucof + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE BI_CUB_SPLINE ( rho_rdf, xg, ya, x1a, x2a, y1a, y2a, y12a, & + c_bicub, rdf, dg_drho, dg_dr, i_max, ih, k ) +! + USE DFT_MODULE, ONLY: NDFT, r_grid + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: rho_rdf + REAL, INTENT(IN OUT) :: xg + REAL, INTENT(IN) :: ya(r_grid,NDFT) + REAL, INTENT(IN) :: x1a(r_grid) + REAL, INTENT(IN) :: x2a(NDFT) + REAL, INTENT(IN) :: y1a(r_grid,NDFT) + REAL, INTENT(IN) :: y2a(r_grid,NDFT) + REAL, INTENT(IN) :: y12a(r_grid,NDFT) + REAL, INTENT(IN) :: c_bicub(r_grid,NDFT,4,4) + REAL, INTENT(OUT) :: rdf + REAL, INTENT(OUT) :: dg_drho + REAL, INTENT(OUT) :: dg_dr + INTEGER, INTENT(IN OUT) :: i_max + !INTEGER, INTENT(IN OUT) :: k_max + INTEGER, INTENT(OUT) :: ih + INTEGER, INTENT(IN) :: k +! +! ---------------------------------------------------------------------- + INTEGER :: m, n + + REAL :: y(4),y1(4),y2(4),y12(4),x1l,x1u,x2l,x2u + REAL :: c(4,4) +! ---------------------------------------------------------------------- + +IF ( rho_rdf < x1a(1) ) THEN + dg_drho = 0.0 + dg_dr = 0.0 + rdf = 1.0 + RETURN +END IF +IF ( x1a(ih) <= rho_rdf .AND. rho_rdf < x1a(ih+1) ) GO TO 10 +IF ( ih > 2 ) THEN + IF ( x1a(ih-1) <= rho_rdf .AND. rho_rdf < x1a(ih) ) THEN + ih = ih - 1 + GO TO 10 + END IF +END IF +! write (*,*) 'in ',ih +CALL hunt ( x1a, i_max, rho_rdf, ih ) +! write (*,*) 'out',ih +10 CONTINUE +IF ( x2a(k) /= xg ) THEN +! write (*,*) 'error bi-cubic-spline',k,x2a(k),xg +! DO k=1,NDFT +! write (*,*) k,x2a(k) +! ENDDO +! stop +END IF + + + +y(1) = ya(ih,k) +y(2) = ya(ih+1,k) +y(3) = ya(ih+1,k+1) +y(4) = ya(ih,k+1) + +y1(1) = y1a(ih,k) +y1(2) = y1a(ih+1,k) +y1(3) = y1a(ih+1,k+1) +y1(4) = y1a(ih,k+1) + +y2(1) = y2a(ih,k) +y2(2) = y2a(ih+1,k) +y2(3) = y2a(ih+1,k+1) +y2(4) = y2a(ih,k+1) + +y12(1) = y12a(ih,k) +y12(2) = y12a(ih+1,k) +y12(3) = y12a(ih+1,k+1) +y12(4) = y12a(ih,k+1) + +x1l = x1a(ih) +x1u = x1a(ih+1) +x2l = x2a(k) +x2u = x2a(k+1) + +DO m = 1, 4 + DO n = 1, 4 + c(m,n) = c_bicub( ih, k, m, n ) + END DO +END DO +CALL bcuint ( x1l, x1u, x2l, x2u, rho_rdf, xg, c, rdf, dg_drho, dg_dr ) + +END SUBROUTINE BI_CUB_SPLINE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE hunt +! +! Given an array xx(1:n), and given a value x, returns a value jlo +! such that x is between xx(jlo) and xx(jlo+1). xx(1:n) must be +! monotonic, either increasing or decreasing. jlo=0 or jlo=n is +! returned to indicate that x is out of range. jlo on input is taken +! as the initial guess for jlo on output. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE hunt ( xx, n, x, jlo ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(OUT) :: jlo + REAL, INTENT(IN) :: xx(n) + REAL :: x +! +! ---------------------------------------------------------------------- + INTEGER :: inc,jhi,jm + LOGICAL :: ascnd +! ---------------------------------------------------------------------- + +ascnd = xx(n) >= xx(1) +IF( jlo <= 0 .OR. jlo > n ) THEN + jlo = 0 + jhi = n + 1 + GO TO 3 +END IF +inc = 1 +IF( x >= xx(jlo) .EQV. ascnd ) THEN +1 jhi = jlo + inc + IF ( jhi > n ) THEN + jhi = n + 1 + ELSE IF ( x >= xx(jhi) .EQV. ascnd ) THEN + jlo = jhi + inc = inc + inc + GO TO 1 + END IF +ELSE + jhi = jlo +2 jlo = jhi - inc + IF ( jlo < 1 ) THEN + jlo = 0 + ELSE IF ( x < xx(jlo) .EQV. ascnd ) THEN + jhi = jlo + inc = inc + inc + GO TO 2 + END IF +END IF +3 IF (jhi-jlo == 1 ) THEN + IF ( x == xx(n)) jlo = n - 1 + IF ( x == xx(1) ) jlo = 1 + RETURN +END IF +jm = ( jhi + jlo ) / 2 +IF ( x >= xx(jm) .EQV. ascnd ) THEN + jlo = jm +ELSE + jhi = jm +END IF +GO TO 3 +END SUBROUTINE hunt + + + +!********************************************************************** +! +!********************************************************************** +! + !SUBROUTINE bcuint ( y, y1, y2, y12, x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) + SUBROUTINE bcuint ( x1l, x1u, x2l, x2u, x1, x2, c, ansy, ansy1, ansy2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + !REAL, INTENT(IN OUT) :: y(4) + !REAL, INTENT(IN OUT) :: y1(4) + !REAL, INTENT(IN OUT) :: y2(4) + !REAL, INTENT(IN OUT) :: y12(4) + REAL, INTENT(IN OUT) :: x1l + REAL, INTENT(IN OUT) :: x1u + REAL, INTENT(IN OUT) :: x2l + REAL, INTENT(IN OUT) :: x2u + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: x2 + REAL, INTENT(IN) :: c(4,4) + REAL, INTENT(OUT) :: ansy + REAL, INTENT(OUT) :: ansy1 + REAL, INTENT(OUT) :: ansy2 +! +! ---------------------------------------------------------------------- + !U USES bcucof + INTEGER :: i + REAL :: t, u +! ---------------------------------------------------------------------- + +! call bcucof ( y, y1, y2, y12, x1u-x1l, x2u-x2l, c ) + +IF ( x1u == x1l .OR. x2u == x2l ) PAUSE 'bad input in bcuint' +t = (x1-x1l) / (x1u-x1l) +u = (x2-x2l) / (x2u-x2l) +ansy = 0.0 +ansy2 = 0.0 +ansy1 = 0.0 +DO i = 4, 1, -1 + ansy = t *ansy + ( (c(i,4)*u + c(i,3))*u+c(i,2) )*u + c(i,1) + ansy2 = t *ansy2 + ( 3.*c(i,4)*u+2.*c(i,3) )*u + c(i,2) + ansy1 = u *ansy1 + ( 3.*c(4,i)*t+2.*c(3,i) )*t + c(2,i) +END DO +ansy1 = ansy1 / (x1u-x1l) +ansy2 = ansy2 / (x2u-x2l) + +END SUBROUTINE bcuint + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE spline ( x, y, n, yp1, ypn, y2 ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: NMAX = 1000 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(NMAX) +! ---------------------------------------------------------------------- + +If(n > NMAX) stop 'Increase NMAX in Spline!!' + + + + IF ( yp1 > 0.99E30 ) THEN + y2(1) = 0.0 + u(1) = 0.0 + ELSE + y2(1) = -0.5 + u(1) = ( 3.0/(x(2)-x(1)) ) * ( (y(2)-y(1))/(x(2)-x(1))-yp1 ) + END IF + DO i = 2, n-1 + IF ( (x(i+1)-x(i)) == 0.0 .OR. (x(i)-x(i-1)) == 0.0 .OR. (x(i+1)-x(i-1)) == 0.0 ) THEN + write (*,*) 'error in spline-interpolation' + stop + END IF + sig = (x(i)-x(i-1)) / (x(i+1)-x(i-1)) + p = sig*y2(i-1) + 2.0 + y2(i) = (sig-1.0) / p + u(i) = ( 6.0 * ((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1))) / (x(i+1)-x(i-1)) & + - sig * u(i-1) ) / p + END DO + IF ( ypn > 0.99E30 ) THEN + qn = 0.0 + un = 0.0 + ELSE + qn = 0.5 + un = (3.0/(x(n)-x(n-1))) * (ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2(n) = (un-qn*u(n-1)) / (qn*y2(n-1)+1.0) + DO k = n-1, 1, -1 + y2(k) = y2(k) * y2(k+1) + u(k) + END DO + +END SUBROUTINE spline + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE splint_integral ( xa, ya, y2a, n, xlo, xhi, integral ) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, INT, x0, x1, y0, y1, y20, y21 +! ---------------------------------------------------------------------- + + integral = 0.0 + klo_l = 1 + khi_l = n +1 IF ( khi_l-klo_l > 1 ) THEN + k = ( khi_l + klo_l ) / 2 + IF ( xa(k) > xlo ) THEN + khi_l = k + ELSE + klo_l = k + END IF + GO TO 1 + END IF + + klo_h = 1 + khi_h = n +2 IF ( khi_h-klo_h > 1 ) THEN + k = ( khi_h + klo_h ) / 2 + IF ( xa(k) > xhi ) THEN + khi_h = k + ELSE + klo_h = k + END IF + GO TO 2 + END IF + + ! integration in spline pieces, the lower interval, bracketed + ! by xa(klo_L) and xa(khi_L) is in steps shifted upward. + + ! first: determine upper integration bound + xl = xlo +3 CONTINUE + IF ( khi_h > khi_l ) THEN + xh = xa(khi_l) + ELSE IF ( khi_h == khi_l ) THEN + xh = xhi + ELSE + WRITE (*,*) 'error in spline-integration' + PAUSE + END IF + + h = xa(khi_l) - xa(klo_l) + IF ( h == 0.0 ) PAUSE 'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0 = ya(klo_l) + y1 = ya(khi_l) + y20= y2a(klo_l) + y21= y2a(khi_l) + ! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & + ! -y20/6.*h*h*(x1-.5*xL) & + ! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xL-x0) ) + ! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & + ! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & + ! -y20/6.*h*h*(x1-.5*xH) & + ! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & + ! -y21/6.*h*h*(.5*xH-x0) ) + INT = -1.0/h * ( xl*((x1-.5*xl)*y0 + (0.5*xl-x0)*y1) & + -y20/24.*(x1-xl)**4 + y20/6.*(0.5*xl*xl-x1*xl)*h*h & + +y21/24.*(xl-x0)**4 - y21/6.*(0.5*xl*xl-x0*xl)*h*h ) + INT = INT + 1.0/h * ( xh*((x1-.5*xh)*y0 + (0.5*xh-x0)*y1) & + -y20/24.*(x1-xh)**4 + y20/6.*(0.5*xh*xh-x1*xh)*h*h & + +y21/24.*(xh-x0)**4 - y21/6.*(0.5*xh*xh-x0*xh)*h*h ) + + integral = integral + INT + ! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h /= (khi_l-1)) GO TO 3 ! the -1 in (khi_L-1) because khi_L was already counted up + +END SUBROUTINE splint_integral + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION praxis( t0, machep, h0, n, prin, x, f, fmin ) + + IMPLICIT NONE + +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: x(n) + REAL :: f + REAL, INTENT(IN OUT) :: fmin +! ---------------------------------------------------------------------- + +EXTERNAL f + +! PRAXIS RETURNS THE MINIMUM OF THE FUNCTION F(X,N) OF N VARIABLES +! USING THE PRINCIPAL AXIS METHOD. THE GRADIENT OF THE FUNCTION IS +! NOT REQUIRED. + +! FOR A DESCRIPTION OF THE ALGORITHM, SEE CHAPTER SEVEN OF +! "ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT +! CALCULATING DERIVATIVES" BY RICHARD P BRENT. + +! THE PARAMETERS ARE: +! T0 IS A TOLERANCE. PRAXIS ATTEMPTS TO RETURN PRAXIS=F(X) +! SUCH THAT IF X0 IS THE TRUE LOCAL MINIMUM NEAR X, THEN +! NORM(X-X0) < T0 + SQUAREROOT(MACHEP)*NORM(X). +! MACHEP IS THE MACHINE PRECISION, THE SMALLEST NUMBER SUCH THAT +! 1 + MACHEP > 1. MACHEP SHOULD BE 16.**-13 (ABOUT +! 2.22D-16) FOR REAL*8 ARITHMETIC ON THE IBM 360. +! H0 IS THE MAXIMUM STEP SIZE. H0 SHOULD BE SET TO ABOUT THE +! MAXIMUM DISTANCE FROM THE INITIAL GUESS TO THE MINIMUM. +! (IF H0 IS SET TOO LARGE OR TOO SMALL, THE INITIAL RATE OF +! CONVERGENCE MAY BE SLOW.) +! N (AT LEAST TWO) IS THE NUMBER OF VARIABLES UPON WHICH +! THE FUNCTION DEPENDS. +! PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. +! IF PRIN=0, NOTHING IS PRINTED. +! IF PRIN=1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR +! MINIMIZATIONS. FINAL X IS PRINTED, BUT INTERMEDIATE X IS +! PRINTED ONLY IF N IS AT MOST 4. +! IF PRIN=2, THE SCALE FACTORS AND THE PRINCIPAL VALUES OF +! THE APPROXIMATING QUADRATIC FORM ARE ALSO PRINTED. +! IF PRIN=3, X IS ALSO PRINTED AFTER EVERY FEW LINEAR +! MINIMIZATIONS. +! IF PRIN=4, THE PRINCIPAL VECTORS OF THE APPROXIMATING +! QUADRATIC FORM ARE ALSO PRINTED. +! X IS AN ARRAY CONTAINING ON ENTRY A GUESS OF THE POINT OF +! MINIMUM, ON RETURN THE ESTIMATED POINT OF MINIMUM. +! F(X,N) IS THE FUNCTION TO BE MINIMIZED. F SHOULD BE A REAL*8 +! FUNCTION DECLARED EXTERNAL IN THE CALLING PROGRAM. +! FMIN IS AN ESTIMATE OF THE MINIMUM, USED ONLY IN PRINTING +! INTERMEDIATE RESULTS. +! THE APPROXIMATING QUADRATIC FORM IS +! Q(X') = F(X,N) + (1/2) * (X'-X)-TRANSPOSE * A * (X'-X) +! WHERE X IS THE BEST ESTIMATE OF THE MINIMUM AND A IS +! INVERSE(V-TRANSPOSE) * D * INVERSE(V) +! (V(*,*) IS THE MATRIX OF SEARCH DIRECTIONS; D(*) IS THE ARRAY +! OF SECOND DIFFERENCES). IF F HAS CONTINUOUS SECOND DERIVATIVES +! NEAR X0, A WILL TEND TO THE HESSIAN OF F AT X0 AS X APPROACHES X0. + +! IT IS ASSUMED THAT ON FLOATING-POINT UNDERFLOW THE RESULT IS SET +! TO ZERO. +! THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS AFTER +! THE INITIALIZATION OF MACHINE DEPENDENT NUMBERS. + + LOGICAL :: illc + INTEGER :: nl,nf,kl,kt,ktm,idim,i,j,k,k2,km1,klmk,ii,im1 + REAL :: s,sl,dn,dmin,fx,f1,lds,ldt,t,h,sf,df,qf1,qd0, qd1,qa,qb,qc + REAL :: m2,m4,small,vsmall,large,vlarge,scbd,ldfac,t2, dni,value + REAL :: random + +!.....IF N>20 OR IF N<20 AND YOU NEED MORE SPACE, CHANGE '20' TO THE +! LARGEST VALUE OF N IN THE NEXT CARD, IN THE CARD 'IDIM=20', AND +! IN THE DIMENSION STATEMENTS IN SUBROUTINES MINFIT,MIN,FLIN,QUAD. + + REAL :: d(20),y(20),z(20),q0(20),q1(20),v(20,20) + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 + +! --------------------------------- +! introduced by Joachim........ + idim = n +! --------------------------------- + + + +!.....INITIALIZATION..... +! MACHINE DEPENDENT NUMBERS: + +small = machep*machep +vsmall = small*small +large = 1.d0/small +vlarge = 1.d0/vsmall +m2 = SQRT(machep) +m4 = SQRT(m2) + +! HEURISTIC NUMBERS: +! IF THE AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF +! POSSIBLE), THEN SET SCBD=10. OTHERWISE SET SCBD=1. +! IF THE PROBLEM IS KNOWN TO BE ILL-CONDITIONED, SET ILLC=TRUE. +! OTHERWISE SET ILLC=FALSE. +! KTM IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE THE +! ALGORITHM TERMINATES. KTM=4 IS VERY CAUTIOUS; USUALLY KTM=1 +! IS SATISFACTORY. + +scbd = 1.0 +illc = .false. +ktm = 1 + +ldfac = 0.01 +IF (illc) ldfac = 0.1 +kt = 0 +nl = 0 +nf = 1 +fx = f(x,n) +qf1 = fx +t = small+ABS(t0) +t2 = t +dmin = small +h = h0 +IF (h < 100*t) h = 100*t +ldt = h +!.....THE FIRST SET OF SEARCH DIRECTIONS V IS THE IDENTITY MATRIX..... +DO i = 1,n + DO j = 1,n + v(i,j) = 0.0 + END DO + v(i,i) = 1.0 +END DO +d(1) = 0.0 +qd0 = 0.0 +DO i = 1,n + q0(i) = x(i) + q1(i) = x(i) +END DO +IF (prin > 0) CALL PRINT(n,x,prin,fmin) + +!.....THE MAIN LOOP STARTS HERE..... +40 sf=d(1) +d(1)=0.d0 +s=0.d0 + +!.....MINIMIZE ALONG THE FIRST DIRECTION V(*,1). +! FX MUST BE PASSED TO MIN BY VALUE. +value=fx +CALL MIN(n,1,2,d(1),s,value,.false.,f,x,t,machep,h) +IF (s > 0.d0) GO TO 50 +DO i=1,n + v(i,1)=-v(i,1) +END DO +50 IF (sf > 0.9D0*d(1).AND.0.9D0*sf < d(1)) GO TO 70 +DO i=2,n + d(i)=0.d0 +END DO + +!.....THE INNER LOOP STARTS HERE..... +70 DO k=2,n + DO i=1,n + y(i)=x(i) + END DO + sf=fx + IF (kt > 0) illc=.true. + 80 kl=k + df=0.d0 + +!.....A RANDOM STEP FOLLOWS (TO AVOID RESOLUTION VALLEYS). +! PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM NUMBER UNIFORMLY +! DISTRIBUTED IN (0,1). + + IF(.NOT.illc) GO TO 95 + DO i=1,n + s=(0.1D0*ldt+t2*(10**kt))*(random(n)-0.5D0) + z(i)=s + DO j=1,n + x(j)=x(j)+s*v(j,i) + END DO + END DO + fx=f(x,n) + nf=nf+1 + +!.....MINIMIZE ALONG THE "NON-CONJUGATE" DIRECTIONS V(*,K),...,V(*,N) + + 95 DO k2=k,n + sl=fx + s=0.d0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + IF (illc) GO TO 97 + s=sl-fx + GO TO 99 + 97 s=d(k2)*((s+z(k2))**2) + 99 IF (df > s) CYCLE + df=s + kl=k2 + END DO + IF (illc.OR.(df >= ABS((100*machep)*fx))) GO TO 110 + +!.....IF THERE WAS NOT MUCH IMPROVEMENT ON THE FIRST TRY, SET +! ILLC=TRUE AND START THE INNER LOOP AGAIN..... + + illc=.true. + GO TO 80 + 110 IF (k == 2.AND.prin > 1) CALL vcprnt(1,d,n) + +!.....MINIMIZE ALONG THE "CONJUGATE" DIRECTIONS V(*,1),...,V(*,K-1) + + km1=k-1 + DO k2=1,km1 + s=0 + value=fx + CALL MIN(n,k2,2,d(k2),s,value,.false.,f,x,t,machep,h) + END DO + f1=fx + fx=sf + lds=0 + DO i=1,n + sl=x(i) + x(i)=y(i) + sl=sl-y(i) + y(i)=sl + lds=lds+sl*sl + END DO + lds=SQRT(lds) + IF (lds <= small) GO TO 160 + +!.....DISCARD DIRECTION V(*,KL). +! IF NO RANDOM STEP WAS TAKEN, V(*,KL) IS THE "NON-CONJUGATE" +! DIRECTION ALONG WHICH THE GREATEST IMPROVEMENT WAS MADE..... + + klmk=kl-k + IF (klmk < 1) GO TO 141 + DO ii=1,klmk + i=kl-ii + DO j=1,n + v(j,i+1)=v(j,i) + END DO + d(i+1)=d(i) + END DO + 141 d(k)=0 + DO i=1,n + v(i,k)=y(i)/lds + END DO + +!.....MINIMIZE ALONG THE NEW "CONJUGATE" DIRECTION V(*,K), WHICH IS +! THE NORMALIZED VECTOR: (NEW X) - (0LD X)..... + + value=f1 + CALL MIN(n,k,4,d(k),lds,value,.true.,f,x,t,machep,h) + IF (lds > 0.d0) GO TO 160 + lds=-lds + DO i=1,n + v(i,k)=-v(i,k) + END DO + 160 ldt=ldfac*ldt + IF (ldt < lds) ldt=lds + IF (prin > 0) CALL PRINT(n,x,prin,fmin) + t2=0.d0 + DO i=1,n + t2=t2+x(i)**2 + END DO + t2=m2*SQRT(t2)+t + +!.....SEE WHETHER THE LENGTH OF THE STEP TAKEN SINCE STARTING THE +! INNER LOOP EXCEEDS HALF THE TOLERANCE..... + + IF (ldt > (0.5*t2)) kt=-1 + kt=kt+1 + IF (kt > ktm) GO TO 400 +END DO +!.....THE INNER LOOP ENDS HERE. + +! TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE IN A CURVED VALLEY. + +CALL quad(n,f,x,t,machep,h) +dn=0.d0 +DO i=1,n + d(i)=1.d0/SQRT(d(i)) + IF (dn < d(i)) dn=d(i) +END DO +IF (prin > 3) CALL maprnt(1,v,idim,n) +DO j=1,n + s=d(j)/dn + DO i=1,n + v(i,j)=s*v(i,j) + END DO +END DO + +!.....SCALE THE AXES TO TRY TO REDUCE THE CONDITION NUMBER..... + +IF (scbd <= 1.d0) GO TO 200 +s=vlarge +DO i=1,n + sl=0.d0 + DO j=1,n + sl=sl+v(i,j)*v(i,j) + END DO + z(i)=SQRT(sl) + IF (z(i) < m4) z(i)=m4 + IF (s > z(i)) s=z(i) +END DO +DO i=1,n + sl=s/z(i) + z(i)=1.d0/sl + IF (z(i) <= scbd) GO TO 189 + sl=1.d0/scbd + z(i)=scbd + 189 DO j=1,n + v(i,j)=sl*v(i,j) + END DO +END DO + +!.....CALCULATE A NEW SET OF ORTHOGONAL DIRECTIONS BEFORE REPEATING +! THE MAIN LOOP. +! FIRST TRANSPOSE V FOR MINFIT: + +200 DO i=2,n + im1=i-1 + DO j=1,im1 + s=v(i,j) + v(i,j)=v(j,i) + v(j,i)=s + END DO +END DO + +!.....CALL MINFIT TO FIND THE SINGULAR VALUE DECOMPOSITION OF V. +! THIS GIVES THE PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF THE +! APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE CONDITION +! NUMBER..... + +CALL minfit(idim,n,machep,vsmall,v,d) + +!.....UNSCALE THE AXES..... + +IF (scbd <= 1.d0) GO TO 250 +DO i=1,n + s=z(i) + DO j=1,n + v(i,j)=s*v(i,j) + END DO +END DO +DO i=1,n + s=0.d0 + DO j=1,n + s=s+v(j,i)**2 + END DO + s=SQRT(s) + d(i)=s*d(i) + s=1/s + DO j=1,n + v(j,i)=s*v(j,i) + END DO +END DO + +250 DO i=1,n + dni=dn*d(i) + IF (dni > large) GO TO 265 + IF (dni < small) GO TO 260 + d(i)=1/(dni*dni) + CYCLE + 260 d(i)=vlarge + CYCLE + 265 d(i)=vsmall +END DO + +!.....SORT THE EIGENVALUES AND EIGENVECTORS..... + +CALL sort(idim,n,d,v) +dmin=d(n) +IF (dmin < small) dmin=small +illc=.false. +IF (m2*d(1) > dmin) illc=.true. +IF (prin > 1.AND.scbd > 1.d0) CALL vcprnt(2,z,n) +IF (prin > 1) CALL vcprnt(3,d,n) +IF (prin > 3) CALL maprnt(2,v,idim,n) +!.....THE MAIN LOOP ENDS HERE..... + +GO TO 40 + +!.....RETURN..... + +400 IF (prin > 0) CALL vcprnt(4,x,n) +praxis=fx + +END FUNCTION praxis + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE minfit(m,n,machep,tol,ab,q) + + IMPLICIT NONE + + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: machep + REAL, INTENT(IN OUT) :: tol + REAL, INTENT(IN OUT) :: ab(m,n) + REAL, INTENT(OUT) :: q(n) + INTEGER :: i,j,k,l, kk,kt,l2,ll2,ii,lp1 +! IMPLICIT REAL (A-H,O-Z) + + +REAL :: x,eps,e(20),g,s, f,h,y,c,z,temp +!...AN IMPROVED VERSION OF MINFIT (SEE GOLUB AND REINSCH, 1969) +! RESTRICTED TO M=N,P=0. +! THE SINGULAR VALUES OF THE ARRAY AB ARE RETURNED IN Q AND AB IS +! OVERWRITTEN WITH THE ORTHOGONAL MATRIX V SUCH THAT U.DIAG(Q) = AB.V, +! WHERE U IS ANOTHER ORTHOGONAL MATRIX. + +!...HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM... +IF (n == 1) GO TO 200 +eps = machep +g = 0.d0 +x = 0.d0 +DO i=1,n + e(i) = g + s = 0.d0 + l = i + 1 + DO j=i,n + s = s + ab(j,i)**2 + END DO + g = 0.d0 + IF (s < tol) GO TO 4 + f = ab(i,i) + g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + ab(i,i)=f-g + IF (l > n) GO TO 4 + DO j=l,n + f = 0.d0 + DO k=i,n + f = f + ab(k,i)*ab(k,j) + END DO + f = f/h + DO k=i,n + ab(k,j) = ab(k,j) + f*ab(k,i) + END DO + END DO + 4 q(i) = g + s = 0.d0 + IF (i == n) GO TO 6 + DO j=l,n + s = s + ab(i,j)*ab(i,j) + END DO + 6 g = 0.d0 + IF (s < tol) GO TO 10 + IF (i == n) GO TO 16 + f = ab(i,i+1) + 16 g = SQRT(s) + IF (f >= 0.d0) g = -g + h = f*g - s + IF (i == n) GO TO 10 + ab(i,i+1) = f - g + DO j=l,n + e(j) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(j,k)*ab(i,k) + END DO + DO k=l,n + ab(j,k) = ab(j,k) + s*e(k) + END DO + END DO + 10 y = ABS(q(i)) + ABS(e(i)) + IF (y > x) x = y +END DO +!...ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS... +ab(n,n) = 1.d0 +g = e(n) +l = n +DO ii=2,n + i = n - ii + 1 + IF (g == 0.d0) GO TO 23 + h = ab(i,i+1)*g + DO j=l,n + ab(j,i) = ab(i,j)/h + END DO + DO j=l,n + s = 0.d0 + DO k=l,n + s = s + ab(i,k)*ab(k,j) + END DO + DO k=l,n + ab(k,j) = ab(k,j) + s*ab(k,i) + END DO + END DO + 23 DO j=l,n + ab(i,j) = 0.d0 + ab(j,i) = 0.d0 + END DO + ab(i,i) = 1.d0 + g = e(i) + l = i +END DO +!...DIAGONALIZATION OF THE BIDIAGONAL FORM... +eps = eps*x +DO kk=1,n + k = n - kk + 1 + kt = 0 + 101 kt = kt + 1 + IF (kt <= 30) GO TO 102 + e(k) = 0.d0 + WRITE (6,1000) + 1000 FORMAT (' QR FAILED') + 102 DO ll2=1,k + l2 = k - ll2 + 1 + l = l2 + IF (ABS(e(l)) <= eps) GO TO 120 + IF (l == 1) CYCLE + IF (ABS(q(l-1)) <= eps) EXIT + END DO +!...CANCELLATION OF E(L) IF L>1... + c = 0.d0 + s = 1.d0 + DO i=l,k + f = s*e(i) + e(i) = c*e(i) + IF (ABS(f) <= eps) GO TO 120 + g = q(i) +!...Q(I) = H = SQRT(G*G + F*F)... + IF (ABS(f) < ABS(g)) GO TO 113 + IF (f == 0.0) THEN + GO TO 111 + ELSE + GO TO 112 + END IF + 111 h = 0.d0 + GO TO 114 + 112 h = ABS(f)*SQRT(1 + (g/f)**2) + GO TO 114 + 113 h = ABS(g)*SQRT(1 + (f/g)**2) + 114 q(i) = h + IF (h /= 0.d0) GO TO 115 + g = 1.d0 + h = 1.d0 + 115 c = g/h + s = -f/h + END DO +!...TEST FOR CONVERGENCE... + 120 z = q(k) + IF (l == k) GO TO 140 +!...SHIFT FROM BOTTOM 2*2 MINOR... + x = q(l) + y = q(k-1) + g = e(k-1) + h = e(k) + f = ((y - z)*(y + z) + (g - h)*(g + h))/(2*h*y) + g = SQRT(f*f + 1.0D0) + temp = f - g + IF (f >= 0.d0) temp = f + g + f = ((x - z)*(x + z) + h*(y/temp - h))/x +!...NEXT QR TRANSFORMATION... + c = 1.d0 + s = 1.d0 + lp1 = l + 1 + IF (lp1 > k) GO TO 133 + DO i=lp1,k + g = e(i) + y = q(i) + h = s*g + g = g*c + IF (ABS(f) < ABS(h)) GO TO 123 + IF (f == 0.0) THEN + GO TO 121 + ELSE + GO TO 122 + END IF + 121 z = 0.d0 + GO TO 124 + 122 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 124 + 123 z = ABS(h)*SQRT(1 + (f/h)**2) + 124 e(i-1) = z + IF (z /= 0.d0) GO TO 125 + f = 1.d0 + z = 1.d0 + 125 c = f/z + s = h/z + f = x*c + g*s + g = -x*s + g*c + h = y*s + y = y*c + DO j=1,n + x = ab(j,i-1) + z = ab(j,i) + ab(j,i-1) = x*c + z*s + ab(j,i) = -x*s + z*c + END DO + IF (ABS(f) < ABS(h)) GO TO 129 + IF (f == 0.0) THEN + GO TO 127 + ELSE + GO TO 128 + END IF + 127 z = 0.d0 + GO TO 130 + 128 z = ABS(f)*SQRT(1 + (h/f)**2) + GO TO 130 + 129 z = ABS(h)*SQRT(1 + (f/h)**2) + 130 q(i-1) = z + IF (z /= 0.d0) GO TO 131 + f = 1.d0 + z = 1.d0 + 131 c = f/z + s = h/z + f = c*g + s*y + x = -s*g + c*y + END DO + 133 e(l) = 0.d0 + e(k) = f + q(k) = x + GO TO 101 +!...CONVERGENCE: Q(K) IS MADE NON-NEGATIVE... + 140 IF (z >= 0.d0) CYCLE + q(k) = -z + DO j=1,n + ab(j,k) = -ab(j,k) + END DO +END DO +RETURN +200 q(1) = ab(1,1) +ab(1,1) = 1.d0 + +END SUBROUTINE minfit + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE MIN(n,j,nits,d2,x1,f1,fk,f,x,t,machep,h) + + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER :: j + INTEGER :: nits + REAL, INTENT(IN OUT) :: d2 + REAL, INTENT(IN OUT) :: x1 + REAL, INTENT(IN OUT) :: f1 + LOGICAL :: fk + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN) :: t + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h + + INTEGER :: i,k + EXTERNAL f + + + REAL :: flin ! function + REAL :: small,sf1,sx1,s,temp, xm,x2,f2,d1 + REAL :: fm,f0,t2 +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +!...THE SUBROUTINE MIN MINIMIZES F FROM X IN THE DIRECTION V(*,J) UNLESS +! J IS LESS THAN 1, WHEN A QUADRATIC SEARCH IS MADE IN THE PLANE +! DEFINED BY Q0,Q1,X. +! D2 IS EITHER ZERO OR AN APPROXIMATION TO HALF F". +! ON ENTRY, X1 IS AN ESTIMATE OF THE DISTANCE FROM X TO THE MINIMUM +! ALONG V(*,J) (OR, IF J=0, A CURVE). ON RETURN, X1 IS THE DISTANCE +! FOUND. +! IF FK=.TRUE., THEN F1 IS FLIN(X1). OTHERWISE X1 AND F1 ARE IGNORED +! ON ENTRY UNLESS FINAL FX IS GREATER THAN F1. +! NITS CONTROLS THE NUMBER OF TIMES AN ATTEMPT WILL BE MADE TO HALVE +! THE INTERVAL. + LOGICAL :: dz + REAL :: m2,m4 + +small = machep**2 +m2 = SQRT(machep) +m4 = SQRT(m2) +sf1 = f1 +sx1 = x1 +k = 0 +xm = 0.d0 +fm = fx +f0 = fx +dz = d2 < machep +!...FIND THE STEP SIZE... +s = 0.d0 +DO i=1,n + s = s + x(i)**2 +END DO +s = SQRT(s) +temp = d2 +IF (dz) temp = dmin +t2 = m4*SQRT(ABS(fx)/temp + s*ldt) + m2*ldt +s = m4*s + t +IF (dz.AND.t2 > s) t2 = s +t2 = DMAX1(t2,small) +t2 = DMIN1(t2,.01D0*h) +IF (.NOT.fk.OR.f1 > fm) GO TO 2 +xm = x1 +fm = f1 +2 IF (fk.AND.ABS(x1) >= t2) GO TO 3 +temp=1.d0 +IF (x1 < 0.d0) temp=-1.d0 +x1=temp*t2 +f1 = flin(n,j,x1,f,x,nf) +3 IF (f1 > fm) GO TO 4 +xm = x1 +fm = f1 +4 IF (.NOT.dz) GO TO 6 +!...EVALUATE FLIN AT ANOTHER POINT AND ESTIMATE THE SECOND DERIVATIVE... +x2 = -x1 +IF (f0 >= f1) x2 = 2.d0*x1 +f2 = flin(n,j,x2,f,x,nf) +IF (f2 > fm) GO TO 5 +xm = x2 +fm = f2 +5 d2 = (x2*(f1 - f0)-x1*(f2 - f0))/((x1*x2)*(x1 - x2)) +!...ESTIMATE THE FIRST DERIVATIVE AT 0... +6 d1 = (f1 - f0)/x1 - x1*d2 +dz = .true. +!...PREDICT THE MINIMUM... +IF (d2 > small) GO TO 7 +x2 = h +IF (d1 >= 0.d0) x2 = -x2 +GO TO 8 +7 x2 = (-.5D0*d1)/d2 +8 IF (ABS(x2) <= h) GO TO 11 +IF (x2 > 0.0) THEN + GO TO 10 +END IF +x2 = -h +GO TO 11 +10 x2 = h +!...EVALUATE F AT THE PREDICTED MINIMUM... +11 f2 = flin(n,j,x2,f,x,nf) +IF (k >= nits.OR.f2 <= f0) GO TO 12 +!...NO SUCCESS, SO TRY AGAIN... +k = k + 1 +IF (f0 < f1.AND.(x1*x2) > 0.d0) GO TO 4 +x2 = 0.5D0*x2 +GO TO 11 +!...INCREMENT THE ONE-DIMENSIONAL SEARCH COUNTER... +12 nl = nl + 1 +IF (f2 <= fm) GO TO 13 +x2 = xm +GO TO 14 +13 fm = f2 +!...GET A NEW ESTIMATE OF THE SECOND DERIVATIVE... +14 IF (ABS(x2*(x2 - x1)) <= small) GO TO 15 +d2 = (x2*(f1-f0) - x1*(fm-f0))/((x1*x2)*(x1 - x2)) +GO TO 16 +15 IF (k > 0) d2 = 0.d0 +16 IF (d2 <= small) d2 = small +x1 = x2 +fx = fm +IF (sf1 >= fx) GO TO 17 +fx = sf1 +x1 = sx1 +!...UPDATE X FOR LINEAR BUT NOT PARABOLIC SEARCH... +17 IF (j == 0) RETURN +DO i=1,n + x(i) = x(i) + x1*v(i,j) +END DO + +END SUBROUTINE MIN + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vcprnt(option,v,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(n) + INTEGER :: n + + INTEGER :: i + +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 + CASE ( 3) + GO TO 3 + CASE ( 4) + GO TO 4 +END SELECT + +1 WRITE (6,101) (v(i),i=1,n) +RETURN +2 WRITE (6,102) (v(i),i=1,n) +RETURN +3 WRITE (6,103) (v(i),i=1,n) +RETURN +4 WRITE (6,104) (v(i),i=1,n) +RETURN +101 FORMAT (/' THE SECOND DIFFERENCE ARRAY D(*) IS:'/ (e32.14,4E25.14)) +102 FORMAT (/' THE SCALE FACTORS ARE:'/(e32.14,4E25.14)) +103 FORMAT (/' THE APPROXIMATING QUADR. FORM HAS PRINCIPAL VALUES:'/ & + (e32.14,4E25.14)) +104 FORMAT (/' X IS:',e26.14/(e32.14)) +END SUBROUTINE vcprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRINT(n,x,prin,fmin) + + IMPLICIT NONE + INTEGER :: n + REAL, INTENT(IN OUT) :: x(n) + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: fmin + + INTEGER :: i + REAL :: ln +!---------------------------------------------- +INTEGER :: nf,nl +REAL :: fx,ldt,dmin +COMMON /global/ fx,ldt,dmin,nf,nl +!---------------------------------------------- +WRITE (6,101) nl,nf,fx + +IF (fx <= fmin) GO TO 1 +ln = LOG10(fx-fmin) +WRITE (6,102) fmin,ln +GO TO 2 +1 WRITE (6,103) fmin +2 IF (n > 4.AND.prin <= 2) RETURN +WRITE (6,104) (x(i),i=1,n) +RETURN +101 FORMAT (/' AFTER',i6, & + ' LINEAR SEARCHES, THE FUNCTION HAS BEEN EVALUATED',i6, & + ' TIMES. THE SMALLEST VALUE FOUND IS F(X) = ',e21.14) +102 FORMAT (' LOG (F(X)-',e21.14,') = ',e21.14) +103 FORMAT (' LOG (F(X)-',e21.14,') IS UNDEFINED.') +104 FORMAT (' X IS:',e26.14/(e32.14)) +END SUBROUTINE PRINT + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE maprnt(option,v,m,n) + + IMPLICIT NONE + INTEGER :: option + REAL, INTENT(IN OUT) :: v(m,n) + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + INTEGER :: i,j + + INTEGER :: low,upp +!...THE SUBROUTINE MAPRNT PRINTS THE COLUMNS OF THE NXN MATRIX V +! WITH A HEADING AS SPECIFIED BY OPTION. +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM... +low = 1 +upp = 5 +SELECT CASE ( option ) + CASE ( 1) + GO TO 1 + CASE ( 2) + GO TO 2 +END SELECT +1 WRITE (6,101) +101 FORMAT (/' THE NEW DIRECTIONS ARE:') +GO TO 3 +2 WRITE (6,102) +102 FORMAT (' AND THE PRINCIPAL AXES:') +3 IF (n < upp) upp = n +DO i=1,n + WRITE (6,104) (v(i,j),j=low,upp) +END DO +low = low + 5 +IF (n < low) RETURN +upp = upp + 5 +WRITE (6,103) +GO TO 3 +103 FORMAT (' ') +104 FORMAT (e32.14,4E25.14) +END SUBROUTINE maprnt + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION random(naught) + + IMPLICIT NONE + INTEGER, INTENT(IN OUT) :: naught + + REAL :: ran1,ran3(127),half + INTEGER :: i,j,ran2,q,r + LOGICAL :: init + DATA init/.false./ + SAVE init,ran2,ran1,ran3 + +IF (init) GO TO 3 +r = MOD(naught,8190) + 1 +ran2 = 128 +DO i=1,127 + ran2 = ran2 - 1 + ran1 = -2.d0**55 + DO j=1,7 + r = MOD(1756*r,8191) + q = r/32 + ran1 = (ran1 + q)*(1.0D0/256) + END DO + ran3(ran2) = ran1 +END DO +init = .true. +3 IF (ran2 == 1) ran2 = 128 +ran2 = ran2 - 1 +ran1 = ran1 + ran3(ran2) +half = .5D0 +IF (ran1 >= 0.d0) half = -half +ran1 = ran1 + half +ran3(ran2) = ran1 +random = ran1 + .5D0 + +END FUNCTION random + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION flin (n,j,l,f,x,nf) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN OUT) :: j + REAL, INTENT(IN) :: l + REAL :: f + REAL, INTENT(IN) :: x(n) + INTEGER, INTENT(OUT) :: nf + + INTEGER :: i + REAL :: t(20) + + EXTERNAL f + +!...FLIN IS THE FUNCTION OF ONE REAL VARIABLE L THAT IS MINIMIZED +! BY THE SUBROUTINE MIN... +!---------------------------------------------- + REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 + COMMON /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +IF (j == 0) GO TO 2 +!...THE SEARCH IS LINEAR... +DO i=1,n + t(i) = x(i) + l*v(i,j) +END DO +GO TO 4 +!...THE SEARCH IS ALONG A PARABOLIC SPACE CURVE... +2 qa = (l*(l - qd1))/(qd0*(qd0 + qd1)) +qb = ((l + qd0)*(qd1 - l))/(qd0*qd1) +qc = (l*(l + qd0))/(qd1*(qd0 + qd1)) +DO i=1,n + t(i) = (qa*q0(i) + qb*x(i)) + qc*q1(i) +END DO +!...THE FUNCTION EVALUATION COUNTER NF IS INCREMENTED... +4 nf = nf + 1 +flin = f(t,n) + +END FUNCTION flin + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE sort(m,n,d,v) + IMPLICIT NONE +! + INTEGER, INTENT(IN OUT) :: m + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: d(n) + REAL, INTENT(IN OUT) :: v(m,n) + + INTEGER :: i,j,k,nm1,ip1 + REAL :: s +!...SORTS THE ELEMENTS OF D(N) INTO DESCENDING ORDER AND MOVES THE +! CORRESPONDING COLUMNS OF V(N,N). +! M IS THE ROW DIMENSION OF V AS DECLARED IN THE CALLING PROGRAM. +IF (n == 1) RETURN +nm1 = n - 1 +DO i = 1,nm1 + k=i + s = d(i) + ip1 = i + 1 + DO j = ip1,n + IF (d(j) <= s) CYCLE + k = j + s = d(j) + END DO + IF (k <= i) CYCLE + d(k) = d(i) + d(i) = s + DO j = 1,n + s = v(j,i) + v(j,i) = v(j,k) + v(j,k) = s + END DO +END DO +END SUBROUTINE sort + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE quad(n,f,x,t,machep,h) + IMPLICIT NONE + + INTEGER, INTENT(IN) :: n + REAL :: f + REAL, INTENT(IN OUT) :: x(n) + REAL, INTENT(IN OUT) :: t + REAL :: machep + REAL, INTENT(IN OUT) :: h +! IMPLICIT REAL (A-H,O-Z) + EXTERNAL f + +!...QUAD LOOKS FOR THE MINIMUM OF F ALONG A CURVE DEFINED BY Q0,Q1,X... + INTEGER :: i + REAL :: l + REAL :: s,value +!---------------------------------------------- + INTEGER :: nf,nl + REAL :: fx,ldt,dmin + +REAL :: v(20,20),q0(20),q1(20),qa,qb,qc,qd0,qd1,qf1 +COMMON /global/ fx,ldt,dmin,nf,nl /q/ v,q0,q1,qa,qb,qc,qd0,qd1,qf1 +!---------------------------------------------- +s = fx +fx = qf1 +qf1 = s +qd1 = 0.d0 +DO i=1,n + s = x(i) + l = q1(i) + x(i) = l + q1(i) = s + qd1 = qd1 + (s-l)**2 +END DO +qd1 = SQRT(qd1) +l = qd1 +s = 0.d0 +IF (qd0 <= 0.d0 .OR. qd1 <= 0.d0 .OR. nl < 3*n*n) GO TO 2 +value=qf1 +CALL MIN(n,0,2,s,l,value,.true.,f,x,t,machep,h) +qa = (l*(l-qd1))/(qd0*(qd0+qd1)) +qb = ((l+qd0)*(qd1-l))/(qd0*qd1) +qc = (l*(l+qd0))/(qd1*(qd0+qd1)) +GO TO 3 +2 fx = qf1 +qa = 0.d0 +qb = qa +qc = 1.d0 +3 qd0 = qd1 +DO i=1,n + s = q0(i) + q0(i) = x(i) + x(i) = (qa*s + qb*x(i)) + qc*q1(i) +END DO +END SUBROUTINE quad + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/SolverSetup.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/SolverSetup.F90 new file mode 100644 index 000000000..c60e7f69e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/SolverSetup.F90 @@ -0,0 +1,305 @@ +!>This file contains the subroutine which sets the method used to +!!solve the nonlinear system of equations depending on the specifications +!!made in the makefile. + + + + +Subroutine SolverSetup + +Use BASIC_VARIABLES, Only: ncomp + +!PETSc modules +Use PetscManagement +Use f90moduleinterfaces +Use Global_x !(snes,ngrid,ngp,x,r,timer) + +Implicit None + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +DM :: da +PetscErrorCode :: ierr +type (userctx) :: user +Mat :: J +PetscReal :: erel +PetscBool :: flg +INTEGER :: jac_id +PetscInt :: JacLocal + +character(80) :: filename='' + +!external subroutines associated with Solver +external FormInitialGuess +external FormFunction +external Jac_Shell_AD +external Jac_Matrix_Empty +external MonitorTimer + + + call MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr) + call MPI_Comm_size(PETSC_COMM_WORLD,user%num_procs,ierr) + + +! Create solver context + call SNESCreate(PETSC_COMM_WORLD,snes,ierr) + +! Create distributed array (DMDA) to manage parallel grid and vectors + call DMDACreate1d(PETSC_COMM_WORLD, & !MPI communicator + & DMDA_BOUNDARY_GHOSTED, & !Boundary type at boundary of physical domain + & ngrid, & !global dimension of array (if negative number, then value can be changed by user via command line!) + & ncomp, & !number of degrees of freedom per grid point (number of unknowns at each grid point) + & ngp, & !number of ghost points accessible for local vectors + & PETSC_NULL_INTEGER, & !could be an array to specify the number of grid points per processor + & da, & !the resulting distributed array object + & ierr) + +! Extract global arrays from DMDA: x: unknowns, r: residual + call DMCreateGlobalVector(da,x,ierr) + call VecDuplicate(x,r,ierr) + +! Get local grid boundaries (for 1-dimensional DMDA) + call DMDAGetCorners(da, & !the distributed array + & user%xs, & !corner index in x direction + & PETSC_NULL_INTEGER, & !corner index in y direction + & PETSC_NULL_INTEGER, & !corner index in z direction + & user%xm, & !width of locally owned part in x direction + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction + & ierr) !error check + + call DMDAGetGhostCorners(da, & !the distributed array + & user%gxs, & !corner index in x direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in y direction (but now counting includes ghost points) + & PETSC_NULL_INTEGER, & !corner index in z direction (but now counting includes ghost points) + & user%gxm, & !width of locally owned part in x direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in y direction (but now including ghost points) + & PETSC_NULL_INTEGER, & !width of locally owned part in z direction (but now including ghost points) + & ierr) !error check + +! Here we shift the starting indices up by one so that we can easily +! use the Fortran convention of 1-based indices (rather 0-based indices). + user%xs = user%xs+1 + user%gxs = user%gxs+1 + user%xe = user%xs+user%xm-1 + user%gxe = user%gxs+user%gxm-1 + + call SNESSetFunction(snes,r,FormFunction,user,ierr) + call SNESSetApplicationContext(snes,user,ierr) + call SNESSetDM(snes,da,ierr) + +! !Set up matrix free jacobian +! erel = 1e-08 +! call MatCreateSNESMF(snes,J,ierr) !matrix free jacobi matrix +! call MatMFFDSetFunctionError(J,erel,ierr) +! call SNESSetJacobian(snes,J,J,MatMFFDComputeJacobian,PETSC_NULL_OBJECT,ierr) + + +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +! Set up nonlinear solver depending on option set in makefile (with -jac) +! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-jac',jac_id,flg,ierr) + If(flg) Then + + Else + jac_id = 0 + write(*,*)'Option -jac not set in makefile, using matrix-free with numerical approximations.' + End If + + Select Case(jac_id) + + Case(-1) !for options that dont need a jacobian: Anderson mixing, Picard + + Case (0) !matrix-free with numerical approximation of J(x)v + !default value of erel + erel = 1e-08 + !check if value for erel is specified in makefile + call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-erel',erel,flg,ierr) + If(user%rank == 0) write(*,*)'Using matrix-free Jacobian with numerical approximations. erel:',erel + call MatCreateSNESMF(snes,J,ierr) !matrix free jacobi matrix + call MatMFFDSetFunctionError(J,erel,ierr) + call SNESSetJacobian(snes,J,J,MatMFFDComputeJacobian,PETSC_NULL_OBJECT,ierr) + + Case (1) !matrix-free with AD-calculated J(x)v + If(user%rank == 0) write(*,*)'Using matrix-free AD Jacobian.' + !determine local size of shell matrix + JacLocal = INT(ngrid / user%num_procs) + If(mod(ngrid,user%num_procs) /= 0 ) Stop 'Dimensions and number of cores dont match! mod(ngrid,nc) must equal 0' + !Make sure that local parts of JacShell have the same size as the local DMDA-Arrays (local size JacShell != user%xm!!) + If(JacLocal /= user%xm) Stop 'Shell-Jacobi-Matrix and DMDA have to be parallelized accordingly!!(JacLocal = user%xm)' + call MatCreateShell(PETSC_COMM_WORLD,ncomp*JacLocal,ncomp*JacLocal,ncomp*ngrid,ncomp*ngrid,PETSC_NULL_OBJECT,J,ierr) + call MatShellSetOperation( J, MATOP_MULT, Jac_Shell_AD, ierr ) + call SNESSetJacobian( snes, J, J, Jac_Matrix_Empty, PETSC_NULL_OBJECT, ierr) + + Case (2) !build complete Jacobi matrix via finite-differences + If(user%rank == 0) write(*,*)'Using finite-difference Jacobian.' +!Now in makefile: -snes_fd +! call MatCreate(PETSC_COMM_WORLD,J,ierr) +! call MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,ngrid,ngrid,ierr) +! call MatSetFromOptions(J,ierr) +! call MatSetUp(J,ierr) !!sets up the internal matrix data structure +! call SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,PETSC_NULL_OBJECT,ierr) + + + Case (3) !build the complete Jacobi matrix via AD + If(user%rank == 0) write(*,*)'Using AD-generated Jacobian.' + write(*,*)'Funktioniert noch nicht!' + stop + !create Matrix that has the appropriate sparsity pattern for the da + !But that also means that when values are inserted in positions that + !dont fit this structure, an error occurs! + !i.e. when calculating the jacobi matrix it is not possible anymore + !to ignore the sparsity pattern and just create a dense jacobian!! + + !call DMCreateMatrix(da,MATMPIAIJ,J,ierr) !CAUTION: in newer PETSc Versions DMCreateMatrix does not contain the MatType argument anymore! + !call SNESSetJacobian(snes,J,J,Jac_AD,PETSC_NULL_OBJECT,ierr) + + Case default + write(*,*) 'No valid option set for -jac in makefile, using full Jacobi via finite-differences.' + call SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,PETSC_NULL_OBJECT,ierr) + + End Select + +!Set monitoring function that ouputs the surface tension at every iteration + call SNESMonitorSet(snes,MonitorTimer,PETSC_NULL_OBJECT,PETSC_NULL_FUNCTION,ierr) + +!Enable modification from makefile + call SNESSetFromOptions(snes,ierr) + +!Evaluate Initial Guess + call FormInitialGuess(snes,x,ierr) + write(filename,*)'0_initial_profile_global.xlo' + call PrintGlobalVec(x,filename) + + !start timer + total_time = 0.0 + timer_old = MPI_WTIME() + +!Solve system + call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr) + write(filename,*)'1_final_profile_global.xlo' + call PrintGlobalVec(x,filename) + write(filename,'(a,I3.3,a)') '2_final_profile_local_proc_',user%rank,'.xlo' + call PrintLocalVec(x,da,filename) + + !plot residual vs time graph + !call system('gnuplot gnuplot_script.srp') + + +End Subroutine SolverSetup + + + + + + + +subroutine MonitorTimer(snes,its,norm,dummy,ierr) + + Use Global_x, Only: timer,timer_old,total_time,r + Use mod_DFT, Only: free + Use PARAMETERS, Only: KBOL,PI + Use BASIC_VARIABLES, Only: t,parame, ncomp + Use VLE_VAR, Only: rhob,tc + +! ! !PETSc modules +! ! use f90module +! ! !DFT modules +! ! use DFT_MODULE, ONLY: free +! ! use VLE_VAR, ONLY: tc,rhob +! ! use BASIC_VARIABLES, ONLY:t,parame,ncomp +! ! use PARAMETERS, ONLY: PI,KBOL + + implicit none + +#include +#include + +! Input/output variables: + SNES snes + PetscInt dummy + Integer :: its + REAL :: norm + PetscErrorCode ierr +! local + PetscReal :: f2norm + Vec :: current_solution + DOUBLE PRECISION :: delta_time + INTEGER :: rank + REAL :: m_average,surftens,st_macro + character(80) :: filename='' + + + + !calculate interfacial tension + !sum up the variable free from all procs on proc 0 + call MPI_Reduce(free,free,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,PETSC_COMM_WORLD,ierr) + + !Only proc 0 calculates surface tension + call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr) + IF(rank == 0) THEN + + !calculate surface tension + surftens = KBOL * t *1.E20*1000.0 *free + m_average = SUM( rhob(1,1:ncomp)*parame(1:ncomp,1) ) / rhob(1,0) + + st_macro = surftens / ( 1.0 + 3.0/8.0/PI *t/tc & + * (1.0/2.55)**2 / (0.0674*m_average+0.0045) ) + write(*,*)'ST',st_macro + + !write result to outputfile + filename='./out.txt' + CALL file_open(filename,99) + WRITE (99,*) st_macro + close(99) + + End If + + + + + + !calculate elapsed time + timer = MPI_WTIME() + delta_time = timer - timer_old + timer_old = timer + total_time = total_time + delta_time + + !get norm of residual array + call VecNorm(r,2,f2norm,ierr) + + IF(rank == 0) THEN + !print results to file + filename = 'ItsTimeNorm.dat' + open(unit = 44, file = filename) + write(44,*) its,total_time,f2norm + End If + +end subroutine MonitorTimer + + + + + + + + + + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Spline_Integration_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Spline_Integration_d.F90 new file mode 100644 index 000000000..919c9aea1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/Spline_Integration_d.F90 @@ -0,0 +1,230 @@ +!>This file contains the automatic differentiation results +!!of the subroutines which perform spline interpolation and +!!spline integration. + + + + + + + + + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +! Differentiation of spline in forward (tangent) mode: +! variations of useful results: y2 +! with respect to varying inputs: y2 y +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE spline +! +! Given arrays x(1:n) and y(1:n) containing a tabulated function, +! i.e., yi = f(xi), with x1 < x2 < .. . < xN, and given values yp1 and +! ypn for the first derivative of the interpolating function at points 1 +! and n, respectively, this routine returns an array y2(1:n) of length n +! which contains the second derivatives of the interpolating function at +! the tabulated points xi. If yp1 and/or ypn are equal to 1 1030 or +! larger, the routine is signaled to set the corresponding boundary +! condition for a natural spline, with zero second derivative on that +! boundary. +! Parameter: NMAX is the largest anticipated value of n. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE SPLINE_D(x, y, yd, n, yp1, ypn, y2, y2d) + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: x(n) + REAL, INTENT(IN) :: y(n) + REAL, INTENT(IN) :: yd(n) + REAL, INTENT(IN) :: yp1 + REAL, INTENT(IN) :: ypn + REAL, INTENT(OUT) :: y2(n) + REAL, INTENT(OUT) :: y2d(n) +! +! ---------------------------------------------------------------------- + INTEGER, PARAMETER :: nmax=1000 + INTEGER :: i, k + REAL :: p, qn, sig, un, u(nmax) + REAL :: pd, und, ud(nmax) +! ---------------------------------------------------------------------- + IF (yp1 .GT. 0.99e30) THEN + y2d(1) = 0.0 + y2(1) = 0.0 + u(1) = 0.0 + ud = 0.0 + ELSE + y2d(1) = 0.0 + y2(1) = -0.5 + ud = 0.0 + ud(1) = 3.0*(yd(2)-yd(1))/(x(2)-x(1))**2 + u(1) = 3.0/(x(2)-x(1))*((y(2)-y(1))/(x(2)-x(1))-yp1) + END IF + DO i=2,n-1 + IF ((x(i+1) - x(i) .EQ. 0.0 .OR. x(i) - x(i-1) .EQ. 0.0) .OR. x(i+1)& +& - x(i-1) .EQ. 0.0) THEN + GOTO 100 + ELSE + sig = (x(i)-x(i-1))/(x(i+1)-x(i-1)) + pd = sig*y2d(i-1) + p = sig*y2(i-1) + 2.0 + y2d(i) = -((sig-1.0)*pd/p**2) + y2(i) = (sig-1.0)/p + ud(i) = ((6.0*((yd(i+1)-yd(i))/(x(i+1)-x(i))-(yd(i)-yd(i-1))/(x(i)& +& -x(i-1)))/(x(i+1)-x(i-1))-sig*ud(i-1))*p-(6.0*((y(i+1)-y(i))/(x(& +& i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-& +& 1))*pd)/p**2 + u(i) = (6.0*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1& +& )))/(x(i+1)-x(i-1))-sig*u(i-1))/p + END IF + END DO + IF (ypn .GT. 0.99e30) THEN + qn = 0.0 + un = 0.0 + und = 0.0 + ELSE + qn = 0.5 + und = -(3.0*(yd(n)-yd(n-1))/(x(n)-x(n-1))**2) + un = 3.0/(x(n)-x(n-1))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) + END IF + y2d(n) = ((und-qn*ud(n-1))*(qn*y2(n-1)+1.0)-(un-qn*u(n-1))*qn*y2d(n-1)& +& )/(qn*y2(n-1)+1.0)**2 + y2(n) = (un-qn*u(n-1))/(qn*y2(n-1)+1.0) + DO k=n-1,1,-1 + y2d(k) = y2d(k)*y2(k+1) + y2(k)*y2d(k+1) + ud(k) + y2(k) = y2(k)*y2(k+1) + u(k) + END DO + GOTO 110 + 100 WRITE(*, *) 'i x', i, x(i+1), x(i), x(i-1) + WRITE(*, *) 'error in spline-interpolation' + STOP + 110 CONTINUE +END SUBROUTINE SPLINE_D + + + + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +! Differentiation of splint_integral in forward (tangent) mode: +! variations of useful results: integral +! with respect to varying inputs: y2a ya +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE splint_integral +! +! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a +! function (with the in order), and given the array y2a(1:n), which is +! the output from spline above, and given a value of x, this routine +! returns a cubic-spline interpolated value y. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE SPLINT_INTEGRAL_D(xa, ya, yad, y2a, y2ad, n, xlo, xhi, & +& integral, integrald) + IMPLICIT NONE +! the -1 in (khi_L-1) because khi_L was already counted up +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: xa(n) + REAL, INTENT(IN) :: ya(n) + REAL, INTENT(IN) :: yad(n) + REAL, INTENT(IN) :: y2a(n) + REAL, INTENT(IN) :: y2ad(n) + REAL, INTENT(IN) :: xlo + REAL, INTENT(IN) :: xhi + REAL, INTENT(OUT) :: integral + REAL, INTENT(OUT) :: integrald +! +! ---------------------------------------------------------------------- + INTEGER :: k, khi_l, klo_l, khi_h, klo_h + REAL :: xl, xh, h, int, x0, x1, y0, y1, y20, y21 + REAL :: intd, y0d, y1d, y20d, y21d +! ---------------------------------------------------------------------- + integral = 0.0 + klo_l = 1 + khi_l = n + 1 IF (khi_l - klo_l .GT. 1) THEN + k = (khi_l+klo_l)/2 + IF (xa(k) .GT. xlo) THEN + khi_l = k + ELSE + klo_l = k + END IF + GOTO 1 + END IF + klo_h = 1 + khi_h = n + 2 IF (khi_h - klo_h .GT. 1) THEN + k = (khi_h+klo_h)/2 + IF (xa(k) .GT. xhi) THEN + khi_h = k + ELSE + klo_h = k + END IF + GOTO 2 + END IF +! integration in spline pieces, the lower interval, bracketed +! by xa(klo_L) and xa(khi_L) is in steps shifted upward. +! first: determine upper integration bound + xl = xlo + integrald = 0.0 + 3 IF (khi_h .GT. khi_l) THEN + xh = xa(khi_l) + ELSE IF (khi_h .EQ. khi_l) THEN + xh = xhi + ELSE + WRITE(*, *) 'error in spline-integration' + PAUSE + END IF + h = xa(khi_l) - xa(klo_l) + IF (h .EQ. 0.0) PAUSE'bad xa input in splint' + x0 = xa(klo_l) + x1 = xa(khi_l) + y0d = yad(klo_l) + y0 = ya(klo_l) + y1d = yad(khi_l) + y1 = ya(khi_l) + y20d = y2ad(klo_l) + y20 = y2a(klo_l) + y21d = y2ad(khi_l) + y21 = y2a(khi_l) +! int = -xL/h * ( (x1-.5*xL)*y0 + (0.5*xL-x0)*y1 & +! +y20/6.*(x1**3-1.5*xL*x1*x1+xL*xL*x1-.25*xL**3) & +! -y20/6.*h*h*(x1-.5*xL) & +! +y21/6.*(.25*xL**3-xL*xL*x0+1.5*xL*x0*x0-x0**3) & +! -y21/6.*h*h*(.5*xL-x0) ) +! int = int + xH/h * ( (x1-.5*xH)*y0 + (0.5*xH-x0)*y1 & +! +y20/6.*(x1**3-1.5*xH*x1*x1+xH*xH*x1-.25*xH**3) & +! -y20/6.*h*h*(x1-.5*xH) & +! +y21/6.*(.25*xH**3-xH*xH*x0+1.5*xH*x0*x0-x0**3) & +! -y21/6.*h*h*(.5*xH-x0) ) + intd = -((xl*((x1-.5*xl)*y0d+(0.5*xl-x0)*y1d)-(x1-xl)**4*y20d/24.+(0.5& +& *xl*xl-x1*xl)*h**2*y20d/6.+(xl-x0)**4*y21d/24.-(0.5*xl*xl-x0*xl)*h**& +& 2*y21d/6.)/h) + int = -(1.0/h*(xl*((x1-.5*xl)*y0+(0.5*xl-x0)*y1)-y20/24.*(x1-xl)**4+& +& y20/6.*(0.5*xl*xl-x1*xl)*h*h+y21/24.*(xl-x0)**4-y21/6.*(0.5*xl*xl-x0& +& *xl)*h*h)) + intd = intd + (xh*((x1-.5*xh)*y0d+(0.5*xh-x0)*y1d)-(x1-xh)**4*y20d/24.& +& +(0.5*xh*xh-x1*xh)*h**2*y20d/6.+(xh-x0)**4*y21d/24.-(0.5*xh*xh-x0*xh& +& )*h**2*y21d/6.)/h + int = int + 1.0/h*(xh*((x1-.5*xh)*y0+(0.5*xh-x0)*y1)-y20/24.*(x1-xh)**& +& 4+y20/6.*(0.5*xh*xh-x1*xh)*h*h+y21/24.*(xh-x0)**4-y21/6.*(0.5*xh*xh-& +& x0*xh)*h*h) + integrald = integrald + intd + integral = integral + int +! write (*,*) integral,x1,xH + klo_l = klo_l + 1 + khi_l = khi_l + 1 + xl = x1 + IF (khi_h .NE. khi_l - 1) GOTO 3 +END SUBROUTINE SPLINT_INTEGRAL_D + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_main.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_main.F90 new file mode 100644 index 000000000..aa84d6036 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_main.F90 @@ -0,0 +1,95 @@ +!> This file contains the subroutine which starts the phase equilibrium calculation. +!! It also prints the calculated density to the outputfile "out.txt". + + + +SUBROUTINE VLE_MIX(rhob,density,chemPot_total,user) + + +!Petsc modules + USE PetscManagement + + +!VLE modules + USE parameters, ONLY: PI, RGAS, KBOL, muhs,muhc,mudisp + USE basic_variables + USE EOS_VARIABLES, ONLY: fres, eta, eta_start, dhs, mseg, uij, sig_ij, rho, x, z3t + USE DFT_MODULE + USE EOS_NUMERICAL_DERIVATIVES + USE DFT_FCN_MODULE, ONLY: chemPot_res + IMPLICIT NONE + +!> --------------------------------------------------------------------- +!! Variables +!! --------------------------------------------------------------------- + +!passed + type (userctx) user + REAL :: chemPot_total(nc) + REAL :: rhob(2,0:nc),density(np) + +!local + REAL, DIMENSION(nc) :: dhs_star + REAL :: w(np,nc), lnphi(np,nc) + INTEGER :: converg + + !> --------------------------------------------------------------------- + !! prepare for phase equilibrium calculation for given T + !! --------------------------------------------------------------------- + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12*EXP( -3.0*parame(1:ncomp,3)/t ) ) ! needed for rdf_matrix + dhs_star(1:ncomp) = dhs(1:ncomp)/parame(1:ncomp,2) + + nphas = 2 + outp = 0 ! output to terminal + + CALL START_VAR (converg,user) ! gets starting values, sets "val_init" + + IF ( converg /= 1 ) THEN + IF(user%rank == 0) THEN + WRITE (*,*) 'no VLE found' + END IF + RETURN + END IF + +! rhob(phase,0): molecular density + rhob(1,0) = dense(1) / ( PI/6.0* SUM( xi(1,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + rhob(2,0) = dense(2) / ( PI/6.0* SUM( xi(2,1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) ) + ! rhob(phase,i): molecular component density (with i=(1,...ncomp) ) in units (1/A^3) + rhob(1,1:ncomp) = rhob(1,0)*xi(1,1:ncomp) + rhob(2,1:ncomp) = rhob(2,0)*xi(2,1:ncomp) + +! --- get density in SI-units (kg/m**3) ------------------------------- + CALL SI_DENS ( density, w ) + +!--- calculate residual chemical potentials + ensemble_flag = 'tv' ! this flag is for: mu_res=mu_res(T,rho) + densta(1) = dense(1) ! Index 1 is for liquid density (here: packing fraction eta) + densta(2) = dense(2) ! Index 2 is for vapour density (here: packing fraction eta) + CALL fugacity (lnphi) + chemPot_res(1:ncomp) = lnphi(1,1:ncomp) + chemPot_total(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhob(1,1:ncomp) ) ! my0 = mu_res(T,rho_bulk_L) + ln(rho_bulk_l) + + +!> --------------------------------------------------------------------- +!! Output results of phase equilibrim calculation +!! --------------------------------------------------------------------- + + +IF(user%rank == 0) THEN + WRITE(*,*) '--------------------------------------------------' + WRITE(*,*)'RESULT OF PHASE EQUILIBRIUM CALCULATION' + WRITE (*,*) ' ' + WRITE (*,*) 'temperature ',t, 'K, and p=', p/1.E5,' bar' + WRITE (*,*) 'x1_liquid ',xi(1,1),' x1_vapor', xi(2,1) + WRITE (*,*) 'densities ',rhob(1,0), rhob(2,0) + WRITE (*,*) 'dense ',dense(1), dense(2) + WRITE (*,*) 'density [kg/m3] ',density(1), density(2) + write (*,*) 'chemical potentials comp1' , lnphi(1,1) + LOG( rhob(1,1) ), lnphi(2,1) + lnx(2,1) + LOG(rhob(2,0)) !LOG( rhob(2,1) ) + write (*,*) 'chemical potentials comp2' ,lnphi(1,2) + LOG( rhob(1,2) ), lnphi(2,2) + LOG( rhob(2,2) ) +END IF + + + + +END SUBROUTINE VLE_MIX diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_subroutines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_subroutines.F90 new file mode 100644 index 000000000..1e0928a3a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/VLE_subroutines.F90 @@ -0,0 +1,7612 @@ +!> This file contains the subroutines which perform and control the +!! phase equilibrium calculation. + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE start_var +!! +!! This subroutine generates a converged solution for binary systems +!! or performes a flash calculation for mixtues. This routine is a +!! fairly weak point of the program. +!! +!! IF a polymer is considered, starting values for mole fractions +!! are determined from the SUBROUTINGE POLY_STA_VAR (see below). The +!! polymer needs to be placed as component 1 (first line) in INPUT +!! file. +!! +!! A phase equilib. iteration is started at the end of this routine. +!! If no solution is found (converg=0), the program will stop within +!! this routine. +!! +!! Currently, this routine assumes two-phase equilibrium and derives +!! starting values (xi,density) only for two phases. +!! +!! Prerequisites are: +!! SUBROUTINE INPUT needs to be called prior to this routine, because +!! all pure comp. parameters as well as (T,P,kij) need to be in place. +!! Also, the variable to be iterated "it(i)" and the variables to be +!! calculated through the summation relation "sum_rel(i)" have to be +!! defined. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + SUBROUTINE start_var(converg,user) + +!Petsc modules + USE PetscManagement + +!VLE modules + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +type (userctx) user + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: ph, i, k + INTEGER :: ncompsav, n_unkwsav, ph_split + LOGICAL :: lle_check, flashcase, renormalize + REAL :: den1, den2, x_1, x_2 + CHARACTER (LEN=50) :: filename +! ---------------------------------------------------------------------- + +converg = 0 + +! CALL RACHFORD_RICE (converg) +! CALL Heidemann_Khalil + +! ---------------------------------------------------------------------- +! This first condition (eos >= 4) is for LJ models, not for PC-SAFT +! ---------------------------------------------------------------------- + +IF (eos >= 4) THEN + + ncomp = 2 ! set number of components to 2 + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + filename = 'LJ_START_VAL.INC' + CALL file_open(filename,84) + READ (84,*) den1,den2 + READ (84,*) x_1,x_2 + CLOSE (84) + + xi(1,1) = x_1 + xi(2,1) = x_2 + xi(1,2) = 1.0 - xi(1,1) + xi(2,2) = 1.0 - xi(2,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,2) = LOG(xi(2,2)) + + val_init(1) = den1 + val_init(2) = den2 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = LOG(xi(ph,k)) + END DO + END DO + + CALL objective_ctrl (converg) + + IF(user%rank == 0) THEN + IF (converg == 1) WRITE (*,*) t, p/1.0E5, xi(1,1), xi(2,1) + IF (converg == 0) WRITE (*,*) ' weak starting values' + END IF + +! ---------------------------------------------------------------------- +! ELSE: PC-SAFT equation of state +! ---------------------------------------------------------------------- + +ELSE + + renormalize = .false. ! for renormalization group theory (RGT) + IF (num == 2) renormalize = .true. + IF (num == 2) num = 0 ! if RGT: initial phase equilibr. is for non-renormalized model + + flashcase = .false. ! .true. when a specific feed conc. xif is given + IF (xif(1) /= 0.0) flashcase = .true. + + lle_check = .true. + +! ---------------------------------------------------------------------- +! IF: non-polymeric system +! ---------------------------------------------------------------------- + IF (mm(1) < 2000.0) THEN + + DO i=1,ncomp ! setting mole-fractions for the case that + ! anything goes wrong in the coming routines + xi(1,i) = 1.0 / REAL(ncomp) + xi(2,i) = 1.0 / REAL(ncomp) + END DO + + + ! ------------------------------------------------------------------ + ! determine an initial conc. (phase 1) that will phase split + ! ------------------------------------------------------------------ + IF( ncomp == 2 .AND. .NOT.flashcase ) THEN + CALL vle_min( lle_check ) + IF(user%rank == 0) THEN + WRITE(*,*)' INITIAL FEED-COMPOSITION',(xi(1,i), i=1,ncomp),converg + END IF + END IF + + ! ------------------------------------------------------------------ + ! perform a phase stability test + ! ------------------------------------------------------------------ + ph_split = 0 + CALL phase_stability ( .false., flashcase, ph_split,user ) + IF(user%rank == 0) THEN + write (*,*) 'stability analysis I indicates phase-split is:',ph_split + END IF + + ! ------------------------------------------------------------------ + ! determine species i, for which x(i) is calc from summation relation + ! ------------------------------------------------------------------ + CALL select_sum_rel (1,0,1) ! synthax (m,n,o): phase m + ! exclude comp. n + ! assign it(o) and higher + CALL select_sum_rel (2,0,2) ! for ncomp>=3, the quantities + ! to be iterated will be overwritten + + ! ------------------------------------------------------------------ + ! if 2 phases (VLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + + ! --- perform tangent plane minimization ------------------------ + CALL tangent_plane + ph_split = 0 + + ! --- determine, for which substance summation relation is used -- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + CALL objective_ctrl (converg) + IF(user%rank == 0) THEN + IF (converg == 1 ) write (*,*) ' converged (maybe a VLE)',dense(1),dense(2) + END IF + END IF + + ! ------------------------------------------------------------------ + ! test for LLE + ! ------------------------------------------------------------------ + ph_split = 0 + + IF (lle_check) CALL phase_stability (lle_check,flashcase,ph_split) + IF(user%rank == 0) THEN + IF (lle_check) write (*,*) 'stability analysis II, phase-split is:',ph_split + END IF + + ! ------------------------------------------------------------------ + ! if two phases (LLE) + ! ------------------------------------------------------------------ + IF (ph_split == 1) THEN + IF(user%rank == 0) THEN + write (*,*) ' LLE-stability test indicates 2 phases (VLE or LLE)' + END IF + + ! --- perform tangent plane minimization ------------------------ + IF (flashcase) CALL select_sum_rel (1,0,1) + IF (flashcase) CALL select_sum_rel (2,0,2) + + CALL tangent_plane + + ! --- determine, for which substance summation relation ---------- + IF (flashcase) THEN + CALL determine_flash_it2 + ELSE + CALL select_sum_rel (1,0,1) + CALL select_sum_rel (2,0,2) + END IF + + ! --- do full phase equilibr. calculation ------------------------ + n_unkw = ncomp ! number of quantities to be iterated + val_conv(2) = 0.0 + CALL objective_ctrl (converg) + IF(user%rank == 0) THEN + IF (converg == 1 ) write (*,*) ' converged (maybe an LLE)',dense(1),dense(2) + END IF + END IF + + ! ------------------------------------------------------------------ + ! equilibr. calc. converged: set initial var. for further calc. + ! ------------------------------------------------------------------ + IF (converg == 1) THEN + val_init = val_conv + DO ph = 1,nphas + DO i = 1,ncomp + xi(ph,i) = EXP( val_conv(4+i+(ph-1)*ncomp) ) + END DO + END DO + dense(1:2) = val_conv(1:2) + ELSE + IF(user%rank == 0) THEN + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + END IF + STOP + END IF + + + ! --------------------------------------------------------------------- + ! ELSE: for systems with polymers + ! --------------------------------------------------------------------- + + ELSE + + ncompsav = ncomp + ncomp = 2 ! set number of components to 2 + n_unkwsav = n_unkw + + CALL poly_sta_var(converg) + + IF (converg == 1) THEN + val_init = val_conv + ELSE + + IF(user%rank == 0) THEN + WRITE (*,*) ' NO SOLUTION FOUND FOR THE STARTING VALUES' + END IF + STOP + END IF + + ncomp = ncompsav + n_unkw = n_unkwsav ! number of quantities to be iterated + + END IF + +! --- for RGT: set flag back to num=2 indicating an RGT calculation ---- + IF (renormalize) num = 2 + +END IF + +END SUBROUTINE start_var + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE objective_ctrl +!! +!! This subroutine controls the iso-fugacity iteration. It uses +!! the variables defined in the array "val_init". If successfull, +!! the converged values are written to "val_conv", and the flag +!! converg is set to 1. +!! See also above desciption for subroutine PHASE_EQUILIB +!! This routine calls SUBROUTINE HYBRID, which is a solver (modified +!! POWELL HYBRID METHOD). HYBRID is freely available for non-commercial +!! applications. HYBRID requires three definitions: +!! 1.the number of equations to be solved (=No. of variables to be +!! iterated). The appropriate parameter is: "n_unkw" +!! 2.the equations to be iterated, they are here gathered in the SUB- +!! ROUTINE OBJEC_FCT (see below). Since HYBRID is a root finder, +!! these objective functions are iterated to be zero (essentially, +!! OBJEC_FCT contains the iso-fugacity relation. +!! 3.an array of variables is required, containing the quatities to be +!! iterated. This array is termed "y(i)" +!! +!! INPUT VARIABLES: +!! val_init(i) array containing (densities,T,P,lnx's) serving as +!! starting values for the phase equilibrium calculation +!! it(i) contains the information, which variable is deter- +!! mined iteratively. For syntax refer e.g.to SUB BINMIX. +!! sum_rel(i) indicates, which mole fraction is determined from the +!! summation relation sum(xi)=1 +!! +!! OUTPUT VARIABLES: +!! val_conv(i) array containing the converged system variables +!! analogous to "val_init" +!! converg 0 if no convergence achieved, 1 if converged solution +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE objective_ctrl (converg) +! + USE BASIC_VARIABLES + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE objec_fct + END INTERFACE +! + INTEGER :: info,k,posn,i + INTEGER, PARAMETER :: mxr = nc*(nc+1)/2 + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + REAL :: x_init, x_solut, r_diff1, r_diff2, totres + REAL :: r_thrash, x_thrash + CHARACTER (LEN=2) :: compon + LOGICAL :: convergence +! ---------------------------------------------------------------------- + +info=1 + +ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + +IF (num == 0) acc_a = 1.E-7 +IF (num == 0) step_a = 2.E-8 +IF (num == 1) acc_a = 1.E-7 +IF (num == 1) step_a = 2.E-8 +IF (num == 2) acc_a = 5.E-7 +IF (num == 2) step_a = 1.E-7 + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') y(posn) = val_init(3) + IF (it(i) == 'p') y(posn) = val_init(4) + IF (it(i) == 'lnp') y(posn) = LOG( val_init(4) ) + IF (it(i) == 'fls') y(posn) = alpha + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') y(posn) = val_init(4+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') y(posn) = val_init(4+ncomp+k) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') y(posn) = val_init(4+ncomp+ncomp+k) +END DO + +CALL init_vars + +x_init = 0.0 +DO i = 1,ncomp + IF (lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0) THEN + x_init = x_init + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + x_init = x_init + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO + +CALL hbrd (objec_fct, n_unkw, y, residu, step_a, acc_a, info, diag) + +x_solut = 0.0 +DO i = 1,ncomp + IF ( lnx(1,i) /= 0.0 .AND. lnx(2,i) /= 0.0 ) THEN + x_solut = x_solut + ABS( 1.0 - lnx(2,i)/lnx(1,i) ) + ELSE + IF (lnx(1,i) < 1E300 .AND. lnx(1,i) > -1.E300 ) & + x_solut = x_solut + ABS( 1.0 - EXP(lnx(2,i))/EXP(lnx(1,i)) ) + END IF +END DO +r_diff1 = ABS( 1.0 - dense(1)/dense(2) ) +IF ( val_conv(2) > 0.0 ) THEN + r_diff2 = ABS( 1.0 - val_conv(1)/val_conv(2) ) +ELSE + r_diff2 = 0.0 +END IF + +totres = SUM( ABS( residu(1:n_unkw) ) ) + +r_thrash = 0.0005 +x_thrash = 0.0005 +if (num > 0 ) r_thrash = r_thrash * 10.0 +if (num > 0 ) x_thrash = x_thrash * 100.0 + +convergence = .true. + +IF ( info >= 2 ) convergence = .false. +IF ( ABS( 1.0- dense(1)/dense(2) ) < r_thrash .AND. x_solut < x_thrash ) THEN + IF ( x_init > 0.050 ) convergence = .false. + IF ( ( ABS( 1.0- dense(1)/dense(2) ) + x_solut ) < 1.E-7 ) convergence = .false. +ENDIF +IF ( r_diff2 /= 0.0 .AND. r_diff2 > (4.0*r_diff1) .AND. bindiag == 1 ) convergence = .false. +IF ( ncomp == 1 .AND. totres > 100.0*acc_a ) convergence = .false. +IF ( totres > 1000.0*acc_a ) convergence = .false. +IF ( ncomp == 1 .AND. r_diff1 < 1.d-5 ) convergence = .false. + +IF ( convergence ) THEN + converg = 1 + ! write (*,*) residu(1),residu(2) + CALL converged + IF (num <= 1) CALL enthalpy_etc +ELSE + converg = 0 +END IF + +DEALLOCATE( y, diag, residu ) + +END SUBROUTINE objective_ctrl + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE objec_fct +!! +!! This subroutine contains the equations to be solved numerically +!! (iso-fugacity: fi'-fi''=0) as well as other dependent equations, +!! which can be solved analytically, namely the summation relation +!! xi=1-sum(xj) or the condition of equal charge for electrolyte +!! solutions. +!! This subroutine is required and controlled by the solver HBRD ! +!! HBRD varies the variables "y(i)" and eveluates the result of +!! these changes from this routine. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE objec_fct ( iter_no, y, residu, dummy ) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: density_error + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph,k,posn, skip,phase + REAL :: lnphi(np,nc),isofugacity + CHARACTER (LEN=2) :: compon +! ---------------------------------------------------------------------- + + +posn = 0 +DO i = 1,n_unkw + posn = posn + 1 + IF (it(i) == 't') t = y(posn) + IF (it(i) == 'p') p = y(posn) + IF (it(i) == 'lnp') p = EXP( y(posn) ) + IF (it(i) == 'fls') alpha = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '1') lnx(1,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '2') lnx(2,k) = y(posn) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') compon = it(i)(3:3) + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') READ(compon,*) k + IF (it(i)(1:1) == 'x' .AND. it(i)(2:2) == '3') lnx(3,k) = y(posn) +END DO + +DO k = 1,ncomp + IF (lnx(1,k) > 0.0) lnx(1,k) = 0.0 + IF (lnx(2,k) > 0.0) lnx(2,k) = 0.0 +END DO + +IF (p < 1.E-100) p = 1.E-12 +!IF ( IsNaN( p ) ) p = 1000.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( t ) ) t = 300.0 ! rebounce for the case of NaN-solver output +!IF ( IsNaN( alpha ) ) alpha = 0.5 ! rebounce for the case of NaN-solver output +IF ( p /= p ) p = 1000.0 ! rebounce for the case of NaN-solver output +IF ( t /= t ) t = 300.0 ! rebounce for the case of NaN-solver output +IF ( alpha /= alpha ) alpha = 0.5 ! rebounce for the case of NaN-solver output + +! --- setting of mole fractions ---------------------------------------- +DO ph = 1, nphas + DO i = 1, ncomp + IF ( lnx(ph,i) < -300.0 ) THEN + xi(ph,i) = 0.0 + ELSE + xi(ph,i) = EXP( lnx(ph,i) ) + END IF + END DO +END DO + +IF (ncomp > 1) CALL x_summation + +CALL fugacity (lnphi) + +phase = 2 +DO i = 1,n_unkw + skip = 0 !for ions/polymers, the isofug-eq. is not always solved + IF (n_unkw < (ncomp*(nphas-1))) skip = ncomp*(nphas-1) - n_unkw + IF ((i+skip-ncomp*(phase-2)) > ncomp) phase = phase + 1 + residu(i) = isofugacity((i+skip-ncomp*(phase-2)),phase,lnphi) + if ( density_error(phase) /= 0.0 ) residu(i) = residu(i) + SIGN( density_error(phase), residu(i) ) * 0.001 +END DO + +END SUBROUTINE objec_fct + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! REAL FUNCTION isofugacity +!! +!! calculates the deviation from the condition of equal fugacities in +!! logarithmic form. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + REAL FUNCTION isofugacity (i,phase,lnphi) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i + INTEGER, INTENT(IN) :: phase + REAL, INTENT(IN) :: lnphi(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: p1, p2 +! ---------------------------------------------------------------------- + + +! p1=1 +p1 = phase-1 +p2 = phase + +isofugacity = scaling(i) *( lnphi(p2,i)+lnx(p2,i)-lnx(p1,i)-lnphi(p1,i) ) +! write (*,'(a, 4G18.8)') ' t, p ',t,p,dense(1),dense(2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_V',i,p2,lnx(p2,i),lnphi(p2,i),dense(p2) +! write (*,'(a,i3,i3,3G18.8)') ' phi_L',i,p1,lnx(p1,i),lnphi(p1,i),dense(p1) +! write (*,*) ' ISOFUGACITY',i,ISOFUGACITY, scaling(i) +! write (*,'(a,i3,4G18.8)') ' ISOFUGACITY',i,ISOFUGACITY, lnphi(p2,i)+lnx(p2,i), -lnx(p1,i)-lnphi(p1,i) +! pause + +END FUNCTION isofugacity + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE vle_min(lle_check) +! + USE PARAMETERS, ONLY: RGAS + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + LOGICAL, INTENT(OUT) :: lle_check + + INTEGER :: i,j,k,phasen(0:40),steps + REAL :: lnphi(np,nc) + REAL :: vlemin(0:40),llemin(0:40),xval(0:40) + REAL :: start_xv(0:40),start_xl(0:40),x_sav,dg_dx2 +! ---------------------------------------------------------------------- + + + +j = 0 +k = 0 +nphas = 2 + +steps = 40 + +x_sav = xi(1,1) +sum_rel(1) = 'x12' ! summation relation +sum_rel(2) = 'x22' ! summation relation + +DO i = 0, steps + densta(1) = 0.45 + densta(2) = 1.d-6 + xi(1,1) = 1.0 - REAL(i) / REAL(steps) + IF ( xi(1,1) <= 1.E-50 ) xi(1,1) = 1.E-50 + xi(2,1) = xi(1,1) + lnx(1,1) = LOG(xi(1,1)) + lnx(2,1) = LOG(xi(2,1)) + + CALL x_summation + CALL fugacity (lnphi) + CALL enthalpy_etc !!KANN DAS RAUS???? + + + + + xval(i) = xi(1,1) + llemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t + + IF ( ABS(1.0-dense(1)/dense(2)) > 0.0001 ) THEN + vlemin(i)= gibbs(1) +(xi(1,1)*lnx(1,1)+xi(1,2)*lnx(1,2))*RGAS*t & + - ( gibbs(2) +(xi(2,1)*lnx(2,1)+xi(2,2)*lnx(2,2))*RGAS*t ) + phasen(i) = 2 + ELSE + phasen(i) = 1 + END IF + + IF (i > 0 .AND. phasen(i) == 2) THEN + IF (phasen(i-1) == 2 .AND. ABS(vlemin(i)+vlemin(i-1)) < & + ABS(vlemin(i))+ABS(vlemin(i-1))) THEN + j = j + 1 + start_xv(j)=xval(i-1) + (xval(i)-xval(i-1)) & + * ABS(vlemin(i-1))/ABS(vlemin(i)-vlemin(i-1)) + END IF + END IF + +END DO + + +DO i=2,steps-2 + dg_dx2 = (-llemin(i-2)+16.0*llemin(i-1)-30.0*llemin(i) & + +16.0*llemin(i+1)-llemin(i+2)) / (12.0*((xval(i)-xval(i-1))**2)) + IF (dg_dx2 < 0.0) THEN + k = k + 1 + start_xl(k)=xval(i) + END IF +END DO + + +IF (start_xl(1) == 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + lle_check=.false. + ! write (*,*) 'VLE is likely', xi(1,1),xi(1,2) +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) == 0.0) THEN + xi(1,1) = start_xl(1) + xi(1,2) = 1.0-xi(1,1) + ! write (*,*) 'LLE is likely', xi(1,1),xi(1,2) + lle_check=.true. +ELSE IF (start_xl(1) /= 0.0 .AND. start_xv(1) /= 0.0) THEN + xi(1,1) = start_xv(1) + xi(1,2) = 1.0-xi(1,1) + ! write(*,*) 'starting with VLE and check for LLE' + lle_check=.true. +ELSE + xi(1,1) = x_sav + xi(1,2) = 1.0 - xi(1,1) +END IF + + +CALL x_summation + +END SUBROUTINE vle_min + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE phase_stability +!! +!! the index 'LLE_check' is for the starting density (which determines +!! whether a liquid or vapor phase is found) of the trial phase. The +!! feed-point exits either as a vapor or as a liquid. If it can exist as +!! both (feedphases=2), then both states are tested. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE phase_stability ( lle_check, flashcase, ph_split,user ) + +!Petsc modules + USE PetscManagement + +!VLE modules + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI, x, eta, eta_start, z3t, fres + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + type (userctx) user + LOGICAL :: lle_check + LOGICAL, INTENT(IN OUT) :: flashcase + INTEGER, INTENT(OUT) :: ph_split +! ---------------------------------------------------------------------- + + INTERFACE + REAL FUNCTION F_STABILITY ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) + END FUNCTION + END INTERFACE + +!INTERFACE +! SUBROUTINE F_STABILITY (fmin, optpara, n) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE F_STABILITY +! +! SUBROUTINE stability_grad (g, optpara, n) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_grad +! +! SUBROUTINE stability_hessian (hessian, g, fmin, optpara, n) +! REAL, INTENT(IN OUT) :: hessian(:,:) +! REAL, INTENT(IN OUT) :: g(:) +! REAL, INTENT(IN OUT) :: fmin +! REAL, INTENT(IN) :: optpara(:) +! INTEGER, INTENT(IN) :: n +! END SUBROUTINE stability_hessian +!END INTERFACE + + INTEGER :: n, PRIN + REAL :: fmin, t0, h0, MACHEP, PRAXIS + REAL, ALLOCATABLE :: optpara(:) + + INTEGER :: i, feedphases, trial + REAL :: rhoi(nc),rho_start + REAL :: feeddens, rho_phas(np) + REAL :: fden + REAL :: dens + REAL :: rhot + REAL :: lnphi(np,nc) + REAL :: w(np,nc), mean_mass +! ---------------------------------------------------------------------- + +n = ncomp +ALLOCATE( optpara(n) ) + + +IF(user%rank == 0) THEN + IF (lle_check) WRITE (*,*) ' stability test starting with dense phase' +END IF + +DO i = 1, ncomp ! setting feed-phase x's + IF (.NOT.flashcase) xif(i) = xi(1,i) + IF (flashcase) xi(1,i) = xif(i) + xi(2,i) = xif(i) ! feed is tested for both: V and L density +END DO + +densta(1) = 0.45 +densta(2) = 1.d-6 + +CALL dens_calc(rho_phas) +IF ( ABS(1.0-dense(1)/dense(2)) > 0.0005 ) THEN + feedphases=2 ! feed-composition can exist both, in V and L +ELSE + feedphases=1 ! feed-composition can exist either in V or L +END IF +densta(1) = dense(1) +feeddens = dense(2) +!write (*,*) 'feedphases',dense(1), dense(2),feedphases + +10 CONTINUE ! IF FeedPhases=2 THEN there is a second cycle + + trial = 1 + + ! -------------------------------------------------------------------- + ! setting trial-phase mole-fractions + ! if there is no phase-split then further trial-phases are + ! considered (loop: 20 CONTINUE) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + w(2,i) = 1.0 / REAL(ncomp) + END DO + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + + 20 CONTINUE + + DO i = 1, ncomp + rhoif(i) = rho_phas(1) * xif(i) + rhoi(i) = rhoif(i) + END DO + + !write (*,'(a,6G16.8)') 'startval',rho_phas(2),xi(2,1:ncomp) + + ! -------------------------------------------------------------------- + ! calc Helmholtz energy density and derivative (numerical) to rhoif(i). + ! The derivative is taken around the "feed-point" not the trial phase + ! -------------------------------------------------------------------- + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + CALL PERTURBATION_PARAMETER + xi(1,1:ncomp) = x(1:ncomp) + eta = rhot * z3t + eta_start = eta + densta(1) = eta_start + ensemble_flag = 'tv' + CALL FUGACITY (lnphi) + ensemble_flag = 'tp' + + call fden_calc ( fden, rhoi ) + fdenf = fden + + grad_fd(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + + ! -------------------------------------------------------------------- + ! starting values for iteration (optpara) + ! -------------------------------------------------------------------- + rho_start = 1.E-5 + IF (lle_check) THEN + densta(2) = 0.45 + CALL dens_calc(rho_phas) + rho_start = rho_phas(2)*0.45/dense(2) + END IF + DO i = 1,ncomp + rhoi(i) = xi(2,i)*rho_start + optpara(i) = LOG( rhoi(i) ) + END DO + + ! -------------------------------------------------------------------- + ! minimizing the objective fct. Phase split for values of fmin < 0.0 + ! -------------------------------------------------------------------- + t0 = 5.E-5 + h0 = 0.5 + PRIN = 0 + MACHEP = 1.E-15 + + fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, F_STABILITY, fmin ) + + + ! -------------------------------------------------------------------- + ! updating the ln(x) valus from optpara. The optimal optpara-vector is + ! not necessarily the one that was last evaluated. At the very end, + ! cg_decent writes the best values to optpara + ! -------------------------------------------------------------------- + fmin = F_STABILITY( optpara, n ) + + + + ! IF ( n == 2 ) THEN + ! CALL Newton_Opt_2D ( stability_hessian, F_stability, optpara, n, 1.E-8, 1.E-8, g, fmin) + ! ELSE + ! CALL cg_descent (1.d-5, optpara, n, F_STABILITY, stability_grad, STATUS, & + ! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) + ! ENDIF + ! CALL F_STABILITY (fmin, optpara, n) + + + ! -------------------------------------------------------------------- + ! determine instability & non-trivial solution + ! -------------------------------------------------------------------- + ph_split = 0 + IF (fmin < -1.E-7 .AND. & + ABS( 1.0 - maxval(EXP(optpara),mask=optpara /= 0.0) /maxval(rhoif) ) > 0.0005) THEN + ph_split = 1 + END IF + + IF (ph_split == 1) THEN + + ! ------------------------------------------------------------------ + ! here, there should be IF FeedPhases=2 THEN GOTO 10 + ! and test for another phase (while saving optpara) + ! ------------------------------------------------------------------ + + rhoi2(1:ncomp) = EXP( optpara(1:ncomp) ) + dens = PI/6.0 * SUM( rhoi2(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + rhot = SUM( rhoi2(1:ncomp) ) + xi(2,1:ncomp) = rhoi2(1:ncomp) / rhot + + ELSE + + IF (trial <= ncomp + ncomp) THEN + ! ---------------------------------------------------------------- + ! setting trial-phase x's + ! ---------------------------------------------------------------- + IF (trial <= ncomp) THEN + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.05 + END DO + w(2,trial) = 0.95 + ELSE + DO i=1,ncomp + w(2,i) = 1.0 / REAL(ncomp-1) * 0.00001 + END DO + w(2,trial-ncomp) = 0.99999 + END IF + mean_mass = 1.0 / SUM( w(2,1:ncomp)/mm(1:ncomp) ) + xi(2,1:ncomp) = w(2,1:ncomp)/mm(1:ncomp) * mean_mass + trial = trial + 1 + GO TO 20 + END IF + ! IF (.NOT.LLE_check) write (*,*) 'no phase split detected' + ! IF (.NOT.LLE_check) pause + IF (feedphases > 1 .AND. .NOT.lle_check .AND. densta(1) > 0.2) THEN + densta(1) = feeddens ! this will be the lower-valued density (vapor) + CALL dens_calc(rho_phas) + ! WRITE (*,*) 'try feed as vapor-phase' + GO TO 10 + END IF + + END IF + +DEALLOCATE( optpara ) + +END SUBROUTINE phase_stability + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE select_sum_rel +!! +!! This subroutine determines which component of a phase "ph" is calculated +!! from the summation relation x_i = 1 - sum(x_j). The other components are, +!! by default, said to be iterated during the phase equilibrium calculation. +!! +!! Note that for flash calculations not all of these mole fractions are in +!! fact iterated - this is raken care of in "determine_flash_it". +!! +!! ph phase +!! excl exclude comp. n +!! startindex assign it(startindex) for quantities to be iterated +!! (further it(startindex+1) is assigned, for a ternary +!! mixture, etc.) +!! +!! sum_index indicates the component, with the largest mole +!! fraction. If ph=1 and sum_index=2, we define +!! sum_rel(ph=1)='x12', so that this component is +!! calculated from the summation relation. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE select_sum_rel (ph,excl,startindex) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph + INTEGER, INTENT(IN) :: excl + INTEGER, INTENT(IN) :: startindex +! ---------------------------------------------------------------------- + INTEGER :: i,j, sum_index + REAL :: xmax(np) + ! CHARACTER :: compNo*2,phasNo*2 +! ---------------------------------------------------------------------- + +xmax(ph) = 0.0 +DO i = 1, ncomp + + IF ( xi(ph,i) > xmax(ph) ) THEN + xmax(ph) = xi(ph,i) + sum_index = i + + IF (ph == 1 .AND. i == 1) sum_rel(1) = 'x11' + IF (ph == 1 .AND. i == 2) sum_rel(1) = 'x12' + IF (ph == 1 .AND. i == 3) sum_rel(1) = 'x13' + IF (ph == 1 .AND. i == 4) sum_rel(1) = 'x14' + IF (ph == 1 .AND. i == 5) sum_rel(1) = 'x15' + + IF (ph == 2 .AND. i == 1) sum_rel(2) = 'x21' + IF (ph == 2 .AND. i == 2) sum_rel(2) = 'x22' + IF (ph == 2 .AND. i == 3) sum_rel(2) = 'x23' + IF (ph == 2 .AND. i == 4) sum_rel(2) = 'x24' + IF (ph == 2 .AND. i == 5) sum_rel(2) = 'x25' + + IF (ph == 3 .AND. i == 1) sum_rel(3) = 'x31' + IF (ph == 3 .AND. i == 2) sum_rel(3) = 'x32' + IF (ph == 3 .AND. i == 3) sum_rel(3) = 'x33' + IF (ph == 3 .AND. i == 4) sum_rel(3) = 'x34' + IF (ph == 3 .AND. i == 5) sum_rel(3) = 'x35' +! write (*,*) ph,i,xi(ph,i),sum_rel(ph) + END IF + +END DO + +j = 0 +DO i = 1, ncomp + + IF ( i /= sum_index .AND. i /= excl ) THEN + IF (ph == 1 .AND. i == 1) it(startindex+j) = 'x11' + IF (ph == 1 .AND. i == 2) it(startindex+j) = 'x12' + IF (ph == 1 .AND. i == 3) it(startindex+j) = 'x13' + IF (ph == 1 .AND. i == 4) it(startindex+j) = 'x14' + IF (ph == 1 .AND. i == 5) it(startindex+j) = 'x15' + + IF (ph == 2 .AND. i == 1) it(startindex+j) = 'x21' + IF (ph == 2 .AND. i == 2) it(startindex+j) = 'x22' + IF (ph == 2 .AND. i == 3) it(startindex+j) = 'x23' + IF (ph == 2 .AND. i == 4) it(startindex+j) = 'x24' + IF (ph == 2 .AND. i == 5) it(startindex+j) = 'x25' + + IF (ph == 3 .AND. i == 1) it(startindex+j) = 'x31' + IF (ph == 3 .AND. i == 2) it(startindex+j) = 'x32' + IF (ph == 3 .AND. i == 3) it(startindex+j) = 'x33' + IF (ph == 3 .AND. i == 4) it(startindex+j) = 'x34' + IF (ph == 3 .AND. i == 5) it(startindex+j) = 'x35' +! write (*,*) 'iter ',it(startindex+j) + j = j + 1 + END IF + +END DO + +END SUBROUTINE select_sum_rel + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE tangent_plane +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- +!!$ INTERFACE +!!$ SUBROUTINE tangent_value (fmin, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: fmin +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_value +!!$ +!!$ SUBROUTINE tangent_grad (g, optpara, n) +!!$ INTEGER, INTENT(IN) :: n +!!$ REAL, INTENT(IN OUT) :: g(:) +!!$ REAL, INTENT(IN) :: optpara(:) +!!$ END SUBROUTINE tangent_grad +!!$ END INTERFACE + +! +! ---------------------------------------------------------------------- + INTERFACE + REAL FUNCTION PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE, fmin ) + REAL, INTENT(IN OUT) :: t0 + REAL, INTENT(IN) :: machep + REAL, INTENT(IN) :: h0 + INTEGER :: n + INTEGER, INTENT(IN OUT) :: prin + REAL, INTENT(IN OUT) :: optpara(n) + REAL, EXTERNAL :: TANGENT_VALUE + REAL, INTENT(IN OUT) :: fmin + END FUNCTION + + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + END FUNCTION + END INTERFACE +! +! ---------------------------------------------------------------------- + INTEGER :: n + INTEGER :: i, k, ph + INTEGER :: small_i, min_ph, other_ph + INTEGER :: PRIN + REAL :: fmin , t0, h0, MACHEP + REAL :: lnphi(np,nc) + REAL, ALLOCATABLE :: optpara(:) + +! INTEGER :: STATUS, iter, nfunc, ngrad +! REAL :: gnorm +! REAL, ALLOCATABLE :: d(:), g(:), xtemp(:), gtemp(:) +! ---------------------------------------------------------------------- + +n = ncomp +t0 = 1.E-4 +h0 = 0.1 +PRIN = 0 +MACHEP = 1.E-15 + +ALLOCATE( optpara(n) ) +!ALLOCATE( d(n) ) +!ALLOCATE( g(n) ) +!ALLOCATE( xtemp(n) ) +!ALLOCATE( gtemp(n) ) + +DO i = 1,ncomp + rhoi1(i) = rhoif(i) + lnx(1,i) = LOG(xi(1,i)) + lnx(2,i) = LOG(xi(2,i)) +END DO + +DO i = 1,ncomp + optpara(i) = LOG( xi(2,i) * 0.001 ) +END DO + +! CALL cg_descent (1.d-4, optpara, n, tangent_value, tangent_grad, STATUS, & +! gnorm, fmin, iter, nfunc, ngrad, d, g, xtemp, gtemp) +! +! updating the ln(x) valus from optpara. The optimal optpara-vector is not necessarily +! the one that was last evaluated. At the very end, cg_decent writes the best values to optpara +! CALL tangent_value (fmin, optpara, n) + + + +fmin = PRAXIS( t0, MACHEP, h0, n, PRIN, optpara, TANGENT_VALUE2, fmin ) + +! The optimal optpara-vector is not necessarily the one that was last evaluated. +! TANGENT_VALUE is reexecuted with the optimal vector optpara, in order to update the ln(x) values +fmin = TANGENT_VALUE2( optpara, n ) + + +! ---------------------------------------------------------------------- +! If one component is a polymer (indicated by a low component-density) +! then get an estimate of the polymer-lean composition, by solving for +! xi_p1 = ( xi_p2 * phii_p2) / phii_p1 (phase equilibrium condition, +! with p1 for phase 1) +! ---------------------------------------------------------------------- +IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + min_ph = 1 + other_ph = 2 +ELSE + min_ph = 2 + other_ph = 1 +ENDIF +small_i = MINLOC( lnx(min_ph,1:ncomp), 1 ) +! --- if one component is a polymer ------------------------------------ +IF ( MINVAL( lnx(min_ph,1:ncomp) ) < -20.0 ) THEN + CALL FUGACITY ( lnphi ) + lnx(min_ph,small_i) = lnx(other_ph,small_i)+lnphi(other_ph,small_i) - lnphi(min_ph,small_i) + optpara(small_i) = lnx(2,small_i) + LOG( SUM( EXP( optpara(1:ncomp) ) ) ) +END IF + +! ---------------------------------------------------------------------- +! caution: these initial values are for a flashcase overwritten in +! SUBROUTINE determine_flash_it2, because in that case, the lnx-values +! treated as ln(mole_number). +! ---------------------------------------------------------------------- +val_init(1) = dense(1) +val_init(2) = dense(2) +val_init(3) = t +val_init(4) = p +DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO +END DO +!alpha = optpara(1) + + +!DEALLOCATE( optpara, d, g, xtemp, gtemp ) +DEALLOCATE( optpara ) + +END SUBROUTINE tangent_plane + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE determine_flash_it2 +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, k, ph + REAL :: n_phase1, n_phase2, max_x_diff +! ---------------------------------------------------------------------- + + IF ( MINVAL( lnx(1,1:ncomp) ) < MINVAL( lnx(2,1:ncomp) ) ) THEN + it(1) = 'x11' + it(2) = 'x12' + IF (ncomp >= 3) it(3) = 'x13' + IF (ncomp >= 4) it(4) = 'x14' + IF (ncomp >= 5) it(5) = 'x15' + sum_rel(1) = 'nfl' + ELSE + it(1) = 'x21' + it(2) = 'x22' + IF (ncomp >= 3) it(3) = 'x23' + IF (ncomp >= 4) it(4) = 'x24' + IF (ncomp >= 5) it(5) = 'x25' + sum_rel(2) = 'nfl' + ENDIF + max_x_diff = 0.0 + DO i = 1,ncomp + IF ( ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) > max_x_diff ) THEN + max_x_diff = ABS( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase1 = ( xif(i) - EXP( lnx(2,i) ) ) / ( EXP( lnx(1,i) ) - EXP( lnx(2,i) ) ) + n_phase2 = 1.0 - n_phase1 + END IF + END DO + lnx(1,1:ncomp) = lnx(1,1:ncomp) + LOG( n_phase1 ) ! these x's are treated as mole numbers + lnx(2,1:ncomp) = lnx(2,1:ncomp) + LOG( n_phase2 ) ! these x's are treated as mole numbers + + + val_init(1) = dense(1) + val_init(2) = dense(2) + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) ! - LOG( SUM( EXP( lnx(ph,1:ncomp) ) ) ) + ! write (*,*) ph,k, lnx(ph,k) + END DO + END DO + +END SUBROUTINE determine_flash_it2 + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE poly_sta_var +! +! This subroutine generates starting values for mole fractons of +! polymer-solvent systems. +! The determination of these starting values follows a two-step +! procedure. Fist, the equilibrium concentration of the polymer-rich +! phase is estimated with the assumption of zero concentration +! of polymer in the polymer-lean-phase. This is achieved in the +! SUBROUTINE POLYMER_FREE. (Only one equation has to be iterated +! for this case). Once this is achieved, the rigorous calculation +! is triggered. If it converges, fine! If no solution is obtained, +! the pressure is somewhat reduced, the procedure is repeated and +! a calculation is started to approach the originally specified +! pressure. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE poly_sta_var (converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k,ph,sol + REAL :: p_spec,solution(10,4+nc*np) +! ---------------------------------------------------------------------- + + p_spec = p + + find_equilibrium: DO + + CALL polymer_free(p_spec,sol,solution) + + WRITE (*,*) ' ' + WRITE (*,*) ' GENERATING STARTING VALUES' + + val_init(1) = solution(1,1) ! approx.solutions for next iteration + val_init(2) = solution(1,2) ! approx.solutions for next iteration + val_init(3) = solution(1,3) ! approx.solutions for next iteration + val_init(4) = solution(1,4) ! approx.solutions for next iteration + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = solution(1,4+k+(ph-1)*ncomp) + END DO + END DO + val_init(7) = -10000.0 ! start.val. for lnx(2,1) for iterat. + + IF (p /= p_spec) & + WRITE (*,*) ' INITIAL EQUILIBRIUM CALC. FAILD. NEXT STEP STARTS' + + IF (p == p_spec) THEN + n_unkw = ncomp ! number of quantities to be iterated + it(1)='x11' ! iteration of mol fraction of comp.1 phase 1 + it(2)='x21' ! iteration of mol fraction of comp.1 phase 2 + CALL objective_ctrl (converg) + ELSE + outp = 0 ! output to terminal + running ='p' ! Pressure is running var. in PHASE_EQUILIB + CALL phase_equilib(p_spec,5.0,converg) + END IF + + IF (converg == 1) EXIT find_equilibrium + p = p * 0.9 + IF ( p < (0.7*p_spec) ) WRITE (*,*) ' NO SOLUTION FOUND' + IF ( p < (0.7*p_spec) ) STOP + + END DO find_equilibrium + + WRITE (*,*) ' FINISHED: POLY_STA_VAR' + +END SUBROUTINE poly_sta_var + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE x_summation +!! +!! This subroutine solves the summation relation: xi=1-sum(xj) +!! The variable "sum_rel(i)" contains the information, which mole +!! fraction is the one to be calculated here. Consider the example +!! sum_rel(1)='x12'. The fist letter 'x' of this variable indicates, +!! that this subroutine needs to be executed and that the mole +!! fraction of a component has to be calculated. The second letter +!! of the string points to phase 1, the third letter to component 2. +!! If the fist letter is 'e', not 'x', then the subroutine +!! NEUTR_CHARGE is called. This is the case of electrolyte solutions, +!! neutral charges have to be enforced in all phases (see below). +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE x_summation +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, ph_i + REAL :: sum_x + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno + LOGICAL :: flashcase2 +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF (sum_rel(j)(1:3) == 'nfl') THEN + CALL new_flash (j) + RETURN + END IF +END DO + + + +flashcase2 = .false. + +DO j = 1, nphas + + IF (sum_rel(j)(1:1) == 'x') THEN + + phasno = sum_rel(j)(2:2) + READ(phasno,*) ph_i + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( sum_rel(nphas+j)(1:1) == 'e' ) CALL neutr_charge(nphas+j) + + sum_x = 0.0 + DO i = 1, ncomp + IF ( i /= comp_i ) sum_x = sum_x + xi(ph_i,i) + END DO + xi(ph_i,comp_i) = 1.0 - sum_x + IF ( xi(ph_i,comp_i ) < 0.0 ) xi(ph_i,comp_i) = 0.0 + IF ( xi(ph_i,comp_i ) /= 0.0 ) THEN + lnx(ph_i,comp_i) = LOG( xi(ph_i,comp_i) ) + ELSE + lnx(ph_i,comp_i) = -100000.0 + END IF + ! write (*,*) 'sum_x',ph_i,comp_i,lnx(ph_i,comp_i),xi(ph_i,comp_i) + + ELSE IF ( sum_rel(j)(1:2) == 'fl' ) THEN + + flashcase2 = .true. + ! ------------------------------------------------------------------ + ! This case is true when all molefractions of one phase are + ! determined from a component balance. What is needed to + ! calculate all molefractions of that phase are all mole- + ! fractions of the other phase (nphas=2, so far) and the + ! phase fraction alpha. + ! Alpha is calculated (in FLASH_ALPHA) from the mole fraction + ! of component {sum_rel(j)(3:3)}. IF sum_rel(2)='fl3', then + ! the alpha is determined from the molefraction of comp. 3 and + ! the molefraction of phase 2 is then completely determined ELSE + ! ------------------------------------------------------------------ + + ELSE + WRITE (*,*) 'summation relation not defined' + STOP + END IF + +END DO + +IF ( it(1) == 'fls' ) CALL flash_sum +IF ( flashcase2 ) CALL flash_alpha + +END SUBROUTINE x_summation + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE FUGACITY +!! +!! This subroutine serves as an interface to the eos-subroutines. +!! (1) case 1, when ensemble_flag = 'tp' +!! mu_i^res(T,p,x)/kT = ln( phi_i ) +!! and in addition, the densities that satisfy the specified p +!! (2) case 2, when ensemble_flag = 'tv' +!! The subroutine gives the residual chemical potential: +!! --> mu_i^res(T,rho,x)/kT +!! and in addition the resulting pressure for the given density. +!! The term "residual" means difference of the property and the same +!! property for an ideal gas mixture. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE FUGACITY (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + DO ph = 1,nphas + + phas = ph + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(ph) = eta + ln_phi(ph,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY + + + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE FUGACITY +!! +!! This subroutine serves as an interface to the eos-subroutines. +!! (1) case 1, when ensemble_flag = 'tp' +!! The subroutine gives the residual chemical potential: +!! mu_i^res(T,p,x)/kT = ln( phi_i ) +!! and in addition, the densities that satisfy the specified p +!! (2) case 2, when ensemble_flag = 'tv' +!! The subroutine gives the residual chemical potential: +!! --> mu_i^res(T,rho,x)/kT +!! and in addition the resulting pressure for the given density. +!! The term "residual" means difference of the property and the same +!! property for an ideal gas mixture. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE FUGACITY2 (ln_phi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: phas, x, eta, eta_start, lnphi, fres, rho, pges, KBOL + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ln_phi(np,nc) +! +! --- local variables -------------------------------------------------- + INTEGER :: ph +! ---------------------------------------------------------------------- +! +IF (eos < 2) THEN + + ! DO ph = 1,nphas + + phas = 2! ph + eta_start = densta(2) + x(1:ncomp) = xi(2,1:ncomp) + + IF (p < 1.E-100) THEN + WRITE(*,*) ' FUGACITY: PRESSURE TOO LOW', p + p = 1.E-6 + END IF + + IF (num == 0) CALL PHI_EOS2 + IF (num == 1) CALL PHI_NUMERICAL + !!IF (num == 2) CALL PHI_CRITICAL_RENORM + IF (num == 2) write(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + + dense(2) = eta + ln_phi(2,1:ncomp) = lnphi(1:ncomp) + ! gibbs(ph) = fres + sum( xi(ph,1:ncomp)*( log( xi(ph,1:ncomp)*rho) - 1.0 ) ) & + ! + (pges * 1.d-30) / (KBOL*t*rho) ! includes ideal gas contribution + + ! f_res(ph) = fres + ! write (*,'(i3,4G20.11)') ph,eta,lnphi(1),lnphi(2) + ! DO i = 1,ncomp + ! DO j=1,NINT(parame(i,12)) + ! mxx(ph,i,j) = mx(i,j) + ! END DO + ! END DO + + ! END DO + +ELSE + +! IF (eos == 2) CALL srk_eos (ln_phi) +! IF (eos == 3) CALL pr_eos (ln_phi) +! dense(1) = 0.01 +! dense(2) = 0.3 +! IF (eos == 4.OR.eos == 5.OR.eos == 6.OR.eos == 8) CALL lj_fugacity(ln_phi) +! IF (eos == 7) CALL sw_fugacity(ln_phi) +! IF (eos == 9) CALL lj_bh_fug(ln_phi) + +END IF + +END SUBROUTINE FUGACITY2 + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE enthalpy_etc +! +! This subroutine serves as an interface to the EOS-routines. The +! residual enthalpy h_res, residual entropy s_res, residual Gibbs +! enthalpy g_res, and residual heat capacity at constant pressure +! (cp_res) corresponding to converged conditions are calculated. +! The conditions in (T,P,xi,rho) need to be converged equilibrium +! conditions !! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE enthalpy_etc +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! + INTEGER :: ph +! ------------------------------------------------------------------ + +IF (eos <= 1) THEN + + DO ph=1,nphas + + phas = ph + eta = dense(ph) +! eta_start = dense(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + IF(num == 0) THEN + CALL H_EOS + ELSE + IF(num == 1) CALL H_numerical + IF(num == 2) write (*,*) 'enthalpy_etc: incorporate H_EOS_RN' + IF(num == 2) stop +! IF(num == 2) CALL H_EOS_rn + END IF + enthal(ph) = h_res + entrop(ph) = s_res + ! gibbs(ph) = h_res - t * s_res ! already defined in eos.f90 (including ideal gas) + cpres(ph) = cp_res + + END DO + IF (nphas == 2) h_lv = enthal(2)-enthal(1) + +ENDIF + +END SUBROUTINE enthalpy_etc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dens_calc +! +! This subroutine serves as an interface to the EOS-routines. The +! densities corresponding to given (P,T,xi) are calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dens_calc(rho_phas) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! +!------------------------------------------------------------------ + REAL, INTENT(OUT) :: rho_phas(np) +! + INTEGER :: ph +!------------------------------------------------------------------ + + +DO ph = 1, nphas + + IF (eos < 2) THEN + + phas = ph + eta = densta(ph) + eta_start = densta(ph) + x(1:ncomp) = xi(ph,1:ncomp) + + CALL PERTURBATION_PARAMETER + CALL DENSITY_ITERATION + + dense(ph)= eta + rho_phas(ph) = eta/z3t + + ELSE + write (*,*) ' SUBROUTINE DENS_CALC not available for cubic EOS' + stop + END IF + +END DO + +END SUBROUTINE dens_calc + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE fden_calc (fden, rhoi) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fden + REAL, INTENT(IN OUT) :: rhoi(nc) +! ---------------------------------------------------------------------- + REAL :: rhot, fden_id +! ---------------------------------------------------------------------- + + +IF (eos < 2) THEN + + rhot = SUM( rhoi(1:ncomp) ) + x(1:ncomp) = rhoi(1:ncomp) / rhot + + CALL PERTURBATION_PARAMETER + eta = rhot * z3t + eta_start = eta + + IF (num == 0) THEN + CALL F_EOS + ELSE IF(num == 1) THEN + CALL F_NUMERICAL + ELSE + write (*,*) 'deactivated this line when making a transition to f90' + stop + ! CALL F_EOS_rn + END IF + + fden_id = SUM( rhoi(1:ncomp) * ( LOG( rhoi(1:ncomp) ) - 1.0 ) ) + + fden = fres * rhot + fden_id + +ELSE + write (*,*) ' SUBROUTINE FDEN_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE fden_calc + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE polymer_free +! +! This subroutine performes a phase equilibrium calculation assuming +! the polymer-lean hase to be polymer-free (x_poly=0). Only the +! equality of the solvent-fugacities has to be ensured (only one +! equation to be iterated). This procedure delivers very good +! appoximations for the polymer-rich phase up-to fairly close to the +! mixture critical point. Both, liquid-liquid and vapor-liquid +! equilibria can be calculated. +! See also comments to SUBROUTINE POLY_STA_VAR. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE polymer_free (p_spec,sol,solution) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: p_spec + INTEGER, INTENT(OUT) :: sol + REAL, INTENT(OUT) :: solution(10,4+nc*np) +! +! ---------------------------------------------------------------------- + INTEGER :: k,j,ph, converg + REAL :: grid(10) +! ---------------------------------------------------------------------- + + sol = 0 + + grid(1)=0.98 + grid(2)=0.9 + grid(3)=0.7 + grid(4)=0.5 + grid(5)=0.3 + grid(6)=0.2 + grid(7)=0.1 + grid(8)=0.05 + + DO WHILE ( sol == 0 ) + + DO j = 1,8 + ! Phase 2 is solvent-phase + ! starting value for xi(1,1) of polymer-phase 1: w_polymer=0.95 to 0.05 + ! from simple approximate equation + xi(1,1) = grid(j) / ( (1.0-grid(j)) * mm(1) / mm(2) ) !xi(1,1) Phase 1 Komponente 1 + IF ( mm(1) < 5000.0 ) xi(1,1) = xi(1,1) * 0.8 + xi(1,2) = 1.0 - xi(1,1) !xi(1,2) Phase 1 Komponente 2 + lnx(1,1) = LOG(xi(1,1)) + lnx(1,2) = LOG(xi(1,2)) + lnx(2,1) = -1.E10 !ln(xi) Phase 2 Komponente 1 + lnx(2,2) = 0.0 !ln(xi) Phase 2 Komponente 2 + + + + val_init(1) = 0.45 ! starting density targeting at a liquid phase + val_init(2) = 0.0001 ! starting density targeting at a vapor phase + ! val_init(2) = 0.45 + val_init(3) = t + val_init(4) = p + DO ph = 1,nphas + DO k = 1,ncomp + val_init(4+k+(ph-1)*ncomp) = lnx(ph,k) + END DO + END DO + + + + + n_unkw = ncomp-1 ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = ' ' + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' + + CALL objective_ctrl (converg) + + IF (converg == 1 .AND. ABS(dense(1)/dense(2)-1.0) > 1.d-3 .AND. dense(1) > 0.1) THEN + IF (sol == 0) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + ELSE IF (ABS(solution(sol,5)/lnx(1,1)-1.0) > 1.d-2) THEN + sol = sol + 1 + DO k = 1,4+ncomp*nphas + solution(sol,k) = val_conv(k) + END DO + END IF + END IF + + END DO + + + + + + IF (sol == 0) THEN + WRITE (*,*) ' no initial solution found' + p = p*0.9 + IF (p < (0.7*p_spec)) WRITE (*,*) ' NO SOLUTION FOUND' + IF (p < (0.7*p_spec)) STOP + ELSE IF (sol > 1) THEN + ! write (*,*) ' ' + ! write (*,*) ' ',sol,' solutions found:' + ! write (*,*) ' lnx(1,1), dichte_1, dichte_2' + ! DO k = 1,sol + ! write (*,*) solution(k,5),solution(k,1),solution(k,2) + ! END DO + END IF + END DO + + n_unkw = ncomp ! number of quantities to be iterated + it(1) = 'x11' ! iteration of mol fraction of comp.1 phase 1 + it(2) = 'x21' ! iteration of mol fraction of comp.1 phase 2 + sum_rel(1) = 'x12' ! summation relation: x12 = 1 - sum(x1j) + sum_rel(2) = 'x22' ! summation relation: x22 = 1 - sum(x2j) + + + END SUBROUTINE polymer_free + + + + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE phase_equilib +!! +!! This subroutine varies a predefined "running variable" and +!! organizes phase equilibrium calculations. For an isotherm +!! calculation e.g., the running variable is often the pressure. The +!! code is designed to deliver only converged solutions. In order to +!! enforce convergence, a step-width adjustment (reduction) is +!! implemented. +!! +!! VARIABLE LIST: +!! running defines the running variable. For example: if you want +!! to calculate the vapor pressure curve of a component +!! starting from 100�C to 200�C, then running is 't'. The +!! temperature is step-wise increased until the end- +!! -temperature of 200�C is reached. +!! (in this example end_x=200+273.15) +!! end_x end point for running variable +!! steps No. of calculation steps towards the end point of calc. +!! converg 0 if no convergence achieved, 1 if converged solution +!! +!! PREREQUISITES: +!! prior to execution of this routine, the follwing variables have to +!! be defined: "val_init" an array containing the starting values for +!! this iteration, "it(i)" provides the information, which variable is +!! determined iteratively, "sum_rel(i)" indicates, which mole fraction +!! is determined from the summation relation sum(xi)=1. Furthermore, +!! the number of phases and the variables provided by the subroutine +!! INPUT are required. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE phase_equilib (end_x,steps,converg) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: end_x + REAL, INTENT(IN) :: steps + INTEGER, INTENT(OUT) :: converg +! +! ---------------------------------------------------------------------- + INTEGER :: k, count1,count2,runindex,maxiter + REAL :: delta_x,delta_org,val_org,runvar + CHARACTER (LEN=2) :: compon + LOGICAL :: continue_cycle +! ---------------------------------------------------------------------- + +IF (running(1:2) == 'd1') runindex = 1 +IF (running(1:2) == 'd2') runindex = 2 +IF (running(1:1) == 't') runindex = 3 +IF (running(1:1) == 'p') runindex = 4 +IF (running(1:2) == 'x1') compon = running(3:3) +IF (running(1:2) == 'x1') READ(compon,*) k +IF (running(1:2) == 'x1') runindex = 4+k +IF (running(1:2) == 'x2') compon = running(3:3) +IF (running(1:2) == 'x2') READ(compon,*) k +IF (running(1:2) == 'x2') runindex = 4+ncomp+k +IF (running(1:2) == 'l1') compon = running(3:3) +IF (running(1:2) == 'l1') READ(compon,*) k +IF (running(1:2) == 'l1') runindex = 4+k +IF (running(1:2) == 'l2') compon = running(3:3) +IF (running(1:2) == 'l2') READ(compon,*) k +IF (running(1:2) == 'l2') runindex = 4+ncomp+k + +maxiter = 200 +IF ( ncomp >= 3 ) maxiter = 1000 +count1 = 0 +count2 = 0 +delta_x = ( end_x - val_init(runindex) ) / steps !J: calc increment in running var = (phi_end - phi_init)/steps +delta_org = ( end_x - val_init(runindex) ) / steps +val_org = val_init(runindex) +IF ( running(1:1) == 'x' ) THEN + delta_x = ( end_x - EXP(val_init(runindex)) ) / steps + delta_org = ( end_x - EXP(val_init(runindex)) ) / steps + val_org = EXP(val_init(runindex)) +END IF + +continue_cycle = .true. + +DO WHILE ( continue_cycle ) + + count1 = count1 + 1 + count2 = count2 + 1 + ! val_org = val_init(runindex) + + + CALL objective_ctrl (converg) + + IF (converg == 1) THEN + val_init( 1:(4+ncomp*nphas) ) = val_conv( 1:(4+ncomp*nphas) ) + IF (outp == 1 .AND. (ABS(delta_x) > 0.1*ABS(delta_org) .OR. count2 == 2)) CALL output + ELSE + delta_x = delta_x / 2.0 + IF (num == 2) delta_x = delta_x / 2.0 + val_init(runindex) = val_org + IF (running(1:1) == 'x') val_init(runindex) = LOG(val_org) + continue_cycle = .true. + count2 = 0 + END IF + runvar = val_init(runindex) + IF (running(1:1) == 'x') runvar = EXP(val_init(runindex)) + + IF ( end_x == 0.0 .AND. running(1:1) /= 'x' ) THEN + IF ( ABS(runvar-end_x) < 1.E-8 ) continue_cycle = .false. + ELSE IF ( ABS((runvar-end_x)/end_x) < 1.E-8 ) THEN + ! IF(delta_org.NE.0.0) WRITE (*,*)' FINISHED ITERATION',count1 + continue_cycle = .false. + ELSE IF ( count1 == maxiter ) THEN + WRITE (*,*) ' MAX. NO OF ITERATIONS',count1 + converg = 0 + continue_cycle = .false. + ELSE IF ( ABS(delta_x) < 1.E-5*ABS(delta_org) ) THEN + ! WRITE (*,*) ' CLOSEST APPROACH REACHED',count1 + converg = 0 + continue_cycle = .false. + ELSE + continue_cycle = .true. + val_org = runvar + IF (ABS(runvar+delta_x-end_x) > ABS(runvar-end_x)) delta_x = end_x - runvar ! if end-point passed + val_init(runindex) = runvar + delta_x + IF (running(1:1) == 'x') val_init(runindex) = LOG(runvar+delta_x) + END IF + + IF (ABS(delta_x) < ABS(delta_org) .AND. count2 >= 5) THEN + delta_x = delta_x * 2.0 + count2 = 0 + END IF + +END DO ! continue_cycle + +END SUBROUTINE phase_equilib + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE new_flash (ph_it) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ph_it +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph_cal + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + ph_cal = 3 - ph_it ! for two phases only + + DO i = 1, ncomp + IF ( lnx(ph_it,i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( lnx(ph_it,i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i)-ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(ph_it,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + DO i = 1, ncomp + IF ( xi(ph_it,i) >= 1.E-300 ) lnx(ph_it,i) = LOG( xi(ph_it,i) ) + END DO + xi(ph_cal,1:ncomp) = ni_1(1:ncomp) / SUM( ni_1(1:ncomp) ) + lnx(ph_cal,1:ncomp) = LOG( xi(ph_cal,1:ncomp) ) + +END SUBROUTINE new_flash + + +!>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! SUBROUTINE PHI_EOS +!! +!! This subroutine gives the residual chemical potential: +!! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +!! The required input for this case (T, p, x(nc)) and as a starting value +!! eta_start +!! +!! or it gives +!! +!! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +!! The required input for this case (T, eta_start, x(nc)). Note that +!! eta_start is the specified density (packing fraction) in this case. +!!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +!! + SUBROUTINE PHI_EOS +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + + + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + + + + +END DO + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + +END SUBROUTINE PHI_EOS + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PHI_EOS +! +! This subroutine gives the residual chemical potential: +! --> mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! The required input for this case (T, p, x(nc)) and as a starting value +! eta_start +! +! or it gives +! +! --> mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! The required input for this case (T, eta_start, x(nc)). Note that +! eta_start is the specified density (packing fraction) in this case. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_EOS2 +! + USE PARAMETERS + USE EOS_VARIABLES + USE EOS_CONSTANTS + + + IMPLICIT NONE +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, k, ki, l, m + REAL :: z0, z1, z2, z3, z0_rk, z1_rk, z2_rk, z3_rk + REAL :: zms, m_mean + REAL, DIMENSION(nc) :: mhs, mdsp, mhc, myres + REAL, DIMENSION(nc) :: m_rk + REAL :: gij_rk(nc,nc) + REAL :: zres, zges + REAL :: dpdz, dpdz2 + + REAL :: I1, I2, I1_rk, I2_rk + REAL :: ord1_rk, ord2_rk + REAL :: c1_con, c2_con, c1_rk + REAL :: zmr, nmr, zmr_rk, nmr_rk, um_rk + REAL, DIMENSION(nc,0:6) :: ap_rk, bp_rk + + LOGICAL :: assoc + REAL :: ass_s2, m_hbon(nc) + + REAL :: fdd_rk, fqq_rk, fdq_rk + REAL, DIMENSION(nc) :: my_dd, my_qq, my_dq +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! obtain parameters and density independent expressions +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + + +! ---------------------------------------------------------------------- +! density iteration: (pTx)-ensemble OR p calc.: (pvx)-ensemble +! ---------------------------------------------------------------------- +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_EOS +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (pv) or (pt)' + stop +END IF + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +m_mean = z0t / (PI/6.0) +zms = 1.0 - eta + +! ---------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +! ---------------------------------------------------------------------- +zges = (p * 1.d-30) / (KBOL*t*rho) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.d-30) / (KBOL*t*rho) +zres = zges - 1.0 + + + +! ====================================================================== +! calculate the derivatives of f to mole fraction x ( d(f)/d(x) ) +! ====================================================================== + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + +! --- derivative d(m_mean)/d(x) ---------------------------------------- + m_rk(k) = ( mseg(k) - m_mean ) / rho + ! lij(1,2)= -0.050 + ! lij(2,1)=lij(1,2) + ! r_m2dx(k)=0.0 + ! m_mean2=0.0 + ! DO i =1,ncomp + ! r_m2dx(k)=r_m2dx(k)+2.0*x(i)*(mseg(i)+mseg(k))/2.0*(1.0-lij(i,k)) + ! DO j =1,ncomp + ! m_mean2=m_mean2+x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) + ! ENDDO + ! ENDDO + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + x(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + IF (eos == 1) THEN + + ! --- derivatives of apar, bpar to rho_k --------------------------- + DO m = 0, 6 + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + DO i = 1,ncomp + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*x(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + ! -------------------------------------------------------------------- + ! SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + ELSE + + zmr = 0.0 + nmr = 0.0 + zmr_rk = 0.0 + nmr_rk = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + zmr_rk = zmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i)*uij(k,i) + nmr_rk = nmr_rk + 2.0*mseg(k) * x(i)*mseg(i)*vij(k,i) + END DO + + um_rk = 1.0/nmr**2 * ( nmr*zmr_rk - zmr*nmr_rk ) + + mdsp(k) = 0.0 + DO i = 1,4 + DO j = 1,9 + mdsp(k) = mdsp(k) + dnm(i,j)*(um/t)**REAL(i)*(eta/tau)**REAL(j) & + * ( 1.0 + z3_rk*rho/eta*REAL(j) + um_rk*rho/um*REAL(i) ) + END DO + END DO + + END IF + ! --- end of dispersion contribution------------------------------------ + + + ! -------------------------------------------------------------------- + ! TPT-1-association according to Chapman et al. + ! -------------------------------------------------------------------- + m_hbon(k) = 0.0 + assoc = .false. + DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + ass_s2 = 0.0 + DO l = 1, nhb_typ(k) + ass_s2 = ass_s2 + nhb_no(k,l) * LOG(mx(k,l)) + END DO + + m_hbon(k)=ass_s2 + DO i = 1, ncomp + DO ki = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + m_hbon(k)= m_hbon(k) - rho*rho/2.0*x(i)*x(j) *mx(i,ki)*mx(j,l) *nhb_no(i,ki)*nhb_no(j,l) & + * gij_rk(i,j) * ass_d(i,j,ki,l) + END DO + END DO + END DO + END DO + + END IF + ! --- end of TPT-1-association accord. to Chapman -------------------- + + + ! -------------------------------------------------------------------- + ! polar terms + ! -------------------------------------------------------------------- + CALL PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) + my_dd(k) = fdd_rk + my_qq(k) = fqq_rk + my_dq(k) = fdq_rk + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : summation of all contributions + ! -------------------------------------------------------------------- + myres(k) = mhs(k) +mhc(k) +mdsp(k) +m_hbon(k) +my_dd(k) +my_qq(k) +my_dq(k) + + +END DO + + + + +muhs(1:ncomp) = mhs(1:ncomp) +muhc(1:ncomp) = mhc(1:ncomp) +mudisp(1:ncomp) = mdsp(1:ncomp) + + + + +! ---------------------------------------------------------------------- +! finally calculate +! mu_i^res(T,p,x)/kT = ln( phi_i ) when ensemble_flag = 'tp' +! mu_i^res(T,rho,x)/kT when ensemble_flag = 'tv' +! ---------------------------------------------------------------------- + +DO k = 1, ncomp + ! write (*,*) k,myres(k) +LOG(rho*x(k)),rho + IF (ensemble_flag == 'tp' ) lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' ) lnphi(k) = myres(k) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta +END DO +!write (*,'(5G18.10)') lnphi(1),rho + +dpdz = pgesdz +dpdz2 = pgesd2 + + +write(*,*)'tp?',myres(1), lnphi(1) + +END SUBROUTINE PHI_EOS2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE DFT_MODULE, ONLY: z_ges, fres_temp + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + INTEGER :: k + REAL :: zres, zges + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: delta_rho + REAL, DIMENSION(nc) :: myres + REAL, DIMENSION(nc) :: rhoi, rhoi_0 + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +!----------------------------------------------------------------------- +! density iteration or pressure calculation +!----------------------------------------------------------------------- + +IF (ensemble_flag == 'tp') THEN + CALL DENSITY_ITERATION +ELSEIF (ensemble_flag == 'tv') THEN + eta = eta_start + CALL P_NUMERICAL +ELSE + write (*,*) 'PHI_EOS: define ensemble, ensemble_flag == (tv) or (tp)' + stop +END IF + +!----------------------------------------------------------------------- +! compressibility factor z = p/(kT*rho) +!----------------------------------------------------------------------- + +zges = (p * 1.E-30) / (kbol*t*eta/z3t) +IF ( ensemble_flag == 'tv' ) zges = (pges * 1.E-30) / (kbol*t*eta/z3t) +zres = zges - 1.0 +z_ges = zges + +rhoi_0(1:ncomp) = x(1:ncomp) * eta/z3t +rhoi(1:ncomp) = rhoi_0(1:ncomp) + + +!----------------------------------------------------------------------- +! derivative to rho_k (keeping other rho_i's constant +!----------------------------------------------------------------------- + +DO k = 1, ncomp + + IF ( rhoi_0(k) > 1.d-9 ) THEN + delta_rho = 1.E-13 * 10.0**(0.5*(15.0+LOG10(rhoi_0(k)))) + ELSE + delta_rho = 1.E-10 + END IF + + rhoi(k) = rhoi_0(k) + delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres1 = fres*rho + tfr_1 = tfr*rho + + rhoi(k) = rhoi_0(k) + 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres2 = fres*rho + tfr_2 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + rhoi(k) = rhoi_0(k) - 0.5 * delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres4 = fres*rho + tfr_4 = tfr*rho + + rhoi(k) = rhoi_0(k) - delta_rho + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres5 = fres*rho + tfr_5 = tfr*rho + END IF + + rhoi(k) = rhoi_0(k) + eta = PI/6.0 * SUM( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + x(1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + rho = SUM( rhoi(1:ncomp) ) + CALL F_NUMERICAL + fres3 = fres*rho + tfr_3 = tfr*rho + + IF ( rhoi_0(k) > 1.E-9 ) THEN + myres(k) = ( fres5 - 8.0*fres4 + 8.0*fres2 - fres1 ) / ( 6.0*delta_rho ) + ELSE + myres(k) = ( -3.0*fres3 + 4.0*fres2 - fres1 ) / delta_rho + END IF + +END DO + + +!----------------------------------------------------------------------- +! residual Helmholtz energy +!----------------------------------------------------------------------- + +fres_temp = fres + +!----------------------------------------------------------------------- +! residual chemical potential +!----------------------------------------------------------------------- + +DO k = 1, ncomp + IF (ensemble_flag == 'tp') lnphi(k) = myres(k) - LOG(zges) + IF (ensemble_flag == 'tv' .AND. eta >= 0.0) lnphi(k) = myres(k) !+LOG(rho) + ! write (*,*) 'in',k,EXP(lnphi(k)),LOG(zges),eta + ! IF (DFT.GE.98) write (*,*) dft + ! write (*,*) 'lnphi',k,LNPHI(k),x(k),MYRES(k), -LOG(ZGES) + ! pause + ! write (*,*) k, myres(k), fres, ZRES +END DO + +END SUBROUTINE PHI_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW + +! SUBROUTINE H_EOS (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! IMPLICIT NONE +! INTEGER nc +! PARAMETER (nc=20) +! INTEGER phas,ncomp,eos,i +! REAL kij(nc,nc),lij(nc,nc),x(nc),t,p,parame(nc,25) +! REAL eta_start,eta,tfr,h_res,cp_res,s_res + + +! i=1 + +! IF (i.EQ.1) THEN +! CALL H_EOS_1(phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ELSE +! CALL H_EOS_NUM (phas,h_res,s_res,cp_res,X,T,P,PARAME, +! 1 KIJ,lij,NCOMP,ETA_START,ETA,eos,tfr) +! ENDIF + +! RETURN +! END + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS +! + USE PARAMETERS, ONLY: RGAS + USE EOS_CONSTANTS + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL :: zges, df_dt, dfdr, ddfdrdr + REAL :: cv_res, df_dt2, df_drdt + REAL :: fact, dist, t_tmp, rho_0 + REAL :: fdr1, fdr2, fdr3, fdr4 + + INTEGER :: i, m + REAL :: dhsdt(nc), dhsdt2(nc) + REAL :: z0, z1, z2, z3, z1tdt, z2tdt, z3tdt + REAL :: z1dt, z2dt, z3dt, zms, gii + REAL :: fhsdt, fhsdt2 + REAL :: fchdt, fchdt2 + REAL :: fdspdt, fdspdt2 + REAL :: fhbdt, fhbdt2 + REAL :: sumseg, I1, I2, I1dt, I2dt, I1dt2, I2dt2 + REAL :: c1_con, c2_con, c3_con, c1_dt, c1_dt2 + REAL :: z1tdt2, z2tdt2, z3tdt2 + REAL :: z1dt2, z2dt2, z3dt2 + + INTEGER :: j, k, l, no, ass_cnt, max_eval + LOGICAL :: assoc + REAL :: dij, dijdt, dijdt2 + REAL :: gij1dt, gij2dt, gij3dt + REAL :: gij1dt2, gij2dt2, gij3dt2 + REAL, DIMENSION(nc,nc) :: gijdt, gijdt2, kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: ass_d_dt, ass_d_dt2, eps_hb, delta, deltadt, deltadt2 + REAL, DIMENSION(nc,nsite) :: mxdt, mxdt2, mx_itr, mx_itrdt, mx_itrdt2 + REAL :: attenu, tol, suma, sumdt, sumdt2, err_sum + + INTEGER :: dipole + REAL :: fdddt, fdddt2 + REAL, DIMENSION(nc) :: my2dd, my0 + REAL, DIMENSION(nc,nc) :: idd2, idd2dt, idd2dt2, idd4, idd4dt, idd4dt2 + REAL, DIMENSION(nc,nc,nc) :: idd3, idd3dt, idd3dt2 + REAL :: factor2, factor3 + REAL :: fdd2, fdd3, fdd2dt, fdd3dt, fdd2dt2, fdd3dt2 + REAL :: eij, xijmt, xijkmt + + INTEGER :: qudpole + REAL :: fqqdt, fqqdt2 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: iqq2, iqq2dt, iqq2dt2, iqq4, iqq4dt, iqq4dt2 + REAL, DIMENSION(nc,nc,nc) :: iqq3, iqq3dt, iqq3dt2 + REAL :: fqq2, fqq2dt, fqq2dt2, fqq3, fqq3dt, fqq3dt2 + + INTEGER :: dip_quad + REAL :: fdqdt, fdqdt2 + REAL, DIMENSION(nc) :: myfac, q_fac + REAL, DIMENSION(nc,nc) :: idq2, idq2dt, idq2dt2, idq4, idq4dt, idq4dt2 + REAL, DIMENSION(nc,nc,nc) :: idq3, idq3dt, idq3dt2 + REAL :: fdq2, fdq2dt, fdq2dt2, fdq3, fdq3dt, fdq3dt2 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! Initializing +! ---------------------------------------------------------------------- +CALL PERTURBATION_PARAMETER + +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +sumseg = z0t / (PI/6.0) +zms = 1.0 - z3 + + +! ---------------------------------------------------------------------- +! first and second derivative of f to density (dfdr,ddfdrdr) +! ---------------------------------------------------------------------- +CALL P_EOS + +zges = (pges * 1.E-30)/(kbol*t*rho) + +dfdr = pges/(eta*rho*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + + +! ---------------------------------------------------------------------- +! Helmholtz Energy f/kT = fres +! ---------------------------------------------------------------------- +CALL F_EOS + + +! ---------------------------------------------------------------------- +! derivative of some auxilliary properties to temperature +! ---------------------------------------------------------------------- +DO i = 1,ncomp + dhsdt(i)=parame(i,2) *(-3.0*parame(i,3)/t/t)*0.12*EXP(-3.0*parame(i,3)/t) + dhsdt2(i) = dhsdt(i)*3.0*parame(i,3)/t/t & + + 6.0*parame(i,2)*parame(i,3)/t**3 *0.12*EXP(-3.0*parame(i,3)/t) +END DO + +z1tdt = 0.0 +z2tdt = 0.0 +z3tdt = 0.0 +DO i = 1,ncomp + z1tdt = z1tdt + x(i) * mseg(i) * dhsdt(i) + z2tdt = z2tdt + x(i) * mseg(i) * 2.0*dhs(i)*dhsdt(i) + z3tdt = z3tdt + x(i) * mseg(i) * 3.0*dhs(i)*dhs(i)*dhsdt(i) +END DO +z1dt = PI / 6.0*z1tdt *rho +z2dt = PI / 6.0*z2tdt *rho +z3dt = PI / 6.0*z3tdt *rho + + +z1tdt2 = 0.0 +z2tdt2 = 0.0 +z3tdt2 = 0.0 +DO i = 1,ncomp + z1tdt2 = z1tdt2 + x(i)*mseg(i)*dhsdt2(i) + z2tdt2 = z2tdt2 + x(i)*mseg(i)*2.0 *( dhsdt(i)*dhsdt(i) +dhs(i)*dhsdt2(i) ) + z3tdt2 = z3tdt2 + x(i)*mseg(i)*3.0 *( 2.0*dhs(i)*dhsdt(i)* & + dhsdt(i) +dhs(i)*dhs(i)*dhsdt2(i) ) +END DO +z1dt2 = PI / 6.0*z1tdt2 *rho +z2dt2 = PI / 6.0*z2tdt2 *rho +z3dt2 = PI / 6.0*z3tdt2 *rho + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT hard spheres to temp. (fhsdt) +! ---------------------------------------------------------------------- +fhsdt = 6.0/PI/rho*( 3.0*(z1dt*z2+z1*z2dt)/zms + 3.0*z1*z2*z3dt/zms/zms & + + 3.0*z2*z2*z2dt/z3/zms/zms & + + z2**3 *(2.0*z3*z3dt-z3dt*zms)/(z3*z3*zms**3 ) & + + (3.0*z2*z2*z2dt*z3-2.0*z2**3 *z3dt)/z3**3 *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3dt/zms ) + +fhsdt2= 6.0/PI/rho*( 3.0*(z1dt2*z2+2.0*z1dt*z2dt+z1*z2dt2)/zms & + + 6.0*(z1dt*z2+z1*z2dt)*z3dt/zms/zms & + + 3.0*z1*z2*z3dt2/zms/zms + 6.0*z1*z2*z3dt*z3dt/zms**3 & + + 3.0*z2*(2.0*z2dt*z2dt+z2*z2dt2)/z3/zms/zms & + - z2*z2*(6.0*z2dt*z3dt+z2*z3dt2)/(z3*z3*zms*zms) & + + 2.0*z2**3 *z3dt*z3dt/(z3**3 *zms*zms) & + - 4.0*z2**3 *z3dt*z3dt/(z3*z3 *zms**3 ) & + + (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/(z3*zms**3 ) & + + 6.0*z2**3 *z3dt*z3dt/(z3*zms**4 ) & + - 2.0*(3.0*z2*z2*z2dt/z3/z3-2.0*z2**3 *z3dt/z3**3 ) *z3dt/zms & + -(z2**3 /z3/z3-z0)*(z3dt2/zms+z3dt*z3dt/zms/zms) & + + ( (6.0*z2*z2dt*z2dt+3.0*z2*z2*z2dt2)/z3/z3 & + - (12.0*z2*z2*z2dt*z3dt+2.0*z2**3 *z3dt2)/z3**3 & + + 6.0*z2**3 *z3dt*z3dt/z3**4 )* LOG(zms) ) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT of chain term to T (fchdt) +! ---------------------------------------------------------------------- +fchdt = 0.0 +fchdt2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + dij=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + dijdt =(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) / (dhs(i)+dhs(j)) & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) + dijdt2=(dhsdt2(i)*dhs(j) + 2.0*dhsdt(i)*dhsdt(j) & + + dhs(i)*dhsdt2(j)) / (dhs(i)+dhs(j)) & + - 2.0*(dhsdt(i)*dhs(j) + dhs(i)*dhsdt(j)) & + / (dhs(i)+dhs(j))**2 *(dhsdt(i)+dhsdt(j)) & + + 2.0* dhs(i)*dhs(j) / (dhs(i)+dhs(j))**3 & + * (dhsdt(i)+dhsdt(j))**2 & + - dhs(i)*dhs(j)/(dhs(i)+dhs(j))**2 *(dhsdt2(i)+dhsdt2(j)) + gij1dt = z3dt/zms/zms + gij2dt = 3.0*( z2dt*dij+z2*dijdt )/zms/zms +6.0*z2*dij*z3dt/zms**3 + gij3dt = 4.0*(dij*z2)* (dijdt*z2 + dij*z2dt) /zms**3 & + + 6.0*(dij*z2)**2 * z3dt /zms**4 + gij1dt2 = z3dt2/zms/zms +2.0*z3dt*z3dt/zms**3 + gij2dt2 = 3.0*( z2dt2*dij+2.0*z2dt*dijdt+z2*dijdt2 )/zms/zms & + + 6.0*( z2dt*dij+z2*dijdt )/zms**3 * z3dt & + + 6.0*(z2dt*dij*z3dt+z2*dijdt*z3dt+z2*dij*z3dt2) /zms**3 & + + 18.0*z2*dij*z3dt*z3dt/zms**4 + gij3dt2 = 4.0*(dijdt*z2+dij*z2dt)**2 /zms**3 & + + 4.0*(dij*z2)* (dijdt2*z2+2.0*dijdt*z2dt+dij*z2dt2) /zms**3 & + + 24.0*(dij*z2) *(dijdt*z2+dij*z2dt)/zms**4 *z3dt & + + 6.0*(dij*z2)**2 * z3dt2 /zms**4 & + + 24.0*(dij*z2)**2 * z3dt*z3dt /zms**5 + gijdt(i,j) = gij1dt + gij2dt + gij3dt + gijdt2(i,j) = gij1dt2 + gij2dt2 + gij3dt2 + END DO +END DO + +DO i = 1, ncomp + gii = 1.0/zms + 3.0*dhs(i)/2.0*z2/zms/zms + 2.0*dhs(i)*dhs(i)/4.0*z2*z2/zms**3 + fchdt = fchdt + x(i) * (1.0-mseg(i)) * gijdt(i,i) / gii + fchdt2= fchdt2+ x(i) * (1.0-mseg(i)) & + * (gijdt2(i,i) / gii - (gijdt(i,i)/gii)**2 ) +END DO + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT dispersion term to T (fdspdt) +! ---------------------------------------------------------------------- +I1 = 0.0 +I2 = 0.0 +I1dt = 0.0 +I2dt = 0.0 +I1dt2= 0.0 +I2dt2= 0.0 +DO m = 0, 6 + I1 = I1 + apar(m)*z3**REAL(m) + I2 = I2 + bpar(m)*z3**REAL(m) + I1dt = I1dt + apar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I2dt = I2dt + bpar(m)*z3dt*REAL(m)*z3**REAL(m-1) + I1dt2= I1dt2+ apar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + apar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) + I2dt2= I2dt2+ bpar(m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + bpar(m)*z3dt*z3dt *REAL(m)*REAL(m-1)*z3**REAL(m-2) +END DO + +c1_con= 1.0/ ( 1.0 + sumseg*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - sumseg)*(20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) +c2_con= - c1_con*c1_con *(sumseg*(-4.0*z3**2 +20.0*z3+8.0)/zms**5 & + + (1.0 - sumseg) *(2.0*z3**3 +12.0*z3**2 -48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) +c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( sumseg*(-12.0*z3**2 +72.0*z3+60.0)/zms**6 + (1.0 - sumseg) & + *(-6.0*z3**4 -48.0*z3**3 +288.0*z3**2 -480.0*z3+264.0) & + /(zms*(2.0-z3))**4 ) +c1_dt = c2_con*z3dt +c1_dt2 = c3_con*z3dt*z3dt + c2_con*z3dt2 + +fdspdt = - 2.0*PI*rho*(I1dt-I1/t)*order1 & + - PI*rho*sumseg*(c1_dt*I2+c1_con*I2dt-2.0*c1_con*I2/t)*order2 + +fdspdt2 = - 2.0*PI*rho*(I1dt2-2.0*I1dt/t+2.0*I1/t/t)*order1 & + - PI*rho*sumseg*order2*( c1_dt2*I2 +2.0*c1_dt*I2dt -4.0*c1_dt*I2/t & + + 6.0*c1_con*I2/t/t -4.0*c1_con*I2dt/t +c1_con*I2dt2) + + +! ---------------------------------------------------------------------- +! 1st & 2nd derivative of f/kT association term to T (fhbdt) +! ---------------------------------------------------------------------- +fhbdt = 0.0 +fhbdt2 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1,ncomp + IF ( nhb_typ(i) /= 0 ) THEN + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1,nhb_typ(i) + DO k = 1,nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO j = 1,nhb_typ(i) + no = no + 1 + END DO + ELSE + kap_hb(i,i) = 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0) ) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + ! kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l)=(eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l)=eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN + eps_hb(1,2,3,1)=0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1)=0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ! ass_d(i,j,k,l)=kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + ass_d_dt(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) + ass_d_dt2(i,j,k,l)= - kap_hb(i,j) *sig_ij(i,j)**3 & + * eps_hb(i,j,k,l)/t/t*EXP(eps_hb(i,j,k,l)/t) & + * (-2.0/t - eps_hb(i,j,k,l)/t/t) + END DO + END DO + END DO + END DO + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l)=gij(i,j)*ass_d(i,j,k,l) + deltadt(i,j,k,l) = gijdt(i,j)*ass_d(i,j,k,l) + gij(i,j)*ass_d_dt(i,j,k,l) + deltadt2(i,j,k,l)= gijdt2(i,j)*ass_d(i,j,k,l) & + + 2.0*gijdt(i,j)*ass_d_dt(i,j,k,l) +gij(i,j)*ass_d_dt2(i,j,k,l) + END DO + END DO + END DO + END DO + + +! ------ constants for iteration --------------------------------------- + attenu = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-12 + max_eval = 200 + +! ------ initialize mxdt(i,j) ------------------------------------------ + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + mxdt(i,k) = 0.0 + mxdt2(i,k) = 0.0 + END DO + END DO + + +! ------ iterate over all components and all sites --------------------- + DO ass_cnt = 1, max_eval + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + suma = 0.0 + sumdt = 0.0 + sumdt2= 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + suma = suma + x(j)*nhb_no(j,l)* mx(j,l) *delta(i,j,k,l) + sumdt = sumdt + x(j)*nhb_no(j,l)*( mx(j,l) *deltadt(i,j,k,l) & + + mxdt(j,l)*delta(i,j,k,l) ) + sumdt2 = sumdt2 + x(j)*nhb_no(j,l)*( mx(j,l)*deltadt2(i,j,k,l) & + + 2.0*mxdt(j,l)*deltadt(i,j,k,l) + mxdt2(j,l)*delta(i,j,k,l) ) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + suma * rho) + mx_itrdt(i,k)= - mx_itr(i,k)**2 * sumdt*rho + mx_itrdt2(i,k)= +2.0*mx_itr(i,k)**3 * (sumdt*rho)**2 - mx_itr(i,k)**2 *sumdt2*rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) & + + ABS(mx_itrdt(i,k) - mxdt(i,k)) + ABS(mx_itrdt2(i,k) - mxdt2(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + mxdt(i,k)=mx_itrdt(i,k)*attenu +mxdt(i,k)* (1.0 - attenu) + mxdt2(i,k)=mx_itrdt2(i,k)*attenu +mxdt2(i,k)* (1.0 - attenu) + END DO + END DO + IF(err_sum <= tol) GO TO 10 + + END DO + WRITE(6,*) 'CAL_PCSAFT: max_eval violated err_sum = ',err_sum,tol + STOP + 10 CONTINUE + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + ! fhb = fhb + x(i)* nhb_no(i,k)* ( 0.5 * ( 1.0 - mx(i,k) ) + LOG(mx(i,k)) ) + fhbdt = fhbdt + x(i)*nhb_no(i,k) *mxdt(i,k)*(1.0/mx(i,k)-0.5) + fhbdt2= fhbdt2 + x(i)*nhb_no(i,k) *(mxdt2(i,k)*(1.0/mx(i,k)-0.5) & + -(mxdt(i,k)/mx(i,k))**2 ) + END DO + END DO + +END IF + + +! ---------------------------------------------------------------------- +! derivatives of f/kT of dipole-dipole term to temp. (fdddt) +! ---------------------------------------------------------------------- +fdddt = 0.0 +fdddt2 = 0.0 +dipole = 0 +DO i = 1,ncomp + my2dd(i) = 0.0 + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 ) THEN + dipole = 1 + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END IF + my0(i) = my2dd(i) ! needed for dipole-quadrupole-term +END DO + +IF (dipole == 1) THEN + DO i = 1,ncomp + DO j = 1,ncomp + idd2(i,j) =0.0 + idd4(i,j) =0.0 + idd2dt(i,j) =0.0 + idd4dt(i,j) =0.0 + idd2dt2(i,j)=0.0 + idd4dt2(i,j)=0.0 + DO m=0,4 + idd2(i,j) = idd2(i,j) +ddp2(i,j,m)*z3**REAL(m) + idd4(i,j) = idd4(i,j) +ddp4(i,j,m)*z3**REAL(m) + idd2dt(i,j)= idd2dt(i,j) +ddp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd4dt(i,j)= idd4dt(i,j) +ddp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idd2dt2(i,j)=idd2dt2(i,j)+ddp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idd4dt2(i,j)=idd4dt2(i,j)+ddp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + ddp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + idd3(i,j,k) =0.0 + idd3dt(i,j,k) =0.0 + idd3dt2(i,j,k)=0.0 + DO m = 0, 4 + idd3(i,j,k) = idd3(i,j,k) +ddp3(i,j,k,m)*z3**REAL(m) + idd3dt(i,j,k) = idd3dt(i,j,k)+ddp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idd3dt2(i,j,k)= idd3dt2(i,j,k)+ddp3(i,j,k,m)*z3dt2*REAL(m) & + *z3**REAL(m-1) +ddp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1) *z3**REAL(m-2) + END DO + END DO + END DO + END DO + + + factor2= -PI *rho + factor3= -4.0/3.0*PI**2 * rho**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2dt= 0.0 + fdd3dt= 0.0 + fdd2dt2= 0.0 + fdd3dt2= 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + xijmt = x(i)*parame(i,3)*parame(i,2)**3 *x(j)*parame(j,3)*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2* xijmt/t/t*(idd2(i,j)+eij/t*idd4(i,j)) + fdd2dt= fdd2dt+ factor2* xijmt/t/t*(idd2dt(i,j)-2.0*idd2(i,j)/t & + +eij/t*idd4dt(i,j)-3.0*eij/t/t*idd4(i,j)) + fdd2dt2=fdd2dt2+factor2*xijmt/t/t*(idd2dt2(i,j)-4.0*idd2dt(i,j)/t & + +6.0*idd2(i,j)/t/t+eij/t*idd4dt2(i,j) & + -6.0*eij/t/t*idd4dt(i,j)+12.0*eij/t**3 *idd4(i,j)) + DO k = 1, ncomp + xijkmt=x(i)*parame(i,3)*parame(i,2)**3 & + *x(j)*parame(j,3)*parame(j,2)**3 & + *x(k)*parame(k,3)*parame(k,2)**3 & + /((parame(i,2)+parame(j,2))/2.0) /((parame(i,2)+parame(k,2))/2.0) & + /((parame(j,2)+parame(k,2))/2.0) *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 =fdd3 +factor3*xijkmt/t**3 *idd3(i,j,k) + fdd3dt =fdd3dt +factor3*xijkmt/t**3 * (idd3dt(i,j,k)-3.0*idd3(i,j,k)/t) + fdd3dt2=fdd3dt2+factor3*xijkmt/t**3 & + *( idd3dt2(i,j,k)-6.0*idd3dt(i,j,k)/t+12.0*idd3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fdd2 < -1.E-100 .AND. fdd3 /= 0.0 ) THEN + fdddt = fdd2* (fdd2*fdd2dt - 2.0*fdd3*fdd2dt+fdd2*fdd3dt) / (fdd2-fdd3)**2 + fdddt2 = ( 2.0*fdd2*fdd2dt*fdd2dt +fdd2*fdd2*fdd2dt2 & + -2.0*fdd2dt**2 *fdd3 -2.0*fdd2*fdd2dt2*fdd3 +fdd2*fdd2*fdd3dt2 ) & + /(fdd2-fdd3)**2 + fdddt * 2.0*(fdd3dt-fdd2dt)/(fdd2-fdd3) + END IF +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of quadrupole-quadrup. term to T (fqqdt) +! ---------------------------------------------------------------------- +fqqdt = 0.0 +fqqdt2 = 0.0 +qudpole = 0 +DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + IF (qq2(i) /= 0.0) qudpole = 1 +END DO + +IF (qudpole == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + iqq2(i,j) = 0.0 + iqq4(i,j) = 0.0 + iqq2dt(i,j) = 0.0 + iqq4dt(i,j) = 0.0 + iqq2dt2(i,j)= 0.0 + iqq4dt2(i,j)= 0.0 + DO m = 0, 4 + iqq2(i,j) = iqq2(i,j) + qqp2(i,j,m)*z3**REAL(m) + iqq4(i,j) = iqq4(i,j) + qqp4(i,j,m)*z3**REAL(m) + iqq2dt(i,j) = iqq2dt(i,j)+ qqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq4dt(i,j) = iqq4dt(i,j)+ qqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + iqq2dt2(i,j)= iqq2dt2(i,j)+qqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + iqq4dt2(i,j)= iqq4dt2(i,j)+qqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + qqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + DO k = 1,ncomp + iqq3(i,j,k) =0.0 + iqq3dt(i,j,k) =0.0 + iqq3dt2(i,j,k)=0.0 + DO m = 0, 4 + iqq3(i,j,k) = iqq3(i,j,k) + qqp3(i,j,k,m)*z3**REAL(m) + iqq3dt(i,j,k) = iqq3dt(i,j,k)+ qqp3(i,j,k,m)*z3dt*REAL(m) * z3**REAL(m-1) + iqq3dt2(i,j,k)= iqq3dt2(i,j,k)+qqp3(i,j,k,m)*z3dt2*REAL(m) * z3**REAL(m-1) & + + qqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END DO + END DO + END DO + + factor2 = -9.0/16.0 * PI *rho + factor3 = 9.0/16.0 * PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2dt = 0.0 + fqq3dt = 0.0 + fqq2dt2= 0.0 + fqq3dt2= 0.0 + DO i = 1,ncomp + DO j = 1,ncomp + xijmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2 = fqq2 +factor2* xijmt/t/t*(iqq2(i,j)+eij/t*iqq4(i,j)) + fqq2dt= fqq2dt +factor2* xijmt/t/t*(iqq2dt(i,j)-2.0*iqq2(i,j)/t & + + eij/t*iqq4dt(i,j)-3.0*eij/t/t*iqq4(i,j)) + fqq2dt2=fqq2dt2+factor2*xijmt/t/t*(iqq2dt2(i,j)-4.0*iqq2dt(i,j)/t & + + 6.0*iqq2(i,j)/t/t+eij/t*iqq4dt2(i,j) & + - 6.0*eij/t/t*iqq4dt(i,j)+12.0*eij/t**3 *iqq4(i,j)) + DO k = 1,ncomp + xijkmt = x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /sig_ij(i,j)**3 & + * x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /sig_ij(i,k)**3 & + * x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /sig_ij(j,k)**3 + fqq3 = fqq3 +factor3*xijkmt/t**3 *iqq3(i,j,k) + fqq3dt = fqq3dt +factor3*xijkmt/t**3 *(iqq3dt(i,j,k)-3.0*iqq3(i,j,k)/t) + fqq3dt2= fqq3dt2+factor3*xijkmt/t**3 & + * ( iqq3dt2(i,j,k)-6.0*iqq3dt(i,j,k)/t+12.0*iqq3(i,j,k)/t/t ) + END DO + END DO + END DO + + IF ( fqq2 /= 0.0 .AND. fqq3 /= 0.0 ) THEN + fqqdt = fqq2* (fqq2*fqq2dt - 2.0*fqq3*fqq2dt+fqq2*fqq3dt) / (fqq2-fqq3)**2 + fqqdt2 = ( 2.0*fqq2*fqq2dt*fqq2dt +fqq2*fqq2*fqq2dt2 & + - 2.0*fqq2dt**2 *fqq3 -2.0*fqq2*fqq2dt2*fqq3 +fqq2*fqq2*fqq3dt2 ) & + / (fqq2-fqq3)**2 + fqqdt * 2.0*(fqq3dt-fqq2dt)/(fqq2-fqq3) + END IF + +END IF + + +! ---------------------------------------------------------------------- +! derivatives f/kT of dipole-quadruppole term to T (fdqdt) +! ---------------------------------------------------------------------- +fdqdt = 0.0 +fdqdt2= 0.0 +dip_quad = 0 +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,7) /= 0.0) dip_quad = 1 + END DO + myfac(i) = parame(i,3)*parame(i,2)**4 *my0(i) + q_fac(i) = parame(i,3)*parame(i,2)**4 *qq2(i) +END DO + +IF (dip_quad == 1) THEN + + DO i = 1,ncomp + DO j = 1,ncomp + idq2(i,j) = 0.0 + idq4(i,j) = 0.0 + idq2dt(i,j) = 0.0 + idq4dt(i,j) = 0.0 + idq2dt2(i,j)= 0.0 + idq4dt2(i,j)= 0.0 + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + DO m = 0, 4 + idq2(i,j) = idq2(i,j) + dqp2(i,j,m)*z3**REAL(m) + idq4(i,j) = idq4(i,j) + dqp4(i,j,m)*z3**REAL(m) + idq2dt(i,j) = idq2dt(i,j)+ dqp2(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq4dt(i,j) = idq4dt(i,j)+ dqp4(i,j,m)*z3dt*REAL(m)*z3**REAL(m-1) + idq2dt2(i,j)= idq2dt2(i,j)+dqp2(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp2(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + idq4dt2(i,j)= idq4dt2(i,j)+dqp4(i,j,m)*z3dt2*REAL(m)*z3**REAL(m-1) & + + dqp4(i,j,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + + DO k = 1,ncomp + idq3(i,j,k) = 0.0 + idq3dt(i,j,k) = 0.0 + idq3dt2(i,j,k)= 0.0 + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + DO m = 0, 4 + idq3(i,j,k) = idq3(i,j,k) + dqp3(i,j,k,m)*z3**REAL(m) + idq3dt(i,j,k)= idq3dt(i,j,k)+ dqp3(i,j,k,m)*z3dt*REAL(m) *z3**REAL(m-1) + idq3dt2(i,j,k)= idq3dt2(i,j,k)+dqp3(i,j,k,m)*z3dt2*REAL(m) *z3**REAL(m-1) & + + dqp3(i,j,k,m)*z3dt**2 *REAL(m)*REAL(m-1)*z3**REAL(m-2) + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/4.0 * PI * rho + factor3= PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2dt= 0.0 + fdq3dt= 0.0 + fdq2dt2=0.0 + fdq3dt2=0.0 + DO i = 1,ncomp + DO j = 1,ncomp + IF ( myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0 ) THEN + xijmt = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 + factor2* xijmt/t/t*(idq2(i,j)+eij/t*idq4(i,j)) + fdq2dt= fdq2dt+ factor2* xijmt/t/t*(idq2dt(i,j)-2.0*idq2(i,j)/t & + + eij/t*idq4dt(i,j)-3.0*eij/t/t*idq4(i,j)) + fdq2dt2 = fdq2dt2+factor2*xijmt/t/t*(idq2dt2(i,j)-4.0*idq2dt(i,j)/t & + + 6.0*idq2(i,j)/t/t+eij/t*idq4dt2(i,j) & + - 6.0*eij/t/t*idq4dt(i,j)+12.0*eij/t**3 *idq4(i,j)) + DO k = 1,ncomp + IF ( myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0 ) THEN + xijkmt= x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + * ( myfac(i)*q_fac(j)*myfac(k) & + + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + + fdq3 =fdq3 + factor3*xijkmt/t**3 *idq3(i,j,k) + fdq3dt=fdq3dt+ factor3*xijkmt/t**3 * (idq3dt(i,j,k)-3.0*idq3(i,j,k)/t) + fdq3dt2=fdq3dt2+factor3*xijkmt/t**3 & + *( idq3dt2(i,j,k)-6.0*idq3dt(i,j,k)/t+12.0*idq3(i,j,k)/t/t ) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 /= 0.0 .AND. fdq3 /= 0.0) THEN + fdqdt = fdq2* (fdq2*fdq2dt - 2.0*fdq3*fdq2dt+fdq2*fdq3dt) / (fdq2-fdq3)**2 + fdqdt2 = ( 2.0*fdq2*fdq2dt*fdq2dt +fdq2*fdq2*fdq2dt2 & + - 2.0*fdq2dt**2 *fdq3 -2.0*fdq2*fdq2dt2*fdq3 +fdq2*fdq2*fdq3dt2 ) & + / (fdq2-fdq3)**2 + fdqdt * 2.0*(fdq3dt-fdq2dt)/(fdq2-fdq3) + END IF + +END IF +! ---------------------------------------------------------------------- + + + + +! ---------------------------------------------------------------------- +! total derivative of fres/kT to temperature +! ---------------------------------------------------------------------- + +df_dt = fhsdt + fchdt + fdspdt + fhbdt + fdddt + fqqdt + fdqdt + + + +! ---------------------------------------------------------------------- +! second derivative of fres/kT to T +! ---------------------------------------------------------------------- + +df_dt2 = fhsdt2 +fchdt2 +fdspdt2 +fhbdt2 +fdddt2 +fqqdt2 +fdqdt2 + + + +! ---------------------------------------------------------------------- +! ------ derivatives of fres/kt to density and to T -------------------- +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! the analytic derivative of fres/kT to (density and T) (df_drdt) +! is still missing. A numerical differentiation is implemented. +! ---------------------------------------------------------------------- +fact = 1.0 +dist = t * 100.E-5 * fact +t_tmp = t +rho_0 = rho + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr1 = pges / (eta*rho_0*(kbol*t)/1.E-30) +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr2 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr3 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +fdr4 = pges / (eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + + +df_drdt = (-fdr4+8.0*fdr3-8.0*fdr2+fdr1)/(12.0*dist) + + + + + +! ---------------------------------------------------------------------- +! thermodynamic properties +! ---------------------------------------------------------------------- + +s_res = ( - df_dt *t - fres )*RGAS + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS *t +cv_res = - ( t*df_dt2 + 2.0*df_dt ) * RGAS*t +cp_res = cv_res - RGAS + RGAS*(zges +eta*t*df_drdt)**2 & + / (1.0 + 2.0*eta*dfdr +eta**2 *ddfdrdr) + +! write (*,*) 'df_... ', df_dt,df_dt2 +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h,cv,cp', h_res,cv_res,cp_res + + +END SUBROUTINE H_EOS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE H_EOS_num +! +! This subroutine calculates enthalpies and heat capacities (cp) by +! taking numerical derivatieves. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_EOS_num +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: df_dt, df_dtdt, df_drdt, dfdr, ddfdrdr + +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_EOS +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +df_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +df_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +s_res = (- df_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*df_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*df_dtdt + 2.0*df_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_1 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_2 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_3 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS +f_4 = pges/(eta*rho_0*(kbol*t)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_EOS + +dfdr = pges / (eta*rho_0*(kbol*t)/1.E-30) +ddfdrdr = pgesdz/(eta*rho_0*(kbol*t)/1.E-30) - dfdr*2.0/eta - 1.0/eta**2 + +df_drdt = ( -f_4 +8.0*f_3 -8.0*f_2 +f_1) / (12.0*dist) + +cp_res = cv_res - RGAS +RGAS*(zges+eta*t*df_drdt)**2 & + * 1.0/(1.0 + 2.0*eta*dfdr + eta**2 *ddfdrdr) + +! write (*,*) 'n',df_dt,df_dtdt +! write (*,*) 'kreuz ', zges,eta*t*df_drdt,eta*dfdr, eta**2 *ddfdrdr +! write (*,*) 'h, cv', h_res, cv_res +! write (*,*) h_res - t*s_res +! write (*,*) cv_res,cp_res,eta +! pause + +END SUBROUTINE H_EOS_num + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE DENSITY_ITERATION +! +! iterates the density until the calculated pressure 'pges' is equal to +! the specified pressure 'p'. A Newton-scheme is used for determining +! the root to the objective function f(eta) = (pges / p ) - 1.0. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE DENSITY_ITERATION +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, start, max_i + REAL :: eta_iteration + REAL :: error, dydx, acc_i, delta_eta +! ---------------------------------------------------------------------- + + +IF ( densav(phas) /= 0.0 .AND. eta_start == denold(phas) ) THEN + denold(phas) = eta_start + eta_start = densav(phas) +ELSE + denold(phas) = eta_start + densav(phas) = eta_start +END IF + + +acc_i = 1.d-9 +max_i = 30 +density_error(:) = 0.0 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- +iterate_density: DO + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = (pges / p ) - 1.0 + + ! --- instable region correction ------------------------------------- + IF ( pgesdz < 0.0 .AND. i < max_i ) THEN + IF ( error > 0.0 .AND. pgesd2 > 0.0 ) THEN ! no liquid density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) > 0.0 ) eta_iteration = 0.001 ! no solution possible + IF ( ((pges/p ) -1.0) <=0.0 ) eta_iteration = eta_iteration * 1.1 ! no solution found so far + ELSE IF ( error < 0.0 .AND. pgesd2 < 0.0 ) THEN ! no vapor density + CALL PRESSURE_SPINODAL + eta_iteration = eta + error = (pges / p ) - 1.0 + IF ( ((pges/p ) -1.0) < 0.0 ) eta_iteration = 0.5 ! no solution possible + IF ( ((pges/p ) -1.0) >=0.0 ) eta_iteration = eta_iteration * 0.9 ! no solution found so far + ELSE + eta_iteration = (eta_iteration + eta_start) / 2.0 + IF (eta_iteration == eta_start) eta_iteration = eta_iteration + 0.2 + END IF + CYCLE iterate_density + END IF + + + dydx = pgesdz/p + delta_eta = error/ dydx + IF ( delta_eta > 0.05 ) delta_eta = 0.05 + IF ( delta_eta < -0.05 ) delta_eta = -0.05 + + eta_iteration = eta_iteration - delta_eta + + IF (eta_iteration > 0.9) eta_iteration = 0.6 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + start = 1 + + IF ( ABS(error*p/pgesdz) < 1.d-12 ) start = 0 + IF ( ABS(error) < acc_i ) start = 0 + IF ( i > max_i ) THEN + start = 0 + density_error(phas) = ABS( error ) + ! write (*,*) 'density iteration failed' + END IF + + IF (start /= 1) EXIT iterate_density + +END DO iterate_density + +eta = eta_iteration + +IF ((eta > 0.3 .AND. densav(phas) > 0.3) .OR. & + (eta < 0.1 .AND. densav(phas) < 0.1)) densav(phas) = eta + +END SUBROUTINE DENSITY_ITERATION + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE F_EOS +! +! calculates the Helmholtz energy f/kT. The input to the subroutine is +! (T,eta,x), where eta is the packing fraction. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_EOS +! + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean ! ,lij(nc,nc) + REAL :: I1,I2, c1_con + REAL :: fhs, fdsp, fhc + + LOGICAL :: assoc + INTEGER :: ass_cnt,max_eval + REAL :: delta(nc,nc,nsite,nsite) + REAL :: mx_itr(nc,nsite), err_sum, sum, attenu, tol, fhb + REAL :: ass_s1, ass_s2 + + REAL :: fdd, fqq, fdq +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t / ( PI / 6.0 ) +zms = 1.0 - eta + +! m_mean2 = 0.0 +! lij(1,2) = -0.05 +! lij(2,1) = lij(1,2) +! DO i = 1, ncomp +! DO j = 1, ncomp +! m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : hard sphere contribution +! ---------------------------------------------------------------------- +fhs= m_mean*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + +! ---------------------------------------------------------------------- +! Helmholtz energy : chain term +! ---------------------------------------------------------------------- +fhc = 0.0 +DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) +END DO + + +! ---------------------------------------------------------------------- +! Helmholtz energy : PC-SAFT dispersion contribution +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + +! ---------------------------------------------------------------------- +! Helmholtz energy : SAFT (Chen, Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdsp = 0.0 + DO n = 1,4 + DO m = 1,9 + fdsp = fdsp + dnm(n,m) * (um/t)**REAL(n) *(eta/tau)**REAL(m) + END DO + END DO + fdsp = m_mean * fdsp + +END IF + + +! ---------------------------------------------------------------------- +! TPT-1-association according to Chapman et al. +! ---------------------------------------------------------------------- +fhb = 0.0 +assoc = .false. +DO i = 1, ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + IF (mx(i,k) == 0.0) mx(i,k) = 1.0 ! Initialize mx(i,j) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,j,k,l) = gij(i,j) * ass_d(i,j,k,l) + END DO + END DO + END DO + END DO + + +! --- constants for iteration ------------------------------------------ + attenu = 0.70 + tol = 1.d-10 + IF (eta < 0.2) tol = 1.d-12 + IF (eta < 0.01) tol = 1.d-13 + max_eval = 200 + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum = sum + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,j,k,l) +! if (ass_cnt == 1) write (*,*) j,l,x(j), mx(j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum * rho) +! if (ass_cnt == 1) write (*,*) 'B',ass_cnt,sum, rho + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,k) - mx(i,k)) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * attenu + mx(i,k) * (1.0 - attenu) + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF (ass_cnt >= max_eval) WRITE(*,'(a,2G15.7)') 'F_EOS: Max_eval violated (mx) Err_Sum = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG( mx(i,k) ) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1 / 2.0 ) + END DO + +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! polar terms +! ---------------------------------------------------------------------- + CALL F_POLAR ( fdd, fqq, fdq ) + + +! ---------------------------------------------------------------------- +! resid. Helmholtz energy f/kT +! ---------------------------------------------------------------------- +fres = fhs + fhc + fdsp + fhb + fdd + fqq + fdq + +tfr= fres + +END SUBROUTINE F_EOS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_NUMERICAL +! + USE EOS_VARIABLES + USE EOS_CONSTANTS + USE EOS_NUMERICAL_DERIVATIVES, ONLY: ideal_gas, hard_sphere, chain_term, & + disp_term, hb_term, LC_term, branch_term, & + II_term, ID_term, subtract1, subtract2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + +!-----local variables------------------------------------------------- + INTEGER :: i, j + REAL :: m_mean2 + REAL :: fid, fhs, fdsp, fhc + REAL :: fhb, fdd, fqq, fdq + REAL :: fhend, fcc + REAL :: fbr, flc + REAL :: fref + + REAL :: eps_kij, k_kij +!--------------------------------------------------------------------- + +eps_kij = 0.0 +k_kij = 0.0 + +fid = 0.0 +fhs = 0.0 +fhc = 0.0 +fdsp= 0.0 +fhb = 0.0 +fdd = 0.0 +fqq = 0.0 +fdq = 0.0 +fcc = 0.0 +fbr = 0.0 +flc = 0.0 + + +CALL PERTURBATION_PARAMETER + +! ---------------------------------------------------------------------- +! overwrite the standard mixing rules by those published by Tang & Gross +! using an additional lij parameter +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j) * sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*mseg(i)/t*( x(j)*mseg(j) & + *sig_ij(i,j)*(uij(i,i)*uij(j,j))**(1.0/6.0) )**3 *lij(i,j) + END DO +END DO + + +! ---------------------------------------------------------------------- +! a non-standard mixing rule scaling the hard-sphere term +! WARNING : the lij parameter is set to lij = - lji in 'para_input' +! (uses an additional lij parameter) +! ---------------------------------------------------------------------- +m_mean2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + m_mean2 = m_mean2 + x(i)*x(j)*(mseg(i)+mseg(j))/2.0 + END DO +END DO +DO i = 1, ncomp + DO j = 1, ncomp + ! m_mean2=m_mean2+x(i)*(x(j)*((mseg(i)+mseg(j))*0.5)**(1.0/3.0) *lij(i,j) )**3 + END DO +END DO + +! --- ideal gas contribution ------------------------------------------- +IF ( ideal_gas == 'yes' ) CALL F_IDEAL_GAS ( fid ) +! ---------------------------------------------------------------------- + +! --- hard-sphere contribution ----------------------------------------- +IF ( hard_sphere == 'CSBM' ) CALL F_HARD_SPHERE ( m_mean2, fhs ) +! ---------------------------------------------------------------------- + +! -- chain term -------------------------------------------------------- +IF ( chain_term == 'TPT1' ) CALL F_CHAIN_TPT1 ( fhc ) +IF ( chain_term == 'TPT2' ) CALL F_CHAIN_TPT_D ( fhc ) +IF ( chain_term == 'HuLiu' ) CALL F_CHAIN_HU_LIU ( fhc ) +IF ( chain_term == 'HuLiu_rc' ) CALL F_CHAIN_HU_LIU_RC ( fhs, fhc ) +!!IF ( chain_term == 'SPT' ) CALL F_SPT ( fhs, fhc ) +IF ( chain_term == 'SPT' ) WRITE(*,*) 'SPT NOT INCLUDED YET' +! ---------------------------------------------------------------------- + +! --- dispersive attraction -------------------------------------------- +IF ( disp_term == 'PC-SAFT') CALL F_DISP_PCSAFT ( fdsp ) +IF ( disp_term == 'CK') CALL F_DISP_CKSAFT ( fdsp ) +IF ( disp_term(1:2) == 'PT') CALL F_pert_theory ( fdsp ) +! ---------------------------------------------------------------------- + +! --- H-bonding contribution / Association ----------------------------- +IF ( hb_term == 'TPT1_Chap') CALL F_ASSOCIATION( eps_kij, k_kij, fhb ) +! ---------------------------------------------------------------------- + +! --- polar terms ------------------------------------------------------ + CALL F_POLAR ( fdd, fqq, fdq ) +! ---------------------------------------------------------------------- + +! --- ion-dipole term -------------------------------------------------- +IF ( ID_term == 'TBH') CALL F_ION_DIPOLE_TBH ( fhend ) +! ---------------------------------------------------------------------- + +! --- ion-ion term ----------------------------------------------------- +IF ( II_term == 'primMSA') CALL F_ION_ION_PrimMSA ( fcc ) +IF ( II_term == 'nprMSA') CALL F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! ---------------------------------------------------------------------- + +! --- liquid-crystal term ---------------------------------------------- +IF ( LC_term == 'MSaupe') CALL F_LC_MayerSaupe ( flc ) + +!!IF ( LC_term == 'OVL') fref = fhs + fhc +IF ( LC_term == 'OVL') WRITE(*,*) 'OVL NOT INCLUDED YET' +!IF ( LC_term == 'OVL') CALL F_LC_OVL ( fref, flc ) +!! IF ( LC_term == 'SPT') fref = fhs + fhc +IF ( LC_term == 'SPT') WRITE(*,*) 'SPT NOT INCLUDED YET' +!!IF ( LC_term == 'SPT') CALL F_LC_SPT( fref, flc ) +! ---------------------------------------------------------------------- + +! ====================================================================== +! SUBTRACT TERMS (local density approximation) FOR DFT +! ====================================================================== + +!IF ( subtract1 == '1PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract1 == '2PT') CALL F_subtract_local_pert_theory ( subtract1, fdsp ) +!IF ( subtract2 =='ITTpolar') CALL F_local_ITT_polar ( fdd ) +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! residual Helmholtz energy F/(NkT) +! ---------------------------------------------------------------------- +fres = fid + fhs + fhc + fdsp + fhb + fdd + fqq + fdq + fcc + flc + +tfr = 0.0 + +END SUBROUTINE F_NUMERICAL + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE P_EOS +! +! calculates the pressure in units (Pa). +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_EOS +! +! ---------------------------------------------------------------------- + USE PARAMETERS, ONLY: nc, nsite + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, n + INTEGER :: ass_cnt,max_eval + LOGICAL :: assoc + REAL :: z0, z1, z2, z3 + REAL :: zms, m_mean + REAL :: zges, zgesdz, zgesd2, zgesd3 + REAL :: zhs, zhsdz, zhsd2, zhsd3 + REAL :: zhc, zhcdz, zhcd2, zhcd3 + REAL, DIMENSION(nc,nc) :: dgijdz, dgijd2, dgijd3, dgijd4 + REAL :: zdsp, zdspdz, zdspd2, zdspd3 + REAL :: c1_con, c2_con, c3_con, c4_con, c5_con + REAL :: I2, edI1dz, edI2dz, edI1d2, edI2d2 + REAL :: edI1d3, edI2d3, edI1d4, edI2d4 + REAL :: fdspdz,fdspd2 + REAL :: zhb, zhbdz, zhbd2, zhbd3 + REAL, DIMENSION(nc,nc,nsite,nsite) :: delta, dq_dz, dq_d2, dq_d3, dq_d4 + REAL, DIMENSION(nc,nsite) :: mx_itr, dmx_dz, ndmxdz, dmx_d2, ndmxd2 + REAL, DIMENSION(nc,nsite) :: dmx_d3, ndmxd3, dmx_d4, ndmxd4 + REAL :: err_sum, sum0, sum1, sum2, sum3, sum4, attenu, tol + REAL :: sum_d1, sum_d2, sum_d3, sum_d4 + REAL :: zdd, zddz, zddz2, zddz3 + REAL :: zqq, zqqz, zqqz2, zqqz3 + REAL :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +rho = eta/z3t +z0 = z0t*rho +z1 = z1t*rho +z2 = z2t*rho +z3 = z3t*rho + +m_mean = z0t/(PI/6.0) +zms = 1.0 -eta + +! m_mean2=0.0 +! lij(1,2)= -0.050 +! lij(2,1)=lij(1,2) +! DO i =1,ncomp +! DO j =1,ncomp +! m_mean2=m_mean2+x(i)*x(j) * (mseg(i)+mseg(j))/2.0*(1.0-lij(i,j)) +! ENDDO +! ENDDO + + +! ---------------------------------------------------------------------- +! radial distr. function at contact, gij , and derivatives +! dgijdz=d(gij)/d(eta) and dgijd2 = dd(gij)/d(eta)**2 +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j=1,ncomp + ! j=i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + dgijd2(i,j) = 2.0/zms**3 & + + 6.0*dij_ab(i,j)*z2/z3/zms**4 *(2.0+z3) & + + (2.0*dij_ab(i,j)*z2/z3)**2 /zms**5 *(1.0+4.0*z3+z3*z3) + dgijd3(i,j) = 6.0/zms**4 & + + 18.0*dij_ab(i,j)*z2/z3/zms**5 *(3.0+z3) & + + 12.0*(dij_ab(i,j)*z2/z3/zms**3 )**2 *(3.0+6.0*z3+z3*z3) + dgijd4(i,j) = 24.0/zms**5 & + + 72.0*dij_ab(i,j)*z2/z3/zms**6 *(4.0+z3) & + + 48.0*(dij_ab(i,j)*z2/z3)**2 /zms**7 *(6.0+8.0*z3+z3*z3) + END DO +END DO + + +! ---------------------------------------------------------------------- +! p : hard sphere contribution +! ---------------------------------------------------------------------- +zhs = m_mean* ( z3/zms + 3.0*z1*z2/z0/zms/zms + z2**3 /z0*(3.0-z3)/zms**3 ) +zhsdz = m_mean*( 1.0/zms/zms + 3.0*z1*z2/z0/z3*(1.0+z3)/zms**3 & + + 6.0*z2**3 /z0/z3/zms**4 ) +zhsd2 = m_mean*( 2.0/zms**3 + 6.0*z1*z2/z0/z3*(2.0+z3)/zms**4 & + + 6.0*z2**3 /z0/z3/z3*(1.0+3.0*z3)/zms**5 ) +zhsd3 = m_mean*( 6.0/zms**4 + 18.0*z1*z2/z0/z3*(3.0+z3)/zms**5 & + + 24.0*z2**3 /z0/z3/z3*(2.0+3.0*z3)/zms**6 ) + + +! ---------------------------------------------------------------------- +! p : chain term +! ---------------------------------------------------------------------- +zhc = 0.0 +zhcdz = 0.0 +zhcd2 = 0.0 +zhcd3 = 0.0 +DO i= 1, ncomp + zhc = zhc + x(i)*(1.0-mseg(i))*eta/gij(i,i)* dgijdz(i,i) + zhcdz = zhcdz + x(i)*(1.0-mseg(i)) *(-eta*(dgijdz(i,i)/gij(i,i))**2 & + + dgijdz(i,i)/gij(i,i) + eta/gij(i,i)*dgijd2(i,i)) + zhcd2 = zhcd2 + x(i)*(1.0-mseg(i)) & + *( 2.0*eta*(dgijdz(i,i)/gij(i,i))**3 & + -2.0*(dgijdz(i,i)/gij(i,i))**2 & + -3.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) & + +2.0/gij(i,i)*dgijd2(i,i) +eta/gij(i,i)*dgijd3(i,i) ) + zhcd3 = zhcd3 + x(i)*(1.0-mseg(i)) *( 6.0*(dgijdz(i,i)/gij(i,i))**3 & + -6.0*eta*(dgijdz(i,i)/gij(i,i))**4 & + +12.0*eta/gij(i,i)**3 *dgijdz(i,i)**2 *dgijd2(i,i) & + -9.0/gij(i,i)**2 *dgijdz(i,i)*dgijd2(i,i) +3.0/gij(i,i)*dgijd3(i,i) & + -3.0*eta*(dgijd2(i,i)/gij(i,i))**2 & + -4.0*eta/gij(i,i)**2 *dgijdz(i,i)*dgijd3(i,i) & + +eta/gij(i,i)*dgijd4(i,i) ) +END DO + +! ---------------------------------------------------------------------- +! p : PC-SAFT dispersion contribution +! note: edI1dz is equal to d(eta*I1)/d(eta), analogous for edI2dz +! ---------------------------------------------------------------------- +IF (eos == 1) THEN + + I2 = 0.0 + edI1dz = 0.0 + edI2dz = 0.0 + edI1d2 = 0.0 + edI2d2 = 0.0 + edI1d3 = 0.0 + edI2d3 = 0.0 + edI1d4 = 0.0 + edI2d4 = 0.0 + DO m=0,6 + I2 = I2 + bpar(m)*z3**REAL(m) + edI1dz= edI1dz+apar(m)*REAL(m+1)*z3**REAL(m) + edI2dz= edI2dz+bpar(m)*REAL(m+1)*z3**REAL(m) + edI1d2= edI1d2+apar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI2d2= edI2d2+bpar(m)*REAL((m+1)*m)*z3**REAL(m-1) + edI1d3= edI1d3+apar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI2d3= edI2d3+bpar(m)*REAL((m+1)*m*(m-1))*z3**REAL(m-2) + edI1d4= edI1d4+apar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + edI2d4= edI2d4+bpar(m)*REAL((m+1)*m*(m-1)*(m-2))*z3**REAL(m-3) + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*eta-2.0*eta**2 )/zms**4 & + + (1.0 - m_mean)*(20.0*eta-27.0*eta**2 & + + 12.0*eta**3 -2.0*eta**4 ) /(zms*(2.0-eta))**2 ) + c2_con= - c1_con*c1_con & + *(m_mean*(-4.0*eta**2 +20.0*eta+8.0)/zms**5 + (1.0 - m_mean) & + *(2.0*eta**3 +12.0*eta**2 -48.0*eta+40.0) & + /(zms*(2.0-eta))**3 ) + c3_con= 2.0 * c2_con*c2_con/c1_con - c1_con*c1_con & + *( m_mean*(-12.0*eta**2 +72.0*eta+60.0)/zms**6 & + + (1.0 - m_mean) & + *(-6.0*eta**4 -48.0*eta**3 +288.0*eta**2 & + -480.0*eta+264.0) /(zms*(2.0-eta))**4 ) + c4_con= 6.0*c2_con*c3_con/c1_con -6.0*c2_con**3 /c1_con**2 & + - c1_con*c1_con & + *( m_mean*(-48.0*eta**2 +336.0*eta+432.0)/zms**7 & + + (1.0 - m_mean) & + *(24.0*eta**5 +240.0*eta**4 -1920.0*eta**3 & + +4800.0*eta**2 -5280.0*eta+2208.0) /(zms*(2.0-eta))**5 ) + c5_con= 6.0*c3_con**2 /c1_con - 36.0*c2_con**2 /c1_con**2 *c3_con & + + 8.0*c2_con/c1_con*c4_con+24.0*c2_con**4 /c1_con**3 & + - c1_con*c1_con & + *( m_mean*(-240.0*eta**2 +1920.0*eta+3360.0)/zms**8 & + + (1.0 - m_mean) & + *(-120.0*eta**6 -1440.0*eta**5 +14400.0*eta**4 & + -48000.0*eta**3 +79200.0*eta**2 -66240.0*eta+22560.0) & + /(zms*(2.0-eta))**6 ) + + zdsp = - 2.0*PI*rho*edI1dz*order1 & + - PI*rho*order2*m_mean*(c2_con*I2*eta + c1_con*edI2dz) + zdspdz= zdsp/eta - 2.0*PI*rho*edI1d2*order1 & + - PI*rho*order2*m_mean*(c3_con*I2*eta & + + 2.0*c2_con*edI2dz + c1_con*edI2d2) + zdspd2= -2.0*zdsp/eta/eta +2.0*zdspdz/eta & + - 2.0*PI*rho*edI1d3*order1 - PI*rho*order2*m_mean*(c4_con*I2*eta & + + 3.0*c3_con*edI2dz +3.0*c2_con*edI2d2 +c1_con*edI2d3) + zdspd3= 6.0*zdsp/eta**3 -6.0*zdspdz/eta/eta & + + 3.0*zdspd2/eta - 2.0*PI*rho*edI1d4*order1 & + - PI*rho*order2*m_mean*(c5_con*I2*eta & + + 4.0*c4_con*edI2dz +6.0*c3_con*edI2d2 & + + 4.0*c2_con*edI2d3 + c1_con*edI2d4) + + +! ---------------------------------------------------------------------- +! p : SAFT (Chen & Kreglewski) dispersion contribution +! ---------------------------------------------------------------------- +ELSE + + fdspdz = 0.0 + fdspd2 = 0.0 + DO n = 1,4 + DO m = 1,9 + fdspdz = fdspdz + m_mean/tau * dnm(n,m) * (um/t)**REAL(n) *REAL(m)*(eta/tau)**REAL(m-1) + END DO + DO m= 2,9 + fdspd2= fdspd2 + m_mean/tau * dnm(n,m)*(um/t)**REAL(n) *REAL(m)*REAL(m-1) & + * (eta/tau)**REAL(m-2) * 1.0/tau + END DO + END DO + zdsp = eta * fdspdz + zdspdz = (2.0*fdspdz + eta*fdspd2) - zdsp/z3 + +END IF +! --- end of dispersion contribution ----------------------------------- + + +! ---------------------------------------------------------------------- +! p: TPT-1-association accord. to Chapman et al. +! ---------------------------------------------------------------------- +zhb = 0.0 +zhbdz = 0.0 +zhbd2 = 0.0 +zhbd3 = 0.0 +assoc = .false. +DO i = 1,ncomp + IF (nhb_typ(i) /= 0) assoc = .true. +END DO +IF (assoc) THEN + + DO j = 1, ncomp + DO i = 1, nhb_typ(j) + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + delta(j,k,i,l) = gij(j,k) * ass_d(j,k,i,l) + dq_dz(j,k,i,l) = dgijdz(j,k) * ass_d(j,k,i,l) + dq_d2(j,k,i,l) = dgijd2(j,k) * ass_d(j,k,i,l) + dq_d3(j,k,i,l) = dgijd3(j,k) * ass_d(j,k,i,l) + dq_d4(j,k,i,l) = dgijd4(j,k) * ass_d(j,k,i,l) + END DO + END DO + END DO + END DO + +! --- constants for iteration ------------------------------------------ + attenu = 0.7 + tol = 1.d-10 + IF ( eta < 0.2 ) tol = 1.d-12 + IF ( eta < 0.01 ) tol = 1.d-13 + IF ( eta < 1.E-6) tol = 1.d-15 + max_eval = 1000 + +! --- initialize mx(i,j) ----------------------------------------------- + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + mx(i,j) = 1.0 + dmx_dz(i,j) = 0.0 + dmx_d2(i,j) = 0.0 + dmx_d3(i,j) = 0.0 + dmx_d4(i,j) = 0.0 + END DO + END DO + +! --- iterate over all components and all sites ------------------------ + ass_cnt = 0 + err_sum = tol + 1.0 + DO WHILE ( err_sum > tol .AND. ass_cnt <= max_eval) + ass_cnt = ass_cnt + 1 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + sum0 = 0.0 + sum1 = 0.0 + sum2 = 0.0 + sum3 = 0.0 + sum4 = 0.0 + DO k = 1, ncomp + DO l = 1, nhb_typ(k) + sum0 =sum0 +x(k)*nhb_no(k,l)* mx(k,l)* delta(i,k,j,l) + sum1 =sum1 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_dz(i,k,j,l) & + + dmx_dz(k,l)* delta(i,k,j,l)) + sum2 =sum2 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d2(i,k,j,l) & + + 2.0*dmx_dz(k,l)* dq_dz(i,k,j,l) & + + dmx_d2(k,l)* delta(i,k,j,l)) + sum3 =sum3 +x(k)*nhb_no(k,l)*( mx(k,l)* dq_d3(i,k,j,l) & + + 3.0*dmx_dz(k,l)* dq_d2(i,k,j,l) & + + 3.0*dmx_d2(k,l)* dq_dz(i,k,j,l) & + + dmx_d3(k,l)* delta(i,k,j,l)) + sum4 =sum4 + x(k)*nhb_no(k,l)*( mx(k,l)* dq_d4(i,k,j,l) & + + 4.0*dmx_dz(k,l)* dq_d3(i,k,j,l) & + + 6.0*dmx_d2(k,l)* dq_d2(i,k,j,l) & + + 4.0*dmx_d3(k,l)* dq_dz(i,k,j,l) & + + dmx_d4(k,l)* delta(i,k,j,l)) + END DO + END DO + mx_itr(i,j)= 1.0 / (1.0 + sum0 * rho) + ndmxdz(i,j)= -(mx_itr(i,j)*mx_itr(i,j))* (sum0/z3t +sum1*rho) + ndmxd2(i,j)= + 2.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxdz(i,j) & + - (mx_itr(i,j)*mx_itr(i,j)) * (2.0/z3t*sum1 + rho*sum2) + ndmxd3(i,j)= - 6.0/mx_itr(i,j)**2 *ndmxdz(i,j)**3 & + + 6.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd2(i,j) - mx_itr(i,j)*mx_itr(i,j) & + * (3.0/z3t*sum2 + rho*sum3) + ndmxd4(i,j)= 24.0/mx_itr(i,j)**3 *ndmxdz(i,j)**4 & + -36.0/mx_itr(i,j)**2 *ndmxdz(i,j)**2 *ndmxd2(i,j) & + +6.0/mx_itr(i,j)*ndmxd2(i,j)**2 & + +8.0/mx_itr(i,j)*ndmxdz(i,j)*ndmxd3(i,j) - mx_itr(i,j)**2 & + *(4.0/z3t*sum3 + rho*sum4) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO j = 1, nhb_typ(i) + err_sum = err_sum + ABS(mx_itr(i,j) - mx(i,j)) & + + ABS(ndmxdz(i,j) - dmx_dz(i,j)) + ABS(ndmxd2(i,j) - dmx_d2(i,j)) + mx(i,j) = mx_itr(i,j)*attenu + mx(i,j) * (1.0-attenu) + dmx_dz(i,j) = ndmxdz(i,j)*attenu + dmx_dz(i,j) * (1.0-attenu) + dmx_d2(i,j) = ndmxd2(i,j)*attenu + dmx_d2(i,j) * (1.0-attenu) + dmx_d3(i,j) = ndmxd3(i,j)*attenu + dmx_d3(i,j) * (1.0-attenu) + dmx_d4(i,j) = ndmxd4(i,j)*attenu + dmx_d4(i,j) * (1.0-attenu) + END DO + END DO + END DO + + IF ( ass_cnt >= max_eval .AND. err_sum > SQRT(tol) ) THEN + WRITE (*,'(a,2G15.7)') 'P_EOS: Max_eval violated (mx) Err_Sum= ',err_sum,tol + ! stop + END IF + + + ! --- calculate the hydrogen-bonding contribution -------------------- + DO i = 1, ncomp + sum_d1 = 0.0 + sum_d2 = 0.0 + sum_d3 = 0.0 + sum_d4 = 0.0 + DO j = 1, nhb_typ(i) + sum_d1= sum_d1 +nhb_no(i,j)* dmx_dz(i,j)*(1.0/mx(i,j)-0.5) + sum_d2= sum_d2 +nhb_no(i,j)*(dmx_d2(i,j)*(1.0/mx(i,j)-0.5) & + -(dmx_dz(i,j)/mx(i,j))**2 ) + sum_d3= sum_d3 +nhb_no(i,j)*(dmx_d3(i,j)*(1.0/mx(i,j)-0.5) & + -3.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d2(i,j) + 2.0*(dmx_dz(i,j)/mx(i,j))**3 ) + sum_d4= sum_d4 +nhb_no(i,j)*(dmx_d4(i,j)*(1.0/mx(i,j)-0.5) & + -4.0/mx(i,j)**2 *dmx_dz(i,j)*dmx_d3(i,j) & + + 12.0/mx(i,j)**3 *dmx_dz(i,j)**2 *dmx_d2(i,j) & + - 3.0/mx(i,j)**2 *dmx_d2(i,j)**2 - 6.0*(dmx_dz(i,j)/mx(i,j))**4 ) + END DO + zhb = zhb + x(i) * eta * sum_d1 + zhbdz = zhbdz + x(i) * eta * sum_d2 + zhbd2 = zhbd2 + x(i) * eta * sum_d3 + zhbd3 = zhbd3 + x(i) * eta * sum_d4 + END DO + zhbdz = zhbdz + zhb/eta + zhbd2 = zhbd2 + 2.0/eta*zhbdz-2.0/eta**2 *zhb + zhbd3 = zhbd3 - 6.0/eta**2 *zhbdz+3.0/eta*zhbd2 + 6.0/eta**3 *zhb +END IF +! --- TPT-1-association accord. to Chapman ----------------------------- + + +! ---------------------------------------------------------------------- +! p: polar terms +! ---------------------------------------------------------------------- +CALL P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) + + +! ---------------------------------------------------------------------- +! compressibility factor z and total p +! as well as derivatives d(z)/d(eta) and d(p)/d(eta) with unit [Pa] +! ---------------------------------------------------------------------- +zges = 1.0 + zhs + zhc + zdsp + zhb + zdd + zqq + zdq +zgesdz = zhsdz + zhcdz + zdspdz + zhbdz + zddz + zqqz + zdqz +zgesd2 = zhsd2 + zhcd2 + zdspd2 + zhbd2 + zddz2 +zqqz2+zdqz2 +zgesd3 = zhsd3 + zhcd3 + zdspd3 + zhbd3 + zddz3 +zqqz3+zdqz3 + +pges = zges *rho *(kbol*t)/1.d-30 +pgesdz = ( zgesdz*rho + zges*rho/z3 )*(kbol*t)/1.d-30 +pgesd2 = ( zgesd2*rho + 2.0*zgesdz*rho/z3 )*(kbol*t)/1.d-30 +pgesd3 = ( zgesd3*rho + 3.0*zgesd2*rho/z3 )*(kbol*t)/1.d-30 + +END SUBROUTINE P_EOS + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_POLAR ( k, z3_rk, fdd_rk, fqq_rk, fdq_rk ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(OUT) :: fdd_rk, fqq_rk, fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd_rk = 0.0 + fqq_rk = 0.0 + fdq_rk = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) + ! IF (dd_term == 'SF') CALL PHI_DD_SAAGER_FISCHER( k ) + + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL PHI_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL PHI_QQ_GROSS( k, z3_rk, fqq_rk ) + + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) + + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE PHI_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DD_GROSS_VRABEC( k, z3_rk, fdd_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdd_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdd2, fdd3, fdd2x, fdd3x + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd4, Idd2x, Idd4x + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3x +! ---------------------------------------------------------------------- + + + fdd_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2x(i,j) = 0.0 + Idd4x(i,j) = 0.0 + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + DO m=0,4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m)*z3**m + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m)*z3**m + Idd2x(i,j) =Idd2x(i,j)+ ddp2(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + Idd4x(i,j) =Idd4x(i,j)+ ddp4(i,j,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Idd3(i,j,l) = 0.0 + Idd3x(i,j,l) = 0.0 + IF (parame(l,6) /= 0.0) THEN + DO m=0,4 + Idd3(i,j,l) =Idd3(i,j,l) +ddp3(i,j,l,m)*z3**m + Idd3x(i,j,l)=Idd3x(i,j,l)+ddp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -PI + factor3= -4.0/3.0*PI**2 + + fdd2 = 0.0 + fdd3 = 0.0 + fdd2x = 0.0 + fdd3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(i,k)**3 + eij = (parame(i,3)*parame(k,3))**0.5 + fdd2x = fdd2x + factor2*xijfa_x*( Idd2(i,k) + eij/t*Idd4(i,k) ) + DO j = 1, ncomp + IF (parame(i,6) /= 0.0 .AND. parame(j,6) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,j)**3 + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j) ) + fdd2x =fdd2x +factor2*xijfa*(Idd2x(i,j)+eij/t*Idd4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*uij(i,i)*my2dd(i)*sig_ij(i,i)**3 /t/sig_ij(i,j) & + *x(j)*rho*uij(j,j)*my2dd(j)*sig_ij(j,j)**3 /t/sig_ij(i,k) & + *3.0* uij(k,k)*my2dd(k)*sig_ij(k,k)**3 /t/sig_ij(j,k) + fdd3x=fdd3x+factor3*xijkf_x*Idd3(i,j,k) + DO l=1,ncomp + IF (parame(l,6) /= 0.0) THEN + xijkfa= x(i)*rho*uij(i,i)/t*my2dd(i)*sig_ij(i,i)**3 & + *x(j)*rho*uij(j,j)/t*my2dd(j)*sig_ij(j,j)**3 & + *x(l)*rho*uij(l,l)/t*my2dd(l)*sig_ij(l,l)**3 & + /sig_ij(i,j)/sig_ij(i,l)/sig_ij(j,l) + fdd3 =fdd3 + factor3 * xijkfa *Idd3(i,j,l) + fdd3x =fdd3x + factor3 * xijkfa *Idd3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2x /= 0.0 .AND. fdd3x /= 0.0)THEN + + fdd_rk = fdd2* (fdd2*fdd2x - 2.0*fdd3*fdd2x+fdd2*fdd3x) / (fdd2-fdd3)**2 + + END IF + +END SUBROUTINE PHI_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_QQ_GROSS( k, z3_rk, fqq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fqq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fqq2, fqq3, fqq2x, fqq3x + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4, Iqq2x, Iqq4x + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3x +! ---------------------------------------------------------------------- + + + fqq_rk = 0.0 + z3 = eta + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'PHI_QQ_GROSS: do not use dimensionless units' + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2x(i,j) = 0.0 + Iqq4x(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m) * z3**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m) * z3**m + Iqq2x(i,j) = Iqq2x(i,j) + qqp2(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + Iqq4x(i,j) = Iqq4x(i,j) + qqp4(i,j,m) * REAL(m)*z3**(m-1)*z3_rk + END DO + DO l = 1, ncomp + Iqq3(i,j,l) = 0.0 + Iqq3x(i,j,l) = 0.0 + IF (parame(l,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,l) = Iqq3(i,j,l) + qqp3(i,j,l,m)*z3**m + Iqq3x(i,j,l) = Iqq3x(i,j,l) + qqp3(i,j,l,m)*REAL(m) *z3**(m-1)*z3_rk + END DO + END IF + END DO + END IF + END DO + END DO + + factor2= -9.0/16.0*PI + factor3= 9.0/16.0*PI**2 + + fqq2 = 0.0 + fqq3 = 0.0 + fqq2x = 0.0 + fqq3x = 0.0 + DO i = 1, ncomp + xijfa_x = 2.0*x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(i,k)**7.0 + eij = (parame(i,3)*parame(k,3))**0.5 + fqq2x =fqq2x +factor2*xijfa_x*(Iqq2(i,k)+eij/t*Iqq4(i,k)) + DO j=1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2x =fqq2x +factor2*xijfa*(Iqq2x(i,j)+eij/t*Iqq4x(i,j)) + ! ------------------ + xijkf_x=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *3.0* uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3x = fqq3x + factor3*xijkf_x*Iqq3(i,j,k) + DO l = 1, ncomp + IF (parame(l,7) /= 0.0) THEN + xijkfa=x(i)*rho*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*rho*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,l)**3 & + *x(l)*rho*uij(l,l)*qq2(l)*sig_ij(l,l)**5 /t/sig_ij(j,l)**3 + fqq3 =fqq3 + factor3 * xijkfa *Iqq3(i,j,l) + fqq3x =fqq3x + factor3 * xijkfa *Iqq3x(i,j,l) + END IF + END DO + END IF + END DO + END DO + + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2x /= 0.0 .AND. fqq3x /= 0.0) THEN + fqq_rk = fqq2* (fqq2*fqq2x - 2.0*fqq3*fqq2x+fqq2*fqq3x) / (fqq2-fqq3)**2 + END IF + +END SUBROUTINE PHI_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PHI_DQ_VRABEC_GROSS( k, z3_rk, fdq_rk ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: k + REAL, INTENT(IN) :: z3_rk + REAL, INTENT(IN OUT) :: fdq_rk +! +! --- local variables--------------------------------------------------- + INTEGER :: i, j, l, m + + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, xijfa_x, xijkf_x, eij + REAL :: fdq2, fdq3, fdq2x, fdq3x + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4, Idq2x, Idq4x + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3x +! ---------------------------------------------------------------------- + + fdq_rk = 0.0 + z3 = eta + DO i=1,ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2x(i,j) = 0.0 + Idq4x(i,j) = 0.0 + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*z3**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*z3**m + Idq2x(i,j) = Idq2x(i,j) + dqp2(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + Idq4x(i,j) = Idq4x(i,j) + dqp4(i,j,m)*REAL(m)*z3**(m-1) *z3_rk + END DO + DO l = 1, ncomp + Idq3(i,j,l) = 0.0 + Idq3x(i,j,l) = 0.0 + DO m = 0, 4 + Idq3(i,j,l) =Idq3(i,j,l) +dqp3(i,j,l,m)*z3**m + Idq3x(i,j,l)=Idq3x(i,j,l)+dqp3(i,j,l,m)*REAL(m)*z3**(m-1)*z3_rk + END DO + END DO + END DO + END DO + + factor2= -9.0/4.0*PI + factor3= PI**2 + + fdq2 = 0.0 + fdq3 = 0.0 + fdq2x = 0.0 + fdq3x = 0.0 + DO i = 1, ncomp + xijfa_x = x(i)*rho*( myfac(i)*q_fac(k) + myfac(k)*q_fac(i) ) / sig_ij(i,k)**5 + eij = (parame(i,3)*parame(k,3))**0.5 + fdq2x =fdq2x +factor2*xijfa_x*(Idq2(i,k)+eij/t*Idq4(i,k)) + DO j=1,ncomp + xijfa =x(i)*rho*myfac(i) * x(j)*rho*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2x =fdq2x +factor2*xijfa*(Idq2x(i,j) +eij/t*Idq4x(i,j)) + !--------------------- + xijkf_x=x(i)*rho*x(j)*rho/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(k)*myfac(j) & + + myfac(k)*q_fac(i)*myfac(j) +myfac(i)*q_fac(j)*q_fac(k)*1.1937350 & + +myfac(i)*q_fac(k)*q_fac(j)*1.193735 & + +myfac(k)*q_fac(i)*q_fac(j)*1.193735 ) + fdq3x = fdq3x + factor3*xijkf_x*Idq3(i,j,k) + DO l = 1, ncomp + xijkfa=x(i)*rho*x(j)*rho*x(l)*rho/(sig_ij(i,j)*sig_ij(i,l)*sig_ij(j,l))**2 & + *( myfac(i)*q_fac(j)*myfac(l) & + +myfac(i)*q_fac(j)*q_fac(l)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa *Idq3(i,j,l) + fdq3x =fdq3x + factor3 * xijkfa *Idq3x(i,j,l) + END DO + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2x /= 0.0 .AND. fdq3x /= 0.0)THEN + + fdq_rk = fdq2* (fdq2*fdq2x - 2.0*fdq3*fdq2x+fdq2*fdq3x) / (fdq2-fdq3)**2 + + END IF + +END SUBROUTINE PHI_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_NUMERICAL +! + USE EOS_VARIABLES + IMPLICIT NONE +! +!-----local variables------------------------------------------------- + REAL :: dzetdv, eta_0, dist, fact + REAL :: fres1, fres2, fres3, fres4, fres5 + REAL :: df_dr, df_drdr, pideal, dpiddz + REAL :: tfr_1, tfr_2, tfr_3, tfr_4, tfr_5 +!----------------------------------------------------------------------- + + +IF (eta > 0.1) THEN + fact = 1.0 +ELSE IF (eta <= 0.1 .AND. eta > 0.01) THEN + fact = 10.0 +ELSE + fact = 10.0 +END IF +dist = eta*3.d-3 *fact +! dist = eta*4.d-3 *fact +!***************************** +! fuer MC simulation: neues dist: +! dist = eta*5.d-3*fact + +eta_0 = eta +eta = eta_0 - 2.0*dist +CALL F_NUMERICAL +fres1 = fres +tfr_1 = tfr +eta = eta_0 - dist +CALL F_NUMERICAL +fres2 = fres +tfr_2 = tfr +eta = eta_0 + dist +CALL F_NUMERICAL +fres3 = fres +tfr_3 = tfr +eta = eta_0 + 2.0*dist +CALL F_NUMERICAL +fres4 = fres +tfr_4 = tfr +eta = eta_0 +CALL F_NUMERICAL +fres5 = fres +tfr_5 = tfr + +!--------------------------------------------------------- +! ptfr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! & *dzetdv*(KBOL*T)/1.E-30 +! ztfr =ptfr /( rho * (KBOL*t) / 1.E-30) +! ptfrdz = (-tfr_4+16.0*tfr_3-3.d1*tfr_5+16.0*tfr_2-tfr_1) +! & /(12.0*(dist**2 ))* dzetdv*(KBOL*T)/1.E-30 +! & + (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1) +! & /(12.0*dist) * 2.0 *eta*6.0/PI/D +! & *(KBOL*T)/1.E-30 +! ztfrdz=ptfrdz/( rho*(kbol*T)/1.E-30 ) - ztfr/eta +! write (*,*) eta,ztfr,ztfrdz + +! dtfr_dr = (-tfr_4+8.0*tfr_3-8.0*tfr_2+tfr_1)/(12.0*dist) +! write (*,*) eta,dtfr_dr +! stop +!--------------------------------------------------------- + +df_dr = (-fres4+8.0*fres3-8.0*fres2+fres1) / (12.0*dist) +df_drdr = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 )) + + +dzetdv = eta*rho + +pges = (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) *dzetdv*(kbol*t)/1.E-30 + +dpiddz = 1.0/z3t*(kbol*t)/1.E-30 +pgesdz = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*(dist**2 ))* dzetdv*(kbol*t)/1.E-30 & + + (-fres4+8.0*fres3-8.0*fres2+fres1) /(12.0*dist) * 2.0 *rho & + *(kbol*t)/1.E-30 + dpiddz + +pgesd2 = (fres4-2.0*fres3+2.0*fres2-fres1) /(2.0*dist**3 ) & + * dzetdv*(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) & + * 4.0 *rho *(kbol*t)/1.E-30 + (-fres4+8.0*fres3-8.0*fres2+fres1) & + /(12.0*dist) * 2.0 /z3t *(kbol*t)/1.E-30 +pgesd3 = (fres4-4.0*fres3+6.0*fres5-4.0*fres2+fres1) /(dist**4 ) & + * dzetdv*(kbol*t)/1.E-30 + (fres4-2.0*fres3+2.0*fres2-fres1) & + /(2.0*dist**3 ) * 6.0 *rho *(kbol*t)/1.E-30 & + + (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) & + /(12.0*dist**2 )* 6.0 /z3t *(kbol*t)/1.E-30 + +!------------------p ideal------------------------------------ +pideal = rho * (kbol*t) / 1.E-30 + +!------------------p summation, p comes out in Pa ------------ +pges = pideal + pges + +END SUBROUTINE P_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE H_numerical +! + USE PARAMETERS, ONLY: RGAS + USE EOS_VARIABLES + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL :: dist, fact, rho_0 + REAL :: fres1,fres2,fres3,fres4,fres5 + REAL :: f_1, f_2, f_3, f_4 + REAL :: cv_res, t_tmp, zges + REAL :: f_dt, f_dtdt, f_dr, f_drdr, f_drdt +!----------------------------------------------------------------------- + + +CALL PERTURBATION_PARAMETER +rho_0 = eta/z3t + + +fact = 1.0 +dist = t * 100.E-5 * fact + +t_tmp = t + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres1 = fres +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres2 = fres +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres3 = fres +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres4 = fres +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL F_NUMERICAL +fres5 = fres +! *(KBOL*T)/1.E-30 + +zges = (p * 1.E-30)/(kbol*t*rho_0) + + +f_dt = (-fres4+8.0*fres3-8.0*fres2+fres1)/(12.0*dist) +f_dtdt = (-fres4+16.0*fres3-3.d1*fres5+16.0*fres2-fres1) /(12.0*(dist**2 )) + +s_res = (- f_dt -fres/t)*RGAS*t + RGAS * LOG(zges) +h_res = ( - t*f_dt + zges-1.0 ) * RGAS*t +cv_res = -( t*f_dtdt + 2.0*f_dt ) * RGAS*t + + + +t = t_tmp - 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_1 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp - dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_2 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_3 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp + 2.0*dist +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL +f_4 = pges/(eta*rho_0*(KBOL*T)/1.E-30) + +t = t_tmp +CALL PERTURBATION_PARAMETER +eta = z3t*rho_0 +CALL P_NUMERICAL + +f_dr = pges / (eta*rho_0*(KBOL*T)/1.E-30) +f_drdr = pgesdz/ (eta*rho_0*(KBOL*T)/1.E-30) - f_dr*2.0/eta - 1.0/eta**2 + +f_drdt = ( - f_4 + 8.0*f_3 - 8.0*f_2 + f_1 ) / ( 12.0*dist ) + +cp_res = cv_res - RGAS + RGAS*( zges + eta*t*f_drdt)**2 / (1.0 + 2.0*eta*f_dr + eta**2 *f_drdr) +! write (*,*) cv_res,cp_res,eta + + +END SUBROUTINE H_numerical + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_POLAR ( fdd, fqq, fdq ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: fdd, fqq, fdq +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL F_DD_GROSS_VRABEC( fdd ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL F_QQ_GROSS( fqq ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL F_DQ_VRABEC_GROSS( fdq ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE F_POLAR + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PRESSURE_SPINODAL +! +! iterates the density until the derivative of pressure 'pges' to +! density is equal to zero. A Newton-scheme is used for determining +! the root to the objective function. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PRESSURE_SPINODAL +! + USE BASIC_VARIABLES, ONLY: num + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, max_i + REAL :: eta_iteration + REAL :: error, acc_i, delta_eta +! ---------------------------------------------------------------------- + +acc_i = 1.d-6 +max_i = 30 + +i = 0 +eta_iteration = eta_start + +! ---------------------------------------------------------------------- +! iterate density until p_calc = p +! ---------------------------------------------------------------------- + +error = acc_i + 1.0 +DO WHILE ( ABS(error) > acc_i .AND. i < max_i ) + + i = i + 1 + eta = eta_iteration + + IF ( num == 0 ) THEN + CALL P_EOS + ELSE IF ( num == 1 ) THEN + CALL P_NUMERICAL + ELSE IF ( num == 2 ) THEN + WRITE(*,*) 'CRITICAL RENORM NOT INCLUDED YET' + !!CALL F_EOS_RN + ELSE + write (*,*) 'define calculation option (num)' + END IF + + error = pgesdz + + delta_eta = error/ pgesd2 + IF ( delta_eta > 0.02 ) delta_eta = 0.02 + IF ( delta_eta < -0.02 ) delta_eta = -0.02 + + eta_iteration = eta_iteration - delta_eta + ! write (*,'(a,i3,3G18.10)') 'iter',i, error, eta_iteration, pgesdz + + IF (eta_iteration > 0.9) eta_iteration = 0.5 + IF (eta_iteration <= 0.0) eta_iteration = 1.E-16 + +END DO + +eta = eta_iteration + +END SUBROUTINE PRESSURE_SPINODAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_IDEAL_GAS ( fid ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, x, rho, PI, KBOL, NAv + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fid +!--------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi +!---------------------------------------------------------------------- + + !h_Planck = 6.62606896E-34 ! Js + DO i = 1, ncomp + rhoi(i) = x(i) * rho + ! debroglie(i) = h_Planck *1d10 & ! in units Angstrom + ! *SQRT( 1.0 / (2.0*PI *1.0 / NAv / 1000.0 * KBOL*T) ) + ! ! *SQRT( 1.0 / (2.0*PI *mm(i) /NAv/1000.0 * KBOL*T) ) + ! fid = fid + x(i) * ( LOG(rhoi(i)*debroglie(i)**3) - 1.0 ) + fid = fid + x(i) * ( LOG(rhoi(i)) - 1.0 ) + END DO + + END SUBROUTINE F_IDEAL_GAS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_HARD_SPHERE ( m_mean2, fhs ) +! + USE EOS_VARIABLES, ONLY: z0t, z1t, z2t, z3t, eta, rho + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: m_mean2 + REAL, INTENT(IN OUT) :: fhs +!--------------------------------------------------------------------- + REAL :: z0, z1, z2, z3, zms +!---------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + fhs= m_mean2*( 3.0*z1*z2/zms + z2**3 /z3/zms/zms + (z2**3 /z3/z3-z0)*LOG(zms) )/z0 + + + END SUBROUTINE F_HARD_SPHERE + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT1 ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, & + rho, eta, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + fhc = 0.0 + DO i = 1, ncomp + fhc = fhc + x(i) *(1.0- mseg(i)) *LOG(gij(i,i)) + END DO + + END SUBROUTINE F_CHAIN_TPT1 + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_TPT_D ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, z0t, z1t, z2t, z3t, rho, eta, & + dhs, mseg, dij_ab, gij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + INTEGER :: i, j + REAL, DIMENSION(nc) :: gij_hd + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + DO i = 1, ncomp + gij_hd(i) = 1.0/(2.0*zms) + 3.0*dij_ab(i,i)*z2 / zms**2 + END DO + + fhc = 0.0 + DO i = 1, ncomp + IF ( mseg(i) >= 2.0 ) THEN + fhc = fhc - x(i) * ( mseg(i)/2.0 * LOG( gij(i,i) ) + ( mseg(i)/2.0 - 1.0 ) * LOG( gij_hd(i)) ) + ELSE + fhc = fhc + x(i) * ( 1.0 - mseg(i) ) * LOG( gij(i,i) ) + END IF + END DO + + END SUBROUTINE F_CHAIN_TPT_D + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU ( fhc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, mseg, x, rho, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: a20, b20, c20, a30, b30, c30 + REAL :: sum1, sum2, am, bm, cm + REAL :: zms +!--------------------------------------------------------------------- + + zms = 1.0 - eta + + sum1 = SUM( x(1:ncomp)*(mseg(1:ncomp)-1.0) ) + sum2 = SUM( x(1:ncomp)/mseg(1:ncomp)*(mseg(1:ncomp)-1.0)*(mseg(1:ncomp)-2.0) ) + + a2 = 0.45696 + a3 = -0.74745 + b2 = 2.10386 + b3 = 3.49695 + c2 = 1.75503 + c3 = 4.83207 + a20 = - a2 + b2 - 3.0*c2 + b20 = - a2 - b2 + c2 + c20 = c2 + a30 = - a3 + b3 - 3.0*c3 + b30 = - a3 - b3 + c3 + c30 = c3 + am = (3.0 + a20) * sum1 + a30 * sum2 + bm = (1.0 + b20) * sum1 + b30 * sum2 + cm = (1.0 + c20) * sum1 + c30 * sum2 + + fhc = - ( (am*eta - bm) / (2.0*zms) + bm/2.0/zms**2 - cm *LOG(ZMS) ) + + + END SUBROUTINE F_CHAIN_HU_LIU + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_CHAIN_HU_LIU_RC ( fhs, fhc ) +! + USE EOS_VARIABLES, ONLY: mseg, chiR, eta + IMPLICIT NONE +! +! This subroutine calculates the hard chain contribution of the TPT-Liu-Hu Eos. +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: fhs + REAL, INTENT(OUT) :: fhc +!--------------------------------------------------------------------- + REAL :: a2, b2, c2, a3, b3, c3 + REAL :: para1,para2,para3,para4 + REAL :: aLH,bLH,cLH +!--------------------------------------------------------------------- + +! This routine is only for pure components + + a2 = 0.45696 + b2 = 2.10386 + c2 = 1.75503 + + para1 = -0.74745 + para2 = 0.299154629727814 + para3 = 1.087271036653154 + para4 = -0.708979110326831 + a3 = para1 + para2*chiR(1) + para3*chiR(1)**2 + para4*chiR(1)**3 + b3 = 3.49695 - (3.49695 + 0.317719074806190)*chiR(1) + c3 = 4.83207 - (4.83207 - 3.480163780334421)*chiR(1) + + aLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*a2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*a3 ) + bLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*b2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*b3 ) + cLH = mseg(1)*(1.0 + ((mseg(1)-1.0)/mseg(1))*c2 + ((mseg(1)-1.0)/mseg(1))*((mseg(1)-2.0)/mseg(1))*c3 ) + + fhc = ((3.0 + aLH - bLH + 3.0*cLH)*eta - (1.0 + aLH + bLH - cLH)) / (2.0*(1.0-eta)) + & + (1.0 + aLH + bLH - cLH) / ( 2.0*(1.0-eta)**2 ) + (cLH - 1.0)*LOG(1.0-eta) + + fhc = fhc - fhs + + END SUBROUTINE F_CHAIN_HU_LIU_RC + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_PCSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: PI, rho, eta, z0t, apar, bpar, order1, order2 + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: m + REAL :: I1, I2, c1_con, z3, zms, m_mean +!--------------------------------------------------------------------- + + z3 = eta + zms = 1.0 - eta + m_mean = z0t / ( PI / 6.0 ) + + I1 = 0.0 + I2 = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m) * z3**m + I2 = I2 + bpar(m) * z3**m + END DO + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0-m_mean)*( 20.0*z3-27.0*z3**2 +12.0*z3**3 -2.0*z3**4 )/(zms*(2.0-z3))**2 ) + + fdsp = -2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 + + END SUBROUTINE F_DISP_PCSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DISP_CKSAFT ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, PI, TAU, t, rho, eta, x, z0t, mseg, vij, uij, parame, um + USE EOS_CONSTANTS, ONLY: DNM + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + INTEGER :: i, j, n, m + REAL :: zmr, nmr, m_mean +!--------------------------------------------------------------------- + + m_mean = z0t / ( PI / 6.0 ) + + DO i = 1, ncomp + DO j = 1, ncomp + vij(i,j)=(0.5*((parame(i,2)*(1.0-0.12 *EXP(-3.0*parame(i,3)/t))**3 )**(1.0/3.0) & + +(parame(j,2)*(1.0-0.12 *EXP(-3.0*parame(j,3)/t))**3 )**(1.0/3.0)))**3 + END DO + END DO + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr + fdsp = 0.0 + DO n = 1, 4 + DO m = 1, 9 + fdsp = fdsp + DNM(n,m) * (um/t)**n *(eta/TAU)**m + END DO + END DO + fdsp = m_mean * fdsp + + + END SUBROUTINE F_DISP_CKSAFT + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ASSOCIATION ( eps_kij, k_kij, fhb ) +! + USE EOS_VARIABLES, ONLY: nc, nsite, ncomp, t, z0t, z1t, z2t, z3t, rho, eta, x, & + parame, sig_ij, dij_ab, gij, nhb_typ, mx, nhb_no + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN) :: eps_kij, k_kij + REAL, INTENT(IN OUT) :: fhb +!--------------------------------------------------------------------- + LOGICAL :: assoc + INTEGER :: i, j, k, l, no, ass_cnt, max_eval + REAL, DIMENSION(nc,nc) :: kap_hb + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nsite,nc,nsite) :: delta + REAL, DIMENSION(nc,nsite) :: mx_itr + REAL :: err_sum, sum0, amix, tol, ass_s1, ass_s2 + REAL :: z0, z1, z2, z3, zms +!--------------------------------------------------------------------- + + assoc = .false. + DO i = 1,ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + END DO + IF (assoc) THEN + + rho = eta / z3t + z0 = z0t * rho + z1 = z1t * rho + z2 = z2t * rho + z3 = z3t * rho + zms = 1.0 - z3 + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 / zms**3 + END DO + END DO + + + DO i = 1, ncomp + IF ( NINT(parame(i,12)) /= 0 ) THEN + nhb_typ(i) = NINT( parame(i,12) ) + kap_hb(i,i) = parame(i,13) + no = 0 + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(i) + eps_hb(i,i,k,l) = parame(i,(14+no)) + no = no + 1 + END DO + END DO + DO k = 1,nhb_typ(i) + nhb_no(i,k) = parame(i,(14+no)) + no = no + 1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1,nsite + DO l = 1,nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1,ncomp + DO j = 1,ncomp + IF ( i /= j .AND. (nhb_typ(i) /= 0.AND.nhb_typ(j) /= 0) ) THEN + ! kap_hb(i,j)= (kap_hb(i,i)+kap_hb(j,j))/2.0 + ! kap_hb(i,j)= ( ( kap_hb(i,i)**(1.0/3.0) + kap_hb(j,j)**(1.0/3.0) )/2.0 )**3 + kap_hb(i,j) = (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + / (0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1,nhb_typ(i) + DO l = 1,nhb_typ(j) + IF ( k /= l .AND. nhb_typ(i) >= 2 .AND. nhb_typ(j) >= 2 ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + ! eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)*eps_hb(j,j,l,k))**0.5 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + ELSE IF ( nhb_typ(i) == 1 .AND. l > k ) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(j,i,l,k) = (eps_hb(i,i,k,k)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + eps_hb(j,i,l,k) = eps_hb(j,i,l,k)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + +!-----setting the self-association to zero for ionic compounds------ + DO i = 1,ncomp + IF ( parame(i,10) /= 0) kap_hb(i,i)=0.0 + DO j = 1,ncomp + IF ( parame(i,10) /= 0 .AND. parame(j,10) /= 0 ) kap_hb(i,j) = 0.0 + END DO + END DO + ! kap_hb(1,2)=0.050 + ! kap_hb(2,1)=0.050 + ! eps_hb(2,1,1,1)=465.0 + ! eps_hb(1,2,1,1)=465.0 + ! nhb_typ(1) = 1 + ! nhb_typ(2) = 1 + ! nhb_no(1,1)= 1.0 + ! nhb_no(2,1)= 1.0 + + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + delta(i,k,j,l)=gij(i,j)*kap_hb(i,j)*(EXP(eps_hb(i,j,k,l)/t)-1.0) *sig_ij(i,j)**3 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! IF ((i+j).EQ.3) delta(i,k,j,l)=94.0 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + END DO + END DO + IF ( mx(i,k) == 0.0 ) mx(i,k) = 1.0 + END DO + END DO + +!------constants for Iteration --------------------------------------- + amix = 0.7 + tol = 1.E-10 + IF (eta < 0.2) tol = 1.E-11 + IF (eta < 0.01) tol = 1.E-14 + max_eval = 200 + +! --- Iterate over all components and all sites ------------------------ + ass_cnt = 0 + iterate_TPT1: DO + + ass_cnt = ass_cnt + 1 + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + sum0 = 0.0 + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + sum0 = sum0 + x(j)* mx(j,l)*nhb_no(j,l) *delta(i,k,j,l) + END DO + END DO + mx_itr(i,k) = 1.0 / (1.0 + sum0*rho) + END DO + END DO + + err_sum = 0.0 + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + err_sum = err_sum + ABS( mx_itr(i,k) - mx(i,k) ) ! / ABS(mx_itr(i,k)) + mx(i,k) = mx_itr(i,k) * amix + mx(i,k) * (1.0 - amix) + IF ( mx(i,k) <= 0.0 ) mx(i,k)=1.E-50 + IF ( mx(i,k) > 1.0 ) mx(i,k)=1.0 + END DO + END DO + + IF ( err_sum <= tol .OR. ass_cnt >= max_eval ) THEN + IF ( ass_cnt >= max_eval ) WRITE(*,*) 'F_NUMERICAL: Max_eval violated = ',err_sum,tol + EXIT iterate_TPT1 + END IF + + END DO iterate_TPT1 + + DO i = 1, ncomp + ass_s1 = 0.0 + ass_s2 = 0.0 + DO k = 1, nhb_typ(i) + ass_s1 = ass_s1 + nhb_no(i,k) * ( 1.0 - mx(i,k) ) + ass_s2 = ass_s2 + nhb_no(i,k) * LOG(mx(i,k)) + END DO + fhb = fhb + x(i) * ( ass_s2 + ass_s1/2.0 ) + END DO + + END IF + + END SUBROUTINE F_ASSOCIATION + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_DIPOLE_TBH ( fhend ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, eta, x, z0t, parame, uij, sig_ij + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fhend +!--------------------------------------------------------------------- + INTEGER :: i, dipole, ions + REAL :: m_mean + REAL :: fh32, fh2, fh52, fh3 + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: polabil, ydd, kappa, x_dipol, x_ions + REAL, DIMENSION(nc) :: my2dd, z_ii, e_cd, x_dd, x_ii + REAL :: sig_c, sig_d, sig_cd, r_s + REAL :: I0cc, I1cc, I2cc, Icd, Idd + REAL :: Iccc, Iccd, Icdd, Iddd +!--------------------------------------------------------------------- + +m_mean = z0t / ( PI / 6.0 ) + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + + 2.78E1*(t/293.15))*rho_sol**2 & + + (-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + - 1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + + 8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Dipole-Ion Term----------------------------------- +dipole = 0 +ions = 0 +fhend = 0.0 +DO i = 1, ncomp + IF ( parame(i,6) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*sig_ij(i,i)**3 *1.E-30) + dipole = 1 + ELSE + my2dd(i) = 0.0 + END IF + + z_ii(i) = parame(i,10) + IF ( z_ii(i) /= 0.0 .AND. uij(i,i) /= 0.0 .AND. x(i) > 0.0 ) THEN + e_cd(i) = ( parame(i,10)*e_elem* 1.E5 / SQRT(1.11265005) )**2 & + / ( uij(i,i)*kbol*sig_ij(i,i)*1.E-10 ) + ions = 1 + ELSE + e_cd(i) = 0.0 + END IF +END DO + + +IF ( dipole == 1 .AND. ions == 1 ) THEN + + ydd = 0.0 + kappa = 0.0 + x_dipol = 0.0 + x_ions = 0.0 + polabil = 0.0 + DO i = 1, ncomp + ydd = ydd + x(i)*(parame(i,6))**2 *1.E-49/ (kbol*t*1.E-30) + kappa = kappa + x(i) & + *(parame(i,10)*e_elem* 1.E5/SQRT(1.11265005))**2 /(KBOL*t*1.E-10) + IF (parame(i,10) /= 0.0) THEN + x_ions = x_ions + x(i) + ELSE + polabil = polabil + 4.0*PI*x(i)*rho*1.4573 *1.E-30 & + / (sig_ij(3,3)**3 *1.E-30) + END IF + IF (parame(i,6) /= 0.0) x_dipol= x_dipol+ x(i) + END DO + ydd = ydd * 4.0/9.0 * PI * rho + kappa = SQRT( 4.0 * PI * rho * kappa ) + + fh2 = 0.0 + sig_c = 0.0 + sig_d = 0.0 + DO i=1,ncomp + x_ii(i) = 0.0 + x_dd(i) = 0.0 + IF(parame(i,10) /= 0.0 .AND. x_ions /= 0.0) x_ii(i) = x(i)/x_ions + IF(parame(i,6) /= 0.0 .AND. x_dipol /= 0.0) x_dd(i) = x(i)/x_dipol + sig_c = sig_c + x_ii(i)*parame(i,2) + sig_d = sig_d + x_dd(i)*parame(i,2) + END DO + sig_cd = 0.5 * (sig_c + sig_d) + + r_s = 0.0 + ! DO i=1,ncomp + ! r_s=r_s + rho * x(i) * dhs(i)**3 + ! END DO + r_s = eta*6.0 / PI / m_mean + + I0cc = - (1.0 + 0.97743 * r_s + 0.05257*r_s*r_s) & + /(1.0 + 1.43613 * r_s + 0.41580*r_s*r_s) + ! I1cc = - (10.0 - 2.0*z3 + z3*z3) /20.0/(1.0 + 2.0*z3) + I1cc = - (10.0 - 2.0*r_s*pi/6.0 + r_s*r_s*pi/6.0*pi/6.0) & + /20.0/(1.0 + 2.0*r_s*pi/6.0) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + ! I2cc = + (z3-4.0)*(z3*z3+2.0) /24.0/(1.0+2.0*z3) + ! relation of Stell and Lebowitz + I2cc = -0.33331+0.7418*r_s - 1.2047*r_s*r_s & + + 1.6139*r_s**3 - 1.5487*r_s**4 + 0.6626*r_s**5 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Icd = (1.0 + 0.79576 *r_s + 0.104556 *r_s*r_s) & + /(1.0 + 0.486704*r_s - 0.0222903*r_s*r_s) + Idd = (1.0 + 0.18158*r_s - 0.11467*r_s*r_s) & + /3.0/(1.0 - 0.49303*r_s + 0.06293*r_s*r_s) + Iccc= 3.0*(1.0 - 1.05560*r_s + 0.26591*r_s*r_s) & + /2.0/(1.0 + 0.53892*r_s - 0.94236*r_s*r_s) + Iccd= 11.0*(1.0 + 2.25642 *r_s + 0.05679 *r_s*r_s) & + /6.0/(1.0 + 2.64178 *r_s + 0.79783 *r_s*r_s) + Icdd= 0.94685*(1.0 + 2.97323 *r_s + 3.11931 *r_s*r_s) & + /(1.0 + 2.70186 *r_s + 1.22989 *r_s*r_s) + Iddd= 5.0*(1.0 + 1.12754*r_s + 0.56192*r_s*r_s) & + /24.0/(1.0 - 0.05495*r_s + 0.13332*r_s*r_s) + + IF ( sig_c <= 0.0 ) WRITE (*,*) 'error in Henderson ion term' + + fh32= - kappa**3 /(12.0*pi*rho) + fh2 = - 3.0* kappa**2 * ydd*Icd /(8.0*pi*rho) / sig_cd & + - kappa**4 *sig_c/(16.0*pi*rho)*I0cc + IF (sig_d /= 0.0) fh2 = fh2 - 27.0* ydd * ydd*Idd & + /(8.0*pi*rho) / sig_d**3 + fh52= (3.0*kappa**3 * ydd + kappa**5 *sig_c**2 *I1cc) & + /(8.0*pi*rho) + fh3 = - kappa**6 * sig_c**3 /(8.0*pi*rho) *(I2cc-Iccc/6.0) & + + kappa**4 * ydd *sig_c/(16.0*pi*rho) & + *( (6.0+5.0/3.0*sig_d/sig_c)*I0cc + 3.0*sig_d/sig_c*Iccd ) & + + 3.0*kappa**2 * ydd*ydd /(8.0*pi*rho) / sig_cd & + *( (2.0-3.21555*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + IF (sig_d /= 0.0) fh3 = fh3 + 27.0*ydd**3 & + /(16.0*pi*rho)/sig_d**3 *Iddd + + fhend = ( fh32 + (fh32*fh32*fh3-2.0*fh32*fh2*fh52+fh2**3 ) & + /(fh2*fh2-fh32*fh52) ) & + / ( 1.0 + (fh32*fh3-fh2*fh52) /(fh2*fh2-fh32*fh52) & + - (fh2*fh3-fh52*fh52) /(fh2*fh2-fh32*fh52) ) +!---------- +! fH32= - kappa**3 /(12.0*PI*rho) +! fH2 = - 3.0* kappa**2 * ydd*Icd /(8.0*PI*rho) / sig_cd +! fH52= (3.0*kappa**3 * ydd)/(8.0*PI*rho) +! fH3 = + kappa**4 * ydd *sig_c/(16.0*PI*rho) & +! *( (6.0+5.0/3.0*sig_d/sig_c)*0.0*I0cc + 3.0*sig_d/sig_c*Iccd) & +! + 3.0*kappa**2 * ydd*ydd /(8.0*PI*rho) / sig_cd & +! *( (2.0-3.215550*sig_d/sig_cd)*Icd +3.0*sig_d/sig_cd*Icdd ) + +! fHcd = ( + (fH32*fH32*fH3-2.0*fH32*fH2*fH52+fH2**3 ) & +! /(fH2*fH2-fH32*fH52) ) & +! / ( 1.0 + (fH32*fH3-fH2*fH52) /(fH2*fH2-fH32*fH52) & +! - (fH2*fH3-fH52*fH52) /(fH2*fH2-fH32*fH52) ) + +END IF + + END SUBROUTINE F_ION_DIPOLE_TBH + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_PrimMSA ( fcc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, t, rho, x, parame, mx + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fcc +!--------------------------------------------------------------------- + INTEGER :: i, j, cc_it, ions + REAL :: e_elem, eps_cc0, rho_sol, dielec + REAL :: x_ions + REAL :: cc_sig1, cc_sig2, cc_sig3 + REAL, DIMENSION(nc) :: z_ii, x_ii, sigm_i, my2dd + REAL :: alpha_2, kappa, ii_par + REAL :: cc_omeg, p_n, q2_i, cc_q2, cc_gam + REAL :: cc_error(2), cc_delt + REAL :: rhs, lambda, lam_s +!--------------------------------------------------------------------- + +!----------------Dieletric Constant of Water-------------------------- +e_elem = 1.602189246E-19 ! in Unit [Coulomb] +eps_cc0 = 8.854187818E-22 ! in Unit [Coulomb**2 /(J*Angstrom)] +! Correlation of M. Uematsu and E. U. Frank +! (Static Dieletric Constant of Water and Steam) +! valid range of conditions 273,15 K <=T<= 823,15 K +! and density <= 1150 kg/m3 (i.e. 0 <= p <= 500 MPa) +rho_sol = rho * 18.015 * 1.E27/ NAv +rho_sol = rho_sol/1000.0 +dielec = 1.0+(7.62571/(t/293.15))*rho_sol +(2.44E2/(t/293.15)-1.41E2 & + +2.78E1*(t/293.15))*rho_sol**2 & + +(-9.63E1/(t/293.15)+4.18E1*(t/293.15) & + -1.02E1*(t/293.15)**2 )*rho_sol**3 +(-4.52E1/(t/293.15)**2 & + +8.46E1/(t/293.15)-3.59E1)*rho_sol**4 + + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +dielec = 1.0 + +! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + +!----------------Ion-Ion: primitive MSA ------------------------------- +! the (dipole moment)**2 [my**2] corresponds to an attraction from +! point charges of [ SUM(xi * zi**2 * e_elem**2) * 3 * di**2 ] + +! parame(ion,6))**2 * 1.E-49 / (kbol*T) +! = (e_elem* 1.E5/SQRT(1.112650050))**2 +! *x(i)*zi**2 *3.0*sig_ij(1,1)**2 *1.E-20 + +! parame(ion,6))**2 = (e_elem* 1.E5/SQRT(1.112650050))**2 /1.E-49 +! *x(i)*zi**2 *3.0*sig_ij(i,i)**2 *1.E-20 + +! with the units +! my**2 [=] D**2 = 1.E-49 J*m3 +! e_elem **2 [=] C**2 = 1.E5 / SQRT(1.112650050) J*m + + +ions = 0 +x_ions = 0.0 +fcc = 0.0 +DO i = 1, ncomp + z_ii(i) = parame(i,10) + IF (z_ii(i) /= 0.0) THEN + sigm_i(i) = parame(i,2) + ELSE + sigm_i(i) = 0.0 + END IF + IF (z_ii(i) /= 0.0) ions = 1 + IF (z_ii(i) /= 0.0) x_ions = x_ions + x(i) +END DO + +IF (ions == 1 .AND. x_ions > 0.0) THEN + + cc_sig1 = 0.0 + cc_sig2 = 0.0 + cc_sig3 = 0.0 + DO i=1,ncomp + IF (z_ii(i) /= 0.0) THEN + x_ii(i) = x(i)/x_ions + ELSE + x_ii(i) =0.0 + END IF + cc_sig1 = cc_sig1 +x_ii(i)*sigm_i(i) + cc_sig2 = cc_sig2 +x_ii(i)*sigm_i(i)**2 + cc_sig3 = cc_sig3 +x_ii(i)*sigm_i(i)**3 + END DO + + + ! alpha_2 = 4.0*PI*e_elem**2 /eps_cc0/dielec/kbol/T + alpha_2 = e_elem**2 /eps_cc0 / dielec / KBOL/t + kappa = 0.0 + DO i = 1, ncomp + kappa = kappa + x(i)*z_ii(i)*z_ii(i)*mx(i,1) + END DO + kappa = SQRT( rho * alpha_2 * kappa ) + ii_par= kappa * cc_sig1 + + ! Temporaer: nach der Arbeit von Krienke verifiziert + ! noch nicht fuer Mischungen mit unterschiedl. Ladung erweitert + ! ii_par = DSQRT( e_elem**2 /eps_cc0/dielec/kbol/T & + ! *rho*(x(1)*Z_ii(1)**2 + x(2)*Z_ii(2)**2 ) )*cc_sig1 + + + cc_gam = kappa/2.0 + + ! noch offen !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + cc_delt = 0.0 + DO i = 1, ncomp + cc_delt = cc_delt + x(i)*mx(i,1)*rho*sigm_i(i)**3 + END DO + cc_delt= 1.0 - PI/6.0*cc_delt + + cc_it = 0 + 13 CONTINUE + j = 0 + cc_it = cc_it + 1 + 131 CONTINUE + j = j + 1 + cc_omeg = 0.0 + DO i = 1, ncomp + cc_omeg = cc_omeg +x(i)*mx(i,1)*sigm_i(i)**3 /(1.0+cc_gam*sigm_i(i)) + END DO + cc_omeg = 1.0 + PI/2.0 / cc_delt * rho * cc_omeg + p_n = 0.0 + DO i = 1, ncomp + p_n = p_n + x(i)*mx(i,1)*rho / cc_omeg*sigm_i(i)*z_ii(i) / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = 0.0 + cc_q2= 0.0 + DO i = 1, ncomp + q2_i = q2_i + rho*x(i)*mx(i,1)*( (z_ii(i)-pi/2.0/cc_delt*sigm_i(i)**2 *p_n) & + /(1.0+cc_gam*sigm_i(i)) )**2 + cc_q2 = cc_q2 + x(i)*mx(i,1)*rho*z_ii(i)**2 / (1.0+cc_gam*sigm_i(i)) + END DO + q2_i = q2_i*alpha_2 / 4.0 + + cc_error(j) = cc_gam - SQRT(q2_i) + IF (j == 1) cc_gam = cc_gam*1.000001 + IF (j == 2) cc_gam = cc_gam - cc_error(2)* (cc_gam-cc_gam/1.000001)/(cc_error(2)-cc_error(1)) + + IF ( j == 1 .AND. ABS(cc_error(1)) > 1.E-15 ) GO TO 131 + IF ( cc_it >= 10 ) THEN + WRITE (*,*) ' cc error' + STOP + END IF + IF ( j /= 1 ) GO TO 13 + + fcc= - alpha_2 / PI/4.0 /rho* (cc_gam*cc_q2 & + + pi/2.0/cc_delt *cc_omeg*p_n**2 ) + cc_gam**3 /pi/3.0/rho + ! Restricted Primitive Model + ! fcc=-(3.0*ii_par*ii_par+6.0*ii_par+2.0 & + ! -2.0*(1.0+2.0*ii_par)**1.50) & + ! /(12.0*PI*rho *cc_sig1**3 ) + + ! fcc = x_ions * fcc + + my2dd(3) = (parame(3,6))**2 *1.E-19 /(KBOL*t) + my2dd(3) = (1.84)**2 *1.E-19 /(kbol*t) + + rhs = 12.0 * PI * rho * x(3) * my2dd(3) + lam_s = 1.0 + 12 CONTINUE + lambda = (rhs/((lam_s+2.0)**2 ) + 16.0/((1.0+lam_s)**4 ) )**0.5 + IF ( ABS(lam_s-lambda) > 1.E-10 )THEN + lam_s = ( lambda + lam_s ) / 2.0 + GO TO 12 + END IF + + ! f_cd = -(ii_par*ii_par)/(4.0*PI*rho*m_mean *cc_sig1**3 ) & + ! *(dielec-1.0)/(1.0 + parame(3,2)/cc_sig1/lambda) + ! write (*,*) ' ',f_cd,fcc,x_ions + ! f_cd = f_cd/(1.0 - fcc/f_cd) + ! fcc = 0.0 + +END IF + + +END SUBROUTINE F_ION_ION_PrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_ION_ION_nonPrimMSA ( fdd, fqq, fdq, fcc ) +! + USE EOS_VARIABLES, ONLY: nc, ncomp, t, eta, x, parame, mseg + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd, fqq, fdq, fcc +!--------------------------------------------------------------------- + INTEGER :: dipole + !REAL :: A_MSA !, A_CC, A_CD, A_DD, U_MSA, chempot + REAL, DIMENSION(nc) :: x_export, msegm +!--------------------------------------------------------------------- + + dipole = 0 + IF ( SUM( parame(1:ncomp,6) ) > 1.E-5 ) dipole = 1 + + IF ( dipole /= 0 ) THEN ! alternatively ions and dipoles = 1 + fdd = 0.0 + fqq = 0.0 + fdq = 0.0 + fcc = 0.0 + msegm(:) = mseg(:) ! the entries of the vector mseg and x are changed + x_export(:) = x(:) ! in SEMIRESTRICTED because the ions should be positioned first + ! that is why dummy vectors msegm and x_export are defined + !CALL SEMIRESTRICTED (A_MSA,A_CC,A_CD,A_DD,U_MSA, & + ! chempot,ncomp,parame,t,eta,x_export,msegm,0) + !fdd = A_MSA + write (*,*) 'why are individual contrib. A_CC,A_CD,A_DD not used' + stop + END IF + + END SUBROUTINE F_ION_ION_nonPrimMSA + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_LC_MayerSaupe ( flc ) +! + USE EOS_VARIABLES, ONLY: nc, PI, KBOL, NAv, ncomp, phas, t, rho, eta, & + x, mseg, parame, E_lc, S_lc, dhs + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: flc +!--------------------------------------------------------------------- + INTEGER :: i, j, k + INTEGER :: liq_crystal, count_lc, steps_lc + REAL :: alpha_lc, tolerance, deltay + REAL :: integrand1, integrand2, accel_lc + REAL :: error_lc, u_term, sphase + REAL, DIMENSION(nc) :: z_lc, S_lc1, S_lc2, sumu + REAL, DIMENSION(nc,nc) :: u_lc, klc +!--------------------------------------------------------------------- +INTEGER :: stabil +COMMON /stabil / stabil +!--------------------------------------------------------------------- + + + klc(1,2) = 0.0 + klc(2,1) = klc(1,2) + + alpha_lc = 1.0 + accel_lc = 4.0 + IF ( eta < 0.35 ) accel_lc = 1.3 + IF ( eta < 0.15 ) accel_lc = 1.0 + + liq_crystal = 0 + DO i = 1, ncomp + DO j = 1, ncomp + E_lc(i,j) = (E_lc(i,i)*E_lc(j,j))**0.5 *(1.0-klc(i,j)) !combining rule + ! E_LC(i,j)= ( E_LC(i,i)+E_LC(j,j) ) * 0.5 !combining rule + ! S_LC(i,j)= ( S_LC(i,i)+S_LC(j,j) ) * 0.5 !combining rule + IF (E_lc(i,j) /= 0.0) liq_crystal = 1 + END DO + END DO + ! S_LC(1,2) = 0.0 + ! S_LC(2,1) = S_LC(1,2) + ! E_LC(1,2) = 60.0 + ! E_LC(2,1) = E_LC(1,2) + + IF ( liq_crystal == 1 .AND. phas == 1 .AND. stabil == 0 ) THEN + + count_lc = 0 + tolerance = 1.E-6 + + steps_lc = 200 + deltay = 1.0 / REAL(steps_lc) + + ! --- dimensionless function U_LC repres. anisotr. intermolecular interactions in l.c. + + DO i = 1, ncomp + DO j = 1, ncomp + u_lc(i,j) = 2.0/3.0*pi*mseg(i)*mseg(j) *(0.5*(dhs(i)+dhs(j)))**3 & ! sig_ij(i,j)**3 + *(E_lc(i,j)/t+S_lc(i,j))*rho + END DO + END DO + + + DO i=1,ncomp + ! S_lc2(i) = 0.0 !for isotropic + S_lc2(i) = 0.5 !for nematic + S_lc1(i) = S_lc2(i) + END DO + + 1 CONTINUE + + DO i = 1, ncomp + IF (S_lc2(i) <= 0.3) S_lc1(i) = S_lc2(i) + IF (S_lc2(i) > 0.3) S_lc1(i) = S_lc1(i) + (S_lc2(i)-S_lc1(i))*accel_lc + END DO + + count_lc = count_lc + 1 + + ! --- single-particle orientation partition function Z_LC in liquid crystals + + DO i = 1, ncomp + sumu(i) = 0.0 + DO j = 1, ncomp + sumu(i) = sumu(i) + x(j)*u_lc(i,j)*S_lc1(j) + END DO + END DO + + DO i = 1, ncomp + z_lc(i) = 0.0 + integrand1 = EXP(-0.5*sumu(i)) !eq. for Z_LC with y=0 + DO k = 1, steps_lc + integrand2 = EXP(0.5*sumu(i)*(3.0*(deltay*REAL(k)) **2 -1.0)) + z_lc(i) = z_lc(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + END DO !i-index Z_LC(i) calculation + + ! --- order parameter S_lc in liquid crystals ----------------------- + + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i) = 0.0 + integrand1 = -1.0/z_lc(i)*0.5*EXP(-0.5*sumu(i)) !for S_lc with y=0 + DO k = 1, steps_lc + integrand2 = 1.0/z_lc(i)*0.5*(3.0*(deltay*REAL(k)) & + **2 -1.0)*EXP(0.5*sumu(i)*(3.0 *(deltay*REAL(k))**2 -1.0)) + S_lc2(i) = S_lc2(i) + (integrand1 + integrand2)/2.0*deltay + integrand1 = integrand2 + END DO !k-index integration + error_lc = error_lc + ABS(S_lc2(i)-S_lc1(i)) + END DO !i-index Z_LC(i) calculation + + sphase = 0.0 + DO i = 1, ncomp + sphase = sphase + S_lc2(i) + END DO + IF (sphase < 1.E-4) THEN + error_lc = 0.0 + DO i = 1, ncomp + S_lc2(i)= 0.0 + z_lc(i) = 1.0 + END DO + END IF + + + ! write (*,*) count_LC,S_lc2(1)-S_lc1(1),S_lc2(2)-S_lc1(2) + IF (error_lc > tolerance .AND. count_lc < 400) GO TO 1 + ! write (*,*) 'done',eta,S_lc2(1),S_lc2(2) + + IF (count_lc == 400) WRITE (*,*) 'LC iteration not converg.' + + ! --- the anisotropic contribution to the Helmholtz energy ---------- + + u_term = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + u_term = u_term + 0.5*x(i)*x(j)*S_lc2(i) *S_lc2(j)*u_lc(i,j) + END DO + END DO + + flc = 0.0 + DO i = 1, ncomp + IF (z_lc(i) /= 0.0) flc = flc - x(i) * LOG(z_lc(i)) + END DO + flc = flc + u_term + ! pause + + END IF + ! write (*,'(i2,i2,4(f15.8))') phas,stabil,flc,eta,S_lc2(1),x(1) + + + END SUBROUTINE F_LC_MayerSaupe + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_POLAR ( zdd, zddz, zddz2, zddz3, zqq, zqqz, zqqz2, zqqz3, zdq, zdqz, zdqz2, zdqz3 ) +! + USE EOS_VARIABLES, ONLY: ncomp, parame, dd_term, qq_term, dq_term + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: zdd, zddz, zddz2, zddz3 + REAL, INTENT(OUT) :: zqq, zqqz, zqqz2, zqqz3 + REAL, INTENT(OUT) :: zdq, zdqz, zdqz2, zdqz3 +! +! --- local variables--------------------------------------------------- + INTEGER :: dipole + INTEGER :: quadrupole + INTEGER :: dipole_quad +! ---------------------------------------------------------------------- + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + + dipole = 0 + quadrupole = 0 + dipole_quad = 0 + IF ( SUM( parame(1:ncomp,6) ) /= 0.0 ) dipole = 1 + IF ( SUM( parame(1:ncomp,7) ) /= 0.0 ) quadrupole = 1 + IF ( dipole == 1 .AND. quadrupole == 1 ) dipole_quad = 1 + + ! -------------------------------------------------------------------- + ! dipole-dipole term + ! -------------------------------------------------------------------- + IF (dipole == 1) THEN + + IF (dd_term == 'GV') CALL P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) + ! IF (dd_term == 'SF') CALL F_DD_SAAGER_FISCHER( k ) + IF (dd_term /= 'GV' .AND. dd_term /= 'SF') write (*,*) 'specify dipole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! quadrupole-quadrupole term + ! -------------------------------------------------------------------- + IF (quadrupole == 1) THEN + + !IF (qq_term == 'SF') CALL F_QQ_SAAGER_FISCHER( k ) + IF (qq_term == 'JG') CALL P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) + IF (qq_term /= 'JG' .AND. qq_term /= 'SF') write (*,*) 'specify quadrupole term !' + + ENDIF + + ! -------------------------------------------------------------------- + ! dipole-quadrupole cross term + ! -------------------------------------------------------------------- + IF (dipole_quad == 1) THEN + + IF (dq_term == 'VG') CALL P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) + IF (dq_term /= 'VG' ) write (*,*) 'specify DQ-cross term !' + + ENDIF + +END SUBROUTINE P_POLAR + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DD_GROSS_VRABEC( zdd, zddz, zddz2, zddz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdd, zddz, zddz2, zddz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdddr, fddd2, fddd3, fddd4 + REAL :: fdd2, fdd2z, fdd2z2, fdd2z3, fdd2z4 + REAL :: fdd3, fdd3z, fdd3z2, fdd3z3, fdd3z4 + REAL, DIMENSION(nc) :: my2dd + REAL, DIMENSION(nc,nc) :: Idd2, Idd2z, Idd2z2, Idd2z3, Idd2z4 + REAL, DIMENSION(nc,nc) :: Idd4, Idd4z, Idd4z2, Idd4z3, Idd4z4 + REAL, DIMENSION(nc,nc,nc) :: Idd3, Idd3z, Idd3z2, Idd3z3, Idd3z4 +! ---------------------------------------------------------------------- + + + zdd = 0.0 + zddz = 0.0 + zddz2 = 0.0 + zddz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + Idd2z(i,j) = 0.0 + Idd4z(i,j) = 0.0 + Idd2z2(i,j) = 0.0 + Idd4z2(i,j) = 0.0 + Idd2z3(i,j) = 0.0 + Idd4z3(i,j) = 0.0 + Idd2z4(i,j) = 0.0 + Idd4z4(i,j) = 0.0 + ! IF (paramei,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) =Idd2(i,j) + ddp2(i,j,m) *z3**(m+1) + Idd4(i,j) =Idd4(i,j) + ddp4(i,j,m) *z3**(m+1) + Idd2z(i,j) =Idd2z(i,j) +ddp2(i,j,m)*REAL(m+1) *z3**m + Idd4z(i,j) =Idd4z(i,j) +ddp4(i,j,m)*REAL(m+1) *z3**m + Idd2z2(i,j)=Idd2z2(i,j)+ddp2(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd4z2(i,j)=Idd4z2(i,j)+ddp4(i,j,m)*REAL((m+1)*m) *z3**(m-1) + Idd2z3(i,j)=Idd2z3(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd4z3(i,j)=Idd4z3(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idd2z4(i,j)=Idd2z4(i,j)+ddp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idd4z4(i,j)=Idd4z4(i,j)+ddp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + Idd3z(i,j,k) = 0.0 + Idd3z2(i,j,k) = 0.0 + Idd3z3(i,j,k) = 0.0 + Idd3z4(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) =Idd3(i,j,k) +ddp3(i,j,k,m)*z3**(m+2) + Idd3z(i,j,k) =Idd3z(i,j,k) +ddp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idd3z2(i,j,k)=Idd3z2(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1))*z3**m + Idd3z3(i,j,k)=Idd3z3(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m)*z3**(m-1) + Idd3z4(i,j,k)=Idd3z4(i,j,k)+ddp3(i,j,k,m)*REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2= -PI *rho/z3 + factor3= -4.0/3.0*PI**2 * (rho/z3)**2 + + fdd2 = 0.0 + fdd2z = 0.0 + fdd2z2 = 0.0 + fdd2z3 = 0.0 + fdd2z4 = 0.0 + fdd3 = 0.0 + fdd3z = 0.0 + fdd3z2 = 0.0 + fdd3z3 = 0.0 + fdd3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + / ((parame(i,2)+parame(j,2))/2.0)**3 *my2dd(i)*my2dd(j) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2 = fdd2 +factor2*xijfa*(Idd2(i,j) +eij/t*Idd4(i,j)) + fdd2z = fdd2z +factor2*xijfa*(Idd2z(i,j) +eij/t*Idd4z(i,j)) + fdd2z2 = fdd2z2+factor2*xijfa*(Idd2z2(i,j)+eij/t*Idd4z2(i,j)) + fdd2z3 = fdd2z3+factor2*xijfa*(Idd2z3(i,j)+eij/t*Idd4z3(i,j)) + fdd2z4 = fdd2z4+factor2*xijfa*(Idd2z4(i,j)+eij/t*Idd4z4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa= x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) & + *my2dd(i)*my2dd(j)*my2dd(k) + fdd3 = fdd3 + factor3 * xijkfa*Idd3(i,j,k) + fdd3z = fdd3z + factor3 * xijkfa*Idd3z(i,j,k) + fdd3z2 = fdd3z2 + factor3 * xijkfa*Idd3z2(i,j,k) + fdd3z3 = fdd3z3 + factor3 * xijkfa*Idd3z3(i,j,k) + fdd3z4 = fdd3z4 + factor3 * xijkfa*Idd3z4(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0 .AND. fdd2z /= 0.0 .AND. fdd3z /= 0.0) THEN + + fdddr= fdd2* (fdd2*fdd2z - 2.0*fdd3*fdd2z+fdd2*fdd3z) / (fdd2-fdd3)**2 + fddd2=(2.0*fdd2*fdd2z*fdd2z +fdd2*fdd2*fdd2z2 & + -2.0*fdd2z**2 *fdd3-2.0*fdd2*fdd2z2*fdd3+fdd2*fdd2*fdd3z2) & + /(fdd2-fdd3)**2 + fdddr * 2.0*(fdd3z-fdd2z)/(fdd2-fdd3) + fddd3=(2.0*fdd2z**3 +6.0*fdd2*fdd2z*fdd2z2+fdd2*fdd2*fdd2z3 & + -6.0*fdd2z*fdd2z2*fdd3-2.0*fdd2z**2 *fdd3z & + -2.0*fdd2*fdd2z3*fdd3 -2.0*fdd2*fdd2z2*fdd3z & + +2.0*fdd2*fdd2z*fdd3z2+fdd2*fdd2*fdd3z3) /(fdd2-fdd3)**2 & + + 2.0/(fdd2-fdd3)* ( 2.0*fddd2*(fdd3z-fdd2z) & + + fdddr*(fdd3z2-fdd2z2) & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)**2 ) + fddd4=( 12.0*fdd2z**2 *fdd2z2+6.0*fdd2*fdd2z2**2 & + +8.0*fdd2*fdd2z*fdd2z3+fdd2*fdd2*fdd2z4-6.0*fdd2z2**2 *fdd3 & + -12.0*fdd2z*fdd2z2*fdd3z -8.0*fdd2z*fdd2z3*fdd3 & + -2.0*fdd2*fdd2z4*fdd3-4.0*fdd2*fdd2z3*fdd3z & + +4.0*fdd2*fdd2z*fdd3z3+fdd2**2 *fdd3z4 ) /(fdd2-fdd3)**2 & + + 6.0/(fdd2-fdd3)* ( fddd3*(fdd3z-fdd2z) & + -fddd2/(fdd2-fdd3)*(fdd3z-fdd2z)**2 & + - fdddr/(fdd2-fdd3)*(fdd3z-fdd2z)*(fdd3z2-fdd2z2) & + + fddd2*(fdd3z2-fdd2z2) +1.0/3.0*fdddr*(fdd3z3-fdd2z3) ) + zdd = fdddr*eta + zddz = fddd2*eta + fdddr + zddz2 = fddd3*eta + 2.0* fddd2 + zddz3 = fddd4*eta + 3.0* fddd3 + + END IF + + +END SUBROUTINE P_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_QQ_GROSS( zqq, zqqz, zqqz2, zqqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zqq, zqqz, zqqz2, zqqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fqqdr, fqqd2, fqqd3, fqqd4 + REAL :: fqq2, fqq2z, fqq2z2, fqq2z3, fqq2z4 + REAL :: fqq3, fqq3z, fqq3z2, fqq3z3, fqq3z4 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq2z, Iqq2z2, Iqq2z3, Iqq2z4 + REAL, DIMENSION(nc,nc) :: Iqq4, Iqq4z, Iqq4z2, Iqq4z3, Iqq4z4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3, Iqq3z, Iqq3z2, Iqq3z3, Iqq3z4 +! ---------------------------------------------------------------------- + + zqq = 0.0 + zqqz = 0.0 + zqqz2 = 0.0 + zqqz3 = 0.0 + z3 = eta + DO i=1,ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + Iqq2z(i,j) = 0.0 + Iqq4z(i,j) = 0.0 + Iqq2z2(i,j) = 0.0 + Iqq4z2(i,j) = 0.0 + Iqq2z3(i,j) = 0.0 + Iqq4z3(i,j) = 0.0 + Iqq2z4(i,j) = 0.0 + Iqq4z4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) =Iqq2(i,j) + qqp2(i,j,m)*z3**(m+1) + Iqq4(i,j) =Iqq4(i,j) + qqp4(i,j,m)*z3**(m+1) + Iqq2z(i,j) =Iqq2z(i,j) +qqp2(i,j,m)*REAL(m+1)*z3**m + Iqq4z(i,j) =Iqq4z(i,j) +qqp4(i,j,m)*REAL(m+1)*z3**m + Iqq2z2(i,j)=Iqq2z2(i,j)+qqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq4z2(i,j)=Iqq4z2(i,j)+qqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Iqq2z3(i,j)=Iqq2z3(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq4z3(i,j)=Iqq4z3(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Iqq2z4(i,j)=Iqq2z4(i,j)+qqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Iqq4z4(i,j)=Iqq4z4(i,j)+qqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k=1,ncomp + Iqq3(i,j,k) = 0.0 + Iqq3z(i,j,k) = 0.0 + Iqq3z2(i,j,k) = 0.0 + Iqq3z3(i,j,k) = 0.0 + Iqq3z4(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m=0,4 + Iqq3(i,j,k) =Iqq3(i,j,k) + qqp3(i,j,k,m)*z3**(m+2) + Iqq3z(i,j,k)=Iqq3z(i,j,k)+qqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Iqq3z2(i,j,k)=Iqq3z2(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Iqq3z3(i,j,k)=Iqq3z3(i,j,k)+qqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Iqq3z4(i,j,k)=Iqq3z4(i,j,k)+qqp3(i,j,k,m) *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/16.0*PI *rho/z3 + factor3= 9.0/16.0*PI**2 * (rho/z3)**2 + + fqq2 = 0.0 + fqq2z = 0.0 + fqq2z2 = 0.0 + fqq2z3 = 0.0 + fqq2z4 = 0.0 + fqq3 = 0.0 + fqq3z = 0.0 + fqq3z2 = 0.0 + fqq3z3 = 0.0 + fqq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa =x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2*xijfa*(Iqq2(i,j) +eij/t*Iqq4(i,j) ) + fqq2z =fqq2z +factor2*xijfa*(Iqq2z(i,j) +eij/t*Iqq4z(i,j) ) + fqq2z2=fqq2z2+factor2*xijfa*(Iqq2z2(i,j)+eij/t*Iqq4z2(i,j)) + fqq2z3=fqq2z3+factor2*xijfa*(Iqq2z3(i,j)+eij/t*Iqq4z3(i,j)) + fqq2z4=fqq2z4+factor2*xijfa*(Iqq2z4(i,j)+eij/t*Iqq4z4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa*Iqq3(i,j,k) + fqq3z = fqq3z + factor3 * xijkfa*Iqq3z(i,j,k) + fqq3z2 = fqq3z2 + factor3 * xijkfa*Iqq3z2(i,j,k) + fqq3z3 = fqq3z3 + factor3 * xijkfa*Iqq3z3(i,j,k) + fqq3z4 = fqq3z4 + factor3 * xijkfa*Iqq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fqq2 < -1.E-50 .AND. fqq3 /= 0.0 .AND. fqq2z /= 0.0 .AND. fqq3z /= 0.0) THEN + fqqdr = fqq2* (fqq2*fqq2z - 2.0*fqq3*fqq2z+fqq2*fqq3z) /(fqq2-fqq3)**2 + fqqd2= (2.0*fqq2*fqq2z*fqq2z +fqq2*fqq2*fqq2z2 & + -2.0*fqq2z**2 *fqq3-2.0*fqq2*fqq2z2*fqq3+fqq2*fqq2*fqq3z2) & + /(fqq2-fqq3)**2 + fqqdr * 2.0*(fqq3z-fqq2z)/(fqq2-fqq3) + fqqd3=(2.0*fqq2z**3 +6.0*fqq2*fqq2z*fqq2z2+fqq2*fqq2*fqq2z3 & + -6.0*fqq2z*fqq2z2*fqq3-2.0*fqq2z**2 *fqq3z & + -2.0*fqq2*fqq2z3*fqq3 -2.0*fqq2*fqq2z2*fqq3z & + +2.0*fqq2*fqq2z*fqq3z2+fqq2*fqq2*fqq3z3) /(fqq2-fqq3)**2 & + + 2.0/(fqq2-fqq3)* ( 2.0*fqqd2*(fqq3z-fqq2z) & + + fqqdr*(fqq3z2-fqq2z2) - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)**2 ) + fqqd4=( 12.0*fqq2z**2 *fqq2z2+6.0*fqq2*fqq2z2**2 & + +8.0*fqq2*fqq2z*fqq2z3+fqq2*fqq2*fqq2z4-6.0*fqq2z2**2 *fqq3 & + -12.0*fqq2z*fqq2z2*fqq3z -8.0*fqq2z*fqq2z3*fqq3 & + -2.0*fqq2*fqq2z4*fqq3-4.0*fqq2*fqq2z3*fqq3z & + +4.0*fqq2*fqq2z*fqq3z3+fqq2**2 *fqq3z4 ) /(fqq2-fqq3)**2 & + + 6.0/(fqq2-fqq3)* ( fqqd3*(fqq3z-fqq2z) & + -fqqd2/(fqq2-fqq3)*(fqq3z-fqq2z)**2 & + - fqqdr/(fqq2-fqq3)*(fqq3z-fqq2z)*(fqq3z2-fqq2z2) & + + fqqd2*(fqq3z2-fqq2z2) +1.0/3.0*fqqdr*(fqq3z3-fqq2z3) ) + zqq = fqqdr*eta + zqqz = fqqd2*eta + fqqdr + zqqz2 = fqqd3*eta + 2.0* fqqd2 + zqqz3 = fqqd4*eta + 3.0* fqqd3 + END IF + + +END SUBROUTINE P_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE P_DQ_VRABEC_GROSS( zdq, zdqz, zdqz2, zdqz3 ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: zdq, zdqz, zdqz2, zdqz3 +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3, z3 + REAL :: xijfa, xijkfa, eij + REAL :: fdqdr, fdqd2, fdqd3, fdqd4 + REAL :: fdq2, fdq2z, fdq2z2, fdq2z3, fdq2z4 + REAL :: fdq3, fdq3z, fdq3z2, fdq3z3, fdq3z4 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq2z, Idq2z2, Idq2z3, Idq2z4 + REAL, DIMENSION(nc,nc) :: Idq4, Idq4z, Idq4z2, Idq4z3, Idq4z4 + REAL, DIMENSION(nc,nc,nc) :: Idq3, Idq3z, Idq3z2, Idq3z3, Idq3z4 +! ---------------------------------------------------------------------- + + zdq = 0.0 + zdqz = 0.0 + zdqz2 = 0.0 + zdqz3 = 0.0 + z3 = eta + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 / (uij(i,i)*KBOL*mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + Idq2z(i,j) = 0.0 + Idq4z(i,j) = 0.0 + Idq2z2(i,j) = 0.0 + Idq4z2(i,j) = 0.0 + Idq2z3(i,j) = 0.0 + Idq4z3(i,j) = 0.0 + Idq2z4(i,j) = 0.0 + Idq4z4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) =Idq2(i,j) + dqp2(i,j,m)*z3**(m+1) + Idq4(i,j) =Idq4(i,j) + dqp4(i,j,m)*z3**(m+1) + Idq2z(i,j) =Idq2z(i,j) +dqp2(i,j,m)*REAL(m+1)*z3**m + Idq4z(i,j) =Idq4z(i,j) +dqp4(i,j,m)*REAL(m+1)*z3**m + Idq2z2(i,j)=Idq2z2(i,j)+dqp2(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq4z2(i,j)=Idq4z2(i,j)+dqp4(i,j,m)*REAL((m+1)*m)*z3**(m-1) + Idq2z3(i,j)=Idq2z3(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq4z3(i,j)=Idq4z3(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)) *z3**(m-2) + Idq2z4(i,j)=Idq2z4(i,j)+dqp2(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + Idq4z4(i,j)=Idq4z4(i,j)+dqp4(i,j,m)*REAL((m+1)*m*(m-1)*(m-2)) *z3**(m-3) + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + Idq3z(i,j,k) = 0.0 + Idq3z2(i,j,k) = 0.0 + Idq3z3(i,j,k) = 0.0 + Idq3z4(i,j,k) = 0.0 + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) =Idq3(i,j,k) + dqp3(i,j,k,m)*z3**(m+2) + Idq3z(i,j,k)=Idq3z(i,j,k)+dqp3(i,j,k,m)*REAL(m+2)*z3**(m+1) + Idq3z2(i,j,k)=Idq3z2(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)) *z3**m + Idq3z3(i,j,k)=Idq3z3(i,j,k)+dqp3(i,j,k,m)*REAL((m+2)*(m+1)*m) *z3**(m-1) + Idq3z4(i,j,k)=Idq3z4(i,j,k)+dqp3(i,j,k,m) & + *REAL((m+2)*(m+1)*m*(m-1)) *z3**(m-2) + END DO + END IF + END DO + + END IF + END DO + END DO + + factor2= -9.0/4.0*PI *rho/z3 + factor3= PI**2 * (rho/z3)**2 + + fdq2 = 0.0 + fdq2z = 0.0 + fdq2z2 = 0.0 + fdq2z3 = 0.0 + fdq2z4 = 0.0 + fdq3 = 0.0 + fdq3z = 0.0 + fdq3z2 = 0.0 + fdq3z3 = 0.0 + fdq3z4 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa =x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2= fdq2 +factor2*xijfa*(Idq2(i,j) +eij/t*Idq4(i,j) ) + fdq2z =fdq2z +factor2*xijfa*(Idq2z(i,j) +eij/t*Idq4z(i,j) ) + fdq2z2=fdq2z2+factor2*xijfa*(Idq2z2(i,j)+eij/t*Idq4z2(i,j)) + fdq2z3=fdq2z3+factor2*xijfa*(Idq2z3(i,j)+eij/t*Idq4z3(i,j)) + fdq2z4=fdq2z4+factor2*xijfa*(Idq2z4(i,j)+eij/t*Idq4z4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0.OR.q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.193735 ) + fdq3 =fdq3 + factor3 * xijkfa*Idq3(i,j,k) + fdq3z =fdq3z + factor3 * xijkfa*Idq3z(i,j,k) + fdq3z2=fdq3z2 + factor3 * xijkfa*Idq3z2(i,j,k) + fdq3z3=fdq3z3 + factor3 * xijkfa*Idq3z3(i,j,k) + fdq3z4=fdq3z4 + factor3 * xijkfa*Idq3z4(i,j,k) + END IF + END DO + END IF + END DO + END DO + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0 .AND. fdq2z /= 0.0 .AND. fdq3z /= 0.0) THEN + fdqdr = fdq2* (fdq2*fdq2z - 2.0*fdq3*fdq2z+fdq2*fdq3z) /(fdq2-fdq3)**2 + fdqd2= (2.0*fdq2*fdq2z*fdq2z +fdq2*fdq2*fdq2z2 & + -2.0*fdq2z**2 *fdq3-2.0*fdq2*fdq2z2*fdq3+fdq2*fdq2*fdq3z2) & + /(fdq2-fdq3)**2 + fdqdr * 2.0*(fdq3z-fdq2z)/(fdq2-fdq3) + fdqd3=(2.0*fdq2z**3 +6.0*fdq2*fdq2z*fdq2z2+fdq2*fdq2*fdq2z3 & + -6.0*fdq2z*fdq2z2*fdq3-2.0*fdq2z**2 *fdq3z & + -2.0*fdq2*fdq2z3*fdq3 -2.0*fdq2*fdq2z2*fdq3z & + +2.0*fdq2*fdq2z*fdq3z2+fdq2*fdq2*fdq3z3) /(fdq2-fdq3)**2 & + + 2.0/(fdq2-fdq3)* ( 2.0*fdqd2*(fdq3z-fdq2z) & + + fdqdr*(fdq3z2-fdq2z2) - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)**2 ) + fdqd4=( 12.0*fdq2z**2 *fdq2z2+6.0*fdq2*fdq2z2**2 & + +8.0*fdq2*fdq2z*fdq2z3+fdq2*fdq2*fdq2z4-6.0*fdq2z2**2 *fdq3 & + -12.0*fdq2z*fdq2z2*fdq3z -8.0*fdq2z*fdq2z3*fdq3 & + -2.0*fdq2*fdq2z4*fdq3-4.0*fdq2*fdq2z3*fdq3z & + +4.0*fdq2*fdq2z*fdq3z3+fdq2**2 *fdq3z4 ) /(fdq2-fdq3)**2 & + + 6.0/(fdq2-fdq3)* ( fdqd3*(fdq3z-fdq2z) & + -fdqd2/(fdq2-fdq3)*(fdq3z-fdq2z)**2 & + - fdqdr/(fdq2-fdq3)*(fdq3z-fdq2z)*(fdq3z2-fdq2z2) & + + fdqd2*(fdq3z2-fdq2z2) +1.0/3.0*fdqdr*(fdq3z3-fdq2z3) ) + zdq = fdqdr*eta + zdqz = fdqd2*eta + fdqdr + zdqz2 = fdqd3*eta + 2.0* fdqd2 + zdqz3 = fdqd4*eta + 3.0* fdqd3 + END IF + + +END SUBROUTINE P_DQ_VRABEC_GROSS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_pert_theory ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, p, rho, eta, & + x, z0t, mseg, parame, order1, order2 + USE EOS_NUMERICAL_DERIVATIVES, ONLY: disp_term + USE DFT_MODULE + IMPLICIT NONE +! +!--------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +!--------------------------------------------------------------------- + REAL :: I1, I2 + REAL :: z3, zms, c1_con, m_mean +!--------------------------------------------------------------------- + + ! caution: positive sign of correlation integral is used here ! + ! (the Helmholtz energy terms are written with a negative sign, while I1 and I2 are positive) + + IF (disp_term == 'PT1') THEN + + CALL f_dft ( I1, I2) + c1_con = 0.0 + I2 = 0.0 + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + + ELSEIF (disp_term == 'PT2') THEN + + CALL f_dft ( I1, I2) + z3 = eta + zms = 1.0 - z3 + m_mean = z0t / ( PI / 6.0 ) + c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & + + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + ELSEIF (disp_term == 'PT_MIX') THEN + + CALL f_pert_theory_mix ( fdsp ) + + ELSEIF (disp_term == 'PT_MF') THEN + + ! mean field theory + I1 = - ( - 8.0/9.0 - 4.0/9.0*(rc**(-9) -3.0*rc**(-3) ) - tau_cut/3.0*(rc**3 -1.0) ) + fdsp = + ( - 2.0*PI*rho*I1*order1 ) + write (*,*) 'caution: not thoroughly checked and tested' + + ELSE + write (*,*) 'define the type of perturbation theory' + stop + END IF + + ! I1 = I1 + 4.0/9.0*(2.5**-9 -3.0*2.5**-3 ) + ! fdsp = + ( - 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + + END SUBROUTINE F_pert_theory + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_pert_theory_mix ( fdsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdsp +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1 + REAL :: int10, int11 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + + DO l = 1, ncomp + DO m = 1, ncomp + + rad = rc + + int10 = rc * rc * ua_c + ! intgrid(0)= int10 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int11 = rdf * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int11 + int10 ) / 2.0 + + int10 = int11 + ! intgrid(k)= int11 + + END DO + + ! stepno = k + ! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) + ! CALL SPLINE_INT (I1_spline,dzr,intgrid,utri,stepno) + + + ! caution: 1st order integral is in F_EOS.f defined with negative sign + ! --------------------------------------------------------------- + ! cut-off corrections + ! --------------------------------------------------------------- + ! I1(l,m) = I1(l,m) + ( 4.0/9.0 * rc**-9 - 4.0/3.0 * rc**-3 ) + ! I2(l,m) = I2(l,m) + 16.0/21.0 * rc**-21 - 32.0/15.0 * rc**-15 + 16.0/9.0 * rc**-9 + + END DO + END DO + + + fdsp = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + fdsp = fdsp + 2.0*PI*rho*x(l)*x(m)* mseg(l)*mseg(m)*sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! ( 2.0*PI*rho*I1*order1 - PI*rho*c1_con*m_mean*I2*order2 ) + END DO + END DO + + +!!$ IF (disp_term == 'PT1') THEN +!!$ c1_con = 0.0 +!!$ I2 = 0.0 +!!$ ELSEIF (disp_term == 'PT2') THEN +!!$ zms = 1.0 - z3 +!!$ c1_con = 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3**2 )/zms**4 & +!!$ + (1.0 - m_mean)*( 20.0*z3 -27.0*z3**2 +12.0*z3**3 -2.0*z3**4 ) & +!!$ /(zms*(2.0-z3))**2 ) +!!$ ELSE +!!$ write (*,*) 'define the type of perturbation theory' +!!$ stop +!!$ END IF + + +END SUBROUTINE f_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE mu_pert_theory_mix ( mu_dsp ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, parame, mseg, dhs, sig_ij, uij + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: mu_dsp(nc) +! +! ---------------------------------------------------------------------- + INTEGER :: k, ih + INTEGER :: l, m + REAL :: z3 + REAL :: ua, ua_c, rm + REAL, DIMENSION(nc,nc) :: I1, I2 + REAL :: int1_0, int1_1, int2_0, int2_1 + REAL :: d_ij, dzr_local + REAL :: rad, xg, rdf + REAL :: dg_dz3, dg_dr + REAL :: term1(nc), term2 + ! REAL :: intgrid(0:5000),intgri2(0:5000), utri(5000),I1_spline +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- + ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) + rm = 2.0**(1.0/6.0) + + I1(:,:) = 0.0 + I2(:,:) = 0.0 + + DO l = 1, ncomp + + term1(l) = 0.0 + + DO m = 1, ncomp + + rad = rc + + int1_0 = rc * rc * ua_c + int2_0 = 0.0 + + k = 0 + ih = 85 + + DO WHILE ( rad /= 1.0 ) + + dzr_local = dzr + IF ( rad - dzr_local <= 1.0 ) dzr_local = rad - 1.0 + + rad = rad - dzr_local + k = k + 1 + + d_ij = 0.5*(dhs(l)+dhs(m)) / sig_ij(l,m) ! dimensionless effective hs-diameter d(T)/sig + xg = rad / d_ij + z3 = eta + rdf = 1.0 + dg_dz3 = 0.0 + IF ( rad <= rg ) THEN + IF ( l == 1 .AND. m == 1 ) CALL BI_CUB_SPLINE (z3,xg,ya_11,x1a_11,x2a_11,y1a_11,y2a_11,y12a_11, & + c_bicub_11,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l /= m ) CALL BI_CUB_SPLINE (z3,xg,ya_12,x1a_12,x2a_12,y1a_12,y2a_12,y12a_12, & + c_bicub_12,rdf,dg_dz3,dg_dr,den_step,ih,k) + IF ( l == 2 .AND. m == 2 ) CALL BI_CUB_SPLINE (z3,xg,ya_22,x1a_22,x2a_22,y1a_22,y2a_22,y12a_22, & + c_bicub_22,rdf,dg_dz3,dg_dr,den_step,ih,k) + END IF + + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + + int1_1 = rdf * rad * rad * ua + int2_1 = dg_dz3 * rad * rad * ua + I1(l,m) = I1(l,m) + dzr_local * ( int1_1 + int1_0 ) / 2.0 + I2(l,m) = I2(l,m) + dzr_local * ( int2_1 + int2_0 ) / 2.0 + + int1_0 = int1_1 + int2_0 = int2_1 + + term1(l) = term1(l) +4.0*PI*rho*x(m)* mseg(l)*mseg(m) *sig_ij(l,m)**3 *uij(l,m)/t* dzr_local*(int1_1+int1_0)/2.0 + + END DO + + END DO + END DO + + + ! DO l = 1, ncomp + ! term1(l) = 0.0 + ! DO m = 1, ncomp + ! term1(l) = term1(l) + 4.0*PI*rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I1(l,m) + ! END DO + ! END DO + + term2 = 0.0 + DO l = 1, ncomp + DO m = 1, ncomp + term2 = term2 + 2.0*PI*rho*x(l) * rho*x(m)* mseg(l)*mseg(m) * sig_ij(l,m)**3 * uij(l,m)/t *I2(l,m) + END DO + END DO + + DO l = 1, ncomp + mu_dsp(l) = term1(l) + term2 * PI/ 6.0 * mseg(l)*dhs(l)**3 + END DO + +END SUBROUTINE mu_pert_theory_mix + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DD_GROSS_VRABEC( fdd ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: ddp2, ddp3, ddp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdd +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + INTEGER :: ddit, ddmax + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, xijf_j, xijkf_j, eij + REAL :: fdd2, fdd3 + REAL, DIMENSION(nc) :: my2dd, my0, alph_tst, z1dd, z2dd, dderror + REAL, DIMENSION(nc) :: fdd2m, fdd3m, fdd2m2, fdd3m2, fddm, fddm2 + REAL, DIMENSION(nc,nc) :: Idd2, Idd4 + REAL, DIMENSION(nc,nc,nc) :: Idd3 +! ---------------------------------------------------------------------- + + fdd = 0.0 + ddit = 0 + ddmax = 0 ! value assigned, if polarizable compound is present + fddm(:) = 0.0 + DO i = 1, ncomp + IF ( uij(i,i) == 0.0 ) write (*,*) 'F_DD_GROSS_VRABEC: do not use dimensionless units' + IF ( uij(i,i) == 0.0 ) stop + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + alph_tst(i) = parame(i,11) / (mseg(i)*sig_ij(i,i)**3 ) * t/parame(i,3) + IF ( alph_Tst(i) /= 0.0 ) ddmax = 25 ! set maximum number of polarizable RGT-iterations + z1dd(i) = my2dd(i) + 3.0*alph_tst(i) + z2dd(i) = 3.0*alph_tst(i) + my0(i) = my2dd(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idd2(i,j) = 0.0 + Idd4(i,j) = 0.0 + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + DO m = 0, 4 + Idd2(i,j) = Idd2(i,j) + ddp2(i,j,m)*eta**m + Idd4(i,j) = Idd4(i,j) + ddp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idd3(i,j,k) = 0.0 + ! IF (parame(k,6).NE.0.0) THEN + DO m = 0, 4 + Idd3(i,j,k) = Idd3(i,j,k) + ddp3(i,j,k,m)*eta**m + END DO + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + factor2 = -PI *rho + factor3 = -4.0/3.0*PI**2 * rho**2 + +9 CONTINUE + + fdd2m(:) = 0.0 + fdd2m2(:) = 0.0 + fdd3m(:) = 0.0 + fdd3m2(:) = 0.0 + fdd2 = 0.0 + fdd3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + ! IF (parame(i,6).NE.0.0 .AND. parame(j,6).NE.0.0) THEN + xijfa =x(i)*parame(i,3)/t*parame(i,2)**3 * x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 * (z1dd(i)*z1dd(j)-z2dd(i)*z2dd(j)) ! * (1.0-lij(i,j)) + eij = (parame(i,3)*parame(j,3))**0.5 + fdd2= fdd2 + factor2 * xijfa * ( Idd2(i,j) + eij/t*Idd4(i,j) ) + xijf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + /((parame(i,2)+parame(j,2))/2.0)**3 ! * (1.0-lij(i,j)) + fdd2m(i)=fdd2m(i)+4.0*SQRT(my2dd(i))*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + fdd2m2(i)=fdd2m2(i) + 4.0*z1dd(j)*factor2* xijf_j *(Idd2(i,j)+eij/t*Idd4(i,j)) + IF (j == i) fdd2m2(i) =fdd2m2(i) +8.0*factor2* xijf_j*my2dd(i) *(Idd2(i,j)+eij/t*Idd4(i,j)) + DO k = 1, ncomp + ! IF (parame(k,6).NE.0.0) THEN + xijkfa = x(i)*parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 / ((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) / ((parame(j,2)+parame(k,2))/2.0) & + *(z1dd(i)*z1dd(j)*z1dd(k)-z2dd(i)*z2dd(j)*z2dd(k)) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3 = fdd3 + factor3 * xijkfa * Idd3(i,j,k) + xijkf_j = parame(i,3)/t*parame(i,2)**3 *x(j)*parame(j,3)/t*parame(j,2)**3 & + *x(k)*parame(k,3)/t*parame(k,2)**3 /((parame(i,2)+parame(j,2))/2.0) & + /((parame(i,2)+parame(k,2))/2.0) /((parame(j,2)+parame(k,2))/2.0) + ! *(1.0-lij(i,j))*(1.0-lij(i,k))*(1.0-lij(j,k)) + fdd3m(i)=fdd3m(i)+6.0*factor3*SQRT(my2dd(i))*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + fdd3m2(i)=fdd3m2(i)+6.0*factor3*z1dd(j)*z1dd(k) *xijkf_j*Idd3(i,j,k) + IF(j == i) fdd3m2(i) =fdd3m2(i)+24.0*factor3*my2dd(i)*z1dd(k) *xijkf_j*Idd3(i,j,k) + ! ENDIF + END DO + ! ENDIF + END DO + END DO + + IF (fdd2 < -1.E-50 .AND. fdd3 /= 0.0) THEN + fdd = fdd2 / ( 1.0 - fdd3/fdd2 ) + IF ( ddmax /= 0 ) THEN + DO i = 1, ncomp + ddit = ddit + 1 + fddm(i) =fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i)+fdd2*fdd3m(i)) /(fdd2-fdd3)**2 + fddm2(i) = fdd2m(i) * (fdd2*fdd2m(i)-2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) / (fdd2-fdd3)**2 & + + fdd2*(fdd2*fdd2m2(i) -2.0*fdd3*fdd2m2(i)+fdd2m(i)**2 & + -fdd2m(i)*fdd3m(i) +fdd2*fdd3m2(i)) / (fdd2-fdd3)**2 & + - 2.0*fdd2*(fdd2*fdd2m(i) -2.0*fdd3*fdd2m(i) +fdd2*fdd3m(i)) /(fdd2-fdd3)**3 & + *(fdd2m(i)-fdd3m(i)) + dderror(i)= SQRT( my2dd(i) ) - SQRT( my0(i) ) + alph_Tst(i)*fddm(i) + my2dd(i) = ( SQRT( my2dd(i) ) - dderror(i) / (1.0+alph_Tst(i)*fddm2(i)) )**2 + z1dd(i) = my2dd(i) + 3.0 * alph_Tst(i) + ENDDO + DO i = 1, ncomp + IF (ABS(dderror(i)) > 1.E-11 .AND. ddit < ddmax) GOTO 9 + ENDDO + fdd = fdd + SUM( 0.5*x(1:ncomp)*alph_Tst(1:ncomp)*fddm(1:ncomp)**2 ) + ENDIF + END IF + + +END SUBROUTINE F_DD_GROSS_VRABEC + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_QQ_GROSS( fqq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: qqp2, qqp3, qqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fqq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fqq2, fqq3 + REAL, DIMENSION(nc) :: qq2 + REAL, DIMENSION(nc,nc) :: Iqq2, Iqq4 + REAL, DIMENSION(nc,nc,nc) :: Iqq3 +! ---------------------------------------------------------------------- + + + fqq = 0.0 + DO i = 1, ncomp + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Iqq2(i,j) = 0.0 + Iqq4(i,j) = 0.0 + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + DO m = 0, 4 + Iqq2(i,j) = Iqq2(i,j) + qqp2(i,j,m)*eta**m + Iqq4(i,j) = Iqq4(i,j) + qqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Iqq3(i,j,k) = 0.0 + IF (parame(k,7) /= 0.0) THEN + DO m = 0, 4 + Iqq3(i,j,k) = Iqq3(i,j,k) + qqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/16.0*PI *rho + factor3 = 9.0/16.0*PI**2 * rho**2 + + fqq2 = 0.0 + fqq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + xijfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,j)**7.0 + eij = (parame(i,3)*parame(j,3))**0.5 + fqq2= fqq2 +factor2* xijfa * (Iqq2(i,j)+eij/t*Iqq4(i,j)) + DO k = 1, ncomp + IF (parame(k,7) /= 0.0) THEN + xijkfa=x(i)*uij(i,i)*qq2(i)*sig_ij(i,i)**5 /t/sig_ij(i,j)**3 & + *x(j)*uij(j,j)*qq2(j)*sig_ij(j,j)**5 /t/sig_ij(i,k)**3 & + *x(k)*uij(k,k)*qq2(k)*sig_ij(k,k)**5 /t/sig_ij(j,k)**3 + fqq3 = fqq3 + factor3 * xijkfa * Iqq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF ( fqq2 < -1.E-50 .AND. fqq3 /= 0.0 ) THEN + fqq = fqq2 / ( 1.0 - fqq3/fqq2 ) + END IF + + + +END SUBROUTINE F_QQ_GROSS + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE F_DQ_VRABEC_GROSS( fdq ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE EOS_VARIABLES, ONLY: nc, ncomp, uij, parame, mseg, sig_ij, rho, eta, x, t + USE EOS_CONSTANTS, ONLY: dqp2, dqp3, dqp4 + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: fdq +! ---------------------------------------------------------------------- + INTEGER :: i, j, k, m + REAL :: factor2, factor3 + REAL :: xijfa, xijkfa, eij + REAL :: fdq2, fdq3 + REAL, DIMENSION(nc) :: my2dd, myfac, qq2, q_fac + REAL, DIMENSION(nc,nc) :: Idq2, Idq4 + REAL, DIMENSION(nc,nc,nc) :: Idq3 +! ---------------------------------------------------------------------- + + + fdq = 0.0 + DO i = 1, ncomp + my2dd(i) = (parame(i,6))**2 *1.E-49 /(uij(i,i)*kbol* mseg(i)*sig_ij(i,i)**3 *1.E-30) + myfac(i) = parame(i,3)/t*parame(i,2)**4 *my2dd(i) + ! myfac(i)=parame(i,3)/T*parame(i,2)**4 *my2dd_renormalized(i) + qq2(i) = (parame(i,7))**2 *1.E-69 / (uij(i,i)*kbol*mseg(i)*sig_ij(i,i)**5 *1.E-50) + q_fac(i) = parame(i,3)/t*parame(i,2)**4 *qq2(i) + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + Idq2(i,j) = 0.0 + Idq4(i,j) = 0.0 + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + DO m = 0, 4 + Idq2(i,j) = Idq2(i,j) + dqp2(i,j,m)*eta**m + Idq4(i,j) = Idq4(i,j) + dqp4(i,j,m)*eta**m + END DO + DO k = 1, ncomp + Idq3(i,j,k) = 0.0 + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + DO m = 0, 4 + Idq3(i,j,k) = Idq3(i,j,k) + dqp3(i,j,k,m)*eta**m + END DO + END IF + END DO + END IF + END DO + END DO + + factor2 = -9.0/4.0 * PI *rho + factor3 = PI**2 * rho**2 + + fdq2 = 0.0 + fdq3 = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + IF (myfac(i) /= 0.0 .AND. q_fac(j) /= 0.0) THEN + xijfa = x(i)*myfac(i) * x(j)*q_fac(j) /sig_ij(i,j)**5 + eij = (parame(i,3)*parame(j,3))**0.5 + fdq2 = fdq2 +factor2* xijfa*(Idq2(i,j)+eij/t*Idq4(i,j)) + DO k = 1, ncomp + IF (myfac(k) /= 0.0 .OR. q_fac(k) /= 0.0) THEN + xijkfa=x(i)*x(j)*x(k)/(sig_ij(i,j)*sig_ij(i,k)*sig_ij(j,k))**2 & + *( myfac(i)*q_fac(j)*myfac(k) + myfac(i)*q_fac(j)*q_fac(k)*1.1937350 ) + fdq3 = fdq3 + factor3*xijkfa*Idq3(i,j,k) + END IF + END DO + END IF + END DO + END DO + + IF (fdq2 < -1.E-50 .AND. fdq3 /= 0.0) THEN + fdq = fdq2 / ( 1.0 - fdq3/fdq2 ) + END IF + +END SUBROUTINE F_DQ_VRABEC_GROSS + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE f_dft ( I1_dft, I2_dft ) +! + USE EOS_VARIABLES, ONLY: nc, PI, ncomp, t, rho, eta, x, mseg, parame + USE DFT_MODULE + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: I1_dft + REAL, INTENT(OUT) :: I2_dft +! +! ---------------------------------------------------------------------- + INTEGER :: k,ih + ! REAL :: z3 + REAL :: ua, ua_c, ua_2, ua_c_2, rm + REAL :: int10, int11, int20, int21 + REAL :: dg_drho + REAL :: rad, xg, rdf, rho_st, msegm + REAL :: sig_ij + REAL :: dg_dr, dzr_org !,rdf_d + ! REAL :: intgrid(0:NDFT),intgri2(0:NDFT) +! ---------------------------------------------------------------------- + +! -----constants-------------------------------------------------------- +msegm = parame(1,1) +rho_st = rho * parame(1,2)**3 + +ua_c = 4.0 * ( rc**(-12) - rc**(-6) ) +ua_c_2 = ua_c * ua_c +rm = 2.0**(1.0/6.0) + +int10 = rc*rc* ua_c +int20 = rc*rc* ua_c_2 +! intgrid(0)= int10 +! intgri2(0)= int20 + + +sig_ij = parame(1,2) + + +I1_dft = 0.0 +I2_dft = 0.0 +rad = rc +!dzr = dzp / 2.0 ! this line is obsolete. dzr is defined in DFT-nMF2 (dimensionless) +dzr_org= dzr +k = 0 +ih = 85 + +DO WHILE ( rad-dzr+1.E-9 >= 1.0 ) + + rad = rad - dzr + ! IF (rad <= 8.0) dzr = dzp + ! IF (rad <= rg) dzr = dzp/2.0 + k = k + 1 + xg = rad / dhs_st + ua = 4.0 * ( rad**(-12) - rad**(-6) ) + ua_2 = ua * ua + rdf = 1.0 + dg_drho = 0.0 + IF ( rad <= rg ) THEN + CALL BI_CUB_SPLINE (rho_st,xg,ya,x1a,x2a,y1a,y2a,y12a, & + c_bicub,rdf,dg_drho,dg_dr,den_step,ih,k) + END IF + + int11 = rdf*rad*rad* ua + int21 = rdf*rad*rad* ua_2 + I1_dft= I1_dft + dzr*(int11+int10)/2.0 + I2_dft= I2_dft + dzr*(int21+int20)/2.0 + int10 = int11 + int20 = int21 + +END DO + +dzr = dzr_org + +! stepno = k +! CALL SPLINE_PARA (dzr,intgrid,utri,stepno) +! CALL SPLINE_INT (I1,dzr,intgrid,utri,stepno) + +! caution: 1st order integral is in F_EOS.f defined with negative sign +I1_dft= - I1_dft - ( 4.0/9.0 * rc**(-9) - 4.0/3.0 * rc**(-3) ) + +! CALL SPLINE_PARA (dzr,intgri2,utri,stepno) +! CALL SPLINE_INT (I2,dzr,intgri2,utri,stepno) + +I2_dft = I2_dft + 16.0/21.0 * rc**(-21) - 32.0/15.0 * rc**(-15) + 16.0/9.0 * rc**(-9) + + +END SUBROUTINE f_dft + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION TANGENT_VALUE2 ( optpara, n ) +! SUBROUTINE TANGENT_VALUE ( fmin, optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN) :: optpara(n) + !REAL, INTENT(IN) :: optpara(:) + !REAL, INTENT(IN OUT) :: fmin +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: lnphi(np,nc),ph_frac, gibbs_full(np),xlnx1,xlnx2 + REAL, DIMENSION(nc) :: ni_1, ni_2 +! ---------------------------------------------------------------------- + + + ! --- setting of mole fractions --------------------------------------- + DO i = 1, ncomp + IF ( optpara(i) < -300.0 ) THEN + ni_2(i) = 0.0 + ELSE + ni_2(i) = EXP( optpara(i) ) + END IF + END DO + + DO i = 1, ncomp + ni_1(i) = xif(i) - ni_2(i) + IF ( ni_2(i) > xif(i) ) THEN + ni_2(i) = xif(i) + ni_1(i) = xif(i) * 1.E-20 + ENDIF + END DO + + xi(2,1:ncomp) = ni_2(1:ncomp) / SUM( ni_2(1:ncomp) ) + lnx(2,1:ncomp) = optpara(1:ncomp) - LOG( SUM( ni_2(1:ncomp) ) ) + + ph_frac = SUM( ni_1(1:ncomp) ) + xi(1,1:ncomp) = ni_1(1:ncomp) / ph_frac + lnx(1,1:ncomp) = LOG( ni_1(1:ncomp) ) - LOG( ph_frac ) + ! write (*,'(a,4G18.8)') 'FF',(xif(i),i=1,ncomp) + ! write (*,'(a,4G18.8)') 'AA',(xi(1,i),i=1,ncomp) + ! write (*,'(a,3G18.8)') 'BB',(xi(2,i),i=1,ncomp) + + CALL fugacity (lnphi) + !CALL enthalpy_etc + + gibbs(1) = SUM( xi(1,1:ncomp) * lnphi(1,1:ncomp) ) ! dimensionless g/RT + gibbs(2) = SUM( xi(2,1:ncomp) * lnphi(2,1:ncomp) ) + + xlnx1 = SUM( xi(1,1:ncomp)*lnx(1,1:ncomp) ) ! dimensionless s/RT + xlnx2 = SUM( xi(2,1:ncomp)*lnx(2,1:ncomp) ) + + gibbs_full(1) = gibbs(1) + xlnx1 + gibbs_full(2) = gibbs(2) + xlnx2 + + TANGENT_VALUE2 = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !fmin = gibbs_full(1)*ph_frac + gibbs_full(2)*(1.0-ph_frac) + !write (*,'(a,4G18.8)') 'TP',TANGENT_VALUE2,(lnx(1,i),i=1,ncomp) + !write (*,'(a,4G18.8)') 'al',ph_frac,(lnx(2,i), i=1,ncomp) + !write (*,*) ' ' + !pause + +END FUNCTION TANGENT_VALUE2 + + + + + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/crit_point_mixtures.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/crit_point_mixtures.F90 new file mode 100644 index 000000000..3c5dd8218 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/crit_point_mixtures.F90 @@ -0,0 +1,474 @@ +!>This file contains the subroutines which determine the critical point of +!!a mixture. + + +SUBROUTINE CRIT_POINT_MIX(tc,user) + +!PETSc module +USE PetscManagement + +!VLE and DFT modules +USE BASIC_VARIABLES + +IMPLICIT NONE + +#include + +type (userctx) user +REAL :: tc +!local +REAL :: tc_L, tc_V, xi_save(np,nc),p_save +PetscErrorCode ierr + + +!!J:save value of pressure because it is changed during the calculation +p_save = p + +! --------------------------------------------------------------------- + ! determine the critical temp. to xi of liquid and to xi of vapor + ! --------------------------------------------------------------------- + + + xi_save(:,:) = xi(:,:) + dense(1) = 0.15 + + !call MPI_Barrier(PETSC_COMM_WORLD,ierr) + + !only proc 0 reads in the estimate and then sends it to all other procs using MPI_Bcast +! IF(user%rank == 0) THEN +! WRITE (*,*) 'provide an estimate of the crit. Temp. of the mixture' +! READ (*,*) t +! END IF + + t = 1.2 * t !initial estimate of critical temperature + + CALL MPI_Bcast(t,1,MPI_DOUBLE_PRECISION,0,PETSC_COMM_WORLD,ierr) + + xiF(1:ncomp) = xi_save(1,1:ncomp) + CALL Heidemann_Khalil + tc_L = t +! IF(user%rank == 0) THEN +! WRITE (*,*) 'critical temperature to xi_liquid',tc_L +! END IF + + xiF(1:ncomp) = xi_save(2,1:ncomp) + ! dense(1) = 0.15 + ! WRITE (*,*) 'provide an estimate of the crit. Temp. of the mixture' + ! READ (*,*) t + CALL Heidemann_Khalil + tc_V = t +! IF(user%rank == 0) THEN +! WRITE (*,*) 'critical temperature to xi_vapor ',tc_V +! END IF + + ! tc_L = 600.0 + ! WRITE (*,*) 'I have tentitativly set tc=700 ' + ! pause + + + !tc = ( tc_L + tc_V ) / 2.0 + tc = tc_L + xi(:,:) = xi_save(:,:) + densta(1:nphas) = val_conv(1:nphas) + dense(1:nphas) = val_conv(1:nphas) + t = val_conv(3) + IF(user%rank == 0) THEN + WRITE (*,*) 'estimate of critical temperature:',tc,'K' + WRITE (*,*) ' ' + END IF + +!!J: set pressure to its regular value +p = p_save + + +END SUBROUTINE CRIT_POINT_MIX + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE Heidemann_Khalil +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE Heidemann_Khalil_obj ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE Heidemann_Khalil_obj + END INTERFACE +! + INTEGER :: info + REAL, ALLOCATABLE :: y(:),diag(:),residu(:) + + INTEGER :: i, count, nphas_save + REAL :: error0, error1, dense0, dfdx, delta_rho + CHARACTER (LEN=2) :: ensemble_save +! ---------------------------------------------------------------------- + + ensemble_save = ensemble_flag + ensemble_flag = 'tv' + + nphas_save = nphas + nphas = 1 + + ! xiF(2) = 0.5 * ( 0.71928411 + 0.72025642 ) + ! xiF(1) = 1.0 - xiF(2) + ! dense(1) = 0.5 * ( 0.159315 + 0.158817 ) + 0.02 + ! t = 500.0 + + dense0 = dense(1) + + info = 1 + n_unkw = ncomp + 1 + acc_a = 5.E-8 + step_a = 1.E-8 + + + ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + DO i = 1,ncomp + y(i) = 1.0 / SQRT( REAL( ncomp ) ) + END DO + y(ncomp+1) = t + count = 0 + error0 = 1.0 + + DO WHILE ( ABS( error0) > 0.001 .AND. count < 20 ) + count = count + 1 + + dense(1) = dense0 + 0.0001 + CALL hbrd (Heidemann_Khalil_obj, n_unkw, y, residu, step_a, acc_a, info, diag) + error1 = error_condition2 + IF (SUM( ABS( residu(1:n_unkw) ) ) > 1.E-5) write (*,*) 'caution: error 1st inner loop', SUM( ABS( residu(1:n_unkw) ) ) + + dense(1) = dense0 + CALL hbrd (Heidemann_Khalil_obj, n_unkw, y, residu, step_a, acc_a, info, diag) + IF (SUM( ABS( residu(1:n_unkw) ) ) > 1.E-5) write (*,*) 'caution: error 2nd inner loop', SUM( ABS( residu(1:n_unkw) ) ) + error0 = error_condition2 + + ! write (*,'(a,4G18.10)') ' t, p, eta error', t, p, dense(1), error0 + ! pause + dfdx = ( error1 - error0 ) / 0.0001 + delta_rho = MIN( error0 / dfdx, 0.02) + delta_rho = MAX( delta_rho, -0.02) + dense0 = dense0 - delta_rho + dense(1) = dense0 + + END DO + + !tc = t + !pc = p + + DEALLOCATE( y, diag, residu ) + + ensemble_flag = ensemble_save + nphas = nphas_save + IF ( ABS( error_condition2 ) > 1.E-1 ) write (*,*) 'caution: error outer loop', ABS( error_condition2 ) + +END SUBROUTINE Heidemann_Khalil + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE Heidemann_Khalil_obj ( iter_no, y, residu, dummy ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL, DIMENSION(nc) :: dn + REAL, DIMENSION(nc) :: dhs, rhoi00, rhoi0 + REAL :: rho, d_rho + ! REAL :: lnphi(np,nc) + REAL :: qij(nc,nc), qij0(nc,nc), qijk(nc,nc,nc) + ! CHARACTER (LEN=3) :: char_len +! ---------------------------------------------------------------------- + + dn(1:ncomp) = y(1:ncomp) + t = y(ncomp+1) + !dense(1) = y(ncomp+2) + + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(1:ncomp,3)/t ) ) + rho = dense(1) / SUM( PI/6.0*xiF(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + rhoi00(1:ncomp) = xiF(1:ncomp)*rho + + d_rho = 0.000001 + + DO k = 1, ncomp + + rhoi0(1:ncomp) = rhoi00(1:ncomp) + rhoi0(k) = rhoi00(k) + d_rho + CALL qij_matrix ( rhoi0, dhs, d_rho, qij ) + qij0(:,:) = qij(:,:) + + rhoi0(1:ncomp) = rhoi00(1:ncomp) + CALL qij_matrix ( rhoi0, dhs, d_rho, qij ) + + DO i = 1, ncomp + DO j = 1, ncomp + qijk(i,j,k) = ( qij0(i,j) - qij(i,j) ) / d_rho + ! write(*,*) i,j,k,qijk(i,j,k) + END DO + END DO + + END DO + + ! write (*,'(a,4G18.10)') 'det',qij(2,2)*qij(1,1) - qij(2,1)*qij(1,2) + ! write (*,'(a,3G18.10)') ' t,p,eta ', t, p, dense(1) + DO j = 1, ncomp + residu(j) = SUM( qij(1:ncomp,j)*dn(1:ncomp) ) + END DO + residu(ncomp+1) = 1.0 - SUM( dn(1:ncomp)*dn(1:ncomp) ) + + error_condition2 = 0.0 + DO k = 1, ncomp + DO i = 1, ncomp + DO j = 1, ncomp + error_condition2 = error_condition2 + qijk(i,j,k) * dn(i) * dn(j) * dn(k) + END DO + END DO + END DO + error_condition2 = error_condition2 * 1.E-4 ! the values are scaled down to prevent numerical dominance of this error + !residu(ncomp+2) = error_condition2 + + !write (char_len,'(I3)') ncomp+2 + !write (*,'(a,'//char_len//'G18.10)') ' error',residu(1:ncomp+1) + !write (*,*) ' ' + !pause + +END SUBROUTINE Heidemann_Khalil_obj + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine calculates the spinodal for a binary mixture to given +! T, p and for a given starting value of the density vector rhoi +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE binary_tp_spinodal ( rhoi, p_sp ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + USE Solve_NonLin + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTERFACE + SUBROUTINE binary_spinodal_obj ( iter_no, y, residu, dummy ) + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy + END SUBROUTINE binary_spinodal_obj + END INTERFACE + + REAL, dimension(nc) :: rhoi + REAL :: p_sp +! ---------------------------------------------------------------------- + + INTEGER :: info + REAL, ALLOCATABLE :: y(:), diag(:), residu(:) + + INTEGER :: i, nphas_save + CHARACTER (LEN=2) :: ensemble_save +! ---------------------------------------------------------------------- + + ensemble_save = ensemble_flag + ensemble_flag = 'tv' + + nphas_save = nphas + nphas = 1 + + info = 1 + n_unkw = ncomp + 2 + acc_a = 5.E-8 + step_a = 1.E-8 + + + ALLOCATE( y(n_unkw), diag(n_unkw), residu(n_unkw) ) + DO i = 1, ncomp + y(i) = 1.0 / SQRT( REAL( ncomp ) ) + END DO + DO i = 1, ncomp + y( ncomp + i ) = rhoi( i ) + END DO + + CALL hbrd (binary_spinodal_obj, n_unkw, y, residu, step_a, acc_a, info, diag) + + DO i = 1, ncomp + rhoi( i ) = y( ncomp + i ) + END DO + write (*,*) 'info',info + write (*,*) 'rhoi',rhoi(1:ncomp) + !write (*,*) 'eta',PI / 6.0 * sum( rhoi(1:ncomp)*mseg(1:ncomp)*dhs(1:ncomp)**3 ) + write (*,*) 'x',rhoi(1:ncomp) / sum( rhoi(1:ncomp) ) + + DEALLOCATE( y, diag, residu ) + + ensemble_flag = ensemble_save + nphas = nphas_save + +END SUBROUTINE binary_tp_spinodal + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE binary_spinodal_obj ( iter_no, y, residu, dummy ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES + USE Module_Heidemann_Khalil + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: iter_no + REAL, INTENT(IN) :: y(iter_no) + REAL, INTENT(OUT) :: residu(iter_no) + INTEGER, INTENT(IN OUT) :: dummy +! +! ---------------------------------------------------------------------- + INTEGER :: j, k + REAL :: p_calculated, zges, p_sp + REAL :: d_rho + REAL, DIMENSION(nc) :: dn + REAL, DIMENSION(nc) :: dhs, rhoi + REAL, DIMENSION(nc,nc) :: qij +! ---------------------------------------------------------------------- + + dn(1:ncomp) = y(1:ncomp) + rhoi(1:ncomp) = y( (ncomp+1) : (ncomp+ncomp) ) + dhs(1:ncomp) = parame(1:ncomp,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(1:ncomp,3)/t ) ) ! is this calc. needed? + + call p_calc ( p_calculated, zges ) + + d_rho = 0.000001 + + DO k = 1, ncomp + + CALL qij_matrix ( rhoi, dhs, d_rho, qij ) + + END DO + + !write (*,'(a,4G18.10)') 'det',qij(2,2)*qij(1,1) - qij(2,1)*qij(1,2) + write (*,'(a,3G18.10)') ' t,p,eta ', t, p, dense(1) + DO j = 1, ncomp + residu(j) = SUM( qij(1:ncomp,j)*dn(1:ncomp) ) + END DO + residu(ncomp+1) = 1.0 - SUM( dn(1:ncomp)*dn(1:ncomp) ) + write (*,*) 'p_sp has to be handed over to the obj fct properly!' + write (*,*) 'Can I simply set p = p_sp? In other words is p altered during the calculation?' + stop + residu(ncomp+2) = p_sp - p_calculated + + write (*,'(a,4G18.10)') ' error',residu(1:4) + write (*,*) ' ' + pause + +END SUBROUTINE binary_spinodal_obj + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE Heidemann_Khalil +! +! This subroutine .... +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qij_matrix ( rhoi0, dhs, d_rho, qij ) +! + USE PARAMETERS, ONLY: PI, KBOL + USE BASIC_VARIABLES + USE EOS_VARIABLES, ONLY: pges + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, DIMENSION(nc), INTENT(IN) :: rhoi0 + REAL, DIMENSION(nc), INTENT(IN) :: dhs + REAL, INTENT(IN) :: d_rho + REAL, DIMENSION(nc,nc), INTENT(OUT) :: qij +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL, DIMENSION(nc) :: rhoi, lnf0, lnf1, lnf2 + REAL :: lnphi(np,nc), zges +! ---------------------------------------------------------------------- + + + DO i = 1, ncomp + rhoi(1:ncomp) = rhoi0(1:ncomp) + rhoi(i) = rhoi0(i) + d_rho + dense(1) = SUM( PI/6.0*rhoi(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + densta(1) = dense(1) + xi(1,1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + CALL FUGACITY ( lnphi ) + p = pges + zges = (pges * 1.d-30) / ( KBOL*t*SUM(rhoi(1:ncomp)) ) + lnf1(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + IF (rhoi0(i) - d_rho > 0.0 ) THEN + rhoi(1:ncomp) = rhoi0(1:ncomp) + rhoi(i) = rhoi0(i) - d_rho + dense(1) = SUM( PI/6.0*rhoi(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + densta(1) = dense(1) + xi(1,1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + CALL FUGACITY ( lnphi ) + p = pges + zges = (pges * 1.d-30) / ( KBOL*t*SUM(rhoi(1:ncomp)) ) + lnf2(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + END IF + + rhoi(1:ncomp) = rhoi0(1:ncomp) + dense(1) = SUM( PI/6.0*rhoi(1:ncomp)*parame(1:ncomp,1)* dhs(1:ncomp)**3 ) + densta(1) = dense(1) + xi(1,1:ncomp) = rhoi(1:ncomp) / SUM( rhoi(1:ncomp) ) + CALL FUGACITY ( lnphi ) + p = pges + zges = (pges * 1.d-30) / ( KBOL*t*SUM(rhoi(1:ncomp)) ) + lnf0(1:ncomp) = lnphi(1,1:ncomp) + LOG( rhoi(1:ncomp) ) + + IF (rhoi0(i) - d_rho > 0.0 ) THEN + qij(i,1:ncomp) = ( lnf1(1:ncomp) - lnf2(1:ncomp) ) / (2.0*d_rho) ! qij = d(F/V) / (d_rho_i*d_rho_j) + ELSE + qij(i,1:ncomp) = ( lnf1(1:ncomp) - lnf0(1:ncomp) ) / d_rho ! qij = d(F/V) / (d_rho_i*d_rho_j) + END IF + ! write (*,*) i,1,qij(i,1) + ! write (*,*) i,2,qij(i,2) + END DO + +END SUBROUTINE qij_matrix + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/fort.40 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/fort.40 new file mode 100644 index 000000000..b01fbd7fd --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/fort.40 @@ -0,0 +1 @@ + x1_ph1 x2_ph1 x3_ph1 x1_ph2 x2_ph2 x3_ph2 T P rho1 rho2 diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/getting_started_subroutines.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/getting_started_subroutines.F90 new file mode 100644 index 000000000..3de5d08dc --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/getting_started_subroutines.F90 @@ -0,0 +1,4126 @@ + +!>This file contains auxiliary subroutines. + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE eos_const +! +! This subroutine provides the constants of the PC-SAFT EOS. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE eos_const (ap,bp,dnm) +! + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ap(0:6,3) + REAL, INTENT(OUT) :: bp(0:6,3) + REAL, INTENT(OUT) :: dnm(4,9) +! ---------------------------------------------------------------------- + + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +! square-well fluid +! ap(1,1)= 0.79152347258784 +! ap(1,2)= -0.62269805320654 +! ap(1,3)= -0.06798823934067 +! ap(2,1)= 1.07120982251709 +! ap(2,2)= 0.48628215731716 +! ap(2,3)= 0.02837828512515 +! ap(3,1)= 0.92084839459226 +! ap(3,2)= 1.11652038059747 +! ap(3,3)= 0.09713202077943 +! ap(4,1)= -7.84708350369249 +! ap(4,2)= -2.04200599876547 +! ap(4,3)= 0.06475764015088 +! ap(5,1)= 25.90284137818050 +! ap(5,2)= 9.27791640100603 +! ap(5,3)= 0.07729792971827 +! ap(6,1)= -57.1528726997640 +! ap(6,2)= -16.8377999920957 +! ap(6,3)= 0.24883598436184 +! ap(7,1)= 42.02314637860930 +! ap(7,2)= 7.62432635016420 +! ap(7,3)= -0.72472024688888 + +! bp(1,1)= 0.79152347258784 +! bp(1,2)= -0.62269805320654 +! bp(1,3)= -0.06798823934067 +! bp(2,1)= 1.07120982251709 *2.0 +! bp(2,2)= 0.48628215731716 *2.0 +! bp(2,3)= 0.02837828512515 *2.0 +! bp(3,1)= 0.92084839459226 *3.0 +! bp(3,2)= 1.11652038059747 *3.0 +! bp(3,3)= 0.09713202077943 *3.0 +! bp(4,1)= -7.84708350369249 *4.0 +! bp(4,2)= -2.04200599876547 *4.0 +! bp(4,3)= 0.06475764015088 *4.0 +! bp(5,1)= 25.90284137818050 *5.0 +! bp(5,2)= 9.27791640100603 *5.0 +! bp(5,3)= 0.07729792971827 *5.0 +! bp(6,1)= -57.1528726997640 *6.0 +! bp(6,2)= -16.8377999920957 *6.0 +! bp(6,3)= 0.24883598436184 *6.0 +! bp(7,1)= 42.02314637860930 *7.0 +! bp(7,2)= 7.62432635016420 *7.0 +! bp(7,3)= -0.72472024688888 *7.0 + + +dnm(1,1) = -8.8043 +dnm(1,2) = +4.1646270 +dnm(1,3) = -48.203555 +dnm(1,4) = +140.43620 +dnm(1,5) = -195.23339 +dnm(1,6) = +113.51500 +dnm(2,1) = +2.9396 +dnm(2,2) = -6.0865383 +dnm(2,3) = +40.137956 +dnm(2,4) = -76.230797 +dnm(2,5) = -133.70055 +dnm(2,6) = +860.25349 +dnm(2,7) = -1535.3224 +dnm(2,8) = +1221.4261 +dnm(2,9) = -409.10539 +dnm(3,1) = -2.8225 +dnm(3,2) = +4.7600148 +dnm(3,3) = +11.257177 +dnm(3,4) = -66.382743 +dnm(3,5) = +69.248785 +dnm(4,1) = +0.3400 +dnm(4,2) = -3.1875014 +dnm(4,3) = +12.231796 +dnm(4,4) = -12.110681 + +END SUBROUTINE eos_const + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dq_const +! +! This subr. provides the constants of the dipole-quadrupole term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dq_const ( dqp2,dqp3,dqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: dqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: dqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: dqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mdq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i=1,ncomp + mdq(i) = parame(i,1) + IF (mdq(i) > 2.0) mdq(i) = 2.0 +END DO + + +DO i=1,ncomp + DO j=1,ncomp + + msegij=(mdq(i)*mdq(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + dqp2(i,j,0) = 0.697094963 + mf1*(-0.673459279) + mf2*0.670340770 + dqp2(i,j,1) = -0.633554144 + mf1*(-1.425899106) + mf2*(-4.338471826) + dqp2(i,j,2) = 2.945509028 + mf1 * 4.19441392 + mf2*7.234168360 + dqp2(i,j,3) = -1.467027314 + mf1 * 1.0266216 + dqp2(i,j,4) = 0.0 + + dqp4(i,j,0) = -0.484038322 + mf1 * 0.67651011 + mf2*(-1.167560146) + dqp4(i,j,1) = 1.970405465 + mf1*(-3.013867512) + mf2*2.13488432 + dqp4(i,j,2) = -2.118572671 + mf1 * 0.46742656 + dqp4(i,j,3) = 0.0 + dqp4(i,j,4) = 0.0 + + + DO k=1,ncomp + msegij=(mdq(i)*mdq(j)*mdq(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = (msegij-2.0)/msegij + dqp3(i,j,k,0) = 0.795009692 + mf1*(-2.099579397) + dqp3(i,j,k,1) = 3.386863396 + mf1*(-5.941376392) + dqp3(i,j,k,2) = 0.475106328 + mf1*(-0.178820384) + dqp3(i,j,k,3) = 0.0 + dqp3(i,j,k,4) = 0.0 + END DO + + END DO +END DO + +END SUBROUTINE dq_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dd_const +! +! This subroutine provides the constants of the dipole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dd_const ( ddp2,ddp3,ddp4 ) +! + USE PARAMETERS, ONLY: nc, PI + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: ddp2(nc,nc,0:8) + REAL, INTENT(OUT) :: ddp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: ddp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: pardd(nc) + REAL :: mf1,mf2,msegij,sin2t +! ---------------------------------------------------------------------- + +sin2t = SIN( 0.0 * PI / 180.0 ) +sin2t = sin2t*sin2t + +DO i = 1, ncomp + pardd(i) = parame(i,1) + IF (pardd(i) > 2.0) pardd(i) = 2.0 +END DO + +DO i=1,ncomp + DO j=1,ncomp +! IF (parame(i,6).NE.0.0.AND.parame(j,6).NE.0.0) THEN + + msegij=(pardd(i)*pardd(j))**0.5 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + ddp2(i,j,0) = 0.30435038064 + mf1*(0.95346405973+0.201436*sin2t) & + + mf2*(-1.16100802773-1.74114*sin2t) + ddp2(i,j,1) = -0.13585877707 + mf1*(-1.83963831920+1.31649*sin2t) & + + mf2*4.52586067320 + ddp2(i,j,2) = 1.44933285154 + mf1 * 2.01311801180 + mf2*0.97512223853 + ddp2(i,j,3) = 0.35569769252 + mf1*(-7.37249576667) + mf2*(-12.2810377713) + ddp2(i,j,4) = -2.06533084541 + mf1 * 8.23741345333 + mf2*5.93975747420 + + ddp4(i,j,0) = 0.21879385627 + mf1*(-0.58731641193) + mf2*3.48695755800 + ddp4(i,j,1) = -1.18964307357 + mf1 * 1.24891317047 + mf2*(-14.9159739347) + ddp4(i,j,2) = 1.16268885692 + mf1*(-0.50852797392) + mf2*15.3720218600 + ddp4(i,j,3) = 0.0 + ddp4(i,j,4) = 0.0 + + DO k=1,ncomp +! IF (parame(k,6).NE.0.0) THEN + msegij=(pardd(i)*pardd(j)*pardd(k))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + ddp3(i,j,k,0) = -0.06467735252 + mf1*(-0.95208758351+0.28503*sin2t) & + + mf2*(-0.62609792333+2.2195*sin2t) + ddp3(i,j,k,1) = 0.19758818347 + mf1 * 2.99242575222 + mf2*1.29246858189 + ddp3(i,j,k,2) = -0.80875619458 + mf1*(-2.38026356489) + mf2*1.65427830900 + ddp3(i,j,k,3) = 0.69028490492 + mf1*(-0.27012609786) + mf2*(-3.43967436378) + ddp3(i,j,k,4) = 0.0 + +! ENDIF + END DO + +! ENDIF + END DO +END DO + +END SUBROUTINE dd_const + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE qq_const +! +! This subroutine provides the constants of the quadrupole-term. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE qq_const ( qqp2,qqp3,qqp4 ) +! + USE PARAMETERS, ONLY: nc + USE EOS_VARIABLES, ONLY: ncomp, parame + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: qqp2(nc,nc,0:8) + REAL, INTENT(OUT) :: qqp3(nc,nc,nc,0:8) + REAL, INTENT(OUT) :: qqp4(nc,nc,0:8) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: mqq(nc) + REAL :: mf1, mf2, msegij +! ---------------------------------------------------------------------- + +DO i = 1,ncomp + mqq(i) = parame(i,1) + IF (mqq(i) > 2.0) mqq(i) = 2.0 +END DO + +DO i = 1,ncomp + DO j = 1,ncomp + IF (parame(i,7) /= 0.0 .AND. parame(j,7) /= 0.0) THEN + + msegij=(mqq(i)*mqq(j))**0.5 +! msegij=(parame(i,1)*parame(j,1))**0.50 + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + + qqp2(i,j,0) = 1.237830788 + mf1 * 1.285410878 + mf2*1.794295401 + qqp2(i,j,1) = 2.435503144 + mf1*(-11.46561451) + mf2*0.769510293 + qqp2(i,j,2) = 1.633090469 + mf1 *22.08689285 + mf2*7.264792255 + qqp2(i,j,3) = -1.611815241 + mf1 * 7.46913832 + mf2*94.48669892 + qqp2(i,j,4) = 6.977118504 + mf1*(-17.19777208) + mf2*(-77.1484579) + + qqp4(i,j,0) = 0.454271755 + mf1*(-0.813734006) + mf2*6.868267516 + qqp4(i,j,1) = -4.501626435 + mf1 * 10.06402986 + mf2*(-5.173223765) + qqp4(i,j,2) = 3.585886783 + mf1*(-10.87663092) + mf2*(-17.2402066) + qqp4(i,j,3) = 0.0 + qqp4(i,j,4) = 0.0 + + DO k = 1,ncomp + IF (parame(k,7) /= 0.0) THEN + msegij=(mqq(i)*mqq(j)*mqq(k))**(1.0/3.0) +! msegij=(parame(i,1)*parame(j,1)*parame(k,1))**(1.0/3.0) + mf1 = (msegij-1.0)/msegij + mf2 = mf1*(msegij-2.0)/msegij + qqp3(i,j,k,0) = -0.500043713 + mf1 * 2.000209381 + mf2*3.135827145 + qqp3(i,j,k,1) = 6.531869153 + mf1*(-6.78386584) + mf2*7.247588801 + qqp3(i,j,k,2) = -16.01477983 + mf1 * 20.38324603 + mf2*3.075947834 + qqp3(i,j,k,3) = 14.42597018 + mf1*(-10.89598394) + qqp3(i,j,k,4) = 0.0 + END IF + END DO + + END IF + END DO +END DO + +END SUBROUTINE qq_const + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SET_DEFAULT_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + + ideal_gas = 'no' ! ( yes, no ) + hard_sphere = 'CSBM' ! ( CSBM, no ) + chain_term = 'TPT1' ! ( TPT1, HuLiu, no ) + disp_term = 'PC-SAFT' ! ( PC-SAFT, CK, PT1, PT2, PT_MF, PT_MIX, no ) + hb_term = 'TPT1_Chap' ! ( TPT1_Chap, no ) + LC_term = 'no' ! ( MSaupe, OVL, no ) + branch_term = 'no' ! ( TPT2, no ) + II_term = 'no' + ID_term = 'no' + + subtract1 = 'no' ! (1PT, 2PT, no) + subtract2 = 'no' ! (ITTpolar, no) + +END SUBROUTINE SET_DEFAULT_EOS_NUMERICAL + + + + + + + + + +SUBROUTINE READ_INPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + REAL :: reading2,reading3,sumfeed + CHARACTER (LEN=4) :: uoutp, uinp + CHARACTER (LEN=1) :: uoutt, uint + CHARACTER (LEN=50) :: filename + CHARACTER (LEN=30) :: reading1 +! ---------------------------------------------------------------------- + + filename='./input_file/INPUT.INP' + CALL file_open(filename,30) + READ (30,*) eos, pol !J: specify by numbers! eos(1=pcsaft, 2=SRK,...) pol (=polar) yes(1) no(0) + READ (30,*) t, uint, p, uinp !J: t: value of temp, uint: unit of temp, p: value of pressure, uinp: unit of pressure + + ncomp = 0 + i = 0 + sumfeed = 0.0 + read_loop: DO + READ (30,*) reading1,reading2,reading3 + IF (reading1 == 'end') EXIT read_loop + ncomp = ncomp + 1 + i = i + 1 + compna(i)= reading1 ! comp.name + mm(i) = reading2 ! molec.mass (mandatory only for polymers) + xif(i) = reading3 !J: molefractions + sumfeed = sumfeed + xif(i) + ENDDO read_loop + + CLOSE (30) + + IF (sumfeed /= 0.0 .AND. sumfeed /= 1.0) THEN !J: in case mole fractions dont sum up to 1?? + xif(1:ncomp) = xif(1:ncomp)/sumfeed + END IF + + uoutt = uint + uoutp = uinp + IF (uint == 'C') THEN !J: unit stuff + u_in_t = 273.15 + ELSE + u_in_t = 0.0 + END IF + IF (uinp == 'bar') THEN + u_in_p = 1.E5 + ELSE IF (uinp == 'mbar') THEN + u_in_p = 1.E2 + ELSE IF (uinp == 'MPa') THEN + u_in_p = 1.E6 + ELSE IF (uinp == 'kPa') THEN + u_in_p = 1.E3 + ELSE + u_in_p = 1.E0 + END IF + + IF (uoutt == 'C') THEN + u_out_t = 273.15 + ELSE + u_out_t = 0.0 + END IF + IF (uoutp == 'bar') THEN + u_out_p = 1.E5 + ELSE IF (uoutp == 'mbar') THEN + u_out_p = 1.E2 + ELSE IF (uoutp == 'MPa') THEN + u_out_p = 1.E6 + ELSE IF (uoutp == 'kPa') THEN + u_out_p = 1.E3 + ELSE + u_out_p = 1.0 + END IF + + t = t + u_in_t !J: calculate temp in Kelvin + p = p * u_in_p !J: calculate pressure in Pascal + + CALL para_input ! retriev pure comp. parameters + + IF (ncomp == 1) THEN + WRITE (40,*) ' T P rho_1 rho_2 h_LV' + ELSE IF (ncomp == 2) THEN + ! WRITE (40,*) ' x2_phase1 x2_phase2 w1_phase1 w2_phase2 T P rho1 rho2' + WRITE (40,*) ' ' + ELSE IF (ncomp == 3) THEN + WRITE (40,*) ' x1_ph1 x2_ph1 x3_ph1 x1_ph2', & + ' x2_ph2 x3_ph2 T P rho1 rho2' + END IF + + END SUBROUTINE READ_INPUT + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE file_open +! +! This subroutine opens files for reading. Beforehand, it checks +! whether this file is available. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE file_open(filename,file_number) +! +! ---------------------------------------------------------------------- + CHARACTER (LEN=50) :: filename + INTEGER :: file_number + LOGICAL :: filefound +! ---------------------------------------------------------------------- + +INQUIRE (FILE=filename, EXIST = filefound) +IF (filefound) THEN + OPEN (file_number, FILE = filename) +ELSE + write (*,*) ' FOLLOWING FILE CAN NOT BE OPENED', filename + stop +END IF + +END SUBROUTINE file_open + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE para_input +! +! This subroutine provides pure component parameters and kij parameters. +! The following syntax applies: +! +! compna(i) component name +! parame(i,k) pure comp. parameter: +! parame(i,1): segment number [/] +! parame(i,2): segment diameter "sigma" [Angstrom] +! parame(i,3): segment energy param. epsilon/k [K] +! parame(i,4): model parameter; not used for PC-SAFT (=0) +! it is 10K most of the time for SAFT [K] +! parame(i,5): Param. for T-dependent segment diameter [/] +! parame(i,6): dipolar moment [debye] +! parame(i,7): quadrupolar moment [debye] +! parame(i,8): number of segments that are part of a branching 4-mer [/] +! parame(i,9): +! parame(i,10): ionic charge number (positiv or negativ) [/] +! parame(i,11): polarizability [A**3] +! parame(i,12): number of association sites [/] +! parame(i,13): (=kap_hb, see below) [/] +! parame(i,14 to 25): (=eps_hb, see below) [K] +! nhb_typ(i) number of different types of association sites (comp. i) +! nhb_no(i,k) number of association sites of type k +! eps_hb depth of association potential [K] +! kap_hb effective width of assoc. potential (angle-averg.) +! mm molec. mass +! scaling param. for roughly scaling the set of objective functions +! +! As opposed to low-molec mass compounds, the molecular mass of a +! polymer is not obtained from this routine. Rather, it is a +! user-specification given in the file INPUT.INP +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE para_input +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i +!---------------------------------------------------------------------- + +IF (eos == 1) THEN + CALL pcsaft_par +ELSE IF (eos == 4 .OR. eos == 5 .OR. eos == 6 .OR. eos == 8) THEN + ! CALL lj_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 7) THEN + ! CALL sw_par + write (*,*) 'deactivated this line when making a transition to f90' + stop +ELSE IF (eos == 10) THEN + i = 1 + IF (compna(i) == 'LC_generic' .AND. ncomp == 1 ) THEN + mm(i) = 1.0 + parame(i,1) = 7.0 + parame(i,2) = 1.0 + parame(i,3) = 0.0 + ELSE + write (*,*) 'PARA_INPUT: define the component !' + stop + ENDIF +ELSE + !CALL saft_par +END IF + +DO i = 1, ncomp + IF ( mm(i) >= 1.0 .AND. mm(i) < 45.0 ) THEN + scaling(i) = 10000.0 + ELSE IF( mm(i) >= 45.0 .AND. mm(i) < 90.0 ) THEN + scaling(i) = 1000.0 + ELSE IF( mm(i) >= 90.0 .AND. mm(i) < 150.0 ) THEN + scaling(i) = 100.0 + ELSE IF( mm(i) >= 150.0 .AND. mm(i) < 250.0 ) THEN + scaling(i) = 10.0 + ELSE + scaling(i) = 1.0 + END IF + IF (parame(i,10) /= 0.0) scaling(i) = scaling(i) / 1.E4 ! Electrolytes +END DO + +END SUBROUTINE para_input + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE pcsaft_par +! +! pure component parameters and kij parameters +! (as described in SUBROUTINE para_input) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE pcsaft_par +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +!---------------------------------------------------------------------- + INTEGER :: i, j, k, no + INTEGER, DIMENSION(nc) :: nhb_typ + INTEGER, DIMENSION(nc,nsite) :: nhb_no + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb +!---------------------------------------------------------------------- + + +DO i = 1, ncomp + parame(i,4) = 0.0 ! T correct. required for SAFT, not PC-SAFT + parame(i,5) = 0.12 ! Param. for T-dependent segment diameter + parame(i,6) = 0.0 ! dipolar moment + parame(i,7) = 0.0 ! quadrupolar moment + parame(i,8) = 0.0 ! number of segments that are part of a branching 4-mer + parame(i,9) = 0.0 + parame(i,10)= 0.0 ! ionic charge number + parame(i,11)= 0.0 ! polarizability + lli(i) = 0.0 + phi_criti(i)= 0.0 + chap(i) = 0.0 + + nhb_typ(i) = 0 + kap_hb(i,i) = 0.0 + ! irgendwann sollten nhb_typ und kap_hb durch parame(i,12) und (i,13) + ! ersetzt werden. + IF (compna(i) == 'ps') THEN + parame(i,1) = mm(i)*1.9E-2 + parame(i,2) = 4.10705961 + parame(i,3) = 267.0 + ELSE IF (compna(i) == 'ps_J') THEN !from Xu,Diego: DFT for polymer-co2 mixtures: A PC-SAFT approach + parame(i,1) = mm(i)*0.0253 + parame(i,2) = 3.45 + parame(i,3) = 328.1 + ELSE IF (compna(i) == 'co2_J') THEN !from Xu,Diego: DFT for polymer-co2 mixtures: A PC-SAFT approach + parame(i,1) = 2.0 + parame(i,2) = 2.79 + parame(i,3) = 170.5 + + + + ELSE IF (compna(i) == 'pg2') THEN !Polyglycerol 2 + mm(i) = 2000.0 + parame(i,1) = mm(i)*2.37E-2 ! from figure 5 PCSAFT paper + parame(i,2) = 3.8 ! from figure 5 PCSAFT paper + parame(i,3) = 270.0 ! starting value for iteration + ! this is the extra parameter + parame(i,8) = mm(i)*2.37E-2 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 27 ! no. of sites of type 1 + nhb_no(i,2) = 27 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2544.6 ! taken from butanol (same M/OH) + eps_hb(i,i,2,1)= 2544.6 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i)= .00489087833 ! taken from butanol (same M/OH) + ELSE IF (compna(i) == 'peva') THEN + parame(i,1) = mm(i)*2.63E-2 + ! -- 0 Gew.% VA------------- + ! parame(i,2) = 4.021767 + ! parame(i,3) = 249.5 + ! -- 7.5 Gew.% VA------------- + ! parame(i,2) = 4.011 + ! parame(i,3) = 248.1864 + ! parame(i,3) = 247.6286 + ! ---12.7 Gew.% VA------------ + ! parame(i,2) = 4.0028 + ! parame(i,3) = 247.2075 + ! parame(i,3) = 246.24454 + ! ---27.3 Gew.% VA------------ + ! parame(i,2) = 3.9762 + ! parame(i,3) = 244.114 + ! parame(i,3) = 241.9345 + ! ---31.8 Gew.% VA------------ + parame(i,2) = 3.9666 + parame(i,3) = 243.0436 + ! parame(i,3) = 240.46 + ! ---42.7 Gew.% VA------------ + ! parame(i,2) = 3.9400 + ! parame(i,3) = 240.184 + ! parame(i,3) = 236.62 + ! --------------- + ELSE IF (compna(i) == 'pp') THEN + parame(i,1) = mm(i)*2.2E-2 + parame(i,2) = 4.2 + parame(i,3) = 220.0 + + parame(i,1) = mm(i)*0.0230487701 + parame(i,2) = 4.1 + parame(i,3) = 217.0 + ELSE IF (compna(i) == 'pe') THEN + parame(i,1) = mm(i)*2.622E-2 + parame(i,2) = 4.021767 + parame(i,3) = 252.0 + ! HDPE: extrapolated from pure comp. param. of n-alkane series! + ! parame(i,1) = mm(i)*2.4346E-2 + ! parame(i,2) = 4.07182 + ! parame(i,3) = 269.67 + !! parame(i,3) = 252.5 + ELSE IF (compna(i) == 'ldpe') THEN + parame(i,1) = mm(i)*2.63E-2 + parame(i,2) = 4.021767 + parame(i,3) = 249.5 + ELSE IF (compna(i) == 'pba') THEN + parame(i,1) = mm(i)*2.5872E-2 + parame(i,2) = 3.95 + parame(i,3) = 229.0 + ELSE IF (compna(i) == 'dextran') THEN + parame(i,1) = mm(i)*2.E-2 + parame(i,2) = 4.0 + parame(i,3) = 300.0 + ELSE IF (compna(i) == 'glycol-ethers') THEN + ! mm(i) = 218.0 + ! parame(i,1) = 7.4044 + ! parame(i,2) = 3.61576 + ! parame(i,3) = 244.0034598 + mm(i) = 222.0 + parame(i,1) = 7.994 + parame(i,2) = 3.445377778 + parame(i,3) = 234.916506 + ELSE IF (compna(i) == 'LJ') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 1.0 + ELSE IF (compna(i) == 'LJ1205') THEN + mm(i) = 1.0 + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 140.0 + ELSE IF (compna(i) == 'adamantane') THEN + mm(i) = 136.235000000000 + parame(i,1) = 4.81897145432221 + parame(i,2) = 3.47128575274660 + parame(i,3) = 266.936967922521 + + Else IF (compna(i) == '14-butandiol') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + Else IF(compna(i) == 'po') THEN + mm(i) = 90.12 + parame(i,1) = 4.35923557 + parame(i,2) = 3.02947364 + parame(i,3) = 197.11998863 + + ELSE IF (compna(i) == 'air') THEN + mm(i) = 28.899 !n2 and o2 according to mole fractions + parame(i,1) = 1.18938 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,2) = 3.28694 !n2 and o2 according to mole fractions (weighted artihm. avg) + parame(i,3) = 95.672 !n2 and o2 according to mole fractions (weighted artihm. avg) + + + + Else IF(compna(i) == 'mdi') THEN + mm(i) = 2.50252E+02 + parame(i,1) = mm(i)*0.030769 + parame(i,2) = 2.886003 + parame(i,3) = 283.052778 + + Else IF(compna(i) == 'pu') THEN +! mm(i) = 2042.22 !pu n = 5 +! parame(i,1) = mm(i)*0.008845 +! parame(i,2) = 5.680270 +! parame(i,3) = 497.997594 + mm(i) = 340.37 !pu n = 0 + parame(i,1) = mm(i)*0.043312 + parame(i,2) = 3.008359 + parame(i,3) = 273.445205 +! mm(i) = 680.74 !pu n = 1 +! parame(i,1) = mm(i)*0.024106 +! parame(i,2) = 3.744327 +! parame(i,3) = 321.486386 +! mm(i) = 1021.11 !pu n = 2 +! parame(i,1) = mm(i)*0.015076 +! parame(i,2) = 4.537837 +! parame(i,3) = 400.036950 + + + Else IF(compna(i) == 'tpg') THEN + mm(i) = 192.25 + parame(i,1) = mm(i)*0.01239 + parame(i,2) = 4.549 + parame(i,3) = 148.678 + parame(i,6) = 0.41 + + nhb_typ(i) = 2 ! no. of different association sites + nhb_no(i,1) = 2 ! no. of sites of type 1 + nhb_no(i,2) = 2 ! no. of sites of type 2 + + eps_hb(i,i,1,2)= 5597.844 + eps_hb(i,i,2,1)= 5597.844 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.03 + + + ELSE IF (compna(i) == 'methane') THEN + mm(i) = 16.043 + parame(i,1) = 1.0 + parame(i,2) = 3.70388767 + parame(i,3) = 150.033987 + ! LLi(i) = 1.185*parame(i,2) + ! phi_criti(i)= 11.141 + ! chap(i) = 0.787 + lli(i) = 1.398*parame(i,2) + phi_criti(i)= 16.01197 + chap(i) = 0.6 + IF (pol == 2) parame(i,11)= 2.593 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 16.0430000000000 + ! parame(i,1) = 1.03353666429362 + ! parame(i,2) = 3.64824920605089 + ! parame(i,3) = 147.903953522994 + lli(i) = 2.254442763775*parame(i,2) + phi_criti(i)= 42.060975627454 + chap(i) = 0.704895924 + lli(i) = 1.935801125833*parame(i,2) + phi_criti(i)= 26.363325937261 + chap(i) = 0.700112854298 + lli(i) = 2.610103087662*parame(i,2) + phi_criti(i)= 38.192854403173 + chap(i) = 0.812100472735 + ! 2.122960316503 34.937141524804 0.734513223627 + ! 2.082897379591 33.036391564859 0.877578492999 + ELSE IF (compna(i) == 'ethane') THEN + mm(i) = 30.070 + parame(i,1) =mm(i)* .0534364758 + parame(i,2) = 3.5205923 + parame(i,3) = 191.423815 + lli(i) = 1.40*parame(i,2) + phi_criti(i)= 15.38 + chap(i) = 0.520 + IF (pol == 2) parame(i,11)= 4.3 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 30.069 + ! parame(i,1) = 1.74034548122 + ! parame(i,2) = 3.4697441893134 + ! parame(i,3) = 181.90770083591 + IF (pol >= 1) mm(i) = 30.0700000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 5.341907666260094E-002 + IF (pol >= 1) parame(i,2) = 3.52104466654628 + IF (pol >= 1) parame(i,3) = 191.449300423694 + IF (pol >= 1) parame(i,7) = 0.650000000000000 + IF (pol >= 1) lli(i) = 0.0 + IF (pol >= 1) phi_criti(i)= 0.0 + IF (pol >= 1) chap(i) = 0.0 + ELSE IF (compna(i) == 'propane') THEN + mm(i) = 44.096 + parame(i,1) = mm(i)* .0453970622 + parame(i,2) = 3.61835302 + parame(i,3) = 208.110116 + lli(i) = 1.8*parame(i,2) + phi_criti(i)= 21.0 + chap(i) = 1.0 + lli(i) = 1.63*parame(i,2) + phi_criti(i)= 20.37 + chap(i) = 0.397 + IF (pol == 2) parame(i,11)= 6.29 + ELSE IF (compna(i) == 'butane_debug') THEN + mm(i) = 58.123 + parame(i,1) = 2.3374 + parame(i,2) = 3.6655 + parame(i,3) = 214.805 + ELSE IF (compna(i) == 'butane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0401146927 + parame(i,2) = 3.70860139 + parame(i,3) = 222.877405 + lli(i) = 1.75*parame(i,2) + phi_criti(i)= 23.43 + chap(i) = 0.304 + ! LLi(i) = 1.942079633622*parame(i,2) + ! phi_criti(i)= 24.527323443155 + ! chap(i) = 0.734064026277 + ! LLi(i) = 1.515115760477*parame(i,2) + ! phi_criti(i)= 17.682929717796 + ! chap(i) = 0.335848717079 + IF (pol == 2) parame(i,11)= 8.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 58.1230000000 + ! parame(i,1) = 2.45352304112 + ! parame(i,2) = 3.74239117802 + ! parame(i,3) = 214.185157925 + ELSE IF (compna(i) == 'pentane') THEN + mm(i) = 72.146 + parame(i,1) = mm(i)* .03727896 + parame(i,2) = 3.77293174 + parame(i,3) = 231.197015 + IF (pol == 2) parame(i,11)= 9.99 + ELSE IF (compna(i) == 'hexane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0354812325 + parame(i,2) = 3.79829291 + parame(i,3) = 236.769054 + lli(i) = 2.24*parame(i,2) + phi_criti(i)= 33.25 + chap(i) = 0.205 + IF (pol == 2) parame(i,11)= 11.9 + ELSE IF (compna(i) == 'heptane') THEN + mm(i) = 100.203 + parame(i,1) = mm(i)* .034762384 + parame(i,2) = 3.80487025 + parame(i,3) = 238.400913 + lli(i) = 2.35*parame(i,2) + phi_criti(i)= 38.10 + chap(i) = 0.173 + IF (pol == 2) parame(i,11)= 13.61 + ELSE IF (compna(i) == 'octane') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* .0334228038 + parame(i,2) = 3.83732677 + parame(i,3) = 242.775853 + ! LLi(i) = 2.0*parame(i,2) + ! phi_criti(i)= 18.75 + ! chap(i) = 1.0 + lli(i) = 2.63*parame(i,2) + phi_criti(i)= 42.06 + chap(i) = 0.155 + IF (pol == 2) parame(i,11)= 15.9 + ELSE IF (compna(i) == 'nonane') THEN + mm(i) = 128.25 + parame(i,1) = mm(i)* .0328062594 + parame(i,2) = 3.84483643 + parame(i,3) = 244.508457 + ELSE IF (compna(i) == 'decane') THEN + mm(i) = 142.285 + parame(i,1) = mm(i)* .03277373 + parame(i,2) = 3.8384498 + parame(i,3) = 243.866074 + lli(i) = 1.845*parame(i,2) + phi_criti(i)= 21.27 + chap(i) = 1.0 + lli(i) = 2.68*parame(i,2) + phi_criti(i)= 45.0 + chap(i) = 0.15 + IF (pol == 2) parame(i,11)= 19.1 + ! --- adjusted to Tc, Pc und omega --- + ! parame(i,1) = 4.794137228322 + ! parame(i,2) = 4.030446690586 + ! parame(i,3) = 236.5884493386 + ELSE IF (compna(i) == 'dodecane') THEN + mm(i) = 170.338 + parame(i,1) = mm(i)* .0311484156 + parame(i,2) = 3.89589236 + parame(i,3) = 249.214532 +ELSE IF (compna(i) == 'tetradecane') THEN + mm(i) = 198.39 + parame(i,1) = 5.9002!mm(i)* .0311484156 + parame(i,2) = 3.9396 + parame(i,3) = 254.21 + ELSE IF (compna(i) == 'hexadecane') THEN + mm(i) = 226.446 + parame(i,1) = mm(i)* .0293593045 + parame(i,2) = 3.95516743 + parame(i,3) = 254.700131 + ELSE IF (compna(i) == 'octadecane') THEN + mm(i) = 254.5 + parame(i,1) = 7.3271 + parame(i,2) = 3.9668 + parame(i,3) = 256.20 + IF (pol == 2) parame(i,11)= 30.2 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 226.446000000000 + ! parame(i,1) = 6.66976520488694 + ! parame(i,2) = 4.25025597912511 + ! parame(i,3) = 249.582941976119 + ELSE IF (compna(i) == 'eicosane') THEN + mm(i) = 282.553 + parame(i,1) = mm(i)* .0282572812 + parame(i,2) = 3.98692612 + parame(i,3) = 257.747939 + ELSE IF (compna(i) == 'triacontane') THEN + ! mm(i) = 422.822 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 422.822 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'octaeicosane') THEN + mm(i) = 395.0 ! param. by extrapolation of n-alkanes (sloppy!!) + parame(i,1) = mm(i)* 0.026922527 + parame(i,2) = 4.007608009 + parame(i,3) = 262.28622 + ELSE IF (compna(i) == 'tetracontane') THEN + ! mm(i) = 563.1 ! polyethylene parameters + ! parame(i,1) = mm(i)*2.622E-2 + ! parame(i,2) = 4.021767 + ! parame(i,3) = 252.0 + mm(i) = 563.1 ! param. by extrapolation of n-alkanes + parame(i,1) = mm(i)*0.026287593 + parame(i,2) = 4.023277 + parame(i,3) = 264.10466 + ELSE IF (compna(i) == 'isobutane') THEN + mm(i) = 58.123 + parame(i,1) = mm(i)* .0389105395 + parame(i,2) = 3.75735249 + parame(i,3) = 216.528584 + ELSE IF (compna(i) == 'isopentane') THEN + mm(i) = 72.15 + parame(i,1) = 2.5620 + parame(i,2) = 3.8296 + parame(i,3) = 230.75 + ELSE IF (compna(i) == '2-methylpentane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0340166994 + parame(i,2) = 3.85354665 + parame(i,3) = 235.5801 + ELSE IF (compna(i) == '23-dimethylbutane') THEN + mm(i) = 86.177 + parame(i,1) = mm(i)* .0311599207 + parame(i,2) = 3.9544545 + parame(i,3) = 246.068188 + ELSE IF (compna(i) == 'ethylene') THEN + mm(i) = 28.05 + parame(i,1) = mm(i)* .0567939013 + parame(i,2) = 3.44499904 + parame(i,3) = 176.468725 + IF (pol == 2) parame(i,11)= 4.252 +! eigener 3-ter Anlauf. + IF (pol >= 1) parame(i,1) = mm(i)* 5.574644443117726E-002 + IF (pol >= 1) parame(i,2) = 3.43281482228714 + IF (pol >= 1) parame(i,3) = 178.627308564610 + IF (pol >= 1) parame(i,7) = 1.56885870200446 + IF (pol == 2) parame(i,11)= 4.252 + ELSE IF (compna(i) == 'propylene') THEN + mm(i) = 42.081 + parame(i,1) = mm(i)* .0465710324 + parame(i,2) = 3.53559831 + parame(i,3) = 207.189309 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 42.081 + ! parame(i,1) = 2.086735327675 + ! parame(i,2) = 3.536779407969 + ! parame(i,3) = 198.3529810625 + ELSE IF (compna(i) == '1-butene') THEN + mm(i) = 56.107 + parame(i,1) = mm(i)* .0407524782 + parame(i,2) = 3.64305136 + parame(i,3) = 222.002756 + IF (pol == 2) parame(i,11)= 7.97 + ELSE IF (compna(i) == '1-pentene') THEN + mm(i) = 70.134 + parame(i,1) = 2.6006 + parame(i,2) = 3.7399 + parame(i,3) = 231.99 + ELSE IF (compna(i) == '1-hexene') THEN + mm(i) = 84.616 + parame(i,1) = mm(i)* .0352836857 + parame(i,2) = 3.77529612 + parame(i,3) = 236.810973 + ELSE IF (compna(i) == '1-octene') THEN + mm(i) = 112.215 + parame(i,1) = mm(i)* .033345175 + parame(i,2) = 3.81329011 + parame(i,3) = 243.017587 + ELSE IF (compna(i) == 'cyclopentane') THEN + mm(i) = 70.13 + parame(i,1) = mm(i)* .0337262571 + parame(i,2) = 3.71139254 + parame(i,3) = 265.828755 + ELSE IF (compna(i) == 'cyclohexane') THEN + mm(i) = 84.147 + parame(i,1) = mm(i)* .0300695505 + parame(i,2) = 3.84990887 + parame(i,3) = 278.108786 + IF (pol == 2) parame(i,11)= 10.87 + ELSE IF (compna(i) == 'toluene') THEN + mm(i) = 92.141 + parame(i,1) = mm(i)* .0305499338 + parame(i,2) = 3.71689689 + parame(i,3) = 285.68996 + IF (pol == 2) parame(i,11)= 11.8 + ! --- adjusted to Tc, Pc und omega --- + ! mm(i) = 92.141 + ! parame(i,1) = 3.002119827762 + ! parame(i,2) = 3.803702734224 + ! parame(i,3) = 271.9428642880 + ELSE IF (compna(i) == 'm-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .030011086 + parame(i,2) = 3.75625585 + parame(i,3) = 283.977525 + ELSE IF (compna(i) == 'o-xylene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0295409161 + parame(i,2) = 3.76000631 + parame(i,3) = 291.049123 + ELSE IF (compna(i) == 'thf') THEN + mm(i) = 72.1057000000000 + ! parame(i,1) = mm(i)* 0.34311391E-01 + parame(i,1) = 2.47404685540709 + parame(i,2) = 3.51369375633677 + parame(i,3) = 274.181927093696 + parame(i,6) = 1.63100000000000 + ELSE IF (compna(i) == 'co2') THEN + mm(i) = 44.01 + parame(i,1) = mm(i)* .0470968503 + parame(i,2) = 2.7851954 + parame(i,3) = 169.207418 + IF (pol >= 1) parame(i,1) = mm(i)* 3.438191426159075E-002 + IF (pol >= 1) parame(i,2) = 3.18693935424469 + IF (pol >= 1) parame(i,3) = 163.333232725156 + IF (pol >= 1) parame(i,7) = 4.400000000000 + IF (pol >= 1) lli(i) = 1.472215*parame(i,2) + IF (pol >= 1) phi_criti(i)= 17.706567 + IF (pol >= 1) chap(i) = 0.5 + IF (pol == 2) parame(i,11)= 2.911 + ELSE IF (compna(i) == 'co') THEN + IF (pol /= 1) write (*,*) 'parameters for co missing' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 28.01 + IF (pol >= 1) parame(i,1) = mm(i)* 5.126059746332587E-002 ! 1.43580933494776 + IF (pol >= 1) parame(i,2) = 3.13556624711756 + IF (pol >= 1) parame(i,3) = 87.7191028693595 + IF (pol >= 1) parame(i,6) = 0.1098 + ELSE IF (compna(i) == 'n2') THEN + mm(i) = 28.01 + parame(i,1) = mm(i)* .0430301713 + parame(i,2) = 3.3129702 + parame(i,3) = 90.9606924 + IF (pol >= 1) parame(i,1) = mm(i)* 3.971157114787596E-002 + IF (pol >= 1) parame(i,2) = 3.42116853868336 + IF (pol >= 1) parame(i,3) = 92.3972606842862 + IF (pol >= 1) parame(i,7) = 1.52000000000000 + IF (pol >= 1) lli(i) = 1.5188*parame(i,2) + IF (pol >= 1) phi_criti(i)= 19.9247 + IF (pol >= 1) chap(i) = 0.375 + ! better RGT-results came later, with: 1.5822 21.201 0.3972 + ELSE IF (compna(i) == 'o2') THEN + mm(i) = 32.05 + parame(i,1) = mm(i)* .0353671563 + parame(i,2) = 3.19465166 + parame(i,3) = 114.430197 + ELSE IF (compna(i) == 'hydrogen') THEN + mm(i) = 2.016 + parame(i,1) = mm(i)* .258951975 + parame(i,2) = 4.43304935 + parame(i,3) = 29.6509579 + + mm(i) = 2.016 + parame(i,1) = 1.0 + parame(i,2) = 2.915 + parame(i,3) = 38.0 + + ! mm(i) = 2.016 ! Ghosh et al. 2003 + ! parame(i,1) = 1.0 + ! parame(i,2) = 2.986 + ! parame(i,3) = 19.2775 + ELSE IF (compna(i) == 'argon') THEN + ! mm(i) = 39.948 ! adjusted m !! + ! parame(i,1) = 0.9285 + ! parame(i,2) = 3.4784 + ! parame(i,3) = 122.23 + mm(i) = 39.948 ! enforced m=1 !! + parame(i,1) = 1.0 + parame(i,2) = 3.3658 + parame(i,3) = 118.34 + IF (pol == 2) parame(i,11)= 1.6411 + ELSE IF (compna(i) == 'xenon') THEN + mm(i) = 131.29 + parame(i,1) = 1.0 + parame(i,2) = 3.93143 + parame(i,3) = 227.749 + ELSE IF (compna(i) == 'chlorine') THEN ! Cl2 + mm(i) = 70.906 + parame(i,1) = 1.5514 + parame(i,2) = 3.3672 + parame(i,3) = 265.67 + ELSE IF (compna(i) == 'SF6') THEN + mm(i) = 146.056 ! adjusted m !! + parame(i,1) = 2.48191 + parame(i,2) = 3.32727 + parame(i,3) = 161.639 + ! mm(i) = 146.056 ! enforced m=1 !! + ! parame(i,1) = 1.0 + ! parame(i,2) = 4.55222 + ! parame(i,3) = 263.1356 + ELSE IF (compna(i) == 'benzene') THEN + mm(i) = 78.114 + parame(i,1) = mm(i)* .0315590546 + parame(i,2) = 3.64778975 + parame(i,3) = 287.354574 + IF (pol >= 1) mm(i) = 78.114 ! PCP-SAFT with m=2 in QQ term + IF (pol >= 1) parame(i,1) = mm(i)* 2.932783311E-2 ! = 2.29091435590515 + IF (pol >= 1) parame(i,2) = 3.7563854 + IF (pol >= 1) parame(i,3) = 294.06253 + IF (pol >= 1) parame(i,7) = 5.5907 + ELSE IF (compna(i) == 'ethylbenzene') THEN + mm(i) = 106.167 + parame(i,1) = mm(i)* .0290120497 + parame(i,2) = 3.79741116 + parame(i,3) = 287.348098 + IF (pol == 2) parame(i,11)= 13.3 + ELSE IF (compna(i) == 'propylbenzene') THEN + mm(i) = 120.194 + parame(i,1) = mm(i)* .0278171627 + parame(i,2) = 3.8437772 + parame(i,3) = 288.128269 + ELSE IF (compna(i) == 'n-butylbenzene') THEN + mm(i) = 134.221 + parame(i,1) = mm(i)* .0280642225 + parame(i,2) = 3.87267961 + parame(i,3) = 283.072331 + ELSE IF (compna(i) == 'tetralin') THEN + mm(i) = 132.205 + parame(i,1) = mm(i)* .0250640795 + parame(i,2) = 3.87498866 + parame(i,3) = 325.065688 + ELSE IF (compna(i) == 'methylcyclohexane') THEN + mm(i) = 98.182 + parame(i,1) = mm(i)* .0271259953 + parame(i,2) = 3.99931892 + parame(i,3) = 282.334148 + IF (pol == 2) parame(i,11)= 13.1 + ELSE IF (compna(i) == 'methylcyclopentane') THEN + mm(i) = 84.156 + parame(i,1) = mm(i)* .0310459009 + parame(i,2) = 3.82534693 + parame(i,3) = 265.122799 + ELSE IF (compna(i) == 'acetone') THEN + mm(i) = 58.0800000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.870380408159182E-002 ! =2.82871694105885 + parame(i,2) = 3.24969003020675 + parame(i,3) = 250.262241927379 + lli(i) = 2.0021*parame(i,2) + phi_criti(i)= 21.336 + chap(i) = 0.24931 + IF (pol >= 1) mm(i) = 58.0800000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.725811736856114E-002 ! =2.74475145676603 + IF (pol >= 1) parame(i,2) = 3.27423145271184 + IF (pol >= 1) parame(i,3) = 232.990879135326 + IF (pol >= 1) parame(i,6) = 2.88000000000000 + IF (pol >= 1) lli(i) = 2.0641*parame(i,2) + IF (pol >= 1) phi_criti(i)= 28.1783 + IF (pol >= 1) chap(i) = 0.22695 + IF (pol >= 2) mm(i) = 58.0800000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.902301475689938E-002 ! =2.84725669708072 + IF (pol >= 2) parame(i,2) = 3.23880349104868 + IF (pol >= 2) parame(i,3) = 220.884202656054 + IF (pol >= 2) parame(i,6) = 2.88000000000000 + IF (pol == 2) parame(i,11)= 6.40000000000000 + ELSE IF (compna(i) == 'butanone') THEN + mm(i) = 72.1066 ! PC-SAFT + parame(i,1) = mm(i)* 4.264192830122321E-002 ! =3.07476446724498 + parame(i,2) = 3.39324011060028 + parame(i,3) = 252.267273608975 + IF (pol >= 1) mm(i) = 72.1066 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.137668924230600E-002 ! =2.98353238051926 + IF (pol >= 1) parame(i,2) = 3.42393701353423 + IF (pol >= 1) parame(i,3) = 244.994381354681 + IF (pol >= 1) parame(i,6) = 2.78000000000000 + IF (pol >= 2) mm(i) = 72.1066 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.254697075199448E-002 ! =3.06791740122577 + IF (pol >= 2) parame(i,2) = 3.39138375903252 + IF (pol >= 2) parame(i,3) = 236.527763837528 + IF (pol >= 2) parame(i,6) = 2.78000000000000 + IF (pol == 2) parame(i,11)= 8.13000000000000 + ELSE IF (compna(i) == '2-pentanone') THEN + ! mm(i) = 86.134 ! PC-SAFT + ! parame(i,1) = mm(i)* 3.982654501296355E-002 ! =3.43041962814660 + ! parame(i,2) = 3.46877976946838 + ! parame(i,3) = 249.834724442656 + ! mm(i) = 86.134 ! PCP-SAFT + ! parame(i,1) = mm(i)* 3.893594769994072E-002 ! =3.35370891918669 + ! parame(i,2) = 3.49417356096593 + ! parame(i,3) = 246.656329096835 + ! parame(i,6) = 2.70000000000000 + mm(i) = 86.134 ! PCIP-SAFT + parame(i,1) = mm(i)* 3.973160761515879E-002 ! =3.42224229032409 + parame(i,2) = 3.46827593107280 + parame(i,3) = 240.904278156822 + parame(i,6) = 2.70000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == '3-pentanone') THEN + mm(i) = 86.134 ! PC-SAFT + parame(i,1) = 3.36439508013322 + parame(i,2) = 3.48770251979329 + parame(i,3) = 252.695415552376 + IF (pol >= 1) mm(i) = 86.134 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.27863398611842 + IF (pol >= 1) parame(i,2) = 3.51592571835030 + IF (pol >= 1) parame(i,3) = 248.690775540981 + IF (pol >= 1) parame(i,6) = 2.82000000000000 + IF (pol == 2) mm(i) = 86.134 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 3.34821857026283 + IF (pol == 2) parame(i,2) = 3.48903345340516 + IF (pol == 2) parame(i,3) = 242.314578558329 + IF (pol == 2) parame(i,6) = 2.82000000000000 + IF (pol == 2) parame(i,11)= 9.93000000000000 + ELSE IF (compna(i) == 'cyclohexanone') THEN ! from DIPPR + ! IF (pol.GE.1) mm(i) = 98.1430 ! PCP-SAFT + ! IF (pol.GE.1) parame(i,1) = 3.084202 + ! IF (pol.GE.1) parame(i,2) = 3.613681 + ! IF (pol.GE.1) parame(i,3) = 286.15865 + ! IF (pol.GE.1) parame(i,6) = 3.087862 + IF (pol >= 1) mm(i) = 98.1500000000000 + IF (pol >= 1) parame(i,1) = 2.72291913132818 + IF (pol >= 1) parame(i,2) = 3.79018433908522 + IF (pol >= 1) parame(i,3) = 314.772193827344 + IF (pol >= 1) parame(i,6) = 3.24600000000000 + IF (pol /= 1) WRITE (*,*) 'no non-polar param. for cyclohexanone' + IF (pol /= 1) STOP + ELSE IF (compna(i) == 'propanal') THEN + mm(i) = 58.08 ! PC-SAFT + parame(i,1) = 2.67564746980910 + parame(i,2) = 3.26295953984941 + parame(i,3) = 251.888982765626 + IF (pol >= 1) mm(i) = 58.08 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.60007872084995 + IF (pol >= 1) parame(i,2) = 3.28720732189761 + IF (pol >= 1) parame(i,3) = 235.205188090107 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + IF (pol >= 2) mm(i) = 58.08 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.72471167411028 + IF (pol >= 2) parame(i,2) = 3.24781643022922 + IF (pol >= 2) parame(i,3) = 221.642071811094 + IF (pol >= 2) parame(i,6) = 2.72000000000000 + IF (pol >= 2) parame(i,11)= 6.50000000000000 + ELSE IF (compna(i) == 'butanal') THEN + mm(i) = 72.1066000000000 ! PC-SAFT + parame(i,1) = 2.96824823599784 + parame(i,2) = 3.44068916025889 + parame(i,3) = 253.929404992884 + IF (pol >= 1) mm(i) = 72.1066000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.86783706423953 + IF (pol >= 1) parame(i,2) = 3.47737904036296 + IF (pol >= 1) parame(i,3) = 247.543312127310 + IF (pol >= 1) parame(i,6) = 2.72000000000000 + ELSE IF (compna(i) == 'dmso') THEN + mm(i) = 78.1300000000000 ! PC-SAFT + parame(i,1) = 2.92225114054231 + parame(i,2) = 3.27780791606297 + parame(i,3) = 355.688793038512 + IF (pol >= 1) mm(i) = 78.1300000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 3.02433694138348 + IF (pol >= 1) parame(i,2) = 3.24270742566613 + IF (pol >= 1) parame(i,3) = 309.357476696679 + IF (pol >= 1) parame(i,6) = 3.96000000000000 + IF (pol >= 2) mm(i) = 78.1300000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 3.19078234633277 + IF (pol >= 2) parame(i,2) = 3.19778269816832 + IF (pol >= 2) parame(i,3) = 286.337981216861 + IF (pol >= 2) parame(i,6) = 3.96000000000000 + IF (pol >= 2) parame(i,11)= 7.97000000000000 + ELSE IF (compna(i) == 'acetone_JC') THEN ! Jog-Chapman + ! mm(i) = 58.0800000000000 ! Dominik et al.2005 + ! parame(i,1) = 2.221 + ! parame(i,2) = 3.607908 + ! parame(i,3) = 259.99 + ! parame(i,6) = 2.7 + ! parame(i,8) = 0.2258 + ! mm(i) = 58.0800000000000 + ! parame(i,1) = mm(i)* 3.556617369195472E-002 + ! parame(i,2) = 3.58780367502515 + ! parame(i,3) = 273.025100470307 + ! parame(i,6) = 2.70000000000000 + ! parame(i,8) = 0.229800000000000 + + mm(i) = 58.08 ! Tumakaka Sadowski 2004 + parame(i,1) = mm(i)* 3.766E-2 + parame(i,2) = 3.6028 + parame(i,3) = 245.49 + parame(i,6) = 2.72 + parame(i,8) = 0.2969 + ! mm(i) = 58.0800000000000 ! no adjust. DD-param. + ! parame(i,1) = 1.87041620247774 + ! parame(i,2) = 3.79783535570774 + ! parame(i,3) = 208.885730881588 + ! parame(i,6) = 2.88000000000000 + ! parame(i,8) = 1.0/parame(i,1) + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = -0.005 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'acetone_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = mm(i)* 4.603296414764944E-002 + parame(i,2) = 3.29454924451643 + parame(i,3) = 221.052649057645 + parame(i,6) = 2.70000000000000 + parame(i,8) = 0.625410000000000 + mm(i) = 58.08 ! form as expected from me - no DD-param adjusted.dat + parame(i,1) = mm(i)* 4.364264724158790E-002 ! =2.53476495179143 + parame(i,2) = 3.37098670735567 + parame(i,3) = 254.366379701851 + parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 - no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.694644361257521E-002 ! =2.72664944501837 + ! parame(i,2) = 3.27842292595463 + ! parame(i,3) = 238.398883501772 + ! parame(i,6) = 2.88000000000000 + ! mm(i) = 58.08 ! form as expected but w/ sumseg/1.5 and fdd*sumseg- no DD-param adjusted.dat + ! parame(i,1) = mm(i)* 4.458214655521766E-002 ! =2.58933107192704 + ! parame(i,2) = 3.32050824493493 + ! parame(i,3) = 218.285994651271 + ! parame(i,6) = 2.88000000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + kij(1,2) = 0.035 + kij(2,1)=kij(1,2) + ELSE IF (compna(i) == 'ethylacetate_JC') THEN ! Jog-Chapman + ! mm(i) = 88.11 + ! parame(i,1) = 2.7481 + ! parame(i,2) = 3.6511 + ! parame(i,3) = 236.99 + ! parame(i,6) = 1.84 + ! parame(i,8) = 0.5458 + mm(i) = 88.1060000000000 + parame(i,1) = mm(i)* 0.03117 ! 2.74626402 + parame(i,2) = 3.6493 + parame(i,3) = 236.75 + parame(i,6) = 1.8 + parame(i,8) = 0.5462 + ELSE IF (compna(i) == 'ethylacetate_SF') THEN ! Saager-Fischer + mm(i) = 88.106 + parame(i,1) = mm(i)* 3.564165384763394E-002 + parame(i,2) = 3.447379322 + parame(i,3) = 226.0930487 + parame(i,6) = 1.8 + parame(i,8) = 0.849967000000000 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_JC') THEN ! Jog-Chapman + mm(i) = 58.08 + parame(i,1) = 2.0105 + parame(i,2) = 3.6095 + parame(i,3) = 258.82 + parame(i,6) = 2.0 + parame(i,8) = 0.3979 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == '12po_SF') THEN ! Saager-Fischer + mm(i) = 58.08 + parame(i,1) = 2.1341 + parame(i,2) = 3.4739 + parame(i,3) = 252.95 + parame(i,6) = 2.0 + parame(i,8) = 0.916 + WRITE (*,*) 'caution: parame(i,8) is now used for branching' + STOP + ELSE IF (compna(i) == 'acrylonitrile') THEN + IF (pol >= 2) mm(i) = 53.06 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.168 + IF (pol >= 2) parame(i,2) = 3.575 + IF (pol >= 2) parame(i,3) = 214.83 + IF (pol >= 2) parame(i,6) = 3.91 + IF (pol == 2) parame(i,11)= 8.04 + IF (pol >= 2) mm(i) = 53.0000000000000 ! second parameter set ?? + IF (pol >= 2) parame(i,1) = 2.45403467006041 + IF (pol >= 2) parame(i,2) = 3.41276825781723 + IF (pol >= 2) parame(i,3) = 195.194353082408 + IF (pol >= 2) parame(i,6) = 3.91000000000000 + IF (pol == 2) parame(i,11)= 8.04000000000000 + ELSE IF (compna(i) == 'butyronitrile') THEN + ! mm(i) = 69.11 + ! parame(i,1) = 2.860 + ! parame(i,2) = 3.478 + ! parame(i,3) = 253.21 + ! parame(i,6) = 4.07 + mm(i) = 69.11 + parame(i,1) = 2.989 + parame(i,2) = 3.441 + parame(i,3) = 234.04 + parame(i,6) = 4.07 + IF (pol == 2) parame(i,11)= 8.4 + ELSE IF (compna(i) == 'propionitrile') THEN + mm(i) = 55.079 ! PC-SAFT + parame(i,1) = 2.66211021227108 + parame(i,2) = 3.34032231132738 + parame(i,3) = 294.078737359580 + IF (pol >= 1) mm(i) = 55.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.50958981615666 + IF (pol >= 1) parame(i,2) = 3.39806320429568 + IF (pol >= 1) parame(i,3) = 239.152759066148 + IF (pol >= 1) parame(i,6) = 4.05000000000000 + IF (pol >= 2) mm(i) = 55.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.54684827683436 + IF (pol >= 2) parame(i,2) = 3.41240089912190 + IF (pol >= 2) parame(i,3) = 218.299491580335 + IF (pol >= 2) parame(i,6) = 4.05000000000000 + IF (pol == 2) parame(i,11)= 6.24000000000000 + ! IF (pol.GE.2) mm(i) = 55.079 ! PCIP-SAFT my_DD adjusted + ! IF (pol.GE.2) parame(i,1) = 2.61175151088002 + ! IF (pol.GE.2) parame(i,2) = 3.37194293181453 + ! IF (pol.GE.2) parame(i,3) = 233.346110749402 + ! IF (pol.GE.2) parame(i,6) = 3.74682245835235 + ! IF (pol.EQ.2) parame(i,11)= 6.24000000000000 + ELSE IF (compna(i) == 'nitromethane') THEN + mm(i) = 61.04 ! PC-SAFT + parame(i,1) = mm(i)* 4.233767489308791E-002 ! =2.58429167547409 + parame(i,2) = 3.10839592337018 + parame(i,3) = 310.694151426943 + IF (pol >= 1) mm(i) = 61.04 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.191475020685036E-002 ! =2.55847635262615 + IF (pol >= 1) parame(i,2) = 3.10129282495975 + IF (pol >= 1) parame(i,3) = 256.456941430554 + IF (pol >= 1) parame(i,6) = 3.46000000000000 + IF (pol >= 2) mm(i) = 61.04 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.394323357988009E-002 ! =2.68229497771588 + IF (pol >= 2) parame(i,2) = 3.10654492320028 + IF (pol >= 2) parame(i,3) = 225.973607468282 + IF (pol >= 2) parame(i,6) = 3.46000000000000 + IF (pol >= 2) parame(i,11)= 7.37000000000000 + ELSE IF (compna(i) == 'nitroethane') THEN + mm(i) = 75.067 ! PC-SAFT + parame(i,1) = mm(i)* 4.019977215251163E-002 ! =3.01767629617259 + parame(i,2) = 3.21364231060938 + parame(i,3) = 286.571650044235 + IF (pol >= 1) mm(i) = 75.067 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.928506808347654E-002 ! =2.94901220582233 + IF (pol >= 1) parame(i,2) = 3.23117331990738 + IF (pol >= 1) parame(i,3) = 265.961000131109 + IF (pol >= 1) parame(i,6) = 3.23000000000000 + IF (pol >= 2) mm(i) = 75.067 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.117677400894779E-002 ! =3.09101689452968 + IF (pol >= 2) parame(i,2) = 3.19364569858756 + IF (pol >= 2) parame(i,3) = 246.676040248662 + IF (pol >= 2) parame(i,6) = 3.23000000000000 + IF (pol >= 2) parame(i,11)= 9.63000000000000 + ELSE IF (compna(i) == 'acetonitrile') THEN + mm(i) = 41.052 ! PC-SAFT + parame(i,1) = mm(i)* 5.673187410405271E-002 ! =2.32895689571957 + parame(i,2) = 3.18980108373791 + parame(i,3) = 311.307486044181 + IF (pol >= 1) mm(i) = 41.052 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 5.254832931037250E-002 ! =2.15721401484941 + IF (pol >= 1) parame(i,2) = 3.27301469369132 + IF (pol >= 1) parame(i,3) = 216.888948676921 + IF (pol >= 1) parame(i,6) = 3.92520000000000 + IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 5.125846581157176E-002 ! =2.10426253849664 + IF (pol >= 2) parame(i,2) = 3.39403305120647 + IF (pol >= 2) parame(i,3) = 199.070191065791 + IF (pol >= 2) parame(i,6) = 3.92520000000000 + IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! IF (pol >= 2) mm(i) = 41.052 ! PCIP-SAFT my_DD adjusted + ! IF (pol >= 2) parame(i,1) = mm(i)* 5.755347845863738E-002 ! =2.36268539768398 + ! IF (pol >= 2) parame(i,2) = 3.18554306395900 + ! IF (pol >= 2) parame(i,3) = 225.143934506015 + ! IF (pol >= 2) parame(i,6) = 3.43151866932598 + ! IF (pol >= 2) parame(i,11)= 4.40000000000000 + ! mm(i) = 41.053 ! PCP-SAFT dipole and quadrupole + ! parame(i,1) = 1.79993 + ! parame(i,2) = 3.47366 + ! parame(i,3) = 211.001 + ! parame(i,6) = 3.93800 + ! parame(i,7) = 2.44000 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'dmf') THEN + mm(i) = 73.09 ! PC-SAFT + parame(i,1) = 2.388 + parame(i,2) = 3.658 + parame(i,3) = 363.77 + IF (pol >= 1) mm(i) = 73.09 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.269 + IF (pol >= 1) parame(i,2) = 3.714 + IF (pol >= 1) parame(i,3) = 331.56 + IF (pol >= 1) parame(i,6) = 3.82 + IF (pol >= 2) mm(i) = 73.09 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.375 + IF (pol >= 2) parame(i,2) = 3.667 + IF (pol >= 2) parame(i,3) = 308.42 + IF (pol >= 2) parame(i,6) = 3.82 + IF (pol >= 2) parame(i,11)= 7.81 + ELSE IF (compna(i) == 'chloroform') THEN + mm(i) = 119.377 ! PCIP-SAFT + parame(i,1) = 2.5957 + parame(i,2) = 3.4299 + parame(i,3) = 264.664 + parame(i,6) = 1.04 + IF (pol == 2) parame(i,11)= 8.23 + ELSE IF (compna(i) == 'dimethyl-ether') THEN + mm(i) = 46.069 ! PC-SAFT + parame(i,1) = mm(i)* 0.049107715 ! =2.26234331 + parame(i,2) = 3.276640534 + parame(i,3) = 212.9343244 + IF (pol >= 1) mm(i) = 46.0690000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.048170452 ! =2.219164566 + IF (pol >= 1) parame(i,2) = 3.296939638 + IF (pol >= 1) parame(i,3) = 212.1048888 + IF (pol >= 1) parame(i,6) = 1.30000000000000 + IF (pol >= 2) mm(i) = 46.0690000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.939183716945787E-002 ! =2.27543254655976 + IF (pol >= 2) parame(i,2) = 3.26584718800835 + IF (pol >= 2) parame(i,3) = 206.904551967059 + IF (pol >= 2) parame(i,6) = 1.30000000000000 + IF (pol == 2) parame(i,11)= 5.29000000000000 + ELSE IF (compna(i) == 'methyl-ethyl-ether') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0442404671 + parame(i,2) = 3.37282595 + parame(i,3) = 216.010217 + IF (pol >= 1) mm(i) = 60.096 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.3971676124088D-002 ! =2.64252184835325 + IF (pol >= 1) parame(i,2) = 3.37938465390 + IF (pol >= 1) parame(i,3) = 215.787173860 + IF (pol >= 1) parame(i,6) = 1.17000000000 + IF (pol >= 2) mm(i) = 60.096 ! PICP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.4580196137984D-002 ! =2.67909146710834 + IF (pol >= 2) parame(i,2) = 3.36105342286 + IF (pol >= 2) parame(i,3) = 212.871911999 + IF (pol >= 2) parame(i,6) = 1.17000000000 + IF (pol >= 2) parame(i,11) = 7.93000000000 + ELSE IF (compna(i) == 'diethyl-ether') THEN + mm(i) = 74.123 ! PC-SAFT + parame(i,1) = mm(i)* .0409704089 + parame(i,2) = 3.48569553 + parame(i,3) = 217.64113 + IF (pol >= 1) mm(i) = 74.123 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.0103121403686E-2 ! =2.97256367 + IF (pol >= 1) parame(i,2) = 3.51268687697978 + IF (pol >= 1) parame(i,3) = 219.527376572135 + IF (pol >= 1) parame(i,6) = 1.15000000000000 + IF (pol >= 2) mm(i) = 74.123 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.04144179873E-2 ! =2.9956379 + IF (pol >= 2) parame(i,2) = 3.501724569 + IF (pol >= 2) parame(i,3) = 217.8941822 + IF (pol >= 2) parame(i,6) = 1.15 + IF (pol == 2) parame(i,11)= 8.73 + ELSE IF (compna(i) == 'vinylacetate') THEN + mm(i) = 86.092 + parame(i,1) = mm(i)* .0374329292 + parame(i,2) = 3.35278602 + parame(i,3) = 240.492049 + ELSE IF (compna(i) == 'chloromethane') THEN ! R40 + mm(i) = 50.488 ! PC-SAFT + parame(i,1) = mm(i)* 0.039418879 ! 1.9902 + parame(i,2) = 3.1974 + parame(i,3) = 237.27 + IF (pol >= 1) mm(i) = 50.488 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.035790801 ! 1.8070 + IF (pol >= 1) parame(i,2) = 3.3034 + IF (pol >= 1) parame(i,3) = 229.97 + IF (pol >= 1) parame(i,6) = 1.8963 + IF (pol >= 1) lli(i) = 1.67703*parame(i,2) + IF (pol >= 1) phi_criti(i)= 20.75417 + IF (pol >= 1) chap(i) = 0.5 + IF (pol >= 2) mm(i) = 50.488 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.68559992E-2 ! 1.86078 + IF (pol >= 2) parame(i,2) = 3.275186 + IF (pol >= 2) parame(i,3) = 216.4621 + IF (pol >= 2) parame(i,6) = 1.8963 + IF (pol == 2) parame(i,11)= 4.72 + ELSE IF (compna(i) == 'fluoromethane') THEN ! R41 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for fluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 34.0329000000000 + IF (pol >= 1) parame(i,1) = 1.94494757526896 + IF (pol >= 1) parame(i,2) = 2.96858005012635 + IF (pol >= 1) parame(i,3) = 168.938697391009 + IF (pol >= 1) parame(i,6) = 1.57823038894029 + ELSE IF (compna(i) == 'dichloromethane') THEN ! R30 + mm(i) = 84.932 ! PC-SAFT + parame(i,1) = 2.3117 + parame(i,2) = 3.3161 + parame(i,3) = 270.98 + IF (pol >= 1) mm(i) = 84.932 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 2.2687 + IF (pol >= 1) parame(i,2) = 3.3373 + IF (pol >= 1) parame(i,3) = 269.08 + IF (pol >= 1) parame(i,6) = 1.6 + IF (pol >= 2) mm(i) = 84.932 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = 2.3435 + IF (pol >= 2) parame(i,2) = 3.2987 + IF (pol >= 2) parame(i,3) = 260.66 + IF (pol >= 2) parame(i,6) = 1.6 + IF (pol == 2) parame(i,11)= 6.48 + ELSE IF (compna(i) == 'difluoromethane') THEN ! R32 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for difluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 52.0236 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.814700934384165E-002 ! 2.50478075530028 + IF (pol >= 1) parame(i,2) = 2.79365980535456 + IF (pol >= 1) parame(i,3) = 160.893555378523 + IF (pol >= 1) parame(i,6) = 1.97850000000000 + ELSE IF (compna(i) == 'trifluoromethane') THEN ! R23 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 70.0138000000000 + IF (pol >= 1) parame(i,1) = 2.66039274225485 + IF (pol >= 1) parame(i,2) = 2.82905884530501 + IF (pol >= 1) parame(i,3) = 149.527709542333 + IF (pol >= 1) parame(i,6) = 1.339963415253999E-002 + ELSE IF (compna(i) == 'tetrachloromethane') THEN ! R10 + mm(i) = 153.822 + parame(i,1) = mm(i)* .0150432213 + parame(i,2) = 3.81801454 + parame(i,3) = 292.838632 + ELSE IF (compna(i) == 'trichlorofluoromethane') THEN ! R11 + IF (pol /= 1) write (*,*) 'non-polar parameters missing for trichlorofluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 137.368000000000 + IF (pol >= 1) parame(i,1) = 2.28793359008803 + IF (pol >= 1) parame(i,2) = 3.69013104930876 + IF (pol >= 1) parame(i,3) = 248.603173885090 + IF (pol >= 1) parame(i,6) = 0.23225538492979 + ELSE IF (compna(i) == 'chlorodifluoromethane') THEN ! R22 ( CHClF2 or CHF2Cl) + IF (pol /= 1) write (*,*) 'non-polar parameters missing for chlorodifluoromethane' + IF (pol /= 1) stop + IF (pol >= 1) mm(i) = 86.4684000000000 + IF (pol >= 1) parame(i,1) = 2.47218586047893 + IF (pol >= 1) parame(i,2) = 3.13845692489930 + IF (pol >= 1) parame(i,3) = 187.666355083434 + IF (pol >= 1) parame(i,6) = 1.04954264812860 + ELSE IF (compna(i) == 'chloroethane') THEN + mm(i) = 64.514 + parame(i,1) = mm(i)* .0350926868 + parame(i,2) = 3.41602397 + parame(i,3) = 245.42626 + ELSE IF (compna(i) == '11difluoroethane') THEN + ! mm(i) = 66.0500000000000 ! PC-SAFT + ! parame(i,1) = mm(i)* 4.109944338817734E-002 + ! parame(i,2) = 3.10257444633546 + ! parame(i,3) = 192.177159144029 + ! mm(i) = 66.05 ! PC-SAFT assoc + ! parame(i,1)= 2.984947188 + ! parame(i,2)= 2.978630027 + ! parame(i,3)= 137.8192282 + ! nhb_typ(i) = 2 + ! nhb_no(i,1)= 1 + ! nhb_no(i,2)= 1 + ! eps_hb(i,i,1,2)= 823.3478288 + ! eps_hb(i,i,2,1)= 823.3478288 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.96345994 + IF (pol >= 1) mm(i) = 66.0500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.949665745363346E-002 ! =2.60875422481249 + IF (pol >= 1) parame(i,2) = 3.13758353925036 + IF (pol >= 1) parame(i,3) = 179.517952627836 + IF (pol >= 1) parame(i,6) = 2.27000000000000 + IF (pol >= 1) lli(i) = 2.03907*parame(i,2) + IF (pol >= 1) phi_criti(i)= 26.5 + IF (pol >= 1) chap(i) = 0.4 + IF (pol >= 2) mm(i) = 66.0500000000000 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.093647666154238E-002 ! =2.70385428349487 + IF (pol >= 2) parame(i,2) = 3.10437129415885 + IF (pol >= 2) parame(i,3) = 170.464400902455 + IF (pol >= 2) parame(i,6) = 2.27000000000000 + IF (pol == 2) parame(i,11)= 5.01000000000000 + ELSE IF (compna(i) == '1-chlorobutane') THEN + mm(i) = 92.568 + parame(i,1) = mm(i)* .0308793201 + parame(i,2) = 3.64240187 + parame(i,3) = 258.655298 + ELSE IF (compna(i) == 'chlorobenzene') THEN + ! mm(i) = 112.558 + ! parame(i,1) = mm(i)* .0235308686 + ! parame(i,2) = 3.75328494 + ! parame(i,3) = 315.039018 + mm(i) = 112.558 ! PCIP-SAFT + parame(i,1) = mm(i)* 0.023824167 ! =2.6816 + parame(i,2) = 3.7352 + parame(i,3) = 308.82 + parame(i,6) = 1.69 + IF (pol == 2) parame(i,11)= 14.1 + ELSE IF (compna(i) == 'styrene') THEN + mm(i) = 104.150 + parame(i,1) = mm(i)* 2.9124104853E-2 + parame(i,2) = 3.760233548 + parame(i,3) = 298.51287564 + ELSE IF (compna(i) == 'methylmethanoate') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0446000264 + parame(i,2) = 3.08753499 + parame(i,3) = 242.626755 + IF (pol >= 1) mm(i) = 60.053 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.366991153963102E-002 ! =2.62250919768946 + IF (pol >= 1) parame(i,2) = 3.10946396964 + IF (pol >= 1) parame(i,3) = 239.051951942 + IF (pol >= 1) parame(i,6) = 1.77 + IF (pol >= 2) mm(i) = 60.053 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.492572388931002E-2 ! 2.69792449 + IF (pol >= 2) parame(i,2) = 3.078467837 + IF (pol >= 2) parame(i,3) = 232.1842551 + IF (pol >= 2) parame(i,6) = 1.77 + IF (pol == 2) parame(i,11)= 5.05 + ELSE IF (compna(i) == 'ethylmethanoate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* .03898009 + parame(i,2) = 3.31087192 + parame(i,3) = 246.465646 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.825407152074255E-002 ! =2.83382336418509 + IF (pol >= 1) parame(i,2) = 3.33160046679 + IF (pol >= 1) parame(i,3) = 244.495680932 + IF (pol >= 1) parame(i,6) = 1.93000000000 + ELSE IF (compna(i) == 'propylmethanoate') THEN + mm(i) = 88.106 + parame(i,1) = mm(i)* .0364206062 + parame(i,2) = 3.41679642 + parame(i,3) = 246.457732 + IF (pol >= 1) mm(i) = 88.106 + IF (pol >= 1) parame(i,1) = mm(i)* 3.60050739149E-2 ! =3.17226304235232 + IF (pol >= 1) parame(i,2) = 3.42957609309 + IF (pol >= 1) parame(i,3) = 245.637644107 + IF (pol >= 1) parame(i,6) = 1.89 + ELSE IF (compna(i) == 'methylacetate') THEN + mm(i) = 74.079 ! PC-SAFT + parame(i,1) = mm(i)* 4.286817177E-2 ! =3.175631296 + parame(i,2) = 3.18722021277843 + parame(i,3) = 234.106931032456 + IF (pol >= 1) mm(i) = 74.079 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.228922065E-2 ! =3.132743176 + IF (pol >= 1) parame(i,2) = 3.2011401688 + IF (pol >= 1) parame(i,3) = 233.17562886 + IF (pol >= 1) parame(i,6) = 1.72 + IF (pol >= 2) mm(i) = 74.079 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 4.298900538E-2 ! =3.18458252 + IF (pol >= 2) parame(i,2) = 3.180642322 + IF (pol >= 2) parame(i,3) = 229.3132680 + IF (pol >= 2) parame(i,6) = 1.72 + IF (pol == 2) parame(i,11)= 6.94 + ELSE IF (compna(i) == 'ethylacetate') THEN + mm(i) = 88.106 ! PC-SAFT + parame(i,1) = mm(i)* .0401464427 ! =3.537142481 + parame(i,2) = 3.30789258 + parame(i,3) = 230.800689 + IF (pol >= 1) mm(i) = 88.106 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 0.039792575 ! =3.505964572 + IF (pol >= 1) parame(i,2) = 3.317655188 + IF (pol >= 1) parame(i,3) = 230.2434769 + IF (pol >= 1) parame(i,6) = 1.78 + IF (pol >= 2) mm(i) = 88.106 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 0.040270267 ! =3.548052143 + IF (pol >= 2) parame(i,2) = 3.302097562 + IF (pol >= 2) parame(i,3) = 227.5026191 + IF (pol >= 2) parame(i,6) = 1.78 + IF (pol == 2) parame(i,11)= 8.62 + ELSE IF (compna(i) == 'ethyl-propanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0375692464 + parame(i,2) = 3.40306071 + parame(i,3) = 232.778374 + ELSE IF (compna(i) == 'propyl-ethanoate') THEN + mm(i) = 102.133 + parame(i,1) = mm(i)* .0370721275 + parame(i,2) = 3.42272266 + parame(i,3) = 235.758378 + IF (pol >= 1) mm(i) = 102.133 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.687149995200072E-2 ! =3.76579690459769 + IF (pol >= 1) parame(i,2) = 3.4289353421006 + IF (pol >= 1) parame(i,3) = 235.41679442910 + IF (pol >= 1) parame(i,6) = 1.78 + ! IF (pol.EQ.2) parame(i,11)= 10.41 + ELSE IF (compna(i) == 'nbutyl-ethanoate') THEN + mm(i) = 116.16 ! PC-SAFT + parame(i,1) = mm(i)* .03427004 + parame(i,2) = 3.54269638 + parame(i,3) = 242.515768 + IF (pol >= 1) mm(i) = 116.16 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 3.411585209773470E-002 ! =3.96289737967286 + IF (pol >= 1) parame(i,2) = 3.54821589228130 + IF (pol >= 1) parame(i,3) = 242.274388267447 + IF (pol >= 1) parame(i,6) = 1.87000000000000 + IF (pol >= 2) mm(i) = 116.16 ! PCIP-SAFT + IF (pol >= 2) parame(i,1) = mm(i)* 3.442139015733717E-002 ! =3.99838868067629 + IF (pol >= 2) parame(i,2) = 3.53576054452119 + IF (pol >= 2) parame(i,3) = 240.154409609249 + IF (pol >= 2) parame(i,6) = 1.87000000000000 + IF (pol == 2) parame(i,11)= 14.2000000000000 + ELSE IF (compna(i) == 'methyl-octanoate') THEN + mm(i) = 158.24 ! PC-SAFT + parame(i,1) = 5.2074 + parame(i,2) = 3.6069 + parame(i,3) = 244.12 + ELSE IF (compna(i) == 'methyl-decanoate') THEN + mm(i) = 186.2912 ! PC-SAFT + parame(i,1) = 5.8402 + parame(i,2) = 3.6871 + parame(i,3) = 248.27 + + mm(i) = 186.2912 ! PC-SAFT from GC-method Tim + parame(i,1) = 7.716 + parame(i,2) = 3.337303029 + parame(i,3) = 204.250907 + + mm(i) = 186.2912 ! PC-SAFT from GC-method (tightly fit) Tim + parame(i,1) = 7.728 + parame(i,2) = 3.334023322 + parame(i,3) = 206.9099379 + + ! mm(i) = 186.2912 ! PC-SAFT from fit to DIPPR + ! parame(i,1) = 6.285005 + ! parame(i,2) = 3.594888 + ! parame(i,3) = 236.781461 + ! ! parame(i,6) = 2.08056 + + ! mm(i) = 186.291000000000 + ! parame(i,1) = 6.28500485898895 + ! parame(i,2) = 3.59488828061149 + ! parame(i,3) = 236.781461491921 + ! parame(i,6) = 2.08055996894836 + ! parame(i,8) = 1.00000000000000 + mm(i) = 186.291000000000 + parame(i,1) = 6.14436331493372 + parame(i,2) = 3.61977264863944 + parame(i,3) = 242.071887817656 + + ELSE IF (compna(i) == 'methyl-dodecanoate') THEN + mm(i) = 214.344 ! PC-SAFT + parame(i,1) = 6.5153 + parame(i,2) = 3.7406 + parame(i,3) = 250.7 + ELSE IF (compna(i) == 'methyl-tetradecanoate') THEN + mm(i) = 242.398 ! PC-SAFT + parame(i,1) = 7.1197 + parame(i,2) = 3.7968 + parame(i,3) = 253.77 + ELSE IF (compna(i) == 'methyl-hexadecanoate') THEN + mm(i) = 270.451 ! PC-SAFT + parame(i,1) = 7.891 + parame(i,2) = 3.814 + parame(i,3) = 253.71 + ELSE IF (compna(i) == 'methyl-octadecanoate') THEN + mm(i) = 298.504 ! PC-SAFT + parame(i,1) = 8.8759 + parame(i,2) = 3.7932 + parame(i,3) = 250.81 + ELSE IF (compna(i) == 'CH2F2') THEN + mm(i) = 52.02 + parame(i,1) = 3.110084171 + parame(i,2) = 2.8145230485 + parame(i,3) = 158.98060151 + ELSE IF (compna(i) == 'naphthalene') THEN + ! mm(i) = 128.174000000 + ! parame(i,1) = mm(i)* 2.4877834216412E-2 + ! parame(i,2) = 3.82355815011 + ! parame(i,3) = 341.560675334 + + mm(i) = 128.17400000000 + parame(i,1) = mm(i)* 2.6400924157729E-2 + parame(i,2) = 3.8102186020014 + parame(i,3) = 328.96792935903 + ELSE IF (compna(i) == 'h2s') THEN + mm(i) = 34.0820000000000 ! PC-SAFT + parame(i,1) = mm(i)* 4.838886696385162E-002 ! = 1.64918936386199 + parame(i,2) = 3.05478289838459 + parame(i,3) = 229.838873939562 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 536.634834731413 + eps_hb(i,i,2,1)= 536.634834731413 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.000000000000000E-003 +! PC-SAFT from Xiaohua + mm(i) = 34.082 ! PC-SAFT + parame(i,1) = 1.63677 + parame(i,2) = 3.06565 + parame(i,3) = 230.2121 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 275.1088 + eps_hb(i,i,2,1)= 275.1088 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 1.E-2 + ! IF (pol.GE.1) mm(i) = 34.082 ! PCP-SAFT with quadrupole + ! IF (pol.GE.1) parame(i,1) = mm(i)* 3.03171032558E-2 ! =1.03326751316478 + ! IF (pol.GE.1) parame(i,2) = 3.6868189914018 + ! IF (pol.GE.1) parame(i,3) = 246.862831266172 + ! IF (pol.GE.1) nhb_typ(i) = 2 + ! IF (pol.GE.1) nhb_no(i,1) = 1 + ! IF (pol.GE.1) nhb_no(i,2) = 1 + ! IF (pol.GE.1) eps_hb(i,i,1,2)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,2,1)= 987.4927232 + ! IF (pol.GE.1) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.GE.1) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.GE.1) kap_hb(i,i) = 5.5480659623d-4 + ! IF (pol.GE.1) parame(i,6) = 0.97833 + ! IF (pol.GE.1) parame(i,7) = 3.8623 + ! IF (pol.GE.1) LLi(i) = 1.2737*parame(i,2) + ! IF (pol.GE.1) phi_criti(i)= 14.316 + ! IF (pol.GE.1) chap(i) = 0.4473 + IF (pol >= 1) mm(i) = 34.0820000000000 ! PCP-SAFT no quadrupoLE + IF (pol >= 1) parame(i,1) = mm(i)* 4.646468487062725E-002 ! 1.58360938976072 + IF (pol >= 1) parame(i,2) = 3.10111012646306 + IF (pol >= 1) parame(i,3) = 230.243457544889 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,2,1)= 584.367708701411 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1) parame(i,6) = 0.978330000000000 + + IF (pol >= 1) lli(i) = 1.2737*parame(i,2) + IF (pol >= 1) phi_criti(i)= 14.316 + IF (pol >= 1) chap(i) = 0.4473 + + + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) mm(i) = 34.0820000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.806418212963168E-002 ! 1.63812345534211 + IF (pol == 2) parame(i,2) = 3.06556006883749 + IF (pol == 2) parame(i,3) = 221.746622243054 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,2,1)= 672.164783984789 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.000000000000000E-003 + IF (pol == 2) parame(i,6) = 0.978330000000000 + IF (pol == 2) parame(i,11) = 3.60200000000000 + IF (pol == 2) parame(i,7) = 0.0 + + IF (pol >= 1)mm(i) = 34.0820000000000 !PCP-SAFT D&Q + IF (pol >= 1)parame(i,1) = mm(i)* 3.974667896078737E-002 ! = 1.35464631234155 + IF (pol >= 1)parame(i,2) = 3.30857082333438 + IF (pol >= 1)parame(i,3) = 234.248947273191 + IF (pol >= 1)nhb_typ(i) = 2 + IF (pol >= 1)nhb_no(i,1) = 1 + IF (pol >= 1)nhb_no(i,2) = 1 + IF (pol >= 1)eps_hb(i,i,1,2)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,2,1)= 780.770936834770 + IF (pol >= 1)eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1)eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1)kap_hb(i,i) = 1.000000000000000E-003 + IF (pol >= 1)parame(i,6) = 0.978330000000000 + IF (pol >= 1)parame(i,7) = 2.93750500000000 + + ELSE IF (compna(i) == 'methanol') THEN + mm(i) = 32.042 ! PC-SAFT + parame(i,1) = mm(i)* .0476100379 + parame(i,2) = 3.23000005 + parame(i,3) = 188.904644 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2899.49055 + eps_hb(i,i,2,1)= 2899.49055 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0351760892 + IF (pol >= 1) mm(i) = 32.042 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 7.213091821E-2 ! =2.31121888139672 + IF (pol >= 1) parame(i,2) = 2.8270129502 + IF (pol >= 1) parame(i,3) = 176.3760515 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,2,1)= 2332.5845803 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 8.9248658086E-2 + IF (pol >= 1) parame(i,6) = 1.7 + IF (pol >= 1) lli(i) = 1.75*parame(i,2) + IF (pol >= 1) phi_criti(i)= 23.43 + IF (pol >= 1) chap(i) = 0.304 + IF (pol == 2) mm(i) = 32.042 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = 2.0693 + IF (pol == 2) parame(i,2) = 2.9547 + IF (pol == 2) parame(i,3) = 174.51 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2418.5 + IF (pol == 2) eps_hb(i,i,2,1)= 2418.5 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 0.06319 + IF (pol == 2) parame(i,6) = 1.7 + IF (pol == 2) parame(i,11)= 3.29 + ! mm(i) = 32.0420000000000 ! PCP-SAFT with adjusted QQ + ! parame(i,1) = mm(i)* 6.241807629559099E-002 + ! ! parame(i,1) = 2.00000000066333 + ! parame(i,2) = 2.97610169698593 + ! parame(i,3) = 163.268505098639 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2449.55621933612 + ! eps_hb(i,i,2,1)= 2449.55621933612 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 8.431015160393653E-002 + ! parame(i,6) = 1.72000000000000 + ! parame(i,7) = 1.59810028824523 + ELSE IF (compna(i) == 'ethanol') THEN + mm(i) = 46.069 + parame(i,1) = mm(i)* .0517195521 + parame(i,2) = 3.17705595 + parame(i,3) = 198.236542 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2653.38367 + eps_hb(i,i,2,1)= 2653.38367 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0323840159 + IF (pol >= 1) mm(i) = 46.0690000000000 + IF (pol >= 1) parame(i,1) = mm(i)* 4.753626908781145E-002 ! =2.18994838060639 + IF (pol >= 1) parame(i,2) = 3.30120000000000 + IF (pol >= 1) parame(i,3) = 209.824555801706 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,2,1)= 2584.53116785767 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.349382956935725E-002 + IF (pol >= 1) parame(i,6) = 1.69000000000000 + ! mm(i) = 46.0690000000000 + ! parame(i,1) = mm(i)* 5.117957752785066E-002 ! =2.357791957 + ! parame(i,2) = 3.24027031244304 + ! parame(i,3) = 175.657110615456 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2273.62670516146 + ! eps_hb(i,i,2,1)= 2273.62670516146 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 7.030279197039477E-002 + ! parame(i,6) = 1.69000000000000 + ! parame(i,7) = 3.63701294195013 + IF (pol == 2) mm(i) = 46.0690000000000 + IF (pol == 2) parame(i,1) = mm(i)* 4.733436280008321E-002 ! =2.18064676 + IF (pol == 2) parame(i,2) = 3.31260000000000 + IF (pol == 2) parame(i,3) = 207.594119926613 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,2,1)= 2589.68311382661 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 2.132561218631547E-002 + IF (pol == 2) parame(i,6) = 1.69000000000000 + IF (pol == 2) parame(i,7) = 0.0 + IF (pol == 2) parame(i,11)= 5.11000000000000 + ELSE IF (compna(i) == '1-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0499154461 + parame(i,2) = 3.25221234 + parame(i,3) = 233.396705 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2276.77867 + eps_hb(i,i,2,1)= 2276.77867 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0152683094 + ELSE IF (compna(i) == '1-butanol') THEN + mm(i) = 74.123 + parame(i,1) = mm(i)* .0341065046 + parame(i,2) = 3.72361538 + parame(i,3) = 269.798048 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2661.37119 + eps_hb(i,i,2,1)= 2661.37119 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00489087833 + mm(i) = 74.1230000000000 + parame(i,1) = mm(i)* 3.329202420547412E-002 ! =2.46770471018236 + parame(i,2) = 3.76179376417092 + parame(i,3) = 270.237284242002 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 2669.28754983370 + eps_hb(i,i,2,1)= 2669.28754983370 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 4.855584122733399E-003 + parame(i,6) = 1.66000000000000 + ELSE IF (compna(i) == '1-pentanol') THEN + mm(i) = 88.15 ! PC-SAFT + parame(i,1) = mm(i)* .041134139 + parame(i,2) = 3.45079143 + parame(i,3) = 247.278748 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2252.09237 + eps_hb(i,i,2,1)= 2252.09237 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0103189939 + IF (pol >= 1) mm(i) = 88.1500000000000 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = mm(i)* 4.138903382168521E-002 ! =3.64844333138155 + IF (pol >= 1) parame(i,2) = 3.44250118689142 + IF (pol >= 1) parame(i,3) = 246.078034174947 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,2,1)= 2236.72830142446 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 1.040067895187016E-002 + IF (pol >= 1) parame(i,6) = 1.70000000000000 + IF (pol == 2) mm(i) = 88.1500000000000 ! PCIP-SAFT + IF (pol == 2) parame(i,1) = mm(i)* 4.161521814399406E-002 ! =3.66838147939308 + IF (pol == 2) parame(i,2) = 3.43496654431777 + IF (pol == 2) parame(i,3) = 244.177313808431 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,2,1)= 2241.27880639096 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 1.049516309928397E-002 + IF (pol == 2) parame(i,6) = 1.70000000000000 + IF (pol == 2) parame(i,11)= 10.8000000000000 + ELSE IF (compna(i) == '1-octanol') THEN + mm(i) = 130.23 + parame(i,1) = mm(i)* .0334446084 + parame(i,2) = 3.714535 + parame(i,3) = 262.740637 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2754.77272 + eps_hb(i,i,2,1)= 2754.77272 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00219656803 + ELSE IF (compna(i) == '1-nonanol') THEN + mm(i) = 144.257 + parame(i,1) = mm(i)* .0324692669 + parame(i,2) = 3.72924286 + parame(i,3) = 263.636673 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2941.9231 + eps_hb(i,i,2,1)= 2941.9231 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00142696883 + ELSE IF (compna(i) == '2-propanol') THEN + mm(i) = 60.096 + parame(i,1) = mm(i)* .0514663133 + parame(i,2) = 3.20845858 + parame(i,3) = 208.420809 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2253.91064 + eps_hb(i,i,2,1)= 2253.91064 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0246746934 + ELSE IF (compna(i) == '2-methyl-2-butanol') THEN + mm(i) = 88.15 + parame(i,1) = mm(i)* .0289135026 + parame(i,2) = 3.90526707 + parame(i,3) = 266.011828 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2618.80124 + eps_hb(i,i,2,1)= 2618.80124 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .00186263367 + ELSE IF (compna(i) == 'acetic-acid') THEN + mm(i) = 60.053 + parame(i,1) = mm(i)* .0227076949 + parame(i,2) = 3.79651163 + parame(i,3) = 199.225066 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3092.40109 + eps_hb(i,i,2,1)= 3092.40109 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0870093874 + + + mm(i) = 60.053 + parame(i,1) = mm(i)* .0181797646 + parame(i,2) = 4.13711044 + parame(i,3) = 207.552969 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3198.84362 + eps_hb(i,i,2,1)= 3198.84362 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0586552968 + +! mit gesetztem Dipol-Moment + mm(i) = 60.0530000000000 + parame(i,1) = mm(i)* 1.736420143637533E-002 + parame(i,2) = 4.25220708070687 + parame(i,3) = 190.957247854820 + parame(i,6) = 3.50000000000000 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3096.36190957945 + eps_hb(i,i,2,1)= 3096.36190957945 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 6.154307094782551E-002 + + ELSE IF (compna(i) == 'propionic-acid') THEN + mm(i) = 74.0800000000000 + parame(i,1) = mm(i)* 2.359519915877884E-002 + parame(i,2) = 3.99339224153844 + parame(i,3) = 295.947729838532 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2668.97826430874 + eps_hb(i,i,2,1)= 2668.97826430874 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 3.660242292423115E-002 + ELSE IF (compna(i) == 'acrylic-acid') THEN + mm(i) = 72.0636 + parame(i,1) = mm(i)* .0430585424 + parame(i,2) = 3.0545415 + parame(i,3) = 164.115604 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 3065.40667 + eps_hb(i,i,2,1)= 3065.40667 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .336261669 + ELSE IF (compna(i) == 'caproic-acid') THEN + mm(i) = 116.16 + parame(i,1) = 5.87151 + parame(i,2) = 3.0694697 + parame(i,3) = 241.4569 + nhb_typ(i) = 1 + eps_hb(i,i,1,1)= 2871.37 + kap_hb(i,i) = 3.411613D-3 + ELSE IF (compna(i) == 'aniline') THEN + mm(i) = 93.13 + parame(i,1) = mm(i)* .0285695992 + parame(i,2) = 3.70214085 + parame(i,3) = 335.471062 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 1351.64234 + eps_hb(i,i,2,1)= 1351.64234 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0748830615 + + mm(i) = 93.1300000000000 + parame(i,1) = mm(i)* 2.834372610192228E-002 ! =2.63965121187202 + parame(i,2) = 3.71326867619433 + parame(i,3) = 332.253796842009 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 1392.14266886674 + eps_hb(i,i,2,1)= 1392.14266886674 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 7.424612087328866E-002 + parame(i,6) = 1.55000000000000 + IF (pol == 2) parame(i,11)= 12.1000000000000 + ELSE IF (compna(i) == 'HF') THEN + ! mm(i) = 20.006 ! PC-SAFT + ! parame(i,1) = 0.87731 + ! parame(i,2) = 3.0006 + ! parame(i,3) = 112.24 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2208.22 + ! eps_hb(i,i,2,1)= 2208.22 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.71265 + mm(i) = 20.0060000000000 ! PCP-SAFT + parame(i,1) = 1.00030000000000 + parame(i,2) = 3.17603622195029 + parame(i,3) = 331.133373208282 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 + nhb_no(i,2) = 1 + eps_hb(i,i,1,2)= 348.251433080979 + eps_hb(i,i,2,1)= 348.251433080979 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 2.868887975449893E-002 + parame(i,6) = 1.82600000000000 + ELSE IF (compna(i) == 'HCl') THEN + ! mm(i) = 36.4610000000000 + ! parame(i,1) = mm(i)* 3.922046741026943E-002 + ! parame(i,2) = 3.08731180727493 + ! parame(i,3) = 203.898845304388 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 245.462773177367 + ! eps_hb(i,i,2,1)= 245.462773177367 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.256454187330899 + mm(i) = 36.461 ! PCIP-SAFT + parame(i,1) = 1.6335 + parame(i,2) = 2.9066 + parame(i,3) = 190.17 + parame(i,6) = 1.1086 + IF (pol == 2) parame(i,11)= 2.63 + ELSE IF (compna(i) == 'gen') THEN + mm(i) = 302.0 + parame(i,1) = 8.7563 + parame(i,2) = 3.604243 + parame(i,3) = 255.6434 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 0.0 + eps_hb(i,i,2,1)= 0.0 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = 0.02 + ELSE IF (compna(i) == 'h2o') THEN + mm(i) = 18.015 + parame(i,1) = mm(i)* .05915 + parame(i,2) = 3.00068335 + parame(i,3) = 366.512135 + nhb_typ(i) = 2 + nhb_no(i,1) = 1 ! no. of sites of type 1 + nhb_no(i,2) = 1 ! no. of sites of type 2 + eps_hb(i,i,1,2)= 2500.6706 + eps_hb(i,i,2,1)= 2500.6706 + eps_hb(i,i,1,1)= 0.0 + eps_hb(i,i,2,2)= 0.0 + kap_hb(i,i) = .0348679836 + + ! mm(i) = 18.015 + ! parame(i,1) = 1.706 + ! parame(i,2) = 2.429 + ! parame(i,3) = 242.19 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 2644.2 + ! eps_hb(i,i,2,1)= 2644.2 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.153 + + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* .0588185709 + ! parame(i,2) = 3.02483704 + ! parame(i,3) = 382.086672 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 2 ! no. of sites of type 2 + !c! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! + ! eps_hb(i,i,1,2)= 2442.49782 + ! eps_hb(i,i,2,1)= 2442.49782 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = .0303754635 + + ! mit gefittetem Dipol-Moment - Haarlem-night + ! mm(i) = 18.015 + ! parame(i,1) = mm(i)* 7.0037160952278E-2 + ! parame(i,2) = 2.79276650240763 + ! parame(i,3) = 270.970053834558 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 ! no. of sites of type 1 + ! nhb_no(i,2) = 1 ! no. of sites of type 2 + ! eps_hb(i,i,1,2)= 1427.8287 + ! eps_hb(i,i,2,1)= 1427.8287 + ! eps_hb(i,i,1,1)=0.0 + ! eps_hb(i,i,2,2)=0.0 + ! kap_hb(i,i) = 4.335167238E-2 + ! parame(i,6) = 3.968686856378 + + IF (pol >= 1) mm(i) = 18.015 ! PCP-SAFT + IF (pol >= 1) parame(i,1) = 0.922688825223317 + IF (pol >= 1) parame(i,2) = 3.17562052023944 + IF (pol >= 1) parame(i,3) = 388.462197714696 + IF (pol >= 1) nhb_typ(i) = 2 + IF (pol >= 1) nhb_no(i,1) = 1 + IF (pol >= 1) nhb_no(i,2) = 1 + IF (pol >= 1) eps_hb(i,i,1,2)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,2,1)= 2000.67247409031 + IF (pol >= 1) eps_hb(i,i,1,1)= 0.0 + IF (pol >= 1) eps_hb(i,i,2,2)= 0.0 + IF (pol >= 1) kap_hb(i,i) = 2.040614952751225E-003 + IF (pol >= 1) parame(i,6) = 1.85500000000000 + IF (pol >= 1) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_RPT + ! IF (pol.EQ.2) parame(i,1) = 1.0 + ! IF (pol.EQ.2) parame(i,2) = 3.14540664928026 + ! IF (pol.EQ.2) parame(i,3) = 320.283823615925 + ! IF (pol.EQ.2) nhb_typ(i) = 2 + ! IF (pol.EQ.2) nhb_no(i,1) = 2 + ! IF (pol.EQ.2) nhb_no(i,2) = 2 + ! IF (pol.EQ.2) eps_hb(i,i,1,2)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,2,1)= 1335.72887678032 + ! IF (pol.EQ.2) eps_hb(i,i,1,1)= 0.0 + ! IF (pol.EQ.2) eps_hb(i,i,2,2)= 0.0 + ! IF (pol.EQ.2) kap_hb(i,i) = 4.162619960844732E-003 + ! IF (pol.EQ.2) parame(i,6) = 1.85500000000000 + ! IF (pol.EQ.2) parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.0150000000000 + ! parame(i,1) = 1.0 + ! parame(i,2) = 3.11505069470915 + ! parame(i,3) = 320.991387913502 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 2037.76329812542 + ! eps_hb(i,i,2,1)= 2037.76329812542 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 3.763148982832804E-003 + ! parame(i,6) = 1.85500000000000 + ! parame(i,7) = 2.00000000000000 + ! IF (pol.EQ.2) parame(i,11)= 1.45000000000000 + IF (pol == 2) mm(i) = 18.015 ! PCIP-SAFT - DQ with my=my_0 + IF (pol == 2) parame(i,1) = 1.0 + IF (pol == 2) parame(i,2) = 3.11574491885322 + IF (pol == 2) parame(i,3) = 322.699984283499 + IF (pol == 2) nhb_typ(i) = 2 + IF (pol == 2) nhb_no(i,1) = 1 + IF (pol == 2) nhb_no(i,2) = 1 + IF (pol == 2) eps_hb(i,i,1,2)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,2,1)= 2033.87777692450 + IF (pol == 2) eps_hb(i,i,1,1)= 0.0 + IF (pol == 2) eps_hb(i,i,2,2)= 0.0 + IF (pol == 2) kap_hb(i,i) = 3.815764667176484E-003 + IF (pol == 2) parame(i,6) = 1.85500000000000 + IF (pol == 2) parame(i,7) = 2.00000000000000 + IF (pol == 2) parame(i,11)= 1.45000000000000 + ! mm(i) = 18.015 ! Dortmund + ! parame(i,1) = 0.11065254*mm(i) + ! parame(i,2) = 2.36393615 + ! parame(i,3) = 300.288589 + ! nhb_typ(i) = 2 + ! nhb_no(i,1) = 1 + ! nhb_no(i,2) = 1 + ! eps_hb(i,i,1,2)= 1193.45585 + ! eps_hb(i,i,2,1)= 1193.45585 + ! eps_hb(i,i,1,1)= 0.0 + ! eps_hb(i,i,2,2)= 0.0 + ! kap_hb(i,i) = 0.091203519 + ! parame(i,6) = 1.8546 + ! parame(i,7) = 0.0 + ! parame(i,11)= 0.0 + ELSE IF (compna(i) == 'MBBA') THEN + mm(i) = 267.37 + parame(i,1) = 12.194 + parame(i,2) = 3.064 + parame(i,3) = 270.7 + e_lc(i,i) = 13.7 !Hino & Prausnitz + s_lc(i,i) = 0.176 !Hino & Prausnitz + ELSE IF (compna(i) == 'PCH5') THEN + mm(i) = 255.41 + parame(i,1) = 11.6 + parame(i,2) = 3.2 + parame(i,3) = 270.7 + ! E_LC(i,i) = 16.7 !Hino & Prausnitz + ! S_LC(i,i) = 0.176 !Hino & Prausnitz + e_lc(i,i) = 8.95 + s_lc(i,i) = 0.2 + + ! mm(i) = 255.41 + ! parame(i,1) = 11.6 + ! parame(i,2) = 3.2 + ! parame(i,3) = 290.7 + ! E_LC(i,i) = 7.18 + ! S_LC(i,i) = 0.2 + + ELSE IF (compna(i) == 'Li') THEN + mm(i) = 6.9 + parame(i,1) = 1.0 + parame(i,2) = 1.4 + parame(i,3) = 96.83 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.008 + ELSE IF (compna(i) == 'Na') THEN + mm(i) = 23.0 + parame(i,1) = 1.0 + parame(i,2) = 1.9 + parame(i,3) = 147.38 + parame(i,10)= 1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 8946.28257 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.001648933 + ELSE IF (compna(i) == 'Ka') THEN + mm(i) = 39.1 + parame(i,1) = 1.0 + parame(i,2) = 2.66 + parame(i,3) = 221.44 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 3 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 3118.336216 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cs') THEN + mm(i) = 132.9 + parame(i,1) = 1.0 + parame(i,2) = 3.38 + parame(i,3) = 523.28 + parame(i,10)= 1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 3 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Cl') THEN + mm(i) = 35.5 + parame(i,1) = 1.0 + parame(i,2) = 3.62 + parame(i,3) = 225.44 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 6744.12509 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00155252 + ELSE IF (compna(i) == 'Br') THEN + mm(i) = 79.9 + parame(i,1) = 1.0 + parame(i,2) = 3.9 + parame(i,3) = 330.82 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 4516.033227 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'Io') THEN + mm(i) = 126.9 + parame(i,1) = 1.0 + parame(i,2) = 4.4 + parame(i,3) = 380.60 + parame(i,10)= -1.0 +! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 1631.203342 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'OH') THEN + mm(i) = 17.0 + parame(i,1) = 1.0 + parame(i,2) = 3.06 + parame(i,3) = 217.26 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + nhb_typ(i) = 1 + nhb_no(i,1) = 4 ! no. of sites of type 1 + eps_hb(i,i,1,1)= 14118.68089 ! 25C, 3 sites, dG-ref-1 + kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'NO3') THEN + mm(i) = 62.0 + parame(i,1) = 1.0 + parame(i,2) = 4.12 + parame(i,3) = 239.48 + parame(i,10)= -1.0 + ! the self-association is set to zero in routine F_EXPL for ions + ! nhb_typ(i) = 1 + ! nhb_no(i,1) = 4 ! no. of sites of type 1 + ! eps_hb(i,i,1,1)= 2000.0 + ! kap_hb(i,i) = 0.00200559 + ELSE IF (compna(i) == 'bf4') THEN + mm(i) = 86.8 + parame(i,1) = 1.0 + parame(i,2) = 4.51 ! *0.85 + parame(i,3) = 164.7 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'pf6') THEN + mm(i) = 145.0 + parame(i,1) = 1.0 + parame(i,2) = 5.06 + parame(i,3) = 224.9 + parame(i,10)= -1.0 + ELSE IF (compna(i) == 'emim') THEN + mm(i) = 111.16 + parame(i,1) = 3.11 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'bmim') THEN + mm(i) = 139.21 + ! parame(i,1) = 2.81 + ! parame(i,2) = 3.5 + parame(i,1) = 3.81 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,6) = 0.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'hmim') THEN + mm(i) = 167.27 + parame(i,1) = 4.53 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'omim') THEN + mm(i) = 195.32 + parame(i,1) = 5.30 + parame(i,2) = 4.0 + parame(i,3) = 250.0 + parame(i,10)= 1.0 + ELSE IF (compna(i) == 'sw') THEN + parame(i,1) = 1.0 + parame(i,2) = 1.0 + parame(i,3) = 100.0 + parame(i,4) = 0.0 + parame(i,5) = 0.0 + mm(i) = 1.0 + parame(i,6) = 0.1175015839*2.0 + ! use Temp. in Kelvin in the input-file. For dimensionless quantities + ! (P*=P*sig**3/epsilon, T*=T*kBol/epsilon, rho*=rho*sig**3) calculate + ! P* = P *1E5 * (1.e-10)^3 / (100*8.31441/6.022045E+23) + ! T* = (T+273.15)/100 + ! for rho* go to utilities.f (subroutine SI_DENS) and write + ! density(ph) = dense(ph)*6.0/PI + ELSE IF (compna(i) == 'c8-sim') THEN + mm(i) = 114.231 + parame(i,1) = mm(i)* 4.095944E-2 ! =4.67883774717337 + parame(i,2) = 3.501769 + parame(i,3) = 163.8606 + ! mm(i) = 114.231000000000 + ! parame(i,1) = mm(i)* 3.547001476437745E-002 ! =4.05177525654960 + ! parame(i,2) = 3.70988567055814 + ! parame(i,3) = 192.787548176343 + ELSE IF (compna(i) == 'argon_ge') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 100.188975 + ELSE IF (compna(i) == 'argon_ge2') THEN + mm(i) = 39.948 + parame(i,1) = mm(i)*0.030327 + parame(i,2) = 3.149910 + parame(i,3) = 0.8*100.188975 + ELSE + WRITE (*,*) ' pure component parameters missing for ',compna(i) + STOP + END IF + + IF (pol == 2.AND.parame(i,11) == 0.0) THEN + WRITE (*,*) ' polarizability missing for comp. ',compna(i) + STOP + END IF + + IF (nhb_typ(i) /= 0) THEN + parame(i,12) = DBLE(nhb_typ(i)) + parame(i,13) = kap_hb(i,i) + no = 0 + DO j=1,nhb_typ(i) + DO k=1,nhb_typ(i) + parame(i,(14+no))=eps_hb(i,i,j,k) + no=no+1 + END DO + END DO + DO j=1,nhb_typ(i) + parame(i,(14+no))=DBLE(nhb_no(i,j)) + no=no+1 + END DO + ELSE + DO k=12,25 + parame(i,k)=0.0 + END DO + END IF + +END DO + + +DO i = 1,ncomp + DO j = 1,ncomp + IF (compna(i) == 'ps'.AND.compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.0075 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'ethylene')THEN +! -- 0 Gew.% VA------------- + ! kij(i,j) = 0.039 +! -- 7.5 Gew.% VA------------- + ! kij(i,j) = 0.0377325 + ! kij(i,j) = 0.0374867 +! ---12.7 Gew.% VA------------ + ! kij(i,j) = 0.036854 + ! kij(i,j) = 0.0366508 +! ---27.3 Gew.% VA------------ + ! kij(i,j) = 0.034386 + ! kij(i,j) = 0.0352375 +! ---31.8 Gew.% VA------------ + kij(i,j) = 0.033626 + ! kij(i,j) = 0.0350795 +! ---42.7 Gew.% VA------------ + ! kij(i,j) = 0.031784 + ! kij(i,j) = 0.035239 + ELSE IF(compna(i) == 'ps_J'.AND.compna(j) == 'co2_J')THEN !from: Xu, Diego: DFT for polymer-co2 mixtures: A PC-SAFT approach + kij(i,j) = - 0.00296 + ELSE IF(compna(i) == 'gen'.AND.compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 + ELSE IF(compna(i) == 'peva'.AND.compna(j) == 'vinylacetate')THEN + kij(i,j) = 0.019 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'co2') THEN + IF ( pol == 0 ) kij(i,j) = 0.195 + IF ( pol == 1 ) kij(i,j) = 0.06 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.021 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'hexane') THEN + kij(i,j) = 0.012 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'pentane')THEN + kij(i,j) = 0.005 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'methylcyclohexane') THEN + kij(i,j) = 0.0073 + ELSE IF(compna(i) == 'ps'.AND.compna(j) == 'ethylbenzene')THEN + kij(i,j) = 0.008 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.181 + kij(i,j) = 0.088 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0206 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'argon') THEN + kij(i,j) = 0.01 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'butane') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'pentane') THEN + ! kij(i,j) = -0.0195 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'hexane') THEN + ! kij(i,j) = 0.008 + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.0404 + ! kij(i,j) = 0.0423 + ! kij(i,j) = 0.044 + ELSE IF(compna(i) == 'pe'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'ldpe'.AND.compna(j) == 'cyclopentane')THEN + kij(i,j) = -0.016 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.0242 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'pentane') THEN + kij(i,j) = 0.0137583176 + ELSE IF(compna(i) == 'pp'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.1767 ! without quadrupol-term + kij(i,j) = 0.063 ! with quadrupol-term + ELSE IF(compna(i) == 'pba'.AND.compna(j) == 'ethylene') THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'n2'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = -0.04 + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.051875 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.0353125 ! PCP-SAFT + ELSE IF(compna(i) == 'methane'.AND.compna(j) == 'co') THEN + ! IF (pol == 1) kij(i,j) = -0.003 ! PCP-SAFT + IF (pol == 1) kij(i,j) = 0.018 ! PCP-SAFT + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.095 + kij(i,j) = 0.021 + ! kij(i,j) = 0.024 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.042 + ELSE IF(compna(i) == 'argon_ge'.AND.compna(j) == 'argon_ge2') THEN + read (*,*) kij(i,j) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.115 + ! kij(i,j) = 0.048 + kij(i,j) = 0.036 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.143 ! without quadrupol-term + kij(i,j) = 0.0 ! with quadrupol-term + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.125 ! without quadrupol-term + kij(i,j) = 0.0495 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.11 ! without quadrupol-term + ! kij(i,j) = 0.05 + ! kij(i,j) = 0.039 ! with quadrupol-term + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.128 ! without quadrupol-term + kij(i,j) = 0.053 ! with quadrupol-term + ELSE IF(compna(i) == 'dodecane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.12 ! without quadrupol-term + kij(i,j) = 0.0508 ! with quadrupol-term + ELSE IF(compna(i) == 'benzene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.087968750000 ! without quadrupol-term + ! kij(i,j) = 0.008203125 ! only co2 quadrupol + kij(i,j) = 0.042 ! both quadrupol + ! kij(i,j) = 0.003 ! both quadrupol + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'co2') THEN + ! kij(i,j) = 0.110784912 ! without quadrupol-term + kij(i,j) = 0.0305 ! with quadrupol-term + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'co2') THEN + kij(i,j) = 0.13 + lij(i,j) = - 0.00 + ! kij(i,j) = 0.045 + ELSE IF(compna(i) == 'chloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.04 ! PC-SAFT + kij(i,j) = 0.025 ! PCP-SAFT + ! kij(i,j) = 0.083 ! PCIP-SAFT + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'n2')THEN + kij(i,j) = 0.035211 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + kij(i,j) = 0.023 ! PCP-SAFT + lij(i,j) = + 0.013225 ! PCP-SAFT + !kij(i,j) = 1.722238535635467E-002 ! PCP-SAFT + !lij(i,j) = 2.815974678394451E-003 ! PCP-SAFT + !kij(i,j) = 1.931522058164026E-002 ! PCP-SAFT + !lij(i,j) = 0.0 ! PCP-SAFT + !kij(i,j) = 1.641053794134795E-002 ! PCP-SAFT + !lij(i,j) = -5.850421759950764E-003 ! PCP-SAFT + if ( num == 0 ) write (*,*) 'calculation with lij only possible with num=1' + if ( num == 0 ) stop + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.015 ! PC-SAFT + IF (pol == 1) kij(i,j) = -0.02 ! PCP-SAFT + IF (pol == 2) kij(i,j) = -0.005 ! PCIP-SAFT where DQ with my=my_vacuum + ! IF (pol.EQ.2) kij(i,j) = 0.0 ! PCIP-SAFT where DQ with my=my_RPT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.0288 ! PC-SAFT + ! kij(i,j) = - 0.035 ! PCP-SAFT for co2 and PC-SAFT methanol + ! kij(i,j) = - 0.035 ! PCP-SAFT + ! lij(i,j) = 0.3 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.00896894 ! PC-SAFT + ! kij(i,j) = - 0.015 ! PCP-SAFT + ELSE IF(compna(i) == 'dimethyl-ether'.AND.compna(j) == 'h2o')THEN + ! kij(i,j) = -0.134 ! PC-SAFT + ELSE IF(compna(i) == 'dichloromethane'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.06881725 ! PC-SAFT + ! kij(i,j) = 0.05839145 ! PCP-SAFT + kij(i,j) = -0.00944346 ! PCP-SAFT co2 dichloromethane PC-SAFT + ! kij(i,j) = 0.06 ! PCIP-SAFT + ELSE IF(compna(i) == 'h2s'.AND.compna(j) == 'methane')THEN + ! kij(i,j) = 0.0414 ! PC-SAFT + kij(i,j) = 0.0152 ! PCP-SAFT Dipole momnet (d with Q) + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'h2s')THEN + kij(i,j) = -0.002 ! PCP-SAFT + ELSE IF(compna(i) == 'methanol'.AND.compna(j) == 'h2s')THEN + kij(i,j) = 0.0 ! PCP-SAFT + lij(i,j) = 0.0 ! PCP-SAFT + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hydrogen') THEN + ! lij(i,j) = -0.08 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == 'propane'.AND.compna(j) == 'n2') THEN + kij(i,j) = 0.0251171875 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == 'hexadecane') THEN + ! kij(i,j) = 0.1194 ! PC-SAFT ohne QQ + kij(i,j) = 0.0588 + ELSE IF(compna(i) == 'ethane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.038 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'butane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.065 ! no DD + kij(i,j) = 0.037 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.072 ! no DD + ! kij(i,j) = 0.041 ! DD non-polarizable + kij(i,j) = 0.039 ! DD polarizable + ! kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.063 + kij(i,j) = 0.038 ! PCP-SAFT + ! kij(i,j) = 0.036 ! PCIP-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'acetone') THEN + kij(i,j) = 0.035 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.059 ! no DD + ! kij(i,j) = 0.03281250 ! DD non-polarizable + kij(i,j) = 0.028 ! DD polarizable + ELSE IF(compna(i) == 'hexadecane'.AND.compna(j) == 'acetone') THEN + ! kij(i,j) = 0.07 ! no DD + ! kij(i,j) = 0.0415 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.027 ! PCP-SAFT + ! kij(i,j) = 0.033 ! PCP-SAFT with lij + ! lij(i,j) = 0.13 ! PCP-SAFT + ! kij(i,j) = 0.042 ! PC-SAFT + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanone')THEN + kij(i,j) = 0.042 ! no DD + ! kij(i,j) = 0.027 ! DD non-polarizable + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == '2-pentanone')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.031 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '3-pentanone')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'pentane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.055 ! no DD + kij(i,j) = 0.027 ! DD non-polarizable + ! kij(i,j) = 0.026 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'propanal')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.036 ! DD non-polarizable + kij(i,j) = 0.035 ! DD polarizable 22 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'butanal')THEN + kij(i,j) = 0.041 ! no DD + ! kij(i,j) = 0.025 ! DD non-polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'octane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'thf')THEN + kij(i,j) = 0.012 ! PCP-SAFT + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'dmso')THEN + ! kij(i,j) = 0.025 ! no DD + kij(i,j) = - 0.0105 ! DD non-polarizable + ! kij(i,j) = - 0.019 ! DD polarizable + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == 'acrylonitrile')THEN + kij(i,j) = - 0.05 ! DD polarizable + ELSE IF(compna(i) == 'heptane' .AND. compna(j) == 'butyronitrile')THEN + kij(i,j) = - 0.002 ! DD polarizable 11 + kij(i,j) = 0.002 ! DD polarizable 22 + ELSE IF(compna(i) == '1-butene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.04 ! no DD + ! kij(i,j) = 0.004 ! DD non-polarizable + kij(i,j) = 0.005 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane'.AND.compna(j) == 'dmf')THEN + kij(i,j) = 0.0135 ! DD polarizable 11 + kij(i,j) = 0.022 ! DD polarizable 22 + ELSE IF(compna(i) == 'ethylene'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = - 0.0215 ! DD polarizable 11 + kij(i,j) = - 0.01 ! DD polarizable 22 + ELSE IF(compna(i) == 'nbutyl-ethanoate'.AND.compna(j) == 'dmf')THEN + ! kij(i,j) = 0.016 ! no DD + ! kij(i,j) = -0.01 ! DD non-polarizable + kij(i,j) = - 0.015 ! DD polarizable 22 + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.066 ! PC-SAFT + ! kij(i,j) = 0.061 ! PCP-SAFT + ! kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate'.AND.compna(j) == 'decane')THEN + kij(i,j) = 0.0625 ! PCIP-SAFT + ELSE IF(compna(i) == 'methylacetate' .AND. compna(j) == 'methanol')THEN + ! kij(i,j) = -0.07 ! PCIP-SAFT + ELSE IF(compna(i) == 'pentane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0498 + IF (pol >= 1) kij(i,j) = -0.01 + IF (pol >= 2) kij(i,j) = -0.027 + ELSE IF(compna(i) == 'hexane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.05 + IF (pol >= 1) kij(i,j) = 0.0 + IF (pol >= 2) kij(i,j) = -0.03 + ELSE IF(compna(i) == 'octane' .AND. compna(j) == 'propionitrile')THEN + kij(i,j) = 0.0 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitromethane')THEN + kij(i,j) = 0.14 ! no DD + ! kij(i,j) = 0.07 ! DD non-polarizable + ! kij(i,j) = 0.055 ! DD polarizable 22 + ELSE IF(compna(i) == 'cyclohexane' .AND. compna(j) == 'nitroethane')THEN + ! kij(i,j) = 0.06 ! no DD + kij(i,j) = 0.03 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'nitromethane')THEN + ! kij(i,j) = - 0.017 ! no DD + kij(i,j) = - 0.021 ! DD non-polarizable + ! kij(i,j) = - 0.023 ! DD polarizable 22 + ELSE IF(compna(i) == 'acetone' .AND. compna(j) == 'h2o')THEN + kij(i,j) = - 0.2 ! PCP-SAFT (no cross-association) + ELSE IF(compna(i) == 'methylcyclohexane' .AND. compna(j) == 'acetonitrile')THEN + ! kij(i,j) = 0.09 ! no DD + ! kij(i,j) = 0.033 ! DD non-polarizable + ! kij(i,j) = 0.025 ! DD polarizable 22 + kij(i,j) = 0.04 ! DD polarizable 22 und my angepasst + ELSE IF(compna(i) == 'ethylacetate' .AND. compna(j) == 'acetonitrile')THEN + kij(i,j) = 0.007 ! no DD + ! kij(i,j) = -0.045 ! DD polarizable 22 + ELSE IF(compna(i) == 'dimethyl-ether' .AND. compna(j) == 'propane')THEN + ! kij(i,j) = 0.03 ! no DD + kij(i,j) = 0.0225 ! DD non-polarizable + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'pentane')THEN + ! kij(i,j) = 0.012968750 ! ohne QQ + ! kij(i,j) = 0.004921875 ! mit QQ=5.6D (gefittet) + ! kij(i,j) = -0.006406250 ! mit QQ=7.45D (Literatur) + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.01328125 + ! kij(i,j) = 0.0038 + ELSE IF(compna(i) == 'benzene' .AND. compna(j) == '1-hexene')THEN + kij(i,j) = 0.0067 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.04 + kij(i,j) = -0.029 + ELSE IF(compna(i) == 'ethylene' .AND. compna(j) == 'vinylacetate') THEN + kij(i,j) = - 0.013847 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'ethylene') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'triacontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.061953125 ! polyethylene parameters + kij(i,j) = 0.039609375 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + ! kij(i,j) = 0.06515625 ! polyethylene parameters + kij(i,j) = 0.04453125 ! param. by extrapolation of n-alkanes + ! --- kij and lij adjusted ------- + ! kij(i,j) = 0.045786119 ! param. by extrapolation of n-alkanes + ! lij(i,j) = +8.53466437d-4 ! param. by extrapolation of n-alkanes + ELSE IF(compna(i) == 'eicosane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 + ELSE IF(compna(i) == 'tetracontane' .AND. compna(j) == 'methane')THEN + kij(i,j) = 0.0360134457445 ! assumed equal to eicosane-C1 + ELSE IF(compna(i) == 'chlorobenzene' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.013 + ELSE IF(compna(i) == 'chloroethane' .AND. compna(j) == 'butane')THEN + kij(i,j) = 0.025 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.0070105 + ELSE IF(compna(i) == 'tetrachloromethane' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.004 + ELSE IF(compna(i) == 'hydrogen' .AND. compna(j) == 'hexane') THEN + kij(i,j) = 0.1501 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'co2') THEN + ! kij(i,j) = -0.08 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'propane') THEN + kij(i,j) = - 0.07 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'ethane') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.028 + kij(i,j) = 0.016 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == 'cyclohexane')THEN + kij(i,j) = 0.037 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '2-methylpentane') THEN + kij(i,j) = 0.028 + ELSE IF(compna(i) == 'ethanol' .AND. compna(j) == '1-octanol')THEN + kij(i,j) = 0.06 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.0508 + ! kij(i,j) = 0.03 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'heptane')THEN + kij(i,j) = 0.034 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'decane')THEN + ! kij(i,j) = 0.042 ! PC-SAFT + ! kij(i,j) = 0.011 ! PCP-SAFT + kij(i,j) = 0.000 ! PCIP-SAFT + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == 'isobutane') THEN + kij(i,j) = 0.051 + ELSE IF(compna(i) == 'methanol' .AND. compna(j) == '1-octanol') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == '1-butanol' .AND. compna(j) == 'butane') THEN + kij(i,j) = 0.015 + ELSE IF(compna(i) == '1-nonanol' .AND. compna(j) == 'co2') THEN + kij(i,j) = 0.076 + kij(i,j) = 0.01443 + ELSE IF(compna(i) == '1-propanol' .AND. compna(j) == 'ethylbenzene') THEN + kij(i,j) = 0.0251757813 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = 0.085 + ELSE IF(compna(i) == 'hexane'.AND.compna(j) == '1-chlorobutane') THEN + kij(i,j) = 0.017 + ELSE IF(compna(i) == 'aniline'.AND.compna(j) == 'methylcyclopentane') THEN + kij(i,j) = 0.0153 + ELSE IF(compna(i) == 'heptane'.AND.compna(j) == 'nbutyl-ethanoate')THEN + kij(i,j) = 0.027 + ELSE IF(compna(i) == '1-hexene'.AND.compna(j) == 'ethyl-ethanoate')THEN + kij(i,j) = 0.026 + ELSE IF(compna(i) == 'co2'.AND.compna(j) == '1-butanol')THEN + ! kij(i,j) = 0.075 + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'acrylic-acid'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'bmim'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'bf4'.AND.compna(j) == 'hydrogen')THEN + lij(i,j) = 0.55 !!!!! Lij not kij !!!! + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'butane')THEN !K.R.Hall FPE 2007 254 112-125 kij=0.1850 + kij(i,j) = -0.07 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-butanol')THEN + kij(i,j) = -0.12 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'aniline')THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methanol') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethanol') THEN + kij(i,j) = -0.027 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'styrene') THEN + kij(i,j) = 0.1 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propyl-ethanoate') THEN + kij(i,j) = -0.205 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'ethyl-propanoate') THEN + kij(i,j) = 0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == '1-pentanol') THEN + kij(i,j) = 0.0165 + ! kij(i,j) = 0.0294 + ! kij(i,j) = -0.082 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'methane') THEN + ! kij(i,j) = +0.06 + kij(i,j) = -0.08 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'propane') THEN + kij(i,j) = 0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'hexane') THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'h2o'.AND.compna(j) == 'co2') THEN + if (pol == 0) kij(i,j) = 0.0030625 ! for T=50C, according to X.Tang + stop ! very T-dependent + ELSE IF(compna(i) == 'toluene'.AND.compna(j) == 'acetic-acid') THEN + kij(i,j) = -0.1 + ELSE IF(compna(i) == 'caproic-acid'.AND.compna(j) == 'cyclohexane') THEN + kij(i,j) = 0.041531 + ELSE IF(compna(i) == '1-octanol'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.07 + ELSE IF(compna(i) == 'acetone'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02132466 ! PC-SAFT + ! kij(i,j) = 0.01495148 ! PCP-SAFT + ! kij(i,j) = -0.00735575 ! PCP-SAFT but non-polar benzene + ELSE IF(compna(i) == '1-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.02017 + ELSE IF(compna(i) == '2-propanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.021386 + ELSE IF(compna(i) == '1-pentanol'.AND.compna(j) == 'benzene')THEN + kij(i,j) = 0.0129638671875 + ELSE IF(compna(i) == 'CH2F2' .AND. compna(j) == 'co2') THEN + kij(i,j) = 2.2548828125E-2 + ELSE IF(compna(i) == 'dmso' .AND. compna(j) == 'co2') THEN + kij(i,j) = -0.00 + ELSE IF(compna(i) == 'dmf'.AND.compna(j) == 'h2o')THEN + kij(i,j) = -0.0 + ELSE IF(compna(i) == 'decane'.AND.compna(j) == 'h2o')THEN + kij(i,j) = 0.11 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = 0.032 ! association: eps_kij = 0.16 + ELSE IF(compna(i) == '11difluoroethane'.AND.compna(j) == 'co2')THEN + kij(i,j) = -0.004 ! PCP-SAFT (taken from simulation) + ELSE IF(compna(i) == 'difluoromethane'.AND.compna(j) == 'HF')THEN + kij(i,j) = -0.02 + ELSE IF(compna(i) == 'naphthalene'.AND.compna(j) == 'co2')THEN + kij(i,j) = 0.137 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + kij(i,j) = 0.09 ! angepasst an SVLE-Linie (tradition.CO2-Parameter) + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'methanol')THEN + kij(i,j) = 0.03 + ELSE IF(compna(i) == 'pg2'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = 0.05 + ELSE IF(compna(i) == 'PCH5'.AND.compna(j) == 'co2')THEN + ! kij(i,j) = -0.047 + kij(i,j) = +0.055 + ! kij(i,j) = +0.036 + ELSE + END IF + kij(j,i) = kij(i,j) + lij(j,i) = -lij(i,j) + + END DO +END DO + +END SUBROUTINE pcsaft_par + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE init_vars +! +! This subroutine writes variables from an array "val_init" to the +! system-variables. Those variables +! include some specifications but also some starting values for a +! phase equilibrium calculation. (val_init stands for 'initial value') + +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(5+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE init_vars +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +densta(3)=val_init(0) +densta(1)=val_init(1) +densta(2)=val_init(2) +t = val_init(3) +p = val_init(4) +DO ph = 1,nphas + DO i = 1,ncomp + lnx(ph,i) = val_init(4+i+(ph-1)*ncomp) + END DO +END DO + +END SUBROUTINE init_vars + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE converged +! +! Once a converged solution for an equilibrium calculation is found, +! this subroutine writes variables to an array "val_conv". +! (= short for converged values) +! The array comprises the following elements +! element 0 density of third phase +! element 1 density of first phase +! element 2 density of second phase +! element 3 temperature [K] +! element 4 pressure [Pa] +! element 5,..(4+NCOMP) mole-fraction of comp. i in log. from (phase 1) +! element ... mole-fraction of comp. i in log. from (phase 2) +! element ... mole-fraction of comp. i in log. from (phase 3) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE converged +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, ph +! ---------------------------------------------------------------------- + +val_conv(0) = dense(3) +val_conv(1) = dense(1) +val_conv(2) = dense(2) +val_conv(3) = t +val_conv(4) = p +DO ph = 1,nphas + DO i = 1,ncomp + val_conv(4+i+(ph-1)*ncomp) = lnx(ph,i) + END DO +END DO + +END SUBROUTINE converged + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE PERTURBATION_PARAMETER +! +! calculates density-independent parameters of the equation of state. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE PERTURBATION_PARAMETER +! + USE PARAMETERS, ONLY: PI, KBOL, RGAS, NAV, TAU + USE EOS_VARIABLES + USE EOS_CONSTANTS + IMPLICIT NONE +! +! --- local variables -------------------------------------------------- + INTEGER :: i, j, k, l, m, no + LOGICAL :: assoc, qudpole, dipole + REAL :: m_mean + REAL, DIMENSION(nc) :: v00, v0, d00, u + REAL, DIMENSION(nc,nc,nsite,nsite) :: eps_hb + REAL, DIMENSION(nc,nc) :: kap_hb + REAL :: zmr, nmr + REAL :: eps_kij, k_kij +! ---------------------------------------------------------------------- + +! ---------------------------------------------------------------------- +! pure component parameters +! ---------------------------------------------------------------------- +DO i = 1, ncomp + u(i) = parame(i,3) * (1.0 + parame(i,4)/t) + mseg(i) = parame(i,1) + IF (eos == 0) THEN + v00(i) = parame(i,2) + v0(i) = v00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t))**3 + d00(i) = (1.d30/1.d6 *tau *v00(i)*6.0/PI /NAV)**(1.0/3.0) + dhs(i) = d00(i)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + ELSE + dhs(i) = parame(i,2)*(1.0-0.12*EXP(-3.0*parame(i,3)/t)) + d00(i) = parame(i,2) + END IF +END DO + + +! ---------------------------------------------------------------------- +! combination rules +! ---------------------------------------------------------------------- +DO i = 1, ncomp + DO j = 1, ncomp + sig_ij(i,j) = 0.5 * ( d00(i) + d00(j) ) + uij(i,j) = ( 1.0 - kij(i,j) ) * ( u(i)*u(j) )**0.5 + vij(i,j) = ( 0.5*( v0(i)**(1.0/3.0) + v0(j)**(1.0/3.0) ) )**3 + END DO +END DO + + +! ---------------------------------------------------------------------- +! abbreviations +! ---------------------------------------------------------------------- +z0t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( x(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + +m_mean = z0t/(PI/6.0) + +DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO +END DO + +! ---------------------------------------------------------------------- +! dispersion term parameters for chain molecules +! ---------------------------------------------------------------------- +DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +END DO + + +! ---------------------------------------------------------------------- +! van der Waals mixing rules for perturbation terms +! ---------------------------------------------------------------------- +order1 = 0.0 +order2 = 0.0 +DO i = 1, ncomp + DO j = 1, ncomp + order1 = order1 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * uij(i,j)/t + order2 = order2 + x(i)*x(j)* mseg(i)*mseg(j)*sig_ij(i,j)**3 * (uij(i,j)/t)**2 + END DO +END DO + + +! ---------------------------------------------------------------------- +! SAFT parameters +! ---------------------------------------------------------------------- +IF (eos == 0) THEN + zmr = 0.0 + nmr = 0.0 + DO i = 1, ncomp + DO j = 1, ncomp + zmr = zmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j)*uij(i,j) + nmr = nmr + x(i)*x(j)*mseg(i)*mseg(j)*vij(i,j) + END DO + END DO + um = zmr / nmr +END IF + + + +! ---------------------------------------------------------------------- +! association and polar parameters +! ---------------------------------------------------------------------- +assoc = .false. +qudpole = .false. +dipole = .false. +DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) assoc = .true. + IF (parame(i,7) /= 0.0) qudpole = .true. + IF (parame(i,6) /= 0.0) dipole = .true. +END DO + +! --- dipole and quadrupole constants ---------------------------------- +IF (qudpole) CALL qq_const ( qqp2, qqp3, qqp4 ) +IF (dipole) CALL dd_const ( ddp2, ddp3, ddp4 ) +IF (dipole .AND. qudpole) CALL dq_const ( dqp2, dqp3, dqp4 ) + + +! --- TPT-1-association parameters ------------------------------------- +IF (assoc) THEN + + eps_kij = 0.0 + k_kij = 0.0 + + DO i = 1, ncomp + IF (NINT(parame(i,12)) /= 0) THEN + nhb_typ(i) = NINT(parame(i,12)) + kap_hb(i,i) = parame(i,13) + no = 0 + DO j = 1, nhb_typ(i) + DO k = 1, nhb_typ(i) + eps_hb(i,i,j,k) = parame(i,(14+no)) + no=no+1 + END DO + END DO + DO j = 1, nhb_typ(i) + nhb_no(i,j) = parame(i,(14+no)) + no=no+1 + END DO + ELSE + nhb_typ(i) = 0 + kap_hb(i,i)= 0.0 + DO k = 1, nsite + DO l = 1, nsite + eps_hb(i,i,k,l) = 0.0 + END DO + END DO + END IF + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + IF (i /= j .AND. (nhb_typ(i) /= 0 .AND. nhb_typ(j) /= 0)) THEN + kap_hb(i,j)= (kap_hb(i,i)*kap_hb(j,j))**0.5 & + *((parame(i,2)*parame(j,2))**3 )**0.5 & + /(0.5*(parame(i,2)+parame(j,2)))**3 + kap_hb(i,j)= kap_hb(i,j)*(1.0-k_kij) + DO k = 1, nhb_typ(i) + DO l = 1, nhb_typ(j) + IF (k /= l) THEN + eps_hb(i,j,k,l) = (eps_hb(i,i,k,l)+eps_hb(j,j,l,k))/2.0 + eps_hb(i,j,k,l) = eps_hb(i,j,k,l)*(1.0-eps_kij) + END IF + END DO + END DO + END IF + END DO + END DO + IF (nhb_typ(1) == 3) THEN +! write(*,*)'eps_hb manuell eingegeben' + eps_hb(1,2,3,1) = 0.5*(eps_hb(1,1,3,1)+eps_hb(2,2,1,2)) + eps_hb(2,1,1,3) = eps_hb(1,2,3,1) + END IF + IF (nhb_typ(2) == 3) THEN + eps_hb(2,1,3,1) = 0.5*(eps_hb(2,2,3,1)+eps_hb(1,1,1,2)) + eps_hb(1,2,1,3) = eps_hb(2,1,3,1) + END IF + + DO i = 1, ncomp + DO k = 1, nhb_typ(i) + DO j = 1, ncomp + DO l = 1, nhb_typ(j) + ass_d(i,j,k,l) = kap_hb(i,j) *sig_ij(i,j)**3 *(EXP(eps_hb(i,j,k,l)/t)-1.0) + END DO + END DO + END DO + END DO + +END IF + +END SUBROUTINE PERTURBATION_PARAMETER + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE OUTPUT +! +! The purpose of this subroutine is obvious. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE OUTPUT +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i + CHARACTER (LEN=4) :: t_ind + CHARACTER (LEN=4) :: p_ind + CHARACTER (LEN=4) :: char_ncomp + REAL :: density(np),w(np,nc) +! ---------------------------------------------------------------------- + + CALL si_dens (density,w) + + IF (u_in_p == 1.E5) THEN + p_ind = ' bar' + ELSE IF (u_in_p == 1.E2) THEN + p_ind = 'mbar' + ELSE IF (u_in_p == 1.E6) THEN + p_ind = ' MPa' + ELSE IF (u_in_p == 1.E3) THEN + p_ind = ' kPa' + ELSE + p_ind = ' Pa' + END IF + IF (u_in_t == 273.15) THEN + t_ind = ' C' + ELSE + t_ind = ' K' + END IF + + WRITE(*,*) '--------------------------------------------------' + WRITE (char_ncomp,'(I3)') ncomp + WRITE(*,'(t2,a,f7.2,2a,f9.4,a)') ' T =',t-u_out_t,t_ind & + ,' P =',p/u_out_p,p_ind + WRITE(*,'(t15,4(a12,1x),10x,a)') (compna(i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I w', (w(1,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II w', (w(2,i),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE I x', (EXP(lnx(1,i)),i=1,ncomp) + WRITE(*,'(2x,a,'//char_ncomp//'(g13.6,1x))') 'PHASE II x', (EXP(lnx(2,i)),i=1,ncomp) + WRITE(*,'(2x,a,2(g13.6,1x))') 'DENSITY ', density(1),density(2) + + !-----output to files-------------------------------------------------- + IF (ncomp == 1) THEN + WRITE (40,'(7(2x,f18.8))') t-u_out_t, p/u_out_p, & + density(1), density(2),h_lv,cpres(1),cpres(2) + ! & ,(enthal(2)-enthal(1))/mm(1) + ! WRITE (40,'(4(2x,f15.8))') t, p, 0.3107*dense(1) + ! & /0.1617*(0.689+0.311*(T/1.328)**0.3674),0.3107 + ! & *dense(2)/0.1617*(0.689+0.311*(T/1.328)**0.3674) + ELSE IF (ncomp == 2) THEN + WRITE (40,'(12(2x,G15.8))') 1.0-xi(1,1),1.0-xi(2,1), & + w(1,1),w(2,1),t-u_out_t, p/u_out_p, density(1),density(2) & + ,enthal(1),enthal(2),cpres(1),cpres(2) + ELSE IF (ncomp == 3) THEN + WRITE (40,'(10(2x,f15.8))') xi(1,1),xi(1,2),xi(1,3),xi(2,1),xi(2,2), & + xi(2,3),t-u_out_t, p/u_out_p, density(1),density(2) + END IF + + END SUBROUTINE OUTPUT + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE neutr_charge +! +! This subroutine is called for electrolye solutions, where a +! neutral overall-charge has to be enforced in all phases. The basic +! philosophy is similar to the above described routine X_SUMMATION. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE neutr_charge(i) +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: i +! +! ---------------------------------------------------------------------- + INTEGER :: comp_e, ph_e + REAL :: sum_c + CHARACTER (LEN=2) :: phasno + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + +phasno = sum_rel(i)(2:2) +READ(phasno,*) ph_e +compno = sum_rel(i)(3:3) +READ(compno,*) comp_e + +sum_c = 0.0 +write (*,*) 'there must be an error in neutr_charge' +stop +! there is an error in the following passage. The index i is an +! argument to this subroutine - I guess it is INTENT(IN), so the +! index in the following loop can not be i. +! +! I have commented the loop until I check the code. +!DO i=1,ncomp +! IF ( comp_e /= i .AND. parame(i,10) /= 0.0) & +! sum_c = sum_c + xi(ph_e,i)*parame(i,10) +!END DO + +xi(ph_e,comp_e) = - sum_c +IF (xi(ph_e,comp_e) < 0.0) xi(ph_e,comp_e)=0.0 +IF (xi(ph_e,comp_e) /= 0.0) THEN + lnx(ph_e,comp_e) = LOG(xi(ph_e,comp_e)) +ELSE + lnx(ph_e,comp_e) = -100000.0 +END IF + +! xi(2,1) = xi(2,2) +! IF (xi(2,1).NE.0.0) lnx(2,1) = LOG(xi(2,1)) + +END SUBROUTINE neutr_charge + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_sum +! + USE BASIC_VARIABLES + IMPLICIT NONE +! + INTEGER :: i, j, ph_i, phase1, phase2 +! ---------------------------------------------------------------------- + +phase1=0 +phase2=0 +DO j=1,ncomp + IF (it(j)(2:2) == '1') phase1=phase1+1 + IF (it(j)(2:2) == '2') phase2=phase2+1 +END DO + +IF (phase1 == ncomp-1) THEN + ph_i = 1 +ELSE IF (phase2 == ncomp-1) THEN + ph_i = 2 +ELSE + WRITE (*,*) ' FLASH_SUM: undefined flash-case' + STOP +END IF + + + +IF (ph_i == 1) THEN + DO i=1,ncomp + IF (alpha > DMIN1(1.0,xif(i)/xi(1,i), & + (xif(i)-1.0)/(xi(1,i)-1.0),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 1st alpha-bound' + alpha=DMIN1(1.0,xif(i)/xi(1,i),(xif(i)-1.0)/(xi(1,i)-1.0)) + END IF + END DO + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF (xi(2,i) > 0.0) THEN + lnx(2,i) = LOG(xi(2,i)) + ELSE + xi(2,i) = 0.0 + lnx(2,i) = -100000.0 + END IF + END DO +ELSE IF (ph_i == 2) THEN + DO i=1,ncomp + IF (alpha > DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), & + 1.0-xif(i)/xi(2,i),alpha)) THEN + WRITE (*,*) ' FLASH_SUM: exeeded 2nd alpha-bound' + WRITE (*,*) 0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i) + alpha=DMAX1(0.0,(xif(i)-xi(2,i))/(1.0-xi(2,i)), 1.0-xif(i)/xi(2,i)) + END IF + END DO + DO i=1,ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) / alpha +! write (*,*) 'x1,i',xi(1,i),xi(2,i),alpha + IF (xi(1,i) > 0.0) THEN + lnx(1,i) = LOG(xi(1,i)) + ELSE + xi(1,i) = 0.0 + lnx(1,i) = -100000.0 + END IF + END DO +END IF + +! pause + +RETURN +END SUBROUTINE flash_sum + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE flash_alpha +! +! This subroutine calculates all molefractions of one phase +! from a component balance. What is needed for this calculation +! are all molefractions of the other phase (nphas=2, so far) +! and the phase fraction alpha. +! Alpha is calculated from the mole fraction +! of component {sum_rel(j)(3:3)}. If for example sum_rel(2)='fl3', +! then the alpha is determined from the molefraction of comp. 3 and +! all molefractions of one phase are calculated using that alpha-value. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE flash_alpha +! + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, comp_i, phase1, phase2 + CHARACTER (LEN=2) :: compno +! ---------------------------------------------------------------------- + + +! ---------------------------------------------------------------------- +! first calculate the phase fraction alpha from a known composition +! of component sum_rel(j)(3:3). +! ---------------------------------------------------------------------- + +DO j = 1, nphas + IF ( sum_rel(j)(1:2) == 'fl' ) THEN + compno = sum_rel(j)(3:3) + READ(compno,*) comp_i + IF ( (xi(1,comp_i)-xi(2,comp_i)) /= 0.0 ) THEN + alpha = (xif(comp_i)-xi(2,comp_i)) / (xi(1,comp_i)-xi(2,comp_i)) + write (*,*) 'flsh',(xif(comp_i)-xi(2,comp_i)),(xi(1,comp_i)-xi(2,comp_i)) + ELSE + alpha = 0.5 + WRITE (*,*) 'FLASH_ALPHA:error in calc. of phase fraction',comp_i + END IF + ! IF (alpha <= 0.0 .OR. alpha >= 1.0) WRITE(*,*) 'FLASH_ALPHA: error',alpha + IF (alpha > 1.0) alpha = 1.0 + IF (alpha < 0.0) alpha = 0.0 + END IF +END DO + +! ---------------------------------------------------------------------- +! determine which phase is fully determined by iterated molefractions (+ summation relation) +! ---------------------------------------------------------------------- +phase1 = 0 +phase2 = 0 +DO i = 1, ncomp + IF ( it(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( it(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO +DO i = 1, ncomp + IF ( sum_rel(i)(2:2) == '1' ) phase1 = phase1 + 1 + IF ( sum_rel(i)(2:2) == '2' ) phase2 = phase2 + 1 +END DO + + +IF ( phase1 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 1 is defined by iterated molefractions + summation relation + ! phase 2 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + IF ( alpha == 1.0 ) alpha = 1.0 - 1.0E-10 + DO i=1,ncomp + xi(2,i) = ( xif(i) - alpha*xi(1,i) ) / (1.0-alpha) + IF ( xi(2,i) < 0.0 ) xi(2,i) = 0.0 + IF ( xi(2,i) > 1.0 ) xi(2,i) = 1.0 + IF ( xi(2,i) /= 0.0 ) THEN + lnx(2,i) = LOG( xi(2,i) ) + ELSE + lnx(2,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=2',i,lnx(2,i),xi(2,i) + END DO +ELSE IF ( phase2 == ncomp ) THEN + ! -------------------------------------------------------------------- + ! phase 2 is defined by iterated molefractions + summation relation + ! phase 1 is determined from componennt balance (using alpha) + ! -------------------------------------------------------------------- + DO i = 1, ncomp + xi(1,i) = ( xif(i) - (1.0-alpha)*xi(2,i) ) /alpha + IF ( xi(1,i) < 0.0 ) xi(1,i) = 0.0 + IF ( xi(1,i) > 1.0 ) xi(1,i) = 1.0 + IF ( xi(1,i) /= 0.0 ) THEN + lnx(1,i) = LOG( xi(1,i) ) + ELSE + lnx(1,i) = -100000.0 + END IF + write (*,*) 'fl_cal ph=1',i,lnx(1,i),xi(1,i),alpha + END DO +ELSE + WRITE (*,*) ' FLASH_ALPHA: undefined flash-case' + STOP +END IF + +END SUBROUTINE flash_alpha + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE SI_DENS (density,w) +! +! This subroutine calculates the (macroskopic) fluid-density in +! units [kg/m3] from the dimensionless density (eta=zeta3). +! Further, mass fractions are calculated from mole fractions. +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE SI_DENS (density,w) +! + USE PARAMETERS, ONLY: pi, nav, tau + USE BASIC_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(OUT) :: density(np) + REAL, INTENT(OUT) :: w(np,nc) +! +! ---------------------------------------------------------------------- + INTEGER :: i, ph + REAL :: mm_mean, rho, z3t + REAL :: dhs(nc), d00(nc), t_p, pcon, l_st +! ---------------------------------------------------------------------- + + +DO i = 1,ncomp + IF (eos == 1) THEN + dhs(i) = parame(i,2) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 0) THEN + d00(i) = ( 1.E30/1.E6*tau*parame(i,2)*6.0/pi/nav )**(1.0/3.0) + dhs(i) = d00(i) * ( 1.0 - 0.12 *EXP( -3.0*parame(i,3)/t ) ) + ELSE IF (eos == 4) THEN + dhs(i) = ( 0.1617/0.3107 / ( 0.689+0.311*(t/parame(i,3)/1.328)**0.3674 ) & + / ( pi/6.0 ) )**(1.0/3.0) * parame(i,2) + ELSE IF (eos == 5.OR.eos == 6) THEN + l_st = parame(1,25) + IF (ncomp /= 1) write (*,*) ' ERROR for EOS = 5' + t_p =((34.037352+17.733741*l_st) /(1.0+0.53237307*l_st+12.860239*l_st**2 ))**0.5 + IF (l_st == 0.0) t_p = t_p/4.0 + IF (eos == 5 .AND. l_st /= 0.0) t_p = t_p/4.0*parame(1,1)**2 + t_p = t/parame(i,3)/t_p + pcon =0.5256+3.2088804*l_st**2 -3.1499114*l_st**2.5 +0.43049357*l_st**4 + dhs(i) = ( pcon/(0.67793+0.32207*(t_p)**0.3674) /(pi/6.0) )**(1.0/3.0) *parame(i,2) + ELSE IF (eos == 8) THEN + dhs(i) = parame(i,2)*(1.0+0.2977*t/parame(i,3)) & + /(1.0+0.33163*t/parame(i,3) +1.0477E-3*(t/parame(i,3))**2 ) + ELSE + write (*,*) 'define EOS in subroutine: SI_DENS' + stop + END IF +END DO + +DO ph = 1,nphas + mm_mean = 0.0 + z3t = 0.0 + DO i = 1, ncomp + mm_mean = mm_mean + xi(ph,i)*mm(i) + z3t = z3t + xi(ph,i) * parame(i,1) * dhs(i)**3 + END DO + z3t = pi/6.0 * z3t + rho = dense(ph)/z3t + density(ph) = rho * mm_mean * 1.E27 /nav + DO i = 1, ncomp + w(ph,i) = xi(ph,i) * mm(i)/mm_mean + END DO +! write (*,*) density(ph),rho,mm_mean,1.d27 /NAV +END DO + +END SUBROUTINE SI_DENS + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + REAL FUNCTION F_STABILITY ( optpara, n ) +! + USE BASIC_VARIABLES + USE STARTING_VALUES + USE EOS_VARIABLES, ONLY: dhs, PI + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: n + REAL, INTENT(IN OUT) :: optpara(n) +! +! ---------------------------------------------------------------------- + INTEGER :: i, stabil + REAL :: rhoi(nc),gradterm + REAL :: fden,punish + REAL :: dens +! ---------------------------------------------------------------------- + +COMMON /stabil / stabil + +punish = 0.0 +stabil = 1 + +DO i = 1, n + IF ( optpara(i) < 0.5 ) rhoi(i) = EXP(optpara(i) ) + IF ( optpara(i) >= 0.5) rhoi(i) = EXP(0.5) +END DO + +dens = PI/6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + +IF (dens > 0.65) THEN + punish = punish + (dens-0.65)*10000.0 + rhoi(1:n) = rhoi(1:n)*0.65/dens +END IF + +CALL fden_calc (fden, rhoi) + +gradterm = sum( grad_fd(1:n) * ( rhoi(1:n) - rhoif(1:n) ) ) + +f_stability = fden - fdenf - gradterm + punish + +! write (*,'(5G16.8)') F_STABILITY,(rhoi(i),i=1,n) +! pause + +stabil = 0 + +END FUNCTION F_STABILITY + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE p_calc (pges_transfer, zges) +! +! This subroutine serves as an iterface to the EOS-routines. The +! system pressure corresponding to given (desity,T,xi) is calculated. +! (Note: the more common interface is SUBROUTINE FUGACITY. This +! routine is only used for one-phase systems, e.g. calculation of +! virial coefficients) +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE p_calc (pges_transfer, zges) +! + USE BASIC_VARIABLES + USE EOS_VARIABLES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN OUT) :: pges_transfer + REAL, INTENT(OUT) :: zges +! ---------------------------------------------------------------------- + +IF (nphas /= 1 ) THEN + write (*,*) 'P_CALC: can only be called for single phases' + stop +ENDIF + +IF (eos < 2) THEN + + phas = 1 + eta = dense(1) + x(1:ncomp) = xi(1,1:ncomp) + + CALL PERTURBATION_PARAMETER + IF (num == 0) CALL P_EOS + IF(num == 1) CALL P_NUMERICAL + !! IF(num == 2) CALL F_EOS_RN + + pges_transfer = pges + rho = eta/z3t + zges = (pges * 1.E-30) / (kbol*t*rho) + +ELSE + write (*,*) ' SUBROUTINE P_CALC not available for cubic EOS' + stop +END IF + +END SUBROUTINE p_calc + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL ( only_term, type_of_term ) +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! + character (LEN=9) :: only_term, type_of_term +! ---------------------------------------------------------------------- + + save_eos_terms(1) = ideal_gas + save_eos_terms(2) = hard_sphere + save_eos_terms(3) = chain_term + save_eos_terms(4) = disp_term + save_eos_terms(5) = hb_term + save_eos_terms(6) = LC_term + save_eos_terms(7) = branch_term + save_eos_terms(8) = II_term + save_eos_terms(9) = ID_term + + ideal_gas = 'no' + hard_sphere = 'no' + chain_term = 'no' + disp_term = 'no' + hb_term = 'no' + LC_term = 'no' + branch_term = 'no' + II_term = 'no' + ID_term = 'no' + + IF ( only_term == 'ideal_gas' ) ideal_gas = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hard_sphere' ) hard_sphere = trim( adjustl( type_of_term ) ) + IF ( only_term == 'chain_term' ) chain_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'disp_term' ) disp_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'hb_term' ) hb_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'LC_term' ) LC_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'branch_term' ) branch_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'II_term' ) II_term = trim( adjustl( type_of_term ) ) + IF ( only_term == 'ID_term' ) ID_term = trim( adjustl( type_of_term ) ) + +END SUBROUTINE ONLY_ONE_TERM_EOS_NUMERICAL + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL +! + USE EOS_NUMERICAL_DERIVATIVES + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + ideal_gas = trim( adjustl( save_eos_terms(1) ) ) + hard_sphere = trim( adjustl( save_eos_terms(2) ) ) + chain_term = trim( adjustl( save_eos_terms(3) ) ) + disp_term = trim( adjustl( save_eos_terms(4) ) ) + hb_term = trim( adjustl( save_eos_terms(5) ) ) + LC_term = trim( adjustl( save_eos_terms(6) ) ) + branch_term = trim( adjustl( save_eos_terms(7) ) ) + II_term = trim( adjustl( save_eos_terms(8) ) ) + ID_term = trim( adjustl( save_eos_terms(9) ) ) + +END SUBROUTINE RESTORE_PREVIOUS_EOS_NUMERICAL + + + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/gnuplot_script.srp b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/gnuplot_script.srp new file mode 100644 index 000000000..393ce9af6 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/gnuplot_script.srp @@ -0,0 +1,55 @@ + + +plotfile = 'ItsTimeNorm.eps' +readfile = 'ItsTimeNorm.dat' +Titel = 'Zeitverlauf der Residuen' +NameX = 'Zeit t' +NameY1 = '|F|' +#NameY2 = 'rho(r)exp(...)-rho(r)' + +set terminal postscript eps +set output plotfile + + +#Set labels +set title Titel +set xlabel NameX +set ylabel NameY1 +#set y2label NameY2 +#set ytics +#set y2tics +#set ytics nomirror + +##Read min and max values to scale the axes +#stats readfile using 2 nooutput +#y1max = STATS_max +#y1min = STATS_min +#stats readfile using 3 nooutput +#y2max = STATS_max +#y2min = STATS_min +#this is needed to get a symmetric plot about 0 where the 0 is at the same height for +#both y axes +#if (abs(y1max) > abs(y1min)) { +# y1range = y1max +# } else { +# y1range = abs(y1min) +# } + +#if (abs(y2max) > abs(y2min)) { +# y2range = y2max +# } else { +# y2range = abs(y2min) +# } + +#set yrange[-1.1*y1range:1.1*y1range] +#set y2range[-1.1*y2range:1.1*y2range] + +#set size square + +#set autoscale y +#set autoscale y2 + + +#plot readfile using 1:2 with lines axes x1y1 title NameY1 , readfile using 1:3 with lines axes x2y2 title NameY2 +plot readfile using 2:3 title NameY1 + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/in.txt b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/in.txt new file mode 100644 index 000000000..2d712ecf4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/in.txt @@ -0,0 +1,6 @@ +260.0 +2 +air +thf +0. +0. \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/makefile b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/makefile new file mode 100644 index 000000000..ab6537b9f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/makefile @@ -0,0 +1,344 @@ + +#include /usr/ITT/mhofer/Documents/Diss/NumericalMethods/Libraries/Petsc/petsc-3.4.4/conf/variables +#include /usr/ITT/mhofer/Documents/Diss/NumericalMethods/Libraries/Petsc/petsc-3.4.4/conf/rules + +#include ~/NumLib/PETSc/petsc-3.4.4/conf/variables +#include ~/NumLib/PETSc/petsc-3.4.4/conf/rules + + +include /${PETSC_DIR}/conf/variables +include /${PETSC_DIR}/conf/rules + + + +SOURCE = Modules.F90 \ + mod_PETSc.F90 \ + mod_DFT_FMT.F90 \ + mod_DFT_FMT_d.F90 \ + mod_DFT_CHAIN.F90 \ + mod_DFT_CHAIN_d.F90 \ + mod_DFT_DISP_WDA.F90 \ + mod_DFT_DISP_WDA_d.F90 \ + module_solve_nonlinear.F90 \ + getting_started_subroutines.F90 \ + Helfer_Routinen.F90 \ + Numeric_subroutines.F90 \ + Spline_Integration_d.F90 \ + VLE_main.F90 \ + VLE_subroutines.F90 \ + crit_point_mixtures.F90 \ + Function.F90 \ + AD_Routines.F90 \ + InitialGuess.F90 \ + SolverSetup.F90 \ + Main.F90 \ + +#Object files +OBJECT = $(SOURCE:%.F90=%.o) + +#define target for non-PETSc files +%.o: %.F90 + ${PETSC_FCOMPILE} -fdefault-real-8 -c $< -o $@ + +DFT: $(OBJECT) + -${FLINKER} -o PCSAFT_SurfaceTension $(OBJECT) ${PETSC_SNES_LIB} + +#-------------------------------------------------------------------------- + +#Anzahl Prozessoren +NP = 1 + +#Initial profile: 0: normal, 1-3: add perturbation to regular initial profile +PERT = 0 + +#DFT Settings +NGRID = 800 +CUTOFF = 9.0 +BOXSIZE = 300.0 + +#Solver Settings +ITS_SNES = 20 +ITS_KSP = 15 +E_REL = 1e-08 + +#Its for Anderson Mixing +ITS_SNES_ANDERSON = 100 +#Its for Picard Iterations +ITS_SNES_PICARD = 100 + +#Toleranzen +ATOL_SNES = 1e-08 +RTOL_SNES = 1e-08 +STOL_SNES = 1e-08 + +ATOL_KSP = 1e-08 +RTOL_KSP = 1e-04 + +#D�mpfungsfaktoren +DAMP = 0.3 +DAMP_LBFGS = 1.0 +DAMP_ANDERSON = 0.01 +DAMP_PICARD = 0.01 + +#------------------------------------------------------------------------------ +#1) Inexact-Newton type solvers (iterative solver for linear system) +#------------------------------------------------------------------------------ + +#matrix-free, numerical approximation of directional derivatives (choose between trust region and line search) +run_mf: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -erel $(E_REL) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 0 \ + -pc_type none \ + + + +#matrix-free, AD-calculation directional derivatives (choose between trust region and line search) +run_ad: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 1 \ +# -pc_type none + +#finite-difference approximation of Jacobi matrix (-> PC can be used!) (choose between trust region and line search) +run_fd: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_fd -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 2 \ + -dm_mat_type aij \ +# -pc_type ilu + +#Build complete Jacobi matrix with AD (-> PC can be used!) (choose between trust region and line search) +run_anad: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -ksp_gmres_cgs_refinement_type refine_always \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -jac 3 \ + + + +#------------------------------------------------------------------------------ +#2) Newton type solvers (direct solver for linear system) +#------------------------------------------------------------------------------ + +#finite-difference approximation of Jacobi matrix (-> PC can be used!) (choose between trust region and line search) +run_fdmumps: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 2 \ + -dm_mat_type aij \ + -pc_type lu -pc_factor_mat_solver_package mumps \ + +#Build complete Jacobi matrix with AD (-> PC can be used!) (choose between trust region and line search) +run_anadmumps: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type newtonls -snes_converged_reason \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 3 \ + -pc_type lu -pc_factor_mat_solver_package mumps \ + + +#------------------------------------------------------------------------------ +#3) Quasi-Newton type solvers (secant updates for approximation to inverse Jacobian) +#------------------------------------------------------------------------------ + +#limitd memory quasi newton with BFGS updates -> choose restart parameter +run_LBFGS: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type qn -snes_qn_type lbfgs \ + -snes_converged_reason \ + -snes_linesearch_type cp -snes_linesearch_damping $(DAMP_LBFGS) \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac -1 \ + +#limitd memory quasi newton with BFGS updates -> choose restart parameter +#calculate initial jacobian with AD, then use BFGS updates in later iterations + +#anpassen damping, jac 0/1 + +run_LBFGSinitJac: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type qn -snes_qn_type lbfgs -snes_qn_scale_type jacobian \ + -snes_converged_reason \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP_LBFGS) \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 0 \ + + +#use a direct solver for linear system + +#limitd memory quasi newton with BFGS updates -> choose restart parameter +#calculate initial jacobian with AD, then use BFGS updates in later iterations +run_LBFGSinitJac2: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type qn -snes_qn_type lbfgs -snes_qn_scale_type jacobian \ + -snes_converged_reason \ + -snes_linesearch_type bt -snes_linesearch_damping $(DAMP_LBFGS) \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ + -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ + -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ + -jac 3 \ + + + +#------------------------------------------------------------------------------ +#4) Simple Fixpoint Iterations +#------------------------------------------------------------------------------ + + +#Anderson mixing +run_Anderson: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type anderson \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES_ANDERSON) \ + -snes_converged_reason \ + -snes_linesearch_type l2 -snes_linesearch_damping $(DAMP_ANDERSON) -snes_linesearch_monitor \ + -jac -1 \ + + +#Picard Iteration +run_Picard: + -@${MPIEXEC} -n $(NP) ./PCSAFT_SurfaceTension -snes_monitor_short -ksp_monitor_short \ + -nx $(NGRID) \ + -rc $(CUTOFF) \ + -box $(BOXSIZE) \ + -init_pert $(PERT) \ + -snes_type nrichardson \ + -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES_PICARD) \ + -snes_converged_reason \ + -snes_linesearch_type l2 -snes_linesearch_damping $(DAMP_PICARD) -snes_linesearch_monitor \ + -jac -1 \ + + + + +# # #-------------------------------------------------------------------------- +# # +# # #Anzahl Prozessoren +# # NP = 1 +# # +# # +# # #DFT Settings +# # NGRID = 800 +# # CUTOFF = 9.0 +# # BOXSIZE = 10.0 +# # +# # #Solver Settings +# # ITS_SNES = 40 +# # ITS_KSP = 20 +# # E_REL = 1e-11 +# # +# # #Its for Anderson Mixing +# # ITS_SNES_ANDERSON = 250 +# # #Its for Picard Iterations +# # ITS_SNES_PICARD = 250 +# # +# # #Toleranzen +# # ATOL_SNES = 1e-08 +# # RTOL_SNES = 1e-08 +# # STOL_SNES = 1e-08 +# # +# # ATOL_KSP = 1e-08 +# # RTOL_KSP = 1e-04 +# # +# # #D�mpfungsfaktoren +# # DAMP = 0.5 +# # DAMP_LBFGS = 0.5 +# # DAMP_ANDERSON = 0.5 +# # DAMP_PICARD = 0.01 +# # +# # #------------------------------------------------------------------------------ +# # #1) Inexact-Newton type solvers (iterative solver for linear system) +# # #------------------------------------------------------------------------------ +# # +# # #matrix-free, numerical approximation of directional derivatives (choose between trust region and line search) +# # runNLsolver_mf: +# # -@${MPIEXEC} -n $(NP) ./NLsolver -snes_monitor_short -ksp_monitor_short \ +# # -nx $(NGRID) \ +# # -rc $(CUTOFF) \ +# # -box $(BOXSIZE) \ +# # -erel $(E_REL) \ +# # -snes_type newtonls -snes_converged_reason \ +# # -snes_atol $(ATOL_SNES) -snes_rtol $(RTOL_SNES) -snes_stol $(STOL_SNES) -snes_max_it $(ITS_SNES) \ +# # -ksp_atol $(ATOL_KSP) -ksp_rtol $(RTOL_KSP) -ksp_max_it $(ITS_KSP) -ksp_gmres_restart 50 \ +# # -snes_linesearch_type bt -snes_linesearch_damping $(DAMP) -snes_linesearch_monitor \ +# # -snes_max_fail 1 -snes_max_linear_solve_fail 100 \ +# # -ksp_gmres_cgs_refinement_type refine_always \ +# # -snes_ksp_ew -snes_ksp_ew_version 1 -snes_ksp_ew_rtol0 0.5 -snes_ksp_ew_rtolmax 0.9 -snes_ksp_ew_threshold 0.1 \ +# # -jac 0 \ +# # -pc_type none \ diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_ChemPot.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_ChemPot.F90 new file mode 100644 index 000000000..6f1b96c1c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_ChemPot.F90 @@ -0,0 +1,250 @@ +Module mod_ChemPot + + + +Implicit None + + + +private + +public :: Chemical_Potential +public :: PCSAFT_const +REAL, public, allocatable :: ChemPot_tot(:) +REAL, public, allocatable :: ChemPot_res(:) + + contains + + + + +Subroutine Chemical_Potential + +Use BASIC_VARIABLES +Use EOS_VARIABLES +Use PARAMETERS +USe EOS_CONSTANTS + +Integer :: k,i,j +REAL :: z0t,z1t,z2t,z3t +REAL :: z0,z1,z2,z3,zms +REAL :: z0_rk,z1_rk,z2_rk,z3_rk +REAL, allocatable :: mhs(:), mhc(:) +REAL, allocatable :: gij(:,:), gij_rk(:,:), dij_ab(:,:) + +!DISP HERE!!! +INTEGER :: m +REAL :: m_mean,I1,I2,I1_rk,I2_rk +REAL :: ord1_rk,ord2_rk +REAL :: c1_con,c2_con,c1_rk +REAL :: order1,order2 +REAL :: apar(0:6),bpar(0:6) +REAL, allocatable :: m_rk(:),mdsp(:) +REAL, allocatable :: ap_rk(:,:),bp_rk(:,:) + +Allocate(mdsp(ncomp),m_rk(ncomp),ap_rk(ncomp,0:6),bp_rk(ncomp,0:6)) +Allocate(sig_ij(ncomp,ncomp),uij(ncomp,ncomp)) + +kij = 0.0 + + + +Allocate(mhs(ncomp), mhc(ncomp), ChemPot_res(ncomp), ChemPot_tot(ncomp) ) +Allocate(gij(ncomp,ncomp), gij_rk(ncomp,ncomp), dij_ab(ncomp,ncomp) ) + + +!belege dichteunabh�ngige Parameter (z0z,z1t,z2t,z3t) +z0t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) ) +z1t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp) ) +z2t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**2 ) +z3t = PI / 6.0 * SUM( xx(1:ncomp) * mseg(1:ncomp) * dhs(1:ncomp)**3 ) + + + +! --- Eq.(A.8) --------------------------------------------------------- +rho = eta / z3t !total number density [particles/A^3] +z0 = z0t * rho +z1 = z1t * rho +z2 = z2t * rho +z3 = z3t * rho + +zms = 1.0 - eta + +call PCSAFT_const(ap,bp) !get PCSAFT constants + +DO k = 1, ncomp + + z0_rk = PI/6.0 * mseg(k) + z1_rk = PI/6.0 * mseg(k) * dhs(k) + z2_rk = PI/6.0 * mseg(k) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * mseg(k) * dhs(k)**3 + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : hard sphere contribution + ! -------------------------------------------------------------------- + mhs(k) = 6.0/PI* ( 3.0*(z1_rk*z2+z1*z2_rk)/zms + 3.0*z1*z2*z3_rk/zms/zms & + + 3.0*z2*z2*z2_rk/z3/zms/zms + z2**3 *z3_rk*(3.0*z3-1.0)/z3/z3/zms**3 & + + ((3.0*z2*z2*z2_rk*z3-2.0*z2**3 *z3_rk)/z3**3 -z0_rk) *LOG(zms) & + + (z0-z2**3 /z3/z3)*z3_rk/zms ) + + + ! -------------------------------------------------------------------- + ! d(f)/d(x) : chain term + ! -------------------------------------------------------------------- + DO i = 1, ncomp + DO j = 1, ncomp + dij_ab(i,j) = dhs(i)*dhs(j) / ( dhs(i) + dhs(j) ) + END DO + END DO + + DO i = 1, ncomp + DO j = 1, ncomp + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + END DO + END DO + + mhc(k) = 0.0 + DO i = 1, ncomp + mhc(k) = mhc(k) + xx(i)*rho * (1.0-mseg(i)) / gij(i,i) * gij_rk(i,i) + END DO + mhc(k) = mhc(k) + ( 1.0-mseg(k)) * LOG( gij(k,k) ) + + ! -------------------------------------------------------------------- + ! PC-SAFT: d(f)/d(x) : dispersion contribution + ! -------------------------------------------------------------------- + + m_mean = z0t / (PI/6.0) + m_rk(k) = ( mseg(k) - m_mean ) / rho + + + DO m = 0, 6 + apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & + + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) + + ! --- derivatives of apar, bpar to rho_k --------------------------- + ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) + bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) + END DO + + I1 = 0.0 + I2 = 0.0 + I1_rk = 0.0 + I2_rk = 0.0 + DO m = 0, 6 + I1 = I1 + apar(m)*eta**REAL(m) + I2 = I2 + bpar(m)*eta**REAL(m) + I1_rk = I1_rk + apar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + ap_rk(k,m)*eta**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta**REAL(m-1)*z3_rk + bp_rk(k,m)*eta**REAL(m) + END DO + + ord1_rk = 0.0 + ord2_rk = 0.0 + order1 = 0.0 + order2 = 0.0 + DO i = 1,ncomp + sig_ij(i,k) = 0.5 * ( dhs(i) + dhs(k) ) + uij(i,k) = (1.0 - kij(i,k)) * SQRT( eps(i) * eps(k) ) + order1 = order1 + xx(i)*xx(k)* mseg(i)*mseg(k)*sig_ij(i,k)**3 * uij(i,k)/t + order2 = order2 + xx(i)*xx(k)* mseg(i)*mseg(k)*sig_ij(i,k)**3 * (uij(i,k)/t)**2 + ord1_rk = ord1_rk + 2.0*mseg(k)*rho*xx(i)*mseg(i)*sig_ij(i,k)**3 *uij(i,k)/t + ord2_rk = ord2_rk + 2.0*mseg(k)*rho*xx(i)*mseg(i)*sig_ij(i,k)**3 *(uij(i,k)/t)**2 + END DO + + + c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & + + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & + /(zms*(2.0-z3))**2 ) + c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & + + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & + /(zms*(2.0-z3))**3 ) + c1_rk= c2_con*z3_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & + - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) + + mdsp(k) = -2.0*PI* ( order1*rho*rho*I1_rk + ord1_rk*I1 ) & + - PI* c1_con*m_mean * ( order2*rho*rho*I2_rk + ord2_rk*I2 ) & + - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho*rho*I2 + + +End Do + +!residual + ChemPot_res(1:ncomp) = mhs(1:ncomp) + mhc(1:ncomp) + mdsp(1:ncomp) ! /kT [-] +!total + ChemPot_tot(1:ncomp) = ChemPot_res(1:ncomp) + log( xx(1:ncomp)*rho ) ! /kT [-] + +write(*,*)'rhob',xx(1:ncomp)*rho + +End Subroutine Chemical_Potential + + + + + + + + + +Subroutine PCSAFT_const(ap,bp) + +Implicit None + +!passed +REAL, INTENT(OUT) :: ap(0:6,3) +REAL, INTENT(OUT) :: bp(0:6,3) + +! --- dispersion term constants ---------------------------------------- +ap(0,1) = 0.91056314451539 +ap(0,2) = -0.30840169182720 +ap(0,3) = -0.09061483509767 +ap(1,1) = 0.63612814494991 +ap(1,2) = 0.18605311591713 +ap(1,3) = 0.45278428063920 +ap(2,1) = 2.68613478913903 +ap(2,2) = -2.50300472586548 +ap(2,3) = 0.59627007280101 +ap(3,1) = -26.5473624914884 +ap(3,2) = 21.4197936296668 +ap(3,3) = -1.72418291311787 +ap(4,1) = 97.7592087835073 +ap(4,2) = -65.2558853303492 +ap(4,3) = -4.13021125311661 +ap(5,1) = -159.591540865600 +ap(5,2) = 83.3186804808856 +ap(5,3) = 13.7766318697211 +ap(6,1) = 91.2977740839123 +ap(6,2) = -33.7469229297323 +ap(6,3) = -8.67284703679646 + +bp(0,1) = 0.72409469413165 +bp(0,2) = -0.57554980753450 +bp(0,3) = 0.09768831158356 +bp(1,1) = 1.11913959304690 *2.0 +bp(1,2) = 0.34975477607218 *2.0 +bp(1,3) = -0.12787874908050 *2.0 +bp(2,1) = -1.33419498282114 *3.0 +bp(2,2) = 1.29752244631769 *3.0 +bp(2,3) = -3.05195205099107 *3.0 +bp(3,1) = -5.25089420371162 *4.0 +bp(3,2) = -4.30386791194303 *4.0 +bp(3,3) = 5.16051899359931 *4.0 +bp(4,1) = 5.37112827253230 *5.0 +bp(4,2) = 38.5344528930499 *5.0 +bp(4,3) = -7.76088601041257 *5.0 +bp(5,1) = 34.4252230677698 *6.0 +bp(5,2) = -26.9710769414608 *6.0 +bp(5,3) = 15.6044623461691 *6.0 +bp(6,1) = -50.8003365888685 *7.0 +bp(6,2) = -23.6010990650801 *7.0 +bp(6,3) = -4.23812936930675 *7.0 + + +End Subroutine PCSAFT_const + + + +End Module mod_ChemPot diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN.F90 new file mode 100644 index 000000000..52cdd475a --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN.F90 @@ -0,0 +1,351 @@ +!>This file contains the subroutines which calculate the contribution of +!!chain formation to the Helmholtz energy functional. + + +Module mod_DFT_CHAIN + +Implicit None +private + + +public :: Chain_aux +public :: Chain_dFdrho + + + contains + + + +Subroutine Chain_aux(rhop,rhobar,lambda,user) + +Use BASIC_VARIABLES, Only: ncomp +Use EOS_VARIABLES, Only: dhs,rho +Use mod_DFT, Only: zp,dzp,fa + + +!PETSc module +Use PetscManagement + +#include + +!passed +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL,INTENT(OUT) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: lambda(user%gxs:user%gxe,ncomp) + +!local +INTEGER :: i,j,k +REAL :: dhsk +INTEGER :: fak,n +REAL :: zz,dz,xlo,xhi,integral_lamb,integral_rb +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int, lamb_int, rb_int +REAL,dimension(NMAX) :: y2_lamb, y2_rb +REAL :: rhopjk,rhopjp1k + + +!fak = maxval(fa(1:ncomp)) + +Do k = 1,ncomp + dhsk = dhs(k) + fak = fa(k) + 1 + + Do i = user%xs-fak,user%xe+fak !lambda und rhobar werden bis i+-sig gebraucht -> Schleife bis +- fa + n = 1 !this is the index of the arrays that will be passed to the spline integration routines + x_int = 0.0 + lamb_int = 0.0 + rb_int = 0.0 + + Do j = i-fak,i+fak !um lambda bei i zu berechnen, muss bis +- sig um i integriert werden -> Schleife bis +- fa + rhopjk = rhop(k,j) + rhopjp1k = rhop(k,j+1) + + + If( ( zp(i)-zp(j+1) ) < dhsk .and. ( zp(i) - zp(j) ) >= dhsk ) Then !the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand + + If(n/= 1) stop 'n /=1 in Chain_aux' !here always n=1! + zz = zp(j) - zp(i) !distance between grid points j and i + dz = zp(j+1) - (zp(i) - dhsk) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d + !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation + x_int(n) = 0.0 !array containing x-values for spline integration + + lamb_int(n) = rhopjk + (rhopjp1k - rhopjk)/dzp * (dzp-dz) !lineare interpolation analog zum FMT Teil + rb_int(n) = 0.0 !erklärung analog wie bei n3_int in FMT Teil + + + Else If (zp(j) > (zp(i)-dhsk) .and. zp(j) <= (zp(i)+dhsk)) Then !grid point j within i+-d + + n = n + 1 + x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! + zz = zp(j) - zp(i) + dz = dzp + lamb_int(n) = rhopjk + rb_int(n) = rhopjk * ( dhsk**2 - zz**2 ) + + If (zp(j) < (zp(i)+dhsk) .and. zp(j+1) >= (zp(i)+dhsk) ) Then !zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + + dz = zp(i) + dhsk - zp(j) + !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + rb_int(n) = 0.0 + lamb_int(n) = rhopjk + (rhopjp1k - rhopjk)/dzp * dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + + End If + End If + End Do + + + + !spline integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in Chain_aux (auch in AD Routine!!)' + + call spline ( x_int, lamb_int, n, 1.E30, 1.E30, y2_lamb ) + call spline ( x_int, rb_int, n, 1.E30, 1.E30, y2_rb ) + + call splint_integral ( x_int, lamb_int, y2_lamb, n, xlo, xhi, integral_lamb ) + call splint_integral ( x_int, rb_int, y2_rb, n, xlo, xhi, integral_rb ) + lambda(i,k) = 0.5 * integral_lamb / dhsk + rhobar(i,k) = 0.75 * integral_rb / dhsk**3 + + If(lambda(i,k) < epsilon(dz) ) lambda(i,k) = epsilon(dz) + !If ( lambda(i,k) < 0.5*xx(k)*rho ) write (*,*) 'warning: lambda too low',i,lambda(i,k) + !If ( k == 1 .AND. lambda(i,k) < 0.5*rhob(2,k) ) lambda(i,k) = 0.5*rhob(2,k) + + + End Do + +End Do + + +End Subroutine Chain_aux + + + + + + + + +Subroutine Chain_dFdrho(i,rhop,lambda,rhobar,dF_drho_CHAIN,f_ch,user) + +Use BASIC_VARIABLES, Only: ncomp,parame +Use EOS_VARIABLES, Only: dhs +Use mod_DFT, Only: zp,dzp,fa + +!PETSc module +Use PetscManagement + +#include + +!passed +INTEGER, INTENT(IN) :: i !the grid point to calculate dFdrho at +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL,INTENT(IN) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: lambda(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: dF_drho_CHAIN(user%xs:user%xe,ncomp) +REAL, INTENT(OUT) :: f_ch + + +!local +INTEGER :: j,k,n +REAL :: dhsk +INTEGER :: fak +REAL :: rhopjk,rhopjp1k,logrho,xlo,xhi +REAL :: ycorr(ncomp),dlny(ncomp,ncomp) +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int, int_1,int_2 !Fehlerwarnung falls 800 ueberschritten einbauen +REAL,dimension(NMAX) :: y2_1, y2_2 +REAL :: dz,zz,integral_1,integral_2 +REAL :: lamy + + + call Cavity_mix(rhobar(i,1:ncomp),ycorr,dlny) + + f_ch = 0.0 + + Do k = 1,ncomp + fak = fa(k) + dhsk = dhs(k) + n = 1 + x_int = 0.0 + int_1 = 0.0 + int_2 = 0.0 + + + Do j = i-fak,i+fak !es muss bis +- sig um i integriert werden + rhopjk = rhop(k,j) + rhopjp1k = rhop(k,j+1) + + If( ( zp(i)-zp(j+1) ) < dhsk .and. ( zp(i) - zp(j) ) >= dhsk ) Then !the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand + + If(n/= 1) stop 'n /=1 in Chain_dFdrho' !here always n=1! + zz = zp(j) - zp(i) !distance between grid points j and i + dz = zp(j+1) - (zp(i) - dhsk) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d + !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation + x_int(n) = 0.0 !array containing x-values for spline integration + int_1(n) = 0.0 !erklärung analog wie bei n3_int in FMT Teil + int_2(n) = rhopjk*lambda(j,k) + (rhopjp1k*lambda(j+1,k) - rhopjk*lambda(j,k) )/dzp * (dzp-dz) !lineare interpolation analog zum FMT Teil + + Else If (zp(j) > (zp(i)-dhsk) .and. zp(j) <= (zp(i)+dhsk)) Then !grid point j within i+-d + + n = n + 1 + x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! + zz = zp(j) - zp(i) + dz = dzp + int_1(n) = SUM( ( parame(1:ncomp,1)-1.0 ) * rhop(1:ncomp,j)*dlny(1:ncomp,k) ) & + * 0.75/dhsk**3 * (dhsk**2-zz**2) + int_2(n) = rhopjk / lambda(j,k) + + If (zp(j) < (zp(i)+dhsk) .and. zp(j+1) >= (zp(i)+dhsk) ) Then !zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + + dz = zp(i) + dhsk - zp(j) + !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + int_1(n) = 0.0 + int_2(n) = rhopjk*lambda(j,k) + (rhopjp1k*lambda(j+1,k) - rhopjk*lambda(j,k) )/dzp * dz + +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + + End If + End If + End Do + + !Spline Integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in Chain_dFdrho (auch in AD Routine!!)' + + CALL spline ( x_int, int_1, n, 1.E30, 1.E30, y2_1 ) + CALL splint_integral( x_int, int_1, y2_1, n, xlo, xhi, integral_1 ) + CALL spline ( x_int, int_2, n, 1.E30, 1.E30, y2_2 ) + CALL splint_integral( x_int, int_2, y2_2, n, xlo, xhi, integral_2 ) + + If(rhop(k,i) < epsilon(dz)) rhop = epsilon(dz) + + dF_drho_CHAIN(i,k) = (parame(k,1) - 1.0)*log(rhop(k,i)) & + - (parame(k,1) - 1.0) * ( log(ycorr(k)*lambda(i,k))-1.0 + 0.5*integral_2/dhsk ) - integral_1 + + + f_ch = f_ch + ( parame(k,1) - 1.0 ) * rhop(k,i) * ( log(rhop(k,i)) - 1.0 ) & + - ( parame(k,1) - 1.0 ) * rhop(k,i) * ( log(ycorr(k)*lambda(i,k)) - 1.0 ) + + + + + +End Do + + + + + + + + + + + + +End Subroutine Chain_dFdrho + + + + + + + + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE Cavity_mix ( rhoi, ycorr, dlnydr ) +! + USE PARAMETERS, ONLY: PI + USE BASIC_VARIABLES, ONLY: ncomp,parame + USE EOS_VARIABLES, Only: dhs + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: rhoi(ncomp) + REAL, INTENT(OUT) :: ycorr(ncomp) + REAL, INTENT(OUT) :: dlnydr(ncomp,ncomp) ! this is: d( ln( yij ) ) / d( rho(k) ) used with i=j +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: z0, z1, z2, z3, zms, z1_rk, z2_rk, z3_rk + REAL, DIMENSION(ncomp,ncomp) :: dij_ab, gij, gij_rk +! ---------------------------------------------------------------------- + + z0 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) ) + z1 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp) ) + z2 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**2 ) + z3 = PI / 6.0 * SUM( rhoi(1:ncomp) * parame(1:ncomp,1) * dhs(1:ncomp)**3 ) + + zms = 1.0 - z3 + + DO i = 1,ncomp + DO j=1,ncomp + dij_ab(i,j)=dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + ENDDO + END DO + + DO k = 1, ncomp + DO i = 1, ncomp + z1_rk = PI/6.0 * parame(k,1) * dhs(k) + z2_rk = PI/6.0 * parame(k,1) * dhs(k)*dhs(k) + z3_rk = PI/6.0 * parame(k,1) * dhs(k)**3 + !DO j = 1, ncomp + j = i + gij(i,j) = 1.0/zms + 3.0*dij_ab(i,j)*z2/zms/zms & + + 2.0*(dij_ab(i,j)*z2)**2 /zms**3 + !dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & + ! + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + gij_rk(i,j) = z3_rk/zms/zms & + + 3.0*dij_ab(i,j)*(z2_rk+2.0*z2*z3_rk/zms)/zms/zms & + + dij_ab(i,j)**2 *z2/zms**3 *(4.0*z2_rk+6.0*z2*z3_rk/zms) + !END DO + + ycorr(i) = gij(i,i) + dlnydr(i,k) = gij_rk(i,i) / gij(i,i) + + END DO + END DO + +END SUBROUTINE Cavity_mix + + + + + + + + + + +End Module mod_DFT_CHAIN \ No newline at end of file diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN_d.F90 new file mode 100644 index 000000000..644d8020f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_CHAIN_d.F90 @@ -0,0 +1,431 @@ +!>This file contains the subroutines which calculate the derivatives of the contribution of +!!chain formation to the Helmholtz energy functional. + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +MODULE MOD_DFT_CHAIN_D + IMPLICIT NONE + PRIVATE + PUBLIC chain_aux_d + PUBLIC chain_dfdrho_d + +CONTAINS +! Differentiation of chain_aux in forward (tangent) mode: +! variations of useful results: rhobar lambda +! with respect to varying inputs: rhop + SUBROUTINE CHAIN_AUX_D(rhop, rhopd, rhobar, rhobard, lambda, lambdad, & +& user) + USE BASIC_VARIABLES, ONLY : ncomp + USE EOS_VARIABLES, Only: dhs,rho + USE MOD_DFT, ONLY : zp, dzp, fa + + !PETSc module + Use PetscManagement + + IMPLICIT NONE + +#include + + +!passed +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL,INTENT(OUT) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: rhobard(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: lambda(user%gxs:user%gxe,ncomp) +REAL,INTENT(OUT) :: lambdad(user%gxs:user%gxe,ncomp) + +!local + INTEGER :: i, j, k + REAL :: dhsk + INTEGER :: fak, n + REAL :: zz, dz, xlo, xhi, integral_lamb, integral_rb + REAL :: integral_lambd, integral_rbd + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, lamb_int, rb_int + REAL, DIMENSION(NMAX) :: lamb_intd, rb_intd + REAL, DIMENSION(NMAX) :: y2_lamb, y2_rb + REAL, DIMENSION(NMAX) :: y2_lambd, y2_rbd + REAL :: rhopjk, rhopjp1k + REAL :: rhopjkd, rhopjp1kd + INTRINSIC EPSILON + REAL :: result1 + + + + rhobard = 0.0 + lambdad = 0.0 + y2_rbd = 0.0 + y2_lambd = 0.0 +!fak = maxval(fa(1:ncomp)) + DO k=1,ncomp + dhsk = dhs(k) + fak = fa(k) + 1 + + Do i = user%xs-fak,user%xe+fak !lambda und rhobar werden bis i+-sig gebraucht -> Schleife bis +- fa + n = 1 + x_int = 0.0 + lamb_int = 0.0 + rb_int = 0.0 + rb_intd = 0.0 + lamb_intd = 0.0 +!um lambda bei i zu berechnen, muss bis +- sig um i integriert werden -> Schleife bis +- fa + DO j=i-fak,i+fak + rhopjkd = rhopd(k, j) + rhopjk = rhop(k, j) + rhopjp1kd = rhopd(k, j+1) + rhopjp1k = rhop(k, j+1) + IF (zp(i) - zp(j+1) .LT. dhsk .AND. zp(i) - zp(j) .GE. dhsk) & +& THEN +!the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is j +!ust the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand +!here always n=1! + IF (n .NE. 1) THEN + GOTO 100 + ELSE +!distance between grid points j and i + zz = zp(j) - zp(i) +!the part of the intervall between zp(j) and zp(j+1) which is already within i-d + dz = zp(j+1) - (zp(i)-dhsk) +!if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +!liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +!array containing x-values for spline integration + x_int(n) = 0.0 +!lineare interpolation analog zum FMT Teil + lamb_intd(n) = rhopjkd + (dzp-dz)*(rhopjp1kd-rhopjkd)/dzp + lamb_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*(dzp-dz) +!erklärung analog wie bei n3_int in FMT Teil + rb_intd(n) = 0.0 + rb_int(n) = 0.0 + END IF + ELSE IF (zp(j) .GT. zp(i) - dhsk .AND. zp(j) .LE. zp(i) + dhsk& +& ) THEN +!grid point j within i+-d + n = n + 1 +!first time in this If condition, dz is stil the old value from above! + x_int(n) = x_int(n-1) + dz + zz = zp(j) - zp(i) + dz = dzp + lamb_intd(n) = rhopjkd + lamb_int(n) = rhopjk + rb_intd(n) = (dhsk**2-zz**2)*rhopjkd + rb_int(n) = rhopjk*(dhsk**2-zz**2) + IF (zp(j) .LT. zp(i) + dhsk .AND. zp(j+1) .GE. zp(i) + dhsk& +& ) THEN +!zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + dz = zp(i) + dhsk - zp(j) +!If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +!= x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + rb_intd(n) = 0.0 + rb_int(n) = 0.0 + lamb_intd(n) = rhopjkd + dz*(rhopjp1kd-rhopjkd)/dzp + lamb_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + END IF + END IF + END DO +!spline integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, lamb_int, lamb_intd, n, 1.e30, 1.e30, & +& y2_lamb, y2_lambd) + CALL SPLINE_D(x_int, rb_int, rb_intd, n, 1.e30, 1.e30, y2_rb, & +& y2_rbd) + CALL SPLINT_INTEGRAL_D(x_int, lamb_int, lamb_intd, y2_lamb, & +& y2_lambd, n, xlo, xhi, integral_lamb, & +& integral_lambd) + CALL SPLINT_INTEGRAL_D(x_int, rb_int, rb_intd, y2_rb, y2_rbd, n& +& , xlo, xhi, integral_rb, integral_rbd) + lambdad(i, k) = 0.5*integral_lambd/dhsk + lambda(i, k) = 0.5*integral_lamb/dhsk + rhobard(i, k) = 0.75*integral_rbd/dhsk**3 + rhobar(i, k) = 0.75*integral_rb/dhsk**3 + result1 = EPSILON(dz) + IF (lambda(i, k) .LT. result1) lambda(i, k) = EPSILON(dz) + END DO + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE CHAIN_AUX_D + + + + +! Differentiation of chain_dfdrho in forward (tangent) mode: +! variations of useful results: df_drho_chain rhop +! with respect to varying inputs: rhobar df_drho_chain lambda +! rhop + SUBROUTINE CHAIN_DFDRHO_D(i, rhop, rhopd, lambda, lambdad, rhobar, & +& rhobard, df_drho_chain, df_drho_chaind, user) + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + USE MOD_DFT, ONLY : zp, dzp, fa + + !PETSc module + Use PetscManagement + IMPLICIT NONE + +#include + + +!passed +INTEGER, INTENT(IN) :: i !the grid point to calculate dFdrho at +type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL,INTENT(IN) :: rhobar(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: rhobard(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: lambda(user%gxs:user%gxe,ncomp) +REAL,INTENT(IN) :: lambdad(user%gxs:user%gxe,ncomp) + + + +REAL,INTENT(OUT) :: dF_drho_CHAIN(user%xs:user%xe,ncomp) +REAL,INTENT(OUT) :: dF_drho_CHAINd(user%xs:user%xe,ncomp) + + +!local + INTEGER :: j, k, n + REAL :: dhsk + INTEGER :: fak + REAL :: rhopjk, rhopjp1k, logrho, xlo, xhi + REAL :: rhopjkd, rhopjp1kd + REAL :: ycorr(ncomp), dlny(ncomp, ncomp) + REAL :: ycorrd(ncomp), dlnyd(ncomp, ncomp) + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, int_1, int_2 + REAL, DIMENSION(NMAX) :: int_1d, int_2d + REAL, DIMENSION(NMAX) :: y2_1, y2_2 + REAL, DIMENSION(NMAX) :: y2_1d, y2_2d + REAL :: dz, zz, integral_1, integral_2 + REAL :: integral_1d, integral_2d + REAL :: lamy + INTRINSIC SUM + INTRINSIC EPSILON + INTRINSIC LOG + REAL, DIMENSION(ncomp) :: arg1 + REAL, DIMENSION(ncomp) :: arg1d + REAL :: result1 + REAL :: arg10 + REAL :: arg10d + + + + + + CALL CAVITY_MIX_D(rhobar(i, 1:ncomp), rhobard(i, 1:ncomp), ycorr, & +& ycorrd, dlny, dlnyd) + y2_1d = 0.0 + y2_2d = 0.0 + DO k=1,ncomp + fak = fa(k) + dhsk = dhs(k) + n = 1 + x_int = 0.0 + int_1 = 0.0 + int_2 = 0.0 + int_1d = 0.0 + int_2d = 0.0 +!es muss bis +- sig um i integriert werden + DO j=i-fak,i+fak + rhopjkd = rhopd(k, j) + rhopjk = rhop(k, j) + rhopjp1kd = rhopd(k, j+1) + rhopjp1k = rhop(k, j+1) + IF (zp(i) - zp(j+1) .LT. dhsk .AND. zp(i) - zp(j) .GE. dhsk) & +& THEN +!the position of j+1 is already within i-d while j is still outside this range in this case, the integration steplength (dz) is j +!ust the distance, which j+1 overlaps with i-d and what is integrated is the interpolated value of the integrand +!here always n=1! + IF (n .NE. 1) THEN + GOTO 100 + ELSE +!distance between grid points j and i + zz = zp(j) - zp(i) +!the part of the intervall between zp(j) and zp(j+1) which is already within i-d + dz = zp(j+1) - (zp(i)-dhsk) +!if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +!liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +!array containing x-values for spline integration + x_int(n) = 0.0 +!erklärung analog wie bei n3_int in FMT Teil + int_1d(n) = 0.0 + int_1(n) = 0.0 +!lineare interpolation analog zum FMT Teil + int_2d(n) = rhopjkd*lambda(j, k) + rhopjk*lambdad(j, k) + (& +& dzp-dz)*(rhopjp1kd*lambda(j+1, k)+rhopjp1k*lambdad(j+1, k)& +& -rhopjkd*lambda(j, k)-rhopjk*lambdad(j, k))/dzp + int_2(n) = rhopjk*lambda(j, k) + (rhopjp1k*lambda(j+1, k)-& +& rhopjk*lambda(j, k))/dzp*(dzp-dz) + END IF + ELSE IF (zp(j) .GT. zp(i) - dhsk .AND. zp(j) .LE. zp(i) + dhsk) & +& THEN +!grid point j within i+-d + n = n + 1 +!first time in this If condition, dz is stil the old value from above! + x_int(n) = x_int(n-1) + dz + zz = zp(j) - zp(i) + dz = dzp + arg1d(:) = (parame(1:ncomp,1)-1.0)*(rhopd(1:ncomp, j)*dlny(1:ncomp& +& , k)+rhop(1:ncomp, j)*dlnyd(1:ncomp, k)) + arg1(:) = (parame(1:ncomp,1)-1.0)*rhop(1:ncomp, j)*dlny(1:ncomp, k& +& ) + int_1d(n) = (dhsk**2-zz**2)*0.75*SUM(arg1d(:))/dhsk**3 + int_1(n) = SUM(arg1(:))*0.75/dhsk**3*(dhsk**2-zz**2) + int_2d(n) = (rhopjkd*lambda(j, k)-rhopjk*lambdad(j, k))/lambda& +& (j, k)**2 + int_2(n) = rhopjk/lambda(j, k) + IF (zp(j) .LT. zp(i) + dhsk .AND. zp(j+1) .GE. zp(i) + dhsk) & +& THEN +!zp(j) is still within zp(i)+d but zp(j+1) is already outside zp(i)+d + dz = zp(i) + dhsk - zp(j) +!If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +!= x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz + int_1d(n) = 0.0 + int_1(n) = 0.0 + int_2d(n) = rhopjkd*lambda(j, k) + rhopjk*lambdad(j, k) + dz& +& *(rhopjp1kd*lambda(j+1, k)+rhopjp1k*lambdad(j+1, k)-& +& rhopjkd*lambda(j, k)-rhopjk*lambdad(j, k))/dzp + int_2(n) = rhopjk*lambda(j, k) + (rhopjp1k*lambda(j+1, k)-& +& rhopjk*lambda(j, k))/dzp*dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + END IF + END IF + END DO +!Spline Integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, int_1, int_1d, n, 1.e30, 1.e30, y2_1, y2_1d) + CALL SPLINT_INTEGRAL_D(x_int, int_1, int_1d, y2_1, y2_1d, n, xlo, & +& xhi, integral_1, integral_1d) + CALL SPLINE_D(x_int, int_2, int_2d, n, 1.e30, 1.e30, y2_2, y2_2d) + CALL SPLINT_INTEGRAL_D(x_int, int_2, int_2d, y2_2, y2_2d, n, xlo, & +& xhi, integral_2, integral_2d) + result1 = EPSILON(dz) + IF (rhop(k, i) .LT. result1) THEN + rhop = EPSILON(dz) + rhopd = 0.0 + END IF + arg10d = ycorrd(k)*lambda(i, k) + ycorr(k)*lambdad(i, k) + arg10 = ycorr(k)*lambda(i, k) + df_drho_chaind(i, k) = (parame(k,1)-1.0)*rhopd(k, i)/rhop(k, i) - (& +& parame(k,1)-1.0)*(arg10d/arg10+0.5*integral_2d/dhsk) - integral_1d + df_drho_chain(i, k) = (parame(k,1)-1.0)*LOG(rhop(k, i)) - (parame(k,1)-1.0& +& )*(LOG(arg10)-1.0+0.5*integral_2/dhsk) - integral_1 + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE CHAIN_DFDRHO_D + + + +! Differentiation of cavity_mix in forward (tangent) mode: +! variations of useful results: ycorr dlnydr +! with respect to varying inputs: rhoi +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE CAVITY_MIX_D(rhoi, rhoid, ycorr, ycorrd, dlnydr, dlnydrd) +! + USE PARAMETERS, ONLY : pi + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + IMPLICIT NONE +! +! ---------------------------------------------------------------------- + REAL, INTENT(IN) :: rhoi(ncomp) + REAL, INTENT(IN) :: rhoid(ncomp) + REAL, INTENT(OUT) :: ycorr(ncomp) + REAL, INTENT(OUT) :: ycorrd(ncomp) +! this is: d( ln( yij ) ) / d( rho(k) ) used with i=j + REAL, INTENT(OUT) :: dlnydr(ncomp, ncomp) + REAL, INTENT(OUT) :: dlnydrd(ncomp, ncomp) +! +! ---------------------------------------------------------------------- + INTEGER :: i, j, k + REAL :: z0, z1, z2, z3, zms, z1_rk, z2_rk, z3_rk + REAL :: z2d, z3d, zmsd + REAL, DIMENSION(ncomp, ncomp) :: dij_ab, gij, gij_rk + REAL, DIMENSION(ncomp, ncomp) :: gijd, gij_rkd + INTRINSIC SUM + REAL, DIMENSION(ncomp) :: arg1 + REAL, DIMENSION(ncomp) :: arg1d +! ---------------------------------------------------------------------- + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1) + z0 = pi/6.0*SUM(arg1(:)) + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1)*dhs(1:ncomp) + z1 = pi/6.0*SUM(arg1(:)) + arg1d(:) = parame(1:ncomp,1)*dhs(1:ncomp)**2*rhoid(1:ncomp) + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1)*dhs(1:ncomp)**2 + z2d = pi*SUM(arg1d(:))/6.0 + z2 = pi/6.0*SUM(arg1(:)) + arg1d(:) = parame(1:ncomp,1)*dhs(1:ncomp)**3*rhoid(1:ncomp) + arg1(:) = rhoi(1:ncomp)*parame(1:ncomp,1)*dhs(1:ncomp)**3 + z3d = pi*SUM(arg1d(:))/6.0 + z3 = pi/6.0*SUM(arg1(:)) + zmsd = -z3d + zms = 1.0 - z3 + DO i=1,ncomp + DO j=1,ncomp + dij_ab(i, j) = dhs(i)*dhs(j)/(dhs(i)+dhs(j)) + END DO + END DO + ycorrd = 0.0 + dlnydrd = 0.0 + gij_rkd = 0.0 + gijd = 0.0 + DO k=1,ncomp + DO i=1,ncomp + z1_rk = pi/6.0*parame(k,1)*dhs(k) + z2_rk = pi/6.0*parame(k,1)*dhs(k)*dhs(k) + z3_rk = pi/6.0*parame(k,1)*dhs(k)**3 +!DO j = 1, ncomp + j = i + gijd(i, j) = ((3.0*dij_ab(i, j)*z2d*zms-3.0*dij_ab(i, j)*z2*zmsd& +& )/zms-3.0*dij_ab(i, j)*z2*zmsd/zms)/zms**2 - zmsd/zms**2 + (& +& 2.0*2*dij_ab(i, j)**2*z2*z2d*zms**3-2.0*dij_ab(i, j)**2*z2**2*& +& 3*zms**2*zmsd)/(zms**3)**2 + gij(i, j) = 1.0/zms + 3.0*dij_ab(i, j)*z2/zms/zms + 2.0*(dij_ab(& +& i, j)*z2)**2/zms**3 +!dgijdz(i,j)= 1.0/zms/zms + 3.0*dij_ab(i,j)*z2*(1.0+z3)/z3/zms**3 & +! + (dij_ab(i,j)*z2/zms/zms)**2 *(4.0+2.0*z3)/z3 + gij_rkd(i, j) = (-2)*(z3_rk*zmsd/zms)/zms**2 + ((3.0*dij_ab(i, j& +& )*(2.0*z3_rk*z2d*zms-2.0*z2*z3_rk*zmsd)/zms-3.0*dij_ab(i, j)*(& +& z2_rk+2.0*z2*z3_rk/zms)*zmsd)/zms-3.0*dij_ab(i, j)*(z2_rk+2.0*& +& z2*z3_rk/zms)*zmsd/zms)/zms**2 + (dij_ab(i, j)**2*z2d*zms**3-& +& dij_ab(i, j)**2*z2*3*zms**2*zmsd)*(4.0*z2_rk+6.0*z2*z3_rk/zms)& +& /zms**6 + dij_ab(i, j)**2*z2*(6.0*z3_rk*z2d*zms-6.0*z2*z3_rk*& +& zmsd)/zms**5 + gij_rk(i, j) = z3_rk/zms/zms + 3.0*dij_ab(i, j)*(z2_rk+2.0*z2*& +& z3_rk/zms)/zms/zms + dij_ab(i, j)**2*z2/zms**3*(4.0*z2_rk+6.0*& +& z2*z3_rk/zms) +!END DO + ycorrd(i) = gijd(i, i) + ycorr(i) = gij(i, i) + dlnydrd(i, k) = (gij_rkd(i, i)*gij(i, i)-gij_rk(i, i)*gijd(i, i)& +& )/gij(i, i)**2 + dlnydr(i, k) = gij_rk(i, i)/gij(i, i) + END DO + END DO + END SUBROUTINE CAVITY_MIX_D + +END MODULE MOD_DFT_CHAIN_D diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA.F90 new file mode 100644 index 000000000..15e414b50 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA.F90 @@ -0,0 +1,697 @@ +!>This file contains the subroutines which calculate the contribution of +!!dispersion to the Helmholtz energy functional. + + + + + + + +Module mod_DFT_DISP_WDA + + +Implicit None + +Private + +Public :: rhoi_disp_wd +Public :: a_disp_pcsaft +Public :: dF_disp_drho_wda + + + + + + Contains + + + + SUBROUTINE rhoi_disp_wd ( discret, fa_psi, fa_psi_max, psi_j, rhop, rhoi_disp,user ) + + + Use PetscManagement + Use basic_variables, ONLY: ncomp, t, parame + Use mod_DFT, Only: zp,dzp + IMPLICIT NONE + +#include + +! +! ---------------------------------------------------------------------- + Type (userctx) :: user + PetscScalar :: rhop(ncomp,user%gxs:user%gxe) + INTEGER, INTENT(IN) :: discret + INTEGER, INTENT(IN) :: fa_psi(ncomp) + INTEGER, INTENT(IN) :: fa_psi_max +! REAL, INTENT(IN) :: dzp + REAL, INTENT(IN) :: psi_j(ncomp) +! REAL, INTENT(IN) :: zp(user%gxs:user%gxe) + REAL, INTENT(OUT) :: rhoi_disp(user%gxs:user%gxe,ncomp) +! ---------------------------------------------------------------------- + INTEGER :: ii, jj, icomp, nn + REAL :: zmin, zl, zr + REAL :: int1, zz1, xl, xh + REAL, DIMENSION(700) :: y2, rx, ry1 +! ---------------------------------------------------------------------- + +!write(*,*)'rhoi_wd' + + zmin = 1d-6 + DO icomp = 1, ncomp + DO ii = (user%xs-fa_psi_max),(user%xe+fa_psi_max)!(-fa_psi_max), (discret+fa_psi_max) + nn = 0 + zl = zp(ii) - psi_j(icomp) + zr = zp(ii) + psi_j(icomp) + DO jj = (ii-fa_psi(icomp)), (ii+fa_psi(icomp)) + IF ( zp(jj+1) > (zl+zmin) ) THEN + ! first position: left side of the sphere: zl. Linear Interpolation of h's + IF ( nn == 0 ) THEN + nn = nn + 1 + rx(1) = zl + ry1(1) = 0.0 ! = 0.75*rhop(ii-fa,icomp)*( d.**2 -d.**2 ) +!write(*,*)'FIRST',nn,rx(nn),ry1(nn) + ! middle position: within the sphere: zl < jj < zr + ELSE + nn = nn + 1 + zz1 = zp(jj)-zp(ii) ! distance z12 between 1 and 2 + rx(nn) = zp(jj) + ry1(nn) = rhop(icomp,jj) * (psi_j(icomp)*psi_j(icomp) - zz1*zz1) +!write(*,*)'MIDDLE',nn,rx(nn),ry1(nn) + ! last position: right side of the sphere: zr. Linear Interpolation of h's + IF ( zp(jj+1) > (zr-zmin) ) THEN + nn = nn + 1 + rx(nn) = zr + ry1(nn) = 0.0 +!write(*,*)'LAST',nn,rx(nn),ry1(nn) + EXIT + END IF + END IF + END IF + END DO + xl = rx(1) + xh = rx(nn) + + if( nn >= 700 ) then + write(*,*) 'rhoi_disp_wd: bigger vectors rx, ry1, ry2, ... required!', nn + pause + end if + + CALL spline ( rx(1:nn), ry1(1:nn), nn, 1.E30, 1.E30, y2(1:nn) ) + CALL splint_integral ( rx(1:nn), ry1(1:nn), y2(1:nn), nn, xl, xh, int1 ) + rhoi_disp(ii,icomp) = int1 * 0.75/psi_j(icomp)**3 + + if ( rhoi_disp(ii,icomp) < 0.0 ) then + rhoi_disp(ii,icomp) = 0.0 + do jj = 2, nn + rhoi_disp(ii,icomp) = rhoi_disp(ii,icomp) + (ry1(jj)+ry1(jj-1))/2.0 *(rx(jj)-rx(jj-1)) + end do + end if + if ( rhoi_disp(ii,icomp) < 0.0 ) rhoi_disp(ii,icomp) = rhop(icomp,ii) + END DO + END DO + + +END SUBROUTINE rhoi_disp_wd + + + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE a_disp_pcsaft +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE a_disp_pcsaft( discret, fa_psi, fa_psi_max, rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr,user ) + + Use PetscManagement +! + USE parameters, ONLY: PI, np, nc + USE basic_variables, ONLY: ncomp, t, parame, xi, densta, ensemble_flag + USE eos_variables, ONLY: dhs, sig_ij, uij + USE eos_constants, ONLY: ap, bp + IMPLICIT NONE + +#include + + + + +! +! ---------------------------------------------------------------------- + Type (userctx) :: user + INTEGER, INTENT(IN) :: discret + INTEGER, INTENT(IN) :: fa_psi(ncomp) + INTEGER, INTENT(IN) :: fa_psi_max + REAL, INTENT(IN) :: rhoi_disp(user%gxs:user%gxe,ncomp) + REAL, INTENT(OUT) :: rho_disp(user%gxs:user%gxe) + REAL, INTENT(OUT) :: adisp(user%gxs:user%gxe) + REAL, INTENT(OUT) :: mydisp(user%gxs:user%gxe,ncomp) + REAL, INTENT(OUT) :: dadisp_dr(user%gxs:user%gxe,ncomp) +! ---------------------------------------------------------------------- + INTEGER :: jj, m + INTEGER :: icomp, jcomp, kcomp + REAL, DIMENSION(ncomp) :: x_disp + REAL :: eta_disp, zms_disp + REAL, DIMENSION(0:6) :: apar, bpar, apar_rk, bpar_rk + REAL :: m_mean, C1, I1, I2 + REAL :: r2_ord1, r2_ord2 + REAL :: eta_rk, m_mean_rk, zms2eta + REAL :: C1_m_mean, C1_eta, C1_rk + REAL :: I1_rk, I2_rk + REAL :: r2_ord1_rk, r2_ord2_rk + REAL :: term1, term2, term3 + INTEGER :: iphas + REAL, DIMENSION(np,nc) :: mydisp2 +! ---------------------------------------------------------------------- + + DO icomp = 1, ncomp + DO jj = (user%xs-fa_psi_max),(user%xe+fa_psi_max)!(-fa_psi_max), (discret+fa_psi_max) + m_mean = 0. + eta_disp = 0. +! rho_disp(jj) = sum( rhop(jj,1:ncomp) ) + rho_disp(jj) = sum( rhoi_disp(jj,1:ncomp) ) + do kcomp=1, ncomp +! x_disp(kcomp) = rhop(jj,kcomp) / rho_disp(jj) + x_disp(kcomp) = rhoi_disp(jj,kcomp) / rho_disp(jj) + m_mean = m_mean + x_disp(kcomp) * parame(kcomp,1) +! eta_disp = eta_disp + rhop(jj,kcomp) * parame(kcomp,1) * dhs(kcomp)**3. + eta_disp = eta_disp + rhoi_disp(jj,kcomp) * parame(kcomp,1) * dhs(kcomp)**3. + end do + eta_disp = eta_disp * PI / 6. + zms_disp = 1. - eta_disp + if( zms_disp <= 0. ) write(*,'(a56,i6,f12.5)') 'system too dense for disp contribution ( jj, eta_disp ):', jj, eta_disp + + + ! quantities of the dispersive free energy contribution + I1 = 0. + I2 = 0. + do m = 0, 6 + apar(m) = ap(m,1) + (1.-1./m_mean)*ap(m,2) + (1.-1./m_mean)*(1.-2./m_mean)*ap(m,3) + bpar(m) = bp(m,1) + (1.-1./m_mean)*bp(m,2) + (1.-1./m_mean)*(1.-2./m_mean)*bp(m,3) + I1 = I1 + apar(m) * eta_disp**m + I2 = I2 + bpar(m) * eta_disp**m + end do + + r2_ord1 = 0. + r2_ord2 = 0. + do kcomp = 1, ncomp + do jcomp = 1, ncomp + r2_ord1 = r2_ord1 + rhoi_disp(jj,kcomp)*rhoi_disp(jj,jcomp)*parame(kcomp,1) & + *parame(jcomp,1)*sig_ij(kcomp,jcomp)**3 * uij(kcomp,jcomp)/t + r2_ord2 = r2_ord2 + rhoi_disp(jj,kcomp)*rhoi_disp(jj,jcomp)*parame(kcomp,1) & + *parame(jcomp,1)*sig_ij(kcomp,jcomp)**3 * (uij(kcomp,jcomp)/t)**2 + end do + end do + + C1 = (1.-m_mean)*(20.*eta_disp-27.*eta_disp**2 +12.*eta_disp**3 -2.*eta_disp**4 )/(zms_disp*(2.-eta_disp))**2 + C1 = 1. + m_mean*(8.*eta_disp-2.*eta_disp**2)/zms_disp**4 + C1 + C1 = 1. / C1 + + + ! dispersive free energy contribution + adisp(jj) = -2.*PI*I1*r2_ord1/rho_disp(jj) - PI*C1*m_mean*I2*r2_ord2/rho_disp(jj) + + + ! quantity-derivatives of the dispersive free energy contribution + m_mean_rk = ( parame(icomp,1) - m_mean ) / rho_disp(jj) + + do m = 0, 6 + apar_rk(m) = m_mean_rk/m_mean**2 * ( ap(m,2) + (3. - 4./m_mean) * ap(m,3) ) + bpar_rk(m) = m_mean_rk/m_mean**2 * ( bp(m,2) + (3. - 4./m_mean) * bp(m,3) ) + end do + eta_rk = parame(icomp,1) * dhs(icomp)**3. * PI / 6. + I1_rk = apar_rk(0) + apar(1)*eta_rk + apar_rk(1)*eta_disp + I2_rk = bpar_rk(0) + bpar(1)*eta_rk + bpar_rk(1)*eta_disp + do m = 2, 6 + I1_rk = I1_rk + apar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + apar_rk(m)*eta_disp**REAL(m) + I2_rk = I2_rk + bpar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + bpar_rk(m)*eta_disp**REAL(m) + end do + + r2_ord1_rk = 0. + r2_ord2_rk = 0. + do kcomp = 1,ncomp + r2_ord1_rk = r2_ord1_rk + rhoi_disp(jj,kcomp) * parame(kcomp,1) * sig_ij(icomp,kcomp)**3 * uij(icomp,kcomp)/t + r2_ord2_rk = r2_ord2_rk + rhoi_disp(jj,kcomp) * parame(kcomp,1) * sig_ij(icomp,kcomp)**3 *(uij(icomp,kcomp)/t)**2 + end do + r2_ord1_rk = 2. * parame(icomp,1) * r2_ord1_rk + r2_ord2_rk = 2. * parame(icomp,1) * r2_ord2_rk + + zms2eta = zms_disp * (2.-eta_disp) + C1_m_mean = ( 8.*eta_disp - 2.*eta_disp*eta_disp ) / zms_disp**4 & + - ( 20.*eta_disp - 27.*eta_disp*eta_disp + 12.*eta_disp**3 - 2.*eta_disp**4 ) / zms2eta**2 + C1_eta = m_mean * ( 8. + 20.*eta_disp - 4.*eta_disp*eta_disp ) / zms_disp**5 & + + (1. - m_mean) * ( 40. - 48.*eta_disp + 12.*eta_disp*eta_disp + 2.*eta_disp**3 ) / zms2eta**3 + C1_rk = - C1 * C1 * ( eta_rk * C1_eta + m_mean_rk * C1_m_mean ) + + + ! chemical potential and derivative of adisp (analytically) + term1 = - 2. * PI * ( I1 * r2_ord1_rk + r2_ord1 * I1_rk ) + term2 = - PI * C1 * m_mean * ( I2 * r2_ord2_rk + r2_ord2 * I2_rk ) + term3 = - PI * I2 * r2_ord2 * ( m_mean * C1_rk + C1 * m_mean_rk ) + mydisp(jj,icomp) = term1 + term2 + term3 + dadisp_dr(jj,icomp) = ( mydisp(jj,icomp) - adisp(jj) ) / rho_disp(jj) + + + ! chemical potential and derivative of adisp (numerically) +! do kcomp=1, ncomp +! xi(1,kcomp) = x_disp(kcomp) +! end do +! iphas = 1 +! ensemble_flag = 'tv' +! densta(1) = eta_disp +! call ONLY_ONE_TERM_EOS_NUMERICAL ( 'disp_term', 'PC-SAFT ' ) +! if( rho_disp(jj) /= 0. ) CALL FUGACITY(mydisp2) +! call RESTORE_PREVIOUS_EOS_NUMERICAL +! mydisp(jj,1:ncomp) = mydisp2(iphas,1:ncomp) +! dadisp_dr(jj,icomp) = ( mydisp(jj,icomp) - adisp(jj) ) / rho_disp(jj) + + + if( rho_disp(jj) == 0. ) then + adisp(jj) = 0. + mydisp(jj,icomp) = 0. + dadisp_dr(jj,icomp) = 0. + end if + + END DO + END DO + + +END SUBROUTINE a_disp_pcsaft + + + + + + + +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! SUBROUTINE dF_disp_drho_wda +!WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW +! + SUBROUTINE dF_disp_drho_wda( ii, WDA_var, fa_psi, psi_j, rhop, rhop_sum, & + rhoi_disp, rho_disp, adisp, mydisp, dadisp_dr, dF_drho_att,user ) + + Use PetscManagement + Use basic_variables, ONLY: ncomp + Use mod_DFT, Only: zp + IMPLICIT NONE + +#include + +! +! ---------------------------------------------------------------------- + Type (userctx) :: user + PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +! +! ---------------------------------------------------------------------- + INTEGER, INTENT(IN) :: ii, WDA_var + INTEGER, INTENT(IN) :: fa_psi(ncomp) + REAL, INTENT(IN) :: psi_j(ncomp) +! REAL, INTENT(IN) :: zp(user%gxs:user%gxe) + REAL, INTENT(IN) :: adisp(user%gxs:user%gxe) + REAL, INTENT(IN) :: mydisp(user%gxs:user%gxe,ncomp) + REAL, INTENT(IN) :: rhop_sum(user%gxs:user%gxe) + REAL, INTENT(IN) :: rhoi_disp(user%gxs:user%gxe,ncomp) + REAL, INTENT(IN) :: rho_disp(user%gxs:user%gxe) + REAL, INTENT(IN) :: dadisp_dr(user%gxs:user%gxe,ncomp) + REAL, INTENT(OUT) :: dF_drho_att(ncomp) +! ---------------------------------------------------------------------- + INTEGER :: jj, icomp, nn + REAL :: int3 + REAL :: zmin, zl, zr, zz1, xl, xh + REAL, DIMENSION(700) :: y2, hx, hy3 +! ---------------------------------------------------------------------- + + zmin = 1d-6 + DO icomp = 1, ncomp + nn = 0 + zl = zp(ii) - psi_j(icomp) + zr = zp(ii) + psi_j(icomp) + DO jj = (ii-fa_psi(icomp)), (ii+fa_psi(icomp)) + IF ( zp(jj+1) > (zl+zmin) ) THEN + ! first position: left side of the sphere: zl. Linear Interpolation of h's + IF ( nn == 0 ) THEN + nn = nn + 1 + hx(1) = zl + hy3(1) = 0. +!write(*,*)'FIRST',nn,hx(nn),hy3(nn) + ! middle position: within the sphere: zl < jj < zr + ELSE + nn = nn + 1 + zz1 = zp(jj) - zp(ii) ! distance z12 between 1 and 2 + hx(nn) = zp(jj) + if(WDA_var == 1) hy3(nn) = mydisp(jj,icomp) * ( psi_j(icomp)*psi_j(icomp) - zz1**2 ) + if(WDA_var == 2) hy3(nn) = rhop_sum(jj) * dadisp_dr(jj,icomp) * ( psi_j(icomp)*psi_j(icomp) - zz1**2 ) +!write(*,*)'MIDDLE',nn,hx(nn),hy3(nn) + ! last position: right side of the sphere: zr. Linear Interpolation of h's + IF ( zp(jj+1) > (zr-zmin) ) THEN + nn = nn + 1 + hx(nn) = zr + hy3(nn) = 0. +!write(*,*)'LAST',nn,hx(nn),hy3(nn) + + EXIT + END IF + END IF + END IF + END DO + xl = hx(1) + xh = hx(nn) + + if( nn >= 700 ) then + write(*,*) 'dF_disp_wd_pcsaft: bigger vectors hx, hy3, ... required!', nn + pause + end if + + CALL spline ( hx(1:nn), hy3(1:nn), nn, 1.E30, 1.E30, y2(1:nn) ) + CALL splint_integral( hx(1:nn), hy3(1:nn), y2(1:nn), nn, xl, xh, int3 ) + + if(WDA_var == 1) dF_drho_att(icomp) = int3 * 0.75 / psi_j(icomp)**3. + if(WDA_var == 2) dF_drho_att(icomp) = int3 * 0.75 / psi_j(icomp)**3. + adisp(ii) + END DO + + +END SUBROUTINE dF_disp_drho_wda + + + +End Module mod_DFT_DISP_WDA + + +! ! ! +! ! ! Subroutine DISP_Weighted_Densities(rhop, rhop_wd, user) +! ! ! +! ! ! Use PetscManagement +! ! ! Use BASIC_VARIABLES, Only: ncomp +! ! ! Use mod_DFT, Only: fa_disp,ab_disp,zp,dzp +! ! ! Implicit None +! ! ! +! ! ! #include +! ! ! +! ! ! !passed +! ! ! Type (userctx) :: user +! ! ! PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +! ! ! REAL, INTENT(OUT) :: rhop_wd(user%gxs:user%gxe,ncomp) +! ! ! +! ! ! +! ! ! !local +! ! ! INTEGER :: i,j,k +! ! ! INTEGER :: n +! ! ! INTEGER, parameter :: NMAX = 800 +! ! ! REAL :: x_int(NMAX),y_int(NMAX),y2(NMAX) !Fehlermeldung einbauen, falls dim > 400!! +! ! ! REAL :: zmin,dz,zz +! ! ! REAL :: xlo,xhi,int1 +! ! ! INTEGER :: fa_disp_max +! ! ! +! ! ! +! ! ! +! ! ! zmin = 1d-6 +! ! ! fa_disp_max = maxval(fa_disp(1:ncomp)) +! ! ! +! ! ! Do k = 1,ncomp +! ! ! +! ! ! Do i = user%xs - fa_disp_max , user%xe + fa_disp_max +! ! ! n = 1 +! ! ! x_int = 0.0 +! ! ! y_int = 0.0 +! ! ! +! ! ! Do j = i-fa_disp(k),i+fa_disp(k) +! ! ! +! ! ! If( ( zp(i)-zp(j+1) ) < ab_disp(k) .and. ( zp(i) - zp(j) ) >= ab_disp(k) ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! ! +! ! ! If(n/= 1) stop 'n /=1 in DISP_Weighted_Densities' !here always n=1! +! ! ! zz = zp(j) - zp(i) !distance between grid points j and i +! ! ! dz = zp(j+1) - (zp(i) - ab_disp(k)) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! ! x_int(n) = 0.0 !array containing x-values for spline integration +! ! ! y_int(n) = 0.0 +! ! ! +! ! ! +! ! ! Else If (zp(j) > (zp(i)-ab_disp(k)) .and. zp(j) <= (zp(i)+ab_disp(k))) Then !grid point j within i+-d2 +! ! ! +! ! ! n = n + 1 +! ! ! x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! +! ! ! zz = zp(j) - zp(i) +! ! ! dz = dzp +! ! ! y_int(n) = rhop(k,j) * (ab_disp(k)*ab_disp(k) - zz*zz ) +! ! ! +! ! ! +! ! ! If (zp(j) < (zp(i)+ab_disp(k)) .and. zp(j+1) >= (zp(i)+ab_disp(k)) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! ! dz = zp(i) + ab_disp(k) - zp(j) +! ! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! ! zz = zp(j) - zp(i) +! ! ! n = n + 1 +! ! ! x_int(n) = x_int(n-1) + dz +! ! ! y_int(n) = 0.0 +! ! ! +! ! ! +! ! ! End If +! ! ! End If +! ! ! End Do +! ! ! +! ! ! +! ! ! xlo = x_int(1) +! ! ! xhi = x_int(n) +! ! ! +! ! ! If(n > NMAX) stop 'Increase NMAX in DISP_Weighted_Densities (auch in AD Routine!!)' +! ! ! +! ! ! write(*,*)'n',n +! ! ! pause +! ! ! write(*,*)'rx',x_int(1:n) +! ! ! pause +! ! ! write(*,*)'ry',y_int(1:n) +! ! ! pause +! ! ! +! ! ! +! ! ! +! ! ! CALL spline( x_int(1:n), y_int(1:n), n, 1.E30, 1.E30, y2(1:n) ) +! ! ! CALL splint_integral ( x_int(1:n), y_int(1:n), y2(1:n), n, xlo, xhi, int1 ) +! ! ! rhop_wd(i,k) = 0.75 * int1 / ab_disp(k)**3 +! ! ! +! ! ! if ( rhop_wd(i,k) < 0.0 ) then +! ! ! rhop_wd(i,k) = 0.0 +! ! ! do j = 2, n +! ! ! rhop_wd(i,k) = rhop_wd(i,k) + (y_int(j)+y_int(j-1))/2.0 *(x_int(j)-x_int(j-1)) +! ! ! end do +! ! ! end if +! ! ! if ( rhop_wd(i,k) < 0.0 ) rhop_wd(i,k) = rhop(k,i) +! ! ! +! ! ! End Do +! ! ! End Do +! ! ! +! ! ! +! ! ! End Subroutine DISP_Weighted_Densities +! ! ! +! ! ! +! ! ! +! ! ! Subroutine DISP_mu(rhop_wd,f_disp,my_disp,df_disp_drk,user) +! ! ! +! ! ! Use PetscManagement +! ! ! Use PARAMETERS, Only: PI +! ! ! Use EOS_CONSTANTS, Only: ap,bp +! ! ! Use BASIC_VARIABLES, Only: ncomp,t,parame +! ! ! Use EOS_VARIABLES, Only: dhs,sig_ij,uij +! ! ! Use mod_DFT, Only: fa_disp +! ! ! Implicit None +! ! ! +! ! ! #include +! ! ! +! ! ! !passed +! ! ! Type (userctx) :: user +! ! ! REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +! ! ! REAL, INTENT(OUT) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +! ! ! REAL, INTENT(OUT) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +! ! ! REAL, INTENT(OUT) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho +! ! ! +! ! ! ! ! !local +! ! ! ! ! INTEGER :: k,ii,kk,m +! ! ! ! ! REAL :: m_mean, m_rk(ncomp) +! ! ! ! ! REAL :: apar(0:6),bpar(0:6) +! ! ! ! ! REAL :: ap_rk(ncomp,0:6),bp_rk(ncomp,0:6) +! ! ! ! ! REAL :: xi(ncomp),z3 +! ! ! ! ! REAL :: I1,I2,I1_rk,I2_rk +! ! ! ! ! REAL :: order1,order2,ord1_rk,ord2_rk +! ! ! ! ! REAL :: c1_con,c2_con, c1_rk,rho2 +! ! ! ! ! REAL :: rhop_wd_sum, eta_disp, eta_rk, zms +! ! ! ! ! INTEGER :: fa_disp_max +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! fa_disp_max = maxval(fa_disp(1:ncomp)) +! ! ! ! ! +! ! ! ! ! Do k = 1,ncomp +! ! ! ! ! Do ii = user%xs-fa_disp_max,user%xe+fa_disp_max +! ! ! ! ! +! ! ! ! ! rhop_wd_sum = SUM(rhop_wd(ii,1:ncomp)) +! ! ! ! ! +! ! ! ! ! m_mean = 0.0 +! ! ! ! ! eta_disp = 0.0 +! ! ! ! ! Do kk = 1,ncomp +! ! ! ! ! xi(kk) = rhop_wd(ii,kk) / rhop_wd_sum +! ! ! ! ! m_mean = m_mean + xi(kk)*parame(kk,1) +! ! ! ! ! eta_disp = eta_disp + rhop_wd(ii,kk)*parame(kk,1)*dhs(kk)**3 +! ! ! ! ! End Do +! ! ! ! ! +! ! ! ! ! eta_disp = eta_disp * PI / 6.0 +! ! ! ! ! eta_rk = parame(k,1) * dhs(k)**3 * PI / 6.0 +! ! ! ! ! +! ! ! ! ! m_rk(k) = ( parame(k,1) - m_mean ) / rhop_wd_sum +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! DO m = 0, 6 +! ! ! ! ! apar(m) = ap(m,1) + (1.0-1.0/m_mean)*ap(m,2) & +! ! ! ! ! + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*ap(m,3) +! ! ! ! ! bpar(m) = bp(m,1) + (1.0-1.0/m_mean)*bp(m,2) & +! ! ! ! ! + (1.0-1.0/m_mean)*(1.0-2.0/m_mean)*bp(m,3) +! ! ! ! ! +! ! ! ! ! ! --- derivatives of apar, bpar to rho_k --------------------------- +! ! ! ! ! ap_rk(k,m) = m_rk(k)/m_mean**2 * ( ap(m,2) + (3.0 -4.0/m_mean) *ap(m,3) ) +! ! ! ! ! bp_rk(k,m) = m_rk(k)/m_mean**2 * ( bp(m,2) + (3.0 -4.0/m_mean) *bp(m,3) ) +! ! ! ! ! END DO +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! I1 = 0.0 +! ! ! ! ! I2 = 0.0 +! ! ! ! ! I1_rk = 0.0 +! ! ! ! ! I2_rk = 0.0 +! ! ! ! ! DO m = 0, 6 +! ! ! ! ! I1 = I1 + apar(m)*eta_disp**REAL(m) +! ! ! ! ! I2 = I2 + bpar(m)*eta_disp**REAL(m) +! ! ! ! ! I1_rk = I1_rk + apar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + ap_rk(k,m)*eta_disp**REAL(m) +! ! ! ! ! I2_rk = I2_rk + bpar(m)*REAL(m)*eta_disp**REAL(m-1)*eta_rk + bp_rk(k,m)*eta_disp**REAL(m) +! ! ! ! ! END DO +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! ord1_rk = 0.0 +! ! ! ! ! ord2_rk = 0.0 +! ! ! ! ! order1 = 0.0 +! ! ! ! ! order2 = 0.0 +! ! ! ! ! DO kk = 1,ncomp +! ! ! ! ! !sig_ij(kk,k) = 0.5 * ( dhs(kk) + dhs(k) ) +! ! ! ! ! !uij(kk,k) = (1.0 - kij(kk,k)) * SQRT( eps(kk) * eps(k) ) +! ! ! ! ! order1 = order1 + xi(kk)*xi(k)* parame(kk,1)*parame(k,1)*sig_ij(kk,k)**3 * uij(kk,k)/t +! ! ! ! ! order2 = order2 + xi(kk)*xi(k)* parame(kk,1)*parame(k,1)*sig_ij(kk,k)**3 * (uij(kk,k)/t)**2 +! ! ! ! ! ord1_rk = ord1_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*sig_ij(kk,k)**3 *uij(kk,k)/t +! ! ! ! ! ord2_rk = ord2_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*sig_ij(kk,k)**3 *(uij(kk,k)/t)**2 +! ! ! ! ! END DO +! ! ! ! ! +! ! ! ! ! z3 = eta_disp +! ! ! ! ! zms = 1.0 - z3 +! ! ! ! ! +! ! ! ! ! c1_con= 1.0/ ( 1.0 + m_mean*(8.0*z3-2.0*z3*z3)/zms**4 & +! ! ! ! ! + (1.0 - m_mean)*(20.0*z3-27.0*z3*z3 +12.0*z3**3 -2.0*z3**4 ) & +! ! ! ! ! /(zms*(2.0-z3))**2 ) +! ! ! ! ! c2_con= - c1_con*c1_con *( m_mean*(-4.0*z3*z3+20.0*z3+8.0)/zms**5 & +! ! ! ! ! + (1.0 - m_mean) *(2.0*z3**3 +12.0*z3*z3-48.0*z3+40.0) & +! ! ! ! ! /(zms*(2.0-z3))**3 ) +! ! ! ! ! c1_rk= c2_con*eta_rk - c1_con*c1_con*m_rk(k) * ( (8.0*z3-2.0*z3*z3)/zms**4 & +! ! ! ! ! - (-2.0*z3**4 +12.0*z3**3 -27.0*z3*z3+20.0*z3) / (zms*(2.0-z3))**2 ) +! ! ! ! ! +! ! ! ! ! +! ! ! ! ! rho2 = rhop_wd_sum * rhop_wd_sum +! ! ! ! ! +! ! ! ! ! my_disp(ii,k) = -2.0*PI* ( order1*rho2*I1_rk + ord1_rk*I1 ) & +! ! ! ! ! - PI* c1_con*m_mean * ( order2*rho2*I2_rk + ord2_rk*I2 ) & +! ! ! ! ! - PI* ( c1_con*m_rk(k) + c1_rk*m_mean ) * order2*rho2*I2 +! ! ! ! ! +! ! ! ! ! f_disp(ii) = -2.0 * PI * rhop_wd_sum * I1 * order1 & !hier * rho_wd_sum, bei Elmar/rho_wd_sum, da in order1 bei Elmar mit rhoi, hier mit xi!! +! ! ! ! ! -PI * rhop_wd_sum * c1_con * m_mean * I2 * order2 +! ! ! ! ! +! ! ! ! ! df_disp_drk(ii,k) = ( my_disp(ii,k) - f_disp(ii) ) / rhop_wd_sum +! ! ! ! ! +! ! ! ! ! End Do +! ! ! ! ! +! ! ! ! ! End Do +! ! ! +! ! ! +! ! ! End Subroutine DISP_mu +! ! ! +! ! ! +! ! ! +! ! ! Subroutine DISP_dFdrho_wda(ii,rhop,rhop_wd,my_disp,f_disp,df_disp_drk,dF_drho_disp,user) +! ! ! +! ! ! Use PetscManagement +! ! ! +! ! ! Use BASIC_VARIABLES, Only: ncomp +! ! ! Use mod_DFT, Only: zp,dzp,fa_disp,ab_disp +! ! ! +! ! ! Implicit None +! ! ! #include +! ! ! +! ! ! !passed +! ! ! INTEGER, INTENT(IN) :: ii +! ! ! Type (userctx) :: user +! ! ! PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +! ! ! REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +! ! ! REAL, INTENT(IN) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +! ! ! REAL, INTENT(IN) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +! ! ! REAL, INTENT(IN) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho +! ! ! REAL, INTENT(OUT) :: dF_drho_disp(ncomp) +! ! ! +! ! ! ! ! !local +! ! ! ! ! INTEGER :: n,icomp,jj +! ! ! ! ! REAL :: zmin,zz,dz +! ! ! ! ! INTEGER, parameter :: NMAX = 800 +! ! ! ! ! REAL :: x_int(NMAX), y_int(NMAX), y2(NMAX) +! ! ! ! ! REAL :: xhi,xlo,int2 +! ! ! ! ! REAL :: rhop_sum +! ! ! ! ! +! ! ! ! ! zmin = 1d-6 +! ! ! ! ! DO icomp = 1, ncomp +! ! ! ! ! n = 1 +! ! ! ! ! x_int = 0.0 +! ! ! ! ! y_int = 0.0 +! ! ! ! ! +! ! ! ! ! DO jj = (ii-fa_disp(icomp)), (ii+fa_disp(icomp)) +! ! ! ! ! +! ! ! ! ! !IF ( zp(jj+1) > (zl+zmin) ) THEN +! ! ! ! ! If( ( zp(ii)-zp(jj+1) ) < ab_disp(icomp) .and. ( zp(ii) - zp(jj) ) >= ab_disp(icomp) ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! ! ! ! +! ! ! ! ! If(n/= 1) stop 'n /=1 in DISP_Weighted_Densities' !here always n=1! +! ! ! ! ! zz = zp(jj) - zp(ii) !distance between grid points j and i +! ! ! ! ! dz = zp(jj+1) - (zp(ii) - ab_disp(icomp)) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! ! ! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! ! ! ! x_int(n) = 0.0 !array containing x-values for spline integration +! ! ! ! ! y_int(n) = 0.0 +! ! ! ! ! +! ! ! ! ! Else If (zp(jj) > (zp(ii)-ab_disp(icomp)) .and. zp(jj) <= (zp(ii)+ab_disp(icomp))) Then !grid point j within i+-d2 +! ! ! ! ! +! ! ! ! ! n = n + 1 +! ! ! ! ! x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! +! ! ! ! ! zz = zp(jj) - zp(ii) +! ! ! ! ! dz = dzp +! ! ! ! ! y_int(n) = my_disp(jj,icomp) * (ab_disp(icomp)*ab_disp(icomp) - zz*zz ) +! ! ! ! ! +! ! ! ! ! !rhop_sum = sum(rhop(1:ncomp,jj)) +! ! ! ! ! !y_int(n) = rhop_sum * df_disp_drk(jj,icomp) * (ab_disp(icomp)*ab_disp(icomp) - zz*zz) +! ! ! ! ! +! ! ! ! ! If (zp(jj) < (zp(ii)+ab_disp(icomp)) .and. zp(jj+1) >= (zp(ii)+ab_disp(icomp)) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! ! ! ! dz = zp(ii) + ab_disp(icomp) - zp(jj) +! ! ! ! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! ! ! ! zz = zp(jj) - zp(ii) +! ! ! ! ! n = n + 1 +! ! ! ! ! x_int(n) = x_int(n-1) + dz +! ! ! ! ! y_int(n) = 0.0 +! ! ! ! ! +! ! ! ! ! End If +! ! ! ! ! End If +! ! ! ! ! END DO +! ! ! ! ! xlo = x_int(1) +! ! ! ! ! xhi = x_int(n) +! ! ! ! ! +! ! ! ! ! If(n > NMAX) stop 'Increase NMAX in DISP_dFdrho_wda (auch in AD Routine!!)' +! ! ! ! ! +! ! ! ! ! CALL spline ( x_int(1:n), y_int(1:n), n, 1.E30, 1.E30, y2(1:n) ) +! ! ! ! ! CALL splint_integral( x_int(1:n), y_int(1:n), y2(1:n), n, xlo, xhi, int2 ) +! ! ! ! ! +! ! ! ! ! dF_drho_disp(icomp) = int2 * 0.75 / ab_disp(icomp)**3 +! ! ! ! ! !dF_drho_disp(icomp) = int2 * 0.75 / ab_disp(icomp)**3 + f_disp(ii) +! ! ! ! ! END DO +! ! ! ! ! +! ! ! +! ! ! End Subroutine DISP_dFdrho_wda +! ! ! + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA_d.F90 new file mode 100644 index 000000000..ded4e3e3c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_DISP_WDA_d.F90 @@ -0,0 +1,513 @@ +!>This file contains the subroutines which calculate the derivatives of th contribution of +!!dispersion to the Helmholtz energy functional. + + + + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +MODULE MOD_DFT_DISP_WDA_D + IMPLICIT NONE + PRIVATE + PUBLIC disp_weighted_densities_d + PUBLIC disp_mu_d + PUBLIC disp_dfdrho_wda_d + + CONTAINS + + ! Differentiation of disp_weighted_densities in forward (tangent) mode: +! variations of useful results: rhop_wd +! with respect to varying inputs: rhop + SUBROUTINE DISP_WEIGHTED_DENSITIES_D(rhop, rhopd, rhop_wd, rhop_wdd, & +& user) + Use PetscManagement + USE BASIC_VARIABLES, ONLY : ncomp + USE MOD_DFT, ONLY : fa_disp, ab_disp, zp, dzp + IMPLICIT NONE + +#include + +!passed +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL, INTENT(OUT) :: rhop_wd(user%gxs:user%gxe,ncomp) +REAL, INTENT(OUT) :: rhop_wdd(user%gxs:user%gxe,ncomp) + + +! ! !local +! ! INTEGER :: i, j, k +! ! INTEGER :: n +! ! !Fehlermeldung einbauen, falls dim > 400!! +! ! REAL :: x_int(400), y_int(400), y2(400) +! ! REAL :: y_intd(400), y2d(400) +! ! REAL :: zmin, dz, zz +! ! REAL :: xlo, xhi, int1 +! ! REAL :: int1d +! ! INTEGER :: fa_disp_max +! ! INTRINSIC MAXVAL +! ! zmin = 1d-6 +! ! fa_disp_max = MAXVAL(fa_disp(1:ncomp)) +! ! rhop_wdd = 0.0 +! ! y2d = 0.0 +! ! DO k=1,ncomp +! ! Do i = user%xs - fa_disp_max , user%xe + fa_disp_max +! ! n = 1 +! ! x_int = 0.0 +! ! y_int = 0.0 +! ! y_intd = 0.0 +! ! DO j=i-fa_disp(k),i+fa_disp(k) +! ! IF (zp(i) - zp(j+1) .LT. ab_disp(k) .AND. zp(i) - zp(j) .GE. & +! ! & ab_disp(k)) THEN +! ! !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! ! ! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! !here always n=1! +! ! IF (n .NE. 1) THEN +! ! GOTO 100 +! ! ELSE +! ! !distance between grid points j and i +! ! zz = zp(j) - zp(i) +! ! !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! dz = zp(j+1) - (zp(i)-ab_disp(k)) +! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +! ! !liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! !array containing x-values for spline integration +! ! x_int(n) = 0.0 +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! ELSE IF (zp(j) .GT. zp(i) - ab_disp(k) .AND. zp(j) .LE. zp(i) & +! ! & + ab_disp(k)) THEN +! ! !grid point j within i+-d2 +! ! n = n + 1 +! ! !first time in this If condition, dz is stil the old value from above! +! ! x_int(n) = x_int(n-1) + dz +! ! zz = zp(j) - zp(i) +! ! dz = dzp +! ! y_intd(n) = (ab_disp(k)*ab_disp(k)-zz*zz)*rhopd(k, j) +! ! y_int(n) = rhop(k, j)*(ab_disp(k)*ab_disp(k)-zz*zz) +! ! IF (zp(j) .LT. zp(i) + ab_disp(k) .AND. zp(j+1) .GE. zp(i) +& +! ! & ab_disp(k)) THEN +! ! !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! dz = zp(i) + ab_disp(k) - zp(j) +! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +! ! != x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! zz = zp(j) - zp(i) +! ! n = n + 1 +! ! x_int(n) = x_int(n-1) + dz +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! END IF +! ! END DO +! ! xlo = x_int(1) +! ! xhi = x_int(n) +! ! CALL SPLINE_D(x_int(1:n), y_int(1:n), y_intd(1:n), n, 1.e30, & +! ! & 1.e30, y2(1:n), y2d(1:n)) +! ! CALL SPLINT_INTEGRAL_D(x_int(1:n), y_int(1:n), y_intd(1:n), y2(1& +! ! & :n), y2d(1:n), n, xlo, xhi, int1, int1d) +! ! rhop_wdd(i, k) = 0.75*int1d/ab_disp(k)**3 +! ! rhop_wd(i, k) = 0.75*int1/ab_disp(k)**3 +! ! IF (rhop_wd(i, k) .LT. 0.0) THEN +! ! rhop_wdd(i, k) = 0.0 +! ! rhop_wd(i, k) = 0.0 +! ! DO j=2,n +! ! rhop_wdd(i, k) = rhop_wdd(i, k) + (x_int(j)-x_int(j-1))*(& +! ! & y_intd(j)+y_intd(j-1))/2.0 +! ! rhop_wd(i, k) = rhop_wd(i, k) + (y_int(j)+y_int(j-1))/2.0*(& +! ! & x_int(j)-x_int(j-1)) +! ! END DO +! ! END IF +! ! IF (rhop_wd(i, k) .LT. 0.0) THEN +! ! rhop_wdd(i, k) = rhopd(k, i) +! ! rhop_wd(i, k) = rhop(k, i) +! ! END IF +! ! END DO +! ! END DO +! ! GOTO 110 +! ! 100 STOP +! ! 110 CONTINUE + END SUBROUTINE DISP_WEIGHTED_DENSITIES_D + + + +! Differentiation of disp_mu in forward (tangent) mode: +! variations of useful results: my_disp +! with respect to varying inputs: rhop_wd + SUBROUTINE DISP_MU_D(rhop_wd, rhop_wdd, f_disp, my_disp, my_dispd, & +& df_disp_drk, user) + + Use PetscManagement + USE PARAMETERS, ONLY : pi + USE EOS_CONSTANTS, ONLY : ap, bp + USE BASIC_VARIABLES, ONLY : ncomp, t, parame + USE EOS_VARIABLES, Only: dhs, sig_ij, uij + USE MOD_DFT, ONLY : fa_disp + IMPLICIT NONE +#include + +!passed +Type (userctx) :: user +REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +REAL, INTENT(IN) :: rhop_wdd(user%gxs:user%gxe,ncomp) +REAL, INTENT(OUT) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(OUT) :: my_dispd(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(OUT) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +REAL, INTENT(OUT) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho + +! ! !local +! ! INTEGER :: k, ii, kk, m +! ! REAL :: m_mean, m_rk(ncomp) +! ! REAL :: m_meand, m_rkd(ncomp) +! ! REAL :: apar(0:6), bpar(0:6) +! ! REAL :: apard(0:6), bpard(0:6) +! ! REAL :: ap_rk(ncomp, 0:6), bp_rk(ncomp, 0:6) +! ! REAL :: ap_rkd(ncomp, 0:6), bp_rkd(ncomp, 0:6) +! ! REAL :: xi(ncomp), z3 +! ! REAL :: xid(ncomp), z3d +! ! REAL :: i1, i2, i1_rk, i2_rk +! ! REAL :: i1d, i2d, i1_rkd, i2_rkd +! ! REAL :: order1, order2, ord1_rk, ord2_rk +! ! REAL :: order1d, order2d, ord1_rkd, ord2_rkd +! ! REAL :: c1_con, c2_con, c1_rk, rho2 +! ! REAL :: c1_cond, c2_cond, c1_rkd, rho2d +! ! REAL :: rhop_wd_sum, eta_disp, eta_rk, zms +! ! REAL :: rhop_wd_sumd, eta_dispd, zmsd +! ! INTEGER :: fa_disp_max +! ! INTRINSIC MAXVAL +! ! INTRINSIC SUM +! ! INTRINSIC REAL +! ! REAL :: pwy1 +! ! REAL :: pwr1 +! ! REAL :: pwr1d +! ! REAL :: pwy2 +! ! REAL :: pwr2 +! ! REAL :: pwr2d +! ! fa_disp_max = MAXVAL(fa_disp(1:ncomp)) +! ! my_dispd = 0.0 +! ! xid = 0.0 +! ! m_rkd = 0.0 +! ! ap_rkd = 0.0 +! ! bpard = 0.0 +! ! apard = 0.0 +! ! bp_rkd = 0.0 +! ! DO k=1,ncomp +! ! Do ii = user%xs-fa_disp_max,user%xe+fa_disp_max +! ! rhop_wd_sumd = SUM(rhop_wdd(ii, 1:ncomp)) +! ! rhop_wd_sum = SUM(rhop_wd(ii, 1:ncomp)) +! ! m_mean = 0.0 +! ! eta_disp = 0.0 +! ! eta_dispd = 0.0 +! ! m_meand = 0.0 +! ! DO kk=1,ncomp +! ! xid(kk) = (rhop_wdd(ii, kk)*rhop_wd_sum-rhop_wd(ii, kk)*& +! ! & rhop_wd_sumd)/rhop_wd_sum**2 +! ! xi(kk) = rhop_wd(ii, kk)/rhop_wd_sum +! ! m_meand = m_meand + parame(kk,1)*xid(kk) +! ! m_mean = m_mean + xi(kk)*parame(kk,1) +! ! eta_dispd = eta_dispd + parame(kk,1)*dhs(kk)**3*rhop_wdd(ii, kk) +! ! eta_disp = eta_disp + rhop_wd(ii, kk)*parame(kk,1)*dhs(kk)**3 +! ! END DO +! ! eta_dispd = pi*eta_dispd/6.0 +! ! eta_disp = eta_disp*pi/6.0 +! ! eta_rk = parame(k,1)*dhs(k)**3*pi/6.0 +! ! m_rkd(k) = (-(m_meand*rhop_wd_sum)-(parame(k,1)-m_mean)*rhop_wd_sumd& +! ! & )/rhop_wd_sum**2 +! ! m_rk(k) = (parame(k,1)-m_mean)/rhop_wd_sum +! ! DO m=0,6 +! ! apard(m) = ap(m, 2)*m_meand/m_mean**2 + ap(m, 3)*(m_meand*(1.0& +! ! & -2.0/m_mean)/m_mean**2+(1.0-1.0/m_mean)*2.0*m_meand/m_mean**& +! ! & 2) +! ! apar(m) = ap(m, 1) + (1.0-1.0/m_mean)*ap(m, 2) + (1.0-1.0/& +! ! & m_mean)*(1.0-2.0/m_mean)*ap(m, 3) +! ! bpard(m) = bp(m, 2)*m_meand/m_mean**2 + bp(m, 3)*(m_meand*(1.0& +! ! & -2.0/m_mean)/m_mean**2+(1.0-1.0/m_mean)*2.0*m_meand/m_mean**& +! ! & 2) +! ! bpar(m) = bp(m, 1) + (1.0-1.0/m_mean)*bp(m, 2) + (1.0-1.0/& +! ! & m_mean)*(1.0-2.0/m_mean)*bp(m, 3) +! ! ! --- derivatives of apar, bpar to rho_k --------------------------- +! ! ap_rkd(k, m) = (m_rkd(k)*m_mean**2-m_rk(k)*2*m_mean*m_meand)*(& +! ! & ap(m, 2)+(3.0-4.0/m_mean)*ap(m, 3))/m_mean**4 + m_rk(k)*ap(m& +! ! & , 3)*4.0*m_meand/m_mean**4 +! ! ap_rk(k, m) = m_rk(k)/m_mean**2*(ap(m, 2)+(3.0-4.0/m_mean)*ap(& +! ! & m, 3)) +! ! bp_rkd(k, m) = (m_rkd(k)*m_mean**2-m_rk(k)*2*m_mean*m_meand)*(& +! ! & bp(m, 2)+(3.0-4.0/m_mean)*bp(m, 3))/m_mean**4 + m_rk(k)*bp(m& +! ! & , 3)*4.0*m_meand/m_mean**4 +! ! bp_rk(k, m) = m_rk(k)/m_mean**2*(bp(m, 2)+(3.0-4.0/m_mean)*bp(& +! ! & m, 3)) +! ! END DO +! ! i1 = 0.0 +! ! i2 = 0.0 +! ! i1_rk = 0.0 +! ! i2_rk = 0.0 +! ! i1_rkd = 0.0 +! ! i1d = 0.0 +! ! i2d = 0.0 +! ! i2_rkd = 0.0 +! ! DO m=0,6 +! ! pwy1 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! i1d = i1d + apard(m)*pwr1 + apar(m)*pwr1d +! ! i1 = i1 + apar(m)*pwr1 +! ! pwy1 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! i2d = i2d + bpard(m)*pwr1 + bpar(m)*pwr1d +! ! i2 = i2 + bpar(m)*pwr1 +! ! pwy1 = REAL(m - 1) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! pwy2 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy2 .EQ. & +! ! & INT(pwy2))) THEN +! ! pwr2d = pwy2*eta_disp**(pwy2-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy2 .EQ. 1.0) THEN +! ! pwr2d = eta_dispd +! ! ELSE +! ! pwr2d = 0.0 +! ! END IF +! ! pwr2 = eta_disp**pwy2 +! ! i1_rkd = i1_rkd + REAL(m)*eta_rk*(apard(m)*pwr1+apar(m)*pwr1d)& +! ! & + ap_rkd(k, m)*pwr2 + ap_rk(k, m)*pwr2d +! ! i1_rk = i1_rk + apar(m)*REAL(m)*pwr1*eta_rk + ap_rk(k, m)*pwr2 +! ! pwy1 = REAL(m - 1) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy1 .EQ. & +! ! & INT(pwy1))) THEN +! ! pwr1d = pwy1*eta_disp**(pwy1-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy1 .EQ. 1.0) THEN +! ! pwr1d = eta_dispd +! ! ELSE +! ! pwr1d = 0.0 +! ! END IF +! ! pwr1 = eta_disp**pwy1 +! ! pwy2 = REAL(m) +! ! IF (eta_disp .GT. 0.0 .OR. (eta_disp .LT. 0.0 .AND. pwy2 .EQ. & +! ! & INT(pwy2))) THEN +! ! pwr2d = pwy2*eta_disp**(pwy2-1)*eta_dispd +! ! ELSE IF (eta_disp .EQ. 0.0 .AND. pwy2 .EQ. 1.0) THEN +! ! pwr2d = eta_dispd +! ! ELSE +! ! pwr2d = 0.0 +! ! END IF +! ! pwr2 = eta_disp**pwy2 +! ! i2_rkd = i2_rkd + REAL(m)*eta_rk*(bpard(m)*pwr1+bpar(m)*pwr1d)& +! ! & + bp_rkd(k, m)*pwr2 + bp_rk(k, m)*pwr2d +! ! i2_rk = i2_rk + bpar(m)*REAL(m)*pwr1*eta_rk + bp_rk(k, m)*pwr2 +! ! END DO +! ! ord1_rk = 0.0 +! ! ord2_rk = 0.0 +! ! order1 = 0.0 +! ! order2 = 0.0 +! ! order1d = 0.0 +! ! order2d = 0.0 +! ! ord2_rkd = 0.0 +! ! ord1_rkd = 0.0 +! ! DO kk=1,ncomp +! ! !sig_ij(kk,k) = 0.5 * ( dhs(kk) + dhs(k) ) +! ! !uij(kk,k) = (1.0 - kij(kk,k)) * SQRT( eps(kk) * eps(k) ) +! ! order1d = order1d + parame(kk,1)*parame(k,1)*sig_ij(kk, k)**3*uij(kk, & +! ! & k)*(xid(kk)*xi(k)+xi(kk)*xid(k))/t +! ! order1 = order1 + xi(kk)*xi(k)*parame(kk,1)*parame(k,1)*sig_ij(kk, k)& +! ! & **3*uij(kk, k)/t +! ! order2d = order2d + parame(kk,1)*parame(k,1)*sig_ij(kk, k)**3*uij(kk, & +! ! & k)**2*(xid(kk)*xi(k)+xi(kk)*xid(k))/t**2 +! ! order2 = order2 + xi(kk)*xi(k)*parame(kk,1)*parame(k,1)*sig_ij(kk, k)& +! ! & **3*(uij(kk, k)/t)**2 +! ! ord1_rkd = ord1_rkd + 2.0*parame(k,1)*parame(kk,1)*sig_ij(kk, k)**3*& +! ! & uij(kk, k)*(rhop_wd_sumd*xi(kk)+rhop_wd_sum*xid(kk))/t +! ! ord1_rk = ord1_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*& +! ! & sig_ij(kk, k)**3*uij(kk, k)/t +! ! ord2_rkd = ord2_rkd + 2.0*parame(k,1)*parame(kk,1)*sig_ij(kk, k)**3*& +! ! & uij(kk, k)**2*(rhop_wd_sumd*xi(kk)+rhop_wd_sum*xid(kk))/t**2 +! ! ord2_rk = ord2_rk + 2.0*parame(k,1)*rhop_wd_sum*xi(kk)*parame(kk,1)*& +! ! & sig_ij(kk, k)**3*(uij(kk, k)/t)**2 +! ! END DO +! ! z3d = eta_dispd +! ! z3 = eta_disp +! ! zmsd = -z3d +! ! zms = 1.0 - z3 +! ! c1_cond = -((((m_meand*(8.0*z3-2.0*z3*z3)+m_mean*(8.0*z3d-2.0*(& +! ! & z3d*z3+z3*z3d)))*zms**4-m_mean*(8.0*z3-2.0*z3*z3)*4*zms**3*& +! ! & zmsd)/(zms**4)**2+(((1.0-m_mean)*(20.0*z3d-27.0*(z3d*z3+z3*z3d& +! ! & )+12.0*3*z3**2*z3d-2.0*4*z3**3*z3d)-m_meand*(20.0*z3-27.0*z3*& +! ! & z3+12.0*z3**3-2.0*z3**4))*zms**2*(2.0-z3)**2-(1.0-m_mean)*(& +! ! & 20.0*z3-27.0*z3*z3+12.0*z3**3-2.0*z3**4)*2*zms*(2.0-z3)*(zmsd*& +! ! & (2.0-z3)-zms*z3d))/((zms*(2.0-z3))**2)**2)/(1.0+m_mean*(8.0*z3& +! ! & -2.0*z3*z3)/zms**4+(1.0-m_mean)*(20.0*z3-27.0*z3*z3+12.0*z3**3& +! ! & -2.0*z3**4)/(zms*(2.0-z3))**2)**2) +! ! c1_con = 1.0/(1.0+m_mean*(8.0*z3-2.0*z3*z3)/zms**4+(1.0-m_mean)*& +! ! & (20.0*z3-27.0*z3*z3+12.0*z3**3-2.0*z3**4)/(zms*(2.0-z3))**2) +! ! c2_cond = -((c1_cond*c1_con+c1_con*c1_cond)*(m_mean*(-(4.0*z3*z3& +! ! & )+20.0*z3+8.0)/zms**5+(1.0-m_mean)*(2.0*z3**3+12.0*z3*z3-48.0*& +! ! & z3+40.0)/(zms*(2.0-z3))**3)+c1_con**2*(((m_meand*(-(4.0*z3*z3)& +! ! & +20.0*z3+8.0)+m_mean*(20.0*z3d-4.0*(z3d*z3+z3*z3d)))*zms**5-& +! ! & m_mean*(-(4.0*z3*z3)+20.0*z3+8.0)*5*zms**4*zmsd)/(zms**5)**2+(& +! ! & ((1.0-m_mean)*(2.0*3*z3**2*z3d+12.0*(z3d*z3+z3*z3d)-48.0*z3d)-& +! ! & m_meand*(2.0*z3**3+12.0*z3*z3-48.0*z3+40.0))*zms**3*(2.0-z3)**& +! ! & 3-(1.0-m_mean)*(2.0*z3**3+12.0*z3*z3-48.0*z3+40.0)*3*zms**2*(& +! ! & 2.0-z3)**2*(zmsd*(2.0-z3)-zms*z3d))/((zms*(2.0-z3))**3)**2)) +! ! c2_con = -(c1_con*c1_con*(m_mean*(-(4.0*z3*z3)+20.0*z3+8.0)/zms& +! ! & **5+(1.0-m_mean)*(2.0*z3**3+12.0*z3*z3-48.0*z3+40.0)/(zms*(2.0& +! ! & -z3))**3)) +! ! c1_rkd = eta_rk*c2_cond - ((c1_cond*c1_con+c1_con*c1_cond)*m_rk(& +! ! & k)+c1_con**2*m_rkd(k))*((8.0*z3-2.0*z3*z3)/zms**4-(-(2.0*z3**4& +! ! & )+12.0*z3**3-27.0*z3*z3+20.0*z3)/(zms*(2.0-z3))**2) - c1_con**& +! ! & 2*m_rk(k)*(((8.0*z3d-2.0*(z3d*z3+z3*z3d))*zms**4-(8.0*z3-2.0*& +! ! & z3*z3)*4*zms**3*zmsd)/(zms**4)**2-((12.0*3*z3**2*z3d-2.0*4*z3& +! ! & **3*z3d-27.0*(z3d*z3+z3*z3d)+20.0*z3d)*zms**2*(2.0-z3)**2-(-(& +! ! & 2.0*z3**4)+12.0*z3**3-27.0*z3*z3+20.0*z3)*2*zms*(2.0-z3)*(zmsd& +! ! & *(2.0-z3)-zms*z3d))/((zms*(2.0-z3))**2)**2) +! ! c1_rk = c2_con*eta_rk - c1_con*c1_con*m_rk(k)*((8.0*z3-2.0*z3*z3& +! ! & )/zms**4-(-(2.0*z3**4)+12.0*z3**3-27.0*z3*z3+20.0*z3)/(zms*(& +! ! & 2.0-z3))**2) +! ! rho2d = rhop_wd_sumd*rhop_wd_sum + rhop_wd_sum*rhop_wd_sumd +! ! rho2 = rhop_wd_sum*rhop_wd_sum +! ! my_dispd(ii, k) = -(2.0*pi*((order1d*rho2+order1*rho2d)*i1_rk+& +! ! & order1*rho2*i1_rkd+ord1_rkd*i1+ord1_rk*i1d)) - pi*((c1_cond*& +! ! & m_mean+c1_con*m_meand)*(order2*rho2*i2_rk+ord2_rk*i2)+c1_con*& +! ! & m_mean*((order2d*rho2+order2*rho2d)*i2_rk+order2*rho2*i2_rkd+& +! ! & ord2_rkd*i2+ord2_rk*i2d)) - pi*((c1_cond*m_rk(k)+c1_con*m_rkd(& +! ! & k)+c1_rkd*m_mean+c1_rk*m_meand)*order2*rho2*i2+(c1_con*m_rk(k)& +! ! & +c1_rk*m_mean)*((order2d*rho2+order2*rho2d)*i2+order2*rho2*i2d& +! ! & )) +! ! my_disp(ii, k) = -(2.0*pi*(order1*rho2*i1_rk+ord1_rk*i1)) - pi*& +! ! & c1_con*m_mean*(order2*rho2*i2_rk+ord2_rk*i2) - pi*(c1_con*m_rk& +! ! & (k)+c1_rk*m_mean)*order2*rho2*i2 +! ! f_disp(ii) = -(2.0*pi*rhop_wd_sum*i1*order1) - pi*rhop_wd_sum*& +! ! & c1_con*m_mean*i2*order2 +! ! df_disp_drk(ii, k) = (my_disp(ii, k)-f_disp(ii))/rhop_wd_sum +! ! END DO +! ! END DO + END SUBROUTINE DISP_MU_D + + + +! Differentiation of disp_dfdrho_wda in forward (tangent) mode: +! variations of useful results: df_drho_disp +! with respect to varying inputs: my_disp df_drho_disp + SUBROUTINE DISP_DFDRHO_WDA_D(ii, rhop, rhop_wd, my_disp, my_dispd, & +& f_disp, df_disp_drk, df_drho_disp, df_drho_dispd, user) + + Use PetscManagement + USE BASIC_VARIABLES, ONLY : ncomp + USE MOD_DFT, ONLY : zp, dzp, fa_disp, ab_disp + IMPLICIT NONE +#include + +!passed +INTEGER, INTENT(IN) :: ii +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL, INTENT(IN) :: rhop_wd(user%gxs:user%gxe,ncomp) +REAL, INTENT(IN) :: my_disp(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(IN) :: my_dispd(user%gxs:user%gxe,ncomp) !chemPot_disp / kT +REAL, INTENT(IN) :: f_disp(user%gxs:user%gxe) !F_disp / NkT +REAL, INTENT(IN) :: df_disp_drk(user%gxs:user%gxe,ncomp) ! d(F/NkT) / drho_k = (mu/kT - F_disp / NkT)/rho +REAL, INTENT(OUT) :: dF_drho_disp(ncomp) +REAL, INTENT(OUT) :: dF_drho_dispd(ncomp) + +! ! !local +! ! INTEGER :: n, icomp, jj +! ! REAL :: zmin, zz, dz +! ! REAL :: x_int(400), y_int(400), y2(400) +! ! REAL :: y_intd(400), y2d(400) +! ! REAL :: xhi, xlo, int2 +! ! REAL :: int2d +! ! REAL :: rhop_sum +! ! zmin = 1d-6 +! ! y2d = 0.0 +! ! DO icomp=1,ncomp +! ! n = 1 +! ! x_int = 0.0 +! ! y_int = 0.0 +! ! y_intd = 0.0 +! ! DO jj=ii-fa_disp(icomp),ii+fa_disp(icomp) +! ! !IF ( zp(jj+1) > (zl+zmin) ) THEN +! ! IF (zp(ii) - zp(jj+1) .LT. ab_disp(icomp) .AND. zp(ii) - zp(jj) & +! ! & .GE. ab_disp(icomp)) THEN +! ! !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! ! ! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +! ! !here always n=1! +! ! IF (n .NE. 1) THEN +! ! GOTO 100 +! ! ELSE +! ! !distance between grid points j and i +! ! zz = zp(jj) - zp(ii) +! ! !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 +! ! dz = zp(jj+1) - (zp(ii)-ab_disp(icomp)) +! ! !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +! ! !liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +! ! !array containing x-values for spline integration +! ! x_int(n) = 0.0 +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! ELSE IF (zp(jj) .GT. zp(ii) - ab_disp(icomp) .AND. zp(jj) .LE. & +! ! & zp(ii) + ab_disp(icomp)) THEN +! ! !grid point j within i+-d2 +! ! n = n + 1 +! ! !first time in this If condition, dz is stil the old value from above! +! ! x_int(n) = x_int(n-1) + dz +! ! zz = zp(jj) - zp(ii) +! ! dz = dzp +! ! y_intd(n) = (ab_disp(icomp)*ab_disp(icomp)-zz*zz)*my_dispd(jj& +! ! & , icomp) +! ! y_int(n) = my_disp(jj, icomp)*(ab_disp(icomp)*ab_disp(icomp)-& +! ! & zz*zz) +! ! !rhop_sum = sum(rhop(1:ncomp,jj)) +! ! !y_int(n) = rhop_sum * df_disp_drk(jj,icomp) * (ab_disp(icomp)*ab_disp(icomp) - zz*zz) +! ! IF (zp(jj) .LT. zp(ii) + ab_disp(icomp) .AND. zp(jj+1) .GE. zp& +! ! & (ii) + ab_disp(icomp)) THEN +! ! !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 +! ! dz = zp(ii) + ab_disp(icomp) - zp(jj) +! ! !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +! ! != x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! +! ! zz = zp(jj) - zp(ii) +! ! n = n + 1 +! ! x_int(n) = x_int(n-1) + dz +! ! y_intd(n) = 0.0 +! ! y_int(n) = 0.0 +! ! END IF +! ! END IF +! ! END DO +! ! xlo = x_int(1) +! ! xhi = x_int(n) +! ! CALL SPLINE_D(x_int(1:n), y_int(1:n), y_intd(1:n), n, 1.e30, 1.e30& +! ! & , y2(1:n), y2d(1:n)) +! ! CALL SPLINT_INTEGRAL_D(x_int(1:n), y_int(1:n), y_intd(1:n), y2(1:n& +! ! & ), y2d(1:n), n, xlo, xhi, int2, int2d) +! ! df_drho_dispd(icomp) = 0.75*int2d/ab_disp(icomp)**3 +! ! df_drho_disp(icomp) = int2*0.75/ab_disp(icomp)**3 +! ! END DO +! ! GOTO 110 +! ! 100 STOP +! ! 110 CONTINUE + END SUBROUTINE DISP_DFDRHO_WDA_D + +END MODULE MOD_DFT_DISP_WDA_D diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT.F90 new file mode 100644 index 000000000..5d6ed7f0c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT.F90 @@ -0,0 +1,344 @@ +!>This file contains the subroutines which calculate the contribution of +!!volume exclusion to the Helmholtz energy functional. + + + + +Module mod_DFT_FMT + +Implicit None + +Private + +Public :: FMT_Weighted_Densities +Public :: FMT_dFdrho + + Contains + + + + + +Subroutine FMT_Weighted_Densities(rhop,n0,n1,n2,n3,nv1,nv2,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,user) + +Use PARAMETERS, ONLY: PI +Use BASIC_VARIABLES, Only: ncomp,parame +Use EOS_VARIABLES, Only: dhs +Use mod_DFT, Only: zp,dzp,fa + +!PETSc module +Use PetscManagement + +#include + +!passed +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 + +!local +Integer :: k,i,j +Integer :: fa2 +REAL :: dz,d2,zz +INTEGER :: n +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int,n2_int,n3_int,nv2_int !Fehlerwarnung falls 200 ueberschritten einbauen +REAL,dimension(NMAX) :: y2_n2, y2_n3,y2_nv2 +REAL :: int_n2,int_n3,int_nv2,xhi,xlo +REAL :: zms,zms2,zms3,logzms +REAL :: nn0,nn1,nn2,nn3,nnv1,nnv2 +REAL :: rhopjk, rhopjp1k + + + n0 = 0.0 + n1 = 0.0 + n2 = 0.0 + n3 = 0.0 + nv1 = 0.0 + nv2 = 0.0 + + fa2 = maxval(fa(1:ncomp) + 5) / 2 + +Do k=1,ncomp + !fa2 = (fa(k) + 5) / 2 !grid points in sig/2 + d2 = dhs(k) / 2.0 !half of dhs [A] + + + Do i=user%xs-fa2,user%xe+fa2 !to evaluate dF/drho at any point, the derivatives dphi/dn have to be evaluated at +-d/2 around this point + n = 1 !this is the index of the arrays that will be passed to the spline integration routines + x_int = 0.0 + n2_int = 0.0 + n3_int = 0.0 + nv2_int = 0.0 + + Do j=i-fa2,i+fa2 !to evaluate dphi/dn at a given point, the weighted densities are needed at +-d/2 around this point + + rhopjk = rhop(k,j) * parame(k,1) + rhopjp1k = rhop(k,j+1) * parame(k,1) + + If( ( zp(i)-zp(j+1) ) < d2 .and. ( zp(i) - zp(j) ) >= d2 ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand + + If(n/= 1) stop 'n /=1 in FMT_Weighted_Densities' !here always n=1! + zz = zp(j) - zp(i) !distance between grid points j and i + dz = zp(j+1) - (zp(i) - d2) !the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 + !if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation + x_int(n) = 0.0 !array containing x-values for spline integration + n2_int(n) = rhopjk + (rhopjp1k-rhopjk) / (dzp) * (dzp-dz) !integrand f�r n2 (=rhop) linear interpoliert f�r den Punk zp(i)-d/2 + n3_int(n) = 0.0 !integrand f�r n3: rhop*(d2**2 - z'**2), da hier gerade z' = d2 -> integrand wird hier = 0!! + nv2_int(n) = rhopjk*zz +(rhopjp1k*(zp(j+1)-zp(i))-rhopjk*zz)/(dzp)*(dzp-dz) !analog + + + Else If (zp(j) > (zp(i)-d2) .and. zp(j) <= (zp(i)+d2)) Then !grid point j within i+-d2 + + n = n + 1 + x_int(n) = x_int(n-1) + dz !first time in this If condition, dz is stil the old value from above! + zz = zp(j) - zp(i) + dz = dzp + n2_int(n) = rhopjk + n3_int(n) = rhopjk * (d2**2 - zz**2) + nv2_int(n) = rhopjk * zz + + If (zp(j) < (zp(i)+d2) .and. zp(j+1) >= (zp(i)+d2) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 + + dz = zp(i) + d2 - zp(j) + !If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) = x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + n2_int(n) = rhopjk + (rhopjp1k-rhopjk) / (dzp) * dz + n3_int(n) = 0.0 !Begr�ndung wie oben + nv2_int(n) = rhopjk*zz + (rhopjp1k*(zp(j+1)-zp(i)) - rhopjk*zz) / (dzp) * dz + + End If + + End If + + + End Do + + !spline integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in FMT_Weighted_Densities (auch in AD Routine!!)' + + call spline ( x_int, n2_int, n, 1.E30, 1.E30, y2_n2 ) + call spline ( x_int, n3_int, n, 1.E30, 1.E30, y2_n3 ) + call spline ( x_int, nv2_int, n, 1.E30, 1.E30, y2_nv2 ) + + call splint_integral ( x_int, n2_int, y2_n2, n, xlo, xhi, int_n2 ) + call splint_integral ( x_int, n3_int, y2_n3, n, xlo, xhi, int_n3 ) + call splint_integral ( x_int, nv2_int, y2_nv2, n, xlo, xhi, int_nv2 ) + + !weighted densities + n2(i) = n2(i) + PI * dhs(k) * int_n2 + n1(i) = n1(i) + 0.5 * int_n2 + n0(i) = n0(i) + int_n2/dhs(k) + n3(i) = n3(i) + PI * int_n3 + nv2(i) = nv2(i) -2.0 * PI * int_nv2 + nv1(i) = nv1(i) -int_nv2 / dhs(k) + +! If(i < 5) Then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! end if +! +! If(i > 95) then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! End If +! + End Do + + ! pause + +End Do + + +!derivatives of FMT helmholtz energy density w.r.t. weighted densities +Do i=user%xs-maxval((fa(1:ncomp)+1)/2),user%xe+maxval((fa(1:ncomp)+1)/2) + !weils k�rzer ist + nn0 = n0(i) + nn1 = n1(i) + nn2 = n2(i) + nn3 = n3(i) + nnv1 = nv1(i) + nnv2 = nv2(i) + + zms = 1.0 - nn3 + zms2 = zms*zms + zms3 = zms2*zms + logzms = log(zms) + if(isnan(logzms)) stop 'zms < 0, log(zms) undefined FMT_Weighted_Densities' + + phi_dn0(i) = -logzms + phi_dn1(i) = nn2/zms + phi_dn2(i) = nn1/zms + 3.0*(nn2*nn2-nnv2*nnv2) * (nn3+zms2*logzms) / (36.0*PI*nn3*nn3*zms2) + + phi_dn3(i) = nn0/zms + (nn1*nn2-nnv1*nnv2)/zms2 - (nn2**3-3.0*nn2*nnv2*nnv2) * (nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms) & + / (36.0*PI*nn3**3*zms3) + + phi_dnv1(i) = -nnv2/zms + + phi_dnv2(i) = -nnv1/zms - 6.0*nn2*nnv2*(nn3+zms2*logzms)/(36.0*PI*nn3**2*zms2) + +End Do + +End Subroutine FMT_Weighted_Densities + + + + + + + +Subroutine FMT_dFdrho(i,fa,user,phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2,dF_drho_FMT) + +Use BASIC_VARIABLES, Only: ncomp,parame +Use EOS_VARIABLES, Only: dhs +Use mod_DFT, Only: zp,dzp +Use PARAMETERS, ONLY: PI + +!PETSc module +Use PetscManagement + +!passed +INTEGER, INTENT(IN) :: i !the grid point at which to calculate dFdrho +INTEGER, INTENT(IN) :: fa(ncomp) +Type (userctx) :: user +REAL,dimension(user%gxs:user%gxe),INTENT(IN) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 +REAL,dimension(user%xs:user%xe,ncomp), INTENT(OUT) :: dF_drho_FMT + + +!local +INTEGER :: j,k,n +INTEGER :: fa2 +REAL :: dz,d2,zz, zz_jp1 +INTEGER, parameter :: NMAX = 800 +REAL,dimension(NMAX) :: x_int,y_int,y0_int,y1_int,y2_int,y3_int,yv1_int,yv2_int,y2 +REAL :: xhi,xlo,integral,int0,int1,int2,int3,intv1,intv2 +REAL :: at_j, at_jp1 + + +!Das Integral (Gleichung A1 in Gross DFT 2009) wird hier in einem Schlag berechnet! +!Falls die einzelnen Terme einzeln integriert werden sollen, einfach die auskommentierte Version verwenden + +Do k=1,ncomp !das einzige, das hier von k abhaengt, sind fa und dhs!! die Ableitungen phi_dn... sind nicht Komponentenspez, da die + !gewichteten Dichten ja uch nicht mehr Komponentenspez sind (n_i = sum n_i(k)) + + n = 1 + fa2 = ( fa(k) + 5 ) / 2 !number of grid points within dhs/2 + d2 = dhs(k)/2.0 + + Do j = i-fa2,i+fa2 + + If( ( zp(i)-zp(j+1) ) < d2 .and. ( zp(i) - zp(j) ) >= d2 ) Then !the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand + x_int(n) = 0.0 + If(n/=1) stop 'error in FMT_dFdrho, n should be 1 here!' + dz = zp(j+1) - (zp(i) - d2) + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + PI*dhs(k)*phi_dn2(j) & + + PI*phi_dn3(j)*(d2**2 - zz**2) + phi_dnv1(j)*zz/dhs(k) + 2.0*PI*phi_dnv2(j)*zz + + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + PI*dhs(k)*phi_dn2(j+1) & + + PI*phi_dn3(j+1)*(d2**2 - zz_jp1**2) + phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*PI*phi_dnv2(j+1)*zz_jp1 + + y_int(n) = at_j + (at_jp1-at_j)/dzp * (dzp-dz) !lineare interpolation genau, wie in FMT_Weighted_Densities +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) -phi_dn0(j))/dzp * (dzp-dz) +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) -phi_dn1(j))/dzp * (dzp-dz) +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) -phi_dn2(j))/dzp * (dzp-dz) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) + (phi_dn3(j+1)*(d2**2-zz_jp1**2) - phi_dn3(j)*(d2**2-zz**2) )/dzp * (dzp-dz) +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * (dzp-dz) +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * (dzp-dz) +! + + Else If (zp(j) > (zp(i)-d2) .and. zp(j) <= (zp(i)+d2)) Then !grid points j and j+1 are completely within i+-d2 + + n = n + 1 + zz = zp(j) - zp(i) + x_int(n) = x_int(n-1) + dz + + + y_int(n) = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + PI*dhs(k)*phi_dn2(j) & + + PI*phi_dn3(j)*(d2**2 - zz**2) + phi_dnv1(j)*zz/dhs(k) + 2.0*PI*phi_dnv2(j)*zz + + +! y0_int(n) = phi_dn0(j) +! y1_int(n) = phi_dn1(j) +! y2_int(n) = phi_dn2(j) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) +! yv1_int(n) = phi_dnv1(j)*zz +! yv2_int(n) = phi_dnv2(j)*zz +! + + dz = dzp + + If (zp(j) < (zp(i)+d2) .and. zp(j+1) > (zp(i)+d2) ) Then !zp(j) is still within zp(i)+d2 but zp(j+1) is already out side zp(i)+d2 + + n = n + 1 + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + dz = zp(i) + d2 - zp(j) + x_int(n) = x_int(n-1) + dz + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + PI*dhs(k)*phi_dn2(j) & + + PI*phi_dn3(j)*(d2**2 - zz**2) + phi_dnv1(j)*zz/dhs(k) + 2.0*PI*phi_dnv2(j)*zz + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + PI*dhs(k)*phi_dn2(j+1) & + + PI*phi_dn3(j+1)*(d2**2 - zz_jp1**2) + phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*PI*phi_dnv2(j+1)*zz_jp1 + y_int(n) = at_j + (at_jp1-at_j)/dzp * dz + + +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) - phi_dn0(j))/dzp * dz +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) - phi_dn1(j))/dzp * dz +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) - phi_dn2(j))/dzp * dz +! y3_int(n) = phi_dn3(j)*(d2**2 - zz**2) + (phi_dn3(j+1)*(d2**2 - zz_jp1**2) - phi_dn3(j)*(d2**2 - zz**2))/dzp * dz +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * dz +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * dz +! + + + End If + + End If + + + End Do + + !spline integration + xlo = x_int(1) + xhi = x_int(n) + + If(n > NMAX) stop 'Increase NMAX in FMT_dFdrho (auch in AD Routine!!)' + + call spline(x_int,y_int,n,1.E30,1.E30,y2) + call splint_integral(x_int,y_int,y2,n,xlo,xhi,integral) + +! call spline ( x_int, y0_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y0_int, y2, n, xlo, xhi, int0 ) +! call spline ( x_int, y1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y1_int, y2, n, xlo, xhi, int1 ) +! call spline ( x_int, y2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y2_int, y2, n, xlo, xhi, int2 ) +! call spline ( x_int, y3_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y3_int, y2, n, xlo, xhi, int3 ) +! call spline ( x_int, yv1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv1_int, y2, n, xlo, xhi, intv1 ) +! call spline ( x_int, yv2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv2_int, y2, n, xlo, xhi, intv2 ) +! + + !dF_drho_FMT(i,k) = int0/dhs(k) + 0.5*int1 + PI*dhs(k)*int2 + PI*int3 + intv1/dhs(k) + 2.0*PI*intv2 + dF_drho_FMT(i,k) = integral*parame(k,1) + +End Do + + +End Subroutine FMT_dFdrho + + +End Module mod_DFT_FMT diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT_d.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT_d.F90 new file mode 100644 index 000000000..75729b74d --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_DFT_FMT_d.F90 @@ -0,0 +1,464 @@ +!>This file contains the subroutines which calculate the derivatives of the contribution of +!!volume exclusion to the Helmholtz energy functional. + + + + + +! Generated by TAPENADE (INRIA, Tropics team) +! Tapenade 3.10 (r5498) - 20 Jan 2015 09:48 +! +!All equations are taken from the appendix of: +!Gross: 'A density functional theory for vapor-liquid interfaces using the PCP-SAFT eos' +!But: here we dont treat chain-molecules!! -> no multiplications with segment number +MODULE MOD_DFT_FMT_D + IMPLICIT NONE + PRIVATE + PUBLIC fmt_weighted_densities_d + PUBLIC fmt_dfdrho_d + +CONTAINS +! Differentiation of fmt_weighted_densities in forward (tangent) mode: +! variations of useful results: phi_dn0 phi_dn1 phi_dn2 phi_dnv1 +! phi_dn3 phi_dnv2 +! with respect to varying inputs: rhop + SUBROUTINE FMT_WEIGHTED_DENSITIES_D(rhop, rhopd, n0, n1, n2, n3, nv1, & +& nv2, phi_dn0, phi_dn0d, phi_dn1, phi_dn1d, phi_dn2, phi_dn2d, & +& phi_dn3, phi_dn3d, phi_dnv1, phi_dnv1d, phi_dnv2, phi_dnv2d, user) + USE PARAMETERS, ONLY : pi + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + USE MOD_DFT, ONLY : zp, dzp, fa + + +!PETSc module +Use PetscManagement +IMPLICIT NONE + +#include + +!passed +Type (userctx) :: user +PetscScalar :: rhop(ncomp,user%gxs:user%gxe) +PetscScalar :: rhopd(ncomp,user%gxs:user%gxe) +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: n0,n1,n2,n3,nv1,nv2 !ngp muss groesser als fa+fa/2 sein!! +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 +REAL,dimension(user%gxs:user%gxe),Intent(OUT) :: phi_dn0d,phi_dn1d,phi_dn2d,phi_dn3d,phi_dnv1d,phi_dnv2d + + + + +!local + REAL, DIMENSION(user%gxs:user%gxe) :: n0d,n1d,n2d,n3d,nv1d,nv2d + INTEGER :: k, i, j + INTEGER :: fa2 + REAL :: dz, d2, zz + INTEGER :: n + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, n2_int, n3_int, nv2_int + REAL, DIMENSION(NMAX) :: n2_intd, n3_intd, nv2_intd + REAL, DIMENSION(NMAX) :: y2_n2, y2_n3, y2_nv2 + REAL, DIMENSION(NMAX) :: y2_n2d, y2_n3d, y2_nv2d + REAL :: int_n2, int_n3, int_nv2, xhi, xlo + REAL :: int_n2d, int_n3d, int_nv2d + REAL :: zms, zms2, zms3, logzms + REAL :: zmsd, zms2d, zms3d, logzmsd + REAL :: nn0, nn1, nn2, nn3, nnv1, nnv2 + REAL :: nn0d, nn1d, nn2d, nn3d, nnv1d, nnv2d + REAL :: rhopjk, rhopjp1k + REAL :: rhopjkd, rhopjp1kd + INTRINSIC MAXVAL + INTRINSIC LOG + REAL :: result1 + + + + n0 = 0.0 + n1 = 0.0 + n2 = 0.0 + n3 = 0.0 + nv1 = 0.0 + nv2 = 0.0 + result1 = MAXVAL(fa(1:ncomp) + 5) + fa2 = result1/2 + nv1d = 0.0 + nv2d = 0.0 + n0d = 0.0 + n1d = 0.0 + n2d = 0.0 + n3d = 0.0 + y2_n2d = 0.0 + y2_n3d = 0.0 + y2_nv2d = 0.0 + DO k=1,ncomp +!fa2 = (fa(k) + 5) / 2 !grid points in sig/2 +!half of dhs [A] + d2 = dhs(k)/2.0 + + + + + Do i=user%xs-fa2,user%xe+fa2 !to evaluate dF/drho at any point, the derivatives dphi/dn have to be evaluated at +-d/2 around this point + + n = 1 + x_int = 0.0 + n2_int = 0.0 + n3_int = 0.0 + nv2_int = 0.0 + n2_intd = 0.0 + nv2_intd = 0.0 + n3_intd = 0.0 +!to evaluate dphi/dn at a given point, the weighted densities are needed at +-d/2 around this point + DO j=i-fa2,i+fa2 + rhopjkd = parame(k,1)*rhopd(k, j) + rhopjk = rhop(k, j)*parame(k,1) + rhopjp1kd = parame(k,1)*rhopd(k, j+1) + rhopjp1k = rhop(k, j+1)*parame(k,1) + IF (zp(i) - zp(j+1) .LT. d2 .AND. zp(i) - zp(j) .GE. d2) THEN +!the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand +!here always n=1! + IF (n .NE. 1) THEN + GOTO 100 + ELSE +!distance between grid points j and i + zz = zp(j) - zp(i) +!the part of the intervall between zp(j) and zp(j+1) which is already within i-d/2 + dz = zp(j+1) - (zp(i)-d2) +!if(dz < epsilon(dz)) dz = epsilon(dz) !bei unguenstiger Kombination von sig und ngrid kann dz unter Machinengenauigkeit epsilon +!liegen, dann ist x(2) = x(1) + dz = x(1) -> das fuehrt zu Abbruch in Spline Interpolation +!array containing x-values for spline integration + x_int(n) = 0.0 +!integrand f�r n2 (=rhop) linear interpoliert f�r den Punk zp(i)-d/2 + n2_intd(n) = rhopjkd + (dzp-dz)*(rhopjp1kd-rhopjkd)/dzp + n2_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*(dzp-dz) +!integrand f�r n3: rhop*(d2**2 - z'**2), da hier gerade z' = d2 -> integrand wird hier = 0!! + n3_intd(n) = 0.0 + n3_int(n) = 0.0 +!analog + nv2_intd(n) = zz*rhopjkd + (dzp-dz)*((zp(j+1)-zp(i))*& +& rhopjp1kd-zz*rhopjkd)/dzp + nv2_int(n) = rhopjk*zz + (rhopjp1k*(zp(j+1)-zp(i))-rhopjk*& +& zz)/dzp*(dzp-dz) + END IF + ELSE IF (zp(j) .GT. zp(i) - d2 .AND. zp(j) .LE. zp(i) + d2) & +& THEN +!grid point j within i+-d2 + n = n + 1 +!first time in this If condition, dz is stil the old value from above! + x_int(n) = x_int(n-1) + dz + zz = zp(j) - zp(i) + dz = dzp + n2_intd(n) = rhopjkd + n2_int(n) = rhopjk + n3_intd(n) = (d2**2-zz**2)*rhopjkd + n3_int(n) = rhopjk*(d2**2-zz**2) + nv2_intd(n) = zz*rhopjkd + nv2_int(n) = rhopjk*zz + IF (zp(j) .LT. zp(i) + d2 .AND. zp(j+1) .GE. zp(i) + d2) & +& THEN +!zp(j) is still within zp(i)+d2 but zp(j+1) is already outside zp(i)+d2 + dz = zp(i) + d2 - zp(j) +!If(dz <= epsilon(dz)) exit !wie oben, kann auch hier bei ungluecklicher Wahl von sig und ngrid dz < eps werden und somit x(n) +!= x(n-1) -> Abbruch in Spline interpolation. Dann einfach ngrid aendern! + zz = zp(j) - zp(i) + n = n + 1 + x_int(n) = x_int(n-1) + dz +! If(x_int(n) == x_int(n-1)) Then +! n = n - 1 +! exit +! End If + n2_intd(n) = rhopjkd + dz*(rhopjp1kd-rhopjkd)/dzp + n2_int(n) = rhopjk + (rhopjp1k-rhopjk)/dzp*dz +!Begr�ndung wie oben + n3_intd(n) = 0.0 + n3_int(n) = 0.0 + nv2_intd(n) = zz*rhopjkd + dz*((zp(j+1)-zp(i))*rhopjp1kd-& +& zz*rhopjkd)/dzp + nv2_int(n) = rhopjk*zz + (rhopjp1k*(zp(j+1)-zp(i))-rhopjk*& +& zz)/dzp*dz + END IF + END IF + END DO +!spline integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, n2_int, n2_intd, n, 1.e30, 1.e30, y2_n2, & +& y2_n2d) + CALL SPLINE_D(x_int, n3_int, n3_intd, n, 1.e30, 1.e30, y2_n3, & +& y2_n3d) + CALL SPLINE_D(x_int, nv2_int, nv2_intd, n, 1.e30, 1.e30, y2_nv2& +& , y2_nv2d) + CALL SPLINT_INTEGRAL_D(x_int, n2_int, n2_intd, y2_n2, y2_n2d, n& +& , xlo, xhi, int_n2, int_n2d) + CALL SPLINT_INTEGRAL_D(x_int, n3_int, n3_intd, y2_n3, y2_n3d, n& +& , xlo, xhi, int_n3, int_n3d) + CALL SPLINT_INTEGRAL_D(x_int, nv2_int, nv2_intd, y2_nv2, y2_nv2d& +& , n, xlo, xhi, int_nv2, int_nv2d) +!weighted densities + n2d(i) = n2d(i) + pi*dhs(k)*int_n2d + n2(i) = n2(i) + pi*dhs(k)*int_n2 + n1d(i) = n1d(i) + 0.5*int_n2d + n1(i) = n1(i) + 0.5*int_n2 + n0d(i) = n0d(i) + int_n2d/dhs(k) + n0(i) = n0(i) + int_n2/dhs(k) + n3d(i) = n3d(i) + pi*int_n3d + n3(i) = n3(i) + pi*int_n3 + nv2d(i) = nv2d(i) - 2.0*pi*int_nv2d + nv2(i) = nv2(i) - 2.0*pi*int_nv2 + nv1d(i) = nv1d(i) - int_nv2d/dhs(k) + nv1(i) = nv1(i) - int_nv2/dhs(k) + END DO + END DO + phi_dn0d = 0.0 + phi_dn1d = 0.0 + phi_dn2d = 0.0 + phi_dnv1d = 0.0 + phi_dn3d = 0.0 + phi_dnv2d = 0.0 +! If(i < 5) Then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! end if +! +! If(i > 95) then +! write(*,*)'i dens',i,nv2(i),n1(i),n0(i) +! write(*,*)'i dens',i,n3(i),nv1(i),nv2(i) +! End If +! +! pause + + +!derivatives of FMT helmholtz energy density w.r.t. weighted densities +Do i=user%xs-maxval((fa(1:ncomp)+1)/2),user%xe+maxval((fa(1:ncomp)+1)/2) +!weils k�rzer ist + nn0d = n0d(i) + nn0 = n0(i) + nn1d = n1d(i) + nn1 = n1(i) + nn2d = n2d(i) + nn2 = n2(i) + nn3d = n3d(i) + nn3 = n3(i) + nnv1d = nv1d(i) + nnv1 = nv1(i) + nnv2d = nv2d(i) + nnv2 = nv2(i) + zmsd = -nn3d + zms = 1.0 - nn3 + zms2d = zmsd*zms + zms*zmsd + zms2 = zms*zms + zms3d = zms2d*zms + zms2*zmsd + zms3 = zms2*zms + logzmsd = zmsd/zms + logzms = LOG(zms) +!if(isnan(logzms)) stop 'zms < 0, log(zms) undefined FMT_Weighted_Densities' + phi_dn0d(i) = -logzmsd + phi_dn0(i) = -logzms + phi_dn1d(i) = (nn2d*zms-nn2*zmsd)/zms**2 + phi_dn1(i) = nn2/zms + phi_dn2d(i) = (nn1d*zms-nn1*zmsd)/zms**2 + (3.0*((nn2d*nn2+nn2*& +& nn2d-nnv2d*nnv2-nnv2*nnv2d)*(nn3+zms2*logzms)+(nn2*nn2-nnv2*nnv2& +& )*(nn3d+zms2d*logzms+zms2*logzmsd))*36.0*pi*nn3**2*zms2-3.0*(nn2& +& *nn2-nnv2*nnv2)*(nn3+zms2*logzms)*36.0*pi*((nn3d*nn3+nn3*nn3d)*& +& zms2+nn3**2*zms2d))/(36.0*pi*nn3*nn3*zms2)**2 + phi_dn2(i) = nn1/zms + 3.0*(nn2*nn2-nnv2*nnv2)*(nn3+zms2*logzms)/(& +& 36.0*pi*nn3*nn3*zms2) + phi_dn3d(i) = (nn0d*zms-nn0*zmsd)/zms**2 + ((nn1d*nn2+nn1*nn2d-& +& nnv1d*nnv2-nnv1*nnv2d)*zms2-(nn1*nn2-nnv1*nnv2)*zms2d)/zms2**2 -& +& (((3*nn2**2*nn2d-3.0*((nn2d*nnv2+nn2*nnv2d)*nnv2+nn2*nnv2*nnv2d)& +& )*(nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms)+(nn2**3-3.0*nn2*& +& nnv2*nnv2)*(nn3d*(nn3**2-5.0*nn3+2.0)+nn3*(2*nn3*nn3d-5.0*nn3d)+& +& 2.0*(zms3d*logzms+zms3*logzmsd)))*36.0*pi*nn3**3*zms3-(nn2**3-& +& 3.0*nn2*nnv2*nnv2)*(nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms)*& +& 36.0*pi*(3*nn3**2*nn3d*zms3+nn3**3*zms3d))/(36.0*pi*nn3**3*zms3)& +& **2 + phi_dn3(i) = nn0/zms + (nn1*nn2-nnv1*nnv2)/zms2 - (nn2**3-3.0*nn2*& +& nnv2*nnv2)*(nn3*(nn3**2-5.0*nn3+2.0)+2.0*zms3*logzms)/(36.0*pi*& +& nn3**3*zms3) + phi_dnv1d(i) = -((nnv2d*zms-nnv2*zmsd)/zms**2) + phi_dnv1(i) = -(nnv2/zms) + phi_dnv2d(i) = -((nnv1d*zms-nnv1*zmsd)/zms**2) - (6.0*((nn2d*nnv2+& +& nn2*nnv2d)*(nn3+zms2*logzms)+nn2*nnv2*(nn3d+zms2d*logzms+zms2*& +& logzmsd))*36.0*pi*nn3**2*zms2-6.0*nn2*nnv2*(nn3+zms2*logzms)*& +& 36.0*pi*(2*nn3*nn3d*zms2+nn3**2*zms2d))/(36.0*pi*nn3**2*zms2)**2 + phi_dnv2(i) = -(nnv1/zms) - 6.0*nn2*nnv2*(nn3+zms2*logzms)/(36.0*& +& pi*nn3**2*zms2) + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE FMT_WEIGHTED_DENSITIES_D + + + +! Differentiation of fmt_dfdrho in forward (tangent) mode: +! variations of useful results: df_drho_fmt +! with respect to varying inputs: df_drho_fmt phi_dn0 phi_dn1 +! phi_dn2 phi_dnv1 phi_dn3 phi_dnv2 + SUBROUTINE FMT_DFDRHO_D(i, fa, user, phi_dn0, phi_dn0d, phi_dn1, & +& phi_dn1d, phi_dn2, phi_dn2d, phi_dn3, phi_dn3d, phi_dnv1, phi_dnv1d& +& , phi_dnv2, phi_dnv2d, df_drho_fmt, df_drho_fmtd) + USE BASIC_VARIABLES, ONLY : ncomp,parame + USE EOS_VARIABLES, Only: dhs + USE MOD_DFT, ONLY : zp, dzp + USE PARAMETERS, ONLY : pi + + +!PETSc module +Use PetscManagement + + IMPLICIT NONE + +!passed +INTEGER, INTENT(IN) :: i !the grid point at which to calculate dFdrho +INTEGER, INTENT(IN) :: fa(ncomp) +Type (userctx) :: user +REAL,dimension(user%gxs:user%gxe),INTENT(IN) :: phi_dn0,phi_dn1,phi_dn2,phi_dn3,phi_dnv1,phi_dnv2 +REAL,dimension(user%gxs:user%gxe),INTENT(IN) :: phi_dn0d,phi_dn1d,phi_dn2d,phi_dn3d,phi_dnv1d,phi_dnv2d + +REAL,dimension(user%xs:user%xe,ncomp), INTENT(OUT) :: dF_drho_FMT +REAL,dimension(user%xs:user%xe,ncomp), INTENT(OUT) :: dF_drho_FMTd + + +!local + INTEGER :: j, k, n + INTEGER :: fa2 + REAL :: dz, d2, zz, zz_jp1 + INTEGER, parameter :: NMAX = 800 + REAL, DIMENSION(NMAX) :: x_int, y_int, y0_int, y1_int, y2_int, y3_int& +& , yv1_int, yv2_int, y2 + REAL, DIMENSION(NMAX) :: y_intd, y2d + REAL :: xhi, xlo, integral, int0, int1, int2, int3, intv1, intv2 + REAL :: integrald + REAL :: at_j, at_jp1 + REAL :: at_jd, at_jp1d + + + y2d = 0.0 + y_intd = 0.0 +!Das Integral (Gleichung A1 in Gross DFT 2009) wird hier in einem Schlag berechnet! +!Falls die einzelnen Terme einzeln integriert werden sollen, einfach die auskommentierte Version verwenden +!das einzige, das hier von k abhaengt, sind fa und dhs!! die Ableitungen phi_dn... sind nicht Komponentenspez, da die + DO k=1,ncomp +!gewichteten Dichten ja uch nicht mehr Komponentenspez sind (n_i = sum n_i(k)) + n = 1 +!number of grid points within dhs/2 + fa2 = (fa(k)+5)/2 + d2 = dhs(k)/2.0 + DO j=i-fa2,i+fa2 + IF (zp(i) - zp(j+1) .LT. d2 .AND. zp(i) - zp(j) .GE. d2) THEN +!the position of j+1 is already within i-d/2 while j is still outside this range in this case, the integration steplength (dz) is +! just the distance, which j+1 overlaps with i-d/2 and what is integrated is the interpolated value of the integrand + x_int(n) = 0.0 + IF (n .NE. 1) THEN + GOTO 100 + ELSE + dz = zp(j+1) - (zp(i)-d2) + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + at_jd = phi_dn0d(j)/dhs(k) + 0.5*phi_dn1d(j) + pi*dhs(k)*& +& phi_dn2d(j) + pi*(d2**2-zz**2)*phi_dn3d(j) + zz*phi_dnv1d(& +& j)/dhs(k) + 2.0*pi*zz*phi_dnv2d(j) + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + pi*dhs(k)*& +& phi_dn2(j) + pi*phi_dn3(j)*(d2**2-zz**2) + phi_dnv1(j)*zz/& +& dhs(k) + 2.0*pi*phi_dnv2(j)*zz + at_jp1d = phi_dn0d(j+1)/dhs(k) + 0.5*phi_dn1d(j+1) + pi*dhs(& +& k)*phi_dn2d(j+1) + pi*(d2**2-zz_jp1**2)*phi_dn3d(j+1) + & +& zz_jp1*phi_dnv1d(j+1)/dhs(k) + 2.0*pi*zz_jp1*phi_dnv2d(j+1& +& ) + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + pi*dhs(k)*& +& phi_dn2(j+1) + pi*phi_dn3(j+1)*(d2**2-zz_jp1**2) + & +& phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*pi*phi_dnv2(j+1)*zz_jp1 +!lineare interpolation genau, wie in FMT_Weighted_Densities + y_intd(n) = at_jd + (dzp-dz)*(at_jp1d-at_jd)/dzp + y_int(n) = at_j + (at_jp1-at_j)/dzp*(dzp-dz) +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) -phi_dn0(j))/dzp * (dzp-dz) +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) -phi_dn1(j))/dzp * (dzp-dz) +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) -phi_dn2(j))/dzp * (dzp-dz) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) + (phi_dn3(j+1)*(d2**2-zz_jp1**2) - phi_dn3(j)*(d2**2-zz**2) )/dzp * (dzp-dz) +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * (dzp-dz) +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * (dzp-dz) +! + END IF + ELSE IF (zp(j) .GT. zp(i) - d2 .AND. zp(j) .LE. zp(i) + d2) THEN +!grid points j and j+1 are completely within i+-d2 + n = n + 1 + zz = zp(j) - zp(i) + x_int(n) = x_int(n-1) + dz + y_intd(n) = phi_dn0d(j)/dhs(k) + 0.5*phi_dn1d(j) + pi*dhs(k)*& +& phi_dn2d(j) + pi*(d2**2-zz**2)*phi_dn3d(j) + zz*phi_dnv1d(j)& +& /dhs(k) + 2.0*pi*zz*phi_dnv2d(j) + y_int(n) = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + pi*dhs(k)*& +& phi_dn2(j) + pi*phi_dn3(j)*(d2**2-zz**2) + phi_dnv1(j)*zz/& +& dhs(k) + 2.0*pi*phi_dnv2(j)*zz +! y0_int(n) = phi_dn0(j) +! y1_int(n) = phi_dn1(j) +! y2_int(n) = phi_dn2(j) +! y3_int(n) = phi_dn3(j)*(d2**2-zz**2) +! yv1_int(n) = phi_dnv1(j)*zz +! yv2_int(n) = phi_dnv2(j)*zz +! + dz = dzp + IF (zp(j) .LT. zp(i) + d2 .AND. zp(j+1) .GT. zp(i) + d2) THEN +!zp(j) is still within zp(i)+d2 but zp(j+1) is already out side zp(i)+d2 + n = n + 1 + zz = zp(j) - zp(i) + zz_jp1 = zp(j+1) - zp(i) + dz = zp(i) + d2 - zp(j) + x_int(n) = x_int(n-1) + dz + at_jd = phi_dn0d(j)/dhs(k) + 0.5*phi_dn1d(j) + pi*dhs(k)*& +& phi_dn2d(j) + pi*(d2**2-zz**2)*phi_dn3d(j) + zz*phi_dnv1d(& +& j)/dhs(k) + 2.0*pi*zz*phi_dnv2d(j) + at_j = phi_dn0(j)/dhs(k) + 0.5*phi_dn1(j) + pi*dhs(k)*& +& phi_dn2(j) + pi*phi_dn3(j)*(d2**2-zz**2) + phi_dnv1(j)*zz/& +& dhs(k) + 2.0*pi*phi_dnv2(j)*zz + at_jp1d = phi_dn0d(j+1)/dhs(k) + 0.5*phi_dn1d(j+1) + pi*dhs(& +& k)*phi_dn2d(j+1) + pi*(d2**2-zz_jp1**2)*phi_dn3d(j+1) + & +& zz_jp1*phi_dnv1d(j+1)/dhs(k) + 2.0*pi*zz_jp1*phi_dnv2d(j+1& +& ) + at_jp1 = phi_dn0(j+1)/dhs(k) + 0.5*phi_dn1(j+1) + pi*dhs(k)*& +& phi_dn2(j+1) + pi*phi_dn3(j+1)*(d2**2-zz_jp1**2) + & +& phi_dnv1(j+1)*zz_jp1/dhs(k) + 2.0*pi*phi_dnv2(j+1)*zz_jp1 + y_intd(n) = at_jd + dz*(at_jp1d-at_jd)/dzp + y_int(n) = at_j + (at_jp1-at_j)/dzp*dz +! y0_int(n) = phi_dn0(j) + (phi_dn0(j+1) - phi_dn0(j))/dzp * dz +! y1_int(n) = phi_dn1(j) + (phi_dn1(j+1) - phi_dn1(j))/dzp * dz +! y2_int(n) = phi_dn2(j) + (phi_dn2(j+1) - phi_dn2(j))/dzp * dz +! y3_int(n) = phi_dn3(j)*(d2**2 - zz**2) + (phi_dn3(j+1)*(d2**2 - zz_jp1**2) - phi_dn3(j)*(d2**2 - zz**2))/dzp * dz +! yv1_int(n) = phi_dnv1(j)*zz + (phi_dnv1(j+1)*zz_jp1 - phi_dnv1(j)*zz)/dzp * dz +! yv2_int(n) = phi_dnv2(j)*zz + (phi_dnv2(j+1)*zz_jp1 - phi_dnv2(j)*zz)/dzp * dz +! + END IF + END IF + END DO +!spline integration + xlo = x_int(1) + xhi = x_int(n) + CALL SPLINE_D(x_int, y_int, y_intd, n, 1.e30, 1.e30, y2, y2d) + CALL SPLINT_INTEGRAL_D(x_int, y_int, y_intd, y2, y2d, n, xlo, xhi& +& , integral, integrald) +! call spline ( x_int, y0_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y0_int, y2, n, xlo, xhi, int0 ) +! call spline ( x_int, y1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y1_int, y2, n, xlo, xhi, int1 ) +! call spline ( x_int, y2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y2_int, y2, n, xlo, xhi, int2 ) +! call spline ( x_int, y3_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, y3_int, y2, n, xlo, xhi, int3 ) +! call spline ( x_int, yv1_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv1_int, y2, n, xlo, xhi, intv1 ) +! call spline ( x_int, yv2_int, n, 1.E30, 1.E30, y2 ) +! call splint_integral ( x_int, yv2_int, y2, n, xlo, xhi, intv2 ) +! +!dF_drho_FMT(i,k) = int0/dhs(k) + 0.5*int1 + PI*dhs(k)*int2 + PI*int3 + intv1/dhs(k) + 2.0*PI*intv2 + df_drho_fmtd(i, k) = parame(k,1)*integrald + df_drho_fmt(i, k) = integral*parame(k,1) + END DO + GOTO 110 + 100 STOP + 110 CONTINUE + END SUBROUTINE FMT_DFDRHO_D + +END MODULE MOD_DFT_FMT_D + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_PETSc.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_PETSc.F90 new file mode 100644 index 000000000..a9ccaec0f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/mod_PETSc.F90 @@ -0,0 +1,69 @@ + + + + +!>In this module, the application context is defined + +Module PetscManagement + + type userctx +#include +#include +#include + PetscInt xs,xe,xm,gxs,gxe,gxm,mx + PetscMPIInt rank + PetscMPIInt num_procs + end type userctx + +End Module + + + +!>This module contains variables associated with the PETSc solver + +Module Global_x +Implicit None +#include +#include +#include + +SNES :: snes !nonlinear solver context +Vec :: x !array of unknowns +Vec :: r !array of residuals +PetscInt :: ngrid !number of grid points +PetscInt :: ngp !number of ghost points + +DOUBLE PRECISION :: timer ! timer +DOUBLE PRECISION :: timer_old ! timer +DOUBLE PRECISION :: total_time ! timer + + +End Module Global_x + + + +Module f90moduleinterfaces +Use PetscManagement +#include + + Interface SNESSetApplicationContext + Subroutine SNESSetApplicationContext(snes,ctx,ierr) + use PetscManagement + SNES snes + type(userctx) ctx + PetscErrorCode ierr + End Subroutine + End Interface SNESSetApplicationContext + + Interface SNESGetApplicationContext + Subroutine SNESGetApplicationContext(snes,ctx,ierr) + use PetscManagement + SNES snes + type(userctx), pointer :: ctx + PetscErrorCode ierr + End Subroutine + End Interface SNESGetApplicationContext + +End Module f90moduleinterfaces + + diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/module_solve_nonlinear.F90 b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/module_solve_nonlinear.F90 new file mode 100644 index 000000000..7d8f5be52 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/module_solve_nonlinear.F90 @@ -0,0 +1,1621 @@ + +MODULE Solve_NonLin + +! Corrections to FUNCTION Enorm - 28 November 2003 + +IMPLICIT NONE +INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +!> ********** +!! SUBROUTINE HBRD +!! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +!! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +!! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +!! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +!! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. +!! THE SUBROUTINE STATEMENT IS +!! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) +!! WHERE +!! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +!! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +!! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. +!! SUBROUTINE FCN(N, X, FVEC, IFLAG) +!! INTEGER N,IFLAG +!! REAL X(N),FVEC(N) +!! ---------- +!! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +!! --------- +!! RETURN +!! END +!! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +!! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +!! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. +!! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +!! OF FUNCTIONS AND VARIABLES. +!! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +!! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +!! FINAL ESTIMATE OF THE SOLUTION VECTOR. +!! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +!! THE FUNCTIONS EVALUATED AT THE OUTPUT X. +!! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +!! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +!! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +!! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +!! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +!! PRECISION. +!! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +!! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +!! IS AT MOST TOL. +!! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +!! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +!! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. +!! INFO = 0 IMPROPER INPUT PARAMETERS. +!! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +!! BETWEEN X AND THE SOLUTION IS AT MOST TOL. +!! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). +!! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +!! THE APPROXIMATE SOLUTION X IS POSSIBLE. +!! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. +!! SUBPROGRAMS CALLED +!! USER-SUPPLIED ...... FCN +!! MINPACK-SUPPLIED ... HYBRD +!! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +!! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE +!! Reference: +!! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +!! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +!! Breach, London 1970. +!! ********** +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 1.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0 + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0 + alpha = delta / qnorm + IF (gnorm /= 0.0) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0 + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0 + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0-(delta/qnorm)**2)*(1.0-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14, 60) + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/SurfaceTension/src/out.txt b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/out.txt new file mode 100644 index 000000000..247f493f1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/SurfaceTension/src/out.txt @@ -0,0 +1 @@ + 33.518519488031210 diff --git a/applications/PUfoam/MoDeNaModels/US_Solubility_Model/PythonModule_and_DetailedModelCode/PCSAFT_Henry b/applications/PUfoam/MoDeNaModels/US_Solubility_Model/PythonModule_and_DetailedModelCode/PCSAFT_Henry new file mode 100755 index 0000000000000000000000000000000000000000..49b1ded440f4c8dd168243842e4417f9ba9eebc0 GIT binary patch literal 502904 zcmeFa30zfW{y%;|ucAr!YEraVv{+Q5qqd1{nBKY+l$jKiiO3=t0A3aVy$y5N;O`d%31QSW$k>pJE!TNRBNc!1OFar9d30)+QoTP zLS?BT_nivb+~c^^vbx~j71z*M$ru`&$`9s#gk)RhZZM=f^%wl5>Z9EAQw2|Rx2z;C zr*?#EONNxUWK86Ib05@;lU8eD{gLvN#5Y2Z+O=uBHf?9_9>w3>4Shr#U1PL-Ol&Gr zluo6aHIn}g-l;DAMtxb8PtWBi3!ddCU%>h1KA#wepShcMm!civ+1Z~*D~{IwqVh%Y zAEb99hd-7SPdNS5KbGVVC@C(jo;G0G(9;K;e(J!=vVlXGZh}vBFSt09d!puqUlK0D zxi2mvh01Tc=-po`9?LKL`kBSIH}C%BsE5XsZtjl8XP`U@*8#YC9T}IBmXsQk9GluB z(HieMX6}h`eNubgH2#a+*rc8}#bh3mKEM3oV+X|znr)qz-^Wv9-575Ti#g`F^MFPy zROUrbOkD^MhCY(3OnjN#aX8q>F&hD}}CN?#(YoBgb4Pol>#Cj}G z(u8iwV-Buqsp&r9`6Cjo)Can!COtSiwrkR*iB`Acj_&qwa%^34&74%rf7qO^!*7bK zIcD(%7xw6xWVw3G?g=P^;~qbtyKmheM*HL5d(&DxZ`2&{WNA&8#M|n+TB&_f-h&?e(R=_E>0cU_xeHB+&io;<2^SLFNWeu!R7p& zl$1oxJq%A;i6wTt|_>xa9xXwe$#Qyz;y$zS-8xv1`jvk znr$+0ufugSu3I$EkNaF)^_r&JZMYh6&BJvEuKBnY;QAA;yKpVUMZddo-NR3obuaFV za4ps}-5$dAFs?@^;rKo3c&5jtxE{x~4A)b*%^HsjiY>s?&$nq&9#`O)Z9k{;5^*yegxPHR*3$9;rb@;_tRxB>_>w@R5xVqtrbL3Nb zFHOheejqLnuHLu~!gUC)!*KP(brdf8CE^h*gVABOZ+pRxecGCMRj+(Z6@g47Fyf*Xum;LANo|O3D zi3^WC*_!TNbJC{kP$zlCrN16<#Pw-izP~Q*gfYL={^Rr2Kd-<3`8qD_6x|pZ4R+cMN`i?5=5_UA=4CQMoNo9Cw-fjS+|R=-CRqe+ABGj7pvqKkTjp zPMPr0KY#jL>BH>r9<=SdK=d} z16Tes^Y*zv6;9n~3Aj(wx&kV`)s0$lEV;muKJ|6yb6mG_*J z-*DuvMG0>meDzPguTM)Fxn$S{BkO)B*)q=a>-D3Xp8Lndm}<~;?Im}9xa-kgiSx%C z^ZL9)Y7g78=hfttv(pycf#>X3PTF*=b+7wwl$E`Ac;dwmo$Wd4q0<&l!SkncyZ>_H zySe{NNxVMo?SG!PG{>qBk0^yT1pXHyyKU(E+$u)V)=6?jMH?Uod<7!q%MR zNyCA6zoVz^-uBKn2VS-3w$#Ue*tzJ*i#~6>rpJi)x*WH8S+Bl-zrV{lsRdK_ytE<~ z_tU0lTR$X!`M`6)|DLRqrnQ~6WZ1fk?*07UpWCnB@ayK~TaH}uKeq$_KBMC9SyjK| z!2W*k&Bx=~73luUjnMO6lQwNnyk+aNSM7dy*sm*l-tpmIKfnK%Ut*?z@%>NJo*K1# z+ApY=mDJ^^!`EE$)w1F<7nXvim;cba@2IK=URtoTxPAxds9m&n*{bAKzwWxJec|?h z4M<$j>;9RWTtoAR{rllzuQ&Jn(+=c4^J1^W{=hfx!F#U%U`o~z#qL+@heBshTXvLx z^q)u+`S1RF{`(*ASl4gdnY$)~Z%sd4+#`NaTEoeAU%s$Q`{ae+ z2d+wdXFu0tMBVx(R;*-sUx-?@$Mm~AOA{P=F454C{Ae_@X`eh*0uevexZL( z>2rBKk9(=-SNC5Z*lFFH_V3Y0-EhlYZw`rndF2&P+&JY=Ykpq;@bHFfX5DjrB;RK8 z*2P*@ACqw0=fKZJ%6}zF{d=R-uR+im2@Z`(k@Cx<Mx3t|9uoVr$nhwyh$=hJML9c;Eav}=glbfDXxjc|EHtCp|~{3frokQ z8>K$QFp=ON83ms}l>9|e;Jgw=Ptu~`lN|;A4^iMy+!hJ{tx@0{9i`v$|!jL8U@Z*QS!5*;CW<}{CA?jp}9#U zdYhxve=HHPv301mH0$3-qAAav>HcePf)j6LCd!QNBg(|D%q{tU{dzd34?m1=R+7Sr z|FD=ddPug_2u3r{9TvCBI~o;1fW5`n>{T3D5Vd zr2azii+*Vdl7I9d$-%t{HKRtz6ZLN7k?-)&@%{+TT7I&W zTmZa?4>hLhOFzz7n#;FeKp*8do-Oqob%EqDgU=9!Bj{KeM&Aw{ zAowVp2ce$~=Od|a)f@&1V%w z^3{G%e^lh#Lp!(-_Db|xV?`f~eFcmisXaoh{JReDiQbG`Mc+QI06c>4Za9zed&VVr25@J(wo3i& zl5I^weaepu^GnC5y=;74@O((=@+dx@u=-~Lf9m&v%Y_f8^pFm^0S@=8`ex*{R{3z| z1F2l`A=TTL)E}mX*H=6Bsh!3t{u7k0#4vo`RQ$(3DSW6=_|4Eq!t=IT!Shw+|8d42 z4t_;6R_*01^*^Z}9EBSAY5sev=YtxBKX)sfpK&Mn=e#HI8=yDzJ4f}|6DHqgwa1zi zkxP=|nXmrs&7%bWbJYLjgKxyo@nQbzQ!s?`7l-Blto%$;zp7xY1mHt>UT~-2c>w$- z{krP-`+BM5_g1>HAWwpyy7smZf3nWlZO0C0dP_PLvMy-zMY} zK4yRBB+Xv|yQKWV1H_+9Q9Ng=9=3iU{zui#+NAtH;0CFmrFwgu^4}MxCy%IIr>cJ| z*M9#5E${$OOZjP#ZP#)3v!_RJ)-xwa$tKm4nk@1EN!s98m6!FI%2)mT?KzuhXwb03%dNy?vYisz^>Jg-!} zs`-1U9KTY3bw`818LEO@s`9eJ;^Cix5Amn5Efmgn^#iFJi$mh84-`&|@)>CJZ>hpb zJzMzGqWGVqasJr{2tMtK&p>d6`n8mwgA~rIYQMcN6n(g^n-pB5{7HR4^kD+((eG#V zZ>eG9-F2wXbm{!Xzz;wlIsdBJ0$Jm_^^haUrE$K%KN)OCzQa;bR zP3*2pxMW?X{Av8?et3NR6n>M&$!*;P{uiortWZAu z1Q8P7{&bVj^|RKBS?ewq5$F+TCu zJcXm|u}X}5Z$AT+;HP|k9r7Z+t*a3HyQ)5aZ2U>e-68dFSHIn;{ccx3{}$SjJ}=j} z*Z8+YGj1Lo7h=D+L+h!2&HKVnV;4I$K55kXrirg!R{L#TCj9(J8GXLSb?0>%$vNMg zC)Y;`7P1k3pZdMEI=+AMU@GNW zZ|CvNdKvvN9Q6;&)sXI1_%+H;ga5O}U!C|lJOzGgM^C9-9z0X@umXOHeh-5Wg#Wg? zMP8q(U|v!@`-b_Y$;N+HY!MSuKTPll&Y(ku4>zjZM=PFIYZ3R?%Kutc57Z~RlEdQ0 z$*@O)pEv)v*7VHWhC;J$~T|#v+o5W_lLCOY3fhz30t@P z271DL`&8t$RPnrBRt(q%e+wVo+*G5Q|^!by&eVS4+x*54YIf05EPuSodZ4S3VTTN*{I`V67++9 z-$Ada{`U`wp40v!{a#ePZJZq{-@mJ#*Q^x&G)r}B6Z#=I1CJMaja~exdNNA;1={>; z)N#b4`eyP!)bYCYIe~BZU#|K&C~Q0ps6H$?N$@`obkgrtrFW>-H~NnQq%6nnVS3dH zy(9U0)c*)madt-S>!>h$tOk6d_rZsS-mkQSvrwP%-?&fmr)vHzm1ADrNXG98B{)&( zZN5y_B@7?xbX-2^EP=CB)Yh7$^4*dn`tYsNOS3(~-+EX0X8g(7s)q}XmiogKpUJ9k zqjdhF*;cB`>tXd9YNpnq;1AJtyhr$4qWBC}f4*4x8OzjRUj_gPpCpaDj2y35KRov_ zp=*macn9(&`2T)F^!8t>hg+4;*=f@6L5fhF;`4JK$)9NmP(L#`L*SpRg50Y0`%aVk zH=rKj|QKpzV(6hyIt!Ss=Ykj zP4r=gL`~MYif8LPQh%t{e;jfkd_E`@e9qK-3+Her7M4|1Rpge^>DyDRoU}0+Ir#+@ z1rv)as|qT{WQ-^&D=iq4JE5e&%E_5HxvVs&vMRTtDksOvxo~REXstJ*B)77%pi-Jg zZfyF=q0TA`3o3Fd3UW(wuB|Ap0%*ImyzJVX;#2XzBQLM4G%vRb9aj{WPITl~RuPQ+ zkessej`b?4ORI_}7vvOFRFqYO)aLd%`5-YgyR5vR)RB`{Hn}{vqM##Wo0j6zs)C82 zDV!X;0uk$g2-LZ1c;97}9k8@P4ppR&JG)O&mOk{BFz|Op?LP=CsPmsE~`Djgz3Z_*Rl;-Cb z3ap7$a-UpXBE=<~0W7Cf=jKn&ttuh}1~Fb!2(c-IS)NcZxnMG=wQ$RuTy9OyEh#C> zqtxWGsbGH&RaA4EoLgLK6;>1!SYm!tb1QPJ%7T)DJlI9`Wax1TEHY<8Ze?*^4hoCO zVk>hpE*Y6qP+C<4-7Cx~$;+9XJH4QyGPk&+hALOSXw1@^QV-bf|?LCU*%x< zD$kiR zC1+wqS!HF8RW@N#L0(QFDAt}sala-fAFd!G3-Swy$cU{blt*b(ol{(zLzqS4DHld- zSuwFnL{Li2iOHcXDxXN6Qly(#S)Ef@Tv{Bl;$*|(P(n+i6AI?%PA1g}a)Be zcUmzR840P}5=bYfv;Z1goCnRS!YELf3#DcPN~MYNLqa&jY7F~}IuQalyRo2q6GFVD%JVO5r++bT#8qhEz+2X!2( zuX&`eg*hM@C>B*i@v8|cJ2DLDu#S>yWg39w=M)x>{VHF`Hh(=l=ylJI1A+I{Gtk5VxC@Oj7TqTljOqs&E5r*S*MlmwYh44-^ z0EIQl%b8G|S3MzTFb!T|Wzz=_$+e_7C|N?4>V=u+)rw?Y8jl`5P@mOJ0kl;XFd0u5M(1sg`%iH z6-39xlClZWbZ~M+48VD)VF5Yvjw~p!M~qO`K+V{8;2@@x5)A&N^RprA0CY&^f1 zh&8S-)aVgOP(dWIRp)>UInhQ>DaFW{b_r)5a=w>l@U+Jpwt2apMvC*>6xfe>P$ z)aRGd;F6yU4P;%giX5Ynb{pmk^5G<*BRN%N(J;WDxG0s1F6u3 z{Ibar{0bx^p-jHUFdEQw1bB8(5PQt-)|Mw3Mf@o9{LnN2OIm{<^rF&LXw@p zL(qc|7IBnD8DS_<5JN*^aJq>ocCRx|xGt--;94aVl$XLM^4K`Jy5pGVm|E*N93c>EUFoH;`Z^TJUh}z@ssx z01FZ5lN2YqZsiwOmdnrwM?%jUC2GS^ADv5U4uv@mA8ZV&!$@)}0EDRlLNHQcEWmUq zqM%JQ0pkNR$to-cowPidV-W>PDKAaX+%G4us)D^hNB1g{sKShHpVZT$6D{>c2>sQa zkk#bV`su{nsLFFqR1Lw53v)KM37ZIe4G1$B;!-4aq;}*rq7>6IX=${TfN8~~X&u?Z zGmRNhAX2!DB9d6xmy8sn^~}R4ap` zIb*j-{Z6B0yfB%~IE6MYpme#s*6oN?B0-o;A$><)&KP8TMkqO0JvMq3T7bE$`m0Fb zCc-gg9LMhzLQXt@w-OOqO9 zSpoJUunrzUFY;$p!1Rb&90^eThpnWFXcO>jCg+;v)aY0n$2-KD3Xi~3=MEC(bq)$! zLKd_tc%_W6i4MKESWF_4CxF+bSxyAmpF*;a#Jb7Th@eO%k+p^Fow%giVBwm|D-_W} zTzJSRebJ;Q51V+T`;l-l{@bzQe{Ei_@)x71%pK8~3@6;e!BtxE>&TV-;z>EV6CxHN zu8P!x$C)A4rJ2J=W(*(W%NdMKnF~gY$T@Z3Ap7YQdP+|_Z$!?JfkOtKW?gXpC8NiT z9)2+@pXyA|K6os?KopBNDqXmD!Pkkfb&OwkJiG9pq$!{3VVf9FR8Rgh&#{^t2RPkP zt1FiiL~2iUrI#4%|NZy>IPm*$;7Xhg@IXJ4a9P)ViBxy%-+HcyK7REv&UR2a>HPRB zPr%8BIDBA7^2X;-x|`KgP6@M?PIbVmKCBq!E~~Fy9*a6bc(V(30eV*}N#WISx{Ecy zt{-F3S#j#0egZGnhPU&QiJVWiXU@1#M&c;R$FU0TkMii3Ih|k?*9p$dQkuNcOMXk*`O{ zxNMpuUymMfevKnvkE(M197n#91r^M5{@Qb)cX1>~~j zj(i*~vVW@_`FaG1%NiZ|I5lJcnjQH#I%EG@9Qio%W&gH1^3@c$tksdPD$4n7j(l@w zhzhnl@{i)0^3P63ev%{K()aa9M~-&n$2szkapZd(`Nul)6CL@-Ir5Vn`TZUF$&UQv z9r=SC`6oE?hdT0;9r>w_{1YAdK1cpZj{H%M{F5E|S&sZaIP%9k@&`EbiyZj_9r@*s z{69MKr#bS;ubE$sBY&{T#C?tb9QjKf`KLSbeYIc5 z`2w!`pO3eEb&XZ7wkJ^Nt6d-WnpE0z+D$0h(|z&k zEu5~PG`YU^Mov$nG`YO?<(!^CX>xV#i#dHIrOCy$&*SuHN|S4Aui^BClqPj;FX!}m zlqOf!KAzLVC`~S`eH5pMP?}s2;K*v8~9!}puX>u{`7N>8eG`W`c?Y|KHH&Hr?(yg4H zL1}U&?Jbg^s* z_n|bIc)P{vo|GojZr}bh%b(I@((SFB-n|=XGUfIbPJc^jGU4_{qzC^q&Hwf|pa1W^ z+Ap?`8k5%4NN-^In%2^bG`^-LIxpFFEjs$H(0$ZMd}pyc4%%k=2GIKuzS^A!`utx` zJ$x0Qv3d5s`c*2}(~8QoDbu?8HL}XWfhPS5m1p{H{1*dQ`)d~f@cFm<*0!DNi+SDm z_ODe5Hnal_H1|<}BmLK$?T-bst9xgnVOuE(zWR07RAj~cn|pe-6(5-O)t+lrySCkl zb~dmb)L>7`)$KFThMwU>YJC2g3w{3TdA@*mVZid?+1rTc##ab+_#2&S{JTwcyLiabDzjdF~Qs{Hv&;r=2zIA(Cw?5F#`qn+pyNYrfk-MBL zdz!rbj!;VGckYIK_^W{TJ0Mi=+k@hHXxOWnT8~BRLid1~;M8a=lVCV-LMh|AlCtoS~RU)EZKUK{#fik@29 z?=|qK5n56sPX-!g+32*j-)Sll63tVGP%q6Py=@@lT;U89inZp_i@&VvRGp(Z5waP_VWw03#yav5-leJKKK*3knrUQ>nLVd4buP3hcH`g}CxSw9)g+8uJx{usoM;*T4&%|wQVu}x+-8_yN3R?+_&vO zSQJ=9i6-v~3ZYW2Ug2)|2)TBnlf5h0XR4%5_BQ_55<@6A8t0YiQLotb4b2@z{2>8D zi@L(RzS#&BTRY=G^W>gQZ>QT`5FlrhUT{4g*JbyKBa8sEFIN~M71j}K_suj3jta4B zO9Uv?%{b!)>xu+jy|agj-+nJyr&#J2{G1ipq9*PnSHlMGdW|dEfZ2hw2WHU5={EbA zX_!Bq3v*fwf-}fHxUNQPxPLf@Y*sYn#piM!5&0HGM71uFK7w|+xP1kRA`scNB`Q-w z=^wB3%U$We$3Z_oN2C8o2mM?zNI#Lq9=(o08~T^R)@aaK9D<&2Pec-oJ42(OU5BVl zR~oIT7c*Q07Lfk={I*WgFe`ZhbjtZ;bktv90Xu;{e((B}%=PYu4a~|_M!)NZ3TwIo zJo*TD*P9Zr2ei?!ot?4tTlZL7m$J}6tCiy+0wkNFaA?|zgAlUqt~(S;IjE>7e836n zg^Jkhfwzu+Fnb#P&O|9$v*xal-2NCz(3I&#K(d}~K6Cx7N(Z{(WH06C zC}f}f?;zQ?aK#|mFs;4$4jDK1%Y=>LIaOE4Br_&IZ9Isd4J@i%*xsOnb$4(GJUstK z6IQ(^v&%%VVY{wy6?fP}Uo*^B_Y@N&Lo!Bho$PHyXo3+ulN^X2Vi2#2-F83_^?CDrH?F6^@~YuuhhIH> z-0+;MJH(xHh(!OIY3veLmh)`^4e36AJq^SoLQVsjqBif` z+L?0^uRVZes*!=obDO-YNvI=JCa-okyauOdLp_;7$wr5_WV&HS;sbxZ!-N-}_?~yt z^T4%JPl{UoAE@pKl4$U=okJ+#B@V#P@G}6PV$8P@5ApXfu(7bS2y>GD-^iR~dDI?8 zIC{85dT6dl46p7BAmYK4J3Qa!z|Z)=iv(Dn_&5WG5nT=kz=-ZZ6%6N*5xxFjf@m{X zPU;qL45RLbB#1@2c0c{vh4sCX#DBz4^sf=7Iu2W6u;i$9#gzatJGSuFL~U4qYRo>n zHtuhER45Tp4f@1Dz1S2vGg5>Q#L+)I09U{~iXxNnLEptImaMfJ3#=B;b2iqWM6Y?& zM-2@7v@7NmBU!F3#?$5n#WsR6j*94W+x}xkHrhnCP;MM$h)#6WCMdH# z!tPy}_XDWu=O>EYXgIKI_exM8^3 ziPb9%SKDy|BdAKW;R;IIT-Q67GpLHm*rT*n~E}=T-22qA`qXQJ1e*nL(oSClAF8^=RtoS3qTeJ zG8<{Zq>0y!4yBQ@iKmb>d;)?GO_4JcH_oX)Zx1;&UwvPi1QH`zDlr&Sc-E8dUy@9m zCGVGBPqQ(dQ}Pm(&;Op!-_$m%UFNx1dGRJ)=`3T$taJjp*0e< zMl#g^Dx?wt3!7vI+W?VE8UiZ)edn;-RL80z-7XSEfRO`h0}EIXeNxuVjP2LSg7@HX?7PT6lf;?23?x)|u*m{gcpfPWQ zFcuTVpneYfB37(FwYTE6HvoZphJ_$DVr2lqC@0-%gxPmT_^O+$eKc!{&J9#tJf$*1 zRk25?k?a(^qp3)`>pWgCwAFm=S1~Z3cYHB#`09JTD;6Z8L5`nIjE4SCaJdL;+_GoT99(X1cF(3$XM#Gr{=Nveh%qs==1C&ra6y}{oq8CO zvdVVC92(@Wuy-|@sa;?J`Qv~t1I@~D05);lUP3JGj-oqkV8}9;QKgQNQ0%q`9N-P! z^}S*vf>|qpJL})P=d7zb>Cys)NRvoOI9KLaQiR#C~98U}_%E9L9`m9C#UK@Yrs+3=Yz=OUDt|!53Zw$p{GmmWPLkvD+3nx-yLEzydFz z*vkYQSyQV}q}>g-lFR6b7fW%k*!E(D*cUk((T`O%iY{$e`&5yL@!;;+e+*rz^0M2E zxK!@4Yev;^T9&dGy%<#J`b?3Sg5sOqNb_vyQ9>L(PK5Z7Ho#=v>n_?rgQMQ)zK8b^ z{vOk#1>;Ru3iP;(^!jPEL;y+i@+v+@;mg|y_%PrMvopUDbvLE? zHx3uzQY%nBFK~LwCIl}#{28ljXReO9VQL^_b(6OZHe#h@w9T3rsBWwMSB$@URiJuR zllN;HY*MPfo;55mv(1-BvE9z}`mTorW`2!SMt!fL>4-*o%kU!qSYm?}>VAGt zE!x)YL16Maz#{W?Wd2a=ZHuY<0hxCL(|Lg&wQFPi87qW@Gc#7W=RSn)0@a%1uWmzI zcf)PS^aZLH22TI)AOsS9c|U-Z?Y{c64we*%I>Q&3ImgG5H0>%~=s&foBkHd93Nnsr z@azlW%@^*5Eb=fJt544Of(cq4n2F^95{rN4*C`oa&ngvmrPp7whl;}4m=?2>y1p=Q zR#UpHi4ZR%)$GXdjE)SyBaneUApfVEL0@l4fj&3W$Eqas^=i_Z_0yq}>=IxCU3ZyP zMCX2E4v3}Nftd>f=lV0+Qf5Lh^yeoz^Ga~8r zy?_XGW@B2+M(}3Nx94F+ZKGtR*QeS2BfBeHtBiEm<(DyzfTZzkp` zA+U#y*lc2-j_*5y`csCTJdi+o>)^9uHi+0k?{fCrb6(JakxPk^0RW9SNBNH$Bux^+x* zVDCIsqp>oMlx7}HvfNQdaTjW2%!@ciKl*{J1<~X@G2p?!NdYUSg@Q@%Y@3;9dS|;E zZh+Bf4$ryy?>Jy^X>m7Kfg1mP76~NQ}|aLIyaQZ?n*_yt@T-St*%YW)(|)JILKaq|&M@KhPeHcMy>4+U&@w z8wC`QNlQ>;VcFwslw}6R%cNV(PRtfs4~^Y+7c*4H`W9IueGoR*z7wt*3#GH0yl)ax zsP?A2L3Tag1PzRFpFqZJoaU4PZc0c+0*x1jATP`*yLAdVdhXG@LT-jS~Md}u&|2E zsDh=iB6F(&71|>M?FyhOWP}zXRdgPc(E>Mt$h5n^rTrq7aVMqz0_$irUfqP!z3?gz z#muWs!mA&mVUFD}Fv>>PR3k<@cr|7E{`1NRd5BTV>MiaD!bbbxm5sBoG_nOkq)^8f z;L}))FyhQ6V2~8(6PVd@;`{#HXF{nbAtx~~4DDkmef^cuAPG!g{S2al^?bK8Yk^Vp z-64t&u`vSFcM6cz!%0x|%@{b&hwMUx`8c$kwOW<`O;P@Sx~@v&hK8!4n}9fbwjE{r zb@ps1I#-Y1!6|q2V-Wd%nQp6@+cmOKoB^?dOPlxREp#d-MHu1V%#|Gq! z!xl<|+ma5zHK-SMYAw>~HjUi*#>yb4UorYb7*%*R-{6noKnV#u)5gOCOi4=NC~27x zj?z<=`#8YFc`yQER{7+1e9d#Rd-i;xnH%>|^`GWy6X2;1HTl^U~8VCX; zo`f|~Jb5cX%Tcp(U~h)iAo?>7wo$Lf2D?ZZ^vSS>vnJW_5jrQTq-hJ0Lxs>@2dOBV9jFA)XPA|ij3n7! zY%v({7#X|mPvqSc1)XSr`?k#qSzNS_FHywASrjx~>uS%%VxlfMN1(#p&?>UFHG~*s zG=#7X)6lC`8EL^JsFk$NLwd@GtVmCd@^&Rvb)G*7RMQgiuaQ;tp-9Y=MIKt1q^?@ffi2%}-5CY{m>gp^aLCc920JnD}%m@*x%GmUvy>W`uqMzhyBc=4OnL}fV ze`O8d7EI$?eK~Ge87Sgg{dmd@)KL`)%1qQ!4sk{faYAYrp&HuLEwpwpd~(1h#X)Vl zh1L!RWscf9nWS5=c3MlCpU!_d>X8Md`&+S;z{cdPiw!b_h@*(ern)TLz&6WQ-<7x3 zWEZUt?=OwS1goj-ktS3#YbKxjetaji8wqB3sOi{6s&wJoM;9Zci=n~?rhy_uAqGL5 z^KA!=k-8=$FKh%mrBxFAzhIDbI@EN!wzW$*O`Bh5n$$fxn3g0c(5)ljBmtbf7r@g6 zaH4|}URh$(1xe%%Is*0x;KaQEP7=Uz9RORBL${8AEdd<27r;#$m=!yzreQhrc)R4# zts~&=m^49mcH+jm6M@I20=SL9@JOL2D_R+@*C*$*o9doKnqdUIqa@GZ5mg8Lb@T$3 zsYXjKx9#xo&|idnxDAS<`Na_TOx5aX!cmf?I+(7KW_!Ks^D%D!h*sjvXeT3;yCv1A_lb zQqnyu$p-dRC+(?D+*9rG)vqDCuONq#@f8?QyM7SR92M{c>Ify;h4qf|BSqDS;3T}3 zj8==0MEEQG;g>0}_#r9g!k(3+xqBRa7OmKIzLn?oc5NAu&ysG5It4cK}2xP9{1uHs|EKmG)lvp9Z9hFRPM|CKqkqZ+reL3lP z^HhC=sY%N<;kuH7UUdm$g`8Zeu@Q5s+L^3sJeAB$Mo+zPB7(+JmIe20#$v2k*0W&) zN7h6r$O6s~OIH;-36`oVq*Hk>TL8dt+LSE^rvbl??uMipiRP*LKyY=a596huYedBT zxFGJT%OPjG8OireOGFRy=2#}g(EzapyeoVQ)7($5#}N=5&qcz=Ck03)iEzXb9p48_ zMMD#*)=(qSCTv0BpnAq?I*egMJrz)Cixh7Yi=q>IF{R>dQ=U@M7)4#tl#0XgnqX|= z_tpTQnK$zJQ$CDggO7wX&7VA8K%w1ePkdVe&EBstaV?*di-2^g;$&}`JCP%d?LH%s z#Mm?FAo78gJp5u>*pY@iQXm1HkV7@;9iS=Dfu_2J_!njp*?_17`tHws693}(j(@?M zs9w8<{4{%bCo2O*1o;5Cz@g%QlOy3j0)+aW^+)uxWMeswhfk^o=n{*!R3-sCn zFOUpT`24+oH3G!~#*?&wvD%;UB;c6^49I~NFdhtK0=mBG=&)rOs#yyKV3;{mISD*y z&W@KLgahO$!;RO~9z*B_a23(K={=NvVJ-c=OBk% z6LR@X9F~9Rs0A(mxbNZBoX=uJ9casHOOf86EANsj9NzRrwoK?hHNWtYCtkzTLvVht-GxyAYgGQNw5#aDH7^cnuO z%DjtZL`jP1I6fjZWM9FnP~D_f=ADKHR#bB$>=chRi^-D_1y#cAZ@hC zT^v=UW>5-l5Gj7)xGuosF0@=n~ut2po%wLg4PIoj77{SgN>9RzCgY!<7nKscoObDXIjB<8xDs0)j1u3% zSQS(2UCbgw+%?d3`PJR5itbI`#UR_Now?kq>RRi)FIaxOmh=1q3@Z{^AV&Ljbk-HX zT3c!FCN$1SfbNm?dmH(sL(Ch+uDu8~F;S@d5z`ZLG&Jw28xNoXD`nmFJ&}c~G<5;P zY$bePEa{CL^dnsYT#S;D^(W4$2u0Emn(yJ`h6ZcGwn96@>N5zx&t>rJ%IU>DO&Xg3 zgsI|vE^w=zxir>2dk|B=e5Y5wf*N!cC^dFiV{|OegiQM#yOQ4}?TO;FI>voCNX)|} z?V|+8&7A_q4qW-@0b7i5UVGC>*6Oa!4uG7~*O|jF6#!G}A{$Gi56` zvE@o=pUw%`Z|ke<=54W1U+ijM0wOS{B}_4=C3lYSMWPN}wRX-jF%eye23JTBLh;%- zSOzAs9yBI?U;-F8o@UcJJD1aI zyp4`$98XGjki1D*tjV{qUVEfD0)TyX_2(9B$ZMbRo!x%!!_k(0P* zC42n(nX9fqRwFOnJl+Oo)~+9gmL6IS6ITaf$<>jJTBEPN$K5aA1{iosGP&gV!ZYb^ zwhsNSfoDkm>74Iz9m(lnys#JwPVJ7=@?TG<`oVHCP%7`H<)4I=&(rdM4dZ@XuY{FT z?27iT=cPRUl{^kH?4iF#+m{ZJ_K$G6{q}6#G?WMWops*{ST&>9o@kUx;Sb=r8=B(i zY*qiGxR5s8sBmP;5_)tu)T2}nmFHn$zQq^Q=)-Ga_}9NKz_4gZqQzI+)*T3T-9Ufe zn8qKWh<1E9j_3r4^!lP*#G|ixwnMvH<9OAm6HT@EBeZu<{8NAdEU;^pT`!o7V>HNJ z6E6_X0)FoWaT92mP2Pz#uHI`bq+g|>5-G@g+BO>ep*2UuHH+iuTC&S`RIBumvtlr98H>t#!i4y^m-Yd zx~^n+6rLFAdKRc&#-Gk*S+eWN{2a$yS;SM~pW*3t`>Fv;R5%Z{$*02I&D_!R|b*Mti9{L!)#7F|;8M zSMOychV;NPHYs_pXm5srH%E3E>V+^5OQ7wlr&#rfN|&1{qeZsgE}nN}3gZxu;ZAQ> z;aABGru$chh~T|tEP|CPg6*L5bs%KRbt(h3<%-}eYo$=poA0ku*qH8LCha|9D>n*I zW)x)92A~_9Ko1p6p)8(+Uw95f#^|XRS!U~9Iwc#U4mo;*e1B=gT9gV_h45dnIO(}J zYgI&HJ@usUiDVCwm`~w4(Fr|cWl%YUD8t2o4|uE$J#||5pD4p7%x9plwlV-V{9Bk! zs_a4(V#5t#rsGkceL?#0^vI((OSFUubw&__UT=gWRNd7yJalZsu^U*Yzoq_2N(eb6f6U$8e=Vce_{xds1*`5W4qE70- zu9QB}8*ax30tv8G?XaWCJ#rQ4gKfv~V_D18j`i+wy~K5lYgJ>wqF4v}e&Df=#t@XJ zCw{sBV*5T@I_|uE*L*?;VI}yGRekocvanx?@2zRrqGcS+@S=YT$`F9kXzvRwl0n|X zi#h)yC4V8@d#UCpX1XX1E7PY)~!CDrw8cI5G1e3qx)kbMW& z3;G6_xngbx3}c#}_;Fm=n**_@1W-Imq(Yw zCNAro9B$&e5vU7~YaV+zqK>mORXK3X6HyK&Xl!&m)y8h$a`+;XWyW%760SN zAVV_yZfJa;rimWcFJp+ju@uuoEj{tej-?4~_FB6EZRTOti8DOD6I&P_&9b1u(W}he zK$8H4sH<~k*Gs7=K-mE(7~*>C{K@0` zS5h)IZP+!pB7X_R*6a?D`C41iVrFZdM%?TyQ1Dl<6&G*&Bs>WSV0Zl2mm0etS5NNL z#xY!7<{NE)V=q-ypztDC6QYkA7<&wd)>pO5fJzcB{CJ-j9F>q72?YAWp+xfp z?M#LCkU+x{q&NnuYesTyUq|=02N|emjQ}%K6AyXfuVCuN@ls>d zroWeg-Tr@v?E-bJ4M@KaSFEc zg4A4f=qW14I^}9;q6z$MS3^2TIzsV{)74Nq+MLsaIcLE2;>;7U-GI}Zr{k~3nDD6x zL6F%VU1}cYn1@F5u-H7P z0bw4aQoAljd#13?Hnx3X({tb0(C5bO2!!9{2xmYqX25@h$4v|O$rXGE!+{6(t2ziG zj34f&nKO~tqPTu#^Nhyla7q2^u6^SKQ3rX0eU}J0k#g9)`A>1WvJ*HhcH*=+B2FQC zqc{cXNzH59@p1)TKw>2hQ6*ntp*LhA{=NYf6Yl@_M zvfg;lZXOd{ha}Lr#;>nU)bFZcT&+~AHAK9PI; z!1Foa;Q^B%pk+H+;_7YIUlX3yy2H3G4X(5gh40eH3vs*jA>i zY4{>={M}yaoC0cTj5@A5&Kqk3RY36r1PRv$E|)p^T6yO6Pax9@q&@?zB}B4`kZ6<# z+&a3q)!fMx!t;Av=?X|1hAmj>T3$%w5oj!=d$l3<>D$9^WEA@ch z+W>i)^w!%f+$DV3N8r!o_7r7!5{{NsQ%Co<&u=%v;T=}j6Wq`Y_@pJCgcAh&_(!G8 z#`slEGsaA{U?*Fm+!-3PaN1^~7bJL!iy+fp2^2lECwB4GfarXsz^77M(z}DyU|kK! zh4AL!Ml{z*r4GU?((+a3F;8gd=pa1lNOpSZ8G^(FY}^_Zq;7!OLWa_3FVV6kYAgws z_A`z95h0J2XPadYbDCMkFyy30?i4ha|Bs~}= z$7Ez{aHU95mG|a)7M#6RVJefV^x+PILk=si?m>%Mc|>`K0|;0HkL__K2v&IR&9ir- z?IFtQaWu$R_5c7(CrizuH{Xpv3~Bt%++c5i)W+yp8}itL7wSE(!=+4@q(syA^b$?) zE@if+?>UEL#C&5vshZBC1ABG=lrcLKy(1AeX3LoeQYDp`TEf`vr0LtC=|ja&vc`kd zt*DF3!>TX5qluU8zFJU@gM-F0?BU8-#OWYJI3`OvWQFO0H8fbJ2Tn^wX?kElZ@%^K zi5m=~3vTGa_0s{|G~6)ye~x@AKjmyTjP*nf!Gk1q9QU}6;xbxi9>@BM`u+YQc{sYo zA5o}RLxKK{#U~Dv-$I=Q#-Q9%7Y^RE&sNUJjx8IM?jwch=_j`ah5qbWY*4IXtdn&9 z3%#&)wXHx+B^aS$!+1h zC?<#P73{{Z2_fYmK`^4p{rODhy&V)Vd3t^z#N;;lgZ#MCf#G`qKzf1k;xhcaz$~a8TfmN0cIKBBE(S8qdG=4!FLl_-Ks)wX3 z#D351A@Mo`!JOY_zk|enStrlAH(s)&*lOdwMPw; zAPK!DJS+|3ze65O3MhLL#!Fp1XY&zn)_nRB4Tbn1rb zwikjh`$2>FW4QssIZpEnpa~~v=Vf;1*%^(5!Fz1%3P@ac!ftf{7fNLgfuEOpx>c3E zK%yZJyD=c5UuyRBd!##KYr8Zcihl6TL_Bb&lHgs84BAcubn`uG1kJ)+y;Dn1{1}GF zpIu?cC}eS2!cZw=4F6z1o0*p(_>@N8XR^YnYJ8^xB$!UK0#oU~!SuaJ6pmZ5dEnr7FbL7p!sfY)$Akmq-5#m^lG zT%vWtc`jBLa zLity8C4qS2n;1hmpJw7jHNp5Nv`qiNA`aj8twYyXWv9N)A#eJaDmIOV6w|PPK`#uZ&*)`(dhutyIkWK(dz$uuT<0F+fxc0G9^u+1!vHWFl@ zAY=2^n}W~{IdYfX7*y0Rui6Wv%wbvY>7j2x^76Q>_pE|EguV2Jf~nR(-@gPbSF@^G z(r2OU-5D$FEjo=6d%e9b|pO5zS z{6+l5ycl+oEJLGJ>ck|El|z;_@}(|)ynx4XhtoHQok9l;V}h-~#5^}Up0_%lTkwp} zKC*eZ{%2CiQ5fD?pEWeFpo+`}FZJW=0)f5@wtrA$;q7+3gD78%ZxmY!^Kqbvc;t}F zNa2r8yBiK>Ae1X7bpmH85c*a>S6o9+?uNG!um$)}3*ayR6gTsq+hu&y^BU9rjXoUA zNyp0|Yg=Q}VsIpfAZkfWBNfCnX4H3$G58`Uy?)Nos1&hkn!nLe(|!Yi4&4NCXxS?c zIIj>Hhgc`%0rbifOuFlaMr>P=_LDv}i?l|Dmh8Q!Da8`cENW~+RyI~UCy?vAdF@Zgv zFnu&;)YFr@p+8roXI~!Hptkd?fc&rjbsIno{yInbF8do9U`E&Pt*zw0JJnD}-r3(T z#;5uBw@vxS``@PKqy29)??X}(W=aQD_z2ui5zcl{p+BJvU$CdJ0Xk5xI^o)NB85wK zlvI}phm3M_=X#_o@-2Yc?a)Ve-A{)?YTh@`WbwKizDBYZAIA^$yJA9!ko6_c)BA=B zd1T-?9q@?^8t~0a7Y*MW6r7LvP-udoRLApB$MYb^b26R-30rar1vV>EAO1YQyJ5%y zgaYMi$YJ6ZwoR&7PfzZKfA$Qm2ws>|#8e@Y@+nj(pZy*xLL!Xo2uV8I25&k-PaSO* z`igf-tl>~yI*5#J5byY6nv|R{Yp6f9yVD#@tTA^3g%$*#gioAx3Z2qU?))zijlcKE z#>q_juM2@wRTwNnt3{%;AQx$}hoo`RUYfkGY- zjN|H^wT9U&2r#Bm+x(Z6D)eMfjp@VU2duhfsiGBMs~ z-cEDNZ2kx``@MdoF81oD>vm4tAGMkNZcjQ7ITM^&> zZ=NG79rl);>#=WyK8@HAM)Q%Y_`#sdafWR6U&n)Gok6&M|LGz==N>_Pr56zQEgHiU zLWyYnecR06Pu`2HfET`1Nbk{j5+;AkypNxGIMYb^ylW{u_r&-A7t4S@Urhz zTYIv}GyAWDCU%bZVZuk0*(qlF0*F;QCtmsvPA8#)a$y~r&8>$C>HE`G#fw+)Iz7XGqHnMqn`&~pllH)LJGS1r!PC|cri;dAk5&Q5mi7K1v46H|>kD+k z({DKY8^nKyGQ<8NI+VRg0%lMAu5F?#8h1cX9NW?Kt)A4vPU{NEeLrwb4?NjfHPICV zaYG=X4QS$$L#>@>nIx7+;nu8e!94jzqjr8~RARsqg|k0x)hS>{ zs`LGkNdQ;-7{uSc7JvL@0@GppW3eeu{DL;Iv19}d>W}R=^4KTC&b}W7!Ihg~$w0!cjF8nuT|zGA-9+B-4Be6>!g)7QmynMO?p=m0nuRVQ zJ4Xk@zP&9uOMSC~Cx=%LgUIv)y7jW88WjD$VTnC=zVG?EUP7-5coOc1xX?F=(N?$4 z^ywTu_g#NJuZ6%oxX+Uuee!N5b^usts(yQehmVwXo>bdaVoyE0p0+wV-&R&J$fCL& zL>fJow@Osw%{hUtzjS)XVE^zYi-e2(4R{;zdR!OviHbMASk>8Gi~Yk}hlbyTw@w~i zclO>3-m<19ZtB0NC*;k3E5CJ8>H5gC7rZ;Yd$WK1CWrZ3@utZp>G!dF!+UQ#NFQS} zG1?B&T_|gB{Sp>uZ~e?|3)xP(6w|1IjWfE@zg0az#M-vC;|w*jr^I_nH$Q`B_$x_? zh%g83J|FuvNqAaDf7k{mpz!!PXO71cwqsE2!IOnQ^wU(=7f<}=N?L8XodG2L9>`T1oVEkLlK0knpAqX2!ov&|}+39;QosANL zKJ?XivW;=<{?Bx?o#0vaHHZx~{FtGD(w*-^@alYhGxVC-`hL>0UpzBg0G;L6ak{bR zaW(W}e&JmNPyYiBWPZ_m30Ur@kbzed`0L$HzL5%bo)7qhDE8CTckG8u_m|&B2gcD+ z>ekNVcPi^AO)u#1Ugz7*-{5q$`?dpoikCN2@!re<%yaPA)9)_k|5!XTuW??Q%lMB> z?hh_B%mT)KO}AwnH0OpLpRxl3*SGyOi>;**lGi!4c_Y$OPmaT>5tQycw!cXu@K=O% zW45zOE(%1-0LI{w*K>aZnwa~_{C9unuf$;V|C{Hp&e&<+3Klc~nv-^NuB+3-vy2g} zp$Tv2c{G26tR#0kxesduWBGJ3zZ9h3ybgIO z=*3JsZgACgX9CDe^4aUoGi|O;QfO4lGOsnp#|u1t^(mVdw?uiy@`-ZtPWHEa_)VLW z9oYP%8)3uaT=2~}{&cau`oMp>z-hHKv2M-bW{Law*&#uZ~~z9bhOwBfYMO`+~oiu-U#0^3Ijmtr~oc^03b#X26Two zi2}te`Q%BsL{Vsvx{QM1BisnD zR7HII<*Cs@QQ z$CAd&K>#3iFsM16sUyla6eLQ0{VOSF<)^1~+-Oki*zmG+?xc$NA2hkN4Ltv1=_vqVlY$vYlcugmAd~7iMDh{_j3R)(%)Rk96shU-;G}jK5UN2Zxo9*YXrC?;Tc-P?FRy{%9@Vv6=c0{xOhIQtoPh zPw?BZ$K}K?xPQBe%UvIEdC&=_qJ5xW*-%V`@n^{}n@+juwl~$AEXPuj3yn@IGwb>I(hS9fCjq=??B{Z;j0#?KllMLf^43G;YB@8)+DZ@QD9d zh$nu}ufzfQa~;zAxO##DXnL1F*Rk_cQVV{uzm-DV?MT~u7kCEO>)LQ{`!$^tTme8@ z(FhYgd@zOpkP@3e*D*2$Jd$;9?_Ak+e+$-69M#;1CHDd3`t;?kz#iLXz%n*^DIKTxTHTw1M1#@Kzwah#G@ZzAKPLAwc?u0TEzh z^-Wqt#sC1k2^p*h6LV}PZRDo-ng(YIb07t?@6I61kT4YOby3B;G|=zc(?XT+UT9%} z^(o~0kB*$+_fvcRLc-=x>cBnrt|tQ`Tz!(T*%iw{TeybD#w!U~AB2I+;6t?@VbJ4XT6$~PRH9bvxW$70`WXYZ!%yR&)D z&gL31Eq+N_Ei_-w#eN!$F61$_2PRbxZ;VNkm|AaJPnF+9LJ)EAM z0nPCw#0mgZu!kV;s`dg5E5;$LYO1>)XwaBbyM~_drt%+=f>m+e%o@C-9D_#^Nv(`( z@gFTAgn7M?q950DO-w-iv5b$rL`z%@;IHI4UPdPHX4s;ak@0n1yo?N1FChgpFS=4K z;ux-VZO@#KghVd?A9-&AUuALqjVCcrrONeQlqfC{tcbWH;1ajua_!Xyi%Z(1BBIv4 zDpf#>(nKMa_;7`)sc6Bbttf4wrdBi}U_fG`qKyk0_qf#uqcvL4RH^>I-*aZ3<=&fx zs=xRBy?;KM=RPxM&YU^t%$YN1mM3BWk%>ug#R}C-ESLufv}Xgo^jPn*5C)a3W}vh+ zPP`Bx=+X`7W%hhAm>`FQzQhP(*<)5(g=>=ew7Q&0V9_pM2u}L z@lD=Yd4OAXXRdRmYsmYOBnC2mXqjIyt$qgIntpo5^ffqPx*B14w`lJWsxmkcAES(K z$L&F&-J&*`yl3W*ekNkFEh_{yE+6GI=V(M zoJm6^JU-o=dR3C7oBxgU!ZkW$UuKJtxQ=RncYN{AWjf2Uy=+N zAo*ltwz?#8s>@4IfnK{MDshHCO3_x>??J}K{7Xk%J2s7wcYkb}xv>+%&Q`=!PDR`n zsaBd@Z-Szt^gdC2xU?62I8^d`H%>E~NLSA-&b6WBF*MI^C?SP(Hte_}6!&Ntxy7PK z0K4af#3@Iyxq@olhf+2go^Td_BraGrOF~wda{Hr_ZmY zKaRV}S8(hQ_~Wx*ln&&-nlRCDHb6r#3?MP+_VKzUsro5dLOOxCjxf_r2lUc{NfNHK=y!&2( zrg1L45SrBCtUvd2UnP^R*4b(C$47tBSZxxfk{BVkw@R3`grOs({Zgiy1d(kokb!Jl zKNQ(Qrqb!h!f*10n{4e1u3-63T`P2!o@(bDjO%zAGZ}9VxJW}_e4(+J#|4D62qU6n z&wEfNpKrdQ#g8O?zoNJ_jO*Ct{C>N(u0D*kK6_$!HgKlWwH|sRw4q%d)t!9k=7L|B z=F{P<=G2vl7x53hv?MSm(uBl|SWgzVzlo2(P0x1rS;47}Gn9`Sr+PIW*RElRNxt}d z#v^5^ns@MpUoTZNr9D+s#&7tx4^KYwYp2KUe*;%FF^~YJ~q?2Yc81=opApy&s?BFg5vpjnn!t zCcVk`b%3X?4LO9m=F~rgbmvACgQKYc>8mzzxX(+KbXE>aVS<9s&!+O9N#*13XDN5! zx~ltGbl{Wx+E5A~CGJ=U3S$$115f9uf2z+Czy1ayX|86JQn$S@OnNo8B{o+xf?0*^ z=ITQHvepPcX(=`xMl}p!^e;k*sq`jUw=cmhV%zZ>pp$7 z{wTC^^-#959)CFl@ILw#xZ?Z{ulSY#-dA7A_g~3-!IX(vG+);{&8dKbWkX2XL__oI zhxjy;v^wF6&q|WIQfYS6BD~GPiy?q&+m>yk_V)TZB zcmd6K)6@jW<0Fy9)0Dfh2=A*m`Z@EjT|>P&UDZf~xBT9`Tm0+YsWNLRaqM&|X{)Tj z1A1a2MEUX!VrR&G7vwGD%H_%`)3B)}Uw#R04oIZ|j+Tva^7Ga&;}tfTs%^;au?RgGbpYW`#^=ZXrB zZ81q~FXSgXtg2Pg7IJ&M<|MZuL~bj{!7!DZ+~GAP;6Isg|znmO{|^K4Vifj?+zMO7(b;iSPLyy znVV1B%Ffa!|D+rIrRj;Ay2&D&Xu{PFSGPbl(O7wU6Cp-vETZo3aI9M21`X{F5r-dX zMBYVRjWk12;w~xCjSXOTSvkYlfXfdO8}My2rWo zg{|x-nmx+Tjs@8)7{A~7`RqOOj+iV3=#nAje5Op26g0=6ILJrwI9iVyiU9dtK+a0m zr_%Ue{SK`!0A3)#@#^b<2;AcEqUMYS+k@?rvNhF1#DyA;za$Hgbn5X7Ms5ut^;aW) zRgGbpYW}45j|F~M&P66E>_Q!*{IrnI?q``5Q1>N3(3Eex$wf073o$!V@(=Ob`kDf; zt*5%V+Zq7>Re-x`YsXh_>sivEoNfIf8W-ZqyZhR<2Gnh*O&Q=iAMCJaUV0qt=A!&o zzs)6no8JR2Bi}P`$lc}uc!dCW)8>DE^)_E34a?c)v(d;^7|nEFnBRxa{}=?-k>rtRHf{+^weFApq9@ zd`}vIlmD(@yHq2-Cu)Hw)QDcz@k`hq%+KD7P&5eZgbV6Wc}9`yc}kExy}u%M3hD$9 zM7LoWd4xkr?}QKGI%Kc-PgeW_2>k89&2Oc5hd;A@)vN&Y$B3N1l1rLAF}FqoVCGh`Y`}{EgqU8s-d>A`^OPsoWkj z{H7{QyD_yFq0(G;yaQXXo!MXUCKwLl#xi#0-1>?iF)wRJLhO1?z*=&mXc>NE2*;7u z{a0PN)r{$0LA?4-lvY=G@%x2&>uVL61j1tPy+n9_bs^d2I#)=o1ygncJ_TyZ0)h@A zbmn3Lj;RFo5Zdu%HML{PK2(Eq7_mcUl&wql^4VJWDoYvGV&VvzRI@`W*8-$hDbl?& zbt@vSvSB`6ObY{zw^Ofar`lgrP5{oKf^+gw0c1Zm6<&>=aXt8DpTV)q<@f$A@$0w5 z*k{5T>pxdl%5=$~v{5+QRi!7&hsF}IH^4))&Jim%NT>F<2>%3xP^rU{&&8{60V}db z;~_XO)hq*R6|!~Qg;5KSw)gDmo1ta+W@g^XBVkFYlgIDDjIoQ2jS3IL7YAhsSxQJ% z=4N0B8oU+g1CLYzx7Vi73ls%(98Ex^IZ1n&|ooh$DGJkC}Mg*&=Lkf8x8-< zlOclzwyHetdQn*y$SXlwC@<0Z>os3=UaAcEKRzj@5Sj?h7Nrep3L*unzp)vjzu!^) z4dA>_0`*e0W$n@x`)kbsCq8czQnmHFqx%*9qL`Ry?mUDzJXVURcCyXr{Q8BMzhX8@ z7t)68%#O=0B*ClfN6XSIS3FW8_&EgA8}qZ%cf`gcksNiMyW@N2En_}zv`npL^riZ- z$=^ve0D%80Q@5o){dcOmv2shXKpp+XHgq`h-~@M>0)9C-Rr37QEoGwG;Rwe3)h@pC z#Mo;54h#s5)s2(4)Y4lr#Di-baT|C1;c_UR8l0=KqJ_B#$xI<@$7R1k*2+2#@ohfP z_5hMvKvXJz+-hp#cXme!Y*J%ES08W%wtBekKgZ{JW#2(6yim}&BbkJl9)4=;|F{h% zv-41N5R#D7&*b1IcSiG{>&yhuH^`zrfWFTxDrZYwxvWT8)PyExvgluEaVCqt+zkb5 z^zKh{<5<9=k<4tCMP+4??izBPnwatj>z~bXzq@q9X4#jh%sC$r-yn1P0ezpDb2ugK z)>7k@IgjUH&huz%CUf3I5imyzy7~y1Q^d?>+2v*QXACM({kgEe(VrCSMBv!u;3u2{ z`R6+000eZnW;k`v^4mXtVH%en&Kx!jz3(7D>#*4)-n{YWWy~5_#nFE!WN{fHT5Px! z`(kT9FI4W8N|t+5@(Nf^S32s5vvUtt_h^t8BIQn$gC9vF;1=Hskmh6?n^$s1TYS!K z7&m4lpUcNmSXS(p;j;&y29K4WHIK?3J#P&-jP~wkyE0ZH(3jlga}4ILO1aKMXdqmH z$GgS(Ocu^bz2Us97n~aPdlrakFrJ1?LE_=1?m{&h@<9|Ku{6DJ0cad7_^R`aqsOPW zGl-CJ;QKX&?{`Oh5ME?O7idM@^Ww~*!+PX}EOJa4m!megeJO_`AjpAJ_R9%^MFj&g zD>*ln#{W9G&jD-!>9cb-kpm=JWxTo?U{LizV2*|YhTvBPbVq8csh)&a*bV%J;U(la z{KPM~Bm@0l3H+)W!!p(UNv<6;7|*nPf!L&m-H_3{GS>%gDyDMf*3Q0jFSoLquXMlz zpBK2A-79V%s~h=0FRYQ>2y6UT7gjC!-@UMYxl2S?gYeq3u*!2}NAzywl!Lkvmh;-T zFkMC%S-&U42r-vKWJ>y#g*NJcUTCAb5!#twU1;q)_awAuc8Un?9K7a`N?8R6{rOmAP`7dHD~0~zVuM@!VqtUyy8+zF zCJ%nLZrZSuy=mLnU-6lDz(lb~u;GJyh6=LF1nYH|_5`1^`u_I*w?)N54owMt`j31naHSh?hcGq;IuuAYc?UFQe6mxqlwjgdIw0UM6IHl z(26MuXKb;*KOUv?kZ$SB7THws&*j7plmR27_0~^@{TPqelaGFI%#Y8{JGvnu@r|dk zyJ2MldpREd{o%*ud3*i@1!k;Cn5jpy-Yx#1AS&zj{}r-!AB*zvU*M^k?T^LAs93ycOy z438R=Zi%*jBe;>f_1PN4wFTgC-uQGFBMdQpY7aUn1MdQZ*M{cmSn$v(Tm;gc@KX#(=Uf% zV(|-x-sBsQ&Ub(~v?P~obe(5IFpF6Ew=!TBVFNgN4KB=K55$avL1ozzPUx#XQAX=i zxwH1sD0fDK@m7G1vdA|HMU#v0Gg&|NC;Z)j-_9+7n;J&Gvq7#;MSfWZ@)sZqMUG8_ zjF^$Couo#Dj4U>Ylr<+?rfu#2oIDbsV@2wF3sSk>mgN!VVZ3Qu*I7Skm`t)P9@qKJ z7n(8*aIs~`W_{0yKIopvc_`cBS4^l|4Ak;&p)nujEbM3xNy0oHb7J|N&2P1f*9;}jD< zX~UG~;k++wjO7JZW`H<9;cK&$F~uj+EMso8<1z^?WE7vL#RUk(_tN5gHN~YHNO75b zXB4l{;sS)??+uXJ`5GmDay&%i8iiuJqLm1g#dSv(u8GxDOw zUi&LQYiA4$JivaH z1FSX#b|AsX;UQ<%6(AJoB#@vMxyIQ=GF3FMfQ`+x>Ty(=?Z=Rg03b;7=8rxQQ0>toA* z4U=6U1$Z9VFa%W2a=Jd2tWG?J3<1oum*`HBr|=w!_ec4Tog%CFp2D6F&ba@&p3Y$> zH+odRh}Kd;uIW_UuTM44t&J*9s=yHtElsocY)q}$*3dBTc)Y-V#BaRGpg9O=X#U3n zJbwK(NR4Q-3!?pm^f)e$QPpb_Zc!YK#2P66Vi^p}+`%@Y%2T;dTek|zcYtKaU=4yx zrk{}0*o--8qweSCG>|T(o7Sbb!jCfd0TpyCS>GNe1sKxf_5?zfKywS(X<~~ukSEHE zHTaIaU3D0-%J8DOzw#oE)_RBGMR;+27<06dd!u`~&T#zwA8Djm3^S9GJyFj3Ra{iC zjH7`$nlj4V;V}<^z+TprPN(Q~L&vh6(BhTN7>{TDj@#G@&>EONDa?TO_E5q6DG4;MkuD@HC#IqX3QoEHwc2cp|Q( zG!%r0yp;fu!A*GjL@Iz1In@CC3{Rg(1yCZ(48S-%eIgY=i5zVJ4#3kVQUR36?F_&+ zc=|+c5h8Nq`5(wrWYI?neBe~g7peSDQu$xdXWFPvE+d$U z=?nsNU9p?&S8Bxq?JxRUWL=dVTcsYvoDBaytW1@(R*vZds;Nb~0sNy>{$r{9k8ok< zlTsZ5&m9k?WKmk_Z2l+d>@;+Cg3g-eRQ{LvdSq(GhZ5EOkJ4F2I?G6BYe45Gpwl1| zI?aX$(%A_*dqQ;vQMG~28hcW1#(P*?94O~0gbxpK97m;>G^A>TOH)|npYiMIF=B`u z_O5yiyWvTXVMp^m5YLg=^YsCv6$QWGXqs=bHvMB*-YD03MzXe$to2CZX7RW29PK&} zNLHa_J#Dhq;&~9TEIez^yi3n})TzVsr|Yj(D(VP?G4MBdl8T$n`;B;lit|HMTy3(Z z;t48BLsXn&vL@gODh>=$@qLqZJf5WDJBEs4Qej*h92_eC&-)xVf^&@Tz*7y5&DFG~ z^5s~X9|`ASQ$(M}!5-K|?$D+o^7-@u=k~2_Khhe` zWex49VU15*G{l_Em15J9`kr~nAY*co_u&_8cj6Mnv&Va=rwK1pQ0atDPVsquwGAmw z)x9!@!j>n~xYq1*iaR6l<2nT$?8JzKAR2;53TtWbYVtYT8g6$-wpAXk&cNe5n3^8F zRp>3ByT9}#6GH3~k3hg+pjs%J3c+b{>!*#ZfJu>S!Ea=YZ6Tb*v(6@6|5m+V6 zPn}_JppF{n?lUFyFht*er*9`tkU+$5^ld1qsc~xY<`!*<7jqo5q--q%5g)B*iXNgH z>oE}FNg!ga1R|bAZV-sTu{y9^KNpQa1kZ4F7l_C_ONT(jTI_8i$v&ME4ro+A$kWf>NRRA2X34$(iIj4Jn%PnIj?zqt)Y zg1*lij9&WB7nl#$vWdFE=nYJ8b@x@LA7PyWpv($| z&v0-6eoeyKv_>oQbgdMxd7e;j4a5jccLL0+w)q&mlLgwDzL~RRb3pp*1 z_u^a~-y6aO1|eM+Ib)a0#ae2;BGUYmcSv*KVjb9>UnI0b77I-k?Z(jp%{@9=$M=SC zi9zV~y8U0onO4PzA-)gsfIwzEcYEN_wvN`*g}ZLWYSG)BXE(Y%8u| zBRS$cNK!gZqOW-Z?m!xw-*^K5YyJ2bjAmxNUuXw%Uk|1Z>JGPHzPAPk)kFUA-EXlW zExJQ5J;_qvQaK_-{imp)(D=!ghrXT|AwGf4!`*w!EtSXhg3niqsRM&yHUHy?$NT^V z@Zw_hFkh5b^iA>W&*311GqW%jsLN|#PNUEgvP?J&F8dI17CeQ6)EQYk-wvZ^PkeJ$ z&@&7^#DuEoP-MZGY7`efohNYq{e6WZZY)-Q0tZZV(U`JQcZo++<_vgq7}k(GAEE-3 zmi()7`b&K`Yre|6WX9OHO}il6hEe1-(J+W>&nEBc~;-XtB>;} z-rS<^;w9?G>?J8}Y-Y*WHu^DbAwOnojIYfyeuG-ZsD-`Q*v|Dz`3UwaT)!_b*c6w58%J-&hLsU@MA{!mrk z_spvGxd6)ahko`i6s(aJf^k~j_lNHMSh!4uGyYI3eo{ZQ_2{EDat%FrL=|NYem3AI z{{bP{$+c2BuI=GPcc*sZS368OB#2*CDArv4Hhy8jfJTFfG#asTJcJ5BGvb?tKF z(*#T_%U8*;$_Zxdo_TV}Nqi3izO_}++fCN>X&^{q(kjw{686P&7G2nyFK$6Y6TO~H*7M+Xw zQ|ElF-Mr*uMgmVHm$V!QEOZCFFVJVXO!wPlpA%==b=dzY7=%f6K9h#a{9PG7a~(_din}vVJdwrS~0UpP}fv9 zD0k)QO#z?`*hsVk_B)L)Vd6)h;Eq(oM;E*`YiZZpI2M8}C?R8cLc{{x)e1HS9sc-j zq{FA@2^9%vOVM-L5*0fgpjI%A#OfBG_F|xrXTU1n1gq#PC4YqGikujtg*wqB_ZtoO zReRtU)sus6EiJqt(J7v9-F!Y6Efa0?F8R>RDRpX>Y4R==lc#Zst-cEtEoUX7NO`(j zr>ePnG15ReOkpT4LH7*vLK1~}Awe)N}fV!z}YLenl6DJvIM7&eDilSG6Pnyy%_lLmqeDjE0j?( z6mob)23){a(gQj3QB%DLiH4=6?ozT8c>=Om+X*#Islyi#qVf!q#q#-WA0G|jG{Z<{ z-cdA4>!yXKZ(5q)Y24E~6a<~se0uNT=0Qw&L?~ArC`x$yj1@xkfD%F(E|8)IFnstcUdS=^X?>Fjrnk?fPlZ6y!QT1)XY| zW^{e4az`@|^j}Bgi3YY@v5lDHHwZf%uqlG!raT!h0WGoN z>nvVJ+tX!i&*zn+X?wt&Q75>^H9={G3!p??k<36& z9XA2g*>gTQR3W*x1L;Qw+@go+Rpc0@Fc%{=eq)y?YJ2{cyK&7ZHC-@dj8Y*-fkU~< z8;t@^YZapd_T%fXfcxVX9RO^uvlss6w;rBc9-m#rWM>c(O7J>oK020LL|-UyFe@jD z^~~_}oVTBqjbUN$XOG{I6YxZg8&)K`qYebDba&oRor`YA+o zozQj(s_m7wR5oojw?}C^TBT-p33gAL^EpOUw`}=dt1&iaQCWQDiCcDj$xWF`r8;&k zDDu@EyXS8+B*XvW-t0wK{}jaEpkp@!?(h0t@!_u-)7R$z;%M~kHYmNFRvbuu|FlK+ zA347SN2d;kUr`Ug;!Pxm#_k(1!CC*;4PxnKgpmEY!F=~B%x`pXdhj2Z;h6CVUjB)E z4JM*C$IN#H6`+P@K&8)ZGxOb}&onb$vqW$KED&b9^JFAiI#QOk!5>s=Fw}7)11b*Xl=1~7^j2nazCk;z0neq~t!5G`rK|YAIk9t9>JC2fc z1gYUqm^it?0iPFry?U0Slc%>k24>?)&3uRDGXurW`k!HpaEm6u5wb*cm7-HZaMWB_hFgxgQ2@hs!CMz=^Z5H$4hym^?GHbxNi5tuJHZ@ z1_7?S+Z@4ji+%!nQs;bTCV-z+o|H;o4j8j;Kt0p>YDVhJCy5K=^{Sv13k~<$S$Vt6 z5tpQDoG+S&=|uxL_p(-$&sV3Df@t@Q^_)tW%KZ4criLr4H6473sZ6fgcu#yWR918w zDie$07Tq9~ZFb8vz8h`XQd5~(0;gYr%94!|&U2k1|6Q}fHQ8pZFg10Nho9MI$xahz z=^D<~%KceZvW_P6Zj;&|BIo#qRLq0r#7zaSPf3(9$$9D~j)S-=1#Lq>!auAgpD2V8 zT?8Epgeh9Y8%tpMLkBG~@2f5z{sb*&u(9J@z~e51N8~V0e9oIA$^|yEp-FrCkwJ*M0{~Hv_xB%LIzYmTm25L`eUD}R^>y)iF z!q^I#rgL2KShU;kFWnw%rYM2N7k&gyXw%=d`Ydmyf?>@8%Ks$P3|B}E7bIPPAKPa7 zbQdE?FwIVfaa-A=0B7t7;VF;L?7*b7`dNrf^A=w%%~*F?`gBu|KNpk4F1LwGFkj+mu=I z!)tuKK)VIZ(Fy4MCfiBU1Qj3qXw<-s1-6W3aO)8Wm4ni4_jW5WA8_6N){_AYA zxDU`II}fiiTE(Zg2c!U$)wA%@E2X5Xsqtm44KK0tOVk|l_wLx)MDNfHInH+6>C}7M zv5kXm?+p+&;3G~_bt2Yzs8);a&<^79|A2+s0Q2nwA(SSCc1rLD@$v%HiuI5^Z1aLInM zDM$gVRj@utN##i{TfIv)l*zxQ?_&Hg%9rL7;#=+gq|Hpnf=mOX>;w?#%a&`963|E1 zKXbN%JyCT z+7$?hs_W(O?n^+dNi`pyz^DA+PaG(etIL;szw%JGXmF@4_$AvC8rAx4{8#%nM)ef~Wo|S$Dzr8TQZ5d+==n zV!=Ic<>xP2z#SBD`&7CN+vTJgW}W8MeNn{oi>&vHy#2h7dl5&e_Pqf3eh$EgG60_( z3cyYR!mrC)8DP9A1MryL0JxEWxMn^Kc%cGr2WoLoGVTY^)q?rE0RBIO$6=W;e2K#I zklZ|Iwz@KP_%#yCInC8`@v90YnyYWYFXPHEkRAqb*3TeZ z60Z*qMBXyoI+?ffW1mmUfxyV1fq*;g2r73bAjY^b;LRC;k8GE3V2T0#Ffn?AGhn9V z1BRkrIhZhoki7T#b5h|>;7&c3WUk^gHO=k9at;5H@4}}|mo?&Y%PJ&e-Ym%oN^dH4W6{;iocRT^WeF!M+9P9%=7XV_=ZuYic4#1HFBu7^UfPYrNL7)KJ zk4VWBLrJq&g6{m_p?;y^KK7{r_F2UK0Pf~`@F<_&0C21VX3Kh9@3Q_~AX1g}(Wrp6 z9g44FqFY#YRM8%4ja2>$USWFVlc@Z#s(d&~K0Zu~ zB)843dm8{bw(nalS+cS&b~el z`hBbm9%dXM9S39IM7Z2%Cx^>z;4UoL0}Pa}n=C2bQ2YEaZ|nUBa0$2_0n1&Xr>SP= z(;w`KAM$fU@be?{6Jw8Ly3Wml3#Y{~VNc=IILNsQNv?C=LuOVrcvsA--UPVooPspY zs)*xW#zwphiY(Xzsm+n?f}VW)0=0JM0y$;Y7SboX$n3aimYgE?;IA!p%J; zzrWT@y3CpZeXLj+fEmT4FKPc)o}jnZ%~TG;cXc94{=Q0BuxCM7}acoaAINje+0zjK&DrkA0-CF*3Q-g!A{ zSzgn2>%Gs+KY}`8yjxbbtx#McpT3L5q#3&9?62UGTt$(3f+3H~VtF9TI~^}rNaDph za%DJB@PmyB=Q;zd}L&>RwUFXM&)UE~5CNujt$iA`!^~Clv1$UIHu#k0> z>+BIO)L+H{wgr2{S$Ngdov}vZ6Pt3KcfQY_QMiuSgRhVDgGY(TUKc(pWZKxAe4AR` z?9?qCmIn)j=|uZ*Jb>b}eWY`>VK-BHFFk2L3r}86P{nr~3A~!`?ims!99*cGj7Cu{wcWfoNpms<2sM;O@7T>m)FJ62oq6f(Q!-I&l0i4$i>t732@Qs z;dgPpNxMMPaNZBzi0S&LL9%x0HDWl+avEj>sHld^HAMLApR@vfDi8O(Ixu6bd=7ZZ z9zs1kbvkcic^Wbfi2N-iLbxprK@Z;(5V^HUdqmSBMBW2jmPmI`pGd3>B#KW}oJ9{o zM~M3hE&nur@A0rnyHeBEqG7m_eK_-Crz=kGrz|=|apHIR6LxhD#%ks|et?SP&ugAp zJqE4-HMavNn1U3TJNcAX{Kgc1N{*|rI5Hcr9;J!gA3HCczOw~J^|PByH3Ef%nUX*$ zkh zEY8`IAbioFN033nQN;Q6G!;CAq%lM!W;M$au2XKc?1kdYW+Ok6x18_nd zUtGmL5f}lAfir&d6<$cASGwCkT3d)wvzx49|5%imANU3r3j~$T9M42axy6FVMkzSx z#wsp45sTrHWK!S*Ip0zsE?o)U#!S2{iT|G^^9Ecc+6~}f1g3Y^h;Ec@ojQ0%@@>fM zZ8MR*`W{YVG=vkg%9Siw zy0eFAhx)NTox`q_&hF1+m=0($@{kAI?mpQ15$tXuWUh z(^)+=S})W6dQoHE`a1mSq27uf+KUTgZF?^_^Yu9jSG^bj*KG{V(;GB84S@rreUyG~$5(MEm)Lq0>en|J1DaNj;1MGsB zr}4|JVA+|+ablE2F>IGmfd66v(si~523fHB9b!H5RTiv+V_@Ob%JIIunY6wu@43EI z`$+E#iFZ6AlP6h7{0^kH@+vduIcSxi!BOvrcy*m?OjY4qkNU4hj<7&yvGdV%Iw19j zGOAA2X!=jTr|GR3=|hj!^t|!s%U6n{LBn68=inQ7rrse?9OveRI%ds~r@wQ?>A*YW zNdekZ%4S`&A3PI{KHZMiJzNJ0ye5z>oZYDtlUDAzQ;7LK#2*x*2qXNwV@RV@gNOGQ zECuVLEruVnXp3LBLyel{w%sb=!lEtG%nUXUKgq+9K$uDk%(6qs>pH{h#~$`G2=^Xd z!|Pv-GTn@At>dcmeNko&$b%oTt%peWbRL=^PYSZ%Qh{H?e1#NMIJ}(Zqf~Skq4lRWvnJ(VtGpQ4tEtk^0!|%Oh3;JJxWU z514w|bAQz{v?t^(+y-32B50iZJr!=07;>cX&Ws`b~mXrRUVVP*Ih*|;Qo9{%n+ zPrx?{p9a{~7EigitZRo(v4Cu7;Xd3~v0ic;N;D_eKzSIgUlX76=vM6GYi!q^*`&qf zo@9`z_a*;*rA|DW!4mHnyyzWxK+sM*|tlTU9o_y>KfCIDzK zZ5kj?*@YxqeUF$VS}Cd4o$ow~=JxqTB6JYj=sJ(dON&vUmdaqS7#l=4Ky)S8ofbZI zqSV{rUpA%r`wsNfiCc7mRFG?1nCO)+s|6|&>ra_&#ZDP*$*4D^`LQveA8c^OAQ2q! zrM3u(G51)_+&v?+E~f}*i=Luf862#HbBA(^evifKixgZKutG)p8;p11!zf>uNIzWO z7m;3gX|_msIqsE*y@%cKMJ^lmRpg5> zTz(TG-?XeRBA@!xY?1GMI7Ob|FmCslZXqwca+@VD z-=N&~lnQ$9dNM@8+Db&Z%kO#vVJ*CmUsSn$d9e1bFQp6ma+9rK6y5iXHGVxKe-eCw z+%|Usw0r8gzGQ(!gUCh7JqCj0>w?sbG8%Q~^YewT9BPp}KDo&F&H5R@C7K)d!e_1< zgX%j@h*Tn|Ci%dLTCQgUee5(%lQ4&%hkFvT4n!r6tC>Ho(Iei6ZG^9jb-;sU0yFFI zn+CbXfBCKN>Xw`VPxmRftC`cIyOzp);54C4PfQqB7_`i9Vr^ERQ{u-PuMM$Qx^nNL zH~@|BgG5WoWw~r}k}VC+k=}TI2Hff}>Lt*2nJrF5F_T<9I;C>HtB=xqx7-=JN0G?FLhB zr%1V>W2BtFPNeVP`RM?M%RWx!Cr|IU_v(D%0ceqT%HO{DGQO7uNP6D2nu|EpWePq5 z5Z)6^1^*gRPdo5#A$a8?wPZV#tr4_Q$NbUWd1Dm1#tYAj6l9$G7#L^#q{g!J z_@wwRKui3RU@BaN3^Xi094x88{{t2niD@-Yo)@add%a#nrs|(a&h?%`0#}|s z0ho8~U*$#QM-Z*ROS4V-R{bYtaCD+bHr@?`N41lOp&qc@xv%oOO=U=#9xN zFc=Bm4NO%9@(tq3169MHLVpXnr?L|Y4AHjlW$;p0>X51|-cD1yVez`NEx+v7gDNc2 zqO;;sX>5QmB;8^5^K)6o|G=;_K!{4jDrDDa!Z}%R$_htOvBB}APle(*D2hYARcR&L zjuzto0ShCN{gb0DjKM8H+Dzc&cI2eoJbeJBzF zJxI2Cw`M~8I)cxa>@UwUl07f8KvGd!>oSSzc611c8D3`uDE3B7h5joeBQKFz;9*UO z9fGEKZ!Qt4BTU=g5ENC3JWcIJC00+&R0*+Ju~X2yAsG&(MaL^?u}^$VD%J@i<_W93 zb3u%ifVAyx9KjE)r^wqIlL_=NfV>-+s`~FdH4+vI%NABOJP?5Y2P`qI;?D7kmF zHq06gF?QecdlhxHLLp4m(A5+YXoV&L%==tlMEeNh9j0G>?1VU8?U9ufijr&lVFE1NSfM|i_=2o3Fhq; z6oEiuJ8i9M{P>xs!V@wJbeRe#vBI50xnh<7^rx`qsHr>35Fgd+;hNfwUcYxnZoU3J z256cy>h+~tskC=hT7gOR`g-XT(CajavD}r$_D6#E0#l93ZaqR(Hih+etF~RhgZ~Gt zU=bv0BT9UNQc_ z)OafQ*?vmg44(~3T!#=#;>x9`d+*_JTVTDF)%S<>#cNRr!xnVN2av!H z`8vS7i~bmhm>}LCkpP4STs!2s2BCM277e=Z=XZypF?jqq6QUx5&pG9EX|TGG`(*<6 zH>6D_X@AFyF{0><>vMF*4^VqVKi4WbdB-rkK_~(MG+0Z;RK^BWXSl7*B(Nu-tV$sFev;jYMJRV+bBQ_&mhRuj6 z>_pMUqH*~3yDhmyGzPz_Ku&Y@ark8xi|uyJX_!ye1nc60z-JJi@NkYuNF^PVtWe01KXz$3bv2Nn=@YSCm44@klJ76_NpA;_znqIm1%?eUi#C8y z?^tkxeeR(O=-DTDVHZ7&YWZLnKuLG5wGwEj-$FD`S~fp88E4PBVgFp2HWMRI zno45bx#6lX)qHvfg6U|5XpwEnaBe^nUYg}I`y0UtFw&ke8ZXuzLl9j^=K|OQXt`x7 z_HdCbSB4kd-!vTL<8B`I9o*5xE`s};_!iJFC+L@2eJ48=cSYLtxat(rNGy2)+ZWhN zZK-*mkY;6|saD|=&Zg6Z6L1YG>_oMejl?_BCP!+ce2C#VpWeg2XRi^aRU0CtLTfgD;8&O^I$VB_C*c^Yg9;UPKs6CcC8aeh2AN9u z^nQ#=(26Bmvvm~8MdtKKj1E}NIxn3n96}|QL$;L_rj?P(mPRW3;CH@fk~S>@qQp|I ze7u<+L=Y^DAXqF2Yymr;7%v@@)DjU?iDHEfiWEId8d@PB;A$t-VyQN6fIO`$rL-gj z&O1Wt%VcN5xcU02;tUZ9`&F-$izeS05-}#O=r2~IHg>WT6%TV6his&EDmkMuKIaYW zBEw32T$1NA83E1t@i~7(x|^KO&6b&mV;j*4^>8eBTG*7gPRx$c;|j#EMBRHVT$-Nr zZxoKbe==iz+=@7%mTl>=5Vreli9)-W8WXYmQ5yPz&5E{1+MZ^g<-k0kmOU7?z;`bf z|2@o=lxyPojoKdM%v}^`fOefS{jPkAj z6?dF@{kW0N!m2~EJy9i!GOyVTN35q6?X^+#n=Fu z*pYr}{G7NF1cY|-l5n=xG*p~eU8*JLnrO7qL~{>Pzgwn zHk$_7r#)RB{MI4!PH6{3yO6r=18QdAn3SF*M598r&^{n66YYW?XXeOH(qRfC-RXx5 zs0iTw6SdAgtYO2i_Vt!@lT_KY?8L6wh;ko zsS3>AxkcJ{wcuMo%f3Ns$GonG+18dusl89$yQ5Z1<)C&1mWzbTMrY<~S4m@!mgycz z|DuLPHl^PFsEf#HN1i~y{V_XXF|!OJdIoG5y{_s354Uknh0qZ*)XUQ= zxIOT(!x_{Y<9W$(L+i$2`G)u{y&a7l#8;unCknjG()ijdcWZ*jBtNjL4S3#i&JZc=R=u!Ict ziBwV+M0)5~MzdwJ76(A4}{2=%s47htSzDNO8mQMa3Qd;@-;N?NX}9=} zYlCrze%S8xx73V62gM;Zo{r%s)ZR_n;oc77(GinFvyPO8hf(jStTsF#`UVbe26fXn zJE9`lp3JKlW6Y!@n6cVP+Op$iq&9OSjJZIG#V(mhl4&5Au(Z)n#uA66dGWDC!8Y$nZ{X2wD1rP0FXp^crlQu05o`ETfdJ|DS;17ljB{!w0HMg zq0}E9P!Bb(FthXl@)XIFWn`WA?_a4Ns(7s)mK%@MI-!Z!N5^u?`6E9{*2RtKW-6~z zGMx*Uou2?0jLhs+(4)YFkODJxk#B~PFV=FZ04qeOL0m~Mk(w<5DKH5$w2Bu|$_~wb zAKg`I@2!s-DVV+)(d2jL3Qvp{PXO6Q?J2U-nrNSC0I-TI;mkZnl&J*;(!^-{Nk5~c ze0skW?9xvJ2#gX(8w~N~d4(eKwNf>E{6}~`6@qh)RXFGc^}+V9?)qQC%+SZ1?P)dg zK>*+T$4mgYV+RbR`A#@z%2O9FPBp)^p%t>OWcFuN@W@0E!uz>WBzInl5AoXzJGpI;Kp$J{0`li*eXetXi~{o1d}euTrNB-w%1tA_h-@J>%W58 zvz>@?unl0Nsliu@zF@65G<8ywefe~l;wrXgq@a<3f z)vyw+sM9ImTGLyUC>Ss^d$gt{I~sIf6FWZu#naHfmL6D*LBe!fnR__EKD24fNZz$S zU?H7AJCABa-8B8Hy-_y=^Ee%e6XGNw6JA@z3UwU^$kUdd&(grHB40S4<6nWrgT z!MN<-$zC0H6VCK)*kmr9B#J6z^T!0vys-~aBMg9NoRk(4QQ*C}EkPs` z9zj9usnCLrC@5#g@dP7{zo$!rGhZdsL?+R`cP9Ft$SxX@J0#pC!y>N-8k~X?Zadds z5g62DW90$CRLvb&+xg-JdDYKM#w8naX09ZOsGr`@hF~XeXnT6b^fh_$ndf4Bw??|f zS2Oe@cb977XinY&CBg#0E%7-EMaZ}G99z@K`w>lfC=B7t+}BO^UPw;own=2rx zM?lD6sdaj}soS@*$rjROcz26NrcMvr1Mm*J$zYRk!#r5$7M*f=z%vd)=gHcIv1V?6 z)8u*5M(4jCu;?EiX$EyS2Z03K{x?Tjiw> zC5k@O4(PlqPu0quOT5E_Nw-R z6Y|NP41{CTg#|t*_In*gApzX0C{agp-0aIf5w`rCkKC%GtoPX(HF2hi`r|r=Xa;Vn5arF0p<10IgJh%I zW}_m}IWtHyGfc#B=DHDn8@NY8n69%V9N4Up02elUIP2HEhF)I$(@W9Ig=}_YZ9qv| ze9p^w%REUjex~dbIm0$n4pT&%jEJC+qs9z8zW_ESGdg_>@IbS~-a)B!y3yT{ig#y7 zrNeEdnJW@JpTs)tF$%v4-8Os=lH@u!VpkR@le0~@=T6^nUn-AWa1WInxj1@){R9Y3 zUGVBWTs_o}Ff~i_Pfs17ZMD?Ruymbbt1AMh7nk#6<)d3$~n2UvSnm;xlPxy z+~lhi-vA%q+nUas@CJeDy7_Dfe#P-6y5{NxepP{t=IVj?Wj3ENkrrYW%ED&wby*RB zR&EEh%otqhXYh3lUfH~Gi-wbeBXCu-ceYS4g)O2ibGGQ^9c+t&a(idDNbqgjU5j?^ zy+!v|`GhaqkuBQWv}o)v{0z3}QoPQX-h~#`14?;%tnd_zir!pcff-XG%ZKD zaw#X@C5_5rSnrf?3Ru1j%*tDtG?d>wJwo|?c-0HPg73^u+)n!5qW7im)yboF9v}Gn z2_CjTp<^%kk~`|~eWT(z7t)1UPHinYV|jeeXX1=3mj%mWSzkp*f(@7p1n3Xu$yHIp z&?5@1#+n#8vuOALAKPxUga%|XKpZ*Bv76aTyq&iWRCtBc(L?9maF0Fs8|&c)E|~>P zHqc#VDC5)nDI`k&jsUE_|0r91Vxcwx0Xn$R?HHin8S{aqXGWuA+lmiQVdbJUefF37 z3r7&Q1}6IfvqY>0pZesq2XqKGOo+->DNpZh$cJs)Pcs4p&z2aDd*rysw$?)|MzWj1 z@f}|71II5nbYyd!l}0$;jsz;ZakiGLv-K_Xaksegyl8*e8p9m6DP17RGR|NFNJD(i ztJu`bqmVh)%-AtxTfo0fkHh2|wzcojbN{(H&?889pDCFHZEH@_++o0~$25P5ETfNI z)FX=0^acO!5x~p}?rdU9p)btj_THb->A_|Rnw$V(w%ZN zYRS)gXcVdV+8T9d6ZPinkQ9tQBxM5^_2_AsR1Zjt*pl@ydo|6OvU~KZpqX%h>!gDw z`mvM3O^=F_WPWX}Ufx9g2YD;LswmNFh;p-9-Fju;TTL>he;ONAuQuvb%<{0=`=zsJ zr0(OOeO$>U_r>QNicah%@5|BK5WvpS+w%S1mL9jxw^EZnp(XjMSn5B_urM<@Cy>sV z3w1B%02?;f<)*2Zg0M*Yz>X|#Vym({FXs5P(FkMUpW3D^#5U!iF~4tBjc#f@vd7;2 z_bGt_Wa{}wlKFp(OLsO=YT4G{8{iV0IdEySI?k<=1HScQE;h0qIXccYup-h`On-JzbAyRX74&7>R@~eH;z9zd?^({JM3Db{DkR9h6wNI{?28CQh!>+x6$J1dP^94sXw2$eDFn)yw4)$kQMQf97 z9hx7;-xoY#c#9$6MSvk!eWtyjCsF+7cVwC_v}NPWE*)TwwlR$J#t_bI43=84*Ji27 zmhK+sVF6BVzOgZPdlv~m>QW&uL510K#NNDC_3dUG-%bo04^{`gw$UwG`a|DIE-8bL zJV_#3Feh1?3e=pmm^rMfw)mXAKn5MB8))e=QM|&E9=pt5oxOFLEq#dlXk&A9s&_tA z9Glar*anNOr|uLMeOSqY((`Rc6~*0ah_AR2h0wjH2~`Nb1Wc500S~D7;ex0n(*13? zfXv+o-6N_BFi3$a;N@$pM7`u(`bHIt`j&IW<;?Oe3v&9FpW)^%(CHKomOH4DZSm{x zz{G@ZGOrmy-b)#_&B~?oEIOavK6}6H_&m zo6dMolrmhm;7hAerPb$*o+qF zCTlcVmv%0)zvK&5<)}tiK_=qYLlSu(hhJ6TU32wm_+?f>n8>w&>n@N0J71UW3!s$~ zP2_#Y^ZX3L9fnt>XGUW|!r zihBq;WZ!X56z@ZL+{l$cos(D{o3@Sp6`y&w`16Y>jb0!R{jauA9Av1pSRU3uy%-=OU(@mpB{G^9Qk&3UaQS+Oqi)hq>ui7Zs z1xO0I2=8ZanF7O*iv(ZKD5c@M(*$4djL$h+g0FYx=xuOgbM!U@Uwz9L z1Yajg@b#-=sYCe7P2SlDTT}~oIAV)Tm=@hO7ZJS}4h_@(7X^*~c4rgY58aSK2&x+y zFLH!wb5zAJZ4P$BRrHM;T}6a^Zx%aH+l?I_tIU(R%FNS3!+mWM-nK130*5kNSd)^%yrd?!{ z7iscB1Z1<_lPg1E+D#9`sho>1+HLd6*>8{Do?%*hpdg6O`X`PXZM?SLExs}pb#Jc1 zH%@c7X4a)cdsDQzdFXi&Keg1|S7NpSK#sViub*3%xW zm=;1r>I(UZJaiCXnB7EAPAxq4WP?!a8?p^{-pWzmYp6{dKG4|ATBwVGp4G5Aw7y51#U5(TcUVh z`MPMroKux(w4tdt9P^E%6pbE6gCdAV|29dz4*BObTU*8M&3jD=WMBN;U45Jp{j{Bh zMlwT_N?ojtV;flx`^k83xPxea3aht08k=xFc^#hVcAed4 zqEAd#bCGRlbnL0ZQxjp!*;7kvmPRzax*|%zPz8(4mwM($^+os-GtE(dqhUB%w`wf z43gBJPZa<3zamNf;+}f0s(ZJ+sW;=GoeSC_LRFDPkbyJ1NCyPW0xCiujaR9QjXLPJ z0eCkZI{?T*EA?NO7VL1DyL)dV8^P?@mf3)CkIEeT!kY&<8?xiyApAz#tNHW}_@VYH zGhK@P_C9{Wl;?*gNKi!z!r7?N`&IJ z=)y(^#hI`ySL^fiI!iah0};VyuwB9jJ-Z`OTk;8ZQgFN^iL@c--ILP*MJ>Q8DU{ur z_2_CsJF^~q&M}R}S>Rk#?Vh`FL%18`mQF zJL@B1snb!Y3qvi@g`tLEVW=UxFcet=@)w5cgN31bT^NGvGd|g1dKP+DLRN{8S|L|e z%iRQ+MaWW+E(|eGF7TFxA-n|(Lx(~EbYX~VKN-h^jt(siHS~RHDF5$vY3Qv(qjU17 zzmBD$(%zSb&Ogat0a`W+!~e>;W@+e)@B0~C8X8<`mxeNXSH@D+j&|{2O8DEV^?vag zjp3sgrdOHX)%TU9c?EW9N9WNwe8^D8$Gx?AeO_6j8OmG}_z2|F2pBIT_N#nbeaJ%D zqZheXmJX1WrA-G%#cWoV-jU?c%=Q0;l_efl>)Xmw&yfFnR+jSK&^z;}COKA?{(NFs zi=x5T5B{%RS;`yUi5p^^dYd}()6#)J) z6*LnQgE8t2^n+3OU$nABQEpbN|NXtbx4P$*r7cEgOe+3wU0Lec7X9C~vNYeWEM=^< zegkVJLz~8Q^l03kN(QO|S5!uHyKMgdqm?CcX|uZ6ua67(){9~J=2w;m?RVU1pYQf< zOrW{4^vss0o_*KJd-JW2D@(=uN8OtOTtJ+|HM8-6aD*k|R@zWm0MKLDp!b!f`er*p z+}wG&T6py`?XlcQuxZ^fDnL6yOyX;xm^XZ#D@$}qGgp=-WK{c9UCw!_L`dL>X*6vw zDU>xY{rXmnW*r^G+`|#@|8B+TGko6@w10CeMwjeEeGU2DhvUSGiOn?jJQ95NZ9+0k zf*DPZo^Go^X6c>n1d1d>{cVh?mn8$+Pr~6O8yQJB53Tvel)nADQKcVuhiYFqFk}hQ z5Y7HRF`FA&%IblcD@Lbg5c9}_oLwOrZ{1Z2eN!tzRY&FS2b;0%q8r{4#T(~GJ3)@v zP*%9}8(s-I`@bUTE3X7)ME2~uYA{G-0ra$ ziYG?Iy5tCVzS(F=|JwV~mKmg9dApJxFuCsyKx<;>e^3Y$F2`?DoV8_bB9SKBYYT%~ z>;{n>`z&&ehT{&8a=h`jK9Ei3Wu5v7t{UcI3#j`aTzPqIXvQR|7Hu_A?_LI((*$z! z1{qyy$+;L}#~&h$uK(ly-j!DSvZ{*+lj1*gp2{ISKy@Qh#M~l&)%21;q}_Lg7gkte zdhQA&=FhiUVuFs<4KeuAQiPb!L&L-biwMy%?nIxMo|hp=%&tB$0k&?5iLNf36CtJ- z7ePeAWo-JS-K=g=jyXC)H_*LwoB!w6I4;h;W3LIvT(WoUeetobacud1A?AfR?ef25 zjf0CA8EYK40xiMo4jR%QEUo+W(fXq>FKla0KDR4oC(X&X@fTYqoP)7T1Q{Omj^A=m zIA^@e5g^!tg2l?jSpIPy^2n3ZaLjUl916O%F@AsJj81HSj90Ie)sMFiPd*n<-;3Wf zl5gjy+@zPPah_T_EYEe84<42$-?5x>-4|c3e-l-^&LX7E=*pk6mG@i~Ze4y-5^t8o zf+=U?_OLF55B1zk9)j_I+ZJS3cOtC{kj>Q_@XMT=VImhjPCQ7~K=`_B2!K{j{QP({ zuGxEIq@Tgpf>HQ5ChsSU)^LCCHF%?aM9T)VhH~?9%*tpDb$oT57qKx5%q90?EASgn zzW8HSvWqFW%5{I|uJwg^Q@2SqTs`nF-+N=)E#E~kW;(w{IvL&-%H&Q`DG8~KM{&K2 zRb-gNE&cmDCqRaT2Zi{@1M5uxu#t$o%aO6XrtQ{ypP7FIGuH1cha^N=L$J-n+~pNo zA)5sxI6PG@H}UDc#Cgj&tnanDrnM&7;ub$w%#m;{H=>uEu{J*ELHux&YePGySHo8z z0`Vxscom{~ICXynO&!_^l0n|8se@QfJVUbu7B@hmT*s-BE|(bghFET{0$%LV9H&l! zevQ2{oq-&3Vc+2V~*SQ=v~sS?q_!b(`Uo*-dIt z{Y%A{}BJpZXiSD zC1^mjjU$Q1*=-l-<~jHbATKW*C@(FM%M0mD%@*Fn9IV2$IltrWun^N%Z8Gqkl?P%A zM=JlBRQ~Ezy8mHZ(GL~Y&rd#{su}oX)%|D*F+J`U*X+BO?1!Z#9hIq6O&hMv zP359v~IHNd@SC~&9)d` zehCPzzka0Fzd-h%R`_PoDFs2^F{f}Jp)(G@fsg|ov5tpXRO9I!+SMT1Iup^dzW`CaB3g;xpr|F(#PX!v3kW7Si+p5HAE?b+ ziSe3zvR2=@gvicOWIt16jVU+Tj?x$TrEfN+t1?R;z|wnY=}}s`0i?us7^I^4(VHq7 z-IRfJphUjY+#ZMwL(v5LDL!t-Nbo9a%sXDUAme#ErIDE;Ki+~!igyRT{NHq)J2vy@fu#bFxd5l6N8@#)az|SE+1u(B-UwOgV zp&v5$Y3E4jzDdpkJj+8es@;kXDFst z;r9Kt+x$}YbcVXk!GDJ0pFUOO6WbBJ8Q7fNkSLuCFU9*x-HD=Cq?HxVB110MKThbI zfZuAEaUTFrS!5cN5Aab5TW0;1ahKA=}5heEda6}Fosz`%p zBpR5pH-2e(v6Z3Y)4yiWan~O~#}kv47d1-mLovrtX-jyC_`u5L0*S%TXR2nxk%WnS}G)BGGi%6uIOew$}83 z ziafRo2%YBzfR?PdN^t?Z=+JT!E~Ll(4WSX9evuVm`zSA2roD z3W6Ke;LYHlcqnu2TVjmy7-9vc!P`POGFQP&>dCeIw}C!Q8=3OjUCNYC&>RaB!iov_ zV!pb?ze~{l)o)mwu_iueBAhlHin>9P&3%gJ;;xvHNOzNKbV`)+Z#YI>2t6Od$p>#c ziL6H<4^A@jz$?U%>@|YA%>aM7{y>EJtvt_f+bQ>&>BnLdX+FJ+_VCB0YLijRXOAe& zo*mq#4~|l>{a>Kq_$jjr^%8J*{0Eluz;SP-qZ&|V&}cg_Ny%|%x?IeG-K&|mojiq# zOTbby>sg~SyE>%Kn7$YnY#+cQVNMeL8{vm|^$>YIYR`LjWhi4?ydg+J8AT!|vzn7L zTaais3(Taj4}4yFotS$)Of|1qtM|97GtDR^BNRyN@9tP7i3Vz8SmqT#KIikvJRnz7ZNY% z|NC8Q@BQrOIp@rr(V<^|KA+({&$Dl9ueJ7CYp=cb-krO|DLYLmyIekdls(>2*1Bw4 zaUQ$U(@rn>1)S|v?D2w3IqC{Fe;<@pD%;BShD+FGW=Q)DAyoWnWfxiwq_M1>bBq-h z@1wrdN-3{w3G~$b9rt@uDD?`cAv7+o_>FW`4(1_pZN$woJ z=7M8W5h>DZEv zHUqZeZ8OVo|JSgnk$Q||@np#WQ`FUxo&&@P)#gXqiOJL&$t%2GHvvLyVU%}z48*w|QouX!Ne^rjmf4hcn+mG zxhVW%uSnXls{2iXou3sG?L^S8h-knT%z;LCiI$_LqO}pi+l>2ICwd->I?<%yi9ysY z-_{^{w~DwqA*YzO!7YPec!5dOGSYoH8RU04D4FCIkbn@;w|Cq|SN^T}wb zv==@R;npjk+}@}BQW>Y#M3_2IXmdIVSaf?ZQF5QzRPw*Oy9DNY5U;k23v)Hk1yL8N_heZo^?-bh zME~t*)yFP;)qkR*4};4d)luq8Z<|WH)n{pCJGEx5E8XfiaG9Bp~i-&VnO_Q>6HZqq-jVmR7v0p z!T-w{l=y%3a6Qbac#0+FR7)|kaHd|X{Io2TpZt9Mn9GtV8*{;Lwxf$Y@``^1Qx?YI z6m!Rz|C5Rb3vV=EqC*2krI{D(d+ z$KytQY{Pw$D9gU~1)#tq0iFz^l59Ax4tF!#R z3LDSCXp6L+Pyi}SHH|ZaVyR&n0U&Q6KtSEpGECL+A|DXsOFlNE*SPaq$iQ|$=W3?B zI|4IxJ)N^2r*qaoM3~@pPOBIsGpqebE_BJs?p!|=`$7^VN)KzX_)V zsc>01SATPKlKoUL1S0L^=|RSO!Sw z%VZ;wC(EGVF#LRnN=iQG&KLKJJJy=94wi&4&&IqRQLg^x%P(>LL0L7k{4YvJV#5DA zS4K$kD-LAS3s*~-QVA9uvhgak7d+QOSQ{k{15yB!n#KvR!A^m!Ikf%K?fL&jJ0f9q zArP!p>+%k=V7IqbBN=oMl}S?Sk$Yo0Cf#GZUdYv^--^0UrdXR5_|FA0RrfUO)f$u}dBG>4{nh!}Q zcpU|As7qc)QH+fVO5WfY<#CB;O8w$T!Z@g)k>^2Uy`o(-x8?e@yU=8Iu4cj;5fZ2p zZu60V!o_Sq)Mw>Xooj4z8Z-1rdbpldFgjdb#X?Hqby%3~^Th08i9OyM#WO8|yK*%b zY>D@c>jgfDP7uZf+yXOz!_*7+$#@~J$x;pDq?^R6gJBoztg9(aGN#5utpjFIz)kLB zO{l|;Ip4fSXa#?7ggJLPv-Rt8IVu_yGyS|y29>Da&*$Wic)prVtL&GbD?x|sJ<<(F z2e5bqMprQ%T2&gS0j`QI_Hd$9;tXGI#9GYNmj=kCQ_?d%VYVBV-e=OrHX4Dyg#%LX z#pz->aqD8lnx7pGs?VCSc<{76(2OunaI6TpMyJktkUnJE=}2!GX#^qa2vfTnL1+rv zH9=Xd&YPSqtRD@!-m~>s&4Z_X92Mj>Ul=@wj+$7{;4VB@T{Ra+h0L0^-k=s!o{w^@lcqZh0pEi68L&H zUcGtD$enmA>SCBLL(n_`OwR`Xwtyt~t6oW@0?$1qrPPZkYmgnZtrX@r3x#27=H2p6 zv6LD&Pt_>9Z^8v@W@~=ouO`ha&%0^f2T?Ch{sE!zfHQO&CxM&7)c0kmPnIFZqwE`v zwcLQq2h>cr(`uQD&EaYD_ir9S!@*}0WNv45$4Paf5NdvQ4uORJ7rt!CV5O1-kTnRlEF`jQ zY0xM5F8mf37u#BnG9v|0Hf7CA>Jz#^V|bfejKdUnQ}dQ;4VsXOK>MIJB| z+cvjSIw3!!4_WFxg?;sf{2dkxQ ziE?1cVeWqD`+g_+AuFo$#H`_ge2ffV8>(b5jF{TqH4?5+0L`hUj7g`>0TK|u^e-5& z4gQ~9rVeoQq0^>_P$-AU05AwEIQ4cxIPA;P`E=V9m19`*rxlvlQlEYlL!-O#PIb{ z7PBK2kg+FBEd0azFqlT9D+0atgkk=!j@LV}(-Hw6)6mx@625Xy7claWsZXo2r!%lI@ z<$lTKbwGVwo=rz-G$$+gHcm4P{;^zG#LfxD@o30l7fn(_{#%4h@P%6I0>Htuj zbugkf#df{$aqCevu@!-Qylk&>Fyo|VFXmeQ8Aw@X6NY(8U^H2^{ECT+OA=xQPxJ~t>Iz!B zsA&^qjMzx#Y~4k%!YQxtPfTIZx(B?qgyNXI*aNfHIE`KRr$r5=F1Wdv7bj^t@N8*Z z%!^~aIu6k~IA|RT576`k3c-tj3GvBxKZb*8uvg!+HwjF!`Znm`jMb+iIt*4we#a9I zhLx^NSTjfRG|^>YS4&e%G@Y&q1BZHQ?HD$bWe4L7%}=;eby{C+3{TbcB;J@OsFwVy zb88gdSpPoZ!TRj4r2jPHEUY!VYdW_cnEt6J%fdQJ<&1;%Wp5nkwZ0gv&$uxbqp`r+ z;g!8W%8CqdcwMIHgs~N=Er(XFNxQ&QCSDyk@`*G zyGHAa!B?y4W#Jp1z~yFC*GLA`pq{H#UuWx1S6JPJ#6PfPW z%Qz;NVS~9zV7^EBid~l0EL4k6&Gf<*{}KsEuSRO~rK%)bL@p3-)@>f9E&rgl4jHEsdxZcq#M_nWsu z`!`bihczdd8ppeNAPLi;zSEA2Npc?a4<=66Hp?*Lkl&rKz) zZHClxy!94Tioa?>c1e=$qb&isZ(*$&yN2Lqkl7zEvDJ(BLto%zl+fsTPlu!S$k;3+!yk&?p(m zaZi6&nV?f7r{&==ZzOolyNd}Y_c4Vns=1pU2X^r;5=i_kkP;jy!CjKqQAF{B5fj#4 zpsmz=Nn3&5uwKc@vUdo1wC4?)fjzgwsP-bMwn+>}G`$W@FB+rhnkwizPTS?qBU1=4 zD8?9+3#>)+T-2iTljYIr=*z2`7XX)F0)&rET5fqXCQ%N1CF0RfYJ1d}H9x*s@i$MT zsl{Jx5XH@;zrIWgC1_!<2 z#HUmvJ!{d{8_jPMmw29cIf#@N1E%6bL+b}Af^hl7sXCzVdMUTi?Yp@Y!^+};?=JB`TCs}00JhB1uz^>=gFBa zA)aQU!OrZicrq3MKT@;rin5t}malihUcl0%39-ECMVG*Q595`+@jEb*5FCrsnhO8; zhwFgSwX<;Q?zRI_wob_w>wpx$MZXt!V0zyjI1OcO2Xj>(Sbvv4hTo0K)AE*K$LC!a)5rnZ$N+bl7r{Yj}Xwb0d#B}&@bb)_!OEQ zMl-}}2<)lx>XVjRUy1Bo8M1NZtQof<`gkhPibBEQ^HloQP2;ayXA1^jpx<|t?_uz= zL}o=x_w!LW^_oUm22UjtXEX6RllZ$t;!Gw!XcDiBC)!1|;8%+%&~#s~of4f7VVbKw z_V+$Us^&Ff6k?O<2>ERHPa;s}Abe-+M2YQ~M4>xu4B;|s>5Ipeg7^<6YhK#vtt7XY zvJ(M-gtWw5WO7TNh0LbFy-agq>aiQxMP5tR$N-Yb(r)zIfNHB-NK-V?1C@rq>Lmrd z8-0}TF?8o|;qkwVQj`p+1ZFKSoN5rJ5Cn3I>KKd)Y-UPERIY`b0C&Y0CD`ywe9hH9 z@>Cq%TgAuU2NNE#flOG{{DRN`ne~jLK1#h)*!u2g=L}u4=^1VrW#-sAj_jn>Dvpo1 zzj^JZ4vv>r8813I3WIaIW?74gNv*5LP3aGFJh}8?CS5KXuA8v9YTmVy&d`^0w`hDF28yCm~*w;$n0He3SW zbz$r9POQhITL%*m~`C(bvnr$-@f2g7y6_IVnf}=Z!wn zcvmKW{u>s+vUy?v4&6Km$P@q*pbXi#V8dD;v7JK&u@NznBs3b|l1*ZU5zQM^&C8>Z zx%nCKF~Q~MY9P|NU5*-an<#dw0%xV7JMS_WgPZ)Kyz zgGD$9x*ko1_zUj2R&=eQT-7`% zlG%>=cuv68e=|DL=SoRhUjv9lUgZZh*KeYHkNdFoj!GA1*H|RbLV=t&f}!>1*q2minM2U0m5oEhGgz&xQ;lnT;Ik zT`MFT%)CcLBm&-{DFMWxqH5!M$1|>B-&%M!Q;pUE1Y_NqEo7Xm)uG?! zt2xu*Et&AF?~G6b190AbzVaNG+t;610PC1pZW1N!GneSG#mVTVIh^eRgVg1wFC8;)z1&j9I%??$PXJLmVY3l%<`rTcLgV8I(Y)B0u)oIqnS%;M zGCX4DW4NmlpF!O?Lt#Ux*d>Y1cm|?g`=)zy97~V3Pt!hGf^c5x{6u%A6$4v!AD3{S zfx}D;r(uFpJZ%|GcWm3&gnV=NM z_f}`xTE2S8^OtX3;%9r+f zXmnBV{3Q}Ro*65%!nz3p1Abl@n2~lKL;bEeLTlWyO<=%#y6i*oJzs`>oYgD?_h>(a(mXPj?xq6tUdvw z^n?RekDt>uAwLWtElpH8AwP7mNJv5;qg3o&av^KQOCr{h-HWs4t`urON}MzQWI3}p zaf#}Ka1u!`>$73%pdU~tMRxI?^6tEY&6@{_Tuu5VPDNwIaur8$*g1H1HyZFY)9;OQ z!5Cl0y2(t$1v^Q4+?WEMJejXVYwjRiGL*`8S999^RuU(ax((gq?g`)_PY9*!W*#gM z)1Okd#{6{5{d&vb0|x;G3E7xG2h^&hl-+C=20xxHc7k1>^Vj5tZsoqtN~+U-L+rF8 z!f^G4Dt5~E?0krwkF`B@;-&w{9|^Iuxzc9r9>g&9{8dCPBuOPrQBG*+zBWY>5EpQW zN+`i$=5!!KyHLa#8~sid4$3}8BvIAeHK^Kqy#cRWTfq!Uqbr8vY3Z(9Q3>%h6UkUx z!INEE!6TO(+SaPaAFp@rjZF6(WuhxS|0ELx1}Yq-plIA>gs@TA!hZchD;CC@kC!KEM*@h4-iUrF6zu+*d8FLnh1j@zE4ET;h5-D!x9!k zVfi)iFNzg@06DbBp~>9TgUWbvi*yj)t*oM{L6Be@s*{Eyn!r^WrrthX*=bzV9mdZq zJN;4;_4zv}O?E<|nocd0`iK@{oQvB&8rFjpBuQ9vz81%`?iu#Ea5|XmjxUl6DSW*F zaT9un0kNy&*v>)&@^0YHlRKue0NkE_flH+T*0&-5z@vYzzh<}bxe@E}lgZVt#m_3t zhr#(-nK5&JS2%TD~wII3-nXj8Sevt-{|QjT*iZ1<*)r-eaINl`GR* zKpvI+XFAagD8kh4rzwfQ6!jt^@fr+iOYZqvIw>)rLJI&^Rp=%@VPUy5+k>Z>AVp{P zFL*L4lpiU-rlAv1f_%O6K+@}cP>u=19(DrB!YBJ~;X_^v`>};q)55PF zinZ_%UcJ59bJ_kCYbcgojLTSa+;SH=XwJ%`L}dimohBUgBmAs-O*v>3Qh?Dce+!>| zL^+5rtDvvZ??od`2L2ZImJHz{E#*S9NRwdYe+$PrLbYYu+JE19-*uZ`{tO}(muK=V zQ&5En{yX+X?=o|qel>Gbu6FO=(O!5Mfa;Ys$3d85X?!R7O!&F@+l6C=@EwEU_ot!{ zI6aJP@F1Sq^u6-SL5+AyvlNu>?v%5nQ6BVcLeuqlV(y^;lsi@0FZ~c-H_tGyRn6DK zn~WyT(k3X=*-n!lDE)}$>$;F918Dnq;**sG?EuOvVWDWpZ98ZiSFPyL*1Q8Hn%C($ z!@PmSZsbdzGyI%l74x~SQf3e80jVHUntT$5kg$?`6mEO=w~^ zpH9RFtDI*OJ>NRzn%x9jRo_1k#F#bX;lb0U&6?3Qc-pr!vtHaGlV2e<=C!JP3wwJi zh)s;2dQR6LpWF?KcRs$<&*o>=f9g5yXEkqs&X{XHwfi|^9v`>Y*gM92;+{RmwvD;) zson0F`F~IDcITK29;(Gy50VN$Da;6XH4Bs(Cj6@V6)GB zY)>@%Pc++JV6(d)@=@39r%kiy@et|pkoVW)J3e^MnCIU_(|hkwi>9x*f=z#O?QVAr z`X`%SeRb6IeMf7LVOX?}&z;v^a^_a0r3t&3|@(7Q7g}@?V|{iG4GuJ;g{)4r-tUB4;0CU&N)NMf};Jo)QKOEX2U- z-f$cuUqud>nN^qW3Eha(D2guwT8XcjTnnY1;brWZzT-D>Ir9^6Gvv&T^4XI!-@x}i zJ40ihyIf5xz~14|jw=+^h%XIG zex}MNy^ZG0GTM&Roha6URa3I%3uP}KFRF1me(Y$ARk1&+Ag1}zs>V@xCZ_pY*j_S(%d}LJ z1j*accH?*BqmBAf_8K7YTpczz4b#__ZOD*%@g&u5f019+ZZ3a;IUY1Q?)7rmL%MM1 z2JRMHF37>*mlDKn2LoP-z34TVi5h^#btp4QAD4E@K?JHkaV3XUpQ+K>D3zW1p)R_F zz2hVU_rzQ*%5-(rkGxw6KLg8ziQD-lZO7N?NyMTcxxyj+I#GJgCY)_Adm%W}!h~vF zNfI@$>4QXHkqqGqLn3jzTN1rHEl#3Vz>&s(jc$)B1d$-jC`!7*3<6#J-)8|gb>+GX zFEqNb0l8o_PLUr8x1$myI-PEu$uHCS1;4Bn>hX`~4mxMdhPAt$GvhanmR9OIE>t!S2M6!C&&o7<6(9&TxW+xn3$hHIfj{Lm9#vCD% zIe`?Bql{|SUz8Nq%3Tb#&e=^eQpar8LA?V>54+2&V_}IpWI(eHoX;ZHj^Sh$Y<1ai z6%BAYWab2`GaRMC6Y^90ko=hK3E@s`qZRdHO4r4y3dw9IO0l7O*1eH9_$Qbb0P^f0 zAgy{4Gp<5|V)`mNWEVzZKd;b(!to*_r2s|(_7}+ZR%sRQM!tBM3HAcGn8wv8@VhAR z>@)yB5N(U-ScS`;(YDAGd{^1>tJM*}XSlW-%t<*$D7}n=nDNDWdVyDPgew>>F(aS{ zt;(}Olj)3U^$4%@&L|w@W$T?e#C?W0hQ#U2%AG2O;$jq6sl!W>238E2G zmtQE%#OGdQx)@$@_8LULv^gHnzvdM^LiS~?K`7RjSOSu zM@yxuv)=ir>MVRu{Se>`ZMHg;E%a z`K$;7d`q`d3Kc_fn^dMyO!uG|W}$d;Wdy}9RV9ef{7wuCt(s6AY@s-Bp+a#ZIFnE; zBoq)w_402m=T{uwa?(?}wQvlw*<>(^?0HG(uc`4s2u?fAbDThxOs7Lxp_ zSC{gua7En&FvT|`rjYIY!^8t>2oyWQfoozyVUy3=PkvsQKj!)s>2~oFgLK>8dx2#M zbQAZ2R)kX?3v&r<1oL>)i1R+22L{KNXDrxL#yUJk0*0{(X1Iy?Wot(lIfm5PNhU0 zt|S%RZ&XM1X#IZ0w^e$`D5Oq6p`-9J!VZL|Uc`?V)5glU=KNs~?Pn(~c zAtx;s8t#^%xDLddgrQSC2`Nvp7p;ZSNa7$91!&YGIsyqNu$s=BGii>89F#tp&)v$? zAH!z@9@=$I39SZm*@lE|JL|>sDJY@Z_CHqq(NvhJJ@Jg+;I#8ZN;#P+<8wbCn3)ch zL}w;NL&*8qd(4@oI5cqks(C*KegIl`u6{k{9;o5iwKIQ5F0P)@nwzm6qC|y3;mEt3 z$dfzBBGxFx${)P8=SeAlUcCI~JH7HfK5O*|Bylb}7Z?LDGAC?D{p{le(#ks2&ufJ@ z9ajD%K~2Lq1toI0-vpi}Xuavv2)*8L`Ax}F>`HG(U(@rAA6iaCO3yAFFVKc$hRA*X zhi|YIai5ET4IYpWa*bxSlq3LQ@Ih@!g!wM|Jb{7~>?L0FNvcK0&zU-teVkc%2B*bX zLAylibk6drtpE>d2i`8sYbKcjOHlxjw4*pPIPW-tm`sX!$K~xS6-FGo=?DrA zbD%crxvtkrf@-ZVqoj3+-)@H7_701UT$*a6rQRfT?-DI4A!OwS=0FJ$9 zAQjjf*4(t2nYJ_ceqsN$pMI7~YfGl>%D*0+zwN0(WAL^q)AseZ&OGC~UEgL}A=7s0 zl7o-iYvbQm;jIVdMs-bV9PuR6)r7Xgb)p+_zwVdE>=Z$6xB6FX@;aDEw@I|f$G4iceB^^?)-OWbA z;6)Kiiot?BTk8+E@G#>;CgYP{#>WyFmm_1%y>&X^@6_Ma7tR$fcY(e)%6EIj1TN8J z?MF%`ImacqLJQXJtp(kke&=dIF;c;IJp{Ynd7PrOZ%ozywGjLs(DLr!oo_H^)8>aZt|=PLg7WN(whe z^~8~^N>;EY3FQWBaqP!#V9};}6qTK}mW^O&1YvwPAfj?4cWz`Z7cY;Nh|z%g^W3q!5?0#|XnOXPp z%5F$DxoRjE{Fk(`sZHD1bos@+VIFM^HEqbtFw@55)h5+`2y0H%MnMoXszsy3w4XS~ z9z(K>t_MI=AVh!1%xUn(Y-Ub9q^l=~AzeLL3+d`f~ zJNX~q9l6u#A7UCto#^i-*-g$h(=gTgRicTUXQ_mxASCF5^D9VIebXe;*qtzs$v#}) zs1uweo-$p7sb>?Z@g?dc>&y1>;HO@lUFdkUAT%F!wxLe44ew9J`LI%x4H#>jun8Z@ zsxtN?duJvKEMK&9i!f*@RR%D`8?gfd_lb+mD@XSRyB{tCmmF_) zmFnz_lAp$a-bqX65n8G}PFj+?YQ>XI-6o!=95k(7@PTaNNGlxw8-JMD)4k$Lucx6t zI#b9xU6|-|C}9Me9l>UWaiI<~14D53CuEqVex_Q)+N{CZMy7n*=!`Q}B)KV2Hy}%W z!6Y7?NCX|jRN5rgCK7>$Fg3~~4oW1FVS*2RS;lI_3Aj$V4lRWBj+jFn^0JQA^07=H^{A(RZLp$COz6RuPM(zkn?aFbKQ z=SxoMe~YiVn#@lk6mtSU8=Qi6la4Ak{>n;-J@CgQ1J}Fxf?wD zMV!L^ea7&@+iBQ-BoMre`0^+6N7!q_RuJ`midKeRq~@bCc9bfSL)CP4BF33+8a)70 z9&C6-JbQ8kXMZho2uOm)l`7<`<+pT0`@4qVhnHtPOs>H-iWTTgZd}Jqv@;PO0iFC7 zYS9kbFlP}p7**G3e9fVB8{$b63}%LcS4atS8fdQ=vd)?a%{XIL957)pd9n;zDp;^Y zwFx~HhAD#`MM9`defBbiTGc;JDo2-8ZDraW+09DJatX3A#u+&zCvtV3l!q ziAmumTEVPQ`aNe%jqk{NbozkExQk8V8Hq%ZabGftb&14w^2&IVxK|=kWZYqs1YI#1 z*Vz*1>0?yJEtk)pj7x1}8TX^6_blV4peQ(?jEt*q^#t5hb&_W0s2g;C;i6xOT${Sk z6KZBPrx%I#YDtOKLC)~pS-IM;FNh=edg?*-NKqQV8B)ThSBlZ6ofTvB32wIYhtz zPW5{5GkK4Axe?3Ppj_*rNIZV?h2EZk}Ytr4F5w8IxWRj(=e$O z`Himzt{0R45I;W(HF07{_d8d`)$tB`ye_#cJqQ8dnv4ZBDo}vCoKu%sYtAv(6*}(*NawazNpSlxwbOu+SoJ4p5emJb{MQ1VG7s% zYA^;e?&aHG`RVe*_#5%r@dxSm&&&5P_>{c6E=qI}%BMbM(m#?&XRHU)KW5TjKallB zLZ_%j=1Q<3to-Q;U*+uKA`S5;PZa>WneHhm6p>@?fDAa1i z#9UWq50^G+0lCfKa*7i>_9$XG6c(9Ur0&-NUwga6c!Ytz%gx3k?%Yn=to^#yzaI6& zyb5cd5ZGmcfq@g6y2UG5`z?(XK|Y;CAU$>68G=NA_Lm)m{uR3F-@%a-`_BXCXV>F{ zF#jSxRn1EyS|BH1u_XzXs(r@XmCpQK^*jiZp=c@aFlkcJ`|1#OLr%I({mpy640&|g zDQHXWsY*tSu<5S@vT~I_Q6JInTCc(bO@)P*|3`)r1VrO9)w1bgt8b}{sz80wy@v(gRQ5d09toGlp! zAFrTpxMlQr+&!{5H-@=|h7gk@%48SjEtUPQz^(5F2&s)%YoHT@6fskGnmsg%1 z;qt`65uyHs?<7uPNh@1v6fjV04IZfPFV?&*1-m>U0CBjdp^)@ z4E^jB?|CAgb2T^4jWMC%tZLo@nnaEb{FTM{M{CJr2{4{8w?hdjWXcl+Z(1TCB?=f@ zI9^LsJxU{#R5&Nn2O2EeN89YO-!|WiYLX?#c=dkUVe08qm0U$7%fK+Kqf9~^F{FVH z9N+7d21PXersNF`GQ;2q0}@$p2a!I}6-iq_e|*nt=fhwJFYo$&$!$?y#(y)f!V(7S zPl-5lc_MGY<0~$FTE1e`t9{PkIahPy4@&V>jVIhFSGxgD({Ae66k?bS_p zvwTk!=s#aA5Y|mp7_(FUQz8{7x89sR_IH z^AQ6c_VGBga{EDq%P=_1%e!47?>duLVF`onyu45E9j}*rK;X|91u)0wR_rD}%k*u@ zNW9_vdcL9Q)D2QJ493ZrQr`syGt#mgcM#UF4jS_&fA%OThYfB5j&+`fLG#JlP0c?! z&qh&)gze%t_^PH8r2-d!IsTw>#N>*8WqGE>v=Tf9T{Ud|$z5q^+1@8yi1oMT5!5-@-lD ztJ-4*VnZv@gIKK^RK<%MZ#9p_ba40t%Qz9nwC5TDjD|&nOD_>FZraH5w~&^GV?A4@ zjcYJ#qVSSf;T@!KxY9ri6QEk2!BQkES4b3AZR-KkNoH5fG^{Y4l3zoHMOvLPI~HF@ z%tSO)REGI6f>LXBTCzCWdIm&eWIzC-E@gRv&vExkL!gz0qfPX@!}T)d(rSa6(1d&| zK|!xYCVi11s^QA&mWhT|COx0w`#5lvuV;lgvFh(cKj>M6y4GmI+;CpP0s=id>n{kSC+{GujZIqps z5NB>By6eP}W7m#ibVF-iMz5F`X8_fndOKbb9<9WFD zH*d=yY+&ZlwdL6^a6yxGrNU6XayOK-av(G~<8NV~g=+UQ1CVO%-n=#x7ec>0K@cP| z!*skI4Xr~%i}c-49>A!aZlDL7Q@3(LO7sc=M?F}FbqKcgrB2c|A3{3gSr=)CaHh8s z(QL1?mtf-dQvL3Jl{Fh%^mj6skAavbvE|uEJ1VvRVV1vzU4BfYL}CMlz;TVs3^tcJ zY?7U(v&8yqRl=F(j4Tf&C%Rui4ZKbeO*gDm)K<%Al;&B>`K;wy)Ph{((%`e1NbVVm z#$aFp7G#G}CMJko$C!cgrf{r*PuqrrTS~iQ?~P<=0(=S=3OWhA?)V52%VQ)rTEzsW zaf!i-NN(4kDQxxrmI#mCD1qKfM=5p*fy>>%+zTbQmFl4pp18pdC&_4AI$1(#k$JB4 zM3(*nN+Xxx?!z9$26uuV1F4E*1|tza6k3J7dT$%08&;6eXxsco_?iE?()h7#52!%7 z$z~%H)>KfBgMAEJ|LFq76LNwA(WoWqT+XAI^CHO^=_HikG}X}4Dz%7n34`)vXyDeH zZ`c=C^C;H5htwPmR2@i7;-o?=GU!P|JOjthvN6_6QbXBRB?bfnptyCP!@ib|Flaan zZ8YZjjC@w=2K#BgnDt}?4FpLNcI7d@on5?k5}aHb?>MW7jEp)|$8Y{&F+-C`WN1e$ zSU<5s?NX>b%}_Yv30N>%p&7WdP*_nO2A>%hp~}!Qrce0D~00w!T8dk=u!4y3NcO(^!w*^Lw%BqVa{Dl#*5HcP?Y%Vn{DK%Er|# z;bYajYNRG6BRcKQNnYnTc2k$6lVVphcVl%fx1G7iZy{;}-2G`wOa%-Ctn$X)3ObQ2 z2VrtnXQyH@2%D{Mg)=UiB-le#!ZT8)4GuGnzegyRgsN$NcCi?lC*2~XXXRPCnc%w_~e-c?)EJ;#+)|=cUDLU-2?BPyR1A-v}*@F z{UI?tI!G}Nszp?ba>Fp{D2&ZhW`{;5t2qIT8%fq6ay!vZuQG)Ek0atC{}QFtX_A0! zfuUFN$XTk&t>pCIN>;dw>A^4>T)Yjc3>xzkUerrgk8vOx(IGa_o1?9=u)5g(swdso zi+^=_?a?GwpL=#1W|uL|upy^-B_@E8A~TJB=s}@{@jfWrI$J?sU>P;yuUeKCFz>Tn zO=OcU9p=Cc^Xx8)`*Q|^5^FYCA6+k9*e}rqz+tRTocD69;7`~D4aF>7v7S`X#?r|qk|2i;$`gwIGG>ENw?6>(#QTfIvE!6t-4-1b&A4ZOhPyHfE-j4 zmN0Ar46`E`BJY?*|2jo4&>nHxCV^6+Ao@`u$>KOr8CnFdkZU>)8$fxn%(UL(p0Q3K zDArCnjvk}+A#X2!t<&ZR1!R1J0(Q|?P>6;g&l}8S$4zvM6Hi&+0z>=C@0@nn4vTol zEw6SfQk+9!-qC`9IKZ$DW5ei1(1Byo3?l=uHMATLxY^iewNhX;IaV!jhBr#_=aJf2 z*{PKsvolTa*=vgtB}-_|E{a^A00hARRz@vRO6v>_ULC_wZfvp^)M$6W2$vf6BNhxQ zrMJlTGAhSkwV*7L4yh4!@l`omyCU(y*9{_%5E6>t!Z>WSMZLy~pDgO!n#PuF1|;Fx zhmW!(3$x^Bz(9k~&Oqc?D6mjFu}|K`GtwiZaNOVLFG}v4vxKK& zO3w0>p;7jH;5cET4bz>pmev}B6vb!Wa|FBI#O_AZ%H-7^b2~_TW&tjx5%eN)!l7$6 zS-9C0)`CX5B&U-lq1?+wk?y8Y(zO~*8HyVsS49wNrwHkC;K_xkFE1BtfPM0IPM_@t zGunmVHt)I1dtUB6w|mb^@!XkRi2pHg2hCc^C+ygK64D6VNhedTh2M1F=D~K~rbe3J zaMV|-4wTYB6(ZA&_t3aY_rC(Z5gm}R1ad1m61~k6cCW+Iml6#hYd3s~allhqdu#aD z7{+}yOhow&^SwmFL#4;;9iWy~H@|U`I2vEX6VBB!8Mx+9gpyq=fQ)4GA>(^V$hZe~ zz#zNy^1g9KCh{TUyMYXAwMk})qpq70)uUU#QTNP$_XQx%X%qleW#xn~GYi3GI5$bQ z8#~2WmY7-ya>sxQHd6}gd{QV}7-AEZ!toWu!#yy4LlPCqAV8TO;83O@O`6=6nElVYl<55WOl;03eN<=e!v z_zAkes?Z=Z3a9b8C1hyB*C?23I8?NcE|o$U?1p5NdLE_l=T>XY(pH$7BKhf#pgkI` z6%R)_w@(=<*U!oR9p5P|=)?{Ku)whE021uMQ zE9nv+lKPuIi!}hifxad&-q~F-g5j5LP`Rwu`7bU54Mg;X!G)$GygUA7ucff|!mdAS z;d4<~yB35{>xNmf^$~v83(;ZK-;RVK+<2;FnT|T3jdTv-nt1f9f)MSN|vK zUuK9a7Q4AhTF}8B5VwU>FICIPpg@2%)DQl2kZ_nICJUHp)1rxnF#Ii~P>JG8X1c*z zDQLASImE8ChN;Ij%|X0D-ktx|M1rUf)=h?MtPTnJ4*KX@rlU|U?g>%kB>v$0>5jc?Lb#e}oMq(Oba#^W$4MBJG~px6qcWnd-HpaD*dvFK$P)2m82G>K6O}XAw<~0!{49Y$SF> z+2`SS?o9K}mqEE;!Q_~KKqkMJ9~GOF=XP!3Ev?xncwMoa8(JsXsutW^b^8;u_j zc~Fz|$D6#{3rb`$NcLOg={TvH_b+zb&uFfE%C;g|GOpm0*_b3>qq|~sY3VE2UcMzG zcbxKP2roy}8Z`yCo($f?3v2SnMokUgGCn_3?wu8Q*ctDX5M0ki+%66Xok@7uFcI4+urqUFmBkI?O!PSh+s}zGCR2x0N`xM#;gUc z2%Gi9W|`3ZI*hGc?U`rA29Jqh*abQjJL`{@MDf+3&(?)E?kQz5mpVA1vj`U7mWSr(BG!G)s%3JIjzjy*QiaEx+As}ymITLWzN`5u^j5K zz1%9>-X9}(xy^yiTbaS2(hPVaPABP0@KmStC=v!!kY>klk!(E}XLXnJmA-ZyzF@#Y%Xl38)} zl4Ig-b0W!NBR;)I)65*RMr-CE8@^6~pmX8~SiNM?jH4o8v8qrS*ug#s@o}Uw9Ot^? zDo^k^=iaH8+_UvXTG=p=?W;k;_GXy&3V%5}>NFFE?&VF*Aq}_A>;dPM>|_y|Gr9i+ zO5bcLEt5$z*Ns#9U6}j-PD)qd{!&Zn?cDRfhtfZ~U)wIcIaTys3-u~G&naB$Vo3~x zU+*p=S6Fe#9?AjRb_j&EZ*~Y^2w4nk|KXlxV-lxUsY?Nqa}tpgr{IFOadj$yiuAy@ zA+pESsURzo_4`Yr%D^Hm@gi^jEwe*+3DR;k`<@aLyJl8&K|<`hxeGv%P|b!aED^3KjEr;(uM!dhow=xw%tKX+or=M@l=ukI8=Z)20NS#Bs|azkn<1=7<$GFMj{NK`~RK@ zT=w2JosPJ!aw6FEenzZX<{U^uEQk@Ja=5lFb5QgaF~=YrS5>FtsYo230*Py6T#+;$ z#x#|UMZ)+g3ga^K_jyQ*-L*Ul6Z+U)%jdiy6Ts9}&r`L8LDjBQAw_pB+iX)zwoM<3 zvQ_{6kSl)j;|qA#GP8AN4@M*OyX9(XPb#Gb9$=a^H|e9Xlfa}JXqJrpTH+LTTLC9> z-W}@`adEntb|q$ixS+R8nJI6+Qx?77>%~3tDLR`LvAh07XFK3ROgKjNKGE+x<`e5> z#_*F5#5+GOcd%X*Eoy;E5IR}4;3>#zy_vI7*gntno~PqESF_@Tn5Jw|O*u%^EuW3Y z#p0QxP}MD;s^;C5P^n;qVJ1pQ25bpLnp%N;y{Z*=pvtAG3>vDm49?ldy{Q-^w#)#{ z>#d5M+d+-U`q800G3X>Uc$M!eEEGHcrcUoFowky2U>q4yhpBzgVI1aADG_ey&=Di~ zw-o_m$3>8ReM0bkpa{`bdB?XUA#n9KBs~a$u(nDG0W}HH1;jWtIk3!eLx*7wte!OV z1Fjo7C?2;B!#3LyN|<0r=}4ta^BIKi<(ye*YDSfJMOt$Z(yS^FHw2w_-Ei7v;`4Bg zbq#L#6IEcN2nGm))NMO+h8H>67R$Q}nrL1-{GCYE^j5!0$mR~_M+2ZQ<$H z@wbgx9V=mKkisUj%>{tN&GHzBJ8EmiaAb0G4H#i?^RwDtwt+=L`hM}JTLLNp(eD<@ zZ$f$e>F$vV%8!TEwyp+xmw|GLb|@^s>ND`(PFm>9+wOyITtQYqTU=JJd2zkKFH7g* zpojUrdCc4Ia8gSI+eHvQtLO8UE#lo=?b-qkj9C-TJUqUZ=bhfn2oHFx+d)OXtp zjHqHjZCEo@+m>lif7&FeD$l<_#1I#t+2;HmrN7dqU7Q!9nW5ENAM(@RsJvMnwO~1{ z;^62Tu7_37gpx=#48RS}{QyNtQe%O;`@!D7r1+~_Q!LHqs(OL14u*Vc^zL6R+#K?s#G;=HLUjH`!2V< zijm)$oekNh7gEp1)1sZYFgz1aGf}8B+l(i3AvHhpqUpb!CbvTK_0EyVbWfMLF8Z=l zm>}(E@>0j0J0LwX=TR0rPm1LURf*KkN0l=36jbG1HNE$#TOsehJ-U><`%yBK!OkK? zuA+T2F`ajEA|r5RXAzYOL4OueX&LyO#BSn7fJ)0mBlEHC$SK_25!RffT!Uw|Ll{ls z+aY|fybZPID$j2PIt&brWGc5MqS8(}WcC9w*4V4GjeX4&E)1?5B8ZfbpCLnK_%S4i zp*jws49W2k%J*_^jo(02mK%xZABBuX6(+ zV89e@UOPyPT$%$C2~Z1$!1?S5Nf?!8czLC@LnR^AyyhW?RCIm@I@h; zx77z0jb^}k?O? z$eNR)co{zdBg2Ha>po692YHF`ZYyjo?jTEXKn@r-4(=EyorHa1dfc*7c?1!x){BcM4Z0=oCUXde>`Awt6Ek-}9c^b=j|(6&O?-5rz@ zfL{djfD9#|3(PZM=xRU|xr`$&CSbTj6`9{MV~rg$=we=_muM|$F1rJN*+|I$3M39) z5*1`KQsm|iN>H>S<7S|+=`mk-8RjEm$}yjf4dicOr{g1R`U#X=irx76S7rNPmdBGW ztNgBmodSnrO=rD2fItk9P-vVW9aGo}{Jge#~D{gRZW}p7E@VvN#97bUm$@7@@*fw~^j2(C$Fl*$&&-9ZJ>~yhu ziLI=dBs=gwnv@OR&oKEjsaee&L5uN(2xJvgE61vQ| zuS|BUxY2$>02oh5BhQw8Y#@|d`~a=JM@I-Kquh#Yp{=BRS>={SgT4#t5~Moo z7h8v{7cVEP(KyS6*Yk|e9lVxKL~o~|cV|y5EBZQA^1=#n8#^*DvBUO+EEE1L>l4y| zIZ8-wd5ONteL}XbXufK^cd>a@VgF+y@12o6(LFS*m*j~O+II$+2x}F;XbIJ8?(v=EQ`7InI`z__=<+P$P~ znAdhDKU8@gHyEdo-VSaC6mK?myR+pMxgyAa_2UTgpW+#mf&+UpqK8VUpi5rLUCy|i$R@u#S4!dp_)Y}0K#JxY8Dk>Ix?hc96=we`odV% z(vebC+XPPql&IQh9kZkDBeAL@WP;o54TZKVvRhbnAt*#1dYogs~v9Kg`r{PtL#ksN&M`Rf@xH!RT#X*qOxB>Bt z*Kj1_?hp~(jah!iv_kZIN%r{l;WA>3lTeQdE@yMku@*>T-L1&~co0Cqrf`|!i&e=x zgCiw4AAsIIzn_2x3aHovpr>0*FY;vc2S|k2ynhdj&M|H<{SAYi|16RU>NKo<40mt> zTB=ristKj&gxNkmW&eNmeFnn+}G9dJaDIl(gF!<2_Mfg~Cb%c)r zYDU>C4DNnDYNo+86V{G*&n~oe!b~6iGs{k}j+EKg5)S#|3D#AJD=Ig^nt(KrIcR{= zLeN5bY1Nen!7a%dCtv4ZTIC+AnyZn5%(M-g((~2$lTD84rFenDYov7(@;+gS#!Ta_ z37@4zW16f4p3)nU@3rz^y2N;d%qw#?nxRb-SUaR+BPFC5rZ^ZMwc{&qG~xx#^0|>| zjiT{jWND*l-8HITpb#4gl>00oG^S?~Acb6x7&3R%i>+A?Xq)N@6b+zy0#%PH82IDl zgIp$WW`)@TaBrV`@Z6c5kN@c#%+-Eww^Gx^6M;@o*zaQ}gzr17<38nM;M!V?Mv9jY z>zLgmJn1Q)cv#0KAVLneqF!AE!vRrb@rBD>4pH@O6mRNk<#Gy<=*TJf$>kc{^AU6w zbzPcj?%+pon+DJ9WS=hDNij)hc{wh=9hjcAlK4iD$1nFL%AfpjDU_QakJ}}YqlLA; zzaWo2D27DWCX`LwN=3}L;g06D=MU+BnN7R(zs$tJ{V&t~k^Yw%HK?RFe;WsR0P$e( zV!ynqR)GUr2+tEH-!Wt?H@_6omXriC=py?2Z``lj&0k8A9_sK8)3wc412UrT& zDE6MeS8N>I(f(NFK^~8f>?bw|@3z7Qf;=!-29!4tq6gkEO0MjQ!=!uBIyDO=W#x_g z_Y+<0(6&Msf;=E6fUbcI@*wjJ7`nc*Uq8{s4)wXLvTcGq7I#pBawtaJVEh;FbtuM} z?|m~yhufg18-2v=wf;rpZ000nv6*1@66@la&L{QKziz7^N# zy&^jGTXB`{Cq!y#0u8QA*xDcu9rxBRGH?-$@gR?5_lyvblo-YqDvDs-O3Ig2Zre7< zWBkv=(;htag!-c3IZCa2xO9-maLKDd9x`e8bO?PicZNoOBc72$zn0*1a=%hu7S`o*kxjo7_E z>vXaHfueRNnI9x#)|N`Pj;sG-t^X3#1&9Kk1=EIO>@^0iQ7IxO!Ry|M&3>ecKIu_AfRBl~>+p#D++p z#a~~$i?;7#L*BVaq{(}W4H1V(acsyRIz`e*JjhR_{>k$EL-SlY?1;c|xOTB2c}gW8 z*L+8W$R|x#l7U2fYO}&JRqomP{3{Y6U>!t=ROs_{5h5TH3IPVj&pT|HJ@_N8X>a3yuZf?5t(WiM~LjHZA(;0=Y`S_dA`d$S58(e(<^I}=K2lY})2E^9&tu?Z~*);d=78nTHmK4x{PWrqLb>nmFQ zzP8*FqRo^`R6jnawU@8esAk=v6zSvvRI=a>26^Lht7^Gs)hgNsK#lIpoh*gBtD!Ya zETkH+)pARYunTk1h$~!+TzH9H)$Q7W}Ef-W{4ebQ!(4ucY#LAYjUXr0eXA2Z@ z`$6DL8XBKgaHYG@V?E;jfn8wYSAO;_RWB9Cul%D*x*x5D;-2*w3;O=P{!AwjzariX ziC@Xn$n}Rd-x0O3>AZe|`xymyz@u2+zl+I5u}H6RuT8s1Q;A~PQMy?a#geCq?_-7U zz{(%K*-xw-u!{<1jyy2MK*jcO(lsEwfLIpsu!O@FB{R4>ut+GYcKcvehq0RW<_RymwwQHt7@K&C4c*c zgCk1kTUGNpNT*~|JGUvzuMkzRWhK-_zT+LryV2Ndq2xi&+VL%`Hk^c-m^vD>hW((6 zaoHW}1M9f>7sidSJuN3QT4QrJ$zVoXHW0?z;*5onwvongm_=GPH0ihnQQBy51`cz5G8WrdZ#r}6ZU#1X;`jzn(Ivyy&zgK7ryeu`23gsYo2AVh3@gN zR*+oN7R_8$r>@$Ol1BAZRKJ-ik1|^uWG;&(i5I$K@ihM4l3t+Dz+Rdl6lW!&sOt?1 zJ70HDv;vB9Av)thr&%-BAU@~1;iT**UoA!1^ate-mJds!C9R9k*%_&o*y4VyO?YHw zQ%b+g`L+Eov+0xlFEeqk{+H=Ky#HlJ?a4AR^R>ByEaRBnJE~|-=#Xs9vgQs_wp8XO zWKP~xz3q>80ZGBN#fvq*1y#|?hKc;atl^Wg5TomS-i62%^vU3j7lO!{lXR=1n<(`!^5^CbGOLv&u_cxFiVe(;F0Fi7>gl2V#0KHrR@gw~4~F4@^2Si% z4Xf}Ah*HNmfTGtM)*+!~7EiiY6#27syMCgJ9okmt!g?Ge5YQ!)oB?4TpbN}1VCcGJ zNI%iV4i&Gp^?*+J+t#5Rl+7H95jVW=$R7$Oi_Q1FB6iT=2%G(05%a}KrPI?7(5y1T zbz6sWoQ#RNSR$~bl46DA*3 zw=4OfI^n@I=?1L2i6aKIy7?b<)kQXB%;5Z#wI-(>V!9D!EN5&!fo%sRjLrYZcp{Jo zL%Y~SEge@dF!4nDcC?SK+>HI`ThZuF4uDc->}Il@vqZ{pUPV^-fW;Ht+(Evj#-)Id z*)Q7?&sabQo~>4X-zH(p8~r2%J6)`_pxpF0ed6Lj>(H3HJ17uJs=9w4o!+-PeChRw zPW@JgrTb}@If{Ze`x#H9A1#4r{X zET?#E^;S~8tjg>)p6Jmny&M{|`K9uE8t+0H4A0ctmx^~knEPw-QOh#}#Q+m_Cd~IG!eGeX6?fF@~{H0RnuBGZ{3S@<> zZklyb8`Pt&(Z#R5P5MR)iHO+2h4BL#u`>v5So)WX*ty|USymCgns1&faZlPX3c4oI zkJ{6v?0byZ5${htVuw8Hue0cTam3Dg+_{OB2!X#F&yX5e<>+U`PK9ny?K2{Fq|dTq zP}`*Kb6E;b6zqSNcNf~xztddAkx?A6Gjg$vWr@;x5!ZvFfAZX8o-3ypB6b|Eqlg`j zdmq<)N5sw*QhhPX&(&rH<&)g=dx+Sn&{^C9^I1Jw)s%e}OrQBX+1qd_LnlB6ePSrsQPv3_00FZ1hM4 zyzlwfpQBs<`qC8`&i0;aZ>FF|5dJR}x}(ZP)Pg^+jg>J<%^e-AZLo~7#<3tDTjto+ z+)5bJhC}5eN`Vz)IMUoqpjb>)wLn%(3}acW&XtuBlz1>vmF7kQ;vZuW-Oy__IKwLj z(G9kK5n6947jiil+>TB|@d24OBxTrm4(NWI%yHIB2}K%3c?8^2vED0uzYg zLQ;-0b!a&aNil6BZcy5CAu0O3K|)fPA8<%Wih(0<+H=1~kx_;TY^={1fCdizuK5~G zKjN^PIZ2Slpg1@yn;w^70^4m=X%O!)UV7RH^eDmA$jOQ;=@_NgSk|N`TZJ1F0bf(yvgDP^a+Z2E|glgn`Df^i6_PYe4$E0qM*H zNMAG{RV6_Bu3#;Wr8WanM8F0ivBlJf99YL1uns5z*4n86>q0|o5d208OO~;0x{T}kY@T7JanyP>ZU9! z1-G;qGNf+NG}t?wbTtUasO$^#ijOe(hATh0n>fKqYuTk*Pw+bK~jQ< z!Ss0ZdDbW6u4<%!FtdeSk3g8>>I+lHYFTUM1>=QQVX!a0TX9c;fv%YDaco<07zVp~ zb!{3eXplCW(WZZJa;rhjZC_EC*SNfm28|7Z2h%3!>cMQ}RWhgwGIi9p{#g2RAJWz_ z-+XyzkVF`qF7>N;-$C#Yj+nWC`5SsbqLxAUhH?-P4Y&zT=TCTEN0P3Cj2ikSh_fr! zbnP&B&{<=f#!ebLdF&S_-B+KP^TOCO#@3HL{j|&#FOI@>iJ3VoyEc&zSWLW#Hs$`PBqCBi9HH)&{VHK06zd!FYkpDo31kN9ge4G5f-J=F=5m{O8Xp9K{%CqcMyR0>+DP8r>cy zNv?MJ1M%^|`Te-uh@Z&kE)J7%byK^l=B?noKiyU06kcH{UV`BtZiZ1@dG7fUN0?LK z$Rl=f*uO$?Hv@&8dN+5lZ>4hLoOj-uNE-^*{vjN(6McbG?y1QmdhdsX-u2p1^{3&u zEfHVUGR|`8_L6ZM#TD^xIg2u_3EQDG@^BfME;j?S`FxD!+Me}Uu0iCAsC^8lmk0&= z_4cFz>KE4OfKm*mmC9M~ysUsX&EHEwbm$<6^~D|RBB-0-TJ^9M->*`tDO_Sx3Zo82 z)6~H>5}_PhKmUjFM z;DR5jLg2Ua=Elq-&i=xnO)~1b;6?K^vy8vYob+;ITBO(6hwfbMS!?1#^*bt5$H`|; zsHR1niSbd2-MoNo+|epxD`L!YEcXWpz7q6-x79K{q>fw0Gb-O(lgs&^n%7biQ<>!I zF^F*Px0kc%^W3!ril416UZon;nkQ;2Y`{bhXkB5nrQK|wUTQS5zs(+uhA#KE$6jj* z^ZYHGjH)eVTG0mShjU*0#0Ro2F!DUCec-=@FL;bC?o%jc^*Aa~^adj`V=HhIVEVd4 zV$CV#s!fQ9NT3tmL=cB z@tYrJMI=#1X*}0RW3e75VBIxhm~Qe&T*y5JgH4RFxRAT6q>#(2kPDvr0R`Hj>2(*6 zH{Qo|_oX|#$BX`pJweNp)8N-IwfRbR7%m}9O_hux6L7t_%xQHtm6=f*QIaZ!mOW6|T(A8)PcFk3qU-Q}B(q=+X0FgI9oGm*F&=_%+SD_eY`CHiI zDOF?4Konj#+cqCAQP909*hFMvrws}3Rz39&)K{){#65AmtW>SBi+pY)x4w99_DvbUMPB6_AxsfK>*5h&I`@{RT`F~ygwDZV^1 z#ZNemMo=%1sVUw|1|xZH>tH8Aq!q+>F1@^j6$qQ9s3I}N4a!u8MaTb=nz@7t8#Je*D>kYR&1{d|GwpQK1T&KTL>!ypHo!B8V) zDIs^bB5q_aWrouvqZ--!H>(JBrku5{yX-@IuJ&JTadG(Ix%0dfWHFV@VP5hjRx1!UG&;%4 zD>1i&ng+T{OmVWI)m=tSW%*l}{D^V~GmtWm9;BWp@}9M_yz@BZYZ3sfNa@3jN|gZs z2W-Ruc=q8q022%V;AoMpb{$Mk^)e;%{KctWv5HPdMTT9ZYv_&rU8cR8tZq5X*mgFRMVq}h7-F*Y8r`LgiMjICm1>isr-$9<0 zBw{3_RYKzbBCPFY5A|6@easRG5Z#GBPU6QZBNU0Ve7xcEUI!RVWZ2HUprpEGB;c}x zY&f3Df&4AJ@qqF;GvH(D+>x?uvI$fdSF;oZ-YF-A=?k4wB3z**a2#FLNKpp^F(gq} z4?un%Ad7h_AhTssqAa({t!3t*Ln2!5A^2$mov3VSN7E473<(MQN*Eopb| zP%+U^i!VMz+l$02D?Wr_9JoKl+A%sKSi{HEE&!La6?9I%38+b#bFLH$ML8q0T`lC* zGmXn&p5wflp!T?{0nK8;rWDi+>KXw?&O^hxnVVK00I zl)*dS(^*|tG^=ZmW_9g4t3%V1(-00}>SLEspT=i(NQh>28BkJZb)2{*7uLLa-BKKC ziKVs7D>|>kkDb?HQH>UUXS$0&nS9G|m-K5dluT!~0WFVu^K;k=HU&>(_TZ+liFlfcraH5y<4GFL%g4-|&cd4e z-+nivuXla|neN#X91oy63umoy34Hw?UQ0-qVt96U@KoJ{`Ub7ye}z}>- z1Bg&ZR)0B{EfQdnj75^2%Wl5ZPA0+7sG~$VRBOjj7<5e6{F={>Kr@%cDAwh~qfnDw zP8?+*<8R?)fY0&745&Bt4`CePPFC?0r#TpkE2C@Tws z0vbsqARs892+AR%NH7Tymk?A?R8USuje-aoB1b@CI25@eK~RH;ZUhxn4(0m)s=8;U z=g4LQ!SDOO_wioXneOWDs_N?M>gt+qfx0{!lQ#0EAfm|yAJex8vsP{_(i1ioTcJ+# z*b}BFR%EeTu|*ysim|&?K`_OF;QQzv1;O_vQbB0796~s<0Vx17MOc?8u0%uJ33Un@ zQdyLoLn(TXDhI^i*q3#6(6I)cYN<&%CJS^Q71aYov?U|BBWNF64|GY+>#cIkT9aPx z8BxwG)5NumKak9g`%{zivH?M3$*Nc0hF%H8Y;DW-`UkxJ z&v5Ak3`>_z!1~{iF?0Rz#gt@`8o8>kj=+?F&#m@ix>&60&!C`O)i22*lt??V;xc+e zh`-C$nM+f&s(0Z)1%m^^FWfq(&Hj*L_|~eTyX!Ea>C#F+Z)q#b7}4 zBKPD(_v9`v$%fNFf5;5PWG=8O#s9S?9#ijWkJW*| z2tAy}49uE4gt(yxILX;voeitx@eS>I#g&y>ctVc6_yX%XqR2^e)CyBtNdDZG5u9q7 zE=42D>v1CmK$VvaMk82&TQp;JG=f=}Yz$VO7%2Q}tQKh01b}9(j zi(@Do70F~yL9J4KiisB6IW{?W%N33ZArrmgb3iVCV`;S3}lK{af~zevB@QZ9ylRvakf!9XR0$|=2;B~ z+w8Wonv2xf<-X1mRV+&;_dVSju*-esM`{Bmv%``56HzV{*yX;vrGb*k{jPpzC-<*A z%9l*;d)UhBn?Ur16^jDaeU`Z_BZrm_WEn^kk8Te4YW27tagrk`1$FF%nCK5I7JVa% zn4ND<@apg|Q)v_k6ia6mSZDIXM53U;Hj~4#&eVHjnd-|PI<25#YEWR z1_A{@0DlVB`AET^l5&h2Cm*|tMF!)irWlomplXRu)#t@i1s64l0w1l7ki{CBbs21b zgAUXn`W1XytJWe`DQe0jovARB#kXZ@ZnD$^HkPAn;?T>8ToHDW4+6(WX3`$y*VYPX zwGbNZuzMWU`~m8)C93%Tk(e7?o_V^$$5h^NurgFgxuOyYSFb*g*;XVj zi_YF?4@}EfYsD!HwhG)@CWe6jaGQ9e|41ko0V%+lP2Z2ou`Har#`E#kB!sN-$^B4lzh?)ux2Ikj zfrwoW9P+nZH?{-O!WGMISuYbVV80x4qPw6aaAcdzn2{$oameXQhB8slvk=rd8Hc7*I2LeTw8gruRJ$Yo|`DoH|o#1z7wz+ML)dgtcW7H!mH>n zswip9i83Q1lg9j2W&}3>j_FCB6x!a-LZ3ve^ptNOv8w*|0TIE;_`(>UC0&Y>7>S|a zI(JY&bXOonbY5<7RIIaXH!eGTl&CYxsPiU~PP^Q-(S>4{n`E#~E!x}m;wceWp#!t#R>WFcYB`BS$b(MwevZm5%F797h3EhKS;4~ujsNtYH+Qe}lC+KF9xl_Y7-JPS#m z;WcT@F_1(%je?}xnWqoftPR9^-hF z)jI*u5i5NXx%U&e<)@bWumX*%iCNhIMddrs0ng`Pxfc}whqA9Y|1rHEgOT_6}sxP}?K zfGjLo9^svf;<7H~XlTm#MXz>VoPZZ_V!A-C_%N5I9ua{AZ1mWL8zpA+8+;M$ z1W-yFkr>$wp(S`n^WLQbbtQHoVk=nyf>yN(#PKL8F9`zG1v?vk8)|e)%BKEjh=(k{k?|Txk}L*M~f-9G}%a z1jmOew1&^|o6Cg3@#%8}9!`!^qZW?OLIMf9+{vCK_CUp_(DNr*$3xE=yd^l9lPA(J zL7dh^Px`e;5BMg^{cTJ10|}HZR)TbK_|S{KE(!EOxX{C|drDqOpf{7v6*iSax0eKZ z5e`ubzwR#EN&-CvA#&l@-Ne)bawSS*(y%j>FEB5mdxyXe-P4(zL$c%sc`S;ooJ7bA zjEO|VyQI;_P=Pez^b8?4A}%BZfZS4Co7)>ia6dyil~TpL9DL$ z^n59)uz)WS25V|A3{1;7zwu3VoX4>;*LB#hYi8%TFc_`v~yb*#pLZx(j zj)rV$5Qncg(Q~55$o9o$H24$lOD1smjvsQ_n(QqHDimj0RoC=+xIkkW2`cCdo^3NZ*5GHmuM!XRLtK z&Mhg)vtJ8AG9g%+B*O!TNvo9P*%-M*av(MlU)6gS!ZGMFjH$cJI#u%gS3}TFn3g8( z%X4T7E+q*!#_}1{{?7Cev=gSKN&Auv*gx_5N&WH(bz8r!HgfiP-($-HDw*D~eJ0X%HGm(t_WMS10PWGhVR*CGpWEV|_ zEom213Q?9VghYMJs~Y1FcLhp5H0o-KB^_?Gch`byBi!q2rbnqDzgiTH#;?B#VuE!9WZ?$)dj1G2bilT#EB&~uWX?k?9 zyy9ntVb{9M5J@i;JvI&#uK!7HA(k2ysUXmC3f^10++T9>lI2rp`;a;`W|PYJ<8qToNt!+ANR+WwUhYsjF=!;+f2i_=3e zlSuhbG82m+Xm~Kw=92ig1oDiH$%M%vxJop+m=IH8ULnLIS@$9)3(I09PE%kHp)@!q zisUV{>*#Pf&P6JwjmQKJ0P|`Ge7f(nmmVq?S#Yc6iwcexLK&^02pW@c;^T_lw~6w4 z_!Av*Egk>L(PVmxd5(gflBqu!2bwL=Q)cN8)AffbftXQGTAigyFrRSxLLW|6oTagB zRNy-k5I+FU3BIH%-(;vE;>Y7Qi!dgp=9tm$u?K8qktm&;-!G&mIg_kqIO01W?G0**cCcF|0O)FNJDpr|+=o3#E zYqyrMSh|TL57lME*)1-H^Ec@j1=jQ1C^nh(i}l1iUhWkGsh*?gHJqep)*#@Z196g`SsGt%6jd6!!z_(! zYeb#+L<8fwHP26Yww$CVuXgatYahf_4<<)#N9sAcgpbrS`h?bDljJ%~M20U?B?m91 z*^XGjh;|mJ?ck*}+Yy$&XlIt%4qi&L9bpZNcBZTC;H5O%5r(2@XNua+6dKIZc9JI5 z<=B;QF{$2zrR6lK#vm1_YI|CWsM&na_%`qg(4vo`W*3=Jvx_{*mn%7&&794i%(rHABhq;y*M^A3}*n7b%U3 z6vB*7t5k4dgh-m?DUZDnuZDO7o*1c+Hx}3?#1c{z6c|fL#i9!9T`3grhA0|90e|3j z4B+?^ivUWbV$7+7$iW}Joo1cD=Ora@nILlThwt=|BLh29ng}TV4K90*!x{^KZ2=lV zI4k4h)dsX+okAabGW+PT6TWUv@EeUA(XC!0#T$9OC_#~-odF!*c@Yq#2oYYkpz^O! z1ODPWFQ5!00E)>FoCIgAoKzT0C9KeBl0S*F<1}62dz#J=gH?p6meQO^6T!lG*KfI@ zp6N*qkpzgK=2>_n!j0Q}5W?&2NwxJPA=-<#nWA5N?FQ6Lv9p^1C`;%iUtt4SwNJc0 zItTP1An_+&s9F4hC4x76se{?g1<1yq(!JCP`15KTn{j95pj;4XgNapRIA^xV$wew+ zsN<099l;ryA_IxCe?dNHEB%{^Bm_l!8}$&tc>pFsrB8spg9+8>u1XFuibdPZ?xtj; z0a+So3OZ3grHYe;sbUgzE=@Q_Z*R(EakE@{0kthl4`wnx6d=G-k}(~1qVo98Qve6) ziz9eo){8{jWG1z*C39gz5J-t&+@P@DVg1oYLVxP&1Aw0|LQs3{0|dI8y18g!@b;(L z`crLy_4c1dZ@@#8M2&<#eVi%}U(*C-h>Bn6i-u|E~p+7MJZ*dL*Ya&)E zTDQ|=7YcC|t5p%xh7S@@iPl_Z%f?tI>0rH~79>~|fC;X}r`;%ORtAY~#0F&S9M`<_ zlvzX~GffuNv?fdj`qeDjMYM(hU5d&p@~GPzMaW)|p_dl$&$N90Nh3=MF?y6I*Un|} zN-)YR!78s*#(dQp0Bfuq2Y|*vOxXdjd{dsmGe_;sq$f{$ExZIcl|1K`NV0XP3|vhS zzlhz_!Q8|5WUd~;H&zS{h-eho;9eT_n?Zc-1S4^ABH?Cu@||&f*}zOcE-h1HNx#7j z&j^nU0if#0j$-(bmR>5zP~!Lw0;r{6gRmU9S>bpo!~!=E^VLIcEZbC*-4%;DbCl#~ zyO#6m(UU$ExdC>sxCD9WgxTV}DBQZFWoA*dR|(sp`;JOlCXph)O4v>|#ebEsOmB(; zD`A;g6bn|uGHoa#tb}C}DK4ypW$I%K(G=uj&IG-U!U9DDJPIMNMW2Zr4d7gML~xkc z3UWyxQfw97TomAY^1{HCd>x@QGfE#z&?fl%mVTv77Bwr67%bv)` z3N59$8xdrL*102^##pHmeNB#jmU1yfmkC8Qp>^(vCM8j- zL_>e0r;Q%AZ=^9NScnmHX6gA8BSZ8&p?R*Duq21H9+<$BMyZH9n1EBX&wvR>M}%Mk zp?R*Dusny<__>q>&q7utt^&b1dbFBFDt;Osf+2+Rxnf904$V(2 z7J?y!^0{Kjyd0W82=B8SG|}mdqzYFo)1TSIk+GLzc$5 z)FEfjoYx-@!5l*WTrp>P4w+Q{f^JbIM}Kw;ms6!kM9f*F=!u~r7)7L>#IE?Y zN+)c$yR22NL$WbssE1v8HLS%1hu#&%s<3J>V(>^NT<5Z);!uic7Lj;Gh@)*4L|aZR z^gB2#s~{1QXVE|hA1QiZ9VXQOyV!{ZqX^P-E*Q@xJF74|bt~Huv!`fz8MbHP@uWc^ zcue&CckwtQhZKeD-0*Mlm}1g|rJn8f6++QVyNd^gU^S8T-^J>AIiy7Yb?u;vvyIhf zwp4ic;Sg*m692o{z64)zGuxf(@c)p6pS{g}#X}*wfXFS4TP;?3(7xM+=MgbT>mDxyn7iaLA4JN(}F2z-8V`23B|@U#evdChUzF8)dXz z9B8G(iD1IF>x%MvFku{E<(7o+Y(oe2dM4@*iGi4_?{@Rie^;4(^i?^N8Nt@%e0ubx z&qJxq^Y813v`bTl}^6?G6%Zc+~Ig-`}m96MO`-4)W{D49aP!ABnyqD!lNBu4IDO(N4v zH^24oGnAtR1vRzC72$+mhV=#3xLtZv3xt2!1!99J`2YAxvrf7%R z^5ABF>Sn%=mH&6h0nnT(UGv_U&eoY>Oi;^d%CTmbJ)$*H#AfEE|@dM zP`H%6G4J8_PN0lq1xbJqE*hS+qX=%VVvnp9!)z5pym-$TL*eT5#+-K+81~-IW5@_o z13tFnMb8F9;cD~7JiPMEc_=(mRvs==d5D)Y=b>=vcw=%_oH>TV+hN5Jfd-}=F2MJ9 zH+FFK5qwC85sF1w@e9+38CdQ!TNI^n9!=Q7Y2HXC{Ge_M9*n(4zlMxekY#}{tQq|8 zHaaiW%gv|Nib0_TY2yYnbx~@mRU&1($ILnp2+eKiI7uyOdWI*A28?O~lJuLj;UVe8W*hs@dM*701(IsJ*C8n66n0B0rf zbjWClY07%tnd|7Wx#aW%nT6}6s4&$yo-InXLE)SzDqi&*G$>Z;Zh@;LWapqkv0fDo zPE-{rUd~B_Vx=Y;OjH|8EOO0qH@07jT(cznRrH$W66Aplt$9@ut-H<|tvkz%yq#r@ z*3C9^vaQj&)6JaeX0$F$pakD63|@+J!=DIbM5;Web`}VQ-NB)vB7l?f=$vv9t&2C~ zBw9V_&PN6C=cOppgw9mE5v_}qIF8oMMk+_^>VPulG!pZIZ%=BdC)J%#<)+|`LrJA1QJAE+Ct6JCNkX(2 zZ!<-|ifCQo+jK_jHslsWKL$}b{&3YBDOa-RDcNWsp2XaUw>3Kx4T-KdqIC(!=*#V;xpKiNFNY*+ zoOS=fip3(b0Xj%oYrVvRI3QW*P2BT#D zDDkx%tviKkA`Wq!FKWyOg^GYlA*9s#LZrOf9hJHBI9eBUA#NDuU88mD3jx#SZ6k9- zL>ud2xIv6Q8HSr8vt?r})jC*#3Dyf>z!0Rxr%6sIgG65$1Z3DON9$g#6p_eGlSQ@e z<(UjiwC-ln8lrV6AlG)BZd>IF(}w3ZUU%45C0@5%Yd6Q1EnZi>Cse9pX{DAlUN=|B zu3;M%xeCyIH(qV3V5Qxg1OVH)n`D$qg>Q}Us@qikq*Ya`hWq(83k)cP`mS&i-MOU2t zCU)QUA(-?3E~?g|L(ZN#zB@uN=UhhBB1%O>)s|*Fc5#w(7Qvzy_(Cx1Tt?L{*Q09B zwa(F*bCyxHf8HK~QQ<_@R%qs0su7LRSwo8hn4j@=xB)&G5g zvKe}y?7yoWRB^Vk`pm5VajiqJ{eOY7@}r63*{&Kuu0k)r^K?<8Tjgko zP3J#D1j;UxfwDh|04(kLU(3?&1{~&k0IWB1(1EhptLQFnX_99)!cCzq<}x~*2$a3> z552rMvYD-19F~-NjO)1wnmy9M%~3ubCkWsi&Yhg;aFq8#uCXbQlx^O_G)*jkdlndyBMb6)j$>9odg;u0`0vE5 zMx6zQVa2Q_U+B65KY**UmGN1WQf)2Or&vfyP20k*X~Wiz4RF;dw5+k$s|VxAZCDZX z_-u2b8A%72+M=j@kY9EX^>1ZVFh>P{QuTQx4DA}M&P@_IQP=Tt8=$fgpXH5g{3B0ITkwvkBKqpVwH5My-6q04YY31t3-|namqif%>%u*|?_su=Al!55 zJ7n$^8SeSA%q}L}a|pnMHz4eA&(=y2d${L-Zvi z)D;6x(oTO0{p8ZNMnphMt9)rh(y?-$$zAXbS+4e0wM!!ai;P)#O4VM*{}1JA?*nR7 z)6ca9_-%^!S@hoQbM1BcK4!egABEp$$RA4Y$bW?1{b{%t^V3cpAGqh-c&Fs}APxorSSm1H#o;wvw$&>p1b zvcoADzqd?;KR0C*2yXJv9XPxt5l`&_hTSPVCGyj7Jl%^YTvbnrbR+#&SI`CZowH?9 z7Pb~q=_bnhQDkMhWUc2cqmr9&XuG3vKQ|e&@oroVpMB}lNI#L=o8mMC!YX!mSW)=o zG8Ys&7%1R@&L?ux|2vg~pim>JTA2xmh@7+<$%K^8ofvws^=0$EW%bqb&X3RD-sQJYgD-@<=ds2LK4Y^$_^e&#j zRI}c!Xn?P5D0EG*KDA(KkG6O%EP&3)^${NO}pS5kE}9G9QR%+;2Fxm3n8el*Ud3Pk5a z@^gK=Su|sJd(u+@AMovlbU_CFsq6TI{M7+%5#Y>C4R7RM+jvS}M-ql>TFQS(Y^Q?i zr7daxQvq$Htz?#4$(Cqa%HeJyhff0efYuU)!5L3VMPMkr5J?9C;7L9LM8Q<{D4-WR z+;`HcO_Km)SLHUT+-~+wRvmz^yjgbIBNv^(so2Xf;&t})+ tWK9>aMn9{7HvZEl zveYTkEv551RF9BNjGm-|a!Cb5TJ@Gat+bZi{|?310Y(>ZILa_Gcs{w*#E*nk16Jb5 zIDmluY3$iZOJSEt>gTKCfPHZ7RW7^;0KOPrtgCOxX%>uyh?Tu1FCMs%GSXyQL`{~0 z;yAMyq1YF|SyNDQ8`M8-$X(Mk&D=m1IVBGlMF)6cv~qEF3Z5Kz*aD)3~d3!DkuS-jFy+ zBLR@lI_OziJUyGZgIP|qE+@1zB|ZHw2-Wiw%wmN5001jJIv+jiKxRep$h0+U&1z1_ z6i8(9>lw_Y=KjX3AtE*GvT-7cm_p0~Q)<|S?>poM2VSUvR1ErRyUExRK-x>sqPn%2 z6-mZk!vAvnQmgokMcz`60$(we%DK~3-nJCalE#Wyv6iY{QOH|PU4tcT=Na<0oI6hR zs72o9ni<5zB~*b0$3KBi7TF6c6EQ(&Qgi;)9q7O5n$*5p8WnM=%OqmxrnWqt$ z8N0_m&QpPLqKjd$AUya4vJ@+)J4&*ZgDEF~`@h&Iu-bi_>!_9t<{4_jGF_D2pYF6| z`lIhNX=3wZ1{qtIC$vBf*+Pvkd1T@g_WcEgx4TK|9+WIbVZLGtWY$#xU)e-Lx~pRC<8;+i76#`i_4c0MWy z_|~OrC(B1n(wG_?kaNn{(=OTOGBn1>Zu{)*1K~Ra+LJ zvvM1%q=9_3sHlZIS}Dg)h=mmW2FKPk7gGDn7T3buCuIFaZ6`X##0FqLC{|Sp#IEZ;?L@e<=2OM12=vqpne&ly|7hg)OTZY}O_{DbE26 zBL$PF^a3=&(|S?~)KV%t1#(j+B9VnUmz5LBU?g3NMDYZ}<#b{jDw9Hw)FbcIq5;!6 zLnf&v(;Mgj1@c(`aoTIwn_);z7tDLHP> zMPD`l_xq}O5qnjKVxnJDJm3?)m70#d=b)tuy zY=CJfgQgPne#_0C^tZ*MtVu4lX?F|P;b4I3Yxn3E$s2qUBXnNhzq z8u#iekKc@WZ?4RKUHnGAgkN?}RG|Nd1DF(LM4R+B03IoU#}5@QpJ(yw0-XH>0rwF= zTA!MXKx90AU4SDBZUt~_WCmg?p#EGRd)8X^%=e^6fbFnS_aCQZ!%Fp}Z{;q4(?YdW z^U)*1wFa^g)quXhgSJ?w`zjjXZY9#XoX}aCNB)5Q4-^3@tzg$mq(_fh#oS|=w%1iH z&JNZJ8>6>~Wa&&{Kc7|@fz*I@;GYKM!h2Q=w%)-5#fxN`seal{i_R)|qZuv`vkHKw z*Ta)eD>=hi^)50o$zc712hYOI0c{E%TCREaqJTD8&l{)b4adWkYf?9-`Zfn*cjFGs zGC1FpT3SX;T?x<9eGIx9>DrxmL`5C}0i~JBphXmnkp(xWrc@&OXr`wd*|1b*!qU>H z9e*0OG)o+zb-hrX%hMNJTq zOE#wE})o}kqo_h=NhmE)Uu+Qd=to<49=g?Uy1>|Qd zz@2!)NG`v@sb+f6^-$y1l4-42+}Pd82HGr_!H(60^YG|oG3>5I13ny`?B0o>jW|02OreX5u3h9UVBt2Xc9}XIJVVIM)cN;`Y}8A{7A!bc$3Q-(gBMcLwoZ z?JA>;S>pm^fW6|%Qb0w$ABUkwMb=S~RoO~2!7b;XIPJMo-a?7fn1b0zc*rv(G6=BX zu*&>`8&!ueNN_O{OmMzASbI!X7)%jGP3ZF0%JYK{+9CQ{>f>z%!ttIJ0>@x8dx0n< z1fQW)@DDxin?-~X$=X9GL^1Gqj$9mIwnr}>NWXMZuyNFu_Oa0w-pCg@pGH!Y*xCs2 zDnpM!qu=0n%mltvR~s$Mg1hL&xD~`%!sHmF=dN_o)whT`>DE&(-_=VO(lS<^mJ?Yf zCf6vKRFatJ0QQJY>o{944IzCE_Z>gnmtskrA)qXN$0CoYON&JWh_n|fAn*iGA zFG?!}P)ulrC6Qv-%;rcDn8aS+Z zm=mL)u;K6x3zQXyi4q4z7bT&%;6p|g!G~8l##7;gpK$m)R^V{8#G$#0!z~hr-#%p_ zHu!L#3l52dLlC{0O=H_oW5*xT@wimt5oO0Cdm`|7T;efT3d?&)GCq!Xf0V=G2mNEE4wcGw@t};2Z0q9ArCQdHUYzro$X2Y0vZH23xMEMI`q&R zc{!em$rti3cbjj4916b8i~vB_38xh*f-CA8U>1ufD%SmDQp1gXnWL-It6zWhB&Q*a z2W@@uJhw%iN)0BkwG~-kz^!|tu1tsgAc?0BA+N$J6D4$XG6U>7V{4s!Xo7J4+}~NS zr72>+OBm7AR5QDUo zD@_x%rA;F`yFna?>D>mb+qJDWUT6c35=ptxFZltx4an}1Twy?)7jCFCpv{(c7qng0 zrs>MMZ8O_EvAy=P#2>cR&T8}c#u%)@7^C3nVP&yfu@;WfwXJ;F!_U6)U2jww(5B_9 zX#Afx(%s<9=Hi+qlQ4XO?llm;t==<+v}vm|v@p`@25k zxxpCsWD~GJkg|tZ%m1e6vQ64o3W;leVrZdF^Zy+hKwJ+zDTlNT2{PJ?<6G-_phdsE zm}d;qp*qURUlMHSTElLZv>7#}@C}gixew4pGSz1! z(;18+*#fO6(=>En38dFOa3mL8PSkAxHkZ%$9bm%c6%yz5Lo zNNW_4{nH}uKxD`9M8$H2^BsSsxuCEsp9zgAKssx(MdZst_zP(ok*RA%Y6enu#lI*J zQ@_wU<)lGvVRAW-la@S22{@^6*RKN)z`tQGi)JAzVcz4o)QI;#5M4Eh<@yT z?lE4=RpYgO9G(q(Ejh1X4+(;_uw)&r?faCaCEC3is@=hAa z0vabspjFa;qwp)Xm;d}nbPc8G>SEs_6FH(XnajbJAt2Plzrm*%jUkayXf}8asv)0B z4SKmqzSN?Z+ay?Bdbv)#z;OxQ5PB%1d69!(a;mHeZaa4TbnsaMBNLF$rtJbTFyK{k zmgi6w$XP*n$sDDxi9ekb&%wkvlbNlN&dl6<)MVxj3UFn9)>l*UOtM6&{5~2?sl2P3Ex~rOYeNu*s zagav8XnRd?F!h#PW6MkiLS_&M@_3{CAO%O${aglRG`e`W8J0(*=__Jd9UmjYV zCP!Wx{n`iO!6RnloS$hHw4e&pRYflNiBeF_AQep&=}Km-aIb`3G7*b~N|~isOTXS(iZ(vBabWs`BH_oF8B*iMcir% z(%27I6#N&$Z=mlpXm37C&IYPB-d1hP(A65bViBpdLsLcM5L-L98tokV-irRs2F9|c z^)lfCm7W?pJ>*a`XtT}MNC>~3NuL*%d&0^4M2r}PNCo6mcPUdAtXddhA}FVJ}a~TMSyA# zVuKA;nR?Qns@)14Deofj8+j|kn2YHtf#`LZFm+c(EL<6DNvTFI=2TWWEjzOl?>=l^m38Ecs`2mNV7EgGkaFm|94bR8tv01P3;re><)fD^K{6{|T$PN$YY+iE(uMry8a32?^Ben|ySdOBMJOWaP^jTgNLg8NZ}Yv-kw5dQN#g#EaNV%`(TTe#LRPMc`vRqS^y{Ly1@~Gi z?xPg|C+@O-EA9o`28bSz{j)?YZ61fYESEM~>ygq84RO5@&w-fhcbgJP&b7{B7QBd) zm09qjVrN0eg49?*k`A*hHOuq3Wa%vNQjzplGE$h&VV0DK6GxUpZx~h%;GZdgxX?NAcX@OJGPo;IYL(vaFDoWGlMK8l&uC0bZ z%xF^GZ7Ma#aM*N)P%jkU4c_$;8pf&%PNY6Pu&tmo+H=iwIBh-1ANGpQwv}VjyP8 z*H$i_WKGM0UNo2L?I$jIlK1JOLRtJ4U25Mi$4}puT7Le)ow`X5Gt-Z6t>`POD-pba zm{!qnd$W6z^SnRM3_lM%)4L;BCQu`VYRUD95gH4#g=D~x??4rqznpp9dATS3WzJs? zEjI8NnG5E~;{$IG0*kW#GPzWRZHT3{s33_yl5=9Os)MCA0iTuhIH*r>6aIxV;jscjszj(wDISE2&TWYfVe%)Bz|gn1?qEE2|o zAS^C0lMw_bRjaG){;7p|Dr0lYGh>k?nQiYvDO!5BG5?dsEZ02gX(*HH<3&c&m`rW# zK$r&v0QEtac_`Jpf{K%+rAN<+bk&E>`$9Qyvio1*_N{y$ zMtpbpVaw5s5i@(6bx174_i$L6KhMdEQ8EtcKn0sQp5$KQSWL;NZ`eMYtKvOJempgHGyD-ICDuH(j-cX6y50-znW*=;IN>%c%`{GywaxM zU~h)*qKx9@3dfIa-nWTQ>7xEhX~)UYM9riH@xWoZG(_j2 z4eiGFh*b%+{bIT{zZ4DG2ewdBu~1UAq@ByAmZ8LW%(U#B=}F(i3U_%cU#2H{6+iP3 zk_rt&h)oHbLUSzT+!Pw>=`=9g7>c%fI+V#KS+Od{4rwi<5`bcC^gTKagu}-UWf$;4 z(Hiw-I`HE9?0AX#XsjspC3Agj4@)oXWACzWTz6gx?J9N2zrzT3#Hm*m#04Wr6dJuF zL}8*T3OpxJpGv*Nx=Jg&h;1MHEKvx(Y7GRJzbf0iB zRN|vw&GB5FF*D>dWftHNJj*|DK>tP+4O1&xAS>D&qzcW7HY{Mpp!Z42C{Yprq^8WG ziefr$vZ~c6)6xi*X&1Ouov}eIM#D}>IIhW#;(}7~4#rgfE=#^ts_gV*gLXElB8@cRO!7O?njC9`4sPVnYxB&`qYkoGj4X6oT&FecX zg_|jeNUH)gX#=YgORGRZJ#EpeJ+IU{UU`0wpJ{8_8~Ln!Ht6)LE@^5TP-*lVY)(B* zZiSAi?e--a1tj^r+81c*&d;H^l7#@K zfOcdJbzXT-3Vo~$)U}(@idzo}@+WY$y;l1(SGR1?@#&-;v}a(U`ey1T;Y_h)P~BY> z1UvJysnmS3W@7T8xkNP%%hZLbXeMv^&b>LE1nObKFcTWnkc&(*3$?#i69=^6o`6=! zj}<&AohX1Vpndpd1B?M*c0fD6j%9p!Z}}nc!N~TA6iY-m*Y{A&*ibwrf`j6aAIKYh zzDSAmQAieWl&@L%ZXjai!m8q%^RBy%41#+CuRxdL$N8{taVK#LW(GOUz0pnhnNJtR zJD!6cQxSZ$7vxf6t~UuI$m58IL14 zmJIxKRMqb0Uil~u>f*mM^2yyBS{-!x1qI?@{ zJas_=3Z&65q*%W4Z}3TUg)YS^9AUR>wlOB>3l=66kO@rBs~}Plol@spDjP(VNtOSW zER1(-pT)gTg{Yw*3V~qc-i%Bu8lZxTSd?SMtLp)xU69Ve)JdO$dfIiJ1 z5YCNZ$H?xx53`*5!C50r!nooqtuK@;@J9_&F1 z&BZ|zL-~h8(*xRfm^O8p^X(q{FupRRn8LJO4fKj-kOB3PE)qR(e!E{roYlKj)F>m851u=`z}t- zCo>h@kB?RdkO9cN75&;NCy|bU)3;dKkrfsXn+65&kK-W7KMdp$#{)}l;Maz#72mEw z#=McAy+)!#aTJPtWFv=RB3rz!XUEedrNCrb&!95`wB=xf_XCx5rkb>cT#1;>-s9&u zYC9H6+^fwInaa*!K-{X43R$xpbLVV=+~%T*eo7O)`Pul!Ni=iMSv1quXeL@|CW@aG zN-CX26a9@QHgJasW_>O@M@-^j^JOBP+J?|Q5_737i|3`;U2zHq_v#pknP2d-y#TOu z8Ev&=h?bzs&QqGv_*voQiC0;polz5JcdZn)us+M;XZ_$w=(8{p?hi&1Y`BcnnQtir zm&CIxNWbu*k688M)W>n`%%I^CYCMax1q=u=#Fh9V%Mc&G)oq9uysVF5W%!yyyz472 z*%;m1o!)iYF;EYltdOcCWJiNb1WuGo?2wG zJRD#;$D3oK%JzJm%@Y+J`!EQpbbu2Wug3f8CkB(kahq2qEyjd{Q`+T<1V)NBD616a z+!v;ne9k?z%xswE+%Mq+!kqgJCo6OAo8%ihi#hl3CUZdYh@<}^?|#V~aoIXMXfmWJ z)*G2^Wb;QRy?h1?>^8^nBY&YW`dEq6+^UtEW{$qo;E-59bA{f>BO-w(VTS&d6U4`| zh5Verkv?P@!aUSX(XeMAKhMlu^&C+(tARH})p(YOOp^(6VHu0IyxK%j!lL_y#a8_E z(iRnTX1k)J((WDnET$K3;^wnxf~RV3;xu=ZP&~)^S!v=Ak$EOm@DySY@}bho`}}O0 zHcZT{GjB;4X-rICrI}v*tPm6H(nPouD2oC&QA=r}IzQVesc;s}m_5JlMN{_5dq_4lkJ9 z;^Svpbx1|fS|;d-kv`ootb5 z5uLMbUAHf|^@o+#ALM7-__*&JU_ge4p=(aE00@otH$N-%9~7CTN`IK9%J=vH!o^hS z182v&0Lo4(xjE8TX_(BBox&Wslam#5Bgp(00Qo)HzMOJRc2L=r!n zdWD%a^30ntY!xQvI;Ewi{Hzeu@XT9LoJqd~On&{u&q@>DicAZ?!kyjCUVl?*;&pzu z@oVx~G-LLB7p0j_{H#!N`&l$mT6W6D44a)&gY6VL>@cYqt+K83og440c2hLv#)nii z!;NegMRP_5gRp2=+TTt!MR6`a+vMbB0bmiwv$Ys3u8*4)3|jKDB0^2hLF>A`!u0RJ zan8Ex+Q!c|`ac%{rAohUuP_FK6$}RQbLqK$!Zb||xSJ-iuBOQqAx)FuMesJn#J*!% zA!H2vbVBz*q;-kXeM5P)4Ivi(XXojk*Se-& z=bGBeHPvvP<`uLukv3B!d~T_|?|;~Iz2qjR97ISFyi5ks@HQ)9;IiT5yeS+BE07G`(7n6dt4c)}U27fb4=rn<~v7 z>@_gbs{^uVEh1vkP$R3ba+t^-C1f#Gn8^ORoTL9!DBezQ0Zil;+PujvSorHs%PYyD zX?ckMRW%USTheJMFlo`Vu5@pyQPC}d!BQHjJB;E;qe$I)W?HspOA~w26eI{KOq)WA z+@IN;{_U9yoRjkwaTqK%8;xi}0_+mw4kcui$blQCW5yg;^@>6G%P;6((c>!d5d&de77-%i*3vR; z6k(Pvas&&hFS@1rW=n+~5Flr?5~3d?Ja%<+^|G+~u|_e-HlHxBX2+UEBbzwHU`yeQ zKf*({EFo(Vx@R-PLiX;&(3~v}*(M6IzaI(@*$RZLMK^BwBrIgtj17(KYp>Ej*AW6~ zj)<7`sL9#e!bJ8wLKgmk2xB;38XmGS#URTVMHDRteA2g=s|u$b43D#3LN-!G_Q{W# zv+9h_4QGoHVVQCKnZ5UIzGTik>i zCiXG8JMp*hxO*9)i|-dB49Oj|#KGMIU12s?6t&xg;e~~N44ZXFb)#WL7zQ0YHnM4s zt1x(;ufFx<2Sbfgg*$%@58Z1CUCTiG^dmyolX9!EkftxYGJ9ops8Y6a6K=tVa#6hw z`Mvd>yj|(DBMrQCY9J7AFZ}tDnydRdvh>M_Ps}mm6}3)J+q96yr1xh&J@Jkwz2yXc z7Q0^BFwOU}z_M|#9jz+vImF#LH1VZ%Y30w1Yq@0I$dwe@Y8C4u@L4-LG(LCzFsI6< ziaxH+hEL_2r|laz`6m+}i9``C^)05Q=zFq$E!*=Zx0b4wd!^bv4~N}SL@_PhcH7Be z3v1u**3#>nAG@bVch=k1n_#t@V@CoA%I=10@#gKno+lK;}!uFeP~~Pw0_Fg zKen~f4gE9kyymJZT%DQ)$z1-zQ$MEv`miIbi2nIzl&vM3WPWzIVM6+v#%^4jH}vN7 zcg&@Tx$=2JGJ95WN+w(C&6O3Ob_1YNvY$1?7vs~x9<7=H!bMC%#&z`NNeRS5asxN8 zqtD#XwpX?`fx$fZ#e1KubG5=UZJ`Ya%&XMO|6cFk6y|Bq+khJQGlh-%BhxLK>o0(6 z8pz7!0%jjtx@*27^LcP-mvO#l@}8hBcF*T=x&4W#2mesmEBg&h9UpfxYJ9mt;Y#EHdrLNn6bkz~H;Ghr zx#2 z4fma9XBBo16WzNVs_L*5ZLZ^V z4(PhXCJq(tE!hO`gZA)iJ$8eeIPCiS*+I*PZ&SpfTSX}jk^A)S=80M?JL?<0QuynS zdVXkeh;MZ%rGb%urJZ>?qLe|@B}t9PhF)fY*1+;_;lImIpRZR8MHNd=o8kkfc-5Va&2@a{+`HrC4CRMd|ZaR8TAU0g8uf{2W zp}YeZ&R)>(=f18~kLYnptr^n?8?+Q7RqG$OwPcej)>*UKaCJ6Qi>BA1H*Zj+>ICkD zD)VxTvSNm9t~wFXXwJB<9${2k)p@3Q%Vzt3Y} z=`H9!^GdzLr$FE|F%*z~zRIXE;eAAZ#A>dTh8(sK9BTMIsZ+N8x`sBFnLgGSq1vdIb~?kf$` z?W0F+G}&5Wt(qvTTbouD3ldc--#Sg-Czkc3^!e758Av7j2J198rLwJ&A6hD(rk<<> z91J%~gSoC!nc5cavyT14mC7$4u~BW)sw2kKnz{ZeS7&D1XRm+a+shTt>xkVtt)Xd2 zB3djiq3&~BX-Uf7Fxz*Rum&uqsJm32R}3xjL%M8jJkOPuyT;Ui>fx^yTHe_e9xZ7O zS^~2LEw8(1i_M}13oZW43u_MQ{O4UUhEV830%rB%#*fV{v)mPB7P@k#iz}ct#Z8th zbO*lCk>{ygh^O!rQ1=#oVdRJIs8<|9_rWaJjw*Zggqk}SJRYvl4Hy_&=(en!kkWFW zE7ebo|6%gcdM4F{5nCrMEKRjAKcF@xC z4cC6*34QvwaA~Pg3@yh_RrocpmTSK>-F9SQ#yF*4X6y)$mNi7nd8&*(JJXex5-wP~ zJQTWLc4a4St?F@|ZYy7Ys^KqQbHQ4;`Rnj#*+{fll=R{mM2jUXgQqjMg`q!__i&zd zx{smM*3`QE9&N5Gx-78y=K8Pj;xN(8BXseJe1tJSmSc21DK@LEgsZx5`-NtG`5)@G z^KN&grCww~qbX0AtB%50oW>W<@cxl#!TpyeEjPUGDn=!wrA{%lRJ?N3`OD_Gs@?ci zuTF2g#`yUEK7+Qecae3UAgT_?xceUvWIPI?yAwNT=>?QKVMZedeT?nvHl_lE&Zpt4j%TEM~3aQd9qh%T5|WS zz2%K@uC#odHKW>;-ik*5WK(#wTtT#0jL%o6y3)cPE;ms!hNwjme1v%7Q2x_xaYJ7G zZIP>t#ohPX)Z1n%2HXBG!=t4+(PCK?eEE{ABFLe=ne)PyvELIy)3Rtssy6cr*M4b{ z{NT$g`iP~JPz3kmUP@Nw(FRql2-ugq;xbeH9sVLbs&65xEin!|UUa3p9(gVrLsqXiir1~O*DyCXQS1Eq!(;LI1+UFR9dtPvr z+qYiFPTceNhf8(!9-;gCc)P#9{i=#=l*WfQgx4>zM2jU3ufr74FOy&b3rXXMo8udQTmM-Fmt81- z=AVc6Ro}UxoYA;m3iiVXWxgF%`2tt_;m7;?UQ>99$$q^Q!hCreto@H+P!+zqUdJW0 znG{FVAW$R1Scg2FPSjW?*>fMw{>!@X(7oTm{4XZE4vIgvVh_;o;=XcM1y$oh3sR5U z-&rxSW<^Jb!Qj1S?8-*@i_Bgryf92!dOBDi;Z6&09R}06@h~jZj@?7kGOtU`l`Ai= z=0;2ZIzPm{67iIgRoE>zyncDW(Jw919AY$!_L_cjSu*)E$KAf5+ea1uG~`zoZ48K> zUA}Mj_MPV&IO$nnJ;$`|7y6#&p2E4Ghlg%o2f8VfgcucCS9xr_mI*sVWJhdh)^AuG?wjGy7sv$<;n#inh0}S@&>|jagz`CotxiP|A=~q5}P0Eo(SH)Cz&)>(NULijJ5=8rc z3~Mm2?CRF0R#B8zoiVqZ>Nz8=m+Fl90oOUIBOc8EbXE1tN9&jhGN7%n0bww6|cNM^IsWpI&R|Y zVr@)9P^g7TOES@7@j?EaB4{}R9ih*E;MTo+=fn1oU>z9-El=GYnwB0n{NCa5PZh0h z((=}ecQ%^;*3G8Emsz2Z&<~V!{n9`PovDv?s=znUh<_qnh57a+^qt5LEd!H?Z#dQ) z8dQFnxiDGq&9=A6@nL_97A$0eyt5l*T2GTbS}g9PPN>m>87JkD&DZR zVWRu8LxvkT(QOxa^ylNtx;o_-p_?}i-86BlqLj=bmz$NDR^gy)KXAC}Yl>s##pU5~ z_YFeVvZx#WoP)bVs$qk_ZC^KZZ#&Rw_MhLlF6hcF-tp+0QM=DExZG#O6DyFk{ z#6=N(%*B5|o6kU=$$fA{x~_{bH(qk`$cTc3ng&&cZH@fUx@ZCQkj3lRAW`&?&1GLg z@6DGT+!$dFj`iId)veP&#PCNRNrajho*W7 zQEmB>uF+UQwQUw|K;gnwdW9>O-}^&T-QtJL+p1=}Qax3Q1KRv-3B;|~3#yO0-b z`V=br#|jS$tRL&zngBmW7R-p6-$*z!#QO2@b}K~y`fyL-w8d4vR5-gCKuO2SSiZA! z$dvZ3gmR#3vq9$E=E~bg?2UlAExstTDXLJBG|gv+0(V=+_j>To8D^|gK)c8e<;vc_ zw@Kx)E#&a$SqQ9`za`DPuqadk%K?WKepw~$CP1mpA888C_ZITe7{;#0NKUUNm6AARh)R%bEoNx zEw)A=o?~_tZc4jYCF(6Z6sWr4^Akh&PEiMcq8-YWtos=XvE~tB$t+MbZBz-Q|-mo4WZYSGqsm8k67VWp!9S`jul?I$G7*JAqn{Odme)CZ&Dt z5*rW%b=lXSzB9AFvKgwK#Qlt_7J!^SlW|vG-I^*+`8FW*3Vnf^kgkrtj{pP@jTuCT zDa46+nhR9@3*xt2zFtNBVLKFXAK1Lo1J4&KT-4gyp@96Tagi0HIx2#s)w4snVt*KS zv$20^(R;egxXaWOBR{lET|_cvS-L&(xR9yac%LH~4XTU>w^-6s6$4v)zzOu!g4k`T z>(t?JlMM*G3XJ&hs!rV$D^rWM0fALJul(ib`!j|a!zG{{{KAS8I7NZ|n~th8??wPY z%erjPl!dRbm<^g!LyUcxtjnNmRyF~fXh&w+U?YQGKgMf7>n)n{B-eWvpa93s>G&5M z@ECG=e1-0VSn31IGVM3CPdgd5aqTc-JP=-aqHMFVwoy?NGpd#nG0HCmdHL zY@i(q$j{l(_?y6zM-*Yb-45l7eT;zeOwNDXGOkIEA|mP<^%Z6s`JrX1C&`p$vGp2c zm1L^1b$85Rd6+V_>B`=}9b2hb_@+$#S}*^+iQ^S5XUf#<%bs7jVudPGZPq(v%F(J; z&k3}t+j;5t9#WO}5nM>AN+}aZ-L#d6o0fFDY?7I0C?;&*@^sxbf z-?gKkX_*g?7wAn=+`75KoTAYKbVcFWj_`JvC9P?z5nwJ&qLiq%Ft6mZYW?OWS3 zO@*3ohXV2)qE7W1uupaCjI~3#VjnM{Jd<);zQUEH+^j^UD-A4hdVR3?!N5GIaFy|GCZFlGeK+GzWakN1Xb#*?xlq4rv=*ytExMg~}>z6Z=@C z?H#--nrBeo@T6@M@!Ddk9Ylj9ZBb!r9)BhUz>kZLa7Yg3yxco)NNro-s?7ONf<~q% zUtuZBTZFShD422ObJCkWDGq>gRpv>>v-Az{26uyV0GvgcU)S5nAZ30ZUKN(s0*8&E z6+)TkIaoRq4VH|hwdv!}YGvG5`oQ!~(UUf~N-2jKz2U0(La;RE{(h~#zx&ssrF2s9 zEWOhdMyr(m(96Qoat~Nox)!hDuyi-E)Z!=Thz5zJTS!W^gcVMsOvI0OWEOI~jdr~Y z6o+ibDU8;Vl?51B{82eg7uZJcnWF^i$#pB?e4J_)ev$WCWrtdSpjk|=bD#0?N85(#X6s?#K& zhSR>QDF;%kgMBz!3FjD?)_|^pzzsUM^y&!;H_W+!E$X(4i$G=>bbA#ESd&HE0o`M! zn^>WL#k^_uZ(&a(KQ!G(9CY7`Ax3oD+%;D;t(0-W^LM(@eb=DgLnAsVJ_ktw=zcO{ z(9i#5x|&smTD|9Pv&66L!v&P;f*34yw5nx0fp#^xZ`<7Js=MZO8xSx#IeyQYR@W*$ zppCQvK^#{$JpRz$AC*t)C)3gbpiKb zlb7t6-buwh%MJzP_kY)O$g~cRDAF?34&{pdV+;kEy7FalkWjW$p4DI8?vhZau{iKk^Nu2a0Lc=G2KYh6Bma~IDK z8n|)H)P+;NpIGPlrHaGG6wgCH&MJs%0E;%Mr6i5s)E zIkLFA{XKi~M=>u?Qc-!v4h5>J?reC`oIJ%Dq}^wSawV&YfbvY( zhZfJe4(<8=eXio!Xz|S7-yYvCT7V#8IkSKFlHm}GNi|+{uBFV4pLbfDO9eB^$1SB|T z?UcP2_f}BUa&15m;NL%9eQS>-71=p9AoQbH8vkYZqY(cIAiJt}lGI&76-U$2I<7R; zwl@NzzRP=I%<%duQGdK^Lj_dL9(T0nAG-%CUGRk+%9X6Q7z*OqXQD2CES}=%`e>uR z!nQ_!=waEG#M2V5-QX@Ep6S*QEjHt-guRaYvbGz?O!2Jt;zuk2p;pCNmdp3*M1 zLxJ3zYo7Y(r`J_-kH2lB#FgGW0p*!ICB-7pf-}lIGt|frEztLnKwJF2-O#Dz?6Nr~ z*oQsA#ddMmx7XAREzob=m3rTj9~7Z51$x|9o(9P+RDu5fEvqQNG;pA!WeK3-bkpn6 zZis2m*qT634*wLVFx63A(%o%9=*Ydd=Cvyrsv_IW284bTS0ku$8wnu0+&W46dA@)u zj;60_xYD#h7FSn(H_ZL?>WSr4qMoxufvS$zooq0(wMtcj9mlq6A_Rw<{@f7C3 z#iqX9V&sPw&)y`S7Qfj?ej%Q)CsZFaU6QajCF~gC`PJPxX6oCCHLH&vw^bR%rg;9* zJMisFkGU!?)WW3YQO8jGxxJuepLOowE3a2xjaX^)d?gPCF&6- zbpd1_@=n(NH9Nc^U*3+cn0}Ya;_8r(OW$!;fxNqgRj+&YUn>qGz-A$&z_SCE3IL zzrSB4#rMoHh1v7?vxfZ2Ayh}Rxn)bKlk7w&siq5G+ZoO!2QcK1XX@nVPyc! zP-s<25rI0ql=xsL%e2Nq8xZ)t>y`JO+W(0O6J@jw2>fPilHZweYHtGqulW>`!E3Kl z3qW?O7csxNT!eal_^W@syu-vg<%k^$xX(`NeQ?_lGwz?*p@2M_dF^0Eey$zL5&K~b z3dUXiB}1oR-0VY{Ii@3Np?ZE`o!TSl)QM=WQ~cVci_7vd?(xBmI}%lC#@zr8IQ58X z+&doCGsw8J@ak3Os7;xT`}M~tXDo7T#?9^uFWkXo+#NZP(5=``7e0N5ty|%Kx}>cM zNV0ML-@1)z0`^a1UdP}_|PR)o;F$imkh`?Z`zB7gdj^?7>ucK!_oK$==p&q zRP0VzeQEOqOske=_uCEaL7^So@8sYTdIkK|B-D^3R0*w-NUFBbGwAg(yn2=Fw|G-# z30+`0-yp{(p+og>%UyzL6N2)-2(&R|!i|^Qre%3$rVR*!Xx3-RTmIE%K@6|~K@elx z+>?7ed9XKHSl3nwmBIa+#h(ijV9(UMJdLLXws~L`wy; zQk{hyi5A|c-&~THQq2mkR1FQ?+1iwpYLco{8BrFc^5fO3EL58^E7i(JDCb4w*p!NF zXm7ni25Xh>BGAf=$0L$En;rFoHXta~vESmK8J%3@kFD}cbayWDW~2b zoLuu($6J)jd%oi!?^b>$njDIMx}G0csXit_ls5}vNOQ9w;?bV7b*9Aem*7s(cYs*a`hVqpNlzY#RLB-R}3jy!i zfFOt}>Bl?IuWT9(DbsC05JXO&Q|V8}Kcg!;_P;S8*Sty-EP@!2_*C;h_8T+e{wvRG z`GEy-lLTQI*!~3C9jqI>I|rVMh&5C&uyuzifvr0xEPP;C_d5*A4C}sjzR=ls)|&>l z_e;`Jq8w!4Bnl8xZJgqf3#st5m39yv-_PLzl-YgY1pKie7r|%JQ_s=KU?r z?NH$Ev10B4N4uEEDCO-?j_m#GH6jaP=LcgoYhu&({A@uvU0VJ*dVXMQyPGuBvZ^$y ziKDgAj=tWtq^}y^66(Y;qc0s0JK>FYYMQ*hVQsa?@4V~f`;3s>pE^dPH83raM2ls{ zcGbh27TdA;o%m|mmYV#cLWyal^C5w0d9uzbPx5b$w6HBzolUEzDwz;27ummh_~TW| zzN!lMz-WzNCS1OU@P0$M>-GG=40)IsV%cCnzpbPHZ3cD~@61ay>o94MI2S#;Bh$;uz|tWCh>Eb(<-TR+Q$qLN_)g2#E{rD|`y z|C@P2^Bo%ybdq0EX*yA(Oa+kLkBTJ4sZhaa%DCZ3(_QvPK-7el2U0&>WhUw$pA8jI z_1nUKMx0X2R2{HGIg<4rgMuF&JW^9Xlc|~fXlp$`uzGeP^|VY0)oRGq({@22-IG)* zNqV(t#dRl+8GiJc$O9ujc-b_|VW{V*A$lcaCGs4(yB_I$GCp-RVPLmHng_wlCIB9GsVM(4UIXo>e|RQX8-b>N05+!j^gG( z!6f9r;)Iw|!qxpYLG{L##tZ(gyg1zfy+#ClK;XWjn=@lED~t>p^jr;oljcU{S$5iupi)&#V2O20ebiyv)5QTcg> z6%Q!o3vFWt^?c5Z>=p*(nm2x+CIMfpgI@Zd)bj&NXpJDD#wbCouNq5J{2k$O`o50q-l=5 z5fIgAZSjLG+M9`b+71P(8gCzY_FR~ms>ke5j$~D0P;iC^`x)wq)l|Mc?0#L^{!jJ% z!0Ne4P|w9RNj)te4`7Sw=?=?7=+JgO{lUOP#yC(@GjO8#oO_1+`ICtghQDLGz!MGf z{b7>m?iSGfy#}|Y&DNU`!WX_jJ+Iu~=+CdrTLujF95_>TbkW(*3Z(+K#Scn5 zwsmgnz>(!XGWF0#TQgczXj1JL$F|s&1I|2LH>=FGgA0vQtR^0&o!r~E<3&fY7ky;I z=}xUpVlUZ8)8fEddWghsS;+h=LeNt7&9ARUFs|7|ell^zfe&299cd#Gi>P6y%MiYt|G`ETGMmohwG0FC?#ZR z8k%B4_v2o2=>ALSmc#0SeqiF&dj#&D!{;KJp5~LyHgrG0;_=`G#?E0Aci9d2iH_*9 zb23{@=!Qt5>nd+Y_jok{U3O)JI(=$GH@7-I-H>JkjwW=6O#AWC7vmh!Wix)gOz1ul zC&%5Igsx)dZX*$0Hr6WC!AW=D3w!e0=YKQJ@2R#6Wf*(k)pfOInzk7jX8ppyBPtB~ zmAh=Vy!-Z3a_B}9x_6k-omrK8SX*>l9p90CRT(Iv%=rm}w(J?0itpzI+G6_7dw-wk z_L3v(FZ?p~otNiN&~@JbLr*zc8WAm)Q*|j-I4w_?&}v{GnNQTomuHKlg|B?n~T*>?wwhM-E}kFz6I+^a49ien%63~CjpJjJe+(Ymr-E_q>$DLYKfcpVbti^#nu(` zu4ut`XitHCXdw8vy{EMl~ohZle<&Fs*r<;i~BO;rDh?GHCFzKW!kg7#nh8M~5S zapW@FiMsbTbD3_Q-`F*sGOr&D0e&L>IR}*pTG#!%34iD zImUDAQq4Bza-*p>sdbsZThB1WseH(b)E0}7`H1i@arl~=js`L$r3(kHC06brY$bw2 zM><#SU|h_b?q z?`Q6fe~w|82voUb)&mPx9c6g%O$e<3gw^`^3L1SiRfEtFjZgvf$#^HPp@5xEU;cJAg9jLRA@cPNoip!7Q&)?AySz0Y&=*0T#w z|Cx2)u-PU(o5+jgp=Kid;~ZX2%kJX9l1i2{no*t)9s8V@(3Qtg#TGFj*Sy$HT3F_b z#RuW4Y^<=dP=ayf!rws84?MVSLQ$&aZuhcfd6YUB8zwc62#42+6j_O8UdA$};V|}y zyTvgly)#A+Q&-h)TjGDFRV8Ee@OkXj|D9iE+PuiJ(16*AnbLH9;%QbbLYiZTTX{wQ zy8piWuAw^uAa%1&P`5FD%BeSc&RG+`RSh%1F`J^In<(iLQl2>(smzh_D zJse07yDfg&|AS5JJbvnEYXTpK6OhZ02YJzbl)^PoV&!_({js$y+Et zKPy6o(U)s|A*?~(FKxC%K^w3Ak&_nnj^W$9%6vN%)RCPa&ouAVd{%|ZqigEmlx-+v zJzKU-Bg56~yj2oI(~yu;W|cfLJYWKD5=SA}9qeS>OIJ}%Y7{P%hy+I2Oou@O%{C9Pe-KCb8#9o4z&}9N&Aa0gEHAM9K zqH^p|p@L~g(L+uKt0dSPfqF#!u;;nP31;=^ZHIz>_%M@j*5fa8#6SDpa0>;-wtGmDIDPrB`7~qhpOVV1E-mKX9)SL%j-S;zRU> zr%DR%Rc2aObA|hO0{1E-aN&5MwT84sElY zKX2daAiatc)NSllQlh(jeWUGsU2XhhAJwEBSc+Xqip9-Re6lc?Vl}M2n8vTd?KFX< z_|dn4rTFyGmPaq`b6mM?vj5tF-A9d+F?#UvUyffJFJB&>y5Hm|K#p~wOXF83sM{#T zF_)Iti7z%mmtw)$|L`|~**~;>^X_#jIWE}UxoQ5HuTI=%_K$k%i>QS^1!KPx)NN#c zi?MajjX&|cz7FT4v3)1y)meZr*X#fR$%YOnA{GPNgF+l1Er2!dK?-a#7Wvaf}_3 zK~)-u&NHU!y65d_|8z2oeI74ij=jZk__F}A&&!C)(ME*|rX62oIBG|jy%DI#3vcw; z{_SM5dK`Poh6?oKWQjuaK1wp{M~VuShl0H6lx=9pWLvgPMf#}OdFx313R`x}n_rJ?D&14}Wq$Dwvp4m(Qm+?_=;ADn!frAYe&j{F;JX~+rcHcByiPn)W> z20dj+v1$6fJv@M_zE0qR_#s-Z76UaAjv; zDQ@W3|NZNay7VqU3;5B0AAW7#_y((Pvn@`oRK3Mp@xjJfPEfZ|iWmP}_R;e*`x{dH z@_sofE+8pdwzsZ5&!xB=pJvv0i{&$Z7_f`1M{TzwuoRPyb)M47dEa*R4a>GSI(?fL zGNxDmu+M?WbwTjY1LJ;lzg*4b9-R+|8?=$`eAcRI~h@Y&pXa; z{M$4EeLGy?^s^WL{P;#t_B%k`M)o(Ke*L~O#Wv_hRB-L@wJk9F7k1WJ9EcYV?#{)wr+=HJ{i!Y)8`F>NyZ84HcIB#-o^I6HsfPmGX9fw zH0KmJU|dS>&2mf8-ai~WDSo_NtV zITyP-%Ju7oAA@yLPEfZ|iWUDlIK#Ky*h}QER$ESr?~@cQ2k1l2I!f`K&}~ZDFlj07 zN(n5*T@N*x@adRhPG0f>e`L{56Q8za{l`+Abu_$b=K1%6bW%=Gw^54Sn`XY>HR-Tn zi*dE&q_|m-;v;9c6c59*X)X|qK_J5}52e!lv zvP3#?rZ2z0d5T-&E7s-rbvXLz32n?;u*@#GQ|P4XBcaCarJ4f4;J!)Nxjt#Qfj4|J$U$eOs#fTT!Qr=`Zj86owV;HS=GtB1iWDf$krVbGipv^_LAKvUmt;(_gl; zHL<$hxQXtfpRDLT<*NZNT?9$1DoBp&~m!enM*W9{hj9^p{gtA5inix{? zvkzYR!(`mkY(Vh;>nAt;;=^Z5{$J^B1A+&6xy$IfL)%R<>`!@^1Ld&-SQ(ndj!c{1_P%zC5}0N<(VOI$k7?)khJ25{H*teC)`9CD$ISa_Bsl9_zmC z{dV$a15MJ+iLy!;eGLD;xzWdXmAy6~oMhtjF6J`D0w9p827|J>Jl@@XI%VUdDp7PZ0AI#{DaLR~O*pw*M1YaOy`#7O)AvKX`~@V*%%X9mD4u zgJiznz~r+F$b#Q_L=}hyys3Q#3qtOcW5LhF0?V-F_z}*6xmGRUE$|C0Z7dMnlEDHl z!b`e#Y6=1e#CZB}oWQt;HJ@qtIsZdgDwGlEF9J2?RBFN;g4hs#G%UZ=7guw+$1aJQvvoXzh$4ibf}Nf;-2N zGCH9XQa~>5%TB2EQQvhzxp@7ZjeiyyZA1e8cX8jg-gp2m{w8p7_F+fMVq9G2uxUs% z1dUbjuY90q+LUHE7napKL57R|BUs;%q2`1@&DKMXI>DSlTC05O1p6SV^F3!wC+d$1 zK+O()T8Ht#7&$sw7WH@<8|{`=>Yr0eMBLV(I&o!Fg>~D<^fD~#HQXO9!^Kkq7bhHa zkUHJC5oQt;jiF2`Q zfw<_n)q?Fc{p&eaVGv#PpT~_DGSvJjP;=-TM{1a-`PB6NFV&r3xWEZDf;Zl-FIMlf z$_gl>=VyW9>-Hs4U#x?F^4F52=5K+TBF@w>lp}cXCLhP}JG096Y_->|7?9GGVtj0 zia^bXuQ@euqd84ypib;&%VC3@sNpWAlpuhDQKQWPt1Co8|7g&-Mn5SOn8xb@jjw#= zC^2^CGn*^FP5&7A)kKpi7>$NC8Pxm$os!YNkP3GFOWE&84b#67!<{6?1C;Xrk;I&+ zDJDrx7*S&x_nz6usUb@+=^wWXM|YN27Tg)n;{NzrsZH~?CHPiFjCc9v8;$x3qnid9d8v5Yveey zliJ|T`znPSlJ`&4XC4B3i*iJZ<>YT%x}#k3Nz0Rq0?Q=;EnokW_2);$yX)ra|A5pc zJ*iSwZtl5~?eKB;2>eRHq4OZ0d9Swjn*JqHY`zOgjR3Lq>Cw$!UNd%bI}WCOv!nYw z6XNzIl}1xrt1-R(hKf!`Q8k%fm*O=Qxgk5~Pj=tks90%ILtQ03f;3gsY0V+(usvjz z!(4yu8|JFN(=~?-P=8BuBy)RkGMnzvQQBGqHKw{%GQZhXU@{k?sEN!?cr}q3Z|0wu z-+GIWmd^Y`Q@T#Rfvt2MR{_AS17J^f910I}yQZdf@PwT*c`0{0Ucx#f>z%o00cNJ) zyABX+dQ2uL)R>wb>RrUH+)a-;LZj}e9!FgBzp~`dRr7J@1@b!|a?M}N@-q|DO1X!e zb9>IYL(|-$?5}4p#{h4>Nmsowhulj#J)5?P!5>k9>6%{T@60OHJ~WNMt#!2bHCB-W z&;!4ss2dc}1-_u*22qe0lNm~QEJ|~2NlT156pD-b75~WG++4z5O+CU>A4aOq#jE1E(!tB>>mVlKV*~r*-k@1 ze`qLEa~A9huURnlcKAo~}hmLb+ z{gcgsr7QBeT|RIgSQdOHlhDJQ;_^82OW_t8e122%)61ehFWkX9@m)YgMyCgpPFp4v zo=|H@pc<4Rm1!M1zLA86^GVeVoeHl~8-?-FHL22UmL`P`G^o0^c)Xl_h&-5|Dz9tT zhNH@xuZTew(oL9EE z|Ik~%Pcd-bGp3-rvEvJQ-B?FBTl~;;URs9F{F?s+1Lrc5IERpQEyLS8@`1DHgAQz! z)(yTIPv_87-RLLz-DnZ#r+BMUy3s<==ey)_F2zP|Ccp9ib8@;N;{49%^19Jg@Eb#U zX&K$%Hb@^QQ2BgulpM|v3Y_{YMIPt5q|cZDGy2tyymWzZZdG8Mo96>(kouaFJnP0=mBLw!t;@^f9NKwi$*v!-F>qch`H5#y&MP;|+mkqk8N^G=*b|SfKi{GI zfWL>!@wpKB0LvIAXOle6b%Z``JufYTGuMp;2F{O4;(SvWD>lss&SL*?^;2nm#+LmV z$J6PyP}SFZo{{6Th;t%uRZ5>l9}pvt^P~;csz3R_Tm$FB!wQP?x1SKFTuJZK2t>kn ziSdJv)et{YV$>2}=&fRvSMc3@G{%)E(*4BRrMn}N4N}hxl_RwXnSo`nb#kM;8Hn!Y zU0zzo41{i_i6qYPLeS74A2>G=N}o@bHiKngGQLx0@Oj45a(qr8hhYgvU*@e!b%mlj zJ;qAAW)_lcUkrJ!f6P@{n^O!n)gm} z?tH?B$Z=hyx`;~kbV)-VD#&g32Bs}-yvk1{R+^_ zB|az1mX^Ln6{a(lKGsM zmXQqmfNI?PI)(oBk~j~h?%Fa-*XEXRR^)N6%eJ&{GjLwqS5BM60A>EVTjBE)ytE9T z`N7){4V-_I{3h~C#AnN@%+K#}3n+NZ`zEVFD(2;L?WsE6K`p?Y@@|R8?~N~H#1#HZ zlHXHaO?|pWrOv&3E8_WtmzEKa(9g7%#Q8A+=N7kw^Ubx4Vi}x^eN+XX?p~>j#y?N; z%gW-wel~0MRzjD@Io>j%3p-KxPMVIlgi68J)4v4jKhhq-is(CWauz>|*4nTI-k1|y zzUEd`Y5*@SBOX2jLN^eqecoS^pJo=%f+r+J4LjrM7^PXBmceREf!-DS~ z&AI!5qDFr$A)?`*o_T(Ac`qZEL?ls!eR$sYhRz|0B0?+5vvX_Es^dT*ARFWmkg=68 zBOt5(wjNDweE>?5I#%5kld@9Jpup`%yn2;fFKfwV+T^le72>aolAoy-qQ!H}{ zZOh12jAg!E&1=vGi$Ubdz4<(Y89L?~%_wx1&$g|Tc81^zetCVmewc=BW zhMv9fq$JOTP5I+^t5P_NQyPurao#h(;R_E`r;oCzeZ`kg$l)xG>9#LtoRY%1kwEb@ zURs9Fe71a`!Dp8w&Z0dRXRW%DR!aIo5%2V6jOsx_yAaC&O&*#B9ra`7gd&=JBu7um zVa=q7(h~5WSxUsYW^U*z*S8HC$vNd7Lr8!dirB3)E|!<@hX4Th4t`p3hRm*caj8#8&U<75Wn`J#MGrxh-{7TX)Iw0@I+8ex(~Q+wtMb!~BHq6)U{uRYGuqdjf(HBU6v5N9 zXe%ck(Q2D;M5VlAKN62+-uue@f?L4sHgY(N7BGXiDur_o8l_nFr?i#FS=d;9sI?r< z&kB1)zL}Q~GZ1iIz)Q=Rfq-*_B+g=QfA=lneAFkc8v@RwTFLQQT-6xHTb0s{r%9i~ z%pN^b9%tSQB^lESDbaE`i~9V@TzTC%N;q2<3MTNL)E?%AhsBwVCg#0YHeYAGk4BEq!Bog7gqm8wnii57Qrc#gCg2xmfuJ|>5= z*n#JeiTTc!u&JuhEUk=$>{k2t(;h-dPna-?1qmYFAbKXq(yp2J zNwzNr?6r6eNf$wo%oyX6;MtES5e2TKPt_WNEcW%BvSG{MX~xzbud?$uTEUzee30T! zu^XjVnTf(Up(#~b9Wxl_@lP{3RTDe$KW1{G&lQ+$AF4HMkYk(Lnd>gptIWw_Y^xu% zd$f%0yvma(C(AMJP*xZm+u2l(V`51BMIuvlse!DhWK($Q;5uR<)?ZcVoz6Zz9KH5$8DGsua#H!r3yvako6qs#+L0fAFvz z&f;wBn(2&FQaFoz9>z<{@R>*Oiw#x2)VQEHpG%O(SzNUKgqN1VnH#<7DuC9KIEx2= zTjT@hy9Ir|IZaxhxr;W5ybH+M6qk;yA9=dCbqwd z)gZSHERIbF^U^XrpYFB!V|m?X~P z*r^$7ReqQ#t|VW2iBT;xOtkxfpkazT<*u-vr5^ZXx#6O_Jt!w0k<`u{Q7P9U-hATX zrDepkIh<~}(--@MbV&x3fYQo12-TB#|Iv#@vk)4FmvwYhoL%|AS@h1|jghthyJ-A_ zY8I5weR!)mi z=Q(+t#liY!URnlcetCvzBV$Z~ac;?5mGX}96m75*S)RQ+szFDxLwV`^ddJrz3d-UI zqvTnG@{_!@42#*e%POWbvB&QzD9%Sm%Hu4W-wIw@24_C6KwpDZ52e(X#JQ_r z^pW|%S?qz%j9?VY;H<988aPjeV#y4+M+!JkV6DpcoMM3V5XW0)4u|i5rZ0qZUQ6_x z)hE82`J&IK7xB;6zqcIt_SzUC)pGE_^Q^o|iMK{} zD-I8r$61Vg-{7TXaQ^aQB<>s7Z1A~`B+lZq8!fRw}<{5B9F5;DUr-e%j5hTb93yp zW3(jB;+MG|xh0&h50+MC&Sw+Ob1TU4SzIfAg|{l@=EMlaEswJ>6>+3|L2>?mki2e) z=C_EKmeCC!Ri*CGq7#3u0^?kbw<_f_#Lg&dAfq_HE+f8NL0LS8Hz=hR;;6GBFD=7j zHP|*-yz|b2;{3$`d9@HDqbazXuaX7ExoAFcewZR7ON_Fwe?DEt=SDQw3-OA~ z06}ya-FT}~y0M6Gwro``FOM_-oZo&!H`bOZD9$VUF-}RD-%J7LLA-Q+&F>NjFBpr@ z^_5rUIAK`x2`??9%6xCEX&SP1fpKn;51b#QIR%R<-|Qo;%G_maGSp%oLc)Uac{XoV zN|nWl_zwBS*)*r{6NWei!}(BedEF3)Vz2YkGP)tS=Gq0uIU*l8FCcxkY+E?qOIkND zZlr$+dXGIGd(I2S=TWRxSJE8RN7E9)E}s%3=leL`oxDo)W_E>Aa0lW}=@4EB2ic$1 z9kuD!rMsUB_RTW>5hn2z)2cXmoe}vzn3tB(8DRu)9+H&d|7Ky-au(FeUeYNpYi!`9 zWpJL+eNI(h8`E8@k4fSz&N4R32hL*0dab9lo~zNct|k6CnAnoxv$#KYCT~^B2Z}rE z9+$^?_2h<|tN&p7q{k1KRhGe7oVd&EA+H-E&ad&(GP<$#^4NXj-ZS~_8j?6q5PIb* zw}kVt?$Wx^XHx(Bn*46!^Jv_vBg1Dgk{HfgEue1PCyz7R$TZiqS%snl8JueppV@uG z+G5J4Zt}Vz`s|6kw2W^2@13!amZ)gjA6rBcXYrh9$SvW#>q%+dV7;Tce|!=PQ8IiM zPr7yDtxD;J=<7<|0?sQSZyB7$$@3*o$m@oPb8lW+MmL1}pw8f2unf*6gu%zjSb3Z? z$QlYk$oe^vcX??UocWf7RYsrEq`){g$Oq1%4W92Rt9fe^$K-Jq;_7c8F&UgANxGKEIHL=3>Q>h3USTyz?Q%Ky-rkN)J;pgAiM2X@ zgy1tnrB1MWSdRt`rZ3Z%Wi02Of9Wi52I7p=N?uyV41}Xc4;C2by1dl_?la5j#DqKZ zV>SQ@&a?lKdcb52(WnU(8rcDFjzc58Nzpb761O(`1Y{y<=tgS zbx+@&jeP-qTJ>$!uiuwF+@4cz&y*`}PdvVx+#}oV?QzAOGNk{ZCwkQU18gb86AC?F z`T3u=9fZ4T-HfNadGhi1XFv2ArHth%6+^l|Ter_i6lz_Jrz{*68-9Q>L^W zkTc@iQA(M_Q~u4J)}rwgB^oKEc}nhElb@hU2;1 z9p~?v`v`$mQd3?Yw&aD84^vgKJSAn>jPIjg|91xp&ejXw$Q_gQ`q(%Ei{N0T<9-=6 zFgBK|isLCa4nBTY&!o~wnXy1Gcs;lB=|9d7A+Sgemik?0>!F9}tLCi-@|4+^TW@^Z zR}U#Omgoil%`N&xse?TUtN{mm z2Mzw6U`P%~$=JH^lkWX9sUDI8QvMi!Vb$6~L@|>CQjWHKGVWSU7u7>@K+2`BKOXpX z*BXRlf{tV5{Wpi733-?bk{ke*Fmzz;x=kBW3dsQ}0~U9!IABd~4@)emJF&9FUU!W&Z`2hqXafnjDb0tp2zKYrcDyz(@{Axpw!b1I9n{ zG{Be~kTN?ttW4G6PXR`g0}_jNxj*`ysEGtdazIMU)2XA@zRL=d9FS6XYsqd~KX?={ znjEs-DKEyYd-%Xo5)R1$2}yM>TwA!VG^%H~BjxJlyDFBt+f8*7kC8GZ^V41zeS-*w zlmjV;Yj^qcg=dBXM&ln6nF|`&7ht9a-+Ap3d_=A&l_ePh?AK>Pr!9}GgtCliq-?A8 z&75^*+7b-O2PqfQ(g*G-)s0|?8l-$X?C|LkTLvOUV>}YGk9~P>(c^PaaK<_=MkJn1 zi>le-#v25gp(l3!XI{5W$NtKiC048l=h58>hizJvy+|dn7S5EA!88UiI zy7Dug5%`CsAK1^m%6IfkSJvRsrd#XI>B3BAW;Ne+({RUprlPclmT*-F$ z08a#d{l(NMi328$MM`?oB>cs(O?*=)=DORH)QlyT#@~c!`fg7-{6a4KH6u2%%{BH7AmnVVj;z#V_15}AsMYQDF}itMTN%k7_UWLL(RwjLK>@I7 zPIWI{_wnv~`q^_p!mIpzFTWbTMD}ZmH*@`+C^}d6vc#|n)xF9W?58rJf>%jqKZ{Jb z!>g=iKa0hW5lE|t3WAWf06bUOv=s;4LsE~Zq}8z^@5ZYM`Qkv{tJGsH7jnlRRT%Gr-_eQ*!BiqO>Bz;7ro`*y|0GGt*9Q?UGuM!+G%V>A8pPL*YcI*;yiz1gvt`P#;w_35=#zbeTt8U)OD;M^(tdgKCimB zmCUQ|==nz72h1YZai_XpM)~oNI^#W7tGlWl?~q=4-8mD?g*j8G;zj`~{xw`hTCBL1 zQE_FVRi;~vTWXtW4>Mv&Lx#Ej+DAf|TtfRbp|M_p4Mnh<3Rk8&AFpzKd5sYCX>0Gn!>e54Z?pK@IsP`Czn$T4-enB(B!3$k zStG<-zAOHw$6O&pjOuY^+Ej1JD3-!ZGph6TX}t*HAsC~abBCt6L-%@PuF#LhqOELIceS8)6ZVPG=f4)_NELeG^L}D?U6uCOKm8pz;1$kQBk~RpDwA z+?@nhh2V+8id9#RG7-FqB3ph2jC0QOGHiuExn^9ow~s5 zdSrrMm#_+pE)c&GKrg}${L*@N{3M3?nsdjASJr!{MynpRR+OGWa5401um3XY2L@S) zaK@qnggyAnrb5z_V(}A=s;$y56pusVcr=inG*E@)=!L{mMGRAF?8+m0+iYefwH*8b zWqfO7&}(ut2c)hNQoN~&dQ;dyrg9<#J1rbJk!aM-8}+K3xErmIkX~C-gL#<`*t4(Z zWs-_974-23qe1D4aOYX<)o=ZAl7(5$y=tD593&N5Hf@9ebx-k7ri z;u7EN=swSAlHXd5l!Ql*?>0eYjIzY6!iibr*zSz#cUJRsXSt_)+oUsVP(q;PU#6fv zvH+I}r{CW5U8@w*&(A*qW%^+t3W>58G1e?5FhFPF(dzSLK($KYQ@`KokrU}s_E64A zf`j&xUUQw6P&CpfO*YhY>KCfmH$F@p%&l(WU?0vwin=_Rtn=7Kg-HW;9xv?ng_qXq zDu%jL_Pqe?g0pX}T9Q;@DB2d-cimv$svzv^LG1S}CNR{R9E^Rn890N>FZ+JxMaio% zk)-ZX**Cs1u`eyc!oI%5KJ%QYFZO0|{xwA#!TGnw#J_vdxWK;~2LHwe;a_>;zi%;t zq1J?8{QI4n<8b-q-%{2R_Zm$7zE%16P$S}B0)icr0ly@uU#8J>Cl!Mb;Gozu`}jlG za@EKyX*i?9#~*@+Izo~PYTZdD_U=X90();7?2Qh>-YuXF>?JVN8XJtgvluvo%P)Id zaLE|z`J>9-gAIwj)e&}?*!!|wJrlDrN2f(bR{qXF1sZ>8Lc#6x@rS_QNhHaj{GDmy z?=aLY@HdzE%X`ujAc8wM>|YJmlSXmw87#P{vLLeoNuhI^+OWBs+(QDUIL_xT=8*j^ z%Vs2zxB3hfd6mOe*qGIoG#K5DfPEOY&8gVu>ez!K0sBbun?~^Q5}KmU_nig2^ZkN7 zjqbhyXFY!itiJ(9Qt8gXjk@l5R@&&gBYA255K8YLF*q}54a>@tK}jszs4z7$iib?2 z>=_|_(c^-L-Rv2~)Qm@r41(+UASRD)(E6_ObY)_AAy-mU4AljOhZ_tJucWC9(tgGZfsB{ap^fFuNO1w0G2&KC)jr8$Rgpk{S z^=E>$q%0A4^U`is+EA8ayfl9ZrC&qoJe1`H zmX)Wn#IbCn!qntuTv=M$Gg8!y+V%`hi%QxvG%dPNpRi+XkQONqK#M-384;!0U8F^Y zT}kVl%+_US(cSscqTNP&%&(*-Y~eJGv}Y_)GoG|(B&!)w_KewTMua_Mm6}o1o{^$v z{0Xv2!aecXP}0)T>}lvn2$wK_7y?msJ6SCqQi+$2WTg%LxI)v>J|BMwrN^Um9{TYV z%gR$fnz3wMcJ1q-qUpP7#NEd}Jv)uUB+ zns{jjsienbq5?d=riZtD$MO`_9ATrr9!I9J?;>KR7}KJj3^r!T;JVNNof34RMZ@^8 z#F)%bzP~$fu!jij>(HnkN3?<85kBx+=~a%DgBQsTZ61?JvpR>UY5yyPjFPJ5d`+`2 zhe(OoZ1WN5C|9^F{2Iy_mWf{p07y?dgkLJdD3SOw4wOSK^tv?yK&i1R!-_@f83b1s zuO^0_!E54_L!qvuHMC={YJK379&?m22YVXk*TM*Nm}^YcLRUgUTy>YHp?ZBA5`0A1 zo`}zALY;P=m_~h>$O_*>PK{6tL+5Q){~7PcH81vSbQpnW_Zmf>Riip)n$c5^vIVz^oQC{ zyCO3k(Z$>)L$`FvqADm*2OVV=6Y9fUk-M^|q7fVVUL*xZzpf1WwG8wzuY2tN>QHq? zm`-3Jv29n-w%2p!I+L_4PAx={}OdfC5))@(i?hcqt0)#HUoO>Dlu6e&hZm@H! z+KvgXwp)n^Rc&iRys2YVwS9tW<{6~6UTV9$u;?pkFvB`l}(fpk}lTHLK`@*<2&Ck*1F1 zl(zR(4-vOI9sL)=sCvO=^&DNH5hM`He1`j`S!&^VdyjIOIVzcTtHX=*+Jz`P17^4r z|H-|SOkwGzl{i1=D6xs~%%rsxvSoYY7_Filw{vZkX5tezs7}6t3`H~6>M)n;gjrh5 zWhwa1nA5=%c8XRAa$;;1!Y$s^7ZaV(qB$N05HjLQ8gM_%)=q@|WE&AB_?r|B34yo9 zpyq!3!u&@mE6;E84;2=!F=m^Vym<@9NT;THeczlNZfUsY#X zH!W}XUL5KbR4>C&bDm~pXE>L$MiX^ErAs#AIA;J~pX$$dW^Vv;HaAc?D89XFO5oca z)u{Nwi$fBtT5){aF%_oGq+lbIZXH~_Bju5%qAbbnr% zz^LH{yC=lX%0CxO|8EnGDs8H z5j<_`e{9?g1^i|%9w%ar&1uft|59mxS zv?mD}{bKKGB)z{bx$17deHMT5guwxe#g9VkHVgW(D)3863t;gTxsCvU;*f0RHNdn_naG$ruCd9YC83tvDc{Q+*-`)#bec;(;QM` z>BOv8yyt|Pm)}@}y2sMW6UUj1cIEBCwFuYJm4ZK|mFHL;{WaY)x=%9(q15Zzde2yn zlOFkZ^3_t&)RSm4H*E}X=sf$A?$YiDz4L5itIr*}OXxc-IPH?@I+M|LF2I}s4F*kn zvH1wG0TR7cn-?V!Xe)uP`CH)r92OJU`~W*VlbWIWox31pI$kl_xdfKMO#}2y4A9w3 z1D{o}M$22^{aC&ysR1xfXB+WoKnOocvkv&B4*mEqHXMwmGR#SkS6xg?r#&HPL{qz=)Wl zKIPqe(Er){l+T0rDNPL4@Wu4~s%#Hb(wLMliui_}Jo|`QcWbqpjYK!DpsZJ`PsyW$ zh(z@!m52fj{<)+FJje{mYU%bUFI973)wbZQy2Ge^E3T0bNzGJQ^>)QPH81@x3qtDv zNlxcVRpz)#F8PIG*7`dqmeDYzjaJH!YW8<{LdVh=NVw_^lrNBKUt(AM9cX1cCL4Ic zn9-lYhRgRWOqTsMbQ1>sbyViG;dqeR2cGZA#(Ym;FgD+FlE9)e`HYXZ^Vf+xLp`0p zW;>gfc+3A*NVaWt-jUBW<=wUh7QAg`DB6yS$#x}$!!Z%RXIJ6;jy%fwJ^3D_mb_bi ziwE}?v^tNK`oD<#eE^L0KP&!6T=U8I5o650!AFBS;uSX%ZBWO!XKVx@-(n2v{;ljh zs5`;ZODl;#8xe;Zb7{SjwQ+N>ud7LffTA!4bE-w_AWN4FL-S1G?scfitfsh;l8rR; zu1@ohrk#Npb6Vi}nA4I3Ub3ZCwcE^419p05*MR|9yUhStn#PoZYdjv@-YZwoZI_)Y zOueq!`zLoYd;i+4MyRHq=6~hMzlr4R%)$CLBtP%_@oMrA(DH9pEjM?LEC91> zIdr;wgS&VDmU+Y+fC=OSRMRgp06SZW>JS1j2NUAMT3yrcAx4|g6apq&w$a6t^;ZGT zOwVhH^*F1!r7fc}2Q5czXla|rhL$92Y-myP*5&LLB`@qfy49k;T>9Z<#R2P%_?hW9}k&BWMn*WH^hh_^N}NcFn`)jUJWC*;<2GQ%Pmbr!E~YYW@&jO^XVPiE-0+Q)rENo3Fz0XnPeZ!8w&lv?I*3 zc`QA=N%UaraUNWugJl+06GmKamwPY11N1q{gs2^VOjf$`>75&@QFpGDtYi+{KSYKR zxO;hjbc}^#xJaDeA7|4hUP3L*1UCyyjL%ls*YJ>h-Wd3w3F}?6JKVp_*3#QcXc#d$i|QB5yGJ` z&9rsSLL1sZ5@EeA-67{FH#3DvF6!L0`YZxN1dQbFhZo?lGL=`Y;H*kJh2e+>SRUUpI?WbqKJ@(QT z_3>Zj4kY~iEU@m2=6dZkM82GhKJEx{;fNbONX|yLCx+;ZNyDF#>lW6eVj#9JrN+f% zY5baf~$pBlf9n8 zt5+%dH*487|0Y$hw0*4x9n_+O2FhPFv8dFZhb{I>I1t2cc~y{Crq#i*05nSB^nQ2f z_wLaBZf`jj7P&p;E=C-K=8^;tWj|ErCR#asxjMeH8()Hp(9@e*-ib8OtR-g0{R^#E z-oqvtw|6n;4o%%FYkhoc!7q#Hsc$V%*7EH%CFA*18Oox^Uiwl&(nwZL>7k~R7{@VK z(phcUz`K|vfODtJS6X?$HaPFk87$sfAACz4tMYzU2@CJn;nl?ZXYbGsm(hB)n`=Y{ zLu7Lr9-hV9=&vt@lDx`-1vN<&pW@-#qRhc#wz7fJyh?ALwVG#jXIaa5)&o3iKF_Md zvZyRdRpwb!cvg9qHHl}HtUYt1Iuc_vp(ioHF?(iEUOw`aN2SyUg*r`LOj(2ne*7sy^4pP0O_ZK^e{kTRgjJ< zNTdo9VSrRtK`N*qrBsk221uw1a(y0e=mwsI%SC#}KeT<0{oJeMs3130kV^*0-zvyi z6=b0b;x#~CQ9-7wARntB?-?L(t02o&kjW~@cmw1)6=XO);d@Ds*moIHSE$N30@_E@ zRco1LFD4CxTg^)4A8$y{euOD2Z9+YiR3T3255E5`l@kJ?mIf~D3mth65 zv|o(U`xQe$PQ~Z%fdKtt6T&w8FH|d%lBSa~hMM*DNCPR!AZ44Gl!K_*+i#nhlw_Th ze}4oip(aw2i4>NaLm1gep$wgr4~h^e+f-7L5yfy)UIU35DW4E2w40f#Wu(+{BxRLO z${K3c*JBk(pYIpBQ;@@4`t{?l^~*6yP&I_TDeZzS>&pueZGgJgjH5U zN>foe(U)eXkHu9wiT@IBe2Xd80+q4sk<`~lWlz$PdI$uiy~G;LH;hE8Q%A)=C6P^o0aH7Xwg4>T%|39|eem5Wq{pe~)t_SC*_F{OdZ zbF4o|x=s%hm1~I8%UP<4N&?oYyoY4@HQ+QVSyiBtWqe9#+Nh)qoyzf{L?yMLQpt*I zRCWgsG%8OCRQ`_2MJlsUmrmsnYTvh*(m-VWbt+2|mA?Z{ zqmoqxDp|$>LeoYiW$0AS4IwJ21(ixxT%&R{cz|Iu#enM8RSF3sDI`P}y)~L@()#Jw zs41UwKYfXK8L*$OMHC4AbSVe)E&cR?+^dfL^k$F+6w|i0H>3C$k&{RN+l`?ZsQ;Y~ z2n|J}{~bwn+Bj_KfA3=`iv4d{j^e7VPnuEe#8GtYSCdIr{Q~u?#{i+BX!NTY)RGNF zOTRknCUH^hSH}Q#a4}(PA2W*YGsFXRnnejwiB9uDLf5I&tl)sLrPDlo0~qJoX?_NJ z+&yY zJ0S;+&oqt91yzPU*)*~Tpvuob@kQo;_A!zAIFvS1=Up6!sxZR_+`ref#;a^S;fQ-V zj=SdwJCuQ`Shjyx4)?_t+!ZO@>!`Rl4TyW|V$gpej44of8=?nv7t?1$8@qjtp%|vw zP+~Eg4yAc!($HOQuaEPg+}}*O(!I)O$89ybjVhbDedSQ)_)x5cunE>(?!+@}D|6s# zzofwn`8#h?EMq%eI>ME;VTGHyn7aB36i=9lIlEdvqIr+qf}J_`{m#=rW)1o`kSjnm!}FR)W;scZugIlAu)c6(L8plVV4W zD?$i{cr_g*1YY6h8E7g^X(pY+qONg8$WTyby&_~BW6fd$19S-dK&#J30xFLyLRxc9 z5**Bc6kM87mklBCJ1!=w(wX-+aq#Fb77pT$2K!+#TH)lkD{0+7duBg|^6J`JQZ}Q* z#~-|xB+XXY+ZZSWXD{8+ps}|G>K54hgu!0gOdW{5Wl21~#RP_0X)9(x_MV{TI9z_& zyM(pGNv28T)C85i51u3TPC05}FYahKYT2EoZX|Nz@3FrO{?d^E7&w0j{5?dHWT}DF zm+olL_`3^r3;cZ&=m!adKH!X^YS>DyZtAV5LZkk{PWAURuK>b?aE-vG;^;q04eSqs%PJDSbq%pZcB&w{HqIad(Rd-bCspdpI?{ox?$rwmaH zM3aF`DII)(CRLODJ@~(3@*Q-=xpc^``}#aTdF8do+VK{gn-8^iuY7em^VA} zAat81i|vLiLgAHTLj#Co3|hB~BaRX6;}1a`{YXQsX6GP|URH6qL5pB{aUdm#)uLza_Tl!B2Q8)ULOlw z)qIn`Z%f70u$JF-!O%8A)G#Wh-n5Yu(tU$7rLwh}vuCJX< zFKGFh{vpr&5?9RqInSUhcWFyrB}-n!-ss2(wN4(DAL88SgM`)Z0du>chdS`A3kly) zkkjBb$YR@vN}m718c4=+h35}J;YX2}jGCtS@oL9lm;(m3vGh=*nyr-po_a*ps_WS% z)Sj}T=H{sJhk)95Bzgn2J#g&KC^yCKpIPzBK7AFRd$8W_r})_hzN+WG zw_-cn3EQs0d31}VIHS9ucHVHymRFKJ#ShP`B@ z(8$Iel`*X%dM`5D@Wa#)`l+34ZsMd0aBfF99ko!T~C0%j*VU&+Tq8zXKIA>Y=;vvA7QwJ-5<1V zg3Z)Ib9vDcInZ0&6GMAc)q7$R&zAN~xz0Y%f$tO0b+Dcvpy(BUzlsf8b=rmSy&6|e zUCqsQUC-rP5Bb%+WcQWG?mgSDFf-bGjy)D<)5FU~FX|50EH@7L&<=?ZzQYy6$DMFQ zc-8KBp-Zb~W+MeZrYV?E%qdGZ5Y2oWqDs6H=9)Q-TH<%AGyq!sbl4~y{YIi2F=94L zjK!}OsD)p&!h2x4l1BBFe58l_R6w1Ep=l@Ww4R3k`O5845oA>P!V8feqAK$oz(%me z%Tmol1gn`8%K1PoNe*P?3Cv^;1}zH&Vn!RpL`D*YM9c%hi5UeX{tIGGp3E;X-ya7t ziyh<>4)xy@#<2fLmIDASv2x*0It4Bd1+2i>mr*ssnm zgis;U+?cI)eTY!7>T&$0HGe^BrL!L3B#C0RYS?qz#^i^Ae349W>5 z9U{-ct(%PQ3(j}il)9Voy#anzWqi*tsTqe#Ew2gZ1$h0B+-X_<_Uv}`7Yru!i^nEGar!lE> zpGIsl`?O!cE-!0Q_i5#*Qf=B!z2IrNi3j_SUCm{LskgYZnLWjSH#*?Nm_v%rkmfOm zrWDE-k9XPdZ_lEU9HqEDken*Vh1(MTJHAtNcLg_{`aUclL9Q)$2~Hc+Pjm! z$4QRw+Iup&8Bpfs@7>3LS3_|&i>}&J-~Duc5(g>OFGbKD^7EG<+Z%t~6Mq4J z-9s+9eN*8~;@7#ojc~|nyh*2_Nj4pNdcF#>JyR}NfjW3wq~j}H*(e|FT9h8`+5*Ahvie+HR-f#RztBAX zx@+E_5C(n&mrlONa~-fkYaKj|(|HcTQ2W3wn^HNB+BNm@S6uT~P<;qJuwv@^_(~^V zSVfLhd)%w9$qA&hFT9y|3Q)Ng}ceH$KD41vX+THw`u=bv#?Jpl9b2G|OjE)p~==HnYyG-h> zLL=sK&5Wx+N}0rP2ZFdY59L_w=*Dpn?Z<4jiMHOz^q6f>RD2=sxoxibpTiMjIaoVe z6oU`Q%{-h8hG_+t&|+~~s3&F(fnm2S;aS!bvni^_rfD5`QRcM5ahi1#>IvP6rigb? z;4mCK>6L~botGd|*C!5^psePbHt{8eEn0i9j3g2O3el0jm?f@RkHRUK8Y+i|2;opH zP_l;joFa|mpNLt4GHH{G(BBD_;4GGaAxn65?3q38C=IR4@PjfqG{o-*7=Je*Nrz{Y zfyrz|Uq_Y_sqS7>q%RuKj?Fuu1ox~$7ob zbBgJmzYGeZNfBBEW~x4sif#k|4fP=o)H9qSpwsF zFiTjhVdY>6UWx+^HQF|z4p4!0YCOC()9CqQ5YvcRFKHTP99=UHGgWuOGoZaVh@mUz zG9+nYHz_%jhsg>^$qlugd4ROQt{a7NHi}KS=GQS9Aet-h-YNbc4ZFhS3Em{K zEBFh3fc5?lNm07PD2RC8=pwbz(n=|wivx|CSzC{SlG~p>@eWi<2Sd?|&1QX-8mVq0 z=cM@CU1gml^Nn;zE|W*O2wn4tEtmjM-7m8#^|M=sBj&idy__G^UFyZr-)X-~r^lqg z?(h+!6nx*xY=QM+Qdrlxji#yy>x{`R{ikc@H9_y4TnF?(!9{=s4XBQEgGaG{998^Zl5up_H7LZ>c~ex(CXDeqZ*mXWho-;k;A>pn+j$$k`C626bMf$Dh$sA} znxn(9QVwva)U{}*YsziO_x0b=BTd zxV;s{m=pG`9?$L-Gh17!rEpU<6&7561jV7?@*~&$%XgT%t9mgXF=I(ik68zZki?jE zp@~!0Rhv4V>jtKE)t-+Bpcrl*0o(c9LKc3tr~RJzunrI@%Z8f~_=URxFx<>UHXm#s z!Y_4hff8wMA@@5r+|*t(zooG^uvkTiM#ZeczzshzEUedK6W>N0Brbv zDqPZ`@beW2l|{Q;TfR>OYDwSIzy%enJi(0vCfUVM$J7=>NKeeRwo&nj5uhzvK?2QP+au08Uoxqk-aB_1u{~K9gdcUTiF&F(xgiA61VE`%@dddcwEl z(+<@S3{?G{PSvY?GKZgFbJ%{3;Izqg^q=unEOO4UywOOCb3qTtkLZ|FX32N3ErYfr zYosk<+F|WE55sJ9le3C00czDeCfPN!aZwWQ8tO#t;+>7Mv^FJXvF=*WB^XoB%3HK1 z63Xf&5Pf43)KzIUAuc8Xq97>{#eFdZ;rHp%TO8eRK=&`iX;(W?LL4QkrS&UnNUG}a zEi-%Q*R=LMrsVp!aV$6cE3A)vdH{bmP_jCzV-2E=K7RAWEMPT2LhQ?ls86G9{AV4LGC*;Sp6AaTv z6?W6kUL~6LNu+_XXw|{A-+&lN1IQ0(G$fcz8*OmYCVWeJ9I8(WRDCn2>cM4`EyN^f z-cz&Z1jDowY^H6McLH$Y9wotZXp?GLR|wG#p=4UJ*P40?5D0N{lsjK>T%0kLEP z=sX($H2tD~AA?Czl{t!PbrV=-xJR-298H%q@^lEE+WNXm4#w8wDE+g0gY1)tc)W&jMCy5rwZ(hSV$aI;xPG1 zV;cPC8sCm5{C66EX}PHJ=aH7D#;@I%AB}&*q56e^s(;+6dR+968gU3LoUXrefuq2v$ z^VvkbzurZrEz}3_t^)BOGZGs4fLo+V(8JQo&7~ygr_>onbxH~~IM~^=VH^j$PCKNU z=Uu~zOUmokcK8SYW@1FTYa$}-Z!?zI6bR&~b zahkd>&@z2DO|e_oauUxD#F7PkLOkN19$44uoZQJ1v#t|g*U3!9Sdu5+)2B^q>6@LJcoK#-lH`lu|P zNWNTI185}gNsGHcO=YX_xID-kla1vc;7zW^s3glheJ3k~3;n4OX=oNnJDXGw3YmtN zlEr`!Su*)sut2$TczreTGs*+F%PIL2avgiQjeGQ9McE7>Fk%BefT&73YrEvDNK|{F zovy@Lpox%3w4{z>loF3X8rbjpIMb6EnijgttMp6_>vH3hbK_HTMKIfi$ z0mb+Gzu)t{&(nRBea_lzuf6u#Yp=cbcnm+!@-D;8*C7>I<_TO9x1Z%1e&Gacwx4iD za$Ue&i|;aIiwKJdT`7h;6X83;PKq`8>>{a%(8=eG40ok^_REd!PV_;ASr7>gIP{TI zT|Yq_Vs=tcWciQ+Q+u+!C!!f%WZBGb?z;Vjq1&v+3tZJ$YB=t|GOMo8|B`u(EY;W0 zcdDciWJQ$&eI8Zjk`mCCBoE8=jAFRsSR$aNVKgP6H08ELxTp6MITFiA`4J4+o@%y) zV6+6WYe`(mSB~P*aZiBhxF-jTBRIe(zIny2HwPs_1Qe5p(xhyHu5PNsq}WL#VUPW( zh~?BeVM^@lkb)w-Yi)$xJ`gkI%Moi|ZW?6LlGAc5Ia$F1Qgc{wX@|h3Wd^|;3SwV? zH)1#fJi1#`Zi{EZv8Az z$Rx{6HkLhIF{%Mec7KpYeWH;{cX}^#MqkCjs0Y)xdnb`p^*IcCSw)X+=jgV4S)2BC z6}JLFQy-9eRtbSCp4f`nC45J~@*Y*6acMuN0a97T-tCNl&j`Fv7~w_b_%2lABiL=& zoHAZl@dYTzOz28}rrHMi=v-1G125~GXkfB8%a*^Qh-eNg9t8#sZ@*iJ;cXwmx*vFS zWw=leI<`#*Cbf__$*L_mg5=^qAJA)w2_7P_y1y#b=d%a1`43zC?Mx@7#Q#fzDbA}kV2v!Y*b4M#?BCajCFAffLpL6;s`R7HK*Gnmk%a?;8(x8x!}`2^zi zDIhj0vS55?hqHNRQ4rJkZ~6HNDx~fgipxEnZ%p;VFE?uD2aU!Y>$jOMgMKgc`zy&cPDp#;JIW9 z*Z*kpeMe#XQ+&+Ci9_WwlA<(6oKXrTCkCV+wG)G3z1tACI#K1-WX6R8rh+i>=LAuW z*@Q|WYsrz&UEZc4cX2zhxL(&y9^`Cwf+asj*PZ=b%W*V26UTm*Rtsv@=ZT3_+-&4u zarhn4Tveb|JpL}ffY&U`U7YTZ9nvUBPHJiJiv1eWE7>ouU4Wm5A6u7y2uvz`E`mb;jUtDYi3eRVD#yTWz;NHBS?7-1DQ8RS`y1QQ{F)^Z55z$^1S2@`LCN9qGxiBulVq0B3iOO!crm+Fmi7ByNACWV-Dn0FTAay~~pH`BQ}U1(Z1V2E;CiD6)J5sGfwcpryQGs4igr zeP=x*q%)ELCJ)AUejy^H7ekJ$t2@&aU5~C8)XD|Dh-8dK%5d_zL4=10igw8DmH2>W z#dW9@G1h}_n3klAqpdW~gWsf27s$iUg&5kFgAL$2D=tZyM^vbh5n%!OT!&`0<)V)!PGE)RvD9-Q7h#AfZ!dvhr2o&>CVu+3mo{!Hv zG}eS0I+I)+KrH9CQ2pviXr!ZeRQ&yhVVAI)GY)8^)# zu{$?YX`?Y_WpSCK)^QYrsaWrTyAxAuu(jC9R)xWq|CQN#oT%5yRyWtY`y+2ii?oL} zSbI&s7H|4?Yn-jn_qe;N#?wyL{JPNgTT+c1uguyXq5?U$E1slaRTjIBS(ivNdcC@9(%|; zf+o&!>5VMIh{I`MK+eLk`)oO$LnhD?L|kJMk=EiYo#=(WzZic8DNsh4;*40R_eF}` zmb05Swxco?Th8E#FRk8f`3aAO4E&yeB#%RQD7NgyUomD!<8As8QKnYB6=2hF%CeEr z5VP>-6HIBwR5w=rYg3Ig)6phaz6^Og$8FN4j2H4@HwG z=&4Bi~ID7K1avK%~jj4 zJKW@Hg9Hafv%T>KemN9#Z4on1#$b;A2Boddoi zd@&xAcrqd9VM+))%X}GdbHWOo`DpF*X%qZS&sO~zs{~$PbLO-QitoG?+<5G*i7E{$ zP(RVw)=3&s5`#g2-48Kd;C7U~LI*dJ;FbW7M9rI`JZnZ#SD>dPi4Z~BJE>1jfn#>A zdD5zG9w;+EOTZ)Cm&mE@Q3*A8B35a8gyhSdxz3ww=Kdmct62b&Dml{J5i!q#fejD4 zG9YCoP%p{ixiV4dWI~`_tW^qDFoHVqkeyt{1<}bR!qovj^M{b6029Y*=?ArdZP4$8 zDo!90i1VkiAS6{GTvC-9xKwW05ZoF8QtYj}myjpt3?v~SY9-hbWojBRp^0R^3C5e|s*YQrl5!;raAKYd!z?*-Yf5vpJ47yb+E3<> zBWlHd&@>O6G^-L6@3dD<;|uH!;_F0iOtlzjvMXkJx|5v2BonHNm?|cnFPvD)AO#s9 zaaa3=q7Mi_W=Rxs1`gQig*u_)nKGg}fCyaj;t$lw*=%ATelX!M;R_y|*K-0?oKV&I zgQC6U*o>6~rMz4S3g)LuLj*(!R7gv(r_0f4&mJHFVh0*gMLj_3%8B8eC(2s|DSoiy z*Y+NJ_f-|qVxXu9S{J;W$jD-p7AI5``JKR#hzbj-N z0!QP9^*_@pzv3JeHR1EOPiEH82l(=cl#8h}B z=7kF512!TFmrc69(kfgJp*l8^MmvJ z38mH9!l}SgYz=;^hQu12SZo+O@R?tZ9v?k_^j`G%W$5us!M`6j7)TXkHmo9H4gGtp z>m#ByA|fDex|u-f6OGe>n-D>qCRaujRf-9hN?bF^Oh%oI$Krb=nS6?aBC^7N%?<6*txXN5&?xskV<`NUIW{F`c{(~jHOf}c5(6y%*rJ&-~ zN9sZb?yBabQ6J&gO+yTiu1@3NfF6{n? zdb}A>r=!uD2Dnw!3-(Ds6W`1B2MP~GFy>TCn#v|l5HxY=*kbUiH&=X54GGc3(Z-pp zPhIvuN?mHCrXt85gKeVaco17)E+5-Em(4=|?S;Ld7glyRR9G%09I6X=APXL2Sa7P| z6}kn#n(Dop8l7V{-(~emDH{`%$()#WxEbaf)|Gc73fm2`y6q+}hk*j!WV@ruc3-_R z%63>^^*3|uMa5+^R!`xY6Pt^x+ior#TLPW3E(W&UEFg1<$#(y@mAJn0zMPWOSL}7u zFsycc70uOT*RP^nOg3CEUVL)5SBWsrP-(PWF`BFCo&D#Uu4n`w3#uk zXu?;aWwI65zoKew!tT9rEln8RF^dR&5?#@ag=)I^M>@L^6&lY~ZlCAshrmq$z>tM|GFP@tRoAi8nK>yvshKy44Xb0>H;3C!$zQCV4W z>M2=sVslwtXT%J$x&XMpWzm?+O8xDBRaxsL=F2HYeWhJD4WpUXSGi1Wl+})nsb1~1 z)sIUX#SQhSBY8JaJZAEdA)G7na#=z&rl>EWx(mf?asP%~s7A!?Km2i~dWp7XaZFTbL9D*T zxhx@Cm#Z%!H@TSDp+&`d70QhSsi>3-&7jtcM9t!usFVpRg!6Cci;2+Qs~}W&p=jc| zUWIZaA=)gRQs+xn>qVlbTuf9duA(@XB~*D8gz7F-6;mPW!9DZr<#-o*fIT(XdW`C; zB?{)!SihLfwvJ7W9m7ht5PA|*R4HZ$Y1M7CaW+_AhoJQ}=izCwY=Q4JfRU&Y#)&8? zDJQn@Q3?(=D^T(Xd<>q0tu_QBXhYTyKLb4TL+{=8V`M;QPCJIBjJNQ#+g>gJA5UlGldM;J&Xo_2in>M&o6_>QcTPSZ+m&Nv2pI+Jt~^tK*x(>aqltg9;W`0kg6I? zrxi+iWY1k_ZJpWlt&xp8Ya)+Hw7LnR!aa?^vKzLOL`Pu5DNC?8-zMckdgl8ts#1Fl z%6WOyCTJo@bI;6`AbMswy;fgBHO+yE7VqX@rUMIEJ}Ro?<$mK@uns}jGPyiBZ-t92E{bR}fR8afMWFE#f1OT9+v z3_?c?LjSg;3|i$^O{~yln^{~Xe2PQM@2%wrY5D#UC0i*U_D=R5 z0rt!ft@4EGh)}*+7F~5^bMC5J|Bm>g&3+s#_U52OL4dBh>Ng5XDiNR`qByQo98p7& z+^*!_6}laAMSp3=+XB2TuE$yBb+WE_n}Ao>vDewe3_5e_z%6I)Rg_5(=3?SWcL`)T zTdBl$QnBTg<8?Qod^>NfnoUIoAsaax^4VKX6JZU)&oUpxF)u=U{Eh&HM53e1XC0mV zin^%r%!;r72SAaWb1H1g;JZq&ZGjm@v=Auj6GvagriG)v^B3~U)={b5y!%Dwbu4o<4@NxO=u0Ple!h_v{XM!n^~0l!Jie^PHST$0GRk-J1}#tv@zrQpC(hj0k#N zjn{36S6B%v95d@_;n{>T2Ja&E4 zfW3@&KN@xi!xO%y->{sbvy&{s70_*flwu53q%J6Z2D=P-TF&50e9|R;`8=2)nv=5;ioSuSOAQu40$(rSlY@EU>jf~0 z@_}V8={80CKVtSP%=tl)j=-1-&UG!)+p#lKTN?uhu#-@e`und z#&veZn_&GhYM#PJ;x=b>!voLG+xh!OHx z`DWXrbj0^2vx*SU!ihsG#{nO>kc5=)hoqubC~4UV>gMJES9Eg=@YEi)yL)yao(hp{ z_v~4ClHD8usr#}_=iZE7-)#e=ZTHA-?%4;82*TTnS5r4PRCT((FnDPl5j0dCiv9f6Diu_O(nV_p80unhT2=qsN# z5g{(_Scq7CpDa<*?GCK%D8BqkT%DFK&~Qp(G~J0fih1VlTU^89C~{*0Q1uk|k0E1-48*x*U;v@UBz2uC3Ds9*OGvv5E4^0?Ae@a3ZlzR-J*VjNijOBFL(kwB}piYt&l16a*B z>LMh?1aY64BI`P;_@@GwDwe57SD+}LA+=G(cL*xT=Kfz1cMx&+F;i!TIIEZdqKffU z-zxqQ1VE7}A1D56R&l5ck2S0K8D_y*#l(isXu%g(G4sV$OnhCwiuvkc({^;OV)QhA zAc{&F$?wwDrG4QI@EsoyaixNNjxfnb(DUADKk7UCeq4ix9+f&xw;q)jMuTYAchOdF zXe`FH3I~g;$c4j576Cfb3Jyx>u4Y(o0?N+xa-E;VE1JECXCwHVjNqPpFv>&}#Cft| zIRJM28D*C)Jid2=gn(Lh16=bCMOu#3D$|PFAN02&3-J zWeYqlrPI*@8l%zP?d%iMrSkfVZsbEEeF|u=a2~e`TYmX zoYYdT*;80EEFC73KFv<0x00-+!Dx{>hm0vN1GJExY2BotVJ4jP}Pf3g!7>8q6pG*Weif{s{=-zeD(|uSos_f$pTZPf(nq>g6Z3;%P0YRTo`R2Fou+6)pOV>Y=7a z9FocDvv#u=0EI{t^HX@Aa^LxDaS@a`2eLJwGNZ3E2mL7rTC`Xy?x_gmSPHvRGe>+9 z#d0Q3=nJZS=Cm?pdLudT5E&QQ_efo{S75*)FUH!2taVOsJ%y<2`(OAIS?#l$Zr z$G`yC6?I)lPt!b?E^xRNe=))@vfN0otX4FeOjU4W(d@Y-4*uKci0}Lnq8^XrkZ#zw z=;nrHRBYM7U^X!#i5zj2h}O8{U!GXj_rqQSX@odg$!5wzue1{0uobIYpT*Qq;mvG) zqKkImN;kfsl97}M9$Yx zLHuQIh_gPTrb!*8nI00Bh=jNSm3q#}Em00GRS}v6OAQT0JV1P0QN@d?y!^2Wdf*S@ zyhIS+x!Ab$wueE}5(S{SUt!Rnd1dVBGUGXT=T}cf>lmXpbHjC}EL>t9d zFYw+))>Nt3#ISp}XgMB>0+M=CY^^SG#|)>*6G%ETe00)f-`iq+uz9ES$rWag*O8U_!0Vd)jmeZcD_9I1*ij*W=L*W5N@12njY0->gtxh0Y zML2;|PO#yGlVO}j)%`??g3DDPezu#K*}N!xJ$L)KNan>WKBAUngwVHbNY_T~$f(xa)IzmC5m89Q#Ag}UuuhRx6 zo`p17afKIW=C96HMpYY8vYEUFSr=F*U4pkdO)OmlElunq>DYB&ht$%sBZ9hP=lj@J zRJOAOewOd=a&g*bbM`gGa}&5D;ZpFx2>0iSA{AM_MI7Gh>8USx%@}jg*sO+mnQ@m;PO&a2 zod;ebgTvz&y~*hf&?mfV+-nDKVVHdrSTv7wH^JK{M+yXlrxlXMQ!q45s1E@3$$C(g z`S@9i`@8lzrymeE#7%++SO$^dTeW2#@Xqe!QL*p*7T4%iN#3Y5z@%{8$I%1#arfYg zeGEKE_b`&7P7Xs2>fQ~Hl%*oa7R8uFM(6(U3a8x4b-B5CmbijgnB^!;s2D9Ag_$e6 z>{`Ay(m9n}PSK-A_oLFvwl}zF)=$*J&2&W9582wwCtYVmkbNgiSpV{xKG+0E$xx1& zRi4vtb#}TuS5mYOr$V-o%@UpO$1^#B-s|Y2W#9Q9bMeUJiH<{eMD90kR1p4#)6R+> zEBfe+2d_BNCL??K!MIz?(!EoCGC()Gt}UyLulLGU214c0Y}7d6DEYU)hE zl0@b^Cbc#wlDbj?Dd(CRyNnxR4ZGw!zb~W@HkhbE&cvY6YnhxEL|gvq&Fuq6Jf1#&9B;b34v^YU8F-o@ongt{0iU=%~w zcy~u*uDemT9N*<8Qm8szEZ=8Cl3?q!#U^l|e&m-5P=3otS;o|3#bWDkHX;u4dG7d;lqWZ6KW3sMUqe^@S~ zB9L6~o%NBou}UCZY-a|3mi0YMJ+xa#VJ_vNKFZmn(>_MZokG|}`;y7`OE%YH&QpJRw|V_;OPO6n8F=2rTS-a;EpcNUzsySj|G zEU%1Vm)d8o2)Rr<=zGC-TCP|Cs9bZQ@{?tN^x0wc$wM6XYWhSZr0bm3pq@jnMEm&^ zgs^egG08O7A$q@E+v&SD6&ofokIv*KMB&x#+P;J)MP|ApUe=Lg$_g&Gtrf*qp5VytGV5Zs52+L5hD;w~#@> zcLet8j6%jF+K0yVwMHjRNpws~O1Dl*%SunmbEH`PGp2O5+H-Oe%gH2L&B{CK{77F9*&X?jT)7RY!iov#-;?PgiHyZ5|SRA z9%79S9SOoitwRS|BjcIBp+f}W$jm&)ct?&kYmy^pTzb}I>*Q2NrZqV!JvpCBm^t2> zm+G)4Wn|@N=2^4GSu-3NSvdvPyew-{dU_VL#Gw=rZ=rd4j*M)Pz!?Xm97j@0fq|T2 zos^W5mNYiqVeQm0w-cqarbBqv?jgO2{5U9%^}kSel~5rKQi;h~`ROTE$CP9T)K$tW zJuM?GPf1Bj8n5Iya??`smAvfq%xpt$B+zhsXjIhDu+VtBH9u3AZi<_ndIX33H_Hj_ z#hR9xmY0SmoeN9CZD<^nDK~G08hYPb;in#3DNdga_wsKCi`2VI8e8k_{8YQk@OeaA?TN!#C=m=&J7MO zJk{~3=>^v0R7dgz^y_eR*?>4w1iq|xa+dN6vK?eAvK={j`8i`nc@Y7>34Ug1RANjR zscm0tMh)i{C4pO<0e^KMN_th&1sgQDuugU)O>kN@xX$^GT*K)cXt#$4gbj_385##K zbSU;{>OZGhOoH!Gkc*Zc$(2DaUal~S0l63${gSWH7d#;;6!HIOu8Vl4-pA+t^S}(Z3oz$Ysof~BPie6{N$mr*7yi} z?S8o@CAs8Aiy^D#Kf3*h7YQ$}n7p z&heeXzabKyBg5$;EX;ipB|tx|;Ehit6_!sE~1e1i-d+iw4A->qJ+|DulL-_PoMTMvKr{X^gM7vs~9 zRegi#Ba!GUVVS*sl!w6 zdNyB~)9+ZX=`y?|#>qB0uI?bprHr!a<7&>{HebRO<=D6_9xt>X=smyZyphF2e^&Kok_aaHhhRMp4hOb36)`i<=KX4#}|FWh+hw;dY(CFQ}pX7Q&=@=-ZM;8)Gi z$MNF5N2v&L>WqJXXtG>1ZKf!tIi4y*0A92h+H_mVr>wD@~u^>ST5gKSJsxy!cvgAT5v@7Tb*(=r~}R^H+V$#0;TFQUfgweucEUuUZyVhH1N8}`qSx( z(8Gx5_d*ZbhZ|m5T{iEMdhO{CGn;Py;0`a((<#ZzmIZ%j-}Z68t+(3#$Z7t4(G92d za%^7O?CjWMJzCj>o-LB{U9^4F>8cOfXRh%OdU;6J+fG%qcg40kyML3zo*}jdvo0N* z_*Iep_PmZyr2O!GIOE6W*#6b-?)L8%wiEmn%J#K9$tLRgPMc8oa2u<`wIjv*xDFz` zEkWwVKoNgBRJNCM>NQidntCXe>W2Mq4gGlL#XI{Cd*h8>=UeyNe{=U44}CR2ToOvj(*p^oN>wf8n&eUtd;l`#wE4x%#a7TFiu{ zlb`)sUG&)Od%k@C7d7bNdncccKdAoo&Ebc02cA~X_s#x%&i-?%?=_p(7VNH4ubVsg zSFavFsb|W6-|+3ENqXe6KG4^N;R?a+cPyZ1kKT%G>ogfF^%+{m`- zRqJOX&v@Gwoo$%7BVQlGQfK0Q=@%ZiPs)qNGs#*S}tN}YP)yS3_hT_0Q8 zS}#7(IQ5ndYW&>Oy;k_`kaFuIWognt!kbN+eQMEnJHOS{=8hHcrV3cQ2rn8Sm6Pn^}v7GC|^iPCe| z*e=X3ejs(lU+R$GC;K;vzt*wC8K9e6<%VOy^6S%;qvRpjsg z_#DW1M;?uu5_$OKNU1TGXSK)1qPwLL1-xYVGk3^xNk55zaM+wvfPJlTk%=@g3GNXv zHa`#U6(;<$bF;^XWMlp>J3HHvo|5gz9-EZnm_p-?@#zK0S?K`|_*FT%QG=rf2ZsdR zk(82@k(7zVjtoQ~5P!3Cva<2QWF3hqco;99v*Fz%BGoa4|7O!mRxy6h|`s z#S|umgeIN{M?5*wlCyFV2S+uD{8c z2+ywv5Om)=@AKl}CcX#GfdwiBl6mN+l`Tk(VWF4`E1vfa9^d z^U+BGa8fnQGl9PV41bbxtX!%$a0`pxX&Qw@)|cVI3zm@P!8e-CMD+-q-SAd zm4n$&l2VTTLJVRkBVs7Pq&_P)KZ{3^r$9-`7{^tTg@%WE6~YVv9)?290zDVVW|NX; zdYP1#S&%OI6(lGD)OlQbJ_bMXh2-iYRG}(TM_3jv`0(FJL-gb+X)dv%o~}U8Ee&Mk zLgR}3xF=xEbKwdYQfRJ4Wd*1Y{aR8BkQ?vyDsQbR1yEE-aIj8Rz6Xd{VKU^iXl1!j zC2ICu&!P&mppR~^qM16Q1-jG)#x*|&h(<$nM8W`OgWfZ_g*)E`p#Zk16ffV|a+=?T zeKkS2j@;1<^J_vh3^BpNB0>g+WF}>&(u@s?of?u$IVNRdc0>fhI`iplNGS#&?gZ#b zFp39MI>o`%aL++clJ^kNIl-!+X{RLzBqgV%5E3;~@y3l=J|`z3PKRe=(Ja#uF)$)5 z9X2#IBrAHrfY6w*h&!Uvh9upc6qXy7J|HJDYiPufq20%h>ybUKrz0aRV=Vrs;(r$Y z=T1)U9gv%r!S*+Cyh9H|pjg)Ie9WFCXJur=u3@RhWXR2}6L@41)28Z^pyo(Q9cX2> z$NYy}0m5VoPmQLhJz&KoPyq;_L!bp524j+}e=sXafT0IO0c%rO%osuIU;`sDW)BM; z!qaa9?AD<%SR)G;*Zaw^yf!CGjLTk`NS_ejj#ziE? zB}Dhdq@Iu*I;bFiPO0fomDCR;_lLE%liVX|4HoOqbjk)8=>Q;Ce zHC0hW_MuTIeqUq$j+8Etr_N{w-Z~Dx6HUdAOHV`$rhxi~I3I%rMVY@KRBK5DUJOq_ z_r*jnCU{AWAsrCKGBx*F+@oY z?b42gKW=*FN7;N^JLiAoxH&iViQgVl|56`b99EqE%a^Kp$Nld{HvL&066f0>HnMl*>D^wTw$BTmQ@c0*LEZCEBX#1I&XNy5n^%vw9{PBFW7`e?8hQQO z`^wdcYMr(X)KMRNp#uedCNi z2i1XPZC)_a%S)4bH@wqX-n?)I}ydFk=S;}fDGzI5>0 z%?{n&`Wjort54kc)Q`Ki$4%><*dg^h_3IJsR=-&GvHDWp5Z~R8{I2f*{jk^6sb8uE z?T$XT`J40V+Mh>snzr!N_TB+g_KooSOTFzxtEc_5E~d8TWt1*WjDe2zh57pzsw#Txj-BfDd>>paX^N`wO)W?Cx=KGf} zx^H3VyaKE3>ouza_RLmny(d0aHuQt*ZC^e0=Erw``mgO-sV^MM^4O!Q-J5$1{^=Uq zM#qFPbI+evV}}3UZMXMn^`oY3imDF;l-~N;E%`_7<=eetr>{s{dP;pOxX0RpZGpBY z)z(vf@4sIyjS5RDocz1`#(u zvhRt(AFGb;9g9wHJfnVBxaEc2O*~7BT70xV{)gl0&%u4?oSa;(o_n+5xowgAwnx7+ z@&3K7epZ!dx?IYgbxmozlYv^3C(fw8EgG%s^!aJkb557mS(`7YxfjwJI)1;cv}wen zEsj6vX}jg?Pn#Zip+bGer+ShO}3sZ zdhEXR@j3P38~R>*+Y2LXIWPSZv?3(9bo7N!OP{D{V~b8$kWd&ISNe6Y-+pS-g(ElW?eU-IF>(vGFU zxBZa%)2mHwk4Jb0PVXOFdR@}$T^X2IQVW7{$hpLaLj(x!A; z@ry%NT5q%!EbVsUv5ReO7rSPpwH@2TRx)kevt^z^ww~X-Q}p;UZ(G~zf>O7A(y?^I zi0qxMzwT!H=G^oL-p^a826cJq+P&dRRL{nbw@?0ksftG2pzC8#slLTsceh^pw7RsT z#{&<1wN$-7;<3kqrZ3g!+f-`(ciewgeWr3<1xCwo&Wlyy-D@{NsPGjJWGX`F=qaGo;n3`offVj~A_$cIkq8 z=96aeeOs+kw{@JbbV-+$>d9eb5j|`>Gxj$fvuA}&-@vx^^z4vN+pbWX9A1T)K8x)^ zd)~P7pDtI|1vdWa?cK{&n#E~1`=UA#(}1h8EyDg34zvx|?*91xpI%V!e0lYg_xU}q z9{lr>CR6`-R`t$1+kMd!%hY{UKNsF|VyW7G;axu0om{2v+VVrgRS&FCOOB`hFt*|a z_31t-H(cLxqpD3GH)zk}8`QLyLmu}(@}lY;(0#xo->z1B{ut-|rr%0+M(!P{&$n2i z1}~pI?uqaf>Y|Gc#*}>WyqYjK?4AcBUQnyI&i%2^d(W%8CUlEEr#`Q~;eT>v#ltVC zpMAb^a+mUX>cgiO__n-ho!V^Wi%TC~xik@RF8Q69lid^z3S?fdv1Hgf4SOlV~SQ>%V*dS+#wGM!z^-en!nt-umvZyOycL<2rYk@yQG7 z{_u$pzWK*GmC1W4wv-mPM)nF>r_M>f@94mpifzxPum_57cuAd8b^evk2iK_Ki~0$f9WZrxKXR@5blb^; z8=ZJT^@)hieL-ERPW!pd%7~3?)Zw$;?-)fgs-8}ZyPFRT3)EPHb<HC$t z=jC+Is8-u7T(_r1^=dWr_fPU2b5^TW>#sW;^4e0jP-gK~9{dIh9yHCDbsotFISMtuXN+Pye*Nj*%l}%fKGFP(>kmBtg4%BA)UwfzCF;zb1y66@|C}0maAC>b zgKO0r=I*@qmwVT$pWU#zdj6 zG;5_A-FI=PeW%u_t!BsX{(bElb=ll`< z{A%^n&gwe@`>j&{j7$q`cYdY%_MD&k?Jr-c7QXKH?&0DUYP)02o2;C?Lj5q!E98|I zR;Xe7?`w3#dzqRL+x=Afu61h3`0_TrKSBMj9%8#T>5Tep$G76YTeeQU{=M1#HjY}Y z{`|#*yGM*!r(W>ccB$*+*VXnbUk<)7^<_0}V9!T33}2_lw@Y1jN56GygHAV3oHg$y zb?3zm$*Gf8s9*IPeRl0NE7VK=%8E}$y{uNfGc2ZX*>mc<{$DS9)%LV{aLWs$-hS>$wfNr72T$yN zLLJcJM1v8Xm#9yDboloVuUV_M>HgEmQK8SN9o6Rt+}iLtb=l81y;u?PiqIEZmh@vr z*%~H4x@~3EYIT5Z+pH$dUJ&tfc1k-lT!i{MQ|Vaoj(L9tzrtC8p}fA(VxoW(kbj!0 zug~b~WBi<`|`sq@CbX*Ff z<;(wZJu!5|%sV~PfJ5_iLOt+E|Mg#c{XvHR$ICec+p#fyQDfai@xQ&3*rZ?&8;ZTX z;gJIe+OZ`$%x(>hjSU@T4fpTT*%}$wx6|!be@FL_z~CO;de}qmK-ii0TNvrF(Zr4| z#bNP7W8;w4juf>e(D6fKVq%AmjEojrmxm>UhR0$@@=)xA#_R>QOk*!}WDK?~i@nU0 zz4+CjNd!kShus_@J;9frE#@s`*@oChpkT4~FlwQaxz7Hbtf43{ZP0M$7CO?7qIP!A z1h@cpvJQ*oP1E-9PMsUbde?P=^1>z?du*p}X+6>S`Pa!Bh5c`#vDP^J35&4Db>sX7 zCJbR#xTpi{_90d~6%!kA!(CIyM@HM@0r?}^PCSstW^X$-d)vbUx%72N8B1iC?#a%_Mx9LS*yQ{) zEELf$DPC{G2A)hu0E1{EkY-nEiySX@X%VR@Nlt3C|0grgXm?&Ho2f}sNek%@{c7LO zq0eUs9OqxHj{Oii#wEiKlaN9Y>hluWGTz&^-0#@4?_BhkySVgu4t>9lzCUM_T)*ed zBlvSk?vvmf%kbyC>e0sY&P6EPL}cXWe@-jMb4=HB8hsIbV7GIcHwypC?dLRqgtzrQ zr;S8-&~{FngYc2N&uLo_9vO;s2)hmkz6G;6iRZK+grDZ0)5ajooD6(~>Nmhg_|9*@ zNBH*d=QO3EqFky3eS{s)p3`CwCRU%*vJt-KRjna8f>;=()|!ban& zwN!+M$5(3$5dJH_THAu~?8C?h;iwm@HNVD+^7+fvS`fnfc2sL45l;E0TAPD#^cmnI zTza-zJA!aqb+zW*L{XAF&ujh&-}O7M#ULEp;=GoPaL3K(wIv8o_BpSWBDD5DuazUb zZNz!a569^Djy|vTM)*SVd2I~Bn6&fS9E1;Mp4T=Zyl3Kh?FhoX`RBDNgdqjzwbo4` zkLl+%8^X%M^I9sx>_^UP3lQEt^SrhN;ah_)XcY*1C0x+_d=$ku`GRIcIJ5AAmW^=Y ztP9!#gtu(Cplw08|1j_o?(n#%wQh!d{4Q!XgsaTpq;gU~bZqP7WP32w+N zN4PBZqUPBNvl9O_m@kW zx1XXkK6y#=NB9%M2!y4-UD8q!hF-j+EkJmOc1hcWaFmax9YMIeH7+7)4*hGRY5oY0 z--Lr#2rqQfv}}ZFftt1i;RaRHO6ffe_dy|CjnKP=qQnlut+WV-<10TS5w4EXv?&O0 z!GYZ62=7TnI)vwPkPcx_9N6-^R#E7rSrEcq4{BNr!Y^>q3a~S3ACWz1H z>E7WMB0)Ie_}>#YAeHb!oB2K3Ak3$sXR;@T>Kjrf@Pp7Xp)EOQ&q zY~-2Tgi!fM_>1s=*B$4ySJ7r`#b4Uc1^+{!+54T-Hr7RdiIYB+>kR&XFz}o<+{;9N z;9O77yS)s$gx40GW#!;=TAZ1WA@e*-yyjYFHuSU+7laoMyf(wmX&<328~hH{%jfx8 zW8hJ_(t)=H2kXAM&V*-{!>;RG@_!ci$+%;T&g~j>qYS!FdPuq-BK|wvP_{4GglDGv zezFVQGr*s5@SHXky6L1_;yKrAro}U@1>;h^wuRHM@0WAhB|IB=4bE{qmAfC}U#&Q& z4MJ$dN6hr}?AyR4zZArO{_8od6KuDEH+Zh+OfS#Y7Kusu%>~|Pf1K0$n(M{$4z3i+ zZv*0gIekuxHP6{jgwqxWMCCk_ETBCdyfY-BmwYJJ!zn;&ta&h^g z&+niQdC(<(6327-5#JJh%XQ{>JNUWAsh@tjeq1E0zp1^m$GtF?T{+bEA`HrqkUHy!a$t*F-Kw=%^$ z_28japvLwOco*NU*4o@?!ZYXF@J1tF!v7HX75l2SW3B7J|Dv^lPkf#M{IJ z*|QHjp+wi=$&Rox)tGJSh&IZK)+UUHNh`!&TL;4cyYm|@h4gl}w>(6Ul z&GHcX*;bbX<#z#i9d19b^>C@L+l_v!E%dT?$a$?{UG?zi4KDdc0l!()dF^G$*Wgd& zyG*xp#9top77RPDeS!Q9JY62!obC2m;Po1LUVE)3y_IHq9|EuRK9tvt7b)%CO#+kh zJqf&>W6x{fo9lfL+u<*Di%oKAiF%ysIIm6eGV$j*kt?0zdmw%>YZE>+;hFV&_=iRU;_5>uk4~q`}l~qJY;v z;(~U>jAy31Q|LNSnU9BnzZ<@F-c11L?Z%9sc$2{g$$bOxugSfj{q7?7m)YXJ%&UaZ?BVQ_42iW<4eSAUtqjMejUw1a}NnY{5 zUvc_^HnBE4JVx|kT>rrP6=Q`Qj7g00>w1!O4b!A@uLfQZpNnw%Z1WIG*IT8u2mTUeX?R zxBGccyH9-X0p3d(1CoDh!?nwJ^RX`lWifsniw0q-nsejDN< zuSi2)Zz8@!Urn2Sy@?+uoe9@VI!A#wb(p60_A=plc4xgLel8&X$plS%!7O)Ce+zWU z6J7`CU1NM6u)mpal2eege8hJY@Y*G7+E5q12Q%LkpN{xwho*&^>3H^IA{0Lt@tK%A zXzUX2WyEhl{0LkU_<#$2he3Z2;#Xwg21S?n=|=oX#Czep8(wC;@YMXMCaIiFF*j0C zsA=6L6Lcrqap-b27spTec0 zwd38T+H;!rWg8^Y?VRB2Lz>?Jl;=DY^ZQ2v z|485;3H&30eWQ}pyJ4X|-YLv8v^X=>w;rXuLqm*#}=qbVr*(NYHeXzAGe zlf}RUnczC@DHHlF8Dis5hZo9soo_uqno^~o{*JqKxjd!OHily# z6Tj=_!VN6^UOiaEGt&RUp9(2|_pF|h^}1GuZ^>|%3=hfhXBnQAVZ(UAe=8Z@Cc~aG z94N!#G8`wvNiuv?hEK_Gtqk9i;Vu~-lHt!XJS)S72{L~f;;IxbT2C1cl;Ln0j+5ae z89pk*r)0QRhHuGmmkbZd@MjsGm0`o-GJhG~Cc~aG94N!#G8`wvNiuv?hEK_Gtqk9i zAs6QV`ycoHbKa#g3tRoNGVmq(Eizr}QVEdn@=ej_3U~Sar}KBs9lcnogxK6;#Jf9xwPV!{y;AyrSHBE7m5RKL_qtheiP6ig*T4R5 zAlbx|(eC8C5&u7Y(B-0+Uw=2qmWn5%-N|<&{{Pd1UhW$C>-25%p;QOBhPpmqt^9Q= zdcHazI@}0L<&({T)a$|Er&ORD?|NzpuS>oLeqHHxI{#*<%T2Kf0>-DHOvCMlKHPSKfuP#Er4^-ma!YuNLxJp%g#h6Dr$<@0NB_s#;M zTn;H%M^XZF3o>vCGQzwZ5vJ--;$VOhh^r19fuRE;1M+ZTxp*6&nIAYdKP^2aAT31+ zq&M8rkg5cx6l8*)2=j783@!tu8)IEw5)ntY=2HUsl%1ZZ1k!EbN?;yt^-=9O<>Vw4h!pzs1Ia)G^`s2k3lca!3k2~ekaH0f z$L8iLfw&rkK7~-bz+Ir87+v*lU~_@di>J~+iEm(|N0*-`V)7c;TwwI#sdyRVBXguD zMoap*$Q9nu7(cnf8!5GoJ3KKO)5j~W_>C2P+~W#wVvLVm;nyhoIMEf}R4J6>23NR` zQd*0@>!~zT^zo%DzOS-ejyql9eoA)NL1qv?dtwv2_wBX8TPXT?)ttyvxz-q`y24v3 z<+Y5TJTcm=ZCvH4v{I^ujyIE#{9JF0L(P$%7(JE_s|_Ec>w9X0-)K(G&oqwrQvTH3 zBWV2YfmK^~{%PFaK=Dy3-Q*uA;X!Wm3ZWA2KHo5c={xz<=M%;;yrw)$BprSJ04tCE&#WTar)STMyVt32%3=4NsUiXu^Tg5R4K2Qw|#gc<(%(tP*Zd z7jWJq4|pF5KQ&3fc`rQRu@WBfpn&tSkcfcP7yf*%q)&YOF4*2dm z;I!wL@@+do%*XIv736yua1X^78xf1QRA63hFohOgl<1r%jZW z67J;&Zztj260Xme_)EA=!mH%OObEj5Q51b7S7 zV{kw?B~*BCAj0Gqy8QV{(rG?8l;ONLA5X^tZ;pE0)H{{oC?WqEq8?hv zXLHbr;XcZ~zyS>Ay~%j$4LH#$?VrZ*(taY*Gv9p4MbhC1C4AG!)2z38d1-Gb$@$5{VN99# zc;cyA!dKoY-jwepy!F?vbgBTajnAf-kR&-Qko_stgMYNApUSHo5p*gg zyt{;#KI$q5+S6YfecH=UbZoM|Hh~ZN6-jtRS|!(uQC_CwqeOly>=^H50{%J)*ZqVp zOac=H6K9g|yvs%*eoiExK?|BEtdP%49 zD?vxs^W75vn(5(8hxgv%X4WILXcCW|tO8`hOo3{PSKzq+28LmGV@kQZ8w2llZn3qF(rn1L8iH_@%O3x|~l+ zc%f`BRu4g_5h{rJNk1r5cA9{<2b{`#TduIre5L?VArgPNTRlcgeD!6)Kkxknew@Uw zbnEZ37+>UN{`;h)^U?-ENA&ABgDmN^J|N_P;_z>C9dtgf171-F{DP!kIwy_k>iT>g z^qS?fW1cWQQV+XH_$Dc5ou3E^FTHnGLnc&sBZnzEo#Rr@lFn4XNzR`v6y@bTzDPJj z!n?gH;JgveOC-E>wkw~nNqCu?-}0%1 z`yX=Ew;v_kD&cy6tpQH_EWTOT2R<8$e0?zRBlv<;(N6h{7T|3GC%F~=OVpRGA#sU4 z%Zx9c&3~gMouC^;dHIY15E3LjGfd>mXG8%{mh{KSeofcUX%atclEBy3qvuF?=Nkn4 zlFWRuq+|O=$W7O`*Cf7ejwlzO5kr~}CH#k1h27vYK7b#VbgZ)d>T)|R;bn26zH~ls z!2-8c@?Z|`0-WX6-L;*LknoXiepn~ZCyU!>hz_Z(eckpc==bNUK&gJ+=8L6RX&@8et@%G4UzTeA!6eJudTf4 zfcw=l{wiR6A0_ZMp@)376Qmy1=|3R+TR%Q*qbM)xaM^$9{O@EsW)8(O-QQ3fKXe9x z`M=p)?0}H=u!DpzmwK+(Z$H4v4zwI3?4Hi&AcJ)wKZ)^c^7DwK6ER5G0Y0k( zw8tfUOAPp0z?uIOB42&{xLv}JxcNT^B)qrOD_tLclk`VL z3V!%(5a>5)F6fuOE$Cb2hLa8w9wgZAGKSWS*?Yvl3o9N{m~*t3d?6X2_K4aqS9GUOqzucq_nJo}GVm z=^wjF{ECL6Uij=Y@NGK&zHk@+mhR~w`hTqw^!W@9@b8!SF>Z1zkobcZit_TAa^TOA z_z`Y)V5Nln$?>3GkJ}}k8S{kQ=ChulvtQ!xb@Si;knmUJ_*ZtniVyBGAUPD?e~PP0 zmzzJ}RIXm(Qg3B~J0!mChiVKa@RRZ%BJrP`FYx(n6r$sG{EyRI+FdH+GX(hsByPDl>7 z76^X$ZURK#B;j*k5_)o=0jE;BGF&{H|3(2$avtN>zobYyyYhwH_-q;yJ|OWGxAHzJ z@#n?}e)x_E;4hQ-d)@578;oz}L_B|02mDt_KeMf%&v$De$=?#5&|2{MjU?Fs8^^dE z{U!V&MUF?V*WuFNzDME@1RSbZ<9Cmae?x#U8B(t%GQN+}^F@&_pJ7Al0v-Q}UM_n0 zq{Q#iPt*&a`3L?whS$he*`w2OYj?*aohG*kI(%mVlK&y$hx3Gd`0fk9t0nyHp`yRw zGsA#4YbEr@D(8zFl7)5*moKIu5^$F1AFh6Qk`90PVHbNi2rUsa&Of zW&h$K5(L+Qf1kwnbMphI)`35d;Xca8y#=3q#uiyDlXME*{NcCjptDEfD{lA|I{jUO zKA%wp{l6vta%pd+8Bp3luw*xy%@g{tObVzY;3S7a*{*fJ(I(-i-1^f8n2r>#DR@TG zKkK{eN$X#d&X^5?PNA%qKPA56@9MWVL2D!aE8Of%N5E^V zce}(_{%{>P-3PcI=(w*Jq%j@LGdCA<=Ck48HBZ9(UnAgr<{a=D5`J@#&~v_<2k`lT z6Q5&bdExf(?-dDO>NbybM8ZpDz3cY>Pf5RgqmYko_by5NLaG0HJ+_8d!u7jZ=y{pU zx0i&Me&H(57#&~gxsIPD;kJ9lIQmUVXRd@>Wx0YRe655Bx!JKDI=*|m*6B-sDO=L1 z2AuS^bde}8-~EBO#;`gBKfPY~8+=y;;4J{B^4j`51Bu`#?RHm*|M7lNFMM|mqI*hs zaI~ZkJ)>WQq*E&W6J4Ik65iWwT>p@yGr&`{FTO(pbmmKZ#cjN^O2P}Ly2}53Nhf!d zpu=}KfX)Gi6KAf!iaOwQz?|ezdha`;8A$)3gM_zqlfMmcl4nq<(C23wihLpgr*^Sv zoETs0xet+aY!g3q@uM7)&c$58Ki?^VM41x5%B`I~BJo>hiG2BNJ@6lw_&#p!;&ln{ zC-tg35xk+hjfJ^DSK@ ze4U(6^AhOF011z98z_^vL{X#qINr(F86dVB9G;W2Lh zWSE4P9v1oP_@gB}$gLesm2jJc>+SAIz-yDw7KUR#z$2pG`A#D6xm&`=6x;BI`F;39 z^eeA}PNVjsT+8MBiMK#k+DrIxw|;Oi;3S_{8w&aG9dk%COybALde`+KOX9ETBJ`Z^ z<^cXwz-eB>z2A9Q;(yUm(C540fWJV}FL!H4Yb5@6D{a8S`cN_l$_5FaH&f8zJIWBX zUDBzPbaXxsO86=_z0xF|uSN;}`OXc{@wN)N*@CyhQsXD>trhUv>MMldn6G|T)ED2q zgk<(Q@W%sA`qti!pZOB5EEM)rpMO{<;i+zVSSsPR{z4D;O2hHB4tMkGP61vU|DHDs zezM)h(H$kcw8GV|=r7^RWj~_Jd4z;3(ofdg#bgQhm-boL!}${4+HHP*HQ=O&(T|5J z^y53`5N?$4uQEk_-N~_v^16h-_ll4|-wlPhcK|0jm$})o1B_pDKiJn2UpXk`skhU= zB)t5nfb0A>y+zQsy7>c2a!y`uUjDdofyqiDK7|;Y7!?^8pO}abg5@~Ir{&_#;>5g+ zM0~6<(~+yx0!mCw$x0lbo;4O9UP{T!%E?Vk%AcapcfatpH%CffuaG{$pj-=5B5gAi zn+6lH5fEQx7uyW~UuoCwBS%uk8zZ4ZLg@a46ChoHSaxQ8=q_7(ZQuFiwZXSSyhPE{ zkD2!NYx*%ev(X8W5I}T+!xIr95%K;31QyW+AQ2%XQiR|V`2Fh9kLqgMh}O997MVuuUUT7wIk%$P>r?l>JI>YcEE3#rczaXdZbO(d4kY zET|T388+^ctUPR8CEF_YiL6OuTV{K76~y5)KOhz+AYp-YS8I>k^7lDdYdMWqrFI={ z<=^esetzfSV^FUsxutY{gp6q?@4e?KY^iqVwmc__k3g)2hb)>)o_&XB3!c5hvlE`Z z>s>WRC&#x>Fq;QY@0{Nk_aEOwhl+Rf`TLKa+`aQiJbCcoqx%=);?7-64>c~%&$`-S zT?nKE4ATe&BkG3Z8#1%4C+_|5@tyOBXUtqYsO%bLQkwgI;OJ~MJ?n;+-MBDu3tR8 z^H?m7j=fl<0TL%1@IbBKmJyqaP!*|WF`&FrjfLCt1T}$p`6;U;%WB`$9e2FdM#fXDPu$z6^zKjle^VJWH?a}6+7Y^jvH4`!O;mCS~pF+1nSPt z#O_p3SyyU z1cS*S%}VJ2{==Pks;%M~QZ&{i5a7tx5PX@^(~NV>A7NN7^#po?06WPJMB8a)q|*}4 z3=@Kfd4~NwEq*yHeX&@2af|H7Nplb|)-~*LB+4q(7-*H8I zn9zhwn}~YW2tu)`Jy>#R)bb#rCIBwvs|00nwLLv$G7IFj_&_RDHz~qWgx88;8n8+e zApwG9+^OOSC~+~>5%k2S6=~8E^^#ObA_+Z@RNG1~qmfX=W@2NetCO`zo=xYn2R4_$ zri&+BOoX)4mAAoLAsmFOLJTtmbv+cdB;U44Wy={-MFd4`*l0Z3pp>m-NSIj!PUWRo zmF|FD940$UEL{3{yOoS;QT8B_;l^$Z?H*4N7>HF8v?~FBV!|kg#nSg6l)_VWdJf~X z*|(*nvIF&xHK=-%z}CUaDx{M|#@M2w59z2(i>Np9V%p|mA%)0=nL?^~dl2LkOtB1V zAH#-wXl8?zc zOeqURk<>-6x!jCaZHj~vSw`>xkzco{4kAnTFf1-1o#FzzQ|m1~rA>rfQqr_4fjo*r(HEv;V3ws5mEXE)u zu%iF#Q$MF+Y^pX7nm8Pb2ZqxxSvF%+>`;0kj1PETGpo?WfnEH)z6sRg(9G#}{=SCeP>2+=OT51hoY4;pc$N*C@r+I*T`7VAwHSo<>+!Mo}MNC<28F{A|GOP$6gW(frrHx2;C<3b_15+dV~`R$xxtL9-K7FRTV= zH!-RS|2fPzqo*jt2Mu#5nSpsBh@$Jj4c?9d>Z^Ga+}3o$zDSaWL~PxTU#U)TPu zSX|C7R>6ldSntFlLI=d6OBxABl{-_+UyE`oT^H;g?C#QRa&><_1H_dmibxjA%Ypo? zcpr$63>I9i7wdl4Dal)S}t>(qI%It#nhW8!S}BvJ!pJa3g32Mt>>n387KZ$Ak?<-OHa@|us?JF@9l&9v4*>y<@j=7@ zfg_l-8lhDho@qILlh{Fx_Ys_VO_FrW_o<*mRmr724MN>Q%x%m*R+fqe&ZEzQI+rRz*v|(6WDReHDmb8uG`YeF7?AJ|Hl^|lk~oT zkACc@+t2A;eFKjJjt__yR$|Ia+5_h>Luemn+T-}_j`ZwxJj-PFq@$1{(HBN|A18?@j`k08p zVdiQ2H}K~EFHnc@cUc*S*;n|vhBx~V6P_rw;eU;L#4GX3!|bp1vyarZdU#Hq^FR9< z9>2uJ5Z>&=^|6LOC285Knd+1Af2!dP{>}bhpKACQ6p+F3*5I6{zr~0B8+fx%Souv#753?|=5OQg_oy?3 zH~Wdb@ofeF6TGiCJPiHJy&If-6(7@$*>~*4xq`Rr+t+^pEM5ie;LScmpS>phXMpAS zP5)*eu)n+}{GS0!N*Q>w-`U?Z{F@rFh6~L24Ili~>fh{(_OB-|pTBA6?-sn-$J_g^ zg8v;SH#iKO`ThsWhVwW3tlfN1!JnFnx{cF8TRi<7A67B*@1D2)k?#L1zrvHj{c+l# z%CrCAKl?wn?t2N4wc#JdA. + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from bubbleGrowth import m + diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/bubbleGrowth.py b/applications/PUfoam/MoDeNaModels/bubbleGrowth/bubbleGrowth.py new file mode 100644 index 000000000..4644eba29 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/bubbleGrowth.py @@ -0,0 +1,45 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Backward mapping Firetask for Bubble growth model. +Contains path to the detailed model executable. + +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +""" +import os +from modena.Strategy import BackwardMappingScriptTask + +m = BackwardMappingScriptTask( + script=os.path.dirname(os.path.abspath(__file__))+'/src/bblgrExact' +) diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/CMakeLists.txt new file mode 100644 index 000000000..ae2662da8 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/CMakeLists.txt @@ -0,0 +1,20 @@ +cmake_minimum_required (VERSION 2.8) +project (bubbleGrowth C CXX Fortran) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) +endif() + +find_package(MODENA REQUIRED) + +include_directories(${MODENA_INCLUDE_DIRS}) +link_directories(${MODENA_LIBRARY_DIRS}) + + +set (CMAKE_Fortran_FLAGS "-ffree-line-length-none -O3") + +set (CMAKE_Fortran_MODULE_DIRECTORY mod) +file (GLOB _sources RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} src/*.f*) +add_executable(bblgrExact ${_sources}) +target_link_libraries(bblgrExact MODENA::modena) diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/constants.f90 b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/constants.f90 new file mode 100644 index 000000000..bd92051d1 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/constants.f90 @@ -0,0 +1,15 @@ +!> @file +!! stores parameters and commonly used variables as globals +!! @author Pavel Ferkl +!! @ingroup bblgr +module constants + use,intrinsic :: iso_fortran_env, only: dp => real64 + implicit none + real(dp), parameter :: & + pi=3.1415926535897932384626433832795028841971693993751058209749445923& + &078164062862089986280348253421170679_dp,& ! @file +!! handles input and output +!! @author Pavel Ferkl +!! @ingroup bblgr +module in_out + use constants + use ioutils, only:newunit,str + implicit none + logical :: inertial_term,solcorr,gelpoint,dilution + integer :: fi1,fi2,fi3,fi4,& + integrator,p,maxts,its,visc_model,rhop_model,itens_model,ngas,co2_pos,& + kin_model,MF,NEQ,& + fceq,& !first concentration equation (index) + fpeq,lpeq,& !first and last pressure equation (index) + req,& !radius equation (index) + teq,& !temperature equation (index) + xOHeq,xWeq,& !conversion equations (indexes) + kineq(12) !kinetics state variable equations (indexes) + real(dp) :: mshco,& !mesh coarsening parameter + Temp0,R0,Sn,OH0,W0,NCO0,AOH,EOH,AW,EW,dHOH,dHW,& + time,radius,eqconc,grrate(2),st,S0,& + T,TEND,RTOL,ATOL,& + eta,maxeta,Aeta,Eeta,Cg,AA,B,& + Pamb,sigma,rhop,cp,cppol,rhobl,& + kinsource(12) !kinetic source term + integer, dimension(:), allocatable :: diff_model,sol_model,fic + real(dp), dimension(:), allocatable :: Y,cbl,xgas,& + D,KH,Mbl,dHv,cpblg,cpbll,& + mb,mb2,mb3,avconc,pressure +contains +!********************************BEGINNING************************************* +!> reads input values from a file +subroutine read_inputs(inputs) + character(len=80),intent(in) :: inputs + integer :: fi + write(*,*) 'loading input file ',TRIM(inputs) + open(newunit(fi),file=inputs) + read(fi,*) integrator !integrator. 1=dlsode,2=dlsodes + read(fi,*) MF !10=nonstiff,22=stiff,automatic Jacobian(dlsode), + ! 222=stiff,automatic Jacobian(dlsodes) + read(fi,*) + read(fi,*) inertial_term !include inertial term in equations (t/f) + read(fi,*) solcorr !use solubility correction on bubble radius (t/f) + read(fi,*) mshco !mesh coarsening parameter + read(fi,*) + read(fi,*) p !number of internal nodes + read(fi,*) T !initial time + read(fi,*) TEND !final time + read(fi,*) its !number of outer integration time steps (how many + ! times are values written) + read(fi,*) maxts !maximum inner time steps between t and t+h + ! (default 500, recommended 50000) + read(fi,*) RTOL !relative tolerance + read(fi,*) ATOL !absolute tolerance + read(fi,*) + read(fi,*) ngas !number of dissolved gases + allocate(D(ngas),cbl(ngas),xgas(ngas+1),KH(ngas),fic(ngas),Mbl(ngas),& + dHv(ngas),mb(ngas),mb2(ngas),mb3(ngas),avconc(ngas),pressure(ngas),& + diff_model(ngas),sol_model(ngas),cpblg(ngas),cpbll(ngas)) + read(fi,*) co2_pos !carbon dioxide position + read(fi,*) Pamb !ambient pressure + read(fi,*) Mbl !blowing agent molar mass (for each dissolved gas) + read(fi,*) cppol !heat capacity of polymer + read(fi,*) cpbll !heat capacity of blowing agent in liquid phase + ! (for each) + read(fi,*) cpblg !heat capacity of blowing agent in gas phase + ! (for each) + read(fi,*) dHv !evaporation heat of blowing agent (for each gas) + read(fi,*) rhobl !density of liquid physical blowing agent + read(fi,*) + read(fi,*) Temp0 !initial temperature + read(fi,*) R0 !initial radius + read(fi,*) Sn !how many times is initial shell larger than initial + ! bubble radius + read(fi,*) OH0 !initial concentration of polyol (don't set to zero - + ! division by zero; if you don't want reaction, set water to zero) + read(fi,*) W0 !initial concentration of water (if you set this to + ! zero, water conversion results are meanigless) + read(fi,*) NCO0 !initial concentration of isocyanate + read(fi,*) cbl !initial concentration of disolved blowing agent + ! (for each dissolved gas) + read(fi,*) xgas !initial molar fraction of gases in the bubble (for + ! air and each dissolved gas) + read(fi,*) + read(fi,*) kin_model !reaction kinetics model. 1=Baser,2=modena + read(fi,*) dilution !use dilution effect + read(fi,*) AOH !frequential factor of gelling reaction + read(fi,*) EOH !activation energy of gelling reaction + read(fi,*) AW !frequential factor of blowing reaction + read(fi,*) EW !activation energy of blowing reaction + read(fi,*) dHOH !gelling reaction enthalpy + read(fi,*) dHW !blowing reaction enthalpy + read(fi,*) + read(fi,*) rhop_model !polymer density model. 1=constant,2=modena + read(fi,*) rhop !polymer density + read(fi,*) + read(fi,*) itens_model !interfacial tension model. 1=constant,2=modena + read(fi,*) sigma !interfacial tension + read(fi,*) + read(fi,*) diff_model !diffusivity model (for each dissolved gas). + ! 1=constant,2=modena + read(fi,*) D !diffusion coefficients (for each dissolved gas) + read(fi,*) + read(fi,*) sol_model !solubility model (for each dissolved gas). + ! 1=constant,2=modena + read(fi,*) KH !Henry constants (for each dissolved gas) + read(fi,*) + read(fi,*) visc_model !viscosity model. 1=constant,2=Castro and + ! Macosko,3=modena + read(fi,*) eta !viscosity (if constant viscosity is used) + read(fi,*) maxeta !maximum viscosity + read(fi,*) Aeta !viscosity constant Aeta + read(fi,*) Eeta !viscosity constant Eeta + read(fi,*) Cg !viscosity constant Cg + read(fi,*) AA !viscosity constant AA + read(fi,*) B !viscosity constant B + close(fi) + write(*,*) 'done: inputs loaded' + write(*,*) +end subroutine read_inputs +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> saves parameters of surrogate model +subroutine save_surrogate_parameters(spar) + character(len=80),intent(in) :: spar + integer :: fi,i + write(*,*) 'saving parameters of surrogate model to ',TRIM(spar) + open(newunit(fi),file=spar) + write(fi,*) ngas !number of dissolved gases + write(fi,*) sigma !interfacial tension + do i=1,ngas + write(fi,*) KH(i) !Henry constants (for each dissolved gas) + enddo + close(fi) + write(*,*) 'done: parameters of surrogate model saved' + write(*,*) +end subroutine save_surrogate_parameters +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> opens output files and writes a header +subroutine save_integration_header(outputs_1d,outputs_GR,outputs_GR_c,& + outputs_GR_p,concloc) + character(*),intent(in) :: outputs_1d,outputs_GR,outputs_GR_c,outputs_GR_p,& + concloc !file names + integer :: i + open (unit=newunit(fi1), file = outputs_1d) + write(fi1,'(1000A23)') '#time', 'radius','pressure','conversion of polyol',& + 'conversion of water', 'eq. concentration', 'first concentration', & + 'viscosity', 'moles in polymer', 'moles in bubble', 'total moles', & + 'shell thickness', 'temperature', 'foam density', 'weight fraction' + open (unit=newunit(fi2), file = outputs_GR) + write(fi2,'(1000A23)') '#GrowthRate1', 'GrowthRate2', 'temperature', & + 'bubbleRadius', 'KH1','KH2','c1','c2','p1','p2' +end subroutine save_integration_header +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> writes an integration step to output file +subroutine save_integration_step + integer :: i + write(fi1,"(1000es23.15)") time,radius, pressure(1), Y(xOHeq), Y(xWeq), & + eqconc,Y(fceq),eta,mb(1),mb2(1),mb3(1),st,Y(teq),(1-radius**3/& + (radius**3+S0**3-R0**3))*rhop,mb(2)*Mbl(2)/(rhop*4*pi/3*(S0**3-R0**3)),& + mb(1)*Mbl(1)/(rhop*4*pi/3*(S0**3-R0**3)) + write(fi2,"(1000es23.15)") grrate, Y(teq), radius, KH, avconc, pressure +end subroutine save_integration_step +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> closes output files +subroutine save_integration_close +!***************************DECLARATION****************************** + integer :: i +!******************************BODY********************************** + close(fi1) + close(fi2) +end subroutine save_integration_close +!***********************************END**************************************** +end module in_out diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/ioutils.f90 b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/ioutils.f90 new file mode 100644 index 000000000..80a5bbb10 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/ioutils.f90 @@ -0,0 +1,41 @@ +!> @file +!! i/o utilities +!! @author Pavel Ferkl +!! @ingroup foam_aging +module ioutils + implicit none + private + public newunit,str +contains +!********************************BEGINNING************************************* +!> returns lowest i/o unit number not in use +integer function newunit(unit) result(n) + integer, intent(out), optional :: unit + logical inuse + integer, parameter :: & + nmin=123,& ! avoid lower numbers which are sometimes reserved + nmax=999 ! may be system-dependent + do n = nmin, nmax + inquire(unit=n, opened=inuse) + if (.not. inuse) then + if (present(unit)) unit=n + return + end if + end do + write(*,*) "newunit ERROR: available unit not found." + stop +end function newunit +!***********************************END**************************************** + + + +!********************************BEGINNING************************************* +!> converts integer to string +function str(k) + character(len=20) :: str + integer, intent(in) :: k + write (str, *) k + str = adjustl(str) +end function str +!***********************************END**************************************** +end module ioutils diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/main.f90 b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/main.f90 new file mode 100644 index 000000000..758a617cf --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/main.f90 @@ -0,0 +1,11 @@ +!> @file +!! simulation of bubble growth; +!! inspired by [Feng and Bertelo (2004)](http://dx.doi.org/10.1122/1.1645518) +!! and adapted to polyurethanes +!! @author Pavel Ferkl +!! @ingroup bblgr +program singlebubblegrowth + use tests + implicit none + call onegrowth +end program diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/model.f90 b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/model.f90 new file mode 100644 index 000000000..1143ccfb9 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/model.f90 @@ -0,0 +1,491 @@ +!> @file +!! contains model subroutines for bubble growth model +!! @author Pavel Ferkl +!! @ingroup bblgr +module model + use constants + use in_out + use iso_c_binding + use fmodena + use modenastuff + implicit none + integer :: info + real(dp) :: Pair0,timestep,GR,Rold,Told,pold(2),nold(2),Vsh + !time integration variables for lsode + integer :: IOUT, IOPT, ISTATE, ITASK, ITOL, LIW, LRW, NNZ, LENRAT!, MF, NEQ + real(dp) :: JAC,TOUT!,RTOL,ATOL,T + real(dp), dimension(:), allocatable :: RWORK!,Y + integer, dimension(:), allocatable :: IWORK + !mesh variables + real(dp),allocatable :: atri(:),btri(:),ctri(:),rtri(:),utri(:),dz(:) + !needed for selection of subroutine for evaluation of derivatives + abstract interface + subroutine sub (NEQ, T, Y, YDOT) + use constants + INTEGER :: NEQ + real(dp) :: T, Y(NEQ), YDOT(NEQ) + end subroutine sub + end interface + procedure (sub), pointer :: sub_ptr => FEX +contains +!********************************BEGINNING************************************* +!> model supplied to integrator, FVM, nonequidistant mesh +SUBROUTINE FEX (NEQ, T, Y, YDOT) + INTEGER :: NEQ,i,j + real(dp) :: T, Y(NEQ), YDOT(NEQ),z,zw,ze,zww,zee,lamw,lame,cw,ce,cww,cee,& + c,dcw,dce,dil,bll + call molar_balance + YDOT=0 + YDOT(xOHeq) = AOH*exp(-EOH/Rg/Y(teq))*(1-Y(xOHeq))*& + (NCO0-2*W0*Y(xWeq)-OH0*Y(xOHeq)) !polyol conversion + if (kin_model==3) then + if (Y(xOHeq)>0.5_dp .and. Y(xOHeq)<0.87_dp) YDOT(xOHeq)=YDOT(xOHeq)*& + (-2.027_dp*Y(xOHeq)+2.013_dp) !gelling influence on kinetics + if (Y(xOHeq)>0.87_dp) YDOT(xOHeq)=YDOT(xOHeq)*& + (3.461_dp*Y(xOHeq)-2.761_dp) + endif + if (W0>1e-3) then + ! water conversion + ! YDOT(xWeq) = AW*exp(-EW/Rg/Y(teq))*(1-Y(xWeq))*& + ! (NCO0-2*W0*Y(xWeq)-OH0*Y(xOHeq)) 2nd order + YDOT(xWeq) = AW*exp(-EW/Rg/Y(teq))*(1-Y(xWeq)) !1st order + endif + if (dilution) then + if (co2_pos==1) then + bll=mb(2)/Vsh*Mbl(2)/rhop + else + bll=mb(1)/Vsh*Mbl(1)/rhop + endif + dil=1/(1+rhop/rhobl*bll) + YDOT(xOHeq)=YDOT(xOHeq)*dil + YDOT(xWeq)=YDOT(xWeq)*dil + endif + if (kin_model==2) then + call kinModel + do i=1,size(kineq) + YDOT(kineq(i))=kinsource(i) + enddo + YDOT(xOHeq) = -YDOT(kineq(2))/OH0 + YDOT(xWeq) = -YDOT(kineq(3))/W0 + endif + !temperature (enthalpy balance) + YDOT(teq) = -dHOH*OH0/(rhop*cp)*YDOT(xOHeq)-dHW*W0/(rhop*cp)*YDOT(xWeq) + if (kin_model==2) then + YDOT(kineq(12))=YDOT(teq) + endif + do i=1,ngas + YDOT(teq) = YDOT(teq) - dHv(i)*12*pi*Mbl(i)*D(i)*Y(req)**4/& + (rhop*cp*Vsh)*(Y(fceq+i-1)-KH(i)*Y(fpeq+i-1))/(dz(1)/2) + enddo + if (inertial_term) then + YDOT(req) = Y(req+1) !radius (momentum balance) + YDOT(req+1) = (sum(Y(fpeq:lpeq)) + Pair0*R0**3/Y(req)**3 - Pamb - & + 2*sigma/Y(req) - 4*eta*Y(req+1)/Y(req) - & + 3._dp/2*Y(req+1)**2)/(Y(req)*rhop) + else + YDOT(req) = (sum(Y(fpeq:lpeq)) + Pair0*R0**3/Y(req)**3 - Pamb - & + 2*sigma/Y(req))*Y(req)/(4*eta) !radius (momentum balance) + endif + do i=fpeq,lpeq + YDOT(i) = -3*Y(i)*YDOT(req)/Y(req) + Y(i)/Y(teq)*YDOT(teq) + & + 9*Rg*Y(teq)*D(i-fpeq+1)*Y(req)*(Y(fceq+i-fpeq)-KH(i-fpeq+1)*Y(i))/& + (dz(1)/2) !partial pressure (molar balance) + enddo + do j=1,ngas + do i=1,p+1 + if (i==1) then !bubble boundary + zw=0e0_dp + z=dz(i)/2 + ze=dz(i) + zee=ze+dz(i+1)/2 + lame=(ze-z)/(zee-z) + c=Y(fceq+(i-1)*ngas+j-1) + cee=Y(fceq+i*ngas+j-1) + cw=KH(j)*Y(fpeq+j-1) + ce=cee*lame+c*(1-lame) + dcw=(c-cw)/(z-zw) + dce=(cee-c)/(zee-z) + elseif(i==p+1) then !outer boundary + zww=z + zw=ze + z=zee + ze=ze+dz(i) + lamw=(zw-zww)/(z-zww) + cww=Y(fceq+(i-2)*ngas+j-1) + c=Y(fceq+(i-1)*ngas+j-1) + cw=c*lamw+cww*(1-lamw) + ce=c + dcw=(c-cww)/(z-zww) + dce=0e0_dp + else + zww=z + zw=ze + z=zee + ze=ze+dz(i) + zee=ze+dz(i+1)/2 + lamw=(zw-zww)/(z-zww) + lame=(ze-z)/(zee-z) + cww=Y(fceq+(i-2)*ngas+j-1) + c=Y(fceq+(i-1)*ngas+j-1) + cee=Y(fceq+i*ngas+j-1) + cw=c*lamw+cww*(1-lamw) + ce=cee*lame+c*(1-lame) + dcw=(c-cww)/(z-zww) + dce=(cee-c)/(zee-z) + endif + !concentration (molar balance) + YDOT(fceq+(i-1)*ngas+j-1) = 9*D(j)*((ze+Y(req)**3)**(4._dp/3)*dce -& + (zw+Y(req)**3)**(4._dp/3)*dcw)/dz(i) + if (j==co2_pos) YDOT(fceq+(i-1)*ngas+j-1) = & + YDOT(fceq+(i-1)*ngas+j-1) + W0*YDOT(xWeq) !reaction source + enddo + enddo +END subroutine FEX +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculates values of physical properties +subroutine physical_properties(Y) + real(dp), dimension(:), intent(in) :: Y + integer :: i + if (.not. gelpoint .and. Y(teq)<500) then + select case(visc_model) + case(1) + case(2) + eta=Aeta*exp(Eeta/(Rg*Y(teq)))*(Cg/(Cg-Y(xOHeq)))**(AA+B*Y(xOHeq)) + case(3) + !set input vector + call modena_inputs_set(viscInputs, viscTpos, Y(teq)); + call modena_inputs_set(viscInputs, viscXPos, Y(xOHeq)); + !call model + ret = modena_model_call(viscModena, viscInputs, viscOutputs) + if(ret /= 0) then + call exit(ret) + endif + !fetch results + eta = modena_outputs_get(viscOutputs, 0_c_size_t); + end select + if (eta>maxeta .or. isnan(eta)) then + eta=maxeta + gelpoint=.true. + write(*,'(2x,A,es8.2,A)') 'gel point reached at time t = ',TOUT,' s' + write(*,'(2x,A,es8.2,A)') 'temperature at gel point T = ',Y(teq),' K' + write(*,'(2x,A,es8.2)') 'conversion at gel point X = ',Y(xOHeq) + endif + else + eta=maxeta + endif + select case(itens_model) + case(1) + case(2) + call modena_inputs_set(itensInputs, itensTpos, Y(teq)) + ret = modena_model_call(itensModena, itensInputs, itensOutputs) + if(ret /= 0) then + call exit(ret) + endif + sigma = modena_outputs_get(itensOutputs, 0_c_size_t) + end select + do i=1,ngas + select case(diff_model(i)) + case(1) + case(2) + call modena_inputs_set(diffInputs(i), diffTpos(i), Y(teq)) + ret = modena_model_call(diffModena(i), diffInputs(i), diffOutputs(i)) + if(ret /= 0) then + call exit(ret) + endif + D(i) = modena_outputs_get(diffOutputs(i), 0_c_size_t) + end select + select case(sol_model(i)) + case(1) + case(2) + call modena_inputs_set(solInputs(i), solTpos(i), Y(teq)) + ret = modena_model_call(solModena(i), solInputs(i), solOutputs(i)) + if(ret /= 0) then + call exit(ret) + endif + KH(i) = modena_outputs_get(solOutputs(i), 0_c_size_t) + KH(i)=rhop/Mbl(i)/KH(i) + case(3) + KH(i)=-rhop/Mbl(i)/Pamb*3.3e-4_dp*(exp((2.09e4_dp-67.5_dp*(Y(teq)-& + 35.8_dp*log(Pamb/1e5_dp)))/(8.68e4_dp-(Y(teq)-35.8_dp*& + log(Pamb/1e5_dp))))-1.01_dp)**(-1) + case(4) + KH(i)=rhop/Mbl(i)/Pamb*(0.0064_dp+0.0551_dp*exp(-(Y(teq)-298)**2/& + (2*17.8_dp**2))) + case(5) + KH(i)=rhop/Mbl(i)/Pamb*(0.00001235_dp*Y(teq)**2-0.00912_dp*Y(teq)+& + 1.686_dp) + case(6) + KH(i)=rhop/Mbl(i)/Pamb*(1e-7_dp+4.2934_dp*& + exp(-(Y(teq)-203.3556_dp)**2/(2*40.016_dp**2))) + end select + enddo + if (solcorr) KH=KH*exp(2*sigma*Mbl/(rhop*Rg*Y(teq)*Y(req))) + cp=cppol+sum(cbl*Mbl*cpbll)/rhop +end subroutine physical_properties +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculates molar amount in bubble and shell and thickness of the shell +subroutine molar_balance + integer :: i,j + call physical_properties(Y) + !numerical integration + mb=0e0_dp + !rectangle rule + do i=1,p+1 + do j=1,ngas + mb(j)=mb(j)+Y(fceq+j-1+(i-1)*ngas)*dz(i) + enddo + enddo + mb=mb*4*pi/3 !moles in polymer + do i=1,ngas + mb2(i)=Y(fpeq+i-1)*Y(req)**3*4*pi/(3*Rg*Y(teq)) !moles in bubble + enddo + mb3=mb+mb2 !total moles + st=(S0**3+Y(req)**3-R0**3)**(1._dp/3)-Y(req) !thickness of the shell +end subroutine molar_balance +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> restores dimensional variables +subroutine restoreDV + integer :: i + time=TOUT + radius=Y(req) + eqconc=Y(fpeq)*KH(1) !only first gas + do i=1,ngas + pressure(i)=Y(fpeq+i-1) + grrate(i)=(mb2(i)-nold(i))/timestep + enddo + i=1 + Rold=Y(req) + Told=Y(teq) + do i=1,ngas + pold(i)=Y(fpeq+i-1) + nold(i)=mb2(i) + enddo + avconc=mb/Vsh +end subroutine restoreDV +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates kinetic source terms +subroutine kinModel + call modena_inputs_set(kinInputs, kinNCOPos, Y(kineq(1))); + call modena_inputs_set(kinInputs, kinOHPos, Y(kineq(2))); + call modena_inputs_set(kinInputs, kinH2OPos, Y(kineq(3))); + call modena_inputs_set(kinInputs, kinCO2Pos, Y(kineq(4))); + call modena_inputs_set(kinInputs, kinPentanePos, Y(kineq(5))); + call modena_inputs_set(kinInputs, kinPolymerPos, Y(kineq(6))); + call modena_inputs_set(kinInputs, kinPolymerBlowPos, Y(kineq(7))); + call modena_inputs_set(kinInputs, kinUreaPos, Y(kineq(8))); + call modena_inputs_set(kinInputs, kinR1Pos, Y(kineq(9))); + call modena_inputs_set(kinInputs, kinRmassPos, Y(kineq(10))); + call modena_inputs_set(kinInputs, kinRvolPos, Y(kineq(11))); + call modena_inputs_set(kinInputs, kinRtempPos, Y(kineq(12))); + ret = modena_model_call (kinModena, kinInputs, kinOutputs) + if(ret /= 0) then + call exit(ret) + endif + kinsource(kineq(1)) = modena_outputs_get(kinOutputs, kinSourceNCOPos); + kinsource(kineq(2)) = modena_outputs_get(kinOutputs, kinSourceOHPos); + kinsource(kineq(3)) = modena_outputs_get(kinOutputs, kinSourceH2OPos); + kinsource(kineq(4)) = modena_outputs_get(kinOutputs, kinSourceCO2Pos); + kinsource(kineq(5)) = modena_outputs_get(kinOutputs, kinSourcePentanePos); + kinsource(kineq(6)) = modena_outputs_get(kinOutputs, kinSourcePolymerPos); + kinsource(kineq(7)) = modena_outputs_get(kinOutputs, & + kinSourcePolymerBlowPos); + kinsource(kineq(8)) = modena_outputs_get(kinOutputs, kinSourceUreaPos); + kinsource(kineq(9)) = modena_outputs_get(kinOutputs, kinSourceR1Pos); + kinsource(kineq(10)) = modena_outputs_get(kinOutputs, kinSourceRmassPos); + kinsource(kineq(11)) = modena_outputs_get(kinOutputs, kinSourceRvolPos); + kinsource(kineq(12)) = modena_outputs_get(kinOutputs, kinSourceRtempPos); +end subroutine kinModel +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> prepares integration +subroutine bblpreproc + integer :: i,j + write(*,*) 'preparing simulation...' + !determine number of equations and their indexes + NEQ=(p+1)*ngas + NEQ = NEQ+4+ngas + req=1 !radius index + fpeq=2 !pressure index + if (inertial_term) then + NEQ=NEQ+1 + fpeq=fpeq+1 + endif + lpeq=fpeq+ngas-1 + teq=lpeq+1 !temperature index + xOHeq=teq+1 !polyol conversion index + xWeq=xOHeq+1 !water conversion index + fceq = xWeq+1 !concentration index + if (kin_model==2) then + NEQ=NEQ+size(kineq) + do i=1,size(kineq) + kineq(i)=xWeq+i + enddo + fceq=kineq(size(kineq))+1 + endif + + !set initial values + allocate(Y(NEQ)) + Y=0 + Y(req) = R0 !radius + if (inertial_term) Y(req+1) = 0 !velocity + Y(teq) = Temp0 !temperature + Y(xOHeq) = 0 !xOH + Y(xWeq) = 0 !xW + if (kin_model==2) then + Y(kineq(1))=NCO0*1e3_dp + Y(kineq(2))=OH0*1e3_dp + Y(kineq(3))=W0*1e3_dp + endif + do j=1,ngas + do i=1,p+1 + Y(fceq+(i-1)*ngas+j-1) = cbl(j) !blowing agent concentration + enddo + enddo + if (sum(xgas) /= 1) then + write(*,*) 'Sum of initial molar fractions of gases in the bubble is & + not equal to one. Normalizing...' + xgas=xgas/sum(xgas) + write(*,*) 'New initial molar fractions of gases in the bubble' + write(*,*) xgas + endif + call createModenaModels + select case(rhop_model) !density is kept constant, calculate it only once + case(1) + case(2) + call modena_inputs_set(rhopInputs, rhopTpos, Y(teq)) + ret = modena_model_call (rhopModena, rhopInputs, rhopOutputs) + if(ret /= 0) then + call exit(ret) + endif + rhop = modena_outputs_get(rhopOutputs, 0_c_size_t) + call modena_inputs_set(rhopInputs, rhopTpos, Y(teq)+150) + ret = modena_model_call (rhopModena, rhopInputs, rhopOutputs) + if(ret /= 0) then + call exit(ret) + endif + !average density during foaming + rhop=(rhop + modena_outputs_get(rhopOutputs, 0_c_size_t))/2 + end select + call physical_properties(Y) + Pair0=(Pamb+2*sigma/R0)*xgas(1) + do i=1,ngas + Y(fpeq+i-1) = xgas(i+1)*(Pamb+2*sigma/R0) !pressure + if (Y(fpeq+i-1)<1e-16_dp) Y(fpeq+i-1)=1e-16_dp + enddo + Rold=Y(req) + Told=Y(teq) + pold(1)=Y(fpeq) + pold(2)=Y(fpeq+1) + S0=Sn*Y(req) + Vsh=4*pi/3*(S0**3-R0**3) + gelpoint=.false. + timestep=(TEND-T)/its + write(*,'(2x,A,2x,e12.6)') 'NN',Sn**(-3)/(1-Sn**(-3))/& + exp(log(4._dp/3*pi*R0**3)) + + !calculate spatial grid points + allocate(atri(p),btri(p),ctri(p),rtri(p),utri(p),dz(p+1)) + atri=-mshco !lower diagonal + btri=1+mshco !main diagonal + ctri=-1 !upper diagonal + rtri=0 !rhs + rtri(p)=S0**3-R0**3 + utri=rtri + call dgtsl(p,atri,btri,ctri,utri,info) + if ((utri(2)-utri(1))/utri(1)<10*epsilon(utri)) stop 'set smaller mesh & + coarsening parameter' + dz(1)=utri(1)+rtri(1)/mshco + do i=2,p + dz(i)=utri(i)-utri(i-1) + enddo + dz(p+1)=rtri(p)-utri(p) + deallocate(atri,btri,ctri,rtri,utri) + + !choose and set integrator + select case(integrator) + case(1) + select case(MF) + case(10) + allocate(RWORK(20+16*NEQ),IWORK(20)) + case(22) + allocate(RWORK(22+9*NEQ+NEQ**2),IWORK(20+NEQ)) + case default + stop 'unknown MF' + end select + case(2) + select case(MF) + case(10) + allocate(RWORK(20+16*NEQ),IWORK(30)) + case(222) + NNZ=NEQ**2 !Not sure, smaller numbers make problems for low p + LENRAT=2 !depends on dp + allocate(RWORK(int(20+(2+1._dp/LENRAT)*NNZ+(11+9._dp/LENRAT)*NEQ)),& + IWORK(30)) + case default + stop 'unknown MF' + end select + case default + stop 'unknown integrator' + end select + ITASK = 1 + ISTATE = 1 + IOPT = 1 + RWORK(5:10)=0 + IWORK(5:10)=0 + LRW = size(RWORK) + LIW = size(IWORK) + IWORK(6)=maxts + TOUT =T+timestep + ITOL = 1 !don't change, or you must declare ATOL as ATOL(NEQ) + write(*,*) 'done: simulation prepared' + write(*,*) +end subroutine bblpreproc +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> performs integration +subroutine bblinteg(outputs_1d,outputs_GR,outputs_GR_c,outputs_GR_p,concloc) + character(*),intent(in) :: outputs_1d,outputs_GR,outputs_GR_c,outputs_GR_p,& + concloc !file names + write(*,*) 'integrating...' + call save_integration_header(outputs_1d,outputs_GR,outputs_GR_c,& + outputs_GR_p,concloc) + DO IOUT = 1,its + select case (integrator) + case(1) + CALL DLSODE (sub_ptr, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, & + ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) + case(2) + call DLSODES (sub_ptr, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, & + ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) + case default + stop 'unknown integrator' + end select + call molar_balance + call restoreDV + call save_integration_step + TOUT = TOUT+timestep + if (eta==maxeta) exit + END DO + call save_integration_close + write(*,*) 'done: integration' + call destroyModenaModels + call exit(0) +end subroutine bblinteg +!***********************************END**************************************** +end module model diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/modenastuff.f90 b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/modenastuff.f90 new file mode 100644 index 000000000..7f4ab070b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/modenastuff.f90 @@ -0,0 +1,218 @@ +!> @file +!! contains definitions of modena variables +!! creates and destroys modena models +!! @author Pavel Ferkl +!! @ingroup bblgr +module modenastuff + use in_out + use iso_c_binding + use fmodena + implicit none + integer(c_int) :: ret + integer(c_size_t) :: viscTpos + integer(c_size_t) :: viscXPos + integer(c_size_t) :: rhopTPos + integer(c_size_t) :: itensTPos + integer(c_size_t) :: diffTPos(2) + integer(c_size_t) :: solTPos(2) + integer(c_size_t) :: kinNCOPos + integer(c_size_t) :: kinOHPos + integer(c_size_t) :: kinH2OPos + integer(c_size_t) :: kinCO2Pos + integer(c_size_t) :: kinPentanePos + integer(c_size_t) :: kinPolymerPos + integer(c_size_t) :: kinPolymerBlowPos + integer(c_size_t) :: kinUreaPos + integer(c_size_t) :: kinR1Pos + integer(c_size_t) :: kinRmassPos + integer(c_size_t) :: kinRvolPos + integer(c_size_t) :: kinRtempPos + integer(c_size_t) :: kinSourceNCOPos + integer(c_size_t) :: kinSourceOHPos + integer(c_size_t) :: kinSourceH2OPos + integer(c_size_t) :: kinSourceCO2Pos + integer(c_size_t) :: kinSourcePentanePos + integer(c_size_t) :: kinSourcePolymerPos + integer(c_size_t) :: kinSourcePolymerBlowPos + integer(c_size_t) :: kinSourceUreaPos + integer(c_size_t) :: kinSourceR1Pos + integer(c_size_t) :: kinSourceRmassPos + integer(c_size_t) :: kinSourceRvolPos + integer(c_size_t) :: kinSourceRtempPos + type(c_ptr) :: viscModena = c_null_ptr + type(c_ptr) :: viscInputs = c_null_ptr + type(c_ptr) :: viscOutputs = c_null_ptr + type(c_ptr) :: rhopModena = c_null_ptr + type(c_ptr) :: rhopInputs = c_null_ptr + type(c_ptr) :: rhopOutputs = c_null_ptr + type(c_ptr) :: itensModena = c_null_ptr + type(c_ptr) :: itensInputs = c_null_ptr + type(c_ptr) :: itensOutputs = c_null_ptr + type(c_ptr) :: diffModena(2) = c_null_ptr + type(c_ptr) :: diffInputs(2) = c_null_ptr + type(c_ptr) :: diffOutputs(2) = c_null_ptr + type(c_ptr) :: solModena(2) = c_null_ptr + type(c_ptr) :: solInputs(2) = c_null_ptr + type(c_ptr) :: solOutputs(2) = c_null_ptr + type(c_ptr) :: kinModena = c_null_ptr + type(c_ptr) :: kinInputs = c_null_ptr + type(c_ptr) :: kinOutputs = c_null_ptr +contains +!********************************BEGINNING************************************* +!> creates Modena models +subroutine createModenaModels + integer :: i + if (visc_model==3) then + viscModena = modena_model_new (c_char_"polymerViscosity"//c_null_char); + viscInputs = modena_inputs_new (viscModena); + viscOutputs = modena_outputs_new (viscModena); + viscTpos = modena_model_inputs_argPos(viscModena, & + c_char_"T"//c_null_char); + viscXPos = modena_model_inputs_argPos(viscModena, & + c_char_"X"//c_null_char); + call modena_model_argPos_check(viscModena) + endif + if (rhop_model==2) then + rhopModena = modena_model_new (c_char_"polymerDensity"//c_null_char); + rhopInputs = modena_inputs_new (rhopModena); + rhopOutputs = modena_outputs_new (rhopModena); + rhopTpos = modena_model_inputs_argPos(rhopModena, & + c_char_"T"//c_null_char); + call modena_model_argPos_check(rhopModena) + endif + if (itens_model==2) then + itensModena = modena_model_new (& + c_char_"interfacialTension"//c_null_char); !TODO: implement + itensInputs = modena_inputs_new (itensModena); + itensOutputs = modena_outputs_new (itensModena); + itensTpos = modena_model_inputs_argPos(& + itensModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(itensModena) + endif + if (diff_model(1)==2) diffModena(1) = modena_model_new (& + c_char_"gas_diffusivity[A=CyP]"//c_null_char); + if (diff_model(2)==2) diffModena(2) = modena_model_new (& + c_char_"gas_diffusivity[A=CO2]"//c_null_char); + do i=1,ngas + if (diff_model(i)==2) then + diffInputs(i) = modena_inputs_new (diffModena(i)); + diffOutputs(i) = modena_outputs_new (diffModena(i)); + diffTpos(i) = modena_model_inputs_argPos(diffModena(i), & + c_char_"T"//c_null_char); + call modena_model_argPos_check(diffModena(i)) + endif + enddo + if (sol_model(1)==2) solModena(1) = modena_model_new (& + c_char_"solubilityRM[A=CyP]"//c_null_char); !TODO: implement + if (sol_model(2)==2) solModena(1) = modena_model_new (& + c_char_"solubilityRM[A=CO2]"//c_null_char); !TODO: implement + do i=1,ngas + if (sol_model(i)==2) then + solInputs(i) = modena_inputs_new (solModena(i)); + solOutputs(i) = modena_outputs_new (solModena(i)); + solTpos(i) = modena_model_inputs_argPos(solModena(i), & + c_char_"T"//c_null_char); + call modena_model_argPos_check(solModena(i)) + endif + enddo + if (kin_model==2) then + kinModena = modena_model_new (c_char_"simpleKinetics"//c_null_char); + kinInputs = modena_inputs_new (kinModena); + kinOutputs = modena_outputs_new (kinModena); + + kinNCOPos = modena_model_inputs_argPos(kinModena, & + c_char_"'EG_NCO'"//c_null_char); + kinOHPos = modena_model_inputs_argPos(kinModena, & + c_char_"'EG_OH'"//c_null_char); + kinH2OPos = modena_model_inputs_argPos(kinModena, & + c_char_"'H2O'"//c_null_char); + kinCO2Pos = modena_model_inputs_argPos(kinModena, & + c_char_"'CO2'"//c_null_char); + kinPentanePos = modena_model_inputs_argPos(kinModena, & + c_char_"'PENTANE'"//c_null_char); + kinPolymerPos = modena_model_inputs_argPos(kinModena, & + c_char_"'POLYMER'"//c_null_char); + kinPolymerBlowPos = modena_model_inputs_argPos(kinModena, & + c_char_"'POLMERBLOW'"//c_null_char); + kinUreaPos = modena_model_inputs_argPos(kinModena, & + c_char_"'UREA'"//c_null_char); + kinR1Pos = modena_model_inputs_argPos(kinModena, & + c_char_"'R_1'"//c_null_char); + kinRmassPos = modena_model_inputs_argPos(kinModena, & + c_char_"'R_1_mass'"//c_null_char); + kinRvolPos = modena_model_inputs_argPos(kinModena, & + c_char_"'R_1_vol'"//c_null_char); + kinRtempPos = modena_model_inputs_argPos(kinModena, & + c_char_"'R_1_temp'"//c_null_char); + + kinSourceNCOPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_EG_NCO"//c_null_char); + kinSourceOHPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_EG_OH"//c_null_char); + kinSourceH2OPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_H2O"//c_null_char); + kinSourceCO2Pos = modena_model_outputs_argPos(kinModena, & + c_char_"source_CO2"//c_null_char); + kinSourcePentanePos = modena_model_outputs_argPos(kinModena, & + c_char_"source_PENTANE"//c_null_char); + kinSourcePolymerPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_POLYMER"//c_null_char); + kinSourcePolymerBlowPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_POLMERBLOW"//c_null_char); + kinSourceUreaPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_UREA"//c_null_char); + kinSourceR1Pos = modena_model_outputs_argPos(kinModena, & + c_char_"source_R_1"//c_null_char); + kinSourceRmassPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_R_1_mass"//c_null_char); + kinSourceRvolPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_R_1_vol"//c_null_char); + kinSourceRtempPos = modena_model_outputs_argPos(kinModena, & + c_char_"source_R_1_temp"//c_null_char); + call modena_model_argPos_check(kinModena) + endif +end subroutine createModenaModels +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> destroys Modena models +subroutine destroyModenaModels + integer :: i + if (visc_model==3) then + call modena_inputs_destroy (viscInputs); + call modena_outputs_destroy (viscOutputs); + call modena_model_destroy (viscModena); + endif + if (rhop_model==2) then + call modena_inputs_destroy (rhopInputs); + call modena_outputs_destroy (rhopOutputs); + call modena_model_destroy (rhopModena); + endif + if (itens_model==2) then + call modena_inputs_destroy (itensInputs); + call modena_outputs_destroy (itensOutputs); + call modena_model_destroy (itensModena); + endif + do i=1,ngas + if (diff_model(i)==2) then + call modena_inputs_destroy (diffInputs(i)); + call modena_outputs_destroy (diffOutputs(i)); + call modena_model_destroy (diffModena(i)); + endif + enddo + do i=1,ngas + if (sol_model(i)==2) then + call modena_inputs_destroy (solInputs(i)); + call modena_outputs_destroy (solOutputs(i)); + call modena_model_destroy (solModena(i)); + endif + enddo + if (kin_model==2) then + call modena_inputs_destroy (kinInputs); + call modena_outputs_destroy (kinOutputs); + call modena_model_destroy (kinModena); + endif +end subroutine destroyModenaModels +!***********************************END**************************************** +end module modenastuff diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda1.f b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda1.f new file mode 100644 index 000000000..89ddd6890 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda1.f @@ -0,0 +1,10136 @@ +*DECK DUMACH + DOUBLE PRECISION FUNCTION DUMACH () +C***BEGIN PROLOGUE DUMACH +C***PURPOSE Compute the unit roundoff of the machine. +C***CATEGORY R1 +C***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) +C***KEYWORDS MACHINE CONSTANTS +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C *Usage: +C DOUBLE PRECISION A, DUMACH +C A = DUMACH() +C +C *Function Return Values: +C A : the unit roundoff of the machine. +C +C *Description: +C The unit roundoff is defined as the smallest positive machine +C number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH +C in a machine-independent manner. +C +C***REFERENCES (NONE) +C***ROUTINES CALLED DUMSUM +C***REVISION HISTORY (YYYYMMDD) +C 19930216 DATE WRITTEN +C 19930818 Added SLATEC-format prologue. (FNF) +C 20030707 Added DUMSUM to force normal storage of COMP. (ACH) +C***END PROLOGUE DUMACH +C + DOUBLE PRECISION U, COMP +C***FIRST EXECUTABLE STATEMENT DUMACH + U = 1.0D0 + 10 U = U*0.5D0 + CALL DUMSUM(1.0D0, U, COMP) + IF (COMP .NE. 1.0D0) GO TO 10 + DUMACH = U*2.0D0 + RETURN +C----------------------- End of Function DUMACH ------------------------ + END + SUBROUTINE DUMSUM(A,B,C) +C Routine to force normal storing of A + B, for DUMACH. + DOUBLE PRECISION A, B, C + C = A + B + RETURN + END +*DECK DCFODE + SUBROUTINE DCFODE (METH, ELCO, TESCO) +C***BEGIN PROLOGUE DCFODE +C***SUBSIDIARY +C***PURPOSE Set ODE integrator coefficients. +C***TYPE DOUBLE PRECISION (SCFODE-S, DCFODE-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DCFODE is called by the integrator routine to set coefficients +C needed there. The coefficients for the current method, as +C given by the value of METH, are set for all orders and saved. +C The maximum order assumed here is 12 if METH = 1 and 5 if METH = 2. +C (A smaller value of the maximum order is also allowed.) +C DCFODE is called once at the beginning of the problem, +C and is not called again unless and until METH is changed. +C +C The ELCO array contains the basic method coefficients. +C The coefficients el(i), 1 .le. i .le. nq+1, for the method of +C order nq are stored in ELCO(i,nq). They are given by a genetrating +C polynomial, i.e., +C l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq. +C For the implicit Adams methods, l(x) is given by +C dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1), l(-1) = 0. +C For the BDF methods, l(x) is given by +C l(x) = (x+1)*(x+2)* ... *(x+nq)/K, +C where K = factorial(nq)*(1 + 1/2 + ... + 1/nq). +C +C The TESCO array contains test constants used for the +C local error test and the selection of step size and/or order. +C At order nq, TESCO(k,nq) is used for the selection of step +C size at order nq - 1 if k = 1, at order nq if k = 2, and at order +C nq + 1 if k = 3. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C***END PROLOGUE DCFODE +C**End + INTEGER METH + INTEGER I, IB, NQ, NQM1, NQP1 + DOUBLE PRECISION ELCO, TESCO + DOUBLE PRECISION AGAMQ, FNQ, FNQM1, PC, PINT, RAGQ, + 1 RQFAC, RQ1FAC, TSIGN, XPIN + DIMENSION ELCO(13,12), TESCO(3,12) + DIMENSION PC(12) +C +C***FIRST EXECUTABLE STATEMENT DCFODE + GO TO (100, 200), METH +C + 100 ELCO(1,1) = 1.0D0 + ELCO(2,1) = 1.0D0 + TESCO(1,1) = 0.0D0 + TESCO(2,1) = 2.0D0 + TESCO(1,2) = 1.0D0 + TESCO(3,12) = 0.0D0 + PC(1) = 1.0D0 + RQFAC = 1.0D0 + DO 140 NQ = 2,12 +C----------------------------------------------------------------------- +C The PC array will contain the coefficients of the polynomial +C p(x) = (x+1)*(x+2)*...*(x+nq-1). +C Initially, p(x) = 1. +C----------------------------------------------------------------------- + RQ1FAC = RQFAC + RQFAC = RQFAC/NQ + NQM1 = NQ - 1 + FNQM1 = NQM1 + NQP1 = NQ + 1 +C Form coefficients of p(x)*(x+nq-1). ---------------------------------- + PC(NQ) = 0.0D0 + DO 110 IB = 1,NQM1 + I = NQP1 - IB + 110 PC(I) = PC(I-1) + FNQM1*PC(I) + PC(1) = FNQM1*PC(1) +C Compute integral, -1 to 0, of p(x) and x*p(x). ----------------------- + PINT = PC(1) + XPIN = PC(1)/2.0D0 + TSIGN = 1.0D0 + DO 120 I = 2,NQ + TSIGN = -TSIGN + PINT = PINT + TSIGN*PC(I)/I + 120 XPIN = XPIN + TSIGN*PC(I)/(I+1) +C Store coefficients in ELCO and TESCO. -------------------------------- + ELCO(1,NQ) = PINT*RQ1FAC + ELCO(2,NQ) = 1.0D0 + DO 130 I = 2,NQ + 130 ELCO(I+1,NQ) = RQ1FAC*PC(I)/I + AGAMQ = RQFAC*XPIN + RAGQ = 1.0D0/AGAMQ + TESCO(2,NQ) = RAGQ + IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/NQP1 + TESCO(3,NQM1) = RAGQ + 140 CONTINUE + RETURN +C + 200 PC(1) = 1.0D0 + RQ1FAC = 1.0D0 + DO 230 NQ = 1,5 +C----------------------------------------------------------------------- +C The PC array will contain the coefficients of the polynomial +C p(x) = (x+1)*(x+2)*...*(x+nq). +C Initially, p(x) = 1. +C----------------------------------------------------------------------- + FNQ = NQ + NQP1 = NQ + 1 +C Form coefficients of p(x)*(x+nq). ------------------------------------ + PC(NQP1) = 0.0D0 + DO 210 IB = 1,NQ + I = NQ + 2 - IB + 210 PC(I) = PC(I-1) + FNQ*PC(I) + PC(1) = FNQ*PC(1) +C Store coefficients in ELCO and TESCO. -------------------------------- + DO 220 I = 1,NQP1 + 220 ELCO(I,NQ) = PC(I)/PC(2) + ELCO(2,NQ) = 1.0D0 + TESCO(1,NQ) = RQ1FAC + TESCO(2,NQ) = NQP1/ELCO(1,NQ) + TESCO(3,NQ) = (NQ+2)/ELCO(1,NQ) + RQ1FAC = RQ1FAC/FNQ + 230 CONTINUE + RETURN +C----------------------- END OF SUBROUTINE DCFODE ---------------------- + END +*DECK DINTDY + SUBROUTINE DINTDY (T, K, YH, NYH, DKY, IFLAG) +C***BEGIN PROLOGUE DINTDY +C***SUBSIDIARY +C***PURPOSE Interpolate solution derivatives. +C***TYPE DOUBLE PRECISION (SINTDY-S, DINTDY-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DINTDY computes interpolated values of the K-th derivative of the +C dependent variable vector y, and stores it in DKY. This routine +C is called within the package with K = 0 and T = TOUT, but may +C also be called by the user for any K up to the current order. +C (See detailed instructions in the usage documentation.) +C +C The computed values in DKY are gotten by interpolation using the +C Nordsieck history array YH. This array corresponds uniquely to a +C vector-valued polynomial of degree NQCUR or less, and DKY is set +C to the K-th derivative of this polynomial at T. +C The formula for DKY is: +C q +C DKY(i) = sum c(j,K) * (T - tn)**(j-K) * h**(-j) * YH(i,j+1) +C j=K +C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, tn = TCUR, h = HCUR. +C The quantities nq = NQCUR, l = nq+1, N = NEQ, tn, and h are +C communicated by COMMON. The above sum is done in reverse order. +C IFLAG is returned negative if either K or T is out of bounds. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED XERRWD +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C 050427 Corrected roundoff decrement in TP. (ACH) +C***END PROLOGUE DINTDY +C**End + INTEGER K, NYH, IFLAG + DOUBLE PRECISION T, YH, DKY + DIMENSION YH(NYH,*), DKY(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1 + DOUBLE PRECISION C, R, S, TP + CHARACTER*80 MSG +C +C***FIRST EXECUTABLE STATEMENT DINTDY + IFLAG = 0 + IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80 + TP = TN - HU - 100.0D0*UROUND*SIGN(ABS(TN) + ABS(HU), HU) + IF ((T-TP)*(T-TN) .GT. 0.0D0) GO TO 90 +C + S = (T - TN)/H + IC = 1 + IF (K .EQ. 0) GO TO 15 + JJ1 = L - K + DO 10 JJ = JJ1,NQ + 10 IC = IC*JJ + 15 C = IC + DO 20 I = 1,N + 20 DKY(I) = C*YH(I,L) + IF (K .EQ. NQ) GO TO 55 + JB2 = NQ - K + DO 50 JB = 1,JB2 + J = NQ - JB + JP1 = J + 1 + IC = 1 + IF (K .EQ. 0) GO TO 35 + JJ1 = JP1 - K + DO 30 JJ = JJ1,J + 30 IC = IC*JJ + 35 C = IC + DO 40 I = 1,N + 40 DKY(I) = C*YH(I,JP1) + S*DKY(I) + 50 CONTINUE + IF (K .EQ. 0) RETURN + 55 R = H**(-K) + DO 60 I = 1,N + 60 DKY(I) = R*DKY(I) + RETURN +C + 80 MSG = 'DINTDY- K (=I1) illegal ' + CALL XERRWD (MSG, 30, 51, 0, 1, K, 0, 0, 0.0D0, 0.0D0) + IFLAG = -1 + RETURN + 90 MSG = 'DINTDY- T (=R1) illegal ' + CALL XERRWD (MSG, 30, 52, 0, 0, 0, 0, 1, T, 0.0D0) + MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) ' + CALL XERRWD (MSG, 60, 52, 0, 0, 0, 0, 2, TP, TN) + IFLAG = -2 + RETURN +C----------------------- END OF SUBROUTINE DINTDY ---------------------- + END +*DECK DPREPJ + SUBROUTINE DPREPJ (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, + 1 F, JAC) +C***BEGIN PROLOGUE DPREPJ +C***SUBSIDIARY +C***PURPOSE Compute and process Newton iteration matrix. +C***TYPE DOUBLE PRECISION (SPREPJ-S, DPREPJ-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DPREPJ is called by DSTODE to compute and process the matrix +C P = I - h*el(1)*J , where J is an approximation to the Jacobian. +C Here J is computed by the user-supplied routine JAC if +C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5. +C If MITER = 3, a diagonal approximation to J is used. +C J is stored in WM and replaced by P. If MITER .ne. 3, P is then +C subjected to LU decomposition in preparation for later solution +C of linear systems with P as coefficient matrix. This is done +C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5. +C +C In addition to variables described in DSTODE and DLSODE prologues, +C communication with DPREPJ uses the following: +C Y = array containing predicted values on entry. +C FTEM = work array of length N (ACOR in DSTODE). +C SAVF = array containing f evaluated at predicted y. +C WM = real work space for matrices. On output it contains the +C inverse diagonal matrix if MITER = 3 and the LU decomposition +C of P if MITER is 1, 2 , 4, or 5. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C WM(2) = H*EL0, saved for later use if MITER = 3. +C IWM = integer work space containing pivot information, starting at +C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band +C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C EL0 = EL(1) (input). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C P matrix found to be singular. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the COMMON variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED DGBFA, DGEFA, DVNORM +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890504 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C***END PROLOGUE DPREPJ +C**End + EXTERNAL F, JAC + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP, + 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1 + DOUBLE PRECISION CON, DI, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ, + 1 DVNORM +C +C***FIRST EXECUTABLE STATEMENT DPREPJ + NJE = NJE + 1 + IERPJ = 0 + JCUR = 1 + HL0 = H*EL0 + GO TO (100, 200, 300, 400, 500), MITER +C If MITER = 1, call JAC and multiply by scalar. ----------------------- + 100 LENP = N*N + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 240 +C If MITER = 2, make N calls to F to approximate J. -------------------- + 200 FAC = DVNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + SRUR = WM(1) + J1 = 2 + DO 230 J = 1,N + YJ = Y(J) + R = MAX(SRUR*ABS(YJ),R0/EWT(J)) + Y(J) = Y(J) + R + FAC = -HL0/R + CALL F (NEQ, TN, Y, FTEM) + DO 220 I = 1,N + 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC + Y(J) = YJ + J1 = J1 + N + 230 CONTINUE + NFE = NFE + N +C Add identity matrix. ------------------------------------------------- + 240 J = 3 + NP1 = N + 1 + DO 250 I = 1,N + WM(J) = WM(J) + 1.0D0 + 250 J = J + NP1 +C Do LU decomposition on P. -------------------------------------------- + CALL DGEFA (WM(3), N, N, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C If MITER = 3, construct a diagonal approximation to J and P. --------- + 300 WM(2) = HL0 + R = EL0*0.1D0 + DO 310 I = 1,N + 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2)) + CALL F (NEQ, TN, Y, WM(3)) + NFE = NFE + 1 + DO 320 I = 1,N + R0 = H*SAVF(I) - YH(I,2) + DI = 0.1D0*R0 - H*(WM(I+2) - SAVF(I)) + WM(I+2) = 1.0D0 + IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320 + IF (ABS(DI) .EQ. 0.0D0) GO TO 330 + WM(I+2) = 0.1D0*R0/DI + 320 CONTINUE + RETURN + 330 IERPJ = 1 + RETURN +C If MITER = 4, call JAC and multiply by scalar. ----------------------- + 400 ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MEBAND = MBAND + ML + LENP = MEBAND*N + DO 410 I = 1,LENP + 410 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) + CON = -HL0 + DO 420 I = 1,LENP + 420 WM(I+2) = WM(I+2)*CON + GO TO 570 +C If MITER = 5, make MBAND calls to F to approximate J. ---------------- + 500 ML = IWM(1) + MU = IWM(2) + MBAND = ML + MU + 1 + MBA = MIN(MBAND,N) + MEBAND = MBAND + ML + MEB1 = MEBAND - 1 + SRUR = WM(1) + FAC = DVNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + DO 560 J = 1,MBA + DO 530 I = J,N,MBAND + YI = Y(I) + R = MAX(SRUR*ABS(YI),R0/EWT(I)) + 530 Y(I) = Y(I) + R + CALL F (NEQ, TN, Y, FTEM) + DO 550 JJ = J,N,MBAND + Y(JJ) = YH(JJ,1) + YJJ = Y(JJ) + R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ)) + FAC = -HL0/R + I1 = MAX(JJ-MU,1) + I2 = MIN(JJ+ML,N) + II = JJ*MEB1 - ML + 2 + DO 540 I = I1,I2 + 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC + 550 CONTINUE + 560 CONTINUE + NFE = NFE + MBA +C Add identity matrix. ------------------------------------------------- + 570 II = MBAND + 2 + DO 580 I = 1,N + WM(II) = WM(II) + 1.0D0 + 580 II = II + MEBAND +C Do LU decomposition of P. -------------------------------------------- + CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C----------------------- END OF SUBROUTINE DPREPJ ---------------------- + END +*DECK DSOLSY + SUBROUTINE DSOLSY (WM, IWM, X, TEM) +C***BEGIN PROLOGUE DSOLSY +C***SUBSIDIARY +C***PURPOSE ODEPACK linear system solver. +C***TYPE DOUBLE PRECISION (SSOLSY-S, DSOLSY-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This routine manages the solution of the linear system arising from +C a chord iteration. It is called if MITER .ne. 0. +C If MITER is 1 or 2, it calls DGESL to accomplish this. +C If MITER = 3 it updates the coefficient h*EL0 in the diagonal +C matrix, and then computes the solution. +C If MITER is 4 or 5, it calls DGBSL. +C Communication with DSOLSY uses the following variables: +C WM = real work space containing the inverse diagonal matrix if +C MITER = 3 and the LU decomposition of the matrix otherwise. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND) (not used here), +C WM(2) = HL0, the previous value of h*EL0, used if MITER = 3. +C IWM = integer work space containing pivot information, starting at +C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band +C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C TEM = vector of work space of length N, not used in this version. +C IERSL = output flag (in COMMON). IERSL = 0 if no trouble occurred. +C IERSL = 1 if a singular matrix arose with MITER = 3. +C This routine also uses the COMMON variables EL0, H, MITER, and N. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED DGBSL, DGESL +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C***END PROLOGUE DSOLSY +C**End + INTEGER IWM + DOUBLE PRECISION WM, X, TEM + DIMENSION WM(*), IWM(*), X(*), TEM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, MEBAND, ML, MU + DOUBLE PRECISION DI, HL0, PHL0, R +C +C***FIRST EXECUTABLE STATEMENT DSOLSY + IERSL = 0 + GO TO (100, 100, 300, 400, 400), MITER + 100 CALL DGESL (WM(3), N, N, IWM(21), X, 0) + RETURN +C + 300 PHL0 = WM(2) + HL0 = H*EL0 + WM(2) = HL0 + IF (HL0 .EQ. PHL0) GO TO 330 + R = HL0/PHL0 + DO 320 I = 1,N + DI = 1.0D0 - R*(1.0D0 - 1.0D0/WM(I+2)) + IF (ABS(DI) .EQ. 0.0D0) GO TO 390 + 320 WM(I+2) = 1.0D0/DI + 330 DO 340 I = 1,N + 340 X(I) = WM(I+2)*X(I) + RETURN + 390 IERSL = 1 + RETURN +C + 400 ML = IWM(1) + MU = IWM(2) + MEBAND = 2*ML + MU + 1 + CALL DGBSL (WM(3), MEBAND, N, ML, MU, IWM(21), X, 0) + RETURN +C----------------------- END OF SUBROUTINE DSOLSY ---------------------- + END +*DECK DSRCOM + SUBROUTINE DSRCOM (RSAV, ISAV, JOB) +C***BEGIN PROLOGUE DSRCOM +C***SUBSIDIARY +C***PURPOSE Save/restore ODEPACK COMMON blocks. +C***TYPE DOUBLE PRECISION (SSRCOM-S, DSRCOM-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This routine saves or restores (depending on JOB) the contents of +C the COMMON block DLS001, which is used internally +C by one or more ODEPACK solvers. +C +C RSAV = real array of length 218 or more. +C ISAV = integer array of length 37 or more. +C JOB = flag indicating to save or restore the COMMON blocks: +C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV) +C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 921116 Deleted treatment of block /EH0001/. (ACH) +C 930801 Reduced Common block length by 2. (ACH) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced Common block length by 209+12. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C 031112 Added SAVE statement for data-loaded constants. +C***END PROLOGUE DSRCOM +C**End + INTEGER ISAV, JOB + INTEGER ILS + INTEGER I, LENILS, LENRLS + DOUBLE PRECISION RSAV, RLS + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS + COMMON /DLS001/ RLS(218), ILS(37) + DATA LENRLS/218/, LENILS/37/ +C +C***FIRST EXECUTABLE STATEMENT DSRCOM + IF (JOB .EQ. 2) GO TO 100 +C + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + RETURN +C----------------------- END OF SUBROUTINE DSRCOM ---------------------- + END +*DECK DSTODE + SUBROUTINE DSTODE (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, + 1 WM, IWM, F, JAC, PJAC, SLVS) +C***BEGIN PROLOGUE DSTODE +C***SUBSIDIARY +C***PURPOSE Performs one step of an ODEPACK integration. +C***TYPE DOUBLE PRECISION (SSTODE-S, DSTODE-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DSTODE performs one step of the integration of an initial value +C problem for a system of ordinary differential equations. +C Note: DSTODE is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODE is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by h**j/factorial(j) +C (j = 0,1,...,NQ). on entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in Y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C Also used for input of YH(*,MAXORD+2) when JSTART = -1 +C and MAXORD .lt. the current order NQ. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in Y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C PJAC = name of routine to evaluate and preprocess Jacobian matrix +C and P = I - h*el0*JAC, if a chord method is being used. +C SLVS = name of routine to solve linear system in chord iteration. +C CCMAX = maximum relative change in h*el0 before PJAC is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size h to be used. +C HMXI = inverse of the maximum absolute value of h to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite hmax. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of h is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in PJAC or SLVS. +C A return with KFLAG = -1 or -2 means either +C abs(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C The values of CCMAX, H, HMIN, HMXI, TN, JSTART, KFLAG, MAXORD, +C MAXCOR, MSBP, MXNCF, METH, MITER, and N are communicated via COMMON. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED DCFODE, DVNORM +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C***END PROLOGUE DSTODE +C**End + EXTERNAL F, JAC, PJAC, SLVS + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, + 1 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C +C***FIRST EXECUTABLE STATEMENT DSTODE + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set to 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + IPUP = MITER + IRET = 3 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal Triangle matrix. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C When RC differs from 1 by more than CCMAX, IPUP is set to MITER +C to force PJAC to be called, if a Jacobian is involved. +C In any case, PJAC is called at least every MSBP steps. +C----------------------------------------------------------------------- + 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +Cdir$ ivdep + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the R.M.S. norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, the matrix P = I - h*el(1)*J is reevaluated and +C preprocessed before starting the corrector iteration. IPUP is set +C to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (MITER .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DVNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + CALL SLVS (WM, IWM, Y, SAVF) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DVNORM (N, Y, EWT) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + Y(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M.gt.0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C----------------------------------------------------------------------- + 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) + IF (DCON .LE. 1.0D0) GO TO 450 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for +C the next try. Otherwise the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430 + ICF = 1 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +Cdir$ ivdep + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.25D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + DO 470 J = 1,L + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +Cdir$ ivdep + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C The largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, l, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- END OF SUBROUTINE DSTODE ---------------------- + END +*DECK DEWSET + SUBROUTINE DEWSET (N, ITOL, RTOL, ATOL, YCUR, EWT) +C***BEGIN PROLOGUE DEWSET +C***SUBSIDIARY +C***PURPOSE Set error weight vector. +C***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This subroutine sets the error weight vector EWT according to +C EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, +C with the subscript on RTOL and/or ATOL possibly replaced by 1 above, +C depending on the value of ITOL. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C***END PROLOGUE DEWSET +C**End + INTEGER N, ITOL + INTEGER I + DOUBLE PRECISION RTOL, ATOL, YCUR, EWT + DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N) +C +C***FIRST EXECUTABLE STATEMENT DEWSET + GO TO (10, 20, 30, 40), ITOL + 10 CONTINUE + DO 15 I = 1,N + 15 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(1) + RETURN + 20 CONTINUE + DO 25 I = 1,N + 25 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(I) + RETURN + 30 CONTINUE + DO 35 I = 1,N + 35 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(1) + RETURN + 40 CONTINUE + DO 45 I = 1,N + 45 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I) + RETURN +C----------------------- END OF SUBROUTINE DEWSET ---------------------- + END +*DECK DVNORM + DOUBLE PRECISION FUNCTION DVNORM (N, V, W) +C***BEGIN PROLOGUE DVNORM +C***SUBSIDIARY +C***PURPOSE Weighted root-mean-square vector norm. +C***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This function routine computes the weighted root-mean-square norm +C of the vector of length N contained in the array V, with weights +C contained in the array W of length N: +C DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 ) +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C***END PROLOGUE DVNORM +C**End + INTEGER N, I + DOUBLE PRECISION V, W, SUM + DIMENSION V(N), W(N) +C +C***FIRST EXECUTABLE STATEMENT DVNORM + SUM = 0.0D0 + DO 10 I = 1,N + 10 SUM = SUM + (V(I)*W(I))**2 + DVNORM = SQRT(SUM/N) + RETURN +C----------------------- END OF FUNCTION DVNORM ------------------------ + END +*DECK DIPREP + SUBROUTINE DIPREP (NEQ, Y, RWORK, IA, JA, IPFLAG, F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, IA, JA, IPFLAG + DOUBLE PRECISION Y, RWORK + DIMENSION NEQ(*), Y(*), RWORK(*), IA(*), JA(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMAX, LEWTN, LYHD, LYHN +C----------------------------------------------------------------------- +C This routine serves as an interface between the driver and +C Subroutine DPREP. It is called only if MITER is 1 or 2. +C Tasks performed here are: +C * call DPREP, +C * reset the required WM segment length LENWK, +C * move YH back to its final location (following WM in RWORK), +C * reset pointers for YH, SAVF, EWT, and ACOR, and +C * move EWT to its new position if ISTATE = 1. +C IPFLAG is an output error indication flag. IPFLAG = 0 if there was +C no trouble, and IPFLAG is the value of the DPREP error flag IPPER +C if there was trouble in Subroutine DPREP. +C----------------------------------------------------------------------- + IPFLAG = 0 +C Call DPREP to do matrix preprocessing operations. -------------------- + CALL DPREP (NEQ, Y, RWORK(LYH), RWORK(LSAVF), RWORK(LEWT), + 1 RWORK(LACOR), IA, JA, RWORK(LWM), RWORK(LWM), IPFLAG, F, JAC) + LENWK = MAX(LREQ,LWMIN) + IF (IPFLAG .LT. 0) RETURN +C If DPREP was successful, move YH to end of required space for WM. ---- + LYHN = LWM + LENWK + IF (LYHN .GT. LYH) RETURN + LYHD = LYH - LYHN + IF (LYHD .EQ. 0) GO TO 20 + IMAX = LYHN - 1 + LENYHM + DO 10 I = LYHN,IMAX + 10 RWORK(I) = RWORK(I+LYHD) + LYH = LYHN +C Reset pointers for SAVF, EWT, and ACOR. ------------------------------ + 20 LSAVF = LYH + LENYH + LEWTN = LSAVF + N + LACOR = LEWTN + N + IF (ISTATC .EQ. 3) GO TO 40 +C If ISTATE = 1, move EWT (left) to its new position. ------------------ + IF (LEWTN .GT. LEWT) RETURN + DO 30 I = 1,N + 30 RWORK(I+LEWTN-1) = RWORK(I+LEWT-1) + 40 LEWT = LEWTN + RETURN +C----------------------- End of Subroutine DIPREP ---------------------- + END +*DECK DPREP + SUBROUTINE DPREP (NEQ, Y, YH, SAVF, EWT, FTEM, IA, JA, + 1 WK, IWK, IPPER, F, JAC) + EXTERNAL F,JAC + INTEGER NEQ, IA, JA, IWK, IPPER + DOUBLE PRECISION Y, YH, SAVF, EWT, FTEM, WK + DIMENSION NEQ(*), Y(*), YH(*), SAVF(*), EWT(*), FTEM(*), + 1 IA(*), JA(*), WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IBR, IER, IPIL, IPIU, IPTT1, IPTT2, J, JFOUND, K, + 1 KNEW, KMAX, KMIN, LDIF, LENIGP, LIWK, MAXG, NP1, NZSUT + DOUBLE PRECISION DQ, DYJ, ERWT, FAC, YJ +C----------------------------------------------------------------------- +C This routine performs preprocessing related to the sparse linear +C systems that must be solved if MITER = 1 or 2. +C The operations that are performed here are: +C * compute sparseness structure of Jacobian according to MOSS, +C * compute grouping of column indices (MITER = 2), +C * compute a new ordering of rows and columns of the matrix, +C * reorder JA corresponding to the new ordering, +C * perform a symbolic LU factorization of the matrix, and +C * set pointers for segments of the IWK/WK array. +C In addition to variables described previously, DPREP uses the +C following for communication: +C YH = the history array. Only the first column, containing the +C current Y vector, is used. Used only if MOSS .ne. 0. +C SAVF = a work array of length NEQ, used only if MOSS .ne. 0. +C EWT = array of length NEQ containing (inverted) error weights. +C Used only if MOSS = 2 or if ISTATE = MOSS = 1. +C FTEM = a work array of length NEQ, identical to ACOR in the driver, +C used only if MOSS = 2. +C WK = a real work array of length LENWK, identical to WM in +C the driver. +C IWK = integer work array, assumed to occupy the same space as WK. +C LENWK = the length of the work arrays WK and IWK. +C ISTATC = a copy of the driver input argument ISTATE (= 1 on the +C first call, = 3 on a continuation call). +C IYS = flag value from ODRV or CDRV. +C IPPER = output error flag with the following values and meanings: +C 0 no error. +C -1 insufficient storage for internal structure pointers. +C -2 insufficient storage for JGROUP. +C -3 insufficient storage for ODRV. +C -4 other error flag from ODRV (should never occur). +C -5 insufficient storage for CDRV. +C -6 other error flag from CDRV. +C----------------------------------------------------------------------- + IBIAN = LRAT*2 + IPIAN = IBIAN + 1 + NP1 = N + 1 + IPJAN = IPIAN + NP1 + IBJAN = IPJAN - 1 + LIWK = LENWK*LRAT + IF (IPJAN+N-1 .GT. LIWK) GO TO 210 + IF (MOSS .EQ. 0) GO TO 30 +C + IF (ISTATC .EQ. 3) GO TO 20 +C ISTATE = 1 and MOSS .ne. 0. Perturb Y for structure determination. -- + DO 10 I = 1,N + ERWT = 1.0D0/EWT(I) + FAC = 1.0D0 + 1.0D0/(I + 1.0D0) + Y(I) = Y(I) + FAC*SIGN(ERWT,Y(I)) + 10 CONTINUE + GO TO (70, 100), MOSS +C + 20 CONTINUE +C ISTATE = 3 and MOSS .ne. 0. Load Y from YH(*,1). -------------------- + DO 25 I = 1,N + 25 Y(I) = YH(I) + GO TO (70, 100), MOSS +C +C MOSS = 0. Process user's IA,JA. Add diagonal entries if necessary. - + 30 KNEW = IPJAN + KMIN = IA(1) + IWK(IPIAN) = 1 + DO 60 J = 1,N + JFOUND = 0 + KMAX = IA(J+1) - 1 + IF (KMIN .GT. KMAX) GO TO 45 + DO 40 K = KMIN,KMAX + I = JA(K) + IF (I .EQ. J) JFOUND = 1 + IF (KNEW .GT. LIWK) GO TO 210 + IWK(KNEW) = I + KNEW = KNEW + 1 + 40 CONTINUE + IF (JFOUND .EQ. 1) GO TO 50 + 45 IF (KNEW .GT. LIWK) GO TO 210 + IWK(KNEW) = J + KNEW = KNEW + 1 + 50 IWK(IPIAN+J) = KNEW + 1 - IPJAN + KMIN = KMAX + 1 + 60 CONTINUE + GO TO 140 +C +C MOSS = 1. Compute structure from user-supplied Jacobian routine JAC. + 70 CONTINUE +C A dummy call to F allows user to create temporaries for use in JAC. -- + CALL F (NEQ, TN, Y, SAVF) + K = IPJAN + IWK(IPIAN) = 1 + DO 90 J = 1,N + IF (K .GT. LIWK) GO TO 210 + IWK(K) = J + K = K + 1 + DO 75 I = 1,N + 75 SAVF(I) = 0.0D0 + CALL JAC (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), SAVF) + DO 80 I = 1,N + IF (ABS(SAVF(I)) .LE. SETH) GO TO 80 + IF (I .EQ. J) GO TO 80 + IF (K .GT. LIWK) GO TO 210 + IWK(K) = I + K = K + 1 + 80 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 90 CONTINUE + GO TO 140 +C +C MOSS = 2. Compute structure from results of N + 1 calls to F. ------- + 100 K = IPJAN + IWK(IPIAN) = 1 + CALL F (NEQ, TN, Y, SAVF) + DO 120 J = 1,N + IF (K .GT. LIWK) GO TO 210 + IWK(K) = J + K = K + 1 + YJ = Y(J) + ERWT = 1.0D0/EWT(J) + DYJ = SIGN(ERWT,YJ) + Y(J) = YJ + DYJ + CALL F (NEQ, TN, Y, FTEM) + Y(J) = YJ + DO 110 I = 1,N + DQ = (FTEM(I) - SAVF(I))/DYJ + IF (ABS(DQ) .LE. SETH) GO TO 110 + IF (I .EQ. J) GO TO 110 + IF (K .GT. LIWK) GO TO 210 + IWK(K) = I + K = K + 1 + 110 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 120 CONTINUE +C + 140 CONTINUE + IF (MOSS .EQ. 0 .OR. ISTATC .NE. 1) GO TO 150 +C If ISTATE = 1 and MOSS .ne. 0, restore Y from YH. -------------------- + DO 145 I = 1,N + 145 Y(I) = YH(I) + 150 NNZ = IWK(IPIAN+N) - 1 + LENIGP = 0 + IPIGP = IPJAN + NNZ + IF (MITER .NE. 2) GO TO 160 +C +C Compute grouping of column indices (MITER = 2). ---------------------- + MAXG = NP1 + IPJGP = IPJAN + NNZ + IBJGP = IPJGP - 1 + IPIGP = IPJGP + N + IPTT1 = IPIGP + NP1 + IPTT2 = IPTT1 + N + LREQ = IPTT2 + N - 1 + IF (LREQ .GT. LIWK) GO TO 220 + CALL JGROUP (N, IWK(IPIAN), IWK(IPJAN), MAXG, NGP, IWK(IPIGP), + 1 IWK(IPJGP), IWK(IPTT1), IWK(IPTT2), IER) + IF (IER .NE. 0) GO TO 220 + LENIGP = NGP + 1 +C +C Compute new ordering of rows/columns of Jacobian. -------------------- + 160 IPR = IPIGP + LENIGP + IPC = IPR + IPIC = IPC + N + IPISP = IPIC + N + IPRSP = (IPISP - 2)/LRAT + 2 + IESP = LENWK + 1 - IPRSP + IF (IESP .LT. 0) GO TO 230 + IBR = IPR - 1 + DO 170 I = 1,N + 170 IWK(IBR+I) = I + NSP = LIWK + 1 - IPISP + CALL ODRV (N, IWK(IPIAN), IWK(IPJAN), WK, IWK(IPR), IWK(IPIC), + 1 NSP, IWK(IPISP), 1, IYS) + IF (IYS .EQ. 11*N+1) GO TO 240 + IF (IYS .NE. 0) GO TO 230 +C +C Reorder JAN and do symbolic LU factorization of matrix. -------------- + IPA = LENWK + 1 - NNZ + NSP = IPA - IPRSP + LREQ = MAX(12*N/LRAT, 6*N/LRAT+2*N+NNZ) + 3 + LREQ = LREQ + IPRSP - 1 + NNZ + IF (LREQ .GT. LENWK) GO TO 250 + IBA = IPA - 1 + DO 180 I = 1,NNZ + 180 WK(IBA+I) = 0.0D0 + IPISP = LRAT*(IPRSP - 1) + 1 + CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),WK(IPA),WK(IPA),NSP,IWK(IPISP),WK(IPRSP),IESP,5,IYS) + LREQ = LENWK - IESP + IF (IYS .EQ. 10*N+1) GO TO 250 + IF (IYS .NE. 0) GO TO 260 + IPIL = IPISP + IPIU = IPIL + 2*N + 1 + NZU = IWK(IPIL+N) - IWK(IPIL) + NZL = IWK(IPIU+N) - IWK(IPIU) + IF (LRAT .GT. 1) GO TO 190 + CALL ADJLR (N, IWK(IPISP), LDIF) + LREQ = LREQ + LDIF + 190 CONTINUE + IF (LRAT .EQ. 2 .AND. NNZ .EQ. N) LREQ = LREQ + 1 + NSP = NSP + LREQ - LENWK + IPA = LREQ + 1 - NNZ + IBA = IPA - 1 + IPPER = 0 + RETURN +C + 210 IPPER = -1 + LREQ = 2 + (2*N + 1)/LRAT + LREQ = MAX(LENWK+1,LREQ) + RETURN +C + 220 IPPER = -2 + LREQ = (LREQ - 1)/LRAT + 1 + RETURN +C + 230 IPPER = -3 + CALL CNTNZU (N, IWK(IPIAN), IWK(IPJAN), NZSUT) + LREQ = LENWK - IESP + (3*N + 4*NZSUT - 1)/LRAT + 1 + RETURN +C + 240 IPPER = -4 + RETURN +C + 250 IPPER = -5 + RETURN +C + 260 IPPER = -6 + LREQ = LENWK + RETURN +C----------------------- End of Subroutine DPREP ----------------------- + END +*DECK JGROUP + SUBROUTINE JGROUP (N,IA,JA,MAXG,NGRP,IGP,JGP,INCL,JDONE,IER) + INTEGER N, IA, JA, MAXG, NGRP, IGP, JGP, INCL, JDONE, IER + DIMENSION IA(*), JA(*), IGP(*), JGP(*), INCL(*), JDONE(*) +C----------------------------------------------------------------------- +C This subroutine constructs groupings of the column indices of +C the Jacobian matrix, used in the numerical evaluation of the +C Jacobian by finite differences. +C +C Input: +C N = the order of the matrix. +C IA,JA = sparse structure descriptors of the matrix by rows. +C MAXG = length of available storage in the IGP array. +C +C Output: +C NGRP = number of groups. +C JGP = array of length N containing the column indices by groups. +C IGP = pointer array of length NGRP + 1 to the locations in JGP +C of the beginning of each group. +C IER = error indicator. IER = 0 if no error occurred, or 1 if +C MAXG was insufficient. +C +C INCL and JDONE are working arrays of length N. +C----------------------------------------------------------------------- + INTEGER I, J, K, KMIN, KMAX, NCOL, NG +C + IER = 0 + DO 10 J = 1,N + 10 JDONE(J) = 0 + NCOL = 1 + DO 60 NG = 1,MAXG + IGP(NG) = NCOL + DO 20 I = 1,N + 20 INCL(I) = 0 + DO 50 J = 1,N +C Reject column J if it is already in a group.-------------------------- + IF (JDONE(J) .EQ. 1) GO TO 50 + KMIN = IA(J) + KMAX = IA(J+1) - 1 + DO 30 K = KMIN,KMAX +C Reject column J if it overlaps any column already in this group.------ + I = JA(K) + IF (INCL(I) .EQ. 1) GO TO 50 + 30 CONTINUE +C Accept column J into group NG.---------------------------------------- + JGP(NCOL) = J + NCOL = NCOL + 1 + JDONE(J) = 1 + DO 40 K = KMIN,KMAX + I = JA(K) + 40 INCL(I) = 1 + 50 CONTINUE +C Stop if this group is empty (grouping is complete).------------------- + IF (NCOL .EQ. IGP(NG)) GO TO 70 + 60 CONTINUE +C Error return if not all columns were chosen (MAXG too small).--------- + IF (NCOL .LE. N) GO TO 80 + NG = MAXG + 70 NGRP = NG - 1 + RETURN + 80 IER = 1 + RETURN +C----------------------- End of Subroutine JGROUP ---------------------- + END +*DECK ADJLR + SUBROUTINE ADJLR (N, ISP, LDIF) + INTEGER N, ISP, LDIF + DIMENSION ISP(*) +C----------------------------------------------------------------------- +C This routine computes an adjustment, LDIF, to the required +C integer storage space in IWK (sparse matrix work space). +C It is called only if the word length ratio is LRAT = 1. +C This is to account for the possibility that the symbolic LU phase +C may require more storage than the numerical LU and solution phases. +C----------------------------------------------------------------------- + INTEGER IP, JLMAX, JUMAX, LNFC, LSFC, NZLU +C + IP = 2*N + 1 +C Get JLMAX = IJL(N) and JUMAX = IJU(N) (sizes of JL and JU). ---------- + JLMAX = ISP(IP) + JUMAX = ISP(IP+IP) +C NZLU = (size of L) + (size of U) = (IL(N+1)-IL(1)) + (IU(N+1)-IU(1)). + NZLU = ISP(N+1) - ISP(1) + ISP(IP+N+1) - ISP(IP+1) + LSFC = 12*N + 3 + 2*MAX(JLMAX,JUMAX) + LNFC = 9*N + 2 + JLMAX + JUMAX + NZLU + LDIF = MAX(0, LSFC - LNFC) + RETURN +C----------------------- End of Subroutine ADJLR ----------------------- + END +*DECK CNTNZU + SUBROUTINE CNTNZU (N, IA, JA, NZSUT) + INTEGER N, IA, JA, NZSUT + DIMENSION IA(*), JA(*) +C----------------------------------------------------------------------- +C This routine counts the number of nonzero elements in the strict +C upper triangle of the matrix M + M(transpose), where the sparsity +C structure of M is given by pointer arrays IA and JA. +C This is needed to compute the storage requirements for the +C sparse matrix reordering operation in ODRV. +C----------------------------------------------------------------------- + INTEGER II, JJ, J, JMIN, JMAX, K, KMIN, KMAX, NUM +C + NUM = 0 + DO 50 II = 1,N + JMIN = IA(II) + JMAX = IA(II+1) - 1 + IF (JMIN .GT. JMAX) GO TO 50 + DO 40 J = JMIN,JMAX + IF (JA(J) - II) 10, 40, 30 + 10 JJ =JA(J) + KMIN = IA(JJ) + KMAX = IA(JJ+1) - 1 + IF (KMIN .GT. KMAX) GO TO 30 + DO 20 K = KMIN,KMAX + IF (JA(K) .EQ. II) GO TO 40 + 20 CONTINUE + 30 NUM = NUM + 1 + 40 CONTINUE + 50 CONTINUE + NZSUT = NUM + RETURN +C----------------------- End of Subroutine CNTNZU ---------------------- + END +*DECK DPRJS + SUBROUTINE DPRJS (NEQ,Y,YH,NYH,EWT,FTEM,SAVF,WK,IWK,F,JAC) + EXTERNAL F,JAC + INTEGER NEQ, NYH, IWK + DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WK + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), + 1 WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMUL, J, JJ, JOK, JMAX, JMIN, K, KMAX, KMIN, NG + DOUBLE PRECISION CON, DI, FAC, HL0, PIJ, R, R0, RCON, RCONT, + 1 SRUR, DVNORM +C----------------------------------------------------------------------- +C DPRJS is called to compute and process the matrix +C P = I - H*EL(1)*J , where J is an approximation to the Jacobian. +C J is computed by columns, either by the user-supplied routine JAC +C if MITER = 1, or by finite differencing if MITER = 2. +C if MITER = 3, a diagonal approximation to J is used. +C if MITER = 1 or 2, and if the existing value of the Jacobian +C (as contained in P) is considered acceptable, then a new value of +C P is reconstructed from the old value. In any case, when MITER +C is 1 or 2, the P matrix is subjected to LU decomposition in CDRV. +C P and its LU decomposition are stored (separately) in WK. +C +C In addition to variables described previously, communication +C with DPRJS uses the following: +C Y = array containing predicted values on entry. +C FTEM = work array of length N (ACOR in DSTODE). +C SAVF = array containing f evaluated at predicted y. +C WK = real work space for matrices. On output it contains the +C inverse diagonal matrix if MITER = 3, and P and its sparse +C LU decomposition if MITER is 1 or 2. +C Storage of matrix elements starts at WK(3). +C WK also contains the following matrix-related data: +C WK(1) = SQRT(UROUND), used in numerical Jacobian increments. +C WK(2) = H*EL0, saved for later use if MITER = 3. +C IWK = integer work space for matrix-related data, assumed to +C be equivalenced to WK. In addition, WK(IPRSP) and IWK(IPISP) +C are assumed to have identical locations. +C EL0 = EL(1) (input). +C IERPJ = output error flag (in Common). +C = 0 if no error. +C = 1 if zero pivot found in CDRV. +C = 2 if a singular matrix arose with MITER = 3. +C = -1 if insufficient storage for CDRV (should not occur here). +C = -2 if other error found in CDRV (should not occur here). +C JCUR = output flag showing status of (approximate) Jacobian matrix: +C = 1 to indicate that the Jacobian is now current, or +C = 0 to indicate that a saved value was used. +C This routine also uses other variables in Common. +C----------------------------------------------------------------------- + HL0 = H*EL0 + CON = -HL0 + IF (MITER .EQ. 3) GO TO 300 +C See whether J should be reevaluated (JOK = 0) or not (JOK = 1). ------ + JOK = 1 + IF (NST .EQ. 0 .OR. NST .GE. NSLJ+MSBJ) JOK = 0 + IF (ICF .EQ. 1 .AND. ABS(RC - 1.0D0) .LT. CCMXJ) JOK = 0 + IF (ICF .EQ. 2) JOK = 0 + IF (JOK .EQ. 1) GO TO 250 +C +C MITER = 1 or 2, and the Jacobian is to be reevaluated. --------------- + 20 JCUR = 1 + NJE = NJE + 1 + NSLJ = NST + IPLOST = 0 + CONMIN = ABS(CON) + GO TO (100, 200), MITER +C +C If MITER = 1, call JAC, multiply by scalar, and add identity. -------- + 100 CONTINUE + KMIN = IWK(IPIAN) + DO 130 J = 1, N + KMAX = IWK(IPIAN+J) - 1 + DO 110 I = 1,N + 110 FTEM(I) = 0.0D0 + CALL JAC (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), FTEM) + DO 120 K = KMIN, KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = FTEM(I)*CON + IF (I .EQ. J) WK(IBA+K) = WK(IBA+K) + 1.0D0 + 120 CONTINUE + KMIN = KMAX + 1 + 130 CONTINUE + GO TO 290 +C +C If MITER = 2, make NGP calls to F to approximate J and P. ------------ + 200 CONTINUE + FAC = DVNORM(N, SAVF, EWT) + R0 = 1000.0D0 * ABS(H) * UROUND * N * FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + SRUR = WK(1) + JMIN = IWK(IPIGP) + DO 240 NG = 1,NGP + JMAX = IWK(IPIGP+NG) - 1 + DO 210 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + R = MAX(SRUR*ABS(Y(JJ)),R0/EWT(JJ)) + 210 Y(JJ) = Y(JJ) + R + CALL F (NEQ, TN, Y, FTEM) + DO 230 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + Y(JJ) = YH(JJ,1) + R = MAX(SRUR*ABS(Y(JJ)),R0/EWT(JJ)) + FAC = -HL0/R + KMIN =IWK(IBIAN+JJ) + KMAX =IWK(IBIAN+JJ+1) - 1 + DO 220 K = KMIN,KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = (FTEM(I) - SAVF(I))*FAC + IF (I .EQ. JJ) WK(IBA+K) = WK(IBA+K) + 1.0D0 + 220 CONTINUE + 230 CONTINUE + JMIN = JMAX + 1 + 240 CONTINUE + NFE = NFE + NGP + GO TO 290 +C +C If JOK = 1, reconstruct new P from old P. ---------------------------- + 250 JCUR = 0 + RCON = CON/CON0 + RCONT = ABS(CON)/CONMIN + IF (RCONT .GT. RBIG .AND. IPLOST .EQ. 1) GO TO 20 + KMIN = IWK(IPIAN) + DO 275 J = 1,N + KMAX = IWK(IPIAN+J) - 1 + DO 270 K = KMIN,KMAX + I = IWK(IBJAN+K) + PIJ = WK(IBA+K) + IF (I .NE. J) GO TO 260 + PIJ = PIJ - 1.0D0 + IF (ABS(PIJ) .GE. PSMALL) GO TO 260 + IPLOST = 1 + CONMIN = MIN(ABS(CON0),CONMIN) + 260 PIJ = PIJ*RCON + IF (I .EQ. J) PIJ = PIJ + 1.0D0 + WK(IBA+K) = PIJ + 270 CONTINUE + KMIN = KMAX + 1 + 275 CONTINUE +C +C Do numerical factorization of P matrix. ------------------------------ + 290 NLU = NLU + 1 + CON0 = CON + IERPJ = 0 + DO 295 I = 1,N + 295 FTEM(I) = 0.0D0 + CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),FTEM,FTEM,NSP,IWK(IPISP),WK(IPRSP),IESP,2,IYS) + IF (IYS .EQ. 0) RETURN + IMUL = (IYS - 1)/N + IERPJ = -2 + IF (IMUL .EQ. 8) IERPJ = 1 + IF (IMUL .EQ. 10) IERPJ = -1 + RETURN +C +C If MITER = 3, construct a diagonal approximation to J and P. --------- + 300 CONTINUE + JCUR = 1 + NJE = NJE + 1 + WK(2) = HL0 + IERPJ = 0 + R = EL0*0.1D0 + DO 310 I = 1,N + 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2)) + CALL F (NEQ, TN, Y, WK(3)) + NFE = NFE + 1 + DO 320 I = 1,N + R0 = H*SAVF(I) - YH(I,2) + DI = 0.1D0*R0 - H*(WK(I+2) - SAVF(I)) + WK(I+2) = 1.0D0 + IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320 + IF (ABS(DI) .EQ. 0.0D0) GO TO 330 + WK(I+2) = 0.1D0*R0/DI + 320 CONTINUE + RETURN + 330 IERPJ = 2 + RETURN +C----------------------- End of Subroutine DPRJS ----------------------- + END +*DECK DSOLSS + SUBROUTINE DSOLSS (WK, IWK, X, TEM) + INTEGER IWK + DOUBLE PRECISION WK, X, TEM + DIMENSION WK(*), IWK(*), X(*), TEM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I + DOUBLE PRECISION DI, HL0, PHL0, R +C----------------------------------------------------------------------- +C This routine manages the solution of the linear system arising from +C a chord iteration. It is called if MITER .ne. 0. +C If MITER is 1 or 2, it calls CDRV to accomplish this. +C If MITER = 3 it updates the coefficient H*EL0 in the diagonal +C matrix, and then computes the solution. +C communication with DSOLSS uses the following variables: +C WK = real work space containing the inverse diagonal matrix if +C MITER = 3 and the LU decomposition of the matrix otherwise. +C Storage of matrix elements starts at WK(3). +C WK also contains the following matrix-related data: +C WK(1) = SQRT(UROUND) (not used here), +C WK(2) = HL0, the previous value of H*EL0, used if MITER = 3. +C IWK = integer work space for matrix-related data, assumed to +C be equivalenced to WK. In addition, WK(IPRSP) and IWK(IPISP) +C are assumed to have identical locations. +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C TEM = vector of work space of length N, not used in this version. +C IERSL = output flag (in Common). +C IERSL = 0 if no trouble occurred. +C IERSL = -1 if CDRV returned an error flag (MITER = 1 or 2). +C This should never occur and is considered fatal. +C IERSL = 1 if a singular matrix arose with MITER = 3. +C This routine also uses other variables in Common. +C----------------------------------------------------------------------- + IERSL = 0 + GO TO (100, 100, 300), MITER + 100 CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),X,X,NSP,IWK(IPISP),WK(IPRSP),IESP,4,IERSL) + IF (IERSL .NE. 0) IERSL = -1 + RETURN +C + 300 PHL0 = WK(2) + HL0 = H*EL0 + WK(2) = HL0 + IF (HL0 .EQ. PHL0) GO TO 330 + R = HL0/PHL0 + DO 320 I = 1,N + DI = 1.0D0 - R*(1.0D0 - 1.0D0/WK(I+2)) + IF (ABS(DI) .EQ. 0.0D0) GO TO 390 + 320 WK(I+2) = 1.0D0/DI + 330 DO 340 I = 1,N + 340 X(I) = WK(I+2)*X(I) + RETURN + 390 IERSL = 1 + RETURN +C +C----------------------- End of Subroutine DSOLSS ---------------------- + END +*DECK DSRCMS + SUBROUTINE DSRCMS (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLSS01, which are used +C internally by one or more ODEPACK solvers. +C +C RSAV = real array of length 224 or more. +C ISAV = integer array of length 71 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSS + INTEGER I, LENILS, LENISS, LENRLS, LENRSS + DOUBLE PRECISION RSAV, RLS, RLSS + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRSS, LENISS + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLSS01/ RLSS(6), ILSS(34) + DATA LENRLS/218/, LENILS/37/, LENRSS/6/, LENISS/34/ +C + IF (JOB .EQ. 2) GO TO 100 + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 15 I = 1,LENRSS + 15 RSAV(LENRLS+I) = RLSS(I) +C + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + DO 25 I = 1,LENISS + 25 ISAV(LENILS+I) = ILSS(I) +C + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 115 I = 1,LENRSS + 115 RLSS(I) = RSAV(LENRLS+I) +C + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + DO 125 I = 1,LENISS + 125 ILSS(I) = ISAV(LENILS+I) +C + RETURN +C----------------------- End of Subroutine DSRCMS ---------------------- + END +*DECK ODRV + subroutine odrv + * (n, ia,ja,a, p,ip, nsp,isp, path, flag) +c 5/2/83 +c*********************************************************************** +c odrv -- driver for sparse matrix reordering routines +c*********************************************************************** +c +c description +c +c odrv finds a minimum degree ordering of the rows and columns +c of a matrix m stored in (ia,ja,a) format (see below). for the +c reordered matrix, the work and storage required to perform +c gaussian elimination is (usually) significantly less. +c +c note.. odrv and its subordinate routines have been modified to +c compute orderings for general matrices, not necessarily having any +c symmetry. the miminum degree ordering is computed for the +c structure of the symmetric matrix m + m-transpose. +c modifications to the original odrv module have been made in +c the coding in subroutine mdi, and in the initial comments in +c subroutines odrv and md. +c +c if only the nonzero entries in the upper triangle of m are being +c stored, then odrv symmetrically reorders (ia,ja,a), (optionally) +c with the diagonal entries placed first in each row. this is to +c ensure that if m(i,j) will be in the upper triangle of m with +c respect to the new ordering, then m(i,j) is stored in row i (and +c thus m(j,i) is not stored), whereas if m(i,j) will be in the +c strict lower triangle of m, then m(j,i) is stored in row j (and +c thus m(i,j) is not stored). +c +c +c storage of sparse matrices +c +c the nonzero entries of the matrix m are stored row-by-row in the +c array a. to identify the individual nonzero entries in each row, +c we need to know in which column each entry lies. these column +c indices are stored in the array ja. i.e., if a(k) = m(i,j), then +c ja(k) = j. to identify the individual rows, we need to know where +c each row starts. these row pointers are stored in the array ia. +c i.e., if m(i,j) is the first nonzero entry (stored) in the i-th row +c and a(k) = m(i,j), then ia(i) = k. moreover, ia(n+1) points to +c the first location following the last element in the last row. +c thus, the number of entries in the i-th row is ia(i+1) - ia(i), +c the nonzero entries in the i-th row are stored consecutively in +c +c a(ia(i)), a(ia(i)+1), ..., a(ia(i+1)-1), +c +c and the corresponding column indices are stored consecutively in +c +c ja(ia(i)), ja(ia(i)+1), ..., ja(ia(i+1)-1). +c +c when the coefficient matrix is symmetric, only the nonzero entries +c in the upper triangle need be stored. for example, the matrix +c +c ( 1 0 2 3 0 ) +c ( 0 4 0 0 0 ) +c m = ( 2 0 5 6 0 ) +c ( 3 0 6 7 8 ) +c ( 0 0 0 8 9 ) +c +c could be stored as +c +c - 1 2 3 4 5 6 7 8 9 10 11 12 13 +c ---+-------------------------------------- +c ia - 1 4 5 8 12 14 +c ja - 1 3 4 2 1 3 4 1 3 4 5 4 5 +c a - 1 2 3 4 2 5 6 3 6 7 8 8 9 +c +c or (symmetrically) as +c +c - 1 2 3 4 5 6 7 8 9 +c ---+-------------------------- +c ia - 1 4 5 7 9 10 +c ja - 1 3 4 2 3 4 4 5 5 +c a - 1 2 3 4 5 6 7 8 9 . +c +c +c parameters +c +c n - order of the matrix +c +c ia - integer one-dimensional array containing pointers to delimit +c rows in ja and a. dimension = n+1 +c +c ja - integer one-dimensional array containing the column indices +c corresponding to the elements of a. dimension = number of +c nonzero entries in (the upper triangle of) m +c +c a - real one-dimensional array containing the nonzero entries in +c (the upper triangle of) m, stored by rows. dimension = +c number of nonzero entries in (the upper triangle of) m +c +c p - integer one-dimensional array used to return the permutation +c of the rows and columns of m corresponding to the minimum +c degree ordering. dimension = n +c +c ip - integer one-dimensional array used to return the inverse of +c the permutation returned in p. dimension = n +c +c nsp - declared dimension of the one-dimensional array isp. nsp +c must be at least 3n+4k, where k is the number of nonzeroes +c in the strict upper triangle of m +c +c isp - integer one-dimensional array used for working storage. +c dimension = nsp +c +c path - integer path specification. values and their meanings are - +c 1 find minimum degree ordering only +c 2 find minimum degree ordering and reorder symmetrically +c stored matrix (used when only the nonzero entries in +c the upper triangle of m are being stored) +c 3 reorder symmetrically stored matrix as specified by +c input permutation (used when an ordering has already +c been determined and only the nonzero entries in the +c upper triangle of m are being stored) +c 4 same as 2 but put diagonal entries at start of each row +c 5 same as 3 but put diagonal entries at start of each row +c +c flag - integer error flag. values and their meanings are - +c 0 no errors detected +c 9n+k insufficient storage in md +c 10n+1 insufficient storage in odrv +c 11n+1 illegal path specification +c +c +c conversion from real to double precision +c +c change the real declarations in odrv and sro to double precision +c declarations. +c +c----------------------------------------------------------------------- +c + integer ia(*), ja(*), p(*), ip(*), isp(*), path, flag, + * v, l, head, tmp, q +c... real a(*) + double precision a(*) + logical dflag +c +c----initialize error flag and validate path specification + flag = 0 + if (path.lt.1 .or. 5.lt.path) go to 111 +c +c----allocate storage and find minimum degree ordering + if ((path-1) * (path-2) * (path-4) .ne. 0) go to 1 + max = (nsp-n)/2 + v = 1 + l = v + max + head = l + max + next = head + n + if (max.lt.n) go to 110 +c + call md + * (n, ia,ja, max,isp(v),isp(l), isp(head),p,ip, isp(v), flag) + if (flag.ne.0) go to 100 +c +c----allocate storage and symmetrically reorder matrix + 1 if ((path-2) * (path-3) * (path-4) * (path-5) .ne. 0) go to 2 + tmp = (nsp+1) - n + q = tmp - (ia(n+1)-1) + if (q.lt.1) go to 110 +c + dflag = path.eq.4 .or. path.eq.5 + call sro + * (n, ip, ia, ja, a, isp(tmp), isp(q), dflag) +c + 2 return +c +c ** error -- error detected in md + 100 return +c ** error -- insufficient storage + 110 flag = 10*n + 1 + return +c ** error -- illegal path specified + 111 flag = 11*n + 1 + return + end + subroutine md + * (n, ia,ja, max, v,l, head,last,next, mark, flag) +c*********************************************************************** +c md -- minimum degree algorithm (based on element model) +c*********************************************************************** +c +c description +c +c md finds a minimum degree ordering of the rows and columns of a +c general sparse matrix m stored in (ia,ja,a) format. +c when the structure of m is nonsymmetric, the ordering is that +c obtained for the symmetric matrix m + m-transpose. +c +c +c additional parameters +c +c max - declared dimension of the one-dimensional arrays v and l. +c max must be at least n+2k, where k is the number of +c nonzeroes in the strict upper triangle of m + m-transpose +c +c v - integer one-dimensional work array. dimension = max +c +c l - integer one-dimensional work array. dimension = max +c +c head - integer one-dimensional work array. dimension = n +c +c last - integer one-dimensional array used to return the permutation +c of the rows and columns of m corresponding to the minimum +c degree ordering. dimension = n +c +c next - integer one-dimensional array used to return the inverse of +c the permutation returned in last. dimension = n +c +c mark - integer one-dimensional work array (may be the same as v). +c dimension = n +c +c flag - integer error flag. values and their meanings are - +c 0 no errors detected +c 9n+k insufficient storage in md +c +c +c definitions of internal parameters +c +c ---------+--------------------------------------------------------- +c v(s) - value field of list entry +c ---------+--------------------------------------------------------- +c l(s) - link field of list entry (0 =) end of list) +c ---------+--------------------------------------------------------- +c l(vi) - pointer to element list of uneliminated vertex vi +c ---------+--------------------------------------------------------- +c l(ej) - pointer to boundary list of active element ej +c ---------+--------------------------------------------------------- +c head(d) - vj =) vj head of d-list d +c - 0 =) no vertex in d-list d +c +c +c - vi uneliminated vertex +c - vi in ek - vi not in ek +c ---------+-----------------------------+--------------------------- +c next(vi) - undefined but nonnegative - vj =) vj next in d-list +c - - 0 =) vi tail of d-list +c ---------+-----------------------------+--------------------------- +c last(vi) - (not set until mdp) - -d =) vi head of d-list d +c --vk =) compute degree - vj =) vj last in d-list +c - ej =) vi prototype of ej - 0 =) vi not in any d-list +c - 0 =) do not compute degree - +c ---------+-----------------------------+--------------------------- +c mark(vi) - mark(vk) - nonneg. tag .lt. mark(vk) +c +c +c - vi eliminated vertex +c - ei active element - otherwise +c ---------+-----------------------------+--------------------------- +c next(vi) - -j =) vi was j-th vertex - -j =) vi was j-th vertex +c - to be eliminated - to be eliminated +c ---------+-----------------------------+--------------------------- +c last(vi) - m =) size of ei = m - undefined +c ---------+-----------------------------+--------------------------- +c mark(vi) - -m =) overlap count of ei - undefined +c - with ek = m - +c - otherwise nonnegative tag - +c - .lt. mark(vk) - +c +c----------------------------------------------------------------------- +c + integer ia(*), ja(*), v(*), l(*), head(*), last(*), next(*), + * mark(*), flag, tag, dmin, vk,ek, tail + equivalence (vk,ek) +c +c----initialization + tag = 0 + call mdi + * (n, ia,ja, max,v,l, head,last,next, mark,tag, flag) + if (flag.ne.0) return +c + k = 0 + dmin = 1 +c +c----while k .lt. n do + 1 if (k.ge.n) go to 4 +c +c------search for vertex of minimum degree + 2 if (head(dmin).gt.0) go to 3 + dmin = dmin + 1 + go to 2 +c +c------remove vertex vk of minimum degree from degree list + 3 vk = head(dmin) + head(dmin) = next(vk) + if (head(dmin).gt.0) last(head(dmin)) = -dmin +c +c------number vertex vk, adjust tag, and tag vk + k = k+1 + next(vk) = -k + last(ek) = dmin - 1 + tag = tag + last(ek) + mark(vk) = tag +c +c------form element ek from uneliminated neighbors of vk + call mdm + * (vk,tail, v,l, last,next, mark) +c +c------purge inactive elements and do mass elimination + call mdp + * (k,ek,tail, v,l, head,last,next, mark) +c +c------update degrees of uneliminated vertices in ek + call mdu + * (ek,dmin, v,l, head,last,next, mark) +c + go to 1 +c +c----generate inverse permutation from permutation + 4 do 5 k=1,n + next(k) = -next(k) + 5 last(next(k)) = k +c + return + end + subroutine mdi + * (n, ia,ja, max,v,l, head,last,next, mark,tag, flag) +c*********************************************************************** +c mdi -- initialization +c*********************************************************************** + integer ia(*), ja(*), v(*), l(*), head(*), last(*), next(*), + * mark(*), tag, flag, sfs, vi,dvi, vj +c +c----initialize degrees, element lists, and degree lists + do 1 vi=1,n + mark(vi) = 1 + l(vi) = 0 + 1 head(vi) = 0 + sfs = n+1 +c +c----create nonzero structure +c----for each nonzero entry a(vi,vj) + do 6 vi=1,n + jmin = ia(vi) + jmax = ia(vi+1) - 1 + if (jmin.gt.jmax) go to 6 + do 5 j=jmin,jmax + vj = ja(j) + if (vj-vi) 2, 5, 4 +c +c------if a(vi,vj) is in strict lower triangle +c------check for previous occurrence of a(vj,vi) + 2 lvk = vi + kmax = mark(vi) - 1 + if (kmax .eq. 0) go to 4 + do 3 k=1,kmax + lvk = l(lvk) + if (v(lvk).eq.vj) go to 5 + 3 continue +c----for unentered entries a(vi,vj) + 4 if (sfs.ge.max) go to 101 +c +c------enter vj in element list for vi + mark(vi) = mark(vi) + 1 + v(sfs) = vj + l(sfs) = l(vi) + l(vi) = sfs + sfs = sfs+1 +c +c------enter vi in element list for vj + mark(vj) = mark(vj) + 1 + v(sfs) = vi + l(sfs) = l(vj) + l(vj) = sfs + sfs = sfs+1 + 5 continue + 6 continue +c +c----create degree lists and initialize mark vector + do 7 vi=1,n + dvi = mark(vi) + next(vi) = head(dvi) + head(dvi) = vi + last(vi) = -dvi + nextvi = next(vi) + if (nextvi.gt.0) last(nextvi) = vi + 7 mark(vi) = tag +c + return +c +c ** error- insufficient storage + 101 flag = 9*n + vi + return + end + subroutine mdm + * (vk,tail, v,l, last,next, mark) +c*********************************************************************** +c mdm -- form element from uneliminated neighbors of vk +c*********************************************************************** + integer vk, tail, v(*), l(*), last(*), next(*), mark(*), + * tag, s,ls,vs,es, b,lb,vb, blp,blpmax + equivalence (vs, es) +c +c----initialize tag and list of uneliminated neighbors + tag = mark(vk) + tail = vk +c +c----for each vertex/element vs/es in element list of vk + ls = l(vk) + 1 s = ls + if (s.eq.0) go to 5 + ls = l(s) + vs = v(s) + if (next(vs).lt.0) go to 2 +c +c------if vs is uneliminated vertex, then tag and append to list of +c------uneliminated neighbors + mark(vs) = tag + l(tail) = s + tail = s + go to 4 +c +c------if es is active element, then ... +c--------for each vertex vb in boundary list of element es + 2 lb = l(es) + blpmax = last(es) + do 3 blp=1,blpmax + b = lb + lb = l(b) + vb = v(b) +c +c----------if vb is untagged vertex, then tag and append to list of +c----------uneliminated neighbors + if (mark(vb).ge.tag) go to 3 + mark(vb) = tag + l(tail) = b + tail = b + 3 continue +c +c--------mark es inactive + mark(es) = tag +c + 4 go to 1 +c +c----terminate list of uneliminated neighbors + 5 l(tail) = 0 +c + return + end + subroutine mdp + * (k,ek,tail, v,l, head,last,next, mark) +c*********************************************************************** +c mdp -- purge inactive elements and do mass elimination +c*********************************************************************** + integer ek, tail, v(*), l(*), head(*), last(*), next(*), + * mark(*), tag, free, li,vi,lvi,evi, s,ls,es, ilp,ilpmax +c +c----initialize tag + tag = mark(ek) +c +c----for each vertex vi in ek + li = ek + ilpmax = last(ek) + if (ilpmax.le.0) go to 12 + do 11 ilp=1,ilpmax + i = li + li = l(i) + vi = v(li) +c +c------remove vi from degree list + if (last(vi).eq.0) go to 3 + if (last(vi).gt.0) go to 1 + head(-last(vi)) = next(vi) + go to 2 + 1 next(last(vi)) = next(vi) + 2 if (next(vi).gt.0) last(next(vi)) = last(vi) +c +c------remove inactive items from element list of vi + 3 ls = vi + 4 s = ls + ls = l(s) + if (ls.eq.0) go to 6 + es = v(ls) + if (mark(es).lt.tag) go to 5 + free = ls + l(s) = l(ls) + ls = s + 5 go to 4 +c +c------if vi is interior vertex, then remove from list and eliminate + 6 lvi = l(vi) + if (lvi.ne.0) go to 7 + l(i) = l(li) + li = i +c + k = k+1 + next(vi) = -k + last(ek) = last(ek) - 1 + go to 11 +c +c------else ... +c--------classify vertex vi + 7 if (l(lvi).ne.0) go to 9 + evi = v(lvi) + if (next(evi).ge.0) go to 9 + if (mark(evi).lt.0) go to 8 +c +c----------if vi is prototype vertex, then mark as such, initialize +c----------overlap count for corresponding element, and move vi to end +c----------of boundary list + last(vi) = evi + mark(evi) = -1 + l(tail) = li + tail = li + l(i) = l(li) + li = i + go to 10 +c +c----------else if vi is duplicate vertex, then mark as such and adjust +c----------overlap count for corresponding element + 8 last(vi) = 0 + mark(evi) = mark(evi) - 1 + go to 10 +c +c----------else mark vi to compute degree + 9 last(vi) = -ek +c +c--------insert ek in element list of vi + 10 v(free) = ek + l(free) = l(vi) + l(vi) = free + 11 continue +c +c----terminate boundary list + 12 l(tail) = 0 +c + return + end + subroutine mdu + * (ek,dmin, v,l, head,last,next, mark) +c*********************************************************************** +c mdu -- update degrees of uneliminated vertices in ek +c*********************************************************************** + integer ek, dmin, v(*), l(*), head(*), last(*), next(*), + * mark(*), tag, vi,evi,dvi, s,vs,es, b,vb, ilp,ilpmax, + * blp,blpmax + equivalence (vs, es) +c +c----initialize tag + tag = mark(ek) - last(ek) +c +c----for each vertex vi in ek + i = ek + ilpmax = last(ek) + if (ilpmax.le.0) go to 11 + do 10 ilp=1,ilpmax + i = l(i) + vi = v(i) + if (last(vi)) 1, 10, 8 +c +c------if vi neither prototype nor duplicate vertex, then merge elements +c------to compute degree + 1 tag = tag + 1 + dvi = last(ek) +c +c--------for each vertex/element vs/es in element list of vi + s = l(vi) + 2 s = l(s) + if (s.eq.0) go to 9 + vs = v(s) + if (next(vs).lt.0) go to 3 +c +c----------if vs is uneliminated vertex, then tag and adjust degree + mark(vs) = tag + dvi = dvi + 1 + go to 5 +c +c----------if es is active element, then expand +c------------check for outmatched vertex + 3 if (mark(es).lt.0) go to 6 +c +c------------for each vertex vb in es + b = es + blpmax = last(es) + do 4 blp=1,blpmax + b = l(b) + vb = v(b) +c +c--------------if vb is untagged, then tag and adjust degree + if (mark(vb).ge.tag) go to 4 + mark(vb) = tag + dvi = dvi + 1 + 4 continue +c + 5 go to 2 +c +c------else if vi is outmatched vertex, then adjust overlaps but do not +c------compute degree + 6 last(vi) = 0 + mark(es) = mark(es) - 1 + 7 s = l(s) + if (s.eq.0) go to 10 + es = v(s) + if (mark(es).lt.0) mark(es) = mark(es) - 1 + go to 7 +c +c------else if vi is prototype vertex, then calculate degree by +c------inclusion/exclusion and reset overlap count + 8 evi = last(vi) + dvi = last(ek) + last(evi) + mark(evi) + mark(evi) = 0 +c +c------insert vi in appropriate degree list + 9 next(vi) = head(dvi) + head(dvi) = vi + last(vi) = -dvi + if (next(vi).gt.0) last(next(vi)) = vi + if (dvi.lt.dmin) dmin = dvi +c + 10 continue +c + 11 return + end + subroutine sro + * (n, ip, ia,ja,a, q, r, dflag) +c*********************************************************************** +c sro -- symmetric reordering of sparse symmetric matrix +c*********************************************************************** +c +c description +c +c the nonzero entries of the matrix m are assumed to be stored +c symmetrically in (ia,ja,a) format (i.e., not both m(i,j) and m(j,i) +c are stored if i ne j). +c +c sro does not rearrange the order of the rows, but does move +c nonzeroes from one row to another to ensure that if m(i,j) will be +c in the upper triangle of m with respect to the new ordering, then +c m(i,j) is stored in row i (and thus m(j,i) is not stored), whereas +c if m(i,j) will be in the strict lower triangle of m, then m(j,i) is +c stored in row j (and thus m(i,j) is not stored). +c +c +c additional parameters +c +c q - integer one-dimensional work array. dimension = n +c +c r - integer one-dimensional work array. dimension = number of +c nonzero entries in the upper triangle of m +c +c dflag - logical variable. if dflag = .true., then store nonzero +c diagonal elements at the beginning of the row +c +c----------------------------------------------------------------------- +c + integer ip(*), ia(*), ja(*), q(*), r(*) +c... real a(*), ak + double precision a(*), ak + logical dflag +c +c +c--phase 1 -- find row in which to store each nonzero +c----initialize count of nonzeroes to be stored in each row + do 1 i=1,n + 1 q(i) = 0 +c +c----for each nonzero element a(j) + do 3 i=1,n + jmin = ia(i) + jmax = ia(i+1) - 1 + if (jmin.gt.jmax) go to 3 + do 2 j=jmin,jmax +c +c--------find row (=r(j)) and column (=ja(j)) in which to store a(j) ... + k = ja(j) + if (ip(k).lt.ip(i)) ja(j) = i + if (ip(k).ge.ip(i)) k = i + r(j) = k +c +c--------... and increment count of nonzeroes (=q(r(j)) in that row + 2 q(k) = q(k) + 1 + 3 continue +c +c +c--phase 2 -- find new ia and permutation to apply to (ja,a) +c----determine pointers to delimit rows in permuted (ja,a) + do 4 i=1,n + ia(i+1) = ia(i) + q(i) + 4 q(i) = ia(i+1) +c +c----determine where each (ja(j),a(j)) is stored in permuted (ja,a) +c----for each nonzero element (in reverse order) + ilast = 0 + jmin = ia(1) + jmax = ia(n+1) - 1 + j = jmax + do 6 jdummy=jmin,jmax + i = r(j) + if (.not.dflag .or. ja(j).ne.i .or. i.eq.ilast) go to 5 +c +c------if dflag, then put diagonal nonzero at beginning of row + r(j) = ia(i) + ilast = i + go to 6 +c +c------put (off-diagonal) nonzero in last unused location in row + 5 q(i) = q(i) - 1 + r(j) = q(i) +c + 6 j = j-1 +c +c +c--phase 3 -- permute (ja,a) to upper triangular form (wrt new ordering) + do 8 j=jmin,jmax + 7 if (r(j).eq.j) go to 8 + k = r(j) + r(j) = r(k) + r(k) = k + jak = ja(k) + ja(k) = ja(j) + ja(j) = jak + ak = a(k) + a(k) = a(j) + a(j) = ak + go to 7 + 8 continue +c + return + end +*DECK CDRV + subroutine cdrv + * (n, r,c,ic, ia,ja,a, b, z, nsp,isp,rsp,esp, path, flag) +c*** subroutine cdrv +c*** driver for subroutines for solving sparse nonsymmetric systems of +c linear equations (compressed pointer storage) +c +c +c parameters +c class abbreviations are-- +c n - integer variable +c f - real variable +c v - supplies a value to the driver +c r - returns a result from the driver +c i - used internally by the driver +c a - array +c +c class - parameter +c ------+---------- +c - +c the nonzero entries of the coefficient matrix m are stored +c row-by-row in the array a. to identify the individual nonzero +c entries in each row, we need to know in which column each entry +c lies. the column indices which correspond to the nonzero entries +c of m are stored in the array ja. i.e., if a(k) = m(i,j), then +c ja(k) = j. in addition, we need to know where each row starts and +c how long it is. the index positions in ja and a where the rows of +c m begin are stored in the array ia. i.e., if m(i,j) is the first +c nonzero entry (stored) in the i-th row and a(k) = m(i,j), then +c ia(i) = k. moreover, the index in ja and a of the first location +c following the last element in the last row is stored in ia(n+1). +c thus, the number of entries in the i-th row is given by +c ia(i+1) - ia(i), the nonzero entries of the i-th row are stored +c consecutively in +c a(ia(i)), a(ia(i)+1), ..., a(ia(i+1)-1), +c and the corresponding column indices are stored consecutively in +c ja(ia(i)), ja(ia(i)+1), ..., ja(ia(i+1)-1). +c for example, the 5 by 5 matrix +c ( 1. 0. 2. 0. 0.) +c ( 0. 3. 0. 0. 0.) +c m = ( 0. 4. 5. 6. 0.) +c ( 0. 0. 0. 7. 0.) +c ( 0. 0. 0. 8. 9.) +c would be stored as +c - 1 2 3 4 5 6 7 8 9 +c ---+-------------------------- +c ia - 1 3 4 7 8 10 +c ja - 1 3 2 2 3 4 4 4 5 +c a - 1. 2. 3. 4. 5. 6. 7. 8. 9. . +c +c nv - n - number of variables/equations. +c fva - a - nonzero entries of the coefficient matrix m, stored +c - by rows. +c - size = number of nonzero entries in m. +c nva - ia - pointers to delimit the rows in a. +c - size = n+1. +c nva - ja - column numbers corresponding to the elements of a. +c - size = size of a. +c fva - b - right-hand side b. b and z can the same array. +c - size = n. +c fra - z - solution x. b and z can be the same array. +c - size = n. +c +c the rows and columns of the original matrix m can be +c reordered (e.g., to reduce fillin or ensure numerical stability) +c before calling the driver. if no reordering is done, then set +c r(i) = c(i) = ic(i) = i for i=1,...,n. the solution z is returned +c in the original order. +c if the columns have been reordered (i.e., c(i).ne.i for some +c i), then the driver will call a subroutine (nroc) which rearranges +c each row of ja and a, leaving the rows in the original order, but +c placing the elements of each row in increasing order with respect +c to the new ordering. if path.ne.1, then nroc is assumed to have +c been called already. +c +c nva - r - ordering of the rows of m. +c - size = n. +c nva - c - ordering of the columns of m. +c - size = n. +c nva - ic - inverse of the ordering of the columns of m. i.e., +c - ic(c(i)) = i for i=1,...,n. +c - size = n. +c +c the solution of the system of linear equations is divided into +c three stages -- +c nsfc -- the matrix m is processed symbolically to determine where +c fillin will occur during the numeric factorization. +c nnfc -- the matrix m is factored numerically into the product ldu +c of a unit lower triangular matrix l, a diagonal matrix +c d, and a unit upper triangular matrix u, and the system +c mx = b is solved. +c nnsc -- the linear system mx = b is solved using the ldu +c or factorization from nnfc. +c nntc -- the transposed linear system mt x = b is solved using +c the ldu factorization from nnf. +c for several systems whose coefficient matrices have the same +c nonzero structure, nsfc need be done only once (for the first +c system). then nnfc is done once for each additional system. for +c several systems with the same coefficient matrix, nsfc and nnfc +c need be done only once (for the first system). then nnsc or nntc +c is done once for each additional right-hand side. +c +c nv - path - path specification. values and their meanings are -- +c - 1 perform nroc, nsfc, and nnfc. +c - 2 perform nnfc only (nsfc is assumed to have been +c - done in a manner compatible with the storage +c - allocation used in the driver). +c - 3 perform nnsc only (nsfc and nnfc are assumed to +c - have been done in a manner compatible with the +c - storage allocation used in the driver). +c - 4 perform nntc only (nsfc and nnfc are assumed to +c - have been done in a manner compatible with the +c - storage allocation used in the driver). +c - 5 perform nroc and nsfc. +c +c various errors are detected by the driver and the individual +c subroutines. +c +c nr - flag - error flag. values and their meanings are -- +c - 0 no errors detected +c - n+k null row in a -- row = k +c - 2n+k duplicate entry in a -- row = k +c - 3n+k insufficient storage in nsfc -- row = k +c - 4n+1 insufficient storage in nnfc +c - 5n+k null pivot -- row = k +c - 6n+k insufficient storage in nsfc -- row = k +c - 7n+1 insufficient storage in nnfc +c - 8n+k zero pivot -- row = k +c - 10n+1 insufficient storage in cdrv +c - 11n+1 illegal path specification +c +c working storage is needed for the factored form of the matrix +c m plus various temporary vectors. the arrays isp and rsp should be +c equivalenced. integer storage is allocated from the beginning of +c isp and real storage from the end of rsp. +c +c nv - nsp - declared dimension of rsp. nsp generally must +c - be larger than 8n+2 + 2k (where k = (number of +c - nonzero entries in m)). +c nvira - isp - integer working storage divided up into various arrays +c - needed by the subroutines. isp and rsp should be +c - equivalenced. +c - size = lratio*nsp. +c fvira - rsp - real working storage divided up into various arrays +c - needed by the subroutines. isp and rsp should be +c - equivalenced. +c - size = nsp. +c nr - esp - if sufficient storage was available to perform the +c - symbolic factorization (nsfc), then esp is set to +c - the amount of excess storage provided (negative if +c - insufficient storage was available to perform the +c - numeric factorization (nnfc)). +c +c +c conversion to double precision +c +c to convert these routines for double precision arrays.. +c (1) use the double precision declarations in place of the real +c declarations in each subprogram, as given in comment cards. +c (2) change the data-loaded value of the integer lratio +c in subroutine cdrv, as indicated below. +c (3) change e0 to d0 in the constants in statement number 10 +c in subroutine nnfc and the line following that. +c + integer r(*), c(*), ic(*), ia(*), ja(*), isp(*), esp, path, + * flag, d, u, q, row, tmp, ar, umax +c real a(*), b(*), z(*), rsp(*) + double precision a(*), b(*), z(*), rsp(*) +c +c set lratio equal to the ratio between the length of floating point +c and integer array data. e. g., lratio = 1 for (real, integer), +c lratio = 2 for (double precision, integer) +c + data lratio/2/ +c + if (path.lt.1 .or. 5.lt.path) go to 111 +c******initialize and divide up temporary storage ******************* + il = 1 + ijl = il + (n+1) + iu = ijl + n + iju = iu + (n+1) + irl = iju + n + jrl = irl + n + jl = jrl + n +c +c ****** reorder a if necessary, call nsfc if flag is set *********** + if ((path-1) * (path-5) .ne. 0) go to 5 + max = (lratio*nsp + 1 - jl) - (n+1) - 5*n + jlmax = max/2 + q = jl + jlmax + ira = q + (n+1) + jra = ira + n + irac = jra + n + iru = irac + n + jru = iru + n + jutmp = jru + n + jumax = lratio*nsp + 1 - jutmp + esp = max/lratio + if (jlmax.le.0 .or. jumax.le.0) go to 110 +c + do 1 i=1,n + if (c(i).ne.i) go to 2 + 1 continue + go to 3 + 2 ar = nsp + 1 - n + call nroc + * (n, ic, ia,ja,a, isp(il), rsp(ar), isp(iu), flag) + if (flag.ne.0) go to 100 +c + 3 call nsfc + * (n, r, ic, ia,ja, + * jlmax, isp(il), isp(jl), isp(ijl), + * jumax, isp(iu), isp(jutmp), isp(iju), + * isp(q), isp(ira), isp(jra), isp(irac), + * isp(irl), isp(jrl), isp(iru), isp(jru), flag) + if(flag .ne. 0) go to 100 +c ****** move ju next to jl ***************************************** + jlmax = isp(ijl+n-1) + ju = jl + jlmax + jumax = isp(iju+n-1) + if (jumax.le.0) go to 5 + do 4 j=1,jumax + 4 isp(ju+j-1) = isp(jutmp+j-1) +c +c ****** call remaining subroutines ********************************* + 5 jlmax = isp(ijl+n-1) + ju = jl + jlmax + jumax = isp(iju+n-1) + l = (ju + jumax - 2 + lratio) / lratio + 1 + lmax = isp(il+n) - 1 + d = l + lmax + u = d + n + row = nsp + 1 - n + tmp = row - n + umax = tmp - u + esp = umax - (isp(iu+n) - 1) +c + if ((path-1) * (path-2) .ne. 0) go to 6 + if (umax.lt.0) go to 110 + call nnfc + * (n, r, c, ic, ia, ja, a, z, b, + * lmax, isp(il), isp(jl), isp(ijl), rsp(l), rsp(d), + * umax, isp(iu), isp(ju), isp(iju), rsp(u), + * rsp(row), rsp(tmp), isp(irl), isp(jrl), flag) + if(flag .ne. 0) go to 100 +c + 6 if ((path-3) .ne. 0) go to 7 + call nnsc + * (n, r, c, isp(il), isp(jl), isp(ijl), rsp(l), + * rsp(d), isp(iu), isp(ju), isp(iju), rsp(u), + * z, b, rsp(tmp)) +c + 7 if ((path-4) .ne. 0) go to 8 + call nntc + * (n, r, c, isp(il), isp(jl), isp(ijl), rsp(l), + * rsp(d), isp(iu), isp(ju), isp(iju), rsp(u), + * z, b, rsp(tmp)) + 8 return +c +c ** error.. error detected in nroc, nsfc, nnfc, or nnsc + 100 return +c ** error.. insufficient storage + 110 flag = 10*n + 1 + return +c ** error.. illegal path specification + 111 flag = 11*n + 1 + return + end + subroutine nroc (n, ic, ia, ja, a, jar, ar, p, flag) +c +c ---------------------------------------------------------------- +c +c yale sparse matrix package - nonsymmetric codes +c solving the system of equations mx = b +c +c i. calling sequences +c the coefficient matrix can be processed by an ordering routine +c (e.g., to reduce fillin or ensure numerical stability) before using +c the remaining subroutines. if no reordering is done, then set +c r(i) = c(i) = ic(i) = i for i=1,...,n. if an ordering subroutine +c is used, then nroc should be used to reorder the coefficient matrix +c the calling sequence is -- +c ( (matrix ordering)) +c (nroc (matrix reordering)) +c nsfc (symbolic factorization to determine where fillin will +c occur during numeric factorization) +c nnfc (numeric factorization into product ldu of unit lower +c triangular matrix l, diagonal matrix d, and unit +c upper triangular matrix u, and solution of linear +c system) +c nnsc (solution of linear system for additional right-hand +c side using ldu factorization from nnfc) +c (if only one system of equations is to be solved, then the +c subroutine trk should be used.) +c +c ii. storage of sparse matrices +c the nonzero entries of the coefficient matrix m are stored +c row-by-row in the array a. to identify the individual nonzero +c entries in each row, we need to know in which column each entry +c lies. the column indices which correspond to the nonzero entries +c of m are stored in the array ja. i.e., if a(k) = m(i,j), then +c ja(k) = j. in addition, we need to know where each row starts and +c how long it is. the index positions in ja and a where the rows of +c m begin are stored in the array ia. i.e., if m(i,j) is the first +c (leftmost) entry in the i-th row and a(k) = m(i,j), then +c ia(i) = k. moreover, the index in ja and a of the first location +c following the last element in the last row is stored in ia(n+1). +c thus, the number of entries in the i-th row is given by +c ia(i+1) - ia(i), the nonzero entries of the i-th row are stored +c consecutively in +c a(ia(i)), a(ia(i)+1), ..., a(ia(i+1)-1), +c and the corresponding column indices are stored consecutively in +c ja(ia(i)), ja(ia(i)+1), ..., ja(ia(i+1)-1). +c for example, the 5 by 5 matrix +c ( 1. 0. 2. 0. 0.) +c ( 0. 3. 0. 0. 0.) +c m = ( 0. 4. 5. 6. 0.) +c ( 0. 0. 0. 7. 0.) +c ( 0. 0. 0. 8. 9.) +c would be stored as +c - 1 2 3 4 5 6 7 8 9 +c ---+-------------------------- +c ia - 1 3 4 7 8 10 +c ja - 1 3 2 2 3 4 4 4 5 +c a - 1. 2. 3. 4. 5. 6. 7. 8. 9. . +c +c the strict upper (lower) triangular portion of the matrix +c u (l) is stored in a similar fashion using the arrays iu, ju, u +c (il, jl, l) except that an additional array iju (ijl) is used to +c compress storage of ju (jl) by allowing some sequences of column +c (row) indices to used for more than one row (column) (n.b., l is +c stored by columns). iju(k) (ijl(k)) points to the starting +c location in ju (jl) of entries for the kth row (column). +c compression in ju (jl) occurs in two ways. first, if a row +c (column) i was merged into the current row (column) k, and the +c number of elements merged in from (the tail portion of) row +c (column) i is the same as the final length of row (column) k, then +c the kth row (column) and the tail of row (column) i are identical +c and iju(k) (ijl(k)) points to the start of the tail. second, if +c some tail portion of the (k-1)st row (column) is identical to the +c head of the kth row (column), then iju(k) (ijl(k)) points to the +c start of that tail portion. for example, the nonzero structure of +c the strict upper triangular part of the matrix +c d 0 x x x +c 0 d 0 x x +c 0 0 d x 0 +c 0 0 0 d x +c 0 0 0 0 d +c would be represented as +c - 1 2 3 4 5 6 +c ----+------------ +c iu - 1 4 6 7 8 8 +c ju - 3 4 5 4 +c iju - 1 2 4 3 . +c the diagonal entries of l and u are assumed to be equal to one and +c are not stored. the array d contains the reciprocals of the +c diagonal entries of the matrix d. +c +c iii. additional storage savings +c in nsfc, r and ic can be the same array in the calling +c sequence if no reordering of the coefficient matrix has been done. +c in nnfc, r, c, and ic can all be the same array if no +c reordering has been done. if only the rows have been reordered, +c then c and ic can be the same array. if the row and column +c orderings are the same, then r and c can be the same array. z and +c row can be the same array. +c in nnsc or nntc, r and c can be the same array if no +c reordering has been done or if the row and column orderings are the +c same. z and b can be the same array. however, then b will be +c destroyed. +c +c iv. parameters +c following is a list of parameters to the programs. names are +c uniform among the various subroutines. class abbreviations are -- +c n - integer variable +c f - real variable +c v - supplies a value to a subroutine +c r - returns a result from a subroutine +c i - used internally by a subroutine +c a - array +c +c class - parameter +c ------+---------- +c fva - a - nonzero entries of the coefficient matrix m, stored +c - by rows. +c - size = number of nonzero entries in m. +c fva - b - right-hand side b. +c - size = n. +c nva - c - ordering of the columns of m. +c - size = n. +c fvra - d - reciprocals of the diagonal entries of the matrix d. +c - size = n. +c nr - flag - error flag. values and their meanings are -- +c - 0 no errors detected +c - n+k null row in a -- row = k +c - 2n+k duplicate entry in a -- row = k +c - 3n+k insufficient storage for jl -- row = k +c - 4n+1 insufficient storage for l +c - 5n+k null pivot -- row = k +c - 6n+k insufficient storage for ju -- row = k +c - 7n+1 insufficient storage for u +c - 8n+k zero pivot -- row = k +c nva - ia - pointers to delimit the rows of a. +c - size = n+1. +c nvra - ijl - pointers to the first element in each column in jl, +c - used to compress storage in jl. +c - size = n. +c nvra - iju - pointers to the first element in each row in ju, used +c - to compress storage in ju. +c - size = n. +c nvra - il - pointers to delimit the columns of l. +c - size = n+1. +c nvra - iu - pointers to delimit the rows of u. +c - size = n+1. +c nva - ja - column numbers corresponding to the elements of a. +c - size = size of a. +c nvra - jl - row numbers corresponding to the elements of l. +c - size = jlmax. +c nv - jlmax - declared dimension of jl. jlmax must be larger than +c - the number of nonzeros in the strict lower triangle +c - of m plus fillin minus compression. +c nvra - ju - column numbers corresponding to the elements of u. +c - size = jumax. +c nv - jumax - declared dimension of ju. jumax must be larger than +c - the number of nonzeros in the strict upper triangle +c - of m plus fillin minus compression. +c fvra - l - nonzero entries in the strict lower triangular portion +c - of the matrix l, stored by columns. +c - size = lmax. +c nv - lmax - declared dimension of l. lmax must be larger than +c - the number of nonzeros in the strict lower triangle +c - of m plus fillin (il(n+1)-1 after nsfc). +c nv - n - number of variables/equations. +c nva - r - ordering of the rows of m. +c - size = n. +c fvra - u - nonzero entries in the strict upper triangular portion +c - of the matrix u, stored by rows. +c - size = umax. +c nv - umax - declared dimension of u. umax must be larger than +c - the number of nonzeros in the strict upper triangle +c - of m plus fillin (iu(n+1)-1 after nsfc). +c fra - z - solution x. +c - size = n. +c +c ---------------------------------------------------------------- +c +c*** subroutine nroc +c*** reorders rows of a, leaving row order unchanged +c +c +c input parameters.. n, ic, ia, ja, a +c output parameters.. ja, a, flag +c +c parameters used internally.. +c nia - p - at the kth step, p is a linked list of the reordered +c - column indices of the kth row of a. p(n+1) points +c - to the first entry in the list. +c - size = n+1. +c nia - jar - at the kth step,jar contains the elements of the +c - reordered column indices of a. +c - size = n. +c fia - ar - at the kth step, ar contains the elements of the +c - reordered row of a. +c - size = n. +c + integer ic(*), ia(*), ja(*), jar(*), p(*), flag +c real a(*), ar(*) + double precision a(*), ar(*) +c +c ****** for each nonempty row ******************************* + do 5 k=1,n + jmin = ia(k) + jmax = ia(k+1) - 1 + if(jmin .gt. jmax) go to 5 + p(n+1) = n + 1 +c ****** insert each element in the list ********************* + do 3 j=jmin,jmax + newj = ic(ja(j)) + i = n + 1 + 1 if(p(i) .ge. newj) go to 2 + i = p(i) + go to 1 + 2 if(p(i) .eq. newj) go to 102 + p(newj) = p(i) + p(i) = newj + jar(newj) = ja(j) + ar(newj) = a(j) + 3 continue +c ****** replace old row in ja and a ************************* + i = n + 1 + do 4 j=jmin,jmax + i = p(i) + ja(j) = jar(i) + 4 a(j) = ar(i) + 5 continue + flag = 0 + return +c +c ** error.. duplicate entry in a + 102 flag = n + k + return + end + subroutine nsfc + * (n, r, ic, ia,ja, jlmax,il,jl,ijl, jumax,iu,ju,iju, + * q, ira,jra, irac, irl,jrl, iru,jru, flag) +c*** subroutine nsfc +c*** symbolic ldu-factorization of nonsymmetric sparse matrix +c (compressed pointer storage) +c +c +c input variables.. n, r, ic, ia, ja, jlmax, jumax. +c output variables.. il, jl, ijl, iu, ju, iju, flag. +c +c parameters used internally.. +c nia - q - suppose m* is the result of reordering m. if +c - processing of the ith row of m* (hence the ith +c - row of u) is being done, q(j) is initially +c - nonzero if m*(i,j) is nonzero (j.ge.i). since +c - values need not be stored, each entry points to the +c - next nonzero and q(n+1) points to the first. n+1 +c - indicates the end of the list. for example, if n=9 +c - and the 5th row of m* is +c - 0 x x 0 x 0 0 x 0 +c - then q will initially be +c - a a a a 8 a a 10 5 (a - arbitrary). +c - as the algorithm proceeds, other elements of q +c - are inserted in the list because of fillin. +c - q is used in an analogous manner to compute the +c - ith column of l. +c - size = n+1. +c nia - ira, - vectors used to find the columns of m. at the kth +c nia - jra, step of the factorization, irac(k) points to the +c nia - irac head of a linked list in jra of row indices i +c - such that i .ge. k and m(i,k) is nonzero. zero +c - indicates the end of the list. ira(i) (i.ge.k) +c - points to the smallest j such that j .ge. k and +c - m(i,j) is nonzero. +c - size of each = n. +c nia - irl, - vectors used to find the rows of l. at the kth step +c nia - jrl of the factorization, jrl(k) points to the head +c - of a linked list in jrl of column indices j +c - such j .lt. k and l(k,j) is nonzero. zero +c - indicates the end of the list. irl(j) (j.lt.k) +c - points to the smallest i such that i .ge. k and +c - l(i,j) is nonzero. +c - size of each = n. +c nia - iru, - vectors used in a manner analogous to irl and jrl +c nia - jru to find the columns of u. +c - size of each = n. +c +c internal variables.. +c jlptr - points to the last position used in jl. +c juptr - points to the last position used in ju. +c jmin,jmax - are the indices in a or u of the first and last +c elements to be examined in a given row. +c for example, jmin=ia(k), jmax=ia(k+1)-1. +c + integer cend, qm, rend, rk, vj + integer ia(*), ja(*), ira(*), jra(*), il(*), jl(*), ijl(*) + integer iu(*), ju(*), iju(*), irl(*), jrl(*), iru(*), jru(*) + integer r(*), ic(*), q(*), irac(*), flag +c +c ****** initialize pointers **************************************** + np1 = n + 1 + jlmin = 1 + jlptr = 0 + il(1) = 1 + jumin = 1 + juptr = 0 + iu(1) = 1 + do 1 k=1,n + irac(k) = 0 + jra(k) = 0 + jrl(k) = 0 + 1 jru(k) = 0 +c ****** initialize column pointers for a *************************** + do 2 k=1,n + rk = r(k) + iak = ia(rk) + if (iak .ge. ia(rk+1)) go to 101 + jaiak = ic(ja(iak)) + if (jaiak .gt. k) go to 105 + jra(k) = irac(jaiak) + irac(jaiak) = k + 2 ira(k) = iak +c +c ****** for each column of l and row of u ************************** + do 41 k=1,n +c +c ****** initialize q for computing kth column of l ***************** + q(np1) = np1 + luk = -1 +c ****** by filling in kth column of a ****************************** + vj = irac(k) + if (vj .eq. 0) go to 5 + 3 qm = np1 + 4 m = qm + qm = q(m) + if (qm .lt. vj) go to 4 + if (qm .eq. vj) go to 102 + luk = luk + 1 + q(m) = vj + q(vj) = qm + vj = jra(vj) + if (vj .ne. 0) go to 3 +c ****** link through jru ******************************************* + 5 lastid = 0 + lasti = 0 + ijl(k) = jlptr + i = k + 6 i = jru(i) + if (i .eq. 0) go to 10 + qm = np1 + jmin = irl(i) + jmax = ijl(i) + il(i+1) - il(i) - 1 + long = jmax - jmin + if (long .lt. 0) go to 6 + jtmp = jl(jmin) + if (jtmp .ne. k) long = long + 1 + if (jtmp .eq. k) r(i) = -r(i) + if (lastid .ge. long) go to 7 + lasti = i + lastid = long +c ****** and merge the corresponding columns into the kth column **** + 7 do 9 j=jmin,jmax + vj = jl(j) + 8 m = qm + qm = q(m) + if (qm .lt. vj) go to 8 + if (qm .eq. vj) go to 9 + luk = luk + 1 + q(m) = vj + q(vj) = qm + qm = vj + 9 continue + go to 6 +c ****** lasti is the longest column merged into the kth ************ +c ****** see if it equals the entire kth column ********************* + 10 qm = q(np1) + if (qm .ne. k) go to 105 + if (luk .eq. 0) go to 17 + if (lastid .ne. luk) go to 11 +c ****** if so, jl can be compressed ******************************** + irll = irl(lasti) + ijl(k) = irll + 1 + if (jl(irll) .ne. k) ijl(k) = ijl(k) - 1 + go to 17 +c ****** if not, see if kth column can overlap the previous one ***** + 11 if (jlmin .gt. jlptr) go to 15 + qm = q(qm) + do 12 j=jlmin,jlptr + if (jl(j) - qm) 12, 13, 15 + 12 continue + go to 15 + 13 ijl(k) = j + do 14 i=j,jlptr + if (jl(i) .ne. qm) go to 15 + qm = q(qm) + if (qm .gt. n) go to 17 + 14 continue + jlptr = j - 1 +c ****** move column indices from q to jl, update vectors *********** + 15 jlmin = jlptr + 1 + ijl(k) = jlmin + if (luk .eq. 0) go to 17 + jlptr = jlptr + luk + if (jlptr .gt. jlmax) go to 103 + qm = q(np1) + do 16 j=jlmin,jlptr + qm = q(qm) + 16 jl(j) = qm + 17 irl(k) = ijl(k) + il(k+1) = il(k) + luk +c +c ****** initialize q for computing kth row of u ******************** + q(np1) = np1 + luk = -1 +c ****** by filling in kth row of reordered a *********************** + rk = r(k) + jmin = ira(k) + jmax = ia(rk+1) - 1 + if (jmin .gt. jmax) go to 20 + do 19 j=jmin,jmax + vj = ic(ja(j)) + qm = np1 + 18 m = qm + qm = q(m) + if (qm .lt. vj) go to 18 + if (qm .eq. vj) go to 102 + luk = luk + 1 + q(m) = vj + q(vj) = qm + 19 continue +c ****** link through jrl, ****************************************** + 20 lastid = 0 + lasti = 0 + iju(k) = juptr + i = k + i1 = jrl(k) + 21 i = i1 + if (i .eq. 0) go to 26 + i1 = jrl(i) + qm = np1 + jmin = iru(i) + jmax = iju(i) + iu(i+1) - iu(i) - 1 + long = jmax - jmin + if (long .lt. 0) go to 21 + jtmp = ju(jmin) + if (jtmp .eq. k) go to 22 +c ****** update irl and jrl, ***************************************** + long = long + 1 + cend = ijl(i) + il(i+1) - il(i) + irl(i) = irl(i) + 1 + if (irl(i) .ge. cend) go to 22 + j = jl(irl(i)) + jrl(i) = jrl(j) + jrl(j) = i + 22 if (lastid .ge. long) go to 23 + lasti = i + lastid = long +c ****** and merge the corresponding rows into the kth row ********** + 23 do 25 j=jmin,jmax + vj = ju(j) + 24 m = qm + qm = q(m) + if (qm .lt. vj) go to 24 + if (qm .eq. vj) go to 25 + luk = luk + 1 + q(m) = vj + q(vj) = qm + qm = vj + 25 continue + go to 21 +c ****** update jrl(k) and irl(k) *********************************** + 26 if (il(k+1) .le. il(k)) go to 27 + j = jl(irl(k)) + jrl(k) = jrl(j) + jrl(j) = k +c ****** lasti is the longest row merged into the kth *************** +c ****** see if it equals the entire kth row ************************ + 27 qm = q(np1) + if (qm .ne. k) go to 105 + if (luk .eq. 0) go to 34 + if (lastid .ne. luk) go to 28 +c ****** if so, ju can be compressed ******************************** + irul = iru(lasti) + iju(k) = irul + 1 + if (ju(irul) .ne. k) iju(k) = iju(k) - 1 + go to 34 +c ****** if not, see if kth row can overlap the previous one ******** + 28 if (jumin .gt. juptr) go to 32 + qm = q(qm) + do 29 j=jumin,juptr + if (ju(j) - qm) 29, 30, 32 + 29 continue + go to 32 + 30 iju(k) = j + do 31 i=j,juptr + if (ju(i) .ne. qm) go to 32 + qm = q(qm) + if (qm .gt. n) go to 34 + 31 continue + juptr = j - 1 +c ****** move row indices from q to ju, update vectors ************** + 32 jumin = juptr + 1 + iju(k) = jumin + if (luk .eq. 0) go to 34 + juptr = juptr + luk + if (juptr .gt. jumax) go to 106 + qm = q(np1) + do 33 j=jumin,juptr + qm = q(qm) + 33 ju(j) = qm + 34 iru(k) = iju(k) + iu(k+1) = iu(k) + luk +c +c ****** update iru, jru ******************************************** + i = k + 35 i1 = jru(i) + if (r(i) .lt. 0) go to 36 + rend = iju(i) + iu(i+1) - iu(i) + if (iru(i) .ge. rend) go to 37 + j = ju(iru(i)) + jru(i) = jru(j) + jru(j) = i + go to 37 + 36 r(i) = -r(i) + 37 i = i1 + if (i .eq. 0) go to 38 + iru(i) = iru(i) + 1 + go to 35 +c +c ****** update ira, jra, irac ************************************** + 38 i = irac(k) + if (i .eq. 0) go to 41 + 39 i1 = jra(i) + ira(i) = ira(i) + 1 + if (ira(i) .ge. ia(r(i)+1)) go to 40 + irai = ira(i) + jairai = ic(ja(irai)) + if (jairai .gt. i) go to 40 + jra(i) = irac(jairai) + irac(jairai) = i + 40 i = i1 + if (i .ne. 0) go to 39 + 41 continue +c + ijl(n) = jlptr + iju(n) = juptr + flag = 0 + return +c +c ** error.. null row in a + 101 flag = n + rk + return +c ** error.. duplicate entry in a + 102 flag = 2*n + rk + return +c ** error.. insufficient storage for jl + 103 flag = 3*n + k + return +c ** error.. null pivot + 105 flag = 5*n + k + return +c ** error.. insufficient storage for ju + 106 flag = 6*n + k + return + end + subroutine nnfc + * (n, r,c,ic, ia,ja,a, z, b, + * lmax,il,jl,ijl,l, d, umax,iu,ju,iju,u, + * row, tmp, irl,jrl, flag) +c*** subroutine nnfc +c*** numerical ldu-factorization of sparse nonsymmetric matrix and +c solution of system of linear equations (compressed pointer +c storage) +c +c +c input variables.. n, r, c, ic, ia, ja, a, b, +c il, jl, ijl, lmax, iu, ju, iju, umax +c output variables.. z, l, d, u, flag +c +c parameters used internally.. +c nia - irl, - vectors used to find the rows of l. at the kth step +c nia - jrl of the factorization, jrl(k) points to the head +c - of a linked list in jrl of column indices j +c - such j .lt. k and l(k,j) is nonzero. zero +c - indicates the end of the list. irl(j) (j.lt.k) +c - points to the smallest i such that i .ge. k and +c - l(i,j) is nonzero. +c - size of each = n. +c fia - row - holds intermediate values in calculation of u and l. +c - size = n. +c fia - tmp - holds new right-hand side b* for solution of the +c - equation ux = b*. +c - size = n. +c +c internal variables.. +c jmin, jmax - indices of the first and last positions in a row to +c be examined. +c sum - used in calculating tmp. +c + integer rk,umax + integer r(*), c(*), ic(*), ia(*), ja(*), il(*), jl(*), ijl(*) + integer iu(*), ju(*), iju(*), irl(*), jrl(*), flag +c real a(*), l(*), d(*), u(*), z(*), b(*), row(*) +c real tmp(*), lki, sum, dk + double precision a(*), l(*), d(*), u(*), z(*), b(*), row(*) + double precision tmp(*), lki, sum, dk +c +c ****** initialize pointers and test storage *********************** + if(il(n+1)-1 .gt. lmax) go to 104 + if(iu(n+1)-1 .gt. umax) go to 107 + do 1 k=1,n + irl(k) = il(k) + jrl(k) = 0 + 1 continue +c +c ****** for each row *********************************************** + do 19 k=1,n +c ****** reverse jrl and zero row where kth row of l will fill in *** + row(k) = 0 + i1 = 0 + if (jrl(k) .eq. 0) go to 3 + i = jrl(k) + 2 i2 = jrl(i) + jrl(i) = i1 + i1 = i + row(i) = 0 + i = i2 + if (i .ne. 0) go to 2 +c ****** set row to zero where u will fill in *********************** + 3 jmin = iju(k) + jmax = jmin + iu(k+1) - iu(k) - 1 + if (jmin .gt. jmax) go to 5 + do 4 j=jmin,jmax + 4 row(ju(j)) = 0 +c ****** place kth row of a in row ********************************** + 5 rk = r(k) + jmin = ia(rk) + jmax = ia(rk+1) - 1 + do 6 j=jmin,jmax + row(ic(ja(j))) = a(j) + 6 continue +c ****** initialize sum, and link through jrl *********************** + sum = b(rk) + i = i1 + if (i .eq. 0) go to 10 +c ****** assign the kth row of l and adjust row, sum **************** + 7 lki = -row(i) +c ****** if l is not required, then comment out the following line ** + l(irl(i)) = -lki + sum = sum + lki * tmp(i) + jmin = iu(i) + jmax = iu(i+1) - 1 + if (jmin .gt. jmax) go to 9 + mu = iju(i) - jmin + do 8 j=jmin,jmax + 8 row(ju(mu+j)) = row(ju(mu+j)) + lki * u(j) + 9 i = jrl(i) + if (i .ne. 0) go to 7 +c +c ****** assign kth row of u and diagonal d, set tmp(k) ************* + 10 if (row(k) .eq. 0.0d0) go to 108 + dk = 1.0d0 / row(k) + d(k) = dk + tmp(k) = sum * dk + if (k .eq. n) go to 19 + jmin = iu(k) + jmax = iu(k+1) - 1 + if (jmin .gt. jmax) go to 12 + mu = iju(k) - jmin + do 11 j=jmin,jmax + 11 u(j) = row(ju(mu+j)) * dk + 12 continue +c +c ****** update irl and jrl, keeping jrl in decreasing order ******** + i = i1 + if (i .eq. 0) go to 18 + 14 irl(i) = irl(i) + 1 + i1 = jrl(i) + if (irl(i) .ge. il(i+1)) go to 17 + ijlb = irl(i) - il(i) + ijl(i) + j = jl(ijlb) + 15 if (i .gt. jrl(j)) go to 16 + j = jrl(j) + go to 15 + 16 jrl(i) = jrl(j) + jrl(j) = i + 17 i = i1 + if (i .ne. 0) go to 14 + 18 if (irl(k) .ge. il(k+1)) go to 19 + j = jl(ijl(k)) + jrl(k) = jrl(j) + jrl(j) = k + 19 continue +c +c ****** solve ux = tmp by back substitution ********************** + k = n + do 22 i=1,n + sum = tmp(k) + jmin = iu(k) + jmax = iu(k+1) - 1 + if (jmin .gt. jmax) go to 21 + mu = iju(k) - jmin + do 20 j=jmin,jmax + 20 sum = sum - u(j) * tmp(ju(mu+j)) + 21 tmp(k) = sum + z(c(k)) = sum + 22 k = k-1 + flag = 0 + return +c +c ** error.. insufficient storage for l + 104 flag = 4*n + 1 + return +c ** error.. insufficient storage for u + 107 flag = 7*n + 1 + return +c ** error.. zero pivot + 108 flag = 8*n + k + return + end + subroutine nnsc + * (n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, z, b, tmp) +c*** subroutine nnsc +c*** numerical solution of sparse nonsymmetric system of linear +c equations given ldu-factorization (compressed pointer storage) +c +c +c input variables.. n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, b +c output variables.. z +c +c parameters used internally.. +c fia - tmp - temporary vector which gets result of solving ly = b. +c - size = n. +c +c internal variables.. +c jmin, jmax - indices of the first and last positions in a row of +c u or l to be used. +c + integer r(*), c(*), il(*), jl(*), ijl(*), iu(*), ju(*), iju(*) +c real l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk, sum + double precision l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk,sum +c +c ****** set tmp to reordered b ************************************* + do 1 k=1,n + 1 tmp(k) = b(r(k)) +c ****** solve ly = b by forward substitution ********************* + do 3 k=1,n + jmin = il(k) + jmax = il(k+1) - 1 + tmpk = -d(k) * tmp(k) + tmp(k) = -tmpk + if (jmin .gt. jmax) go to 3 + ml = ijl(k) - jmin + do 2 j=jmin,jmax + 2 tmp(jl(ml+j)) = tmp(jl(ml+j)) + tmpk * l(j) + 3 continue +c ****** solve ux = y by back substitution ************************ + k = n + do 6 i=1,n + sum = -tmp(k) + jmin = iu(k) + jmax = iu(k+1) - 1 + if (jmin .gt. jmax) go to 5 + mu = iju(k) - jmin + do 4 j=jmin,jmax + 4 sum = sum + u(j) * tmp(ju(mu+j)) + 5 tmp(k) = -sum + z(c(k)) = -sum + k = k - 1 + 6 continue + return + end + subroutine nntc + * (n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, z, b, tmp) +c*** subroutine nntc +c*** numeric solution of the transpose of a sparse nonsymmetric system +c of linear equations given lu-factorization (compressed pointer +c storage) +c +c +c input variables.. n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, b +c output variables.. z +c +c parameters used internally.. +c fia - tmp - temporary vector which gets result of solving ut y = b +c - size = n. +c +c internal variables.. +c jmin, jmax - indices of the first and last positions in a row of +c u or l to be used. +c + integer r(*), c(*), il(*), jl(*), ijl(*), iu(*), ju(*), iju(*) +c real l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk,sum + double precision l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk,sum +c +c ****** set tmp to reordered b ************************************* + do 1 k=1,n + 1 tmp(k) = b(c(k)) +c ****** solve ut y = b by forward substitution ******************* + do 3 k=1,n + jmin = iu(k) + jmax = iu(k+1) - 1 + tmpk = -tmp(k) + if (jmin .gt. jmax) go to 3 + mu = iju(k) - jmin + do 2 j=jmin,jmax + 2 tmp(ju(mu+j)) = tmp(ju(mu+j)) + tmpk * u(j) + 3 continue +c ****** solve lt x = y by back substitution ********************** + k = n + do 6 i=1,n + sum = -tmp(k) + jmin = il(k) + jmax = il(k+1) - 1 + if (jmin .gt. jmax) go to 5 + ml = ijl(k) - jmin + do 4 j=jmin,jmax + 4 sum = sum + l(j) * tmp(jl(ml+j)) + 5 tmp(k) = -sum * d(k) + z(r(k)) = tmp(k) + k = k - 1 + 6 continue + return + end +*DECK DSTODA + SUBROUTINE DSTODA (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, + 1 WM, IWM, F, JAC, PJAC, SLVS) + EXTERNAL F, JAC, PJAC, SLVS + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IOWND2, ICOUNT, IRFLAG, JTYP, MUSED, MXORDN, MXORDS + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ROWND2, CM1, CM2, PDEST, PDLAST, RATIO, + 1 PDNORM + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 5 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 6 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSA01/ ROWND2, CM1(12), CM2(5), PDEST, PDLAST, RATIO, + 1 PDNORM, + 2 IOWND2(3), ICOUNT, IRFLAG, JTYP, MUSED, MXORDN, MXORDS + INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ + INTEGER LM1, LM1P1, LM2, LM2P1, NQM1, NQM2 + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, + 1 R, RH, RHDN, RHSM, RHUP, TOLD, DMNORM + DOUBLE PRECISION ALPHA, DM1,DM2, EXM1,EXM2, + 1 PDH, PNORM, RATE, RH1, RH1IT, RH2, RM, SM1(12) + SAVE SM1 + DATA SM1/0.5D0, 0.575D0, 0.55D0, 0.45D0, 0.35D0, 0.25D0, + 1 0.20D0, 0.15D0, 0.10D0, 0.075D0, 0.050D0, 0.025D0/ +C----------------------------------------------------------------------- +C DSTODA performs one step of the integration of an initial value +C problem for a system of ordinary differential equations. +C Note: DSTODA is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODA is done with the following variables: +C +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C PJAC = name of routine to evaluate and preprocess Jacobian matrix +C and P = I - H*EL0*Jac, if a chord method is being used. +C It also returns an estimate of norm(Jac) in PDNORM. +C SLVS = name of routine to solve linear system in chord iteration. +C CCMAX = maximum relative change in H*EL0 before PJAC is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in PJAC or SLVS. +C A return with KFLAG = -1 or -2 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH = current method. +C METH = 1 means Adams method (nonstiff) +C METH = 2 means BDF method (stiff) +C METH may be reset by DSTODA. +C MITER = corrector iteration method. +C MITER = 0 means functional iteration. +C MITER = JT .gt. 0 means a chord iteration corresponding +C to Jacobian type JT. (The DLSODA/DLSODAR argument JT is +C communicated here as JTYP, but is not used in DSTODA +C except to load MITER following a method switch.) +C MITER may be reset by DSTODA. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C DCFODE is called to get the needed coefficients for both methods. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + NSLP = 0 + IPUP = MITER + IRET = 3 +C Initialize switching parameters. METH = 1 is assumed initially. ----- + ICOUNT = 20 + IRFLAG = 0 + PDEST = 0.0D0 + PDLAST = 0.0D0 + RATIO = 5.0D0 + CALL DCFODE (2, ELCO, TESCO) + DO 10 I = 1,5 + 10 CM2(I) = TESCO(2,I)*ELCO(I+1,I) + CALL DCFODE (1, ELCO, TESCO) + DO 20 I = 1,12 + 20 CM1(I) = TESCO(2,I)*ELCO(I+1,I) + GO TO 150 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MUSED) GO TO 160 + CALL DCFODE (METH, ELCO, TESCO) + IALTH = L + IRET = 1 +C----------------------------------------------------------------------- +C The el vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) +C----------------------------------------------------------------------- +C If METH = 1, also restrict the new step size by the stability region. +C If this reduces H, set IRFLAG to 1 so that if there are roundoff +C problems later, we can assume that is the cause of the trouble. +C----------------------------------------------------------------------- + IF (METH .EQ. 2) GO TO 178 + IRFLAG = 0 + PDH = MAX(ABS(H)*PDLAST,0.000001D0) + IF (RH*PDH*1.00001D0 .LT. SM1(NQ)) GO TO 178 + RH = SM1(NQ)/PDH + IRFLAG = 1 + 178 CONTINUE + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C When RC differs from 1 by more than CCMAX, IPUP is set to MITER +C to force PJAC to be called, if a Jacobian is involved. +C In any case, PJAC is called at least every MSBP steps. +C----------------------------------------------------------------------- + 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE + PNORM = DMNORM (N, YH1, EWT) +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + RATE = 0.0D0 + DEL = 0.0D0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, the matrix P = I - H*EL(1)*J is reevaluated and +C preprocessed before starting the corrector iteration. IPUP is set +C to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (MITER .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DMNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + CALL SLVS (WM, IWM, Y, SAVF) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DMNORM (N, Y, EWT) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + Y(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C +C We first check for a change of iterates that is the size of +C roundoff error. If this occurs, the iteration has converged, and a +C new rate estimate is not formed. +C In all other cases, force at least two iterations to estimate a +C local Lipschitz constant estimate for Adams methods. +C On convergence, form PDEST = local maximum Lipschitz constant +C estimate. PDLAST is the most recent nonzero estimate. +C----------------------------------------------------------------------- + 400 CONTINUE + IF (DEL .LE. 100.0D0*PNORM*UROUND) GO TO 450 + IF (M .EQ. 0 .AND. METH .EQ. 1) GO TO 405 + IF (M .EQ. 0) GO TO 402 + RM = 1024.0D0 + IF (DEL .LE. 1024.0D0*DELP) RM = DEL/DELP + RATE = MAX(RATE,RM) + CRATE = MAX(0.2D0*CRATE,RM) + 402 DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) + IF (DCON .GT. 1.0D0) GO TO 405 + PDEST = MAX(PDEST,RATE/ABS(H*EL(1))) + IF (PDEST .NE. 0.0D0) PDLAST = PDEST + GO TO 450 + 405 CONTINUE + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for +C the next try. Otherwise the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430 + ICF = 1 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.25D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DMNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Decrease ICOUNT by 1, and if it is -1, consider switching methods. +C If a method switch is made, reset various parameters, +C rescale the YH array, and exit. If there is no switch, +C consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + MUSED = METH + DO 460 J = 1,L + DO 460 I = 1,N + 460 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + ICOUNT = ICOUNT - 1 + IF (ICOUNT .GE. 0) GO TO 488 + IF (METH .EQ. 2) GO TO 480 +C----------------------------------------------------------------------- +C We are currently using an Adams method. Consider switching to BDF. +C If the current order is greater than 5, assume the problem is +C not stiff, and skip this section. +C If the Lipschitz constant and error estimate are not polluted +C by roundoff, go to 470 and perform the usual test. +C Otherwise, switch to the BDF methods if the last step was +C restricted to insure stability (irflag = 1), and stay with Adams +C method if not. When switching to BDF with polluted error estimates, +C in the absence of other information, double the step size. +C +C When the estimates are OK, we make the usual test by computing +C the step size we could have (ideally) used on this step, +C with the current (Adams) method, and also that for the BDF. +C If NQ .gt. MXORDS, we consider changing to order MXORDS on switching. +C Compare the two step sizes to decide whether to switch. +C The step size advantage must be at least RATIO = 5 to switch. +C----------------------------------------------------------------------- + IF (NQ .GT. 5) GO TO 488 + IF (DSM .GT. 100.0D0*PNORM*UROUND .AND. PDEST .NE. 0.0D0) + 1 GO TO 470 + IF (IRFLAG .EQ. 0) GO TO 488 + RH2 = 2.0D0 + NQM2 = MIN(NQ,MXORDS) + GO TO 478 + 470 CONTINUE + EXSM = 1.0D0/L + RH1 = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RH1IT = 2.0D0*RH1 + PDH = PDLAST*ABS(H) + IF (PDH*RH1 .GT. 0.00001D0) RH1IT = SM1(NQ)/PDH + RH1 = MIN(RH1,RH1IT) + IF (NQ .LE. MXORDS) GO TO 474 + NQM2 = MXORDS + LM2 = MXORDS + 1 + EXM2 = 1.0D0/LM2 + LM2P1 = LM2 + 1 + DM2 = DMNORM (N, YH(1,LM2P1), EWT)/CM2(MXORDS) + RH2 = 1.0D0/(1.2D0*DM2**EXM2 + 0.0000012D0) + GO TO 476 + 474 DM2 = DSM*(CM1(NQ)/CM2(NQ)) + RH2 = 1.0D0/(1.2D0*DM2**EXSM + 0.0000012D0) + NQM2 = NQ + 476 CONTINUE + IF (RH2 .LT. RATIO*RH1) GO TO 488 +C THE SWITCH TEST PASSED. RESET RELEVANT QUANTITIES FOR BDF. ---------- + 478 RH = RH2 + ICOUNT = 20 + METH = 2 + MITER = JTYP + PDLAST = 0.0D0 + NQ = NQM2 + L = NQ + 1 + GO TO 170 +C----------------------------------------------------------------------- +C We are currently using a BDF method. Consider switching to Adams. +C Compute the step size we could have (ideally) used on this step, +C with the current (BDF) method, and also that for the Adams. +C If NQ .gt. MXORDN, we consider changing to order MXORDN on switching. +C Compare the two step sizes to decide whether to switch. +C The step size advantage must be at least 5/RATIO = 1 to switch. +C If the step size for Adams would be so small as to cause +C roundoff pollution, we stay with BDF. +C----------------------------------------------------------------------- + 480 CONTINUE + EXSM = 1.0D0/L + IF (MXORDN .GE. NQ) GO TO 484 + NQM1 = MXORDN + LM1 = MXORDN + 1 + EXM1 = 1.0D0/LM1 + LM1P1 = LM1 + 1 + DM1 = DMNORM (N, YH(1,LM1P1), EWT)/CM1(MXORDN) + RH1 = 1.0D0/(1.2D0*DM1**EXM1 + 0.0000012D0) + GO TO 486 + 484 DM1 = DSM*(CM2(NQ)/CM1(NQ)) + RH1 = 1.0D0/(1.2D0*DM1**EXSM + 0.0000012D0) + NQM1 = NQ + EXM1 = EXSM + 486 RH1IT = 2.0D0*RH1 + PDH = PDNORM*ABS(H) + IF (PDH*RH1 .GT. 0.00001D0) RH1IT = SM1(NQM1)/PDH + RH1 = MIN(RH1,RH1IT) + RH2 = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + IF (RH1*RATIO .LT. 5.0D0*RH2) GO TO 488 + ALPHA = MAX(0.001D0,RH1) + DM1 = (ALPHA**EXM1)*DM1 + IF (DM1 .LE. 1000.0D0*UROUND*PNORM) GO TO 488 +C The switch test passed. Reset relevant quantities for Adams. -------- + RH = RH1 + ICOUNT = 20 + METH = 1 + MITER = 0 + PDLAST = 0.0D0 + NQ = NQM1 + L = NQ + 1 + GO TO 170 +C +C No method switch is being made. Do the usual step/order selection. -- + 488 CONTINUE + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C The largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DMNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 550 + DDN = DMNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) +C If METH = 1, limit RH according to the stability region also. -------- + 550 IF (METH .EQ. 2) GO TO 560 + PDH = MAX(ABS(H)*PDLAST,0.000001D0) + IF (L .LT. LMAX) RHUP = MIN(RHUP,SM1(L)/PDH) + RHSM = MIN(RHSM,SM1(NQ)/PDH) + IF (NQ .GT. 1) RHDN = MIN(RHDN,SM1(NQ-1)/PDH) + PDEST = 0.0D0 + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 +C If METH = 1 and H is restricted by stability, bypass 10 percent test. + 620 IF (METH .EQ. 2) GO TO 622 + IF (RH*PDH*1.00001D0 .GE. SM1(NEWQ)) GO TO 625 + 622 IF (KFLAG .EQ. 0 .AND. RH .LT. 1.1D0) GO TO 610 + 625 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTODA ---------------------- + END +*DECK DPRJA + SUBROUTINE DPRJA (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, + 1 F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IOWND2, IOWNS2, JTYP, MUSED, MXORDN, MXORDS + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ROWND2, ROWNS2, PDNORM + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSA01/ ROWND2, ROWNS2(20), PDNORM, + 1 IOWND2(3), IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS + INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP, + 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1 + DOUBLE PRECISION CON, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ, + 1 DMNORM, DFNORM, DBNORM +C----------------------------------------------------------------------- +C DPRJA is called by DSTODA to compute and process the matrix +C P = I - H*EL(1)*J , where J is an approximation to the Jacobian. +C Here J is computed by the user-supplied routine JAC if +C MITER = 1 or 4 or by finite differencing if MITER = 2 or 5. +C J, scaled by -H*EL(1), is stored in WM. Then the norm of J (the +C matrix norm consistent with the weighted max-norm on vectors given +C by DMNORM) is computed, and J is overwritten by P. P is then +C subjected to LU decomposition in preparation for later solution +C of linear systems with P as coefficient matrix. This is done +C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5. +C +C In addition to variables described previously, communication +C with DPRJA uses the following: +C Y = array containing predicted values on entry. +C FTEM = work array of length N (ACOR in DSTODA). +C SAVF = array containing f evaluated at predicted y. +C WM = real work space for matrices. On output it contains the +C LU decomposition of P. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains the band parameters +C ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C EL0 = EL(1) (input). +C PDNORM= norm of Jacobian matrix. (Output). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C P matrix found to be singular. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the Common variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C----------------------------------------------------------------------- + NJE = NJE + 1 + IERPJ = 0 + JCUR = 1 + HL0 = H*EL0 + GO TO (100, 200, 300, 400, 500), MITER +C If MITER = 1, call JAC and multiply by scalar. ----------------------- + 100 LENP = N*N + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 240 +C If MITER = 2, make N calls to F to approximate J. -------------------- + 200 FAC = DMNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + SRUR = WM(1) + J1 = 2 + DO 230 J = 1,N + YJ = Y(J) + R = MAX(SRUR*ABS(YJ),R0/EWT(J)) + Y(J) = Y(J) + R + FAC = -HL0/R + CALL F (NEQ, TN, Y, FTEM) + DO 220 I = 1,N + 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC + Y(J) = YJ + J1 = J1 + N + 230 CONTINUE + NFE = NFE + N + 240 CONTINUE +C Compute norm of Jacobian. -------------------------------------------- + PDNORM = DFNORM (N, WM(3), EWT)/ABS(HL0) +C Add identity matrix. ------------------------------------------------- + J = 3 + NP1 = N + 1 + DO 250 I = 1,N + WM(J) = WM(J) + 1.0D0 + 250 J = J + NP1 +C Do LU decomposition on P. -------------------------------------------- + CALL DGEFA (WM(3), N, N, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Dummy block only, since MITER is never 3 in this routine. ------------ + 300 RETURN +C If MITER = 4, call JAC and multiply by scalar. ----------------------- + 400 ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MEBAND = MBAND + ML + LENP = MEBAND*N + DO 410 I = 1,LENP + 410 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) + CON = -HL0 + DO 420 I = 1,LENP + 420 WM(I+2) = WM(I+2)*CON + GO TO 570 +C If MITER = 5, make MBAND calls to F to approximate J. ---------------- + 500 ML = IWM(1) + MU = IWM(2) + MBAND = ML + MU + 1 + MBA = MIN(MBAND,N) + MEBAND = MBAND + ML + MEB1 = MEBAND - 1 + SRUR = WM(1) + FAC = DMNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + DO 560 J = 1,MBA + DO 530 I = J,N,MBAND + YI = Y(I) + R = MAX(SRUR*ABS(YI),R0/EWT(I)) + 530 Y(I) = Y(I) + R + CALL F (NEQ, TN, Y, FTEM) + DO 550 JJ = J,N,MBAND + Y(JJ) = YH(JJ,1) + YJJ = Y(JJ) + R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ)) + FAC = -HL0/R + I1 = MAX(JJ-MU,1) + I2 = MIN(JJ+ML,N) + II = JJ*MEB1 - ML + 2 + DO 540 I = I1,I2 + 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC + 550 CONTINUE + 560 CONTINUE + NFE = NFE + MBA + 570 CONTINUE +C Compute norm of Jacobian. -------------------------------------------- + PDNORM = DBNORM (N, WM(ML+3), MEBAND, ML, MU, EWT)/ABS(HL0) +C Add identity matrix. ------------------------------------------------- + II = MBAND + 2 + DO 580 I = 1,N + WM(II) = WM(II) + 1.0D0 + 580 II = II + MEBAND +C Do LU decomposition of P. -------------------------------------------- + CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C----------------------- End of Subroutine DPRJA ----------------------- + END +*DECK DMNORM + DOUBLE PRECISION FUNCTION DMNORM (N, V, W) +C----------------------------------------------------------------------- +C This function routine computes the weighted max-norm +C of the vector of length N contained in the array V, with weights +C contained in the array w of length N: +C DMNORM = MAX(i=1,...,N) ABS(V(i))*W(i) +C----------------------------------------------------------------------- + INTEGER N, I + DOUBLE PRECISION V, W, VM + DIMENSION V(N), W(N) + VM = 0.0D0 + DO 10 I = 1,N + 10 VM = MAX(VM,ABS(V(I))*W(I)) + DMNORM = VM + RETURN +C----------------------- End of Function DMNORM ------------------------ + END +*DECK DFNORM + DOUBLE PRECISION FUNCTION DFNORM (N, A, W) +C----------------------------------------------------------------------- +C This function computes the norm of a full N by N matrix, +C stored in the array A, that is consistent with the weighted max-norm +C on vectors, with weights stored in the array W: +C DFNORM = MAX(i=1,...,N) ( W(i) * Sum(j=1,...,N) ABS(a(i,j))/W(j) ) +C----------------------------------------------------------------------- + INTEGER N, I, J + DOUBLE PRECISION A, W, AN, SUM + DIMENSION A(N,N), W(N) + AN = 0.0D0 + DO 20 I = 1,N + SUM = 0.0D0 + DO 10 J = 1,N + 10 SUM = SUM + ABS(A(I,J))/W(J) + AN = MAX(AN,SUM*W(I)) + 20 CONTINUE + DFNORM = AN + RETURN +C----------------------- End of Function DFNORM ------------------------ + END +*DECK DBNORM + DOUBLE PRECISION FUNCTION DBNORM (N, A, NRA, ML, MU, W) +C----------------------------------------------------------------------- +C This function computes the norm of a banded N by N matrix, +C stored in the array A, that is consistent with the weighted max-norm +C on vectors, with weights stored in the array W. +C ML and MU are the lower and upper half-bandwidths of the matrix. +C NRA is the first dimension of the A array, NRA .ge. ML+MU+1. +C In terms of the matrix elements a(i,j), the norm is given by: +C DBNORM = MAX(i=1,...,N) ( W(i) * Sum(j=1,...,N) ABS(a(i,j))/W(j) ) +C----------------------------------------------------------------------- + INTEGER N, NRA, ML, MU + INTEGER I, I1, JLO, JHI, J + DOUBLE PRECISION A, W + DOUBLE PRECISION AN, SUM + DIMENSION A(NRA,N), W(N) + AN = 0.0D0 + DO 20 I = 1,N + SUM = 0.0D0 + I1 = I + MU + 1 + JLO = MAX(I-ML,1) + JHI = MIN(I+MU,N) + DO 10 J = JLO,JHI + 10 SUM = SUM + ABS(A(I1-J,J))/W(J) + AN = MAX(AN,SUM*W(I)) + 20 CONTINUE + DBNORM = AN + RETURN +C----------------------- End of Function DBNORM ------------------------ + END +*DECK DSRCMA + SUBROUTINE DSRCMA (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLSA01, which are used +C internally by one or more ODEPACK solvers. +C +C RSAV = real array of length 240 or more. +C ISAV = integer array of length 46 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSA + INTEGER I, LENRLS, LENILS, LENRLA, LENILA + DOUBLE PRECISION RSAV + DOUBLE PRECISION RLS, RLSA + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLA, LENILA + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLSA01/ RLSA(22), ILSA(9) + DATA LENRLS/218/, LENILS/37/, LENRLA/22/, LENILA/9/ +C + IF (JOB .EQ. 2) GO TO 100 + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 15 I = 1,LENRLA + 15 RSAV(LENRLS+I) = RLSA(I) +C + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + DO 25 I = 1,LENILA + 25 ISAV(LENILS+I) = ILSA(I) +C + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 115 I = 1,LENRLA + 115 RLSA(I) = RSAV(LENRLS+I) +C + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + DO 125 I = 1,LENILA + 125 ILSA(I) = ISAV(LENILS+I) +C + RETURN +C----------------------- End of Subroutine DSRCMA ---------------------- + END +*DECK DRCHEK + SUBROUTINE DRCHEK (JOB, G, NEQ, Y, YH,NYH, G0, G1, GX, JROOT, IRT) + EXTERNAL G + INTEGER JOB, NEQ, NYH, JROOT, IRT + DOUBLE PRECISION Y, YH, G0, G1, GX + DIMENSION NEQ(*), Y(*), YH(NYH,*), G0(*), G1(*), GX(*), JROOT(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IOWND3, IOWNR3, IRFND, ITASKC, NGC, NGE + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ROWNR3, T0, TLAST, TOUTC + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSR01/ ROWNR3(2), T0, TLAST, TOUTC, + 1 IOWND3(3), IOWNR3(2), IRFND, ITASKC, NGC, NGE + INTEGER I, IFLAG, JFLAG + DOUBLE PRECISION HMING, T1, TEMP1, TEMP2, X + LOGICAL ZROOT +C----------------------------------------------------------------------- +C This routine checks for the presence of a root in the vicinity of +C the current T, in a manner depending on the input flag JOB. It calls +C Subroutine DROOTS to locate the root as precisely as possible. +C +C In addition to variables described previously, DRCHEK +C uses the following for communication: +C JOB = integer flag indicating type of call: +C JOB = 1 means the problem is being initialized, and DRCHEK +C is to look for a root at or very near the initial T. +C JOB = 2 means a continuation call to the solver was just +C made, and DRCHEK is to check for a root in the +C relevant part of the step last taken. +C JOB = 3 means a successful step was just taken, and DRCHEK +C is to look for a root in the interval of the step. +C G0 = array of length NG, containing the value of g at T = T0. +C G0 is input for JOB .ge. 2, and output in all cases. +C G1,GX = arrays of length NG for work space. +C IRT = completion flag: +C IRT = 0 means no root was found. +C IRT = -1 means JOB = 1 and a root was found too near to T. +C IRT = 1 means a legitimate root was found (JOB = 2 or 3). +C On return, T0 is the root location, and Y is the +C corresponding solution vector. +C T0 = value of T at one endpoint of interval of interest. Only +C roots beyond T0 in the direction of integration are sought. +C T0 is input if JOB .ge. 2, and output in all cases. +C T0 is updated by DRCHEK, whether a root is found or not. +C TLAST = last value of T returned by the solver (input only). +C TOUTC = copy of TOUT (input only). +C IRFND = input flag showing whether the last step taken had a root. +C IRFND = 1 if it did, = 0 if not. +C ITASKC = copy of ITASK (input only). +C NGC = copy of NG (input only). +C----------------------------------------------------------------------- + IRT = 0 + DO 10 I = 1,NGC + 10 JROOT(I) = 0 + HMING = (ABS(TN) + ABS(H))*UROUND*100.0D0 +C + GO TO (100, 200, 300), JOB +C +C Evaluate g at initial T, and check for zero values. ------------------ + 100 CONTINUE + T0 = TN + CALL G (NEQ, T0, Y, NGC, G0) + NGE = 1 + ZROOT = .FALSE. + DO 110 I = 1,NGC + 110 IF (ABS(G0(I)) .LE. 0.0D0) ZROOT = .TRUE. + IF (.NOT. ZROOT) GO TO 190 +C g has a zero at T. Look at g at T + (small increment). -------------- + TEMP2 = MAX(HMING/ABS(H), 0.1D0) + TEMP1 = TEMP2*H + T0 = T0 + TEMP1 + DO 120 I = 1,N + 120 Y(I) = Y(I) + TEMP2*YH(I,2) + CALL G (NEQ, T0, Y, NGC, G0) + NGE = NGE + 1 + ZROOT = .FALSE. + DO 130 I = 1,NGC + 130 IF (ABS(G0(I)) .LE. 0.0D0) ZROOT = .TRUE. + IF (.NOT. ZROOT) GO TO 190 +C g has a zero at T and also close to T. Take error return. ----------- + IRT = -1 + RETURN +C + 190 CONTINUE + RETURN +C +C + 200 CONTINUE + IF (IRFND .EQ. 0) GO TO 260 +C If a root was found on the previous step, evaluate G0 = g(T0). ------- + CALL DINTDY (T0, 0, YH, NYH, Y, IFLAG) + CALL G (NEQ, T0, Y, NGC, G0) + NGE = NGE + 1 + ZROOT = .FALSE. + DO 210 I = 1,NGC + 210 IF (ABS(G0(I)) .LE. 0.0D0) ZROOT = .TRUE. + IF (.NOT. ZROOT) GO TO 260 +C g has a zero at T0. Look at g at T + (small increment). ------------- + TEMP1 = SIGN(HMING,H) + T0 = T0 + TEMP1 + IF ((T0 - TN)*H .LT. 0.0D0) GO TO 230 + TEMP2 = TEMP1/H + DO 220 I = 1,N + 220 Y(I) = Y(I) + TEMP2*YH(I,2) + GO TO 240 + 230 CALL DINTDY (T0, 0, YH, NYH, Y, IFLAG) + 240 CALL G (NEQ, T0, Y, NGC, G0) + NGE = NGE + 1 + ZROOT = .FALSE. + DO 250 I = 1,NGC + IF (ABS(G0(I)) .GT. 0.0D0) GO TO 250 + JROOT(I) = 1 + ZROOT = .TRUE. + 250 CONTINUE + IF (.NOT. ZROOT) GO TO 260 +C g has a zero at T0 and also close to T0. Return root. --------------- + IRT = 1 + RETURN +C G0 has no zero components. Proceed to check relevant interval. ------ + 260 IF (TN .EQ. TLAST) GO TO 390 +C + 300 CONTINUE +C Set T1 to TN or TOUTC, whichever comes first, and get g at T1. ------- + IF (ITASKC.EQ.2 .OR. ITASKC.EQ.3 .OR. ITASKC.EQ.5) GO TO 310 + IF ((TOUTC - TN)*H .GE. 0.0D0) GO TO 310 + T1 = TOUTC + IF ((T1 - T0)*H .LE. 0.0D0) GO TO 390 + CALL DINTDY (T1, 0, YH, NYH, Y, IFLAG) + GO TO 330 + 310 T1 = TN + DO 320 I = 1,N + 320 Y(I) = YH(I,1) + 330 CALL G (NEQ, T1, Y, NGC, G1) + NGE = NGE + 1 +C Call DROOTS to search for root in interval from T0 to T1. ------------ + JFLAG = 0 + 350 CONTINUE + CALL DROOTS (NGC, HMING, JFLAG, T0, T1, G0, G1, GX, X, JROOT) + IF (JFLAG .GT. 1) GO TO 360 + CALL DINTDY (X, 0, YH, NYH, Y, IFLAG) + CALL G (NEQ, X, Y, NGC, GX) + NGE = NGE + 1 + GO TO 350 + 360 T0 = X + CALL DCOPY (NGC, GX, 1, G0, 1) + IF (JFLAG .EQ. 4) GO TO 390 +C Found a root. Interpolate to X and return. -------------------------- + CALL DINTDY (X, 0, YH, NYH, Y, IFLAG) + IRT = 1 + RETURN +C + 390 CONTINUE + RETURN +C----------------------- End of Subroutine DRCHEK ---------------------- + END +*DECK DROOTS + SUBROUTINE DROOTS (NG, HMIN, JFLAG, X0, X1, G0, G1, GX, X, JROOT) + INTEGER NG, JFLAG, JROOT + DOUBLE PRECISION HMIN, X0, X1, G0, G1, GX, X + DIMENSION G0(NG), G1(NG), GX(NG), JROOT(NG) + INTEGER IOWND3, IMAX, LAST, IDUM3 + DOUBLE PRECISION ALPHA, X2, RDUM3 + COMMON /DLSR01/ ALPHA, X2, RDUM3(3), + 1 IOWND3(3), IMAX, LAST, IDUM3(4) +C----------------------------------------------------------------------- +C This subroutine finds the leftmost root of a set of arbitrary +C functions gi(x) (i = 1,...,NG) in an interval (X0,X1). Only roots +C of odd multiplicity (i.e. changes of sign of the gi) are found. +C Here the sign of X1 - X0 is arbitrary, but is constant for a given +C problem, and -leftmost- means nearest to X0. +C The values of the vector-valued function g(x) = (gi, i=1...NG) +C are communicated through the call sequence of DROOTS. +C The method used is the Illinois algorithm. +C +C Reference: +C Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined +C Output Points for Solutions of ODEs, Sandia Report SAND80-0180, +C February 1980. +C +C Description of parameters. +C +C NG = number of functions gi, or the number of components of +C the vector valued function g(x). Input only. +C +C HMIN = resolution parameter in X. Input only. When a root is +C found, it is located only to within an error of HMIN in X. +C Typically, HMIN should be set to something on the order of +C 100 * UROUND * MAX(ABS(X0),ABS(X1)), +C where UROUND is the unit roundoff of the machine. +C +C JFLAG = integer flag for input and output communication. +C +C On input, set JFLAG = 0 on the first call for the problem, +C and leave it unchanged until the problem is completed. +C (The problem is completed when JFLAG .ge. 2 on return.) +C +C On output, JFLAG has the following values and meanings: +C JFLAG = 1 means DROOTS needs a value of g(x). Set GX = g(X) +C and call DROOTS again. +C JFLAG = 2 means a root has been found. The root is +C at X, and GX contains g(X). (Actually, X is the +C rightmost approximation to the root on an interval +C (X0,X1) of size HMIN or less.) +C JFLAG = 3 means X = X1 is a root, with one or more of the gi +C being zero at X1 and no sign changes in (X0,X1). +C GX contains g(X) on output. +C JFLAG = 4 means no roots (of odd multiplicity) were +C found in (X0,X1) (no sign changes). +C +C X0,X1 = endpoints of the interval where roots are sought. +C X1 and X0 are input when JFLAG = 0 (first call), and +C must be left unchanged between calls until the problem is +C completed. X0 and X1 must be distinct, but X1 - X0 may be +C of either sign. However, the notion of -left- and -right- +C will be used to mean nearer to X0 or X1, respectively. +C When JFLAG .ge. 2 on return, X0 and X1 are output, and +C are the endpoints of the relevant interval. +C +C G0,G1 = arrays of length NG containing the vectors g(X0) and g(X1), +C respectively. When JFLAG = 0, G0 and G1 are input and +C none of the G0(i) should be zero. +C When JFLAG .ge. 2 on return, G0 and G1 are output. +C +C GX = array of length NG containing g(X). GX is input +C when JFLAG = 1, and output when JFLAG .ge. 2. +C +C X = independent variable value. Output only. +C When JFLAG = 1 on output, X is the point at which g(x) +C is to be evaluated and loaded into GX. +C When JFLAG = 2 or 3, X is the root. +C When JFLAG = 4, X is the right endpoint of the interval, X1. +C +C JROOT = integer array of length NG. Output only. +C When JFLAG = 2 or 3, JROOT indicates which components +C of g(x) have a root at X. JROOT(i) is 1 if the i-th +C component has a root, and JROOT(i) = 0 otherwise. +C----------------------------------------------------------------------- + INTEGER I, IMXOLD, NXLAST + DOUBLE PRECISION T2, TMAX, FRACINT, FRACSUB, ZERO,HALF,TENTH,FIVE + LOGICAL ZROOT, SGNCHG, XROOT + SAVE ZERO, HALF, TENTH, FIVE + DATA ZERO/0.0D0/, HALF/0.5D0/, TENTH/0.1D0/, FIVE/5.0D0/ +C + IF (JFLAG .EQ. 1) GO TO 200 +C JFLAG .ne. 1. Check for change in sign of g or zero at X1. ---------- + IMAX = 0 + TMAX = ZERO + ZROOT = .FALSE. + DO 120 I = 1,NG + IF (ABS(G1(I)) .GT. ZERO) GO TO 110 + ZROOT = .TRUE. + GO TO 120 +C At this point, G0(i) has been checked and cannot be zero. ------------ + 110 IF (SIGN(1.0D0,G0(I)) .EQ. SIGN(1.0D0,G1(I))) GO TO 120 + T2 = ABS(G1(I)/(G1(I)-G0(I))) + IF (T2 .LE. TMAX) GO TO 120 + TMAX = T2 + IMAX = I + 120 CONTINUE + IF (IMAX .GT. 0) GO TO 130 + SGNCHG = .FALSE. + GO TO 140 + 130 SGNCHG = .TRUE. + 140 IF (.NOT. SGNCHG) GO TO 400 +C There is a sign change. Find the first root in the interval. -------- + XROOT = .FALSE. + NXLAST = 0 + LAST = 1 +C +C Repeat until the first root in the interval is found. Loop point. --- + 150 CONTINUE + IF (XROOT) GO TO 300 + IF (NXLAST .EQ. LAST) GO TO 160 + ALPHA = 1.0D0 + GO TO 180 + 160 IF (LAST .EQ. 0) GO TO 170 + ALPHA = 0.5D0*ALPHA + GO TO 180 + 170 ALPHA = 2.0D0*ALPHA + 180 X2 = X1 - (X1 - X0)*G1(IMAX) / (G1(IMAX) - ALPHA*G0(IMAX)) +C If X2 is too close to X0 or X1, adjust it inward, by a fractional ---- +C distance that is between 0.1 and 0.5. -------------------------------- + IF (ABS(X2 - X0) < HALF*HMIN) THEN + FRACINT = ABS(X1 - X0)/HMIN + FRACSUB = TENTH + IF (FRACINT .LE. FIVE) FRACSUB = HALF/FRACINT + X2 = X0 + FRACSUB*(X1 - X0) + ENDIF + IF (ABS(X1 - X2) < HALF*HMIN) THEN + FRACINT = ABS(X1 - X0)/HMIN + FRACSUB = TENTH + IF (FRACINT .LE. FIVE) FRACSUB = HALF/FRACINT + X2 = X1 - FRACSUB*(X1 - X0) + ENDIF + JFLAG = 1 + X = X2 +C Return to the calling routine to get a value of GX = g(X). ----------- + RETURN +C Check to see in which interval g changes sign. ----------------------- + 200 IMXOLD = IMAX + IMAX = 0 + TMAX = ZERO + ZROOT = .FALSE. + DO 220 I = 1,NG + IF (ABS(GX(I)) .GT. ZERO) GO TO 210 + ZROOT = .TRUE. + GO TO 220 +C Neither G0(i) nor GX(i) can be zero at this point. ------------------- + 210 IF (SIGN(1.0D0,G0(I)) .EQ. SIGN(1.0D0,GX(I))) GO TO 220 + T2 = ABS(GX(I)/(GX(I) - G0(I))) + IF (T2 .LE. TMAX) GO TO 220 + TMAX = T2 + IMAX = I + 220 CONTINUE + IF (IMAX .GT. 0) GO TO 230 + SGNCHG = .FALSE. + IMAX = IMXOLD + GO TO 240 + 230 SGNCHG = .TRUE. + 240 NXLAST = LAST + IF (.NOT. SGNCHG) GO TO 250 +C Sign change between X0 and X2, so replace X1 with X2. ---------------- + X1 = X2 + CALL DCOPY (NG, GX, 1, G1, 1) + LAST = 1 + XROOT = .FALSE. + GO TO 270 + 250 IF (.NOT. ZROOT) GO TO 260 +C Zero value at X2 and no sign change in (X0,X2), so X2 is a root. ----- + X1 = X2 + CALL DCOPY (NG, GX, 1, G1, 1) + XROOT = .TRUE. + GO TO 270 +C No sign change between X0 and X2. Replace X0 with X2. --------------- + 260 CONTINUE + CALL DCOPY (NG, GX, 1, G0, 1) + X0 = X2 + LAST = 0 + XROOT = .FALSE. + 270 IF (ABS(X1-X0) .LE. HMIN) XROOT = .TRUE. + GO TO 150 +C +C Return with X1 as the root. Set JROOT. Set X = X1 and GX = G1. ----- + 300 JFLAG = 2 + X = X1 + CALL DCOPY (NG, G1, 1, GX, 1) + DO 320 I = 1,NG + JROOT(I) = 0 + IF (ABS(G1(I)) .GT. ZERO) GO TO 310 + JROOT(I) = 1 + GO TO 320 + 310 IF (SIGN(1.0D0,G0(I)) .NE. SIGN(1.0D0,G1(I))) JROOT(I) = 1 + 320 CONTINUE + RETURN +C +C No sign change in the interval. Check for zero at right endpoint. --- + 400 IF (.NOT. ZROOT) GO TO 420 +C +C Zero value at X1 and no sign change in (X0,X1). Return JFLAG = 3. --- + X = X1 + CALL DCOPY (NG, G1, 1, GX, 1) + DO 410 I = 1,NG + JROOT(I) = 0 + IF (ABS(G1(I)) .LE. ZERO) JROOT (I) = 1 + 410 CONTINUE + JFLAG = 3 + RETURN +C +C No sign changes in this interval. Set X = X1, return JFLAG = 4. ----- + 420 CALL DCOPY (NG, G1, 1, GX, 1) + X = X1 + JFLAG = 4 + RETURN +C----------------------- End of Subroutine DROOTS ---------------------- + END +*DECK DSRCAR + SUBROUTINE DSRCAR (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLSA01, DLSR01, which are used +C internally by one or more ODEPACK solvers. +C +C RSAV = real array of length 245 or more. +C ISAV = integer array of length 55 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSA, ILSR + INTEGER I, IOFF, LENRLS, LENILS, LENRLA, LENILA, LENRLR, LENILR + DOUBLE PRECISION RSAV + DOUBLE PRECISION RLS, RLSA, RLSR + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLA, LENILA, LENRLR, LENILR + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLSA01/ RLSA(22), ILSA(9) + COMMON /DLSR01/ RLSR(5), ILSR(9) + DATA LENRLS/218/, LENILS/37/, LENRLA/22/, LENILA/9/ + DATA LENRLR/5/, LENILR/9/ +C + IF (JOB .EQ. 2) GO TO 100 + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 15 I = 1,LENRLA + 15 RSAV(LENRLS+I) = RLSA(I) + IOFF = LENRLS + LENRLA + DO 20 I = 1,LENRLR + 20 RSAV(IOFF+I) = RLSR(I) +C + DO 30 I = 1,LENILS + 30 ISAV(I) = ILS(I) + DO 35 I = 1,LENILA + 35 ISAV(LENILS+I) = ILSA(I) + IOFF = LENILS + LENILA + DO 40 I = 1,LENILR + 40 ISAV(IOFF+I) = ILSR(I) +C + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 115 I = 1,LENRLA + 115 RLSA(I) = RSAV(LENRLS+I) + IOFF = LENRLS + LENRLA + DO 120 I = 1,LENRLR + 120 RLSR(I) = RSAV(IOFF+I) +C + DO 130 I = 1,LENILS + 130 ILS(I) = ISAV(I) + DO 135 I = 1,LENILA + 135 ILSA(I) = ISAV(LENILS+I) + IOFF = LENILS + LENILA + DO 140 I = 1,LENILR + 140 ILSR(I) = ISAV(IOFF+I) +C + RETURN +C----------------------- End of Subroutine DSRCAR ---------------------- + END +*DECK DSTODPK + SUBROUTINE DSTODPK (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVX, ACOR, + 1 WM, IWM, F, JAC, PSOL) + EXTERNAL F, JAC, PSOL + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVX, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 SAVX(*), ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DSTODPK performs one step of the integration of an initial value +C problem for a system of Ordinary Differential Equations. +C----------------------------------------------------------------------- +C The following changes were made to generate Subroutine DSTODPK +C from Subroutine DSTODE: +C 1. The array SAVX was added to the call sequence. +C 2. PJAC and SLVS were replaced by PSOL in the call sequence. +C 3. The Common block /DLPK01/ was added for communication. +C 4. The test constant EPCON is loaded into Common below statement +C numbers 125 and 155, and used below statement 400. +C 5. The Newton iteration counter MNEWT is set below 220 and 400. +C 6. The call to PJAC was replaced with a call to DPKSET (fixed name), +C with a longer call sequence, called depending on JACFLG. +C 7. The corrector residual is stored in SAVX (not Y) at 360, +C and the solution vector is in SAVX in the 380 loop. +C 8. SLVS was renamed DSOLPK and includes NEQ, SAVX, EWT, F, and JAC. +C SAVX was added because DSOLPK now needs Y and SAVF undisturbed. +C 9. The nonlinear convergence failure count NCFN is set at 430. +C----------------------------------------------------------------------- +C Note: DSTODPK is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODPK is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C Also used for input of YH(*,MAXORD+2) when JSTART = -1 +C and MAXORD .lt. the current order NQ. +C SAVX = an array of working storage, of length N. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C CCMAX = maximum relative change in H*EL0 before DPKSET is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in DPKSET or DSOLPK. +C A return with KFLAG = -1 or -2 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between DPKSET calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, + 1 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM +C + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + IPUP = MITER + IRET = 3 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C The flag IPUP is set according to whether matrix data is involved +C (JACFLG .ne. 0) or not (JACFLG = 0), to trigger a call to DPKSET. +C IPUP is set to MITER when RC differs from 1 by more than CCMAX, +C and at least every MSBP steps, when JACFLG = 1. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C----------------------------------------------------------------------- + 200 IF (JACFLG .NE. 0) GO TO 202 + IPUP = 0 + CRATE = 0.7D0 + GO TO 205 + 202 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + 205 TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + MNEWT = 0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, DPKSET is called to update any matrix data needed, +C before starting the corrector iteration. +C IPUP is set to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL DPKSET (NEQ, Y, YH1, EWT, ACOR, SAVF, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (MITER .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DVNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 SAVX(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + CALL DSOLPK (NEQ, Y, SAVF, SAVX, EWT, WM, IWM, F, PSOL) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DVNORM (N, SAVX, EWT) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + SAVX(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C----------------------------------------------------------------------- + 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/EPCON + IF (DCON .LE. 1.0D0) GO TO 450 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + MNEWT = M + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If MITER .ne. 0 and the Jacobian is out of date, DPKSET is called for +C the next try. Otherwise the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 IF (MITER.EQ.0 .OR. JCUR.EQ.1 .OR. JACFLG.EQ.0) GO TO 430 + ICF = 1 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + NCFN = NCFN + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.5D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + DO 470 J = 1,L + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C the largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTODPK --------------------- + END +*DECK DPKSET + SUBROUTINE DPKSET (NEQ, Y, YSV, EWT, FTEM, SAVF, WM, IWM, F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, IWM + DOUBLE PRECISION Y, YSV, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YSV(*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DPKSET is called by DSTODPK to interface with the user-supplied +C routine JAC, to compute and process relevant parts of +C the matrix P = I - H*EL(1)*J , where J is the Jacobian df/dy, +C as need for preconditioning matrix operations later. +C +C In addition to variables described previously, communication +C with DPKSET uses the following: +C Y = array containing predicted values on entry. +C YSV = array containing predicted y, to be saved (YH1 in DSTODPK). +C FTEM = work array of length N (ACOR in DSTODPK). +C SAVF = array containing f evaluated at predicted y. +C WM = real work space for matrices. +C Space for preconditioning data starts at WM(LOCWP). +C IWM = integer work space. +C Space for preconditioning data starts at IWM(LOCIWP). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C JAC returned an error flag. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses Common variables EL0, H, TN, IERPJ, JCUR, NJE. +C----------------------------------------------------------------------- + INTEGER IER + DOUBLE PRECISION HL0 +C + IERPJ = 0 + JCUR = 1 + HL0 = EL0*H + CALL JAC (F, NEQ, TN, Y, YSV, EWT, SAVF, FTEM, HL0, + 1 WM(LOCWP), IWM(LOCIWP), IER) + NJE = NJE + 1 + IF (IER .EQ. 0) RETURN + IERPJ = 1 + RETURN +C----------------------- End of Subroutine DPKSET ---------------------- + END +*DECK DSOLPK + SUBROUTINE DSOLPK (NEQ, Y, SAVF, X, EWT, WM, IWM, F, PSOL) + EXTERNAL F, PSOL + INTEGER NEQ, IWM + DOUBLE PRECISION Y, SAVF, X, EWT, WM + DIMENSION NEQ(*), Y(*), SAVF(*), X(*), EWT(*), WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C This routine interfaces to one of DSPIOM, DSPIGMR, DPCG, DPCGS, or +C DUSOL, for the solution of the linear system arising from a Newton +C iteration. It is called if MITER .ne. 0. +C In addition to variables described elsewhere, +C communication with DSOLPK uses the following variables: +C WM = real work space containing data for the algorithm +C (Krylov basis vectors, Hessenberg matrix, etc.) +C IWM = integer work space containing data for the algorithm +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C IERSL = output flag (in Common): +C IERSL = 0 means no trouble occurred. +C IERSL = 1 means the iterative method failed to converge. +C If the preconditioner is out of date, the step +C is repeated with a new preconditioner. +C Otherwise, the stepsize is reduced (forcing a +C new evaluation of the preconditioner) and the +C step is repeated. +C IERSL = -1 means there was a nonrecoverable error in the +C iterative solver, and an error exit occurs. +C This routine also uses the Common variables TN, EL0, H, N, MITER, +C DELT, EPCON, SQRTN, RSQRTN, MAXL, KMP, MNEWT, NNI, NLI, NPS, NCFL, +C LOCWP, LOCIWP. +C----------------------------------------------------------------------- + INTEGER IFLAG, LB, LDL, LHES, LIOM, LGMR, LPCG, LP, LQ, LR, + 1 LV, LW, LWK, LZ, MAXLP1, NPSL + DOUBLE PRECISION DELTA, HL0 +C + IERSL = 0 + HL0 = H*EL0 + DELTA = DELT*EPCON + GO TO (100, 200, 300, 400, 900, 900, 900, 900, 900), MITER +C----------------------------------------------------------------------- +C Use the SPIOM algorithm to solve the linear system P*x = -f. +C----------------------------------------------------------------------- + 100 CONTINUE + LV = 1 + LB = LV + N*MAXL + LHES = LB + N + LWK = LHES + MAXL*MAXL + CALL DCOPY (N, X, 1, WM(LB), 1) + CALL DSCAL (N, RSQRTN, EWT, 1) + CALL DSPIOM (NEQ, TN, Y, SAVF, WM(LB), EWT, N, MAXL, KMP, DELTA, + 1 HL0, JPRE, MNEWT, F, PSOL, NPSL, X, WM(LV), WM(LHES), IWM, + 2 LIOM, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NLI = NLI + LIOM + NPS = NPS + NPSL + CALL DSCAL (N, SQRTN, EWT, 1) + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use the SPIGMR algorithm to solve the linear system P*x = -f. +C----------------------------------------------------------------------- + 200 CONTINUE + MAXLP1 = MAXL + 1 + LV = 1 + LB = LV + N*MAXL + LHES = LB + N + 1 + LQ = LHES + MAXL*MAXLP1 + LWK = LQ + 2*MAXL + LDL = LWK + MIN(1,MAXL-KMP)*N + CALL DCOPY (N, X, 1, WM(LB), 1) + CALL DSCAL (N, RSQRTN, EWT, 1) + CALL DSPIGMR (NEQ, TN, Y, SAVF, WM(LB), EWT, N, MAXL, MAXLP1, KMP, + 1 DELTA, HL0, JPRE, MNEWT, F, PSOL, NPSL, X, WM(LV), WM(LHES), + 2 WM(LQ), LGMR, WM(LOCWP), IWM(LOCIWP), WM(LWK), WM(LDL), IFLAG) + NNI = NNI + 1 + NLI = NLI + LGMR + NPS = NPS + NPSL + CALL DSCAL (N, SQRTN, EWT, 1) + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use DPCG to solve the linear system P*x = -f +C----------------------------------------------------------------------- + 300 CONTINUE + LR = 1 + LP = LR + N + LW = LP + N + LZ = LW + N + LWK = LZ + N + CALL DCOPY (N, X, 1, WM(LR), 1) + CALL DPCG (NEQ, TN, Y, SAVF, WM(LR), EWT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, WM(LP), WM(LW), WM(LZ), + 2 LPCG, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NLI = NLI + LPCG + NPS = NPS + NPSL + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use DPCGS to solve the linear system P*x = -f +C----------------------------------------------------------------------- + 400 CONTINUE + LR = 1 + LP = LR + N + LW = LP + N + LZ = LW + N + LWK = LZ + N + CALL DCOPY (N, X, 1, WM(LR), 1) + CALL DPCGS (NEQ, TN, Y, SAVF, WM(LR), EWT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, WM(LP), WM(LW), WM(LZ), + 2 LPCG, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NLI = NLI + LPCG + NPS = NPS + NPSL + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use DUSOL, which interfaces to PSOL, to solve the linear system +C (no Krylov iteration). +C----------------------------------------------------------------------- + 900 CONTINUE + LB = 1 + LWK = LB + N + CALL DCOPY (N, X, 1, WM(LB), 1) + CALL DUSOL (NEQ, TN, Y, SAVF, WM(LB), EWT, N, DELTA, HL0, MNEWT, + 1 PSOL, NPSL, X, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NPS = NPS + NPSL + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .EQ. 3) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------- End of Subroutine DSOLPK ---------------------- + END +*DECK DSPIOM + SUBROUTINE DSPIOM (NEQ, TN, Y, SAVF, B, WGHT, N, MAXL, KMP, DELTA, + 1 HL0, JPRE, MNEWT, F, PSOL, NPSL, X, V, HES, IPVT, + 2 LIOM, WP, IWP, WK, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ,N,MAXL,KMP,JPRE,MNEWT,NPSL,IPVT,LIOM,IWP,IFLAG + DOUBLE PRECISION TN,Y,SAVF,B,WGHT,DELTA,HL0,X,V,HES,WP,WK + DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), V(N,*), + 1 HES(MAXL,MAXL), IPVT(*), WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine solves the linear system A * x = b using a scaled +C preconditioned version of the Incomplete Orthogonalization Method. +C An initial guess of x = 0 is assumed. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C B = the right hand side of the system A*x = b. +C B is also used as work space when computing the +C final approximation. +C (B is the same as V(*,MAXL+1) in the call to DSPIOM.) +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the diagonal +C scaling matrix D. +C +C N = the order of the matrix A, and the lengths +C of the vectors Y, SAVF, B, WGHT, and X. +C +C MAXL = the maximum allowable order of the matrix HES. +C +C KMP = the number of previous vectors the new vector VNEW +C must be made orthogonal to. KMP .le. MAXL. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array of length N used by DATV and PSOL. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C V = the N by (LIOM+1) array containing the LIOM +C orthogonal vectors V(*,1) to V(*,LIOM). +C +C HES = the LU factorization of the LIOM by LIOM upper +C Hessenberg matrix whose entries are the +C scaled inner products of A*V(*,k) and V(*,i). +C +C IPVT = an integer array containg pivoting information. +C It is loaded in DHEFA and used in DHESL. +C +C LIOM = the number of iterations performed, and current +C order of the upper Hessenberg matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means convergence in LIOM iterations, LIOM.le.MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so X is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER, INFO, J, K, LL, LM1 + DOUBLE PRECISION BNRM, BNRM0, PROD, RHO, SNORMW, DNRM2, TEM +C + IFLAG = 0 + LIOM = 0 + NPSL = 0 +C----------------------------------------------------------------------- +C The initial residual is the vector b. Apply scaling to b, and test +C for an immediate return with X = 0 or X = b. +C----------------------------------------------------------------------- + DO 10 I = 1,N + 10 V(I,1) = B(I)*WGHT(I) + BNRM0 = DNRM2 (N, V, 1) + BNRM = BNRM0 + IF (BNRM0 .GT. DELTA) GO TO 30 + IF (MNEWT .GT. 0) GO TO 20 + CALL DCOPY (N, B, 1, X, 1) + RETURN + 20 DO 25 I = 1,N + 25 X(I) = 0.0D0 + RETURN + 30 CONTINUE +C Apply inverse of left preconditioner to vector b. -------------------- + IER = 0 + IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 55 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 1, IER) + NPSL = 1 + IF (IER .NE. 0) GO TO 300 +C Calculate norm of scaled vector V(*,1) and normalize it. ------------- + DO 50 I = 1,N + 50 V(I,1) = B(I)*WGHT(I) + BNRM = DNRM2(N, V, 1) + DELTA = DELTA*(BNRM/BNRM0) + 55 TEM = 1.0D0/BNRM + CALL DSCAL (N, TEM, V(1,1), 1) +C Zero out the HES array. ---------------------------------------------- + DO 65 J = 1,MAXL + DO 60 I = 1,MAXL + 60 HES(I,J) = 0.0D0 + 65 CONTINUE +C----------------------------------------------------------------------- +C Main loop on LL = l to compute the vectors V(*,2) to V(*,MAXL). +C The running product PROD is needed for the convergence test. +C----------------------------------------------------------------------- + PROD = 1.0D0 + DO 90 LL = 1,MAXL + LIOM = LL +C----------------------------------------------------------------------- +C Call routine DATV to compute VNEW = Abar*v(l), where Abar is +C the matrix A with scaling and inverse preconditioner factors applied. +C Call routine DORTHOG to orthogonalize the new vector vnew = V(*,l+1). +C Call routine DHEFA to update the factors of HES. +C----------------------------------------------------------------------- + CALL DATV (NEQ, Y, SAVF, V(1,LL), WGHT, X, F, PSOL, V(1,LL+1), + 1 WK, WP, IWP, HL0, JPRE, IER, NPSL) + IF (IER .NE. 0) GO TO 300 + CALL DORTHOG (V(1,LL+1), V, HES, N, LL, MAXL, KMP, SNORMW) + CALL DHEFA (HES, MAXL, LL, IPVT, INFO, LL) + LM1 = LL - 1 + IF (LL .GT. 1 .AND. IPVT(LM1) .EQ. LM1) PROD = PROD*HES(LL,LM1) + IF (INFO .NE. LL) GO TO 70 +C----------------------------------------------------------------------- +C The last pivot in HES was found to be zero. +C If vnew = 0 or l = MAXL, take an error return with IFLAG = 2. +C otherwise, continue the iteration without a convergence test. +C----------------------------------------------------------------------- + IF (SNORMW .EQ. 0.0D0) GO TO 120 + IF (LL .EQ. MAXL) GO TO 120 + GO TO 80 +C----------------------------------------------------------------------- +C Update RHO, the estimate of the norm of the residual b - A*x(l). +C test for convergence. If passed, compute approximation x(l). +C If failed and l .lt. MAXL, then continue iterating. +C----------------------------------------------------------------------- + 70 CONTINUE + RHO = BNRM*SNORMW*ABS(PROD/HES(LL,LL)) + IF (RHO .LE. DELTA) GO TO 200 + IF (LL .EQ. MAXL) GO TO 100 +C If l .lt. MAXL, store HES(l+1,l) and normalize the vector v(*,l+1). + 80 CONTINUE + HES(LL+1,LL) = SNORMW + TEM = 1.0D0/SNORMW + CALL DSCAL (N, TEM, V(1,LL+1), 1) + 90 CONTINUE +C----------------------------------------------------------------------- +C l has reached MAXL without passing the convergence test: +C If RHO is not too large, compute a solution anyway and return with +C IFLAG = 1. Otherwise return with IFLAG = 2. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (RHO .LE. 1.0D0) GO TO 150 + IF (RHO .LE. BNRM .AND. MNEWT .EQ. 0) GO TO 150 + 120 CONTINUE + IFLAG = 2 + RETURN + 150 IFLAG = 1 +C----------------------------------------------------------------------- +C Compute the approximation x(l) to the solution. +C Since the vector X was used as work space, and the initial guess +C of the Newton correction is zero, X must be reset to zero. +C----------------------------------------------------------------------- + 200 CONTINUE + LL = LIOM + DO 210 K = 1,LL + 210 B(K) = 0.0D0 + B(1) = BNRM + CALL DHESL (HES, MAXL, LL, IPVT, B) + DO 220 K = 1,N + 220 X(K) = 0.0D0 + DO 230 I = 1,LL + CALL DAXPY (N, B(I), V(1,I), 1, X, 1) + 230 CONTINUE + DO 240 I = 1,N + 240 X(I) = X(I)/WGHT(I) + IF (JPRE .LE. 1) RETURN + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, X, 2, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 300 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns forced by routine PSOL. +C----------------------------------------------------------------------- + 300 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------- End of Subroutine DSPIOM ---------------------- + END +*DECK DATV + SUBROUTINE DATV (NEQ, Y, SAVF, V, WGHT, FTEM, F, PSOL, Z, VTEM, + 1 WP, IWP, HL0, JPRE, IER, NPSL) + EXTERNAL F, PSOL + INTEGER NEQ, IWP, JPRE, IER, NPSL + DOUBLE PRECISION Y, SAVF, V, WGHT, FTEM, Z, VTEM, WP, HL0 + DIMENSION NEQ(*), Y(*), SAVF(*), V(*), WGHT(*), FTEM(*), Z(*), + 1 VTEM(*), WP(*), IWP(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C----------------------------------------------------------------------- +C This routine computes the product +C +C (D-inverse)*(P1-inverse)*(I - hl0*df/dy)*(P2-inverse)*(D*v), +C +C where D is a diagonal scaling matrix, and P1 and P2 are the +C left and right preconditioning matrices, respectively. +C v is assumed to have WRMS norm equal to 1. +C The product is stored in z. This is computed by a +C difference quotient, a call to F, and two calls to PSOL. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C V = real array of length N (can be the same array as Z). +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the matrix D. +C +C FTEM = work array of length N. +C +C VTEM = work array of length N used to store the +C unscaled version of V. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C +C On return +C +C Z = array of length N containing desired scaled +C matrix-vector product. +C +C IER = error flag from PSOL. +C +C NPSL = the number of calls to PSOL. +C +C In addition, this routine uses the Common variables TN, N, NFE. +C----------------------------------------------------------------------- + INTEGER I + DOUBLE PRECISION FAC, RNORM, DNRM2, TEMPN +C +C Set VTEM = D * V. + DO 10 I = 1,N + 10 VTEM(I) = V(I)/WGHT(I) + IER = 0 + IF (JPRE .GE. 2) GO TO 30 +C +C JPRE = 0 or 1. Save Y in Z and increment Y by VTEM. + CALL DCOPY (N, Y, 1, Z, 1) + DO 20 I = 1,N + 20 Y(I) = Z(I) + VTEM(I) + FAC = HL0 + GO TO 60 +C +C JPRE = 2 or 3. Apply inverse of right preconditioner to VTEM. + 30 CONTINUE + CALL PSOL (NEQ, TN, Y, SAVF, FTEM, HL0, WP, IWP, VTEM, 2, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) RETURN +C Calculate L-2 norm of (D-inverse) * VTEM. + DO 40 I = 1,N + 40 Z(I) = VTEM(I)*WGHT(I) + TEMPN = DNRM2 (N, Z, 1) + RNORM = 1.0D0/TEMPN +C Save Y in Z and increment Y by VTEM/norm. + CALL DCOPY (N, Y, 1, Z, 1) + DO 50 I = 1,N + 50 Y(I) = Z(I) + VTEM(I)*RNORM + FAC = HL0*TEMPN +C +C For all JPRE, call F with incremented Y argument, and restore Y. + 60 CONTINUE + CALL F (NEQ, TN, Y, FTEM) + NFE = NFE + 1 + CALL DCOPY (N, Z, 1, Y, 1) +C Set Z = (identity - hl0*Jacobian) * VTEM, using difference quotient. + DO 70 I = 1,N + 70 Z(I) = FTEM(I) - SAVF(I) + DO 80 I = 1,N + 80 Z(I) = VTEM(I) - FAC*Z(I) +C Apply inverse of left preconditioner to Z, if nontrivial. + IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 85 + CALL PSOL (NEQ, TN, Y, SAVF, FTEM, HL0, WP, IWP, Z, 1, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) RETURN + 85 CONTINUE +C Apply D-inverse to Z and return. + DO 90 I = 1,N + 90 Z(I) = Z(I)*WGHT(I) + RETURN +C----------------------- End of Subroutine DATV ------------------------ + END +*DECK DORTHOG + SUBROUTINE DORTHOG (VNEW, V, HES, N, LL, LDHES, KMP, SNORMW) + INTEGER N, LL, LDHES, KMP + DOUBLE PRECISION VNEW, V, HES, SNORMW + DIMENSION VNEW(*), V(N,*), HES(LDHES,*) +C----------------------------------------------------------------------- +C This routine orthogonalizes the vector VNEW against the previous +C KMP vectors in the V array. It uses a modified Gram-Schmidt +C orthogonalization procedure with conditional reorthogonalization. +C This is the version of 28 may 1986. +C----------------------------------------------------------------------- +C +C On entry +C +C VNEW = the vector of length N containing a scaled product +C of the Jacobian and the vector V(*,LL). +C +C V = the N x l array containing the previous LL +C orthogonal vectors v(*,1) to v(*,LL). +C +C HES = an LL x LL upper Hessenberg matrix containing, +C in HES(i,k), k.lt.LL, scaled inner products of +C A*V(*,k) and V(*,i). +C +C LDHES = the leading dimension of the HES array. +C +C N = the order of the matrix A, and the length of VNEW. +C +C LL = the current order of the matrix HES. +C +C KMP = the number of previous vectors the new vector VNEW +C must be made orthogonal to (KMP .le. MAXL). +C +C +C On return +C +C VNEW = the new vector orthogonal to V(*,i0) to V(*,LL), +C where i0 = MAX(1, LL-KMP+1). +C +C HES = upper Hessenberg matrix with column LL filled in with +C scaled inner products of A*V(*,LL) and V(*,i). +C +C SNORMW = L-2 norm of VNEW. +C +C----------------------------------------------------------------------- + INTEGER I, I0 + DOUBLE PRECISION ARG, DDOT, DNRM2, SUMDSQ, TEM, VNRM +C +C Get norm of unaltered VNEW for later use. ---------------------------- + VNRM = DNRM2 (N, VNEW, 1) +C----------------------------------------------------------------------- +C Do modified Gram-Schmidt on VNEW = A*v(LL). +C Scaled inner products give new column of HES. +C Projections of earlier vectors are subtracted from VNEW. +C----------------------------------------------------------------------- + I0 = MAX(1,LL-KMP+1) + DO 10 I = I0,LL + HES(I,LL) = DDOT (N, V(1,I), 1, VNEW, 1) + TEM = -HES(I,LL) + CALL DAXPY (N, TEM, V(1,I), 1, VNEW, 1) + 10 CONTINUE +C----------------------------------------------------------------------- +C Compute SNORMW = norm of VNEW. +C If VNEW is small compared to its input value (in norm), then +C reorthogonalize VNEW to V(*,1) through V(*,LL). +C Correct if relative correction exceeds 1000*(unit roundoff). +C finally, correct SNORMW using the dot products involved. +C----------------------------------------------------------------------- + SNORMW = DNRM2 (N, VNEW, 1) + IF (VNRM + 0.001D0*SNORMW .NE. VNRM) RETURN + SUMDSQ = 0.0D0 + DO 30 I = I0,LL + TEM = -DDOT (N, V(1,I), 1, VNEW, 1) + IF (HES(I,LL) + 0.001D0*TEM .EQ. HES(I,LL)) GO TO 30 + HES(I,LL) = HES(I,LL) - TEM + CALL DAXPY (N, TEM, V(1,I), 1, VNEW, 1) + SUMDSQ = SUMDSQ + TEM**2 + 30 CONTINUE + IF (SUMDSQ .EQ. 0.0D0) RETURN + ARG = MAX(0.0D0,SNORMW**2 - SUMDSQ) + SNORMW = SQRT(ARG) +C + RETURN +C----------------------- End of Subroutine DORTHOG --------------------- + END +*DECK DSPIGMR + SUBROUTINE DSPIGMR (NEQ, TN, Y, SAVF, B, WGHT, N, MAXL, MAXLP1, + 1 KMP, DELTA, HL0, JPRE, MNEWT, F, PSOL, NPSL, X, V, HES, Q, + 2 LGMR, WP, IWP, WK, DL, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ,N,MAXL,MAXLP1,KMP,JPRE,MNEWT,NPSL,LGMR,IWP,IFLAG + DOUBLE PRECISION TN,Y,SAVF,B,WGHT,DELTA,HL0,X,V,HES,Q,WP,WK,DL + DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), V(N,*), + 1 HES(MAXLP1,*), Q(*), WP(*), IWP(*), WK(*), DL(*) +C----------------------------------------------------------------------- +C This routine solves the linear system A * x = b using a scaled +C preconditioned version of the Generalized Minimal Residual method. +C An initial guess of x = 0 is assumed. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C B = the right hand side of the system A*x = b. +C B is also used as work space when computing +C the final approximation. +C (B is the same as V(*,MAXL+1) in the call to DSPIGMR.) +C +C WGHT = the vector of length N containing the nonzero +C elements of the diagonal scaling matrix. +C +C N = the order of the matrix A, and the lengths +C of the vectors WGHT, B and X. +C +C MAXL = the maximum allowable order of the matrix HES. +C +C MAXLP1 = MAXL + 1, used for dynamic dimensioning of HES. +C +C KMP = the number of previous vectors the new vector VNEW +C must be made orthogonal to. KMP .le. MAXL. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by routine DATV and PSOL. +C +C DL = real work array used for calculation of the residual +C norm RHO when the method is incomplete (KMP .lt. MAXL). +C Not needed or referenced in complete case (KMP = MAXL). +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C LGMR = the number of iterations performed and +C the current order of the upper Hessenberg +C matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C V = the N by (LGMR+1) array containing the LGMR +C orthogonal vectors V(*,1) to V(*,LGMR). +C +C HES = the upper triangular factor of the QR decomposition +C of the (LGMR+1) by lgmr upper Hessenberg matrix whose +C entries are the scaled inner-products of A*V(*,i) +C and V(*,k). +C +C Q = real array of length 2*MAXL containing the components +C of the Givens rotations used in the QR decomposition +C of HES. It is loaded in DHEQR and used in DHELS. +C +C IFLAG = integer error flag: +C 0 means convergence in LGMR iterations, LGMR .le. MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so x is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER, INFO, IP1, I2, J, K, LL, LLP1 + DOUBLE PRECISION BNRM,BNRM0,C,DLNRM,PROD,RHO,S,SNORMW,DNRM2,TEM +C + IFLAG = 0 + LGMR = 0 + NPSL = 0 +C----------------------------------------------------------------------- +C The initial residual is the vector b. Apply scaling to b, and test +C for an immediate return with X = 0 or X = b. +C----------------------------------------------------------------------- + DO 10 I = 1,N + 10 V(I,1) = B(I)*WGHT(I) + BNRM0 = DNRM2 (N, V, 1) + BNRM = BNRM0 + IF (BNRM0 .GT. DELTA) GO TO 30 + IF (MNEWT .GT. 0) GO TO 20 + CALL DCOPY (N, B, 1, X, 1) + RETURN + 20 DO 25 I = 1,N + 25 X(I) = 0.0D0 + RETURN + 30 CONTINUE +C Apply inverse of left preconditioner to vector b. -------------------- + IER = 0 + IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 55 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 1, IER) + NPSL = 1 + IF (IER .NE. 0) GO TO 300 +C Calculate norm of scaled vector V(*,1) and normalize it. ------------- + DO 50 I = 1,N + 50 V(I,1) = B(I)*WGHT(I) + BNRM = DNRM2 (N, V, 1) + DELTA = DELTA*(BNRM/BNRM0) + 55 TEM = 1.0D0/BNRM + CALL DSCAL (N, TEM, V(1,1), 1) +C Zero out the HES array. ---------------------------------------------- + DO 65 J = 1,MAXL + DO 60 I = 1,MAXLP1 + 60 HES(I,J) = 0.0D0 + 65 CONTINUE +C----------------------------------------------------------------------- +C Main loop to compute the vectors V(*,2) to V(*,MAXL). +C The running product PROD is needed for the convergence test. +C----------------------------------------------------------------------- + PROD = 1.0D0 + DO 90 LL = 1,MAXL + LGMR = LL +C----------------------------------------------------------------------- +C Call routine DATV to compute VNEW = Abar*v(ll), where Abar is +C the matrix A with scaling and inverse preconditioner factors applied. +C Call routine DORTHOG to orthogonalize the new vector VNEW = V(*,LL+1). +C Call routine DHEQR to update the factors of HES. +C----------------------------------------------------------------------- + CALL DATV (NEQ, Y, SAVF, V(1,LL), WGHT, X, F, PSOL, V(1,LL+1), + 1 WK, WP, IWP, HL0, JPRE, IER, NPSL) + IF (IER .NE. 0) GO TO 300 + CALL DORTHOG (V(1,LL+1), V, HES, N, LL, MAXLP1, KMP, SNORMW) + HES(LL+1,LL) = SNORMW + CALL DHEQR (HES, MAXLP1, LL, Q, INFO, LL) + IF (INFO .EQ. LL) GO TO 120 +C----------------------------------------------------------------------- +C Update RHO, the estimate of the norm of the residual b - A*xl. +C If KMP .lt. MAXL, then the vectors V(*,1),...,V(*,LL+1) are not +C necessarily orthogonal for LL .gt. KMP. The vector DL must then +C be computed, and its norm used in the calculation of RHO. +C----------------------------------------------------------------------- + PROD = PROD*Q(2*LL) + RHO = ABS(PROD*BNRM) + IF ((LL.GT.KMP) .AND. (KMP.LT.MAXL)) THEN + IF (LL .EQ. KMP+1) THEN + CALL DCOPY (N, V(1,1), 1, DL, 1) + DO 75 I = 1,KMP + IP1 = I + 1 + I2 = I*2 + S = Q(I2) + C = Q(I2-1) + DO 70 K = 1,N + 70 DL(K) = S*DL(K) + C*V(K,IP1) + 75 CONTINUE + ENDIF + S = Q(2*LL) + C = Q(2*LL-1)/SNORMW + LLP1 = LL + 1 + DO 80 K = 1,N + 80 DL(K) = S*DL(K) + C*V(K,LLP1) + DLNRM = DNRM2 (N, DL, 1) + RHO = RHO*DLNRM + ENDIF +C----------------------------------------------------------------------- +C Test for convergence. If passed, compute approximation xl. +C if failed and LL .lt. MAXL, then continue iterating. +C----------------------------------------------------------------------- + IF (RHO .LE. DELTA) GO TO 200 + IF (LL .EQ. MAXL) GO TO 100 +C----------------------------------------------------------------------- +C Rescale so that the norm of V(1,LL+1) is one. +C----------------------------------------------------------------------- + TEM = 1.0D0/SNORMW + CALL DSCAL (N, TEM, V(1,LL+1), 1) + 90 CONTINUE + 100 CONTINUE + IF (RHO .LE. 1.0D0) GO TO 150 + IF (RHO .LE. BNRM .AND. MNEWT .EQ. 0) GO TO 150 + 120 CONTINUE + IFLAG = 2 + RETURN + 150 IFLAG = 1 +C----------------------------------------------------------------------- +C Compute the approximation xl to the solution. +C Since the vector X was used as work space, and the initial guess +C of the Newton correction is zero, X must be reset to zero. +C----------------------------------------------------------------------- + 200 CONTINUE + LL = LGMR + LLP1 = LL + 1 + DO 210 K = 1,LLP1 + 210 B(K) = 0.0D0 + B(1) = BNRM + CALL DHELS (HES, MAXLP1, LL, Q, B) + DO 220 K = 1,N + 220 X(K) = 0.0D0 + DO 230 I = 1,LL + CALL DAXPY (N, B(I), V(1,I), 1, X, 1) + 230 CONTINUE + DO 240 I = 1,N + 240 X(I) = X(I)/WGHT(I) + IF (JPRE .LE. 1) RETURN + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, X, 2, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 300 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns forced by routine PSOL. +C----------------------------------------------------------------------- + 300 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 +C + RETURN +C----------------------- End of Subroutine DSPIGMR --------------------- + END +*DECK DPCG + SUBROUTINE DPCG (NEQ, TN, Y, SAVF, R, WGHT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, P, W, Z, LPCG, WP, IWP, WK, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ, N, MAXL, JPRE, MNEWT, NPSL, LPCG, IWP, IFLAG + DOUBLE PRECISION TN,Y,SAVF,R,WGHT,DELTA,HL0,X,P,W,Z,WP,WK + DIMENSION NEQ(*), Y(*), SAVF(*), R(*), WGHT(*), X(*), P(*), W(*), + 1 Z(*), WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine computes the solution to the system A*x = b using a +C preconditioned version of the Conjugate Gradient algorithm. +C It is assumed here that the matrix A and the preconditioner +C matrix M are symmetric positive definite or nearly so. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C R = the right hand side of the system A*x = b. +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the diagonal +C scaling matrix D. +C +C N = the order of the matrix A, and the lengths +C of the vectors Y, SAVF, R, WGHT, P, W, Z, WK, and X. +C +C MAXL = the maximum allowable number of iterates. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by routine DATP. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C LPCG = the number of iterations performed, and current +C order of the upper Hessenberg matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means convergence in LPCG iterations, LPCG .le. MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so X is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C 4 means there was a zero denominator in the algorithm. +C The system matrix or preconditioner matrix is not +C sufficiently close to being symmetric pos. definite. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER + DOUBLE PRECISION ALPHA,BETA,BNRM,PTW,RNRM,DDOT,DVNORM,ZTR,ZTR0 +C + IFLAG = 0 + NPSL = 0 + LPCG = 0 + DO 10 I = 1,N + 10 X(I) = 0.0D0 + BNRM = DVNORM (N, R, WGHT) +C Test for immediate return with X = 0 or X = b. ----------------------- + IF (BNRM .GT. DELTA) GO TO 20 + IF (MNEWT .GT. 0) RETURN + CALL DCOPY (N, R, 1, X, 1) + RETURN +C + 20 ZTR = 0.0D0 +C Loop point for PCG iterations. --------------------------------------- + 30 CONTINUE + LPCG = LPCG + 1 + CALL DCOPY (N, R, 1, Z, 1) + IER = 0 + IF (JPRE .EQ. 0) GO TO 40 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, Z, 3, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 100 + 40 CONTINUE + ZTR0 = ZTR + ZTR = DDOT (N, Z, 1, R, 1) + IF (LPCG .NE. 1) GO TO 50 + CALL DCOPY (N, Z, 1, P, 1) + GO TO 70 + 50 CONTINUE + IF (ZTR0 .EQ. 0.0D0) GO TO 200 + BETA = ZTR/ZTR0 + DO 60 I = 1,N + 60 P(I) = Z(I) + BETA*P(I) + 70 CONTINUE +C----------------------------------------------------------------------- +C Call DATP to compute A*p and return the answer in W. +C----------------------------------------------------------------------- + CALL DATP (NEQ, Y, SAVF, P, WGHT, HL0, WK, F, W) +C + PTW = DDOT (N, P, 1, W, 1) + IF (PTW .EQ. 0.0D0) GO TO 200 + ALPHA = ZTR/PTW + CALL DAXPY (N, ALPHA, P, 1, X, 1) + ALPHA = -ALPHA + CALL DAXPY (N, ALPHA, W, 1, R, 1) + RNRM = DVNORM (N, R, WGHT) + IF (RNRM .LE. DELTA) RETURN + IF (LPCG .LT. MAXL) GO TO 30 + IFLAG = 2 + IF (RNRM .LE. 1.0D0) IFLAG = 1 + IF (RNRM .LE. BNRM .AND. MNEWT .EQ. 0) IFLAG = 1 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns from PSOL. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------------------------------------------------------- +C This block handles division by zero errors. +C----------------------------------------------------------------------- + 200 CONTINUE + IFLAG = 4 + RETURN +C----------------------- End of Subroutine DPCG ------------------------ + END +*DECK DPCGS + SUBROUTINE DPCGS (NEQ, TN, Y, SAVF, R, WGHT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, P, W, Z, LPCG, WP, IWP, WK, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ, N, MAXL, JPRE, MNEWT, NPSL, LPCG, IWP, IFLAG + DOUBLE PRECISION TN,Y,SAVF,R,WGHT,DELTA,HL0,X,P,W,Z,WP,WK + DIMENSION NEQ(*), Y(*), SAVF(*), R(*), WGHT(*), X(*), P(*), W(*), + 1 Z(*), WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine computes the solution to the system A*x = b using a +C scaled preconditioned version of the Conjugate Gradient algorithm. +C It is assumed here that the scaled matrix D**-1 * A * D and the +C scaled preconditioner D**-1 * M * D are close to being +C symmetric positive definite. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C R = the right hand side of the system A*x = b. +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the diagonal +C scaling matrix D. +C +C N = the order of the matrix A, and the lengths +C of the vectors Y, SAVF, R, WGHT, P, W, Z, WK, and X. +C +C MAXL = the maximum allowable number of iterates. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by routine DATP. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C LPCG = the number of iterations performed, and current +C order of the upper Hessenberg matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means convergence in LPCG iterations, LPCG .le. MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so X is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C 4 means there was a zero denominator in the algorithm. +C the scaled matrix or scaled preconditioner is not +C sufficiently close to being symmetric pos. definite. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER + DOUBLE PRECISION ALPHA, BETA, BNRM, PTW, RNRM, DVNORM, ZTR, ZTR0 +C + IFLAG = 0 + NPSL = 0 + LPCG = 0 + DO 10 I = 1,N + 10 X(I) = 0.0D0 + BNRM = DVNORM (N, R, WGHT) +C Test for immediate return with X = 0 or X = b. ----------------------- + IF (BNRM .GT. DELTA) GO TO 20 + IF (MNEWT .GT. 0) RETURN + CALL DCOPY (N, R, 1, X, 1) + RETURN +C + 20 ZTR = 0.0D0 +C Loop point for PCG iterations. --------------------------------------- + 30 CONTINUE + LPCG = LPCG + 1 + CALL DCOPY (N, R, 1, Z, 1) + IER = 0 + IF (JPRE .EQ. 0) GO TO 40 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, Z, 3, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 100 + 40 CONTINUE + ZTR0 = ZTR + ZTR = 0.0D0 + DO 45 I = 1,N + 45 ZTR = ZTR + Z(I)*R(I)*WGHT(I)**2 + IF (LPCG .NE. 1) GO TO 50 + CALL DCOPY (N, Z, 1, P, 1) + GO TO 70 + 50 CONTINUE + IF (ZTR0 .EQ. 0.0D0) GO TO 200 + BETA = ZTR/ZTR0 + DO 60 I = 1,N + 60 P(I) = Z(I) + BETA*P(I) + 70 CONTINUE +C----------------------------------------------------------------------- +C Call DATP to compute A*p and return the answer in W. +C----------------------------------------------------------------------- + CALL DATP (NEQ, Y, SAVF, P, WGHT, HL0, WK, F, W) +C + PTW = 0.0D0 + DO 80 I = 1,N + 80 PTW = PTW + P(I)*W(I)*WGHT(I)**2 + IF (PTW .EQ. 0.0D0) GO TO 200 + ALPHA = ZTR/PTW + CALL DAXPY (N, ALPHA, P, 1, X, 1) + ALPHA = -ALPHA + CALL DAXPY (N, ALPHA, W, 1, R, 1) + RNRM = DVNORM (N, R, WGHT) + IF (RNRM .LE. DELTA) RETURN + IF (LPCG .LT. MAXL) GO TO 30 + IFLAG = 2 + IF (RNRM .LE. 1.0D0) IFLAG = 1 + IF (RNRM .LE. BNRM .AND. MNEWT .EQ. 0) IFLAG = 1 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns from PSOL. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------------------------------------------------------- +C This block handles division by zero errors. +C----------------------------------------------------------------------- + 200 CONTINUE + IFLAG = 4 + RETURN +C----------------------- End of Subroutine DPCGS ----------------------- + END +*DECK DATP + SUBROUTINE DATP (NEQ, Y, SAVF, P, WGHT, HL0, WK, F, W) + EXTERNAL F + INTEGER NEQ + DOUBLE PRECISION Y, SAVF, P, WGHT, HL0, WK, W + DIMENSION NEQ(*), Y(*), SAVF(*), P(*), WGHT(*), WK(*), W(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C----------------------------------------------------------------------- +C This routine computes the product +C +C w = (I - hl0*df/dy)*p +C +C This is computed by a call to F and a difference quotient. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C P = real array of length N. +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the matrix D. +C +C WK = work array of length N. +C +C On return +C +C +C W = array of length N containing desired +C matrix-vector product. +C +C In addition, this routine uses the Common variables TN, N, NFE. +C----------------------------------------------------------------------- + INTEGER I + DOUBLE PRECISION FAC, PNRM, RPNRM, DVNORM +C + PNRM = DVNORM (N, P, WGHT) + RPNRM = 1.0D0/PNRM + CALL DCOPY (N, Y, 1, W, 1) + DO 20 I = 1,N + 20 Y(I) = W(I) + P(I)*RPNRM + CALL F (NEQ, TN, Y, WK) + NFE = NFE + 1 + CALL DCOPY (N, W, 1, Y, 1) + FAC = HL0*PNRM + DO 40 I = 1,N + 40 W(I) = P(I) - FAC*(WK(I) - SAVF(I)) + RETURN +C----------------------- End of Subroutine DATP ------------------------ + END +*DECK DUSOL + SUBROUTINE DUSOL (NEQ, TN, Y, SAVF, B, WGHT, N, DELTA, HL0, MNEWT, + 1 PSOL, NPSL, X, WP, IWP, WK, IFLAG) + EXTERNAL PSOL + INTEGER NEQ, N, MNEWT, NPSL, IWP, IFLAG + DOUBLE PRECISION TN, Y, SAVF, B, WGHT, DELTA, HL0, X, WP, WK + DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), + 1 WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine solves the linear system A * x = b using only a call +C to the user-supplied routine PSOL (no Krylov iteration). +C If the norm of the right-hand side vector b is smaller than DELTA, +C the vector X returned is X = b (if MNEWT = 0) or X = 0 otherwise. +C PSOL is called with an LR argument of 0. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C B = the right hand side of the system A*x = b. +C +C WGHT = the vector of length N containing the nonzero +C elements of the diagonal scaling matrix. +C +C N = the order of the matrix A, and the lengths +C of the vectors WGHT, B and X. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by PSOL. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means no trouble occurred. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER + DOUBLE PRECISION BNRM, DVNORM +C + IFLAG = 0 + NPSL = 0 +C----------------------------------------------------------------------- +C Test for an immediate return with X = 0 or X = b. +C----------------------------------------------------------------------- + BNRM = DVNORM (N, B, WGHT) + IF (BNRM .GT. DELTA) GO TO 30 + IF (MNEWT .GT. 0) GO TO 10 + CALL DCOPY (N, B, 1, X, 1) + RETURN + 10 DO 20 I = 1,N + 20 X(I) = 0.0D0 + RETURN +C Make call to PSOL and copy result from B to X. ----------------------- + 30 IER = 0 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 0, IER) + NPSL = 1 + IF (IER .NE. 0) GO TO 100 + CALL DCOPY (N, B, 1, X, 1) + RETURN +C----------------------------------------------------------------------- +C This block handles error returns forced by routine PSOL. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------- End of Subroutine DUSOL ----------------------- + END +*DECK DSRCPK + SUBROUTINE DSRCPK (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLPK01, which are used +C internally by the DLSODPK solver. +C +C RSAV = real array of length 222 or more. +C ISAV = integer array of length 50 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSP + INTEGER I, LENILP, LENRLP, LENILS, LENRLS + DOUBLE PRECISION RSAV, RLS, RLSP + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLP, LENILP + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLPK01/ RLSP(4), ILSP(13) + DATA LENRLS/218/, LENILS/37/, LENRLP/4/, LENILP/13/ +C + IF (JOB .EQ. 2) GO TO 100 + CALL DCOPY (LENRLS, RLS, 1, RSAV, 1) + CALL DCOPY (LENRLP, RLSP, 1, RSAV(LENRLS+1), 1) + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + DO 40 I = 1,LENILP + 40 ISAV(LENILS+I) = ILSP(I) + RETURN +C + 100 CONTINUE + CALL DCOPY (LENRLS, RSAV, 1, RLS, 1) + CALL DCOPY (LENRLP, RSAV(LENRLS+1), 1, RLSP, 1) + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + DO 140 I = 1,LENILP + 140 ILSP(I) = ISAV(LENILS+I) + RETURN +C----------------------- End of Subroutine DSRCPK ---------------------- + END +*DECK DHEFA + SUBROUTINE DHEFA (A, LDA, N, IPVT, INFO, JOB) + INTEGER LDA, N, IPVT(*), INFO, JOB + DOUBLE PRECISION A(LDA,*) +C----------------------------------------------------------------------- +C This routine is a modification of the LINPACK routine DGEFA and +C performs an LU decomposition of an upper Hessenberg matrix A. +C There are two options available: +C +C (1) performing a fresh factorization +C (2) updating the LU factors by adding a row and a +C column to the matrix A. +C----------------------------------------------------------------------- +C DHEFA factors an upper Hessenberg matrix by elimination. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the matrix to be factored. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C JOB INTEGER +C JOB = 1 means that a fresh factorization of the +C matrix A is desired. +C JOB .ge. 2 means that the current factorization of A +C will be updated by the addition of a row +C and a column. +C +C On return +C +C A an upper triangular matrix and the multipliers +C which were used to obtain it. +C The factorization can be written A = L*U where +C L is a product of permutation and unit lower +C triangular matrices and U is upper triangular. +C +C IPVT INTEGER(N) +C an integer vector of pivot indices. +C +C INFO INTEGER +C = 0 normal value. +C = k if U(k,k) .eq. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DHESL will divide by zero if called. +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 7/20/83. This version dated 6/20/01. +C +C BLAS called: DAXPY, IDAMAX +C----------------------------------------------------------------------- + INTEGER IDAMAX, J, K, KM1, KP1, L, NM1 + DOUBLE PRECISION T +C + IF (JOB .GT. 1) GO TO 80 +C +C A new facorization is desired. This is essentially the LINPACK +C code with the exception that we know there is only one nonzero +C element below the main diagonal. +C +C Gaussian elimination with partial pivoting +C + INFO = 0 + NM1 = N - 1 + IF (NM1 .LT. 1) GO TO 70 + DO 60 K = 1, NM1 + KP1 = K + 1 +C +C Find L = pivot index +C + L = IDAMAX (2, A(K,K), 1) + K - 1 + IPVT(K) = L +C +C Zero pivot implies this column already triangularized +C + IF (A(L,K) .EQ. 0.0D0) GO TO 40 +C +C Interchange if necessary +C + IF (L .EQ. K) GO TO 10 + T = A(L,K) + A(L,K) = A(K,K) + A(K,K) = T + 10 CONTINUE +C +C Compute multipliers +C + T = -1.0D0/A(K,K) + A(K+1,K) = A(K+1,K)*T +C +C Row elimination with column indexing +C + DO 30 J = KP1, N + T = A(L,J) + IF (L .EQ. K) GO TO 20 + A(L,J) = A(K,J) + A(K,J) = T + 20 CONTINUE + CALL DAXPY (N-K, T, A(K+1,K), 1, A(K+1,J), 1) + 30 CONTINUE + GO TO 50 + 40 CONTINUE + INFO = K + 50 CONTINUE + 60 CONTINUE + 70 CONTINUE + IPVT(N) = N + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN +C +C The old factorization of A will be updated. A row and a column +C has been added to the matrix A. +C N-1 is now the old order of the matrix. +C + 80 CONTINUE + NM1 = N - 1 +C +C Perform row interchanges on the elements of the new column, and +C perform elimination operations on the elements using the multipliers. +C + IF (NM1 .LE. 1) GO TO 105 + DO 100 K = 2,NM1 + KM1 = K - 1 + L = IPVT(KM1) + T = A(L,N) + IF (L .EQ. KM1) GO TO 90 + A(L,N) = A(KM1,N) + A(KM1,N) = T + 90 CONTINUE + A(K,N) = A(K,N) + A(K,KM1)*T + 100 CONTINUE + 105 CONTINUE +C +C Complete update of factorization by decomposing last 2x2 block. +C + INFO = 0 +C +C Find L = pivot index +C + L = IDAMAX (2, A(NM1,NM1), 1) + NM1 - 1 + IPVT(NM1) = L +C +C Zero pivot implies this column already triangularized +C + IF (A(L,NM1) .EQ. 0.0D0) GO TO 140 +C +C Interchange if necessary +C + IF (L .EQ. NM1) GO TO 110 + T = A(L,NM1) + A(L,NM1) = A(NM1,NM1) + A(NM1,NM1) = T + 110 CONTINUE +C +C Compute multipliers +C + T = -1.0D0/A(NM1,NM1) + A(N,NM1) = A(N,NM1)*T +C +C Row elimination with column indexing +C + T = A(L,N) + IF (L .EQ. NM1) GO TO 120 + A(L,N) = A(NM1,N) + A(NM1,N) = T + 120 CONTINUE + A(N,N) = A(N,N) + T*A(N,NM1) + GO TO 150 + 140 CONTINUE + INFO = NM1 + 150 CONTINUE + IPVT(N) = N + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN +C----------------------- End of Subroutine DHEFA ----------------------- + END +*DECK DHESL + SUBROUTINE DHESL (A, LDA, N, IPVT, B) + INTEGER LDA, N, IPVT(*) + DOUBLE PRECISION A(LDA,*), B(*) +C----------------------------------------------------------------------- +C This is essentially the LINPACK routine DGESL except for changes +C due to the fact that A is an upper Hessenberg matrix. +C----------------------------------------------------------------------- +C DHESL solves the real system A * x = b +C using the factors computed by DHEFA. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the output from DHEFA. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C IPVT INTEGER(N) +C the pivot vector from DHEFA. +C +C B DOUBLE PRECISION(N) +C the right hand side vector. +C +C On return +C +C B the solution vector x . +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 7/20/83. This version dated 6/20/01. +C +C BLAS called: DAXPY +C----------------------------------------------------------------------- + INTEGER K, KB, L, NM1 + DOUBLE PRECISION T +C + NM1 = N - 1 +C +C Solve A * x = b +C First solve L*y = b +C + IF (NM1 .LT. 1) GO TO 30 + DO 20 K = 1, NM1 + L = IPVT(K) + T = B(L) + IF (L .EQ. K) GO TO 10 + B(L) = B(K) + B(K) = T + 10 CONTINUE + B(K+1) = B(K+1) + T*A(K+1,K) + 20 CONTINUE + 30 CONTINUE +C +C Now solve U*x = y +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/A(K,K) + T = -B(K) + CALL DAXPY (K-1, T, A(1,K), 1, B(1), 1) + 40 CONTINUE + RETURN +C----------------------- End of Subroutine DHESL ----------------------- + END +*DECK DHEQR + SUBROUTINE DHEQR (A, LDA, N, Q, INFO, IJOB) + INTEGER LDA, N, INFO, IJOB + DOUBLE PRECISION A(LDA,*), Q(*) +C----------------------------------------------------------------------- +C This routine performs a QR decomposition of an upper +C Hessenberg matrix A. There are two options available: +C +C (1) performing a fresh decomposition +C (2) updating the QR factors by adding a row and a +C column to the matrix A. +C----------------------------------------------------------------------- +C DHEQR decomposes an upper Hessenberg matrix by using Givens +C rotations. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the matrix to be decomposed. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C A is an (N+1) by N Hessenberg matrix. +C +C IJOB INTEGER +C = 1 means that a fresh decomposition of the +C matrix A is desired. +C .ge. 2 means that the current decomposition of A +C will be updated by the addition of a row +C and a column. +C On return +C +C A the upper triangular matrix R. +C The factorization can be written Q*A = R, where +C Q is a product of Givens rotations and R is upper +C triangular. +C +C Q DOUBLE PRECISION(2*N) +C the factors c and s of each Givens rotation used +C in decomposing A. +C +C INFO INTEGER +C = 0 normal value. +C = k if A(k,k) .eq. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DHELS will divide by zero +C if called. +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 1/13/86. This version dated 6/20/01. +C----------------------------------------------------------------------- + INTEGER I, IQ, J, K, KM1, KP1, NM1 + DOUBLE PRECISION C, S, T, T1, T2 +C + IF (IJOB .GT. 1) GO TO 70 +C +C A new facorization is desired. +C +C QR decomposition without pivoting +C + INFO = 0 + DO 60 K = 1, N + KM1 = K - 1 + KP1 = K + 1 +C +C Compute kth column of R. +C First, multiply the kth column of A by the previous +C k-1 Givens rotations. +C + IF (KM1 .LT. 1) GO TO 20 + DO 10 J = 1, KM1 + I = 2*(J-1) + 1 + T1 = A(J,K) + T2 = A(J+1,K) + C = Q(I) + S = Q(I+1) + A(J,K) = C*T1 - S*T2 + A(J+1,K) = S*T1 + C*T2 + 10 CONTINUE +C +C Compute Givens components c and s +C + 20 CONTINUE + IQ = 2*KM1 + 1 + T1 = A(K,K) + T2 = A(KP1,K) + IF (T2 .NE. 0.0D0) GO TO 30 + C = 1.0D0 + S = 0.0D0 + GO TO 50 + 30 CONTINUE + IF (ABS(T2) .LT. ABS(T1)) GO TO 40 + T = T1/T2 + S = -1.0D0/SQRT(1.0D0+T*T) + C = -S*T + GO TO 50 + 40 CONTINUE + T = T2/T1 + C = 1.0D0/SQRT(1.0D0+T*T) + S = -C*T + 50 CONTINUE + Q(IQ) = C + Q(IQ+1) = S + A(K,K) = C*T1 - S*T2 + IF (A(K,K) .EQ. 0.0D0) INFO = K + 60 CONTINUE + RETURN +C +C The old factorization of A will be updated. A row and a column +C has been added to the matrix A. +C N by N-1 is now the old size of the matrix. +C + 70 CONTINUE + NM1 = N - 1 +C +C Multiply the new column by the N previous Givens rotations. +C + DO 100 K = 1,NM1 + I = 2*(K-1) + 1 + T1 = A(K,N) + T2 = A(K+1,N) + C = Q(I) + S = Q(I+1) + A(K,N) = C*T1 - S*T2 + A(K+1,N) = S*T1 + C*T2 + 100 CONTINUE +C +C Complete update of decomposition by forming last Givens rotation, +C and multiplying it times the column vector (A(N,N), A(N+1,N)). +C + INFO = 0 + T1 = A(N,N) + T2 = A(N+1,N) + IF (T2 .NE. 0.0D0) GO TO 110 + C = 1.0D0 + S = 0.0D0 + GO TO 130 + 110 CONTINUE + IF (ABS(T2) .LT. ABS(T1)) GO TO 120 + T = T1/T2 + S = -1.0D0/SQRT(1.0D0+T*T) + C = -S*T + GO TO 130 + 120 CONTINUE + T = T2/T1 + C = 1.0D0/SQRT(1.0D0+T*T) + S = -C*T + 130 CONTINUE + IQ = 2*N - 1 + Q(IQ) = C + Q(IQ+1) = S + A(N,N) = C*T1 - S*T2 + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN +C----------------------- End of Subroutine DHEQR ----------------------- + END +*DECK DHELS + SUBROUTINE DHELS (A, LDA, N, Q, B) + INTEGER LDA, N + DOUBLE PRECISION A(LDA,*), B(*), Q(*) +C----------------------------------------------------------------------- +C This is part of the LINPACK routine DGESL with changes +C due to the fact that A is an upper Hessenberg matrix. +C----------------------------------------------------------------------- +C DHELS solves the least squares problem +C +C min (b-A*x, b-A*x) +C +C using the factors computed by DHEQR. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the output from DHEQR which contains the upper +C triangular factor R in the QR decomposition of A. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C A is originally an (N+1) by N matrix. +C +C Q DOUBLE PRECISION(2*N) +C The coefficients of the N givens rotations +C used in the QR factorization of A. +C +C B DOUBLE PRECISION(N+1) +C the right hand side vector. +C +C On return +C +C B the solution vector x . +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 1/13/86. This version dated 6/20/01. +C +C BLAS called: DAXPY +C----------------------------------------------------------------------- + INTEGER IQ, K, KB, KP1 + DOUBLE PRECISION C, S, T, T1, T2 +C +C Minimize (b-A*x, b-A*x) +C First form Q*b. +C + DO 20 K = 1, N + KP1 = K + 1 + IQ = 2*(K-1) + 1 + C = Q(IQ) + S = Q(IQ+1) + T1 = B(K) + T2 = B(KP1) + B(K) = C*T1 - S*T2 + B(KP1) = S*T1 + C*T2 + 20 CONTINUE +C +C Now solve R*x = Q*b. +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/A(K,K) + T = -B(K) + CALL DAXPY (K-1, T, A(1,K), 1, B(1), 1) + 40 CONTINUE + RETURN +C----------------------- End of Subroutine DHELS ----------------------- + END +*DECK DLHIN + SUBROUTINE DLHIN (NEQ, N, T0, Y0, YDOT, F, TOUT, UROUND, + 1 EWT, ITOL, ATOL, Y, TEMP, H0, NITER, IER) + EXTERNAL F + DOUBLE PRECISION T0, Y0, YDOT, TOUT, UROUND, EWT, ATOL, Y, + 1 TEMP, H0 + INTEGER NEQ, N, ITOL, NITER, IER + DIMENSION NEQ(*), Y0(*), YDOT(*), EWT(*), ATOL(*), Y(*), TEMP(*) +C----------------------------------------------------------------------- +C Call sequence input -- NEQ, N, T0, Y0, YDOT, F, TOUT, UROUND, +C EWT, ITOL, ATOL, Y, TEMP +C Call sequence output -- H0, NITER, IER +C Common block variables accessed -- None +C +C Subroutines called by DLHIN: F, DCOPY +C Function routines called by DLHIN: DVNORM +C----------------------------------------------------------------------- +C This routine computes the step size, H0, to be attempted on the +C first step, when the user has not supplied a value for this. +C +C First we check that TOUT - T0 differs significantly from zero. Then +C an iteration is done to approximate the initial second derivative +C and this is used to define H from WRMS-norm(H**2 * yddot / 2) = 1. +C A bias factor of 1/2 is applied to the resulting h. +C The sign of H0 is inferred from the initial values of TOUT and T0. +C +C Communication with DLHIN is done with the following variables: +C +C NEQ = NEQ array of solver, passed to F. +C N = size of ODE system, input. +C T0 = initial value of independent variable, input. +C Y0 = vector of initial conditions, input. +C YDOT = vector of initial first derivatives, input. +C F = name of subroutine for right-hand side f(t,y), input. +C TOUT = first output value of independent variable +C UROUND = machine unit roundoff +C EWT, ITOL, ATOL = error weights and tolerance parameters +C as described in the driver routine, input. +C Y, TEMP = work arrays of length N. +C H0 = step size to be attempted, output. +C NITER = number of iterations (and of f evaluations) to compute H0, +C output. +C IER = the error flag, returned with the value +C IER = 0 if no trouble occurred, or +C IER = -1 if TOUT and t0 are considered too close to proceed. +C----------------------------------------------------------------------- +C +C Type declarations for local variables -------------------------------- +C + DOUBLE PRECISION AFI, ATOLI, DELYI, HALF, HG, HLB, HNEW, HRAT, + 1 HUB, HUN, PT1, T1, TDIST, TROUND, TWO, DVNORM, YDDNRM + INTEGER I, ITER +C----------------------------------------------------------------------- +C The following Fortran-77 declaration is to cause the values of the +C listed (local) variables to be saved between calls to this integrator. +C----------------------------------------------------------------------- + SAVE HALF, HUN, PT1, TWO + DATA HALF /0.5D0/, HUN /100.0D0/, PT1 /0.1D0/, TWO /2.0D0/ +C + NITER = 0 + TDIST = ABS(TOUT - T0) + TROUND = UROUND*MAX(ABS(T0),ABS(TOUT)) + IF (TDIST .LT. TWO*TROUND) GO TO 100 +C +C Set a lower bound on H based on the roundoff level in T0 and TOUT. --- + HLB = HUN*TROUND +C Set an upper bound on H based on TOUT-T0 and the initial Y and YDOT. - + HUB = PT1*TDIST + ATOLI = ATOL(1) + DO 10 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + DELYI = PT1*ABS(Y0(I)) + ATOLI + AFI = ABS(YDOT(I)) + IF (AFI*HUB .GT. DELYI) HUB = DELYI/AFI + 10 CONTINUE +C +C Set initial guess for H as geometric mean of upper and lower bounds. - + ITER = 0 + HG = SQRT(HLB*HUB) +C If the bounds have crossed, exit with the mean value. ---------------- + IF (HUB .LT. HLB) THEN + H0 = HG + GO TO 90 + ENDIF +C +C Looping point for iteration. ----------------------------------------- + 50 CONTINUE +C Estimate the second derivative as a difference quotient in f. -------- + T1 = T0 + HG + DO 60 I = 1,N + 60 Y(I) = Y0(I) + HG*YDOT(I) + CALL F (NEQ, T1, Y, TEMP) + DO 70 I = 1,N + 70 TEMP(I) = (TEMP(I) - YDOT(I))/HG + YDDNRM = DVNORM (N, TEMP, EWT) +C Get the corresponding new value of H. -------------------------------- + IF (YDDNRM*HUB*HUB .GT. TWO) THEN + HNEW = SQRT(TWO/YDDNRM) + ELSE + HNEW = SQRT(HG*HUB) + ENDIF + ITER = ITER + 1 +C----------------------------------------------------------------------- +C Test the stopping conditions. +C Stop if the new and previous H values differ by a factor of .lt. 2. +C Stop if four iterations have been done. Also, stop with previous H +C if hnew/hg .gt. 2 after first iteration, as this probably means that +C the second derivative value is bad because of cancellation error. +C----------------------------------------------------------------------- + IF (ITER .GE. 4) GO TO 80 + HRAT = HNEW/HG + IF ( (HRAT .GT. HALF) .AND. (HRAT .LT. TWO) ) GO TO 80 + IF ( (ITER .GE. 2) .AND. (HNEW .GT. TWO*HG) ) THEN + HNEW = HG + GO TO 80 + ENDIF + HG = HNEW + GO TO 50 +C +C Iteration done. Apply bounds, bias factor, and sign. ---------------- + 80 H0 = HNEW*HALF + IF (H0 .LT. HLB) H0 = HLB + IF (H0 .GT. HUB) H0 = HUB + 90 H0 = SIGN(H0, TOUT - T0) +C Restore Y array from Y0, then exit. ---------------------------------- + CALL DCOPY (N, Y0, 1, Y, 1) + NITER = ITER + IER = 0 + RETURN +C Error return for TOUT - T0 too small. -------------------------------- + 100 IER = -1 + RETURN +C----------------------- End of Subroutine DLHIN ----------------------- + END +*DECK DSTOKA + SUBROUTINE DSTOKA (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVX, ACOR, + 1 WM, IWM, F, JAC, PSOL) + EXTERNAL F, JAC, PSOL + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVX, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 SAVX(*), ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER NEWT, NSFI, NSLJ, NJEV + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION STIFR + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLS002/ STIFR, NEWT, NSFI, NSLJ, NJEV + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DSTOKA performs one step of the integration of an initial value +C problem for a system of Ordinary Differential Equations. +C +C This routine was derived from Subroutine DSTODPK in the DLSODPK +C package by the addition of automatic functional/Newton iteration +C switching and logic for re-use of Jacobian data. +C----------------------------------------------------------------------- +C Note: DSTOKA is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTOKA is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C Also used for input of YH(*,MAXORD+2) when JSTART = -1 +C and MAXORD .lt. the current order NQ. +C SAVX = an array of working storage, of length N. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C CCMAX = maximum relative change in H*EL0 before DSETPK is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in DSETPK or DSOLPK. +C A return with KFLAG = -1 or -2 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between DSETPK calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + INTEGER I, I1, IREDO, IRET, J, JB, JOK, M, NCF, NEWQ, NSLOW + DOUBLE PRECISION DCON, DDN, DEL, DELP, DRC, DSM, DUP, EXDN, EXSM, + 1 EXUP, DFNORM, R, RH, RHDN, RHSM, RHUP, ROC, STIFF, TOLD, DVNORM +C + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + NSLJ = 0 + IPUP = 0 + IRET = 3 + NEWT = 0 + STIFR = 0.0D0 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C The flag IPUP is set according to whether matrix data is involved +C (NEWT .gt. 0 .and. JACFLG .ne. 0) or not, to trigger a call to DSETPK. +C IPUP is set to MITER when RC differs from 1 by more than CCMAX, +C and at least every MSBP steps, when JACFLG = 1. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C----------------------------------------------------------------------- + 200 IF (NEWT .EQ. 0 .OR. JACFLG .EQ. 0) THEN + DRC = 0.0D0 + IPUP = 0 + CRATE = 0.7D0 + ELSE + DRC = ABS(RC - 1.0D0) + IF (DRC .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + ENDIF + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C Within the corrector loop, an estimated rate of convergence (ROC) +C and a stiffness ratio estimate (STIFF) are kept. Corresponding +C global estimates are kept as CRATE and stifr. +C----------------------------------------------------------------------- + 220 M = 0 + MNEWT = 0 + STIFF = 0.0D0 + ROC = 0.05D0 + NSLOW = 0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (NEWT .EQ. 0 .OR. IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, DSETPK is called to update any matrix data needed, +C before starting the corrector iteration. +C JOK is set to indicate if the matrix data need not be recomputed. +C IPUP is set to 0 as an indicator that the matrix data is up to date. +C----------------------------------------------------------------------- + JOK = 1 + IF (NST .EQ. 0 .OR. NST .GT. NSLJ+50) JOK = -1 + IF (ICF .EQ. 1 .AND. DRC .LT. 0.2D0) JOK = -1 + IF (ICF .EQ. 2) JOK = -1 + IF (JOK .EQ. -1) THEN + NSLJ = NST + NJEV = NJEV + 1 + ENDIF + CALL DSETPK (NEQ, Y, YH1, EWT, ACOR, SAVF, JOK, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + DRC = 0.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (NEWT .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation, and STIFF is set to 1.0. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DVNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + STIFF = 1.0D0 + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. STIFF is set to the ratio of the norms +C of the residual and the correction vector. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 SAVX(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + DFNORM = DVNORM (N, SAVX, EWT) + CALL DSOLPK (NEQ, Y, SAVF, SAVX, EWT, WM, IWM, F, PSOL) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DVNORM (N, SAVX, EWT) + IF (DEL .GT. 1.0D-8) STIFF = MAX(STIFF, DFNORM/DEL) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + SAVX(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is made for the iteration switch, and is also used +C in the convergence test. If the iteration seems to be diverging or +C converging at a slow rate (.gt. 0.8 more than once), it is stopped. +C----------------------------------------------------------------------- + 400 IF (M .NE. 0) THEN + ROC = MAX(0.05D0, DEL/DELP) + CRATE = MAX(0.2D0*CRATE,ROC) + ENDIF + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/EPCON + IF (DCON .LE. 1.0D0) GO TO 450 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + IF (ROC .GT. 10.0D0) GO TO 410 + IF (ROC .GT. 0.8D0) NSLOW = NSLOW + 1 + IF (NSLOW .GE. 2) GO TO 410 + MNEWT = M + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If functional iteration is being done (NEWT = 0) and MITER .gt. 0 +C (and this is not the first step), then switch to Newton +C (NEWT = MITER), and retry the step. (Setting STIFR = 1023 insures +C that a switch back will not occur for 10 step attempts.) +C If Newton iteration is being done, but using a preconditioner that +C is out of date (JACFLG .ne. 0 .and. JCUR = 0), then signal for a +C re-evalutation of the preconditioner, and retry the step. +C In all other cases, the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 ICF = 1 + IF (NEWT .EQ. 0) THEN + IF (NST .EQ. 0) GO TO 430 + IF (MITER .EQ. 0) GO TO 430 + NEWT = MITER + STIFR = 1023.0D0 + IPUP = MITER + GO TO 220 + ENDIF + IF (JCUR.EQ.1 .OR. JACFLG.EQ.0) GO TO 430 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + NCFN = NCFN + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.5D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 to signal that the +C preconditioner involved may need updating later. +C The stiffness ratio STIFR is updated using the latest STIFF value. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (NEWT .GT. 0) STIFR = 0.5D0*(STIFR + STIFF) + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C If Newton iteration is being done and STIFR is less than 1.5, +C then switch to functional iteration. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + IF (NEWT .EQ. 0) NSFI = NSFI + 1 + IF (NEWT .GT. 0 .AND. STIFR .LT. 1.5D0) NEWT = 0 + HU = H + NQU = NQ + DO 470 J = 1,L + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C in the case of failure, RHUP = 0.0 to avoid an order increase. +C the largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTOKA ---------------------- + END +*DECK DSETPK + SUBROUTINE DSETPK (NEQ, Y, YSV, EWT, FTEM, SAVF, JOK, WM, IWM, + 1 F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, JOK, IWM + DOUBLE PRECISION Y, YSV, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YSV(*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DSETPK is called by DSTOKA to interface with the user-supplied +C routine JAC, to compute and process relevant parts of +C the matrix P = I - H*EL(1)*J , where J is the Jacobian df/dy, +C as need for preconditioning matrix operations later. +C +C In addition to variables described previously, communication +C with DSETPK uses the following: +C Y = array containing predicted values on entry. +C YSV = array containing predicted y, to be saved (YH1 in DSTOKA). +C FTEM = work array of length N (ACOR in DSTOKA). +C SAVF = array containing f evaluated at predicted y. +C JOK = input flag showing whether it was judged that Jacobian matrix +C data need not be recomputed (JOK = 1) or needs to be +C (JOK = -1). +C WM = real work space for matrices. +C Space for preconditioning data starts at WM(LOCWP). +C IWM = integer work space. +C Space for preconditioning data starts at IWM(LOCIWP). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C JAC returned an error flag. +C JCUR = output flag to indicate whether the matrix data involved +C is now current (JCUR = 1) or not (JCUR = 0). +C This routine also uses Common variables EL0, H, TN, IERPJ, JCUR, NJE. +C----------------------------------------------------------------------- + INTEGER IER + DOUBLE PRECISION HL0 +C + IERPJ = 0 + JCUR = 0 + IF (JOK .EQ. -1) JCUR = 1 + HL0 = EL0*H + CALL JAC (F, NEQ, TN, Y, YSV, EWT, SAVF, FTEM, HL0, JOK, + 1 WM(LOCWP), IWM(LOCIWP), IER) + NJE = NJE + 1 + IF (IER .EQ. 0) RETURN + IERPJ = 1 + RETURN +C----------------------- End of Subroutine DSETPK ---------------------- + END +*DECK DSRCKR + SUBROUTINE DSRCKR (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLS002, DLSR01, DLPK01, which +C are used internally by the DLSODKR solver. +C +C RSAV = real array of length 228 or more. +C ISAV = integer array of length 63 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILS2, ILSR, ILSP + INTEGER I, IOFF, LENILP, LENRLP, LENILS, LENRLS, LENILR, LENRLR + DOUBLE PRECISION RSAV, RLS, RLS2, RLSR, RLSP + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLP, LENILP, LENRLR, LENILR + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLS002/ RLS2, ILS2(4) + COMMON /DLSR01/ RLSR(5), ILSR(9) + COMMON /DLPK01/ RLSP(4), ILSP(13) + DATA LENRLS/218/, LENILS/37/, LENRLP/4/, LENILP/13/ + DATA LENRLR/5/, LENILR/9/ +C + IF (JOB .EQ. 2) GO TO 100 + CALL DCOPY (LENRLS, RLS, 1, RSAV, 1) + RSAV(LENRLS+1) = RLS2 + CALL DCOPY (LENRLR, RLSR, 1, RSAV(LENRLS+2), 1) + CALL DCOPY (LENRLP, RLSP, 1, RSAV(LENRLS+LENRLR+2), 1) + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + ISAV(LENILS+1) = ILS2(1) + ISAV(LENILS+2) = ILS2(2) + ISAV(LENILS+3) = ILS2(3) + ISAV(LENILS+4) = ILS2(4) + IOFF = LENILS + 2 + DO 30 I = 1,LENILR + 30 ISAV(IOFF+I) = ILSR(I) + IOFF = IOFF + LENILR + DO 40 I = 1,LENILP + 40 ISAV(IOFF+I) = ILSP(I) + RETURN +C + 100 CONTINUE + CALL DCOPY (LENRLS, RSAV, 1, RLS, 1) + RLS2 = RSAV(LENRLS+1) + CALL DCOPY (LENRLR, RSAV(LENRLS+2), 1, RLSR, 1) + CALL DCOPY (LENRLP, RSAV(LENRLS+LENRLR+2), 1, RLSP, 1) + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + ILS2(1) = ISAV(LENILS+1) + ILS2(2) = ISAV(LENILS+2) + ILS2(3) = ISAV(LENILS+3) + ILS2(4) = ISAV(LENILS+4) + IOFF = LENILS + 2 + DO 130 I = 1,LENILR + 130 ILSR(I) = ISAV(IOFF+I) + IOFF = IOFF + LENILR + DO 140 I = 1,LENILP + 140 ILSP(I) = ISAV(IOFF+I) + RETURN +C----------------------- End of Subroutine DSRCKR ---------------------- + END +*DECK DAINVG + SUBROUTINE DAINVG (RES, ADDA, NEQ, T, Y, YDOT, MITER, + 1 ML, MU, PW, IPVT, IER ) + EXTERNAL RES, ADDA + INTEGER NEQ, MITER, ML, MU, IPVT, IER + INTEGER I, LENPW, MLP1, NROWPW + DOUBLE PRECISION T, Y, YDOT, PW + DIMENSION Y(*), YDOT(*), PW(*), IPVT(*) +C----------------------------------------------------------------------- +C This subroutine computes the initial value +C of the vector YDOT satisfying +C A * YDOT = g(t,y) +C when A is nonsingular. It is called by DLSODI for +C initialization only, when ISTATE = 0 . +C DAINVG returns an error flag IER: +C IER = 0 means DAINVG was successful. +C IER .ge. 2 means RES returned an error flag IRES = IER. +C IER .lt. 0 means the a-matrix was found to be singular. +C----------------------------------------------------------------------- +C + IF (MITER .GE. 4) GO TO 100 +C +C Full matrix case ----------------------------------------------------- +C + LENPW = NEQ*NEQ + DO 10 I = 1, LENPW + 10 PW(I) = 0.0D0 +C + IER = 1 + CALL RES ( NEQ, T, Y, PW, YDOT, IER ) + IF (IER .GT. 1) RETURN +C + CALL ADDA ( NEQ, T, Y, 0, 0, PW, NEQ ) + CALL DGEFA ( PW, NEQ, NEQ, IPVT, IER ) + IF (IER .EQ. 0) GO TO 20 + IER = -IER + RETURN + 20 CALL DGESL ( PW, NEQ, NEQ, IPVT, YDOT, 0 ) + RETURN +C +C Band matrix case ----------------------------------------------------- +C + 100 CONTINUE + NROWPW = 2*ML + MU + 1 + LENPW = NEQ * NROWPW + DO 110 I = 1, LENPW + 110 PW(I) = 0.0D0 +C + IER = 1 + CALL RES ( NEQ, T, Y, PW, YDOT, IER ) + IF (IER .GT. 1) RETURN +C + MLP1 = ML + 1 + CALL ADDA ( NEQ, T, Y, ML, MU, PW(MLP1), NROWPW ) + CALL DGBFA ( PW, NROWPW, NEQ, ML, MU, IPVT, IER ) + IF (IER .EQ. 0) GO TO 120 + IER = -IER + RETURN + 120 CALL DGBSL ( PW, NROWPW, NEQ, ML, MU, IPVT, YDOT, 0 ) + RETURN +C----------------------- End of Subroutine DAINVG ---------------------- + END +*DECK DSTODI + SUBROUTINE DSTODI (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVR, + 1 ACOR, WM, IWM, RES, ADDA, JAC, PJAC, SLVS ) + EXTERNAL RES, ADDA, JAC, PJAC, SLVS + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVR, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 SAVR(*), ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, IREDO, IRES, IRET, J, JB, KGO, M, NCF, NEWQ + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, + 1 ELJH, EL1H, EXDN, EXSM, EXUP, + 2 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM +C----------------------------------------------------------------------- +C DSTODI performs one step of the integration of an initial value +C problem for a system of Ordinary Differential Equations. +C Note: DSTODI is independent of the value of the iteration method +C indicator MITER, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODI is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to RES, ADDA, +C and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to RES, JAC, and ADDA. +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls tO RES, G, ADDA, +C and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. also used for +C input of YH(*,MAXORD+2) when JSTART = -1 and MAXORD is less +C than the current order NQ. +C Same as YDOTI in the driver. +C SAVR = an array of working storage, of length N. +C ACOR = a work array of length N used for the accumulated +C corrections. On a succesful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration. +C PJAC = name of routine to evaluate and preprocess Jacobian matrix. +C SLVS = name of routine to solve linear system in chord iteration. +C CCMAX = maximum relative change in H*EL0 before PJAC is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 RES ordered immediate return. +C -4 error condition from RES could not be avoided. +C -5 fatal error in PJAC or SLVS. +C A return with KFLAG = -1, -2, or -4 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between PJAC calls. +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + IPUP = MITER + IRET = 3 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C When RC differs from 1 by more than CCMAX, IPUP is set to MITER +C to force PJAC to be called. +C In any case, PJAC is called at least every MSBP steps. +C----------------------------------------------------------------------- + 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by H and the +C error weight vector EWT. The sum of the corrections is accumulated +C in ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + DO 230 I = 1,N + SAVF(I) = YH(I,2) / H + 230 Y(I) = YH(I,1) + IF (IPUP .LE. 0) GO TO 240 +C----------------------------------------------------------------------- +C If indicated, the matrix P = A - H*EL(1)*dr/dy is reevaluated and +C preprocessed before starting the corrector iteration. IPUP is set +C to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVR, SAVF, WM, IWM, + 1 RES, JAC, ADDA ) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .EQ. 0) GO TO 250 + IF (IERPJ .LT. 0) GO TO 435 + IRES = IERPJ + GO TO (430, 435, 430), IRES +C Get residual at predicted values, if not already done in PJAC. ------- + 240 IRES = 1 + CALL RES ( NEQ, TN, Y, SAVF, SAVR, IRES ) + NFE = NFE + 1 + KGO = ABS(IRES) + GO TO ( 250, 435, 430 ) , KGO + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 +C----------------------------------------------------------------------- +C Solve the linear system with the current residual as +C right-hand side and P as coefficient matrix. +C----------------------------------------------------------------------- + 270 CONTINUE + CALL SLVS (WM, IWM, SAVR, SAVF) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + EL1H = EL(1) * H + DEL = DVNORM (N, SAVR, EWT) * ABS(H) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + SAVR(I) + SAVF(I) = ACOR(I) + YH(I,2)/H + 380 Y(I) = YH(I,1) + EL1H*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C----------------------------------------------------------------------- + IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) + IF (DCON .LE. 1.0D0) GO TO 460 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + DELP = DEL + IRES = 1 + CALL RES ( NEQ, TN, Y, SAVF, SAVR, IRES ) + NFE = NFE + 1 + KGO = ABS(IRES) + GO TO ( 270, 435, 410 ) , KGO +C----------------------------------------------------------------------- +C The correctors failed to converge, or RES has returned abnormally. +C on a convergence failure, if the Jacobian is out of date, PJAC is +C called for the next try. Otherwise the YH array is retracted to its +C values before prediction, and H is reduced, if possible. +C take an error exit if IRES = 2, or H cannot be reduced, or MXNCF +C failures have occurred, or a fatal error occurred in PJAC or SLVS. +C----------------------------------------------------------------------- + 410 ICF = 1 + IF (JCUR .EQ. 1) GO TO 430 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + RMAX = 2.0D0 + 435 TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IRES .EQ. 2) GO TO 680 + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 685 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 450 + IF (NCF .EQ. MXNCF) GO TO 450 + RH = 0.25D0 + IPUP = MITER + IREDO = 1 + GO TO 170 + 450 IF (IRES .EQ. 3) GO TO 680 + GO TO 670 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 460 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = ABS(H) * DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + DO 470 J = 1,L + ELJH = EL(J)*H + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + ELJH*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.1 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -7) GO TO 660 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C The largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = ABS(H) * DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = H*EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.1D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -1 - IRES + GO TO 720 + 685 KFLAG = -5 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = H/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTODI ---------------------- + END +*DECK DPREPJI + SUBROUTINE DPREPJI (NEQ, Y, YH, NYH, EWT, RTEM, SAVR, S, WM, IWM, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, RTEM, SAVR, S, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), RTEM(*), + 1 S(*), SAVR(*), WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, II, IRES, J, J1, JJ, LENP, + 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU + DOUBLE PRECISION CON, FAC, HL0, R, SRUR, YI, YJ, YJJ +C----------------------------------------------------------------------- +C DPREPJI is called by DSTODI to compute and process the matrix +C P = A - H*EL(1)*J , where J is an approximation to the Jacobian dr/dy, +C where r = g(t,y) - A(t,y)*s. Here J is computed by the user-supplied +C routine JAC if MITER = 1 or 4, or by finite differencing if MITER = +C 2 or 5. J is stored in WM, rescaled, and ADDA is called to generate +C P. P is then subjected to LU decomposition in preparation +C for later solution of linear systems with P as coefficient +C matrix. This is done by DGEFA if MITER = 1 or 2, and by +C DGBFA if MITER = 4 or 5. +C +C In addition to variables described previously, communication +C with DPREPJI uses the following: +C Y = array containing predicted values on entry. +C RTEM = work array of length N (ACOR in DSTODI). +C SAVR = array used for output only. On output it contains the +C residual evaluated at current values of t and y. +C S = array containing predicted values of dy/dt (SAVF in DSTODI). +C WM = real work space for matrices. On output it contains the +C LU decomposition of P. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains the band parameters +C ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C EL0 = el(1) (input). +C IERPJ = output error flag. +C = 0 if no trouble occurred, +C = 1 if the P matrix was found to be singular, +C = IRES (= 2 or 3) if RES returned IRES = 2 or 3. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the Common variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C----------------------------------------------------------------------- + NJE = NJE + 1 + HL0 = H*EL0 + IERPJ = 0 + JCUR = 1 + GO TO (100, 200, 300, 400, 500), MITER +C If MITER = 1, call RES, then JAC, and multiply by scalar. ------------ + 100 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + LENP = N*N + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC ( NEQ, TN, Y, S, 0, 0, WM(3), N ) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 240 +C If MITER = 2, make N + 1 calls to RES to approximate J. -------------- + 200 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + SRUR = WM(1) + J1 = 2 + DO 230 J = 1,N + YJ = Y(J) + R = MAX(SRUR*ABS(YJ),0.01D0/EWT(J)) + Y(J) = Y(J) + R + FAC = -HL0/R + CALL RES ( NEQ, TN, Y, S, RTEM, IRES ) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 220 I = 1,N + 220 WM(I+J1) = (RTEM(I) - SAVR(I))*FAC + Y(J) = YJ + J1 = J1 + N + 230 CONTINUE + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C Add matrix A. -------------------------------------------------------- + 240 CONTINUE + CALL ADDA(NEQ, TN, Y, 0, 0, WM(3), N) +C Do LU decomposition on P. -------------------------------------------- + CALL DGEFA (WM(3), N, N, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Dummy section for MITER = 3 + 300 RETURN +C If MITER = 4, call RES, then JAC, and multiply by scalar. ------------ + 400 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MEBAND = MBAND + ML + LENP = MEBAND*N + DO 410 I = 1,LENP + 410 WM(I+2) = 0.0D0 + CALL JAC ( NEQ, TN, Y, S, ML, MU, WM(ML3), MEBAND) + CON = -HL0 + DO 420 I = 1,LENP + 420 WM(I+2) = WM(I+2)*CON + GO TO 570 +C If MITER = 5, make ML + MU + 2 calls to RES to approximate J. -------- + 500 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MBA = MIN(MBAND,N) + MEBAND = MBAND + ML + MEB1 = MEBAND - 1 + SRUR = WM(1) + DO 560 J = 1,MBA + DO 530 I = J,N,MBAND + YI = Y(I) + R = MAX(SRUR*ABS(YI),0.01D0/EWT(I)) + 530 Y(I) = Y(I) + R + CALL RES ( NEQ, TN, Y, S, RTEM, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 550 JJ = J,N,MBAND + Y(JJ) = YH(JJ,1) + YJJ = Y(JJ) + R = MAX(SRUR*ABS(YJJ),0.01D0/EWT(JJ)) + FAC = -HL0/R + I1 = MAX(JJ-MU,1) + I2 = MIN(JJ+ML,N) + II = JJ*MEB1 - ML + 2 + DO 540 I = I1,I2 + 540 WM(II+I) = (RTEM(I) - SAVR(I))*FAC + 550 CONTINUE + 560 CONTINUE + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C Add matrix A. -------------------------------------------------------- + 570 CONTINUE + CALL ADDA(NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) +C Do LU decomposition of P. -------------------------------------------- + CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Error return for IRES = 2 or IRES = 3 return from RES. --------------- + 600 IERPJ = IRES + RETURN +C----------------------- End of Subroutine DPREPJI --------------------- + END +*DECK DAIGBT + SUBROUTINE DAIGBT (RES, ADDA, NEQ, T, Y, YDOT, + 1 MB, NB, PW, IPVT, IER ) + EXTERNAL RES, ADDA + INTEGER NEQ, MB, NB, IPVT, IER + INTEGER I, LENPW, LBLOX, LPB, LPC + DOUBLE PRECISION T, Y, YDOT, PW + DIMENSION Y(*), YDOT(*), PW(*), IPVT(*), NEQ(*) +C----------------------------------------------------------------------- +C This subroutine computes the initial value +C of the vector YDOT satisfying +C A * YDOT = g(t,y) +C when A is nonsingular. It is called by DLSOIBT for +C initialization only, when ISTATE = 0 . +C DAIGBT returns an error flag IER: +C IER = 0 means DAIGBT was successful. +C IER .ge. 2 means RES returned an error flag IRES = IER. +C IER .lt. 0 means the A matrix was found to have a singular +C diagonal block (hence YDOT could not be solved for). +C----------------------------------------------------------------------- + LBLOX = MB*MB*NB + LPB = 1 + LBLOX + LPC = LPB + LBLOX + LENPW = 3*LBLOX + DO 10 I = 1,LENPW + 10 PW(I) = 0.0D0 + IER = 1 + CALL RES (NEQ, T, Y, PW, YDOT, IER) + IF (IER .GT. 1) RETURN + CALL ADDA (NEQ, T, Y, MB, NB, PW(1), PW(LPB), PW(LPC) ) + CALL DDECBT (MB, NB, PW, PW(LPB), PW(LPC), IPVT, IER) + IF (IER .EQ. 0) GO TO 20 + IER = -IER + RETURN + 20 CALL DSOLBT (MB, NB, PW, PW(LPB), PW(LPC), YDOT, IPVT) + RETURN +C----------------------- End of Subroutine DAIGBT ---------------------- + END +*DECK DPJIBT + SUBROUTINE DPJIBT (NEQ, Y, YH, NYH, EWT, RTEM, SAVR, S, WM, IWM, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, RTEM, SAVR, S, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), RTEM(*), + 1 S(*), SAVR(*), WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, IER, IIA, IIB, IIC, IPA, IPB, IPC, IRES, J, J1, J2, + 1 K, K1, LENP, LBLOX, LPB, LPC, MB, MBSQ, MWID, NB + DOUBLE PRECISION CON, FAC, HL0, R, SRUR +C----------------------------------------------------------------------- +C DPJIBT is called by DSTODI to compute and process the matrix +C P = A - H*EL(1)*J , where J is an approximation to the Jacobian dr/dy, +C and r = g(t,y) - A(t,y)*s. Here J is computed by the user-supplied +C routine JAC if MITER = 1, or by finite differencing if MITER = 2. +C J is stored in WM, rescaled, and ADDA is called to generate P. +C P is then subjected to LU decomposition by DDECBT in preparation +C for later solution of linear systems with P as coefficient matrix. +C +C In addition to variables described previously, communication +C with DPJIBT uses the following: +C Y = array containing predicted values on entry. +C RTEM = work array of length N (ACOR in DSTODI). +C SAVR = array used for output only. On output it contains the +C residual evaluated at current values of t and y. +C S = array containing predicted values of dy/dt (SAVF in DSTODI). +C WM = real work space for matrices. On output it contains the +C LU decomposition of P. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains block structure parameters +C MB = IWM(1) and NB = IWM(2). +C EL0 = EL(1) (input). +C IERPJ = output error flag. +C = 0 if no trouble occurred, +C = 1 if the P matrix was found to be unfactorable, +C = IRES (= 2 or 3) if RES returned IRES = 2 or 3. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the Common variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C----------------------------------------------------------------------- + NJE = NJE + 1 + HL0 = H*EL0 + IERPJ = 0 + JCUR = 1 + MB = IWM(1) + NB = IWM(2) + MBSQ = MB*MB + LBLOX = MBSQ*NB + LPB = 3 + LBLOX + LPC = LPB + LBLOX + LENP = 3*LBLOX + GO TO (100, 200), MITER +C If MITER = 1, call RES, then JAC, and multiply by scalar. ------------ + 100 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, S, MB, NB, WM(3), WM(LPB), WM(LPC)) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 260 +C +C If MITER = 2, make 3*MB + 1 calls to RES to approximate J. ----------- + 200 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + MWID = 3*MB + SRUR = WM(1) + DO 205 I = 1,LENP + 205 WM(2+I) = 0.0D0 + DO 250 K = 1,3 + DO 240 J = 1,MB +C Increment Y(I) for group of column indices, and call RES. ---- + J1 = J+(K-1)*MB + DO 210 I = J1,N,MWID + R = MAX(SRUR*ABS(Y(I)),0.01D0/EWT(I)) + Y(I) = Y(I) + R + 210 CONTINUE + CALL RES (NEQ, TN, Y, S, RTEM, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 215 I = 1,N + 215 RTEM(I) = RTEM(I) - SAVR(I) + K1 = K + DO 230 I = J1,N,MWID +C Get Jacobian elements in column I (block-column K1). ------- + Y(I) = YH(I,1) + R = MAX(SRUR*ABS(Y(I)),0.01D0/EWT(I)) + FAC = -HL0/R +C Compute and load elements PA(*,J,K1). ---------------------- + IIA = I - J + IPA = 2 + (J-1)*MB + (K1-1)*MBSQ + DO 221 J2 = 1,MB + 221 WM(IPA+J2) = RTEM(IIA+J2)*FAC + IF (K1 .LE. 1) GO TO 223 +C Compute and load elements PB(*,J,K1-1). -------------------- + IIB = IIA - MB + IPB = IPA + LBLOX - MBSQ + DO 222 J2 = 1,MB + 222 WM(IPB+J2) = RTEM(IIB+J2)*FAC + 223 CONTINUE + IF (K1 .GE. NB) GO TO 225 +C Compute and load elements PC(*,J,K1+1). -------------------- + IIC = IIA + MB + IPC = IPA + 2*LBLOX + MBSQ + DO 224 J2 = 1,MB + 224 WM(IPC+J2) = RTEM(IIC+J2)*FAC + 225 CONTINUE + IF (K1 .NE. 3) GO TO 227 +C Compute and load elements PC(*,J,1). ----------------------- + IPC = IPA - 2*MBSQ + 2*LBLOX + DO 226 J2 = 1,MB + 226 WM(IPC+J2) = RTEM(J2)*FAC + 227 CONTINUE + IF (K1 .NE. NB-2) GO TO 229 +C Compute and load elements PB(*,J,NB). ---------------------- + IIB = N - MB + IPB = IPA + 2*MBSQ + LBLOX + DO 228 J2 = 1,MB + 228 WM(IPB+J2) = RTEM(IIB+J2)*FAC + 229 K1 = K1 + 3 + 230 CONTINUE + 240 CONTINUE + 250 CONTINUE +C RES call for first corrector iteration. ------------------------------ + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C Add matrix A. -------------------------------------------------------- + 260 CONTINUE + CALL ADDA (NEQ, TN, Y, MB, NB, WM(3), WM(LPB), WM(LPC)) +C Do LU decomposition on P. -------------------------------------------- + CALL DDECBT (MB, NB, WM(3), WM(LPB), WM(LPC), IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Error return for IRES = 2 or IRES = 3 return from RES. --------------- + 600 IERPJ = IRES + RETURN +C----------------------- End of Subroutine DPJIBT ---------------------- + END +*DECK DSLSBT + SUBROUTINE DSLSBT (WM, IWM, X, TEM) + INTEGER IWM + INTEGER LBLOX, LPB, LPC, MB, NB + DOUBLE PRECISION WM, X, TEM + DIMENSION WM(*), IWM(*), X(*), TEM(*) +C----------------------------------------------------------------------- +C This routine acts as an interface between the core integrator +C routine and the DSOLBT routine for the solution of the linear system +C arising from chord iteration. +C Communication with DSLSBT uses the following variables: +C WM = real work space containing the LU decomposition, +C starting at WM(3). +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains block structure parameters +C MB = IWM(1) and NB = IWM(2). +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C TEM = vector of work space of length N, not used in this version. +C----------------------------------------------------------------------- + MB = IWM(1) + NB = IWM(2) + LBLOX = MB*MB*NB + LPB = 3 + LBLOX + LPC = LPB + LBLOX + CALL DSOLBT (MB, NB, WM(3), WM(LPB), WM(LPC), X, IWM(21)) + RETURN +C----------------------- End of Subroutine DSLSBT ---------------------- + END +*DECK DDECBT + SUBROUTINE DDECBT (M, N, A, B, C, IP, IER) + INTEGER M, N, IP(M,N), IER + DOUBLE PRECISION A(M,M,N), B(M,M,N), C(M,M,N) +C----------------------------------------------------------------------- +C Block-tridiagonal matrix decomposition routine. +C Written by A. C. Hindmarsh. +C Latest revision: November 10, 1983 (ACH) +C Reference: UCID-30150 +C Solution of Block-Tridiagonal Systems of Linear +C Algebraic Equations +C A.C. Hindmarsh +C February 1977 +C The input matrix contains three blocks of elements in each block-row, +C including blocks in the (1,3) and (N,N-2) block positions. +C DDECBT uses block Gauss elimination and Subroutines DGEFA and DGESL +C for solution of blocks. Partial pivoting is done within +C block-rows only. +C +C Note: this version uses LINPACK routines DGEFA/DGESL instead of +C of dec/sol for solution of blocks, and it uses the BLAS routine DDOT +C for dot product calculations. +C +C Input: +C M = order of each block. +C N = number of blocks in each direction of the matrix. +C N must be 4 or more. The complete matrix has order M*N. +C A = M by M by N array containing diagonal blocks. +C A(i,j,k) contains the (i,j) element of the k-th block. +C B = M by M by N array containing the super-diagonal blocks +C (in B(*,*,k) for k = 1,...,N-1) and the block in the (N,N-2) +C block position (in B(*,*,N)). +C C = M by M by N array containing the subdiagonal blocks +C (in C(*,*,k) for k = 2,3,...,N) and the block in the +C (1,3) block position (in C(*,*,1)). +C IP = integer array of length M*N for working storage. +C Output: +C A,B,C = M by M by N arrays containing the block-LU decomposition +C of the input matrix. +C IP = M by N array of pivot information. IP(*,k) contains +C information for the k-th digonal block. +C IER = 0 if no trouble occurred, or +C = -1 if the input value of M or N was illegal, or +C = k if a singular matrix was found in the k-th diagonal block. +C Use DSOLBT to solve the associated linear system. +C +C External routines required: DGEFA and DGESL (from LINPACK) and +C DDOT (from the BLAS, or Basic Linear Algebra package). +C----------------------------------------------------------------------- + INTEGER NM1, NM2, KM1, I, J, K + DOUBLE PRECISION DP, DDOT + IF (M .LT. 1 .OR. N .LT. 4) GO TO 210 + NM1 = N - 1 + NM2 = N - 2 +C Process the first block-row. ----------------------------------------- + CALL DGEFA (A, M, M, IP, IER) + K = 1 + IF (IER .NE. 0) GO TO 200 + DO 10 J = 1,M + CALL DGESL (A, M, M, IP, B(1,J,1), 0) + CALL DGESL (A, M, M, IP, C(1,J,1), 0) + 10 CONTINUE +C Adjust B(*,*,2). ----------------------------------------------------- + DO 40 J = 1,M + DO 30 I = 1,M + DP = DDOT (M, C(I,1,2), M, C(1,J,1), 1) + B(I,J,2) = B(I,J,2) - DP + 30 CONTINUE + 40 CONTINUE +C Main loop. Process block-rows 2 to N-1. ----------------------------- + DO 100 K = 2,NM1 + KM1 = K - 1 + DO 70 J = 1,M + DO 60 I = 1,M + DP = DDOT (M, C(I,1,K), M, B(1,J,KM1), 1) + A(I,J,K) = A(I,J,K) - DP + 60 CONTINUE + 70 CONTINUE + CALL DGEFA (A(1,1,K), M, M, IP(1,K), IER) + IF (IER .NE. 0) GO TO 200 + DO 80 J = 1,M + 80 CALL DGESL (A(1,1,K), M, M, IP(1,K), B(1,J,K), 0) + 100 CONTINUE +C Process last block-row and return. ----------------------------------- + DO 130 J = 1,M + DO 120 I = 1,M + DP = DDOT (M, B(I,1,N), M, B(1,J,NM2), 1) + C(I,J,N) = C(I,J,N) - DP + 120 CONTINUE + 130 CONTINUE + DO 160 J = 1,M + DO 150 I = 1,M + DP = DDOT (M, C(I,1,N), M, B(1,J,NM1), 1) + A(I,J,N) = A(I,J,N) - DP + 150 CONTINUE + 160 CONTINUE + CALL DGEFA (A(1,1,N), M, M, IP(1,N), IER) + K = N + IF (IER .NE. 0) GO TO 200 + RETURN +C Error returns. ------------------------------------------------------- + 200 IER = K + RETURN + 210 IER = -1 + RETURN +C----------------------- End of Subroutine DDECBT ---------------------- + END +*DECK DSOLBT + SUBROUTINE DSOLBT (M, N, A, B, C, Y, IP) + INTEGER M, N, IP(M,N) + DOUBLE PRECISION A(M,M,N), B(M,M,N), C(M,M,N), Y(M,N) +C----------------------------------------------------------------------- +C Solution of block-tridiagonal linear system. +C Coefficient matrix must have been previously processed by DDECBT. +C M, N, A,B,C, and IP must not have been changed since call to DDECBT. +C Written by A. C. Hindmarsh. +C Input: +C M = order of each block. +C N = number of blocks in each direction of matrix. +C A,B,C = M by M by N arrays containing block LU decomposition +C of coefficient matrix from DDECBT. +C IP = M by N integer array of pivot information from DDECBT. +C Y = array of length M*N containg the right-hand side vector +C (treated as an M by N array here). +C Output: +C Y = solution vector, of length M*N. +C +C External routines required: DGESL (LINPACK) and DDOT (BLAS). +C----------------------------------------------------------------------- +C + INTEGER NM1, NM2, I, K, KB, KM1, KP1 + DOUBLE PRECISION DP, DDOT + NM1 = N - 1 + NM2 = N - 2 +C Forward solution sweep. ---------------------------------------------- + CALL DGESL (A, M, M, IP, Y, 0) + DO 30 K = 2,NM1 + KM1 = K - 1 + DO 20 I = 1,M + DP = DDOT (M, C(I,1,K), M, Y(1,KM1), 1) + Y(I,K) = Y(I,K) - DP + 20 CONTINUE + CALL DGESL (A(1,1,K), M, M, IP(1,K), Y(1,K), 0) + 30 CONTINUE + DO 50 I = 1,M + DP = DDOT (M, C(I,1,N), M, Y(1,NM1), 1) + 1 + DDOT (M, B(I,1,N), M, Y(1,NM2), 1) + Y(I,N) = Y(I,N) - DP + 50 CONTINUE + CALL DGESL (A(1,1,N), M, M, IP(1,N), Y(1,N), 0) +C Backward solution sweep. --------------------------------------------- + DO 80 KB = 1,NM1 + K = N - KB + KP1 = K + 1 + DO 70 I = 1,M + DP = DDOT (M, B(I,1,K), M, Y(1,KP1), 1) + Y(I,K) = Y(I,K) - DP + 70 CONTINUE + 80 CONTINUE + DO 100 I = 1,M + DP = DDOT (M, C(I,1,1), M, Y(1,3), 1) + Y(I,1) = Y(I,1) - DP + 100 CONTINUE + RETURN +C----------------------- End of Subroutine DSOLBT ---------------------- + END +*DECK DIPREPI + SUBROUTINE DIPREPI (NEQ, Y, S, RWORK, IA, JA, IC, JC, IPFLAG, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, IA, JA, IC, JC, IPFLAG + DOUBLE PRECISION Y, S, RWORK + DIMENSION NEQ(*), Y(*), S(*), RWORK(*), IA(*), JA(*), IC(*), JC(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMAX, LEWTN, LYHD, LYHN +C----------------------------------------------------------------------- +C This routine serves as an interface between the driver and +C Subroutine DPREPI. Tasks performed here are: +C * call DPREPI, +C * reset the required WM segment length LENWK, +C * move YH back to its final location (following WM in RWORK), +C * reset pointers for YH, SAVR, EWT, and ACOR, and +C * move EWT to its new position if ISTATE = 0 or 1. +C IPFLAG is an output error indication flag. IPFLAG = 0 if there was +C no trouble, and IPFLAG is the value of the DPREPI error flag IPPER +C if there was trouble in Subroutine DPREPI. +C----------------------------------------------------------------------- + IPFLAG = 0 +C Call DPREPI to do matrix preprocessing operations. ------------------- + CALL DPREPI (NEQ, Y, S, RWORK(LYH), RWORK(LSAVF), RWORK(LEWT), + 1 RWORK(LACOR), IA, JA, IC, JC, RWORK(LWM), RWORK(LWM), IPFLAG, + 2 RES, JAC, ADDA) + LENWK = MAX(LREQ,LWMIN) + IF (IPFLAG .LT. 0) RETURN +C If DPREPI was successful, move YH to end of required space for WM. --- + LYHN = LWM + LENWK + IF (LYHN .GT. LYH) RETURN + LYHD = LYH - LYHN + IF (LYHD .EQ. 0) GO TO 20 + IMAX = LYHN - 1 + LENYHM + DO 10 I=LYHN,IMAX + 10 RWORK(I) = RWORK(I+LYHD) + LYH = LYHN +C Reset pointers for SAVR, EWT, and ACOR. ------------------------------ + 20 LSAVF = LYH + LENYH + LEWTN = LSAVF + N + LACOR = LEWTN + N + IF (ISTATC .EQ. 3) GO TO 40 +C If ISTATE = 1, move EWT (left) to its new position. ------------------ + IF (LEWTN .GT. LEWT) RETURN + DO 30 I=1,N + 30 RWORK(I+LEWTN-1) = RWORK(I+LEWT-1) + 40 LEWT = LEWTN + RETURN +C----------------------- End of Subroutine DIPREPI --------------------- + END +*DECK DPREPI + SUBROUTINE DPREPI (NEQ, Y, S, YH, SAVR, EWT, RTEM, IA, JA, IC, JC, + 1 WK, IWK, IPPER, RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, IA, JA, IC, JC, IWK, IPPER + DOUBLE PRECISION Y, S, YH, SAVR, EWT, RTEM, WK + DIMENSION NEQ(*), Y(*), S(*), YH(*), SAVR(*), EWT(*), RTEM(*), + 1 IA(*), JA(*), IC(*), JC(*), WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IBR, IER, IPIL, IPIU, IPTT1, IPTT2, J, K, KNEW, KAMAX, + 1 KAMIN, KCMAX, KCMIN, LDIF, LENIGP, LENWK1, LIWK, LJFO, MAXG, + 2 NP1, NZSUT + DOUBLE PRECISION ERWT, FAC, YJ +C----------------------------------------------------------------------- +C This routine performs preprocessing related to the sparse linear +C systems that must be solved. +C The operations that are performed here are: +C * compute sparseness structure of the iteration matrix +C P = A - con*J according to MOSS, +C * compute grouping of column indices (MITER = 2), +C * compute a new ordering of rows and columns of the matrix, +C * reorder JA corresponding to the new ordering, +C * perform a symbolic LU factorization of the matrix, and +C * set pointers for segments of the IWK/WK array. +C In addition to variables described previously, DPREPI uses the +C following for communication: +C YH = the history array. Only the first column, containing the +C current Y vector, is used. Used only if MOSS .ne. 0. +C S = array of length NEQ, identical to YDOTI in the driver, used +C only if MOSS .ne. 0. +C SAVR = a work array of length NEQ, used only if MOSS .ne. 0. +C EWT = array of length NEQ containing (inverted) error weights. +C Used only if MOSS = 2 or 4 or if ISTATE = MOSS = 1. +C RTEM = a work array of length NEQ, identical to ACOR in the driver, +C used only if MOSS = 2 or 4. +C WK = a real work array of length LENWK, identical to WM in +C the driver. +C IWK = integer work array, assumed to occupy the same space as WK. +C LENWK = the length of the work arrays WK and IWK. +C ISTATC = a copy of the driver input argument ISTATE (= 1 on the +C first call, = 3 on a continuation call). +C IYS = flag value from ODRV or CDRV. +C IPPER = output error flag , with the following values and meanings: +C = 0 no error. +C = -1 insufficient storage for internal structure pointers. +C = -2 insufficient storage for JGROUP. +C = -3 insufficient storage for ODRV. +C = -4 other error flag from ODRV (should never occur). +C = -5 insufficient storage for CDRV. +C = -6 other error flag from CDRV. +C = -7 if the RES routine returned error flag IRES = IER = 2. +C = -8 if the RES routine returned error flag IRES = IER = 3. +C----------------------------------------------------------------------- + IBIAN = LRAT*2 + IPIAN = IBIAN + 1 + NP1 = N + 1 + IPJAN = IPIAN + NP1 + IBJAN = IPJAN - 1 + LENWK1 = LENWK - N + LIWK = LENWK*LRAT + IF (MOSS .EQ. 0) LIWK = LIWK - N + IF (MOSS .EQ. 1 .OR. MOSS .EQ. 2) LIWK = LENWK1*LRAT + IF (IPJAN+N-1 .GT. LIWK) GO TO 310 + IF (MOSS .EQ. 0) GO TO 30 +C + IF (ISTATC .EQ. 3) GO TO 20 +C ISTATE = 1 and MOSS .ne. 0. Perturb Y for structure determination. +C Initialize S with random nonzero elements for structure determination. + DO 10 I=1,N + ERWT = 1.0D0/EWT(I) + FAC = 1.0D0 + 1.0D0/(I + 1.0D0) + Y(I) = Y(I) + FAC*SIGN(ERWT,Y(I)) + S(I) = 1.0D0 + FAC*ERWT + 10 CONTINUE + GO TO (70, 100, 150, 200), MOSS +C + 20 CONTINUE +C ISTATE = 3 and MOSS .ne. 0. Load Y from YH(*,1) and S from YH(*,2). -- + DO 25 I = 1,N + Y(I) = YH(I) + 25 S(I) = YH(N+I) + GO TO (70, 100, 150, 200), MOSS +C +C MOSS = 0. Process user's IA,JA and IC,JC. ---------------------------- + 30 KNEW = IPJAN + KAMIN = IA(1) + KCMIN = IC(1) + IWK(IPIAN) = 1 + DO 60 J = 1,N + DO 35 I = 1,N + 35 IWK(LIWK+I) = 0 + KAMAX = IA(J+1) - 1 + IF (KAMIN .GT. KAMAX) GO TO 45 + DO 40 K = KAMIN,KAMAX + I = JA(K) + IWK(LIWK+I) = 1 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 40 CONTINUE + 45 KAMIN = KAMAX + 1 + KCMAX = IC(J+1) - 1 + IF (KCMIN .GT. KCMAX) GO TO 55 + DO 50 K = KCMIN,KCMAX + I = JC(K) + IF (IWK(LIWK+I) .NE. 0) GO TO 50 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 50 CONTINUE + 55 IWK(IPIAN+J) = KNEW + 1 - IPJAN + KCMIN = KCMAX + 1 + 60 CONTINUE + GO TO 240 +C +C MOSS = 1. Compute structure from user-supplied Jacobian routine JAC. - + 70 CONTINUE +C A dummy call to RES allows user to create temporaries for use in JAC. + IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 75 I = 1,N + SAVR(I) = 0.0D0 + 75 WK(LENWK1+I) = 0.0D0 + K = IPJAN + IWK(IPIAN) = 1 + DO 95 J = 1,N + CALL ADDA (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), WK(LENWK1+1)) + CALL JAC (NEQ, TN, Y, S, J, IWK(IPIAN), IWK(IPJAN), SAVR) + DO 90 I = 1,N + LJFO = LENWK1 + I + IF (WK(LJFO) .EQ. 0.0D0) GO TO 80 + WK(LJFO) = 0.0D0 + SAVR(I) = 0.0D0 + GO TO 85 + 80 IF (SAVR(I) .EQ. 0.0D0) GO TO 90 + SAVR(I) = 0.0D0 + 85 IF (K .GT. LIWK) GO TO 310 + IWK(K) = I + K = K+1 + 90 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 95 CONTINUE + GO TO 240 +C +C MOSS = 2. Compute structure from results of N + 1 calls to RES. ------ + 100 DO 105 I = 1,N + 105 WK(LENWK1+I) = 0.0D0 + K = IPJAN + IWK(IPIAN) = 1 + IER = -1 + IF (MITER .EQ. 1) IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 130 J = 1,N + CALL ADDA (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), WK(LENWK1+1)) + YJ = Y(J) + ERWT = 1.0D0/EWT(J) + Y(J) = YJ + SIGN(ERWT,YJ) + CALL RES (NEQ, TN, Y, S, RTEM, IER) + IF (IER .GT. 1) RETURN + Y(J) = YJ + DO 120 I = 1,N + LJFO = LENWK1 + I + IF (WK(LJFO) .EQ. 0.0D0) GO TO 110 + WK(LJFO) = 0.0D0 + GO TO 115 + 110 IF (RTEM(I) .EQ. SAVR(I)) GO TO 120 + 115 IF (K .GT. LIWK) GO TO 310 + IWK(K) = I + K = K + 1 + 120 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 130 CONTINUE + GO TO 240 +C +C MOSS = 3. Compute structure from the user's IA/JA and JAC routine. --- + 150 CONTINUE +C A dummy call to RES allows user to create temporaries for use in JAC. + IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 155 I = 1,N + 155 SAVR(I) = 0.0D0 + KNEW = IPJAN + KAMIN = IA(1) + IWK(IPIAN) = 1 + DO 190 J = 1,N + CALL JAC (NEQ, TN, Y, S, J, IWK(IPIAN), IWK(IPJAN), SAVR) + KAMAX = IA(J+1) - 1 + IF (KAMIN .GT. KAMAX) GO TO 170 + DO 160 K = KAMIN,KAMAX + I = JA(K) + SAVR(I) = 0.0D0 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 160 CONTINUE + 170 KAMIN = KAMAX + 1 + DO 180 I = 1,N + IF (SAVR(I) .EQ. 0.0D0) GO TO 180 + SAVR(I) = 0.0D0 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 180 CONTINUE + IWK(IPIAN+J) = KNEW + 1 - IPJAN + 190 CONTINUE + GO TO 240 +C +C MOSS = 4. Compute structure from user's IA/JA and N + 1 RES calls. --- + 200 KNEW = IPJAN + KAMIN = IA(1) + IWK(IPIAN) = 1 + IER = -1 + IF (MITER .EQ. 1) IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 235 J = 1,N + YJ = Y(J) + ERWT = 1.0D0/EWT(J) + Y(J) = YJ + SIGN(ERWT,YJ) + CALL RES (NEQ, TN, Y, S, RTEM, IER) + IF (IER .GT. 1) RETURN + Y(J) = YJ + KAMAX = IA(J+1) - 1 + IF (KAMIN .GT. KAMAX) GO TO 225 + DO 220 K = KAMIN,KAMAX + I = JA(K) + RTEM(I) = SAVR(I) + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 220 CONTINUE + 225 KAMIN = KAMAX + 1 + DO 230 I = 1,N + IF (RTEM(I) .EQ. SAVR(I)) GO TO 230 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 230 CONTINUE + IWK(IPIAN+J) = KNEW + 1 - IPJAN + 235 CONTINUE +C + 240 CONTINUE + IF (MOSS .EQ. 0 .OR. ISTATC .EQ. 3) GO TO 250 +C If ISTATE = 0 or 1 and MOSS .ne. 0, restore Y from YH. --------------- + DO 245 I = 1,N + 245 Y(I) = YH(I) + 250 NNZ = IWK(IPIAN+N) - 1 + IPPER = 0 + NGP = 0 + LENIGP = 0 + IPIGP = IPJAN + NNZ + IF (MITER .NE. 2) GO TO 260 +C +C Compute grouping of column indices (MITER = 2). ---------------------- +C + MAXG = NP1 + IPJGP = IPJAN + NNZ + IBJGP = IPJGP - 1 + IPIGP = IPJGP + N + IPTT1 = IPIGP + NP1 + IPTT2 = IPTT1 + N + LREQ = IPTT2 + N - 1 + IF (LREQ .GT. LIWK) GO TO 320 + CALL JGROUP (N, IWK(IPIAN), IWK(IPJAN), MAXG, NGP, IWK(IPIGP), + 1 IWK(IPJGP), IWK(IPTT1), IWK(IPTT2), IER) + IF (IER .NE. 0) GO TO 320 + LENIGP = NGP + 1 +C +C Compute new ordering of rows/columns of Jacobian. -------------------- + 260 IPR = IPIGP + LENIGP + IPC = IPR + IPIC = IPC + N + IPISP = IPIC + N + IPRSP = (IPISP-2)/LRAT + 2 + IESP = LENWK + 1 - IPRSP + IF (IESP .LT. 0) GO TO 330 + IBR = IPR - 1 + DO 270 I = 1,N + 270 IWK(IBR+I) = I + NSP = LIWK + 1 - IPISP + CALL ODRV(N, IWK(IPIAN), IWK(IPJAN), WK, IWK(IPR), IWK(IPIC), NSP, + 1 IWK(IPISP), 1, IYS) + IF (IYS .EQ. 11*N+1) GO TO 340 + IF (IYS .NE. 0) GO TO 330 +C +C Reorder JAN and do symbolic LU factorization of matrix. -------------- + IPA = LENWK + 1 - NNZ + NSP = IPA - IPRSP + LREQ = MAX(12*N/LRAT, 6*N/LRAT+2*N+NNZ) + 3 + LREQ = LREQ + IPRSP - 1 + NNZ + IF (LREQ .GT. LENWK) GO TO 350 + IBA = IPA - 1 + DO 280 I = 1,NNZ + 280 WK(IBA+I) = 0.0D0 + IPISP = LRAT*(IPRSP - 1) + 1 + CALL CDRV(N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),WK(IPA),WK(IPA),NSP,IWK(IPISP),WK(IPRSP),IESP,5,IYS) + LREQ = LENWK - IESP + IF (IYS .EQ. 10*N+1) GO TO 350 + IF (IYS .NE. 0) GO TO 360 + IPIL = IPISP + IPIU = IPIL + 2*N + 1 + NZU = IWK(IPIL+N) - IWK(IPIL) + NZL = IWK(IPIU+N) - IWK(IPIU) + IF (LRAT .GT. 1) GO TO 290 + CALL ADJLR (N, IWK(IPISP), LDIF) + LREQ = LREQ + LDIF + 290 CONTINUE + IF (LRAT .EQ. 2 .AND. NNZ .EQ. N) LREQ = LREQ + 1 + NSP = NSP + LREQ - LENWK + IPA = LREQ + 1 - NNZ + IBA = IPA - 1 + IPPER = 0 + RETURN +C + 310 IPPER = -1 + LREQ = 2 + (2*N + 1)/LRAT + LREQ = MAX(LENWK+1,LREQ) + RETURN +C + 320 IPPER = -2 + LREQ = (LREQ - 1)/LRAT + 1 + RETURN +C + 330 IPPER = -3 + CALL CNTNZU (N, IWK(IPIAN), IWK(IPJAN), NZSUT) + LREQ = LENWK - IESP + (3*N + 4*NZSUT - 1)/LRAT + 1 + RETURN +C + 340 IPPER = -4 + RETURN +C + 350 IPPER = -5 + RETURN +C + 360 IPPER = -6 + LREQ = LENWK + RETURN +C + 370 IPPER = -IER - 5 + LREQ = 2 + (2*N + 1)/LRAT + RETURN +C----------------------- End of Subroutine DPREPI ---------------------- + END +*DECK DAINVGS + SUBROUTINE DAINVGS (NEQ, T, Y, WK, IWK, TEM, YDOT, IER, RES, ADDA) + EXTERNAL RES, ADDA + INTEGER NEQ, IWK, IER + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMUL, J, K, KMIN, KMAX + DOUBLE PRECISION T, Y, WK, TEM, YDOT + DOUBLE PRECISION RLSS + DIMENSION Y(*), WK(*), IWK(*), TEM(*), YDOT(*) + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU +C----------------------------------------------------------------------- +C This subroutine computes the initial value of the vector YDOT +C satisfying +C A * YDOT = g(t,y) +C when A is nonsingular. It is called by DLSODIS for initialization +C only, when ISTATE = 0. The matrix A is subjected to LU +C decomposition in CDRV. Then the system A*YDOT = g(t,y) is solved +C in CDRV. +C In addition to variables described previously, communication +C with DAINVGS uses the following: +C Y = array of initial values. +C WK = real work space for matrices. On output it contains A and +C its LU decomposition. The LU decomposition is not entirely +C sparse unless the structure of the matrix A is identical to +C the structure of the Jacobian matrix dr/dy. +C Storage of matrix elements starts at WK(3). +C WK(1) = SQRT(UROUND), not used here. +C IWK = integer work space for matrix-related data, assumed to +C be equivalenced to WK. In addition, WK(IPRSP) and WK(IPISP) +C are assumed to have identical locations. +C TEM = vector of work space of length N (ACOR in DSTODI). +C YDOT = output vector containing the initial dy/dt. YDOT(i) contains +C dy(i)/dt when the matrix A is non-singular. +C IER = output error flag with the following values and meanings: +C = 0 if DAINVGS was successful. +C = 1 if the A-matrix was found to be singular. +C = 2 if RES returned an error flag IRES = IER = 2. +C = 3 if RES returned an error flag IRES = IER = 3. +C = 4 if insufficient storage for CDRV (should not occur here). +C = 5 if other error found in CDRV (should not occur here). +C----------------------------------------------------------------------- +C + DO 10 I = 1,NNZ + 10 WK(IBA+I) = 0.0D0 +C + IER = 1 + CALL RES (NEQ, T, Y, WK(IPA), YDOT, IER) + IF (IER .GT. 1) RETURN +C + KMIN = IWK(IPIAN) + DO 30 J = 1,NEQ + KMAX = IWK(IPIAN+J) - 1 + DO 15 K = KMIN,KMAX + I = IWK(IBJAN+K) + 15 TEM(I) = 0.0D0 + CALL ADDA (NEQ, T, Y, J, IWK(IPIAN), IWK(IPJAN), TEM) + DO 20 K = KMIN,KMAX + I = IWK(IBJAN+K) + 20 WK(IBA+K) = TEM(I) + KMIN = KMAX + 1 + 30 CONTINUE + NLU = NLU + 1 + IER = 0 + DO 40 I = 1,NEQ + 40 TEM(I) = 0.0D0 +C +C Numerical factorization of matrix A. --------------------------------- + CALL CDRV (NEQ,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),TEM,TEM,NSP,IWK(IPISP),WK(IPRSP),IESP,2,IYS) + IF (IYS .EQ. 0) GO TO 50 + IMUL = (IYS - 1)/NEQ + IER = 5 + IF (IMUL .EQ. 8) IER = 1 + IF (IMUL .EQ. 10) IER = 4 + RETURN +C +C Solution of the linear system. --------------------------------------- + 50 CALL CDRV (NEQ,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),YDOT,YDOT,NSP,IWK(IPISP),WK(IPRSP),IESP,4,IYS) + IF (IYS .NE. 0) IER = 5 + RETURN +C----------------------- End of Subroutine DAINVGS --------------------- + END +*DECK DPRJIS + SUBROUTINE DPRJIS (NEQ, Y, YH, NYH, EWT, RTEM, SAVR, S, WK, IWK, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, NYH, IWK + DOUBLE PRECISION Y, YH, EWT, RTEM, SAVR, S, WK + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), RTEM(*), + 1 S(*), SAVR(*), WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMUL, IRES, J, JJ, JMAX, JMIN, K, KMAX, KMIN, NG + DOUBLE PRECISION CON, FAC, HL0, R, SRUR +C----------------------------------------------------------------------- +C DPRJIS is called to compute and process the matrix +C P = A - H*EL(1)*J, where J is an approximation to the Jacobian dr/dy, +C where r = g(t,y) - A(t,y)*s. J is computed by columns, either by +C the user-supplied routine JAC if MITER = 1, or by finite differencing +C if MITER = 2. J is stored in WK, rescaled, and ADDA is called to +C generate P. The matrix P is subjected to LU decomposition in CDRV. +C P and its LU decomposition are stored separately in WK. +C +C In addition to variables described previously, communication +C with DPRJIS uses the following: +C Y = array containing predicted values on entry. +C RTEM = work array of length N (ACOR in DSTODI). +C SAVR = array containing r evaluated at predicted y. On output it +C contains the residual evaluated at current values of t and y. +C S = array containing predicted values of dy/dt (SAVF in DSTODI). +C WK = real work space for matrices. On output it contains P and +C its sparse LU decomposition. Storage of matrix elements +C starts at WK(3). +C WK also contains the following matrix-related data. +C WK(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWK = integer work space for matrix-related data, assumed to be +C equivalenced to WK. In addition, WK(IPRSP) and IWK(IPISP) +C are assumed to have identical locations. +C EL0 = EL(1) (input). +C IERPJ = output error flag (in COMMON). +C = 0 if no error. +C = 1 if zero pivot found in CDRV. +C = IRES (= 2 or 3) if RES returned IRES = 2 or 3. +C = -1 if insufficient storage for CDRV (should not occur). +C = -2 if other error found in CDRV (should not occur here). +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses other variables in Common. +C----------------------------------------------------------------------- + HL0 = H*EL0 + CON = -HL0 + JCUR = 1 + NJE = NJE + 1 + GO TO (100, 200), MITER +C +C If MITER = 1, call RES, then call JAC and ADDA for each column. ------ + 100 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + KMIN = IWK(IPIAN) + DO 130 J = 1,N + KMAX = IWK(IPIAN+J)-1 + DO 110 I = 1,N + 110 RTEM(I) = 0.0D0 + CALL JAC (NEQ, TN, Y, S, J, IWK(IPIAN), IWK(IPJAN), RTEM) + DO 120 I = 1,N + 120 RTEM(I) = RTEM(I)*CON + CALL ADDA (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), RTEM) + DO 125 K = KMIN,KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = RTEM(I) + 125 CONTINUE + KMIN = KMAX + 1 + 130 CONTINUE + GO TO 290 +C +C If MITER = 2, make NGP + 1 calls to RES to approximate J and P. ------ + 200 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + SRUR = WK(1) + JMIN = IWK(IPIGP) + DO 240 NG = 1,NGP + JMAX = IWK(IPIGP+NG) - 1 + DO 210 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + R = MAX(SRUR*ABS(Y(JJ)),0.01D0/EWT(JJ)) + 210 Y(JJ) = Y(JJ) + R + CALL RES (NEQ,TN,Y,S,RTEM,IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 230 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + Y(JJ) = YH(JJ,1) + R = MAX(SRUR*ABS(Y(JJ)),0.01D0/EWT(JJ)) + FAC = -HL0/R + KMIN = IWK(IBIAN+JJ) + KMAX = IWK(IBIAN+JJ+1) - 1 + DO 220 K = KMIN,KMAX + I = IWK(IBJAN+K) + RTEM(I) = (RTEM(I) - SAVR(I))*FAC + 220 CONTINUE + CALL ADDA (NEQ, TN, Y, JJ, IWK(IPIAN), IWK(IPJAN), RTEM) + DO 225 K = KMIN,KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = RTEM(I) + 225 CONTINUE + 230 CONTINUE + JMIN = JMAX + 1 + 240 CONTINUE + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C +C Do numerical factorization of P matrix. ------------------------------ + 290 NLU = NLU + 1 + IERPJ = 0 + DO 295 I = 1,N + 295 RTEM(I) = 0.0D0 + CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),RTEM,RTEM,NSP,IWK(IPISP),WK(IPRSP),IESP,2,IYS) + IF (IYS .EQ. 0) RETURN + IMUL = (IYS - 1)/N + IERPJ = -2 + IF (IMUL .EQ. 8) IERPJ = 1 + IF (IMUL .EQ. 10) IERPJ = -1 + RETURN +C Error return for IRES = 2 or IRES = 3 return from RES. --------------- + 600 IERPJ = IRES + RETURN +C----------------------- End of Subroutine DPRJIS ---------------------- + END + diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda2.f b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda2.f new file mode 100644 index 000000000..c4b4ff0d0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkda2.f @@ -0,0 +1,1441 @@ +*DECK DGEFA + SUBROUTINE DGEFA (A, LDA, N, IPVT, INFO) +C***BEGIN PROLOGUE DGEFA +C***PURPOSE Factor a matrix using Gaussian elimination. +C***CATEGORY D2A1 +C***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C) +C***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK, +C MATRIX FACTORIZATION +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGEFA factors a double precision matrix by Gaussian elimination. +C +C DGEFA is usually called by DGECO, but it can be called +C directly with a saving in time if RCOND is not needed. +C (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) . +C +C On Entry +C +C A DOUBLE PRECISION(LDA, N) +C the matrix to be factored. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C On Return +C +C A an upper triangular matrix and the multipliers +C which were used to obtain it. +C The factorization can be written A = L*U where +C L is a product of permutation and unit lower +C triangular matrices and U is upper triangular. +C +C IPVT INTEGER(N) +C an integer vector of pivot indices. +C +C INFO INTEGER +C = 0 normal value. +C = K if U(K,K) .EQ. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DGESL or DGEDI will divide by zero +C if called. Use RCOND in DGECO for a reliable +C indication of singularity. +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DSCAL, IDAMAX +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGEFA + INTEGER LDA,N,IPVT(*),INFO + DOUBLE PRECISION A(LDA,*) +C + DOUBLE PRECISION T + INTEGER IDAMAX,J,K,KP1,L,NM1 +C +C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING +C +C***FIRST EXECUTABLE STATEMENT DGEFA + INFO = 0 + NM1 = N - 1 + IF (NM1 .LT. 1) GO TO 70 + DO 60 K = 1, NM1 + KP1 = K + 1 +C +C FIND L = PIVOT INDEX +C + L = IDAMAX(N-K+1,A(K,K),1) + K - 1 + IPVT(K) = L +C +C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED +C + IF (A(L,K) .EQ. 0.0D0) GO TO 40 +C +C INTERCHANGE IF NECESSARY +C + IF (L .EQ. K) GO TO 10 + T = A(L,K) + A(L,K) = A(K,K) + A(K,K) = T + 10 CONTINUE +C +C COMPUTE MULTIPLIERS +C + T = -1.0D0/A(K,K) + CALL DSCAL(N-K,T,A(K+1,K),1) +C +C ROW ELIMINATION WITH COLUMN INDEXING +C + DO 30 J = KP1, N + T = A(L,J) + IF (L .EQ. K) GO TO 20 + A(L,J) = A(K,J) + A(K,J) = T + 20 CONTINUE + CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1) + 30 CONTINUE + GO TO 50 + 40 CONTINUE + INFO = K + 50 CONTINUE + 60 CONTINUE + 70 CONTINUE + IPVT(N) = N + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN + END +*DECK DGESL + SUBROUTINE DGESL (A, LDA, N, IPVT, B, JOB) +C***BEGIN PROLOGUE DGESL +C***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the +C factors computed by DGECO or DGEFA. +C***CATEGORY D2A1 +C***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C) +C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGESL solves the double precision system +C A * X = B or TRANS(A) * X = B +C using the factors computed by DGECO or DGEFA. +C +C On Entry +C +C A DOUBLE PRECISION(LDA, N) +C the output from DGECO or DGEFA. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C IPVT INTEGER(N) +C the pivot vector from DGECO or DGEFA. +C +C B DOUBLE PRECISION(N) +C the right hand side vector. +C +C JOB INTEGER +C = 0 to solve A*X = B , +C = nonzero to solve TRANS(A)*X = B where +C TRANS(A) is the transpose. +C +C On Return +C +C B the solution vector X . +C +C Error Condition +C +C A division by zero will occur if the input factor contains a +C zero on the diagonal. Technically this indicates singularity +C but it is often caused by improper arguments or improper +C setting of LDA . It will not occur if the subroutines are +C called correctly and if DGECO has set RCOND .GT. 0.0 +C or DGEFA has set INFO .EQ. 0 . +C +C To compute INVERSE(A) * C where C is a matrix +C with P columns +C CALL DGECO(A,LDA,N,IPVT,RCOND,Z) +C IF (RCOND is too small) GO TO ... +C DO 10 J = 1, P +C CALL DGESL(A,LDA,N,IPVT,C(1,J),0) +C 10 CONTINUE +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DDOT +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGESL + INTEGER LDA,N,IPVT(*),JOB + DOUBLE PRECISION A(LDA,*),B(*) +C + DOUBLE PRECISION DDOT,T + INTEGER K,KB,L,NM1 +C***FIRST EXECUTABLE STATEMENT DGESL + NM1 = N - 1 + IF (JOB .NE. 0) GO TO 50 +C +C JOB = 0 , SOLVE A * X = B +C FIRST SOLVE L*Y = B +C + IF (NM1 .LT. 1) GO TO 30 + DO 20 K = 1, NM1 + L = IPVT(K) + T = B(L) + IF (L .EQ. K) GO TO 10 + B(L) = B(K) + B(K) = T + 10 CONTINUE + CALL DAXPY(N-K,T,A(K+1,K),1,B(K+1),1) + 20 CONTINUE + 30 CONTINUE +C +C NOW SOLVE U*X = Y +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/A(K,K) + T = -B(K) + CALL DAXPY(K-1,T,A(1,K),1,B(1),1) + 40 CONTINUE + GO TO 100 + 50 CONTINUE +C +C JOB = NONZERO, SOLVE TRANS(A) * X = B +C FIRST SOLVE TRANS(U)*Y = B +C + DO 60 K = 1, N + T = DDOT(K-1,A(1,K),1,B(1),1) + B(K) = (B(K) - T)/A(K,K) + 60 CONTINUE +C +C NOW SOLVE TRANS(L)*X = Y +C + IF (NM1 .LT. 1) GO TO 90 + DO 80 KB = 1, NM1 + K = N - KB + B(K) = B(K) + DDOT(N-K,A(K+1,K),1,B(K+1),1) + L = IPVT(K) + IF (L .EQ. K) GO TO 70 + T = B(L) + B(L) = B(K) + B(K) = T + 70 CONTINUE + 80 CONTINUE + 90 CONTINUE + 100 CONTINUE + RETURN + END +*DECK DGBFA + SUBROUTINE DGBFA (ABD, LDA, N, ML, MU, IPVT, INFO) +C***BEGIN PROLOGUE DGBFA +C***PURPOSE Factor a band matrix using Gaussian elimination. +C***CATEGORY D2A2 +C***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C) +C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGBFA factors a double precision band matrix by elimination. +C +C DGBFA is usually called by DGBCO, but it can be called +C directly with a saving in time if RCOND is not needed. +C +C On Entry +C +C ABD DOUBLE PRECISION(LDA, N) +C contains the matrix in band storage. The columns +C of the matrix are stored in the columns of ABD and +C the diagonals of the matrix are stored in rows +C ML+1 through 2*ML+MU+1 of ABD . +C See the comments below for details. +C +C LDA INTEGER +C the leading dimension of the array ABD . +C LDA must be .GE. 2*ML + MU + 1 . +C +C N INTEGER +C the order of the original matrix. +C +C ML INTEGER +C number of diagonals below the main diagonal. +C 0 .LE. ML .LT. N . +C +C MU INTEGER +C number of diagonals above the main diagonal. +C 0 .LE. MU .LT. N . +C More efficient if ML .LE. MU . +C On Return +C +C ABD an upper triangular matrix in band storage and +C the multipliers which were used to obtain it. +C The factorization can be written A = L*U where +C L is a product of permutation and unit lower +C triangular matrices and U is upper triangular. +C +C IPVT INTEGER(N) +C an integer vector of pivot indices. +C +C INFO INTEGER +C = 0 normal value. +C = K if U(K,K) .EQ. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DGBSL will divide by zero if +C called. Use RCOND in DGBCO for a reliable +C indication of singularity. +C +C Band Storage +C +C If A is a band matrix, the following program segment +C will set up the input. +C +C ML = (band width below the diagonal) +C MU = (band width above the diagonal) +C M = ML + MU + 1 +C DO 20 J = 1, N +C I1 = MAX(1, J-MU) +C I2 = MIN(N, J+ML) +C DO 10 I = I1, I2 +C K = I - J + M +C ABD(K,J) = A(I,J) +C 10 CONTINUE +C 20 CONTINUE +C +C This uses rows ML+1 through 2*ML+MU+1 of ABD . +C In addition, the first ML rows in ABD are used for +C elements generated during the triangularization. +C The total number of rows needed in ABD is 2*ML+MU+1 . +C The ML+MU by ML+MU upper left triangle and the +C ML by ML lower right triangle are not referenced. +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DSCAL, IDAMAX +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGBFA + INTEGER LDA,N,ML,MU,IPVT(*),INFO + DOUBLE PRECISION ABD(LDA,*) +C + DOUBLE PRECISION T + INTEGER I,IDAMAX,I0,J,JU,JZ,J0,J1,K,KP1,L,LM,M,MM,NM1 +C +C***FIRST EXECUTABLE STATEMENT DGBFA + M = ML + MU + 1 + INFO = 0 +C +C ZERO INITIAL FILL-IN COLUMNS +C + J0 = MU + 2 + J1 = MIN(N,M) - 1 + IF (J1 .LT. J0) GO TO 30 + DO 20 JZ = J0, J1 + I0 = M + 1 - JZ + DO 10 I = I0, ML + ABD(I,JZ) = 0.0D0 + 10 CONTINUE + 20 CONTINUE + 30 CONTINUE + JZ = J1 + JU = 0 +C +C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING +C + NM1 = N - 1 + IF (NM1 .LT. 1) GO TO 130 + DO 120 K = 1, NM1 + KP1 = K + 1 +C +C ZERO NEXT FILL-IN COLUMN +C + JZ = JZ + 1 + IF (JZ .GT. N) GO TO 50 + IF (ML .LT. 1) GO TO 50 + DO 40 I = 1, ML + ABD(I,JZ) = 0.0D0 + 40 CONTINUE + 50 CONTINUE +C +C FIND L = PIVOT INDEX +C + LM = MIN(ML,N-K) + L = IDAMAX(LM+1,ABD(M,K),1) + M - 1 + IPVT(K) = L + K - M +C +C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED +C + IF (ABD(L,K) .EQ. 0.0D0) GO TO 100 +C +C INTERCHANGE IF NECESSARY +C + IF (L .EQ. M) GO TO 60 + T = ABD(L,K) + ABD(L,K) = ABD(M,K) + ABD(M,K) = T + 60 CONTINUE +C +C COMPUTE MULTIPLIERS +C + T = -1.0D0/ABD(M,K) + CALL DSCAL(LM,T,ABD(M+1,K),1) +C +C ROW ELIMINATION WITH COLUMN INDEXING +C + JU = MIN(MAX(JU,MU+IPVT(K)),N) + MM = M + IF (JU .LT. KP1) GO TO 90 + DO 80 J = KP1, JU + L = L - 1 + MM = MM - 1 + T = ABD(L,J) + IF (L .EQ. MM) GO TO 70 + ABD(L,J) = ABD(MM,J) + ABD(MM,J) = T + 70 CONTINUE + CALL DAXPY(LM,T,ABD(M+1,K),1,ABD(MM+1,J),1) + 80 CONTINUE + 90 CONTINUE + GO TO 110 + 100 CONTINUE + INFO = K + 110 CONTINUE + 120 CONTINUE + 130 CONTINUE + IPVT(N) = N + IF (ABD(M,N) .EQ. 0.0D0) INFO = N + RETURN + END +*DECK DGBSL + SUBROUTINE DGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB) +C***BEGIN PROLOGUE DGBSL +C***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using +C the factors computed by DGBCO or DGBFA. +C***CATEGORY D2A2 +C***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) +C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGBSL solves the double precision band system +C A * X = B or TRANS(A) * X = B +C using the factors computed by DGBCO or DGBFA. +C +C On Entry +C +C ABD DOUBLE PRECISION(LDA, N) +C the output from DGBCO or DGBFA. +C +C LDA INTEGER +C the leading dimension of the array ABD . +C +C N INTEGER +C the order of the original matrix. +C +C ML INTEGER +C number of diagonals below the main diagonal. +C +C MU INTEGER +C number of diagonals above the main diagonal. +C +C IPVT INTEGER(N) +C the pivot vector from DGBCO or DGBFA. +C +C B DOUBLE PRECISION(N) +C the right hand side vector. +C +C JOB INTEGER +C = 0 to solve A*X = B , +C = nonzero to solve TRANS(A)*X = B , where +C TRANS(A) is the transpose. +C +C On Return +C +C B the solution vector X . +C +C Error Condition +C +C A division by zero will occur if the input factor contains a +C zero on the diagonal. Technically this indicates singularity +C but it is often caused by improper arguments or improper +C setting of LDA . It will not occur if the subroutines are +C called correctly and if DGBCO has set RCOND .GT. 0.0 +C or DGBFA has set INFO .EQ. 0 . +C +C To compute INVERSE(A) * C where C is a matrix +C with P columns +C CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) +C IF (RCOND is too small) GO TO ... +C DO 10 J = 1, P +C CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) +C 10 CONTINUE +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DDOT +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGBSL + INTEGER LDA,N,ML,MU,IPVT(*),JOB + DOUBLE PRECISION ABD(LDA,*),B(*) +C + DOUBLE PRECISION DDOT,T + INTEGER K,KB,L,LA,LB,LM,M,NM1 +C***FIRST EXECUTABLE STATEMENT DGBSL + M = MU + ML + 1 + NM1 = N - 1 + IF (JOB .NE. 0) GO TO 50 +C +C JOB = 0 , SOLVE A * X = B +C FIRST SOLVE L*Y = B +C + IF (ML .EQ. 0) GO TO 30 + IF (NM1 .LT. 1) GO TO 30 + DO 20 K = 1, NM1 + LM = MIN(ML,N-K) + L = IPVT(K) + T = B(L) + IF (L .EQ. K) GO TO 10 + B(L) = B(K) + B(K) = T + 10 CONTINUE + CALL DAXPY(LM,T,ABD(M+1,K),1,B(K+1),1) + 20 CONTINUE + 30 CONTINUE +C +C NOW SOLVE U*X = Y +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/ABD(M,K) + LM = MIN(K,M) - 1 + LA = M - LM + LB = K - LM + T = -B(K) + CALL DAXPY(LM,T,ABD(LA,K),1,B(LB),1) + 40 CONTINUE + GO TO 100 + 50 CONTINUE +C +C JOB = NONZERO, SOLVE TRANS(A) * X = B +C FIRST SOLVE TRANS(U)*Y = B +C + DO 60 K = 1, N + LM = MIN(K,M) - 1 + LA = M - LM + LB = K - LM + T = DDOT(LM,ABD(LA,K),1,B(LB),1) + B(K) = (B(K) - T)/ABD(M,K) + 60 CONTINUE +C +C NOW SOLVE TRANS(L)*X = Y +C + IF (ML .EQ. 0) GO TO 90 + IF (NM1 .LT. 1) GO TO 90 + DO 80 KB = 1, NM1 + K = N - KB + LM = MIN(ML,N-K) + B(K) = B(K) + DDOT(LM,ABD(M+1,K),1,B(K+1),1) + L = IPVT(K) + IF (L .EQ. K) GO TO 70 + T = B(L) + B(L) = B(K) + B(K) = T + 70 CONTINUE + 80 CONTINUE + 90 CONTINUE + 100 CONTINUE + RETURN + END +*DECK DAXPY + SUBROUTINE DAXPY (N, DA, DX, INCX, DY, INCY) +C***BEGIN PROLOGUE DAXPY +C***PURPOSE Compute a constant times a vector plus a vector. +C***CATEGORY D1A7 +C***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) +C***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DA double precision scalar multiplier +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C DY double precision vector with N elements +C INCY storage spacing between elements of DY +C +C --Output-- +C DY double precision result (unchanged if N .LE. 0) +C +C Overwrite double precision DY with double precision DA*DX + DY. +C For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) + +C DY(LY+I*INCY), +C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is +C defined in a similar way using INCY. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920310 Corrected definition of LX in DESCRIPTION. (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DAXPY + DOUBLE PRECISION DX(*), DY(*), DA +C***FIRST EXECUTABLE STATEMENT DAXPY + IF (N.LE.0 .OR. DA.EQ.0.0D0) RETURN + IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60 +C +C Code for unequal or nonpositive increments. +C + 5 IX = 1 + IY = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + IF (INCY .LT. 0) IY = (-N+1)*INCY + 1 + DO 10 I = 1,N + DY(IY) = DY(IY) + DA*DX(IX) + IX = IX + INCX + IY = IY + INCY + 10 CONTINUE + RETURN +C +C Code for both increments equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 4. +C + 20 M = MOD(N,4) + IF (M .EQ. 0) GO TO 40 + DO 30 I = 1,M + DY(I) = DY(I) + DA*DX(I) + 30 CONTINUE + IF (N .LT. 4) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,4 + DY(I) = DY(I) + DA*DX(I) + DY(I+1) = DY(I+1) + DA*DX(I+1) + DY(I+2) = DY(I+2) + DA*DX(I+2) + DY(I+3) = DY(I+3) + DA*DX(I+3) + 50 CONTINUE + RETURN +C +C Code for equal, positive, non-unit increments. +C + 60 NS = N*INCX + DO 70 I = 1,NS,INCX + DY(I) = DA*DX(I) + DY(I) + 70 CONTINUE + RETURN + END +*DECK DCOPY + SUBROUTINE DCOPY (N, DX, INCX, DY, INCY) +C***BEGIN PROLOGUE DCOPY +C***PURPOSE Copy a vector. +C***CATEGORY D1A5 +C***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I) +C***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C DY double precision vector with N elements +C INCY storage spacing between elements of DY +C +C --Output-- +C DY copy of vector DX (unchanged if N .LE. 0) +C +C Copy double precision DX to double precision DY. +C For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY), +C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is +C defined in a similar way using INCY. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920310 Corrected definition of LX in DESCRIPTION. (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DCOPY + DOUBLE PRECISION DX(*), DY(*) +C***FIRST EXECUTABLE STATEMENT DCOPY + IF (N .LE. 0) RETURN + IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60 +C +C Code for unequal or nonpositive increments. +C + 5 IX = 1 + IY = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + IF (INCY .LT. 0) IY = (-N+1)*INCY + 1 + DO 10 I = 1,N + DY(IY) = DX(IX) + IX = IX + INCX + IY = IY + INCY + 10 CONTINUE + RETURN +C +C Code for both increments equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 7. +C + 20 M = MOD(N,7) + IF (M .EQ. 0) GO TO 40 + DO 30 I = 1,M + DY(I) = DX(I) + 30 CONTINUE + IF (N .LT. 7) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,7 + DY(I) = DX(I) + DY(I+1) = DX(I+1) + DY(I+2) = DX(I+2) + DY(I+3) = DX(I+3) + DY(I+4) = DX(I+4) + DY(I+5) = DX(I+5) + DY(I+6) = DX(I+6) + 50 CONTINUE + RETURN +C +C Code for equal, positive, non-unit increments. +C + 60 NS = N*INCX + DO 70 I = 1,NS,INCX + DY(I) = DX(I) + 70 CONTINUE + RETURN + END +*DECK DDOT + DOUBLE PRECISION FUNCTION DDOT (N, DX, INCX, DY, INCY) +C***BEGIN PROLOGUE DDOT +C***PURPOSE Compute the inner product of two vectors. +C***CATEGORY D1A4 +C***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) +C***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C DY double precision vector with N elements +C INCY storage spacing between elements of DY +C +C --Output-- +C DDOT double precision dot product (zero if N .LE. 0) +C +C Returns the dot product of double precision DX and DY. +C DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY), +C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is +C defined in a similar way using INCY. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920310 Corrected definition of LX in DESCRIPTION. (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DDOT + DOUBLE PRECISION DX(*), DY(*) +C***FIRST EXECUTABLE STATEMENT DDOT + DDOT = 0.0D0 + IF (N .LE. 0) RETURN + IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60 +C +C Code for unequal or nonpositive increments. +C + 5 IX = 1 + IY = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + IF (INCY .LT. 0) IY = (-N+1)*INCY + 1 + DO 10 I = 1,N + DDOT = DDOT + DX(IX)*DY(IY) + IX = IX + INCX + IY = IY + INCY + 10 CONTINUE + RETURN +C +C Code for both increments equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 5. +C + 20 M = MOD(N,5) + IF (M .EQ. 0) GO TO 40 + DO 30 I = 1,M + DDOT = DDOT + DX(I)*DY(I) + 30 CONTINUE + IF (N .LT. 5) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,5 + DDOT = DDOT + DX(I)*DY(I) + DX(I+1)*DY(I+1) + DX(I+2)*DY(I+2) + + 1 DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4) + 50 CONTINUE + RETURN +C +C Code for equal, positive, non-unit increments. +C + 60 NS = N*INCX + DO 70 I = 1,NS,INCX + DDOT = DDOT + DX(I)*DY(I) + 70 CONTINUE + RETURN + END +*DECK DNRM2 + DOUBLE PRECISION FUNCTION DNRM2 (N, DX, INCX) +C***BEGIN PROLOGUE DNRM2 +C***PURPOSE Compute the Euclidean length (L2 norm) of a vector. +C***CATEGORY D1A3B +C***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) +C***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, +C LINEAR ALGEBRA, UNITARY, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C +C --Output-- +C DNRM2 double precision result (zero if N .LE. 0) +C +C Euclidean norm of the N-vector stored in DX with storage +C increment INCX. +C If N .LE. 0, return with result = 0. +C If N .GE. 1, then INCX must be .GE. 1 +C +C Four phase method using two built-in constants that are +C hopefully applicable to all machines. +C CUTLO = maximum of SQRT(U/EPS) over all known machines. +C CUTHI = minimum of SQRT(V) over all known machines. +C where +C EPS = smallest no. such that EPS + 1. .GT. 1. +C U = smallest positive no. (underflow limit) +C V = largest no. (overflow limit) +C +C Brief outline of algorithm. +C +C Phase 1 scans zero components. +C move to phase 2 when a component is nonzero and .LE. CUTLO +C move to phase 3 when a component is .GT. CUTLO +C move to phase 4 when a component is .GE. CUTHI/M +C where M = N for X() real and M = 2*N for complex. +C +C Values for CUTLO and CUTHI. +C From the environmental parameters listed in the IMSL converter +C document the limiting values are as follows: +C CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are +C Univac and DEC at 2**(-103) +C Thus CUTLO = 2**(-51) = 4.44089E-16 +C CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC. +C Thus CUTHI = 2**(63.5) = 1.30438E19 +C CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC. +C Thus CUTLO = 2**(-33.5) = 8.23181D-11 +C CUTHI, D.P. same as S.P. CUTHI = 1.30438D19 +C DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ +C DATA CUTLO, CUTHI /4.441E-16, 1.304E19/ +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DNRM2 + INTEGER NEXT + DOUBLE PRECISION DX(*), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, + + ONE + SAVE CUTLO, CUTHI, ZERO, ONE + DATA ZERO, ONE /0.0D0, 1.0D0/ +C + DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ +C***FIRST EXECUTABLE STATEMENT DNRM2 + IF (N .GT. 0) GO TO 10 + DNRM2 = ZERO + GO TO 300 +C + 10 ASSIGN 30 TO NEXT + SUM = ZERO + NN = N * INCX +C +C BEGIN MAIN LOOP +C + I = 1 + 20 GO TO NEXT,(30, 50, 70, 110) + 30 IF (ABS(DX(I)) .GT. CUTLO) GO TO 85 + ASSIGN 50 TO NEXT + XMAX = ZERO +C +C PHASE 1. SUM IS ZERO +C + 50 IF (DX(I) .EQ. ZERO) GO TO 200 + IF (ABS(DX(I)) .GT. CUTLO) GO TO 85 +C +C PREPARE FOR PHASE 2. +C + ASSIGN 70 TO NEXT + GO TO 105 +C +C PREPARE FOR PHASE 4. +C + 100 I = J + ASSIGN 110 TO NEXT + SUM = (SUM / DX(I)) / DX(I) + 105 XMAX = ABS(DX(I)) + GO TO 115 +C +C PHASE 2. SUM IS SMALL. +C SCALE TO AVOID DESTRUCTIVE UNDERFLOW. +C + 70 IF (ABS(DX(I)) .GT. CUTLO) GO TO 75 +C +C COMMON CODE FOR PHASES 2 AND 4. +C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW. +C + 110 IF (ABS(DX(I)) .LE. XMAX) GO TO 115 + SUM = ONE + SUM * (XMAX / DX(I))**2 + XMAX = ABS(DX(I)) + GO TO 200 +C + 115 SUM = SUM + (DX(I)/XMAX)**2 + GO TO 200 +C +C PREPARE FOR PHASE 3. +C + 75 SUM = (SUM * XMAX) * XMAX +C +C FOR REAL OR D.P. SET HITEST = CUTHI/N +C FOR COMPLEX SET HITEST = CUTHI/(2*N) +C + 85 HITEST = CUTHI / N +C +C PHASE 3. SUM IS MID-RANGE. NO SCALING. +C + DO 95 J = I,NN,INCX + IF (ABS(DX(J)) .GE. HITEST) GO TO 100 + 95 SUM = SUM + DX(J)**2 + DNRM2 = SQRT(SUM) + GO TO 300 +C + 200 CONTINUE + I = I + INCX + IF (I .LE. NN) GO TO 20 +C +C END OF MAIN LOOP. +C +C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. +C + DNRM2 = XMAX * SQRT(SUM) + 300 CONTINUE + RETURN + END +*DECK DSCAL + SUBROUTINE DSCAL (N, DA, DX, INCX) +C***BEGIN PROLOGUE DSCAL +C***PURPOSE Multiply a vector by a constant. +C***CATEGORY D1A6 +C***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) +C***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DA double precision scale factor +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C +C --Output-- +C DX double precision result (unchanged if N.LE.0) +C +C Replace double precision DX by double precision DA*DX. +C For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX), +C where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900821 Modified to correct problem with a negative increment. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DSCAL + DOUBLE PRECISION DA, DX(*) + INTEGER I, INCX, IX, M, MP1, N +C***FIRST EXECUTABLE STATEMENT DSCAL + IF (N .LE. 0) RETURN + IF (INCX .EQ. 1) GOTO 20 +C +C Code for increment not equal to 1. +C + IX = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + DO 10 I = 1,N + DX(IX) = DA*DX(IX) + IX = IX + INCX + 10 CONTINUE + RETURN +C +C Code for increment equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 5. +C + 20 M = MOD(N,5) + IF (M .EQ. 0) GOTO 40 + DO 30 I = 1,M + DX(I) = DA*DX(I) + 30 CONTINUE + IF (N .LT. 5) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,5 + DX(I) = DA*DX(I) + DX(I+1) = DA*DX(I+1) + DX(I+2) = DA*DX(I+2) + DX(I+3) = DA*DX(I+3) + DX(I+4) = DA*DX(I+4) + 50 CONTINUE + RETURN + END +*DECK IDAMAX + INTEGER FUNCTION IDAMAX (N, DX, INCX) +C***BEGIN PROLOGUE IDAMAX +C***PURPOSE Find the smallest index of that component of a vector +C having the maximum magnitude. +C***CATEGORY D1A2 +C***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C) +C***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C +C --Output-- +C IDAMAX smallest index (zero if N .LE. 0) +C +C Find smallest index of maximum magnitude of double precision DX. +C IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), +C where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890531 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900821 Modified to correct problem with a negative increment. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE IDAMAX + DOUBLE PRECISION DX(*), DMAX, XMAG + INTEGER I, INCX, IX, N +C***FIRST EXECUTABLE STATEMENT IDAMAX + IDAMAX = 0 + IF (N .LE. 0) RETURN + IDAMAX = 1 + IF (N .EQ. 1) RETURN +C + IF (INCX .EQ. 1) GOTO 20 +C +C Code for increments not equal to 1. +C + IX = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + DMAX = ABS(DX(IX)) + IX = IX + INCX + DO 10 I = 2,N + XMAG = ABS(DX(IX)) + IF (XMAG .GT. DMAX) THEN + IDAMAX = I + DMAX = XMAG + ENDIF + IX = IX + INCX + 10 CONTINUE + RETURN +C +C Code for increments equal to 1. +C + 20 DMAX = ABS(DX(1)) + DO 30 I = 2,N + XMAG = ABS(DX(I)) + IF (XMAG .GT. DMAX) THEN + IDAMAX = I + DMAX = XMAG + ENDIF + 30 CONTINUE + RETURN + END +*DECK XERRWD + SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2) +C***BEGIN PROLOGUE XERRWD +C***SUBSIDIARY +C***PURPOSE Write error message with values. +C***CATEGORY R3C +C***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV, +C as given here, constitute a simplified version of the SLATEC error +C handling package. +C +C All arguments are input arguments. +C +C MSG = The message (character array). +C NMES = The length of MSG (number of characters). +C NERR = The error number (not used). +C LEVEL = The error level.. +C 0 or 1 means recoverable (control returns to caller). +C 2 means fatal (run is aborted--see note below). +C NI = Number of integers (0, 1, or 2) to be printed with message. +C I1,I2 = Integers to be printed, depending on NI. +C NR = Number of reals (0, 1, or 2) to be printed with message. +C R1,R2 = Reals to be printed, depending on NR. +C +C Note.. this routine is machine-dependent and specialized for use +C in limited context, in the following ways.. +C 1. The argument MSG is assumed to be of type CHARACTER, and +C the message is printed with a format of (1X,A). +C 2. The message is assumed to take only one line. +C Multi-line messages are generated by repeated calls. +C 3. If LEVEL = 2, control passes to the statement STOP +C to abort the run. This statement may be machine-dependent. +C 4. R1 and R2 are assumed to be in double precision and are printed +C in D21.13 format. +C +C***ROUTINES CALLED IXSAV +C***REVISION HISTORY (YYMMDD) +C 920831 DATE WRITTEN +C 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH) +C 930329 Modified prologue to SLATEC format. (FNF) +C 930407 Changed MSG from CHARACTER*1 array to variable. (FNF) +C 930922 Minor cosmetic change. (FNF) +C***END PROLOGUE XERRWD +C +C*Internal Notes: +C +C For a different default logical unit number, IXSAV (or a subsidiary +C routine that it calls) will need to be modified. +C For a different run-abort command, change the statement following +C statement 100 at the end. +C----------------------------------------------------------------------- +C Subroutines called by XERRWD.. None +C Function routine called by XERRWD.. IXSAV +C----------------------------------------------------------------------- +C**End +C +C Declare arguments. +C + DOUBLE PRECISION R1, R2 + INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR + CHARACTER*(*) MSG +C +C Declare local variables. +C + INTEGER LUNIT, IXSAV, MESFLG +C +C Get logical unit number and message print flag. +C +C***FIRST EXECUTABLE STATEMENT XERRWD + LUNIT = IXSAV (1, 0, .FALSE.) + MESFLG = IXSAV (2, 0, .FALSE.) + IF (MESFLG .EQ. 0) GO TO 100 +C +C Write the message. +C + WRITE (LUNIT,10) MSG + 10 FORMAT(1X,A) + IF (NI .EQ. 1) WRITE (LUNIT, 20) I1 + 20 FORMAT(6X,'In above message, I1 =',I10) + IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2 + 30 FORMAT(6X,'In above message, I1 =',I10,3X,'I2 =',I10) + IF (NR .EQ. 1) WRITE (LUNIT, 40) R1 + 40 FORMAT(6X,'In above message, R1 =',D21.13) + IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2 + 50 FORMAT(6X,'In above, R1 =',D21.13,3X,'R2 =',D21.13) +C +C Abort the run if LEVEL = 2. +C + 100 IF (LEVEL .NE. 2) RETURN + STOP +C----------------------- End of Subroutine XERRWD ---------------------- + END +*DECK XSETF + SUBROUTINE XSETF (MFLAG) +C***BEGIN PROLOGUE XSETF +C***PURPOSE Reset the error print control flag. +C***CATEGORY R3A +C***TYPE ALL (XSETF-A) +C***KEYWORDS ERROR CONTROL +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C XSETF sets the error print control flag to MFLAG: +C MFLAG=1 means print all messages (the default). +C MFLAG=0 means no printing. +C +C***SEE ALSO XERRWD, XERRWV +C***REFERENCES (NONE) +C***ROUTINES CALLED IXSAV +C***REVISION HISTORY (YYMMDD) +C 921118 DATE WRITTEN +C 930329 Added SLATEC format prologue. (FNF) +C 930407 Corrected SEE ALSO section. (FNF) +C 930922 Made user-callable, and other cosmetic changes. (FNF) +C***END PROLOGUE XSETF +C +C Subroutines called by XSETF.. None +C Function routine called by XSETF.. IXSAV +C----------------------------------------------------------------------- +C**End + INTEGER MFLAG, JUNK, IXSAV +C +C***FIRST EXECUTABLE STATEMENT XSETF + IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = IXSAV (2,MFLAG,.TRUE.) + RETURN +C----------------------- End of Subroutine XSETF ----------------------- + END +*DECK XSETUN + SUBROUTINE XSETUN (LUN) +C***BEGIN PROLOGUE XSETUN +C***PURPOSE Reset the logical unit number for error messages. +C***CATEGORY R3B +C***TYPE ALL (XSETUN-A) +C***KEYWORDS ERROR CONTROL +C***DESCRIPTION +C +C XSETUN sets the logical unit number for error messages to LUN. +C +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***SEE ALSO XERRWD, XERRWV +C***REFERENCES (NONE) +C***ROUTINES CALLED IXSAV +C***REVISION HISTORY (YYMMDD) +C 921118 DATE WRITTEN +C 930329 Added SLATEC format prologue. (FNF) +C 930407 Corrected SEE ALSO section. (FNF) +C 930922 Made user-callable, and other cosmetic changes. (FNF) +C***END PROLOGUE XSETUN +C +C Subroutines called by XSETUN.. None +C Function routine called by XSETUN.. IXSAV +C----------------------------------------------------------------------- +C**End + INTEGER LUN, JUNK, IXSAV +C +C***FIRST EXECUTABLE STATEMENT XSETUN + IF (LUN .GT. 0) JUNK = IXSAV (1,LUN,.TRUE.) + RETURN +C----------------------- End of Subroutine XSETUN ---------------------- + END +*DECK IXSAV + INTEGER FUNCTION IXSAV (IPAR, IVALUE, ISET) +C***BEGIN PROLOGUE IXSAV +C***SUBSIDIARY +C***PURPOSE Save and recall error message control parameters. +C***CATEGORY R3C +C***TYPE ALL (IXSAV-A) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C IXSAV saves and recalls one of two error message parameters: +C LUNIT, the logical unit number to which messages are printed, and +C MESFLG, the message print flag. +C This is a modification of the SLATEC library routine J4SAVE. +C +C Saved local variables.. +C LUNIT = Logical unit number for messages. The default is obtained +C by a call to IUMACH (may be machine-dependent). +C MESFLG = Print control flag.. +C 1 means print all messages (the default). +C 0 means no printing. +C +C On input.. +C IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG). +C IVALUE = The value to be set for the parameter, if ISET = .TRUE. +C ISET = Logical flag to indicate whether to read or write. +C If ISET = .TRUE., the parameter will be given +C the value IVALUE. If ISET = .FALSE., the parameter +C will be unchanged, and IVALUE is a dummy argument. +C +C On return.. +C IXSAV = The (old) value of the parameter. +C +C***SEE ALSO XERRWD, XERRWV +C***ROUTINES CALLED IUMACH +C***REVISION HISTORY (YYMMDD) +C 921118 DATE WRITTEN +C 930329 Modified prologue to SLATEC format. (FNF) +C 930915 Added IUMACH call to get default output unit. (ACH) +C 930922 Minor cosmetic changes. (FNF) +C 010425 Type declaration for IUMACH added. (ACH) +C***END PROLOGUE IXSAV +C +C Subroutines called by IXSAV.. None +C Function routine called by IXSAV.. IUMACH +C----------------------------------------------------------------------- +C**End + LOGICAL ISET + INTEGER IPAR, IVALUE +C----------------------------------------------------------------------- + INTEGER IUMACH, LUNIT, MESFLG +C----------------------------------------------------------------------- +C The following Fortran-77 declaration is to cause the values of the +C listed (local) variables to be saved between calls to this routine. +C----------------------------------------------------------------------- + SAVE LUNIT, MESFLG + DATA LUNIT/-1/, MESFLG/1/ +C +C***FIRST EXECUTABLE STATEMENT IXSAV + IF (IPAR .EQ. 1) THEN + IF (LUNIT .EQ. -1) LUNIT = IUMACH() + IXSAV = LUNIT + IF (ISET) LUNIT = IVALUE + ENDIF +C + IF (IPAR .EQ. 2) THEN + IXSAV = MESFLG + IF (ISET) MESFLG = IVALUE + ENDIF +C + RETURN +C----------------------- End of Function IXSAV ------------------------- + END +*DECK IUMACH + INTEGER FUNCTION IUMACH() +C***BEGIN PROLOGUE IUMACH +C***PURPOSE Provide standard output unit number. +C***CATEGORY R1 +C***TYPE INTEGER (IUMACH-I) +C***KEYWORDS MACHINE CONSTANTS +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C *Usage: +C INTEGER LOUT, IUMACH +C LOUT = IUMACH() +C +C *Function Return Values: +C LOUT : the standard logical unit for Fortran output. +C +C***REFERENCES (NONE) +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 930915 DATE WRITTEN +C 930922 Made user-callable, and other cosmetic changes. (FNF) +C***END PROLOGUE IUMACH +C +C*Internal Notes: +C The built-in value of 6 is standard on a wide range of Fortran +C systems. This may be machine-dependent. +C**End +C***FIRST EXECUTABLE STATEMENT IUMACH + IUMACH = 6 +C + RETURN +C----------------------- End of Function IUMACH ------------------------ + END diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkdmain.f b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkdmain.f new file mode 100644 index 000000000..d879ee498 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/opkdmain.f @@ -0,0 +1,16587 @@ +*DECK DLSODE + SUBROUTINE DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) + EXTERNAL F, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C***BEGIN PROLOGUE DLSODE +C***PURPOSE Livermore Solver for Ordinary Differential Equations. +C DLSODE solves the initial-value problem for stiff or +C nonstiff systems of first-order ODE's, +C dy/dt = f(t,y), or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(N)), i=1,...,N. +C***CATEGORY I1A +C***TYPE DOUBLE PRECISION (SLSODE-S, DLSODE-D) +C***KEYWORDS ORDINARY DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEM, +C STIFF, NONSTIFF +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551. +C***DESCRIPTION +C +C NOTE: The "Usage" and "Arguments" sections treat only a subset of +C available options, in condensed fashion. The options +C covered and the information supplied will support most +C standard uses of DLSODE. +C +C For more sophisticated uses, full details on all options are +C given in the concluding section, headed "Long Description." +C A synopsis of the DLSODE Long Description is provided at the +C beginning of that section; general topics covered are: +C - Elements of the call sequence; optional input and output +C - Optional supplemental routines in the DLSODE package +C - internal COMMON block +C +C *Usage: +C Communication between the user and the DLSODE package, for normal +C situations, is summarized here. This summary describes a subset +C of the available options. See "Long Description" for complete +C details, including optional communication, nonstandard options, +C and instructions for special situations. +C +C A sample program is given in the "Examples" section. +C +C Refer to the argument descriptions for the definitions of the +C quantities that appear in the following sample declarations. +C +C For MF = 10, +C PARAMETER (LRW = 20 + 16*NEQ, LIW = 20) +C For MF = 21 or 22, +C PARAMETER (LRW = 22 + 9*NEQ + NEQ**2, LIW = 20 + NEQ) +C For MF = 24 or 25, +C PARAMETER (LRW = 22 + 10*NEQ + (2*ML+MU)*NEQ, +C * LIW = 20 + NEQ) +C +C EXTERNAL F, JAC +C INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK(LIW), +C * LIW, MF +C DOUBLE PRECISION Y(NEQ), T, TOUT, RTOL, ATOL(ntol), RWORK(LRW) +C +C CALL DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, +C * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) +C +C *Arguments: +C F :EXT Name of subroutine for right-hand-side vector f. +C This name must be declared EXTERNAL in calling +C program. The form of F must be: +C +C SUBROUTINE F (NEQ, T, Y, YDOT) +C INTEGER NEQ +C DOUBLE PRECISION T, Y(*), YDOT(*) +C +C The inputs are NEQ, T, Y. F is to set +C +C YDOT(i) = f(i,T,Y(1),Y(2),...,Y(NEQ)), +C i = 1, ..., NEQ . +C +C NEQ :IN Number of first-order ODE's. +C +C Y :INOUT Array of values of the y(t) vector, of length NEQ. +C Input: For the first call, Y should contain the +C values of y(t) at t = T. (Y is an input +C variable only if ISTATE = 1.) +C Output: On return, Y will contain the values at the +C new t-value. +C +C T :INOUT Value of the independent variable. On return it +C will be the current value of t (normally TOUT). +C +C TOUT :IN Next point where output is desired (.NE. T). +C +C ITOL :IN 1 or 2 according as ATOL (below) is a scalar or +C an array. +C +C RTOL :IN Relative tolerance parameter (scalar). +C +C ATOL :IN Absolute tolerance parameter (scalar or array). +C If ITOL = 1, ATOL need not be dimensioned. +C If ITOL = 2, ATOL must be dimensioned at least NEQ. +C +C The estimated local error in Y(i) will be controlled +C so as to be roughly less (in magnitude) than +C +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C +C Thus the local error test passes if, in each +C component, either the absolute error is less than +C ATOL (or ATOL(i)), or the relative error is less +C than RTOL. +C +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative +C error control. Caution: Actual (global) errors may +C exceed these local tolerances, so choose them +C conservatively. +C +C ITASK :IN Flag indicating the task DLSODE is to perform. +C Use ITASK = 1 for normal computation of output +C values of y at t = TOUT. +C +C ISTATE:INOUT Index used for input and output to specify the state +C of the calculation. +C Input: +C 1 This is the first call for a problem. +C 2 This is a subsequent call. +C Output: +C 1 Nothing was done, because TOUT was equal to T. +C 2 DLSODE was successful (otherwise, negative). +C Note that ISTATE need not be modified after a +C successful return. +C -1 Excess work done on this call (perhaps wrong +C MF). +C -2 Excess accuracy requested (tolerances too +C small). +C -3 Illegal input detected (see printed message). +C -4 Repeated error test failures (check all +C inputs). +C -5 Repeated convergence failures (perhaps bad +C Jacobian supplied or wrong choice of MF or +C tolerances). +C -6 Error weight became zero during problem +C (solution component i vanished, and ATOL or +C ATOL(i) = 0.). +C +C IOPT :IN Flag indicating whether optional inputs are used: +C 0 No. +C 1 Yes. (See "Optional inputs" under "Long +C Description," Part 1.) +C +C RWORK :WORK Real work array of length at least: +C 20 + 16*NEQ for MF = 10, +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25. +C +C LRW :IN Declared length of RWORK (in user's DIMENSION +C statement). +C +C IWORK :WORK Integer work array of length at least: +C 20 for MF = 10, +C 20 + NEQ for MF = 21, 22, 24, or 25. +C +C If MF = 24 or 25, input in IWORK(1),IWORK(2) the +C lower and upper Jacobian half-bandwidths ML,MU. +C +C On return, IWORK contains information that may be +C of interest to the user: +C +C Name Location Meaning +C ----- --------- ----------------------------------------- +C NST IWORK(11) Number of steps taken for the problem so +C far. +C NFE IWORK(12) Number of f evaluations for the problem +C so far. +C NJE IWORK(13) Number of Jacobian evaluations (and of +C matrix LU decompositions) for the problem +C so far. +C NQU IWORK(14) Method order last used (successfully). +C LENRW IWORK(17) Length of RWORK actually required. This +C is defined on normal returns and on an +C illegal input return for insufficient +C storage. +C LENIW IWORK(18) Length of IWORK actually required. This +C is defined on normal returns and on an +C illegal input return for insufficient +C storage. +C +C LIW :IN Declared length of IWORK (in user's DIMENSION +C statement). +C +C JAC :EXT Name of subroutine for Jacobian matrix (MF = +C 21 or 24). If used, this name must be declared +C EXTERNAL in calling program. If not used, pass a +C dummy name. The form of JAC must be: +C +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C INTEGER NEQ, ML, MU, NROWPD +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C +C See item c, under "Description" below for more +C information about JAC. +C +C MF :IN Method flag. Standard values are: +C 10 Nonstiff (Adams) method, no Jacobian used. +C 21 Stiff (BDF) method, user-supplied full Jacobian. +C 22 Stiff method, internally generated full +C Jacobian. +C 24 Stiff method, user-supplied banded Jacobian. +C 25 Stiff method, internally generated banded +C Jacobian. +C +C *Description: +C DLSODE solves the initial value problem for stiff or nonstiff +C systems of first-order ODE's, +C +C dy/dt = f(t,y) , +C +C or, in component form, +C +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) +C (i = 1, ..., NEQ) . +C +C DLSODE is a package based on the GEAR and GEARB packages, and on +C the October 23, 1978, version of the tentative ODEPACK user +C interface standard, with minor modifications. +C +C The steps in solving such a problem are as follows. +C +C a. First write a subroutine of the form +C +C SUBROUTINE F (NEQ, T, Y, YDOT) +C INTEGER NEQ +C DOUBLE PRECISION T, Y(*), YDOT(*) +C +C which supplies the vector function f by loading YDOT(i) with +C f(i). +C +C b. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an +C eigenvalue whose real part is negative and large in magnitude +C compared to the reciprocal of the t span of interest. If the +C problem is nonstiff, use method flag MF = 10. If it is stiff, +C there are four standard choices for MF, and DLSODE requires the +C Jacobian matrix in some form. This matrix is regarded either +C as full (MF = 21 or 22), or banded (MF = 24 or 25). In the +C banded case, DLSODE requires two half-bandwidth parameters ML +C and MU. These are, respectively, the widths of the lower and +C upper parts of the band, excluding the main diagonal. Thus the +C band consists of the locations (i,j) with +C +C i - ML <= j <= i + MU , +C +C and the full bandwidth is ML + MU + 1 . +C +C c. If the problem is stiff, you are encouraged to supply the +C Jacobian directly (MF = 21 or 24), but if this is not feasible, +C DLSODE will compute it internally by difference quotients (MF = +C 22 or 25). If you are supplying the Jacobian, write a +C subroutine of the form +C +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C INTEGER NEQ, ML, MU, NRWOPD +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C +C which provides df/dy by loading PD as follows: +C - For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j), +C the partial derivative of f(i) with respect to y(j). (Ignore +C the ML and MU arguments in this case.) +C - For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with +C df(i)/dy(j); i.e., load the diagonal lines of df/dy into the +C rows of PD from the top down. +C - In either case, only nonzero elements need be loaded. +C +C d. Write a main program that calls subroutine DLSODE once for each +C point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODE. +C +C Before the first call to DLSODE, set ISTATE = 1, set Y and T to +C the initial values, and set TOUT to the first output point. To +C continue the integration after a successful return, simply +C reset TOUT and call DLSODE again. No other parameters need be +C reset. +C +C *Examples: +C The following is a simple example problem, with the coding needed +C for its solution by DLSODE. The problem is from chemical kinetics, +C and consists of the following three rate equations: +C +C dy1/dt = -.04*y1 + 1.E4*y2*y3 +C dy2/dt = .04*y1 - 1.E4*y2*y3 - 3.E7*y2**2 +C dy3/dt = 3.E7*y2**2 +C +C on the interval from t = 0.0 to t = 4.E10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. The problem is stiff. +C +C The following coding solves this problem with DLSODE, using +C MF = 21 and printing results at t = .4, 4., ..., 4.E10. It uses +C ITOL = 2 and ATOL much smaller for y2 than for y1 or y3 because y2 +C has much smaller values. At the end of the run, statistical +C quantities of interest are printed. +C +C EXTERNAL FEX, JEX +C INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL, IWORK(23), LIW, LRW, +C * MF, NEQ +C DOUBLE PRECISION ATOL(3), RTOL, RWORK(58), T, TOUT, Y(3) +C NEQ = 3 +C Y(1) = 1.D0 +C Y(2) = 0.D0 +C Y(3) = 0.D0 +C T = 0.D0 +C TOUT = .4D0 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 58 +C LIW = 23 +C MF = 21 +C DO 40 IOUT = 1,12 +C CALL DLSODE (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, +C * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF) +C WRITE(6,20) T, Y(1), Y(2), Y(3) +C 20 FORMAT(' At t =',D12.4,' y =',3D14.6) +C IF (ISTATE .LT. 0) GO TO 80 +C 40 TOUT = TOUT*10.D0 +C WRITE(6,60) IWORK(11), IWORK(12), IWORK(13) +C 60 FORMAT(/' No. steps =',i4,', No. f-s =',i4,', No. J-s =',i4) +C STOP +C 80 WRITE(6,90) ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C INTEGER NEQ +C DOUBLE PRECISION T, Y(3), YDOT(3) +C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3) +C YDOT(3) = 3.D7*Y(2)*Y(2) +C YDOT(2) = -YDOT(1) - YDOT(3) +C RETURN +C END +C +C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD) +C INTEGER NEQ, ML, MU, NRPD +C DOUBLE PRECISION T, Y(3), PD(NRPD,3) +C PD(1,1) = -.04D0 +C PD(1,2) = 1.D4*Y(3) +C PD(1,3) = 1.D4*Y(2) +C PD(2,1) = .04D0 +C PD(2,3) = -PD(1,3) +C PD(3,2) = 6.D7*Y(2) +C PD(2,2) = -PD(1,2) - PD(3,2) +C RETURN +C END +C +C The output from this program (on a Cray-1 in single precision) +C is as follows. +C +C At t = 4.0000e-01 y = 9.851726e-01 3.386406e-05 1.479357e-02 +C At t = 4.0000e+00 y = 9.055142e-01 2.240418e-05 9.446344e-02 +C At t = 4.0000e+01 y = 7.158050e-01 9.184616e-06 2.841858e-01 +C At t = 4.0000e+02 y = 4.504846e-01 3.222434e-06 5.495122e-01 +C At t = 4.0000e+03 y = 1.831701e-01 8.940379e-07 8.168290e-01 +C At t = 4.0000e+04 y = 3.897016e-02 1.621193e-07 9.610297e-01 +C At t = 4.0000e+05 y = 4.935213e-03 1.983756e-08 9.950648e-01 +C At t = 4.0000e+06 y = 5.159269e-04 2.064759e-09 9.994841e-01 +C At t = 4.0000e+07 y = 5.306413e-05 2.122677e-10 9.999469e-01 +C At t = 4.0000e+08 y = 5.494530e-06 2.197825e-11 9.999945e-01 +C At t = 4.0000e+09 y = 5.129458e-07 2.051784e-12 9.999995e-01 +C At t = 4.0000e+10 y = -7.170603e-08 -2.868241e-13 1.000000e+00 +C +C No. steps = 330, No. f-s = 405, No. J-s = 69 +C +C *Accuracy: +C The accuracy of the solution depends on the choice of tolerances +C RTOL and ATOL. Actual (global) errors may exceed these local +C tolerances, so choose them conservatively. +C +C *Cautions: +C The work arrays should not be altered between calls to DLSODE for +C the same problem, except possibly for the conditional and optional +C inputs. +C +C *Portability: +C Since NEQ is dimensioned inside DLSODE, some compilers may object +C to a call to DLSODE with NEQ a scalar variable. In this event, +C use DIMENSION NEQ(1). Similar remarks apply to RTOL and ATOL. +C +C Note to Cray users: +C For maximum efficiency, use the CFT77 compiler. Appropriate +C compiler optimization directives have been inserted for CFT77. +C +C *Reference: +C Alan C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE +C Solvers," in Scientific Computing, R. S. Stepleman, et al., Eds. +C (North-Holland, Amsterdam, 1983), pp. 55-64. +C +C *Long Description: +C The following complete description of the user interface to +C DLSODE consists of four parts: +C +C 1. The call sequence to subroutine DLSODE, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and user-supplied routines. +C Following these descriptions is a description of optional +C inputs available through the call sequence, and then a +C description of optional outputs in the work arrays. +C +C 2. Descriptions of other routines in the DLSODE package that may +C be (optionally) called by the user. These provide the ability +C to alter error message handling, save and restore the internal +C COMMON, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of COMMON block to be declared in overlay or +C similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODE package, either of +C which the user may replace with his own version, if desired. +C These relate to the measurement of errors. +C +C +C Part 1. Call Sequence +C ---------------------- +C +C Arguments +C --------- +C The call sequence parameters used for input only are +C +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF, +C +C and those used for both input and output are +C +C Y, T, ISTATE. +C +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here +C refers to the return from subroutine DLSODE to the user's calling +C program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F The name of the user-supplied subroutine defining the ODE +C system. The system must be put in the first-order form +C dy/dt = f(t,y), where f is a vector-valued function of +C the scalar t and the vector y. Subroutine F is to compute +C the function f. It is to have the form +C +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C +C where NEQ, T, and Y are input, and the array YDOT = +C f(T,Y) is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). F must be +C declared EXTERNAL in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),..., if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODE, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY +C instead. +C +C NEQ The size of the ODE system (number of first-order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the +C problem. If NEQ is decreased (with ISTATE = 3 on input), +C the remaining components of Y should be left undisturbed, +C if these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred +C to as a scalar in this user interface description. +C However, NEQ may be an array, with NEQ(1) set to the +C system size. (The DLSODE package accesses only NEQ(1).) +C In either case, this parameter is passed as the NEQ +C argument in all calls to F and JAC. Hence, if it is an +C array, locations NEQ(2),... may be used to store other +C integer data and pass it to F and/or JAC. Subroutines +C F and/or JAC must include NEQ in a DIMENSION statement +C in that case. +C +C Y A real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on +C the first call (ISTATE = 1), and only for output on +C other calls. On the first call, Y must contain the +C vector of initial values. On output, Y contains the +C computed solution vector, evaluated at T. If desired, +C the Y array may be used for other purposes between +C calls to the solver. +C +C This array is passed as the Y argument in all calls to F +C and JAC. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F and/or JAC. (The DLSODE package accesses +C only Y(1),...,Y(NEQ).) +C +C T The independent variable. On input, T is used only on +C the first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as +C TOUT). On an error return, T is the farthest point +C reached. +C +C TOUT The next value of T at which a computed solution is +C desired. Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should not equal T for the next +C call. For the initial T, an input value of TOUT .NE. T +C is used in order to determine the direction of the +C integration (i.e., the algebraic sign of the step sizes) +C and the rough scale of the problem. Integration in +C either direction (forward or backward in T) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored +C after the first call (i.e., the first call with +C TOUT .NE. T). Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR. (See "Optional Outputs" below for +C TCUR and HU.) +C +C +C ITOL An indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL A relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under +C ATOL. Input only. +C +C ATOL An absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine the +C error control performed by the solver. The solver will +C control the vector e = (e(i)) of estimated local errors +C in Y, according to an inequality of the form +C +C rms-norm of ( e(i)/EWT(i) ) <= 1, +C +C where +C +C EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C +C and the rms-norm (root-mean-square norm) here is +C +C rms-norm(v) = SQRT(sum v(i)**2 / NEQ). +C +C Here EWT = (EWT(i)) is a vector of weights which must +C always be positive, and the values of RTOL and ATOL +C should all be nonnegative. The following table gives the +C types (scalar/array) of RTOL and ATOL, and the +C corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C ---- ------ ------ ----------------------------- +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e., of EWT) should be +C scaled down uniformly. +C +C ITASK An index specifying the task to be performed. Input +C only. ITASK has the following values and meanings: +C 1 Normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 Take one step only and return. +C 3 Stop at the first internal mesh point at or beyond +C t = TOUT and return. +C 4 Normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. TCRIT +C must be input as RWORK(1). TCRIT may be equal to or +C beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 Take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before +C TCRIT, in which case answers at T = TOUT are returned +C first). +C +C ISTATE An index used for input and output to specify the state +C of the calculation. +C +C On input, the values of ISTATE are as follows: +C 1 This is the first call for the problem +C (initializations will be done). See "Note" below. +C 2 This is not the first call, and the calculation is to +C continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. (If ITOL, +C RTOL, and/or ATOL are changed between calls with +C ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 This is not the first call, and the calculation is to +C continue normally, but with a change in input +C parameters other than TOUT and ITASK. Changes are +C allowed in NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C ML, MU, and any of the optional inputs except H0. +C (See IWORK description for ML and MU.) +C +C Note: A preliminary call with TOUT = T is not counted as +C a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) Thus the +C first call for which TOUT .NE. T requires ISTATE = 1 on +C input. +C +C On output, ISTATE has the following values and meanings: +C 1 Nothing was done, as TOUT was equal to T with +C ISTATE = 1 on input. +C 2 The integration was performed successfully. +C -1 An excessive amount of work (more than MXSTEP steps) +C was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value >1 and call again (the +C excess work step counter will be reset to 0). In +C addition, the user may increase MXSTEP to avoid this +C error return; see "Optional Inputs" below. +C -2 Too much accuracy was requested for the precision of +C the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the +C tolerance parameters must be reset, and ISTATE must +C be set to 3. The optional output TOLSF may be used +C for this purpose. (Note: If this condition is +C detected before taking any steps, then an illegal +C input return (ISTATE = -3) occurs instead.) +C -3 Illegal input was detected, before taking any +C integration steps. See written message for details. +C (Note: If the solver detects an infinite loop of +C calls to the solver with illegal input, it will cause +C the run to stop.) +C -4 There were repeated error-test failures on one +C attempted step, before completing the requested task, +C but the integration was successful as far as T. The +C problem may have a singularity, or the input may be +C inappropriate. +C -5 There were repeated convergence-test failures on one +C attempted step, before completing the requested task, +C but the integration was successful as far as T. This +C may be caused by an inaccurate Jacobian matrix, if +C one is being used. +C -6 EWT(i) became zero for some i during the integration. +C Pure relative error control (ATOL(i)=0.0) was +C requested on a variable which has now vanished. The +C integration was successful as far as T. +C +C Note: Since the normal output value of ISTATE is 2, it +C does not need to be reset for normal continuation. Also, +C since a negative input value of ISTATE will be regarded +C as illegal, a negative output value requires the user to +C change it, and possibly other inputs, before calling the +C solver again. +C +C IOPT An integer flag to specify whether any optional inputs +C are being used on this call. Input only. The optional +C inputs are listed under a separate heading below. +C 0 No optional inputs are being used. Default values +C will be used in all cases. +C 1 One or more optional inputs are being used. +C +C RWORK A real working array (double precision). The length of +C RWORK must be at least +C +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM +C +C where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LWM = 0 if MITER = 0, +C LWM = NEQ**2 + 2 if MITER = 1 or 2, +C LWM = NEQ + 2 if MITER = 3, and +C LWM = (2*ML + MU + 1)*NEQ + 2 +C if MITER = 4 or 5. +C (See the MF description below for METH and MITER.) +C +C Thus if MAXORD has its default value and NEQ is constant, +C this length is: +C 20 + 16*NEQ for MF = 10, +C 22 + 16*NEQ + NEQ**2 for MF = 11 or 12, +C 22 + 17*NEQ for MF = 13, +C 22 + 17*NEQ + (2*ML + MU)*NEQ for MF = 14 or 15, +C 20 + 9*NEQ for MF = 20, +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ for MF = 23, +C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25. +C +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT, the critical value of t which the +C solver is not to overshoot. Required if ITASK +C is 4 or 5, and ignored otherwise. See ITASK. +C +C LRW The length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK An integer work array. Its length must be at least +C 20 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or +C 20 + NEQ otherwise (MF = 11, 12, 14, 15, 21, 22, 24, 25). +C (See the MF description below for MITER.) The first few +C words of IWORK are used for conditional and optional +C inputs and optional outputs. +C +C The following two words in IWORK are conditional inputs: +C IWORK(1) = ML These are the lower and upper half- +C IWORK(2) = MU bandwidths, respectively, of the banded +C Jacobian, excluding the main diagonal. +C The band is defined by the matrix locations +C (i,j) with i - ML <= j <= i + MU. ML and MU +C must satisfy 0 <= ML,MU <= NEQ - 1. These are +C required if MITER is 4 or 5, and ignored +C otherwise. ML and MU may in fact be the band +C parameters for a matrix to which df/dy is only +C approximately equal. +C +C LIW The length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODE +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODE between calls, if +C desired (but not for use by F or JAC). +C +C JAC The name of the user-supplied routine (MITER = 1 or 4) to +C compute the Jacobian matrix, df/dy, as a function of the +C scalar t and the vector y. (See the MF description below +C for MITER.) It is to have the form +C +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C +C where NEQ, T, Y, ML, MU, and NROWPD are input and the +C array PD is to be loaded with partial derivatives +C (elements of the Jacobian matrix) on output. PD must be +C given a first dimension of NROWPD. T and Y have the same +C meaning as in subroutine F. +C +C In the full matrix case (MITER = 1), ML and MU are +C ignored, and the Jacobian is to be loaded into PD in +C columnwise manner, with df(i)/dy(j) loaded into PD(i,j). +C +C In the band matrix case (MITER = 4), the elements within +C the band are to be loaded into PD in columnwise manner, +C with diagonal lines of df/dy loaded into the rows of PD. +C Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). ML +C and MU are the half-bandwidth parameters (see IWORK). +C The locations in PD in the two triangular areas which +C correspond to nonexistent matrix elements can be ignored +C or loaded arbitrarily, as they are overwritten by DLSODE. +C +C JAC need not provide df/dy exactly. A crude approximation +C (possibly with a smaller bandwidth) will do. +C +C In either case, PD is preset to zero by the solver, so +C that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to F with the same +C arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may +C be saved in a user COMMON block by F and not recomputed +C by JAC, if desired. Also, JAC may alter the Y array, if +C desired. JAC must be declared EXTERNAL in the calling +C program. +C +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding +C NEQ(1). See the descriptions of NEQ and Y above. +C +C MF The method flag. Used only for input. The legal values +C of MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, +C and 25. MF has decimal digits METH and MITER: +C MF = 10*METH + MITER . +C +C METH indicates the basic linear multistep method: +C 1 Implicit Adams method. +C 2 Method based on backward differentiation formulas +C (BDF's). +C +C MITER indicates the corrector iteration method: +C 0 Functional iteration (no Jacobian matrix is +C involved). +C 1 Chord iteration with a user-supplied full (NEQ by +C NEQ) Jacobian. +C 2 Chord iteration with an internally generated +C (difference quotient) full Jacobian (using NEQ +C extra calls to F per df/dy value). +C 3 Chord iteration with an internally generated +C diagonal Jacobian approximation (using one extra call +C to F per df/dy evaluation). +C 4 Chord iteration with a user-supplied banded Jacobian. +C 5 Chord iteration with an internally generated banded +C Jacobian (using ML + MU + 1 extra calls to F per +C df/dy evaluation). +C +C If MITER = 1 or 4, the user must supply a subroutine JAC +C (the name is arbitrary) as described above under JAC. +C For other values of MITER, a dummy argument can be used. +C +C Optional Inputs +C --------------- +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that case +C all of these inputs are examined. A value of zero for any of +C these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, +C and then set those of interest to nonzero values. +C +C Name Location Meaning and default value +C ------ --------- ----------------------------------------------- +C H0 RWORK(5) Step size to be attempted on the first step. +C The default value is determined by the solver. +C HMAX RWORK(6) Maximum absolute step size allowed. The +C default value is infinite. +C HMIN RWORK(7) Minimum absolute step size allowed. The +C default value is 0. (This lower bound is not +C enforced on the final step before reaching +C TCRIT when ITASK = 4 or 5.) +C MAXORD IWORK(5) Maximum order to be allowed. The default value +C is 12 if METH = 1, and 5 if METH = 2. (See the +C MF description above for METH.) If MAXORD +C exceeds the default value, it will be reduced +C to the default value. If MAXORD is changed +C during the problem, it may cause the current +C order to be reduced. +C MXSTEP IWORK(6) Maximum number of (internally defined) steps +C allowed during one call to the solver. The +C default value is 500. +C MXHNIL IWORK(7) Maximum number of messages printed (per +C problem) warning that T + H = T on a step +C (H = step size). This must be positive to +C result in a nondefault value. The default +C value is 10. +C +C Optional Outputs +C ---------------- +C As optional additional output from DLSODE, the variables listed +C below are quantities related to the performance of DLSODE which +C are available to the user. These are communicated by way of the +C work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined on +C any successful return from DLSODE, and on any return with ISTATE = +C -1, -2, -4, -5, or -6. On an illegal input return (ISTATE = -3), +C they will be unchanged from their existing values (if any), except +C possibly for TOLSF, LENRW, and LENIW. On any error return, +C outputs relevant to the error will be defined, as noted below. +C +C Name Location Meaning +C ----- --------- ------------------------------------------------ +C HU RWORK(11) Step size in t last used (successfully). +C HCUR RWORK(12) Step size to be attempted on the next step. +C TCUR RWORK(13) Current value of the independent variable which +C the solver has actually reached, i.e., the +C current internal mesh point in t. On output, +C TCUR will always be at least as far as the +C argument T, but may be farther (if interpolation +C was done). +C TOLSF RWORK(14) Tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy +C was detected (ISTATE = -3 if detected at the +C start of the problem, ISTATE = -2 otherwise). +C If ITOL is left unaltered but RTOL and ATOL are +C uniformly scaled up by a factor of TOLSF for the +C next call, then the solver is deemed likely to +C succeed. (The user may also ignore TOLSF and +C alter the tolerance parameters in any other way +C appropriate.) +C NST IWORK(11) Number of steps taken for the problem so far. +C NFE IWORK(12) Number of F evaluations for the problem so far. +C NJE IWORK(13) Number of Jacobian evaluations (and of matrix LU +C decompositions) for the problem so far. +C NQU IWORK(14) Method order last used (successfully). +C NQCUR IWORK(15) Order to be attempted on the next step. +C IMXER IWORK(16) Index of the component of largest magnitude in +C the weighted local error vector ( e(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C LENRW IWORK(17) Length of RWORK actually required. This is +C defined on normal returns and on an illegal +C input return for insufficient storage. +C LENIW IWORK(18) Length of IWORK actually required. This is +C defined on normal returns and on an illegal +C input return for insufficient storage. +C +C The following two arrays are segments of the RWORK array which may +C also be of interest to the user as optional outputs. For each +C array, the table below gives its internal name, its base address +C in RWORK, and its description. +C +C Name Base address Description +C ---- ------------ ---------------------------------------------- +C YH 21 The Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value of +C NEQ. For j = 0,1,...,NQCUR, column j + 1 of +C YH contains HCUR**j/factorial(j) times the jth +C derivative of the interpolating polynomial +C currently representing the solution, evaluated +C at t = TCUR. +C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in Y on +C the last step. This is the vector e in the +C description of the error control. It is +C defined only on successful return from DLSODE. +C +C +C Part 2. Other Callable Routines +C -------------------------------- +C +C The following are optional calls which the user may make to gain +C additional capabilities in conjunction with DLSODE. +C +C Form of call Function +C ------------------------ ---------------------------------------- +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODE, if the +C default is not desired. The default +C value of LUN is 6. This call may be made +C at any time and will take effect +C immediately. +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODE. MFLAG = 0 means do +C not print. (Danger: this risks losing +C valuable information.) MFLAG = 1 means +C print (the default). This call may be +C made at any time and will take effect +C immediately. +C CALL DSRCOM(RSAV,ISAV,JOB) Saves and restores the contents of the +C internal COMMON blocks used by DLSODE +C (see Part 3 below). RSAV must be a +C real array of length 218 or more, and +C ISAV must be an integer array of length +C 37 or more. JOB = 1 means save COMMON +C into RSAV/ISAV. JOB = 2 means restore +C COMMON from same. DSRCOM is useful if +C one is interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODE. +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after a +C successful return from DLSODE. Detailed +C instructions follow. +C +C Detailed instructions for using DINTDY +C -------------------------------------- +C The form of the CALL is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T Value of independent variable where answers are +C desired (normally the same as the T last returned by +C DLSODE). For valid results, T must lie between +C TCUR - HU and TCUR. (See "Optional Outputs" above +C for TCUR and HU.) +C K Integer order of the derivative desired. K must +C satisfy 0 <= K <= NQCUR, where NQCUR is the current +C order (see "Optional Outputs"). The capability +C corresponding to K = 0, i.e., computing y(t), is +C already provided by DLSODE directly. Since +C NQCUR >= 1, the first derivative dy/dt is always +C available with DINTDY. +C RWORK(21) The base address of the history array YH. +C NYH Column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY Real array of length NEQ containing the computed value +C of the Kth derivative of y(t). +C IFLAG Integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C +C +C Part 3. Common Blocks +C ---------------------- +C +C If DLSODE is to be used in an overlay situation, the user must +C declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODE, +C (2) the internal COMMON block /DLS001/, of length 255 +C (218 double precision words followed by 37 integer words). +C +C If DLSODE is used on a system in which the contents of internal +C COMMON blocks are not preserved between calls, the user should +C declare the above COMMON block in his main program to insure that +C its contents are preserved. +C +C If the solution of a given problem by DLSODE is to be interrupted +C and then later continued, as when restarting an interrupted run or +C alternating between two or more problems, the user should save, +C following the return from the last DLSODE call prior to the +C interruption, the contents of the call sequence variables and the +C internal COMMON block, and later restore these values before the +C next DLSODE call for that problem. In addition, if XSETUN and/or +C XSETF was called for non-default handling of error messages, then +C these calls must be repeated. To save and restore the COMMON +C block, use subroutine DSRCOM (see Part 2 above). +C +C +C Part 4. Optionally Replaceable Solver Routines +C ----------------------------------------------- +C +C Below are descriptions of two routines in the DLSODE package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since +C such a replacement may have a major impact on performance, it +C should be done only when absolutely necessary, and only with great +C caution. (Note: The means by which the package version of a +C routine is superseded by the user's version may be system- +C dependent.) +C +C DEWSET +C ------ +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODE call +C sequence, YCUR contains the current dependent variable vector, +C and EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in Y(i) to. The EWT array returned by DEWSET is passed to the +C DVNORM routine (see below), and also used by DLSODE in the +C computation of the optional output IMXER, the diagonal Jacobian +C approximation, and the increments for difference quotient +C Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in SEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is unnecessary +C when NST = 0). +C +C DVNORM +C ------ +C DVNORM is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C +C d = DVNORM (n, v, w) +C +C where: +C n = the length of the vector, +C v = real array of length n containing the vector, +C w = real array of length n containing weights, +C d = SQRT( (1/n) * sum(v(i)*w(i))**2 ). +C +C DVNORM is called with n = NEQ and with w(i) = 1.0/EWT(i), where +C EWT is as set by subroutine DEWSET. +C +C If the user supplies this function, it should return a nonnegative +C value of DVNORM suitable for use in the error control in DLSODE. +C None of the arguments should be altered by DVNORM. For example, a +C user-supplied DVNORM routine might: +C - Substitute a max-norm of (v(i)*w(i)) for the rms-norm, or +C - Ignore some components of v in the norm, with the effect of +C suppressing the error control on those components of Y. +C --------------------------------------------------------------------- +C***ROUTINES CALLED DEWSET, DINTDY, DUMACH, DSTODE, DVNORM, XERRWD +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYYYMMDD) +C 19791129 DATE WRITTEN +C 19791213 Minor changes to declarations; DELP init. in STODE. +C 19800118 Treat NEQ as array; integer declarations added throughout; +C minor changes to prologue. +C 19800306 Corrected TESCO(1,NQP1) setting in CFODE. +C 19800519 Corrected access of YH on forced order reduction; +C numerous corrections to prologues and other comments. +C 19800617 In main driver, added loading of SQRT(UROUND) in RWORK; +C minor corrections to main prologue. +C 19800923 Added zero initialization of HU and NQU. +C 19801218 Revised XERRWD routine; minor corrections to main prologue. +C 19810401 Minor changes to comments and an error message. +C 19810814 Numerous revisions: replaced EWT by 1/EWT; used flags +C JCUR, ICF, IERPJ, IERSL between STODE and subordinates; +C added tuning parameters CCMAX, MAXCOR, MSBP, MXNCF; +C reorganized returns from STODE; reorganized type decls.; +C fixed message length in XERRWD; changed default LUNIT to 6; +C changed Common lengths; changed comments throughout. +C 19870330 Major update by ACH: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODE; +C in STODE, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19890426 Modified prologue to SLATEC/LDOC format. (FNF) +C 19890501 Many improvements to prologue. (FNF) +C 19890503 A few final corrections to prologue. (FNF) +C 19890504 Minor cosmetic changes. (FNF) +C 19890510 Corrected description of Y in Arguments section. (FNF) +C 19890517 Minor corrections to prologue. (FNF) +C 19920514 Updated with prologue edited 891025 by G. Shaw for manual. +C 19920515 Converted source lines to upper case. (FNF) +C 19920603 Revised XERRWD calls using mixed upper-lower case. (ACH) +C 19920616 Revised prologue comment regarding CFT. (ACH) +C 19921116 Revised prologue comments regarding Common. (ACH). +C 19930326 Added comment about non-reentrancy. (FNF) +C 19930723 Changed D1MACH to DUMACH. (FNF) +C 19930801 Removed ILLIN and NTREP from Common (affects driver logic); +C minor changes to prologue and internal comments; +C changed Hollerith strings to quoted strings; +C changed internal comments to mixed case; +C replaced XERRWD with new version using character type; +C changed dummy dimensions from 1 to *. (ACH) +C 19930809 Changed to generic intrinsic names; changed names of +C subprograms and Common blocks to DLSODE etc. (ACH) +C 19930929 Eliminated use of REAL intrinsic; other minor changes. (ACH) +C 20010412 Removed all 'own' variables from Common block /DLS001/ +C (affects declarations in 6 routines). (ACH) +C 20010509 Minor corrections to prologue. (ACH) +C 20031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C 20031112 Added SAVE statements for data-loaded constants. +C +C***END PROLOGUE DLSODE +C +C*Internal Notes: +C +C Other Routines in the DLSODE Package. +C +C In addition to Subroutine DLSODE, the DLSODE package includes the +C following subroutines and function routines: +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODE is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPREPJ computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted R.M.S. norm of a vector. +C DSRCOM is a user-callable routine to save and restore +C the contents of the internal Common block. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C**End +C +C Declare externals. + EXTERNAL DPREPJ, DSOLSY + DOUBLE PRECISION DUMACH, DVNORM +C +C Declare all other variables. + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, + 1 LENIW, LENRW, LENWM, ML, MORD, MU, MXHNL0, MXSTP0 + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*80 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following internal Common block contains +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODE, DINTDY, DSTODE, +C DPREPJ, and DSOLSY. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .GT. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- +C +C***FIRST EXECUTABLE STATEMENT DLSODE + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608 + IF (MITER .LE. 3) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .EQ. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .EQ. 0) LENWM = 0 + IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENWM = N*N + 2 + IF (MITER .EQ. 3) LENWM = N + 2 + IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 20 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODE. ------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- + DO 80 I = 1,N + 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1) +C Reload WM(1) = RWORK(LWM), since LWM may have changed. --------------- + 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND) + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(I)) +C if this is positive, or MAX(ATOL(I)/ABS(Y(I))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * SUM ( f(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C f(i) = i-th component of initial value of f, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODE. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODE- Warning..internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODE- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODE(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPREPJ,DSOLSY) +C----------------------------------------------------------------------- + CALL DSTODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), + 2 F, JAC, DPREPJ, DSOLSY) + KGO = 1 - KFLAG + GO TO (300, 530, 540), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODE. +C If ITASK .NE. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. The optional outputs +C are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODE- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(I) .LE. 0.0 for some I (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODE- At T (=R1), EWT(I1) has become R2 .LE. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODE- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. see TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODE- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODE- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODE- ISTATE (=I1) illegal ' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODE- ITASK (=I1) illegal ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODE- ISTATE .GT. 1 but DLSODE not initialized ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODE- NEQ (=I1) .LT. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODE- ISTATE = 3 and NEQ increased (I1 to I2) ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODE- ITOL (=I1) illegal ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODE- IOPT (=I1) illegal ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODE- MF (=I1) illegal ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODE- ML (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODE- MU (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODE- MAXORD (=I1) .LT. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODE- MXSTEP (=I1) .LT. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODE- MXHNIL (=I1) .LT. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODE- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODE- HMAX (=R1) .LT. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODE- HMIN (=R1) .LT. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 CONTINUE + MSG='DLSODE- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 CONTINUE + MSG='DLSODE- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODE- RTOL(I1) is R1 .LT. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODE- ATOL(I1) is R1 .LT. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODE- EWT(I1) is R1 .LE. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 CONTINUE + MSG='DLSODE- TOUT (=R1) too close to T(=R2) to start integration' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 CONTINUE + MSG='DLSODE- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 CONTINUE + MSG='DLSODE- ITASK = 4 OR 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 CONTINUE + MSG='DLSODE- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODE- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODE- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODE- Run aborted.. apparent infinite loop ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- END OF SUBROUTINE DLSODE ---------------------- + END +*DECK DLSODES + SUBROUTINE DLSODES (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) + EXTERNAL F, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 12 November 2003 version of +C DLSODES: Livermore Solver for Ordinary Differential Equations +C with general Sparse Jacobian matrix. +C +C This version is in double precision. +C +C DLSODES solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C DLSODES is a variant of the DLSODE package, and is intended for +C problems in which the Jacobian matrix df/dy has an arbitrary +C sparse structure (when the problem is stiff). +C +C Authors: Alan C. Hindmarsh +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Andrew H. Sherman +C J. S. Nolen and Associates +C Houston, TX 77084 +C----------------------------------------------------------------------- +C References: +C 1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C +C 2. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: I. The Symmetric Codes, +C Int. J. Num. Meth. Eng., 18 (1982), pp. 1145-1151. +C +C 3. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: II. The Nonsymmetric Codes, +C Research Report No. 114, Dept. of Computer Sciences, Yale +C University, 1977. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODES package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue +C whose real part is negative and large in magnitude, compared to the +C reciprocal of the t span of interest. If the problem is nonstiff, +C use a method flag MF = 10. If it is stiff, there are two standard +C choices for the method flag, MF = 121 and MF = 222. In both cases, +C DLSODES requires the Jacobian matrix in some form, and it treats this +C matrix in general sparse form, with sparsity structure determined +C internally. (For options where the user supplies the sparsity +C structure, see the full description of MF below.) +C +C C. If the problem is stiff, you are encouraged to supply the Jacobian +C directly (MF = 121), but if this is not feasible, DLSODES will +C compute it internally by difference quotients (MF = 222). +C If you are supplying the Jacobian, provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*) +C Here NEQ, T, Y, and J are input arguments, and the JAC routine is to +C load the array PDJ (of length NEQ) with the J-th column of df/dy. +C I.e., load PDJ(i) with df(i)/dy(J) for all relevant values of i. +C The arguments IAN and JAN should be ignored for normal situations. +C DLSODES will call the JAC routine with J = 1,2,...,NEQ. +C Only nonzero elements need be loaded. Usually, a crude approximation +C to df/dy, possibly with fewer nonzero elements, will suffice. +C +C D. Write a main program which calls Subroutine DLSODES once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODES. On the first call to DLSODES, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable t. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C The estimated local error in Y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of Y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + 16*NEQ for MF = 10, +C 20 + (2 + 1./LENRAT)*NNZ + (11 + 9./LENRAT)*NEQ +C for MF = 121 or 222, +C where: +C NNZ = the number of nonzero elements in the sparse +C Jacobian (if this is unknown, use an estimate), and +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C In any case, the required size of RWORK cannot generally +C be predicted in advance if MF = 121 or 222, and the value +C above is a rough estimate of a crude lower bound. Some +C experimentation with this size may be necessary. +C (When known, the correct required length is an optional +C output, available in IWORK(17).) +C LRW = declared length of RWORK (in user dimension). +C IWORK = integer work array of length at least 30. +C LIW = declared length of IWORK (in user dimension). +C JAC = name of subroutine for Jacobian matrix (MF = 121). +C If used, this name must be declared External in calling +C program. If not used, pass a dummy name. +C MF = method flag. Standard values are: +C 10 for nonstiff (Adams) method, no Jacobian used +C 121 for stiff (BDF) method, user-supplied sparse Jacobian +C 222 for stiff method, internally generated sparse Jacobian +C Note that the main program must declare arrays Y, RWORK, IWORK, +C and possibly ATOL. +C +C E. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODES was successful, negative otherwise. +C -1 means excess work done on this call (perhaps wrong MF). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of MF or tolerances).lsodes +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means a fatal error return flag came from sparse solver +C CDRV by way of DPRJS or DSOLSS. Should never happen. +C A return with ISTATE = -1, -4, or -5 may result from using +C an inappropriate sparsity structure, one that is quite +C different from the initial structure. Consider calling +C DLSODES again with ISTATE = 3 to force the structure to be +C reevaluated. See the full description of ISTATE below. +C +C F. To continue the integration after a successful return, simply +C reset TOUT and call DLSODES again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODES. The problem is from chemical +C kinetics, and consists of the following 12 rate equations: +C dy1/dt = -rk1*y1 +C dy2/dt = rk1*y1 + rk11*rk14*y4 + rk19*rk14*y5 +C - rk3*y2*y3 - rk15*y2*y12 - rk2*y2 +C dy3/dt = rk2*y2 - rk5*y3 - rk3*y2*y3 - rk7*y10*y3 +C + rk11*rk14*y4 + rk12*rk14*y6 +C dy4/dt = rk3*y2*y3 - rk11*rk14*y4 - rk4*y4 +C dy5/dt = rk15*y2*y12 - rk19*rk14*y5 - rk16*y5 +C dy6/dt = rk7*y10*y3 - rk12*rk14*y6 - rk8*y6 +C dy7/dt = rk17*y10*y12 - rk20*rk14*y7 - rk18*y7 +C dy8/dt = rk9*y10 - rk13*rk14*y8 - rk10*y8 +C dy9/dt = rk4*y4 + rk16*y5 + rk8*y6 + rk18*y7 +C dy10/dt = rk5*y3 + rk12*rk14*y6 + rk20*rk14*y7 +C + rk13*rk14*y8 - rk7*y10*y3 - rk17*y10*y12 +C - rk6*y10 - rk9*y10 +C dy11/dt = rk10*y8 +C dy12/dt = rk6*y10 + rk19*rk14*y5 + rk20*rk14*y7 +C - rk15*y2*y12 - rk17*y10*y12 +C +C with rk1 = rk5 = 0.1, rk4 = rk8 = rk16 = rk18 = 2.5, +C rk10 = 5.0, rk2 = rk6 = 10.0, rk14 = 30.0, +C rk3 = rk7 = rk9 = rk11 = rk12 = rk13 = rk19 = rk20 = 50.0, +C rk15 = rk17 = 100.0. +C +C The t interval is from 0 to 1000, and the initial conditions +C are y1 = 1, y2 = y3 = ... = y12 = 0. The problem is stiff. +C +C The following coding solves this problem with DLSODES, using MF = 121 +C and printing results at t = .1, 1., 10., 100., 1000. It uses +C ITOL = 1 and mixed relative/absolute tolerance controls. +C During the run and at the end, statistical quantities of interest +C are printed (see optional outputs in the full description below). +C +C EXTERNAL FEX, JEX +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y +C DIMENSION Y(12), RWORK(500), IWORK(30) +C DATA LRW/500/, LIW/30/ +C NEQ = 12 +C DO 10 I = 1,NEQ +C 10 Y(I) = 0.0D0 +C Y(1) = 1.0D0 +C T = 0.0D0 +C TOUT = 0.1D0 +C ITOL = 1 +C RTOL = 1.0D-4 +C ATOL = 1.0D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C MF = 121 +C DO 40 IOUT = 1,5 +C CALL DLSODES (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, +C 1 ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF) +C WRITE(6,30)T,IWORK(11),RWORK(11),(Y(I),I=1,NEQ) +C 30 FORMAT(//' At t =',D11.3,4X, +C 1 ' No. steps =',I5,4X,' Last step =',D11.3/ +C 2 ' Y array = ',4D14.5/13X,4D14.5/13X,4D14.5) +C IF (ISTATE .LT. 0) GO TO 80 +C TOUT = TOUT*10.0D0 +C 40 CONTINUE +C LENRW = IWORK(17) +C LENIW = IWORK(18) +C NST = IWORK(11) +C NFE = IWORK(12) +C NJE = IWORK(13) +C NLU = IWORK(21) +C NNZ = IWORK(19) +C NNZLU = IWORK(25) + IWORK(26) + NEQ +C WRITE (6,70) LENRW,LENIW,NST,NFE,NJE,NLU,NNZ,NNZLU +C 70 FORMAT(//' Required RWORK size =',I4,' IWORK size =',I4/ +C 1 ' No. steps =',I4,' No. f-s =',I4,' No. J-s =',I4, +C 2 ' No. LU-s =',I4/' No. of nonzeros in J =',I5, +C 3 ' No. of nonzeros in LU =',I5) +C STOP +C 80 WRITE(6,90)ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y, YDOT +C DOUBLE PRECISION RK1, RK2, RK3, RK4, RK5, RK6, RK7, RK8, RK9, +C 1 RK10, RK11, RK12, RK13, RK14, RK15, RK16, RK17 +C DIMENSION Y(12), YDOT(12) +C DATA RK1/0.1D0/, RK2/10.0D0/, RK3/50.0D0/, RK4/2.5D0/, RK5/0.1D0/, +C 1 RK6/10.0D0/, RK7/50.0D0/, RK8/2.5D0/, RK9/50.0D0/, RK10/5.0D0/, +C 2 RK11/50.0D0/, RK12/50.0D0/, RK13/50.0D0/, RK14/30.0D0/, +C 3 RK15/100.0D0/, RK16/2.5D0/, RK17/100.0D0/, RK18/2.5D0/, +C 4 RK19/50.0D0/, RK20/50.0D0/ +C YDOT(1) = -RK1*Y(1) +C YDOT(2) = RK1*Y(1) + RK11*RK14*Y(4) + RK19*RK14*Y(5) +C 1 - RK3*Y(2)*Y(3) - RK15*Y(2)*Y(12) - RK2*Y(2) +C YDOT(3) = RK2*Y(2) - RK5*Y(3) - RK3*Y(2)*Y(3) - RK7*Y(10)*Y(3) +C 1 + RK11*RK14*Y(4) + RK12*RK14*Y(6) +C YDOT(4) = RK3*Y(2)*Y(3) - RK11*RK14*Y(4) - RK4*Y(4) +C YDOT(5) = RK15*Y(2)*Y(12) - RK19*RK14*Y(5) - RK16*Y(5) +C YDOT(6) = RK7*Y(10)*Y(3) - RK12*RK14*Y(6) - RK8*Y(6) +C YDOT(7) = RK17*Y(10)*Y(12) - RK20*RK14*Y(7) - RK18*Y(7) +C YDOT(8) = RK9*Y(10) - RK13*RK14*Y(8) - RK10*Y(8) +C YDOT(9) = RK4*Y(4) + RK16*Y(5) + RK8*Y(6) + RK18*Y(7) +C YDOT(10) = RK5*Y(3) + RK12*RK14*Y(6) + RK20*RK14*Y(7) +C 1 + RK13*RK14*Y(8) - RK7*Y(10)*Y(3) - RK17*Y(10)*Y(12) +C 2 - RK6*Y(10) - RK9*Y(10) +C YDOT(11) = RK10*Y(8) +C YDOT(12) = RK6*Y(10) + RK19*RK14*Y(5) + RK20*RK14*Y(7) +C 1 - RK15*Y(2)*Y(12) - RK17*Y(10)*Y(12) +C RETURN +C END +C +C SUBROUTINE JEX (NEQ, T, Y, J, IA, JA, PDJ) +C DOUBLE PRECISION T, Y, PDJ +C DOUBLE PRECISION RK1, RK2, RK3, RK4, RK5, RK6, RK7, RK8, RK9, +C 1 RK10, RK11, RK12, RK13, RK14, RK15, RK16, RK17 +C DIMENSION Y(12), IA(*), JA(*), PDJ(12) +C DATA RK1/0.1D0/, RK2/10.0D0/, RK3/50.0D0/, RK4/2.5D0/, RK5/0.1D0/, +C 1 RK6/10.0D0/, RK7/50.0D0/, RK8/2.5D0/, RK9/50.0D0/, RK10/5.0D0/, +C 2 RK11/50.0D0/, RK12/50.0D0/, RK13/50.0D0/, RK14/30.0D0/, +C 3 RK15/100.0D0/, RK16/2.5D0/, RK17/100.0D0/, RK18/2.5D0/, +C 4 RK19/50.0D0/, RK20/50.0D0/ +C GO TO (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), J +C 1 PDJ(1) = -RK1 +C PDJ(2) = RK1 +C RETURN +C 2 PDJ(2) = -RK3*Y(3) - RK15*Y(12) - RK2 +C PDJ(3) = RK2 - RK3*Y(3) +C PDJ(4) = RK3*Y(3) +C PDJ(5) = RK15*Y(12) +C PDJ(12) = -RK15*Y(12) +C RETURN +C 3 PDJ(2) = -RK3*Y(2) +C PDJ(3) = -RK5 - RK3*Y(2) - RK7*Y(10) +C PDJ(4) = RK3*Y(2) +C PDJ(6) = RK7*Y(10) +C PDJ(10) = RK5 - RK7*Y(10) +C RETURN +C 4 PDJ(2) = RK11*RK14 +C PDJ(3) = RK11*RK14 +C PDJ(4) = -RK11*RK14 - RK4 +C PDJ(9) = RK4 +C RETURN +C 5 PDJ(2) = RK19*RK14 +C PDJ(5) = -RK19*RK14 - RK16 +C PDJ(9) = RK16 +C PDJ(12) = RK19*RK14 +C RETURN +C 6 PDJ(3) = RK12*RK14 +C PDJ(6) = -RK12*RK14 - RK8 +C PDJ(9) = RK8 +C PDJ(10) = RK12*RK14 +C RETURN +C 7 PDJ(7) = -RK20*RK14 - RK18 +C PDJ(9) = RK18 +C PDJ(10) = RK20*RK14 +C PDJ(12) = RK20*RK14 +C RETURN +C 8 PDJ(8) = -RK13*RK14 - RK10 +C PDJ(10) = RK13*RK14 +C PDJ(11) = RK10 +C 9 RETURN +C 10 PDJ(3) = -RK7*Y(3) +C PDJ(6) = RK7*Y(3) +C PDJ(7) = RK17*Y(12) +C PDJ(8) = RK9 +C PDJ(10) = -RK7*Y(3) - RK17*Y(12) - RK6 - RK9 +C PDJ(12) = RK6 - RK17*Y(12) +C 11 RETURN +C 12 PDJ(2) = -RK15*Y(2) +C PDJ(5) = RK15*Y(2) +C PDJ(7) = RK17*Y(10) +C PDJ(10) = -RK17*Y(10) +C PDJ(12) = -RK15*Y(2) - RK17*Y(10) +C RETURN +C END +C +C The output of this program (on a Cray-1 in single precision) +C is as follows: +C +C +C At t = 1.000e-01 No. steps = 12 Last step = 1.515e-02 +C Y array = 9.90050e-01 6.28228e-03 3.65313e-03 7.51934e-07 +C 1.12167e-09 1.18458e-09 1.77291e-12 3.26476e-07 +C 5.46720e-08 9.99500e-06 4.48483e-08 2.76398e-06 +C +C +C At t = 1.000e+00 No. steps = 33 Last step = 7.880e-02 +C Y array = 9.04837e-01 9.13105e-03 8.20622e-02 2.49177e-05 +C 1.85055e-06 1.96797e-06 1.46157e-07 2.39557e-05 +C 3.26306e-05 7.21621e-04 5.06433e-05 3.05010e-03 +C +C +C At t = 1.000e+01 No. steps = 48 Last step = 1.239e+00 +C Y array = 3.67876e-01 3.68958e-03 3.65133e-01 4.48325e-05 +C 6.10798e-05 4.33148e-05 5.90211e-05 1.18449e-04 +C 3.15235e-03 3.56531e-03 4.15520e-03 2.48741e-01 +C +C +C At t = 1.000e+02 No. steps = 91 Last step = 3.764e+00 +C Y array = 4.44981e-05 4.42666e-07 4.47273e-04 -3.53257e-11 +C 2.81577e-08 -9.67741e-11 2.77615e-07 1.45322e-07 +C 1.56230e-02 4.37394e-06 1.60104e-02 9.52246e-01 +C +C +C At t = 1.000e+03 No. steps = 111 Last step = 4.156e+02 +C Y array = -2.65492e-13 2.60539e-14 -8.59563e-12 6.29355e-14 +C -1.78066e-13 5.71471e-13 -1.47561e-12 4.58078e-15 +C 1.56314e-02 1.37878e-13 1.60184e-02 9.52719e-01 +C +C +C Required RWORK size = 442 IWORK size = 30 +C No. steps = 111 No. f-s = 142 No. J-s = 2 No. LU-s = 20 +C No. of nonzeros in J = 44 No. of nonzeros in LU = 50 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODES. +C +C The user interface to DLSODES consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODES, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODES package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODES package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODES to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter y(1),...,y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODES, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODES package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F and JAC. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to F and/or JAC. Subroutines F and/or JAC must include +C NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C on the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to +C F and JAC. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F and/or JAC. (The DLSODES package accesses only +C Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C on output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C the conditional inputs IA and JA, +C and any of the optional inputs except H0. +C In particular, if MITER = 1 or 2, a call with ISTATE = 3 +C will cause the sparsity structure of the problem to be +C recomputed (or reread from IA and JA if MOSS = 0). +C Note: a preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix, +C if one is being used. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means a fatal error return flag came from the sparse +C solver CDRV by way of DPRJS or DSOLSS (numerical +C factorization or backsolve). This should never happen. +C The integration was successful as far as T. +C +C Note: an error return with ISTATE = -1, -4, or -5 and with +C MITER = 1 or 2 may mean that the sparsity structure of the +C problem has changed significantly since it was last +C determined (or input). In that case, one can attempt to +C complete the integration by setting ISTATE = 3 on the next +C call, so that a new structure determination is done. +C +C Note: since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a work array used for a mixture of real (double precision) +C and integer work space. +C The length of RWORK (in real words) must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LWM = 0 if MITER = 0, +C LWM = 2*NNZ + 2*NEQ + (NNZ+9*NEQ)/LENRAT if MITER = 1, +C LWM = 2*NNZ + 2*NEQ + (NNZ+10*NEQ)/LENRAT if MITER = 2, +C LWM = NEQ + 2 if MITER = 3. +C In the above formulas, +C NNZ = number of nonzero elements in the Jacobian matrix. +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C (See the MF description for METH and MITER.) +C Thus if MAXORD has its default value and NEQ is constant, +C the minimum length of RWORK is: +C 20 + 16*NEQ for MF = 10, +C 20 + 16*NEQ + LWM for MF = 11, 111, 211, 12, 112, 212, +C 22 + 17*NEQ for MF = 13, +C 20 + 9*NEQ for MF = 20, +C 20 + 9*NEQ + LWM for MF = 21, 121, 221, 22, 122, 222, +C 22 + 10*NEQ for MF = 23. +C If MITER = 1 or 2, the above formula for LWM is only a +C crude lower bound. The required length of RWORK cannot +C be readily predicted in general, as it depends on the +C sparsity structure of the problem. Some experimentation +C may be necessary. +C +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 31 + NEQ + NNZ if MOSS = 0 and MITER = 1 or 2, or +C 30 otherwise. +C (NNZ is the number of nonzero elements in df/dy.) +C +C In DLSODES, IWORK is used only for conditional and +C optional inputs and optional outputs. +C +C The following two blocks of words in IWORK are conditional +C inputs, required if MOSS = 0 and MITER = 1 or 2, but not +C otherwise (see the description of MF for MOSS). +C IWORK(30+j) = IA(j) (j=1,...,NEQ+1) +C IWORK(31+NEQ+k) = JA(k) (k=1,...,NNZ) +C The two arrays IA and JA describe the sparsity structure +C to be assumed for the Jacobian matrix. JA contains the row +C indices where nonzero elements occur, reading in columnwise +C order, and IA contains the starting locations in JA of the +C descriptions of columns 1,...,NEQ, in that order, with +C IA(1) = 1. Thus, for each column index j = 1,...,NEQ, the +C values of the row index i in column j where a nonzero +C element may occur are given by +C i = JA(k), where IA(j) .le. k .lt. IA(j+1). +C If NNZ is the total number of nonzero locations assumed, +C then the length of the JA array is NNZ, and IA(NEQ+1) must +C be NNZ + 1. Duplicate entries are not allowed. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODES +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODES between calls, if +C desired (but not for use by F or JAC). +C +C JAC = name of user-supplied routine (MITER = 1 or MOSS = 1) to +C compute the Jacobian matrix, df/dy, as a function of +C the scalar t and the vector y. It is to have the form +C SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*) +C where NEQ, T, Y, J, IAN, and JAN are input, and the array +C PDJ, of length NEQ, is to be loaded with column J +C of the Jacobian on output. Thus df(i)/dy(J) is to be +C loaded into PDJ(i) for all relevant values of i. +C Here T and Y have the same meaning as in Subroutine F, +C and J is a column index (1 to NEQ). IAN and JAN are +C undefined in calls to JAC for structure determination +C (MOSS = 1). otherwise, IAN and JAN are structure +C descriptors, as defined under optional outputs below, and +C so can be used to determine the relevant row indices i, if +C desired. +C JAC need not provide df/dy exactly. A crude +C approximation (possibly with greater sparsity) will do. +C In any case, PDJ is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Calls to JAC are made with J = 1,...,NEQ, in that order, and +C each such set of calls is preceded by a call to F with the +C same arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by F and not recomputed by JAC, +C if desired. JAC must not alter its input arguments. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C MF = the method flag. Used only for input. +C MF has three decimal digits-- MOSS, METH, MITER-- +C MF = 100*MOSS + 10*METH + MITER. +C MOSS indicates the method to be used to obtain the sparsity +C structure of the Jacobian matrix if MITER = 1 or 2: +C MOSS = 0 means the user has supplied IA and JA +C (see descriptions under IWORK above). +C MOSS = 1 means the user has supplied JAC (see below) +C and the structure will be obtained from NEQ +C initial calls to JAC. +C MOSS = 2 means the structure will be obtained from NEQ+1 +C initial calls to F. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C MITER indicates the corrector iteration method: +C MITER = 0 means functional iteration (no Jacobian matrix +C is involved). +C MITER = 1 means chord iteration with a user-supplied +C sparse Jacobian, given by Subroutine JAC. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) sparse Jacobian +C (using NGP extra calls to F per df/dy value, +C where NGP is an optional output described below.) +C MITER = 3 means chord iteration with an internally +C generated diagonal Jacobian approximation +C (using 1 extra call to F per df/dy evaluation). +C If MITER = 1 or MOSS = 1, the user must supply a Subroutine +C JAC (the name is arbitrary) as described above under JAC. +C Otherwise, a dummy argument can be used. +C +C The standard choices for MF are: +C MF = 10 for a nonstiff problem, +C MF = 21 or 22 for a stiff problem with IA/JA supplied +C (21 if JAC is supplied, 22 if not), +C MF = 121 for a stiff problem with JAC supplied, +C but not IA/JA, +C MF = 222 for a stiff problem with neither IA/JA nor +C JAC supplied. +C The sparseness structure can be changed during the +C problem by making a call to DLSODES with ISTATE = 3. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C SETH RWORK(8) the element threshhold for sparsity determination +C when MOSS = 1 or 2. If the absolute value of +C an estimated Jacobian element is .le. SETH, it +C will be assumed to be absent in the structure. +C The default value of SETH is 0. +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODES, the variables listed +C below are quantities related to the performance of DLSODES +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODES, and on any return with +C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far, +C excluding those for structure determination +C (MOSS = 2). +C +C NJE IWORK(13) the number of Jacobian evaluations for the problem +C so far, excluding those for structure determination +C (MOSS = 1). +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNZ IWORK(19) the number of nonzero elements in the Jacobian +C matrix, including the diagonal (MITER = 1 or 2). +C (This may differ from that given by IA(NEQ+1)-1 +C if MOSS = 0, because of added diagonal entries.) +C +C NGP IWORK(20) the number of groups of column indices, used in +C difference quotient Jacobian aproximations if +C MITER = 2. This is also the number of extra f +C evaluations needed for each Jacobian evaluation. +C +C NLU IWORK(21) the number of sparse LU decompositions for the +C problem so far. +C +C LYH IWORK(22) the base address in RWORK of the history array YH, +C described below in this list. +C +C IPIAN IWORK(23) the base address of the structure descriptor array +C IAN, described below in this list. +C +C IPJAN IWORK(24) the base address of the structure descriptor array +C JAN, described below in this list. +C +C NZL IWORK(25) the number of nonzero elements in the strict lower +C triangle of the LU factorization used in the chord +C iteration (MITER = 1 or 2). +C +C NZU IWORK(26) the number of nonzero elements in the strict upper +C triangle of the LU factorization used in the chord +C iteration (MITER = 1 or 2). +C The total number of nonzeros in the factorization +C is therefore NZL + NZU + NEQ. +C +C The following four arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address, and its description. +C For YH and ACOR, the base addresses are in RWORK (a real array). +C The integer arrays IAN and JAN are to be obtained by declaring an +C integer array IWK and identifying IWK(1) with RWORK(21), using either +C an equivalence statement or a subroutine call. Then the base +C addresses IPIAN (of IAN) and IPJAN (of JAN) in IWK are to be obtained +C as optional outputs IWORK(23) and IWORK(24), respectively. +C Thus IAN(1) is IWK(IPIAN), etc. +C +C Name Base Address Description +C +C IAN IPIAN (in IWK) structure descriptor array of size NEQ + 1. +C JAN IPJAN (in IWK) structure descriptor array of size NNZ. +C (see above) IAN and JAN together describe the sparsity +C structure of the Jacobian matrix, as used by +C DLSODES when MITER = 1 or 2. +C JAN contains the row indices of the nonzero +C locations, reading in columnwise order, and +C IAN contains the starting locations in JAN of +C the descriptions of columns 1,...,NEQ, in +C that order, with IAN(1) = 1. Thus for each +C j = 1,...,NEQ, the row indices i of the +C nonzero locations in column j are +C i = JAN(k), IAN(j) .le. k .lt. IAN(j+1). +C Note that IAN(NEQ+1) = NNZ + 1. +C (If MOSS = 0, IAN/JAN may differ from the +C input IA/JA because of a different ordering +C in each column, and added diagonal entries.) +C +C YH LYH the Nordsieck history array, of size NYH by +C (optional (NQCUR + 1), where NYH is the initial value +C output) of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. The base address LYH +C is another optional output, listed above. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output +C to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODES. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODES. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODES, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODES. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCMS(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODES (see Part 3 below). +C RSAV must be a real array of length 224 +C or more, and ISAV must be an integer +C array of length 71 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCMS is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODES. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODES. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = IWORK(22) +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODES). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (See optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODES directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = the base address of the history array YH, obtained +C as an optional output as shown above. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODES is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODES, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSS01/ of length 40 (6 double precision words +C followed by 34 integer words), +C +C If DLSODES is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODES is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODES call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODES call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCMS (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODES package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C Subroutine DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODES call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODES in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODES. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19810120 DATE WRITTEN +C 19820315 Upgraded MDI in ODRV package: operates on M + M-transpose. +C 19820426 Numerous revisions in use of work arrays; +C use wordlength ratio LENRAT; added IPISP & LRAT to Common; +C added optional outputs IPIAN/IPJAN; +C numerous corrections to comments. +C 19830503 Added routine CNTNZU; added NZL and NZU to /LSS001/; +C changed ADJLR call logic; added optional outputs NZL & NZU; +C revised counter initializations; revised PREP stmt. numbers; +C corrections to comments throughout. +C 19870320 Corrected jump on test of umax in CDRV routine; +C added ISTATE = -7 return. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODE; +C in STODE, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODES package. +C +C In addition to Subroutine DLSODES, the DLSODES package includes the +C following subroutines and function routines: +C DIPREP acts as an iterface between DLSODES and DPREP, and also does +C adjusting of work space pointers and work arrays. +C DPREP is called by DIPREP to compute sparsity and do sparse matrix +C preprocessing if MITER = 1 or 2. +C JGROUP is called by DPREP to compute groups of Jacobian column +C indices for use when MITER = 2. +C ADJLR adjusts the length of required sparse matrix work space. +C It is called by DPREP. +C CNTNZU is called by DPREP and counts the nonzero elements in the +C strict upper triangle of J + J-transpose, where J = df/dy. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODE is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJS computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSS manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCMS is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C ODRV constructs a reordering of the rows and columns of +C a matrix by the minimum degree algorithm. ODRV is a +C driver routine which calls Subroutines MD, MDI, MDM, +C MDP, MDU, and SRO. See Ref. 2 for details. (The ODRV +C module has been modified since Ref. 2, however.) +C CDRV performs reordering, symbolic factorization, numerical +C factorization, or linear system solution operations, +C depending on a path argument ipath. CDRV is a +C driver routine which calls Subroutines NROC, NSFC, +C NNFC, NNSC, and NNTC. See Ref. 3 for details. +C DLSODES uses CDRV to solve linear systems in which the +C coefficient matrix is P = I - con*J, where I is the +C identity, con is a scalar, and J is an approximation to +C the Jacobian df/dy. Because CDRV deals with rowwise +C sparsity descriptions, CDRV works with P-transpose, not P. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJS, DSOLSS + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, I1, I2, IFLAG, IMAX, IMUL, IMXER, IPFLAG, IPGO, IREM, + 1 J, KGO, LENRAT, LENYHT, LENIW, LENRW, LF0, LIA, LJA, + 2 LRTEM, LWTEM, LYHD, LYHN, MF1, MORD, MXHNL0, MXSTP0, NCOLM + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE LENRAT, MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODES, DIPREP, DPREP, +C DINTDY, DSTODE, DPRJS, and DSOLSS. +C The block DLSS01 is declared in subroutines DLSODES, DIPREP, DPREP, +C DPRJS, and DSOLSS. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C In the Data statement below, set LENRAT equal to the ratio of +C the wordlength for a real number to that for an integer. Usually, +C LENRAT = 1 for single precision and 2 for double precision. If the +C true ratio is not an integer, use the next smaller integer (.ge. 1). +C----------------------------------------------------------------------- + DATA LENRAT/2/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C If ISTATE = 1, the final setting of work space pointers, the matrix +C preprocessing, and other initializations are done in Block C. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + MOSS = MF/100 + MF1 = MF - 100*MOSS + METH = MF1/10 + MITER = MF1 - 10*METH + IF (MOSS .LT. 0 .OR. MOSS .GT. 2) GO TO 608 + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0 .OR. MITER .GT. 3) GO TO 608 + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) MOSS = 0 +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + SETH = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 + SETH = RWORK(8) + IF (SETH .LT. 0.0D0) GO TO 609 +C Check RTOL and ATOL for legality. ------------------------------------ + 60 RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 65 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 65 CONTINUE +C----------------------------------------------------------------------- +C Compute required work array lengths, as far as possible, and test +C these against LRW and LIW. Then set tentative pointers for work +C arrays. Pointers to RWORK/IWORK segments are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted WM, YH, SAVF, EWT, ACOR. +C If MITER = 1 or 2, the required length of the matrix work space WM +C is not yet known, and so a crude minimum value is used for the +C initial tests of LRW and LIW, and YH is temporarily stored as far +C to the right in RWORK as possible, to leave the maximum amount +C of space for WM for matrix preprocessing. Thus if MITER = 1 or 2 +C and MOSS .ne. 2, some of the segments of RWORK are temporarily +C omitted, as they are not needed in the preprocessing. These +C omitted segments are: ACOR if ISTATE = 1, EWT and ACOR if ISTATE = 3 +C and MOSS = 1, and SAVF, EWT, and ACOR if ISTATE = 3 and MOSS = 0. +C----------------------------------------------------------------------- + LRAT = LENRAT + IF (ISTATE .EQ. 1) NYH = N + LWMIN = 0 + IF (MITER .EQ. 1) LWMIN = 4*N + 10*N/LRAT + IF (MITER .EQ. 2) LWMIN = 4*N + 11*N/LRAT + IF (MITER .EQ. 3) LWMIN = N + 2 + LENYH = (MAXORD+1)*NYH + LREST = LENYH + 3*N + LENRW = 20 + LWMIN + LREST + IWORK(17) = LENRW + LENIW = 30 + IF (MOSS .EQ. 0 .AND. MITER .NE. 0 .AND. MITER .NE. 3) + 1 LENIW = LENIW + N + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 + LIA = 31 + IF (MOSS .EQ. 0 .AND. MITER .NE. 0 .AND. MITER .NE. 3) + 1 LENIW = LENIW + IWORK(LIA+N) - 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + LJA = LIA + N + 1 + LIA = MIN(LIA,LIW) + LJA = MIN(LJA,LIW) + LWM = 21 + IF (ISTATE .EQ. 1) NQ = 1 + NCOLM = MIN(NQ+1,MAXORD+2) + LENYHM = NCOLM*NYH + LENYHT = LENYH + IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENYHT = LENYHM + IMUL = 2 + IF (ISTATE .EQ. 3) IMUL = MOSS + IF (MOSS .EQ. 2) IMUL = 3 + LRTEM = LENYHT + IMUL*N + LWTEM = LWMIN + IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LWTEM = LRW - 20 - LRTEM + LENWK = LWTEM + LYHN = LWM + LWTEM + LSAVF = LYHN + LENYHT + LEWT = LSAVF + N + LACOR = LEWT + N + ISTATC = ISTATE + IF (ISTATE .EQ. 1) GO TO 100 +C----------------------------------------------------------------------- +C ISTATE = 3. Move YH to its new location. +C Note that only the part of YH needed for the next step, namely +C MIN(NQ+1,MAXORD+2) columns, is actually moved. +C A temporary error weight array EWT is loaded if MOSS = 2. +C Sparse matrix processing is done in DIPREP/DPREP if MITER = 1 or 2. +C If MAXORD was reduced below NQ, then the pointers are finally set +C so that SAVF is identical to YH(*,MAXORD+2). +C----------------------------------------------------------------------- + LYHD = LYH - LYHN + IMAX = LYHN - 1 + LENYHM +C Move YH. Move right if LYHD < 0; move left if LYHD > 0. ------------- + IF (LYHD .LT. 0) THEN + DO 72 I = LYHN,IMAX + J = IMAX + LYHN - I + 72 RWORK(J) = RWORK(J+LYHD) + ENDIF + IF (LYHD .GT. 0) THEN + DO 76 I = LYHN,IMAX + 76 RWORK(I) = RWORK(I+LYHD) + ENDIF + 80 LYH = LYHN + IWORK(22) = LYH + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) GO TO 92 + IF (MOSS .NE. 2) GO TO 85 +C Temporarily load EWT if MITER = 1 or 2 and MOSS = 2. ----------------- + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 82 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 82 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 85 CONTINUE +C DIPREP and DPREP do sparse matrix preprocessing if MITER = 1 or 2. --- + LSAVF = MIN(LSAVF,LRW) + LEWT = MIN(LEWT,LRW) + LACOR = MIN(LACOR,LRW) + CALL DIPREP (NEQ, Y, RWORK, IWORK(LIA),IWORK(LJA), IPFLAG, F, JAC) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (90, 628, 629, 630, 631, 632, 633), IPGO + 90 IWORK(22) = LYH + IF (LENRW .GT. LRW) GO TO 617 +C Set flag to signal parameter changes to DSTODE. ---------------------- + 92 JSTART = -1 + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C the sparse matrix preprocessing (MITER = 1 or 2), and the +C calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 CONTINUE + LYH = LYHN + IWORK(22) = LYH + TN = T + NST = 0 + H = 1.0D0 + NNZ = 0 + NGP = 0 + NZL = 0 + NZU = 0 +C Load the initial value vector in YH. --------------------------------- + DO 105 I = 1,N + 105 RWORK(I+LYH-1) = Y(I) +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 110 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 110 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) GO TO 120 +C DIPREP and DPREP do sparse matrix preprocessing if MITER = 1 or 2. --- + LACOR = MIN(LACOR,LRW) + CALL DIPREP (NEQ, Y, RWORK, IWORK(LIA),IWORK(LJA), IPFLAG, F, JAC) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (115, 628, 629, 630, 631, 632, 633), IPGO + 115 IWORK(22) = LYH + IF (LENRW .GT. LRW) GO TO 617 +C Check TCRIT for legality (ITASK = 4 or 5). --------------------------- + 120 CONTINUE + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 125 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T +C Initialize all remaining parameters. --------------------------------- + 125 UROUND = DUMACH() + JSTART = 0 + IF (MITER .NE. 0) RWORK(LWM) = SQRT(UROUND) + MSBJ = 50 + NSLJ = 0 + CCMXJ = 0.2D0 + PSMALL = 1000.0D0*UROUND + RBIG = 0.01D0/PSMALL + NHNIL = 0 + NJE = 0 + NLU = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( f(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C f(i) = i-th component of initial value of f, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C ABS(H0) is made .le. ABS(TOUT-T) in any case. +C----------------------------------------------------------------------- + LF0 = LYH + NYH + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODE. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODES- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODES- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODE(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,WM,F,JAC,DPRJS,DSOLSS) +C----------------------------------------------------------------------- + CALL DSTODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), RWORK(LWM), + 2 F, JAC, DPRJS, DSOLSS) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 550), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. if TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODES. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODES- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODES- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODES- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODES- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODES- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C KFLAG = -3. Fatal error flag returned by DPRJS or DSOLSS (CDRV). ---- + 550 MSG = 'DLSODES- At T (=R1) and step size H (=R2), a fatal' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error flag was returned by CDRV (by way of ' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Subroutine DPRJS or DSOLSS) ' + CALL XERRWD (MSG, 40, 207, 0, 0, 0, 0, 2, TN, H) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODES- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODES- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODES- ISTATE.gt.1 but DLSODES not initialized. ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODES- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODES- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODES- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODES- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODES- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODES- SETH (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 9, 0, 0, 0, 0, 1, SETH, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODES- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODES- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODES- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODES- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODES- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODES- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG = 'DLSODES- RWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 17, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG = 'DLSODES- IWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 18, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODES- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODES- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODES- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODES- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODES- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODES- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODES- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODES- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODES- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG='DLSODES- RWORK length insufficient (for Subroutine DPREP). ' + CALL XERRWD (MSG, 60, 28, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 28, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG='DLSODES- RWORK length insufficient (for Subroutine JGROUP). ' + CALL XERRWD (MSG, 60, 29, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 29, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 630 MSG='DLSODES- RWORK length insufficient (for Subroutine ODRV). ' + CALL XERRWD (MSG, 60, 30, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 30, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG='DLSODES- Error from ODRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), ODRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 31, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + GO TO 700 + 632 MSG='DLSODES- RWORK length insufficient (for Subroutine CDRV). ' + CALL XERRWD (MSG, 60, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 32, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 633 MSG='DLSODES- Error from CDRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), CDRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 33, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + IF (IMUL .EQ. 2) THEN + MSG=' Duplicate entry in sparsity structure descriptors. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (IMUL .EQ. 3 .OR. IMUL .EQ. 6) THEN + MSG=' Insufficient storage for NSFC (called by CDRV). ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODES- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODES --------------------- + END +*DECK DLSODA + SUBROUTINE DLSODA (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, JT) + EXTERNAL F, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, JT + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 12 November 2003 version of +C DLSODA: Livermore Solver for Ordinary Differential Equations, with +C Automatic method switching for stiff and nonstiff problems. +C +C This version is in double precision. +C +C DLSODA solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C +C This a variant version of the DLSODE package. +C It switches automatically between stiff and nonstiff methods. +C This means that the user does not have to determine whether the +C problem is stiff or not, and the solver will automatically choose the +C appropriate method. It always starts with the nonstiff method. +C +C Authors: Alan C. Hindmarsh +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Linda R. Petzold +C Univ. of California at Santa Barbara +C Dept. of Computer Science +C Santa Barbara, CA 93106 +C +C References: +C 1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C 2. Linda R. Petzold, Automatic Selection of Methods for Solving +C Stiff and Nonstiff Systems of Ordinary Differential Equations, +C Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODA package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including alternative treatment of the Jacobian matrix, +C optional inputs and outputs, nonstandard options, and +C instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Write a main program which calls Subroutine DLSODA once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODA. On the first call to DLSODA, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be less than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + NEQ * MAX(16, NEQ + 9). +C See also Paragraph E below. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C LIW = declared length of IWORK (in user's dimension). +C JAC = name of subroutine for Jacobian matrix. +C Use a dummy name. See also Paragraph E below. +C JT = Jacobian type indicator. Set JT = 2. +C See also Paragraph E below. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C and possibly ATOL. +C +C C. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODA was successful, negative otherwise. +C -1 means excess work done on this call (perhaps wrong JT). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of JT or tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means work space insufficient to finish (see messages). +C +C D. To continue the integration after a successful return, simply +C reset TOUT and call DLSODA again. No other parameters need be reset. +C +C E. Note: If and when DLSODA regards the problem as stiff, and +C switches methods accordingly, it must make use of the NEQ by NEQ +C Jacobian matrix, J = df/dy. For the sake of simplicity, the +C inputs to DLSODA recommended in Paragraph B above cause DLSODA to +C treat J as a full matrix, and to approximate it internally by +C difference quotients. Alternatively, J can be treated as a band +C matrix (with great potential reduction in the size of the RWORK +C array). Also, in either the full or banded case, the user can supply +C J in closed form, with a routine whose name is passed as the JAC +C argument. These alternatives are described in the paragraphs on +C RWORK, JAC, and JT in the full description of the call sequence below. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODA. The problem is from chemical +C kinetics, and consists of the following three rate equations: +C dy1/dt = -.04*y1 + 1.e4*y2*y3 +C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 +C dy3/dt = 3.e7*y2**2 +C on the interval from t = 0.0 to t = 4.e10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. The problem is stiff. +C +C The following coding solves this problem with DLSODA, +C printing results at t = .4, 4., ..., 4.e10. It uses +C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because +C y2 has much smaller values. +C At the end of the run, statistical quantities of interest are +C printed (see optional outputs in the full description below). +C +C EXTERNAL FEX +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y +C DIMENSION Y(3), ATOL(3), RWORK(70), IWORK(23) +C NEQ = 3 +C Y(1) = 1. +C Y(2) = 0. +C Y(3) = 0. +C T = 0. +C TOUT = .4 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 70 +C LIW = 23 +C JT = 2 +C DO 40 IOUT = 1,12 +C CALL DLSODA(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE, +C 1 IOPT,RWORK,LRW,IWORK,LIW,JDUM,JT) +C WRITE(6,20)T,Y(1),Y(2),Y(3) +C 20 FORMAT(' At t =',D12.4,' Y =',3D14.6) +C IF (ISTATE .LT. 0) GO TO 80 +C 40 TOUT = TOUT*10. +C WRITE(6,60)IWORK(11),IWORK(12),IWORK(13),IWORK(19),RWORK(15) +C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,' No. J-s =',I4/ +C 1 ' Method last used =',I2,' Last switch was at t =',D12.4) +C STOP +C 80 WRITE(6,90)ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y, YDOT +C DIMENSION Y(3), YDOT(3) +C YDOT(1) = -.04*Y(1) + 1.D4*Y(2)*Y(3) +C YDOT(3) = 3.D7*Y(2)*Y(2) +C YDOT(2) = -YDOT(1) - YDOT(3) +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 4.0000e-01 y = 9.851712e-01 3.386380e-05 1.479493e-02 +C At t = 4.0000e+00 Y = 9.055333e-01 2.240655e-05 9.444430e-02 +C At t = 4.0000e+01 Y = 7.158403e-01 9.186334e-06 2.841505e-01 +C At t = 4.0000e+02 Y = 4.505250e-01 3.222964e-06 5.494717e-01 +C At t = 4.0000e+03 Y = 1.831975e-01 8.941774e-07 8.168016e-01 +C At t = 4.0000e+04 Y = 3.898730e-02 1.621940e-07 9.610125e-01 +C At t = 4.0000e+05 Y = 4.936363e-03 1.984221e-08 9.950636e-01 +C At t = 4.0000e+06 Y = 5.161831e-04 2.065786e-09 9.994838e-01 +C At t = 4.0000e+07 Y = 5.179817e-05 2.072032e-10 9.999482e-01 +C At t = 4.0000e+08 Y = 5.283401e-06 2.113371e-11 9.999947e-01 +C At t = 4.0000e+09 Y = 4.659031e-07 1.863613e-12 9.999995e-01 +C At t = 4.0000e+10 Y = 1.404280e-08 5.617126e-14 1.000000e+00 +C +C No. steps = 361 No. f-s = 693 No. J-s = 64 +C Method last used = 2 Last switch was at t = 6.0092e-03 +C----------------------------------------------------------------------- +C Full description of user interface to DLSODA. +C +C The user interface to DLSODA consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODA, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODA package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of a subroutine in the DLSODA package, +C which the user may replace with his/her own version, if desired. +C this relates to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, JT, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODA to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODA, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODA package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F and JAC. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to F and/or JAC. Subroutines F and/or JAC must include +C NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to +C F and JAC. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F and/or JAC. (The DLSODA package accesses only +C Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C on output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as TOUT). +C on an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial t, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C max-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT = (EWT(i)) is a vector of positive error weights. +C The values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting a +C user-supplied routine for the setting of EWT. +C See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, JT, ML, MU, +C and any optional inputs except H0, MXORDN, and MXORDS. +C (See IWORK description for ML and MU.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix, +C if one is being used. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the length of RWORK and/or IWORK was too small to +C proceed, but the integration was successful as far as T. +C This happens when DLSODA chooses to switch methods +C but LRW and/or LIW is too small for the new method. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real array (double precision) for work space, and (in the +C first 20 words) for conditional and optional inputs and +C optional outputs. +C As DLSODA switches automatically between stiff and nonstiff +C methods, the required length of RWORK can change during the +C problem. Thus the RWORK array passed to DLSODA can either +C have a static (fixed) length large enough for both methods, +C or have a dynamic (changing) length altered by the calling +C program in response to output from DLSODA. +C +C --- Fixed Length Case --- +C If the RWORK length is to be fixed, it should be at least +C MAX (LRN, LRS), +C where LRN and LRS are the RWORK lengths required when the +C current method is nonstiff or stiff, respectively. +C +C The separate RWORK length requirements LRN and LRS are +C as follows: +C IF NEQ is constant and the maximum method orders have +C their default values, then +C LRN = 20 + 16*NEQ, +C LRS = 22 + 9*NEQ + NEQ**2 if JT = 1 or 2, +C LRS = 22 + 10*NEQ + (2*ML+MU)*NEQ if JT = 4 or 5. +C Under any other conditions, LRN and LRS are given by: +C LRN = 20 + NYH*(MXORDN+1) + 3*NEQ, +C LRS = 20 + NYH*(MXORDS+1) + 3*NEQ + LMAT, +C where +C NYH = the initial value of NEQ, +C MXORDN = 12, unless a smaller value is given as an +C optional input, +C MXORDS = 5, unless a smaller value is given as an +C optional input, +C LMAT = length of matrix work space: +C LMAT = NEQ**2 + 2 if JT = 1 or 2, +C LMAT = (2*ML + MU + 1)*NEQ + 2 if JT = 4 or 5. +C +C --- Dynamic Length Case --- +C If the length of RWORK is to be dynamic, then it should +C be at least LRN or LRS, as defined above, depending on the +C current method. Initially, it must be at least LRN (since +C DLSODA starts with the nonstiff method). On any return +C from DLSODA, the optional output MCUR indicates the current +C method. If MCUR differs from the value it had on the +C previous return, or if there has only been one call to +C DLSODA and MCUR is now 2, then DLSODA has switched +C methods during the last call, and the length of RWORK +C should be reset (to LRN if MCUR = 1, or to LRS if +C MCUR = 2). (An increase in the RWORK length is required +C if DLSODA returned ISTATE = -7, but not otherwise.) +C After resetting the length, call DLSODA with ISTATE = 3 +C to signal that change. +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer array for work space. +C As DLSODA switches automatically between stiff and nonstiff +C methods, the required length of IWORK can change during +C problem, between +C LIS = 20 + NEQ and LIN = 20, +C respectively. Thus the IWORK array passed to DLSODA can +C either have a fixed length of at least 20 + NEQ, or have a +C dynamic length of at least LIN or LIS, depending on the +C current method. The comments on dynamic length under +C RWORK above apply here. Initially, this length need +C only be at least LIN = 20. +C +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 2 words in IWORK are conditional inputs: +C IWORK(1) = ML these are the lower and upper +C IWORK(2) = MU half-bandwidths, respectively, of the +C banded Jacobian, excluding the main diagonal. +C The band is defined by the matrix locations +C (i,j) with i-ML .le. j .le. i+MU. ML and MU +C must satisfy 0 .le. ML,MU .le. NEQ-1. +C These are required if JT is 4 or 5, and +C ignored otherwise. ML and MU may in fact be +C the band parameters for a matrix to which +C df/dy is only approximately equal. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The base addresses of the work arrays must not be +C altered between calls to DLSODA for the same problem. +C The contents of the work arrays must not be altered +C between calls, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODA between calls, if +C desired (but not for use by F or JAC). +C +C JAC = the name of the user-supplied routine to compute the +C Jacobian matrix, df/dy, if JT = 1 or 4. The JAC routine +C is optional, but if the problem is expected to be stiff much +C of the time, you are encouraged to supply JAC, for the sake +C of efficiency. (Alternatively, set JT = 2 or 5 to have +C DLSODA compute df/dy internally by difference quotients.) +C If and when DLSODA uses df/dy, it treats this NEQ by NEQ +C matrix either as full (JT = 1 or 2), or as banded (JT = +C 4 or 5) with half-bandwidths ML and MU (discussed under +C IWORK above). In either case, if JT = 1 or 4, the JAC +C routine must compute df/dy as a function of the scalar t +C and the vector y. It is to have the form +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C where NEQ, T, Y, ML, MU, and NROWPD are input and the array +C PD is to be loaded with partial derivatives (elements of +C the Jacobian matrix) on output. PD must be given a first +C dimension of NROWPD. T and Y have the same meaning as in +C Subroutine F. +C In the full matrix case (JT = 1), ML and MU are +C ignored, and the Jacobian is to be loaded into PD in +C columnwise manner, with df(i)/dy(j) loaded into PD(i,j). +C In the band matrix case (JT = 4), the elements +C within the band are to be loaded into PD in columnwise +C manner, with diagonal lines of df/dy loaded into the rows +C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). +C ML and MU are the half-bandwidth parameters (see IWORK). +C The locations in PD in the two triangular areas which +C correspond to nonexistent matrix elements can be ignored +C or loaded arbitrarily, as they are overwritten by DLSODA. +C JAC need not provide df/dy exactly. A crude +C approximation (possibly with a smaller bandwidth) will do. +C In either case, PD is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to F with the same +C arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by F and not recomputed by JAC, +C if desired. Also, JAC may alter the Y array, if desired. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C JT = Jacobian type indicator. Used only for input. +C JT specifies how the Jacobian matrix df/dy will be +C treated, if and when DLSODA requires this matrix. +C JT has the following values and meanings: +C 1 means a user-supplied full (NEQ by NEQ) Jacobian. +C 2 means an internally generated (difference quotient) full +C Jacobian (using NEQ extra calls to F per df/dy value). +C 4 means a user-supplied banded Jacobian. +C 5 means an internally generated banded Jacobian (using +C ML+MU+1 extra calls to F per df/dy evaluation). +C If JT = 1 or 4, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C If JT = 2 or 5, a dummy argument can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C IXPR IWORK(5) flag to generate extra printing at method switches. +C IXPR = 0 means no extra printing (the default). +C IXPR = 1 means print data on each switch. +C T, H, and NST will be printed on the same logical +C unit as used for error messages. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MXORDN IWORK(8) the maximum order to be allowed for the nonstiff +C (Adams) method. the default value is 12. +C if MXORDN exceeds the default value, it will +C be reduced to the default value. +C MXORDN is held constant during the problem. +C +C MXORDS IWORK(9) the maximum order to be allowed for the stiff +C (BDF) method. The default value is 5. +C If MXORDS exceeds the default value, it will +C be reduced to the default value. +C MXORDS is held constant during the problem. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODA, the variables listed +C below are quantities related to the performance of DLSODA +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODA, and on any return with +C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C TSW RWORK(15) the value of t at the time of the last method +C switch, if any. +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (and of matrix +C LU decompositions) for the problem so far. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required, assuming +C that the length of RWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required, assuming +C that the length of IWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C MUSED IWORK(19) the method indicator for the last successful step: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C +C MCUR IWORK(20) the current method indicator: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C This is the method to be attempted +C on the next step. Thus it differs from MUSED +C only if a method switch has just been made. +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at T = TCUR. +C +C ACOR LACOR array of size NEQ used for the accumulated +C (from Common corrections on each step, scaled on output +C as noted) to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODA. The base address LACOR is obtained by +C including in the user's program the +C following 2 lines: +C COMMON /DLS001/ RLS(218), ILS(37) +C LACOR = ILS(22) +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODA. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) set the logical unit number, LUN, for +C output of messages from DLSODA, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) set a flag to control the printing of +C messages by DLSODA. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCMA(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODA (see Part 3 below). +C RSAV must be a real array of length 240 +C or more, and ISAV must be an integer +C array of length 46 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCMA is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODA. +C +C CALL DINTDY(,,,,,) provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODA. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODA). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODA directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODA is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODA, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSA01/ of length 31 (22 double precision words +C followed by 9 integer words). +C +C If DLSODA is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODA is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODA call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODA call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCMA (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below is a description of a routine in the DLSODA package which +C relates to the measurement of errors, and can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C Subroutine DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODA call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the +C DMNORM routine, and also used by DLSODA in the computation +C of the optional output IMXER, and the increments for difference +C quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19811102 DATE WRITTEN +C 19820126 Fixed bug in tests of work space lengths; +C minor corrections in main prologue and comments. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODA; +C in STODA, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19970225 Fixed lines setting JSTART = -2 in Subroutine LSODA. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20010613 Revised excess accuracy test (to match rest of ODEPACK). +C 20010808 Fixed bug in DPRJA (matrix in DBNORM call). +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODA package. +C +C In addition to Subroutine DLSODA, the DLSODA package includes the +C following subroutines and function routines: +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODA is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJA computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DMNORM computes the weighted max-norm of a vector. +C DFNORM computes the norm of a full matrix consistent with the +C weighted max-norm on vectors. +C DBNORM computes the norm of a band matrix consistent with the +C weighted max-norm on vectors. +C DSRCMA is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DMNORM, DFNORM, DBNORM, DUMACH, IXSAV, and IUMACH are +C function routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJA, DSOLSY + DOUBLE PRECISION DUMACH, DMNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER INSUFR, INSUFI, IXPR, IOWNS2, JTYP, MUSED, MXORDN, MXORDS + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, + 1 LENIW, LENRW, LENWM, ML, MORD, MU, MXHNL0, MXSTP0 + INTEGER LEN1, LEN1C, LEN1N, LEN1S, LEN2, LENIWC, LENRWC + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION TSW, ROWNS2, PDNORM + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODA, DINTDY, DSTODA, +C DPRJA, and DSOLSY. +C The block DLSA01 is declared in subroutines DLSODA, DSTODA, and DPRJA. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSA01/ TSW, ROWNS2(20), PDNORM, + 1 INSUFR, INSUFI, IXPR, IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C JT, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + IF (JT .EQ. 3 .OR. JT .LT. 1 .OR. JT .GT. 5) GO TO 608 + JTYP = JT + IF (JT .LE. 2) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + IXPR = 0 + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + HMXI = 0.0D0 + HMIN = 0.0D0 + IF (ISTATE .NE. 1) GO TO 60 + H0 = 0.0D0 + MXORDN = MORD(1) + MXORDS = MORD(2) + GO TO 60 + 40 IXPR = IWORK(5) + IF (IXPR .LT. 0 .OR. IXPR .GT. 1) GO TO 611 + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + MXORDN = IWORK(8) + IF (MXORDN .LT. 0) GO TO 628 + IF (MXORDN .EQ. 0) MXORDN = 100 + MXORDN = MIN(MXORDN,MORD(1)) + MXORDS = IWORK(9) + IF (MXORDS .LT. 0) GO TO 629 + IF (MXORDS .EQ. 0) MXORDS = 100 + MXORDS = MIN(MXORDS,MORD(2)) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C If ISTATE = 1, METH is initialized to 1 here to facilitate the +C checking of work space lengths. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR. +C If the lengths provided are insufficient for the current method, +C an error return occurs. This is treated as illegal input on the +C first call, but as a problem interruption with ISTATE = -7 on a +C continuation call. If the lengths are sufficient for the current +C method but not for both methods, a warning message is sent. +C----------------------------------------------------------------------- + 60 IF (ISTATE .EQ. 1) METH = 1 + IF (ISTATE .EQ. 1) NYH = N + LYH = 21 + LEN1N = 20 + (MXORDN + 1)*NYH + LEN1S = 20 + (MXORDS + 1)*NYH + LWM = LEN1S + 1 + IF (JT .LE. 2) LENWM = N*N + 2 + IF (JT .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEN1S = LEN1S + LENWM + LEN1C = LEN1N + IF (METH .EQ. 2) LEN1C = LEN1S + LEN1 = MAX(LEN1N,LEN1S) + LEN2 = 3*N + LENRW = LEN1 + LEN2 + LENRWC = LEN1C + LEN2 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + LENIWC = 20 + IF (METH .EQ. 2) LENIWC = LENIW + IWORK(18) = LENIW + IF (ISTATE .EQ. 1 .AND. LRW .LT. LENRWC) GO TO 617 + IF (ISTATE .EQ. 1 .AND. LIW .LT. LENIWC) GO TO 618 + IF (ISTATE .EQ. 3 .AND. LRW .LT. LENRWC) GO TO 550 + IF (ISTATE .EQ. 3 .AND. LIW .LT. LENIWC) GO TO 555 + LEWT = LEN1 + 1 + INSUFR = 0 + IF (LRW .GE. LENRW) GO TO 65 + INSUFR = 2 + LEWT = LEN1C + 1 + MSG='DLSODA- Warning.. RWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENRW = I1, while LRW = I2.' + CALL XERRWD (MSG, 50, 103, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + 65 LSAVF = LEWT + N + LACOR = LSAVF + N + INSUFI = 0 + IF (LIW .GE. LENIW) GO TO 70 + INSUFI = 2 + MSG='DLSODA- Warning.. IWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENIW = I1, while LIW = I2.' + CALL XERRWD (MSG, 50, 104, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + 70 CONTINUE +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 75 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 75 CONTINUE + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODA. ------- + JSTART = -1 + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + TSW = T + MAXORD = MXORDN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + MUSED = 0 + MITER = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by: +C +C H0**(-2) = 1./(TOL * w0**2) + TOL * (norm(F))**2 +C +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C F = the initial value of the vector f(t,y), and +C norm() = the weighted vector norm used throughout, given by +C the DMNORM function routine, and weighted by the +C tolerances initially loaded into the EWT array. +C The sign of H0 is inferred from the initial values of TOUT and T. +C ABS(H0) is made .le. ABS(TOUT-T) in any case. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DMNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + T = TN + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) T = TCRIT + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2 .AND. JSTART .GE. 0) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODA. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF (METH .EQ. MUSED) GO TO 255 + IF (INSUFR .EQ. 1) GO TO 550 + IF (INSUFI .EQ. 1) GO TO 555 + 255 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DMNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODA- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODA- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODA(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPRJA,DSOLSY) +C----------------------------------------------------------------------- + CALL DSTODA (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), + 2 F, JAC, DPRJA, DSOLSY) + KGO = 1 - KFLAG + GO TO (300, 530, 540), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). +C If a method switch was just made, record TSW, reset MAXORD, +C set JSTART to -1 to signal DSTODA to complete the switch, +C and do extra printing of data if IXPR = 1. +C Then, in any case, check for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + IF (METH .EQ. MUSED) GO TO 310 + TSW = TN + MAXORD = MXORDN + IF (METH .EQ. 2) MAXORD = MXORDS + IF (METH .EQ. 2) RWORK(LWM) = SQRT(UROUND) + INSUFR = MIN(INSUFR,1) + INSUFI = MIN(INSUFI,1) + JSTART = -1 + IF (IXPR .EQ. 0) GO TO 310 + IF (METH .EQ. 2) THEN + MSG='DLSODA- A switch to the BDF (stiff) method has occurred ' + CALL XERRWD (MSG, 60, 105, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (METH .EQ. 1) THEN + MSG='DLSODA- A switch to the Adams (nonstiff) method has occurred' + CALL XERRWD (MSG, 60, 106, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + MSG=' at T = R1, tentative step size H = R2, step NST = I1 ' + CALL XERRWD (MSG, 60, 107, 0, 1, NST, 0, 2, TN, H) + 310 GO TO (320, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 320 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (JSTART .GE. 0) JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODA. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODA- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODA- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODA- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODA- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODA- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C RWORK length too small to proceed. ----------------------------------- + 550 MSG = 'DLSODA- At current T(=R1), RWORK length too small' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C IWORK length too small to proceed. ----------------------------------- + 555 MSG = 'DLSODA- At current T(=R1), IWORK length too small' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODA- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODA- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODA- ISTATE .gt. 1 but DLSODA not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODA- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODA- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODA- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODA- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODA- JT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, JT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODA- ML (=I1) illegal: .lt.0 or .ge.NEQ (=I2) ' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODA- MU (=I1) illegal: .lt.0 or .ge.NEQ (=I2) ' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODA- IXPR (=I1) illegal. ' + CALL XERRWD (MSG, 30, 11, 0, 1, IXPR, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODA- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODA- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODA- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODA- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODA- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODA- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODA- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODA- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODA- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODA- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODA- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODA- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODA- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODA- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODA- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODA- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG = 'DLSODA- MXORDN (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 28, 0, 1, MXORDN, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG = 'DLSODA- MXORDS (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 29, 0, 1, MXORDS, 0, 0, 0.0D0, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODA- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODA ---------------------- + END +*DECK DLSODAR + SUBROUTINE DLSODAR (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, JT, + 2 G, NG, JROOT) + EXTERNAL F, JAC, G + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, JT, + 1 NG, JROOT + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW), + 1 JROOT(NG) +C----------------------------------------------------------------------- +C This is the 12 November 2003 version of +C DLSODAR: Livermore Solver for Ordinary Differential Equations, with +C Automatic method switching for stiff and nonstiff problems, +C and with Root-finding. +C +C This version is in double precision. +C +C DLSODAR solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C At the same time, it locates the roots of any of a set of functions +C g(i) = g(i,t,y(1),...,y(NEQ)) (i = 1,...,ng). +C +C This a variant version of the DLSODE package. It differs from it +C in two ways: +C (a) It switches automatically between stiff and nonstiff methods. +C This means that the user does not have to determine whether the +C problem is stiff or not, and the solver will automatically choose the +C appropriate method. It always starts with the nonstiff method. +C (b) It finds the root of at least one of a set of constraint +C functions g(i) of the independent and dependent variables. +C It finds only those roots for which some g(i), as a function +C of t, changes sign in the interval of integration. +C It then returns the solution at the root, if that occurs +C sooner than the specified stop condition, and otherwise returns +C the solution according the specified stop condition. +C +C Authors: Alan C. Hindmarsh, +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Linda R. Petzold +C Univ. of California at Santa Barbara +C Dept. of Computer Science +C Santa Barbara, CA 93106 +C +C References: +C 1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C 2. Linda R. Petzold, Automatic Selection of Methods for Solving +C Stiff and Nonstiff Systems of Ordinary Differential Equations, +C Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148. +C 3. Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined +C Output Points for Solutions of ODEs, Sandia Report SAND80-0180, +C February 1980. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODAR package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including alternative treatment of the Jacobian matrix, +C optional inputs and outputs, nonstandard options, and +C instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Provide a subroutine of the form: +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C which supplies the vector function g by loading GOUT(i) with +C g(i), the i-th constraint function whose root is sought. +C +C C. Write a main program which calls Subroutine DLSODAR once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODAR. On the first call to DLSODAR, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be less than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + NEQ * MAX(16, NEQ + 9) + 3*NG. +C See also Paragraph F below. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C LIW = declared length of IWORK (in user's dimension). +C JAC = name of subroutine for Jacobian matrix. +C Use a dummy name. See also Paragraph F below. +C JT = Jacobian type indicator. Set JT = 2. +C See also Paragraph F below. +C G = name of subroutine for constraint functions, whose +C roots are desired during the integration. +C This name must be declared External in calling program. +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C JROOT = integer array of length NG for output of root information. +C See next paragraph. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C JROOT, and possibly ATOL. +C +C D. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable. This is +C TOUT if ISTATE = 2, or the root location if ISTATE = 3, +C or the farthest point reached if DLSODAR was unsuccessful. +C ISTATE = 2 or 3 if DLSODAR was successful, negative otherwise. +C 2 means no root was found, and TOUT was reached as desired. +C 3 means a root was found prior to reaching TOUT. +C -1 means excess work done on this call (perhaps wrong JT). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of JT or tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means work space insufficient to finish (see messages). +C JROOT = array showing roots found if ISTATE = 3 on return. +C JROOT(i) = 1 if g(i) has a root at t, or 0 otherwise. +C +C E. To continue the integration after a successful return, proceed +C as follows: +C (a) If ISTATE = 2 on return, reset TOUT and call DLSODAR again. +C (b) If ISTATE = 3 on return, reset ISTATE to 2, call DLSODAR again. +C In either case, no other parameters need be reset. +C +C F. Note: If and when DLSODAR regards the problem as stiff, and +C switches methods accordingly, it must make use of the NEQ by NEQ +C Jacobian matrix, J = df/dy. For the sake of simplicity, the +C inputs to DLSODAR recommended in Paragraph C above cause DLSODAR to +C treat J as a full matrix, and to approximate it internally by +C difference quotients. Alternatively, J can be treated as a band +C matrix (with great potential reduction in the size of the RWORK +C array). Also, in either the full or banded case, the user can supply +C J in closed form, with a routine whose name is passed as the JAC +C argument. These alternatives are described in the paragraphs on +C RWORK, JAC, and JT in the full description of the call sequence below. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODAR. The problem is from chemical +C kinetics, and consists of the following three rate equations: +C dy1/dt = -.04*y1 + 1.e4*y2*y3 +C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 +C dy3/dt = 3.e7*y2**2 +C on the interval from t = 0.0 to t = 4.e10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. The problem is stiff. +C In addition, we want to find the values of t, y1, y2, and y3 at which +C (1) y1 reaches the value 1.e-4, and +C (2) y3 reaches the value 1.e-2. +C +C The following coding solves this problem with DLSODAR, +C printing results at t = .4, 4., ..., 4.e10, and at the computed +C roots. It uses ITOL = 2 and ATOL much smaller for y2 than y1 or y3 +C because y2 has much smaller values. +C At the end of the run, statistical quantities of interest are +C printed (see optional outputs in the full description below). +C +C EXTERNAL FEX, GEX +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y +C DIMENSION Y(3), ATOL(3), RWORK(76), IWORK(23), JROOT(2) +C NEQ = 3 +C Y(1) = 1. +C Y(2) = 0. +C Y(3) = 0. +C T = 0. +C TOUT = .4 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 76 +C LIW = 23 +C JT = 2 +C NG = 2 +C DO 40 IOUT = 1,12 +C 10 CALL DLSODAR(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE, +C 1 IOPT,RWORK,LRW,IWORK,LIW,JDUM,JT,GEX,NG,JROOT) +C WRITE(6,20)T,Y(1),Y(2),Y(3) +C 20 FORMAT(' At t =',D12.4,' Y =',3D14.6) +C IF (ISTATE .LT. 0) GO TO 80 +C IF (ISTATE .EQ. 2) GO TO 40 +C WRITE(6,30)JROOT(1),JROOT(2) +C 30 FORMAT(5X,' The above line is a root, JROOT =',2I5) +C ISTATE = 2 +C GO TO 10 +C 40 TOUT = TOUT*10. +C WRITE(6,60)IWORK(11),IWORK(12),IWORK(13),IWORK(10), +C 1 IWORK(19),RWORK(15) +C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,' No. J-s =',I4, +C 1 ' No. g-s =',I4/ +C 2 ' Method last used =',I2,' Last switch was at t =',D12.4) +C STOP +C 80 WRITE(6,90)ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y, YDOT +C DIMENSION Y(3), YDOT(3) +C YDOT(1) = -.04*Y(1) + 1.D4*Y(2)*Y(3) +C YDOT(3) = 3.D7*Y(2)*Y(2) +C YDOT(2) = -YDOT(1) - YDOT(3) +C RETURN +C END +C +C SUBROUTINE GEX (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y, GOUT +C DIMENSION Y(3), GOUT(2) +C GOUT(1) = Y(1) - 1.D-4 +C GOUT(2) = Y(3) - 1.D-2 +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 2.6400e-01 y = 9.899653e-01 3.470563e-05 1.000000e-02 +C The above line is a root, JROOT = 0 1 +C At t = 4.0000e-01 Y = 9.851712e-01 3.386380e-05 1.479493e-02 +C At t = 4.0000e+00 Y = 9.055333e-01 2.240655e-05 9.444430e-02 +C At t = 4.0000e+01 Y = 7.158403e-01 9.186334e-06 2.841505e-01 +C At t = 4.0000e+02 Y = 4.505250e-01 3.222964e-06 5.494717e-01 +C At t = 4.0000e+03 Y = 1.831975e-01 8.941774e-07 8.168016e-01 +C At t = 4.0000e+04 Y = 3.898730e-02 1.621940e-07 9.610125e-01 +C At t = 4.0000e+05 Y = 4.936363e-03 1.984221e-08 9.950636e-01 +C At t = 4.0000e+06 Y = 5.161831e-04 2.065786e-09 9.994838e-01 +C At t = 2.0745e+07 Y = 1.000000e-04 4.000395e-10 9.999000e-01 +C The above line is a root, JROOT = 1 0 +C At t = 4.0000e+07 Y = 5.179817e-05 2.072032e-10 9.999482e-01 +C At t = 4.0000e+08 Y = 5.283401e-06 2.113371e-11 9.999947e-01 +C At t = 4.0000e+09 Y = 4.659031e-07 1.863613e-12 9.999995e-01 +C At t = 4.0000e+10 Y = 1.404280e-08 5.617126e-14 1.000000e+00 +C +C No. steps = 361 No. f-s = 693 No. J-s = 64 No. g-s = 390 +C Method last used = 2 Last switch was at t = 6.0092e-03 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODAR. +C +C The user interface to DLSODAR consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODAR, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODAR package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of a subroutine in the DLSODAR package, +C which the user may replace with his/her own version, if desired. +C this relates to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, +C JT, G, and NG, +C that used only for output is JROOT, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODAR to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODAR, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODAR package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F, JAC, and G. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to F, JAC, and G. Each such subroutine must include +C NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to F, +C JAC, and G. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F, JAC, and G. (The DLSODAR package accesses only +C Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C If a root was found, T is the computed location of the +C root reached first, on output. +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C max-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT = (EWT(i)) is a vector of positive error weights. +C The values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting a +C user-supplied routine for the setting of EWT. +C See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, JT, ML, MU, +C and any optional inputs except H0, MXORDN, and MXORDS. +C (See IWORK description for ML and MU.) +C In addition, immediately following a return with +C ISTATE = 3 (root found), NG and G may be changed. +C (But changing NG from 0 to .gt. 0 is not allowed.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = t and ISTATE = 1 on input. +C 2 means the integration was performed successfully, and +C no roots were found. +C 3 means the integration was successful, and one or more +C roots were found before satisfying the stop condition +C specified by ITASK. See JROOT. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix, +C if one is being used. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the length of RWORK and/or IWORK was too small to +C proceed, but the integration was successful as far as T. +C This happens when DLSODAR chooses to switch methods +C but LRW and/or LIW is too small for the new method. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real array (double precision) for work space, and (in the +C first 20 words) for conditional and optional inputs and +C optional outputs. +C As DLSODAR switches automatically between stiff and nonstiff +C methods, the required length of RWORK can change during the +C problem. Thus the RWORK array passed to DLSODAR can either +C have a static (fixed) length large enough for both methods, +C or have a dynamic (changing) length altered by the calling +C program in response to output from DLSODAR. +C +C --- Fixed Length Case --- +C If the RWORK length is to be fixed, it should be at least +C max (LRN, LRS), +C where LRN and LRS are the RWORK lengths required when the +C current method is nonstiff or stiff, respectively. +C +C The separate RWORK length requirements LRN and LRS are +C as follows: +C If NEQ is constant and the maximum method orders have +C their default values, then +C LRN = 20 + 16*NEQ + 3*NG, +C LRS = 22 + 9*NEQ + NEQ**2 + 3*NG (JT = 1 or 2), +C LRS = 22 + 10*NEQ + (2*ML+MU)*NEQ + 3*NG (JT = 4 or 5). +C Under any other conditions, LRN and LRS are given by: +C LRN = 20 + NYH*(MXORDN+1) + 3*NEQ + 3*NG, +C LRS = 20 + NYH*(MXORDS+1) + 3*NEQ + LMAT + 3*NG, +C where +C NYH = the initial value of NEQ, +C MXORDN = 12, unless a smaller value is given as an +C optional input, +C MXORDS = 5, unless a smaller value is given as an +C optional input, +C LMAT = length of matrix work space: +C LMAT = NEQ**2 + 2 if JT = 1 or 2, +C LMAT = (2*ML + MU + 1)*NEQ + 2 if JT = 4 or 5. +C +C --- Dynamic Length Case --- +C If the length of RWORK is to be dynamic, then it should +C be at least LRN or LRS, as defined above, depending on the +C current method. Initially, it must be at least LRN (since +C DLSODAR starts with the nonstiff method). On any return +C from DLSODAR, the optional output MCUR indicates the current +C method. If MCUR differs from the value it had on the +C previous return, or if there has only been one call to +C DLSODAR and MCUR is now 2, then DLSODAR has switched +C methods during the last call, and the length of RWORK +C should be reset (to LRN if MCUR = 1, or to LRS if +C MCUR = 2). (An increase in the RWORK length is required +C if DLSODAR returned ISTATE = -7, but not otherwise.) +C After resetting the length, call DLSODAR with ISTATE = 3 +C to signal that change. +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer array for work space. +C As DLSODAR switches automatically between stiff and nonstiff +C methods, the required length of IWORK can change during +C problem, between +C LIS = 20 + NEQ and LIN = 20, +C respectively. Thus the IWORK array passed to DLSODAR can +C either have a fixed length of at least 20 + NEQ, or have a +C dynamic length of at least LIN or LIS, depending on the +C current method. The comments on dynamic length under +C RWORK above apply here. Initially, this length need +C only be at least LIN = 20. +C +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 2 words in IWORK are conditional inputs: +C IWORK(1) = ML These are the lower and upper +C IWORK(2) = MU half-bandwidths, respectively, of the +C banded Jacobian, excluding the main diagonal. +C The band is defined by the matrix locations +C (i,j) with i-ML .le. j .le. i+MU. ML and MU +C must satisfy 0 .le. ML,MU .le. NEQ-1. +C These are required if JT is 4 or 5, and +C ignored otherwise. ML and MU may in fact be +C the band parameters for a matrix to which +C df/dy is only approximately equal. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The base addresses of the work arrays must not be +C altered between calls to DLSODAR for the same problem. +C The contents of the work arrays must not be altered +C between calls, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODAR between calls, if +C desired (but not for use by F, JAC, or G). +C +C JAC = the name of the user-supplied routine to compute the +C Jacobian matrix, df/dy, if JT = 1 or 4. The JAC routine +C is optional, but if the problem is expected to be stiff much +C of the time, you are encouraged to supply JAC, for the sake +C of efficiency. (Alternatively, set JT = 2 or 5 to have +C DLSODAR compute df/dy internally by difference quotients.) +C If and when DLSODAR uses df/dy, it treats this NEQ by NEQ +C matrix either as full (JT = 1 or 2), or as banded (JT = +C 4 or 5) with half-bandwidths ML and MU (discussed under +C IWORK above). In either case, if JT = 1 or 4, the JAC +C routine must compute df/dy as a function of the scalar t +C and the vector y. It is to have the form +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C where NEQ, T, Y, ML, MU, and NROWPD are input and the array +C PD is to be loaded with partial derivatives (elements of +C the Jacobian matrix) on output. PD must be given a first +C dimension of NROWPD. T and Y have the same meaning as in +C Subroutine F. +C In the full matrix case (JT = 1), ML and MU are +C ignored, and the Jacobian is to be loaded into PD in +C columnwise manner, with df(i)/dy(j) loaded into pd(i,j). +C In the band matrix case (JT = 4), the elements +C within the band are to be loaded into PD in columnwise +C manner, with diagonal lines of df/dy loaded into the rows +C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). +C ML and MU are the half-bandwidth parameters (see IWORK). +C The locations in PD in the two triangular areas which +C correspond to nonexistent matrix elements can be ignored +C or loaded arbitrarily, as they are overwritten by DLSODAR. +C JAC need not provide df/dy exactly. A crude +C approximation (possibly with a smaller bandwidth) will do. +C In either case, PD is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to F with the same +C arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by F and not recomputed by JAC, +C if desired. Also, JAC may alter the Y array, if desired. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C JT = Jacobian type indicator. Used only for input. +C JT specifies how the Jacobian matrix df/dy will be +C treated, if and when DLSODAR requires this matrix. +C JT has the following values and meanings: +C 1 means a user-supplied full (NEQ by NEQ) Jacobian. +C 2 means an internally generated (difference quotient) full +C Jacobian (using NEQ extra calls to F per df/dy value). +C 4 means a user-supplied banded Jacobian. +C 5 means an internally generated banded Jacobian (using +C ML+MU+1 extra calls to F per df/dy evaluation). +C If JT = 1 or 4, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C If JT = 2 or 5, a dummy argument can be used. +C +C G = the name of subroutine for constraint functions, whose +C roots are desired during the integration. It is to have +C the form +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C where NEQ, T, Y, and NG are input, and the array GOUT +C is output. NEQ, T, and Y have the same meaning as in +C the F routine, and GOUT is an array of length NG. +C For i = 1,...,NG, this routine is to load into GOUT(i) +C the value at (T,Y) of the i-th constraint function g(i). +C DLSODAR will find roots of the g(i) of odd multiplicity +C (i.e. sign changes) as they occur during the integration. +C G must be declared External in the calling program. +C +C Caution: Because of numerical errors in the functions +C g(i) due to roundoff and integration error, DLSODAR may +C return false roots, or return the same root at two or more +C nearly equal values of t. If such false roots are +C suspected, the user should consider smaller error tolerances +C and/or higher precision in the evaluation of the g(i). +C +C If a root of some g(i) defines the end of the problem, +C the input to DLSODAR should nevertheless allow integration +C to a point slightly past that root, so that DLSODAR can +C locate the root by interpolation. +C +C Subroutine G may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in G) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C +C JROOT = integer array of length NG. Used only for output. +C On a return with ISTATE = 3 (one or more roots found), +C JROOT(i) = 1 if g(i) has a root at T, or JROOT(i) = 0 if not. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C IXPR IWORK(5) flag to generate extra printing at method switches. +C IXPR = 0 means no extra printing (the default). +C IXPR = 1 means print data on each switch. +C T, H, and NST will be printed on the same logical +C unit as used for error messages. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MXORDN IWORK(8) the maximum order to be allowed for the nonstiff +C (Adams) method. The default value is 12. +C If MXORDN exceeds the default value, it will +C be reduced to the default value. +C MXORDN is held constant during the problem. +C +C MXORDS IWORK(9) the maximum order to be allowed for the stiff +C (BDF) method. The default value is 5. +C If MXORDS exceeds the default value, it will +C be reduced to the default value. +C MXORDS is held constant during the problem. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODAR, the variables listed +C below are quantities related to the performance of DLSODAR +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODAR, and on any return with +C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C TSW RWORK(15) the value of t at the time of the last method +C switch, if any. +C +C NGE IWORK(10) the number of g evaluations for the problem so far. +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (and of matrix +C LU decompositions) for the problem so far. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required, assuming +C that the length of RWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required, assuming +C that the length of IWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C MUSED IWORK(19) the method indicator for the last successful step: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C +C MCUR IWORK(20) the current method indicator: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C This is the method to be attempted +C on the next step. Thus it differs from MUSED +C only if a method switch has just been made. +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 + 3*NG the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LACOR array of size NEQ used for the accumulated +C (from Common corrections on each step, scaled on output +C as noted) to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODAR. The base address LACOR is obtained by +C including in the user's program the +C following 2 lines: +C COMMON /DLS001/ RLS(218), ILS(37) +C LACOR = ILS(22) +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODAR. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODAR, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODAR. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCAR(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODAR (see Part 3 below). +C RSAV must be a real array of length 245 +C or more, and ISAV must be an integer +C array of length 55 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCAR is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODAR. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODAR. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = 21 + 3*NG +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODAR). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(t), is already provided +C by DLSODAR directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = 21 + 3*NG = base address in RWORK of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODAR is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODAR, and +C (2) the three internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSA01/ of length 31 (22 double precision words +C followed by 9 integer words). +C /DLSR01/ of length 7 (3 double precision words +C followed by 4 integer words). +C +C If DLSODAR is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODAR is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODAR call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODAR call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCAR (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below is a description of a routine in the DLSODAR package which +C relates to the measurement of errors, and can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C Subroutine DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODAR call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the +C DMNORM routine, and also used by DLSODAR in the computation +C of the optional output IMXER, and the increments for difference +C quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19811102 DATE WRITTEN +C 19820126 Fixed bug in tests of work space lengths; +C minor corrections in main prologue and comments. +C 19820507 Fixed bug in RCHEK in setting HMING. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODA; +C in STODA, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19970225 Fixed lines setting JSTART = -2 in Subroutine LSODAR. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20010613 Revised excess accuracy test (to match rest of ODEPACK). +C 20010808 Fixed bug in DPRJA (matrix in DBNORM call). +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODAR package. +C +C In addition to Subroutine DLSODAR, the DLSODAR package includes the +C following subroutines and function routines: +C DRCHEK does preliminary checking for roots, and serves as an +C interface between Subroutine DLSODAR and Subroutine DROOTS. +C DROOTS finds the leftmost root of a set of functions. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODA is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJA computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DMNORM computes the weighted max-norm of a vector. +C DFNORM computes the norm of a full matrix consistent with the +C weighted max-norm on vectors. +C DBNORM computes the norm of a band matrix consistent with the +C weighted max-norm on vectors. +C DSRCAR is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DCOPY is one of the basic linear algebra modules (BLAS). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DMNORM, DFNORM, DBNORM, DUMACH, IXSAV, and IUMACH are +C function routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJA, DSOLSY + DOUBLE PRECISION DUMACH, DMNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER INSUFR, INSUFI, IXPR, IOWNS2, JTYP, MUSED, MXORDN, MXORDS + INTEGER LG0, LG1, LGX, IOWNR3, IRFND, ITASKC, NGC, NGE + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LENIW, + 1 LENRW, LENWM, LF0, ML, MORD, MU, MXHNL0, MXSTP0 + INTEGER LEN1, LEN1C, LEN1N, LEN1S, LEN2, LENIWC, LENRWC + INTEGER IRFP, IRT, LENYH, LYHNEW + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION TSW, ROWNS2, PDNORM + DOUBLE PRECISION ROWNR3, T0, TLAST, TOUTC + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following three internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODAR, DINTDY, DSTODA, +C DPRJA, and DSOLSY. +C The block DLSA01 is declared in subroutines DLSODAR, DSTODA, DPRJA. +C The block DLSR01 is declared in subroutines DLSODAR, DRCHEK, DROOTS. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSA01/ TSW, ROWNS2(20), PDNORM, + 1 INSUFR, INSUFI, IXPR, IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS +C + COMMON /DLSR01/ ROWNR3(2), T0, TLAST, TOUTC, + 1 LG0, LG1, LGX, IOWNR3(2), IRFND, ITASKC, NGC, NGE +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + ITASKC = ITASK + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C JT, ML, MU, and NG. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + IF (JT .EQ. 3 .OR. JT .LT. 1 .OR. JT .GT. 5) GO TO 608 + JTYP = JT + IF (JT .LE. 2) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE + IF (NG .LT. 0) GO TO 630 + IF (ISTATE .EQ. 1) GO TO 35 + IF (IRFND .EQ. 0 .AND. NG .NE. NGC) GO TO 631 + 35 NGC = NG +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + IXPR = 0 + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + HMXI = 0.0D0 + HMIN = 0.0D0 + IF (ISTATE .NE. 1) GO TO 60 + H0 = 0.0D0 + MXORDN = MORD(1) + MXORDS = MORD(2) + GO TO 60 + 40 IXPR = IWORK(5) + IF (IXPR .LT. 0 .OR. IXPR .GT. 1) GO TO 611 + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + MXORDN = IWORK(8) + IF (MXORDN .LT. 0) GO TO 628 + IF (MXORDN .EQ. 0) MXORDN = 100 + MXORDN = MIN(MXORDN,MORD(1)) + MXORDS = IWORK(9) + IF (MXORDS .LT. 0) GO TO 629 + IF (MXORDS .EQ. 0) MXORDS = 100 + MXORDS = MIN(MXORDS,MORD(2)) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C If ISTATE = 1, METH is initialized to 1 here to facilitate the +C checking of work space lengths. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted G0, G1, GX, YH, WM, +C EWT, SAVF, ACOR. +C If the lengths provided are insufficient for the current method, +C an error return occurs. This is treated as illegal input on the +C first call, but as a problem interruption with ISTATE = -7 on a +C continuation call. If the lengths are sufficient for the current +C method but not for both methods, a warning message is sent. +C----------------------------------------------------------------------- + 60 IF (ISTATE .EQ. 1) METH = 1 + IF (ISTATE .EQ. 1) NYH = N + LG0 = 21 + LG1 = LG0 + NG + LGX = LG1 + NG + LYHNEW = LGX + NG + IF (ISTATE .EQ. 1) LYH = LYHNEW + IF (LYHNEW .EQ. LYH) GO TO 62 +C If ISTATE = 3 and NG was changed, shift YH to its new location. ------ + LENYH = L*NYH + IF (LRW .LT. LYHNEW-1+LENYH) GO TO 62 + I1 = 1 + IF (LYHNEW .GT. LYH) I1 = -1 + CALL DCOPY (LENYH, RWORK(LYH), I1, RWORK(LYHNEW), I1) + LYH = LYHNEW + 62 CONTINUE + LEN1N = LYHNEW - 1 + (MXORDN + 1)*NYH + LEN1S = LYHNEW - 1 + (MXORDS + 1)*NYH + LWM = LEN1S + 1 + IF (JT .LE. 2) LENWM = N*N + 2 + IF (JT .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEN1S = LEN1S + LENWM + LEN1C = LEN1N + IF (METH .EQ. 2) LEN1C = LEN1S + LEN1 = MAX(LEN1N,LEN1S) + LEN2 = 3*N + LENRW = LEN1 + LEN2 + LENRWC = LEN1C + LEN2 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + LENIWC = 20 + IF (METH .EQ. 2) LENIWC = LENIW + IWORK(18) = LENIW + IF (ISTATE .EQ. 1 .AND. LRW .LT. LENRWC) GO TO 617 + IF (ISTATE .EQ. 1 .AND. LIW .LT. LENIWC) GO TO 618 + IF (ISTATE .EQ. 3 .AND. LRW .LT. LENRWC) GO TO 550 + IF (ISTATE .EQ. 3 .AND. LIW .LT. LENIWC) GO TO 555 + LEWT = LEN1 + 1 + INSUFR = 0 + IF (LRW .GE. LENRW) GO TO 65 + INSUFR = 2 + LEWT = LEN1C + 1 + MSG='DLSODAR- Warning.. RWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENRW = I1, while LRW = I2.' + CALL XERRWD (MSG, 50, 103, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + 65 LSAVF = LEWT + N + LACOR = LSAVF + N + INSUFI = 0 + IF (LIW .GE. LENIW) GO TO 70 + INSUFI = 2 + MSG='DLSODAR- Warning.. IWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENIW = I1, while LIW = I2.' + CALL XERRWD (MSG, 50, 104, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + 70 CONTINUE +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 75 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 75 CONTINUE + IF (ISTATE .EQ. 1) GO TO 100 +C if ISTATE = 3, set flag to signal parameter changes to DSTODA. ------- + JSTART = -1 + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. zero part of yh to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + TSW = T + MAXORD = MXORDN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + MUSED = 0 + MITER = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by: +C +C H0**(-2) = 1./(TOL * w0**2) + TOL * (norm(F))**2 +C +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C F = the initial value of the vector f(t,y), and +C norm() = the weighted vector norm used throughout, given by +C the DMNORM function routine, and weighted by the +C tolerances initially loaded into the EWT array. +C The sign of H0 is inferred from the initial values of TOUT and T. +C ABS(H0) is made .le. ABS(TOUT-T) in any case. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DMNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) +C +C Check for a zero of g at T. ------------------------------------------ + IRFND = 0 + TOUTC = TOUT + IF (NGC .EQ. 0) GO TO 270 + CALL DRCHEK (1, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .EQ. 0) GO TO 270 + GO TO 632 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C First, DRCHEK is called to check for a root within the last step +C taken, other than the last root found there, if any. +C If ITASK = 2 or 5, and y(TN) has not yet been returned to the user +C because of an intervening root, return through Block G. +C----------------------------------------------------------------------- + 200 NSLAST = NST +C + IRFP = IRFND + IF (NGC .EQ. 0) GO TO 205 + IF (ITASK .EQ. 1 .OR. ITASK .EQ. 4) TOUTC = TOUT + CALL DRCHEK (2, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 205 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 205 CONTINUE + IRFND = 0 + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 2) GO TO 400 +C + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + T = TN + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) T = TCRIT + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 5) GO TO 400 + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2 .AND. JSTART .GE. 0) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODA. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF (METH .EQ. MUSED) GO TO 255 + IF (INSUFR .EQ. 1) GO TO 550 + IF (INSUFI .EQ. 1) GO TO 555 + 255 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DMNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODAR- Warning..Internal T(=R1) and H(=R2) are ' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODAR- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODA(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPRJA,DSOLSY) +C----------------------------------------------------------------------- + CALL DSTODA (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), + 2 F, JAC, DPRJA, DSOLSY) + KGO = 1 - KFLAG + GO TO (300, 530, 540), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). +C If a method switch was just made, record TSW, reset MAXORD, +C set JSTART to -1 to signal DSTODA to complete the switch, +C and do extra printing of data if IXPR = 1. +C Then call DRCHEK to check for a root within the last step. +C Then, if no root was found, check for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + IF (METH .EQ. MUSED) GO TO 310 + TSW = TN + MAXORD = MXORDN + IF (METH .EQ. 2) MAXORD = MXORDS + IF (METH .EQ. 2) RWORK(LWM) = SQRT(UROUND) + INSUFR = MIN(INSUFR,1) + INSUFI = MIN(INSUFI,1) + JSTART = -1 + IF (IXPR .EQ. 0) GO TO 310 + IF (METH .EQ. 2) THEN + MSG='DLSODAR- A switch to the BDF (stiff) method has occurred ' + CALL XERRWD (MSG, 60, 105, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (METH .EQ. 1) THEN + MSG='DLSODAR- A switch to the Adams (nonstiff) method occurred ' + CALL XERRWD (MSG, 60, 106, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + MSG=' at T = R1, tentative step size H = R2, step NST = I1 ' + CALL XERRWD (MSG, 60, 107, 0, 1, NST, 0, 2, TN, H) + 310 CONTINUE +C + IF (NGC .EQ. 0) GO TO 315 + CALL DRCHEK (3, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 315 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 315 CONTINUE +C + GO TO (320, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 320 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (JSTART .GE. 0) JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODAR. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + 425 CONTINUE + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODAR- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODAR- At T(=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODAR- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODAR- At T(=R1), step size H(=R2), the error ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODAR- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C RWORK length too small to proceed. ----------------------------------- + 550 MSG = 'DLSODAR- At current T(=R1), RWORK length too small' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C IWORK length too small to proceed. ----------------------------------- + 555 MSG = 'DLSODAR- At current T(=R1), IWORK length too small' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODAR- ISTATE(=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODAR- ITASK (=I1) illegal.' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODAR- ISTATE.gt.1 but DLSODAR not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODAR- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODAR- ISTATE = 3 and NEQ increased (I1 to I2).' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODAR- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODAR- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODAR- JT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, JT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODAR- ML (=I1) illegal: .lt.0 or .ge.NEQ (=I2)' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODAR- MU (=I1) illegal: .lt.0 or .ge.NEQ (=I2)' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODAR- IXPR (=I1) illegal. ' + CALL XERRWD (MSG, 30, 11, 0, 1, IXPR, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODAR- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODAR- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODAR- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODAR- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODAR- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODAR- RWORK length needed, LENRW(=I1), exceeds LRW(=I2) ' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODAR- IWORK length needed, LENIW(=I1), exceeds LIW(=I2) ' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODAR- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODAR- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODAR- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODAR- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODAR- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODAR- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODAR- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODAR- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODAR- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG = 'DLSODAR- MXORDN (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 28, 0, 1, MXORDN, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG = 'DLSODAR- MXORDS (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 29, 0, 1, MXORDS, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 630 MSG = 'DLSODAR- NG (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 30, 0, 1, NG, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG = 'DLSODAR- NG changed (from I1 to I2) illegally, ' + CALL XERRWD (MSG, 50, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' i.e. not immediately after a root was found.' + CALL XERRWD (MSG, 50, 31, 0, 2, NGC, NG, 0, 0.0D0, 0.0D0) + GO TO 700 + 632 MSG = 'DLSODAR- One or more components of g has a root ' + CALL XERRWD (MSG, 50, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' too near to the initial point. ' + CALL XERRWD (MSG, 40, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODAR- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODAR --------------------- + END +*DECK DLSODPK + SUBROUTINE DLSODPK (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, PSOL, MF) + EXTERNAL F, JAC, PSOL + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODPK: Livermore Solver for Ordinary Differential equations, +C with Preconditioned Krylov iteration methods for the +C Newton correction linear systems. +C +C This version is in double precision. +C +C DLSODPK solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C----------------------------------------------------------------------- +C Introduction. +C +C This is a modification of the DLSODE package which incorporates +C various preconditioned Krylov subspace iteration methods for the +C linear algebraic systems that arise in the case of stiff systems. +C +C The linear systems that must be solved have the form +C A * x = b , where A = identity - hl0 * (df/dy) . +C Here hl0 is a scalar, and df/dy is the Jacobian matrix of partial +C derivatives of f (NEQ by NEQ). +C +C The particular Krylov method is chosen by setting the second digit, +C MITER, in the method flag MF. +C Currently, the values of MITER have the following meanings: +C +C MITER = 1 means the preconditioned Scaled Incomplete +C Orthogonalization Method (SPIOM). +C +C 2 means an incomplete version of the Preconditioned Scaled +C Generalized Minimal Residual method (SPIGMR). +C This is the best choice in general. +C +C 3 means the Preconditioned Conjugate Gradient method (PCG). +C Recommended only when df/dy is symmetric or nearly so. +C +C 4 means the scaled Preconditioned Conjugate Gradient method +C (PCGS). Recommended only when D-inverse * df/dy * D is +C symmetric or nearly so, where D is the diagonal scaling +C matrix with elements 1/EWT(i) (see RTOL/ATOL description). +C +C 9 means that only a user-supplied matrix P (approximating A) +C will be used, with no Krylov iteration done. This option +C allows the user to provide the complete linear system +C solution algorithm, if desired. +C +C The user can apply preconditioning to the linear system A*x = b, +C by means of arbitrary matrices (the preconditioners). +C In the case of SPIOM and SPIGMR, one can apply left and right +C preconditioners P1 and P2, and the basic iterative method is then +C applied to the matrix (P1-inverse)*A*(P2-inverse) instead of to the +C matrix A. The product P1*P2 should be an approximation to matrix A +C such that linear systems with P1 or P2 are easier to solve than with +C A. Preconditioning from the left only or right only means using +C P2 = identity or P1 = identity, respectively. +C In the case of the PCG and PCGS methods, there is only one +C preconditioner matrix P (but it can be the product of more than one). +C It should approximate the matrix A but allow for relatively +C easy solution of linear systems with coefficient matrix P. +C For PCG, P should be positive definite symmetric, or nearly so, +C and for PCGS, the scaled preconditioner D-inverse * P * D +C should be symmetric or nearly so. +C If the Jacobian J = df/dy splits in a natural way into a sum +C J = J1 + J2, then one possible choice of preconditioners is +C P1 = identity - hl0 * J1 and P2 = identity - hl0 * J2 +C provided each of these is easy to solve (or approximately solve). +C +C----------------------------------------------------------------------- +C References: +C 1. Peter N. Brown and Alan C. Hindmarsh, Reduced Storage Matrix +C Methods in Stiff ODE Systems, J. Appl. Math. & Comp., 31 (1989), +C pp. 40-91; also L.L.N.L. Report UCRL-95088, Rev. 1, June 1987. +C 2. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Peter N. Brown +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODPK package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the demonstration +C program distributed with this solver. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue +C whose real part is negative and large in magnitude, compared to the +C reciprocal of the t span of interest. If the problem is nonstiff, +C use a method flag MF = 10. If it is stiff, MF should be between 21 +C and 24, or possibly 29. MF = 22 is generally the best choice. +C Use 23 or 24 only if symmetry is present. Use MF = 29 if the +C complete linear system solution is to be provided by the user. +C The following four parameters must also be set. +C IWORK(1) = LWP = length of real array WP for preconditioning. +C IWORK(2) = LIWP = length of integer array IWP for preconditioning. +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant data for use in +C preconditioning, such as Jacobian elements. +C The arrays WP and IWP are work arrays under the user's control, +C for use in the routines that perform preconditioning operations. +C +C C. If the problem is stiff, you must supply two routines that deal +C with the preconditioning of the linear systems to be solved. +C These are as follows: +C +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY, V, HL0, WP,IWP, IER) +C DOUBLE PRECISION T, Y(*),YSV(*), REWT(*), FTY(*), V(*), HL0, WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy involved in the preconditioners P1, P2, P. +C The Y and FTY arrays contain the current values of y and f(t,y), +C respectively, and YSV also contains the current value of y. +C The array V is work space of length NEQ. +C JAC must multiply all computed Jacobian elements by the scalar +C -HL0, add the identity matrix, and do any factorization +C operations called for, in preparation for solving linear systems +C with a coefficient matrix of P1, P2, or P. The matrix P1*P2 or P +C should be an approximation to identity - HL0 * (df/dy). +C JAC should return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK, HL0, WP, IWP, B, LR, IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, as +C coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner matrix P. +C In the case MF = 29 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - HL0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. WK is a work array of length NEQ. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, at the time of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C On return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 if a recoverable error occurred, meaning that the +C time step will be retried, +C IER .lt. 0 if an unrecoverable error occurred, meaning that the +C solver is to stop immediately. +C +C D. Write a main program which calls Subroutine DLSODPK once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODPK. On the first call to DLSODPK, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + 16*NEQ for MF = 10, +C 45 + 17*NEQ + LWP for MF = 21, +C 61 + 17*NEQ + LWP for MF = 22, +C 20 + 15*NEQ + LWP for MF = 23 or 24, +C 20 + 12*NEQ + LWP for MF = 29. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least: +C 30 for MF = 10, +C 35 + LIWP for MF = 21, +C 30 + LIWP for MF = 22, 23, 24, or 29. +C LIW = declared length of IWORK (in user's dimension). +C JAC,PSOL = names of subroutines for preconditioning. +C These names must be declared External in the calling program. +C MF = method flag. Standard values are: +C 10 for nonstiff (Adams) method. +C 21 for stiff (BDF) method, with preconditioned SIOM. +C 22 for stiff method, with preconditioned GMRES method. +C 23 for stiff method, with preconditioned CG method. +C 24 for stiff method, with scaled preconditioned CG method. +C 29 for stiff method, with user's PSOL routine only. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C and possibly ATOL. +C +C E. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODPK was successful, negative otherwise. +C -1 means excess work done on this call (perhaps wrong MF). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad JAC +C or PSOL routine supplied or wrong choice of MF or +C tolerances, or this solver is inappropriate). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means an unrecoverable error occurred in PSOL. +C +C F. To continue the integration after a successful return, simply +C reset TOUT and call DLSODPK again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODPK. +C +C The user interface to DLSODPK consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODPK, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODPK package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODPK package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, PSOL, MF, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODPK to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODPK, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in the user-supplied subroutines. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODPK package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F, JAC, and PSOL. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to the user-supplied subroutines. Each such routine must +C include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to F, +C JAC, and PSOL. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to the user-supplied subroutines. (The DLSODPK +C package accesses only Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C the following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C and any of the optional inputs except H0. +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the PSOL routine returned an unrecoverable error +C flag (IER .lt. 0). The integration was successful as +C far as T. +C +C Note: since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LENLS + LWP where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENLS = length of work space for linear system (Krylov) +C method, excluding preconditioning: +C LENLS = 0 if MITER = 0, +C LENLS = NEQ*(MAXL+3) + MAXL**2 if MITER = 1, +C LENLS = NEQ*(MAXL+3+MIN(1,MAXL-KMP)) +C + (MAXL+3)*MAXL + 1 if MITER = 2, +C LENLS = 6*NEQ if MITER = 3 or 4, +C LENLS = 3*NEQ if MITER = 9. +C (See the MF description for METH and MITER, and the +C list of optional inputs for MAXL and KMP.) +C LWP = length of real user work space for preconditioning +C (see JAC/PSOL). +C Thus if default values are used and NEQ is constant, +C this length is: +C 20 + 16*NEQ for MF = 10, +C 45 + 24*NEQ + LWP FOR MF = 11, +C 61 + 24*NEQ + LWP FOR MF = 12, +C 20 + 22*NEQ + LWP FOR MF = 13 OR 14, +C 20 + 19*NEQ + LWP FOR MF = 19, +C 20 + 9*NEQ FOR MF = 20, +C 45 + 17*NEQ + LWP FOR MF = 21, +C 61 + 17*NEQ + LWP FOR MF = 22, +C 20 + 15*NEQ + LWP FOR MF = 23 OR 24, +C 20 + 12*NEQ + LWP for MF = 29. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 30 if MITER = 0 (MF = 10 or 20), +C 30 + MAXL + LIWP if MITER = 1 (MF = 11, 21), +C 30 + LIWP if MITER = 2, 3, 4, or 9. +C MAXL = 5 unless a different optional input value is given. +C LIWP = length of integer user work space for preconditioning +C (see conditional input list following). +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 4 words in IWORK are conditional inputs, +C required if MITER .ge. 1: +C IWORK(1) = LWP = length of real array WP for use in +C preconditioning (part of RWORK array). +C IWORK(2) = LIWP = length of integer array IWP for use in +C preconditioning (part of IWORK array). +C The arrays WP and IWP are work arrays under the +C user's control, for use in the routines that +C perform preconditioning operations (JAC and PSOL). +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant +C data needed in preconditioning operations, +C such as some of the Jacobian elements. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODPK +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODPK between calls, if +C desired (but not for use by any of the user-supplied subroutines). +C +C JAC = the name of the user-supplied routine to compute any +C Jacobian elements (or approximations) involved in the +C matrix preconditioning operations (MITER .ge. 1). +C It is to have the form +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY, V, +C 1 HL0, WP, IWP, IER) +C DOUBLE PRECISION T, Y(*),YSV(*), REWT(*), FTY(*), V(*), +C 1 HL0, WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy used in the preconditioners P1, P2, P. +C the Y and FTY arrays contain the current values of y and +C f(t,y), respectively, and YSV also contains the current +C value of y. The array V is work space of length +C NEQ for use by JAC. REWT is the array of reciprocal error +C weights (1/EWT). JAC must multiply all computed Jacobian +C elements by the scalar -HL0, add the identity matrix, and do +C any factorization operations called for, in preparation +C for solving linear systems with a coefficient matrix of +C P1, P2, or P. The matrix P1*P2 or P should be an +C approximation to identity - HL0 * (df/dy). JAC should +C return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C The arrays WP (of length LWP) and IWP (of length LIWP) +C are for use by JAC and PSOL for work space and for storage +C of data needed for the solution of the preconditioner +C linear systems. Their lengths and contents are under the +C user's control. +C The JAC routine may save relevant Jacobian elements (or +C approximations) used in the preconditioners, along with the +C value of HL0, and use these to reconstruct preconditioner +C matrices later without reevaluationg those elements. +C This may be cost-effective if JAC is called with HL0 +C considerably different from its earlier value, indicating +C that a corrector convergence failure has occurred because +C of the change in HL0, not because of changes in the +C value of the Jacobian. In doing this, use the saved and +C current values of HL0 to decide whether to use saved +C or reevaluated elements. +C JAC may alter V, but may not alter Y, YSV, REWT, FTY, or HL0. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C PSOL = the name of the user-supplied routine for the +C solution of preconditioner linear systems. +C It is to have the form +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK,HL0, WP,IWP, B, LR,IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, +C as coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner P. +C In the case MITER = 9 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - HL0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. +C The Y and FTY arrays contain the current values of y and +C f(t,y), respectively. The array WK is work space of length +C NEQ for use by PSOL. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, as of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C On return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 on a recoverable error, meaning that the +C time step will be retried, +C IER .lt. 0 on an unrecoverable error, meaning that the +C solver is to stop immediately. +C PSOL may not alter Y, FTY, or HL0. +C PSOL must be declared External in the calling program. +C Subroutine PSOL may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in PSOL) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C MF = the method flag. Used only for input. The legal values of +C MF are 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24, and 29. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C MITER indicates the corrector iteration method: +C MITER = 0 means functional iteration (no linear system +C is involved). +C MITER = 1 means Newton iteration with Scaled Preconditioned +C Incomplete Orthogonalization Method (SPIOM) +C for the linear systems. +C MITER = 2 means Newton iteration with Scaled Preconditioned +C Generalized Minimal Residual method (SPIGMR) +C for the linear systems. +C MITER = 3 means Newton iteration with Preconditioned +C Conjugate Gradient method (PCG) +C for the linear systems. +C MITER = 4 means Newton iteration with scaled Preconditioned +C Conjugate Gradient method (PCGS) +C for the linear systems. +C MITER = 9 means Newton iteration with only the +C user-supplied PSOL routine called (no Krylov +C iteration) for the linear systems. +C JPRE is ignored, and PSOL is called with LR = 0. +C See comments in the introduction about the choice of MITER. +C If MITER .ge. 1, the user must supply routines JAC and PSOL +C (the names are arbitrary) as described above. +C For MITER = 0, dummy arguments can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C DELT RWORK(8) convergence test constant in Krylov iteration +C algorithm. The default is .05. +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MAXL IWORK(8) maximum number of iterations in the SPIOM, SPIGMR, +C PCG, or PCGS algorithm (.le. NEQ). +C The default is MAXL = MIN(5,NEQ). +C +C KMP IWORK(9) number of vectors on which orthogonalization +C is done in SPIOM or SPIGMR algorithm (.le. MAXL). +C The default is KMP = MAXL. +C Note: When KMP .lt. MAXL and MF = 22, the length +C of RWORK must be defined accordingly. See +C the definition of RWORK above. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODPK, the variables listed +C below are quantities related to the performance of DLSODPK +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODPK, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NPE IWORK(13) the number of calls to JAC so far (for Jacobian +C evaluation associated with preconditioning). +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNI IWORK(19) number of nonlinear iterations so far (each of +C which calls an iterative linear solver). +C +C NLI IWORK(20) number of linear iterations so far. +C Note: A measure of the success of algorithm is +C the average number of linear iterations per +C nonlinear iteration, given by NLI/NNI. +C If this is close to MAXL, MAXL may be too small. +C +C NPS IWORK(21) number of preconditioning solve operations +C (PSOL calls) so far. +C +C NCFN IWORK(22) number of convergence failures of the nonlinear +C (Newton) iteration so far. +C Note: A measure of success is the overall +C rate of nonlinear convergence failures, NCFN/NST. +C +C NCFL IWORK(23) number of convergence failures of the linear +C iteration so far. +C Note: A measure of success is the overall +C rate of linear convergence failures, NCFL/NNI. +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output +C to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODPK. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODPK. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODPK, if +C the default is not desired. +C The default value of lun is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODPK. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCPK(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODPK (see Part 3 below). +C RSAV must be a real array of length 222 +C or more, and ISAV must be an integer +C array of length 50 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCPK is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODPK. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (See below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODPK. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODPK). +C for valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODPK directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODPK is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODPK, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLPK01/ of length 17 (4 double precision words +C followed by 13 integer words). +C +C If DLSODPK is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODPK is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODPK call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODPK call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCPK (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C below are descriptions of two routines in the DLSODPK package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODPK call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODPK in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODPK. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19860901 DATE WRITTEN +C 19861010 Numerous minor revisions to SPIOM and SPGMR routines; +C minor corrections to prologues and comments. +C 19870114 Changed name SPGMR to SPIGMR; revised residual norm +C calculation in SPIGMR (for incomplete case); +C revised error return logic in SPIGMR; +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODPK; +C in STODPK, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19871130 Added option MITER = 9; shortened WM array by 2; +C revised early return from SPIOM and SPIGMR; +C replaced copy loops with SCOPY/DCOPY calls; +C minor corrections/revisions to SOLPK, SPIGMR, ATV, ATP; +C corrections to main prologue and internal comments. +C 19880304 Corrections to type declarations in SOLPK, SPIOM, USOL. +C 19891025 Added ISTATE = -7 return; minor revisions to USOL; +C added initialization of JACFLG in main driver; +C removed YH and NYH from PKSET call list; +C minor revisions to SPIOM and SPIGMR; +C corrections to main prologue and internal comments. +C 19900803 Added YSV to JAC call list; minor comment corrections. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20030603 Corrected duplicate type declaration for DUMACH. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal name NPE to NJE. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODPK package. +C +C In addition to Subroutine DLSODPK, the DLSODPK package includes the +C following subroutines and function routines: +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSTODPK is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPKSET interfaces between DSTODPK and the JAC routine. +C DSOLPK manages solution of linear system in Newton iteration. +C DSPIOM performs the SPIOM algorithm. +C DATV computes a scaled, preconditioned product (I-hl0*J)*v. +C DORTHOG orthogonalizes a vector against previous basis vectors. +C DHEFA generates an LU factorization of a Hessenberg matrix. +C DHESL solves a Hessenberg square linear system. +C DSPIGMR performs the SPIGMR algorithm. +C DHEQR generates a QR factorization of a Hessenberg matrix. +C DHELS finds the least squares solution of a Hessenberg system. +C DPCG performs Preconditioned Conjugate Gradient algorithm (PCG). +C DPCGS performs the PCGS algorithm. +C DATP computes the product A*p, where A = I - hl0*df/dy. +C DUSOL interfaces to the user's PSOL routine (MITER = 9). +C DSRCPK is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DAXPY, DCOPY, DDOT, DNRM2, and DSCAL are basic linear +C algebra modules (from the BLAS collection). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DDOT, DNRM2, DUMACH, IXSAV, and IUMACH are function +C routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, LENIW, + 1 LENIWK, LENRW, LENWM, LENWK, LIWP, LWP, MORD, MXHNL0, MXSTP0, + 2 NCFN0, NCFL0, NLI0, NNI0, NNID, NSTD, NWARN + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + DOUBLE PRECISION ATOLI, AVDIM, AYI, BIG, EWTI, H0, HMAX, HMX, + 1 RCFL, RCFN, RH, RTOLI, TCRIT, + 2 TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT, LAVD, LCFN, LCFL, LWARN + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODPK, DINTDY, DSTODPK, +C DSOLPK, and DATV. +C The block DLPK01 is declared in subroutines DLSODPK, DSTODPK, DPKSET, +C and DSOLPK. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, MF. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0) GO TO 608 + IF (MITER .GT. 4 .AND. MITER .LT. 9) GO TO 608 + IF (MITER .GE. 1) JPRE = IWORK(3) + JACFLG = 0 + IF (MITER .GE. 1) JACFLG = IWORK(4) +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + MAXL = MIN(5,N) + KMP = MAXL + DELT = 0.05D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 + MAXL = IWORK(8) + IF (MAXL .EQ. 0) MAXL = 5 + MAXL = MIN(MAXL,N) + KMP = IWORK(9) + IF (KMP .EQ. 0 .OR. KMP .GT. MAXL) KMP = MAXL + DELT = RWORK(8) + IF (DELT .EQ. 0.0D0) DELT = 0.05D0 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C RWORK segments (in order) are denoted YH, WM, EWT, SAVF, SAVX, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .EQ. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .EQ. 0) LENWK = 0 + IF (MITER .EQ. 1) LENWK = N*(MAXL+2) + MAXL*MAXL + IF (MITER .EQ. 2) + 1 LENWK = N*(MAXL+2+MIN(1,MAXL-KMP)) + (MAXL+3)*MAXL + 1 + IF (MITER .EQ. 3 .OR. MITER .EQ. 4) LENWK = 5*N + IF (MITER .EQ. 9) LENWK = 2*N + LWP = 0 + IF (MITER .GE. 1) LWP = IWORK(1) + LENWM = LENWK + LWP + LOCWP = LENWK + 1 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LSAVX = LSAVF + N + LACOR = LSAVX + N + IF (MITER .EQ. 0) LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 31 + LENIWK = 0 + IF (MITER .EQ. 1) LENIWK = MAXL + LIWP = 0 + IF (MITER .GE. 1) LIWP = IWORK(2) + LENIW = 30 + LENIWK + LIWP + LOCIWP = LENIWK + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE +C Load SQRT(N) and its reciprocal in Common. --------------------------- + SQRTN = SQRT(REAL(N)) + RSQRTN = 1.0D0/SQRTN + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODPK. ------ + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- + DO 80 I = 1,N + 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1) + 90 CONTINUE + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + NLI0 = 0 + NNI0 = 0 + NCFN0 = 0 + NCFL0 = 0 + NWARN = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 + NNI = 0 + NLI = 0 + NPS = 0 + NCFN = 0 + NCFL = 0 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( f(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C f(i) = i-th component of initial value of f, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + NLI0 = NLI + NNI0 = NNI + NCFN0 = NCFN + NCFL0 = NCFL + NWARN = 0 + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODPK. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, +C Check for poor Newton/Krylov method performance, update EWT (if not +C at start of problem), check for too much accuracy being requested, +C and check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + NSTD = NST - NSLAST + NNID = NNI - NNI0 + IF (NSTD .LT. 10 .OR. NNID .EQ. 0) GO TO 255 + AVDIM = REAL(NLI - NLI0)/REAL(NNID) + RCFN = REAL(NCFN - NCFN0)/REAL(NSTD) + RCFL = REAL(NCFL - NCFL0)/REAL(NNID) + LAVD = AVDIM .GT. (MAXL - 0.05D0) + LCFN = RCFN .GT. 0.9D0 + LCFL = RCFL .GT. 0.9D0 + LWARN = LAVD .OR. LCFN .OR. LCFL + IF (.NOT.LWARN) GO TO 255 + NWARN = NWARN + 1 + IF (NWARN .GT. 10) GO TO 255 + IF (LAVD) THEN + MSG='DLSODPK- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LAVD) THEN + MSG=' at T = R1 by average no. of linear iterations = R2 ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 2, TN, AVDIM) + ENDIF + IF (LCFN) THEN + MSG='DLSODPK- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFN) THEN + MSG=' at T = R1 by nonlinear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 2, TN, RCFN) + ENDIF + IF (LCFL) THEN + MSG='DLSODPK- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFL) THEN + MSG=' at T = R1 by linear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 2, TN, RCFL) + ENDIF + 255 CONTINUE + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODPK- Warning..Internal T(=R1) and H(=R2) are ' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODPK- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODPK(NEQ,Y,YH,NYH,YH,EWT,SAVF,SAVX,ACOR,WM,IWM,F,JAC,PSOL) +C----------------------------------------------------------------------- + CALL DSTODPK (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LSAVX), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), F, JAC, PSOL) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 550), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. see if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODPK. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODPK- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODPK- At T (=R1), EWT(I1) has become R2.le.0. ' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODPK- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODPK- At T(=R1), step size H(=R2), the error ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODPK- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C KFLAG = -3. Unrecoverable error from PSOL. -------------------------- + 550 MSG = 'DLSODPK- At T (=R1) an unrecoverable error return' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' was made from Subroutine PSOL ' + CALL XERRWD (MSG, 40, 205, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODPK- ISTATE(=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODPK- ITASK (=I1) illegal.' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODPK- ISTATE.gt.1 but DLSODPK not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODPK- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODPK- ISTATE = 3 and NEQ increased (I1 to I2).' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODPK- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODPK- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODPK- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODPK- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODPK- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODPK- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODPK- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODPK- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODPK- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODPK- RWORK length needed, LENRW(=I1), exceeds LRW(=I2) ' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODPK- IWORK length needed, LENIW(=I1), exceeds LIW(=I2) ' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODPK- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODPK- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODPK- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODPK- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODPK- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODPK- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODPK- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODPK- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODPK- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODPK- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODPK --------------------- + END +*DECK DLSODKR + SUBROUTINE DLSODKR (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, PSOL, + 2 MF, G, NG, JROOT) + EXTERNAL F, JAC, PSOL, G + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF, + 1 NG, JROOT + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW), + 1 JROOT(*) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODKR: Livermore Solver for Ordinary Differential equations, +C with preconditioned Krylov iteration methods for the +C Newton correction linear systems, and with Rootfinding. +C +C This version is in double precision. +C +C DLSODKR solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C At the same time, it locates the roots of any of a set of functions +C g(i) = g(i,t,y(1),...,y(NEQ)) (i = 1,...,ng). +C +C----------------------------------------------------------------------- +C Introduction. +C +C This is a modification of the DLSODE package, and differs from it +C in five ways: +C (a) It uses various preconditioned Krylov subspace iteration methods +C for the linear algebraic systems that arise in the case of stiff +C systems. See the introductory notes below. +C (b) It does automatic switching between functional (fixpoint) +C iteration and Newton iteration in the corrector iteration. +C (c) It finds the root of at least one of a set of constraint +C functions g(i) of the independent and dependent variables. +C It finds only those roots for which some g(i), as a function +C of t, changes sign in the interval of integration. +C It then returns the solution at the root, if that occurs +C sooner than the specified stop condition, and otherwise returns +C the solution according the specified stop condition. +C (d) It supplies to JAC an input flag, JOK, which indicates whether +C JAC may (optionally) bypass the evaluation of Jacobian matrix data +C and instead process saved data (with the current value of scalar hl0). +C (e) It contains a new subroutine that calculates the initial step +C size to be attempted. +C +C +C Introduction to the Krylov methods in DLSODKR: +C +C The linear systems that must be solved have the form +C A * x = b , where A = identity - hl0 * (df/dy) . +C Here hl0 is a scalar, and df/dy is the Jacobian matrix of partial +C derivatives of f (NEQ by NEQ). +C +C The particular Krylov method is chosen by setting the second digit, +C MITER, in the method flag MF. +C Currently, the values of MITER have the following meanings: +C +C MITER = 1 means the Scaled Preconditioned Incomplete +C Orthogonalization Method (SPIOM). +C +C 2 means an incomplete version of the preconditioned scaled +C Generalized Minimal Residual method (SPIGMR). +C This is the best choice in general. +C +C 3 means the Preconditioned Conjugate Gradient method (PCG). +C Recommended only when df/dy is symmetric or nearly so. +C +C 4 means the scaled Preconditioned Conjugate Gradient method +C (PCGS). Recommended only when D-inverse * df/dy * D is +C symmetric or nearly so, where D is the diagonal scaling +C matrix with elements 1/EWT(i) (see RTOL/ATOL description). +C +C 9 means that only a user-supplied matrix P (approximating A) +C will be used, with no Krylov iteration done. This option +C allows the user to provide the complete linear system +C solution algorithm, if desired. +C +C The user can apply preconditioning to the linear system A*x = b, +C by means of arbitrary matrices (the preconditioners). +C In the case of SPIOM and SPIGMR, one can apply left and right +C preconditioners P1 and P2, and the basic iterative method is then +C applied to the matrix (P1-inverse)*A*(P2-inverse) instead of to the +C matrix A. The product P1*P2 should be an approximation to matrix A +C such that linear systems with P1 or P2 are easier to solve than with +C A. Preconditioning from the left only or right only means using +C P2 = identity or P1 = identity, respectively. +C In the case of the PCG and PCGS methods, there is only one +C preconditioner matrix P (but it can be the product of more than one). +C It should approximate the matrix A but allow for relatively +C easy solution of linear systems with coefficient matrix P. +C For PCG, P should be positive definite symmetric, or nearly so, +C and for PCGS, the scaled preconditioner D-inverse * P * D +C should be symmetric or nearly so. +C If the Jacobian J = df/dy splits in a natural way into a sum +C J = J1 + J2, then one possible choice of preconditioners is +C P1 = identity - hl0 * J1 and P2 = identity - hl0 * J2 +C provided each of these is easy to solve (or approximately solve). +C +C----------------------------------------------------------------------- +C References: +C 1. Peter N. Brown and Alan C. Hindmarsh, Reduced Storage Matrix +C Methods in Stiff ODE Systems, J. Appl. Math. & Comp., 31 (1989), +C pp. 40-91; also L.L.N.L. Report UCRL-95088, Rev. 1, June 1987. +C 2. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Peter N. Brown +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODKR package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the demonstration +C program distributed with this solver. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Provide a subroutine of the form: +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C which supplies the vector function g by loading GOUT(i) with +C g(i), the i-th constraint function whose root is sought. +C +C C. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue +C whose real part is negative and large in magnitude, compared to the +C reciprocal of the t span of interest. If the problem is nonstiff, +C use a method flag MF = 10. If it is stiff, MF should be between 21 +C and 24, or possibly 29. MF = 22 is generally the best choice. +C Use 23 or 24 only if symmetry is present. Use MF = 29 if the +C complete linear system solution is to be provided by the user. +C The following four parameters must also be set. +C IWORK(1) = LWP = length of real array WP for preconditioning. +C IWORK(2) = LIWP = length of integer array IWP for preconditioning. +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant data for use in +C preconditioning, such as Jacobian elements. +C The arrays WP and IWP are work arrays under the user's control, +C for use in the routines that perform preconditioning operations. +C +C D. If the problem is stiff, you must supply two routines that deal +C with the preconditioning of the linear systems to be solved. +C These are as follows: +C +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY,V,HL0,JOK,WP,IWP,IER) +C DOUBLE PRECISION T, Y(*), YSV(*), REWT(*), FTY(*), V(*), HL0,WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy involved in the preconditioners P1, P2, P. +C The Y and FTY arrays contain the current values of y and f(t,y), +C respectively, and YSV also contains the current value of y. +C The array V is work space of length NEQ. +C JAC must multiply all computed Jacobian elements by the scalar +C -HL0, add the identity matrix, and do any factorization +C operations called for, in preparation for solving linear systems +C with a coefficient matrix of P1, P2, or P. The matrix P1*P2 or P +C should be an approximation to identity - hl0 * (df/dy). +C JAC should return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C JAC may alter Y and V, but not YSV, REWT, FTY, or HL0. +C The JOK argument can be ignored (or see full description below). +C +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK, HL0, WP, IWP, B, LR, IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, as +C coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner matrix P. +C In the case MF = 29 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - hl0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. WK is a work array of length NEQ. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, at the time of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C on return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 if a recoverable error occurred, meaning that the +C time step will be retried, +C IER .lt. 0 if an unrecoverable error occurred, meaning that the +C solver is to stop immediately. +C +C E. Write a main program which calls Subroutine DLSODKR once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODKR. On the first call to DLSODKR, supply arguments as +C follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C The estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + 16*NEQ + 3*NG for MF = 10, +C 45 + 17*NEQ + 3*NG + LWP for MF = 21, +C 61 + 17*NEQ + 3*NG + LWP for MF = 22, +C 20 + 15*NEQ + 3*NG + LWP for MF = 23 or 24, +C 20 + 12*NEQ + 3*NG + LWP for MF = 29. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least: +C 30 for MF = 10, +C 35 + LIWP for MF = 21, +C 30 + LIWP for MF = 22, 23, 24, or 29. +C LIW = declared length of IWORK (in user's dimension). +C JAC,PSOL = names of subroutines for preconditioning. +C These names must be declared External in the calling program. +C MF = method flag. Standard values are: +C 10 for nonstiff (Adams) method. +C 21 for stiff (BDF) method, with preconditioned SIOM. +C 22 for stiff method, with preconditioned GMRES method. +C 23 for stiff method, with preconditioned CG method. +C 24 for stiff method, with scaled preconditioned CG method. +C 29 for stiff method, with user's PSOL routine only. +C G = name of subroutine for constraint functions, whose +C roots are desired during the integration. +C This name must be declared External in calling program. +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C JROOT = integer array of length NG for output of root information. +C See next paragraph. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C JROOT, and possibly ATOL. +C +C F. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 or 3 if DLSODKR was successful, negative otherwise. +C 2 means no root was found, and TOUT was reached as desired. +C 3 means a root was found prior to reaching TOUT. +C -1 means excess work done on this call (perhaps wrong MF). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad JAC +C or PSOL routine supplied or wrong choice of MF or +C tolerances, or this solver is inappropriate). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means an unrecoverable error occurred in PSOL. +C JROOT = array showing roots found if ISTATE = 3 on return. +C JROOT(i) = 1 if g(i) has a root at T, or 0 otherwise. +C +C G. To continue the integration after a successful return, proceed +C as follows: +C (a) If ISTATE = 2 on return, reset TOUT and call DLSODKR again. +C (b) If ISTATE = 3 on return, reset ISTATE to 2 and call DLSODKR again. +C In either case, no other parameters need be reset. +C +C----------------------------------------------------------------------- +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODKR. +C +C The user interface to DLSODKR consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODKR, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODKR package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODKR package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, PSOL, MF, +C G, and NG, +C that used only for output is JROOT, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODKR to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODKR, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in the user-supplied routines. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODKR package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to the user-supplied routines. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to the user-supplied routines. Each such routine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to F, G, +C JAC, and PSOL. Hence its length may exceed NEQ, and +C locations Y(NEQ+1),... may be used to store other real data +C and pass it to the user-supplied routines. +C (The DLSODKR package accesses only Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C If a root was found, T is the computed location of the +C root reached first, on output. +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at T = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C and any of the optional inputs except H0. +C In addition, immediately following a return with +C ISTATE = 3 (root found), NG and G may be changed. +C (But changing NG from 0 to .gt. 0 is not allowed.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C 3 means the integration was successful, and one or more +C roots were found before satisfying the stop condition +C specified by ITASK. See JROOT. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the PSOL routine returned an unrecoverable error +C flag (IER .lt. 0). The integration was successful as +C far as T. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD+1) + 3*NEQ + 3*NG + LENLS + LWP where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENLS = length of work space for linear system (Krylov) +C method, excluding preconditioning: +C LENLS = 0 if MITER = 0, +C LENLS = NEQ*(MAXL+3) + MAXL**2 if MITER = 1, +C LENLS = NEQ*(MAXL+3+MIN(1,MAXL-KMP)) +C + (MAXL+3)*MAXL + 1 if MITER = 2, +C LENLS = 6*NEQ if MITER = 3 or 4, +C LENLS = 3*NEQ if MITER = 9. +C (See the MF description for METH and MITER, and the +C list of optional inputs for MAXL and KMP.) +C LWP = length of real user work space for preconditioning +C (see JAC/PSOL). +C Thus if default values are used and NEQ is constant, +C this length is: +C 20 + 16*NEQ + 3*NG for MF = 10, +C 45 + 24*NEQ + 3*NG + LWP for MF = 11, +C 61 + 24*NEQ + 3*NG + LWP for MF = 12, +C 20 + 22*NEQ + 3*NG + LWP for MF = 13 or 14, +C 20 + 19*NEQ + 3*NG + LWP for MF = 19, +C 20 + 9*NEQ + 3*NG for MF = 20, +C 45 + 17*NEQ + 3*NG + LWP for MF = 21, +C 61 + 17*NEQ + 3*NG + LWP for MF = 22, +C 20 + 15*NEQ + 3*NG + LWP for MF = 23 or 24, +C 20 + 12*NEQ + 3*NG + LWP for MF = 29. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 30 if MITER = 0 (MF = 10 or 20), +C 30 + MAXL + LIWP if MITER = 1 (MF = 11, 21), +C 30 + LIWP if MITER = 2, 3, 4, or 9. +C MAXL = 5 unless a different optional input value is given. +C LIWP = length of integer user work space for preconditioning +C (see conditional input list following). +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 4 words in IWORK are conditional inputs, +C required if MITER .ge. 1: +C IWORK(1) = LWP = length of real array WP for use in +C preconditioning (part of RWORK array). +C IWORK(2) = LIWP = length of integer array IWP for use in +C preconditioning (part of IWORK array). +C The arrays WP and IWP are work arrays under the +C user's control, for use in the routines that +C perform preconditioning operations (JAC and PSOL). +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant +C data needed in preconditioning operations, +C such as some of the Jacobian elements. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODKR +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODKR between calls, if +C desired (but not for use by any of the user-supplied routines). +C +C JAC = the name of the user-supplied routine to compute any +C Jacobian elements (or approximations) involved in the +C matrix preconditioning operations (MITER .ge. 1). +C It is to have the form +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY, V, +C 1 HL0, JOK, WP, IWP, IER) +C DOUBLE PRECISION T, Y(*), YSV(*), REWT(*), FTY(*), V(*), +C 1 HL0, WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy used in the preconditioners P1, P2, P. +C The Y and FTY arrays contain the current values of y and +C f(t,y), respectively, and the YSV array also contains +C the current y vector. The array V is work space of length +C NEQ for use by JAC. REWT is the array of reciprocal error +C weights (1/EWT). JAC must multiply all computed Jacobian +C elements by the scalar -HL0, add the identity matrix, and do +C any factorization operations called for, in preparation +C for solving linear systems with a coefficient matrix of +C P1, P2, or P. The matrix P1*P2 or P should be an +C approximation to identity - hl0 * (df/dy). JAC should +C return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C The arrays WP (of length LWP) and IWP (of length LIWP) +C are for use by JAC and PSOL for work space and for storage +C of data needed for the solution of the preconditioner +C linear systems. Their lengths and contents are under the +C user's control. +C The argument JOK is an input flag for optional use +C by JAC in deciding whether to recompute Jacobian elements +C or use saved values. If JOK = -1, then JAC must compute +C any relevant Jacobian elements (or approximations) used in +C the preconditioners. Optionally, JAC may also save these +C elements for later reuse. If JOK = 1, the integrator has +C made a judgement (based on the convergence history and the +C value of HL0) that JAC need not recompute Jacobian elements, +C but instead use saved values, and the current value of HL0, +C to reconstruct the preconditioner matrices, followed by +C any required factorizations. This may be cost-effective if +C Jacobian elements are costly and storage is available. +C JAC may alter Y and V, but not YSV, REWT, FTY, or HL0. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C PSOL = the name of the user-supplied routine for the +C solution of preconditioner linear systems. +C It is to have the form +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK,HL0, WP,IWP, B, LR,IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, +C as coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner P. +C In the case MITER = 9 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - hl0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. +C The Y and FTY arrays contain the current values of y and +C f(t,y), respectively. The array WK is work space of length +C NEQ for use by PSOL. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, as of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C On return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 on a recoverable error, meaning that the +C time step will be retried, +C IER .lt. 0 on an unrecoverable error, meaning that the +C solver is to stop immediately. +C PSOL may not alter Y, FTY, or HL0. +C PSOL must be declared External in the calling program. +C Subroutine PSOL may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in PSOL) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C MF = the method flag. Used only for input. The legal values of +C MF are 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24, and 29. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C MITER indicates the corrector iteration method: +C MITER = 0 means functional iteration (no linear system +C is involved). +C MITER = 1 means Newton iteration with Scaled Preconditioned +C Incomplete Orthogonalization Method (SPIOM) +C for the linear systems. +C MITER = 2 means Newton iteration with Scaled Preconditioned +C Incomplete Generalized Minimal Residual method +C (SPIGMR) for the linear systems. +C MITER = 3 means Newton iteration with Preconditioned +C Conjugate Gradient method (PCG) +C for the linear systems. +C MITER = 4 means Newton iteration with scaled preconditioned +C Conjugate Gradient method (PCGS) +C for the linear systems. +C MITER = 9 means Newton iteration with only the +C user-supplied PSOL routine called (no Krylov +C iteration) for the linear systems. +C JPRE is ignored, and PSOL is called with LR = 0. +C See comments in the introduction about the choice of MITER. +C If MITER .ge. 1, the user must supply routines JAC and PSOL +C (the names are arbitrary) as described above. +C For MITER = 0, a dummy argument can be used. +C +C G = the name of subroutine for constraint functions, whose +C roots are desired during the integration. It is to have +C the form +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C where NEQ, T, Y, and NG are input, and the array GOUT +C is output. NEQ, T, and Y have the same meaning as in +C the F routine, and GOUT is an array of length NG. +C For i = 1,...,NG, this routine is to load into GOUT(i) +C the value at (t,y) of the i-th constraint function g(i). +C DLSODKR will find roots of the g(i) of odd multiplicity +C (i.e. sign changes) as they occur during the integration. +C G must be declared External in the calling program. +C +C Caution: Because of numerical errors in the functions +C g(i) due to roundoff and integration error, DLSODKR may +C return false roots, or return the same root at two or more +C nearly equal values of t. If such false roots are +C suspected, the user should consider smaller error tolerances +C and/or higher precision in the evaluation of the g(i). +C +C If a root of some g(i) defines the end of the problem, +C the input to DLSODKR should nevertheless allow integration +C to a point slightly past that root, so that DLSODKR can +C locate the root by interpolation. +C +C Subroutine G may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in G) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C +C JROOT = integer array of length NG. Used only for output. +C On a return with ISTATE = 3 (one or more roots found), +C JROOT(i) = 1 if g(i) has a root at t, or JROOT(i) = 0 if not. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C DELT RWORK(8) convergence test constant in Krylov iteration +C algorithm. The default is .05. +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MAXL IWORK(8) maximum number of iterations in the SPIOM, SPIGMR, +C PCG, or PCGS algorithm (.le. NEQ). +C The default is MAXL = MIN(5,NEQ). +C +C KMP IWORK(9) number of vectors on which orthogonalization +C is done in SPIOM or SPIGMR algorithm (.le. MAXL). +C The default is KMP = MAXL. +C Note: When KMP .lt. MAXL and MF = 22, the length +C of RWORK must be defined accordingly. See +C the definition of RWORK above. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODKR, the variables listed +C below are quantities related to the performance of DLSODKR +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODKR, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NGE IWORK(10) the number of g evaluations for the problem so far. +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NPE IWORK(13) the number of calls to JAC so far (for evaluation +C of preconditioners). +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNI IWORK(19) number of nonlinear iterations so far (each of +C which calls an iterative linear solver). +C +C NLI IWORK(20) number of linear iterations so far. +C Note: A measure of the success of algorithm is +C the average number of linear iterations per +C nonlinear iteration, given by NLI/NNI. +C If this is close to MAXL, MAXL may be too small. +C +C NPS IWORK(21) number of preconditioning solve operations +C (PSOL calls) so far. +C +C NCFN IWORK(22) number of convergence failures of the nonlinear +C (Newton) iteration so far. +C Note: A measure of success is the overall +C rate of nonlinear convergence failures, NCFN/NST. +C +C NCFL IWORK(23) number of convergence failures of the linear +C iteration so far. +C Note: A measure of success is the overall +C rate of linear convergence failures, NCFL/NNI. +C +C NSFI IWORK(24) number of functional iteration steps so far. +C Note: A measure of the extent to which the +C problem is nonstiff is the ratio NSFI/NST. +C +C NJEV IWORK(25) number of JAC calls with JOK = -1 so far +C (number of evaluations of Jacobian data). +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 + 3*NG the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output +C to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODKR. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODKR. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODKR, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODKR. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCKR(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODKR (see Part 3 below). +C RSAV must be a real array of length 228 +C or more, and ISAV must be an integer +C array of length 63 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCKR is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODKR. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODKR. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = 21 + 3*NG +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODKR). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODKR directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = 21 + 3*NG = base address in RWORK of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODKR is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODKR, and +C (2) the four internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLS002/ of length 5 (1 double precision word +C followed by 4 integer words), +C /DLPK01/ of length 17 (4 double precision words +C followed by 13 integer words), +C /DLSR01/ of length 14 (5 double precision words +C followed by 9 integer words). +C +C If DLSODKR is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODKR is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODKR call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODKR call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCKR (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODKR package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODKR call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODKR in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODKR. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19900117 DATE WRITTEN +C 19900503 Added iteration switching (functional/Newton). +C 19900802 Added flag for Jacobian-saving in user preconditioner. +C 19900910 Added new initial stepsize routine LHIN. +C 19901019 Corrected LHIN - y array restored. +C 19910909 Changed names STOPK to STOKA, PKSET to SETPK; +C removed unused variables in driver declarations; +C minor corrections to main prologue. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20030603 Corrected duplicate type declaration for DUMACH. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal name NPE to NJE. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODKR package. +C +C In addition to Subroutine DLSODKR, the DLSODKR package includes the +C following subroutines and function routines: +C DLHIN calculates a step size to be attempted initially. +C DRCHEK does preliminary checking for roots, and serves as an +C interface between Subroutine DLSODKR and Subroutine DROOTS. +C DROOTS finds the leftmost root of a set of functions. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSTOKA is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DSETPK interfaces between DSTOKA and the JAC routine. +C DSOLPK manages solution of linear system in Newton iteration. +C DSPIOM performs the SPIOM algorithm. +C DATV computes a scaled, preconditioned product (I-hl0*J)*v. +C DORTHOG orthogonalizes a vector against previous basis vectors. +C DHEFA generates an LU factorization of a Hessenberg matrix. +C DHESL solves a Hessenberg square linear system. +C DSPIGMR performs the SPIGMR algorithm. +C DHEQR generates a QR factorization of a Hessenberg matrix. +C DHELS finds the least squares solution of a Hessenberg system. +C DPCG performs preconditioned conjugate gradient algorithm (PCG). +C DPCGS performs the PCGS algorithm. +C DATP computes the product A*p, where A = I - hl0*df/dy. +C DUSOL interfaces to the user's PSOL routine (MITER = 9). +C DSRCKR is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DAXPY, DCOPY, DDOT, DNRM2, and DSCAL are basic linear +C algebra modules (from the BLAS collection). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DDOT, DNRM2, DUMACH, IXSAV, and IUMACH are function +C routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER NEWT, NSFI, NSLJ, NJEV + INTEGER LG0, LG1, LGX, IOWNR3, IRFND, ITASKC, NGC, NGE + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + INTEGER I, I1, I2, IER, IFLAG, IMXER, KGO, LF0, + 1 LENIW, LENIWK, LENRW, LENWM, LENWK, LIWP, LWP, MORD, MXHNL0, + 2 MXSTP0, NCFN0, NCFL0, NITER, NLI0, NNI0, NNID, NSTD, NWARN + INTEGER IRFP, IRT, LENYH, LYHNEW + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION STIFR + DOUBLE PRECISION ROWNR3, T0, TLAST, TOUTC + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + DOUBLE PRECISION ATOLI, AVDIM, BIG, EWTI, H0, HMAX, HMX, RCFL, + 1 RCFN, RH, RTOLI, TCRIT, TNEXT, TOLSF, TP, SIZE + DIMENSION MORD(2) + LOGICAL IHIT, LAVD, LCFN, LCFL, LWARN + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following four internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODKR, DINTDY, +C DSTOKA, DSOLPK, and DATV. +C The block DLS002 is declared in subroutines DLSODKR and DSTOKA. +C The block DLSR01 is declared in subroutines DLSODKR, DRCHEK, DROOTS. +C The block DLPK01 is declared in subroutines DLSODKR, DSTOKA, DSETPK, +C and DSOLPK. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLS002/ STIFR, NEWT, NSFI, NSLJ, NJEV +C + COMMON /DLSR01/ ROWNR3(2), T0, TLAST, TOUTC, + 1 LG0, LG1, LGX, IOWNR3(2), IRFND, ITASKC, NGC, NGE +C + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + ITASKC = ITASK + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, MF, +C and NG. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0) GO TO 608 + IF (MITER .GT. 4 .AND. MITER .LT. 9) GO TO 608 + IF (MITER .GE. 1) JPRE = IWORK(3) + JACFLG = 0 + IF (MITER .GE. 1) JACFLG = IWORK(4) + IF (NG .LT. 0) GO TO 630 + IF (ISTATE .EQ. 1) GO TO 35 + IF (IRFND .EQ. 0 .AND. NG .NE. NGC) GO TO 631 + 35 NGC = NG +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + MAXL = MIN(5,N) + KMP = MAXL + DELT = 0.05D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 + MAXL = IWORK(8) + IF (MAXL .EQ. 0) MAXL = 5 + MAXL = MIN(MAXL,N) + KMP = IWORK(9) + IF (KMP .EQ. 0 .OR. KMP .GT. MAXL) KMP = MAXL + DELT = RWORK(8) + IF (DELT .EQ. 0.0D0) DELT = 0.05D0 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C RWORK segments (in order) are denoted G0, G1, GX, YH, WM, +C EWT, SAVF, SAVX, ACOR. +C----------------------------------------------------------------------- + 60 IF (ISTATE .EQ. 1) NYH = N + LG0 = 21 + LG1 = LG0 + NG + LGX = LG1 + NG + LYHNEW = LGX + NG + IF (ISTATE .EQ. 1) LYH = LYHNEW + IF (LYHNEW .EQ. LYH) GO TO 62 +C If ISTATE = 3 and NG was changed, shift YH to its new location. ------ + LENYH = L*NYH + IF (LRW .LT. LYHNEW-1+LENYH) GO TO 62 + I1 = 1 + IF (LYHNEW .GT. LYH) I1 = -1 + CALL DCOPY (LENYH, RWORK(LYH), I1, RWORK(LYHNEW), I1) + LYH = LYHNEW + 62 CONTINUE + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .EQ. 0) LENWK = 0 + IF (MITER .EQ. 1) LENWK = N*(MAXL+2) + MAXL*MAXL + IF (MITER .EQ. 2) + 1 LENWK = N*(MAXL+2+MIN(1,MAXL-KMP)) + (MAXL+3)*MAXL + 1 + IF (MITER .EQ. 3 .OR. MITER .EQ. 4) LENWK = 5*N + IF (MITER .EQ. 9) LENWK = 2*N + LWP = 0 + IF (MITER .GE. 1) LWP = IWORK(1) + LENWM = LENWK + LWP + LOCWP = LENWK + 1 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LSAVX = LSAVF + N + LACOR = LSAVX + N + IF (MITER .EQ. 0) LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 31 + LENIWK = 0 + IF (MITER .EQ. 1) LENIWK = MAXL + LIWP = 0 + IF (MITER .GE. 1) LIWP = IWORK(2) + LENIW = 30 + LENIWK + LIWP + LOCIWP = LENIWK + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE +C Load SQRT(N) and its reciprocal in Common. --------------------------- + SQRTN = SQRT(REAL(N)) + RSQRTN = 1.0D0/SQRTN + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTOKA.-------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- + DO 80 I = 1,N + 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1) + 90 CONTINUE + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + NLI0 = 0 + NNI0 = 0 + NCFN0 = 0 + NCFL0 = 0 + NWARN = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 + NNI = 0 + NLI = 0 + NPS = 0 + NCFN = 0 + NCFL = 0 + NSFI = 0 + NJEV = 0 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + IF (H0 .NE. 0.0D0) GO TO 180 +C Call DLHIN to set initial step size H0 to be attempted. -------------- + CALL DLHIN (NEQ, N, T, RWORK(LYH), RWORK(LF0), F, TOUT, UROUND, + 1 RWORK(LEWT), ITOL, ATOL, Y, RWORK(LACOR), H0, NITER, IER) + NFE = NFE + NITER + IF (IER .NE. 0) GO TO 622 +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) +C Check for a zero of g at T. ------------------------------------------ + IRFND = 0 + TOUTC = TOUT + IF (NGC .EQ. 0) GO TO 270 + CALL DRCHEK (1, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .EQ. 0) GO TO 270 + GO TO 632 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C First, DRCHEK is called to check for a root within the last step +C taken, other than the last root found there, if any. +C If ITASK = 2 or 5, and y(TN) has not yet been returned to the user +C because of an intervening root, return through Block G. +C----------------------------------------------------------------------- + 200 NSLAST = NST +C + IRFP = IRFND + IF (NGC .EQ. 0) GO TO 205 + IF (ITASK .EQ. 1 .OR. ITASK .EQ. 4) TOUTC = TOUT + CALL DRCHEK (2, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 205 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 205 CONTINUE + IRFND = 0 + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 2) GO TO 400 +C + NLI0 = NLI + NNI0 = NNI + NCFN0 = NCFN + NCFL0 = NCFL + NWARN = 0 + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) T = TCRIT + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 5) GO TO 400 + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTOKA. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, +C check for poor Newton/Krylov method performance, update EWT (if not +C at start of problem), check for too much accuracy being requested, +C and check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + NSTD = NST - NSLAST + NNID = NNI - NNI0 + IF (NSTD .LT. 10 .OR. NNID .EQ. 0) GO TO 255 + AVDIM = REAL(NLI - NLI0)/REAL(NNID) + RCFN = REAL(NCFN - NCFN0)/REAL(NSTD) + RCFL = REAL(NCFL - NCFL0)/REAL(NNID) + LAVD = AVDIM .GT. (MAXL - 0.05D0) + LCFN = RCFN .GT. 0.9D0 + LCFL = RCFL .GT. 0.9D0 + LWARN = LAVD .OR. LCFN .OR. LCFL + IF (.NOT.LWARN) GO TO 255 + NWARN = NWARN + 1 + IF (NWARN .GT. 10) GO TO 255 + IF (LAVD) THEN + MSG='DLSODKR- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LAVD) THEN + MSG=' at T = R1 by average no. of linear iterations = R2 ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 2, TN, AVDIM) + ENDIF + IF (LCFN) THEN + MSG='DLSODKR- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFN) THEN + MSG=' at T = R1 by nonlinear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 2, TN, RCFN) + ENDIF + IF (LCFL) THEN + MSG='DLSODKR- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFL) THEN + MSG=' at T = R1 by linear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 2, TN, RCFL) + ENDIF + 255 CONTINUE + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODKR- Warning.. Internal T(=R1) and H(=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODKR- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTOKA(NEQ,Y,YH,NYH,YH,EWT,SAVF,SAVX,ACOR,WM,IWM,F,JAC,PSOL) +C----------------------------------------------------------------------- + CALL DSTOKA (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LSAVX), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), F, JAC, PSOL) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 550), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). +C Call DRCHEK to check for a root within the last step. +C Then, if no root was found, check for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 +C + IF (NGC .EQ. 0) GO TO 315 + CALL DRCHEK (3, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 315 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 315 CONTINUE +C + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODKR. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + 425 CONTINUE + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + IWORK(24) = NSFI + IWORK(25) = NJEV + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODKR- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODKR- At T(=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODKR- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODKR- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODKR- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 580 +C KFLAG = -3. Unrecoverable error from PSOL. -------------------------- + 550 MSG = 'DLSODKR- At T (=R1) an unrecoverable error return' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' was made from Subroutine PSOL ' + CALL XERRWD (MSG, 40, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + IWORK(24) = NSFI + IWORK(25) = NJEV + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODKR- ISTATE(=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODKR- ITASK (=I1) illegal.' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODKR- ISTATE.gt.1 but DLSODKR not initialized. ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODKR- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODKR- ISTATE = 3 and NEQ increased (I1 to I2).' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODKR- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODKR- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODKR- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODKR- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODKR- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODKR- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODKR- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODKR- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODKR- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODKR- RWORK length needed, LENRW(=I1), exceeds LRW(=I2) ' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODKR- IWORK length needed, LENIW(=I1), exceeds LIW(=I2) ' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODKR- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODKR- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODKR- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODKR- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODKR- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODKR- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODKR- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODKR- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODKR- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 630 MSG = 'DLSODKR- NG (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 30, 0, 1, NG, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG = 'DLSODKR- NG changed (from I1 to I2) illegally, ' + CALL XERRWD (MSG, 50, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' i.e. not immediately after a root was found.' + CALL XERRWD (MSG, 50, 31, 0, 2, NGC, NG, 0, 0.0D0, 0.0D0) + GO TO 700 + 632 MSG = 'DLSODKR- One or more components of g has a root ' + CALL XERRWD (MSG, 50, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' too near to the initial point. ' + CALL XERRWD (MSG, 40, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODKR- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODKR --------------------- + END +*DECK DLSODI + SUBROUTINE DLSODI (RES, ADDA, JAC, NEQ, Y, YDOTI, T, TOUT, ITOL, + 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF ) + EXTERNAL RES, ADDA, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, YDOTI, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), YDOTI(*), RTOL(*), ATOL(*), RWORK(LRW), + 1 IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODI: Livermore Solver for Ordinary Differential Equations +C (Implicit form). +C +C This version is in double precision. +C +C DLSODI solves the initial value problem for linearly implicit +C systems of first order ODEs, +C A(t,y) * dy/dt = g(t,y) , where A(t,y) is a square matrix, +C or, in component form, +C ( a * ( dy / dt )) + ... + ( a * ( dy / dt )) = +C i,1 1 i,NEQ NEQ +C +C = g ( t, y , y ,..., y ) ( i = 1,...,NEQ ) +C i 1 2 NEQ +C +C If A is singular, this is a differential-algebraic system. +C +C DLSODI is a variant version of the DLSODE package. +C----------------------------------------------------------------------- +C Reference: +C Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Jeffrey F. Painter +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODI package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First, provide a subroutine of the form: +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C which computes the residual function +C r = g(t,y) - A(t,y) * s , +C as a function of t and the vectors y and s. (s is an internally +C generated approximation to dy/dt.) The arrays Y and S are inputs +C to the RES routine and should not be altered. The residual +C vector is to be stored in the array R. The argument IRES should be +C ignored for casual use of DLSODI. (For uses of IRES, see the +C paragraph on RES in the full description below.) +C +C B. Next, decide whether full or banded form is more economical +C for the storage of matrices. DLSODI must deal internally with the +C matrices A and dr/dy, where r is the residual function defined above. +C DLSODI generates a linear combination of these two matrices, and +C this is treated in either full or banded form. +C The matrix structure is communicated by a method flag MF, +C which is 21 or 22 for the full case, and 24 or 25 in the band case. +C In the banded case, DLSODI requires two half-bandwidth +C parameters ML and MU. These are, respectively, the widths of the +C lower and upper parts of the band, excluding the main diagonal. +C Thus the band consists of the locations (i,j) with +C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1. +C Note that the band must accommodate the nonzero elements of +C A(t,y), dg/dy, and d(A*s)/dy (s fixed). Alternatively, one +C can define a band that encloses only the elements that are relatively +C large in magnitude, and gain some economy in storage and possibly +C also efficiency, although the appropriate threshhold for +C retaining matrix elements is highly problem-dependent. +C +C C. You must also provide a subroutine of the form: +C SUBROUTINE ADDA (NEQ, T, Y, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y(*), P(NROWP,*) +C which adds the matrix A = A(t,y) to the contents of the array P. +C T and the Y array are input and should not be altered. +C In the full matrix case, this routine should add elements of +C to P in the usual order. I.e., add A(i,j) to P(i,j). (Ignore the +C ML and MU arguments in this case.) +C In the band matrix case, this routine should add element A(i,j) +C to P(i-j+MU+1,j). I.e., add the diagonal lines of A to the rows of +C P from the top down (the top line of A added to the first row of P). +C +C D. For the sake of efficiency, you are encouraged to supply the +C Jacobian matrix dr/dy in closed form, where r = g(t,y) - A(t,y)*s +C (s = a fixed vector) as above. If dr/dy is being supplied, +C use MF = 21 or 24, and provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, S, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y(*), S(*), P(NROWP,*) +C which computes dr/dy as a function of t, y, and s. Here T, Y, and +C S are inputs, and the routine is to load dr/dy into P as follows: +C In the full matrix case (MF = 21), load P(i,j) with dr(i)/dy(j), +C the partial derivative of r(i) with respect to y(j). (Ignore the +C ML and MU arguments in this case.) +C In the band matrix case (MF = 24), load P(i-j+mu+1,j) with +C dr(i)/dy(j), i.e. load the diagonal lines of dr/dy into the rows of +C P from the top down. +C In either case, only nonzero elements need be loaded, and the +C indexing of P is the same as in the ADDA routine. +C Note that if A is independent of y (or this dependence +C is weak enough to be ignored) then JAC is to compute dg/dy. +C If it is not feasible to provide a JAC routine, use +C MF = 22 or 25, and DLSODI will compute an approximate Jacobian +C internally by difference quotients. +C +C E. Next decide whether or not to provide the initial value of the +C derivative vector dy/dt. If the initial value of A(t,y) is +C nonsingular (and not too ill-conditioned), you may let DLSODI compute +C this vector (ISTATE = 0). (DLSODI will solve the system A*s = g for +C s, with initial values of A and g.) If A(t,y) is initially +C singular, then the system is a differential-algebraic system, and +C you must make use of the particular form of the system to compute the +C initial values of y and dy/dt. In that case, use ISTATE = 1 and +C load the initial value of dy/dt into the array YDOTI. +C The input array YDOTI and the initial Y array must be consistent with +C the equations A*dy/dt = g. This implies that the initial residual +C r = g(t,y) - A(t,y)*YDOTI must be approximately zero. +C +C F. Write a main program which calls Subroutine DLSODI once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODI. On the first call to DLSODI, supply arguments as follows: +C RES = name of user subroutine for residual function r. +C ADDA = name of user subroutine for computing and adding A(t,y). +C JAC = name of user subroutine for Jacobian matrix dr/dy +C (MF = 21 or 24). If not used, pass a dummy name. +C Note: the names for the RES and ADDA routines and (if used) the +C JAC routine must be declared External in the calling program. +C NEQ = number of scalar equations in the system. +C Y = array of initial values, of length NEQ. +C YDOTI = array of length NEQ (containing initial dy/dt if ISTATE = 1). +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1 if the +C initial dy/dt is supplied, and 0 otherwise. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower +C and upper half-bandwidths ML,MU. +C LIW = declared length of IWORK (in user's dimension). +C MF = method flag. Standard values are: +C 21 for a user-supplied full Jacobian. +C 22 for an internally generated full Jacobian. +C 24 for a user-supplied banded Jacobian. +C 25 for an internally generated banded Jacobian. +C for other choices of MF, see the paragraph on MF in +C the full description below. +C Note that the main program must declare arrays Y, YDOTI, RWORK, IWORK, +C and possibly ATOL. +C +C G. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODI was successful, negative otherwise. +C -1 means excess work done on this call (check all inputs). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 cannot occur in casual use. +C -8 means DLSODI was unable to compute the initial dy/dt. +C In casual use, this means A(t,y) is initially singular. +C Supply YDOTI and use ISTATE = 1 on the first call. +C +C If DLSODI returns ISTATE = -1, -4, or -5, then the output of +C DLSODI also includes YDOTI = array containing residual vector +C r = g - A * dy/dt evaluated at the current t, y, and dy/dt. +C +C H. To continue the integration after a successful return, simply +C reset TOUT and call DLSODI again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODI. The problem is from chemical +C kinetics, and consists of the following three equations: +C dy1/dt = -.04*y1 + 1.e4*y2*y3 +C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 +C 0. = y1 + y2 + y3 - 1. +C on the interval from t = 0.0 to t = 4.e10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. +C +C The following coding solves this problem with DLSODI, using MF = 21 +C and printing results at t = .4, 4., ..., 4.e10. It uses +C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because +C y2 has much smaller values. dy/dt is supplied in YDOTI. We had +C obtained the initial value of dy3/dt by differentiating the +C third equation and evaluating the first two at t = 0. +C At the end of the run, statistical quantities of interest are +C printed (see optional outputs in the full description below). +C +C EXTERNAL RESID, APLUSP, DGBYDY +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y, YDOTI +C DIMENSION Y(3), YDOTI(3), ATOL(3), RWORK(58), IWORK(23) +C NEQ = 3 +C Y(1) = 1. +C Y(2) = 0. +C Y(3) = 0. +C YDOTI(1) = -.04 +C YDOTI(2) = .04 +C YDOTI(3) = 0. +C T = 0. +C TOUT = .4 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 58 +C LIW = 23 +C MF = 21 +C DO 40 IOUT = 1,12 +C CALL DLSODI(RESID, APLUSP, DGBYDY, NEQ, Y, YDOTI, T, TOUT, ITOL, +C 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF) +C WRITE (6,20) T, Y(1), Y(2), Y(3) +C 20 FORMAT(' At t =',D12.4,' Y =',3D14.6) +C IF (ISTATE .LT. 0 ) GO TO 80 +C 40 TOUT = TOUT*10. +C WRITE (6,60) IWORK(11), IWORK(12), IWORK(13) +C 60 FORMAT(/' No. steps =',I4,' No. r-s =',I4,' No. J-s =',I4) +C STOP +C 80 WRITE (6,90) ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE RESID(NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y, S, R +C DIMENSION Y(3), S(3), R(3) +C R(1) = -.04*Y(1) + 1.D4*Y(2)*Y(3) - S(1) +C R(2) = .04*Y(1) - 1.D4*Y(2)*Y(3) - 3.D7*Y(2)*Y(2) - S(2) +C R(3) = Y(1) + Y(2) + Y(3) - 1. +C RETURN +C END +C +C SUBROUTINE APLUSP(NEQ, T, Y, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y, P +C DIMENSION Y(3), P(NROWP,3) +C P(1,1) = P(1,1) + 1. +C P(2,2) = P(2,2) + 1. +C RETURN +C END +C +C SUBROUTINE DGBYDY(NEQ, T, Y, S, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y, S, P +C DIMENSION Y(3), S(3), P(NROWP,3) +C P(1,1) = -.04 +C P(1,2) = 1.D4*Y(3) +C P(1,3) = 1.D4*Y(2) +C P(2,1) = .04 +C P(2,2) = -1.D4*Y(3) - 6.D7*Y(2) +C P(2,3) = -1.D4*Y(2) +C P(3,1) = 1. +C P(3,2) = 1. +C P(3,3) = 1. +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 4.0000e-01 Y = 9.851726e-01 3.386406e-05 1.479357e-02 +C At t = 4.0000e+00 Y = 9.055142e-01 2.240418e-05 9.446344e-02 +C At t = 4.0000e+01 Y = 7.158050e-01 9.184616e-06 2.841858e-01 +C At t = 4.0000e+02 Y = 4.504846e-01 3.222434e-06 5.495122e-01 +C At t = 4.0000e+03 Y = 1.831701e-01 8.940379e-07 8.168290e-01 +C At t = 4.0000e+04 Y = 3.897016e-02 1.621193e-07 9.610297e-01 +C At t = 4.0000e+05 Y = 4.935213e-03 1.983756e-08 9.950648e-01 +C At t = 4.0000e+06 Y = 5.159269e-04 2.064759e-09 9.994841e-01 +C At t = 4.0000e+07 Y = 5.306413e-05 2.122677e-10 9.999469e-01 +C At t = 4.0000e+08 Y = 5.494532e-06 2.197826e-11 9.999945e-01 +C At t = 4.0000e+09 Y = 5.129457e-07 2.051784e-12 9.999995e-01 +C At t = 4.0000e+10 Y = -7.170472e-08 -2.868188e-13 1.000000e+00 +C +C No. steps = 330 No. r-s = 404 No. J-s = 69 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODI. +C +C The user interface to DLSODI consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODI, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODI package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODI package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C RES, ADDA, JAC, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, +C IOPT, LRW, LIW, MF, +C and those used for both input and output are +C Y, T, ISTATE, YDOTI. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODI to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C RES = the name of the user-supplied subroutine which supplies +C the residual vector for the ODE system, defined by +C r = g(t,y) - A(t,y) * s +C as a function of the scalar t and the vectors +C s and y (s approximates dy/dt). This subroutine +C is to have the form +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C where NEQ, T, Y, S, and IRES are input, and R and +C IRES are output. Y, S, and R are arrays of length NEQ. +C On input, IRES indicates how DLSODI will use the +C returned array R, as follows: +C IRES = 1 means that DLSODI needs the full residual, +C r = g - A*s, exactly. +C IRES = -1 means that DLSODI is using R only to compute +C the Jacobian dr/dy by difference quotients. +C The RES routine can ignore IRES, or it can omit some terms +C if IRES = -1. If A does not depend on y, then RES can +C just return R = g when IRES = -1. If g - A*s contains other +C additive terms that are independent of y, these can also be +C dropped, if done consistently, when IRES = -1. +C The subroutine should set the flag IRES if it +C encounters a halt condition or illegal input. +C Otherwise, it should not reset IRES. On output, +C IRES = 1 or -1 represents a normal return, and +C DLSODI continues integrating the ODE. Leave IRES +C unchanged from its input value. +C IRES = 2 tells DLSODI to immediately return control +C to the calling program, with ISTATE = 3. This lets +C the calling program change parameters of the problem, +C if necessary. +C IRES = 3 represents an error condition (for example, an +C illegal value of y). DLSODI tries to integrate the system +C without getting IRES = 3 from RES. If it cannot, DLSODI +C returns with ISTATE = -7 or -1. +C On an DLSODI return with ISTATE = 3, -1, or -7, the values +C of T and Y returned correspond to the last point reached +C successfully without getting the flag IRES = 2 or 3. +C The flag values IRES = 2 and 3 should not be used to +C handle switches or root-stop conditions. This is better +C done by calling DLSODI in a one-step mode and checking the +C stopping function for a sign change at each step. +C If quantities computed in the RES routine are needed +C externally to DLSODI, an extra call to RES should be made +C for this purpose, for consistent and accurate results. +C To get the current dy/dt for the S argument, use DINTDY. +C RES must be declared External in the calling +C program. See note below for more about RES. +C +C ADDA = the name of the user-supplied subroutine which adds the +C matrix A = A(t,y) to another matrix stored in the same form +C as A. The storage form is determined by MITER (see MF). +C This subroutine is to have the form +C SUBROUTINE ADDA (NEQ, T, Y, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y(*), P(NROWP,*) +C where NEQ, T, Y, ML, MU, and NROWP are input and P is +C output. Y is an array of length NEQ, and the matrix P is +C stored in an NROWP by NEQ array. +C In the full matrix case ( MITER = 1 or 2) ADDA should +C add A to P(i,j). ML and MU are ignored. +C i,j +C In the band matrix case ( MITER = 4 or 5) ADDA should +C add A to P(i-j+MU+1,j). +C i,j +C See JAC for details on this band storage form. +C ADDA must be declared External in the calling program. +C See note below for more information about ADDA. +C +C JAC = the name of the user-supplied subroutine which supplies the +C Jacobian matrix, dr/dy, where r = g - A*s. The form of the +C Jacobian matrix is determined by MITER. JAC is required +C if MITER = 1 or 4 -- otherwise a dummy name can be +C passed. This subroutine is to have the form +C SUBROUTINE JAC ( NEQ, T, Y, S, ML, MU, P, NROWP ) +C DOUBLE PRECISION T, Y(*), S(*), P(NROWP,*) +C where NEQ, T, Y, S, ML, MU, and NROWP are input and P +C is output. Y and S are arrays of length NEQ, and the +C matrix P is stored in an NROWP by NEQ array. +C P is to be loaded with partial derivatives (elements +C of the Jacobian matrix) on output. +C In the full matrix case (MITER = 1), ML and MU +C are ignored and the Jacobian is to be loaded into P +C by columns-- i.e., dr(i)/dy(j) is loaded into P(i,j). +C In the band matrix case (MITER = 4), the elements +C within the band are to be loaded into P by columns, +C with diagonal lines of dr/dy loaded into the +C rows of P. Thus dr(i)/dy(j) is to be loaded +C into P(i-j+MU+1,j). The locations in P in the two +C triangular areas which correspond to nonexistent matrix +C elements can be ignored or loaded arbitrarily, as they +C they are overwritten by DLSODI. ML and MU are the +C half-bandwidth parameters (see IWORK). +C In either case, P is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to RES with the same +C arguments NEQ, T, Y, and S. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by RES and not recomputed by JAC +C if desired. Also, JAC may alter the Y array, if desired. +C JAC need not provide dr/dy exactly. A crude +C approximation (possibly with a smaller bandwidth) will do. +C JAC must be declared External in the calling program. +C See note below for more about JAC. +C +C Note on RES, ADDA, and JAC: +C These subroutines may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in the subroutines) and/or Y has length +C exceeding NEQ(1). However, these routines should not alter +C NEQ(1), Y(1),...,Y(NEQ) or any other input variables. +C See the descriptions of NEQ and Y below. +C +C NEQ = the size of the system (number of first order ordinary +C differential equations or scalar algebraic equations). +C Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in RES, ADDA, or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODI package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to RES, ADDA, and JAC. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to RES, ADDA, or JAC. Each such subroutine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 0 or 1), and only for output on other +C calls. On the first call, Y must contain the vector of +C initial values. On output, Y contains the computed solution +C vector, evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to RES, +C ADDA, and JAC. Hence its length may exceed NEQ, +C and locations Y(NEQ+1),... may be used to store other real +C data and pass it to RES, ADDA, or JAC. (The DLSODI +C package accesses only Y(1),...,Y(NEQ). ) +C +C YDOTI = a real array for the initial value of the vector +C dy/dt and for work space, of dimension at least NEQ. +C +C On input: +C If ISTATE = 0, then DLSODI will compute the initial value +C of dy/dt, if A is nonsingular. Thus YDOTI will +C serve only as work space and may have any value. +C If ISTATE = 1, then YDOTI must contain the initial value +C of dy/dt. +C If ISTATE = 2 or 3 (continuation calls), then YDOTI +C may have any value. +C Note: If the initial value of A is singular, then +C DLSODI cannot compute the initial value of dy/dt, so +C it must be provided in YDOTI, with ISTATE = 1. +C +C On output, when DLSODI terminates abnormally with ISTATE = +C -1, -4, or -5, YDOTI will contain the residual +C r = g(t,y) - A(t,y)*(dy/dt). If r is large, t is near +C its initial value, and YDOTI is supplied with ISTATE = 1, +C then there may have been an incorrect input value of +C YDOTI = dy/dt, or the problem (as given to DLSODI) +C may not have a solution. +C +C If desired, the YDOTI array may be used for other +C purposes between calls to the solver. +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as TOUT). +C on an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 0 or 1), TOUT may be +C equal to T for one call, then should .ne. T for the next +C call. For the initial T, an input value of TOUT .ne. T is +C used in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array scalar RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 0 means this is the first call for the problem, and +C DLSODI is to compute the initial value of dy/dt +C (while doing other initializations). See note below. +C 1 means this is the first call for the problem, and +C the initial value of dy/dt has been supplied in +C YDOTI (DLSODI will do other initializations). See note +C below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU, +C and any of the optional inputs except H0. +C (See IWORK description for ML and MU.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 0 or 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 0 or 1 means nothing was done; TOUT = t and +C ISTATE = 0 or 1 on input. +C 2 means that the integration was performed successfully. +C 3 means that the user-supplied Subroutine RES signalled +C DLSODI to halt the integration and return (IRES = 2). +C Integration as far as T was achieved with no occurrence +C of IRES = 2, but this flag was set on attempting the +C next step. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix. +C -6 means EWT(i) became zero for some i during the +C integration. pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C the integration was successful as far as T. +C -7 means that the user-supplied Subroutine RES set +C its error flag (IRES = 3) despite repeated tries by +C DLSODI to avoid that condition. +C -8 means that ISTATE was 0 on input but DLSODI was unable +C to compute the initial value of dy/dt. See the +C printed message for details. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Similarly, ISTATE (= 3) need not be reset if RES told +C DLSODI to return because the calling program must change +C the parameters of the problem. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LENWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENWM = NEQ**2 + 2 if MITER is 1 or 2, and +C LENWM = (2*ML+MU+1)*NEQ + 2 if MITER is 4 or 5. +C (See MF description for the definition of METH and MITER.) +C Thus if MAXORD has its default value and NEQ is constant, +C this length is +C 22 + 16*NEQ + NEQ**2 for MF = 11 or 12, +C 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = 14 or 15, +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = 24 or 25. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 20 + NEQ . The first few words of IWORK are used for +C conditional and optional inputs and optional outputs. +C +C The following 2 words in IWORK are conditional inputs: +C IWORK(1) = ML These are the lower and upper +C IWORK(2) = MU half-bandwidths, respectively, of the +C matrices in the problem-- the Jacobian dr/dy +C and the left-hand side matrix A. These +C half-bandwidths exclude the main diagonal, +C so the total bandwidth is ML + MU + 1 . +C The band is defined by the matrix locations +C (i,j) with i-ML .le. j .le. i+MU. ML and MU +C must satisfy 0 .le. ML,MU .le. NEQ-1. +C These are required if MITER is 4 or 5, and +C ignored otherwise. +C ML and MU may in fact be the band parameters +C for matrices to which dr/dy and A are only +C approximately equal. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODI +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODI between calls, if +C desired (but not for use by RES, ADDA, or JAC). +C +C MF = the method flag. Used only for input. The legal values of +C MF are 11, 12, 14, 15, 21, 22, 24, and 25. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C The BDF method is strongly preferred for stiff +C problems, while the Adams method is preferred when +C the problem is not stiff. If the matrix A(t,y) is +C nonsingular, stiffness here can be taken to mean that of +C the explicit ODE system dy/dt = A-inverse * g. If A is +C singular, the concept of stiffness is not well defined. +C If you do not know whether the problem is stiff, we +C recommend using METH = 2. If it is stiff, the advantage +C of METH = 2 over METH = 1 will be great, while if it is +C not stiff, the advantage of METH = 1 will be slight. +C If maximum efficiency is important, some experimentation +C with METH may be necessary. +C MITER indicates the corrector iteration method: +C MITER = 1 means chord iteration with a user-supplied +C full (NEQ by NEQ) Jacobian. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) full Jacobian. +C This uses NEQ+1 extra calls to RES per dr/dy +C evaluation. +C MITER = 4 means chord iteration with a user-supplied +C banded Jacobian. +C MITER = 5 means chord iteration with an internally +C generated banded Jacobian (using ML+MU+2 +C extra calls to RES per dr/dy evaluation). +C If MITER = 1 or 4, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C For other values of MITER, a dummy argument can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C the use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODI, the variables listed +C below are quantities related to the performance of DLSODI +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODI, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On a return with -3 (illegal +C input) or -8, they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NRE IWORK(12) the number of residual evaluations (RES calls) +C for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (each involving +C an evaluation of A and dr/dy) for the problem so +C far. This equals the number of calls to ADDA and +C (if MITER = 1 or 4) JAC, and the number of matrix +C LU decompositions. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in y on the +C last step. This is the vector E in the descrip- +C tion of the error control. It is defined only +C on a return from DLSODI with ISTATE = 2. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODI. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODI, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODI. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCOM(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODI (see Part 3 below). +C RSAV must be a real array of length 218 +C or more, and ISAV must be an integer +C array of length 37 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCOM is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODI. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODI. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODI). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODI directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODI is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODI, and +C (2) the internal Common block +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C +C If DLSODI is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common block in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODI is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODI call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODI call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCOM (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODI package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODI call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODI in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODI. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19800424 DATE WRITTEN +C 19800519 Corrected access of YH on forced order reduction; +C numerous corrections to prologues and other comments. +C 19800617 In main driver, added loading of SQRT(UROUND) in RWORK; +C minor corrections to main prologue. +C 19800903 Corrected ISTATE logic; minor changes in prologue. +C 19800923 Added zero initialization of HU and NQU. +C 19801028 Reorganized RES calls in AINVG, STODI, and PREPJI; +C in LSODI, corrected NRE increment and reset LDY0 at 580; +C numerous corrections to main prologue. +C 19801218 Revised XERRWD routine; minor corrections to main prologue. +C 19810330 Added Common block /LSI001/; use LSODE's INTDY and SOLSY; +C minor corrections to XERRWD and error message at 604; +C minor corrections to declarations; corrections to prologues. +C 19810818 Numerous revisions: replaced EWT by 1/EWT; used flags +C JCUR, ICF, IERPJ, IERSL between STODI and subordinates; +C added tuning parameters CCMAX, MAXCOR, MSBP, MXNCF; +C reorganized returns from STODI; reorganized type decls.; +C fixed message length in XERRWD; changed default LUNIT to 6; +C changed Common lengths; changed comments throughout. +C 19820906 Corrected use of ABS(H) in STODI; minor comment fixes. +C 19830510 Numerous revisions: revised diff. quotient increment; +C eliminated block /LSI001/, using IERPJ flag; +C revised STODI logic after PJAC return; +C revised tuning of H change and step attempts in STODI; +C corrections to main prologue and internal comments. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODI; +C in STODI, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common block, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal names NRE, LSAVR to NFE, LSAVF resp. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODI package. +C +C In addition to Subroutine DLSODI, the DLSODI package includes the +C following subroutines and function routines: +C DAINVG computes the initial value of the vector +C dy/dt = A-inverse * g +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODI is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPREPJI computes and preprocesses the Jacobian matrix +C and the Newton iteration matrix P. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCOM is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPREPJI, DSOLSY + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, IFLAG, IMXER, IRES, KGO, + 1 LENIW, LENRW, LENWM, LP, LYD0, ML, MORD, MU, MXHNL0, MXSTP0 + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following internal Common block contains +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODI, DINTDY, DSTODI, +C DPREPJI, and DSOLSY. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 0 or 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 0 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .LE. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 0 or 1) +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .LE. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LE. 0 .OR. MITER .GT. 5) GO TO 608 + IF (MITER .EQ. 3) GO TO 608 + IF (MITER .LT. 3) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .LE. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .GT. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVR, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .LE. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .LE. 2) LENWM = N*N + 2 + IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE + IF (ISTATE .LE. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODI. ------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into YDOTI.--------- + DO 80 I = 1,N + 80 YDOTI(I) = RWORK(I+LWM-1) +C Reload WM(1) = RWORK(lWM), since lWM may have changed. --------------- + 90 RWORK(LWM) = SQRT(UROUND) + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 0 or 1). +C It contains all remaining initializations, the call to DAINVG +C (if ISTATE = 1), and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 105 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 105 JSTART = 0 + RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NST = 0 + NFE = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Compute initial dy/dt, if necessary, and load it and initial Y into YH + LYD0 = LYH + NYH + LP = LWM + 1 + IF (ISTATE .EQ. 1) GO TO 120 +C DLSODI must compute initial dy/dt (LYD0 points to YH(*,2)). ---------- + CALL DAINVG( RES, ADDA, NEQ, T, Y, RWORK(LYD0), MITER, + 1 ML, MU, RWORK(LP), IWORK(21), IER ) + NFE = NFE + 1 + IF (IER .LT. 0) GO TO 560 + IF (IER .GT. 0) GO TO 565 + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) + GO TO 130 +C Initial dy/dt was supplied. Load into YH (LYD0 points to YH(*,2).). - + 120 DO 125 I = 1,N + RWORK(I+LYH-1) = Y(I) + 125 RWORK(I+LYD0-1) = YDOTI(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + 130 CONTINUE + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 135 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 135 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( YDOT(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C YDOT(i) = i-th component of initial value of dy/dt, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 145 + DO 140 I = 1,N + 140 TOL = MAX(TOL,RTOL(I)) + 145 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LYD0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LYD0-1) = H0*RWORK(I+LYD0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODI. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODI- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODI- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODI(NEQ,Y,YH,NYH,YH1,EWT,SAVF,SAVR,ACOR,WM,IWM,RES, +C ADDA,JAC,DPREPJI,DSOLSY) +C Note: SAVF in DSTODI occupies the same space as YDOTI in DLSODI. +C----------------------------------------------------------------------- + CALL DSTODI (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 YDOTI, RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), RES, ADDA, JAC, DPREPJI, DSOLSY ) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 400, 550), KGO +C +C KGO = 1:success; 2:error test failure; 3:convergence failure; +C 4:RES ordered return. 5:RES returned error. +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. see if TOUT or TCRIT was reached. adjust h if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODI. +C if ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + IF (KFLAG .EQ. -3) ISTATE = 3 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODI- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODI- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 590 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODI- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 590 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODI- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 570 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODI- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 570 +C IRES = 3 returned by RES, despite retries by DSTODI. ----------------- + 550 MSG = 'DLSODI- At T (=R1) residual routine returned ' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error IRES = 3 repeatedly. ' + CALL XERRWD (MSG, 40, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 590 +C DAINVG failed because matrix A was singular. ------------------------- + 560 IER = -IER + MSG='DLSODI- Attempt to initialize dy/dt failed: Matrix A is ' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' singular. DGEFA or DGBFA returned INFO = I1' + CALL XERRWD (MSG, 50, 207, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C DAINVG failed because RES set IRES to 2 or 3. ------------------------ + 565 MSG = 'DLSODI- Attempt to initialize dy/dt failed ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' because residual routine set its error flag ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to IRES = (I1)' + CALL XERRWD (MSG, 20, 208, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C Compute IMXER if relevant. ------------------------------------------- + 570 BIG = 0.0D0 + IMXER = 1 + DO 575 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 575 + BIG = SIZE + IMXER = I + 575 CONTINUE + IWORK(16) = IMXER +C Compute residual if relevant. ---------------------------------------- + 580 LYD0 = LYH + NYH + DO 585 I = 1,N + RWORK(I+LSAVF-1) = RWORK(I+LYD0-1)/H + 585 Y(I) = RWORK(I+LYH-1) + IRES = 1 + CALL RES (NEQ, TN, Y, RWORK(LSAVF), YDOTI, IRES ) + NFE = NFE + 1 + IF (IRES .LE. 1) GO TO 595 + MSG = 'DLSODI- Residual routine set its flag IRES ' + CALL XERRWD (MSG, 50, 210, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to (I1) when called for final output. ' + CALL XERRWD (MSG, 50, 210, 0, 1, IRES, 0, 0, 0.0D0, 0.0D0) + GO TO 595 +C Set Y vector, T, and optional outputs. ------------------------------- + 590 DO 592 I = 1,N + 592 Y(I) = RWORK(I+LYH-1) + 595 T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODI- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODI- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODI- ISTATE .gt. 1 but DLSODI not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODI- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODI- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODI- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODI- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODI- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODI- ML(=I1) illegal: .lt. 0 or .ge. NEQ(=I2) ' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODI- MU(=I1) illegal: .lt. 0 or .ge. NEQ(=I2) ' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODI- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODI- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODI- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODI- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODI- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODI- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODI- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODI- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODI- RTOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODI- ATOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODI- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODI- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODI- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODI- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODI- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODI- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODI- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODI- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODI ---------------------- + END +*DECK DLSOIBT + SUBROUTINE DLSOIBT (RES, ADDA, JAC, NEQ, Y, YDOTI, T, TOUT, ITOL, + 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF ) + EXTERNAL RES, ADDA, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, YDOTI, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), YDOTI(*), RTOL(*), ATOL(*), RWORK(LRW), + 1 IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSOIBT: Livermore Solver for Ordinary differential equations given +C in Implicit form, with Block-Tridiagonal Jacobian treatment. +C +C This version is in double precision. +C +C DLSOIBT solves the initial value problem for linearly implicit +C systems of first order ODEs, +C A(t,y) * dy/dt = g(t,y) , where A(t,y) is a square matrix, +C or, in component form, +C ( a * ( dy / dt )) + ... + ( a * ( dy / dt )) = +C i,1 1 i,NEQ NEQ +C +C = g ( t, y , y ,..., y ) ( i = 1,...,NEQ ) +C i 1 2 NEQ +C +C If A is singular, this is a differential-algebraic system. +C +C DLSOIBT is a variant version of the DLSODI package, for the case where +C the matrices A, dg/dy, and d(A*s)/dy are all block-tridiagonal. +C----------------------------------------------------------------------- +C Reference: +C Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Jeffrey F. Painter +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Charles S. Kenney +C formerly at: Naval Weapons Center +C China Lake, CA 93555 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSOIBT package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First, provide a subroutine of the form: +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C which computes the residual function +C r = g(t,y) - A(t,y) * s , +C as a function of t and the vectors y and s. (s is an internally +C generated approximation to dy/dt.) The arrays Y and S are inputs +C to the RES routine and should not be altered. The residual +C vector is to be stored in the array R. The argument IRES should be +C ignored for casual use of DLSOIBT. (For uses of IRES, see the +C paragraph on RES in the full description below.) +C +C B. Next, identify the block structure of the matrices A = A(t,y) and +C dr/dy. DLSOIBT must deal internally with a linear combination, P, of +C these two matrices. The matrix P (hence both A and dr/dy) must have +C a block-tridiagonal form with fixed structure parameters +C MB = block size, MB .ge. 1, and +C NB = number of blocks in each direction, NB .ge. 4, +C with MB*NB = NEQ. In each of the NB block-rows of the matrix P +C (each consisting of MB consecutive rows), the nonzero elements are +C to lie in three consecutive MB by MB blocks. In block-rows +C 2 through NB - 1, these are centered about the main diagonal. +C in block-rows 1 and NB, they are the diagonal blocks and the two +C blocks adjacent to the diagonal block. (Thus block positions (1,3) +C and (NB,NB-2) can be nonzero.) +C Alternatively, P (hence A and dr/dy) may be only approximately +C equal to matrices with this form, and DLSOIBT should still succeed. +C The block-tridiagonal matrix P is described by three arrays, +C each of size MB by MB by NB: +C PA = array of diagonal blocks, +C PB = array of superdiagonal (and one subdiagonal) blocks, and +C PC = array of subdiagonal (and one superdiagonal) blocks. +C Specifically, the three MB by MB blocks in the k-th block-row of P +C are stored in (reading across): +C PC(*,*,k) = block to the left of the diagonal block, +C PA(*,*,k) = diagonal block, and +C PB(*,*,k) = block to the right of the diagonal block, +C except for k = 1, where the three blocks (reading across) are +C PA(*,*,1) (= diagonal block), PB(*,*,1), and PC(*,*,1), +C and k = NB, where they are +C PB(*,*,NB), PC(*,*,NB), and PA(*,*,NB) (= diagonal block). +C (Each asterisk * stands for an index that ranges from 1 to MB.) +C +C C. You must also provide a subroutine of the form: +C SUBROUTINE ADDA (NEQ, T, Y, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), PA(MB,MB,NB), PB(MB,MB,NB), PC(MB,MB,NB) +C which adds the nonzero blocks of the matrix A = A(t,y) to the +C contents of the arrays PA, PB, and PC, following the structure +C description in Paragraph B above. +C T and the Y array are input and should not be altered. +C Thus the affect of ADDA should be the following: +C DO 30 K = 1,NB +C DO 20 J = 1,MB +C DO 10 I = 1,MB +C PA(I,J,K) = PA(I,J,K) + +C ( (I,J) element of K-th diagonal block of A) +C PB(I,J,K) = PB(I,J,K) + +C ( (I,J) element of block in block position (K,K+1) of A, +C or in block position (NB,NB-2) if K = NB) +C PC(I,J,K) = PC(I,J,K) + +C ( (I,J) element of block in block position (K,K-1) of A, +C or in block position (1,3) if K = 1) +C 10 CONTINUE +C 20 CONTINUE +C 30 CONTINUE +C +C D. For the sake of efficiency, you are encouraged to supply the +C Jacobian matrix dr/dy in closed form, where r = g(t,y) - A(t,y)*s +C (s = a fixed vector) as above. If dr/dy is being supplied, +C use MF = 21, and provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, S, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), S(*), PA(MB,MB,NB), PB(MB,MB,NB), +C 1 PC(MB,MB,NB) +C which computes dr/dy as a function of t, y, and s. Here T, Y, and +C S are inputs, and the routine is to load dr/dy into PA, PB, PC, +C according to the structure description in Paragraph B above. +C That is, load the diagonal blocks into PA, the superdiagonal blocks +C (and block (NB,NB-2) ) into PB, and the subdiagonal blocks (and +C block (1,3) ) into PC. The blocks in block-row k of dr/dy are to +C be loaded into PA(*,*,k), PB(*,*,k), and PC(*,*,k). +C Only nonzero elements need be loaded, and the indexing +C of PA, PB, and PC is the same as in the ADDA routine. +C Note that if A is independent of Y (or this dependence +C is weak enough to be ignored) then JAC is to compute dg/dy. +C If it is not feasible to provide a JAC routine, use +C MF = 22, and DLSOIBT will compute an approximate Jacobian +C internally by difference quotients. +C +C E. Next decide whether or not to provide the initial value of the +C derivative vector dy/dt. If the initial value of A(t,y) is +C nonsingular (and not too ill-conditioned), you may let DLSOIBT compute +C this vector (ISTATE = 0). (DLSOIBT will solve the system A*s = g for +C s, with initial values of A and g.) If A(t,y) is initially +C singular, then the system is a differential-algebraic system, and +C you must make use of the particular form of the system to compute the +C initial values of y and dy/dt. In that case, use ISTATE = 1 and +C load the initial value of dy/dt into the array YDOTI. +C The input array YDOTI and the initial Y array must be consistent with +C the equations A*dy/dt = g. This implies that the initial residual +C r = g(t,y) - A(t,y)*YDOTI must be approximately zero. +C +C F. Write a main program which calls Subroutine DLSOIBT once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSOIBT. on the first call to DLSOIBT, supply arguments as follows: +C RES = name of user subroutine for residual function r. +C ADDA = name of user subroutine for computing and adding A(t,y). +C JAC = name of user subroutine for Jacobian matrix dr/dy +C (MF = 21). If not used, pass a dummy name. +C Note: the names for the RES and ADDA routines and (if used) the +C JAC routine must be declared External in the calling program. +C NEQ = number of scalar equations in the system. +C Y = array of initial values, of length NEQ. +C YDOTI = array of length NEQ (containing initial dy/dt if ISTATE = 1). +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1 if the +C initial dy/dt is supplied, and 0 otherwise. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + 9*NEQ + 3*MB*MB*NB for MF = 21 or 22. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C Input in IWORK(1) the block size MB and in IWORK(2) the +C number NB of blocks in each direction along the matrix A. +C These must satisfy MB .ge. 1, NB .ge. 4, and MB*NB = NEQ. +C LIW = declared length of IWORK (in user's dimension). +C MF = method flag. Standard values are: +C 21 for a user-supplied Jacobian. +C 22 for an internally generated Jacobian. +C For other choices of MF, see the paragraph on MF in +C the full description below. +C Note that the main program must declare arrays Y, YDOTI, RWORK, IWORK, +C and possibly ATOL. +C +C G. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSOIBT was successful, negative otherwise. +C -1 means excess work done on this call (check all inputs). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 cannot occur in casual use. +C -8 means DLSOIBT was unable to compute the initial dy/dt. +C In casual use, this means A(t,y) is initially singular. +C Supply YDOTI and use ISTATE = 1 on the first call. +C +C If DLSOIBT returns ISTATE = -1, -4, or -5, then the output of +C DLSOIBT also includes YDOTI = array containing residual vector +C r = g - A * dy/dt evaluated at the current t, y, and dy/dt. +C +C H. To continue the integration after a successful return, simply +C reset TOUT and call DLSOIBT again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is an example problem, with the coding needed +C for its solution by DLSOIBT. The problem comes from the partial +C differential equation (the Burgers equation) +C du/dt = - u * du/dx + eta * d**2 u/dx**2, eta = .05, +C on -1 .le. x .le. 1. The boundary conditions are +C du/dx = 0 at x = -1 and at x = 1. +C The initial profile is a square wave, +C u = 1 in ABS(x) .lt. .5, u = .5 at ABS(x) = .5, u = 0 elsewhere. +C The PDE is discretized in x by a simplified Galerkin method, +C using piecewise linear basis functions, on a grid of 40 intervals. +C The equations at x = -1 and 1 use a 3-point difference approximation +C for the right-hand side. The result is a system A * dy/dt = g(y), +C of size NEQ = 41, where y(i) is the approximation to u at x = x(i), +C with x(i) = -1 + (i-1)*delx, delx = 2/(NEQ-1) = .05. The individual +C equations in the system are +C dy(1)/dt = ( y(3) - 2*y(2) + y(1) ) * eta / delx**2, +C dy(NEQ)/dt = ( y(NEQ-2) - 2*y(NEQ-1) + y(NEQ) ) * eta / delx**2, +C and for i = 2, 3, ..., NEQ-1, +C (1/6) dy(i-1)/dt + (4/6) dy(i)/dt + (1/6) dy(i+1)/dt +C = ( y(i-1)**2 - y(i+1)**2 ) / (4*delx) +C + ( y(i+1) - 2*y(i) + y(i-1) ) * eta / delx**2. +C The following coding solves the problem with MF = 21, with output +C of solution statistics at t = .1, .2, .3, and .4, and of the +C solution vector at t = .4. Here the block size is just MB = 1. +C +C EXTERNAL RESID, ADDABT, JACBT +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y, YDOTI +C DIMENSION Y(41), YDOTI(41), RWORK(514), IWORK(61) +C NEQ = 41 +C DO 10 I = 1,NEQ +C 10 Y(I) = 0.0 +C Y(11) = 0.5 +C DO 20 I = 12,30 +C 20 Y(I) = 1.0 +C Y(31) = 0.5 +C T = 0.0 +C TOUT = 0.1 +C ITOL = 1 +C RTOL = 1.0D-4 +C ATOL = 1.0D-5 +C ITASK = 1 +C ISTATE = 0 +C IOPT = 0 +C LRW = 514 +C LIW = 61 +C IWORK(1) = 1 +C IWORK(2) = NEQ +C MF = 21 +C DO 40 IO = 1,4 +C CALL DLSOIBT (RESID, ADDABT, JACBT, NEQ, Y, YDOTI, T, TOUT, +C 1 ITOL,RTOL,ATOL, ITASK, ISTATE, IOPT, RWORK,LRW,IWORK,LIW, MF) +C WRITE (6,30) T, IWORK(11), IWORK(12), IWORK(13) +C 30 FORMAT(' At t =',F5.2,' No. steps =',I4,' No. r-s =',I4, +C 1 ' No. J-s =',I3) +C IF (ISTATE .NE. 2) GO TO 90 +C TOUT = TOUT + 0.1 +C 40 CONTINUE +C WRITE(6,50) (Y(I),I=1,NEQ) +C 50 FORMAT(/' Final solution values..'/9(5D12.4/)) +C STOP +C 90 WRITE(6,95) ISTATE +C 95 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE RESID (N, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y, S, R, ETA, DELX, EODSQ +C DIMENSION Y(N), S(N), R(N) +C DATA ETA/0.05/, DELX/0.05/ +C EODSQ = ETA/DELX**2 +C R(1) = EODSQ*(Y(3) - 2.0*Y(2) + Y(1)) - S(1) +C NM1 = N - 1 +C DO 10 I = 2,NM1 +C R(I) = (Y(I-1)**2 - Y(I+1)**2)/(4.0*DELX) +C 1 + EODSQ*(Y(I+1) - 2.0*Y(I) + Y(I-1)) +C 2 - (S(I-1) + 4.0*S(I) + S(I+1))/6.0 +C 10 CONTINUE +C R(N) = EODSQ*(Y(N-2) - 2.0*Y(NM1) + Y(N)) - S(N) +C RETURN +C END +C +C SUBROUTINE ADDABT (N, T, Y, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y, PA, PB, PC +C DIMENSION Y(N), PA(MB,MB,NB), PB(MB,MB,NB), PC(MB,MB,NB) +C PA(1,1,1) = PA(1,1,1) + 1.0 +C NM1 = N - 1 +C DO 10 K = 2,NM1 +C PA(1,1,K) = PA(1,1,K) + (4.0/6.0) +C PB(1,1,K) = PB(1,1,K) + (1.0/6.0) +C PC(1,1,K) = PC(1,1,K) + (1.0/6.0) +C 10 CONTINUE +C PA(1,1,N) = PA(1,1,N) + 1.0 +C RETURN +C END +C +C SUBROUTINE JACBT (N, T, Y, S, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y, S, PA, PB, PC, ETA, DELX, EODSQ +C DIMENSION Y(N), S(N), PA(MB,MB,NB),PB(MB,MB,NB),PC(MB,MB,NB) +C DATA ETA/0.05/, DELX/0.05/ +C EODSQ = ETA/DELX**2 +C PA(1,1,1) = EODSQ +C PB(1,1,1) = -2.0*EODSQ +C PC(1,1,1) = EODSQ +C DO 10 K = 2,N +C PA(1,1,K) = -2.0*EODSQ +C PB(1,1,K) = -Y(K+1)*(0.5/DELX) + EODSQ +C PC(1,1,K) = Y(K-1)*(0.5/DELX) + EODSQ +C 10 CONTINUE +C PB(1,1,N) = EODSQ +C PC(1,1,N) = -2.0*EODSQ +C PA(1,1,N) = EODSQ +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 0.10 No. steps = 35 No. r-s = 45 No. J-s = 9 +C At t = 0.20 No. steps = 43 No. r-s = 54 No. J-s = 10 +C At t = 0.30 No. steps = 48 No. r-s = 60 No. J-s = 11 +C At t = 0.40 No. steps = 51 No. r-s = 64 No. J-s = 12 +C +C Final solution values.. +C 1.2747e-02 1.1997e-02 1.5560e-02 2.3767e-02 3.7224e-02 +C 5.6646e-02 8.2645e-02 1.1557e-01 1.5541e-01 2.0177e-01 +C 2.5397e-01 3.1104e-01 3.7189e-01 4.3530e-01 5.0000e-01 +C 5.6472e-01 6.2816e-01 6.8903e-01 7.4612e-01 7.9829e-01 +C 8.4460e-01 8.8438e-01 9.1727e-01 9.4330e-01 9.6281e-01 +C 9.7632e-01 9.8426e-01 9.8648e-01 9.8162e-01 9.6617e-01 +C 9.3374e-01 8.7535e-01 7.8236e-01 6.5321e-01 5.0003e-01 +C 3.4709e-01 2.1876e-01 1.2771e-01 7.3671e-02 5.0642e-02 +C 5.4496e-02 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSOIBT. +C +C The user interface to DLSOIBT consists of the following parts. +C +C 1. The call sequence to Subroutine DLSOIBT, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSOIBT package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSOIBT package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C RES, ADDA, JAC, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, +C IOPT, LRW, LIW, MF, +C and those used for both input and output are +C Y, T, ISTATE, YDOTI. +C The work arrays RWORK and IWORK are also used for additional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSOIBT to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C RES = the name of the user-supplied subroutine which supplies +C the residual vector for the ODE system, defined by +C r = g(t,y) - A(t,y) * s +C as a function of the scalar t and the vectors +C s and y (s approximates dy/dt). This subroutine +C is to have the form +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C where NEQ, T, Y, S, and IRES are input, and R and +C IRES are output. Y, S, and R are arrays of length NEQ. +C On input, IRES indicates how DLSOIBT will use the +C returned array R, as follows: +C IRES = 1 means that DLSOIBT needs the full residual, +C r = g - A*s, exactly. +C IRES = -1 means that DLSOIBT is using R only to compute +C the Jacobian dr/dy by difference quotients. +C The RES routine can ignore IRES, or it can omit some terms +C if IRES = -1. If A does not depend on y, then RES can +C just return R = g when IRES = -1. If g - A*s contains other +C additive terms that are independent of y, these can also be +C dropped, if done consistently, when IRES = -1. +C The subroutine should set the flag IRES if it +C encounters a halt condition or illegal input. +C Otherwise, it should not reset IRES. On output, +C IRES = 1 or -1 represents a normal return, and +C DLSOIBT continues integrating the ODE. Leave IRES +C unchanged from its input value. +C IRES = 2 tells DLSOIBT to immediately return control +C to the calling program, with ISTATE = 3. This lets +C the calling program change parameters of the problem +C if necessary. +C IRES = 3 represents an error condition (for example, an +C illegal value of y). DLSOIBT tries to integrate the system +C without getting IRES = 3 from RES. If it cannot, DLSOIBT +C returns with ISTATE = -7 or -1. +C On an DLSOIBT return with ISTATE = 3, -1, or -7, the +C values of T and Y returned correspond to the last point +C reached successfully without getting the flag IRES = 2 or 3. +C The flag values IRES = 2 and 3 should not be used to +C handle switches or root-stop conditions. This is better +C done by calling DLSOIBT in a one-step mode and checking the +C stopping function for a sign change at each step. +C If quantities computed in the RES routine are needed +C externally to DLSOIBT, an extra call to RES should be made +C for this purpose, for consistent and accurate results. +C To get the current dy/dt for the S argument, use DINTDY. +C RES must be declared External in the calling +C program. See note below for more about RES. +C +C ADDA = the name of the user-supplied subroutine which adds the +C matrix A = A(t,y) to another matrix, P, stored in +C block-tridiagonal form. This routine is to have the form +C SUBROUTINE ADDA (NEQ, T, Y, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), PA(MB,MB,NB), PB(MB,MB,NB), +C 1 PC(MB,MB,NB) +C where NEQ, T, Y, MB, NB, and the arrays PA, PB, and PC +C are input, and the arrays PA, PB, and PC are output. +C Y is an array of length NEQ, and the arrays PA, PB, PC +C are all MB by MB by NB. +C Here a block-tridiagonal structure is assumed for A(t,y), +C and also for the matrix P to which A is added here, +C as described in Paragraph B of the Summary of Usage above. +C Thus the affect of ADDA should be the following: +C DO 30 K = 1,NB +C DO 20 J = 1,MB +C DO 10 I = 1,MB +C PA(I,J,K) = PA(I,J,K) + +C ( (I,J) element of K-th diagonal block of A) +C PB(I,J,K) = PB(I,J,K) + +C ( (I,J) element of block (K,K+1) of A, +C or block (NB,NB-2) if K = NB) +C PC(I,J,K) = PC(I,J,K) + +C ( (I,J) element of block (K,K-1) of A, +C or block (1,3) if K = 1) +C 10 CONTINUE +C 20 CONTINUE +C 30 CONTINUE +C ADDA must be declared External in the calling program. +C See note below for more information about ADDA. +C +C JAC = the name of the user-supplied subroutine which supplies +C the Jacobian matrix, dr/dy, where r = g - A*s. JAC is +C required if MITER = 1. Otherwise a dummy name can be +C passed. This subroutine is to have the form +C SUBROUTINE JAC (NEQ, T, Y, S, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), S(*), PA(MB,MB,NB), +C 1 PB(MB,MB,NB), PC(MB,MB,NB) +C where NEQ, T, Y, S, MB, NB, and the arrays PA, PB, and PC +C are input, and the arrays PA, PB, and PC are output. +C Y and S are arrays of length NEQ, and the arrays PA, PB, PC +C are all MB by MB by NB. +C PA, PB, and PC are to be loaded with partial derivatives +C (elements of the Jacobian matrix) on output, in terms of the +C block-tridiagonal structure assumed, as described +C in Paragraph B of the Summary of Usage above. +C That is, load the diagonal blocks into PA, the +C superdiagonal blocks (and block (NB,NB-2) ) into PB, and +C the subdiagonal blocks (and block (1,3) ) into PC. +C The blocks in block-row k of dr/dy are to be loaded into +C PA(*,*,k), PB(*,*,k), and PC(*,*,k). +C Thus the affect of JAC should be the following: +C DO 30 K = 1,NB +C DO 20 J = 1,MB +C DO 10 I = 1,MB +C PA(I,J,K) = ( (I,J) element of +C K-th diagonal block of dr/dy) +C PB(I,J,K) = ( (I,J) element of block (K,K+1) +C of dr/dy, or block (NB,NB-2) if K = NB) +C PC(I,J,K) = ( (I,J) element of block (K,K-1) +C of dr/dy, or block (1,3) if K = 1) +C 10 CONTINUE +C 20 CONTINUE +C 30 CONTINUE +C PA, PB, and PC are preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to RES with the same +C arguments NEQ, T, Y, and S. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by RES and not recomputed by JAC +C if desired. Also, JAC may alter the Y array, if desired. +C JAC need not provide dr/dy exactly. A crude +C approximation will do, so that DLSOIBT may be used when +C A and dr/dy are not really block-tridiagonal, but are close +C to matrices that are. +C JAC must be declared External in the calling program. +C See note below for more about JAC. +C +C Note on RES, ADDA, and JAC: +C These subroutines may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in the subroutines) and/or Y has length +C exceeding NEQ(1). However, these routines should not alter +C NEQ(1), Y(1),...,Y(NEQ) or any other input variables. +C See the descriptions of NEQ and Y below. +C +C NEQ = the size of the system (number of first order ordinary +C differential equations or scalar algebraic equations). +C Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in RES, ADDA, or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSOIBT package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to RES, ADDA, and JAC. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to RES, ADDA, or JAC. Each such subroutine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 0 or 1), and only for output on other +C calls. On the first call, Y must contain the vector of +C initial values. On output, Y contains the computed solution +C vector, evaluated at t. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to RES, +C ADDA, and JAC. Hence its length may exceed NEQ, +C and locations Y(NEQ+1),... may be used to store other real +C data and pass it to RES, ADDA, or JAC. (The DLSOIBT +C package accesses only Y(1),...,Y(NEQ). ) +C +C YDOTI = a real array for the initial value of the vector +C dy/dt and for work space, of dimension at least NEQ. +C +C On input: +C If ISTATE = 0 then DLSOIBT will compute the initial value +C of dy/dt, if A is nonsingular. Thus YDOTI will +C serve only as work space and may have any value. +C If ISTATE = 1 then YDOTI must contain the initial value +C of dy/dt. +C If ISTATE = 2 or 3 (continuation calls) then YDOTI +C may have any value. +C Note: If the initial value of A is singular, then +C DLSOIBT cannot compute the initial value of dy/dt, so +C it must be provided in YDOTI, with ISTATE = 1. +C +C On output, when DLSOIBT terminates abnormally with ISTATE = +C -1, -4, or -5, YDOTI will contain the residual +C r = g(t,y) - A(t,y)*(dy/dt). If r is large, t is near +C its initial value, and YDOTI is supplied with ISTATE = 1, +C there may have been an incorrect input value of +C YDOTI = dy/dt, or the problem (as given to DLSOIBT) +C may not have a solution. +C +C If desired, the YDOTI array may be used for other +C purposes between calls to the solver. +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 0 or 1), TOUT may be +C equal to T for one call, then should .ne. T for the next +C call. For the initial T, an input value of TOUT .ne. T is +C used in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array scalar RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 0 means this is the first call for the problem, and +C DLSOIBT is to compute the initial value of dy/dt +C (while doing other initializations). See note below. +C 1 means this is the first call for the problem, and +C the initial value of dy/dt has been supplied in +C YDOTI (DLSOIBT will do other initializations). +C See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, MB, NB, +C and any of the optional inputs except H0. +C (See IWORK description for MB and NB.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 0 or 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 0 or 1 means nothing was done; TOUT = t and +C ISTATE = 0 or 1 on input. +C 2 means that the integration was performed successfully. +C 3 means that the user-supplied Subroutine RES signalled +C DLSOIBT to halt the integration and return (IRES = 2). +C Integration as far as T was achieved with no occurrence +C of IRES = 2, but this flag was set on attempting the +C next step. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i) = 0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means that the user-supplied Subroutine RES set +C its error flag (IRES = 3) despite repeated tries by +C DLSOIBT to avoid that condition. +C -8 means that ISTATE was 0 on input but DLSOIBT was unable +C to compute the initial value of dy/dt. See the +C printed message for details. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Similarly, ISTATE (= 3) need not be reset if RES told +C DLSOIBT to return because the calling program must change +C the parameters of the problem. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LENWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENWM = 3*MB*MB*NB + 2. +C (See MF description for the definition of METH.) +C Thus if MAXORD has its default value and NEQ is constant, +C this length is +C 22 + 16*NEQ + 3*MB*MB*NB for MF = 11 or 12, +C 22 + 9*NEQ + 3*MB*MB*NB for MF = 21 or 22. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 20 + NEQ . The first few words of IWORK are used for +C additional and optional inputs and optional outputs. +C +C The following 2 words in IWORK are additional required +C inputs to DLSOIBT: +C IWORK(1) = MB = block size +C IWORK(2) = NB = number of blocks in the main diagonal +C These must satisfy MB .ge. 1, NB .ge. 4, and MB*NB = NEQ. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSOIBT +C for the same problem, except possibly for the additional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSOIBT between calls, if +C desired (but not for use by RES, ADDA, or JAC). +C +C MF = the method flag. used only for input. The legal values of +C MF are 11, 12, 21, and 22. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFS). +C The BDF method is strongly preferred for stiff +C problems, while the Adams method is preferred when the +C problem is not stiff. If the matrix A(t,y) is +C nonsingular, stiffness here can be taken to mean that of +C the explicit ODE system dy/dt = A-inverse * g. If A is +C singular, the concept of stiffness is not well defined. +C If you do not know whether the problem is stiff, we +C recommend using METH = 2. If it is stiff, the advantage +C of METH = 2 over METH = 1 will be great, while if it is +C not stiff, the advantage of METH = 1 will be slight. +C If maximum efficiency is important, some experimentation +C with METH may be necessary. +C MITER indicates the corrector iteration method: +C MITER = 1 means chord iteration with a user-supplied +C block-tridiagonal Jacobian. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) block- +C tridiagonal Jacobian approximation, using +C 3*MB+1 extra calls to RES per dr/dy evaluation. +C If MITER = 1, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C For MITER = 2, a dummy argument can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSOIBT, the variables listed +C below are quantities related to the performance of DLSOIBT +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSOIBT, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On a return with -3 (illegal +C input) or -8, they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NRE IWORK(12) the number of residual evaluations (RES calls) +C for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (each involving +C an evaluation of a and dr/dy) for the problem so +C far. This equals the number of calls to ADDA and +C (if MITER = 1) to JAC, and the number of matrix +C LU decompositions. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in y on +C the last step. This is the vector E in the +C description of the error control. It is +C defined only on a return from DLSOIBT with +C ISTATE = 2. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSOIBT. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSOIBT, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSOIBT. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCOM(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSOIBT (see Part 3 below). +C RSAV must be a real array of length 218 +C or more, and ISAV must be an integer +C array of length 37 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCOM is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSOIBT. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSOIBT. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the t last returned by DLSOIBT). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(t), is already provided +C by DLSOIBT directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSOIBT is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSOIBT, and +C (2) the internal Common block +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C +C If DLSOIBT is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common block in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSOIBT is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSOIBT call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSOIBT call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCOM (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSOIBT package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSOIBT call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSOIBT in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSOIBT. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19840625 DATE WRITTEN +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODI; +C in STODI, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common block, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal names NRE, LSAVR to NFE, LSAVF resp. +C +C----------------------------------------------------------------------- +C Other routines in the DLSOIBT package. +C +C In addition to Subroutine DLSOIBT, the DLSOIBT package includes the +C following subroutines and function routines: +C DAIGBT computes the initial value of the vector +C dy/dt = A-inverse * g +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODI is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCOM is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DPJIBT computes and preprocesses the Jacobian matrix +C and the Newton iteration matrix P. +C DSLSBT manages solution of linear system in chord iteration. +C DDECBT and DSOLBT are routines for solving block-tridiagonal +C systems of linear algebraic equations. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DDOT is one of the basic linear algebra modules (BLAS). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DDOT, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPJIBT, DSLSBT + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, IFLAG, IMXER, IRES, KGO, + 1 LENIW, LENRW, LENWM, LP, LYD0, MB, MORD, MXHNL0, MXSTP0, NB + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following internal Common block contains +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSOIBT, DINTDY, DSTODI, +C DPJIBT, and DSLSBT. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 0 or 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 0 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .LE. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 0 or 1) +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, MB, and NB. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .LE. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 1 .OR. MITER .GT. 2) GO TO 608 + MB = IWORK(1) + NB = IWORK(2) + IF (MB .LT. 1 .OR. MB .GT. N) GO TO 609 + IF (NB .LT. 4) GO TO 610 + IF (MB*NB .NE. N) GO TO 609 +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .LE. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .GT. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVR, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .LE. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + LENWM = 3*MB*MB*NB + 2 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE + IF (ISTATE .LE. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODI. ------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into YDOTI.--------- + DO 80 I = 1,N + 80 YDOTI(I) = RWORK(I+LWM-1) +C Reload WM(1) = RWORK(lWM), since lWM may have changed. --------------- + 90 RWORK(LWM) = SQRT(UROUND) + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 0 or 1). +C It contains all remaining initializations, the call to DAIGBT +C (if ISTATE = 1), and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 105 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 105 JSTART = 0 + RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NST = 0 + NFE = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Compute initial dy/dt, if necessary, and load it and initial Y into YH + LYD0 = LYH + NYH + LP = LWM + 1 + IF ( ISTATE .EQ. 1 ) GO TO 120 +C DLSOIBT must compute initial dy/dt (LYD0 points to YH(*,2)). --------- + CALL DAIGBT( RES, ADDA, NEQ, T, Y, RWORK(LYD0), + 1 MB, NB, RWORK(LP), IWORK(21), IER ) + NFE = NFE + 1 + IF (IER .LT. 0) GO TO 560 + IF (IER .GT. 0) GO TO 565 + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) + GO TO 130 +C Initial dy/dt was supplied. Load into YH (LYD0 points to YH(*,2).). - + 120 DO 125 I = 1,N + RWORK(I+LYH-1) = Y(I) + 125 RWORK(I+LYD0-1) = YDOTI(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + 130 CONTINUE + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 135 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 135 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( YDOT(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C YDOT(i) = i-th component of initial value of dy/dt, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 145 + DO 140 I = 1,N + 140 TOL = MAX(TOL,RTOL(I)) + 145 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LYD0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LYD0-1) = H0*RWORK(I+LYD0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODI. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSOIBT- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSOIBT- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODI(NEQ,Y,YH,NYH,YH1,EWT,SAVF,SAVR,ACOR,WM,IWM,RES, +C ADDA,JAC,DPJIBT,DSLSBT) +C Note: SAVF in DSTODI occupies the same space as YDOTI in DLSOIBT. +C----------------------------------------------------------------------- + CALL DSTODI (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 YDOTI, RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), RES, ADDA, JAC, DPJIBT, DSLSBT ) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 400, 550), KGO +C +C KGO = 1:success; 2:error test failure; 3:convergence failure; +C 4:RES ordered return; 5:RES returned error. +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. see if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSOIBT. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + IF ( KFLAG .EQ. -3 ) ISTATE = 3 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSOIBT- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSOIBT- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 590 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSOIBT- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 590 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSOIBT- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = 'error test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 570 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSOIBT- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 570 +C IRES = 3 returned by RES, despite retries by DSTODI.------------------ + 550 MSG = 'DLSOIBT- At T (=R1) residual routine returned ' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error IRES = 3 repeatedly. ' + CALL XERRWD (MSG, 40, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 590 +C DAIGBT failed because a diagonal block of A matrix was singular. ----- + 560 IER = -IER + MSG='DLSOIBT- Attempt to initialize dy/dt failed: Matrix A has a' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' singular diagonal block, block no. = (I1) ' + CALL XERRWD (MSG, 50, 207, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C DAIGBT failed because RES set IRES to 2 or 3. ------------------------ + 565 MSG = 'DLSOIBT- Attempt to initialize dy/dt failed ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' because residual routine set its error flag ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to IRES = (I1)' + CALL XERRWD (MSG, 20, 208, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C Compute IMXER if relevant. ------------------------------------------- + 570 BIG = 0.0D0 + IMXER = 1 + DO 575 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 575 + BIG = SIZE + IMXER = I + 575 CONTINUE + IWORK(16) = IMXER +C Compute residual if relevant. ---------------------------------------- + 580 LYD0 = LYH + NYH + DO 585 I = 1,N + RWORK(I+LSAVF-1) = RWORK(I+LYD0-1)/H + 585 Y(I) = RWORK(I+LYH-1) + IRES = 1 + CALL RES (NEQ, TN, Y, RWORK(LSAVF), YDOTI, IRES) + NFE = NFE + 1 + IF (IRES .LE. 1) GO TO 595 + MSG = 'DLSOIBT- Residual routine set its flag IRES ' + CALL XERRWD (MSG, 50, 210, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to (I1) when called for final output. ' + CALL XERRWD (MSG, 50, 210, 0, 1, IRES, 0, 0, 0.0D0, 0.0D0) + GO TO 595 +C Set Y vector, T, and optional outputs. ------------------------------- + 590 DO 592 I = 1,N + 592 Y(I) = RWORK(I+LYH-1) + 595 T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSOIBT- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSOIBT- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSOIBT- ISTATE.gt.1 but DLSOIBT not initialized. ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSOIBT- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSOIBT- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSOIBT- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSOIBT- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSOIBT- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSOIBT- MB (=I1) or NB (=I2) illegal. ' + CALL XERRWD (MSG, 40, 9, 0, 2, MB, NB, 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSOIBT- NB (=I1) .lt. 4 illegal. ' + CALL XERRWD (MSG, 40, 10, 0, 1, NB, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSOIBT- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSOIBT- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSOIBT- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSOIBT- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSOIBT- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSOIBT- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSOIBT- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSOIBT- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSOIBT- RTOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSOIBT- ATOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSOIBT- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSOIBT- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSOIBT- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSOIBT- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSOIBT- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSOIBT- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSOIBT- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSOIBT- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSOIBT --------------------- + END +*DECK DLSODIS + SUBROUTINE DLSODIS (RES, ADDA, JAC, NEQ, Y, YDOTI, T, TOUT, ITOL, + 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF ) + EXTERNAL RES, ADDA, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, YDOTI, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), YDOTI(*), RTOL(*), ATOL(*), RWORK(LRW), + 1 IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODIS: Livermore Solver for Ordinary Differential equations +C (Implicit form) with general Sparse Jacobian matrices. +C +C This version is in double precision. +C +C DLSODIS solves the initial value problem for linearly implicit +C systems of first order ODEs, +C A(t,y) * dy/dt = g(t,y) , where A(t,y) is a square matrix, +C or, in component form, +C ( a * ( dy / dt )) + ... + ( a * ( dy / dt )) = +C i,1 1 i,NEQ NEQ +C +C = g ( t, y , y ,..., y ) ( i = 1,...,NEQ ) +C i 1 2 NEQ +C +C If A is singular, this is a differential-algebraic system. +C +C DLSODIS is a variant version of the DLSODI package, and is intended +C for stiff problems in which the matrix A and the Jacobian matrix +C d(g - A*s)/dy have arbitrary sparse structures. +C +C Authors: Alan C. Hindmarsh +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Sheila Balsdon +C Zycor, Inc. +C Austin, TX 78741 +C----------------------------------------------------------------------- +C References: +C 1. M. K. Seager and S. Balsdon, LSODIS, A Sparse Implicit +C ODE Solver, in Proceedings of the IMACS 10th World Congress, +C Montreal, August 8-13, 1982. +C +C 2. Alan C. Hindmarsh, LSODE and LSODI, Two New Initial Value +C Ordinary Differential Equation Solvers, +C ACM-SIGNUM Newsletter, vol. 15, no. 4 (1980), pp. 10-11. +C +C 3. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: I. The Symmetric Codes, +C Int. J. Num. Meth. Eng., vol. 18 (1982), pp. 1145-1151. +C +C 4. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: II. The Nonsymmetric Codes, +C Research Report No. 114, Dept. of Computer Sciences, Yale +C University, 1977. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODIS package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First, provide a subroutine of the form: +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C which computes the residual function +C r = g(t,y) - A(t,y) * s , +C as a function of t and the vectors y and s. (s is an internally +C generated approximation to dy/dt.) The arrays Y and S are inputs +C to the RES routine and should not be altered. The residual +C vector is to be stored in the array R. The argument IRES should be +C ignored for casual use of DLSODIS. (For uses of IRES, see the +C paragraph on RES in the full description below.) +C +C B. DLSODIS must deal internally with the matrices A and dr/dy, where +C r is the residual function defined above. DLSODIS generates a linear +C combination of these two matrices in sparse form. +C The matrix structure is communicated by a method flag, MF: +C MF = 21 or 22 when the user provides the structures of +C matrix A and dr/dy, +C MF = 121 or 222 when the user does not provide structure +C information, and +C MF = 321 or 422 when the user provides the structure +C of matrix A. +C +C C. You must also provide a subroutine of the form: +C SUBROUTINE ADDA (NEQ, T, Y, J, IAN, JAN, P) +C DOUBLE PRECISION T, Y(*), P(*) +C INTEGER IAN(*), JAN(*) +C which adds the matrix A = A(t,y) to the contents of the array P. +C NEQ, T, Y, and J are input arguments and should not be altered. +C This routine should add the J-th column of matrix A to the array +C P (of length NEQ). I.e. add A(i,J) to P(i) for all relevant +C values of i. The arguments IAN and JAN should be ignored for normal +C situations. DLSODIS will call the ADDA routine with J = 1,2,...,NEQ. +C +C D. For the sake of efficiency, you are encouraged to supply the +C Jacobian matrix dr/dy in closed form, where r = g(t,y) - A(t,y)*s +C (s = a fixed vector) as above. If dr/dy is being supplied, +C use MF = 21, 121, or 321, and provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, S, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), S(*), PDJ(*) +C INTEGER IAN(*), JAN(*) +C which computes dr/dy as a function of t, y, and s. Here NEQ, T, Y, S, +C and J are input arguments, and the JAC routine is to load the array +C PDJ (of length NEQ) with the J-th column of dr/dy. I.e. load PDJ(i) +C with dr(i)/dy(J) for all relevant values of i. The arguments IAN and +C JAN should be ignored for normal situations. DLSODIS will call the +C JAC routine with J = 1,2,...,NEQ. +C Only nonzero elements need be loaded. A crude approximation +C to dr/dy, possibly with fewer nonzero elememts, will suffice. +C Note that if A is independent of y (or this dependence +C is weak enough to be ignored) then JAC is to compute dg/dy. +C If it is not feasible to provide a JAC routine, use +C MF = 22, 222, or 422 and DLSODIS will compute an approximate +C Jacobian internally by difference quotients. +C +C E. Next decide whether or not to provide the initial value of the +C derivative vector dy/dt. If the initial value of A(t,y) is +C nonsingular (and not too ill-conditioned), you may let DLSODIS compute +C this vector (ISTATE = 0). (DLSODIS will solve the system A*s = g for +C s, with initial values of A and g.) If A(t,y) is initially +C singular, then the system is a differential-algebraic system, and +C you must make use of the particular form of the system to compute the +C initial values of y and dy/dt. In that case, use ISTATE = 1 and +C load the initial value of dy/dt into the array YDOTI. +C The input array YDOTI and the initial Y array must be consistent with +C the equations A*dy/dt = g. This implies that the initial residual +C r = g(t,y) - A(t,y)*YDOTI must be approximately zero. +C +C F. Write a main program which calls Subroutine DLSODIS once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODIS. On the first call to DLSODIS, supply arguments as follows: +C RES = name of user subroutine for residual function r. +C ADDA = name of user subroutine for computing and adding A(t,y). +C JAC = name of user subroutine for Jacobian matrix dr/dy +C (MF = 121). If not used, pass a dummy name. +C Note: The names for the RES and ADDA routines and (if used) the +C JAC routine must be declared External in the calling program. +C NEQ = number of scalar equations in the system. +C Y = array of initial values, of length NEQ. +C YDOTI = array of length NEQ (containing initial dy/dt if ISTATE = 1). +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C The estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1 if the +C initial dy/dt is supplied, and 0 otherwise. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + (2 + 1./LENRAT)*NNZ + (11 + 9./LENRAT)*NEQ +C where: +C NNZ = the number of nonzero elements in the sparse +C iteration matrix P = A - con*dr/dy (con = scalar) +C (If NNZ is unknown, use an estimate of it.) +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C In any case, the required size of RWORK cannot generally +C be predicted in advance for any value of MF, and the +C value above is a rough estimate of a crude lower bound. +C Some experimentation with this size may be necessary. +C (When known, the correct required length is an optional +C output, available in IWORK(17).) +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 30. +C LIW = declared length of IWORK (in user's dimension). +C MF = method flag. Standard values are: +C 121 for a user-supplied sparse Jacobian. +C 222 for an internally generated sparse Jacobian. +C For other choices of MF, see the paragraph on MF in +C the full description below. +C Note that the main program must declare arrays Y, YDOTI, RWORK, IWORK, +C and possibly ATOL. +C +C G. The output from the first call, or any call, is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODIS was successful, negative otherwise. +C -1 means excess work done on this call (check all inputs). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 cannot occur in casual use. +C -8 means DLSODIS was unable to compute the initial dy/dt. +C in casual use, this means A(t,y) is initially singular. +C Supply YDOTI and use ISTATE = 1 on the first call. +C -9 means a fatal error return flag came from sparse solver +C CDRV by way of DPRJIS or DSOLSS. Should never happen. +C +C A return with ISTATE = -1, -4, or -5, may result from using +C an inappropriate sparsity structure, one that is quite +C different from the initial structure. Consider calling +C DLSODIS again with ISTATE = 3 to force the structure to be +C reevaluated. See the full description of ISTATE below. +C +C If DLSODIS returns ISTATE = -1, -4 or -5, then the output of +C DLSODIS also includes YDOTI = array containing residual vector +C r = g - A * dy/dt evaluated at the current t, y, and dy/dt. +C +C H. To continue the integration after a successful return, simply +C reset TOUT and call DLSODIS again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is an example problem, with the coding needed +C for its solution by DLSODIS. The problem comes from the partial +C differential equation (the Burgers equation) +C du/dt = - u * du/dx + eta * d**2 u/dx**2, eta = .05, +C on -1 .le. x .le. 1. The boundary conditions are periodic: +C u(-1,t) = u(1,t) and du/dx(-1,t) = du/dx(1,t) +C The initial profile is a square wave, +C u = 1 in ABS(x) .lt. .5, u = .5 at ABS(x) = .5, u = 0 elsewhere. +C The PDE is discretized in x by a simplified Galerkin method, +C using piecewise linear basis functions, on a grid of 40 intervals. +C The result is a system A * dy/dt = g(y), of size NEQ = 40, +C where y(i) is the approximation to u at x = x(i), with +C x(i) = -1 + (i-1)*delx, delx = 2/NEQ = .05. +C The individual equations in the system are (in order): +C (1/6)dy(NEQ)/dt+(4/6)dy(1)/dt+(1/6)dy(2)/dt +C = r4d*(y(NEQ)**2-y(2)**2)+eodsq*(y(2)-2*y(1)+y(NEQ)) +C for i = 2,3,...,nm1, +C (1/6)dy(i-1)/dt+(4/6)dy(i)/dt+(1/6)dy(i+1)/dt +C = r4d*(y(i-1)**2-y(i+1)**2)+eodsq*(y(i+1)-2*y(i)+y(i-1)) +C and finally +C (1/6)dy(nm1)/dt+(4/6)dy(NEQ)/dt+(1/6)dy(1)/dt +C = r4d*(y(nm1)**2-y(1)**2)+eodsq*(y(1)-2*y(NEQ)+y(nm1)) +C where r4d = 1/(4*delx), eodsq = eta/delx**2 and nm1 = NEQ-1. +C The following coding solves the problem with MF = 121, with output +C of solution statistics at t = .1, .2, .3, and .4, and of the +C solution vector at t = .4. Optional outputs (run statistics) are +C also printed. +C +C EXTERNAL RESID, ADDASP, JACSP +C DOUBLE PRECISION ATOL, RTOL, RW, T, TOUT, Y, YDOTI, R4D, EODSQ, DELX +C DIMENSION Y(40), YDOTI(40), RW(1409), IW(30) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C DATA ITOL/1/, RTOL/1.0D-3/, ATOL/1.0D-3/, ITASK/1/, IOPT/0/ +C DATA NEQ/40/, LRW/1409/, LIW/30/, MF/121/ +C +C DELX = 2.0/NEQ +C R4D = 0.25/DELX +C EODSQ = 0.05/DELX**2 +C NM1 = NEQ - 1 +C DO 10 I = 1,NEQ +C 10 Y(I) = 0.0 +C Y(11) = 0.5 +C DO 15 I = 12,30 +C 15 Y(I) = 1.0 +C Y(31) = 0.5 +C T = 0.0 +C TOUT = 0.1 +C ISTATE = 0 +C DO 30 IO = 1,4 +C CALL DLSODIS (RESID, ADDASP, JACSP, NEQ, Y, YDOTI, T, TOUT, +C 1 ITOL, RTOL, ATOL, ITASK, ISTATE, IOPT, RW, LRW, IW, LIW, MF) +C WRITE(6,20) T,IW(11),RW(11) +C 20 FORMAT(' At t =',F5.2,' No. steps =',I4, +C 1 ' Last step =',D12.4) +C IF (ISTATE .NE. 2) GO TO 90 +C TOUT = TOUT + 0.1 +C 30 CONTINUE +C WRITE (6,40) (Y(I),I=1,NEQ) +C 40 FORMAT(/' Final solution values..'/8(5D12.4/)) +C WRITE(6,50) IW(17),IW(18),IW(11),IW(12),IW(13) +C NNZLU = IW(25) + IW(26) + NEQ +C WRITE(6,60) IW(19),NNZLU +C 50 FORMAT(/' Required RW size =',I5,' IW size =',I4/ +C 1 ' No. steps =',I4,' No. r-s =',I4,' No. J-s =',i4) +C 60 FORMAT(' No. of nonzeros in P matrix =',I4, +C 1 ' No. of nonzeros in LU =',I4) +C STOP +C 90 WRITE (6,95) ISTATE +C 95 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE GFUN (N, T, Y, G) +C DOUBLE PRECISION T, Y, G, R4D, EODSQ +C DIMENSION G(N), Y(N) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C G(1) = R4D*(Y(N)**2-Y(2)**2) + EODSQ*(Y(2)-2.0*Y(1)+Y(N)) +C DO 10 I = 2,NM1 +C G(I) = R4D*(Y(I-1)**2 - Y(I+1)**2) +C 1 + EODSQ*(Y(I+1) - 2.0*Y(I) + Y(I-1)) +C 10 CONTINUE +C G(N) = R4D*(Y(NM1)**2-Y(1)**2) + EODSQ*(Y(1)-2.0*Y(N)+Y(NM1)) +C RETURN +C END +C +C SUBROUTINE RESID (N, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y, S, R, R4D, EODSQ +C DIMENSION Y(N), S(N), R(N) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C CALL GFUN (N, T, Y, R) +C R(1) = R(1) - (S(N) + 4.0*S(1) + S(2))/6.0 +C DO 10 I = 2,NM1 +C 10 R(I) = R(I) - (S(I-1) + 4.0*S(I) + S(I+1))/6.0 +C R(N) = R(N) - (S(NM1) + 4.0*S(N) + S(1))/6.0 +C RETURN +C END +C +C SUBROUTINE ADDASP (N, T, Y, J, IP, JP, P) +C DOUBLE PRECISION T, Y, P +C DIMENSION Y(N), IP(*), JP(*), P(N) +C JM1 = J - 1 +C JP1 = J + 1 +C IF (J .EQ. N) JP1 = 1 +C IF (J .EQ. 1) JM1 = N +C P(J) = P(J) + (2.0/3.0) +C P(JP1) = P(JP1) + (1.0/6.0) +C P(JM1) = P(JM1) + (1.0/6.0) +C RETURN +C END +C +C SUBROUTINE JACSP (N, T, Y, S, J, IP, JP, PDJ) +C DOUBLE PRECISION T, Y, S, PDJ, R4D, EODSQ +C DIMENSION Y(N), S(N), IP(*), JP(*), PDJ(N) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C JM1 = J - 1 +C JP1 = J + 1 +C IF (J .EQ. 1) JM1 = N +C IF (J .EQ. N) JP1 = 1 +C PDJ(JM1) = -2.0*R4D*Y(J) + EODSQ +C PDJ(J) = -2.0*EODSQ +C PDJ(JP1) = 2.0*R4D*Y(J) + EODSQ +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 0.10 No. steps = 15 Last step = 1.6863e-02 +C At t = 0.20 No. steps = 19 Last step = 2.4101e-02 +C At t = 0.30 No. steps = 22 Last step = 4.3143e-02 +C At t = 0.40 No. steps = 24 Last step = 5.7819e-02 +C +C Final solution values.. +C 1.8371e-02 1.3578e-02 1.5864e-02 2.3805e-02 3.7245e-02 +C 5.6630e-02 8.2538e-02 1.1538e-01 1.5522e-01 2.0172e-01 +C 2.5414e-01 3.1150e-01 3.7259e-01 4.3608e-01 5.0060e-01 +C 5.6482e-01 6.2751e-01 6.8758e-01 7.4415e-01 7.9646e-01 +C 8.4363e-01 8.8462e-01 9.1853e-01 9.4500e-01 9.6433e-01 +C 9.7730e-01 9.8464e-01 9.8645e-01 9.8138e-01 9.6584e-01 +C 9.3336e-01 8.7497e-01 7.8213e-01 6.5315e-01 4.9997e-01 +C 3.4672e-01 2.1758e-01 1.2461e-01 6.6208e-02 3.3784e-02 +C +C Required RW size = 1409 IW size = 30 +C No. steps = 24 No. r-s = 33 No. J-s = 8 +C No. of nonzeros in P matrix = 120 No. of nonzeros in LU = 194 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODIS. +C +C The user interface to DLSODIS consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODIS, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODIS package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODIS package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C RES, ADDA, JAC, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, +C IOPT, LRW, LIW, MF, +C and those used for both input and output are +C Y, T, ISTATE, YDOTI. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODIS to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C RES = the name of the user-supplied subroutine which supplies +C the residual vector for the ODE system, defined by +C r = g(t,y) - A(t,y) * s +C as a function of the scalar t and the vectors +C s and y (s approximates dy/dt). This subroutine +C is to have the form +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C where NEQ, T, Y, S, and IRES are input, and R and +C IRES are output. Y, S, and R are arrays of length NEQ. +C On input, IRES indicates how DLSODIS will use the +C returned array R, as follows: +C IRES = 1 means that DLSODIS needs the full residual, +C r = g - A*s, exactly. +C IRES = -1 means that DLSODIS is using R only to compute +C the Jacobian dr/dy by difference quotients. +C The RES routine can ignore IRES, or it can omit some terms +C if IRES = -1. If A does not depend on y, then RES can +C just return R = g when IRES = -1. If g - A*s contains other +C additive terms that are independent of y, these can also be +C dropped, if done consistently, when IRES = -1. +C The subroutine should set the flag IRES if it +C encounters a halt condition or illegal input. +C Otherwise, it should not reset IRES. On output, +C IRES = 1 or -1 represents a normal return, and +C DLSODIS continues integrating the ODE. Leave IRES +C unchanged from its input value. +C IRES = 2 tells DLSODIS to immediately return control +C to the calling program, with ISTATE = 3. This lets +C the calling program change parameters of the problem +C if necessary. +C IRES = 3 represents an error condition (for example, an +C illegal value of y). DLSODIS tries to integrate the system +C without getting IRES = 3 from RES. If it cannot, DLSODIS +C returns with ISTATE = -7 or -1. +C On a return with ISTATE = 3, -1, or -7, the values +C of T and Y returned correspond to the last point reached +C successfully without getting the flag IRES = 2 or 3. +C The flag values IRES = 2 and 3 should not be used to +C handle switches or root-stop conditions. This is better +C done by calling DLSODIS in a one-step mode and checking the +C stopping function for a sign change at each step. +C If quantities computed in the RES routine are needed +C externally to DLSODIS, an extra call to RES should be made +C for this purpose, for consistent and accurate results. +C To get the current dy/dt for the S argument, use DINTDY. +C RES must be declared External in the calling +C program. See note below for more about RES. +C +C ADDA = the name of the user-supplied subroutine which adds the +C matrix A = A(t,y) to another matrix stored in sparse form. +C This subroutine is to have the form +C SUBROUTINE ADDA (NEQ, T, Y, J, IAN, JAN, P) +C DOUBLE PRECISION T, Y(*), P(*) +C INTEGER IAN(*), JAN(*) +C where NEQ, T, Y, J, IAN, JAN, and P are input. This routine +C should add the J-th column of matrix A to the array P, of +C length NEQ. Thus a(i,J) is to be added to P(i) for all +C relevant values of i. Here T and Y have the same meaning as +C in Subroutine RES, and J is a column index (1 to NEQ). +C IAN and JAN are undefined in calls to ADDA for structure +C determination (MOSS .ne. 0). Otherwise, IAN and JAN are +C structure descriptors, as defined under optional outputs +C below, and so can be used to determine the relevant row +C indices i, if desired. +C Calls to ADDA are made with J = 1,...,NEQ, in that +C order. ADDA must not alter its input arguments. +C ADDA must be declared External in the calling program. +C See note below for more information about ADDA. +C +C JAC = the name of the user-supplied subroutine which supplies +C the Jacobian matrix, dr/dy, where r = g - A*s. JAC is +C required if MITER = 1, or MOSS = 1 or 3. Otherwise a dummy +C name can be passed. This subroutine is to have the form +C SUBROUTINE JAC (NEQ, T, Y, S, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), S(*), PDJ(*) +C INTEGER IAN(*), JAN(*) +C where NEQ, T, Y, S, J, IAN, and JAN are input. The +C array PDJ, of length NEQ, is to be loaded with column J +C of the Jacobian on output. Thus dr(i)/dy(J) is to be +C loaded into PDJ(i) for all relevant values of i. +C Here T, Y, and S have the same meaning as in Subroutine RES, +C and J is a column index (1 to NEQ). IAN and JAN +C are undefined in calls to JAC for structure determination +C (MOSS .ne. 0). Otherwise, IAN and JAN are structure +C descriptors, as defined under optional outputs below, and +C so can be used to determine the relevant row indices i, if +C desired. +C JAC need not provide dr/dy exactly. A crude +C approximation (possibly with greater sparsity) will do. +C In any case, PDJ is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Calls to JAC are made with J = 1,...,NEQ, in that order, and +C each such set of calls is preceded by a call to RES with the +C same arguments NEQ, T, Y, S, and IRES. Thus to gain some +C efficiency intermediate quantities shared by both calculations +C may be saved in a user Common block by RES and not recomputed +C by JAC, if desired. JAC must not alter its input arguments. +C JAC must be declared External in the calling program. +C See note below for more about JAC. +C +C Note on RES, ADDA, and JAC: +C These subroutines may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in the subroutines) and/or Y has length +C exceeding NEQ(1). However, these subroutines should not +C alter NEQ(1), Y(1),...,Y(NEQ) or any other input variables. +C See the descriptions of NEQ and Y below. +C +C NEQ = the size of the system (number of first order ordinary +C differential equations or scalar algebraic equations). +C Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in RES, ADDA, or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODIS package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to RES, ADDA, and JAC. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to RES, ADDA, or JAC. Each such subroutine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 0 or 1), and only for output on other +C calls. On the first call, Y must contain the vector of +C initial values. On output, Y contains the computed solution +C vector, evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to RES, +C ADDA, and JAC. Hence its length may exceed NEQ, +C and locations Y(NEQ+1),... may be used to store other real +C data and pass it to RES, ADDA, or JAC. (The DLSODIS +C package accesses only Y(1),...,Y(NEQ). ) +C +C YDOTI = a real array for the initial value of the vector +C dy/dt and for work space, of dimension at least NEQ. +C +C On input: +C If ISTATE = 0 then DLSODIS will compute the initial value +C of dy/dt, if A is nonsingular. Thus YDOTI will +C serve only as work space and may have any value. +C If ISTATE = 1 then YDOTI must contain the initial value +C of dy/dt. +C If ISTATE = 2 or 3 (continuation calls) then YDOTI +C may have any value. +C Note: If the initial value of A is singular, then +C DLSODIS cannot compute the initial value of dy/dt, so +C it must be provided in YDOTI, with ISTATE = 1. +C +C On output, when DLSODIS terminates abnormally with ISTATE = +C -1, -4, or -5, YDOTI will contain the residual +C r = g(t,y) - A(t,y)*(dy/dt). If r is large, t is near +C its initial value, and YDOTI is supplied with ISTATE = 1, +C there may have been an incorrect input value of +C YDOTI = dy/dt, or the problem (as given to DLSODIS) +C may not have a solution. +C +C If desired, the YDOTI array may be used for other +C purposes between calls to the solver. +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 0 or 1), TOUT may be +C equal to T for one call, then should .ne. T for the next +C call. For the initial T, an input value of TOUT .ne. T is +C used in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array scalar RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 0 means this is the first call for the problem, and +C DLSODIS is to compute the initial value of dy/dt +C (while doing other initializations). See note below. +C 1 means this is the first call for the problem, and +C the initial value of dy/dt has been supplied in +C YDOTI (DLSODIS will do other initializations). +C See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C the conditional inputs IA, JA, IC, and JC, +C and any of the optional inputs except H0. +C A call with ISTATE = 3 will cause the sparsity +C structure of the problem to be recomputed. +C (Structure information is reread from IA and JA if +C MOSS = 0, 3, or 4 and from IC and JC if MOSS = 0). +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 0 or 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 0 or 1 means nothing was done; TOUT = T and +C ISTATE = 0 or 1 on input. +C 2 means that the integration was performed successfully. +C 3 means that the user-supplied Subroutine RES signalled +C DLSODIS to halt the integration and return (IRES = 2). +C Integration as far as T was achieved with no occurrence +C of IRES = 2, but this flag was set on attempting the +C next step. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i) = 0.0) +C was requested on a variable which has now vanished. +C the integration was successful as far as T. +C -7 means that the user-supplied Subroutine RES set +C its error flag (IRES = 3) despite repeated tries by +C DLSODIS to avoid that condition. +C -8 means that ISTATE was 0 on input but DLSODIS was unable +C to compute the initial value of dy/dt. See the +C printed message for details. +C -9 means a fatal error return flag came from the sparse +C solver CDRV by way of DPRJIS or DSOLSS (numerical +C factorization or backsolve). This should never happen. +C The integration was successful as far as T. +C +C Note: An error return with ISTATE = -1, -4, or -5 +C may mean that the sparsity structure of the +C problem has changed significantly since it was last +C determined (or input). In that case, one can attempt to +C complete the integration by setting ISTATE = 3 on the next +C call, so that a new structure determination is done. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C similarly, ISTATE (= 3) need not be reset if RES told +C DLSODIS to return because the calling program must change +C the parameters of the problem. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a work array used for a mixture of real (double precision) +C and integer work space. +C The length of RWORK (in real words) must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LWM = 2*NNZ + 2*NEQ + (NNZ+9*NEQ)/LENRAT if MITER = 1, +C LWM = 2*NNZ + 2*NEQ + (NNZ+10*NEQ)/LENRAT if MITER = 2. +C in the above formulas, +C NNZ = number of nonzero elements in the iteration matrix +C P = A - con*J (con is a constant and J is the +C Jacobian matrix dr/dy). +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C (See the MF description for METH and MITER.) +C Thus if MAXORD has its default value and NEQ is constant, +C the minimum length of RWORK is: +C 20 + 16*NEQ + LWM for MF = 11, 111, 311, 12, 212, 412, +C 20 + 9*NEQ + LWM for MF = 21, 121, 321, 22, 222, 422. +C The above formula for LWM is only a crude lower bound. +C The required length of RWORK cannot be readily predicted +C in general, as it depends on the sparsity structure +C of the problem. Some experimentation may be necessary. +C +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 32 + 2*NEQ + NZA + NZC for MOSS = 0, +C 30 for MOSS = 1 or 2, +C 31 + NEQ + NZA for MOSS = 3 or 4. +C (NZA is the number of nonzero elements in matrix A, and +C NZC is the number of nonzero elements in dr/dy.) +C +C In DLSODIS, IWORK is used for conditional and +C optional inputs and optional outputs. +C +C The following two blocks of words in IWORK are conditional +C inputs, required if MOSS = 0, 3, or 4, but not otherwise +C (see the description of MF for MOSS). +C IWORK(30+j) = IA(j) (j=1,...,NEQ+1) +C IWORK(31+NEQ+k) = JA(k) (k=1,...,NZA) +C The two arrays IA and JA describe the sparsity structure +C to be assumed for the matrix A. JA contains the row +C indices where nonzero elements occur, reading in columnwise +C order, and IA contains the starting locations in JA of the +C descriptions of columns 1,...,NEQ, in that order, with +C IA(1) = 1. Thus, for each column index j = 1,...,NEQ, the +C values of the row index i in column j where a nonzero +C element may occur are given by +C i = JA(k), where IA(j) .le. k .lt. IA(j+1). +C If NZA is the total number of nonzero locations assumed, +C then the length of the JA array is NZA, and IA(NEQ+1) must +C be NZA + 1. Duplicate entries are not allowed. +C The following additional blocks of words are required +C if MOSS = 0, but not otherwise. If LC = 31 + NEQ + NZA, then +C IWORK(LC+j) = IC(j) (j=1,...,NEQ+1), and +C IWORK(LC+NEQ+1+k) = JC(k) (k=1,...,NZC) +C The two arrays IC and JC describe the sparsity +C structure to be assumed for the Jacobian matrix dr/dy. +C They are used in the same manner as the above IA and JA +C arrays. If NZC is the number of nonzero locations +C assumed, then the length of the JC array is NZC, and +C IC(NEQ+1) must be NZC + 1. Duplicate entries are not +C allowed. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODIS +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODIS between calls, if +C desired (but not for use by RES, ADDA, or JAC). +C +C MF = the method flag. Used only for input. +C MF has three decimal digits-- MOSS, METH, and MITER. +C For standard options: +C MF = 100*MOSS + 10*METH + MITER. +C MOSS indicates the method to be used to obtain the sparsity +C structure of the Jacobian matrix: +C MOSS = 0 means the user has supplied IA, JA, IC, and JC +C (see descriptions under IWORK above). +C MOSS = 1 means the user has supplied JAC (see below) and +C the structure will be obtained from NEQ initial +C calls to JAC and NEQ initial calls to ADDA. +C MOSS = 2 means the structure will be obtained from NEQ+1 +C initial calls to RES and NEQ initial calls to ADDA +C MOSS = 3 like MOSS = 1, except user has supplied IA and JA. +C MOSS = 4 like MOSS = 2, except user has supplied IA and JA. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C The BDF method is strongly preferred for stiff problems, +C while the Adams method is preferred when the problem is +C not stiff. If the matrix A(t,y) is nonsingular, +C stiffness here can be taken to mean that of the explicit +C ODE system dy/dt = A-inverse * g. If A is singular, +C the concept of stiffness is not well defined. +C If you do not know whether the problem is stiff, we +C recommend using METH = 2. If it is stiff, the advantage +C of METH = 2 over METH = 1 will be great, while if it is +C not stiff, the advantage of METH = 1 will be slight. +C If maximum efficiency is important, some experimentation +C with METH may be necessary. +C MITER indicates the corrector iteration method: +C MITER = 1 means chord iteration with a user-supplied +C sparse Jacobian, given by Subroutine JAC. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) sparse +C Jacobian (using NGP extra calls to RES per +C dr/dy value, where NGP is an optional +C output described below.) +C If MITER = 1 or MOSS = 1 or 3 the user must supply a +C Subroutine JAC (the name is arbitrary) as described above +C under JAC. Otherwise, a dummy argument can be used. +C +C The standard choices for MF are: +C MF = 21 or 22 for a stiff problem with IA/JA and IC/JC +C supplied, +C MF = 121 for a stiff problem with JAC supplied, but not +C IA/JA or IC/JC, +C MF = 222 for a stiff problem with neither IA/JA, IC/JC/, +C nor JAC supplied, +C MF = 321 for a stiff problem with IA/JA and JAC supplied, +C but not IC/JC, +C MF = 422 for a stiff problem with IA/JA supplied, but not +C IC/JC or JAC. +C +C The sparseness structure can be changed during the problem +C by making a call to DLSODIS with ISTATE = 3. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODIS, the variables listed +C below are quantities related to the performance of DLSODIS +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODIS, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On a return with -3 (illegal +C input) or -8, they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NRE IWORK(12) the number of residual evaluations (RES calls) +C for the problem so far, excluding those for +C structure determination (MOSS = 2 or 4). +C +C NJE IWORK(13) the number of Jacobian evaluations (each involving +C an evaluation of A and dr/dy) for the problem so +C far, excluding those for structure determination +C (MOSS = 1 or 3). This equals the number of calls +C to ADDA and (if MITER = 1) JAC. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNZ IWORK(19) the number of nonzero elements in the iteration +C matrix P = A - con*J (con is a constant and +C J is the Jacobian matrix dr/dy). +C +C NGP IWORK(20) the number of groups of column indices, used in +C difference quotient Jacobian aproximations if +C MITER = 2. This is also the number of extra RES +C evaluations needed for each Jacobian evaluation. +C +C NLU IWORK(21) the number of sparse LU decompositions for the +C problem so far. (Excludes the LU decomposition +C necessary when ISTATE = 0.) +C +C LYH IWORK(22) the base address in RWORK of the history array YH, +C described below in this list. +C +C IPIAN IWORK(23) the base address of the structure descriptor array +C IAN, described below in this list. +C +C IPJAN IWORK(24) the base address of the structure descriptor array +C JAN, described below in this list. +C +C NZL IWORK(25) the number of nonzero elements in the strict lower +C triangle of the LU factorization used in the chord +C iteration. +C +C NZU IWORK(26) the number of nonzero elements in the strict upper +C triangle of the LU factorization used in the chord +C iteration. The total number of nonzeros in the +C factorization is therefore NZL + NZU + NEQ. +C +C The following four arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address, and its description. +C For YH and ACOR, the base addresses are in RWORK (a real array). +C The integer arrays IAN and JAN are to be obtained by declaring an +C integer array IWK and identifying IWK(1) with RWORK(21), using either +C an equivalence statement or a subroutine call. Then the base +C addresses IPIAN (of IAN) and IPJAN (of JAN) in IWK are to be obtained +C as optional outputs IWORK(23) and IWORK(24), respectively. +C Thus IAN(1) is IWK(ipian), etc. +C +C Name Base Address Description +C +C IAN IPIAN (in IWK) structure descriptor array of size NEQ + 1. +C JAN IPJAN (in IWK) structure descriptor array of size NNZ. +C (see above) IAN and JAN together describe the sparsity +C structure of the iteration matrix +C P = A - con*J, as used by DLSODIS. +C JAN contains the row indices of the nonzero +C locations, reading in columnwise order, and +C IAN contains the starting locations in JAN of +C the descriptions of columns 1,...,NEQ, in +C that order, with IAN(1) = 1. Thus for each +C j = 1,...,NEQ, the row indices i of the +C nonzero locations in column j are +C i = JAN(k), IAN(j) .le. k .lt. IAN(j+1). +C Note that IAN(NEQ+1) = NNZ + 1. +C YH LYH the Nordsieck history array, of size NYH by +C (optional (NQCUR + 1), where NYH is the initial value +C output) of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. The base address LYH +C is another optional output, listed above. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in y on the +C last step. This is the vector E in the +C description of the error control. It is defined +C only on a return from DLSODIS with ISTATE = 2. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODIS. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODIS, if +C The default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODIS. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCMS(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODIS (see Part 3 below). +C RSAV must be a real array of length 224 +C or more, and ISAV must be an integer +C array of length 71 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCMS is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODIS. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODIS. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = IWORK(22) +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODIS). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(t), is already provided +C by DLSODIS directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = the base address of the history array YH, obtained +C as an optional output as shown above. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODIS is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODIS, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSS01/ of length 40 (6 double precision words +C followed by 34 integer words). +C +C If DLSODIS is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODIS is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODIS call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODIS call for that problem. To save and restore the Common +C blocks, use Subroutines DSRCMS (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODIS package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODIS call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODIS in the computation +C of the optional output IMXER, and the increments for difference +C quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODIS. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*w(I)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19820714 DATE WRITTEN +C 19830812 Major update, based on recent LSODI and LSODES revisions: +C Upgraded MDI in ODRV package: operates on M + M-transpose. +C Numerous revisions in use of work arrays; +C use wordlength ratio LENRAT; added IPISP & LRAT to Common; +C added optional outputs IPIAN/IPJAN; +C Added routine CNTNZU; added NZL and NZU to /LSS001/; +C changed ADJLR call logic; added optional outputs NZL & NZU; +C revised counter initializations; revised PREPI stmt. nos.; +C revised difference quotient increment; +C eliminated block /LSI001/, using IERPJ flag; +C revised STODI logic after PJAC return; +C revised tuning of H change and step attempts in STODI; +C corrections to main prologue and comments throughout. +C 19870320 Corrected jump on test of umax in CDRV routine. +C 20010125 Numerous revisions: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODI; +C in STODI, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031021 Fixed address offset bugs in Subroutine DPREPI. +C 20031027 Changed 0. to 0.0D0 in Subroutine DPREPI. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal names NRE, LSAVR to NFE, LSAVF resp. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODIS package. +C +C In addition to Subroutine DLSODIS, the DLSODIS package includes the +C following subroutines and function routines: +C DIPREPI acts as an interface between DLSODIS and DPREPI, and also +C does adjusting of work space pointers and work arrays. +C DPREPI is called by DIPREPI to compute sparsity and do sparse +C matrix preprocessing. +C DAINVGS computes the initial value of the vector +C dy/dt = A-inverse * g +C ADJLR adjusts the length of required sparse matrix work space. +C It is called by DPREPI. +C CNTNZU is called by DPREPI and counts the nonzero elements in the +C strict upper triangle of P + P-transpose. +C JGROUP is called by DPREPI to compute groups of Jacobian column +C indices for use when MITER = 2. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODI is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJIS computes and preprocesses the Jacobian matrix J = dr/dy +C and the Newton iteration matrix P = A - h*l0*J. +C DSOLSS manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCMS is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C ODRV constructs a reordering of the rows and columns of +C a matrix by the minimum degree algorithm. ODRV is a +C driver routine which calls Subroutines MD, MDI, MDM, +C MDP, MDU, and SRO. See Ref. 2 for details. (The ODRV +C module has been modified since Ref. 2, however.) +C CDRV performs reordering, symbolic factorization, numerical +C factorization, or linear system solution operations, +C depending on a path argument IPATH. CDRV is a +C driver routine which calls Subroutines NROC, NSFC, +C NNFC, NNSC, and NNTC. See Ref. 3 for details. +C DLSODIS uses CDRV to solve linear systems in which the +C coefficient matrix is P = A - con*J, where A is the +C matrix for the linear system A(t,y)*dy/dt = g(t,y), +C con is a scalar, and J is an approximation to +C the Jacobian dr/dy. Because CDRV deals with rowwise +C sparsity descriptions, CDRV works with P-transpose, not P. +C DLSODIS also uses CDRV to solve the linear system +C A(t,y)*dy/dt = g(t,y) for dy/dt when ISTATE = 0. +C (For this, CDRV works with A-transpose, not A.) +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJIS, DSOLSS + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, I1, I2, IER, IGO, IFLAG, IMAX, IMUL, IMXER, IPFLAG, + 1 IPGO, IREM, IRES, J, KGO, LENRAT, LENYHT, LENIW, LENRW, + 2 LIA, LIC, LJA, LJC, LRTEM, LWTEM, LYD0, LYHD, LYHN, MF1, + 3 MORD, MXHNL0, MXSTP0, NCOLM + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE LENRAT, MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODIS, DIPREPI, DPREPI, +C DINTDY, DSTODI, DPRJIS, and DSOLSS. +C The block DLSS01 is declared in subroutines DLSODIS, DAINVGS, +C DIPREPI, DPREPI, DPRJIS, and DSOLSS. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C In the Data statement below, set LENRAT equal to the ratio of +C the wordlength for a real number to that for an integer. Usually, +C LENRAT = 1 for single precision and 2 for double precision. If the +C true ratio is not an integer, use the next smaller integer (.ge. 1), +C----------------------------------------------------------------------- + DATA LENRAT/2/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropirately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 0 or 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 0 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .LE. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 0 or 1) +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C If ISTATE = 0 or 1, the final setting of work space pointers, the +C matrix preprocessing, and other initializations are done in Block C. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, and +C MF. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .LE. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + MOSS = MF/100 + MF1 = MF - 100*MOSS + METH = MF1/10 + MITER = MF1 - 10*METH + IF (MOSS .LT. 0 .OR. MOSS .GT. 4) GO TO 608 + IF (MITER .EQ. 2 .AND. MOSS .EQ. 1) MOSS = MOSS + 1 + IF (MITER .EQ. 2 .AND. MOSS .EQ. 3) MOSS = MOSS + 1 + IF (MITER .EQ. 1 .AND. MOSS .EQ. 2) MOSS = MOSS - 1 + IF (MITER .EQ. 1 .AND. MOSS .EQ. 4) MOSS = MOSS - 1 + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 1 .OR. MITER .GT. 2) GO TO 608 +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .LE. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .GT. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C Check RTOL and ATOL for legality. ------------------------------------ + 60 RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 65 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 65 CONTINUE +C----------------------------------------------------------------------- +C Compute required work array lengths, as far as possible, and test +C these against LRW and LIW. Then set tentative pointers for work +C arrays. Pointers to RWORK/IWORK segments are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted WM, YH, SAVR, EWT, ACOR. +C The required length of the matrix work space WM is not yet known, +C and so a crude minimum value is used for the initial tests of LRW +C and LIW, and YH is temporarily stored as far to the right in RWORK +C as possible, to leave the maximum amount of space for WM for matrix +C preprocessing. Thus if MOSS .ne. 2 or 4, some of the segments of +C RWORK are temporarily omitted, as they are not needed in the +C preprocessing. These omitted segments are: ACOR if ISTATE = 1, +C EWT and ACOR if ISTATE = 3 and MOSS = 1, and SAVR, EWT, and ACOR if +C ISTATE = 3 and MOSS = 0. +C----------------------------------------------------------------------- + LRAT = LENRAT + IF (ISTATE .LE. 1) NYH = N + IF (MITER .EQ. 1) LWMIN = 4*N + 10*N/LRAT + IF (MITER .EQ. 2) LWMIN = 4*N + 11*N/LRAT + LENYH = (MAXORD+1)*NYH + LREST = LENYH + 3*N + LENRW = 20 + LWMIN + LREST + IWORK(17) = LENRW + LENIW = 30 + IF (MOSS .NE. 1 .AND. MOSS .NE. 2) LENIW = LENIW + N + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 + LIA = 31 + IF (MOSS .NE. 1 .AND. MOSS .NE. 2) + 1 LENIW = LENIW + IWORK(LIA+N) - 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + LJA = LIA + N + 1 + LIA = MIN(LIA,LIW) + LJA = MIN(LJA,LIW) + LIC = LENIW + 1 + IF (MOSS .EQ. 0) LENIW = LENIW + N + 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + IF (MOSS .EQ. 0) LENIW = LENIW + IWORK(LIC+N) - 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + LJC = LIC + N + 1 + LIC = MIN(LIC,LIW) + LJC = MIN(LJC,LIW) + LWM = 21 + IF (ISTATE .LE. 1) NQ = ISTATE + NCOLM = MIN(NQ+1,MAXORD+2) + LENYHM = NCOLM*NYH + LENYHT = LENYHM + IMUL = 2 + IF (ISTATE .EQ. 3) IMUL = MOSS + IF (ISTATE .EQ. 3 .AND. MOSS .EQ. 3) IMUL = 1 + IF (MOSS .EQ. 2 .OR. MOSS .EQ. 4) IMUL = 3 + LRTEM = LENYHT + IMUL*N + LWTEM = LRW - 20 - LRTEM + LENWK = LWTEM + LYHN = LWM + LWTEM + LSAVF = LYHN + LENYHT + LEWT = LSAVF + N + LACOR = LEWT + N + ISTATC = ISTATE + IF (ISTATE .LE. 1) GO TO 100 +C----------------------------------------------------------------------- +C ISTATE = 3. Move YH to its new location. +C Note that only the part of YH needed for the next step, namely +C MIN(NQ+1,MAXORD+2) columns, is actually moved. +C A temporary error weight array EWT is loaded if MOSS = 2 or 4. +C Sparse matrix processing is done in DIPREPI/DPREPI. +C If MAXORD was reduced below NQ, then the pointers are finally set +C so that SAVR is identical to (YH*,MAXORD+2) +C----------------------------------------------------------------------- + LYHD = LYH - LYHN + IMAX = LYHN - 1 + LENYHM +C Move YH. Move right if LYHD < 0; move left if LYHD > 0. ------------- + IF (LYHD .LT. 0) THEN + DO 72 I = LYHN,IMAX + J = IMAX + LYHN - I + 72 RWORK(J) = RWORK(J+LYHD) + ENDIF + IF (LYHD .GT. 0) THEN + DO 76 I = LYHN,IMAX + 76 RWORK(I) = RWORK(I+LYHD) + ENDIF + 80 LYH = LYHN + IWORK(22) = LYH + IF (MOSS .NE. 2 .AND. MOSS .NE. 4) GO TO 85 +C Temporarily load EWT if MOSS = 2 or 4. + CALL DEWSET (N,ITOL,RTOL,ATOL,RWORK(LYH),RWORK(LEWT)) + DO 82 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 82 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 85 CONTINUE +C DIPREPI and DPREPI do sparse matrix preprocessing. ------------------- + LSAVF = MIN(LSAVF,LRW) + LEWT = MIN(LEWT,LRW) + LACOR = MIN(LACOR,LRW) + CALL DIPREPI (NEQ, Y, YDOTI, RWORK, IWORK(LIA), IWORK(LJA), + 1 IWORK(LIC), IWORK(LJC), IPFLAG, RES, JAC, ADDA) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (90, 628, 629, 630, 631, 632, 633, 634, 634), IPGO + 90 IWORK(22) = LYH + LYD0 = LYH + N + IF (LENRW .GT. LRW) GO TO 617 +C Set flag to signal changes to DSTODI.--------------------------------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 94 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into YDOTI. -------- + DO 92 I = 1,N + 92 YDOTI(I) = RWORK(I+LSAVF-1) + 94 IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 0 or 1). +C It contains all remaining initializations, the call to DAINVGS +C (if ISTATE = 0), the sparse matrix preprocessing, and the +C calculation if the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 CONTINUE + LYH = LYHN + IWORK(22) = LYH + TN = T + NST = 0 + NFE = 0 + H = 1.0D0 + NNZ = 0 + NGP = 0 + NZL = 0 + NZU = 0 +C Load the initial value vector in YH.---------------------------------- + DO 105 I = 1,N + 105 RWORK(I+LYH-1) = Y(I) + IF (ISTATE .NE. 1) GO TO 108 +C Initial dy/dt was supplied. Load it into YH (LYD0 points to YH(*,2).) + LYD0 = LYH + NYH + DO 106 I = 1,N + 106 RWORK(I+LYD0-1) = YDOTI(I) + 108 CONTINUE +C Load and invert the EWT array. (H is temporarily set to 1.0.)-------- + CALL DEWSET (N,ITOL,RTOL,ATOL,RWORK(LYH),RWORK(LEWT)) + DO 110 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 110 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C Call DIPREPI and DPREPI to do sparse matrix preprocessing.------------ + LACOR = MIN(LACOR,LRW) + CALL DIPREPI (NEQ, Y, YDOTI, RWORK, IWORK(LIA), IWORK(LJA), + 1 IWORK(LIC), IWORK(LJC), IPFLAG, RES, JAC, ADDA) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (115, 628, 629, 630, 631, 632, 633, 634, 634), IPGO + 115 IWORK(22) = LYH + IF (LENRW .GT. LRW) GO TO 617 +C Compute initial dy/dt, if necessary, and load it into YH.------------- + LYD0 = LYH + N + IF (ISTATE .NE. 0) GO TO 120 + CALL DAINVGS (NEQ, T, Y, RWORK(LWM), RWORK(LWM), RWORK(LACOR), + 1 RWORK(LYD0), IER, RES, ADDA) + NFE = NFE + 1 + IGO = IER + 1 + GO TO (120, 565, 560, 560), IGO +C Check TCRIT for legality (ITASK = 4 or 5). --------------------------- + 120 CONTINUE + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 125 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T +C Initialize all remaining parameters. --------------------------------- + 125 UROUND = DUMACH() + JSTART = 0 + RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NJE = 0 + NLU = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( YDOT(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C YDOT(i) = i-th component of initial value of dy/dt, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 145 + DO 140 I = 1,N + 140 TOL = MAX(TOL,RTOL(I)) + 145 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LYD0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LYD0-1) = H0*RWORK(I+LYD0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODI. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODIS- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODIS- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODI(NEQ,Y,YH,NYH,YH1,EWT,SAVF,SAVR,ACOR,WM,WM,RES, +C ADDA,JAC,DPRJIS,DSOLSS) +C Note: SAVF in DSTODI occupies the same space as YDOTI in DLSODIS. +C----------------------------------------------------------------------- + CALL DSTODI (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 YDOTI, RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), + 2 RWORK(LWM), RES, ADDA, JAC, DPRJIS, DSOLSS ) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 400, 550, 555), KGO +C +C KGO = 1:success; 2:error test failure; 3:convergence failure; +C 4:RES ordered return; 5:RES returned error; +C 6:fatal error from CDRV via DPRJIS or DSOLSS. +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 iF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODIS. +C if ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + IF ( KFLAG .EQ. -3 ) ISTATE = 3 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODIS- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODIS- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 590 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODIS- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 590 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODIS- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' error test failed repeatedly or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 60, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 570 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODIS- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 570 +C IRES = 3 returned by RES, despite retries by DSTODI. ----------------- + 550 MSG = 'DLSODIS- At T (=R1) residual routine returned ' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error IRES = 3 repeatedly.' + CALL XERRWD (MSG, 30, 206, 1, 0, 0, 0, 0, TN, 0.0D0) + ISTATE = -7 + GO TO 590 +C KFLAG = -5. Fatal error flag returned by DPRJIS or DSOLSS (CDRV). --- + 555 MSG = 'DLSODIS- At T (=R1) and step size H (=R2), a fatal' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error flag was returned by CDRV (by way of ' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Subroutine DPRJIS or DSOLSS) ' + CALL XERRWD (MSG, 40, 207, 0, 0, 0, 0, 2, TN, H) + ISTATE = -9 + GO TO 580 +C DAINVGS failed because matrix A was singular. ------------------------ + 560 MSG='DLSODIS- Attempt to initialize dy/dt failed because matrix A' + CALL XERRWD (MSG, 60, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' was singular. CDRV returned zero pivot error flag. ' + CALL XERRWD (MSG, 60, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = 'DAINVGS set its error flag to IER = (I1)' + CALL XERRWD (MSG, 40, 208, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C DAINVGS failed because RES set IRES to 2 or 3. ----------------------- + 565 MSG = 'DLSODIS- Attempt to initialize dy/dt failed ' + CALL XERRWD (MSG, 50, 209, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' because residual routine set its error flag ' + CALL XERRWD (MSG, 50, 209, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to IRES = (I1)' + CALL XERRWD (MSG, 20, 209, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C Compute IMXER if relevant. ------------------------------------------- + 570 BIG = 0.0D0 + IMXER = 1 + DO 575 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 575 + BIG = SIZE + IMXER = I + 575 CONTINUE + IWORK(16) = IMXER +C Compute residual if relevant. ---------------------------------------- + 580 LYD0 = LYH + NYH + DO 585 I = 1, N + RWORK(I+LSAVF-1) = RWORK(I+LYD0-1) / H + 585 Y(I) = RWORK(I+LYH-1) + IRES = 1 + CALL RES (NEQ, TN, Y, RWORK(LSAVF), YDOTI, IRES) + NFE = NFE + 1 + IF ( IRES .LE. 1 ) GO TO 595 + MSG = 'DLSODIS- Residual routine set its flag IRES ' + CALL XERRWD (MSG, 50, 210, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to (I1) when called for final output. ' + CALL XERRWD (MSG, 50, 210, 0, 1, IRES, 0, 0, 0.0D0, 0.0D0) + GO TO 595 +C set y vector, t, and optional outputs. ------------------------------- + 590 DO 592 I = 1,N + 592 Y(I) = RWORK(I+LYH-1) + 595 T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODIS- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODIS- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODIS-ISTATE .gt. 1 but DLSODIS not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODIS- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODIS- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODIS- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODIS- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODIS- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODIS- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODIS- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODIS- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODIS- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODIS- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODIS- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG = 'DLSODIS- RWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 17, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG = 'DLSODIS- IWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 18, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODIS- RTOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODIS- ATOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODIS- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODIS- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODIS- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODIS- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODIS- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODIS- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODIS- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG='DLSODIS- RWORK length insufficient (for Subroutine DPREPI). ' + CALL XERRWD (MSG, 60, 28, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 28, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG='DLSODIS- RWORK length insufficient (for Subroutine JGROUP). ' + CALL XERRWD (MSG, 60, 29, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 29, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 630 MSG='DLSODIS- RWORK length insufficient (for Subroutine ODRV). ' + CALL XERRWD (MSG, 60, 30, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 30, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG='DLSODIS- Error from ODRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), ODRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 31, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + GO TO 700 + 632 MSG='DLSODIS- RWORK length insufficient (for Subroutine CDRV). ' + CALL XERRWD (MSG, 60, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 32, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 633 MSG='DLSODIS- Error from CDRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), CDRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 33, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + IF (IMUL .EQ. 2) THEN + MSG=' Duplicate entry in sparsity structure descriptors. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (IMUL .EQ. 3 .OR. IMUL .EQ. 6) THEN + MSG=' Insufficient storage for NSFC (called by CDRV). ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + GO TO 700 + 634 MSG='DLSODIS- At T (=R1) residual routine (called by DPREPI) ' + CALL XERRWD (MSG, 60, 34, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IER = -IPFLAG - 5 + MSG = ' returned error IRES (=I1)' + CALL XERRWD (MSG, 30, 34, 0, 1, IER, 0, 1, TN, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODIS- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODIS --------------------- + END + + diff --git a/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/tests.f90 b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/tests.f90 new file mode 100644 index 000000000..37ef38d85 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/bubbleGrowth/src/src/tests.f90 @@ -0,0 +1,40 @@ +!> @file +!! subroutines for growth of a single bubble and various parametric studies +!! @author Pavel Ferkl +!! @ingroup bblgr +module tests + use model + implicit none + private + public onegrowth +contains +!********************************BEGINNING************************************* +!> simulates one growth of a bubble +subroutine onegrowth + !HORNET windows +! character(len=99) :: fileplacein='C:\Pavel\Dropbox\src\bubblegrowth_src\' + !HORNET linux +! character(len=99) :: fileplacein='/home/me/Dropbox/src/bubblegrowth_src/' + !laptop windows + ! character(len=99) :: fileplacein=& + ! 'C:\Users\pavel\Dropbox\src\bubblegrowth_src\' +! character(len=99) :: fileplacein='./' !current folder + character(len=99) :: fileplacein='../',& !modena + fileplaceout='../results/',& !modena + inputs='inputs.in',outputs_1d='outputs_1d.out',& + outputs_GR='outputs_GR.out',outputs_GR_c='outputs_GR_c.out',& + outputs_GR_p='outputs_GR_p.out',spar='GR_par.dat',concloc + concloc=fileplaceout + inputs=TRIM(ADJUSTL(fileplacein))//TRIM(ADJUSTL(inputs)) + outputs_1d=TRIM(ADJUSTL(fileplaceout))//TRIM(ADJUSTL(outputs_1d)) + outputs_GR=TRIM(ADJUSTL(fileplaceout))//TRIM(ADJUSTL(outputs_GR)) + outputs_GR_c=TRIM(ADJUSTL(fileplaceout))//TRIM(ADJUSTL(outputs_GR_c)) + outputs_GR_p=TRIM(ADJUSTL(fileplaceout))//TRIM(ADJUSTL(outputs_GR_p)) + spar=TRIM(ADJUSTL(fileplaceout))//TRIM(ADJUSTL(spar)) + call read_inputs(inputs) +! call save_surrogate_parameters(spar) + call bblpreproc + call bblinteg(outputs_1d,outputs_GR,outputs_GR_c,outputs_GR_p,concloc) +end subroutine onegrowth +!***********************************END**************************************** +end module tests diff --git a/applications/PUfoam/MoDeNaModels/diffusivity/__init__.py b/applications/PUfoam/MoDeNaModels/diffusivity/__init__.py new file mode 100644 index 000000000..7a64a4452 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/diffusivity/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +import diffusivity + diff --git a/applications/PUfoam/MoDeNaModels/diffusivity/diffusivity.py b/applications/PUfoam/MoDeNaModels/diffusivity/diffusivity.py new file mode 100644 index 000000000..a95ee2827 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/diffusivity/diffusivity.py @@ -0,0 +1,133 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Surrogate function and model definitions for diffusivity of blowing agents in +polymer. + +@author Erik Laurini +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_aging +""" + +import os +import modena +from modena import CFunction, IndexSet, Workflow2, \ + ForwardMappingModel, BackwardMappingModel, SurrogateModel +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +## Create terminal for colour output +term = Terminal() +## List of components, for which surrogate model is provided +species = IndexSet( + name= 'diffusivity_pol_species', + names= [ 'CO2', 'CyP', 'N2', 'O2' ] +) +## Surrogate function for diffusivity of blowing agents in polymer. +# +# Diffusivity is a function of temperature. +f_diffusivity = CFunction( + Ccode=''' +#include "modena.h" +#include "math.h" + +void diffusivityPol +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + const double a = parameters[0]; + const double b = parameters[1]; + + outputs[0] = a*exp(-(b*(1/T))); +} +''', + # These are global bounds for the function + inputs={ + 'T': {'min': 273, 'max': 450}, + }, + outputs={ + 'diffusivity': {'min': 0, 'max': +9e99, 'argPos': 0}, + }, + parameters={ + 'param0[A]': {'min': 0.0, 'max': +9e99, 'argPos': 0}, + 'param1[A]': {'min': 0.0, 'max': +9e99, 'argPos': 1}, + }, + indices={ + 'A': species, + }, +) +## Surrogate model for diffusivity +# +# Forward mapping model is used. +m_CO2_diffusivity = ForwardMappingModel( + _id='diffusivityPol[A=CO2]', + surrogateFunction=f_diffusivity, + substituteModels=[], + parameters=[0.00123, 6156], +) +## Surrogate model for diffusivity +# +# Forward mapping model is used. +m_CyP_diffusivity = ForwardMappingModel( + _id='diffusivityPol[A=CyP]', + surrogateFunction=f_diffusivity, + substituteModels=[], + parameters=[1.7e-7, 4236], +) +## Surrogate model for diffusivity +# +# Forward mapping model is used. +m_N2_diffusivity = ForwardMappingModel( + _id='diffusivityPol[A=N2]', + surrogateFunction=f_diffusivity, + substituteModels=[], + parameters=[0.003235, 6927], +) +## Surrogate model for diffusivity +# +# Forward mapping model is used. +m_O2_diffusivity = ForwardMappingModel( + _id='diffusivityPol[A=O2]', + surrogateFunction=f_diffusivity, + substituteModels=[], + parameters=[0.00085, 6411], +) diff --git a/applications/PUfoam/MoDeNaModels/foamAging/.gitignore b/applications/PUfoam/MoDeNaModels/foamAging/.gitignore new file mode 100644 index 000000000..9bf557699 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/.gitignore @@ -0,0 +1 @@ +degas diff --git a/applications/PUfoam/MoDeNaModels/foamAging/__init__.py b/applications/PUfoam/MoDeNaModels/foamAging/__init__.py new file mode 100644 index 000000000..c431ca824 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from foamAging import m + diff --git a/applications/PUfoam/MoDeNaModels/foamAging/foamAging.py b/applications/PUfoam/MoDeNaModels/foamAging/foamAging.py new file mode 100644 index 000000000..0d7ecdc5c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/foamAging.py @@ -0,0 +1,46 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Backward mapping Firetask for Foam ageing model. +Contains path to the detailed model executable. + +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_aging +""" + +import os +from modena.Strategy import BackwardMappingScriptTask + +m = BackwardMappingScriptTask( + script = os.path.dirname(os.path.abspath(__file__))+'/src/degas' +) diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/foamAging/src/CMakeLists.txt new file mode 100644 index 000000000..491f34c89 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/CMakeLists.txt @@ -0,0 +1,18 @@ +cmake_minimum_required (VERSION 2.8) +project (tutorialModels C Fortran) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) +endif() + +find_package(MODENA REQUIRED) + +include_directories(${MODENA_INCLUDE_DIRS}) +link_directories(${MODENA_LIBRARY_DIRS}) + +set (CMAKE_Fortran_FLAGS "-ffree-line-length-none -O3") +set (CMAKE_Fortran_MODULE_DIRECTORY mod) +file (GLOB _sources RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} src/*.f*) +add_executable(degas ${_sources}) +target_link_libraries(degas MODENA::modena) diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/InOut.f90 b/applications/PUfoam/MoDeNaModels/foamAging/src/src/InOut.f90 new file mode 100644 index 000000000..f8da2e8fd --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/InOut.f90 @@ -0,0 +1,222 @@ +!> @file +!! subroutines for calculation of equivalent conductivity of the foam +!! @author Michal Vonka +!! @author Pavel Ferkl +!! @ingroup foam_aging + +!> reads input file, packs variables to rpar and ipar variables +subroutine input(rpar, ipar) + implicit none +!c + integer i + integer ipar(*) + integer divwall, ncell + integer nroutputs + integer solModel,diffModel + double precision dcell, dwall, L + double precision pressure ! initial conds + double precision pBCair, pBCCO2, pBCpent ! boundary conds + double precision pICair, pICCO2, pICpent ! initial conds + double precision DO2, DN2, DCO2, Dpent, Dair, Dgas + double precision SO2, SN2, SCO2, Spent, Sair + double precision R, T, temp_cond, rhop + double precision pcA, pcB, pcApcB, TcA, TcB, TcATcB + double precision MA, MB, Mterm ,a, b, aToverTcsb + double precision fstrut,rhof +!c + double precision tend + double precision rpar(*) ! real param + + double precision PI + parameter (PI = 3.1415926d0) + parameter (R = 8.314d0) + +!c Read input params - pak module params :) + open(2, file = '../input.in', status = 'old') + read(2, *) nroutputs + read(2, *) divwall + read(2, *) tend + read(2, *) T + read(2, *) temp_cond + read(2, *) rhop + read(2, *) pressure + + read(2, *) pBCair, pBCCO2, pBCpent ! boundaries + read(2, *) pICair, pICCO2, pICpent ! initial C + + read(2, *) L + read(2, *) dwall + read(2, *) dcell + + read(2, *) fstrut + read(2, *) rhof + read(2, *) solModel + read(2, *) Sair,SCO2,Spent + read(2, *) diffModel + read(2, *) Dair,DCO2,Dpent + + close(2) + continue + + ncell = dint(L/(dcell+dwall)) + continue + ! ! computation of diffusivities and solubilities as a function of T + ! DCO2=12.3d-4*dexp(-51180.0d0/R/T)!/1e0 ! m2/s + ! DO2 =8.5d-4* dexp(-53300.0d0/R/T) + ! DN2=3.24d-3*dexp(-6927.0d0/T) + ! Dpent=1.7d-7*dexp(-4236.0d0/T)!/4e2!/2.5d0 + ! Dair=(0.21d0*DO2+0.79d0*DN2)!/3e1 + ! + ! ! cm3STP/cm3/Pa + ! SCO2 = 7.13d-6*T/343.0d0*dexp(-2587.0d0*(1.0d0/343.0d0-1.0d0/T)) + ! Spent = 4.45d-5*T/353.0d0*dexp(-527.45d0*(1.0d0/353.0d0-1.0d0/T)) + ! Sair = -(5.0d-9 * T**2 - 4.0d-6 * T + 0.0007d0)/10 + ! + ! write(*,*) 'CO2 permeability',SCO2*DCO2 + ! write(*,*) 'pentane permeability',Spent*Dpent + ! write(*,*) 'air permeability',Sair*Dair + + continue + ! gas difusivity accoriding to Bird 1975, p.505, eq. 16.3-1 + pcA = 33.5d0 ! N2 + pcB = 72.9d0 ! CO2 + pcApcB = (pcA*pcB)**(1.0d0/3.0d0) ! CO2, N2, B-1 p. 744 + TcA = 126.2d0 ! N2 + TcB = 304.2d0 ! CO2 + TcATcB = (TcA*TcB)**(5.0d0/12.0d0) + MA = 28.02d0 + MB = 44.01d0 + Mterm = dsqrt(1/MA + 1/MB) + a = 2.7450d-4 ! non-polar pairs + b = 1.823d0 + aToverTcsb = a*(T/dsqrt(TcA*TcB))**b + + ! pressure in atmospheres, cm2/s + Dgas = (aToverTcsb*pcApcB*TcATcB*Mterm)*1.0d5/pressure + continue + Dgas = Dgas * 1.0d-4 ! m2/s + continue + + ipar(1) = nroutputs + ipar(2) = ncell + ipar(4) = divwall+1 ! FV in one cell + ipar(5) = (divwall+1)*ncell ! total number of FV + ipar(6:8) = solModel + ipar(9:11) = diffModel + + rpar(1) = dcell + rpar(2) = dwall + rpar(3) = tend + rpar(4) = Dair ! average air + rpar(5) = DCO2 + rpar(6) = Sair ! average air + rpar(7) = SCO2 + + rpar(8) = pressure + ! rpar(9) = initpressure + rpar(10)= R*T + + rpar(11) = Dpent + rpar(12) = Spent + rpar(13) = Dgas + + rpar(14) = pBCair + rpar(15) = pBCCO2 + rpar(16) = pBCpent + + rpar(17) = pICair*pressure + rpar(18) = pICCO2*pressure + rpar(19) = pICpent*pressure + + rpar(20)=fstrut + rpar(21)=rhof + rpar(22)=temp_cond + rpar(23)=rhop + + continue + + return +end subroutine input +!c +!> saves results to file +subroutine output(iprof, time, ystate, neq) + implicit none + integer i, j, iprof, job + integer nFV, onecell, ncell, neq + integer divwall + + double precision time, test + double precision ystate(*) + double precision dwall, dcell, hwall + + double precision pBCair, pBCCO2, pBCpent, RT ! boundary conds + double precision, allocatable :: length(:) + + character(len=1) :: name_1 ! one character + character(len=2) :: name_2 ! two characters + character(len=3) :: name_3 ! three characters + character(len=4) :: name_f ! final name of file + + continue + ! ipar + dcell = ystate(nEQ + 1) + dwall = ystate(nEQ + 2) + ncell = dint(ystate(nEQ + 11)) + onecell = dint(ystate(nEQ + 12)) != dble(ipar(4)) + divwall = onecell-1 + nFV = ncell*onecell + hwall = dwall/dble(divwall) + + pBCair = ystate(nEQ + 16) != rpar(14) != pBCair + pBCCO2 = ystate(nEQ + 17) != rpar(15) != pBCCO2 + pBCpent= ystate(nEQ + 18) != rpar(16) != pBCpent + RT = ystate(nEQ + 10) + + if (.NOT. allocated(length)) then + allocate (length(0:nFV)) + endif + + ! compute lengths + continue + + length(0:nFV) = 0.0d0 + do i = 0, nFV + if (mod(i,onecell).eq.0) length(i) = length(i-1) + dcell/2.0d0 + if (mod(i,onecell).eq.1) length(i) = length(i-1) + dcell/2.0d0 + if (mod(i,onecell).gt.1) length(i) = length(i-1) + hwall + enddo + +! continue +! write(*,*) length(1:nFV) + continue + + if (iprof < 10) then + write(name_1,'(I1)') iprof + name_f = '000' // name_1 + elseif (iprof >= 10 .and. iprof < 100) then + write(name_2,'(I2)') iprof + name_f = '00' // name_2 + elseif (iprof >= 100 .and. iprof < 1000) then + write(name_3,'(I3)') iprof + name_f = '0' // name_3 + else + write(name_f,'(I4)') iprof + endif + + continue + open(unit=11,file='../results/H2perm_'//trim(name_f)//'.dat') + + ! BC + write (11,100) time/(3600.0d0*24.0d0),length(0), pBCair/RT,pBCCO2/RT,& + pBCpent/RT + ! profiles + do i = 1, nFV + write (11,100) time/(3600.0d0*24.0d0),length(i),ystate(i),& + ystate(nFV+i),ystate(2*nFV+i) + enddo + continue + close (11) + return +100 format (f8.2,F12.8,F12.6,F12.6,F12.6) +end subroutine output +!c diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/conductivity.f90 b/applications/PUfoam/MoDeNaModels/foamAging/src/src/conductivity.f90 new file mode 100644 index 000000000..db041b7a2 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/conductivity.f90 @@ -0,0 +1,243 @@ +!> @file +!! subroutines for calculation of equivalent conductivity of the foam +!! using Modena calls +!! @author Pavel Ferkl +!! @ingroup foam_aging +module conductivity + use constants + use fmodena + use physicalProperties + implicit none + integer :: gasModel=3 + private + public equcond +contains +!********************************BEGINNING************************************* +!> determine equivalent conductivity of the foam +subroutine equcond(keq,ystate,neq,eps,fstrut,temp) + real(dp), intent(out) :: keq + real(dp), dimension(:), intent(in) :: ystate + integer, intent(in) :: neq + real(dp), intent(in) :: temp,eps,fstrut + real(dp) :: dcell,ccd,cair,ccyp,xcd,xair,xcyp,kgas + real(dp), dimension(4) :: kg,yg,cpg + integer :: i,ncell,onecell,nFV + dcell = ystate(nEQ + 1 ) + ncell = int(ystate(nEQ + 11)) + onecell = int(ystate(nEQ + 12)) != dble(ipar(4)) + nFV = onecell*ncell + !calculate average concentrations + ccd=0 + cair=0 + ccyp=0 + do i=1,ncell + cair=cair+ystate(i*onecell) + ccd=ccd+ystate(nFV+i*onecell) + ccyp=ccyp+ystate(2*nFV+i*onecell) + enddo + cair=cair/ncell + ccd=ccd/ncell + ccyp=ccyp/ncell + xair=cair/(cair+ccd+ccyp) + xcd=ccd/(cair+ccd+ccyp) + xcyp=ccyp/(cair+ccd+ccyp) + kg(1)=cdConductivity(temp) + kg(2)=nitrConductivity(temp) + kg(3)=oxyConductivity(temp) + kg(4)=cypConductivity(temp) + yg=(/xcd,0.79_dp*xair,0.21_dp*xair,xcyp/) + ! yg=(/0.0_dp,0.79_dp*0.5_dp,0.21_dp*0.5_dp,0.5_dp/) + cpg(1)=cdHeatCapacity(temp) + cpg(2)=nitrHeatCapacity(temp) + cpg(3)=oxyHeatCapacity(temp) + cpg(4)=cypHeatCapacity(temp) + select case(gasModel) ! determine conductivity of gas mixture + case (1) + kgas = weightedAverage(kg,yg) + case (2) + kgas = extWassiljewa(kg,yg,Tc,pc,Mg,temp,1._dp) + case (3) + kgas = lindsayBromley(kg,yg,Tb,cpg,Mg,temp) + case (4) + kgas = pandeyPrajapati(kg,yg,Tb,Mg,temp) + case default + stop 'unknown gas conductivity model' + end select + ! write(*,*) yg + ! write(*,*) kg + ! write(*,*) "kgas: ", kgas + ! stop + call modena_inputs_set(kfoamInputs, kfoamEpspos, eps) + call modena_inputs_set(kfoamInputs, kfoamDcellpos, dcell) + call modena_inputs_set(kfoamInputs, kfoamFstrutpos, fstrut) + call modena_inputs_set(kfoamInputs, kfoamKgaspos, kgas) + call modena_inputs_set(kfoamInputs, kfoamTemppos, temp) + ret = modena_model_call (kfoamModena, kfoamInputs, kfoamOutputs) + if (modena_error_occurred()) then + call exit(modena_error()) + endif + keq = modena_outputs_get(kfoamOutputs, 0_c_size_t); !fetch results +end subroutine equcond +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> determine thermal conductivity of a mixture +!! simple weighted average +real(dp) function weightedAverage(k,yin) result(kmix) + real(dp), dimension(:), intent(in) :: k !thermal conductivities + real(dp), dimension(:), intent(in) :: yin !molar fractions + integer :: n,i,j + real(dp), dimension(:), allocatable :: y + n=size(k) + allocate(y(n)) + y=yin + if (minval(y)<0) stop 'Input molar fractions to weightedAverage & + cannot be negative.' + y=y/sum(y) + kmix=0 + do i=1,size(k) + kmix=kmix+yin(i)*k(i) + enddo +end function weightedAverage +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> determine thermal conductivity of a mixture +!! extended Wassiljewa model, parameters calculated according to Mason and Saxena +!! [link](http://dx.doi.org/10.1016/j.fluid.2007.07.059) +real(dp) function extWassiljewa(k,yin,Tc,pc,M,T,eps) result(kmix) + real(dp), dimension(:), intent(in) :: k !thermal conductivities + real(dp), dimension(:), intent(in) :: yin !molar fractions + real(dp), dimension(:), intent(in) :: Tc !critical temperatures + real(dp), dimension(:), intent(in) :: pc !critical pressures + real(dp), dimension(:), intent(in) :: M !molar masses + real(dp), intent(in) :: T !temperature + real(dp), intent(in) :: eps !parameter close to one + integer :: n,i,j + real(dp) :: x + real(dp), dimension(:), allocatable :: gam,y + real(dp), dimension(:,:), allocatable :: ktr,A + n=size(k) + allocate(y(n),gam(n),ktr(n,n),A(n,n)) + y=yin + if (minval(y)<0) stop 'Input molar fractions to extWassiljewa & + cannot be negative.' + y=y/sum(y) + gam=210*(Tc*M**3/pc**4)**(1/6._dp) + do i=1,n + do j=1,n + ktr(i,j)=gam(j)*(exp(0.0464_dp*T/Tc(i))-exp(-0.2412_dp*T/Tc(i)))/& + gam(i)/(exp(0.0464_dp*T/Tc(j))-exp(-0.2412_dp*T/Tc(j))) + A(i,j)=eps*(1+sqrt(ktr(i,j))*(M(i)/M(j))**0.25_dp)**2/& + sqrt(8*(1+M(i)/M(j))) + enddo + enddo + kmix=0 + do i=1,n + x=0 + do j=1,n + x=x+y(j)*A(i,j) + enddo + kmix=kmix+y(i)*k(i)/x + enddo +end function extWassiljewa +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> determine thermal conductivity of a mixture +!! Lindsay-Bromley model +!! see [link](http://dx.doi.org/10.1021/ie50488a017) +real(dp) function lindsayBromley(k,yin,Tb,cp,M,T) result(kmix) + real(dp), dimension(:), intent(in) :: & + k,& !thermal conductivities + yin,& !molar fractions + Tb,& !boiling point temperatures + cp,& !thermal capacities at constant pressure + M !molar masses + real(dp), intent(in) :: & + T !temperature + integer :: n,i,j + real(dp) :: x + real(dp), dimension(:), allocatable :: & + y,& !molar fractions + S,& !Sutherland constants + gam,& !heat capacity ratio + cv !thermal capacities at constant volume + real(dp), dimension(:,:), allocatable :: A + n=size(k) + allocate(y(n),cv(n),S(n),gam(n),A(n,n)) + y=yin + if (minval(y)<0) stop 'Input molar fractions to extWassiljewa & + cannot be negative.' + y=y/sum(y) + do i=1,n + S(i)=1.5_dp*Tb(i) + enddo + cv=cp-Rg !ideal gas assumed + gam=cp/cv + do i=1,n + do j=1,n + x=k(i)/k(j)*cp(j)/cp(i)*(9-5/gam(j))/(9-5/gam(i)) + A(i,j)=0.25_dp*(1+sqrt(x*(M(j)/M(i))**0.75_dp*(T+S(i))/(T+S(j))))**2*& + (T+sqrt(S(i)*S(j)))/(T+S(j)) + enddo + enddo + kmix=0 + do i=1,n + x=0 + do j=1,n + x=x+y(j)*A(i,j) + enddo + kmix=kmix+y(i)*k(i)/x + enddo +end function lindsayBromley +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> determine thermal conductivity of a mixture +!! Pandey-Prajapati model +!! see [link](http://www.new1.dli.ernet.in/data1/upload/insa/INSA_1/20005baf_372.pdf) +real(dp) function pandeyPrajapati(k,yin,Tb,M,T) result(kmix) + real(dp), dimension(:), intent(in) :: & + k,& !thermal conductivities + yin,& !molar fractions + Tb,& !boiling point temperatures + M !molar masses + real(dp), intent(in) :: & + T !temperature + integer :: n,i,j + real(dp) :: x + real(dp), dimension(:), allocatable :: & + y,& !molar fractions + S !Sutherland constants + real(dp), dimension(:,:), allocatable :: A + n=size(k) + allocate(y(n),S(n),A(n,n)) + y=yin + if (minval(y)<0) stop 'Input molar fractions to extWassiljewa & + cannot be negative.' + y=y/sum(y) + do i=1,n + S(i)=1.5_dp*Tb(i) + enddo + do i=1,n + do j=1,n + A(i,j)=0.25_dp*(1+sqrt(k(i)/k(j)*(M(i)/M(j))**0.25_dp*& + (T+S(i))/(T+S(j))))**2*(T+sqrt(S(i)*S(j)))/(T+S(j)) + enddo + enddo + kmix=0 + do i=1,n + x=0 + do j=1,n + x=x+y(j)*A(i,j) + enddo + kmix=kmix+y(i)*k(i)/x + enddo +end function pandeyPrajapati +!***********************************END**************************************** +end module conductivity diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/constants.f90 b/applications/PUfoam/MoDeNaModels/foamAging/src/src/constants.f90 new file mode 100644 index 000000000..051ddc8d7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/constants.f90 @@ -0,0 +1,26 @@ +!> @file +!! stores parameters and commonly used variables as globals +!! @author Pavel Ferkl +!! @ingroup foam_aging +module constants + use,intrinsic :: iso_fortran_env, only: dp => real64 + implicit none + real(dp), parameter :: & + pi=3.1415926535897932384626433832795028841971693993751058209749445923& + &078164062862089986280348253421170679_dp,& ! @file +!! i/o utilities +!! @author Pavel Ferkl +!! @ingroup foam_cond +module ioutils + implicit none + private + public newunit,str +contains +!********************************BEGINNING************************************* +!> returns lowest i/o unit number not in use +integer function newunit(unit) result(n) + integer, intent(out), optional :: unit + logical inuse + integer, parameter :: & + nmin=123,& ! avoid lower numbers which are sometimes reserved + nmax=999 ! may be system-dependent + do n = nmin, nmax + inquire(unit=n, opened=inuse) + if (.not. inuse) then + if (present(unit)) unit=n + return + end if + end do + write(*,*) "newunit ERROR: available unit not found." + stop +end function newunit +!***********************************END**************************************** + + + +!********************************BEGINNING************************************* +!> converts integer to string +function str(k) + character(len=20) :: str + integer, intent(in) :: k + write (str, *) k + str = adjustl(str) +end function str +!***********************************END**************************************** +end module ioutils diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/main.f90 b/applications/PUfoam/MoDeNaModels/foamAging/src/src/main.f90 new file mode 100644 index 000000000..cbc6592a8 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/main.f90 @@ -0,0 +1,252 @@ +!> @file +!! Calculate dynamics diffusion in the foam structure. +!! @author Michal Vonka +!! @author Pavel Ferkl +!! @ingroup foam_aging +!c 30.5.2012 - MV (michal.vonka@seznam.cz) +!c 2.7.2012 - MV, remaking to partial pressures of H2 and N2 +!c 6.3.2015 - MV, application to PU foams solved by CO2 penetrating air +! 3.4.2015 PF (pavel.ferkl@vscht.cz), calculation of conductivity +program foam_diffusion + use conductivity + use physicalProperties + use ioutils + use constants + implicit none + integer ipar(20) + + integer nroutputs, multiplicator + + double precision rpar(23) + + integer :: itol, itask, istate, iopt + integer :: MF, ML, MU, LRW, LIW, LENRAT, NNZ, LWM + integer :: nFV, nEQ + integer :: i, counter, fi + integer, allocatable :: IWORK(:) + + double precision :: tin, tout, tend, keq + double precision :: rtol, atol + + double precision, allocatable :: ystate(:), yprime(:) ! vector of state + double precision, allocatable :: RWORK(:) + + real(dp) :: temp,temp_cond + real(dp) :: fstrut + real(dp) :: rhof + real(dp), dimension(3) :: x0 + real(dp) :: eps + real(dp) :: rhop + real(dp) :: ccyp + + external modelPU, jdem +!c +!c --------------------------------------------------------------------- +!c + call createModels + write(*,*) cdConductivity(300._dp) + write(*,*) airConductivity(300._dp) + write(*,*) cypConductivity(300._dp) + write(*,*) gasConductivity(300._dp,1._dp,0._dp,0._dp) + stop + call input(rpar, ipar) + temp=rpar(10)/8.314d0 + nroutputs = ipar(1) + nFV = ipar(5) != (divwall+1)*ncell ! total number of FV + nEQ = 3*nFV + solModel=ipar(6:8) + diffModel = ipar(9:11) +! ----------------------------------- +! find out physical properties +! ----------------------------------- + call createModels + fstrut=rpar(20) + rhof=rpar(21) + rhop=rpar(23) + eps=1-rhof/rhop + temp_cond=rpar(22) + if (ipar(6)==1) then + rpar(6)=airSolubility(temp) + endif + if (ipar(7)==1) then + rpar(7)=cdSolubility(temp) + endif + if (ipar(8)==1) then + rpar(12)=cypSolubility(temp) + endif + if (ipar(9)==1) then + rpar(4)=airDiffusivity(temp) + endif + if (ipar(10)==1) then + rpar(5)=cdDiffusivity(temp) + endif + if (ipar(11)==1) then + rpar(11)=cypDiffusivity(temp) + endif + write(*,*) 'air permeability',rpar(6)*rpar(4) + write(*,*) 'CO2 permeability',rpar(7)*rpar(5) + write(*,*) 'pentane permeability',rpar(12)*rpar(11) +!c ----------------------------------- +!c Allocate memory for working arrays +!c ----------------------------------- + LENRAT = 2 ! usually for double precision + NNZ = 1000*nEQ ! nonzero elements - MV CHECK + LWM = 2*NNZ + 2*NEQ + (NNZ+10*NEQ)/LENRAT ! MITER = 2 + LIW = 31 + NEQ + NNZ +100 + LRW = 20 + (2 + 1./LENRAT)*NNZ + (11 + 9./LENRAT)*NEQ + mf = 222 ! 222 stiff, internally generated jacobi matrix + ! 10 'normal' - chage the allocation to smaller fields + ! 210 structure obtained NEQ+1 calls, implicit Adams, +!c ----------------------------------- +!c Allocate memory for working arrays +!c ----------------------------------- + allocate( ystate(1:nEQ + 20) ) + allocate( yprime(1:nEQ) ) + allocate( rwork (1:LRW) ) + allocate( iwork (1:LIW) ) +!c ---------------------------------- +!c pack ystate +!c ---------------------------------- + ystate(nEQ + 1 ) = rpar(1) != dcell + ystate(nEQ + 2 ) = rpar(2) != dwall + ystate(nEQ + 3 ) = rpar(3) != tend + ystate(nEQ + 4 ) = rpar(4) != 0.21d0*DO2+0.79d0*DN2 ! average air + ystate(nEQ + 5 ) = rpar(5) != DCO2 + ystate(nEQ + 6 ) = rpar(6) != 0.21d0*SO2+0.79d0*SN2 ! average air + ystate(nEQ + 7 ) = rpar(7) != SCO2 + ystate(nEQ + 8 ) = rpar(8) != pressure + ! ystate(nEQ + 9 ) = rpar(9) != initpressure + ystate(nEQ + 10) = rpar(10)!= R*T + ystate(nEQ + 11) = dble(ipar(2))! ncell + ystate(nEQ + 12) = dble(ipar(4)) ! onecell + ystate(nEQ + 13) = rpar(11) != Dpent + ystate(nEQ + 14) = rpar(12) != Spent + ystate(nEQ + 15) = rpar(13) != Dgas + + ystate(nEQ + 16) = rpar(14) != pBCair + ystate(nEQ + 17) = rpar(15) != pBCCO2 + ystate(nEQ + 18) = rpar(16) != pBCpent +!c ---------------------------------- +! initial conditions +!c ---------------------------------- + call initfield(ystate, nFV, nEQ, rpar) + +!c ---------------------------------- +! initialize integration +!c ---------------------------------- + open(10,file='dcmp_progress.out', status='unknown') + tend = rpar(3) + counter = 1 + itol = 1 + rtol = 1.0d-6 + atol = 1.0d-6 + + itask = 1 + istate = 1 + iopt = 0 + + multiplicator = 100 +!c ---------------------------------- +!c Integration loop +!c ---------------------------------- + + continue + open (newunit(fi),file='../results/keq_time.out') + write(fi,'(10A23)') '#time', 'eq.conductivity' +! call output(0, 0.0_dp, ystate, neq) + call equcond(keq,ystate,neq,eps,fstrut,temp_cond) + write(fi,'(10es23.15)') 0.0_dp,keq + do i = 1, nroutputs*multiplicator ! stabilizing multiplicator + + tin = dble(i-1)*(tend )/dble(nroutputs*multiplicator) ! tbeg is 0 + tout = dble(i )*(tend)/dble(nroutputs*multiplicator) + +100 continue ! try to make another run for the initial step simulation + call dlsodes (modelPU, neq, ystate, tin, tout, itol, rtol, atol, itask,& + istate, iopt, rwork, lrw, iwork, liw, jdem, mf) + + ! evaluating the integration + if (istate.lt.0) then + write(*,*) 'Something is wrong, look for ISTATE =', istate + if (istate.eq.-1) then ! not enough steps to reach tout + istate = 1 + iopt = 1 ! start to change something + RWORK(5:8)=0.0d0 + IWORK(5) = 0 + IWORK(6) = counter*1000 + IWORK(7) = 0 + counter = counter + 1 + write(*,*) 'MAXSTEP', IWORK(6) + write(10,*) 'MAXSTEP', IWORK(6) + goto 100 + continue + endif + elseif (counter>3) then + counter=counter-1 + IWORK(6) = counter*1000 + write(*,*) 'MAXSTEP', IWORK(6) + write(10,*) 'MAXSTEP', IWORK(6) + endif + ! some output + if (mod(i,multiplicator).eq.0) then + write(*,*) 'tend', tout/(3600.0d0*24.0d0),'days' + write(10,*) 'tend', tout/(3600.0d0*24.0d0),'days' + call output(i/multiplicator, tout, ystate, neq) + call equcond(keq,ystate,neq,eps,fstrut,temp_cond) + write(fi,'(10es23.15)') tout,keq + endif + continue + enddo +!c ---------------------------------- + close(10) + close(fi) +! +!c ------------------ +!c Deallocate memory +!c ------------------ +!c + deallocate (ystate) + deallocate (yprime) + deallocate (rwork) + deallocate (iwork) +!c + stop + + end + + subroutine initfield(ystate, nFV, nEQ, rpar) + implicit none + + integer i, onecell, nFV, nEQ + double precision pBCair, pBCCO2, pBCpent, RT, pressure + double precision pICair, pICCO2, pICpent + double precision Sair, SCO2, Spent + double precision ystate(*), rpar(*) + + !ncell = dint(ystate(nEQ + 11)) + onecell = dint(ystate(nEQ + 12)) != dble(ipar(4)) + + RT = ystate(nEQ + 10) != rpar(10)!= RT + + Spent = rpar(12) != Spent + Sair = rpar(6) != 0.21d0*SO2+0.79d0*SN2 ! average air + SCO2 = rpar(7) != SCO2 + pressure = rpar(8) != + + pICair = rpar(17) + pICCO2 = rpar(18) + pICpent= rpar(19) + continue + + do i = 1, nFV + if (mod(i,onecell).eq.0) then ! initial concentration in cells + ystate(i ) = pICair /RT + ystate(i+ nFV) = pICCO2 /RT + ystate(i+2*nFV) = pICpent/RT + else ! initial concentration in walls + ystate(i ) = pICair /RT * Sair * pressure + ystate(i+ nFV) = pICCO2 /RT * SCO2 * pressure + ystate(i+2*nFV) = pICpent/RT * Spent* pressure + endif + enddo + end subroutine diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/model.f90 b/applications/PUfoam/MoDeNaModels/foamAging/src/src/model.f90 new file mode 100644 index 000000000..60e5f1e44 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/model.f90 @@ -0,0 +1,278 @@ +!> @file +!! Main algorithm of for diffusion of gases in the foam. +!! @author Michal Vonka +!! @author Pavel Ferkl +!! @ingroup foam_aging + +!******************************************************************************************* +!0 pointer allocated, +!> model supplied to the integrator +subroutine modelPU(neq, time, ystate, yprime) ! ODEPACK call +! 12/07/23 - change of model to describe diffusion on H2 and N2 throug PS, wall +! is discretized into finite elements, pressure in cell is in equilibrium to the +! pressure on the wall, solubility given by Henry's law cpol = H*cgas +! - not ordinary definition of H but the definition of H fits +! !!!this model is for filling the foam +! 2015/03/12 change in model with respect to ODEPACK calling +! michal.vonka@seznam.cz + implicit none + integer neq ! = 1 (X-direction) + + double precision :: time + double precision :: ystate(*) ! + double precision :: yprime(*) ! + + integer i, j + integer job + integer nFV, onecell, ncell + + double precision Dair, DCO2, Dpent ! difusivities in polymer + double precision Sair, SCO2, Spent ! solubilities + double precision HHair, HHCO2, HHpent ! henry law cPOL = S*p*cGAS = H*cGAS + double precision D ! diffusivity in gas + double precision pBCair, pBCCO2, pBCpent ! boundary conds + + double precision dcell, dwall, hwall + double precision cwg + double precision RT, pressure + + double precision, allocatable :: cAIR(:) , cCO2(:), cPENT(:) !concentrations + double precision, allocatable :: dcAIR(:), dcCO2(:), dcPENT(:) ! changes of partial pressures + double precision, allocatable :: jAIR(:) , jCO2(:),jPENT(:) ! fluxes in x, dir + + !c + dcell = ystate(nEQ + 1 ) + dwall = ystate(nEQ + 2 ) + !tend = ystate(nEQ + 3 ) + Dair = ystate(nEQ + 4 ) != rpar(4) != Dair average air + DCO2 = ystate(nEQ + 5 ) != rpar(5) != DCO2 + Sair = ystate(nEQ + 6 ) != rpar(6) ! Sair + SCO2 = ystate(nEQ + 7 ) != rpar(7) != SCO2 + pressure= ystate(nEQ + 8 ) != rpar(8) != pressure + !ystate(nEQ + 9 ) = rpar(9) != initpressure + RT = ystate(nEQ + 10) != rpar(10)!= R*T + + ncell = dint(ystate(nEQ + 11)) + onecell = dint(ystate(nEQ + 12)) != dble(ipar(4)) + + Dpent = ystate(nEQ + 13) + Spent = ystate(nEQ + 14) + + D = ystate(nEQ + 15) ! = rpar(13) != Dgas = 2.0d-5 ! + nFV = onecell*ncell + + ! boundary conditions + + pBCair = ystate(nEQ + 16) != rpar(14) != pBCair + pBCCO2 = ystate(nEQ + 17) != rpar(15) != pBCCO2 + pBCpent= ystate(nEQ + 18) != rpar(16) != pBCpent + + continue + !c + !c ------------------------------------------------------------ + !c + if (.NOT. allocated(cAIR)) then + allocate ( cAIR(0:nFV)) + allocate (dcAIR(1:nFV)) + allocate (jAIR (0:nFV)) + allocate ( cCO2(0:nFV)) + allocate (dcCO2(1:nFV)) + allocate (jCO2 (0:nFV)) ! fluxes + allocate ( cPENT(0:nFV)) + allocate (dcPENT(1:nFV)) + allocate (jPENT (0:nFV)) + endif + + !c zero fluxes + jAIR(0:nFV) = 0.0d0 + jCO2(0:nFV) = 0.0d0 + jPENT(0:nFV) = 0.0d0 + + dcAIR(1:nFV) = 0.0d0 + dcCO2(1:nFV) = 0.0d0 + dcPENT(1:nFV) = 0.0d0 + !c unpack state vars + job = 1 + + cAIR(1:nFV) = ystate(1:nFV) + cCO2(1:nFV) = ystate(nFV+1:2*nFV) + cPENT(1:nFV) = ystate(2*nFV+1:3*nFV) + !c ************************************************************************ + !c + + hwall = dwall/dfloat(onecell-1) ! size of FV in wall, ocell-1 elements in wall + + !c + !c ************************************************************************ + !c Diffusion of AIR + !c + cAIR(0) = pBCair/RT !pressure/RT ! boudary condition + do j = 0, nFV-1 + if (mod(j,onecell).eq.0) then ! from gas to polymer + HHair = cAIR(j)*RT*Sair ! H = p * S + cwg = (D*hwall*cAIR(j) + Dair*dcell*cAIR(j+1))/(D*hwall+Dair*dcell*HHair) + jAIR(j) = D*(cAIR(j)-cwg)/dcell*2.0d0 + continue + endif + if ((mod(j,onecell).ne.0).and.(mod(j,onecell).ne.(onecell-1))) then ! through polymer + jAIR(j) = Dair*(cAIR(j)-cAIR(j+1))/hwall ! j = D*(Left-Right)/h = - D*(Right-Left)/h + continue + endif + if (mod(j,onecell).eq.(onecell-1)) then ! to gas in cell + HHair = cAIR(j+1)*RT*Sair ! H = p * S, p = c(in next cell)* RT + cwg= (Dair*dcell*cAIR(j)+D*hwall*cAIR(j+1))/(Dair*HHair*dcell+D*hwall) + jAIR(j) = D*(cwg-cAIR(j+1))/dcell*2.0d0 + continue + endif + enddo + jAIR(nFV) = 0.0d0 ! last cell, zero flux + continue + + ! + !c BALANCES AIR + do j = 1, nFV + if (mod(j,onecell).eq.0) then ! balance in cells + dcAIR(j) = (jAIR(j-1) - jAIR(j))/dcell + else ! balance in walls + dcAIR(j) = (jAIR(j-1) - jAIR(j))/hwall + endif + enddo + ! save into the yprime + yprime(1:nFV) = dcAIR(1:nFV) + + !c ************************************************************************ + !!c Diffusion of CO2 + !! + cCO2(0) = pBCCO2/RT ! boudary condition + do j = 0, nFV-1 + if (mod(j,onecell).eq.0) then ! from gas to polymer + HHCO2 = cCO2(j)*RT*SCO2 ! H = p * S + cwg = (D*hwall*cCO2(j) + DCO2*dcell*cCO2(j+1))/(D*hwall+DCO2*dcell*HHCO2) + jCO2(j) = D*(cCO2(j)-cwg)/dcell*2.0d0 + continue + endif + if ((mod(j,onecell).ne.0).and.(mod(j,onecell).ne.(onecell-1))) then ! through polymer + jCO2(j) = DCO2*(cCO2(j)-cCO2(j+1))/hwall ! j = D*(Left-Right)/h = - D*(Right-Left)/h + continue + endif + if (mod(j,onecell).eq.(onecell-1)) then ! to gas in cell + HHCO2 = cCO2(j+1)*RT*SCO2 ! H = p * S, p = c(in next cell)* RT + cwg= (DCO2*dcell*cCO2(j)+D*hwall*cCO2(j+1))/(DCO2*HHCO2*dcell+D*hwall) + jCO2(j) = D*(cwg-cCO2(j+1))/dcell*2.0d0 + continue + endif + enddo + jCO2(nFV) = 0.0d0 ! last cell, zero flux + continue + + ! + !c BALANCES AIR + do j = 1, nFV + if (mod(j,onecell).eq.0) then ! balance in cells + dcCO2(j) = (jCO2(j-1) - jCO2(j))/dcell + else ! balance in walls + dcCO2(j) = (jCO2(j-1) - jCO2(j))/hwall + endif + enddo + ! save into the yprime + yprime(nFV+1:2*nFV) = dcCO2(1:nFV) + + + !c + !c ************************************************************************ + !c Diffusion of PENTANE + !c + cPENT(0) = pBCpent/RT ! boudary condition + do j = 0, nFV-1 + if (mod(j,onecell).eq.0) then ! from gas to polymer + HHpent = cPENT(j)*RT*Spent ! H = p * S + cwg = (D*hwall*cPENT(j) + Dpent*dcell*cPENT(j+1))/(D*hwall+Dpent*dcell*HHpent) + jPENT(j) = D*(cPENT(j)-cwg)/dcell*2.0d0 + continue + endif + if ((mod(j,onecell).ne.0).and.(mod(j,onecell).ne.(onecell-1))) then ! through polymer + jPENT(j) = Dpent*(cPENT(j)-cPENT(j+1))/hwall ! j = D*(Left-Right)/h = - D*(Right-Left)/h + continue + endif + if (mod(j,onecell).eq.(onecell-1)) then ! to gas in cell + HHpent = cPENT(j+1)*RT*Spent ! H = p * S, p = c(in next cell)* RT + cwg= (Dpent*dcell*cPENT(j)+D*hwall*cPENT(j+1))/(Dpent*HHpent*dcell+D*hwall) + jPENT(j) = D*(cwg-cPENT(j+1))/dcell*2.0d0 + continue + endif + enddo + jPENT(nFV) = 0.0d0 ! last cell, zero flux + continue + + ! + !c BALANCES PENTANE + do j = 1, nFV + if (mod(j,onecell).eq.0) then ! balance in cells + dcPENT(j) = (jPENT(j-1) - jPENT(j))/dcell + else ! balance in walls + dcPENT(j) = (jPENT(j-1) - jPENT(j))/hwall + endif + enddo + ! save into the yprime + yprime(2*nFV+1:3*nFV) = dcPENT(1:nFV) + + continue +return +end + + +subroutine jdem (neq, t, y, j, ia, ja, pdj) +!----------------------------------------------------------------------- +! Should introduce own sparcity model, must fill +! be careful about mf for ODE pack +!----------------------------------------------------------------------- +! +integer neq, j, ia, ja +double precision t, y, pdj +dimension y(neq), ia(*), ja(*), pdj(neq) + +return +end + +!do j = 1, ncell ! more complex structure +! !c ! CONTINUITY OF FLUXES on wall gas/polymer - expressed by henry s law on side of gas +! cwg = (Dair*dcell*cAIR((j-1)*(onecell)+1) + D*hwall*cAIR((j-1)*(onecell) ))/(D*hwall+Dair*dcell*HHair) +! !c +! !c ! flux through the gas and wall - constant flux +! !c ! flux_intensity = D * (LEFT-RIGHT) +! jAIR((j-1)*(onecell)) = D*(cAIR((j-1)*(onecell)) - cwg)/(dcell/2.0d0) +! +! !c diffusion through the wall +! do i = 1, onecell-2 ! fluxes through the wall +! jAIR((j-1)*(onecell)+i) = & +! Dair/hwall * (cAIR((j-1)*(onecell) + i) & +! - cAIR((j-1)*(onecell) + i+1)) +!! write(*,*) (j-1)*(onecell) +!! continue +! enddo +! !c ! CONTINUITY OF FLUXES on wall polymer/gas, GAS SIDE +! cwg = (Dair *dcell*cAIR((j-1)*onecell+(onecell-1)) & +! + D* hwall*cAIR((j-1)*onecell+(onecell ))) & +! /(D*hwall+Dair*dcell*HHair) +! !c +! jAIR((j-1)*onecell+(onecell-1))=Dair*(cAIR((j-1)*onecell+(onecell-1)) & +! - cwg*HHair) /(hwall / 2.0d0) +!enddo + +!jAIR(nFV) = 0.0d0 ! last cell, zero flux +!continue + +!c balances in walls +!do j = 1, ncell +! do i = 1, onecell-1 +! dcAIR((j-1)*onecell+i) = (jAIR((j-1)*onecell + i-1) & +! - jAIR((j-1)*onecell + i ))/hwall +! enddo +!enddo +!continue +!!c +!!c ballance of the cells +!do j = 1, ncell +! dcAIR((j-1)*onecell + onecell) = (jAIR((j-1)*onecell + onecell-1) & +! - jAIR((j-1)*onecell+onecell))/dcell +!enddo diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack.f b/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack.f new file mode 100644 index 000000000..4278052b5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack.f @@ -0,0 +1,16587 @@ +*DECK DLSODE + SUBROUTINE DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) + EXTERNAL F, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C***BEGIN PROLOGUE DLSODE +C***PURPOSE Livermore Solver for Ordinary Differential Equations. +C DLSODE solves the initial-value problem for stiff or +C nonstiff systems of first-order ODE's, +C dy/dt = f(t,y), or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(N)), i=1,...,N. +C***CATEGORY I1A +C***TYPE DOUBLE PRECISION (SLSODE-S, DLSODE-D) +C***KEYWORDS ORDINARY DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEM, +C STIFF, NONSTIFF +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551. +C***DESCRIPTION +C +C NOTE: The "Usage" and "Arguments" sections treat only a subset of +C available options, in condensed fashion. The options +C covered and the information supplied will support most +C standard uses of DLSODE. +C +C For more sophisticated uses, full details on all options are +C given in the concluding section, headed "Long Description." +C A synopsis of the DLSODE Long Description is provided at the +C beginning of that section; general topics covered are: +C - Elements of the call sequence; optional input and output +C - Optional supplemental routines in the DLSODE package +C - internal COMMON block +C +C *Usage: +C Communication between the user and the DLSODE package, for normal +C situations, is summarized here. This summary describes a subset +C of the available options. See "Long Description" for complete +C details, including optional communication, nonstandard options, +C and instructions for special situations. +C +C A sample program is given in the "Examples" section. +C +C Refer to the argument descriptions for the definitions of the +C quantities that appear in the following sample declarations. +C +C For MF = 10, +C PARAMETER (LRW = 20 + 16*NEQ, LIW = 20) +C For MF = 21 or 22, +C PARAMETER (LRW = 22 + 9*NEQ + NEQ**2, LIW = 20 + NEQ) +C For MF = 24 or 25, +C PARAMETER (LRW = 22 + 10*NEQ + (2*ML+MU)*NEQ, +C * LIW = 20 + NEQ) +C +C EXTERNAL F, JAC +C INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK(LIW), +C * LIW, MF +C DOUBLE PRECISION Y(NEQ), T, TOUT, RTOL, ATOL(ntol), RWORK(LRW) +C +C CALL DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, +C * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) +C +C *Arguments: +C F :EXT Name of subroutine for right-hand-side vector f. +C This name must be declared EXTERNAL in calling +C program. The form of F must be: +C +C SUBROUTINE F (NEQ, T, Y, YDOT) +C INTEGER NEQ +C DOUBLE PRECISION T, Y(*), YDOT(*) +C +C The inputs are NEQ, T, Y. F is to set +C +C YDOT(i) = f(i,T,Y(1),Y(2),...,Y(NEQ)), +C i = 1, ..., NEQ . +C +C NEQ :IN Number of first-order ODE's. +C +C Y :INOUT Array of values of the y(t) vector, of length NEQ. +C Input: For the first call, Y should contain the +C values of y(t) at t = T. (Y is an input +C variable only if ISTATE = 1.) +C Output: On return, Y will contain the values at the +C new t-value. +C +C T :INOUT Value of the independent variable. On return it +C will be the current value of t (normally TOUT). +C +C TOUT :IN Next point where output is desired (.NE. T). +C +C ITOL :IN 1 or 2 according as ATOL (below) is a scalar or +C an array. +C +C RTOL :IN Relative tolerance parameter (scalar). +C +C ATOL :IN Absolute tolerance parameter (scalar or array). +C If ITOL = 1, ATOL need not be dimensioned. +C If ITOL = 2, ATOL must be dimensioned at least NEQ. +C +C The estimated local error in Y(i) will be controlled +C so as to be roughly less (in magnitude) than +C +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C +C Thus the local error test passes if, in each +C component, either the absolute error is less than +C ATOL (or ATOL(i)), or the relative error is less +C than RTOL. +C +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative +C error control. Caution: Actual (global) errors may +C exceed these local tolerances, so choose them +C conservatively. +C +C ITASK :IN Flag indicating the task DLSODE is to perform. +C Use ITASK = 1 for normal computation of output +C values of y at t = TOUT. +C +C ISTATE:INOUT Index used for input and output to specify the state +C of the calculation. +C Input: +C 1 This is the first call for a problem. +C 2 This is a subsequent call. +C Output: +C 1 Nothing was done, because TOUT was equal to T. +C 2 DLSODE was successful (otherwise, negative). +C Note that ISTATE need not be modified after a +C successful return. +C -1 Excess work done on this call (perhaps wrong +C MF). +C -2 Excess accuracy requested (tolerances too +C small). +C -3 Illegal input detected (see printed message). +C -4 Repeated error test failures (check all +C inputs). +C -5 Repeated convergence failures (perhaps bad +C Jacobian supplied or wrong choice of MF or +C tolerances). +C -6 Error weight became zero during problem +C (solution component i vanished, and ATOL or +C ATOL(i) = 0.). +C +C IOPT :IN Flag indicating whether optional inputs are used: +C 0 No. +C 1 Yes. (See "Optional inputs" under "Long +C Description," Part 1.) +C +C RWORK :WORK Real work array of length at least: +C 20 + 16*NEQ for MF = 10, +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25. +C +C LRW :IN Declared length of RWORK (in user's DIMENSION +C statement). +C +C IWORK :WORK Integer work array of length at least: +C 20 for MF = 10, +C 20 + NEQ for MF = 21, 22, 24, or 25. +C +C If MF = 24 or 25, input in IWORK(1),IWORK(2) the +C lower and upper Jacobian half-bandwidths ML,MU. +C +C On return, IWORK contains information that may be +C of interest to the user: +C +C Name Location Meaning +C ----- --------- ----------------------------------------- +C NST IWORK(11) Number of steps taken for the problem so +C far. +C NFE IWORK(12) Number of f evaluations for the problem +C so far. +C NJE IWORK(13) Number of Jacobian evaluations (and of +C matrix LU decompositions) for the problem +C so far. +C NQU IWORK(14) Method order last used (successfully). +C LENRW IWORK(17) Length of RWORK actually required. This +C is defined on normal returns and on an +C illegal input return for insufficient +C storage. +C LENIW IWORK(18) Length of IWORK actually required. This +C is defined on normal returns and on an +C illegal input return for insufficient +C storage. +C +C LIW :IN Declared length of IWORK (in user's DIMENSION +C statement). +C +C JAC :EXT Name of subroutine for Jacobian matrix (MF = +C 21 or 24). If used, this name must be declared +C EXTERNAL in calling program. If not used, pass a +C dummy name. The form of JAC must be: +C +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C INTEGER NEQ, ML, MU, NROWPD +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C +C See item c, under "Description" below for more +C information about JAC. +C +C MF :IN Method flag. Standard values are: +C 10 Nonstiff (Adams) method, no Jacobian used. +C 21 Stiff (BDF) method, user-supplied full Jacobian. +C 22 Stiff method, internally generated full +C Jacobian. +C 24 Stiff method, user-supplied banded Jacobian. +C 25 Stiff method, internally generated banded +C Jacobian. +C +C *Description: +C DLSODE solves the initial value problem for stiff or nonstiff +C systems of first-order ODE's, +C +C dy/dt = f(t,y) , +C +C or, in component form, +C +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) +C (i = 1, ..., NEQ) . +C +C DLSODE is a package based on the GEAR and GEARB packages, and on +C the October 23, 1978, version of the tentative ODEPACK user +C interface standard, with minor modifications. +C +C The steps in solving such a problem are as follows. +C +C a. First write a subroutine of the form +C +C SUBROUTINE F (NEQ, T, Y, YDOT) +C INTEGER NEQ +C DOUBLE PRECISION T, Y(*), YDOT(*) +C +C which supplies the vector function f by loading YDOT(i) with +C f(i). +C +C b. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an +C eigenvalue whose real part is negative and large in magnitude +C compared to the reciprocal of the t span of interest. If the +C problem is nonstiff, use method flag MF = 10. If it is stiff, +C there are four standard choices for MF, and DLSODE requires the +C Jacobian matrix in some form. This matrix is regarded either +C as full (MF = 21 or 22), or banded (MF = 24 or 25). In the +C banded case, DLSODE requires two half-bandwidth parameters ML +C and MU. These are, respectively, the widths of the lower and +C upper parts of the band, excluding the main diagonal. Thus the +C band consists of the locations (i,j) with +C +C i - ML <= j <= i + MU , +C +C and the full bandwidth is ML + MU + 1 . +C +C c. If the problem is stiff, you are encouraged to supply the +C Jacobian directly (MF = 21 or 24), but if this is not feasible, +C DLSODE will compute it internally by difference quotients (MF = +C 22 or 25). If you are supplying the Jacobian, write a +C subroutine of the form +C +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C INTEGER NEQ, ML, MU, NRWOPD +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C +C which provides df/dy by loading PD as follows: +C - For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j), +C the partial derivative of f(i) with respect to y(j). (Ignore +C the ML and MU arguments in this case.) +C - For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with +C df(i)/dy(j); i.e., load the diagonal lines of df/dy into the +C rows of PD from the top down. +C - In either case, only nonzero elements need be loaded. +C +C d. Write a main program that calls subroutine DLSODE once for each +C point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODE. +C +C Before the first call to DLSODE, set ISTATE = 1, set Y and T to +C the initial values, and set TOUT to the first output point. To +C continue the integration after a successful return, simply +C reset TOUT and call DLSODE again. No other parameters need be +C reset. +C +C *Examples: +C The following is a simple example problem, with the coding needed +C for its solution by DLSODE. The problem is from chemical kinetics, +C and consists of the following three rate equations: +C +C dy1/dt = -.04*y1 + 1.E4*y2*y3 +C dy2/dt = .04*y1 - 1.E4*y2*y3 - 3.E7*y2**2 +C dy3/dt = 3.E7*y2**2 +C +C on the interval from t = 0.0 to t = 4.E10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. The problem is stiff. +C +C The following coding solves this problem with DLSODE, using +C MF = 21 and printing results at t = .4, 4., ..., 4.E10. It uses +C ITOL = 2 and ATOL much smaller for y2 than for y1 or y3 because y2 +C has much smaller values. At the end of the run, statistical +C quantities of interest are printed. +C +C EXTERNAL FEX, JEX +C INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL, IWORK(23), LIW, LRW, +C * MF, NEQ +C DOUBLE PRECISION ATOL(3), RTOL, RWORK(58), T, TOUT, Y(3) +C NEQ = 3 +C Y(1) = 1.D0 +C Y(2) = 0.D0 +C Y(3) = 0.D0 +C T = 0.D0 +C TOUT = .4D0 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 58 +C LIW = 23 +C MF = 21 +C DO 40 IOUT = 1,12 +C CALL DLSODE (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, +C * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF) +C WRITE(6,20) T, Y(1), Y(2), Y(3) +C 20 FORMAT(' At t =',D12.4,' y =',3D14.6) +C IF (ISTATE .LT. 0) GO TO 80 +C 40 TOUT = TOUT*10.D0 +C WRITE(6,60) IWORK(11), IWORK(12), IWORK(13) +C 60 FORMAT(/' No. steps =',i4,', No. f-s =',i4,', No. J-s =',i4) +C STOP +C 80 WRITE(6,90) ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C INTEGER NEQ +C DOUBLE PRECISION T, Y(3), YDOT(3) +C YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3) +C YDOT(3) = 3.D7*Y(2)*Y(2) +C YDOT(2) = -YDOT(1) - YDOT(3) +C RETURN +C END +C +C SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD) +C INTEGER NEQ, ML, MU, NRPD +C DOUBLE PRECISION T, Y(3), PD(NRPD,3) +C PD(1,1) = -.04D0 +C PD(1,2) = 1.D4*Y(3) +C PD(1,3) = 1.D4*Y(2) +C PD(2,1) = .04D0 +C PD(2,3) = -PD(1,3) +C PD(3,2) = 6.D7*Y(2) +C PD(2,2) = -PD(1,2) - PD(3,2) +C RETURN +C END +C +C The output from this program (on a Cray-1 in single precision) +C is as follows. +C +C At t = 4.0000e-01 y = 9.851726e-01 3.386406e-05 1.479357e-02 +C At t = 4.0000e+00 y = 9.055142e-01 2.240418e-05 9.446344e-02 +C At t = 4.0000e+01 y = 7.158050e-01 9.184616e-06 2.841858e-01 +C At t = 4.0000e+02 y = 4.504846e-01 3.222434e-06 5.495122e-01 +C At t = 4.0000e+03 y = 1.831701e-01 8.940379e-07 8.168290e-01 +C At t = 4.0000e+04 y = 3.897016e-02 1.621193e-07 9.610297e-01 +C At t = 4.0000e+05 y = 4.935213e-03 1.983756e-08 9.950648e-01 +C At t = 4.0000e+06 y = 5.159269e-04 2.064759e-09 9.994841e-01 +C At t = 4.0000e+07 y = 5.306413e-05 2.122677e-10 9.999469e-01 +C At t = 4.0000e+08 y = 5.494530e-06 2.197825e-11 9.999945e-01 +C At t = 4.0000e+09 y = 5.129458e-07 2.051784e-12 9.999995e-01 +C At t = 4.0000e+10 y = -7.170603e-08 -2.868241e-13 1.000000e+00 +C +C No. steps = 330, No. f-s = 405, No. J-s = 69 +C +C *Accuracy: +C The accuracy of the solution depends on the choice of tolerances +C RTOL and ATOL. Actual (global) errors may exceed these local +C tolerances, so choose them conservatively. +C +C *Cautions: +C The work arrays should not be altered between calls to DLSODE for +C the same problem, except possibly for the conditional and optional +C inputs. +C +C *Portability: +C Since NEQ is dimensioned inside DLSODE, some compilers may object +C to a call to DLSODE with NEQ a scalar variable. In this event, +C use DIMENSION NEQ(1). Similar remarks apply to RTOL and ATOL. +C +C Note to Cray users: +C For maximum efficiency, use the CFT77 compiler. Appropriate +C compiler optimization directives have been inserted for CFT77. +C +C *Reference: +C Alan C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE +C Solvers," in Scientific Computing, R. S. Stepleman, et al., Eds. +C (North-Holland, Amsterdam, 1983), pp. 55-64. +C +C *Long Description: +C The following complete description of the user interface to +C DLSODE consists of four parts: +C +C 1. The call sequence to subroutine DLSODE, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and user-supplied routines. +C Following these descriptions is a description of optional +C inputs available through the call sequence, and then a +C description of optional outputs in the work arrays. +C +C 2. Descriptions of other routines in the DLSODE package that may +C be (optionally) called by the user. These provide the ability +C to alter error message handling, save and restore the internal +C COMMON, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of COMMON block to be declared in overlay or +C similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODE package, either of +C which the user may replace with his own version, if desired. +C These relate to the measurement of errors. +C +C +C Part 1. Call Sequence +C ---------------------- +C +C Arguments +C --------- +C The call sequence parameters used for input only are +C +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF, +C +C and those used for both input and output are +C +C Y, T, ISTATE. +C +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here +C refers to the return from subroutine DLSODE to the user's calling +C program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F The name of the user-supplied subroutine defining the ODE +C system. The system must be put in the first-order form +C dy/dt = f(t,y), where f is a vector-valued function of +C the scalar t and the vector y. Subroutine F is to compute +C the function f. It is to have the form +C +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C +C where NEQ, T, and Y are input, and the array YDOT = +C f(T,Y) is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). F must be +C declared EXTERNAL in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),..., if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODE, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY +C instead. +C +C NEQ The size of the ODE system (number of first-order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the +C problem. If NEQ is decreased (with ISTATE = 3 on input), +C the remaining components of Y should be left undisturbed, +C if these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred +C to as a scalar in this user interface description. +C However, NEQ may be an array, with NEQ(1) set to the +C system size. (The DLSODE package accesses only NEQ(1).) +C In either case, this parameter is passed as the NEQ +C argument in all calls to F and JAC. Hence, if it is an +C array, locations NEQ(2),... may be used to store other +C integer data and pass it to F and/or JAC. Subroutines +C F and/or JAC must include NEQ in a DIMENSION statement +C in that case. +C +C Y A real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on +C the first call (ISTATE = 1), and only for output on +C other calls. On the first call, Y must contain the +C vector of initial values. On output, Y contains the +C computed solution vector, evaluated at T. If desired, +C the Y array may be used for other purposes between +C calls to the solver. +C +C This array is passed as the Y argument in all calls to F +C and JAC. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F and/or JAC. (The DLSODE package accesses +C only Y(1),...,Y(NEQ).) +C +C T The independent variable. On input, T is used only on +C the first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as +C TOUT). On an error return, T is the farthest point +C reached. +C +C TOUT The next value of T at which a computed solution is +C desired. Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should not equal T for the next +C call. For the initial T, an input value of TOUT .NE. T +C is used in order to determine the direction of the +C integration (i.e., the algebraic sign of the step sizes) +C and the rough scale of the problem. Integration in +C either direction (forward or backward in T) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored +C after the first call (i.e., the first call with +C TOUT .NE. T). Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR. (See "Optional Outputs" below for +C TCUR and HU.) +C +C +C ITOL An indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL A relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under +C ATOL. Input only. +C +C ATOL An absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine the +C error control performed by the solver. The solver will +C control the vector e = (e(i)) of estimated local errors +C in Y, according to an inequality of the form +C +C rms-norm of ( e(i)/EWT(i) ) <= 1, +C +C where +C +C EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C +C and the rms-norm (root-mean-square norm) here is +C +C rms-norm(v) = SQRT(sum v(i)**2 / NEQ). +C +C Here EWT = (EWT(i)) is a vector of weights which must +C always be positive, and the values of RTOL and ATOL +C should all be nonnegative. The following table gives the +C types (scalar/array) of RTOL and ATOL, and the +C corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C ---- ------ ------ ----------------------------- +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e., of EWT) should be +C scaled down uniformly. +C +C ITASK An index specifying the task to be performed. Input +C only. ITASK has the following values and meanings: +C 1 Normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 Take one step only and return. +C 3 Stop at the first internal mesh point at or beyond +C t = TOUT and return. +C 4 Normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. TCRIT +C must be input as RWORK(1). TCRIT may be equal to or +C beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 Take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before +C TCRIT, in which case answers at T = TOUT are returned +C first). +C +C ISTATE An index used for input and output to specify the state +C of the calculation. +C +C On input, the values of ISTATE are as follows: +C 1 This is the first call for the problem +C (initializations will be done). See "Note" below. +C 2 This is not the first call, and the calculation is to +C continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. (If ITOL, +C RTOL, and/or ATOL are changed between calls with +C ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 This is not the first call, and the calculation is to +C continue normally, but with a change in input +C parameters other than TOUT and ITASK. Changes are +C allowed in NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C ML, MU, and any of the optional inputs except H0. +C (See IWORK description for ML and MU.) +C +C Note: A preliminary call with TOUT = T is not counted as +C a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) Thus the +C first call for which TOUT .NE. T requires ISTATE = 1 on +C input. +C +C On output, ISTATE has the following values and meanings: +C 1 Nothing was done, as TOUT was equal to T with +C ISTATE = 1 on input. +C 2 The integration was performed successfully. +C -1 An excessive amount of work (more than MXSTEP steps) +C was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value >1 and call again (the +C excess work step counter will be reset to 0). In +C addition, the user may increase MXSTEP to avoid this +C error return; see "Optional Inputs" below. +C -2 Too much accuracy was requested for the precision of +C the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the +C tolerance parameters must be reset, and ISTATE must +C be set to 3. The optional output TOLSF may be used +C for this purpose. (Note: If this condition is +C detected before taking any steps, then an illegal +C input return (ISTATE = -3) occurs instead.) +C -3 Illegal input was detected, before taking any +C integration steps. See written message for details. +C (Note: If the solver detects an infinite loop of +C calls to the solver with illegal input, it will cause +C the run to stop.) +C -4 There were repeated error-test failures on one +C attempted step, before completing the requested task, +C but the integration was successful as far as T. The +C problem may have a singularity, or the input may be +C inappropriate. +C -5 There were repeated convergence-test failures on one +C attempted step, before completing the requested task, +C but the integration was successful as far as T. This +C may be caused by an inaccurate Jacobian matrix, if +C one is being used. +C -6 EWT(i) became zero for some i during the integration. +C Pure relative error control (ATOL(i)=0.0) was +C requested on a variable which has now vanished. The +C integration was successful as far as T. +C +C Note: Since the normal output value of ISTATE is 2, it +C does not need to be reset for normal continuation. Also, +C since a negative input value of ISTATE will be regarded +C as illegal, a negative output value requires the user to +C change it, and possibly other inputs, before calling the +C solver again. +C +C IOPT An integer flag to specify whether any optional inputs +C are being used on this call. Input only. The optional +C inputs are listed under a separate heading below. +C 0 No optional inputs are being used. Default values +C will be used in all cases. +C 1 One or more optional inputs are being used. +C +C RWORK A real working array (double precision). The length of +C RWORK must be at least +C +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM +C +C where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LWM = 0 if MITER = 0, +C LWM = NEQ**2 + 2 if MITER = 1 or 2, +C LWM = NEQ + 2 if MITER = 3, and +C LWM = (2*ML + MU + 1)*NEQ + 2 +C if MITER = 4 or 5. +C (See the MF description below for METH and MITER.) +C +C Thus if MAXORD has its default value and NEQ is constant, +C this length is: +C 20 + 16*NEQ for MF = 10, +C 22 + 16*NEQ + NEQ**2 for MF = 11 or 12, +C 22 + 17*NEQ for MF = 13, +C 22 + 17*NEQ + (2*ML + MU)*NEQ for MF = 14 or 15, +C 20 + 9*NEQ for MF = 20, +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ for MF = 23, +C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25. +C +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT, the critical value of t which the +C solver is not to overshoot. Required if ITASK +C is 4 or 5, and ignored otherwise. See ITASK. +C +C LRW The length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK An integer work array. Its length must be at least +C 20 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or +C 20 + NEQ otherwise (MF = 11, 12, 14, 15, 21, 22, 24, 25). +C (See the MF description below for MITER.) The first few +C words of IWORK are used for conditional and optional +C inputs and optional outputs. +C +C The following two words in IWORK are conditional inputs: +C IWORK(1) = ML These are the lower and upper half- +C IWORK(2) = MU bandwidths, respectively, of the banded +C Jacobian, excluding the main diagonal. +C The band is defined by the matrix locations +C (i,j) with i - ML <= j <= i + MU. ML and MU +C must satisfy 0 <= ML,MU <= NEQ - 1. These are +C required if MITER is 4 or 5, and ignored +C otherwise. ML and MU may in fact be the band +C parameters for a matrix to which df/dy is only +C approximately equal. +C +C LIW The length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODE +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODE between calls, if +C desired (but not for use by F or JAC). +C +C JAC The name of the user-supplied routine (MITER = 1 or 4) to +C compute the Jacobian matrix, df/dy, as a function of the +C scalar t and the vector y. (See the MF description below +C for MITER.) It is to have the form +C +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C +C where NEQ, T, Y, ML, MU, and NROWPD are input and the +C array PD is to be loaded with partial derivatives +C (elements of the Jacobian matrix) on output. PD must be +C given a first dimension of NROWPD. T and Y have the same +C meaning as in subroutine F. +C +C In the full matrix case (MITER = 1), ML and MU are +C ignored, and the Jacobian is to be loaded into PD in +C columnwise manner, with df(i)/dy(j) loaded into PD(i,j). +C +C In the band matrix case (MITER = 4), the elements within +C the band are to be loaded into PD in columnwise manner, +C with diagonal lines of df/dy loaded into the rows of PD. +C Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). ML +C and MU are the half-bandwidth parameters (see IWORK). +C The locations in PD in the two triangular areas which +C correspond to nonexistent matrix elements can be ignored +C or loaded arbitrarily, as they are overwritten by DLSODE. +C +C JAC need not provide df/dy exactly. A crude approximation +C (possibly with a smaller bandwidth) will do. +C +C In either case, PD is preset to zero by the solver, so +C that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to F with the same +C arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may +C be saved in a user COMMON block by F and not recomputed +C by JAC, if desired. Also, JAC may alter the Y array, if +C desired. JAC must be declared EXTERNAL in the calling +C program. +C +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding +C NEQ(1). See the descriptions of NEQ and Y above. +C +C MF The method flag. Used only for input. The legal values +C of MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, +C and 25. MF has decimal digits METH and MITER: +C MF = 10*METH + MITER . +C +C METH indicates the basic linear multistep method: +C 1 Implicit Adams method. +C 2 Method based on backward differentiation formulas +C (BDF's). +C +C MITER indicates the corrector iteration method: +C 0 Functional iteration (no Jacobian matrix is +C involved). +C 1 Chord iteration with a user-supplied full (NEQ by +C NEQ) Jacobian. +C 2 Chord iteration with an internally generated +C (difference quotient) full Jacobian (using NEQ +C extra calls to F per df/dy value). +C 3 Chord iteration with an internally generated +C diagonal Jacobian approximation (using one extra call +C to F per df/dy evaluation). +C 4 Chord iteration with a user-supplied banded Jacobian. +C 5 Chord iteration with an internally generated banded +C Jacobian (using ML + MU + 1 extra calls to F per +C df/dy evaluation). +C +C If MITER = 1 or 4, the user must supply a subroutine JAC +C (the name is arbitrary) as described above under JAC. +C For other values of MITER, a dummy argument can be used. +C +C Optional Inputs +C --------------- +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that case +C all of these inputs are examined. A value of zero for any of +C these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, +C and then set those of interest to nonzero values. +C +C Name Location Meaning and default value +C ------ --------- ----------------------------------------------- +C H0 RWORK(5) Step size to be attempted on the first step. +C The default value is determined by the solver. +C HMAX RWORK(6) Maximum absolute step size allowed. The +C default value is infinite. +C HMIN RWORK(7) Minimum absolute step size allowed. The +C default value is 0. (This lower bound is not +C enforced on the final step before reaching +C TCRIT when ITASK = 4 or 5.) +C MAXORD IWORK(5) Maximum order to be allowed. The default value +C is 12 if METH = 1, and 5 if METH = 2. (See the +C MF description above for METH.) If MAXORD +C exceeds the default value, it will be reduced +C to the default value. If MAXORD is changed +C during the problem, it may cause the current +C order to be reduced. +C MXSTEP IWORK(6) Maximum number of (internally defined) steps +C allowed during one call to the solver. The +C default value is 500. +C MXHNIL IWORK(7) Maximum number of messages printed (per +C problem) warning that T + H = T on a step +C (H = step size). This must be positive to +C result in a nondefault value. The default +C value is 10. +C +C Optional Outputs +C ---------------- +C As optional additional output from DLSODE, the variables listed +C below are quantities related to the performance of DLSODE which +C are available to the user. These are communicated by way of the +C work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined on +C any successful return from DLSODE, and on any return with ISTATE = +C -1, -2, -4, -5, or -6. On an illegal input return (ISTATE = -3), +C they will be unchanged from their existing values (if any), except +C possibly for TOLSF, LENRW, and LENIW. On any error return, +C outputs relevant to the error will be defined, as noted below. +C +C Name Location Meaning +C ----- --------- ------------------------------------------------ +C HU RWORK(11) Step size in t last used (successfully). +C HCUR RWORK(12) Step size to be attempted on the next step. +C TCUR RWORK(13) Current value of the independent variable which +C the solver has actually reached, i.e., the +C current internal mesh point in t. On output, +C TCUR will always be at least as far as the +C argument T, but may be farther (if interpolation +C was done). +C TOLSF RWORK(14) Tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy +C was detected (ISTATE = -3 if detected at the +C start of the problem, ISTATE = -2 otherwise). +C If ITOL is left unaltered but RTOL and ATOL are +C uniformly scaled up by a factor of TOLSF for the +C next call, then the solver is deemed likely to +C succeed. (The user may also ignore TOLSF and +C alter the tolerance parameters in any other way +C appropriate.) +C NST IWORK(11) Number of steps taken for the problem so far. +C NFE IWORK(12) Number of F evaluations for the problem so far. +C NJE IWORK(13) Number of Jacobian evaluations (and of matrix LU +C decompositions) for the problem so far. +C NQU IWORK(14) Method order last used (successfully). +C NQCUR IWORK(15) Order to be attempted on the next step. +C IMXER IWORK(16) Index of the component of largest magnitude in +C the weighted local error vector ( e(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C LENRW IWORK(17) Length of RWORK actually required. This is +C defined on normal returns and on an illegal +C input return for insufficient storage. +C LENIW IWORK(18) Length of IWORK actually required. This is +C defined on normal returns and on an illegal +C input return for insufficient storage. +C +C The following two arrays are segments of the RWORK array which may +C also be of interest to the user as optional outputs. For each +C array, the table below gives its internal name, its base address +C in RWORK, and its description. +C +C Name Base address Description +C ---- ------------ ---------------------------------------------- +C YH 21 The Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value of +C NEQ. For j = 0,1,...,NQCUR, column j + 1 of +C YH contains HCUR**j/factorial(j) times the jth +C derivative of the interpolating polynomial +C currently representing the solution, evaluated +C at t = TCUR. +C ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in Y on +C the last step. This is the vector e in the +C description of the error control. It is +C defined only on successful return from DLSODE. +C +C +C Part 2. Other Callable Routines +C -------------------------------- +C +C The following are optional calls which the user may make to gain +C additional capabilities in conjunction with DLSODE. +C +C Form of call Function +C ------------------------ ---------------------------------------- +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODE, if the +C default is not desired. The default +C value of LUN is 6. This call may be made +C at any time and will take effect +C immediately. +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODE. MFLAG = 0 means do +C not print. (Danger: this risks losing +C valuable information.) MFLAG = 1 means +C print (the default). This call may be +C made at any time and will take effect +C immediately. +C CALL DSRCOM(RSAV,ISAV,JOB) Saves and restores the contents of the +C internal COMMON blocks used by DLSODE +C (see Part 3 below). RSAV must be a +C real array of length 218 or more, and +C ISAV must be an integer array of length +C 37 or more. JOB = 1 means save COMMON +C into RSAV/ISAV. JOB = 2 means restore +C COMMON from same. DSRCOM is useful if +C one is interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODE. +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after a +C successful return from DLSODE. Detailed +C instructions follow. +C +C Detailed instructions for using DINTDY +C -------------------------------------- +C The form of the CALL is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T Value of independent variable where answers are +C desired (normally the same as the T last returned by +C DLSODE). For valid results, T must lie between +C TCUR - HU and TCUR. (See "Optional Outputs" above +C for TCUR and HU.) +C K Integer order of the derivative desired. K must +C satisfy 0 <= K <= NQCUR, where NQCUR is the current +C order (see "Optional Outputs"). The capability +C corresponding to K = 0, i.e., computing y(t), is +C already provided by DLSODE directly. Since +C NQCUR >= 1, the first derivative dy/dt is always +C available with DINTDY. +C RWORK(21) The base address of the history array YH. +C NYH Column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY Real array of length NEQ containing the computed value +C of the Kth derivative of y(t). +C IFLAG Integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C +C +C Part 3. Common Blocks +C ---------------------- +C +C If DLSODE is to be used in an overlay situation, the user must +C declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODE, +C (2) the internal COMMON block /DLS001/, of length 255 +C (218 double precision words followed by 37 integer words). +C +C If DLSODE is used on a system in which the contents of internal +C COMMON blocks are not preserved between calls, the user should +C declare the above COMMON block in his main program to insure that +C its contents are preserved. +C +C If the solution of a given problem by DLSODE is to be interrupted +C and then later continued, as when restarting an interrupted run or +C alternating between two or more problems, the user should save, +C following the return from the last DLSODE call prior to the +C interruption, the contents of the call sequence variables and the +C internal COMMON block, and later restore these values before the +C next DLSODE call for that problem. In addition, if XSETUN and/or +C XSETF was called for non-default handling of error messages, then +C these calls must be repeated. To save and restore the COMMON +C block, use subroutine DSRCOM (see Part 2 above). +C +C +C Part 4. Optionally Replaceable Solver Routines +C ----------------------------------------------- +C +C Below are descriptions of two routines in the DLSODE package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since +C such a replacement may have a major impact on performance, it +C should be done only when absolutely necessary, and only with great +C caution. (Note: The means by which the package version of a +C routine is superseded by the user's version may be system- +C dependent.) +C +C DEWSET +C ------ +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODE call +C sequence, YCUR contains the current dependent variable vector, +C and EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in Y(i) to. The EWT array returned by DEWSET is passed to the +C DVNORM routine (see below), and also used by DLSODE in the +C computation of the optional output IMXER, the diagonal Jacobian +C approximation, and the increments for difference quotient +C Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in SEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is unnecessary +C when NST = 0). +C +C DVNORM +C ------ +C DVNORM is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C +C d = DVNORM (n, v, w) +C +C where: +C n = the length of the vector, +C v = real array of length n containing the vector, +C w = real array of length n containing weights, +C d = SQRT( (1/n) * sum(v(i)*w(i))**2 ). +C +C DVNORM is called with n = NEQ and with w(i) = 1.0/EWT(i), where +C EWT is as set by subroutine DEWSET. +C +C If the user supplies this function, it should return a nonnegative +C value of DVNORM suitable for use in the error control in DLSODE. +C None of the arguments should be altered by DVNORM. For example, a +C user-supplied DVNORM routine might: +C - Substitute a max-norm of (v(i)*w(i)) for the rms-norm, or +C - Ignore some components of v in the norm, with the effect of +C suppressing the error control on those components of Y. +C --------------------------------------------------------------------- +C***ROUTINES CALLED DEWSET, DINTDY, DUMACH, DSTODE, DVNORM, XERRWD +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYYYMMDD) +C 19791129 DATE WRITTEN +C 19791213 Minor changes to declarations; DELP init. in STODE. +C 19800118 Treat NEQ as array; integer declarations added throughout; +C minor changes to prologue. +C 19800306 Corrected TESCO(1,NQP1) setting in CFODE. +C 19800519 Corrected access of YH on forced order reduction; +C numerous corrections to prologues and other comments. +C 19800617 In main driver, added loading of SQRT(UROUND) in RWORK; +C minor corrections to main prologue. +C 19800923 Added zero initialization of HU and NQU. +C 19801218 Revised XERRWD routine; minor corrections to main prologue. +C 19810401 Minor changes to comments and an error message. +C 19810814 Numerous revisions: replaced EWT by 1/EWT; used flags +C JCUR, ICF, IERPJ, IERSL between STODE and subordinates; +C added tuning parameters CCMAX, MAXCOR, MSBP, MXNCF; +C reorganized returns from STODE; reorganized type decls.; +C fixed message length in XERRWD; changed default LUNIT to 6; +C changed Common lengths; changed comments throughout. +C 19870330 Major update by ACH: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODE; +C in STODE, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19890426 Modified prologue to SLATEC/LDOC format. (FNF) +C 19890501 Many improvements to prologue. (FNF) +C 19890503 A few final corrections to prologue. (FNF) +C 19890504 Minor cosmetic changes. (FNF) +C 19890510 Corrected description of Y in Arguments section. (FNF) +C 19890517 Minor corrections to prologue. (FNF) +C 19920514 Updated with prologue edited 891025 by G. Shaw for manual. +C 19920515 Converted source lines to upper case. (FNF) +C 19920603 Revised XERRWD calls using mixed upper-lower case. (ACH) +C 19920616 Revised prologue comment regarding CFT. (ACH) +C 19921116 Revised prologue comments regarding Common. (ACH). +C 19930326 Added comment about non-reentrancy. (FNF) +C 19930723 Changed D1MACH to DUMACH. (FNF) +C 19930801 Removed ILLIN and NTREP from Common (affects driver logic); +C minor changes to prologue and internal comments; +C changed Hollerith strings to quoted strings; +C changed internal comments to mixed case; +C replaced XERRWD with new version using character type; +C changed dummy dimensions from 1 to *. (ACH) +C 19930809 Changed to generic intrinsic names; changed names of +C subprograms and Common blocks to DLSODE etc. (ACH) +C 19930929 Eliminated use of REAL intrinsic; other minor changes. (ACH) +C 20010412 Removed all 'own' variables from Common block /DLS001/ +C (affects declarations in 6 routines). (ACH) +C 20010509 Minor corrections to prologue. (ACH) +C 20031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C 20031112 Added SAVE statements for data-loaded constants. +C +C***END PROLOGUE DLSODE +C +C*Internal Notes: +C +C Other Routines in the DLSODE Package. +C +C In addition to Subroutine DLSODE, the DLSODE package includes the +C following subroutines and function routines: +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODE is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPREPJ computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted R.M.S. norm of a vector. +C DSRCOM is a user-callable routine to save and restore +C the contents of the internal Common block. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C**End +C +C Declare externals. + EXTERNAL DPRERWORKPJ, DSOLSY + DOUBLE PRECISION DUMACH, DVNORM +C +C Declare all other variables. + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, + 1 LENIW, LENRW, LENWM, ML, MORD, MU, MXHNL0, MXSTP0 + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*80 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following internal Common block contains +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODE, DINTDY, DSTODE, +C DPREPJ, and DSOLSY. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .GT. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- +C +C***FIRST EXECUTABLE STATEMENT DLSODE + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0 .OR. MITER .GT. 5) GO TO 608 + IF (MITER .LE. 3) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .EQ. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .EQ. 0) LENWM = 0 + IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENWM = N*N + 2 + IF (MITER .EQ. 3) LENWM = N + 2 + IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) LENIW = 20 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODE. ------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- + DO 80 I = 1,N + 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1) +C Reload WM(1) = RWORK(LWM), since LWM may have changed. --------------- + 90 IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND) + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + IF (MITER .GT. 0) RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(I)) +C if this is positive, or MAX(ATOL(I)/ABS(Y(I))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * SUM ( f(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C f(i) = i-th component of initial value of f, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODE. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODE- Warning..internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODE- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODE(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPREPJ,DSOLSY) +C----------------------------------------------------------------------- + CALL DSTODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), + 2 F, JAC, DPREPJ, DSOLSY) + KGO = 1 - KFLAG + GO TO (300, 530, 540), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODE. +C If ITASK .NE. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. The optional outputs +C are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODE- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(I) .LE. 0.0 for some I (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODE- At T (=R1), EWT(I1) has become R2 .LE. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODE- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. see TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODE- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODE- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODE- ISTATE (=I1) illegal ' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODE- ITASK (=I1) illegal ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODE- ISTATE .GT. 1 but DLSODE not initialized ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODE- NEQ (=I1) .LT. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODE- ISTATE = 3 and NEQ increased (I1 to I2) ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODE- ITOL (=I1) illegal ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODE- IOPT (=I1) illegal ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODE- MF (=I1) illegal ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODE- ML (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODE- MU (=I1) illegal.. .LT.0 or .GE.NEQ (=I2)' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODE- MAXORD (=I1) .LT. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODE- MXSTEP (=I1) .LT. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODE- MXHNIL (=I1) .LT. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODE- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODE- HMAX (=R1) .LT. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODE- HMIN (=R1) .LT. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 CONTINUE + MSG='DLSODE- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 CONTINUE + MSG='DLSODE- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODE- RTOL(I1) is R1 .LT. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODE- ATOL(I1) is R1 .LT. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODE- EWT(I1) is R1 .LE. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 CONTINUE + MSG='DLSODE- TOUT (=R1) too close to T(=R2) to start integration' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 CONTINUE + MSG='DLSODE- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 CONTINUE + MSG='DLSODE- ITASK = 4 OR 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 CONTINUE + MSG='DLSODE- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODE- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODE- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODE- Run aborted.. apparent infinite loop ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- END OF SUBROUTINE DLSODE ---------------------- + END +*DECK DLSODES + SUBROUTINE DLSODES (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) + EXTERNAL F, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 12 November 2003 version of +C DLSODES: Livermore Solver for Ordinary Differential Equations +C with general Sparse Jacobian matrix. +C +C This version is in double precision. +C +C DLSODES solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C DLSODES is a variant of the DLSODE package, and is intended for +C problems in which the Jacobian matrix df/dy has an arbitrary +C sparse structure (when the problem is stiff). +C +C Authors: Alan C. Hindmarsh +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Andrew H. Sherman +C J. S. Nolen and Associates +C Houston, TX 77084 +C----------------------------------------------------------------------- +C References: +C 1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C +C 2. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: I. The Symmetric Codes, +C Int. J. Num. Meth. Eng., 18 (1982), pp. 1145-1151. +C +C 3. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: II. The Nonsymmetric Codes, +C Research Report No. 114, Dept. of Computer Sciences, Yale +C University, 1977. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODES package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue +C whose real part is negative and large in magnitude, compared to the +C reciprocal of the t span of interest. If the problem is nonstiff, +C use a method flag MF = 10. If it is stiff, there are two standard +C choices for the method flag, MF = 121 and MF = 222. In both cases, +C DLSODES requires the Jacobian matrix in some form, and it treats this +C matrix in general sparse form, with sparsity structure determined +C internally. (For options where the user supplies the sparsity +C structure, see the full description of MF below.) +C +C C. If the problem is stiff, you are encouraged to supply the Jacobian +C directly (MF = 121), but if this is not feasible, DLSODES will +C compute it internally by difference quotients (MF = 222). +C If you are supplying the Jacobian, provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*) +C Here NEQ, T, Y, and J are input arguments, and the JAC routine is to +C load the array PDJ (of length NEQ) with the J-th column of df/dy. +C I.e., load PDJ(i) with df(i)/dy(J) for all relevant values of i. +C The arguments IAN and JAN should be ignored for normal situations. +C DLSODES will call the JAC routine with J = 1,2,...,NEQ. +C Only nonzero elements need be loaded. Usually, a crude approximation +C to df/dy, possibly with fewer nonzero elements, will suffice. +C +C D. Write a main program which calls Subroutine DLSODES once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODES. On the first call to DLSODES, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable t. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C The estimated local error in Y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of Y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + 16*NEQ for MF = 10, +C 20 + (2 + 1./LENRAT)*NNZ + (11 + 9./LENRAT)*NEQ +C for MF = 121 or 222, +C where: +C NNZ = the number of nonzero elements in the sparse +C Jacobian (if this is unknown, use an estimate), and +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C In any case, the required size of RWORK cannot generally +C be predicted in advance if MF = 121 or 222, and the value +C above is a rough estimate of a crude lower bound. Some +C experimentation with this size may be necessary. +C (When known, the correct required length is an optional +C output, available in IWORK(17).) +C LRW = declared length of RWORK (in user dimension). +C IWORK = integer work array of length at least 30. +C LIW = declared length of IWORK (in user dimension). +C JAC = name of subroutine for Jacobian matrix (MF = 121). +C If used, this name must be declared External in calling +C program. If not used, pass a dummy name. +C MF = method flag. Standard values are: +C 10 for nonstiff (Adams) method, no Jacobian used +C 121 for stiff (BDF) method, user-supplied sparse Jacobian +C 222 for stiff method, internally generated sparse Jacobian +C Note that the main program must declare arrays Y, RWORK, IWORK, +C and possibly ATOL. +C +C E. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODES was successful, negative otherwise. +C -1 means excess work done on this call (perhaps wrong MF). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of MF or tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means a fatal error return flag came from sparse solver +C CDRV by way of DPRJS or DSOLSS. Should never happen. +C A return with ISTATE = -1, -4, or -5 may result from using +C an inappropriate sparsity structure, one that is quite +C different from the initial structure. Consider calling +C DLSODES again with ISTATE = 3 to force the structure to be +C reevaluated. See the full description of ISTATE below. +C +C F. To continue the integration after a successful return, simply +C reset TOUT and call DLSODES again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODES. The problem is from chemical +C kinetics, and consists of the following 12 rate equations: +C dy1/dt = -rk1*y1 +C dy2/dt = rk1*y1 + rk11*rk14*y4 + rk19*rk14*y5 +C - rk3*y2*y3 - rk15*y2*y12 - rk2*y2 +C dy3/dt = rk2*y2 - rk5*y3 - rk3*y2*y3 - rk7*y10*y3 +C + rk11*rk14*y4 + rk12*rk14*y6 +C dy4/dt = rk3*y2*y3 - rk11*rk14*y4 - rk4*y4 +C dy5/dt = rk15*y2*y12 - rk19*rk14*y5 - rk16*y5 +C dy6/dt = rk7*y10*y3 - rk12*rk14*y6 - rk8*y6 +C dy7/dt = rk17*y10*y12 - rk20*rk14*y7 - rk18*y7 +C dy8/dt = rk9*y10 - rk13*rk14*y8 - rk10*y8 +C dy9/dt = rk4*y4 + rk16*y5 + rk8*y6 + rk18*y7 +C dy10/dt = rk5*y3 + rk12*rk14*y6 + rk20*rk14*y7 +C + rk13*rk14*y8 - rk7*y10*y3 - rk17*y10*y12 +C - rk6*y10 - rk9*y10 +C dy11/dt = rk10*y8 +C dy12/dt = rk6*y10 + rk19*rk14*y5 + rk20*rk14*y7 +C - rk15*y2*y12 - rk17*y10*y12 +C +C with rk1 = rk5 = 0.1, rk4 = rk8 = rk16 = rk18 = 2.5, +C rk10 = 5.0, rk2 = rk6 = 10.0, rk14 = 30.0, +C rk3 = rk7 = rk9 = rk11 = rk12 = rk13 = rk19 = rk20 = 50.0, +C rk15 = rk17 = 100.0. +C +C The t interval is from 0 to 1000, and the initial conditions +C are y1 = 1, y2 = y3 = ... = y12 = 0. The problem is stiff. +C +C The following coding solves this problem with DLSODES, using MF = 121 +C and printing results at t = .1, 1., 10., 100., 1000. It uses +C ITOL = 1 and mixed relative/absolute tolerance controls. +C During the run and at the end, statistical quantities of interest +C are printed (see optional outputs in the full description below). +C +C EXTERNAL FEX, JEX +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y +C DIMENSION Y(12), RWORK(500), IWORK(30) +C DATA LRW/500/, LIW/30/ +C NEQ = 12 +C DO 10 I = 1,NEQ +C 10 Y(I) = 0.0D0 +C Y(1) = 1.0D0 +C T = 0.0D0 +C TOUT = 0.1D0 +C ITOL = 1 +C RTOL = 1.0D-4 +C ATOL = 1.0D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C MF = 121 +C DO 40 IOUT = 1,5 +C CALL DLSODES (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, +C 1 ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF) +C WRITE(6,30)T,IWORK(11),RWORK(11),(Y(I),I=1,NEQ) +C 30 FORMAT(//' At t =',D11.3,4X, +C 1 ' No. steps =',I5,4X,' Last step =',D11.3/ +C 2 ' Y array = ',4D14.5/13X,4D14.5/13X,4D14.5) +C IF (ISTATE .LT. 0) GO TO 80 +C TOUT = TOUT*10.0D0 +C 40 CONTINUE +C LENRW = IWORK(17) +C LENIW = IWORK(18) +C NST = IWORK(11) +C NFE = IWORK(12) +C NJE = IWORK(13) +C NLU = IWORK(21) +C NNZ = IWORK(19) +C NNZLU = IWORK(25) + IWORK(26) + NEQ +C WRITE (6,70) LENRW,LENIW,NST,NFE,NJE,NLU,NNZ,NNZLU +C 70 FORMAT(//' Required RWORK size =',I4,' IWORK size =',I4/ +C 1 ' No. steps =',I4,' No. f-s =',I4,' No. J-s =',I4, +C 2 ' No. LU-s =',I4/' No. of nonzeros in J =',I5, +C 3 ' No. of nonzeros in LU =',I5) +C STOP +C 80 WRITE(6,90)ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y, YDOT +C DOUBLE PRECISION RK1, RK2, RK3, RK4, RK5, RK6, RK7, RK8, RK9, +C 1 RK10, RK11, RK12, RK13, RK14, RK15, RK16, RK17 +C DIMENSION Y(12), YDOT(12) +C DATA RK1/0.1D0/, RK2/10.0D0/, RK3/50.0D0/, RK4/2.5D0/, RK5/0.1D0/, +C 1 RK6/10.0D0/, RK7/50.0D0/, RK8/2.5D0/, RK9/50.0D0/, RK10/5.0D0/, +C 2 RK11/50.0D0/, RK12/50.0D0/, RK13/50.0D0/, RK14/30.0D0/, +C 3 RK15/100.0D0/, RK16/2.5D0/, RK17/100.0D0/, RK18/2.5D0/, +C 4 RK19/50.0D0/, RK20/50.0D0/ +C YDOT(1) = -RK1*Y(1) +C YDOT(2) = RK1*Y(1) + RK11*RK14*Y(4) + RK19*RK14*Y(5) +C 1 - RK3*Y(2)*Y(3) - RK15*Y(2)*Y(12) - RK2*Y(2) +C YDOT(3) = RK2*Y(2) - RK5*Y(3) - RK3*Y(2)*Y(3) - RK7*Y(10)*Y(3) +C 1 + RK11*RK14*Y(4) + RK12*RK14*Y(6) +C YDOT(4) = RK3*Y(2)*Y(3) - RK11*RK14*Y(4) - RK4*Y(4) +C YDOT(5) = RK15*Y(2)*Y(12) - RK19*RK14*Y(5) - RK16*Y(5) +C YDOT(6) = RK7*Y(10)*Y(3) - RK12*RK14*Y(6) - RK8*Y(6) +C YDOT(7) = RK17*Y(10)*Y(12) - RK20*RK14*Y(7) - RK18*Y(7) +C YDOT(8) = RK9*Y(10) - RK13*RK14*Y(8) - RK10*Y(8) +C YDOT(9) = RK4*Y(4) + RK16*Y(5) + RK8*Y(6) + RK18*Y(7) +C YDOT(10) = RK5*Y(3) + RK12*RK14*Y(6) + RK20*RK14*Y(7) +C 1 + RK13*RK14*Y(8) - RK7*Y(10)*Y(3) - RK17*Y(10)*Y(12) +C 2 - RK6*Y(10) - RK9*Y(10) +C YDOT(11) = RK10*Y(8) +C YDOT(12) = RK6*Y(10) + RK19*RK14*Y(5) + RK20*RK14*Y(7) +C 1 - RK15*Y(2)*Y(12) - RK17*Y(10)*Y(12) +C RETURN +C END +C +C SUBROUTINE JEX (NEQ, T, Y, J, IA, JA, PDJ) +C DOUBLE PRECISION T, Y, PDJ +C DOUBLE PRECISION RK1, RK2, RK3, RK4, RK5, RK6, RK7, RK8, RK9, +C 1 RK10, RK11, RK12, RK13, RK14, RK15, RK16, RK17 +C DIMENSION Y(12), IA(*), JA(*), PDJ(12) +C DATA RK1/0.1D0/, RK2/10.0D0/, RK3/50.0D0/, RK4/2.5D0/, RK5/0.1D0/, +C 1 RK6/10.0D0/, RK7/50.0D0/, RK8/2.5D0/, RK9/50.0D0/, RK10/5.0D0/, +C 2 RK11/50.0D0/, RK12/50.0D0/, RK13/50.0D0/, RK14/30.0D0/, +C 3 RK15/100.0D0/, RK16/2.5D0/, RK17/100.0D0/, RK18/2.5D0/, +C 4 RK19/50.0D0/, RK20/50.0D0/ +C GO TO (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), J +C 1 PDJ(1) = -RK1 +C PDJ(2) = RK1 +C RETURN +C 2 PDJ(2) = -RK3*Y(3) - RK15*Y(12) - RK2 +C PDJ(3) = RK2 - RK3*Y(3) +C PDJ(4) = RK3*Y(3) +C PDJ(5) = RK15*Y(12) +C PDJ(12) = -RK15*Y(12) +C RETURN +C 3 PDJ(2) = -RK3*Y(2) +C PDJ(3) = -RK5 - RK3*Y(2) - RK7*Y(10) +C PDJ(4) = RK3*Y(2) +C PDJ(6) = RK7*Y(10) +C PDJ(10) = RK5 - RK7*Y(10) +C RETURN +C 4 PDJ(2) = RK11*RK14 +C PDJ(3) = RK11*RK14 +C PDJ(4) = -RK11*RK14 - RK4 +C PDJ(9) = RK4 +C RETURN +C 5 PDJ(2) = RK19*RK14 +C PDJ(5) = -RK19*RK14 - RK16 +C PDJ(9) = RK16 +C PDJ(12) = RK19*RK14 +C RETURN +C 6 PDJ(3) = RK12*RK14 +C PDJ(6) = -RK12*RK14 - RK8 +C PDJ(9) = RK8 +C PDJ(10) = RK12*RK14 +C RETURN +C 7 PDJ(7) = -RK20*RK14 - RK18 +C PDJ(9) = RK18 +C PDJ(10) = RK20*RK14 +C PDJ(12) = RK20*RK14 +C RETURN +C 8 PDJ(8) = -RK13*RK14 - RK10 +C PDJ(10) = RK13*RK14 +C PDJ(11) = RK10 +C 9 RETURN +C 10 PDJ(3) = -RK7*Y(3) +C PDJ(6) = RK7*Y(3) +C PDJ(7) = RK17*Y(12) +C PDJ(8) = RK9 +C PDJ(10) = -RK7*Y(3) - RK17*Y(12) - RK6 - RK9 +C PDJ(12) = RK6 - RK17*Y(12) +C 11 RETURN +C 12 PDJ(2) = -RK15*Y(2) +C PDJ(5) = RK15*Y(2) +C PDJ(7) = RK17*Y(10) +C PDJ(10) = -RK17*Y(10) +C PDJ(12) = -RK15*Y(2) - RK17*Y(10) +C RETURN +C END +C +C The output of this program (on a Cray-1 in single precision) +C is as follows: +C +C +C At t = 1.000e-01 No. steps = 12 Last step = 1.515e-02 +C Y array = 9.90050e-01 6.28228e-03 3.65313e-03 7.51934e-07 +C 1.12167e-09 1.18458e-09 1.77291e-12 3.26476e-07 +C 5.46720e-08 9.99500e-06 4.48483e-08 2.76398e-06 +C +C +C At t = 1.000e+00 No. steps = 33 Last step = 7.880e-02 +C Y array = 9.04837e-01 9.13105e-03 8.20622e-02 2.49177e-05 +C 1.85055e-06 1.96797e-06 1.46157e-07 2.39557e-05 +C 3.26306e-05 7.21621e-04 5.06433e-05 3.05010e-03 +C +C +C At t = 1.000e+01 No. steps = 48 Last step = 1.239e+00 +C Y array = 3.67876e-01 3.68958e-03 3.65133e-01 4.48325e-05 +C 6.10798e-05 4.33148e-05 5.90211e-05 1.18449e-04 +C 3.15235e-03 3.56531e-03 4.15520e-03 2.48741e-01 +C +C +C At t = 1.000e+02 No. steps = 91 Last step = 3.764e+00 +C Y array = 4.44981e-05 4.42666e-07 4.47273e-04 -3.53257e-11 +C 2.81577e-08 -9.67741e-11 2.77615e-07 1.45322e-07 +C 1.56230e-02 4.37394e-06 1.60104e-02 9.52246e-01 +C +C +C At t = 1.000e+03 No. steps = 111 Last step = 4.156e+02 +C Y array = -2.65492e-13 2.60539e-14 -8.59563e-12 6.29355e-14 +C -1.78066e-13 5.71471e-13 -1.47561e-12 4.58078e-15 +C 1.56314e-02 1.37878e-13 1.60184e-02 9.52719e-01 +C +C +C Required RWORK size = 442 IWORK size = 30 +C No. steps = 111 No. f-s = 142 No. J-s = 2 No. LU-s = 20 +C No. of nonzeros in J = 44 No. of nonzeros in LU = 50 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODES. +C +C The user interface to DLSODES consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODES, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODES package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODES package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODES to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter y(1),...,y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODES, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODES package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F and JAC. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to F and/or JAC. Subroutines F and/or JAC must include +C NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C on the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to +C F and JAC. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F and/or JAC. (The DLSODES package accesses only +C Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C on output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C the conditional inputs IA and JA, +C and any of the optional inputs except H0. +C In particular, if MITER = 1 or 2, a call with ISTATE = 3 +C will cause the sparsity structure of the problem to be +C recomputed (or reread from IA and JA if MOSS = 0). +C Note: a preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix, +C if one is being used. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means a fatal error return flag came from the sparse +C solver CDRV by way of DPRJS or DSOLSS (numerical +C factorization or backsolve). This should never happen. +C The integration was successful as far as T. +C +C Note: an error return with ISTATE = -1, -4, or -5 and with +C MITER = 1 or 2 may mean that the sparsity structure of the +C problem has changed significantly since it was last +C determined (or input). In that case, one can attempt to +C complete the integration by setting ISTATE = 3 on the next +C call, so that a new structure determination is done. +C +C Note: since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a work array used for a mixture of real (double precision) +C and integer work space. +C The length of RWORK (in real words) must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LWM = 0 if MITER = 0, +C LWM = 2*NNZ + 2*NEQ + (NNZ+9*NEQ)/LENRAT if MITER = 1, +C LWM = 2*NNZ + 2*NEQ + (NNZ+10*NEQ)/LENRAT if MITER = 2, +C LWM = NEQ + 2 if MITER = 3. +C In the above formulas, +C NNZ = number of nonzero elements in the Jacobian matrix. +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C (See the MF description for METH and MITER.) +C Thus if MAXORD has its default value and NEQ is constant, +C the minimum length of RWORK is: +C 20 + 16*NEQ for MF = 10, +C 20 + 16*NEQ + LWM for MF = 11, 111, 211, 12, 112, 212, +C 22 + 17*NEQ for MF = 13, +C 20 + 9*NEQ for MF = 20, +C 20 + 9*NEQ + LWM for MF = 21, 121, 221, 22, 122, 222, +C 22 + 10*NEQ for MF = 23. +C If MITER = 1 or 2, the above formula for LWM is only a +C crude lower bound. The required length of RWORK cannot +C be readily predicted in general, as it depends on the +C sparsity structure of the problem. Some experimentation +C may be necessary. +C +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 31 + NEQ + NNZ if MOSS = 0 and MITER = 1 or 2, or +C 30 otherwise. +C (NNZ is the number of nonzero elements in df/dy.) +C +C In DLSODES, IWORK is used only for conditional and +C optional inputs and optional outputs. +C +C The following two blocks of words in IWORK are conditional +C inputs, required if MOSS = 0 and MITER = 1 or 2, but not +C otherwise (see the description of MF for MOSS). +C IWORK(30+j) = IA(j) (j=1,...,NEQ+1) +C IWORK(31+NEQ+k) = JA(k) (k=1,...,NNZ) +C The two arrays IA and JA describe the sparsity structure +C to be assumed for the Jacobian matrix. JA contains the row +C indices where nonzero elements occur, reading in columnwise +C order, and IA contains the starting locations in JA of the +C descriptions of columns 1,...,NEQ, in that order, with +C IA(1) = 1. Thus, for each column index j = 1,...,NEQ, the +C values of the row index i in column j where a nonzero +C element may occur are given by +C i = JA(k), where IA(j) .le. k .lt. IA(j+1). +C If NNZ is the total number of nonzero locations assumed, +C then the length of the JA array is NNZ, and IA(NEQ+1) must +C be NNZ + 1. Duplicate entries are not allowed. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODES +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODES between calls, if +C desired (but not for use by F or JAC). +C +C JAC = name of user-supplied routine (MITER = 1 or MOSS = 1) to +C compute the Jacobian matrix, df/dy, as a function of +C the scalar t and the vector y. It is to have the form +C SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*) +C where NEQ, T, Y, J, IAN, and JAN are input, and the array +C PDJ, of length NEQ, is to be loaded with column J +C of the Jacobian on output. Thus df(i)/dy(J) is to be +C loaded into PDJ(i) for all relevant values of i. +C Here T and Y have the same meaning as in Subroutine F, +C and J is a column index (1 to NEQ). IAN and JAN are +C undefined in calls to JAC for structure determination +C (MOSS = 1). otherwise, IAN and JAN are structure +C descriptors, as defined under optional outputs below, and +C so can be used to determine the relevant row indices i, if +C desired. +C JAC need not provide df/dy exactly. A crude +C approximation (possibly with greater sparsity) will do. +C In any case, PDJ is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Calls to JAC are made with J = 1,...,NEQ, in that order, and +C each such set of calls is preceded by a call to F with the +C same arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by F and not recomputed by JAC, +C if desired. JAC must not alter its input arguments. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C MF = the method flag. Used only for input. +C MF has three decimal digits-- MOSS, METH, MITER-- +C MF = 100*MOSS + 10*METH + MITER. +C MOSS indicates the method to be used to obtain the sparsity +C structure of the Jacobian matrix if MITER = 1 or 2: +C MOSS = 0 means the user has supplied IA and JA +C (see descriptions under IWORK above). +C MOSS = 1 means the user has supplied JAC (see below) +C and the structure will be obtained from NEQ +C initial calls to JAC. +C MOSS = 2 means the structure will be obtained from NEQ+1 +C initial calls to F. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C MITER indicates the corrector iteration method: +C MITER = 0 means functional iteration (no Jacobian matrix +C is involved). +C MITER = 1 means chord iteration with a user-supplied +C sparse Jacobian, given by Subroutine JAC. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) sparse Jacobian +C (using NGP extra calls to F per df/dy value, +C where NGP is an optional output described below.) +C MITER = 3 means chord iteration with an internally +C generated diagonal Jacobian approximation +C (using 1 extra call to F per df/dy evaluation). +C If MITER = 1 or MOSS = 1, the user must supply a Subroutine +C JAC (the name is arbitrary) as described above under JAC. +C Otherwise, a dummy argument can be used. +C +C The standard choices for MF are: +C MF = 10 for a nonstiff problem, +C MF = 21 or 22 for a stiff problem with IA/JA supplied +C (21 if JAC is supplied, 22 if not), +C MF = 121 for a stiff problem with JAC supplied, +C but not IA/JA, +C MF = 222 for a stiff problem with neither IA/JA nor +C JAC supplied. +C The sparseness structure can be changed during the +C problem by making a call to DLSODES with ISTATE = 3. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C SETH RWORK(8) the element threshhold for sparsity determination +C when MOSS = 1 or 2. If the absolute value of +C an estimated Jacobian element is .le. SETH, it +C will be assumed to be absent in the structure. +C The default value of SETH is 0. +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODES, the variables listed +C below are quantities related to the performance of DLSODES +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODES, and on any return with +C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far, +C excluding those for structure determination +C (MOSS = 2). +C +C NJE IWORK(13) the number of Jacobian evaluations for the problem +C so far, excluding those for structure determination +C (MOSS = 1). +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNZ IWORK(19) the number of nonzero elements in the Jacobian +C matrix, including the diagonal (MITER = 1 or 2). +C (This may differ from that given by IA(NEQ+1)-1 +C if MOSS = 0, because of added diagonal entries.) +C +C NGP IWORK(20) the number of groups of column indices, used in +C difference quotient Jacobian aproximations if +C MITER = 2. This is also the number of extra f +C evaluations needed for each Jacobian evaluation. +C +C NLU IWORK(21) the number of sparse LU decompositions for the +C problem so far. +C +C LYH IWORK(22) the base address in RWORK of the history array YH, +C described below in this list. +C +C IPIAN IWORK(23) the base address of the structure descriptor array +C IAN, described below in this list. +C +C IPJAN IWORK(24) the base address of the structure descriptor array +C JAN, described below in this list. +C +C NZL IWORK(25) the number of nonzero elements in the strict lower +C triangle of the LU factorization used in the chord +C iteration (MITER = 1 or 2). +C +C NZU IWORK(26) the number of nonzero elements in the strict upper +C triangle of the LU factorization used in the chord +C iteration (MITER = 1 or 2). +C The total number of nonzeros in the factorization +C is therefore NZL + NZU + NEQ. +C +C The following four arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address, and its description. +C For YH and ACOR, the base addresses are in RWORK (a real array). +C The integer arrays IAN and JAN are to be obtained by declaring an +C integer array IWK and identifying IWK(1) with RWORK(21), using either +C an equivalence statement or a subroutine call. Then the base +C addresses IPIAN (of IAN) and IPJAN (of JAN) in IWK are to be obtained +C as optional outputs IWORK(23) and IWORK(24), respectively. +C Thus IAN(1) is IWK(IPIAN), etc. +C +C Name Base Address Description +C +C IAN IPIAN (in IWK) structure descriptor array of size NEQ + 1. +C JAN IPJAN (in IWK) structure descriptor array of size NNZ. +C (see above) IAN and JAN together describe the sparsity +C structure of the Jacobian matrix, as used by +C DLSODES when MITER = 1 or 2. +C JAN contains the row indices of the nonzero +C locations, reading in columnwise order, and +C IAN contains the starting locations in JAN of +C the descriptions of columns 1,...,NEQ, in +C that order, with IAN(1) = 1. Thus for each +C j = 1,...,NEQ, the row indices i of the +C nonzero locations in column j are +C i = JAN(k), IAN(j) .le. k .lt. IAN(j+1). +C Note that IAN(NEQ+1) = NNZ + 1. +C (If MOSS = 0, IAN/JAN may differ from the +C input IA/JA because of a different ordering +C in each column, and added diagonal entries.) +C +C YH LYH the Nordsieck history array, of size NYH by +C (optional (NQCUR + 1), where NYH is the initial value +C output) of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. The base address LYH +C is another optional output, listed above. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output +C to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODES. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODES. +C (The rouMETHtines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODES, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODES. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCMS(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODES (see Part 3 below). +C RSAV must be a real array of length 224 +C or more, and ISAV must be an integer +C array of length 71 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCMS is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODES. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODES. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = IWORK(22) +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODES). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (See optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODES directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = the base address of the history array YH, obtained +C as an optional output as shown above. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODES is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODES, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSS01/ of length 40 (6 double precision words +C followed by 34 integer words), +C +C If DLSODES is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODES is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODES call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODES call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCMS (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODES package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C Subroutine DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODES call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODES in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODES. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19810120 DATE WRITTEN +C 19820315 Upgraded MDI in ODRV package: operates on M + M-transpose. +C 19820426 Numerous revisions in use of work arrays; +C use wordlength ratio LENRAT; added IPISP & LRAT to Common; +C added optional outputs IPIAN/IPJAN; +C numerous corrections to comments. +C 19830503 Added routine CNTNZU; added NZL and NZU to /LSS001/; +C changed ADJLR call logic; added optional outputs NZL & NZU; +C revised counter initializations; revised PREP stmt. numbers; +C corrections to comments throughout. +C 19870320 Corrected jump on test of umax in CDRV routine; +C added ISTATE = -7 return. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODE; +C in STODE, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODES package. +C +C In addition to Subroutine DLSODES, the DLSODES package includes the +C following subroutines and function routines: +C DIPREP acts as an iterface between DLSODES and DPREP, and also does +C adjusting of work space pointers and work arrays. +C DPREP is called by DIPREP to compute sparsity and do sparse matrix +C preprocessing if MITER = 1 or 2. +C JGROUP is called by DPREP to compute groups of Jacobian column +C indices for use when MITER = 2. +C ADJLR adjusts the length of required sparse matrix work space. +C It is called by DPREP. +C CNTNZU is called by DPREP and counts the nonzero elements in the +C strict upper triangle of J + J-transpose, where J = df/dy. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODE is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJS computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSS manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCMS is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C ODRV constructs a reordering of the rows and columns of +C a matrix by the minimum degree algorithm. ODRV is a +C driver routine which calls Subroutines MD, MDI, MDM, +C MDP, MDU, and SRO. See Ref. 2 for details. (The ODRV +C module has been modified since Ref. 2, however.) +C CDRV performs reordering, symbolic factorization, numerical +C factorization, or linear system solution operations, +C depending on a path argument ipath. CDRV is a +C driver routine which calls Subroutines NROC, NSFC, +C NNFC, NNSC, and NNTC. See Ref. 3 for details. +C DLSODES uses CDRV to solve linear systems in which the +C coefficient matrix is P = I - con*J, where I is the +C identity, con is a scalar, and J is an approximation to +C the Jacobian df/dy. Because CDRV deals with rowwise +C sparsity descriptions, CDRV works with P-transpose, not P. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJS, DSOLSS + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, I1, I2, IFLAG, IMAX, IMUL, IMXER, IPFLAG, IPGO, IREM, + 1 J, KGO, LENRAT, LENYHT, LENIW, LENRW, LF0, LIA, LJA, + 2 LRTEM, LWTEM, LYHD, LYHN, MF1, MORD, MXHNL0, MXSTP0, NCOLM + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE LENRAT, MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODES, DIPREP, DPREP, +C DINTDY, DSTODE, DPRJS, and DSOLSS. +C The block DLSS01 is declared in subroutines DLSODES, DIPREP, DPREP, +C DPRJS, and DSOLSS. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C In the Data statement below, set LENRAT equal to the ratio of +C the wordlength for a real number to that for an integer. Usually, +C LENRAT = 1 for single precision and 2 for double precision. If the +C true ratio is not an integer, use the next smaller integer (.ge. 1). +C----------------------------------------------------------------------- + DATA LENRAT/2/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C If ISTATE = 1, the final setting of work space pointers, the matrix +C preprocessing, and other initializations are done in Block C. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + MOSS = MF/100 + MF1 = MF - 100*MOSS + METH = MF1/10 + MITER = MF1 - 10*METH + IF (MOSS .LT. 0 .OR. MOSS .GT. 2) GO TO 608 + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0 .OR. MITER .GT. 3) GO TO 608 + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) MOSS = 0 +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + SETH = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 + SETH = RWORK(8) + IF (SETH .LT. 0.0D0) GO TO 609 +C Check RTOL and ATOL for legality. ------------------------------------ + 60 RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 65 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 65 CONTINUE +C----------------------------------------------------------------------- +C Compute required work array lengths, as far as possible, and test +C these against LRW and LIW. Then set tentative pointers for work +C arrays. Pointers to RWORK/IWORK segments are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted WM, YH, SAVF, EWT, ACOR. +C If MITER = 1 or 2, the required length of the matrix work space WM +C is not yet known, and so a crude minimum value is used for the +C initial tests of LRW and LIW, and YH is temporarily stored as far +C to the right in RWORK as possible, to leave the maximum amount +C of space for WM for matrix preprocessing. Thus if MITER = 1 or 2 +C and MOSS .ne. 2, some of the segments of RWORK are temporarily +C omitted, as they are not needed in the preprocessing. These +C omitted segments are: ACOR if ISTATE = 1, EWT and ACOR if ISTATE = 3 +C and MOSS = 1, and SAVF, EWT, and ACOR if ISTATE = 3 and MOSS = 0. +C----------------------------------------------------------------------- + LRAT = LENRAT + IF (ISTATE .EQ. 1) NYH = N + LWMIN = 0 + IF (MITER .EQ. 1) LWMIN = 4*N + 10*N/LRAT + IF (MITER .EQ. 2) LWMIN = 4*N + 11*N/LRAT + IF (MITER .EQ. 3) LWMIN = N + 2 + LENYH = (MAXORD+1)*NYH + LREST = LENYH + 3*N + LENRW = 20 + LWMIN + LREST + IWORK(17) = LENRW + LENIW = 30 + IF (MOSS .EQ. 0 .AND. MITER .NE. 0 .AND. MITER .NE. 3) + 1 LENIW = LENIW + N + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 + LIA = 31 + IF (MOSS .EQ. 0 .AND. MITER .NE. 0 .AND. MITER .NE. 3) + 1 LENIW = LENIW + IWORK(LIA+N) - 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + LJA = LIA + N + 1 + LIA = MIN(LIA,LIW) + LJA = MIN(LJA,LIW) + LWM = 21 + IF (ISTATE .EQ. 1) NQ = 1 + NCOLM = MIN(NQ+1,MAXORD+2) + LENYHM = NCOLM*NYH + LENYHT = LENYH + IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENYHT = LENYHM + IMUL = 2 + IF (ISTATE .EQ. 3) IMUL = MOSS + IF (MOSS .EQ. 2) IMUL = 3 + LRTEM = LENYHT + IMUL*N + LWTEM = LWMIN + IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LWTEM = LRW - 20 - LRTEM + LENWK = LWTEM + LYHN = LWM + LWTEM + LSAVF = LYHN + LENYHT + LEWT = LSAVF + N + LACOR = LEWT + N + ISTATC = ISTATE + IF (ISTATE .EQ. 1) GO TO 100 +C----------------------------------------------------------------------- +C ISTATE = 3. Move YH to its new location. +C Note that only the part of YH needed for the next step, namely +C MIN(NQ+1,MAXORD+2) columns, is actually moved. +C A temporary error weight array EWT is loaded if MOSS = 2. +C Sparse matrix processing is done in DIPREP/DPREP if MITER = 1 or 2. +C If MAXORD was reduced below NQ, then the pointers are finally set +C so that SAVF is identical to YH(*,MAXORD+2). +C----------------------------------------------------------------------- + LYHD = LYH - LYHN + IMAX = LYHN - 1 + LENYHM +C Move YH. Move right if LYHD < 0; move left if LYHD > 0. ------------- + IF (LYHD .LT. 0) THEN + DO 72 I = LYHN,IMAX + J = IMAX + LYHN - I + 72 RWORK(J) = RWORK(J+LYHD) + ENDIF + IF (LYHD .GT. 0) THEN + DO 76 I = LYHN,IMAX + 76 RWORK(I) = RWORK(I+LYHD) + ENDIF + 80 LYH = LYHN + IWORK(22) = LYH + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) GO TO 92 + IF (MOSS .NE. 2) GO TO 85 +C Temporarily load EWT if MITER = 1 or 2 and MOSS = 2. ----------------- + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 82 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 82 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 85 CONTINUE +C DIPREP and DPREP do sparse matrix preprocessing if MITER = 1 or 2. --- + LSAVF = MIN(LSAVF,LRW) + LEWT = MIN(LEWT,LRW) + LACOR = MIN(LACOR,LRW) + CALL DIPREP (NEQ, Y, RWORK, IWORK(LIA),IWORK(LJA), IPFLAG, F, JAC) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (90, 628, 629, 630, 631, 632, 633), IPGO + 90 IWORK(22) = LYH + IF (LENRW .GT. LRW) GO TO 617 +C Set flag to signal parameter changes to DSTODE. ---------------------- + 92 JSTART = -1 + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C the sparse matrix preprocessing (MITER = 1 or 2), and the +C calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 CONTINUE + LYH = LYHN + IWORK(22) = LYH + TN = T + NST = 0 + H = 1.0D0 + NNZ = 0 + NGP = 0 + NZL = 0 + NZU = 0 +C Load the initial value vector in YH. --------------------------------- + DO 105 I = 1,N + 105 RWORK(I+LYH-1) = Y(I) +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 110 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 110 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + IF (MITER .EQ. 0 .OR. MITER .EQ. 3) GO TO 120 +C DIPREP and DPREP do sparse matrix preprocessing if MITER = 1 or 2. --- + LACOR = MIN(LACOR,LRW) + CALL DIPREP (NEQ, Y, RWORK, IWORK(LIA),IWORK(LJA), IPFLAG, F, JAC) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (115, 628, 629, 630, 631, 632, 633), IPGO + 115 IWORK(22) = LYH + IF (LENRW .GT. LRW) GO TO 617 +C Check TCRIT for legality (ITASK = 4 or 5). --------------------------- + 120 CONTINUE + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 125 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T +C Initialize all remaining parameters. --------------------------------- + 125 UROUND = DUMACH() + JSTART = 0 + IF (MITER .NE. 0) RWORK(LWM) = SQRT(UROUND) + MSBJ = 50 + NSLJ = 0 + CCMXJ = 0.2D0 + PSMALL = 1000.0D0*UROUND + RBIG = 0.01D0/PSMALL + NHNIL = 0 + NJE = 0 + NLU = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( f(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C f(i) = i-th component of initial value of f, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C ABS(H0) is made .le. ABS(TOUT-T) in any case. +C----------------------------------------------------------------------- + LF0 = LYH + NYH + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODE. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODES- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODES- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODE(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,WM,F,JAC,DPRJS,DSOLSS) +C----------------------------------------------------------------------- + CALL DSTODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), RWORK(LWM), + 2 F, JAC, DPRJS, DSOLSS) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 550), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. if TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODES. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODES- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODES- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODES- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODES- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODES- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C KFLAG = -3. Fatal error flag returned by DPRJS or DSOLSS (CDRV). ---- + 550 MSG = 'DLSODES- At T (=R1) and step size H (=R2), a fatal' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error flag was returned by CDRV (by way of ' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Subroutine DPRJS or DSOLSS) ' + CALL XERRWD (MSG, 40, 207, 0, 0, 0, 0, 2, TN, H) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODES- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODES- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODES- ISTATE.gt.1 but DLSODES not initialized. ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODES- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODES- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODES- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODES- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODES- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODES- SETH (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 9, 0, 0, 0, 0, 1, SETH, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODES- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODES- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODES- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODES- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODES- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODES- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG = 'DLSODES- RWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 17, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG = 'DLSODES- IWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 18, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODES- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODES- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODES- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODES- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODES- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODES- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODES- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODES- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODES- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG='DLSODES- RWORK length insufficient (for Subroutine DPREP). ' + CALL XERRWD (MSG, 60, 28, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 28, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG='DLSODES- RWORK length insufficient (for Subroutine JGROUP). ' + CALL XERRWD (MSG, 60, 29, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 29, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 630 MSG='DLSODES- RWORK length insufficient (for Subroutine ODRV). ' + CALL XERRWD (MSG, 60, 30, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 30, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG='DLSODES- Error from ODRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), ODRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 31, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + GO TO 700 + 632 MSG='DLSODES- RWORK length insufficient (for Subroutine CDRV). ' + CALL XERRWD (MSG, 60, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 32, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 633 MSG='DLSODES- Error from CDRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), CDRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 33, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + IF (IMUL .EQ. 2) THEN + MSG=' Duplicate entry in sparsity structure descriptors. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (IMUL .EQ. 3 .OR. IMUL .EQ. 6) THEN + MSG=' Insufficient storage for NSFC (called by CDRV). ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODES- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODES --------------------- + END +*DECK DLSODA + SUBROUTINE DLSODA (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, JT) + EXTERNAL F, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, JT + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 12 November 2003 version of +C DLSODA: Livermore Solver for Ordinary Differential Equations, with +C Automatic method switching for stiff and nonstiff problems. +C +C This version is in double precision. +C +C DLSODA solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C +C This a variant version of the DLSODE package. +C It switches automatically between stiff and nonstiff methods. +C This means that the user does not have to determine whether the +C problem is stiff or not, and the solver will automatically choose the +C appropriate method. It always starts with the nonstiff method. +C +C Authors: Alan C. Hindmarsh +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Linda R. Petzold +C Univ. of California at Santa Barbara +C Dept. of Computer Science +C Santa Barbara, CA 93106 +C +C References: +C 1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C 2. Linda R. Petzold, Automatic Selection of Methods for Solving +C Stiff and Nonstiff Systems of Ordinary Differential Equations, +C Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODA package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including alternative treatment of the Jacobian matrix, +C optional inputs and outputs, nonstandard options, and +C instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Write a main program which calls Subroutine DLSODA once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODA. On the first call to DLSODA, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be less than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + NEQ * MAX(16, NEQ + 9). +C See also Paragraph E below. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C LIW = declared length of IWORK (in user's dimension). +C JAC = name of subroutine for Jacobian matrix. +C Use a dummy name. See also Paragraph E below. +C JT = Jacobian type indicator. Set JT = 2. +C See also Paragraph E below. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C and possibly ATOL. +C +C C. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODA was successful, negative otherwise. +C -1 means excess work done on this call (perhaps wrong JT). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of JT or tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means work space insufficient to finish (see messages). +C +C D. To continue the integration after a successful return, simply +C reset TOUT and call DLSODA again. No other parameters need be reset. +C +C E. Note: If and when DLSODA regards the problem as stiff, and +C switches methods accordingly, it must make use of the NEQ by NEQ +C Jacobian matrix, J = df/dy. For the sake of simplicity, the +C inputs to DLSODA recommended in Paragraph B above cause DLSODA to +C treat J as a full matrix, and to approximate it internally by +C difference quotients. Alternatively, J can be treated as a band +C matrix (with great potential reduction in the size of the RWORK +C array). Also, in either the full or banded case, the user can supply +C J in closed form, with a routine whose name is passed as the JAC +C argument. These alternatives are described in the paragraphs on +C RWORK, JAC, and JT in the full description of the call sequence below. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODA. The problem is from chemical +C kinetics, and consists of the following three rate equations: +C dy1/dt = -.04*y1 + 1.e4*y2*y3 +C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 +C dy3/dt = 3.e7*y2**2 +C on the interval from t = 0.0 to t = 4.e10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. The problem is stiff. +C +C The following coding solves this problem with DLSODA, +C printing results at t = .4, 4., ..., 4.e10. It uses +C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because +C y2 has much smaller values. +C At the end of the run, statistical quantities of interest are +C printed (see optional outputs in the full description below). +C +C EXTERNAL FEX +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y +C DIMENSION Y(3), ATOL(3), RWORK(70), IWORK(23) +C NEQ = 3 +C Y(1) = 1. +C Y(2) = 0. +C Y(3) = 0. +C T = 0. +C TOUT = .4 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 70 +C LIW = 23 +C JT = 2 +C DO 40 IOUT = 1,12 +C CALL DLSODA(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE, +C 1 IOPT,RWORK,LRW,IWORK,LIW,JDUM,JT) +C WRITE(6,20)T,Y(1),Y(2),Y(3) +C 20 FORMAT(' At t =',D12.4,' Y =',3D14.6) +C IF (ISTATE .LT. 0) GO TO 80 +C 40 TOUT = TOUT*10. +C WRITE(6,60)IWORK(11),IWORK(12),IWORK(13),IWORK(19),RWORK(15) +C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,' No. J-s =',I4/ +C 1 ' Method last used =',I2,' Last switch was at t =',D12.4) +C STOP +C 80 WRITE(6,90)ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y, YDOT +C DIMENSION Y(3), YDOT(3) +C YDOT(1) = -.04*Y(1) + 1.D4*Y(2)*Y(3) +C YDOT(3) = 3.D7*Y(2)*Y(2) +C YDOT(2) = -YDOT(1) - YDOT(3) +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 4.0000e-01 y = 9.851712e-01 3.386380e-05 1.479493e-02 +C At t = 4.0000e+00 Y = 9.055333e-01 2.240655e-05 9.444430e-02 +C At t = 4.0000e+01 Y = 7.158403e-01 9.186334e-06 2.841505e-01 +C At t = 4.0000e+02 Y = 4.505250e-01 3.222964e-06 5.494717e-01 +C At t = 4.0000e+03 Y = 1.831975e-01 8.941774e-07 8.168016e-01 +C At t = 4.0000e+04 Y = 3.898730e-02 1.621940e-07 9.610125e-01 +C At t = 4.0000e+05 Y = 4.936363e-03 1.984221e-08 9.950636e-01 +C At t = 4.0000e+06 Y = 5.161831e-04 2.065786e-09 9.994838e-01 +C At t = 4.0000e+07 Y = 5.179817e-05 2.072032e-10 9.999482e-01 +C At t = 4.0000e+08 Y = 5.283401e-06 2.113371e-11 9.999947e-01 +C At t = 4.0000e+09 Y = 4.659031e-07 1.863613e-12 9.999995e-01 +C At t = 4.0000e+10 Y = 1.404280e-08 5.617126e-14 1.000000e+00 +C +C No. steps = 361 No. f-s = 693 No. J-s = 64 +C Method last used = 2 Last switch was at t = 6.0092e-03 +C----------------------------------------------------------------------- +C Full description of user interface to DLSODA. +C +C The user interface to DLSODA consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODA, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODA package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of a subroutine in the DLSODA package, +C which the user may replace with his/her own version, if desired. +C this relates to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, JT, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODA to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODA, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODA package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F and JAC. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to F and/or JAC. Subroutines F and/or JAC must include +C NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to +C F and JAC. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F and/or JAC. (The DLSODA package accesses only +C Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C on output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as TOUT). +C on an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial t, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C max-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT = (EWT(i)) is a vector of positive error weights. +C The values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting a +C user-supplied routine for the setting of EWT. +C See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, JT, ML, MU, +C and any optional inputs except H0, MXORDN, and MXORDS. +C (See IWORK description for ML and MU.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix, +C if one is being used. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the length of RWORK and/or IWORK was too small to +C proceed, but the integration was successful as far as T. +C This happens when DLSODA chooses to switch methods +C but LRW and/or LIW is too small for the new method. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real array (double precision) for work space, and (in the +C first 20 words) for conditional and optional inputs and +C optional outputs. +C As DLSODA switches automatically between stiff and nonstiff +C methods, the required length of RWORK can change during the +C problem. Thus the RWORK array passed to DLSODA can either +C have a static (fixed) length large enough for both methods, +C or have a dynamic (changing) length altered by the calling +C program in response to output from DLSODA. +C +C --- Fixed Length Case --- +C If the RWORK length is to be fixed, it should be at least +C MAX (LRN, LRS), +C where LRN and LRS are the RWORK lengths required when the +C current method is nonstiff or stiff, respectively. +C +C The separate RWORK length requirements LRN and LRS are +C as follows: +C IF NEQ is constant and the maximum method orders have +C their default values, then +C LRN = 20 + 16*NEQ, +C LRS = 22 + 9*NEQ + NEQ**2 if JT = 1 or 2, +C LRS = 22 + 10*NEQ + (2*ML+MU)*NEQ if JT = 4 or 5. +C Under any other conditions, LRN and LRS are given by: +C LRN = 20 + NYH*(MXORDN+1) + 3*NEQ, +C LRS = 20 + NYH*(MXORDS+1) + 3*NEQ + LMAT, +C where +C NYH = the initial value of NEQ, +C MXORDN = 12, unless a smaller value is given as an +C optional input, +C MXORDS = 5, unless a smaller value is given as an +C optional input, +C LMAT = length of matrix work space: +C LMAT = NEQ**2 + 2 if JT = 1 or 2, +C LMAT = (2*ML + MU + 1)*NEQ + 2 if JT = 4 or 5. +C +C --- Dynamic Length Case --- +C If the length of RWORK is to be dynamic, then it should +C be at least LRN or LRS, as defined above, depending on the +C current method. Initially, it must be at least LRN (since +C DLSODA starts with the nonstiff method). On any return +C from DLSODA, the optional output MCUR indicates the current +C method. If MCUR differs from the value it had on the +C previous return, or if there has only been one call to +C DLSODA and MCUR is now 2, then DLSODA has switched +C methods during the last call, and the length of RWORK +C should be reset (to LRN if MCUR = 1, or to LRS if +C MCUR = 2). (An increase in the RWORK length is required +C if DLSODA returned ISTATE = -7, but not otherwise.) +C After resetting the length, call DLSODA with ISTATE = 3 +C to signal that change. +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer array for work space. +C As DLSODA switches automatically between stiff and nonstiff +C methods, the required length of IWORK can change during +C problem, between +C LIS = 20 + NEQ and LIN = 20, +C respectively. Thus the IWORK array passed to DLSODA can +C either have a fixed length of at least 20 + NEQ, or have a +C dynamic length of at least LIN or LIS, depending on the +C current method. The comments on dynamic length under +C RWORK above apply here. Initially, this length need +C only be at least LIN = 20. +C +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 2 words in IWORK are conditional inputs: +C IWORK(1) = ML these are the lower and upper +C IWORK(2) = MU half-bandwidths, respectively, of the +C banded Jacobian, excluding the main diagonal. +C The band is defined by the matrix locations +C (i,j) with i-ML .le. j .le. i+MU. ML and MU +C must satisfy 0 .le. ML,MU .le. NEQ-1. +C These are required if JT is 4 or 5, and +C ignored otherwise. ML and MU may in fact be +C the band parameters for a matrix to which +C df/dy is only approximately equal. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The base addresses of the work arrays must not be +C altered between calls to DLSODA for the same problem. +C The contents of the work arrays must not be altered +C between calls, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODA between calls, if +C desired (but not for use by F or JAC). +C +C JAC = the name of the user-supplied routine to compute the +C Jacobian matrix, df/dy, if JT = 1 or 4. The JAC routine +C is optional, but if the problem is expected to be stiff much +C of the time, you are encouraged to supply JAC, for the sake +C of efficiency. (Alternatively, set JT = 2 or 5 to have +C DLSODA compute df/dy internally by difference quotients.) +C If and when DLSODA uses df/dy, it treats this NEQ by NEQ +C matrix either as full (JT = 1 or 2), or as banded (JT = +C 4 or 5) with half-bandwidths ML and MU (discussed under +C IWORK above). In either case, if JT = 1 or 4, the JAC +C routine must compute df/dy as a function of the scalar t +C and the vector y. It is to have the form +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C where NEQ, T, Y, ML, MU, and NROWPD are input and the array +C PD is to be loaded with partial derivatives (elements of +C the Jacobian matrix) on output. PD must be given a first +C dimension of NROWPD. T and Y have the same meaning as in +C Subroutine F. +C In the full matrix case (JT = 1), ML and MU are +C ignored, and the Jacobian is to be loaded into PD in +C columnwise manner, with df(i)/dy(j) loaded into PD(i,j). +C In the band matrix case (JT = 4), the elements +C within the band are to be loaded into PD in columnwise +C manner, with diagonal lines of df/dy loaded into the rows +C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). +C ML and MU are the half-bandwidth parameters (see IWORK). +C The locations in PD in the two triangular areas which +C correspond to nonexistent matrix elements can be ignored +C or loaded arbitrarily, as they are overwritten by DLSODA. +C JAC need not provide df/dy exactly. A crude +C approximation (possibly with a smaller bandwidth) will do. +C In either case, PD is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to F with the same +C arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by F and not recomputed by JAC, +C if desired. Also, JAC may alter the Y array, if desired. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C JT = Jacobian type indicator. Used only for input. +C JT specifies how the Jacobian matrix df/dy will be +C treated, if and when DLSODA requires this matrix. +C JT has the following values and meanings: +C 1 means a user-supplied full (NEQ by NEQ) Jacobian. +C 2 means an internally generated (difference quotient) full +C Jacobian (using NEQ extra calls to F per df/dy value). +C 4 means a user-supplied banded Jacobian. +C 5 means an internally generated banded Jacobian (using +C ML+MU+1 extra calls to F per df/dy evaluation). +C If JT = 1 or 4, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C If JT = 2 or 5, a dummy argument can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C IXPR IWORK(5) flag to generate extra printing at method switches. +C IXPR = 0 means no extra printing (the default). +C IXPR = 1 means print data on each switch. +C T, H, and NST will be printed on the same logical +C unit as used for error messages. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MXORDN IWORK(8) the maximum order to be allowed for the nonstiff +C (Adams) method. the default value is 12. +C if MXORDN exceeds the default value, it will +C be reduced to the default value. +C MXORDN is held constant during the problem. +C +C MXORDS IWORK(9) the maximum order to be allowed for the stiff +C (BDF) method. The default value is 5. +C If MXORDS exceeds the default value, it will +C be reduced to the default value. +C MXORDS is held constant during the problem. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODA, the variables listed +C below are quantities related to the performance of DLSODA +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODA, and on any return with +C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C TSW RWORK(15) the value of t at the time of the last method +C switch, if any. +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (and of matrix +C LU decompositions) for the problem so far. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required, assuming +C that the length of RWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required, assuming +C that the length of IWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C MUSED IWORK(19) the method indicator for the last successful step: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C +C MCUR IWORK(20) the current method indicator: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C This is the method to be attempted +C on the next step. Thus it differs from MUSED +C only if a method switch has just been made. +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at T = TCUR. +C +C ACOR LACOR array of size NEQ used for the accumulated +C (from Common corrections on each step, scaled on output +C as noted) to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODA. The base address LACOR is obtained by +C including in the user's program the +C following 2 lines: +C COMMON /DLS001/ RLS(218), ILS(37) +C LACOR = ILS(22) +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODA. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) set the logical unit number, LUN, for +C output of messages from DLSODA, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) set a flag to control the printing of +C messages by DLSODA. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCMA(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODA (see Part 3 below). +C RSAV must be a real array of length 240 +C or more, and ISAV must be an integer +C array of length 46 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCMA is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODA. +C +C CALL DINTDY(,,,,,) provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODA. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODA). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODA directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODA is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODA, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSA01/ of length 31 (22 double precision words +C followed by 9 integer words). +C +C If DLSODA is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODA is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODA call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODA call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCMA (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below is a description of a routine in the DLSODA package which +C relates to the measurement of errors, and can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C Subroutine DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODA call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the +C DMNORM routine, and also used by DLSODA in the computation +C of the optional output IMXER, and the increments for difference +C quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19811102 DATE WRITTEN +C 19820126 Fixed bug in tests of work space lengths; +C minor corrections in main prologue and comments. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODA; +C in STODA, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19970225 Fixed lines setting JSTART = -2 in Subroutine LSODA. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20010613 Revised excess accuracy test (to match rest of ODEPACK). +C 20010808 Fixed bug in DPRJA (matrix in DBNORM call). +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODA package. +C +C In addition to Subroutine DLSODA, the DLSODA package includes the +C following subroutines and function routines: +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODA is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJA computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DMNORM computes the weighted max-norm of a vector. +C DFNORM computes the norm of a full matrix consistent with the +C weighted max-norm on vectors. +C DBNORM computes the norm of a band matrix consistent with the +C weighted max-norm on vectors. +C DSRCMA is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DMNORM, DFNORM, DBNORM, DUMACH, IXSAV, and IUMACH are +C function routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJA, DSOLSY + DOUBLE PRECISION DUMACH, DMNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER INSUFR, INSUFI, IXPR, IOWNS2, JTYP, MUSED, MXORDN, MXORDS + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, + 1 LENIW, LENRW, LENWM, ML, MORD, MU, MXHNL0, MXSTP0 + INTEGER LEN1, LEN1C, LEN1N, LEN1S, LEN2, LENIWC, LENRWC + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION TSW, ROWNS2, PDNORM + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODA, DINTDY, DSTODA, +C DPRJA, and DSOLSY. +C The block DLSA01 is declared in subroutines DLSODA, DSTODA, and DPRJA. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSA01/ TSW, ROWNS2(20), PDNORM, + 1 INSUFR, INSUFI, IXPR, IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C JT, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + IF (JT .EQ. 3 .OR. JT .LT. 1 .OR. JT .GT. 5) GO TO 608 + JTYP = JT + IF (JT .LE. 2) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + IXPR = 0 + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + HMXI = 0.0D0 + HMIN = 0.0D0 + IF (ISTATE .NE. 1) GO TO 60 + H0 = 0.0D0 + MXORDN = MORD(1) + MXORDS = MORD(2) + GO TO 60 + 40 IXPR = IWORK(5) + IF (IXPR .LT. 0 .OR. IXPR .GT. 1) GO TO 611 + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + MXORDN = IWORK(8) + IF (MXORDN .LT. 0) GO TO 628 + IF (MXORDN .EQ. 0) MXORDN = 100 + MXORDN = MIN(MXORDN,MORD(1)) + MXORDS = IWORK(9) + IF (MXORDS .LT. 0) GO TO 629 + IF (MXORDS .EQ. 0) MXORDS = 100 + MXORDS = MIN(MXORDS,MORD(2)) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C If ISTATE = 1, METH is initialized to 1 here to facilitate the +C checking of work space lengths. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVF, ACOR. +C If the lengths provided are insufficient for the current method, +C an error return occurs. This is treated as illegal input on the +C first call, but as a problem interruption with ISTATE = -7 on a +C continuation call. If the lengths are sufficient for the current +C method but not for both methods, a warning message is sent. +C----------------------------------------------------------------------- + 60 IF (ISTATE .EQ. 1) METH = 1 + IF (ISTATE .EQ. 1) NYH = N + LYH = 21 + LEN1N = 20 + (MXORDN + 1)*NYH + LEN1S = 20 + (MXORDS + 1)*NYH + LWM = LEN1S + 1 + IF (JT .LE. 2) LENWM = N*N + 2 + IF (JT .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEN1S = LEN1S + LENWM + LEN1C = LEN1N + IF (METH .EQ. 2) LEN1C = LEN1S + LEN1 = MAX(LEN1N,LEN1S) + LEN2 = 3*N + LENRW = LEN1 + LEN2 + LENRWC = LEN1C + LEN2 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + LENIWC = 20 + IF (METH .EQ. 2) LENIWC = LENIW + IWORK(18) = LENIW + IF (ISTATE .EQ. 1 .AND. LRW .LT. LENRWC) GO TO 617 + IF (ISTATE .EQ. 1 .AND. LIW .LT. LENIWC) GO TO 618 + IF (ISTATE .EQ. 3 .AND. LRW .LT. LENRWC) GO TO 550 + IF (ISTATE .EQ. 3 .AND. LIW .LT. LENIWC) GO TO 555 + LEWT = LEN1 + 1 + INSUFR = 0 + IF (LRW .GE. LENRW) GO TO 65 + INSUFR = 2 + LEWT = LEN1C + 1 + MSG='DLSODA- Warning.. RWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENRW = I1, while LRW = I2.' + CALL XERRWD (MSG, 50, 103, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + 65 LSAVF = LEWT + N + LACOR = LSAVF + N + INSUFI = 0 + IF (LIW .GE. LENIW) GO TO 70 + INSUFI = 2 + MSG='DLSODA- Warning.. IWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENIW = I1, while LIW = I2.' + CALL XERRWD (MSG, 50, 104, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + 70 CONTINUE +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 75 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 75 CONTINUE + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODA. ------- + JSTART = -1 + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + TSW = T + MAXORD = MXORDN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + MUSED = 0 + MITER = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by: +C +C H0**(-2) = 1./(TOL * w0**2) + TOL * (norm(F))**2 +C +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C F = the initial value of the vector f(t,y), and +C norm() = the weighted vector norm used throughout, given by +C the DMNORM function routine, and weighted by the +C tolerances initially loaded into the EWT array. +C The sign of H0 is inferred from the initial values of TOUT and T. +C ABS(H0) is made .le. ABS(TOUT-T) in any case. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DMNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + T = TN + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) T = TCRIT + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2 .AND. JSTART .GE. 0) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODA. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF (METH .EQ. MUSED) GO TO 255 + IF (INSUFR .EQ. 1) GO TO 550 + IF (INSUFI .EQ. 1) GO TO 555 + 255 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DMNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODA- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODA- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODA(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPRJA,DSOLSY) +C----------------------------------------------------------------------- + CALL DSTODA (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), + 2 F, JAC, DPRJA, DSOLSY) + KGO = 1 - KFLAG + GO TO (300, 530, 540), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). +C If a method switch was just made, record TSW, reset MAXORD, +C set JSTART to -1 to signal DSTODA to complete the switch, +C and do extra printing of data if IXPR = 1. +C Then, in any case, check for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + IF (METH .EQ. MUSED) GO TO 310 + TSW = TN + MAXORD = MXORDN + IF (METH .EQ. 2) MAXORD = MXORDS + IF (METH .EQ. 2) RWORK(LWM) = SQRT(UROUND) + INSUFR = MIN(INSUFR,1) + INSUFI = MIN(INSUFI,1) + JSTART = -1 + IF (IXPR .EQ. 0) GO TO 310 + IF (METH .EQ. 2) THEN + MSG='DLSODA- A switch to the BDF (stiff) method has occurred ' + CALL XERRWD (MSG, 60, 105, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (METH .EQ. 1) THEN + MSG='DLSODA- A switch to the Adams (nonstiff) method has occurred' + CALL XERRWD (MSG, 60, 106, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + MSG=' at T = R1, tentative step size H = R2, step NST = I1 ' + CALL XERRWD (MSG, 60, 107, 0, 1, NST, 0, 2, TN, H) + 310 GO TO (320, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 320 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (JSTART .GE. 0) JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODA. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODA- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODA- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODA- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODA- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODA- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C RWORK length too small to proceed. ----------------------------------- + 550 MSG = 'DLSODA- At current T(=R1), RWORK length too small' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C IWORK length too small to proceed. ----------------------------------- + 555 MSG = 'DLSODA- At current T(=R1), IWORK length too small' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODA- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODA- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODA- ISTATE .gt. 1 but DLSODA not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODA- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODA- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODA- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODA- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODA- JT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, JT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODA- ML (=I1) illegal: .lt.0 or .ge.NEQ (=I2) ' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODA- MU (=I1) illegal: .lt.0 or .ge.NEQ (=I2) ' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODA- IXPR (=I1) illegal. ' + CALL XERRWD (MSG, 30, 11, 0, 1, IXPR, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODA- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODA- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODA- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODA- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODA- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODA- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODA- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODA- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODA- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODA- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODA- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODA- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODA- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODA- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODA- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODA- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG = 'DLSODA- MXORDN (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 28, 0, 1, MXORDN, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG = 'DLSODA- MXORDS (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 29, 0, 1, MXORDS, 0, 0, 0.0D0, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODA- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODA ---------------------- + END +*DECK DLSODAR + SUBROUTINE DLSODAR (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, JT, + 2 G, NG, JROOT) + EXTERNAL F, JAC, G + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, JT, + 1 NG, JROOT + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW), + 1 JROOT(NG) +C----------------------------------------------------------------------- +C This is the 12 November 2003 version of +C DLSODAR: Livermore Solver for Ordinary Differential Equations, with +C Automatic method switching for stiff and nonstiff problems, +C and with Root-finding. +C +C This version is in double precision. +C +C DLSODAR solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C At the same time, it locates the roots of any of a set of functions +C g(i) = g(i,t,y(1),...,y(NEQ)) (i = 1,...,ng). +C +C This a variant version of the DLSODE package. It differs from it +C in two ways: +C (a) It switches automatically between stiff and nonstiff methods. +C This means that the user does not have to determine whether the +C problem is stiff or not, and the solver will automatically choose the +C appropriate method. It always starts with the nonstiff method. +C (b) It finds the root of at least one of a set of constraint +C functions g(i) of the independent and dependent variables. +C It finds only those roots for which some g(i), as a function +C of t, changes sign in the interval of integration. +C It then returns the solution at the root, if that occurs +C sooner than the specified stop condition, and otherwise returns +C the solution according the specified stop condition. +C +C Authors: Alan C. Hindmarsh, +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Linda R. Petzold +C Univ. of California at Santa Barbara +C Dept. of Computer Science +C Santa Barbara, CA 93106 +C +C References: +C 1. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C 2. Linda R. Petzold, Automatic Selection of Methods for Solving +C Stiff and Nonstiff Systems of Ordinary Differential Equations, +C Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148. +C 3. Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined +C Output Points for Solutions of ODEs, Sandia Report SAND80-0180, +C February 1980. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODAR package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including alternative treatment of the Jacobian matrix, +C optional inputs and outputs, nonstandard options, and +C instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Provide a subroutine of the form: +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C which supplies the vector function g by loading GOUT(i) with +C g(i), the i-th constraint function whose root is sought. +C +C C. Write a main program which calls Subroutine DLSODAR once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODAR. On the first call to DLSODAR, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be less than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + NEQ * MAX(16, NEQ + 9) + 3*NG. +C See also Paragraph F below. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C LIW = declared length of IWORK (in user's dimension). +C JAC = name of subroutine for Jacobian matrix. +C Use a dummy name. See also Paragraph F below. +C JT = Jacobian type indicator. Set JT = 2. +C See also Paragraph F below. +C G = name of subroutine for constraint functions, whose +C roots are desired during the integration. +C This name must be declared External in calling program. +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C JROOT = integer array of length NG for output of root information. +C See next paragraph. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C JROOT, and possibly ATOL. +C +C D. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable. This is +C TOUT if ISTATE = 2, or the root location if ISTATE = 3, +C or the farthest point reached if DLSODAR was unsuccessful. +C ISTATE = 2 or 3 if DLSODAR was successful, negative otherwise. +C 2 means no root was found, and TOUT was reached as desired. +C 3 means a root was found prior to reaching TOUT. +C -1 means excess work done on this call (perhaps wrong JT). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of JT or tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means work space insufficient to finish (see messages). +C JROOT = array showing roots found if ISTATE = 3 on return. +C JROOT(i) = 1 if g(i) has a root at t, or 0 otherwise. +C +C E. To continue the integration after a successful return, proceed +C as follows: +C (a) If ISTATE = 2 on return, reset TOUT and call DLSODAR again. +C (b) If ISTATE = 3 on return, reset ISTATE to 2, call DLSODAR again. +C In either case, no other parameters need be reset. +C +C F. Note: If and when DLSODAR regards the problem as stiff, and +C switches methods accordingly, it must make use of the NEQ by NEQ +C Jacobian matrix, J = df/dy. For the sake of simplicity, the +C inputs to DLSODAR recommended in Paragraph C above cause DLSODAR to +C treat J as a full matrix, and to approximate it internally by +C difference quotients. Alternatively, J can be treated as a band +C matrix (with great potential reduction in the size of the RWORK +C array). Also, in either the full or banded case, the user can supply +C J in closed form, with a routine whose name is passed as the JAC +C argument. These alternatives are described in the paragraphs on +C RWORK, JAC, and JT in the full description of the call sequence below. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODAR. The problem is from chemical +C kinetics, and consists of the following three rate equations: +C dy1/dt = -.04*y1 + 1.e4*y2*y3 +C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 +C dy3/dt = 3.e7*y2**2 +C on the interval from t = 0.0 to t = 4.e10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. The problem is stiff. +C In addition, we want to find the values of t, y1, y2, and y3 at which +C (1) y1 reaches the value 1.e-4, and +C (2) y3 reaches the value 1.e-2. +C +C The following coding solves this problem with DLSODAR, +C printing results at t = .4, 4., ..., 4.e10, and at the computed +C roots. It uses ITOL = 2 and ATOL much smaller for y2 than y1 or y3 +C because y2 has much smaller values. +C At the end of the run, statistical quantities of interest are +C printed (see optional outputs in the full description below). +C +C EXTERNAL FEX, GEX +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y +C DIMENSION Y(3), ATOL(3), RWORK(76), IWORK(23), JROOT(2) +C NEQ = 3 +C Y(1) = 1. +C Y(2) = 0. +C Y(3) = 0. +C T = 0. +C TOUT = .4 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 76 +C LIW = 23 +C JT = 2 +C NG = 2 +C DO 40 IOUT = 1,12 +C 10 CALL DLSODAR(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE, +C 1 IOPT,RWORK,LRW,IWORK,LIW,JDUM,JT,GEX,NG,JROOT) +C WRITE(6,20)T,Y(1),Y(2),Y(3) +C 20 FORMAT(' At t =',D12.4,' Y =',3D14.6) +C IF (ISTATE .LT. 0) GO TO 80 +C IF (ISTATE .EQ. 2) GO TO 40 +C WRITE(6,30)JROOT(1),JROOT(2) +C 30 FORMAT(5X,' The above line is a root, JROOT =',2I5) +C ISTATE = 2 +C GO TO 10 +C 40 TOUT = TOUT*10. +C WRITE(6,60)IWORK(11),IWORK(12),IWORK(13),IWORK(10), +C 1 IWORK(19),RWORK(15) +C 60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,' No. J-s =',I4, +C 1 ' No. g-s =',I4/ +C 2 ' Method last used =',I2,' Last switch was at t =',D12.4) +C STOP +C 80 WRITE(6,90)ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE FEX (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y, YDOT +C DIMENSION Y(3), YDOT(3) +C YDOT(1) = -.04*Y(1) + 1.D4*Y(2)*Y(3) +C YDOT(3) = 3.D7*Y(2)*Y(2) +C YDOT(2) = -YDOT(1) - YDOT(3) +C RETURN +C END +C +C SUBROUTINE GEX (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y, GOUT +C DIMENSION Y(3), GOUT(2) +C GOUT(1) = Y(1) - 1.D-4 +C GOUT(2) = Y(3) - 1.D-2 +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 2.6400e-01 y = 9.899653e-01 3.470563e-05 1.000000e-02 +C The above line is a root, JROOT = 0 1 +C At t = 4.0000e-01 Y = 9.851712e-01 3.386380e-05 1.479493e-02 +C At t = 4.0000e+00 Y = 9.055333e-01 2.240655e-05 9.444430e-02 +C At t = 4.0000e+01 Y = 7.158403e-01 9.186334e-06 2.841505e-01 +C At t = 4.0000e+02 Y = 4.505250e-01 3.222964e-06 5.494717e-01 +C At t = 4.0000e+03 Y = 1.831975e-01 8.941774e-07 8.168016e-01 +C At t = 4.0000e+04 Y = 3.898730e-02 1.621940e-07 9.610125e-01 +C At t = 4.0000e+05 Y = 4.936363e-03 1.984221e-08 9.950636e-01 +C At t = 4.0000e+06 Y = 5.161831e-04 2.065786e-09 9.994838e-01 +C At t = 2.0745e+07 Y = 1.000000e-04 4.000395e-10 9.999000e-01 +C The above line is a root, JROOT = 1 0 +C At t = 4.0000e+07 Y = 5.179817e-05 2.072032e-10 9.999482e-01 +C At t = 4.0000e+08 Y = 5.283401e-06 2.113371e-11 9.999947e-01 +C At t = 4.0000e+09 Y = 4.659031e-07 1.863613e-12 9.999995e-01 +C At t = 4.0000e+10 Y = 1.404280e-08 5.617126e-14 1.000000e+00 +C +C No. steps = 361 No. f-s = 693 No. J-s = 64 No. g-s = 390 +C Method last used = 2 Last switch was at t = 6.0092e-03 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODAR. +C +C The user interface to DLSODAR consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODAR, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODAR package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of a subroutine in the DLSODAR package, +C which the user may replace with his/her own version, if desired. +C this relates to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, +C JT, G, and NG, +C that used only for output is JROOT, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODAR to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODAR, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in F and/or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODAR package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F, JAC, and G. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to F, JAC, and G. Each such subroutine must include +C NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to F, +C JAC, and G. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to F, JAC, and G. (The DLSODAR package accesses only +C Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C If a root was found, T is the computed location of the +C root reached first, on output. +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C max-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT = (EWT(i)) is a vector of positive error weights. +C The values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting a +C user-supplied routine for the setting of EWT. +C See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, JT, ML, MU, +C and any optional inputs except H0, MXORDN, and MXORDS. +C (See IWORK description for ML and MU.) +C In addition, immediately following a return with +C ISTATE = 3 (root found), NG and G may be changed. +C (But changing NG from 0 to .gt. 0 is not allowed.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = t and ISTATE = 1 on input. +C 2 means the integration was performed successfully, and +C no roots were found. +C 3 means the integration was successful, and one or more +C roots were found before satisfying the stop condition +C specified by ITASK. See JROOT. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix, +C if one is being used. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the length of RWORK and/or IWORK was too small to +C proceed, but the integration was successful as far as T. +C This happens when DLSODAR chooses to switch methods +C but LRW and/or LIW is too small for the new method. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real array (double precision) for work space, and (in the +C first 20 words) for conditional and optional inputs and +C optional outputs. +C As DLSODAR switches automatically between stiff and nonstiff +C methods, the required length of RWORK can change during the +C problem. Thus the RWORK array passed to DLSODAR can either +C have a static (fixed) length large enough for both methods, +C or have a dynamic (changing) length altered by the calling +C program in response to output from DLSODAR. +C +C --- Fixed Length Case --- +C If the RWORK length is to be fixed, it should be at least +C max (LRN, LRS), +C where LRN and LRS are the RWORK lengths required when the +C current method is nonstiff or stiff, respectively. +C +C The separate RWORK length requirements LRN and LRS are +C as follows: +C If NEQ is constant and the maximum method orders have +C their default values, then +C LRN = 20 + 16*NEQ + 3*NG, +C LRS = 22 + 9*NEQ + NEQ**2 + 3*NG (JT = 1 or 2), +C LRS = 22 + 10*NEQ + (2*ML+MU)*NEQ + 3*NG (JT = 4 or 5). +C Under any other conditions, LRN and LRS are given by: +C LRN = 20 + NYH*(MXORDN+1) + 3*NEQ + 3*NG, +C LRS = 20 + NYH*(MXORDS+1) + 3*NEQ + LMAT + 3*NG, +C where +C NYH = the initial value of NEQ, +C MXORDN = 12, unless a smaller value is given as an +C optional input, +C MXORDS = 5, unless a smaller value is given as an +C optional input, +C LMAT = length of matrix work space: +C LMAT = NEQ**2 + 2 if JT = 1 or 2, +C LMAT = (2*ML + MU + 1)*NEQ + 2 if JT = 4 or 5. +C +C --- Dynamic Length Case --- +C If the length of RWORK is to be dynamic, then it should +C be at least LRN or LRS, as defined above, depending on the +C current method. Initially, it must be at least LRN (since +C DLSODAR starts with the nonstiff method). On any return +C from DLSODAR, the optional output MCUR indicates the current +C method. If MCUR differs from the value it had on the +C previous return, or if there has only been one call to +C DLSODAR and MCUR is now 2, then DLSODAR has switched +C methods during the last call, and the length of RWORK +C should be reset (to LRN if MCUR = 1, or to LRS if +C MCUR = 2). (An increase in the RWORK length is required +C if DLSODAR returned ISTATE = -7, but not otherwise.) +C After resetting the length, call DLSODAR with ISTATE = 3 +C to signal that change. +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer array for work space. +C As DLSODAR switches automatically between stiff and nonstiff +C methods, the required length of IWORK can change during +C problem, between +C LIS = 20 + NEQ and LIN = 20, +C respectively. Thus the IWORK array passed to DLSODAR can +C either have a fixed length of at least 20 + NEQ, or have a +C dynamic length of at least LIN or LIS, depending on the +C current method. The comments on dynamic length under +C RWORK above apply here. Initially, this length need +C only be at least LIN = 20. +C +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 2 words in IWORK are conditional inputs: +C IWORK(1) = ML These are the lower and upper +C IWORK(2) = MU half-bandwidths, respectively, of the +C banded Jacobian, excluding the main diagonal. +C The band is defined by the matrix locations +C (i,j) with i-ML .le. j .le. i+MU. ML and MU +C must satisfy 0 .le. ML,MU .le. NEQ-1. +C These are required if JT is 4 or 5, and +C ignored otherwise. ML and MU may in fact be +C the band parameters for a matrix to which +C df/dy is only approximately equal. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The base addresses of the work arrays must not be +C altered between calls to DLSODAR for the same problem. +C The contents of the work arrays must not be altered +C between calls, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODAR between calls, if +C desired (but not for use by F, JAC, or G). +C +C JAC = the name of the user-supplied routine to compute the +C Jacobian matrix, df/dy, if JT = 1 or 4. The JAC routine +C is optional, but if the problem is expected to be stiff much +C of the time, you are encouraged to supply JAC, for the sake +C of efficiency. (Alternatively, set JT = 2 or 5 to have +C DLSODAR compute df/dy internally by difference quotients.) +C If and when DLSODAR uses df/dy, it treats this NEQ by NEQ +C matrix either as full (JT = 1 or 2), or as banded (JT = +C 4 or 5) with half-bandwidths ML and MU (discussed under +C IWORK above). In either case, if JT = 1 or 4, the JAC +C routine must compute df/dy as a function of the scalar t +C and the vector y. It is to have the form +C SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) +C DOUBLE PRECISION T, Y(*), PD(NROWPD,*) +C where NEQ, T, Y, ML, MU, and NROWPD are input and the array +C PD is to be loaded with partial derivatives (elements of +C the Jacobian matrix) on output. PD must be given a first +C dimension of NROWPD. T and Y have the same meaning as in +C Subroutine F. +C In the full matrix case (JT = 1), ML and MU are +C ignored, and the Jacobian is to be loaded into PD in +C columnwise manner, with df(i)/dy(j) loaded into pd(i,j). +C In the band matrix case (JT = 4), the elements +C within the band are to be loaded into PD in columnwise +C manner, with diagonal lines of df/dy loaded into the rows +C of PD. Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). +C ML and MU are the half-bandwidth parameters (see IWORK). +C The locations in PD in the two triangular areas which +C correspond to nonexistent matrix elements can be ignored +C or loaded arbitrarily, as they are overwritten by DLSODAR. +C JAC need not provide df/dy exactly. A crude +C approximation (possibly with a smaller bandwidth) will do. +C In either case, PD is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to F with the same +C arguments NEQ, T, and Y. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by F and not recomputed by JAC, +C if desired. Also, JAC may alter the Y array, if desired. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C JT = Jacobian type indicator. Used only for input. +C JT specifies how the Jacobian matrix df/dy will be +C treated, if and when DLSODAR requires this matrix. +C JT has the following values and meanings: +C 1 means a user-supplied full (NEQ by NEQ) Jacobian. +C 2 means an internally generated (difference quotient) full +C Jacobian (using NEQ extra calls to F per df/dy value). +C 4 means a user-supplied banded Jacobian. +C 5 means an internally generated banded Jacobian (using +C ML+MU+1 extra calls to F per df/dy evaluation). +C If JT = 1 or 4, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C If JT = 2 or 5, a dummy argument can be used. +C +C G = the name of subroutine for constraint functions, whose +C roots are desired during the integration. It is to have +C the form +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C where NEQ, T, Y, and NG are input, and the array GOUT +C is output. NEQ, T, and Y have the same meaning as in +C the F routine, and GOUT is an array of length NG. +C For i = 1,...,NG, this routine is to load into GOUT(i) +C the value at (T,Y) of the i-th constraint function g(i). +C DLSODAR will find roots of the g(i) of odd multiplicity +C (i.e. sign changes) as they occur during the integration. +C G must be declared External in the calling program. +C +C Caution: Because of numerical errors in the functions +C g(i) due to roundoff and integration error, DLSODAR may +C return false roots, or return the same root at two or more +C nearly equal values of t. If such false roots are +C suspected, the user should consider smaller error tolerances +C and/or higher precision in the evaluation of the g(i). +C +C If a root of some g(i) defines the end of the problem, +C the input to DLSODAR should nevertheless allow integration +C to a point slightly past that root, so that DLSODAR can +C locate the root by interpolation. +C +C Subroutine G may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in G) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C +C JROOT = integer array of length NG. Used only for output. +C On a return with ISTATE = 3 (one or more roots found), +C JROOT(i) = 1 if g(i) has a root at T, or JROOT(i) = 0 if not. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C IXPR IWORK(5) flag to generate extra printing at method switches. +C IXPR = 0 means no extra printing (the default). +C IXPR = 1 means print data on each switch. +C T, H, and NST will be printed on the same logical +C unit as used for error messages. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MXORDN IWORK(8) the maximum order to be allowed for the nonstiff +C (Adams) method. The default value is 12. +C If MXORDN exceeds the default value, it will +C be reduced to the default value. +C MXORDN is held constant during the problem. +C +C MXORDS IWORK(9) the maximum order to be allowed for the stiff +C (BDF) method. The default value is 5. +C If MXORDS exceeds the default value, it will +C be reduced to the default value. +C MXORDS is held constant during the problem. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODAR, the variables listed +C below are quantities related to the performance of DLSODAR +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODAR, and on any return with +C ISTATE = -1, -2, -4, -5, or -6. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C TSW RWORK(15) the value of t at the time of the last method +C switch, if any. +C +C NGE IWORK(10) the number of g evaluations for the problem so far. +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (and of matrix +C LU decompositions) for the problem so far. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required, assuming +C that the length of RWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required, assuming +C that the length of IWORK is to be fixed for the +C rest of the problem, and that switching may occur. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C MUSED IWORK(19) the method indicator for the last successful step: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C +C MCUR IWORK(20) the current method indicator: +C 1 means Adams (nonstiff), 2 means BDF (stiff). +C This is the method to be attempted +C on the next step. Thus it differs from MUSED +C only if a method switch has just been made. +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 + 3*NG the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LACOR array of size NEQ used for the accumulated +C (from Common corrections on each step, scaled on output +C as noted) to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODAR. The base address LACOR is obtained by +C including in the user's program the +C following 2 lines: +C COMMON /DLS001/ RLS(218), ILS(37) +C LACOR = ILS(22) +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODAR. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODAR, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODAR. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCAR(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODAR (see Part 3 below). +C RSAV must be a real array of length 245 +C or more, and ISAV must be an integer +C array of length 55 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCAR is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODAR. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODAR. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = 21 + 3*NG +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODAR). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(t), is already provided +C by DLSODAR directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = 21 + 3*NG = base address in RWORK of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODAR is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODAR, and +C (2) the three internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSA01/ of length 31 (22 double precision words +C followed by 9 integer words). +C /DLSR01/ of length 7 (3 double precision words +C followed by 4 integer words). +C +C If DLSODAR is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODAR is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODAR call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODAR call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCAR (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below is a description of a routine in the DLSODAR package which +C relates to the measurement of errors, and can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C Subroutine DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODAR call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the +C DMNORM routine, and also used by DLSODAR in the computation +C of the optional output IMXER, and the increments for difference +C quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19811102 DATE WRITTEN +C 19820126 Fixed bug in tests of work space lengths; +C minor corrections in main prologue and comments. +C 19820507 Fixed bug in RCHEK in setting HMING. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODA; +C in STODA, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19970225 Fixed lines setting JSTART = -2 in Subroutine LSODAR. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20010613 Revised excess accuracy test (to match rest of ODEPACK). +C 20010808 Fixed bug in DPRJA (matrix in DBNORM call). +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODAR package. +C +C In addition to Subroutine DLSODAR, the DLSODAR package includes the +C following subroutines and function routines: +C DRCHEK does preliminary checking for roots, and serves as an +C interface between Subroutine DLSODAR and Subroutine DROOTS. +C DROOTS finds the leftmost root of a set of functions. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODA is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJA computes and preprocesses the Jacobian matrix J = df/dy +C and the Newton iteration matrix P = I - h*l0*J. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DMNORM computes the weighted max-norm of a vector. +C DFNORM computes the norm of a full matrix consistent with the +C weighted max-norm on vectors. +C DBNORM computes the norm of a band matrix consistent with the +C weighted max-norm on vectors. +C DSRCAR is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DCOPY is one of the basic linear algebra modules (BLAS). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DMNORM, DFNORM, DBNORM, DUMACH, IXSAV, and IUMACH are +C function routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJA, DSOLSY + DOUBLE PRECISION DUMACH, DMNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER INSUFR, INSUFI, IXPR, IOWNS2, JTYP, MUSED, MXORDN, MXORDS + INTEGER LG0, LG1, LGX, IOWNR3, IRFND, ITASKC, NGC, NGE + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LENIW, + 1 LENRW, LENWM, LF0, ML, MORD, MU, MXHNL0, MXSTP0 + INTEGER LEN1, LEN1C, LEN1N, LEN1S, LEN2, LENIWC, LENRWC + INTEGER IRFP, IRT, LENYH, LYHNEW + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION TSW, ROWNS2, PDNORM + DOUBLE PRECISION ROWNR3, T0, TLAST, TOUTC + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following three internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODAR, DINTDY, DSTODA, +C DPRJA, and DSOLSY. +C The block DLSA01 is declared in subroutines DLSODAR, DSTODA, DPRJA. +C The block DLSR01 is declared in subroutines DLSODAR, DRCHEK, DROOTS. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSA01/ TSW, ROWNS2(20), PDNORM, + 1 INSUFR, INSUFI, IXPR, IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS +C + COMMON /DLSR01/ ROWNR3(2), T0, TLAST, TOUTC, + 1 LG0, LG1, LGX, IOWNR3(2), IRFND, ITASKC, NGC, NGE +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + ITASKC = ITASK + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C JT, ML, MU, and NG. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + IF (JT .EQ. 3 .OR. JT .LT. 1 .OR. JT .GT. 5) GO TO 608 + JTYP = JT + IF (JT .LE. 2) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE + IF (NG .LT. 0) GO TO 630 + IF (ISTATE .EQ. 1) GO TO 35 + IF (IRFND .EQ. 0 .AND. NG .NE. NGC) GO TO 631 + 35 NGC = NG +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + IXPR = 0 + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + HMXI = 0.0D0 + HMIN = 0.0D0 + IF (ISTATE .NE. 1) GO TO 60 + H0 = 0.0D0 + MXORDN = MORD(1) + MXORDS = MORD(2) + GO TO 60 + 40 IXPR = IWORK(5) + IF (IXPR .LT. 0 .OR. IXPR .GT. 1) GO TO 611 + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + MXORDN = IWORK(8) + IF (MXORDN .LT. 0) GO TO 628 + IF (MXORDN .EQ. 0) MXORDN = 100 + MXORDN = MIN(MXORDN,MORD(1)) + MXORDS = IWORK(9) + IF (MXORDS .LT. 0) GO TO 629 + IF (MXORDS .EQ. 0) MXORDS = 100 + MXORDS = MIN(MXORDS,MORD(2)) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C If ISTATE = 1, METH is initialized to 1 here to facilitate the +C checking of work space lengths. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted G0, G1, GX, YH, WM, +C EWT, SAVF, ACOR. +C If the lengths provided are insufficient for the current method, +C an error return occurs. This is treated as illegal input on the +C first call, but as a problem interruption with ISTATE = -7 on a +C continuation call. If the lengths are sufficient for the current +C method but not for both methods, a warning message is sent. +C----------------------------------------------------------------------- + 60 IF (ISTATE .EQ. 1) METH = 1 + IF (ISTATE .EQ. 1) NYH = N + LG0 = 21 + LG1 = LG0 + NG + LGX = LG1 + NG + LYHNEW = LGX + NG + IF (ISTATE .EQ. 1) LYH = LYHNEW + IF (LYHNEW .EQ. LYH) GO TO 62 +C If ISTATE = 3 and NG was changed, shift YH to its new location. ------ + LENYH = L*NYH + IF (LRW .LT. LYHNEW-1+LENYH) GO TO 62 + I1 = 1 + IF (LYHNEW .GT. LYH) I1 = -1 + CALL DCOPY (LENYH, RWORK(LYH), I1, RWORK(LYHNEW), I1) + LYH = LYHNEW + 62 CONTINUE + LEN1N = LYHNEW - 1 + (MXORDN + 1)*NYH + LEN1S = LYHNEW - 1 + (MXORDS + 1)*NYH + LWM = LEN1S + 1 + IF (JT .LE. 2) LENWM = N*N + 2 + IF (JT .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEN1S = LEN1S + LENWM + LEN1C = LEN1N + IF (METH .EQ. 2) LEN1C = LEN1S + LEN1 = MAX(LEN1N,LEN1S) + LEN2 = 3*N + LENRW = LEN1 + LEN2 + LENRWC = LEN1C + LEN2 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + LENIWC = 20 + IF (METH .EQ. 2) LENIWC = LENIW + IWORK(18) = LENIW + IF (ISTATE .EQ. 1 .AND. LRW .LT. LENRWC) GO TO 617 + IF (ISTATE .EQ. 1 .AND. LIW .LT. LENIWC) GO TO 618 + IF (ISTATE .EQ. 3 .AND. LRW .LT. LENRWC) GO TO 550 + IF (ISTATE .EQ. 3 .AND. LIW .LT. LENIWC) GO TO 555 + LEWT = LEN1 + 1 + INSUFR = 0 + IF (LRW .GE. LENRW) GO TO 65 + INSUFR = 2 + LEWT = LEN1C + 1 + MSG='DLSODAR- Warning.. RWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 103, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENRW = I1, while LRW = I2.' + CALL XERRWD (MSG, 50, 103, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + 65 LSAVF = LEWT + N + LACOR = LSAVF + N + INSUFI = 0 + IF (LIW .GE. LENIW) GO TO 70 + INSUFI = 2 + MSG='DLSODAR- Warning.. IWORK length is sufficient for now, but ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' may not be later. Integration will proceed anyway. ' + CALL XERRWD (MSG, 60, 104, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Length needed is LENIW = I1, while LIW = I2.' + CALL XERRWD (MSG, 50, 104, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + 70 CONTINUE +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 75 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 75 CONTINUE + IF (ISTATE .EQ. 1) GO TO 100 +C if ISTATE = 3, set flag to signal parameter changes to DSTODA. ------- + JSTART = -1 + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. zero part of yh to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + TSW = T + MAXORD = MXORDN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + MUSED = 0 + MITER = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by: +C +C H0**(-2) = 1./(TOL * w0**2) + TOL * (norm(F))**2 +C +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C F = the initial value of the vector f(t,y), and +C norm() = the weighted vector norm used throughout, given by +C the DMNORM function routine, and weighted by the +C tolerances initially loaded into the EWT array. +C The sign of H0 is inferred from the initial values of TOUT and T. +C ABS(H0) is made .le. ABS(TOUT-T) in any case. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DMNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) +C +C Check for a zero of g at T. ------------------------------------------ + IRFND = 0 + TOUTC = TOUT + IF (NGC .EQ. 0) GO TO 270 + CALL DRCHEK (1, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .EQ. 0) GO TO 270 + GO TO 632 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C First, DRCHEK is called to check for a root within the last step +C taken, other than the last root found there, if any. +C If ITASK = 2 or 5, and y(TN) has not yet been returned to the user +C because of an intervening root, return through Block G. +C----------------------------------------------------------------------- + 200 NSLAST = NST +C + IRFP = IRFND + IF (NGC .EQ. 0) GO TO 205 + IF (ITASK .EQ. 1 .OR. ITASK .EQ. 4) TOUTC = TOUT + CALL DRCHEK (2, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 205 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 205 CONTINUE + IRFND = 0 + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 2) GO TO 400 +C + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + T = TN + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) T = TCRIT + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 5) GO TO 400 + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2 .AND. JSTART .GE. 0) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODA. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF (METH .EQ. MUSED) GO TO 255 + IF (INSUFR .EQ. 1) GO TO 550 + IF (INSUFI .EQ. 1) GO TO 555 + 255 IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DMNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODAR- Warning..Internal T(=R1) and H(=R2) are ' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODAR- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODA(NEQ,Y,YH,NYH,YH,EWT,SAVF,ACOR,WM,IWM,F,JAC,DPRJA,DSOLSY) +C----------------------------------------------------------------------- + CALL DSTODA (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), IWORK(LIWM), + 2 F, JAC, DPRJA, DSOLSY) + KGO = 1 - KFLAG + GO TO (300, 530, 540), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). +C If a method switch was just made, record TSW, reset MAXORD, +C set JSTART to -1 to signal DSTODA to complete the switch, +C and do extra printing of data if IXPR = 1. +C Then call DRCHEK to check for a root within the last step. +C Then, if no root was found, check for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + IF (METH .EQ. MUSED) GO TO 310 + TSW = TN + MAXORD = MXORDN + IF (METH .EQ. 2) MAXORD = MXORDS + IF (METH .EQ. 2) RWORK(LWM) = SQRT(UROUND) + INSUFR = MIN(INSUFR,1) + INSUFI = MIN(INSUFI,1) + JSTART = -1 + IF (IXPR .EQ. 0) GO TO 310 + IF (METH .EQ. 2) THEN + MSG='DLSODAR- A switch to the BDF (stiff) method has occurred ' + CALL XERRWD (MSG, 60, 105, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (METH .EQ. 1) THEN + MSG='DLSODAR- A switch to the Adams (nonstiff) method occurred ' + CALL XERRWD (MSG, 60, 106, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + MSG=' at T = R1, tentative step size H = R2, step NST = I1 ' + CALL XERRWD (MSG, 60, 107, 0, 1, NST, 0, 2, TN, H) + 310 CONTINUE +C + IF (NGC .EQ. 0) GO TO 315 + CALL DRCHEK (3, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 315 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 315 CONTINUE +C + GO TO (320, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 320 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (JSTART .GE. 0) JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODAR. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + 425 CONTINUE + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODAR- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODAR- At T(=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODAR- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODAR- At T(=R1), step size H(=R2), the error ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODAR- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C RWORK length too small to proceed. ----------------------------------- + 550 MSG = 'DLSODAR- At current T(=R1), RWORK length too small' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C IWORK length too small to proceed. ----------------------------------- + 555 MSG = 'DLSODAR- At current T(=R1), IWORK length too small' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' to proceed. The integration was otherwise successful.' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + RWORK(15) = TSW + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = MUSED + IWORK(20) = METH + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODAR- ISTATE(=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODAR- ITASK (=I1) illegal.' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODAR- ISTATE.gt.1 but DLSODAR not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODAR- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODAR- ISTATE = 3 and NEQ increased (I1 to I2).' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODAR- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODAR- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODAR- JT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, JT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODAR- ML (=I1) illegal: .lt.0 or .ge.NEQ (=I2)' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODAR- MU (=I1) illegal: .lt.0 or .ge.NEQ (=I2)' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODAR- IXPR (=I1) illegal. ' + CALL XERRWD (MSG, 30, 11, 0, 1, IXPR, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODAR- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODAR- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODAR- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODAR- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODAR- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODAR- RWORK length needed, LENRW(=I1), exceeds LRW(=I2) ' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODAR- IWORK length needed, LENIW(=I1), exceeds LIW(=I2) ' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODAR- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODAR- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODAR- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODAR- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODAR- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODAR- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODAR- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODAR- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODAR- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG = 'DLSODAR- MXORDN (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 28, 0, 1, MXORDN, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG = 'DLSODAR- MXORDS (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 29, 0, 1, MXORDS, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 630 MSG = 'DLSODAR- NG (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 30, 0, 1, NG, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG = 'DLSODAR- NG changed (from I1 to I2) illegally, ' + CALL XERRWD (MSG, 50, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' i.e. not immediately after a root was found.' + CALL XERRWD (MSG, 50, 31, 0, 2, NGC, NG, 0, 0.0D0, 0.0D0) + GO TO 700 + 632 MSG = 'DLSODAR- One or more components of g has a root ' + CALL XERRWD (MSG, 50, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' too near to the initial point. ' + CALL XERRWD (MSG, 40, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODAR- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODAR --------------------- + END +*DECK DLSODPK + SUBROUTINE DLSODPK (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, PSOL, MF) + EXTERNAL F, JAC, PSOL + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODPK: Livermore Solver for Ordinary Differential equations, +C with Preconditioned Krylov iteration methods for the +C Newton correction linear systems. +C +C This version is in double precision. +C +C DLSODPK solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C----------------------------------------------------------------------- +C Introduction. +C +C This is a modification of the DLSODE package which incorporates +C various preconditioned Krylov subspace iteration methods for the +C linear algebraic systems that arise in the case of stiff systems. +C +C The linear systems that must be solved have the form +C A * x = b , where A = identity - hl0 * (df/dy) . +C Here hl0 is a scalar, and df/dy is the Jacobian matrix of partial +C derivatives of f (NEQ by NEQ). +C +C The particular Krylov method is chosen by setting the second digit, +C MITER, in the method flag MF. +C Currently, the values of MITER have the following meanings: +C +C MITER = 1 means the preconditioned Scaled Incomplete +C Orthogonalization Method (SPIOM). +C +C 2 means an incomplete version of the Preconditioned Scaled +C Generalized Minimal Residual method (SPIGMR). +C This is the best choice in general. +C +C 3 means the Preconditioned Conjugate Gradient method (PCG). +C Recommended only when df/dy is symmetric or nearly so. +C +C 4 means the scaled Preconditioned Conjugate Gradient method +C (PCGS). Recommended only when D-inverse * df/dy * D is +C symmetric or nearly so, where D is the diagonal scaling +C matrix with elements 1/EWT(i) (see RTOL/ATOL description). +C +C 9 means that only a user-supplied matrix P (approximating A) +C will be used, with no Krylov iteration done. This option +C allows the user to provide the complete linear system +C solution algorithm, if desired. +C +C The user can apply preconditioning to the linear system A*x = b, +C by means of arbitrary matrices (the preconditioners). +C In the case of SPIOM and SPIGMR, one can apply left and right +C preconditioners P1 and P2, and the basic iterative method is then +C applied to the matrix (P1-inverse)*A*(P2-inverse) instead of to the +C matrix A. The product P1*P2 should be an approximation to matrix A +C such that linear systems with P1 or P2 are easier to solve than with +C A. Preconditioning from the left only or right only means using +C P2 = identity or P1 = identity, respectively. +C In the case of the PCG and PCGS methods, there is only one +C preconditioner matrix P (but it can be the product of more than one). +C It should approximate the matrix A but allow for relatively +C easy solution of linear systems with coefficient matrix P. +C For PCG, P should be positive definite symmetric, or nearly so, +C and for PCGS, the scaled preconditioner D-inverse * P * D +C should be symmetric or nearly so. +C If the Jacobian J = df/dy splits in a natural way into a sum +C J = J1 + J2, then one possible choice of preconditioners is +C P1 = identity - hl0 * J1 and P2 = identity - hl0 * J2 +C provided each of these is easy to solve (or approximately solve). +C +C----------------------------------------------------------------------- +C References: +C 1. Peter N. Brown and Alan C. Hindmarsh, Reduced Storage Matrix +C Methods in Stiff ODE Systems, J. Appl. Math. & Comp., 31 (1989), +C pp. 40-91; also L.L.N.L. Report UCRL-95088, Rev. 1, June 1987. +C 2. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Peter N. Brown +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODPK package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the demonstration +C program distributed with this solver. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue +C whose real part is negative and large in magnitude, compared to the +C reciprocal of the t span of interest. If the problem is nonstiff, +C use a method flag MF = 10. If it is stiff, MF should be between 21 +C and 24, or possibly 29. MF = 22 is generally the best choice. +C Use 23 or 24 only if symmetry is present. Use MF = 29 if the +C complete linear system solution is to be provided by the user. +C The following four parameters must also be set. +C IWORK(1) = LWP = length of real array WP for preconditioning. +C IWORK(2) = LIWP = length of integer array IWP for preconditioning. +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant data for use in +C preconditioning, such as Jacobian elements. +C The arrays WP and IWP are work arrays under the user's control, +C for use in the routines that perform preconditioning operations. +C +C C. If the problem is stiff, you must supply two routines that deal +C with the preconditioning of the linear systems to be solved. +C These are as follows: +C +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY, V, HL0, WP,IWP, IER) +C DOUBLE PRECISION T, Y(*),YSV(*), REWT(*), FTY(*), V(*), HL0, WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy involved in the preconditioners P1, P2, P. +C The Y and FTY arrays contain the current values of y and f(t,y), +C respectively, and YSV also contains the current value of y. +C The array V is work space of length NEQ. +C JAC must multiply all computed Jacobian elements by the scalar +C -HL0, add the identity matrix, and do any factorization +C operations called for, in preparation for solving linear systems +C with a coefficient matrix of P1, P2, or P. The matrix P1*P2 or P +C should be an approximation to identity - HL0 * (df/dy). +C JAC should return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK, HL0, WP, IWP, B, LR, IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, as +C coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner matrix P. +C In the case MF = 29 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - HL0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. WK is a work array of length NEQ. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, at the time of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C On return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 if a recoverable error occurred, meaning that the +C time step will be retried, +C IER .lt. 0 if an unrecoverable error occurred, meaning that the +C solver is to stop immediately. +C +C D. Write a main program which calls Subroutine DLSODPK once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODPK. On the first call to DLSODPK, supply arguments as follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + 16*NEQ for MF = 10, +C 45 + 17*NEQ + LWP for MF = 21, +C 61 + 17*NEQ + LWP for MF = 22, +C 20 + 15*NEQ + LWP for MF = 23 or 24, +C 20 + 12*NEQ + LWP for MF = 29. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least: +C 30 for MF = 10, +C 35 + LIWP for MF = 21, +C 30 + LIWP for MF = 22, 23, 24, or 29. +C LIW = declared length of IWORK (in user's dimension). +C JAC,PSOL = names of subroutines for preconditioning. +C These names must be declared External in the calling program. +C MF = method flag. Standard values are: +C 10 for nonstiff (Adams) method. +C 21 for stiff (BDF) method, with preconditioned SIOM. +C 22 for stiff method, with preconditioned GMRES method. +C 23 for stiff method, with preconditioned CG method. +C 24 for stiff method, with scaled preconditioned CG method. +C 29 for stiff method, with user's PSOL routine only. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C and possibly ATOL. +C +C E. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODPK was successful, negative otherwise. +C -1 means excess work done on this call (perhaps wrong MF). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad JAC +C or PSOL routine supplied or wrong choice of MF or +C tolerances, or this solver is inappropriate). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means an unrecoverable error occurred in PSOL. +C +C F. To continue the integration after a successful return, simply +C reset TOUT and call DLSODPK again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODPK. +C +C The user interface to DLSODPK consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODPK, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODPK package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODPK package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, PSOL, MF, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODPK to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODPK, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in the user-supplied subroutines. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODPK package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to F, JAC, and PSOL. Hence, if it is an array, locations +C NEQ(2),... may be used to store other integer data and pass +C it to the user-supplied subroutines. Each such routine must +C include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to F, +C JAC, and PSOL. Hence its length may exceed NEQ, and locations +C Y(NEQ+1),... may be used to store other real data and +C pass it to the user-supplied subroutines. (The DLSODPK +C package accesses only Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C the following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C and any of the optional inputs except H0. +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the PSOL routine returned an unrecoverable error +C flag (IER .lt. 0). The integration was successful as +C far as T. +C +C Note: since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LENLS + LWP where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENLS = length of work space for linear system (Krylov) +C method, excluding preconditioning: +C LENLS = 0 if MITER = 0, +C LENLS = NEQ*(MAXL+3) + MAXL**2 if MITER = 1, +C LENLS = NEQ*(MAXL+3+MIN(1,MAXL-KMP)) +C + (MAXL+3)*MAXL + 1 if MITER = 2, +C LENLS = 6*NEQ if MITER = 3 or 4, +C LENLS = 3*NEQ if MITER = 9. +C (See the MF description for METH and MITER, and the +C list of optional inputs for MAXL and KMP.) +C LWP = length of real user work space for preconditioning +C (see JAC/PSOL). +C Thus if default values are used and NEQ is constant, +C this length is: +C 20 + 16*NEQ for MF = 10, +C 45 + 24*NEQ + LWP FOR MF = 11, +C 61 + 24*NEQ + LWP FOR MF = 12, +C 20 + 22*NEQ + LWP FOR MF = 13 OR 14, +C 20 + 19*NEQ + LWP FOR MF = 19, +C 20 + 9*NEQ FOR MF = 20, +C 45 + 17*NEQ + LWP FOR MF = 21, +C 61 + 17*NEQ + LWP FOR MF = 22, +C 20 + 15*NEQ + LWP FOR MF = 23 OR 24, +C 20 + 12*NEQ + LWP for MF = 29. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 30 if MITER = 0 (MF = 10 or 20), +C 30 + MAXL + LIWP if MITER = 1 (MF = 11, 21), +C 30 + LIWP if MITER = 2, 3, 4, or 9. +C MAXL = 5 unless a different optional input value is given. +C LIWP = length of integer user work space for preconditioning +C (see conditional input list following). +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 4 words in IWORK are conditional inputs, +C required if MITER .ge. 1: +C IWORK(1) = LWP = length of real array WP for use in +C preconditioning (part of RWORK array). +C IWORK(2) = LIWP = length of integer array IWP for use in +C preconditioning (part of IWORK array). +C The arrays WP and IWP are work arrays under the +C user's control, for use in the routines that +C perform preconditioning operations (JAC and PSOL). +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant +C data needed in preconditioning operations, +C such as some of the Jacobian elements. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODPK +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODPK between calls, if +C desired (but not for use by any of the user-supplied subroutines). +C +C JAC = the name of the user-supplied routine to compute any +C Jacobian elements (or approximations) involved in the +C matrix preconditioning operations (MITER .ge. 1). +C It is to have the form +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY, V, +C 1 HL0, WP, IWP, IER) +C DOUBLE PRECISION T, Y(*),YSV(*), REWT(*), FTY(*), V(*), +C 1 HL0, WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy used in the preconditioners P1, P2, P. +C the Y and FTY arrays contain the current values of y and +C f(t,y), respectively, and YSV also contains the current +C value of y. The array V is work space of length +C NEQ for use by JAC. REWT is the array of reciprocal error +C weights (1/EWT). JAC must multiply all computed Jacobian +C elements by the scalar -HL0, add the identity matrix, and do +C any factorization operations called for, in preparation +C for solving linear systems with a coefficient matrix of +C P1, P2, or P. The matrix P1*P2 or P should be an +C approximation to identity - HL0 * (df/dy). JAC should +C return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C The arrays WP (of length LWP) and IWP (of length LIWP) +C are for use by JAC and PSOL for work space and for storage +C of data needed for the solution of the preconditioner +C linear systems. Their lengths and contents are under the +C user's control. +C The JAC routine may save relevant Jacobian elements (or +C approximations) used in the preconditioners, along with the +C value of HL0, and use these to reconstruct preconditioner +C matrices later without reevaluationg those elements. +C This may be cost-effective if JAC is called with HL0 +C considerably different from its earlier value, indicating +C that a corrector convergence failure has occurred because +C of the change in HL0, not because of changes in the +C value of the Jacobian. In doing this, use the saved and +C current values of HL0 to decide whether to use saved +C or reevaluated elements. +C JAC may alter V, but may not alter Y, YSV, REWT, FTY, or HL0. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C PSOL = the name of the user-supplied routine for the +C solution of preconditioner linear systems. +C It is to have the form +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK,HL0, WP,IWP, B, LR,IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, +C as coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner P. +C In the case MITER = 9 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - HL0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. +C The Y and FTY arrays contain the current values of y and +C f(t,y), respectively. The array WK is work space of length +C NEQ for use by PSOL. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, as of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C On return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 on a recoverable error, meaning that the +C time step will be retried, +C IER .lt. 0 on an unrecoverable error, meaning that the +C solver is to stop immediately. +C PSOL may not alter Y, FTY, or HL0. +C PSOL must be declared External in the calling program. +C Subroutine PSOL may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in PSOL) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C MF = the method flag. Used only for input. The legal values of +C MF are 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24, and 29. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C MITER indicates the corrector iteration method: +C MITER = 0 means functional iteration (no linear system +C is involved). +C MITER = 1 means Newton iteration with Scaled Preconditioned +C Incomplete Orthogonalization Method (SPIOM) +C for the linear systems. +C MITER = 2 means Newton iteration with Scaled Preconditioned +C Generalized Minimal Residual method (SPIGMR) +C for the linear systems. +C MITER = 3 means Newton iteration with Preconditioned +C Conjugate Gradient method (PCG) +C for the linear systems. +C MITER = 4 means Newton iteration with scaled Preconditioned +C Conjugate Gradient method (PCGS) +C for the linear systems. +C MITER = 9 means Newton iteration with only the +C user-supplied PSOL routine called (no Krylov +C iteration) for the linear systems. +C JPRE is ignored, and PSOL is called with LR = 0. +C See comments in the introduction about the choice of MITER. +C If MITER .ge. 1, the user must supply routines JAC and PSOL +C (the names are arbitrary) as described above. +C For MITER = 0, dummy arguments can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C DELT RWORK(8) convergence test constant in Krylov iteration +C algorithm. The default is .05. +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MAXL IWORK(8) maximum number of iterations in the SPIOM, SPIGMR, +C PCG, or PCGS algorithm (.le. NEQ). +C The default is MAXL = MIN(5,NEQ). +C +C KMP IWORK(9) number of vectors on which orthogonalization +C is done in SPIOM or SPIGMR algorithm (.le. MAXL). +C The default is KMP = MAXL. +C Note: When KMP .lt. MAXL and MF = 22, the length +C of RWORK must be defined accordingly. See +C the definition of RWORK above. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODPK, the variables listed +C below are quantities related to the performance of DLSODPK +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODPK, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NPE IWORK(13) the number of calls to JAC so far (for Jacobian +C evaluation associated with preconditioning). +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNI IWORK(19) number of nonlinear iterations so far (each of +C which calls an iterative linear solver). +C +C NLI IWORK(20) number of linear iterations so far. +C Note: A measure of the success of algorithm is +C the average number of linear iterations per +C nonlinear iteration, given by NLI/NNI. +C If this is close to MAXL, MAXL may be too small. +C +C NPS IWORK(21) number of preconditioning solve operations +C (PSOL calls) so far. +C +C NCFN IWORK(22) number of convergence failures of the nonlinear +C (Newton) iteration so far. +C Note: A measure of success is the overall +C rate of nonlinear convergence failures, NCFN/NST. +C +C NCFL IWORK(23) number of convergence failures of the linear +C iteration so far. +C Note: A measure of success is the overall +C rate of linear convergence failures, NCFL/NNI. +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output +C to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODPK. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODPK. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODPK, if +C the default is not desired. +C The default value of lun is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODPK. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCPK(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODPK (see Part 3 below). +C RSAV must be a real array of length 222 +C or more, and ISAV must be an integer +C array of length 50 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCPK is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODPK. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (See below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODPK. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODPK). +C for valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODPK directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODPK is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODPK, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLPK01/ of length 17 (4 double precision words +C followed by 13 integer words). +C +C If DLSODPK is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODPK is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODPK call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODPK call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCPK (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C below are descriptions of two routines in the DLSODPK package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODPK call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODPK in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODPK. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19860901 DATE WRITTEN +C 19861010 Numerous minor revisions to SPIOM and SPGMR routines; +C minor corrections to prologues and comments. +C 19870114 Changed name SPGMR to SPIGMR; revised residual norm +C calculation in SPIGMR (for incomplete case); +C revised error return logic in SPIGMR; +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODPK; +C in STODPK, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 19871130 Added option MITER = 9; shortened WM array by 2; +C revised early return from SPIOM and SPIGMR; +C replaced copy loops with SCOPY/DCOPY calls; +C minor corrections/revisions to SOLPK, SPIGMR, ATV, ATP; +C corrections to main prologue and internal comments. +C 19880304 Corrections to type declarations in SOLPK, SPIOM, USOL. +C 19891025 Added ISTATE = -7 return; minor revisions to USOL; +C added initialization of JACFLG in main driver; +C removed YH and NYH from PKSET call list; +C minor revisions to SPIOM and SPIGMR; +C corrections to main prologue and internal comments. +C 19900803 Added YSV to JAC call list; minor comment corrections. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20030603 Corrected duplicate type declaration for DUMACH. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal name NPE to NJE. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODPK package. +C +C In addition to Subroutine DLSODPK, the DLSODPK package includes the +C following subroutines and function routines: +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSTODPK is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPKSET interfaces between DSTODPK and the JAC routine. +C DSOLPK manages solution of linear system in Newton iteration. +C DSPIOM performs the SPIOM algorithm. +C DATV computes a scaled, preconditioned product (I-hl0*J)*v. +C DORTHOG orthogonalizes a vector against previous basis vectors. +C DHEFA generates an LU factorization of a Hessenberg matrix. +C DHESL solves a Hessenberg square linear system. +C DSPIGMR performs the SPIGMR algorithm. +C DHEQR generates a QR factorization of a Hessenberg matrix. +C DHELS finds the least squares solution of a Hessenberg system. +C DPCG performs Preconditioned Conjugate Gradient algorithm (PCG). +C DPCGS performs the PCGS algorithm. +C DATP computes the product A*p, where A = I - hl0*df/dy. +C DUSOL interfaces to the user's PSOL routine (MITER = 9). +C DSRCPK is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DAXPY, DCOPY, DDOT, DNRM2, and DSCAL are basic linear +C algebra modules (from the BLAS collection). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DDOT, DNRM2, DUMACH, IXSAV, and IUMACH are function +C routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + INTEGER I, I1, I2, IFLAG, IMXER, KGO, LF0, LENIW, + 1 LENIWK, LENRW, LENWM, LENWK, LIWP, LWP, MORD, MXHNL0, MXSTP0, + 2 NCFN0, NCFL0, NLI0, NNI0, NNID, NSTD, NWARN + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + DOUBLE PRECISION ATOLI, AVDIM, AYI, BIG, EWTI, H0, HMAX, HMX, + 1 RCFL, RCFN, RH, RTOLI, TCRIT, + 2 TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT, LAVD, LCFN, LCFL, LWARN + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODPK, DINTDY, DSTODPK, +C DSOLPK, and DATV. +C The block DLPK01 is declared in subroutines DLSODPK, DSTODPK, DPKSET, +C and DSOLPK. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, MF. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0) GO TO 608 + IF (MITER .GT. 4 .AND. MITER .LT. 9) GO TO 608 + IF (MITER .GE. 1) JPRE = IWORK(3) + JACFLG = 0 + IF (MITER .GE. 1) JACFLG = IWORK(4) +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + MAXL = MIN(5,N) + KMP = MAXL + DELT = 0.05D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 + MAXL = IWORK(8) + IF (MAXL .EQ. 0) MAXL = 5 + MAXL = MIN(MAXL,N) + KMP = IWORK(9) + IF (KMP .EQ. 0 .OR. KMP .GT. MAXL) KMP = MAXL + DELT = RWORK(8) + IF (DELT .EQ. 0.0D0) DELT = 0.05D0 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C RWORK segments (in order) are denoted YH, WM, EWT, SAVF, SAVX, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .EQ. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .EQ. 0) LENWK = 0 + IF (MITER .EQ. 1) LENWK = N*(MAXL+2) + MAXL*MAXL + IF (MITER .EQ. 2) + 1 LENWK = N*(MAXL+2+MIN(1,MAXL-KMP)) + (MAXL+3)*MAXL + 1 + IF (MITER .EQ. 3 .OR. MITER .EQ. 4) LENWK = 5*N + IF (MITER .EQ. 9) LENWK = 2*N + LWP = 0 + IF (MITER .GE. 1) LWP = IWORK(1) + LENWM = LENWK + LWP + LOCWP = LENWK + 1 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LSAVX = LSAVF + N + LACOR = LSAVX + N + IF (MITER .EQ. 0) LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 31 + LENIWK = 0 + IF (MITER .EQ. 1) LENIWK = MAXL + LIWP = 0 + IF (MITER .GE. 1) LIWP = IWORK(2) + LENIW = 30 + LENIWK + LIWP + LOCIWP = LENIWK + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE +C Load SQRT(N) and its reciprocal in Common. --------------------------- + SQRTN = SQRT(REAL(N)) + RSQRTN = 1.0D0/SQRTN + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODPK. ------ + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- + DO 80 I = 1,N + 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1) + 90 CONTINUE + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + NLI0 = 0 + NNI0 = 0 + NCFN0 = 0 + NCFL0 = 0 + NWARN = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 + NNI = 0 + NLI = 0 + NPS = 0 + NCFN = 0 + NCFL = 0 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( f(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C f(i) = i-th component of initial value of f, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 140 + DO 130 I = 1,N + 130 TOL = MAX(TOL,RTOL(I)) + 140 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LF0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + NLI0 = NLI + NNI0 = NNI + NCFN0 = NCFN + NCFL0 = NCFL + NWARN = 0 + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODPK. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, +C Check for poor Newton/Krylov method performance, update EWT (if not +C at start of problem), check for too much accuracy being requested, +C and check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + NSTD = NST - NSLAST + NNID = NNI - NNI0 + IF (NSTD .LT. 10 .OR. NNID .EQ. 0) GO TO 255 + AVDIM = REAL(NLI - NLI0)/REAL(NNID) + RCFN = REAL(NCFN - NCFN0)/REAL(NSTD) + RCFL = REAL(NCFL - NCFL0)/REAL(NNID) + LAVD = AVDIM .GT. (MAXL - 0.05D0) + LCFN = RCFN .GT. 0.9D0 + LCFL = RCFL .GT. 0.9D0 + LWARN = LAVD .OR. LCFN .OR. LCFL + IF (.NOT.LWARN) GO TO 255 + NWARN = NWARN + 1 + IF (NWARN .GT. 10) GO TO 255 + IF (LAVD) THEN + MSG='DLSODPK- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LAVD) THEN + MSG=' at T = R1 by average no. of linear iterations = R2 ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 2, TN, AVDIM) + ENDIF + IF (LCFN) THEN + MSG='DLSODPK- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFN) THEN + MSG=' at T = R1 by nonlinear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 2, TN, RCFN) + ENDIF + IF (LCFL) THEN + MSG='DLSODPK- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFL) THEN + MSG=' at T = R1 by linear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 2, TN, RCFL) + ENDIF + 255 CONTINUE + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODPK- Warning..Internal T(=R1) and H(=R2) are ' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODPK- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODPK(NEQ,Y,YH,NYH,YH,EWT,SAVF,SAVX,ACOR,WM,IWM,F,JAC,PSOL) +C----------------------------------------------------------------------- + CALL DSTODPK (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LSAVX), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), F, JAC, PSOL) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 550), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. see if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODPK. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODPK- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODPK- At T (=R1), EWT(I1) has become R2.le.0. ' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODPK- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODPK- At T(=R1), step size H(=R2), the error ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODPK- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 560 +C KFLAG = -3. Unrecoverable error from PSOL. -------------------------- + 550 MSG = 'DLSODPK- At T (=R1) an unrecoverable error return' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' was made from Subroutine PSOL ' + CALL XERRWD (MSG, 40, 205, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODPK- ISTATE(=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODPK- ITASK (=I1) illegal.' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODPK- ISTATE.gt.1 but DLSODPK not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODPK- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODPK- ISTATE = 3 and NEQ increased (I1 to I2).' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODPK- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODPK- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODPK- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODPK- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODPK- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODPK- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODPK- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODPK- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODPK- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODPK- RWORK length needed, LENRW(=I1), exceeds LRW(=I2) ' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODPK- IWORK length needed, LENIW(=I1), exceeds LIW(=I2) ' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODPK- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODPK- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODPK- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODPK- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODPK- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODPK- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODPK- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODPK- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODPK- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODPK- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODPK --------------------- + END +*DECK DLSODKR + SUBROUTINE DLSODKR (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, + 1 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, PSOL, + 2 MF, G, NG, JROOT) + EXTERNAL F, JAC, PSOL, G + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF, + 1 NG, JROOT + DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW), + 1 JROOT(*) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODKR: Livermore Solver for Ordinary Differential equations, +C with preconditioned Krylov iteration methods for the +C Newton correction linear systems, and with Rootfinding. +C +C This version is in double precision. +C +C DLSODKR solves the initial value problem for stiff or nonstiff +C systems of first order ODEs, +C dy/dt = f(t,y) , or, in component form, +C dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ)) (i = 1,...,NEQ). +C At the same time, it locates the roots of any of a set of functions +C g(i) = g(i,t,y(1),...,y(NEQ)) (i = 1,...,ng). +C +C----------------------------------------------------------------------- +C Introduction. +C +C This is a modification of the DLSODE package, and differs from it +C in five ways: +C (a) It uses various preconditioned Krylov subspace iteration methods +C for the linear algebraic systems that arise in the case of stiff +C systems. See the introductory notes below. +C (b) It does automatic switching between functional (fixpoint) +C iteration and Newton iteration in the corrector iteration. +C (c) It finds the root of at least one of a set of constraint +C functions g(i) of the independent and dependent variables. +C It finds only those roots for which some g(i), as a function +C of t, changes sign in the interval of integration. +C It then returns the solution at the root, if that occurs +C sooner than the specified stop condition, and otherwise returns +C the solution according the specified stop condition. +C (d) It supplies to JAC an input flag, JOK, which indicates whether +C JAC may (optionally) bypass the evaluation of Jacobian matrix data +C and instead process saved data (with the current value of scalar hl0). +C (e) It contains a new subroutine that calculates the initial step +C size to be attempted. +C +C +C Introduction to the Krylov methods in DLSODKR: +C +C The linear systems that must be solved have the form +C A * x = b , where A = identity - hl0 * (df/dy) . +C Here hl0 is a scalar, and df/dy is the Jacobian matrix of partial +C derivatives of f (NEQ by NEQ). +C +C The particular Krylov method is chosen by setting the second digit, +C MITER, in the method flag MF. +C Currently, the values of MITER have the following meanings: +C +C MITER = 1 means the Scaled Preconditioned Incomplete +C Orthogonalization Method (SPIOM). +C +C 2 means an incomplete version of the preconditioned scaled +C Generalized Minimal Residual method (SPIGMR). +C This is the best choice in general. +C +C 3 means the Preconditioned Conjugate Gradient method (PCG). +C Recommended only when df/dy is symmetric or nearly so. +C +C 4 means the scaled Preconditioned Conjugate Gradient method +C (PCGS). Recommended only when D-inverse * df/dy * D is +C symmetric or nearly so, where D is the diagonal scaling +C matrix with elements 1/EWT(i) (see RTOL/ATOL description). +C +C 9 means that only a user-supplied matrix P (approximating A) +C will be used, with no Krylov iteration done. This option +C allows the user to provide the complete linear system +C solution algorithm, if desired. +C +C The user can apply preconditioning to the linear system A*x = b, +C by means of arbitrary matrices (the preconditioners). +C In the case of SPIOM and SPIGMR, one can apply left and right +C preconditioners P1 and P2, and the basic iterative method is then +C applied to the matrix (P1-inverse)*A*(P2-inverse) instead of to the +C matrix A. The product P1*P2 should be an approximation to matrix A +C such that linear systems with P1 or P2 are easier to solve than with +C A. Preconditioning from the left only or right only means using +C P2 = identity or P1 = identity, respectively. +C In the case of the PCG and PCGS methods, there is only one +C preconditioner matrix P (but it can be the product of more than one). +C It should approximate the matrix A but allow for relatively +C easy solution of linear systems with coefficient matrix P. +C For PCG, P should be positive definite symmetric, or nearly so, +C and for PCGS, the scaled preconditioner D-inverse * P * D +C should be symmetric or nearly so. +C If the Jacobian J = df/dy splits in a natural way into a sum +C J = J1 + J2, then one possible choice of preconditioners is +C P1 = identity - hl0 * J1 and P2 = identity - hl0 * J2 +C provided each of these is easy to solve (or approximately solve). +C +C----------------------------------------------------------------------- +C References: +C 1. Peter N. Brown and Alan C. Hindmarsh, Reduced Storage Matrix +C Methods in Stiff ODE Systems, J. Appl. Math. & Comp., 31 (1989), +C pp. 40-91; also L.L.N.L. Report UCRL-95088, Rev. 1, June 1987. +C 2. Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Peter N. Brown +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODKR package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the demonstration +C program distributed with this solver. +C +C A. First provide a subroutine of the form: +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C which supplies the vector function f by loading YDOT(i) with f(i). +C +C B. Provide a subroutine of the form: +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C which supplies the vector function g by loading GOUT(i) with +C g(i), the i-th constraint function whose root is sought. +C +C C. Next determine (or guess) whether or not the problem is stiff. +C Stiffness occurs when the Jacobian matrix df/dy has an eigenvalue +C whose real part is negative and large in magnitude, compared to the +C reciprocal of the t span of interest. If the problem is nonstiff, +C use a method flag MF = 10. If it is stiff, MF should be between 21 +C and 24, or possibly 29. MF = 22 is generally the best choice. +C Use 23 or 24 only if symmetry is present. Use MF = 29 if the +C complete linear system solution is to be provided by the user. +C The following four parameters must also be set. +C IWORK(1) = LWP = length of real array WP for preconditioning. +C IWORK(2) = LIWP = length of integer array IWP for preconditioning. +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant data for use in +C preconditioning, such as Jacobian elements. +C The arrays WP and IWP are work arrays under the user's control, +C for use in the routines that perform preconditioning operations. +C +C D. If the problem is stiff, you must supply two routines that deal +C with the preconditioning of the linear systems to be solved. +C These are as follows: +C +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY,V,HL0,JOK,WP,IWP,IER) +C DOUBLE PRECISION T, Y(*), YSV(*), REWT(*), FTY(*), V(*), HL0,WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy involved in the preconditioners P1, P2, P. +C The Y and FTY arrays contain the current values of y and f(t,y), +C respectively, and YSV also contains the current value of y. +C The array V is work space of length NEQ. +C JAC must multiply all computed Jacobian elements by the scalar +C -HL0, add the identity matrix, and do any factorization +C operations called for, in preparation for solving linear systems +C with a coefficient matrix of P1, P2, or P. The matrix P1*P2 or P +C should be an approximation to identity - hl0 * (df/dy). +C JAC should return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C JAC may alter Y and V, but not YSV, REWT, FTY, or HL0. +C The JOK argument can be ignored (or see full description below). +C +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK, HL0, WP, IWP, B, LR, IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, as +C coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner matrix P. +C In the case MF = 29 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - hl0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. WK is a work array of length NEQ. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, at the time of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C on return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 if a recoverable error occurred, meaning that the +C time step will be retried, +C IER .lt. 0 if an unrecoverable error occurred, meaning that the +C solver is to stop immediately. +C +C E. Write a main program which calls Subroutine DLSODKR once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODKR. On the first call to DLSODKR, supply arguments as +C follows: +C F = name of subroutine for right-hand side vector f. +C This name must be declared External in calling program. +C NEQ = number of first order ODEs. +C Y = array of initial values, of length NEQ. +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C The estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + 16*NEQ + 3*NG for MF = 10, +C 45 + 17*NEQ + 3*NG + LWP for MF = 21, +C 61 + 17*NEQ + 3*NG + LWP for MF = 22, +C 20 + 15*NEQ + 3*NG + LWP for MF = 23 or 24, +C 20 + 12*NEQ + 3*NG + LWP for MF = 29. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least: +C 30 for MF = 10, +C 35 + LIWP for MF = 21, +C 30 + LIWP for MF = 22, 23, 24, or 29. +C LIW = declared length of IWORK (in user's dimension). +C JAC,PSOL = names of subroutines for preconditioning. +C These names must be declared External in the calling program. +C MF = method flag. Standard values are: +C 10 for nonstiff (Adams) method. +C 21 for stiff (BDF) method, with preconditioned SIOM. +C 22 for stiff method, with preconditioned GMRES method. +C 23 for stiff method, with preconditioned CG method. +C 24 for stiff method, with scaled preconditioned CG method. +C 29 for stiff method, with user's PSOL routine only. +C G = name of subroutine for constraint functions, whose +C roots are desired during the integration. +C This name must be declared External in calling program. +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C JROOT = integer array of length NG for output of root information. +C See next paragraph. +C Note that the main program must declare arrays Y, RWORK, IWORK, +C JROOT, and possibly ATOL. +C +C F. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 or 3 if DLSODKR was successful, negative otherwise. +C 2 means no root was found, and TOUT was reached as desired. +C 3 means a root was found prior to reaching TOUT. +C -1 means excess work done on this call (perhaps wrong MF). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad JAC +C or PSOL routine supplied or wrong choice of MF or +C tolerances, or this solver is inappropriate). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 means an unrecoverable error occurred in PSOL. +C JROOT = array showing roots found if ISTATE = 3 on return. +C JROOT(i) = 1 if g(i) has a root at T, or 0 otherwise. +C +C G. To continue the integration after a successful return, proceed +C as follows: +C (a) If ISTATE = 2 on return, reset TOUT and call DLSODKR again. +C (b) If ISTATE = 3 on return, reset ISTATE to 2 and call DLSODKR again. +C In either case, no other parameters need be reset. +C +C----------------------------------------------------------------------- +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODKR. +C +C The user interface to DLSODKR consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODKR, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODKR package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODKR package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, PSOL, MF, +C G, and NG, +C that used only for output is JROOT, +C and those used for both input and output are +C Y, T, ISTATE. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODKR to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C F = the name of the user-supplied subroutine defining the +C ODE system. The system must be put in the first-order +C form dy/dt = f(t,y), where f is a vector-valued function +C of the scalar t and the vector y. Subroutine F is to +C compute the function f. It is to have the form +C SUBROUTINE F (NEQ, T, Y, YDOT) +C DOUBLE PRECISION T, Y(*), YDOT(*) +C where NEQ, T, and Y are input, and the array YDOT = f(t,y) +C is output. Y and YDOT are arrays of length NEQ. +C Subroutine F should not alter Y(1),...,Y(NEQ). +C F must be declared External in the calling program. +C +C Subroutine F may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in F) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y below. +C +C If quantities computed in the F routine are needed +C externally to DLSODKR, an extra call to F should be made +C for this purpose, for consistent and accurate results. +C If only the derivative dy/dt is needed, use DINTDY instead. +C +C NEQ = the size of the ODE system (number of first order +C ordinary differential equations). Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in the user-supplied routines. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODKR package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to the user-supplied routines. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to the user-supplied routines. Each such routine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 1), and only for output on other calls. +C On the first call, Y must contain the vector of initial +C values. On output, Y contains the computed solution vector, +C evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to F, G, +C JAC, and PSOL. Hence its length may exceed NEQ, and +C locations Y(NEQ+1),... may be used to store other real data +C and pass it to the user-supplied routines. +C (The DLSODKR package accesses only Y(1),...,Y(NEQ).) +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C If a root was found, T is the computed location of the +C root reached first, on output. +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 1), TOUT may be equal +C to T for one call, then should .ne. T for the next call. +C For the initial T, an input value of TOUT .ne. T is used +C in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at T = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C the state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 1 means this is the first call for the problem +C (initializations will be done). See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C and any of the optional inputs except H0. +C In addition, immediately following a return with +C ISTATE = 3 (root found), NG and G may be changed. +C (But changing NG from 0 to .gt. 0 is not allowed.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 1 means nothing was done; TOUT = T and ISTATE = 1 on input. +C 2 means the integration was performed successfully. +C 3 means the integration was successful, and one or more +C roots were found before satisfying the stop condition +C specified by ITASK. See JROOT. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means the PSOL routine returned an unrecoverable error +C flag (IER .lt. 0). The integration was successful as +C far as T. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD+1) + 3*NEQ + 3*NG + LENLS + LWP where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENLS = length of work space for linear system (Krylov) +C method, excluding preconditioning: +C LENLS = 0 if MITER = 0, +C LENLS = NEQ*(MAXL+3) + MAXL**2 if MITER = 1, +C LENLS = NEQ*(MAXL+3+MIN(1,MAXL-KMP)) +C + (MAXL+3)*MAXL + 1 if MITER = 2, +C LENLS = 6*NEQ if MITER = 3 or 4, +C LENLS = 3*NEQ if MITER = 9. +C (See the MF description for METH and MITER, and the +C list of optional inputs for MAXL and KMP.) +C LWP = length of real user work space for preconditioning +C (see JAC/PSOL). +C Thus if default values are used and NEQ is constant, +C this length is: +C 20 + 16*NEQ + 3*NG for MF = 10, +C 45 + 24*NEQ + 3*NG + LWP for MF = 11, +C 61 + 24*NEQ + 3*NG + LWP for MF = 12, +C 20 + 22*NEQ + 3*NG + LWP for MF = 13 or 14, +C 20 + 19*NEQ + 3*NG + LWP for MF = 19, +C 20 + 9*NEQ + 3*NG for MF = 20, +C 45 + 17*NEQ + 3*NG + LWP for MF = 21, +C 61 + 17*NEQ + 3*NG + LWP for MF = 22, +C 20 + 15*NEQ + 3*NG + LWP for MF = 23 or 24, +C 20 + 12*NEQ + 3*NG + LWP for MF = 29. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 30 if MITER = 0 (MF = 10 or 20), +C 30 + MAXL + LIWP if MITER = 1 (MF = 11, 21), +C 30 + LIWP if MITER = 2, 3, 4, or 9. +C MAXL = 5 unless a different optional input value is given. +C LIWP = length of integer user work space for preconditioning +C (see conditional input list following). +C The first few words of IWORK are used for conditional and +C optional inputs and optional outputs. +C +C The following 4 words in IWORK are conditional inputs, +C required if MITER .ge. 1: +C IWORK(1) = LWP = length of real array WP for use in +C preconditioning (part of RWORK array). +C IWORK(2) = LIWP = length of integer array IWP for use in +C preconditioning (part of IWORK array). +C The arrays WP and IWP are work arrays under the +C user's control, for use in the routines that +C perform preconditioning operations (JAC and PSOL). +C IWORK(3) = JPRE = preconditioner type flag: +C = 0 for no preconditioning (P1 = P2 = P = identity) +C = 1 for left-only preconditioning (P2 = identity) +C = 2 for right-only preconditioning (P1 = identity) +C = 3 for two-sided preconditioning (and PCG or PCGS) +C IWORK(4) = JACFLG = flag for whether JAC is called. +C = 0 if JAC is not to be called, +C = 1 if JAC is to be called. +C Use JACFLG = 1 if JAC computes any nonconstant +C data needed in preconditioning operations, +C such as some of the Jacobian elements. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODKR +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODKR between calls, if +C desired (but not for use by any of the user-supplied routines). +C +C JAC = the name of the user-supplied routine to compute any +C Jacobian elements (or approximations) involved in the +C matrix preconditioning operations (MITER .ge. 1). +C It is to have the form +C SUBROUTINE JAC (F, NEQ, T, Y, YSV, REWT, FTY, V, +C 1 HL0, JOK, WP, IWP, IER) +C DOUBLE PRECISION T, Y(*), YSV(*), REWT(*), FTY(*), V(*), +C 1 HL0, WP(*) +C INTEGER IWP(*) +C This routine must evaluate and preprocess any parts of the +C Jacobian matrix df/dy used in the preconditioners P1, P2, P. +C The Y and FTY arrays contain the current values of y and +C f(t,y), respectively, and the YSV array also contains +C the current y vector. The array V is work space of length +C NEQ for use by JAC. REWT is the array of reciprocal error +C weights (1/EWT). JAC must multiply all computed Jacobian +C elements by the scalar -HL0, add the identity matrix, and do +C any factorization operations called for, in preparation +C for solving linear systems with a coefficient matrix of +C P1, P2, or P. The matrix P1*P2 or P should be an +C approximation to identity - hl0 * (df/dy). JAC should +C return IER = 0 if successful, and IER .ne. 0 if not. +C (If IER .ne. 0, a smaller time step will be tried.) +C The arrays WP (of length LWP) and IWP (of length LIWP) +C are for use by JAC and PSOL for work space and for storage +C of data needed for the solution of the preconditioner +C linear systems. Their lengths and contents are under the +C user's control. +C The argument JOK is an input flag for optional use +C by JAC in deciding whether to recompute Jacobian elements +C or use saved values. If JOK = -1, then JAC must compute +C any relevant Jacobian elements (or approximations) used in +C the preconditioners. Optionally, JAC may also save these +C elements for later reuse. If JOK = 1, the integrator has +C made a judgement (based on the convergence history and the +C value of HL0) that JAC need not recompute Jacobian elements, +C but instead use saved values, and the current value of HL0, +C to reconstruct the preconditioner matrices, followed by +C any required factorizations. This may be cost-effective if +C Jacobian elements are costly and storage is available. +C JAC may alter Y and V, but not YSV, REWT, FTY, or HL0. +C JAC must be declared External in the calling program. +C Subroutine JAC may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in JAC) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C PSOL = the name of the user-supplied routine for the +C solution of preconditioner linear systems. +C It is to have the form +C SUBROUTINE PSOL (NEQ, T, Y, FTY, WK,HL0, WP,IWP, B, LR,IER) +C DOUBLE PRECISION T, Y(*), FTY(*), WK(*), HL0, WP(*), B(*) +C INTEGER IWP(*) +C This routine must solve a linear system with B as right-hand +C side and one of the preconditioning matrices, P1, P2, or P, +C as coefficient matrix, and return the solution vector in B. +C LR is a flag concerning left vs right preconditioning, input +C to PSOL. PSOL is to use P1 if LR = 1 and P2 if LR = 2. +C In the case of the PCG or PCGS method, LR will be 3, and PSOL +C should solve the system P*x = B with the preconditioner P. +C In the case MITER = 9 (no Krylov iteration), LR will be 0, +C and PSOL is to return in B the desired approximate solution +C to A * x = B, where A = identity - hl0 * (df/dy). +C PSOL can use data generated in the JAC routine and stored in +C WP and IWP. +C The Y and FTY arrays contain the current values of y and +C f(t,y), respectively. The array WK is work space of length +C NEQ for use by PSOL. +C The argument HL0 is the current value of the scalar appearing +C in the linear system. If the old value, as of the last +C JAC call, is needed, it must have been saved by JAC in WP. +C On return, PSOL should set the error flag IER as follows: +C IER = 0 if PSOL was successful, +C IER .gt. 0 on a recoverable error, meaning that the +C time step will be retried, +C IER .lt. 0 on an unrecoverable error, meaning that the +C solver is to stop immediately. +C PSOL may not alter Y, FTY, or HL0. +C PSOL must be declared External in the calling program. +C Subroutine PSOL may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in PSOL) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C MF = the method flag. Used only for input. The legal values of +C MF are 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24, and 29. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C MITER indicates the corrector iteration method: +C MITER = 0 means functional iteration (no linear system +C is involved). +C MITER = 1 means Newton iteration with Scaled Preconditioned +C Incomplete Orthogonalization Method (SPIOM) +C for the linear systems. +C MITER = 2 means Newton iteration with Scaled Preconditioned +C Incomplete Generalized Minimal Residual method +C (SPIGMR) for the linear systems. +C MITER = 3 means Newton iteration with Preconditioned +C Conjugate Gradient method (PCG) +C for the linear systems. +C MITER = 4 means Newton iteration with scaled preconditioned +C Conjugate Gradient method (PCGS) +C for the linear systems. +C MITER = 9 means Newton iteration with only the +C user-supplied PSOL routine called (no Krylov +C iteration) for the linear systems. +C JPRE is ignored, and PSOL is called with LR = 0. +C See comments in the introduction about the choice of MITER. +C If MITER .ge. 1, the user must supply routines JAC and PSOL +C (the names are arbitrary) as described above. +C For MITER = 0, a dummy argument can be used. +C +C G = the name of subroutine for constraint functions, whose +C roots are desired during the integration. It is to have +C the form +C SUBROUTINE G (NEQ, T, Y, NG, GOUT) +C DOUBLE PRECISION T, Y(*), GOUT(NG) +C where NEQ, T, Y, and NG are input, and the array GOUT +C is output. NEQ, T, and Y have the same meaning as in +C the F routine, and GOUT is an array of length NG. +C For i = 1,...,NG, this routine is to load into GOUT(i) +C the value at (t,y) of the i-th constraint function g(i). +C DLSODKR will find roots of the g(i) of odd multiplicity +C (i.e. sign changes) as they occur during the integration. +C G must be declared External in the calling program. +C +C Caution: Because of numerical errors in the functions +C g(i) due to roundoff and integration error, DLSODKR may +C return false roots, or return the same root at two or more +C nearly equal values of t. If such false roots are +C suspected, the user should consider smaller error tolerances +C and/or higher precision in the evaluation of the g(i). +C +C If a root of some g(i) defines the end of the problem, +C the input to DLSODKR should nevertheless allow integration +C to a point slightly past that root, so that DLSODKR can +C locate the root by interpolation. +C +C Subroutine G may access user-defined quantities in +C NEQ(2),... and Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in G) and/or Y has length exceeding NEQ(1). +C See the descriptions of NEQ and Y above. +C +C NG = number of constraint functions g(i). If there are none, +C set NG = 0, and pass a dummy name for G. +C +C JROOT = integer array of length NG. Used only for output. +C On a return with ISTATE = 3 (one or more roots found), +C JROOT(i) = 1 if g(i) has a root at t, or JROOT(i) = 0 if not. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C DELT RWORK(8) convergence test constant in Krylov iteration +C algorithm. The default is .05. +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C +C MAXL IWORK(8) maximum number of iterations in the SPIOM, SPIGMR, +C PCG, or PCGS algorithm (.le. NEQ). +C The default is MAXL = MIN(5,NEQ). +C +C KMP IWORK(9) number of vectors on which orthogonalization +C is done in SPIOM or SPIGMR algorithm (.le. MAXL). +C The default is KMP = MAXL. +C Note: When KMP .lt. MAXL and MF = 22, the length +C of RWORK must be defined accordingly. See +C the definition of RWORK above. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODKR, the variables listed +C below are quantities related to the performance of DLSODKR +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODKR, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On an illegal input return +C (ISTATE = -3), they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NGE IWORK(10) the number of g evaluations for the problem so far. +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NFE IWORK(12) the number of f evaluations for the problem so far. +C +C NPE IWORK(13) the number of calls to JAC so far (for evaluation +C of preconditioners). +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNI IWORK(19) number of nonlinear iterations so far (each of +C which calls an iterative linear solver). +C +C NLI IWORK(20) number of linear iterations so far. +C Note: A measure of the success of algorithm is +C the average number of linear iterations per +C nonlinear iteration, given by NLI/NNI. +C If this is close to MAXL, MAXL may be too small. +C +C NPS IWORK(21) number of preconditioning solve operations +C (PSOL calls) so far. +C +C NCFN IWORK(22) number of convergence failures of the nonlinear +C (Newton) iteration so far. +C Note: A measure of success is the overall +C rate of nonlinear convergence failures, NCFN/NST. +C +C NCFL IWORK(23) number of convergence failures of the linear +C iteration so far. +C Note: A measure of success is the overall +C rate of linear convergence failures, NCFL/NNI. +C +C NSFI IWORK(24) number of functional iteration steps so far. +C Note: A measure of the extent to which the +C problem is nonstiff is the ratio NSFI/NST. +C +C NJEV IWORK(25) number of JAC calls with JOK = -1 so far +C (number of evaluations of Jacobian data). +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 + 3*NG the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output +C to represent the estimated local error in y +C on the last step. This is the vector E in +C the description of the error control. It is +C defined only on a successful return from +C DLSODKR. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODKR. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODKR, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODKR. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCKR(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODKR (see Part 3 below). +C RSAV must be a real array of length 228 +C or more, and ISAV must be an integer +C array of length 63 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCKR is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODKR. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODKR. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = 21 + 3*NG +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODKR). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODKR directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = 21 + 3*NG = base address in RWORK of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODKR is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODKR, and +C (2) the four internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLS002/ of length 5 (1 double precision word +C followed by 4 integer words), +C /DLPK01/ of length 17 (4 double precision words +C followed by 13 integer words), +C /DLSR01/ of length 14 (5 double precision words +C followed by 9 integer words). +C +C If DLSODKR is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODKR is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODKR call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODKR call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCKR (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODKR package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODKR call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODKR in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODKR. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19900117 DATE WRITTEN +C 19900503 Added iteration switching (functional/Newton). +C 19900802 Added flag for Jacobian-saving in user preconditioner. +C 19900910 Added new initial stepsize routine LHIN. +C 19901019 Corrected LHIN - y array restored. +C 19910909 Changed names STOPK to STOKA, PKSET to SETPK; +C removed unused variables in driver declarations; +C minor corrections to main prologue. +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20030603 Corrected duplicate type declaration for DUMACH. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal name NPE to NJE. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODKR package. +C +C In addition to Subroutine DLSODKR, the DLSODKR package includes the +C following subroutines and function routines: +C DLHIN calculates a step size to be attempted initially. +C DRCHEK does preliminary checking for roots, and serves as an +C interface between Subroutine DLSODKR and Subroutine DROOTS. +C DROOTS finds the leftmost root of a set of functions. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSTOKA is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DSETPK interfaces between DSTOKA and the JAC routine. +C DSOLPK manages solution of linear system in Newton iteration. +C DSPIOM performs the SPIOM algorithm. +C DATV computes a scaled, preconditioned product (I-hl0*J)*v. +C DORTHOG orthogonalizes a vector against previous basis vectors. +C DHEFA generates an LU factorization of a Hessenberg matrix. +C DHESL solves a Hessenberg square linear system. +C DSPIGMR performs the SPIGMR algorithm. +C DHEQR generates a QR factorization of a Hessenberg matrix. +C DHELS finds the least squares solution of a Hessenberg system. +C DPCG performs preconditioned conjugate gradient algorithm (PCG). +C DPCGS performs the PCGS algorithm. +C DATP computes the product A*p, where A = I - hl0*df/dy. +C DUSOL interfaces to the user's PSOL routine (MITER = 9). +C DSRCKR is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DAXPY, DCOPY, DDOT, DNRM2, and DSCAL are basic linear +C algebra modules (from the BLAS collection). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DDOT, DNRM2, DUMACH, IXSAV, and IUMACH are function +C routines. All the others are subroutines. +C +C----------------------------------------------------------------------- + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER NEWT, NSFI, NSLJ, NJEV + INTEGER LG0, LG1, LGX, IOWNR3, IRFND, ITASKC, NGC, NGE + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + INTEGER I, I1, I2, IER, IFLAG, IMXER, KGO, LF0, + 1 LENIW, LENIWK, LENRW, LENWM, LENWK, LIWP, LWP, MORD, MXHNL0, + 2 MXSTP0, NCFN0, NCFL0, NITER, NLI0, NNI0, NNID, NSTD, NWARN + INTEGER IRFP, IRT, LENYH, LYHNEW + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION STIFR + DOUBLE PRECISION ROWNR3, T0, TLAST, TOUTC + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + DOUBLE PRECISION ATOLI, AVDIM, BIG, EWTI, H0, HMAX, HMX, RCFL, + 1 RCFN, RH, RTOLI, TCRIT, TNEXT, TOLSF, TP, SIZE + DIMENSION MORD(2) + LOGICAL IHIT, LAVD, LCFN, LCFL, LWARN + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following four internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODKR, DINTDY, +C DSTOKA, DSOLPK, and DATV. +C The block DLS002 is declared in subroutines DLSODKR and DSTOKA. +C The block DLSR01 is declared in subroutines DLSODKR, DRCHEK, DROOTS. +C The block DLPK01 is declared in subroutines DLSODKR, DSTOKA, DSETPK, +C and DSOLPK. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLS002/ STIFR, NEWT, NSFI, NSLJ, NJEV +C + COMMON /DLSR01/ ROWNR3(2), T0, TLAST, TOUTC, + 1 LG0, LG1, LGX, IOWNR3(2), IRFND, ITASKC, NGC, NGE +C + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + ITASKC = ITASK + IF (ISTATE .EQ. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 1), +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, MF, +C and NG. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .EQ. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 0) GO TO 608 + IF (MITER .GT. 4 .AND. MITER .LT. 9) GO TO 608 + IF (MITER .GE. 1) JPRE = IWORK(3) + JACFLG = 0 + IF (MITER .GE. 1) JACFLG = IWORK(4) + IF (NG .LT. 0) GO TO 630 + IF (ISTATE .EQ. 1) GO TO 35 + IF (IRFND .EQ. 0 .AND. NG .NE. NGC) GO TO 631 + 35 NGC = NG +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .EQ. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + MAXL = MIN(5,N) + KMP = MAXL + DELT = 0.05D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .NE. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 + MAXL = IWORK(8) + IF (MAXL .EQ. 0) MAXL = 5 + MAXL = MIN(MAXL,N) + KMP = IWORK(9) + IF (KMP .EQ. 0 .OR. KMP .GT. MAXL) KMP = MAXL + DELT = RWORK(8) + IF (DELT .EQ. 0.0D0) DELT = 0.05D0 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C RWORK segments (in order) are denoted G0, G1, GX, YH, WM, +C EWT, SAVF, SAVX, ACOR. +C----------------------------------------------------------------------- + 60 IF (ISTATE .EQ. 1) NYH = N + LG0 = 21 + LG1 = LG0 + NG + LGX = LG1 + NG + LYHNEW = LGX + NG + IF (ISTATE .EQ. 1) LYH = LYHNEW + IF (LYHNEW .EQ. LYH) GO TO 62 +C If ISTATE = 3 and NG was changed, shift YH to its new location. ------ + LENYH = L*NYH + IF (LRW .LT. LYHNEW-1+LENYH) GO TO 62 + I1 = 1 + IF (LYHNEW .GT. LYH) I1 = -1 + CALL DCOPY (LENYH, RWORK(LYH), I1, RWORK(LYHNEW), I1) + LYH = LYHNEW + 62 CONTINUE + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .EQ. 0) LENWK = 0 + IF (MITER .EQ. 1) LENWK = N*(MAXL+2) + MAXL*MAXL + IF (MITER .EQ. 2) + 1 LENWK = N*(MAXL+2+MIN(1,MAXL-KMP)) + (MAXL+3)*MAXL + 1 + IF (MITER .EQ. 3 .OR. MITER .EQ. 4) LENWK = 5*N + IF (MITER .EQ. 9) LENWK = 2*N + LWP = 0 + IF (MITER .GE. 1) LWP = IWORK(1) + LENWM = LENWK + LWP + LOCWP = LENWK + 1 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LSAVX = LSAVF + N + LACOR = LSAVX + N + IF (MITER .EQ. 0) LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 31 + LENIWK = 0 + IF (MITER .EQ. 1) LENIWK = MAXL + LIWP = 0 + IF (MITER .GE. 1) LIWP = IWORK(2) + LENIW = 30 + LENIWK + LIWP + LOCIWP = LENIWK + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE +C Load SQRT(N) and its reciprocal in Common. --------------------------- + SQRTN = SQRT(REAL(N)) + RSQRTN = 1.0D0/SQRTN + IF (ISTATE .EQ. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTOKA.-------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into SAVF. --------- + DO 80 I = 1,N + 80 RWORK(I+LSAVF-1) = RWORK(I+LWM-1) + 90 CONTINUE + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 1). +C It contains all remaining initializations, the initial call to F, +C and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 110 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 110 JSTART = 0 + NHNIL = 0 + NST = 0 + NJE = 0 + NSLAST = 0 + NLI0 = 0 + NNI0 = 0 + NCFN0 = 0 + NCFL0 = 0 + NWARN = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 + NNI = 0 + NLI = 0 + NPS = 0 + NCFN = 0 + NCFL = 0 + NSFI = 0 + NJEV = 0 +C Initial call to F. (LF0 points to YH(*,2).) ------------------------- + LF0 = LYH + NYH + CALL F (NEQ, T, Y, RWORK(LF0)) + NFE = 1 +C Load the initial value vector in YH. --------------------------------- + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 120 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 120 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + IF (H0 .NE. 0.0D0) GO TO 180 +C Call DLHIN to set initial step size H0 to be attempted. -------------- + CALL DLHIN (NEQ, N, T, RWORK(LYH), RWORK(LF0), F, TOUT, UROUND, + 1 RWORK(LEWT), ITOL, ATOL, Y, RWORK(LACOR), H0, NITER, IER) + NFE = NFE + NITER + IF (IER .NE. 0) GO TO 622 +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LF0-1) = H0*RWORK(I+LF0-1) +C Check for a zero of g at T. ------------------------------------------ + IRFND = 0 + TOUTC = TOUT + IF (NGC .EQ. 0) GO TO 270 + CALL DRCHEK (1, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .EQ. 0) GO TO 270 + GO TO 632 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C First, DRCHEK is called to check for a root within the last step +C taken, other than the last root found there, if any. +C If ITASK = 2 or 5, and y(TN) has not yet been returned to the user +C because of an intervening root, return through Block G. +C----------------------------------------------------------------------- + 200 NSLAST = NST +C + IRFP = IRFND + IF (NGC .EQ. 0) GO TO 205 + IF (ITASK .EQ. 1 .OR. ITASK .EQ. 4) TOUTC = TOUT + CALL DRCHEK (2, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 205 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 205 CONTINUE + IRFND = 0 + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 2) GO TO 400 +C + NLI0 = NLI + NNI0 = NNI + NCFN0 = NCFN + NCFL0 = NCFL + NWARN = 0 + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) T = TCRIT + IF (IRFP .EQ. 1 .AND. TLAST .NE. TN .AND. ITASK .EQ. 5) GO TO 400 + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTOKA. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, +C check for poor Newton/Krylov method performance, update EWT (if not +C at start of problem), check for too much accuracy being requested, +C and check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + NSTD = NST - NSLAST + NNID = NNI - NNI0 + IF (NSTD .LT. 10 .OR. NNID .EQ. 0) GO TO 255 + AVDIM = REAL(NLI - NLI0)/REAL(NNID) + RCFN = REAL(NCFN - NCFN0)/REAL(NSTD) + RCFL = REAL(NCFL - NCFL0)/REAL(NNID) + LAVD = AVDIM .GT. (MAXL - 0.05D0) + LCFN = RCFN .GT. 0.9D0 + LCFL = RCFL .GT. 0.9D0 + LWARN = LAVD .OR. LCFN .OR. LCFL + IF (.NOT.LWARN) GO TO 255 + NWARN = NWARN + 1 + IF (NWARN .GT. 10) GO TO 255 + IF (LAVD) THEN + MSG='DLSODKR- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LAVD) THEN + MSG=' at T = R1 by average no. of linear iterations = R2 ' + CALL XERRWD (MSG, 60, 111, 0, 0, 0, 0, 2, TN, AVDIM) + ENDIF + IF (LCFN) THEN + MSG='DLSODKR- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFN) THEN + MSG=' at T = R1 by nonlinear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 112, 0, 0, 0, 0, 2, TN, RCFN) + ENDIF + IF (LCFL) THEN + MSG='DLSODKR- Warning. Poor iterative algorithm performance seen ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (LCFL) THEN + MSG=' at T = R1 by linear convergence failure rate = R2 ' + CALL XERRWD (MSG, 60, 113, 0, 0, 0, 0, 2, TN, RCFL) + ENDIF + 255 CONTINUE + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODKR- Warning.. Internal T(=R1) and H(=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODKR- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTOKA(NEQ,Y,YH,NYH,YH,EWT,SAVF,SAVX,ACOR,WM,IWM,F,JAC,PSOL) +C----------------------------------------------------------------------- + CALL DSTOKA (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 RWORK(LSAVF), RWORK(LSAVX), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), F, JAC, PSOL) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 550), KGO +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). +C Call DRCHEK to check for a root within the last step. +C Then, if no root was found, check for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 +C + IF (NGC .EQ. 0) GO TO 315 + CALL DRCHEK (3, G, NEQ, Y, RWORK(LYH), NYH, + 1 RWORK(LG0), RWORK(LG1), RWORK(LGX), JROOT, IRT) + IF (IRT .NE. 1) GO TO 315 + IRFND = 1 + ISTATE = 3 + T = T0 + GO TO 425 + 315 CONTINUE +C + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODKR. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + 425 CONTINUE + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + IWORK(24) = NSFI + IWORK(25) = NJEV + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODKR- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODKR- At T(=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 580 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODKR- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 580 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODKR- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 560 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODKR- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 580 +C KFLAG = -3. Unrecoverable error from PSOL. -------------------------- + 550 MSG = 'DLSODKR- At T (=R1) an unrecoverable error return' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' was made from Subroutine PSOL ' + CALL XERRWD (MSG, 40, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 580 +C Compute IMXER if relevant. ------------------------------------------- + 560 BIG = 0.0D0 + IMXER = 1 + DO 570 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 570 + BIG = SIZE + IMXER = I + 570 CONTINUE + IWORK(16) = IMXER +C Set Y vector, T, and optional outputs. ------------------------------- + 580 DO 590 I = 1,N + 590 Y(I) = RWORK(I+LYH-1) + T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNI + IWORK(20) = NLI + IWORK(21) = NPS + IWORK(22) = NCFN + IWORK(23) = NCFL + IWORK(24) = NSFI + IWORK(25) = NJEV + IWORK(10) = NGE + TLAST = T + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODKR- ISTATE(=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODKR- ITASK (=I1) illegal.' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODKR- ISTATE.gt.1 but DLSODKR not initialized. ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODKR- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODKR- ISTATE = 3 and NEQ increased (I1 to I2).' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODKR- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODKR- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODKR- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODKR- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODKR- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODKR- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODKR- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODKR- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODKR- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODKR- RWORK length needed, LENRW(=I1), exceeds LRW(=I2) ' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODKR- IWORK length needed, LENIW(=I1), exceeds LIW(=I2) ' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODKR- RTOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODKR- ATOL(I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODKR- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODKR- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODKR- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODKR- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODKR- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODKR- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODKR- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 630 MSG = 'DLSODKR- NG (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 30, 0, 1, NG, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG = 'DLSODKR- NG changed (from I1 to I2) illegally, ' + CALL XERRWD (MSG, 50, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' i.e. not immediately after a root was found.' + CALL XERRWD (MSG, 50, 31, 0, 2, NGC, NG, 0, 0.0D0, 0.0D0) + GO TO 700 + 632 MSG = 'DLSODKR- One or more components of g has a root ' + CALL XERRWD (MSG, 50, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' too near to the initial point. ' + CALL XERRWD (MSG, 40, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODKR- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODKR --------------------- + END +*DECK DLSODI + SUBROUTINE DLSODI (RES, ADDA, JAC, NEQ, Y, YDOTI, T, TOUT, ITOL, + 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF ) + EXTERNAL RES, ADDA, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, YDOTI, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), YDOTI(*), RTOL(*), ATOL(*), RWORK(LRW), + 1 IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODI: Livermore Solver for Ordinary Differential Equations +C (Implicit form). +C +C This version is in double precision. +C +C DLSODI solves the initial value problem for linearly implicit +C systems of first order ODEs, +C A(t,y) * dy/dt = g(t,y) , where A(t,y) is a square matrix, +C or, in component form, +C ( a * ( dy / dt )) + ... + ( a * ( dy / dt )) = +C i,1 1 i,NEQ NEQ +C +C = g ( t, y , y ,..., y ) ( i = 1,...,NEQ ) +C i 1 2 NEQ +C +C If A is singular, this is a differential-algebraic system. +C +C DLSODI is a variant version of the DLSODE package. +C----------------------------------------------------------------------- +C Reference: +C Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Jeffrey F. Painter +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODI package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First, provide a subroutine of the form: +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C which computes the residual function +C r = g(t,y) - A(t,y) * s , +C as a function of t and the vectors y and s. (s is an internally +C generated approximation to dy/dt.) The arrays Y and S are inputs +C to the RES routine and should not be altered. The residual +C vector is to be stored in the array R. The argument IRES should be +C ignored for casual use of DLSODI. (For uses of IRES, see the +C paragraph on RES in the full description below.) +C +C B. Next, decide whether full or banded form is more economical +C for the storage of matrices. DLSODI must deal internally with the +C matrices A and dr/dy, where r is the residual function defined above. +C DLSODI generates a linear combination of these two matrices, and +C this is treated in either full or banded form. +C The matrix structure is communicated by a method flag MF, +C which is 21 or 22 for the full case, and 24 or 25 in the band case. +C In the banded case, DLSODI requires two half-bandwidth +C parameters ML and MU. These are, respectively, the widths of the +C lower and upper parts of the band, excluding the main diagonal. +C Thus the band consists of the locations (i,j) with +C i-ML .le. j .le. i+MU, and the full bandwidth is ML+MU+1. +C Note that the band must accommodate the nonzero elements of +C A(t,y), dg/dy, and d(A*s)/dy (s fixed). Alternatively, one +C can define a band that encloses only the elements that are relatively +C large in magnitude, and gain some economy in storage and possibly +C also efficiency, although the appropriate threshhold for +C retaining matrix elements is highly problem-dependent. +C +C C. You must also provide a subroutine of the form: +C SUBROUTINE ADDA (NEQ, T, Y, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y(*), P(NROWP,*) +C which adds the matrix A = A(t,y) to the contents of the array P. +C T and the Y array are input and should not be altered. +C In the full matrix case, this routine should add elements of +C to P in the usual order. I.e., add A(i,j) to P(i,j). (Ignore the +C ML and MU arguments in this case.) +C In the band matrix case, this routine should add element A(i,j) +C to P(i-j+MU+1,j). I.e., add the diagonal lines of A to the rows of +C P from the top down (the top line of A added to the first row of P). +C +C D. For the sake of efficiency, you are encouraged to supply the +C Jacobian matrix dr/dy in closed form, where r = g(t,y) - A(t,y)*s +C (s = a fixed vector) as above. If dr/dy is being supplied, +C use MF = 21 or 24, and provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, S, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y(*), S(*), P(NROWP,*) +C which computes dr/dy as a function of t, y, and s. Here T, Y, and +C S are inputs, and the routine is to load dr/dy into P as follows: +C In the full matrix case (MF = 21), load P(i,j) with dr(i)/dy(j), +C the partial derivative of r(i) with respect to y(j). (Ignore the +C ML and MU arguments in this case.) +C In the band matrix case (MF = 24), load P(i-j+mu+1,j) with +C dr(i)/dy(j), i.e. load the diagonal lines of dr/dy into the rows of +C P from the top down. +C In either case, only nonzero elements need be loaded, and the +C indexing of P is the same as in the ADDA routine. +C Note that if A is independent of y (or this dependence +C is weak enough to be ignored) then JAC is to compute dg/dy. +C If it is not feasible to provide a JAC routine, use +C MF = 22 or 25, and DLSODI will compute an approximate Jacobian +C internally by difference quotients. +C +C E. Next decide whether or not to provide the initial value of the +C derivative vector dy/dt. If the initial value of A(t,y) is +C nonsingular (and not too ill-conditioned), you may let DLSODI compute +C this vector (ISTATE = 0). (DLSODI will solve the system A*s = g for +C s, with initial values of A and g.) If A(t,y) is initially +C singular, then the system is a differential-algebraic system, and +C you must make use of the particular form of the system to compute the +C initial values of y and dy/dt. In that case, use ISTATE = 1 and +C load the initial value of dy/dt into the array YDOTI. +C The input array YDOTI and the initial Y array must be consistent with +C the equations A*dy/dt = g. This implies that the initial residual +C r = g(t,y) - A(t,y)*YDOTI must be approximately zero. +C +C F. Write a main program which calls Subroutine DLSODI once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages +C by DLSODI. On the first call to DLSODI, supply arguments as follows: +C RES = name of user subroutine for residual function r. +C ADDA = name of user subroutine for computing and adding A(t,y). +C JAC = name of user subroutine for Jacobian matrix dr/dy +C (MF = 21 or 24). If not used, pass a dummy name. +C Note: the names for the RES and ADDA routines and (if used) the +C JAC routine must be declared External in the calling program. +C NEQ = number of scalar equations in the system. +C Y = array of initial values, of length NEQ. +C YDOTI = array of length NEQ (containing initial dy/dt if ISTATE = 1). +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1 if the +C initial dy/dt is supplied, and 0 otherwise. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C If MF = 24 or 25, input in IWORK(1),IWORK(2) the lower +C and upper half-bandwidths ML,MU. +C LIW = declared length of IWORK (in user's dimension). +C MF = method flag. Standard values are: +C 21 for a user-supplied full Jacobian. +C 22 for an internally generated full Jacobian. +C 24 for a user-supplied banded Jacobian. +C 25 for an internally generated banded Jacobian. +C for other choices of MF, see the paragraph on MF in +C the full description below. +C Note that the main program must declare arrays Y, YDOTI, RWORK, IWORK, +C and possibly ATOL. +C +C G. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODI was successful, negative otherwise. +C -1 means excess work done on this call (check all inputs). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 cannot occur in casual use. +C -8 means DLSODI was unable to compute the initial dy/dt. +C In casual use, this means A(t,y) is initially singular. +C Supply YDOTI and use ISTATE = 1 on the first call. +C +C If DLSODI returns ISTATE = -1, -4, or -5, then the output of +C DLSODI also includes YDOTI = array containing residual vector +C r = g - A * dy/dt evaluated at the current t, y, and dy/dt. +C +C H. To continue the integration after a successful return, simply +C reset TOUT and call DLSODI again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is a simple example problem, with the coding +C needed for its solution by DLSODI. The problem is from chemical +C kinetics, and consists of the following three equations: +C dy1/dt = -.04*y1 + 1.e4*y2*y3 +C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2 +C 0. = y1 + y2 + y3 - 1. +C on the interval from t = 0.0 to t = 4.e10, with initial conditions +C y1 = 1.0, y2 = y3 = 0. +C +C The following coding solves this problem with DLSODI, using MF = 21 +C and printing results at t = .4, 4., ..., 4.e10. It uses +C ITOL = 2 and ATOL much smaller for y2 than y1 or y3 because +C y2 has much smaller values. dy/dt is supplied in YDOTI. We had +C obtained the initial value of dy3/dt by differentiating the +C third equation and evaluating the first two at t = 0. +C At the end of the run, statistical quantities of interest are +C printed (see optional outputs in the full description below). +C +C EXTERNAL RESID, APLUSP, DGBYDY +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y, YDOTI +C DIMENSION Y(3), YDOTI(3), ATOL(3), RWORK(58), IWORK(23) +C NEQ = 3 +C Y(1) = 1. +C Y(2) = 0. +C Y(3) = 0. +C YDOTI(1) = -.04 +C YDOTI(2) = .04 +C YDOTI(3) = 0. +C T = 0. +C TOUT = .4 +C ITOL = 2 +C RTOL = 1.D-4 +C ATOL(1) = 1.D-6 +C ATOL(2) = 1.D-10 +C ATOL(3) = 1.D-6 +C ITASK = 1 +C ISTATE = 1 +C IOPT = 0 +C LRW = 58 +C LIW = 23 +C MF = 21 +C DO 40 IOUT = 1,12 +C CALL DLSODI(RESID, APLUSP, DGBYDY, NEQ, Y, YDOTI, T, TOUT, ITOL, +C 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF) +C WRITE (6,20) T, Y(1), Y(2), Y(3) +C 20 FORMAT(' At t =',D12.4,' Y =',3D14.6) +C IF (ISTATE .LT. 0 ) GO TO 80 +C 40 TOUT = TOUT*10. +C WRITE (6,60) IWORK(11), IWORK(12), IWORK(13) +C 60 FORMAT(/' No. steps =',I4,' No. r-s =',I4,' No. J-s =',I4) +C STOP +C 80 WRITE (6,90) ISTATE +C 90 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE RESID(NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y, S, R +C DIMENSION Y(3), S(3), R(3) +C R(1) = -.04*Y(1) + 1.D4*Y(2)*Y(3) - S(1) +C R(2) = .04*Y(1) - 1.D4*Y(2)*Y(3) - 3.D7*Y(2)*Y(2) - S(2) +C R(3) = Y(1) + Y(2) + Y(3) - 1. +C RETURN +C END +C +C SUBROUTINE APLUSP(NEQ, T, Y, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y, P +C DIMENSION Y(3), P(NROWP,3) +C P(1,1) = P(1,1) + 1. +C P(2,2) = P(2,2) + 1. +C RETURN +C END +C +C SUBROUTINE DGBYDY(NEQ, T, Y, S, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y, S, P +C DIMENSION Y(3), S(3), P(NROWP,3) +C P(1,1) = -.04 +C P(1,2) = 1.D4*Y(3) +C P(1,3) = 1.D4*Y(2) +C P(2,1) = .04 +C P(2,2) = -1.D4*Y(3) - 6.D7*Y(2) +C P(2,3) = -1.D4*Y(2) +C P(3,1) = 1. +C P(3,2) = 1. +C P(3,3) = 1. +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 4.0000e-01 Y = 9.851726e-01 3.386406e-05 1.479357e-02 +C At t = 4.0000e+00 Y = 9.055142e-01 2.240418e-05 9.446344e-02 +C At t = 4.0000e+01 Y = 7.158050e-01 9.184616e-06 2.841858e-01 +C At t = 4.0000e+02 Y = 4.504846e-01 3.222434e-06 5.495122e-01 +C At t = 4.0000e+03 Y = 1.831701e-01 8.940379e-07 8.168290e-01 +C At t = 4.0000e+04 Y = 3.897016e-02 1.621193e-07 9.610297e-01 +C At t = 4.0000e+05 Y = 4.935213e-03 1.983756e-08 9.950648e-01 +C At t = 4.0000e+06 Y = 5.159269e-04 2.064759e-09 9.994841e-01 +C At t = 4.0000e+07 Y = 5.306413e-05 2.122677e-10 9.999469e-01 +C At t = 4.0000e+08 Y = 5.494532e-06 2.197826e-11 9.999945e-01 +C At t = 4.0000e+09 Y = 5.129457e-07 2.051784e-12 9.999995e-01 +C At t = 4.0000e+10 Y = -7.170472e-08 -2.868188e-13 1.000000e+00 +C +C No. steps = 330 No. r-s = 404 No. J-s = 69 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODI. +C +C The user interface to DLSODI consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODI, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODI package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODI package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C RES, ADDA, JAC, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, +C IOPT, LRW, LIW, MF, +C and those used for both input and output are +C Y, T, ISTATE, YDOTI. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODI to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C RES = the name of the user-supplied subroutine which supplies +C the residual vector for the ODE system, defined by +C r = g(t,y) - A(t,y) * s +C as a function of the scalar t and the vectors +C s and y (s approximates dy/dt). This subroutine +C is to have the form +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C where NEQ, T, Y, S, and IRES are input, and R and +C IRES are output. Y, S, and R are arrays of length NEQ. +C On input, IRES indicates how DLSODI will use the +C returned array R, as follows: +C IRES = 1 means that DLSODI needs the full residual, +C r = g - A*s, exactly. +C IRES = -1 means that DLSODI is using R only to compute +C the Jacobian dr/dy by difference quotients. +C The RES routine can ignore IRES, or it can omit some terms +C if IRES = -1. If A does not depend on y, then RES can +C just return R = g when IRES = -1. If g - A*s contains other +C additive terms that are independent of y, these can also be +C dropped, if done consistently, when IRES = -1. +C The subroutine should set the flag IRES if it +C encounters a halt condition or illegal input. +C Otherwise, it should not reset IRES. On output, +C IRES = 1 or -1 represents a normal return, and +C DLSODI continues integrating the ODE. Leave IRES +C unchanged from its input value. +C IRES = 2 tells DLSODI to immediately return control +C to the calling program, with ISTATE = 3. This lets +C the calling program change parameters of the problem, +C if necessary. +C IRES = 3 represents an error condition (for example, an +C illegal value of y). DLSODI tries to integrate the system +C without getting IRES = 3 from RES. If it cannot, DLSODI +C returns with ISTATE = -7 or -1. +C On an DLSODI return with ISTATE = 3, -1, or -7, the values +C of T and Y returned correspond to the last point reached +C successfully without getting the flag IRES = 2 or 3. +C The flag values IRES = 2 and 3 should not be used to +C handle switches or root-stop conditions. This is better +C done by calling DLSODI in a one-step mode and checking the +C stopping function for a sign change at each step. +C If quantities computed in the RES routine are needed +C externally to DLSODI, an extra call to RES should be made +C for this purpose, for consistent and accurate results. +C To get the current dy/dt for the S argument, use DINTDY. +C RES must be declared External in the calling +C program. See note below for more about RES. +C +C ADDA = the name of the user-supplied subroutine which adds the +C matrix A = A(t,y) to another matrix stored in the same form +C as A. The storage form is determined by MITER (see MF). +C This subroutine is to have the form +C SUBROUTINE ADDA (NEQ, T, Y, ML, MU, P, NROWP) +C DOUBLE PRECISION T, Y(*), P(NROWP,*) +C where NEQ, T, Y, ML, MU, and NROWP are input and P is +C output. Y is an array of length NEQ, and the matrix P is +C stored in an NROWP by NEQ array. +C In the full matrix case ( MITER = 1 or 2) ADDA should +C add A to P(i,j). ML and MU are ignored. +C i,j +C In the band matrix case ( MITER = 4 or 5) ADDA should +C add A to P(i-j+MU+1,j). +C i,j +C See JAC for details on this band storage form. +C ADDA must be declared External in the calling program. +C See note below for more information about ADDA. +C +C JAC = the name of the user-supplied subroutine which supplies the +C Jacobian matrix, dr/dy, where r = g - A*s. The form of the +C Jacobian matrix is determined by MITER. JAC is required +C if MITER = 1 or 4 -- otherwise a dummy name can be +C passed. This subroutine is to have the form +C SUBROUTINE JAC ( NEQ, T, Y, S, ML, MU, P, NROWP ) +C DOUBLE PRECISION T, Y(*), S(*), P(NROWP,*) +C where NEQ, T, Y, S, ML, MU, and NROWP are input and P +C is output. Y and S are arrays of length NEQ, and the +C matrix P is stored in an NROWP by NEQ array. +C P is to be loaded with partial derivatives (elements +C of the Jacobian matrix) on output. +C In the full matrix case (MITER = 1), ML and MU +C are ignored and the Jacobian is to be loaded into P +C by columns-- i.e., dr(i)/dy(j) is loaded into P(i,j). +C In the band matrix case (MITER = 4), the elements +C within the band are to be loaded into P by columns, +C with diagonal lines of dr/dy loaded into the +C rows of P. Thus dr(i)/dy(j) is to be loaded +C into P(i-j+MU+1,j). The locations in P in the two +C triangular areas which correspond to nonexistent matrix +C elements can be ignored or loaded arbitrarily, as they +C they are overwritten by DLSODI. ML and MU are the +C half-bandwidth parameters (see IWORK). +C In either case, P is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to RES with the same +C arguments NEQ, T, Y, and S. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by RES and not recomputed by JAC +C if desired. Also, JAC may alter the Y array, if desired. +C JAC need not provide dr/dy exactly. A crude +C approximation (possibly with a smaller bandwidth) will do. +C JAC must be declared External in the calling program. +C See note below for more about JAC. +C +C Note on RES, ADDA, and JAC: +C These subroutines may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in the subroutines) and/or Y has length +C exceeding NEQ(1). However, these routines should not alter +C NEQ(1), Y(1),...,Y(NEQ) or any other input variables. +C See the descriptions of NEQ and Y below. +C +C NEQ = the size of the system (number of first order ordinary +C differential equations or scalar algebraic equations). +C Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in RES, ADDA, or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODI package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to RES, ADDA, and JAC. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to RES, ADDA, or JAC. Each such subroutine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 0 or 1), and only for output on other +C calls. On the first call, Y must contain the vector of +C initial values. On output, Y contains the computed solution +C vector, evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to RES, +C ADDA, and JAC. Hence its length may exceed NEQ, +C and locations Y(NEQ+1),... may be used to store other real +C data and pass it to RES, ADDA, or JAC. (The DLSODI +C package accesses only Y(1),...,Y(NEQ). ) +C +C YDOTI = a real array for the initial value of the vector +C dy/dt and for work space, of dimension at least NEQ. +C +C On input: +C If ISTATE = 0, then DLSODI will compute the initial value +C of dy/dt, if A is nonsingular. Thus YDOTI will +C serve only as work space and may have any value. +C If ISTATE = 1, then YDOTI must contain the initial value +C of dy/dt. +C If ISTATE = 2 or 3 (continuation calls), then YDOTI +C may have any value. +C Note: If the initial value of A is singular, then +C DLSODI cannot compute the initial value of dy/dt, so +C it must be provided in YDOTI, with ISTATE = 1. +C +C On output, when DLSODI terminates abnormally with ISTATE = +C -1, -4, or -5, YDOTI will contain the residual +C r = g(t,y) - A(t,y)*(dy/dt). If r is large, t is near +C its initial value, and YDOTI is supplied with ISTATE = 1, +C then there may have been an incorrect input value of +C YDOTI = dy/dt, or the problem (as given to DLSODI) +C may not have a solution. +C +C If desired, the YDOTI array may be used for other +C purposes between calls to the solver. +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution Y is evaluated (usually the same as TOUT). +C on an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 0 or 1), TOUT may be +C equal to T for one call, then should .ne. T for the next +C call. For the initial T, an input value of TOUT .ne. T is +C used in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array scalar RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 0 means this is the first call for the problem, and +C DLSODI is to compute the initial value of dy/dt +C (while doing other initializations). See note below. +C 1 means this is the first call for the problem, and +C the initial value of dy/dt has been supplied in +C YDOTI (DLSODI will do other initializations). See note +C below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, ML, MU, +C and any of the optional inputs except H0. +C (See IWORK description for ML and MU.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 0 or 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 0 or 1 means nothing was done; TOUT = t and +C ISTATE = 0 or 1 on input. +C 2 means that the integration was performed successfully. +C 3 means that the user-supplied Subroutine RES signalled +C DLSODI to halt the integration and return (IRES = 2). +C Integration as far as T was achieved with no occurrence +C of IRES = 2, but this flag was set on attempting the +C next step. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix. +C -6 means EWT(i) became zero for some i during the +C integration. pure relative error control (ATOL(i)=0.0) +C was requested on a variable which has now vanished. +C the integration was successful as far as T. +C -7 means that the user-supplied Subroutine RES set +C its error flag (IRES = 3) despite repeated tries by +C DLSODI to avoid that condition. +C -8 means that ISTATE was 0 on input but DLSODI was unable +C to compute the initial value of dy/dt. See the +C printed message for details. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Similarly, ISTATE (= 3) need not be reset if RES told +C DLSODI to return because the calling program must change +C the parameters of the problem. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LENWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENWM = NEQ**2 + 2 if MITER is 1 or 2, and +C LENWM = (2*ML+MU+1)*NEQ + 2 if MITER is 4 or 5. +C (See MF description for the definition of METH and MITER.) +C Thus if MAXORD has its default value and NEQ is constant, +C this length is +C 22 + 16*NEQ + NEQ**2 for MF = 11 or 12, +C 22 + 17*NEQ + (2*ML+MU)*NEQ for MF = 14 or 15, +C 22 + 9*NEQ + NEQ**2 for MF = 21 or 22, +C 22 + 10*NEQ + (2*ML+MU)*NEQ for MF = 24 or 25. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 20 + NEQ . The first few words of IWORK are used for +C conditional and optional inputs and optional outputs. +C +C The following 2 words in IWORK are conditional inputs: +C IWORK(1) = ML These are the lower and upper +C IWORK(2) = MU half-bandwidths, respectively, of the +C matrices in the problem-- the Jacobian dr/dy +C and the left-hand side matrix A. These +C half-bandwidths exclude the main diagonal, +C so the total bandwidth is ML + MU + 1 . +C The band is defined by the matrix locations +C (i,j) with i-ML .le. j .le. i+MU. ML and MU +C must satisfy 0 .le. ML,MU .le. NEQ-1. +C These are required if MITER is 4 or 5, and +C ignored otherwise. +C ML and MU may in fact be the band parameters +C for matrices to which dr/dy and A are only +C approximately equal. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODI +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODI between calls, if +C desired (but not for use by RES, ADDA, or JAC). +C +C MF = the method flag. Used only for input. The legal values of +C MF are 11, 12, 14, 15, 21, 22, 24, and 25. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C The BDF method is strongly preferred for stiff +C problems, while the Adams method is preferred when +C the problem is not stiff. If the matrix A(t,y) is +C nonsingular, stiffness here can be taken to mean that of +C the explicit ODE system dy/dt = A-inverse * g. If A is +C singular, the concept of stiffness is not well defined. +C If you do not know whether the problem is stiff, we +C recommend using METH = 2. If it is stiff, the advantage +C of METH = 2 over METH = 1 will be great, while if it is +C not stiff, the advantage of METH = 1 will be slight. +C If maximum efficiency is important, some experimentation +C with METH may be necessary. +C MITER indicates the corrector iteration method: +C MITER = 1 means chord iteration with a user-supplied +C full (NEQ by NEQ) Jacobian. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) full Jacobian. +C This uses NEQ+1 extra calls to RES per dr/dy +C evaluation. +C MITER = 4 means chord iteration with a user-supplied +C banded Jacobian. +C MITER = 5 means chord iteration with an internally +C generated banded Jacobian (using ML+MU+2 +C extra calls to RES per dr/dy evaluation). +C If MITER = 1 or 4, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C For other values of MITER, a dummy argument can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C the use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODI, the variables listed +C below are quantities related to the performance of DLSODI +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODI, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On a return with -3 (illegal +C input) or -8, they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NRE IWORK(12) the number of residual evaluations (RES calls) +C for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (each involving +C an evaluation of A and dr/dy) for the problem so +C far. This equals the number of calls to ADDA and +C (if MITER = 1 or 4) JAC, and the number of matrix +C LU decompositions. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in y on the +C last step. This is the vector E in the descrip- +C tion of the error control. It is defined only +C on a return from DLSODI with ISTATE = 2. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODI. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODI, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODI. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCOM(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODI (see Part 3 below). +C RSAV must be a real array of length 218 +C or more, and ISAV must be an integer +C array of length 37 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCOM is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODI. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODI. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODI). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(T), is already provided +C by DLSODI directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODI is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODI, and +C (2) the internal Common block +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C +C If DLSODI is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common block in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODI is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODI call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODI call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCOM (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODI package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODI call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODI in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODI. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19800424 DATE WRITTEN +C 19800519 Corrected access of YH on forced order reduction; +C numerous corrections to prologues and other comments. +C 19800617 In main driver, added loading of SQRT(UROUND) in RWORK; +C minor corrections to main prologue. +C 19800903 Corrected ISTATE logic; minor changes in prologue. +C 19800923 Added zero initialization of HU and NQU. +C 19801028 Reorganized RES calls in AINVG, STODI, and PREPJI; +C in LSODI, corrected NRE increment and reset LDY0 at 580; +C numerous corrections to main prologue. +C 19801218 Revised XERRWD routine; minor corrections to main prologue. +C 19810330 Added Common block /LSI001/; use LSODE's INTDY and SOLSY; +C minor corrections to XERRWD and error message at 604; +C minor corrections to declarations; corrections to prologues. +C 19810818 Numerous revisions: replaced EWT by 1/EWT; used flags +C JCUR, ICF, IERPJ, IERSL between STODI and subordinates; +C added tuning parameters CCMAX, MAXCOR, MSBP, MXNCF; +C reorganized returns from STODI; reorganized type decls.; +C fixed message length in XERRWD; changed default LUNIT to 6; +C changed Common lengths; changed comments throughout. +C 19820906 Corrected use of ABS(H) in STODI; minor comment fixes. +C 19830510 Numerous revisions: revised diff. quotient increment; +C eliminated block /LSI001/, using IERPJ flag; +C revised STODI logic after PJAC return; +C revised tuning of H change and step attempts in STODI; +C corrections to main prologue and internal comments. +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODI; +C in STODI, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common block, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal names NRE, LSAVR to NFE, LSAVF resp. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODI package. +C +C In addition to Subroutine DLSODI, the DLSODI package includes the +C following subroutines and function routines: +C DAINVG computes the initial value of the vector +C dy/dt = A-inverse * g +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODI is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPREPJI computes and preprocesses the Jacobian matrix +C and the Newton iteration matrix P. +C DSOLSY manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCOM is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DGBFA and DGBSL are routines from LINPACK for solving banded +C linear systems. +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPREPJI, DSOLSY + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, IFLAG, IMXER, IRES, KGO, + 1 LENIW, LENRW, LENWM, LP, LYD0, ML, MORD, MU, MXHNL0, MXSTP0 + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following internal Common block contains +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODI, DINTDY, DSTODI, +C DPREPJI, and DSOLSY. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 0 or 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 0 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .LE. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 0 or 1) +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, ML, and MU. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .LE. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LE. 0 .OR. MITER .GT. 5) GO TO 608 + IF (MITER .EQ. 3) GO TO 608 + IF (MITER .LT. 3) GO TO 30 + ML = IWORK(1) + MU = IWORK(2) + IF (ML .LT. 0 .OR. ML .GE. N) GO TO 609 + IF (MU .LT. 0 .OR. MU .GE. N) GO TO 610 + 30 CONTINUE +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .LE. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .GT. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVR, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .LE. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + IF (MITER .LE. 2) LENWM = N*N + 2 + IF (MITER .GE. 4) LENWM = (2*ML + MU + 1)*N + 2 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE + IF (ISTATE .LE. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODI. ------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into YDOTI.--------- + DO 80 I = 1,N + 80 YDOTI(I) = RWORK(I+LWM-1) +C Reload WM(1) = RWORK(lWM), since lWM may have changed. --------------- + 90 RWORK(LWM) = SQRT(UROUND) + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 0 or 1). +C It contains all remaining initializations, the call to DAINVG +C (if ISTATE = 1), and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 105 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 105 JSTART = 0 + RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NST = 0 + NFE = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Compute initial dy/dt, if necessary, and load it and initial Y into YH + LYD0 = LYH + NYH + LP = LWM + 1 + IF (ISTATE .EQ. 1) GO TO 120 +C DLSODI must compute initial dy/dt (LYD0 points to YH(*,2)). ---------- + CALL DAINVG( RES, ADDA, NEQ, T, Y, RWORK(LYD0), MITER, + 1 ML, MU, RWORK(LP), IWORK(21), IER ) + NFE = NFE + 1 + IF (IER .LT. 0) GO TO 560 + IF (IER .GT. 0) GO TO 565 + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) + GO TO 130 +C Initial dy/dt was supplied. Load into YH (LYD0 points to YH(*,2).). - + 120 DO 125 I = 1,N + RWORK(I+LYH-1) = Y(I) + 125 RWORK(I+LYD0-1) = YDOTI(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + 130 CONTINUE + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 135 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 135 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( YDOT(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C YDOT(i) = i-th component of initial value of dy/dt, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 145 + DO 140 I = 1,N + 140 TOL = MAX(TOL,RTOL(I)) + 145 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LYD0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LYD0-1) = H0*RWORK(I+LYD0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODI. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODI- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODI- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODI(NEQ,Y,YH,NYH,YH1,EWT,SAVF,SAVR,ACOR,WM,IWM,RES, +C ADDA,JAC,DPREPJI,DSOLSY) +C Note: SAVF in DSTODI occupies the same space as YDOTI in DLSODI. +C----------------------------------------------------------------------- + CALL DSTODI (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 YDOTI, RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), RES, ADDA, JAC, DPREPJI, DSOLSY ) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 400, 550), KGO +C +C KGO = 1:success; 2:error test failure; 3:convergence failure; +C 4:RES ordered return. 5:RES returned error. +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. see if TOUT or TCRIT was reached. adjust h if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODI. +C if ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + IF (KFLAG .EQ. -3) ISTATE = 3 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODI- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODI- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 590 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODI- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 590 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODI- At T(=R1) and step size H(=R2), the error' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 570 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODI- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 570 +C IRES = 3 returned by RES, despite retries by DSTODI. ----------------- + 550 MSG = 'DLSODI- At T (=R1) residual routine returned ' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error IRES = 3 repeatedly. ' + CALL XERRWD (MSG, 40, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 590 +C DAINVG failed because matrix A was singular. ------------------------- + 560 IER = -IER + MSG='DLSODI- Attempt to initialize dy/dt failed: Matrix A is ' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' singular. DGEFA or DGBFA returned INFO = I1' + CALL XERRWD (MSG, 50, 207, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C DAINVG failed because RES set IRES to 2 or 3. ------------------------ + 565 MSG = 'DLSODI- Attempt to initialize dy/dt failed ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' because residual routine set its error flag ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to IRES = (I1)' + CALL XERRWD (MSG, 20, 208, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C Compute IMXER if relevant. ------------------------------------------- + 570 BIG = 0.0D0 + IMXER = 1 + DO 575 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 575 + BIG = SIZE + IMXER = I + 575 CONTINUE + IWORK(16) = IMXER +C Compute residual if relevant. ---------------------------------------- + 580 LYD0 = LYH + NYH + DO 585 I = 1,N + RWORK(I+LSAVF-1) = RWORK(I+LYD0-1)/H + 585 Y(I) = RWORK(I+LYH-1) + IRES = 1 + CALL RES (NEQ, TN, Y, RWORK(LSAVF), YDOTI, IRES ) + NFE = NFE + 1 + IF (IRES .LE. 1) GO TO 595 + MSG = 'DLSODI- Residual routine set its flag IRES ' + CALL XERRWD (MSG, 50, 210, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to (I1) when called for final output. ' + CALL XERRWD (MSG, 50, 210, 0, 1, IRES, 0, 0, 0.0D0, 0.0D0) + GO TO 595 +C Set Y vector, T, and optional outputs. ------------------------------- + 590 DO 592 I = 1,N + 592 Y(I) = RWORK(I+LYH-1) + 595 T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODI- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODI- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODI- ISTATE .gt. 1 but DLSODI not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODI- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODI- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODI- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODI- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODI- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSODI- ML(=I1) illegal: .lt. 0 or .ge. NEQ(=I2) ' + CALL XERRWD (MSG, 50, 9, 0, 2, ML, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSODI- MU(=I1) illegal: .lt. 0 or .ge. NEQ(=I2) ' + CALL XERRWD (MSG, 50, 10, 0, 2, MU, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODI- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODI- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODI- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODI- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODI- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODI- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSODI- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSODI- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODI- RTOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODI- ATOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODI- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODI- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODI- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODI- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODI- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODI- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODI- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODI- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODI ---------------------- + END +*DECK DLSOIBT + SUBROUTINE DLSOIBT (RES, ADDA, JAC, NEQ, Y, YDOTI, T, TOUT, ITOL, + 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF ) + EXTERNAL RES, ADDA, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, YDOTI, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), YDOTI(*), RTOL(*), ATOL(*), RWORK(LRW), + 1 IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSOIBT: Livermore Solver for Ordinary differential equations given +C in Implicit form, with Block-Tridiagonal Jacobian treatment. +C +C This version is in double precision. +C +C DLSOIBT solves the initial value problem for linearly implicit +C systems of first order ODEs, +C A(t,y) * dy/dt = g(t,y) , where A(t,y) is a square matrix, +C or, in component form, +C ( a * ( dy / dt )) + ... + ( a * ( dy / dt )) = +C i,1 1 i,NEQ NEQ +C +C = g ( t, y , y ,..., y ) ( i = 1,...,NEQ ) +C i 1 2 NEQ +C +C If A is singular, this is a differential-algebraic system. +C +C DLSOIBT is a variant version of the DLSODI package, for the case where +C the matrices A, dg/dy, and d(A*s)/dy are all block-tridiagonal. +C----------------------------------------------------------------------- +C Reference: +C Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE +C Solvers, in Scientific Computing, R. S. Stepleman et al. (Eds.), +C North-Holland, Amsterdam, 1983, pp. 55-64. +C----------------------------------------------------------------------- +C Authors: Alan C. Hindmarsh and Jeffrey F. Painter +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Charles S. Kenney +C formerly at: Naval Weapons Center +C China Lake, CA 93555 +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSOIBT package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First, provide a subroutine of the form: +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C which computes the residual function +C r = g(t,y) - A(t,y) * s , +C as a function of t and the vectors y and s. (s is an internally +C generated approximation to dy/dt.) The arrays Y and S are inputs +C to the RES routine and should not be altered. The residual +C vector is to be stored in the array R. The argument IRES should be +C ignored for casual use of DLSOIBT. (For uses of IRES, see the +C paragraph on RES in the full description below.) +C +C B. Next, identify the block structure of the matrices A = A(t,y) and +C dr/dy. DLSOIBT must deal internally with a linear combination, P, of +C these two matrices. The matrix P (hence both A and dr/dy) must have +C a block-tridiagonal form with fixed structure parameters +C MB = block size, MB .ge. 1, and +C NB = number of blocks in each direction, NB .ge. 4, +C with MB*NB = NEQ. In each of the NB block-rows of the matrix P +C (each consisting of MB consecutive rows), the nonzero elements are +C to lie in three consecutive MB by MB blocks. In block-rows +C 2 through NB - 1, these are centered about the main diagonal. +C in block-rows 1 and NB, they are the diagonal blocks and the two +C blocks adjacent to the diagonal block. (Thus block positions (1,3) +C and (NB,NB-2) can be nonzero.) +C Alternatively, P (hence A and dr/dy) may be only approximately +C equal to matrices with this form, and DLSOIBT should still succeed. +C The block-tridiagonal matrix P is described by three arrays, +C each of size MB by MB by NB: +C PA = array of diagonal blocks, +C PB = array of superdiagonal (and one subdiagonal) blocks, and +C PC = array of subdiagonal (and one superdiagonal) blocks. +C Specifically, the three MB by MB blocks in the k-th block-row of P +C are stored in (reading across): +C PC(*,*,k) = block to the left of the diagonal block, +C PA(*,*,k) = diagonal block, and +C PB(*,*,k) = block to the right of the diagonal block, +C except for k = 1, where the three blocks (reading across) are +C PA(*,*,1) (= diagonal block), PB(*,*,1), and PC(*,*,1), +C and k = NB, where they are +C PB(*,*,NB), PC(*,*,NB), and PA(*,*,NB) (= diagonal block). +C (Each asterisk * stands for an index that ranges from 1 to MB.) +C +C C. You must also provide a subroutine of the form: +C SUBROUTINE ADDA (NEQ, T, Y, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), PA(MB,MB,NB), PB(MB,MB,NB), PC(MB,MB,NB) +C which adds the nonzero blocks of the matrix A = A(t,y) to the +C contents of the arrays PA, PB, and PC, following the structure +C description in Paragraph B above. +C T and the Y array are input and should not be altered. +C Thus the affect of ADDA should be the following: +C DO 30 K = 1,NB +C DO 20 J = 1,MB +C DO 10 I = 1,MB +C PA(I,J,K) = PA(I,J,K) + +C ( (I,J) element of K-th diagonal block of A) +C PB(I,J,K) = PB(I,J,K) + +C ( (I,J) element of block in block position (K,K+1) of A, +C or in block position (NB,NB-2) if K = NB) +C PC(I,J,K) = PC(I,J,K) + +C ( (I,J) element of block in block position (K,K-1) of A, +C or in block position (1,3) if K = 1) +C 10 CONTINUE +C 20 CONTINUE +C 30 CONTINUE +C +C D. For the sake of efficiency, you are encouraged to supply the +C Jacobian matrix dr/dy in closed form, where r = g(t,y) - A(t,y)*s +C (s = a fixed vector) as above. If dr/dy is being supplied, +C use MF = 21, and provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, S, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), S(*), PA(MB,MB,NB), PB(MB,MB,NB), +C 1 PC(MB,MB,NB) +C which computes dr/dy as a function of t, y, and s. Here T, Y, and +C S are inputs, and the routine is to load dr/dy into PA, PB, PC, +C according to the structure description in Paragraph B above. +C That is, load the diagonal blocks into PA, the superdiagonal blocks +C (and block (NB,NB-2) ) into PB, and the subdiagonal blocks (and +C block (1,3) ) into PC. The blocks in block-row k of dr/dy are to +C be loaded into PA(*,*,k), PB(*,*,k), and PC(*,*,k). +C Only nonzero elements need be loaded, and the indexing +C of PA, PB, and PC is the same as in the ADDA routine. +C Note that if A is independent of Y (or this dependence +C is weak enough to be ignored) then JAC is to compute dg/dy. +C If it is not feasible to provide a JAC routine, use +C MF = 22, and DLSOIBT will compute an approximate Jacobian +C internally by difference quotients. +C +C E. Next decide whether or not to provide the initial value of the +C derivative vector dy/dt. If the initial value of A(t,y) is +C nonsingular (and not too ill-conditioned), you may let DLSOIBT compute +C this vector (ISTATE = 0). (DLSOIBT will solve the system A*s = g for +C s, with initial values of A and g.) If A(t,y) is initially +C singular, then the system is a differential-algebraic system, and +C you must make use of the particular form of the system to compute the +C initial values of y and dy/dt. In that case, use ISTATE = 1 and +C load the initial value of dy/dt into the array YDOTI. +C The input array YDOTI and the initial Y array must be consistent with +C the equations A*dy/dt = g. This implies that the initial residual +C r = g(t,y) - A(t,y)*YDOTI must be approximately zero. +C +C F. Write a main program which calls Subroutine DLSOIBT once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSOIBT. on the first call to DLSOIBT, supply arguments as follows: +C RES = name of user subroutine for residual function r. +C ADDA = name of user subroutine for computing and adding A(t,y). +C JAC = name of user subroutine for Jacobian matrix dr/dy +C (MF = 21). If not used, pass a dummy name. +C Note: the names for the RES and ADDA routines and (if used) the +C JAC routine must be declared External in the calling program. +C NEQ = number of scalar equations in the system. +C Y = array of initial values, of length NEQ. +C YDOTI = array of length NEQ (containing initial dy/dt if ISTATE = 1). +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C the estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1 if the +C initial dy/dt is supplied, and 0 otherwise. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 22 + 9*NEQ + 3*MB*MB*NB for MF = 21 or 22. +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 20 + NEQ. +C Input in IWORK(1) the block size MB and in IWORK(2) the +C number NB of blocks in each direction along the matrix A. +C These must satisfy MB .ge. 1, NB .ge. 4, and MB*NB = NEQ. +C LIW = declared length of IWORK (in user's dimension). +C MF = method flag. Standard values are: +C 21 for a user-supplied Jacobian. +C 22 for an internally generated Jacobian. +C For other choices of MF, see the paragraph on MF in +C the full description below. +C Note that the main program must declare arrays Y, YDOTI, RWORK, IWORK, +C and possibly ATOL. +C +C G. The output from the first call (or any call) is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSOIBT was successful, negative otherwise. +C -1 means excess work done on this call (check all inputs). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 cannot occur in casual use. +C -8 means DLSOIBT was unable to compute the initial dy/dt. +C In casual use, this means A(t,y) is initially singular. +C Supply YDOTI and use ISTATE = 1 on the first call. +C +C If DLSOIBT returns ISTATE = -1, -4, or -5, then the output of +C DLSOIBT also includes YDOTI = array containing residual vector +C r = g - A * dy/dt evaluated at the current t, y, and dy/dt. +C +C H. To continue the integration after a successful return, simply +C reset TOUT and call DLSOIBT again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is an example problem, with the coding needed +C for its solution by DLSOIBT. The problem comes from the partial +C differential equation (the Burgers equation) +C du/dt = - u * du/dx + eta * d**2 u/dx**2, eta = .05, +C on -1 .le. x .le. 1. The boundary conditions are +C du/dx = 0 at x = -1 and at x = 1. +C The initial profile is a square wave, +C u = 1 in ABS(x) .lt. .5, u = .5 at ABS(x) = .5, u = 0 elsewhere. +C The PDE is discretized in x by a simplified Galerkin method, +C using piecewise linear basis functions, on a grid of 40 intervals. +C The equations at x = -1 and 1 use a 3-point difference approximation +C for the right-hand side. The result is a system A * dy/dt = g(y), +C of size NEQ = 41, where y(i) is the approximation to u at x = x(i), +C with x(i) = -1 + (i-1)*delx, delx = 2/(NEQ-1) = .05. The individual +C equations in the system are +C dy(1)/dt = ( y(3) - 2*y(2) + y(1) ) * eta / delx**2, +C dy(NEQ)/dt = ( y(NEQ-2) - 2*y(NEQ-1) + y(NEQ) ) * eta / delx**2, +C and for i = 2, 3, ..., NEQ-1, +C (1/6) dy(i-1)/dt + (4/6) dy(i)/dt + (1/6) dy(i+1)/dt +C = ( y(i-1)**2 - y(i+1)**2 ) / (4*delx) +C + ( y(i+1) - 2*y(i) + y(i-1) ) * eta / delx**2. +C The following coding solves the problem with MF = 21, with output +C of solution statistics at t = .1, .2, .3, and .4, and of the +C solution vector at t = .4. Here the block size is just MB = 1. +C +C EXTERNAL RESID, ADDABT, JACBT +C DOUBLE PRECISION ATOL, RTOL, RWORK, T, TOUT, Y, YDOTI +C DIMENSION Y(41), YDOTI(41), RWORK(514), IWORK(61) +C NEQ = 41 +C DO 10 I = 1,NEQ +C 10 Y(I) = 0.0 +C Y(11) = 0.5 +C DO 20 I = 12,30 +C 20 Y(I) = 1.0 +C Y(31) = 0.5 +C T = 0.0 +C TOUT = 0.1 +C ITOL = 1 +C RTOL = 1.0D-4 +C ATOL = 1.0D-5 +C ITASK = 1 +C ISTATE = 0 +C IOPT = 0 +C LRW = 514 +C LIW = 61 +C IWORK(1) = 1 +C IWORK(2) = NEQ +C MF = 21 +C DO 40 IO = 1,4 +C CALL DLSOIBT (RESID, ADDABT, JACBT, NEQ, Y, YDOTI, T, TOUT, +C 1 ITOL,RTOL,ATOL, ITASK, ISTATE, IOPT, RWORK,LRW,IWORK,LIW, MF) +C WRITE (6,30) T, IWORK(11), IWORK(12), IWORK(13) +C 30 FORMAT(' At t =',F5.2,' No. steps =',I4,' No. r-s =',I4, +C 1 ' No. J-s =',I3) +C IF (ISTATE .NE. 2) GO TO 90 +C TOUT = TOUT + 0.1 +C 40 CONTINUE +C WRITE(6,50) (Y(I),I=1,NEQ) +C 50 FORMAT(/' Final solution values..'/9(5D12.4/)) +C STOP +C 90 WRITE(6,95) ISTATE +C 95 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE RESID (N, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y, S, R, ETA, DELX, EODSQ +C DIMENSION Y(N), S(N), R(N) +C DATA ETA/0.05/, DELX/0.05/ +C EODSQ = ETA/DELX**2 +C R(1) = EODSQ*(Y(3) - 2.0*Y(2) + Y(1)) - S(1) +C NM1 = N - 1 +C DO 10 I = 2,NM1 +C R(I) = (Y(I-1)**2 - Y(I+1)**2)/(4.0*DELX) +C 1 + EODSQ*(Y(I+1) - 2.0*Y(I) + Y(I-1)) +C 2 - (S(I-1) + 4.0*S(I) + S(I+1))/6.0 +C 10 CONTINUE +C R(N) = EODSQ*(Y(N-2) - 2.0*Y(NM1) + Y(N)) - S(N) +C RETURN +C END +C +C SUBROUTINE ADDABT (N, T, Y, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y, PA, PB, PC +C DIMENSION Y(N), PA(MB,MB,NB), PB(MB,MB,NB), PC(MB,MB,NB) +C PA(1,1,1) = PA(1,1,1) + 1.0 +C NM1 = N - 1 +C DO 10 K = 2,NM1 +C PA(1,1,K) = PA(1,1,K) + (4.0/6.0) +C PB(1,1,K) = PB(1,1,K) + (1.0/6.0) +C PC(1,1,K) = PC(1,1,K) + (1.0/6.0) +C 10 CONTINUE +C PA(1,1,N) = PA(1,1,N) + 1.0 +C RETURN +C END +C +C SUBROUTINE JACBT (N, T, Y, S, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y, S, PA, PB, PC, ETA, DELX, EODSQ +C DIMENSION Y(N), S(N), PA(MB,MB,NB),PB(MB,MB,NB),PC(MB,MB,NB) +C DATA ETA/0.05/, DELX/0.05/ +C EODSQ = ETA/DELX**2 +C PA(1,1,1) = EODSQ +C PB(1,1,1) = -2.0*EODSQ +C PC(1,1,1) = EODSQ +C DO 10 K = 2,N +C PA(1,1,K) = -2.0*EODSQ +C PB(1,1,K) = -Y(K+1)*(0.5/DELX) + EODSQ +C PC(1,1,K) = Y(K-1)*(0.5/DELX) + EODSQ +C 10 CONTINUE +C PB(1,1,N) = EODSQ +C PC(1,1,N) = -2.0*EODSQ +C PA(1,1,N) = EODSQ +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 0.10 No. steps = 35 No. r-s = 45 No. J-s = 9 +C At t = 0.20 No. steps = 43 No. r-s = 54 No. J-s = 10 +C At t = 0.30 No. steps = 48 No. r-s = 60 No. J-s = 11 +C At t = 0.40 No. steps = 51 No. r-s = 64 No. J-s = 12 +C +C Final solution values.. +C 1.2747e-02 1.1997e-02 1.5560e-02 2.3767e-02 3.7224e-02 +C 5.6646e-02 8.2645e-02 1.1557e-01 1.5541e-01 2.0177e-01 +C 2.5397e-01 3.1104e-01 3.7189e-01 4.3530e-01 5.0000e-01 +C 5.6472e-01 6.2816e-01 6.8903e-01 7.4612e-01 7.9829e-01 +C 8.4460e-01 8.8438e-01 9.1727e-01 9.4330e-01 9.6281e-01 +C 9.7632e-01 9.8426e-01 9.8648e-01 9.8162e-01 9.6617e-01 +C 9.3374e-01 8.7535e-01 7.8236e-01 6.5321e-01 5.0003e-01 +C 3.4709e-01 2.1876e-01 1.2771e-01 7.3671e-02 5.0642e-02 +C 5.4496e-02 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSOIBT. +C +C The user interface to DLSOIBT consists of the following parts. +C +C 1. The call sequence to Subroutine DLSOIBT, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSOIBT package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSOIBT package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C RES, ADDA, JAC, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, +C IOPT, LRW, LIW, MF, +C and those used for both input and output are +C Y, T, ISTATE, YDOTI. +C The work arrays RWORK and IWORK are also used for additional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSOIBT to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C RES = the name of the user-supplied subroutine which supplies +C the residual vector for the ODE system, defined by +C r = g(t,y) - A(t,y) * s +C as a function of the scalar t and the vectors +C s and y (s approximates dy/dt). This subroutine +C is to have the form +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C where NEQ, T, Y, S, and IRES are input, and R and +C IRES are output. Y, S, and R are arrays of length NEQ. +C On input, IRES indicates how DLSOIBT will use the +C returned array R, as follows: +C IRES = 1 means that DLSOIBT needs the full residual, +C r = g - A*s, exactly. +C IRES = -1 means that DLSOIBT is using R only to compute +C the Jacobian dr/dy by difference quotients. +C The RES routine can ignore IRES, or it can omit some terms +C if IRES = -1. If A does not depend on y, then RES can +C just return R = g when IRES = -1. If g - A*s contains other +C additive terms that are independent of y, these can also be +C dropped, if done consistently, when IRES = -1. +C The subroutine should set the flag IRES if it +C encounters a halt condition or illegal input. +C Otherwise, it should not reset IRES. On output, +C IRES = 1 or -1 represents a normal return, and +C DLSOIBT continues integrating the ODE. Leave IRES +C unchanged from its input value. +C IRES = 2 tells DLSOIBT to immediately return control +C to the calling program, with ISTATE = 3. This lets +C the calling program change parameters of the problem +C if necessary. +C IRES = 3 represents an error condition (for example, an +C illegal value of y). DLSOIBT tries to integrate the system +C without getting IRES = 3 from RES. If it cannot, DLSOIBT +C returns with ISTATE = -7 or -1. +C On an DLSOIBT return with ISTATE = 3, -1, or -7, the +C values of T and Y returned correspond to the last point +C reached successfully without getting the flag IRES = 2 or 3. +C The flag values IRES = 2 and 3 should not be used to +C handle switches or root-stop conditions. This is better +C done by calling DLSOIBT in a one-step mode and checking the +C stopping function for a sign change at each step. +C If quantities computed in the RES routine are needed +C externally to DLSOIBT, an extra call to RES should be made +C for this purpose, for consistent and accurate results. +C To get the current dy/dt for the S argument, use DINTDY. +C RES must be declared External in the calling +C program. See note below for more about RES. +C +C ADDA = the name of the user-supplied subroutine which adds the +C matrix A = A(t,y) to another matrix, P, stored in +C block-tridiagonal form. This routine is to have the form +C SUBROUTINE ADDA (NEQ, T, Y, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), PA(MB,MB,NB), PB(MB,MB,NB), +C 1 PC(MB,MB,NB) +C where NEQ, T, Y, MB, NB, and the arrays PA, PB, and PC +C are input, and the arrays PA, PB, and PC are output. +C Y is an array of length NEQ, and the arrays PA, PB, PC +C are all MB by MB by NB. +C Here a block-tridiagonal structure is assumed for A(t,y), +C and also for the matrix P to which A is added here, +C as described in Paragraph B of the Summary of Usage above. +C Thus the affect of ADDA should be the following: +C DO 30 K = 1,NB +C DO 20 J = 1,MB +C DO 10 I = 1,MB +C PA(I,J,K) = PA(I,J,K) + +C ( (I,J) element of K-th diagonal block of A) +C PB(I,J,K) = PB(I,J,K) + +C ( (I,J) element of block (K,K+1) of A, +C or block (NB,NB-2) if K = NB) +C PC(I,J,K) = PC(I,J,K) + +C ( (I,J) element of block (K,K-1) of A, +C or block (1,3) if K = 1) +C 10 CONTINUE +C 20 CONTINUE +C 30 CONTINUE +C ADDA must be declared External in the calling program. +C See note below for more information about ADDA. +C +C JAC = the name of the user-supplied subroutine which supplies +C the Jacobian matrix, dr/dy, where r = g - A*s. JAC is +C required if MITER = 1. Otherwise a dummy name can be +C passed. This subroutine is to have the form +C SUBROUTINE JAC (NEQ, T, Y, S, MB, NB, PA, PB, PC) +C DOUBLE PRECISION T, Y(*), S(*), PA(MB,MB,NB), +C 1 PB(MB,MB,NB), PC(MB,MB,NB) +C where NEQ, T, Y, S, MB, NB, and the arrays PA, PB, and PC +C are input, and the arrays PA, PB, and PC are output. +C Y and S are arrays of length NEQ, and the arrays PA, PB, PC +C are all MB by MB by NB. +C PA, PB, and PC are to be loaded with partial derivatives +C (elements of the Jacobian matrix) on output, in terms of the +C block-tridiagonal structure assumed, as described +C in Paragraph B of the Summary of Usage above. +C That is, load the diagonal blocks into PA, the +C superdiagonal blocks (and block (NB,NB-2) ) into PB, and +C the subdiagonal blocks (and block (1,3) ) into PC. +C The blocks in block-row k of dr/dy are to be loaded into +C PA(*,*,k), PB(*,*,k), and PC(*,*,k). +C Thus the affect of JAC should be the following: +C DO 30 K = 1,NB +C DO 20 J = 1,MB +C DO 10 I = 1,MB +C PA(I,J,K) = ( (I,J) element of +C K-th diagonal block of dr/dy) +C PB(I,J,K) = ( (I,J) element of block (K,K+1) +C of dr/dy, or block (NB,NB-2) if K = NB) +C PC(I,J,K) = ( (I,J) element of block (K,K-1) +C of dr/dy, or block (1,3) if K = 1) +C 10 CONTINUE +C 20 CONTINUE +C 30 CONTINUE +C PA, PB, and PC are preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Each call to JAC is preceded by a call to RES with the same +C arguments NEQ, T, Y, and S. Thus to gain some efficiency, +C intermediate quantities shared by both calculations may be +C saved in a user Common block by RES and not recomputed by JAC +C if desired. Also, JAC may alter the Y array, if desired. +C JAC need not provide dr/dy exactly. A crude +C approximation will do, so that DLSOIBT may be used when +C A and dr/dy are not really block-tridiagonal, but are close +C to matrices that are. +C JAC must be declared External in the calling program. +C See note below for more about JAC. +C +C Note on RES, ADDA, and JAC: +C These subroutines may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in the subroutines) and/or Y has length +C exceeding NEQ(1). However, these routines should not alter +C NEQ(1), Y(1),...,Y(NEQ) or any other input variables. +C See the descriptions of NEQ and Y below. +C +C NEQ = the size of the system (number of first order ordinary +C differential equations or scalar algebraic equations). +C Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in RES, ADDA, or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSOIBT package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to RES, ADDA, and JAC. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to RES, ADDA, or JAC. Each such subroutine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 0 or 1), and only for output on other +C calls. On the first call, Y must contain the vector of +C initial values. On output, Y contains the computed solution +C vector, evaluated at t. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to RES, +C ADDA, and JAC. Hence its length may exceed NEQ, +C and locations Y(NEQ+1),... may be used to store other real +C data and pass it to RES, ADDA, or JAC. (The DLSOIBT +C package accesses only Y(1),...,Y(NEQ). ) +C +C YDOTI = a real array for the initial value of the vector +C dy/dt and for work space, of dimension at least NEQ. +C +C On input: +C If ISTATE = 0 then DLSOIBT will compute the initial value +C of dy/dt, if A is nonsingular. Thus YDOTI will +C serve only as work space and may have any value. +C If ISTATE = 1 then YDOTI must contain the initial value +C of dy/dt. +C If ISTATE = 2 or 3 (continuation calls) then YDOTI +C may have any value. +C Note: If the initial value of A is singular, then +C DLSOIBT cannot compute the initial value of dy/dt, so +C it must be provided in YDOTI, with ISTATE = 1. +C +C On output, when DLSOIBT terminates abnormally with ISTATE = +C -1, -4, or -5, YDOTI will contain the residual +C r = g(t,y) - A(t,y)*(dy/dt). If r is large, t is near +C its initial value, and YDOTI is supplied with ISTATE = 1, +C there may have been an incorrect input value of +C YDOTI = dy/dt, or the problem (as given to DLSOIBT) +C may not have a solution. +C +C If desired, the YDOTI array may be used for other +C purposes between calls to the solver. +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 0 or 1), TOUT may be +C equal to T for one call, then should .ne. T for the next +C call. For the initial T, an input value of TOUT .ne. T is +C used in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array scalar RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 0 means this is the first call for the problem, and +C DLSOIBT is to compute the initial value of dy/dt +C (while doing other initializations). See note below. +C 1 means this is the first call for the problem, and +C the initial value of dy/dt has been supplied in +C YDOTI (DLSOIBT will do other initializations). +C See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, MB, NB, +C and any of the optional inputs except H0. +C (See IWORK description for MB and NB.) +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 0 or 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 0 or 1 means nothing was done; TOUT = t and +C ISTATE = 0 or 1 on input. +C 2 means that the integration was performed successfully. +C 3 means that the user-supplied Subroutine RES signalled +C DLSOIBT to halt the integration and return (IRES = 2). +C Integration as far as T was achieved with no occurrence +C of IRES = 2, but this flag was set on attempting the +C next step. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i) = 0.0) +C was requested on a variable which has now vanished. +C The integration was successful as far as T. +C -7 means that the user-supplied Subroutine RES set +C its error flag (IRES = 3) despite repeated tries by +C DLSOIBT to avoid that condition. +C -8 means that ISTATE was 0 on input but DLSOIBT was unable +C to compute the initial value of dy/dt. See the +C printed message for details. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C Similarly, ISTATE (= 3) need not be reset if RES told +C DLSOIBT to return because the calling program must change +C the parameters of the problem. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a real working array (double precision). +C The length of RWORK must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LENWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LENWM = 3*MB*MB*NB + 2. +C (See MF description for the definition of METH.) +C Thus if MAXORD has its default value and NEQ is constant, +C this length is +C 22 + 16*NEQ + 3*MB*MB*NB for MF = 11 or 12, +C 22 + 9*NEQ + 3*MB*MB*NB for MF = 21 or 22. +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 20 + NEQ . The first few words of IWORK are used for +C additional and optional inputs and optional outputs. +C +C The following 2 words in IWORK are additional required +C inputs to DLSOIBT: +C IWORK(1) = MB = block size +C IWORK(2) = NB = number of blocks in the main diagonal +C These must satisfy MB .ge. 1, NB .ge. 4, and MB*NB = NEQ. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSOIBT +C for the same problem, except possibly for the additional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSOIBT between calls, if +C desired (but not for use by RES, ADDA, or JAC). +C +C MF = the method flag. used only for input. The legal values of +C MF are 11, 12, 21, and 22. +C MF has decimal digits METH and MITER: MF = 10*METH + MITER. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFS). +C The BDF method is strongly preferred for stiff +C problems, while the Adams method is preferred when the +C problem is not stiff. If the matrix A(t,y) is +C nonsingular, stiffness here can be taken to mean that of +C the explicit ODE system dy/dt = A-inverse * g. If A is +C singular, the concept of stiffness is not well defined. +C If you do not know whether the problem is stiff, we +C recommend using METH = 2. If it is stiff, the advantage +C of METH = 2 over METH = 1 will be great, while if it is +C not stiff, the advantage of METH = 1 will be slight. +C If maximum efficiency is important, some experimentation +C with METH may be necessary. +C MITER indicates the corrector iteration method: +C MITER = 1 means chord iteration with a user-supplied +C block-tridiagonal Jacobian. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) block- +C tridiagonal Jacobian approximation, using +C 3*MB+1 extra calls to RES per dr/dy evaluation. +C If MITER = 1, the user must supply a Subroutine JAC +C (the name is arbitrary) as described above under JAC. +C For MITER = 2, a dummy argument can be used. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSOIBT, the variables listed +C below are quantities related to the performance of DLSOIBT +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSOIBT, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On a return with -3 (illegal +C input) or -8, they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NRE IWORK(12) the number of residual evaluations (RES calls) +C for the problem so far. +C +C NJE IWORK(13) the number of Jacobian evaluations (each involving +C an evaluation of a and dr/dy) for the problem so +C far. This equals the number of calls to ADDA and +C (if MITER = 1) to JAC, and the number of matrix +C LU decompositions. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C +C The following two arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address in RWORK, and its description. +C +C Name Base Address Description +C +C YH 21 the Nordsieck history array, of size NYH by +C (NQCUR + 1), where NYH is the initial value +C of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in y on +C the last step. This is the vector E in the +C description of the error control. It is +C defined only on a return from DLSOIBT with +C ISTATE = 2. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSOIBT. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSOIBT, if +C the default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSOIBT. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCOM(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSOIBT (see Part 3 below). +C RSAV must be a real array of length 218 +C or more, and ISAV must be an integer +C array of length 37 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCOM is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSOIBT. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSOIBT. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the t last returned by DLSOIBT). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(t), is already provided +C by DLSOIBT directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C RWORK(21) = the base address of the history array YH. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSOIBT is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSOIBT, and +C (2) the internal Common block +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C +C If DLSOIBT is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common block in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSOIBT is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSOIBT call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSOIBT call for that problem. To save and restore the Common +C blocks, use Subroutine DSRCOM (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSOIBT package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSOIBT call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSOIBT in the computation +C of the optional output IMXER, the diagonal Jacobian approximation, +C and the increments for difference quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSOIBT. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*W(i)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19840625 DATE WRITTEN +C 19870330 Major update: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODI; +C in STODI, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031105 Restored 'own' variables to Common block, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal names NRE, LSAVR to NFE, LSAVF resp. +C +C----------------------------------------------------------------------- +C Other routines in the DLSOIBT package. +C +C In addition to Subroutine DLSOIBT, the DLSOIBT package includes the +C following subroutines and function routines: +C DAIGBT computes the initial value of the vector +C dy/dt = A-inverse * g +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODI is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCOM is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C DPJIBT computes and preprocesses the Jacobian matrix +C and the Newton iteration matrix P. +C DSLSBT manages solution of linear system in chord iteration. +C DDECBT and DSOLBT are routines for solving block-tridiagonal +C systems of linear algebraic equations. +C DGEFA and DGESL are routines from LINPACK for solving full +C systems of linear algebraic equations. +C DDOT is one of the basic linear algebra modules (BLAS). +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DDOT, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPJIBT, DSLSBT + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, IFLAG, IMXER, IRES, KGO, + 1 LENIW, LENRW, LENWM, LP, LYD0, MB, MORD, MXHNL0, MXSTP0, NB + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following internal Common block contains +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSOIBT, DINTDY, DSTODI, +C DPJIBT, and DSLSBT. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropriately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 0 or 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 0 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .LE. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 0 or 1) +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, +C MF, MB, and NB. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .LE. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + METH = MF/10 + MITER = MF - 10*METH + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 1 .OR. MITER .GT. 2) GO TO 608 + MB = IWORK(1) + NB = IWORK(2) + IF (MB .LT. 1 .OR. MB .GT. N) GO TO 609 + IF (NB .LT. 4) GO TO 610 + IF (MB*NB .NE. N) GO TO 609 +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .LE. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .GT. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C----------------------------------------------------------------------- +C Set work array pointers and check lengths LRW and LIW. +C Pointers to segments of RWORK and IWORK are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted YH, WM, EWT, SAVR, ACOR. +C----------------------------------------------------------------------- + 60 LYH = 21 + IF (ISTATE .LE. 1) NYH = N + LWM = LYH + (MAXORD + 1)*NYH + LENWM = 3*MB*MB*NB + 2 + LEWT = LWM + LENWM + LSAVF = LEWT + N + LACOR = LSAVF + N + LENRW = LACOR + N - 1 + IWORK(17) = LENRW + LIWM = 1 + LENIW = 20 + N + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 +C Check RTOL and ATOL for legality. ------------------------------------ + RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 70 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 70 CONTINUE + IF (ISTATE .LE. 1) GO TO 100 +C If ISTATE = 3, set flag to signal parameter changes to DSTODI. ------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 90 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into YDOTI.--------- + DO 80 I = 1,N + 80 YDOTI(I) = RWORK(I+LWM-1) +C Reload WM(1) = RWORK(lWM), since lWM may have changed. --------------- + 90 RWORK(LWM) = SQRT(UROUND) + IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 0 or 1). +C It contains all remaining initializations, the call to DAIGBT +C (if ISTATE = 1), and the calculation of the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 UROUND = DUMACH() + TN = T + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 105 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T + 105 JSTART = 0 + RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NST = 0 + NFE = 0 + NJE = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C Compute initial dy/dt, if necessary, and load it and initial Y into YH + LYD0 = LYH + NYH + LP = LWM + 1 + IF ( ISTATE .EQ. 1 ) GO TO 120 +C DLSOIBT must compute initial dy/dt (LYD0 points to YH(*,2)). --------- + CALL DAIGBT( RES, ADDA, NEQ, T, Y, RWORK(LYD0), + 1 MB, NB, RWORK(LP), IWORK(21), IER ) + NFE = NFE + 1 + IF (IER .LT. 0) GO TO 560 + IF (IER .GT. 0) GO TO 565 + DO 115 I = 1,N + 115 RWORK(I+LYH-1) = Y(I) + GO TO 130 +C Initial dy/dt was supplied. Load into YH (LYD0 points to YH(*,2).). - + 120 DO 125 I = 1,N + RWORK(I+LYH-1) = Y(I) + 125 RWORK(I+LYD0-1) = YDOTI(I) +C Load and invert the EWT array. (H is temporarily set to 1.0.) ------- + 130 CONTINUE + NQ = 1 + H = 1.0D0 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 135 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 135 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( YDOT(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C YDOT(i) = i-th component of initial value of dy/dt, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 145 + DO 140 I = 1,N + 140 TOL = MAX(TOL,RTOL(I)) + 145 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LYD0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LYD0-1) = H0*RWORK(I+LYD0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODI. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSOIBT- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSOIBT- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODI(NEQ,Y,YH,NYH,YH1,EWT,SAVF,SAVR,ACOR,WM,IWM,RES, +C ADDA,JAC,DPJIBT,DSLSBT) +C Note: SAVF in DSTODI occupies the same space as YDOTI in DLSOIBT. +C----------------------------------------------------------------------- + CALL DSTODI (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 YDOTI, RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), + 2 IWORK(LIWM), RES, ADDA, JAC, DPJIBT, DSLSBT ) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 400, 550), KGO +C +C KGO = 1:success; 2:error test failure; 3:convergence failure; +C 4:RES ordered return; 5:RES returned error. +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. see if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSOIBT. +C If ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + IF ( KFLAG .EQ. -3 ) ISTATE = 3 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSOIBT- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSOIBT- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 590 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSOIBT- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 590 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSOIBT- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = 'error test failed repeatedly or with ABS(H) = HMIN' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 570 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSOIBT- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 570 +C IRES = 3 returned by RES, despite retries by DSTODI.------------------ + 550 MSG = 'DLSOIBT- At T (=R1) residual routine returned ' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error IRES = 3 repeatedly. ' + CALL XERRWD (MSG, 40, 206, 0, 0, 0, 0, 1, TN, 0.0D0) + ISTATE = -7 + GO TO 590 +C DAIGBT failed because a diagonal block of A matrix was singular. ----- + 560 IER = -IER + MSG='DLSOIBT- Attempt to initialize dy/dt failed: Matrix A has a' + CALL XERRWD (MSG, 60, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' singular diagonal block, block no. = (I1) ' + CALL XERRWD (MSG, 50, 207, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C DAIGBT failed because RES set IRES to 2 or 3. ------------------------ + 565 MSG = 'DLSOIBT- Attempt to initialize dy/dt failed ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' because residual routine set its error flag ' + CALL XERRWD (MSG, 50, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to IRES = (I1)' + CALL XERRWD (MSG, 20, 208, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C Compute IMXER if relevant. ------------------------------------------- + 570 BIG = 0.0D0 + IMXER = 1 + DO 575 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 575 + BIG = SIZE + IMXER = I + 575 CONTINUE + IWORK(16) = IMXER +C Compute residual if relevant. ---------------------------------------- + 580 LYD0 = LYH + NYH + DO 585 I = 1,N + RWORK(I+LSAVF-1) = RWORK(I+LYD0-1)/H + 585 Y(I) = RWORK(I+LYH-1) + IRES = 1 + CALL RES (NEQ, TN, Y, RWORK(LSAVF), YDOTI, IRES) + NFE = NFE + 1 + IF (IRES .LE. 1) GO TO 595 + MSG = 'DLSOIBT- Residual routine set its flag IRES ' + CALL XERRWD (MSG, 50, 210, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to (I1) when called for final output. ' + CALL XERRWD (MSG, 50, 210, 0, 1, IRES, 0, 0, 0.0D0, 0.0D0) + GO TO 595 +C Set Y vector, T, and optional outputs. ------------------------------- + 590 DO 592 I = 1,N + 592 Y(I) = RWORK(I+LYH-1) + 595 T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSOIBT- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSOIBT- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSOIBT- ISTATE.gt.1 but DLSOIBT not initialized. ' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSOIBT- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSOIBT- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSOIBT- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSOIBT- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSOIBT- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 609 MSG = 'DLSOIBT- MB (=I1) or NB (=I2) illegal. ' + CALL XERRWD (MSG, 40, 9, 0, 2, MB, NB, 0, 0.0D0, 0.0D0) + GO TO 700 + 610 MSG = 'DLSOIBT- NB (=I1) .lt. 4 illegal. ' + CALL XERRWD (MSG, 40, 10, 0, 1, NB, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSOIBT- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSOIBT- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSOIBT- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSOIBT- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSOIBT- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSOIBT- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG='DLSOIBT- RWORK length needed, LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG='DLSOIBT- IWORK length needed, LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSOIBT- RTOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSOIBT- ATOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSOIBT- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSOIBT- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSOIBT- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSOIBT- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSOIBT- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSOIBT- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSOIBT- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSOIBT- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSOIBT --------------------- + END +*DECK DLSODIS + SUBROUTINE DLSODIS (RES, ADDA, JAC, NEQ, Y, YDOTI, T, TOUT, ITOL, + 1 RTOL, ATOL, ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, MF ) + EXTERNAL RES, ADDA, JAC + INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF + DOUBLE PRECISION Y, YDOTI, T, TOUT, RTOL, ATOL, RWORK + DIMENSION NEQ(*), Y(*), YDOTI(*), RTOL(*), ATOL(*), RWORK(LRW), + 1 IWORK(LIW) +C----------------------------------------------------------------------- +C This is the 18 November 2003 version of +C DLSODIS: Livermore Solver for Ordinary Differential equations +C (Implicit form) with general Sparse Jacobian matrices. +C +C This version is in double precision. +C +C DLSODIS solves the initial value problem for linearly implicit +C systems of first order ODEs, +C A(t,y) * dy/dt = g(t,y) , where A(t,y) is a square matrix, +C or, in component form, +C ( a * ( dy / dt )) + ... + ( a * ( dy / dt )) = +C i,1 1 i,NEQ NEQ +C +C = g ( t, y , y ,..., y ) ( i = 1,...,NEQ ) +C i 1 2 NEQ +C +C If A is singular, this is a differential-algebraic system. +C +C DLSODIS is a variant version of the DLSODI package, and is intended +C for stiff problems in which the matrix A and the Jacobian matrix +C d(g - A*s)/dy have arbitrary sparse structures. +C +C Authors: Alan C. Hindmarsh +C Center for Applied Scientific Computing, L-561 +C Lawrence Livermore National Laboratory +C Livermore, CA 94551 +C and +C Sheila Balsdon +C Zycor, Inc. +C Austin, TX 78741 +C----------------------------------------------------------------------- +C References: +C 1. M. K. Seager and S. Balsdon, LSODIS, A Sparse Implicit +C ODE Solver, in Proceedings of the IMACS 10th World Congress, +C Montreal, August 8-13, 1982. +C +C 2. Alan C. Hindmarsh, LSODE and LSODI, Two New Initial Value +C Ordinary Differential Equation Solvers, +C ACM-SIGNUM Newsletter, vol. 15, no. 4 (1980), pp. 10-11. +C +C 3. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: I. The Symmetric Codes, +C Int. J. Num. Meth. Eng., vol. 18 (1982), pp. 1145-1151. +C +C 4. S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, +C Yale Sparse Matrix Package: II. The Nonsymmetric Codes, +C Research Report No. 114, Dept. of Computer Sciences, Yale +C University, 1977. +C----------------------------------------------------------------------- +C Summary of Usage. +C +C Communication between the user and the DLSODIS package, for normal +C situations, is summarized here. This summary describes only a subset +C of the full set of options available. See the full description for +C details, including optional communication, nonstandard options, +C and instructions for special situations. See also the example +C problem (with program and output) following this summary. +C +C A. First, provide a subroutine of the form: +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C which computes the residual function +C r = g(t,y) - A(t,y) * s , +C as a function of t and the vectors y and s. (s is an internally +C generated approximation to dy/dt.) The arrays Y and S are inputs +C to the RES routine and should not be altered. The residual +C vector is to be stored in the array R. The argument IRES should be +C ignored for casual use of DLSODIS. (For uses of IRES, see the +C paragraph on RES in the full description below.) +C +C B. DLSODIS must deal internally with the matrices A and dr/dy, where +C r is the residual function defined above. DLSODIS generates a linear +C combination of these two matrices in sparse form. +C The matrix structure is communicated by a method flag, MF: +C MF = 21 or 22 when the user provides the structures of +C matrix A and dr/dy, +C MF = 121 or 222 when the user does not provide structure +C information, and +C MF = 321 or 422 when the user provides the structure +C of matrix A. +C +C C. You must also provide a subroutine of the form: +C SUBROUTINE ADDA (NEQ, T, Y, J, IAN, JAN, P) +C DOUBLE PRECISION T, Y(*), P(*) +C INTEGER IAN(*), JAN(*) +C which adds the matrix A = A(t,y) to the contents of the array P. +C NEQ, T, Y, and J are input arguments and should not be altered. +C This routine should add the J-th column of matrix A to the array +C P (of length NEQ). I.e. add A(i,J) to P(i) for all relevant +C values of i. The arguments IAN and JAN should be ignored for normal +C situations. DLSODIS will call the ADDA routine with J = 1,2,...,NEQ. +C +C D. For the sake of efficiency, you are encouraged to supply the +C Jacobian matrix dr/dy in closed form, where r = g(t,y) - A(t,y)*s +C (s = a fixed vector) as above. If dr/dy is being supplied, +C use MF = 21, 121, or 321, and provide a subroutine of the form: +C SUBROUTINE JAC (NEQ, T, Y, S, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), S(*), PDJ(*) +C INTEGER IAN(*), JAN(*) +C which computes dr/dy as a function of t, y, and s. Here NEQ, T, Y, S, +C and J are input arguments, and the JAC routine is to load the array +C PDJ (of length NEQ) with the J-th column of dr/dy. I.e. load PDJ(i) +C with dr(i)/dy(J) for all relevant values of i. The arguments IAN and +C JAN should be ignored for normal situations. DLSODIS will call the +C JAC routine with J = 1,2,...,NEQ. +C Only nonzero elements need be loaded. A crude approximation +C to dr/dy, possibly with fewer nonzero elememts, will suffice. +C Note that if A is independent of y (or this dependence +C is weak enough to be ignored) then JAC is to compute dg/dy. +C If it is not feasible to provide a JAC routine, use +C MF = 22, 222, or 422 and DLSODIS will compute an approximate +C Jacobian internally by difference quotients. +C +C E. Next decide whether or not to provide the initial value of the +C derivative vector dy/dt. If the initial value of A(t,y) is +C nonsingular (and not too ill-conditioned), you may let DLSODIS compute +C this vector (ISTATE = 0). (DLSODIS will solve the system A*s = g for +C s, with initial values of A and g.) If A(t,y) is initially +C singular, then the system is a differential-algebraic system, and +C you must make use of the particular form of the system to compute the +C initial values of y and dy/dt. In that case, use ISTATE = 1 and +C load the initial value of dy/dt into the array YDOTI. +C The input array YDOTI and the initial Y array must be consistent with +C the equations A*dy/dt = g. This implies that the initial residual +C r = g(t,y) - A(t,y)*YDOTI must be approximately zero. +C +C F. Write a main program which calls Subroutine DLSODIS once for +C each point at which answers are desired. This should also provide +C for possible use of logical unit 6 for output of error messages by +C DLSODIS. On the first call to DLSODIS, supply arguments as follows: +C RES = name of user subroutine for residual function r. +C ADDA = name of user subroutine for computing and adding A(t,y). +C JAC = name of user subroutine for Jacobian matrix dr/dy +C (MF = 121). If not used, pass a dummy name. +C Note: The names for the RES and ADDA routines and (if used) the +C JAC routine must be declared External in the calling program. +C NEQ = number of scalar equations in the system. +C Y = array of initial values, of length NEQ. +C YDOTI = array of length NEQ (containing initial dy/dt if ISTATE = 1). +C T = the initial value of the independent variable. +C TOUT = first point where output is desired (.ne. T). +C ITOL = 1 or 2 according as ATOL (below) is a scalar or array. +C RTOL = relative tolerance parameter (scalar). +C ATOL = absolute tolerance parameter (scalar or array). +C The estimated local error in y(i) will be controlled so as +C to be roughly less (in magnitude) than +C EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or +C EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2. +C Thus the local error test passes if, in each component, +C either the absolute error is less than ATOL (or ATOL(i)), +C or the relative error is less than RTOL. +C Use RTOL = 0.0 for pure absolute error control, and +C use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative error +C control. Caution: Actual (global) errors may exceed these +C local tolerances, so choose them conservatively. +C ITASK = 1 for normal computation of output values of y at t = TOUT. +C ISTATE = integer flag (input and output). Set ISTATE = 1 if the +C initial dy/dt is supplied, and 0 otherwise. +C IOPT = 0 to indicate no optional inputs used. +C RWORK = real work array of length at least: +C 20 + (2 + 1./LENRAT)*NNZ + (11 + 9./LENRAT)*NEQ +C where: +C NNZ = the number of nonzero elements in the sparse +C iteration matrix P = A - con*dr/dy (con = scalar) +C (If NNZ is unknown, use an estimate of it.) +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C In any case, the required size of RWORK cannot generally +C be predicted in advance for any value of MF, and the +C value above is a rough estimate of a crude lower bound. +C Some experimentation with this size may be necessary. +C (When known, the correct required length is an optional +C output, available in IWORK(17).) +C LRW = declared length of RWORK (in user's dimension). +C IWORK = integer work array of length at least 30. +C LIW = declared length of IWORK (in user's dimension). +C MF = method flag. Standard values are: +C 121 for a user-supplied sparse Jacobian. +C 222 for an internally generated sparse Jacobian. +C For other choices of MF, see the paragraph on MF in +C the full description below. +C Note that the main program must declare arrays Y, YDOTI, RWORK, IWORK, +C and possibly ATOL. +C +C G. The output from the first call, or any call, is: +C Y = array of computed values of y(t) vector. +C T = corresponding value of independent variable (normally TOUT). +C ISTATE = 2 if DLSODIS was successful, negative otherwise. +C -1 means excess work done on this call (check all inputs). +C -2 means excess accuracy requested (tolerances too small). +C -3 means illegal input detected (see printed message). +C -4 means repeated error test failures (check all inputs). +C -5 means repeated convergence failures (perhaps bad Jacobian +C supplied or wrong choice of tolerances). +C -6 means error weight became zero during problem. (Solution +C component i vanished, and ATOL or ATOL(i) = 0.) +C -7 cannot occur in casual use. +C -8 means DLSODIS was unable to compute the initial dy/dt. +C in casual use, this means A(t,y) is initially singular. +C Supply YDOTI and use ISTATE = 1 on the first call. +C -9 means a fatal error return flag came from sparse solver +C CDRV by way of DPRJIS or DSOLSS. Should never happen. +C +C A return with ISTATE = -1, -4, or -5, may result from using +C an inappropriate sparsity structure, one that is quite +C different from the initial structure. Consider calling +C DLSODIS again with ISTATE = 3 to force the structure to be +C reevaluated. See the full description of ISTATE below. +C +C If DLSODIS returns ISTATE = -1, -4 or -5, then the output of +C DLSODIS also includes YDOTI = array containing residual vector +C r = g - A * dy/dt evaluated at the current t, y, and dy/dt. +C +C H. To continue the integration after a successful return, simply +C reset TOUT and call DLSODIS again. No other parameters need be reset. +C +C----------------------------------------------------------------------- +C Example Problem. +C +C The following is an example problem, with the coding needed +C for its solution by DLSODIS. The problem comes from the partial +C differential equation (the Burgers equation) +C du/dt = - u * du/dx + eta * d**2 u/dx**2, eta = .05, +C on -1 .le. x .le. 1. The boundary conditions are periodic: +C u(-1,t) = u(1,t) and du/dx(-1,t) = du/dx(1,t) +C The initial profile is a square wave, +C u = 1 in ABS(x) .lt. .5, u = .5 at ABS(x) = .5, u = 0 elsewhere. +C The PDE is discretized in x by a simplified Galerkin method, +C using piecewise linear basis functions, on a grid of 40 intervals. +C The result is a system A * dy/dt = g(y), of size NEQ = 40, +C where y(i) is the approximation to u at x = x(i), with +C x(i) = -1 + (i-1)*delx, delx = 2/NEQ = .05. +C The individual equations in the system are (in order): +C (1/6)dy(NEQ)/dt+(4/6)dy(1)/dt+(1/6)dy(2)/dt +C = r4d*(y(NEQ)**2-y(2)**2)+eodsq*(y(2)-2*y(1)+y(NEQ)) +C for i = 2,3,...,nm1, +C (1/6)dy(i-1)/dt+(4/6)dy(i)/dt+(1/6)dy(i+1)/dt +C = r4d*(y(i-1)**2-y(i+1)**2)+eodsq*(y(i+1)-2*y(i)+y(i-1)) +C and finally +C (1/6)dy(nm1)/dt+(4/6)dy(NEQ)/dt+(1/6)dy(1)/dt +C = r4d*(y(nm1)**2-y(1)**2)+eodsq*(y(1)-2*y(NEQ)+y(nm1)) +C where r4d = 1/(4*delx), eodsq = eta/delx**2 and nm1 = NEQ-1. +C The following coding solves the problem with MF = 121, with output +C of solution statistics at t = .1, .2, .3, and .4, and of the +C solution vector at t = .4. Optional outputs (run statistics) are +C also printed. +C +C EXTERNAL RESID, ADDASP, JACSP +C DOUBLE PRECISION ATOL, RTOL, RW, T, TOUT, Y, YDOTI, R4D, EODSQ, DELX +C DIMENSION Y(40), YDOTI(40), RW(1409), IW(30) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C DATA ITOL/1/, RTOL/1.0D-3/, ATOL/1.0D-3/, ITASK/1/, IOPT/0/ +C DATA NEQ/40/, LRW/1409/, LIW/30/, MF/121/ +C +C DELX = 2.0/NEQ +C R4D = 0.25/DELX +C EODSQ = 0.05/DELX**2 +C NM1 = NEQ - 1 +C DO 10 I = 1,NEQ +C 10 Y(I) = 0.0 +C Y(11) = 0.5 +C DO 15 I = 12,30 +C 15 Y(I) = 1.0 +C Y(31) = 0.5 +C T = 0.0 +C TOUT = 0.1 +C ISTATE = 0 +C DO 30 IO = 1,4 +C CALL DLSODIS (RESID, ADDASP, JACSP, NEQ, Y, YDOTI, T, TOUT, +C 1 ITOL, RTOL, ATOL, ITASK, ISTATE, IOPT, RW, LRW, IW, LIW, MF) +C WRITE(6,20) T,IW(11),RW(11) +C 20 FORMAT(' At t =',F5.2,' No. steps =',I4, +C 1 ' Last step =',D12.4) +C IF (ISTATE .NE. 2) GO TO 90 +C TOUT = TOUT + 0.1 +C 30 CONTINUE +C WRITE (6,40) (Y(I),I=1,NEQ) +C 40 FORMAT(/' Final solution values..'/8(5D12.4/)) +C WRITE(6,50) IW(17),IW(18),IW(11),IW(12),IW(13) +C NNZLU = IW(25) + IW(26) + NEQ +C WRITE(6,60) IW(19),NNZLU +C 50 FORMAT(/' Required RW size =',I5,' IW size =',I4/ +C 1 ' No. steps =',I4,' No. r-s =',I4,' No. J-s =',i4) +C 60 FORMAT(' No. of nonzeros in P matrix =',I4, +C 1 ' No. of nonzeros in LU =',I4) +C STOP +C 90 WRITE (6,95) ISTATE +C 95 FORMAT(///' Error halt.. ISTATE =',I3) +C STOP +C END +C +C SUBROUTINE GFUN (N, T, Y, G) +C DOUBLE PRECISION T, Y, G, R4D, EODSQ +C DIMENSION G(N), Y(N) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C G(1) = R4D*(Y(N)**2-Y(2)**2) + EODSQ*(Y(2)-2.0*Y(1)+Y(N)) +C DO 10 I = 2,NM1 +C G(I) = R4D*(Y(I-1)**2 - Y(I+1)**2) +C 1 + EODSQ*(Y(I+1) - 2.0*Y(I) + Y(I-1)) +C 10 CONTINUE +C G(N) = R4D*(Y(NM1)**2-Y(1)**2) + EODSQ*(Y(1)-2.0*Y(N)+Y(NM1)) +C RETURN +C END +C +C SUBROUTINE RESID (N, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y, S, R, R4D, EODSQ +C DIMENSION Y(N), S(N), R(N) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C CALL GFUN (N, T, Y, R) +C R(1) = R(1) - (S(N) + 4.0*S(1) + S(2))/6.0 +C DO 10 I = 2,NM1 +C 10 R(I) = R(I) - (S(I-1) + 4.0*S(I) + S(I+1))/6.0 +C R(N) = R(N) - (S(NM1) + 4.0*S(N) + S(1))/6.0 +C RETURN +C END +C +C SUBROUTINE ADDASP (N, T, Y, J, IP, JP, P) +C DOUBLE PRECISION T, Y, P +C DIMENSION Y(N), IP(*), JP(*), P(N) +C JM1 = J - 1 +C JP1 = J + 1 +C IF (J .EQ. N) JP1 = 1 +C IF (J .EQ. 1) JM1 = N +C P(J) = P(J) + (2.0/3.0) +C P(JP1) = P(JP1) + (1.0/6.0) +C P(JM1) = P(JM1) + (1.0/6.0) +C RETURN +C END +C +C SUBROUTINE JACSP (N, T, Y, S, J, IP, JP, PDJ) +C DOUBLE PRECISION T, Y, S, PDJ, R4D, EODSQ +C DIMENSION Y(N), S(N), IP(*), JP(*), PDJ(N) +C COMMON /TEST1/ R4D, EODSQ, NM1 +C JM1 = J - 1 +C JP1 = J + 1 +C IF (J .EQ. 1) JM1 = N +C IF (J .EQ. N) JP1 = 1 +C PDJ(JM1) = -2.0*R4D*Y(J) + EODSQ +C PDJ(J) = -2.0*EODSQ +C PDJ(JP1) = 2.0*R4D*Y(J) + EODSQ +C RETURN +C END +C +C The output of this program (on a CDC-7600 in single precision) +C is as follows: +C +C At t = 0.10 No. steps = 15 Last step = 1.6863e-02 +C At t = 0.20 No. steps = 19 Last step = 2.4101e-02 +C At t = 0.30 No. steps = 22 Last step = 4.3143e-02 +C At t = 0.40 No. steps = 24 Last step = 5.7819e-02 +C +C Final solution values.. +C 1.8371e-02 1.3578e-02 1.5864e-02 2.3805e-02 3.7245e-02 +C 5.6630e-02 8.2538e-02 1.1538e-01 1.5522e-01 2.0172e-01 +C 2.5414e-01 3.1150e-01 3.7259e-01 4.3608e-01 5.0060e-01 +C 5.6482e-01 6.2751e-01 6.8758e-01 7.4415e-01 7.9646e-01 +C 8.4363e-01 8.8462e-01 9.1853e-01 9.4500e-01 9.6433e-01 +C 9.7730e-01 9.8464e-01 9.8645e-01 9.8138e-01 9.6584e-01 +C 9.3336e-01 8.7497e-01 7.8213e-01 6.5315e-01 4.9997e-01 +C 3.4672e-01 2.1758e-01 1.2461e-01 6.6208e-02 3.3784e-02 +C +C Required RW size = 1409 IW size = 30 +C No. steps = 24 No. r-s = 33 No. J-s = 8 +C No. of nonzeros in P matrix = 120 No. of nonzeros in LU = 194 +C +C----------------------------------------------------------------------- +C Full Description of User Interface to DLSODIS. +C +C The user interface to DLSODIS consists of the following parts. +C +C 1. The call sequence to Subroutine DLSODIS, which is a driver +C routine for the solver. This includes descriptions of both +C the call sequence arguments and of user-supplied routines. +C Following these descriptions is a description of +C optional inputs available through the call sequence, and then +C a description of optional outputs (in the work arrays). +C +C 2. Descriptions of other routines in the DLSODIS package that may be +C (optionally) called by the user. These provide the ability to +C alter error message handling, save and restore the internal +C Common, and obtain specified derivatives of the solution y(t). +C +C 3. Descriptions of Common blocks to be declared in overlay +C or similar environments, or to be saved when doing an interrupt +C of the problem and continued solution later. +C +C 4. Description of two routines in the DLSODIS package, either of +C which the user may replace with his/her own version, if desired. +C These relate to the measurement of errors. +C +C----------------------------------------------------------------------- +C Part 1. Call Sequence. +C +C The call sequence parameters used for input only are +C RES, ADDA, JAC, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, +C IOPT, LRW, LIW, MF, +C and those used for both input and output are +C Y, T, ISTATE, YDOTI. +C The work arrays RWORK and IWORK are also used for conditional and +C optional inputs and optional outputs. (The term output here refers +C to the return from Subroutine DLSODIS to the user's calling program.) +C +C The legality of input parameters will be thoroughly checked on the +C initial call for the problem, but not checked thereafter unless a +C change in input parameters is flagged by ISTATE = 3 on input. +C +C The descriptions of the call arguments are as follows. +C +C RES = the name of the user-supplied subroutine which supplies +C the residual vector for the ODE system, defined by +C r = g(t,y) - A(t,y) * s +C as a function of the scalar t and the vectors +C s and y (s approximates dy/dt). This subroutine +C is to have the form +C SUBROUTINE RES (NEQ, T, Y, S, R, IRES) +C DOUBLE PRECISION T, Y(*), S(*), R(*) +C where NEQ, T, Y, S, and IRES are input, and R and +C IRES are output. Y, S, and R are arrays of length NEQ. +C On input, IRES indicates how DLSODIS will use the +C returned array R, as follows: +C IRES = 1 means that DLSODIS needs the full residual, +C r = g - A*s, exactly. +C IRES = -1 means that DLSODIS is using R only to compute +C the Jacobian dr/dy by difference quotients. +C The RES routine can ignore IRES, or it can omit some terms +C if IRES = -1. If A does not depend on y, then RES can +C just return R = g when IRES = -1. If g - A*s contains other +C additive terms that are independent of y, these can also be +C dropped, if done consistently, when IRES = -1. +C The subroutine should set the flag IRES if it +C encounters a halt condition or illegal input. +C Otherwise, it should not reset IRES. On output, +C IRES = 1 or -1 represents a normal return, and +C DLSODIS continues integrating the ODE. Leave IRES +C unchanged from its input value. +C IRES = 2 tells DLSODIS to immediately return control +C to the calling program, with ISTATE = 3. This lets +C the calling program change parameters of the problem +C if necessary. +C IRES = 3 represents an error condition (for example, an +C illegal value of y). DLSODIS tries to integrate the system +C without getting IRES = 3 from RES. If it cannot, DLSODIS +C returns with ISTATE = -7 or -1. +C On a return with ISTATE = 3, -1, or -7, the values +C of T and Y returned correspond to the last point reached +C successfully without getting the flag IRES = 2 or 3. +C The flag values IRES = 2 and 3 should not be used to +C handle switches or root-stop conditions. This is better +C done by calling DLSODIS in a one-step mode and checking the +C stopping function for a sign change at each step. +C If quantities computed in the RES routine are needed +C externally to DLSODIS, an extra call to RES should be made +C for this purpose, for consistent and accurate results. +C To get the current dy/dt for the S argument, use DINTDY. +C RES must be declared External in the calling +C program. See note below for more about RES. +C +C ADDA = the name of the user-supplied subroutine which adds the +C matrix A = A(t,y) to another matrix stored in sparse form. +C This subroutine is to have the form +C SUBROUTINE ADDA (NEQ, T, Y, J, IAN, JAN, P) +C DOUBLE PRECISION T, Y(*), P(*) +C INTEGER IAN(*), JAN(*) +C where NEQ, T, Y, J, IAN, JAN, and P are input. This routine +C should add the J-th column of matrix A to the array P, of +C length NEQ. Thus a(i,J) is to be added to P(i) for all +C relevant values of i. Here T and Y have the same meaning as +C in Subroutine RES, and J is a column index (1 to NEQ). +C IAN and JAN are undefined in calls to ADDA for structure +C determination (MOSS .ne. 0). Otherwise, IAN and JAN are +C structure descriptors, as defined under optional outputs +C below, and so can be used to determine the relevant row +C indices i, if desired. +C Calls to ADDA are made with J = 1,...,NEQ, in that +C order. ADDA must not alter its input arguments. +C ADDA must be declared External in the calling program. +C See note below for more information about ADDA. +C +C JAC = the name of the user-supplied subroutine which supplies +C the Jacobian matrix, dr/dy, where r = g - A*s. JAC is +C required if MITER = 1, or MOSS = 1 or 3. Otherwise a dummy +C name can be passed. This subroutine is to have the form +C SUBROUTINE JAC (NEQ, T, Y, S, J, IAN, JAN, PDJ) +C DOUBLE PRECISION T, Y(*), S(*), PDJ(*) +C INTEGER IAN(*), JAN(*) +C where NEQ, T, Y, S, J, IAN, and JAN are input. The +C array PDJ, of length NEQ, is to be loaded with column J +C of the Jacobian on output. Thus dr(i)/dy(J) is to be +C loaded into PDJ(i) for all relevant values of i. +C Here T, Y, and S have the same meaning as in Subroutine RES, +C and J is a column index (1 to NEQ). IAN and JAN +C are undefined in calls to JAC for structure determination +C (MOSS .ne. 0). Otherwise, IAN and JAN are structure +C descriptors, as defined under optional outputs below, and +C so can be used to determine the relevant row indices i, if +C desired. +C JAC need not provide dr/dy exactly. A crude +C approximation (possibly with greater sparsity) will do. +C In any case, PDJ is preset to zero by the solver, +C so that only the nonzero elements need be loaded by JAC. +C Calls to JAC are made with J = 1,...,NEQ, in that order, and +C each such set of calls is preceded by a call to RES with the +C same arguments NEQ, T, Y, S, and IRES. Thus to gain some +C efficiency intermediate quantities shared by both calculations +C may be saved in a user Common block by RES and not recomputed +C by JAC, if desired. JAC must not alter its input arguments. +C JAC must be declared External in the calling program. +C See note below for more about JAC. +C +C Note on RES, ADDA, and JAC: +C These subroutines may access user-defined quantities in +C NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array +C (dimensioned in the subroutines) and/or Y has length +C exceeding NEQ(1). However, these subroutines should not +C alter NEQ(1), Y(1),...,Y(NEQ) or any other input variables. +C See the descriptions of NEQ and Y below. +C +C NEQ = the size of the system (number of first order ordinary +C differential equations or scalar algebraic equations). +C Used only for input. +C NEQ may be decreased, but not increased, during the problem. +C If NEQ is decreased (with ISTATE = 3 on input), the +C remaining components of Y should be left undisturbed, if +C these are to be accessed in RES, ADDA, or JAC. +C +C Normally, NEQ is a scalar, and it is generally referred to +C as a scalar in this user interface description. However, +C NEQ may be an array, with NEQ(1) set to the system size. +C (The DLSODIS package accesses only NEQ(1).) In either case, +C this parameter is passed as the NEQ argument in all calls +C to RES, ADDA, and JAC. Hence, if it is an array, +C locations NEQ(2),... may be used to store other integer data +C and pass it to RES, ADDA, or JAC. Each such subroutine +C must include NEQ in a Dimension statement in that case. +C +C Y = a real array for the vector of dependent variables, of +C length NEQ or more. Used for both input and output on the +C first call (ISTATE = 0 or 1), and only for output on other +C calls. On the first call, Y must contain the vector of +C initial values. On output, Y contains the computed solution +C vector, evaluated at T. If desired, the Y array may be used +C for other purposes between calls to the solver. +C +C This array is passed as the Y argument in all calls to RES, +C ADDA, and JAC. Hence its length may exceed NEQ, +C and locations Y(NEQ+1),... may be used to store other real +C data and pass it to RES, ADDA, or JAC. (The DLSODIS +C package accesses only Y(1),...,Y(NEQ). ) +C +C YDOTI = a real array for the initial value of the vector +C dy/dt and for work space, of dimension at least NEQ. +C +C On input: +C If ISTATE = 0 then DLSODIS will compute the initial value +C of dy/dt, if A is nonsingular. Thus YDOTI will +C serve only as work space and may have any value. +C If ISTATE = 1 then YDOTI must contain the initial value +C of dy/dt. +C If ISTATE = 2 or 3 (continuation calls) then YDOTI +C may have any value. +C Note: If the initial value of A is singular, then +C DLSODIS cannot compute the initial value of dy/dt, so +C it must be provided in YDOTI, with ISTATE = 1. +C +C On output, when DLSODIS terminates abnormally with ISTATE = +C -1, -4, or -5, YDOTI will contain the residual +C r = g(t,y) - A(t,y)*(dy/dt). If r is large, t is near +C its initial value, and YDOTI is supplied with ISTATE = 1, +C there may have been an incorrect input value of +C YDOTI = dy/dt, or the problem (as given to DLSODIS) +C may not have a solution. +C +C If desired, the YDOTI array may be used for other +C purposes between calls to the solver. +C +C T = the independent variable. On input, T is used only on the +C first call, as the initial point of the integration. +C On output, after each call, T is the value at which a +C computed solution y is evaluated (usually the same as TOUT). +C On an error return, T is the farthest point reached. +C +C TOUT = the next value of t at which a computed solution is desired. +C Used only for input. +C +C When starting the problem (ISTATE = 0 or 1), TOUT may be +C equal to T for one call, then should .ne. T for the next +C call. For the initial T, an input value of TOUT .ne. T is +C used in order to determine the direction of the integration +C (i.e. the algebraic sign of the step sizes) and the rough +C scale of the problem. Integration in either direction +C (forward or backward in t) is permitted. +C +C If ITASK = 2 or 5 (one-step modes), TOUT is ignored after +C the first call (i.e. the first call with TOUT .ne. T). +C Otherwise, TOUT is required on every call. +C +C If ITASK = 1, 3, or 4, the values of TOUT need not be +C monotone, but a value of TOUT which backs up is limited +C to the current internal T interval, whose endpoints are +C TCUR - HU and TCUR (see optional outputs, below, for +C TCUR and HU). +C +C ITOL = an indicator for the type of error control. See +C description below under ATOL. Used only for input. +C +C RTOL = a relative error tolerance parameter, either a scalar or +C an array of length NEQ. See description below under ATOL. +C Input only. +C +C ATOL = an absolute error tolerance parameter, either a scalar or +C an array of length NEQ. Input only. +C +C The input parameters ITOL, RTOL, and ATOL determine +C the error control performed by the solver. The solver will +C control the vector E = (E(i)) of estimated local errors +C in y, according to an inequality of the form +C RMS-norm of ( E(i)/EWT(i) ) .le. 1, +C where EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i), +C and the RMS-norm (root-mean-square norm) here is +C RMS-norm(v) = SQRT(sum v(i)**2 / NEQ). Here EWT = (EWT(i)) +C is a vector of weights which must always be positive, and +C the values of RTOL and ATOL should all be non-negative. +C The following table gives the types (scalar/array) of +C RTOL and ATOL, and the corresponding form of EWT(i). +C +C ITOL RTOL ATOL EWT(i) +C 1 scalar scalar RTOL*ABS(Y(i)) + ATOL +C 2 scalar array RTOL*ABS(Y(i)) + ATOL(i) +C 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL +C 4 array scalar RTOL(i)*ABS(Y(i)) + ATOL(i) +C +C When either of these parameters is a scalar, it need not +C be dimensioned in the user's calling program. +C +C If none of the above choices (with ITOL, RTOL, and ATOL +C fixed throughout the problem) is suitable, more general +C error controls can be obtained by substituting +C user-supplied routines for the setting of EWT and/or for +C the norm calculation. See Part 4 below. +C +C If global errors are to be estimated by making a repeated +C run on the same problem with smaller tolerances, then all +C components of RTOL and ATOL (i.e. of EWT) should be scaled +C down uniformly. +C +C ITASK = an index specifying the task to be performed. +C Input only. ITASK has the following values and meanings. +C 1 means normal computation of output values of y(t) at +C t = TOUT (by overshooting and interpolating). +C 2 means take one step only and return. +C 3 means stop at the first internal mesh point at or +C beyond t = TOUT and return. +C 4 means normal computation of output values of y(t) at +C t = TOUT but without overshooting t = TCRIT. +C TCRIT must be input as RWORK(1). TCRIT may be equal to +C or beyond TOUT, but not behind it in the direction of +C integration. This option is useful if the problem +C has a singularity at or beyond t = TCRIT. +C 5 means take one step, without passing TCRIT, and return. +C TCRIT must be input as RWORK(1). +C +C Note: If ITASK = 4 or 5 and the solver reaches TCRIT +C (within roundoff), it will return T = TCRIT (exactly) to +C indicate this (unless ITASK = 4 and TOUT comes before TCRIT, +C in which case answers at t = TOUT are returned first). +C +C ISTATE = an index used for input and output to specify the +C state of the calculation. +C +C On input, the values of ISTATE are as follows. +C 0 means this is the first call for the problem, and +C DLSODIS is to compute the initial value of dy/dt +C (while doing other initializations). See note below. +C 1 means this is the first call for the problem, and +C the initial value of dy/dt has been supplied in +C YDOTI (DLSODIS will do other initializations). +C See note below. +C 2 means this is not the first call, and the calculation +C is to continue normally, with no change in any input +C parameters except possibly TOUT and ITASK. +C (If ITOL, RTOL, and/or ATOL are changed between calls +C with ISTATE = 2, the new values will be used but not +C tested for legality.) +C 3 means this is not the first call, and the +C calculation is to continue normally, but with +C a change in input parameters other than +C TOUT and ITASK. Changes are allowed in +C NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF, +C the conditional inputs IA, JA, IC, and JC, +C and any of the optional inputs except H0. +C A call with ISTATE = 3 will cause the sparsity +C structure of the problem to be recomputed. +C (Structure information is reread from IA and JA if +C MOSS = 0, 3, or 4 and from IC and JC if MOSS = 0). +C Note: A preliminary call with TOUT = T is not counted +C as a first call here, as no initialization or checking of +C input is done. (Such a call is sometimes useful for the +C purpose of outputting the initial conditions.) +C Thus the first call for which TOUT .ne. T requires +C ISTATE = 0 or 1 on input. +C +C On output, ISTATE has the following values and meanings. +C 0 or 1 means nothing was done; TOUT = T and +C ISTATE = 0 or 1 on input. +C 2 means that the integration was performed successfully. +C 3 means that the user-supplied Subroutine RES signalled +C DLSODIS to halt the integration and return (IRES = 2). +C Integration as far as T was achieved with no occurrence +C of IRES = 2, but this flag was set on attempting the +C next step. +C -1 means an excessive amount of work (more than MXSTEP +C steps) was done on this call, before completing the +C requested task, but the integration was otherwise +C successful as far as T. (MXSTEP is an optional input +C and is normally 500.) To continue, the user may +C simply reset ISTATE to a value .gt. 1 and call again +C (the excess work step counter will be reset to 0). +C In addition, the user may increase MXSTEP to avoid +C this error return (see below on optional inputs). +C -2 means too much accuracy was requested for the precision +C of the machine being used. This was detected before +C completing the requested task, but the integration +C was successful as far as T. To continue, the tolerance +C parameters must be reset, and ISTATE must be set +C to 3. The optional output TOLSF may be used for this +C purpose. (Note: If this condition is detected before +C taking any steps, then an illegal input return +C (ISTATE = -3) occurs instead.) +C -3 means illegal input was detected, before taking any +C integration steps. See written message for details. +C Note: If the solver detects an infinite loop of calls +C to the solver with illegal input, it will cause +C the run to stop. +C -4 means there were repeated error test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C The problem may have a singularity, or the input +C may be inappropriate. +C -5 means there were repeated convergence test failures on +C one attempted step, before completing the requested +C task, but the integration was successful as far as T. +C This may be caused by an inaccurate Jacobian matrix. +C -6 means EWT(i) became zero for some i during the +C integration. Pure relative error control (ATOL(i) = 0.0) +C was requested on a variable which has now vanished. +C the integration was successful as far as T. +C -7 means that the user-supplied Subroutine RES set +C its error flag (IRES = 3) despite repeated tries by +C DLSODIS to avoid that condition. +C -8 means that ISTATE was 0 on input but DLSODIS was unable +C to compute the initial value of dy/dt. See the +C printed message for details. +C -9 means a fatal error return flag came from the sparse +C solver CDRV by way of DPRJIS or DSOLSS (numerical +C factorization or backsolve). This should never happen. +C The integration was successful as far as T. +C +C Note: An error return with ISTATE = -1, -4, or -5 +C may mean that the sparsity structure of the +C problem has changed significantly since it was last +C determined (or input). In that case, one can attempt to +C complete the integration by setting ISTATE = 3 on the next +C call, so that a new structure determination is done. +C +C Note: Since the normal output value of ISTATE is 2, +C it does not need to be reset for normal continuation. +C similarly, ISTATE (= 3) need not be reset if RES told +C DLSODIS to return because the calling program must change +C the parameters of the problem. +C Also, since a negative input value of ISTATE will be +C regarded as illegal, a negative output value requires the +C user to change it, and possibly other inputs, before +C calling the solver again. +C +C IOPT = an integer flag to specify whether or not any optional +C inputs are being used on this call. Input only. +C The optional inputs are listed separately below. +C IOPT = 0 means no optional inputs are being used. +C Default values will be used in all cases. +C IOPT = 1 means one or more optional inputs are being used. +C +C RWORK = a work array used for a mixture of real (double precision) +C and integer work space. +C The length of RWORK (in real words) must be at least +C 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM where +C NYH = the initial value of NEQ, +C MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a +C smaller value is given as an optional input), +C LWM = 2*NNZ + 2*NEQ + (NNZ+9*NEQ)/LENRAT if MITER = 1, +C LWM = 2*NNZ + 2*NEQ + (NNZ+10*NEQ)/LENRAT if MITER = 2. +C in the above formulas, +C NNZ = number of nonzero elements in the iteration matrix +C P = A - con*J (con is a constant and J is the +C Jacobian matrix dr/dy). +C LENRAT = the real to integer wordlength ratio (usually 1 in +C single precision and 2 in double precision). +C (See the MF description for METH and MITER.) +C Thus if MAXORD has its default value and NEQ is constant, +C the minimum length of RWORK is: +C 20 + 16*NEQ + LWM for MF = 11, 111, 311, 12, 212, 412, +C 20 + 9*NEQ + LWM for MF = 21, 121, 321, 22, 222, 422. +C The above formula for LWM is only a crude lower bound. +C The required length of RWORK cannot be readily predicted +C in general, as it depends on the sparsity structure +C of the problem. Some experimentation may be necessary. +C +C The first 20 words of RWORK are reserved for conditional +C and optional inputs and optional outputs. +C +C The following word in RWORK is a conditional input: +C RWORK(1) = TCRIT = critical value of t which the solver +C is not to overshoot. Required if ITASK is +C 4 or 5, and ignored otherwise. (See ITASK.) +C +C LRW = the length of the array RWORK, as declared by the user. +C (This will be checked by the solver.) +C +C IWORK = an integer work array. The length of IWORK must be at least +C 32 + 2*NEQ + NZA + NZC for MOSS = 0, +C 30 for MOSS = 1 or 2, +C 31 + NEQ + NZA for MOSS = 3 or 4. +C (NZA is the number of nonzero elements in matrix A, and +C NZC is the number of nonzero elements in dr/dy.) +C +C In DLSODIS, IWORK is used for conditional and +C optional inputs and optional outputs. +C +C The following two blocks of words in IWORK are conditional +C inputs, required if MOSS = 0, 3, or 4, but not otherwise +C (see the description of MF for MOSS). +C IWORK(30+j) = IA(j) (j=1,...,NEQ+1) +C IWORK(31+NEQ+k) = JA(k) (k=1,...,NZA) +C The two arrays IA and JA describe the sparsity structure +C to be assumed for the matrix A. JA contains the row +C indices where nonzero elements occur, reading in columnwise +C order, and IA contains the starting locations in JA of the +C descriptions of columns 1,...,NEQ, in that order, with +C IA(1) = 1. Thus, for each column index j = 1,...,NEQ, the +C values of the row index i in column j where a nonzero +C element may occur are given by +C i = JA(k), where IA(j) .le. k .lt. IA(j+1). +C If NZA is the total number of nonzero locations assumed, +C then the length of the JA array is NZA, and IA(NEQ+1) must +C be NZA + 1. Duplicate entries are not allowed. +C The following additional blocks of words are required +C if MOSS = 0, but not otherwise. If LC = 31 + NEQ + NZA, then +C IWORK(LC+j) = IC(j) (j=1,...,NEQ+1), and +C IWORK(LC+NEQ+1+k) = JC(k) (k=1,...,NZC) +C The two arrays IC and JC describe the sparsity +C structure to be assumed for the Jacobian matrix dr/dy. +C They are used in the same manner as the above IA and JA +C arrays. If NZC is the number of nonzero locations +C assumed, then the length of the JC array is NZC, and +C IC(NEQ+1) must be NZC + 1. Duplicate entries are not +C allowed. +C +C LIW = the length of the array IWORK, as declared by the user. +C (This will be checked by the solver.) +C +C Note: The work arrays must not be altered between calls to DLSODIS +C for the same problem, except possibly for the conditional and +C optional inputs, and except for the last 3*NEQ words of RWORK. +C The latter space is used for internal scratch space, and so is +C available for use by the user outside DLSODIS between calls, if +C desired (but not for use by RES, ADDA, or JAC). +C +C MF = the method flag. Used only for input. +C MF has three decimal digits-- MOSS, METH, and MITER. +C For standard options: +C MF = 100*MOSS + 10*METH + MITER. +C MOSS indicates the method to be used to obtain the sparsity +C structure of the Jacobian matrix: +C MOSS = 0 means the user has supplied IA, JA, IC, and JC +C (see descriptions under IWORK above). +C MOSS = 1 means the user has supplied JAC (see below) and +C the structure will be obtained from NEQ initial +C calls to JAC and NEQ initial calls to ADDA. +C MOSS = 2 means the structure will be obtained from NEQ+1 +C initial calls to RES and NEQ initial calls to ADDA +C MOSS = 3 like MOSS = 1, except user has supplied IA and JA. +C MOSS = 4 like MOSS = 2, except user has supplied IA and JA. +C METH indicates the basic linear multistep method: +C METH = 1 means the implicit Adams method. +C METH = 2 means the method based on Backward +C Differentiation Formulas (BDFs). +C The BDF method is strongly preferred for stiff problems, +C while the Adams method is preferred when the problem is +C not stiff. If the matrix A(t,y) is nonsingular, +C stiffness here can be taken to mean that of the explicit +C ODE system dy/dt = A-inverse * g. If A is singular, +C the concept of stiffness is not well defined. +C If you do not know whether the problem is stiff, we +C recommend using METH = 2. If it is stiff, the advantage +C of METH = 2 over METH = 1 will be great, while if it is +C not stiff, the advantage of METH = 1 will be slight. +C If maximum efficiency is important, some experimentation +C with METH may be necessary. +C MITER indicates the corrector iteration method: +C MITER = 1 means chord iteration with a user-supplied +C sparse Jacobian, given by Subroutine JAC. +C MITER = 2 means chord iteration with an internally +C generated (difference quotient) sparse +C Jacobian (using NGP extra calls to RES per +C dr/dy value, where NGP is an optional +C output described below.) +C If MITER = 1 or MOSS = 1 or 3 the user must supply a +C Subroutine JAC (the name is arbitrary) as described above +C under JAC. Otherwise, a dummy argument can be used. +C +C The standard choices for MF are: +C MF = 21 or 22 for a stiff problem with IA/JA and IC/JC +C supplied, +C MF = 121 for a stiff problem with JAC supplied, but not +C IA/JA or IC/JC, +C MF = 222 for a stiff problem with neither IA/JA, IC/JC/, +C nor JAC supplied, +C MF = 321 for a stiff problem with IA/JA and JAC supplied, +C but not IC/JC, +C MF = 422 for a stiff problem with IA/JA supplied, but not +C IC/JC or JAC. +C +C The sparseness structure can be changed during the problem +C by making a call to DLSODIS with ISTATE = 3. +C----------------------------------------------------------------------- +C Optional Inputs. +C +C The following is a list of the optional inputs provided for in the +C call sequence. (See also Part 2.) For each such input variable, +C this table lists its name as used in this documentation, its +C location in the call sequence, its meaning, and the default value. +C The use of any of these inputs requires IOPT = 1, and in that +C case all of these inputs are examined. A value of zero for any +C of these optional inputs will cause the default value to be used. +C Thus to use a subset of the optional inputs, simply preload +C locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively, and +C then set those of interest to nonzero values. +C +C Name Location Meaning and Default Value +C +C H0 RWORK(5) the step size to be attempted on the first step. +C The default value is determined by the solver. +C +C HMAX RWORK(6) the maximum absolute step size allowed. +C The default value is infinite. +C +C HMIN RWORK(7) the minimum absolute step size allowed. +C The default value is 0. (This lower bound is not +C enforced on the final step before reaching TCRIT +C when ITASK = 4 or 5.) +C +C MAXORD IWORK(5) the maximum order to be allowed. The default +C value is 12 if METH = 1, and 5 if METH = 2. +C If MAXORD exceeds the default value, it will +C be reduced to the default value. +C If MAXORD is changed during the problem, it may +C cause the current order to be reduced. +C +C MXSTEP IWORK(6) maximum number of (internally defined) steps +C allowed during one call to the solver. +C The default value is 500. +C +C MXHNIL IWORK(7) maximum number of messages printed (per problem) +C warning that T + H = T on a step (H = step size). +C This must be positive to result in a non-default +C value. The default value is 10. +C----------------------------------------------------------------------- +C Optional Outputs. +C +C As optional additional output from DLSODIS, the variables listed +C below are quantities related to the performance of DLSODIS +C which are available to the user. These are communicated by way of +C the work arrays, but also have internal mnemonic names as shown. +C Except where stated otherwise, all of these outputs are defined +C on any successful return from DLSODIS, and on any return with +C ISTATE = -1, -2, -4, -5, -6, or -7. On a return with -3 (illegal +C input) or -8, they will be unchanged from their existing values +C (if any), except possibly for TOLSF, LENRW, and LENIW. +C On any error return, outputs relevant to the error will be defined, +C as noted below. +C +C Name Location Meaning +C +C HU RWORK(11) the step size in t last used (successfully). +C +C HCUR RWORK(12) the step size to be attempted on the next step. +C +C TCUR RWORK(13) the current value of the independent variable +C which the solver has actually reached, i.e. the +C current internal mesh point in t. On output, TCUR +C will always be at least as far as the argument +C T, but may be farther (if interpolation was done). +C +C TOLSF RWORK(14) a tolerance scale factor, greater than 1.0, +C computed when a request for too much accuracy was +C detected (ISTATE = -3 if detected at the start of +C the problem, ISTATE = -2 otherwise). If ITOL is +C left unaltered but RTOL and ATOL are uniformly +C scaled up by a factor of TOLSF for the next call, +C then the solver is deemed likely to succeed. +C (The user may also ignore TOLSF and alter the +C tolerance parameters in any other way appropriate.) +C +C NST IWORK(11) the number of steps taken for the problem so far. +C +C NRE IWORK(12) the number of residual evaluations (RES calls) +C for the problem so far, excluding those for +C structure determination (MOSS = 2 or 4). +C +C NJE IWORK(13) the number of Jacobian evaluations (each involving +C an evaluation of A and dr/dy) for the problem so +C far, excluding those for structure determination +C (MOSS = 1 or 3). This equals the number of calls +C to ADDA and (if MITER = 1) JAC. +C +C NQU IWORK(14) the method order last used (successfully). +C +C NQCUR IWORK(15) the order to be attempted on the next step. +C +C IMXER IWORK(16) the index of the component of largest magnitude in +C the weighted local error vector ( E(i)/EWT(i) ), +C on an error return with ISTATE = -4 or -5. +C +C LENRW IWORK(17) the length of RWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C LENIW IWORK(18) the length of IWORK actually required. +C This is defined on normal returns and on an illegal +C input return for insufficient storage. +C +C NNZ IWORK(19) the number of nonzero elements in the iteration +C matrix P = A - con*J (con is a constant and +C J is the Jacobian matrix dr/dy). +C +C NGP IWORK(20) the number of groups of column indices, used in +C difference quotient Jacobian aproximations if +C MITER = 2. This is also the number of extra RES +C evaluations needed for each Jacobian evaluation. +C +C NLU IWORK(21) the number of sparse LU decompositions for the +C problem so far. (Excludes the LU decomposition +C necessary when ISTATE = 0.) +C +C LYH IWORK(22) the base address in RWORK of the history array YH, +C described below in this list. +C +C IPIAN IWORK(23) the base address of the structure descriptor array +C IAN, described below in this list. +C +C IPJAN IWORK(24) the base address of the structure descriptor array +C JAN, described below in this list. +C +C NZL IWORK(25) the number of nonzero elements in the strict lower +C triangle of the LU factorization used in the chord +C iteration. +C +C NZU IWORK(26) the number of nonzero elements in the strict upper +C triangle of the LU factorization used in the chord +C iteration. The total number of nonzeros in the +C factorization is therefore NZL + NZU + NEQ. +C +C The following four arrays are segments of the RWORK array which +C may also be of interest to the user as optional outputs. +C For each array, the table below gives its internal name, +C its base address, and its description. +C For YH and ACOR, the base addresses are in RWORK (a real array). +C The integer arrays IAN and JAN are to be obtained by declaring an +C integer array IWK and identifying IWK(1) with RWORK(21), using either +C an equivalence statement or a subroutine call. Then the base +C addresses IPIAN (of IAN) and IPJAN (of JAN) in IWK are to be obtained +C as optional outputs IWORK(23) and IWORK(24), respectively. +C Thus IAN(1) is IWK(ipian), etc. +C +C Name Base Address Description +C +C IAN IPIAN (in IWK) structure descriptor array of size NEQ + 1. +C JAN IPJAN (in IWK) structure descriptor array of size NNZ. +C (see above) IAN and JAN together describe the sparsity +C structure of the iteration matrix +C P = A - con*J, as used by DLSODIS. +C JAN contains the row indices of the nonzero +C locations, reading in columnwise order, and +C IAN contains the starting locations in JAN of +C the descriptions of columns 1,...,NEQ, in +C that order, with IAN(1) = 1. Thus for each +C j = 1,...,NEQ, the row indices i of the +C nonzero locations in column j are +C i = JAN(k), IAN(j) .le. k .lt. IAN(j+1). +C Note that IAN(NEQ+1) = NNZ + 1. +C YH LYH the Nordsieck history array, of size NYH by +C (optional (NQCUR + 1), where NYH is the initial value +C output) of NEQ. For j = 0,1,...,NQCUR, column j+1 +C of YH contains HCUR**j/factorial(j) times +C the j-th derivative of the interpolating +C polynomial currently representing the solution, +C evaluated at t = TCUR. The base address LYH +C is another optional output, listed above. +C +C ACOR LENRW-NEQ+1 array of size NEQ used for the accumulated +C corrections on each step, scaled on output to +C represent the estimated local error in y on the +C last step. This is the vector E in the +C description of the error control. It is defined +C only on a return from DLSODIS with ISTATE = 2. +C +C----------------------------------------------------------------------- +C Part 2. Other Routines Callable. +C +C The following are optional calls which the user may make to +C gain additional capabilities in conjunction with DLSODIS. +C (The routines XSETUN and XSETF are designed to conform to the +C SLATEC error handling package.) +C +C Form of Call Function +C CALL XSETUN(LUN) Set the logical unit number, LUN, for +C output of messages from DLSODIS, if +C The default is not desired. +C The default value of LUN is 6. +C +C CALL XSETF(MFLAG) Set a flag to control the printing of +C messages by DLSODIS. +C MFLAG = 0 means do not print. (Danger: +C This risks losing valuable information.) +C MFLAG = 1 means print (the default). +C +C Either of the above calls may be made at +C any time and will take effect immediately. +C +C CALL DSRCMS(RSAV,ISAV,JOB) saves and restores the contents of +C the internal Common blocks used by +C DLSODIS (see Part 3 below). +C RSAV must be a real array of length 224 +C or more, and ISAV must be an integer +C array of length 71 or more. +C JOB=1 means save Common into RSAV/ISAV. +C JOB=2 means restore Common from RSAV/ISAV. +C DSRCMS is useful if one is +C interrupting a run and restarting +C later, or alternating between two or +C more problems solved with DLSODIS. +C +C CALL DINTDY(,,,,,) Provide derivatives of y, of various +C (see below) orders, at a specified point t, if +C desired. It may be called only after +C a successful return from DLSODIS. +C +C The detailed instructions for using DINTDY are as follows. +C The form of the call is: +C +C LYH = IWORK(22) +C CALL DINTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG) +C +C The input parameters are: +C +C T = value of independent variable where answers are desired +C (normally the same as the T last returned by DLSODIS). +C For valid results, T must lie between TCUR - HU and TCUR. +C (See optional outputs for TCUR and HU.) +C K = integer order of the derivative desired. K must satisfy +C 0 .le. K .le. NQCUR, where NQCUR is the current order +C (see optional outputs). The capability corresponding +C to K = 0, i.e. computing y(t), is already provided +C by DLSODIS directly. Since NQCUR .ge. 1, the first +C derivative dy/dt is always available with DINTDY. +C LYH = the base address of the history array YH, obtained +C as an optional output as shown above. +C NYH = column length of YH, equal to the initial value of NEQ. +C +C The output parameters are: +C +C DKY = a real array of length NEQ containing the computed value +C of the K-th derivative of y(t). +C IFLAG = integer flag, returned as 0 if K and T were legal, +C -1 if K was illegal, and -2 if T was illegal. +C On an error return, a message is also written. +C----------------------------------------------------------------------- +C Part 3. Common Blocks. +C +C If DLSODIS is to be used in an overlay situation, the user +C must declare, in the primary overlay, the variables in: +C (1) the call sequence to DLSODIS, and +C (2) the two internal Common blocks +C /DLS001/ of length 255 (218 double precision words +C followed by 37 integer words), +C /DLSS01/ of length 40 (6 double precision words +C followed by 34 integer words). +C +C If DLSODIS is used on a system in which the contents of internal +C Common blocks are not preserved between calls, the user should +C declare the above Common blocks in the calling program to insure +C that their contents are preserved. +C +C If the solution of a given problem by DLSODIS is to be interrupted +C and then later continued, such as when restarting an interrupted run +C or alternating between two or more problems, the user should save, +C following the return from the last DLSODIS call prior to the +C interruption, the contents of the call sequence variables and the +C internal Common blocks, and later restore these values before the +C next DLSODIS call for that problem. To save and restore the Common +C blocks, use Subroutines DSRCMS (see Part 2 above). +C +C----------------------------------------------------------------------- +C Part 4. Optionally Replaceable Solver Routines. +C +C Below are descriptions of two routines in the DLSODIS package which +C relate to the measurement of errors. Either routine can be +C replaced by a user-supplied version, if desired. However, since such +C a replacement may have a major impact on performance, it should be +C done only when absolutely necessary, and only with great caution. +C (Note: The means by which the package version of a routine is +C superseded by the user's version may be system-dependent.) +C +C (a) DEWSET. +C The following subroutine is called just before each internal +C integration step, and sets the array of error weights, EWT, as +C described under ITOL/RTOL/ATOL above: +C SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT) +C where NEQ, ITOL, RTOL, and ATOL are as in the DLSODIS call sequence, +C YCUR contains the current dependent variable vector, and +C EWT is the array of weights set by DEWSET. +C +C If the user supplies this subroutine, it must return in EWT(i) +C (i = 1,...,NEQ) a positive quantity suitable for comparing errors +C in y(i) to. The EWT array returned by DEWSET is passed to the DVNORM +C routine (see below), and also used by DLSODIS in the computation +C of the optional output IMXER, and the increments for difference +C quotient Jacobians. +C +C In the user-supplied version of DEWSET, it may be desirable to use +C the current values of derivatives of y. Derivatives up to order NQ +C are available from the history array YH, described above under +C optional outputs. In DEWSET, YH is identical to the YCUR array, +C extended to NQ + 1 columns with a column length of NYH and scale +C factors of H**j/factorial(j). On the first call for the problem, +C given by NST = 0, NQ is 1 and H is temporarily set to 1.0. +C NYH is the initial value of NEQ. The quantities NQ, H, and NST +C can be obtained by including in DEWSET the statements: +C DOUBLE PRECISION RLS +C COMMON /DLS001/ RLS(218),ILS(37) +C NQ = ILS(33) +C NST = ILS(34) +C H = RLS(212) +C Thus, for example, the current value of dy/dt can be obtained as +C YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is +C unnecessary when NST = 0). +C +C (b) DVNORM. +C The following is a real function routine which computes the weighted +C root-mean-square norm of a vector v: +C D = DVNORM (N, V, W) +C where: +C N = the length of the vector, +C V = real array of length N containing the vector, +C W = real array of length N containing weights, +C D = SQRT( (1/N) * sum(V(i)*W(i))**2 ). +C DVNORM is called with N = NEQ and with W(i) = 1.0/EWT(i), where +C EWT is as set by Subroutine DEWSET. +C +C If the user supplies this function, it should return a non-negative +C value of DVNORM suitable for use in the error control in DLSODIS. +C None of the arguments should be altered by DVNORM. +C For example, a user-supplied DVNORM routine might: +C -substitute a max-norm of (V(i)*w(I)) for the RMS-norm, or +C -ignore some components of V in the norm, with the effect of +C suppressing the error control on those components of y. +C----------------------------------------------------------------------- +C +C***REVISION HISTORY (YYYYMMDD) +C 19820714 DATE WRITTEN +C 19830812 Major update, based on recent LSODI and LSODES revisions: +C Upgraded MDI in ODRV package: operates on M + M-transpose. +C Numerous revisions in use of work arrays; +C use wordlength ratio LENRAT; added IPISP & LRAT to Common; +C added optional outputs IPIAN/IPJAN; +C Added routine CNTNZU; added NZL and NZU to /LSS001/; +C changed ADJLR call logic; added optional outputs NZL & NZU; +C revised counter initializations; revised PREPI stmt. nos.; +C revised difference quotient increment; +C eliminated block /LSI001/, using IERPJ flag; +C revised STODI logic after PJAC return; +C revised tuning of H change and step attempts in STODI; +C corrections to main prologue and comments throughout. +C 19870320 Corrected jump on test of umax in CDRV routine. +C 20010125 Numerous revisions: corrected comments throughout; +C removed TRET from Common; rewrote EWSET with 4 loops; +C fixed t test in INTDY; added Cray directives in STODI; +C in STODI, fixed DELP init. and logic around PJAC call; +C combined routines to save/restore Common; +C passed LEVEL = 0 in error message calls (except run abort). +C 20010425 Major update: convert source lines to upper case; +C added *DECK lines; changed from 1 to * in dummy dimensions; +C changed names R1MACH/D1MACH to RUMACH/DUMACH; +C renamed routines for uniqueness across single/double prec.; +C converted intrinsic names to generic form; +C removed ILLIN and NTREP (data loaded) from Common; +C removed all 'own' variables from Common; +C changed error messages to quoted strings; +C replaced XERRWV/XERRWD with 1993 revised version; +C converted prologues, comments, error messages to mixed case; +C converted arithmetic IF statements to logical IF statements; +C numerous corrections to prologues and internal comments. +C 20010507 Converted single precision source to double precision. +C 20020502 Corrected declarations in descriptions of user routines. +C 20031021 Fixed address offset bugs in Subroutine DPREPI. +C 20031027 Changed 0. to 0.0D0 in Subroutine DPREPI. +C 20031105 Restored 'own' variables to Common blocks, to enable +C interrupt/restart feature. +C 20031112 Added SAVE statements for data-loaded constants. +C 20031117 Changed internal names NRE, LSAVR to NFE, LSAVF resp. +C +C----------------------------------------------------------------------- +C Other routines in the DLSODIS package. +C +C In addition to Subroutine DLSODIS, the DLSODIS package includes the +C following subroutines and function routines: +C DIPREPI acts as an interface between DLSODIS and DPREPI, and also +C does adjusting of work space pointers and work arrays. +C DPREPI is called by DIPREPI to compute sparsity and do sparse +C matrix preprocessing. +C DAINVGS computes the initial value of the vector +C dy/dt = A-inverse * g +C ADJLR adjusts the length of required sparse matrix work space. +C It is called by DPREPI. +C CNTNZU is called by DPREPI and counts the nonzero elements in the +C strict upper triangle of P + P-transpose. +C JGROUP is called by DPREPI to compute groups of Jacobian column +C indices for use when MITER = 2. +C DINTDY computes an interpolated value of the y vector at t = TOUT. +C DSTODI is the core integrator, which does one step of the +C integration and the associated error control. +C DCFODE sets all method coefficients and test constants. +C DPRJIS computes and preprocesses the Jacobian matrix J = dr/dy +C and the Newton iteration matrix P = A - h*l0*J. +C DSOLSS manages solution of linear system in chord iteration. +C DEWSET sets the error weight vector EWT before each step. +C DVNORM computes the weighted RMS-norm of a vector. +C DSRCMS is a user-callable routine to save and restore +C the contents of the internal Common blocks. +C ODRV constructs a reordering of the rows and columns of +C a matrix by the minimum degree algorithm. ODRV is a +C driver routine which calls Subroutines MD, MDI, MDM, +C MDP, MDU, and SRO. See Ref. 2 for details. (The ODRV +C module has been modified since Ref. 2, however.) +C CDRV performs reordering, symbolic factorization, numerical +C factorization, or linear system solution operations, +C depending on a path argument IPATH. CDRV is a +C driver routine which calls Subroutines NROC, NSFC, +C NNFC, NNSC, and NNTC. See Ref. 3 for details. +C DLSODIS uses CDRV to solve linear systems in which the +C coefficient matrix is P = A - con*J, where A is the +C matrix for the linear system A(t,y)*dy/dt = g(t,y), +C con is a scalar, and J is an approximation to +C the Jacobian dr/dy. Because CDRV deals with rowwise +C sparsity descriptions, CDRV works with P-transpose, not P. +C DLSODIS also uses CDRV to solve the linear system +C A(t,y)*dy/dt = g(t,y) for dy/dt when ISTATE = 0. +C (For this, CDRV works with A-transpose, not A.) +C DUMACH computes the unit roundoff in a machine-independent manner. +C XERRWD, XSETUN, XSETF, IXSAV, and IUMACH handle the printing of all +C error messages and warnings. XERRWD is machine-dependent. +C Note: DVNORM, DUMACH, IXSAV, and IUMACH are function routines. +C All the others are subroutines. +C +C----------------------------------------------------------------------- + EXTERNAL DPRJIS, DSOLSS + DOUBLE PRECISION DUMACH, DVNORM + INTEGER INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, I1, I2, IER, IGO, IFLAG, IMAX, IMUL, IMXER, IPFLAG, + 1 IPGO, IREM, IRES, J, KGO, LENRAT, LENYHT, LENIW, LENRW, + 2 LIA, LIC, LJA, LJC, LRTEM, LWTEM, LYD0, LYHD, LYHN, MF1, + 3 MORD, MXHNL0, MXSTP0, NCOLM + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + DOUBLE PRECISION ATOLI, AYI, BIG, EWTI, H0, HMAX, HMX, RH, RTOLI, + 1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, W0 + DIMENSION MORD(2) + LOGICAL IHIT + CHARACTER*60 MSG + SAVE LENRAT, MORD, MXSTP0, MXHNL0 +C----------------------------------------------------------------------- +C The following two internal Common blocks contain +C (a) variables which are local to any subroutine but whose values must +C be preserved between calls to the routine ("own" variables), and +C (b) variables which are communicated between subroutines. +C The block DLS001 is declared in subroutines DLSODIS, DIPREPI, DPREPI, +C DINTDY, DSTODI, DPRJIS, and DSOLSS. +C The block DLSS01 is declared in subroutines DLSODIS, DAINVGS, +C DIPREPI, DPREPI, DPRJIS, and DSOLSS. +C Groups of variables are replaced by dummy arrays in the Common +C declarations in routines where those variables are not used. +C----------------------------------------------------------------------- + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 INIT, MXSTEP, MXHNIL, NHNIL, NSLAST, NYH, IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU +C + DATA MORD(1),MORD(2)/12,5/, MXSTP0/500/, MXHNL0/10/ +C----------------------------------------------------------------------- +C In the Data statement below, set LENRAT equal to the ratio of +C the wordlength for a real number to that for an integer. Usually, +C LENRAT = 1 for single precision and 2 for double precision. If the +C true ratio is not an integer, use the next smaller integer (.ge. 1), +C----------------------------------------------------------------------- + DATA LENRAT/2/ +C----------------------------------------------------------------------- +C Block A. +C This code block is executed on every call. +C It tests ISTATE and ITASK for legality and branches appropirately. +C If ISTATE .gt. 1 but the flag INIT shows that initialization has +C not yet been done, an error return occurs. +C If ISTATE = 0 or 1 and TOUT = T, return immediately. +C----------------------------------------------------------------------- + IF (ISTATE .LT. 0 .OR. ISTATE .GT. 3) GO TO 601 + IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602 + IF (ISTATE .LE. 1) GO TO 10 + IF (INIT .EQ. 0) GO TO 603 + IF (ISTATE .EQ. 2) GO TO 200 + GO TO 20 + 10 INIT = 0 + IF (TOUT .EQ. T) RETURN +C----------------------------------------------------------------------- +C Block B. +C The next code block is executed for the initial call (ISTATE = 0 or 1) +C or for a continuation call with parameter changes (ISTATE = 3). +C It contains checking of all inputs and various initializations. +C If ISTATE = 0 or 1, the final setting of work space pointers, the +C matrix preprocessing, and other initializations are done in Block C. +C +C First check legality of the non-optional inputs NEQ, ITOL, IOPT, and +C MF. +C----------------------------------------------------------------------- + 20 IF (NEQ(1) .LE. 0) GO TO 604 + IF (ISTATE .LE. 1) GO TO 25 + IF (NEQ(1) .GT. N) GO TO 605 + 25 N = NEQ(1) + IF (ITOL .LT. 1 .OR. ITOL .GT. 4) GO TO 606 + IF (IOPT .LT. 0 .OR. IOPT .GT. 1) GO TO 607 + MOSS = MF/100 + MF1 = MF - 100*MOSS + METH = MF1/10 + MITER = MF1 - 10*METH + IF (MOSS .LT. 0 .OR. MOSS .GT. 4) GO TO 608 + IF (MITER .EQ. 2 .AND. MOSS .EQ. 1) MOSS = MOSS + 1 + IF (MITER .EQ. 2 .AND. MOSS .EQ. 3) MOSS = MOSS + 1 + IF (MITER .EQ. 1 .AND. MOSS .EQ. 2) MOSS = MOSS - 1 + IF (MITER .EQ. 1 .AND. MOSS .EQ. 4) MOSS = MOSS - 1 + IF (METH .LT. 1 .OR. METH .GT. 2) GO TO 608 + IF (MITER .LT. 1 .OR. MITER .GT. 2) GO TO 608 +C Next process and check the optional inputs. -------------------------- + IF (IOPT .EQ. 1) GO TO 40 + MAXORD = MORD(METH) + MXSTEP = MXSTP0 + MXHNIL = MXHNL0 + IF (ISTATE .LE. 1) H0 = 0.0D0 + HMXI = 0.0D0 + HMIN = 0.0D0 + GO TO 60 + 40 MAXORD = IWORK(5) + IF (MAXORD .LT. 0) GO TO 611 + IF (MAXORD .EQ. 0) MAXORD = 100 + MAXORD = MIN(MAXORD,MORD(METH)) + MXSTEP = IWORK(6) + IF (MXSTEP .LT. 0) GO TO 612 + IF (MXSTEP .EQ. 0) MXSTEP = MXSTP0 + MXHNIL = IWORK(7) + IF (MXHNIL .LT. 0) GO TO 613 + IF (MXHNIL .EQ. 0) MXHNIL = MXHNL0 + IF (ISTATE .GT. 1) GO TO 50 + H0 = RWORK(5) + IF ((TOUT - T)*H0 .LT. 0.0D0) GO TO 614 + 50 HMAX = RWORK(6) + IF (HMAX .LT. 0.0D0) GO TO 615 + HMXI = 0.0D0 + IF (HMAX .GT. 0.0D0) HMXI = 1.0D0/HMAX + HMIN = RWORK(7) + IF (HMIN .LT. 0.0D0) GO TO 616 +C Check RTOL and ATOL for legality. ------------------------------------ + 60 RTOLI = RTOL(1) + ATOLI = ATOL(1) + DO 65 I = 1,N + IF (ITOL .GE. 3) RTOLI = RTOL(I) + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + IF (RTOLI .LT. 0.0D0) GO TO 619 + IF (ATOLI .LT. 0.0D0) GO TO 620 + 65 CONTINUE +C----------------------------------------------------------------------- +C Compute required work array lengths, as far as possible, and test +C these against LRW and LIW. Then set tentative pointers for work +C arrays. Pointers to RWORK/IWORK segments are named by prefixing L to +C the name of the segment. E.g., the segment YH starts at RWORK(LYH). +C Segments of RWORK (in order) are denoted WM, YH, SAVR, EWT, ACOR. +C The required length of the matrix work space WM is not yet known, +C and so a crude minimum value is used for the initial tests of LRW +C and LIW, and YH is temporarily stored as far to the right in RWORK +C as possible, to leave the maximum amount of space for WM for matrix +C preprocessing. Thus if MOSS .ne. 2 or 4, some of the segments of +C RWORK are temporarily omitted, as they are not needed in the +C preprocessing. These omitted segments are: ACOR if ISTATE = 1, +C EWT and ACOR if ISTATE = 3 and MOSS = 1, and SAVR, EWT, and ACOR if +C ISTATE = 3 and MOSS = 0. +C----------------------------------------------------------------------- + LRAT = LENRAT + IF (ISTATE .LE. 1) NYH = N + IF (MITER .EQ. 1) LWMIN = 4*N + 10*N/LRAT + IF (MITER .EQ. 2) LWMIN = 4*N + 11*N/LRAT + LENYH = (MAXORD+1)*NYH + LREST = LENYH + 3*N + LENRW = 20 + LWMIN + LREST + IWORK(17) = LENRW + LENIW = 30 + IF (MOSS .NE. 1 .AND. MOSS .NE. 2) LENIW = LENIW + N + 1 + IWORK(18) = LENIW + IF (LENRW .GT. LRW) GO TO 617 + IF (LENIW .GT. LIW) GO TO 618 + LIA = 31 + IF (MOSS .NE. 1 .AND. MOSS .NE. 2) + 1 LENIW = LENIW + IWORK(LIA+N) - 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + LJA = LIA + N + 1 + LIA = MIN(LIA,LIW) + LJA = MIN(LJA,LIW) + LIC = LENIW + 1 + IF (MOSS .EQ. 0) LENIW = LENIW + N + 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + IF (MOSS .EQ. 0) LENIW = LENIW + IWORK(LIC+N) - 1 + IWORK(18) = LENIW + IF (LENIW .GT. LIW) GO TO 618 + LJC = LIC + N + 1 + LIC = MIN(LIC,LIW) + LJC = MIN(LJC,LIW) + LWM = 21 + IF (ISTATE .LE. 1) NQ = ISTATE + NCOLM = MIN(NQ+1,MAXORD+2) + LENYHM = NCOLM*NYH + LENYHT = LENYHM + IMUL = 2 + IF (ISTATE .EQ. 3) IMUL = MOSS + IF (ISTATE .EQ. 3 .AND. MOSS .EQ. 3) IMUL = 1 + IF (MOSS .EQ. 2 .OR. MOSS .EQ. 4) IMUL = 3 + LRTEM = LENYHT + IMUL*N + LWTEM = LRW - 20 - LRTEM + LENWK = LWTEM + LYHN = LWM + LWTEM + LSAVF = LYHN + LENYHT + LEWT = LSAVF + N + LACOR = LEWT + N + ISTATC = ISTATE + IF (ISTATE .LE. 1) GO TO 100 +C----------------------------------------------------------------------- +C ISTATE = 3. Move YH to its new location. +C Note that only the part of YH needed for the next step, namely +C MIN(NQ+1,MAXORD+2) columns, is actually moved. +C A temporary error weight array EWT is loaded if MOSS = 2 or 4. +C Sparse matrix processing is done in DIPREPI/DPREPI. +C If MAXORD was reduced below NQ, then the pointers are finally set +C so that SAVR is identical to (YH*,MAXORD+2) +C----------------------------------------------------------------------- + LYHD = LYH - LYHN + IMAX = LYHN - 1 + LENYHM +C Move YH. Move right if LYHD < 0; move left if LYHD > 0. ------------- + IF (LYHD .LT. 0) THEN + DO 72 I = LYHN,IMAX + J = IMAX + LYHN - I + 72 RWORK(J) = RWORK(J+LYHD) + ENDIF + IF (LYHD .GT. 0) THEN + DO 76 I = LYHN,IMAX + 76 RWORK(I) = RWORK(I+LYHD) + ENDIF + 80 LYH = LYHN + IWORK(22) = LYH + IF (MOSS .NE. 2 .AND. MOSS .NE. 4) GO TO 85 +C Temporarily load EWT if MOSS = 2 or 4. + CALL DEWSET (N,ITOL,RTOL,ATOL,RWORK(LYH),RWORK(LEWT)) + DO 82 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 82 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 85 CONTINUE +C DIPREPI and DPREPI do sparse matrix preprocessing. ------------------- + LSAVF = MIN(LSAVF,LRW) + LEWT = MIN(LEWT,LRW) + LACOR = MIN(LACOR,LRW) + CALL DIPREPI (NEQ, Y, YDOTI, RWORK, IWORK(LIA), IWORK(LJA), + 1 IWORK(LIC), IWORK(LJC), IPFLAG, RES, JAC, ADDA) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (90, 628, 629, 630, 631, 632, 633, 634, 634), IPGO + 90 IWORK(22) = LYH + LYD0 = LYH + N + IF (LENRW .GT. LRW) GO TO 617 +C Set flag to signal changes to DSTODI.--------------------------------- + JSTART = -1 + IF (NQ .LE. MAXORD) GO TO 94 +C MAXORD was reduced below NQ. Copy YH(*,MAXORD+2) into YDOTI. -------- + DO 92 I = 1,N + 92 YDOTI(I) = RWORK(I+LSAVF-1) + 94 IF (N .EQ. NYH) GO TO 200 +C NEQ was reduced. Zero part of YH to avoid undefined references. ----- + I1 = LYH + L*NYH + I2 = LYH + (MAXORD + 1)*NYH - 1 + IF (I1 .GT. I2) GO TO 200 + DO 95 I = I1,I2 + 95 RWORK(I) = 0.0D0 + GO TO 200 +C----------------------------------------------------------------------- +C Block C. +C The next block is for the initial call only (ISTATE = 0 or 1). +C It contains all remaining initializations, the call to DAINVGS +C (if ISTATE = 0), the sparse matrix preprocessing, and the +C calculation if the initial step size. +C The error weights in EWT are inverted after being loaded. +C----------------------------------------------------------------------- + 100 CONTINUE + LYH = LYHN + IWORK(22) = LYH + TN = T + NST = 0 + NFE = 0 + H = 1.0D0 + NNZ = 0 + NGP = 0 + NZL = 0 + NZU = 0 +C Load the initial value vector in YH.---------------------------------- + DO 105 I = 1,N + 105 RWORK(I+LYH-1) = Y(I) + IF (ISTATE .NE. 1) GO TO 108 +C Initial dy/dt was supplied. Load it into YH (LYD0 points to YH(*,2).) + LYD0 = LYH + NYH + DO 106 I = 1,N + 106 RWORK(I+LYD0-1) = YDOTI(I) + 108 CONTINUE +C Load and invert the EWT array. (H is temporarily set to 1.0.)-------- + CALL DEWSET (N,ITOL,RTOL,ATOL,RWORK(LYH),RWORK(LEWT)) + DO 110 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 621 + 110 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) +C Call DIPREPI and DPREPI to do sparse matrix preprocessing.------------ + LACOR = MIN(LACOR,LRW) + CALL DIPREPI (NEQ, Y, YDOTI, RWORK, IWORK(LIA), IWORK(LJA), + 1 IWORK(LIC), IWORK(LJC), IPFLAG, RES, JAC, ADDA) + LENRW = LWM - 1 + LENWK + LREST + IWORK(17) = LENRW + IF (IPFLAG .NE. -1) IWORK(23) = IPIAN + IF (IPFLAG .NE. -1) IWORK(24) = IPJAN + IPGO = -IPFLAG + 1 + GO TO (115, 628, 629, 630, 631, 632, 633, 634, 634), IPGO + 115 IWORK(22) = LYH + IF (LENRW .GT. LRW) GO TO 617 +C Compute initial dy/dt, if necessary, and load it into YH.------------- + LYD0 = LYH + N + IF (ISTATE .NE. 0) GO TO 120 + CALL DAINVGS (NEQ, T, Y, RWORK(LWM), RWORK(LWM), RWORK(LACOR), + 1 RWORK(LYD0), IER, RES, ADDA) + NFE = NFE + 1 + IGO = IER + 1 + GO TO (120, 565, 560, 560), IGO +C Check TCRIT for legality (ITASK = 4 or 5). --------------------------- + 120 CONTINUE + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 125 + TCRIT = RWORK(1) + IF ((TCRIT - TOUT)*(TOUT - T) .LT. 0.0D0) GO TO 625 + IF (H0 .NE. 0.0D0 .AND. (T + H0 - TCRIT)*H0 .GT. 0.0D0) + 1 H0 = TCRIT - T +C Initialize all remaining parameters. --------------------------------- + 125 UROUND = DUMACH() + JSTART = 0 + RWORK(LWM) = SQRT(UROUND) + NHNIL = 0 + NJE = 0 + NLU = 0 + NSLAST = 0 + HU = 0.0D0 + NQU = 0 + CCMAX = 0.3D0 + MAXCOR = 3 + MSBP = 20 + MXNCF = 10 +C----------------------------------------------------------------------- +C The coding below computes the step size, H0, to be attempted on the +C first step, unless the user has supplied a value for this. +C First check that TOUT - T differs significantly from zero. +C A scalar tolerance quantity TOL is computed, as MAX(RTOL(i)) +C if this is positive, or MAX(ATOL(i)/ABS(Y(i))) otherwise, adjusted +C so as to be between 100*UROUND and 1.0E-3. +C Then the computed value H0 is given by.. +C NEQ +C H0**2 = TOL / ( w0**-2 + (1/NEQ) * Sum ( YDOT(i)/ywt(i) )**2 ) +C 1 +C where w0 = MAX ( ABS(T), ABS(TOUT) ), +C YDOT(i) = i-th component of initial value of dy/dt, +C ywt(i) = EWT(i)/TOL (a weight for y(i)). +C The sign of H0 is inferred from the initial values of TOUT and T. +C----------------------------------------------------------------------- + IF (H0 .NE. 0.0D0) GO TO 180 + TDIST = ABS(TOUT - T) + W0 = MAX(ABS(T),ABS(TOUT)) + IF (TDIST .LT. 2.0D0*UROUND*W0) GO TO 622 + TOL = RTOL(1) + IF (ITOL .LE. 2) GO TO 145 + DO 140 I = 1,N + 140 TOL = MAX(TOL,RTOL(I)) + 145 IF (TOL .GT. 0.0D0) GO TO 160 + ATOLI = ATOL(1) + DO 150 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + AYI = ABS(Y(I)) + IF (AYI .NE. 0.0D0) TOL = MAX(TOL,ATOLI/AYI) + 150 CONTINUE + 160 TOL = MAX(TOL,100.0D0*UROUND) + TOL = MIN(TOL,0.001D0) + SUM = DVNORM (N, RWORK(LYD0), RWORK(LEWT)) + SUM = 1.0D0/(TOL*W0*W0) + TOL*SUM**2 + H0 = 1.0D0/SQRT(SUM) + H0 = MIN(H0,TDIST) + H0 = SIGN(H0,TOUT-T) +C Adjust H0 if necessary to meet HMAX bound. --------------------------- + 180 RH = ABS(H0)*HMXI + IF (RH .GT. 1.0D0) H0 = H0/RH +C Load H with H0 and scale YH(*,2) by H0. ------------------------------ + H = H0 + DO 190 I = 1,N + 190 RWORK(I+LYD0-1) = H0*RWORK(I+LYD0-1) + GO TO 270 +C----------------------------------------------------------------------- +C Block D. +C The next code block is for continuation calls only (ISTATE = 2 or 3) +C and is to check stop conditions before taking a step. +C----------------------------------------------------------------------- + 200 NSLAST = NST + GO TO (210, 250, 220, 230, 240), ITASK + 210 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 220 TP = TN - HU*(1.0D0 + 100.0D0*UROUND) + IF ((TP - TOUT)*H .GT. 0.0D0) GO TO 623 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + GO TO 400 + 230 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + IF ((TCRIT - TOUT)*H .LT. 0.0D0) GO TO 625 + IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 245 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + IF (IFLAG .NE. 0) GO TO 627 + T = TOUT + GO TO 420 + 240 TCRIT = RWORK(1) + IF ((TN - TCRIT)*H .GT. 0.0D0) GO TO 624 + 245 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + IF (ISTATE .EQ. 2) JSTART = -2 +C----------------------------------------------------------------------- +C Block E. +C The next block is normally executed for all calls and contains +C the call to the one-step core integrator DSTODI. +C +C This is a looping point for the integration steps. +C +C First check for too many steps being taken, update EWT (if not at +C start of problem), check for too much accuracy being requested, and +C check for H below the roundoff level in T. +C----------------------------------------------------------------------- + 250 CONTINUE + IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500 + CALL DEWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT)) + DO 260 I = 1,N + IF (RWORK(I+LEWT-1) .LE. 0.0D0) GO TO 510 + 260 RWORK(I+LEWT-1) = 1.0D0/RWORK(I+LEWT-1) + 270 TOLSF = UROUND*DVNORM (N, RWORK(LYH), RWORK(LEWT)) + IF (TOLSF .LE. 1.0D0) GO TO 280 + TOLSF = TOLSF*2.0D0 + IF (NST .EQ. 0) GO TO 626 + GO TO 520 + 280 IF ((TN + H) .NE. TN) GO TO 290 + NHNIL = NHNIL + 1 + IF (NHNIL .GT. MXHNIL) GO TO 290 + MSG = 'DLSODIS- Warning..Internal T (=R1) and H (=R2) are' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' such that in the machine, T + H = T on the next step ' + CALL XERRWD (MSG, 60, 101, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' (H = step size). Solver will continue anyway.' + CALL XERRWD (MSG, 50, 101, 0, 0, 0, 0, 2, TN, H) + IF (NHNIL .LT. MXHNIL) GO TO 290 + MSG = 'DLSODIS- Above warning has been issued I1 times. ' + CALL XERRWD (MSG, 50, 102, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' It will not be issued again for this problem.' + CALL XERRWD (MSG, 50, 102, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + 290 CONTINUE +C----------------------------------------------------------------------- +C CALL DSTODI(NEQ,Y,YH,NYH,YH1,EWT,SAVF,SAVR,ACOR,WM,WM,RES, +C ADDA,JAC,DPRJIS,DSOLSS) +C Note: SAVF in DSTODI occupies the same space as YDOTI in DLSODIS. +C----------------------------------------------------------------------- + CALL DSTODI (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK(LEWT), + 1 YDOTI, RWORK(LSAVF), RWORK(LACOR), RWORK(LWM), + 2 RWORK(LWM), RES, ADDA, JAC, DPRJIS, DSOLSS ) + KGO = 1 - KFLAG + GO TO (300, 530, 540, 400, 550, 555), KGO +C +C KGO = 1:success; 2:error test failure; 3:convergence failure; +C 4:RES ordered return; 5:RES returned error; +C 6:fatal error from CDRV via DPRJIS or DSOLSS. +C----------------------------------------------------------------------- +C Block F. +C The following block handles the case of a successful return from the +C core integrator (KFLAG = 0). Test for stop conditions. +C----------------------------------------------------------------------- + 300 INIT = 1 + GO TO (310, 400, 330, 340, 350), ITASK +C ITASK = 1. If TOUT has been reached, interpolate. ------------------- + 310 iF ((TN - TOUT)*H .LT. 0.0D0) GO TO 250 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 +C ITASK = 3. Jump to exit if TOUT was reached. ------------------------ + 330 IF ((TN - TOUT)*H .GE. 0.0D0) GO TO 400 + GO TO 250 +C ITASK = 4. See if TOUT or TCRIT was reached. Adjust H if necessary. + 340 IF ((TN - TOUT)*H .LT. 0.0D0) GO TO 345 + CALL DINTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG) + T = TOUT + GO TO 420 + 345 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX + IF (IHIT) GO TO 400 + TNEXT = TN + H*(1.0D0 + 4.0D0*UROUND) + IF ((TNEXT - TCRIT)*H .LE. 0.0D0) GO TO 250 + H = (TCRIT - TN)*(1.0D0 - 4.0D0*UROUND) + JSTART = -2 + GO TO 250 +C ITASK = 5. See if TCRIT was reached and jump to exit. --------------- + 350 HMX = ABS(TN) + ABS(H) + IHIT = ABS(TN - TCRIT) .LE. 100.0D0*UROUND*HMX +C----------------------------------------------------------------------- +C Block G. +C The following block handles all successful returns from DLSODIS. +C if ITASK .ne. 1, Y is loaded from YH and T is set accordingly. +C ISTATE is set to 2, and the optional outputs are loaded into the +C work arrays before returning. +C----------------------------------------------------------------------- + 400 DO 410 I = 1,N + 410 Y(I) = RWORK(I+LYH-1) + T = TN + IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420 + IF (IHIT) T = TCRIT + 420 ISTATE = 2 + IF ( KFLAG .EQ. -3 ) ISTATE = 3 + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block H. +C The following block handles all unsuccessful returns other than +C those for illegal input. First the error message routine is called. +C If there was an error test or convergence test failure, IMXER is set. +C Then Y is loaded from YH and T is set to TN. +C The optional outputs are loaded into the work arrays before returning. +C----------------------------------------------------------------------- +C The maximum number of steps was taken before reaching TOUT. ---------- + 500 MSG = 'DLSODIS- At current T (=R1), MXSTEP (=I1) steps ' + CALL XERRWD (MSG, 50, 201, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' taken on this call before reaching TOUT ' + CALL XERRWD (MSG, 50, 201, 0, 1, MXSTEP, 0, 1, TN, 0.0D0) + ISTATE = -1 + GO TO 580 +C EWT(i) .le. 0.0 for some i (not at start of problem). ---------------- + 510 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODIS- At T (=R1), EWT(I1) has become R2 .le. 0.' + CALL XERRWD (MSG, 50, 202, 0, 1, I, 0, 2, TN, EWTI) + ISTATE = -6 + GO TO 590 +C Too much accuracy requested for machine precision. ------------------- + 520 MSG = 'DLSODIS- At T (=R1), too much accuracy requested ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' for precision of machine.. See TOLSF (=R2) ' + CALL XERRWD (MSG, 50, 203, 0, 0, 0, 0, 2, TN, TOLSF) + RWORK(14) = TOLSF + ISTATE = -2 + GO TO 590 +C KFLAG = -1. Error test failed repeatedly or with ABS(H) = HMIN. ----- + 530 MSG = 'DLSODIS- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 204, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' error test failed repeatedly or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 60, 204, 0, 0, 0, 0, 2, TN, H) + ISTATE = -4 + GO TO 570 +C KFLAG = -2. Convergence failed repeatedly or with ABS(H) = HMIN. ---- + 540 MSG = 'DLSODIS- At T (=R1) and step size H (=R2), the ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' corrector convergence failed repeatedly ' + CALL XERRWD (MSG, 50, 205, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' or with ABS(H) = HMIN ' + CALL XERRWD (MSG, 30, 205, 0, 0, 0, 0, 2, TN, H) + ISTATE = -5 + GO TO 570 +C IRES = 3 returned by RES, despite retries by DSTODI. ----------------- + 550 MSG = 'DLSODIS- At T (=R1) residual routine returned ' + CALL XERRWD (MSG, 50, 206, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error IRES = 3 repeatedly.' + CALL XERRWD (MSG, 30, 206, 1, 0, 0, 0, 0, TN, 0.0D0) + ISTATE = -7 + GO TO 590 +C KFLAG = -5. Fatal error flag returned by DPRJIS or DSOLSS (CDRV). --- + 555 MSG = 'DLSODIS- At T (=R1) and step size H (=R2), a fatal' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' error flag was returned by CDRV (by way of ' + CALL XERRWD (MSG, 50, 207, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' Subroutine DPRJIS or DSOLSS) ' + CALL XERRWD (MSG, 40, 207, 0, 0, 0, 0, 2, TN, H) + ISTATE = -9 + GO TO 580 +C DAINVGS failed because matrix A was singular. ------------------------ + 560 MSG='DLSODIS- Attempt to initialize dy/dt failed because matrix A' + CALL XERRWD (MSG, 60, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' was singular. CDRV returned zero pivot error flag. ' + CALL XERRWD (MSG, 60, 208, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = 'DAINVGS set its error flag to IER = (I1)' + CALL XERRWD (MSG, 40, 208, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C DAINVGS failed because RES set IRES to 2 or 3. ----------------------- + 565 MSG = 'DLSODIS- Attempt to initialize dy/dt failed ' + CALL XERRWD (MSG, 50, 209, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' because residual routine set its error flag ' + CALL XERRWD (MSG, 50, 209, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to IRES = (I1)' + CALL XERRWD (MSG, 20, 209, 0, 1, IER, 0, 0, 0.0D0, 0.0D0) + ISTATE = -8 + RETURN +C Compute IMXER if relevant. ------------------------------------------- + 570 BIG = 0.0D0 + IMXER = 1 + DO 575 I = 1,N + SIZE = ABS(RWORK(I+LACOR-1)*RWORK(I+LEWT-1)) + IF (BIG .GE. SIZE) GO TO 575 + BIG = SIZE + IMXER = I + 575 CONTINUE + IWORK(16) = IMXER +C Compute residual if relevant. ---------------------------------------- + 580 LYD0 = LYH + NYH + DO 585 I = 1, N + RWORK(I+LSAVF-1) = RWORK(I+LYD0-1) / H + 585 Y(I) = RWORK(I+LYH-1) + IRES = 1 + CALL RES (NEQ, TN, Y, RWORK(LSAVF), YDOTI, IRES) + NFE = NFE + 1 + IF ( IRES .LE. 1 ) GO TO 595 + MSG = 'DLSODIS- Residual routine set its flag IRES ' + CALL XERRWD (MSG, 50, 210, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG = ' to (I1) when called for final output. ' + CALL XERRWD (MSG, 50, 210, 0, 1, IRES, 0, 0, 0.0D0, 0.0D0) + GO TO 595 +C set y vector, t, and optional outputs. ------------------------------- + 590 DO 592 I = 1,N + 592 Y(I) = RWORK(I+LYH-1) + 595 T = TN + RWORK(11) = HU + RWORK(12) = H + RWORK(13) = TN + IWORK(11) = NST + IWORK(12) = NFE + IWORK(13) = NJE + IWORK(14) = NQU + IWORK(15) = NQ + IWORK(19) = NNZ + IWORK(20) = NGP + IWORK(21) = NLU + IWORK(25) = NZL + IWORK(26) = NZU + RETURN +C----------------------------------------------------------------------- +C Block I. +C The following block handles all error returns due to illegal input +C (ISTATE = -3), as detected before calling the core integrator. +C First the error message routine is called. If the illegal input +C is a negative ISTATE, the run is aborted (apparent infinite loop). +C----------------------------------------------------------------------- + 601 MSG = 'DLSODIS- ISTATE (=I1) illegal.' + CALL XERRWD (MSG, 30, 1, 0, 1, ISTATE, 0, 0, 0.0D0, 0.0D0) + IF (ISTATE .LT. 0) GO TO 800 + GO TO 700 + 602 MSG = 'DLSODIS- ITASK (=I1) illegal. ' + CALL XERRWD (MSG, 30, 2, 0, 1, ITASK, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 603 MSG = 'DLSODIS-ISTATE .gt. 1 but DLSODIS not initialized.' + CALL XERRWD (MSG, 50, 3, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 604 MSG = 'DLSODIS- NEQ (=I1) .lt. 1 ' + CALL XERRWD (MSG, 30, 4, 0, 1, NEQ(1), 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 605 MSG = 'DLSODIS- ISTATE = 3 and NEQ increased (I1 to I2). ' + CALL XERRWD (MSG, 50, 5, 0, 2, N, NEQ(1), 0, 0.0D0, 0.0D0) + GO TO 700 + 606 MSG = 'DLSODIS- ITOL (=I1) illegal. ' + CALL XERRWD (MSG, 30, 6, 0, 1, ITOL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 607 MSG = 'DLSODIS- IOPT (=I1) illegal. ' + CALL XERRWD (MSG, 30, 7, 0, 1, IOPT, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 608 MSG = 'DLSODIS- MF (=I1) illegal. ' + CALL XERRWD (MSG, 30, 8, 0, 1, MF, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 611 MSG = 'DLSODIS- MAXORD (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 11, 0, 1, MAXORD, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 612 MSG = 'DLSODIS- MXSTEP (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 12, 0, 1, MXSTEP, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 613 MSG = 'DLSODIS- MXHNIL (=I1) .lt. 0 ' + CALL XERRWD (MSG, 30, 13, 0, 1, MXHNIL, 0, 0, 0.0D0, 0.0D0) + GO TO 700 + 614 MSG = 'DLSODIS- TOUT (=R1) behind T (=R2) ' + CALL XERRWD (MSG, 40, 14, 0, 0, 0, 0, 2, TOUT, T) + MSG = ' Integration direction is given by H0 (=R1) ' + CALL XERRWD (MSG, 50, 14, 0, 0, 0, 0, 1, H0, 0.0D0) + GO TO 700 + 615 MSG = 'DLSODIS- HMAX (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 15, 0, 0, 0, 0, 1, HMAX, 0.0D0) + GO TO 700 + 616 MSG = 'DLSODIS- HMIN (=R1) .lt. 0.0 ' + CALL XERRWD (MSG, 30, 16, 0, 0, 0, 0, 1, HMIN, 0.0D0) + GO TO 700 + 617 MSG = 'DLSODIS- RWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 17, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 17, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 618 MSG = 'DLSODIS- IWORK length is insufficient to proceed. ' + CALL XERRWD (MSG, 50, 18, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENIW (=I1), exceeds LIW (=I2)' + CALL XERRWD (MSG, 60, 18, 0, 2, LENIW, LIW, 0, 0.0D0, 0.0D0) + GO TO 700 + 619 MSG = 'DLSODIS- RTOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 19, 0, 1, I, 0, 1, RTOLI, 0.0D0) + GO TO 700 + 620 MSG = 'DLSODIS- ATOL(=I1) is R1 .lt. 0.0 ' + CALL XERRWD (MSG, 40, 20, 0, 1, I, 0, 1, ATOLI, 0.0D0) + GO TO 700 + 621 EWTI = RWORK(LEWT+I-1) + MSG = 'DLSODIS- EWT(I1) is R1 .le. 0.0 ' + CALL XERRWD (MSG, 40, 21, 0, 1, I, 0, 1, EWTI, 0.0D0) + GO TO 700 + 622 MSG='DLSODIS- TOUT(=R1) too close to T(=R2) to start integration.' + CALL XERRWD (MSG, 60, 22, 0, 0, 0, 0, 2, TOUT, T) + GO TO 700 + 623 MSG='DLSODIS- ITASK = I1 and TOUT (=R1) behind TCUR - HU (= R2) ' + CALL XERRWD (MSG, 60, 23, 0, 1, ITASK, 0, 2, TOUT, TP) + GO TO 700 + 624 MSG='DLSODIS- ITASK = 4 or 5 and TCRIT (=R1) behind TCUR (=R2) ' + CALL XERRWD (MSG, 60, 24, 0, 0, 0, 0, 2, TCRIT, TN) + GO TO 700 + 625 MSG='DLSODIS- ITASK = 4 or 5 and TCRIT (=R1) behind TOUT (=R2) ' + CALL XERRWD (MSG, 60, 25, 0, 0, 0, 0, 2, TCRIT, TOUT) + GO TO 700 + 626 MSG = 'DLSODIS- At start of problem, too much accuracy ' + CALL XERRWD (MSG, 50, 26, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' requested for precision of machine.. See TOLSF (=R1) ' + CALL XERRWD (MSG, 60, 26, 0, 0, 0, 0, 1, TOLSF, 0.0D0) + RWORK(14) = TOLSF + GO TO 700 + 627 MSG = 'DLSODIS- Trouble in DINTDY. ITASK = I1, TOUT = R1' + CALL XERRWD (MSG, 50, 27, 0, 1, ITASK, 0, 1, TOUT, 0.0D0) + GO TO 700 + 628 MSG='DLSODIS- RWORK length insufficient (for Subroutine DPREPI). ' + CALL XERRWD (MSG, 60, 28, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 28, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 629 MSG='DLSODIS- RWORK length insufficient (for Subroutine JGROUP). ' + CALL XERRWD (MSG, 60, 29, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 29, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 630 MSG='DLSODIS- RWORK length insufficient (for Subroutine ODRV). ' + CALL XERRWD (MSG, 60, 30, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 30, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 631 MSG='DLSODIS- Error from ODRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 31, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), ODRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 31, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + GO TO 700 + 632 MSG='DLSODIS- RWORK length insufficient (for Subroutine CDRV). ' + CALL XERRWD (MSG, 60, 32, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + MSG=' Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)' + CALL XERRWD (MSG, 60, 32, 0, 2, LENRW, LRW, 0, 0.0D0, 0.0D0) + GO TO 700 + 633 MSG='DLSODIS- Error from CDRV in Yale Sparse Matrix Package. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IMUL = (IYS - 1)/N + IREM = IYS - IMUL*N + MSG=' At T (=R1), CDRV returned error flag = I1*NEQ + I2. ' + CALL XERRWD (MSG, 60, 33, 0, 2, IMUL, IREM, 1, TN, 0.0D0) + IF (IMUL .EQ. 2) THEN + MSG=' Duplicate entry in sparsity structure descriptors. ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + IF (IMUL .EQ. 3 .OR. IMUL .EQ. 6) THEN + MSG=' Insufficient storage for NSFC (called by CDRV). ' + CALL XERRWD (MSG, 60, 33, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + ENDIF + GO TO 700 + 634 MSG='DLSODIS- At T (=R1) residual routine (called by DPREPI) ' + CALL XERRWD (MSG, 60, 34, 0, 0, 0, 0, 0, 0.0D0, 0.0D0) + IER = -IPFLAG - 5 + MSG = ' returned error IRES (=I1)' + CALL XERRWD (MSG, 30, 34, 0, 1, IER, 0, 1, TN, 0.0D0) +C + 700 ISTATE = -3 + RETURN +C + 800 MSG = 'DLSODIS- Run aborted.. apparent infinite loop. ' + CALL XERRWD (MSG, 50, 303, 2, 0, 0, 0, 0, 0.0D0, 0.0D0) + RETURN +C----------------------- End of Subroutine DLSODIS --------------------- + END + + diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub1.f b/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub1.f new file mode 100644 index 000000000..5fe02d207 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub1.f @@ -0,0 +1,10136 @@ +*DECK DUMACH + DOUBLE PRECISION FUNCTION DUMACH () +C***BEGIN PROLOGUE DUMACH +C***PURPOSE Compute the unit roundoff of the machine. +C***CATEGORY R1 +C***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D) +C***KEYWORDS MACHINE CONSTANTS +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C *Usage: +C DOUBLE PRECISION A, DUMACH +C A = DUMACH() +C +C *Function Return Values: +C A : the unit roundoff of the machine. +C +C *Description: +C The unit roundoff is defined as the smallest positive machine +C number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH +C in a machine-independent manner. +C +C***REFERENCES (NONE) +C***ROUTINES CALLED DUMSUM +C***REVISION HISTORY (YYYYMMDD) +C 19930216 DATE WRITTEN +C 19930818 Added SLATEC-format prologue. (FNF) +C 20030707 Added DUMSUM to force normal storage of COMP. (ACH) +C***END PROLOGUE DUMACH +C + DOUBLE PRECISION U, COMP +C***FIRST EXECUTABLE STATEMENT DUMACH + U = 1.0D0 + 10 U = U*0.5D0 + CALL DUMSUM(1.0D0, U, COMP) + IF (COMP .NE. 1.0D0) GO TO 10 + DUMACH = U*2.0D0 + RETURN +C----------------------- End of Function DUMACH ------------------------ + END + SUBROUTINE DUMSUM(A,B,C) +C Routine to force normal storing of A + B, for DUMACH. + DOUBLE PRECISION A, B, C + C = A + B + RETURN + END +*DECK DCFODE + SUBROUTINE DCFODE (METH, ELCO, TESCO) +C***BEGIN PROLOGUE DCFODE +C***SUBSIDIARY +C***PURPOSE Set ODE integrator coefficients. +C***TYPE DOUBLE PRECISION (SCFODE-S, DCFODE-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DCFODE is called by the integrator routine to set coefficients +C needed there. The coefficients for the current method, as +C given by the value of METH, are set for all orders and saved. +C The maximum order assumed here is 12 if METH = 1 and 5 if METH = 2. +C (A smaller value of the maximum order is also allowed.) +C DCFODE is called once at the beginning of the problem, +C and is not called again unless and until METH is changed. +C +C The ELCO array contains the basic method coefficients. +C The coefficients el(i), 1 .le. i .le. nq+1, for the method of +C order nq are stored in ELCO(i,nq). They are given by a genetrating +C polynomial, i.e., +C l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq. +C For the implicit Adams methods, l(x) is given by +C dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1), l(-1) = 0. +C For the BDF methods, l(x) is given by +C l(x) = (x+1)*(x+2)* ... *(x+nq)/K, +C where K = factorial(nq)*(1 + 1/2 + ... + 1/nq). +C +C The TESCO array contains test constants used for the +C local error test and the selection of step size and/or order. +C At order nq, TESCO(k,nq) is used for the selection of step +C size at order nq - 1 if k = 1, at order nq if k = 2, and at order +C nq + 1 if k = 3. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C***END PROLOGUE DCFODE +C**End + INTEGER METH + INTEGER I, IB, NQ, NQM1, NQP1 + DOUBLE PRECISION ELCO, TESCO + DOUBLE PRECISION AGAMQ, FNQ, FNQM1, PC, PINT, RAGQ, + 1 RQFAC, RQ1FAC, TSIGN, XPIN + DIMENSION ELCO(13,12), TESCO(3,12) + DIMENSION PC(12) +C +C***FIRST EXECUTABLE STATEMENT DCFODE + GO TO (100, 200), METH +C + 100 ELCO(1,1) = 1.0D0 + ELCO(2,1) = 1.0D0 + TESCO(1,1) = 0.0D0 + TESCO(2,1) = 2.0D0 + TESCO(1,2) = 1.0D0 + TESCO(3,12) = 0.0D0 + PC(1) = 1.0D0 + RQFAC = 1.0D0 + DO 140 NQ = 2,12 +C----------------------------------------------------------------------- +C The PC array will contain the coefficients of the polynomial +C p(x) = (x+1)*(x+2)*...*(x+nq-1). +C Initially, p(x) = 1. +C----------------------------------------------------------------------- + RQ1FAC = RQFAC + RQFAC = RQFAC/NQ + NQM1 = NQ - 1 + FNQM1 = NQM1 + NQP1 = NQ + 1 +C Form coefficients of p(x)*(x+nq-1). ---------------------------------- + PC(NQ) = 0.0D0 + DO 110 IB = 1,NQM1 + I = NQP1 - IB + 110 PC(I) = PC(I-1) + FNQM1*PC(I) + PC(1) = FNQM1*PC(1) +C Compute integral, -1 to 0, of p(x) and x*p(x). ----------------------- + PINT = PC(1) + XPIN = PC(1)/2.0D0 + TSIGN = 1.0D0 + DO 120 I = 2,NQ + TSIGN = -TSIGN + PINT = PINT + TSIGN*PC(I)/I + 120 XPIN = XPIN + TSIGN*PC(I)/(I+1) +C Store coefficients in ELCO and TESCO. -------------------------------- + ELCO(1,NQ) = PINT*RQ1FAC + ELCO(2,NQ) = 1.0D0 + DO 130 I = 2,NQ + 130 ELCO(I+1,NQ) = RQ1FAC*PC(I)/I + AGAMQ = RQFAC*XPIN + RAGQ = 1.0D0/AGAMQ + TESCO(2,NQ) = RAGQ + IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/NQP1 + TESCO(3,NQM1) = RAGQ + 140 CONTINUE + RETURN +C + 200 PC(1) = 1.0D0 + RQ1FAC = 1.0D0 + DO 230 NQ = 1,5 +C----------------------------------------------------------------------- +C The PC array will contain the coefficients of the polynomial +C p(x) = (x+1)*(x+2)*...*(x+nq). +C Initially, p(x) = 1. +C----------------------------------------------------------------------- + FNQ = NQ + NQP1 = NQ + 1 +C Form coefficients of p(x)*(x+nq). ------------------------------------ + PC(NQP1) = 0.0D0 + DO 210 IB = 1,NQ + I = NQ + 2 - IB + 210 PC(I) = PC(I-1) + FNQ*PC(I) + PC(1) = FNQ*PC(1) +C Store coefficients in ELCO and TESCO. -------------------------------- + DO 220 I = 1,NQP1 + 220 ELCO(I,NQ) = PC(I)/PC(2) + ELCO(2,NQ) = 1.0D0 + TESCO(1,NQ) = RQ1FAC + TESCO(2,NQ) = NQP1/ELCO(1,NQ) + TESCO(3,NQ) = (NQ+2)/ELCO(1,NQ) + RQ1FAC = RQ1FAC/FNQ + 230 CONTINUE + RETURN +C----------------------- END OF SUBROUTINE DCFODE ---------------------- + END +*DECK DINTDY + SUBROUTINE DINTDY (T, K, YH, NYH, DKY, IFLAG) +C***BEGIN PROLOGUE DINTDY +C***SUBSIDIARY +C***PURPOSE Interpolate solution derivatives. +C***TYPE DOUBLE PRECISION (SINTDY-S, DINTDY-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DINTDY computes interpolated values of the K-th derivative of the +C dependent variable vector y, and stores it in DKY. This routine +C is called within the package with K = 0 and T = TOUT, but may +C also be called by the user for any K up to the current order. +C (See detailed instructions in the usage documentation.) +C +C The computed values in DKY are gotten by interpolation using the +C Nordsieck history array YH. This array corresponds uniquely to a +C vector-valued polynomial of degree NQCUR or less, and DKY is set +C to the K-th derivative of this polynomial at T. +C The formula for DKY is: +C q +C DKY(i) = sum c(j,K) * (T - tn)**(j-K) * h**(-j) * YH(i,j+1) +C j=K +C where c(j,K) = j*(j-1)*...*(j-K+1), q = NQCUR, tn = TCUR, h = HCUR. +C The quantities nq = NQCUR, l = nq+1, N = NEQ, tn, and h are +C communicated by COMMON. The above sum is done in reverse order. +C IFLAG is returned negative if either K or T is out of bounds. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED XERRWD +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C 050427 Corrected roundoff decrement in TP. (ACH) +C***END PROLOGUE DINTDY +C**End + INTEGER K, NYH, IFLAG + DOUBLE PRECISION T, YH, DKY + DIMENSION YH(NYH,*), DKY(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, IC, J, JB, JB2, JJ, JJ1, JP1 + DOUBLE PRECISION C, R, S, TP + CHARACTER*80 MSG +C +C***FIRST EXECUTABLE STATEMENT DINTDY + IFLAG = 0 + IF (K .LT. 0 .OR. K .GT. NQ) GO TO 80 + TP = TN - HU - 100.0D0*UROUND*SIGN(ABS(TN) + ABS(HU), HU) + IF ((T-TP)*(T-TN) .GT. 0.0D0) GO TO 90 +C + S = (T - TN)/H + IC = 1 + IF (K .EQ. 0) GO TO 15 + JJ1 = L - K + DO 10 JJ = JJ1,NQ + 10 IC = IC*JJ + 15 C = IC + DO 20 I = 1,N + 20 DKY(I) = C*YH(I,L) + IF (K .EQ. NQ) GO TO 55 + JB2 = NQ - K + DO 50 JB = 1,JB2 + J = NQ - JB + JP1 = J + 1 + IC = 1 + IF (K .EQ. 0) GO TO 35 + JJ1 = JP1 - K + DO 30 JJ = JJ1,J + 30 IC = IC*JJ + 35 C = IC + DO 40 I = 1,N + 40 DKY(I) = C*YH(I,JP1) + S*DKY(I) + 50 CONTINUE + IF (K .EQ. 0) RETURN + 55 R = H**(-K) + DO 60 I = 1,N + 60 DKY(I) = R*DKY(I) + RETURN +C + 80 MSG = 'DINTDY- K (=I1) illegal ' + CALL XERRWD (MSG, 30, 51, 0, 1, K, 0, 0, 0.0D0, 0.0D0) + IFLAG = -1 + RETURN + 90 MSG = 'DINTDY- T (=R1) illegal ' + CALL XERRWD (MSG, 30, 52, 0, 0, 0, 0, 1, T, 0.0D0) + MSG=' T not in interval TCUR - HU (= R1) to TCUR (=R2) ' + CALL XERRWD (MSG, 60, 52, 0, 0, 0, 0, 2, TP, TN) + IFLAG = -2 + RETURN +C----------------------- END OF SUBROUTINE DINTDY ---------------------- + END +*DECK DPREPJ + SUBROUTINE DPREPJ (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, + 1 F, JAC) +C***BEGIN PROLOGUE DPREPJ +C***SUBSIDIARY +C***PURPOSE Compute and process Newton iteration matrix. +C***TYPE DOUBLE PRECISION (SPREPJ-S, DPREPJ-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DPREPJ is called by DSTODE to compute and process the matrix +C P = I - h*el(1)*J , where J is an approximation to the Jacobian. +C Here J is computed by the user-supplied routine JAC if +C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5. +C If MITER = 3, a diagonal approximation to J is used. +C J is stored in WM and replaced by P. If MITER .ne. 3, P is then +C subjected to LU decomposition in preparation for later solution +C of linear systems with P as coefficient matrix. This is done +C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5. +C +C In addition to variables described in DSTODE and DLSODE prologues, +C communication with DPREPJ uses the following: +C Y = array containing predicted values on entry. +C FTEM = work array of length N (ACOR in DSTODE). +C SAVF = array containing f evaluated at predicted y. +C WM = real work space for matrices. On output it contains the +C inverse diagonal matrix if MITER = 3 and the LU decomposition +C of P if MITER is 1, 2 , 4, or 5. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C WM(2) = H*EL0, saved for later use if MITER = 3. +C IWM = integer work space containing pivot information, starting at +C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band +C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C EL0 = EL(1) (input). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C P matrix found to be singular. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the COMMON variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED DGBFA, DGEFA, DVNORM +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890504 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C***END PROLOGUE DPREPJ +C**End + EXTERNAL F, JAC + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP, + 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1 + DOUBLE PRECISION CON, DI, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ, + 1 DVNORM +C +C***FIRST EXECUTABLE STATEMENT DPREPJ + NJE = NJE + 1 + IERPJ = 0 + JCUR = 1 + HL0 = H*EL0 + GO TO (100, 200, 300, 400, 500), MITER +C If MITER = 1, call JAC and multiply by scalar. ----------------------- + 100 LENP = N*N + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 240 +C If MITER = 2, make N calls to F to approximate J. -------------------- + 200 FAC = DVNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + SRUR = WM(1) + J1 = 2 + DO 230 J = 1,N + YJ = Y(J) + R = MAX(SRUR*ABS(YJ),R0/EWT(J)) + Y(J) = Y(J) + R + FAC = -HL0/R + CALL F (NEQ, TN, Y, FTEM) + DO 220 I = 1,N + 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC + Y(J) = YJ + J1 = J1 + N + 230 CONTINUE + NFE = NFE + N +C Add identity matrix. ------------------------------------------------- + 240 J = 3 + NP1 = N + 1 + DO 250 I = 1,N + WM(J) = WM(J) + 1.0D0 + 250 J = J + NP1 +C Do LU decomposition on P. -------------------------------------------- + CALL DGEFA (WM(3), N, N, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C If MITER = 3, construct a diagonal approximation to J and P. --------- + 300 WM(2) = HL0 + R = EL0*0.1D0 + DO 310 I = 1,N + 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2)) + CALL F (NEQ, TN, Y, WM(3)) + NFE = NFE + 1 + DO 320 I = 1,N + R0 = H*SAVF(I) - YH(I,2) + DI = 0.1D0*R0 - H*(WM(I+2) - SAVF(I)) + WM(I+2) = 1.0D0 + IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320 + IF (ABS(DI) .EQ. 0.0D0) GO TO 330 + WM(I+2) = 0.1D0*R0/DI + 320 CONTINUE + RETURN + 330 IERPJ = 1 + RETURN +C If MITER = 4, call JAC and multiply by scalar. ----------------------- + 400 ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MEBAND = MBAND + ML + LENP = MEBAND*N + DO 410 I = 1,LENP + 410 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) + CON = -HL0 + DO 420 I = 1,LENP + 420 WM(I+2) = WM(I+2)*CON + GO TO 570 +C If MITER = 5, make MBAND calls to F to approximate J. ---------------- + 500 ML = IWM(1) + MU = IWM(2) + MBAND = ML + MU + 1 + MBA = MIN(MBAND,N) + MEBAND = MBAND + ML + MEB1 = MEBAND - 1 + SRUR = WM(1) + FAC = DVNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + DO 560 J = 1,MBA + DO 530 I = J,N,MBAND + YI = Y(I) + R = MAX(SRUR*ABS(YI),R0/EWT(I)) + 530 Y(I) = Y(I) + R + CALL F (NEQ, TN, Y, FTEM) + DO 550 JJ = J,N,MBAND + Y(JJ) = YH(JJ,1) + YJJ = Y(JJ) + R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ)) + FAC = -HL0/R + I1 = MAX(JJ-MU,1) + I2 = MIN(JJ+ML,N) + II = JJ*MEB1 - ML + 2 + DO 540 I = I1,I2 + 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC + 550 CONTINUE + 560 CONTINUE + NFE = NFE + MBA +C Add identity matrix. ------------------------------------------------- + 570 II = MBAND + 2 + DO 580 I = 1,N + WM(II) = WM(II) + 1.0D0 + 580 II = II + MEBAND +C Do LU decomposition of P. -------------------------------------------- + CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C----------------------- END OF SUBROUTINE DPREPJ ---------------------- + END +*DECK DSOLSY + SUBROUTINE DSOLSY (WM, IWM, X, TEM) +C***BEGIN PROLOGUE DSOLSY +C***SUBSIDIARY +C***PURPOSE ODEPACK linear system solver. +C***TYPE DOUBLE PRECISION (SSOLSY-S, DSOLSY-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This routine manages the solution of the linear system arising from +C a chord iteration. It is called if MITER .ne. 0. +C If MITER is 1 or 2, it calls DGESL to accomplish this. +C If MITER = 3 it updates the coefficient h*EL0 in the diagonal +C matrix, and then computes the solution. +C If MITER is 4 or 5, it calls DGBSL. +C Communication with DSOLSY uses the following variables: +C WM = real work space containing the inverse diagonal matrix if +C MITER = 3 and the LU decomposition of the matrix otherwise. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND) (not used here), +C WM(2) = HL0, the previous value of h*EL0, used if MITER = 3. +C IWM = integer work space containing pivot information, starting at +C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band +C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C TEM = vector of work space of length N, not used in this version. +C IERSL = output flag (in COMMON). IERSL = 0 if no trouble occurred. +C IERSL = 1 if a singular matrix arose with MITER = 3. +C This routine also uses the COMMON variables EL0, H, MITER, and N. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED DGBSL, DGESL +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C***END PROLOGUE DSOLSY +C**End + INTEGER IWM + DOUBLE PRECISION WM, X, TEM + DIMENSION WM(*), IWM(*), X(*), TEM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, MEBAND, ML, MU + DOUBLE PRECISION DI, HL0, PHL0, R +C +C***FIRST EXECUTABLE STATEMENT DSOLSY + IERSL = 0 + GO TO (100, 100, 300, 400, 400), MITER + 100 CALL DGESL (WM(3), N, N, IWM(21), X, 0) + RETURN +C + 300 PHL0 = WM(2) + HL0 = H*EL0 + WM(2) = HL0 + IF (HL0 .EQ. PHL0) GO TO 330 + R = HL0/PHL0 + DO 320 I = 1,N + DI = 1.0D0 - R*(1.0D0 - 1.0D0/WM(I+2)) + IF (ABS(DI) .EQ. 0.0D0) GO TO 390 + 320 WM(I+2) = 1.0D0/DI + 330 DO 340 I = 1,N + 340 X(I) = WM(I+2)*X(I) + RETURN + 390 IERSL = 1 + RETURN +C + 400 ML = IWM(1) + MU = IWM(2) + MEBAND = 2*ML + MU + 1 + CALL DGBSL (WM(3), MEBAND, N, ML, MU, IWM(21), X, 0) + RETURN +C----------------------- END OF SUBROUTINE DSOLSY ---------------------- + END +*DECK DSRCOM + SUBROUTINE DSRCOM (RSAV, ISAV, JOB) +C***BEGIN PROLOGUE DSRCOM +C***SUBSIDIARY +C***PURPOSE Save/restore ODEPACK COMMON blocks. +C***TYPE DOUBLE PRECISION (SSRCOM-S, DSRCOM-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This routine saves or restores (depending on JOB) the contents of +C the COMMON block DLS001, which is used internally +C by one or more ODEPACK solvers. +C +C RSAV = real array of length 218 or more. +C ISAV = integer array of length 37 or more. +C JOB = flag indicating to save or restore the COMMON blocks: +C JOB = 1 if COMMON is to be saved (written to RSAV/ISAV) +C JOB = 2 if COMMON is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 921116 Deleted treatment of block /EH0001/. (ACH) +C 930801 Reduced Common block length by 2. (ACH) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced Common block length by 209+12. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C 031112 Added SAVE statement for data-loaded constants. +C***END PROLOGUE DSRCOM +C**End + INTEGER ISAV, JOB + INTEGER ILS + INTEGER I, LENILS, LENRLS + DOUBLE PRECISION RSAV, RLS + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS + COMMON /DLS001/ RLS(218), ILS(37) + DATA LENRLS/218/, LENILS/37/ +C +C***FIRST EXECUTABLE STATEMENT DSRCOM + IF (JOB .EQ. 2) GO TO 100 +C + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + RETURN +C----------------------- END OF SUBROUTINE DSRCOM ---------------------- + END +*DECK DSTODE + SUBROUTINE DSTODE (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, + 1 WM, IWM, F, JAC, PJAC, SLVS) +C***BEGIN PROLOGUE DSTODE +C***SUBSIDIARY +C***PURPOSE Performs one step of an ODEPACK integration. +C***TYPE DOUBLE PRECISION (SSTODE-S, DSTODE-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C DSTODE performs one step of the integration of an initial value +C problem for a system of ordinary differential equations. +C Note: DSTODE is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODE is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by h**j/factorial(j) +C (j = 0,1,...,NQ). on entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in Y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C Also used for input of YH(*,MAXORD+2) when JSTART = -1 +C and MAXORD .lt. the current order NQ. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in Y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C PJAC = name of routine to evaluate and preprocess Jacobian matrix +C and P = I - h*el0*JAC, if a chord method is being used. +C SLVS = name of routine to solve linear system in chord iteration. +C CCMAX = maximum relative change in h*el0 before PJAC is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size h to be used. +C HMXI = inverse of the maximum absolute value of h to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite hmax. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of h is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in PJAC or SLVS. +C A return with KFLAG = -1 or -2 means either +C abs(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C The values of CCMAX, H, HMIN, HMXI, TN, JSTART, KFLAG, MAXORD, +C MAXCOR, MSBP, MXNCF, METH, MITER, and N are communicated via COMMON. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED DCFODE, DVNORM +C***COMMON BLOCKS DLS001 +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C 010418 Reduced size of Common block /DLS001/. (ACH) +C 031105 Restored 'own' variables to Common block /DLS001/, to +C enable interrupt/restart feature. (ACH) +C***END PROLOGUE DSTODE +C**End + EXTERNAL F, JAC, PJAC, SLVS + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, + 1 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C +C***FIRST EXECUTABLE STATEMENT DSTODE + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set to 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + IPUP = MITER + IRET = 3 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal Triangle matrix. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C When RC differs from 1 by more than CCMAX, IPUP is set to MITER +C to force PJAC to be called, if a Jacobian is involved. +C In any case, PJAC is called at least every MSBP steps. +C----------------------------------------------------------------------- + 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +Cdir$ ivdep + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the R.M.S. norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, the matrix P = I - h*el(1)*J is reevaluated and +C preprocessed before starting the corrector iteration. IPUP is set +C to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (MITER .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DVNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + CALL SLVS (WM, IWM, Y, SAVF) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DVNORM (N, Y, EWT) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + Y(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M.gt.0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C----------------------------------------------------------------------- + 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) + IF (DCON .LE. 1.0D0) GO TO 450 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for +C the next try. Otherwise the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430 + ICF = 1 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +Cdir$ ivdep + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.25D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + DO 470 J = 1,L + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +Cdir$ ivdep + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C The largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, l, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- END OF SUBROUTINE DSTODE ---------------------- + END +*DECK DEWSET + SUBROUTINE DEWSET (N, ITOL, RTOL, ATOL, YCUR, EWT) +C***BEGIN PROLOGUE DEWSET +C***SUBSIDIARY +C***PURPOSE Set error weight vector. +C***TYPE DOUBLE PRECISION (SEWSET-S, DEWSET-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This subroutine sets the error weight vector EWT according to +C EWT(i) = RTOL(i)*ABS(YCUR(i)) + ATOL(i), i = 1,...,N, +C with the subscript on RTOL and/or ATOL possibly replaced by 1 above, +C depending on the value of ITOL. +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C***END PROLOGUE DEWSET +C**End + INTEGER N, ITOL + INTEGER I + DOUBLE PRECISION RTOL, ATOL, YCUR, EWT + DIMENSION RTOL(*), ATOL(*), YCUR(N), EWT(N) +C +C***FIRST EXECUTABLE STATEMENT DEWSET + GO TO (10, 20, 30, 40), ITOL + 10 CONTINUE + DO 15 I = 1,N + 15 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(1) + RETURN + 20 CONTINUE + DO 25 I = 1,N + 25 EWT(I) = RTOL(1)*ABS(YCUR(I)) + ATOL(I) + RETURN + 30 CONTINUE + DO 35 I = 1,N + 35 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(1) + RETURN + 40 CONTINUE + DO 45 I = 1,N + 45 EWT(I) = RTOL(I)*ABS(YCUR(I)) + ATOL(I) + RETURN +C----------------------- END OF SUBROUTINE DEWSET ---------------------- + END +*DECK DVNORM + DOUBLE PRECISION FUNCTION DVNORM (N, V, W) +C***BEGIN PROLOGUE DVNORM +C***SUBSIDIARY +C***PURPOSE Weighted root-mean-square vector norm. +C***TYPE DOUBLE PRECISION (SVNORM-S, DVNORM-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C This function routine computes the weighted root-mean-square norm +C of the vector of length N contained in the array V, with weights +C contained in the array W of length N: +C DVNORM = SQRT( (1/N) * SUM( V(i)*W(i) )**2 ) +C +C***SEE ALSO DLSODE +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791129 DATE WRITTEN +C 890501 Modified prologue to SLATEC/LDOC format. (FNF) +C 890503 Minor cosmetic changes. (FNF) +C 930809 Renamed to allow single/double precision versions. (ACH) +C***END PROLOGUE DVNORM +C**End + INTEGER N, I + DOUBLE PRECISION V, W, SUM + DIMENSION V(N), W(N) +C +C***FIRST EXECUTABLE STATEMENT DVNORM + SUM = 0.0D0 + DO 10 I = 1,N + 10 SUM = SUM + (V(I)*W(I))**2 + DVNORM = SQRT(SUM/N) + RETURN +C----------------------- END OF FUNCTION DVNORM ------------------------ + END +*DECK DIPREP + SUBROUTINE DIPREP (NEQ, Y, RWORK, IA, JA, IPFLAG, F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, IA, JA, IPFLAG + DOUBLE PRECISION Y, RWORK + DIMENSION NEQ(*), Y(*), RWORK(*), IA(*), JA(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMAX, LEWTN, LYHD, LYHN +C----------------------------------------------------------------------- +C This routine serves as an interface between the driver and +C Subroutine DPREP. It is called only if MITER is 1 or 2. +C Tasks performed here are: +C * call DPREP, +C * reset the required WM segment length LENWK, +C * move YH back to its final location (following WM in RWORK), +C * reset pointers for YH, SAVF, EWT, and ACOR, and +C * move EWT to its new position if ISTATE = 1. +C IPFLAG is an output error indication flag. IPFLAG = 0 if there was +C no trouble, and IPFLAG is the value of the DPREP error flag IPPER +C if there was trouble in Subroutine DPREP. +C----------------------------------------------------------------------- + IPFLAG = 0 +C Call DPREP to do matrix preprocessing operations. -------------------- + CALL DPREP (NEQ, Y, RWORK(LYH), RWORK(LSAVF), RWORK(LEWT), + 1 RWORK(LACOR), IA, JA, RWORK(LWM), RWORK(LWM), IPFLAG, F, JAC) + LENWK = MAX(LREQ,LWMIN) + IF (IPFLAG .LT. 0) RETURN +C If DPREP was successful, move YH to end of required space for WM. ---- + LYHN = LWM + LENWK + IF (LYHN .GT. LYH) RETURN + LYHD = LYH - LYHN + IF (LYHD .EQ. 0) GO TO 20 + IMAX = LYHN - 1 + LENYHM + DO 10 I = LYHN,IMAX + 10 RWORK(I) = RWORK(I+LYHD) + LYH = LYHN +C Reset pointers for SAVF, EWT, and ACOR. ------------------------------ + 20 LSAVF = LYH + LENYH + LEWTN = LSAVF + N + LACOR = LEWTN + N + IF (ISTATC .EQ. 3) GO TO 40 +C If ISTATE = 1, move EWT (left) to its new position. ------------------ + IF (LEWTN .GT. LEWT) RETURN + DO 30 I = 1,N + 30 RWORK(I+LEWTN-1) = RWORK(I+LEWT-1) + 40 LEWT = LEWTN + RETURN +C----------------------- End of Subroutine DIPREP ---------------------- + END +*DECK DPREP + SUBROUTINE DPREP (NEQ, Y, YH, SAVF, EWT, FTEM, IA, JA, + 1 WK, IWK, IPPER, F, JAC) + EXTERNAL F,JAC + INTEGER NEQ, IA, JA, IWK, IPPER + DOUBLE PRECISION Y, YH, SAVF, EWT, FTEM, WK + DIMENSION NEQ(*), Y(*), YH(*), SAVF(*), EWT(*), FTEM(*), + 1 IA(*), JA(*), WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IBR, IER, IPIL, IPIU, IPTT1, IPTT2, J, JFOUND, K, + 1 KNEW, KMAX, KMIN, LDIF, LENIGP, LIWK, MAXG, NP1, NZSUT + DOUBLE PRECISION DQ, DYJ, ERWT, FAC, YJ +C----------------------------------------------------------------------- +C This routine performs preprocessing related to the sparse linear +C systems that must be solved if MITER = 1 or 2. +C The operations that are performed here are: +C * compute sparseness structure of Jacobian according to MOSS, +C * compute grouping of column indices (MITER = 2), +C * compute a new ordering of rows and columns of the matrix, +C * reorder JA corresponding to the new ordering, +C * perform a symbolic LU factorization of the matrix, and +C * set pointers for segments of the IWK/WK array. +C In addition to variables described previously, DPREP uses the +C following for communication: +C YH = the history array. Only the first column, containing the +C current Y vector, is used. Used only if MOSS .ne. 0. +C SAVF = a work array of length NEQ, used only if MOSS .ne. 0. +C EWT = array of length NEQ containing (inverted) error weights. +C Used only if MOSS = 2 or if ISTATE = MOSS = 1. +C FTEM = a work array of length NEQ, identical to ACOR in the driver, +C used only if MOSS = 2. +C WK = a real work array of length LENWK, identical to WM in +C the driver. +C IWK = integer work array, assumed to occupy the same space as WK. +C LENWK = the length of the work arrays WK and IWK. +C ISTATC = a copy of the driver input argument ISTATE (= 1 on the +C first call, = 3 on a continuation call). +C IYS = flag value from ODRV or CDRV. +C IPPER = output error flag with the following values and meanings: +C 0 no error. +C -1 insufficient storage for internal structure pointers. +C -2 insufficient storage for JGROUP. +C -3 insufficient storage for ODRV. +C -4 other error flag from ODRV (should never occur). +C -5 insufficient storage for CDRV. +C -6 other error flag from CDRV. +C----------------------------------------------------------------------- + IBIAN = LRAT*2 + IPIAN = IBIAN + 1 + NP1 = N + 1 + IPJAN = IPIAN + NP1 + IBJAN = IPJAN - 1 + LIWK = LENWK*LRAT + IF (IPJAN+N-1 .GT. LIWK) GO TO 210 + IF (MOSS .EQ. 0) GO TO 30 +C + IF (ISTATC .EQ. 3) GO TO 20 +C ISTATE = 1 and MOSS .ne. 0. Perturb Y for structure determination. -- + DO 10 I = 1,N + ERWT = 1.0D0/EWT(I) + FAC = 1.0D0 + 1.0D0/(I + 1.0D0) + Y(I) = Y(I) + FAC*SIGN(ERWT,Y(I)) + 10 CONTINUE + GO TO (70, 100), MOSS +C + 20 CONTINUE +C ISTATE = 3 and MOSS .ne. 0. Load Y from YH(*,1). -------------------- + DO 25 I = 1,N + 25 Y(I) = YH(I) + GO TO (70, 100), MOSS +C +C MOSS = 0. Process user's IA,JA. Add diagonal entries if necessary. - + 30 KNEW = IPJAN + KMIN = IA(1) + IWK(IPIAN) = 1 + DO 60 J = 1,N + JFOUND = 0 + KMAX = IA(J+1) - 1 + IF (KMIN .GT. KMAX) GO TO 45 + DO 40 K = KMIN,KMAX + I = JA(K) + IF (I .EQ. J) JFOUND = 1 + IF (KNEW .GT. LIWK) GO TO 210 + IWK(KNEW) = I + KNEW = KNEW + 1 + 40 CONTINUE + IF (JFOUND .EQ. 1) GO TO 50 + 45 IF (KNEW .GT. LIWK) GO TO 210 + IWK(KNEW) = J + KNEW = KNEW + 1 + 50 IWK(IPIAN+J) = KNEW + 1 - IPJAN + KMIN = KMAX + 1 + 60 CONTINUE + GO TO 140 +C +C MOSS = 1. Compute structure from user-supplied Jacobian routine JAC. + 70 CONTINUE +C A dummy call to F allows user to create temporaries for use in JAC. -- + CALL F (NEQ, TN, Y, SAVF) + K = IPJAN + IWK(IPIAN) = 1 + DO 90 J = 1,N + IF (K .GT. LIWK) GO TO 210 + IWK(K) = J + K = K + 1 + DO 75 I = 1,N + 75 SAVF(I) = 0.0D0 + CALL JAC (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), SAVF) + DO 80 I = 1,N + IF (ABS(SAVF(I)) .LE. SETH) GO TO 80 + IF (I .EQ. J) GO TO 80 + IF (K .GT. LIWK) GO TO 210 + IWK(K) = I + K = K + 1 + 80 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 90 CONTINUE + GO TO 140 +C +C MOSS = 2. Compute structure from results of N + 1 calls to F. ------- + 100 K = IPJAN + IWK(IPIAN) = 1 + CALL F (NEQ, TN, Y, SAVF) + DO 120 J = 1,N + IF (K .GT. LIWK) GO TO 210 + IWK(K) = J + K = K + 1 + YJ = Y(J) + ERWT = 1.0D0/EWT(J) + DYJ = SIGN(ERWT,YJ) + Y(J) = YJ + DYJ + CALL F (NEQ, TN, Y, FTEM) + Y(J) = YJ + DO 110 I = 1,N + DQ = (FTEM(I) - SAVF(I))/DYJ + IF (ABS(DQ) .LE. SETH) GO TO 110 + IF (I .EQ. J) GO TO 110 + IF (K .GT. LIWK) GO TO 210 + IWK(K) = I + K = K + 1 + 110 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 120 CONTINUE +C + 140 CONTINUE + IF (MOSS .EQ. 0 .OR. ISTATC .NE. 1) GO TO 150 +C If ISTATE = 1 and MOSS .ne. 0, restore Y from YH. -------------------- + DO 145 I = 1,N + 145 Y(I) = YH(I) + 150 NNZ = IWK(IPIAN+N) - 1 + LENIGP = 0 + IPIGP = IPJAN + NNZ + IF (MITER .NE. 2) GO TO 160 +C +C Compute grouping of column indices (MITER = 2). ---------------------- + MAXG = NP1 + IPJGP = IPJAN + NNZ + IBJGP = IPJGP - 1 + IPIGP = IPJGP + N + IPTT1 = IPIGP + NP1 + IPTT2 = IPTT1 + N + LREQ = IPTT2 + N - 1 + IF (LREQ .GT. LIWK) GO TO 220 + CALL JGROUP (N, IWK(IPIAN), IWK(IPJAN), MAXG, NGP, IWK(IPIGP), + 1 IWK(IPJGP), IWK(IPTT1), IWK(IPTT2), IER) + IF (IER .NE. 0) GO TO 220 + LENIGP = NGP + 1 +C +C Compute new ordering of rows/columns of Jacobian. -------------------- + 160 IPR = IPIGP + LENIGP + IPC = IPR + IPIC = IPC + N + IPISP = IPIC + N + IPRSP = (IPISP - 2)/LRAT + 2 + IESP = LENWK + 1 - IPRSP + IF (IESP .LT. 0) GO TO 230 + IBR = IPR - 1 + DO 170 I = 1,N + 170 IWK(IBR+I) = I + NSP = LIWK + 1 - IPISP + CALL ODRV (N, IWK(IPIAN), IWK(IPJAN), WK, IWK(IPR), IWK(IPIC), + 1 NSP, IWK(IPISP), 1, IYS) + IF (IYS .EQ. 11*N+1) GO TO 240 + IF (IYS .NE. 0) GO TO 230 +C +C Reorder JAN and do symbolic LU factorization of matrix. -------------- + IPA = LENWK + 1 - NNZ + NSP = IPA - IPRSP + LREQ = MAX(12*N/LRAT, 6*N/LRAT+2*N+NNZ) + 3 + LREQ = LREQ + IPRSP - 1 + NNZ + IF (LREQ .GT. LENWK) GO TO 250 + IBA = IPA - 1 + DO 180 I = 1,NNZ + 180 WK(IBA+I) = 0.0D0 + IPISP = LRAT*(IPRSP - 1) + 1 + CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),WK(IPA),WK(IPA),NSP,IWK(IPISP),WK(IPRSP),IESP,5,IYS) + LREQ = LENWK - IESP + IF (IYS .EQ. 10*N+1) GO TO 250 + IF (IYS .NE. 0) GO TO 260 + IPIL = IPISP + IPIU = IPIL + 2*N + 1 + NZU = IWK(IPIL+N) - IWK(IPIL) + NZL = IWK(IPIU+N) - IWK(IPIU) + IF (LRAT .GT. 1) GO TO 190 + CALL ADJLR (N, IWK(IPISP), LDIF) + LREQ = LREQ + LDIF + 190 CONTINUE + IF (LRAT .EQ. 2 .AND. NNZ .EQ. N) LREQ = LREQ + 1 + NSP = NSP + LREQ - LENWK + IPA = LREQ + 1 - NNZ + IBA = IPA - 1 + IPPER = 0 + RETURN +C + 210 IPPER = -1 + LREQ = 2 + (2*N + 1)/LRAT + LREQ = MAX(LENWK+1,LREQ) + RETURN +C + 220 IPPER = -2 + LREQ = (LREQ - 1)/LRAT + 1 + RETURN +C + 230 IPPER = -3 + CALL CNTNZU (N, IWK(IPIAN), IWK(IPJAN), NZSUT) + LREQ = LENWK - IESP + (3*N + 4*NZSUT - 1)/LRAT + 1 + RETURN +C + 240 IPPER = -4 + RETURN +C + 250 IPPER = -5 + RETURN +C + 260 IPPER = -6 + LREQ = LENWK + RETURN +C----------------------- End of Subroutine DPREP ----------------------- + END +*DECK JGROUP + SUBROUTINE JGROUP (N,IA,JA,MAXG,NGRP,IGP,JGP,INCL,JDONE,IER) + INTEGER N, IA, JA, MAXG, NGRP, IGP, JGP, INCL, JDONE, IER + DIMENSION IA(*), JA(*), IGP(*), JGP(*), INCL(*), JDONE(*) +C----------------------------------------------------------------------- +C This subroutine constructs groupings of the column indices of +C the Jacobian matrix, used in the numerical evaluation of the +C Jacobian by finite differences. +C +C Input: +C N = the order of the matrix. +C IA,JA = sparse structure descriptors of the matrix by rows. +C MAXG = length of available storage in the IGP array. +C +C Output: +C NGRP = number of groups. +C JGP = array of length N containing the column indices by groups. +C IGP = pointer array of length NGRP + 1 to the locations in JGP +C of the beginning of each group. +C IER = error indicator. IER = 0 if no error occurred, or 1 if +C MAXG was insufficient. +C +C INCL and JDONE are working arrays of length N. +C----------------------------------------------------------------------- + INTEGER I, J, K, KMIN, KMAX, NCOL, NG +C + IER = 0 + DO 10 J = 1,N + 10 JDONE(J) = 0 + NCOL = 1 + DO 60 NG = 1,MAXG + IGP(NG) = NCOL + DO 20 I = 1,N + 20 INCL(I) = 0 + DO 50 J = 1,N +C Reject column J if it is already in a group.-------------------------- + IF (JDONE(J) .EQ. 1) GO TO 50 + KMIN = IA(J) + KMAX = IA(J+1) - 1 + DO 30 K = KMIN,KMAX +C Reject column J if it overlaps any column already in this group.------ + I = JA(K) + IF (INCL(I) .EQ. 1) GO TO 50 + 30 CONTINUE +C Accept column J into group NG.---------------------------------------- + JGP(NCOL) = J + NCOL = NCOL + 1 + JDONE(J) = 1 + DO 40 K = KMIN,KMAX + I = JA(K) + 40 INCL(I) = 1 + 50 CONTINUE +C Stop if this group is empty (grouping is complete).------------------- + IF (NCOL .EQ. IGP(NG)) GO TO 70 + 60 CONTINUE +C Error return if not all columns were chosen (MAXG too small).--------- + IF (NCOL .LE. N) GO TO 80 + NG = MAXG + 70 NGRP = NG - 1 + RETURN + 80 IER = 1 + RETURN +C----------------------- End of Subroutine JGROUP ---------------------- + END +*DECK ADJLR + SUBROUTINE ADJLR (N, ISP, LDIF) + INTEGER N, ISP, LDIF + DIMENSION ISP(*) +C----------------------------------------------------------------------- +C This routine computes an adjustment, LDIF, to the required +C integer storage space in IWK (sparse matrix work space). +C It is called only if the word length ratio is LRAT = 1. +C This is to account for the possibility that the symbolic LU phase +C may require more storage than the numerical LU and solution phases. +C----------------------------------------------------------------------- + INTEGER IP, JLMAX, JUMAX, LNFC, LSFC, NZLU +C + IP = 2*N + 1 +C Get JLMAX = IJL(N) and JUMAX = IJU(N) (sizes of JL and JU). ---------- + JLMAX = ISP(IP) + JUMAX = ISP(IP+IP) +C NZLU = (size of L) + (size of U) = (IL(N+1)-IL(1)) + (IU(N+1)-IU(1)). + NZLU = ISP(N+1) - ISP(1) + ISP(IP+N+1) - ISP(IP+1) + LSFC = 12*N + 3 + 2*MAX(JLMAX,JUMAX) + LNFC = 9*N + 2 + JLMAX + JUMAX + NZLU + LDIF = MAX(0, LSFC - LNFC) + RETURN +C----------------------- End of Subroutine ADJLR ----------------------- + END +*DECK CNTNZU + SUBROUTINE CNTNZU (N, IA, JA, NZSUT) + INTEGER N, IA, JA, NZSUT + DIMENSION IA(*), JA(*) +C----------------------------------------------------------------------- +C This routine counts the number of nonzero elements in the strict +C upper triangle of the matrix M + M(transpose), where the sparsity +C structure of M is given by pointer arrays IA and JA. +C This is needed to compute the storage requirements for the +C sparse matrix reordering operation in ODRV. +C----------------------------------------------------------------------- + INTEGER II, JJ, J, JMIN, JMAX, K, KMIN, KMAX, NUM +C + NUM = 0 + DO 50 II = 1,N + JMIN = IA(II) + JMAX = IA(II+1) - 1 + IF (JMIN .GT. JMAX) GO TO 50 + DO 40 J = JMIN,JMAX + IF (JA(J) - II) 10, 40, 30 + 10 JJ =JA(J) + KMIN = IA(JJ) + KMAX = IA(JJ+1) - 1 + IF (KMIN .GT. KMAX) GO TO 30 + DO 20 K = KMIN,KMAX + IF (JA(K) .EQ. II) GO TO 40 + 20 CONTINUE + 30 NUM = NUM + 1 + 40 CONTINUE + 50 CONTINUE + NZSUT = NUM + RETURN +C----------------------- End of Subroutine CNTNZU ---------------------- + END +*DECK DPRJS + SUBROUTINE DPRJS (NEQ,Y,YH,NYH,EWT,FTEM,SAVF,WK,IWK,F,JAC) + EXTERNAL F,JAC + INTEGER NEQ, NYH, IWK + DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WK + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), + 1 WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ CON0, CONMIN, CCMXJ, PSMALL, RBIG, SETH, + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMUL, J, JJ, JOK, JMAX, JMIN, K, KMAX, KMIN, NG + DOUBLE PRECISION CON, DI, FAC, HL0, PIJ, R, R0, RCON, RCONT, + 1 SRUR, DVNORM +C----------------------------------------------------------------------- +C DPRJS is called to compute and process the matrix +C P = I - H*EL(1)*J , where J is an approximation to the Jacobian. +C J is computed by columns, either by the user-supplied routine JAC +C if MITER = 1, or by finite differencing if MITER = 2. +C if MITER = 3, a diagonal approximation to J is used. +C if MITER = 1 or 2, and if the existing value of the Jacobian +C (as contained in P) is considered acceptable, then a new value of +C P is reconstructed from the old value. In any case, when MITER +C is 1 or 2, the P matrix is subjected to LU decomposition in CDRV. +C P and its LU decomposition are stored (separately) in WK. +C +C In addition to variables described previously, communication +C with DPRJS uses the following: +C Y = array containing predicted values on entry. +C FTEM = work array of length N (ACOR in DSTODE). +C SAVF = array containing f evaluated at predicted y. +C WK = real work space for matrices. On output it contains the +C inverse diagonal matrix if MITER = 3, and P and its sparse +C LU decomposition if MITER is 1 or 2. +C Storage of matrix elements starts at WK(3). +C WK also contains the following matrix-related data: +C WK(1) = SQRT(UROUND), used in numerical Jacobian increments. +C WK(2) = H*EL0, saved for later use if MITER = 3. +C IWK = integer work space for matrix-related data, assumed to +C be equivalenced to WK. In addition, WK(IPRSP) and IWK(IPISP) +C are assumed to have identical locations. +C EL0 = EL(1) (input). +C IERPJ = output error flag (in Common). +C = 0 if no error. +C = 1 if zero pivot found in CDRV. +C = 2 if a singular matrix arose with MITER = 3. +C = -1 if insufficient storage for CDRV (should not occur here). +C = -2 if other error found in CDRV (should not occur here). +C JCUR = output flag showing status of (approximate) Jacobian matrix: +C = 1 to indicate that the Jacobian is now current, or +C = 0 to indicate that a saved value was used. +C This routine also uses other variables in Common. +C----------------------------------------------------------------------- + HL0 = H*EL0 + CON = -HL0 + IF (MITER .EQ. 3) GO TO 300 +C See whether J should be reevaluated (JOK = 0) or not (JOK = 1). ------ + JOK = 1 + IF (NST .EQ. 0 .OR. NST .GE. NSLJ+MSBJ) JOK = 0 + IF (ICF .EQ. 1 .AND. ABS(RC - 1.0D0) .LT. CCMXJ) JOK = 0 + IF (ICF .EQ. 2) JOK = 0 + IF (JOK .EQ. 1) GO TO 250 +C +C MITER = 1 or 2, and the Jacobian is to be reevaluated. --------------- + 20 JCUR = 1 + NJE = NJE + 1 + NSLJ = NST + IPLOST = 0 + CONMIN = ABS(CON) + GO TO (100, 200), MITER +C +C If MITER = 1, call JAC, multiply by scalar, and add identity. -------- + 100 CONTINUE + KMIN = IWK(IPIAN) + DO 130 J = 1, N + KMAX = IWK(IPIAN+J) - 1 + DO 110 I = 1,N + 110 FTEM(I) = 0.0D0 + CALL JAC (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), FTEM) + DO 120 K = KMIN, KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = FTEM(I)*CON + IF (I .EQ. J) WK(IBA+K) = WK(IBA+K) + 1.0D0 + 120 CONTINUE + KMIN = KMAX + 1 + 130 CONTINUE + GO TO 290 +C +C If MITER = 2, make NGP calls to F to approximate J and P. ------------ + 200 CONTINUE + FAC = DVNORM(N, SAVF, EWT) + R0 = 1000.0D0 * ABS(H) * UROUND * N * FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + SRUR = WK(1) + JMIN = IWK(IPIGP) + DO 240 NG = 1,NGP + JMAX = IWK(IPIGP+NG) - 1 + DO 210 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + R = MAX(SRUR*ABS(Y(JJ)),R0/EWT(JJ)) + 210 Y(JJ) = Y(JJ) + R + CALL F (NEQ, TN, Y, FTEM) + DO 230 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + Y(JJ) = YH(JJ,1) + R = MAX(SRUR*ABS(Y(JJ)),R0/EWT(JJ)) + FAC = -HL0/R + KMIN =IWK(IBIAN+JJ) + KMAX =IWK(IBIAN+JJ+1) - 1 + DO 220 K = KMIN,KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = (FTEM(I) - SAVF(I))*FAC + IF (I .EQ. JJ) WK(IBA+K) = WK(IBA+K) + 1.0D0 + 220 CONTINUE + 230 CONTINUE + JMIN = JMAX + 1 + 240 CONTINUE + NFE = NFE + NGP + GO TO 290 +C +C If JOK = 1, reconstruct new P from old P. ---------------------------- + 250 JCUR = 0 + RCON = CON/CON0 + RCONT = ABS(CON)/CONMIN + IF (RCONT .GT. RBIG .AND. IPLOST .EQ. 1) GO TO 20 + KMIN = IWK(IPIAN) + DO 275 J = 1,N + KMAX = IWK(IPIAN+J) - 1 + DO 270 K = KMIN,KMAX + I = IWK(IBJAN+K) + PIJ = WK(IBA+K) + IF (I .NE. J) GO TO 260 + PIJ = PIJ - 1.0D0 + IF (ABS(PIJ) .GE. PSMALL) GO TO 260 + IPLOST = 1 + CONMIN = MIN(ABS(CON0),CONMIN) + 260 PIJ = PIJ*RCON + IF (I .EQ. J) PIJ = PIJ + 1.0D0 + WK(IBA+K) = PIJ + 270 CONTINUE + KMIN = KMAX + 1 + 275 CONTINUE +C +C Do numerical factorization of P matrix. ------------------------------ + 290 NLU = NLU + 1 + CON0 = CON + IERPJ = 0 + DO 295 I = 1,N + 295 FTEM(I) = 0.0D0 + CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),FTEM,FTEM,NSP,IWK(IPISP),WK(IPRSP),IESP,2,IYS) + IF (IYS .EQ. 0) RETURN + IMUL = (IYS - 1)/N + IERPJ = -2 + IF (IMUL .EQ. 8) IERPJ = 1 + IF (IMUL .EQ. 10) IERPJ = -1 + RETURN +C +C If MITER = 3, construct a diagonal approximation to J and P. --------- + 300 CONTINUE + JCUR = 1 + NJE = NJE + 1 + WK(2) = HL0 + IERPJ = 0 + R = EL0*0.1D0 + DO 310 I = 1,N + 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2)) + CALL F (NEQ, TN, Y, WK(3)) + NFE = NFE + 1 + DO 320 I = 1,N + R0 = H*SAVF(I) - YH(I,2) + DI = 0.1D0*R0 - H*(WK(I+2) - SAVF(I)) + WK(I+2) = 1.0D0 + IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320 + IF (ABS(DI) .EQ. 0.0D0) GO TO 330 + WK(I+2) = 0.1D0*R0/DI + 320 CONTINUE + RETURN + 330 IERPJ = 2 + RETURN +C----------------------- End of Subroutine DPRJS ----------------------- + END +*DECK DSOLSS + SUBROUTINE DSOLSS (WK, IWK, X, TEM) + INTEGER IWK + DOUBLE PRECISION WK, X, TEM + DIMENSION WK(*), IWK(*), X(*), TEM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I + DOUBLE PRECISION DI, HL0, PHL0, R +C----------------------------------------------------------------------- +C This routine manages the solution of the linear system arising from +C a chord iteration. It is called if MITER .ne. 0. +C If MITER is 1 or 2, it calls CDRV to accomplish this. +C If MITER = 3 it updates the coefficient H*EL0 in the diagonal +C matrix, and then computes the solution. +C communication with DSOLSS uses the following variables: +C WK = real work space containing the inverse diagonal matrix if +C MITER = 3 and the LU decomposition of the matrix otherwise. +C Storage of matrix elements starts at WK(3). +C WK also contains the following matrix-related data: +C WK(1) = SQRT(UROUND) (not used here), +C WK(2) = HL0, the previous value of H*EL0, used if MITER = 3. +C IWK = integer work space for matrix-related data, assumed to +C be equivalenced to WK. In addition, WK(IPRSP) and IWK(IPISP) +C are assumed to have identical locations. +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C TEM = vector of work space of length N, not used in this version. +C IERSL = output flag (in Common). +C IERSL = 0 if no trouble occurred. +C IERSL = -1 if CDRV returned an error flag (MITER = 1 or 2). +C This should never occur and is considered fatal. +C IERSL = 1 if a singular matrix arose with MITER = 3. +C This routine also uses other variables in Common. +C----------------------------------------------------------------------- + IERSL = 0 + GO TO (100, 100, 300), MITER + 100 CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),X,X,NSP,IWK(IPISP),WK(IPRSP),IESP,4,IERSL) + IF (IERSL .NE. 0) IERSL = -1 + RETURN +C + 300 PHL0 = WK(2) + HL0 = H*EL0 + WK(2) = HL0 + IF (HL0 .EQ. PHL0) GO TO 330 + R = HL0/PHL0 + DO 320 I = 1,N + DI = 1.0D0 - R*(1.0D0 - 1.0D0/WK(I+2)) + IF (ABS(DI) .EQ. 0.0D0) GO TO 390 + 320 WK(I+2) = 1.0D0/DI + 330 DO 340 I = 1,N + 340 X(I) = WK(I+2)*X(I) + RETURN + 390 IERSL = 1 + RETURN +C +C----------------------- End of Subroutine DSOLSS ---------------------- + END +*DECK DSRCMS + SUBROUTINE DSRCMS (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLSS01, which are used +C internally by one or more ODEPACK solvers. +C +C RSAV = real array of length 224 or more. +C ISAV = integer array of length 71 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSS + INTEGER I, LENILS, LENISS, LENRLS, LENRSS + DOUBLE PRECISION RSAV, RLS, RLSS + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRSS, LENISS + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLSS01/ RLSS(6), ILSS(34) + DATA LENRLS/218/, LENILS/37/, LENRSS/6/, LENISS/34/ +C + IF (JOB .EQ. 2) GO TO 100 + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 15 I = 1,LENRSS + 15 RSAV(LENRLS+I) = RLSS(I) +C + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + DO 25 I = 1,LENISS + 25 ISAV(LENILS+I) = ILSS(I) +C + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 115 I = 1,LENRSS + 115 RLSS(I) = RSAV(LENRLS+I) +C + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + DO 125 I = 1,LENISS + 125 ILSS(I) = ISAV(LENILS+I) +C + RETURN +C----------------------- End of Subroutine DSRCMS ---------------------- + END +*DECK ODRV + subroutine odrv + * (n, ia,ja,a, p,ip, nsp,isp, path, flag) +c 5/2/83 +c*********************************************************************** +c odrv -- driver for sparse matrix reordering routines +c*********************************************************************** +c +c description +c +c odrv finds a minimum degree ordering of the rows and columns +c of a matrix m stored in (ia,ja,a) format (see below). for the +c reordered matrix, the work and storage required to perform +c gaussian elimination is (usually) significantly less. +c +c note.. odrv and its subordinate routines have been modified to +c compute orderings for general matrices, not necessarily having any +c symmetry. the miminum degree ordering is computed for the +c structure of the symmetric matrix m + m-transpose. +c modifications to the original odrv module have been made in +c the coding in subroutine mdi, and in the initial comments in +c subroutines odrv and md. +c +c if only the nonzero entries in the upper triangle of m are being +c stored, then odrv symmetrically reorders (ia,ja,a), (optionally) +c with the diagonal entries placed first in each row. this is to +c ensure that if m(i,j) will be in the upper triangle of m with +c respect to the new ordering, then m(i,j) is stored in row i (and +c thus m(j,i) is not stored), whereas if m(i,j) will be in the +c strict lower triangle of m, then m(j,i) is stored in row j (and +c thus m(i,j) is not stored). +c +c +c storage of sparse matrices +c +c the nonzero entries of the matrix m are stored row-by-row in the +c array a. to identify the individual nonzero entries in each row, +c we need to know in which column each entry lies. these column +c indices are stored in the array ja. i.e., if a(k) = m(i,j), then +c ja(k) = j. to identify the individual rows, we need to know where +c each row starts. these row pointers are stored in the array ia. +c i.e., if m(i,j) is the first nonzero entry (stored) in the i-th row +c and a(k) = m(i,j), then ia(i) = k. moreover, ia(n+1) points to +c the first location following the last element in the last row. +c thus, the number of entries in the i-th row is ia(i+1) - ia(i), +c the nonzero entries in the i-th row are stored consecutively in +c +c a(ia(i)), a(ia(i)+1), ..., a(ia(i+1)-1), +c +c and the corresponding column indices are stored consecutively in +c +c ja(ia(i)), ja(ia(i)+1), ..., ja(ia(i+1)-1). +c +c when the coefficient matrix is symmetric, only the nonzero entries +c in the upper triangle need be stored. for example, the matrix +c +c ( 1 0 2 3 0 ) +c ( 0 4 0 0 0 ) +c m = ( 2 0 5 6 0 ) +c ( 3 0 6 7 8 ) +c ( 0 0 0 8 9 ) +c +c could be stored as +c +c - 1 2 3 4 5 6 7 8 9 10 11 12 13 +c ---+-------------------------------------- +c ia - 1 4 5 8 12 14 +c ja - 1 3 4 2 1 3 4 1 3 4 5 4 5 +c a - 1 2 3 4 2 5 6 3 6 7 8 8 9 +c +c or (symmetrically) as +c +c - 1 2 3 4 5 6 7 8 9 +c ---+-------------------------- +c ia - 1 4 5 7 9 10 +c ja - 1 3 4 2 3 4 4 5 5 +c a - 1 2 3 4 5 6 7 8 9 . +c +c +c parameters +c +c n - order of the matrix +c +c ia - integer one-dimensional array containing pointers to delimit +c rows in ja and a. dimension = n+1 +c +c ja - integer one-dimensional array containing the column indices +c corresponding to the elements of a. dimension = number of +c nonzero entries in (the upper triangle of) m +c +c a - real one-dimensional array containing the nonzero entries in +c (the upper triangle of) m, stored by rows. dimension = +c number of nonzero entries in (the upper triangle of) m +c +c p - integer one-dimensional array used to return the permutation +c of the rows and columns of m corresponding to the minimum +c degree ordering. dimension = n +c +c ip - integer one-dimensional array used to return the inverse of +c the permutation returned in p. dimension = n +c +c nsp - declared dimension of the one-dimensional array isp. nsp +c must be at least 3n+4k, where k is the number of nonzeroes +c in the strict upper triangle of m +c +c isp - integer one-dimensional array used for working storage. +c dimension = nsp +c +c path - integer path specification. values and their meanings are - +c 1 find minimum degree ordering only +c 2 find minimum degree ordering and reorder symmetrically +c stored matrix (used when only the nonzero entries in +c the upper triangle of m are being stored) +c 3 reorder symmetrically stored matrix as specified by +c input permutation (used when an ordering has already +c been determined and only the nonzero entries in the +c upper triangle of m are being stored) +c 4 same as 2 but put diagonal entries at start of each row +c 5 same as 3 but put diagonal entries at start of each row +c +c flag - integer error flag. values and their meanings are - +c 0 no errors detected +c 9n+k insufficient storage in md +c 10n+1 insufficient storage in odrv +c 11n+1 illegal path specification +c +c +c conversion from real to double precision +c +c change the real declarations in odrv and sro to double precision +c declarations. +c +c----------------------------------------------------------------------- +c + integer ia(*), ja(*), p(*), ip(*), isp(*), path, flag, + * v, l, head, tmp, q +c... real a(*) + double precision a(*) + logical dflag +c +c----initialize error flag and validate path specification + flag = 0 + if (path.lt.1 .or. 5.lt.path) go to 111 +c +c----allocate storage and find minimum degree ordering + if ((path-1) * (path-2) * (path-4) .ne. 0) go to 1 + max = (nsp-n)/2 + v = 1 + l = v + max + head = l + max + next = head + n + if (max.lt.n) go to 110 +c + call md + * (n, ia,ja, max,isp(v),isp(l), isp(head),p,ip, isp(v), flag) + if (flag.ne.0) go to 100 +c +c----allocate storage and symmetrically reorder matrix + 1 if ((path-2) * (path-3) * (path-4) * (path-5) .ne. 0) go to 2 + tmp = (nsp+1) - n + q = tmp - (ia(n+1)-1) + if (q.lt.1) go to 110 +c + dflag = path.eq.4 .or. path.eq.5 + call sro + * (n, ip, ia, ja, a, isp(tmp), isp(q), dflag) +c + 2 return +c +c ** error -- error detected in md + 100 return +c ** error -- insufficient storage + 110 flag = 10*n + 1 + return +c ** error -- illegal path specified + 111 flag = 11*n + 1 + return + end + subroutine md + * (n, ia,ja, max, v,l, head,last,next, mark, flag) +c*********************************************************************** +c md -- minimum degree algorithm (based on element model) +c*********************************************************************** +c +c description +c +c md finds a minimum degree ordering of the rows and columns of a +c general sparse matrix m stored in (ia,ja,a) format. +c when the structure of m is nonsymmetric, the ordering is that +c obtained for the symmetric matrix m + m-transpose. +c +c +c additional parameters +c +c max - declared dimension of the one-dimensional arrays v and l. +c max must be at least n+2k, where k is the number of +c nonzeroes in the strict upper triangle of m + m-transpose +c +c v - integer one-dimensional work array. dimension = max +c +c l - integer one-dimensional work array. dimension = max +c +c head - integer one-dimensional work array. dimension = n +c +c last - integer one-dimensional array used to return the permutation +c of the rows and columns of m corresponding to the minimum +c degree ordering. dimension = n +c +c next - integer one-dimensional array used to return the inverse of +c the permutation returned in last. dimension = n +c +c mark - integer one-dimensional work array (may be the same as v). +c dimension = n +c +c flag - integer error flag. values and their meanings are - +c 0 no errors detected +c 9n+k insufficient storage in md +c +c +c definitions of internal parameters +c +c ---------+--------------------------------------------------------- +c v(s) - value field of list entry +c ---------+--------------------------------------------------------- +c l(s) - link field of list entry (0 =) end of list) +c ---------+--------------------------------------------------------- +c l(vi) - pointer to element list of uneliminated vertex vi +c ---------+--------------------------------------------------------- +c l(ej) - pointer to boundary list of active element ej +c ---------+--------------------------------------------------------- +c head(d) - vj =) vj head of d-list d +c - 0 =) no vertex in d-list d +c +c +c - vi uneliminated vertex +c - vi in ek - vi not in ek +c ---------+-----------------------------+--------------------------- +c next(vi) - undefined but nonnegative - vj =) vj next in d-list +c - - 0 =) vi tail of d-list +c ---------+-----------------------------+--------------------------- +c last(vi) - (not set until mdp) - -d =) vi head of d-list d +c --vk =) compute degree - vj =) vj last in d-list +c - ej =) vi prototype of ej - 0 =) vi not in any d-list +c - 0 =) do not compute degree - +c ---------+-----------------------------+--------------------------- +c mark(vi) - mark(vk) - nonneg. tag .lt. mark(vk) +c +c +c - vi eliminated vertex +c - ei active element - otherwise +c ---------+-----------------------------+--------------------------- +c next(vi) - -j =) vi was j-th vertex - -j =) vi was j-th vertex +c - to be eliminated - to be eliminated +c ---------+-----------------------------+--------------------------- +c last(vi) - m =) size of ei = m - undefined +c ---------+-----------------------------+--------------------------- +c mark(vi) - -m =) overlap count of ei - undefined +c - with ek = m - +c - otherwise nonnegative tag - +c - .lt. mark(vk) - +c +c----------------------------------------------------------------------- +c + integer ia(*), ja(*), v(*), l(*), head(*), last(*), next(*), + * mark(*), flag, tag, dmin, vk,ek, tail + equivalence (vk,ek) +c +c----initialization + tag = 0 + call mdi + * (n, ia,ja, max,v,l, head,last,next, mark,tag, flag) + if (flag.ne.0) return +c + k = 0 + dmin = 1 +c +c----while k .lt. n do + 1 if (k.ge.n) go to 4 +c +c------search for vertex of minimum degree + 2 if (head(dmin).gt.0) go to 3 + dmin = dmin + 1 + go to 2 +c +c------remove vertex vk of minimum degree from degree list + 3 vk = head(dmin) + head(dmin) = next(vk) + if (head(dmin).gt.0) last(head(dmin)) = -dmin +c +c------number vertex vk, adjust tag, and tag vk + k = k+1 + next(vk) = -k + last(ek) = dmin - 1 + tag = tag + last(ek) + mark(vk) = tag +c +c------form element ek from uneliminated neighbors of vk + call mdm + * (vk,tail, v,l, last,next, mark) +c +c------purge inactive elements and do mass elimination + call mdp + * (k,ek,tail, v,l, head,last,next, mark) +c +c------update degrees of uneliminated vertices in ek + call mdu + * (ek,dmin, v,l, head,last,next, mark) +c + go to 1 +c +c----generate inverse permutation from permutation + 4 do 5 k=1,n + next(k) = -next(k) + 5 last(next(k)) = k +c + return + end + subroutine mdi + * (n, ia,ja, max,v,l, head,last,next, mark,tag, flag) +c*********************************************************************** +c mdi -- initialization +c*********************************************************************** + integer ia(*), ja(*), v(*), l(*), head(*), last(*), next(*), + * mark(*), tag, flag, sfs, vi,dvi, vj +c +c----initialize degrees, element lists, and degree lists + do 1 vi=1,n + mark(vi) = 1 + l(vi) = 0 + 1 head(vi) = 0 + sfs = n+1 +c +c----create nonzero structure +c----for each nonzero entry a(vi,vj) + do 6 vi=1,n + jmin = ia(vi) + jmax = ia(vi+1) - 1 + if (jmin.gt.jmax) go to 6 + do 5 j=jmin,jmax + vj = ja(j) + if (vj-vi) 2, 5, 4 +c +c------if a(vi,vj) is in strict lower triangle +c------check for previous occurrence of a(vj,vi) + 2 lvk = vi + kmax = mark(vi) - 1 + if (kmax .eq. 0) go to 4 + do 3 k=1,kmax + lvk = l(lvk) + if (v(lvk).eq.vj) go to 5 + 3 continue +c----for unentered entries a(vi,vj) + 4 if (sfs.ge.max) go to 101 +c +c------enter vj in element list for vi + mark(vi) = mark(vi) + 1 + v(sfs) = vj + l(sfs) = l(vi) + l(vi) = sfs + sfs = sfs+1 +c +c------enter vi in element list for vj + mark(vj) = mark(vj) + 1 + v(sfs) = vi + l(sfs) = l(vj) + l(vj) = sfs + sfs = sfs+1 + 5 continue + 6 continue +c +c----create degree lists and initialize mark vector + do 7 vi=1,n + dvi = mark(vi) + next(vi) = head(dvi) + head(dvi) = vi + last(vi) = -dvi + nextvi = next(vi) + if (nextvi.gt.0) last(nextvi) = vi + 7 mark(vi) = tag +c + return +c +c ** error- insufficient storage + 101 flag = 9*n + vi + return + end + subroutine mdm + * (vk,tail, v,l, last,next, mark) +c*********************************************************************** +c mdm -- form element from uneliminated neighbors of vk +c*********************************************************************** + integer vk, tail, v(*), l(*), last(*), next(*), mark(*), + * tag, s,ls,vs,es, b,lb,vb, blp,blpmax + equivalence (vs, es) +c +c----initialize tag and list of uneliminated neighbors + tag = mark(vk) + tail = vk +c +c----for each vertex/element vs/es in element list of vk + ls = l(vk) + 1 s = ls + if (s.eq.0) go to 5 + ls = l(s) + vs = v(s) + if (next(vs).lt.0) go to 2 +c +c------if vs is uneliminated vertex, then tag and append to list of +c------uneliminated neighbors + mark(vs) = tag + l(tail) = s + tail = s + go to 4 +c +c------if es is active element, then ... +c--------for each vertex vb in boundary list of element es + 2 lb = l(es) + blpmax = last(es) + do 3 blp=1,blpmax + b = lb + lb = l(b) + vb = v(b) +c +c----------if vb is untagged vertex, then tag and append to list of +c----------uneliminated neighbors + if (mark(vb).ge.tag) go to 3 + mark(vb) = tag + l(tail) = b + tail = b + 3 continue +c +c--------mark es inactive + mark(es) = tag +c + 4 go to 1 +c +c----terminate list of uneliminated neighbors + 5 l(tail) = 0 +c + return + end + subroutine mdp + * (k,ek,tail, v,l, head,last,next, mark) +c*********************************************************************** +c mdp -- purge inactive elements and do mass elimination +c*********************************************************************** + integer ek, tail, v(*), l(*), head(*), last(*), next(*), + * mark(*), tag, free, li,vi,lvi,evi, s,ls,es, ilp,ilpmax +c +c----initialize tag + tag = mark(ek) +c +c----for each vertex vi in ek + li = ek + ilpmax = last(ek) + if (ilpmax.le.0) go to 12 + do 11 ilp=1,ilpmax + i = li + li = l(i) + vi = v(li) +c +c------remove vi from degree list + if (last(vi).eq.0) go to 3 + if (last(vi).gt.0) go to 1 + head(-last(vi)) = next(vi) + go to 2 + 1 next(last(vi)) = next(vi) + 2 if (next(vi).gt.0) last(next(vi)) = last(vi) +c +c------remove inactive items from element list of vi + 3 ls = vi + 4 s = ls + ls = l(s) + if (ls.eq.0) go to 6 + es = v(ls) + if (mark(es).lt.tag) go to 5 + free = ls + l(s) = l(ls) + ls = s + 5 go to 4 +c +c------if vi is interior vertex, then remove from list and eliminate + 6 lvi = l(vi) + if (lvi.ne.0) go to 7 + l(i) = l(li) + li = i +c + k = k+1 + next(vi) = -k + last(ek) = last(ek) - 1 + go to 11 +c +c------else ... +c--------classify vertex vi + 7 if (l(lvi).ne.0) go to 9 + evi = v(lvi) + if (next(evi).ge.0) go to 9 + if (mark(evi).lt.0) go to 8 +c +c----------if vi is prototype vertex, then mark as such, initialize +c----------overlap count for corresponding element, and move vi to end +c----------of boundary list + last(vi) = evi + mark(evi) = -1 + l(tail) = li + tail = li + l(i) = l(li) + li = i + go to 10 +c +c----------else if vi is duplicate vertex, then mark as such and adjust +c----------overlap count for corresponding element + 8 last(vi) = 0 + mark(evi) = mark(evi) - 1 + go to 10 +c +c----------else mark vi to compute degree + 9 last(vi) = -ek +c +c--------insert ek in element list of vi + 10 v(free) = ek + l(free) = l(vi) + l(vi) = free + 11 continue +c +c----terminate boundary list + 12 l(tail) = 0 +c + return + end + subroutine mdu + * (ek,dmin, v,l, head,last,next, mark) +c*********************************************************************** +c mdu -- update degrees of uneliminated vertices in ek +c*********************************************************************** + integer ek, dmin, v(*), l(*), head(*), last(*), next(*), + * mark(*), tag, vi,evi,dvi, s,vs,es, b,vb, ilp,ilpmax, + * blp,blpmax + equivalence (vs, es) +c +c----initialize tag + tag = mark(ek) - last(ek) +c +c----for each vertex vi in ek + i = ek + ilpmax = last(ek) + if (ilpmax.le.0) go to 11 + do 10 ilp=1,ilpmax + i = l(i) + vi = v(i) + if (last(vi)) 1, 10, 8 +c +c------if vi neither prototype nor duplicate vertex, then merge elements +c------to compute degree + 1 tag = tag + 1 + dvi = last(ek) +c +c--------for each vertex/element vs/es in element list of vi + s = l(vi) + 2 s = l(s) + if (s.eq.0) go to 9 + vs = v(s) + if (next(vs).lt.0) go to 3 +c +c----------if vs is uneliminated vertex, then tag and adjust degree + mark(vs) = tag + dvi = dvi + 1 + go to 5 +c +c----------if es is active element, then expand +c------------check for outmatched vertex + 3 if (mark(es).lt.0) go to 6 +c +c------------for each vertex vb in es + b = es + blpmax = last(es) + do 4 blp=1,blpmax + b = l(b) + vb = v(b) +c +c--------------if vb is untagged, then tag and adjust degree + if (mark(vb).ge.tag) go to 4 + mark(vb) = tag + dvi = dvi + 1 + 4 continue +c + 5 go to 2 +c +c------else if vi is outmatched vertex, then adjust overlaps but do not +c------compute degree + 6 last(vi) = 0 + mark(es) = mark(es) - 1 + 7 s = l(s) + if (s.eq.0) go to 10 + es = v(s) + if (mark(es).lt.0) mark(es) = mark(es) - 1 + go to 7 +c +c------else if vi is prototype vertex, then calculate degree by +c------inclusion/exclusion and reset overlap count + 8 evi = last(vi) + dvi = last(ek) + last(evi) + mark(evi) + mark(evi) = 0 +c +c------insert vi in appropriate degree list + 9 next(vi) = head(dvi) + head(dvi) = vi + last(vi) = -dvi + if (next(vi).gt.0) last(next(vi)) = vi + if (dvi.lt.dmin) dmin = dvi +c + 10 continue +c + 11 return + end + subroutine sro + * (n, ip, ia,ja,a, q, r, dflag) +c*********************************************************************** +c sro -- symmetric reordering of sparse symmetric matrix +c*********************************************************************** +c +c description +c +c the nonzero entries of the matrix m are assumed to be stored +c symmetrically in (ia,ja,a) format (i.e., not both m(i,j) and m(j,i) +c are stored if i ne j). +c +c sro does not rearrange the order of the rows, but does move +c nonzeroes from one row to another to ensure that if m(i,j) will be +c in the upper triangle of m with respect to the new ordering, then +c m(i,j) is stored in row i (and thus m(j,i) is not stored), whereas +c if m(i,j) will be in the strict lower triangle of m, then m(j,i) is +c stored in row j (and thus m(i,j) is not stored). +c +c +c additional parameters +c +c q - integer one-dimensional work array. dimension = n +c +c r - integer one-dimensional work array. dimension = number of +c nonzero entries in the upper triangle of m +c +c dflag - logical variable. if dflag = .true., then store nonzero +c diagonal elements at the beginning of the row +c +c----------------------------------------------------------------------- +c + integer ip(*), ia(*), ja(*), q(*), r(*) +c... real a(*), ak + double precision a(*), ak + logical dflag +c +c +c--phase 1 -- find row in which to store each nonzero +c----initialize count of nonzeroes to be stored in each row + do 1 i=1,n + 1 q(i) = 0 +c +c----for each nonzero element a(j) + do 3 i=1,n + jmin = ia(i) + jmax = ia(i+1) - 1 + if (jmin.gt.jmax) go to 3 + do 2 j=jmin,jmax +c +c--------find row (=r(j)) and column (=ja(j)) in which to store a(j) ... + k = ja(j) + if (ip(k).lt.ip(i)) ja(j) = i + if (ip(k).ge.ip(i)) k = i + r(j) = k +c +c--------... and increment count of nonzeroes (=q(r(j)) in that row + 2 q(k) = q(k) + 1 + 3 continue +c +c +c--phase 2 -- find new ia and permutation to apply to (ja,a) +c----determine pointers to delimit rows in permuted (ja,a) + do 4 i=1,n + ia(i+1) = ia(i) + q(i) + 4 q(i) = ia(i+1) +c +c----determine where each (ja(j),a(j)) is stored in permuted (ja,a) +c----for each nonzero element (in reverse order) + ilast = 0 + jmin = ia(1) + jmax = ia(n+1) - 1 + j = jmax + do 6 jdummy=jmin,jmax + i = r(j) + if (.not.dflag .or. ja(j).ne.i .or. i.eq.ilast) go to 5 +c +c------if dflag, then put diagonal nonzero at beginning of row + r(j) = ia(i) + ilast = i + go to 6 +c +c------put (off-diagonal) nonzero in last unused location in row + 5 q(i) = q(i) - 1 + r(j) = q(i) +c + 6 j = j-1 +c +c +c--phase 3 -- permute (ja,a) to upper triangular form (wrt new ordering) + do 8 j=jmin,jmax + 7 if (r(j).eq.j) go to 8 + k = r(j) + r(j) = r(k) + r(k) = k + jak = ja(k) + ja(k) = ja(j) + ja(j) = jak + ak = a(k) + a(k) = a(j) + a(j) = ak + go to 7 + 8 continue +c + return + end +*DECK CDRV + subroutine cdrv + * (n, r,c,ic, ia,ja,a, b, z, nsp,isp,rsp,esp, path, flag) +c*** subroutine cdrv +c*** driver for subroutines for solving sparse nonsymmetric systems of +c linear equations (compressed pointer storage) +c +c +c parameters +c class abbreviations are-- +c n - integer variable +c f - real variable +c v - supplies a value to the driver +c r - returns a result from the driver +c i - used internally by the driver +c a - array +c +c class - parameter +c ------+---------- +c - +c the nonzero entries of the coefficient matrix m are stored +c row-by-row in the array a. to identify the individual nonzero +c entries in each row, we need to know in which column each entry +c lies. the column indices which correspond to the nonzero entries +c of m are stored in the array ja. i.e., if a(k) = m(i,j), then +c ja(k) = j. in addition, we need to know where each row starts and +c how long it is. the index positions in ja and a where the rows of +c m begin are stored in the array ia. i.e., if m(i,j) is the first +c nonzero entry (stored) in the i-th row and a(k) = m(i,j), then +c ia(i) = k. moreover, the index in ja and a of the first location +c following the last element in the last row is stored in ia(n+1). +c thus, the number of entries in the i-th row is given by +c ia(i+1) - ia(i), the nonzero entries of the i-th row are stored +c consecutively in +c a(ia(i)), a(ia(i)+1), ..., a(ia(i+1)-1), +c and the corresponding column indices are stored consecutively in +c ja(ia(i)), ja(ia(i)+1), ..., ja(ia(i+1)-1). +c for example, the 5 by 5 matrix +c ( 1. 0. 2. 0. 0.) +c ( 0. 3. 0. 0. 0.) +c m = ( 0. 4. 5. 6. 0.) +c ( 0. 0. 0. 7. 0.) +c ( 0. 0. 0. 8. 9.) +c would be stored as +c - 1 2 3 4 5 6 7 8 9 +c ---+-------------------------- +c ia - 1 3 4 7 8 10 +c ja - 1 3 2 2 3 4 4 4 5 +c a - 1. 2. 3. 4. 5. 6. 7. 8. 9. . +c +c nv - n - number of variables/equations. +c fva - a - nonzero entries of the coefficient matrix m, stored +c - by rows. +c - size = number of nonzero entries in m. +c nva - ia - pointers to delimit the rows in a. +c - size = n+1. +c nva - ja - column numbers corresponding to the elements of a. +c - size = size of a. +c fva - b - right-hand side b. b and z can the same array. +c - size = n. +c fra - z - solution x. b and z can be the same array. +c - size = n. +c +c the rows and columns of the original matrix m can be +c reordered (e.g., to reduce fillin or ensure numerical stability) +c before calling the driver. if no reordering is done, then set +c r(i) = c(i) = ic(i) = i for i=1,...,n. the solution z is returned +c in the original order. +c if the columns have been reordered (i.e., c(i).ne.i for some +c i), then the driver will call a subroutine (nroc) which rearranges +c each row of ja and a, leaving the rows in the original order, but +c placing the elements of each row in increasing order with respect +c to the new ordering. if path.ne.1, then nroc is assumed to have +c been called already. +c +c nva - r - ordering of the rows of m. +c - size = n. +c nva - c - ordering of the columns of m. +c - size = n. +c nva - ic - inverse of the ordering of the columns of m. i.e., +c - ic(c(i)) = i for i=1,...,n. +c - size = n. +c +c the solution of the system of linear equations is divided into +c three stages -- +c nsfc -- the matrix m is processed symbolically to determine where +c fillin will occur during the numeric factorization. +c nnfc -- the matrix m is factored numerically into the product ldu +c of a unit lower triangular matrix l, a diagonal matrix +c d, and a unit upper triangular matrix u, and the system +c mx = b is solved. +c nnsc -- the linear system mx = b is solved using the ldu +c or factorization from nnfc. +c nntc -- the transposed linear system mt x = b is solved using +c the ldu factorization from nnf. +c for several systems whose coefficient matrices have the same +c nonzero structure, nsfc need be done only once (for the first +c system). then nnfc is done once for each additional system. for +c several systems with the same coefficient matrix, nsfc and nnfc +c need be done only once (for the first system). then nnsc or nntc +c is done once for each additional right-hand side. +c +c nv - path - path specification. values and their meanings are -- +c - 1 perform nroc, nsfc, and nnfc. +c - 2 perform nnfc only (nsfc is assumed to have been +c - done in a manner compatible with the storage +c - allocation used in the driver). +c - 3 perform nnsc only (nsfc and nnfc are assumed to +c - have been done in a manner compatible with the +c - storage allocation used in the driver). +c - 4 perform nntc only (nsfc and nnfc are assumed to +c - have been done in a manner compatible with the +c - storage allocation used in the driver). +c - 5 perform nroc and nsfc. +c +c various errors are detected by the driver and the individual +c subroutines. +c +c nr - flag - error flag. values and their meanings are -- +c - 0 no errors detected +c - n+k null row in a -- row = k +c - 2n+k duplicate entry in a -- row = k +c - 3n+k insufficient storage in nsfc -- row = k +c - 4n+1 insufficient storage in nnfc +c - 5n+k null pivot -- row = k +c - 6n+k insufficient storage in nsfc -- row = k +c - 7n+1 insufficient storage in nnfc +c - 8n+k zero pivot -- row = k +c - 10n+1 insufficient storage in cdrv +c - 11n+1 illegal path specification +c +c working storage is needed for the factored form of the matrix +c m plus various temporary vectors. the arrays isp and rsp should be +c equivalenced. integer storage is allocated from the beginning of +c isp and real storage from the end of rsp. +c +c nv - nsp - declared dimension of rsp. nsp generally must +c - be larger than 8n+2 + 2k (where k = (number of +c - nonzero entries in m)). +c nvira - isp - integer working storage divided up into various arrays +c - needed by the subroutines. isp and rsp should be +c - equivalenced. +c - size = lratio*nsp. +c fvira - rsp - real working storage divided up into various arrays +c - needed by the subroutines. isp and rsp should be +c - equivalenced. +c - size = nsp. +c nr - esp - if sufficient storage was available to perform the +c - symbolic factorization (nsfc), then esp is set to +c - the amount of excess storage provided (negative if +c - insufficient storage was available to perform the +c - numeric factorization (nnfc)). +c +c +c conversion to double precision +c +c to convert these routines for double precision arrays.. +c (1) use the double precision declarations in place of the real +c declarations in each subprogram, as given in comment cards. +c (2) change the data-loaded value of the integer lratio +c in subroutine cdrv, as indicated below. +c (3) change e0 to d0 in the constants in statement number 10 +c in subroutine nnfc and the line following that. +c + integer r(*), c(*), ic(*), ia(*), ja(*), isp(*), esp, path, + * flag, d, u, q, row, tmp, ar, umax +c real a(*), b(*), z(*), rsp(*) + double precision a(*), b(*), z(*), rsp(*) +c +c set lratio equal to the ratio between the length of floating point +c and integer array data. e. g., lratio = 1 for (real, integer), +c lratio = 2 for (double precision, integer) +c + data lratio/2/ +c + if (path.lt.1 .or. 5.lt.path) go to 111 +c******initialize and divide up temporary storage ******************* + il = 1 + ijl = il + (n+1) + iu = ijl + n + iju = iu + (n+1) + irl = iju + n + jrl = irl + n + jl = jrl + n +c +c ****** reorder a if necessary, call nsfc if flag is set *********** + if ((path-1) * (path-5) .ne. 0) go to 5 + max = (lratio*nsp + 1 - jl) - (n+1) - 5*n + jlmax = max/2 + q = jl + jlmax + ira = q + (n+1) + jra = ira + n + irac = jra + n + iru = irac + n + jru = iru + n + jutmp = jru + n + jumax = lratio*nsp + 1 - jutmp + esp = max/lratio + if (jlmax.le.0 .or. jumax.le.0) go to 110 +c + do 1 i=1,n + if (c(i).ne.i) go to 2 + 1 continue + go to 3 + 2 ar = nsp + 1 - n + call nroc + * (n, ic, ia,ja,a, isp(il), rsp(ar), isp(iu), flag) + if (flag.ne.0) go to 100 +c + 3 call nsfc + * (n, r, ic, ia,ja, + * jlmax, isp(il), isp(jl), isp(ijl), + * jumax, isp(iu), isp(jutmp), isp(iju), + * isp(q), isp(ira), isp(jra), isp(irac), + * isp(irl), isp(jrl), isp(iru), isp(jru), flag) + if(flag .ne. 0) go to 100 +c ****** move ju next to jl ***************************************** + jlmax = isp(ijl+n-1) + ju = jl + jlmax + jumax = isp(iju+n-1) + if (jumax.le.0) go to 5 + do 4 j=1,jumax + 4 isp(ju+j-1) = isp(jutmp+j-1) +c +c ****** call remaining subroutines ********************************* + 5 jlmax = isp(ijl+n-1) + ju = jl + jlmax + jumax = isp(iju+n-1) + l = (ju + jumax - 2 + lratio) / lratio + 1 + lmax = isp(il+n) - 1 + d = l + lmax + u = d + n + row = nsp + 1 - n + tmp = row - n + umax = tmp - u + esp = umax - (isp(iu+n) - 1) +c + if ((path-1) * (path-2) .ne. 0) go to 6 + if (umax.lt.0) go to 110 + call nnfc + * (n, r, c, ic, ia, ja, a, z, b, + * lmax, isp(il), isp(jl), isp(ijl), rsp(l), rsp(d), + * umax, isp(iu), isp(ju), isp(iju), rsp(u), + * rsp(row), rsp(tmp), isp(irl), isp(jrl), flag) + if(flag .ne. 0) go to 100 +c + 6 if ((path-3) .ne. 0) go to 7 + call nnsc + * (n, r, c, isp(il), isp(jl), isp(ijl), rsp(l), + * rsp(d), isp(iu), isp(ju), isp(iju), rsp(u), + * z, b, rsp(tmp)) +c + 7 if ((path-4) .ne. 0) go to 8 + call nntc + * (n, r, c, isp(il), isp(jl), isp(ijl), rsp(l), + * rsp(d), isp(iu), isp(ju), isp(iju), rsp(u), + * z, b, rsp(tmp)) + 8 return +c +c ** error.. error detected in nroc, nsfc, nnfc, or nnsc + 100 return +c ** error.. insufficient storage + 110 flag = 10*n + 1 + return +c ** error.. illegal path specification + 111 flag = 11*n + 1 + return + end + subroutine nroc (n, ic, ia, ja, a, jar, ar, p, flag) +c +c ---------------------------------------------------------------- +c +c yale sparse matrix package - nonsymmetric codes +c solving the system of equations mx = b +c +c i. calling sequences +c the coefficient matrix can be processed by an ordering routine +c (e.g., to reduce fillin or ensure numerical stability) before using +c the remaining subroutines. if no reordering is done, then set +c r(i) = c(i) = ic(i) = i for i=1,...,n. if an ordering subroutine +c is used, then nroc should be used to reorder the coefficient matrix +c the calling sequence is -- +c ( (matrix ordering)) +c (nroc (matrix reordering)) +c nsfc (symbolic factorization to determine where fillin will +c occur during numeric factorization) +c nnfc (numeric factorization into product ldu of unit lower +c triangular matrix l, diagonal matrix d, and unit +c upper triangular matrix u, and solution of linear +c system) +c nnsc (solution of linear system for additional right-hand +c side using ldu factorization from nnfc) +c (if only one system of equations is to be solved, then the +c subroutine trk should be used.) +c +c ii. storage of sparse matrices +c the nonzero entries of the coefficient matrix m are stored +c row-by-row in the array a. to identify the individual nonzero +c entries in each row, we need to know in which column each entry +c lies. the column indices which correspond to the nonzero entries +c of m are stored in the array ja. i.e., if a(k) = m(i,j), then +c ja(k) = j. in addition, we need to know where each row starts and +c how long it is. the index positions in ja and a where the rows of +c m begin are stored in the array ia. i.e., if m(i,j) is the first +c (leftmost) entry in the i-th row and a(k) = m(i,j), then +c ia(i) = k. moreover, the index in ja and a of the first location +c following the last element in the last row is stored in ia(n+1). +c thus, the number of entries in the i-th row is given by +c ia(i+1) - ia(i), the nonzero entries of the i-th row are stored +c consecutively in +c a(ia(i)), a(ia(i)+1), ..., a(ia(i+1)-1), +c and the corresponding column indices are stored consecutively in +c ja(ia(i)), ja(ia(i)+1), ..., ja(ia(i+1)-1). +c for example, the 5 by 5 matrix +c ( 1. 0. 2. 0. 0.) +c ( 0. 3. 0. 0. 0.) +c m = ( 0. 4. 5. 6. 0.) +c ( 0. 0. 0. 7. 0.) +c ( 0. 0. 0. 8. 9.) +c would be stored as +c - 1 2 3 4 5 6 7 8 9 +c ---+-------------------------- +c ia - 1 3 4 7 8 10 +c ja - 1 3 2 2 3 4 4 4 5 +c a - 1. 2. 3. 4. 5. 6. 7. 8. 9. . +c +c the strict upper (lower) triangular portion of the matrix +c u (l) is stored in a similar fashion using the arrays iu, ju, u +c (il, jl, l) except that an additional array iju (ijl) is used to +c compress storage of ju (jl) by allowing some sequences of column +c (row) indices to used for more than one row (column) (n.b., l is +c stored by columns). iju(k) (ijl(k)) points to the starting +c location in ju (jl) of entries for the kth row (column). +c compression in ju (jl) occurs in two ways. first, if a row +c (column) i was merged into the current row (column) k, and the +c number of elements merged in from (the tail portion of) row +c (column) i is the same as the final length of row (column) k, then +c the kth row (column) and the tail of row (column) i are identical +c and iju(k) (ijl(k)) points to the start of the tail. second, if +c some tail portion of the (k-1)st row (column) is identical to the +c head of the kth row (column), then iju(k) (ijl(k)) points to the +c start of that tail portion. for example, the nonzero structure of +c the strict upper triangular part of the matrix +c d 0 x x x +c 0 d 0 x x +c 0 0 d x 0 +c 0 0 0 d x +c 0 0 0 0 d +c would be represented as +c - 1 2 3 4 5 6 +c ----+------------ +c iu - 1 4 6 7 8 8 +c ju - 3 4 5 4 +c iju - 1 2 4 3 . +c the diagonal entries of l and u are assumed to be equal to one and +c are not stored. the array d contains the reciprocals of the +c diagonal entries of the matrix d. +c +c iii. additional storage savings +c in nsfc, r and ic can be the same array in the calling +c sequence if no reordering of the coefficient matrix has been done. +c in nnfc, r, c, and ic can all be the same array if no +c reordering has been done. if only the rows have been reordered, +c then c and ic can be the same array. if the row and column +c orderings are the same, then r and c can be the same array. z and +c row can be the same array. +c in nnsc or nntc, r and c can be the same array if no +c reordering has been done or if the row and column orderings are the +c same. z and b can be the same array. however, then b will be +c destroyed. +c +c iv. parameters +c following is a list of parameters to the programs. names are +c uniform among the various subroutines. class abbreviations are -- +c n - integer variable +c f - real variable +c v - supplies a value to a subroutine +c r - returns a result from a subroutine +c i - used internally by a subroutine +c a - array +c +c class - parameter +c ------+---------- +c fva - a - nonzero entries of the coefficient matrix m, stored +c - by rows. +c - size = number of nonzero entries in m. +c fva - b - right-hand side b. +c - size = n. +c nva - c - ordering of the columns of m. +c - size = n. +c fvra - d - reciprocals of the diagonal entries of the matrix d. +c - size = n. +c nr - flag - error flag. values and their meanings are -- +c - 0 no errors detected +c - n+k null row in a -- row = k +c - 2n+k duplicate entry in a -- row = k +c - 3n+k insufficient storage for jl -- row = k +c - 4n+1 insufficient storage for l +c - 5n+k null pivot -- row = k +c - 6n+k insufficient storage for ju -- row = k +c - 7n+1 insufficient storage for u +c - 8n+k zero pivot -- row = k +c nva - ia - pointers to delimit the rows of a. +c - size = n+1. +c nvra - ijl - pointers to the first element in each column in jl, +c - used to compress storage in jl. +c - size = n. +c nvra - iju - pointers to the first element in each row in ju, used +c - to compress storage in ju. +c - size = n. +c nvra - il - pointers to delimit the columns of l. +c - size = n+1. +c nvra - iu - pointers to delimit the rows of u. +c - size = n+1. +c nva - ja - column numbers corresponding to the elements of a. +c - size = size of a. +c nvra - jl - row numbers corresponding to the elements of l. +c - size = jlmax. +c nv - jlmax - declared dimension of jl. jlmax must be larger than +c - the number of nonzeros in the strict lower triangle +c - of m plus fillin minus compression. +c nvra - ju - column numbers corresponding to the elements of u. +c - size = jumax. +c nv - jumax - declared dimension of ju. jumax must be larger than +c - the number of nonzeros in the strict upper triangle +c - of m plus fillin minus compression. +c fvra - l - nonzero entries in the strict lower triangular portion +c - of the matrix l, stored by columns. +c - size = lmax. +c nv - lmax - declared dimension of l. lmax must be larger than +c - the number of nonzeros in the strict lower triangle +c - of m plus fillin (il(n+1)-1 after nsfc). +c nv - n - number of variables/equations. +c nva - r - ordering of the rows of m. +c - size = n. +c fvra - u - nonzero entries in the strict upper triangular portion +c - of the matrix u, stored by rows. +c - size = umax. +c nv - umax - declared dimension of u. umax must be larger than +c - the number of nonzeros in the strict upper triangle +c - of m plus fillin (iu(n+1)-1 after nsfc). +c fra - z - solution x. +c - size = n. +c +c ---------------------------------------------------------------- +c +c*** subroutine nroc +c*** reorders rows of a, leaving row order unchanged +c +c +c input parameters.. n, ic, ia, ja, a +c output parameters.. ja, a, flag +c +c parameters used internally.. +c nia - p - at the kth step, p is a linked list of the reordered +c - column indices of the kth row of a. p(n+1) points +c - to the first entry in the list. +c - size = n+1. +c nia - jar - at the kth step,jar contains the elements of the +c - reordered column indices of a. +c - size = n. +c fia - ar - at the kth step, ar contains the elements of the +c - reordered row of a. +c - size = n. +c + integer ic(*), ia(*), ja(*), jar(*), p(*), flag +c real a(*), ar(*) + double precision a(*), ar(*) +c +c ****** for each nonempty row ******************************* + do 5 k=1,n + jmin = ia(k) + jmax = ia(k+1) - 1 + if(jmin .gt. jmax) go to 5 + p(n+1) = n + 1 +c ****** insert each element in the list ********************* + do 3 j=jmin,jmax + newj = ic(ja(j)) + i = n + 1 + 1 if(p(i) .ge. newj) go to 2 + i = p(i) + go to 1 + 2 if(p(i) .eq. newj) go to 102 + p(newj) = p(i) + p(i) = newj + jar(newj) = ja(j) + ar(newj) = a(j) + 3 continue +c ****** replace old row in ja and a ************************* + i = n + 1 + do 4 j=jmin,jmax + i = p(i) + ja(j) = jar(i) + 4 a(j) = ar(i) + 5 continue + flag = 0 + return +c +c ** error.. duplicate entry in a + 102 flag = n + k + return + end + subroutine nsfc + * (n, r, ic, ia,ja, jlmax,il,jl,ijl, jumax,iu,ju,iju, + * q, ira,jra, irac, irl,jrl, iru,jru, flag) +c*** subroutine nsfc +c*** symbolic ldu-factorization of nonsymmetric sparse matrix +c (compressed pointer storage) +c +c +c input variables.. n, r, ic, ia, ja, jlmax, jumax. +c output variables.. il, jl, ijl, iu, ju, iju, flag. +c +c parameters used internally.. +c nia - q - suppose m* is the result of reordering m. if +c - processing of the ith row of m* (hence the ith +c - row of u) is being done, q(j) is initially +c - nonzero if m*(i,j) is nonzero (j.ge.i). since +c - values need not be stored, each entry points to the +c - next nonzero and q(n+1) points to the first. n+1 +c - indicates the end of the list. for example, if n=9 +c - and the 5th row of m* is +c - 0 x x 0 x 0 0 x 0 +c - then q will initially be +c - a a a a 8 a a 10 5 (a - arbitrary). +c - as the algorithm proceeds, other elements of q +c - are inserted in the list because of fillin. +c - q is used in an analogous manner to compute the +c - ith column of l. +c - size = n+1. +c nia - ira, - vectors used to find the columns of m. at the kth +c nia - jra, step of the factorization, irac(k) points to the +c nia - irac head of a linked list in jra of row indices i +c - such that i .ge. k and m(i,k) is nonzero. zero +c - indicates the end of the list. ira(i) (i.ge.k) +c - points to the smallest j such that j .ge. k and +c - m(i,j) is nonzero. +c - size of each = n. +c nia - irl, - vectors used to find the rows of l. at the kth step +c nia - jrl of the factorization, jrl(k) points to the head +c - of a linked list in jrl of column indices j +c - such j .lt. k and l(k,j) is nonzero. zero +c - indicates the end of the list. irl(j) (j.lt.k) +c - points to the smallest i such that i .ge. k and +c - l(i,j) is nonzero. +c - size of each = n. +c nia - iru, - vectors used in a manner analogous to irl and jrl +c nia - jru to find the columns of u. +c - size of each = n. +c +c internal variables.. +c jlptr - points to the last position used in jl. +c juptr - points to the last position used in ju. +c jmin,jmax - are the indices in a or u of the first and last +c elements to be examined in a given row. +c for example, jmin=ia(k), jmax=ia(k+1)-1. +c + integer cend, qm, rend, rk, vj + integer ia(*), ja(*), ira(*), jra(*), il(*), jl(*), ijl(*) + integer iu(*), ju(*), iju(*), irl(*), jrl(*), iru(*), jru(*) + integer r(*), ic(*), q(*), irac(*), flag +c +c ****** initialize pointers **************************************** + np1 = n + 1 + jlmin = 1 + jlptr = 0 + il(1) = 1 + jumin = 1 + juptr = 0 + iu(1) = 1 + do 1 k=1,n + irac(k) = 0 + jra(k) = 0 + jrl(k) = 0 + 1 jru(k) = 0 +c ****** initialize column pointers for a *************************** + do 2 k=1,n + rk = r(k) + iak = ia(rk) + if (iak .ge. ia(rk+1)) go to 101 + jaiak = ic(ja(iak)) + if (jaiak .gt. k) go to 105 + jra(k) = irac(jaiak) + irac(jaiak) = k + 2 ira(k) = iak +c +c ****** for each column of l and row of u ************************** + do 41 k=1,n +c +c ****** initialize q for computing kth column of l ***************** + q(np1) = np1 + luk = -1 +c ****** by filling in kth column of a ****************************** + vj = irac(k) + if (vj .eq. 0) go to 5 + 3 qm = np1 + 4 m = qm + qm = q(m) + if (qm .lt. vj) go to 4 + if (qm .eq. vj) go to 102 + luk = luk + 1 + q(m) = vj + q(vj) = qm + vj = jra(vj) + if (vj .ne. 0) go to 3 +c ****** link through jru ******************************************* + 5 lastid = 0 + lasti = 0 + ijl(k) = jlptr + i = k + 6 i = jru(i) + if (i .eq. 0) go to 10 + qm = np1 + jmin = irl(i) + jmax = ijl(i) + il(i+1) - il(i) - 1 + long = jmax - jmin + if (long .lt. 0) go to 6 + jtmp = jl(jmin) + if (jtmp .ne. k) long = long + 1 + if (jtmp .eq. k) r(i) = -r(i) + if (lastid .ge. long) go to 7 + lasti = i + lastid = long +c ****** and merge the corresponding columns into the kth column **** + 7 do 9 j=jmin,jmax + vj = jl(j) + 8 m = qm + qm = q(m) + if (qm .lt. vj) go to 8 + if (qm .eq. vj) go to 9 + luk = luk + 1 + q(m) = vj + q(vj) = qm + qm = vj + 9 continue + go to 6 +c ****** lasti is the longest column merged into the kth ************ +c ****** see if it equals the entire kth column ********************* + 10 qm = q(np1) + if (qm .ne. k) go to 105 + if (luk .eq. 0) go to 17 + if (lastid .ne. luk) go to 11 +c ****** if so, jl can be compressed ******************************** + irll = irl(lasti) + ijl(k) = irll + 1 + if (jl(irll) .ne. k) ijl(k) = ijl(k) - 1 + go to 17 +c ****** if not, see if kth column can overlap the previous one ***** + 11 if (jlmin .gt. jlptr) go to 15 + qm = q(qm) + do 12 j=jlmin,jlptr + if (jl(j) - qm) 12, 13, 15 + 12 continue + go to 15 + 13 ijl(k) = j + do 14 i=j,jlptr + if (jl(i) .ne. qm) go to 15 + qm = q(qm) + if (qm .gt. n) go to 17 + 14 continue + jlptr = j - 1 +c ****** move column indices from q to jl, update vectors *********** + 15 jlmin = jlptr + 1 + ijl(k) = jlmin + if (luk .eq. 0) go to 17 + jlptr = jlptr + luk + if (jlptr .gt. jlmax) go to 103 + qm = q(np1) + do 16 j=jlmin,jlptr + qm = q(qm) + 16 jl(j) = qm + 17 irl(k) = ijl(k) + il(k+1) = il(k) + luk +c +c ****** initialize q for computing kth row of u ******************** + q(np1) = np1 + luk = -1 +c ****** by filling in kth row of reordered a *********************** + rk = r(k) + jmin = ira(k) + jmax = ia(rk+1) - 1 + if (jmin .gt. jmax) go to 20 + do 19 j=jmin,jmax + vj = ic(ja(j)) + qm = np1 + 18 m = qm + qm = q(m) + if (qm .lt. vj) go to 18 + if (qm .eq. vj) go to 102 + luk = luk + 1 + q(m) = vj + q(vj) = qm + 19 continue +c ****** link through jrl, ****************************************** + 20 lastid = 0 + lasti = 0 + iju(k) = juptr + i = k + i1 = jrl(k) + 21 i = i1 + if (i .eq. 0) go to 26 + i1 = jrl(i) + qm = np1 + jmin = iru(i) + jmax = iju(i) + iu(i+1) - iu(i) - 1 + long = jmax - jmin + if (long .lt. 0) go to 21 + jtmp = ju(jmin) + if (jtmp .eq. k) go to 22 +c ****** update irl and jrl, ***************************************** + long = long + 1 + cend = ijl(i) + il(i+1) - il(i) + irl(i) = irl(i) + 1 + if (irl(i) .ge. cend) go to 22 + j = jl(irl(i)) + jrl(i) = jrl(j) + jrl(j) = i + 22 if (lastid .ge. long) go to 23 + lasti = i + lastid = long +c ****** and merge the corresponding rows into the kth row ********** + 23 do 25 j=jmin,jmax + vj = ju(j) + 24 m = qm + qm = q(m) + if (qm .lt. vj) go to 24 + if (qm .eq. vj) go to 25 + luk = luk + 1 + q(m) = vj + q(vj) = qm + qm = vj + 25 continue + go to 21 +c ****** update jrl(k) and irl(k) *********************************** + 26 if (il(k+1) .le. il(k)) go to 27 + j = jl(irl(k)) + jrl(k) = jrl(j) + jrl(j) = k +c ****** lasti is the longest row merged into the kth *************** +c ****** see if it equals the entire kth row ************************ + 27 qm = q(np1) + if (qm .ne. k) go to 105 + if (luk .eq. 0) go to 34 + if (lastid .ne. luk) go to 28 +c ****** if so, ju can be compressed ******************************** + irul = iru(lasti) + iju(k) = irul + 1 + if (ju(irul) .ne. k) iju(k) = iju(k) - 1 + go to 34 +c ****** if not, see if kth row can overlap the previous one ******** + 28 if (jumin .gt. juptr) go to 32 + qm = q(qm) + do 29 j=jumin,juptr + if (ju(j) - qm) 29, 30, 32 + 29 continue + go to 32 + 30 iju(k) = j + do 31 i=j,juptr + if (ju(i) .ne. qm) go to 32 + qm = q(qm) + if (qm .gt. n) go to 34 + 31 continue + juptr = j - 1 +c ****** move row indices from q to ju, update vectors ************** + 32 jumin = juptr + 1 + iju(k) = jumin + if (luk .eq. 0) go to 34 + juptr = juptr + luk + if (juptr .gt. jumax) go to 106 + qm = q(np1) + do 33 j=jumin,juptr + qm = q(qm) + 33 ju(j) = qm + 34 iru(k) = iju(k) + iu(k+1) = iu(k) + luk +c +c ****** update iru, jru ******************************************** + i = k + 35 i1 = jru(i) + if (r(i) .lt. 0) go to 36 + rend = iju(i) + iu(i+1) - iu(i) + if (iru(i) .ge. rend) go to 37 + j = ju(iru(i)) + jru(i) = jru(j) + jru(j) = i + go to 37 + 36 r(i) = -r(i) + 37 i = i1 + if (i .eq. 0) go to 38 + iru(i) = iru(i) + 1 + go to 35 +c +c ****** update ira, jra, irac ************************************** + 38 i = irac(k) + if (i .eq. 0) go to 41 + 39 i1 = jra(i) + ira(i) = ira(i) + 1 + if (ira(i) .ge. ia(r(i)+1)) go to 40 + irai = ira(i) + jairai = ic(ja(irai)) + if (jairai .gt. i) go to 40 + jra(i) = irac(jairai) + irac(jairai) = i + 40 i = i1 + if (i .ne. 0) go to 39 + 41 continue +c + ijl(n) = jlptr + iju(n) = juptr + flag = 0 + return +c +c ** error.. null row in a + 101 flag = n + rk + return +c ** error.. duplicate entry in a + 102 flag = 2*n + rk + return +c ** error.. insufficient storage for jl + 103 flag = 3*n + k + return +c ** error.. null pivot + 105 flag = 5*n + k + return +c ** error.. insufficient storage for ju + 106 flag = 6*n + k + return + end + subroutine nnfc + * (n, r,c,ic, ia,ja,a, z, b, + * lmax,il,jl,ijl,l, d, umax,iu,ju,iju,u, + * row, tmp, irl,jrl, flag) +c*** subroutine nnfc +c*** numerical ldu-factorization of sparse nonsymmetric matrix and +c solution of system of linear equations (compressed pointer +c storage) +c +c +c input variables.. n, r, c, ic, ia, ja, a, b, +c il, jl, ijl, lmax, iu, ju, iju, umax +c output variables.. z, l, d, u, flag +c +c parameters used internally.. +c nia - irl, - vectors used to find the rows of l. at the kth step +c nia - jrl of the factorization, jrl(k) points to the head +c - of a linked list in jrl of column indices j +c - such j .lt. k and l(k,j) is nonzero. zero +c - indicates the end of the list. irl(j) (j.lt.k) +c - points to the smallest i such that i .ge. k and +c - l(i,j) is nonzero. +c - size of each = n. +c fia - row - holds intermediate values in calculation of u and l. +c - size = n. +c fia - tmp - holds new right-hand side b* for solution of the +c - equation ux = b*. +c - size = n. +c +c internal variables.. +c jmin, jmax - indices of the first and last positions in a row to +c be examined. +c sum - used in calculating tmp. +c + integer rk,umax + integer r(*), c(*), ic(*), ia(*), ja(*), il(*), jl(*), ijl(*) + integer iu(*), ju(*), iju(*), irl(*), jrl(*), flag +c real a(*), l(*), d(*), u(*), z(*), b(*), row(*) +c real tmp(*), lki, sum, dk + double precision a(*), l(*), d(*), u(*), z(*), b(*), row(*) + double precision tmp(*), lki, sum, dk +c +c ****** initialize pointers and test storage *********************** + if(il(n+1)-1 .gt. lmax) go to 104 + if(iu(n+1)-1 .gt. umax) go to 107 + do 1 k=1,n + irl(k) = il(k) + jrl(k) = 0 + 1 continue +c +c ****** for each row *********************************************** + do 19 k=1,n +c ****** reverse jrl and zero row where kth row of l will fill in *** + row(k) = 0 + i1 = 0 + if (jrl(k) .eq. 0) go to 3 + i = jrl(k) + 2 i2 = jrl(i) + jrl(i) = i1 + i1 = i + row(i) = 0 + i = i2 + if (i .ne. 0) go to 2 +c ****** set row to zero where u will fill in *********************** + 3 jmin = iju(k) + jmax = jmin + iu(k+1) - iu(k) - 1 + if (jmin .gt. jmax) go to 5 + do 4 j=jmin,jmax + 4 row(ju(j)) = 0 +c ****** place kth row of a in row ********************************** + 5 rk = r(k) + jmin = ia(rk) + jmax = ia(rk+1) - 1 + do 6 j=jmin,jmax + row(ic(ja(j))) = a(j) + 6 continue +c ****** initialize sum, and link through jrl *********************** + sum = b(rk) + i = i1 + if (i .eq. 0) go to 10 +c ****** assign the kth row of l and adjust row, sum **************** + 7 lki = -row(i) +c ****** if l is not required, then comment out the following line ** + l(irl(i)) = -lki + sum = sum + lki * tmp(i) + jmin = iu(i) + jmax = iu(i+1) - 1 + if (jmin .gt. jmax) go to 9 + mu = iju(i) - jmin + do 8 j=jmin,jmax + 8 row(ju(mu+j)) = row(ju(mu+j)) + lki * u(j) + 9 i = jrl(i) + if (i .ne. 0) go to 7 +c +c ****** assign kth row of u and diagonal d, set tmp(k) ************* + 10 if (row(k) .eq. 0.0d0) go to 108 + dk = 1.0d0 / row(k) + d(k) = dk + tmp(k) = sum * dk + if (k .eq. n) go to 19 + jmin = iu(k) + jmax = iu(k+1) - 1 + if (jmin .gt. jmax) go to 12 + mu = iju(k) - jmin + do 11 j=jmin,jmax + 11 u(j) = row(ju(mu+j)) * dk + 12 continue +c +c ****** update irl and jrl, keeping jrl in decreasing order ******** + i = i1 + if (i .eq. 0) go to 18 + 14 irl(i) = irl(i) + 1 + i1 = jrl(i) + if (irl(i) .ge. il(i+1)) go to 17 + ijlb = irl(i) - il(i) + ijl(i) + j = jl(ijlb) + 15 if (i .gt. jrl(j)) go to 16 + j = jrl(j) + go to 15 + 16 jrl(i) = jrl(j) + jrl(j) = i + 17 i = i1 + if (i .ne. 0) go to 14 + 18 if (irl(k) .ge. il(k+1)) go to 19 + j = jl(ijl(k)) + jrl(k) = jrl(j) + jrl(j) = k + 19 continue +c +c ****** solve ux = tmp by back substitution ********************** + k = n + do 22 i=1,n + sum = tmp(k) + jmin = iu(k) + jmax = iu(k+1) - 1 + if (jmin .gt. jmax) go to 21 + mu = iju(k) - jmin + do 20 j=jmin,jmax + 20 sum = sum - u(j) * tmp(ju(mu+j)) + 21 tmp(k) = sum + z(c(k)) = sum + 22 k = k-1 + flag = 0 + return +c +c ** error.. insufficient storage for l + 104 flag = 4*n + 1 + return +c ** error.. insufficient storage for u + 107 flag = 7*n + 1 + return +c ** error.. zero pivot + 108 flag = 8*n + k + return + end + subroutine nnsc + * (n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, z, b, tmp) +c*** subroutine nnsc +c*** numerical solution of sparse nonsymmetric system of linear +c equations given ldu-factorization (compressed pointer storage) +c +c +c input variables.. n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, b +c output variables.. z +c +c parameters used internally.. +c fia - tmp - temporary vector which gets result of solving ly = b. +c - size = n. +c +c internal variables.. +c jmin, jmax - indices of the first and last positions in a row of +c u or l to be used. +c + integer r(*), c(*), il(*), jl(*), ijl(*), iu(*), ju(*), iju(*) +c real l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk, sum + double precision l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk,sum +c +c ****** set tmp to reordered b ************************************* + do 1 k=1,n + 1 tmp(k) = b(r(k)) +c ****** solve ly = b by forward substitution ********************* + do 3 k=1,n + jmin = il(k) + jmax = il(k+1) - 1 + tmpk = -d(k) * tmp(k) + tmp(k) = -tmpk + if (jmin .gt. jmax) go to 3 + ml = ijl(k) - jmin + do 2 j=jmin,jmax + 2 tmp(jl(ml+j)) = tmp(jl(ml+j)) + tmpk * l(j) + 3 continue +c ****** solve ux = y by back substitution ************************ + k = n + do 6 i=1,n + sum = -tmp(k) + jmin = iu(k) + jmax = iu(k+1) - 1 + if (jmin .gt. jmax) go to 5 + mu = iju(k) - jmin + do 4 j=jmin,jmax + 4 sum = sum + u(j) * tmp(ju(mu+j)) + 5 tmp(k) = -sum + z(c(k)) = -sum + k = k - 1 + 6 continue + return + end + subroutine nntc + * (n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, z, b, tmp) +c*** subroutine nntc +c*** numeric solution of the transpose of a sparse nonsymmetric system +c of linear equations given lu-factorization (compressed pointer +c storage) +c +c +c input variables.. n, r, c, il, jl, ijl, l, d, iu, ju, iju, u, b +c output variables.. z +c +c parameters used internally.. +c fia - tmp - temporary vector which gets result of solving ut y = b +c - size = n. +c +c internal variables.. +c jmin, jmax - indices of the first and last positions in a row of +c u or l to be used. +c + integer r(*), c(*), il(*), jl(*), ijl(*), iu(*), ju(*), iju(*) +c real l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk,sum + double precision l(*), d(*), u(*), b(*), z(*), tmp(*), tmpk,sum +c +c ****** set tmp to reordered b ************************************* + do 1 k=1,n + 1 tmp(k) = b(c(k)) +c ****** solve ut y = b by forward substitution ******************* + do 3 k=1,n + jmin = iu(k) + jmax = iu(k+1) - 1 + tmpk = -tmp(k) + if (jmin .gt. jmax) go to 3 + mu = iju(k) - jmin + do 2 j=jmin,jmax + 2 tmp(ju(mu+j)) = tmp(ju(mu+j)) + tmpk * u(j) + 3 continue +c ****** solve lt x = y by back substitution ********************** + k = n + do 6 i=1,n + sum = -tmp(k) + jmin = il(k) + jmax = il(k+1) - 1 + if (jmin .gt. jmax) go to 5 + ml = ijl(k) - jmin + do 4 j=jmin,jmax + 4 sum = sum + l(j) * tmp(jl(ml+j)) + 5 tmp(k) = -sum * d(k) + z(r(k)) = tmp(k) + k = k - 1 + 6 continue + return + end +*DECK DSTODA + SUBROUTINE DSTODA (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, + 1 WM, IWM, F, JAC, PJAC, SLVS) + EXTERNAL F, JAC, PJAC, SLVS + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IOWND2, ICOUNT, IRFLAG, JTYP, MUSED, MXORDN, MXORDS + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ROWND2, CM1, CM2, PDEST, PDLAST, RATIO, + 1 PDNORM + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 5 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 6 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSA01/ ROWND2, CM1(12), CM2(5), PDEST, PDLAST, RATIO, + 1 PDNORM, + 2 IOWND2(3), ICOUNT, IRFLAG, JTYP, MUSED, MXORDN, MXORDS + INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ + INTEGER LM1, LM1P1, LM2, LM2P1, NQM1, NQM2 + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, + 1 R, RH, RHDN, RHSM, RHUP, TOLD, DMNORM + DOUBLE PRECISION ALPHA, DM1,DM2, EXM1,EXM2, + 1 PDH, PNORM, RATE, RH1, RH1IT, RH2, RM, SM1(12) + SAVE SM1 + DATA SM1/0.5D0, 0.575D0, 0.55D0, 0.45D0, 0.35D0, 0.25D0, + 1 0.20D0, 0.15D0, 0.10D0, 0.075D0, 0.050D0, 0.025D0/ +C----------------------------------------------------------------------- +C DSTODA performs one step of the integration of an initial value +C problem for a system of ordinary differential equations. +C Note: DSTODA is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODA is done with the following variables: +C +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C PJAC = name of routine to evaluate and preprocess Jacobian matrix +C and P = I - H*EL0*Jac, if a chord method is being used. +C It also returns an estimate of norm(Jac) in PDNORM. +C SLVS = name of routine to solve linear system in chord iteration. +C CCMAX = maximum relative change in H*EL0 before PJAC is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in PJAC or SLVS. +C A return with KFLAG = -1 or -2 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH = current method. +C METH = 1 means Adams method (nonstiff) +C METH = 2 means BDF method (stiff) +C METH may be reset by DSTODA. +C MITER = corrector iteration method. +C MITER = 0 means functional iteration. +C MITER = JT .gt. 0 means a chord iteration corresponding +C to Jacobian type JT. (The DLSODA/DLSODAR argument JT is +C communicated here as JTYP, but is not used in DSTODA +C except to load MITER following a method switch.) +C MITER may be reset by DSTODA. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C DCFODE is called to get the needed coefficients for both methods. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + NSLP = 0 + IPUP = MITER + IRET = 3 +C Initialize switching parameters. METH = 1 is assumed initially. ----- + ICOUNT = 20 + IRFLAG = 0 + PDEST = 0.0D0 + PDLAST = 0.0D0 + RATIO = 5.0D0 + CALL DCFODE (2, ELCO, TESCO) + DO 10 I = 1,5 + 10 CM2(I) = TESCO(2,I)*ELCO(I+1,I) + CALL DCFODE (1, ELCO, TESCO) + DO 20 I = 1,12 + 20 CM1(I) = TESCO(2,I)*ELCO(I+1,I) + GO TO 150 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MUSED) GO TO 160 + CALL DCFODE (METH, ELCO, TESCO) + IALTH = L + IRET = 1 +C----------------------------------------------------------------------- +C The el vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) +C----------------------------------------------------------------------- +C If METH = 1, also restrict the new step size by the stability region. +C If this reduces H, set IRFLAG to 1 so that if there are roundoff +C problems later, we can assume that is the cause of the trouble. +C----------------------------------------------------------------------- + IF (METH .EQ. 2) GO TO 178 + IRFLAG = 0 + PDH = MAX(ABS(H)*PDLAST,0.000001D0) + IF (RH*PDH*1.00001D0 .LT. SM1(NQ)) GO TO 178 + RH = SM1(NQ)/PDH + IRFLAG = 1 + 178 CONTINUE + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C When RC differs from 1 by more than CCMAX, IPUP is set to MITER +C to force PJAC to be called, if a Jacobian is involved. +C In any case, PJAC is called at least every MSBP steps. +C----------------------------------------------------------------------- + 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE + PNORM = DMNORM (N, YH1, EWT) +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + RATE = 0.0D0 + DEL = 0.0D0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, the matrix P = I - H*EL(1)*J is reevaluated and +C preprocessed before starting the corrector iteration. IPUP is set +C to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (MITER .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DMNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + CALL SLVS (WM, IWM, Y, SAVF) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DMNORM (N, Y, EWT) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + Y(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C +C We first check for a change of iterates that is the size of +C roundoff error. If this occurs, the iteration has converged, and a +C new rate estimate is not formed. +C In all other cases, force at least two iterations to estimate a +C local Lipschitz constant estimate for Adams methods. +C On convergence, form PDEST = local maximum Lipschitz constant +C estimate. PDLAST is the most recent nonzero estimate. +C----------------------------------------------------------------------- + 400 CONTINUE + IF (DEL .LE. 100.0D0*PNORM*UROUND) GO TO 450 + IF (M .EQ. 0 .AND. METH .EQ. 1) GO TO 405 + IF (M .EQ. 0) GO TO 402 + RM = 1024.0D0 + IF (DEL .LE. 1024.0D0*DELP) RM = DEL/DELP + RATE = MAX(RATE,RM) + CRATE = MAX(0.2D0*CRATE,RM) + 402 DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) + IF (DCON .GT. 1.0D0) GO TO 405 + PDEST = MAX(PDEST,RATE/ABS(H*EL(1))) + IF (PDEST .NE. 0.0D0) PDLAST = PDEST + GO TO 450 + 405 CONTINUE + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for +C the next try. Otherwise the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430 + ICF = 1 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.25D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DMNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Decrease ICOUNT by 1, and if it is -1, consider switching methods. +C If a method switch is made, reset various parameters, +C rescale the YH array, and exit. If there is no switch, +C consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + MUSED = METH + DO 460 J = 1,L + DO 460 I = 1,N + 460 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + ICOUNT = ICOUNT - 1 + IF (ICOUNT .GE. 0) GO TO 488 + IF (METH .EQ. 2) GO TO 480 +C----------------------------------------------------------------------- +C We are currently using an Adams method. Consider switching to BDF. +C If the current order is greater than 5, assume the problem is +C not stiff, and skip this section. +C If the Lipschitz constant and error estimate are not polluted +C by roundoff, go to 470 and perform the usual test. +C Otherwise, switch to the BDF methods if the last step was +C restricted to insure stability (irflag = 1), and stay with Adams +C method if not. When switching to BDF with polluted error estimates, +C in the absence of other information, double the step size. +C +C When the estimates are OK, we make the usual test by computing +C the step size we could have (ideally) used on this step, +C with the current (Adams) method, and also that for the BDF. +C If NQ .gt. MXORDS, we consider changing to order MXORDS on switching. +C Compare the two step sizes to decide whether to switch. +C The step size advantage must be at least RATIO = 5 to switch. +C----------------------------------------------------------------------- + IF (NQ .GT. 5) GO TO 488 + IF (DSM .GT. 100.0D0*PNORM*UROUND .AND. PDEST .NE. 0.0D0) + 1 GO TO 470 + IF (IRFLAG .EQ. 0) GO TO 488 + RH2 = 2.0D0 + NQM2 = MIN(NQ,MXORDS) + GO TO 478 + 470 CONTINUE + EXSM = 1.0D0/L + RH1 = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RH1IT = 2.0D0*RH1 + PDH = PDLAST*ABS(H) + IF (PDH*RH1 .GT. 0.00001D0) RH1IT = SM1(NQ)/PDH + RH1 = MIN(RH1,RH1IT) + IF (NQ .LE. MXORDS) GO TO 474 + NQM2 = MXORDS + LM2 = MXORDS + 1 + EXM2 = 1.0D0/LM2 + LM2P1 = LM2 + 1 + DM2 = DMNORM (N, YH(1,LM2P1), EWT)/CM2(MXORDS) + RH2 = 1.0D0/(1.2D0*DM2**EXM2 + 0.0000012D0) + GO TO 476 + 474 DM2 = DSM*(CM1(NQ)/CM2(NQ)) + RH2 = 1.0D0/(1.2D0*DM2**EXSM + 0.0000012D0) + NQM2 = NQ + 476 CONTINUE + IF (RH2 .LT. RATIO*RH1) GO TO 488 +C THE SWITCH TEST PASSED. RESET RELEVANT QUANTITIES FOR BDF. ---------- + 478 RH = RH2 + ICOUNT = 20 + METH = 2 + MITER = JTYP + PDLAST = 0.0D0 + NQ = NQM2 + L = NQ + 1 + GO TO 170 +C----------------------------------------------------------------------- +C We are currently using a BDF method. Consider switching to Adams. +C Compute the step size we could have (ideally) used on this step, +C with the current (BDF) method, and also that for the Adams. +C If NQ .gt. MXORDN, we consider changing to order MXORDN on switching. +C Compare the two step sizes to decide whether to switch. +C The step size advantage must be at least 5/RATIO = 1 to switch. +C If the step size for Adams would be so small as to cause +C roundoff pollution, we stay with BDF. +C----------------------------------------------------------------------- + 480 CONTINUE + EXSM = 1.0D0/L + IF (MXORDN .GE. NQ) GO TO 484 + NQM1 = MXORDN + LM1 = MXORDN + 1 + EXM1 = 1.0D0/LM1 + LM1P1 = LM1 + 1 + DM1 = DMNORM (N, YH(1,LM1P1), EWT)/CM1(MXORDN) + RH1 = 1.0D0/(1.2D0*DM1**EXM1 + 0.0000012D0) + GO TO 486 + 484 DM1 = DSM*(CM2(NQ)/CM1(NQ)) + RH1 = 1.0D0/(1.2D0*DM1**EXSM + 0.0000012D0) + NQM1 = NQ + EXM1 = EXSM + 486 RH1IT = 2.0D0*RH1 + PDH = PDNORM*ABS(H) + IF (PDH*RH1 .GT. 0.00001D0) RH1IT = SM1(NQM1)/PDH + RH1 = MIN(RH1,RH1IT) + RH2 = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + IF (RH1*RATIO .LT. 5.0D0*RH2) GO TO 488 + ALPHA = MAX(0.001D0,RH1) + DM1 = (ALPHA**EXM1)*DM1 + IF (DM1 .LE. 1000.0D0*UROUND*PNORM) GO TO 488 +C The switch test passed. Reset relevant quantities for Adams. -------- + RH = RH1 + ICOUNT = 20 + METH = 1 + MITER = 0 + PDLAST = 0.0D0 + NQ = NQM1 + L = NQ + 1 + GO TO 170 +C +C No method switch is being made. Do the usual step/order selection. -- + 488 CONTINUE + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C The largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DMNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 550 + DDN = DMNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) +C If METH = 1, limit RH according to the stability region also. -------- + 550 IF (METH .EQ. 2) GO TO 560 + PDH = MAX(ABS(H)*PDLAST,0.000001D0) + IF (L .LT. LMAX) RHUP = MIN(RHUP,SM1(L)/PDH) + RHSM = MIN(RHSM,SM1(NQ)/PDH) + IF (NQ .GT. 1) RHDN = MIN(RHDN,SM1(NQ-1)/PDH) + PDEST = 0.0D0 + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 +C If METH = 1 and H is restricted by stability, bypass 10 percent test. + 620 IF (METH .EQ. 2) GO TO 622 + IF (RH*PDH*1.00001D0 .GE. SM1(NEWQ)) GO TO 625 + 622 IF (KFLAG .EQ. 0 .AND. RH .LT. 1.1D0) GO TO 610 + 625 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTODA ---------------------- + END +*DECK DPRJA + SUBROUTINE DPRJA (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, + 1 F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IOWND2, IOWNS2, JTYP, MUSED, MXORDN, MXORDS + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ROWND2, ROWNS2, PDNORM + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSA01/ ROWND2, ROWNS2(20), PDNORM, + 1 IOWND2(3), IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS + INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP, + 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1 + DOUBLE PRECISION CON, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ, + 1 DMNORM, DFNORM, DBNORM +C----------------------------------------------------------------------- +C DPRJA is called by DSTODA to compute and process the matrix +C P = I - H*EL(1)*J , where J is an approximation to the Jacobian. +C Here J is computed by the user-supplied routine JAC if +C MITER = 1 or 4 or by finite differencing if MITER = 2 or 5. +C J, scaled by -H*EL(1), is stored in WM. Then the norm of J (the +C matrix norm consistent with the weighted max-norm on vectors given +C by DMNORM) is computed, and J is overwritten by P. P is then +C subjected to LU decomposition in preparation for later solution +C of linear systems with P as coefficient matrix. This is done +C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5. +C +C In addition to variables described previously, communication +C with DPRJA uses the following: +C Y = array containing predicted values on entry. +C FTEM = work array of length N (ACOR in DSTODA). +C SAVF = array containing f evaluated at predicted y. +C WM = real work space for matrices. On output it contains the +C LU decomposition of P. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains the band parameters +C ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C EL0 = EL(1) (input). +C PDNORM= norm of Jacobian matrix. (Output). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C P matrix found to be singular. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the Common variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C----------------------------------------------------------------------- + NJE = NJE + 1 + IERPJ = 0 + JCUR = 1 + HL0 = H*EL0 + GO TO (100, 200, 300, 400, 500), MITER +C If MITER = 1, call JAC and multiply by scalar. ----------------------- + 100 LENP = N*N + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 240 +C If MITER = 2, make N calls to F to approximate J. -------------------- + 200 FAC = DMNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + SRUR = WM(1) + J1 = 2 + DO 230 J = 1,N + YJ = Y(J) + R = MAX(SRUR*ABS(YJ),R0/EWT(J)) + Y(J) = Y(J) + R + FAC = -HL0/R + CALL F (NEQ, TN, Y, FTEM) + DO 220 I = 1,N + 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC + Y(J) = YJ + J1 = J1 + N + 230 CONTINUE + NFE = NFE + N + 240 CONTINUE +C Compute norm of Jacobian. -------------------------------------------- + PDNORM = DFNORM (N, WM(3), EWT)/ABS(HL0) +C Add identity matrix. ------------------------------------------------- + J = 3 + NP1 = N + 1 + DO 250 I = 1,N + WM(J) = WM(J) + 1.0D0 + 250 J = J + NP1 +C Do LU decomposition on P. -------------------------------------------- + CALL DGEFA (WM(3), N, N, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Dummy block only, since MITER is never 3 in this routine. ------------ + 300 RETURN +C If MITER = 4, call JAC and multiply by scalar. ----------------------- + 400 ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MEBAND = MBAND + ML + LENP = MEBAND*N + DO 410 I = 1,LENP + 410 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) + CON = -HL0 + DO 420 I = 1,LENP + 420 WM(I+2) = WM(I+2)*CON + GO TO 570 +C If MITER = 5, make MBAND calls to F to approximate J. ---------------- + 500 ML = IWM(1) + MU = IWM(2) + MBAND = ML + MU + 1 + MBA = MIN(MBAND,N) + MEBAND = MBAND + ML + MEB1 = MEBAND - 1 + SRUR = WM(1) + FAC = DMNORM (N, SAVF, EWT) + R0 = 1000.0D0*ABS(H)*UROUND*N*FAC + IF (R0 .EQ. 0.0D0) R0 = 1.0D0 + DO 560 J = 1,MBA + DO 530 I = J,N,MBAND + YI = Y(I) + R = MAX(SRUR*ABS(YI),R0/EWT(I)) + 530 Y(I) = Y(I) + R + CALL F (NEQ, TN, Y, FTEM) + DO 550 JJ = J,N,MBAND + Y(JJ) = YH(JJ,1) + YJJ = Y(JJ) + R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ)) + FAC = -HL0/R + I1 = MAX(JJ-MU,1) + I2 = MIN(JJ+ML,N) + II = JJ*MEB1 - ML + 2 + DO 540 I = I1,I2 + 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC + 550 CONTINUE + 560 CONTINUE + NFE = NFE + MBA + 570 CONTINUE +C Compute norm of Jacobian. -------------------------------------------- + PDNORM = DBNORM (N, WM(ML+3), MEBAND, ML, MU, EWT)/ABS(HL0) +C Add identity matrix. ------------------------------------------------- + II = MBAND + 2 + DO 580 I = 1,N + WM(II) = WM(II) + 1.0D0 + 580 II = II + MEBAND +C Do LU decomposition of P. -------------------------------------------- + CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C----------------------- End of Subroutine DPRJA ----------------------- + END +*DECK DMNORM + DOUBLE PRECISION FUNCTION DMNORM (N, V, W) +C----------------------------------------------------------------------- +C This function routine computes the weighted max-norm +C of the vector of length N contained in the array V, with weights +C contained in the array w of length N: +C DMNORM = MAX(i=1,...,N) ABS(V(i))*W(i) +C----------------------------------------------------------------------- + INTEGER N, I + DOUBLE PRECISION V, W, VM + DIMENSION V(N), W(N) + VM = 0.0D0 + DO 10 I = 1,N + 10 VM = MAX(VM,ABS(V(I))*W(I)) + DMNORM = VM + RETURN +C----------------------- End of Function DMNORM ------------------------ + END +*DECK DFNORM + DOUBLE PRECISION FUNCTION DFNORM (N, A, W) +C----------------------------------------------------------------------- +C This function computes the norm of a full N by N matrix, +C stored in the array A, that is consistent with the weighted max-norm +C on vectors, with weights stored in the array W: +C DFNORM = MAX(i=1,...,N) ( W(i) * Sum(j=1,...,N) ABS(a(i,j))/W(j) ) +C----------------------------------------------------------------------- + INTEGER N, I, J + DOUBLE PRECISION A, W, AN, SUM + DIMENSION A(N,N), W(N) + AN = 0.0D0 + DO 20 I = 1,N + SUM = 0.0D0 + DO 10 J = 1,N + 10 SUM = SUM + ABS(A(I,J))/W(J) + AN = MAX(AN,SUM*W(I)) + 20 CONTINUE + DFNORM = AN + RETURN +C----------------------- End of Function DFNORM ------------------------ + END +*DECK DBNORM + DOUBLE PRECISION FUNCTION DBNORM (N, A, NRA, ML, MU, W) +C----------------------------------------------------------------------- +C This function computes the norm of a banded N by N matrix, +C stored in the array A, that is consistent with the weighted max-norm +C on vectors, with weights stored in the array W. +C ML and MU are the lower and upper half-bandwidths of the matrix. +C NRA is the first dimension of the A array, NRA .ge. ML+MU+1. +C In terms of the matrix elements a(i,j), the norm is given by: +C DBNORM = MAX(i=1,...,N) ( W(i) * Sum(j=1,...,N) ABS(a(i,j))/W(j) ) +C----------------------------------------------------------------------- + INTEGER N, NRA, ML, MU + INTEGER I, I1, JLO, JHI, J + DOUBLE PRECISION A, W + DOUBLE PRECISION AN, SUM + DIMENSION A(NRA,N), W(N) + AN = 0.0D0 + DO 20 I = 1,N + SUM = 0.0D0 + I1 = I + MU + 1 + JLO = MAX(I-ML,1) + JHI = MIN(I+MU,N) + DO 10 J = JLO,JHI + 10 SUM = SUM + ABS(A(I1-J,J))/W(J) + AN = MAX(AN,SUM*W(I)) + 20 CONTINUE + DBNORM = AN + RETURN +C----------------------- End of Function DBNORM ------------------------ + END +*DECK DSRCMA + SUBROUTINE DSRCMA (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLSA01, which are used +C internally by one or more ODEPACK solvers. +C +C RSAV = real array of length 240 or more. +C ISAV = integer array of length 46 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSA + INTEGER I, LENRLS, LENILS, LENRLA, LENILA + DOUBLE PRECISION RSAV + DOUBLE PRECISION RLS, RLSA + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLA, LENILA + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLSA01/ RLSA(22), ILSA(9) + DATA LENRLS/218/, LENILS/37/, LENRLA/22/, LENILA/9/ +C + IF (JOB .EQ. 2) GO TO 100 + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 15 I = 1,LENRLA + 15 RSAV(LENRLS+I) = RLSA(I) +C + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + DO 25 I = 1,LENILA + 25 ISAV(LENILS+I) = ILSA(I) +C + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 115 I = 1,LENRLA + 115 RLSA(I) = RSAV(LENRLS+I) +C + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + DO 125 I = 1,LENILA + 125 ILSA(I) = ISAV(LENILS+I) +C + RETURN +C----------------------- End of Subroutine DSRCMA ---------------------- + END +*DECK DRCHEK + SUBROUTINE DRCHEK (JOB, G, NEQ, Y, YH,NYH, G0, G1, GX, JROOT, IRT) + EXTERNAL G + INTEGER JOB, NEQ, NYH, JROOT, IRT + DOUBLE PRECISION Y, YH, G0, G1, GX + DIMENSION NEQ(*), Y(*), YH(NYH,*), G0(*), G1(*), GX(*), JROOT(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IOWND3, IOWNR3, IRFND, ITASKC, NGC, NGE + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION ROWNR3, T0, TLAST, TOUTC + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSR01/ ROWNR3(2), T0, TLAST, TOUTC, + 1 IOWND3(3), IOWNR3(2), IRFND, ITASKC, NGC, NGE + INTEGER I, IFLAG, JFLAG + DOUBLE PRECISION HMING, T1, TEMP1, TEMP2, X + LOGICAL ZROOT +C----------------------------------------------------------------------- +C This routine checks for the presence of a root in the vicinity of +C the current T, in a manner depending on the input flag JOB. It calls +C Subroutine DROOTS to locate the root as precisely as possible. +C +C In addition to variables described previously, DRCHEK +C uses the following for communication: +C JOB = integer flag indicating type of call: +C JOB = 1 means the problem is being initialized, and DRCHEK +C is to look for a root at or very near the initial T. +C JOB = 2 means a continuation call to the solver was just +C made, and DRCHEK is to check for a root in the +C relevant part of the step last taken. +C JOB = 3 means a successful step was just taken, and DRCHEK +C is to look for a root in the interval of the step. +C G0 = array of length NG, containing the value of g at T = T0. +C G0 is input for JOB .ge. 2, and output in all cases. +C G1,GX = arrays of length NG for work space. +C IRT = completion flag: +C IRT = 0 means no root was found. +C IRT = -1 means JOB = 1 and a root was found too near to T. +C IRT = 1 means a legitimate root was found (JOB = 2 or 3). +C On return, T0 is the root location, and Y is the +C corresponding solution vector. +C T0 = value of T at one endpoint of interval of interest. Only +C roots beyond T0 in the direction of integration are sought. +C T0 is input if JOB .ge. 2, and output in all cases. +C T0 is updated by DRCHEK, whether a root is found or not. +C TLAST = last value of T returned by the solver (input only). +C TOUTC = copy of TOUT (input only). +C IRFND = input flag showing whether the last step taken had a root. +C IRFND = 1 if it did, = 0 if not. +C ITASKC = copy of ITASK (input only). +C NGC = copy of NG (input only). +C----------------------------------------------------------------------- + IRT = 0 + DO 10 I = 1,NGC + 10 JROOT(I) = 0 + HMING = (ABS(TN) + ABS(H))*UROUND*100.0D0 +C + GO TO (100, 200, 300), JOB +C +C Evaluate g at initial T, and check for zero values. ------------------ + 100 CONTINUE + T0 = TN + CALL G (NEQ, T0, Y, NGC, G0) + NGE = 1 + ZROOT = .FALSE. + DO 110 I = 1,NGC + 110 IF (ABS(G0(I)) .LE. 0.0D0) ZROOT = .TRUE. + IF (.NOT. ZROOT) GO TO 190 +C g has a zero at T. Look at g at T + (small increment). -------------- + TEMP2 = MAX(HMING/ABS(H), 0.1D0) + TEMP1 = TEMP2*H + T0 = T0 + TEMP1 + DO 120 I = 1,N + 120 Y(I) = Y(I) + TEMP2*YH(I,2) + CALL G (NEQ, T0, Y, NGC, G0) + NGE = NGE + 1 + ZROOT = .FALSE. + DO 130 I = 1,NGC + 130 IF (ABS(G0(I)) .LE. 0.0D0) ZROOT = .TRUE. + IF (.NOT. ZROOT) GO TO 190 +C g has a zero at T and also close to T. Take error return. ----------- + IRT = -1 + RETURN +C + 190 CONTINUE + RETURN +C +C + 200 CONTINUE + IF (IRFND .EQ. 0) GO TO 260 +C If a root was found on the previous step, evaluate G0 = g(T0). ------- + CALL DINTDY (T0, 0, YH, NYH, Y, IFLAG) + CALL G (NEQ, T0, Y, NGC, G0) + NGE = NGE + 1 + ZROOT = .FALSE. + DO 210 I = 1,NGC + 210 IF (ABS(G0(I)) .LE. 0.0D0) ZROOT = .TRUE. + IF (.NOT. ZROOT) GO TO 260 +C g has a zero at T0. Look at g at T + (small increment). ------------- + TEMP1 = SIGN(HMING,H) + T0 = T0 + TEMP1 + IF ((T0 - TN)*H .LT. 0.0D0) GO TO 230 + TEMP2 = TEMP1/H + DO 220 I = 1,N + 220 Y(I) = Y(I) + TEMP2*YH(I,2) + GO TO 240 + 230 CALL DINTDY (T0, 0, YH, NYH, Y, IFLAG) + 240 CALL G (NEQ, T0, Y, NGC, G0) + NGE = NGE + 1 + ZROOT = .FALSE. + DO 250 I = 1,NGC + IF (ABS(G0(I)) .GT. 0.0D0) GO TO 250 + JROOT(I) = 1 + ZROOT = .TRUE. + 250 CONTINUE + IF (.NOT. ZROOT) GO TO 260 +C g has a zero at T0 and also close to T0. Return root. --------------- + IRT = 1 + RETURN +C G0 has no zero components. Proceed to check relevant interval. ------ + 260 IF (TN .EQ. TLAST) GO TO 390 +C + 300 CONTINUE +C Set T1 to TN or TOUTC, whichever comes first, and get g at T1. ------- + IF (ITASKC.EQ.2 .OR. ITASKC.EQ.3 .OR. ITASKC.EQ.5) GO TO 310 + IF ((TOUTC - TN)*H .GE. 0.0D0) GO TO 310 + T1 = TOUTC + IF ((T1 - T0)*H .LE. 0.0D0) GO TO 390 + CALL DINTDY (T1, 0, YH, NYH, Y, IFLAG) + GO TO 330 + 310 T1 = TN + DO 320 I = 1,N + 320 Y(I) = YH(I,1) + 330 CALL G (NEQ, T1, Y, NGC, G1) + NGE = NGE + 1 +C Call DROOTS to search for root in interval from T0 to T1. ------------ + JFLAG = 0 + 350 CONTINUE + CALL DROOTS (NGC, HMING, JFLAG, T0, T1, G0, G1, GX, X, JROOT) + IF (JFLAG .GT. 1) GO TO 360 + CALL DINTDY (X, 0, YH, NYH, Y, IFLAG) + CALL G (NEQ, X, Y, NGC, GX) + NGE = NGE + 1 + GO TO 350 + 360 T0 = X + CALL DCOPY (NGC, GX, 1, G0, 1) + IF (JFLAG .EQ. 4) GO TO 390 +C Found a root. Interpolate to X and return. -------------------------- + CALL DINTDY (X, 0, YH, NYH, Y, IFLAG) + IRT = 1 + RETURN +C + 390 CONTINUE + RETURN +C----------------------- End of Subroutine DRCHEK ---------------------- + END +*DECK DROOTS + SUBROUTINE DROOTS (NG, HMIN, JFLAG, X0, X1, G0, G1, GX, X, JROOT) + INTEGER NG, JFLAG, JROOT + DOUBLE PRECISION HMIN, X0, X1, G0, G1, GX, X + DIMENSION G0(NG), G1(NG), GX(NG), JROOT(NG) + INTEGER IOWND3, IMAX, LAST, IDUM3 + DOUBLE PRECISION ALPHA, X2, RDUM3 + COMMON /DLSR01/ ALPHA, X2, RDUM3(3), + 1 IOWND3(3), IMAX, LAST, IDUM3(4) +C----------------------------------------------------------------------- +C This subroutine finds the leftmost root of a set of arbitrary +C functions gi(x) (i = 1,...,NG) in an interval (X0,X1). Only roots +C of odd multiplicity (i.e. changes of sign of the gi) are found. +C Here the sign of X1 - X0 is arbitrary, but is constant for a given +C problem, and -leftmost- means nearest to X0. +C The values of the vector-valued function g(x) = (gi, i=1...NG) +C are communicated through the call sequence of DROOTS. +C The method used is the Illinois algorithm. +C +C Reference: +C Kathie L. Hiebert and Lawrence F. Shampine, Implicitly Defined +C Output Points for Solutions of ODEs, Sandia Report SAND80-0180, +C February 1980. +C +C Description of parameters. +C +C NG = number of functions gi, or the number of components of +C the vector valued function g(x). Input only. +C +C HMIN = resolution parameter in X. Input only. When a root is +C found, it is located only to within an error of HMIN in X. +C Typically, HMIN should be set to something on the order of +C 100 * UROUND * MAX(ABS(X0),ABS(X1)), +C where UROUND is the unit roundoff of the machine. +C +C JFLAG = integer flag for input and output communication. +C +C On input, set JFLAG = 0 on the first call for the problem, +C and leave it unchanged until the problem is completed. +C (The problem is completed when JFLAG .ge. 2 on return.) +C +C On output, JFLAG has the following values and meanings: +C JFLAG = 1 means DROOTS needs a value of g(x). Set GX = g(X) +C and call DROOTS again. +C JFLAG = 2 means a root has been found. The root is +C at X, and GX contains g(X). (Actually, X is the +C rightmost approximation to the root on an interval +C (X0,X1) of size HMIN or less.) +C JFLAG = 3 means X = X1 is a root, with one or more of the gi +C being zero at X1 and no sign changes in (X0,X1). +C GX contains g(X) on output. +C JFLAG = 4 means no roots (of odd multiplicity) were +C found in (X0,X1) (no sign changes). +C +C X0,X1 = endpoints of the interval where roots are sought. +C X1 and X0 are input when JFLAG = 0 (first call), and +C must be left unchanged between calls until the problem is +C completed. X0 and X1 must be distinct, but X1 - X0 may be +C of either sign. However, the notion of -left- and -right- +C will be used to mean nearer to X0 or X1, respectively. +C When JFLAG .ge. 2 on return, X0 and X1 are output, and +C are the endpoints of the relevant interval. +C +C G0,G1 = arrays of length NG containing the vectors g(X0) and g(X1), +C respectively. When JFLAG = 0, G0 and G1 are input and +C none of the G0(i) should be zero. +C When JFLAG .ge. 2 on return, G0 and G1 are output. +C +C GX = array of length NG containing g(X). GX is input +C when JFLAG = 1, and output when JFLAG .ge. 2. +C +C X = independent variable value. Output only. +C When JFLAG = 1 on output, X is the point at which g(x) +C is to be evaluated and loaded into GX. +C When JFLAG = 2 or 3, X is the root. +C When JFLAG = 4, X is the right endpoint of the interval, X1. +C +C JROOT = integer array of length NG. Output only. +C When JFLAG = 2 or 3, JROOT indicates which components +C of g(x) have a root at X. JROOT(i) is 1 if the i-th +C component has a root, and JROOT(i) = 0 otherwise. +C----------------------------------------------------------------------- + INTEGER I, IMXOLD, NXLAST + DOUBLE PRECISION T2, TMAX, FRACINT, FRACSUB, ZERO,HALF,TENTH,FIVE + LOGICAL ZROOT, SGNCHG, XROOT + SAVE ZERO, HALF, TENTH, FIVE + DATA ZERO/0.0D0/, HALF/0.5D0/, TENTH/0.1D0/, FIVE/5.0D0/ +C + IF (JFLAG .EQ. 1) GO TO 200 +C JFLAG .ne. 1. Check for change in sign of g or zero at X1. ---------- + IMAX = 0 + TMAX = ZERO + ZROOT = .FALSE. + DO 120 I = 1,NG + IF (ABS(G1(I)) .GT. ZERO) GO TO 110 + ZROOT = .TRUE. + GO TO 120 +C At this point, G0(i) has been checked and cannot be zero. ------------ + 110 IF (SIGN(1.0D0,G0(I)) .EQ. SIGN(1.0D0,G1(I))) GO TO 120 + T2 = ABS(G1(I)/(G1(I)-G0(I))) + IF (T2 .LE. TMAX) GO TO 120 + TMAX = T2 + IMAX = I + 120 CONTINUE + IF (IMAX .GT. 0) GO TO 130 + SGNCHG = .FALSE. + GO TO 140 + 130 SGNCHG = .TRUE. + 140 IF (.NOT. SGNCHG) GO TO 400 +C There is a sign change. Find the first root in the interval. -------- + XROOT = .FALSE. + NXLAST = 0 + LAST = 1 +C +C Repeat until the first root in the interval is found. Loop point. --- + 150 CONTINUE + IF (XROOT) GO TO 300 + IF (NXLAST .EQ. LAST) GO TO 160 + ALPHA = 1.0D0 + GO TO 180 + 160 IF (LAST .EQ. 0) GO TO 170 + ALPHA = 0.5D0*ALPHA + GO TO 180 + 170 ALPHA = 2.0D0*ALPHA + 180 X2 = X1 - (X1 - X0)*G1(IMAX) / (G1(IMAX) - ALPHA*G0(IMAX)) +C If X2 is too close to X0 or X1, adjust it inward, by a fractional ---- +C distance that is between 0.1 and 0.5. -------------------------------- + IF (ABS(X2 - X0) < HALF*HMIN) THEN + FRACINT = ABS(X1 - X0)/HMIN + FRACSUB = TENTH + IF (FRACINT .LE. FIVE) FRACSUB = HALF/FRACINT + X2 = X0 + FRACSUB*(X1 - X0) + ENDIF + IF (ABS(X1 - X2) < HALF*HMIN) THEN + FRACINT = ABS(X1 - X0)/HMIN + FRACSUB = TENTH + IF (FRACINT .LE. FIVE) FRACSUB = HALF/FRACINT + X2 = X1 - FRACSUB*(X1 - X0) + ENDIF + JFLAG = 1 + X = X2 +C Return to the calling routine to get a value of GX = g(X). ----------- + RETURN +C Check to see in which interval g changes sign. ----------------------- + 200 IMXOLD = IMAX + IMAX = 0 + TMAX = ZERO + ZROOT = .FALSE. + DO 220 I = 1,NG + IF (ABS(GX(I)) .GT. ZERO) GO TO 210 + ZROOT = .TRUE. + GO TO 220 +C Neither G0(i) nor GX(i) can be zero at this point. ------------------- + 210 IF (SIGN(1.0D0,G0(I)) .EQ. SIGN(1.0D0,GX(I))) GO TO 220 + T2 = ABS(GX(I)/(GX(I) - G0(I))) + IF (T2 .LE. TMAX) GO TO 220 + TMAX = T2 + IMAX = I + 220 CONTINUE + IF (IMAX .GT. 0) GO TO 230 + SGNCHG = .FALSE. + IMAX = IMXOLD + GO TO 240 + 230 SGNCHG = .TRUE. + 240 NXLAST = LAST + IF (.NOT. SGNCHG) GO TO 250 +C Sign change between X0 and X2, so replace X1 with X2. ---------------- + X1 = X2 + CALL DCOPY (NG, GX, 1, G1, 1) + LAST = 1 + XROOT = .FALSE. + GO TO 270 + 250 IF (.NOT. ZROOT) GO TO 260 +C Zero value at X2 and no sign change in (X0,X2), so X2 is a root. ----- + X1 = X2 + CALL DCOPY (NG, GX, 1, G1, 1) + XROOT = .TRUE. + GO TO 270 +C No sign change between X0 and X2. Replace X0 with X2. --------------- + 260 CONTINUE + CALL DCOPY (NG, GX, 1, G0, 1) + X0 = X2 + LAST = 0 + XROOT = .FALSE. + 270 IF (ABS(X1-X0) .LE. HMIN) XROOT = .TRUE. + GO TO 150 +C +C Return with X1 as the root. Set JROOT. Set X = X1 and GX = G1. ----- + 300 JFLAG = 2 + X = X1 + CALL DCOPY (NG, G1, 1, GX, 1) + DO 320 I = 1,NG + JROOT(I) = 0 + IF (ABS(G1(I)) .GT. ZERO) GO TO 310 + JROOT(I) = 1 + GO TO 320 + 310 IF (SIGN(1.0D0,G0(I)) .NE. SIGN(1.0D0,G1(I))) JROOT(I) = 1 + 320 CONTINUE + RETURN +C +C No sign change in the interval. Check for zero at right endpoint. --- + 400 IF (.NOT. ZROOT) GO TO 420 +C +C Zero value at X1 and no sign change in (X0,X1). Return JFLAG = 3. --- + X = X1 + CALL DCOPY (NG, G1, 1, GX, 1) + DO 410 I = 1,NG + JROOT(I) = 0 + IF (ABS(G1(I)) .LE. ZERO) JROOT (I) = 1 + 410 CONTINUE + JFLAG = 3 + RETURN +C +C No sign changes in this interval. Set X = X1, return JFLAG = 4. ----- + 420 CALL DCOPY (NG, G1, 1, GX, 1) + X = X1 + JFLAG = 4 + RETURN +C----------------------- End of Subroutine DROOTS ---------------------- + END +*DECK DSRCAR + SUBROUTINE DSRCAR (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLSA01, DLSR01, which are used +C internally by one or more ODEPACK solvers. +C +C RSAV = real array of length 245 or more. +C ISAV = integer array of length 55 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSA, ILSR + INTEGER I, IOFF, LENRLS, LENILS, LENRLA, LENILA, LENRLR, LENILR + DOUBLE PRECISION RSAV + DOUBLE PRECISION RLS, RLSA, RLSR + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLA, LENILA, LENRLR, LENILR + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLSA01/ RLSA(22), ILSA(9) + COMMON /DLSR01/ RLSR(5), ILSR(9) + DATA LENRLS/218/, LENILS/37/, LENRLA/22/, LENILA/9/ + DATA LENRLR/5/, LENILR/9/ +C + IF (JOB .EQ. 2) GO TO 100 + DO 10 I = 1,LENRLS + 10 RSAV(I) = RLS(I) + DO 15 I = 1,LENRLA + 15 RSAV(LENRLS+I) = RLSA(I) + IOFF = LENRLS + LENRLA + DO 20 I = 1,LENRLR + 20 RSAV(IOFF+I) = RLSR(I) +C + DO 30 I = 1,LENILS + 30 ISAV(I) = ILS(I) + DO 35 I = 1,LENILA + 35 ISAV(LENILS+I) = ILSA(I) + IOFF = LENILS + LENILA + DO 40 I = 1,LENILR + 40 ISAV(IOFF+I) = ILSR(I) +C + RETURN +C + 100 CONTINUE + DO 110 I = 1,LENRLS + 110 RLS(I) = RSAV(I) + DO 115 I = 1,LENRLA + 115 RLSA(I) = RSAV(LENRLS+I) + IOFF = LENRLS + LENRLA + DO 120 I = 1,LENRLR + 120 RLSR(I) = RSAV(IOFF+I) +C + DO 130 I = 1,LENILS + 130 ILS(I) = ISAV(I) + DO 135 I = 1,LENILA + 135 ILSA(I) = ISAV(LENILS+I) + IOFF = LENILS + LENILA + DO 140 I = 1,LENILR + 140 ILSR(I) = ISAV(IOFF+I) +C + RETURN +C----------------------- End of Subroutine DSRCAR ---------------------- + END +*DECK DSTODPK + SUBROUTINE DSTODPK (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVX, ACOR, + 1 WM, IWM, F, JAC, PSOL) + EXTERNAL F, JAC, PSOL + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVX, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 SAVX(*), ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DSTODPK performs one step of the integration of an initial value +C problem for a system of Ordinary Differential Equations. +C----------------------------------------------------------------------- +C The following changes were made to generate Subroutine DSTODPK +C from Subroutine DSTODE: +C 1. The array SAVX was added to the call sequence. +C 2. PJAC and SLVS were replaced by PSOL in the call sequence. +C 3. The Common block /DLPK01/ was added for communication. +C 4. The test constant EPCON is loaded into Common below statement +C numbers 125 and 155, and used below statement 400. +C 5. The Newton iteration counter MNEWT is set below 220 and 400. +C 6. The call to PJAC was replaced with a call to DPKSET (fixed name), +C with a longer call sequence, called depending on JACFLG. +C 7. The corrector residual is stored in SAVX (not Y) at 360, +C and the solution vector is in SAVX in the 380 loop. +C 8. SLVS was renamed DSOLPK and includes NEQ, SAVX, EWT, F, and JAC. +C SAVX was added because DSOLPK now needs Y and SAVF undisturbed. +C 9. The nonlinear convergence failure count NCFN is set at 430. +C----------------------------------------------------------------------- +C Note: DSTODPK is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODPK is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C Also used for input of YH(*,MAXORD+2) when JSTART = -1 +C and MAXORD .lt. the current order NQ. +C SAVX = an array of working storage, of length N. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C CCMAX = maximum relative change in H*EL0 before DPKSET is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in DPKSET or DSOLPK. +C A return with KFLAG = -1 or -2 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between DPKSET calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, + 1 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM +C + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + IPUP = MITER + IRET = 3 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C The flag IPUP is set according to whether matrix data is involved +C (JACFLG .ne. 0) or not (JACFLG = 0), to trigger a call to DPKSET. +C IPUP is set to MITER when RC differs from 1 by more than CCMAX, +C and at least every MSBP steps, when JACFLG = 1. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C----------------------------------------------------------------------- + 200 IF (JACFLG .NE. 0) GO TO 202 + IPUP = 0 + CRATE = 0.7D0 + GO TO 205 + 202 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + 205 TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + MNEWT = 0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, DPKSET is called to update any matrix data needed, +C before starting the corrector iteration. +C IPUP is set to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL DPKSET (NEQ, Y, YH1, EWT, ACOR, SAVF, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (MITER .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DVNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 SAVX(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + CALL DSOLPK (NEQ, Y, SAVF, SAVX, EWT, WM, IWM, F, PSOL) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DVNORM (N, SAVX, EWT) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + SAVX(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C----------------------------------------------------------------------- + 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/EPCON + IF (DCON .LE. 1.0D0) GO TO 450 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + MNEWT = M + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If MITER .ne. 0 and the Jacobian is out of date, DPKSET is called for +C the next try. Otherwise the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 IF (MITER.EQ.0 .OR. JCUR.EQ.1 .OR. JACFLG.EQ.0) GO TO 430 + ICF = 1 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + NCFN = NCFN + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.5D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + DO 470 J = 1,L + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C the largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTODPK --------------------- + END +*DECK DPKSET + SUBROUTINE DPKSET (NEQ, Y, YSV, EWT, FTEM, SAVF, WM, IWM, F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, IWM + DOUBLE PRECISION Y, YSV, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YSV(*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DPKSET is called by DSTODPK to interface with the user-supplied +C routine JAC, to compute and process relevant parts of +C the matrix P = I - H*EL(1)*J , where J is the Jacobian df/dy, +C as need for preconditioning matrix operations later. +C +C In addition to variables described previously, communication +C with DPKSET uses the following: +C Y = array containing predicted values on entry. +C YSV = array containing predicted y, to be saved (YH1 in DSTODPK). +C FTEM = work array of length N (ACOR in DSTODPK). +C SAVF = array containing f evaluated at predicted y. +C WM = real work space for matrices. +C Space for preconditioning data starts at WM(LOCWP). +C IWM = integer work space. +C Space for preconditioning data starts at IWM(LOCIWP). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C JAC returned an error flag. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses Common variables EL0, H, TN, IERPJ, JCUR, NJE. +C----------------------------------------------------------------------- + INTEGER IER + DOUBLE PRECISION HL0 +C + IERPJ = 0 + JCUR = 1 + HL0 = EL0*H + CALL JAC (F, NEQ, TN, Y, YSV, EWT, SAVF, FTEM, HL0, + 1 WM(LOCWP), IWM(LOCIWP), IER) + NJE = NJE + 1 + IF (IER .EQ. 0) RETURN + IERPJ = 1 + RETURN +C----------------------- End of Subroutine DPKSET ---------------------- + END +*DECK DSOLPK + SUBROUTINE DSOLPK (NEQ, Y, SAVF, X, EWT, WM, IWM, F, PSOL) + EXTERNAL F, PSOL + INTEGER NEQ, IWM + DOUBLE PRECISION Y, SAVF, X, EWT, WM + DIMENSION NEQ(*), Y(*), SAVF(*), X(*), EWT(*), WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C This routine interfaces to one of DSPIOM, DSPIGMR, DPCG, DPCGS, or +C DUSOL, for the solution of the linear system arising from a Newton +C iteration. It is called if MITER .ne. 0. +C In addition to variables described elsewhere, +C communication with DSOLPK uses the following variables: +C WM = real work space containing data for the algorithm +C (Krylov basis vectors, Hessenberg matrix, etc.) +C IWM = integer work space containing data for the algorithm +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C IERSL = output flag (in Common): +C IERSL = 0 means no trouble occurred. +C IERSL = 1 means the iterative method failed to converge. +C If the preconditioner is out of date, the step +C is repeated with a new preconditioner. +C Otherwise, the stepsize is reduced (forcing a +C new evaluation of the preconditioner) and the +C step is repeated. +C IERSL = -1 means there was a nonrecoverable error in the +C iterative solver, and an error exit occurs. +C This routine also uses the Common variables TN, EL0, H, N, MITER, +C DELT, EPCON, SQRTN, RSQRTN, MAXL, KMP, MNEWT, NNI, NLI, NPS, NCFL, +C LOCWP, LOCIWP. +C----------------------------------------------------------------------- + INTEGER IFLAG, LB, LDL, LHES, LIOM, LGMR, LPCG, LP, LQ, LR, + 1 LV, LW, LWK, LZ, MAXLP1, NPSL + DOUBLE PRECISION DELTA, HL0 +C + IERSL = 0 + HL0 = H*EL0 + DELTA = DELT*EPCON + GO TO (100, 200, 300, 400, 900, 900, 900, 900, 900), MITER +C----------------------------------------------------------------------- +C Use the SPIOM algorithm to solve the linear system P*x = -f. +C----------------------------------------------------------------------- + 100 CONTINUE + LV = 1 + LB = LV + N*MAXL + LHES = LB + N + LWK = LHES + MAXL*MAXL + CALL DCOPY (N, X, 1, WM(LB), 1) + CALL DSCAL (N, RSQRTN, EWT, 1) + CALL DSPIOM (NEQ, TN, Y, SAVF, WM(LB), EWT, N, MAXL, KMP, DELTA, + 1 HL0, JPRE, MNEWT, F, PSOL, NPSL, X, WM(LV), WM(LHES), IWM, + 2 LIOM, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NLI = NLI + LIOM + NPS = NPS + NPSL + CALL DSCAL (N, SQRTN, EWT, 1) + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use the SPIGMR algorithm to solve the linear system P*x = -f. +C----------------------------------------------------------------------- + 200 CONTINUE + MAXLP1 = MAXL + 1 + LV = 1 + LB = LV + N*MAXL + LHES = LB + N + 1 + LQ = LHES + MAXL*MAXLP1 + LWK = LQ + 2*MAXL + LDL = LWK + MIN(1,MAXL-KMP)*N + CALL DCOPY (N, X, 1, WM(LB), 1) + CALL DSCAL (N, RSQRTN, EWT, 1) + CALL DSPIGMR (NEQ, TN, Y, SAVF, WM(LB), EWT, N, MAXL, MAXLP1, KMP, + 1 DELTA, HL0, JPRE, MNEWT, F, PSOL, NPSL, X, WM(LV), WM(LHES), + 2 WM(LQ), LGMR, WM(LOCWP), IWM(LOCIWP), WM(LWK), WM(LDL), IFLAG) + NNI = NNI + 1 + NLI = NLI + LGMR + NPS = NPS + NPSL + CALL DSCAL (N, SQRTN, EWT, 1) + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use DPCG to solve the linear system P*x = -f +C----------------------------------------------------------------------- + 300 CONTINUE + LR = 1 + LP = LR + N + LW = LP + N + LZ = LW + N + LWK = LZ + N + CALL DCOPY (N, X, 1, WM(LR), 1) + CALL DPCG (NEQ, TN, Y, SAVF, WM(LR), EWT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, WM(LP), WM(LW), WM(LZ), + 2 LPCG, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NLI = NLI + LPCG + NPS = NPS + NPSL + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use DPCGS to solve the linear system P*x = -f +C----------------------------------------------------------------------- + 400 CONTINUE + LR = 1 + LP = LR + N + LW = LP + N + LZ = LW + N + LWK = LZ + N + CALL DCOPY (N, X, 1, WM(LR), 1) + CALL DPCGS (NEQ, TN, Y, SAVF, WM(LR), EWT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, WM(LP), WM(LW), WM(LZ), + 2 LPCG, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NLI = NLI + LPCG + NPS = NPS + NPSL + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .GE. 2) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------------------------------------------------------- +C Use DUSOL, which interfaces to PSOL, to solve the linear system +C (no Krylov iteration). +C----------------------------------------------------------------------- + 900 CONTINUE + LB = 1 + LWK = LB + N + CALL DCOPY (N, X, 1, WM(LB), 1) + CALL DUSOL (NEQ, TN, Y, SAVF, WM(LB), EWT, N, DELTA, HL0, MNEWT, + 1 PSOL, NPSL, X, WM(LOCWP), IWM(LOCIWP), WM(LWK), IFLAG) + NNI = NNI + 1 + NPS = NPS + NPSL + IF (IFLAG .NE. 0) NCFL = NCFL + 1 + IF (IFLAG .EQ. 3) IERSL = 1 + IF (IFLAG .LT. 0) IERSL = -1 + RETURN +C----------------------- End of Subroutine DSOLPK ---------------------- + END +*DECK DSPIOM + SUBROUTINE DSPIOM (NEQ, TN, Y, SAVF, B, WGHT, N, MAXL, KMP, DELTA, + 1 HL0, JPRE, MNEWT, F, PSOL, NPSL, X, V, HES, IPVT, + 2 LIOM, WP, IWP, WK, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ,N,MAXL,KMP,JPRE,MNEWT,NPSL,IPVT,LIOM,IWP,IFLAG + DOUBLE PRECISION TN,Y,SAVF,B,WGHT,DELTA,HL0,X,V,HES,WP,WK + DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), V(N,*), + 1 HES(MAXL,MAXL), IPVT(*), WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine solves the linear system A * x = b using a scaled +C preconditioned version of the Incomplete Orthogonalization Method. +C An initial guess of x = 0 is assumed. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C B = the right hand side of the system A*x = b. +C B is also used as work space when computing the +C final approximation. +C (B is the same as V(*,MAXL+1) in the call to DSPIOM.) +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the diagonal +C scaling matrix D. +C +C N = the order of the matrix A, and the lengths +C of the vectors Y, SAVF, B, WGHT, and X. +C +C MAXL = the maximum allowable order of the matrix HES. +C +C KMP = the number of previous vectors the new vector VNEW +C must be made orthogonal to. KMP .le. MAXL. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array of length N used by DATV and PSOL. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C V = the N by (LIOM+1) array containing the LIOM +C orthogonal vectors V(*,1) to V(*,LIOM). +C +C HES = the LU factorization of the LIOM by LIOM upper +C Hessenberg matrix whose entries are the +C scaled inner products of A*V(*,k) and V(*,i). +C +C IPVT = an integer array containg pivoting information. +C It is loaded in DHEFA and used in DHESL. +C +C LIOM = the number of iterations performed, and current +C order of the upper Hessenberg matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means convergence in LIOM iterations, LIOM.le.MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so X is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER, INFO, J, K, LL, LM1 + DOUBLE PRECISION BNRM, BNRM0, PROD, RHO, SNORMW, DNRM2, TEM +C + IFLAG = 0 + LIOM = 0 + NPSL = 0 +C----------------------------------------------------------------------- +C The initial residual is the vector b. Apply scaling to b, and test +C for an immediate return with X = 0 or X = b. +C----------------------------------------------------------------------- + DO 10 I = 1,N + 10 V(I,1) = B(I)*WGHT(I) + BNRM0 = DNRM2 (N, V, 1) + BNRM = BNRM0 + IF (BNRM0 .GT. DELTA) GO TO 30 + IF (MNEWT .GT. 0) GO TO 20 + CALL DCOPY (N, B, 1, X, 1) + RETURN + 20 DO 25 I = 1,N + 25 X(I) = 0.0D0 + RETURN + 30 CONTINUE +C Apply inverse of left preconditioner to vector b. -------------------- + IER = 0 + IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 55 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 1, IER) + NPSL = 1 + IF (IER .NE. 0) GO TO 300 +C Calculate norm of scaled vector V(*,1) and normalize it. ------------- + DO 50 I = 1,N + 50 V(I,1) = B(I)*WGHT(I) + BNRM = DNRM2(N, V, 1) + DELTA = DELTA*(BNRM/BNRM0) + 55 TEM = 1.0D0/BNRM + CALL DSCAL (N, TEM, V(1,1), 1) +C Zero out the HES array. ---------------------------------------------- + DO 65 J = 1,MAXL + DO 60 I = 1,MAXL + 60 HES(I,J) = 0.0D0 + 65 CONTINUE +C----------------------------------------------------------------------- +C Main loop on LL = l to compute the vectors V(*,2) to V(*,MAXL). +C The running product PROD is needed for the convergence test. +C----------------------------------------------------------------------- + PROD = 1.0D0 + DO 90 LL = 1,MAXL + LIOM = LL +C----------------------------------------------------------------------- +C Call routine DATV to compute VNEW = Abar*v(l), where Abar is +C the matrix A with scaling and inverse preconditioner factors applied. +C Call routine DORTHOG to orthogonalize the new vector vnew = V(*,l+1). +C Call routine DHEFA to update the factors of HES. +C----------------------------------------------------------------------- + CALL DATV (NEQ, Y, SAVF, V(1,LL), WGHT, X, F, PSOL, V(1,LL+1), + 1 WK, WP, IWP, HL0, JPRE, IER, NPSL) + IF (IER .NE. 0) GO TO 300 + CALL DORTHOG (V(1,LL+1), V, HES, N, LL, MAXL, KMP, SNORMW) + CALL DHEFA (HES, MAXL, LL, IPVT, INFO, LL) + LM1 = LL - 1 + IF (LL .GT. 1 .AND. IPVT(LM1) .EQ. LM1) PROD = PROD*HES(LL,LM1) + IF (INFO .NE. LL) GO TO 70 +C----------------------------------------------------------------------- +C The last pivot in HES was found to be zero. +C If vnew = 0 or l = MAXL, take an error return with IFLAG = 2. +C otherwise, continue the iteration without a convergence test. +C----------------------------------------------------------------------- + IF (SNORMW .EQ. 0.0D0) GO TO 120 + IF (LL .EQ. MAXL) GO TO 120 + GO TO 80 +C----------------------------------------------------------------------- +C Update RHO, the estimate of the norm of the residual b - A*x(l). +C test for convergence. If passed, compute approximation x(l). +C If failed and l .lt. MAXL, then continue iterating. +C----------------------------------------------------------------------- + 70 CONTINUE + RHO = BNRM*SNORMW*ABS(PROD/HES(LL,LL)) + IF (RHO .LE. DELTA) GO TO 200 + IF (LL .EQ. MAXL) GO TO 100 +C If l .lt. MAXL, store HES(l+1,l) and normalize the vector v(*,l+1). + 80 CONTINUE + HES(LL+1,LL) = SNORMW + TEM = 1.0D0/SNORMW + CALL DSCAL (N, TEM, V(1,LL+1), 1) + 90 CONTINUE +C----------------------------------------------------------------------- +C l has reached MAXL without passing the convergence test: +C If RHO is not too large, compute a solution anyway and return with +C IFLAG = 1. Otherwise return with IFLAG = 2. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (RHO .LE. 1.0D0) GO TO 150 + IF (RHO .LE. BNRM .AND. MNEWT .EQ. 0) GO TO 150 + 120 CONTINUE + IFLAG = 2 + RETURN + 150 IFLAG = 1 +C----------------------------------------------------------------------- +C Compute the approximation x(l) to the solution. +C Since the vector X was used as work space, and the initial guess +C of the Newton correction is zero, X must be reset to zero. +C----------------------------------------------------------------------- + 200 CONTINUE + LL = LIOM + DO 210 K = 1,LL + 210 B(K) = 0.0D0 + B(1) = BNRM + CALL DHESL (HES, MAXL, LL, IPVT, B) + DO 220 K = 1,N + 220 X(K) = 0.0D0 + DO 230 I = 1,LL + CALL DAXPY (N, B(I), V(1,I), 1, X, 1) + 230 CONTINUE + DO 240 I = 1,N + 240 X(I) = X(I)/WGHT(I) + IF (JPRE .LE. 1) RETURN + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, X, 2, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 300 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns forced by routine PSOL. +C----------------------------------------------------------------------- + 300 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------- End of Subroutine DSPIOM ---------------------- + END +*DECK DATV + SUBROUTINE DATV (NEQ, Y, SAVF, V, WGHT, FTEM, F, PSOL, Z, VTEM, + 1 WP, IWP, HL0, JPRE, IER, NPSL) + EXTERNAL F, PSOL + INTEGER NEQ, IWP, JPRE, IER, NPSL + DOUBLE PRECISION Y, SAVF, V, WGHT, FTEM, Z, VTEM, WP, HL0 + DIMENSION NEQ(*), Y(*), SAVF(*), V(*), WGHT(*), FTEM(*), Z(*), + 1 VTEM(*), WP(*), IWP(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C----------------------------------------------------------------------- +C This routine computes the product +C +C (D-inverse)*(P1-inverse)*(I - hl0*df/dy)*(P2-inverse)*(D*v), +C +C where D is a diagonal scaling matrix, and P1 and P2 are the +C left and right preconditioning matrices, respectively. +C v is assumed to have WRMS norm equal to 1. +C The product is stored in z. This is computed by a +C difference quotient, a call to F, and two calls to PSOL. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C V = real array of length N (can be the same array as Z). +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the matrix D. +C +C FTEM = work array of length N. +C +C VTEM = work array of length N used to store the +C unscaled version of V. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C +C On return +C +C Z = array of length N containing desired scaled +C matrix-vector product. +C +C IER = error flag from PSOL. +C +C NPSL = the number of calls to PSOL. +C +C In addition, this routine uses the Common variables TN, N, NFE. +C----------------------------------------------------------------------- + INTEGER I + DOUBLE PRECISION FAC, RNORM, DNRM2, TEMPN +C +C Set VTEM = D * V. + DO 10 I = 1,N + 10 VTEM(I) = V(I)/WGHT(I) + IER = 0 + IF (JPRE .GE. 2) GO TO 30 +C +C JPRE = 0 or 1. Save Y in Z and increment Y by VTEM. + CALL DCOPY (N, Y, 1, Z, 1) + DO 20 I = 1,N + 20 Y(I) = Z(I) + VTEM(I) + FAC = HL0 + GO TO 60 +C +C JPRE = 2 or 3. Apply inverse of right preconditioner to VTEM. + 30 CONTINUE + CALL PSOL (NEQ, TN, Y, SAVF, FTEM, HL0, WP, IWP, VTEM, 2, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) RETURN +C Calculate L-2 norm of (D-inverse) * VTEM. + DO 40 I = 1,N + 40 Z(I) = VTEM(I)*WGHT(I) + TEMPN = DNRM2 (N, Z, 1) + RNORM = 1.0D0/TEMPN +C Save Y in Z and increment Y by VTEM/norm. + CALL DCOPY (N, Y, 1, Z, 1) + DO 50 I = 1,N + 50 Y(I) = Z(I) + VTEM(I)*RNORM + FAC = HL0*TEMPN +C +C For all JPRE, call F with incremented Y argument, and restore Y. + 60 CONTINUE + CALL F (NEQ, TN, Y, FTEM) + NFE = NFE + 1 + CALL DCOPY (N, Z, 1, Y, 1) +C Set Z = (identity - hl0*Jacobian) * VTEM, using difference quotient. + DO 70 I = 1,N + 70 Z(I) = FTEM(I) - SAVF(I) + DO 80 I = 1,N + 80 Z(I) = VTEM(I) - FAC*Z(I) +C Apply inverse of left preconditioner to Z, if nontrivial. + IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 85 + CALL PSOL (NEQ, TN, Y, SAVF, FTEM, HL0, WP, IWP, Z, 1, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) RETURN + 85 CONTINUE +C Apply D-inverse to Z and return. + DO 90 I = 1,N + 90 Z(I) = Z(I)*WGHT(I) + RETURN +C----------------------- End of Subroutine DATV ------------------------ + END +*DECK DORTHOG + SUBROUTINE DORTHOG (VNEW, V, HES, N, LL, LDHES, KMP, SNORMW) + INTEGER N, LL, LDHES, KMP + DOUBLE PRECISION VNEW, V, HES, SNORMW + DIMENSION VNEW(*), V(N,*), HES(LDHES,*) +C----------------------------------------------------------------------- +C This routine orthogonalizes the vector VNEW against the previous +C KMP vectors in the V array. It uses a modified Gram-Schmidt +C orthogonalization procedure with conditional reorthogonalization. +C This is the version of 28 may 1986. +C----------------------------------------------------------------------- +C +C On entry +C +C VNEW = the vector of length N containing a scaled product +C of the Jacobian and the vector V(*,LL). +C +C V = the N x l array containing the previous LL +C orthogonal vectors v(*,1) to v(*,LL). +C +C HES = an LL x LL upper Hessenberg matrix containing, +C in HES(i,k), k.lt.LL, scaled inner products of +C A*V(*,k) and V(*,i). +C +C LDHES = the leading dimension of the HES array. +C +C N = the order of the matrix A, and the length of VNEW. +C +C LL = the current order of the matrix HES. +C +C KMP = the number of previous vectors the new vector VNEW +C must be made orthogonal to (KMP .le. MAXL). +C +C +C On return +C +C VNEW = the new vector orthogonal to V(*,i0) to V(*,LL), +C where i0 = MAX(1, LL-KMP+1). +C +C HES = upper Hessenberg matrix with column LL filled in with +C scaled inner products of A*V(*,LL) and V(*,i). +C +C SNORMW = L-2 norm of VNEW. +C +C----------------------------------------------------------------------- + INTEGER I, I0 + DOUBLE PRECISION ARG, DDOT, DNRM2, SUMDSQ, TEM, VNRM +C +C Get norm of unaltered VNEW for later use. ---------------------------- + VNRM = DNRM2 (N, VNEW, 1) +C----------------------------------------------------------------------- +C Do modified Gram-Schmidt on VNEW = A*v(LL). +C Scaled inner products give new column of HES. +C Projections of earlier vectors are subtracted from VNEW. +C----------------------------------------------------------------------- + I0 = MAX(1,LL-KMP+1) + DO 10 I = I0,LL + HES(I,LL) = DDOT (N, V(1,I), 1, VNEW, 1) + TEM = -HES(I,LL) + CALL DAXPY (N, TEM, V(1,I), 1, VNEW, 1) + 10 CONTINUE +C----------------------------------------------------------------------- +C Compute SNORMW = norm of VNEW. +C If VNEW is small compared to its input value (in norm), then +C reorthogonalize VNEW to V(*,1) through V(*,LL). +C Correct if relative correction exceeds 1000*(unit roundoff). +C finally, correct SNORMW using the dot products involved. +C----------------------------------------------------------------------- + SNORMW = DNRM2 (N, VNEW, 1) + IF (VNRM + 0.001D0*SNORMW .NE. VNRM) RETURN + SUMDSQ = 0.0D0 + DO 30 I = I0,LL + TEM = -DDOT (N, V(1,I), 1, VNEW, 1) + IF (HES(I,LL) + 0.001D0*TEM .EQ. HES(I,LL)) GO TO 30 + HES(I,LL) = HES(I,LL) - TEM + CALL DAXPY (N, TEM, V(1,I), 1, VNEW, 1) + SUMDSQ = SUMDSQ + TEM**2 + 30 CONTINUE + IF (SUMDSQ .EQ. 0.0D0) RETURN + ARG = MAX(0.0D0,SNORMW**2 - SUMDSQ) + SNORMW = SQRT(ARG) +C + RETURN +C----------------------- End of Subroutine DORTHOG --------------------- + END +*DECK DSPIGMR + SUBROUTINE DSPIGMR (NEQ, TN, Y, SAVF, B, WGHT, N, MAXL, MAXLP1, + 1 KMP, DELTA, HL0, JPRE, MNEWT, F, PSOL, NPSL, X, V, HES, Q, + 2 LGMR, WP, IWP, WK, DL, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ,N,MAXL,MAXLP1,KMP,JPRE,MNEWT,NPSL,LGMR,IWP,IFLAG + DOUBLE PRECISION TN,Y,SAVF,B,WGHT,DELTA,HL0,X,V,HES,Q,WP,WK,DL + DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), V(N,*), + 1 HES(MAXLP1,*), Q(*), WP(*), IWP(*), WK(*), DL(*) +C----------------------------------------------------------------------- +C This routine solves the linear system A * x = b using a scaled +C preconditioned version of the Generalized Minimal Residual method. +C An initial guess of x = 0 is assumed. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C B = the right hand side of the system A*x = b. +C B is also used as work space when computing +C the final approximation. +C (B is the same as V(*,MAXL+1) in the call to DSPIGMR.) +C +C WGHT = the vector of length N containing the nonzero +C elements of the diagonal scaling matrix. +C +C N = the order of the matrix A, and the lengths +C of the vectors WGHT, B and X. +C +C MAXL = the maximum allowable order of the matrix HES. +C +C MAXLP1 = MAXL + 1, used for dynamic dimensioning of HES. +C +C KMP = the number of previous vectors the new vector VNEW +C must be made orthogonal to. KMP .le. MAXL. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by routine DATV and PSOL. +C +C DL = real work array used for calculation of the residual +C norm RHO when the method is incomplete (KMP .lt. MAXL). +C Not needed or referenced in complete case (KMP = MAXL). +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C LGMR = the number of iterations performed and +C the current order of the upper Hessenberg +C matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C V = the N by (LGMR+1) array containing the LGMR +C orthogonal vectors V(*,1) to V(*,LGMR). +C +C HES = the upper triangular factor of the QR decomposition +C of the (LGMR+1) by lgmr upper Hessenberg matrix whose +C entries are the scaled inner-products of A*V(*,i) +C and V(*,k). +C +C Q = real array of length 2*MAXL containing the components +C of the Givens rotations used in the QR decomposition +C of HES. It is loaded in DHEQR and used in DHELS. +C +C IFLAG = integer error flag: +C 0 means convergence in LGMR iterations, LGMR .le. MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so x is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER, INFO, IP1, I2, J, K, LL, LLP1 + DOUBLE PRECISION BNRM,BNRM0,C,DLNRM,PROD,RHO,S,SNORMW,DNRM2,TEM +C + IFLAG = 0 + LGMR = 0 + NPSL = 0 +C----------------------------------------------------------------------- +C The initial residual is the vector b. Apply scaling to b, and test +C for an immediate return with X = 0 or X = b. +C----------------------------------------------------------------------- + DO 10 I = 1,N + 10 V(I,1) = B(I)*WGHT(I) + BNRM0 = DNRM2 (N, V, 1) + BNRM = BNRM0 + IF (BNRM0 .GT. DELTA) GO TO 30 + IF (MNEWT .GT. 0) GO TO 20 + CALL DCOPY (N, B, 1, X, 1) + RETURN + 20 DO 25 I = 1,N + 25 X(I) = 0.0D0 + RETURN + 30 CONTINUE +C Apply inverse of left preconditioner to vector b. -------------------- + IER = 0 + IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 55 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 1, IER) + NPSL = 1 + IF (IER .NE. 0) GO TO 300 +C Calculate norm of scaled vector V(*,1) and normalize it. ------------- + DO 50 I = 1,N + 50 V(I,1) = B(I)*WGHT(I) + BNRM = DNRM2 (N, V, 1) + DELTA = DELTA*(BNRM/BNRM0) + 55 TEM = 1.0D0/BNRM + CALL DSCAL (N, TEM, V(1,1), 1) +C Zero out the HES array. ---------------------------------------------- + DO 65 J = 1,MAXL + DO 60 I = 1,MAXLP1 + 60 HES(I,J) = 0.0D0 + 65 CONTINUE +C----------------------------------------------------------------------- +C Main loop to compute the vectors V(*,2) to V(*,MAXL). +C The running product PROD is needed for the convergence test. +C----------------------------------------------------------------------- + PROD = 1.0D0 + DO 90 LL = 1,MAXL + LGMR = LL +C----------------------------------------------------------------------- +C Call routine DATV to compute VNEW = Abar*v(ll), where Abar is +C the matrix A with scaling and inverse preconditioner factors applied. +C Call routine DORTHOG to orthogonalize the new vector VNEW = V(*,LL+1). +C Call routine DHEQR to update the factors of HES. +C----------------------------------------------------------------------- + CALL DATV (NEQ, Y, SAVF, V(1,LL), WGHT, X, F, PSOL, V(1,LL+1), + 1 WK, WP, IWP, HL0, JPRE, IER, NPSL) + IF (IER .NE. 0) GO TO 300 + CALL DORTHOG (V(1,LL+1), V, HES, N, LL, MAXLP1, KMP, SNORMW) + HES(LL+1,LL) = SNORMW + CALL DHEQR (HES, MAXLP1, LL, Q, INFO, LL) + IF (INFO .EQ. LL) GO TO 120 +C----------------------------------------------------------------------- +C Update RHO, the estimate of the norm of the residual b - A*xl. +C If KMP .lt. MAXL, then the vectors V(*,1),...,V(*,LL+1) are not +C necessarily orthogonal for LL .gt. KMP. The vector DL must then +C be computed, and its norm used in the calculation of RHO. +C----------------------------------------------------------------------- + PROD = PROD*Q(2*LL) + RHO = ABS(PROD*BNRM) + IF ((LL.GT.KMP) .AND. (KMP.LT.MAXL)) THEN + IF (LL .EQ. KMP+1) THEN + CALL DCOPY (N, V(1,1), 1, DL, 1) + DO 75 I = 1,KMP + IP1 = I + 1 + I2 = I*2 + S = Q(I2) + C = Q(I2-1) + DO 70 K = 1,N + 70 DL(K) = S*DL(K) + C*V(K,IP1) + 75 CONTINUE + ENDIF + S = Q(2*LL) + C = Q(2*LL-1)/SNORMW + LLP1 = LL + 1 + DO 80 K = 1,N + 80 DL(K) = S*DL(K) + C*V(K,LLP1) + DLNRM = DNRM2 (N, DL, 1) + RHO = RHO*DLNRM + ENDIF +C----------------------------------------------------------------------- +C Test for convergence. If passed, compute approximation xl. +C if failed and LL .lt. MAXL, then continue iterating. +C----------------------------------------------------------------------- + IF (RHO .LE. DELTA) GO TO 200 + IF (LL .EQ. MAXL) GO TO 100 +C----------------------------------------------------------------------- +C Rescale so that the norm of V(1,LL+1) is one. +C----------------------------------------------------------------------- + TEM = 1.0D0/SNORMW + CALL DSCAL (N, TEM, V(1,LL+1), 1) + 90 CONTINUE + 100 CONTINUE + IF (RHO .LE. 1.0D0) GO TO 150 + IF (RHO .LE. BNRM .AND. MNEWT .EQ. 0) GO TO 150 + 120 CONTINUE + IFLAG = 2 + RETURN + 150 IFLAG = 1 +C----------------------------------------------------------------------- +C Compute the approximation xl to the solution. +C Since the vector X was used as work space, and the initial guess +C of the Newton correction is zero, X must be reset to zero. +C----------------------------------------------------------------------- + 200 CONTINUE + LL = LGMR + LLP1 = LL + 1 + DO 210 K = 1,LLP1 + 210 B(K) = 0.0D0 + B(1) = BNRM + CALL DHELS (HES, MAXLP1, LL, Q, B) + DO 220 K = 1,N + 220 X(K) = 0.0D0 + DO 230 I = 1,LL + CALL DAXPY (N, B(I), V(1,I), 1, X, 1) + 230 CONTINUE + DO 240 I = 1,N + 240 X(I) = X(I)/WGHT(I) + IF (JPRE .LE. 1) RETURN + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, X, 2, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 300 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns forced by routine PSOL. +C----------------------------------------------------------------------- + 300 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 +C + RETURN +C----------------------- End of Subroutine DSPIGMR --------------------- + END +*DECK DPCG + SUBROUTINE DPCG (NEQ, TN, Y, SAVF, R, WGHT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, P, W, Z, LPCG, WP, IWP, WK, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ, N, MAXL, JPRE, MNEWT, NPSL, LPCG, IWP, IFLAG + DOUBLE PRECISION TN,Y,SAVF,R,WGHT,DELTA,HL0,X,P,W,Z,WP,WK + DIMENSION NEQ(*), Y(*), SAVF(*), R(*), WGHT(*), X(*), P(*), W(*), + 1 Z(*), WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine computes the solution to the system A*x = b using a +C preconditioned version of the Conjugate Gradient algorithm. +C It is assumed here that the matrix A and the preconditioner +C matrix M are symmetric positive definite or nearly so. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C R = the right hand side of the system A*x = b. +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the diagonal +C scaling matrix D. +C +C N = the order of the matrix A, and the lengths +C of the vectors Y, SAVF, R, WGHT, P, W, Z, WK, and X. +C +C MAXL = the maximum allowable number of iterates. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by routine DATP. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C LPCG = the number of iterations performed, and current +C order of the upper Hessenberg matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means convergence in LPCG iterations, LPCG .le. MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so X is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C 4 means there was a zero denominator in the algorithm. +C The system matrix or preconditioner matrix is not +C sufficiently close to being symmetric pos. definite. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER + DOUBLE PRECISION ALPHA,BETA,BNRM,PTW,RNRM,DDOT,DVNORM,ZTR,ZTR0 +C + IFLAG = 0 + NPSL = 0 + LPCG = 0 + DO 10 I = 1,N + 10 X(I) = 0.0D0 + BNRM = DVNORM (N, R, WGHT) +C Test for immediate return with X = 0 or X = b. ----------------------- + IF (BNRM .GT. DELTA) GO TO 20 + IF (MNEWT .GT. 0) RETURN + CALL DCOPY (N, R, 1, X, 1) + RETURN +C + 20 ZTR = 0.0D0 +C Loop point for PCG iterations. --------------------------------------- + 30 CONTINUE + LPCG = LPCG + 1 + CALL DCOPY (N, R, 1, Z, 1) + IER = 0 + IF (JPRE .EQ. 0) GO TO 40 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, Z, 3, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 100 + 40 CONTINUE + ZTR0 = ZTR + ZTR = DDOT (N, Z, 1, R, 1) + IF (LPCG .NE. 1) GO TO 50 + CALL DCOPY (N, Z, 1, P, 1) + GO TO 70 + 50 CONTINUE + IF (ZTR0 .EQ. 0.0D0) GO TO 200 + BETA = ZTR/ZTR0 + DO 60 I = 1,N + 60 P(I) = Z(I) + BETA*P(I) + 70 CONTINUE +C----------------------------------------------------------------------- +C Call DATP to compute A*p and return the answer in W. +C----------------------------------------------------------------------- + CALL DATP (NEQ, Y, SAVF, P, WGHT, HL0, WK, F, W) +C + PTW = DDOT (N, P, 1, W, 1) + IF (PTW .EQ. 0.0D0) GO TO 200 + ALPHA = ZTR/PTW + CALL DAXPY (N, ALPHA, P, 1, X, 1) + ALPHA = -ALPHA + CALL DAXPY (N, ALPHA, W, 1, R, 1) + RNRM = DVNORM (N, R, WGHT) + IF (RNRM .LE. DELTA) RETURN + IF (LPCG .LT. MAXL) GO TO 30 + IFLAG = 2 + IF (RNRM .LE. 1.0D0) IFLAG = 1 + IF (RNRM .LE. BNRM .AND. MNEWT .EQ. 0) IFLAG = 1 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns from PSOL. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------------------------------------------------------- +C This block handles division by zero errors. +C----------------------------------------------------------------------- + 200 CONTINUE + IFLAG = 4 + RETURN +C----------------------- End of Subroutine DPCG ------------------------ + END +*DECK DPCGS + SUBROUTINE DPCGS (NEQ, TN, Y, SAVF, R, WGHT, N, MAXL, DELTA, HL0, + 1 JPRE, MNEWT, F, PSOL, NPSL, X, P, W, Z, LPCG, WP, IWP, WK, IFLAG) + EXTERNAL F, PSOL + INTEGER NEQ, N, MAXL, JPRE, MNEWT, NPSL, LPCG, IWP, IFLAG + DOUBLE PRECISION TN,Y,SAVF,R,WGHT,DELTA,HL0,X,P,W,Z,WP,WK + DIMENSION NEQ(*), Y(*), SAVF(*), R(*), WGHT(*), X(*), P(*), W(*), + 1 Z(*), WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine computes the solution to the system A*x = b using a +C scaled preconditioned version of the Conjugate Gradient algorithm. +C It is assumed here that the scaled matrix D**-1 * A * D and the +C scaled preconditioner D**-1 * M * D are close to being +C symmetric positive definite. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C R = the right hand side of the system A*x = b. +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the diagonal +C scaling matrix D. +C +C N = the order of the matrix A, and the lengths +C of the vectors Y, SAVF, R, WGHT, P, W, Z, WK, and X. +C +C MAXL = the maximum allowable number of iterates. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C JPRE = preconditioner type flag. +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by routine DATP. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C LPCG = the number of iterations performed, and current +C order of the upper Hessenberg matrix HES. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means convergence in LPCG iterations, LPCG .le. MAXL. +C 1 means the convergence test did not pass in MAXL +C iterations, but the residual norm is .lt. 1, +C or .lt. norm(b) if MNEWT = 0, and so X is computed. +C 2 means the convergence test did not pass in MAXL +C iterations, residual .gt. 1, and X is undefined. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C 4 means there was a zero denominator in the algorithm. +C the scaled matrix or scaled preconditioner is not +C sufficiently close to being symmetric pos. definite. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER + DOUBLE PRECISION ALPHA, BETA, BNRM, PTW, RNRM, DVNORM, ZTR, ZTR0 +C + IFLAG = 0 + NPSL = 0 + LPCG = 0 + DO 10 I = 1,N + 10 X(I) = 0.0D0 + BNRM = DVNORM (N, R, WGHT) +C Test for immediate return with X = 0 or X = b. ----------------------- + IF (BNRM .GT. DELTA) GO TO 20 + IF (MNEWT .GT. 0) RETURN + CALL DCOPY (N, R, 1, X, 1) + RETURN +C + 20 ZTR = 0.0D0 +C Loop point for PCG iterations. --------------------------------------- + 30 CONTINUE + LPCG = LPCG + 1 + CALL DCOPY (N, R, 1, Z, 1) + IER = 0 + IF (JPRE .EQ. 0) GO TO 40 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, Z, 3, IER) + NPSL = NPSL + 1 + IF (IER .NE. 0) GO TO 100 + 40 CONTINUE + ZTR0 = ZTR + ZTR = 0.0D0 + DO 45 I = 1,N + 45 ZTR = ZTR + Z(I)*R(I)*WGHT(I)**2 + IF (LPCG .NE. 1) GO TO 50 + CALL DCOPY (N, Z, 1, P, 1) + GO TO 70 + 50 CONTINUE + IF (ZTR0 .EQ. 0.0D0) GO TO 200 + BETA = ZTR/ZTR0 + DO 60 I = 1,N + 60 P(I) = Z(I) + BETA*P(I) + 70 CONTINUE +C----------------------------------------------------------------------- +C Call DATP to compute A*p and return the answer in W. +C----------------------------------------------------------------------- + CALL DATP (NEQ, Y, SAVF, P, WGHT, HL0, WK, F, W) +C + PTW = 0.0D0 + DO 80 I = 1,N + 80 PTW = PTW + P(I)*W(I)*WGHT(I)**2 + IF (PTW .EQ. 0.0D0) GO TO 200 + ALPHA = ZTR/PTW + CALL DAXPY (N, ALPHA, P, 1, X, 1) + ALPHA = -ALPHA + CALL DAXPY (N, ALPHA, W, 1, R, 1) + RNRM = DVNORM (N, R, WGHT) + IF (RNRM .LE. DELTA) RETURN + IF (LPCG .LT. MAXL) GO TO 30 + IFLAG = 2 + IF (RNRM .LE. 1.0D0) IFLAG = 1 + IF (RNRM .LE. BNRM .AND. MNEWT .EQ. 0) IFLAG = 1 + RETURN +C----------------------------------------------------------------------- +C This block handles error returns from PSOL. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------------------------------------------------------- +C This block handles division by zero errors. +C----------------------------------------------------------------------- + 200 CONTINUE + IFLAG = 4 + RETURN +C----------------------- End of Subroutine DPCGS ----------------------- + END +*DECK DATP + SUBROUTINE DATP (NEQ, Y, SAVF, P, WGHT, HL0, WK, F, W) + EXTERNAL F + INTEGER NEQ + DOUBLE PRECISION Y, SAVF, P, WGHT, HL0, WK, W + DIMENSION NEQ(*), Y(*), SAVF(*), P(*), WGHT(*), WK(*), W(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU +C----------------------------------------------------------------------- +C This routine computes the product +C +C w = (I - hl0*df/dy)*p +C +C This is computed by a call to F and a difference quotient. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C P = real array of length N. +C +C WGHT = array of length N containing scale factors. +C 1/WGHT(i) are the diagonal elements of the matrix D. +C +C WK = work array of length N. +C +C On return +C +C +C W = array of length N containing desired +C matrix-vector product. +C +C In addition, this routine uses the Common variables TN, N, NFE. +C----------------------------------------------------------------------- + INTEGER I + DOUBLE PRECISION FAC, PNRM, RPNRM, DVNORM +C + PNRM = DVNORM (N, P, WGHT) + RPNRM = 1.0D0/PNRM + CALL DCOPY (N, Y, 1, W, 1) + DO 20 I = 1,N + 20 Y(I) = W(I) + P(I)*RPNRM + CALL F (NEQ, TN, Y, WK) + NFE = NFE + 1 + CALL DCOPY (N, W, 1, Y, 1) + FAC = HL0*PNRM + DO 40 I = 1,N + 40 W(I) = P(I) - FAC*(WK(I) - SAVF(I)) + RETURN +C----------------------- End of Subroutine DATP ------------------------ + END +*DECK DUSOL + SUBROUTINE DUSOL (NEQ, TN, Y, SAVF, B, WGHT, N, DELTA, HL0, MNEWT, + 1 PSOL, NPSL, X, WP, IWP, WK, IFLAG) + EXTERNAL PSOL + INTEGER NEQ, N, MNEWT, NPSL, IWP, IFLAG + DOUBLE PRECISION TN, Y, SAVF, B, WGHT, DELTA, HL0, X, WP, WK + DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), + 1 WP(*), IWP(*), WK(*) +C----------------------------------------------------------------------- +C This routine solves the linear system A * x = b using only a call +C to the user-supplied routine PSOL (no Krylov iteration). +C If the norm of the right-hand side vector b is smaller than DELTA, +C the vector X returned is X = b (if MNEWT = 0) or X = 0 otherwise. +C PSOL is called with an LR argument of 0. +C----------------------------------------------------------------------- +C +C On entry +C +C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). +C +C TN = current value of t. +C +C Y = array containing current dependent variable vector. +C +C SAVF = array containing current value of f(t,y). +C +C B = the right hand side of the system A*x = b. +C +C WGHT = the vector of length N containing the nonzero +C elements of the diagonal scaling matrix. +C +C N = the order of the matrix A, and the lengths +C of the vectors WGHT, B and X. +C +C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. +C +C HL0 = current value of (step size h) * (coefficient l0). +C +C MNEWT = Newton iteration counter (.ge. 0). +C +C WK = real work array used by PSOL. +C +C WP = real work array used by preconditioner PSOL. +C +C IWP = integer work array used by preconditioner PSOL. +C +C On return +C +C X = the final computed approximation to the solution +C of the system A*x = b. +C +C NPSL = the number of calls to PSOL. +C +C IFLAG = integer error flag: +C 0 means no trouble occurred. +C 3 means there was a recoverable error in PSOL +C caused by the preconditioner being out of date. +C -1 means there was a nonrecoverable error in PSOL. +C +C----------------------------------------------------------------------- + INTEGER I, IER + DOUBLE PRECISION BNRM, DVNORM +C + IFLAG = 0 + NPSL = 0 +C----------------------------------------------------------------------- +C Test for an immediate return with X = 0 or X = b. +C----------------------------------------------------------------------- + BNRM = DVNORM (N, B, WGHT) + IF (BNRM .GT. DELTA) GO TO 30 + IF (MNEWT .GT. 0) GO TO 10 + CALL DCOPY (N, B, 1, X, 1) + RETURN + 10 DO 20 I = 1,N + 20 X(I) = 0.0D0 + RETURN +C Make call to PSOL and copy result from B to X. ----------------------- + 30 IER = 0 + CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 0, IER) + NPSL = 1 + IF (IER .NE. 0) GO TO 100 + CALL DCOPY (N, B, 1, X, 1) + RETURN +C----------------------------------------------------------------------- +C This block handles error returns forced by routine PSOL. +C----------------------------------------------------------------------- + 100 CONTINUE + IF (IER .LT. 0) IFLAG = -1 + IF (IER .GT. 0) IFLAG = 3 + RETURN +C----------------------- End of Subroutine DUSOL ----------------------- + END +*DECK DSRCPK + SUBROUTINE DSRCPK (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLPK01, which are used +C internally by the DLSODPK solver. +C +C RSAV = real array of length 222 or more. +C ISAV = integer array of length 50 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILSP + INTEGER I, LENILP, LENRLP, LENILS, LENRLS + DOUBLE PRECISION RSAV, RLS, RLSP + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLP, LENILP + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLPK01/ RLSP(4), ILSP(13) + DATA LENRLS/218/, LENILS/37/, LENRLP/4/, LENILP/13/ +C + IF (JOB .EQ. 2) GO TO 100 + CALL DCOPY (LENRLS, RLS, 1, RSAV, 1) + CALL DCOPY (LENRLP, RLSP, 1, RSAV(LENRLS+1), 1) + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + DO 40 I = 1,LENILP + 40 ISAV(LENILS+I) = ILSP(I) + RETURN +C + 100 CONTINUE + CALL DCOPY (LENRLS, RSAV, 1, RLS, 1) + CALL DCOPY (LENRLP, RSAV(LENRLS+1), 1, RLSP, 1) + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + DO 140 I = 1,LENILP + 140 ILSP(I) = ISAV(LENILS+I) + RETURN +C----------------------- End of Subroutine DSRCPK ---------------------- + END +*DECK DHEFA + SUBROUTINE DHEFA (A, LDA, N, IPVT, INFO, JOB) + INTEGER LDA, N, IPVT(*), INFO, JOB + DOUBLE PRECISION A(LDA,*) +C----------------------------------------------------------------------- +C This routine is a modification of the LINPACK routine DGEFA and +C performs an LU decomposition of an upper Hessenberg matrix A. +C There are two options available: +C +C (1) performing a fresh factorization +C (2) updating the LU factors by adding a row and a +C column to the matrix A. +C----------------------------------------------------------------------- +C DHEFA factors an upper Hessenberg matrix by elimination. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the matrix to be factored. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C JOB INTEGER +C JOB = 1 means that a fresh factorization of the +C matrix A is desired. +C JOB .ge. 2 means that the current factorization of A +C will be updated by the addition of a row +C and a column. +C +C On return +C +C A an upper triangular matrix and the multipliers +C which were used to obtain it. +C The factorization can be written A = L*U where +C L is a product of permutation and unit lower +C triangular matrices and U is upper triangular. +C +C IPVT INTEGER(N) +C an integer vector of pivot indices. +C +C INFO INTEGER +C = 0 normal value. +C = k if U(k,k) .eq. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DHESL will divide by zero if called. +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 7/20/83. This version dated 6/20/01. +C +C BLAS called: DAXPY, IDAMAX +C----------------------------------------------------------------------- + INTEGER IDAMAX, J, K, KM1, KP1, L, NM1 + DOUBLE PRECISION T +C + IF (JOB .GT. 1) GO TO 80 +C +C A new facorization is desired. This is essentially the LINPACK +C code with the exception that we know there is only one nonzero +C element below the main diagonal. +C +C Gaussian elimination with partial pivoting +C + INFO = 0 + NM1 = N - 1 + IF (NM1 .LT. 1) GO TO 70 + DO 60 K = 1, NM1 + KP1 = K + 1 +C +C Find L = pivot index +C + L = IDAMAX (2, A(K,K), 1) + K - 1 + IPVT(K) = L +C +C Zero pivot implies this column already triangularized +C + IF (A(L,K) .EQ. 0.0D0) GO TO 40 +C +C Interchange if necessary +C + IF (L .EQ. K) GO TO 10 + T = A(L,K) + A(L,K) = A(K,K) + A(K,K) = T + 10 CONTINUE +C +C Compute multipliers +C + T = -1.0D0/A(K,K) + A(K+1,K) = A(K+1,K)*T +C +C Row elimination with column indexing +C + DO 30 J = KP1, N + T = A(L,J) + IF (L .EQ. K) GO TO 20 + A(L,J) = A(K,J) + A(K,J) = T + 20 CONTINUE + CALL DAXPY (N-K, T, A(K+1,K), 1, A(K+1,J), 1) + 30 CONTINUE + GO TO 50 + 40 CONTINUE + INFO = K + 50 CONTINUE + 60 CONTINUE + 70 CONTINUE + IPVT(N) = N + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN +C +C The old factorization of A will be updated. A row and a column +C has been added to the matrix A. +C N-1 is now the old order of the matrix. +C + 80 CONTINUE + NM1 = N - 1 +C +C Perform row interchanges on the elements of the new column, and +C perform elimination operations on the elements using the multipliers. +C + IF (NM1 .LE. 1) GO TO 105 + DO 100 K = 2,NM1 + KM1 = K - 1 + L = IPVT(KM1) + T = A(L,N) + IF (L .EQ. KM1) GO TO 90 + A(L,N) = A(KM1,N) + A(KM1,N) = T + 90 CONTINUE + A(K,N) = A(K,N) + A(K,KM1)*T + 100 CONTINUE + 105 CONTINUE +C +C Complete update of factorization by decomposing last 2x2 block. +C + INFO = 0 +C +C Find L = pivot index +C + L = IDAMAX (2, A(NM1,NM1), 1) + NM1 - 1 + IPVT(NM1) = L +C +C Zero pivot implies this column already triangularized +C + IF (A(L,NM1) .EQ. 0.0D0) GO TO 140 +C +C Interchange if necessary +C + IF (L .EQ. NM1) GO TO 110 + T = A(L,NM1) + A(L,NM1) = A(NM1,NM1) + A(NM1,NM1) = T + 110 CONTINUE +C +C Compute multipliers +C + T = -1.0D0/A(NM1,NM1) + A(N,NM1) = A(N,NM1)*T +C +C Row elimination with column indexing +C + T = A(L,N) + IF (L .EQ. NM1) GO TO 120 + A(L,N) = A(NM1,N) + A(NM1,N) = T + 120 CONTINUE + A(N,N) = A(N,N) + T*A(N,NM1) + GO TO 150 + 140 CONTINUE + INFO = NM1 + 150 CONTINUE + IPVT(N) = N + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN +C----------------------- End of Subroutine DHEFA ----------------------- + END +*DECK DHESL + SUBROUTINE DHESL (A, LDA, N, IPVT, B) + INTEGER LDA, N, IPVT(*) + DOUBLE PRECISION A(LDA,*), B(*) +C----------------------------------------------------------------------- +C This is essentially the LINPACK routine DGESL except for changes +C due to the fact that A is an upper Hessenberg matrix. +C----------------------------------------------------------------------- +C DHESL solves the real system A * x = b +C using the factors computed by DHEFA. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the output from DHEFA. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C IPVT INTEGER(N) +C the pivot vector from DHEFA. +C +C B DOUBLE PRECISION(N) +C the right hand side vector. +C +C On return +C +C B the solution vector x . +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 7/20/83. This version dated 6/20/01. +C +C BLAS called: DAXPY +C----------------------------------------------------------------------- + INTEGER K, KB, L, NM1 + DOUBLE PRECISION T +C + NM1 = N - 1 +C +C Solve A * x = b +C First solve L*y = b +C + IF (NM1 .LT. 1) GO TO 30 + DO 20 K = 1, NM1 + L = IPVT(K) + T = B(L) + IF (L .EQ. K) GO TO 10 + B(L) = B(K) + B(K) = T + 10 CONTINUE + B(K+1) = B(K+1) + T*A(K+1,K) + 20 CONTINUE + 30 CONTINUE +C +C Now solve U*x = y +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/A(K,K) + T = -B(K) + CALL DAXPY (K-1, T, A(1,K), 1, B(1), 1) + 40 CONTINUE + RETURN +C----------------------- End of Subroutine DHESL ----------------------- + END +*DECK DHEQR + SUBROUTINE DHEQR (A, LDA, N, Q, INFO, IJOB) + INTEGER LDA, N, INFO, IJOB + DOUBLE PRECISION A(LDA,*), Q(*) +C----------------------------------------------------------------------- +C This routine performs a QR decomposition of an upper +C Hessenberg matrix A. There are two options available: +C +C (1) performing a fresh decomposition +C (2) updating the QR factors by adding a row and a +C column to the matrix A. +C----------------------------------------------------------------------- +C DHEQR decomposes an upper Hessenberg matrix by using Givens +C rotations. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the matrix to be decomposed. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C A is an (N+1) by N Hessenberg matrix. +C +C IJOB INTEGER +C = 1 means that a fresh decomposition of the +C matrix A is desired. +C .ge. 2 means that the current decomposition of A +C will be updated by the addition of a row +C and a column. +C On return +C +C A the upper triangular matrix R. +C The factorization can be written Q*A = R, where +C Q is a product of Givens rotations and R is upper +C triangular. +C +C Q DOUBLE PRECISION(2*N) +C the factors c and s of each Givens rotation used +C in decomposing A. +C +C INFO INTEGER +C = 0 normal value. +C = k if A(k,k) .eq. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DHELS will divide by zero +C if called. +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 1/13/86. This version dated 6/20/01. +C----------------------------------------------------------------------- + INTEGER I, IQ, J, K, KM1, KP1, NM1 + DOUBLE PRECISION C, S, T, T1, T2 +C + IF (IJOB .GT. 1) GO TO 70 +C +C A new facorization is desired. +C +C QR decomposition without pivoting +C + INFO = 0 + DO 60 K = 1, N + KM1 = K - 1 + KP1 = K + 1 +C +C Compute kth column of R. +C First, multiply the kth column of A by the previous +C k-1 Givens rotations. +C + IF (KM1 .LT. 1) GO TO 20 + DO 10 J = 1, KM1 + I = 2*(J-1) + 1 + T1 = A(J,K) + T2 = A(J+1,K) + C = Q(I) + S = Q(I+1) + A(J,K) = C*T1 - S*T2 + A(J+1,K) = S*T1 + C*T2 + 10 CONTINUE +C +C Compute Givens components c and s +C + 20 CONTINUE + IQ = 2*KM1 + 1 + T1 = A(K,K) + T2 = A(KP1,K) + IF (T2 .NE. 0.0D0) GO TO 30 + C = 1.0D0 + S = 0.0D0 + GO TO 50 + 30 CONTINUE + IF (ABS(T2) .LT. ABS(T1)) GO TO 40 + T = T1/T2 + S = -1.0D0/SQRT(1.0D0+T*T) + C = -S*T + GO TO 50 + 40 CONTINUE + T = T2/T1 + C = 1.0D0/SQRT(1.0D0+T*T) + S = -C*T + 50 CONTINUE + Q(IQ) = C + Q(IQ+1) = S + A(K,K) = C*T1 - S*T2 + IF (A(K,K) .EQ. 0.0D0) INFO = K + 60 CONTINUE + RETURN +C +C The old factorization of A will be updated. A row and a column +C has been added to the matrix A. +C N by N-1 is now the old size of the matrix. +C + 70 CONTINUE + NM1 = N - 1 +C +C Multiply the new column by the N previous Givens rotations. +C + DO 100 K = 1,NM1 + I = 2*(K-1) + 1 + T1 = A(K,N) + T2 = A(K+1,N) + C = Q(I) + S = Q(I+1) + A(K,N) = C*T1 - S*T2 + A(K+1,N) = S*T1 + C*T2 + 100 CONTINUE +C +C Complete update of decomposition by forming last Givens rotation, +C and multiplying it times the column vector (A(N,N), A(N+1,N)). +C + INFO = 0 + T1 = A(N,N) + T2 = A(N+1,N) + IF (T2 .NE. 0.0D0) GO TO 110 + C = 1.0D0 + S = 0.0D0 + GO TO 130 + 110 CONTINUE + IF (ABS(T2) .LT. ABS(T1)) GO TO 120 + T = T1/T2 + S = -1.0D0/SQRT(1.0D0+T*T) + C = -S*T + GO TO 130 + 120 CONTINUE + T = T2/T1 + C = 1.0D0/SQRT(1.0D0+T*T) + S = -C*T + 130 CONTINUE + IQ = 2*N - 1 + Q(IQ) = C + Q(IQ+1) = S + A(N,N) = C*T1 - S*T2 + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN +C----------------------- End of Subroutine DHEQR ----------------------- + END +*DECK DHELS + SUBROUTINE DHELS (A, LDA, N, Q, B) + INTEGER LDA, N + DOUBLE PRECISION A(LDA,*), B(*), Q(*) +C----------------------------------------------------------------------- +C This is part of the LINPACK routine DGESL with changes +C due to the fact that A is an upper Hessenberg matrix. +C----------------------------------------------------------------------- +C DHELS solves the least squares problem +C +C min (b-A*x, b-A*x) +C +C using the factors computed by DHEQR. +C +C On entry +C +C A DOUBLE PRECISION(LDA, N) +C the output from DHEQR which contains the upper +C triangular factor R in the QR decomposition of A. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C A is originally an (N+1) by N matrix. +C +C Q DOUBLE PRECISION(2*N) +C The coefficients of the N givens rotations +C used in the QR factorization of A. +C +C B DOUBLE PRECISION(N+1) +C the right hand side vector. +C +C On return +C +C B the solution vector x . +C +C Modification of LINPACK, by Peter Brown, LLNL. +C Written 1/13/86. This version dated 6/20/01. +C +C BLAS called: DAXPY +C----------------------------------------------------------------------- + INTEGER IQ, K, KB, KP1 + DOUBLE PRECISION C, S, T, T1, T2 +C +C Minimize (b-A*x, b-A*x) +C First form Q*b. +C + DO 20 K = 1, N + KP1 = K + 1 + IQ = 2*(K-1) + 1 + C = Q(IQ) + S = Q(IQ+1) + T1 = B(K) + T2 = B(KP1) + B(K) = C*T1 - S*T2 + B(KP1) = S*T1 + C*T2 + 20 CONTINUE +C +C Now solve R*x = Q*b. +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/A(K,K) + T = -B(K) + CALL DAXPY (K-1, T, A(1,K), 1, B(1), 1) + 40 CONTINUE + RETURN +C----------------------- End of Subroutine DHELS ----------------------- + END +*DECK DLHIN + SUBROUTINE DLHIN (NEQ, N, T0, Y0, YDOT, F, TOUT, UROUND, + 1 EWT, ITOL, ATOL, Y, TEMP, H0, NITER, IER) + EXTERNAL F + DOUBLE PRECISION T0, Y0, YDOT, TOUT, UROUND, EWT, ATOL, Y, + 1 TEMP, H0 + INTEGER NEQ, N, ITOL, NITER, IER + DIMENSION NEQ(*), Y0(*), YDOT(*), EWT(*), ATOL(*), Y(*), TEMP(*) +C----------------------------------------------------------------------- +C Call sequence input -- NEQ, N, T0, Y0, YDOT, F, TOUT, UROUND, +C EWT, ITOL, ATOL, Y, TEMP +C Call sequence output -- H0, NITER, IER +C Common block variables accessed -- None +C +C Subroutines called by DLHIN: F, DCOPY +C Function routines called by DLHIN: DVNORM +C----------------------------------------------------------------------- +C This routine computes the step size, H0, to be attempted on the +C first step, when the user has not supplied a value for this. +C +C First we check that TOUT - T0 differs significantly from zero. Then +C an iteration is done to approximate the initial second derivative +C and this is used to define H from WRMS-norm(H**2 * yddot / 2) = 1. +C A bias factor of 1/2 is applied to the resulting h. +C The sign of H0 is inferred from the initial values of TOUT and T0. +C +C Communication with DLHIN is done with the following variables: +C +C NEQ = NEQ array of solver, passed to F. +C N = size of ODE system, input. +C T0 = initial value of independent variable, input. +C Y0 = vector of initial conditions, input. +C YDOT = vector of initial first derivatives, input. +C F = name of subroutine for right-hand side f(t,y), input. +C TOUT = first output value of independent variable +C UROUND = machine unit roundoff +C EWT, ITOL, ATOL = error weights and tolerance parameters +C as described in the driver routine, input. +C Y, TEMP = work arrays of length N. +C H0 = step size to be attempted, output. +C NITER = number of iterations (and of f evaluations) to compute H0, +C output. +C IER = the error flag, returned with the value +C IER = 0 if no trouble occurred, or +C IER = -1 if TOUT and t0 are considered too close to proceed. +C----------------------------------------------------------------------- +C +C Type declarations for local variables -------------------------------- +C + DOUBLE PRECISION AFI, ATOLI, DELYI, HALF, HG, HLB, HNEW, HRAT, + 1 HUB, HUN, PT1, T1, TDIST, TROUND, TWO, DVNORM, YDDNRM + INTEGER I, ITER +C----------------------------------------------------------------------- +C The following Fortran-77 declaration is to cause the values of the +C listed (local) variables to be saved between calls to this integrator. +C----------------------------------------------------------------------- + SAVE HALF, HUN, PT1, TWO + DATA HALF /0.5D0/, HUN /100.0D0/, PT1 /0.1D0/, TWO /2.0D0/ +C + NITER = 0 + TDIST = ABS(TOUT - T0) + TROUND = UROUND*MAX(ABS(T0),ABS(TOUT)) + IF (TDIST .LT. TWO*TROUND) GO TO 100 +C +C Set a lower bound on H based on the roundoff level in T0 and TOUT. --- + HLB = HUN*TROUND +C Set an upper bound on H based on TOUT-T0 and the initial Y and YDOT. - + HUB = PT1*TDIST + ATOLI = ATOL(1) + DO 10 I = 1,N + IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I) + DELYI = PT1*ABS(Y0(I)) + ATOLI + AFI = ABS(YDOT(I)) + IF (AFI*HUB .GT. DELYI) HUB = DELYI/AFI + 10 CONTINUE +C +C Set initial guess for H as geometric mean of upper and lower bounds. - + ITER = 0 + HG = SQRT(HLB*HUB) +C If the bounds have crossed, exit with the mean value. ---------------- + IF (HUB .LT. HLB) THEN + H0 = HG + GO TO 90 + ENDIF +C +C Looping point for iteration. ----------------------------------------- + 50 CONTINUE +C Estimate the second derivative as a difference quotient in f. -------- + T1 = T0 + HG + DO 60 I = 1,N + 60 Y(I) = Y0(I) + HG*YDOT(I) + CALL F (NEQ, T1, Y, TEMP) + DO 70 I = 1,N + 70 TEMP(I) = (TEMP(I) - YDOT(I))/HG + YDDNRM = DVNORM (N, TEMP, EWT) +C Get the corresponding new value of H. -------------------------------- + IF (YDDNRM*HUB*HUB .GT. TWO) THEN + HNEW = SQRT(TWO/YDDNRM) + ELSE + HNEW = SQRT(HG*HUB) + ENDIF + ITER = ITER + 1 +C----------------------------------------------------------------------- +C Test the stopping conditions. +C Stop if the new and previous H values differ by a factor of .lt. 2. +C Stop if four iterations have been done. Also, stop with previous H +C if hnew/hg .gt. 2 after first iteration, as this probably means that +C the second derivative value is bad because of cancellation error. +C----------------------------------------------------------------------- + IF (ITER .GE. 4) GO TO 80 + HRAT = HNEW/HG + IF ( (HRAT .GT. HALF) .AND. (HRAT .LT. TWO) ) GO TO 80 + IF ( (ITER .GE. 2) .AND. (HNEW .GT. TWO*HG) ) THEN + HNEW = HG + GO TO 80 + ENDIF + HG = HNEW + GO TO 50 +C +C Iteration done. Apply bounds, bias factor, and sign. ---------------- + 80 H0 = HNEW*HALF + IF (H0 .LT. HLB) H0 = HLB + IF (H0 .GT. HUB) H0 = HUB + 90 H0 = SIGN(H0, TOUT - T0) +C Restore Y array from Y0, then exit. ---------------------------------- + CALL DCOPY (N, Y0, 1, Y, 1) + NITER = ITER + IER = 0 + RETURN +C Error return for TOUT - T0 too small. -------------------------------- + 100 IER = -1 + RETURN +C----------------------- End of Subroutine DLHIN ----------------------- + END +*DECK DSTOKA + SUBROUTINE DSTOKA (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVX, ACOR, + 1 WM, IWM, F, JAC, PSOL) + EXTERNAL F, JAC, PSOL + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVX, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 SAVX(*), ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER NEWT, NSFI, NSLJ, NJEV + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION STIFR + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLS002/ STIFR, NEWT, NSFI, NSLJ, NJEV + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DSTOKA performs one step of the integration of an initial value +C problem for a system of Ordinary Differential Equations. +C +C This routine was derived from Subroutine DSTODPK in the DLSODPK +C package by the addition of automatic functional/Newton iteration +C switching and logic for re-use of Jacobian data. +C----------------------------------------------------------------------- +C Note: DSTOKA is independent of the value of the iteration method +C indicator MITER, when this is .ne. 0, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTOKA is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to F and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to F and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. +C Also used for input of YH(*,MAXORD+2) when JSTART = -1 +C and MAXORD .lt. the current order NQ. +C SAVX = an array of working storage, of length N. +C ACOR = a work array of length N, used for the accumulated +C corrections. On a successful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration (MITER .ne. 0). +C CCMAX = maximum relative change in H*EL0 before DSETPK is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 fatal error in DSETPK or DSOLPK. +C A return with KFLAG = -1 or -2 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between DSETPK calls (MITER .gt. 0). +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + INTEGER I, I1, IREDO, IRET, J, JB, JOK, M, NCF, NEWQ, NSLOW + DOUBLE PRECISION DCON, DDN, DEL, DELP, DRC, DSM, DUP, EXDN, EXSM, + 1 EXUP, DFNORM, R, RH, RHDN, RHSM, RHUP, ROC, STIFF, TOLD, DVNORM +C + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + NSLJ = 0 + IPUP = 0 + IRET = 3 + NEWT = 0 + STIFR = 0.0D0 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + EPCON = CONIT*TESCO(2,NQ) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C The flag IPUP is set according to whether matrix data is involved +C (NEWT .gt. 0 .and. JACFLG .ne. 0) or not, to trigger a call to DSETPK. +C IPUP is set to MITER when RC differs from 1 by more than CCMAX, +C and at least every MSBP steps, when JACFLG = 1. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C----------------------------------------------------------------------- + 200 IF (NEWT .EQ. 0 .OR. JACFLG .EQ. 0) THEN + DRC = 0.0D0 + IPUP = 0 + CRATE = 0.7D0 + ELSE + DRC = ABS(RC - 1.0D0) + IF (DRC .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + ENDIF + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by the error +C weight vector EWT. The sum of the corrections is accumulated in the +C vector ACOR(i). The YH array is not altered in the corrector loop. +C Within the corrector loop, an estimated rate of convergence (ROC) +C and a stiffness ratio estimate (STIFF) are kept. Corresponding +C global estimates are kept as CRATE and stifr. +C----------------------------------------------------------------------- + 220 M = 0 + MNEWT = 0 + STIFF = 0.0D0 + ROC = 0.05D0 + NSLOW = 0 + DO 230 I = 1,N + 230 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + IF (NEWT .EQ. 0 .OR. IPUP .LE. 0) GO TO 250 +C----------------------------------------------------------------------- +C If indicated, DSETPK is called to update any matrix data needed, +C before starting the corrector iteration. +C JOK is set to indicate if the matrix data need not be recomputed. +C IPUP is set to 0 as an indicator that the matrix data is up to date. +C----------------------------------------------------------------------- + JOK = 1 + IF (NST .EQ. 0 .OR. NST .GT. NSLJ+50) JOK = -1 + IF (ICF .EQ. 1 .AND. DRC .LT. 0.2D0) JOK = -1 + IF (ICF .EQ. 2) JOK = -1 + IF (JOK .EQ. -1) THEN + NSLJ = NST + NJEV = NJEV + 1 + ENDIF + CALL DSETPK (NEQ, Y, YH1, EWT, ACOR, SAVF, JOK, WM, IWM, F, JAC) + IPUP = 0 + RC = 1.0D0 + DRC = 0.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .NE. 0) GO TO 430 + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 + 270 IF (NEWT .NE. 0) GO TO 350 +C----------------------------------------------------------------------- +C In the case of functional iteration, update Y directly from +C the result of the last function evaluation, and STIFF is set to 1.0. +C----------------------------------------------------------------------- + DO 290 I = 1,N + SAVF(I) = H*SAVF(I) - YH(I,2) + 290 Y(I) = SAVF(I) - ACOR(I) + DEL = DVNORM (N, Y, EWT) + DO 300 I = 1,N + Y(I) = YH(I,1) + EL(1)*SAVF(I) + 300 ACOR(I) = SAVF(I) + STIFF = 1.0D0 + GO TO 400 +C----------------------------------------------------------------------- +C In the case of the chord method, compute the corrector error, +C and solve the linear system with that as right-hand side and +C P as coefficient matrix. STIFF is set to the ratio of the norms +C of the residual and the correction vector. +C----------------------------------------------------------------------- + 350 DO 360 I = 1,N + 360 SAVX(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) + DFNORM = DVNORM (N, SAVX, EWT) + CALL DSOLPK (NEQ, Y, SAVF, SAVX, EWT, WM, IWM, F, PSOL) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + DEL = DVNORM (N, SAVX, EWT) + IF (DEL .GT. 1.0D-8) STIFF = MAX(STIFF, DFNORM/DEL) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + SAVX(I) + 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is made for the iteration switch, and is also used +C in the convergence test. If the iteration seems to be diverging or +C converging at a slow rate (.gt. 0.8 more than once), it is stopped. +C----------------------------------------------------------------------- + 400 IF (M .NE. 0) THEN + ROC = MAX(0.05D0, DEL/DELP) + CRATE = MAX(0.2D0*CRATE,ROC) + ENDIF + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/EPCON + IF (DCON .LE. 1.0D0) GO TO 450 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + IF (ROC .GT. 10.0D0) GO TO 410 + IF (ROC .GT. 0.8D0) NSLOW = NSLOW + 1 + IF (NSLOW .GE. 2) GO TO 410 + MNEWT = M + DELP = DEL + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + GO TO 270 +C----------------------------------------------------------------------- +C The corrector iteration failed to converge. +C If functional iteration is being done (NEWT = 0) and MITER .gt. 0 +C (and this is not the first step), then switch to Newton +C (NEWT = MITER), and retry the step. (Setting STIFR = 1023 insures +C that a switch back will not occur for 10 step attempts.) +C If Newton iteration is being done, but using a preconditioner that +C is out of date (JACFLG .ne. 0 .and. JCUR = 0), then signal for a +C re-evalutation of the preconditioner, and retry the step. +C In all other cases, the YH array is retracted to its values +C before prediction, and H is reduced, if possible. If H cannot be +C reduced or MXNCF failures have occurred, exit with KFLAG = -2. +C----------------------------------------------------------------------- + 410 ICF = 1 + IF (NEWT .EQ. 0) THEN + IF (NST .EQ. 0) GO TO 430 + IF (MITER .EQ. 0) GO TO 430 + NEWT = MITER + STIFR = 1023.0D0 + IPUP = MITER + GO TO 220 + ENDIF + IF (JCUR.EQ.1 .OR. JACFLG.EQ.0) GO TO 430 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + NCFN = NCFN + 1 + RMAX = 2.0D0 + TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 + IF (NCF .EQ. MXNCF) GO TO 670 + RH = 0.5D0 + IPUP = MITER + IREDO = 1 + GO TO 170 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 to signal that the +C preconditioner involved may need updating later. +C The stiffness ratio STIFR is updated using the latest STIFF value. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 450 JCUR = 0 + IF (NEWT .GT. 0) STIFR = 0.5D0*(STIFR + STIFF) + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C If Newton iteration is being done and STIFR is less than 1.5, +C then switch to functional iteration. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + IF (NEWT .EQ. 0) NSFI = NSFI + 1 + IF (NEWT .GT. 0 .AND. STIFR .LT. 1.5D0) NEWT = 0 + HU = H + NQU = NQ + DO 470 J = 1,L + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C Restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.2 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -3) GO TO 640 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C in the case of failure, RHUP = 0.0 to avoid an order increase. +C the largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C Control reaches this section if 3 or more failures have occured. +C If 10 failures have occurred, exit with KFLAG = -1. +C It is assumed that the derivatives that have accumulated in the +C YH array have errors of the wrong order. Hence the first +C derivative is recomputed, and the order is set to 1. Then +C H is reduced by a factor of 10, and the step is retried, +C until it succeeds or H reaches HMIN. +C----------------------------------------------------------------------- + 640 IF (KFLAG .EQ. -10) GO TO 660 + RH = 0.1D0 + RH = MAX(HMIN/ABS(H),RH) + H = H*RH + DO 645 I = 1,N + 645 Y(I) = YH(I,1) + CALL F (NEQ, TN, Y, SAVF) + NFE = NFE + 1 + DO 650 I = 1,N + 650 YH(I,2) = H*SAVF(I) + IPUP = MITER + IALTH = 5 + IF (NQ .EQ. 1) GO TO 200 + NQ = 1 + L = 2 + IRET = 3 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -3 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = 1.0D0/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTOKA ---------------------- + END +*DECK DSETPK + SUBROUTINE DSETPK (NEQ, Y, YSV, EWT, FTEM, SAVF, JOK, WM, IWM, + 1 F, JAC) + EXTERNAL F, JAC + INTEGER NEQ, JOK, IWM + DOUBLE PRECISION Y, YSV, EWT, FTEM, SAVF, WM + DIMENSION NEQ(*), Y(*), YSV(*), EWT(*), FTEM(*), SAVF(*), + 1 WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 1 NNI, NLI, NPS, NCFN, NCFL + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION DELT, EPCON, SQRTN, RSQRTN + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLPK01/ DELT, EPCON, SQRTN, RSQRTN, + 1 JPRE, JACFLG, LOCWP, LOCIWP, LSAVX, KMP, MAXL, MNEWT, + 2 NNI, NLI, NPS, NCFN, NCFL +C----------------------------------------------------------------------- +C DSETPK is called by DSTOKA to interface with the user-supplied +C routine JAC, to compute and process relevant parts of +C the matrix P = I - H*EL(1)*J , where J is the Jacobian df/dy, +C as need for preconditioning matrix operations later. +C +C In addition to variables described previously, communication +C with DSETPK uses the following: +C Y = array containing predicted values on entry. +C YSV = array containing predicted y, to be saved (YH1 in DSTOKA). +C FTEM = work array of length N (ACOR in DSTOKA). +C SAVF = array containing f evaluated at predicted y. +C JOK = input flag showing whether it was judged that Jacobian matrix +C data need not be recomputed (JOK = 1) or needs to be +C (JOK = -1). +C WM = real work space for matrices. +C Space for preconditioning data starts at WM(LOCWP). +C IWM = integer work space. +C Space for preconditioning data starts at IWM(LOCIWP). +C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if +C JAC returned an error flag. +C JCUR = output flag to indicate whether the matrix data involved +C is now current (JCUR = 1) or not (JCUR = 0). +C This routine also uses Common variables EL0, H, TN, IERPJ, JCUR, NJE. +C----------------------------------------------------------------------- + INTEGER IER + DOUBLE PRECISION HL0 +C + IERPJ = 0 + JCUR = 0 + IF (JOK .EQ. -1) JCUR = 1 + HL0 = EL0*H + CALL JAC (F, NEQ, TN, Y, YSV, EWT, SAVF, FTEM, HL0, JOK, + 1 WM(LOCWP), IWM(LOCIWP), IER) + NJE = NJE + 1 + IF (IER .EQ. 0) RETURN + IERPJ = 1 + RETURN +C----------------------- End of Subroutine DSETPK ---------------------- + END +*DECK DSRCKR + SUBROUTINE DSRCKR (RSAV, ISAV, JOB) +C----------------------------------------------------------------------- +C This routine saves or restores (depending on JOB) the contents of +C the Common blocks DLS001, DLS002, DLSR01, DLPK01, which +C are used internally by the DLSODKR solver. +C +C RSAV = real array of length 228 or more. +C ISAV = integer array of length 63 or more. +C JOB = flag indicating to save or restore the Common blocks: +C JOB = 1 if Common is to be saved (written to RSAV/ISAV) +C JOB = 2 if Common is to be restored (read from RSAV/ISAV) +C A call with JOB = 2 presumes a prior call with JOB = 1. +C----------------------------------------------------------------------- + INTEGER ISAV, JOB + INTEGER ILS, ILS2, ILSR, ILSP + INTEGER I, IOFF, LENILP, LENRLP, LENILS, LENRLS, LENILR, LENRLR + DOUBLE PRECISION RSAV, RLS, RLS2, RLSR, RLSP + DIMENSION RSAV(*), ISAV(*) + SAVE LENRLS, LENILS, LENRLP, LENILP, LENRLR, LENILR + COMMON /DLS001/ RLS(218), ILS(37) + COMMON /DLS002/ RLS2, ILS2(4) + COMMON /DLSR01/ RLSR(5), ILSR(9) + COMMON /DLPK01/ RLSP(4), ILSP(13) + DATA LENRLS/218/, LENILS/37/, LENRLP/4/, LENILP/13/ + DATA LENRLR/5/, LENILR/9/ +C + IF (JOB .EQ. 2) GO TO 100 + CALL DCOPY (LENRLS, RLS, 1, RSAV, 1) + RSAV(LENRLS+1) = RLS2 + CALL DCOPY (LENRLR, RLSR, 1, RSAV(LENRLS+2), 1) + CALL DCOPY (LENRLP, RLSP, 1, RSAV(LENRLS+LENRLR+2), 1) + DO 20 I = 1,LENILS + 20 ISAV(I) = ILS(I) + ISAV(LENILS+1) = ILS2(1) + ISAV(LENILS+2) = ILS2(2) + ISAV(LENILS+3) = ILS2(3) + ISAV(LENILS+4) = ILS2(4) + IOFF = LENILS + 2 + DO 30 I = 1,LENILR + 30 ISAV(IOFF+I) = ILSR(I) + IOFF = IOFF + LENILR + DO 40 I = 1,LENILP + 40 ISAV(IOFF+I) = ILSP(I) + RETURN +C + 100 CONTINUE + CALL DCOPY (LENRLS, RSAV, 1, RLS, 1) + RLS2 = RSAV(LENRLS+1) + CALL DCOPY (LENRLR, RSAV(LENRLS+2), 1, RLSR, 1) + CALL DCOPY (LENRLP, RSAV(LENRLS+LENRLR+2), 1, RLSP, 1) + DO 120 I = 1,LENILS + 120 ILS(I) = ISAV(I) + ILS2(1) = ISAV(LENILS+1) + ILS2(2) = ISAV(LENILS+2) + ILS2(3) = ISAV(LENILS+3) + ILS2(4) = ISAV(LENILS+4) + IOFF = LENILS + 2 + DO 130 I = 1,LENILR + 130 ILSR(I) = ISAV(IOFF+I) + IOFF = IOFF + LENILR + DO 140 I = 1,LENILP + 140 ILSP(I) = ISAV(IOFF+I) + RETURN +C----------------------- End of Subroutine DSRCKR ---------------------- + END +*DECK DAINVG + SUBROUTINE DAINVG (RES, ADDA, NEQ, T, Y, YDOT, MITER, + 1 ML, MU, PW, IPVT, IER ) + EXTERNAL RES, ADDA + INTEGER NEQ, MITER, ML, MU, IPVT, IER + INTEGER I, LENPW, MLP1, NROWPW + DOUBLE PRECISION T, Y, YDOT, PW + DIMENSION Y(*), YDOT(*), PW(*), IPVT(*) +C----------------------------------------------------------------------- +C This subroutine computes the initial value +C of the vector YDOT satisfying +C A * YDOT = g(t,y) +C when A is nonsingular. It is called by DLSODI for +C initialization only, when ISTATE = 0 . +C DAINVG returns an error flag IER: +C IER = 0 means DAINVG was successful. +C IER .ge. 2 means RES returned an error flag IRES = IER. +C IER .lt. 0 means the a-matrix was found to be singular. +C----------------------------------------------------------------------- +C + IF (MITER .GE. 4) GO TO 100 +C +C Full matrix case ----------------------------------------------------- +C + LENPW = NEQ*NEQ + DO 10 I = 1, LENPW + 10 PW(I) = 0.0D0 +C + IER = 1 + CALL RES ( NEQ, T, Y, PW, YDOT, IER ) + IF (IER .GT. 1) RETURN +C + CALL ADDA ( NEQ, T, Y, 0, 0, PW, NEQ ) + CALL DGEFA ( PW, NEQ, NEQ, IPVT, IER ) + IF (IER .EQ. 0) GO TO 20 + IER = -IER + RETURN + 20 CALL DGESL ( PW, NEQ, NEQ, IPVT, YDOT, 0 ) + RETURN +C +C Band matrix case ----------------------------------------------------- +C + 100 CONTINUE + NROWPW = 2*ML + MU + 1 + LENPW = NEQ * NROWPW + DO 110 I = 1, LENPW + 110 PW(I) = 0.0D0 +C + IER = 1 + CALL RES ( NEQ, T, Y, PW, YDOT, IER ) + IF (IER .GT. 1) RETURN +C + MLP1 = ML + 1 + CALL ADDA ( NEQ, T, Y, ML, MU, PW(MLP1), NROWPW ) + CALL DGBFA ( PW, NROWPW, NEQ, ML, MU, IPVT, IER ) + IF (IER .EQ. 0) GO TO 120 + IER = -IER + RETURN + 120 CALL DGBSL ( PW, NROWPW, NEQ, ML, MU, IPVT, YDOT, 0 ) + RETURN +C----------------------- End of Subroutine DAINVG ---------------------- + END +*DECK DSTODI + SUBROUTINE DSTODI (NEQ, Y, YH, NYH, YH1, EWT, SAVF, SAVR, + 1 ACOR, WM, IWM, RES, ADDA, JAC, PJAC, SLVS ) + EXTERNAL RES, ADDA, JAC, PJAC, SLVS + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, SAVR, ACOR, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), + 1 SAVR(*), ACOR(*), WM(*), IWM(*) + INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), + 1 HOLD, RMAX, TESCO(3,12), + 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, IREDO, IRES, IRET, J, JB, KGO, M, NCF, NEWQ + DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, + 1 ELJH, EL1H, EXDN, EXSM, EXUP, + 2 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM +C----------------------------------------------------------------------- +C DSTODI performs one step of the integration of an initial value +C problem for a system of Ordinary Differential Equations. +C Note: DSTODI is independent of the value of the iteration method +C indicator MITER, and hence is independent +C of the type of chord method used, or the Jacobian structure. +C Communication with DSTODI is done with the following variables: +C +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls to RES, ADDA, +C and JAC. +C Y = an array of length .ge. N used as the Y argument in +C all calls to RES, JAC, and ADDA. +C NEQ = integer array containing problem size in NEQ(1), and +C passed as the NEQ argument in all calls tO RES, G, ADDA, +C and JAC. +C YH = an NYH by LMAX array containing the dependent variables +C and their approximate scaled derivatives, where +C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate +C j-th derivative of y(i), scaled by H**j/factorial(j) +C (j = 0,1,...,NQ). On entry for the first step, the first +C two columns of YH must be set from the initial values. +C NYH = a constant integer .ge. N, the first dimension of YH. +C YH1 = a one-dimensional array occupying the same space as YH. +C EWT = an array of length N containing multiplicative weights +C for local error measurements. Local errors in y(i) are +C compared to 1.0/EWT(i) in various error tests. +C SAVF = an array of working storage, of length N. also used for +C input of YH(*,MAXORD+2) when JSTART = -1 and MAXORD is less +C than the current order NQ. +C Same as YDOTI in the driver. +C SAVR = an array of working storage, of length N. +C ACOR = a work array of length N used for the accumulated +C corrections. On a succesful return, ACOR(i) contains +C the estimated one-step local error in y(i). +C WM,IWM = real and integer work arrays associated with matrix +C operations in chord iteration. +C PJAC = name of routine to evaluate and preprocess Jacobian matrix. +C SLVS = name of routine to solve linear system in chord iteration. +C CCMAX = maximum relative change in H*EL0 before PJAC is called. +C H = the step size to be attempted on the next step. +C H is altered by the error control algorithm during the +C problem. H can be either positive or negative, but its +C sign must remain constant throughout the problem. +C HMIN = the minimum absolute value of the step size H to be used. +C HMXI = inverse of the maximum absolute value of H to be used. +C HMXI = 0.0 is allowed and corresponds to an infinite HMAX. +C HMIN and HMXI may be changed at any time, but will not +C take effect until the next change of H is considered. +C TN = the independent variable. TN is updated on each step taken. +C JSTART = an integer used for input only, with the following +C values and meanings: +C 0 perform the first step. +C .gt.0 take a new step continuing from the last. +C -1 take the next step with a new value of H, MAXORD, +C N, METH, MITER, and/or matrix parameters. +C -2 take the next step with a new value of H, +C but with other inputs unchanged. +C On return, JSTART is set to 1 to facilitate continuation. +C KFLAG = a completion code with the following meanings: +C 0 the step was succesful. +C -1 the requested error could not be achieved. +C -2 corrector convergence could not be achieved. +C -3 RES ordered immediate return. +C -4 error condition from RES could not be avoided. +C -5 fatal error in PJAC or SLVS. +C A return with KFLAG = -1, -2, or -4 means either +C ABS(H) = HMIN or 10 consecutive failures occurred. +C On a return with KFLAG negative, the values of TN and +C the YH array are as of the beginning of the last +C step, and H is the last step size attempted. +C MAXORD = the maximum order of integration method to be allowed. +C MAXCOR = the maximum number of corrector iterations allowed. +C MSBP = maximum number of steps between PJAC calls. +C MXNCF = maximum number of convergence failures allowed. +C METH/MITER = the method flags. See description in driver. +C N = the number of first-order differential equations. +C----------------------------------------------------------------------- + KFLAG = 0 + TOLD = TN + NCF = 0 + IERPJ = 0 + IERSL = 0 + JCUR = 0 + ICF = 0 + DELP = 0.0D0 + IF (JSTART .GT. 0) GO TO 200 + IF (JSTART .EQ. -1) GO TO 100 + IF (JSTART .EQ. -2) GO TO 160 +C----------------------------------------------------------------------- +C On the first call, the order is set to 1, and other variables are +C initialized. RMAX is the maximum ratio by which H can be increased +C in a single step. It is initially 1.E4 to compensate for the small +C initial H, but then is normally equal to 10. If a failure +C occurs (in corrector convergence or error test), RMAX is set at 2 +C for the next increase. +C----------------------------------------------------------------------- + LMAX = MAXORD + 1 + NQ = 1 + L = 2 + IALTH = 2 + RMAX = 10000.0D0 + RC = 0.0D0 + EL0 = 1.0D0 + CRATE = 0.7D0 + HOLD = H + MEO = METH + NSLP = 0 + IPUP = MITER + IRET = 3 + GO TO 140 +C----------------------------------------------------------------------- +C The following block handles preliminaries needed when JSTART = -1. +C IPUP is set to MITER to force a matrix update. +C If an order increase is about to be considered (IALTH = 1), +C IALTH is reset to 2 to postpone consideration one more step. +C If the caller has changed METH, DCFODE is called to reset +C the coefficients of the method. +C If the caller has changed MAXORD to a value less than the current +C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. +C If H is to be changed, YH must be rescaled. +C If H or METH is being changed, IALTH is reset to L = NQ + 1 +C to prevent further changes in H for that many steps. +C----------------------------------------------------------------------- + 100 IPUP = MITER + LMAX = MAXORD + 1 + IF (IALTH .EQ. 1) IALTH = 2 + IF (METH .EQ. MEO) GO TO 110 + CALL DCFODE (METH, ELCO, TESCO) + MEO = METH + IF (NQ .GT. MAXORD) GO TO 120 + IALTH = L + IRET = 1 + GO TO 150 + 110 IF (NQ .LE. MAXORD) GO TO 160 + 120 NQ = MAXORD + L = LMAX + DO 125 I = 1,L + 125 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) + EXDN = 1.0D0/L + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + RH = MIN(RHDN,1.0D0) + IREDO = 3 + IF (H .EQ. HOLD) GO TO 170 + RH = MIN(RH,ABS(H/HOLD)) + H = HOLD + GO TO 175 +C----------------------------------------------------------------------- +C DCFODE is called to get all the integration coefficients for the +C current METH. Then the EL vector and related constants are reset +C whenever the order NQ is changed, or at the start of the problem. +C----------------------------------------------------------------------- + 140 CALL DCFODE (METH, ELCO, TESCO) + 150 DO 155 I = 1,L + 155 EL(I) = ELCO(I,NQ) + NQNYH = NQ*NYH + RC = RC*EL(1)/EL0 + EL0 = EL(1) + CONIT = 0.5D0/(NQ+2) + GO TO (160, 170, 200), IRET +C----------------------------------------------------------------------- +C If H is being changed, the H ratio RH is checked against +C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to +C L = NQ + 1 to prevent a change of H for that many steps, unless +C forced by a convergence or error test failure. +C----------------------------------------------------------------------- + 160 IF (H .EQ. HOLD) GO TO 200 + RH = H/HOLD + H = HOLD + IREDO = 3 + GO TO 175 + 170 RH = MAX(RH,HMIN/ABS(H)) + 175 RH = MIN(RH,RMAX) + RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) + R = 1.0D0 + DO 180 J = 2,L + R = R*RH + DO 180 I = 1,N + 180 YH(I,J) = YH(I,J)*R + H = H*RH + RC = RC*RH + IALTH = L + IF (IREDO .EQ. 0) GO TO 690 +C----------------------------------------------------------------------- +C This section computes the predicted values by effectively +C multiplying the YH array by the Pascal triangle matrix. +C RC is the ratio of new to old values of the coefficient H*EL(1). +C When RC differs from 1 by more than CCMAX, IPUP is set to MITER +C to force PJAC to be called. +C In any case, PJAC is called at least every MSBP steps. +C----------------------------------------------------------------------- + 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER + IF (NST .GE. NSLP+MSBP) IPUP = MITER + TN = TN + H + I1 = NQNYH + 1 + DO 215 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 210 I = I1,NQNYH + 210 YH1(I) = YH1(I) + YH1(I+NYH) + 215 CONTINUE +C----------------------------------------------------------------------- +C Up to MAXCOR corrector iterations are taken. A convergence test is +C made on the RMS-norm of each correction, weighted by H and the +C error weight vector EWT. The sum of the corrections is accumulated +C in ACOR(i). The YH array is not altered in the corrector loop. +C----------------------------------------------------------------------- + 220 M = 0 + DO 230 I = 1,N + SAVF(I) = YH(I,2) / H + 230 Y(I) = YH(I,1) + IF (IPUP .LE. 0) GO TO 240 +C----------------------------------------------------------------------- +C If indicated, the matrix P = A - H*EL(1)*dr/dy is reevaluated and +C preprocessed before starting the corrector iteration. IPUP is set +C to 0 as an indicator that this has been done. +C----------------------------------------------------------------------- + CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVR, SAVF, WM, IWM, + 1 RES, JAC, ADDA ) + IPUP = 0 + RC = 1.0D0 + NSLP = NST + CRATE = 0.7D0 + IF (IERPJ .EQ. 0) GO TO 250 + IF (IERPJ .LT. 0) GO TO 435 + IRES = IERPJ + GO TO (430, 435, 430), IRES +C Get residual at predicted values, if not already done in PJAC. ------- + 240 IRES = 1 + CALL RES ( NEQ, TN, Y, SAVF, SAVR, IRES ) + NFE = NFE + 1 + KGO = ABS(IRES) + GO TO ( 250, 435, 430 ) , KGO + 250 DO 260 I = 1,N + 260 ACOR(I) = 0.0D0 +C----------------------------------------------------------------------- +C Solve the linear system with the current residual as +C right-hand side and P as coefficient matrix. +C----------------------------------------------------------------------- + 270 CONTINUE + CALL SLVS (WM, IWM, SAVR, SAVF) + IF (IERSL .LT. 0) GO TO 430 + IF (IERSL .GT. 0) GO TO 410 + EL1H = EL(1) * H + DEL = DVNORM (N, SAVR, EWT) * ABS(H) + DO 380 I = 1,N + ACOR(I) = ACOR(I) + SAVR(I) + SAVF(I) = ACOR(I) + YH(I,2)/H + 380 Y(I) = YH(I,1) + EL1H*ACOR(I) +C----------------------------------------------------------------------- +C Test for convergence. If M .gt. 0, an estimate of the convergence +C rate constant is stored in CRATE, and this is used in the test. +C----------------------------------------------------------------------- + IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) + DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) + IF (DCON .LE. 1.0D0) GO TO 460 + M = M + 1 + IF (M .EQ. MAXCOR) GO TO 410 + IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 + DELP = DEL + IRES = 1 + CALL RES ( NEQ, TN, Y, SAVF, SAVR, IRES ) + NFE = NFE + 1 + KGO = ABS(IRES) + GO TO ( 270, 435, 410 ) , KGO +C----------------------------------------------------------------------- +C The correctors failed to converge, or RES has returned abnormally. +C on a convergence failure, if the Jacobian is out of date, PJAC is +C called for the next try. Otherwise the YH array is retracted to its +C values before prediction, and H is reduced, if possible. +C take an error exit if IRES = 2, or H cannot be reduced, or MXNCF +C failures have occurred, or a fatal error occurred in PJAC or SLVS. +C----------------------------------------------------------------------- + 410 ICF = 1 + IF (JCUR .EQ. 1) GO TO 430 + IPUP = MITER + GO TO 220 + 430 ICF = 2 + NCF = NCF + 1 + RMAX = 2.0D0 + 435 TN = TOLD + I1 = NQNYH + 1 + DO 445 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 440 I = I1,NQNYH + 440 YH1(I) = YH1(I) - YH1(I+NYH) + 445 CONTINUE + IF (IRES .EQ. 2) GO TO 680 + IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 685 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 450 + IF (NCF .EQ. MXNCF) GO TO 450 + RH = 0.25D0 + IPUP = MITER + IREDO = 1 + GO TO 170 + 450 IF (IRES .EQ. 3) GO TO 680 + GO TO 670 +C----------------------------------------------------------------------- +C The corrector has converged. JCUR is set to 0 +C to signal that the Jacobian involved may need updating later. +C The local error test is made and control passes to statement 500 +C if it fails. +C----------------------------------------------------------------------- + 460 JCUR = 0 + IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) + IF (M .GT. 0) DSM = ABS(H) * DVNORM (N, ACOR, EWT)/TESCO(2,NQ) + IF (DSM .GT. 1.0D0) GO TO 500 +C----------------------------------------------------------------------- +C After a successful step, update the YH array. +C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. +C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for +C use in a possible order increase on the next step. +C If a change in H is considered, an increase or decrease in order +C by one is considered also. A change in H is made only if it is by a +C factor of at least 1.1. If not, IALTH is set to 3 to prevent +C testing for that many steps. +C----------------------------------------------------------------------- + KFLAG = 0 + IREDO = 0 + NST = NST + 1 + HU = H + NQU = NQ + DO 470 J = 1,L + ELJH = EL(J)*H + DO 470 I = 1,N + 470 YH(I,J) = YH(I,J) + ELJH*ACOR(I) + IALTH = IALTH - 1 + IF (IALTH .EQ. 0) GO TO 520 + IF (IALTH .GT. 1) GO TO 700 + IF (L .EQ. LMAX) GO TO 700 + DO 490 I = 1,N + 490 YH(I,LMAX) = ACOR(I) + GO TO 700 +C----------------------------------------------------------------------- +C The error test failed. KFLAG keeps track of multiple failures. +C restore TN and the YH array to their previous values, and prepare +C to try the step again. Compute the optimum step size for this or +C one lower order. After 2 or more failures, H is forced to decrease +C by a factor of 0.1 or less. +C----------------------------------------------------------------------- + 500 KFLAG = KFLAG - 1 + TN = TOLD + I1 = NQNYH + 1 + DO 515 JB = 1,NQ + I1 = I1 - NYH +CDIR$ IVDEP + DO 510 I = I1,NQNYH + 510 YH1(I) = YH1(I) - YH1(I+NYH) + 515 CONTINUE + RMAX = 2.0D0 + IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 + IF (KFLAG .LE. -7) GO TO 660 + IREDO = 2 + RHUP = 0.0D0 + GO TO 540 +C----------------------------------------------------------------------- +C Regardless of the success or failure of the step, factors +C RHDN, RHSM, and RHUP are computed, by which H could be multiplied +C at order NQ - 1, order NQ, or order NQ + 1, respectively. +C In the case of failure, RHUP = 0.0 to avoid an order increase. +C The largest of these is determined and the new order chosen +C accordingly. If the order is to be increased, we compute one +C additional scaled derivative. +C----------------------------------------------------------------------- + 520 RHUP = 0.0D0 + IF (L .EQ. LMAX) GO TO 540 + DO 530 I = 1,N + 530 SAVF(I) = ACOR(I) - YH(I,LMAX) + DUP = ABS(H) * DVNORM (N, SAVF, EWT)/TESCO(3,NQ) + EXUP = 1.0D0/(L+1) + RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) + 540 EXSM = 1.0D0/L + RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) + RHDN = 0.0D0 + IF (NQ .EQ. 1) GO TO 560 + DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) + EXDN = 1.0D0/NQ + RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) + 560 IF (RHSM .GE. RHUP) GO TO 570 + IF (RHUP .GT. RHDN) GO TO 590 + GO TO 580 + 570 IF (RHSM .LT. RHDN) GO TO 580 + NEWQ = NQ + RH = RHSM + GO TO 620 + 580 NEWQ = NQ - 1 + RH = RHDN + IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 + GO TO 620 + 590 NEWQ = L + RH = RHUP + IF (RH .LT. 1.1D0) GO TO 610 + R = H*EL(L)/L + DO 600 I = 1,N + 600 YH(I,NEWQ+1) = ACOR(I)*R + GO TO 630 + 610 IALTH = 3 + GO TO 700 + 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 + IF (KFLAG .LE. -2) RH = MIN(RH,0.1D0) +C----------------------------------------------------------------------- +C If there is a change of order, reset NQ, L, and the coefficients. +C In any case H is reset according to RH and the YH array is rescaled. +C Then exit from 690 if the step was OK, or redo the step otherwise. +C----------------------------------------------------------------------- + IF (NEWQ .EQ. NQ) GO TO 170 + 630 NQ = NEWQ + L = NQ + 1 + IRET = 2 + GO TO 150 +C----------------------------------------------------------------------- +C All returns are made through this section. H is saved in HOLD +C to allow the caller to change H on the next step. +C----------------------------------------------------------------------- + 660 KFLAG = -1 + GO TO 720 + 670 KFLAG = -2 + GO TO 720 + 680 KFLAG = -1 - IRES + GO TO 720 + 685 KFLAG = -5 + GO TO 720 + 690 RMAX = 10.0D0 + 700 R = H/TESCO(2,NQU) + DO 710 I = 1,N + 710 ACOR(I) = ACOR(I)*R + 720 HOLD = H + JSTART = 1 + RETURN +C----------------------- End of Subroutine DSTODI ---------------------- + END +*DECK DPREPJI + SUBROUTINE DPREPJI (NEQ, Y, YH, NYH, EWT, RTEM, SAVR, S, WM, IWM, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, RTEM, SAVR, S, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), RTEM(*), + 1 S(*), SAVR(*), WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, I1, I2, IER, II, IRES, J, J1, JJ, LENP, + 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU + DOUBLE PRECISION CON, FAC, HL0, R, SRUR, YI, YJ, YJJ +C----------------------------------------------------------------------- +C DPREPJI is called by DSTODI to compute and process the matrix +C P = A - H*EL(1)*J , where J is an approximation to the Jacobian dr/dy, +C where r = g(t,y) - A(t,y)*s. Here J is computed by the user-supplied +C routine JAC if MITER = 1 or 4, or by finite differencing if MITER = +C 2 or 5. J is stored in WM, rescaled, and ADDA is called to generate +C P. P is then subjected to LU decomposition in preparation +C for later solution of linear systems with P as coefficient +C matrix. This is done by DGEFA if MITER = 1 or 2, and by +C DGBFA if MITER = 4 or 5. +C +C In addition to variables described previously, communication +C with DPREPJI uses the following: +C Y = array containing predicted values on entry. +C RTEM = work array of length N (ACOR in DSTODI). +C SAVR = array used for output only. On output it contains the +C residual evaluated at current values of t and y. +C S = array containing predicted values of dy/dt (SAVF in DSTODI). +C WM = real work space for matrices. On output it contains the +C LU decomposition of P. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains the band parameters +C ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. +C EL0 = el(1) (input). +C IERPJ = output error flag. +C = 0 if no trouble occurred, +C = 1 if the P matrix was found to be singular, +C = IRES (= 2 or 3) if RES returned IRES = 2 or 3. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the Common variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C----------------------------------------------------------------------- + NJE = NJE + 1 + HL0 = H*EL0 + IERPJ = 0 + JCUR = 1 + GO TO (100, 200, 300, 400, 500), MITER +C If MITER = 1, call RES, then JAC, and multiply by scalar. ------------ + 100 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + LENP = N*N + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC ( NEQ, TN, Y, S, 0, 0, WM(3), N ) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 240 +C If MITER = 2, make N + 1 calls to RES to approximate J. -------------- + 200 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + SRUR = WM(1) + J1 = 2 + DO 230 J = 1,N + YJ = Y(J) + R = MAX(SRUR*ABS(YJ),0.01D0/EWT(J)) + Y(J) = Y(J) + R + FAC = -HL0/R + CALL RES ( NEQ, TN, Y, S, RTEM, IRES ) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 220 I = 1,N + 220 WM(I+J1) = (RTEM(I) - SAVR(I))*FAC + Y(J) = YJ + J1 = J1 + N + 230 CONTINUE + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C Add matrix A. -------------------------------------------------------- + 240 CONTINUE + CALL ADDA(NEQ, TN, Y, 0, 0, WM(3), N) +C Do LU decomposition on P. -------------------------------------------- + CALL DGEFA (WM(3), N, N, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Dummy section for MITER = 3 + 300 RETURN +C If MITER = 4, call RES, then JAC, and multiply by scalar. ------------ + 400 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MEBAND = MBAND + ML + LENP = MEBAND*N + DO 410 I = 1,LENP + 410 WM(I+2) = 0.0D0 + CALL JAC ( NEQ, TN, Y, S, ML, MU, WM(ML3), MEBAND) + CON = -HL0 + DO 420 I = 1,LENP + 420 WM(I+2) = WM(I+2)*CON + GO TO 570 +C If MITER = 5, make ML + MU + 2 calls to RES to approximate J. -------- + 500 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + ML = IWM(1) + MU = IWM(2) + ML3 = ML + 3 + MBAND = ML + MU + 1 + MBA = MIN(MBAND,N) + MEBAND = MBAND + ML + MEB1 = MEBAND - 1 + SRUR = WM(1) + DO 560 J = 1,MBA + DO 530 I = J,N,MBAND + YI = Y(I) + R = MAX(SRUR*ABS(YI),0.01D0/EWT(I)) + 530 Y(I) = Y(I) + R + CALL RES ( NEQ, TN, Y, S, RTEM, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 550 JJ = J,N,MBAND + Y(JJ) = YH(JJ,1) + YJJ = Y(JJ) + R = MAX(SRUR*ABS(YJJ),0.01D0/EWT(JJ)) + FAC = -HL0/R + I1 = MAX(JJ-MU,1) + I2 = MIN(JJ+ML,N) + II = JJ*MEB1 - ML + 2 + DO 540 I = I1,I2 + 540 WM(II+I) = (RTEM(I) - SAVR(I))*FAC + 550 CONTINUE + 560 CONTINUE + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C Add matrix A. -------------------------------------------------------- + 570 CONTINUE + CALL ADDA(NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) +C Do LU decomposition of P. -------------------------------------------- + CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Error return for IRES = 2 or IRES = 3 return from RES. --------------- + 600 IERPJ = IRES + RETURN +C----------------------- End of Subroutine DPREPJI --------------------- + END +*DECK DAIGBT + SUBROUTINE DAIGBT (RES, ADDA, NEQ, T, Y, YDOT, + 1 MB, NB, PW, IPVT, IER ) + EXTERNAL RES, ADDA + INTEGER NEQ, MB, NB, IPVT, IER + INTEGER I, LENPW, LBLOX, LPB, LPC + DOUBLE PRECISION T, Y, YDOT, PW + DIMENSION Y(*), YDOT(*), PW(*), IPVT(*), NEQ(*) +C----------------------------------------------------------------------- +C This subroutine computes the initial value +C of the vector YDOT satisfying +C A * YDOT = g(t,y) +C when A is nonsingular. It is called by DLSOIBT for +C initialization only, when ISTATE = 0 . +C DAIGBT returns an error flag IER: +C IER = 0 means DAIGBT was successful. +C IER .ge. 2 means RES returned an error flag IRES = IER. +C IER .lt. 0 means the A matrix was found to have a singular +C diagonal block (hence YDOT could not be solved for). +C----------------------------------------------------------------------- + LBLOX = MB*MB*NB + LPB = 1 + LBLOX + LPC = LPB + LBLOX + LENPW = 3*LBLOX + DO 10 I = 1,LENPW + 10 PW(I) = 0.0D0 + IER = 1 + CALL RES (NEQ, T, Y, PW, YDOT, IER) + IF (IER .GT. 1) RETURN + CALL ADDA (NEQ, T, Y, MB, NB, PW(1), PW(LPB), PW(LPC) ) + CALL DDECBT (MB, NB, PW, PW(LPB), PW(LPC), IPVT, IER) + IF (IER .EQ. 0) GO TO 20 + IER = -IER + RETURN + 20 CALL DSOLBT (MB, NB, PW, PW(LPB), PW(LPC), YDOT, IPVT) + RETURN +C----------------------- End of Subroutine DAIGBT ---------------------- + END +*DECK DPJIBT + SUBROUTINE DPJIBT (NEQ, Y, YH, NYH, EWT, RTEM, SAVR, S, WM, IWM, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, NYH, IWM + DOUBLE PRECISION Y, YH, EWT, RTEM, SAVR, S, WM + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), RTEM(*), + 1 S(*), SAVR(*), WM(*), IWM(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER I, IER, IIA, IIB, IIC, IPA, IPB, IPC, IRES, J, J1, J2, + 1 K, K1, LENP, LBLOX, LPB, LPC, MB, MBSQ, MWID, NB + DOUBLE PRECISION CON, FAC, HL0, R, SRUR +C----------------------------------------------------------------------- +C DPJIBT is called by DSTODI to compute and process the matrix +C P = A - H*EL(1)*J , where J is an approximation to the Jacobian dr/dy, +C and r = g(t,y) - A(t,y)*s. Here J is computed by the user-supplied +C routine JAC if MITER = 1, or by finite differencing if MITER = 2. +C J is stored in WM, rescaled, and ADDA is called to generate P. +C P is then subjected to LU decomposition by DDECBT in preparation +C for later solution of linear systems with P as coefficient matrix. +C +C In addition to variables described previously, communication +C with DPJIBT uses the following: +C Y = array containing predicted values on entry. +C RTEM = work array of length N (ACOR in DSTODI). +C SAVR = array used for output only. On output it contains the +C residual evaluated at current values of t and y. +C S = array containing predicted values of dy/dt (SAVF in DSTODI). +C WM = real work space for matrices. On output it contains the +C LU decomposition of P. +C Storage of matrix elements starts at WM(3). +C WM also contains the following matrix-related data: +C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains block structure parameters +C MB = IWM(1) and NB = IWM(2). +C EL0 = EL(1) (input). +C IERPJ = output error flag. +C = 0 if no trouble occurred, +C = 1 if the P matrix was found to be unfactorable, +C = IRES (= 2 or 3) if RES returned IRES = 2 or 3. +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses the Common variables EL0, H, TN, UROUND, +C MITER, N, NFE, and NJE. +C----------------------------------------------------------------------- + NJE = NJE + 1 + HL0 = H*EL0 + IERPJ = 0 + JCUR = 1 + MB = IWM(1) + NB = IWM(2) + MBSQ = MB*MB + LBLOX = MBSQ*NB + LPB = 3 + LBLOX + LPC = LPB + LBLOX + LENP = 3*LBLOX + GO TO (100, 200), MITER +C If MITER = 1, call RES, then JAC, and multiply by scalar. ------------ + 100 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 110 I = 1,LENP + 110 WM(I+2) = 0.0D0 + CALL JAC (NEQ, TN, Y, S, MB, NB, WM(3), WM(LPB), WM(LPC)) + CON = -HL0 + DO 120 I = 1,LENP + 120 WM(I+2) = WM(I+2)*CON + GO TO 260 +C +C If MITER = 2, make 3*MB + 1 calls to RES to approximate J. ----------- + 200 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + MWID = 3*MB + SRUR = WM(1) + DO 205 I = 1,LENP + 205 WM(2+I) = 0.0D0 + DO 250 K = 1,3 + DO 240 J = 1,MB +C Increment Y(I) for group of column indices, and call RES. ---- + J1 = J+(K-1)*MB + DO 210 I = J1,N,MWID + R = MAX(SRUR*ABS(Y(I)),0.01D0/EWT(I)) + Y(I) = Y(I) + R + 210 CONTINUE + CALL RES (NEQ, TN, Y, S, RTEM, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 215 I = 1,N + 215 RTEM(I) = RTEM(I) - SAVR(I) + K1 = K + DO 230 I = J1,N,MWID +C Get Jacobian elements in column I (block-column K1). ------- + Y(I) = YH(I,1) + R = MAX(SRUR*ABS(Y(I)),0.01D0/EWT(I)) + FAC = -HL0/R +C Compute and load elements PA(*,J,K1). ---------------------- + IIA = I - J + IPA = 2 + (J-1)*MB + (K1-1)*MBSQ + DO 221 J2 = 1,MB + 221 WM(IPA+J2) = RTEM(IIA+J2)*FAC + IF (K1 .LE. 1) GO TO 223 +C Compute and load elements PB(*,J,K1-1). -------------------- + IIB = IIA - MB + IPB = IPA + LBLOX - MBSQ + DO 222 J2 = 1,MB + 222 WM(IPB+J2) = RTEM(IIB+J2)*FAC + 223 CONTINUE + IF (K1 .GE. NB) GO TO 225 +C Compute and load elements PC(*,J,K1+1). -------------------- + IIC = IIA + MB + IPC = IPA + 2*LBLOX + MBSQ + DO 224 J2 = 1,MB + 224 WM(IPC+J2) = RTEM(IIC+J2)*FAC + 225 CONTINUE + IF (K1 .NE. 3) GO TO 227 +C Compute and load elements PC(*,J,1). ----------------------- + IPC = IPA - 2*MBSQ + 2*LBLOX + DO 226 J2 = 1,MB + 226 WM(IPC+J2) = RTEM(J2)*FAC + 227 CONTINUE + IF (K1 .NE. NB-2) GO TO 229 +C Compute and load elements PB(*,J,NB). ---------------------- + IIB = N - MB + IPB = IPA + 2*MBSQ + LBLOX + DO 228 J2 = 1,MB + 228 WM(IPB+J2) = RTEM(IIB+J2)*FAC + 229 K1 = K1 + 3 + 230 CONTINUE + 240 CONTINUE + 250 CONTINUE +C RES call for first corrector iteration. ------------------------------ + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C Add matrix A. -------------------------------------------------------- + 260 CONTINUE + CALL ADDA (NEQ, TN, Y, MB, NB, WM(3), WM(LPB), WM(LPC)) +C Do LU decomposition on P. -------------------------------------------- + CALL DDECBT (MB, NB, WM(3), WM(LPB), WM(LPC), IWM(21), IER) + IF (IER .NE. 0) IERPJ = 1 + RETURN +C Error return for IRES = 2 or IRES = 3 return from RES. --------------- + 600 IERPJ = IRES + RETURN +C----------------------- End of Subroutine DPJIBT ---------------------- + END +*DECK DSLSBT + SUBROUTINE DSLSBT (WM, IWM, X, TEM) + INTEGER IWM + INTEGER LBLOX, LPB, LPC, MB, NB + DOUBLE PRECISION WM, X, TEM + DIMENSION WM(*), IWM(*), X(*), TEM(*) +C----------------------------------------------------------------------- +C This routine acts as an interface between the core integrator +C routine and the DSOLBT routine for the solution of the linear system +C arising from chord iteration. +C Communication with DSLSBT uses the following variables: +C WM = real work space containing the LU decomposition, +C starting at WM(3). +C IWM = integer work space containing pivot information, starting at +C IWM(21). IWM also contains block structure parameters +C MB = IWM(1) and NB = IWM(2). +C X = the right-hand side vector on input, and the solution vector +C on output, of length N. +C TEM = vector of work space of length N, not used in this version. +C----------------------------------------------------------------------- + MB = IWM(1) + NB = IWM(2) + LBLOX = MB*MB*NB + LPB = 3 + LBLOX + LPC = LPB + LBLOX + CALL DSOLBT (MB, NB, WM(3), WM(LPB), WM(LPC), X, IWM(21)) + RETURN +C----------------------- End of Subroutine DSLSBT ---------------------- + END +*DECK DDECBT + SUBROUTINE DDECBT (M, N, A, B, C, IP, IER) + INTEGER M, N, IP(M,N), IER + DOUBLE PRECISION A(M,M,N), B(M,M,N), C(M,M,N) +C----------------------------------------------------------------------- +C Block-tridiagonal matrix decomposition routine. +C Written by A. C. Hindmarsh. +C Latest revision: November 10, 1983 (ACH) +C Reference: UCID-30150 +C Solution of Block-Tridiagonal Systems of Linear +C Algebraic Equations +C A.C. Hindmarsh +C February 1977 +C The input matrix contains three blocks of elements in each block-row, +C including blocks in the (1,3) and (N,N-2) block positions. +C DDECBT uses block Gauss elimination and Subroutines DGEFA and DGESL +C for solution of blocks. Partial pivoting is done within +C block-rows only. +C +C Note: this version uses LINPACK routines DGEFA/DGESL instead of +C of dec/sol for solution of blocks, and it uses the BLAS routine DDOT +C for dot product calculations. +C +C Input: +C M = order of each block. +C N = number of blocks in each direction of the matrix. +C N must be 4 or more. The complete matrix has order M*N. +C A = M by M by N array containing diagonal blocks. +C A(i,j,k) contains the (i,j) element of the k-th block. +C B = M by M by N array containing the super-diagonal blocks +C (in B(*,*,k) for k = 1,...,N-1) and the block in the (N,N-2) +C block position (in B(*,*,N)). +C C = M by M by N array containing the subdiagonal blocks +C (in C(*,*,k) for k = 2,3,...,N) and the block in the +C (1,3) block position (in C(*,*,1)). +C IP = integer array of length M*N for working storage. +C Output: +C A,B,C = M by M by N arrays containing the block-LU decomposition +C of the input matrix. +C IP = M by N array of pivot information. IP(*,k) contains +C information for the k-th digonal block. +C IER = 0 if no trouble occurred, or +C = -1 if the input value of M or N was illegal, or +C = k if a singular matrix was found in the k-th diagonal block. +C Use DSOLBT to solve the associated linear system. +C +C External routines required: DGEFA and DGESL (from LINPACK) and +C DDOT (from the BLAS, or Basic Linear Algebra package). +C----------------------------------------------------------------------- + INTEGER NM1, NM2, KM1, I, J, K + DOUBLE PRECISION DP, DDOT + IF (M .LT. 1 .OR. N .LT. 4) GO TO 210 + NM1 = N - 1 + NM2 = N - 2 +C Process the first block-row. ----------------------------------------- + CALL DGEFA (A, M, M, IP, IER) + K = 1 + IF (IER .NE. 0) GO TO 200 + DO 10 J = 1,M + CALL DGESL (A, M, M, IP, B(1,J,1), 0) + CALL DGESL (A, M, M, IP, C(1,J,1), 0) + 10 CONTINUE +C Adjust B(*,*,2). ----------------------------------------------------- + DO 40 J = 1,M + DO 30 I = 1,M + DP = DDOT (M, C(I,1,2), M, C(1,J,1), 1) + B(I,J,2) = B(I,J,2) - DP + 30 CONTINUE + 40 CONTINUE +C Main loop. Process block-rows 2 to N-1. ----------------------------- + DO 100 K = 2,NM1 + KM1 = K - 1 + DO 70 J = 1,M + DO 60 I = 1,M + DP = DDOT (M, C(I,1,K), M, B(1,J,KM1), 1) + A(I,J,K) = A(I,J,K) - DP + 60 CONTINUE + 70 CONTINUE + CALL DGEFA (A(1,1,K), M, M, IP(1,K), IER) + IF (IER .NE. 0) GO TO 200 + DO 80 J = 1,M + 80 CALL DGESL (A(1,1,K), M, M, IP(1,K), B(1,J,K), 0) + 100 CONTINUE +C Process last block-row and return. ----------------------------------- + DO 130 J = 1,M + DO 120 I = 1,M + DP = DDOT (M, B(I,1,N), M, B(1,J,NM2), 1) + C(I,J,N) = C(I,J,N) - DP + 120 CONTINUE + 130 CONTINUE + DO 160 J = 1,M + DO 150 I = 1,M + DP = DDOT (M, C(I,1,N), M, B(1,J,NM1), 1) + A(I,J,N) = A(I,J,N) - DP + 150 CONTINUE + 160 CONTINUE + CALL DGEFA (A(1,1,N), M, M, IP(1,N), IER) + K = N + IF (IER .NE. 0) GO TO 200 + RETURN +C Error returns. ------------------------------------------------------- + 200 IER = K + RETURN + 210 IER = -1 + RETURN +C----------------------- End of Subroutine DDECBT ---------------------- + END +*DECK DSOLBT + SUBROUTINE DSOLBT (M, N, A, B, C, Y, IP) + INTEGER M, N, IP(M,N) + DOUBLE PRECISION A(M,M,N), B(M,M,N), C(M,M,N), Y(M,N) +C----------------------------------------------------------------------- +C Solution of block-tridiagonal linear system. +C Coefficient matrix must have been previously processed by DDECBT. +C M, N, A,B,C, and IP must not have been changed since call to DDECBT. +C Written by A. C. Hindmarsh. +C Input: +C M = order of each block. +C N = number of blocks in each direction of matrix. +C A,B,C = M by M by N arrays containing block LU decomposition +C of coefficient matrix from DDECBT. +C IP = M by N integer array of pivot information from DDECBT. +C Y = array of length M*N containg the right-hand side vector +C (treated as an M by N array here). +C Output: +C Y = solution vector, of length M*N. +C +C External routines required: DGESL (LINPACK) and DDOT (BLAS). +C----------------------------------------------------------------------- +C + INTEGER NM1, NM2, I, K, KB, KM1, KP1 + DOUBLE PRECISION DP, DDOT + NM1 = N - 1 + NM2 = N - 2 +C Forward solution sweep. ---------------------------------------------- + CALL DGESL (A, M, M, IP, Y, 0) + DO 30 K = 2,NM1 + KM1 = K - 1 + DO 20 I = 1,M + DP = DDOT (M, C(I,1,K), M, Y(1,KM1), 1) + Y(I,K) = Y(I,K) - DP + 20 CONTINUE + CALL DGESL (A(1,1,K), M, M, IP(1,K), Y(1,K), 0) + 30 CONTINUE + DO 50 I = 1,M + DP = DDOT (M, C(I,1,N), M, Y(1,NM1), 1) + 1 + DDOT (M, B(I,1,N), M, Y(1,NM2), 1) + Y(I,N) = Y(I,N) - DP + 50 CONTINUE + CALL DGESL (A(1,1,N), M, M, IP(1,N), Y(1,N), 0) +C Backward solution sweep. --------------------------------------------- + DO 80 KB = 1,NM1 + K = N - KB + KP1 = K + 1 + DO 70 I = 1,M + DP = DDOT (M, B(I,1,K), M, Y(1,KP1), 1) + Y(I,K) = Y(I,K) - DP + 70 CONTINUE + 80 CONTINUE + DO 100 I = 1,M + DP = DDOT (M, C(I,1,1), M, Y(1,3), 1) + Y(I,1) = Y(I,1) - DP + 100 CONTINUE + RETURN +C----------------------- End of Subroutine DSOLBT ---------------------- + END +*DECK DIPREPI + SUBROUTINE DIPREPI (NEQ, Y, S, RWORK, IA, JA, IC, JC, IPFLAG, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, IA, JA, IC, JC, IPFLAG + DOUBLE PRECISION Y, S, RWORK + DIMENSION NEQ(*), Y(*), S(*), RWORK(*), IA(*), JA(*), IC(*), JC(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMAX, LEWTN, LYHD, LYHN +C----------------------------------------------------------------------- +C This routine serves as an interface between the driver and +C Subroutine DPREPI. Tasks performed here are: +C * call DPREPI, +C * reset the required WM segment length LENWK, +C * move YH back to its final location (following WM in RWORK), +C * reset pointers for YH, SAVR, EWT, and ACOR, and +C * move EWT to its new position if ISTATE = 0 or 1. +C IPFLAG is an output error indication flag. IPFLAG = 0 if there was +C no trouble, and IPFLAG is the value of the DPREPI error flag IPPER +C if there was trouble in Subroutine DPREPI. +C----------------------------------------------------------------------- + IPFLAG = 0 +C Call DPREPI to do matrix preprocessing operations. ------------------- + CALL DPREPI (NEQ, Y, S, RWORK(LYH), RWORK(LSAVF), RWORK(LEWT), + 1 RWORK(LACOR), IA, JA, IC, JC, RWORK(LWM), RWORK(LWM), IPFLAG, + 2 RES, JAC, ADDA) + LENWK = MAX(LREQ,LWMIN) + IF (IPFLAG .LT. 0) RETURN +C If DPREPI was successful, move YH to end of required space for WM. --- + LYHN = LWM + LENWK + IF (LYHN .GT. LYH) RETURN + LYHD = LYH - LYHN + IF (LYHD .EQ. 0) GO TO 20 + IMAX = LYHN - 1 + LENYHM + DO 10 I=LYHN,IMAX + 10 RWORK(I) = RWORK(I+LYHD) + LYH = LYHN +C Reset pointers for SAVR, EWT, and ACOR. ------------------------------ + 20 LSAVF = LYH + LENYH + LEWTN = LSAVF + N + LACOR = LEWTN + N + IF (ISTATC .EQ. 3) GO TO 40 +C If ISTATE = 1, move EWT (left) to its new position. ------------------ + IF (LEWTN .GT. LEWT) RETURN + DO 30 I=1,N + 30 RWORK(I+LEWTN-1) = RWORK(I+LEWT-1) + 40 LEWT = LEWTN + RETURN +C----------------------- End of Subroutine DIPREPI --------------------- + END +*DECK DPREPI + SUBROUTINE DPREPI (NEQ, Y, S, YH, SAVR, EWT, RTEM, IA, JA, IC, JC, + 1 WK, IWK, IPPER, RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, IA, JA, IC, JC, IWK, IPPER + DOUBLE PRECISION Y, S, YH, SAVR, EWT, RTEM, WK + DIMENSION NEQ(*), Y(*), S(*), YH(*), SAVR(*), EWT(*), RTEM(*), + 1 IA(*), JA(*), IC(*), JC(*), WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IBR, IER, IPIL, IPIU, IPTT1, IPTT2, J, K, KNEW, KAMAX, + 1 KAMIN, KCMAX, KCMIN, LDIF, LENIGP, LENWK1, LIWK, LJFO, MAXG, + 2 NP1, NZSUT + DOUBLE PRECISION ERWT, FAC, YJ +C----------------------------------------------------------------------- +C This routine performs preprocessing related to the sparse linear +C systems that must be solved. +C The operations that are performed here are: +C * compute sparseness structure of the iteration matrix +C P = A - con*J according to MOSS, +C * compute grouping of column indices (MITER = 2), +C * compute a new ordering of rows and columns of the matrix, +C * reorder JA corresponding to the new ordering, +C * perform a symbolic LU factorization of the matrix, and +C * set pointers for segments of the IWK/WK array. +C In addition to variables described previously, DPREPI uses the +C following for communication: +C YH = the history array. Only the first column, containing the +C current Y vector, is used. Used only if MOSS .ne. 0. +C S = array of length NEQ, identical to YDOTI in the driver, used +C only if MOSS .ne. 0. +C SAVR = a work array of length NEQ, used only if MOSS .ne. 0. +C EWT = array of length NEQ containing (inverted) error weights. +C Used only if MOSS = 2 or 4 or if ISTATE = MOSS = 1. +C RTEM = a work array of length NEQ, identical to ACOR in the driver, +C used only if MOSS = 2 or 4. +C WK = a real work array of length LENWK, identical to WM in +C the driver. +C IWK = integer work array, assumed to occupy the same space as WK. +C LENWK = the length of the work arrays WK and IWK. +C ISTATC = a copy of the driver input argument ISTATE (= 1 on the +C first call, = 3 on a continuation call). +C IYS = flag value from ODRV or CDRV. +C IPPER = output error flag , with the following values and meanings: +C = 0 no error. +C = -1 insufficient storage for internal structure pointers. +C = -2 insufficient storage for JGROUP. +C = -3 insufficient storage for ODRV. +C = -4 other error flag from ODRV (should never occur). +C = -5 insufficient storage for CDRV. +C = -6 other error flag from CDRV. +C = -7 if the RES routine returned error flag IRES = IER = 2. +C = -8 if the RES routine returned error flag IRES = IER = 3. +C----------------------------------------------------------------------- + IBIAN = LRAT*2 + IPIAN = IBIAN + 1 + NP1 = N + 1 + IPJAN = IPIAN + NP1 + IBJAN = IPJAN - 1 + LENWK1 = LENWK - N + LIWK = LENWK*LRAT + IF (MOSS .EQ. 0) LIWK = LIWK - N + IF (MOSS .EQ. 1 .OR. MOSS .EQ. 2) LIWK = LENWK1*LRAT + IF (IPJAN+N-1 .GT. LIWK) GO TO 310 + IF (MOSS .EQ. 0) GO TO 30 +C + IF (ISTATC .EQ. 3) GO TO 20 +C ISTATE = 1 and MOSS .ne. 0. Perturb Y for structure determination. +C Initialize S with random nonzero elements for structure determination. + DO 10 I=1,N + ERWT = 1.0D0/EWT(I) + FAC = 1.0D0 + 1.0D0/(I + 1.0D0) + Y(I) = Y(I) + FAC*SIGN(ERWT,Y(I)) + S(I) = 1.0D0 + FAC*ERWT + 10 CONTINUE + GO TO (70, 100, 150, 200), MOSS +C + 20 CONTINUE +C ISTATE = 3 and MOSS .ne. 0. Load Y from YH(*,1) and S from YH(*,2). -- + DO 25 I = 1,N + Y(I) = YH(I) + 25 S(I) = YH(N+I) + GO TO (70, 100, 150, 200), MOSS +C +C MOSS = 0. Process user's IA,JA and IC,JC. ---------------------------- + 30 KNEW = IPJAN + KAMIN = IA(1) + KCMIN = IC(1) + IWK(IPIAN) = 1 + DO 60 J = 1,N + DO 35 I = 1,N + 35 IWK(LIWK+I) = 0 + KAMAX = IA(J+1) - 1 + IF (KAMIN .GT. KAMAX) GO TO 45 + DO 40 K = KAMIN,KAMAX + I = JA(K) + IWK(LIWK+I) = 1 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 40 CONTINUE + 45 KAMIN = KAMAX + 1 + KCMAX = IC(J+1) - 1 + IF (KCMIN .GT. KCMAX) GO TO 55 + DO 50 K = KCMIN,KCMAX + I = JC(K) + IF (IWK(LIWK+I) .NE. 0) GO TO 50 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 50 CONTINUE + 55 IWK(IPIAN+J) = KNEW + 1 - IPJAN + KCMIN = KCMAX + 1 + 60 CONTINUE + GO TO 240 +C +C MOSS = 1. Compute structure from user-supplied Jacobian routine JAC. - + 70 CONTINUE +C A dummy call to RES allows user to create temporaries for use in JAC. + IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 75 I = 1,N + SAVR(I) = 0.0D0 + 75 WK(LENWK1+I) = 0.0D0 + K = IPJAN + IWK(IPIAN) = 1 + DO 95 J = 1,N + CALL ADDA (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), WK(LENWK1+1)) + CALL JAC (NEQ, TN, Y, S, J, IWK(IPIAN), IWK(IPJAN), SAVR) + DO 90 I = 1,N + LJFO = LENWK1 + I + IF (WK(LJFO) .EQ. 0.0D0) GO TO 80 + WK(LJFO) = 0.0D0 + SAVR(I) = 0.0D0 + GO TO 85 + 80 IF (SAVR(I) .EQ. 0.0D0) GO TO 90 + SAVR(I) = 0.0D0 + 85 IF (K .GT. LIWK) GO TO 310 + IWK(K) = I + K = K+1 + 90 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 95 CONTINUE + GO TO 240 +C +C MOSS = 2. Compute structure from results of N + 1 calls to RES. ------ + 100 DO 105 I = 1,N + 105 WK(LENWK1+I) = 0.0D0 + K = IPJAN + IWK(IPIAN) = 1 + IER = -1 + IF (MITER .EQ. 1) IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 130 J = 1,N + CALL ADDA (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), WK(LENWK1+1)) + YJ = Y(J) + ERWT = 1.0D0/EWT(J) + Y(J) = YJ + SIGN(ERWT,YJ) + CALL RES (NEQ, TN, Y, S, RTEM, IER) + IF (IER .GT. 1) RETURN + Y(J) = YJ + DO 120 I = 1,N + LJFO = LENWK1 + I + IF (WK(LJFO) .EQ. 0.0D0) GO TO 110 + WK(LJFO) = 0.0D0 + GO TO 115 + 110 IF (RTEM(I) .EQ. SAVR(I)) GO TO 120 + 115 IF (K .GT. LIWK) GO TO 310 + IWK(K) = I + K = K + 1 + 120 CONTINUE + IWK(IPIAN+J) = K + 1 - IPJAN + 130 CONTINUE + GO TO 240 +C +C MOSS = 3. Compute structure from the user's IA/JA and JAC routine. --- + 150 CONTINUE +C A dummy call to RES allows user to create temporaries for use in JAC. + IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 155 I = 1,N + 155 SAVR(I) = 0.0D0 + KNEW = IPJAN + KAMIN = IA(1) + IWK(IPIAN) = 1 + DO 190 J = 1,N + CALL JAC (NEQ, TN, Y, S, J, IWK(IPIAN), IWK(IPJAN), SAVR) + KAMAX = IA(J+1) - 1 + IF (KAMIN .GT. KAMAX) GO TO 170 + DO 160 K = KAMIN,KAMAX + I = JA(K) + SAVR(I) = 0.0D0 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 160 CONTINUE + 170 KAMIN = KAMAX + 1 + DO 180 I = 1,N + IF (SAVR(I) .EQ. 0.0D0) GO TO 180 + SAVR(I) = 0.0D0 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 180 CONTINUE + IWK(IPIAN+J) = KNEW + 1 - IPJAN + 190 CONTINUE + GO TO 240 +C +C MOSS = 4. Compute structure from user's IA/JA and N + 1 RES calls. --- + 200 KNEW = IPJAN + KAMIN = IA(1) + IWK(IPIAN) = 1 + IER = -1 + IF (MITER .EQ. 1) IER = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IER) + IF (IER .GT. 1) GO TO 370 + DO 235 J = 1,N + YJ = Y(J) + ERWT = 1.0D0/EWT(J) + Y(J) = YJ + SIGN(ERWT,YJ) + CALL RES (NEQ, TN, Y, S, RTEM, IER) + IF (IER .GT. 1) RETURN + Y(J) = YJ + KAMAX = IA(J+1) - 1 + IF (KAMIN .GT. KAMAX) GO TO 225 + DO 220 K = KAMIN,KAMAX + I = JA(K) + RTEM(I) = SAVR(I) + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 220 CONTINUE + 225 KAMIN = KAMAX + 1 + DO 230 I = 1,N + IF (RTEM(I) .EQ. SAVR(I)) GO TO 230 + IF (KNEW .GT. LIWK) GO TO 310 + IWK(KNEW) = I + KNEW = KNEW + 1 + 230 CONTINUE + IWK(IPIAN+J) = KNEW + 1 - IPJAN + 235 CONTINUE +C + 240 CONTINUE + IF (MOSS .EQ. 0 .OR. ISTATC .EQ. 3) GO TO 250 +C If ISTATE = 0 or 1 and MOSS .ne. 0, restore Y from YH. --------------- + DO 245 I = 1,N + 245 Y(I) = YH(I) + 250 NNZ = IWK(IPIAN+N) - 1 + IPPER = 0 + NGP = 0 + LENIGP = 0 + IPIGP = IPJAN + NNZ + IF (MITER .NE. 2) GO TO 260 +C +C Compute grouping of column indices (MITER = 2). ---------------------- +C + MAXG = NP1 + IPJGP = IPJAN + NNZ + IBJGP = IPJGP - 1 + IPIGP = IPJGP + N + IPTT1 = IPIGP + NP1 + IPTT2 = IPTT1 + N + LREQ = IPTT2 + N - 1 + IF (LREQ .GT. LIWK) GO TO 320 + CALL JGROUP (N, IWK(IPIAN), IWK(IPJAN), MAXG, NGP, IWK(IPIGP), + 1 IWK(IPJGP), IWK(IPTT1), IWK(IPTT2), IER) + IF (IER .NE. 0) GO TO 320 + LENIGP = NGP + 1 +C +C Compute new ordering of rows/columns of Jacobian. -------------------- + 260 IPR = IPIGP + LENIGP + IPC = IPR + IPIC = IPC + N + IPISP = IPIC + N + IPRSP = (IPISP-2)/LRAT + 2 + IESP = LENWK + 1 - IPRSP + IF (IESP .LT. 0) GO TO 330 + IBR = IPR - 1 + DO 270 I = 1,N + 270 IWK(IBR+I) = I + NSP = LIWK + 1 - IPISP + CALL ODRV(N, IWK(IPIAN), IWK(IPJAN), WK, IWK(IPR), IWK(IPIC), NSP, + 1 IWK(IPISP), 1, IYS) + IF (IYS .EQ. 11*N+1) GO TO 340 + IF (IYS .NE. 0) GO TO 330 +C +C Reorder JAN and do symbolic LU factorization of matrix. -------------- + IPA = LENWK + 1 - NNZ + NSP = IPA - IPRSP + LREQ = MAX(12*N/LRAT, 6*N/LRAT+2*N+NNZ) + 3 + LREQ = LREQ + IPRSP - 1 + NNZ + IF (LREQ .GT. LENWK) GO TO 350 + IBA = IPA - 1 + DO 280 I = 1,NNZ + 280 WK(IBA+I) = 0.0D0 + IPISP = LRAT*(IPRSP - 1) + 1 + CALL CDRV(N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),WK(IPA),WK(IPA),NSP,IWK(IPISP),WK(IPRSP),IESP,5,IYS) + LREQ = LENWK - IESP + IF (IYS .EQ. 10*N+1) GO TO 350 + IF (IYS .NE. 0) GO TO 360 + IPIL = IPISP + IPIU = IPIL + 2*N + 1 + NZU = IWK(IPIL+N) - IWK(IPIL) + NZL = IWK(IPIU+N) - IWK(IPIU) + IF (LRAT .GT. 1) GO TO 290 + CALL ADJLR (N, IWK(IPISP), LDIF) + LREQ = LREQ + LDIF + 290 CONTINUE + IF (LRAT .EQ. 2 .AND. NNZ .EQ. N) LREQ = LREQ + 1 + NSP = NSP + LREQ - LENWK + IPA = LREQ + 1 - NNZ + IBA = IPA - 1 + IPPER = 0 + RETURN +C + 310 IPPER = -1 + LREQ = 2 + (2*N + 1)/LRAT + LREQ = MAX(LENWK+1,LREQ) + RETURN +C + 320 IPPER = -2 + LREQ = (LREQ - 1)/LRAT + 1 + RETURN +C + 330 IPPER = -3 + CALL CNTNZU (N, IWK(IPIAN), IWK(IPJAN), NZSUT) + LREQ = LENWK - IESP + (3*N + 4*NZSUT - 1)/LRAT + 1 + RETURN +C + 340 IPPER = -4 + RETURN +C + 350 IPPER = -5 + RETURN +C + 360 IPPER = -6 + LREQ = LENWK + RETURN +C + 370 IPPER = -IER - 5 + LREQ = 2 + (2*N + 1)/LRAT + RETURN +C----------------------- End of Subroutine DPREPI ---------------------- + END +*DECK DAINVGS + SUBROUTINE DAINVGS (NEQ, T, Y, WK, IWK, TEM, YDOT, IER, RES, ADDA) + EXTERNAL RES, ADDA + INTEGER NEQ, IWK, IER + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMUL, J, K, KMIN, KMAX + DOUBLE PRECISION T, Y, WK, TEM, YDOT + DOUBLE PRECISION RLSS + DIMENSION Y(*), WK(*), IWK(*), TEM(*), YDOT(*) + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU +C----------------------------------------------------------------------- +C This subroutine computes the initial value of the vector YDOT +C satisfying +C A * YDOT = g(t,y) +C when A is nonsingular. It is called by DLSODIS for initialization +C only, when ISTATE = 0. The matrix A is subjected to LU +C decomposition in CDRV. Then the system A*YDOT = g(t,y) is solved +C in CDRV. +C In addition to variables described previously, communication +C with DAINVGS uses the following: +C Y = array of initial values. +C WK = real work space for matrices. On output it contains A and +C its LU decomposition. The LU decomposition is not entirely +C sparse unless the structure of the matrix A is identical to +C the structure of the Jacobian matrix dr/dy. +C Storage of matrix elements starts at WK(3). +C WK(1) = SQRT(UROUND), not used here. +C IWK = integer work space for matrix-related data, assumed to +C be equivalenced to WK. In addition, WK(IPRSP) and WK(IPISP) +C are assumed to have identical locations. +C TEM = vector of work space of length N (ACOR in DSTODI). +C YDOT = output vector containing the initial dy/dt. YDOT(i) contains +C dy(i)/dt when the matrix A is non-singular. +C IER = output error flag with the following values and meanings: +C = 0 if DAINVGS was successful. +C = 1 if the A-matrix was found to be singular. +C = 2 if RES returned an error flag IRES = IER = 2. +C = 3 if RES returned an error flag IRES = IER = 3. +C = 4 if insufficient storage for CDRV (should not occur here). +C = 5 if other error found in CDRV (should not occur here). +C----------------------------------------------------------------------- +C + DO 10 I = 1,NNZ + 10 WK(IBA+I) = 0.0D0 +C + IER = 1 + CALL RES (NEQ, T, Y, WK(IPA), YDOT, IER) + IF (IER .GT. 1) RETURN +C + KMIN = IWK(IPIAN) + DO 30 J = 1,NEQ + KMAX = IWK(IPIAN+J) - 1 + DO 15 K = KMIN,KMAX + I = IWK(IBJAN+K) + 15 TEM(I) = 0.0D0 + CALL ADDA (NEQ, T, Y, J, IWK(IPIAN), IWK(IPJAN), TEM) + DO 20 K = KMIN,KMAX + I = IWK(IBJAN+K) + 20 WK(IBA+K) = TEM(I) + KMIN = KMAX + 1 + 30 CONTINUE + NLU = NLU + 1 + IER = 0 + DO 40 I = 1,NEQ + 40 TEM(I) = 0.0D0 +C +C Numerical factorization of matrix A. --------------------------------- + CALL CDRV (NEQ,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),TEM,TEM,NSP,IWK(IPISP),WK(IPRSP),IESP,2,IYS) + IF (IYS .EQ. 0) GO TO 50 + IMUL = (IYS - 1)/NEQ + IER = 5 + IF (IMUL .EQ. 8) IER = 1 + IF (IMUL .EQ. 10) IER = 4 + RETURN +C +C Solution of the linear system. --------------------------------------- + 50 CALL CDRV (NEQ,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),YDOT,YDOT,NSP,IWK(IPISP),WK(IPRSP),IESP,4,IYS) + IF (IYS .NE. 0) IER = 5 + RETURN +C----------------------- End of Subroutine DAINVGS --------------------- + END +*DECK DPRJIS + SUBROUTINE DPRJIS (NEQ, Y, YH, NYH, EWT, RTEM, SAVR, S, WK, IWK, + 1 RES, JAC, ADDA) + EXTERNAL RES, JAC, ADDA + INTEGER NEQ, NYH, IWK + DOUBLE PRECISION Y, YH, EWT, RTEM, SAVR, S, WK + DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), RTEM(*), + 1 S(*), SAVR(*), WK(*), IWK(*) + INTEGER IOWND, IOWNS, + 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 3 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + DOUBLE PRECISION ROWNS, + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND + DOUBLE PRECISION RLSS + COMMON /DLS001/ ROWNS(209), + 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, + 2 IOWND(6), IOWNS(6), + 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, + 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, + 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU + COMMON /DLSS01/ RLSS(6), + 1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP, + 2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA, + 3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ, + 4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU + INTEGER I, IMUL, IRES, J, JJ, JMAX, JMIN, K, KMAX, KMIN, NG + DOUBLE PRECISION CON, FAC, HL0, R, SRUR +C----------------------------------------------------------------------- +C DPRJIS is called to compute and process the matrix +C P = A - H*EL(1)*J, where J is an approximation to the Jacobian dr/dy, +C where r = g(t,y) - A(t,y)*s. J is computed by columns, either by +C the user-supplied routine JAC if MITER = 1, or by finite differencing +C if MITER = 2. J is stored in WK, rescaled, and ADDA is called to +C generate P. The matrix P is subjected to LU decomposition in CDRV. +C P and its LU decomposition are stored separately in WK. +C +C In addition to variables described previously, communication +C with DPRJIS uses the following: +C Y = array containing predicted values on entry. +C RTEM = work array of length N (ACOR in DSTODI). +C SAVR = array containing r evaluated at predicted y. On output it +C contains the residual evaluated at current values of t and y. +C S = array containing predicted values of dy/dt (SAVF in DSTODI). +C WK = real work space for matrices. On output it contains P and +C its sparse LU decomposition. Storage of matrix elements +C starts at WK(3). +C WK also contains the following matrix-related data. +C WK(1) = SQRT(UROUND), used in numerical Jacobian increments. +C IWK = integer work space for matrix-related data, assumed to be +C equivalenced to WK. In addition, WK(IPRSP) and IWK(IPISP) +C are assumed to have identical locations. +C EL0 = EL(1) (input). +C IERPJ = output error flag (in COMMON). +C = 0 if no error. +C = 1 if zero pivot found in CDRV. +C = IRES (= 2 or 3) if RES returned IRES = 2 or 3. +C = -1 if insufficient storage for CDRV (should not occur). +C = -2 if other error found in CDRV (should not occur here). +C JCUR = output flag = 1 to indicate that the Jacobian matrix +C (or approximation) is now current. +C This routine also uses other variables in Common. +C----------------------------------------------------------------------- + HL0 = H*EL0 + CON = -HL0 + JCUR = 1 + NJE = NJE + 1 + GO TO (100, 200), MITER +C +C If MITER = 1, call RES, then call JAC and ADDA for each column. ------ + 100 IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + KMIN = IWK(IPIAN) + DO 130 J = 1,N + KMAX = IWK(IPIAN+J)-1 + DO 110 I = 1,N + 110 RTEM(I) = 0.0D0 + CALL JAC (NEQ, TN, Y, S, J, IWK(IPIAN), IWK(IPJAN), RTEM) + DO 120 I = 1,N + 120 RTEM(I) = RTEM(I)*CON + CALL ADDA (NEQ, TN, Y, J, IWK(IPIAN), IWK(IPJAN), RTEM) + DO 125 K = KMIN,KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = RTEM(I) + 125 CONTINUE + KMIN = KMAX + 1 + 130 CONTINUE + GO TO 290 +C +C If MITER = 2, make NGP + 1 calls to RES to approximate J and P. ------ + 200 CONTINUE + IRES = -1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + SRUR = WK(1) + JMIN = IWK(IPIGP) + DO 240 NG = 1,NGP + JMAX = IWK(IPIGP+NG) - 1 + DO 210 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + R = MAX(SRUR*ABS(Y(JJ)),0.01D0/EWT(JJ)) + 210 Y(JJ) = Y(JJ) + R + CALL RES (NEQ,TN,Y,S,RTEM,IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 + DO 230 J = JMIN,JMAX + JJ = IWK(IBJGP+J) + Y(JJ) = YH(JJ,1) + R = MAX(SRUR*ABS(Y(JJ)),0.01D0/EWT(JJ)) + FAC = -HL0/R + KMIN = IWK(IBIAN+JJ) + KMAX = IWK(IBIAN+JJ+1) - 1 + DO 220 K = KMIN,KMAX + I = IWK(IBJAN+K) + RTEM(I) = (RTEM(I) - SAVR(I))*FAC + 220 CONTINUE + CALL ADDA (NEQ, TN, Y, JJ, IWK(IPIAN), IWK(IPJAN), RTEM) + DO 225 K = KMIN,KMAX + I = IWK(IBJAN+K) + WK(IBA+K) = RTEM(I) + 225 CONTINUE + 230 CONTINUE + JMIN = JMAX + 1 + 240 CONTINUE + IRES = 1 + CALL RES (NEQ, TN, Y, S, SAVR, IRES) + NFE = NFE + 1 + IF (IRES .GT. 1) GO TO 600 +C +C Do numerical factorization of P matrix. ------------------------------ + 290 NLU = NLU + 1 + IERPJ = 0 + DO 295 I = 1,N + 295 RTEM(I) = 0.0D0 + CALL CDRV (N,IWK(IPR),IWK(IPC),IWK(IPIC),IWK(IPIAN),IWK(IPJAN), + 1 WK(IPA),RTEM,RTEM,NSP,IWK(IPISP),WK(IPRSP),IESP,2,IYS) + IF (IYS .EQ. 0) RETURN + IMUL = (IYS - 1)/N + IERPJ = -2 + IF (IMUL .EQ. 8) IERPJ = 1 + IF (IMUL .EQ. 10) IERPJ = -1 + RETURN +C Error return for IRES = 2 or IRES = 3 return from RES. --------------- + 600 IERPJ = IRES + RETURN +C----------------------- End of Subroutine DPRJIS ---------------------- + END + diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub2.f b/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub2.f new file mode 100644 index 000000000..c4b4ff0d0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/odepack_sub2.f @@ -0,0 +1,1441 @@ +*DECK DGEFA + SUBROUTINE DGEFA (A, LDA, N, IPVT, INFO) +C***BEGIN PROLOGUE DGEFA +C***PURPOSE Factor a matrix using Gaussian elimination. +C***CATEGORY D2A1 +C***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C) +C***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK, +C MATRIX FACTORIZATION +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGEFA factors a double precision matrix by Gaussian elimination. +C +C DGEFA is usually called by DGECO, but it can be called +C directly with a saving in time if RCOND is not needed. +C (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) . +C +C On Entry +C +C A DOUBLE PRECISION(LDA, N) +C the matrix to be factored. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C On Return +C +C A an upper triangular matrix and the multipliers +C which were used to obtain it. +C The factorization can be written A = L*U where +C L is a product of permutation and unit lower +C triangular matrices and U is upper triangular. +C +C IPVT INTEGER(N) +C an integer vector of pivot indices. +C +C INFO INTEGER +C = 0 normal value. +C = K if U(K,K) .EQ. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DGESL or DGEDI will divide by zero +C if called. Use RCOND in DGECO for a reliable +C indication of singularity. +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DSCAL, IDAMAX +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGEFA + INTEGER LDA,N,IPVT(*),INFO + DOUBLE PRECISION A(LDA,*) +C + DOUBLE PRECISION T + INTEGER IDAMAX,J,K,KP1,L,NM1 +C +C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING +C +C***FIRST EXECUTABLE STATEMENT DGEFA + INFO = 0 + NM1 = N - 1 + IF (NM1 .LT. 1) GO TO 70 + DO 60 K = 1, NM1 + KP1 = K + 1 +C +C FIND L = PIVOT INDEX +C + L = IDAMAX(N-K+1,A(K,K),1) + K - 1 + IPVT(K) = L +C +C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED +C + IF (A(L,K) .EQ. 0.0D0) GO TO 40 +C +C INTERCHANGE IF NECESSARY +C + IF (L .EQ. K) GO TO 10 + T = A(L,K) + A(L,K) = A(K,K) + A(K,K) = T + 10 CONTINUE +C +C COMPUTE MULTIPLIERS +C + T = -1.0D0/A(K,K) + CALL DSCAL(N-K,T,A(K+1,K),1) +C +C ROW ELIMINATION WITH COLUMN INDEXING +C + DO 30 J = KP1, N + T = A(L,J) + IF (L .EQ. K) GO TO 20 + A(L,J) = A(K,J) + A(K,J) = T + 20 CONTINUE + CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1) + 30 CONTINUE + GO TO 50 + 40 CONTINUE + INFO = K + 50 CONTINUE + 60 CONTINUE + 70 CONTINUE + IPVT(N) = N + IF (A(N,N) .EQ. 0.0D0) INFO = N + RETURN + END +*DECK DGESL + SUBROUTINE DGESL (A, LDA, N, IPVT, B, JOB) +C***BEGIN PROLOGUE DGESL +C***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the +C factors computed by DGECO or DGEFA. +C***CATEGORY D2A1 +C***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C) +C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGESL solves the double precision system +C A * X = B or TRANS(A) * X = B +C using the factors computed by DGECO or DGEFA. +C +C On Entry +C +C A DOUBLE PRECISION(LDA, N) +C the output from DGECO or DGEFA. +C +C LDA INTEGER +C the leading dimension of the array A . +C +C N INTEGER +C the order of the matrix A . +C +C IPVT INTEGER(N) +C the pivot vector from DGECO or DGEFA. +C +C B DOUBLE PRECISION(N) +C the right hand side vector. +C +C JOB INTEGER +C = 0 to solve A*X = B , +C = nonzero to solve TRANS(A)*X = B where +C TRANS(A) is the transpose. +C +C On Return +C +C B the solution vector X . +C +C Error Condition +C +C A division by zero will occur if the input factor contains a +C zero on the diagonal. Technically this indicates singularity +C but it is often caused by improper arguments or improper +C setting of LDA . It will not occur if the subroutines are +C called correctly and if DGECO has set RCOND .GT. 0.0 +C or DGEFA has set INFO .EQ. 0 . +C +C To compute INVERSE(A) * C where C is a matrix +C with P columns +C CALL DGECO(A,LDA,N,IPVT,RCOND,Z) +C IF (RCOND is too small) GO TO ... +C DO 10 J = 1, P +C CALL DGESL(A,LDA,N,IPVT,C(1,J),0) +C 10 CONTINUE +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DDOT +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGESL + INTEGER LDA,N,IPVT(*),JOB + DOUBLE PRECISION A(LDA,*),B(*) +C + DOUBLE PRECISION DDOT,T + INTEGER K,KB,L,NM1 +C***FIRST EXECUTABLE STATEMENT DGESL + NM1 = N - 1 + IF (JOB .NE. 0) GO TO 50 +C +C JOB = 0 , SOLVE A * X = B +C FIRST SOLVE L*Y = B +C + IF (NM1 .LT. 1) GO TO 30 + DO 20 K = 1, NM1 + L = IPVT(K) + T = B(L) + IF (L .EQ. K) GO TO 10 + B(L) = B(K) + B(K) = T + 10 CONTINUE + CALL DAXPY(N-K,T,A(K+1,K),1,B(K+1),1) + 20 CONTINUE + 30 CONTINUE +C +C NOW SOLVE U*X = Y +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/A(K,K) + T = -B(K) + CALL DAXPY(K-1,T,A(1,K),1,B(1),1) + 40 CONTINUE + GO TO 100 + 50 CONTINUE +C +C JOB = NONZERO, SOLVE TRANS(A) * X = B +C FIRST SOLVE TRANS(U)*Y = B +C + DO 60 K = 1, N + T = DDOT(K-1,A(1,K),1,B(1),1) + B(K) = (B(K) - T)/A(K,K) + 60 CONTINUE +C +C NOW SOLVE TRANS(L)*X = Y +C + IF (NM1 .LT. 1) GO TO 90 + DO 80 KB = 1, NM1 + K = N - KB + B(K) = B(K) + DDOT(N-K,A(K+1,K),1,B(K+1),1) + L = IPVT(K) + IF (L .EQ. K) GO TO 70 + T = B(L) + B(L) = B(K) + B(K) = T + 70 CONTINUE + 80 CONTINUE + 90 CONTINUE + 100 CONTINUE + RETURN + END +*DECK DGBFA + SUBROUTINE DGBFA (ABD, LDA, N, ML, MU, IPVT, INFO) +C***BEGIN PROLOGUE DGBFA +C***PURPOSE Factor a band matrix using Gaussian elimination. +C***CATEGORY D2A2 +C***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C) +C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGBFA factors a double precision band matrix by elimination. +C +C DGBFA is usually called by DGBCO, but it can be called +C directly with a saving in time if RCOND is not needed. +C +C On Entry +C +C ABD DOUBLE PRECISION(LDA, N) +C contains the matrix in band storage. The columns +C of the matrix are stored in the columns of ABD and +C the diagonals of the matrix are stored in rows +C ML+1 through 2*ML+MU+1 of ABD . +C See the comments below for details. +C +C LDA INTEGER +C the leading dimension of the array ABD . +C LDA must be .GE. 2*ML + MU + 1 . +C +C N INTEGER +C the order of the original matrix. +C +C ML INTEGER +C number of diagonals below the main diagonal. +C 0 .LE. ML .LT. N . +C +C MU INTEGER +C number of diagonals above the main diagonal. +C 0 .LE. MU .LT. N . +C More efficient if ML .LE. MU . +C On Return +C +C ABD an upper triangular matrix in band storage and +C the multipliers which were used to obtain it. +C The factorization can be written A = L*U where +C L is a product of permutation and unit lower +C triangular matrices and U is upper triangular. +C +C IPVT INTEGER(N) +C an integer vector of pivot indices. +C +C INFO INTEGER +C = 0 normal value. +C = K if U(K,K) .EQ. 0.0 . This is not an error +C condition for this subroutine, but it does +C indicate that DGBSL will divide by zero if +C called. Use RCOND in DGBCO for a reliable +C indication of singularity. +C +C Band Storage +C +C If A is a band matrix, the following program segment +C will set up the input. +C +C ML = (band width below the diagonal) +C MU = (band width above the diagonal) +C M = ML + MU + 1 +C DO 20 J = 1, N +C I1 = MAX(1, J-MU) +C I2 = MIN(N, J+ML) +C DO 10 I = I1, I2 +C K = I - J + M +C ABD(K,J) = A(I,J) +C 10 CONTINUE +C 20 CONTINUE +C +C This uses rows ML+1 through 2*ML+MU+1 of ABD . +C In addition, the first ML rows in ABD are used for +C elements generated during the triangularization. +C The total number of rows needed in ABD is 2*ML+MU+1 . +C The ML+MU by ML+MU upper left triangle and the +C ML by ML lower right triangle are not referenced. +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DSCAL, IDAMAX +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGBFA + INTEGER LDA,N,ML,MU,IPVT(*),INFO + DOUBLE PRECISION ABD(LDA,*) +C + DOUBLE PRECISION T + INTEGER I,IDAMAX,I0,J,JU,JZ,J0,J1,K,KP1,L,LM,M,MM,NM1 +C +C***FIRST EXECUTABLE STATEMENT DGBFA + M = ML + MU + 1 + INFO = 0 +C +C ZERO INITIAL FILL-IN COLUMNS +C + J0 = MU + 2 + J1 = MIN(N,M) - 1 + IF (J1 .LT. J0) GO TO 30 + DO 20 JZ = J0, J1 + I0 = M + 1 - JZ + DO 10 I = I0, ML + ABD(I,JZ) = 0.0D0 + 10 CONTINUE + 20 CONTINUE + 30 CONTINUE + JZ = J1 + JU = 0 +C +C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING +C + NM1 = N - 1 + IF (NM1 .LT. 1) GO TO 130 + DO 120 K = 1, NM1 + KP1 = K + 1 +C +C ZERO NEXT FILL-IN COLUMN +C + JZ = JZ + 1 + IF (JZ .GT. N) GO TO 50 + IF (ML .LT. 1) GO TO 50 + DO 40 I = 1, ML + ABD(I,JZ) = 0.0D0 + 40 CONTINUE + 50 CONTINUE +C +C FIND L = PIVOT INDEX +C + LM = MIN(ML,N-K) + L = IDAMAX(LM+1,ABD(M,K),1) + M - 1 + IPVT(K) = L + K - M +C +C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED +C + IF (ABD(L,K) .EQ. 0.0D0) GO TO 100 +C +C INTERCHANGE IF NECESSARY +C + IF (L .EQ. M) GO TO 60 + T = ABD(L,K) + ABD(L,K) = ABD(M,K) + ABD(M,K) = T + 60 CONTINUE +C +C COMPUTE MULTIPLIERS +C + T = -1.0D0/ABD(M,K) + CALL DSCAL(LM,T,ABD(M+1,K),1) +C +C ROW ELIMINATION WITH COLUMN INDEXING +C + JU = MIN(MAX(JU,MU+IPVT(K)),N) + MM = M + IF (JU .LT. KP1) GO TO 90 + DO 80 J = KP1, JU + L = L - 1 + MM = MM - 1 + T = ABD(L,J) + IF (L .EQ. MM) GO TO 70 + ABD(L,J) = ABD(MM,J) + ABD(MM,J) = T + 70 CONTINUE + CALL DAXPY(LM,T,ABD(M+1,K),1,ABD(MM+1,J),1) + 80 CONTINUE + 90 CONTINUE + GO TO 110 + 100 CONTINUE + INFO = K + 110 CONTINUE + 120 CONTINUE + 130 CONTINUE + IPVT(N) = N + IF (ABD(M,N) .EQ. 0.0D0) INFO = N + RETURN + END +*DECK DGBSL + SUBROUTINE DGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB) +C***BEGIN PROLOGUE DGBSL +C***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using +C the factors computed by DGBCO or DGBFA. +C***CATEGORY D2A2 +C***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) +C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE +C***AUTHOR Moler, C. B., (U. of New Mexico) +C***DESCRIPTION +C +C DGBSL solves the double precision band system +C A * X = B or TRANS(A) * X = B +C using the factors computed by DGBCO or DGBFA. +C +C On Entry +C +C ABD DOUBLE PRECISION(LDA, N) +C the output from DGBCO or DGBFA. +C +C LDA INTEGER +C the leading dimension of the array ABD . +C +C N INTEGER +C the order of the original matrix. +C +C ML INTEGER +C number of diagonals below the main diagonal. +C +C MU INTEGER +C number of diagonals above the main diagonal. +C +C IPVT INTEGER(N) +C the pivot vector from DGBCO or DGBFA. +C +C B DOUBLE PRECISION(N) +C the right hand side vector. +C +C JOB INTEGER +C = 0 to solve A*X = B , +C = nonzero to solve TRANS(A)*X = B , where +C TRANS(A) is the transpose. +C +C On Return +C +C B the solution vector X . +C +C Error Condition +C +C A division by zero will occur if the input factor contains a +C zero on the diagonal. Technically this indicates singularity +C but it is often caused by improper arguments or improper +C setting of LDA . It will not occur if the subroutines are +C called correctly and if DGBCO has set RCOND .GT. 0.0 +C or DGBFA has set INFO .EQ. 0 . +C +C To compute INVERSE(A) * C where C is a matrix +C with P columns +C CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) +C IF (RCOND is too small) GO TO ... +C DO 10 J = 1, P +C CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) +C 10 CONTINUE +C +C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. +C Stewart, LINPACK Users' Guide, SIAM, 1979. +C***ROUTINES CALLED DAXPY, DDOT +C***REVISION HISTORY (YYMMDD) +C 780814 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900326 Removed duplicate information from DESCRIPTION section. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DGBSL + INTEGER LDA,N,ML,MU,IPVT(*),JOB + DOUBLE PRECISION ABD(LDA,*),B(*) +C + DOUBLE PRECISION DDOT,T + INTEGER K,KB,L,LA,LB,LM,M,NM1 +C***FIRST EXECUTABLE STATEMENT DGBSL + M = MU + ML + 1 + NM1 = N - 1 + IF (JOB .NE. 0) GO TO 50 +C +C JOB = 0 , SOLVE A * X = B +C FIRST SOLVE L*Y = B +C + IF (ML .EQ. 0) GO TO 30 + IF (NM1 .LT. 1) GO TO 30 + DO 20 K = 1, NM1 + LM = MIN(ML,N-K) + L = IPVT(K) + T = B(L) + IF (L .EQ. K) GO TO 10 + B(L) = B(K) + B(K) = T + 10 CONTINUE + CALL DAXPY(LM,T,ABD(M+1,K),1,B(K+1),1) + 20 CONTINUE + 30 CONTINUE +C +C NOW SOLVE U*X = Y +C + DO 40 KB = 1, N + K = N + 1 - KB + B(K) = B(K)/ABD(M,K) + LM = MIN(K,M) - 1 + LA = M - LM + LB = K - LM + T = -B(K) + CALL DAXPY(LM,T,ABD(LA,K),1,B(LB),1) + 40 CONTINUE + GO TO 100 + 50 CONTINUE +C +C JOB = NONZERO, SOLVE TRANS(A) * X = B +C FIRST SOLVE TRANS(U)*Y = B +C + DO 60 K = 1, N + LM = MIN(K,M) - 1 + LA = M - LM + LB = K - LM + T = DDOT(LM,ABD(LA,K),1,B(LB),1) + B(K) = (B(K) - T)/ABD(M,K) + 60 CONTINUE +C +C NOW SOLVE TRANS(L)*X = Y +C + IF (ML .EQ. 0) GO TO 90 + IF (NM1 .LT. 1) GO TO 90 + DO 80 KB = 1, NM1 + K = N - KB + LM = MIN(ML,N-K) + B(K) = B(K) + DDOT(LM,ABD(M+1,K),1,B(K+1),1) + L = IPVT(K) + IF (L .EQ. K) GO TO 70 + T = B(L) + B(L) = B(K) + B(K) = T + 70 CONTINUE + 80 CONTINUE + 90 CONTINUE + 100 CONTINUE + RETURN + END +*DECK DAXPY + SUBROUTINE DAXPY (N, DA, DX, INCX, DY, INCY) +C***BEGIN PROLOGUE DAXPY +C***PURPOSE Compute a constant times a vector plus a vector. +C***CATEGORY D1A7 +C***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) +C***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DA double precision scalar multiplier +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C DY double precision vector with N elements +C INCY storage spacing between elements of DY +C +C --Output-- +C DY double precision result (unchanged if N .LE. 0) +C +C Overwrite double precision DY with double precision DA*DX + DY. +C For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) + +C DY(LY+I*INCY), +C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is +C defined in a similar way using INCY. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920310 Corrected definition of LX in DESCRIPTION. (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DAXPY + DOUBLE PRECISION DX(*), DY(*), DA +C***FIRST EXECUTABLE STATEMENT DAXPY + IF (N.LE.0 .OR. DA.EQ.0.0D0) RETURN + IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60 +C +C Code for unequal or nonpositive increments. +C + 5 IX = 1 + IY = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + IF (INCY .LT. 0) IY = (-N+1)*INCY + 1 + DO 10 I = 1,N + DY(IY) = DY(IY) + DA*DX(IX) + IX = IX + INCX + IY = IY + INCY + 10 CONTINUE + RETURN +C +C Code for both increments equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 4. +C + 20 M = MOD(N,4) + IF (M .EQ. 0) GO TO 40 + DO 30 I = 1,M + DY(I) = DY(I) + DA*DX(I) + 30 CONTINUE + IF (N .LT. 4) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,4 + DY(I) = DY(I) + DA*DX(I) + DY(I+1) = DY(I+1) + DA*DX(I+1) + DY(I+2) = DY(I+2) + DA*DX(I+2) + DY(I+3) = DY(I+3) + DA*DX(I+3) + 50 CONTINUE + RETURN +C +C Code for equal, positive, non-unit increments. +C + 60 NS = N*INCX + DO 70 I = 1,NS,INCX + DY(I) = DA*DX(I) + DY(I) + 70 CONTINUE + RETURN + END +*DECK DCOPY + SUBROUTINE DCOPY (N, DX, INCX, DY, INCY) +C***BEGIN PROLOGUE DCOPY +C***PURPOSE Copy a vector. +C***CATEGORY D1A5 +C***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I) +C***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C DY double precision vector with N elements +C INCY storage spacing between elements of DY +C +C --Output-- +C DY copy of vector DX (unchanged if N .LE. 0) +C +C Copy double precision DX to double precision DY. +C For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY), +C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is +C defined in a similar way using INCY. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920310 Corrected definition of LX in DESCRIPTION. (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DCOPY + DOUBLE PRECISION DX(*), DY(*) +C***FIRST EXECUTABLE STATEMENT DCOPY + IF (N .LE. 0) RETURN + IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60 +C +C Code for unequal or nonpositive increments. +C + 5 IX = 1 + IY = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + IF (INCY .LT. 0) IY = (-N+1)*INCY + 1 + DO 10 I = 1,N + DY(IY) = DX(IX) + IX = IX + INCX + IY = IY + INCY + 10 CONTINUE + RETURN +C +C Code for both increments equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 7. +C + 20 M = MOD(N,7) + IF (M .EQ. 0) GO TO 40 + DO 30 I = 1,M + DY(I) = DX(I) + 30 CONTINUE + IF (N .LT. 7) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,7 + DY(I) = DX(I) + DY(I+1) = DX(I+1) + DY(I+2) = DX(I+2) + DY(I+3) = DX(I+3) + DY(I+4) = DX(I+4) + DY(I+5) = DX(I+5) + DY(I+6) = DX(I+6) + 50 CONTINUE + RETURN +C +C Code for equal, positive, non-unit increments. +C + 60 NS = N*INCX + DO 70 I = 1,NS,INCX + DY(I) = DX(I) + 70 CONTINUE + RETURN + END +*DECK DDOT + DOUBLE PRECISION FUNCTION DDOT (N, DX, INCX, DY, INCY) +C***BEGIN PROLOGUE DDOT +C***PURPOSE Compute the inner product of two vectors. +C***CATEGORY D1A4 +C***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) +C***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C DY double precision vector with N elements +C INCY storage spacing between elements of DY +C +C --Output-- +C DDOT double precision dot product (zero if N .LE. 0) +C +C Returns the dot product of double precision DX and DY. +C DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY), +C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is +C defined in a similar way using INCY. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920310 Corrected definition of LX in DESCRIPTION. (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DDOT + DOUBLE PRECISION DX(*), DY(*) +C***FIRST EXECUTABLE STATEMENT DDOT + DDOT = 0.0D0 + IF (N .LE. 0) RETURN + IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60 +C +C Code for unequal or nonpositive increments. +C + 5 IX = 1 + IY = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + IF (INCY .LT. 0) IY = (-N+1)*INCY + 1 + DO 10 I = 1,N + DDOT = DDOT + DX(IX)*DY(IY) + IX = IX + INCX + IY = IY + INCY + 10 CONTINUE + RETURN +C +C Code for both increments equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 5. +C + 20 M = MOD(N,5) + IF (M .EQ. 0) GO TO 40 + DO 30 I = 1,M + DDOT = DDOT + DX(I)*DY(I) + 30 CONTINUE + IF (N .LT. 5) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,5 + DDOT = DDOT + DX(I)*DY(I) + DX(I+1)*DY(I+1) + DX(I+2)*DY(I+2) + + 1 DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4) + 50 CONTINUE + RETURN +C +C Code for equal, positive, non-unit increments. +C + 60 NS = N*INCX + DO 70 I = 1,NS,INCX + DDOT = DDOT + DX(I)*DY(I) + 70 CONTINUE + RETURN + END +*DECK DNRM2 + DOUBLE PRECISION FUNCTION DNRM2 (N, DX, INCX) +C***BEGIN PROLOGUE DNRM2 +C***PURPOSE Compute the Euclidean length (L2 norm) of a vector. +C***CATEGORY D1A3B +C***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) +C***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, +C LINEAR ALGEBRA, UNITARY, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C +C --Output-- +C DNRM2 double precision result (zero if N .LE. 0) +C +C Euclidean norm of the N-vector stored in DX with storage +C increment INCX. +C If N .LE. 0, return with result = 0. +C If N .GE. 1, then INCX must be .GE. 1 +C +C Four phase method using two built-in constants that are +C hopefully applicable to all machines. +C CUTLO = maximum of SQRT(U/EPS) over all known machines. +C CUTHI = minimum of SQRT(V) over all known machines. +C where +C EPS = smallest no. such that EPS + 1. .GT. 1. +C U = smallest positive no. (underflow limit) +C V = largest no. (overflow limit) +C +C Brief outline of algorithm. +C +C Phase 1 scans zero components. +C move to phase 2 when a component is nonzero and .LE. CUTLO +C move to phase 3 when a component is .GT. CUTLO +C move to phase 4 when a component is .GE. CUTHI/M +C where M = N for X() real and M = 2*N for complex. +C +C Values for CUTLO and CUTHI. +C From the environmental parameters listed in the IMSL converter +C document the limiting values are as follows: +C CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are +C Univac and DEC at 2**(-103) +C Thus CUTLO = 2**(-51) = 4.44089E-16 +C CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC. +C Thus CUTHI = 2**(63.5) = 1.30438E19 +C CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC. +C Thus CUTLO = 2**(-33.5) = 8.23181D-11 +C CUTHI, D.P. same as S.P. CUTHI = 1.30438D19 +C DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ +C DATA CUTLO, CUTHI /4.441E-16, 1.304E19/ +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DNRM2 + INTEGER NEXT + DOUBLE PRECISION DX(*), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, + + ONE + SAVE CUTLO, CUTHI, ZERO, ONE + DATA ZERO, ONE /0.0D0, 1.0D0/ +C + DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ +C***FIRST EXECUTABLE STATEMENT DNRM2 + IF (N .GT. 0) GO TO 10 + DNRM2 = ZERO + GO TO 300 +C + 10 ASSIGN 30 TO NEXT + SUM = ZERO + NN = N * INCX +C +C BEGIN MAIN LOOP +C + I = 1 + 20 GO TO NEXT,(30, 50, 70, 110) + 30 IF (ABS(DX(I)) .GT. CUTLO) GO TO 85 + ASSIGN 50 TO NEXT + XMAX = ZERO +C +C PHASE 1. SUM IS ZERO +C + 50 IF (DX(I) .EQ. ZERO) GO TO 200 + IF (ABS(DX(I)) .GT. CUTLO) GO TO 85 +C +C PREPARE FOR PHASE 2. +C + ASSIGN 70 TO NEXT + GO TO 105 +C +C PREPARE FOR PHASE 4. +C + 100 I = J + ASSIGN 110 TO NEXT + SUM = (SUM / DX(I)) / DX(I) + 105 XMAX = ABS(DX(I)) + GO TO 115 +C +C PHASE 2. SUM IS SMALL. +C SCALE TO AVOID DESTRUCTIVE UNDERFLOW. +C + 70 IF (ABS(DX(I)) .GT. CUTLO) GO TO 75 +C +C COMMON CODE FOR PHASES 2 AND 4. +C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW. +C + 110 IF (ABS(DX(I)) .LE. XMAX) GO TO 115 + SUM = ONE + SUM * (XMAX / DX(I))**2 + XMAX = ABS(DX(I)) + GO TO 200 +C + 115 SUM = SUM + (DX(I)/XMAX)**2 + GO TO 200 +C +C PREPARE FOR PHASE 3. +C + 75 SUM = (SUM * XMAX) * XMAX +C +C FOR REAL OR D.P. SET HITEST = CUTHI/N +C FOR COMPLEX SET HITEST = CUTHI/(2*N) +C + 85 HITEST = CUTHI / N +C +C PHASE 3. SUM IS MID-RANGE. NO SCALING. +C + DO 95 J = I,NN,INCX + IF (ABS(DX(J)) .GE. HITEST) GO TO 100 + 95 SUM = SUM + DX(J)**2 + DNRM2 = SQRT(SUM) + GO TO 300 +C + 200 CONTINUE + I = I + INCX + IF (I .LE. NN) GO TO 20 +C +C END OF MAIN LOOP. +C +C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. +C + DNRM2 = XMAX * SQRT(SUM) + 300 CONTINUE + RETURN + END +*DECK DSCAL + SUBROUTINE DSCAL (N, DA, DX, INCX) +C***BEGIN PROLOGUE DSCAL +C***PURPOSE Multiply a vector by a constant. +C***CATEGORY D1A6 +C***TYPE DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) +C***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DA double precision scale factor +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C +C --Output-- +C DX double precision result (unchanged if N.LE.0) +C +C Replace double precision DX by double precision DA*DX. +C For I = 0 to N-1, replace DX(IX+I*INCX) with DA * DX(IX+I*INCX), +C where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890831 Modified array declarations. (WRB) +C 890831 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900821 Modified to correct problem with a negative increment. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE DSCAL + DOUBLE PRECISION DA, DX(*) + INTEGER I, INCX, IX, M, MP1, N +C***FIRST EXECUTABLE STATEMENT DSCAL + IF (N .LE. 0) RETURN + IF (INCX .EQ. 1) GOTO 20 +C +C Code for increment not equal to 1. +C + IX = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + DO 10 I = 1,N + DX(IX) = DA*DX(IX) + IX = IX + INCX + 10 CONTINUE + RETURN +C +C Code for increment equal to 1. +C +C Clean-up loop so remaining vector length is a multiple of 5. +C + 20 M = MOD(N,5) + IF (M .EQ. 0) GOTO 40 + DO 30 I = 1,M + DX(I) = DA*DX(I) + 30 CONTINUE + IF (N .LT. 5) RETURN + 40 MP1 = M + 1 + DO 50 I = MP1,N,5 + DX(I) = DA*DX(I) + DX(I+1) = DA*DX(I+1) + DX(I+2) = DA*DX(I+2) + DX(I+3) = DA*DX(I+3) + DX(I+4) = DA*DX(I+4) + 50 CONTINUE + RETURN + END +*DECK IDAMAX + INTEGER FUNCTION IDAMAX (N, DX, INCX) +C***BEGIN PROLOGUE IDAMAX +C***PURPOSE Find the smallest index of that component of a vector +C having the maximum magnitude. +C***CATEGORY D1A2 +C***TYPE DOUBLE PRECISION (ISAMAX-S, IDAMAX-D, ICAMAX-C) +C***KEYWORDS BLAS, LINEAR ALGEBRA, MAXIMUM COMPONENT, VECTOR +C***AUTHOR Lawson, C. L., (JPL) +C Hanson, R. J., (SNLA) +C Kincaid, D. R., (U. of Texas) +C Krogh, F. T., (JPL) +C***DESCRIPTION +C +C B L A S Subprogram +C Description of Parameters +C +C --Input-- +C N number of elements in input vector(s) +C DX double precision vector with N elements +C INCX storage spacing between elements of DX +C +C --Output-- +C IDAMAX smallest index (zero if N .LE. 0) +C +C Find smallest index of maximum magnitude of double precision DX. +C IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), +C where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX. +C +C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. +C Krogh, Basic linear algebra subprograms for Fortran +C usage, Algorithm No. 539, Transactions on Mathematical +C Software 5, 3 (September 1979), pp. 308-323. +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 791001 DATE WRITTEN +C 890531 Changed all specific intrinsics to generic. (WRB) +C 890531 REVISION DATE from Version 3.2 +C 891214 Prologue converted to Version 4.0 format. (BAB) +C 900821 Modified to correct problem with a negative increment. +C (WRB) +C 920501 Reformatted the REFERENCES section. (WRB) +C***END PROLOGUE IDAMAX + DOUBLE PRECISION DX(*), DMAX, XMAG + INTEGER I, INCX, IX, N +C***FIRST EXECUTABLE STATEMENT IDAMAX + IDAMAX = 0 + IF (N .LE. 0) RETURN + IDAMAX = 1 + IF (N .EQ. 1) RETURN +C + IF (INCX .EQ. 1) GOTO 20 +C +C Code for increments not equal to 1. +C + IX = 1 + IF (INCX .LT. 0) IX = (-N+1)*INCX + 1 + DMAX = ABS(DX(IX)) + IX = IX + INCX + DO 10 I = 2,N + XMAG = ABS(DX(IX)) + IF (XMAG .GT. DMAX) THEN + IDAMAX = I + DMAX = XMAG + ENDIF + IX = IX + INCX + 10 CONTINUE + RETURN +C +C Code for increments equal to 1. +C + 20 DMAX = ABS(DX(1)) + DO 30 I = 2,N + XMAG = ABS(DX(I)) + IF (XMAG .GT. DMAX) THEN + IDAMAX = I + DMAX = XMAG + ENDIF + 30 CONTINUE + RETURN + END +*DECK XERRWD + SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2) +C***BEGIN PROLOGUE XERRWD +C***SUBSIDIARY +C***PURPOSE Write error message with values. +C***CATEGORY R3C +C***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV, +C as given here, constitute a simplified version of the SLATEC error +C handling package. +C +C All arguments are input arguments. +C +C MSG = The message (character array). +C NMES = The length of MSG (number of characters). +C NERR = The error number (not used). +C LEVEL = The error level.. +C 0 or 1 means recoverable (control returns to caller). +C 2 means fatal (run is aborted--see note below). +C NI = Number of integers (0, 1, or 2) to be printed with message. +C I1,I2 = Integers to be printed, depending on NI. +C NR = Number of reals (0, 1, or 2) to be printed with message. +C R1,R2 = Reals to be printed, depending on NR. +C +C Note.. this routine is machine-dependent and specialized for use +C in limited context, in the following ways.. +C 1. The argument MSG is assumed to be of type CHARACTER, and +C the message is printed with a format of (1X,A). +C 2. The message is assumed to take only one line. +C Multi-line messages are generated by repeated calls. +C 3. If LEVEL = 2, control passes to the statement STOP +C to abort the run. This statement may be machine-dependent. +C 4. R1 and R2 are assumed to be in double precision and are printed +C in D21.13 format. +C +C***ROUTINES CALLED IXSAV +C***REVISION HISTORY (YYMMDD) +C 920831 DATE WRITTEN +C 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH) +C 930329 Modified prologue to SLATEC format. (FNF) +C 930407 Changed MSG from CHARACTER*1 array to variable. (FNF) +C 930922 Minor cosmetic change. (FNF) +C***END PROLOGUE XERRWD +C +C*Internal Notes: +C +C For a different default logical unit number, IXSAV (or a subsidiary +C routine that it calls) will need to be modified. +C For a different run-abort command, change the statement following +C statement 100 at the end. +C----------------------------------------------------------------------- +C Subroutines called by XERRWD.. None +C Function routine called by XERRWD.. IXSAV +C----------------------------------------------------------------------- +C**End +C +C Declare arguments. +C + DOUBLE PRECISION R1, R2 + INTEGER NMES, NERR, LEVEL, NI, I1, I2, NR + CHARACTER*(*) MSG +C +C Declare local variables. +C + INTEGER LUNIT, IXSAV, MESFLG +C +C Get logical unit number and message print flag. +C +C***FIRST EXECUTABLE STATEMENT XERRWD + LUNIT = IXSAV (1, 0, .FALSE.) + MESFLG = IXSAV (2, 0, .FALSE.) + IF (MESFLG .EQ. 0) GO TO 100 +C +C Write the message. +C + WRITE (LUNIT,10) MSG + 10 FORMAT(1X,A) + IF (NI .EQ. 1) WRITE (LUNIT, 20) I1 + 20 FORMAT(6X,'In above message, I1 =',I10) + IF (NI .EQ. 2) WRITE (LUNIT, 30) I1,I2 + 30 FORMAT(6X,'In above message, I1 =',I10,3X,'I2 =',I10) + IF (NR .EQ. 1) WRITE (LUNIT, 40) R1 + 40 FORMAT(6X,'In above message, R1 =',D21.13) + IF (NR .EQ. 2) WRITE (LUNIT, 50) R1,R2 + 50 FORMAT(6X,'In above, R1 =',D21.13,3X,'R2 =',D21.13) +C +C Abort the run if LEVEL = 2. +C + 100 IF (LEVEL .NE. 2) RETURN + STOP +C----------------------- End of Subroutine XERRWD ---------------------- + END +*DECK XSETF + SUBROUTINE XSETF (MFLAG) +C***BEGIN PROLOGUE XSETF +C***PURPOSE Reset the error print control flag. +C***CATEGORY R3A +C***TYPE ALL (XSETF-A) +C***KEYWORDS ERROR CONTROL +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C XSETF sets the error print control flag to MFLAG: +C MFLAG=1 means print all messages (the default). +C MFLAG=0 means no printing. +C +C***SEE ALSO XERRWD, XERRWV +C***REFERENCES (NONE) +C***ROUTINES CALLED IXSAV +C***REVISION HISTORY (YYMMDD) +C 921118 DATE WRITTEN +C 930329 Added SLATEC format prologue. (FNF) +C 930407 Corrected SEE ALSO section. (FNF) +C 930922 Made user-callable, and other cosmetic changes. (FNF) +C***END PROLOGUE XSETF +C +C Subroutines called by XSETF.. None +C Function routine called by XSETF.. IXSAV +C----------------------------------------------------------------------- +C**End + INTEGER MFLAG, JUNK, IXSAV +C +C***FIRST EXECUTABLE STATEMENT XSETF + IF (MFLAG .EQ. 0 .OR. MFLAG .EQ. 1) JUNK = IXSAV (2,MFLAG,.TRUE.) + RETURN +C----------------------- End of Subroutine XSETF ----------------------- + END +*DECK XSETUN + SUBROUTINE XSETUN (LUN) +C***BEGIN PROLOGUE XSETUN +C***PURPOSE Reset the logical unit number for error messages. +C***CATEGORY R3B +C***TYPE ALL (XSETUN-A) +C***KEYWORDS ERROR CONTROL +C***DESCRIPTION +C +C XSETUN sets the logical unit number for error messages to LUN. +C +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***SEE ALSO XERRWD, XERRWV +C***REFERENCES (NONE) +C***ROUTINES CALLED IXSAV +C***REVISION HISTORY (YYMMDD) +C 921118 DATE WRITTEN +C 930329 Added SLATEC format prologue. (FNF) +C 930407 Corrected SEE ALSO section. (FNF) +C 930922 Made user-callable, and other cosmetic changes. (FNF) +C***END PROLOGUE XSETUN +C +C Subroutines called by XSETUN.. None +C Function routine called by XSETUN.. IXSAV +C----------------------------------------------------------------------- +C**End + INTEGER LUN, JUNK, IXSAV +C +C***FIRST EXECUTABLE STATEMENT XSETUN + IF (LUN .GT. 0) JUNK = IXSAV (1,LUN,.TRUE.) + RETURN +C----------------------- End of Subroutine XSETUN ---------------------- + END +*DECK IXSAV + INTEGER FUNCTION IXSAV (IPAR, IVALUE, ISET) +C***BEGIN PROLOGUE IXSAV +C***SUBSIDIARY +C***PURPOSE Save and recall error message control parameters. +C***CATEGORY R3C +C***TYPE ALL (IXSAV-A) +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C +C IXSAV saves and recalls one of two error message parameters: +C LUNIT, the logical unit number to which messages are printed, and +C MESFLG, the message print flag. +C This is a modification of the SLATEC library routine J4SAVE. +C +C Saved local variables.. +C LUNIT = Logical unit number for messages. The default is obtained +C by a call to IUMACH (may be machine-dependent). +C MESFLG = Print control flag.. +C 1 means print all messages (the default). +C 0 means no printing. +C +C On input.. +C IPAR = Parameter indicator (1 for LUNIT, 2 for MESFLG). +C IVALUE = The value to be set for the parameter, if ISET = .TRUE. +C ISET = Logical flag to indicate whether to read or write. +C If ISET = .TRUE., the parameter will be given +C the value IVALUE. If ISET = .FALSE., the parameter +C will be unchanged, and IVALUE is a dummy argument. +C +C On return.. +C IXSAV = The (old) value of the parameter. +C +C***SEE ALSO XERRWD, XERRWV +C***ROUTINES CALLED IUMACH +C***REVISION HISTORY (YYMMDD) +C 921118 DATE WRITTEN +C 930329 Modified prologue to SLATEC format. (FNF) +C 930915 Added IUMACH call to get default output unit. (ACH) +C 930922 Minor cosmetic changes. (FNF) +C 010425 Type declaration for IUMACH added. (ACH) +C***END PROLOGUE IXSAV +C +C Subroutines called by IXSAV.. None +C Function routine called by IXSAV.. IUMACH +C----------------------------------------------------------------------- +C**End + LOGICAL ISET + INTEGER IPAR, IVALUE +C----------------------------------------------------------------------- + INTEGER IUMACH, LUNIT, MESFLG +C----------------------------------------------------------------------- +C The following Fortran-77 declaration is to cause the values of the +C listed (local) variables to be saved between calls to this routine. +C----------------------------------------------------------------------- + SAVE LUNIT, MESFLG + DATA LUNIT/-1/, MESFLG/1/ +C +C***FIRST EXECUTABLE STATEMENT IXSAV + IF (IPAR .EQ. 1) THEN + IF (LUNIT .EQ. -1) LUNIT = IUMACH() + IXSAV = LUNIT + IF (ISET) LUNIT = IVALUE + ENDIF +C + IF (IPAR .EQ. 2) THEN + IXSAV = MESFLG + IF (ISET) MESFLG = IVALUE + ENDIF +C + RETURN +C----------------------- End of Function IXSAV ------------------------- + END +*DECK IUMACH + INTEGER FUNCTION IUMACH() +C***BEGIN PROLOGUE IUMACH +C***PURPOSE Provide standard output unit number. +C***CATEGORY R1 +C***TYPE INTEGER (IUMACH-I) +C***KEYWORDS MACHINE CONSTANTS +C***AUTHOR Hindmarsh, Alan C., (LLNL) +C***DESCRIPTION +C *Usage: +C INTEGER LOUT, IUMACH +C LOUT = IUMACH() +C +C *Function Return Values: +C LOUT : the standard logical unit for Fortran output. +C +C***REFERENCES (NONE) +C***ROUTINES CALLED (NONE) +C***REVISION HISTORY (YYMMDD) +C 930915 DATE WRITTEN +C 930922 Made user-callable, and other cosmetic changes. (FNF) +C***END PROLOGUE IUMACH +C +C*Internal Notes: +C The built-in value of 6 is standard on a wide range of Fortran +C systems. This may be machine-dependent. +C**End +C***FIRST EXECUTABLE STATEMENT IUMACH + IUMACH = 6 +C + RETURN +C----------------------- End of Function IUMACH ------------------------ + END diff --git a/applications/PUfoam/MoDeNaModels/foamAging/src/src/physicalProperties.f90 b/applications/PUfoam/MoDeNaModels/foamAging/src/src/physicalProperties.f90 new file mode 100644 index 000000000..190dd51df --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamAging/src/src/physicalProperties.f90 @@ -0,0 +1,501 @@ +!> @file +!! subroutines for calculation of physical properties of polymer and blowing +!! agents using Modena calls +!! @author Michal Vonka +!! @author Pavel Ferkl +!! @ingroup foam_aging +module physicalProperties + use constants + use fmodena + implicit none + integer :: solModel(3),diffModel(3) + !modena variables + integer(c_int) :: ret + type(c_ptr) :: rhopModena = c_null_ptr + type(c_ptr) :: rhopInputs = c_null_ptr + type(c_ptr) :: rhopOutputs = c_null_ptr + integer(c_size_t) :: rhopTemppos + type(c_ptr) :: kfoamModena = c_null_ptr + type(c_ptr) :: kfoamInputs = c_null_ptr + type(c_ptr) :: kfoamOutputs = c_null_ptr + integer(c_size_t) :: kfoamEpspos + integer(c_size_t) :: kfoamDcellpos + integer(c_size_t) :: kfoamFstrutpos + integer(c_size_t) :: kfoamKgaspos + integer(c_size_t) :: kfoamTemppos + type(c_ptr) :: kgasModena = c_null_ptr + type(c_ptr) :: kgasInputs = c_null_ptr + type(c_ptr) :: kgasOutputs = c_null_ptr + integer(c_size_t) :: kgasTemppos + integer(c_size_t) :: kgasXco2pos + integer(c_size_t) :: kgasXairpos + integer(c_size_t) :: kgasXcyppos + type(c_ptr) :: kcdModena = c_null_ptr + type(c_ptr) :: kcdInputs = c_null_ptr + type(c_ptr) :: kcdOutputs = c_null_ptr + integer(c_size_t) :: kcdTemppos + type(c_ptr) :: kairModena = c_null_ptr + type(c_ptr) :: kairInputs = c_null_ptr + type(c_ptr) :: kairOutputs = c_null_ptr + integer(c_size_t) :: kairTemppos + type(c_ptr) :: kcypModena = c_null_ptr + type(c_ptr) :: kcypInputs = c_null_ptr + type(c_ptr) :: kcypOutputs = c_null_ptr + integer(c_size_t) :: kcypTemppos + type(c_ptr) :: scdModena = c_null_ptr + type(c_ptr) :: scdInputs = c_null_ptr + type(c_ptr) :: scdOutputs = c_null_ptr + integer(c_size_t) :: scdTemppos + type(c_ptr) :: sairModena = c_null_ptr + type(c_ptr) :: sairInputs = c_null_ptr + type(c_ptr) :: sairOutputs = c_null_ptr + integer(c_size_t) :: sairTemppos + type(c_ptr) :: scypModena = c_null_ptr + type(c_ptr) :: scypInputs = c_null_ptr + type(c_ptr) :: scypOutputs = c_null_ptr + integer(c_size_t) :: scypTemppos + type(c_ptr) :: dcdModena = c_null_ptr + type(c_ptr) :: dcdInputs = c_null_ptr + type(c_ptr) :: dcdOutputs = c_null_ptr + integer(c_size_t) :: dcdTemppos + type(c_ptr) :: dcypModena = c_null_ptr + type(c_ptr) :: dcypInputs = c_null_ptr + type(c_ptr) :: dcypOutputs = c_null_ptr + integer(c_size_t) :: dcypTemppos + type(c_ptr) :: do2Modena = c_null_ptr + type(c_ptr) :: do2Inputs = c_null_ptr + type(c_ptr) :: do2Outputs = c_null_ptr + integer(c_size_t) :: do2Temppos + type(c_ptr) :: dn2Modena = c_null_ptr + type(c_ptr) :: dn2Inputs = c_null_ptr + type(c_ptr) :: dn2Outputs = c_null_ptr + integer(c_size_t) :: dn2Temppos +contains +!********************************BEGINNING************************************* +!> creates Modena models +subroutine createModels +! rhopModena = modena_model_new (client, c_char_"polymerDensity"//c_null_char); +! rhopInputs = modena_inputs_new (rhopModena); +! rhopOutputs = modena_outputs_new (rhopModena); +! rhopTemppos = modena_model_inputs_argPos(rhopModena, c_char_"T"//c_null_char); +! call modena_model_argPos_check(rhopModena) + kfoamModena = modena_model_new (c_char_"foamConductivity"//c_null_char); + kfoamInputs = modena_inputs_new (kfoamModena); + kfoamOutputs = modena_outputs_new (kfoamModena); + kfoamEpspos = modena_model_inputs_argPos(& + kfoamModena, c_char_"eps"//c_null_char); + kfoamDcellpos = modena_model_inputs_argPos(& + kfoamModena, c_char_"dcell"//c_null_char); + kfoamFstrutpos = modena_model_inputs_argPos(& + kfoamModena, c_char_"fstrut"//c_null_char); + kfoamKgaspos = modena_model_inputs_argPos(& + kfoamModena, c_char_"kgas"//c_null_char); + kfoamTemppos = modena_model_inputs_argPos(& + kfoamModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(kfoamModena) + write(*,*) 'loading gasMixtureConductivity model' + kgasModena = modena_model_new (& + c_char_"gasMixtureConductivity"//c_null_char); + write(*,*) 'loading gasMixtureConductivity model OK' + kgasInputs = modena_inputs_new (kgasModena); + kgasOutputs = modena_outputs_new (kgasModena); + write(*,*) 'setting inputs' + kgasTemppos = modena_model_inputs_argPos(kgasModena, c_char_"T"//c_null_char); + kgasXco2pos = modena_model_inputs_argPos(kgasModena, c_char_"x[A=CO2]"//c_null_char); + write(*,*) 'setting inputs OK' + kgasXairpos = modena_model_inputs_argPos(kgasModena, c_char_"x[A=Air]"//c_null_char); + kgasXcyppos = modena_model_inputs_argPos(kgasModena, c_char_"x[A=CyP]"//c_null_char); + call modena_model_argPos_check(kgasModena) + kcdModena = modena_model_new (& + c_char_"gas_thermal_conductivity[A=CO2]"//c_null_char); + kcdInputs = modena_inputs_new (kcdModena); + kcdOutputs = modena_outputs_new (kcdModena); + kcdTemppos = modena_model_inputs_argPos(kcdModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(kcdModena) + kairModena = modena_model_new (& + c_char_"gas_thermal_conductivity[A=Air]"//c_null_char); + kairInputs = modena_inputs_new (kairModena); + kairOutputs = modena_outputs_new (kairModena); + kairTemppos = modena_model_inputs_argPos(kairModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(kairModena) + kcypModena = modena_model_new (& + c_char_"gas_thermal_conductivity[A=CyP]"//c_null_char); + kcypInputs = modena_inputs_new (kcypModena); + kcypOutputs = modena_outputs_new (kcypModena); + kcypTemppos = modena_model_inputs_argPos(kcypModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(kcypModena) + if (solModel(1)==1) then + sairModena = modena_model_new (& + c_char_"solubilityPol[A=Air]"//c_null_char); + sairInputs = modena_inputs_new (sairModena); + sairOutputs = modena_outputs_new (sairModena); + sairTemppos = modena_model_inputs_argPos(& + sairModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(sairModena) + endif + if (solModel(2)==1) then + scdModena = modena_model_new (& + c_char_"solubilityPol[A=CO2]"//c_null_char); + scdInputs = modena_inputs_new (scdModena); + scdOutputs = modena_outputs_new (scdModena); + scdTemppos = modena_model_inputs_argPos(& + scdModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(scdModena) + endif + if (solModel(3)==1) then + scypModena = modena_model_new (& + c_char_"solubilityPol[A=CyP]"//c_null_char); + scypInputs = modena_inputs_new (scypModena); + scypOutputs = modena_outputs_new (scypModena); + scypTemppos = modena_model_inputs_argPos(& + scypModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(scypModena) + endif + if (diffModel(1)==1) then + do2Modena = modena_model_new (& + c_char_"diffusivityPol[A=O2]"//c_null_char); + do2Inputs = modena_inputs_new (do2Modena); + do2Outputs = modena_outputs_new (do2Modena); + do2Temppos = modena_model_inputs_argPos(& + do2Modena, c_char_"T"//c_null_char); + call modena_model_argPos_check(do2Modena) + dn2Modena = modena_model_new (& + c_char_"diffusivityPol[A=N2]"//c_null_char); + dn2Inputs = modena_inputs_new (dn2Modena); + dn2Outputs = modena_outputs_new (dn2Modena); + dn2Temppos = modena_model_inputs_argPos(& + dn2Modena, c_char_"T"//c_null_char); + call modena_model_argPos_check(dn2Modena) + endif + if (diffModel(2)==1) then + dcdModena = modena_model_new (& + c_char_"diffusivityPol[A=CO2]"//c_null_char); + dcdInputs = modena_inputs_new (dcdModena); + dcdOutputs = modena_outputs_new (dcdModena); + dcdTemppos = modena_model_inputs_argPos(& + dcdModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(dcdModena) + endif + if (diffModel(3)==1) then + dcypModena = modena_model_new (& + c_char_"diffusivityPol[A=CyP]"//c_null_char); + dcypInputs = modena_inputs_new (dcypModena); + dcypOutputs = modena_outputs_new (dcypModena); + dcypTemppos = modena_model_inputs_argPos(& + dcypModena, c_char_"T"//c_null_char); + call modena_model_argPos_check(dcypModena) + endif +end subroutine createModels +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> destroys Modena models +subroutine destroyModels +! call modena_inputs_destroy (rhopInputs); +! call modena_outputs_destroy (rhopOutputs); +! call modena_model_destroy (rhopModena); + call modena_inputs_destroy (kfoamInputs); + call modena_outputs_destroy (kfoamOutputs); + call modena_model_destroy (kfoamModena); + call modena_inputs_destroy (kgasInputs); + call modena_outputs_destroy (kgasOutputs); + call modena_model_destroy (kgasModena); + call modena_inputs_destroy (kcdInputs); + call modena_outputs_destroy (kcdOutputs); + call modena_model_destroy (kcdModena); + call modena_inputs_destroy (kairInputs); + call modena_outputs_destroy (kairOutputs); + call modena_model_destroy (kairModena); + call modena_inputs_destroy (kcypInputs); + call modena_outputs_destroy (kcypOutputs); + call modena_model_destroy (kcypModena); + call modena_inputs_destroy (scdInputs); + call modena_outputs_destroy (scdOutputs); + call modena_model_destroy (scdModena); + call modena_inputs_destroy (sairInputs); + call modena_outputs_destroy (sairOutputs); + call modena_model_destroy (sairModena); + call modena_inputs_destroy (scypInputs); + call modena_outputs_destroy (scypOutputs); + call modena_model_destroy (scypModena); + call modena_inputs_destroy (dcdInputs); + call modena_outputs_destroy (dcdOutputs); + call modena_model_destroy (dcdModena); + call modena_inputs_destroy (dcypInputs); + call modena_outputs_destroy (dcypOutputs); + call modena_model_destroy (dcypModena); + call modena_inputs_destroy (do2Inputs); + call modena_outputs_destroy (do2Outputs); + call modena_model_destroy (do2Modena); + call modena_inputs_destroy (dn2Inputs); + call modena_outputs_destroy (dn2Outputs); + call modena_model_destroy (dn2Modena); +end subroutine destroyModels +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculation of density of polymer +real(dp) function polymerDensity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(rhopInputs, rhopTemppos, temp) + ret = modena_model_call (rhopModena, rhopInputs, rhopOutputs) + if(ret /= 0) then + call exit(ret) + endif + polymerDensity=modena_outputs_get(rhopOutputs, 0_c_size_t) +end function polymerDensity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> thermal conductivity of mixture of blowing agents +real(dp) function gasConductivity(temp,xco2,xair,xcyp) + real(dp), intent(in) :: temp,xco2,xair,xcyp + call modena_inputs_set(kgasInputs, kgasTemppos, temp) + call modena_inputs_set(kgasInputs, kgasXco2pos, xco2) + call modena_inputs_set(kgasInputs, kgasXairpos, xair) + call modena_inputs_set(kgasInputs, kgasXcyppos, xcyp) + ret = modena_model_call (kgasModena, kgasInputs, kgasOutputs) + if(ret /= 0) then + call exit(ret) + endif + gasConductivity=modena_outputs_get(kgasOutputs, 0_c_size_t) +end function gasConductivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> thermal conductivity of carbon dioxide +real(dp) function cdConductivity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(kcdInputs, kcdTemppos, temp) + ret = modena_model_call (kcdModena, kcdInputs, kcdOutputs) + if(ret /= 0) then + call exit(ret) + endif + cdConductivity=modena_outputs_get(kcdOutputs, 0_c_size_t) +end function cdConductivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> thermal conductivity of air +real(dp) function airConductivity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(kairInputs, kairTemppos, temp) + ret = modena_model_call (kairModena, kairInputs, kairOutputs) + if(ret /= 0) then + call exit(ret) + endif + airConductivity=modena_outputs_get(kairOutputs, 0_c_size_t) +end function airConductivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> thermal conductivity of cyclo pentane +real(dp) function cypConductivity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(kcypInputs, kcypTemppos, temp) + ret = modena_model_call (kcypModena, kcypInputs, kcypOutputs) + if(ret /= 0) then + call exit(ret) + endif + cypConductivity=modena_outputs_get(kcypOutputs, 0_c_size_t) +end function cypConductivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> thermal conductivity of nitrogen +real(dp) function nitrConductivity(temp) + real(dp), intent(in) :: temp + nitrConductivity=(0.3918e-3_dp)+(0.9814e-4_dp)*temp+& + (-5.0660e-8_dp)*temp**2+(1.503479e-11_dp)*temp**3 +end function nitrConductivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> thermal conductivity of oxygen +real(dp) function oxyConductivity(temp) + real(dp), intent(in) :: temp + oxyConductivity=(-0.3272e-3_dp)+(0.9965e-4_dp)*temp+& + (-3.7426e-8_dp)*temp**2+(0.973012e-11_dp)*temp**3 +end function oxyConductivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> solubility of carbon dioxide +real(dp) function cdSolubility(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(scdInputs, scdTemppos, temp) + ret = modena_model_call (scdModena, scdInputs, scdOutputs) + if(ret /= 0) then + call exit(ret) + endif + cdSolubility=modena_outputs_get(scdOutputs, 0_c_size_t) +end function cdSolubility +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> solubility of air +real(dp) function airSolubility(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(sairInputs, sairTemppos, temp) + ret = modena_model_call (sairModena, sairInputs, sairOutputs) + if(ret /= 0) then + call exit(ret) + endif + airSolubility=modena_outputs_get(sairOutputs, 0_c_size_t) +end function airSolubility +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> solubility of cyclo pentane +real(dp) function cypSolubility(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(scypInputs, scypTemppos, temp) + ret = modena_model_call (scypModena, scypInputs, scypOutputs) + if(ret /= 0) then + call exit(ret) + endif + cypSolubility=modena_outputs_get(scypOutputs, 0_c_size_t) +end function cypSolubility +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> diffusivity of carbon dioxide +real(dp) function cdDiffusivity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(dcdInputs, dcdTemppos, temp) + ret = modena_model_call (dcdModena, dcdInputs, dcdOutputs) + if(ret /= 0) then + call exit(ret) + endif + cdDiffusivity=modena_outputs_get(dcdOutputs, 0_c_size_t) +end function cdDiffusivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> diffusivity of cyclo pentane +real(dp) function cypDiffusivity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(dcypInputs, dcypTemppos, temp) + ret = modena_model_call (dcypModena, dcypInputs, dcypOutputs) + if(ret /= 0) then + call exit(ret) + endif + cypDiffusivity=modena_outputs_get(dcypOutputs, 0_c_size_t) +end function cypDiffusivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> diffusivity of air +real(dp) function airDiffusivity(temp) + real(dp), intent(in) :: temp + call modena_inputs_set(do2Inputs, do2Temppos, temp) + ret = modena_model_call (do2Modena, do2Inputs, do2Outputs) + if(ret /= 0) then + call exit(ret) + endif + airDiffusivity=0.21_dp*modena_outputs_get(do2Outputs, 0_c_size_t) + call modena_inputs_set(dn2Inputs, dn2Temppos, temp) + ret = modena_model_call (dn2Modena, dn2Inputs, dn2Outputs) + if(ret /= 0) then + call exit(ret) + endif + airDiffusivity=& + airDiffusivity+0.79_dp*modena_outputs_get(dn2Outputs, 0_c_size_t) +end function airDiffusivity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> heat capacity of carbon dioxide at constant pressure (J/mol/K) +!! [link](http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1#Thermo-Gas) +real(dp) function cdHeatCapacity(temp) + real(dp), intent(in) :: temp + real(dp) :: & + t,& + a=24.99735_dp,& + b=55.18696_dp,& + c=-33.69137_dp,& + d=7.948387_dp,& + e=-0.136638_dp + t=temp/1e3 + cdHeatCapacity=a+b*t+c*t**2+d*t**3+e/t**2 +end function cdHeatCapacity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> heat capacity of cyclo-pentane at constant pressure (J/mol/K) +!! fitted to data from [link](http://webbook.nist.gov/cgi/cbook.cgi?ID=C287923&Units=SI&Mask=1#Thermo-Gas) +real(dp) function cypHeatCapacity(temp) + real(dp), intent(in) :: temp + real(dp) :: & + t,& + a=-25.6132057_dp,& + b=226.4176882_dp,& + c=574.2688767_dp,& + d=-670.5517907_dp,& + e=0.6765321_dp + t=temp/1e3 + cypHeatCapacity=a+b*t+c*t**2+d*t**3+e/t**2 +end function cypHeatCapacity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> heat capacity of air at constant pressure (J/mol/K) +real(dp) function airHeatCapacity(temp) + real(dp), intent(in) :: temp + airHeatCapacity=0.21_dp*oxyHeatCapacity(temp)+0.79_dp*nitrHeatCapacity(temp) +end function airHeatCapacity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> heat capacity of nitrogen at constant pressure (J/mol/K) +!! [link](http://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Units=SI&Mask=1#Thermo-Gas) +real(dp) function nitrHeatCapacity(temp) + real(dp), intent(in) :: temp + real(dp) :: & + t,& + a=28.98641_dp,& + b=1.853978_dp,& + c=-9.647459_dp,& + d=16.63537_dp,& + e=0.000117_dp + t=temp/1e3 + nitrHeatCapacity=a+b*t+c*t**2+d*t**3+e/t**2 +end function nitrHeatCapacity +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> heat capacity of oxygen at constant pressure (J/mol/K) +!! [link](http://webbook.nist.gov/cgi/cbook.cgi?ID=C7782447&Units=SI&Mask=1#Thermo-Gas) +real(dp) function oxyHeatCapacity(temp) + real(dp), intent(in) :: temp + real(dp) :: & + t,& + a=31.32234_dp,& + b=-20.23531_dp,& + c=57.86644_dp,& + d=-36.50624_dp,& + e=-0.007374_dp + t=temp/1e3 + oxyHeatCapacity=a+b*t+c*t**2+d*t**3+e/t**2 +end function oxyHeatCapacity +!***********************************END**************************************** +end module physicalProperties diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/.gitignore b/applications/PUfoam/MoDeNaModels/foamConductivity/.gitignore new file mode 100644 index 000000000..e65a6a0c4 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/.gitignore @@ -0,0 +1 @@ +kfoam diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/__init__.py b/applications/PUfoam/MoDeNaModels/foamConductivity/__init__.py new file mode 100644 index 000000000..5c890545b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/__init__.py @@ -0,0 +1,41 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + + +from foamConductivity import m_foamConductivity +from foamConductivity import m_simulation diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/foamConductivity.py b/applications/PUfoam/MoDeNaModels/foamConductivity/foamConductivity.py new file mode 100644 index 000000000..d6bd9403f --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/foamConductivity.py @@ -0,0 +1,244 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Surrogate function, model definition and backward mapping FireTask for +Foam conductivity model. + +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_aging +""" + +import os +from modena import * +import modena.Strategy as Strategy +from fireworks.utilities.fw_utilities import explicit_serialize +from jinja2 import Template +import polymerConductivity + + +@explicit_serialize +class FoamConductivityExactTask(ModenaFireTask): + """ + A FireTask that starts a microscopic code and updates the database. + """ + def task(self, fw_spec): + + eps = self['point']['eps'] + dcell = self['point']['dcell'] + fstrut = self['point']['fstrut'] + kgas = self['point']['kgas'] + temp = self['point']['T'] + + # Write input + f = open('inputs.in', 'w') + f.write('{0:.6e}\n'.format(temp+1)) + f.write('{0:.6e}\n'.format(temp-1)) + f.write('{0:.6e}\n'.format(kgas)) + f.write('0.9\n') + f.write('0.9\n') + f.write('1.2\n') + f.write('1.1e3\n') + f.write('{0:.6e}\n'.format(eps)) + f.write('{0:.6e}\n'.format(dcell)) + f.write('2\n') + f.write('0.5e-6\n') + f.write('{0:.6e}\n'.format(fstrut)) + f.write('1e-6\n') + f.write('3e-2\n') + f.write('200\n') + f.write('10000\n') + f.write('t\n') + f.write('0.2\n') + f.write('10\n') + f.close() + + # Execute the detailed model + # path to **this** file + /src/... + # will break if distributed computing + os.system(os.path.dirname(os.path.abspath(__file__))+'/src/kfoam') + + # Analyse output + # os.getcwd() returns the path to the "launcher" directory + try: + FILE = open(os.getcwd()+'/outputs.out','r') + except IOError: + raise IOError("File not found") + + self['point']['kfoam'] = float(FILE.readline()) + + os.remove('inputs.in') + os.remove('outputs.out') + +## Surrogate function for thermal conductivity of the foam. +# +# Foam conductivity is a function of porosity, cell size, strut content, +# conductivity of gas and solid phase and temperature. +f_foamConductivity = CFunction( + Ccode=''' +#include "modena.h" +#include "math.h" + +void tcfoam_SM +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + const double alpha = parameters[1]; + const double beta = parameters[0]; + + const double sigma=5.67e-8; + + double fs,Xs,Xw,X,kappa,kr; + double kfoam; + + fs=alpha*fstrut; + Xs=(1+4*kgas/(kgas+polymer_thermal_conductivity))/3.0; + Xw=2*(1+kgas/(2*polymer_thermal_conductivity))/3.0; + X=(1-fs)*Xw+fs*Xs; + kappa=4.09*sqrt(1-eps)/dcell; + kr=16*sigma*pow(T,3)/(3*kappa); + kfoam = (kgas*eps+polymer_thermal_conductivity*X*(1-eps))/(eps+(1-eps)*X)+beta*kr; + + outputs[0] = kfoam; +} +''', + # These are global bounds for the function + inputs={ + 'eps': {'min': 0, 'max': 1}, + 'dcell': {'min': 0, 'max': 1e-1}, + 'fstrut': {'min': 0, 'max': 1}, + 'kgas': {'min': 0, 'max': 1e-1}, + 'polymer_thermal_conductivity': {'min': 0, 'max': 1e0}, + 'T': {'min': 273, 'max': 450}, + }, + outputs={ + 'kfoam': {'min': 0, 'max': 1e0, 'argPos': 0}, + }, + parameters={ + 'param1': {'min': -1e9, 'max': 1e9 + 2, 'argPos': 0}, + 'param2': {'min': -1e9, 'max': 1e9 + 2, 'argPos': 1}, + }, +) + +# use input file to Foam aging application to initialize with reasonable data. +fname='input.in' +try: + f = open(fname,'r') +except IOError: + f = open(os.getcwd()+'/../'+fname,'r') + +a=f.readline() +a=f.readline() +a=f.readline() +a=f.readline() +a=f.readline() +T0=float(a.split()[0]) +a=f.readline() +rhop=float(a.split()[0]) +a=f.readline() +a=f.readline() +a=f.readline() +a=f.readline() +a=f.readline() +a=f.readline() +dcell0=float(a.split()[0]) +a=f.readline() +fstrut0=float(a.split()[0]) +a=f.readline() +rho0=float(a.split()[0]) +f.close() +eps0=1-rho0/rhop +kgas0=0.012 +eps=[] +dcell=[] +fstrut=[] +kgas=[] +T=[] + +for i in xrange(4): + eps.append(eps0) + dcell.append(dcell0) + fstrut.append(fstrut0) + kgas.append(kgas0*(1+0.01*i)) + T.append(T0) + +initialPoints_foamConductivity_auto = { + 'eps': eps, + 'dcell': dcell, + 'fstrut': fstrut, + 'kgas': kgas, + 'T': T, +} + +initialPoints_foamConductivity_test = { + 'eps': [0.95], + 'dcell': [300e-6], + 'fstrut': [0.8], + 'kgas': [0.12], + 'T': [300], +} + +## Surrogate model for foam conductivity +# +# Backward mapping model is used. +m_foamConductivity = BackwardMappingModel( + _id='foamConductivity', + surrogateFunction=f_foamConductivity, + exactTask=FoamConductivityExactTask(), + substituteModels=[polymerConductivity.m_polymer_thermal_conductivity], + initialisationStrategy=Strategy.InitialPoints( + initialPoints=initialPoints_foamConductivity_auto, + ), + outOfBoundsStrategy=Strategy.ExtendSpaceStochasticSampling( + nNewPoints=4 + ), + parameterFittingStrategy=Strategy.NonLinFitWithErrorContol( + testDataPercentage=0.2, + maxError=0.01, + improveErrorStrategy=Strategy.StochasticSampling( + nNewPoints=2 + ), + maxIterations=5 # Currently not used + ), +) + +## Foam conductivity simulation +# +# For the case, when only foam conductivity and no aging is needed. +m_simulation = Strategy.BackwardMappingScriptTask( + script=os.path.dirname(os.path.abspath(__file__))+'/src/kfoam' +) diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/foamConductivity/src/CMakeLists.txt new file mode 100644 index 000000000..a212cb10c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/CMakeLists.txt @@ -0,0 +1,21 @@ +cmake_minimum_required (VERSION 2.8) +project (tutorialModels C Fortran) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) +endif() + +find_package(MODENA REQUIRED) + +include_directories(${MODENA_INCLUDE_DIRS}) +link_directories(${MODENA_LIBRARY_DIRS}) + +find_package(LAPACK REQUIRED) +find_package(BLAS REQUIRED) + +set (CMAKE_Fortran_FLAGS "-ffree-line-length-none -O3") +set (CMAKE_Fortran_MODULE_DIRECTORY mod) +file (GLOB _sources RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} src/*.f*) +add_executable(kfoam ${_sources}) +target_link_libraries(kfoam ${LAPACK_LIBRARIES} ${BLAS_LIBRARIES} MODENA::modena) diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/besselj.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/besselj.f90 new file mode 100644 index 000000000..9a0ebff34 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/besselj.f90 @@ -0,0 +1,4423 @@ +module besselj + implicit none + private + public ZBESJ +contains +!***************************************************************** +!* EVALUATE A J-BESSEL FUNCTION OF COMPLEX ARGUMENT (FIRST KIND) * +!* ------------------------------------------------------------- * +!* SAMPLE RUN: * +!* (Evaluate J0 to J4 for argument Z=(1.0,2.0) ). * +!* * +!* zr(0) = 1.586259 * +!* zi(0) = -1.391602 * +!* zr(1) = 1.291848 * +!* zi(1) = 1.010488 * +!* zr(2) = -0.261130 * +!* zi(2) = 0.762320 * +!* zr(3) = -0.281040 * +!* zi(3) = 0.017175 * +!* zr(4) = -0.034898 * +!* zi(4) = -0.067215 * +!* NZ = 0 * +!* Error code: 0 * +!* * +!* ------------------------------------------------------------- * +!* Ref.: From Numath Library By Tuan Dang Trong in Fortran 77 * +!* [BIBLI 18]. * +!* * +!* F90 Release 1.0 By J-P Moreau, Paris * +!* (www.jpmoreau.fr) * +!***************************************************************** +!Note: to link with Complex.f90 and Utilit.f90. +!--------------------------------------------- +!PROGRAM TEST_ZBESJ +!real*8 zr,zi, cyr(10), cyi(10) + +! n=5 +! zr=1.d0; zi=2.d0 +! call ZBESJ(zr,zi,0,1,n,cyr,cyi,nz,ierr) + +! print *,' ' +! do i=1, n +! write(*,10) i-1, cyr(i) +! write(*,11) i-1, cyi(i) +! end do +! print *,' NZ=', NZ +! print *,' Error code:', ierr +! print *,' ' + +!10 format(' zr(',I1,') = ',F10.6) +!11 format(' zi(',I1,') = ',F10.6) +! +!END + +SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR) +USE UTILIT !For I1MACH,D1MACH. +USE COMPLEX !For ZABS +!***BEGIN PROLOGUE ZBESJ +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5K +!***KEYWORDS J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT, +! BESSEL FUNCTION OF FIRST KIND +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT +!***DESCRIPTION +! +! ***A DOUBLE PRECISION ROUTINE*** +! ON KODE=1, CBESJ COMPUTES AN N MEMBER SEQUENCE OF COMPLEX +! BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE +! ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE +! -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED +! FUNCTIONS +! +! CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z) +! +! WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND +! LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION +! ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS +! (REF. 1). +! +! INPUT ZR,ZI,FNU ARE DOUBLE PRECISION +! ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI +! FNU - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0 +! KODE - A PARAMETER TO INDICATE THE SCALING OPTION +! KODE= 1 RETURNS +! CY(I)=J(FNU+I-1,Z), I=1,...,N +! = 2 RETURNS +! CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N +! N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1 +! +! OUTPUT CYR,CYI ARE DOUBLE PRECISION +! CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS +! CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE +! CY(I)=J(FNU+I-1,Z) OR +! CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)) I=1,...,N +! DEPENDING ON KODE, Y=AIMAG(Z). +! NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW, +! NZ= 0 , NORMAL RETURN +! NZ.GT.0 , LAST NZ COMPONENTS OF CY SET ZERO DUE +! TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0), +! I = N-NZ+1,...,N +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN - COMPUTATION COMPLETED +! IERR=1, INPUT ERROR - NO COMPUTATION +! IERR=2, OVERFLOW - NO COMPUTATION, AIMAG(Z) +! TOO LARGE ON KODE=1 +! IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE +! BUT LOSSES OF SIGNIFCANCE BY ARGUMENT +! REDUCTION PRODUCE LESS THAN HALF OF MACHINE +! ACCURACY +! IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA- +! TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI- +! CANCE BY ARGUMENT REDUCTION +! IERR=5, ERROR - NO COMPUTATION, +! ALGORITHM TERMINATION CONDITION NOT MET +! +!***LONG DESCRIPTION +! +! THE COMPUTATION IS CARRIED OUT BY THE FORMULA +! +! J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z) AIMAG(Z).GE.0.0 +! +! J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z) AIMAG(Z).LT.0.0 +! +! WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION. +! +! FOR NEGATIVE ORDERS,THE FORMULA +! +! J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU) +! +! CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE +! THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE +! INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A +! LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER, +! Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF +! TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY +! UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN +! OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE, +! LARGE MEANS FNU.GT.CABS(Z). +! +! IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- +! MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS +! LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. +! CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN +! LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG +! IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS +! DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. +! IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS +! LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS +! MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE +! INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS +! RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3 +! ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION +! ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION +! ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN +! THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT +! TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS +! IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC. +! SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES. +! +! THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX +! BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT +! ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- +! SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE +! ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), +! ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF +! CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY +! HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN +! ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY +! SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER +! THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, +! 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS +! THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER +! COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY +! BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER +! COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE +! MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, +! THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, +! OR -PI/2+P. +! +!***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ +! AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF +! COMMERCE, 1955. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! BY D. E. AMOS, SAND83-0083, MAY, 1983. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 +! +! A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- +! 1018, MAY, 1985 +! +! A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. +! MATH. SOFTWARE, 1986 +! +!***ROUTINES CALLED ZABS,ZBINU,I1MACH,D1MACH +!***END PROLOGUE ZBESJ +! +! COMPLEX CI,CSGN,CY,Z,ZN + DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG, & + ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR, & + BB, FN, AZ + INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ + DIMENSION CYR(1), CYI(1) + DATA HPI /1.57079632679489662D0/ + +!***FIRST EXECUTABLE STATEMENT ZBESJ + IERR = 0 + NZ=0 + IF (FNU.LT.0.0D0) IERR=1 + IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 + IF (N.LT.1) IERR=1 + IF (IERR.NE.0) RETURN +!----------------------------------------------------------------------- +! SET PARAMETERS RELATED TO MACHINE CONSTANTS. +! TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. +! ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. +! EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND +! EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR +! UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. +! RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. +! DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). +! FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU. +!----------------------------------------------------------------------- + TOL = DMAX1(D1MACH(4),1.0D-18) + K1 = I1MACH(15) + K2 = I1MACH(16) + R1M5 = D1MACH(5) + K = MIN0(IABS(K1),IABS(K2)) + ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0) + K1 = I1MACH(14) - 1 + AA = R1M5*DBLE(FLOAT(K1)) + DIG = DMIN1(AA,18.0D0) + AA = AA*2.303D0 + ALIM = ELIM + DMAX1(-AA,-41.45D0) + RL = 1.2D0*DIG + 3.0D0 + FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0) +!----------------------------------------------------------------------- +! TEST FOR PROPER RANGE +!----------------------------------------------------------------------- + AZ = ZABS(ZR,ZI) + FN = FNU+DBLE(FLOAT(N-1)) + AA = 0.5D0/TOL + BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 + AA = DMIN1(AA,BB) + IF (AZ.GT.AA) GO TO 260 + IF (FN.GT.AA) GO TO 260 + AA = DSQRT(AA) + IF (AZ.GT.AA) IERR=3 + IF (FN.GT.AA) IERR=3 +!----------------------------------------------------------------------- +! CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE +! WHEN FNU IS LARGE +!----------------------------------------------------------------------- + CII = 1.0D0 + INU = INT(SNGL(FNU)) + INUH = INU/2 + IR = INU - 2*INUH + ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI + CSGNR = DCOS(ARG) + CSGNI = DSIN(ARG) + IF (MOD(INUH,2).EQ.0) GO TO 40 + CSGNR = -CSGNR + CSGNI = -CSGNI + 40 CONTINUE +!----------------------------------------------------------------------- +! ZN IS IN THE RIGHT HALF PLANE +!----------------------------------------------------------------------- + ZNR = ZI + ZNI = -ZR + IF (ZI.GE.0.0D0) GO TO 50 + ZNR = -ZNR + ZNI = -ZNI + CSGNI = -CSGNI + CII = -CII + 50 CONTINUE + CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL, & + ELIM, ALIM) + IF (NZ.LT.0) GO TO 130 + NL = N - NZ + IF (NL.EQ.0) RETURN + DO 60 I=1,NL + STR = CYR(I)*CSGNR - CYI(I)*CSGNI + CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR + CYR(I) = STR + STR = -CSGNI*CII + CSGNI = CSGNR*CII + CSGNR = STR + 60 CONTINUE + RETURN + 130 CONTINUE + IF(NZ.EQ.(-2)) GO TO 140 + NZ = 0 + IERR = 2 + RETURN + 140 CONTINUE + NZ=0 + IERR=5 + RETURN + 260 CONTINUE + NZ=0 + IERR=4 + RETURN + END + + + +SUBROUTINE ZUCHK(YR, YI, NZ, ASCLE, TOL) +!***BEGIN PROLOGUE ZUCHK +!***REFER TO ZSERI,ZUOIK,ZUNK1,ZUNK2,ZUNI1,ZUNI2,ZKSCL +! +! Y ENTERS AS A SCALED QUANTITY WHOSE MAGNITUDE IS GREATER THAN +! EXP(-ALIM)=ASCLE=1.0E+3*D1MACH(1)/TOL. THE TEST IS MADE TO SEE +! IF THE MAGNITUDE OF THE REAL OR IMAGINARY PART WOULD UNDERFLOW +! WHEN Y IS SCALED (BY TOL) TO ITS PROPER VALUE. Y IS ACCEPTED +! IF THE UNDERFLOW IS AT LEAST ONE PRECISION BELOW THE MAGNITUDE +! OF THE LARGEST COMPONENT; OTHERWISE THE PHASE ANGLE DOES NOT HAVE +! ABSOLUTE ACCURACY AND AN UNDERFLOW IS ASSUMED. +! +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZUCHK +! +! COMPLEX Y + DOUBLE PRECISION ASCLE, SS, ST, TOL, WR, WI, YR, YI + INTEGER NZ + NZ = 0 + WR = DABS(YR) + WI = DABS(YI) + ST = DMIN1(WR,WI) + IF (ST.GT.ASCLE) RETURN + SS = DMAX1(WR,WI) + ST = ST/TOL + IF (SS.LT.ST) NZ = 1 + RETURN +END + +SUBROUTINE ZBINU(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL, ELIM, ALIM) +USE COMPLEX +!***BEGIN PROLOGUE ZBINU +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZAIRY,ZBIRY + +! ZBINU COMPUTES THE I FUNCTION IN THE RIGHT HALF Z PLANE + +!***ROUTINES CALLED ZABS,ZASYI,ZBUNI,ZMLRI,ZSERI,ZUOIK,ZWRSK +!***END PROLOGUE ZBINU + DOUBLE PRECISION ALIM, AZ, CWI, CWR, CYI, CYR, DFNU, ELIM, FNU, & + FNUL, RL, TOL, ZEROI, ZEROR, ZI, ZR + INTEGER I, INW, KODE, N, NLAST, NN, NUI, NW, NZ + DIMENSION CYR(1), CYI(1), CWR(2), CWI(2) + DATA ZEROR,ZEROI / 0.0D0, 0.0D0 / + + NZ = 0 + AZ = ZABS(ZR,ZI) + NN = N + DFNU = FNU + DBLE(FLOAT(N-1)) + IF (AZ.LE.2.0D0) GO TO 10 + IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! POWER SERIES +!----------------------------------------------------------------------- + CALL ZSERI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM) + INW = IABS(NW) + NZ = NZ + INW + NN = NN - INW + IF (NN.EQ.0) RETURN + IF (NW.GE.0) GO TO 120 + DFNU = FNU + DBLE(FLOAT(NN-1)) + 20 CONTINUE + IF (AZ.LT.RL) GO TO 40 + IF (DFNU.LE.1.0D0) GO TO 30 + IF (AZ+AZ.LT.DFNU*DFNU) GO TO 50 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR LARGE Z +!----------------------------------------------------------------------- + 30 CONTINUE + CALL ZASYI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, RL, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + GO TO 120 + 40 CONTINUE + IF (DFNU.LE.1.0D0) GO TO 70 + 50 CONTINUE +!----------------------------------------------------------------------- +! OVERFLOW AND UNDERFLOW TEST ON I SEQUENCE FOR MILLER ALGORITHM +!----------------------------------------------------------------------- + CALL ZUOIK(ZR, ZI, FNU, KODE, 1, NN, CYR, CYI, NW, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + NZ = NZ + NW + NN = NN - NW + IF (NN.EQ.0) RETURN + DFNU = FNU+DBLE(FLOAT(NN-1)) + IF (DFNU.GT.FNUL) GO TO 110 + IF (AZ.GT.FNUL) GO TO 110 + 60 CONTINUE + IF (AZ.GT.RL) GO TO 80 + 70 CONTINUE +!----------------------------------------------------------------------- +! MILLER ALGORITHM NORMALIZED BY THE SERIES +!----------------------------------------------------------------------- + CALL ZMLRI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL) + IF(NW.LT.0) GO TO 130 + GO TO 120 + 80 CONTINUE +!----------------------------------------------------------------------- +! MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN +!----------------------------------------------------------------------- +!----------------------------------------------------------------------- +! OVERFLOW TEST ON K FUNCTIONS USED IN WRONSKIAN +!----------------------------------------------------------------------- + CALL ZUOIK(ZR, ZI, FNU, KODE, 2, 2, CWR, CWI, NW, TOL, ELIM, ALIM) + IF (NW.GE.0) GO TO 100 + NZ = NN + DO 90 I=1,NN + CYR(I) = ZEROR + CYI(I) = ZEROI + 90 CONTINUE + RETURN + 100 CONTINUE + IF (NW.GT.0) GO TO 130 + CALL ZWRSK(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, CWR, CWI, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + GO TO 120 + 110 CONTINUE +!----------------------------------------------------------------------- +! INCREMENT FNU+NN-1 UP TO FNUL, COMPUTE AND RECUR BACKWARD +!----------------------------------------------------------------------- + NUI = INT(SNGL(FNUL-DFNU)) + 1 + NUI = MAX0(NUI,0) + CALL ZBUNI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, NUI, NLAST, FNUL, & + TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + NZ = NZ + NW + IF (NLAST.EQ.0) GO TO 120 + NN = NLAST + GO TO 60 + 120 CONTINUE + RETURN + 130 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN + END + +SUBROUTINE ZSERI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZSERI +!***REFER TO ZBESI,ZBESK +! +! ZSERI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY +! MEANS OF THE POWER SERIES FOR LARGE CABS(Z) IN THE +! REGION CABS(Z).LE.2*SQRT(FNU+1). NZ=0 IS A NORMAL RETURN. +! NZ.GT.0 MEANS THAT THE LAST NZ COMPONENTS WERE SET TO ZERO +! DUE TO UNDERFLOW. NZ.LT.0 MEANS UNDERFLOW OCCURRED, BUT THE +! CONDITION CABS(Z).LE.2*SQRT(FNU+1) WAS VIOLATED AND THE +! COMPUTATION MUST BE COMPLETED IN ANOTHER ROUTINE WITH N=N-ABS(NZ). +! +!***ROUTINES CALLED DGAMLN,D1MACH,ZUCHK,ZABS,ZDIV,ZLOG,ZMLT +!***END PROLOGUE ZSERI +! COMPLEX AK1,CK,COEF,CONE,CRSC,CSCL,CZ,CZERO,HZ,RZ,S1,S2,Y,Z + DOUBLE PRECISION AA, ACZ, AK, AK1I, AK1R, ALIM, ARM, ASCLE, ATOL, & + AZ, CKI, CKR, COEFI, COEFR, CONEI, CONER, CRSCR, CZI, CZR, DFNU, & + ELIM, FNU, FNUP, HZI, HZR, RAZ, RS, RTR1, RZI, RZR, S, SS, STI, & + STR, S1I, S1R, S2I, S2R, TOL, YI, YR, WI, WR, ZEROI, ZEROR, ZI, & + ZR!, DGAMLN + INTEGER I, IB, IDUM, IFLAG, IL, K, KODE, L, M, N, NN, NZ, NW + DIMENSION YR(1), YI(1), WR(2), WI(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + NZ = 0 + AZ = ZABS(ZR,ZI) + IF (AZ.EQ.0.0D0) GO TO 160 + ARM = 1.0D+3*D1MACH(1) + RTR1 = DSQRT(ARM) + CRSCR = 1.0D0 + IFLAG = 0 + IF (AZ.LT.ARM) GO TO 150 + HZR = 0.5D0*ZR + HZI = 0.5D0*ZI + CZR = ZEROR + CZI = ZEROI + IF (AZ.LE.RTR1) GO TO 10 + CALL ZMLT(HZR, HZI, HZR, HZI, CZR, CZI) + 10 CONTINUE + ACZ = ZABS(CZR,CZI) + NN = N + CALL ZLOG(HZR, HZI, CKR, CKI, IDUM) + 20 CONTINUE + DFNU = FNU + DBLE(FLOAT(NN-1)) + FNUP = DFNU + 1.0D0 +!----------------------------------------------------------------------- +! UNDERFLOW TEST +!----------------------------------------------------------------------- + AK1R = CKR*DFNU + AK1I = CKI*DFNU + AK = DGAMLN(FNUP,IDUM) + AK1R = AK1R - AK + IF (KODE.EQ.2) AK1R = AK1R - ZR + IF (AK1R.GT.(-ELIM)) GO TO 40 + 30 CONTINUE + NZ = NZ + 1 + YR(NN) = ZEROR + YI(NN) = ZEROI + IF (ACZ.GT.DFNU) GO TO 190 + NN = NN - 1 + IF (NN.EQ.0) RETURN + GO TO 20 + 40 CONTINUE + IF (AK1R.GT.(-ALIM)) GO TO 50 + IFLAG = 1 + SS = 1.0D0/TOL + CRSCR = TOL + ASCLE = ARM*SS + 50 CONTINUE + AA = DEXP(AK1R) + IF (IFLAG.EQ.1) AA = AA*SS + COEFR = AA*DCOS(AK1I) + COEFI = AA*DSIN(AK1I) + ATOL = TOL*ACZ/FNUP + IL = MIN0(2,NN) + DO 90 I=1,IL + DFNU = FNU + DBLE(FLOAT(NN-I)) + FNUP = DFNU + 1.0D0 + S1R = CONER + S1I = CONEI + IF (ACZ.LT.TOL*FNUP) GO TO 70 + AK1R = CONER + AK1I = CONEI + AK = FNUP + 2.0D0 + S = FNUP + AA = 2.0D0 + 60 CONTINUE + RS = 1.0D0/S + STR = AK1R*CZR - AK1I*CZI + STI = AK1R*CZI + AK1I*CZR + AK1R = STR*RS + AK1I = STI*RS + S1R = S1R + AK1R + S1I = S1I + AK1I + S = S + AK + AK = AK + 2.0D0 + AA = AA*ACZ*RS + IF (AA.GT.ATOL) GO TO 60 + 70 CONTINUE + S2R = S1R*COEFR - S1I*COEFI + S2I = S1R*COEFI + S1I*COEFR + WR(I) = S2R + WI(I) = S2I + IF (IFLAG.EQ.0) GO TO 80 + CALL ZUCHK(S2R, S2I, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 30 + 80 CONTINUE + M = NN - I + 1 + YR(M) = S2R*CRSCR + YI(M) = S2I*CRSCR + IF (I.EQ.IL) GO TO 90 + CALL ZDIV(COEFR, COEFI, HZR, HZI, STR, STI) + COEFR = STR*DFNU + COEFI = STI*DFNU + 90 CONTINUE + IF (NN.LE.2) RETURN + K = NN - 2 + AK = DBLE(FLOAT(K)) + RAZ = 1.0D0/AZ + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + IF (IFLAG.EQ.1) GO TO 120 + IB = 3 + 100 CONTINUE + DO 110 I=IB,NN + YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2) + YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2) + AK = AK - 1.0D0 + K = K - 1 + 110 CONTINUE + RETURN +!----------------------------------------------------------------------- +! RECUR BACKWARD WITH SCALED VALUES +!----------------------------------------------------------------------- + 120 CONTINUE +!----------------------------------------------------------------------- +! EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION ABOVE THE +! UNDERFLOW LIMIT = ASCLE = D1MACH(1)*SS*1.0D+3 +!----------------------------------------------------------------------- + S1R = WR(1) + S1I = WI(1) + S2R = WR(2) + S2I = WI(2) + DO 130 L=3,NN + CKR = S2R + CKI = S2I + S2R = S1R + (AK+FNU)*(RZR*CKR-RZI*CKI) + S2I = S1I + (AK+FNU)*(RZR*CKI+RZI*CKR) + S1R = CKR + S1I = CKI + CKR = S2R*CRSCR + CKI = S2I*CRSCR + YR(K) = CKR + YI(K) = CKI + AK = AK - 1.0D0 + K = K - 1 + IF (ZABS(CKR,CKI).GT.ASCLE) GO TO 140 + 130 CONTINUE + RETURN + 140 CONTINUE + IB = L + 1 + IF (IB.GT.NN) RETURN + GO TO 100 + 150 CONTINUE + NZ = N + IF (FNU.EQ.0.0D0) NZ = NZ - 1 + 160 CONTINUE + YR(1) = ZEROR + YI(1) = ZEROI + IF (FNU.NE.0.0D0) GO TO 170 + YR(1) = CONER + YI(1) = CONEI + 170 CONTINUE + IF (N.EQ.1) RETURN + DO 180 I=2,N + YR(I) = ZEROR + YI(I) = ZEROI + 180 CONTINUE + RETURN +!----------------------------------------------------------------------- +! RETURN WITH NZ.LT.0 IF CABS(Z*Z/4).GT.FNU+N-NZ-1 COMPLETE +! THE CALCULATION IN CBINU WITH N=N-IABS(NZ) +!----------------------------------------------------------------------- + 190 CONTINUE + NZ = -NZ + RETURN + END + +SUBROUTINE ZASYI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZASYI +!***REFER TO ZBESI,ZBESK + +! ZASYI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY +! MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE +! REGION CABS(Z).GT.MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL RETURN. +! NZ.LT.0 INDICATES AN OVERFLOW ON KODE=1. +! +!***ROUTINES CALLED D1MACH,ZABS,ZDIV,ZEXP,ZMLT,ZSQRT +!***END PROLOGUE ZASYI +! COMPLEX AK1,CK,CONE,CS1,CS2,CZ,CZERO,DK,EZ,P1,RZ,S2,Y,Z + DOUBLE PRECISION AA, AEZ, AK, AK1I, AK1R, ALIM, ARG, ARM, ATOL, & + AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI, & + CZR, DFNU, DKI, DKR, DNU2, ELIM, EZI, EZR, FDN, FNU, PI, P1I, & + P1R, RAZ, RL, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I, & + S2R, TOL, TZI, TZR, YI, YR, ZEROI, ZEROR, ZI, ZR + INTEGER I, IB, IL, INU, J, JL, K, KODE, KODED, M, N, NN, NZ + DIMENSION YR(1), YI(1) + DATA PI, RTPI /3.14159265358979324D0 , 0.159154943091895336D0 / + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + NZ = 0 + AZ = ZABS(ZR,ZI) + ARM = 1.0D+3*D1MACH(1) + RTR1 = DSQRT(ARM) + IL = MIN0(2,N) + DFNU = FNU + DBLE(FLOAT(N-IL)) +!----------------------------------------------------------------------- +! OVERFLOW TEST +!----------------------------------------------------------------------- + RAZ = 1.0D0/AZ + STR = ZR*RAZ + STI = -ZI*RAZ + AK1R = RTPI*STR*RAZ + AK1I = RTPI*STI*RAZ + CALL ZSQRT(AK1R, AK1I, AK1R, AK1I) + CZR = ZR + CZI = ZI + IF (KODE.NE.2) GO TO 10 + CZR = ZEROR + CZI = ZI + 10 CONTINUE + IF (DABS(CZR).GT.ELIM) GO TO 100 + DNU2 = DFNU + DFNU + KODED = 1 + IF ((DABS(CZR).GT.ALIM) .AND. (N.GT.2)) GO TO 20 + KODED = 0 + CALL ZEXP(CZR, CZI, STR, STI) + CALL ZMLT(AK1R, AK1I, STR, STI, AK1R, AK1I) + 20 CONTINUE + FDN = 0.0D0 + IF (DNU2.GT.RTR1) FDN = DNU2*DNU2 + EZR = ZR*8.0D0 + EZI = ZI*8.0D0 +!----------------------------------------------------------------------- +! WHEN Z IS IMAGINARY, THE ERROR TEST MUST BE MADE RELATIVE TO THE +! FIRST RECIPROCAL POWER SINCE THIS IS THE LEADING TERM OF THE +! EXPANSION FOR THE IMAGINARY PART. +!----------------------------------------------------------------------- + AEZ = 8.0D0*AZ + S = TOL/AEZ + JL = INT(SNGL(RL+RL)) + 2 + P1R = ZEROR + P1I = ZEROI + IF (ZI.EQ.0.0D0) GO TO 30 +!----------------------------------------------------------------------- +! CALCULATE EXP(PI*(0.5+FNU+N-IL)*I) TO MINIMIZE LOSSES OF +! SIGNIFICANCE WHEN FNU OR N IS LARGE +!----------------------------------------------------------------------- + INU = INT(SNGL(FNU)) + ARG = (FNU-DBLE(FLOAT(INU)))*PI + INU = INU + N - IL + AK = -DSIN(ARG) + BK = DCOS(ARG) + IF (ZI.LT.0.0D0) BK = -BK + P1R = AK + P1I = BK + IF (MOD(INU,2).EQ.0) GO TO 30 + P1R = -P1R + P1I = -P1I + 30 CONTINUE + DO 70 K=1,IL + SQK = FDN - 1.0D0 + ATOL = S*DABS(SQK) + SGN = 1.0D0 + CS1R = CONER + CS1I = CONEI + CS2R = CONER + CS2I = CONEI + CKR = CONER + CKI = CONEI + AK = 0.0D0 + AA = 1.0D0 + BB = AEZ + DKR = EZR + DKI = EZI + DO 40 J=1,JL + CALL ZDIV(CKR, CKI, DKR, DKI, STR, STI) + CKR = STR*SQK + CKI = STI*SQK + CS2R = CS2R + CKR + CS2I = CS2I + CKI + SGN = -SGN + CS1R = CS1R + CKR*SGN + CS1I = CS1I + CKI*SGN + DKR = DKR + EZR + DKI = DKI + EZI + AA = AA*DABS(SQK)/BB + BB = BB + AEZ + AK = AK + 8.0D0 + SQK = SQK - AK + IF (AA.LE.ATOL) GO TO 50 + 40 CONTINUE + GO TO 110 + 50 CONTINUE + S2R = CS1R + S2I = CS1I + IF (ZR+ZR.GE.ELIM) GO TO 60 + TZR = ZR + ZR + TZI = ZI + ZI + CALL ZEXP(-TZR, -TZI, STR, STI) + CALL ZMLT(STR, STI, P1R, P1I, STR, STI) + CALL ZMLT(STR, STI, CS2R, CS2I, STR, STI) + S2R = S2R + STR + S2I = S2I + STI + 60 CONTINUE + FDN = FDN + 8.0D0*DFNU + 4.0D0 + P1R = -P1R + P1I = -P1I + M = N - IL + K + YR(M) = S2R*AK1R - S2I*AK1I + YI(M) = S2R*AK1I + S2I*AK1R + 70 CONTINUE + IF (N.LE.2) RETURN + NN = N + K = NN - 2 + AK = DBLE(FLOAT(K)) + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + IB = 3 + DO 80 I=IB,NN + YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2) + YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2) + AK = AK - 1.0D0 + K = K - 1 + 80 CONTINUE + IF (KODED.EQ.0) RETURN + CALL ZEXP(CZR, CZI, CKR, CKI) + DO 90 I=1,NN + STR = YR(I)*CKR - YI(I)*CKI + YI(I) = YR(I)*CKI + YI(I)*CKR + YR(I) = STR + 90 CONTINUE + RETURN + 100 CONTINUE + NZ = -1 + RETURN + 110 CONTINUE + NZ=-2 + RETURN + END + +SUBROUTINE ZUOIK(ZR, ZI, FNU, KODE, IKFLG, N, YR, YI, NUF, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUOIK +!***REFER TO ZBESI,ZBESK,ZBESH +! +! ZUOIK COMPUTES THE LEADING TERMS OF THE UNIFORM ASYMPTOTIC +! EXPANSIONS FOR THE I AND K FUNCTIONS AND COMPARES THEM +! (IN LOGARITHMI! FORM) TO ALIM AND ELIM FOR OVER AND UNDERFLOW +! WHERE ALIM.LT.ELIM. IF THE MAGNITUDE, BASED ON THE LEADING +! EXPONENTIAL, IS LESS THAN ALIM OR GREATER THAN -ALIM, THEN +! THE RESULT IS ON SCALE. IF NOT, THEN A REFINED TEST USING OTHER +! MULTIPLIERS (IN LOGARITHMI! FORM) IS MADE BASED ON ELIM. HERE +! EXP(-ELIM)=SMALLEST MACHINE NUMBER*1.0E+3 AND EXP(-ALIM)= +! EXP(-ELIM)/TOL +! +! IKFLG=1 MEANS THE I SEQUENCE IS TESTED +! =2 MEANS THE K SEQUENCE IS TESTED +! NUF = 0 MEANS THE LAST MEMBER OF THE SEQUENCE IS ON SCALE +! =-1 MEANS AN OVERFLOW WOULD OCCUR +! IKFLG=1 AND NUF.GT.0 MEANS THE LAST NUF Y VALUES WERE SET TO ZERO +! THE FIRST N-NUF VALUES MUST BE SET BY ANOTHER ROUTINE +! IKFLG=2 AND NUF.EQ.N MEANS ALL Y VALUES WERE SET TO ZERO +! IKFLG=2 AND 0.LT.NUF.LT.N NOT CONSIDERED. Y MUST BE SET BY +! ANOTHER ROUTINE +! +!***ROUTINES CALLED ZUCHK,ZUNHJ,ZUNIK,D1MACH,ZABS,ZLOG +!***END PROLOGUE ZUOIK +! COMPLEX ARG,ASUM,BSUM,CWRK,CZ,CZERO,PHI,SUM,Y,Z,ZB,ZETA1,ZETA2,ZN, +! *ZR + DOUBLE PRECISION AARG, AIC, ALIM, APHI, ARGI, ARGR, ASUMI, ASUMR, & + ASCLE, AX, AY, BSUMI, BSUMR, CWRKI, CWRKR, CZI, CZR, ELIM, FNN, & + FNU, GNN, GNU, PHII, PHIR, RCZ, STR, STI, SUMI, SUMR, TOL, YI, & + YR, ZBI, ZBR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, & + ZNI, ZNR, ZR, ZRI, ZRR + INTEGER I, IDUM, IFORM, IKFLG, INIT, KODE, N, NN, NUF, NW + DIMENSION YR(1), YI(1), CWRKR(16), CWRKI(16) + DATA ZEROR,ZEROI / 0.0D0, 0.0D0 / + DATA AIC / 1.265512123484645396D+00 / + NUF = 0 + NN = N + ZRR = ZR + ZRI = ZI + IF (ZR.GE.0.0D0) GO TO 10 + ZRR = -ZR + ZRI = -ZI + 10 CONTINUE + ZBR = ZRR + ZBI = ZRI + AX = DABS(ZR)*1.7321D0 + AY = DABS(ZI) + IFORM = 1 + IF (AY.GT.AX) IFORM = 2 + GNU = DMAX1(FNU,1.0D0) + IF (IKFLG.EQ.1) GO TO 20 + FNN = DBLE(FLOAT(NN)) + GNN = FNU + FNN - 1.0D0 + GNU = DMAX1(GNN,FNN) + 20 CONTINUE +!----------------------------------------------------------------------- +! ONLY THE MAGNITUDE OF ARG AND PHI ARE NEEDED ALONG WITH THE +! REAL PARTS OF ZETA1, ZETA2 AND ZB. NO ATTEMPT IS MADE TO GET +! THE SIGN OF THE IMAGINARY PART CORRECT. +!----------------------------------------------------------------------- + IF (IFORM.EQ.2) GO TO 30 + INIT = 0 + CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + GO TO 50 + 30 CONTINUE + ZNR = ZRI + ZNI = -ZRR + IF (ZI.GT.0.0D0) GO TO 40 + ZNR = -ZNR + 40 CONTINUE + CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + AARG = ZABS(ARGR,ARGI) + 50 CONTINUE + IF (KODE.EQ.1) GO TO 60 + CZR = CZR - ZBR + CZI = CZI - ZBI + 60 CONTINUE + IF (IKFLG.EQ.1) GO TO 70 + CZR = -CZR + CZI = -CZI + 70 CONTINUE + APHI = ZABS(PHIR,PHII) + RCZ = CZR +!----------------------------------------------------------------------- +! OVERFLOW TEST +!----------------------------------------------------------------------- + IF (RCZ.GT.ELIM) GO TO 210 + IF (RCZ.LT.ALIM) GO TO 80 + RCZ = RCZ + DLOG(APHI) + IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC + IF (RCZ.GT.ELIM) GO TO 210 + GO TO 130 + 80 CONTINUE +!----------------------------------------------------------------------- +! UNDERFLOW TEST +!----------------------------------------------------------------------- + IF (RCZ.LT.(-ELIM)) GO TO 90 + IF (RCZ.GT.(-ALIM)) GO TO 130 + RCZ = RCZ + DLOG(APHI) + IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC + IF (RCZ.GT.(-ELIM)) GO TO 110 + 90 CONTINUE + DO 100 I=1,NN + YR(I) = ZEROR + YI(I) = ZEROI + 100 CONTINUE + NUF = NN + RETURN + 110 CONTINUE + ASCLE = 1.0D+3*D1MACH(1)/TOL + CALL ZLOG(PHIR, PHII, STR, STI, IDUM) + CZR = CZR + STR + CZI = CZI + STI + IF (IFORM.EQ.1) GO TO 120 + CALL ZLOG(ARGR, ARGI, STR, STI, IDUM) + CZR = CZR - 0.25D0*STR - AIC + CZI = CZI - 0.25D0*STI + 120 CONTINUE + AX = DEXP(RCZ)/TOL + AY = CZI + CZR = AX*DCOS(AY) + CZI = AX*DSIN(AY) + CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 90 + 130 CONTINUE + IF (IKFLG.EQ.2) RETURN + IF (N.EQ.1) RETURN +!----------------------------------------------------------------------- +! SET UNDERFLOWS ON I SEQUENCE +!----------------------------------------------------------------------- + 140 CONTINUE + GNU = FNU + DBLE(FLOAT(NN-1)) + IF (IFORM.EQ.2) GO TO 150 + INIT = 0 + CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + GO TO 160 + 150 CONTINUE + CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + AARG = ZABS(ARGR,ARGI) + 160 CONTINUE + IF (KODE.EQ.1) GO TO 170 + CZR = CZR - ZBR + CZI = CZI - ZBI + 170 CONTINUE + APHI = ZABS(PHIR,PHII) + RCZ = CZR + IF (RCZ.LT.(-ELIM)) GO TO 180 + IF (RCZ.GT.(-ALIM)) RETURN + RCZ = RCZ + DLOG(APHI) + IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC + IF (RCZ.GT.(-ELIM)) GO TO 190 + 180 CONTINUE + YR(NN) = ZEROR + YI(NN) = ZEROI + NN = NN - 1 + NUF = NUF + 1 + IF (NN.EQ.0) RETURN + GO TO 140 + 190 CONTINUE + ASCLE = 1.0D+3*D1MACH(1)/TOL + CALL ZLOG(PHIR, PHII, STR, STI, IDUM) + CZR = CZR + STR + CZI = CZI + STI + IF (IFORM.EQ.1) GO TO 200 + CALL ZLOG(ARGR, ARGI, STR, STI, IDUM) + CZR = CZR - 0.25D0*STR - AIC + CZI = CZI - 0.25D0*STI + 200 CONTINUE + AX = DEXP(RCZ)/TOL + AY = CZI + CZR = AX*DCOS(AY) + CZI = AX*DSIN(AY) + CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 180 + RETURN + 210 CONTINUE + NUF = -1 + RETURN + END + +SUBROUTINE ZBUNI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NUI, NLAST, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZBUNI +!***REFER TO ZBESI,ZBESK +! +! ZBUNI COMPUTES THE I BESSEL FUNCTION FOR LARGE CABS(Z).GT. +! FNUL AND FNU+N-1.LT.FNUL. THE ORDER IS INCREASED FROM +! FNU+N-1 GREATER THAN FNUL BY ADDING NUI AND COMPUTING +! ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR I(FNU,Z) +! ON IFORM=1 AND THE EXPANSION FOR J(FNU,Z) ON IFORM=2 +! +!***ROUTINES CALLED ZUNI1,ZUNI2,ZABS,D1MACH +!***END PROLOGUE ZBUNI +! COMPLEX CSCL,CSCR,CY,RZ,ST,S1,S2,Y,Z + DOUBLE PRECISION ALIM, AX, AY, CSCLR, CSCRR, CYI, CYR, DFNU, & + ELIM, FNU, FNUI, FNUL, GNU, RAZ, RZI, RZR, STI, STR, S1I, S1R, & + S2I, S2R, TOL, YI, YR, ZI, ZR, ASCLE, BRY, C1R, C1I, C1M + INTEGER I, IFLAG, IFORM, K, KODE, N, NL, NLAST, NUI, NW, NZ + DIMENSION YR(1), YI(1), CYR(2), CYI(2), BRY(3) + NZ = 0 + AX = DABS(ZR)*1.7321D0 + AY = DABS(ZI) + IFORM = 1 + IF (AY.GT.AX) IFORM = 2 + IF (NUI.EQ.0) GO TO 60 + FNUI = DBLE(FLOAT(NUI)) + DFNU = FNU + DBLE(FLOAT(N-1)) + GNU = DFNU + FNUI + IF (IFORM.EQ.2) GO TO 10 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN +! -PI/3.LE.ARG(Z).LE.PI/3 +!----------------------------------------------------------------------- + CALL ZUNI1(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU +! APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I +! AND HPI=PI/2 +!----------------------------------------------------------------------- + CALL ZUNI2(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + 20 CONTINUE + IF (NW.LT.0) GO TO 50 + IF (NW.NE.0) GO TO 90 + STR = ZABS(CYR(1),CYI(1)) +!---------------------------------------------------------------------- +! SCALE BACKWARD RECURRENCE, BRY(3) IS DEFINED BUT NEVER USED +!---------------------------------------------------------------------- + BRY(1)=1.0D+3*D1MACH(1)/TOL + BRY(2) = 1.0D0/BRY(1) + BRY(3) = BRY(2) + IFLAG = 2 + ASCLE = BRY(2) + CSCLR = 1.0D0 + IF (STR.GT.BRY(1)) GO TO 21 + IFLAG = 1 + ASCLE = BRY(1) + CSCLR = 1.0D0/TOL + GO TO 25 + 21 CONTINUE + IF (STR.LT.BRY(2)) GO TO 25 + IFLAG = 3 + ASCLE=BRY(3) + CSCLR = TOL + 25 CONTINUE + CSCRR = 1.0D0/CSCLR + S1R = CYR(2)*CSCLR + S1I = CYI(2)*CSCLR + S2R = CYR(1)*CSCLR + S2I = CYI(1)*CSCLR + RAZ = 1.0D0/ZABS(ZR,ZI) + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + DO 30 I=1,NUI + STR = S2R + STI = S2I + S2R = (DFNU+FNUI)*(RZR*STR-RZI*STI) + S1R + S2I = (DFNU+FNUI)*(RZR*STI+RZI*STR) + S1I + S1R = STR + S1I = STI + FNUI = FNUI - 1.0D0 + IF (IFLAG.GE.3) GO TO 30 + STR = S2R*CSCRR + STI = S2I*CSCRR + C1R = DABS(STR) + C1I = DABS(STI) + C1M = DMAX1(C1R,C1I) + IF (C1M.LE.ASCLE) GO TO 30 + IFLAG = IFLAG+1 + ASCLE = BRY(IFLAG) + S1R = S1R*CSCRR + S1I = S1I*CSCRR + S2R = STR + S2I = STI + CSCLR = CSCLR*TOL + CSCRR = 1.0D0/CSCLR + S1R = S1R*CSCLR + S1I = S1I*CSCLR + S2R = S2R*CSCLR + S2I = S2I*CSCLR + 30 CONTINUE + YR(N) = S2R*CSCRR + YI(N) = S2I*CSCRR + IF (N.EQ.1) RETURN + NL = N - 1 + FNUI = DBLE(FLOAT(NL)) + K = NL + DO 40 I=1,NL + STR = S2R + STI = S2I + S2R = (FNU+FNUI)*(RZR*STR-RZI*STI) + S1R + S2I = (FNU+FNUI)*(RZR*STI+RZI*STR) + S1I + S1R = STR + S1I = STI + STR = S2R*CSCRR + STI = S2I*CSCRR + YR(K) = STR + YI(K) = STI + FNUI = FNUI - 1.0D0 + K = K - 1 + IF (IFLAG.GE.3) GO TO 40 + C1R = DABS(STR) + C1I = DABS(STI) + C1M = DMAX1(C1R,C1I) + IF (C1M.LE.ASCLE) GO TO 40 + IFLAG = IFLAG+1 + ASCLE = BRY(IFLAG) + S1R = S1R*CSCRR + S1I = S1I*CSCRR + S2R = STR + S2I = STI + CSCLR = CSCLR*TOL + CSCRR = 1.0D0/CSCLR + S1R = S1R*CSCLR + S1I = S1I*CSCLR + S2R = S2R*CSCLR + S2I = S2I*CSCLR + 40 CONTINUE + RETURN + 50 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN + 60 CONTINUE + IF (IFORM.EQ.2) GO TO 70 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN +! -PI/3.LE.ARG(Z).LE.PI/3 +!----------------------------------------------------------------------- + CALL ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + GO TO 80 + 70 CONTINUE +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU +! APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I +! AND HPI=PI/2 +!----------------------------------------------------------------------- + CALL ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + 80 CONTINUE + IF (NW.LT.0) GO TO 50 + NZ = NW + RETURN + 90 CONTINUE + NLAST = N + RETURN + END + +SUBROUTINE ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUNI1 +!***REFER TO ZBESI,ZBESK +! +! ZUNI1 COMPUTES I(FNU,Z) BY MEANS OF THE UNIFORM ASYMPTOTIC +! EXPANSION FOR I(FNU,Z) IN -PI/3.LE.ARG Z.LE.PI/3. +! +! FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC +! EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET. +! NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER +! FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL. +! Y(I)=CZERO FOR I=NLAST+1,N +! +!***ROUTINES CALLED ZUCHK,ZUNIK,ZUOIK,D1MACH,ZABS +!***END PROLOGUE ZUNI1 +! COMPLEX CFN,CONE,CRSC,CSCL,CSR,CSS,CWRK,CZERO,C1,C2,PHI,RZ,SUM,S1, +! *S2,Y,Z,ZETA1,ZETA2 + DOUBLE PRECISION ALIM, APHI, ASCLE, BRY, CONEI, CONER, CRSC, & + CSCL, CSRR, CSSR, CWRKI, CWRKR, C1R, C2I, C2M, C2R, ELIM, FN, & + FNU, FNUL, PHII, PHIR, RAST, RS1, RZI, RZR, STI, STR, SUMI, & + SUMR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, & + ZETA1R, ZETA2I, ZETA2R, ZI, ZR, CYR, CYI + INTEGER I, IFLAG, INIT, K, KODE, M, N, ND, NLAST, NN, NUF, NW, NZ + DIMENSION BRY(3), YR(1), YI(1), CWRKR(16), CWRKI(16), CSSR(3), & + CSRR(3), CYR(2), CYI(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + NZ = 0 + ND = N + NLAST = 0 +!----------------------------------------------------------------------- +! COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG- +! NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE, +! EXP(ALIM)=EXP(ELIM)*TOL +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CRSC = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CRSC + CSRR(1) = CRSC + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = 1.0D+3*D1MACH(1)/TOL +!----------------------------------------------------------------------- +! CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER +!----------------------------------------------------------------------- + FN = DMAX1(FNU,1.0D0) + INIT = 0 + CALL ZUNIK(ZR, ZI, FN, 1, 1, TOL, INIT, PHIR, PHII, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + IF (KODE.EQ.1) GO TO 10 + STR = ZR + ZETA2R + STI = ZI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + GO TO 20 + 10 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 20 CONTINUE + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 130 + 30 CONTINUE + NN = MIN0(2,ND) + DO 80 I=1,NN + FN = FNU + DBLE(FLOAT(ND-I)) + INIT = 0 + CALL ZUNIK(ZR, ZI, FN, 1, 0, TOL, INIT, PHIR, PHII, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + IF (KODE.EQ.1) GO TO 40 + STR = ZR + ZETA2R + STI = ZI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + ZI + GO TO 50 + 40 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 50 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 110 + IF (I.EQ.1) IFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 60 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIR,PHII) + RS1 = RS1 + DLOG(APHI) + IF (DABS(RS1).GT.ELIM) GO TO 110 + IF (I.EQ.1) IFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 60 + IF (I.EQ.1) IFLAG = 3 + 60 CONTINUE +!----------------------------------------------------------------------- +! SCALE S1 IF CABS(S1).LT.ASCLE +!----------------------------------------------------------------------- + S2R = PHIR*SUMR - PHII*SUMI + S2I = PHIR*SUMI + PHII*SUMR + STR = DEXP(S1R)*CSSR(IFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S2R*S1I + S2I*S1R + S2R = STR + IF (IFLAG.NE.1) GO TO 70 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.NE.0) GO TO 110 + 70 CONTINUE + CYR(I) = S2R + CYI(I) = S2I + M = ND - I + 1 + YR(M) = S2R*CSRR(IFLAG) + YI(M) = S2I*CSRR(IFLAG) + 80 CONTINUE + IF (ND.LE.2) GO TO 100 + RAST = 1.0D0/ZABS(ZR,ZI) + STR = ZR*RAST + STI = -ZI*RAST + RZR = (STR+STR)*RAST + RZI = (STI+STI)*RAST + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + C1R = CSRR(IFLAG) + ASCLE = BRY(IFLAG) + K = ND - 2 + FN = DBLE(FLOAT(K)) + DO 90 I=3,ND + C2R = S2R + C2I = S2I + S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I) + S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R) + S1R = C2R + S1I = C2I + C2R = S2R*C1R + C2I = S2I*C1R + YR(K) = C2R + YI(K) = C2I + K = K - 1 + FN = FN - 1.0D0 + IF (IFLAG.GE.3) GO TO 90 + STR = DABS(C2R) + STI = DABS(C2I) + C2M = DMAX1(STR,STI) + IF (C2M.LE.ASCLE) GO TO 90 + IFLAG = IFLAG + 1 + ASCLE = BRY(IFLAG) + S1R = S1R*C1R + S1I = S1I*C1R + S2R = C2R + S2I = C2I + S1R = S1R*CSSR(IFLAG) + S1I = S1I*CSSR(IFLAG) + S2R = S2R*CSSR(IFLAG) + S2I = S2I*CSSR(IFLAG) + C1R = CSRR(IFLAG) + 90 CONTINUE + 100 CONTINUE + RETURN +!----------------------------------------------------------------------- +! SET UNDERFLOW AND UPDATE PARAMETERS +!----------------------------------------------------------------------- + 110 CONTINUE + IF (RS1.GT.0.0D0) GO TO 120 + YR(ND) = ZEROR + YI(ND) = ZEROI + NZ = NZ + 1 + ND = ND - 1 + IF (ND.EQ.0) GO TO 100 + CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM) + IF (NUF.LT.0) GO TO 120 + ND = ND - NUF + NZ = NZ + NUF + IF (ND.EQ.0) GO TO 100 + FN = FNU + DBLE(FLOAT(ND-1)) + IF (FN.GE.FNUL) GO TO 30 + NLAST = ND + RETURN + 120 CONTINUE + NZ = -1 + RETURN + 130 CONTINUE + IF (RS1.GT.0.0D0) GO TO 120 + NZ = N + DO 140 I=1,N + YR(I) = ZEROR + YI(I) = ZEROI + 140 CONTINUE + RETURN + END + +SUBROUTINE ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUNI2 +!***REFER TO ZBESI,ZBESK +! +! ZUNI2 COMPUTES I(FNU,Z) IN THE RIGHT HALF PLANE BY MEANS OF +! UNIFORM ASYMPTOTIC EXPANSION FOR J(FNU,ZN) WHERE ZN IS Z*I +! OR -Z*I AND ZN IS IN THE RIGHT HALF PLANE ALSO. +! +! FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC +! EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET. +! NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER +! FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL. +! Y(I)=CZERO FOR I=NLAST+1,N +! +!***ROUTINES CALLED ZAIRY,ZUCHK,ZUNHJ,ZUOIK,D1MACH,ZABS +!***END PROLOGUE ZUNI2 +! COMPLEX AI,ARG,ASUM,BSUM,CFN,CI,CID,CIP,CONE,CRSC,CSCL,CSR,CSS, +! *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN + DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGI, & + ARGR, ASCLE, ASUMI, ASUMR, BRY, BSUMI, BSUMR, CIDI, CIPI, CIPR, & + CONEI, CONER, CRSC, CSCL, CSRR, CSSR, C1R, C2I, C2M, C2R, DAII, & + DAIR, ELIM, FN, FNU, FNUL, HPI, PHII, PHIR, RAST, RAZ, RS1, RZI, & + RZR, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZBI, ZBR, ZEROI, & + ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, ZNI, ZNR, ZR, CYR, CYI + INTEGER I, IFLAG, IN, INU, J, K, KODE, N, NAI, ND, NDAI, NLAST, & + NN, NUF, NW, NZ, IDUM + DIMENSION BRY(3), YR(1), YI(1), CIPR(4), CIPI(4), CSSR(3), & + CSRR(3), CYR(2), CYI(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4), & + CIPI(4)/ 1.0D0,0.0D0, 0.0D0,1.0D0, -1.0D0,0.0D0, 0.0D0,-1.0D0/ + DATA HPI, AIC /1.57079632679489662D+00, 1.265512123484645396D+00/ + + NZ = 0 + ND = N + NLAST = 0 +!----------------------------------------------------------------------- +! COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG- +! NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE, +! EXP(ALIM)=EXP(ELIM)*TOL +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CRSC = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CRSC + CSRR(1) = CRSC + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = 1.0D+3*D1MACH(1)/TOL +!----------------------------------------------------------------------- +! ZN IS IN THE RIGHT HALF PLANE AFTER ROTATION BY CI OR -CI +!----------------------------------------------------------------------- + ZNR = ZI + ZNI = -ZR + ZBR = ZR + ZBI = ZI + CIDI = -CONER + INU = INT(SNGL(FNU)) + ANG = HPI*(FNU-DBLE(FLOAT(INU))) + C2R = DCOS(ANG) + C2I = DSIN(ANG) + IN = INU + N - 1 + IN = MOD(IN,4) + 1 + STR = C2R*CIPR(IN) - C2I*CIPI(IN) + C2I = C2R*CIPI(IN) + C2I*CIPR(IN) + C2R = STR + IF (ZI.GT.0.0D0) GO TO 10 + ZNR = -ZNR + ZBI = -ZBI + CIDI = -CIDI + C2I = -C2I + 10 CONTINUE +!----------------------------------------------------------------------- +! CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER +!----------------------------------------------------------------------- + FN = DMAX1(FNU,1.0D0) + CALL ZUNHJ(ZNR, ZNI, FN, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + IF (KODE.EQ.1) GO TO 20 + STR = ZBR + ZETA2R + STI = ZBI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + GO TO 30 + 20 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 30 CONTINUE + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 150 + 40 CONTINUE + NN = MIN0(2,ND) + DO 90 I=1,NN + FN = FNU + DBLE(FLOAT(ND-I)) + CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR, PHII, ARGR, ARGI, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + IF (KODE.EQ.1) GO TO 50 + STR = ZBR + ZETA2R + STI = ZBI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + DABS(ZI) + GO TO 60 + 50 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 60 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 120 + IF (I.EQ.1) IFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 70 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIR,PHII) + AARG = ZABS(ARGR,ARGI) + RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC + IF (DABS(RS1).GT.ELIM) GO TO 120 + IF (I.EQ.1) IFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 70 + IF (I.EQ.1) IFLAG = 3 + 70 CONTINUE +!----------------------------------------------------------------------- +! SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR +! EXPONENT EXTREMES +!----------------------------------------------------------------------- + CALL ZAIRY(ARGR, ARGI, 0, 2, AIR, AII, NAI, IDUM) + CALL ZAIRY(ARGR, ARGI, 1, 2, DAIR, DAII, NDAI, IDUM) + STR = DAIR*BSUMR - DAII*BSUMI + STI = DAIR*BSUMI + DAII*BSUMR + STR = STR + (AIR*ASUMR-AII*ASUMI) + STI = STI + (AIR*ASUMI+AII*ASUMR) + S2R = PHIR*STR - PHII*STI + S2I = PHIR*STI + PHII*STR + STR = DEXP(S1R)*CSSR(IFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S2R*S1I + S2I*S1R + S2R = STR + IF (IFLAG.NE.1) GO TO 80 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.NE.0) GO TO 120 + 80 CONTINUE + IF (ZI.LE.0.0D0) S2I = -S2I + STR = S2R*C2R - S2I*C2I + S2I = S2R*C2I + S2I*C2R + S2R = STR + CYR(I) = S2R + CYI(I) = S2I + J = ND - I + 1 + YR(J) = S2R*CSRR(IFLAG) + YI(J) = S2I*CSRR(IFLAG) + STR = -C2I*CIDI + C2I = C2R*CIDI + C2R = STR + 90 CONTINUE + IF (ND.LE.2) GO TO 110 + RAZ = 1.0D0/ZABS(ZR,ZI) + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + C1R = CSRR(IFLAG) + ASCLE = BRY(IFLAG) + K = ND - 2 + FN = DBLE(FLOAT(K)) + DO 100 I=3,ND + C2R = S2R + C2I = S2I + S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I) + S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R) + S1R = C2R + S1I = C2I + C2R = S2R*C1R + C2I = S2I*C1R + YR(K) = C2R + YI(K) = C2I + K = K - 1 + FN = FN - 1.0D0 + IF (IFLAG.GE.3) GO TO 100 + STR = DABS(C2R) + STI = DABS(C2I) + C2M = DMAX1(STR,STI) + IF (C2M.LE.ASCLE) GO TO 100 + IFLAG = IFLAG + 1 + ASCLE = BRY(IFLAG) + S1R = S1R*C1R + S1I = S1I*C1R + S2R = C2R + S2I = C2I + S1R = S1R*CSSR(IFLAG) + S1I = S1I*CSSR(IFLAG) + S2R = S2R*CSSR(IFLAG) + S2I = S2I*CSSR(IFLAG) + C1R = CSRR(IFLAG) + 100 CONTINUE + 110 CONTINUE + RETURN + 120 CONTINUE + IF (RS1.GT.0.0D0) GO TO 140 +!----------------------------------------------------------------------- +! SET UNDERFLOW AND UPDATE PARAMETERS +!----------------------------------------------------------------------- + YR(ND) = ZEROR + YI(ND) = ZEROI + NZ = NZ + 1 + ND = ND - 1 + IF (ND.EQ.0) GO TO 110 + CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM) + IF (NUF.LT.0) GO TO 140 + ND = ND - NUF + NZ = NZ + NUF + IF (ND.EQ.0) GO TO 110 + FN = FNU + DBLE(FLOAT(ND-1)) + IF (FN.LT.FNUL) GO TO 130 + FN = CIDI + J = NUF + 1 + K = MOD(J,4) + 1 + S1R = CIPR(K) + S1I = CIPI(K) + IF (FN.LT.0.0D0) S1I = -S1I + STR = C2R*S1R - C2I*S1I + C2I = C2R*S1I + C2I*S1R + C2R = STR + GO TO 40 + 130 CONTINUE + NLAST = ND + RETURN + 140 CONTINUE + NZ = -1 + RETURN + 150 CONTINUE + IF (RS1.GT.0.0D0) GO TO 140 + NZ = N + DO 160 I=1,N + YR(I) = ZEROR + YI(I) = ZEROI + 160 CONTINUE + RETURN + END + +SUBROUTINE ZWRSK(ZRR, ZRI, FNU, KODE, N, YR, YI, NZ, CWR, CWI, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZWRSK +!***REFER TO ZBESI,ZBESK +! +! ZWRSK COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY +! NORMALIZING THE I FUNCTION RATIOS FROM ZRATI BY THE WRONSKIAN +! +!***ROUTINES CALLED D1MACH,ZBKNU,ZRATI,ZABS +!***END PROLOGUE ZWRSK +! COMPLEX CINU,CSCL,CT,CW,C1,C2,RCT,ST,Y,ZR + DOUBLE PRECISION ACT, ACW, ALIM, ASCLE, CINUI, CINUR, CSCLR, CTI, & + CTR, CWI, CWR, C1I, C1R, C2I, C2R, ELIM, FNU, PTI, PTR, RACT, & + STI, STR, TOL, YI, YR, ZRI, ZRR + INTEGER I, KODE, N, NW, NZ + DIMENSION YR(1), YI(1), CWR(2), CWI(2) +!----------------------------------------------------------------------- +! I(FNU+I-1,Z) BY BACKWARD RECURRENCE FOR RATIOS +! Y(I)=I(FNU+I,Z)/I(FNU+I-1,Z) FROM CRATI NORMALIZED BY THE +! WRONSKIAN WITH K(FNU,Z) AND K(FNU+1,Z) FROM CBKNU. +!----------------------------------------------------------------------- + NZ = 0 + CALL ZBKNU(ZRR, ZRI, FNU, KODE, 2, CWR, CWI, NW, TOL, ELIM, ALIM) + IF (NW.NE.0) GO TO 50 + CALL ZRATI(ZRR, ZRI, FNU, N, YR, YI, TOL) +!----------------------------------------------------------------------- +! RECUR FORWARD ON I(FNU+1,Z) = R(FNU,Z)*I(FNU,Z), +! R(FNU+J-1,Z)=Y(J), J=1,...,N +!----------------------------------------------------------------------- + CINUR = 1.0D0 + CINUI = 0.0D0 + IF (KODE.EQ.1) GO TO 10 + CINUR = DCOS(ZRI) + CINUI = DSIN(ZRI) + 10 CONTINUE +!----------------------------------------------------------------------- +! ON LOW EXPONENT MACHINES THE K FUNCTIONS CAN BE CLOSE TO BOTH +! THE UNDER AND OVERFLOW LIMITS AND THE NORMALIZATION MUST BE +! SCALED TO PREVENT OVER OR UNDERFLOW. CUOIK HAS DETERMINED THAT +! THE RESULT IS ON SCALE. +!----------------------------------------------------------------------- + ACW = ZABS(CWR(2),CWI(2)) + ASCLE = 1.0D+3*D1MACH(1)/TOL + CSCLR = 1.0D0 + IF (ACW.GT.ASCLE) GO TO 20 + CSCLR = 1.0D0/TOL + GO TO 30 + 20 CONTINUE + ASCLE = 1.0D0/ASCLE + IF (ACW.LT.ASCLE) GO TO 30 + CSCLR = TOL + 30 CONTINUE + C1R = CWR(1)*CSCLR + C1I = CWI(1)*CSCLR + C2R = CWR(2)*CSCLR + C2I = CWI(2)*CSCLR + STR = YR(1) + STI = YI(1) +!----------------------------------------------------------------------- +! CINU=CINU*(CONJG(CT)/CABS(CT))*(1.0D0/CABS(CT) PREVENTS +! UNDER- OR OVERFLOW PREMATURELY BY SQUARING CABS(CT) +!----------------------------------------------------------------------- + PTR = STR*C1R - STI*C1I + PTI = STR*C1I + STI*C1R + PTR = PTR + C2R + PTI = PTI + C2I + CTR = ZRR*PTR - ZRI*PTI + CTI = ZRR*PTI + ZRI*PTR + ACT = ZABS(CTR,CTI) + RACT = 1.0D0/ACT + CTR = CTR*RACT + CTI = -CTI*RACT + PTR = CINUR*RACT + PTI = CINUI*RACT + CINUR = PTR*CTR - PTI*CTI + CINUI = PTR*CTI + PTI*CTR + YR(1) = CINUR*CSCLR + YI(1) = CINUI*CSCLR + IF (N.EQ.1) RETURN + DO 40 I=2,N + PTR = STR*CINUR - STI*CINUI + CINUI = STR*CINUI + STI*CINUR + CINUR = PTR + STR = YR(I) + STI = YI(I) + YR(I) = CINUR*CSCLR + YI(I) = CINUI*CSCLR + 40 CONTINUE + RETURN + 50 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN +END + +SUBROUTINE ZBKNU(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZBKNU +!***REFER TO ZBESI,ZBESK,ZAIRY,ZBESH +! +! ZBKNU COMPUTES THE K BESSEL FUNCTION IN THE RIGHT HALF Z PLANE. +! +!***ROUTINES CALLED DGAMLN,I1MACH,D1MACH,ZKSCL,ZSHCH,ZUCHK,ZABS,ZDIV, +! ZEXP,ZLOG,ZMLT,ZSQRT +!***END PROLOGUE ZBKNU +! + DOUBLE PRECISION AA, AK, ALIM, ASCLE, A1, A2, BB, BK, BRY, CAZ, & + CBI, CBR, CC, CCHI, CCHR, CKI, CKR, COEFI, COEFR, CONEI, CONER, & + CRSCR, CSCLR, CSHI, CSHR, CSI, CSR, CSRR, CSSR, CTWOI, CTWOR, & + CZEROI, CZEROR, CZI, CZR, DNU, DNU2, DPI, ELIM, ETEST, FC, FHS, & + FI, FK, FKS, FMUI, FMUR, FNU, FPI, FR, G1, G2, HPI, PI, PR, PTI,& + PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI, & + RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM, & + TOL, TTH, T1, T2, YI, YR, ZI, ZR, ELM, CELMR, ZDR, ZDI, & + AS, ALAS, HELIM, CYR, CYI!, DGAMLN + INTEGER I, IFLAG, INU, K, KFLAG, KK, KMAX, KODE, KODED, N, NZ, & + IDUM, J, IC, INUB, NW + DIMENSION YR(N), YI(N), CC(8), CSSR(3), CSRR(3), BRY(3), CYR(2),& + CYI(2) +! COMPLEX Z,Y,A,B,RZ,SMU,FU,FMU,F,FLRZ,CZ,S1,S2,CSH,CCH +! COMPLEX CK,P,Q,COEF,P1,P2,CBK,PT,CZERO,CONE,CTWO,ST,EZ,CS,DK + + DATA KMAX / 30 / + DATA CZEROR,CZEROI,CONER,CONEI,CTWOR,CTWOI,R1/ & + 0.0D0 , 0.0D0 , 1.0D0 , 0.0D0 , 2.0D0 , 0.0D0 , 2.0D0 / + DATA DPI, RTHPI, SPI ,HPI, FPI, TTH / & + 3.14159265358979324D0, 1.25331413731550025D0, & + 1.90985931710274403D0, 1.57079632679489662D0, & + 1.89769999331517738D0, 6.66666666666666666D-01/ + DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)/ & + 5.77215664901532861D-01, -4.20026350340952355D-02, & + -4.21977345555443367D-02, 7.21894324666309954D-03, & + -2.15241674114950973D-04, -2.01348547807882387D-05, & + 1.13302723198169588D-06, 6.11609510448141582D-09/ + + CAZ = ZABS(ZR,ZI) + CSCLR = 1.0D0/TOL + CRSCR = TOL + CSSR(1) = CSCLR + CSSR(2) = 1.0D0 + CSSR(3) = CRSCR + CSRR(1) = CRSCR + CSRR(2) = 1.0D0 + CSRR(3) = CSCLR + BRY(1) = 1.0D+3*D1MACH(1)/TOL + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + NZ = 0 + IFLAG = 0 + KODED = KODE + RCAZ = 1.0D0/CAZ + STR = ZR*RCAZ + STI = -ZI*RCAZ + RZR = (STR+STR)*RCAZ + RZI = (STI+STI)*RCAZ + INU = INT(SNGL(FNU+0.5D0)) + DNU = FNU - DBLE(FLOAT(INU)) + IF (DABS(DNU).EQ.0.5D0) GO TO 110 + DNU2 = 0.0D0 + IF (DABS(DNU).GT.TOL) DNU2 = DNU*DNU + IF (CAZ.GT.R1) GO TO 110 +!----------------------------------------------------------------------- +! SERIES FOR CABS(Z).LE.R1 +!----------------------------------------------------------------------- + FC = 1.0D0 + CALL ZLOG(RZR, RZI, SMUR, SMUI, IDUM) + FMUR = SMUR*DNU + FMUI = SMUI*DNU + CALL ZSHCH(FMUR, FMUI, CSHR, CSHI, CCHR, CCHI) + IF (DNU.EQ.0.0D0) GO TO 10 + FC = DNU*DPI + FC = FC/DSIN(FC) + SMUR = CSHR/DNU + SMUI = CSHI/DNU + 10 CONTINUE + A2 = 1.0D0 + DNU +!----------------------------------------------------------------------- +! GAM(1-Z)*GAM(1+Z)=PI*Z/SIN(PI*Z), T1=1/GAM(1-DNU), T2=1/GAM(1+DNU) +!----------------------------------------------------------------------- + T2 = DEXP(-DGAMLN(A2,IDUM)) + T1 = 1.0D0/(T2*FC) + IF (DABS(DNU).GT.0.1D0) GO TO 40 +!----------------------------------------------------------------------- +! SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU) +!----------------------------------------------------------------------- + AK = 1.0D0 + S = CC(1) + DO 20 K=2,8 + AK = AK*DNU2 + TM = CC(K)*AK + S = S + TM + IF (DABS(TM).LT.TOL) GO TO 30 + 20 CONTINUE + 30 G1 = -S + GO TO 50 + 40 CONTINUE + G1 = (T1-T2)/(DNU+DNU) + 50 CONTINUE + G2 = (T1+T2)*0.5D0 + FR = FC*(CCHR*G1+SMUR*G2) + FI = FC*(CCHI*G1+SMUI*G2) + CALL ZEXP(FMUR, FMUI, STR, STI) + PR = 0.5D0*STR/T2 + PI = 0.5D0*STI/T2 + CALL ZDIV(0.5D0, 0.0D0, STR, STI, PTR, PTI) + QR = PTR/T1 + QI = PTI/T1 + S1R = FR + S1I = FI + S2R = PR + S2I = PI + AK = 1.0D0 + A1 = 1.0D0 + CKR = CONER + CKI = CONEI + BK = 1.0D0 - DNU2 + IF (INU.GT.0 .OR. N.GT.1) GO TO 80 +!----------------------------------------------------------------------- +! GENERATE K(FNU,Z), 0.0D0 .LE. FNU .LT. 0.5D0 AND N=1 +!----------------------------------------------------------------------- + IF (CAZ.LT.TOL) GO TO 70 + CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI) + CZR = 0.25D0*CZR + CZI = 0.25D0*CZI + T1 = 0.25D0*CAZ*CAZ + 60 CONTINUE + FR = (FR*AK+PR+QR)/BK + FI = (FI*AK+PI+QI)/BK + STR = 1.0D0/(AK-DNU) + PR = PR*STR + PI = PI*STR + STR = 1.0D0/(AK+DNU) + QR = QR*STR + QI = QI*STR + STR = CKR*CZR - CKI*CZI + RAK = 1.0D0/AK + CKI = (CKR*CZI+CKI*CZR)*RAK + CKR = STR*RAK + S1R = CKR*FR - CKI*FI + S1R + S1I = CKR*FI + CKI*FR + S1I + A1 = A1*T1*RAK + BK = BK + AK + AK + 1.0D0 + AK = AK + 1.0D0 + IF (A1.GT.TOL) GO TO 60 + 70 CONTINUE + YR(1) = S1R + YI(1) = S1I + IF (KODED.EQ.1) RETURN + CALL ZEXP(ZR, ZI, STR, STI) + CALL ZMLT(S1R, S1I, STR, STI, YR(1), YI(1)) + RETURN +!----------------------------------------------------------------------- +! GENERATE K(DNU,Z) AND K(DNU+1,Z) FOR FORWARD RECURRENCE +!----------------------------------------------------------------------- + 80 CONTINUE + IF (CAZ.LT.TOL) GO TO 100 + CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI) + CZR = 0.25D0*CZR + CZI = 0.25D0*CZI + T1 = 0.25D0*CAZ*CAZ + 90 CONTINUE + FR = (FR*AK+PR+QR)/BK + FI = (FI*AK+PI+QI)/BK + STR = 1.0D0/(AK-DNU) + PR = PR*STR + PI = PI*STR + STR = 1.0D0/(AK+DNU) + QR = QR*STR + QI = QI*STR + STR = CKR*CZR - CKI*CZI + RAK = 1.0D0/AK + CKI = (CKR*CZI+CKI*CZR)*RAK + CKR = STR*RAK + S1R = CKR*FR - CKI*FI + S1R + S1I = CKR*FI + CKI*FR + S1I + STR = PR - FR*AK + STI = PI - FI*AK + S2R = CKR*STR - CKI*STI + S2R + S2I = CKR*STI + CKI*STR + S2I + A1 = A1*T1*RAK + BK = BK + AK + AK + 1.0D0 + AK = AK + 1.0D0 + IF (A1.GT.TOL) GO TO 90 + 100 CONTINUE + KFLAG = 2 + A1 = FNU + 1.0D0 + AK = A1*DABS(SMUR) + IF (AK.GT.ALIM) KFLAG = 3 + STR = CSSR(KFLAG) + P2R = S2R*STR + P2I = S2I*STR + CALL ZMLT(P2R, P2I, RZR, RZI, S2R, S2I) + S1R = S1R*STR + S1I = S1I*STR + IF (KODED.EQ.1) GO TO 210 + CALL ZEXP(ZR, ZI, FR, FI) + CALL ZMLT(S1R, S1I, FR, FI, S1R, S1I) + CALL ZMLT(S2R, S2I, FR, FI, S2R, S2I) + GO TO 210 +!----------------------------------------------------------------------- +! IFLAG=0 MEANS NO UNDERFLOW OCCURRED +! IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH +! KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD +! RECURSION +!----------------------------------------------------------------------- + 110 CONTINUE + CALL ZSQRT(ZR, ZI, STR, STI) + CALL ZDIV(RTHPI, CZEROI, STR, STI, COEFR, COEFI) + KFLAG = 2 + IF (KODED.EQ.2) GO TO 120 + IF (ZR.GT.ALIM) GO TO 290 +! BLANK LINE + STR = DEXP(-ZR)*CSSR(KFLAG) + STI = -STR*DSIN(ZI) + STR = STR*DCOS(ZI) + CALL ZMLT(COEFR, COEFI, STR, STI, COEFR, COEFI) + 120 CONTINUE + IF (DABS(DNU).EQ.0.5D0) GO TO 300 +!----------------------------------------------------------------------- +! MILLER ALGORITHM FOR CABS(Z).GT.R1 +!----------------------------------------------------------------------- + AK = DCOS(DPI*DNU) + AK = DABS(AK) + IF (AK.EQ.CZEROR) GO TO 300 + FHS = DABS(0.25D0-DNU2) + IF (FHS.EQ.CZEROR) GO TO 300 +!----------------------------------------------------------------------- +! COMPUTE R2=F(E). IF CABS(Z).GE.R2, USE FORWARD RECURRENCE TO +! DETERMINE THE BACKWARD INDEX K. R2=F(E) IS A STRAIGHT LINE ON +! 12.LE.E.LE.60. E IS COMPUTED FROM 2**(-E)=B**(1-I1MACH(14))= +! TOL WHERE B IS THE BASE OF THE ARITHMETIC. +!----------------------------------------------------------------------- + T1 = DBLE(FLOAT(I1MACH(14)-1)) + T1 = T1*D1MACH(5)*3.321928094D0 + T1 = DMAX1(T1,12.0D0) + T1 = DMIN1(T1,60.0D0) + T2 = TTH*T1 - 6.0D0 + IF (ZR.NE.0.0D0) GO TO 130 + T1 = HPI + GO TO 140 + 130 CONTINUE + T1 = DATAN(ZI/ZR) + T1 = DABS(T1) + 140 CONTINUE + IF (T2.GT.CAZ) GO TO 170 +!----------------------------------------------------------------------- +! FORWARD RECURRENCE LOOP WHEN CABS(Z).GE.R2 +!----------------------------------------------------------------------- + ETEST = AK/(DPI*CAZ*TOL) + FK = CONER + IF (ETEST.LT.CONER) GO TO 180 + FKS = CTWOR + CKR = CAZ + CAZ + CTWOR + P1R = CZEROR + P2R = CONER + DO 150 I=1,KMAX + AK = FHS/FKS + CBR = CKR/(FK+CONER) + PTR = P2R + P2R = CBR*P2R - P1R*AK + P1R = PTR + CKR = CKR + CTWOR + FKS = FKS + FK + FK + CTWOR + FHS = FHS + FK + FK + FK = FK + CONER + STR = DABS(P2R)*FK + IF (ETEST.LT.STR) GO TO 160 + 150 CONTINUE + GO TO 310 + 160 CONTINUE + FK = FK + SPI*T1*DSQRT(T2/CAZ) + FHS = DABS(0.25D0-DNU2) + GO TO 180 + 170 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE BACKWARD INDEX K FOR CABS(Z).LT.R2 +!----------------------------------------------------------------------- + A2 = DSQRT(CAZ) + AK = FPI*AK/(TOL*DSQRT(A2)) + AA = 3.0D0*T1/(1.0D0+CAZ) + BB = 14.7D0*T1/(28.0D0+CAZ) + AK = (DLOG(AK)+CAZ*DCOS(AA)/(1.0D0+0.008D0*CAZ))/DCOS(BB) + FK = 0.12125D0*AK*AK/CAZ + 1.5D0 + 180 CONTINUE +!----------------------------------------------------------------------- +! BACKWARD RECURRENCE LOOP FOR MILLER ALGORITHM +!----------------------------------------------------------------------- + K = INT(SNGL(FK)) + FK = DBLE(FLOAT(K)) + FKS = FK*FK + P1R = CZEROR + P1I = CZEROI + P2R = TOL + P2I = CZEROI + CSR = P2R + CSI = P2I + DO 190 I=1,K + A1 = FKS - FK + AK = (FKS+FK)/(A1+FHS) + RAK = 2.0D0/(FK+CONER) + CBR = (FK+ZR)*RAK + CBI = ZI*RAK + PTR = P2R + PTI = P2I + P2R = (PTR*CBR-PTI*CBI-P1R)*AK + P2I = (PTI*CBR+PTR*CBI-P1I)*AK + P1R = PTR + P1I = PTI + CSR = CSR + P2R + CSI = CSI + P2I + FKS = A1 - FK + CONER + FK = FK - CONER + 190 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER +! SCALING +!----------------------------------------------------------------------- + TM = ZABS(CSR,CSI) + PTR = 1.0D0/TM + S1R = P2R*PTR + S1I = P2I*PTR + CSR = CSR*PTR + CSI = -CSI*PTR + CALL ZMLT(COEFR, COEFI, S1R, S1I, STR, STI) + CALL ZMLT(STR, STI, CSR, CSI, S1R, S1I) + IF (INU.GT.0 .OR. N.GT.1) GO TO 200 + ZDR = ZR + ZDI = ZI + IF(IFLAG.EQ.1) GO TO 270 + GO TO 240 + 200 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING +!----------------------------------------------------------------------- + TM = ZABS(P2R,P2I) + PTR = 1.0D0/TM + P1R = P1R*PTR + P1I = P1I*PTR + P2R = P2R*PTR + P2I = -P2I*PTR + CALL ZMLT(P1R, P1I, P2R, P2I, PTR, PTI) + STR = DNU + 0.5D0 - PTR + STI = -PTI + CALL ZDIV(STR, STI, ZR, ZI, STR, STI) + STR = STR + 1.0D0 + CALL ZMLT(STR, STI, S1R, S1I, S2R, S2I) +!----------------------------------------------------------------------- +! FORWARD RECURSION ON THE THREE TERM RECURSION WITH RELATION WITH +! SCALING NEAR EXPONENT EXTREMES ON KFLAG=1 OR KFLAG=3 +!----------------------------------------------------------------------- + 210 CONTINUE + STR = DNU + 1.0D0 + CKR = STR*RZR + CKI = STR*RZI + IF (N.EQ.1) INU = INU - 1 + IF (INU.GT.0) GO TO 220 + IF (N.GT.1) GO TO 215 + S1R = S2R + S1I = S2I + 215 CONTINUE + ZDR = ZR + ZDI = ZI + IF(IFLAG.EQ.1) GO TO 270 + GO TO 240 + 220 CONTINUE + INUB = 1 + IF(IFLAG.EQ.1) GO TO 261 + 225 CONTINUE + P1R = CSRR(KFLAG) + ASCLE = BRY(KFLAG) + DO 230 I=INUB,INU + STR = S2R + STI = S2I + S2R = CKR*STR - CKI*STI + S1R + S2I = CKR*STI + CKI*STR + S1I + S1R = STR + S1I = STI + CKR = CKR + RZR + CKI = CKI + RZI + IF (KFLAG.GE.3) GO TO 230 + P2R = S2R*P1R + P2I = S2I*P1R + STR = DABS(P2R) + STI = DABS(P2I) + P2M = DMAX1(STR,STI) + IF (P2M.LE.ASCLE) GO TO 230 + KFLAG = KFLAG + 1 + ASCLE = BRY(KFLAG) + S1R = S1R*P1R + S1I = S1I*P1R + S2R = P2R + S2I = P2I + STR = CSSR(KFLAG) + S1R = S1R*STR + S1I = S1I*STR + S2R = S2R*STR + S2I = S2I*STR + P1R = CSRR(KFLAG) + 230 CONTINUE + IF (N.NE.1) GO TO 240 + S1R = S2R + S1I = S2I + 240 CONTINUE + STR = CSRR(KFLAG) + YR(1) = S1R*STR + YI(1) = S1I*STR + IF (N.EQ.1) RETURN + YR(2) = S2R*STR + YI(2) = S2I*STR + IF (N.EQ.2) RETURN + KK = 2 + 250 CONTINUE + KK = KK + 1 + IF (KK.GT.N) RETURN + P1R = CSRR(KFLAG) + ASCLE = BRY(KFLAG) + DO 260 I=KK,N + P2R = S2R + P2I = S2I + S2R = CKR*P2R - CKI*P2I + S1R + S2I = CKI*P2R + CKR*P2I + S1I + S1R = P2R + S1I = P2I + CKR = CKR + RZR + CKI = CKI + RZI + P2R = S2R*P1R + P2I = S2I*P1R + YR(I) = P2R + YI(I) = P2I + IF (KFLAG.GE.3) GO TO 260 + STR = DABS(P2R) + STI = DABS(P2I) + P2M = DMAX1(STR,STI) + IF (P2M.LE.ASCLE) GO TO 260 + KFLAG = KFLAG + 1 + ASCLE = BRY(KFLAG) + S1R = S1R*P1R + S1I = S1I*P1R + S2R = P2R + S2I = P2I + STR = CSSR(KFLAG) + S1R = S1R*STR + S1I = S1I*STR + S2R = S2R*STR + S2I = S2I*STR + P1R = CSRR(KFLAG) + 260 CONTINUE + RETURN +!----------------------------------------------------------------------- +! IFLAG=1 CASES, FORWARD RECURRENCE ON SCALED VALUES ON UNDERFLOW +!----------------------------------------------------------------------- + 261 CONTINUE + HELIM = 0.5D0*ELIM + ELM = DEXP(-ELIM) + CELMR = ELM + ASCLE = BRY(1) + ZDR = ZR + ZDI = ZI + IC = -1 + J = 2 + DO 262 I=1,INU + STR = S2R + STI = S2I + S2R = STR*CKR-STI*CKI+S1R + S2I = STI*CKR+STR*CKI+S1I + S1R = STR + S1I = STI + CKR = CKR+RZR + CKI = CKI+RZI + AS = ZABS(S2R,S2I) + ALAS = DLOG(AS) + P2R = -ZDR+ALAS + IF(P2R.LT.(-ELIM)) GO TO 263 + CALL ZLOG(S2R,S2I,STR,STI,IDUM) + P2R = -ZDR+STR + P2I = -ZDI+STI + P2M = DEXP(P2R)/TOL + P1R = P2M*DCOS(P2I) + P1I = P2M*DSIN(P2I) + CALL ZUCHK(P1R,P1I,NW,ASCLE,TOL) + IF(NW.NE.0) GO TO 263 + J = 3 - J + CYR(J) = P1R + CYI(J) = P1I + IF(IC.EQ.(I-1)) GO TO 264 + IC = I + GO TO 262 + 263 CONTINUE + IF(ALAS.LT.HELIM) GO TO 262 + ZDR = ZDR-ELIM + S1R = S1R*CELMR + S1I = S1I*CELMR + S2R = S2R*CELMR + S2I = S2I*CELMR + 262 CONTINUE + IF(N.NE.1) GO TO 270 + S1R = S2R + S1I = S2I + GO TO 270 + 264 CONTINUE + KFLAG = 1 + INUB = I+1 + S2R = CYR(J) + S2I = CYI(J) + J = 3 - J + S1R = CYR(J) + S1I = CYI(J) + IF(INUB.LE.INU) GO TO 225 + IF(N.NE.1) GO TO 240 + S1R = S2R + S1I = S2I + GO TO 240 + 270 CONTINUE + YR(1) = S1R + YI(1) = S1I + IF(N.EQ.1) GO TO 280 + YR(2) = S2R + YI(2) = S2I + 280 CONTINUE + ASCLE = BRY(1) + CALL ZKSCL(ZDR,ZDI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM) + INU = N - NZ + IF (INU.LE.0) RETURN + KK = NZ + 1 + S1R = YR(KK) + S1I = YI(KK) + YR(KK) = S1R*CSRR(1) + YI(KK) = S1I*CSRR(1) + IF (INU.EQ.1) RETURN + KK = NZ + 2 + S2R = YR(KK) + S2I = YI(KK) + YR(KK) = S2R*CSRR(1) + YI(KK) = S2I*CSRR(1) + IF (INU.EQ.2) RETURN + T2 = FNU + DBLE(FLOAT(KK-1)) + CKR = T2*RZR + CKI = T2*RZI + KFLAG = 1 + GO TO 250 + 290 CONTINUE +!----------------------------------------------------------------------- +! SCALE BY DEXP(Z), IFLAG = 1 CASES +!----------------------------------------------------------------------- + KODED = 2 + IFLAG = 1 + KFLAG = 2 + GO TO 120 +!----------------------------------------------------------------------- +! FNU=HALF ODD INTEGER CASE, DNU=-0.5 +!----------------------------------------------------------------------- + 300 CONTINUE + S1R = COEFR + S1I = COEFI + S2R = COEFR + S2I = COEFI + GO TO 210 + + 310 CONTINUE + NZ=-2 + RETURN +END + +SUBROUTINE ZKSCL(ZRR,ZRI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM) +USE COMPLEX +!***BEGIN PROLOGUE ZKSCL +!***REFER TO ZBESK +! +! SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE +! ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN +! RETURN WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL. +! +!***ROUTINES CALLED ZUCHK,ZABS,ZLOG +!***END PROLOGUE ZKSCL +! COMPLEX CK,CS,CY,CZERO,RZ,S1,S2,Y,ZR,ZD,CELM + DOUBLE PRECISION ACS, AS, ASCLE, CKI, CKR, CSI, CSR, CYI, & + CYR, ELIM, FN, FNU, RZI, RZR, STR, S1I, S1R, S2I, S2R, & + TOL, YI, YR, ZEROI, ZEROR, ZRI, ZRR, ZDR, ZDI, CELMR, & + ELM, HELIM, ALAS + INTEGER I, IC, IDUM, KK, N, NN, NW, NZ + DIMENSION YR(1), YI(1), CYR(2), CYI(2) + DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 / + + NZ = 0 + IC = 0 + NN = MIN0(2,N) + DO 10 I=1,NN + S1R = YR(I) + S1I = YI(I) + CYR(I) = S1R + CYI(I) = S1I + AS = ZABS(S1R,S1I) + ACS = -ZRR + DLOG(AS) + NZ = NZ + 1 + YR(I) = ZEROR + YI(I) = ZEROI + IF (ACS.LT.(-ELIM)) GO TO 10 + CALL ZLOG(S1R, S1I, CSR, CSI, IDUM) + CSR = CSR - ZRR + CSI = CSI - ZRI + STR = DEXP(CSR)/TOL + CSR = STR*DCOS(CSI) + CSI = STR*DSIN(CSI) + CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 10 + YR(I) = CSR + YI(I) = CSI + IC = I + NZ = NZ - 1 + 10 CONTINUE + IF (N.EQ.1) RETURN + IF (IC.GT.1) GO TO 20 + YR(1) = ZEROR + YI(1) = ZEROI + NZ = 2 + 20 CONTINUE + IF (N.EQ.2) RETURN + IF (NZ.EQ.0) RETURN + FN = FNU + 1.0D0 + CKR = FN*RZR + CKI = FN*RZI + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + HELIM = 0.5D0*ELIM + ELM = DEXP(-ELIM) + CELMR = ELM + ZDR = ZRR + ZDI = ZRI + +! FIND TWO CONSECUTIVE Y VALUES ON SCALE. SCALE RECURRENCE IF +! S2 GETS LARGER THAN EXP(ELIM/2) + + DO 30 I=3,N + KK = I + CSR = S2R + CSI = S2I + S2R = CKR*CSR - CKI*CSI + S1R + S2I = CKI*CSR + CKR*CSI + S1I + S1R = CSR + S1I = CSI + CKR = CKR + RZR + CKI = CKI + RZI + AS = ZABS(S2R,S2I) + ALAS = DLOG(AS) + ACS = -ZDR + ALAS + NZ = NZ + 1 + YR(I) = ZEROR + YI(I) = ZEROI + IF (ACS.LT.(-ELIM)) GO TO 25 + CALL ZLOG(S2R, S2I, CSR, CSI, IDUM) + CSR = CSR - ZDR + CSI = CSI - ZDI + STR = DEXP(CSR)/TOL + CSR = STR*DCOS(CSI) + CSI = STR*DSIN(CSI) + CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 25 + YR(I) = CSR + YI(I) = CSI + NZ = NZ - 1 + IF (IC.EQ.KK-1) GO TO 40 + IC = KK + GO TO 30 + 25 CONTINUE + IF(ALAS.LT.HELIM) GO TO 30 + ZDR = ZDR - ELIM + S1R = S1R*CELMR + S1I = S1I*CELMR + S2R = S2R*CELMR + S2I = S2I*CELMR + 30 CONTINUE + NZ = N + IF(IC.EQ.N) NZ=N-1 + GO TO 45 + 40 CONTINUE + NZ = KK - 2 + 45 CONTINUE + DO 50 I=1,NZ + YR(I) = ZEROR + YI(I) = ZEROI + 50 CONTINUE + RETURN +END + +SUBROUTINE ZSHCH(ZR, ZI, CSHR, CSHI, CCHR, CCHI) +!***BEGIN PROLOGUE ZSHCH +!***REFER TO ZBESK,ZBESH +! +! ZSHCH COMPUTES THE COMPLEX HYPERBOLI! FUNCTIONS CSH=SINH(X+I*Y) +! AND CCH=COSH(X+I*Y), WHERE I**2=-1. +! +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZSHCH +! + DOUBLE PRECISION CCHI, CCHR, CH, CN, CSHI, CSHR, SH, SN, ZI, ZR, DCOSH, DSINH + SH = DSINH(ZR) + CH = DCOSH(ZR) + SN = DSIN(ZI) + CN = DCOS(ZI) + CSHR = SH*CN + CSHI = CH*SN + CCHR = CH*CN + CCHI = SH*SN + RETURN +END + +SUBROUTINE ZMLRI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZMLRI +!***REFER TO ZBESI,ZBESK +! +! ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY THE +! MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES. +! +!***ROUTINES CALLED DGAMLN,D1MACH,ZABS,ZEXP,ZLOG,ZMLT +!***END PROLOGUE ZMLRI +! COMPLEX CK,CNORM,CONE,CTWO,CZERO,PT,P1,P2,RZ,SUM,Y,Z + DOUBLE PRECISION ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI, & + CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, FNU, PTI, PTR, P1I, & + P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI, & + SUMR, TFNF, TOL, TST, YI, YR, ZEROI, ZEROR, ZI, ZR!, DGAMLN + INTEGER I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, KODE, M, N, NZ + DIMENSION YR(1), YI(1) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + SCLE = D1MACH(1)/TOL + NZ=0 + AZ = ZABS(ZR,ZI) + IAZ = INT(SNGL(AZ)) + IFNU = INT(SNGL(FNU)) + INU = IFNU + N - 1 + AT = DBLE(FLOAT(IAZ)) + 1.0D0 + RAZ = 1.0D0/AZ + STR = ZR*RAZ + STI = -ZI*RAZ + CKR = STR*AT*RAZ + CKI = STI*AT*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + P1R = ZEROR + P1I = ZEROI + P2R = CONER + P2I = CONEI + ACK = (AT+1.0D0)*RAZ + RHO = ACK + DSQRT(ACK*ACK-1.0D0) + RHO2 = RHO*RHO + TST = (RHO2+RHO2)/((RHO2-1.0D0)*(RHO-1.0D0)) + TST = TST/TOL +!----------------------------------------------------------------------- +! COMPUTE RELATIVE TRUNCATION ERROR INDEX FOR SERIES +!----------------------------------------------------------------------- + AK = AT + DO 10 I=1,80 + PTR = P2R + PTI = P2I + P2R = P1R - (CKR*PTR-CKI*PTI) + P2I = P1I - (CKI*PTR+CKR*PTI) + P1R = PTR + P1I = PTI + CKR = CKR + RZR + CKI = CKI + RZI + AP = ZABS(P2R,P2I) + IF (AP.GT.TST*AK*AK) GO TO 20 + AK = AK + 1.0D0 + 10 CONTINUE + GO TO 110 + 20 CONTINUE + I = I + 1 + K = 0 + IF (INU.LT.IAZ) GO TO 40 +!----------------------------------------------------------------------- +! COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS +!----------------------------------------------------------------------- + P1R = ZEROR + P1I = ZEROI + P2R = CONER + P2I = CONEI + AT = DBLE(FLOAT(INU)) + 1.0D0 + STR = ZR*RAZ + STI = -ZI*RAZ + CKR = STR*AT*RAZ + CKI = STI*AT*RAZ + ACK = AT*RAZ + TST = DSQRT(ACK/TOL) + ITIME = 1 + DO 30 K=1,80 + PTR = P2R + PTI = P2I + P2R = P1R - (CKR*PTR-CKI*PTI) + P2I = P1I - (CKR*PTI+CKI*PTR) + P1R = PTR + P1I = PTI + CKR = CKR + RZR + CKI = CKI + RZI + AP = ZABS(P2R,P2I) + IF (AP.LT.TST) GO TO 30 + IF (ITIME.EQ.2) GO TO 40 + ACK = ZABS(CKR,CKI) + FLAM = ACK + DSQRT(ACK*ACK-1.0D0) + FKAP = AP/ZABS(P1R,P1I) + RHO = DMIN1(FLAM,FKAP) + TST = TST*DSQRT(RHO/(RHO*RHO-1.0D0)) + ITIME = 2 + 30 CONTINUE + GO TO 110 + 40 CONTINUE +!----------------------------------------------------------------------- +! BACKWARD RECURRENCE AND SUM NORMALIZING RELATION +!----------------------------------------------------------------------- + K = K + 1 + KK = MAX0(I+IAZ,K+INU) + FKK = DBLE(FLOAT(KK)) + P1R = ZEROR + P1I = ZEROI +!----------------------------------------------------------------------- +! SCALE P2 AND SUM BY SCLE +!----------------------------------------------------------------------- + P2R = SCLE + P2I = ZEROI + FNF = FNU - DBLE(FLOAT(IFNU)) + TFNF = FNF + FNF + BK = DGAMLN(FKK+TFNF+1.0D0,IDUM) - DGAMLN(FKK+1.0D0,IDUM) - & + DGAMLN(TFNF+1.0D0,IDUM) + BK = DEXP(BK) + SUMR = ZEROR + SUMI = ZEROI + KM = KK - INU + DO 50 I=1,KM + PTR = P2R + PTI = P2I + P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI) + P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI) + P1R = PTR + P1I = PTI + AK = 1.0D0 - TFNF/(FKK+TFNF) + ACK = BK*AK + SUMR = SUMR + (ACK+BK)*P1R + SUMI = SUMI + (ACK+BK)*P1I + BK = ACK + FKK = FKK - 1.0D0 + 50 CONTINUE + YR(N) = P2R + YI(N) = P2I + IF (N.EQ.1) GO TO 70 + DO 60 I=2,N + PTR = P2R + PTI = P2I + P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI) + P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI) + P1R = PTR + P1I = PTI + AK = 1.0D0 - TFNF/(FKK+TFNF) + ACK = BK*AK + SUMR = SUMR + (ACK+BK)*P1R + SUMI = SUMI + (ACK+BK)*P1I + BK = ACK + FKK = FKK - 1.0D0 + M = N - I + 1 + YR(M) = P2R + YI(M) = P2I + 60 CONTINUE + 70 CONTINUE + IF (IFNU.LE.0) GO TO 90 + DO 80 I=1,IFNU + PTR = P2R + PTI = P2I + P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI) + P2I = P1I + (FKK+FNF)*(RZR*PTI+RZI*PTR) + P1R = PTR + P1I = PTI + AK = 1.0D0 - TFNF/(FKK+TFNF) + ACK = BK*AK + SUMR = SUMR + (ACK+BK)*P1R + SUMI = SUMI + (ACK+BK)*P1I + BK = ACK + FKK = FKK - 1.0D0 + 80 CONTINUE + 90 CONTINUE + PTR = ZR + PTI = ZI + IF (KODE.EQ.2) PTR = ZEROR + CALL ZLOG(RZR, RZI, STR, STI, IDUM) + P1R = -FNF*STR + PTR + P1I = -FNF*STI + PTI + AP = DGAMLN(1.0D0+FNF,IDUM) + PTR = P1R - AP + PTI = P1I +!----------------------------------------------------------------------- +! THE DIVISION CEXP(PT)/(SUM+P2) IS ALTERED TO AVOID OVERFLOW +! IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES +!----------------------------------------------------------------------- + P2R = P2R + SUMR + P2I = P2I + SUMI + AP = ZABS(P2R,P2I) + P1R = 1.0D0/AP + CALL ZEXP(PTR, PTI, STR, STI) + CKR = STR*P1R + CKI = STI*P1R + PTR = P2R*P1R + PTI = -P2I*P1R + CALL ZMLT(CKR, CKI, PTR, PTI, CNORMR, CNORMI) + DO 100 I=1,N + STR = YR(I)*CNORMR - YI(I)*CNORMI + YI(I) = YR(I)*CNORMI + YI(I)*CNORMR + YR(I) = STR + 100 CONTINUE + RETURN + 110 CONTINUE + NZ=-2 + RETURN +END + +DOUBLE PRECISION FUNCTION DGAMLN(Z,IERR) +USE UTILIT +!***BEGIN PROLOGUE DGAMLN +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5F +!***KEYWORDS GAMMA FUNCTION,LOGARITHM OF GAMMA FUNCTION +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE THE LOGARITHM OF THE GAMMA FUNCTION +!***DESCRIPTION +! +! **** A DOUBLE PRECISION ROUTINE **** +! DGAMLN COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR +! Z.GT.0. THE ASYMPTOTIC EXPANSION IS USED TO GENERATE VALUES +! GREATER THAN ZMIN WHICH ARE ADJUSTED BY THE RECURSION +! G(Z+1)=Z*G(Z) FOR Z.LE.ZMIN. THE FUNCTION WAS MADE AS +! PORTABLE AS POSSIBLE BY COMPUTIMG ZMIN FROM THE NUMBER OF BASE +! 10 DIGITS IN A WORD, RLN=AMAX1(-ALOG10(R1MACH(4)),0.5E-18) +! LIMITED TO 18 DIGITS OF (RELATIVE) ACCURACY. +! +! SINCE INTEGER ARGUMENTS ARE COMMON, A TABLE LOOK UP ON 100 +! VALUES IS USED FOR SPEED OF EXECUTION. +! +! DESCRIPTION OF ARGUMENTS +! +! INPUT Z IS D0UBLE PRECISION +! Z - ARGUMENT, Z.GT.0.0D0 +! +! OUTPUT DGAMLN IS DOUBLE PRECISION +! DGAMLN - NATURAL LOG OF THE GAMMA FUNCTION AT Z.NE.0.0D0 +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN, COMPUTATION COMPLETED +! IERR=1, Z.LE.0.0D0, NO COMPUTATION +! +! +!***REFERENCES COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! BY D. E. AMOS, SAND83-0083, MAY, 1983. +!***ROUTINES CALLED I1MACH,D1MACH +!***END PROLOGUE DGAMLN + DOUBLE PRECISION CF, CON, FLN, FZ, GLN, RLN, S, TLG, TRM, TST, & + T1, WDTOL, Z, ZDMY, ZINC, ZM, ZMIN, ZP, ZSQ + INTEGER I, IERR, I1M, K, MZ, NZ + DIMENSION CF(22), GLN(100) +! LNGAMMA(N), N=1,100 + DATA GLN(1), GLN(2), GLN(3), GLN(4), GLN(5), GLN(6), GLN(7), & + GLN(8), GLN(9), GLN(10), GLN(11), GLN(12), GLN(13), GLN(14), & + GLN(15), GLN(16), GLN(17), GLN(18), GLN(19), GLN(20), & + GLN(21), GLN(22)/ & + 0.00000000000000000D+00, 0.00000000000000000D+00, & + 6.93147180559945309D-01, 1.79175946922805500D+00, & + 3.17805383034794562D+00, 4.78749174278204599D+00, & + 6.57925121201010100D+00, 8.52516136106541430D+00, & + 1.06046029027452502D+01, 1.28018274800814696D+01, & + 1.51044125730755153D+01, 1.75023078458738858D+01, & + 1.99872144956618861D+01, 2.25521638531234229D+01, & + 2.51912211827386815D+01, 2.78992713838408916D+01, & + 3.06718601060806728D+01, 3.35050734501368889D+01, & + 3.63954452080330536D+01, 3.93398841871994940D+01, & + 4.23356164607534850D+01, 4.53801388984769080D+01/ + DATA GLN(23), GLN(24), GLN(25), GLN(26), GLN(27), GLN(28), & + GLN(29), GLN(30), GLN(31), GLN(32), GLN(33), GLN(34), & + GLN(35), GLN(36), GLN(37), GLN(38), GLN(39), GLN(40), & + GLN(41), GLN(42), GLN(43), GLN(44)/ & + 4.84711813518352239D+01, 5.16066755677643736D+01, & + 5.47847293981123192D+01, 5.80036052229805199D+01, & + 6.12617017610020020D+01, 6.45575386270063311D+01, & + 6.78897431371815350D+01, 7.12570389671680090D+01, & + 7.46582363488301644D+01, 7.80922235533153106D+01, & + 8.15579594561150372D+01, 8.50544670175815174D+01, & + 8.85808275421976788D+01, 9.21361756036870925D+01, & + 9.57196945421432025D+01, 9.93306124547874269D+01, & + 1.02968198614513813D+02, 1.06631760260643459D+02, & + 1.10320639714757395D+02, 1.14034211781461703D+02, & + 1.17771881399745072D+02, 1.21533081515438634D+02/ + DATA GLN(45), GLN(46), GLN(47), GLN(48), GLN(49), GLN(50), & + GLN(51), GLN(52), GLN(53), GLN(54), GLN(55), GLN(56), & + GLN(57), GLN(58), GLN(59), GLN(60), GLN(61), GLN(62), & + GLN(63), GLN(64), GLN(65), GLN(66)/ & + 1.25317271149356895D+02, 1.29123933639127215D+02, & + 1.32952575035616310D+02, 1.36802722637326368D+02, & + 1.40673923648234259D+02, 1.44565743946344886D+02, & + 1.48477766951773032D+02, 1.52409592584497358D+02, & + 1.56360836303078785D+02, 1.60331128216630907D+02, & + 1.64320112263195181D+02, 1.68327445448427652D+02, & + 1.72352797139162802D+02, 1.76395848406997352D+02, & + 1.80456291417543771D+02, 1.84533828861449491D+02, & + 1.88628173423671591D+02, 1.92739047287844902D+02, & + 1.96866181672889994D+02, 2.01009316399281527D+02, & + 2.05168199482641199D+02, 2.09342586752536836D+02/ + DATA GLN(67), GLN(68), GLN(69), GLN(70), GLN(71), GLN(72), & + GLN(73), GLN(74), GLN(75), GLN(76), GLN(77), GLN(78), & + GLN(79), GLN(80), GLN(81), GLN(82), GLN(83), GLN(84), & + GLN(85), GLN(86), GLN(87), GLN(88)/ & + 2.13532241494563261D+02, 2.17736934113954227D+02, & + 2.21956441819130334D+02, 2.26190548323727593D+02, & + 2.30439043565776952D+02, 2.34701723442818268D+02, & + 2.38978389561834323D+02, 2.43268849002982714D+02, & + 2.47572914096186884D+02, 2.51890402209723194D+02, & + 2.56221135550009525D+02, 2.60564940971863209D+02, & + 2.64921649798552801D+02, 2.69291097651019823D+02, & + 2.73673124285693704D+02, 2.78067573440366143D+02, & + 2.82474292687630396D+02, 2.86893133295426994D+02, & + 2.91323950094270308D+02, 2.95766601350760624D+02, & + 3.00220948647014132D+02, 3.04686856765668715D+02/ + DATA GLN(89), GLN(90), GLN(91), GLN(92), GLN(93), GLN(94), & + GLN(95), GLN(96), GLN(97), GLN(98), GLN(99), GLN(100)/ & + 3.09164193580146922D+02, 3.13652829949879062D+02, & + 3.18152639620209327D+02, 3.22663499126726177D+02, & + 3.27185287703775217D+02, 3.31717887196928473D+02, & + 3.36261181979198477D+02, 3.40815058870799018D+02, & + 3.45379407062266854D+02, 3.49954118040770237D+02, & + 3.54539085519440809D+02, 3.59134205369575399D+02/ +! COEFFICIENTS OF ASYMPTOTIC EXPANSION + DATA CF(1), CF(2), CF(3), CF(4), CF(5), CF(6), CF(7), CF(8), & + CF(9), CF(10), CF(11), CF(12), CF(13), CF(14), CF(15), & + CF(16), CF(17), CF(18), CF(19), CF(20), CF(21), CF(22)/ & + 8.33333333333333333D-02, -2.77777777777777778D-03, & + 7.93650793650793651D-04, -5.95238095238095238D-04, & + 8.41750841750841751D-04, -1.91752691752691753D-03, & + 6.41025641025641026D-03, -2.95506535947712418D-02, & + 1.79644372368830573D-01, -1.39243221690590112D+00, & + 1.34028640441683920D+01, -1.56848284626002017D+02, & + 2.19310333333333333D+03, -3.61087712537249894D+04, & + 6.91472268851313067D+05, -1.52382215394074162D+07, & + 3.82900751391414141D+08, -1.08822660357843911D+10, & + 3.47320283765002252D+11, -1.23696021422692745D+13, & + 4.88788064793079335D+14, -2.13203339609193739D+16/ + +! LN(2*PI) + DATA CON / 1.83787706640934548D+00/ + +!***FIRST EXECUTABLE STATEMENT DGAMLN + IERR=0 + IF (Z.LE.0.0D0) GO TO 70 + IF (Z.GT.101.0D0) GO TO 10 + NZ = INT(SNGL(Z)) + FZ = Z - FLOAT(NZ) + IF (FZ.GT.0.0D0) GO TO 10 + IF (NZ.GT.100) GO TO 10 + DGAMLN = GLN(NZ) + RETURN + 10 CONTINUE + WDTOL = D1MACH(4) + WDTOL = DMAX1(WDTOL,0.5D-18) + I1M = I1MACH(14) + RLN = D1MACH(5)*FLOAT(I1M) + FLN = DMIN1(RLN,20.0D0) + FLN = DMAX1(FLN,3.0D0) + FLN = FLN - 3.0D0 + ZM = 1.8000D0 + 0.3875D0*FLN + MZ = INT(SNGL(ZM)) + 1 + ZMIN = FLOAT(MZ) + ZDMY = Z + ZINC = 0.0D0 + IF (Z.GE.ZMIN) GO TO 20 + ZINC = ZMIN - FLOAT(NZ) + ZDMY = Z + ZINC + 20 CONTINUE + ZP = 1.0D0/ZDMY + T1 = CF(1)*ZP + S = T1 + IF (ZP.LT.WDTOL) GO TO 40 + ZSQ = ZP*ZP + TST = T1*WDTOL + DO 30 K=2,22 + ZP = ZP*ZSQ + TRM = CF(K)*ZP + IF (DABS(TRM).LT.TST) GO TO 40 + S = S + TRM + 30 CONTINUE + 40 CONTINUE + IF (ZINC.NE.0.0D0) GO TO 50 + TLG = DLOG(Z) + DGAMLN = Z*(TLG-1.0D0) + 0.5D0*(CON-TLG) + S + RETURN + 50 CONTINUE + ZP = 1.0D0 + NZ = INT(SNGL(ZINC)) + DO 60 I=1,NZ + ZP = ZP*(Z+FLOAT(I-1)) + 60 CONTINUE + TLG = DLOG(ZDMY) + DGAMLN = ZDMY*(TLG-1.0D0) - DLOG(ZP) + 0.5D0*(CON-TLG) + S + RETURN + + 70 CONTINUE + IERR=1 + RETURN +END + +SUBROUTINE ZUNIK(ZRR, ZRI, FNU, IKFLG, IPMTR, TOL, INIT, PHIR, & + PHII, ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) +USE COMPLEX +!***BEGIN PROLOGUE ZUNIK +!***REFER TO ZBESI,ZBESK +! +! ZUNIK COMPUTES PARAMETERS FOR THE UNIFORM ASYMPTOTIC +! EXPANSIONS OF THE I AND K FUNCTIONS ON IKFLG= 1 OR 2 +! RESPECTIVELY BY +! +! W(FNU,ZR) = PHI*EXP(ZETA)*SUM +! +! WHERE ZETA=-ZETA1 + ZETA2 OR +! ZETA1 - ZETA2 +! +! THE FIRST CALL MUST HAVE INIT=0. SUBSEQUENT CALLS WITH THE +! SAME ZR AND FNU WILL RETURN THE I OR K FUNCTION ON IKFLG= +! 1 OR 2 WITH NO CHANGE IN INIT. CWRK IS A COMPLEX WORK +! ARRAY. IPMTR=0 COMPUTES ALL PARAMETERS. IPMTR=1 COMPUTES PHI, +! ZETA1,ZETA2. +! +!***ROUTINES CALLED ZDIV,ZLOG,ZSQRT +!***END PROLOGUE ZUNIK +! COMPLEX CFN,CON,CONE,CRFN,CWRK,CZERO,PHI,S,SR,SUM,T,T2,ZETA1, +! *ZETA2,ZN,ZR + DOUBLE PRECISION AC, C, CON, CONEI, CONER, CRFNI, CRFNR, CWRKI, & + CWRKR, FNU, PHII, PHIR, RFN, SI, SR, SRI, SRR, STI, STR, SUMI, & + SUMR, TEST, TI, TOL, TR, T2I, T2R, ZEROI, ZEROR, ZETA1I, ZETA1R, & + ZETA2I, ZETA2R, ZNI, ZNR, ZRI, ZRR + INTEGER I, IDUM, IKFLG, INIT, IPMTR, J, K, L + DIMENSION C(120), CWRKR(16), CWRKI(16), CON(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + DATA CON(1), CON(2) / & + 3.98942280401432678D-01, 1.25331413731550025D+00 / + DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), & + C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18), & + C(19), C(20), C(21), C(22), C(23), C(24)/ & + 1.00000000000000000D+00, -2.08333333333333333D-01, & + 1.25000000000000000D-01, 3.34201388888888889D-01, & + -4.01041666666666667D-01, 7.03125000000000000D-02, & + -1.02581259645061728D+00, 1.84646267361111111D+00, & + -8.91210937500000000D-01, 7.32421875000000000D-02, & + 4.66958442342624743D+00, -1.12070026162229938D+01, & + 8.78912353515625000D+00, -2.36408691406250000D+00, & + 1.12152099609375000D-01, -2.82120725582002449D+01, & + 8.46362176746007346D+01, -9.18182415432400174D+01, & + 4.25349987453884549D+01, -7.36879435947963170D+00, & + 2.27108001708984375D-01, 2.12570130039217123D+02, & + -7.65252468141181642D+02, 1.05999045252799988D+03/ + DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32), & + C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40), & + C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/ & + -6.99579627376132541D+02, 2.18190511744211590D+02, & + -2.64914304869515555D+01, 5.72501420974731445D-01, & + -1.91945766231840700D+03, 8.06172218173730938D+03, & + -1.35865500064341374D+04, 1.16553933368645332D+04, & + -5.30564697861340311D+03, 1.20090291321635246D+03, & + -1.08090919788394656D+02, 1.72772750258445740D+00, & + 2.02042913309661486D+04, -9.69805983886375135D+04, & + 1.92547001232531532D+05, -2.03400177280415534D+05, & + 1.22200464983017460D+05, -4.11926549688975513D+04, & + 7.10951430248936372D+03, -4.93915304773088012D+02, & + 6.07404200127348304D+00, -2.42919187900551333D+05, & + 1.31176361466297720D+06, -2.99801591853810675D+06/ + DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56), & + C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64), & + C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/ & + 3.76327129765640400D+06, -2.81356322658653411D+06, & + 1.26836527332162478D+06, -3.31645172484563578D+05, & + 4.52187689813627263D+04, -2.49983048181120962D+03, & + 2.43805296995560639D+01, 3.28446985307203782D+06, & + -1.97068191184322269D+07, 5.09526024926646422D+07, & + -7.41051482115326577D+07, 6.63445122747290267D+07, & + -3.75671766607633513D+07, 1.32887671664218183D+07, & + -2.78561812808645469D+06, 3.08186404612662398D+05, & + -1.38860897537170405D+04, 1.10017140269246738D+02, & + -4.93292536645099620D+07, 3.25573074185765749D+08, & + -9.39462359681578403D+08, 1.55359689957058006D+09, & + -1.62108055210833708D+09, 1.10684281682301447D+09/ + DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80), & + C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88), & + C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/ & + -4.95889784275030309D+08, 1.42062907797533095D+08, & + -2.44740627257387285D+07, 2.24376817792244943D+06, & + -8.40054336030240853D+04, 5.51335896122020586D+02, & + 8.14789096118312115D+08, -5.86648149205184723D+09, & + 1.86882075092958249D+10, -3.46320433881587779D+10, & + 4.12801855797539740D+10, -3.30265997498007231D+10, & + 1.79542137311556001D+10, -6.56329379261928433D+09, & + 1.55927986487925751D+09, -2.25105661889415278D+08, & + 1.73951075539781645D+07, -5.49842327572288687D+05, & + 3.03809051092238427D+03, -1.46792612476956167D+10, & + 1.14498237732025810D+11, -3.99096175224466498D+11, & + 8.19218669548577329D+11, -1.09837515608122331D+12/ + DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104), & + C(105), C(106), C(107), C(108), C(109), C(110), C(111), & + C(112), C(113), C(114), C(115), C(116), C(117), C(118)/ & + 1.00815810686538209D+12, -6.45364869245376503D+11, & + 2.87900649906150589D+11, -8.78670721780232657D+10, & + 1.76347306068349694D+10, -2.16716498322379509D+09, & + 1.43157876718888981D+08, -3.87183344257261262D+06, & + 1.82577554742931747D+04, 2.86464035717679043D+11, & + -2.40629790002850396D+12, 9.10934118523989896D+12, & + -2.05168994109344374D+13, 3.05651255199353206D+13, & + -3.16670885847851584D+13, 2.33483640445818409D+13, & + -1.23204913055982872D+13, 4.61272578084913197D+12, & + -1.19655288019618160D+12, 2.05914503232410016D+11, & + -2.18229277575292237D+10, 1.24700929351271032D+09/ + DATA C(119), C(120)/ & + -2.91883881222208134D+07, 1.18838426256783253D+05/ + + IF (INIT.NE.0) GO TO 40 +!----------------------------------------------------------------------- +! INITIALIZE ALL VARIABLES +!----------------------------------------------------------------------- + RFN = 1.0D0/FNU + TR = ZRR*RFN + TI = ZRI*RFN + SR = CONER + (TR*TR-TI*TI) + SI = CONEI + (TR*TI+TI*TR) + CALL ZSQRT(SR, SI, SRR, SRI) + STR = CONER + SRR + STI = CONEI + SRI + CALL ZDIV(STR, STI, TR, TI, ZNR, ZNI) + CALL ZLOG(ZNR, ZNI, STR, STI, IDUM) + ZETA1R = FNU*STR + ZETA1I = FNU*STI + ZETA2R = FNU*SRR + ZETA2I = FNU*SRI + CALL ZDIV(CONER, CONEI, SRR, SRI, TR, TI) + SRR = TR*RFN + SRI = TI*RFN + CALL ZSQRT(SRR, SRI, CWRKR(16), CWRKI(16)) + PHIR = CWRKR(16)*CON(IKFLG) + PHII = CWRKI(16)*CON(IKFLG) + IF (IPMTR.NE.0) RETURN + CALL ZDIV(CONER, CONEI, SR, SI, T2R, T2I) + CWRKR(1) = CONER + CWRKI(1) = CONEI + CRFNR = CONER + CRFNI = CONEI + AC = 1.0D0 + L = 1 + DO 20 K=2,15 + SR = ZEROR + SI = ZEROI + DO 10 J=1,K + L = L + 1 + STR = SR*T2R - SI*T2I + C(L) + SI = SR*T2I + SI*T2R + SR = STR + 10 CONTINUE + STR = CRFNR*SRR - CRFNI*SRI + CRFNI = CRFNR*SRI + CRFNI*SRR + CRFNR = STR + CWRKR(K) = CRFNR*SR - CRFNI*SI + CWRKI(K) = CRFNR*SI + CRFNI*SR + AC = AC*RFN + TEST = DABS(CWRKR(K)) + DABS(CWRKI(K)) + IF (AC.LT.TOL .AND. TEST.LT.TOL) GO TO 30 + 20 CONTINUE + K = 15 + 30 CONTINUE + INIT = K + 40 CONTINUE + IF (IKFLG.EQ.2) GO TO 60 +!----------------------------------------------------------------------- +! COMPUTE SUM FOR THE I FUNCTION +!----------------------------------------------------------------------- + SR = ZEROR + SI = ZEROI + DO 50 I=1,INIT + SR = SR + CWRKR(I) + SI = SI + CWRKI(I) + 50 CONTINUE + SUMR = SR + SUMI = SI + PHIR = CWRKR(16)*CON(1) + PHII = CWRKI(16)*CON(1) + RETURN + 60 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE SUM FOR THE K FUNCTION +!----------------------------------------------------------------------- + SR = ZEROR + SI = ZEROI + TR = CONER + DO 70 I=1,INIT + SR = SR + TR*CWRKR(I) + SI = SI + TR*CWRKI(I) + TR = -TR + 70 CONTINUE + SUMR = SR + SUMI = SI + PHIR = CWRKR(16)*CON(2) + PHII = CWRKI(16)*CON(2) + RETURN +END + +SUBROUTINE ZUNHJ(ZR, ZI, FNU, IPMTR, TOL, PHIR, PHII, ARGR, ARGI, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) +USE COMPLEX +!***BEGIN PROLOGUE ZUNHJ +!***REFER TO ZBESI,ZBESK +! +! REFERENCES +! HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ AND I.A. +! STEGUN, AMS55, NATIONAL BUREAU OF STANDARDS, 1965, CHAPTER 9. +! +! ASYMPTOTICS AND SPECIAL FUNCTIONS BY F.W.J. OLVER, ACADEMIC +! PRESS, N.Y., 1974, PAGE 420 +! +! ABSTRACT +! ZUNHJ COMPUTES PARAMETERS FOR BESSEL FUNCTIONS C(FNU,Z) = +! J(FNU,Z), Y(FNU,Z) OR H(I,FNU,Z) I=1,2 FOR LARGE ORDERS FNU +! BY MEANS OF THE UNIFORM ASYMPTOTIC EXPANSION +! +! C(FNU,Z)=C1*PHI*( ASUM*AIRY(ARG) + C2*BSUM*DAIRY(ARG) ) +! +! FOR PROPER CHOICES OF C1, C2, AIRY AND DAIRY WHERE AIRY IS +! AN AIRY FUNCTION AND DAIRY IS ITS DERIVATIVE. +! +! (2/3)*FNU*ZETA**1.5 = ZETA1-ZETA2, +! +! ZETA1=0.5*FNU*CLOG((1+W)/(1-W)), ZETA2=FNU*W FOR SCALING +! PURPOSES IN AIRY FUNCTIONS FROM CAIRY OR CBIRY. +! +! MCONJ=SIGN OF AIMAG(Z), BUT IS AMBIGUOUS WHEN Z IS REAL AND +! MUST BE SPECIFIED. IPMTR=0 RETURNS ALL PARAMETERS. IPMTR= +! 1 COMPUTES ALL EXCEPT ASUM AND BSUM. +! +!***ROUTINES CALLED ZABS,ZDIV,ZLOG,ZSQRT +!***END PROLOGUE ZUNHJ +! COMPLEX ARG,ASUM,BSUM,CFNU,CONE,CR,CZERO,DR,P,PHI,PRZTH,PTFN, +! *RFN13,RTZTA,RZTH,SUMA,SUMB,TFN,T2,UP,W,W2,Z,ZA,ZB,ZC,ZETA,ZETA1, +! *ZETA2,ZTH + DOUBLE PRECISION ALFA, ANG, AP, AR, ARGI, ARGR, ASUMI, ASUMR, & + ATOL, AW2, AZTH, BETA, BR, BSUMI, BSUMR, BTOL, C, CONEI, CONER, & + CRI, CRR, DRI, DRR, EX1, EX2, FNU, FN13, FN23, GAMA, GPI, HPI, & + PHII, PHIR, PI, PP, PR, PRZTHI, PRZTHR, PTFNI, PTFNR, RAW, RAW2, & + RAZTH, RFNU, RFNU2, RFN13, RTZTI, RTZTR, RZTHI, RZTHR, STI, STR, & + SUMAI, SUMAR, SUMBI, SUMBR, TEST, TFNI, TFNR, THPI, TOL, TZAI, & + TZAR, T2I, T2R, UPI, UPR, WI, WR, W2I, W2R, ZAI, ZAR, ZBI, ZBR, & + ZCI, ZCR, ZEROI, ZEROR, ZETAI, ZETAR, ZETA1I, ZETA1R, ZETA2I, & + ZETA2R, ZI, ZR, ZTHI, ZTHR + INTEGER IAS, IBS, IPMTR, IS, J, JR, JU, K, KMAX, KP1, KS, L, LR, & + LRP1, L1, L2, M, IDUM + DIMENSION AR(14), BR(14), C(105), ALFA(180), BETA(210), GAMA(30), & + AP(30), PR(30), PI(30), UPR(14), UPI(14), CRR(14), CRI(14), & + DRR(14), DRI(14) + DATA AR(1), AR(2), AR(3), AR(4), AR(5), AR(6), AR(7), AR(8), & + AR(9), AR(10), AR(11), AR(12), AR(13), AR(14)/ & + 1.00000000000000000D+00, 1.04166666666666667D-01, & + 8.35503472222222222D-02, 1.28226574556327160D-01, & + 2.91849026464140464D-01, 8.81627267443757652D-01, & + 3.32140828186276754D+00, 1.49957629868625547D+01, & + 7.89230130115865181D+01, 4.74451538868264323D+02, & + 3.20749009089066193D+03, 2.40865496408740049D+04, & + 1.98923119169509794D+05, 1.79190200777534383D+06/ + DATA BR(1), BR(2), BR(3), BR(4), BR(5), BR(6), BR(7), BR(8), & + BR(9), BR(10), BR(11), BR(12), BR(13), BR(14)/ & + 1.00000000000000000D+00, -1.45833333333333333D-01, & + -9.87413194444444444D-02, -1.43312053915895062D-01, & + -3.17227202678413548D-01, -9.42429147957120249D-01, & + -3.51120304082635426D+00, -1.57272636203680451D+01, & + -8.22814390971859444D+01, -4.92355370523670524D+02, & + -3.31621856854797251D+03, -2.48276742452085896D+04, & + -2.04526587315129788D+05, -1.83844491706820990D+06/ + DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), & + C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18), & + C(19), C(20), C(21), C(22), C(23), C(24)/ & + 1.00000000000000000D+00, -2.08333333333333333D-01, & + 1.25000000000000000D-01, 3.34201388888888889D-01, & + -4.01041666666666667D-01, 7.03125000000000000D-02, & + -1.02581259645061728D+00, 1.84646267361111111D+00, & + -8.91210937500000000D-01, 7.32421875000000000D-02, & + 4.66958442342624743D+00, -1.12070026162229938D+01, & + 8.78912353515625000D+00, -2.36408691406250000D+00, & + 1.12152099609375000D-01, -2.82120725582002449D+01, & + 8.46362176746007346D+01, -9.18182415432400174D+01, & + 4.25349987453884549D+01, -7.36879435947963170D+00, & + 2.27108001708984375D-01, 2.12570130039217123D+02, & + -7.65252468141181642D+02, 1.05999045252799988D+03/ + DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32), & + C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40), & + C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/ & + -6.99579627376132541D+02, 2.18190511744211590D+02, & + -2.64914304869515555D+01, 5.72501420974731445D-01, & + -1.91945766231840700D+03, 8.06172218173730938D+03, & + -1.35865500064341374D+04, 1.16553933368645332D+04, & + -5.30564697861340311D+03, 1.20090291321635246D+03, & + -1.08090919788394656D+02, 1.72772750258445740D+00, & + 2.02042913309661486D+04, -9.69805983886375135D+04, & + 1.92547001232531532D+05, -2.03400177280415534D+05, & + 1.22200464983017460D+05, -4.11926549688975513D+04, & + 7.10951430248936372D+03, -4.93915304773088012D+02, & + 6.07404200127348304D+00, -2.42919187900551333D+05, & + 1.31176361466297720D+06, -2.99801591853810675D+06/ + DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56), & + C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64), & + C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/ & + 3.76327129765640400D+06, -2.81356322658653411D+06, & + 1.26836527332162478D+06, -3.31645172484563578D+05, & + 4.52187689813627263D+04, -2.49983048181120962D+03, & + 2.43805296995560639D+01, 3.28446985307203782D+06, & + -1.97068191184322269D+07, 5.09526024926646422D+07, & + -7.41051482115326577D+07, 6.63445122747290267D+07, & + -3.75671766607633513D+07, 1.32887671664218183D+07, & + -2.78561812808645469D+06, 3.08186404612662398D+05, & + -1.38860897537170405D+04, 1.10017140269246738D+02, & + -4.93292536645099620D+07, 3.25573074185765749D+08, & + -9.39462359681578403D+08, 1.55359689957058006D+09, & + -1.62108055210833708D+09, 1.10684281682301447D+09/ + DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80), & + C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88), & + C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/ & + -4.95889784275030309D+08, 1.42062907797533095D+08, & + -2.44740627257387285D+07, 2.24376817792244943D+06, & + -8.40054336030240853D+04, 5.51335896122020586D+02, & + 8.14789096118312115D+08, -5.86648149205184723D+09, & + 1.86882075092958249D+10, -3.46320433881587779D+10, & + 4.12801855797539740D+10, -3.30265997498007231D+10, & + 1.79542137311556001D+10, -6.56329379261928433D+09, & + 1.55927986487925751D+09, -2.25105661889415278D+08, & + 1.73951075539781645D+07, -5.49842327572288687D+05, & + 3.03809051092238427D+03, -1.46792612476956167D+10, & + 1.14498237732025810D+11, -3.99096175224466498D+11, & + 8.19218669548577329D+11, -1.09837515608122331D+12/ + DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104), & + C(105)/ & + 1.00815810686538209D+12, -6.45364869245376503D+11, & + 2.87900649906150589D+11, -8.78670721780232657D+10, & + 1.76347306068349694D+10, -2.16716498322379509D+09, & + 1.43157876718888981D+08, -3.87183344257261262D+06, & + 1.82577554742931747D+04/ + DATA ALFA(1), ALFA(2), ALFA(3), ALFA(4), ALFA(5), ALFA(6), & + ALFA(7), ALFA(8), ALFA(9), ALFA(10), ALFA(11), ALFA(12), & + ALFA(13), ALFA(14), ALFA(15), ALFA(16), ALFA(17), ALFA(18), & + ALFA(19), ALFA(20), ALFA(21), ALFA(22)/ & + -4.44444444444444444D-03, -9.22077922077922078D-04, & + -8.84892884892884893D-05, 1.65927687832449737D-04, & + 2.46691372741792910D-04, 2.65995589346254780D-04, & + 2.61824297061500945D-04, 2.48730437344655609D-04, & + 2.32721040083232098D-04, 2.16362485712365082D-04, & + 2.00738858762752355D-04, 1.86267636637545172D-04, & + 1.73060775917876493D-04, 1.61091705929015752D-04, & + 1.50274774160908134D-04, 1.40503497391269794D-04, & + 1.31668816545922806D-04, 1.23667445598253261D-04, & + 1.16405271474737902D-04, 1.09798298372713369D-04, & + 1.03772410422992823D-04, 9.82626078369363448D-05/ + DATA ALFA(23), ALFA(24), ALFA(25), ALFA(26), ALFA(27), ALFA(28), & + ALFA(29), ALFA(30), ALFA(31), ALFA(32), ALFA(33), ALFA(34), & + ALFA(35), ALFA(36), ALFA(37), ALFA(38), ALFA(39), ALFA(40), & + ALFA(41), ALFA(42), ALFA(43), ALFA(44)/ & + 9.32120517249503256D-05, 8.85710852478711718D-05, & + 8.42963105715700223D-05, 8.03497548407791151D-05, & + 7.66981345359207388D-05, 7.33122157481777809D-05, & + 7.01662625163141333D-05, 6.72375633790160292D-05, & + 6.93735541354588974D-04, 2.32241745182921654D-04, & + -1.41986273556691197D-05, -1.16444931672048640D-04, & + -1.50803558053048762D-04, -1.55121924918096223D-04, & + -1.46809756646465549D-04, -1.33815503867491367D-04, & + -1.19744975684254051D-04, -1.06184319207974020D-04, & + -9.37699549891194492D-05, -8.26923045588193274D-05, & + -7.29374348155221211D-05, -6.44042357721016283D-05/ + DATA ALFA(45), ALFA(46), ALFA(47), ALFA(48), ALFA(49), ALFA(50), & + ALFA(51), ALFA(52), ALFA(53), ALFA(54), ALFA(55), ALFA(56), & + ALFA(57), ALFA(58), ALFA(59), ALFA(60), ALFA(61), ALFA(62), & + ALFA(63), ALFA(64), ALFA(65), ALFA(66)/ & + -5.69611566009369048D-05, -5.04731044303561628D-05, & + -4.48134868008882786D-05, -3.98688727717598864D-05, & + -3.55400532972042498D-05, -3.17414256609022480D-05, & + -2.83996793904174811D-05, -2.54522720634870566D-05, & + -2.28459297164724555D-05, -2.05352753106480604D-05, & + -1.84816217627666085D-05, -1.66519330021393806D-05, & + -1.50179412980119482D-05, -1.35554031379040526D-05, & + -1.22434746473858131D-05, -1.10641884811308169D-05, & + -3.54211971457743841D-04, -1.56161263945159416D-04, & + 3.04465503594936410D-05, 1.30198655773242693D-04, & + 1.67471106699712269D-04, 1.70222587683592569D-04/ + DATA ALFA(67), ALFA(68), ALFA(69), ALFA(70), ALFA(71), ALFA(72), & + ALFA(73), ALFA(74), ALFA(75), ALFA(76), ALFA(77), ALFA(78), & + ALFA(79), ALFA(80), ALFA(81), ALFA(82), ALFA(83), ALFA(84), & + ALFA(85), ALFA(86), ALFA(87), ALFA(88)/ & + 1.56501427608594704D-04, 1.36339170977445120D-04, & + 1.14886692029825128D-04, 9.45869093034688111D-05, & + 7.64498419250898258D-05, 6.07570334965197354D-05, & + 4.74394299290508799D-05, 3.62757512005344297D-05, & + 2.69939714979224901D-05, 1.93210938247939253D-05, & + 1.30056674793963203D-05, 7.82620866744496661D-06, & + 3.59257485819351583D-06, 1.44040049814251817D-07, & + -2.65396769697939116D-06, -4.91346867098485910D-06, & + -6.72739296091248287D-06, -8.17269379678657923D-06, & + -9.31304715093561232D-06, -1.02011418798016441D-05, & + -1.08805962510592880D-05, -1.13875481509603555D-05/ + DATA ALFA(89), ALFA(90), ALFA(91), ALFA(92), ALFA(93), ALFA(94), & + ALFA(95), ALFA(96), ALFA(97), ALFA(98), ALFA(99), ALFA(100), & + ALFA(101), ALFA(102), ALFA(103), ALFA(104), ALFA(105), & + ALFA(106), ALFA(107), ALFA(108), ALFA(109), ALFA(110)/ & + -1.17519675674556414D-05, -1.19987364870944141D-05, & + 3.78194199201772914D-04, 2.02471952761816167D-04, & + -6.37938506318862408D-05, -2.38598230603005903D-04, & + -3.10916256027361568D-04, -3.13680115247576316D-04, & + -2.78950273791323387D-04, -2.28564082619141374D-04, & + -1.75245280340846749D-04, -1.25544063060690348D-04, & + -8.22982872820208365D-05, -4.62860730588116458D-05, & + -1.72334302366962267D-05, 5.60690482304602267D-06, & + 2.31395443148286800D-05, 3.62642745856793957D-05, & + 4.58006124490188752D-05, 5.24595294959114050D-05, & + 5.68396208545815266D-05, 5.94349820393104052D-05/ + DATA ALFA(111), ALFA(112), ALFA(113), ALFA(114), ALFA(115), & + ALFA(116), ALFA(117), ALFA(118), ALFA(119), ALFA(120), & + ALFA(121), ALFA(122), ALFA(123), ALFA(124), ALFA(125), & + ALFA(126), ALFA(127), ALFA(128), ALFA(129), ALFA(130)/ & + 6.06478527578421742D-05, 6.08023907788436497D-05, & + 6.01577894539460388D-05, 5.89199657344698500D-05, & + 5.72515823777593053D-05, 5.52804375585852577D-05, & + 5.31063773802880170D-05, 5.08069302012325706D-05, & + 4.84418647620094842D-05, 4.60568581607475370D-05, & + -6.91141397288294174D-04, -4.29976633058871912D-04, & + 1.83067735980039018D-04, 6.60088147542014144D-04, & + 8.75964969951185931D-04, 8.77335235958235514D-04, & + 7.49369585378990637D-04, 5.63832329756980918D-04, & + 3.68059319971443156D-04, 1.88464535514455599D-04/ + DATA ALFA(131), ALFA(132), ALFA(133), ALFA(134), ALFA(135), & + ALFA(136), ALFA(137), ALFA(138), ALFA(139), ALFA(140), & + ALFA(141), ALFA(142), ALFA(143), ALFA(144), ALFA(145), & + ALFA(146), ALFA(147), ALFA(148), ALFA(149), ALFA(150)/ & + 3.70663057664904149D-05, -8.28520220232137023D-05, & + -1.72751952869172998D-04, -2.36314873605872983D-04, & + -2.77966150694906658D-04, -3.02079514155456919D-04, & + -3.12594712643820127D-04, -3.12872558758067163D-04, & + -3.05678038466324377D-04, -2.93226470614557331D-04, & + -2.77255655582934777D-04, -2.59103928467031709D-04, & + -2.39784014396480342D-04, -2.20048260045422848D-04, & + -2.00443911094971498D-04, -1.81358692210970687D-04, & + -1.63057674478657464D-04, -1.45712672175205844D-04, & + -1.29425421983924587D-04, -1.14245691942445952D-04/ + DATA ALFA(151), ALFA(152), ALFA(153), ALFA(154), ALFA(155), & + ALFA(156), ALFA(157), ALFA(158), ALFA(159), ALFA(160), & + ALFA(161), ALFA(162), ALFA(163), ALFA(164), ALFA(165), & + ALFA(166), ALFA(167), ALFA(168), ALFA(169), ALFA(170)/ & + 1.92821964248775885D-03, 1.35592576302022234D-03, & + -7.17858090421302995D-04, -2.58084802575270346D-03, & + -3.49271130826168475D-03, -3.46986299340960628D-03, & + -2.82285233351310182D-03, -1.88103076404891354D-03, & + -8.89531718383947600D-04, 3.87912102631035228D-06, & + 7.28688540119691412D-04, 1.26566373053457758D-03, & + 1.62518158372674427D-03, 1.83203153216373172D-03, & + 1.91588388990527909D-03, 1.90588846755546138D-03, & + 1.82798982421825727D-03, 1.70389506421121530D-03, & + 1.55097127171097686D-03, 1.38261421852276159D-03/ + DATA ALFA(171), ALFA(172), ALFA(173), ALFA(174), ALFA(175), & + ALFA(176), ALFA(177), ALFA(178), ALFA(179), ALFA(180)/ & + 1.20881424230064774D-03, 1.03676532638344962D-03, & + 8.71437918068619115D-04, 7.16080155297701002D-04, & + 5.72637002558129372D-04, 4.42089819465802277D-04, & + 3.24724948503090564D-04, 2.20342042730246599D-04, & + 1.28412898401353882D-04, 4.82005924552095464D-05/ + DATA BETA(1), BETA(2), BETA(3), BETA(4), BETA(5), BETA(6), & + BETA(7), BETA(8), BETA(9), BETA(10), BETA(11), BETA(12), & + BETA(13), BETA(14), BETA(15), BETA(16), BETA(17), BETA(18), & + BETA(19), BETA(20), BETA(21), BETA(22)/ & + 1.79988721413553309D-02, 5.59964911064388073D-03, & + 2.88501402231132779D-03, 1.80096606761053941D-03, & + 1.24753110589199202D-03, 9.22878876572938311D-04, & + 7.14430421727287357D-04, 5.71787281789704872D-04, & + 4.69431007606481533D-04, 3.93232835462916638D-04, & + 3.34818889318297664D-04, 2.88952148495751517D-04, & + 2.52211615549573284D-04, 2.22280580798883327D-04, & + 1.97541838033062524D-04, 1.76836855019718004D-04, & + 1.59316899661821081D-04, 1.44347930197333986D-04, & + 1.31448068119965379D-04, 1.20245444949302884D-04, & + 1.10449144504599392D-04, 1.01828770740567258D-04/ + DATA BETA(23), BETA(24), BETA(25), BETA(26), BETA(27), BETA(28), & + BETA(29), BETA(30), BETA(31), BETA(32), BETA(33), BETA(34), & + BETA(35), BETA(36), BETA(37), BETA(38), BETA(39), BETA(40), & + BETA(41), BETA(42), BETA(43), BETA(44)/ & + 9.41998224204237509D-05, 8.74130545753834437D-05, & + 8.13466262162801467D-05, 7.59002269646219339D-05, & + 7.09906300634153481D-05, 6.65482874842468183D-05, & + 6.25146958969275078D-05, 5.88403394426251749D-05, & + -1.49282953213429172D-03, -8.78204709546389328D-04, & + -5.02916549572034614D-04, -2.94822138512746025D-04, & + -1.75463996970782828D-04, -1.04008550460816434D-04, & + -5.96141953046457895D-05, -3.12038929076098340D-05, & + -1.26089735980230047D-05, -2.42892608575730389D-07, & + 8.05996165414273571D-06, 1.36507009262147391D-05, & + 1.73964125472926261D-05, 1.98672978842133780D-05/ + DATA BETA(45), BETA(46), BETA(47), BETA(48), BETA(49), BETA(50), & + BETA(51), BETA(52), BETA(53), BETA(54), BETA(55), BETA(56), & + BETA(57), BETA(58), BETA(59), BETA(60), BETA(61), BETA(62), & + BETA(63), BETA(64), BETA(65), BETA(66)/ & + 2.14463263790822639D-05, 2.23954659232456514D-05, & + 2.28967783814712629D-05, 2.30785389811177817D-05, & + 2.30321976080909144D-05, 2.28236073720348722D-05, & + 2.25005881105292418D-05, 2.20981015361991429D-05, & + 2.16418427448103905D-05, 2.11507649256220843D-05, & + 2.06388749782170737D-05, 2.01165241997081666D-05, & + 1.95913450141179244D-05, 1.90689367910436740D-05, & + 1.85533719641636667D-05, 1.80475722259674218D-05, & + 5.52213076721292790D-04, 4.47932581552384646D-04, & + 2.79520653992020589D-04, 1.52468156198446602D-04, & + 6.93271105657043598D-05, 1.76258683069991397D-05/ + DATA BETA(67), BETA(68), BETA(69), BETA(70), BETA(71), BETA(72), & + BETA(73), BETA(74), BETA(75), BETA(76), BETA(77), BETA(78), & + BETA(79), BETA(80), BETA(81), BETA(82), BETA(83), BETA(84), & + BETA(85), BETA(86), BETA(87), BETA(88)/ & + -1.35744996343269136D-05, -3.17972413350427135D-05, & + -4.18861861696693365D-05, -4.69004889379141029D-05, & + -4.87665447413787352D-05, -4.87010031186735069D-05, & + -4.74755620890086638D-05, -4.55813058138628452D-05, & + -4.33309644511266036D-05, -4.09230193157750364D-05, & + -3.84822638603221274D-05, -3.60857167535410501D-05, & + -3.37793306123367417D-05, -3.15888560772109621D-05, & + -2.95269561750807315D-05, -2.75978914828335759D-05, & + -2.58006174666883713D-05, -2.41308356761280200D-05, & + -2.25823509518346033D-05, -2.11479656768912971D-05, & + -1.98200638885294927D-05, -1.85909870801065077D-05/ + DATA BETA(89), BETA(90), BETA(91), BETA(92), BETA(93), BETA(94), & + BETA(95), BETA(96), BETA(97), BETA(98), BETA(99), BETA(100), & + BETA(101), BETA(102), BETA(103), BETA(104), BETA(105), & + BETA(106), BETA(107), BETA(108), BETA(109), BETA(110)/ & + -1.74532699844210224D-05, -1.63997823854497997D-05, & + -4.74617796559959808D-04, -4.77864567147321487D-04, & + -3.20390228067037603D-04, -1.61105016119962282D-04, & + -4.25778101285435204D-05, 3.44571294294967503D-05, & + 7.97092684075674924D-05, 1.03138236708272200D-04, & + 1.12466775262204158D-04, 1.13103642108481389D-04, & + 1.08651634848774268D-04, 1.01437951597661973D-04, & + 9.29298396593363896D-05, 8.40293133016089978D-05, & + 7.52727991349134062D-05, 6.69632521975730872D-05, & + 5.92564547323194704D-05, 5.22169308826975567D-05, & + 4.58539485165360646D-05, 4.01445513891486808D-05/ + DATA BETA(111), BETA(112), BETA(113), BETA(114), BETA(115), & + BETA(116), BETA(117), BETA(118), BETA(119), BETA(120), & + BETA(121), BETA(122), BETA(123), BETA(124), BETA(125), & + BETA(126), BETA(127), BETA(128), BETA(129), BETA(130)/ & + 3.50481730031328081D-05, 3.05157995034346659D-05, & + 2.64956119950516039D-05, 2.29363633690998152D-05, & + 1.97893056664021636D-05, 1.70091984636412623D-05, & + 1.45547428261524004D-05, 1.23886640995878413D-05, & + 1.04775876076583236D-05, 8.79179954978479373D-06, & + 7.36465810572578444D-04, 8.72790805146193976D-04, & + 6.22614862573135066D-04, 2.85998154194304147D-04, & + 3.84737672879366102D-06, -1.87906003636971558D-04, & + -2.97603646594554535D-04, -3.45998126832656348D-04, & + -3.53382470916037712D-04, -3.35715635775048757D-04/ + DATA BETA(131), BETA(132), BETA(133), BETA(134), BETA(135), & + BETA(136), BETA(137), BETA(138), BETA(139), BETA(140), & + BETA(141), BETA(142), BETA(143), BETA(144), BETA(145), & + BETA(146), BETA(147), BETA(148), BETA(149), BETA(150)/ & + -3.04321124789039809D-04, -2.66722723047612821D-04, & + -2.27654214122819527D-04, -1.89922611854562356D-04, & + -1.55058918599093870D-04, -1.23778240761873630D-04, & + -9.62926147717644187D-05, -7.25178327714425337D-05, & + -5.22070028895633801D-05, -3.50347750511900522D-05, & + -2.06489761035551757D-05, -8.70106096849767054D-06, & + 1.13698686675100290D-06, 9.16426474122778849D-06, & + 1.56477785428872620D-05, 2.08223629482466847D-05, & + 2.48923381004595156D-05, 2.80340509574146325D-05, & + 3.03987774629861915D-05, 3.21156731406700616D-05/ + DATA BETA(151), BETA(152), BETA(153), BETA(154), BETA(155), & + BETA(156), BETA(157), BETA(158), BETA(159), BETA(160), & + BETA(161), BETA(162), BETA(163), BETA(164), BETA(165), & + BETA(166), BETA(167), BETA(168), BETA(169), BETA(170)/ & + -1.80182191963885708D-03, -2.43402962938042533D-03, & + -1.83422663549856802D-03, -7.62204596354009765D-04, & + 2.39079475256927218D-04, 9.49266117176881141D-04, & + 1.34467449701540359D-03, 1.48457495259449178D-03, & + 1.44732339830617591D-03, 1.30268261285657186D-03, & + 1.10351597375642682D-03, 8.86047440419791759D-04, & + 6.73073208165665473D-04, 4.77603872856582378D-04, & + 3.05991926358789362D-04, 1.60315694594721630D-04, & + 4.00749555270613286D-05, -5.66607461635251611D-05, & + -1.32506186772982638D-04, -1.90296187989614057D-04/ + DATA BETA(171), BETA(172), BETA(173), BETA(174), BETA(175), & + BETA(176), BETA(177), BETA(178), BETA(179), BETA(180), & + BETA(181), BETA(182), BETA(183), BETA(184), BETA(185), & + BETA(186), BETA(187), BETA(188), BETA(189), BETA(190)/ & + -2.32811450376937408D-04, -2.62628811464668841D-04, & + -2.82050469867598672D-04, -2.93081563192861167D-04, & + -2.97435962176316616D-04, -2.96557334239348078D-04, & + -2.91647363312090861D-04, -2.83696203837734166D-04, & + -2.73512317095673346D-04, -2.61750155806768580D-04, & + 6.38585891212050914D-03, 9.62374215806377941D-03, & + 7.61878061207001043D-03, 2.83219055545628054D-03, & + -2.09841352012720090D-03, -5.73826764216626498D-03, & + -7.70804244495414620D-03, -8.21011692264844401D-03, & + -7.65824520346905413D-03, -6.47209729391045177D-03/ + DATA BETA(191), BETA(192), BETA(193), BETA(194), BETA(195), & + BETA(196), BETA(197), BETA(198), BETA(199), BETA(200), & + BETA(201), BETA(202), BETA(203), BETA(204), BETA(205), & + BETA(206), BETA(207), BETA(208), BETA(209), BETA(210)/ & + -4.99132412004966473D-03, -3.45612289713133280D-03, & + -2.01785580014170775D-03, -7.59430686781961401D-04, & + 2.84173631523859138D-04, 1.10891667586337403D-03, & + 1.72901493872728771D-03, 2.16812590802684701D-03, & + 2.45357710494539735D-03, 2.61281821058334862D-03, & + 2.67141039656276912D-03, 2.65203073395980430D-03, & + 2.57411652877287315D-03, 2.45389126236094427D-03, & + 2.30460058071795494D-03, 2.13684837686712662D-03, & + 1.95896528478870911D-03, 1.77737008679454412D-03, & + 1.59690280765839059D-03, 1.42111975664438546D-03/ + DATA GAMA(1), GAMA(2), GAMA(3), GAMA(4), GAMA(5), GAMA(6), & + GAMA(7), GAMA(8), GAMA(9), GAMA(10), GAMA(11), GAMA(12), & + GAMA(13), GAMA(14), GAMA(15), GAMA(16), GAMA(17), GAMA(18), & + GAMA(19), GAMA(20), GAMA(21), GAMA(22)/ & + 6.29960524947436582D-01, 2.51984209978974633D-01, & + 1.54790300415655846D-01, 1.10713062416159013D-01, & + 8.57309395527394825D-02, 6.97161316958684292D-02, & + 5.86085671893713576D-02, 5.04698873536310685D-02, & + 4.42600580689154809D-02, 3.93720661543509966D-02, & + 3.54283195924455368D-02, 3.21818857502098231D-02, & + 2.94646240791157679D-02, 2.71581677112934479D-02, & + 2.51768272973861779D-02, 2.34570755306078891D-02, & + 2.19508390134907203D-02, 2.06210828235646240D-02, & + 1.94388240897880846D-02, 1.83810633800683158D-02, & + 1.74293213231963172D-02, 1.65685837786612353D-02/ + DATA GAMA(23), GAMA(24), GAMA(25), GAMA(26), GAMA(27), GAMA(28), & + GAMA(29), GAMA(30)/ & + 1.57865285987918445D-02, 1.50729501494095594D-02, & + 1.44193250839954639D-02, 1.38184805735341786D-02, & + 1.32643378994276568D-02, 1.27517121970498651D-02, & + 1.22761545318762767D-02, 1.18338262398482403D-02/ + DATA EX1, EX2, HPI, GPI, THPI / & + 3.33333333333333333D-01, 6.66666666666666667D-01, & + 1.57079632679489662D+00, 3.14159265358979324D+00, & + 4.71238898038468986D+00/ + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + RFNU = 1.0D0/FNU + ZBR = ZR*RFNU + ZBI = ZI*RFNU + RFNU2 = RFNU*RFNU +!----------------------------------------------------------------------- +! COMPUTE IN THE FOURTH QUADRANT +!----------------------------------------------------------------------- + FN13 = FNU**EX1 + FN23 = FN13*FN13 + RFN13 = 1.0D0/FN13 + W2R = CONER - ZBR*ZBR + ZBI*ZBI + W2I = CONEI - ZBR*ZBI - ZBR*ZBI + AW2 = ZABS(W2R,W2I) + IF (AW2.GT.0.25D0) GO TO 130 +!----------------------------------------------------------------------- +! POWER SERIES FOR CABS(W2).LE.0.25D0 +!----------------------------------------------------------------------- + K = 1 + PR(1) = CONER + PI(1) = CONEI + SUMAR = GAMA(1) + SUMAI = ZEROI + AP(1) = 1.0D0 + IF (AW2.LT.TOL) GO TO 20 + DO 10 K=2,30 + PR(K) = PR(K-1)*W2R - PI(K-1)*W2I + PI(K) = PR(K-1)*W2I + PI(K-1)*W2R + SUMAR = SUMAR + PR(K)*GAMA(K) + SUMAI = SUMAI + PI(K)*GAMA(K) + AP(K) = AP(K-1)*AW2 + IF (AP(K).LT.TOL) GO TO 20 + 10 CONTINUE + K = 30 + 20 CONTINUE + KMAX = K + ZETAR = W2R*SUMAR - W2I*SUMAI + ZETAI = W2R*SUMAI + W2I*SUMAR + ARGR = ZETAR*FN23 + ARGI = ZETAI*FN23 + CALL ZSQRT(SUMAR, SUMAI, ZAR, ZAI) + CALL ZSQRT(W2R, W2I, STR, STI) + ZETA2R = STR*FNU + ZETA2I = STI*FNU + STR = CONER + EX2*(ZETAR*ZAR-ZETAI*ZAI) + STI = CONEI + EX2*(ZETAR*ZAI+ZETAI*ZAR) + ZETA1R = STR*ZETA2R - STI*ZETA2I + ZETA1I = STR*ZETA2I + STI*ZETA2R + ZAR = ZAR + ZAR + ZAI = ZAI + ZAI + CALL ZSQRT(ZAR, ZAI, STR, STI) + PHIR = STR*RFN13 + PHII = STI*RFN13 + IF (IPMTR.EQ.1) GO TO 120 +!----------------------------------------------------------------------- +! SUM SERIES FOR ASUM AND BSUM +!----------------------------------------------------------------------- + SUMBR = ZEROR + SUMBI = ZEROI + DO 30 K=1,KMAX + SUMBR = SUMBR + PR(K)*BETA(K) + SUMBI = SUMBI + PI(K)*BETA(K) + 30 CONTINUE + ASUMR = ZEROR + ASUMI = ZEROI + BSUMR = SUMBR + BSUMI = SUMBI + L1 = 0 + L2 = 30 + BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI)) + ATOL = TOL + PP = 1.0D0 + IAS = 0 + IBS = 0 + IF (RFNU2.LT.TOL) GO TO 110 + DO 100 IS=2,7 + ATOL = ATOL/RFNU2 + PP = PP*RFNU2 + IF (IAS.EQ.1) GO TO 60 + SUMAR = ZEROR + SUMAI = ZEROI + DO 40 K=1,KMAX + M = L1 + K + SUMAR = SUMAR + PR(K)*ALFA(M) + SUMAI = SUMAI + PI(K)*ALFA(M) + IF (AP(K).LT.ATOL) GO TO 50 + 40 CONTINUE + 50 CONTINUE + ASUMR = ASUMR + SUMAR*PP + ASUMI = ASUMI + SUMAI*PP + IF (PP.LT.TOL) IAS = 1 + 60 CONTINUE + IF (IBS.EQ.1) GO TO 90 + SUMBR = ZEROR + SUMBI = ZEROI + DO 70 K=1,KMAX + M = L2 + K + SUMBR = SUMBR + PR(K)*BETA(M) + SUMBI = SUMBI + PI(K)*BETA(M) + IF (AP(K).LT.ATOL) GO TO 80 + 70 CONTINUE + 80 CONTINUE + BSUMR = BSUMR + SUMBR*PP + BSUMI = BSUMI + SUMBI*PP + IF (PP.LT.BTOL) IBS = 1 + 90 CONTINUE + IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 110 + L1 = L1 + 30 + L2 = L2 + 30 + 100 CONTINUE + 110 CONTINUE + ASUMR = ASUMR + CONER + PP = RFNU*RFN13 + BSUMR = BSUMR*PP + BSUMI = BSUMI*PP + 120 CONTINUE + RETURN +!----------------------------------------------------------------------- +! CABS(W2).GT.0.25D0 +!----------------------------------------------------------------------- + 130 CONTINUE + CALL ZSQRT(W2R, W2I, WR, WI) + IF (WR.LT.0.0D0) WR = 0.0D0 + IF (WI.LT.0.0D0) WI = 0.0D0 + STR = CONER + WR + STI = WI + CALL ZDIV(STR, STI, ZBR, ZBI, ZAR, ZAI) + CALL ZLOG(ZAR, ZAI, ZCR, ZCI, IDUM) + IF (ZCI.LT.0.0D0) ZCI = 0.0D0 + IF (ZCI.GT.HPI) ZCI = HPI + IF (ZCR.LT.0.0D0) ZCR = 0.0D0 + ZTHR = (ZCR-WR)*1.5D0 + ZTHI = (ZCI-WI)*1.5D0 + ZETA1R = ZCR*FNU + ZETA1I = ZCI*FNU + ZETA2R = WR*FNU + ZETA2I = WI*FNU + AZTH = ZABS(ZTHR,ZTHI) + ANG = THPI + IF (ZTHR.GE.0.0D0 .AND. ZTHI.LT.0.0D0) GO TO 140 + ANG = HPI + IF (ZTHR.EQ.0.0D0) GO TO 140 + ANG = DATAN(ZTHI/ZTHR) + IF (ZTHR.LT.0.0D0) ANG = ANG + GPI + 140 CONTINUE + PP = AZTH**EX2 + ANG = ANG*EX2 + ZETAR = PP*DCOS(ANG) + ZETAI = PP*DSIN(ANG) + IF (ZETAI.LT.0.0D0) ZETAI = 0.0D0 + ARGR = ZETAR*FN23 + ARGI = ZETAI*FN23 + CALL ZDIV(ZTHR, ZTHI, ZETAR, ZETAI, RTZTR, RTZTI) + CALL ZDIV(RTZTR, RTZTI, WR, WI, ZAR, ZAI) + TZAR = ZAR + ZAR + TZAI = ZAI + ZAI + CALL ZSQRT(TZAR, TZAI, STR, STI) + PHIR = STR*RFN13 + PHII = STI*RFN13 + IF (IPMTR.EQ.1) GO TO 120 + RAW = 1.0D0/DSQRT(AW2) + STR = WR*RAW + STI = -WI*RAW + TFNR = STR*RFNU*RAW + TFNI = STI*RFNU*RAW + RAZTH = 1.0D0/AZTH + STR = ZTHR*RAZTH + STI = -ZTHI*RAZTH + RZTHR = STR*RAZTH*RFNU + RZTHI = STI*RAZTH*RFNU + ZCR = RZTHR*AR(2) + ZCI = RZTHI*AR(2) + RAW2 = 1.0D0/AW2 + STR = W2R*RAW2 + STI = -W2I*RAW2 + T2R = STR*RAW2 + T2I = STI*RAW2 + STR = T2R*C(2) + C(3) + STI = T2I*C(2) + UPR(2) = STR*TFNR - STI*TFNI + UPI(2) = STR*TFNI + STI*TFNR + BSUMR = UPR(2) + ZCR + BSUMI = UPI(2) + ZCI + ASUMR = ZEROR + ASUMI = ZEROI + IF (RFNU.LT.TOL) GO TO 220 + PRZTHR = RZTHR + PRZTHI = RZTHI + PTFNR = TFNR + PTFNI = TFNI + UPR(1) = CONER + UPI(1) = CONEI + PP = 1.0D0 + BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI)) + KS = 0 + KP1 = 2 + L = 3 + IAS = 0 + IBS = 0 + DO 210 LR=2,12,2 + LRP1 = LR + 1 +!----------------------------------------------------------------------- +! COMPUTE TWO ADDITIONAL CR, DR, AND UP FOR TWO MORE TERMS IN +! NEXT SUMA AND SUMB +!----------------------------------------------------------------------- + DO 160 K=LR,LRP1 + KS = KS + 1 + KP1 = KP1 + 1 + L = L + 1 + ZAR = C(L) + ZAI = ZEROI + DO 150 J=2,KP1 + L = L + 1 + STR = ZAR*T2R - T2I*ZAI + C(L) + ZAI = ZAR*T2I + ZAI*T2R + ZAR = STR + 150 CONTINUE + STR = PTFNR*TFNR - PTFNI*TFNI + PTFNI = PTFNR*TFNI + PTFNI*TFNR + PTFNR = STR + UPR(KP1) = PTFNR*ZAR - PTFNI*ZAI + UPI(KP1) = PTFNI*ZAR + PTFNR*ZAI + CRR(KS) = PRZTHR*BR(KS+1) + CRI(KS) = PRZTHI*BR(KS+1) + STR = PRZTHR*RZTHR - PRZTHI*RZTHI + PRZTHI = PRZTHR*RZTHI + PRZTHI*RZTHR + PRZTHR = STR + DRR(KS) = PRZTHR*AR(KS+2) + DRI(KS) = PRZTHI*AR(KS+2) + 160 CONTINUE + PP = PP*RFNU2 + IF (IAS.EQ.1) GO TO 180 + SUMAR = UPR(LRP1) + SUMAI = UPI(LRP1) + JU = LRP1 + DO 170 JR=1,LR + JU = JU - 1 + SUMAR = SUMAR + CRR(JR)*UPR(JU) - CRI(JR)*UPI(JU) + SUMAI = SUMAI + CRR(JR)*UPI(JU) + CRI(JR)*UPR(JU) + 170 CONTINUE + ASUMR = ASUMR + SUMAR + ASUMI = ASUMI + SUMAI + TEST = DABS(SUMAR) + DABS(SUMAI) + IF (PP.LT.TOL .AND. TEST.LT.TOL) IAS = 1 + 180 CONTINUE + IF (IBS.EQ.1) GO TO 200 + SUMBR = UPR(LR+2) + UPR(LRP1)*ZCR - UPI(LRP1)*ZCI + SUMBI = UPI(LR+2) + UPR(LRP1)*ZCI + UPI(LRP1)*ZCR + JU = LRP1 + DO 190 JR=1,LR + JU = JU - 1 + SUMBR = SUMBR + DRR(JR)*UPR(JU) - DRI(JR)*UPI(JU) + SUMBI = SUMBI + DRR(JR)*UPI(JU) + DRI(JR)*UPR(JU) + 190 CONTINUE + BSUMR = BSUMR + SUMBR + BSUMI = BSUMI + SUMBI + TEST = DABS(SUMBR) + DABS(SUMBI) + IF (PP.LT.BTOL .AND. TEST.LT.BTOL) IBS = 1 + 200 CONTINUE + IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 220 + 210 CONTINUE + 220 CONTINUE + ASUMR = ASUMR + CONER + STR = -BSUMR*RFN13 + STI = -BSUMI*RFN13 + CALL ZDIV(STR, STI, RTZTR, RTZTI, BSUMR, BSUMI) + GO TO 120 +END + +SUBROUTINE ZRATI(ZR, ZI, FNU, N, CYR, CYI, TOL) +USE COMPLEX +!***BEGIN PROLOGUE ZRATI +!***REFER TO ZBESI,ZBESK,ZBESH +! +! ZRATI COMPUTES RATIOS OF I BESSEL FUNCTIONS BY BACKWARD +! RECURRENCE. THE STARTING INDEX IS DETERMINED BY FORWARD +! RECURRENCE AS DESCRIBED IN J. RES. OF NAT. BUR. OF STANDARDS-B, +! MATHEMATICAL SCIENCES, VOL 77B, P111-114, SEPTEMBER, 1973, +! BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER, +! BY D. J. SOOKNE. +! +!***ROUTINES CALLED ZABS,ZDIV +!***END PROLOGUE ZRATI +! COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU + DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR, & + CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU, & + FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI, & + RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR + INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N + DIMENSION CYR(1), CYI(1) + DATA CZEROR,CZEROI,CONER,CONEI,RT2 & + /0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0/ + AZ = ZABS(ZR,ZI) + INU = INT(SNGL(FNU)) + IDNU = INU + N - 1 + MAGZ = INT(SNGL(AZ)) + AMAGZ = DBLE(FLOAT(MAGZ+1)) + FDNU = DBLE(FLOAT(IDNU)) + FNUP = DMAX1(AMAGZ,FDNU) + ID = IDNU - MAGZ - 1 + ITIME = 1 + K = 1 + PTR = 1.0D0/AZ + RZR = PTR*(ZR+ZR)*PTR + RZI = -PTR*(ZI+ZI)*PTR + T1R = RZR*FNUP + T1I = RZI*FNUP + P2R = -T1R + P2I = -T1I + P1R = CONER + P1I = CONEI + T1R = T1R + RZR + T1I = T1I + RZI + IF (ID.GT.0) ID = 0 + AP2 = ZABS(P2R,P2I) + AP1 = ZABS(P1R,P1I) +!----------------------------------------------------------------------- +! THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU +! GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT +! P2 VALUES BY AP1 TO ENSURE THAT AN OVERFLOW DOES NOT OCCUR +! PREMATURELY. +!----------------------------------------------------------------------- + ARG = (AP2+AP2)/(AP1*TOL) + TEST1 = DSQRT(ARG) + TEST = TEST1 + RAP1 = 1.0D0/AP1 + P1R = P1R*RAP1 + P1I = P1I*RAP1 + P2R = P2R*RAP1 + P2I = P2I*RAP1 + AP2 = AP2*RAP1 + 10 CONTINUE + K = K + 1 + AP1 = AP2 + PTR = P2R + PTI = P2I + P2R = P1R - (T1R*PTR-T1I*PTI) + P2I = P1I - (T1R*PTI+T1I*PTR) + P1R = PTR + P1I = PTI + T1R = T1R + RZR + T1I = T1I + RZI + AP2 = ZABS(P2R,P2I) + IF (AP1.LE.TEST) GO TO 10 + IF (ITIME.EQ.2) GO TO 20 + AK = ZABS(T1R,T1I)*0.5D0 + FLAM = AK + DSQRT(AK*AK-1.0D0) + RHO = DMIN1(AP2/AP1,FLAM) + TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0)) + ITIME = 2 + GO TO 10 + 20 CONTINUE + KK = K + 1 - ID + AK = DBLE(FLOAT(KK)) + T1R = AK + T1I = CZEROI + DFNU = FNU + DBLE(FLOAT(N-1)) + P1R = 1.0D0/AP2 + P1I = CZEROI + P2R = CZEROR + P2I = CZEROI + DO 30 I=1,KK + PTR = P1R + PTI = P1I + RAP1 = DFNU + T1R + TTR = RZR*RAP1 + TTI = RZI*RAP1 + P1R = (PTR*TTR-PTI*TTI) + P2R + P1I = (PTR*TTI+PTI*TTR) + P2I + P2R = PTR + P2I = PTI + T1R = T1R - CONER + 30 CONTINUE + IF (P1R.NE.CZEROR .OR. P1I.NE.CZEROI) GO TO 40 + P1R = TOL + P1I = TOL + 40 CONTINUE + CALL ZDIV(P2R, P2I, P1R, P1I, CYR(N), CYI(N)) + IF (N.EQ.1) RETURN + K = N - 1 + AK = DBLE(FLOAT(K)) + T1R = AK + T1I = CZEROI + CDFNUR = FNU*RZR + CDFNUI = FNU*RZI + DO 60 I=2,N + PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1) + PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1) + AK = ZABS(PTR,PTI) + IF (AK.NE.CZEROR) GO TO 50 + PTR = TOL + PTI = TOL + AK = TOL*RT2 + 50 CONTINUE + RAK = CONER/AK + CYR(K) = RAK*PTR*RAK + CYI(K) = -RAK*PTI*RAK + T1R = T1R - CONER + K = K - 1 + 60 CONTINUE + RETURN +END + +SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZAIRY +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5K +!***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z +!***DESCRIPTION +! +! ***A DOUBLE PRECISION ROUTINE*** +! ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR +! ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON +! KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)* +! DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN +! -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN +! PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z). +! +! WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTI! IN +! THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED +! FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS. +! DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF +! MATHEMATICAL FUNCTIONS (REF. 1). +! +! INPUT ZR,ZI ARE DOUBLE PRECISION +! ZR,ZI - Z=CMPLX(ZR,ZI) +! ID - ORDER OF DERIVATIVE, ID=0 OR ID=1 +! KODE - A PARAMETER TO INDICATE THE SCALING OPTION +! KODE= 1 RETURNS +! AI=AI(Z) ON ID=0 OR +! AI=DAI(Z)/DZ ON ID=1 +! = 2 RETURNS +! AI=CEXP(ZTA)*AI(Z) ON ID=0 OR +! AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE +! ZTA=(2/3)*Z*CSQRT(Z) +! +! OUTPUT AIR,AII ARE DOUBLE PRECISION +! AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND +! KODE +! NZ - UNDERFLOW INDICATOR +! NZ= 0 , NORMAL RETURN +! NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN +! -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1 +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN - COMPUTATION COMPLETED +! IERR=1, INPUT ERROR - NO COMPUTATION +! IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA) +! TOO LARGE ON KODE=1 +! IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED +! LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION +! PRODUCE LESS THAN HALF OF MACHINE ACCURACY +! IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION +! COMPLETE LOSS OF ACCURACY BY ARGUMENT +! REDUCTION +! IERR=5, ERROR - NO COMPUTATION, +! ALGORITHM TERMINATION CONDITION NOT MET +! +!***LONG DESCRIPTION +! +! AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL +! FUNCTIONS BY +! +! AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA) +! C=1.0/(PI*SQRT(3.0)) +! ZTA=(2/3)*Z**(3/2) +! +! WITH THE POWER SERIES FOR CABS(Z).LE.1.0. +! +! IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- +! MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES +! OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF +! THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR), +! THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR +! FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS +! DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. +! ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN +! ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT +! FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE +! LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA +! MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, +! AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE +! PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE +! PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT- +! ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG- +! NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN +! DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN +! EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, +! NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE +! PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER +! MACHINES. +! +! THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX +! BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT +! ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- +! SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE +! ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), +! ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF +! CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY +! HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN +! ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY +! SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER +! THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, +! 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS +! THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER +! COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY +! BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER +! COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE +! MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, +! THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, +! OR -PI/2+P. +! +!***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ +! AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF +! COMMERCE, 1955. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 +! +! A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- +! 1018, MAY, 1985 +! +! A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. +! MATH. SOFTWARE, 1986 +! +!***ROUTINES CALLED ZACAI,ZBKNU,ZEXP,ZSQRT,I1MACH,D1MACH +!***END PROLOGUE ZAIRY +! COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3 + DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK, & + CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG, & + DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR, & + S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI, & + ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, ALAZ, BB + INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ + DIMENSION CYR(1), CYI(1) + DATA TTH, C1, C2, COEF /6.66666666666666667D-01, & + 3.55028053887817240D-01,2.58819403792806799D-01, & + 1.83776298473930683D-01/ + DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/ +!***FIRST EXECUTABLE STATEMENT ZAIRY + IERR = 0 + NZ=0 + IF (ID.LT.0 .OR. ID.GT.1) IERR=1 + IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 + IF (IERR.NE.0) RETURN + AZ = ZABS(ZR,ZI) + TOL = DMAX1(D1MACH(4),1.0D-18) + FID = DBLE(FLOAT(ID)) + IF (AZ.GT.1.0D0) GO TO 70 +!----------------------------------------------------------------------- +! POWER SERIES FOR CABS(Z).LE.1. +!----------------------------------------------------------------------- + S1R = CONER + S1I = CONEI + S2R = CONER + S2I = CONEI + IF (AZ.LT.TOL) GO TO 170 + AA = AZ*AZ + IF (AA.LT.TOL/AZ) GO TO 40 + TRM1R = CONER + TRM1I = CONEI + TRM2R = CONER + TRM2I = CONEI + ATRM = 1.0D0 + STR = ZR*ZR - ZI*ZI + STI = ZR*ZI + ZI*ZR + Z3R = STR*ZR - STI*ZI + Z3I = STR*ZI + STI*ZR + AZ3 = AZ*AA + AK = 2.0D0 + FID + BK = 3.0D0 - FID - FID + CK = 4.0D0 - FID + DK = 3.0D0 + FID + FID + D1 = AK*DK + D2 = BK*CK + AD = DMIN1(D1,D2) + AK = 24.0D0 + 9.0D0*FID + BK = 30.0D0 - 9.0D0*FID + DO 30 K=1,25 + STR = (TRM1R*Z3R-TRM1I*Z3I)/D1 + TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1 + TRM1R = STR + S1R = S1R + TRM1R + S1I = S1I + TRM1I + STR = (TRM2R*Z3R-TRM2I*Z3I)/D2 + TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2 + TRM2R = STR + S2R = S2R + TRM2R + S2I = S2I + TRM2I + ATRM = ATRM*AZ3/AD + D1 = D1 + AK + D2 = D2 + BK + AD = DMIN1(D1,D2) + IF (ATRM.LT.TOL*AD) GO TO 40 + AK = AK + 18.0D0 + BK = BK + 18.0D0 + 30 CONTINUE + 40 CONTINUE + IF (ID.EQ.1) GO TO 50 + AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I) + AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R) + IF (KODE.EQ.1) RETURN + CALL ZSQRT(ZR, ZI, STR, STI) + ZTAR = TTH*(ZR*STR-ZI*STI) + ZTAI = TTH*(ZR*STI+ZI*STR) + CALL ZEXP(ZTAR, ZTAI, STR, STI) + PTR = AIR*STR - AII*STI + AII = AIR*STI + AII*STR + AIR = PTR + RETURN + 50 CONTINUE + AIR = -S2R*C2 + AII = -S2I*C2 + IF (AZ.LE.TOL) GO TO 60 + STR = ZR*S1R - ZI*S1I + STI = ZR*S1I + ZI*S1R + CC = C1/(1.0D0+FID) + AIR = AIR + CC*(STR*ZR-STI*ZI) + AII = AII + CC*(STR*ZI+STI*ZR) + 60 CONTINUE + IF (KODE.EQ.1) RETURN + CALL ZSQRT(ZR, ZI, STR, STI) + ZTAR = TTH*(ZR*STR-ZI*STI) + ZTAI = TTH*(ZR*STI+ZI*STR) + CALL ZEXP(ZTAR, ZTAI, STR, STI) + PTR = STR*AIR - STI*AII + AII = STR*AII + STI*AIR + AIR = PTR + RETURN +!----------------------------------------------------------------------- +! CASE FOR CABS(Z).GT.1.0 +!----------------------------------------------------------------------- + 70 CONTINUE + FNU = (1.0D0+FID)/3.0D0 +!----------------------------------------------------------------------- +! SET PARAMETERS RELATED TO MACHINE CONSTANTS. +! TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18. +! ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. +! EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND +! EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR +! UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. +! RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. +! DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). +!----------------------------------------------------------------------- + K1 = I1MACH(15) + K2 = I1MACH(16) + R1M5 = D1MACH(5) + K = MIN0(IABS(K1),IABS(K2)) + ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0) + K1 = I1MACH(14) - 1 + AA = R1M5*DBLE(FLOAT(K1)) + DIG = DMIN1(AA,18.0D0) + AA = AA*2.303D0 + ALIM = ELIM + DMAX1(-AA,-41.45D0) + RL = 1.2D0*DIG + 3.0D0 + ALAZ = DLOG(AZ) +!----------------------------------------------------------------------- +! TEST FOR PROPER RANGE +!----------------------------------------------------------------------- + AA=0.5D0/TOL + BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 + AA=DMIN1(AA,BB) + AA=AA**TTH + IF (AZ.GT.AA) GO TO 260 + AA=DSQRT(AA) + IF (AZ.GT.AA) IERR=3 + CALL ZSQRT(ZR, ZI, CSQR, CSQI) + ZTAR = TTH*(ZR*CSQR-ZI*CSQI) + ZTAI = TTH*(ZR*CSQI+ZI*CSQR) +!----------------------------------------------------------------------- +! RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL +!----------------------------------------------------------------------- + IFLAG = 0 + SFAC = 1.0D0 + AK = ZTAI + IF (ZR.GE.0.0D0) GO TO 80 + BK = ZTAR + CK = -DABS(BK) + ZTAR = CK + ZTAI = AK + 80 CONTINUE + IF (ZI.NE.0.0D0) GO TO 90 + IF (ZR.GT.0.0D0) GO TO 90 + ZTAR = 0.0D0 + ZTAI = AK + 90 CONTINUE + AA = ZTAR + IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110 + IF (KODE.EQ.2) GO TO 100 +!----------------------------------------------------------------------- +! OVERFLOW TEST +!----------------------------------------------------------------------- + IF (AA.GT.(-ALIM)) GO TO 100 + AA = -AA + 0.25D0*ALAZ + IFLAG = 1 + SFAC = TOL + IF (AA.GT.ELIM) GO TO 270 + 100 CONTINUE +!----------------------------------------------------------------------- +! CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2 +!----------------------------------------------------------------------- + MR = 1 + IF (ZI.LT.0.0D0) MR = -1 + CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL, & + ELIM, ALIM) + IF (NN.LT.0) GO TO 280 + NZ = NZ + NN + GO TO 130 + 110 CONTINUE + IF (KODE.EQ.2) GO TO 120 +!----------------------------------------------------------------------- +! UNDERFLOW TEST +!----------------------------------------------------------------------- + IF (AA.LT.ALIM) GO TO 120 + AA = -AA - 0.25D0*ALAZ + IFLAG = 2 + SFAC = 1.0D0/TOL + IF (AA.LT.(-ELIM)) GO TO 210 + 120 CONTINUE + CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM, ALIM) + 130 CONTINUE + S1R = CYR(1)*COEF + S1I = CYI(1)*COEF + IF (IFLAG.NE.0) GO TO 150 + IF (ID.EQ.1) GO TO 140 + AIR = CSQR*S1R - CSQI*S1I + AII = CSQR*S1I + CSQI*S1R + RETURN + 140 CONTINUE + AIR = -(ZR*S1R-ZI*S1I) + AII = -(ZR*S1I+ZI*S1R) + RETURN + 150 CONTINUE + S1R = S1R*SFAC + S1I = S1I*SFAC + IF (ID.EQ.1) GO TO 160 + STR = S1R*CSQR - S1I*CSQI + S1I = S1R*CSQI + S1I*CSQR + S1R = STR + AIR = S1R/SFAC + AII = S1I/SFAC + RETURN + 160 CONTINUE + STR = -(S1R*ZR-S1I*ZI) + S1I = -(S1R*ZI+S1I*ZR) + S1R = STR + AIR = S1R/SFAC + AII = S1I/SFAC + RETURN + 170 CONTINUE + AA = 1.0D+3*D1MACH(1) + S1R = ZEROR + S1I = ZEROI + IF (ID.EQ.1) GO TO 190 + IF (AZ.LE.AA) GO TO 180 + S1R = C2*ZR + S1I = C2*ZI + 180 CONTINUE + AIR = C1 - S1R + AII = -S1I + RETURN + 190 CONTINUE + AIR = -C2 + AII = 0.0D0 + AA = DSQRT(AA) + IF (AZ.LE.AA) GO TO 200 + S1R = 0.5D0*(ZR*ZR-ZI*ZI) + S1I = ZR*ZI + 200 CONTINUE + AIR = AIR + C1*S1R + AII = AII + C1*S1I + RETURN + 210 CONTINUE + NZ = 1 + AIR = ZEROR + AII = ZEROI + RETURN + 270 CONTINUE + NZ = 0 + IERR=2 + RETURN + 280 CONTINUE + IF(NN.EQ.(-1)) GO TO 270 + NZ=0 + IERR=5 + RETURN + 260 CONTINUE + IERR=4 + NZ=0 + RETURN +END + +SUBROUTINE ZACAI(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZACAI +!***REFER TO ZAIRY +! +! ZACAI APPLIES THE ANALYTIC CONTINUATION FORMULA +! +! K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN) +! MP=PI*MR*CMPLX(0.0,1.0) +! +! TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT +! HALF Z PLANE FOR USE WITH ZAIRY WHERE FNU=1/3 OR 2/3 AND N=1. +! ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND +! RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT IF ZACON +! IS CALLED FROM ZAIRY. +! +!***ROUTINES CALLED ZASYI,ZBKNU,ZMLRI,ZSERI,ZS1S2,D1MACH,ZABS +!***END PROLOGUE ZACAI +! COMPLEX CSGN,CSPN,C1,C2,Y,Z,ZN,CY + DOUBLE PRECISION ALIM, ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR, & + CSPNI, C1R, C1I, C2R, C2I, CYR, CYI, DFNU, ELIM, FMR, FNU, PI, & + RL, SGN, TOL, YY, YR, YI, ZR, ZI, ZNR, ZNI + INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ + DIMENSION YR(1), YI(1), CYR(2), CYI(2) + DATA PI / 3.14159265358979324D0 / + NZ = 0 + ZNR = -ZR + ZNI = -ZI + AZ = ZABS(ZR,ZI) + NN = N + DFNU = FNU + DBLE(FLOAT(N-1)) + IF (AZ.LE.2.0D0) GO TO 10 + IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! POWER SERIES FOR THE I FUNCTION +!----------------------------------------------------------------------- + CALL ZSERI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL, ELIM, ALIM) + GO TO 40 + 20 CONTINUE + IF (AZ.LT.RL) GO TO 30 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION +!----------------------------------------------------------------------- + CALL ZASYI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 80 + GO TO 40 + 30 CONTINUE +!----------------------------------------------------------------------- +! MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION +!----------------------------------------------------------------------- + CALL ZMLRI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL) + IF(NW.LT.0) GO TO 80 + 40 CONTINUE +!----------------------------------------------------------------------- +! ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION +!----------------------------------------------------------------------- + CALL ZBKNU(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, NW, TOL, ELIM, ALIM) + IF (NW.NE.0) GO TO 80 + FMR = DBLE(FLOAT(MR)) + SGN = -DSIGN(PI,FMR) + CSGNR = 0.0D0 + CSGNI = SGN + IF (KODE.EQ.1) GO TO 50 + YY = -ZNI + CSGNR = -CSGNI*DSIN(YY) + CSGNI = CSGNI*DCOS(YY) + 50 CONTINUE +!----------------------------------------------------------------------- +! CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE +! WHEN FNU IS LARGE +!----------------------------------------------------------------------- + INU = INT(SNGL(FNU)) + ARG = (FNU-DBLE(FLOAT(INU)))*SGN + CSPNR = DCOS(ARG) + CSPNI = DSIN(ARG) + IF (MOD(INU,2).EQ.0) GO TO 60 + CSPNR = -CSPNR + CSPNI = -CSPNI + 60 CONTINUE + C1R = CYR(1) + C1I = CYI(1) + C2R = YR(1) + C2I = YI(1) + IF (KODE.EQ.1) GO TO 70 + IUF = 0 + ASCLE = 1.0D+3*D1MACH(1)/TOL + CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF) + NZ = NZ + NW + 70 CONTINUE + YR(1) = CSPNR*C1R - CSPNI*C1I + CSGNR*C2R - CSGNI*C2I + YI(1) = CSPNR*C1I + CSPNI*C1R + CSGNR*C2I + CSGNI*C2R + RETURN + 80 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN +END + +SUBROUTINE ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NZ, ASCLE, ALIM, IUF) +USE COMPLEX +!***BEGIN PROLOGUE ZS1S2 +!***REFER TO ZBESK,ZAIRY +! +! ZS1S2 TESTS FOR A POSSIBLE UNDERFLOW RESULTING FROM THE +! ADDITION OF THE I AND K FUNCTIONS IN THE ANALYTIC CON- +! TINUATION FORMULA WHERE S1=K FUNCTION AND S2=I FUNCTION. +! ON KODE=1 THE I AND K FUNCTIONS ARE DIFFERENT ORDERS OF +! MAGNITUDE, BUT FOR KODE=2 THEY CAN BE OF THE SAME ORDER +! OF MAGNITUDE AND THE MAXIMUM MUST BE AT LEAST ONE +! PRECISION ABOVE THE UNDERFLOW LIMIT. +! +!***ROUTINES CALLED ZABS,ZEXP,ZLOG +!***END PROLOGUE ZS1S2 +! COMPLEX CZERO,C1,S1,S1D,S2,ZR + DOUBLE PRECISION AA, ALIM, ALN, ASCLE, AS1, AS2, C1I, C1R, S1DI, & + S1DR, S1I, S1R, S2I, S2R, ZEROI, ZEROR, ZRI, ZRR + INTEGER IUF, IDUM, NZ + DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 / + NZ = 0 + AS1 = ZABS(S1R,S1I) + AS2 = ZABS(S2R,S2I) + IF (S1R.EQ.0.0D0 .AND. S1I.EQ.0.0D0) GO TO 10 + IF (AS1.EQ.0.0D0) GO TO 10 + ALN = -ZRR - ZRR + DLOG(AS1) + S1DR = S1R + S1DI = S1I + S1R = ZEROR + S1I = ZEROI + AS1 = ZEROR + IF (ALN.LT.(-ALIM)) GO TO 10 + CALL ZLOG(S1DR, S1DI, C1R, C1I, IDUM) + C1R = C1R - ZRR - ZRR + C1I = C1I - ZRI - ZRI + CALL ZEXP(C1R, C1I, S1R, S1I) + AS1 = ZABS(S1R,S1I) + IUF = IUF + 1 + 10 CONTINUE + AA = DMAX1(AS1,AS2) + IF (AA.GT.ASCLE) RETURN + S1R = ZEROR + S1I = ZEROI + S2R = ZEROR + S2I = ZEROI + NZ = 1 + IUF = 0 + RETURN +END +end module besselj +!end of file tzbesj.f90 diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/bessely.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/bessely.f90 new file mode 100644 index 000000000..afe7a7e5b --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/bessely.f90 @@ -0,0 +1,5888 @@ +module bessely + implicit none + private + public ZBESY +contains +!***************************************************************** +!* EVALUATE A Y-BESSEL FUNCTION OF COMPLEX ARGUMENT (SECOND KIND)* +!* ------------------------------------------------------------- * +!* SAMPLE RUN: * +!* (Evaluate Y0 to Y4 for argument Z=(1.0,2.0) ). * +!* * +!* zr(0) = 1.367419 * +!* zi(0) = 1.521507 * +!* zr(1) = -1.089470 * +!* zi(1) = 1.314951 * +!* zr(2) = -0.751245 * +!* zi(2) = -0.123950 * +!* zr(3) = 0.290153 * +!* zi(3) = -0.212119 * +!* zr(4) = 0.590344 * +!* zi(4) = -0.826960 * +!* NZ = 0 * +!* Error code: 0 * +!* * +!* ------------------------------------------------------------- * +!* Ref.: From Numath Library By Tuan Dang Trong in Fortran 77 * +!* [BIBLI 18]. * +!* * +!* F90 Release 1.0 By J-P Moreau, Paris * +!* (www.jpmoreau.fr) * +!***************************************************************** +!PROGRAM TEST_ZBESY + +! real*8 zr, zi +! real*8 cyr(10), cyi(10), cwr(10), cwi(10) + +! n=5 +! zr=1.d0; zi=2.d0 + +! call ZBESY(zr,zi,0.d0,1,n,cyr,cyi,nz,cwr,cwi,ierr) + +! print *,' ' +! do i=1, n +! write(*,10) i-1, cyr(i) +! write(*,11) i-1, cyi(i) +! end do +! print *,' NZ=', NZ +! print *,' Error code:', ierr +! print *,' ' +! stop + +!10 format(' zr(',I1,') = ',F10.6) +!11 format(' zi(',I1,') = ',F10.6) + +!END + + +SUBROUTINE ZBESY(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, CWRKR, CWRKI, IERR) +USE UTILIT +!***BEGIN PROLOGUE ZBESY +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5K +!***KEYWORDS Y-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT, +! BESSEL FUNCTION OF SECOND KIND +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE THE Y-BESSEL FUNCTION OF A COMPLEX ARGUMENT +!***DESCRIPTION +! +! ***A DOUBLE PRECISION ROUTINE*** +! +! ON KODE=1, CBESY COMPUTES AN N MEMBER SEQUENCE OF COMPLEX +! BESSEL FUNCTIONS CY(I)=Y(FNU+I-1,Z) FOR REAL, NONNEGATIVE +! ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE +! -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESY RETURNS THE SCALED +! FUNCTIONS +! +! CY(I)=EXP(-ABS(Y))*Y(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z) +! +! WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND +! LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION +! ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS +! (REF. 1). +! +! INPUT ZR,ZI,FNU ARE DOUBLE PRECISION +! ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0), +! -PI.LT.ARG(Z).LE.PI +! FNU - ORDER OF INITIAL Y FUNCTION, FNU.GE.0.0D0 +! KODE - A PARAMETER TO INDICATE THE SCALING OPTION +! KODE= 1 RETURNS +! CY(I)=Y(FNU+I-1,Z), I=1,...,N +! = 2 RETURNS +! CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)), I=1,...,N +! WHERE Y=AIMAG(Z) +! N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1 +! CWRKR, - DOUBLE PRECISION WORK VECTORS OF DIMENSION AT +! CWRKI AT LEAST N +! +! OUTPUT CYR,CYI ARE DOUBLE PRECISION +! CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS +! CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE +! CY(I)=Y(FNU+I-1,Z) OR +! CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)) I=1,...,N +! DEPENDING ON KODE. +! NZ - NZ=0 , A NORMAL RETURN +! NZ.GT.0 , NZ COMPONENTS OF CY SET TO ZERO DUE TO +! UNDERFLOW (GENERALLY ON KODE=2) +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN - COMPUTATION COMPLETED +! IERR=1, INPUT ERROR - NO COMPUTATION +! IERR=2, OVERFLOW - NO COMPUTATION, FNU IS +! TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH +! IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE +! BUT LOSSES OF SIGNIFCANCE BY ARGUMENT +! REDUCTION PRODUCE LESS THAN HALF OF MACHINE +! ACCURACY +! IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA- +! TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI- +! CANCE BY ARGUMENT REDUCTION +! IERR=5, ERROR - NO COMPUTATION, +! ALGORITHM TERMINATION CONDITION NOT MET +! +!***LONG DESCRIPTION +! +! THE COMPUTATION IS CARRIED OUT BY THE FORMULA +! +! Y(FNU,Z)=0.5*(H(1,FNU,Z)-H(2,FNU,Z))/I +! +! WHERE I**2 = -1 AND THE HANKEL BESSEL FUNCTIONS H(1,FNU,Z) +! AND H(2,FNU,Z) ARE CALCULATED IN CBESH. +! +! FOR NEGATIVE ORDERS,THE FORMULA +! +! Y(-FNU,Z) = Y(FNU,Z)*COS(PI*FNU) + J(FNU,Z)*SIN(PI*FNU) +! +! CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO HALF ODD +! INTEGERS THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE +! POSITIVE HALF ODD INTEGER,THE MAGNITUDE OF Y(-FNU,Z)=J(FNU,Z)* +! SIN(PI*FNU) IS A LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS +! NOT A HALF ODD INTEGER, Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A +! LARGE POSITIVE POWER OF TEN AND THE MOST THAT THE SECOND TERM +! CAN BE REDUCED IS BY UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, +! WIDE CHANGES CAN OCCUR WITHIN UNIT ROUNDOFF OF A LARGE HALF +! ODD INTEGER. HERE, LARGE MEANS FNU.GT.CABS(Z). +! +! IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- +! MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS +! LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. +! CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN +! LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG +! IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS +! DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. +! IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS +! LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS +! MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE +! INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS +! RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3 +! ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION +! ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION +! ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN +! THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT +! TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS +! IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC. +! SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES. +! +! THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX +! BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT +! ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- +! SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE +! ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), +! ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF +! CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY +! HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN +! ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY +! SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER +! THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, +! 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS +! THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER +! COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY +! BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER +! COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE +! MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, +! THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, +! OR -PI/2+P. +! +!***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ +! AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF +! COMMERCE, 1955. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! BY D. E. AMOS, SAND83-0083, MAY, 1983. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 +! +! A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- +! 1018, MAY, 1985 +! +! A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. +! MATH. SOFTWARE, 1986 +! +!***ROUTINES CALLED ZBESH,I1MACH,D1MACH +!***END PROLOGUE ZBESY +! +! COMPLEX CWRK,CY,C1,C2,EX,HCI,Z + DOUBLE PRECISION CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2R, & + ELIM, EXI, EXR, EY, FNU, HCII, STI, STR, TAY, ZI, ZR, DEXP + INTEGER I, IERR, K, KODE, K1, K2, N, NZ, NZ1, NZ2 + DIMENSION CYR(1), CYI(1), CWRKR(1), CWRKI(1) +!***FIRST EXECUTABLE STATEMENT ZBESY + IERR = 0 + NZ=0 + IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1 + IF (FNU.LT.0.0D0) IERR=1 + IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 + IF (N.LT.1) IERR=1 + IF (IERR.NE.0) RETURN + HCII = 0.5D0 + CALL ZBESH(ZR, ZI, FNU, KODE, 1, N, CYR, CYI, NZ1, IERR) + IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170 + CALL ZBESH(ZR, ZI, FNU, KODE, 2, N, CWRKR, CWRKI, NZ2, IERR) + IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170 + NZ = MIN0(NZ1,NZ2) + IF (KODE.EQ.2) GO TO 60 + DO 50 I=1,N + STR = CWRKR(I) - CYR(I) + STI = CWRKI(I) - CYI(I) + CYR(I) = -STI*HCII + CYI(I) = STR*HCII + 50 CONTINUE + RETURN + 60 CONTINUE + K1 = I1MACH(15) + K2 = I1MACH(16) + K = MIN0(IABS(K1),IABS(K2)) +!----------------------------------------------------------------------- +! ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT +!----------------------------------------------------------------------- + ELIM = 2.303D0*(DBLE(FLOAT(K))*D1MACH(5)-3.0D0) + EXR = DCOS(ZR) + EXI = DSIN(ZR) + EY = 0.0D0 + TAY = DABS(ZI+ZI) + IF (TAY.LT.ELIM) EY = DEXP(-TAY) + IF (ZI.LT.0.0D0) GO TO 90 + C1R = EXR*EY + C1I = EXI*EY + C2R = EXR + C2I = -EXI + 70 CONTINUE + NZ = 0 + DO 80 I=1,N + STR = C1R*CYR(I) - C1I*CYI(I) + STI = C1R*CYI(I) + C1I*CYR(I) + STR = -STR + C2R*CWRKR(I) - C2I*CWRKI(I) + STI = -STI + C2R*CWRKI(I) + C2I*CWRKR(I) + CYR(I) = -STI*HCII + CYI(I) = STR*HCII + IF (STR.EQ.0.0D0 .AND. STI.EQ.0.0D0 .AND. EY.EQ.0.0D0) NZ = NZ + 1 + 80 CONTINUE + RETURN + 90 CONTINUE + C1R = EXR + C1I = EXI + C2R = EXR*EY + C2I = -EXI*EY + GO TO 70 + 170 CONTINUE + NZ = 0 + RETURN +END + + +SUBROUTINE ZBESH(ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZBESH +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5K +!***KEYWORDS H-BESSEL FUNCTIONS,BESSEL FUNCTIONS OF COMPLEX ARGUMENT, +! BESSEL FUNCTIONS OF THIRD KIND,HANKEL FUNCTIONS +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE THE H-BESSEL FUNCTIONS OF A COMPLEX ARGUMENT +!***DESCRIPTION +! +! ***A DOUBLE PRECISION ROUTINE*** +! ON KODE=1, ZBESH COMPUTES AN N MEMBER SEQUENCE OF COMPLEX +! HANKEL (BESSEL) FUNCTIONS CY(J)=H(M,FNU+J-1,Z) FOR KINDS M=1 +! OR 2, REAL, NONNEGATIVE ORDERS FNU+J-1, J=1,...,N, AND COMPLEX +! Z.NE.CMPLX(0.0,0.0) IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. +! ON KODE=2, ZBESH RETURNS THE SCALED HANKEL FUNCTIONS +! +! CY(I)=EXP(-MM*Z*I)*H(M,FNU+J-1,Z) MM=3-2*M, I**2=-1. +! +! WHICH REMOVES THE EXPONENTIAL BEHAVIOR IN BOTH THE UPPER AND +! LOWER HALF PLANES. DEFINITIONS AND NOTATION ARE FOUND IN THE +! NBS HANDBOOK OF MATHEMATICAL FUNCTIONS (REF. 1). +! +! INPUT ZR,ZI,FNU ARE DOUBLE PRECISION +! ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0), +! -PT.LT.ARG(Z).LE.PI +! FNU - ORDER OF INITIAL H FUNCTION, FNU.GE.0.0D0 +! KODE - A PARAMETER TO INDICATE THE SCALING OPTION +! KODE= 1 RETURNS +! CY(J)=H(M,FNU+J-1,Z), J=1,...,N +! = 2 RETURNS +! CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M)) +! J=1,...,N , I**2=-1 +! M - KIND OF HANKEL FUNCTION, M=1 OR 2 +! N - NUMBER OF MEMBERS IN THE SEQUENCE, N.GE.1 +! +! OUTPUT CYR,CYI ARE DOUBLE PRECISION +! CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS +! CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE +! CY(J)=H(M,FNU+J-1,Z) OR +! CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M)) J=1,...,N +! DEPENDING ON KODE, I**2=-1. +! NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW, +! NZ= 0 , NORMAL RETURN +! NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE +! TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0) +! J=1,...,NZ WHEN Y.GT.0.0 AND M=1 OR +! Y.LT.0.0 AND M=2. FOR THE COMPLMENTARY +! HALF PLANES, NZ STATES ONLY THE NUMBER +! OF UNDERFLOWS. +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN - COMPUTATION COMPLETED +! IERR=1, INPUT ERROR - NO COMPUTATION +! IERR=2, OVERFLOW - NO COMPUTATION, FNU TOO +! LARGE OR CABS(Z) TOO SMALL OR BOTH +! IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE +! BUT LOSSES OF SIGNIFCANCE BY ARGUMENT +! REDUCTION PRODUCE LESS THAN HALF OF MACHINE +! ACCURACY +! IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA- +! TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI- +! CANCE BY ARGUMENT REDUCTION +! IERR=5, ERROR - NO COMPUTATION, +! ALGORITHM TERMINATION CONDITION NOT MET +! +!***LONG DESCRIPTION +! +! THE COMPUTATION IS CARRIED OUT BY THE RELATION +! +! H(M,FNU,Z)=(1/MP)*EXP(-MP*FNU)*K(FNU,Z*EXP(-MP)) +! MP=MM*HPI*I, MM=3-2*M, HPI=PI/2, I**2=-1 +! +! FOR M=1 OR 2 WHERE THE K BESSEL FUNCTION IS COMPUTED FOR THE +! RIGHT HALF PLANE RE(Z).GE.0.0. THE K FUNCTION IS CONTINUED +! TO THE LEFT HALF PLANE BY THE RELATION +! +! K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z) +! MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1 +! +! WHERE I(FNU,Z) IS THE I BESSEL FUNCTION. +! +! EXPONENTIAL DECAY OF H(M,FNU,Z) OCCURS IN THE UPPER HALF Z +! PLANE FOR M=1 AND THE LOWER HALF Z PLANE FOR M=2. EXPONENTIAL +! GROWTH OCCURS IN THE COMPLEMENTARY HALF PLANES. SCALING +! BY EXP(-MM*Z*I) REMOVES THE EXPONENTIAL BEHAVIOR IN THE +! WHOLE Z PLANE FOR Z TO INFINITY. +! +! FOR NEGATIVE ORDERS,THE FORMULAE +! +! H(1,-FNU,Z) = H(1,FNU,Z)*CEXP( PI*FNU*I) +! H(2,-FNU,Z) = H(2,FNU,Z)*CEXP(-PI*FNU*I) +! I**2=-1 +! +! CAN BE USED. +! +! IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- +! MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS +! LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. +! CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN +! LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG +! IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS +! DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. +! IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS +! LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS +! MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE +! INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS +! RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3 +! ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION +! ARITHMETI! AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION +! ARITHMETI! RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN +! THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT +! TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS +! IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC. +! SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES. +! +! THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX +! BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT +! ROUNDOFF,1.0D-18) IS THE NOMINAL PRECISION AND 10**S REPRE- +! SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE +! ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), +! ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF +! CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY +! HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN +! ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY +! SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER +! THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, +! 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS +! THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER +! COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY +! BECAUSE, IN COMPLEX ARITHMETI! WITH PRECISION P, THE SMALLER +! COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE +! MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, +! THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, +! OR -PI/2+P. +! +!***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ +! AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF +! COMMERCE, 1955. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! BY D. E. AMOS, SAND83-0083, MAY, 1983. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 +! +! A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- +! 1018, MAY, 1985 +! +! A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. +! MATH. SOFTWARE, 1986 +! +!***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,ZABS,I1MACH,D1MACH +!***END PROLOGUE ZBESH +! +! COMPLEX CY,Z,ZN,ZT + DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, & + FMM, FN, FNU, FNUL, HPI, RHPI, RL, R1M5, SGN, STR, TOL, UFL, ZI, & + ZNI, ZNR, ZR, ZTI, BB + INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, M, & + MM, MR, N, NN, NUF, NW, NZ + DIMENSION CYR(N), CYI(N) + + DATA HPI /1.57079632679489662D0/ + +!***FIRST EXECUTABLE STATEMENT ZBESH + IERR = 0 + NZ=0 + IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1 + IF (FNU.LT.0.0D0) IERR=1 + IF (M.LT.1 .OR. M.GT.2) IERR=1 + IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 + IF (N.LT.1) IERR=1 + IF (IERR.NE.0) RETURN + NN = N +!----------------------------------------------------------------------- +! SET PARAMETERS RELATED TO MACHINE CONSTANTS. +! TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. +! ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. +! EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND +! EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR +! UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. +! RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. +! DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). +! FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU +!----------------------------------------------------------------------- + TOL = DMAX1(D1MACH(4),1.0D-18) + K1 = I1MACH(15) + K2 = I1MACH(16) + R1M5 = D1MACH(5) + K = MIN0(IABS(K1),IABS(K2)) + ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0) + K1 = I1MACH(14) - 1 + AA = R1M5*DBLE(FLOAT(K1)) + DIG = DMIN1(AA,18.0D0) + AA = AA*2.303D0 + ALIM = ELIM + DMAX1(-AA,-41.45D0) + FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0) + RL = 1.2D0*DIG + 3.0D0 + FN = FNU + DBLE(FLOAT(NN-1)) + MM = 3 - M - M + FMM = DBLE(FLOAT(MM)) + ZNR = FMM*ZI + ZNI = -FMM*ZR +!----------------------------------------------------------------------- +! TEST FOR PROPER RANGE +!----------------------------------------------------------------------- + AZ = ZABS(ZR,ZI) + AA = 0.5D0/TOL + BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 + AA = DMIN1(AA,BB) + IF (AZ.GT.AA) GO TO 260 + IF (FN.GT.AA) GO TO 260 + AA = DSQRT(AA) + IF (AZ.GT.AA) IERR=3 + IF (FN.GT.AA) IERR=3 +!----------------------------------------------------------------------- +! OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE +!----------------------------------------------------------------------- + UFL = DEXP(-ELIM) + IF (AZ.LT.UFL) GO TO 230 + IF (FNU.GT.FNUL) GO TO 90 + IF (FN.LE.1.0D0) GO TO 70 + IF (FN.GT.2.0D0) GO TO 60 + IF (AZ.GT.TOL) GO TO 70 + ARG = 0.5D0*AZ + ALN = -FN*DLOG(ARG) + IF (ALN.GT.ELIM) GO TO 230 + GO TO 70 + 60 CONTINUE + CALL ZUOIK(ZNR, ZNI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM, ALIM) + IF (NUF.LT.0) GO TO 230 + NZ = NZ + NUF + NN = NN - NUF +!----------------------------------------------------------------------- +! HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK +! IF NUF=NN, THEN CY(I)=CZERO FOR ALL I +!----------------------------------------------------------------------- + IF (NN.EQ.0) GO TO 140 + 70 CONTINUE + IF ((ZNR.LT.0.0D0) .OR. (ZNR.EQ.0.0D0 .AND. ZNI.LT.0.0D0 .AND. & + M.EQ.2)) GO TO 80 +!----------------------------------------------------------------------- +! RIGHT HALF PLANE COMPUTATION, XN.GE.0. .AND. (XN.NE.0. .OR. +! YN.GE.0. .OR. M=1) +!----------------------------------------------------------------------- + CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NZ, TOL, ELIM, ALIM) + GO TO 110 +!----------------------------------------------------------------------- +! LEFT HALF PLANE COMPUTATION +!----------------------------------------------------------------------- + 80 CONTINUE + MR = -MM + CALL ZACON(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL, & + TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 240 + NZ=NW + GO TO 110 + 90 CONTINUE +!----------------------------------------------------------------------- +! UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL +!----------------------------------------------------------------------- + MR = 0 + IF ((ZNR.GE.0.0D0) .AND. (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0 .OR. & + M.NE.2)) GO TO 100 + MR = -MM + IF (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0) GO TO 100 + ZNR = -ZNR + ZNI = -ZNI + 100 CONTINUE + CALL ZBUNK(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 240 + NZ = NZ + NW + 110 CONTINUE +!----------------------------------------------------------------------- +! H(M,FNU,Z) = -FMM*(I/HPI)*(ZT**FNU)*K(FNU,-Z*ZT) +! +! ZT=EXP(-FMM*HPI*I) = CMPLX(0.0,-FMM), FMM=3-2*M, M=1,2 +!----------------------------------------------------------------------- + SGN = DSIGN(HPI,-FMM) +!----------------------------------------------------------------------- +! CALCULATE EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE +! WHEN FNU IS LARGE +!----------------------------------------------------------------------- + INU = INT(SNGL(FNU)) + INUH = INU/2 + IR = INU - 2*INUH + ARG = (FNU-DBLE(FLOAT(INU-IR)))*SGN + RHPI = 1.0D0/SGN + ZNI = RHPI*DCOS(ARG) + ZNR = -RHPI*DSIN(ARG) + IF (MOD(INUH,2).EQ.0) GO TO 120 + ZNR = -ZNR + ZNI = -ZNI + 120 CONTINUE + ZTI = -FMM + DO 130 I=1,NN + STR = CYR(I)*ZNR - CYI(I)*ZNI + CYI(I) = CYR(I)*ZNI + CYI(I)*ZNR + CYR(I) = STR + STR = -ZNI*ZTI + ZNI = ZNR*ZTI + ZNR = STR + 130 CONTINUE + RETURN + 140 CONTINUE + IF (ZNR.LT.0.0D0) GO TO 230 + RETURN + 230 CONTINUE + NZ=0 + IERR=2 + RETURN + 240 CONTINUE + IF(NW.EQ.(-1)) GO TO 230 + NZ=0 + IERR=5 + RETURN + 260 CONTINUE + NZ=0 + IERR=4 + RETURN +END + +SUBROUTINE ZUOIK(ZR, ZI, FNU, KODE, IKFLG, N, YR, YI, NUF, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUOIK +!***REFER TO ZBESI,ZBESK,ZBESH +! +! ZUOIK COMPUTES THE LEADING TERMS OF THE UNIFORM ASYMPTOTIC +! EXPANSIONS FOR THE I AND K FUNCTIONS AND COMPARES THEM +! (IN LOGARITHMI! FORM) TO ALIM AND ELIM FOR OVER AND UNDERFLOW +! WHERE ALIM.LT.ELIM. IF THE MAGNITUDE, BASED ON THE LEADING +! EXPONENTIAL, IS LESS THAN ALIM OR GREATER THAN -ALIM, THEN +! THE RESULT IS ON SCALE. IF NOT, THEN A REFINED TEST USING OTHER +! MULTIPLIERS (IN LOGARITHMI! FORM) IS MADE BASED ON ELIM. HERE +! EXP(-ELIM)=SMALLEST MACHINE NUMBER*1.0E+3 AND EXP(-ALIM)= +! EXP(-ELIM)/TOL +! +! IKFLG=1 MEANS THE I SEQUENCE IS TESTED +! =2 MEANS THE K SEQUENCE IS TESTED +! NUF = 0 MEANS THE LAST MEMBER OF THE SEQUENCE IS ON SCALE +! =-1 MEANS AN OVERFLOW WOULD OCCUR +! IKFLG=1 AND NUF.GT.0 MEANS THE LAST NUF Y VALUES WERE SET TO ZERO +! THE FIRST N-NUF VALUES MUST BE SET BY ANOTHER ROUTINE +! IKFLG=2 AND NUF.EQ.N MEANS ALL Y VALUES WERE SET TO ZERO +! IKFLG=2 AND 0.LT.NUF.LT.N NOT CONSIDERED. Y MUST BE SET BY +! ANOTHER ROUTINE +! +!***ROUTINES CALLED ZUCHK,ZUNHJ,ZUNIK,D1MACH,ZABS,ZLOG +!***END PROLOGUE ZUOIK +! COMPLEX ARG,ASUM,BSUM,CWRK,CZ,CZERO,PHI,SUM,Y,Z,ZB,ZETA1,ZETA2,ZN, +! *ZR + DOUBLE PRECISION AARG, AIC, ALIM, APHI, ARGI, ARGR, ASUMI, ASUMR, & + ASCLE, AX, AY, BSUMI, BSUMR, CWRKI, CWRKR, CZI, CZR, ELIM, FNN, & + FNU, GNN, GNU, PHII, PHIR, RCZ, STR, STI, SUMI, SUMR, TOL, YI, & + YR, ZBI, ZBR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, & + ZNI, ZNR, ZR, ZRI, ZRR + INTEGER I, IDUM, IFORM, IKFLG, INIT, KODE, N, NN, NUF, NW + DIMENSION YR(1), YI(1), CWRKR(16), CWRKI(16) + DATA ZEROR,ZEROI / 0.0D0, 0.0D0 / + DATA AIC / 1.265512123484645396D+00 / + NUF = 0 + NN = N + ZRR = ZR + ZRI = ZI + IF (ZR.GE.0.0D0) GO TO 10 + ZRR = -ZR + ZRI = -ZI + 10 CONTINUE + ZBR = ZRR + ZBI = ZRI + AX = DABS(ZR)*1.7321D0 + AY = DABS(ZI) + IFORM = 1 + IF (AY.GT.AX) IFORM = 2 + GNU = DMAX1(FNU,1.0D0) + IF (IKFLG.EQ.1) GO TO 20 + FNN = DBLE(FLOAT(NN)) + GNN = FNU + FNN - 1.0D0 + GNU = DMAX1(GNN,FNN) + 20 CONTINUE +!----------------------------------------------------------------------- +! ONLY THE MAGNITUDE OF ARG AND PHI ARE NEEDED ALONG WITH THE +! REAL PARTS OF ZETA1, ZETA2 AND ZB. NO ATTEMPT IS MADE TO GET +! THE SIGN OF THE IMAGINARY PART CORRECT. +!----------------------------------------------------------------------- + IF (IFORM.EQ.2) GO TO 30 + INIT = 0 + CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + GO TO 50 + 30 CONTINUE + ZNR = ZRI + ZNI = -ZRR + IF (ZI.GT.0.0D0) GO TO 40 + ZNR = -ZNR + 40 CONTINUE + CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + AARG = ZABS(ARGR,ARGI) + 50 CONTINUE + IF (KODE.EQ.1) GO TO 60 + CZR = CZR - ZBR + CZI = CZI - ZBI + 60 CONTINUE + IF (IKFLG.EQ.1) GO TO 70 + CZR = -CZR + CZI = -CZI + 70 CONTINUE + APHI = ZABS(PHIR,PHII) + RCZ = CZR +!----------------------------------------------------------------------- +! OVERFLOW TEST +!----------------------------------------------------------------------- + IF (RCZ.GT.ELIM) GO TO 210 + IF (RCZ.LT.ALIM) GO TO 80 + RCZ = RCZ + DLOG(APHI) + IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC + IF (RCZ.GT.ELIM) GO TO 210 + GO TO 130 + 80 CONTINUE +!----------------------------------------------------------------------- +! UNDERFLOW TEST +!----------------------------------------------------------------------- + IF (RCZ.LT.(-ELIM)) GO TO 90 + IF (RCZ.GT.(-ALIM)) GO TO 130 + RCZ = RCZ + DLOG(APHI) + IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC + IF (RCZ.GT.(-ELIM)) GO TO 110 + 90 CONTINUE + DO 100 I=1,NN + YR(I) = ZEROR + YI(I) = ZEROI + 100 CONTINUE + NUF = NN + RETURN + 110 CONTINUE + ASCLE = 1.0D+3*D1MACH(1)/TOL + CALL ZLOG(PHIR, PHII, STR, STI, IDUM) + CZR = CZR + STR + CZI = CZI + STI + IF (IFORM.EQ.1) GO TO 120 + CALL ZLOG(ARGR, ARGI, STR, STI, IDUM) + CZR = CZR - 0.25D0*STR - AIC + CZI = CZI - 0.25D0*STI + 120 CONTINUE + AX = DEXP(RCZ)/TOL + AY = CZI + CZR = AX*DCOS(AY) + CZI = AX*DSIN(AY) + CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 90 + 130 CONTINUE + IF (IKFLG.EQ.2) RETURN + IF (N.EQ.1) RETURN +!----------------------------------------------------------------------- +! SET UNDERFLOWS ON I SEQUENCE +!----------------------------------------------------------------------- + 140 CONTINUE + GNU = FNU + DBLE(FLOAT(NN-1)) + IF (IFORM.EQ.2) GO TO 150 + INIT = 0 + CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + GO TO 160 + 150 CONTINUE + CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + CZR = -ZETA1R + ZETA2R + CZI = -ZETA1I + ZETA2I + AARG = ZABS(ARGR,ARGI) + 160 CONTINUE + IF (KODE.EQ.1) GO TO 170 + CZR = CZR - ZBR + CZI = CZI - ZBI + 170 CONTINUE + APHI = ZABS(PHIR,PHII) + RCZ = CZR + IF (RCZ.LT.(-ELIM)) GO TO 180 + IF (RCZ.GT.(-ALIM)) RETURN + RCZ = RCZ + DLOG(APHI) + IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC + IF (RCZ.GT.(-ELIM)) GO TO 190 + 180 CONTINUE + YR(NN) = ZEROR + YI(NN) = ZEROI + NN = NN - 1 + NUF = NUF + 1 + IF (NN.EQ.0) RETURN + GO TO 140 + 190 CONTINUE + ASCLE = 1.0D+3*D1MACH(1)/TOL + CALL ZLOG(PHIR, PHII, STR, STI, IDUM) + CZR = CZR + STR + CZI = CZI + STI + IF (IFORM.EQ.1) GO TO 200 + CALL ZLOG(ARGR, ARGI, STR, STI, IDUM) + CZR = CZR - 0.25D0*STR - AIC + CZI = CZI - 0.25D0*STI + 200 CONTINUE + AX = DEXP(RCZ)/TOL + AY = CZI + CZR = AX*DCOS(AY) + CZI = AX*DSIN(AY) + CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 180 + RETURN + 210 CONTINUE + NUF = -1 + RETURN + END + +SUBROUTINE ZBKNU(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZBKNU +!***REFER TO ZBESI,ZBESK,ZAIRY,ZBESH +! +! ZBKNU COMPUTES THE K BESSEL FUNCTION IN THE RIGHT HALF Z PLANE. +! +!***ROUTINES CALLED DGAMLN,I1MACH,D1MACH,ZKSCL,ZSHCH,ZUCHK,ZABS,ZDIV, +! ZEXP,ZLOG,ZMLT,ZSQRT +!***END PROLOGUE ZBKNU +! + DOUBLE PRECISION AA, AK, ALIM, ASCLE, A1, A2, BB, BK, BRY, CAZ, & + CBI, CBR, CC, CCHI, CCHR, CKI, CKR, COEFI, COEFR, CONEI, CONER, & + CRSCR, CSCLR, CSHI, CSHR, CSI, CSR, CSRR, CSSR, CTWOI, CTWOR, & + CZEROI, CZEROR, CZI, CZR, DNU, DNU2, DPI, ELIM, ETEST, FC, FHS, & + FI, FK, FKS, FMUI, FMUR, FNU, FPI, FR, G1, G2, HPI, PI, PR, PTI,& + PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI, & + RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM, & + TOL, TTH, T1, T2, YI, YR, ZI, ZR, ELM, CELMR, ZDR, ZDI, & + AS, ALAS, HELIM, CYR, CYI!, DGAMLN + INTEGER I, IFLAG, INU, K, KFLAG, KK, KMAX, KODE, KODED, N, NZ, & + IDUM, J, IC, INUB, NW + DIMENSION YR(N), YI(N), CC(8), CSSR(3), CSRR(3), BRY(3), CYR(2),& + CYI(2) +! COMPLEX Z,Y,A,B,RZ,SMU,FU,FMU,F,FLRZ,CZ,S1,S2,CSH,CCH +! COMPLEX CK,P,Q,COEF,P1,P2,CBK,PT,CZERO,CONE,CTWO,ST,EZ,CS,DK + + DATA KMAX / 30 / + DATA CZEROR,CZEROI,CONER,CONEI,CTWOR,CTWOI,R1/ & + 0.0D0 , 0.0D0 , 1.0D0 , 0.0D0 , 2.0D0 , 0.0D0 , 2.0D0 / + DATA DPI, RTHPI, SPI ,HPI, FPI, TTH / & + 3.14159265358979324D0, 1.25331413731550025D0, & + 1.90985931710274403D0, 1.57079632679489662D0, & + 1.89769999331517738D0, 6.66666666666666666D-01/ + DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)/ & + 5.77215664901532861D-01, -4.20026350340952355D-02, & + -4.21977345555443367D-02, 7.21894324666309954D-03, & + -2.15241674114950973D-04, -2.01348547807882387D-05, & + 1.13302723198169588D-06, 6.11609510448141582D-09/ + + CAZ = ZABS(ZR,ZI) + CSCLR = 1.0D0/TOL + CRSCR = TOL + CSSR(1) = CSCLR + CSSR(2) = 1.0D0 + CSSR(3) = CRSCR + CSRR(1) = CRSCR + CSRR(2) = 1.0D0 + CSRR(3) = CSCLR + BRY(1) = 1.0D+3*D1MACH(1)/TOL + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + NZ = 0 + IFLAG = 0 + KODED = KODE + RCAZ = 1.0D0/CAZ + STR = ZR*RCAZ + STI = -ZI*RCAZ + RZR = (STR+STR)*RCAZ + RZI = (STI+STI)*RCAZ + INU = INT(SNGL(FNU+0.5D0)) + DNU = FNU - DBLE(FLOAT(INU)) + IF (DABS(DNU).EQ.0.5D0) GO TO 110 + DNU2 = 0.0D0 + IF (DABS(DNU).GT.TOL) DNU2 = DNU*DNU + IF (CAZ.GT.R1) GO TO 110 +!----------------------------------------------------------------------- +! SERIES FOR CABS(Z).LE.R1 +!----------------------------------------------------------------------- + FC = 1.0D0 + CALL ZLOG(RZR, RZI, SMUR, SMUI, IDUM) + FMUR = SMUR*DNU + FMUI = SMUI*DNU + CALL ZSHCH(FMUR, FMUI, CSHR, CSHI, CCHR, CCHI) + IF (DNU.EQ.0.0D0) GO TO 10 + FC = DNU*DPI + FC = FC/DSIN(FC) + SMUR = CSHR/DNU + SMUI = CSHI/DNU + 10 CONTINUE + A2 = 1.0D0 + DNU +!----------------------------------------------------------------------- +! GAM(1-Z)*GAM(1+Z)=PI*Z/SIN(PI*Z), T1=1/GAM(1-DNU), T2=1/GAM(1+DNU) +!----------------------------------------------------------------------- + T2 = DEXP(-DGAMLN(A2,IDUM)) + T1 = 1.0D0/(T2*FC) + IF (DABS(DNU).GT.0.1D0) GO TO 40 +!----------------------------------------------------------------------- +! SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU) +!----------------------------------------------------------------------- + AK = 1.0D0 + S = CC(1) + DO 20 K=2,8 + AK = AK*DNU2 + TM = CC(K)*AK + S = S + TM + IF (DABS(TM).LT.TOL) GO TO 30 + 20 CONTINUE + 30 G1 = -S + GO TO 50 + 40 CONTINUE + G1 = (T1-T2)/(DNU+DNU) + 50 CONTINUE + G2 = (T1+T2)*0.5D0 + FR = FC*(CCHR*G1+SMUR*G2) + FI = FC*(CCHI*G1+SMUI*G2) + CALL ZEXP(FMUR, FMUI, STR, STI) + PR = 0.5D0*STR/T2 + PI = 0.5D0*STI/T2 + CALL ZDIV(0.5D0, 0.0D0, STR, STI, PTR, PTI) + QR = PTR/T1 + QI = PTI/T1 + S1R = FR + S1I = FI + S2R = PR + S2I = PI + AK = 1.0D0 + A1 = 1.0D0 + CKR = CONER + CKI = CONEI + BK = 1.0D0 - DNU2 + IF (INU.GT.0 .OR. N.GT.1) GO TO 80 +!----------------------------------------------------------------------- +! GENERATE K(FNU,Z), 0.0D0 .LE. FNU .LT. 0.5D0 AND N=1 +!----------------------------------------------------------------------- + IF (CAZ.LT.TOL) GO TO 70 + CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI) + CZR = 0.25D0*CZR + CZI = 0.25D0*CZI + T1 = 0.25D0*CAZ*CAZ + 60 CONTINUE + FR = (FR*AK+PR+QR)/BK + FI = (FI*AK+PI+QI)/BK + STR = 1.0D0/(AK-DNU) + PR = PR*STR + PI = PI*STR + STR = 1.0D0/(AK+DNU) + QR = QR*STR + QI = QI*STR + STR = CKR*CZR - CKI*CZI + RAK = 1.0D0/AK + CKI = (CKR*CZI+CKI*CZR)*RAK + CKR = STR*RAK + S1R = CKR*FR - CKI*FI + S1R + S1I = CKR*FI + CKI*FR + S1I + A1 = A1*T1*RAK + BK = BK + AK + AK + 1.0D0 + AK = AK + 1.0D0 + IF (A1.GT.TOL) GO TO 60 + 70 CONTINUE + YR(1) = S1R + YI(1) = S1I + IF (KODED.EQ.1) RETURN + CALL ZEXP(ZR, ZI, STR, STI) + CALL ZMLT(S1R, S1I, STR, STI, YR(1), YI(1)) + RETURN +!----------------------------------------------------------------------- +! GENERATE K(DNU,Z) AND K(DNU+1,Z) FOR FORWARD RECURRENCE +!----------------------------------------------------------------------- + 80 CONTINUE + IF (CAZ.LT.TOL) GO TO 100 + CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI) + CZR = 0.25D0*CZR + CZI = 0.25D0*CZI + T1 = 0.25D0*CAZ*CAZ + 90 CONTINUE + FR = (FR*AK+PR+QR)/BK + FI = (FI*AK+PI+QI)/BK + STR = 1.0D0/(AK-DNU) + PR = PR*STR + PI = PI*STR + STR = 1.0D0/(AK+DNU) + QR = QR*STR + QI = QI*STR + STR = CKR*CZR - CKI*CZI + RAK = 1.0D0/AK + CKI = (CKR*CZI+CKI*CZR)*RAK + CKR = STR*RAK + S1R = CKR*FR - CKI*FI + S1R + S1I = CKR*FI + CKI*FR + S1I + STR = PR - FR*AK + STI = PI - FI*AK + S2R = CKR*STR - CKI*STI + S2R + S2I = CKR*STI + CKI*STR + S2I + A1 = A1*T1*RAK + BK = BK + AK + AK + 1.0D0 + AK = AK + 1.0D0 + IF (A1.GT.TOL) GO TO 90 + 100 CONTINUE + KFLAG = 2 + A1 = FNU + 1.0D0 + AK = A1*DABS(SMUR) + IF (AK.GT.ALIM) KFLAG = 3 + STR = CSSR(KFLAG) + P2R = S2R*STR + P2I = S2I*STR + CALL ZMLT(P2R, P2I, RZR, RZI, S2R, S2I) + S1R = S1R*STR + S1I = S1I*STR + IF (KODED.EQ.1) GO TO 210 + CALL ZEXP(ZR, ZI, FR, FI) + CALL ZMLT(S1R, S1I, FR, FI, S1R, S1I) + CALL ZMLT(S2R, S2I, FR, FI, S2R, S2I) + GO TO 210 +!----------------------------------------------------------------------- +! IFLAG=0 MEANS NO UNDERFLOW OCCURRED +! IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH +! KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD +! RECURSION +!----------------------------------------------------------------------- + 110 CONTINUE + CALL ZSQRT(ZR, ZI, STR, STI) + CALL ZDIV(RTHPI, CZEROI, STR, STI, COEFR, COEFI) + KFLAG = 2 + IF (KODED.EQ.2) GO TO 120 + IF (ZR.GT.ALIM) GO TO 290 +! BLANK LINE + STR = DEXP(-ZR)*CSSR(KFLAG) + STI = -STR*DSIN(ZI) + STR = STR*DCOS(ZI) + CALL ZMLT(COEFR, COEFI, STR, STI, COEFR, COEFI) + 120 CONTINUE + IF (DABS(DNU).EQ.0.5D0) GO TO 300 +!----------------------------------------------------------------------- +! MILLER ALGORITHM FOR CABS(Z).GT.R1 +!----------------------------------------------------------------------- + AK = DCOS(DPI*DNU) + AK = DABS(AK) + IF (AK.EQ.CZEROR) GO TO 300 + FHS = DABS(0.25D0-DNU2) + IF (FHS.EQ.CZEROR) GO TO 300 +!----------------------------------------------------------------------- +! COMPUTE R2=F(E). IF CABS(Z).GE.R2, USE FORWARD RECURRENCE TO +! DETERMINE THE BACKWARD INDEX K. R2=F(E) IS A STRAIGHT LINE ON +! 12.LE.E.LE.60. E IS COMPUTED FROM 2**(-E)=B**(1-I1MACH(14))= +! TOL WHERE B IS THE BASE OF THE ARITHMETIC. +!----------------------------------------------------------------------- + T1 = DBLE(FLOAT(I1MACH(14)-1)) + T1 = T1*D1MACH(5)*3.321928094D0 + T1 = DMAX1(T1,12.0D0) + T1 = DMIN1(T1,60.0D0) + T2 = TTH*T1 - 6.0D0 + IF (ZR.NE.0.0D0) GO TO 130 + T1 = HPI + GO TO 140 + 130 CONTINUE + T1 = DATAN(ZI/ZR) + T1 = DABS(T1) + 140 CONTINUE + IF (T2.GT.CAZ) GO TO 170 +!----------------------------------------------------------------------- +! FORWARD RECURRENCE LOOP WHEN CABS(Z).GE.R2 +!----------------------------------------------------------------------- + ETEST = AK/(DPI*CAZ*TOL) + FK = CONER + IF (ETEST.LT.CONER) GO TO 180 + FKS = CTWOR + CKR = CAZ + CAZ + CTWOR + P1R = CZEROR + P2R = CONER + DO 150 I=1,KMAX + AK = FHS/FKS + CBR = CKR/(FK+CONER) + PTR = P2R + P2R = CBR*P2R - P1R*AK + P1R = PTR + CKR = CKR + CTWOR + FKS = FKS + FK + FK + CTWOR + FHS = FHS + FK + FK + FK = FK + CONER + STR = DABS(P2R)*FK + IF (ETEST.LT.STR) GO TO 160 + 150 CONTINUE + GO TO 310 + 160 CONTINUE + FK = FK + SPI*T1*DSQRT(T2/CAZ) + FHS = DABS(0.25D0-DNU2) + GO TO 180 + 170 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE BACKWARD INDEX K FOR CABS(Z).LT.R2 +!----------------------------------------------------------------------- + A2 = DSQRT(CAZ) + AK = FPI*AK/(TOL*DSQRT(A2)) + AA = 3.0D0*T1/(1.0D0+CAZ) + BB = 14.7D0*T1/(28.0D0+CAZ) + AK = (DLOG(AK)+CAZ*DCOS(AA)/(1.0D0+0.008D0*CAZ))/DCOS(BB) + FK = 0.12125D0*AK*AK/CAZ + 1.5D0 + 180 CONTINUE +!----------------------------------------------------------------------- +! BACKWARD RECURRENCE LOOP FOR MILLER ALGORITHM +!----------------------------------------------------------------------- + K = INT(SNGL(FK)) + FK = DBLE(FLOAT(K)) + FKS = FK*FK + P1R = CZEROR + P1I = CZEROI + P2R = TOL + P2I = CZEROI + CSR = P2R + CSI = P2I + DO 190 I=1,K + A1 = FKS - FK + AK = (FKS+FK)/(A1+FHS) + RAK = 2.0D0/(FK+CONER) + CBR = (FK+ZR)*RAK + CBI = ZI*RAK + PTR = P2R + PTI = P2I + P2R = (PTR*CBR-PTI*CBI-P1R)*AK + P2I = (PTI*CBR+PTR*CBI-P1I)*AK + P1R = PTR + P1I = PTI + CSR = CSR + P2R + CSI = CSI + P2I + FKS = A1 - FK + CONER + FK = FK - CONER + 190 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER +! SCALING +!----------------------------------------------------------------------- + TM = ZABS(CSR,CSI) + PTR = 1.0D0/TM + S1R = P2R*PTR + S1I = P2I*PTR + CSR = CSR*PTR + CSI = -CSI*PTR + CALL ZMLT(COEFR, COEFI, S1R, S1I, STR, STI) + CALL ZMLT(STR, STI, CSR, CSI, S1R, S1I) + IF (INU.GT.0 .OR. N.GT.1) GO TO 200 + ZDR = ZR + ZDI = ZI + IF(IFLAG.EQ.1) GO TO 270 + GO TO 240 + 200 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING +!----------------------------------------------------------------------- + TM = ZABS(P2R,P2I) + PTR = 1.0D0/TM + P1R = P1R*PTR + P1I = P1I*PTR + P2R = P2R*PTR + P2I = -P2I*PTR + CALL ZMLT(P1R, P1I, P2R, P2I, PTR, PTI) + STR = DNU + 0.5D0 - PTR + STI = -PTI + CALL ZDIV(STR, STI, ZR, ZI, STR, STI) + STR = STR + 1.0D0 + CALL ZMLT(STR, STI, S1R, S1I, S2R, S2I) +!----------------------------------------------------------------------- +! FORWARD RECURSION ON THE THREE TERM RECURSION WITH RELATION WITH +! SCALING NEAR EXPONENT EXTREMES ON KFLAG=1 OR KFLAG=3 +!----------------------------------------------------------------------- + 210 CONTINUE + STR = DNU + 1.0D0 + CKR = STR*RZR + CKI = STR*RZI + IF (N.EQ.1) INU = INU - 1 + IF (INU.GT.0) GO TO 220 + IF (N.GT.1) GO TO 215 + S1R = S2R + S1I = S2I + 215 CONTINUE + ZDR = ZR + ZDI = ZI + IF(IFLAG.EQ.1) GO TO 270 + GO TO 240 + 220 CONTINUE + INUB = 1 + IF(IFLAG.EQ.1) GO TO 261 + 225 CONTINUE + P1R = CSRR(KFLAG) + ASCLE = BRY(KFLAG) + DO 230 I=INUB,INU + STR = S2R + STI = S2I + S2R = CKR*STR - CKI*STI + S1R + S2I = CKR*STI + CKI*STR + S1I + S1R = STR + S1I = STI + CKR = CKR + RZR + CKI = CKI + RZI + IF (KFLAG.GE.3) GO TO 230 + P2R = S2R*P1R + P2I = S2I*P1R + STR = DABS(P2R) + STI = DABS(P2I) + P2M = DMAX1(STR,STI) + IF (P2M.LE.ASCLE) GO TO 230 + KFLAG = KFLAG + 1 + ASCLE = BRY(KFLAG) + S1R = S1R*P1R + S1I = S1I*P1R + S2R = P2R + S2I = P2I + STR = CSSR(KFLAG) + S1R = S1R*STR + S1I = S1I*STR + S2R = S2R*STR + S2I = S2I*STR + P1R = CSRR(KFLAG) + 230 CONTINUE + IF (N.NE.1) GO TO 240 + S1R = S2R + S1I = S2I + 240 CONTINUE + STR = CSRR(KFLAG) + YR(1) = S1R*STR + YI(1) = S1I*STR + IF (N.EQ.1) RETURN + YR(2) = S2R*STR + YI(2) = S2I*STR + IF (N.EQ.2) RETURN + KK = 2 + 250 CONTINUE + KK = KK + 1 + IF (KK.GT.N) RETURN + P1R = CSRR(KFLAG) + ASCLE = BRY(KFLAG) + DO 260 I=KK,N + P2R = S2R + P2I = S2I + S2R = CKR*P2R - CKI*P2I + S1R + S2I = CKI*P2R + CKR*P2I + S1I + S1R = P2R + S1I = P2I + CKR = CKR + RZR + CKI = CKI + RZI + P2R = S2R*P1R + P2I = S2I*P1R + YR(I) = P2R + YI(I) = P2I + IF (KFLAG.GE.3) GO TO 260 + STR = DABS(P2R) + STI = DABS(P2I) + P2M = DMAX1(STR,STI) + IF (P2M.LE.ASCLE) GO TO 260 + KFLAG = KFLAG + 1 + ASCLE = BRY(KFLAG) + S1R = S1R*P1R + S1I = S1I*P1R + S2R = P2R + S2I = P2I + STR = CSSR(KFLAG) + S1R = S1R*STR + S1I = S1I*STR + S2R = S2R*STR + S2I = S2I*STR + P1R = CSRR(KFLAG) + 260 CONTINUE + RETURN +!----------------------------------------------------------------------- +! IFLAG=1 CASES, FORWARD RECURRENCE ON SCALED VALUES ON UNDERFLOW +!----------------------------------------------------------------------- + 261 CONTINUE + HELIM = 0.5D0*ELIM + ELM = DEXP(-ELIM) + CELMR = ELM + ASCLE = BRY(1) + ZDR = ZR + ZDI = ZI + IC = -1 + J = 2 + DO 262 I=1,INU + STR = S2R + STI = S2I + S2R = STR*CKR-STI*CKI+S1R + S2I = STI*CKR+STR*CKI+S1I + S1R = STR + S1I = STI + CKR = CKR+RZR + CKI = CKI+RZI + AS = ZABS(S2R,S2I) + ALAS = DLOG(AS) + P2R = -ZDR+ALAS + IF(P2R.LT.(-ELIM)) GO TO 263 + CALL ZLOG(S2R,S2I,STR,STI,IDUM) + P2R = -ZDR+STR + P2I = -ZDI+STI + P2M = DEXP(P2R)/TOL + P1R = P2M*DCOS(P2I) + P1I = P2M*DSIN(P2I) + CALL ZUCHK(P1R,P1I,NW,ASCLE,TOL) + IF(NW.NE.0) GO TO 263 + J = 3 - J + CYR(J) = P1R + CYI(J) = P1I + IF(IC.EQ.(I-1)) GO TO 264 + IC = I + GO TO 262 + 263 CONTINUE + IF(ALAS.LT.HELIM) GO TO 262 + ZDR = ZDR-ELIM + S1R = S1R*CELMR + S1I = S1I*CELMR + S2R = S2R*CELMR + S2I = S2I*CELMR + 262 CONTINUE + IF(N.NE.1) GO TO 270 + S1R = S2R + S1I = S2I + GO TO 270 + 264 CONTINUE + KFLAG = 1 + INUB = I+1 + S2R = CYR(J) + S2I = CYI(J) + J = 3 - J + S1R = CYR(J) + S1I = CYI(J) + IF(INUB.LE.INU) GO TO 225 + IF(N.NE.1) GO TO 240 + S1R = S2R + S1I = S2I + GO TO 240 + 270 CONTINUE + YR(1) = S1R + YI(1) = S1I + IF(N.EQ.1) GO TO 280 + YR(2) = S2R + YI(2) = S2I + 280 CONTINUE + ASCLE = BRY(1) + CALL ZKSCL(ZDR,ZDI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM) + INU = N - NZ + IF (INU.LE.0) RETURN + KK = NZ + 1 + S1R = YR(KK) + S1I = YI(KK) + YR(KK) = S1R*CSRR(1) + YI(KK) = S1I*CSRR(1) + IF (INU.EQ.1) RETURN + KK = NZ + 2 + S2R = YR(KK) + S2I = YI(KK) + YR(KK) = S2R*CSRR(1) + YI(KK) = S2I*CSRR(1) + IF (INU.EQ.2) RETURN + T2 = FNU + DBLE(FLOAT(KK-1)) + CKR = T2*RZR + CKI = T2*RZI + KFLAG = 1 + GO TO 250 + 290 CONTINUE +!----------------------------------------------------------------------- +! SCALE BY DEXP(Z), IFLAG = 1 CASES +!----------------------------------------------------------------------- + KODED = 2 + IFLAG = 1 + KFLAG = 2 + GO TO 120 +!----------------------------------------------------------------------- +! FNU=HALF ODD INTEGER CASE, DNU=-0.5 +!----------------------------------------------------------------------- + 300 CONTINUE + S1R = COEFR + S1I = COEFI + S2R = COEFR + S2I = COEFI + GO TO 210 + + 310 CONTINUE + NZ=-2 + RETURN +END + +SUBROUTINE ZACON(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZACON +!***REFER TO ZBESK,ZBESH +! +! ZACON APPLIES THE ANALYTIC CONTINUATION FORMULA +! +! K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN) +! MP=PI*MR*CMPLX(0.0,1.0) +! +! TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT +! HALF Z PLANE +! +!***ROUTINES CALLED ZBINU,ZBKNU,ZS1S2,D1MACH,ZABS,ZMLT +!***END PROLOGUE ZACON +! COMPLEX CK,CONE,CSCL,CSCR,CSGN,CSPN,CY,CZERO,C1,C2,RZ,SC1,SC2,ST, +! *S1,S2,Y,Z,ZN + DOUBLE PRECISION ALIM, ARG, ASCLE, AS2, AZN, BRY, BSCLE, CKI, & + CKR, CONEI, CONER, CPN, CSCL, CSCR, CSGNI, CSGNR, CSPNI, CSPNR, & + CSR, CSRR, CSSR, CYI, CYR, C1I, C1M, C1R, C2I, C2R, ELIM, FMR, & + FN, FNU, FNUL, PI, PTI, PTR, RAZN, RL, RZI, RZR, SC1I, SC1R, & + SC2I, SC2R, SGN, SPN, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, & + YY, ZEROI, ZEROR, ZI, ZNI, ZNR, ZR + INTEGER I, INU, IUF, KFLAG, KODE, MR, N, NN, NW, NZ + DIMENSION YR(N), YI(N), CYR(2), CYI(2), CSSR(3), CSRR(3), BRY(3) + DATA PI / 3.14159265358979324D0 / + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0,0.0D0,1.0D0,0.0D0 / + NZ = 0 + ZNR = -ZR + ZNI = -ZI + NN = N + CALL ZBINU(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, FNUL, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 90 +!----------------------------------------------------------------------- +! ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION +!----------------------------------------------------------------------- + NN = MIN0(2,N) + CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM) + IF (NW.NE.0) GO TO 90 + S1R = CYR(1) + S1I = CYI(1) + FMR = DBLE(FLOAT(MR)) + SGN = -DSIGN(PI,FMR) + CSGNR = ZEROR + CSGNI = SGN + IF (KODE.EQ.1) GO TO 10 + YY = -ZNI + CPN = DCOS(YY) + SPN = DSIN(YY) + CALL ZMLT(CSGNR, CSGNI, CPN, SPN, CSGNR, CSGNI) + 10 CONTINUE +!----------------------------------------------------------------------- +! CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE +! WHEN FNU IS LARGE +!----------------------------------------------------------------------- + INU = INT(SNGL(FNU)) + ARG = (FNU-DBLE(FLOAT(INU)))*SGN + CPN = DCOS(ARG) + SPN = DSIN(ARG) + CSPNR = CPN + CSPNI = SPN + IF (MOD(INU,2).EQ.0) GO TO 20 + CSPNR = -CSPNR + CSPNI = -CSPNI + 20 CONTINUE + IUF = 0 + C1R = S1R + C1I = S1I + C2R = YR(1) + C2I = YI(1) + ASCLE = 1.0D+3*D1MACH(1)/TOL + IF (KODE.EQ.1) GO TO 30 + CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF) + NZ = NZ + NW + SC1R = C1R + SC1I = C1I + 30 CONTINUE + CALL ZMLT(CSPNR, CSPNI, C1R, C1I, STR, STI) + CALL ZMLT(CSGNR, CSGNI, C2R, C2I, PTR, PTI) + YR(1) = STR + PTR + YI(1) = STI + PTI + IF (N.EQ.1) RETURN + CSPNR = -CSPNR + CSPNI = -CSPNI + S2R = CYR(2) + S2I = CYI(2) + C1R = S2R + C1I = S2I + C2R = YR(2) + C2I = YI(2) + IF (KODE.EQ.1) GO TO 40 + CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF) + NZ = NZ + NW + SC2R = C1R + SC2I = C1I + 40 CONTINUE + CALL ZMLT(CSPNR, CSPNI, C1R, C1I, STR, STI) + CALL ZMLT(CSGNR, CSGNI, C2R, C2I, PTR, PTI) + YR(2) = STR + PTR + YI(2) = STI + PTI + IF (N.EQ.2) RETURN + CSPNR = -CSPNR + CSPNI = -CSPNI + AZN = ZABS(ZNR,ZNI) + RAZN = 1.0D0/AZN + STR = ZNR*RAZN + STI = -ZNI*RAZN + RZR = (STR+STR)*RAZN + RZI = (STI+STI)*RAZN + FN = FNU + 1.0D0 + CKR = FN*RZR + CKI = FN*RZI +!----------------------------------------------------------------------- +! SCALE NEAR EXPONENT EXTREMES DURING RECURRENCE ON K FUNCTIONS +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CSCR = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CSCR + CSRR(1) = CSCR + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = ASCLE + BRY(2) = 1.0D0/ASCLE + BRY(3) = D1MACH(2) + AS2 = ZABS(S2R,S2I) + KFLAG = 2 + IF (AS2.GT.BRY(1)) GO TO 50 + KFLAG = 1 + GO TO 60 + 50 CONTINUE + IF (AS2.LT.BRY(2)) GO TO 60 + KFLAG = 3 + 60 CONTINUE + BSCLE = BRY(KFLAG) + S1R = S1R*CSSR(KFLAG) + S1I = S1I*CSSR(KFLAG) + S2R = S2R*CSSR(KFLAG) + S2I = S2I*CSSR(KFLAG) + CSR = CSRR(KFLAG) + DO 80 I=3,N + STR = S2R + STI = S2I + S2R = CKR*STR - CKI*STI + S1R + S2I = CKR*STI + CKI*STR + S1I + S1R = STR + S1I = STI + C1R = S2R*CSR + C1I = S2I*CSR + STR = C1R + STI = C1I + C2R = YR(I) + C2I = YI(I) + IF (KODE.EQ.1) GO TO 70 + IF (IUF.LT.0) GO TO 70 + CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF) + NZ = NZ + NW + SC1R = SC2R + SC1I = SC2I + SC2R = C1R + SC2I = C1I + IF (IUF.NE.3) GO TO 70 + IUF = -4 + S1R = SC1R*CSSR(KFLAG) + S1I = SC1I*CSSR(KFLAG) + S2R = SC2R*CSSR(KFLAG) + S2I = SC2I*CSSR(KFLAG) + STR = SC2R + STI = SC2I + 70 CONTINUE + PTR = CSPNR*C1R - CSPNI*C1I + PTI = CSPNR*C1I + CSPNI*C1R + YR(I) = PTR + CSGNR*C2R - CSGNI*C2I + YI(I) = PTI + CSGNR*C2I + CSGNI*C2R + CKR = CKR + RZR + CKI = CKI + RZI + CSPNR = -CSPNR + CSPNI = -CSPNI + IF (KFLAG.GE.3) GO TO 80 + PTR = DABS(C1R) + PTI = DABS(C1I) + C1M = DMAX1(PTR,PTI) + IF (C1M.LE.BSCLE) GO TO 80 + KFLAG = KFLAG + 1 + BSCLE = BRY(KFLAG) + S1R = S1R*CSR + S1I = S1I*CSR + S2R = STR + S2I = STI + S1R = S1R*CSSR(KFLAG) + S1I = S1I*CSSR(KFLAG) + S2R = S2R*CSSR(KFLAG) + S2I = S2I*CSSR(KFLAG) + CSR = CSRR(KFLAG) + 80 CONTINUE + RETURN + 90 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN +END + +SUBROUTINE ZBUNK(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM) +!***BEGIN PROLOGUE ZBUNK +!***REFER TO ZBESK,ZBESH +! +! ZBUNK COMPUTES THE K BESSEL FUNCTION FOR FNU.GT.FNUL. +! ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR K(FNU,Z) +! IN ZUNK1 AND THE EXPANSION FOR H(2,FNU,Z) IN ZUNK2 +! +!***ROUTINES CALLED ZUNK1,ZUNK2 +!***END PROLOGUE ZBUNK +! COMPLEX Y,Z + DOUBLE PRECISION ALIM, AX, AY, ELIM, FNU, TOL, YI, YR, ZI, ZR + INTEGER KODE, MR, N, NZ + DIMENSION YR(1), YI(1) + NZ = 0 + AX = DABS(ZR)*1.7321D0 + AY = DABS(ZI) + IF (AY.GT.AX) GO TO 10 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR K(FNU,Z) FOR LARGE FNU APPLIED IN +! -PI/3.LE.ARG(Z).LE.PI/3 +!----------------------------------------------------------------------- + CALL ZUNK1(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM) + GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR H(2,FNU,Z*EXP(M*HPI)) FOR LARGE FNU +! APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I +! AND HPI=PI/2 +!----------------------------------------------------------------------- + CALL ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM) + 20 CONTINUE + RETURN +END + +SUBROUTINE ZUNIK(ZRR, ZRI, FNU, IKFLG, IPMTR, TOL, INIT, PHIR, & + PHII, ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) +USE COMPLEX +!***BEGIN PROLOGUE ZUNIK +!***REFER TO ZBESI,ZBESK +! +! ZUNIK COMPUTES PARAMETERS FOR THE UNIFORM ASYMPTOTIC +! EXPANSIONS OF THE I AND K FUNCTIONS ON IKFLG= 1 OR 2 +! RESPECTIVELY BY +! +! W(FNU,ZR) = PHI*EXP(ZETA)*SUM +! +! WHERE ZETA=-ZETA1 + ZETA2 OR +! ZETA1 - ZETA2 +! +! THE FIRST CALL MUST HAVE INIT=0. SUBSEQUENT CALLS WITH THE +! SAME ZR AND FNU WILL RETURN THE I OR K FUNCTION ON IKFLG= +! 1 OR 2 WITH NO CHANGE IN INIT. CWRK IS A COMPLEX WORK +! ARRAY. IPMTR=0 COMPUTES ALL PARAMETERS. IPMTR=1 COMPUTES PHI, +! ZETA1,ZETA2. +! +!***ROUTINES CALLED ZDIV,ZLOG,ZSQRT +!***END PROLOGUE ZUNIK +! COMPLEX CFN,CON,CONE,CRFN,CWRK,CZERO,PHI,S,SR,SUM,T,T2,ZETA1, +! *ZETA2,ZN,ZR + DOUBLE PRECISION AC, C, CON, CONEI, CONER, CRFNI, CRFNR, CWRKI, & + CWRKR, FNU, PHII, PHIR, RFN, SI, SR, SRI, SRR, STI, STR, SUMI, & + SUMR, TEST, TI, TOL, TR, T2I, T2R, ZEROI, ZEROR, ZETA1I, ZETA1R, & + ZETA2I, ZETA2R, ZNI, ZNR, ZRI, ZRR + INTEGER I, IDUM, IKFLG, INIT, IPMTR, J, K, L + DIMENSION C(120), CWRKR(16), CWRKI(16), CON(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + DATA CON(1), CON(2) / & + 3.98942280401432678D-01, 1.25331413731550025D+00 / + DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), & + C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18), & + C(19), C(20), C(21), C(22), C(23), C(24)/ & + 1.00000000000000000D+00, -2.08333333333333333D-01, & + 1.25000000000000000D-01, 3.34201388888888889D-01, & + -4.01041666666666667D-01, 7.03125000000000000D-02, & + -1.02581259645061728D+00, 1.84646267361111111D+00, & + -8.91210937500000000D-01, 7.32421875000000000D-02, & + 4.66958442342624743D+00, -1.12070026162229938D+01, & + 8.78912353515625000D+00, -2.36408691406250000D+00, & + 1.12152099609375000D-01, -2.82120725582002449D+01, & + 8.46362176746007346D+01, -9.18182415432400174D+01, & + 4.25349987453884549D+01, -7.36879435947963170D+00, & + 2.27108001708984375D-01, 2.12570130039217123D+02, & + -7.65252468141181642D+02, 1.05999045252799988D+03/ + DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32), & + C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40), & + C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/ & + -6.99579627376132541D+02, 2.18190511744211590D+02, & + -2.64914304869515555D+01, 5.72501420974731445D-01, & + -1.91945766231840700D+03, 8.06172218173730938D+03, & + -1.35865500064341374D+04, 1.16553933368645332D+04, & + -5.30564697861340311D+03, 1.20090291321635246D+03, & + -1.08090919788394656D+02, 1.72772750258445740D+00, & + 2.02042913309661486D+04, -9.69805983886375135D+04, & + 1.92547001232531532D+05, -2.03400177280415534D+05, & + 1.22200464983017460D+05, -4.11926549688975513D+04, & + 7.10951430248936372D+03, -4.93915304773088012D+02, & + 6.07404200127348304D+00, -2.42919187900551333D+05, & + 1.31176361466297720D+06, -2.99801591853810675D+06/ + DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56), & + C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64), & + C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/ & + 3.76327129765640400D+06, -2.81356322658653411D+06, & + 1.26836527332162478D+06, -3.31645172484563578D+05, & + 4.52187689813627263D+04, -2.49983048181120962D+03, & + 2.43805296995560639D+01, 3.28446985307203782D+06, & + -1.97068191184322269D+07, 5.09526024926646422D+07, & + -7.41051482115326577D+07, 6.63445122747290267D+07, & + -3.75671766607633513D+07, 1.32887671664218183D+07, & + -2.78561812808645469D+06, 3.08186404612662398D+05, & + -1.38860897537170405D+04, 1.10017140269246738D+02, & + -4.93292536645099620D+07, 3.25573074185765749D+08, & + -9.39462359681578403D+08, 1.55359689957058006D+09, & + -1.62108055210833708D+09, 1.10684281682301447D+09/ + DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80), & + C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88), & + C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/ & + -4.95889784275030309D+08, 1.42062907797533095D+08, & + -2.44740627257387285D+07, 2.24376817792244943D+06, & + -8.40054336030240853D+04, 5.51335896122020586D+02, & + 8.14789096118312115D+08, -5.86648149205184723D+09, & + 1.86882075092958249D+10, -3.46320433881587779D+10, & + 4.12801855797539740D+10, -3.30265997498007231D+10, & + 1.79542137311556001D+10, -6.56329379261928433D+09, & + 1.55927986487925751D+09, -2.25105661889415278D+08, & + 1.73951075539781645D+07, -5.49842327572288687D+05, & + 3.03809051092238427D+03, -1.46792612476956167D+10, & + 1.14498237732025810D+11, -3.99096175224466498D+11, & + 8.19218669548577329D+11, -1.09837515608122331D+12/ + DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104), & + C(105), C(106), C(107), C(108), C(109), C(110), C(111), & + C(112), C(113), C(114), C(115), C(116), C(117), C(118)/ & + 1.00815810686538209D+12, -6.45364869245376503D+11, & + 2.87900649906150589D+11, -8.78670721780232657D+10, & + 1.76347306068349694D+10, -2.16716498322379509D+09, & + 1.43157876718888981D+08, -3.87183344257261262D+06, & + 1.82577554742931747D+04, 2.86464035717679043D+11, & + -2.40629790002850396D+12, 9.10934118523989896D+12, & + -2.05168994109344374D+13, 3.05651255199353206D+13, & + -3.16670885847851584D+13, 2.33483640445818409D+13, & + -1.23204913055982872D+13, 4.61272578084913197D+12, & + -1.19655288019618160D+12, 2.05914503232410016D+11, & + -2.18229277575292237D+10, 1.24700929351271032D+09/ + DATA C(119), C(120)/ & + -2.91883881222208134D+07, 1.18838426256783253D+05/ + + IF (INIT.NE.0) GO TO 40 +!----------------------------------------------------------------------- +! INITIALIZE ALL VARIABLES +!----------------------------------------------------------------------- + RFN = 1.0D0/FNU + TR = ZRR*RFN + TI = ZRI*RFN + SR = CONER + (TR*TR-TI*TI) + SI = CONEI + (TR*TI+TI*TR) + CALL ZSQRT(SR, SI, SRR, SRI) + STR = CONER + SRR + STI = CONEI + SRI + CALL ZDIV(STR, STI, TR, TI, ZNR, ZNI) + CALL ZLOG(ZNR, ZNI, STR, STI, IDUM) + ZETA1R = FNU*STR + ZETA1I = FNU*STI + ZETA2R = FNU*SRR + ZETA2I = FNU*SRI + CALL ZDIV(CONER, CONEI, SRR, SRI, TR, TI) + SRR = TR*RFN + SRI = TI*RFN + CALL ZSQRT(SRR, SRI, CWRKR(16), CWRKI(16)) + PHIR = CWRKR(16)*CON(IKFLG) + PHII = CWRKI(16)*CON(IKFLG) + IF (IPMTR.NE.0) RETURN + CALL ZDIV(CONER, CONEI, SR, SI, T2R, T2I) + CWRKR(1) = CONER + CWRKI(1) = CONEI + CRFNR = CONER + CRFNI = CONEI + AC = 1.0D0 + L = 1 + DO 20 K=2,15 + SR = ZEROR + SI = ZEROI + DO 10 J=1,K + L = L + 1 + STR = SR*T2R - SI*T2I + C(L) + SI = SR*T2I + SI*T2R + SR = STR + 10 CONTINUE + STR = CRFNR*SRR - CRFNI*SRI + CRFNI = CRFNR*SRI + CRFNI*SRR + CRFNR = STR + CWRKR(K) = CRFNR*SR - CRFNI*SI + CWRKI(K) = CRFNR*SI + CRFNI*SR + AC = AC*RFN + TEST = DABS(CWRKR(K)) + DABS(CWRKI(K)) + IF (AC.LT.TOL .AND. TEST.LT.TOL) GO TO 30 + 20 CONTINUE + K = 15 + 30 CONTINUE + INIT = K + 40 CONTINUE + IF (IKFLG.EQ.2) GO TO 60 +!----------------------------------------------------------------------- +! COMPUTE SUM FOR THE I FUNCTION +!----------------------------------------------------------------------- + SR = ZEROR + SI = ZEROI + DO 50 I=1,INIT + SR = SR + CWRKR(I) + SI = SI + CWRKI(I) + 50 CONTINUE + SUMR = SR + SUMI = SI + PHIR = CWRKR(16)*CON(1) + PHII = CWRKI(16)*CON(1) + RETURN + 60 CONTINUE +!----------------------------------------------------------------------- +! COMPUTE SUM FOR THE K FUNCTION +!----------------------------------------------------------------------- + SR = ZEROR + SI = ZEROI + TR = CONER + DO 70 I=1,INIT + SR = SR + TR*CWRKR(I) + SI = SI + TR*CWRKI(I) + TR = -TR + 70 CONTINUE + SUMR = SR + SUMI = SI + PHIR = CWRKR(16)*CON(2) + PHII = CWRKI(16)*CON(2) + RETURN +END + +SUBROUTINE ZUNK1(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUNK1 +!***REFER TO ZBESK +! +! ZUNK1 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE +! RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE +! UNIFORM ASYMPTOTIC EXPANSION. +! MR INDICATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION. +! NZ=-1 MEANS AN OVERFLOW WILL OCCUR +! +!***ROUTINES CALLED ZKSCL,ZS1S2,ZUCHK,ZUNIK,D1MACH,ZABS +!***END PROLOGUE ZUNK1 +! COMPLEX CFN,CK,CONE,CRSC,CS,CSCL,CSGN,CSPN,CSR,CSS,CWRK,CY,CZERO, +! *C1,C2,PHI,PHID,RZ,SUM,SUMD,S1,S2,Y,Z,ZETA1,ZETA1D,ZETA2,ZETA2D,ZR + DOUBLE PRECISION ALIM, ANG, APHI, ASC, ASCLE, BRY, CKI, CKR, & + CONEI, CONER, CRSC, CSCL, CSGNI, CSPNI, CSPNR, CSR, CSRR, CSSR, & + CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2M, C2R, ELIM, FMR, FN, & + FNF, FNU, PHIDI, PHIDR, PHII, PHIR, PI, RAST, RAZR, RS1, RZI, & + RZR, SGN, STI, STR, SUMDI, SUMDR, SUMI, SUMR, S1I, S1R, S2I, & + S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, & + ZET1DI, ZET1DR, ZET2DI, ZET2DR, ZI, ZR, ZRI, ZRR + INTEGER I, IB, IFLAG, IFN, IL, INIT, INU, IUF, K, KDFLG, KFLAG, & + KK, KODE, MR, N, NW, NZ, INITD, IC, IPARD, J, M + DIMENSION BRY(3), INIT(2), YR(1), YI(1), SUMR(2), SUMI(2), & + ZETA1R(2), ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), & + CWRKR(16,3), CWRKI(16,3), CSSR(3), CSRR(3), PHIR(2), PHII(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + DATA PI / 3.14159265358979324D0 / + + KDFLG = 1 + NZ = 0 +!----------------------------------------------------------------------- +! EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN +! THE UNDERFLOW LIMIT +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CRSC = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CRSC + CSRR(1) = CRSC + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = 1.0D+3*D1MACH(1)/TOL + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + ZRR = ZR + ZRI = ZI + IF (ZR.GE.0.0D0) GO TO 10 + ZRR = -ZR + ZRI = -ZI + 10 CONTINUE + J = 2 + DO 70 I=1,N +!----------------------------------------------------------------------- +! J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J +!----------------------------------------------------------------------- + J = 3 - J + FN = FNU + DBLE(FLOAT(I-1)) + INIT(J) = 0 + CALL ZUNIK(ZRR, ZRI, FN, 2, 0, TOL, INIT(J), PHIR(J), PHII(J), & + ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), SUMR(J), SUMI(J), & + CWRKR(1,J), CWRKI(1,J)) + IF (KODE.EQ.1) GO TO 20 + STR = ZRR + ZETA2R(J) + STI = ZRI + ZETA2I(J) + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = ZETA1R(J) - STR + S1I = ZETA1I(J) - STI + GO TO 30 + 20 CONTINUE + S1R = ZETA1R(J) - ZETA2R(J) + S1I = ZETA1I(J) - ZETA2I(J) + 30 CONTINUE + RS1 = S1R +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + IF (DABS(RS1).GT.ELIM) GO TO 60 + IF (KDFLG.EQ.1) KFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 40 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIR(J),PHII(J)) + RS1 = RS1 + DLOG(APHI) + IF (DABS(RS1).GT.ELIM) GO TO 60 + IF (KDFLG.EQ.1) KFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 40 + IF (KDFLG.EQ.1) KFLAG = 3 + 40 CONTINUE +!----------------------------------------------------------------------- +! SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR +! EXPONENT EXTREMES +!----------------------------------------------------------------------- + S2R = PHIR(J)*SUMR(J) - PHII(J)*SUMI(J) + S2I = PHIR(J)*SUMI(J) + PHII(J)*SUMR(J) + STR = DEXP(S1R)*CSSR(KFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S1R*S2I + S2R*S1I + S2R = STR + IF (KFLAG.NE.1) GO TO 50 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.NE.0) GO TO 60 + 50 CONTINUE + CYR(KDFLG) = S2R + CYI(KDFLG) = S2I + YR(I) = S2R*CSRR(KFLAG) + YI(I) = S2I*CSRR(KFLAG) + IF (KDFLG.EQ.2) GO TO 75 + KDFLG = 2 + GO TO 70 + 60 CONTINUE + IF (RS1.GT.0.0D0) GO TO 300 +!----------------------------------------------------------------------- +! FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW +!----------------------------------------------------------------------- + IF (ZR.LT.0.0D0) GO TO 300 + KDFLG = 1 + YR(I)=ZEROR + YI(I)=ZEROI + NZ=NZ+1 + IF (I.EQ.1) GO TO 70 + IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 70 + YR(I-1)=ZEROR + YI(I-1)=ZEROI + NZ=NZ+1 + 70 CONTINUE + I = N + 75 CONTINUE + RAZR = 1.0D0/ZABS(ZRR,ZRI) + STR = ZRR*RAZR + STI = -ZRI*RAZR + RZR = (STR+STR)*RAZR + RZI = (STI+STI)*RAZR + CKR = FN*RZR + CKI = FN*RZI + IB = I + 1 + IF (N.LT.IB) GO TO 160 +!----------------------------------------------------------------------- +! TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO +! ON UNDERFLOW. +!----------------------------------------------------------------------- + FN = FNU + DBLE(FLOAT(N-1)) + IPARD = 1 + IF (MR.NE.0) IPARD = 0 + INITD = 0 + CALL ZUNIK(ZRR, ZRI, FN, 2, IPARD, TOL, INITD, PHIDR, PHIDI, & + ZET1DR, ZET1DI, ZET2DR, ZET2DI, SUMDR, SUMDI, CWRKR(1,3), & + CWRKI(1,3)) + IF (KODE.EQ.1) GO TO 80 + STR = ZRR + ZET2DR + STI = ZRI + ZET2DI + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = ZET1DR - STR + S1I = ZET1DI - STI + GO TO 90 + 80 CONTINUE + S1R = ZET1DR - ZET2DR + S1I = ZET1DI - ZET2DI + 90 CONTINUE + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 95 + IF (DABS(RS1).LT.ALIM) GO TO 100 +!----------------------------------------------------------------------- +! REFINE ESTIMATE AND TEST +!----------------------------------------------------------------------- + APHI = ZABS(PHIDR,PHIDI) + RS1 = RS1+DLOG(APHI) + IF (DABS(RS1).LT.ELIM) GO TO 100 + 95 CONTINUE + IF (DABS(RS1).GT.0.0D0) GO TO 300 +!----------------------------------------------------------------------- +! FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW +!----------------------------------------------------------------------- + IF (ZR.LT.0.0D0) GO TO 300 + NZ = N + DO 96 I=1,N + YR(I) = ZEROR + YI(I) = ZEROI + 96 CONTINUE + RETURN +!----------------------------------------------------------------------- +! FORWARD RECUR FOR REMAINDER OF THE SEQUENCE +!----------------------------------------------------------------------- + 100 CONTINUE + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + C1R = CSRR(KFLAG) + ASCLE = BRY(KFLAG) + DO 120 I=IB,N + C2R = S2R + C2I = S2I + S2R = CKR*C2R - CKI*C2I + S1R + S2I = CKR*C2I + CKI*C2R + S1I + S1R = C2R + S1I = C2I + CKR = CKR + RZR + CKI = CKI + RZI + C2R = S2R*C1R + C2I = S2I*C1R + YR(I) = C2R + YI(I) = C2I + IF (KFLAG.GE.3) GO TO 120 + STR = DABS(C2R) + STI = DABS(C2I) + C2M = DMAX1(STR,STI) + IF (C2M.LE.ASCLE) GO TO 120 + KFLAG = KFLAG + 1 + ASCLE = BRY(KFLAG) + S1R = S1R*C1R + S1I = S1I*C1R + S2R = C2R + S2I = C2I + S1R = S1R*CSSR(KFLAG) + S1I = S1I*CSSR(KFLAG) + S2R = S2R*CSSR(KFLAG) + S2I = S2I*CSSR(KFLAG) + C1R = CSRR(KFLAG) + 120 CONTINUE + 160 CONTINUE + IF (MR.EQ.0) RETURN +!----------------------------------------------------------------------- +! ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0 +!----------------------------------------------------------------------- + NZ = 0 + FMR = DBLE(FLOAT(MR)) + SGN = -DSIGN(PI,FMR) +!----------------------------------------------------------------------- +! CSPN AND CSGN ARE COEFF OF K AND I FUNCTIONS RESP. +!----------------------------------------------------------------------- + CSGNI = SGN + INU = INT(SNGL(FNU)) + FNF = FNU - DBLE(FLOAT(INU)) + IFN = INU + N - 1 + ANG = FNF*SGN + CSPNR = DCOS(ANG) + CSPNI = DSIN(ANG) + IF (MOD(IFN,2).EQ.0) GO TO 170 + CSPNR = -CSPNR + CSPNI = -CSPNI + 170 CONTINUE + ASC = BRY(1) + IUF = 0 + KK = N + KDFLG = 1 + IB = IB - 1 + IC = IB - 1 + DO 270 K=1,N + FN = FNU + DBLE(FLOAT(KK-1)) +!----------------------------------------------------------------------- +! LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K +! FUNCTION ABOVE +!----------------------------------------------------------------------- + M=3 + IF (N.GT.2) GO TO 175 + 172 CONTINUE + INITD = INIT(J) + PHIDR = PHIR(J) + PHIDI = PHII(J) + ZET1DR = ZETA1R(J) + ZET1DI = ZETA1I(J) + ZET2DR = ZETA2R(J) + ZET2DI = ZETA2I(J) + SUMDR = SUMR(J) + SUMDI = SUMI(J) + M = J + J = 3 - J + GO TO 180 + 175 CONTINUE + IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 180 + IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172 + INITD = 0 + 180 CONTINUE + CALL ZUNIK(ZRR, ZRI, FN, 1, 0, TOL, INITD, PHIDR, PHIDI, & + ZET1DR, ZET1DI, ZET2DR, ZET2DI, SUMDR, SUMDI, & + CWRKR(1,M), CWRKI(1,M)) + IF (KODE.EQ.1) GO TO 200 + STR = ZRR + ZET2DR + STI = ZRI + ZET2DI + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZET1DR + STR + S1I = -ZET1DI + STI + GO TO 210 + 200 CONTINUE + S1R = -ZET1DR + ZET2DR + S1I = -ZET1DI + ZET2DI + 210 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 260 + IF (KDFLG.EQ.1) IFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 220 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIDR,PHIDI) + RS1 = RS1 + DLOG(APHI) + IF (DABS(RS1).GT.ELIM) GO TO 260 + IF (KDFLG.EQ.1) IFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 220 + IF (KDFLG.EQ.1) IFLAG = 3 + 220 CONTINUE + STR = PHIDR*SUMDR - PHIDI*SUMDI + STI = PHIDR*SUMDI + PHIDI*SUMDR + S2R = -CSGNI*STI + S2I = CSGNI*STR + STR = DEXP(S1R)*CSSR(IFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S2R*S1I + S2I*S1R + S2R = STR + IF (IFLAG.NE.1) GO TO 230 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.EQ.0) GO TO 230 + S2R = ZEROR + S2I = ZEROI + 230 CONTINUE + CYR(KDFLG) = S2R + CYI(KDFLG) = S2I + C2R = S2R + C2I = S2I + S2R = S2R*CSRR(IFLAG) + S2I = S2I*CSRR(IFLAG) +!----------------------------------------------------------------------- +! ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N +!----------------------------------------------------------------------- + S1R = YR(KK) + S1I = YI(KK) + IF (KODE.EQ.1) GO TO 250 + CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF) + NZ = NZ + NW + 250 CONTINUE + YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R + YI(KK) = CSPNR*S1I + CSPNI*S1R + S2I + KK = KK - 1 + CSPNR = -CSPNR + CSPNI = -CSPNI + IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255 + KDFLG = 1 + GO TO 270 + 255 CONTINUE + IF (KDFLG.EQ.2) GO TO 275 + KDFLG = 2 + GO TO 270 + 260 CONTINUE + IF (RS1.GT.0.0D0) GO TO 300 + S2R = ZEROR + S2I = ZEROI + GO TO 230 + 270 CONTINUE + K = N + 275 CONTINUE + IL = N - K + IF (IL.EQ.0) RETURN +!----------------------------------------------------------------------- +! RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE +! K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP +! INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES. +!----------------------------------------------------------------------- + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + CSR = CSRR(IFLAG) + ASCLE = BRY(IFLAG) + FN = DBLE(FLOAT(INU+IL)) + DO 290 I=1,IL + C2R = S2R + C2I = S2I + S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I) + S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R) + S1R = C2R + S1I = C2I + FN = FN - 1.0D0 + C2R = S2R*CSR + C2I = S2I*CSR + CKR = C2R + CKI = C2I + C1R = YR(KK) + C1I = YI(KK) + IF (KODE.EQ.1) GO TO 280 + CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF) + NZ = NZ + NW + 280 CONTINUE + YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R + YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I + KK = KK - 1 + CSPNR = -CSPNR + CSPNI = -CSPNI + IF (IFLAG.GE.3) GO TO 290 + C2R = DABS(CKR) + C2I = DABS(CKI) + C2M = DMAX1(C2R,C2I) + IF (C2M.LE.ASCLE) GO TO 290 + IFLAG = IFLAG + 1 + ASCLE = BRY(IFLAG) + S1R = S1R*CSR + S1I = S1I*CSR + S2R = CKR + S2I = CKI + S1R = S1R*CSSR(IFLAG) + S1I = S1I*CSSR(IFLAG) + S2R = S2R*CSSR(IFLAG) + S2I = S2I*CSSR(IFLAG) + CSR = CSRR(IFLAG) + 290 CONTINUE + RETURN + 300 CONTINUE + NZ = -1 + RETURN +END + +SUBROUTINE ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUNK2 +!***REFER TO ZBESK +! +! ZUNK2 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE +! RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE +! UNIFORM ASYMPTOTIC EXPANSIONS FOR H(KIND,FNU,ZN) AND J(FNU,ZN) +! WHERE ZN IS IN THE RIGHT HALF PLANE, KIND=(3-MR)/2, MR=+1 OR +! -1. HERE ZN=ZR*I OR -ZR*I WHERE ZR=Z IF Z IS IN THE RIGHT +! HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC- +! ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION. +! NZ=-1 MEANS AN OVERFLOW WILL OCCUR +! +!***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,ZABS +!***END PROLOGUE ZUNK2 +! COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC, +! *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ, +! *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR + DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGDI, & + ARGDR, ARGI, ARGR, ASC, ASCLE, ASUMDI, ASUMDR, ASUMI, ASUMR, & + BRY, BSUMDI, BSUMDR, BSUMI, BSUMR, CAR, CIPI, CIPR, CKI, CKR, & + CONEI, CONER, CRSC, CR1I, CR1R, CR2I, CR2R, CSCL, CSGNI, CSI, & + CSPNI, CSPNR, CSR, CSRR, CSSR, CYI, CYR, C1I, C1R, C2I, C2M, & + C2R, DAII, DAIR, ELIM, FMR, FN, FNF, FNU, HPI, PHIDI, PHIDR, & + PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN, & + STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI, & + ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI, & + ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR + INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK, & + KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC + DIMENSION BRY(3), YR(1), YI(1), ASUMR(2), ASUMI(2), BSUMR(2), & + BSUMI(2), PHIR(2), PHII(2), ARGR(2), ARGI(2), ZETA1R(2), & + ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), CIPR(4), & + CIPI(4), CSSR(3), CSRR(3) + DATA ZEROR,ZEROI,CONER,CONEI,CR1R,CR1I,CR2R,CR2I / & + 0.0D0, 0.0D0, 1.0D0, 0.0D0, & + 1.0D0,1.73205080756887729D0 , -0.5D0,-8.66025403784438647D-01 / + DATA HPI, PI, AIC / & + 1.57079632679489662D+00, 3.14159265358979324D+00, & + 1.26551212348464539D+00/ + DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4), & + CIPI(4) / & + 1.0D0,0.0D0 , 0.0D0,-1.0D0 , -1.0D0,0.0D0 , 0.0D0,1.0D0 / + + KDFLG = 1 + NZ = 0 +!----------------------------------------------------------------------- +! EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN +! THE UNDERFLOW LIMIT +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CRSC = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CRSC + CSRR(1) = CRSC + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = 1.0D+3*D1MACH(1)/TOL + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + ZRR = ZR + ZRI = ZI + IF (ZR.GE.0.0D0) GO TO 10 + ZRR = -ZR + ZRI = -ZI + 10 CONTINUE + YY = ZRI + ZNR = ZRI + ZNI = -ZRR + ZBR = ZRR + ZBI = ZRI + INU = INT(SNGL(FNU)) + FNF = FNU - DBLE(FLOAT(INU)) + ANG = -HPI*FNF + CAR = DCOS(ANG) + SAR = DSIN(ANG) + C2R = HPI*SAR + C2I = -HPI*CAR + KK = MOD(INU,4) + 1 + STR = C2R*CIPR(KK) - C2I*CIPI(KK) + STI = C2R*CIPI(KK) + C2I*CIPR(KK) + CSR = CR1R*STR - CR1I*STI + CSI = CR1R*STI + CR1I*STR + IF (YY.GT.0.0D0) GO TO 20 + ZNR = -ZNR + ZBI = -ZBI + 20 CONTINUE +!----------------------------------------------------------------------- +! K(FNU,Z) IS COMPUTED FROM H(2,FNU,-I*Z) WHERE Z IS IN THE FIRST +! QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY +! CONJUGATION SINCE THE K FUNCTION IS REAL ON THE POSITIVE REAL AXIS +!----------------------------------------------------------------------- + J = 2 + DO 80 I=1,N +!----------------------------------------------------------------------- +! J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J +!----------------------------------------------------------------------- + J = 3 - J + FN = FNU + DBLE(FLOAT(I-1)) + CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR(J), PHII(J), ARGR(J), & + ARGI(J), ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), ASUMR(J), & + ASUMI(J), BSUMR(J), BSUMI(J)) + IF (KODE.EQ.1) GO TO 30 + STR = ZBR + ZETA2R(J) + STI = ZBI + ZETA2I(J) + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = ZETA1R(J) - STR + S1I = ZETA1I(J) - STI + GO TO 40 + 30 CONTINUE + S1R = ZETA1R(J) - ZETA2R(J) + S1I = ZETA1I(J) - ZETA2I(J) + 40 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 70 + IF (KDFLG.EQ.1) KFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 50 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIR(J),PHII(J)) + AARG = ZABS(ARGR(J),ARGI(J)) + RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC + IF (DABS(RS1).GT.ELIM) GO TO 70 + IF (KDFLG.EQ.1) KFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 50 + IF (KDFLG.EQ.1) KFLAG = 3 + 50 CONTINUE +!----------------------------------------------------------------------- +! SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR +! EXPONENT EXTREMES +!----------------------------------------------------------------------- + C2R = ARGR(J)*CR2R - ARGI(J)*CR2I + C2I = ARGR(J)*CR2I + ARGI(J)*CR2R + CALL ZAIRY(C2R, C2I, 0, 2, AIR, AII, NAI, IDUM) + CALL ZAIRY(C2R, C2I, 1, 2, DAIR, DAII, NDAI, IDUM) + STR = DAIR*BSUMR(J) - DAII*BSUMI(J) + STI = DAIR*BSUMI(J) + DAII*BSUMR(J) + PTR = STR*CR2R - STI*CR2I + PTI = STR*CR2I + STI*CR2R + STR = PTR + (AIR*ASUMR(J)-AII*ASUMI(J)) + STI = PTI + (AIR*ASUMI(J)+AII*ASUMR(J)) + PTR = STR*PHIR(J) - STI*PHII(J) + PTI = STR*PHII(J) + STI*PHIR(J) + S2R = PTR*CSR - PTI*CSI + S2I = PTR*CSI + PTI*CSR + STR = DEXP(S1R)*CSSR(KFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S1R*S2I + S2R*S1I + S2R = STR + IF (KFLAG.NE.1) GO TO 60 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.NE.0) GO TO 70 + 60 CONTINUE + IF (YY.LE.0.0D0) S2I = -S2I + CYR(KDFLG) = S2R + CYI(KDFLG) = S2I + YR(I) = S2R*CSRR(KFLAG) + YI(I) = S2I*CSRR(KFLAG) + STR = CSI + CSI = -CSR + CSR = STR + IF (KDFLG.EQ.2) GO TO 85 + KDFLG = 2 + GO TO 80 + 70 CONTINUE + IF (RS1.GT.0.0D0) GO TO 320 +!----------------------------------------------------------------------- +! FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW +!----------------------------------------------------------------------- + IF (ZR.LT.0.0D0) GO TO 320 + KDFLG = 1 + YR(I)=ZEROR + YI(I)=ZEROI + NZ=NZ+1 + STR = CSI + CSI =-CSR + CSR = STR + IF (I.EQ.1) GO TO 80 + IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 80 + YR(I-1)=ZEROR + YI(I-1)=ZEROI + NZ=NZ+1 + 80 CONTINUE + I = N + 85 CONTINUE + RAZR = 1.0D0/ZABS(ZRR,ZRI) + STR = ZRR*RAZR + STI = -ZRI*RAZR + RZR = (STR+STR)*RAZR + RZI = (STI+STI)*RAZR + CKR = FN*RZR + CKI = FN*RZI + IB = I + 1 + IF (N.LT.IB) GO TO 180 +!----------------------------------------------------------------------- +! TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO +! ON UNDERFLOW. +!----------------------------------------------------------------------- + FN = FNU + DBLE(FLOAT(N-1)) + IPARD = 1 + IF (MR.NE.0) IPARD = 0 + CALL ZUNHJ(ZNR, ZNI, FN, IPARD, TOL, PHIDR, PHIDI, ARGDR, ARGDI, & + ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, ASUMDI, BSUMDR, BSUMDI) + IF (KODE.EQ.1) GO TO 90 + STR = ZBR + ZET2DR + STI = ZBI + ZET2DI + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = ZET1DR - STR + S1I = ZET1DI - STI + GO TO 100 + 90 CONTINUE + S1R = ZET1DR - ZET2DR + S1I = ZET1DI - ZET2DI + 100 CONTINUE + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 105 + IF (DABS(RS1).LT.ALIM) GO TO 120 +!----------------------------------------------------------------------- +! REFINE ESTIMATE AND TEST +!----------------------------------------------------------------------- + APHI = ZABS(PHIDR,PHIDI) + RS1 = RS1+DLOG(APHI) + IF (DABS(RS1).LT.ELIM) GO TO 120 + 105 CONTINUE + IF (RS1.GT.0.0D0) GO TO 320 +!----------------------------------------------------------------------- +! FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW +!----------------------------------------------------------------------- + IF (ZR.LT.0.0D0) GO TO 320 + NZ = N + DO 106 I=1,N + YR(I) = ZEROR + YI(I) = ZEROI + 106 CONTINUE + RETURN + 120 CONTINUE + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + C1R = CSRR(KFLAG) + ASCLE = BRY(KFLAG) + DO 130 I=IB,N + C2R = S2R + C2I = S2I + S2R = CKR*C2R - CKI*C2I + S1R + S2I = CKR*C2I + CKI*C2R + S1I + S1R = C2R + S1I = C2I + CKR = CKR + RZR + CKI = CKI + RZI + C2R = S2R*C1R + C2I = S2I*C1R + YR(I) = C2R + YI(I) = C2I + IF (KFLAG.GE.3) GO TO 130 + STR = DABS(C2R) + STI = DABS(C2I) + C2M = DMAX1(STR,STI) + IF (C2M.LE.ASCLE) GO TO 130 + KFLAG = KFLAG + 1 + ASCLE = BRY(KFLAG) + S1R = S1R*C1R + S1I = S1I*C1R + S2R = C2R + S2I = C2I + S1R = S1R*CSSR(KFLAG) + S1I = S1I*CSSR(KFLAG) + S2R = S2R*CSSR(KFLAG) + S2I = S2I*CSSR(KFLAG) + C1R = CSRR(KFLAG) + 130 CONTINUE + 180 CONTINUE + IF (MR.EQ.0) RETURN +!----------------------------------------------------------------------- +! ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0 +!----------------------------------------------------------------------- + NZ = 0 + FMR = DBLE(FLOAT(MR)) + SGN = -DSIGN(PI,FMR) +!----------------------------------------------------------------------- +! CSPN AND CSGN ARE COEFF OF K AND I FUNCIONS RESP. +!----------------------------------------------------------------------- + CSGNI = SGN + IF (YY.LE.0.0D0) CSGNI = -CSGNI + IFN = INU + N - 1 + ANG = FNF*SGN + CSPNR = DCOS(ANG) + CSPNI = DSIN(ANG) + IF (MOD(IFN,2).EQ.0) GO TO 190 + CSPNR = -CSPNR + CSPNI = -CSPNI + 190 CONTINUE +!----------------------------------------------------------------------- +! CS=COEFF OF THE J FUNCTION TO GET THE I FUNCTION. I(FNU,Z) IS +! COMPUTED FROM EXP(I*FNU*HPI)*J(FNU,-I*Z) WHERE Z IS IN THE FIRST +! QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY +! CONJUGATION SINCE THE I FUNCTION IS REAL ON THE POSITIVE REAL AXIS +!----------------------------------------------------------------------- + CSR = SAR*CSGNI + CSI = CAR*CSGNI + IN = MOD(IFN,4) + 1 + C2R = CIPR(IN) + C2I = CIPI(IN) + STR = CSR*C2R + CSI*C2I + CSI = -CSR*C2I + CSI*C2R + CSR = STR + ASC = BRY(1) + IUF = 0 + KK = N + KDFLG = 1 + IB = IB - 1 + IC = IB - 1 + DO 290 K=1,N + FN = FNU + DBLE(FLOAT(KK-1)) +!----------------------------------------------------------------------- +! LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K +! FUNCTION ABOVE +!----------------------------------------------------------------------- + IF (N.GT.2) GO TO 175 + 172 CONTINUE + PHIDR = PHIR(J) + PHIDI = PHII(J) + ARGDR = ARGR(J) + ARGDI = ARGI(J) + ZET1DR = ZETA1R(J) + ZET1DI = ZETA1I(J) + ZET2DR = ZETA2R(J) + ZET2DI = ZETA2I(J) + ASUMDR = ASUMR(J) + ASUMDI = ASUMI(J) + BSUMDR = BSUMR(J) + BSUMDI = BSUMI(J) + J = 3 - J + GO TO 210 + 175 CONTINUE + IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 210 + IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172 + CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIDR, PHIDI, ARGDR, & + ARGDI, ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, & + ASUMDI, BSUMDR, BSUMDI) + 210 CONTINUE + IF (KODE.EQ.1) GO TO 220 + STR = ZBR + ZET2DR + STI = ZBI + ZET2DI + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZET1DR + STR + S1I = -ZET1DI + STI + GO TO 230 + 220 CONTINUE + S1R = -ZET1DR + ZET2DR + S1I = -ZET1DI + ZET2DI + 230 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 280 + IF (KDFLG.EQ.1) IFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 240 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIDR,PHIDI) + AARG = ZABS(ARGDR,ARGDI) + RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC + IF (DABS(RS1).GT.ELIM) GO TO 280 + IF (KDFLG.EQ.1) IFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 240 + IF (KDFLG.EQ.1) IFLAG = 3 + 240 CONTINUE + CALL ZAIRY(ARGDR, ARGDI, 0, 2, AIR, AII, NAI, IDUM) + CALL ZAIRY(ARGDR, ARGDI, 1, 2, DAIR, DAII, NDAI, IDUM) + STR = DAIR*BSUMDR - DAII*BSUMDI + STI = DAIR*BSUMDI + DAII*BSUMDR + STR = STR + (AIR*ASUMDR-AII*ASUMDI) + STI = STI + (AIR*ASUMDI+AII*ASUMDR) + PTR = STR*PHIDR - STI*PHIDI + PTI = STR*PHIDI + STI*PHIDR + S2R = PTR*CSR - PTI*CSI + S2I = PTR*CSI + PTI*CSR + STR = DEXP(S1R)*CSSR(IFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S2R*S1I + S2I*S1R + S2R = STR + IF (IFLAG.NE.1) GO TO 250 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.EQ.0) GO TO 250 + S2R = ZEROR + S2I = ZEROI + 250 CONTINUE + IF (YY.LE.0.0D0) S2I = -S2I + CYR(KDFLG) = S2R + CYI(KDFLG) = S2I + C2R = S2R + C2I = S2I + S2R = S2R*CSRR(IFLAG) + S2I = S2I*CSRR(IFLAG) +!----------------------------------------------------------------------- +! ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N +!----------------------------------------------------------------------- + S1R = YR(KK) + S1I = YI(KK) + IF (KODE.EQ.1) GO TO 270 + CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF) + NZ = NZ + NW + 270 CONTINUE + YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R + YI(KK) = S1R*CSPNI + S1I*CSPNR + S2I + KK = KK - 1 + CSPNR = -CSPNR + CSPNI = -CSPNI + STR = CSI + CSI = -CSR + CSR = STR + IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255 + KDFLG = 1 + GO TO 290 + 255 CONTINUE + IF (KDFLG.EQ.2) GO TO 295 + KDFLG = 2 + GO TO 290 + 280 CONTINUE + IF (RS1.GT.0.0D0) GO TO 320 + S2R = ZEROR + S2I = ZEROI + GO TO 250 + 290 CONTINUE + K = N + 295 CONTINUE + IL = N - K + IF (IL.EQ.0) RETURN +!----------------------------------------------------------------------- +! RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE +! K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP +! INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES. +!----------------------------------------------------------------------- + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + CSR = CSRR(IFLAG) + ASCLE = BRY(IFLAG) + FN = DBLE(FLOAT(INU+IL)) + DO 310 I=1,IL + C2R = S2R + C2I = S2I + S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I) + S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R) + S1R = C2R + S1I = C2I + FN = FN - 1.0D0 + C2R = S2R*CSR + C2I = S2I*CSR + CKR = C2R + CKI = C2I + C1R = YR(KK) + C1I = YI(KK) + IF (KODE.EQ.1) GO TO 300 + CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF) + NZ = NZ + NW + 300 CONTINUE + YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R + YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I + KK = KK - 1 + CSPNR = -CSPNR + CSPNI = -CSPNI + IF (IFLAG.GE.3) GO TO 310 + C2R = DABS(CKR) + C2I = DABS(CKI) + C2M = DMAX1(C2R,C2I) + IF (C2M.LE.ASCLE) GO TO 310 + IFLAG = IFLAG + 1 + ASCLE = BRY(IFLAG) + S1R = S1R*CSR + S1I = S1I*CSR + S2R = CKR + S2I = CKI + S1R = S1R*CSSR(IFLAG) + S1I = S1I*CSSR(IFLAG) + S2R = S2R*CSSR(IFLAG) + S2I = S2I*CSSR(IFLAG) + CSR = CSRR(IFLAG) + 310 CONTINUE + RETURN + 320 CONTINUE + NZ = -1 + RETURN +END + +SUBROUTINE ZUNHJ(ZR, ZI, FNU, IPMTR, TOL, PHIR, PHII, ARGR, ARGI, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) +USE COMPLEX +!***BEGIN PROLOGUE ZUNHJ +!***REFER TO ZBESI,ZBESK +! +! REFERENCES +! HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ AND I.A. +! STEGUN, AMS55, NATIONAL BUREAU OF STANDARDS, 1965, CHAPTER 9. +! +! ASYMPTOTICS AND SPECIAL FUNCTIONS BY F.W.J. OLVER, ACADEMIC +! PRESS, N.Y., 1974, PAGE 420 +! +! ABSTRACT +! ZUNHJ COMPUTES PARAMETERS FOR BESSEL FUNCTIONS C(FNU,Z) = +! J(FNU,Z), Y(FNU,Z) OR H(I,FNU,Z) I=1,2 FOR LARGE ORDERS FNU +! BY MEANS OF THE UNIFORM ASYMPTOTIC EXPANSION +! +! C(FNU,Z)=C1*PHI*( ASUM*AIRY(ARG) + C2*BSUM*DAIRY(ARG) ) +! +! FOR PROPER CHOICES OF C1, C2, AIRY AND DAIRY WHERE AIRY IS +! AN AIRY FUNCTION AND DAIRY IS ITS DERIVATIVE. +! +! (2/3)*FNU*ZETA**1.5 = ZETA1-ZETA2, +! +! ZETA1=0.5*FNU*CLOG((1+W)/(1-W)), ZETA2=FNU*W FOR SCALING +! PURPOSES IN AIRY FUNCTIONS FROM CAIRY OR CBIRY. +! +! MCONJ=SIGN OF AIMAG(Z), BUT IS AMBIGUOUS WHEN Z IS REAL AND +! MUST BE SPECIFIED. IPMTR=0 RETURNS ALL PARAMETERS. IPMTR= +! 1 COMPUTES ALL EXCEPT ASUM AND BSUM. +! +!***ROUTINES CALLED ZABS,ZDIV,ZLOG,ZSQRT +!***END PROLOGUE ZUNHJ +! COMPLEX ARG,ASUM,BSUM,CFNU,CONE,CR,CZERO,DR,P,PHI,PRZTH,PTFN, +! *RFN13,RTZTA,RZTH,SUMA,SUMB,TFN,T2,UP,W,W2,Z,ZA,ZB,ZC,ZETA,ZETA1, +! *ZETA2,ZTH + DOUBLE PRECISION ALFA, ANG, AP, AR, ARGI, ARGR, ASUMI, ASUMR, & + ATOL, AW2, AZTH, BETA, BR, BSUMI, BSUMR, BTOL, C, CONEI, CONER, & + CRI, CRR, DRI, DRR, EX1, EX2, FNU, FN13, FN23, GAMA, GPI, HPI, & + PHII, PHIR, PI, PP, PR, PRZTHI, PRZTHR, PTFNI, PTFNR, RAW, RAW2, & + RAZTH, RFNU, RFNU2, RFN13, RTZTI, RTZTR, RZTHI, RZTHR, STI, STR, & + SUMAI, SUMAR, SUMBI, SUMBR, TEST, TFNI, TFNR, THPI, TOL, TZAI, & + TZAR, T2I, T2R, UPI, UPR, WI, WR, W2I, W2R, ZAI, ZAR, ZBI, ZBR, & + ZCI, ZCR, ZEROI, ZEROR, ZETAI, ZETAR, ZETA1I, ZETA1R, ZETA2I, & + ZETA2R, ZI, ZR, ZTHI, ZTHR + INTEGER IAS, IBS, IPMTR, IS, J, JR, JU, K, KMAX, KP1, KS, L, LR, & + LRP1, L1, L2, M, IDUM + DIMENSION AR(14), BR(14), C(105), ALFA(180), BETA(210), GAMA(30), & + AP(30), PR(30), PI(30), UPR(14), UPI(14), CRR(14), CRI(14), & + DRR(14), DRI(14) + DATA AR(1), AR(2), AR(3), AR(4), AR(5), AR(6), AR(7), AR(8), & + AR(9), AR(10), AR(11), AR(12), AR(13), AR(14)/ & + 1.00000000000000000D+00, 1.04166666666666667D-01, & + 8.35503472222222222D-02, 1.28226574556327160D-01, & + 2.91849026464140464D-01, 8.81627267443757652D-01, & + 3.32140828186276754D+00, 1.49957629868625547D+01, & + 7.89230130115865181D+01, 4.74451538868264323D+02, & + 3.20749009089066193D+03, 2.40865496408740049D+04, & + 1.98923119169509794D+05, 1.79190200777534383D+06/ + DATA BR(1), BR(2), BR(3), BR(4), BR(5), BR(6), BR(7), BR(8), & + BR(9), BR(10), BR(11), BR(12), BR(13), BR(14)/ & + 1.00000000000000000D+00, -1.45833333333333333D-01, & + -9.87413194444444444D-02, -1.43312053915895062D-01, & + -3.17227202678413548D-01, -9.42429147957120249D-01, & + -3.51120304082635426D+00, -1.57272636203680451D+01, & + -8.22814390971859444D+01, -4.92355370523670524D+02, & + -3.31621856854797251D+03, -2.48276742452085896D+04, & + -2.04526587315129788D+05, -1.83844491706820990D+06/ + DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), & + C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18), & + C(19), C(20), C(21), C(22), C(23), C(24)/ & + 1.00000000000000000D+00, -2.08333333333333333D-01, & + 1.25000000000000000D-01, 3.34201388888888889D-01, & + -4.01041666666666667D-01, 7.03125000000000000D-02, & + -1.02581259645061728D+00, 1.84646267361111111D+00, & + -8.91210937500000000D-01, 7.32421875000000000D-02, & + 4.66958442342624743D+00, -1.12070026162229938D+01, & + 8.78912353515625000D+00, -2.36408691406250000D+00, & + 1.12152099609375000D-01, -2.82120725582002449D+01, & + 8.46362176746007346D+01, -9.18182415432400174D+01, & + 4.25349987453884549D+01, -7.36879435947963170D+00, & + 2.27108001708984375D-01, 2.12570130039217123D+02, & + -7.65252468141181642D+02, 1.05999045252799988D+03/ + DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32), & + C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40), & + C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/ & + -6.99579627376132541D+02, 2.18190511744211590D+02, & + -2.64914304869515555D+01, 5.72501420974731445D-01, & + -1.91945766231840700D+03, 8.06172218173730938D+03, & + -1.35865500064341374D+04, 1.16553933368645332D+04, & + -5.30564697861340311D+03, 1.20090291321635246D+03, & + -1.08090919788394656D+02, 1.72772750258445740D+00, & + 2.02042913309661486D+04, -9.69805983886375135D+04, & + 1.92547001232531532D+05, -2.03400177280415534D+05, & + 1.22200464983017460D+05, -4.11926549688975513D+04, & + 7.10951430248936372D+03, -4.93915304773088012D+02, & + 6.07404200127348304D+00, -2.42919187900551333D+05, & + 1.31176361466297720D+06, -2.99801591853810675D+06/ + DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56), & + C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64), & + C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/ & + 3.76327129765640400D+06, -2.81356322658653411D+06, & + 1.26836527332162478D+06, -3.31645172484563578D+05, & + 4.52187689813627263D+04, -2.49983048181120962D+03, & + 2.43805296995560639D+01, 3.28446985307203782D+06, & + -1.97068191184322269D+07, 5.09526024926646422D+07, & + -7.41051482115326577D+07, 6.63445122747290267D+07, & + -3.75671766607633513D+07, 1.32887671664218183D+07, & + -2.78561812808645469D+06, 3.08186404612662398D+05, & + -1.38860897537170405D+04, 1.10017140269246738D+02, & + -4.93292536645099620D+07, 3.25573074185765749D+08, & + -9.39462359681578403D+08, 1.55359689957058006D+09, & + -1.62108055210833708D+09, 1.10684281682301447D+09/ + DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80), & + C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88), & + C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/ & + -4.95889784275030309D+08, 1.42062907797533095D+08, & + -2.44740627257387285D+07, 2.24376817792244943D+06, & + -8.40054336030240853D+04, 5.51335896122020586D+02, & + 8.14789096118312115D+08, -5.86648149205184723D+09, & + 1.86882075092958249D+10, -3.46320433881587779D+10, & + 4.12801855797539740D+10, -3.30265997498007231D+10, & + 1.79542137311556001D+10, -6.56329379261928433D+09, & + 1.55927986487925751D+09, -2.25105661889415278D+08, & + 1.73951075539781645D+07, -5.49842327572288687D+05, & + 3.03809051092238427D+03, -1.46792612476956167D+10, & + 1.14498237732025810D+11, -3.99096175224466498D+11, & + 8.19218669548577329D+11, -1.09837515608122331D+12/ + DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104), & + C(105)/ & + 1.00815810686538209D+12, -6.45364869245376503D+11, & + 2.87900649906150589D+11, -8.78670721780232657D+10, & + 1.76347306068349694D+10, -2.16716498322379509D+09, & + 1.43157876718888981D+08, -3.87183344257261262D+06, & + 1.82577554742931747D+04/ + DATA ALFA(1), ALFA(2), ALFA(3), ALFA(4), ALFA(5), ALFA(6), & + ALFA(7), ALFA(8), ALFA(9), ALFA(10), ALFA(11), ALFA(12), & + ALFA(13), ALFA(14), ALFA(15), ALFA(16), ALFA(17), ALFA(18), & + ALFA(19), ALFA(20), ALFA(21), ALFA(22)/ & + -4.44444444444444444D-03, -9.22077922077922078D-04, & + -8.84892884892884893D-05, 1.65927687832449737D-04, & + 2.46691372741792910D-04, 2.65995589346254780D-04, & + 2.61824297061500945D-04, 2.48730437344655609D-04, & + 2.32721040083232098D-04, 2.16362485712365082D-04, & + 2.00738858762752355D-04, 1.86267636637545172D-04, & + 1.73060775917876493D-04, 1.61091705929015752D-04, & + 1.50274774160908134D-04, 1.40503497391269794D-04, & + 1.31668816545922806D-04, 1.23667445598253261D-04, & + 1.16405271474737902D-04, 1.09798298372713369D-04, & + 1.03772410422992823D-04, 9.82626078369363448D-05/ + DATA ALFA(23), ALFA(24), ALFA(25), ALFA(26), ALFA(27), ALFA(28), & + ALFA(29), ALFA(30), ALFA(31), ALFA(32), ALFA(33), ALFA(34), & + ALFA(35), ALFA(36), ALFA(37), ALFA(38), ALFA(39), ALFA(40), & + ALFA(41), ALFA(42), ALFA(43), ALFA(44)/ & + 9.32120517249503256D-05, 8.85710852478711718D-05, & + 8.42963105715700223D-05, 8.03497548407791151D-05, & + 7.66981345359207388D-05, 7.33122157481777809D-05, & + 7.01662625163141333D-05, 6.72375633790160292D-05, & + 6.93735541354588974D-04, 2.32241745182921654D-04, & + -1.41986273556691197D-05, -1.16444931672048640D-04, & + -1.50803558053048762D-04, -1.55121924918096223D-04, & + -1.46809756646465549D-04, -1.33815503867491367D-04, & + -1.19744975684254051D-04, -1.06184319207974020D-04, & + -9.37699549891194492D-05, -8.26923045588193274D-05, & + -7.29374348155221211D-05, -6.44042357721016283D-05/ + DATA ALFA(45), ALFA(46), ALFA(47), ALFA(48), ALFA(49), ALFA(50), & + ALFA(51), ALFA(52), ALFA(53), ALFA(54), ALFA(55), ALFA(56), & + ALFA(57), ALFA(58), ALFA(59), ALFA(60), ALFA(61), ALFA(62), & + ALFA(63), ALFA(64), ALFA(65), ALFA(66)/ & + -5.69611566009369048D-05, -5.04731044303561628D-05, & + -4.48134868008882786D-05, -3.98688727717598864D-05, & + -3.55400532972042498D-05, -3.17414256609022480D-05, & + -2.83996793904174811D-05, -2.54522720634870566D-05, & + -2.28459297164724555D-05, -2.05352753106480604D-05, & + -1.84816217627666085D-05, -1.66519330021393806D-05, & + -1.50179412980119482D-05, -1.35554031379040526D-05, & + -1.22434746473858131D-05, -1.10641884811308169D-05, & + -3.54211971457743841D-04, -1.56161263945159416D-04, & + 3.04465503594936410D-05, 1.30198655773242693D-04, & + 1.67471106699712269D-04, 1.70222587683592569D-04/ + DATA ALFA(67), ALFA(68), ALFA(69), ALFA(70), ALFA(71), ALFA(72), & + ALFA(73), ALFA(74), ALFA(75), ALFA(76), ALFA(77), ALFA(78), & + ALFA(79), ALFA(80), ALFA(81), ALFA(82), ALFA(83), ALFA(84), & + ALFA(85), ALFA(86), ALFA(87), ALFA(88)/ & + 1.56501427608594704D-04, 1.36339170977445120D-04, & + 1.14886692029825128D-04, 9.45869093034688111D-05, & + 7.64498419250898258D-05, 6.07570334965197354D-05, & + 4.74394299290508799D-05, 3.62757512005344297D-05, & + 2.69939714979224901D-05, 1.93210938247939253D-05, & + 1.30056674793963203D-05, 7.82620866744496661D-06, & + 3.59257485819351583D-06, 1.44040049814251817D-07, & + -2.65396769697939116D-06, -4.91346867098485910D-06, & + -6.72739296091248287D-06, -8.17269379678657923D-06, & + -9.31304715093561232D-06, -1.02011418798016441D-05, & + -1.08805962510592880D-05, -1.13875481509603555D-05/ + DATA ALFA(89), ALFA(90), ALFA(91), ALFA(92), ALFA(93), ALFA(94), & + ALFA(95), ALFA(96), ALFA(97), ALFA(98), ALFA(99), ALFA(100), & + ALFA(101), ALFA(102), ALFA(103), ALFA(104), ALFA(105), & + ALFA(106), ALFA(107), ALFA(108), ALFA(109), ALFA(110)/ & + -1.17519675674556414D-05, -1.19987364870944141D-05, & + 3.78194199201772914D-04, 2.02471952761816167D-04, & + -6.37938506318862408D-05, -2.38598230603005903D-04, & + -3.10916256027361568D-04, -3.13680115247576316D-04, & + -2.78950273791323387D-04, -2.28564082619141374D-04, & + -1.75245280340846749D-04, -1.25544063060690348D-04, & + -8.22982872820208365D-05, -4.62860730588116458D-05, & + -1.72334302366962267D-05, 5.60690482304602267D-06, & + 2.31395443148286800D-05, 3.62642745856793957D-05, & + 4.58006124490188752D-05, 5.24595294959114050D-05, & + 5.68396208545815266D-05, 5.94349820393104052D-05/ + DATA ALFA(111), ALFA(112), ALFA(113), ALFA(114), ALFA(115), & + ALFA(116), ALFA(117), ALFA(118), ALFA(119), ALFA(120), & + ALFA(121), ALFA(122), ALFA(123), ALFA(124), ALFA(125), & + ALFA(126), ALFA(127), ALFA(128), ALFA(129), ALFA(130)/ & + 6.06478527578421742D-05, 6.08023907788436497D-05, & + 6.01577894539460388D-05, 5.89199657344698500D-05, & + 5.72515823777593053D-05, 5.52804375585852577D-05, & + 5.31063773802880170D-05, 5.08069302012325706D-05, & + 4.84418647620094842D-05, 4.60568581607475370D-05, & + -6.91141397288294174D-04, -4.29976633058871912D-04, & + 1.83067735980039018D-04, 6.60088147542014144D-04, & + 8.75964969951185931D-04, 8.77335235958235514D-04, & + 7.49369585378990637D-04, 5.63832329756980918D-04, & + 3.68059319971443156D-04, 1.88464535514455599D-04/ + DATA ALFA(131), ALFA(132), ALFA(133), ALFA(134), ALFA(135), & + ALFA(136), ALFA(137), ALFA(138), ALFA(139), ALFA(140), & + ALFA(141), ALFA(142), ALFA(143), ALFA(144), ALFA(145), & + ALFA(146), ALFA(147), ALFA(148), ALFA(149), ALFA(150)/ & + 3.70663057664904149D-05, -8.28520220232137023D-05, & + -1.72751952869172998D-04, -2.36314873605872983D-04, & + -2.77966150694906658D-04, -3.02079514155456919D-04, & + -3.12594712643820127D-04, -3.12872558758067163D-04, & + -3.05678038466324377D-04, -2.93226470614557331D-04, & + -2.77255655582934777D-04, -2.59103928467031709D-04, & + -2.39784014396480342D-04, -2.20048260045422848D-04, & + -2.00443911094971498D-04, -1.81358692210970687D-04, & + -1.63057674478657464D-04, -1.45712672175205844D-04, & + -1.29425421983924587D-04, -1.14245691942445952D-04/ + DATA ALFA(151), ALFA(152), ALFA(153), ALFA(154), ALFA(155), & + ALFA(156), ALFA(157), ALFA(158), ALFA(159), ALFA(160), & + ALFA(161), ALFA(162), ALFA(163), ALFA(164), ALFA(165), & + ALFA(166), ALFA(167), ALFA(168), ALFA(169), ALFA(170)/ & + 1.92821964248775885D-03, 1.35592576302022234D-03, & + -7.17858090421302995D-04, -2.58084802575270346D-03, & + -3.49271130826168475D-03, -3.46986299340960628D-03, & + -2.82285233351310182D-03, -1.88103076404891354D-03, & + -8.89531718383947600D-04, 3.87912102631035228D-06, & + 7.28688540119691412D-04, 1.26566373053457758D-03, & + 1.62518158372674427D-03, 1.83203153216373172D-03, & + 1.91588388990527909D-03, 1.90588846755546138D-03, & + 1.82798982421825727D-03, 1.70389506421121530D-03, & + 1.55097127171097686D-03, 1.38261421852276159D-03/ + DATA ALFA(171), ALFA(172), ALFA(173), ALFA(174), ALFA(175), & + ALFA(176), ALFA(177), ALFA(178), ALFA(179), ALFA(180)/ & + 1.20881424230064774D-03, 1.03676532638344962D-03, & + 8.71437918068619115D-04, 7.16080155297701002D-04, & + 5.72637002558129372D-04, 4.42089819465802277D-04, & + 3.24724948503090564D-04, 2.20342042730246599D-04, & + 1.28412898401353882D-04, 4.82005924552095464D-05/ + DATA BETA(1), BETA(2), BETA(3), BETA(4), BETA(5), BETA(6), & + BETA(7), BETA(8), BETA(9), BETA(10), BETA(11), BETA(12), & + BETA(13), BETA(14), BETA(15), BETA(16), BETA(17), BETA(18), & + BETA(19), BETA(20), BETA(21), BETA(22)/ & + 1.79988721413553309D-02, 5.59964911064388073D-03, & + 2.88501402231132779D-03, 1.80096606761053941D-03, & + 1.24753110589199202D-03, 9.22878876572938311D-04, & + 7.14430421727287357D-04, 5.71787281789704872D-04, & + 4.69431007606481533D-04, 3.93232835462916638D-04, & + 3.34818889318297664D-04, 2.88952148495751517D-04, & + 2.52211615549573284D-04, 2.22280580798883327D-04, & + 1.97541838033062524D-04, 1.76836855019718004D-04, & + 1.59316899661821081D-04, 1.44347930197333986D-04, & + 1.31448068119965379D-04, 1.20245444949302884D-04, & + 1.10449144504599392D-04, 1.01828770740567258D-04/ + DATA BETA(23), BETA(24), BETA(25), BETA(26), BETA(27), BETA(28), & + BETA(29), BETA(30), BETA(31), BETA(32), BETA(33), BETA(34), & + BETA(35), BETA(36), BETA(37), BETA(38), BETA(39), BETA(40), & + BETA(41), BETA(42), BETA(43), BETA(44)/ & + 9.41998224204237509D-05, 8.74130545753834437D-05, & + 8.13466262162801467D-05, 7.59002269646219339D-05, & + 7.09906300634153481D-05, 6.65482874842468183D-05, & + 6.25146958969275078D-05, 5.88403394426251749D-05, & + -1.49282953213429172D-03, -8.78204709546389328D-04, & + -5.02916549572034614D-04, -2.94822138512746025D-04, & + -1.75463996970782828D-04, -1.04008550460816434D-04, & + -5.96141953046457895D-05, -3.12038929076098340D-05, & + -1.26089735980230047D-05, -2.42892608575730389D-07, & + 8.05996165414273571D-06, 1.36507009262147391D-05, & + 1.73964125472926261D-05, 1.98672978842133780D-05/ + DATA BETA(45), BETA(46), BETA(47), BETA(48), BETA(49), BETA(50), & + BETA(51), BETA(52), BETA(53), BETA(54), BETA(55), BETA(56), & + BETA(57), BETA(58), BETA(59), BETA(60), BETA(61), BETA(62), & + BETA(63), BETA(64), BETA(65), BETA(66)/ & + 2.14463263790822639D-05, 2.23954659232456514D-05, & + 2.28967783814712629D-05, 2.30785389811177817D-05, & + 2.30321976080909144D-05, 2.28236073720348722D-05, & + 2.25005881105292418D-05, 2.20981015361991429D-05, & + 2.16418427448103905D-05, 2.11507649256220843D-05, & + 2.06388749782170737D-05, 2.01165241997081666D-05, & + 1.95913450141179244D-05, 1.90689367910436740D-05, & + 1.85533719641636667D-05, 1.80475722259674218D-05, & + 5.52213076721292790D-04, 4.47932581552384646D-04, & + 2.79520653992020589D-04, 1.52468156198446602D-04, & + 6.93271105657043598D-05, 1.76258683069991397D-05/ + DATA BETA(67), BETA(68), BETA(69), BETA(70), BETA(71), BETA(72), & + BETA(73), BETA(74), BETA(75), BETA(76), BETA(77), BETA(78), & + BETA(79), BETA(80), BETA(81), BETA(82), BETA(83), BETA(84), & + BETA(85), BETA(86), BETA(87), BETA(88)/ & + -1.35744996343269136D-05, -3.17972413350427135D-05, & + -4.18861861696693365D-05, -4.69004889379141029D-05, & + -4.87665447413787352D-05, -4.87010031186735069D-05, & + -4.74755620890086638D-05, -4.55813058138628452D-05, & + -4.33309644511266036D-05, -4.09230193157750364D-05, & + -3.84822638603221274D-05, -3.60857167535410501D-05, & + -3.37793306123367417D-05, -3.15888560772109621D-05, & + -2.95269561750807315D-05, -2.75978914828335759D-05, & + -2.58006174666883713D-05, -2.41308356761280200D-05, & + -2.25823509518346033D-05, -2.11479656768912971D-05, & + -1.98200638885294927D-05, -1.85909870801065077D-05/ + DATA BETA(89), BETA(90), BETA(91), BETA(92), BETA(93), BETA(94), & + BETA(95), BETA(96), BETA(97), BETA(98), BETA(99), BETA(100), & + BETA(101), BETA(102), BETA(103), BETA(104), BETA(105), & + BETA(106), BETA(107), BETA(108), BETA(109), BETA(110)/ & + -1.74532699844210224D-05, -1.63997823854497997D-05, & + -4.74617796559959808D-04, -4.77864567147321487D-04, & + -3.20390228067037603D-04, -1.61105016119962282D-04, & + -4.25778101285435204D-05, 3.44571294294967503D-05, & + 7.97092684075674924D-05, 1.03138236708272200D-04, & + 1.12466775262204158D-04, 1.13103642108481389D-04, & + 1.08651634848774268D-04, 1.01437951597661973D-04, & + 9.29298396593363896D-05, 8.40293133016089978D-05, & + 7.52727991349134062D-05, 6.69632521975730872D-05, & + 5.92564547323194704D-05, 5.22169308826975567D-05, & + 4.58539485165360646D-05, 4.01445513891486808D-05/ + DATA BETA(111), BETA(112), BETA(113), BETA(114), BETA(115), & + BETA(116), BETA(117), BETA(118), BETA(119), BETA(120), & + BETA(121), BETA(122), BETA(123), BETA(124), BETA(125), & + BETA(126), BETA(127), BETA(128), BETA(129), BETA(130)/ & + 3.50481730031328081D-05, 3.05157995034346659D-05, & + 2.64956119950516039D-05, 2.29363633690998152D-05, & + 1.97893056664021636D-05, 1.70091984636412623D-05, & + 1.45547428261524004D-05, 1.23886640995878413D-05, & + 1.04775876076583236D-05, 8.79179954978479373D-06, & + 7.36465810572578444D-04, 8.72790805146193976D-04, & + 6.22614862573135066D-04, 2.85998154194304147D-04, & + 3.84737672879366102D-06, -1.87906003636971558D-04, & + -2.97603646594554535D-04, -3.45998126832656348D-04, & + -3.53382470916037712D-04, -3.35715635775048757D-04/ + DATA BETA(131), BETA(132), BETA(133), BETA(134), BETA(135), & + BETA(136), BETA(137), BETA(138), BETA(139), BETA(140), & + BETA(141), BETA(142), BETA(143), BETA(144), BETA(145), & + BETA(146), BETA(147), BETA(148), BETA(149), BETA(150)/ & + -3.04321124789039809D-04, -2.66722723047612821D-04, & + -2.27654214122819527D-04, -1.89922611854562356D-04, & + -1.55058918599093870D-04, -1.23778240761873630D-04, & + -9.62926147717644187D-05, -7.25178327714425337D-05, & + -5.22070028895633801D-05, -3.50347750511900522D-05, & + -2.06489761035551757D-05, -8.70106096849767054D-06, & + 1.13698686675100290D-06, 9.16426474122778849D-06, & + 1.56477785428872620D-05, 2.08223629482466847D-05, & + 2.48923381004595156D-05, 2.80340509574146325D-05, & + 3.03987774629861915D-05, 3.21156731406700616D-05/ + DATA BETA(151), BETA(152), BETA(153), BETA(154), BETA(155), & + BETA(156), BETA(157), BETA(158), BETA(159), BETA(160), & + BETA(161), BETA(162), BETA(163), BETA(164), BETA(165), & + BETA(166), BETA(167), BETA(168), BETA(169), BETA(170)/ & + -1.80182191963885708D-03, -2.43402962938042533D-03, & + -1.83422663549856802D-03, -7.62204596354009765D-04, & + 2.39079475256927218D-04, 9.49266117176881141D-04, & + 1.34467449701540359D-03, 1.48457495259449178D-03, & + 1.44732339830617591D-03, 1.30268261285657186D-03, & + 1.10351597375642682D-03, 8.86047440419791759D-04, & + 6.73073208165665473D-04, 4.77603872856582378D-04, & + 3.05991926358789362D-04, 1.60315694594721630D-04, & + 4.00749555270613286D-05, -5.66607461635251611D-05, & + -1.32506186772982638D-04, -1.90296187989614057D-04/ + DATA BETA(171), BETA(172), BETA(173), BETA(174), BETA(175), & + BETA(176), BETA(177), BETA(178), BETA(179), BETA(180), & + BETA(181), BETA(182), BETA(183), BETA(184), BETA(185), & + BETA(186), BETA(187), BETA(188), BETA(189), BETA(190)/ & + -2.32811450376937408D-04, -2.62628811464668841D-04, & + -2.82050469867598672D-04, -2.93081563192861167D-04, & + -2.97435962176316616D-04, -2.96557334239348078D-04, & + -2.91647363312090861D-04, -2.83696203837734166D-04, & + -2.73512317095673346D-04, -2.61750155806768580D-04, & + 6.38585891212050914D-03, 9.62374215806377941D-03, & + 7.61878061207001043D-03, 2.83219055545628054D-03, & + -2.09841352012720090D-03, -5.73826764216626498D-03, & + -7.70804244495414620D-03, -8.21011692264844401D-03, & + -7.65824520346905413D-03, -6.47209729391045177D-03/ + DATA BETA(191), BETA(192), BETA(193), BETA(194), BETA(195), & + BETA(196), BETA(197), BETA(198), BETA(199), BETA(200), & + BETA(201), BETA(202), BETA(203), BETA(204), BETA(205), & + BETA(206), BETA(207), BETA(208), BETA(209), BETA(210)/ & + -4.99132412004966473D-03, -3.45612289713133280D-03, & + -2.01785580014170775D-03, -7.59430686781961401D-04, & + 2.84173631523859138D-04, 1.10891667586337403D-03, & + 1.72901493872728771D-03, 2.16812590802684701D-03, & + 2.45357710494539735D-03, 2.61281821058334862D-03, & + 2.67141039656276912D-03, 2.65203073395980430D-03, & + 2.57411652877287315D-03, 2.45389126236094427D-03, & + 2.30460058071795494D-03, 2.13684837686712662D-03, & + 1.95896528478870911D-03, 1.77737008679454412D-03, & + 1.59690280765839059D-03, 1.42111975664438546D-03/ + DATA GAMA(1), GAMA(2), GAMA(3), GAMA(4), GAMA(5), GAMA(6), & + GAMA(7), GAMA(8), GAMA(9), GAMA(10), GAMA(11), GAMA(12), & + GAMA(13), GAMA(14), GAMA(15), GAMA(16), GAMA(17), GAMA(18), & + GAMA(19), GAMA(20), GAMA(21), GAMA(22)/ & + 6.29960524947436582D-01, 2.51984209978974633D-01, & + 1.54790300415655846D-01, 1.10713062416159013D-01, & + 8.57309395527394825D-02, 6.97161316958684292D-02, & + 5.86085671893713576D-02, 5.04698873536310685D-02, & + 4.42600580689154809D-02, 3.93720661543509966D-02, & + 3.54283195924455368D-02, 3.21818857502098231D-02, & + 2.94646240791157679D-02, 2.71581677112934479D-02, & + 2.51768272973861779D-02, 2.34570755306078891D-02, & + 2.19508390134907203D-02, 2.06210828235646240D-02, & + 1.94388240897880846D-02, 1.83810633800683158D-02, & + 1.74293213231963172D-02, 1.65685837786612353D-02/ + DATA GAMA(23), GAMA(24), GAMA(25), GAMA(26), GAMA(27), GAMA(28), & + GAMA(29), GAMA(30)/ & + 1.57865285987918445D-02, 1.50729501494095594D-02, & + 1.44193250839954639D-02, 1.38184805735341786D-02, & + 1.32643378994276568D-02, 1.27517121970498651D-02, & + 1.22761545318762767D-02, 1.18338262398482403D-02/ + DATA EX1, EX2, HPI, GPI, THPI / & + 3.33333333333333333D-01, 6.66666666666666667D-01, & + 1.57079632679489662D+00, 3.14159265358979324D+00, & + 4.71238898038468986D+00/ + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + RFNU = 1.0D0/FNU + ZBR = ZR*RFNU + ZBI = ZI*RFNU + RFNU2 = RFNU*RFNU +!----------------------------------------------------------------------- +! COMPUTE IN THE FOURTH QUADRANT +!----------------------------------------------------------------------- + FN13 = FNU**EX1 + FN23 = FN13*FN13 + RFN13 = 1.0D0/FN13 + W2R = CONER - ZBR*ZBR + ZBI*ZBI + W2I = CONEI - ZBR*ZBI - ZBR*ZBI + AW2 = ZABS(W2R,W2I) + IF (AW2.GT.0.25D0) GO TO 130 +!----------------------------------------------------------------------- +! POWER SERIES FOR CABS(W2).LE.0.25D0 +!----------------------------------------------------------------------- + K = 1 + PR(1) = CONER + PI(1) = CONEI + SUMAR = GAMA(1) + SUMAI = ZEROI + AP(1) = 1.0D0 + IF (AW2.LT.TOL) GO TO 20 + DO 10 K=2,30 + PR(K) = PR(K-1)*W2R - PI(K-1)*W2I + PI(K) = PR(K-1)*W2I + PI(K-1)*W2R + SUMAR = SUMAR + PR(K)*GAMA(K) + SUMAI = SUMAI + PI(K)*GAMA(K) + AP(K) = AP(K-1)*AW2 + IF (AP(K).LT.TOL) GO TO 20 + 10 CONTINUE + K = 30 + 20 CONTINUE + KMAX = K + ZETAR = W2R*SUMAR - W2I*SUMAI + ZETAI = W2R*SUMAI + W2I*SUMAR + ARGR = ZETAR*FN23 + ARGI = ZETAI*FN23 + CALL ZSQRT(SUMAR, SUMAI, ZAR, ZAI) + CALL ZSQRT(W2R, W2I, STR, STI) + ZETA2R = STR*FNU + ZETA2I = STI*FNU + STR = CONER + EX2*(ZETAR*ZAR-ZETAI*ZAI) + STI = CONEI + EX2*(ZETAR*ZAI+ZETAI*ZAR) + ZETA1R = STR*ZETA2R - STI*ZETA2I + ZETA1I = STR*ZETA2I + STI*ZETA2R + ZAR = ZAR + ZAR + ZAI = ZAI + ZAI + CALL ZSQRT(ZAR, ZAI, STR, STI) + PHIR = STR*RFN13 + PHII = STI*RFN13 + IF (IPMTR.EQ.1) GO TO 120 +!----------------------------------------------------------------------- +! SUM SERIES FOR ASUM AND BSUM +!----------------------------------------------------------------------- + SUMBR = ZEROR + SUMBI = ZEROI + DO 30 K=1,KMAX + SUMBR = SUMBR + PR(K)*BETA(K) + SUMBI = SUMBI + PI(K)*BETA(K) + 30 CONTINUE + ASUMR = ZEROR + ASUMI = ZEROI + BSUMR = SUMBR + BSUMI = SUMBI + L1 = 0 + L2 = 30 + BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI)) + ATOL = TOL + PP = 1.0D0 + IAS = 0 + IBS = 0 + IF (RFNU2.LT.TOL) GO TO 110 + DO 100 IS=2,7 + ATOL = ATOL/RFNU2 + PP = PP*RFNU2 + IF (IAS.EQ.1) GO TO 60 + SUMAR = ZEROR + SUMAI = ZEROI + DO 40 K=1,KMAX + M = L1 + K + SUMAR = SUMAR + PR(K)*ALFA(M) + SUMAI = SUMAI + PI(K)*ALFA(M) + IF (AP(K).LT.ATOL) GO TO 50 + 40 CONTINUE + 50 CONTINUE + ASUMR = ASUMR + SUMAR*PP + ASUMI = ASUMI + SUMAI*PP + IF (PP.LT.TOL) IAS = 1 + 60 CONTINUE + IF (IBS.EQ.1) GO TO 90 + SUMBR = ZEROR + SUMBI = ZEROI + DO 70 K=1,KMAX + M = L2 + K + SUMBR = SUMBR + PR(K)*BETA(M) + SUMBI = SUMBI + PI(K)*BETA(M) + IF (AP(K).LT.ATOL) GO TO 80 + 70 CONTINUE + 80 CONTINUE + BSUMR = BSUMR + SUMBR*PP + BSUMI = BSUMI + SUMBI*PP + IF (PP.LT.BTOL) IBS = 1 + 90 CONTINUE + IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 110 + L1 = L1 + 30 + L2 = L2 + 30 + 100 CONTINUE + 110 CONTINUE + ASUMR = ASUMR + CONER + PP = RFNU*RFN13 + BSUMR = BSUMR*PP + BSUMI = BSUMI*PP + 120 CONTINUE + RETURN +!----------------------------------------------------------------------- +! CABS(W2).GT.0.25D0 +!----------------------------------------------------------------------- + 130 CONTINUE + CALL ZSQRT(W2R, W2I, WR, WI) + IF (WR.LT.0.0D0) WR = 0.0D0 + IF (WI.LT.0.0D0) WI = 0.0D0 + STR = CONER + WR + STI = WI + CALL ZDIV(STR, STI, ZBR, ZBI, ZAR, ZAI) + CALL ZLOG(ZAR, ZAI, ZCR, ZCI, IDUM) + IF (ZCI.LT.0.0D0) ZCI = 0.0D0 + IF (ZCI.GT.HPI) ZCI = HPI + IF (ZCR.LT.0.0D0) ZCR = 0.0D0 + ZTHR = (ZCR-WR)*1.5D0 + ZTHI = (ZCI-WI)*1.5D0 + ZETA1R = ZCR*FNU + ZETA1I = ZCI*FNU + ZETA2R = WR*FNU + ZETA2I = WI*FNU + AZTH = ZABS(ZTHR,ZTHI) + ANG = THPI + IF (ZTHR.GE.0.0D0 .AND. ZTHI.LT.0.0D0) GO TO 140 + ANG = HPI + IF (ZTHR.EQ.0.0D0) GO TO 140 + ANG = DATAN(ZTHI/ZTHR) + IF (ZTHR.LT.0.0D0) ANG = ANG + GPI + 140 CONTINUE + PP = AZTH**EX2 + ANG = ANG*EX2 + ZETAR = PP*DCOS(ANG) + ZETAI = PP*DSIN(ANG) + IF (ZETAI.LT.0.0D0) ZETAI = 0.0D0 + ARGR = ZETAR*FN23 + ARGI = ZETAI*FN23 + CALL ZDIV(ZTHR, ZTHI, ZETAR, ZETAI, RTZTR, RTZTI) + CALL ZDIV(RTZTR, RTZTI, WR, WI, ZAR, ZAI) + TZAR = ZAR + ZAR + TZAI = ZAI + ZAI + CALL ZSQRT(TZAR, TZAI, STR, STI) + PHIR = STR*RFN13 + PHII = STI*RFN13 + IF (IPMTR.EQ.1) GO TO 120 + RAW = 1.0D0/DSQRT(AW2) + STR = WR*RAW + STI = -WI*RAW + TFNR = STR*RFNU*RAW + TFNI = STI*RFNU*RAW + RAZTH = 1.0D0/AZTH + STR = ZTHR*RAZTH + STI = -ZTHI*RAZTH + RZTHR = STR*RAZTH*RFNU + RZTHI = STI*RAZTH*RFNU + ZCR = RZTHR*AR(2) + ZCI = RZTHI*AR(2) + RAW2 = 1.0D0/AW2 + STR = W2R*RAW2 + STI = -W2I*RAW2 + T2R = STR*RAW2 + T2I = STI*RAW2 + STR = T2R*C(2) + C(3) + STI = T2I*C(2) + UPR(2) = STR*TFNR - STI*TFNI + UPI(2) = STR*TFNI + STI*TFNR + BSUMR = UPR(2) + ZCR + BSUMI = UPI(2) + ZCI + ASUMR = ZEROR + ASUMI = ZEROI + IF (RFNU.LT.TOL) GO TO 220 + PRZTHR = RZTHR + PRZTHI = RZTHI + PTFNR = TFNR + PTFNI = TFNI + UPR(1) = CONER + UPI(1) = CONEI + PP = 1.0D0 + BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI)) + KS = 0 + KP1 = 2 + L = 3 + IAS = 0 + IBS = 0 + DO 210 LR=2,12,2 + LRP1 = LR + 1 +!----------------------------------------------------------------------- +! COMPUTE TWO ADDITIONAL CR, DR, AND UP FOR TWO MORE TERMS IN +! NEXT SUMA AND SUMB +!----------------------------------------------------------------------- + DO 160 K=LR,LRP1 + KS = KS + 1 + KP1 = KP1 + 1 + L = L + 1 + ZAR = C(L) + ZAI = ZEROI + DO 150 J=2,KP1 + L = L + 1 + STR = ZAR*T2R - T2I*ZAI + C(L) + ZAI = ZAR*T2I + ZAI*T2R + ZAR = STR + 150 CONTINUE + STR = PTFNR*TFNR - PTFNI*TFNI + PTFNI = PTFNR*TFNI + PTFNI*TFNR + PTFNR = STR + UPR(KP1) = PTFNR*ZAR - PTFNI*ZAI + UPI(KP1) = PTFNI*ZAR + PTFNR*ZAI + CRR(KS) = PRZTHR*BR(KS+1) + CRI(KS) = PRZTHI*BR(KS+1) + STR = PRZTHR*RZTHR - PRZTHI*RZTHI + PRZTHI = PRZTHR*RZTHI + PRZTHI*RZTHR + PRZTHR = STR + DRR(KS) = PRZTHR*AR(KS+2) + DRI(KS) = PRZTHI*AR(KS+2) + 160 CONTINUE + PP = PP*RFNU2 + IF (IAS.EQ.1) GO TO 180 + SUMAR = UPR(LRP1) + SUMAI = UPI(LRP1) + JU = LRP1 + DO 170 JR=1,LR + JU = JU - 1 + SUMAR = SUMAR + CRR(JR)*UPR(JU) - CRI(JR)*UPI(JU) + SUMAI = SUMAI + CRR(JR)*UPI(JU) + CRI(JR)*UPR(JU) + 170 CONTINUE + ASUMR = ASUMR + SUMAR + ASUMI = ASUMI + SUMAI + TEST = DABS(SUMAR) + DABS(SUMAI) + IF (PP.LT.TOL .AND. TEST.LT.TOL) IAS = 1 + 180 CONTINUE + IF (IBS.EQ.1) GO TO 200 + SUMBR = UPR(LR+2) + UPR(LRP1)*ZCR - UPI(LRP1)*ZCI + SUMBI = UPI(LR+2) + UPR(LRP1)*ZCI + UPI(LRP1)*ZCR + JU = LRP1 + DO 190 JR=1,LR + JU = JU - 1 + SUMBR = SUMBR + DRR(JR)*UPR(JU) - DRI(JR)*UPI(JU) + SUMBI = SUMBI + DRR(JR)*UPI(JU) + DRI(JR)*UPR(JU) + 190 CONTINUE + BSUMR = BSUMR + SUMBR + BSUMI = BSUMI + SUMBI + TEST = DABS(SUMBR) + DABS(SUMBI) + IF (PP.LT.BTOL .AND. TEST.LT.BTOL) IBS = 1 + 200 CONTINUE + IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 220 + 210 CONTINUE + 220 CONTINUE + ASUMR = ASUMR + CONER + STR = -BSUMR*RFN13 + STI = -BSUMI*RFN13 + CALL ZDIV(STR, STI, RTZTR, RTZTI, BSUMR, BSUMI) + GO TO 120 +END + +SUBROUTINE ZUCHK(YR, YI, NZ, ASCLE, TOL) +!***BEGIN PROLOGUE ZUCHK +!***REFER TO ZSERI,ZUOIK,ZUNK1,ZUNK2,ZUNI1,ZUNI2,ZKSCL +! +! Y ENTERS AS A SCALED QUANTITY WHOSE MAGNITUDE IS GREATER THAN +! EXP(-ALIM)=ASCLE=1.0E+3*D1MACH(1)/TOL. THE TEST IS MADE TO SEE +! IF THE MAGNITUDE OF THE REAL OR IMAGINARY PART WOULD UNDERFLOW +! WHEN Y IS SCALED (BY TOL) TO ITS PROPER VALUE. Y IS ACCEPTED +! IF THE UNDERFLOW IS AT LEAST ONE PRECISION BELOW THE MAGNITUDE +! OF THE LARGEST COMPONENT; OTHERWISE THE PHASE ANGLE DOES NOT HAVE +! ABSOLUTE ACCURACY AND AN UNDERFLOW IS ASSUMED. +! +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZUCHK +! +! COMPLEX Y + DOUBLE PRECISION ASCLE, SS, ST, TOL, WR, WI, YR, YI + INTEGER NZ + NZ = 0 + WR = DABS(YR) + WI = DABS(YI) + ST = DMIN1(WR,WI) + IF (ST.GT.ASCLE) RETURN + SS = DMAX1(WR,WI) + ST = ST/TOL + IF (SS.LT.ST) NZ = 1 + RETURN +END + +SUBROUTINE ZBINU(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL, ELIM, ALIM) +USE COMPLEX +!***BEGIN PROLOGUE ZBINU +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZAIRY,ZBIRY + +! ZBINU COMPUTES THE I FUNCTION IN THE RIGHT HALF Z PLANE + +!***ROUTINES CALLED ZABS,ZASYI,ZBUNI,ZMLRI,ZSERI,ZUOIK,ZWRSK +!***END PROLOGUE ZBINU + DOUBLE PRECISION ALIM, AZ, CWI, CWR, CYI, CYR, DFNU, ELIM, FNU, & + FNUL, RL, TOL, ZEROI, ZEROR, ZI, ZR + INTEGER I, INW, KODE, N, NLAST, NN, NUI, NW, NZ + DIMENSION CYR(1), CYI(1), CWR(2), CWI(2) + DATA ZEROR,ZEROI / 0.0D0, 0.0D0 / + + NZ = 0 + AZ = ZABS(ZR,ZI) + NN = N + DFNU = FNU + DBLE(FLOAT(N-1)) + IF (AZ.LE.2.0D0) GO TO 10 + IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! POWER SERIES +!----------------------------------------------------------------------- + CALL ZSERI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM) + INW = IABS(NW) + NZ = NZ + INW + NN = NN - INW + IF (NN.EQ.0) RETURN + IF (NW.GE.0) GO TO 120 + DFNU = FNU + DBLE(FLOAT(NN-1)) + 20 CONTINUE + IF (AZ.LT.RL) GO TO 40 + IF (DFNU.LE.1.0D0) GO TO 30 + IF (AZ+AZ.LT.DFNU*DFNU) GO TO 50 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR LARGE Z +!----------------------------------------------------------------------- + 30 CONTINUE + CALL ZASYI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, RL, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + GO TO 120 + 40 CONTINUE + IF (DFNU.LE.1.0D0) GO TO 70 + 50 CONTINUE +!----------------------------------------------------------------------- +! OVERFLOW AND UNDERFLOW TEST ON I SEQUENCE FOR MILLER ALGORITHM +!----------------------------------------------------------------------- + CALL ZUOIK(ZR, ZI, FNU, KODE, 1, NN, CYR, CYI, NW, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + NZ = NZ + NW + NN = NN - NW + IF (NN.EQ.0) RETURN + DFNU = FNU+DBLE(FLOAT(NN-1)) + IF (DFNU.GT.FNUL) GO TO 110 + IF (AZ.GT.FNUL) GO TO 110 + 60 CONTINUE + IF (AZ.GT.RL) GO TO 80 + 70 CONTINUE +!----------------------------------------------------------------------- +! MILLER ALGORITHM NORMALIZED BY THE SERIES +!----------------------------------------------------------------------- + CALL ZMLRI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL) + IF(NW.LT.0) GO TO 130 + GO TO 120 + 80 CONTINUE +!----------------------------------------------------------------------- +! MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN +!----------------------------------------------------------------------- +!----------------------------------------------------------------------- +! OVERFLOW TEST ON K FUNCTIONS USED IN WRONSKIAN +!----------------------------------------------------------------------- + CALL ZUOIK(ZR, ZI, FNU, KODE, 2, 2, CWR, CWI, NW, TOL, ELIM, ALIM) + IF (NW.GE.0) GO TO 100 + NZ = NN + DO 90 I=1,NN + CYR(I) = ZEROR + CYI(I) = ZEROI + 90 CONTINUE + RETURN + 100 CONTINUE + IF (NW.GT.0) GO TO 130 + CALL ZWRSK(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, CWR, CWI, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + GO TO 120 + 110 CONTINUE +!----------------------------------------------------------------------- +! INCREMENT FNU+NN-1 UP TO FNUL, COMPUTE AND RECUR BACKWARD +!----------------------------------------------------------------------- + NUI = INT(SNGL(FNUL-DFNU)) + 1 + NUI = MAX0(NUI,0) + CALL ZBUNI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, NUI, NLAST, FNUL, & + TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 130 + NZ = NZ + NW + IF (NLAST.EQ.0) GO TO 120 + NN = NLAST + GO TO 60 + 120 CONTINUE + RETURN + 130 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN + END + +SUBROUTINE ZSHCH(ZR, ZI, CSHR, CSHI, CCHR, CCHI) +!***BEGIN PROLOGUE ZSHCH +!***REFER TO ZBESK,ZBESH +! +! ZSHCH COMPUTES THE COMPLEX HYPERBOLI! FUNCTIONS CSH=SINH(X+I*Y) +! AND CCH=COSH(X+I*Y), WHERE I**2=-1. +! +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZSHCH +! + DOUBLE PRECISION CCHI, CCHR, CH, CN, CSHI, CSHR, SH, SN, ZI, ZR, DCOSH, DSINH + SH = DSINH(ZR) + CH = DCOSH(ZR) + SN = DSIN(ZI) + CN = DCOS(ZI) + CSHR = SH*CN + CSHI = CH*SN + CCHR = CH*CN + CCHI = SH*SN + RETURN +END + +DOUBLE PRECISION FUNCTION DGAMLN(Z,IERR) +USE UTILIT +!***BEGIN PROLOGUE DGAMLN +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5F +!***KEYWORDS GAMMA FUNCTION,LOGARITHM OF GAMMA FUNCTION +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE THE LOGARITHM OF THE GAMMA FUNCTION +!***DESCRIPTION +! +! **** A DOUBLE PRECISION ROUTINE **** +! DGAMLN COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR +! Z.GT.0. THE ASYMPTOTIC EXPANSION IS USED TO GENERATE VALUES +! GREATER THAN ZMIN WHICH ARE ADJUSTED BY THE RECURSION +! G(Z+1)=Z*G(Z) FOR Z.LE.ZMIN. THE FUNCTION WAS MADE AS +! PORTABLE AS POSSIBLE BY COMPUTIMG ZMIN FROM THE NUMBER OF BASE +! 10 DIGITS IN A WORD, RLN=AMAX1(-ALOG10(R1MACH(4)),0.5E-18) +! LIMITED TO 18 DIGITS OF (RELATIVE) ACCURACY. +! +! SINCE INTEGER ARGUMENTS ARE COMMON, A TABLE LOOK UP ON 100 +! VALUES IS USED FOR SPEED OF EXECUTION. +! +! DESCRIPTION OF ARGUMENTS +! +! INPUT Z IS D0UBLE PRECISION +! Z - ARGUMENT, Z.GT.0.0D0 +! +! OUTPUT DGAMLN IS DOUBLE PRECISION +! DGAMLN - NATURAL LOG OF THE GAMMA FUNCTION AT Z.NE.0.0D0 +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN, COMPUTATION COMPLETED +! IERR=1, Z.LE.0.0D0, NO COMPUTATION +! +! +!***REFERENCES COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! BY D. E. AMOS, SAND83-0083, MAY, 1983. +!***ROUTINES CALLED I1MACH,D1MACH +!***END PROLOGUE DGAMLN + DOUBLE PRECISION CF, CON, FLN, FZ, GLN, RLN, S, TLG, TRM, TST, & + T1, WDTOL, Z, ZDMY, ZINC, ZM, ZMIN, ZP, ZSQ + INTEGER I, IERR, I1M, K, MZ, NZ + DIMENSION CF(22), GLN(100) +! LNGAMMA(N), N=1,100 + DATA GLN(1), GLN(2), GLN(3), GLN(4), GLN(5), GLN(6), GLN(7), & + GLN(8), GLN(9), GLN(10), GLN(11), GLN(12), GLN(13), GLN(14), & + GLN(15), GLN(16), GLN(17), GLN(18), GLN(19), GLN(20), & + GLN(21), GLN(22)/ & + 0.00000000000000000D+00, 0.00000000000000000D+00, & + 6.93147180559945309D-01, 1.79175946922805500D+00, & + 3.17805383034794562D+00, 4.78749174278204599D+00, & + 6.57925121201010100D+00, 8.52516136106541430D+00, & + 1.06046029027452502D+01, 1.28018274800814696D+01, & + 1.51044125730755153D+01, 1.75023078458738858D+01, & + 1.99872144956618861D+01, 2.25521638531234229D+01, & + 2.51912211827386815D+01, 2.78992713838408916D+01, & + 3.06718601060806728D+01, 3.35050734501368889D+01, & + 3.63954452080330536D+01, 3.93398841871994940D+01, & + 4.23356164607534850D+01, 4.53801388984769080D+01/ + DATA GLN(23), GLN(24), GLN(25), GLN(26), GLN(27), GLN(28), & + GLN(29), GLN(30), GLN(31), GLN(32), GLN(33), GLN(34), & + GLN(35), GLN(36), GLN(37), GLN(38), GLN(39), GLN(40), & + GLN(41), GLN(42), GLN(43), GLN(44)/ & + 4.84711813518352239D+01, 5.16066755677643736D+01, & + 5.47847293981123192D+01, 5.80036052229805199D+01, & + 6.12617017610020020D+01, 6.45575386270063311D+01, & + 6.78897431371815350D+01, 7.12570389671680090D+01, & + 7.46582363488301644D+01, 7.80922235533153106D+01, & + 8.15579594561150372D+01, 8.50544670175815174D+01, & + 8.85808275421976788D+01, 9.21361756036870925D+01, & + 9.57196945421432025D+01, 9.93306124547874269D+01, & + 1.02968198614513813D+02, 1.06631760260643459D+02, & + 1.10320639714757395D+02, 1.14034211781461703D+02, & + 1.17771881399745072D+02, 1.21533081515438634D+02/ + DATA GLN(45), GLN(46), GLN(47), GLN(48), GLN(49), GLN(50), & + GLN(51), GLN(52), GLN(53), GLN(54), GLN(55), GLN(56), & + GLN(57), GLN(58), GLN(59), GLN(60), GLN(61), GLN(62), & + GLN(63), GLN(64), GLN(65), GLN(66)/ & + 1.25317271149356895D+02, 1.29123933639127215D+02, & + 1.32952575035616310D+02, 1.36802722637326368D+02, & + 1.40673923648234259D+02, 1.44565743946344886D+02, & + 1.48477766951773032D+02, 1.52409592584497358D+02, & + 1.56360836303078785D+02, 1.60331128216630907D+02, & + 1.64320112263195181D+02, 1.68327445448427652D+02, & + 1.72352797139162802D+02, 1.76395848406997352D+02, & + 1.80456291417543771D+02, 1.84533828861449491D+02, & + 1.88628173423671591D+02, 1.92739047287844902D+02, & + 1.96866181672889994D+02, 2.01009316399281527D+02, & + 2.05168199482641199D+02, 2.09342586752536836D+02/ + DATA GLN(67), GLN(68), GLN(69), GLN(70), GLN(71), GLN(72), & + GLN(73), GLN(74), GLN(75), GLN(76), GLN(77), GLN(78), & + GLN(79), GLN(80), GLN(81), GLN(82), GLN(83), GLN(84), & + GLN(85), GLN(86), GLN(87), GLN(88)/ & + 2.13532241494563261D+02, 2.17736934113954227D+02, & + 2.21956441819130334D+02, 2.26190548323727593D+02, & + 2.30439043565776952D+02, 2.34701723442818268D+02, & + 2.38978389561834323D+02, 2.43268849002982714D+02, & + 2.47572914096186884D+02, 2.51890402209723194D+02, & + 2.56221135550009525D+02, 2.60564940971863209D+02, & + 2.64921649798552801D+02, 2.69291097651019823D+02, & + 2.73673124285693704D+02, 2.78067573440366143D+02, & + 2.82474292687630396D+02, 2.86893133295426994D+02, & + 2.91323950094270308D+02, 2.95766601350760624D+02, & + 3.00220948647014132D+02, 3.04686856765668715D+02/ + DATA GLN(89), GLN(90), GLN(91), GLN(92), GLN(93), GLN(94), & + GLN(95), GLN(96), GLN(97), GLN(98), GLN(99), GLN(100)/ & + 3.09164193580146922D+02, 3.13652829949879062D+02, & + 3.18152639620209327D+02, 3.22663499126726177D+02, & + 3.27185287703775217D+02, 3.31717887196928473D+02, & + 3.36261181979198477D+02, 3.40815058870799018D+02, & + 3.45379407062266854D+02, 3.49954118040770237D+02, & + 3.54539085519440809D+02, 3.59134205369575399D+02/ +! COEFFICIENTS OF ASYMPTOTIC EXPANSION + DATA CF(1), CF(2), CF(3), CF(4), CF(5), CF(6), CF(7), CF(8), & + CF(9), CF(10), CF(11), CF(12), CF(13), CF(14), CF(15), & + CF(16), CF(17), CF(18), CF(19), CF(20), CF(21), CF(22)/ & + 8.33333333333333333D-02, -2.77777777777777778D-03, & + 7.93650793650793651D-04, -5.95238095238095238D-04, & + 8.41750841750841751D-04, -1.91752691752691753D-03, & + 6.41025641025641026D-03, -2.95506535947712418D-02, & + 1.79644372368830573D-01, -1.39243221690590112D+00, & + 1.34028640441683920D+01, -1.56848284626002017D+02, & + 2.19310333333333333D+03, -3.61087712537249894D+04, & + 6.91472268851313067D+05, -1.52382215394074162D+07, & + 3.82900751391414141D+08, -1.08822660357843911D+10, & + 3.47320283765002252D+11, -1.23696021422692745D+13, & + 4.88788064793079335D+14, -2.13203339609193739D+16/ + +! LN(2*PI) + DATA CON / 1.83787706640934548D+00/ + +!***FIRST EXECUTABLE STATEMENT DGAMLN + IERR=0 + IF (Z.LE.0.0D0) GO TO 70 + IF (Z.GT.101.0D0) GO TO 10 + NZ = INT(SNGL(Z)) + FZ = Z - FLOAT(NZ) + IF (FZ.GT.0.0D0) GO TO 10 + IF (NZ.GT.100) GO TO 10 + DGAMLN = GLN(NZ) + RETURN + 10 CONTINUE + WDTOL = D1MACH(4) + WDTOL = DMAX1(WDTOL,0.5D-18) + I1M = I1MACH(14) + RLN = D1MACH(5)*FLOAT(I1M) + FLN = DMIN1(RLN,20.0D0) + FLN = DMAX1(FLN,3.0D0) + FLN = FLN - 3.0D0 + ZM = 1.8000D0 + 0.3875D0*FLN + MZ = INT(SNGL(ZM)) + 1 + ZMIN = FLOAT(MZ) + ZDMY = Z + ZINC = 0.0D0 + IF (Z.GE.ZMIN) GO TO 20 + ZINC = ZMIN - FLOAT(NZ) + ZDMY = Z + ZINC + 20 CONTINUE + ZP = 1.0D0/ZDMY + T1 = CF(1)*ZP + S = T1 + IF (ZP.LT.WDTOL) GO TO 40 + ZSQ = ZP*ZP + TST = T1*WDTOL + DO 30 K=2,22 + ZP = ZP*ZSQ + TRM = CF(K)*ZP + IF (DABS(TRM).LT.TST) GO TO 40 + S = S + TRM + 30 CONTINUE + 40 CONTINUE + IF (ZINC.NE.0.0D0) GO TO 50 + TLG = DLOG(Z) + DGAMLN = Z*(TLG-1.0D0) + 0.5D0*(CON-TLG) + S + RETURN + 50 CONTINUE + ZP = 1.0D0 + NZ = INT(SNGL(ZINC)) + DO 60 I=1,NZ + ZP = ZP*(Z+FLOAT(I-1)) + 60 CONTINUE + TLG = DLOG(ZDMY) + DGAMLN = ZDMY*(TLG-1.0D0) - DLOG(ZP) + 0.5D0*(CON-TLG) + S + RETURN + + 70 CONTINUE + IERR=1 + RETURN +END + +SUBROUTINE ZKSCL(ZRR,ZRI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM) +USE COMPLEX +!***BEGIN PROLOGUE ZKSCL +!***REFER TO ZBESK +! +! SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE +! ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN +! RETURN WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL. +! +!***ROUTINES CALLED ZUCHK,ZABS,ZLOG +!***END PROLOGUE ZKSCL +! COMPLEX CK,CS,CY,CZERO,RZ,S1,S2,Y,ZR,ZD,CELM + DOUBLE PRECISION ACS, AS, ASCLE, CKI, CKR, CSI, CSR, CYI, & + CYR, ELIM, FN, FNU, RZI, RZR, STR, S1I, S1R, S2I, S2R, & + TOL, YI, YR, ZEROI, ZEROR, ZRI, ZRR, ZDR, ZDI, CELMR, & + ELM, HELIM, ALAS + INTEGER I, IC, IDUM, KK, N, NN, NW, NZ + DIMENSION YR(1), YI(1), CYR(2), CYI(2) + DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 / + + NZ = 0 + IC = 0 + NN = MIN0(2,N) + DO 10 I=1,NN + S1R = YR(I) + S1I = YI(I) + CYR(I) = S1R + CYI(I) = S1I + AS = ZABS(S1R,S1I) + ACS = -ZRR + DLOG(AS) + NZ = NZ + 1 + YR(I) = ZEROR + YI(I) = ZEROI + IF (ACS.LT.(-ELIM)) GO TO 10 + CALL ZLOG(S1R, S1I, CSR, CSI, IDUM) + CSR = CSR - ZRR + CSI = CSI - ZRI + STR = DEXP(CSR)/TOL + CSR = STR*DCOS(CSI) + CSI = STR*DSIN(CSI) + CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 10 + YR(I) = CSR + YI(I) = CSI + IC = I + NZ = NZ - 1 + 10 CONTINUE + IF (N.EQ.1) RETURN + IF (IC.GT.1) GO TO 20 + YR(1) = ZEROR + YI(1) = ZEROI + NZ = 2 + 20 CONTINUE + IF (N.EQ.2) RETURN + IF (NZ.EQ.0) RETURN + FN = FNU + 1.0D0 + CKR = FN*RZR + CKI = FN*RZI + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + HELIM = 0.5D0*ELIM + ELM = DEXP(-ELIM) + CELMR = ELM + ZDR = ZRR + ZDI = ZRI + +! FIND TWO CONSECUTIVE Y VALUES ON SCALE. SCALE RECURRENCE IF +! S2 GETS LARGER THAN EXP(ELIM/2) + + DO 30 I=3,N + KK = I + CSR = S2R + CSI = S2I + S2R = CKR*CSR - CKI*CSI + S1R + S2I = CKI*CSR + CKR*CSI + S1I + S1R = CSR + S1I = CSI + CKR = CKR + RZR + CKI = CKI + RZI + AS = ZABS(S2R,S2I) + ALAS = DLOG(AS) + ACS = -ZDR + ALAS + NZ = NZ + 1 + YR(I) = ZEROR + YI(I) = ZEROI + IF (ACS.LT.(-ELIM)) GO TO 25 + CALL ZLOG(S2R, S2I, CSR, CSI, IDUM) + CSR = CSR - ZDR + CSI = CSI - ZDI + STR = DEXP(CSR)/TOL + CSR = STR*DCOS(CSI) + CSI = STR*DSIN(CSI) + CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 25 + YR(I) = CSR + YI(I) = CSI + NZ = NZ - 1 + IF (IC.EQ.KK-1) GO TO 40 + IC = KK + GO TO 30 + 25 CONTINUE + IF(ALAS.LT.HELIM) GO TO 30 + ZDR = ZDR - ELIM + S1R = S1R*CELMR + S1I = S1I*CELMR + S2R = S2R*CELMR + S2I = S2I*CELMR + 30 CONTINUE + NZ = N + IF(IC.EQ.N) NZ=N-1 + GO TO 45 + 40 CONTINUE + NZ = KK - 2 + 45 CONTINUE + DO 50 I=1,NZ + YR(I) = ZEROR + YI(I) = ZEROI + 50 CONTINUE + RETURN +END + +SUBROUTINE ZACAI(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZACAI +!***REFER TO ZAIRY +! +! ZACAI APPLIES THE ANALYTIC CONTINUATION FORMULA +! +! K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN) +! MP=PI*MR*CMPLX(0.0,1.0) +! +! TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT +! HALF Z PLANE FOR USE WITH ZAIRY WHERE FNU=1/3 OR 2/3 AND N=1. +! ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND +! RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT IF ZACON +! IS CALLED FROM ZAIRY. +! +!***ROUTINES CALLED ZASYI,ZBKNU,ZMLRI,ZSERI,ZS1S2,D1MACH,ZABS +!***END PROLOGUE ZACAI +! COMPLEX CSGN,CSPN,C1,C2,Y,Z,ZN,CY + DOUBLE PRECISION ALIM, ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR, & + CSPNI, C1R, C1I, C2R, C2I, CYR, CYI, DFNU, ELIM, FMR, FNU, PI, & + RL, SGN, TOL, YY, YR, YI, ZR, ZI, ZNR, ZNI + INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ + DIMENSION YR(1), YI(1), CYR(2), CYI(2) + DATA PI / 3.14159265358979324D0 / + NZ = 0 + ZNR = -ZR + ZNI = -ZI + AZ = ZABS(ZR,ZI) + NN = N + DFNU = FNU + DBLE(FLOAT(N-1)) + IF (AZ.LE.2.0D0) GO TO 10 + IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! POWER SERIES FOR THE I FUNCTION +!----------------------------------------------------------------------- + CALL ZSERI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL, ELIM, ALIM) + GO TO 40 + 20 CONTINUE + IF (AZ.LT.RL) GO TO 30 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION +!----------------------------------------------------------------------- + CALL ZASYI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, TOL, ELIM, ALIM) + IF (NW.LT.0) GO TO 80 + GO TO 40 + 30 CONTINUE +!----------------------------------------------------------------------- +! MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION +!----------------------------------------------------------------------- + CALL ZMLRI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL) + IF(NW.LT.0) GO TO 80 + 40 CONTINUE +!----------------------------------------------------------------------- +! ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION +!----------------------------------------------------------------------- + CALL ZBKNU(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, NW, TOL, ELIM, ALIM) + IF (NW.NE.0) GO TO 80 + FMR = DBLE(FLOAT(MR)) + SGN = -DSIGN(PI,FMR) + CSGNR = 0.0D0 + CSGNI = SGN + IF (KODE.EQ.1) GO TO 50 + YY = -ZNI + CSGNR = -CSGNI*DSIN(YY) + CSGNI = CSGNI*DCOS(YY) + 50 CONTINUE +!----------------------------------------------------------------------- +! CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE +! WHEN FNU IS LARGE +!----------------------------------------------------------------------- + INU = INT(SNGL(FNU)) + ARG = (FNU-DBLE(FLOAT(INU)))*SGN + CSPNR = DCOS(ARG) + CSPNI = DSIN(ARG) + IF (MOD(INU,2).EQ.0) GO TO 60 + CSPNR = -CSPNR + CSPNI = -CSPNI + 60 CONTINUE + C1R = CYR(1) + C1I = CYI(1) + C2R = YR(1) + C2I = YI(1) + IF (KODE.EQ.1) GO TO 70 + IUF = 0 + ASCLE = 1.0D+3*D1MACH(1)/TOL + CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF) + NZ = NZ + NW + 70 CONTINUE + YR(1) = CSPNR*C1R - CSPNI*C1I + CSGNR*C2R - CSGNI*C2I + YI(1) = CSPNR*C1I + CSPNI*C1R + CSGNR*C2I + CSGNI*C2R + RETURN + 80 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN +END + +SUBROUTINE ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NZ, ASCLE, ALIM, IUF) +USE COMPLEX +!***BEGIN PROLOGUE ZS1S2 +!***REFER TO ZBESK,ZAIRY +! +! ZS1S2 TESTS FOR A POSSIBLE UNDERFLOW RESULTING FROM THE +! ADDITION OF THE I AND K FUNCTIONS IN THE ANALYTIC CON- +! TINUATION FORMULA WHERE S1=K FUNCTION AND S2=I FUNCTION. +! ON KODE=1 THE I AND K FUNCTIONS ARE DIFFERENT ORDERS OF +! MAGNITUDE, BUT FOR KODE=2 THEY CAN BE OF THE SAME ORDER +! OF MAGNITUDE AND THE MAXIMUM MUST BE AT LEAST ONE +! PRECISION ABOVE THE UNDERFLOW LIMIT. +! +!***ROUTINES CALLED ZABS,ZEXP,ZLOG +!***END PROLOGUE ZS1S2 +! COMPLEX CZERO,C1,S1,S1D,S2,ZR + DOUBLE PRECISION AA, ALIM, ALN, ASCLE, AS1, AS2, C1I, C1R, S1DI, & + S1DR, S1I, S1R, S2I, S2R, ZEROI, ZEROR, ZRI, ZRR + INTEGER IUF, IDUM, NZ + DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 / + NZ = 0 + AS1 = ZABS(S1R,S1I) + AS2 = ZABS(S2R,S2I) + IF (S1R.EQ.0.0D0 .AND. S1I.EQ.0.0D0) GO TO 10 + IF (AS1.EQ.0.0D0) GO TO 10 + ALN = -ZRR - ZRR + DLOG(AS1) + S1DR = S1R + S1DI = S1I + S1R = ZEROR + S1I = ZEROI + AS1 = ZEROR + IF (ALN.LT.(-ALIM)) GO TO 10 + CALL ZLOG(S1DR, S1DI, C1R, C1I, IDUM) + C1R = C1R - ZRR - ZRR + C1I = C1I - ZRI - ZRI + CALL ZEXP(C1R, C1I, S1R, S1I) + AS1 = ZABS(S1R,S1I) + IUF = IUF + 1 + 10 CONTINUE + AA = DMAX1(AS1,AS2) + IF (AA.GT.ASCLE) RETURN + S1R = ZEROR + S1I = ZEROI + S2R = ZEROR + S2I = ZEROI + NZ = 1 + IUF = 0 + RETURN +END + +SUBROUTINE ZRATI(ZR, ZI, FNU, N, CYR, CYI, TOL) +USE COMPLEX +!***BEGIN PROLOGUE ZRATI +!***REFER TO ZBESI,ZBESK,ZBESH +! +! ZRATI COMPUTES RATIOS OF I BESSEL FUNCTIONS BY BACKWARD +! RECURRENCE. THE STARTING INDEX IS DETERMINED BY FORWARD +! RECURRENCE AS DESCRIBED IN J. RES. OF NAT. BUR. OF STANDARDS-B, +! MATHEMATICAL SCIENCES, VOL 77B, P111-114, SEPTEMBER, 1973, +! BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER, +! BY D. J. SOOKNE. +! +!***ROUTINES CALLED ZABS,ZDIV +!***END PROLOGUE ZRATI +! COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU + DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR, & + CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU, & + FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI, & + RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR + INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N + DIMENSION CYR(1), CYI(1) + DATA CZEROR,CZEROI,CONER,CONEI,RT2 & + /0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0/ + AZ = ZABS(ZR,ZI) + INU = INT(SNGL(FNU)) + IDNU = INU + N - 1 + MAGZ = INT(SNGL(AZ)) + AMAGZ = DBLE(FLOAT(MAGZ+1)) + FDNU = DBLE(FLOAT(IDNU)) + FNUP = DMAX1(AMAGZ,FDNU) + ID = IDNU - MAGZ - 1 + ITIME = 1 + K = 1 + PTR = 1.0D0/AZ + RZR = PTR*(ZR+ZR)*PTR + RZI = -PTR*(ZI+ZI)*PTR + T1R = RZR*FNUP + T1I = RZI*FNUP + P2R = -T1R + P2I = -T1I + P1R = CONER + P1I = CONEI + T1R = T1R + RZR + T1I = T1I + RZI + IF (ID.GT.0) ID = 0 + AP2 = ZABS(P2R,P2I) + AP1 = ZABS(P1R,P1I) +!----------------------------------------------------------------------- +! THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU +! GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT +! P2 VALUES BY AP1 TO ENSURE THAT AN OVERFLOW DOES NOT OCCUR +! PREMATURELY. +!----------------------------------------------------------------------- + ARG = (AP2+AP2)/(AP1*TOL) + TEST1 = DSQRT(ARG) + TEST = TEST1 + RAP1 = 1.0D0/AP1 + P1R = P1R*RAP1 + P1I = P1I*RAP1 + P2R = P2R*RAP1 + P2I = P2I*RAP1 + AP2 = AP2*RAP1 + 10 CONTINUE + K = K + 1 + AP1 = AP2 + PTR = P2R + PTI = P2I + P2R = P1R - (T1R*PTR-T1I*PTI) + P2I = P1I - (T1R*PTI+T1I*PTR) + P1R = PTR + P1I = PTI + T1R = T1R + RZR + T1I = T1I + RZI + AP2 = ZABS(P2R,P2I) + IF (AP1.LE.TEST) GO TO 10 + IF (ITIME.EQ.2) GO TO 20 + AK = ZABS(T1R,T1I)*0.5D0 + FLAM = AK + DSQRT(AK*AK-1.0D0) + RHO = DMIN1(AP2/AP1,FLAM) + TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0)) + ITIME = 2 + GO TO 10 + 20 CONTINUE + KK = K + 1 - ID + AK = DBLE(FLOAT(KK)) + T1R = AK + T1I = CZEROI + DFNU = FNU + DBLE(FLOAT(N-1)) + P1R = 1.0D0/AP2 + P1I = CZEROI + P2R = CZEROR + P2I = CZEROI + DO 30 I=1,KK + PTR = P1R + PTI = P1I + RAP1 = DFNU + T1R + TTR = RZR*RAP1 + TTI = RZI*RAP1 + P1R = (PTR*TTR-PTI*TTI) + P2R + P1I = (PTR*TTI+PTI*TTR) + P2I + P2R = PTR + P2I = PTI + T1R = T1R - CONER + 30 CONTINUE + IF (P1R.NE.CZEROR .OR. P1I.NE.CZEROI) GO TO 40 + P1R = TOL + P1I = TOL + 40 CONTINUE + CALL ZDIV(P2R, P2I, P1R, P1I, CYR(N), CYI(N)) + IF (N.EQ.1) RETURN + K = N - 1 + AK = DBLE(FLOAT(K)) + T1R = AK + T1I = CZEROI + CDFNUR = FNU*RZR + CDFNUI = FNU*RZI + DO 60 I=2,N + PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1) + PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1) + AK = ZABS(PTR,PTI) + IF (AK.NE.CZEROR) GO TO 50 + PTR = TOL + PTI = TOL + AK = TOL*RT2 + 50 CONTINUE + RAK = CONER/AK + CYR(K) = RAK*PTR*RAK + CYI(K) = -RAK*PTI*RAK + T1R = T1R - CONER + K = K - 1 + 60 CONTINUE + RETURN +END + +SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZAIRY +!***DATE WRITTEN 830501 (YYMMDD) +!***REVISION DATE 830501 (YYMMDD) +!***CATEGORY NO. B5K +!***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD +!***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES +!***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z +!***DESCRIPTION +! +! ***A DOUBLE PRECISION ROUTINE*** +! ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR +! ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON +! KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)* +! DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN +! -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN +! PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z). +! +! WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTI! IN +! THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED +! FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS. +! DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF +! MATHEMATICAL FUNCTIONS (REF. 1). +! +! INPUT ZR,ZI ARE DOUBLE PRECISION +! ZR,ZI - Z=CMPLX(ZR,ZI) +! ID - ORDER OF DERIVATIVE, ID=0 OR ID=1 +! KODE - A PARAMETER TO INDICATE THE SCALING OPTION +! KODE= 1 RETURNS +! AI=AI(Z) ON ID=0 OR +! AI=DAI(Z)/DZ ON ID=1 +! = 2 RETURNS +! AI=CEXP(ZTA)*AI(Z) ON ID=0 OR +! AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE +! ZTA=(2/3)*Z*CSQRT(Z) +! +! OUTPUT AIR,AII ARE DOUBLE PRECISION +! AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND +! KODE +! NZ - UNDERFLOW INDICATOR +! NZ= 0 , NORMAL RETURN +! NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN +! -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1 +! IERR - ERROR FLAG +! IERR=0, NORMAL RETURN - COMPUTATION COMPLETED +! IERR=1, INPUT ERROR - NO COMPUTATION +! IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA) +! TOO LARGE ON KODE=1 +! IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED +! LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION +! PRODUCE LESS THAN HALF OF MACHINE ACCURACY +! IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION +! COMPLETE LOSS OF ACCURACY BY ARGUMENT +! REDUCTION +! IERR=5, ERROR - NO COMPUTATION, +! ALGORITHM TERMINATION CONDITION NOT MET +! +!***LONG DESCRIPTION +! +! AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL +! FUNCTIONS BY +! +! AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA) +! C=1.0/(PI*SQRT(3.0)) +! ZTA=(2/3)*Z**(3/2) +! +! WITH THE POWER SERIES FOR CABS(Z).LE.1.0. +! +! IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- +! MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES +! OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF +! THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR), +! THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR +! FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS +! DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION. +! ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN +! ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT +! FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE +! LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA +! MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, +! AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE +! PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE +! PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT- +! ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG- +! NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN +! DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN +! EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, +! NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE +! PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER +! MACHINES. +! +! THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX +! BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT +! ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- +! SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE +! ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), +! ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF +! CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY +! HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN +! ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY +! SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER +! THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, +! 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS +! THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER +! COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY +! BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER +! COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE +! MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, +! THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, +! OR -PI/2+P. +! +!***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ +! AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF +! COMMERCE, 1955. +! +! COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT +! AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 +! +! A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- +! 1018, MAY, 1985 +! +! A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX +! ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. +! MATH. SOFTWARE, 1986 +! +!***ROUTINES CALLED ZACAI,ZBKNU,ZABS,ZEXP,ZSQRT,I1MACH,D1MACH +!***END PROLOGUE ZAIRY +! COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3 + DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK, & + CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG, & + DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR, & + S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI, & + ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, ALAZ, BB + INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ + DIMENSION CYR(1), CYI(1) + DATA TTH, C1, C2, COEF /6.66666666666666667D-01, & + 3.55028053887817240D-01,2.58819403792806799D-01, & + 1.83776298473930683D-01/ + DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/ +!***FIRST EXECUTABLE STATEMENT ZAIRY + IERR = 0 + NZ=0 + IF (ID.LT.0 .OR. ID.GT.1) IERR=1 + IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 + IF (IERR.NE.0) RETURN + AZ = ZABS(ZR,ZI) + TOL = DMAX1(D1MACH(4),1.0D-18) + FID = DBLE(FLOAT(ID)) + IF (AZ.GT.1.0D0) GO TO 70 +!----------------------------------------------------------------------- +! POWER SERIES FOR CABS(Z).LE.1. +!----------------------------------------------------------------------- + S1R = CONER + S1I = CONEI + S2R = CONER + S2I = CONEI + IF (AZ.LT.TOL) GO TO 170 + AA = AZ*AZ + IF (AA.LT.TOL/AZ) GO TO 40 + TRM1R = CONER + TRM1I = CONEI + TRM2R = CONER + TRM2I = CONEI + ATRM = 1.0D0 + STR = ZR*ZR - ZI*ZI + STI = ZR*ZI + ZI*ZR + Z3R = STR*ZR - STI*ZI + Z3I = STR*ZI + STI*ZR + AZ3 = AZ*AA + AK = 2.0D0 + FID + BK = 3.0D0 - FID - FID + CK = 4.0D0 - FID + DK = 3.0D0 + FID + FID + D1 = AK*DK + D2 = BK*CK + AD = DMIN1(D1,D2) + AK = 24.0D0 + 9.0D0*FID + BK = 30.0D0 - 9.0D0*FID + DO 30 K=1,25 + STR = (TRM1R*Z3R-TRM1I*Z3I)/D1 + TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1 + TRM1R = STR + S1R = S1R + TRM1R + S1I = S1I + TRM1I + STR = (TRM2R*Z3R-TRM2I*Z3I)/D2 + TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2 + TRM2R = STR + S2R = S2R + TRM2R + S2I = S2I + TRM2I + ATRM = ATRM*AZ3/AD + D1 = D1 + AK + D2 = D2 + BK + AD = DMIN1(D1,D2) + IF (ATRM.LT.TOL*AD) GO TO 40 + AK = AK + 18.0D0 + BK = BK + 18.0D0 + 30 CONTINUE + 40 CONTINUE + IF (ID.EQ.1) GO TO 50 + AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I) + AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R) + IF (KODE.EQ.1) RETURN + CALL ZSQRT(ZR, ZI, STR, STI) + ZTAR = TTH*(ZR*STR-ZI*STI) + ZTAI = TTH*(ZR*STI+ZI*STR) + CALL ZEXP(ZTAR, ZTAI, STR, STI) + PTR = AIR*STR - AII*STI + AII = AIR*STI + AII*STR + AIR = PTR + RETURN + 50 CONTINUE + AIR = -S2R*C2 + AII = -S2I*C2 + IF (AZ.LE.TOL) GO TO 60 + STR = ZR*S1R - ZI*S1I + STI = ZR*S1I + ZI*S1R + CC = C1/(1.0D0+FID) + AIR = AIR + CC*(STR*ZR-STI*ZI) + AII = AII + CC*(STR*ZI+STI*ZR) + 60 CONTINUE + IF (KODE.EQ.1) RETURN + CALL ZSQRT(ZR, ZI, STR, STI) + ZTAR = TTH*(ZR*STR-ZI*STI) + ZTAI = TTH*(ZR*STI+ZI*STR) + CALL ZEXP(ZTAR, ZTAI, STR, STI) + PTR = STR*AIR - STI*AII + AII = STR*AII + STI*AIR + AIR = PTR + RETURN +!----------------------------------------------------------------------- +! CASE FOR CABS(Z).GT.1.0 +!----------------------------------------------------------------------- + 70 CONTINUE + FNU = (1.0D0+FID)/3.0D0 +!----------------------------------------------------------------------- +! SET PARAMETERS RELATED TO MACHINE CONSTANTS. +! TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18. +! ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. +! EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND +! EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR +! UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. +! RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. +! DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). +!----------------------------------------------------------------------- + K1 = I1MACH(15) + K2 = I1MACH(16) + R1M5 = D1MACH(5) + K = MIN0(IABS(K1),IABS(K2)) + ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0) + K1 = I1MACH(14) - 1 + AA = R1M5*DBLE(FLOAT(K1)) + DIG = DMIN1(AA,18.0D0) + AA = AA*2.303D0 + ALIM = ELIM + DMAX1(-AA,-41.45D0) + RL = 1.2D0*DIG + 3.0D0 + ALAZ = DLOG(AZ) +!----------------------------------------------------------------------- +! TEST FOR PROPER RANGE +!----------------------------------------------------------------------- + AA=0.5D0/TOL + BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 + AA=DMIN1(AA,BB) + AA=AA**TTH + IF (AZ.GT.AA) GO TO 260 + AA=DSQRT(AA) + IF (AZ.GT.AA) IERR=3 + CALL ZSQRT(ZR, ZI, CSQR, CSQI) + ZTAR = TTH*(ZR*CSQR-ZI*CSQI) + ZTAI = TTH*(ZR*CSQI+ZI*CSQR) +!----------------------------------------------------------------------- +! RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL +!----------------------------------------------------------------------- + IFLAG = 0 + SFAC = 1.0D0 + AK = ZTAI + IF (ZR.GE.0.0D0) GO TO 80 + BK = ZTAR + CK = -DABS(BK) + ZTAR = CK + ZTAI = AK + 80 CONTINUE + IF (ZI.NE.0.0D0) GO TO 90 + IF (ZR.GT.0.0D0) GO TO 90 + ZTAR = 0.0D0 + ZTAI = AK + 90 CONTINUE + AA = ZTAR + IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110 + IF (KODE.EQ.2) GO TO 100 +!----------------------------------------------------------------------- +! OVERFLOW TEST +!----------------------------------------------------------------------- + IF (AA.GT.(-ALIM)) GO TO 100 + AA = -AA + 0.25D0*ALAZ + IFLAG = 1 + SFAC = TOL + IF (AA.GT.ELIM) GO TO 270 + 100 CONTINUE +!----------------------------------------------------------------------- +! CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2 +!----------------------------------------------------------------------- + MR = 1 + IF (ZI.LT.0.0D0) MR = -1 + CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL, & + ELIM, ALIM) + IF (NN.LT.0) GO TO 280 + NZ = NZ + NN + GO TO 130 + 110 CONTINUE + IF (KODE.EQ.2) GO TO 120 +!----------------------------------------------------------------------- +! UNDERFLOW TEST +!----------------------------------------------------------------------- + IF (AA.LT.ALIM) GO TO 120 + AA = -AA - 0.25D0*ALAZ + IFLAG = 2 + SFAC = 1.0D0/TOL + IF (AA.LT.(-ELIM)) GO TO 210 + 120 CONTINUE + CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM, ALIM) + 130 CONTINUE + S1R = CYR(1)*COEF + S1I = CYI(1)*COEF + IF (IFLAG.NE.0) GO TO 150 + IF (ID.EQ.1) GO TO 140 + AIR = CSQR*S1R - CSQI*S1I + AII = CSQR*S1I + CSQI*S1R + RETURN + 140 CONTINUE + AIR = -(ZR*S1R-ZI*S1I) + AII = -(ZR*S1I+ZI*S1R) + RETURN + 150 CONTINUE + S1R = S1R*SFAC + S1I = S1I*SFAC + IF (ID.EQ.1) GO TO 160 + STR = S1R*CSQR - S1I*CSQI + S1I = S1R*CSQI + S1I*CSQR + S1R = STR + AIR = S1R/SFAC + AII = S1I/SFAC + RETURN + 160 CONTINUE + STR = -(S1R*ZR-S1I*ZI) + S1I = -(S1R*ZI+S1I*ZR) + S1R = STR + AIR = S1R/SFAC + AII = S1I/SFAC + RETURN + 170 CONTINUE + AA = 1.0D+3*D1MACH(1) + S1R = ZEROR + S1I = ZEROI + IF (ID.EQ.1) GO TO 190 + IF (AZ.LE.AA) GO TO 180 + S1R = C2*ZR + S1I = C2*ZI + 180 CONTINUE + AIR = C1 - S1R + AII = -S1I + RETURN + 190 CONTINUE + AIR = -C2 + AII = 0.0D0 + AA = DSQRT(AA) + IF (AZ.LE.AA) GO TO 200 + S1R = 0.5D0*(ZR*ZR-ZI*ZI) + S1I = ZR*ZI + 200 CONTINUE + AIR = AIR + C1*S1R + AII = AII + C1*S1I + RETURN + 210 CONTINUE + NZ = 1 + AIR = ZEROR + AII = ZEROI + RETURN + 270 CONTINUE + NZ = 0 + IERR=2 + RETURN + 280 CONTINUE + IF(NN.EQ.(-1)) GO TO 270 + NZ=0 + IERR=5 + RETURN + 260 CONTINUE + IERR=4 + NZ=0 + RETURN +END + +SUBROUTINE ZSERI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZSERI +!***REFER TO ZBESI,ZBESK +! +! ZSERI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY +! MEANS OF THE POWER SERIES FOR LARGE CABS(Z) IN THE +! REGION CABS(Z).LE.2*SQRT(FNU+1). NZ=0 IS A NORMAL RETURN. +! NZ.GT.0 MEANS THAT THE LAST NZ COMPONENTS WERE SET TO ZERO +! DUE TO UNDERFLOW. NZ.LT.0 MEANS UNDERFLOW OCCURRED, BUT THE +! CONDITION CABS(Z).LE.2*SQRT(FNU+1) WAS VIOLATED AND THE +! COMPUTATION MUST BE COMPLETED IN ANOTHER ROUTINE WITH N=N-ABS(NZ). +! +!***ROUTINES CALLED DGAMLN,D1MACH,ZUCHK,ZABS,ZDIV,ZLOG,ZMLT +!***END PROLOGUE ZSERI +! COMPLEX AK1,CK,COEF,CONE,CRSC,CSCL,CZ,CZERO,HZ,RZ,S1,S2,Y,Z + DOUBLE PRECISION AA, ACZ, AK, AK1I, AK1R, ALIM, ARM, ASCLE, ATOL, & + AZ, CKI, CKR, COEFI, COEFR, CONEI, CONER, CRSCR, CZI, CZR, DFNU, & + ELIM, FNU, FNUP, HZI, HZR, RAZ, RS, RTR1, RZI, RZR, S, SS, STI, & + STR, S1I, S1R, S2I, S2R, TOL, YI, YR, WI, WR, ZEROI, ZEROR, ZI, & + ZR!, DGAMLN + INTEGER I, IB, IDUM, IFLAG, IL, K, KODE, L, M, N, NN, NZ, NW + DIMENSION YR(1), YI(1), WR(2), WI(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + NZ = 0 + AZ = ZABS(ZR,ZI) + IF (AZ.EQ.0.0D0) GO TO 160 + ARM = 1.0D+3*D1MACH(1) + RTR1 = DSQRT(ARM) + CRSCR = 1.0D0 + IFLAG = 0 + IF (AZ.LT.ARM) GO TO 150 + HZR = 0.5D0*ZR + HZI = 0.5D0*ZI + CZR = ZEROR + CZI = ZEROI + IF (AZ.LE.RTR1) GO TO 10 + CALL ZMLT(HZR, HZI, HZR, HZI, CZR, CZI) + 10 CONTINUE + ACZ = ZABS(CZR,CZI) + NN = N + CALL ZLOG(HZR, HZI, CKR, CKI, IDUM) + 20 CONTINUE + DFNU = FNU + DBLE(FLOAT(NN-1)) + FNUP = DFNU + 1.0D0 +!----------------------------------------------------------------------- +! UNDERFLOW TEST +!----------------------------------------------------------------------- + AK1R = CKR*DFNU + AK1I = CKI*DFNU + AK = DGAMLN(FNUP,IDUM) + AK1R = AK1R - AK + IF (KODE.EQ.2) AK1R = AK1R - ZR + IF (AK1R.GT.(-ELIM)) GO TO 40 + 30 CONTINUE + NZ = NZ + 1 + YR(NN) = ZEROR + YI(NN) = ZEROI + IF (ACZ.GT.DFNU) GO TO 190 + NN = NN - 1 + IF (NN.EQ.0) RETURN + GO TO 20 + 40 CONTINUE + IF (AK1R.GT.(-ALIM)) GO TO 50 + IFLAG = 1 + SS = 1.0D0/TOL + CRSCR = TOL + ASCLE = ARM*SS + 50 CONTINUE + AA = DEXP(AK1R) + IF (IFLAG.EQ.1) AA = AA*SS + COEFR = AA*DCOS(AK1I) + COEFI = AA*DSIN(AK1I) + ATOL = TOL*ACZ/FNUP + IL = MIN0(2,NN) + DO 90 I=1,IL + DFNU = FNU + DBLE(FLOAT(NN-I)) + FNUP = DFNU + 1.0D0 + S1R = CONER + S1I = CONEI + IF (ACZ.LT.TOL*FNUP) GO TO 70 + AK1R = CONER + AK1I = CONEI + AK = FNUP + 2.0D0 + S = FNUP + AA = 2.0D0 + 60 CONTINUE + RS = 1.0D0/S + STR = AK1R*CZR - AK1I*CZI + STI = AK1R*CZI + AK1I*CZR + AK1R = STR*RS + AK1I = STI*RS + S1R = S1R + AK1R + S1I = S1I + AK1I + S = S + AK + AK = AK + 2.0D0 + AA = AA*ACZ*RS + IF (AA.GT.ATOL) GO TO 60 + 70 CONTINUE + S2R = S1R*COEFR - S1I*COEFI + S2I = S1R*COEFI + S1I*COEFR + WR(I) = S2R + WI(I) = S2I + IF (IFLAG.EQ.0) GO TO 80 + CALL ZUCHK(S2R, S2I, NW, ASCLE, TOL) + IF (NW.NE.0) GO TO 30 + 80 CONTINUE + M = NN - I + 1 + YR(M) = S2R*CRSCR + YI(M) = S2I*CRSCR + IF (I.EQ.IL) GO TO 90 + CALL ZDIV(COEFR, COEFI, HZR, HZI, STR, STI) + COEFR = STR*DFNU + COEFI = STI*DFNU + 90 CONTINUE + IF (NN.LE.2) RETURN + K = NN - 2 + AK = DBLE(FLOAT(K)) + RAZ = 1.0D0/AZ + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + IF (IFLAG.EQ.1) GO TO 120 + IB = 3 + 100 CONTINUE + DO 110 I=IB,NN + YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2) + YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2) + AK = AK - 1.0D0 + K = K - 1 + 110 CONTINUE + RETURN +!----------------------------------------------------------------------- +! RECUR BACKWARD WITH SCALED VALUES +!----------------------------------------------------------------------- + 120 CONTINUE +!----------------------------------------------------------------------- +! EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION ABOVE THE +! UNDERFLOW LIMIT = ASCLE = D1MACH(1)*SS*1.0D+3 +!----------------------------------------------------------------------- + S1R = WR(1) + S1I = WI(1) + S2R = WR(2) + S2I = WI(2) + DO 130 L=3,NN + CKR = S2R + CKI = S2I + S2R = S1R + (AK+FNU)*(RZR*CKR-RZI*CKI) + S2I = S1I + (AK+FNU)*(RZR*CKI+RZI*CKR) + S1R = CKR + S1I = CKI + CKR = S2R*CRSCR + CKI = S2I*CRSCR + YR(K) = CKR + YI(K) = CKI + AK = AK - 1.0D0 + K = K - 1 + IF (ZABS(CKR,CKI).GT.ASCLE) GO TO 140 + 130 CONTINUE + RETURN + 140 CONTINUE + IB = L + 1 + IF (IB.GT.NN) RETURN + GO TO 100 + 150 CONTINUE + NZ = N + IF (FNU.EQ.0.0D0) NZ = NZ - 1 + 160 CONTINUE + YR(1) = ZEROR + YI(1) = ZEROI + IF (FNU.NE.0.0D0) GO TO 170 + YR(1) = CONER + YI(1) = CONEI + 170 CONTINUE + IF (N.EQ.1) RETURN + DO 180 I=2,N + YR(I) = ZEROR + YI(I) = ZEROI + 180 CONTINUE + RETURN +!----------------------------------------------------------------------- +! RETURN WITH NZ.LT.0 IF CABS(Z*Z/4).GT.FNU+N-NZ-1 COMPLETE +! THE CALCULATION IN CBINU WITH N=N-IABS(NZ) +!----------------------------------------------------------------------- + 190 CONTINUE + NZ = -NZ + RETURN + END + +SUBROUTINE ZASYI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZASYI +!***REFER TO ZBESI,ZBESK + +! ZASYI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY +! MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE +! REGION CABS(Z).GT.MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL RETURN. +! NZ.LT.0 INDICATES AN OVERFLOW ON KODE=1. +! +!***ROUTINES CALLED D1MACH,ZABS,ZDIV,ZEXP,ZMLT,ZSQRT +!***END PROLOGUE ZASYI +! COMPLEX AK1,CK,CONE,CS1,CS2,CZ,CZERO,DK,EZ,P1,RZ,S2,Y,Z + DOUBLE PRECISION AA, AEZ, AK, AK1I, AK1R, ALIM, ARG, ARM, ATOL, & + AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI, & + CZR, DFNU, DKI, DKR, DNU2, ELIM, EZI, EZR, FDN, FNU, PI, P1I, & + P1R, RAZ, RL, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I, & + S2R, TOL, TZI, TZR, YI, YR, ZEROI, ZEROR, ZI, ZR + INTEGER I, IB, IL, INU, J, JL, K, KODE, KODED, M, N, NN, NZ + DIMENSION YR(1), YI(1) + DATA PI, RTPI /3.14159265358979324D0 , 0.159154943091895336D0 / + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + NZ = 0 + AZ = ZABS(ZR,ZI) + ARM = 1.0D+3*D1MACH(1) + RTR1 = DSQRT(ARM) + IL = MIN0(2,N) + DFNU = FNU + DBLE(FLOAT(N-IL)) +!----------------------------------------------------------------------- +! OVERFLOW TEST +!----------------------------------------------------------------------- + RAZ = 1.0D0/AZ + STR = ZR*RAZ + STI = -ZI*RAZ + AK1R = RTPI*STR*RAZ + AK1I = RTPI*STI*RAZ + CALL ZSQRT(AK1R, AK1I, AK1R, AK1I) + CZR = ZR + CZI = ZI + IF (KODE.NE.2) GO TO 10 + CZR = ZEROR + CZI = ZI + 10 CONTINUE + IF (DABS(CZR).GT.ELIM) GO TO 100 + DNU2 = DFNU + DFNU + KODED = 1 + IF ((DABS(CZR).GT.ALIM) .AND. (N.GT.2)) GO TO 20 + KODED = 0 + CALL ZEXP(CZR, CZI, STR, STI) + CALL ZMLT(AK1R, AK1I, STR, STI, AK1R, AK1I) + 20 CONTINUE + FDN = 0.0D0 + IF (DNU2.GT.RTR1) FDN = DNU2*DNU2 + EZR = ZR*8.0D0 + EZI = ZI*8.0D0 +!----------------------------------------------------------------------- +! WHEN Z IS IMAGINARY, THE ERROR TEST MUST BE MADE RELATIVE TO THE +! FIRST RECIPROCAL POWER SINCE THIS IS THE LEADING TERM OF THE +! EXPANSION FOR THE IMAGINARY PART. +!----------------------------------------------------------------------- + AEZ = 8.0D0*AZ + S = TOL/AEZ + JL = INT(SNGL(RL+RL)) + 2 + P1R = ZEROR + P1I = ZEROI + IF (ZI.EQ.0.0D0) GO TO 30 +!----------------------------------------------------------------------- +! CALCULATE EXP(PI*(0.5+FNU+N-IL)*I) TO MINIMIZE LOSSES OF +! SIGNIFICANCE WHEN FNU OR N IS LARGE +!----------------------------------------------------------------------- + INU = INT(SNGL(FNU)) + ARG = (FNU-DBLE(FLOAT(INU)))*PI + INU = INU + N - IL + AK = -DSIN(ARG) + BK = DCOS(ARG) + IF (ZI.LT.0.0D0) BK = -BK + P1R = AK + P1I = BK + IF (MOD(INU,2).EQ.0) GO TO 30 + P1R = -P1R + P1I = -P1I + 30 CONTINUE + DO 70 K=1,IL + SQK = FDN - 1.0D0 + ATOL = S*DABS(SQK) + SGN = 1.0D0 + CS1R = CONER + CS1I = CONEI + CS2R = CONER + CS2I = CONEI + CKR = CONER + CKI = CONEI + AK = 0.0D0 + AA = 1.0D0 + BB = AEZ + DKR = EZR + DKI = EZI + DO 40 J=1,JL + CALL ZDIV(CKR, CKI, DKR, DKI, STR, STI) + CKR = STR*SQK + CKI = STI*SQK + CS2R = CS2R + CKR + CS2I = CS2I + CKI + SGN = -SGN + CS1R = CS1R + CKR*SGN + CS1I = CS1I + CKI*SGN + DKR = DKR + EZR + DKI = DKI + EZI + AA = AA*DABS(SQK)/BB + BB = BB + AEZ + AK = AK + 8.0D0 + SQK = SQK - AK + IF (AA.LE.ATOL) GO TO 50 + 40 CONTINUE + GO TO 110 + 50 CONTINUE + S2R = CS1R + S2I = CS1I + IF (ZR+ZR.GE.ELIM) GO TO 60 + TZR = ZR + ZR + TZI = ZI + ZI + CALL ZEXP(-TZR, -TZI, STR, STI) + CALL ZMLT(STR, STI, P1R, P1I, STR, STI) + CALL ZMLT(STR, STI, CS2R, CS2I, STR, STI) + S2R = S2R + STR + S2I = S2I + STI + 60 CONTINUE + FDN = FDN + 8.0D0*DFNU + 4.0D0 + P1R = -P1R + P1I = -P1I + M = N - IL + K + YR(M) = S2R*AK1R - S2I*AK1I + YI(M) = S2R*AK1I + S2I*AK1R + 70 CONTINUE + IF (N.LE.2) RETURN + NN = N + K = NN - 2 + AK = DBLE(FLOAT(K)) + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + IB = 3 + DO 80 I=IB,NN + YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2) + YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2) + AK = AK - 1.0D0 + K = K - 1 + 80 CONTINUE + IF (KODED.EQ.0) RETURN + CALL ZEXP(CZR, CZI, CKR, CKI) + DO 90 I=1,NN + STR = YR(I)*CKR - YI(I)*CKI + YI(I) = YR(I)*CKI + YI(I)*CKR + YR(I) = STR + 90 CONTINUE + RETURN + 100 CONTINUE + NZ = -1 + RETURN + 110 CONTINUE + NZ=-2 + RETURN + END + +SUBROUTINE ZBUNI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NUI, NLAST, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZBUNI +!***REFER TO ZBESI,ZBESK +! +! ZBUNI COMPUTES THE I BESSEL FUNCTION FOR LARGE CABS(Z).GT. +! FNUL AND FNU+N-1.LT.FNUL. THE ORDER IS INCREASED FROM +! FNU+N-1 GREATER THAN FNUL BY ADDING NUI AND COMPUTING +! ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR I(FNU,Z) +! ON IFORM=1 AND THE EXPANSION FOR J(FNU,Z) ON IFORM=2 +! +!***ROUTINES CALLED ZUNI1,ZUNI2,ZABS,D1MACH +!***END PROLOGUE ZBUNI +! COMPLEX CSCL,CSCR,CY,RZ,ST,S1,S2,Y,Z + DOUBLE PRECISION ALIM, AX, AY, CSCLR, CSCRR, CYI, CYR, DFNU, & + ELIM, FNU, FNUI, FNUL, GNU, RAZ, RZI, RZR, STI, STR, S1I, S1R, & + S2I, S2R, TOL, YI, YR, ZI, ZR, ASCLE, BRY, C1R, C1I, C1M + INTEGER I, IFLAG, IFORM, K, KODE, N, NL, NLAST, NUI, NW, NZ + DIMENSION YR(1), YI(1), CYR(2), CYI(2), BRY(3) + NZ = 0 + AX = DABS(ZR)*1.7321D0 + AY = DABS(ZI) + IFORM = 1 + IF (AY.GT.AX) IFORM = 2 + IF (NUI.EQ.0) GO TO 60 + FNUI = DBLE(FLOAT(NUI)) + DFNU = FNU + DBLE(FLOAT(N-1)) + GNU = DFNU + FNUI + IF (IFORM.EQ.2) GO TO 10 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN +! -PI/3.LE.ARG(Z).LE.PI/3 +!----------------------------------------------------------------------- + CALL ZUNI1(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + GO TO 20 + 10 CONTINUE +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU +! APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I +! AND HPI=PI/2 +!----------------------------------------------------------------------- + CALL ZUNI2(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + 20 CONTINUE + IF (NW.LT.0) GO TO 50 + IF (NW.NE.0) GO TO 90 + STR = ZABS(CYR(1),CYI(1)) +!---------------------------------------------------------------------- +! SCALE BACKWARD RECURRENCE, BRY(3) IS DEFINED BUT NEVER USED +!---------------------------------------------------------------------- + BRY(1)=1.0D+3*D1MACH(1)/TOL + BRY(2) = 1.0D0/BRY(1) + BRY(3) = BRY(2) + IFLAG = 2 + ASCLE = BRY(2) + CSCLR = 1.0D0 + IF (STR.GT.BRY(1)) GO TO 21 + IFLAG = 1 + ASCLE = BRY(1) + CSCLR = 1.0D0/TOL + GO TO 25 + 21 CONTINUE + IF (STR.LT.BRY(2)) GO TO 25 + IFLAG = 3 + ASCLE=BRY(3) + CSCLR = TOL + 25 CONTINUE + CSCRR = 1.0D0/CSCLR + S1R = CYR(2)*CSCLR + S1I = CYI(2)*CSCLR + S2R = CYR(1)*CSCLR + S2I = CYI(1)*CSCLR + RAZ = 1.0D0/ZABS(ZR,ZI) + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + DO 30 I=1,NUI + STR = S2R + STI = S2I + S2R = (DFNU+FNUI)*(RZR*STR-RZI*STI) + S1R + S2I = (DFNU+FNUI)*(RZR*STI+RZI*STR) + S1I + S1R = STR + S1I = STI + FNUI = FNUI - 1.0D0 + IF (IFLAG.GE.3) GO TO 30 + STR = S2R*CSCRR + STI = S2I*CSCRR + C1R = DABS(STR) + C1I = DABS(STI) + C1M = DMAX1(C1R,C1I) + IF (C1M.LE.ASCLE) GO TO 30 + IFLAG = IFLAG+1 + ASCLE = BRY(IFLAG) + S1R = S1R*CSCRR + S1I = S1I*CSCRR + S2R = STR + S2I = STI + CSCLR = CSCLR*TOL + CSCRR = 1.0D0/CSCLR + S1R = S1R*CSCLR + S1I = S1I*CSCLR + S2R = S2R*CSCLR + S2I = S2I*CSCLR + 30 CONTINUE + YR(N) = S2R*CSCRR + YI(N) = S2I*CSCRR + IF (N.EQ.1) RETURN + NL = N - 1 + FNUI = DBLE(FLOAT(NL)) + K = NL + DO 40 I=1,NL + STR = S2R + STI = S2I + S2R = (FNU+FNUI)*(RZR*STR-RZI*STI) + S1R + S2I = (FNU+FNUI)*(RZR*STI+RZI*STR) + S1I + S1R = STR + S1I = STI + STR = S2R*CSCRR + STI = S2I*CSCRR + YR(K) = STR + YI(K) = STI + FNUI = FNUI - 1.0D0 + K = K - 1 + IF (IFLAG.GE.3) GO TO 40 + C1R = DABS(STR) + C1I = DABS(STI) + C1M = DMAX1(C1R,C1I) + IF (C1M.LE.ASCLE) GO TO 40 + IFLAG = IFLAG+1 + ASCLE = BRY(IFLAG) + S1R = S1R*CSCRR + S1I = S1I*CSCRR + S2R = STR + S2I = STI + CSCLR = CSCLR*TOL + CSCRR = 1.0D0/CSCLR + S1R = S1R*CSCLR + S1I = S1I*CSCLR + S2R = S2R*CSCLR + S2I = S2I*CSCLR + 40 CONTINUE + RETURN + 50 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN + 60 CONTINUE + IF (IFORM.EQ.2) GO TO 70 +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN +! -PI/3.LE.ARG(Z).LE.PI/3 +!----------------------------------------------------------------------- + CALL ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + GO TO 80 + 70 CONTINUE +!----------------------------------------------------------------------- +! ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU +! APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I +! AND HPI=PI/2 +!----------------------------------------------------------------------- + CALL ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL, ELIM, ALIM) + 80 CONTINUE + IF (NW.LT.0) GO TO 50 + NZ = NW + RETURN + 90 CONTINUE + NLAST = N + RETURN + END + +SUBROUTINE ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUNI1 +!***REFER TO ZBESI,ZBESK +! +! ZUNI1 COMPUTES I(FNU,Z) BY MEANS OF THE UNIFORM ASYMPTOTIC +! EXPANSION FOR I(FNU,Z) IN -PI/3.LE.ARG Z.LE.PI/3. +! +! FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC +! EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET. +! NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER +! FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL. +! Y(I)=CZERO FOR I=NLAST+1,N +! +!***ROUTINES CALLED ZUCHK,ZUNIK,ZUOIK,D1MACH,ZABS +!***END PROLOGUE ZUNI1 +! COMPLEX CFN,CONE,CRSC,CSCL,CSR,CSS,CWRK,CZERO,C1,C2,PHI,RZ,SUM,S1, +! *S2,Y,Z,ZETA1,ZETA2 + DOUBLE PRECISION ALIM, APHI, ASCLE, BRY, CONEI, CONER, CRSC, & + CSCL, CSRR, CSSR, CWRKI, CWRKR, C1R, C2I, C2M, C2R, ELIM, FN, & + FNU, FNUL, PHII, PHIR, RAST, RS1, RZI, RZR, STI, STR, SUMI, & + SUMR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, & + ZETA1R, ZETA2I, ZETA2R, ZI, ZR, CYR, CYI + INTEGER I, IFLAG, INIT, K, KODE, M, N, ND, NLAST, NN, NUF, NW, NZ + DIMENSION BRY(3), YR(1), YI(1), CWRKR(16), CWRKI(16), CSSR(3), & + CSRR(3), CYR(2), CYI(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + + NZ = 0 + ND = N + NLAST = 0 +!----------------------------------------------------------------------- +! COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG- +! NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE, +! EXP(ALIM)=EXP(ELIM)*TOL +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CRSC = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CRSC + CSRR(1) = CRSC + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = 1.0D+3*D1MACH(1)/TOL +!----------------------------------------------------------------------- +! CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER +!----------------------------------------------------------------------- + FN = DMAX1(FNU,1.0D0) + INIT = 0 + CALL ZUNIK(ZR, ZI, FN, 1, 1, TOL, INIT, PHIR, PHII, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + IF (KODE.EQ.1) GO TO 10 + STR = ZR + ZETA2R + STI = ZI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + GO TO 20 + 10 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 20 CONTINUE + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 130 + 30 CONTINUE + NN = MIN0(2,ND) + DO 80 I=1,NN + FN = FNU + DBLE(FLOAT(ND-I)) + INIT = 0 + CALL ZUNIK(ZR, ZI, FN, 1, 0, TOL, INIT, PHIR, PHII, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI) + IF (KODE.EQ.1) GO TO 40 + STR = ZR + ZETA2R + STI = ZI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + ZI + GO TO 50 + 40 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 50 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 110 + IF (I.EQ.1) IFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 60 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIR,PHII) + RS1 = RS1 + DLOG(APHI) + IF (DABS(RS1).GT.ELIM) GO TO 110 + IF (I.EQ.1) IFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 60 + IF (I.EQ.1) IFLAG = 3 + 60 CONTINUE +!----------------------------------------------------------------------- +! SCALE S1 IF CABS(S1).LT.ASCLE +!----------------------------------------------------------------------- + S2R = PHIR*SUMR - PHII*SUMI + S2I = PHIR*SUMI + PHII*SUMR + STR = DEXP(S1R)*CSSR(IFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S2R*S1I + S2I*S1R + S2R = STR + IF (IFLAG.NE.1) GO TO 70 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.NE.0) GO TO 110 + 70 CONTINUE + CYR(I) = S2R + CYI(I) = S2I + M = ND - I + 1 + YR(M) = S2R*CSRR(IFLAG) + YI(M) = S2I*CSRR(IFLAG) + 80 CONTINUE + IF (ND.LE.2) GO TO 100 + RAST = 1.0D0/ZABS(ZR,ZI) + STR = ZR*RAST + STI = -ZI*RAST + RZR = (STR+STR)*RAST + RZI = (STI+STI)*RAST + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + C1R = CSRR(IFLAG) + ASCLE = BRY(IFLAG) + K = ND - 2 + FN = DBLE(FLOAT(K)) + DO 90 I=3,ND + C2R = S2R + C2I = S2I + S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I) + S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R) + S1R = C2R + S1I = C2I + C2R = S2R*C1R + C2I = S2I*C1R + YR(K) = C2R + YI(K) = C2I + K = K - 1 + FN = FN - 1.0D0 + IF (IFLAG.GE.3) GO TO 90 + STR = DABS(C2R) + STI = DABS(C2I) + C2M = DMAX1(STR,STI) + IF (C2M.LE.ASCLE) GO TO 90 + IFLAG = IFLAG + 1 + ASCLE = BRY(IFLAG) + S1R = S1R*C1R + S1I = S1I*C1R + S2R = C2R + S2I = C2I + S1R = S1R*CSSR(IFLAG) + S1I = S1I*CSSR(IFLAG) + S2R = S2R*CSSR(IFLAG) + S2I = S2I*CSSR(IFLAG) + C1R = CSRR(IFLAG) + 90 CONTINUE + 100 CONTINUE + RETURN +!----------------------------------------------------------------------- +! SET UNDERFLOW AND UPDATE PARAMETERS +!----------------------------------------------------------------------- + 110 CONTINUE + IF (RS1.GT.0.0D0) GO TO 120 + YR(ND) = ZEROR + YI(ND) = ZEROI + NZ = NZ + 1 + ND = ND - 1 + IF (ND.EQ.0) GO TO 100 + CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM) + IF (NUF.LT.0) GO TO 120 + ND = ND - NUF + NZ = NZ + NUF + IF (ND.EQ.0) GO TO 100 + FN = FNU + DBLE(FLOAT(ND-1)) + IF (FN.GE.FNUL) GO TO 30 + NLAST = ND + RETURN + 120 CONTINUE + NZ = -1 + RETURN + 130 CONTINUE + IF (RS1.GT.0.0D0) GO TO 120 + NZ = N + DO 140 I=1,N + YR(I) = ZEROR + YI(I) = ZEROI + 140 CONTINUE + RETURN + END + +SUBROUTINE ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZUNI2 +!***REFER TO ZBESI,ZBESK +! +! ZUNI2 COMPUTES I(FNU,Z) IN THE RIGHT HALF PLANE BY MEANS OF +! UNIFORM ASYMPTOTIC EXPANSION FOR J(FNU,ZN) WHERE ZN IS Z*I +! OR -Z*I AND ZN IS IN THE RIGHT HALF PLANE ALSO. +! +! FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC +! EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET. +! NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER +! FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL. +! Y(I)=CZERO FOR I=NLAST+1,N +! +!***ROUTINES CALLED ZAIRY,ZUCHK,ZUNHJ,ZUOIK,D1MACH,ZABS +!***END PROLOGUE ZUNI2 +! COMPLEX AI,ARG,ASUM,BSUM,CFN,CI,CID,CIP,CONE,CRSC,CSCL,CSR,CSS, +! *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN + DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGI, & + ARGR, ASCLE, ASUMI, ASUMR, BRY, BSUMI, BSUMR, CIDI, CIPI, CIPR, & + CONEI, CONER, CRSC, CSCL, CSRR, CSSR, C1R, C2I, C2M, C2R, DAII, & + DAIR, ELIM, FN, FNU, FNUL, HPI, PHII, PHIR, RAST, RAZ, RS1, RZI, & + RZR, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZBI, ZBR, ZEROI, & + ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, ZNI, ZNR, ZR, CYR, CYI + INTEGER I, IFLAG, IN, INU, J, K, KODE, N, NAI, ND, NDAI, NLAST, & + NN, NUF, NW, NZ, IDUM + DIMENSION BRY(3), YR(1), YI(1), CIPR(4), CIPI(4), CSSR(3), & + CSRR(3), CYR(2), CYI(2) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4), & + CIPI(4)/ 1.0D0,0.0D0, 0.0D0,1.0D0, -1.0D0,0.0D0, 0.0D0,-1.0D0/ + DATA HPI, AIC /1.57079632679489662D+00, 1.265512123484645396D+00/ + + NZ = 0 + ND = N + NLAST = 0 +!----------------------------------------------------------------------- +! COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG- +! NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE, +! EXP(ALIM)=EXP(ELIM)*TOL +!----------------------------------------------------------------------- + CSCL = 1.0D0/TOL + CRSC = TOL + CSSR(1) = CSCL + CSSR(2) = CONER + CSSR(3) = CRSC + CSRR(1) = CRSC + CSRR(2) = CONER + CSRR(3) = CSCL + BRY(1) = 1.0D+3*D1MACH(1)/TOL +!----------------------------------------------------------------------- +! ZN IS IN THE RIGHT HALF PLANE AFTER ROTATION BY CI OR -CI +!----------------------------------------------------------------------- + ZNR = ZI + ZNI = -ZR + ZBR = ZR + ZBI = ZI + CIDI = -CONER + INU = INT(SNGL(FNU)) + ANG = HPI*(FNU-DBLE(FLOAT(INU))) + C2R = DCOS(ANG) + C2I = DSIN(ANG) + IN = INU + N - 1 + IN = MOD(IN,4) + 1 + STR = C2R*CIPR(IN) - C2I*CIPI(IN) + C2I = C2R*CIPI(IN) + C2I*CIPR(IN) + C2R = STR + IF (ZI.GT.0.0D0) GO TO 10 + ZNR = -ZNR + ZBI = -ZBI + CIDI = -CIDI + C2I = -C2I + 10 CONTINUE +!----------------------------------------------------------------------- +! CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER +!----------------------------------------------------------------------- + FN = DMAX1(FNU,1.0D0) + CALL ZUNHJ(ZNR, ZNI, FN, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R, & + ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + IF (KODE.EQ.1) GO TO 20 + STR = ZBR + ZETA2R + STI = ZBI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + GO TO 30 + 20 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 30 CONTINUE + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 150 + 40 CONTINUE + NN = MIN0(2,ND) + DO 90 I=1,NN + FN = FNU + DBLE(FLOAT(ND-I)) + CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR, PHII, ARGR, ARGI, & + ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) + IF (KODE.EQ.1) GO TO 50 + STR = ZBR + ZETA2R + STI = ZBI + ZETA2I + RAST = FN/ZABS(STR,STI) + STR = STR*RAST*RAST + STI = -STI*RAST*RAST + S1R = -ZETA1R + STR + S1I = -ZETA1I + STI + DABS(ZI) + GO TO 60 + 50 CONTINUE + S1R = -ZETA1R + ZETA2R + S1I = -ZETA1I + ZETA2I + 60 CONTINUE +!----------------------------------------------------------------------- +! TEST FOR UNDERFLOW AND OVERFLOW +!----------------------------------------------------------------------- + RS1 = S1R + IF (DABS(RS1).GT.ELIM) GO TO 120 + IF (I.EQ.1) IFLAG = 2 + IF (DABS(RS1).LT.ALIM) GO TO 70 +!----------------------------------------------------------------------- +! REFINE TEST AND SCALE +!----------------------------------------------------------------------- + APHI = ZABS(PHIR,PHII) + AARG = ZABS(ARGR,ARGI) + RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC + IF (DABS(RS1).GT.ELIM) GO TO 120 + IF (I.EQ.1) IFLAG = 1 + IF (RS1.LT.0.0D0) GO TO 70 + IF (I.EQ.1) IFLAG = 3 + 70 CONTINUE +!----------------------------------------------------------------------- +! SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR +! EXPONENT EXTREMES +!----------------------------------------------------------------------- + CALL ZAIRY(ARGR, ARGI, 0, 2, AIR, AII, NAI, IDUM) + CALL ZAIRY(ARGR, ARGI, 1, 2, DAIR, DAII, NDAI, IDUM) + STR = DAIR*BSUMR - DAII*BSUMI + STI = DAIR*BSUMI + DAII*BSUMR + STR = STR + (AIR*ASUMR-AII*ASUMI) + STI = STI + (AIR*ASUMI+AII*ASUMR) + S2R = PHIR*STR - PHII*STI + S2I = PHIR*STI + PHII*STR + STR = DEXP(S1R)*CSSR(IFLAG) + S1R = STR*DCOS(S1I) + S1I = STR*DSIN(S1I) + STR = S2R*S1R - S2I*S1I + S2I = S2R*S1I + S2I*S1R + S2R = STR + IF (IFLAG.NE.1) GO TO 80 + CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) + IF (NW.NE.0) GO TO 120 + 80 CONTINUE + IF (ZI.LE.0.0D0) S2I = -S2I + STR = S2R*C2R - S2I*C2I + S2I = S2R*C2I + S2I*C2R + S2R = STR + CYR(I) = S2R + CYI(I) = S2I + J = ND - I + 1 + YR(J) = S2R*CSRR(IFLAG) + YI(J) = S2I*CSRR(IFLAG) + STR = -C2I*CIDI + C2I = C2R*CIDI + C2R = STR + 90 CONTINUE + IF (ND.LE.2) GO TO 110 + RAZ = 1.0D0/ZABS(ZR,ZI) + STR = ZR*RAZ + STI = -ZI*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + BRY(2) = 1.0D0/BRY(1) + BRY(3) = D1MACH(2) + S1R = CYR(1) + S1I = CYI(1) + S2R = CYR(2) + S2I = CYI(2) + C1R = CSRR(IFLAG) + ASCLE = BRY(IFLAG) + K = ND - 2 + FN = DBLE(FLOAT(K)) + DO 100 I=3,ND + C2R = S2R + C2I = S2I + S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I) + S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R) + S1R = C2R + S1I = C2I + C2R = S2R*C1R + C2I = S2I*C1R + YR(K) = C2R + YI(K) = C2I + K = K - 1 + FN = FN - 1.0D0 + IF (IFLAG.GE.3) GO TO 100 + STR = DABS(C2R) + STI = DABS(C2I) + C2M = DMAX1(STR,STI) + IF (C2M.LE.ASCLE) GO TO 100 + IFLAG = IFLAG + 1 + ASCLE = BRY(IFLAG) + S1R = S1R*C1R + S1I = S1I*C1R + S2R = C2R + S2I = C2I + S1R = S1R*CSSR(IFLAG) + S1I = S1I*CSSR(IFLAG) + S2R = S2R*CSSR(IFLAG) + S2I = S2I*CSSR(IFLAG) + C1R = CSRR(IFLAG) + 100 CONTINUE + 110 CONTINUE + RETURN + 120 CONTINUE + IF (RS1.GT.0.0D0) GO TO 140 +!----------------------------------------------------------------------- +! SET UNDERFLOW AND UPDATE PARAMETERS +!----------------------------------------------------------------------- + YR(ND) = ZEROR + YI(ND) = ZEROI + NZ = NZ + 1 + ND = ND - 1 + IF (ND.EQ.0) GO TO 110 + CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM) + IF (NUF.LT.0) GO TO 140 + ND = ND - NUF + NZ = NZ + NUF + IF (ND.EQ.0) GO TO 110 + FN = FNU + DBLE(FLOAT(ND-1)) + IF (FN.LT.FNUL) GO TO 130 + FN = CIDI + J = NUF + 1 + K = MOD(J,4) + 1 + S1R = CIPR(K) + S1I = CIPI(K) + IF (FN.LT.0.0D0) S1I = -S1I + STR = C2R*S1R - C2I*S1I + C2I = C2R*S1I + C2I*S1R + C2R = STR + GO TO 40 + 130 CONTINUE + NLAST = ND + RETURN + 140 CONTINUE + NZ = -1 + RETURN + 150 CONTINUE + IF (RS1.GT.0.0D0) GO TO 140 + NZ = N + DO 160 I=1,N + YR(I) = ZEROR + YI(I) = ZEROI + 160 CONTINUE + RETURN + END + +SUBROUTINE ZWRSK(ZRR, ZRI, FNU, KODE, N, YR, YI, NZ, CWR, CWI, TOL, ELIM, ALIM) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZWRSK +!***REFER TO ZBESI,ZBESK +! +! ZWRSK COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY +! NORMALIZING THE I FUNCTION RATIOS FROM ZRATI BY THE WRONSKIAN +! +!***ROUTINES CALLED D1MACH,ZBKNU,ZRATI,ZABS +!***END PROLOGUE ZWRSK +! COMPLEX CINU,CSCL,CT,CW,C1,C2,RCT,ST,Y,ZR + DOUBLE PRECISION ACT, ACW, ALIM, ASCLE, CINUI, CINUR, CSCLR, CTI, & + CTR, CWI, CWR, C1I, C1R, C2I, C2R, ELIM, FNU, PTI, PTR, RACT, & + STI, STR, TOL, YI, YR, ZRI, ZRR + INTEGER I, KODE, N, NW, NZ + DIMENSION YR(1), YI(1), CWR(2), CWI(2) +!----------------------------------------------------------------------- +! I(FNU+I-1,Z) BY BACKWARD RECURRENCE FOR RATIOS +! Y(I)=I(FNU+I,Z)/I(FNU+I-1,Z) FROM CRATI NORMALIZED BY THE +! WRONSKIAN WITH K(FNU,Z) AND K(FNU+1,Z) FROM CBKNU. +!----------------------------------------------------------------------- + NZ = 0 + CALL ZBKNU(ZRR, ZRI, FNU, KODE, 2, CWR, CWI, NW, TOL, ELIM, ALIM) + IF (NW.NE.0) GO TO 50 + CALL ZRATI(ZRR, ZRI, FNU, N, YR, YI, TOL) +!----------------------------------------------------------------------- +! RECUR FORWARD ON I(FNU+1,Z) = R(FNU,Z)*I(FNU,Z), +! R(FNU+J-1,Z)=Y(J), J=1,...,N +!----------------------------------------------------------------------- + CINUR = 1.0D0 + CINUI = 0.0D0 + IF (KODE.EQ.1) GO TO 10 + CINUR = DCOS(ZRI) + CINUI = DSIN(ZRI) + 10 CONTINUE +!----------------------------------------------------------------------- +! ON LOW EXPONENT MACHINES THE K FUNCTIONS CAN BE CLOSE TO BOTH +! THE UNDER AND OVERFLOW LIMITS AND THE NORMALIZATION MUST BE +! SCALED TO PREVENT OVER OR UNDERFLOW. CUOIK HAS DETERMINED THAT +! THE RESULT IS ON SCALE. +!----------------------------------------------------------------------- + ACW = ZABS(CWR(2),CWI(2)) + ASCLE = 1.0D+3*D1MACH(1)/TOL + CSCLR = 1.0D0 + IF (ACW.GT.ASCLE) GO TO 20 + CSCLR = 1.0D0/TOL + GO TO 30 + 20 CONTINUE + ASCLE = 1.0D0/ASCLE + IF (ACW.LT.ASCLE) GO TO 30 + CSCLR = TOL + 30 CONTINUE + C1R = CWR(1)*CSCLR + C1I = CWI(1)*CSCLR + C2R = CWR(2)*CSCLR + C2I = CWI(2)*CSCLR + STR = YR(1) + STI = YI(1) +!----------------------------------------------------------------------- +! CINU=CINU*(CONJG(CT)/CABS(CT))*(1.0D0/CABS(CT) PREVENTS +! UNDER- OR OVERFLOW PREMATURELY BY SQUARING CABS(CT) +!----------------------------------------------------------------------- + PTR = STR*C1R - STI*C1I + PTI = STR*C1I + STI*C1R + PTR = PTR + C2R + PTI = PTI + C2I + CTR = ZRR*PTR - ZRI*PTI + CTI = ZRR*PTI + ZRI*PTR + ACT = ZABS(CTR,CTI) + RACT = 1.0D0/ACT + CTR = CTR*RACT + CTI = -CTI*RACT + PTR = CINUR*RACT + PTI = CINUI*RACT + CINUR = PTR*CTR - PTI*CTI + CINUI = PTR*CTI + PTI*CTR + YR(1) = CINUR*CSCLR + YI(1) = CINUI*CSCLR + IF (N.EQ.1) RETURN + DO 40 I=2,N + PTR = STR*CINUR - STI*CINUI + CINUI = STR*CINUI + STI*CINUR + CINUR = PTR + STR = YR(I) + STI = YI(I) + YR(I) = CINUR*CSCLR + YI(I) = CINUI*CSCLR + 40 CONTINUE + RETURN + 50 CONTINUE + NZ = -1 + IF(NW.EQ.(-2)) NZ=-2 + RETURN +END + +SUBROUTINE ZMLRI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL) +USE UTILIT +USE COMPLEX +!***BEGIN PROLOGUE ZMLRI +!***REFER TO ZBESI,ZBESK +! +! ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY THE +! MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES. +! +!***ROUTINES CALLED DGAMLN,D1MACH,ZABS,ZEXP,ZLOG,ZMLT +!***END PROLOGUE ZMLRI +! COMPLEX CK,CNORM,CONE,CTWO,CZERO,PT,P1,P2,RZ,SUM,Y,Z + DOUBLE PRECISION ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI, & + CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, FNU, PTI, PTR, P1I, & + P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI, & + SUMR, TFNF, TOL, TST, YI, YR, ZEROI, ZEROR, ZI, ZR!, DGAMLN + INTEGER I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, KODE, M, N, NZ + DIMENSION YR(1), YI(1) + DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / + SCLE = D1MACH(1)/TOL + NZ=0 + AZ = ZABS(ZR,ZI) + IAZ = INT(SNGL(AZ)) + IFNU = INT(SNGL(FNU)) + INU = IFNU + N - 1 + AT = DBLE(FLOAT(IAZ)) + 1.0D0 + RAZ = 1.0D0/AZ + STR = ZR*RAZ + STI = -ZI*RAZ + CKR = STR*AT*RAZ + CKI = STI*AT*RAZ + RZR = (STR+STR)*RAZ + RZI = (STI+STI)*RAZ + P1R = ZEROR + P1I = ZEROI + P2R = CONER + P2I = CONEI + ACK = (AT+1.0D0)*RAZ + RHO = ACK + DSQRT(ACK*ACK-1.0D0) + RHO2 = RHO*RHO + TST = (RHO2+RHO2)/((RHO2-1.0D0)*(RHO-1.0D0)) + TST = TST/TOL +!----------------------------------------------------------------------- +! COMPUTE RELATIVE TRUNCATION ERROR INDEX FOR SERIES +!----------------------------------------------------------------------- + AK = AT + DO 10 I=1,80 + PTR = P2R + PTI = P2I + P2R = P1R - (CKR*PTR-CKI*PTI) + P2I = P1I - (CKI*PTR+CKR*PTI) + P1R = PTR + P1I = PTI + CKR = CKR + RZR + CKI = CKI + RZI + AP = ZABS(P2R,P2I) + IF (AP.GT.TST*AK*AK) GO TO 20 + AK = AK + 1.0D0 + 10 CONTINUE + GO TO 110 + 20 CONTINUE + I = I + 1 + K = 0 + IF (INU.LT.IAZ) GO TO 40 +!----------------------------------------------------------------------- +! COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS +!----------------------------------------------------------------------- + P1R = ZEROR + P1I = ZEROI + P2R = CONER + P2I = CONEI + AT = DBLE(FLOAT(INU)) + 1.0D0 + STR = ZR*RAZ + STI = -ZI*RAZ + CKR = STR*AT*RAZ + CKI = STI*AT*RAZ + ACK = AT*RAZ + TST = DSQRT(ACK/TOL) + ITIME = 1 + DO 30 K=1,80 + PTR = P2R + PTI = P2I + P2R = P1R - (CKR*PTR-CKI*PTI) + P2I = P1I - (CKR*PTI+CKI*PTR) + P1R = PTR + P1I = PTI + CKR = CKR + RZR + CKI = CKI + RZI + AP = ZABS(P2R,P2I) + IF (AP.LT.TST) GO TO 30 + IF (ITIME.EQ.2) GO TO 40 + ACK = ZABS(CKR,CKI) + FLAM = ACK + DSQRT(ACK*ACK-1.0D0) + FKAP = AP/ZABS(P1R,P1I) + RHO = DMIN1(FLAM,FKAP) + TST = TST*DSQRT(RHO/(RHO*RHO-1.0D0)) + ITIME = 2 + 30 CONTINUE + GO TO 110 + 40 CONTINUE +!----------------------------------------------------------------------- +! BACKWARD RECURRENCE AND SUM NORMALIZING RELATION +!----------------------------------------------------------------------- + K = K + 1 + KK = MAX0(I+IAZ,K+INU) + FKK = DBLE(FLOAT(KK)) + P1R = ZEROR + P1I = ZEROI +!----------------------------------------------------------------------- +! SCALE P2 AND SUM BY SCLE +!----------------------------------------------------------------------- + P2R = SCLE + P2I = ZEROI + FNF = FNU - DBLE(FLOAT(IFNU)) + TFNF = FNF + FNF + BK = DGAMLN(FKK+TFNF+1.0D0,IDUM) - DGAMLN(FKK+1.0D0,IDUM) - & + DGAMLN(TFNF+1.0D0,IDUM) + BK = DEXP(BK) + SUMR = ZEROR + SUMI = ZEROI + KM = KK - INU + DO 50 I=1,KM + PTR = P2R + PTI = P2I + P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI) + P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI) + P1R = PTR + P1I = PTI + AK = 1.0D0 - TFNF/(FKK+TFNF) + ACK = BK*AK + SUMR = SUMR + (ACK+BK)*P1R + SUMI = SUMI + (ACK+BK)*P1I + BK = ACK + FKK = FKK - 1.0D0 + 50 CONTINUE + YR(N) = P2R + YI(N) = P2I + IF (N.EQ.1) GO TO 70 + DO 60 I=2,N + PTR = P2R + PTI = P2I + P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI) + P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI) + P1R = PTR + P1I = PTI + AK = 1.0D0 - TFNF/(FKK+TFNF) + ACK = BK*AK + SUMR = SUMR + (ACK+BK)*P1R + SUMI = SUMI + (ACK+BK)*P1I + BK = ACK + FKK = FKK - 1.0D0 + M = N - I + 1 + YR(M) = P2R + YI(M) = P2I + 60 CONTINUE + 70 CONTINUE + IF (IFNU.LE.0) GO TO 90 + DO 80 I=1,IFNU + PTR = P2R + PTI = P2I + P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI) + P2I = P1I + (FKK+FNF)*(RZR*PTI+RZI*PTR) + P1R = PTR + P1I = PTI + AK = 1.0D0 - TFNF/(FKK+TFNF) + ACK = BK*AK + SUMR = SUMR + (ACK+BK)*P1R + SUMI = SUMI + (ACK+BK)*P1I + BK = ACK + FKK = FKK - 1.0D0 + 80 CONTINUE + 90 CONTINUE + PTR = ZR + PTI = ZI + IF (KODE.EQ.2) PTR = ZEROR + CALL ZLOG(RZR, RZI, STR, STI, IDUM) + P1R = -FNF*STR + PTR + P1I = -FNF*STI + PTI + AP = DGAMLN(1.0D0+FNF,IDUM) + PTR = P1R - AP + PTI = P1I +!----------------------------------------------------------------------- +! THE DIVISION CEXP(PT)/(SUM+P2) IS ALTERED TO AVOID OVERFLOW +! IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES +!----------------------------------------------------------------------- + P2R = P2R + SUMR + P2I = P2I + SUMI + AP = ZABS(P2R,P2I) + P1R = 1.0D0/AP + CALL ZEXP(PTR, PTI, STR, STI) + CKR = STR*P1R + CKI = STI*P1R + PTR = P2R*P1R + PTI = -P2I*P1R + CALL ZMLT(CKR, CKI, PTR, PTI, CNORMR, CNORMI) + DO 100 I=1,N + STR = YR(I)*CNORMR - YI(I)*CNORMI + YI(I) = YR(I)*CNORMI + YI(I)*CNORMR + YR(I) = STR + 100 CONTINUE + RETURN + 110 CONTINUE + NZ=-2 + RETURN +END +end module bessely +!end of file tzbesy.f90 diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/complex.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/complex.f90 new file mode 100644 index 000000000..2950d8d44 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/complex.f90 @@ -0,0 +1,183 @@ +! --------------------------------------------------------------------- +! Utility subroutines used by any program from Numath library +! with (not intrinsic) complex numbers z = (zr,zi). +! --------------------------------------------------------------------- +! Reference: From Numath Library By Tuan Dang Trong in Fortran 77 +! [BIBLI 18]. +! +! F90 Release 1.0 By J-P Moreau, Paris +! (www.jpmoreau.fr) +! --------------------------------------------------------------------- +MODULE COMPLEX + +CONTAINS + +SUBROUTINE ZSQRT(AR, AI, BR, BI) +!***BEGIN PROLOGUE ZSQRT +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY +! +! DOUBLE PRECISION COMPLEX SQUARE ROOT, B=CSQRT(A) +! +!***ROUTINES CALLED ZABS +!***END PROLOGUE ZSQRT + DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DRT + DATA DRT , DPI / 7.071067811865475244008443621D-1, & + 3.141592653589793238462643383D+0/ + ZM = ZABS(AR,AI) + ZM = DSQRT(ZM) + IF (AR.EQ.0.0D+0) GO TO 10 + IF (AI.EQ.0.0D+0) GO TO 20 + DTHETA = DATAN(AI/AR) + IF (DTHETA.LE.0.0D+0) GO TO 40 + IF (AR.LT.0.0D+0) DTHETA = DTHETA - DPI + GO TO 50 + 10 IF (AI.GT.0.0D+0) GO TO 60 + IF (AI.LT.0.0D+0) GO TO 70 + BR = 0.0D+0 + BI = 0.0D+0 + RETURN + 20 IF (AR.GT.0.0D+0) GO TO 30 + BR = 0.0D+0 + BI = DSQRT(DABS(AR)) + RETURN + 30 BR = DSQRT(AR) + BI = 0.0D+0 + RETURN + 40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI + 50 DTHETA = DTHETA*0.5D+0 + BR = ZM*DCOS(DTHETA) + BI = ZM*DSIN(DTHETA) + RETURN + 60 BR = ZM*DRT + BI = ZM*DRT + RETURN + 70 BR = ZM*DRT + BI = -ZM*DRT + RETURN +END SUBROUTINE ZSQRT + +SUBROUTINE ZEXP(AR, AI, BR, BI) +!***BEGIN PROLOGUE ZEXP +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY +! +! DOUBLE PRECISION COMPLEX EXPONENTIAL FUNCTION B=EXP(A) +! +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZEXP + DOUBLE PRECISION AR, AI, BR, BI, ZM, CA, CB + ZM = DEXP(AR) + CA = ZM*DCOS(AI) + CB = ZM*DSIN(AI) + BR = CA + BI = CB +RETURN +END SUBROUTINE ZEXP + +SUBROUTINE ZMLT(AR, AI, BR, BI, CR, CI) +!***BEGIN PROLOGUE ZMLT +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY +! +! DOUBLE PRECISION COMPLEX MULTIPLY, C=A*B. +! +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZMLT +DOUBLE PRECISION AR, AI, BR, BI, CR, CI, CA, CB + CA = AR*BR - AI*BI + CB = AR*BI + AI*BR + CR = CA + CI = CB +RETURN +END SUBROUTINE ZMLT + +SUBROUTINE ZDIV(AR, AI, BR, BI, CR, CI) +!***BEGIN PROLOGUE ZDIV +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY +! +! DOUBLE PRECISION COMPLEX DIVIDE C=A/B. + +!***ROUTINES CALLED ZABS +!***END PROLOGUE ZDIV + DOUBLE PRECISION AR, AI, BR, BI, CR, CI, BM, CA, CB, CC, CD + BM = 1.0D0/ZABS(BR,BI) + CC = BR*BM + CD = BI*BM + CA = (AR*CC+AI*CD)*BM + CB = (AI*CC-AR*CD)*BM + CR = CA + CI = CB +RETURN +END SUBROUTINE ZDIV + +SUBROUTINE ZLOG(AR, AI, BR, BI, IERR) +!***BEGIN PROLOGUE ZLOG +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY + +! DOUBLE PRECISION COMPLEX LOGARITHM B=CLOG(A) +! IERR=0,NORMAL RETURN IERR=1, Z=CMPLX(0.0,0.0) +!***ROUTINES CALLED ZABS +!***END PROLOGUE ZLOG + DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DHPI + DATA DPI , DHPI / 3.141592653589793238462643383D+0, & + 1.570796326794896619231321696D+0/ + + IERR=0 + IF (AR.EQ.0.0D+0) GO TO 10 + IF (AI.EQ.0.0D+0) GO TO 20 + DTHETA = DATAN(AI/AR) + IF (DTHETA.LE.0.0D+0) GO TO 40 + IF (AR.LT.0.0D+0) DTHETA = DTHETA - DPI + GO TO 50 + 10 IF (AI.EQ.0.0D+0) GO TO 60 + BI = DHPI + BR = DLOG(DABS(AI)) + IF (AI.LT.0.0D+0) BI = -BI + RETURN + 20 IF (AR.GT.0.0D+0) GO TO 30 + BR = DLOG(DABS(AR)) + BI = DPI + RETURN + 30 BR = DLOG(AR) + BI = 0.0D+0 + RETURN + 40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI + 50 ZM = ZABS(AR,AI) + BR = DLOG(ZM) + BI = DTHETA + RETURN + 60 CONTINUE + IERR=1 +RETURN +END SUBROUTINE ZLOG + +DOUBLE PRECISION FUNCTION ZABS(ZR, ZI) +!***BEGIN PROLOGUE ZABS +!***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY + +! ZABS COMPUTES THE ABSOLUTE VALUE OR MAGNITUDE OF A DOUBLE +! PRECISION COMPLEX VARIABLE CMPLX(ZR,ZI) + +!***ROUTINES CALLED (NONE) +!***END PROLOGUE ZABS + DOUBLE PRECISION ZR, ZI, U, V, Q, S + U = DABS(ZR) + V = DABS(ZI) + S = U + V +!----------------------------------------------------------------------- +! S*1.0D0 MAKES AN UNNORMALIZED UNDERFLOW ON CD! MACHINES INTO A +! TRUE FLOATING ZERO +!----------------------------------------------------------------------- + S = S*1.0D+0 + IF (S.EQ.0.0D+0) GO TO 20 + IF (U.GT.V) GO TO 10 + Q = U/V + ZABS = V*DSQRT(1.D+0+Q*Q) + RETURN + 10 Q = V/U + ZABS = U*DSQRT(1.D+0+Q*Q) + RETURN + 20 ZABS = 0.0D+0 + RETURN +END FUNCTION ZABS + +END MODULE COMPLEX +! end of file Complex.f90 diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/condrad.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/condrad.f90 new file mode 100644 index 000000000..d7be935a5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/condrad.f90 @@ -0,0 +1,218 @@ +!> @file +!! subroutines for calculation of equivalent conductivity of the foam +!! coupled conduction-radiation simulation +!! non-gray 1D P1-approximation +!! @author Pavel Ferkl +!! @ingroup foam_cond +module condrad + use constants + use ioutils + implicit none + private + public equcond,cond,alpha,sigma + !lapack variables + character :: trans='n' + character(len=30) :: fmt='(2x,A,1x,es9.3,1x,A)' + integer, parameter :: kl=1,ku=1,ldab=2*kl+ku+1,nrhs=1 + integer :: info + integer, dimension(:), allocatable :: tipiv,gipiv + real(dp), dimension(:), allocatable :: trhs,grhs + real(dp), dimension(:,:), allocatable :: tmatrix,gmatrix + !end of lapack variables + real(dp) :: dz + real(dp), dimension(:), allocatable :: tvec,qcon,qrad,qtot,gqrad,cond + real(dp), dimension(:,:), allocatable :: alpha,sigma +contains +!********************************BEGINNING************************************* +!> determines equivalent conductivity of the foam, main algorithm +subroutine equcond + integer :: i,maxiter=20,fi + real(dp) :: tol=1e-5_dp,res + write(*,*) 'Conduction-Radiation:' + write(mfi,*) 'Conduction-Radiation:' + dz=dfoam/nz + allocate(tmatrix(ldab,nz),gmatrix(ldab,nbox*nz),tipiv(nz),gipiv(nbox*nz),& + trhs(nz),grhs(nbox*nz),tvec(nz),qcon(nz),qrad(nz),qtot(nz),gqrad(nz)) + forall (i=1:nz) + tvec(i)=t1+(i-1)*(t2-t1)/(nz-1) !initial temperature profile + end forall + call make_tmatrix + call dgbtrf(nz,nz,kl,ku,tmatrix,ldab,tipiv,info) + call make_gmatrix + call dgbtrf(nbox*nz,nbox*nz,kl,ku,gmatrix,ldab,gipiv,info) + do i=1,maxiter + call make_trhs + call dgbtrs(trans,nz,kl,ku,nrhs,tmatrix,ldab,tipiv,trhs,nz,info) + res=abs(maxval(trhs-tvec)) + write(*,'(5x,A,1x,I2,A,1x,es9.3)') 'iteration:',i, ', residual:',res + write(mfi,'(5x,A,1x,I2,A,1x,es9.3)') 'iteration:',i, ', residual:',res + tvec=trhs + if (res creates matrix for calculation of incidence radiation +subroutine make_gmatrix + integer :: i,j,k,l + gmatrix=0 + gipiv=0 + l=0 + do k=1,nbox + l=l+1 + do i=2,nz-1 + l=l+1 + j=l + gmatrix(kl+ku+1+l-j,j)=2/((alpha(i,k)+sigma(i,k))*dz) + & + 3*alpha(i,k)*dz + j=l-1 + gmatrix(kl+ku+1+l-j,j)=-1/((alpha(i,k)+sigma(i,k))*dz) + j=l+1 + gmatrix(kl+ku+1+l-j,j)=-1/((alpha(i,k)+sigma(i,k))*dz) + enddo + l=l+1 + i=(k-1)*nz+1 + j=i + gmatrix(kl+ku+1+i-j,j)=1/((alpha(1,k)+sigma(1,k))*dz) + & + 3*alpha(1,k)*dz + & + 9*emi1/(2-emi1)*alpha(1,k)/4/(alpha(1,k)+sigma(1,k)) + j=i+1 + gmatrix(kl+ku+1+i-j,j)=-1/((alpha(1,k)+sigma(1,k))*dz) - & + 3*emi1/(2-emi1)*alpha(1,k)/4/(alpha(1,k)+sigma(1,k)) + i=nz*k + j=i-1 + gmatrix(kl+ku+1+i-j,j)=-1/((alpha(nz,k)+sigma(nz,k))*dz) - & + 3*emi2/(2-emi2)*alpha(nz,k)/4/(alpha(nz,k)+sigma(nz,k)) + j=i + gmatrix(kl+ku+1+i-j,j)=1/((alpha(nz,k)+sigma(nz,k))*dz) + & + 3*alpha(nz,k)*dz + & + 9*emi2/(2-emi2)*alpha(nz,k)/4/(alpha(nz,k)+sigma(nz,k)) + enddo +end subroutine make_gmatrix +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> creates right hand side for calculation of incidence radiation +subroutine make_grhs + integer :: i,j,k + k=0 + do i=1,nbox + do j=1,nz + k=k+1 + grhs(k)=12*effn**2*sigmab*alpha(j,i)*tvec(j)**4*dz*fbepbox(i) + enddo + j=(i-1)*nz+1 + grhs(j)=grhs(j) + 6*emi1/(2-emi1)*alpha(1,i)*effn**2*sigmab*t1**4/& + (alpha(1,i)+sigma(1,i))*fbepbox(i) + j=nz*i + grhs(j)=grhs(j) + 6*emi2/(2-emi2)*alpha(nz,i)*effn**2*sigmab*t2**4/& + (alpha(nz,i)+sigma(nz,i))*fbepbox(i) + enddo +end subroutine make_grhs +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> creates matrix for calculation of temperature +subroutine make_tmatrix + integer :: i,j + tmatrix=0 + tipiv=0 + i=1 + j=i + tmatrix(kl+ku+1+i-j,j)=(cond(i) + & + cond(i)*cond(i+1)/(cond(i)+cond(i+1)))*2/dz + j=i+1 + tmatrix(kl+ku+1+i-j,j)=-cond(i)*cond(i+1)/(cond(i)+cond(i+1))*2/dz + do i=2,nz-1 + j=i-1 + tmatrix(kl+ku+1+i-j,j)=-cond(i-1)*cond(i)/(cond(i-1)+cond(i))*2/dz + j=i + tmatrix(kl+ku+1+i-j,j)=(cond(i-1)*cond(i)/(cond(i-1)+cond(i)) + & + cond(i)*cond(i+1)/(cond(i)+cond(i+1)))*2/dz + j=i+1 + tmatrix(kl+ku+1+i-j,j)=-cond(i)*cond(i+1)/(cond(i)+cond(i+1))*2/dz + enddo + i=nz + j=i-1 + tmatrix(kl+ku+1+i-j,j)=-cond(i-1)*cond(i)/(cond(i-1)+cond(i))*2/dz + j=i + tmatrix(kl+ku+1+i-j,j)=(cond(i-1)*cond(i)/(cond(i-1)+cond(i)) + & + cond(i))*2/dz +end subroutine make_tmatrix +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> creates right hand side for calculation of temperature +subroutine make_trhs + call make_gqrad + trhs=gqrad + trhs(1)=trhs(1)+2*cond(1)*t1/dz + trhs(nz)=trhs(nz)+2*cond(nz)*t2/dz +end subroutine make_trhs +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> creates gradient of radiative heat flux (radiative source) +subroutine make_gqrad + integer :: i,j,k + call make_grhs + call dgbtrs(trans,nbox*nz,kl,ku,nrhs,gmatrix,ldab,gipiv,grhs,nbox*nz,info) + k=0 + gqrad=0 + do i=1,nbox + do j=1,nz + k=k+1 + gqrad(j)=gqrad(j) + alpha(j,i)*grhs(k)*dz - & + 4*effn**2*sigmab*alpha(j,i)*tvec(j)**4*dz*fbepbox(i) + enddo + enddo +end subroutine make_gqrad +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculate heat flux +subroutine heatflux + integer :: i,j,k + qcon(1)=-2*cond(1)*cond(2)/(cond(1)+cond(2))*(tvec(2)-tvec(1))/dz + do i=2,nz + qcon(i)=-2*cond(i-1)*cond(i)/(cond(i-1)+cond(i))*(tvec(i)-tvec(i-1))/dz + enddo + qrad=0 + k=0 + do i=1,nbox + j=(i-1)*nz+1 + qrad(1)=qrad(1)-(grhs(j+1)-grhs(j))/(3*(alpha(1,i)+sigma(1,i))*dz) + k=k+1 + do j=2,nz + k=k+1 + qrad(j)=qrad(j)-(grhs(k)-grhs(k-1))/(3*(alpha(j,i)+sigma(j,i))*dz) + enddo + enddo + qtot=qcon+qrad +end subroutine heatflux +!***********************************END**************************************** +end module condrad diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/conduction.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/conduction.f90 new file mode 100644 index 000000000..10fc8807c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/conduction.f90 @@ -0,0 +1,41 @@ +!> @file +!! subroutines for calculation of effective conductivity of the foam +!! (conduction-only) +!! @author Pavel Ferkl +!! @ingroup foam_cond +module conduction + use constants + implicit none + private + public effcond +contains +!********************************BEGINNING************************************* +!> determine effective conductivity of the foam +subroutine effcond + real(dp) :: xw,xs,f + character(len=30) :: fmt='(2x,A,1x,es9.3,1x,A)' + write(*,*) 'Conduction:' + write(mfi,*) 'Conduction:' + xw=2*(1+cond1/(2*cond2))/3 + xs=(1+4*cond1/(cond1+cond2))/3 + f=(1-fs)*xw+fs*xs + kgas=cond1*por/(por+(1-por)*f) + ksol=cond2*f*(1-por)/(por+(1-por)*f) + effc=kgas+ksol + eqc_ross=krad+effc + gcontr=kgas/eqc_ross + scontr=ksol/eqc_ross + rcontr=krad/eqc_ross + write(*,fmt) 'effective conductivity:',effc*1e3_dp,'mW/m/K' + write(*,fmt) 'equivalent conductivity:',eqc_ross*1e3_dp,'mW/m/K' + write(*,fmt) 'contribution of gas:',gcontr*1e2_dp,'%' + write(*,fmt) 'contribution of solid:',scontr*1e2_dp,'%' + write(*,fmt) 'contribution of radiation:',rcontr*1e2_dp,'%' + write(mfi,fmt) 'effective conductivity:',effc*1e3_dp,'mW/m/K' + write(mfi,fmt) 'equivalent conductivity:',eqc_ross*1e3_dp,'mW/m/K' + write(mfi,fmt) 'contribution of gas:',gcontr*1e2_dp,'%' + write(mfi,fmt) 'contribution of solid:',scontr*1e2_dp,'%' + write(mfi,fmt) 'contribution of radiation:',rcontr*1e2_dp,'%' +end subroutine effcond +!***********************************END**************************************** +end module conduction diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/constants.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/constants.f90 new file mode 100644 index 000000000..5cc4803b7 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/constants.f90 @@ -0,0 +1,75 @@ +!> @file +!! stores parameters and commonly used variables as globals +!! @author Pavel Ferkl +!! @ingroup foam_cond +module constants + use,intrinsic :: iso_fortran_env, only: dp => real64 + implicit none + real(dp), parameter :: & + pi=3.1415926535897932384626433832795028841971693993751058209749445923& + &078164062862089986280348253421170679_dp,& !1-struttol + complex(dp), parameter :: iu=(0.0e0_dp,1.0e0_dp) ! @file +!! subroutines for evaluation of strut radiative properties +!! struts are modeled as cylinders +!! @author Pavel Ferkl +!! @ingroup foam_cond +module cylprop + use constants + use solidprop + use specfun + implicit none + private + public trextcoeffintstrut,extcoeffintstrut,scattcoeffintstrut,cylconst +contains +!********************************BEGINNING************************************* +!> determine efficiency factors of scattering, extinction and asymmetry factor +!!of infinitely long cylinder +!!according to Dombrovsky: Thermal Radiation in Disperse Systems: An Engineering +!!Approach (2010) +subroutine cylconst(lambda,theta,radius,Qs,Qt,gcyl) + real(dp), intent(in) :: & + lambda,& !wavelength + theta,& !incident angle + radius !radius of cylinder + real(dp), intent(out) :: & + Qs,& !efficiency factor of scattering + Qt,& !efficiency factor of extinction + gcyl !anisotropy factor + integer :: & + i,k,kmax,nwaw=1001 + real(dp) :: & + x,& !diffraction parameter + tol=1e-10_dp,& !tolerance for calculation of Bessel functions + phi,& !scattered angle + s1,s2,Qte,Qth,Qse,Qsh!,mue,muh + complex(dp) :: & + m,& !complex index of refraction + u,v,s,Dk,Rk,Ak1,Akm,Bk1,Bkm,Deltak + complex(dp) :: & + T1,T2,T3,T4 + real(dp), dimension(:), allocatable :: & + adsr !angular distribution of scattered radiation + complex(dp), dimension(:), allocatable :: & + ae,ah,be,bh,ju,dju,yu,dyu,jv,djv,yv,dyv,h1v,dh1v,h2v,dh2v + call optconst(lambda,n2,k2) +! n2=1.6_dp +! k2=0.01_dp + m=cmplx(n2,-k2,kind=dp) + x=2*pi*radius/lambda + u=x*sqrt(m**2-sin(theta)**2) + v=x*cos(theta) + s=1/u**2-1/v**2 + kmax=nint(x+4*x**(1/3.0_dp)+2)+2 !+2 for safety (also there is most likely + ! a mistake in Mackowski code on this place) + if (kmax>50) kmax=50 +! write(*,*) kmax + allocate(ae(0:kmax),ah(0:kmax),be(0:kmax),bh(0:kmax),ju(0:kmax),dju(0:kmax),& + yu(0:kmax),dyu(0:kmax),jv(0:kmax),djv(0:kmax),yv(0:kmax),dyv(0:kmax),& + h1v(0:kmax),dh1v(0:kmax),h2v(0:kmax),dh2v(0:kmax)) + call bessel(kmax,u,tol,ju,dju,yu,dyu) + call bessel(kmax,v,tol,jv,djv,yv,dyv) + call hankel(kmax,v,tol,h1v,dh1v,h2v,dh2v) + do k=0,kmax + Dk=k*s*sin(theta) + Rk=jv(k)/h2v(k) + Ak1=dh2v(k)/(v*h2v(k))-dju(k)/(u*ju(k)) + Akm=dh2v(k)/(v*h2v(k))-m**2*dju(k)/(u*ju(k)) + Bk1=djv(k)/(v*jv(k))-dju(k)/(u*ju(k)) + Bkm=djv(k)/(v*jv(k))-m**2*dju(k)/(u*ju(k)) + Deltak=Akm*Ak1-Dk**2 + ae(k)=iu*Dk*Rk*(Bk1-Ak1)/Deltak + ah(k)=Rk*(Akm*Bk1-Dk**2)/Deltak + be(k)=Rk*(Ak1*Bkm-Dk**2)/Deltak + bh(k)=-ae(k) + enddo + Qte=real(0.5_dp*be(0),kind=dp) + Qth=real(0.5_dp*ah(0),kind=dp) + Qse=real(0.5_dp*be(0)*conjg(be(0)),kind=dp) + Qsh=real(0.5_dp*ah(0)*conjg(ah(0)),kind=dp) + do k=1,kmax + Qte=Qte+real(be(k),kind=dp) + Qth=Qth+real(ah(k),kind=dp) + Qse=Qse+real(ae(k)*conjg(ae(k))+be(k)*conjg(be(k)),kind=dp) + Qsh=Qsh+real(ah(k)*conjg(ah(k))+bh(k)*conjg(bh(k)),kind=dp) + enddo + Qte=4/x*Qte + Qth=4/x*Qth + Qse=4/x*Qse + Qsh=4/x*Qsh + Qs=(Qse+Qsh)/2 + Qt=(Qte+Qth)/2 +! write(*,*) Qte,Qse,Qte-Qse +! write(*,*) Qth,Qsh,Qth-Qsh + !see Kaemmerlen, 2010: 10.1016/j.jqsrt.2009.11.018 +! Qs=Qs*(0.0015_dp*(lambda/(2*radius))**3-0.0219_dp*(lambda/(2*radius))**2+& + ! 0.0688_dp*(lambda/(2*radius))+0.7639_dp) +! Qt=Qt*(0.0015_dp*(lambda/(2*radius))**3-0.0219_dp*(lambda/(2*radius))**2+& + ! 0.0688_dp*(lambda/(2*radius))+0.7639_dp) + + ! asymmetry factor is not needed, we need gcyl according to Placido, + ! calculated as Dombrovsky +! mue=Qse*sin(theta)**2*x/(4*cos(theta)**2) +! muh=Qsh*sin(theta)**2*x/(4*cos(theta)**2) +! do k=0,kmax-1 +! mue=mue+real(ae(k)*conjg(ae(k+1))+be(k)*conjg(be(k+1)),kind=dp) +! muh=muh+real(ah(k)*conjg(ah(k+1))+bh(k)*conjg(bh(k+1)),kind=dp) +! enddo +! mue=mue*4*cos(theta)**2/x +! muh=muh*4*cos(theta)**2/x +! mu=(mue+muh)/(Qse+Qsh) !mue is actually mue*Qse + + allocate(adsr(nwaw)) + do i=1,nwaw + phi=(i-1)*pi/(nwaw) + T1=be(0) + T2=ah(0) + T3=0 + T4=0 + do k=1,kmax + T1=T1+2*be(k)*cos(k*phi) + T2=T2+2*ah(k)*cos(k*phi) + T3=T3-2*iu*ae(k)*sin(k*phi) + T4=-T3 + enddo + adsr(i)=(abs(T1)**2+abs(T2)**2)/(pi*x*Qs) + adsr(i)=(abs(T1)**2+abs(T2)**2+abs(T3)**2+abs(T4)**2)/2 + enddo + s1=adsr(1)*cos(0e0_dp)+adsr(nwaw)*cos(pi) + s2=adsr(1)+adsr(nwaw) + do i=2,nwaw-1 + phi=(i-1)*pi/(nwaw-1) + s1=s1+2*adsr(i)*cos(phi) + s2=s2+2*adsr(i) + enddo + s1=s1*pi/(2*(nwaw-1)) + s2=s2*pi/(2*(nwaw-1)) + gcyl=s1/s2 +! write(*,*) theta,s2*lambda/pi**2/radius,Qs +! write(*,*) s1/s2,mu +! phi=pi/2 +! T1=be(0) +! T2=ah(0) +! T3=0 +! T4=0 +! do k=1,kmax +! T1=T1+2*be(k)*cos(k*phi) +! T2=T2+2*ah(k)*cos(k*phi) +! T3=T3-2*iu*ae(k)*sin(k*phi) +! T4=-T3 +! enddo +! write(*,*) abs(T1)**2/Qs,abs(T2)**2/Qs,abs(T3)**2/Qs + +! Qs=abs(be(0))**2+abs(ah(0))**2 !according to Modest, doesn't work +! do i=1,kmax +! Qs=Qs+abs(be(i))**2+abs(ah(i))**2+abs(bh(i))**2+abs(ae(i))**2 +! enddo +! Qs=Qs/x +! write(*,*) Qs +! write(*,*) abs(T1)**2/Qs + deallocate(adsr) +end subroutine cylconst +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates transport extinction coefficient of strut integrand +real(dp) function trextcoeffintstrut ( theta ) + real(dp), intent(in) :: theta + real(dp) :: Qs,Qt,gcyl + call cylconst(lambda,theta,dstrut/2,Qs,Qt,gcyl) + trextcoeffintstrut=(Qt-Qs*sin(theta)**2-gcyl*Qs*cos(theta)**2)*cos(theta) +end function trextcoeffintstrut +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates extinction coefficient of strut integrand +real(dp) function extcoeffintstrut ( theta ) + real(dp), intent(in) :: theta + real(dp) :: Qs,Qt,gcyl + call cylconst(lambda,theta,dstrut/2,Qs,Qt,gcyl) + extcoeffintstrut=Qt*cos(theta) +end function extcoeffintstrut +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates scattering coefficient of strut integrand +real(dp) function scattcoeffintstrut ( theta ) + real(dp), intent(in) :: theta + real(dp) :: Qs,Qt,gcyl + call cylconst(lambda,theta,dstrut/2,Qs,Qt,gcyl) + scattcoeffintstrut=Qs*cos(theta) +end function scattcoeffintstrut +!***********************************END**************************************** +end module cylprop diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/filmprop.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/filmprop.f90 new file mode 100644 index 000000000..c24ce06e0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/filmprop.f90 @@ -0,0 +1,263 @@ +!> @file +!! subroutines for evaluation of film radiative properties +!! @author Pavel Ferkl +!! @ingroup foam_cond +module filmprop + use constants + use solidprop + implicit none + private + public scattwall,trextwall,absorwall,scattcoeffintwall,& + trextcoeffintwall,abscoeffintwall,filmconst +contains +!********************************BEGINNING************************************* +!> determine film reflectance, transmittance and absorbance +subroutine filmconst(lambda,theta,h,Rwin,Twin,Awin) + real(dp), intent(in) :: & + lambda,& !wavelength + theta,& !incident angle + h !film thickness + real(dp), intent(out) :: & + Rwin,& !reflectance + Twin,& !transmittance + Awin !absorptance + integer :: & + method=1 !1 is recommended, 3 and 4 should work; 2 is for no interference; + ! 1,3,4 give similar results + real(dp) :: & + theta2,& !refracted agle + rho12,rho23,& !reflectivities + tau12,tau23,& !transmissivities + r12,r23,& !reflection coefficients + t12,t23,& !transmission coefficients + dzeta,& !interference parameter + p,q + complex(dp) :: & + cn,beta,rc,tc,rc2,tc2 + call optconst(lambda,n2,k2) + select case(method) + case(1) + !according to Modest + kappa2=4*pi*k2/lambda + ! theta2=asin(sin(theta)/n2) + ! rho12=(((cos(theta2)-n2*cos(theta))/(cos(theta2)+n2*cos(theta)))**2+& + ! ((cos(theta)-n2*cos(theta2))/(cos(theta)+n2*cos(theta2)))**2)/2 + ! rho23=(((n2*cos(theta)-cos(theta2))/(n2*cos(theta)+cos(theta2)))**2+& + ! ((n2*cos(theta2)-cos(theta))/(n2*cos(theta2)+cos(theta)))**2)/2 + ! write(*,*) rho23 + ! stop + p=sqrt((sqrt((n2**2-k2**2-n1**2*sin(theta)**2)**2+4*n2**2*k2**2)+& + (n2**2-k2**2-n1**2*sin(theta)**2))/2) + q=sqrt((sqrt((n2**2-k2**2-n1**2*sin(theta)**2)**2+4*n2**2*k2**2)-& + (n2**2-k2**2-n1**2*sin(theta)**2))/2) + theta2=atan(sin(theta)*n1/p) + rho12=((n1*cos(theta)-p)**2+q**2)/((n1*cos(theta)+p)**2+q**2) + rho12=rho12*(1+((p-n1*sin(theta)*tan(theta))**2+q**2)/& + ((p+n1*sin(theta)*tan(theta))**2+q**2))/2 + rho23=rho12 + ! write(*,*) rho12 + ! stop + r12=-sqrt(rho12) + r23=sqrt(rho23) + tau12=1-rho12 + tau23=1-rho23 + dzeta=4*pi*n2*h/lambda + Rwin=(r12**2+2*r12*r23*exp(-kappa2*h)*cos(dzeta)+r23**2*exp(-2*kappa2*h))/& + (1+2*r12*r23*exp(-kappa2*h)*cos(dzeta)+r12**2*r23**2*exp(-2*kappa2*h)) + Twin=(tau12*tau23*exp(-kappa2*h))/& + (1+2*r12*r23*exp(-kappa2*h)*cos(dzeta)+r12**2*r23**2*exp(-2*kappa2*h)) + Awin=1-Rwin-Twin + case(2) + !no interference + kappa2=4*pi*k2/lambda + theta2=asin(sin(theta)/n2) + rho12=(((cos(theta2)-n2*cos(theta))/(cos(theta2)+n2*cos(theta)))**2+& + ((cos(theta)-n2*cos(theta2))/(cos(theta)+n2*cos(theta2)))**2)/2 + rho23=(((n2*cos(theta)-cos(theta2))/(n2*cos(theta)+cos(theta2)))**2+& + ((n2*cos(theta2)-cos(theta))/(n2*cos(theta2)+cos(theta)))**2)/2 + tau12=exp(-kappa2*h) + Rwin=(rho12+(1-2*rho12)*rho23*tau12**2)/(1-rho12*rho23*tau12**2) + Twin=(1-rho12)*(1-rho23)*tau12/(1-rho12*rho23*tau12**2) + Awin=1-Rwin-Twin + case(3) + !Coquard (according to Ochsner), adapted + cn=cmplx(n2,-k2,kind=dp) + theta2=asin(sin(theta)/n2) + rho12=(((cos(theta2)-n2*cos(theta))/(cos(theta2)+n2*cos(theta)))**2+& + ((cos(theta)-n2*cos(theta2))/(cos(theta)+n2*cos(theta2)))**2)/2 + rho23=(((n2*cos(theta)-cos(theta2))/(n2*cos(theta)+cos(theta2)))**2+& + ((n2*cos(theta2)-cos(theta))/(n2*cos(theta2)+cos(theta)))**2)/2 + r12=-sqrt(rho12) + r23=sqrt(rho23) + tau12=1-r12**2 + tau23=1-r23**2 + t12=sqrt(tau12/n2) + t23=sqrt(tau23*n2) + beta=2*pi*cn*h*cos(theta2)/lambda + rc=(r12+r23*exp(-iu*2*beta))/(1+r12*r23*exp(-iu*2*beta)) + tc=(t12*t23*exp(-iu*beta))/(1+r12*r23*exp(-iu*2*beta)) + Rwin=abs(rc)**2 + Twin=abs(tc)**2 + Awin=1-Rwin-Twin + case(4) + !Coquard (according to Dombrovsky) + cn=cmplx(n2,-k2,kind=dp) + theta2=asin(sin(theta)/n2) + r12=(cos(theta2)-n2*cos(theta))/(cos(theta2)+n2*cos(theta)) + ! r12=(n2*cos(theta)-cos(theta2))/(n2*cos(theta)+cos(theta2)) !this gives + ! the same results + r23=-r12 + t12=1-r12**2 !actually this is t12*t23 + beta=2*pi*cn*h*cos(theta2)/lambda + rc=(r12+r23*exp(-iu*2*beta))/(1+r12*r23*exp(-iu*2*beta)) + tc=(t12*exp(-iu*beta))/(1+r12*r23*exp(-iu*2*beta)) + r12=(cos(theta)-n2*cos(theta2))/(cos(theta)+n2*cos(theta2)) + ! r12=(n2*cos(theta2)-cos(theta))/(n2*cos(theta2)+cos(theta)) + r23=-r12 + t12=1-r12**2 !actually this is t12*t23 + rc2=(r12+r23*exp(-iu*2*beta))/(1+r12*r23*exp(-iu*2*beta)) + tc2=(t12*exp(-iu*beta))/(1+r12*r23*exp(-iu*2*beta)) + Rwin=(abs(rc)**2+abs(rc2)**2)/2 + Twin=(abs(tc)**2+abs(tc2)**2)/2 + Awin=1-Rwin-Twin + case default + stop 'unknown method for calculation of slab reflectivity' + end select +end subroutine filmconst +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates scattering coefficient as a function of wall thickness +real(dp) function scattwall ( dw ) + use quadpack + real(dp), intent(in) :: dw + real(dp) :: wtweight,dwold + !qags variables + real(dp) :: a !start point of integration + real(dp) :: abserr + real(dp) :: b !end point of integration + real(dp), parameter :: epsabs = 0.0e0_dp + real(dp), parameter :: epsrel = 1e-3_dp + integer :: ier + integer :: neval + real(dp) :: res + !end of qags variables + a=0 + b=pi/2 + wtweight=1/(sqrt(2*pi)*wsdev*dw)*exp(-(log(dw)-log(dwall))**2/(2*wsdev**2)) + dwold=dwall + dwall=dw + call qags(scattcoeffintwall, a, b, epsabs, epsrel, res, abserr, neval, ier) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'wall thickness',dw + write(*,*) 'scattering coefficient of walls not calculated' + stop + endif + scattwall=res*(1-por)/dwall*wtweight + dwall=dwold +end function scattwall +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates scattering coefficient as a function of wall thickness +real(dp) function trextwall ( dw ) + use quadpack + real(dp), intent(in) :: dw + real(dp) :: wtweight,dwold + !qags variables + real(dp) :: a !start point of integration + real(dp) :: abserr + real(dp) :: b !end point of integration + real(dp), parameter :: epsabs = 0.0e0_dp + real(dp), parameter :: epsrel = 0.001e0_dp + integer :: ier + integer :: neval + real(dp) :: res + !end of qags variables + a=0 + b=pi/2 + wtweight=1/(sqrt(2*pi)*wsdev*dw)*exp(-(log(dw)-log(dwall))**2/(2*wsdev**2)) + dwold=dwall + dwall=dw + call qags(trextcoeffintwall, a, b, epsabs, epsrel, res, abserr, neval, ier) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'wall thickness',dw + write(*,*) 'transport extinction coefficient of walls not calculated' + stop + endif + trextwall=res*(1-por)/dwall*wtweight + dwall=dwold +end function trextwall +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates absorption coefficient as a function of wall thickness +real(dp) function absorwall ( dw ) + use quadpack + real(dp), intent(in) :: dw + real(dp) :: wtweight,dwold + !qags variables + real(dp) :: a !start point of integration + real(dp) :: abserr + real(dp) :: b !end point of integration + real(dp), parameter :: epsabs = 0.0e0_dp + real(dp), parameter :: epsrel = 0.001e0_dp + integer :: ier + integer :: neval + real(dp) :: res + !end of qags variables + a=0 + b=pi/2 + wtweight=1/(sqrt(2*pi)*wsdev*dw)*exp(-(log(dw)-log(dwall))**2/(2*wsdev**2)) + dwold=dwall + dwall=dw + call qags ( abscoeffintwall, a, b, epsabs, epsrel, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'wall thickness',dw + write(*,*) 'absorption coefficient of walls not calculated' + stop + endif + absorwall=res*(1-por)/dwall*wtweight + dwall=dwold +end function absorwall +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates scattering coefficient of wall integrand +real(dp) function scattcoeffintwall ( theta ) + real(dp), intent(in) :: theta + real(dp) :: Rwin,Twin,Awin + call filmconst(lambda,theta,dwall,Rwin,Twin,Awin) + scattcoeffintwall=Rwin*sin(theta)*cos(theta) +end function scattcoeffintwall +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates transport extinction coefficient of wall integrand +real(dp) function trextcoeffintwall ( theta ) + real(dp), intent(in) :: theta + real(dp) :: Rwin,Twin,Awin + call filmconst(lambda,theta,dwall,Rwin,Twin,Awin) + trextcoeffintwall=(1-Twin+Rwin*cos(2*theta))*sin(theta)*cos(theta) +end function trextcoeffintwall +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates absorption coefficient of wall integrand +real(dp) function abscoeffintwall ( theta ) + real(dp), intent(in) :: theta + real(dp) :: Rwin,Twin,Awin + call filmconst(lambda,theta,dwall,Rwin,Twin,Awin) + abscoeffintwall=Awin*sin(theta)*cos(theta) +end function abscoeffintwall +!***********************************END**************************************** +end module filmprop diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamgeom.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamgeom.f90 new file mode 100644 index 000000000..3c14a6b39 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamgeom.f90 @@ -0,0 +1,163 @@ +!> @file +!! subroutines for calculation of geometric properties of the foam +!! @author Pavel Ferkl +!! @ingroup foam_cond +module foamgeom + use constants + use Solve_NonLin + implicit none + private + public foam_morpholgy +contains +!********************************BEGINNING************************************* +!> determine all geometric parameters of the foam +subroutine foam_morpholgy + integer, parameter :: n=2 + integer :: info + real (dp) :: tol=1e-8_dp + real (dp), dimension(n) :: x,fvec,diag + write(*,*) 'Foam morphology:' + write(mfi,*) 'Foam morphology:' + select case(morph_input) + case(1) !dwall is input; fs and dstrut are calculated + x(1)=fs + x(2)=dstrut + call hbrd(fcn_dwall,n,x,fvec,epsilon(pi),tol,info,diag) + if (info /= 1) then + write(*,*) 'unable to determine foam morphology parameters, & + hbrd returned',info + write(mfi,*) 'unable to determine foam morphology parameters, & + hbrd returned',info + stop + endif + fs=x(1) + dstrut=x(2) + if (fs<0 .or. dstrut< 0) then + write(*,*) 'unable to determine foam morphology & + parameters, try different initial guess' + write(mfi,*) 'unable to determine foam morphology & + parameters, try different initial guess' + stop + endif + case(2) !fs is input; dwall and dstrut are calculated + if (fs residual function for fs and dstrut +subroutine fcn_dwall(n,x,fvec,iflag) + integer, intent(in) :: n + real (dp), intent(in) :: x(n) + real (dp), intent(out) :: fvec(n) + integer, intent(inout) :: iflag + real(dp) :: Vcell,Vstruts,Vwalls,fs,dstrut + fs=x(1) + dstrut=x(2) + Vcell=0.348_dp*dcell**3 + Vstruts=2.8_dp*dstrut**2*dcell-3.93_dp*dstrut**3 + Vwalls=(1.3143_dp*dcell**2-7.367_dp*dstrut*dcell+10.323_dp*dstrut**2)*dwall + fvec(1)=fs-Vstruts/(Vstruts+Vwalls) + fvec(2)=1-por-(Vstruts+Vwalls)/Vcell +end subroutine fcn_dwall +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> residual function for dwall and dstrut +subroutine fcn_fs(n,x,fvec,iflag) + integer, intent(in) :: n + real (dp), intent(in) :: x(n) + real (dp), intent(out) :: fvec(n) + integer, intent(inout) :: iflag + real(dp) :: Vcell,Vstruts,Vwalls,dwall,dstrut + dwall=x(1) + dstrut=x(2) + Vcell=0.348_dp*dcell**3 + Vstruts=2.8_dp*dstrut**2*dcell-3.93_dp*dstrut**3 + Vwalls=(1.3143_dp*dcell**2-7.367_dp*dstrut*dcell+10.323_dp*dstrut**2)*dwall + fvec(1)=fs-Vstruts/(Vstruts+Vwalls) + fvec(2)=1-por-(Vstruts+Vwalls)/Vcell +end subroutine fcn_fs +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> residual function for dwall and fs +subroutine fcn_dstrut(n,x,fvec,iflag) + integer, intent(in) :: n + real (dp), intent(in) :: x(n) + real (dp), intent(out) :: fvec(n) + integer, intent(inout) :: iflag + real(dp) :: Vcell,Vstruts,Vwalls,dwall,fs + dwall=x(1) + fs=x(2) + Vcell=0.348_dp*dcell**3 + Vstruts=2.8_dp*dstrut**2*dcell-3.93_dp*dstrut**3 + Vwalls=(1.3143_dp*dcell**2-7.367_dp*dstrut*dcell+10.323_dp*dstrut**2)*dwall + fvec(1)=fs-Vstruts/(Vstruts+Vwalls) + fvec(2)=1-por-(Vstruts+Vwalls)/Vcell +end subroutine fcn_dstrut +!***********************************END**************************************** +end module foamgeom diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamprop.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamprop.f90 new file mode 100644 index 000000000..411c931bc --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/foamprop.f90 @@ -0,0 +1,496 @@ +!> @file +!! subroutines for evaluation of effective radiative properties of foam +!! @author Pavel Ferkl +!! @ingroup foam_cond +module foamprop + use constants + use ioutils + use gasprop + use filmprop + use cylprop + implicit none + private + public effrad,fbep + real(dp) :: unin=1.57_dp + real(dp), dimension(:), allocatable :: & + lambdaf,& + !foam radiative properties - wall contribution + kappafwall,sigmafwall,betafwall,omegafwall,betatrfwall,& + !foam radiative properties - strut contribution + kappafstrut,sigmafstrut,betafstrut,omegafstrut,betatrfstrut,& + !foam radiative properties - gas contribution + kappafgas,& + !foam radiative properties - overall + kappaf,sigmaf,betaf,omegaf,betatrf +contains +!********************************BEGINNING************************************* +!> determine effective radiative properties of foam +subroutine effrad(spectra) + use quadpack + character(len=*), intent(in) :: spectra + integer :: i,j,fi,nwawel=100 +! real(dp) :: theta !incident angle +! real(dp) :: Rwin !reflectance +! real(dp) :: Twin !transmittance +! real(dp) :: Awin !absorptance +! real(dp) :: rn !random number +! real(dp) :: absp !absorption parameter +! real(dp) :: scap !scattering parameter +! real(dp) :: npart !number of particlesper unit volume + real(dp) :: dwmin,dwmax,lambdamin,lambdamax + !qags variables + real(dp) :: a !start point of integration + real(dp) :: abserr + real(dp) :: b !end point of integration + real(dp), parameter :: epsabs = 0.0e0_dp + real(dp) :: epsrel = 1e-3_dp + integer :: ier + integer :: neval + real(dp) :: res + !end of qags variables + write(*,*) 'Radiative properties of the foam:' + write(mfi,*) 'Radiative properties of the foam:' +! call cylconst(2*pi,pi/4,1.0e-1_dp,Qs,Qt,mu) +! stop + !monte carlo method, does not work properly +! swin=dcell**2 +! absp=0 +! scap=0 +! npart=3/dcell**3 +! lambda=10e-6 +! call srand(int(abs(sin(dble(time()))*1e6))) +! do i=1,nrays +! theta=acos(rand()) +!! theta=rand()*pi/2 +! call filmconst(lambda,theta,dwall,Rwin,Twin,Awin) +! absp=absp+Swin*Awin +! scap=scap+Swin*Rwin +!! absp=absp+cos(theta)*sin(theta)*Swin*Awin*pi/2 +!! scap=scap+cos(theta)*sin(theta)*Swin*Rwin*pi/2 +!! rn=rand() +!! if (rn>1-Awin) then +!! absp=absp+Swin +!! elseif(rnstruttol) then + a=0 + b=pi/2 + if (pi*dstrut/lambda>10) then + epsrel=1e-1_dp + elseif(pi*dstrut/lambda>1) then + epsrel=1e-2_dp + else + epsrel=1e-3_dp + endif + call qags ( trextcoeffintstrut, a, b, epsabs, epsrel, res, abserr, & + neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier,neval + write(*,*) 'qags returned',res,abserr + write(*,*) 'wavelength',lambda + write(*,*) 'transport extinction coefficient of struts & + not calculated' + stop + endif + betatrfstrut(i)=res*4/pi/dstrut*(1-por) + call qags ( extcoeffintstrut, a, b, epsabs, epsrel, res, abserr, & + neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'wavelength',lambda + write(*,*) 'extinction coefficient of struts not calculated' + stop + endif + betafstrut(i)=res*4/pi/dstrut*(1-por) + call qags ( scattcoeffintstrut, a, b, epsabs, epsrel, res, abserr, & + neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'wavelength',lambda + write(*,*) 'scattering coefficient of struts not calculated' + stop + endif + sigmafstrut(i)=res*4/pi/dstrut*(1-por) + kappafstrut(i)=betafstrut(i)-sigmafstrut(i) + omegafstrut(i)=sigmafstrut(i)/betafstrut(i) + else + kappafstrut=0 + sigmafstrut=0 + betafstrut=0 + omegafstrut=0 + betatrfstrut=0 + endif + enddo + kappafwall=(1-fs)*kappafwall + sigmafwall=(1-fs)*sigmafwall + betafwall=(1-fs)*betafwall + betatrfwall=(1-fs)*betatrfwall + kappafstrut=fs*kappafstrut + sigmafstrut=fs*sigmafstrut + betafstrut=fs*betafstrut + betatrfstrut=fs*betatrfstrut + kappaf=kappafwall+kappafstrut + sigmaf=sigmafwall+sigmafstrut + betaf=betafwall+betafstrut + betatrf=betatrfwall+betatrfstrut +! kappaf=(1-fs)*kappafwall+fs*kappafstrut +! sigmaf=(1-fs)*sigmafwall+fs*sigmafstrut +! betaf=(1-fs)*betafwall+fs*betafstrut +! betatrf=(1-fs)*betatrfwall+fs*betatrfstrut + omegaf=sigmaf/betaf + open(newunit(fi),file=trim(adjustl(spectra))) + write(fi,'(1000A23)') '#wavelength','abs.coeff.wall','scatt.coeff.wall',& + 'ext.coeff.wall','albedo wall','tr.ext.coeff.wall','abs.coeff.strut',& + 'scatt.coeff.strut','ext.coeff.strut','albedo strut',& + 'tr.ext.coeff.strut','abs.coeff','scatt.coeff','ext.coeff','albedo ',& + 'tr.ext.coeff' + do i=1,nwawel + write(fi,'(1000es23.15)') lambdaf(i),kappafwall(i),sigmafwall(i),& + betafwall(i),omegafwall(i),betatrfwall(i),kappafstrut(i),& + sigmafstrut(i),betafstrut(i),omegafstrut(i),betatrfstrut(i),& + kappaf(i),sigmaf(i),betaf(i),omegaf(i),betatrf(i) + enddo + close(fi) + !calculate gray properties + a=lambdaf(1) + b=lambdaf(size(lambdaf)) + b=1e-4_dp !100 um is relatively enough (if you use lower value, you should + ! incorporate fraction of blackbody radiation function) + effn=por*n1+(1-por)*unin !this is not perfect, use of some average value + ! of n2 instead of unin would be better + call qags ( rosextc, a, b, epsabs, epsrel, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'rosseland extinction coefficient not calculated' + stop + endif + rossextcoeff=(4*effn**2*sigmab*tmean**3)/res + call qags ( planckextc, a, b, epsabs, epsrel, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'planck extinction coefficient not calculated' + stop + endif + planckextcoeff=res/(effn**2*sigmab*tmean**4) + call qags ( planckalbedo, a, b, epsabs, epsrel, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'scattering albedo not calculated' + stop + endif + albedo=res/(effn**2*sigmab*tmean**4) + krad=16*sigmab*tmean**3/(3*rossextcoeff) + !calculate actual (usually non-gray) properties + if (nbox<1) then + stop 'choose number of gray boxes 1 for gray approximation, greater & + than 1 for non-gray simulation' + else + allocate(lambdabox(nbox+1),trextcoeffbox(nbox),albedobox(nbox),& + abscoeffbox(nbox),scattcoeffbox(nbox)) + if (.not. allocated(fbepbox)) allocate(fbepbox(nbox)) + lambdamin=2e-6_dp + lambdamax=25e-6_dp + lambdabox(nbox+1)=100e-6_dp + lambdabox(nbox)=lambdamax + lambdabox(1)=lambdamin !if nbox equals 1, then we have only one + ! box: 2-100 um + do i=2,nbox-1 + lambdabox(i)=lambdamin+(i-1)*(lambdamax-lambdamin)/(nbox-1._dp) + enddo + do i=1,nbox + fbepbox(i)=fbep(effn,lambdabox(i+1),tmean)-fbep(effn,lambdabox(i)& + ,tmean) + call qags(planckextc,lambdabox(i),lambdabox(i+1), epsabs, epsrel, & + res, abserr, neval, ier) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'gray box',i + write(*,*) 'planck extinction coefficient not calculated' + stop + endif + trextcoeffbox(i)=res/(effn**2*sigmab*tmean**4*fbepbox(i)) + call qags(planckalbedo,lambdabox(i),lambdabox(i+1), epsabs, & + epsrel, res, abserr, neval, ier) + if (ier /= 0) then + write(*,*) 'qags returned',ier + write(*,*) 'gray box',i + write(*,*) 'scattering albedo not calculated' + stop + endif + albedobox(i)=res/(effn**2*sigmab*tmean**4*fbepbox(i)) + enddo + scattcoeffbox=albedobox*trextcoeffbox + abscoeffbox=trextcoeffbox-scattcoeffbox + endif + write(*,'(2x,A,1x,es9.3)') 'effective index of refraction:',effn + write(*,'(2x,A,1x,es9.3,1x,A)') 'Planck mean extinction coefficient:',& + planckextcoeff,'m^-1' + write(*,'(2x,A,1x,es9.3,1x,A)') 'Rosseland extinction coefficient:',& + rossextcoeff,'m^-1' + write(*,'(2x,A,1x,es9.3,1x,A)') 'Rosseland extinction coefficient:',& + rossextcoeff/(1-por)/rho2,'kg/m^2' + write(*,'(2x,A,1x,es9.3,1x,A)') 'radiative conductivity:',& + krad*1e3_dp,'mW/m/K' + write(mfi,'(2x,A,1x,es9.3)') 'effective index of refraction:',effn + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'Planck mean extinction coefficient:',& + planckextcoeff,'m^-1' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'Rosseland extinction coefficient:',& + rossextcoeff,'m^-1' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'Rosseland extinction coefficient:',& + rossextcoeff/(1-por)/rho2,'kg/m^2' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'radiative conductivity:',& + krad*1e3_dp,'mW/m/K' + deallocate(lambdaf) + deallocate(kappafwall,sigmafwall,betafwall,omegafwall,betatrfwall,& + kappafstrut,sigmafstrut,betafstrut,omegafstrut,betatrfstrut,& + kappaf,sigmaf,betaf,omegaf,betatrf,kappafgas,lambdabox,trextcoeffbox,& + albedobox) +end subroutine effrad +!***********************************END**************************************** + + + +!********************************BEGINNING************************************* +!> evaluate integrand for Rosseland extinction coefficient +real(dp) function rosextc(lambda) + use interpolation + real(dp), intent(in) :: lambda !wavelength + real(dp) :: beta + real(dp) :: n !refractive index + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values +! call optconst(lambda,n,k) !could yield recursive call to qags + n=effn !used Planck law is valid only constant index of refraction + if (lambdalambdaf(size(lambdaf))) then +! write(*,*) 'No data for such high wavelength.' +! write(*,*) 'Maximum wavelength is',lambdaf(size(lambdaf)) +! stop + beta=betatrf(size(betatrf)) + else + xi(1)=lambda + call pwl_interp_1d ( size(lambdaf), lambdaf, betatrf, ni, xi, yi ) + beta=yi(1) + endif + rosextc=2*c0**3*exp(hPc*c0/(kb*n*tmean*lambda))*hPc**2*pi/& + ((exp(hPc*c0/(kb*n*tmean*lambda))-1)**2*kb*n**3*tmean**2*lambda**6)/beta +end function rosextc +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluate integrand for Planck mean extinction coefficient +real(dp) function planckextc(lambda) + use interpolation + real(dp), intent(in) :: lambda !wavelength + real(dp) :: beta + real(dp) :: n !refractive index + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values +! call optconst(lambda,n,k) !could yield recursive call to qags + n=effn !used Planck law is valid only constant index of refraction + if (lambdalambdaf(size(lambdaf))) then +! write(*,*) 'No data for such high wavelength.' +! write(*,*) 'Maximum wavelength is',lambdaf(size(lambdaf)) +! stop + beta=betatrf(size(betatrf)) + else + xi(1)=lambda + call pwl_interp_1d ( size(lambdaf), lambdaf, betatrf, ni, xi, yi ) + beta=yi(1)+abscoeffgas(lambda) + endif + planckextc=2*pi*hPc*c0**2/& + (n**2*lambda**5*(Exp(hPc*c0/(n*lambda*kb*tmean))-1))*beta +end function planckextc +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluate integrand for scattering albedo - Planck style +real(dp) function planckalbedo(lambda) + use interpolation + real(dp), intent(in) :: lambda !wavelength + real(dp) :: omega + real(dp) :: n !refractive index + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values +! call optconst(lambda,n,k) !could yield recursive call to qags + n=effn !used Planck law is valid only constant index of refraction + if (lambdalambdaf(size(lambdaf))) then +! write(*,*) 'No data for such high wavelength.' +! write(*,*) 'Maximum wavelength is',lambdaf(size(lambdaf)) +! stop + omega=omegaf(size(omegaf)) + else + xi(1)=lambda + call pwl_interp_1d ( size(lambdaf), lambdaf, omegaf, ni, xi, yi ) + omega=yi(1) + endif + planckalbedo=2*pi*hPc*c0**2/& + (n**2*lambda**5*(Exp(hPc*c0/(n*lambda*kb*tmean))-1))*omega +end function planckalbedo +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> fraction of blackbody radiation according to eq. (1-33) in Siegel's and +!! Howell's 4th Thermal Radiation Heat Transfer +real(dp) function fbep(n,lambda,T) + integer :: i,maxit=100 + real(dp), intent(in) :: n,lambda,T !index of refraction,wavelength,temperature + real(dp) :: dzeta,old,res,tol=1e-12_dp + dzeta=C2/(n*lambda*T) + old=0 + do i=1,maxit + fbep=old+15/pi**4*(exp(-i*dzeta)/i*& + (dzeta**3+3*dzeta**2/i+6*dzeta/i**2+6e0_dp/i**3)) + res=abs(fbep-old) + if (res @file +!! subroutines for evaluation of radiative properties of gas phase +!! @author Pavel Ferkl +!! @ingroup foam_cond +module gasprop + use constants + implicit none + private + public abscoeffgas +contains +!********************************BEGINNING************************************* +!> evaluates gas absorption coefficient +real(dp) function abscoeffgas(lambda) + use interpolation + real(dp), intent(in) :: lambda !wavelength + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values + xi(1)=lambda + call pwl_interp_1d ( size(lambdagas), lambdagas, acgas, ni, xi, yi ) + abscoeffgas=yi(1) +end function abscoeffgas +!***********************************END**************************************** +end module gasprop diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/hbrd.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/hbrd.f90 new file mode 100644 index 000000000..f754ee418 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/hbrd.f90 @@ -0,0 +1,1644 @@ +!downloaded from http://jblevins.org/mirror/amiller/ +!(Code converted from the Naval Surface Warfare Center Math. Library) +MODULE Solve_NonLin +use constants, only:dp +! Corrections to FUNCTION Enorm - 28 November 2003 +IMPLICIT NONE +PRIVATE +PUBLIC :: hbrd, hybrd + + +CONTAINS + + +SUBROUTINE hbrd(fcn, n, x, fvec, epsfcn, tol, info, diag) + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-07-15 Time: 13:27:42 + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN) :: tol +INTEGER, INTENT(OUT) :: info +REAL (dp), INTENT(OUT) :: diag(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + use constants, only:dp + IMPLICIT NONE + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HBRD + +! THE PURPOSE OF HBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THIS IS DONE BY USING THE MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HBRD(N, X, FVEC, EPSFCN, TOL, INFO, WA, LWA) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT +! IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE THE EXECUTION OF HBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE +! FINAL ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES +! THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. +! IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE +! RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE +! PRECISION. + +! TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETWEEN X AND THE SOLUTION +! IS AT MOST TOL. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED +! EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. +! SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR +! BETWEEN X AND THE SOLUTION IS AT MOST TOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED 200*(N+1). + +! INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... HYBRD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! Reference: +! Powell, M.J.D. 'A hybrid method for nonlinear equations' in Numerical Methods +! for Nonlinear Algebraic Equations', P.Rabinowitz (editor), Gordon and +! Breach, London 1970. +! ********** +INTEGER :: maxfev, ml, mode, mu, nfev, nprint +REAL (dp) :: xtol +REAL (dp), PARAMETER :: factor = 100.0_dp, zero = 0.0_dp + +info = 0 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + + +IF (n <= 0 .OR. epsfcn < zero .OR. tol < zero) GO TO 20 + +! CALL HYBRD. + +maxfev = 200*(n + 1) +xtol = tol +ml = n - 1 +mu = n - 1 +mode = 2 +nprint = 0 +CALL hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) +IF (info == 5) info = 4 +20 RETURN + +! LAST CARD OF SUBROUTINE HBRD. + +END SUBROUTINE hbrd + + + +SUBROUTINE hybrd(fcn, n, x, fvec, xtol, maxfev, ml, mu, epsfcn, diag, mode, & + factor, nprint, info, nfev) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN OUT) :: fvec(n) +REAL (dp), INTENT(IN) :: xtol +INTEGER, INTENT(IN OUT) :: maxfev +INTEGER, INTENT(IN OUT) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(OUT) :: diag(n) +INTEGER, INTENT(IN) :: mode +REAL (dp), INTENT(IN) :: factor +INTEGER, INTENT(IN OUT) :: nprint +INTEGER, INTENT(OUT) :: info +INTEGER, INTENT(OUT) :: nfev + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + use constants, only:dp + IMPLICIT NONE + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE HYBRD + +! THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF N NONLINEAR +! FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE POWELL HYBRID METHOD. +! THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. +! THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE HYBRD(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, +! DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, +! LDFJAC, R, LR, QTF, WA1, WA2, WA3, WA4) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N, X, FVEC, IFLAG) +! INTEGER N, IFLAG +! REAL X(N), FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! --------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL +! ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL +! ESTIMATE OF THE SOLUTION VECTOR. + +! FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE FUNCTIONS EVALUATED AT THE OUTPUT X. + +! XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE +! RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. + +! MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN +! THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN +! ITERATION. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE +! NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER +! OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. +! IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH +! FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION +! ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER +! OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, +! IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE +! ORDER OF THE MACHINE PRECISION. + +! DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), +! DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE +! ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE +! VARIABLES. + +! MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE +! SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE +! INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1. + +! FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE +! INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF +! FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE +! TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE +! INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. + +! NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED +! PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, +! FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST +! ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND +! IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE +! FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS +! OF FCN WITH IFLAG = 0 ARE MADE. + +! INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS +! TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) +! VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, +! INFO IS SET AS FOLLOWS. + +! INFO = 0 IMPROPER INPUT PARAMETERS. + +! INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES +! IS AT MOST XTOL. + +! INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV. + +! INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN +! THE APPROXIMATE SOLUTION X IS POSSIBLE. + +! INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS +! MEASURED BY THE IMPROVEMENT FROM THE LAST +! FIVE JACOBIAN EVALUATIONS. + +! INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY +! THE IMPROVEMENT FROM THE LAST TEN ITERATIONS. + +! NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q +! PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE +! UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION +! OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2. + +! QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS +! THE VECTOR (Q TRANSPOSE)*FVEC. + +! WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! USER-SUPPLIED ...... FCN + +! MINPACK-SUPPLIED ... DOGLEG,SPMPAR,ENORM,FDJAC1, +! QFORM,QRFAC,R1MPYQ,R1UPDT + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,MIN,MOD + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** + +INTEGER :: i, iflag, iter, j, jm1, l, lr, msum, ncfail, ncsuc, nslow1, & + nslow2 +INTEGER :: iwa(1) +LOGICAL :: jeval, sing +REAL (dp) :: actred, delta, epsmch, fnorm, fnorm1, pnorm, prered, & + ratio, sum, temp, xnorm +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & + p001 = 0.001_dp, p0001 = 0.0001_dp, zero = 0.0_dp + +! The following were workspace arguments +REAL (dp) :: fjac(n,n), r(n*(n+1)/2), qtf(n), wa1(n), wa2(n), & + wa3(n), wa4(n) + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +info = 0 +iflag = 0 +nfev = 0 +lr = n*(n+1)/2 + +! CHECK THE INPUT PARAMETERS FOR ERRORS. + +IF (n > 0 .AND. xtol >= zero .AND. maxfev > 0 .AND. ml >= 0 .AND. mu >= & + 0 .AND. factor > zero ) THEN +IF (mode == 2) THEN + diag(1:n) = one +END IF + +! EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM. + +iflag = 1 +CALL fcn(n, x, fvec, iflag) +nfev = 1 +IF (iflag >= 0) THEN + fnorm = enorm(n, fvec) + +! DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE THE JACOBIAN MATRIX. + + msum = MIN(ml+mu+1,n) + +! INITIALIZE ITERATION COUNTER AND MONITORS. + + iter = 1 + ncsuc = 0 + ncfail = 0 + nslow1 = 0 + nslow2 = 0 + +! BEGINNING OF THE OUTER LOOP. + + 20 jeval = .true. + +! CALCULATE THE JACOBIAN MATRIX. + + iflag = 2 + CALL fdjac1(fcn, n, x, fvec, fjac, n, iflag, ml, mu, epsfcn, wa1, wa2) + nfev = nfev + msum + IF (iflag >= 0) THEN + +! COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. + + CALL qrfac(n, n, fjac, n, .false., iwa, 1, wa1, wa2, wa3) + +! ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING +! TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. + + IF (iter == 1) THEN + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = wa2(j) + IF (wa2(j) == zero) diag(j) = one + END DO + END IF + +! ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X +! AND INITIALIZE THE STEP BOUND DELTA. + + wa3(1:n) = diag(1:n) * x(1:n) + xnorm = enorm(n, wa3) + delta = factor * xnorm + IF (delta == zero) delta = factor + END IF + +! FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. + + qtf(1:n) = fvec(1:n) + DO j = 1, n + IF (fjac(j,j) /= zero) THEN + sum = zero + DO i = j, n + sum = sum + fjac(i,j) * qtf(i) + END DO + temp = -sum / fjac(j,j) + DO i = j, n + qtf(i) = qtf(i) + fjac(i,j) * temp + END DO + END IF + END DO + +! COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. + + sing = .false. + DO j = 1, n + l = j + jm1 = j - 1 + IF (jm1 >= 1) THEN + DO i = 1, jm1 + r(l) = fjac(i,j) + l = l + n - i + END DO + END IF + r(l) = wa1(j) + IF (wa1(j) == zero) sing = .true. + END DO + +! ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. + + CALL qform(n, n, fjac, n, wa1) + +! RESCALE IF NECESSARY. + + IF (mode /= 2) THEN + DO j = 1, n + diag(j) = MAX(diag(j), wa2(j)) + END DO + END IF + +! BEGINNING OF THE INNER LOOP. + +! IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. + + 120 IF (nprint > 0) THEN + iflag = 0 + IF (MOD(iter-1, nprint) == 0) CALL fcn(n, x, fvec, iflag) + IF (iflag < 0) GO TO 190 + END IF + +! DETERMINE THE DIRECTION P. + + CALL dogleg(n, r, lr, diag, qtf, delta, wa1, wa2, wa3) + +! STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. + + DO j = 1, n + wa1(j) = -wa1(j) + wa2(j) = x(j) + wa1(j) + wa3(j) = diag(j) * wa1(j) + END DO + pnorm = enorm(n, wa3) + +! ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. + + IF (iter == 1) delta = MIN(delta, pnorm) + +! EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. + + iflag = 1 + CALL fcn(n, wa2, wa4, iflag) + nfev = nfev + 1 + IF (iflag >= 0) THEN + fnorm1 = enorm(n, wa4) + +! COMPUTE THE SCALED ACTUAL REDUCTION. + + actred = -one + IF (fnorm1 < fnorm) actred = one - (fnorm1/fnorm) ** 2 + +! COMPUTE THE SCALED PREDICTED REDUCTION. + + l = 1 + DO i = 1, n + sum = zero + DO j = i, n + sum = sum + r(l) * wa1(j) + l = l + 1 + END DO + wa3(i) = qtf(i) + sum + END DO + temp = enorm(n, wa3) + prered = zero + IF (temp < fnorm) prered = one - (temp/fnorm) ** 2 + +! COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION. + + ratio = zero + IF (prered > zero) ratio = actred / prered + +! UPDATE THE STEP BOUND. + + IF (ratio < p1) THEN + ncsuc = 0 + ncfail = ncfail + 1 + delta = p5 * delta + ELSE + ncfail = 0 + ncsuc = ncsuc + 1 + IF (ratio >= p5 .OR. ncsuc > 1) delta = MAX(delta,pnorm/p5) + IF (ABS(ratio-one) <= p1) delta = pnorm / p5 + END IF + +! TEST FOR SUCCESSFUL ITERATION. + + IF (ratio >= p0001) THEN + +! SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. + + DO j = 1, n + x(j) = wa2(j) + wa2(j) = diag(j) * x(j) + fvec(j) = wa4(j) + END DO + xnorm = enorm(n, wa2) + fnorm = fnorm1 + iter = iter + 1 + END IF + +! DETERMINE THE PROGRESS OF THE ITERATION. + + nslow1 = nslow1 + 1 + IF (actred >= p001) nslow1 = 0 + IF (jeval) nslow2 = nslow2 + 1 + IF (actred >= p1) nslow2 = 0 + +! TEST FOR CONVERGENCE. + + IF (delta <= xtol*xnorm .OR. fnorm == zero) info = 1 + IF (info == 0) THEN + +! TESTS FOR TERMINATION AND STRINGENT TOLERANCES. + + IF (nfev >= maxfev) info = 2 + IF (p1*MAX(p1*delta, pnorm) <= epsmch*xnorm) info = 3 + IF (nslow2 == 5) info = 4 + IF (nslow1 == 10) info = 5 + IF (info == 0) THEN + +! CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION +! BY FORWARD DIFFERENCES. + + IF (ncfail /= 2) THEN + +! CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN +! AND UPDATE QTF IF NECESSARY. + + DO j = 1, n + sum = zero + DO i = 1, n + sum = sum + fjac(i,j) * wa4(i) + END DO + wa2(j) = (sum-wa3(j)) / pnorm + wa1(j) = diag(j) * ((diag(j)*wa1(j))/pnorm) + IF (ratio >= p0001) qtf(j) = sum + END DO + +! COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. + + CALL r1updt(n, n, r, lr, wa1, wa2, wa3, sing) + CALL r1mpyq(n, n, fjac, n, wa2, wa3) + CALL r1mpyq(1, n, qtf, 1, wa2, wa3) + +! END OF THE INNER LOOP. + + jeval = .false. + GO TO 120 + END IF + +! END OF THE OUTER LOOP. + + GO TO 20 + END IF + END IF + END IF + END IF +END IF +END IF + +! TERMINATION, EITHER NORMAL OR USER IMPOSED. + +190 IF (iflag < 0) info = iflag +iflag = 0 +IF (nprint > 0) CALL fcn(n, x, fvec, iflag) +RETURN + +! LAST CARD OF SUBROUTINE HYBRD. + +END SUBROUTINE hybrd + + + +SUBROUTINE dogleg(n, r, lr, diag, qtb, delta, x, wa1, wa2) + +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lr +REAL (dp), INTENT(IN) :: r(lr) +REAL (dp), INTENT(IN) :: diag(n) +REAL (dp), INTENT(IN) :: qtb(n) +REAL (dp), INTENT(IN) :: delta +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + + +! ********** + +! SUBROUTINE DOGLEG + +! GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL +! MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE +! PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE +! GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES +! (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE +! RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. + +! THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM +! IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE +! QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS +! ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, +! THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND +! THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. + +! R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER +! TRIANGULAR MATRIX R STORED BY ROWS. + +! LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(N+1))/2. + +! DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! DIAGONAL ELEMENTS OF THE MATRIX D. + +! QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST +! N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. + +! DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER +! BOUND ON THE EUCLIDEAN NORM OF D*X. + +! X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED +! CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE +! SCALED GRADIENT DIRECTION. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jj, jp1, k, l +REAL (dp) :: alpha, bnorm, epsmch, gnorm, qnorm, sgnorm, sum, temp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. + +jj = (n*(n+1)) / 2 + 1 +DO k = 1, n + j = n - k + 1 + jp1 = j + 1 + jj = jj - k + l = jj + 1 + sum = 0.0 + IF (n >= jp1) THEN + DO i = jp1, n + sum = sum + r(l) * x(i) + l = l + 1 + END DO + END IF + temp = r(jj) + IF (temp == 0.0_dp) THEN + l = j + DO i = 1, j + temp = MAX(temp,ABS(r(l))) + l = l + n - i + END DO + temp = epsmch * temp + IF (temp == 0.0_dp) temp = epsmch + END IF + x(j) = (qtb(j)-sum) / temp +END DO + +! TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. + +DO j = 1, n + wa1(j) = 0.0_dp + wa2(j) = diag(j) * x(j) +END DO +qnorm = enorm(n, wa2) +IF (qnorm > delta) THEN + +! THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. +! NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. + + l = 1 + DO j = 1, n + temp = qtb(j) + DO i = j, n + wa1(i) = wa1(i) + r(l) * temp + l = l + 1 + END DO + wa1(j) = wa1(j) / diag(j) + END DO + +! CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR +! THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. + + gnorm = enorm(n, wa1) + sgnorm = 0.0_dp + alpha = delta / qnorm + IF (gnorm /= 0.0_dp) THEN + +! CALCULATE THE POINT ALONG THE SCALED GRADIENT +! AT WHICH THE QUADRATIC IS MINIMIZED. + + DO j = 1, n + wa1(j) = (wa1(j)/gnorm) / diag(j) + END DO + l = 1 + DO j = 1, n + sum = 0.0_dp + DO i = j, n + sum = sum + r(l) * wa1(i) + l = l + 1 + END DO + wa2(j) = sum + END DO + temp = enorm(n, wa2) + sgnorm = (gnorm/temp) / temp + +! TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. + + alpha = 0.0_dp + IF (sgnorm < delta) THEN + +! THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. +! FINALLY, CALCULATE THE POINT ALONG THE DOGLEG +! AT WHICH THE QUADRATIC IS MINIMIZED. + + bnorm = enorm(n, qtb) + temp = (bnorm/gnorm) * (bnorm/qnorm) * (sgnorm/delta) + temp = temp - (delta/qnorm) * (sgnorm/delta) ** 2 + SQRT(( & + temp-(delta/qnorm))**2+(1.0_dp-(delta/qnorm)**2)*(1.0_dp-( sgnorm/delta)**2)) + alpha = ((delta/qnorm)*(1.0_dp-(sgnorm/delta)**2)) / temp + END IF + END IF + +! FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON +! DIRECTION AND THE SCALED GRADIENT DIRECTION. + + temp = (1.0_dp-alpha) * MIN(sgnorm,delta) + DO j = 1, n + x(j) = temp * wa1(j) + alpha * x(j) + END DO +END IF +RETURN +END SUBROUTINE dogleg + + +SUBROUTINE fdjac1(fcn, n, x, fvec, fjac, ldfjac, iflag, ml, mu, epsfcn, & + wa1, wa2) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN OUT) :: x(n) +REAL (dp), INTENT(IN) :: fvec(n) +INTEGER, INTENT(IN) :: ldfjac +REAL (dp), INTENT(OUT) :: fjac(ldfjac,n) +INTEGER, INTENT(IN OUT) :: iflag +INTEGER, INTENT(IN) :: ml +INTEGER, INTENT(IN) :: mu +REAL (dp), INTENT(IN) :: epsfcn +REAL (dp), INTENT(IN OUT) :: wa1(n) +REAL (dp), INTENT(OUT) :: wa2(n) + +! EXTERNAL fcn +INTERFACE + SUBROUTINE FCN(N, X, FVEC, IFLAG) + use constants, only:dp + IMPLICIT NONE + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN) :: x(n) + REAL (dp), INTENT(OUT) :: fvec(n) + INTEGER, INTENT(IN OUT) :: iflag + END SUBROUTINE FCN +END INTERFACE + +! ********** + +! SUBROUTINE FDJAC1 + +! THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION TO THE N BY N +! JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED PROBLEM OF N FUNCTIONS IN N +! VARIABLES. IF THE JACOBIAN HAS A BANDED FORM, THEN FUNCTION EVALUATIONS +! ARE SAVED BY ONLY APPROXIMATING THE NONZERO TERMS. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, +! WA1,WA2) + +! WHERE + +! FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES +! THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN +! THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. + +! SUBROUTINE FCN(N,X,FVEC,IFLAG) +! INTEGER N,IFLAG +! REAL X(N),FVEC(N) +! ---------- +! CALCULATE THE FUNCTIONS AT X AND +! RETURN THIS VECTOR IN FVEC. +! ---------- +! RETURN +! END + +! THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS +! THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1. +! IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF FUNCTIONS AND VARIABLES. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE +! FUNCTIONS EVALUATED AT X. + +! FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE +! APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. + +! LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. + +! IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE +! THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. + +! ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! ML TO AT LEAST N - 1. + +! EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE +! STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS +! APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE +! FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS +! THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE +! ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION. + +! MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES +! THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE +! JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET +! MU TO AT LEAST N - 1. + +! WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT +! LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS +! NOT REFERENCED. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,MAX,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, k, msum +REAL (dp) :: eps, epsmch, h, temp +REAL (dp), PARAMETER :: zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +eps = SQRT(MAX(epsfcn, epsmch)) +msum = ml + mu + 1 +IF (msum >= n) THEN + +! COMPUTATION OF DENSE APPROXIMATE JACOBIAN. + + DO j = 1, n + temp = x(j) + h = eps * ABS(temp) + IF (h == zero) h = eps + x(j) = temp + h + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + x(j) = temp + DO i = 1, n + fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO +ELSE + +! COMPUTATION OF BANDED APPROXIMATE JACOBIAN. + + DO k = 1, msum + DO j = k, n, msum + wa2(j) = x(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + x(j) = wa2(j) + h + END DO + CALL fcn(n, x, wa1, iflag) + IF (iflag < 0) EXIT + DO j = k, n, msum + x(j) = wa2(j) + h = eps * ABS(wa2(j)) + IF (h == zero) h = eps + DO i = 1, n + fjac(i,j) = zero + IF (i >= j-mu .AND. i <= j+ml) fjac(i,j) = (wa1(i)-fvec(i)) / h + END DO + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE FDJAC1. + +END SUBROUTINE fdjac1 + + + +SUBROUTINE qform(m, n, q, ldq, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ldq +REAL (dp), INTENT(OUT) :: q(ldq,m) +REAL (dp), INTENT(OUT) :: wa(m) + + +! ********** + +! SUBROUTINE QFORM + +! THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF AN M BY N +! MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX Q FROM ITS FACTORED FORM. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QFORM(M,N,Q,LDQ,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF ROWS OF A AND THE ORDER OF Q. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN +! THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. +! ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. + +! LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. + +! WA IS A WORK ARRAY OF LENGTH M. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jm1, k, l, minmn, np1 +REAL (dp) :: sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp + +! ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. + +minmn = MIN(m,n) +IF (minmn >= 2) THEN + DO j = 2, minmn + jm1 = j - 1 + DO i = 1, jm1 + q(i,j) = zero + END DO + END DO +END IF + +! INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. + +np1 = n + 1 +IF (m >= np1) THEN + DO j = np1, m + DO i = 1, m + q(i,j) = zero + END DO + q(j,j) = one + END DO +END IF + +! ACCUMULATE Q FROM ITS FACTORED FORM. + +DO l = 1, minmn + k = minmn - l + 1 + DO i = k, m + wa(i) = q(i,k) + q(i,k) = zero + END DO + q(k,k) = one + IF (wa(k) /= zero) THEN + DO j = k, m + sum = zero + DO i = k, m + sum = sum + q(i,j) * wa(i) + END DO + temp = sum / wa(k) + DO i = k, m + q(i,j) = q(i,j) - temp * wa(i) + END DO + END DO + END IF +END DO +RETURN + +! LAST CARD OF SUBROUTINE QFORM. + +END SUBROUTINE qform + + +SUBROUTINE qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +LOGICAL, INTENT(IN) :: pivot +INTEGER, INTENT(IN) :: lipvt +INTEGER, INTENT(OUT) :: ipvt(lipvt) +REAL (dp), INTENT(OUT) :: rdiag(n) +REAL (dp), INTENT(OUT) :: acnorm(n) +REAL (dp), INTENT(OUT) :: wa(n) + + +! ********** + +! SUBROUTINE QRFAC + +! THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN PIVOTING +! (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE M BY N MATRIX A. +! THAT IS, QRFAC DETERMINES AN ORTHOGONAL MATRIX Q, A PERMUTATION MATRIX P, +! AND AN UPPER TRAPEZOIDAL MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING +! MAGNITUDE, SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR +! COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM + +! T +! I - (1/U(K))*U*U + +! WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF THIS +! TRANSFORMATION AND THE METHOD OF PIVOTING FIRST APPEARED IN THE +! CORRESPONDING LINPACK SUBROUTINE. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR WHICH THE +! QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT THE STRICT UPPER +! TRAPEZOIDAL PART OF A CONTAINS THE STRICT UPPER TRAPEZOIDAL PART OF R, +! AND THE LOWER TRAPEZOIDAL PART OF A CONTAINS A FACTORED FORM OF Q +! (THE NON-TRIVIAL ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, +! THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, +! THEN NO COLUMN PIVOTING IS DONE. + +! IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT DEFINES THE +! PERMUTATION MATRIX P SUCH THAT A*P = Q*R. +! COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. +! IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. + +! LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, +! THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN +! LIPVT MUST BE AT LEAST N. + +! RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE +! DIAGONAL ELEMENTS OF R. + +! ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF +! THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. +! IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG. + +! WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA +! CAN COINCIDE WITH RDIAG. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR,ENORM + +! FORTRAN-SUPPLIED ... MAX,SQRT,MIN + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, jp1, k, kmax, minmn +REAL (dp) :: ajnorm, epsmch, sum, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp + +! EPSMCH IS THE MACHINE PRECISION. + +epsmch = EPSILON(1.0_dp) + +! COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. + +DO j = 1, n + acnorm(j) = enorm(m, a(1:,j)) + rdiag(j) = acnorm(j) + wa(j) = rdiag(j) + IF (pivot) ipvt(j) = j +END DO + +! REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. + +minmn = MIN(m,n) +DO j = 1, minmn + IF (pivot) THEN + +! BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. + + kmax = j + DO k = j, n + IF (rdiag(k) > rdiag(kmax)) kmax = k + END DO + IF (kmax /= j) THEN + DO i = 1, m + temp = a(i,j) + a(i,j) = a(i,kmax) + a(i,kmax) = temp + END DO + rdiag(kmax) = rdiag(j) + wa(kmax) = wa(j) + k = ipvt(j) + ipvt(j) = ipvt(kmax) + ipvt(kmax) = k + END IF + END IF + +! COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE +! J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. + + ajnorm = enorm(m-j+1, a(j:,j)) + IF (ajnorm /= zero) THEN + IF (a(j,j) < zero) ajnorm = -ajnorm + DO i = j, m + a(i,j) = a(i,j) / ajnorm + END DO + a(j,j) = a(j,j) + one + +! APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS AND UPDATE THE NORMS. + + jp1 = j + 1 + IF (n >= jp1) THEN + DO k = jp1, n + sum = zero + DO i = j, m + sum = sum + a(i,j) * a(i,k) + END DO + temp = sum / a(j,j) + DO i = j, m + a(i,k) = a(i,k) - temp * a(i,j) + END DO + IF (.NOT.(.NOT.pivot.OR.rdiag(k) == zero)) THEN + temp = a(j,k) / rdiag(k) + rdiag(k) = rdiag(k) * SQRT(MAX(zero,one-temp**2)) + IF (p05*(rdiag(k)/wa(k))**2 <= epsmch) THEN + rdiag(k) = enorm(m-j, a(jp1:,k)) + wa(k) = rdiag(k) + END IF + END IF + END DO + END IF + END IF + rdiag(j) = -ajnorm +END DO +RETURN + +! LAST CARD OF SUBROUTINE QRFAC. + +END SUBROUTINE qrfac + + + +SUBROUTINE r1mpyq(m, n, a, lda, v, w) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: lda +REAL (dp), INTENT(IN OUT) :: a(lda,n) +REAL (dp), INTENT(IN) :: v(n) +REAL (dp), INTENT(IN) :: w(n) + + +! ********** + +! SUBROUTINE R1MPYQ + +! GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE +! Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH +! ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE +! GV, GW ROTATIONS IS SUPPLIED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1MPYQ(M, N, A, LDA, V, W) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF A. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF COLUMNS OF A. + +! A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX TO BE +! POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q DESCRIBED ABOVE. +! ON OUTPUT A*Q HAS REPLACED A. + +! LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M +! WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. + +! V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SUBROUTINES CALLED + +! FORTRAN-SUPPLIED ... ABS, SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i, j, nmj, nm1 +REAL (dp) :: COS, SIN, temp +REAL (dp), PARAMETER :: one = 1.0_dp + +! APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + IF (ABS(v(j)) > one) COS = one / v(j) + IF (ABS(v(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(v(j)) <= one) SIN = v(j) + IF (ABS(v(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) - SIN * a(i,n) + a(i,n) = SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO + +! APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. + + DO j = 1, nm1 + IF (ABS(w(j)) > one) COS = one / w(j) + IF (ABS(w(j)) > one) SIN = SQRT(one-COS**2) + IF (ABS(w(j)) <= one) SIN = w(j) + IF (ABS(w(j)) <= one) COS = SQRT(one-SIN**2) + DO i = 1, m + temp = COS * a(i,j) + SIN * a(i,n) + a(i,n) = -SIN * a(i,j) + COS * a(i,n) + a(i,j) = temp + END DO + END DO +END IF +RETURN + +! LAST CARD OF SUBROUTINE R1MPYQ. + +END SUBROUTINE r1mpyq + + + +SUBROUTINE r1updt(m, n, s, ls, u, v, w, sing) + +INTEGER, INTENT(IN) :: m +INTEGER, INTENT(IN) :: n +INTEGER, INTENT(IN) :: ls +REAL (dp), INTENT(IN OUT) :: s(ls) +REAL (dp), INTENT(IN) :: u(m) +REAL (dp), INTENT(IN OUT) :: v(n) +REAL (dp), INTENT(OUT) :: w(m) +LOGICAL, INTENT(OUT) :: sing + + +! ********** + +! SUBROUTINE R1UPDT + +! GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, +! AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN +! ORTHOGONAL MATRIX Q SUCH THAT + +! T +! (S + U*V )*Q + +! IS AGAIN LOWER TRAPEZOIDAL. + +! THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS + +! GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + +! WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE +! WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. +! Q ITSELF IS NOT ACCUMULATED, RATHER THE INFORMATION TO RECOVER THE GV, +! GW ROTATIONS IS RETURNED. + +! THE SUBROUTINE STATEMENT IS + +! SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING) + +! WHERE + +! M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF ROWS OF S. + +! N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER +! OF COLUMNS OF S. N MUST NOT EXCEED M. + +! S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER +! TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS +! THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. + +! LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN +! (N*(2*M-N+1))/2. + +! U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE VECTOR U. + +! V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR V. +! ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO +! RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. + +! W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED ABOVE. + +! SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE +! DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS +! SET FALSE. + +! SUBPROGRAMS CALLED + +! MINPACK-SUPPLIED ... SPMPAR + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, JOHN L. NAZARETH + +! ********** +INTEGER :: i, j, jj, l, nmj, nm1 +REAL (dp) :: COS, cotan, giant, SIN, TAN, tau, temp +REAL (dp), PARAMETER :: one = 1.0_dp, p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp + +! GIANT IS THE LARGEST MAGNITUDE. + +giant = HUGE(1.0_dp) + +! INITIALIZE THE DIAGONAL ELEMENT POINTER. + +jj = (n*(2*m-n+1)) / 2 - (m-n) + +! MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. + +l = jj +DO i = n, m + w(i) = s(l) + l = l + 1 +END DO + +! ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR +! IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. + +nm1 = n - 1 +IF (nm1 >= 1) THEN + DO nmj = 1, nm1 + j = n - nmj + jj = jj - (m-j+1) + w(j) = zero + IF (v(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V. + + IF (ABS(v(n)) < ABS(v(j))) THEN + cotan = v(n) / v(j) + SIN = p5 / SQRT(p25+p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = v(j) / v(n) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION +! NECESSARY TO RECOVER THE GIVENS ROTATION. + + v(n) = SIN * v(j) + COS * v(n) + v(j) = tau + +! APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) - SIN * w(i) + w(i) = SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + END IF + END DO +END IF + +! ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. + +DO i = 1, m + w(i) = w(i) + v(n) * u(i) +END DO + +! ELIMINATE THE SPIKE. + +sing = .false. +IF (nm1 >= 1) THEN + DO j = 1, nm1 + IF (w(j) /= zero) THEN + +! DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE +! J-TH ELEMENT OF THE SPIKE. + + IF (ABS(s(jj)) < ABS(w(j))) THEN + cotan = s(jj) / w(j) + SIN = p5 / SQRT(p25 + p25*cotan**2) + COS = SIN * cotan + tau = one + IF (ABS(COS)*giant > one) tau = one / COS + ELSE + TAN = w(j) / s(jj) + COS = p5 / SQRT(p25+p25*TAN**2) + SIN = COS * TAN + tau = SIN + END IF + +! APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. + + l = jj + DO i = j, m + temp = COS * s(l) + SIN * w(i) + w(i) = -SIN * s(l) + COS * w(i) + s(l) = temp + l = l + 1 + END DO + +! STORE THE INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION. + + w(j) = tau + END IF + +! TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. + + IF (s(jj) == zero) sing = .true. + jj = jj + (m-j+1) + END DO +END IF + +! MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. + +l = jj +DO i = n, m + s(l) = w(i) + l = l + 1 +END DO +IF (s(jj) == zero) sing = .true. +RETURN + +! LAST CARD OF SUBROUTINE R1UPDT. + +END SUBROUTINE r1updt + + +FUNCTION enorm(n, x) RESULT(fn_val) + +INTEGER, INTENT(IN) :: n +REAL (dp), INTENT(IN) :: x(n) +REAL (dp) :: fn_val + +! ********** + +! FUNCTION ENORM + +! GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE EUCLIDEAN NORM OF X. + +! THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF SQUARES IN THREE +! DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE SMALL AND LARGE COMPONENTS +! ARE SCALED SO THAT NO OVERFLOWS OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE +! PERMITTED. UNDERFLOWS AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED +! SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. +! THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS DEPEND ON +! TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN RESTRICTIONS ON THESE CONSTANTS +! ARE THAT RDWARF**2 NOT UNDERFLOW AND RGIANT**2 NOT OVERFLOW. +! THE CONSTANTS GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER. + +! THE FUNCTION STATEMENT IS + +! REAL FUNCTION ENORM(N, X) + +! WHERE + +! N IS A POSITIVE INTEGER INPUT VARIABLE. + +! X IS AN INPUT ARRAY OF LENGTH N. + +! SUBPROGRAMS CALLED + +! FORTRAN-SUPPLIED ... ABS,SQRT + +! ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. +! BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE + +! ********** +INTEGER :: i +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max +REAL (dp), PARAMETER :: rdwarf = 1.0D-100, rgiant = 1.0D+100 + +s1 = 0.0_dp +s2 = 0.0_dp +s3 = 0.0_dp +x1max = 0.0_dp +x3max = 0.0_dp +floatn = n +agiant = rgiant / floatn +DO i = 1, n + xabs = ABS(x(i)) + IF (xabs <= rdwarf .OR. xabs >= agiant) THEN + IF (xabs > rdwarf) THEN + +! SUM FOR LARGE COMPONENTS. + + IF (xabs > x1max) THEN + s1 = 1.0_dp + s1 * (x1max/xabs) ** 2 + x1max = xabs + ELSE + s1 = s1 + (xabs/x1max) ** 2 + END IF + ELSE + +! SUM FOR SMALL COMPONENTS. + + IF (xabs > x3max) THEN + s3 = 1.0_dp + s3 * (x3max/xabs) ** 2 + x3max = xabs + ELSE + IF (xabs /= 0.0_dp) s3 = s3 + (xabs/x3max) ** 2 + END IF + END IF + ELSE + +! SUM FOR INTERMEDIATE COMPONENTS. + + s2 = s2 + xabs ** 2 + END IF +END DO + +! CALCULATION OF NORM. + +IF (s1 /= 0.0_dp) THEN + fn_val = x1max * SQRT(s1 + (s2/x1max)/x1max) +ELSE + IF (s2 /= 0.0_dp) THEN + IF (s2 >= x3max) fn_val = SQRT(s2*(1.0_dp + (x3max/s2)*(x3max*s3))) + IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) + ELSE + fn_val = x3max * SQRT(s3) + END IF +END IF +RETURN +END FUNCTION enorm + +END MODULE Solve_NonLin diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/interpolation.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/interpolation.f90 new file mode 100644 index 000000000..bcf165a31 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/interpolation.f90 @@ -0,0 +1,122 @@ +!Linear interpolation from +!http://people.sc.fsu.edu/~jburkardt/f_src/pwl_interp_1d/pwl_interp_1d.html +module interpolation + use constants, only: dp + implicit none + private + public pwl_interp_1d +contains +!!********************************BEGINNING************************************* +!!minimal working example (you have to supply xy values in "refl.dat" and change value of xi) +!subroutine test_pwl_interp_1d +! integer :: fi=154 !file index +! integer :: i !counter +! integer, parameter :: nd=101 !number of data points +! real(dp), dimension(nd) :: xd,yd !data for interpolation +! integer :: ni=1 !number of points, where we want to interpolate +! real(dp) :: xi(1) !x-values of points, where we want to interpolate +! real(dp) :: yi(1) !interpolated y-values +! open(fi,file="refl.dat") +! do i=1,nd +! read(fi,*) xd(i),yd(i) +! enddo +! close(fi) +! xi=2e-6_dp +! call pwl_interp_1d ( nd, xd, yd, ni, xi, yi ) +! write(*,*) xi,yi +!end subroutine test_pwl_interp_1d +!!***********************************END**************************************** + + +subroutine pwl_interp_1d ( nd, xd, yd, ni, xi, yi ) + +!*****************************************************************************80 +! +!! PWL_INTERP_1D evaluates the piecewise linear interpolant. +! +! Discussion: +! +! The piecewise linear interpolant L(ND,XD,YD)(X) is the piecewise +! linear function which interpolates the data (XD(I),YD(I)) for I = 1 +! to ND. +! +! Licensing: +! +! This code is distributed under the GNU LGPL license. +! +! Modified: +! +! 22 September 2012 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input, integer ( kind = 4 ) ND, the number of data points. +! ND must be at least 1. +! +! Input, real ( kind = 8 ) XD(ND), the data points. +! +! Input, real ( kind = 8 ) YD(ND), the data values. +! +! Input, integer ( kind = 4 ) NI, the number of interpolation points. +! +! Input, real ( kind = 8 ) XI(NI), the interpolation points. +! +! Output, real ( kind = 8 ) YI(NI), the interpolated values. +! + implicit none + + integer ( kind = 4 ) nd + integer ( kind = 4 ) ni + + integer ( kind = 4 ) i + integer ( kind = 4 ) k + real ( kind = dp ) t + real ( kind = dp ) xd(nd) + real ( kind = dp ) yd(nd) + real ( kind = dp ) xi(ni) + real ( kind = dp ) yi(ni) + + yi(1:ni) = 0.0e+00_dp + + if ( nd == 1 ) then + yi(1:ni) = yd(1) + return + end if + + do i = 1, ni + + if ( xi(i) <= xd(1) ) then + + t = ( xi(i) - xd(1) ) / ( xd(2) - xd(1) ) + yi(i) = ( 1.0e+00_dp - t ) * yd(1) + t * yd(2) + + else if ( xd(nd) <= xi(i) ) then + + t = ( xi(i) - xd(nd-1) ) / ( xd(nd) - xd(nd-1) ) + yi(i) = ( 1.0e+00_dp - t ) * yd(nd-1) + t * yd(nd) + + else + + do k = 2, nd + + if ( xd(k-1) <= xi(i) .and. xi(i) <= xd(k) ) then + + t = ( xi(i) - xd(k-1) ) / ( xd(k) - xd(k-1) ) + yi(i) = ( 1.0e+00_dp - t ) * yd(k-1) + t * yd(k) + exit + + end if + + end do + + end if + + end do + + return +end subroutine pwl_interp_1d +end module interpolation diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/ioutils.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/ioutils.f90 new file mode 100644 index 000000000..80a5bbb10 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/ioutils.f90 @@ -0,0 +1,41 @@ +!> @file +!! i/o utilities +!! @author Pavel Ferkl +!! @ingroup foam_aging +module ioutils + implicit none + private + public newunit,str +contains +!********************************BEGINNING************************************* +!> returns lowest i/o unit number not in use +integer function newunit(unit) result(n) + integer, intent(out), optional :: unit + logical inuse + integer, parameter :: & + nmin=123,& ! avoid lower numbers which are sometimes reserved + nmax=999 ! may be system-dependent + do n = nmin, nmax + inquire(unit=n, opened=inuse) + if (.not. inuse) then + if (present(unit)) unit=n + return + end if + end do + write(*,*) "newunit ERROR: available unit not found." + stop +end function newunit +!***********************************END**************************************** + + + +!********************************BEGINNING************************************* +!> converts integer to string +function str(k) + character(len=20) :: str + integer, intent(in) :: k + write (str, *) k + str = adjustl(str) +end function str +!***********************************END**************************************** +end module ioutils diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/main.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/main.f90 new file mode 100644 index 000000000..4340f8c46 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/main.f90 @@ -0,0 +1,21 @@ +!> @file +!! Main program. Homogenization approach to heat transfer in polymer foams +!! @author Pavel Ferkl +!! @ingroup foam_cond +program hahtf + use tests + use ioutils + use constants, only: mfi + implicit none + write(*,*) 'Welcome in hahtf' + open (newunit(mfi),file='hahtf.out') + write(mfi,*) 'Welcome in hahtf' + call loadParameters + call eqcond(1) +! call eqcond_por +! call eqcond_dcell +! call eqcond_strut + write(*,*) 'Program exited normally' + write(mfi,*) 'Program exited normally' + close(mfi) +end program diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/physicalProperties.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/physicalProperties.f90 new file mode 100644 index 000000000..29536defc --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/physicalProperties.f90 @@ -0,0 +1,44 @@ +!> @file +!! subroutines for calculation of physical properties of polymer and blowing +!! agents (using Modena calls) +!! @author Pavel Ferkl +!! @ingroup foam_cond +module physicalProperties + use constants + use fmodena + implicit none + private + public polymerConductivity +contains +!********************************BEGINNING************************************* +!> calculation of thermal conductivity of polymer +subroutine polymerConductivity(ksol,temp) + real(dp), intent(out) :: ksol + real(dp), intent(in) :: temp + !modena variables + integer(c_size_t) :: ksolTemppos + + integer(c_int) :: ret + + type(c_ptr) :: ksolModena = c_null_ptr + type(c_ptr) :: ksolInputs = c_null_ptr + type(c_ptr) :: ksolOutputs = c_null_ptr + ksolModena = modena_model_new (& + c_char_"polymer_thermal_conductivity"//c_null_char) + ksolInputs = modena_inputs_new (ksolModena) + ksolOutputs = modena_outputs_new (ksolModena) + ksolTemppos = modena_model_inputs_argPos(& + ksolModena, c_char_"T"//c_null_char) + call modena_model_argPos_check(ksolModena) + call modena_inputs_set(ksolInputs, ksolTemppos, temp) + ret = modena_model_call (ksolModena, ksolInputs, ksolOutputs) + if(ret /= 0) then + call exit(ret) + endif + ksol=modena_outputs_get(ksolOutputs, 0_c_size_t) + call modena_inputs_destroy (ksolInputs) + call modena_outputs_destroy (ksolOutputs) + call modena_model_destroy (ksolModena) +end subroutine polymerConductivity +!***********************************END**************************************** +end module physicalProperties diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/quadpack.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/quadpack.f90 new file mode 100644 index 000000000..211d55882 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/quadpack.f90 @@ -0,0 +1,8484 @@ +!partially adatped to use higher precision, but I'm not sure if the results +!are more than single-precision (frequent use of numerical costants) +module quadpack + use constants, only:dp + implicit none + private + public qags,qag +contains +! +!****************************************************************************** +! +! 1. introduction +! +! quadpack is a fortran subroutine package for the numerical +! computation of definite one-dimensional integrals. it originated +! from a joint project of r. piessens and e. de doncker (appl. +! math. and progr. div.- k.u.leuven, belgium), c. ueberhuber (inst. +! fuer math.- techn.u.wien, austria), and d. kahaner (nation. bur. +! of standards- washington d.c., u.s.a.). +! +! 2. survey +! +! - qags : is an integrator based on globally adaptive interval +! subdivision in connection with extrapolation (de doncker, +! 1978) by the epsilon algorithm (wynn, 1956). +! +! - qagp : serves the same purposes as qags, but also allows +! for eventual user-supplied information, i.e. the +! abscissae of internal singularities, discontinuities +! and other difficulties of the integrand function. +! the algorithm is a modification of that in qags. +! +! - qagi : handles integration over infinite intervals. the +! infinite range is mapped onto a finite interval and +! then the same strategy as in qags is applied. +! +! - qawo : is a routine for the integration of cos(omega*x)*f(x) +! or sin(omega*x)*f(x) over a finite interval (a,b). +! omega is is specified by the user +! the rule evaluation component is based on the +! modified clenshaw-curtis technique. +! an adaptive subdivision scheme is used connected with +! an extrapolation procedure, which is a modification +! of that in qags and provides the possibility to deal +! even with singularities in f. +! +! - qawf : calculates the fourier cosine or fourier sine +! transform of f(x), for user-supplied interval (a, +! infinity), omega, and f. the procedure of qawo is +! used on successive finite intervals, and convergence +! acceleration by means of the epsilon algorithm (wynn, +! 1956) is applied to the series of the integral +! contributions. +! +! - qaws : integrates w(x)*f(x) over (a,b) with a < b finite, +! and w(x) = ((x-a)**alfa)*((b-x)**beta)*v(x) +! where v(x) = 1 or log(x-a) or log(b-x) +! or log(x-a)*log(b-x) +! and alfa > (-1), beta > (-1). +! the user specifies a, b, alfa, beta and the type of +! the function v. +! a globally adaptive subdivision strategy is applied, +! with modified clenshaw-curtis integration on the +! subintervals which contain a or b. +! +! - qawc : computes the cauchy principal value of f(x)/(x-c) +! over a finite interval (a,b) and for +! user-determined c. +! the strategy is globally adaptive, and modified +! clenshaw-curtis integration is used on the subranges +! which contain the point x = c. +! +! each of the routines above also has a "more detailed" version +! with a name ending in e, as qage. these provide more +! information and control than the easier versions. +! +! +! the preceeding routines are all automatic. that is, the user +! inputs his problem and an error tolerance. the routine +! attempts to perform the integration to within the requested +! absolute or relative error. +! there are, in addition, a number of non-automatic integrators. +! these are most useful when the problem is such that the +! user knows that a fixed rule will provide the accuracy +! required. typically they return an error estimate but make +! no attempt to satisfy any particular input error request. +! +! qk15 +! qk21 +! qk31 +! qk41 +! qk51 +! qk61 +! estimate the integral on [a,b] using 15, 21,..., 61 +! point rule and return an error estimate. +! qk15i 15 point rule for (semi)infinite interval. +! qk15w 15 point rule for special singular weight functions. +! qc25c 25 point rule for cauchy principal values +! qc25o 25 point rule for sin/cos integrand. +! qmomo integrates k-th degree chebychev polynomial times +! function with various explicit singularities. +! +! 3. guidelines for the use of quadpack +! +! here it is not our purpose to investigate the question when +! automatic quadrature should be used. we shall rather attempt +! to help the user who already made the decision to use quadpack, +! with selecting an appropriate routine or a combination of +! several routines for handling his problem. +! +! for both quadrature over finite and over infinite intervals, +! one of the first questions to be answered by the user is +! related to the amount of computer time he wants to spend, +! versus his -own- time which would be needed, for example, for +! manual subdivision of the interval or other analytic +! manipulations. +! +! (1) the user may not care about computer time, or not be +! willing to do any analysis of the problem. especially when +! only one or a few integrals must be calculated, this attitude +! can be perfectly reasonable. in this case it is clear that +! either the most sophisticated of the routines for finite +! intervals, qags, must be used, or its analogue for infinite +! intervals, qagi. these routines are able to cope with +! rather difficult, even with improper integrals. +! this way of proceeding may be expensive. but the integrator +! is supposed to give you an answer in return, with additional +! information in the case of a failure, through its error +! estimate and flag. yet it must be stressed that the programs +! cannot be totally reliable. +! +! (2) the user may want to examine the integrand function. +! if bad local difficulties occur, such as a discontinuity, a +! singularity, derivative singularity or high peak at one or +! more points within the interval, the first advice is to +! split up the interval at these points. the integrand must +! then be examinated over each of the subintervals separately, +! so that a suitable integrator can be selected for each of +! them. if this yields problems involving relative accuracies +! to be imposed on -finite- subintervals, one can make use of +! qagp, which must be provided with the positions of the local +! difficulties. however, if strong singularities are present +! and a high accuracy is requested, application of qags on the +! subintervals may yield a better result. +! +! for quadrature over finite intervals we thus dispose of qags +! and +! - qng for well-behaved integrands, +! - qag for functions with an oscillating behavior of a non +! specific type, +! - qawo for functions, eventually singular, containing a +! factor cos(omega*x) or sin(omega*x) where omega is known, +! - qaws for integrands with algebraico-logarithmic end point +! singularities of known type, +! - qawc for cauchy principal values. +! +! remark +! +! on return, the work arrays in the argument lists of the +! adaptive integrators contain information about the interval +! subdivision process and hence about the integrand behavior: +! the end points of the subintervals, the local integral +! contributions and error estimates, and eventually other +! characteristics. for this reason, and because of its simple +! globally adaptive nature, the routine qag in particular is +! well-suited for integrand examination. difficult spots can +! be located by investigating the error estimates on the +! subintervals. +! +! for infinite intervals we provide only one general-purpose +! routine, qagi. it is based on the qags algorithm applied +! after a transformation of the original interval into (0,1). +! yet it may eventuate that another type of transformation is +! more appropriate, or one might prefer to break up the +! original interval and use qagi only on the infinite part +! and so on. these kinds of actions suggest a combined use of +! different quadpack integrators. note that, when the only +! difficulty is an integrand singularity at the finite +! integration limit, it will in general not be necessary to +! break up the interval, as qagi deals with several types of +! singularity at the boundary point of the integration range. +! it also handles slowly convergent improper integrals, on +! the condition that the integrand does not oscillate over +! the entire infinite interval. if it does we would advise +! to sum succeeding positive and negative contributions to +! the integral -e.g. integrate between the zeros- with one +! or more of the finite-range integrators, and apply +! convergence acceleration eventually by means of quadpack +! subroutine qelg which implements the epsilon algorithm. +! such quadrature problems include the fourier transform as +! a special case. yet for the latter we have an automatic +! integrator available, qawf. +! +function pi ( ) +! +!******************************************************************************* +! +!! PI returns the value of pi. +! +! +! Modified: +! +! 04 December 1998 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Output, real(dp) PI, the value of pi. +! + implicit none +! + real(dp) pi +! + pi = 3.14159265358979323846264338327950288419716939937510E+00_dp + + return +end function +subroutine qag ( f, a, b, epsabs, epsrel, key, result, abserr, neval, ier ) +! +!****************************************************************************** +! +!! QAG approximates an integral over a finite interval. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F over (A,B), +! hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! QAG is a simple globally adaptive integrator using the strategy of +! Aind (Piessens, 1973). It is possible to choose between 6 pairs of +! Gauss-Kronrod quadrature formulae for the rule evaluation component. +! The pairs of high degree of precision are suitable for handling +! integration difficulties due to a strongly oscillating integrand. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Input, integer KEY, chooses the order of the local integration rule: +! 1, 7 Gauss points, 15 Gauss-Kronrod points, +! 2, 10 Gauss points, 21 Gauss-Kronrod points, +! 3, 15 Gauss points, 31 Gauss-Kronrod points, +! 4, 20 Gauss points, 41 Gauss-Kronrod points, +! 5, 25 Gauss points, 51 Gauss-Kronrod points, +! 6, 30 Gauss points, 61 Gauss-Kronrod points. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Output, integer IER, return code. +! 0, normal and reliable termination of the routine. It is assumed that the +! requested accuracy has been achieved. +! 1, maximum number of subdivisions allowed has been achieved. One can +! allow more subdivisions by increasing the value of LIMIT in QAG. +! However, if this yields no improvement it is advised to analyze the +! integrand to determine the integration difficulties. If the position +! of a local difficulty can be determined, such as a singularity or +! discontinuity within the interval) one will probably gain from +! splitting up the interval at this point and calling the integrator +! on the subranges. If possible, an appropriate special-purpose +! integrator should be used which is designed for handling the type +! of difficulty involved. +! 2, the occurrence of roundoff error is detected, which prevents the +! requested tolerance from being achieved. +! 3, extremely bad integrand behavior occurs at some points of the +! integration interval. +! 6, the input is invalid, because EPSABS < 0 and EPSREL < 0. +! +! Local parameters: +! +! LIMIT is the maximum number of subintervals allowed in +! the subdivision process of QAGE. +! + implicit none +! + integer, parameter :: limit = 500 +! + real(dp) a + real(dp) abserr + real(dp) alist(limit) + real(dp) b + real(dp) blist(limit) + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp), external :: f + integer ier + integer iord(limit) + integer key + integer last +! integer limit + integer neval + real(dp) result + real(dp) rlist(limit) +! + call qage ( f, a, b, epsabs, epsrel, key, limit, result, abserr, neval, & + ier, alist, blist, rlist, elist, iord, last ) + + return +end subroutine +subroutine qage ( f, a, b, epsabs, epsrel, key, limit, result, abserr, neval, & + ier, alist, blist, rlist, elist, iord, last ) +! +!****************************************************************************** +! +!! QAGE estimates a definite integral. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F over (A,B), +! hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Input, integer KEY, chooses the order of the local integration rule: +! 1, 7 Gauss points, 15 Gauss-Kronrod points, +! 2, 10 Gauss points, 21 Gauss-Kronrod points, +! 3, 15 Gauss points, 31 Gauss-Kronrod points, +! 4, 20 Gauss points, 41 Gauss-Kronrod points, +! 5, 25 Gauss points, 51 Gauss-Kronrod points, +! 6, 30 Gauss points, 61 Gauss-Kronrod points. +! +! Input, integer LIMIT, the maximum number of subintervals that +! can be used. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Output, integer IER, return code. +! 0, normal and reliable termination of the routine. It is assumed that the +! requested accuracy has been achieved. +! 1, maximum number of subdivisions allowed has been achieved. One can +! allow more subdivisions by increasing the value of LIMIT in QAG. +! However, if this yields no improvement it is advised to analyze the +! integrand to determine the integration difficulties. If the position +! of a local difficulty can be determined, such as a singularity or +! discontinuity within the interval) one will probably gain from +! splitting up the interval at this point and calling the integrator +! on the subranges. If possible, an appropriate special-purpose +! integrator should be used which is designed for handling the type +! of difficulty involved. +! 2, the occurrence of roundoff error is detected, which prevents the +! requested tolerance from being achieved. +! 3, extremely bad integrand behavior occurs at some points of the +! integration interval. +! 6, the input is invalid, because EPSABS < 0 and EPSREL < 0. +! +! Workspace, real(dp) ALIST(LIMIT), BLIST(LIMIT), contains in entries 1 +! through LAST the left and right ends of the partition subintervals. +! +! Workspace, real(dp) RLIST(LIMIT), contains in entries 1 through LAST +! the integral approximations on the subintervals. +! +! Workspace, real(dp) ELIST(LIMIT), contains in entries 1 through LAST +! the absolute error estimates on the subintervals. +! +! Output, integer IORD(LIMIT), the first K elements of which are pointers +! to the error estimates over the subintervals, such that +! elist(iord(1)), ..., elist(iord(k)) form a decreasing sequence, with +! k = last if last <= (limit/2+2), and k = limit+1-last otherwise. +! +! Output, integer LAST, the number of subintervals actually produced +! in the subdivision process. +! +! Local parameters: +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error estimate +! errmax - elist(maxerr) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel*abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! + implicit none +! + integer limit +! + real(dp) a + real(dp) abserr + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) b + real(dp) blist(limit) + real(dp) b1 + real(dp) b2 + real(dp) c + real(dp) defabs + real(dp) defab1 + real(dp) defab2 + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) error2 + real(dp) erro12 + real(dp) errsum + real(dp), external :: f + integer ier + integer iord(limit) + integer iroff1 + integer iroff2 + integer k + integer key + integer keyf + integer last + integer maxerr + integer neval + integer nrmax + real(dp) resabs + real(dp) result + real(dp) rlist(limit) +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + result = 0.0e+00 + abserr = 0.0e+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + iord(1) = 0 + + if ( epsabs < 0.0e+00 .and. epsrel < 0.0e+00 ) then + ier = 6 + return + end if +! +! First approximation to the integral. +! + keyf = key + keyf = max ( keyf, 1 ) + keyf = min ( keyf, 6 ) + + c = keyf + neval = 0 + + if ( keyf == 1 ) then + call qk15 ( f, a, b, result, abserr, defabs, resabs ) + else if ( keyf == 2 ) then + call qk21 ( f, a, b, result, abserr, defabs, resabs ) + else if ( keyf == 3 ) then + call qk31 ( f, a, b, result, abserr, defabs, resabs ) + else if ( keyf == 4 ) then + call qk41 ( f, a, b, result, abserr, defabs, resabs ) + else if ( keyf == 5 ) then + call qk51 ( f, a, b, result, abserr, defabs, resabs ) + else if ( keyf == 6 ) then + call qk61 ( f, a, b, result, abserr, defabs, resabs ) + end if + + last = 1 + rlist(1) = result + elist(1) = abserr + iord(1) = 1 +! +! Test on accuracy. +! + errbnd = max ( epsabs, epsrel * abs ( result ) ) + + if ( abserr <= 5.0e+01 * epsilon ( defabs ) * defabs .and. & + abserr > errbnd ) then + ier = 2 + end if + + if ( limit == 1 ) then + ier = 1 + end if + + if ( ier /= 0 .or. & + ( abserr <= errbnd .and. abserr /= resabs ) .or. & + abserr == 0.0e+00 ) then + + if ( keyf /= 1 ) then + neval = (10*keyf+1) * (2*neval+1) + else + neval = 30 * neval + 15 + end if + + return + + end if +! +! Initialization. +! + errmax = abserr + maxerr = 1 + area = result + errsum = abserr + nrmax = 1 + iroff1 = 0 + iroff2 = 0 + + do last = 2, limit +! +! Bisect the subinterval with the largest error estimate. +! + a1 = alist(maxerr) + b1 = 0.5E+00 * ( alist(maxerr) + blist(maxerr) ) + a2 = b1 + b2 = blist(maxerr) + + if ( keyf == 1 ) then + call qk15 ( f, a1, b1, area1, error1, resabs, defab1 ) + else if ( keyf == 2 ) then + call qk21 ( f, a1, b1, area1, error1, resabs, defab1 ) + else if ( keyf == 3 ) then + call qk31 ( f, a1, b1, area1, error1, resabs, defab1 ) + else if ( keyf == 4 ) then + call qk41 ( f, a1, b1, area1, error1, resabs, defab1) + else if ( keyf == 5 ) then + call qk51 ( f, a1, b1, area1, error1, resabs, defab1 ) + else if ( keyf == 6 ) then + call qk61 ( f, a1, b1, area1, error1, resabs, defab1 ) + end if + + if ( keyf == 1 ) then + call qk15 ( f, a2, b2, area2, error2, resabs, defab2 ) + else if ( keyf == 2 ) then + call qk21 ( f, a2, b2, area2, error2, resabs, defab2 ) + else if ( keyf == 3 ) then + call qk31 ( f, a2, b2, area2, error2, resabs, defab2 ) + else if ( keyf == 4 ) then + call qk41 ( f, a2, b2, area2, error2, resabs, defab2 ) + else if ( keyf == 5 ) then + call qk51 ( f, a2, b2, area2, error2, resabs, defab2 ) + else if ( keyf == 6 ) then + call qk61 ( f, a2, b2, area2, error2, resabs, defab2 ) + end if +! +! Improve previous approximations to integral and error and +! test for accuracy. +! + neval = neval + 1 + area12 = area1 + area2 + erro12 = error1 + error2 + errsum = errsum + erro12 - errmax + area = area + area12 - rlist(maxerr) + + if ( defab1 /= error1 .and. defab2 /= error2 ) then + + if ( abs ( rlist(maxerr) - area12 ) <= 1.0e-05 * abs ( area12 ) & + .and. erro12 >= 9.9e-01 * errmax ) then + iroff1 = iroff1 + 1 + end if + + if ( last > 10 .and. erro12 > errmax ) then + iroff2 = iroff2 + 1 + end if + + end if + + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = max ( epsabs, epsrel * abs ( area ) ) +! +! Test for roundoff error and eventually set error flag. +! + if ( errsum > errbnd ) then + + if ( iroff1 >= 6 .or. iroff2 >= 20 ) then + ier = 2 + end if +! +! Set error flag in the case that the number of subintervals +! equals limit. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of bad integrand behavior +! at a point of the integration range. +! + if ( max ( abs ( a1 ), abs ( b2 ) ) <= ( 1.0e+00 + c * 1.0e+03 * & + epsilon ( a1 ) ) * ( abs ( a2 ) + 1.0e+04 * tiny ( a2 ) ) ) then + ier = 3 + end if + + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with the largest error estimate (to be bisected next). +! + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if ( ier /= 0 .or. errsum <= errbnd ) then + exit + end if + + end do +! +! Compute final result. +! + result = sum ( rlist(1:last) ) + + abserr = errsum + + if ( keyf /= 1 ) then + neval = ( 10 * keyf + 1 ) * ( 2 * neval + 1 ) + else + neval = 30 * neval + 15 + end if + + return +end subroutine +subroutine qagi ( f, bound, inf, epsabs, epsrel, result, abserr, neval, ier ) +! +!****************************************************************************** +! +!! QAGI estimates an integral over a semi-infinite or infinite interval. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F over (A, +Infinity), +! or +! I = integral of F over (-Infinity,A) +! or +! I = integral of F over (-Infinity,+Infinity), +! hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) BOUND, the value of the finite endpoint of the integration +! range, if any, that is, if INF is 1 or -1. +! +! Input, integer INF, indicates the type of integration range. +! 1: ( BOUND, +Infinity), +! -1: ( -Infinity, BOUND), +! 2: ( -Infinity, +Infinity). +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Output, integer IER, error indicator. +! 0, normal and reliable termination of the routine. It is assumed that +! the requested accuracy has been achieved. +! > 0, abnormal termination of the routine. The estimates for result +! and error are less reliable. It is assumed that the requested +! accuracy has not been achieved. +! 1, maximum number of subdivisions allowed has been achieved. One can +! allow more subdivisions by increasing the data value of LIMIT in QAGI +! (and taking the according dimension adjustments into account). +! However, if this yields no improvement it is advised to analyze the +! integrand in order to determine the integration difficulties. If the +! position of a local difficulty can be determined (e.g. singularity, +! discontinuity within the interval) one will probably gain from +! splitting up the interval at this point and calling the integrator +! on the subranges. If possible, an appropriate special-purpose +! integrator should be used, which is designed for handling the type +! of difficulty involved. +! 2, the occurrence of roundoff error is detected, which prevents the +! requested tolerance from being achieved. The error may be +! under-estimated. +! 3, extremely bad integrand behavior occurs at some points of the +! integration interval. +! 4, the algorithm does not converge. Roundoff error is detected in the +! extrapolation table. It is assumed that the requested tolerance +! cannot be achieved, and that the returned result is the best which +! can be obtained. +! 5, the integral is probably divergent, or slowly convergent. It must +! be noted that divergence can occur with any other value of IER. +! 6, the input is invalid, because INF /= 1 and INF /= -1 and INF /= 2, or +! epsabs < 0 and epsrel < 0. result, abserr, neval are set to zero. +! +! Local parameters: +! +! the dimension of rlist2 is determined by the value of +! limexp in QEXTR. +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least (limexp+2), +! containing the part of the epsilon table +! which is still needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements currently in rlist2. if an +! appropriate approximation to the compounded +! integral has been obtained, it is put in +! rlist2(numrl2) after numrl2 has been increased +! by one. +! small - length of the smallest interval considered up +! to now, multiplied by 1.5 +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine +! is attempting to perform extrapolation. i.e. +! before subdividing the smallest interval we +! try to decrease the value of erlarg. +! noext - logical variable denoting that extrapolation +! is no longer allowed (true-value) +! + implicit none +! + integer, parameter :: limit = 500 +! + real(dp) abseps + real(dp) abserr + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) blist(limit) + real(dp) boun + real(dp) bound + real(dp) b1 + real(dp) b2 + real(dp) correc + real(dp) defabs + real(dp) defab1 + real(dp) defab2 + real(dp) dres + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) erlarg + real(dp) erlast + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) error2 + real(dp) erro12 + real(dp) errsum + real(dp) ertest + logical extrap + real(dp), external :: f + integer id + integer ier + integer ierro + integer inf + integer iord(limit) + integer iroff1 + integer iroff2 + integer iroff3 + integer jupbnd + integer k + integer ksgn + integer ktmin + integer last + integer maxerr + integer neval + logical noext + integer nres + integer nrmax + integer numrl2 + real(dp) resabs + real(dp) reseps + real(dp) result + real(dp) res3la(3) + real(dp) rlist(limit) + real(dp) rlist2(52) + real(dp) small +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + result = 0.0e+00 + abserr = 0.0e+00 + alist(1) = 0.0e+00 + blist(1) = 1.0e+00 + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + iord(1) = 0 + + if ( epsabs < 0.0e+00 .and. epsrel < 0.0e+00 ) then + ier = 6 + return + end if +! +! First approximation to the integral. +! +! Determine the interval to be mapped onto (0,1). +! If INF = 2 the integral is computed as i = i1+i2, where +! i1 = integral of f over (-infinity,0), +! i2 = integral of f over (0,+infinity). +! + if ( inf == 2 ) then + boun = 0.0e+00 + else + boun = bound + end if + + call qk15i ( f, boun, inf, 0.0e+00_dp, 1.0e+00_dp, result, abserr, defabs, resabs ) +! +! Test on accuracy. +! + last = 1 + rlist(1) = result + elist(1) = abserr + iord(1) = 1 + dres = abs ( result ) + errbnd = max ( epsabs, epsrel * dres ) + + if ( abserr <= 100.0E+00 * epsilon ( defabs ) * defabs .and. & + abserr > errbnd ) then + ier = 2 + end if + + if ( limit == 1 ) then + ier = 1 + end if + + if ( ier /= 0 .or. (abserr <= errbnd .and. abserr /= resabs ) .or. & + abserr == 0.0e+00 ) go to 130 +! +! Initialization. +! + rlist2(1) = result + errmax = abserr + maxerr = 1 + area = result + errsum = abserr + abserr = huge ( abserr ) + nrmax = 1 + nres = 0 + ktmin = 0 + numrl2 = 2 + extrap = .false. + noext = .false. + ierro = 0 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + + if ( dres >= ( 1.0e+00 - 5.0e+01 * epsilon ( defabs ) ) * defabs ) then + ksgn = 1 + else + ksgn = -1 + end if + + do last = 2, limit +! +! Bisect the subinterval with nrmax-th largest error estimate. +! + a1 = alist(maxerr) + b1 = 5.0e-01 * ( alist(maxerr) + blist(maxerr) ) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + call qk15i ( f, boun, inf, a1, b1, area1, error1, resabs, defab1 ) + call qk15i ( f, boun, inf, a2, b2, area2, error2, resabs, defab2 ) +! +! Improve previous approximations to integral and error +! and test for accuracy. +! + area12 = area1 + area2 + erro12 = error1 + error2 + errsum = errsum + erro12 - errmax + area = area + area12 - rlist(maxerr) + + if ( defab1 /= error1 .and. defab2 /= error2 ) then + + if ( abs ( rlist(maxerr) - area12 ) <= 1.0e-05 * abs ( area12 ) & + .and. erro12 >= 9.9e-01 * errmax ) then + + if ( extrap ) then + iroff2 = iroff2 + 1 + end if + + if ( .not. extrap ) then + iroff1 = iroff1 + 1 + end if + + end if + + if ( last > 10 .and. erro12 > errmax ) then + iroff3 = iroff3 + 1 + end if + + end if + + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = max ( epsabs, epsrel * abs ( area ) ) +! +! Test for roundoff error and eventually set error flag. +! + if ( iroff1 + iroff2 >= 10 .or. iroff3 >= 20 ) then + ier = 2 + end if + + if ( iroff2 >= 5 ) then + ierro = 3 + end if +! +! Set error flag in the case that the number of subintervals equals LIMIT. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of bad integrand behavior +! at some points of the integration range. +! + if ( max ( abs(a1), abs(b2) ) <= (1.0e+00 + 1.0e+03 * epsilon ( a1 ) ) * & + ( abs(a2) + 1.0e+03 * tiny ( a2 ) )) then + ier = 4 + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with NRMAX-th largest error estimate (to be bisected next). +! + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if ( errsum <= errbnd ) go to 115 + + if ( ier /= 0 ) then + exit + end if + + if ( last == 2 ) then + small = 3.75e-01 + erlarg = errsum + ertest = errbnd + rlist2(2) = area + cycle + end if + + if ( noext ) then + cycle + end if + + erlarg = erlarg-erlast + + if ( abs(b1-a1) > small ) then + erlarg = erlarg+erro12 + end if +! +! Test whether the interval to be bisected next is the +! smallest interval. +! + if ( .not. extrap ) then + + if ( abs(blist(maxerr)-alist(maxerr)) > small ) then + cycle + end if + + extrap = .true. + nrmax = 2 + + end if + + if ( ierro == 3 .or. erlarg <= ertest ) go to 60 +! +! The smallest interval has the largest error. +! before bisecting decrease the sum of the errors over the +! larger intervals (erlarg) and perform extrapolation. +! + id = nrmax + jupbnd = last + + if ( last > (2+limit/2) ) then + jupbnd = limit + 3 - last + end if + + do k = id, jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) + if ( abs ( blist(maxerr) - alist(maxerr) ) > small ) then + go to 90 + end if + nrmax = nrmax + 1 + end do +! +! Extrapolate. +! +60 continue + + numrl2 = numrl2 + 1 + rlist2(numrl2) = area + call qextr ( numrl2, rlist2, reseps, abseps, res3la, nres ) + ktmin = ktmin+1 + + if ( ktmin > 5.and.abserr < 1.0e-03*errsum ) then + ier = 5 + end if + + if ( abseps < abserr ) then + + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = max ( epsabs, epsrel*abs(reseps) ) + + if ( abserr <= ertest ) then + exit + end if + + end if +! +! Prepare bisection of the smallest interval. +! + if ( numrl2 == 1 ) then + noext = .true. + end if + + if ( ier == 5 ) then + exit + end if + + maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + small = small*5.0e-01 + erlarg = errsum + +90 continue + + end do +! +! Set final result and error estimate. +! + if ( abserr == huge ( abserr ) ) go to 115 + + if ( (ier+ierro) == 0 ) go to 110 + + if ( ierro == 3 ) then + abserr = abserr+correc + end if + + if ( ier == 0 ) then + ier = 3 + end if + + if ( result /= 0.0e+00 .and. area /= 0.0e+00) go to 105 + if ( abserr > errsum)go to 115 + if ( area == 0.0e+00) go to 130 + + go to 110 + +105 continue + if ( abserr / abs(result) > errsum / abs(area) ) go to 115 +! +! Test on divergence +! +110 continue + + if ( ksgn == (-1) .and. & + max ( abs(result), abs(area) ) <= defabs * 1.0e-02) go to 130 + + if ( 1.0e-02 > (result/area) .or. & + (result/area) > 1.0e+02 .or. & + errsum > abs(area)) then + ier = 6 + end if + + go to 130 +! +! Compute global integral sum. +! + 115 continue + + result = sum ( rlist(1:last) ) + + abserr = errsum + 130 continue + + neval = 30*last-15 + if ( inf == 2 ) then + neval = 2*neval + end if + + if ( ier > 2 ) then + ier = ier - 1 + end if + + return +end subroutine +subroutine qagp ( f, a, b, npts2, points, epsabs, epsrel, result, abserr, & + neval, ier ) +! +!****************************************************************************** +! +!! QAGP computes a definite integral. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F over (A,B), +! hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! Interior break points of the integration interval, +! where local difficulties of the integrand may occur, such as +! singularities or discontinuities, are provided by the user. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, integer NPTS2, the number of user-supplied break points within +! the integration range, plus 2. NPTS2 must be at least 2. +! +! Input/output, real(dp) POINTS(NPTS2), contains the user provided interior +! breakpoints in entries 1 through NPTS2-2. If these points are not +! in ascending order on input, they will be sorted. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the data value +! of limit in qagp(and taking the according +! dimension adjustments into account). +! however, if this yields no improvement +! it is advised to analyze the integrand +! in order to determine the integration +! difficulties. if the position of a local +! difficulty can be determined (i.e. +! singularity, discontinuity within the +! interval), it should be supplied to the +! routine as an element of the vector +! points. if necessary, an appropriate +! special-purpose integrator must be used, +! which is designed for handling the type +! of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behavior occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. roundoff +! error is detected in the extrapolation +! table. it is presumed that the requested +! tolerance cannot be achieved, and that +! the returned result is the best which +! can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier > 0. +! = 6 the input is invalid because +! npts2 < 2 or +! break points are specified outside +! the integration range or +! epsabs < 0 and epsrel < 0, +! or limit < npts2. +! result, abserr, neval are set to zero. +! +! Local parameters: +! +! the dimension of rlist2 is determined by the value of +! limexp in QEXTR (rlist2 should be of dimension +! (limexp+2) at least). +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 +! containing the part of the epsilon table which +! is still needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements in rlist2. if an appropriate +! approximation to the compounded integral has +! obtained, it is put in rlist2(numrl2) after +! numrl2 has been increased by one. +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine +! is attempting to perform extrapolation. i.e. +! before subdividing the smallest interval we +! try to decrease the value of erlarg. +! noext - logical variable denoting that extrapolation is +! no longer allowed (true-value) +! + implicit none +! + integer, parameter :: limit = 500 +! + real(dp) a + real(dp) abseps + real(dp) abserr + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) b + real(dp) blist(limit) + real(dp) b1 + real(dp) b2 + real(dp) correc + real(dp) defabs + real(dp) defab1 + real(dp) defab2 + real(dp) dres + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) erlarg + real(dp) erlast + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) erro12 + real(dp) error2 + real(dp) errsum + real(dp) ertest + logical extrap + real(dp), external :: f + integer i + integer id + integer ier + integer ierro + integer ind1 + integer ind2 + integer iord(limit) + integer ip1 + integer iroff1 + integer iroff2 + integer iroff3 + integer j + integer jlow + integer jupbnd + integer k + integer ksgn + integer ktmin + integer last + integer levcur + integer level(limit) + integer levmax + integer maxerr + integer ndin(40) + integer neval + integer nint + logical noext + integer npts + integer npts2 + integer nres + integer nrmax + integer numrl2 + real(dp) points(40) + real(dp) pts(40) + real(dp) resa + real(dp) resabs + real(dp) reseps + real(dp) result + real(dp) res3la(3) + real(dp) rlist(limit) + real(dp) rlist2(52) + real(dp) sign + real(dp) temp +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + result = 0.0e+00 + abserr = 0.0e+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + iord(1) = 0 + level(1) = 0 + npts = npts2-2 + + if ( npts2 < 2 ) then + ier = 6 + return + else if ( limit <= npts .or. (epsabs < 0.0e+00.and. & + epsrel < 0.0e+00) ) then + ier = 6 + return + end if +! +! If any break points are provided, sort them into an +! ascending sequence. +! + if ( a > b ) then + sign = -1.0e+00 + else + sign = +1.0E+00 + end if + + pts(1) = min ( a,b) + + do i = 1, npts + pts(i+1) = points(i) + end do + + pts(npts+2) = max ( a,b) + nint = npts+1 + a1 = pts(1) + + if ( npts /= 0 ) then + + do i = 1, nint + ip1 = i+1 + do j = ip1, nint+1 + if ( pts(i) > pts(j) ) then + call r_swap ( pts(i), pts(j) ) + end if + end do + end do + + if ( pts(1) /= min ( a, b ) .or. pts(nint+1) /= max ( a,b) ) then + ier = 6 + return + end if + + end if +! +! Compute first integral and error approximations. +! + resabs = 0.0e+00 + + do i = 1, nint + + b1 = pts(i+1) + call qk21 ( f, a1, b1, area1, error1, defabs, resa ) + abserr = abserr+error1 + result = result+area1 + ndin(i) = 0 + + if ( error1 == resa .and. error1 /= 0.0e+00 ) then + ndin(i) = 1 + end if + + resabs = resabs + defabs + level(i) = 0 + elist(i) = error1 + alist(i) = a1 + blist(i) = b1 + rlist(i) = area1 + iord(i) = i + a1 = b1 + + end do + + errsum = 0.0e+00 + + do i = 1, nint + if ( ndin(i) == 1 ) then + elist(i) = abserr + end if + errsum = errsum + elist(i) + end do +! +! Test on accuracy. +! + last = nint + neval = 21 * nint + dres = abs ( result ) + errbnd = max ( epsabs, epsrel * dres ) + + if ( abserr <= 1.0e+02 * epsilon ( resabs ) * resabs .and. & + abserr > errbnd ) then + ier = 2 + end if + + if ( nint /= 1 ) then + + do i = 1, npts + + jlow = i+1 + ind1 = iord(i) + + do j = jlow, nint + ind2 = iord(j) + if ( elist(ind1) <= elist(ind2) ) then + ind1 = ind2 + k = j + end if + end do + + if ( ind1 /= iord(i) ) then + iord(k) = iord(i) + iord(i) = ind1 + end if + + end do + + if ( limit < npts2 ) then + ier = 1 + end if + + end if + + if ( ier /= 0 .or. abserr <= errbnd ) then + return + end if +! +! Initialization +! + rlist2(1) = result + maxerr = iord(1) + errmax = elist(maxerr) + area = result + nrmax = 1 + nres = 0 + numrl2 = 1 + ktmin = 0 + extrap = .false. + noext = .false. + erlarg = errsum + ertest = errbnd + levmax = 1 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + ierro = 0 + abserr = huge ( abserr ) + + if ( dres >= ( 1.0e+00 - 0.5E+00 * epsilon ( resabs ) ) * resabs ) then + ksgn = 1 + else + ksgn = -1 + end if + + do last = npts2, limit +! +! Bisect the subinterval with the nrmax-th largest error estimate. +! + levcur = level(maxerr)+1 + a1 = alist(maxerr) + b1 = 0.5E+00 * ( alist(maxerr) + blist(maxerr) ) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + call qk21 ( f, a1, b1, area1, error1, resa, defab1 ) + call qk21 ( f, a2, b2, area2, error2, resa, defab2 ) +! +! Improve previous approximations to integral and error +! and test for accuracy. +! + neval = neval+42 + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + + if ( defab1 /= error1 .and. defab2 /= error2 ) then + + if ( abs(rlist(maxerr)-area12) <= 1.0e-05*abs(area12) .and. & + erro12 >= 9.9e-01*errmax ) then + + if ( extrap ) then + iroff2 = iroff2+1 + else + iroff1 = iroff1+1 + end if + + end if + + if ( last > 10 .and. erro12 > errmax ) then + iroff3 = iroff3 + 1 + end if + + end if + + level(maxerr) = levcur + level(last) = levcur + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = max ( epsabs, epsrel * abs ( area ) ) +! +! Test for roundoff error and eventually set error flag. +! + if ( iroff1 + iroff2 >= 10 .or. iroff3 >= 20 ) then + ier = 2 + end if + + if ( iroff2 >= 5 ) then + ierro = 3 + end if +! +! Set error flag in the case that the number of subintervals +! equals limit. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of bad integrand behavior +! at a point of the integration range +! + if ( max ( abs(a1),abs(b2)) <= (1.0e+00+1.0e+03* epsilon ( a1 ) )* & + ( abs(a2) + 1.0e+03 * tiny ( a2 ) ) ) then + ier = 4 + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if ( errsum <= errbnd ) go to 190 + + if ( ier /= 0 ) then + exit + end if + + if ( noext ) then + cycle + end if + + erlarg = erlarg - erlast + + if ( levcur+1 <= levmax ) then + erlarg = erlarg + erro12 + end if +! +! Test whether the interval to be bisected next is the +! smallest interval. +! + if ( .not. extrap ) then + + if ( level(maxerr)+1 <= levmax ) then + cycle + end if + + extrap = .true. + nrmax = 2 + + end if +! +! The smallest interval has the largest error. +! Before bisecting decrease the sum of the errors over the +! larger intervals (erlarg) and perform extrapolation. +! + if ( ierro /= 3 .and. erlarg > ertest ) then + + id = nrmax + jupbnd = last + if ( last > (2+limit/2) ) then + jupbnd = limit+3-last + end if + + do k = id, jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) + if ( level(maxerr)+1 <= levmax ) go to 160 + nrmax = nrmax+1 + end do + + end if +! +! Perform extrapolation. +! + numrl2 = numrl2+1 + rlist2(numrl2) = area + if ( numrl2 <= 2 ) go to 155 + call qextr ( numrl2, rlist2, reseps, abseps, res3la, nres ) + ktmin = ktmin+1 + + if ( ktmin > 5 .and. abserr < 1.0e-03*errsum ) then + ier = 5 + end if + + if ( abseps < abserr ) then + + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = max ( epsabs,epsrel*abs(reseps)) + + if ( abserr < ertest ) then + exit + end if + + end if +! +! Prepare bisection of the smallest interval. +! + if ( numrl2 == 1 ) then + noext = .true. + end if + + if ( ier >= 5 ) then + exit + end if + +155 continue + + maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + levmax = levmax+1 + erlarg = errsum + +160 continue + + end do +! +! Set the final result. +! + if ( abserr == huge ( abserr ) ) go to 190 + if ( (ier+ierro) == 0 ) go to 180 + + if ( ierro == 3 ) then + abserr = abserr+correc + end if + + if ( ier == 0 ) then + ier = 3 + end if + + if ( result /= 0.0e+00.and.area /= 0.0e+00 ) go to 175 + if ( abserr > errsum ) go to 190 + if ( area == 0.0e+00 ) go to 210 + go to 180 + +175 continue + + if ( abserr/abs(result) > errsum/abs(area) ) go to 190 +! +! Test on divergence. +! + 180 continue + + if ( ksgn == (-1) .and. max ( abs(result),abs(area)) <= & + resabs*1.0e-02 ) go to 210 + + if ( 1.0e-02 > (result/area) .or. (result/area) > 1.0e+02 .or. & + errsum > abs(area) ) then + ier = 6 + end if + + go to 210 +! +! Compute global integral sum. +! +190 continue + + result = sum ( rlist(1:last) ) + + abserr = errsum + +210 continue + + if ( ier > 2 ) then + ier = ier - 1 + end if + + result = result * sign + + return +end subroutine +subroutine qags ( f, a, b, epsabs, epsrel, result, abserr, neval, ier ) +! +!****************************************************************************** +! +!! QAGS estimates the integral of a function. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F over (A,B), +! hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Output, integer IER, error flag. +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more sub- +! divisions by increasing the data value of +! limit in qags (and taking the according +! dimension adjustments into account). +! however, if this yields no improvement +! it is advised to analyze the integrand +! in order to determine the integration +! difficulties. if the position of a +! local difficulty can be determined (e.g. +! singularity, discontinuity within the +! interval) one will probably gain from +! splitting up the interval at this point +! and calling the integrator on the sub- +! ranges. if possible, an appropriate +! special-purpose integrator should be used, +! which is designed for handling the type +! of difficulty involved. +! = 2 the occurrence of roundoff error is detec- +! ted, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behavior occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. roundoff +! error is detected in the extrapolation +! table. it is presumed that the requested +! tolerance cannot be achieved, and that the +! returned result is the best which can be +! obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier. +! = 6 the input is invalid, because +! epsabs < 0 and epsrel < 0, +! result, abserr and neval are set to zero. +! +! Local Parameters: +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 containing +! the part of the epsilon table which is still +! needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left interval +! *****2 - variable for the right interval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements currently in rlist2. if an +! appropriate approximation to the compounded +! integral has been obtained it is put in +! rlist2(numrl2) after numrl2 has been increased +! by one. +! small - length of the smallest interval considered +! up to now, multiplied by 1.5 +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine is +! attempting to perform extrapolation i.e. before +! subdividing the smallest interval we try to +! decrease the value of erlarg. +! noext - logical variable denoting that extrapolation +! is no longer allowed (true value) +! + implicit none +! + integer, parameter :: limit = 500 +! + real(dp) a + real(dp) abseps + real(dp) abserr + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) b + real(dp) blist(limit) + real(dp) b1 + real(dp) b2 + real(dp) correc + real(dp) defabs + real(dp) defab1 + real(dp) defab2 + real(dp) dres + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) erlarg + real(dp) erlast + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) error2 + real(dp) erro12 + real(dp) errsum + real(dp) ertest + logical extrap + real(dp), external :: f + integer id + integer ier + integer ierro + integer iord(limit) + integer iroff1 + integer iroff2 + integer iroff3 + integer jupbnd + integer k + integer ksgn + integer ktmin + integer last + logical noext + integer maxerr + integer neval + integer nres + integer nrmax + integer numrl2 + real(dp) resabs + real(dp) reseps + real(dp) result + real(dp) res3la(3) + real(dp) rlist(limit) + real(dp) rlist2(52) + real(dp) small +! +! The dimension of rlist2 is determined by the value of +! limexp in QEXTR (rlist2 should be of dimension +! (limexp+2) at least). +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + result = 0.0e+00 + abserr = 0.0e+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + + if ( epsabs < 0.0e+00 .and. epsrel < 0.0e+00 ) then + ier = 6 + return + end if +! +! First approximation to the integral. +! + ierro = 0 + call qk21 ( f, a, b, result, abserr, defabs, resabs ) +! +! Test on accuracy. +! + dres = abs ( result ) + errbnd = max ( epsabs, epsrel * dres ) + last = 1 + rlist(1) = result + elist(1) = abserr + iord(1) = 1 + + if ( abserr <= 1.0e+02 * epsilon ( defabs ) * defabs .and. & + abserr > errbnd ) then + ier = 2 + end if + + if ( limit == 1 ) then + ier = 1 + end if + + if ( ier /= 0 .or. (abserr <= errbnd .and. abserr /= resabs ) .or. & + abserr == 0.0e+00 ) go to 140 +! +! Initialization. +! + rlist2(1) = result + errmax = abserr + maxerr = 1 + area = result + errsum = abserr + abserr = huge ( abserr ) + nrmax = 1 + nres = 0 + numrl2 = 2 + ktmin = 0 + extrap = .false. + noext = .false. + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + + if ( dres >= (1.0e+00-5.0e+01* epsilon ( defabs ) )*defabs ) then + ksgn = 1 + else + ksgn = -1 + end if + + do last = 2, limit +! +! Bisect the subinterval with the nrmax-th largest error estimate. +! + a1 = alist(maxerr) + b1 = 5.0e-01*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + call qk21 ( f, a1, b1, area1, error1, resabs, defab1 ) + call qk21 ( f, a2, b2, area2, error2, resabs, defab2 ) +! +! Improve previous approximations to integral and error +! and test for accuracy. +! + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + + if ( defab1 == error1 .or. defab2 == error2 ) go to 15 + + if ( abs ( rlist(maxerr) - area12) > 1.0e-05 * abs(area12) & + .or. erro12 < 9.9e-01 * errmax ) go to 10 + + if ( extrap ) then + iroff2 = iroff2+1 + else + iroff1 = iroff1+1 + end if + +10 continue + + if ( last > 10.and.erro12 > errmax ) iroff3 = iroff3+1 + +15 continue + + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = max ( epsabs,epsrel*abs(area)) +! +! Test for roundoff error and eventually set error flag. +! + if ( iroff1+iroff2 >= 10 .or. iroff3 >= 20 ) then + ier = 2 + end if + + if ( iroff2 >= 5 ) ierro = 3 +! +! Set error flag in the case that the number of subintervals +! equals limit. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of bad integrand behavior +! at a point of the integration range. +! + if ( max ( abs(a1),abs(b2)) <= (1.0e+00+1.0e+03* epsilon ( a1 ) )* & + (abs(a2)+1.0e+03* tiny ( a2 ) ) ) then + ier = 4 + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if ( errsum <= errbnd ) go to 115 + + if ( ier /= 0 ) then + exit + end if + + if ( last == 2 ) go to 80 + if ( noext ) go to 90 + + erlarg = erlarg-erlast + + if ( abs(b1-a1) > small ) then + erlarg = erlarg+erro12 + end if + + if ( extrap ) go to 40 +! +! Test whether the interval to be bisected next is the +! smallest interval. +! + if ( abs(blist(maxerr)-alist(maxerr)) > small ) go to 90 + extrap = .true. + nrmax = 2 + +40 continue +! +! The smallest interval has the largest error. +! Before bisecting decrease the sum of the errors over the +! larger intervals (erlarg) and perform extrapolation. +! + if ( ierro /= 3 .and. erlarg > ertest ) then + + id = nrmax + jupbnd = last + + if ( last > (2+limit/2) ) then + jupbnd = limit+3-last + end if + + do k = id, jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) + if ( abs(blist(maxerr)-alist(maxerr)) > small ) go to 90 + nrmax = nrmax+1 + end do + + end if +! +! Perform extrapolation. +! +60 continue + + numrl2 = numrl2+1 + rlist2(numrl2) = area + call qextr ( numrl2, rlist2, reseps, abseps, res3la, nres ) + ktmin = ktmin+1 + + if ( ktmin > 5 .and. abserr < 1.0e-03 * errsum ) then + ier = 5 + end if + + if ( abseps < abserr ) then + + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = max ( epsabs,epsrel*abs(reseps)) + + if ( abserr <= ertest ) then + exit + end if + + end if +! +! Prepare bisection of the smallest interval. +! + if ( numrl2 == 1 ) then + noext = .true. + end if + + if ( ier == 5 ) then + exit + end if + + maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + small = small*5.0e-01 + erlarg = errsum + go to 90 + +80 continue + + small = abs(b-a)*3.75e-01 + erlarg = errsum + ertest = errbnd + rlist2(2) = area + +90 continue + + end do +! +! Set final result and error estimate. +! + if ( abserr == huge ( abserr ) ) go to 115 + if ( ier+ierro == 0 ) go to 110 + + if ( ierro == 3 ) then + abserr = abserr+correc + end if + + if ( ier == 0 ) ier = 3 + if ( result /= 0.0e+00.and.area /= 0.0e+00 ) go to 105 + if ( abserr > errsum ) go to 115 + if ( area == 0.0e+00 ) go to 130 + go to 110 + +105 continue + + if ( abserr/abs(result) > errsum/abs(area) ) go to 115 +! +! Test on divergence. +! +110 continue + + if ( ksgn == (-1).and.max ( abs(result),abs(area)) <= & + defabs*1.0e-02 ) go to 130 + + if ( 1.0e-02 > (result/area) .or. (result/area) > 1.0e+02 & + .or. errsum > abs(area) ) then + ier = 6 + end if + + go to 130 +! +! Compute global integral sum. +! +115 continue + + result = sum ( rlist(1:last) ) + + abserr = errsum + +130 continue + + if ( ier > 2 ) ier = ier-1 + +140 continue + + neval = 42*last-21 + + return +end subroutine +subroutine qawc ( f, a, b, c, epsabs, epsrel, result, abserr, neval, ier ) +! +!****************************************************************************** +! +!! QAWC computes a Cauchy principal value. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a Cauchy principal +! value +! I = integral of F*W over (A,B), +! with +! W(X) = 1 / (X-C), +! with C distinct from A and B, hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) C, a parameter in the weight function, which must +! not be equal to A or B. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more sub- +! divisions by increasing the data value of +! limit in qawc (and taking the according +! dimension adjustments into account). +! however, if this yields no improvement it +! is advised to analyze the integrand in +! order to determine the integration +! difficulties. if the position of a local +! difficulty can be determined (e.g. +! singularity, discontinuity within the +! interval one will probably gain from +! splitting up the interval at this point +! and calling appropriate integrators on the +! subranges. +! = 2 the occurrence of roundoff error is detec- +! ted, which prevents the requested +! tolerance from being achieved. +! = 3 extremely bad integrand behavior occurs +! at some points of the integration +! interval. +! = 6 the input is invalid, because +! c = a or c = b or +! epsabs < 0 and epsrel < 0, +! result, abserr, neval are set to zero. +! +! Local parameters: +! +! LIMIT is the maximum number of subintervals allowed in the +! subdivision process of qawce. take care that limit >= 1. +! + implicit none +! + integer, parameter :: limit = 500 +! + real(dp) a + real(dp) abserr + real(dp) alist(limit) + real(dp) b + real(dp) blist(limit) + real(dp) elist(limit) + real(dp) c + real(dp) epsabs + real(dp) epsrel + real(dp), external :: f + integer ier + integer iord(limit) + integer last +! integer limit + integer neval + real(dp) result + real(dp) rlist(limit) +! + call qawce ( f, a, b, c, epsabs, epsrel, limit, result, abserr, neval, ier, & + alist, blist, rlist, elist, iord, last ) + + return +end subroutine +subroutine qawce ( f, a, b, c, epsabs, epsrel, limit, result, abserr, neval, & + ier, alist, blist, rlist, elist, iord, last ) +! +!****************************************************************************** +! +!! QAWCE computes a Cauchy principal value. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a Cauchy principal +! value +! I = integral of F*W over (A,B), +! with +! W(X) = 1 / ( X - C ), +! with C distinct from A and B, hopefully satisfying +! | I - RESULT | <= max ( EPSABS, EPSREL * |I| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) C, a parameter in the weight function, which cannot be +! equal to A or B. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Input, integer LIMIT, the upper bound on the number of subintervals that +! will be used in the partition of [A,B]. LIMIT is typically 500. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more sub- +! divisions by increasing the value of +! limit. however, if this yields no +! improvement it is advised to analyze the +! integrand, in order to determine the +! integration difficulties. if the position +! of a local difficulty can be determined +! (e.g. singularity, discontinuity within +! the interval) one will probably gain +! from splitting up the interval at this +! point and calling appropriate integrators +! on the subranges. +! = 2 the occurrence of roundoff error is detec- +! ted, which prevents the requested +! tolerance from being achieved. +! = 3 extremely bad integrand behavior occurs +! at some interior points of the integration +! interval. +! = 6 the input is invalid, because +! c = a or c = b or +! epsabs < 0 and epsrel < 0, +! or limit < 1. +! result, abserr, neval, rlist(1), elist(1), +! iord(1) and last are set to zero. +! alist(1) and blist(1) are set to a and b +! respectively. +! +! Workspace, real(dp) ALIST(LIMIT), BLIST(LIMIT), contains in entries 1 +! through LAST the left and right ends of the partition subintervals. +! +! Workspace, real(dp) RLIST(LIMIT), contains in entries 1 through LAST +! the integral approximations on the subintervals. +! +! Workspace, real(dp) ELIST(LIMIT), contains in entries 1 through LAST +! the absolute error estimates on the subintervals. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the error +! estimates over the subintervals, so that +! elist(iord(1)), ..., elist(iord(k)) with +! k = last if last <= (limit/2+2), and +! k = limit+1-last otherwise, form a decreasing +! sequence. +! +! last - integer +! number of subintervals actually produced in +! the subdivision process +! +! Local parameters: +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! + implicit none +! + integer limit +! + real(dp) a + real(dp) aa + real(dp) abserr + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) b + real(dp) bb + real(dp) blist(limit) + real(dp) b1 + real(dp) b2 + real(dp) c + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) error2 + real(dp) erro12 + real(dp) errsum + real(dp), external :: f + integer ier + integer iord(limit) + integer iroff1 + integer iroff2 + integer k + integer krule + integer last + integer maxerr + integer nev + integer neval + integer nrmax + real(dp) result + real(dp) rlist(limit) +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + alist(1) = a + blist(1) = b + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + iord(1) = 0 + result = 0.0e+00 + abserr = 0.0e+00 + + if ( c == a ) then + ier = 6 + return + else if ( c == b ) then + ier = 6 + return + else if ( epsabs < 0.0e+00 .and. epsrel < 0.0e+00 ) then + ier = 6 + return + end if +! +! First approximation to the integral. +! + if ( a <= b ) then + aa = a + bb = b + else + aa = b + bb = a + end if + + krule = 1 + call qc25c ( f, aa, bb, c, result, abserr, krule, neval ) + last = 1 + rlist(1) = result + elist(1) = abserr + iord(1) = 1 + alist(1) = a + blist(1) = b +! +! Test on accuracy. +! + errbnd = max ( epsabs, epsrel*abs(result) ) + + if ( limit == 1 ) then + ier = 1 + go to 70 + end if + + if ( abserr < min ( 1.0e-02*abs(result),errbnd) ) then + go to 70 + end if +! +! Initialization +! + alist(1) = aa + blist(1) = bb + rlist(1) = result + errmax = abserr + maxerr = 1 + area = result + errsum = abserr + nrmax = 1 + iroff1 = 0 + iroff2 = 0 + + do last = 2, limit +! +! Bisect the subinterval with nrmax-th largest error estimate. +! + a1 = alist(maxerr) + b1 = 5.0e-01*(alist(maxerr)+blist(maxerr)) + b2 = blist(maxerr) + if ( c <= b1 .and. c > a1 ) b1 = 5.0e-01*(c+b2) + if ( c > b1 .and. c < b2 ) b1 = 5.0e-01*(a1+c) + a2 = b1 + krule = 2 + + call qc25c ( f, a1, b1, c, area1, error1, krule, nev ) + neval = neval+nev + + call qc25c ( f, a2, b2, c, area2, error2, krule, nev ) + neval = neval+nev +! +! Improve previous approximations to integral and error +! and test for accuracy. +! + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + + if ( abs(rlist(maxerr)-area12) < 1.0e-05*abs(area12) & + .and.erro12 >= 9.9e-01*errmax .and. krule == 0 ) & + iroff1 = iroff1+1 + + if ( last > 10.and.erro12 > errmax .and. krule == 0 ) then + iroff2 = iroff2+1 + end if + + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = max ( epsabs,epsrel*abs(area)) + + if ( errsum > errbnd ) then +! +! Test for roundoff error and eventually set error flag. +! + if ( iroff1 >= 6 .and. iroff2 > 20 ) then + ier = 2 + end if +! +! Set error flag in the case that number of interval +! bisections exceeds limit. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of bad integrand behavior at +! a point of the integration range. +! + if ( max ( abs(a1), abs(b2) ) <= ( 1.0e+00 + 1.0e+03 * epsilon ( a1 ) ) & + *(abs(a2)+1.0e+03* tiny ( a2 ) )) then + ier = 3 + end if + + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with NRMAX-th largest error estimate (to be bisected next). +! + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if ( ier /= 0 .or. errsum <= errbnd ) then + exit + end if + + end do +! +! Compute final result. +! + result = sum ( rlist(1:last) ) + + abserr = errsum + +70 continue + + if ( aa == b ) then + result = - result + end if + + return +end subroutine +subroutine qawf ( f, a, omega, integr, epsabs, result, abserr, neval, ier ) +! +!****************************************************************************** +! +!! QAWF computes Fourier integrals over the interval [ A, +Infinity ). +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! +! I = integral of F*COS(OMEGA*X) +! or +! I = integral of F*SIN(OMEGA*X) +! +! over the interval [A,+Infinity), hopefully satisfying +! +! || I - RESULT || <= EPSABS. +! +! If OMEGA = 0 and INTEGR = 1, the integral is calculated by means +! of QAGI, and IER has the meaning as described in the comments of QAGI. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, the lower limit of integration. +! +! Input, real(dp) OMEGA, the parameter in the weight function. +! +! Input, integer INTEGR, indicates which weight functions is used +! = 1, w(x) = cos(omega*x) +! = 2, w(x) = sin(omega*x) +! +! Input, real(dp) EPSABS, the absolute accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the +! requested accuracy has been achieved. +! ier > 0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! if omega /= 0 +! ier = 6 the input is invalid because +! (integr /= 1 and integr /= 2) or +! epsabs <= 0 +! result, abserr, neval, lst are set to +! zero. +! = 7 abnormal termination of the computation +! of one or more subintegrals +! = 8 maximum number of cycles allowed +! has been achieved, i.e. of subintervals +! (a+(k-1)c,a+kc) where +! c = (2*int(abs(omega))+1)*pi/abs(omega), +! for k = 1, 2, ... +! = 9 the extrapolation table constructed for +! convergence acceleration of the series +! formed by the integral contributions +! over the cycles, does not converge to +! within the requested accuracy. +! +! Local parameters: +! +! Integer LIMLST, gives an upper bound on the number of cycles, LIMLST >= 3. +! if limlst < 3, the routine will end with ier = 6. +! +! Integer MAXP1, an upper bound on the number of Chebyshev moments which +! can be stored, i.e. for the intervals of lengths abs(b-a)*2**(-l), +! l = 0,1, ..., maxp1-2, maxp1 >= 1. if maxp1 < 1, the routine will end +! with ier = 6. +! + implicit none +! + integer, parameter :: limit = 500 + integer, parameter :: limlst = 50 + integer, parameter :: maxp1 = 21 +! + real(dp) a + real(dp) abserr + real(dp) alist(limit) + real(dp) blist(limit) + real(dp) chebmo(maxp1,25) + real(dp) elist(limit) + real(dp) epsabs + real(dp) erlst(limlst) + real(dp), external :: f + integer ier + integer integr + integer iord(limit) + integer ierlst(limlst) + integer last +! integer limlst + integer lst + integer neval + integer nnlog(limit) + real(dp) omega + real(dp) result + real(dp) rlist(limit) + real(dp) rslst(limlst) +! + ier = 6 + neval = 0 + last = 0 + result = 0.0e+00 + abserr = 0.0e+00 + + if ( limlst < 3 .or. maxp1 < 1 ) then + return + end if + + call qawfe ( f, a, omega, integr, epsabs, limlst, limit, maxp1, result, & + abserr, neval, ier, rslst, erlst, ierlst, lst, alist, blist, rlist, & + elist, iord, nnlog, chebmo ) + + return +end subroutine +subroutine qawfe ( f, a, omega, integr, epsabs, limlst, limit, maxp1, & + result, abserr, neval, ier, rslst, erlst, ierlst, lst, alist, blist, & + rlist, elist, iord, nnlog, chebmo ) +! +!****************************************************************************** +! +!! QAWFE computes Fourier integrals. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F*COS(OMEGA*X) or F*SIN(OMEGA*X) over (A,+Infinity), +! hopefully satisfying +! || I - RESULT || <= EPSABS. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, the lower limit of integration. +! +! Input, real(dp) OMEGA, the parameter in the weight function. +! +! Input, integer INTEGR, indicates which weight function is used +! = 1 w(x) = cos(omega*x) +! = 2 w(x) = sin(omega*x) +! +! Input, real(dp) EPSABS, the absolute accuracy requested. +! +! Input, integer LIMLST, an upper bound on the number of cycles. +! LIMLST must be at least 1. In fact, if LIMLST < 3, the routine +! will end with IER= 6. +! +! limit - integer +! gives an upper bound on the number of +! subintervals allowed in the partition of +! each cycle, limit >= 1. +! +! maxp1 - integer +! gives an upper bound on the number of +! Chebyshev moments which can be stored, i.e. +! for the intervals of lengths abs(b-a)*2**(-l), +! l=0,1, ..., maxp1-2, maxp1 >= 1 +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - ier = 0 normal and reliable termination of +! the routine. it is assumed that the +! requested accuracy has been achieved. +! ier > 0 abnormal termination of the routine +! the estimates for integral and error +! are less reliable. it is assumed that +! the requested accuracy has not been +! achieved. +! if omega /= 0 +! ier = 6 the input is invalid because +! (integr /= 1 and integr /= 2) or +! epsabs <= 0 or limlst < 3. +! result, abserr, neval, lst are set +! to zero. +! = 7 bad integrand behavior occurs within +! one or more of the cycles. location +! and type of the difficulty involved +! can be determined from the vector ierlst. +! here lst is the number of cycles actually +! needed (see below). +! ierlst(k) = 1 the maximum number of +! subdivisions (= limit) +! has been achieved on the +! k th cycle. +! = 2 occurence of roundoff +! error is detected and +! prevents the tolerance +! imposed on the k th cycle +! from being acheived. +! = 3 extremely bad integrand +! behavior occurs at some +! points of the k th cycle. +! = 4 the integration procedure +! over the k th cycle does +! not converge (to within the +! required accuracy) due to +! roundoff in the +! extrapolation procedure +! invoked on this cycle. it +! is assumed that the result +! on this interval is the +! best which can be obtained. +! = 5 the integral over the k th +! cycle is probably divergent +! or slowly convergent. it +! must be noted that +! divergence can occur with +! any other value of +! ierlst(k). +! = 8 maximum number of cycles allowed +! has been achieved, i.e. of subintervals +! (a+(k-1)c,a+kc) where +! c = (2*int(abs(omega))+1)*pi/abs(omega), +! for k = 1, 2, ..., lst. +! one can allow more cycles by increasing +! the value of limlst (and taking the +! according dimension adjustments into +! account). +! examine the array iwork which contains +! the error flags over the cycles, in order +! to eventual look for local integration +! difficulties. +! if the position of a local difficulty can +! be determined (e.g. singularity, +! discontinuity within the interval) +! one will probably gain from splitting +! up the interval at this point and +! calling appopriate integrators on the +! subranges. +! = 9 the extrapolation table constructed for +! convergence acceleration of the series +! formed by the integral contributions +! over the cycles, does not converge to +! within the required accuracy. +! as in the case of ier = 8, it is advised +! to examine the array iwork which contains +! the error flags on the cycles. +! if omega = 0 and integr = 1, +! the integral is calculated by means of qagi +! and ier = ierlst(1) (with meaning as described +! for ierlst(k), k = 1). +! +! rslst - real(dp) +! vector of dimension at least limlst +! rslst(k) contains the integral contribution +! over the interval (a+(k-1)c,a+kc) where +! c = (2*int(abs(omega))+1)*pi/abs(omega), +! k = 1, 2, ..., lst. +! note that, if omega = 0, rslst(1) contains +! the value of the integral over (a,infinity). +! +! erlst - real(dp) +! vector of dimension at least limlst +! erlst(k) contains the error estimate +! corresponding with rslst(k). +! +! ierlst - integer +! vector of dimension at least limlst +! ierlst(k) contains the error flag corresponding +! with rslst(k). for the meaning of the local error +! flags see description of output parameter ier. +! +! lst - integer +! number of subintervals needed for the integration +! if omega = 0 then lst is set to 1. +! +! alist, blist, rlist, elist - real(dp) +! vector of dimension at least limit, +! +! iord, nnlog - integer +! vector of dimension at least limit, providing +! space for the quantities needed in the +! subdivision process of each cycle +! +! chebmo - real(dp) +! array of dimension at least (maxp1,25), +! providing space for the Chebyshev moments +! needed within the cycles +! +! Local parameters: +! +! c1, c2 - end points of subinterval (of length +! cycle) +! cycle - (2*int(abs(omega))+1)*pi/abs(omega) +! psum - vector of dimension at least (limexp+2) +! (see routine qextr) +! psum contains the part of the epsilon table +! which is still needed for further computations. +! each element of psum is a partial sum of +! the series which should sum to the value of +! the integral. +! errsum - sum of error estimates over the +! subintervals, calculated cumulatively +! epsa - absolute tolerance requested over current +! subinterval +! chebmo - array containing the modified Chebyshev +! moments (see also routine qc25o) +! + implicit none +! + integer limit + integer limlst + integer maxp1 +! + real(dp) a + real(dp) abseps + real(dp) abserr + real(dp) alist(limit) + real(dp) blist(limit) + real(dp) chebmo(maxp1,25) + real(dp) correc + real(dp) cycle + real(dp) c1 + real(dp) c2 + real(dp) dl + real(dp) dla + real(dp) drl + real(dp) elist(limit) + real(dp) ep + real(dp) eps + real(dp) epsa + real(dp) epsabs + real(dp) erlst(limlst) + real(dp) errsum + real(dp), external :: f + real(dp) fact + integer ier + integer ierlst(limlst) + integer integr + integer iord(limit) + integer ktmin + integer l + integer ll + integer lst + integer momcom + integer nev + integer neval + integer nnlog(limit) + integer nres + integer numrl2 + real(dp) omega + real(dp), parameter :: p = 0.9E+00 + real(dp), parameter :: pi = 3.1415926535897932E+00 + real(dp) p1 + real(dp) psum(52) + real(dp) reseps + real(dp) result + real(dp) res3la(3) + real(dp) rlist(limit) + real(dp) rslst(limlst) +! +! The dimension of psum is determined by the value of +! limexp in QEXTR (psum must be +! of dimension (limexp+2) at least). +! +! Test on validity of parameters. +! + result = 0.0e+00 + abserr = 0.0e+00 + neval = 0 + lst = 0 + ier = 0 + + if ( (integr /= 1 .and. integr /= 2 ) .or. & + epsabs <= 0.0e+00 .or. & + limlst < 3 ) then + ier = 6 + return + end if + + if ( omega == 0.0e+00 ) then + + if ( integr == 1 ) then + call qagi ( f, 0.0e+00_dp, 1, epsabs, 0.0e+00_dp, result, abserr, neval, ier ) + else + result = 0.0E+00 + abserr = 0.0E+00 + neval = 0 + ier = 0 + end if + + rslst(1) = result + erlst(1) = abserr + ierlst(1) = ier + lst = 1 + + return + end if +! +! Initializations. +! + l = int(abs ( omega )) + dl = 2 * l + 1 + cycle = dl * pi / abs ( omega ) + ier = 0 + ktmin = 0 + neval = 0 + numrl2 = 0 + nres = 0 + c1 = a + c2 = cycle+a + p1 = 1.0e+00-p + eps = epsabs + + if ( epsabs > tiny ( epsabs ) / p1 ) then + eps = epsabs * p1 + end if + + ep = eps + fact = 1.0e+00 + correc = 0.0e+00 + abserr = 0.0e+00 + errsum = 0.0e+00 + + do lst = 1, limlst +! +! Integrate over current subinterval. +! + dla = lst + epsa = eps*fact + + call qfour ( f, c1, c2, omega, integr, epsa, 0.0e+00_dp, limit, lst, maxp1, & + rslst(lst), erlst(lst), nev, ierlst(lst), alist, blist, rlist, elist, & + iord, nnlog, momcom, chebmo ) + + neval = neval + nev + fact = fact * p + errsum = errsum + erlst(lst) + drl = 5.0e+01 * abs(rslst(lst)) +! +! Test on accuracy with partial sum. +! + if ((errsum+drl) <= epsabs.and.lst >= 6) go to 80 + + correc = max ( correc,erlst(lst)) + + if ( ierlst(lst) /= 0 ) then + eps = max ( ep,correc*p1) + ier = 7 + end if + + if ( ier == 7 .and. (errsum+drl) <= correc*1.0e+01.and. lst > 5) go to 80 + + numrl2 = numrl2+1 + + if ( lst <= 1 ) then + psum(1) = rslst(1) + go to 40 + end if + + psum(numrl2) = psum(ll)+rslst(lst) + + if ( lst == 2 ) then + go to 40 + end if +! +! Test on maximum number of subintervals +! + if ( lst == limlst ) then + ier = 8 + end if +! +! Perform new extrapolation +! + call qextr ( numrl2, psum, reseps, abseps, res3la, nres ) +! +! Test whether extrapolated result is influenced by roundoff +! + ktmin = ktmin+1 + + if ( ktmin >= 15 .and. abserr <= 1.0e-03 * (errsum+drl) ) then + ier = 9 + end if + + if ( abseps <= abserr .or. lst == 3 ) then + + abserr = abseps + result = reseps + ktmin = 0 +! +! If IER is not 0, check whether direct result (partial +! sum) or extrapolated result yields the best integral +! approximation +! + if ( ( abserr + 1.0e+01 * correc ) <= epsabs ) then + exit + end if + + if ( abserr <= epsabs .and. 1.0e+01 * correc >= epsabs ) then + exit + end if + + end if + + if ( ier /= 0 .and. ier /= 7 ) then + exit + end if + +40 continue + + ll = numrl2 + c1 = c2 + c2 = c2+cycle + + end do +! +! Set final result and error estimate. +! +60 continue + + abserr = abserr + 1.0e+01 * correc + + if ( ier == 0 ) then + return + end if + + if ( result /= 0.0e+00 .and. psum(numrl2) /= 0.0e+00) go to 70 + + if ( abserr > errsum ) go to 80 + + if ( psum(numrl2) == 0.0e+00 ) then + return + end if + +70 continue + + if ( abserr / abs(result) <= (errsum+drl)/abs(psum(numrl2)) ) then + + if ( ier >= 1 .and. ier /= 7 ) then + abserr = abserr + drl + end if + + return + + end if + +80 continue + + result = psum(numrl2) + abserr = errsum + drl + + return +end subroutine +subroutine qawo ( f, a, b, omega, integr, epsabs, epsrel, result, abserr, & + neval, ier ) +! +!****************************************************************************** +! +!! QAWO computes the integrals of oscillatory integrands. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a given +! definite integral +! I = Integral ( A <= X <= B ) F(X) * cos ( OMEGA * X ) dx +! or +! I = Integral ( A <= X <= B ) F(X) * sin ( OMEGA * X ) dx +! hopefully satisfying following claim for accuracy +! | I - RESULT | <= max ( epsabs, epsrel * |I| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) OMEGA, the parameter in the weight function. +! +! Input, integer INTEGR, specifies the weight function: +! 1, W(X) = cos ( OMEGA * X ) +! 2, W(X) = sin ( OMEGA * X ) +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the +! requested accuracy has been achieved. +! - ier > 0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! ier = 1 maximum number of subdivisions allowed +! (= leniw/2) has been achieved. one can +! allow more subdivisions by increasing the +! value of leniw (and taking the according +! dimension adjustments into account). +! however, if this yields no improvement it +! is advised to analyze the integrand in +! order to determine the integration +! difficulties. if the position of a local +! difficulty can be determined (e.g. +! singularity, discontinuity within the +! interval) one will probably gain from +! splitting up the interval at this point +! and calling the integrator on the +! subranges. if possible, an appropriate +! special-purpose integrator should +! be used which is designed for handling +! the type of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behavior occurs +! at some interior points of the integration +! interval. +! = 4 the algorithm does not converge. roundoff +! error is detected in the extrapolation +! table. it is presumed that the requested +! tolerance cannot be achieved due to +! roundoff in the extrapolation table, +! and that the returned result is the best +! which can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier. +! = 6 the input is invalid, because +! epsabs < 0 and epsrel < 0, +! result, abserr, neval are set to zero. +! +! Local parameters: +! +! limit is the maximum number of subintervals allowed in the +! subdivision process of QFOUR. take care that limit >= 1. +! +! maxp1 gives an upper bound on the number of Chebyshev moments +! which can be stored, i.e. for the intervals of lengths +! abs(b-a)*2**(-l), l = 0, 1, ... , maxp1-2. take care that +! maxp1 >= 1. + + implicit none +! + integer, parameter :: limit = 500 + integer, parameter :: maxp1 = 21 +! + real(dp) a + real(dp) abserr + real(dp) alist(limit) + real(dp) b + real(dp) blist(limit) + real(dp) chebmo(maxp1,25) + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp), external :: f + integer ier + integer integr + integer iord(limit) +! integer limit +! integer maxp1 + integer momcom + integer neval + integer nnlog(limit) + real(dp) omega + real(dp) result + real(dp) rlist(limit) +! + call qfour ( f, a, b, omega, integr, epsabs, epsrel, limit, 1, maxp1, & + result, abserr, neval, ier, alist, blist, rlist, elist, iord, nnlog, & + momcom, chebmo ) + + return +end subroutine +subroutine qaws ( f, a, b, alfa, beta, integr, epsabs, epsrel, result, & + abserr, neval, ier ) +! +!****************************************************************************** +! +!! QAWS estimates integrals with algebraico-logarithmic endpoint singularities. +! +! +! Discussion: +! +! This routine calculates an approximation RESULT to a given +! definite integral +! I = integral of f*w over (a,b) +! where w shows a singular behavior at the end points, see parameter +! integr, hopefully satisfying following claim for accuracy +! abs(i-result) <= max(epsabs,epsrel*abs(i)). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) ALFA, BETA, parameters used in the weight function. +! ALFA and BETA should be greater than -1. +! +! Input, integer INTEGR, indicates which weight function is to be used +! = 1 (x-a)**alfa*(b-x)**beta +! = 2 (x-a)**alfa*(b-x)**beta*log(x-a) +! = 3 (x-a)**alfa*(b-x)**beta*log(b-x) +! = 4 (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x) +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine +! the estimates for the integral and error +! are less reliable. it is assumed that the +! requested accuracy has not been achieved. +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the data value +! of limit in qaws (and taking the according +! dimension adjustments into account). +! however, if this yields no improvement it +! is advised to analyze the integrand, in +! order to determine the integration +! difficulties which prevent the requested +! tolerance from being achieved. in case of +! a jump discontinuity or a local +! singularity of algebraico-logarithmic type +! at one or more interior points of the +! integration range, one should proceed by +! splitting up the interval at these points +! and calling the integrator on the +! subranges. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! = 3 extremely bad integrand behavior occurs +! at some points of the integration +! interval. +! = 6 the input is invalid, because +! b <= a or alfa <= (-1) or beta <= (-1) or +! integr < 1 or integr > 4 or +! epsabs < 0 and epsrel < 0, +! result, abserr, neval are set to zero. +! +! Local parameters: +! +! LIMIT is the maximum number of subintervals allowed in the +! subdivision process of qawse. take care that limit >= 2. +! + implicit none +! + integer, parameter :: limit = 500 +! + real(dp) a + real(dp) abserr + real(dp) alfa + real(dp) alist(limit) + real(dp) b + real(dp) blist(limit) + real(dp) beta + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp), external :: f + integer ier + integer integr + integer iord(limit) + integer last +! integer limit + integer neval + real(dp) result + real(dp) rlist(limit) +! + call qawse ( f, a, b, alfa, beta, integr, epsabs, epsrel, limit, result, & + abserr, neval, ier, alist, blist, rlist, elist, iord, last ) + + return +end subroutine +subroutine qawse ( f, a, b, alfa, beta, integr, epsabs, epsrel, limit, & + result, abserr, neval, ier, alist, blist, rlist, elist, iord, last ) +! +!****************************************************************************** +! +!! QAWSE estimates integrals with algebraico-logarithmic endpoint singularities. +! +! +! Discussion: +! +! This routine calculates an approximation RESULT to an integral +! I = integral of F(X) * W(X) over (a,b), +! where W(X) shows a singular behavior at the endpoints, hopefully +! satisfying: +! | I - RESULT | <= max ( epsabs, epsrel * |I| ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) ALFA, BETA, parameters used in the weight function. +! ALFA and BETA should be greater than -1. +! +! Input, integer INTEGR, indicates which weight function is used: +! = 1 (x-a)**alfa*(b-x)**beta +! = 2 (x-a)**alfa*(b-x)**beta*log(x-a) +! = 3 (x-a)**alfa*(b-x)**beta*log(b-x) +! = 4 (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x) +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Input, integer LIMIT, an upper bound on the number of subintervals +! in the partition of (A,B), LIMIT >= 2. If LIMIT < 2, the routine +! will end with IER = 6. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine +! the estimates for the integral and error +! are less reliable. it is assumed that the +! requested accuracy has not been achieved. +! = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the value of +! limit. however, if this yields no +! improvement it is advised to analyze the +! integrand, in order to determine the +! integration difficulties which prevent +! the requested tolerance from being +! achieved. in case of a jump discontinuity +! or a local singularity of algebraico- +! logarithmic type at one or more interior +! points of the integration range, one +! should proceed by splitting up the +! interval at these points and calling the +! integrator on the subranges. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! = 3 extremely bad integrand behavior occurs +! at some points of the integration +! interval. +! = 6 the input is invalid, because +! b <= a or alfa <= (-1) or beta <= (-1) or +! integr < 1 or integr > 4, or +! epsabs < 0 and epsrel < 0, +! or limit < 2. +! result, abserr, neval, rlist(1), elist(1), +! iord(1) and last are set to zero. +! alist(1) and blist(1) are set to a and b +! respectively. +! +! Workspace, real(dp) ALIST(LIMIT), BLIST(LIMIT), contains in entries 1 +! through LAST the left and right ends of the partition subintervals. +! +! Workspace, real(dp) RLIST(LIMIT), contains in entries 1 through LAST +! the integral approximations on the subintervals. +! +! Workspace, real(dp) ELIST(LIMIT), contains in entries 1 through LAST +! the absolute error estimates on the subintervals. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the error +! estimates over the subintervals, so that +! elist(iord(1)), ..., elist(iord(k)) with k = last +! if last <= (limit/2+2), and k = limit+1-last +! otherwise, form a decreasing sequence. +! +! Output, integer LAST, the number of subintervals actually produced in +! the subdivision process. +! +! Local parameters: +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! + implicit none +! + integer limit +! + real(dp) a + real(dp) abserr + real(dp) alfa + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) b + real(dp) beta + real(dp) blist(limit) + real(dp) b1 + real(dp) b2 + real(dp) centre + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) erro12 + real(dp) error2 + real(dp) errsum + real(dp), external :: f + integer ier + integer integr + integer iord(limit) + integer iroff1 + integer iroff2 + integer k + integer last + integer maxerr + integer nev + integer neval + integer nrmax + real(dp) resas1 + real(dp) resas2 + real(dp) result + real(dp) rg(25) + real(dp) rh(25) + real(dp) ri(25) + real(dp) rj(25) + real(dp) rlist(limit) +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + iord(1) = 0 + result = 0.0e+00 + abserr = 0.0e+00 + + if ( b <= a .or. & + (epsabs < 0.0e+00 .and. epsrel < 0.0e+00) .or. & + alfa <= (-1.0e+00) .or. & + beta <= (-1.0e+00) .or. & + integr < 1 .or. & + integr > 4 .or. & + limit < 2) then + ier = 6 + return + end if +! +! Compute the modified Chebyshev moments. +! + call qmomo ( alfa, beta, ri, rj, rg, rh, integr ) +! +! Integrate over the intervals (a,(a+b)/2) and ((a+b)/2,b). +! + centre = 5.0e-01 * ( b + a ) + + call qc25s ( f, a, b, a, centre, alfa, beta, ri, rj, rg, rh, area1, & + error1, resas1, integr, nev ) + + neval = nev + + call qc25s ( f, a, b, centre, b, alfa, beta, ri, rj, rg, rh, area2, & + error2, resas2, integr, nev ) + + last = 2 + neval = neval+nev + result = area1+area2 + abserr = error1+error2 +! +! Test on accuracy. +! + errbnd = max ( epsabs, epsrel * abs ( result ) ) +! +! Initialization. +! + if ( error2 <= error1 ) then + alist(1) = a + alist(2) = centre + blist(1) = centre + blist(2) = b + rlist(1) = area1 + rlist(2) = area2 + elist(1) = error1 + elist(2) = error2 + else + alist(1) = centre + alist(2) = a + blist(1) = b + blist(2) = centre + rlist(1) = area2 + rlist(2) = area1 + elist(1) = error2 + elist(2) = error1 + end if + + iord(1) = 1 + iord(2) = 2 + + if ( limit == 2 ) then + ier = 1 + return + end if + + if ( abserr <= errbnd ) then + return + end if + + errmax = elist(1) + maxerr = 1 + nrmax = 1 + area = result + errsum = abserr + iroff1 = 0 + iroff2 = 0 + + do last = 3, limit +! +! Bisect the subinterval with largest error estimate. +! + a1 = alist(maxerr) + b1 = 5.0e-01 * (alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + + call qc25s ( f, a, b, a1, b1, alfa, beta, ri, rj, rg, rh, area1, & + error1, resas1, integr, nev ) + + neval = neval + nev + + call qc25s ( f, a, b, a2, b2, alfa, beta, ri, rj, rg, rh, area2, & + error2, resas2, integr, nev ) + + neval = neval + nev +! +! Improve previous approximations integral and error and +! test for accuracy. +! + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) +! +! Test for roundoff error. +! + if ( a /= a1 .and. b /= b2 ) then + + if ( resas1 /= error1 .and. resas2 /= error2 ) then + + if ( abs(rlist(maxerr)-area12) < 1.0e-05*abs(area12) & + .and.erro12 >= 9.9e-01*errmax) then + iroff1 = iroff1+1 + end if + + if ( last > 10.and.erro12 > errmax ) then + iroff2 = iroff2+1 + end if + + end if + + end if + + rlist(maxerr) = area1 + rlist(last) = area2 +! +! Test on accuracy. +! + errbnd = max ( epsabs, epsrel * abs ( area ) ) + + if ( errsum > errbnd ) then +! +! Set error flag in the case that the number of interval +! bisections exceeds limit. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of roundoff error. +! + if ( iroff1 >= 6 .or. iroff2 >= 20 ) then + ier = 2 + end if +! +! Set error flag in the case of bad integrand behavior +! at interior points of integration range. +! + if ( max ( abs(a1),abs(b2)) <= (1.0e+00+1.0e+03* epsilon ( a1 ) )* & + (abs(a2)+1.0e+03* tiny ( a2) )) then + ier = 3 + end if + + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with largest error estimate (to be bisected next). +! + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if (ier /= 0 .or. errsum <= errbnd ) then + exit + end if + + end do +! +! Compute final result. +! + result = sum ( rlist(1:last) ) + + abserr = errsum + + return +end subroutine +subroutine qc25c ( f, a, b, c, result, abserr, krul, neval ) +! +!****************************************************************************** +! +!! QC25C returns integration rules for Cauchy Principal Value integrals. +! +! +! Discussion: +! +! This routine estimates +! I = integral of F(X) * W(X) over (a,b) +! with error estimate, where +! w(x) = 1/(x-c) +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) C, the parameter in the weight function. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! RESULT is computed by using a generalized Clenshaw-Curtis method if +! C lies within ten percent of the integration interval. In the +! other case the 15-point Kronrod rule obtained by optimal addition +! of abscissae to the 7-point Gauss rule, is applied. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! krul - integer +! key which is decreased by 1 if the 15-point +! Gauss-Kronrod scheme has been used +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Local parameters: +! +! fval - value of the function f at the points +! cos(k*pi/24), k = 0, ..., 24 +! cheb12 - Chebyshev series expansion coefficients, for the +! function f, of degree 12 +! cheb24 - Chebyshev series expansion coefficients, for the +! function f, of degree 24 +! res12 - approximation to the integral corresponding to the +! use of cheb12 +! res24 - approximation to the integral corresponding to the +! use of cheb24 +! qwgtc - external function subprogram defining the weight +! function +! hlgth - half-length of the interval +! centr - mid point of the interval +! + implicit none +! + real(dp) a + real(dp) abserr + real(dp) ak22 + real(dp) amom0 + real(dp) amom1 + real(dp) amom2 + real(dp) b + real(dp) c + real(dp) cc + real(dp) centr + real(dp) cheb12(13) + real(dp) cheb24(25) + real(dp), external :: f + real(dp) fval(25) + real(dp) hlgth + integer i + integer isym + integer k + integer kp + integer krul + integer neval + real(dp) p2 + real(dp) p3 + real(dp) p4 +! real(dp), external :: qwgtc + real(dp) resabs + real(dp) resasc + real(dp) result + real(dp) res12 + real(dp) res24 + real(dp) u + real(dp), parameter, dimension ( 11 ) :: x = (/ & + 9.914448613738104e-01, 9.659258262890683e-01, & + 9.238795325112868e-01, 8.660254037844386e-01, & + 7.933533402912352e-01, 7.071067811865475e-01, & + 6.087614290087206e-01, 5.000000000000000e-01, & + 3.826834323650898e-01, 2.588190451025208e-01, & + 1.305261922200516e-01 /) +! +! Check the position of C. +! + cc = ( 2.0e+00 * c - b - a ) / ( b - a ) +! +! Apply the 15-point Gauss-Kronrod scheme. +! + if ( abs ( cc ) >= 1.1e+00 ) then + krul = krul - 1 + call qk15w ( f, qwgtc, c, p2, p3, p4, kp, a, b, result, abserr, & + resabs, resasc ) + neval = 15 + if ( resasc == abserr ) then + krul = krul+1 + end if + return + end if +! +! Use the generalized Clenshaw-Curtis method. +! + hlgth = 5.0e-01 * ( b - a ) + centr = 5.0e-01 * ( b + a ) + neval = 25 + fval(1) = 5.0e-01 * f(hlgth+centr) + fval(13) = f(centr) + fval(25) = 5.0e-01 * f(centr-hlgth) + + do i = 2, 12 + u = hlgth * x(i-1) + isym = 26 - i + fval(i) = f(u+centr) + fval(isym) = f(centr-u) + end do +! +! Compute the Chebyshev series expansion. +! + call qcheb ( x, fval, cheb12, cheb24 ) +! +! The modified Chebyshev moments are computed by forward +! recursion, using AMOM0 and AMOM1 as starting values. +! + amom0 = log ( abs ( ( 1.0e+00 - cc ) / ( 1.0e+00 + cc ) ) ) + amom1 = 2.0e+00 + cc * amom0 + res12 = cheb12(1) * amom0 + cheb12(2) * amom1 + res24 = cheb24(1) * amom0 + cheb24(2) * amom1 + + do k = 3, 13 + amom2 = 2.0e+00 * cc * amom1 - amom0 + ak22 = ( k - 2 ) * ( k - 2 ) + if ( ( k / 2 ) * 2 == k ) then + amom2 = amom2 - 4.0e+00 / ( ak22 - 1.0e+00 ) + end if + res12 = res12 + cheb12(k) * amom2 + res24 = res24 + cheb24(k) * amom2 + amom0 = amom1 + amom1 = amom2 + end do + + do k = 14, 25 + amom2 = 2.0e+00 * cc * amom1 - amom0 + ak22 = ( k - 2 ) * ( k - 2 ) + if ( ( k / 2 ) * 2 == k ) then + amom2 = amom2 - 4.0e+00 / ( ak22 - 1.0e+00 ) + end if + res24 = res24 + cheb24(k) * amom2 + amom0 = amom1 + amom1 = amom2 + end do + + result = res24 + abserr = abs ( res24 - res12 ) + + return +end subroutine +subroutine qc25o ( f, a, b, omega, integr, nrmom, maxp1, ksave, result, & + abserr, neval, resabs, resasc, momcom, chebmo ) +! +!****************************************************************************** +! +!! QC25O returns integration rules for integrands with a COS or SIN factor. +! +! +! Discussion: +! +! This routine estimates the integral +! I = integral of f(x) * w(x) over (a,b) +! where +! w(x) = cos(omega*x) +! or +! w(x) = sin(omega*x), +! and estimates +! J = integral ( A <= X <= B ) |F(X)| dx. +! +! For small values of OMEGA or small intervals (a,b) the 15-point +! Gauss-Kronrod rule is used. In all other cases a generalized +! Clenshaw-Curtis method is used, that is, a truncated Chebyshev +! expansion of the function F is computed on (a,b), so that the +! integrand can be written as a sum of terms of the form W(X)*T(K,X), +! where T(K,X) is the Chebyshev polynomial of degree K. The Chebyshev +! moments are computed with use of a linear recurrence relation. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) OMEGA, the parameter in the weight function. +! +! Input, integer INTEGR, indicates which weight function is to be used +! = 1, w(x) = cos(omega*x) +! = 2, w(x) = sin(omega*x) +! +! ?, integer NRMOM, the length of interval (a,b) is equal to the length +! of the original integration interval divided by +! 2**nrmom (we suppose that the routine is used in an +! adaptive integration process, otherwise set +! nrmom = 0). nrmom must be zero at the first call. +! +! maxp1 - integer +! gives an upper bound on the number of Chebyshev +! moments which can be stored, i.e. for the intervals +! of lengths abs(bb-aa)*2**(-l), l = 0,1,2, ..., +! maxp1-2. +! +! ksave - integer +! key which is one when the moments for the +! current interval have been computed +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! abserr - real(dp) +! estimate of the modulus of the absolute +! error, which should equal or exceed abs(i-result) +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Output, real(dp) RESABS, approximation to the integral J. +! +! Output, real(dp) RESASC, approximation to the integral of abs(F-I/(B-A)). +! +! on entry and return +! momcom - integer +! for each interval length we need to compute +! the Chebyshev moments. momcom counts the number +! of intervals for which these moments have already +! been computed. if nrmom < momcom or ksave = 1, +! the Chebyshev moments for the interval (a,b) +! have already been computed and stored, otherwise +! we compute them and we increase momcom. +! +! chebmo - real(dp) +! array of dimension at least (maxp1,25) containing +! the modified Chebyshev moments for the first momcom +! interval lengths +! +! Local parameters: +! +! maxp1 gives an upper bound +! on the number of Chebyshev moments which can be +! computed, i.e. for the interval (bb-aa), ..., +! (bb-aa)/2**(maxp1-2). +! should this number be altered, the first dimension of +! chebmo needs to be adapted. +! +! x contains the values cos(k*pi/24) +! k = 1, ...,11, to be used for the Chebyshev expansion of f +! +! centr - mid point of the integration interval +! hlgth - half length of the integration interval +! fval - value of the function f at the points +! (b-a)*0.5*cos(k*pi/12) + (b+a)*0.5 +! k = 0, ...,24 +! cheb12 - coefficients of the Chebyshev series expansion +! of degree 12, for the function f, in the +! interval (a,b) +! cheb24 - coefficients of the Chebyshev series expansion +! of degree 24, for the function f, in the +! interval (a,b) +! resc12 - approximation to the integral of +! cos(0.5*(b-a)*omega*x)*f(0.5*(b-a)*x+0.5*(b+a)) +! over (-1,+1), using the Chebyshev series +! expansion of degree 12 +! resc24 - approximation to the same integral, using the +! Chebyshev series expansion of degree 24 +! ress12 - the analogue of resc12 for the sine +! ress24 - the analogue of resc24 for the sine +! + implicit none +! + integer maxp1 +! + real(dp) a + real(dp) abserr + real(dp) ac + real(dp) an + real(dp) an2 + real(dp) as + real(dp) asap + real(dp) ass + real(dp) b + real(dp) centr + real(dp) chebmo(maxp1,25) + real(dp) cheb12(13) + real(dp) cheb24(25) + real(dp) conc + real(dp) cons + real(dp) cospar + real(dp) d(28) + real(dp) d1(28) + real(dp) d2(28) + real(dp) d3(28) + real(dp) estc + real(dp) ests + real(dp), external :: f + real(dp) fval(25) + real(dp) hlgth + integer i + integer integr + integer isym + integer j + integer k + integer ksave + integer m + integer momcom + integer neval + integer, parameter :: nmac = 28 + integer noeq1 + integer noequ + integer nrmom + real(dp) omega + real(dp) parint + real(dp) par2 + real(dp) par22 + real(dp) p2 + real(dp) p3 + real(dp) p4 +! real(dp), external :: qwgto + real(dp) resabs + real(dp) resasc + real(dp) resc12 + real(dp) resc24 + real(dp) ress12 + real(dp) ress24 + real(dp) result + real(dp) sinpar + real(dp) v(28) + real(dp), dimension ( 11 ) :: x = (/ & + 9.914448613738104e-01, 9.659258262890683e-01, & + 9.238795325112868e-01, 8.660254037844386e-01, & + 7.933533402912352e-01, 7.071067811865475e-01, & + 6.087614290087206e-01, 5.000000000000000e-01, & + 3.826834323650898e-01, 2.588190451025208e-01, & + 1.305261922200516e-01 /) +! + centr = 5.0e-01*(b+a) + hlgth = 5.0e-01*(b-a) + parint = omega * hlgth +! +! Compute the integral using the 15-point Gauss-Kronrod +! formula if the value of the parameter in the integrand +! is small or if the length of the integration interval +! is less than (bb-aa)/2**(maxp1-2), where (aa,bb) is the +! original integration interval. +! + if ( abs ( parint ) <= 2.0e+00 ) then + + call qk15w ( f, qwgto, omega, p2, p3, p4, integr, a, b, result, & + abserr, resabs, resasc ) + + neval = 15 + return + + end if +! +! Compute the integral using the generalized clenshaw-curtis method. +! + conc = hlgth * cos(centr*omega) + cons = hlgth * sin(centr*omega) + resasc = huge ( resasc ) + neval = 25 +! +! Check whether the Chebyshev moments for this interval +! have already been computed. +! + if ( nrmom < momcom .or. ksave == 1 ) go to 140 +! +! Compute a new set of Chebyshev moments. +! + m = momcom+1 + par2 = parint*parint + par22 = par2+2.0e+00 + sinpar = sin(parint) + cospar = cos(parint) +! +! Compute the Chebyshev moments with respect to cosine. +! + v(1) = 2.0e+00*sinpar/parint + v(2) = (8.0e+00*cospar+(par2+par2-8.0e+00)*sinpar/ parint)/par2 + v(3) = (3.2e+01*(par2-1.2e+01)*cospar+(2.0e+00* & + ((par2-8.0e+01)*par2+1.92e+02)*sinpar)/ & + parint)/(par2*par2) + ac = 8.0e+00*cospar + as = 2.4e+01*parint*sinpar + + if ( abs ( parint ) > 2.4e+01 ) then + go to 70 + end if +! +! Compute the Chebyshev moments as the solutions of a boundary value +! problem with one initial value (v(3)) and one end value computed +! using an asymptotic formula. +! + noequ = nmac-3 + noeq1 = noequ-1 + an = 6.0e+00 + + do k = 1, noeq1 + an2 = an*an + d(k) = -2.0e+00*(an2-4.0e+00)*(par22-an2-an2) + d2(k) = (an-1.0e+00)*(an-2.0e+00)*par2 + d1(k) = (an+3.0e+00)*(an+4.0e+00)*par2 + v(k+3) = as-(an2-4.0e+00)*ac + an = an+2.0e+00 + end do + + an2 = an*an + d(noequ) = -2.0e+00*(an2-4.0e+00)*(par22-an2-an2) + v(noequ+3) = as-(an2-4.0e+00)*ac + v(4) = v(4)-5.6e+01*par2*v(3) + ass = parint*sinpar + asap = (((((2.10e+02*par2-1.0e+00)*cospar-(1.05e+02*par2 & + -6.3e+01)*ass)/an2-(1.0e+00-1.5e+01*par2)*cospar & + +1.5e+01*ass)/an2-cospar+3.0e+00*ass)/an2-cospar)/an2 + v(noequ+3) = v(noequ+3)-2.0e+00*asap*par2*(an-1.0e+00)* & + (an-2.0e+00) +! +! Solve the tridiagonal system by means of Gaussian +! elimination with partial pivoting. +! + d3(1:noequ) = 0.0e+00 + + d2(noequ) = 0.0e+00 + + do i = 1, noeq1 + + if ( abs(d1(i)) > abs(d(i)) ) then + an = d1(i) + d1(i) = d(i) + d(i) = an + an = d2(i) + d2(i) = d(i+1) + d(i+1) = an + d3(i) = d2(i+1) + d2(i+1) = 0.0e+00 + an = v(i+4) + v(i+4) = v(i+3) + v(i+3) = an + end if + + d(i+1) = d(i+1)-d2(i)*d1(i)/d(i) + d2(i+1) = d2(i+1)-d3(i)*d1(i)/d(i) + v(i+4) = v(i+4)-v(i+3)*d1(i)/d(i) + + end do + + v(noequ+3) = v(noequ+3)/d(noequ) + v(noequ+2) = (v(noequ+2)-d2(noeq1)*v(noequ+3))/d(noeq1) + + do i = 2, noeq1 + k = noequ-i + v(k+3) = (v(k+3)-d3(k)*v(k+5)-d2(k)*v(k+4))/d(k) + end do + + go to 90 +! +! Compute the Chebyshev moments by means of forward recursion +! +70 continue + + an = 4.0e+00 + + do i = 4, 13 + an2 = an*an + v(i) = ((an2-4.0e+00)*(2.0e+00*(par22-an2-an2)*v(i-1)-ac) & + +as-par2*(an+1.0e+00)*(an+2.0e+00)*v(i-2))/ & + (par2*(an-1.0e+00)*(an-2.0e+00)) + an = an+2.0e+00 + end do + +90 continue + + do j = 1, 13 + chebmo(m,2*j-1) = v(j) + end do +! +! Compute the Chebyshev moments with respect to sine. +! + v(1) = 2.0e+00*(sinpar-parint*cospar)/par2 + v(2) = (1.8e+01-4.8e+01/par2)*sinpar/par2 & + +(-2.0e+00+4.8e+01/par2)*cospar/parint + ac = -2.4e+01*parint*cospar + as = -8.0e+00*sinpar + chebmo(m,2) = v(1) + chebmo(m,4) = v(2) + + if ( abs(parint) <= 2.4e+01 ) then + + do k = 3, 12 + an = k + chebmo(m,2*k) = -sinpar/(an*(2.0e+00*an-2.0e+00)) & + -2.5e-01*parint*(v(k+1)/an-v(k)/(an-1.0e+00)) + end do +! +! Compute the Chebyshev moments by means of forward recursion. +! + else + + an = 3.0e+00 + + do i = 3, 12 + an2 = an*an + v(i) = ((an2-4.0e+00)*(2.0e+00*(par22-an2-an2)*v(i-1)+as) & + +ac-par2*(an+1.0e+00)*(an+2.0e+00)*v(i-2)) & + /(par2*(an-1.0e+00)*(an-2.0e+00)) + an = an+2.0e+00 + chebmo(m,2*i) = v(i) + end do + + end if + +140 continue + + if ( nrmom < momcom ) then + m = nrmom + 1 + end if + + if ( momcom < maxp1 - 1 .and. nrmom >= momcom ) then + momcom = momcom + 1 + end if +! +! Compute the coefficients of the Chebyshev expansions +! of degrees 12 and 24 of the function F. +! + fval(1) = 5.0e-01*f(centr+hlgth) + fval(13) = f(centr) + fval(25) = 5.0e-01*f(centr-hlgth) + + do i = 2, 12 + isym = 26-i + fval(i) = f(hlgth*x(i-1)+centr) + fval(isym) = f(centr-hlgth*x(i-1)) + end do + + call qcheb ( x, fval, cheb12, cheb24 ) +! +! Compute the integral and error estimates. +! + resc12 = cheb12(13) * chebmo(m,13) + ress12 = 0.0e+00 + estc = abs ( cheb24(25)*chebmo(m,25))+abs((cheb12(13)- & + cheb24(13))*chebmo(m,13) ) + ests = 0.0e+00 + k = 11 + + do j = 1, 6 + resc12 = resc12+cheb12(k)*chebmo(m,k) + ress12 = ress12+cheb12(k+1)*chebmo(m,k+1) + estc = estc+abs((cheb12(k)-cheb24(k))*chebmo(m,k)) + ests = ests+abs((cheb12(k+1)-cheb24(k+1))*chebmo(m,k+1)) + k = k-2 + end do + + resc24 = cheb24(25)*chebmo(m,25) + ress24 = 0.0e+00 + resabs = abs(cheb24(25)) + k = 23 + + do j = 1, 12 + + resc24 = resc24+cheb24(k)*chebmo(m,k) + ress24 = ress24+cheb24(k+1)*chebmo(m,k+1) + resabs = resabs+abs(cheb24(k))+abs(cheb24(k+1)) + + if ( j <= 5 ) then + estc = estc+abs(cheb24(k)*chebmo(m,k)) + ests = ests+abs(cheb24(k+1)*chebmo(m,k+1)) + end if + + k = k-2 + + end do + + resabs = resabs * abs ( hlgth ) + + if ( integr == 1 ) then + result = conc * resc24-cons*ress24 + abserr = abs ( conc * estc ) + abs ( cons * ests ) + else + result = conc*ress24+cons*resc24 + abserr = abs(conc*ests)+abs(cons*estc) + end if + + return +end subroutine +subroutine qc25s ( f, a, b, bl, br, alfa, beta, ri, rj, rg, rh, result, & + abserr, resasc, integr, neval ) +! +!****************************************************************************** +! +!! QC25S returns rules for algebraico-logarithmic end point singularities. +! +! +! Discussion: +! +! This routine computes +! i = integral of F(X) * W(X) over (bl,br), +! with error estimate, where the weight function W(X) has a singular +! behavior of algebraico-logarithmic type at the points +! a and/or b. +! +! The interval (bl,br) is a subinterval of (a,b). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) BL, BR, the lower and upper limits of integration. +! A <= BL < BR <= B. +! +! Input, real(dp) ALFA, BETA, parameters in the weight function. +! +! Input, real(dp) RI(25), RJ(25), RG(25), RH(25), modified Chebyshev moments +! for the application of the generalized Clenshaw-Curtis method, +! computed in QMOMO. +! +! Output, real(dp) RESULT, the estimated value of the integral, computed by +! using a generalized clenshaw-curtis method if b1 = a or br = b. +! In all other cases the 15-point Kronrod rule is applied, obtained by +! optimal addition of abscissae to the 7-point Gauss rule. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, real(dp) RESASC, approximation to the integral of abs(F*W-I/(B-A)). +! +! Input, integer INTEGR, determines the weight function +! 1, w(x) = (x-a)**alfa*(b-x)**beta +! 2, w(x) = (x-a)**alfa*(b-x)**beta*log(x-a) +! 3, w(x) = (x-a)**alfa*(b-x)**beta*log(b-x) +! 4, w(x) = (x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x) +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! Local Parameters: +! +! fval - value of the function f at the points +! (br-bl)*0.5*cos(k*pi/24)+(br+bl)*0.5 +! k = 0, ..., 24 +! cheb12 - coefficients of the Chebyshev series expansion +! of degree 12, for the function f, in the interval +! (bl,br) +! cheb24 - coefficients of the Chebyshev series expansion +! of degree 24, for the function f, in the interval +! (bl,br) +! res12 - approximation to the integral obtained from cheb12 +! res24 - approximation to the integral obtained from cheb24 +! qwgts - external function subprogram defining the four +! possible weight functions +! hlgth - half-length of the interval (bl,br) +! centr - mid point of the interval (bl,br) +! +! the vector x contains the values cos(k*pi/24) +! k = 1, ..., 11, to be used for the computation of the +! Chebyshev series expansion of f. +! + implicit none +! + real(dp) a + real(dp) abserr + real(dp) alfa + real(dp) b + real(dp) beta + real(dp) bl + real(dp) br + real(dp) centr + real(dp) cheb12(13) + real(dp) cheb24(25) + real(dp) dc + real(dp), external :: f + real(dp) factor + real(dp) fix + real(dp) fval(25) + real(dp) hlgth + integer i + integer integr + integer isym + integer neval +! real(dp), external :: qwgts + real(dp) resabs + real(dp) resasc + real(dp) result + real(dp) res12 + real(dp) res24 + real(dp) rg(25) + real(dp) rh(25) + real(dp) ri(25) + real(dp) rj(25) + real(dp) u + real(dp), dimension ( 11 ) :: x = (/ & + 9.914448613738104e-01, 9.659258262890683e-01, & + 9.238795325112868e-01, 8.660254037844386e-01, & + 7.933533402912352e-01, 7.071067811865475e-01, & + 6.087614290087206e-01, 5.000000000000000e-01, & + 3.826834323650898e-01, 2.588190451025208e-01, & + 1.305261922200516e-01 /) +! + neval = 25 + + if ( bl == a .and. (alfa /= 0.0e+00 .or. integr == 2 .or. integr == 4)) & + go to 10 + + if ( br == b .and. (beta /= 0.0e+00 .or. integr == 3 .or. integr == 4)) & + go to 140 +! +! If a > bl and b < br, apply the 15-point Gauss-Kronrod scheme. +! + call qk15w ( f, qwgts, a, b, alfa, beta, integr, bl, br, result, abserr, & + resabs, resasc ) + + neval = 15 + return +! +! This part of the program is executed only if a = bl. +! +! Compute the Chebyshev series expansion of the function +! f1 = (0.5*(b+b-br-a)-0.5*(br-a)*x)**beta*f(0.5*(br-a)*x+0.5*(br+a)) +! +10 continue + + hlgth = 5.0e-01*(br-bl) + centr = 5.0e-01*(br+bl) + fix = b-centr + fval(1) = 5.0e-01*f(hlgth+centr)*(fix-hlgth)**beta + fval(13) = f(centr)*(fix**beta) + fval(25) = 5.0e-01*f(centr-hlgth)*(fix+hlgth)**beta + + do i = 2, 12 + u = hlgth*x(i-1) + isym = 26-i + fval(i) = f(u+centr)*(fix-u)**beta + fval(isym) = f(centr-u)*(fix+u)**beta + end do + + factor = hlgth**(alfa+1.0e+00) + result = 0.0e+00 + abserr = 0.0e+00 + res12 = 0.0e+00 + res24 = 0.0e+00 + + if ( integr > 2 ) go to 70 + + call qcheb ( x, fval, cheb12, cheb24 ) +! +! integr = 1 (or 2) +! + do i = 1, 13 + res12 = res12+cheb12(i)*ri(i) + res24 = res24+cheb24(i)*ri(i) + end do + + do i = 14, 25 + res24 = res24 + cheb24(i) * ri(i) + end do + + if ( integr == 1 ) go to 130 +! +! integr = 2 +! + dc = log ( br - bl ) + result = res24 * dc + abserr = abs((res24-res12)*dc) + res12 = 0.0e+00 + res24 = 0.0e+00 + + do i = 1, 13 + res12 = res12+cheb12(i)*rg(i) + res24 = res24+cheb24(i)*rg(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*rg(i) + end do + + go to 130 +! +! Compute the Chebyshev series expansion of the function +! F4 = f1*log(0.5*(b+b-br-a)-0.5*(br-a)*x) +! +70 continue + + fval(1) = fval(1) * log ( fix - hlgth ) + fval(13) = fval(13) * log ( fix ) + fval(25) = fval(25) * log ( fix + hlgth ) + + do i = 2, 12 + u = hlgth*x(i-1) + isym = 26-i + fval(i) = fval(i) * log ( fix - u ) + fval(isym) = fval(isym) * log ( fix + u ) + end do + + call qcheb ( x, fval, cheb12, cheb24 ) +! +! integr = 3 (or 4) +! + do i = 1, 13 + res12 = res12+cheb12(i)*ri(i) + res24 = res24+cheb24(i)*ri(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*ri(i) + end do + + if ( integr == 3 ) go to 130 +! +! integr = 4 +! + dc = log ( br - bl ) + result = res24*dc + abserr = abs((res24-res12)*dc) + res12 = 0.0e+00 + res24 = 0.0e+00 + + do i = 1, 13 + res12 = res12+cheb12(i)*rg(i) + res24 = res24+cheb24(i)*rg(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*rg(i) + end do + +130 continue + + result = (result+res24)*factor + abserr = (abserr+abs(res24-res12))*factor + go to 270 +! +! This part of the program is executed only if b = br. +! +! Compute the Chebyshev series expansion of the function +! f2 = (0.5*(b+bl-a-a)+0.5*(b-bl)*x)**alfa*f(0.5*(b-bl)*x+0.5*(b+bl)) +! +140 continue + + hlgth = 5.0e-01*(br-bl) + centr = 5.0e-01*(br+bl) + fix = centr-a + fval(1) = 5.0e-01*f(hlgth+centr)*(fix+hlgth)**alfa + fval(13) = f(centr)*(fix**alfa) + fval(25) = 5.0e-01*f(centr-hlgth)*(fix-hlgth)**alfa + + do i = 2, 12 + u = hlgth*x(i-1) + isym = 26-i + fval(i) = f(u+centr)*(fix+u)**alfa + fval(isym) = f(centr-u)*(fix-u)**alfa + end do + + factor = hlgth**(beta+1.0e+00) + result = 0.0e+00 + abserr = 0.0e+00 + res12 = 0.0e+00 + res24 = 0.0e+00 + + if ( integr == 2 .or. integr == 4 ) go to 200 +! +! integr = 1 (or 3) +! + call qcheb ( x, fval, cheb12, cheb24 ) + + do i = 1, 13 + res12 = res12+cheb12(i)*rj(i) + res24 = res24+cheb24(i)*rj(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*rj(i) + end do + + if ( integr == 1 ) go to 260 +! +! integr = 3 +! + dc = log ( br - bl ) + result = res24*dc + abserr = abs((res24-res12)*dc) + res12 = 0.0e+00 + res24 = 0.0e+00 + + do i = 1, 13 + res12 = res12+cheb12(i)*rh(i) + res24 = res24+cheb24(i)*rh(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*rh(i) + end do + + go to 260 +! +! Compute the Chebyshev series expansion of the function +! f3 = f2*log(0.5*(b-bl)*x+0.5*(b+bl-a-a)) +! +200 continue + + fval(1) = fval(1) * log ( hlgth + fix ) + fval(13) = fval(13) * log ( fix ) + fval(25) = fval(25) * log ( fix - hlgth ) + + do i = 2, 12 + u = hlgth*x(i-1) + isym = 26-i + fval(i) = fval(i) * log(u+fix) + fval(isym) = fval(isym) * log(fix-u) + end do + + call qcheb ( x, fval, cheb12, cheb24 ) +! +! integr = 2 (or 4) +! + do i = 1, 13 + res12 = res12+cheb12(i)*rj(i) + res24 = res24+cheb24(i)*rj(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*rj(i) + end do + + if ( integr == 2 ) go to 260 + + dc = log(br-bl) + result = res24*dc + abserr = abs((res24-res12)*dc) + res12 = 0.0e+00 + res24 = 0.0e+00 +! +! integr = 4 +! + do i = 1, 13 + res12 = res12+cheb12(i)*rh(i) + res24 = res24+cheb24(i)*rh(i) + end do + + do i = 14, 25 + res24 = res24+cheb24(i)*rh(i) + end do + +260 continue + + result = (result+res24)*factor + abserr = (abserr+abs(res24-res12))*factor + +270 continue + + return +end subroutine +subroutine qcheb ( x, fval, cheb12, cheb24 ) +! +!****************************************************************************** +! +!! QCHEB computes the Chebyshev series expansion. +! +! +! Discussion: +! +! This routine computes the Chebyshev series expansion +! of degrees 12 and 24 of a function using a fast Fourier transform method +! +! f(x) = sum(k=1, ...,13) (cheb12(k)*t(k-1,x)), +! f(x) = sum(k=1, ...,25) (cheb24(k)*t(k-1,x)), +! +! where T(K,X) is the Chebyshev polynomial of degree K. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, real(dp) X(11), contains the values of COS(K*PI/24), for K = 1 to 11. +! +! Input/output, real(dp) FVAL(25), the function values at the points +! (b+a+(b-a)*cos(k*pi/24))/2, k = 0, ...,24, where (a,b) is the +! approximation interval. FVAL(1) and FVAL(25) are divided by two +! These values are destroyed at output. +! +! on return +! cheb12 - real(dp) +! vector of dimension 13 containing the Chebyshev +! coefficients for degree 12 +! +! cheb24 - real(dp) +! vector of dimension 25 containing the Chebyshev +! coefficients for degree 24 +! + implicit none +! + real(dp) alam + real(dp) alam1 + real(dp) alam2 + real(dp) cheb12(13) + real(dp) cheb24(25) + real(dp) fval(25) + integer i + integer j + real(dp) part1 + real(dp) part2 + real(dp) part3 + real(dp) v(12) + real(dp) x(11) +! + do i = 1, 12 + j = 26-i + v(i) = fval(i)-fval(j) + fval(i) = fval(i)+fval(j) + end do + + alam1 = v(1)-v(9) + alam2 = x(6)*(v(3)-v(7)-v(11)) + cheb12(4) = alam1+alam2 + cheb12(10) = alam1-alam2 + alam1 = v(2)-v(8)-v(10) + alam2 = v(4)-v(6)-v(12) + alam = x(3)*alam1+x(9)*alam2 + cheb24(4) = cheb12(4)+alam + cheb24(22) = cheb12(4)-alam + alam = x(9)*alam1-x(3)*alam2 + cheb24(10) = cheb12(10)+alam + cheb24(16) = cheb12(10)-alam + part1 = x(4)*v(5) + part2 = x(8)*v(9) + part3 = x(6)*v(7) + alam1 = v(1)+part1+part2 + alam2 = x(2)*v(3)+part3+x(10)*v(11) + cheb12(2) = alam1+alam2 + cheb12(12) = alam1-alam2 + alam = x(1)*v(2)+x(3)*v(4)+x(5)*v(6)+x(7)*v(8) & + +x(9)*v(10)+x(11)*v(12) + cheb24(2) = cheb12(2)+alam + cheb24(24) = cheb12(2)-alam + alam = x(11)*v(2)-x(9)*v(4)+x(7)*v(6)-x(5)*v(8) & + +x(3)*v(10)-x(1)*v(12) + cheb24(12) = cheb12(12)+alam + cheb24(14) = cheb12(12)-alam + alam1 = v(1)-part1+part2 + alam2 = x(10)*v(3)-part3+x(2)*v(11) + cheb12(6) = alam1+alam2 + cheb12(8) = alam1-alam2 + alam = x(5)*v(2)-x(9)*v(4)-x(1)*v(6) & + -x(11)*v(8)+x(3)*v(10)+x(7)*v(12) + cheb24(6) = cheb12(6)+alam + cheb24(20) = cheb12(6)-alam + alam = x(7)*v(2)-x(3)*v(4)-x(11)*v(6)+x(1)*v(8) & + -x(9)*v(10)-x(5)*v(12) + cheb24(8) = cheb12(8)+alam + cheb24(18) = cheb12(8)-alam + + do i = 1, 6 + j = 14-i + v(i) = fval(i)-fval(j) + fval(i) = fval(i)+fval(j) + end do + + alam1 = v(1)+x(8)*v(5) + alam2 = x(4)*v(3) + cheb12(3) = alam1+alam2 + cheb12(11) = alam1-alam2 + cheb12(7) = v(1)-v(5) + alam = x(2)*v(2)+x(6)*v(4)+x(10)*v(6) + cheb24(3) = cheb12(3)+alam + cheb24(23) = cheb12(3)-alam + alam = x(6)*(v(2)-v(4)-v(6)) + cheb24(7) = cheb12(7)+alam + cheb24(19) = cheb12(7)-alam + alam = x(10)*v(2)-x(6)*v(4)+x(2)*v(6) + cheb24(11) = cheb12(11)+alam + cheb24(15) = cheb12(11)-alam + + do i = 1, 3 + j = 8-i + v(i) = fval(i)-fval(j) + fval(i) = fval(i)+fval(j) + end do + + cheb12(5) = v(1)+x(8)*v(3) + cheb12(9) = fval(1)-x(8)*fval(3) + alam = x(4)*v(2) + cheb24(5) = cheb12(5)+alam + cheb24(21) = cheb12(5)-alam + alam = x(8)*fval(2)-fval(4) + cheb24(9) = cheb12(9)+alam + cheb24(17) = cheb12(9)-alam + cheb12(1) = fval(1)+fval(3) + alam = fval(2)+fval(4) + cheb24(1) = cheb12(1)+alam + cheb24(25) = cheb12(1)-alam + cheb12(13) = v(1)-v(3) + cheb24(13) = cheb12(13) + alam = 1.0e+00/6.0e+00 + + do i = 2, 12 + cheb12(i) = cheb12(i)*alam + end do + + alam = 5.0e-01*alam + cheb12(1) = cheb12(1)*alam + cheb12(13) = cheb12(13)*alam + + do i = 2, 24 + cheb24(i) = cheb24(i)*alam + end do + + cheb24(1) = 0.5E+00 * alam*cheb24(1) + cheb24(25) = 0.5E+00 * alam*cheb24(25) + + return +end subroutine +subroutine qextr ( n, epstab, result, abserr, res3la, nres ) +! +!****************************************************************************** +! +!! QEXTR carries out the Epsilon extrapolation algorithm. +! +! +! Discussion: +! +! The routine determines the limit of a given sequence of approximations, +! by means of the epsilon algorithm of P. Wynn. An estimate of the +! absolute error is also given. The condensed epsilon table is computed. +! Only those elements needed for the computation of the next diagonal +! are preserved. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, integer N, indicates the entry of EPSTAB which contains +! the new element in the first column of the epsilon table. +! +! Input/output, real(dp) EPSTAB(52), the two lower diagonals of the triangular +! epsilon table. The elements are numbered starting at the right-hand +! corner of the triangle. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, estimate of the absolute error computed from +! RESULT and the 3 previous results. +! +! ?, real(dp) RES3LA(3), the last 3 results. +! +! Input/output, integer NRES, the number of calls to the routine. This +! should be zero on the first call, and is automatically updated +! before return. +! +! Local Parameters: +! +! e0 - the 4 elements on which the +! e1 computation of a new element in +! e2 the epsilon table is based +! e3 e0 +! e3 e1 new +! e2 +! newelm - number of elements to be computed in the new +! diagonal +! error - error = abs(e1-e0)+abs(e2-e1)+abs(new-e2) +! result - the element in the new diagonal with least value +! of error +! limexp is the maximum number of elements the epsilon table +! can contain. if this number is reached, the upper diagonal +! of the epsilon table is deleted. +! + implicit none +! + real(dp) abserr + real(dp) delta1 + real(dp) delta2 + real(dp) delta3 + real(dp) epsinf + real(dp) epstab(52) + real(dp) error + real(dp) err1 + real(dp) err2 + real(dp) err3 + real(dp) e0 + real(dp) e1 + real(dp) e1abs + real(dp) e2 + real(dp) e3 + integer i + integer ib + integer ib2 + integer ie + integer indx + integer k1 + integer k2 + integer k3 + integer limexp + integer n + integer newelm + integer nres + integer num + real(dp) res + real(dp) result + real(dp) res3la(3) + real(dp) ss + real(dp) tol1 + real(dp) tol2 + real(dp) tol3 +! + nres = nres+1 + abserr = huge ( abserr ) + result = epstab(n) + + if ( n < 3 ) go to 100 + limexp = 50 + epstab(n+2) = epstab(n) + newelm = (n-1)/2 + epstab(n) = huge ( epstab(n) ) + num = n + k1 = n + + do i = 1, newelm + + k2 = k1-1 + k3 = k1-2 + res = epstab(k1+2) + e0 = epstab(k3) + e1 = epstab(k2) + e2 = res + e1abs = abs(e1) + delta2 = e2-e1 + err2 = abs(delta2) + tol2 = max ( abs(e2),e1abs)* epsilon ( e2 ) + delta3 = e1-e0 + err3 = abs(delta3) + tol3 = max ( e1abs,abs(e0))* epsilon ( e0 ) +! +! If e0, e1 and e2 are equal to within machine accuracy, convergence +! is assumed. +! + if ( err2 <= tol2 .and. err3 <= tol3 ) then + result = res + abserr = err2+err3 + go to 100 + end if + + e3 = epstab(k1) + epstab(k1) = e1 + delta1 = e1-e3 + err1 = abs(delta1) + tol1 = max ( e1abs,abs(e3))* epsilon ( e3 ) +! +! If two elements are very close to each other, omit a part +! of the table by adjusting the value of N. +! + if ( err1 <= tol1 .or. err2 <= tol2 .or. err3 <= tol3 ) go to 20 + + ss = 1.0e+00/delta1+1.0e+00/delta2-1.0e+00/delta3 + epsinf = abs ( ss*e1 ) +! +! Test to detect irregular behavior in the table, and +! eventually omit a part of the table adjusting the value of N. +! + if ( epsinf > 1.0e-04 ) go to 30 + +20 continue + + n = i+i-1 + exit +! +! Compute a new element and eventually adjust the value of RESULT. +! +30 continue + + res = e1+1.0e+00/ss + epstab(k1) = res + k1 = k1-2 + error = err2+abs(res-e2)+err3 + + if ( error <= abserr ) then + abserr = error + result = res + end if + + end do +! +! Shift the table. +! + if ( n == limexp ) then + n = 2*(limexp/2)-1 + end if + + if ( (num/2)*2 == num ) then + ib = 2 + else + ib = 1 + end if + + ie = newelm+1 + + do i = 1, ie + ib2 = ib+2 + epstab(ib) = epstab(ib2) + ib = ib2 + end do + + if ( num /= n ) then + + indx = num-n+1 + + do i = 1, n + epstab(i)= epstab(indx) + indx = indx+1 + end do + + end if + + if ( nres < 4 ) then + res3la(nres) = result + abserr = huge ( abserr ) + else + abserr = abs(result-res3la(3))+abs(result-res3la(2)) & + +abs(result-res3la(1)) + res3la(1) = res3la(2) + res3la(2) = res3la(3) + res3la(3) = result + end if + +100 continue + + abserr = max ( abserr,0.5e+00* epsilon ( result ) *abs(result)) + + return +end subroutine +subroutine qfour ( f, a, b, omega, integr, epsabs, epsrel, limit, icall, & + maxp1, result, abserr, neval, ier, alist, blist, rlist, elist, iord, & + nnlog, momcom, chebmo ) +! +!****************************************************************************** +! +!! QFOUR estimates the integrals of oscillatory functions. +! +! +! Discussion: +! +! This routine calculates an approximation RESULT to a definite integral +! I = integral of F(X) * COS(OMEGA*X) +! or +! I = integral of F(X) * SIN(OMEGA*X) +! over (A,B), hopefully satisfying: +! | I - RESULT | <= max ( epsabs, epsrel * |I| ) ). +! +! QFOUR is called by QAWO and QAWF. It can also be called directly in +! a user-written program. In the latter case it is possible for the +! user to determine the first dimension of array CHEBMO(MAXP1,25). +! See also parameter description of MAXP1. Additionally see +! parameter description of ICALL for eventually re-using +! Chebyshev moments computed during former call on subinterval +! of equal length abs(B-A). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) OMEGA, the multiplier of X in the weight function. +! +! Input, integer INTEGR, indicates the weight functions to be used. +! = 1, w(x) = cos(omega*x) +! = 2, w(x) = sin(omega*x) +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Input, integer LIMIT, the maximum number of subintervals of [A,B] +! that can be generated. +! +! icall - integer +! if qfour is to be used only once, ICALL must +! be set to 1. assume that during this call, the +! Chebyshev moments (for clenshaw-curtis integration +! of degree 24) have been computed for intervals of +! lenghts (abs(b-a))*2**(-l), l=0,1,2,...momcom-1. +! the Chebyshev moments already computed can be +! re-used in subsequent calls, if qfour must be +! called twice or more times on intervals of the +! same length abs(b-a). from the second call on, one +! has to put then ICALL > 1. +! if ICALL < 1, the routine will end with ier = 6. +! +! maxp1 - integer +! gives an upper bound on the number of +! Chebyshev moments which can be stored, i.e. +! for the intervals of lenghts abs(b-a)*2**(-l), +! l=0,1, ..., maxp1-2, maxp1 >= 1. +! if maxp1 < 1, the routine will end with ier = 6. +! increasing (decreasing) the value of maxp1 +! decreases (increases) the computational time but +! increases (decreases) the required memory space. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the +! requested accuracy has been achieved. +! - ier > 0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the value of +! limit (and taking according dimension +! adjustments into account). however, if +! this yields no improvement it is advised +! to analyze the integrand, in order to +! determine the integration difficulties. +! if the position of a local difficulty can +! be determined (e.g. singularity, +! discontinuity within the interval) one +! will probably gain from splitting up the +! interval at this point and calling the +! integrator on the subranges. if possible, +! an appropriate special-purpose integrator +! should be used which is designed for +! handling the type of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behavior occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. roundoff +! error is detected in the extrapolation +! table. it is presumed that the requested +! tolerance cannot be achieved due to +! roundoff in the extrapolation table, and +! that the returned result is the best which +! can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier > 0. +! = 6 the input is invalid, because +! epsabs < 0 and epsrel < 0, +! or (integr /= 1 and integr /= 2) or +! ICALL < 1 or maxp1 < 1. +! result, abserr, neval, last, rlist(1), +! elist(1), iord(1) and nnlog(1) are set to +! zero. alist(1) and blist(1) are set to a +! and b respectively. +! +! Workspace, real(dp) ALIST(LIMIT), BLIST(LIMIT), contains in entries 1 +! through LAST the left and right ends of the partition subintervals. +! +! Workspace, real(dp) RLIST(LIMIT), contains in entries 1 through LAST +! the integral approximations on the subintervals. +! +! Workspace, real(dp) ELIST(LIMIT), contains in entries 1 through LAST +! the absolute error estimates on the subintervals. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the error +! estimates over the subintervals, such that +! elist(iord(1)), ..., elist(iord(k)), form +! a decreasing sequence, with k = last +! if last <= (limit/2+2), and +! k = limit+1-last otherwise. +! +! nnlog - integer +! vector of dimension at least limit, indicating the +! subdivision levels of the subintervals, i.e. +! iwork(i) = l means that the subinterval numbered +! i is of length abs(b-a)*2**(1-l) +! +! on entry and return +! momcom - integer +! indicating that the Chebyshev moments have been +! computed for intervals of lengths +! (abs(b-a))*2**(-l), l=0,1,2, ..., momcom-1, +! momcom < maxp1 +! +! chebmo - real(dp) +! array of dimension (maxp1,25) containing the +! Chebyshev moments +! +! Local Parameters: +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 containing +! the part of the epsilon table which is still +! needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements in rlist2. if an appropriate +! approximation to the compounded integral has +! been obtained it is put in rlist2(numrl2) after +! numrl2 has been increased by one +! small - length of the smallest interval considered +! up to now, multiplied by 1.5 +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine is +! attempting to perform extrapolation, i.e. before +! subdividing the smallest interval we try to +! decrease the value of erlarg +! noext - logical variable denoting that extrapolation +! is no longer allowed (true value) +! + implicit none +! + integer limit + integer maxp1 +! + real(dp) a + real(dp) abseps + real(dp) abserr + real(dp) alist(limit) + real(dp) area + real(dp) area1 + real(dp) area12 + real(dp) area2 + real(dp) a1 + real(dp) a2 + real(dp) b + real(dp) blist(limit) + real(dp) b1 + real(dp) b2 + real(dp) chebmo(maxp1,25) + real(dp) correc + real(dp) defab1 + real(dp) defab2 + real(dp) defabs + real(dp) domega + real(dp) dres + real(dp) elist(limit) + real(dp) epsabs + real(dp) epsrel + real(dp) erlarg + real(dp) erlast + real(dp) errbnd + real(dp) errmax + real(dp) error1 + real(dp) erro12 + real(dp) error2 + real(dp) errsum + real(dp) ertest + logical extall + logical extrap + real(dp), external :: f + integer icall + integer id + integer ier + integer ierro + integer integr + integer iord(limit) + integer iroff1 + integer iroff2 + integer iroff3 + integer jupbnd + integer k + integer ksgn + integer ktmin + integer last + integer maxerr + integer momcom + integer nev + integer neval + integer nnlog(limit) + logical noext + integer nres + integer nrmax + integer nrmom + integer numrl2 + real(dp) omega + real(dp) resabs + real(dp) reseps + real(dp) result + real(dp) res3la(3) + real(dp) rlist(limit) + real(dp) rlist2(52) + real(dp) small + real(dp) width +! +! the dimension of rlist2 is determined by the value of +! limexp in QEXTR (rlist2 should be of dimension +! (limexp+2) at least). +! +! Test on validity of parameters. +! + ier = 0 + neval = 0 + last = 0 + result = 0.0e+00 + abserr = 0.0e+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0e+00 + elist(1) = 0.0e+00 + iord(1) = 0 + nnlog(1) = 0 + + if ( (integr /= 1.and.integr /= 2) .or. (epsabs < 0.0e+00.and. & + epsrel < 0.0e+00) .or. icall < 1 .or. maxp1 < 1 ) then + ier = 6 + return + end if +! +! First approximation to the integral. +! + domega = abs ( omega ) + nrmom = 0 + + if ( icall <= 1 ) then + momcom = 0 + end if + + call qc25o ( f, a, b, domega, integr, nrmom, maxp1, 0, result, abserr, & + neval, defabs, resabs, momcom, chebmo ) +! +! Test on accuracy. +! + dres = abs(result) + errbnd = max ( epsabs,epsrel*dres) + rlist(1) = result + elist(1) = abserr + iord(1) = 1 + if ( abserr <= 1.0e+02* epsilon ( defabs ) *defabs .and. & + abserr > errbnd ) ier = 2 + + if ( limit == 1 ) then + ier = 1 + end if + + if ( ier /= 0 .or. abserr <= errbnd ) go to 200 +! +! Initializations +! + errmax = abserr + maxerr = 1 + area = result + errsum = abserr + abserr = huge ( abserr ) + nrmax = 1 + extrap = .false. + noext = .false. + ierro = 0 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + ktmin = 0 + small = abs(b-a)*7.5e-01 + nres = 0 + numrl2 = 0 + extall = .false. + + if ( 5.0e-01*abs(b-a)*domega <= 2.0e+00) then + numrl2 = 1 + extall = .true. + rlist2(1) = result + end if + + if ( 2.5e-01 * abs(b-a) * domega <= 2.0e+00 ) then + extall = .true. + end if + + if ( dres >= (1.0e+00-5.0e+01* epsilon ( defabs ) )*defabs ) then + ksgn = 1 + else + ksgn = -1 + end if +! +! main do-loop +! + do 140 last = 2, limit +! +! Bisect the subinterval with the nrmax-th largest error estimate. +! + nrmom = nnlog(maxerr)+1 + a1 = alist(maxerr) + b1 = 5.0e-01*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + + call qc25o ( f, a1, b1, domega, integr, nrmom, maxp1, 0, area1, & + error1, nev, resabs, defab1, momcom, chebmo ) + + neval = neval+nev + + call qc25o ( f, a2, b2, domega, integr, nrmom, maxp1, 1, area2, & + error2, nev, resabs, defab2, momcom, chebmo ) + + neval = neval+nev +! +! Improve previous approximations to integral and error and +! test for accuracy. +! + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + if ( defab1 == error1 .or. defab2 == error2 ) go to 25 + if ( abs(rlist(maxerr)-area12) > 1.0e-05*abs(area12) & + .or. erro12 < 9.9e-01*errmax ) go to 20 + if ( extrap ) iroff2 = iroff2+1 + + if ( .not.extrap ) then + iroff1 = iroff1+1 + end if + +20 continue + + if ( last > 10.and.erro12 > errmax ) iroff3 = iroff3+1 + +25 continue + + rlist(maxerr) = area1 + rlist(last) = area2 + nnlog(maxerr) = nrmom + nnlog(last) = nrmom + errbnd = max ( epsabs,epsrel*abs(area)) +! +! Test for roundoff error and eventually set error flag +! + if ( iroff1+iroff2 >= 10 .or. iroff3 >= 20 ) ier = 2 + + if ( iroff2 >= 5) ierro = 3 +! +! Set error flag in the case that the number of subintervals +! equals limit. +! + if ( last == limit ) then + ier = 1 + end if +! +! Set error flag in the case of bad integrand behavior at +! a point of the integration range. +! + if ( max ( abs(a1),abs(b2)) <= (1.0e+00+1.0e+03* epsilon ( a1 ) ) & + *(abs(a2)+1.0e+03* tiny ( a2 ) )) then + ier = 4 + end if +! +! Append the newly-created intervals to the list. +! + if ( error2 <= error1 ) then + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + else + alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 + end if +! +! Call QSORT to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! +40 continue + + call qsort ( limit, last, maxerr, errmax, elist, iord, nrmax ) + + if ( errsum <= errbnd ) then + go to 170 + end if + + if ( ier /= 0 ) go to 150 + if ( last == 2 .and. extall ) go to 120 + if ( noext ) go to 140 + if ( .not. extall ) go to 50 + erlarg = erlarg-erlast + if ( abs(b1-a1) > small ) erlarg = erlarg+erro12 + if ( extrap ) go to 70 +! +! Test whether the interval to be bisected next is the +! smallest interval. +! +50 continue + + width = abs(blist(maxerr)-alist(maxerr)) + if ( width > small ) go to 140 + if ( extall ) go to 60 +! +! Test whether we can start with the extrapolation procedure +! (we do this if we integrate over the next interval with +! use of a Gauss-Kronrod rule - see QC25O). +! + small = small*5.0e-01 + if ( 2.5e-01*width*domega > 2.0e+00 ) go to 140 + extall = .true. + go to 130 + +60 continue + + extrap = .true. + nrmax = 2 + +70 continue + + if ( ierro == 3 .or. erlarg <= ertest ) go to 90 +! +! The smallest interval has the largest error. +! Before bisecting decrease the sum of the errors over the +! larger intervals (ERLARG) and perform extrapolation. +! + jupbnd = last + + if ( last > (limit/2+2) ) then + jupbnd = limit+3-last + end if + + id = nrmax + + do k = id, jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) + if ( abs(blist(maxerr)-alist(maxerr)) > small ) go to 140 + nrmax = nrmax+1 + end do +! +! Perform extrapolation. +! +90 continue + + numrl2 = numrl2+1 + rlist2(numrl2) = area + if ( numrl2 < 3 ) go to 110 + call qextr ( numrl2, rlist2, reseps, abseps, res3la, nres ) + ktmin = ktmin+1 + + if ( ktmin > 5.and.abserr < 1.0e-03*errsum ) then + ier = 5 + end if + + if ( abseps >= abserr ) go to 100 + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = max ( epsabs, epsrel*abs(reseps)) + if ( abserr <= ertest ) go to 150 +! +! Prepare bisection of the smallest interval. +! +100 continue + + if ( numrl2 == 1 ) noext = .true. + if ( ier == 5 ) go to 150 + +110 continue + + maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + small = small*5.0e-01 + erlarg = errsum + go to 140 + +120 continue + + small = small * 5.0e-01 + numrl2 = numrl2 + 1 + rlist2(numrl2) = area + +130 continue + + ertest = errbnd + erlarg = errsum + +140 continue +! +! set the final result. +! +150 continue + + if ( abserr == huge ( abserr ) .or. nres == 0 ) go to 170 + if ( ier+ierro == 0 ) go to 165 + if ( ierro == 3 ) abserr = abserr+correc + if ( ier == 0 ) ier = 3 + if ( result /= 0.0e+00.and.area /= 0.0e+00 ) go to 160 + if ( abserr > errsum ) go to 170 + if ( area == 0.0e+00 ) go to 190 + go to 165 + +160 continue + + if ( abserr/abs(result) > errsum/abs(area) ) go to 170 +! +! Test on divergence. +! + 165 continue + + if ( ksgn == (-1) .and. max ( abs(result),abs(area)) <= & + defabs*1.0e-02 ) go to 190 + + if ( 1.0e-02 > (result/area) .or. (result/area) > 1.0e+02 & + .or. errsum >= abs(area) ) ier = 6 + + go to 190 +! +! Compute global integral sum. +! +170 continue + + result = sum ( rlist(1:last) ) + + abserr = errsum + +190 continue + + if (ier > 2) ier=ier-1 + +200 continue + + if ( integr == 2 .and. omega < 0.0e+00 ) then + result = -result + end if + + return +end subroutine +subroutine qk15 ( f, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK15 carries out a 15 point Gauss-Kronrod quadrature rule. +! +! +! Discussion: +! +! This routine approximates +! I = integral ( A <= X <= B ) F(X) dx +! with an error estimate, and +! J = integral ( A <= X <= B ) | F(X) | dx +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! RESULT is computed by applying the 15-point Kronrod rule (RESK) +! obtained by optimal addition of abscissae to the 7-point Gauss rule +! (RESG). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! +! Local Parameters: +! +! the abscissae and weights are given for the interval (-1,1). +! because of symmetry only the positive abscissae and their +! corresponding weights are given. +! +! xgk - abscissae of the 15-point Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 7-point +! Gauss rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 7-point Gauss rule +! +! wgk - weights of the 15-point Kronrod rule +! +! wg - weights of the 7-point Gauss rule +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc - abscissa +! fval* - function value +! resg - result of the 7-point Gauss formula +! resk - result of the 15-point Kronrod formula +! reskh - approximation to the mean value of f over (a,b), +! i.e. to i/(b-a) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(7) + real(dp) fv2(7) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) wg(4) + real(dp) wgk(8) + real(dp) xgk(8) +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8)/ & + 9.914553711208126e-01, 9.491079123427585e-01, & + 8.648644233597691e-01, 7.415311855993944e-01, & + 5.860872354676911e-01, 4.058451513773972e-01, & + 2.077849550078985e-01, 0.0e+00 / + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8)/ & + 2.293532201052922e-02, 6.309209262997855e-02, & + 1.047900103222502e-01, 1.406532597155259e-01, & + 1.690047266392679e-01, 1.903505780647854e-01, & + 2.044329400752989e-01, 2.094821410847278e-01/ + data wg(1),wg(2),wg(3),wg(4)/ & + 1.294849661688697e-01, 2.797053914892767e-01, & + 3.818300505051189e-01, 4.179591836734694e-01/ +! + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute the 15-point Kronrod approximation to the integral, +! and estimate the absolute error. +! + fc = f(centr) + resg = fc*wg(4) + resk = fc*wgk(8) + resabs = abs(resk) + + do j = 1, 3 + jtw = j*2 + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 4 + jtwm1 = j*2-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk * 5.0e-01 + resasc = wgk(8)*abs(fc-reskh) + + do j = 1, 7 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00 ) then + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) / (5.0e+01* epsilon ( resabs ) ) ) then + abserr = max (( epsilon ( resabs ) *5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk15i ( f, boun, inf, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK15I applies a 15 point Gauss-Kronrod quadrature on an infinite interval. +! +! +! Discussion: +! +! The original infinite integration range is mapped onto the interval +! (0,1) and (a,b) is a part of (0,1). The routine then computes: +! +! i = integral of transformed integrand over (a,b), +! j = integral of abs(transformed integrand) over (a,b). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) BOUN, the finite bound of the original integration range, +! or zero if INF is 2. +! +! inf - integer +! if inf = -1, the original interval is +! (-infinity,BOUN), +! if inf = +1, the original interval is +! (BOUN,+infinity), +! if inf = +2, the original interval is +! (-infinity,+infinity) and +! The integral is computed as the sum of two +! integrals, one over (-infinity,0) and one +! over (0,+infinity). +! +! Input, real(dp) A, B, the limits of integration, over a subrange of [0,1]. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! RESULT is computed by applying the 15-point Kronrod rule (RESK) obtained +! by optimal addition of abscissae to the 7-point Gauss rule (RESG). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral of the +! transformated integrand | F-I/(B-A) | over [A,B]. +! +! Local Parameters: +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc* - abscissa +! tabsc* - transformed abscissa +! fval* - function value +! resg - result of the 7-point Gauss formula +! resk - result of the 15-point Kronrod formula +! reskh - approximation to the mean value of the transformed +! integrand over (a,b), i.e. to i/(b-a) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) absc1 + real(dp) absc2 + real(dp) abserr + real(dp) b + real(dp) boun + real(dp) centr + real(dp) dinf + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(7) + real(dp) fv2(7) + real(dp) hlgth + integer inf + integer j + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) tabsc1 + real(dp) tabsc2 + real(dp) wg(8) + real(dp) wgk(8) + real(dp) xgk(8) +! +! the abscissae and weights are supplied for the interval +! (-1,1). because of symmetry only the positive abscissae and +! their corresponding weights are given. +! +! xgk - abscissae of the 15-point Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 7-point Gauss +! rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 7-point Gauss rule +! +! wgk - weights of the 15-point Kronrod rule +! +! wg - weights of the 7-point Gauss rule, corresponding +! to the abscissae xgk(2), xgk(4), ... +! wg(1), wg(3), ... are set to zero. +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8)/ & + 9.914553711208126e-01, 9.491079123427585e-01, & + 8.648644233597691e-01, 7.415311855993944e-01, & + 5.860872354676911e-01, 4.058451513773972e-01, & + 2.077849550078985e-01, 0.0000000000000000e+00/ +! + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8)/ & + 2.293532201052922e-02, 6.309209262997855e-02, & + 1.047900103222502e-01, 1.406532597155259e-01, & + 1.690047266392679e-01, 1.903505780647854e-01, & + 2.044329400752989e-01, 2.094821410847278e-01/ +! + data wg(1),wg(2),wg(3),wg(4),wg(5),wg(6),wg(7),wg(8)/ & + 0.0000000000000000e+00, 1.294849661688697e-01, & + 0.0000000000000000e+00, 2.797053914892767e-01, & + 0.0000000000000000e+00, 3.818300505051189e-01, & + 0.0000000000000000e+00, 4.179591836734694e-01/ +! + dinf = min ( 1, inf ) + + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + tabsc1 = boun+dinf*(1.0e+00-centr)/centr + fval1 = f(tabsc1) + if ( inf == 2 ) fval1 = fval1+f(-tabsc1) + fc = (fval1/centr)/centr +! +! Compute the 15-point Kronrod approximation to the integral, +! and estimate the error. +! + resg = wg(8)*fc + resk = wgk(8)*fc + resabs = abs(resk) + + do j = 1, 7 + + absc = hlgth*xgk(j) + absc1 = centr-absc + absc2 = centr+absc + tabsc1 = boun+dinf*(1.0e+00-absc1)/absc1 + tabsc2 = boun+dinf*(1.0e+00-absc2)/absc2 + fval1 = f(tabsc1) + fval2 = f(tabsc2) + + if ( inf == 2 ) then + fval1 = fval1+f(-tabsc1) + fval2 = fval2+f(-tabsc2) + end if + + fval1 = (fval1/absc1)/absc1 + fval2 = (fval2/absc2)/absc2 + fv1(j) = fval1 + fv2(j) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(j)*fsum + resabs = resabs+wgk(j)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk * 5.0e-01 + resasc = wgk(8) * abs(fc-reskh) + + do j = 1, 7 + resasc = resasc + wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk * hlgth + resasc = resasc * hlgth + resabs = resabs * hlgth + abserr = abs ( ( resk - resg ) * hlgth ) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00) then + abserr = resasc* min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) / ( 5.0e+01 * epsilon ( resabs ) ) ) then + abserr = max (( epsilon ( resabs ) *5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk15w ( f, w, p1, p2, p3, p4, kp, a, b, result, abserr, resabs, & + resasc ) +! +!****************************************************************************** +! +!! QK15W applies a 15 point Gauss-Kronrod rule for a weighted integrand. +! +! +! Discussion: +! +! This routine approximates +! i = integral of f*w over (a,b), +! with error estimate, and +! j = integral of abs(f*w) over (a,b) +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! w - real(dp) +! function subprogram defining the integrand +! weight function w(x). the actual name for w +! needs to be declared e x t e r n a l in the +! calling program. +! +! ?, real(dp) P1, P2, P3, P4, parameters in the weight function +! +! kp - integer +! key for indicating the type of weight function +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! RESULT is computed by applying the 15-point Kronrod rule (RESK) obtained by +! optimal addition of abscissae to the 7-point Gauss rule (RESG). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! +! Local Parameters: +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc* - abscissa +! fval* - function value +! resg - result of the 7-point Gauss formula +! resk - result of the 15-point Kronrod formula +! reskh - approximation to the mean value of f*w over (a,b), +! i.e. to i/(b-a) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) absc1 + real(dp) absc2 + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(7) + real(dp) fv2(7) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + integer kp + real(dp) p1 + real(dp) p2 + real(dp) p3 + real(dp) p4 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp), external :: w + real(dp), dimension ( 4 ) :: wg = (/ & + 1.294849661688697e-01, 2.797053914892767e-01, & + 3.818300505051889e-01, 4.179591836734694e-01 /) + real(dp) wgk(8) + real(dp) xgk(8) +! +! the abscissae and weights are given for the interval (-1,1). +! because of symmetry only the positive abscissae and their +! corresponding weights are given. +! +! xgk - abscissae of the 15-point Gauss-Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 7-point Gauss +! rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 7-point Gauss rule +! +! wgk - weights of the 15-point Gauss-Kronrod rule +! +! wg - weights of the 7-point Gauss rule +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8)/ & + 9.914553711208126e-01, 9.491079123427585e-01, & + 8.648644233597691e-01, 7.415311855993944e-01, & + 5.860872354676911e-01, 4.058451513773972e-01, & + 2.077849550789850e-01, 0.000000000000000e+00/ +! + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8)/ & + 2.293532201052922e-02, 6.309209262997855e-02, & + 1.047900103222502e-01, 1.406532597155259e-01, & + 1.690047266392679e-01, 1.903505780647854e-01, & + 2.044329400752989e-01, 2.094821410847278e-01/ +! + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute the 15-point Kronrod approximation to the integral, +! and estimate the error. +! + fc = f(centr)*w(centr,p1,p2,p3,p4,kp) + resg = wg(4)*fc + resk = wgk(8)*fc + resabs = abs(resk) + + do j = 1, 3 + jtw = j*2 + absc = hlgth*xgk(jtw) + absc1 = centr-absc + absc2 = centr+absc + fval1 = f(absc1)*w(absc1,p1,p2,p3,p4,kp) + fval2 = f(absc2)*w(absc2,p1,p2,p3,p4,kp) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 4 + jtwm1 = j*2-1 + absc = hlgth*xgk(jtwm1) + absc1 = centr-absc + absc2 = centr+absc + fval1 = f(absc1)*w(absc1,p1,p2,p3,p4,kp) + fval2 = f(absc2)*w(absc2,p1,p2,p3,p4,kp) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk*5.0e-01 + resasc = wgk(8)*abs(fc-reskh) + + do j = 1, 7 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00) then + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) /(5.0e+01* epsilon ( resabs ) ) ) then + abserr = max ( ( epsilon ( resabs ) * 5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk21 ( f, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK21 carries out a 21 point Gauss-Kronrod quadrature rule. +! +! +! Discussion: +! +! This routine approximates +! I = integral ( A <= X <= B ) F(X) dx +! with an error estimate, and +! J = integral ( A <= X <= B ) | F(X) | dx +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! result is computed by applying the 21-point +! Kronrod rule (resk) obtained by optimal addition +! of abscissae to the 10-point Gauss rule (resg). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(10) + real(dp) fv2(10) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) wg(5) + real(dp) wgk(11) + real(dp) xgk(11) +! +! the abscissae and weights are given for the interval (-1,1). +! because of symmetry only the positive abscissae and their +! corresponding weights are given. +! +! xgk - abscissae of the 21-point Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 10-point +! Gauss rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 10-point Gauss rule +! +! wgk - weights of the 21-point Kronrod rule +! +! wg - weights of the 10-point Gauss rule +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8), & + xgk(9),xgk(10),xgk(11)/ & + 9.956571630258081e-01, 9.739065285171717e-01, & + 9.301574913557082e-01, 8.650633666889845e-01, & + 7.808177265864169e-01, 6.794095682990244e-01, & + 5.627571346686047e-01, 4.333953941292472e-01, & + 2.943928627014602e-01, 1.488743389816312e-01, & + 0.000000000000000e+00/ +! + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8), & + wgk(9),wgk(10),wgk(11)/ & + 1.169463886737187e-02, 3.255816230796473e-02, & + 5.475589657435200e-02, 7.503967481091995e-02, & + 9.312545458369761e-02, 1.093871588022976e-01, & + 1.234919762620659e-01, 1.347092173114733e-01, & + 1.427759385770601e-01, 1.477391049013385e-01, & + 1.494455540029169e-01/ +! + data wg(1),wg(2),wg(3),wg(4),wg(5)/ & + 6.667134430868814e-02, 1.494513491505806e-01, & + 2.190863625159820e-01, 2.692667193099964e-01, & + 2.955242247147529e-01/ +! +! +! list of major variables +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc - abscissa +! fval* - function value +! resg - result of the 10-point Gauss formula +! resk - result of the 21-point Kronrod formula +! reskh - approximation to the mean value of f over (a,b), +! i.e. to i/(b-a) +! + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute the 21-point Kronrod approximation to the +! integral, and estimate the absolute error. +! + resg = 0.0e+00 + fc = f(centr) + resk = wgk(11)*fc + resabs = abs(resk) + + do j = 1, 5 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 5 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk*5.0e-01 + resasc = wgk(11)*abs(fc-reskh) + + do j = 1, 10 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00) then + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) /(5.0e+01* epsilon ( resabs ) )) then + abserr = max (( epsilon ( resabs ) *5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk31 ( f, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK31 carries out a 31 point Gauss-Kronrod quadrature rule. +! +! +! Discussion: +! +! This routine approximates +! I = integral ( A <= X <= B ) F(X) dx +! with an error estimate, and +! J = integral ( A <= X <= B ) | F(X) | dx +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! result is computed by applying the 31-point +! Gauss-Kronrod rule (resk), obtained by optimal +! addition of abscissae to the 15-point Gauss +! rule (resg). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(15) + real(dp) fv2(15) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) wg(8) + real(dp) wgk(16) + real(dp) xgk(16) +! +! the abscissae and weights are given for the interval (-1,1). +! because of symmetry only the positive abscissae and their +! corresponding weights are given. +! +! xgk - abscissae of the 31-point Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 15-point +! Gauss rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 15-point Gauss rule +! +! wgk - weights of the 31-point Kronrod rule +! +! wg - weights of the 15-point Gauss rule +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8), & + xgk(9),xgk(10),xgk(11),xgk(12),xgk(13),xgk(14),xgk(15),xgk(16)/ & + 9.980022986933971e-01, 9.879925180204854e-01, & + 9.677390756791391e-01, 9.372733924007059e-01, & + 8.972645323440819e-01, 8.482065834104272e-01, & + 7.904185014424659e-01, 7.244177313601700e-01, & + 6.509967412974170e-01, 5.709721726085388e-01, & + 4.850818636402397e-01, 3.941513470775634e-01, & + 2.991800071531688e-01, 2.011940939974345e-01, & + 1.011420669187175e-01, 0.0e+00 / + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8), & + wgk(9),wgk(10),wgk(11),wgk(12),wgk(13),wgk(14),wgk(15),wgk(16)/ & + 5.377479872923349e-03, 1.500794732931612e-02, & + 2.546084732671532e-02, 3.534636079137585e-02, & + 4.458975132476488e-02, 5.348152469092809e-02, & + 6.200956780067064e-02, 6.985412131872826e-02, & + 7.684968075772038e-02, 8.308050282313302e-02, & + 8.856444305621177e-02, 9.312659817082532e-02, & + 9.664272698362368e-02, 9.917359872179196e-02, & + 1.007698455238756e-01, 1.013300070147915e-01/ + data wg(1),wg(2),wg(3),wg(4),wg(5),wg(6),wg(7),wg(8)/ & + 3.075324199611727e-02, 7.036604748810812e-02, & + 1.071592204671719e-01, 1.395706779261543e-01, & + 1.662692058169939e-01, 1.861610000155622e-01, & + 1.984314853271116e-01, 2.025782419255613e-01/ +! +! +! list of major variables +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc - abscissa +! fval* - function value +! resg - result of the 15-point Gauss formula +! resk - result of the 31-point Kronrod formula +! reskh - approximation to the mean value of f over (a,b), +! i.e. to i/(b-a) +! + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute the 31-point Kronrod approximation to the integral, +! and estimate the absolute error. +! + fc = f(centr) + resg = wg(8)*fc + resk = wgk(16)*fc + resabs = abs(resk) + + do j = 1, 7 + jtw = j*2 + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 8 + jtwm1 = j*2-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk*5.0e-01 + resasc = wgk(16)*abs(fc-reskh) + + do j = 1, 15 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00) & + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + + if ( resabs > tiny ( resabs ) /(5.0e+01* epsilon ( resabs ) )) then + abserr = max (( epsilon ( resabs ) *5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk41 ( f, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK41 carries out a 41 point Gauss-Kronrod quadrature rule. +! +! +! Discussion: +! +! This routine approximates +! I = integral ( A <= X <= B ) F(X) dx +! with an error estimate, and +! J = integral ( A <= X <= B ) | F(X) | dx +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! result is computed by applying the 41-point +! Gauss-Kronrod rule (resk) obtained by optimal +! addition of abscissae to the 20-point Gauss +! rule (resg). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! +! Local Parameters: +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc - abscissa +! fval* - function value +! resg - result of the 20-point Gauss formula +! resk - result of the 41-point Kronrod formula +! reskh - approximation to mean value of f over (a,b), i.e. +! to i/(b-a) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(20) + real(dp) fv2(20) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) wg(10) + real(dp) wgk(21) + real(dp) xgk(21) +! +! the abscissae and weights are given for the interval (-1,1). +! because of symmetry only the positive abscissae and their +! corresponding weights are given. +! +! xgk - abscissae of the 41-point Gauss-Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 20-point +! Gauss rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 20-point Gauss rule +! +! wgk - weights of the 41-point Gauss-Kronrod rule +! +! wg - weights of the 20-point Gauss rule +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8), & + xgk(9),xgk(10),xgk(11),xgk(12),xgk(13),xgk(14),xgk(15),xgk(16), & + xgk(17),xgk(18),xgk(19),xgk(20),xgk(21)/ & + 9.988590315882777e-01, 9.931285991850949e-01, & + 9.815078774502503e-01, 9.639719272779138e-01, & + 9.408226338317548e-01, 9.122344282513259e-01, & + 8.782768112522820e-01, 8.391169718222188e-01, & + 7.950414288375512e-01, 7.463319064601508e-01, & + 6.932376563347514e-01, 6.360536807265150e-01, & + 5.751404468197103e-01, 5.108670019508271e-01, & + 4.435931752387251e-01, 3.737060887154196e-01, & + 3.016278681149130e-01, 2.277858511416451e-01, & + 1.526054652409227e-01, 7.652652113349733e-02, & + 0.0e+00 / + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8), & + wgk(9),wgk(10),wgk(11),wgk(12),wgk(13),wgk(14),wgk(15),wgk(16), & + wgk(17),wgk(18),wgk(19),wgk(20),wgk(21)/ & + 3.073583718520532e-03, 8.600269855642942e-03, & + 1.462616925697125e-02, 2.038837346126652e-02, & + 2.588213360495116e-02, 3.128730677703280e-02, & + 3.660016975820080e-02, 4.166887332797369e-02, & + 4.643482186749767e-02, 5.094457392372869e-02, & + 5.519510534828599e-02, 5.911140088063957e-02, & + 6.265323755478117e-02, 6.583459713361842e-02, & + 6.864867292852162e-02, 7.105442355344407e-02, & + 7.303069033278667e-02, 7.458287540049919e-02, & + 7.570449768455667e-02, 7.637786767208074e-02, & + 7.660071191799966e-02/ + data wg(1),wg(2),wg(3),wg(4),wg(5),wg(6),wg(7),wg(8),wg(9),wg(10)/ & + 1.761400713915212e-02, 4.060142980038694e-02, & + 6.267204833410906e-02, 8.327674157670475e-02, & + 1.019301198172404e-01, 1.181945319615184e-01, & + 1.316886384491766e-01, 1.420961093183821e-01, & + 1.491729864726037e-01, 1.527533871307259e-01/ +! + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute 41-point Gauss-Kronrod approximation to the +! the integral, and estimate the absolute error. +! + resg = 0.0e+00 + fc = f(centr) + resk = wgk(21)*fc + resabs = abs(resk) + + do j = 1, 10 + jtw = j*2 + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 10 + jtwm1 = j*2-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk*5.0e-01 + resasc = wgk(21)*abs(fc-reskh) + + do j = 1, 20 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00) & + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + + if ( resabs > tiny ( resabs ) /(5.0e+01* epsilon ( resabs ) )) then + abserr = max (( epsilon ( resabs ) *5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk51 ( f, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK51 carries out a 51 point Gauss-Kronrod quadrature rule. +! +! +! Discussion: +! +! This routine approximates +! I = integral ( A <= X <= B ) F(X) dx +! with an error estimate, and +! J = integral ( A <= X <= B ) | F(X) | dx +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! result is computed by applying the 51-point +! Kronrod rule (resk) obtained by optimal addition +! of abscissae to the 25-point Gauss rule (resg). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! +! Local Parameters: +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc - abscissa +! fval* - function value +! resg - result of the 25-point Gauss formula +! resk - result of the 51-point Kronrod formula +! reskh - approximation to the mean value of f over (a,b), +! i.e. to i/(b-a) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(25) + real(dp) fv2(25) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) wg(13) + real(dp) wgk(26) + real(dp) xgk(26) +! +! the abscissae and weights are given for the interval (-1,1). +! because of symmetry only the positive abscissae and their +! corresponding weights are given. +! +! xgk - abscissae of the 51-point Kronrod rule +! xgk(2), xgk(4), ... abscissae of the 25-point +! Gauss rule +! xgk(1), xgk(3), ... abscissae which are optimally +! added to the 25-point Gauss rule +! +! wgk - weights of the 51-point Kronrod rule +! +! wg - weights of the 25-point Gauss rule +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8), & + xgk(9),xgk(10),xgk(11),xgk(12),xgk(13),xgk(14)/ & + 9.992621049926098e-01, 9.955569697904981e-01, & + 9.880357945340772e-01, 9.766639214595175e-01, & + 9.616149864258425e-01, 9.429745712289743e-01, & + 9.207471152817016e-01, 8.949919978782754e-01, & + 8.658470652932756e-01, 8.334426287608340e-01, & + 7.978737979985001e-01, 7.592592630373576e-01, & + 7.177664068130844e-01, 6.735663684734684e-01/ + data xgk(15),xgk(16),xgk(17),xgk(18),xgk(19),xgk(20),xgk(21), & + xgk(22),xgk(23),xgk(24),xgk(25),xgk(26)/ & + 6.268100990103174e-01, 5.776629302412230e-01, & + 5.263252843347192e-01, 4.730027314457150e-01, & + 4.178853821930377e-01, 3.611723058093878e-01, & + 3.030895389311078e-01, 2.438668837209884e-01, & + 1.837189394210489e-01, 1.228646926107104e-01, & + 6.154448300568508e-02, 0.0e+00 / + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8), & + wgk(9),wgk(10),wgk(11),wgk(12),wgk(13),wgk(14)/ & + 1.987383892330316e-03, 5.561932135356714e-03, & + 9.473973386174152e-03, 1.323622919557167e-02, & + 1.684781770912830e-02, 2.043537114588284e-02, & + 2.400994560695322e-02, 2.747531758785174e-02, & + 3.079230016738749e-02, 3.400213027432934e-02, & + 3.711627148341554e-02, 4.008382550403238e-02, & + 4.287284502017005e-02, 4.550291304992179e-02/ + data wgk(15),wgk(16),wgk(17),wgk(18),wgk(19),wgk(20),wgk(21), & + wgk(22),wgk(23),wgk(24),wgk(25),wgk(26)/ & + 4.798253713883671e-02, 5.027767908071567e-02, & + 5.236288580640748e-02, 5.425112988854549e-02, & + 5.595081122041232e-02, 5.743711636156783e-02, & + 5.868968002239421e-02, 5.972034032417406e-02, & + 6.053945537604586e-02, 6.112850971705305e-02, & + 6.147118987142532e-02, 6.158081806783294e-02/ + data wg(1),wg(2),wg(3),wg(4),wg(5),wg(6),wg(7),wg(8),wg(9),wg(10), & + wg(11),wg(12),wg(13)/ & + 1.139379850102629e-02, 2.635498661503214e-02, & + 4.093915670130631e-02, 5.490469597583519e-02, & + 6.803833381235692e-02, 8.014070033500102e-02, & + 9.102826198296365e-02, 1.005359490670506e-01, & + 1.085196244742637e-01, 1.148582591457116e-01, & + 1.194557635357848e-01, 1.222424429903100e-01, & + 1.231760537267155e-01/ +! + centr = 5.0e-01*(a+b) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute the 51-point Kronrod approximation to the integral, +! and estimate the absolute error. +! + fc = f(centr) + resg = wg(13)*fc + resk = wgk(26)*fc + resabs = abs(resk) + + do j = 1, 12 + jtw = j*2 + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 13 + jtwm1 = j*2-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk*5.0e-01 + resasc = wgk(26)*abs(fc-reskh) + + do j = 1, 25 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00) then + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) / (5.0e+01* epsilon ( resabs ) ) ) then + abserr = max (( epsilon ( resabs ) *5.0e+01)*resabs,abserr) + end if + + return +end subroutine +subroutine qk61 ( f, a, b, result, abserr, resabs, resasc ) +! +!****************************************************************************** +! +!! QK61 carries out a 61 point Gauss-Kronrod quadrature rule. +! +! +! Discussion: +! +! This routine approximates +! I = integral ( A <= X <= B ) F(X) dx +! with an error estimate, and +! J = integral ( A <= X <= B ) | F(X) | dx +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! result is computed by applying the 61-point +! Kronrod rule (resk) obtained by optimal addition of +! abscissae to the 30-point Gauss rule (resg). +! +! Output, real(dp) ABSERR, an estimate of | I - RESULT |. +! +! Output, real(dp) RESABS, approximation to the integral of the absolute +! value of F. +! +! Output, real(dp) RESASC, approximation to the integral | F-I/(B-A) | +! over [A,B]. +! +! Local Parameters: +! +! centr - mid point of the interval +! hlgth - half-length of the interval +! absc - abscissa +! fval* - function value +! resg - result of the 30-point Gauss rule +! resk - result of the 61-point Kronrod rule +! reskh - approximation to the mean value of f +! over (a,b), i.e. to i/(b-a) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp), external :: f + real(dp) fc + real(dp) fsum + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(30) + real(dp) fv2(30) + real(dp) hlgth + integer j + integer jtw + integer jtwm1 + real(dp) resabs + real(dp) resasc + real(dp) resg + real(dp) resk + real(dp) reskh + real(dp) result + real(dp) wg(15) + real(dp) wgk(31) + real(dp) xgk(31) +! +! the abscissae and weights are given for the +! interval (-1,1). because of symmetry only the positive +! abscissae and their corresponding weights are given. +! +! xgk - abscissae of the 61-point Kronrod rule +! xgk(2), xgk(4) ... abscissae of the 30-point +! Gauss rule +! xgk(1), xgk(3) ... optimally added abscissae +! to the 30-point Gauss rule +! +! wgk - weights of the 61-point Kronrod rule +! +! wg - weigths of the 30-point Gauss rule +! + data xgk(1),xgk(2),xgk(3),xgk(4),xgk(5),xgk(6),xgk(7),xgk(8), & + xgk(9),xgk(10)/ & + 9.994844100504906e-01, 9.968934840746495e-01, & + 9.916309968704046e-01, 9.836681232797472e-01, & + 9.731163225011263e-01, 9.600218649683075e-01, & + 9.443744447485600e-01, 9.262000474292743e-01, & + 9.055733076999078e-01, 8.825605357920527e-01/ + data xgk(11),xgk(12),xgk(13),xgk(14),xgk(15),xgk(16),xgk(17), & + xgk(18),xgk(19),xgk(20)/ & + 8.572052335460611e-01, 8.295657623827684e-01, & + 7.997278358218391e-01, 7.677774321048262e-01, & + 7.337900624532268e-01, 6.978504947933158e-01, & + 6.600610641266270e-01, 6.205261829892429e-01, & + 5.793452358263617e-01, 5.366241481420199e-01/ + data xgk(21),xgk(22),xgk(23),xgk(24),xgk(25),xgk(26),xgk(27), & + xgk(28),xgk(29),xgk(30),xgk(31)/ & + 4.924804678617786e-01, 4.470337695380892e-01, & + 4.004012548303944e-01, 3.527047255308781e-01, & + 3.040732022736251e-01, 2.546369261678898e-01, & + 2.045251166823099e-01, 1.538699136085835e-01, & + 1.028069379667370e-01, 5.147184255531770e-02, & + 0.0e+00 / + data wgk(1),wgk(2),wgk(3),wgk(4),wgk(5),wgk(6),wgk(7),wgk(8), & + wgk(9),wgk(10)/ & + 1.389013698677008e-03, 3.890461127099884e-03, & + 6.630703915931292e-03, 9.273279659517763e-03, & + 1.182301525349634e-02, 1.436972950704580e-02, & + 1.692088918905327e-02, 1.941414119394238e-02, & + 2.182803582160919e-02, 2.419116207808060e-02/ + data wgk(11),wgk(12),wgk(13),wgk(14),wgk(15),wgk(16),wgk(17), & + wgk(18),wgk(19),wgk(20)/ & + 2.650995488233310e-02, 2.875404876504129e-02, & + 3.090725756238776e-02, 3.298144705748373e-02, & + 3.497933802806002e-02, 3.688236465182123e-02, & + 3.867894562472759e-02, 4.037453895153596e-02, & + 4.196981021516425e-02, 4.345253970135607e-02/ + data wgk(21),wgk(22),wgk(23),wgk(24),wgk(25),wgk(26),wgk(27), & + wgk(28),wgk(29),wgk(30),wgk(31)/ & + 4.481480013316266e-02, 4.605923827100699e-02, & + 4.718554656929915e-02, 4.818586175708713e-02, & + 4.905543455502978e-02, 4.979568342707421e-02, & + 5.040592140278235e-02, 5.088179589874961e-02, & + 5.122154784925877e-02, 5.142612853745903e-02, & + 5.149472942945157e-02/ + data wg(1),wg(2),wg(3),wg(4),wg(5),wg(6),wg(7),wg(8)/ & + 7.968192496166606e-03, 1.846646831109096e-02, & + 2.878470788332337e-02, 3.879919256962705e-02, & + 4.840267283059405e-02, 5.749315621761907e-02, & + 6.597422988218050e-02, 7.375597473770521e-02/ + data wg(9),wg(10),wg(11),wg(12),wg(13),wg(14),wg(15)/ & + 8.075589522942022e-02, 8.689978720108298e-02, & + 9.212252223778613e-02, 9.636873717464426e-02, & + 9.959342058679527e-02, 1.017623897484055e-01, & + 1.028526528935588e-01/ +! + centr = 5.0e-01*(b+a) + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) +! +! Compute the 61-point Kronrod approximation to the integral, +! and estimate the absolute error. +! + resg = 0.0e+00 + fc = f(centr) + resk = wgk(31)*fc + resabs = abs(resk) + + do j = 1, 15 + jtw = j*2 + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(abs(fval1)+abs(fval2)) + end do + + do j = 1, 15 + jtwm1 = j*2-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(abs(fval1)+abs(fval2)) + end do + + reskh = resk * 5.0e-01 + resasc = wgk(31)*abs(fc-reskh) + + do j = 1, 30 + resasc = resasc+wgk(j)*(abs(fv1(j)-reskh)+abs(fv2(j)-reskh)) + end do + + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = abs((resk-resg)*hlgth) + + if ( resasc /= 0.0e+00 .and. abserr /= 0.0e+00) then + abserr = resasc*min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) / (5.0e+01* epsilon ( resabs ) )) then + abserr = max ( ( epsilon ( resabs ) *5.0e+01)*resabs, abserr ) + end if + + + return +end subroutine +subroutine qmomo ( alfa, beta, ri, rj, rg, rh, integr ) +! +!****************************************************************************** +! +!! QMOMO computes modified Chebyshev moments. +! +! +! Discussion: +! +! This routine computes modified Chebyshev moments. +! The K-th modified Chebyshev moment is defined as the +! integral over (-1,1) of W(X)*T(K,X), where T(K,X) is the +! Chebyshev polynomial of degree K. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, real(dp) ALFA, a parameter in the weight function w(x), ALFA > -1. +! +! Input, real(dp) BETA, a parameter in the weight function w(x), BETA > -1. +! +! ri - real(dp) +! vector of dimension 25 +! ri(k) is the integral over (-1,1) of +! (1+x)**alfa*t(k-1,x), k = 1, ..., 25. +! +! rj - real(dp) +! vector of dimension 25 +! rj(k) is the integral over (-1,1) of +! (1-x)**beta*t(k-1,x), k = 1, ..., 25. +! +! rg - real(dp) +! vector of dimension 25 +! rg(k) is the integral over (-1,1) of +! (1+x)**alfa*log((1+x)/2)*t(k-1,x), k = 1, ...,25. +! +! rh - real(dp) +! vector of dimension 25 +! rh(k) is the integral over (-1,1) of +! (1-x)**beta*log((1-x)/2)*t(k-1,x), k = 1, ..., 25. +! +! integr - integer +! input parameter indicating the modified moments +! to be computed +! integr = 1 compute ri, rj +! = 2 compute ri, rj, rg +! = 3 compute ri, rj, rh +! = 4 compute ri, rj, rg, rh +! + implicit none +! + real(dp) alfa + real(dp) alfp1 + real(dp) alfp2 + real(dp) an + real(dp) anm1 + real(dp) beta + real(dp) betp1 + real(dp) betp2 + integer i + integer im1 + integer integr + real(dp) ralf + real(dp) rbet + real(dp) rg(25) + real(dp) rh(25) + real(dp) ri(25) + real(dp) rj(25) +! + alfp1 = alfa+1.0e+00 + betp1 = beta+1.0e+00 + alfp2 = alfa+2.0e+00 + betp2 = beta+2.0e+00 + ralf = 2.0e+00**alfp1 + rbet = 2.0e+00**betp1 +! +! Compute RI, RJ using a forward recurrence relation. +! + ri(1) = ralf/alfp1 + rj(1) = rbet/betp1 + ri(2) = ri(1)*alfa/alfp2 + rj(2) = rj(1)*beta/betp2 + an = 2.0e+00 + anm1 = 1.0e+00 + + do i = 3, 25 + ri(i) = -(ralf+an*(an-alfp2)*ri(i-1))/(anm1*(an+alfp1)) + rj(i) = -(rbet+an*(an-betp2)*rj(i-1))/(anm1*(an+betp1)) + anm1 = an + an = an+1.0e+00 + end do + + if ( integr == 1 ) go to 70 + if ( integr == 3 ) go to 40 +! +! Compute RG using a forward recurrence relation. +! + rg(1) = -ri(1)/alfp1 + rg(2) = -(ralf+ralf)/(alfp2*alfp2)-rg(1) + an = 2.0e+00 + anm1 = 1.0e+00 + im1 = 2 + + do i = 3, 25 + rg(i) = -(an*(an-alfp2)*rg(im1)-an*ri(im1)+anm1*ri(i))/ & + (anm1*(an+alfp1)) + anm1 = an + an = an+1.0e+00 + im1 = i + end do + + if ( integr == 2 ) go to 70 +! +! Compute RH using a forward recurrence relation. +! +40 continue + + rh(1) = -rj(1) / betp1 + rh(2) = -(rbet+rbet)/(betp2*betp2)-rh(1) + an = 2.0e+00 + anm1 = 1.0e+00 + im1 = 2 + + do i = 3, 25 + rh(i) = -(an*(an-betp2)*rh(im1)-an*rj(im1)+ & + anm1*rj(i))/(anm1*(an+betp1)) + anm1 = an + an = an+1.0e+00 + im1 = i + end do + + do i = 2, 25, 2 + rh(i) = -rh(i) + end do + + 70 continue + + do i = 2, 25, 2 + rj(i) = -rj(i) + end do + + 90 continue + + return +end subroutine +subroutine qng ( f, a, b, epsabs, epsrel, result, abserr, neval, ier ) +! +!****************************************************************************** +! +!! QNG estimates an integral, using non-adaptive integration. +! +! +! Discussion: +! +! The routine calculates an approximation RESULT to a definite integral +! I = integral of F over (A,B), +! hopefully satisfying +! || I - RESULT || <= max ( EPSABS, EPSREL * ||I|| ). +! +! The routine is a simple non-adaptive automatic integrator, based on +! a sequence of rules with increasing degree of algebraic +! precision (Patterson, 1968). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, external real(dp) F, the name of the function routine, of the form +! function f ( x ) +! real(dp) f +! real(dp) x +! which evaluates the integrand function. +! +! Input, real(dp) A, B, the limits of integration. +! +! Input, real(dp) EPSABS, EPSREL, the absolute and relative accuracy requested. +! +! Output, real(dp) RESULT, the estimated value of the integral. +! RESULT is obtained by applying the 21-point Gauss-Kronrod rule (RES21) +! obtained by optimal addition of abscissae to the 10-point Gauss rule +! (RES10), or by applying the 43-point rule (RES43) obtained by optimal +! addition of abscissae to the 21-point Gauss-Kronrod rule, or by +! applying the 87-point rule (RES87) obtained by optimal addition of +! abscissae to the 43-point rule. +! +! Output, real(dp) ABSERR, an estimate of || I - RESULT ||. +! +! Output, integer NEVAL, the number of times the integral was evaluated. +! +! ier - ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier > 0 abnormal termination of the routine. it is +! assumed that the requested accuracy has +! not been achieved. +! ier = 1 the maximum number of steps has been +! executed. the integral is probably too +! difficult to be calculated by qng. +! = 6 the input is invalid, because +! epsabs < 0 and epsrel < 0, +! result, abserr and neval are set to zero. +! +! Local Parameters: +! +! centr - mid point of the integration interval +! hlgth - half-length of the integration interval +! fcentr - function value at mid point +! absc - abscissa +! fval - function value +! savfun - array of function values which have already +! been computed +! res10 - 10-point Gauss result +! res21 - 21-point Kronrod result +! res43 - 43-point result +! res87 - 87-point result +! resabs - approximation to the integral of abs(f) +! resasc - approximation to the integral of abs(f-i/(b-a)) +! + implicit none +! + real(dp) a + real(dp) absc + real(dp) abserr + real(dp) b + real(dp) centr + real(dp) dhlgth + real(dp) epsabs + real(dp) epsrel + real(dp), external :: f + real(dp) fcentr + real(dp) fval + real(dp) fval1 + real(dp) fval2 + real(dp) fv1(5) + real(dp) fv2(5) + real(dp) fv3(5) + real(dp) fv4(5) + real(dp) hlgth + integer ier + integer ipx + integer k + integer l + integer neval + real(dp) result + real(dp) res10 + real(dp) res21 + real(dp) res43 + real(dp) res87 + real(dp) resabs + real(dp) resasc + real(dp) reskh + real(dp) savfun(21) + real(dp) w10(5) + real(dp) w21a(5) + real(dp) w21b(6) + real(dp) w43a(10) + real(dp) w43b(12) + real(dp) w87a(21) + real(dp) w87b(23) + real(dp) x1(5) + real(dp) x2(5) + real(dp) x3(11) + real(dp) x4(22) +! +! the following data statements contain the abscissae +! and weights of the integration rules used. +! +! x1 abscissae common to the 10-, 21-, 43- and 87-point +! rule +! x2 abscissae common to the 21-, 43- and 87-point rule +! x3 abscissae common to the 43- and 87-point rule +! x4 abscissae of the 87-point rule +! w10 weights of the 10-point formula +! w21a weights of the 21-point formula for abscissae x1 +! w21b weights of the 21-point formula for abscissae x2 +! w43a weights of the 43-point formula for absissae x1, x3 +! w43b weights of the 43-point formula for abscissae x3 +! w87a weights of the 87-point formula for abscissae x1, +! x2 and x3 +! w87b weights of the 87-point formula for abscissae x4 +! + data x1(1),x1(2),x1(3),x1(4),x1(5)/ & + 9.739065285171717e-01, 8.650633666889845e-01, & + 6.794095682990244e-01, 4.333953941292472e-01, & + 1.488743389816312e-01/ + data x2(1),x2(2),x2(3),x2(4),x2(5)/ & + 9.956571630258081e-01, 9.301574913557082e-01, & + 7.808177265864169e-01, 5.627571346686047e-01, & + 2.943928627014602e-01/ + data x3(1),x3(2),x3(3),x3(4),x3(5),x3(6),x3(7),x3(8),x3(9),x3(10), & + x3(11)/ & + 9.993333609019321e-01, 9.874334029080889e-01, & + 9.548079348142663e-01, 9.001486957483283e-01, & + 8.251983149831142e-01, 7.321483889893050e-01, & + 6.228479705377252e-01, 4.994795740710565e-01, & + 3.649016613465808e-01, 2.222549197766013e-01, & + 7.465061746138332e-02/ + data x4(1),x4(2),x4(3),x4(4),x4(5),x4(6),x4(7),x4(8),x4(9),x4(10), & + x4(11),x4(12),x4(13),x4(14),x4(15),x4(16),x4(17),x4(18),x4(19), & + x4(20),x4(21),x4(22)/ 9.999029772627292e-01, & + 9.979898959866787e-01, 9.921754978606872e-01, & + 9.813581635727128e-01, 9.650576238583846e-01, & + 9.431676131336706e-01, 9.158064146855072e-01, & + 8.832216577713165e-01, 8.457107484624157e-01, & + 8.035576580352310e-01, 7.570057306854956e-01, & + 7.062732097873218e-01, 6.515894665011779e-01, & + 5.932233740579611e-01, 5.314936059708319e-01, & + 4.667636230420228e-01, 3.994248478592188e-01, & + 3.298748771061883e-01, 2.585035592021616e-01, & + 1.856953965683467e-01, 1.118422131799075e-01, & + 3.735212339461987e-02/ + data w10(1),w10(2),w10(3),w10(4),w10(5)/ & + 6.667134430868814e-02, 1.494513491505806e-01, & + 2.190863625159820e-01, 2.692667193099964e-01, & + 2.955242247147529e-01/ + data w21a(1),w21a(2),w21a(3),w21a(4),w21a(5)/ & + 3.255816230796473e-02, 7.503967481091995e-02, & + 1.093871588022976e-01, 1.347092173114733e-01, & + 1.477391049013385e-01/ + data w21b(1),w21b(2),w21b(3),w21b(4),w21b(5),w21b(6)/ & + 1.169463886737187e-02, 5.475589657435200e-02, & + 9.312545458369761e-02, 1.234919762620659e-01, & + 1.427759385770601e-01, 1.494455540029169e-01/ + data w43a(1),w43a(2),w43a(3),w43a(4),w43a(5),w43a(6),w43a(7), & + w43a(8),w43a(9),w43a(10)/ 1.629673428966656e-02, & + 3.752287612086950e-02, 5.469490205825544e-02, & + 6.735541460947809e-02, 7.387019963239395e-02, & + 5.768556059769796e-03, 2.737189059324884e-02, & + 4.656082691042883e-02, 6.174499520144256e-02, & + 7.138726726869340e-02/ + data w43b(1),w43b(2),w43b(3),w43b(4),w43b(5),w43b(6),w43b(7), & + w43b(8),w43b(9),w43b(10),w43b(11),w43b(12)/ & + 1.844477640212414e-03, 1.079868958589165e-02, & + 2.189536386779543e-02, 3.259746397534569e-02, & + 4.216313793519181e-02, 5.074193960018458e-02, & + 5.837939554261925e-02, 6.474640495144589e-02, & + 6.956619791235648e-02, 7.282444147183321e-02, & + 7.450775101417512e-02, 7.472214751740301e-02/ + data w87a(1),w87a(2),w87a(3),w87a(4),w87a(5),w87a(6),w87a(7), & + w87a(8),w87a(9),w87a(10),w87a(11),w87a(12),w87a(13),w87a(14), & + w87a(15),w87a(16),w87a(17),w87a(18),w87a(19),w87a(20),w87a(21)/ & + 8.148377384149173e-03, 1.876143820156282e-02, & + 2.734745105005229e-02, 3.367770731163793e-02, & + 3.693509982042791e-02, 2.884872430211531e-03, & + 1.368594602271270e-02, 2.328041350288831e-02, & + 3.087249761171336e-02, 3.569363363941877e-02, & + 9.152833452022414e-04, 5.399280219300471e-03, & + 1.094767960111893e-02, 1.629873169678734e-02, & + 2.108156888920384e-02, 2.537096976925383e-02, & + 2.918969775647575e-02, 3.237320246720279e-02, & + 3.478309895036514e-02, 3.641222073135179e-02, & + 3.725387550304771e-02/ + data w87b(1),w87b(2),w87b(3),w87b(4),w87b(5),w87b(6),w87b(7), & + w87b(8),w87b(9),w87b(10),w87b(11),w87b(12),w87b(13),w87b(14), & + w87b(15),w87b(16),w87b(17),w87b(18),w87b(19),w87b(20),w87b(21), & + w87b(22),w87b(23)/ 2.741455637620724e-04, & + 1.807124155057943e-03, 4.096869282759165e-03, & + 6.758290051847379e-03, 9.549957672201647e-03, & + 1.232944765224485e-02, 1.501044734638895e-02, & + 1.754896798624319e-02, 1.993803778644089e-02, & + 2.219493596101229e-02, 2.433914712600081e-02, & + 2.637450541483921e-02, 2.828691078877120e-02, & + 3.005258112809270e-02, 3.164675137143993e-02, & + 3.305041341997850e-02, 3.425509970422606e-02, & + 3.526241266015668e-02, 3.607698962288870e-02, & + 3.669860449845609e-02, 3.712054926983258e-02, & + 3.733422875193504e-02, 3.736107376267902e-02/ +! +! Test on validity of parameters. +! + result = 0.0e+00 + abserr = 0.0e+00 + neval = 0 + + if ( epsabs < 0.0e+00 .and. epsrel < 0.0e+00 ) then + ier = 6 + return + end if + + hlgth = 5.0e-01*(b-a) + dhlgth = abs(hlgth) + centr = 5.0e-01*(b+a) + fcentr = f(centr) + neval = 21 + ier = 1 +! +! Compute the integral using the 10- and 21-point formula. +! + do l = 1, 3 + + if ( l == 1 ) then + + res10 = 0.0e+00 + res21 = w21b(6) * fcentr + resabs = w21b(6) * abs(fcentr) + + do k = 1, 5 + absc = hlgth*x1(k) + fval1 = f(centr+absc) + fval2 = f(centr-absc) + fval = fval1+fval2 + res10 = res10+w10(k)*fval + res21 = res21+w21a(k)*fval + resabs = resabs+w21a(k)*(abs(fval1)+abs(fval2)) + savfun(k) = fval + fv1(k) = fval1 + fv2(k) = fval2 + end do + + ipx = 5 + + do k = 1, 5 + ipx = ipx+1 + absc = hlgth*x2(k) + fval1 = f(centr+absc) + fval2 = f(centr-absc) + fval = fval1 + fval2 + res21 = res21 + w21b(k) * fval + resabs = resabs + w21b(k) * (abs(fval1)+abs(fval2)) + savfun(ipx) = fval + fv3(k) = fval1 + fv4(k) = fval2 + end do +! +! Test for convergence. +! + result = res21*hlgth + resabs = resabs*dhlgth + reskh = 5.0e-01*res21 + resasc = w21b(6)*abs(fcentr-reskh) + + do k = 1, 5 + resasc = resasc+w21a(k)*(abs(fv1(k)-reskh)+abs(fv2(k)-reskh)) & + +w21b(k)*(abs(fv3(k)-reskh)+abs(fv4(k)-reskh)) + end do + + abserr = abs((res21-res10)*hlgth) + resasc = resasc*dhlgth +! +! Compute the integral using the 43-point formula. +! + else if ( l == 2 ) then + + res43 = w43b(12)*fcentr + neval = 43 + + do k = 1, 10 + res43 = res43+savfun(k) * w43a(k) + end do + + do k = 1, 11 + ipx = ipx+1 + absc = hlgth*x3(k) + fval = f(absc+centr)+f(centr-absc) + res43 = res43+fval*w43b(k) + savfun(ipx) = fval + end do +! +! Test for convergence. +! + result = res43 * hlgth + abserr = abs((res43-res21)*hlgth) +! +! Compute the integral using the 87-point formula. +! + else if ( l == 3 ) then + + res87 = w87b(23) * fcentr + neval = 87 + + do k = 1, 21 + res87 = res87 + savfun(k) * w87a(k) + end do + + do k = 1, 22 + absc = hlgth * x4(k) + res87 = res87+w87b(k)*(f(absc+centr)+f(centr-absc)) + end do + + result = res87 * hlgth + abserr = abs ( ( res87-res43) * hlgth ) + + end if + + if ( resasc /= 0.0e+00.and.abserr /= 0.0e+00 ) then + abserr = resasc * min ( 1.0e+00,(2.0e+02*abserr/resasc)**1.5e+00) + end if + + if ( resabs > tiny ( resabs ) / ( 5.0e+01 * epsilon ( resabs ) ) ) then + abserr = max (( epsilon ( resabs ) *5.0e+01) * resabs, abserr ) + end if + + if ( abserr <= max ( epsabs, epsrel*abs(result))) then + ier = 0 + end if + + if ( ier == 0 ) then + exit + end if + + end do + + return +end subroutine +subroutine qsort ( limit, last, maxerr, ermax, elist, iord, nrmax ) +! +!****************************************************************************** +! +!! QSORT maintains the order of a list of local error estimates. +! +! +! Discussion: +! +! This routine maintains the descending ordering in the list of the +! local error estimates resulting from the interval subdivision process. +! At each call two error estimates are inserted using the sequential +! search top-down for the largest error estimate and bottom-up for the +! smallest error estimate. +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, integer LIMIT, the maximum number of error estimates the list can +! contain. +! +! Input, integer LAST, the current number of error estimates. +! +! Input/output, integer MAXERR, the index in the list of the NRMAX-th +! largest error. +! +! Output, real(dp) ERMAX, the NRMAX-th largest error = ELIST(MAXERR). +! +! Input, real(dp) ELIST(LIMIT), contains the error estimates. +! +! Input/output, integer IORD(LAST). The first K elements contain +! pointers to the error estimates such that ELIST(IORD(1)) through +! ELIST(IORD(K)) form a decreasing sequence, with +! K = LAST +! if +! LAST <= (LIMIT/2+2), +! and otherwise +! K = LIMIT+1-LAST. +! +! Input/output, integer NRMAX. +! + implicit none +! + integer last +! + real(dp) elist(last) + real(dp) ermax + real(dp) errmax + real(dp) errmin + integer i + integer ibeg + integer iord(last) + integer isucc + integer j + integer jbnd + integer jupbn + integer k + integer limit + integer maxerr + integer nrmax +! +! Check whether the list contains more than two error estimates. +! + if ( last <= 2 ) then + iord(1) = 1 + iord(2) = 2 + go to 90 + end if +! +! This part of the routine is only executed if, due to a +! difficult integrand, subdivision increased the error +! estimate. in the normal case the insert procedure should +! start after the nrmax-th largest error estimate. +! + errmax = elist(maxerr) + + do i = 1, nrmax-1 + + isucc = iord(nrmax-1) + + if ( errmax <= elist(isucc) ) then + exit + end if + + iord(nrmax) = isucc + nrmax = nrmax-1 + + end do +! +! Compute the number of elements in the list to be maintained +! in descending order. This number depends on the number of +! subdivisions still allowed. +! + jupbn = last + + if ( last > (limit/2+2) ) then + jupbn = limit+3-last + end if + + errmin = elist(last) +! +! Insert errmax by traversing the list top-down, starting +! comparison from the element elist(iord(nrmax+1)). +! + jbnd = jupbn-1 + ibeg = nrmax+1 + + do i = ibeg, jbnd + isucc = iord(i) + if ( errmax >= elist(isucc) ) go to 60 + iord(i-1) = isucc + end do + + iord(jbnd) = maxerr + iord(jupbn) = last + go to 90 +! +! Insert errmin by traversing the list bottom-up. +! +60 continue + + iord(i-1) = maxerr + k = jbnd + + do j = i, jbnd + isucc = iord(k) + if ( errmin < elist(isucc) ) go to 80 + iord(k+1) = isucc + k = k-1 + end do + + iord(i) = last + go to 90 + +80 continue + + iord(k+1) = last +! +! Set maxerr and ermax. +! +90 continue + + maxerr = iord(nrmax) + ermax = elist(maxerr) + + return +end subroutine +function qwgtc ( x, c, p2, p3, p4, kp ) +! +!****************************************************************************** +! +!! QWGTC defines the weight function used by QC25C. +! +! +! Discussion: +! +! The weight function has the form 1 / ( X - C ). +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, real(dp) X, the point at which the weight function is evaluated. +! +! Input, real(dp) C, the location of the singularity. +! +! Input, real(dp) P2, P3, P4, parameters that are not used. +! +! Input, integer KP, a parameter that is not used. +! +! Output, real(dp) QWGTC, the value of the weight function at X. +! + implicit none +! + real(dp) c + integer kp + real(dp) p2 + real(dp) p3 + real(dp) p4 + real(dp) qwgtc + real(dp) x +! + qwgtc = 1.0e+00 / ( x - c ) + + return +end function +function qwgto ( x, omega, p2, p3, p4, integr ) +! +!****************************************************************************** +! +!! QWGTO defines the weight functions used by QC25O. +! +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, real(dp) X, the point at which the weight function is evaluated. +! +! Input, real(dp) OMEGA, the factor multiplying X. +! +! Input, real(dp) P2, P3, P4, parameters that are not used. +! +! Input, integer INTEGR, specifies which weight function is used: +! 1. W(X) = cos ( OMEGA * X ) +! 2, W(X) = sin ( OMEGA * X ) +! +! Output, real(dp) QWGTO, the value of the weight function at X. +! + implicit none +! + integer integr + real(dp) omega + real(dp) p2 + real(dp) p3 + real(dp) p4 + real(dp) qwgto + real(dp) x +! + if ( integr == 1 ) then + qwgto = cos ( omega * x ) + else if ( integr == 2 ) then + qwgto = sin ( omega * x ) + end if + + return +end function +function qwgts ( x, a, b, alfa, beta, integr ) +! +!****************************************************************************** +! +!! QWGTS defines the weight functions used by QC25S. +! +! +! Reference: +! +! R Piessens, E de Doncker-Kapenger, C W Ueberhuber, D K Kahaner, +! QUADPACK, a Subroutine Package for Automatic Integration, +! Springer Verlag, 1983 +! +! Parameters: +! +! Input, real(dp) X, the point at which the weight function is evaluated. +! +! Input, real(dp) A, B, the endpoints of the integration interval. +! +! Input, real(dp) ALFA, BETA, exponents that occur in the weight function. +! +! Input, integer INTEGR, specifies which weight function is used: +! 1. W(X) = (X-A)**ALFA * (B-X)**BETA +! 2, W(X) = (X-A)**ALFA * (B-X)**BETA * log (X-A) +! 3, W(X) = (X-A)**ALFA * (B-X)**BETA * log (B-X) +! 4, W(X) = (X-A)**ALFA * (B-X)**BETA * log (X-A) * log(B-X) +! +! Output, real(dp) QWGTS, the value of the weight function at X. +! + implicit none +! + real(dp) a + real(dp) alfa + real(dp) b + real(dp) beta + integer integr + real(dp) qwgts + real(dp) x +! + if ( integr == 1 ) then + qwgts = ( x - a )**alfa * ( b - x )**beta + else if ( integr == 2 ) then + qwgts = ( x - a )**alfa * ( b - x )**beta * log ( x - a ) + else if ( integr == 3 ) then + qwgts = ( x - a )**alfa * ( b - x )**beta * log ( b - x ) + else if ( integr == 4 ) then + qwgts = ( x - a )**alfa * ( b - x )**beta * log ( x - a ) * log ( b - x ) + end if + + return +end function +subroutine r_swap ( x, y ) +! +!******************************************************************************* +! +!! R_SWAP swaps two real(dp) values. +! +! +! Modified: +! +! 01 May 2000 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input/output, real(dp) X, Y. On output, the values of X and +! Y have been interchanged. +! + implicit none +! + real(dp) x + real(dp) y + real(dp) z +! + z = x + x = y + y = z + + return +end subroutine +subroutine timestamp ( ) +! +!******************************************************************************* +! +!! TIMESTAMP prints the current YMDHMS date as a time stamp. +! +! +! Example: +! +! May 31 2001 9:45:54.872 AM +! +! Modified: +! +! 31 May 2001 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! None +! + implicit none +! + character ( len = 8 ) ampm + integer d + character ( len = 8 ) date + integer h + integer m + integer mm + character ( len = 9 ), parameter, dimension(12) :: month = (/ & + 'January ', 'February ', 'March ', 'April ', & + 'May ', 'June ', 'July ', 'August ', & + 'September', 'October ', 'November ', 'December ' /) + integer n + integer s + character ( len = 10 ) time + integer values(8) + integer y + character ( len = 5 ) zone +! + call date_and_time ( date, time, zone, values ) + + y = values(1) + m = values(2) + d = values(3) + h = values(5) + n = values(6) + s = values(7) + mm = values(8) + + if ( h < 12 ) then + ampm = 'AM' + else if ( h == 12 ) then + if ( n == 0 .and. s == 0 ) then + ampm = 'Noon' + else + ampm = 'PM' + end if + else + h = h - 12 + if ( h < 12 ) then + ampm = 'PM' + else if ( h == 12 ) then + if ( n == 0 .and. s == 0 ) then + ampm = 'Midnight' + else + ampm = 'AM' + end if + end if + end if + + write ( *, '(a,1x,i2,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & + trim ( month(m) ), d, y, h, ':', n, ':', s, '.', mm, trim ( ampm ) + + return +end subroutine +end module quadpack diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/solidprop.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/solidprop.f90 new file mode 100644 index 000000000..89f29aeba --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/solidprop.f90 @@ -0,0 +1,132 @@ +!> @file +!! subroutines for evaluation of radiative properties of solid +!! @author Pavel Ferkl +!! @ingroup foam_cond +module solidprop + use constants + implicit none + private + public optconst +contains +!********************************BEGINNING************************************* +!> determine optical constants n,k for one wavelength +subroutine optconst(lambda,n,k) + use quadpack + use interpolation + real(dp), intent(in) :: lambda !wavelength + real(dp), intent(out) :: n,k !complex refractive index + !qags variables + real(dp) :: a !start point of integration + real(dp) :: abserr + real(dp) :: b !end point of integration + real(dp), parameter :: epsabs = 0.0e0_dp + real(dp), parameter :: epsrel = 0.001e0_dp + integer :: ier + integer :: neval + real(dp) :: res + !end of qags variables + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values + a=lambdan(1) + b=lambdan(size(lambdan)) + if (lambdab) then + call qag ( nwew, a, b, epsabs, epsrel, 1, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qag returned',ier + write(*,*) 'wavelength',lambda + write(*,*) 'new real part of refractive index not calculated' + stop + endif + n=res + call qag ( kwew, a, b, epsabs, epsrel, 1, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qag returned',ier + write(*,*) 'wavelength',lambda + write(*,*) 'new imaginery part of refractive index not calculated' + stop + endif + k=res + call qag ( Planck2, a, b, epsabs, epsrel, 1, res, abserr, neval, ier ) + if (ier /= 0) then + write(*,*) 'qag returned',ier + write(*,*) 'wavelength',lambda + write(*,*) 'new refractive index not calculated' + stop + endif + n=n/res + k=k/res + else + xi(1)=lambda + call pwl_interp_1d ( size(lambdan), lambdan, nwl, ni, xi, yi ) + n=yi(1) + call pwl_interp_1d ( size(lambdak), lambdak, kwl, ni, xi, yi ) + k=yi(1) + endif +end subroutine optconst +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates real part of index of refraction times emissive power +real(dp) function nwew ( lambda ) +!***************************DECLARATION****************************** + use interpolation + real(dp) :: lambda + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values +!******************************BODY********************************** + xi(1)=lambda + call pwl_interp_1d ( size(lambdan), lambdan, nwl, ni, xi, yi ) + nwew=yi(1)*Planck(tmean,lambda) +end function nwew +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> evaluates real part of index of refraction times emissive power +real(dp) function kwew ( lambda ) +!***************************DECLARATION****************************** + use interpolation + real(dp) :: lambda + integer :: ni=1 !number of points, where we want to interpolate + real(dp) :: xi(1) !x-values of points, where we want to interpolate + real(dp) :: yi(1) !interpolated y-values +!******************************BODY********************************** + xi(1)=lambda + call pwl_interp_1d ( size(lambdak), lambdak, kwl, ni, xi, yi ) + kwew=yi(1)*Planck(tmean,lambda) +end function kwew +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> determines emissive power +real(dp) function Planck(temp,lambda) +!***************************DECLARATION****************************** + real(dp), intent(in) :: temp !temperature + real(dp), intent(in) :: lambda !wavelength + real(dp) :: n +!******************************BODY********************************** + n=1.57_dp !just guess, equation for emissive power is correct only + ! for constant n + Planck=2*pi*hPc*c0**2/(n**2*lambda**5*(exp(hPc*c0/(n*lambda*kb*temp))-1)) +end function Planck +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> determines emissive power +real(dp) function Planck2(lambda) +!***************************DECLARATION****************************** + real(dp), intent(in) :: lambda !wavelength +!******************************BODY********************************** + Planck2=Planck(tmean,lambda) +end function Planck2 +!***********************************END**************************************** +end module solidprop diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/specfun.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/specfun.f90 new file mode 100644 index 000000000..05b2f43dc --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/specfun.f90 @@ -0,0 +1,218 @@ +!> @file +!! subroutines for special mathematical functions +!! @author Pavel Ferkl +!! @ingroup foam_cond +module specfun + use constants, only: dp,pi,iu,eulergamma + implicit none + private + public factorial,digamma,bessel,hankel +contains +!********************************BEGINNING************************************* +!> calculates Bessel functions of the first and second kind and +!! their derivatives for complex argument +subroutine bessel(n,x,tol,j,dj,y,dy) + use besselj, only: ZBESJ + use bessely, only: ZBESY + integer, intent(in) :: n !maximum order calculated + complex(dp), intent(in) :: x !argument + real(dp), intent(in) :: tol !relative tolerance, currently not used + complex(dp), dimension(0:n), intent(out) :: & + j,& !bessel function of the first kind + dj,& !derivative of bessel function of the first kind + y,& !bessel function of the second kind + dy !derivative of bessel function of the second kind + real(dp), dimension(n+1) :: cyr,cyi,cwr,cwi + integer :: i,m,nz,ierr + call ZBESJ(realpart(x),imagpart(x),0.e0_dp,1,n+1,cyr,cyi,nz,ierr) + if (nz>0) then + write(*,*) 'underflow encountered' + write(*,*) 'bessel function J not calculated',n,x + stop + endif + if (ierr /= 0) then + write(*,*) 'did not converge' + write(*,*) 'bessel function J not calculated',n,x + stop + endif + do i=0,n + j(i)=cmplx(cyr(i+1),cyi(i+1),kind=dp) + enddo +! write(*,*) x +! write(*,*) j + call ZBESY(realpart(x),imagpart(x),0.e0_dp,1,n+1,cyr,cyi,nz,cwr,cwi,ierr) + if (nz>0) then + write(*,*) 'underflow encountered' + write(*,*) 'bessel function Y not calculated',n,x + stop + endif + if (ierr /= 0) then + write(*,*) 'did not converge' + write(*,*) 'bessel function Y not calculated',n,x + stop + endif + do i=0,n + y(i)=cmplx(cyr(i+1),cyi(i+1),kind=dp) + enddo +! write(*,*) x +! write(*,*) y +! stop + !http://keisan.casio.com/exec/system/1180573474 + dj(0)=-j(1) + dy(0)=-y(1) + do m=1,n + dj(m)=j(m-1)-m/x*j(m) + dy(m)=y(m-1)-m/x*y(m) + enddo +end subroutine bessel +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculates Hankel functions of the first and second kind and +!! their derivatives for complex argument +subroutine hankel(n,x,tol,h1,dh1,h2,dh2) + integer, intent(in) :: n !maximum order calculated + complex(dp), intent(in) :: x !argument + real(dp), intent(in) :: tol !relative tolerance + complex(dp), dimension(0:n), intent(out) :: & + h1,& !hankel function of the first kind + dh1,& !derivative of hankel function of the first kind + h2,& !hankel function of the second kind + dh2 !derivative of hankel function of the second kind + integer :: i + complex(dp), dimension(0:n) :: j,dj,y,dy + !http://keisan.casio.com/has10/SpecExec.cgi?id=system/2006/1222514923 + call bessel(n,x,tol,j,dj,y,dy) + h1=j+iu*y + h2=j-iu*y + dh1(0)=-h1(1) + dh2(0)=-h2(1) + do i=1,n + dh1(i)=h1(i-1)-i/x*h1(i) + dh2(i)=h2(i-1)-i/x*h2(i) + enddo +end subroutine hankel +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculates factorial +recursive function factorial(n) result(fact) + integer, intent(in) :: n !argument + real(dp) :: fact + if (n<0) then + stop 'factorial defined only for nonnegative integers' + elseif (n==0) then + fact=1 + else + fact=n*factorial(n-1) + endif +end function factorial +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculates digamma function +!! taken from http://mathworld.wolfram.com/DigammaFunction.html +real(dp) function digamma(n) + integer, intent(in) :: n !argument + integer :: i + digamma=-eulergamma + do i=1,n-1 + digamma=digamma+1.0_dp/i + enddo +end function digamma +!***********************************END**************************************** + + +!SUBROUTINE JNCOMP(Z,NS,JN) +! !taken from Daniel Mackowski code for scattering of radiation by long cylinders +! !it might be more effective, I did not test it thoroughly +! IMPLICIT none +! COMPLEX*16 JN(0:*),A,Z +! integer :: n,nd,ns +! +!! CALCULATES THE INTEGER-ORDER BESSEL FUNCTION JN(Z) +!! N=0,1,...NS, FOR COMPLEX ARGUMENT Z. REFER TO BOHREN & HUFFMAN +!! FOR DETAILS. CODED 9/20/90 +! +! ND=NINT((101+CDABS(Z))**.499+NS) +! ND=2*NINT(ND/2.) +! JN(ND)=0. +! JN(ND-1)=1.D-32 +! A=0. +! DO N=ND-1,3,-2 +! JN(N-1)=2.*N*JN(N)/Z-JN(N+1) +! JN(N-2)=2.*(N-1)*JN(N-1)/Z-JN(N) +! A=A+JN(N-1) +! enddo +! JN(0)=2.*JN(1)/Z-JN(2) +! A=JN(0)+2.*A +! DO N=0,NS +! JN(N)=JN(N)/A +! enddo +!RETURN +!END subroutine + + +!!********************************BEGINNING************************************* +!!calculates Bessel functions of the first and second kind and their derivatives for complex argument +!!doesn't work properly for high orders +!subroutine bessel(n,x,tol,j,dj,y,dy) +! integer, intent(in) :: n !maximum order calculated +! complex(dp), intent(in) :: x !argument +! real(dp), intent(in) :: tol !relative tolerance +! complex(dp), dimension(0:n), intent(out) :: j !bessel function of the first kind +! complex(dp), dimension(0:n), intent(out) :: dj !derivative of bessel function of the first kind +! complex(dp), dimension(0:n), intent(out) :: y !bessel function of the second kind +! complex(dp), dimension(0:n), intent(out) :: dy !derivative of bessel function of the second kind +! integer :: l,m,lmax=200 +! complex(dp) :: jold,yold +! jold=0;yold=0 +! j=0;dj=0;y=0;dy=0 +!! write(*,*) x +! do m=0,n +! do l=0,lmax +!! write(*,*) l,m,j(m) +!! j(m)=j(m)+(-1)**l/(2**(2*l+m)*factorial(l)*factorial(m+l)+0.0_dp)*x**(2*l+m) !http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html (it works just as well) +! j(m)=j(m)+(-1)**l/(factorial(l)*factorial(m+l)+0.0_dp)*(x/2)**(2*l+m) !http://keisan.casio.com/exec/system/1180573474 +! if (abs(j(m)-jold)/abs(j(m)) @file +!! subroutines for calculation of equivalent conductivity of foam, loading of +!! parameters and several parametric studies +!! @author Pavel Ferkl +!! @ingroup foam_cond +module tests + use constants + use ioutils + use foamprop, only: effrad + use foamgeom, only: foam_morpholgy + use conduction, only: effcond + use condrad, only: equcond,cond,alpha,sigma + implicit none + private + public loadParameters,eqcond,eqcond_por,eqcond_dcell,eqcond_strut + character(len=99) :: fileplacein_par='./' !modena + character(len=99) :: fileplacein_ref='../spectra/' !modena + character(len=99) :: fileplaceout='./' !modena + character(len=99) :: inputs='inputs.in',spectra='spectra.out' + character(len=99) :: nspec='spec_n.in' + character(len=99) :: kspec='spec_k.in' + character(len=99) :: gasspec='gasspec.in' +contains +!********************************BEGINNING************************************* +!> calculate equivalent conductivity for one specific foam +subroutine eqcond(regions) + integer, intent(in) :: regions + integer :: i,j + real(dp), dimension(:), allocatable :: regbound,regcond + real(dp), dimension(:,:), allocatable :: regalpha,regsigma + allocate(regbound(regions+1),regcond(regions),regalpha(regions,nbox),& + regsigma(regions,nbox),alpha(nz,nbox),sigma(nz,nbox),cond(nz)) + do i=1,regions+1 + regbound(i)=(i-1)*dfoam/regions + enddo + do i=1,regions + call foam_morpholgy + call effrad(spectra) + call effcond + regcond(i)=effc + regalpha(i,:)=abscoeffbox + regsigma(i,:)=scattcoeffbox + deallocate(abscoeffbox,scattcoeffbox) + enddo + do i=1,nz + do j=1,regions+1 + if ((i-0.5_dp)*dfoam/nz calculate dependance of equivalent conductivity on porosity +subroutine eqcond_por + integer :: fi,npoints,i + real(dp) :: pormin,pormax,dpor + pormin=0.90_dp + pormax=0.995_dp + npoints=20 + dpor=(pormax-pormin)/(npoints-1) + open(newunit(fi),file='eqcond_por.out') + write(fi,'(1000A23)') '#porosity','eq. conductivity','Ross. eq. cond.' + do i=1,npoints + por=pormin+(i-1)*dpor + call eqcond(1) + write(fi,'(1000es23.15)') por,eqc,eqc_ross + enddo + close(fi) +end subroutine eqcond_por +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculate dependance of equivalent conductivity on cell size +subroutine eqcond_dcell + integer :: fi,npoints,i + real(dp) :: dcellmin,dcellmax,ddcell + dcellmin=1e-6_dp + dcellmax=1000e-6_dp + npoints=7 + ddcell=log10(dcellmax/dcellmin)/(npoints-1) + open(newunit(fi),file='eqcond_dcell.out') + write(fi,'(1000A23)') '#porosity','eq. conductivity' + do i=1,npoints + dcell=dcellmin*10**((i-1)*ddcell) + call eqcond(1) + write(fi,'(1000es23.15)') dcell,eqc + enddo + close(fi) +end subroutine eqcond_dcell +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> calculate dependance of equivalent conductivity on strut content +subroutine eqcond_strut + integer :: fi,npoints,i + real(dp) :: strutmin,strutmax,dstrut + strutmin=0.0_dp + strutmax=0.9_dp + npoints=19 + dstrut=(strutmax-strutmin)/(npoints-1) + open(newunit(fi),file='eqcond_strut.out') + write(fi,'(1000A23)') '#strut content','eq. conductivity','Ross. eq. cond.' + do i=1,npoints + fs=strutmin+(i-1)*dstrut + call eqcond(1) + write(fi,'(1000es23.15)') fs,eqc,eqc_ross + enddo + close(fi) +end subroutine eqcond_strut +!***********************************END**************************************** + + +!********************************BEGINNING************************************* +!> loads parameters, usually from text file +subroutine loadParameters + use physicalProperties + integer :: fi,ios,i,j + logical :: file_exists + inputs=TRIM(ADJUSTL(fileplacein_par))//TRIM(ADJUSTL(inputs)) + spectra=TRIM(ADJUSTL(fileplaceout))//TRIM(ADJUSTL(spectra)) + inquire(file=inputs,exist=file_exists) + if (file_exists) then + open(newunit(fi),file=inputs) + else + open(newunit(fi),file='../'//inputs) + endif + read(fi,*) T1 !higher temperature + read(fi,*) T2 !lower temperature + read(fi,*) cond1 !gas conductivity +! read(fi,*) cond2 !solid conductivity + call polymerConductivity(cond2,(t1+t2)/2) + read(fi,*) emi1 !emittance 1 + read(fi,*) emi2 !emittance 2 + read(fi,*) rho1 !gas density + read(fi,*) rho2 !solid density + read(fi,*) por !porosity + read(fi,*) dcell !cell size + read(fi,*) morph_input !morphology input 1=wall thickness, + ! 2=strut content, 3=strut diameter (3 is recommended others can have + ! multiple solutions) + read(fi,*) dwall !wall thickness + read(fi,*) fs !strut content + read(fi,*) dstrut !strut diameter + read(fi,*) dfoam !foam thickness + read(fi,*) nz !spatial discretization + read(fi,*) nrays !number of testing rays + read(fi,*) wdist !use wall thickness distribution + read(fi,*) wsdev !wall thickness standard deviation + read(fi,*) nbox !number of gray boxes + close(fi) + tmean=(t1+t2)/2 + n1=1 + k1=0 + write(*,*) 'System information:' + write(*,'(2x,A,1x,es9.3,1x,A)') 'higher temperature:',T1,'K' + write(*,'(2x,A,1x,es9.3,1x,A)') 'lower temperature: ',T2,'K' + write(*,*) 'Phase properties:' + write(*,'(2x,A,1x,es9.3,1x,A)') 'gas conductivity: ',cond1*1e3_dp,'mW/m/K' + write(*,'(2x,A,1x,es9.3,1x,A)') 'solid conductivity:',cond2*1e3_dp,'mW/m/K' + write(mfi,*) 'System information:' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'higher temperature:',T1,'K' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'lower temperature: ',T2,'K' + write(mfi,*) 'Phase properties:' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'gas conductivity: ',cond1*1e3_dp,'mW/m/K' + write(mfi,'(2x,A,1x,es9.3,1x,A)') 'solid conductivity:',cond2*1e3_dp,'mW/m/K' + + j=0 + open(newunit(fi),file=TRIM(ADJUSTL(fileplacein_ref))//TRIM(ADJUSTL(nspec))) + do !find number of points + read(fi,*,iostat=ios) + if (ios/=0) exit + j=j+1 + enddo + rewind(fi) + allocate(lambdan(j),nwl(j)) + do i=1,j + read(fi,*) lambdan(i),nwl(i) + enddo + lambdan=lambdan*1e-6_dp + close(fi) + + j=0 + open(newunit(fi),file=TRIM(ADJUSTL(fileplacein_ref))//TRIM(ADJUSTL(kspec))) + do !find number of points + read(fi,*,iostat=ios) + if (ios/=0) exit + j=j+1 + enddo + rewind(fi) + allocate(lambdak(j),kwl(j)) + do i=1,j + read(fi,*) lambdak(i),kwl(i) + enddo + lambdak=lambdak*1e-6_dp + close(fi) + + j=0 + open(newunit(fi),file=TRIM(ADJUSTL(fileplacein_ref))//TRIM(ADJUSTL(gasspec))) + do !find number of points + read(fi,*,iostat=ios) + if (ios/=0) exit + j=j+1 + enddo + rewind(fi) + allocate(lambdagas(j),acgas(j)) + do i=1,j + read(fi,*) lambdagas(i),acgas(i) + enddo + lambdagas=lambdagas*1e-6_dp + close(fi) +end subroutine loadParameters +!***********************************END**************************************** +end module tests diff --git a/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/utilit.f90 b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/utilit.f90 new file mode 100644 index 000000000..c8839ba54 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/foamConductivity/src/src/utilit.f90 @@ -0,0 +1,1675 @@ +! --------------------------------------------------------------------- +! Utility subroutines used by any program from Numath library +! --------------------------------------------------------------------- +! Reference: From Numath Library By Tuan Dang Trong in Fortran 77 +! [BIBLI 18]. +! +! F90 Release 1.0 By J-P Moreau, Paris +! (www.jpmoreau.fr) +! --------------------------------------------------------------------- +MODULE UTILIT + +CONTAINS + +!REAL*8 FUNCTION D1MACH(I) +!!***BEGIN PROLOGUE D1MACH +!!***DATE WRITTEN 750101 (YYMMDD) +!!***REVISION DATE 860501 (YYMMDD) +!!***CATEGORY NO. R1 +!!***KEYWORDS MACHINE CONSTANTS +!!***AUTHOR FOX, P. A., (BELL LABS) +!! HALL, A. D., (BELL LABS) +!! SCHRYER, N. L., (BELL LABS) +!!***PURPOSE RETURN DOUBLE PRECISION MACHINE DEPENDENT CONSTANTS. +!!***DESCRIPTION +! +!! D1MACH CAN BE USED TO OBTAIN MACHINE-DEPENDENT PARAMETERS +!! FOR THE LOCAL MACHINE ENVIRONMENT. IT IS A FUNCTION +!! SUBPROGRAM WITH ONE (INPUT) ARGUMENT, AND CAN BE CALLED +!! AS FOLLOWS, FOR EXAMPLE +! +!! D = D1MACH(I) +! +!! WHERE I=1,...,5. THE (OUTPUT) VALUE OF D ABOVE IS +!! DETERMINED BY THE (INPUT) VALUE OF I. THE RESULTS FOR +!! VARIOUS VALUES OF I ARE DISCUSSED BELOW. +! +!! DOUBLE-PRECISION MACHINE CONSTANTS +!! D1MACH( 1) = B**(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE. +!! D1MACH( 2) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE. +!! D1MACH( 3) = B**(-T), THE SMALLEST RELATIVE SPACING. +!! D1MACH( 4) = B**(1-T), THE LARGEST RELATIVE SPACING. +!! D1MACH( 5) = LOG10(B) +!!***REFERENCES FOX P.A., HALL A.D., SCHRYER N.L.,*FRAMEWORK FOR A +!! PORTABLE LIBRARY*, ACM TRANSACTIONS ON MATHEMATICAL +!! SOFTWARE, VOL. 4, NO. 2, JUNE 1978, PP. 177-188. +!!***ROUTINES CALLED XERROR +!!***END PROLOGUE D1MACH +! +! INTEGER SMALL(4) +! INTEGER LARGE(4) +! INTEGER RIGHT(4) +! INTEGER DIVER(4) +! INTEGER LOG10(4) +! +! DOUBLE PRECISION DMACH(5) +! +! EQUIVALENCE (DMACH(1),SMALL(1)) +! EQUIVALENCE (DMACH(2),LARGE(1)) +! EQUIVALENCE (DMACH(3),RIGHT(1)) +! EQUIVALENCE (DMACH(4),DIVER(1)) +! EQUIVALENCE (DMACH(5),LOG10(1)) +! +!! MACHINE CONSTANTS FOR THE IBM 360/370 SERIES, +!! THE XEROX SIGMA 5/7/9, THE SEL SYSTEMS 85/86, AND +!! THE PERKIN ELMER (INTERDATA) 7/32. +! +! DATA SMALL(1), SMALL(2) / Z00100000, Z00000000 / +! DATA LARGE(1), LARGE(2) / Z7FFFFFFF, ZFFFFFFFF / +! DATA RIGHT(1), RIGHT(2) / Z33100000, Z00000000 / +! DATA DIVER(1), DIVER(2) / Z34100000, Z00000000 / +! DATA LOG10(1), LOG10(2) / Z41134413, Z509F79FF / + +! MACHINE CONSTANTS FOR THE APOLLO DNXXXX SERIES, + +! DATA DMACH(1) / 2.22559D-308/ +! DATA DMACH(2) / 1.79728D308/ +! DATA DMACH(3) / 1.11048D-16 / +! DATA DMACH(4) / 2.22096D-16 / +! DATA DMACH(5) / .301029995663981198D0 / + +! MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. + +! DATA SMALL(1) / ZC00800000 / +! DATA SMALL(2) / Z000000000 / + +! DATA LARGE(1) / ZDFFFFFFFF / +! DATA LARGE(2) / ZFFFFFFFFF / + +! DATA RIGHT(1) / ZCC5800000 / +! DATA RIGHT(2) / Z000000000 / + +! DATA DIVER(1) / ZCC6800000 / +! DATA DIVER(2) / Z000000000 / + +! DATA LOG10(1) / ZD00E730E7 / +! DATA LOG10(2) / ZC77800DC0 / + +! MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM. + +! DATA SMALL(1) / O1771000000000000 / +! DATA SMALL(2) / O0000000000000000 / + +! DATA LARGE(1) / O0777777777777777 / +! DATA LARGE(2) / O0007777777777777 / + +! DATA RIGHT(1) / O1461000000000000 / +! DATA RIGHT(2) / O0000000000000000 / + +! DATA DIVER(1) / O1451000000000000 / +! DATA DIVER(2) / O0000000000000000 / + +! DATA LOG10(1) / O1157163034761674 / +! DATA LOG10(2) / O0006677466732724 / + +! MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS. + +! DATA SMALL(1) / O1771000000000000 / +! DATA SMALL(2) / O7770000000000000 / + +! DATA LARGE(1) / O0777777777777777 / +! DATA LARGE(2) / O7777777777777777 / + +! DATA RIGHT(1) / O1461000000000000 / +! DATA RIGHT(2) / O0000000000000000 / + +! DATA DIVER(1) / O1451000000000000 / +! DATA DIVER(2) / O0000000000000000 / + +! DATA LOG10(1) / O1157163034761674 / +! DATA LOG10(2) / O0006677466732724 / + +! MACHINE CONSTANTS FOR THE CD! 6000/7000 SERIES. +! FOR FTN4 + +! DATA SMALL(1) / 00564000000000000000B / +! DATA SMALL(2) / 00000000000000000000B / + +! DATA LARGE(1) / 37757777777777777777B / +! DATA LARGE(2) / 37157777777777777777B / + +! DATA RIGHT(1) / 15624000000000000000B / +! DATA RIGHT(2) / 00000000000000000000B / + +! DATA DIVER(1) / 15634000000000000000B / +! DATA DIVER(2) / 00000000000000000000B / + +! DATA LOG10(1) / 17164642023241175717B / +! DATA LOG10(2) / 16367571421742254654B / + +! MACHINE CONSTANTS FOR THE CD! 6000/7000 SERIES. +! FOR FTN5 + +! DATA SMALL(1) / O"00564000000000000000" / +! DATA SMALL(2) / O"00000000000000000000" / + +! DATA LARGE(1) / O"37757777777777777777" / +! DATA LARGE(2) / O"37157777777777777777" / + +! DATA RIGHT(1) / O"15624000000000000000" / +! DATA RIGHT(2) / O"00000000000000000000" / + +! DATA DIVER(1) / O"15634000000000000000" / +! DATA DIVER(2) / O"00000000000000000000" / + +! DATA LOG10(1) / O"17164642023241175717" / +! DATA LOG10(2) / O"16367571421742254654" / + +! MACHINE CONSTANTS FOR THE CRAY 1 + +! DATA SMALL(1) / 201354000000000000000B / +! DATA SMALL(2) / 000000000000000000000B / + +! DATA LARGE(1) / 577767777777777777777B / +! DATA LARGE(2) / 000007777777777777774B / + +! DATA RIGHT(1) / 376434000000000000000B / +! DATA RIGHT(2) / 000000000000000000000B / + +! DATA DIVER(1) / 376444000000000000000B / +! DATA DIVER(2) / 000000000000000000000B / + +! DATA LOG10(1) / 377774642023241175717B / +! DATA LOG10(2) / 000007571421742254654B / + +! MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200 + +! NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD - +! STATI! DMACH(5) + +! DATA SMALL/20K,3*0/,LARGE/77777K,3*177777K/ +! DATA RIGHT/31420K,3*0/,DIVER/32020K,3*0/ +! DATA LOG10/40423K,42023K,50237K,74776K/ + +! MACHINE CONSTANTS FOR THE HARRIS 220 + +! DATA SMALL(1), SMALL(2) / '20000000, '00000201 / +! DATA LARGE(1), LARGE(2) / '37777777, '37777577 / +! DATA RIGHT(1), RIGHT(2) / '20000000, '00000333 / +! DATA DIVER(1), DIVER(2) / '20000000, '00000334 / +! DATA LOG10(1), LOG10(2) / '23210115, '10237777 / + +! MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES. + +! DATA SMALL(1), SMALL(2) / O402400000000, O000000000000 / +! DATA LARGE(1), LARGE(2) / O376777777777, O777777777777 / +! DATA RIGHT(1), RIGHT(2) / O604400000000, O000000000000 / +! DATA DIVER(1), DIVER(2) / O606400000000, O000000000000 / +! DATA LOG10(1), LOG10(2) / O776464202324, O117571775714 / + +! MACHINE CONSTANTS FOR THE HP 2100 +! THREE WORD DOUBLE PRECISION OPTION WITH FTN4 + +! DATA SMALL(1), SMALL(2), SMALL(3) / 40000B, 0, 1 / +! DATA LARGE(1), LARGE(2), LARGE(3) / 77777B, 177777B, 177776B / +! DATA RIGHT(1), RIGHT(2), RIGHT(3) / 40000B, 0, 265B / +! DATA DIVER(1), DIVER(2), DIVER(3) / 40000B, 0, 276B / +! DATA LOG10(1), LOG10(2), LOG10(3) / 46420B, 46502B, 77777B / + +! MACHINE CONSTANTS FOR THE HP 2100 +! FOUR WORD DOUBLE PRECISION OPTION WITH FTN4 + +! DATA SMALL(1), SMALL(2) / 40000B, 0 / +! DATA SMALL(3), SMALL(4) / 0, 1 / +! DATA LARGE(1), LARGE(2) / 77777B, 177777B / +! DATA LARGE(3), LARGE(4) / 177777B, 177776B / +! DATA RIGHT(1), RIGHT(2) / 40000B, 0 / +! DATA RIGHT(3), RIGHT(4) / 0, 225B / +! DATA DIVER(1), DIVER(2) / 40000B, 0 / +! DATA DIVER(3), DIVER(4) / 0, 227B / +! DATA LOG10(1), LOG10(2) / 46420B, 46502B / +! DATA LOG10(3), LOG10(4) / 76747B, 176377B / + +! MACHINE CONSTANTS FOR THE HP 9000 + +! D1MACH(1) = 2.8480954D-306 +! D1MACH(2) = 1.40444776D+306 +! D1MACH(3) = 2.22044605D-16 +! D1MACH(4) = 4.44089210D-16 +! D1MACH(5) = 3.01029996D-1 + +! DATA SMALL(1), SMALL(2) / 00040000000B, 00000000000B / +! DATA LARGE(1), LARGE(2) / 17737777777B, 37777777777B / +! DATA RIGHT(1), RIGHT(2) / 07454000000B, 00000000000B / +! DATA DIVER(1), DIVER(2) / 07460000000B, 00000000000B / +! DATA LOG10(1), LOG10(2) / 07764642023B, 12047674777B / + +! MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR). + +! DATA SMALL(1), SMALL(2) / "033400000000, "000000000000 / +! DATA LARGE(1), LARGE(2) / "377777777777, "344777777777 / +! DATA RIGHT(1), RIGHT(2) / "113400000000, "000000000000 / +! DATA DIVER(1), DIVER(2) / "114400000000, "000000000000 / +! DATA LOG10(1), LOG10(2) / "177464202324, "144117571776 / + +! MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR). + +! DATA SMALL(1), SMALL(2) / "000400000000, "000000000000 / +! DATA LARGE(1), LARGE(2) / "377777777777, "377777777777 / +! DATA RIGHT(1), RIGHT(2) / "103400000000, "000000000000 / +! DATA DIVER(1), DIVER(2) / "104400000000, "000000000000 / +! DATA LOG10(1), LOG10(2) / "177464202324, "476747767461 / + +! MACHINE CONSTANTS FOR PDP-11 FORTRAN SUPPORTING +! 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). + +! DATA SMALL(1), SMALL(2) / 8388608, 0 / +! DATA LARGE(1), LARGE(2) / 2147483647, -1 / +! DATA RIGHT(1), RIGHT(2) / 612368384, 0 / +! DATA DIVER(1), DIVER(2) / 620756992, 0 / +! DATA LOG10(1), LOG10(2) / 1067065498, -2063872008 / + +! DATA SMALL(1), SMALL(2) / O00040000000, O00000000000 / +! DATA LARGE(1), LARGE(2) / O17777777777, O37777777777 / +! DATA RIGHT(1), RIGHT(2) / O04440000000, O00000000000 / +! DATA DIVER(1), DIVER(2) / O04500000000, O00000000000 / +! DATA LOG10(1), LOG10(2) / O07746420232, O20476747770 / + +! MACHINE CONSTANTS FOR PDP-11 FORTRAN SUPPORTING +! 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). + +! DATA SMALL(1), SMALL(2) / 128, 0 / +! DATA SMALL(3), SMALL(4) / 0, 0 / + +! DATA LARGE(1), LARGE(2) / 32767, -1 / +! DATA LARGE(3), LARGE(4) / -1, -1 / + +! DATA RIGHT(1), RIGHT(2) / 9344, 0 / +! DATA RIGHT(3), RIGHT(4) / 0, 0 / + +! DATA DIVER(1), DIVER(2) / 9472, 0 / +! DATA DIVER(3), DIVER(4) / 0, 0 / + +! DATA LOG10(1), LOG10(2) / 16282, 8346 / +! DATA LOG10(3), LOG10(4) / -31493, -12296 / + +! DATA SMALL(1), SMALL(2) / O000200, O000000 / +! DATA SMALL(3), SMALL(4) / O000000, O000000 / + +! DATA LARGE(1), LARGE(2) / O077777, O177777 / +! DATA LARGE(3), LARGE(4) / O177777, O177777 / + +! DATA RIGHT(1), RIGHT(2) / O022200, O000000 / +! DATA RIGHT(3), RIGHT(4) / O000000, O000000 / + +! DATA DIVER(1), DIVER(2) / O022400, O000000 / +! DATA DIVER(3), DIVER(4) / O000000, O000000 / + +! DATA LOG10(1), LOG10(2) / O037632, O020232 / +! DATA LOG10(3), LOG10(4) / O102373, O147770 / + +! MACHINE CONSTANTS FOR THE UNIVA! 1100 SERIES. FTN COMPILER + +! DATA SMALL(1), SMALL(2) / O000040000000, O000000000000 / +! DATA LARGE(1), LARGE(2) / O377777777777, O777777777777 / +! DATA RIGHT(1), RIGHT(2) / O170540000000, O000000000000 / +! DATA DIVER(1), DIVER(2) / O170640000000, O000000000000 / +! DATA LOG10(1), LOG10(2) / O177746420232, O411757177572 / + +! MACHINE CONSTANTS FOR VAX 11/780 +! (EXPRESSED IN INTEGER AND HEXADECIMAL) +! ***THE HEX FORMAT BELOW MAY NOT BE SUITABLE FOR UNIX SYSYEMS*** +! *** THE INTEGER FORMAT SHOULD BE OK FOR UNIX SYSTEMS*** + +! DATA SMALL(1), SMALL(2) / 128, 0 / +! DATA LARGE(1), LARGE(2) / -32769, -1 / +! DATA RIGHT(1), RIGHT(2) / 9344, 0 / +! DATA DIVER(1), DIVER(2) / 9472, 0 / +! DATA LOG10(1), LOG10(2) / 546979738, -805796613 / + +! DATA SMALL(1), SMALL(2) / Z00000080, Z00000000 / +! DATA LARGE(1), LARGE(2) / ZFFFF7FFF, ZFFFFFFFF / +! DATA RIGHT(1), RIGHT(2) / Z00002480, Z00000000 / +! DATA DIVER(1), DIVER(2) / Z00002500, Z00000000 / +! DATA LOG10(1), LOG10(2) / Z209A3F9A, ZCFF884FB / + +! MACHINE CONSTANTS FOR VAX 11/780 (G-FLOATING) +! (EXPRESSED IN INTEGER AND HEXADECIMAL) +! ***THE HEX FORMAT BELOW MAY NOT BE SUITABLE FOR UNIX SYSYEMS*** +! *** THE INTEGER FORMAT SHOULD BE OK FOR UNIX SYSTEMS*** + +! DATA SMALL(1), SMALL(2) / 16, 0 / +! DATA LARGE(1), LARGE(2) / -32769, -1 / +! DATA RIGHT(1), RIGHT(2) / 15552, 0 / +! DATA DIVER(1), DIVER(2) / 15568, 0 / +! DATA LOG10(1), LOG10(2) / 1142112243, 2046775455 / + +! DATA SMALL(1), SMALL(2) / Z00000010, Z00000000 / +! DATA LARGE(1), LARGE(2) / ZFFFF7FFF, ZFFFFFFFF / +! DATA RIGHT(1), RIGHT(2) / Z00003CC0, Z00000000 / +! DATA DIVER(1), DIVER(2) / Z00003CD0, Z00000000 / +! DATA LOG10(1), LOG10(2) / Z44133FF3, Z79FF509F / + +! MACHINE CONSTANTS FOR THE ELXSI 6400 +! (ASSUMING REAL*8 IS THE DEFAULT DOUBLE PRECISION) + +! DATA SMALL(1), SMALL(2) / '00100000'X,'00000000'X / +! DATA LARGE(1), LARGE(2) / '7FEFFFFF'X,'FFFFFFFF'X / +! DATA RIGHT(1), RIGHT(2) / '3CB00000'X,'00000000'X / +! DATA DIVER(1), DIVER(2) / '3CC00000'X,'00000000'X / +! DATA LOG10(1), DIVER(2) / '3FD34413'X,'509F79FF'X / + +! MACHINE CONSTANTS FOR THE IBM PC - MICROSOFT FORTRAN + +! DATA SMALL(1), SMALL(2) / �00000000, �00100000 / +! DATA LARGE(1), LARGE(2) / �FFFFFFFF, �7FEFFFFF / +! DATA RIGHT(1), RIGHT(2) / �00000000, �3CA00000 / +! DATA DIVER(1), DIVER(2) / �00000000, �3CB00000 / +! DATA LOG10(1), LOG10(2) / �509F79FF, �3FD34413 / + +! MACHINE CONSTANTS FOR THE IBM PC - PROFESSIONAL FORTRAN +! AND LAHEY FORTRAN + +! DATA SMALL(1), SMALL(2) / Z'00000000', Z'00100000' / +! DATA LARGE(1), LARGE(2) / Z'FFFFFFFF', Z'7FEFFFFF' / +! DATA RIGHT(1), RIGHT(2) / Z'00000000', Z'3CA00000' / +! DATA DIVER(1), DIVER(2) / Z'00000000', Z'3CB00000' / +! DATA LOG10(1), LOG10(2) / Z'509F79FF', Z'3FD34413' / +! +!!***FIRST EXECUTABLE STATEMENT D1MACH +! IF (I .LT. 1 .OR. I .GT. 5) & +! CALL XERROR( 'D1MACH -- I OUT OF BOUNDS',25,1,2) +! +! D1MACH = DMACH(I) +! RETURN +! +!END FUNCTION D1MACH +!DECK D1MACH + DOUBLE PRECISION FUNCTION D1MACH (I) + IMPLICIT NONE + INTEGER :: I + DOUBLE PRECISION :: B, X +!***BEGIN PROLOGUE D1MACH +!***PURPOSE Return floating point machine dependent constants. +!***LIBRARY SLATEC +!***CATEGORY R1 +!***TYPE SINGLE PRECISION (D1MACH-S, D1MACH-D) +!***KEYWORDS MACHINE CONSTANTS +!***AUTHOR Fox, P. A., (Bell Labs) +! Hall, A. D., (Bell Labs) +! Schryer, N. L., (Bell Labs) +!***DESCRIPTION +! +! D1MACH can be used to obtain machine-dependent parameters for the +! local machine environment. It is a function subprogram with one +! (input) argument, and can be referenced as follows: +! +! A = D1MACH(I) +! +! where I=1,...,5. The (output) value of A above is determined by +! the (input) value of I. The results for various values of I are +! discussed below. +! +! D1MACH(1) = B**(EMIN-1), the smallest positive magnitude. +! D1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +! D1MACH(3) = B**(-T), the smallest relative spacing. +! D1MACH(4) = B**(1-T), the largest relative spacing. +! D1MACH(5) = LOG10(B) +! +! Assume single precision numbers are represented in the T-digit, +! base-B form +! +! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) ) +! +! where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and +! EMIN .LE. E .LE. EMAX. +! +! The values of B, T, EMIN and EMAX are provided in I1MACH as +! follows: +! I1MACH(10) = B, the base. +! I1MACH(11) = T, the number of base-B digits. +! I1MACH(12) = EMIN, the smallest exponent E. +! I1MACH(13) = EMAX, the largest exponent E. +! +! +!***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for +! a portable library, ACM Transactions on Mathematical +! Software 4, 2 (June 1978), pp. 177-188. +!***ROUTINES CALLED XERMSG +!***REVISION HISTORY (YYMMDD) +! 790101 DATE WRITTEN +! 960329 Modified for Fortran 90 (BE after suggestions by EHG) +!***END PROLOGUE D1MACH +! + X = 1.0D0 + B = RADIX(X) + SELECT CASE (I) + CASE (1) + D1MACH = B**(MINEXPONENT(X)-1) ! the smallest positive magnitude. + CASE (2) + D1MACH = HUGE(X) ! the largest magnitude. + CASE (3) + D1MACH = B**(-DIGITS(X)) ! the smallest relative spacing. + CASE (4) + D1MACH = B**(1-DIGITS(X)) ! the largest relative spacing. + CASE (5) + D1MACH = LOG10(B) + CASE DEFAULT + WRITE (*, FMT = 9000) + 9000 FORMAT ('1ERROR 1 IN D1MACH - I OUT OF BOUNDS') + STOP + END SELECT + RETURN + END +! --------------------------------------------------------------------- +INTEGER FUNCTION I1MACH(I) +!***BEGIN PROLOGUE I1MACH +!***DATE WRITTEN 750101 (YYMMDD) +!***REVISION DATE 890313 (YYMMDD) +!***CATEGORY NO. R1 +!***KEYWORDS LIBRARY=SLATEC,TYPE=INTEGER(I1MACH-I),MACHINE CONSTANTS +!***AUTHOR FOX, P. A., (BELL LABS) +! HALL, A. D., (BELL LABS) +! SCHRYER, N. L., (BELL LABS) +!***PURPOSE Return integer machine dependent constants. +!***DESCRIPTION + +! I1MACH can be used to obtain machine-dependent parameters +! for the local machine environment. It is a function +! subroutine with one (input) argument, and can be called +! as follows, for example + +! K = I1MACH(I) + +! where I=1,...,16. The (output) value of K above is +! determined by the (input) value of I. The results for +! various values of I are discussed below. + +! I/O unit numbers. +! I1MACH( 1) = the standard input unit. +! I1MACH( 2) = the standard output unit. +! I1MACH( 3) = the standard punch unit. +! I1MACH( 4) = the standard error message unit. + +! Words. +! I1MACH( 5) = the number of bits per integer storage unit. +! I1MACH( 6) = the number of characters per integer storage unit. + +! Integers. +! assume integers are represented in the S-digit, base-A form + +! sign ( X(S-1)*A**(S-1) + ... + X(1)*A + X(0) ) + +! where 0 .LE. X(I) .LT. A for I=0,...,S-1. +! I1MACH( 7) = A, the base. +! I1MACH( 8) = S, the number of base-A digits. +! I1MACH( 9) = A**S - 1, the largest magnitude. + +! Floating-Point Numbers. +! Assume floating-point numbers are represented in the T-digit, +! base-B form +! sign (B**E)*( (X(1)/B) + ... + (X(T)/B**T) ) + +! where 0 .LE. X(I) .LT. B for I=1,...,T, +! 0 .LT. X(1), and EMIN .LE. E .LE. EMAX. +! I1MACH(10) = B, the base. + +! Single-Precision +! I1MACH(11) = T, the number of base-B digits. +! I1MACH(12) = EMIN, the smallest exponent E. +! I1MACH(13) = EMAX, the largest exponent E. + +! Double-Precision +! I1MACH(14) = T, the number of base-B digits. +! I1MACH(15) = EMIN, the smallest exponent E. +! I1MACH(16) = EMAX, the largest exponent E. + +! To alter this function for a particular environment, +! the desired set of DATA statements should be activated by +! removing the ! from column 1. Also, the values of +! I1MACH(1) - I1MACH(4) should be checked for consistency +! with the local operating system. + +!***REFERENCES FOX P.A., HALL A.D., SCHRYER N.L.,*FRAMEWORK FOR A +! PORTABLE LIBRARY*, ACM TRANSACTIONS ON MATHEMATICAL +! SOFTWARE, VOL. 4, NO. 2, JUNE 1978, PP. 177-188. +!***ROUTINES CALLED (NONE) +!***END PROLOGUE I1MACH + + INTEGER IMACH(16),OUTPUT + SAVE IMACH + EQUIVALENCE (IMACH(4),OUTPUT) + +! MACHINE CONSTANTS FOR THE AMIGA +! ABSOFT COMPILER + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 5 / +! DATA IMACH(4) / 6 / +! DATA IMACH(5) / 32 / +! DATA IMACH(6) / 4 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 31 / +! DATA IMACH(9) / 2147483647 / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 24 / +! DATA IMACH(12)/ -126 / +! DATA IMACH(13)/ 127 / +! DATA IMACH(14)/ 53 / +! DATA IMACH(15)/ -1022 / +! DATA IMACH(16)/ 1023 / + +! MACHINE CONSTANTS FOR THE APOLLO + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 6 / +! DATA IMACH(4) / 6 / +! DATA IMACH(5) / 32 / +! DATA IMACH(6) / 4 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 31 / +! DATA IMACH(9) / 2147483647 / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 24 / +! DATA IMACH(12)/ -125 / +! DATA IMACH(13)/ 129 / +! DATA IMACH(14)/ 53 / +! DATA IMACH(15)/ -1021 / +! DATA IMACH(16)/ 1025 / + +! MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM + +! DATA IMACH( 1) / 7 / +! DATA IMACH( 2) / 2 / +! DATA IMACH( 3) / 2 / +! DATA IMACH( 4) / 2 / +! DATA IMACH( 5) / 36 / +! DATA IMACH( 6) / 4 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 33 / +! DATA IMACH( 9) / Z1FFFFFFFF / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 24 / +! DATA IMACH(12) / -256 / +! DATA IMACH(13) / 255 / +! DATA IMACH(14) / 60 / +! DATA IMACH(15) / -256 / +! DATA IMACH(16) / 255 / + +! MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 7 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 48 / +! DATA IMACH( 6) / 6 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 39 / +! DATA IMACH( 9) / O0007777777777777 / +! DATA IMACH(10) / 8 / +! DATA IMACH(11) / 13 / +! DATA IMACH(12) / -50 / +! DATA IMACH(13) / 76 / +! DATA IMACH(14) / 26 / +! DATA IMACH(15) / -50 / +! DATA IMACH(16) / 76 / + +! MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 7 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 48 / +! DATA IMACH( 6) / 6 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 39 / +! DATA IMACH( 9) / O0007777777777777 / +! DATA IMACH(10) / 8 / +! DATA IMACH(11) / 13 / +! DATA IMACH(12) / -50 / +! DATA IMACH(13) / 76 / +! DATA IMACH(14) / 26 / +! DATA IMACH(15) / -32754 / +! DATA IMACH(16) / 32780 / + +! MACHINE CONSTANTS FOR THE CD! 170/180 SERIES USING NOS/VE + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 7 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 64 / +! DATA IMACH( 6) / 8 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 63 / +! DATA IMACH( 9) / 9223372036854775807 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 47 / +! DATA IMACH(12) / -4095 / +! DATA IMACH(13) / 4094 / +! DATA IMACH(14) / 94 / +! DATA IMACH(15) / -4095 / +! DATA IMACH(16) / 4094 / + +! MACHINE CONSTANTS FOR THE CD! 6000/7000 SERIES + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 7 / +! DATA IMACH( 4) /6LOUTPUT/ +! DATA IMACH( 5) / 60 / +! DATA IMACH( 6) / 10 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 48 / +! DATA IMACH( 9) / 00007777777777777777B / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 47 / +! DATA IMACH(12) / -929 / +! DATA IMACH(13) / 1070 / +! DATA IMACH(14) / 94 / +! DATA IMACH(15) / -929 / +! DATA IMACH(16) / 1069 / + +! MACHINE CONSTANTS FOR THE CELERITY C1260 + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 6 / +! DATA IMACH(4) / 0 / +! DATA IMACH(5) / 32 / +! DATA IMACH(6) / 4 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 31 / +! DATA IMACH(9) / Z'7FFFFFFF' / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 24 / +! DATA IMACH(12)/ -126 / +! DATA IMACH(13)/ 127 / +! DATA IMACH(14)/ 53 / +! DATA IMACH(15)/ -1022 / +! DATA IMACH(16)/ 1023 / + +! MACHINE CONSTANTS FOR THE CONVEX C-1 + +! DATA IMACH( 1) / 5/ +! DATA IMACH( 2) / 6/ +! DATA IMACH( 3) / 7/ +! DATA IMACH( 4) / 6/ +! DATA IMACH( 5) / 32/ +! DATA IMACH( 6) / 4/ +! DATA IMACH( 7) / 2/ +! DATA IMACH( 8) / 31/ +! DATA IMACH( 9) /2147483647/ +! DATA IMACH(10) / 2/ +! DATA IMACH(11) / 24/ +! DATA IMACH(12) / -128/ +! DATA IMACH(13) / 127/ +! DATA IMACH(14) / 53/ +! DATA IMACH(15) / -1024/ +! DATA IMACH(16) / 1023/ + +! MACHINE CONSTANTS FOR THE CRAY-1 +! USING THE 46 BIT INTEGER COMPILER OPTION + +! DATA IMACH( 1) / 100 / +! DATA IMACH( 2) / 101 / +! DATA IMACH( 3) / 102 / +! DATA IMACH( 4) / 101 / +! DATA IMACH( 5) / 64 / +! DATA IMACH( 6) / 8 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 46 / +! DATA IMACH( 9) / 1777777777777777B / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 47 / +! DATA IMACH(12) / -8189 / +! DATA IMACH(13) / 8190 / +! DATA IMACH(14) / 94 / +! DATA IMACH(15) / -8099 / +! DATA IMACH(16) / 8190 / + +! MACHINE CONSTANTS FOR THE CRAY-1 +! USING THE 64 BIT INTEGER COMPILER OPTION + +! DATA IMACH( 1) / 100 / +! DATA IMACH( 2) / 101 / +! DATA IMACH( 3) / 102 / +! DATA IMACH( 4) / 101 / +! DATA IMACH( 5) / 64 / +! DATA IMACH( 6) / 8 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 63 / +! DATA IMACH( 9) / 777777777777777777777B / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 47 / +! DATA IMACH(12) / -8189 / +! DATA IMACH(13) / 8190 / +! DATA IMACH(14) / 94 / +! DATA IMACH(15) / -8099 / +! DATA IMACH(16) / 8190 / + +! MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200 + +! DATA IMACH( 1) / 11 / +! DATA IMACH( 2) / 12 / +! DATA IMACH( 3) / 8 / +! DATA IMACH( 4) / 10 / +! DATA IMACH( 5) / 16 / +! DATA IMACH( 6) / 2 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 15 / +! DATA IMACH( 9) /32767 / +! DATA IMACH(10) / 16 / +! DATA IMACH(11) / 6 / +! DATA IMACH(12) / -64 / +! DATA IMACH(13) / 63 / +! DATA IMACH(14) / 14 / +! DATA IMACH(15) / -64 / +! DATA IMACH(16) / 63 / + +! MACHINE CONSTANTS FOR THE ELXSI 6400 + +! DATA IMACH( 1) / 5/ +! DATA IMACH( 2) / 6/ +! DATA IMACH( 3) / 6/ +! DATA IMACH( 4) / 6/ +! DATA IMACH( 5) / 32/ +! DATA IMACH( 6) / 4/ +! DATA IMACH( 7) / 2/ +! DATA IMACH( 8) / 32/ +! DATA IMACH( 9) /2147483647/ +! DATA IMACH(10) / 2/ +! DATA IMACH(11) / 24/ +! DATA IMACH(12) / -126/ +! DATA IMACH(13) / 127/ +! DATA IMACH(14) / 53/ +! DATA IMACH(15) / -1022/ +! DATA IMACH(16) / 1023/ + +! MACHINE CONSTANTS FOR THE HARRIS 220 + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 0 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 24 / +! DATA IMACH( 6) / 3 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 23 / +! DATA IMACH( 9) / 8388607 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 23 / +! DATA IMACH(12) / -127 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 38 / +! DATA IMACH(15) / -127 / +! DATA IMACH(16) / 127 / + +! MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 43 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 36 / +! DATA IMACH( 6) / 6 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 35 / +! DATA IMACH( 9) / O377777777777 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 27 / +! DATA IMACH(12) / -127 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 63 / +! DATA IMACH(15) / -127 / +! DATA IMACH(16) / 127 / + +! MACHINE CONSTANTS FOR THE HP 2100 +! 3 WORD DOUBLE PRECISION OPTION WITH FTN4 + +! DATA IMACH(1) / 5/ +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 4 / +! DATA IMACH(4) / 1 / +! DATA IMACH(5) / 16 / +! DATA IMACH(6) / 2 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 15 / +! DATA IMACH(9) / 32767 / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 23 / +! DATA IMACH(12)/ -128 / +! DATA IMACH(13)/ 127 / +! DATA IMACH(14)/ 39 / +! DATA IMACH(15)/ -128 / +! DATA IMACH(16)/ 127 / + +! MACHINE CONSTANTS FOR THE HP 2100 +! 4 WORD DOUBLE PRECISION OPTION WITH FTN4 + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 4 / +! DATA IMACH(4) / 1 / +! DATA IMACH(5) / 16 / +! DATA IMACH(6) / 2 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 15 / +! DATA IMACH(9) / 32767 / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 23 / +! DATA IMACH(12)/ -128 / +! DATA IMACH(13)/ 127 / +! DATA IMACH(14)/ 55 / +! DATA IMACH(15)/ -128 / +! DATA IMACH(16)/ 127 / + +! MACHINE CONSTANTS FOR THE HP 9000 + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 6 / +! DATA IMACH(3) / 7 / +! DATA IMACH(5) / 32 / +! DATA IMACH(6) / 4 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 32 / +! DATA IMACH(9) /2147483647 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 24 / +! DATA IMACH(12) / -126 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 53 / +! DATA IMACH(15) /-1015 / +! DATA IMACH(16) / 1017 / + +! MACHINE CONSTANTS FOR THE IBM 360/370 SERIES, +! THE XEROX SIGMA 5/7/9, THE SEL SYSTEMS 85/86, AND +! THE PERKIN ELMER (INTERDATA) 7/32. + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 7 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 32 / +! DATA IMACH( 6) / 4 / +! DATA IMACH( 7) / 16 / +! DATA IMACH( 8) / 31 / +! DATA IMACH( 9) / Z7FFFFFFF / +! DATA IMACH(10) / 16 / +! DATA IMACH(11) / 6 / +! DATA IMACH(12) / -64 / +! DATA IMACH(13) / 63 / +! DATA IMACH(14) / 14 / +! DATA IMACH(15) / -64 / +! DATA IMACH(16) / 63 / + +! MACHINE CONSTANTS FOR THE IBM PC + + DATA IMACH( 1) / 5 / + DATA IMACH( 2) / 6 / + DATA IMACH( 3) / 0 / + DATA IMACH( 4) / 0 / + DATA IMACH( 5) / 32 / + DATA IMACH( 6) / 4 / + DATA IMACH( 7) / 2 / + DATA IMACH( 8) / 31 / + DATA IMACH( 9) / 2147483647 / + DATA IMACH(10) / 2 / + DATA IMACH(11) / 24 / + DATA IMACH(12) / -125 / + DATA IMACH(13) / 127 / + DATA IMACH(14) / 53 / + DATA IMACH(15) / -1021 / + DATA IMACH(16) / 1023 / + +! MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR) + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 5 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 36 / +! DATA IMACH( 6) / 5 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 35 / +! DATA IMACH( 9) / "377777777777 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 27 / +! DATA IMACH(12) / -128 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 54 / +! DATA IMACH(15) / -101 / +! DATA IMACH(16) / 127 / + +! MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR) + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 5 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 36 / +! DATA IMACH( 6) / 5 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 35 / +! DATA IMACH( 9) / "377777777777 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 27 / +! DATA IMACH(12) / -128 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 62 / +! DATA IMACH(15) / -128 / +! DATA IMACH(16) / 127 / + +! MACHINE CONSTANTS FOR PDP-11 FORTRAN SUPPORTING +! 32-BIT INTEGER ARITHMETIC. + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 5 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 32 / +! DATA IMACH( 6) / 4 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 31 / +! DATA IMACH( 9) / 2147483647 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 24 / +! DATA IMACH(12) / -127 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 56 / +! DATA IMACH(15) / -127 / +! DATA IMACH(16) / 127 / + +! MACHINE CONSTANTS FOR PDP-11 FORTRAN SUPPORTING +! 16-BIT INTEGER ARITHMETIC. + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 5 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 16 / +! DATA IMACH( 6) / 2 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 15 / +! DATA IMACH( 9) / 32767 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 24 / +! DATA IMACH(12) / -127 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 56 / +! DATA IMACH(15) / -127 / +! DATA IMACH(16) / 127 / + +! MACHINE CONSTANTS FOR THE SUN + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 6 / +! DATA IMACH(4) / 6 / +! DATA IMACH(5) / 32 / +! DATA IMACH(6) / 4 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 31 / +! DATA IMACH(9) /2147483647 / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 24 / +! DATA IMACH(12)/ -125 / +! DATA IMACH(13)/ 128 / +! DATA IMACH(14)/ 53 / +! DATA IMACH(15)/ -1021 / +! DATA IMACH(16)/ 1024 / + +! MACHINE CONSTANTS FOR THE UNIVA! 1100 SERIES FTN COMPILER + +! DATA IMACH( 1) / 5 / +! DATA IMACH( 2) / 6 / +! DATA IMACH( 3) / 1 / +! DATA IMACH( 4) / 6 / +! DATA IMACH( 5) / 36 / +! DATA IMACH( 6) / 4 / +! DATA IMACH( 7) / 2 / +! DATA IMACH( 8) / 35 / +! DATA IMACH( 9) / O377777777777 / +! DATA IMACH(10) / 2 / +! DATA IMACH(11) / 27 / +! DATA IMACH(12) / -128 / +! DATA IMACH(13) / 127 / +! DATA IMACH(14) / 60 / +! DATA IMACH(15) /-1024 / +! DATA IMACH(16) / 1023 / + +! MACHINE CONSTANTS FOR THE VAX 11/780 + +! DATA IMACH(1) / 5 / +! DATA IMACH(2) / 6 / +! DATA IMACH(3) / 5 / +! DATA IMACH(4) / 6 / +! DATA IMACH(5) / 32 / +! DATA IMACH(6) / 4 / +! DATA IMACH(7) / 2 / +! DATA IMACH(8) / 31 / +! DATA IMACH(9) /2147483647 / +! DATA IMACH(10)/ 2 / +! DATA IMACH(11)/ 24 / +! DATA IMACH(12)/ -127 / +! DATA IMACH(13)/ 127 / +! DATA IMACH(14)/ 56 / +! DATA IMACH(15)/ -127 / +! DATA IMACH(16)/ 127 / + +! MACHINE CONSTANTS FOR THE Z80 MICROPROCESSOR + +! DATA IMACH( 1) / 1/ +! DATA IMACH( 2) / 1/ +! DATA IMACH( 3) / 0/ +! DATA IMACH( 4) / 1/ +! DATA IMACH( 5) / 16/ +! DATA IMACH( 6) / 2/ +! DATA IMACH( 7) / 2/ +! DATA IMACH( 8) / 15/ +! DATA IMACH( 9) / 32767/ +! DATA IMACH(10) / 2/ +! DATA IMACH(11) / 24/ +! DATA IMACH(12) / -127/ +! DATA IMACH(13) / 127/ +! DATA IMACH(14) / 56/ +! DATA IMACH(15) / -127/ +! DATA IMACH(16) / 127/ + +!***FIRST EXECUTABLE STATEMENT I1MACH + IF (I .LT. 1 .OR. I .GT. 16) GO TO 10 + + I1MACH = IMACH(I) + RETURN + + 10 CONTINUE + WRITE (UNIT = OUTPUT, FMT = 9000) + 9000 FORMAT ('1ERROR 1 IN I1MACH - I OUT OF BOUNDS') + +! CALL FDUMP + + STOP +END FUNCTION I1MACH +! --------------------------------------------------------------------- +SUBROUTINE XERROR(MESSG,NMESSG,NERR,LEVEL) +!***BEGIN PROLOGUE XERROR +!***DATE WRITTEN 790801 (YYMMDD) +!***REVISION DATE 861211 (YYMMDD) +!***CATEGORY NO. R3C +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XERROR-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Process an error (diagnostic) message. +!***DESCRIPTION + +! Abstract +! XERROR processes a diagnostic message, in a manner +! determined by the value of LEVEL and the current value +! of the library error control flag, KONTRL. +! (See subroutine XSETF for details.) + +! Description of Parameters +! --Input-- +! MESSG - the Hollerith message to be processed, containing +! no more than 72 characters. +! NMESSG- the actual number of characters in MESSG. +! NERR - the error number associated with this message. +! NERR must not be zero. +! LEVEL - error category. +! =2 means this is an unconditionally fatal error. +! =1 means this is a recoverable error. (I.e., it is +! non-fatal if XSETF has been appropriately called.) +! =0 means this is a warning message only. +! =-1 means this is a warning message which is to be +! printed at most once, regardless of how many +! times this call is executed. + +! Examples +! CALL XERROR('SMOOTH -- NUM WAS ZERO.',23,1,2) +! CALL XERROR('INTEG -- LESS THAN FULL ACCURACY ACHIEVED.', +! 1 43,2,1) +! CALL XERROR('ROOTER -- ACTUAL ZERO OF F FOUND BEFORE INTERVAL F +! 1ULLY COLLAPSED.',65,3,0) +! CALL XERROR('EXP -- UNDERFLOWS BEING SET TO ZERO.',39,1,-1) + +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED XERRWV +!***END PROLOGUE XERROR + CHARACTER*(*) MESSG +!***FIRST EXECUTABLE STATEMENT XERROR + CALL XERRWV(MESSG,NMESSG,NERR,LEVEL,0,0,0,0,0.,0.) + RETURN +END SUBROUTINE XERROR +! --------------------------------------------------------------------- + SUBROUTINE XERRWV(MESSG,NMESSG,NERR,LEVEL,NI,I1,I2,NR,R1,R2) +!***BEGIN PROLOGUE XERRWV +!***DATE WRITTEN 800319 (YYMMDD) +!***REVISION DATE 890531 (YYMMDD) +!***CATEGORY NO. R3C +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XERRWV-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Process an error message allowing 2 integer and 2 real +! values to be included in the message. +!***DESCRIPTION + +! Abstract +! XERRWV processes a diagnostic message, in a manner +! determined by the value of LEVEL and the current value +! of the library error control flag, KONTRL. +! (See subroutine XSETF for details.) +! In addition, up to two integer values and two real +! values may be printed along with the message. + +! Description of Parameters +! --Input-- +! MESSG - the Hollerith message to be processed. +! NMESSG- the actual number of characters in MESSG. +! NERR - the error number associated with this message. +! NERR must not be zero. +! LEVEL - error category. +! =2 means this is an unconditionally fatal error. +! =1 means this is a recoverable error. (I.e., it is +! non-fatal if XSETF has been appropriately called.) +! =0 means this is a warning message only. +! =-1 means this is a warning message which is to be +! printed at most once, regardless of how many +! times this call is executed. +! NI - number of integer values to be printed. (0 to 2) +! I1 - first integer value. +! I2 - second integer value. +! NR - number of real values to be printed. (0 to 2) +! R1 - first real value. +! R2 - second real value. + +! Examples +! CALL XERRWV('SMOOTH -- NUM (=I1) WAS ZERO.',29,1,2, +! 1 1,NUM,0,0,0.,0.) +! CALL XERRWV('QUADXY -- REQUESTED ERROR (R1) LESS THAN MINIMUM ( +! 1R2).,54,77,1,0,0,0,2,ERRREQ,ERRMIN) + +! Latest revision --- 1 August 1985 +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED FDUMP,I1MACH,J4SAVE,XERABT,XERCTL,XERPRT,XERSAV, +! XGETUA +!***END PROLOGUE XERRWV + +! ---------------------------------------------------------------------- + +! Change record: +! 89-05-31 Changed all specific intrinsics to generic. (WRB) + +! ---------------------------------------------------------------------- + + CHARACTER*(*) MESSG + CHARACTER*20 LFIRST + CHARACTER*37 FORM + DIMENSION LUN(5) +! GET FLAGS +!***FIRST EXECUTABLE STATEMENT XERRWV + LKNTRL = J4SAVE(2,0,.FALSE.) + MAXMES = J4SAVE(4,0,.FALSE.) +! CHECK FOR VALID INPUT + IF ((NMESSG.GT.0).AND.(NERR.NE.0).AND. & + (LEVEL.GE.(-1)).AND.(LEVEL.LE.2)) GO TO 10 + IF (LKNTRL.GT.0) CALL XERPRT('FATAL ERROR IN...',17) + CALL XERPRT('XERROR -- INVALID INPUT',23) + IF (LKNTRL.GT.0) CALL FDUMP + IF (LKNTRL.GT.0) CALL XERPRT('JOB ABORT DUE TO FATAL ERROR.', & + 29) + IF (LKNTRL.GT.0) CALL XERSAV(' ',0,0,0,KDUMMY) + CALL XERABT('XERROR -- INVALID INPUT',23) + RETURN + 10 CONTINUE +! RECORD MESSAGE + JUNK = J4SAVE(1,NERR,.TRUE.) + CALL XERSAV(MESSG,NMESSG,NERR,LEVEL,KOUNT) +! LET USER OVERRIDE + LFIRST = MESSG + LMESSG = NMESSG + LERR = NERR + LLEVEL = LEVEL + CALL XERCTL(LFIRST,LMESSG,LERR,LLEVEL,LKNTRL) +! RESET TO ORIGINAL VALUES + LMESSG = NMESSG + LERR = NERR + LLEVEL = LEVEL + LKNTRL = MAX(-2,MIN(2,LKNTRL)) + MKNTRL = ABS(LKNTRL) +! DECIDE WHETHER TO PRINT MESSAGE + IF ((LLEVEL.LT.2).AND.(LKNTRL.EQ.0)) GO TO 100 + IF (((LLEVEL.EQ.(-1)).AND.(KOUNT.GT.MIN(1,MAXMES))) & + .OR.((LLEVEL.EQ.0) .AND.(KOUNT.GT.MAXMES)) & + .OR.((LLEVEL.EQ.1) .AND.(KOUNT.GT.MAXMES).AND.(MKNTRL.EQ.1)) & + .OR.((LLEVEL.EQ.2) .AND.(KOUNT.GT.MAX(1,MAXMES)))) GO TO 100 + IF (LKNTRL.LE.0) GO TO 20 + CALL XERPRT(' ',1) +! INTRODUCTION + IF (LLEVEL.EQ.(-1)) CALL XERPRT & + ('WARNING MESSAGE...THIS MESSAGE WILL ONLY BE PRINTED ONCE.',57) + IF (LLEVEL.EQ.0) CALL XERPRT('WARNING IN...',13) + IF (LLEVEL.EQ.1) CALL XERPRT & + ('RECOVERABLE ERROR IN...',23) + IF (LLEVEL.EQ.2) CALL XERPRT('FATAL ERROR IN...',17) + 20 CONTINUE +! MESSAGE + CALL XERPRT(MESSG,LMESSG) + CALL XGETUA(LUN,NUNIT) + ISIZEI = LOG10(REAL(I1MACH(9))) + 1.0 + ISIZEF = LOG10(REAL(I1MACH(10))**I1MACH(11)) + 1.0 + DO 50 KUNIT=1,NUNIT + IUNIT = LUN(KUNIT) + IF (IUNIT.EQ.0) IUNIT = I1MACH(4) + DO 22 I=1,MIN(NI,2) + WRITE (FORM,21) I,ISIZEI + 21 FORMAT ('(11X,21HIN ABOVE MESSAGE, I',I1,'=,I',I2,') ') + IF (I.EQ.1) WRITE (IUNIT,FORM) I1 + IF (I.EQ.2) WRITE (IUNIT,FORM) I2 + 22 CONTINUE + DO 24 I=1,MIN(NR,2) + WRITE (FORM,23) I,ISIZEF+10,ISIZEF + 23 FORMAT ('(11X,21HIN ABOVE MESSAGE, R',I1,'=,E', & + I2,'.',I2,')') + IF (I.EQ.1) WRITE (IUNIT,FORM) R1 + IF (I.EQ.2) WRITE (IUNIT,FORM) R2 + 24 CONTINUE + IF (LKNTRL.LE.0) GO TO 40 +! ERROR NUMBER + WRITE (IUNIT,30) LERR + 30 FORMAT (15H ERROR NUMBER =,I10) + 40 CONTINUE + 50 CONTINUE +! TRACE-BACK + IF (LKNTRL.GT.0) CALL FDUMP + 100 CONTINUE + IFATAL = 0 + IF ((LLEVEL.EQ.2).OR.((LLEVEL.EQ.1).AND.(MKNTRL.EQ.2))) & + IFATAL = 1 +! QUIT HERE IF MESSAGE IS NOT FATAL + IF (IFATAL.LE.0) RETURN + IF ((LKNTRL.LE.0).OR.(KOUNT.GT.MAX(1,MAXMES))) GO TO 120 +! PRINT REASON FOR ABORT + IF (LLEVEL.EQ.1) CALL XERPRT & + ('JOB ABORT DUE TO UNRECOVERED ERROR.',35) + IF (LLEVEL.EQ.2) CALL XERPRT & + ('JOB ABORT DUE TO FATAL ERROR.',29) +! PRINT ERROR SUMMARY + CALL XERSAV(' ',-1,0,0,KDUMMY) + 120 CONTINUE +! ABORT + IF ((LLEVEL.EQ.2).AND.(KOUNT.GT.MAX(1,MAXMES))) LMESSG = 0 + CALL XERABT(MESSG,LMESSG) + RETURN +END SUBROUTINE XERRWV +! --------------------------------------------------------------------- +FUNCTION J4SAVE(IWHICH,IVALUE,ISET) +!***BEGIN PROLOGUE J4SAVE +!***REFER TO XERROR +!***ROUTINES CALLED (NONE) +!***DESCRIPTION + +! Abstract +! J4SAVE saves and recalls several global variables needed +! by the library error handling routines. + +! Description of Parameters +! --Input-- +! IWHICH - Index of item desired. +! = 1 Refers to current error number. +! = 2 Refers to current error control flag. +! = 3 Refers to current unit number to which error +! messages are to be sent. (0 means use standard.) +! = 4 Refers to the maximum number of times any +! message is to be printed (as set by XERMAX). +! = 5 Refers to the total number of units to which +! each error message is to be written. +! = 6 Refers to the 2nd unit for error messages +! = 7 Refers to the 3rd unit for error messages +! = 8 Refers to the 4th unit for error messages +! = 9 Refers to the 5th unit for error messages +! IVALUE - The value to be set for the IWHICH-th parameter, +! if ISET is .TRUE. . +! ISET - If ISET=.TRUE., the IWHICH-th parameter will BE +! given the value, IVALUE. If ISET=.FALSE., the +! IWHICH-th parameter will be unchanged, and IVALUE +! is a dummy parameter. +! --Output-- +! The (old) value of the IWHICH-th parameter will be returned +! in the function value, J4SAVE. + +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +! Adapted from Bell Laboratories PORT Library Error Handler +! Latest revision --- 1 August 1985 +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***END PROLOGUE J4SAVE + LOGICAL ISET + INTEGER IPARAM(9) + SAVE IPARAM + DATA IPARAM(1),IPARAM(2),IPARAM(3),IPARAM(4)/0,2,0,10/ + DATA IPARAM(5)/1/ + DATA IPARAM(6),IPARAM(7),IPARAM(8),IPARAM(9)/0,0,0,0/ +!***FIRST EXECUTABLE STATEMENT J4SAVE + J4SAVE = IPARAM(IWHICH) + IF (ISET) IPARAM(IWHICH) = IVALUE + RETURN + END FUNCTION J4SAVE +! --------------------------------------------------------------------- + SUBROUTINE XERSAV(MESSG,NMESSG,NERR,LEVEL,ICOUNT) +!***BEGIN PROLOGUE XERSAV +!***DATE WRITTEN 800319 (YYMMDD) +!***REVISION DATE 861211 (YYMMDD) +!***CATEGORY NO. R3 +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XERSAV-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Record that an error has occurred. +!***DESCRIPTION + +! Abstract +! Record that this error occurred. + +! Description of Parameters +! --Input-- +! MESSG, NMESSG, NERR, LEVEL are as in XERROR, +! except that when NMESSG=0 the tables will be +! dumped and cleared, and when NMESSG is less than zero the +! tables will be dumped and not cleared. +! --Output-- +! ICOUNT will be the number of times this message has +! been seen, or zero if the table has overflowed and +! does not contain this message specifically. +! When NMESSG=0, ICOUNT will not be altered. + +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +! Latest revision --- 1 August 1985 +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED I1MACH,XGETUA +!***END PROLOGUE XERSAV + INTEGER LUN(5) + CHARACTER*(*) MESSG + CHARACTER*20 MESTAB(10),MES + DIMENSION NERTAB(10),LEVTAB(10),KOUNT(10) + SAVE MESTAB,NERTAB,LEVTAB,KOUNT,KOUNTX +! NEXT TWO DATA STATEMENTS ARE NECESSARY TO PROVIDE A BLANK +! ERROR TABLE INITIALLY + DATA KOUNT(1),KOUNT(2),KOUNT(3),KOUNT(4),KOUNT(5), & + KOUNT(6),KOUNT(7),KOUNT(8),KOUNT(9),KOUNT(10) & + /0,0,0,0,0,0,0,0,0,0/ + DATA KOUNTX/0/ +!***FIRST EXECUTABLE STATEMENT XERSAV + IF (NMESSG.GT.0) GO TO 80 +! DUMP THE TABLE + IF (KOUNT(1).EQ.0) RETURN +! PRINT TO EACH UNIT + CALL XGETUA(LUN,NUNIT) + DO 60 KUNIT=1,NUNIT + IUNIT = LUN(KUNIT) + IF (IUNIT.EQ.0) IUNIT = I1MACH(4) +! PRINT TABLE HEADER + WRITE (IUNIT,10) + 10 FORMAT (32H0 ERROR MESSAGE SUMMARY/ & + 51H MESSAGE START NERR LEVEL COUNT) +! PRINT BODY OF TABLE + DO 20 I=1,10 + IF (KOUNT(I).EQ.0) GO TO 30 + WRITE (IUNIT,15) MESTAB(I),NERTAB(I),LEVTAB(I),KOUNT(I) + 15 FORMAT (1X,A20,3I10) + 20 CONTINUE + 30 CONTINUE +! PRINT NUMBER OF OTHER ERRORS + IF (KOUNTX.NE.0) WRITE (IUNIT,40) KOUNTX + 40 FORMAT (41H0OTHER ERRORS NOT INDIVIDUALLY TABULATED=,I10) + WRITE (IUNIT,50) + 50 FORMAT (1X) + 60 CONTINUE + IF (NMESSG.LT.0) RETURN +! CLEAR THE ERROR TABLES + DO 70 I=1,10 + 70 KOUNT(I) = 0 + KOUNTX = 0 + RETURN + 80 CONTINUE +! PROCESS A MESSAGE... +! SEARCH FOR THIS MESSG, OR ELSE AN EMPTY SLOT FOR THIS MESSG, +! OR ELSE DETERMINE THAT THE ERROR TABLE IS FULL. + MES = MESSG + DO 90 I=1,10 + II = I + IF (KOUNT(I).EQ.0) GO TO 110 + IF (MES.NE.MESTAB(I)) GO TO 90 + IF (NERR.NE.NERTAB(I)) GO TO 90 + IF (LEVEL.NE.LEVTAB(I)) GO TO 90 + GO TO 100 + 90 CONTINUE +! THREE POSSIBLE CASES... +! TABLE IS FULL + KOUNTX = KOUNTX+1 + ICOUNT = 1 + RETURN +! MESSAGE FOUND IN TABLE + 100 KOUNT(II) = KOUNT(II) + 1 + ICOUNT = KOUNT(II) + RETURN +! EMPTY SLOT FOUND FOR NEW MESSAGE + 110 MESTAB(II) = MES + NERTAB(II) = NERR + LEVTAB(II) = LEVEL + KOUNT(II) = 1 + ICOUNT = 1 + RETURN +END SUBROUTINE XERSAV +! --------------------------------------------------------------------- +SUBROUTINE XGETUA(IUNITA,N) +!***BEGIN PROLOGUE XGETUA +!***DATE WRITTEN 790801 (YYMMDD) +!***REVISION DATE 861211 (YYMMDD) +!***CATEGORY NO. R3C +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XGETUA-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Return unit number(s) to which error messages are being +! sent. +!***DESCRIPTION + +! Abstract +! XGETUA may be called to determine the unit number or numbers +! to which error messages are being sent. +! These unit numbers may have been set by a call to XSETUN, +! or a call to XSETUA, or may be a default value. + +! Description of Parameters +! --Output-- +! IUNIT - an array of one to five unit numbers, depending +! on the value of N. A value of zero refers to the +! default unit, as defined by the I1MACH machine +! constant routine. Only IUNIT(1),...,IUNIT(N) are +! defined by XGETUA. The values of IUNIT(N+1),..., +! IUNIT(5) are not defined (for N .LT. 5) or altered +! in any way by XGETUA. +! N - the number of units to which copies of the +! error messages are being sent. N will be in the +! range from 1 to 5. + +! Latest revision --- 19 MAR 1980 +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED J4SAVE +!***END PROLOGUE XGETUA + DIMENSION IUNITA(5) +!***FIRST EXECUTABLE STATEMENT XGETUA + N = J4SAVE(5,0,.FALSE.) + DO 30 I=1,N + INDEX = I+4 + IF (I.EQ.1) INDEX = 3 + IUNITA(I) = J4SAVE(INDEX,0,.FALSE.) + 30 CONTINUE + RETURN +END SUBROUTINE XGETUA +! --------------------------------------------------------------------- +SUBROUTINE XERCTL(MESSG1,NMESSG,NERR,LEVEL,KONTRL) +!***BEGIN PROLOGUE XERCTL +!***DATE WRITTEN 790801 (YYMMDD) +!***REVISION DATE 861211 (YYMMDD) +!***CATEGORY NO. R3C +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XERCTL-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Allow user control over handling of errors. +!***DESCRIPTION + +! Abstract +! Allows user control over handling of individual errors. +! Just after each message is recorded, but before it is +! processed any further (i.e., before it is printed or +! a decision to abort is made), a call is made to XERCTL. +! If the user has provided his own version of XERCTL, he +! can then override the value of KONTROL used in processing +! this message by redefining its value. +! KONTRL may be set to any value from -2 to 2. +! The meanings for KONTRL are the same as in XSETF, except +! that the value of KONTRL changes only for this message. +! If KONTRL is set to a value outside the range from -2 to 2, +! it will be moved back into that range. + +! Description of Parameters + +! --Input-- +! MESSG1 - the first word (only) of the error message. +! NMESSG - same as in the call to XERROR or XERRWV. +! NERR - same as in the call to XERROR or XERRWV. +! LEVEL - same as in the call to XERROR or XERRWV. +! KONTRL - the current value of the control flag as set +! by a call to XSETF. + +! --Output-- +! KONTRL - the new value of KONTRL. If KONTRL is not +! defined, it will remain at its original value. +! This changed value of control affects only +! the current occurrence of the current message. +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED (NONE) +!***END PROLOGUE XERCTL + CHARACTER*20 MESSG1 +!***FIRST EXECUTABLE STATEMENT XERCTL + RETURN + END SUBROUTINE XERCTL +! --------------------------------------------------------------------- + SUBROUTINE XERPRT(MESSG,NMESSG) +!***BEGIN PROLOGUE XERPRT +!***DATE WRITTEN 790801 (YYMMDD) +!***REVISION DATE 890531 (YYMMDD) +!***CATEGORY NO. R3 +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XERPRT-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Print error messages. +!***DESCRIPTION + +! Abstract +! Print the Hollerith message in MESSG, of length NMESSG, +! on each file indicated by XGETUA. +! Latest revision --- 1 August 1985 +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED I1MACH,XGETUA +!***END PROLOGUE XERPRT + +! ---------------------------------------------------------------------- + +! Change record: +! 89-05-31 Changed all specific intrinsics to generic. (WRB) + +! ---------------------------------------------------------------------- + + INTEGER LUN(5) + CHARACTER*(*) MESSG +! OBTAIN UNIT NUMBERS AND WRITE LINE TO EACH UNIT +!***FIRST EXECUTABLE STATEMENT XERPRT + CALL XGETUA(LUN,NUNIT) + LENMES = LEN(MESSG) + DO 20 KUNIT=1,NUNIT + IUNIT = LUN(KUNIT) + IF (IUNIT.EQ.0) IUNIT = I1MACH(4) + DO 10 ICHAR=1,LENMES,72 + LAST = MIN(ICHAR+71 , LENMES) + WRITE (IUNIT,'(1X,A)') MESSG(ICHAR:LAST) + 10 CONTINUE + 20 CONTINUE + RETURN +END SUBROUTINE XERPRT +! --------------------------------------------------------------------- +SUBROUTINE FDUMP +!***BEGIN PROLOGUE FDUMP +!***DATE WRITTEN 790801 (YYMMDD) +!***REVISION DATE 861211 (YYMMDD) +!***CATEGORY NO. R3 +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(FDUMP-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Symbolic dump (should be locally written). +!***DESCRIPTION + +! ***Note*** Machine Dependent Routine +! FDUMP is intended to be replaced by a locally written +! version which produces a symbolic dump. Failing this, +! it should be replaced by a version which prints the +! subprogram nesting list. Note that this dump must be +! printed on each of up to five files, as indicated by the +! XGETUA routine. See XSETUA and XGETUA for details. + +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +!***REFERENCES (NONE) +!***ROUTINES CALLED (NONE) +!***END PROLOGUE FDUMP +!***FIRST EXECUTABLE STATEMENT FDUMP + RETURN + END SUBROUTINE FDUMP +! --------------------------------------------------------------------- + SUBROUTINE XERABT(MESSG,NMESSG) +!***BEGIN PROLOGUE XERABT +!***DATE WRITTEN 790801 (YYMMDD) +!***REVISION DATE 861211 (YYMMDD) +!***CATEGORY NO. R3C +!***KEYWORDS LIBRARY=SLATEC(XERROR),TYPE=ALL(XERABT-A),ERROR +!***AUTHOR JONES, R. E., (SNLA) +!***PURPOSE Abort program execution and print error message. +!***DESCRIPTION + +! Abstract +! ***Note*** machine dependent routine +! XERABT aborts the execution of the program. +! The error message causing the abort is given in the calling +! sequence, in case one needs it for printing on a dayfile, +! for example. + +! Description of Parameters +! MESSG and NMESSG are as in XERROR, except that NMESSG may +! be zero, in which case no message is being supplied. + +! Written by Ron Jones, with SLATEC Common Math Library Subcommittee +! Latest revision --- 1 August 1982 +!***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR- +! HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES, +! 1982. +!***ROUTINES CALLED (NONE) +!***END PROLOGUE XERABT + CHARACTER*(*) MESSG +!***FIRST EXECUTABLE STATEMENT XERABT + STOP +END SUBROUTINE XERABT +! --------------------------------------------------------------------- +END MODULE UTILIT +! end of file Utilit.f90 diff --git a/applications/PUfoam/MoDeNaModels/gasConductivity/__init__.py b/applications/PUfoam/MoDeNaModels/gasConductivity/__init__.py new file mode 100644 index 000000000..7e6156ce0 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/gasConductivity/__init__.py @@ -0,0 +1,44 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from gasConductivity import species +from gasConductivity import m_CyP_thermal_conductivity +from gasConductivity import m_Air_thermal_conductivity +from gasConductivity import m_CO2_thermal_conductivity +from gasConductivity import f_gas_thermal_conductivity + diff --git a/applications/PUfoam/MoDeNaModels/gasConductivity/gasConductivity.py b/applications/PUfoam/MoDeNaModels/gasConductivity/gasConductivity.py new file mode 100644 index 000000000..6a518ed9c --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/gasConductivity/gasConductivity.py @@ -0,0 +1,128 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Surrogate function and model definitions for thermal conductivity of blowing +agents. + +@author Erik Laurini +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_aging +""" + +import os +import modena +from modena import CFunction, IndexSet, Workflow2, \ + ForwardMappingModel, BackwardMappingModel, SurrogateModel +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal + +## Create terminal for colour output +term = Terminal() + +## List of components, for which surrogate model is provided +species = IndexSet( + name= 'gas_thermal_conductivity_species', + names= [ 'CO2', 'CyP', 'Air' ] +) + +## Surrogate function for thermal conductivity of blowing agents. +# +# Thermal conductivity of blowing agents is a function of temperature. +f_gas_thermal_conductivity = CFunction( + Ccode=''' +#include "modena.h" +#include "math.h" + +void gas_thermal_conductivity +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + const double a = parameters[0]; + const double b = parameters[1]; + + outputs[0] = (a*T)+b; +} +''', + # These are global bounds for the function + inputs={ + 'T': {'min': 273, 'max': 450}, + }, + outputs={ + 'gas_thermal_conductivity[A]': {'min': 0, 'max': +9e99, 'argPos': 0}, + }, + parameters={ + 'param0[A]': {'min': -9e99, 'max': +9e99, 'argPos': 0}, + 'param1[A]': {'min': -9e99, 'max': +9e99, 'argPos': 1}, + }, + indices={ + 'A': species, + }, +) + +## Surrogate model for thermal conductivity of blowing agent +# +# Forward mapping model is used. +m_CO2_thermal_conductivity = ForwardMappingModel( + _id='gas_thermal_conductivity[A=CO2]', + surrogateFunction=f_gas_thermal_conductivity, + substituteModels=[], + parameters=[0.0807e-3, -6.96e-3], +) + +## Surrogate model for thermal conductivity of blowing agent +# +# Forward mapping model is used. +m_Air_thermal_conductivity = ForwardMappingModel( + _id='gas_thermal_conductivity[A=Air]', + surrogateFunction=f_gas_thermal_conductivity, + substituteModels=[], + parameters=[0.0720e-3, 4.23e-3], +) + +## Surrogate model for thermal conductivity of blowing agent +# +# Forward mapping model is used. +m_CyP_thermal_conductivity = ForwardMappingModel( + _id='gas_thermal_conductivity[A=CyP]', + surrogateFunction=f_gas_thermal_conductivity, + substituteModels=[], + parameters=[0.0956e-3, -14.89e-3], +) diff --git a/applications/PUfoam/MoDeNaModels/gasMixtureConductivity/__init__.py b/applications/PUfoam/MoDeNaModels/gasMixtureConductivity/__init__.py new file mode 100644 index 000000000..5bb2edfa8 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/gasMixtureConductivity/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from gasMixtureConductivity import f_gasMixtureConductivity +from gasMixtureConductivity import m_gasMixtureConductivity diff --git a/applications/PUfoam/MoDeNaModels/gasMixtureConductivity/gasMixtureConductivity.py b/applications/PUfoam/MoDeNaModels/gasMixtureConductivity/gasMixtureConductivity.py new file mode 100644 index 000000000..dbd142658 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/gasMixtureConductivity/gasMixtureConductivity.py @@ -0,0 +1,120 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Surrogate function and model definitions for thermal conductivity of mixture of +blowing agents. + +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_aging +""" + +import os +import modena +from modena import CFunction, IndexSet, Workflow2, \ + ForwardMappingModel, BackwardMappingModel, SurrogateModel +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +import gasConductivity + +## Create terminal for colour output +term = Terminal() + +## Surrogate function for thermal conductivity of blowing agents. +# +# Thermal conductivity of blowing agents is a function of temperature. +f_gasMixtureConductivity = CFunction( + Ccode=r''' +#include "modena.h" +#include "math.h" +#include "stdio.h" + +void gasMixtureConductivity +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + double kgasmix=0; // gas mixture conductivity + int i; + + printf("temp = %g\\n", T); + printf("x = "); + for (i=0;i. + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from polymerConductivity import m_polymer_thermal_conductivity, f_polymer_thermal_conductivity + diff --git a/applications/PUfoam/MoDeNaModels/polymerConductivity/polymerConductivity.py b/applications/PUfoam/MoDeNaModels/polymerConductivity/polymerConductivity.py new file mode 100644 index 000000000..505a17523 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/polymerConductivity/polymerConductivity.py @@ -0,0 +1,106 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Surrogate function and model definitions for thermal conductivity of polyurethane + +@author Erik Laurini +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_aging +""" + +import os +import modena +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, CFunction +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +## Create terminal for colour output +term = Terminal() + +## Surrogate function for thermal conductivity of polyurethane. +# +# Thermal conductivity of polyurethane is a function of temperature. +f_polymer_thermal_conductivity = CFunction( + Ccode=''' +#include "modena.h" +#include "math.h" + +void thermal_conductivity +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + const double a = parameters[0]; + const double b = parameters[1]; + + outputs[0] = (a*T)+b; +} +''', + # These are global bounds for the function + inputs={ + 'T': {'min': 273, 'max': 450}, + }, + outputs={ + 'polymer_thermal_conductivity': { + 'min': 0, 'max': +9e99, 'argPos': 0 + }, + }, + parameters={ + 'param0': {'min': -9e99, 'max': +9e99, 'argPos': 0}, + 'param1': {'min': -9e99, 'max': +9e99, 'argPos': 1}, + }, +) + +## Surrogate model for thermal conductivity of polyurethane +# +# Forward mapping model is used. +m_polymer_thermal_conductivity = ForwardMappingModel( + _id='polymer_thermal_conductivity', + surrogateFunction=f_polymer_thermal_conductivity, + substituteModels=[], + parameters=[0.198e-3, 151.08e-3], + inputs={ + 'T': {'min': 273, 'max': 450}, + }, + outputs={ + 'polymer_thermal_conductivity': {'min': 0, 'max': +9e99}, + }, +) diff --git a/applications/PUfoam/MoDeNaModels/polymerViscosity/__init__.py b/applications/PUfoam/MoDeNaModels/polymerViscosity/__init__.py new file mode 100644 index 000000000..a1b817b80 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/polymerViscosity/__init__.py @@ -0,0 +1,43 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Initialisation script needed to run Bubble growth model. + +Authors + Henrik Rusche + Pavel Ferkl + +Contributors +''' + +from polymerViscosity import f_polymerViscosity +from polymerViscosity import m_polymerViscosity + diff --git a/applications/PUfoam/MoDeNaModels/polymerViscosity/polymerViscosity.py b/applications/PUfoam/MoDeNaModels/polymerViscosity/polymerViscosity.py new file mode 100644 index 000000000..3edbc33b5 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/polymerViscosity/polymerViscosity.py @@ -0,0 +1,130 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Surrogate function and model definitions for polymer viscosity model. + +@author Pavel Ferkl +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup app_foaming +""" + +import os +import modena +from modena import CFunction, IndexSet, Workflow2, \ + ForwardMappingModel, BackwardMappingModel, SurrogateModel +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + +## Create terminal for colour output +term = Terminal() + +## Surrogate function for polymer viscosity. +# +# Polymer viscosity is a function of temperature and conversion. +f_polymerViscosity = CFunction( + Ccode=''' +#include "modena.h" +#include "math.h" + +void viscosity_SM +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + const double T = inputs[0]; + const double X = inputs[1]; + + const double Aeta = parameters[0]; + const double Eeta = parameters[1]; + const double AA = parameters[2]; + const double B = parameters[3]; + const double Xg = parameters[4]; + + const double Rg = 8.31446218; + + outputs[0] = Aeta*exp(Eeta/(Rg*T))*pow(Xg/(Xg-X),AA+B*X); +} +''', + # These are global bounds for the function + inputs={ + 'T': {'min': 200, 'max': 450, 'argPos': 0}, + 'X': {'min': 0, 'max': 1, 'argPos': 1}, + }, + outputs={ + 'mu': {'min': 0, 'max': +9e99, 'argPos': 0}, + }, + parameters={ + 'param1': {'min': -1e9, 'max': 1e9, 'argPos': 0}, + 'param2': {'min': -1e9, 'max': 1e9, 'argPos': 1}, + 'param3': {'min': -1e9, 'max': 1e9, 'argPos': 2}, + 'param4': {'min': -1e9, 'max': 1e9, 'argPos': 3}, + 'param5': {'min': -1e9, 'max': 1e9, 'argPos': 4}, + }, +) + +## [literature data](http://dx.doi.org/10.1002/aic.690280213) +par = [4.1e-8, 38.3e3, 4.0, -2.0, 0.85] + +## [literature data](http://dx.doi.org/10.1002/aic.690280213) +par2 = [10.3e-8, 41.3e3, 1.5, 1.0, 0.65] + +## [literature data][1] +## [1]: http://dx.doi.org/10.1002/(SICI)1097-4628(19961017)62:3<567::AID-APP14>3.0.CO;2-W +par3 = [3.32e-8, 42.9e3, 2.32, 1.4, 0.64] + +## based on [literature data](http://dx.doi.org/10.1002/aic.690280213), but +## gel point changed to 0.5 (Baser and Khakhar) +par4 = [4.1e-8, 38.3e3, 4.0, -2.0, 0.5] + +## Surrogate model for polymer viscosity +# +# Forward mapping model is used. +m_polymerViscosity = ForwardMappingModel( + _id='polymerViscosity', + surrogateFunction=f_polymerViscosity, + substituteModels=[], + parameters=par4, + inputs={ + 'T': {'min': 200, 'max': 450}, + 'X': {'min': 0, 'max': 1}, + }, + outputs={ + 'mu': {'min': 0, 'max': +9e99}, + }, +) diff --git a/examples/MoDeNaModels/flowRate/__init__.py b/examples/MoDeNaModels/flowRate/__init__.py new file mode 100644 index 000000000..65c066b3b --- /dev/null +++ b/examples/MoDeNaModels/flowRate/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from flowRate import f, m + diff --git a/examples/MoDeNaModels/flowRate/flowRate.py b/examples/MoDeNaModels/flowRate/flowRate.py new file mode 100644 index 000000000..1e2939f4b --- /dev/null +++ b/examples/MoDeNaModels/flowRate/flowRate.py @@ -0,0 +1,154 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks + +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +""" + +import os +import modena +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, CFunction, ModenaFireTask +import modena.Strategy as Strategy +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + +# ********************************* Class ********************************** # +@explicit_serialize +class FlowRateExactSim(ModenaFireTask): + """ + A FireTask that starts a microscopic code and updates the database. + """ + + def task(self, fw_spec): + # Write input + + # See http://jinja.pocoo.org/docs/dev/templates/ + Template(''' +{{ s['point']['D'] }} +{{ s['point']['rho0'] }} +{{ s['point']['p0'] }} +{{ s['point']['p1Byp0'] }} + '''.strip()).stream(s=self).dump('in.txt') + + # Execute the application + # In this simple example, this call stands for a complex microscopic + # code - such as full 3D CFD simulation. + # Source code in src/flowRateExact.C + ret = os.system(os.path.dirname(os.path.abspath(__file__))+'/src/flowRateExact') + + # This enables backward mapping capabilities (not needed in this example) + self.handleReturnCode(ret) + + # Analyse output + f = open('out.txt', 'r') + self['point']['flowRate'] = float(f.readline()) + f.close() + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void two_tank_flowRate +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + const double p1 = p0*inputs[3]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + + outputs[0] = M_PI*pow(D, 2.0)*P1*sqrt(P0*rho0*p0); +} +''', + # These are global bounds for the function + inputs={ + 'D': { 'min': 0, 'max': 9e99 }, + 'rho0': { 'min': 0, 'max': 9e99 }, + 'p0': { 'min': 0, 'max': 9e99 }, + 'p1Byp0': { 'min': 0, 'max': 1.0 }, + }, + outputs={ + 'flowRate': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': 0.0, 'max': 10.0, 'argPos': 0 }, + 'param1': { 'min': 0.0, 'max': 10.0, 'argPos': 1 }, + }, +) + +m = BackwardMappingModel( + _id= 'flowRate', + surrogateFunction= f, + exactTask= FlowRateExactSim(), + substituteModels= [ ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'D': [0.01, 0.01, 0.01, 0.01], + 'rho0': [3.4, 3.5, 3.4, 3.5], + 'p0': [2.8e5, 3.2e5, 2.8e5, 3.2e5], + 'p1Byp0': [0.03, 0.03, 0.04, 0.04], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 0.05, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/examples/MoDeNaModels/flowRate/src/.gitignore b/examples/MoDeNaModels/flowRate/src/.gitignore new file mode 100644 index 000000000..7eedf35c4 --- /dev/null +++ b/examples/MoDeNaModels/flowRate/src/.gitignore @@ -0,0 +1,17 @@ +# Backups +*~ +*bak + +# Various intermediate files and directories generated CMAKE +CMakeFiles/ +build/ +Makefile +CMakeCache.txt +cmake_install.cmake + +# locate results (executables and libraries) +*.so* +*.l[ao] +*.mod + +flowRateExact diff --git a/examples/MoDeNaModels/flowRate/src/CMakeLists.txt b/examples/MoDeNaModels/flowRate/src/CMakeLists.txt new file mode 100644 index 000000000..ed838b608 --- /dev/null +++ b/examples/MoDeNaModels/flowRate/src/CMakeLists.txt @@ -0,0 +1,30 @@ +cmake_minimum_required (VERSION 2.8) +project (nozzleFlowRate C CXX) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) + cmake_policy(SET CMP0028 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + +add_executable(flowRateExact flowRateExact.C) + diff --git a/examples/MoDeNaModels/flowRate/src/flowRateExact.C b/examples/MoDeNaModels/flowRate/src/flowRateExact.C new file mode 100644 index 000000000..a7d8fee0b --- /dev/null +++ b/examples/MoDeNaModels/flowRate/src/flowRateExact.C @@ -0,0 +1,125 @@ +/** +@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +@endcond +@file +This code calculates the flowRate through a nozzle as a function of the +diameter, density and pressure upstream and pressure downstream. It uses +expressions from VDI Waermeatlas Lbd 4 + +In the simple twoTank example, this piece of code stands for a complex +microscopic code - such as full 3D CFD simulation. + +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +*/ + +#include +#include +#include +#include + +using namespace std; + + +double flowRate +( + const double D, + const double rho0, + const double p0, + const double p2Byp0 +) +{ + const double p2 = p0*p2Byp0; + const double kappa = 1.4; + + const double etac = pow(2.0/(kappa+1.0), kappa/(kappa-1.0)); + + double p1 = etac*p0; + if(p2 > p1) + { + p1 = p2; + } + + // for a nozzle + const double Cd0 = 0.84; + const double Cd1 = 0.66; + // Not 100% sure this is correct - eqn. (10) in Lbd 5 uses misleading + // nomenclature + const double Cdg = + Cd0 - Cd1*pow(p1/p0, 2.0) + (2*Cd1-Cd0)*pow(p1/p0, 3.0); + + const double Phi = + sqrt + ( + kappa/(kappa-1.0) + *(pow(p1/p0, 2.0/kappa) - pow(p1/p0, (kappa+1.0)/kappa)) + ); + + return M_PI*pow(D, 2.0)*Cdg*Phi*sqrt(2.0*rho0*p0); +} + + +int +main (int argc, char *argv[]) +{ + ifstream fi; + fi.open ("in.txt"); + if(!fi.is_open()) + { + cerr << "Could not open in.txt!" << endl; + return 1; + } + + double D, rho0, p0, p1Byp0; + fi >> D >> rho0 >> p0 >> p1Byp0; + + double mdot = flowRate(D, rho0, p0, p1Byp0); + + double p1 = p0*p1Byp0; + + cout << "D = " << D + << " rho0 = " << rho0 + << " p0 = " << p0 + << " p1/p0 = " << p1Byp0 + << " p1 = " << p1 + << " mdot = " << mdot + << endl; + + ofstream fo; + fo.open ("out.txt"); + + fo << mdot << endl; + + fi.close(); + fo.close(); +} + diff --git a/examples/MoDeNaModels/flowRate_idealGas/__init__.py b/examples/MoDeNaModels/flowRate_idealGas/__init__.py new file mode 100644 index 000000000..65c066b3b --- /dev/null +++ b/examples/MoDeNaModels/flowRate_idealGas/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from flowRate import f, m + diff --git a/examples/MoDeNaModels/flowRate_idealGas/flowRate.py b/examples/MoDeNaModels/flowRate_idealGas/flowRate.py new file mode 100644 index 000000000..476547802 --- /dev/null +++ b/examples/MoDeNaModels/flowRate_idealGas/flowRate.py @@ -0,0 +1,166 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +import os +import modena +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, CFunction +import modena.Strategy as Strategy +from fireworks.user_objects.firetasks.script_task import FireTaskBase, ScriptTask +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize +from blessings import Terminal +from jinja2 import Template +import idealGas + +# Create terminal for colour output +term = Terminal() + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +# ********************************* Class ********************************** # +@explicit_serialize +class FlowRateExactSim(FireTaskBase): + """ + A FireTask that starts a microscopic code and updates the database. + """ + + def run_task(self, fw_spec): + print( + term.yellow + + "Performing exact simulation (microscopic code recipe)" + + term.normal + ) + + # Write input + + # See http://jinja.pocoo.org/docs/dev/templates/ + Template(''' +{{ s['point']['D'] }} +{{ s['point']['rho0'] }} +{{ s['point']['p0'] }} +{{ s['point']['p1Byp0'] }} + '''.strip()).stream(s=self).dump('in.txt') + + # Execute the application + # In this simple example, this call stands for a complex microscopic + # code - such as full 3D CFD simulation. + # Source code in src/flowRateExact.C + os.system('../src/flowRateExact') + + # Analyse output + f = open('out.txt', 'r') + self['point']['flowRate'] = float(f.readline()) + f.close() + + return FWAction(mod_spec=[{'_push': self['point']}]) + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void two_tank_flowRate +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + const double D = inputs[0]; + const double rho0 = inputs[1]; + const double p0 = inputs[2]; + const double p1 = p0*inputs[3]; + + const double P0 = parameters[0]; + const double P1 = parameters[1]; + + outputs[0] = M_PI*pow(D, 2.0)*P1*sqrt(P0*rho0*p0); +} +''', + # These are global bounds for the function + inputs={ + 'D': { 'min': 0, 'max': 9e99, 'argPos': 0 }, + 'T0': { 'min': 0, 'max': 9e99, 'argPos': 1 }, + 'p0': { 'min': 0, 'max': 9e99, 'argPos': 2 }, + 'p1Byp0': { 'min': 0, 'max': 1.0, 'argPos': 3}, + }, + outputs={ + 'flowRate': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'param0': { 'min': 0.0, 'max': 10.0, 'argPos': 0 }, + 'param1': { 'min': 0.0, 'max': 10.0, 'argPos': 1 }, + }, +) + +m = BackwardMappingModel( + _id= 'flowRate', + surrogateFunction= f, + exactTask= FlowRateExactSim(), + substituteModels= [ idealGas.m ], + initialisationStrategy= Strategy.InitialPoints( + initialPoints= + { + 'D': [0.01, 0.01, 0.01, 0.01], + 'T0': [300, 300, 300, 300], + 'p0': [2.8e5, 3.2e5, 2.8e5, 3.2e5], + 'p1Byp0': [0.03, 0.03, 0.04, 0.04], + }, + ), + outOfBoundsStrategy= Strategy.ExtendSpaceStochasticSampling( + nNewPoints= 4 + ), + parameterFittingStrategy= Strategy.NonLinFitWithErrorContol( + testDataPercentage= 0.2, + maxError= 0.05, + improveErrorStrategy= Strategy.StochasticSampling( + nNewPoints= 2 + ), + maxIterations= 5 # Currently not used + ), +) + diff --git a/examples/MoDeNaModels/flowRate_idealGas/src/.gitignore b/examples/MoDeNaModels/flowRate_idealGas/src/.gitignore new file mode 100644 index 000000000..7eedf35c4 --- /dev/null +++ b/examples/MoDeNaModels/flowRate_idealGas/src/.gitignore @@ -0,0 +1,17 @@ +# Backups +*~ +*bak + +# Various intermediate files and directories generated CMAKE +CMakeFiles/ +build/ +Makefile +CMakeCache.txt +cmake_install.cmake + +# locate results (executables and libraries) +*.so* +*.l[ao] +*.mod + +flowRateExact diff --git a/examples/MoDeNaModels/flowRate_idealGas/src/CMakeLists.txt b/examples/MoDeNaModels/flowRate_idealGas/src/CMakeLists.txt new file mode 100644 index 000000000..ed838b608 --- /dev/null +++ b/examples/MoDeNaModels/flowRate_idealGas/src/CMakeLists.txt @@ -0,0 +1,30 @@ +cmake_minimum_required (VERSION 2.8) +project (nozzleFlowRate C CXX) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) + cmake_policy(SET CMP0028 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + +add_executable(flowRateExact flowRateExact.C) + diff --git a/examples/MoDeNaModels/flowRate_idealGas/src/flowRateExact.C b/examples/MoDeNaModels/flowRate_idealGas/src/flowRateExact.C new file mode 100644 index 000000000..79bf0f0f7 --- /dev/null +++ b/examples/MoDeNaModels/flowRate_idealGas/src/flowRateExact.C @@ -0,0 +1,124 @@ +/* + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + This code calculates the flowRate through a nozzle as a function of the + diameter, density and pressure upstream and pressure downstream. It uses + expressions from VDI Waermeatlas Lbd 4 + + In the simple twoTank example, this piece of code stands for a complex + microscopic code - such as full 3D CFD simulation. + +Authors + Henrik Rusche + +Contributors +*/ + +#include +#include +#include +#include + +using namespace std; + + +double flowRate +( + const double D, + const double rho0, + const double p0, + const double p2Byp0 +) +{ + const double p2 = p0*p2Byp0; + const double kappa = 1.4; + + const double etac = pow(2.0/(kappa+1.0), kappa/(kappa-1.0)); + + double p1 = etac*p0; + if(p2 > p1) + { + p1 = p2; + } + + // for a nozzle + const double Cd0 = 0.84; + const double Cd1 = 0.66; + // Not 100% sure this is correct - eqn. (10) in Lbd 5 uses misleading + // nomenclature + const double Cdg = + Cd0 - Cd1*pow(p1/p0, 2.0) + (2*Cd1-Cd0)*pow(p1/p0, 3.0); + + const double Phi = + sqrt + ( + kappa/(kappa-1.0) + *(pow(p1/p0, 2.0/kappa) - pow(p1/p0, (kappa+1.0)/kappa)) + ); + + return M_PI*pow(D, 2.0)*Cdg*Phi*sqrt(2.0*rho0*p0); +} + + +int +main (int argc, char *argv[]) +{ + ifstream fi; + fi.open ("in.txt"); + if(!fi.is_open()) + { + cerr << "Could not open in.txt!" << endl; + return 1; + } + + double D, rho0, p0, p1Byp0; + fi >> D >> rho0 >> p0 >> p1Byp0; + + double mdot = flowRate(D, rho0, p0, p1Byp0); + + double p1 = p0*p1Byp0; + + cout << "D = " << D + << " rho0 = " << rho0 + << " p0 = " << p0 + << " p1/p0 = " << p1Byp0 + << " p1 = " << p1 + << " mdot = " << mdot + << endl; + + ofstream fo; + fo.open ("out.txt"); + + fo << mdot << endl; + + fi.close(); + fo.close(); +} + diff --git a/examples/MoDeNaModels/fullerEtAlDiffusion/__init__.py b/examples/MoDeNaModels/fullerEtAlDiffusion/__init__.py new file mode 100644 index 000000000..3c0a815f3 --- /dev/null +++ b/examples/MoDeNaModels/fullerEtAlDiffusion/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from fullerEtAlDiffusion import f, m, species + diff --git a/examples/MoDeNaModels/fullerEtAlDiffusion/fullerEtAlDiffusion.py b/examples/MoDeNaModels/fullerEtAlDiffusion/fullerEtAlDiffusion.py new file mode 100755 index 000000000..2281e7bb4 --- /dev/null +++ b/examples/MoDeNaModels/fullerEtAlDiffusion/fullerEtAlDiffusion.py @@ -0,0 +1,98 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks + +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +""" + +from modena import CFunction, IndexSet, ForwardMappingModel +import modena.Strategy as Strategy + +species = IndexSet( + name= 'species', + names= [ 'H2O', 'N2', 'SO2' ] +) + + +f = CFunction( + inputs={ + 'T': { 'min': 0, 'max': 9e99 }, + 'p': { 'min': 0, 'max': 9e99 }, + }, + outputs={ + 'D[A]': { 'min': 0, 'max': 9e99, 'argPos': 0 }, + }, + parameters={ + 'W[A]': { 'min': 0, 'max': 9e99, 'argPos': 0 }, + 'V[A]': { 'min': 0, 'max': 9e99, 'argPos': 1 }, + 'W[B]': { 'min': 0, 'max': 9e99, 'argPos': 2 }, + 'V[B]': { 'min': 0, 'max': 9e99, 'argPos': 3 }, + }, + indices={ + 'A': species, + 'B': species, + }, + Ccode= ''' +#include "modena.h" +#include "math.h" + +void fullerEtAlDiffusion +( + const modena_model_t* model, + const double* inputs, + double *outputs +) +{ + {% block variables %}{% endblock %} + + const double WA = parameters[0]; + const double VA = parameters[1]; + const double WB = parameters[2]; + const double VB = parameters[3]; + + outputs[0] = 1.011e-4*pow(T, 1.75)*pow(1.0/WA + 1.0/WB, 1.0/2.0); + outputs[0] /= p*(pow(pow(VA, 1.0/3.0) + pow(VB, 1.0/3.0), 2.0)); +} +''', +) + +m = ForwardMappingModel( + _id= 'fullerEtAlDiffusion[A=H2O,B=N2]', + surrogateFunction= f, + substituteModels= [ ], + parameters= [ 16, 9.44, 14, 11.38 ], +) + + diff --git a/examples/MoDeNaModels/fullerEtAlDiffusion/src/.gitignore b/examples/MoDeNaModels/fullerEtAlDiffusion/src/.gitignore new file mode 100644 index 000000000..a434af21e --- /dev/null +++ b/examples/MoDeNaModels/fullerEtAlDiffusion/src/.gitignore @@ -0,0 +1,19 @@ +# Backups +*~ +*bak + +# Various intermediate files from automake +CMakeFiles/ +Makefile +libmodena.pc +CMakeCache.txt +cmake_install.cmake +install_manifest.txt + +# Intermediate files generated by SWIG +*_wrap.c + +# locate results (executables and libraries) +*.l[ao] + +fullerEtAlDiffusionTest diff --git a/examples/MoDeNaModels/idealGas/__init__.py b/examples/MoDeNaModels/idealGas/__init__.py new file mode 100644 index 000000000..a8c60a40c --- /dev/null +++ b/examples/MoDeNaModels/idealGas/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from idealGas import f, m + diff --git a/examples/MoDeNaModels/idealGas/idealGas.py b/examples/MoDeNaModels/idealGas/idealGas.py new file mode 100644 index 000000000..0b4ba05d1 --- /dev/null +++ b/examples/MoDeNaModels/idealGas/idealGas.py @@ -0,0 +1,103 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks + +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +""" + +import os +import modena +from modena import ForwardMappingModel, BackwardMappingModel, SurrogateModel, CFunction, ModenaFireTask +import modena.Strategy as Strategy +from fireworks import Firework, Workflow, FWAction +from fireworks.utilities.fw_utilities import explicit_serialize + + +__author__ = 'Henrik Rusche' +__copyright__ = 'Copyright 2014, MoDeNa Project' +__version__ = '0.2' +__maintainer__ = 'Henrik Rusche' +__email__ = 'h.rusche@wikki.co.uk.' +__date__ = 'Sep 4, 2014' + + +f = CFunction( + Ccode= ''' +#include "modena.h" +#include "math.h" + +void idealGas +( + const double* parameters, + const double* inherited_inputs, + const double* inputs, + double *outputs +) +{ + const double p0 = inputs[0]; + const double T0 = inputs[1]; + + const double R = parameters[0]; + + outputs[0] = p0/R/T0; +} +''', + # These are global bounds for the function + inputs={ + 'p0': { 'min': 0, 'max': 9e99, 'argPos': 0 }, + 'T0': { 'min': 0, 'max': 9e99, 'argPos': 1 }, + }, + outputs={ + 'rho0': { 'min': 9e99, 'max': -9e99, 'argPos': 0 }, + }, + parameters={ + 'R': { 'min': 0.0, 'max': 9e99, 'argPos': 0 } + }, +) + +m = ForwardMappingModel( + _id= 'idealGas', + surrogateFunction= f, + substituteModels= [ ], + parameters= [ 287.0 ], + inputs={ + 'p0': { 'min': 0, 'max': 9e99 }, + 'T0': { 'min': 0, 'max': 9e99 }, + }, + outputs={ + 'rho0': {'min': 0, 'max': 9e99 }, + }, +) + diff --git a/examples/MoDeNaModels/twoTank/__init__.py b/examples/MoDeNaModels/twoTank/__init__.py new file mode 100644 index 000000000..b439929d4 --- /dev/null +++ b/examples/MoDeNaModels/twoTank/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from twoTank import m + diff --git a/examples/MoDeNaModels/twoTank/src/.gitignore b/examples/MoDeNaModels/twoTank/src/.gitignore new file mode 100644 index 000000000..fcc90073c --- /dev/null +++ b/examples/MoDeNaModels/twoTank/src/.gitignore @@ -0,0 +1,17 @@ +# Backups +*~ +*bak + +# Various intermediate files and directories generated CMAKE +CMakeFiles/ +build/ +Makefile +CMakeCache.txt +cmake_install.cmake + +# locate results (executables and libraries) +*.so* +*.l[ao] +*.mod + +twoTanksMacroscopicProblem diff --git a/examples/MoDeNaModels/twoTank/src/CMakeLists.txt b/examples/MoDeNaModels/twoTank/src/CMakeLists.txt new file mode 100644 index 000000000..6f0a666b2 --- /dev/null +++ b/examples/MoDeNaModels/twoTank/src/CMakeLists.txt @@ -0,0 +1,31 @@ +cmake_minimum_required (VERSION 2.8) +project (twoTankMacroscopic C CXX) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) + cmake_policy(SET CMP0028 OLD) +endif() + +set(CMAKE_BUILD_TYPE Release) + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +include(CheckCInline) +check_c_inline(C_INLINE) + +add_executable(twoTanksMacroscopicProblem twoTanksMacroscopicProblem.C) +target_link_libraries(twoTanksMacroscopicProblem MODENA::modena) + diff --git a/examples/MoDeNaModels/twoTank/src/twoTanksMacroscopicProblem.C b/examples/MoDeNaModels/twoTank/src/twoTanksMacroscopicProblem.C new file mode 100644 index 000000000..a95047333 --- /dev/null +++ b/examples/MoDeNaModels/twoTank/src/twoTanksMacroscopicProblem.C @@ -0,0 +1,160 @@ +/** +@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +@endcond +@file +Solving the two tank problem the MoDeNa way. +A prototypical macros-scopic code embeds a micro-scale model (flowRate) +through the MoDeNa interface library. +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +*/ + +#include +#include +#include "modena.h" + +using namespace std; + +int +main(int argc, char *argv[]) +{ + const double D = 0.01; + + double p0 = 3e5; + double p1 = 10000; + double V0 = 0.1; + double V1 = 1; + double T = 300; + + double t = 0.0; + const double deltat = 1e-3; + const double tend = 5.5; + + double m0 = p0*V0/287.1/T; + double m1 = p1*V1/287.1/T; + + double rho0 = m0/V0; + double rho1 = m1/V1; + + + // Instantiate a model + modena_model_t *model = modena_model_new("flowRate"); + if(modena_error_occurred()) + { + return modena_error(); + } + + // Allocate memory and fetch arg positions + modena_inputs_t *inputs = modena_inputs_new(model); + modena_outputs_t *outputs = modena_outputs_new(model); + + size_t Dpos = modena_model_inputs_argPos(model, "D"); + size_t rho0Pos = modena_model_inputs_argPos(model, "rho0"); + size_t p0Pos = modena_model_inputs_argPos(model, "p0"); + size_t p1Byp0Pos = modena_model_inputs_argPos(model, "p1Byp0"); + + modena_model_argPos_check(model); + + while(t + deltat < tend + 1e-10) + { + t += deltat; + + if(p0 > p1) + { + // Set input vector + modena_inputs_set(inputs, Dpos, D); + modena_inputs_set(inputs, rho0Pos, rho0); + modena_inputs_set(inputs, p0Pos, p0); + modena_inputs_set(inputs, p1Byp0Pos, p1/p0); + + // Call the model + int ret = modena_model_call(model, inputs, outputs); + + // Terminate, if requested + if(modena_error_occurred()) + { + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return modena_error(); + } + + // Fetch result + double mdot = modena_outputs_get(outputs, 0); + + m0 -= mdot*deltat; + m1 += mdot*deltat; + } + else + { + // Set input vector + modena_inputs_set(inputs, Dpos, D); + modena_inputs_set(inputs, rho0Pos, rho1); + modena_inputs_set(inputs, p0Pos, p1); + modena_inputs_set(inputs, p1Byp0Pos, p0/p1); + + // Call the model + int ret = modena_model_call(model, inputs, outputs); + + // Terminate, if requested + if(modena_error_occurred()) + { + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return modena_error(); + } + + // Fetch result + double mdot = modena_outputs_get(outputs, 0); + + m0 += mdot*deltat; + m1 -= mdot*deltat; + } + + rho0 = m0/V0; + rho1 = m1/V1; + p0 = m0/V0*287.1*T; + p1 = m1/V1*287.1*T; + + cout << "t = " << t << " rho0 = " << rho0 << " p0 = " << p0 << " p1 = " << p1 << endl; + } + + modena_inputs_destroy(inputs); + modena_outputs_destroy(outputs); + modena_model_destroy(model); + + return 0; +} + diff --git a/examples/MoDeNaModels/twoTank/twoTank.py b/examples/MoDeNaModels/twoTank/twoTank.py new file mode 100644 index 000000000..eb181638e --- /dev/null +++ b/examples/MoDeNaModels/twoTank/twoTank.py @@ -0,0 +1,46 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks + +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +""" + +from modena.Strategy import BackwardMappingScriptTask +import os + +# Source code in src/twoTanksMacroscopicProblem.C +m = BackwardMappingScriptTask( + script=os.path.dirname(os.path.abspath(__file__))+'/src/twoTanksMacroscopicProblem' +) diff --git a/examples/MoDeNaModels/twoTankFortran/__init__.py b/examples/MoDeNaModels/twoTankFortran/__init__.py new file mode 100644 index 000000000..563c686df --- /dev/null +++ b/examples/MoDeNaModels/twoTankFortran/__init__.py @@ -0,0 +1,40 @@ +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + Python library of FireTasks + +Authors + Henrik Rusche + +Contributors +''' + +from twoTankFortran import m + diff --git a/examples/MoDeNaModels/twoTankFortran/src/.gitignore b/examples/MoDeNaModels/twoTankFortran/src/.gitignore new file mode 100644 index 000000000..01fc8a952 --- /dev/null +++ b/examples/MoDeNaModels/twoTankFortran/src/.gitignore @@ -0,0 +1,17 @@ +# Backups +*~ +*bak + +# Various intermediate files and directories generated CMAKE +CMakeFiles/ +build/ +Makefile +CMakeCache.txt +cmake_install.cmake + +# locate results (executables and libraries) +*.so* +*.l[ao] +*.mod + +twoTanksMacroscopicProblemFortran diff --git a/examples/MoDeNaModels/twoTankFortran/src/CMakeLists.txt b/examples/MoDeNaModels/twoTankFortran/src/CMakeLists.txt new file mode 100644 index 000000000..7424f1376 --- /dev/null +++ b/examples/MoDeNaModels/twoTankFortran/src/CMakeLists.txt @@ -0,0 +1,26 @@ +cmake_minimum_required (VERSION 2.8) +project (tutorialModels C CXX Fortran) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) + cmake_policy(SET CMP0028 OLD) +endif() + +add_custom_target(debug + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Debug" + ) + +add_custom_target(release + COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} + COMMAND ${CMAKE_COMMAND} --build ${CMAKE_BINARY_DIR} --target all + COMMENT "Switch CMAKE_BUILD_TYPE to Release" + ) + +find_package(MODENA REQUIRED) + +add_executable(twoTanksMacroscopicProblemFortran twoTanksMacroscopicProblemFortran.f90) +target_link_libraries(twoTanksMacroscopicProblemFortran MODENA::modena) + diff --git a/examples/MoDeNaModels/twoTankFortran/src/twoTanksMacroscopicProblemFortran.f90 b/examples/MoDeNaModels/twoTankFortran/src/twoTanksMacroscopicProblemFortran.f90 new file mode 100644 index 000000000..da779eec8 --- /dev/null +++ b/examples/MoDeNaModels/twoTankFortran/src/twoTanksMacroscopicProblemFortran.f90 @@ -0,0 +1,175 @@ +! +! +! ooo ooooo oooooooooo. ooooo ooo +! `88. .888' `888' `Y8b `888b. `8' +! 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. +! 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b +! 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 +! 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 +! o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o +! +!Copyright +! 2014-2015 MoDeNa Consortium, All rights reserved. +! +!License +! This file is part of Modena. +! +! Modena is free software; you can redistribute it and/or modify it under +! the terms of the GNU General Public License as published by the Free +! Software Foundation, either version 3 of the License, or (at your option) +! any later version. +! +! Modena is distributed in the hope that it will be useful, but WITHOUT ANY +! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +! FOR A PARTICULAR PURPOSE. See the GNU General Public License +! for more details. +! +! You should have received a copy of the GNU General Public License along +! with Modena. If not, see . +! +!Description +! Solving the two tank problem the MoDeNa way. +! +! A prototypical macros-scopic code embeds a micro-scale model (flowRate) +! through the MoDeNa interface library. +! +! Re-programmed to Fortran +! +!Authors +! Henrik Rusche +! +!Contributors +! Pavel Ferkl +program twoTanksMacroscopicProblemFortran !command line arguments not implemented yet + use iso_c_binding + use fmodena + + implicit none + + integer, parameter ::dp=selected_real_kind(15) + + real(dp), parameter :: D = 0.01_dp; + + real(dp) :: p0 = 3e5; + real(dp) :: p1 = 10000; + real(dp) :: V0 = 0.1_dp; + real(dp) :: V1 = 1; + real(dp) :: temp = 300; + + real(dp) :: t = 0.0_dp; + real(dp), parameter :: deltat = 1e-3_dp; + real(dp), parameter :: tend = 5.5_dp; + + real(dp) :: m0 + real(dp) :: m1 + + real(dp) :: rho0 + real(dp) :: rho1 + + real(dp) :: mdot + + integer(c_int) :: ret + + type(c_ptr) :: client = c_null_ptr !mongoc_client_t + type(c_ptr) :: model = c_null_ptr !modena_model_t + type(c_ptr) :: inputs = c_null_ptr !modena_inputs_t + type(c_ptr) :: outputs = c_null_ptr !modena_outputs_t + + integer(c_size_t) :: Dpos + integer(c_size_t) :: rho0Pos + integer(c_size_t) :: p0Pos + integer(c_size_t) :: p1Byp0Pos + + m0 = p0*V0/287.1_dp/temp; + m1 = p1*V1/287.1_dp/temp; + rho0 = m0/V0; + rho1 = m1/V1; + +! //Instantiate a model + model = modena_model_new (c_char_"flowRate"//c_null_char); !modena_model_t + +! //Allocate memory and fetch arg positions + inputs = modena_inputs_new (model); !modena_inputs_t + outputs = modena_outputs_new (model); !modena_outputs_t + + Dpos = modena_model_inputs_argPos(model, c_char_"D"//c_null_char); + rho0Pos = modena_model_inputs_argPos(model, c_char_"rho0"//c_null_char); + p0Pos = modena_model_inputs_argPos(model, c_char_"p0"//c_null_char); + p1Byp0Pos = modena_model_inputs_argPos(model, c_char_"p1Byp0"//c_null_char); + +! //TODO: Add checking function that makes sure that the positions of all +! //arguments to the model are requested + call modena_model_argPos_check(model); + + do while(t + deltat < tend + 1e-10_dp) + + t = t + deltat; + + if(p0 > p1) then +! //Set input vector + call modena_inputs_set(inputs, Dpos, D); + call modena_inputs_set(inputs, rho0Pos, rho0); + call modena_inputs_set(inputs, p0Pos, p0); + call modena_inputs_set(inputs, p1Byp0Pos, p1/p0); + +! // Call the model + ret = modena_model_call (model, inputs, outputs); + +! // Terminate, if requested + if(ret /= 0) then + + call modena_inputs_destroy (inputs); + call modena_outputs_destroy (outputs); + call modena_model_destroy (model); + + call exit(ret) + endif + +! // Fetch result + mdot = modena_outputs_get(outputs, 0_c_size_t); + + m0 = m0 - mdot*deltat; + m1 = m1 + mdot*deltat; + + else + +! // Set input vector + call modena_inputs_set(inputs, Dpos, D); + call modena_inputs_set(inputs, rho0Pos, rho1); + call modena_inputs_set(inputs, p0Pos, p1); + call modena_inputs_set(inputs, p1Byp0Pos, p0/p1); + +! // Call the model + ret = modena_model_call (model, inputs, outputs); + +! // Terminate, if requested + if(ret /= 0) then + + call modena_inputs_destroy (inputs); + call modena_outputs_destroy (outputs); + call modena_model_destroy (model); + + call exit(ret) + endif + +! // Fetch result + mdot = modena_outputs_get(outputs, 0_c_size_t); + + m0 = m0 + mdot*deltat; + m1 = m1 - mdot*deltat; + endif + + rho0 = m0/V0; + rho1 = m1/V1; + p0 = m0/V0*287.1_dp*temp; + p1 = m1/V1*287.1_dp*temp; + + write(*,*) "t = ",t," rho0 = ",rho0," p0 = ",p0," p1 = ",p1 + enddo + + call modena_inputs_destroy (inputs); + call modena_outputs_destroy (outputs); + call modena_model_destroy (model); + + call exit(0) +end program twoTanksMacroscopicProblemFortran diff --git a/examples/MoDeNaModels/twoTankFortran/twoTankFortran.py b/examples/MoDeNaModels/twoTankFortran/twoTankFortran.py new file mode 100644 index 000000000..50ffce0fb --- /dev/null +++ b/examples/MoDeNaModels/twoTankFortran/twoTankFortran.py @@ -0,0 +1,46 @@ +'''@cond + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . +@endcond''' + +""" +@file +Python library of FireTasks + +@author Henrik Rusche +@copyright 2014-2015, MoDeNa Project. GNU Public License. +@ingroup twoTank +""" + +from modena.Strategy import BackwardMappingScriptTask +import os + +# Source code in src/twoTanksMacroscopicProblem.C +m = BackwardMappingScriptTask( + script=os.path.dirname(os.path.abspath(__file__))+'/src/twoTanksMacroscopicProblemFortran' +) diff --git a/examples/multicomponentDiffusion/README.md b/examples/multicomponentDiffusion/README.md new file mode 100644 index 000000000..0354dfe64 --- /dev/null +++ b/examples/multicomponentDiffusion/README.md @@ -0,0 +1,31 @@ +MULTICOMPONENT DIFFUSION EXAMPLE: +================================= + +Binary diffusion by Fuller etal. is combined with Wilke multicomponent diffusion. + +This example only shows the use of index sets. No backward mapping! + + +How to run? +----------- + +# Make sure `PYTHONPATH` and `LD_LIBRARY_PATH` are set +# TODO: +# Make this easier to use + export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig + export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages + export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + +# Compile project specific sources, i.e. "models": + fuller="../models/fullerEtAlDiffusion/src" + cmake -H${fuller} -B${fuller} && make --directory=${fuller} + +# Initialise the model in the database + ./initModel + +# Start the workflow + ./workflow + +# Run again to see that no fitting is done on the second start + ./workflow + diff --git a/examples/twoTanks/README.md b/examples/twoTanks/README.md new file mode 100644 index 000000000..c3dbf9daa --- /dev/null +++ b/examples/twoTanks/README.md @@ -0,0 +1,44 @@ +TWO TANKS EXAMPLE: +================== + +The discharge of air from one tank into another through a nozzle. The +problem only makes sense, if you think of the flow through the nozzle as a +much more complex problem which you have to solve with - let's say 3D CFD. So +the two tanks are the macroscopic and the nozzle is the microscopic problem. +This is also a backward mapping problem if you assume that the range of +inputs is unknown a-priori. twoTanksMacroscopicProblem uses the MoDeNa +interface library to embed an even simpler model for the flow rate. While +twoTanksFullProblem implements it fully integrated. + +TODO: +The example specific sources should be moved into the example, but this requires +building (and finding) the execuables here. + + +How to run? +----------- + +# Make sure PYTHONPATH and LD_LIBRARY_PATH are set +# TODO: +# Make this easier to use + + + export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig + export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages + export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + +# Compile project specific sources, i.e. "models": + flowRate="../models/flowRate/src" + twoTank="../models/twoTank/src" + cmake -H${flowRate} -B${flowRate} && make --directory=${flowRate} + cmake -H${twoTank} -B${twoTank} && make --directory${twoTank} + +# Initialise the model in the database + ./initModel + +# Start the workflow + ./workflow + +# Run again to see that no fitting is done on the second start + ./workflow + diff --git a/examples/twoTanksAutoInit/README.md b/examples/twoTanksAutoInit/README.md new file mode 100644 index 000000000..51e31a546 --- /dev/null +++ b/examples/twoTanksAutoInit/README.md @@ -0,0 +1,45 @@ +TWO TANKS EXAMPLE: +================== + +The discharge of air from one tank into another through a nozzle. The +problem only makes sense, if you think of the flow through the nozzle as a +much more complex problem which you have to solve with - let's say 3D CFD. So +the two tanks are the macroscopic and the nozzle is the microscopic problem. +This is also a backward mapping problem if you assume that the range of +inputs is unknown a-priori. twoTanksMacroscopicProblem uses the MoDeNa +interface library to embed an even simpler model for the flow rate. While +twoTanksFullProblem implements it fully integrated. + +TODO: +The example specific sources should be moved into the example, but this requires +building (and finding) the execuables here. + + +How to run? +----------- + +# Make sure `PYTHONPATH` and `LD_LIBRARY_PATH` are set +# TODO: +# Make this easier to use + + export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig + export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages + export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + + +# Compile project specific sources, i.e. "models": + + flowRate="../models/flowRate/src" + twoTank="../models/twoTank/src" + cmake -H${flowRate} -B${flowRate} && make --directory=${flowRate} + cmake -H${twoTank} -B${twoTank} && make --directory${twoTank} + +# Initialise the model in the database + ./initModel + +# Start the workflow + ./workflow + +# Run again to see that no fitting is done on the second start + ./workflow + diff --git a/examples/twoTanksChained/README.md b/examples/twoTanksChained/README.md new file mode 100644 index 000000000..dfa75df37 --- /dev/null +++ b/examples/twoTanksChained/README.md @@ -0,0 +1,47 @@ +TWO TANKS EXAMPLE: +================== + +The discharge of air from one tank into another through a nozzle. The +problem only makes sense, if you think of the flow through the nozzle as a +much more complex problem which you have to solve with - let's say 3D CFD. So +the two tanks are the macroscopic and the nozzle is the microscopic problem. +This is also a backward mapping problem if you assume that the range of +inputs is unknown a-priori. twoTanksMacroscopicProblem uses the MoDeNa +interface library to embed an even simpler model for the flow rate. While +twoTanksFullProblem implements it fully integrated. + +TODO: +The example specific sources should be moved into the example, but this requires +building (and finding) the execuables here. + + +How to run? +----------- + +# Make sure `PYTHONPATH` and `LD_LIBRARY_PATH` are set +# TODO: +# Make this easier to use + + export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig + export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages + export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + +# Compile project specific sources, i.e. "models": + + flowRate="../models/flowRate_idealGas/src" + twoTank="../models/twoTank/src" + cmake -H${flowRate} -B${flowRate} && make --directory=${flowRate} + cmake -H${twoTank} -B${twoTank} && make --directory${twoTank} + +# Append path to the models directory to "PYTHONPATH": + export PYTHONPATH="${PYTHONPATH}:../models" + +# Initialise the model in the database + ./initModel + +# Start the workflow + ./workflow + +# Run again to see that no fitting is done on the second start + ./workflow + diff --git a/examples/twoTanksFortran/README.md b/examples/twoTanksFortran/README.md new file mode 100644 index 000000000..ac8367573 --- /dev/null +++ b/examples/twoTanksFortran/README.md @@ -0,0 +1,44 @@ +TWO TANKS EXAMPLE: +================== + +The discharge of air from one tank into another through a nozzle. The +problem only makes sense, if you think of the flow through the nozzle as a +much more complex problem which you have to solve with - let's say 3D CFD. So +the two tanks are the macroscopic and the nozzle is the microscopic problem. +This is also a backward mapping problem if you assume that the range of +inputs is unknown a-priori. twoTanksMacroscopicProblem uses the MoDeNa +interface library to embed an even simpler model for the flow rate. While +twoTanksFullProblem implements it fully integrated. + +TODO: +The example specific sources should be moved into the example, but this requires +building (and finding) the execuables here. + + +How to run? +----------- + +# Make sure `PYTHONPATH` and `LD_LIBRARY_PATH` are set +# TODO: +# Make this easier to use + + export PKG_CONFIG_PATH=${PKG_CONFIG_PATH:-}:${HOME}/lib/pkgconfig:/usr/local/lib/pkgconfig + export PYTHONPATH=${PYTHONPATH:-}:${HOME}/lib/python2.7/site-packages + export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${HOME}/lib/python2.7/site-packages:${HOME}/lib:/usr/local/lib + + +# Compile project specific sources, i.e. "models": + flowRate="../models/flowRate/src" + twoTank="../models/twoTankFortran/src" + cmake -H${flowRate} -B${flowRate} && make --directory=${flowRate} + cmake -H${twoTank} -B${twoTank} && make --directory${twoTank} + +# Initialise the model in the database + ./initModel + +# Start the workflow + ./workflow + +# Run again to see that no fitting is done on the second start + ./workflow + From 2a9d34f0141a58327eb47c015fec3c6cb0a37ce6 Mon Sep 17 00:00:00 2001 From: Sigve Karolius Date: Wed, 9 Dec 2015 17:21:44 +0100 Subject: [PATCH 02/27] Adding files --- applications/PUfoam/0D_CFD/workflow | 55 +++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100755 applications/PUfoam/0D_CFD/workflow diff --git a/applications/PUfoam/0D_CFD/workflow b/applications/PUfoam/0D_CFD/workflow new file mode 100755 index 000000000..d8c14de16 --- /dev/null +++ b/applications/PUfoam/0D_CFD/workflow @@ -0,0 +1,55 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + A simple workflow + +Authors + Henrik Rusche + +Contributors +''' + +from fireworks import Firework, Workflow, LaunchPad +from fireworks.core.rocket_launcher import rapidfire +from CFD_tool_0D import m as SIMULATION +from modulefinder import ModuleFinder + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +# create the individual FireWorks and Workflow +wf = Workflow([Firework(SIMULATION)], {}, name="simulation") + +# store workflow and launch it locally +launchpad.add_wf(wf) +rapidfire(launchpad) From 98fe4a209ebbe4baabac17cc5f67e8c34c69765e Mon Sep 17 00:00:00 2001 From: Sigve Karolius Date: Wed, 9 Dec 2015 17:27:15 +0100 Subject: [PATCH 03/27] Removed dir:'Content', saved locally if this was a mistake... --- Content/.DS_Store | Bin 6148 -> 0 bytes Content/Bibliography/bibliography.bib | 327 - .../Figures/Data_Flow-eps-converted-to.pdf | Bin 184088 -> 0 bytes Content/Figures/Data_Flow.eps | 4296 - Content/Figures/Data_Flow.png | Bin 79692 -> 0 bytes .../PU_exercise_1-eps-converted-to.pdf | Bin 71607 -> 0 bytes Content/Figures/PU_exercise_1.eps | 1775 - Content/Figures/PU_exercise_1.png | Bin 27628 -> 0 bytes .../PU_exercise_2-eps-converted-to.pdf | Bin 44724 -> 0 bytes Content/Figures/PU_exercise_2.eps | 1193 - Content/Figures/PU_exercise_2.png | Bin 22600 -> 0 bytes .../PU_exercise_3-eps-converted-to.pdf | Bin 39226 -> 0 bytes Content/Figures/PU_exercise_3.eps | 1078 - Content/Figures/PU_exercise_3.png | Bin 20408 -> 0 bytes .../PU_exercise_4-eps-converted-to.pdf | Bin 93023 -> 0 bytes Content/Figures/PU_exercise_4.eps | 2345 - Content/Figures/PU_exercise_4.png | Bin 31995 -> 0 bytes .../PU_exercise_5-eps-converted-to.pdf | Bin 48821 -> 0 bytes Content/Figures/PU_exercise_5.eps | 1306 - Content/Figures/PU_exercise_5.png | Bin 24135 -> 0 bytes .../PU_exercise_6-eps-converted-to.pdf | Bin 77146 -> 0 bytes Content/Figures/PU_exercise_6.eps | 2077 - Content/Figures/PU_exercise_6.png | Bin 33636 -> 0 bytes .../PU_exercise_7-eps-converted-to.pdf | Bin 49960 -> 0 bytes Content/Figures/PU_exercise_7.eps | 1366 - Content/Figures/PU_exercise_7.png | Bin 26189 -> 0 bytes .../PU_exercise_8-eps-converted-to.pdf | Bin 109977 -> 0 bytes Content/Figures/PU_exercise_8.eps | 2806 - Content/Figures/PU_exercise_8.png | Bin 25015 -> 0 bytes Content/Figures/Plots.py | 23 - Content/Figures/Plotsparam.py | 24 - .../Software_Stack-eps-converted-to.pdf | Bin 246553 -> 0 bytes Content/Figures/Software_Stack.eps | 5737 - Content/Figures/Software_Stack.png | Bin 63072 -> 0 bytes .../conceptual_structure-eps-converted-to.pdf | Bin 181499 -> 0 bytes Content/Figures/conceptual_structure.eps | 101968 --------------- Content/Figures/conceptual_structure.png | Bin 79541 -> 0 bytes Content/Figures/fig1.eps | 32742 ----- Content/Figures/fig2.eps | 25073 ---- Content/Figures/fig3.eps | 24096 ---- ...mongodb_on_local_host-eps-converted-to.pdf | Bin 41600 -> 0 bytes Content/Figures/mongodb_on_local_host.eps | 4221 - Content/Figures/mongodb_on_local_host.png | Bin 14404 -> 0 bytes Content/Figures/mongodb_on_local_host.svg | 250 - Content/Figures/mongodb_on_local_host.tex | 79 - Content/Figures/out.txt | 5500 - Content/Figures/output.txt | 102 - .../Figures/plotparams-eps-converted-to.pdf | Bin 58520 -> 0 bytes Content/Figures/plotparams.eps | 38506 ------ Content/Figures/plotparams.png | Bin 30659 -> 0 bytes .../Figures/pressureplot-eps-converted-to.pdf | Bin 33490 -> 0 bytes Content/Figures/pressureplot.eps | 38506 ------ Content/Figures/pressureplot.png | Bin 18714 -> 0 bytes .../surrogate_function-eps-converted-to.pdf | Bin 55144 -> 0 bytes Content/Figures/surrogate_function.eps | 6820 - Content/Figures/surrogate_function.png | Bin 27989 -> 0 bytes Content/Figures/surrogate_function.svg | 564 - Content/Figures/surrogate_function.tex | 173 - .../surrogate_model-eps-converted-to.pdf | Bin 97137 -> 0 bytes Content/Figures/surrogate_model.eps | 11298 -- Content/Figures/surrogate_model.png | Bin 41937 -> 0 bytes Content/Figures/surrogate_model.svg | 770 - Content/Figures/surrogate_model.tex | 229 - Content/Figures/twoTanks.pdf | Bin 13556 -> 0 bytes Content/Figures/twoTanks.png | Bin 7351 -> 0 bytes Content/Figures/twoTanks.tex | 19 - Content/Glossary/defs.tex | 28 - Content/Glossary/defvars.tex | 279 - Content/Glossary/glossaries.tex | 73 - Content/Main/0D_model.tex | 346 - Content/Main/database.tex | 251 - Content/Main/introduction.tex | 93 - Content/Main/my-listings-Python-example.tex | 87 - Content/Main/software_framework.tex | 62 - Content/Main/twotank_model.tex | 516 - 75 files changed, 317004 deletions(-) delete mode 100644 Content/.DS_Store delete mode 100644 Content/Bibliography/bibliography.bib delete mode 100644 Content/Figures/Data_Flow-eps-converted-to.pdf delete mode 100644 Content/Figures/Data_Flow.eps delete mode 100644 Content/Figures/Data_Flow.png delete mode 100644 Content/Figures/PU_exercise_1-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_1.eps delete mode 100644 Content/Figures/PU_exercise_1.png delete mode 100644 Content/Figures/PU_exercise_2-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_2.eps delete mode 100644 Content/Figures/PU_exercise_2.png delete mode 100644 Content/Figures/PU_exercise_3-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_3.eps delete mode 100644 Content/Figures/PU_exercise_3.png delete mode 100644 Content/Figures/PU_exercise_4-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_4.eps delete mode 100644 Content/Figures/PU_exercise_4.png delete mode 100644 Content/Figures/PU_exercise_5-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_5.eps delete mode 100644 Content/Figures/PU_exercise_5.png delete mode 100644 Content/Figures/PU_exercise_6-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_6.eps delete mode 100644 Content/Figures/PU_exercise_6.png delete mode 100644 Content/Figures/PU_exercise_7-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_7.eps delete mode 100644 Content/Figures/PU_exercise_7.png delete mode 100644 Content/Figures/PU_exercise_8-eps-converted-to.pdf delete mode 100644 Content/Figures/PU_exercise_8.eps delete mode 100644 Content/Figures/PU_exercise_8.png delete mode 100644 Content/Figures/Plots.py delete mode 100644 Content/Figures/Plotsparam.py delete mode 100644 Content/Figures/Software_Stack-eps-converted-to.pdf delete mode 100644 Content/Figures/Software_Stack.eps delete mode 100644 Content/Figures/Software_Stack.png delete mode 100644 Content/Figures/conceptual_structure-eps-converted-to.pdf delete mode 100644 Content/Figures/conceptual_structure.eps delete mode 100644 Content/Figures/conceptual_structure.png delete mode 100644 Content/Figures/fig1.eps delete mode 100644 Content/Figures/fig2.eps delete mode 100644 Content/Figures/fig3.eps delete mode 100644 Content/Figures/mongodb_on_local_host-eps-converted-to.pdf delete mode 100644 Content/Figures/mongodb_on_local_host.eps delete mode 100644 Content/Figures/mongodb_on_local_host.png delete mode 100644 Content/Figures/mongodb_on_local_host.svg delete mode 100644 Content/Figures/mongodb_on_local_host.tex delete mode 100644 Content/Figures/out.txt delete mode 100644 Content/Figures/output.txt delete mode 100644 Content/Figures/plotparams-eps-converted-to.pdf delete mode 100644 Content/Figures/plotparams.eps delete mode 100644 Content/Figures/plotparams.png delete mode 100644 Content/Figures/pressureplot-eps-converted-to.pdf delete mode 100644 Content/Figures/pressureplot.eps delete mode 100644 Content/Figures/pressureplot.png delete mode 100644 Content/Figures/surrogate_function-eps-converted-to.pdf delete mode 100644 Content/Figures/surrogate_function.eps delete mode 100644 Content/Figures/surrogate_function.png delete mode 100644 Content/Figures/surrogate_function.svg delete mode 100644 Content/Figures/surrogate_function.tex delete mode 100644 Content/Figures/surrogate_model-eps-converted-to.pdf delete mode 100644 Content/Figures/surrogate_model.eps delete mode 100644 Content/Figures/surrogate_model.png delete mode 100644 Content/Figures/surrogate_model.svg delete mode 100644 Content/Figures/surrogate_model.tex delete mode 100644 Content/Figures/twoTanks.pdf delete mode 100644 Content/Figures/twoTanks.png delete mode 100644 Content/Figures/twoTanks.tex delete mode 100644 Content/Glossary/defs.tex delete mode 100644 Content/Glossary/defvars.tex delete mode 100644 Content/Glossary/glossaries.tex delete mode 100644 Content/Main/0D_model.tex delete mode 100644 Content/Main/database.tex delete mode 100644 Content/Main/introduction.tex delete mode 100644 Content/Main/my-listings-Python-example.tex delete mode 100644 Content/Main/software_framework.tex delete mode 100644 Content/Main/twotank_model.tex diff --git a/Content/.DS_Store b/Content/.DS_Store deleted file mode 100644 index f97fe44d1fb13d75c88f22fd299ee0c48322b99d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeH~L2KJE6vv-hueIZgN4HYwMb|+NX_L|B=B4d!g+NBjSVwAOvj~D6Vy9u4fY1FH zTf6OJw6xoI*e4mg?LA2;EopCKtU(W+{?C%0gno%73jkPa6m0-_0AQn&S`{qrF={8D zu?1a2%H$YBh#?Ed*&yuC^fncSfFba|5ukT>8D4{c4={pT?{6An%dc?I7g=7b{bUP^ z){~`W+o`y&TXDUomG_-qI_~5_KFV6b@SS`TQ5@>H9pt@f{3cENH*pXih6iJkhTj?l?vZIa~?@&Z}uj@T;591R|Z3jtwATkk(zQ{k?j^o%)*IO-$ z#^!dF*Cth7Y;D!5ywPY*Cf+4+~R-!8AzufTBAlD49CD%TiT zunz%ZNz`^Gar}NfIM#}yP7vzbjT<2KX8nF3SKrmj9|ZDaO2+6M5zv2s+nu8|nWY#4 zhQQw;K>GtnC-t?KO6Asp1${nHyG2TdG2JCdxmI6msT5n#m`X)esZ3unm`cZbuKW2~ zOQk9un4B5M(K9oBLt%1utmm>jFkh)D4FN;oE`de$=+XJV_wfDyZjyO21Pp<>BEYQO z&Tb2rq|erw#nD;I(T~x|s9&j6reL9uV;Rs diff --git a/Content/Bibliography/bibliography.bib b/Content/Bibliography/bibliography.bib deleted file mode 100644 index 1daebfe98..000000000 --- a/Content/Bibliography/bibliography.bib +++ /dev/null @@ -1,327 +0,0 @@ -@phdthesis{winkler_1993, - author = {Christian A. Winkler}, - title = {PhD thesis}, - school = {University of Stuttgart}, - year = 2009, -} - -@book{woods_1990, - title={Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties}, - author={Woods, George}, - isbn={0471926582}, - lccn={90043732}, - year={1990}, - publisher={ICI Polyurethanes and Wiley in Chichester, New York . } -} - -@book{oertel_and_abele_1994, - title={Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties}, - author={Oertel, G. and Abele, L.}, - isbn={9781569901571}, - lccn={93033469}, - year={1994}, - publisher={Hanser} -} - -@book{klempner_and_frisch_1991, - title={Handbook of Polymeric Foams and Foam Technology}, - author={Klempner, D. and Frisch, K.C.}, - isbn={9781569900499}, - url={http://books.google.no/books?id=QbcZHAAACAAJ}, - year={1991}, - publisher={Hanser Gardner Publications} -} - -@book{gibson_and_ashby_1999, - title={Cellular Solids: Structure and Properties}, - author={Gibson, L.J. and Ashby, M.F.}, - isbn={9780521499118}, - lccn={96031571}, - series={Cambridge Solid State Science Series}, - url={https://books.google.no/books?id=IySUr5sn4N8C}, - year={1999}, - publisher={Cambridge University Press} -} - -@article {niyogi_and_kumar_etal_2014, - author = {Niyogi, Debdarsan and Kumar, Rajinder and Gandhi, Kandukuri S.}, - title = {Modeling of bubble-size distribution in water and freon co-blown free rise polyurethane foams}, - journal = {Journal of Applied Polymer Science}, - volume = {131}, - number = {18}, - issn = {1097-4628}, - url = {http://dx.doi.org/10.1002/app.40745}, - doi = {10.1002/app.40745}, - pages = {n/a--n/a}, - keywords = {molding, morphology, polyurethanes, theory and modeling}, - year = {2014}, -} - -@article {beverte_2014, - author = {Beverte, Ilze}, - title = {Determination of highly porous plastic foam structural characteristics by processing light microscopy images data}, - journal = {Journal of Applied Polymer Science}, - volume = {131}, - number = {4}, - issn = {1097-4628}, - url = {http://dx.doi.org/10.1002/app.39477}, - doi = {10.1002/app.39477}, - pages = {n/a--n/a}, - keywords = {foams, microscopy, structure-property relations, mechanical properties, polyurethanes}, - year = {2014}, -} - -@article {shen_and_zaho_etal_2014, -author = {Shen, Lu and Zhao, Yusheng and Tekeei, Ali and Hsieh, Fu-Hung and Suppes, Galen J.}, -title = {Density modeling of polyurethane box foam}, -journal = {Polymer Engineering \& Science}, -volume = {54}, -number = {7}, -issn = {1548-2634}, -url = {http://dx.doi.org/10.1002/pen.23694}, -doi = {10.1002/pen.23694}, -pages = {1503--1511}, -year = {2014}, -} - -@article {zhao_and_gordon_etal_2013, - author = {Zhao, Yusheng and Gordon, Michael J. and Tekeei, Ali and Hsieh, Fu-Hung and Suppes, Galen J.}, - title = {Modeling reaction kinetics of rigid polyurethane foaming process}, - journal = {Journal of Applied Polymer Science}, - volume = {130}, - number = {2}, - issn = {1097-4628}, - url = {http://dx.doi.org/10.1002/app.39287}, - doi = {10.1002/app.39287}, - pages = {1131--1138}, - keywords = {polyurethane foams, kinetics, theory and modeling}, - year = {2013}, -} - -@article {mosanenzadeh_and_naguib_etal_2013, - author = {Mosanenzadeh, Shahrzad Ghaffari and Naguib, Hani E. and Park, Chul B. and Atalla, Noureddine}, - title = {Development, characterization, and modeling of environmentally friendly open-cell acoustic foams}, - journal = {Polymer Engineering \& Science}, - volume = {53}, - number = {9}, - publisher = {Wiley Subscription Services, Inc., A Wiley Company}, - issn = {1548-2634}, - url = {http://dx.doi.org/10.1002/pen.23443}, - doi = {10.1002/pen.23443}, - pages = {1979--1989}, - year = {2013}, -} - -@article {zhou_and_huang_etal_2006, - author = {Zhou, Hong and Li, Bo and Huang, Guangsu}, - title = {Sound absorption characteristics of polymer microparticles}, - journal = {Journal of Applied Polymer Science}, - volume = {101}, - number = {4}, - publisher = {Wiley Subscription Services, Inc., A Wiley Company}, - issn = {1097-4628}, - url = {http://dx.doi.org/10.1002/app.23911}, - doi = {10.1002/app.23911}, - pages = {2675--2679}, - keywords = {acoustic property, modeling, polymer microparticle, sound absorption material}, - year = {2006}, -} - -@article {tesser_and_deserio_etal_2004, - author = {Tesser, R. and Di Serio, M. and Sclafani, A. and Santacesaria, E.}, - title = {Modeling of polyurethane foam formation}, - journal = {Journal of Applied Polymer Science}, - volume = {92}, - number = {3}, - publisher = {Wiley Subscription Services, Inc., A Wiley Company}, - issn = {1097-4628}, - url = {http://dx.doi.org/10.1002/app.20170}, - doi = {10.1002/app.20170}, - pages = {1875--1886}, - keywords = {polyurethane foams, blowing agent, modeling, vapor-liquid equilibrium}, - year = {2004}, -} - -@article {lo_and_reible_etal_1994, - author = {Lo, Yu-Wen and Reible, Danny D. and Collier, John R. and Chen, Cheng-Ho}, - title = {Three-dimensional modeling of reaction injection molding. I}, - journal = {Polymer Engineering \& Science}, - volume = {34}, - number = {18}, - publisher = {Society of Plastics Engineers}, - issn = {1548-2634}, - url = {http://dx.doi.org/10.1002/pen.760341805}, - doi = {10.1002/pen.760341805}, - pages = {1393--1400}, - year = {1994}, -} - -@book{marchisio_and_fox_2013, - title={Computational Models for Polydisperse Particulate and Multiphase Systems}, - author={Marchisio, D.L. and Fox, R.O.}, - isbn={9781107328174}, - series={Cambridge Series in Chemical Engineering}, - year={2013}, - publisher={Cambridge University Press} -} - -@article {baser_and_khakhar_1994_a, - author = {Baser, S. A. and Khakhar, D. V.}, - title = {Modeling of the dynamics of R-11 blown polyurethane foam formation}, - journal = {Polymer Engineering \& Science}, - volume = {34}, - number = {8}, - publisher = {Society of Plastics Engineers}, - issn = {1548-2634}, - url = {http://dx.doi.org/10.1002/pen.760340804}, - doi = {10.1002/pen.760340804}, - pages = {632--641}, - year = {1994}, -} - -@article {baser_and_khakhar_1994_b, - author = {Baser, S. A. and Khakhar, D. V.}, - title = {Modeling of the dynamics of R-11 blown polyurethane foam formation}, - journal = {Polymer Engineering \& Science}, - volume = {34}, - number = {8}, - publisher = {Society of Plastics Engineers}, - issn = {1548-2634}, - url = {http://dx.doi.org/10.1002/pen.760340804}, - doi = {10.1002/pen.760340804}, - pages = {642--649}, - year = {1994}, -} - -@article {greier_and_piesche_etal_2009, - author = {Geier, S. and Winkler, C. and Piesche, M.}, - title = {Numerical Simulation of Mold Filling Processes with Polyurethane Foams}, - journal = {Chemical Engineering \& Technology}, - volume = {32}, - number = {9}, - publisher = {WILEY-VCH Verlag}, - issn = {1521-4125}, - url = {http://dx.doi.org/10.1002/ceat.200900202}, - doi = {10.1002/ceat.200900202}, - pages = {1438--1447}, - keywords = {Mold filling, Numerical simulation, Polyurethane foam}, - year = {2009}, -} - -@article{Franceschini2008, - title = "Model-based design of experiments for parameter precision: State of the art ", - journal = "Chemical Engineering Science ", - volume = "63", - number = "19", - pages = "4846 - 4872", - year = "2008", - note = "Model-Based Experimental Analysis ", - issn = "0009-2509", - doi = "http://dx.doi.org/10.1016/j.ces.2007.11.034", - url = {http://www.sciencedirect.com/science/article/pii/S0009250907008871}, - author = "Gaia Franceschini and Sandro Macchietto", - keywords = "Mathematical modelling", - keywords = "Model-based experiment design", - keywords = "Model validation", - keywords = "Non-linear dynamics", - keywords = "Optimisation", - keywords = "Parameter identification", - keywords = "Process engineering ", -} - -@manual{RManual, - title = {R: A Language and Environment for Statistical Computing}, - author = {{R Core Team}}, - organization = {R Foundation for Statistical Computing}, - address = {Vienna, Austria}, - year = {2014}, - url = {http://www.R-project.org/}, -} - -@manual{MongoDBManual, - title = {MongoDB Documentation}, - author = {MongoDB Documentation Project}, - year = {2014}, - url = {http://docs.mongodb.org/master/MongoDB-manual.pdf}, -} - -@mastersthesis{shermin_2013, - title={An Access Control Model for NoSQL Databases}, - author={Shermin, Motahera}, - year={2013}, - school={University of Western Ontario}, -} - -@mastersthesis{nasholm_2012, - title={Extracting Data from NoSQL Databases-A Step towards Interactive Visual Analysis of NoSQL Data}, - author={N{\"a}sholm, Petter}, - year={2012}, - school={Chalmers University of Technology} -} - -@article{codd_and_edgar_1970, - title={A relational model of data for large shared data banks}, - author={Codd, Edgar F}, - journal={Communications of the ACM}, - volume={13}, - number={6}, - pages={377--387}, - year={1970}, - publisher={ACM} -} -@book{VDI, - author = {VDI-Gesellschaft Verfahrenstechnik und - Chemieingenieurwesen}, - title = {VDI heat atlas; 2nd ed.}, - publisher = {Springer}, - address = {Berlin}, - year = {2010}, -} - -@misc{bworld, - author = {Ingo L\"utkebohle}, - title = {{BWorld Robot Control Software}}, - howpublished = "\url{http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/}", - year = {2008}, - note = "[Online; accessed 19-July-2008]" -} - -@online{project:FireWorks, -author = {Fireworks project}, -title = {Project web-site}, -month = March, -year = {2015}, -url = {http://pythonhosted.org/FireWorks/} -} - -@online{project:MoDeNa, -author = {MoDeNa project}, -title = {Project web-site}, -month = March, -year = {2015}, -url = {http://www.modenaproject.eu/} -} - -@online{project:MongoDB, -author = {MongoDB project}, -title = {Project web-site}, -month = March, -year = {2015}, -url = {http://www.mongodb.org/} -} - -@online{project:R, -author = {R project}, -title = {Project web-site}, -month = March, -year = {2015}, -url = {http://www.r-project.org/} -} - -@online{project:MongoEngine, -author = {MongoEngine project}, -title = {Project web-site}, -month = March, -year = {2015}, -url = {http://www.mongoengine.org/} -} diff --git a/Content/Figures/Data_Flow-eps-converted-to.pdf b/Content/Figures/Data_Flow-eps-converted-to.pdf deleted file mode 100644 index f7ee5b81800359584314f257c7dcc8094499ed2c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 184088 zcmV)FK)=5wP((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;K|IxK=7vV09klu1Ue7zd9{k__{rdgufBdiG^>6?C zuk^zI|NY;7rBR=EU$0a~d(Zs(9hg!}dgs^ouQlttt@bbsa+nAqU`u_F5{5QUSKNX*|0sQ_0^Zo08{vUol?>tL;{U3XB|LX?YQ`Xa8fBwgR z{V)H?v;NmVocF)}(aiB&?JK{>e3jM5dyf5_V^-P!B#fl3XT9@yjXd79ubMJ+dfRd?C)qQmjkZ~b-tc*D%)lGI4*Sj0v{KFBWpCJ8?r&ATvG;*b6wtxhjScV7eqB4Z z54v_NFe`~Ff6@YvMX>DJDt~j1`hE(T!jsec8G+esXQn-#y^OQ%Eyh>;nY_mS7%=`j z7pCmdW4q$5pWotP|Kt0Ad&)=PzyA9Vj1K#M@?`$?52y35e>9<+x7YD(g2Z#R^aq6J z7>;CiPcPo{ACJumAo7Bcl6Hp3L8t z^Y737lL_(n_96P@ye03myU%bbPY0jfB)G=r@-r}bY=YQAx#UfDn;!<8(iG=#OxiyR z-tv7ga|>$xhW%z5YwHMGD%n>Z{`$39$ha|^LF|>O@e2XlH})Hb@o{_~jE&TP(`WK? zu3u2Ed^TtPKQLIi__~em_a7J%%>UmP^I!jPIsf&K7W5Eo-5l?~H?fu{wfB=_H8YN6 z$}um8&uYdKzB2X;KiBT-|67Fk|F(tt?@wg^L_^JM>!Dlg*#p`tnpV^?n}_d*Hrz3* z+@1kFd&64`+N)95lJ>JP4>hd1b)C+Y1Td)zZQ!9wSI2sf!N>QqL1n936hlQ?&z8&y z@IJ)=w_dh)vPvu8FU(cmYXH-zEzY_1ar{8v_zmt2Y}r9PzgJto0L1q}Y_04)gc)1P z=MT)x?`=prW`Fc~&jz@Imuz?v-?lkOI$GG10z|^f?P(P#xw(xAJ$}Or+T(_)HR6rj z-W9{>lM4WP!n|5fTmWC$wzXb+!`FT*(D;OJ&Hfh)@niFN-d0M`*6$5<%>H>O(<^bE zTYa=aw)_oxao5bo`vGQa%!NBrssCbJ*vj>6-oLOhr)8F~%OhW8fO z6FBs9F45lJ$?a~ z@B$uy=e@9=n_?P%(l=;R%xJHlTlfXmx7pMp6RO+H&Ek9wRAPt?Zh93ouxERj3Lod* z;j4QuI8{4EYwL6R!Tsb0v6(zH`#U_StJ(YwC}C*$TOwt^HR>l)d_o~4{uwB>Y4>Q2c>z_vi zVwmq6)4?%6Fbgbi!-KY9gJWX}##*-0z=Zg#ouAQ3-(cg?wr%!r>t(|gf`Ny46unTu zBHFh16J*m~Led!g02A;-s~7Op%4~XV#8eqP*n=gQYr6@&lz{n078{KxbhrS6HCPws#74Lg?$3|K8~z=PRrdVz|!2up*^`35?~6@Q>`A;H~w zN;VyU1%n~YC71#ufn4}P#foptg9X}fBLP8KseGZ6-oWEl)*It(Os`;>3spkG57u#$ z%{(w(*t9+G2P%2~fhFOCiyn;lG*$uU%Xs;~T5nn;=iP9{AoeG6y?Fh`NLWb&;wYs+ z6)?RGPwuwC*R(dG6wN!Y8*bET06)!_dX&I$r%Dd_6ZBv(DX2662_<|m&Jb6uJc^jb2d#>L%IAmQSVyG}loRXBG`X1uJ6q>6|SJhjw5tzA0<|#NLcL^$SmzgnI1!)_KdYIN* z)85K6s!>0E%-g`5^yk|d-mpC1wbPow?{?F!q>hzmGjr0Wvm%G3ZQ%{WK)lu>PBLWV z{E2Bxo@;)m%ukF|Ls&XZ8qPGW=}%0&l^~JUUoq$F{?;Fuii7xp5aDgO8c~q&Hr#2P zfCP+}&0#`=gjb&Rd@}XDx%HyEjcCTS{Q;>h2cD+sF6U+2_H99!dt#3^%fv`}DEfT_ zU%w9KFm?M0=YE^E%eq)Jc*gwTxLXFcc~Q*f5#){m-y}w(p`^|D^F?)O%ex-@Y=aM# z24~4Bk6VhQT#To4&>Mc<*$sx0lAR1U7&c~0i9?`ivu_F^84MeiN_s?H+WeY_Kn4Tg zpkD*rRB#Y>0^g&yB0FKjSq77{!;LZhScU=zO9fko0;e*@WhiV+r8Z%PLV<%h)i4zH zTA51ZhQh`S?4a2RC2bm}UMM?Y!$U5HuoMzJ8s)YW4#q8ogOQ~Gn4I4%g|xLx>h)nM z08@`sV8cxokC_Sy6jp9iA%UjSu@zEJruoZONKJQ(VJmFRq*ydtVZ-j1s9N4_sI6le z@QoycC7yVwEz4Hei!)8nH(Oz2q-xnmH{5L4HmFM7Elh=tD6;jWah~;;t+3%F9ocP# zjd^%t%v>N$omJ)n;ip~Z0?8;J%=blDvKKboWwOd%Afc^t*$W%9$Q;aG*o2j71(?0C z;YJ-a?1hb4(*9*HY(gtCqhv2^cpA?(dx3MOE-icEEU#GuY5&qQZhHZHE{}{ov8gB( zvlr5ks5$mR+Gn_4_CgxVOcvS;X&>M=ZhIl&hHe~tA%T6@V=p9V^!2tE(n@BU869s9 zNNHjALcn1!IOf<3fiZg_>4snS!U5b~NL$D}{n!hD#kZwS0AA@f7}Bbtl91DH(LpuW zL`7PrRfWNjwlFE_i0QPXn7ILv;Y>U5ej`8fO`a#}hmDb+7B+@>S71WA;GKFb2K=O? ziKI<_q(2^Bk70~sF{I_fM&byguI;uMVqRtt6JJ7Y`F&yFb+((KWLrYePMuid z7hbSaC$6_)MOhfVm%OGayB!)5SiwHY;y1k5*l-eu+GfE1w`3T_Vm4E}16L;(v&e{j z2{UpN%c29eg_IpI<8HVw;eqU64}2lnC&?H} zu670&#bd6+xJ0tklcALvyyS?7l`j0!L=nU7swJoOKXp} z$NR$AoE>&*3%Hpw>X^28_^x&Q3kJ^EPeiwQIb12059~VC!8{N;2R8lWz`TgM-`I?G zma{po10NW{iJxx}^DVOK{r-x1O?AT;l#6+Y{W+<_Y92fsO%`%zxs#0n)rcfS0qv%dA_qQsHD5$xKpz1Gt#XT2!jI5q!f;v$EvR6jdn>j~HnNkhSIf58sKjKmq5y4A~(7Ypvr7g7H znSv@@BM6S>O{}>_0N2B}08%Q2X9P4< z4(9u!D)WpK+!(&XF|tpjErdHp3c_Djh?-4QIYcxZBc<4#cL?!lq;LuA{R)kUMG5R~QD%W{j<&A#}FaEsJO!9h;L^)XkAxkUmFw}@koTO=^%76Ghl zk`KT+etn8@Te(F5k7F(Yq%$GBBK4_u%_6Tz-K^&FpI6*Pn_?`dNPR3i#hfDbnfE1W zgSZ<5R4jf*x^RViI^WD5!x(WHxCgn+c`h>t zgZ8+yo<62!J`k*f-@6K~aqlXh2-dRZz+f|u_;F%54w15oq_YdCy`g^di#e2OhG;lM z%9K{*&I{0RyDm|krjJ9UAZX&aNR02&g!FfeOU7?Pde7J85CM;y$0Gs`cCIFVh+*n~ z&f3Exf`eIabC|!`&NJkj)H}^10*Nv{Tq40J%_S0S(Oe?I29IQ{76xH15ik_`@XaLx zsixSjC*)k$&A7QlkPOo-qABMac9%$COyj~YNY{}|1m8TT&3N+~pQ8#hP<2gmd(ldt^3jI;Tg_GP_ZV?c#1#MDLiR0sMN)j^s;%$Fsr> zjA3tBA+8|-viYoGTiTGa`Mao;ehV}6A#)7+x}M%}GdEo|VOnc9BD1gf#LWn(Nb&l( zRjvB~_jC*mEL}fVL~V99kKFO4mYmpo;SLvv>t{@3!5UuiIRz^?`UQ_1?tS|Pl*(~Q zztL^+bo%h53rm~EG!LfEW5K`OP9p`)lzUk*tbCzp`w-2F?c9IiAoqU2LwDc>alkhW zBc0&<0&X~(KEbueea7%X$-wH=t}*Ocbbd(_qnitKns9;_i^h}!!wZhkT*oBCQc~rY zUBbn!7Wk61<6T;(aa-&kRiDiij6}8~H7v@d;tBA|DGuIvR;t2?pB{v%JOGy(wV185 zg?S@f85e_)+jJil1m|+z`>60jPvP(z9%fj&sZ+O!M+4kU_L_P3Vm5t%p*jbmYgznt zSs^@(esd}Vz)!3BrYu*PdU9`P3XpD^!IX+jEyoU~tH?N1<>T%UYnraRL!6OxsmR!* ze(n;vZRYpzCye6b7jR8Ouhzm^8^QWlAx}W4ym^)1tAH$}Sy%ZXAvY*^rTZ69T|PmU zWZTmMXp1)84bop26phnnn? z;B=9@rPwex9LBTcpK9C6Xh&%P&ycnQ`jo?jZn^>vH_YXNZ3*g>8Q^M*yKIi4BW3A_ z;v;Vsk||o~6;OuS4C??t(qvD&^?|c8PZ|wATU{-n_X-?I5oXfsvA+t~skW2Y)8~?g z*fE9R7IJKCP&)VTe8a3N(}$ZS`5I3@u>0u_CNq}5U>CE9XJ&n3e0X_4Ms73Xh6{A4 z$dL{=b}gj$mFl;Q40mFL(jK)z;-9z&6Z}SZrkc zKF^ap*qIuB1ANPCj{@gw;f&k}Z@r7o6?1PjlH40V-Y@u}MSl=T zXeoRE#I|83FLm4jLrnL)->CQ9As?%=ixHE+s0eCYNe7Tey@YhA*!rU~U=->qP?(sqrT^P7%&NKM_ zf|cGA1B*M9!SS(=9kQEmEbv}X@m#j^4KOSUj64^y*bZl35vgpg<4J(N>h7l*`J@CX*;NPJCaNq)fp7de2*aL0B|W59kYr3f**UlxEo?`;{`K}=z`^j z0HX7ryD<~#f_Vf#;72P}B;*Y9{fQ}9tbpOKxxlJ&3cwVV0iX-#f_ce!!REp_7^HOT zi6qtu`>H;h1uix|0q zK&hRonGB%;J6&#|CMh(K6~z-OOKt3(FVD3B_>}Ti5xj&K;AAZ?kMlxdj55sl+lupO zs_tYUjx>zNavq37Z$ALvx_`0o6UZ4Y`4B}(EKcXQ(jzZB#x>cp^lE`sScN|G=~8PAM?waQ)zy)a+2=V&;V|6-n`VKi7S{)^{9gor^@hAChnh}6`s%%GIYOCL={-st+-AICmj2p==we| zu8=t<#{?&tIUDQ$1A|fUuJ*z(pYXtvy%$`RS9oC>j>ZLVi;-Z}(wIB%U@C*yF1WD9 z+kvaB*9*g7J-`Vv4(ckXo!LwQe-31j4Oe!?lqh&2ce^iWB9 zRVsv(d(i4b+C-(t7f8AAd{NiMX+T-Ssm0#{W;R?JuCtJBnBs}s1#Z{oQ{&-JOxU>- zmtu}pdxz+e4_(n71z(`^)Gaf37)XZfX2Z)S* zK@SB$ba>v@r0 zdZZPd2dv}}NH5_FeZCK!aamQ($S7^Yll~zcr@arVb`#Zl&P@WX-j7S4EThbRtwlQQD0(cP!fs+>gAX0E0!fT?Rma~I zMSWg}HCFE5S0FbBkTIZAw94e9>EY!PC%~(>gaRaFDH6b>WoaJpwgAQt)6AV3(AHVV z4pI@JK=I02;%6NAkYXU{YvvE|nsas?FMYvs;Q7LkYjUtM7>77>=y5!NQq!SsXwr5s zDz!Tn0V;J$XO+U9`YV^9T%cDkt;9!&QcjY$67l1+fv`BfewI#6vlo`t$jq&^s;2e zoKwPWY10-nb7W&^Y2YNj2wcvQgp@1tmb4^ViAi>pG1Wv5ovXV9pBfT{FQ}xCsapw& zVk^{Lf>NGH)O^8@4K>Szq!%CBhC}wXcpbzPv{WG z512%hK;sKt2TU}aQt?AhFA`yf03g0iFAU|=3=Uab3O7bWAUT3+2IA>vZ1ODRC=x&i zGnX-*q*%C=)?-qYH?@RmoDbIWBfMsCB7A3=dNFw4LzsrMsuLz8M{8Qi>276BtS`~s zD!M@Qm0LwqJ8Qe@JKYbczGJNIstRm5Yr7;_V{M_+T}!*V0^4J0mufMBf-=7_bj>n3 zUBWF$aKDf@nYNF$%z4SeJ(y3%q7uou8Dm~ucOVx=nhRj+Z>kTOkOo6D{(QU{GnfBy z!>ZcoTY$6}-cJNMBQd5OS3p8$WKBoiLYmAxoEdKn9e(q)m{>`+D>lrM9xGwS2_+9R3ud5#j&+@^6g8rTVWt(U8a zE0gO{pJVMp!A3IPyi{=P@MBdFI`*d;FX-8hHxevMier^>>H4NzHv!{*mluH-WhAmB^nPOELkVdk+4Cg&bSrIU-t4&*E z=PETb?T*HcbxOB6n2>WQ1|#FB-p{kU>ccUxGEEw)~ThrOGonOxaFGi8EAZBzVewWvVr@;Yz;#ZYqQ% zQ$oHq#XpqE`LTii`@Nd7Pw~kuuO-wLzM=Amrf-u-=CP#{QvBp*%1Zhq|Ep$`tcyQ( zq-wNRES)XW*B=Wf#)}lZ%LM;@Fm@67ePiHryg;3Rfc?7Z!cc*@;HC{i;`E3Wv^Rti z{W&Oa#06WF!G+;6Bx_XQcIO3~iz^{Jp?*mIgRyr4w%=?rY0gI-LCe)48**#5$3`^= zVUrG6L~!72$M|5##13rA?tzCAff5ouS_=&4B$ntJF%qzNHq6c}ZP`}%Fgv}9oW{Zn zowIeXT|z=#J?1;#Fj|y@D8O$*YLDBuDu5;8EyT=~I6$XGy5^vD-pKp-mMU^1_%i(TG=esE=v z_-trnpg6`DW1$9H#dO-SSeOi9j9G080|Vj>Gls-n#X|7H1UWnF1(S_eMb>KuGM!gL z)|*C`{0}y^(2x7Vtl?E;2b}qWno!}k5y*Zx?+4o~L_@$Cc)z`lNW+nmVA|@iA(EQc zFwBy{ZP1I5DVbl;O>GL6&H|0iroc%-W8;;aO&{W(+)7uMvv3YnyX(tWq zVcbKkoZ!9GkkYMPPjp2_1iUSUXI&G+=FstN-++5BErT~T!`H+X2;dx>fEoV6+pM8w?@<0dd^1V-edxD;Eb3%24J7lwhA=NBf^a1Omq%Ra*hGOSZD z7X))aQwI-6=3vgG$fxq}b`J$d0q-ZvWbhu&CGX#md$@N|ai#c$yJG4cY+D+mhN zv&`#&0?w;UWL)lp(k%t?VO9r-Ix`9Ou?s#{s%NM(f^1$eOt_QCD@A{;fU{j5T^J^p z<0pCbiEJzmX@8gTmDS7%Mv*dI6ycGaHScv0PrnZumTi;+V=J~E$x+)APF~2Rs@Q(x zHb{C=WDb%}n5Ktl$rnUFm#r3h5g~LL1iI;Fm74@>rnLS31;#xY#ha;w1W6%HW%O4N z6p~cvnFUErrp*@06F(KmS}EtuU^a zWQ-Zd2p%TJLSjxvK0mw@P!KX{zM1gBT@9nFAI1FbPw6Ll>vJ}WM+iG-%mRp94l_YY z`6F84y)I6n!sL*lL1K7#Q3Q%*Od!rNwlbsd8##f6p+nU`Z$zGblB~;I@d_v_k_;a?XHYrW}~J3y24- z&NUT7_tc_Kbj3beR2^9N<~$KnSQrq&kV7%*VOjQwvO~|a&`;n-ZArof5t$xldc+T; z|GeZC!t5pCXpkbt^Lb{#i277MlOfQID<}Jby-njWlCn>J{TjFcWS=`pu>otZaM(=1 z1-!_ZhovGSTqaS73WHb`L@iCpwb~d!Q}qO|(a?91x64pSEkdT52BE1UhNi9~>_>hS z)Ce7gQ4Ryqj^MShSrF=lW-ZcU=>Ht>wxk|i0TFE46nA2s1qVDdH8d@(oruCTF+}x} z)!N@ZiqSN$v!7}zsE|=<4~+$s5Q!~T4tz11So@Pf(VFjgeI%aFw|aiKS5@-W2iz zJjBP0yveEf(xm%y2!zcs5%kO`F!6T;MN7yPkFA9_lx5uu!=Z<%lP2X5kIJ;us{F?Y z-i280S3D`CB>2HJ6&Lx&G{yTg?ZM^hGVKCz?PsqIKIg;`aZd1)dn0g8DpN?{j3dP+ zi>kpW5y+NYhG`P}Z<~Wo%`q!%%z}F>9DQ41bHltt#6N`)0 zzX20UTx@#+x9d!%DRg#&jWPDB7OSfkjLtL&=Yx>V&vmkpNW1ic@lu;c@LHRBaATAN z(K&H;4Kn9h6gT%%@WJdAkPN3ij}DLf?_X#?D=UYHfk<&m9WfLH0@vK5{U;(1nqfd>$A9xI7Vu6tq8So2{pHJpsM=WE=!ci?04$^ZkriVY8nvCekhZOVBJip>6 zZRQ9+CIf-eun+C%%LRDXVhBB;L4x zU`UyOjf*hm3H4^!b14_uPV;d(lY%xeA!^&1iJSAWbcI8?&^XArr1TBg7SdChvx8P@ z45Tt85pTej=s~$-TDXv@m0Q#rA-dujVbK1BhsXwOxg@UIVlkT^m%UMAWQi?5^azY@ zxAq(nvN{|H4`-+y4hKSPJzy3mn5nFzI|t8AA+)~3nGRaO4=Wnv$D*vOTM0>-H3)N0 zw65$YoXYG(M$mic(@u9jZ^T!NOTa9NAowtiK!(ikLHat>3dG7%v#h*O2N_b$Fv|xk z=Tf9vEU}THacFRvaX2=1Q{`d|F&|5*F{yzzu!B6`8S+e1Y6$iM0cY7%ALBa*PEFN1 z0|T9|GdeT0r3IBc0wduMco3~wB)Z^OQ`ji7U7r$60-fv_Ne4}*A|&xK&q=oup%YT| zxu1X>X&1c7o354fMpeQGFyjT#d@TZ-JH5Lv_3E{Dq!)^NP4hgjpbT?W67(5&JlDvxeITg-^`k!dyZ*&SGIwO_NT=j zO|v5f#Qcb3%iP9MO1OOrKLoHvmWin5H-94NM$GX^$4v<4$szS(X)Fjg=w@5wdQD5p zZX{=zcMOa9D6ZRV4J;j3AJ=2Av#>)!L|FSI#}!(OoUOox_zhZH%Y#`ANkqm2?(^yg z#-y8J&ZOn30)yA#Tiy6IBKKtB(w>d%9r(I7qXs{xCn}s{VAygZE?!(B=Yh&4M!N7u z{^7C%_bhd~){m6TO2ct7b@sq+&t4cBo56m~;=(80+e%M3#ELn6X<3F`vd#V^1}aPu zQ*T7}5jNW_YVacUmm>a2(6%PbYV)gbe!EnNjak zLOM>$F-YWO)6x}#K^I0Qi^jDEMxnFCYmGB#-XScQH1odIK%Y`NUyYrtVgdi+A7{~w zouC1xaeMw9?R7};GS=s^oT>0zOnR@&5v-oLQW$xD!KT3n!klAhN7^sDHsaHv^iVTK z3scHX)1(lgF7K`E6vU%*O<=E)Jwd@7N2>uLG9OWfD%yf}ru0`On+2(v5sCh>Ne*Lb zC|IRO8j7hfs~nqj!8WF%C#!bB@{~(rAS!e=~RIgkFgg?7)^@m&%lhbVoQ8&-&_`7Rk7EgM8EjjRddFe1IkEdLnLZ%(TCtl*NGP}OGNDPDU;B0jV6*Xo@l&o{xqO#&UNp`u}2`hdwe3ua%FD)ja z!z2knzRL?X-(_ITcM&NB=DXx4=yP-5CFAYsij?y*GG>gI#Gu1@nb6=Ad98k!MiJLyy7}!+Xh-Lep4wXzYb~FCz^oyqA&6VcyFPulMDx zjNJ~o5ho>{u#;kvhbM&#>F!Hrw2U6oB%x)VWSLE4sV!t!%ZbhYUhcizV9{NY_~V9~ z*1^4(8#7eiQQk`)q;cd;9JFv>^0;z$+iKzM;Tb#0Hv_2}l3 z)Erqg;k+aly4;!MQtdb|$;ayLybMk!|4cAKlTLB8!g(3YH0EH;*5)1TIGmTkug!TG z{5;OV2gCPt3I*ia>G^$OnB@CPXdxw4mDMyO_&WRmj7!gER)Q$fFcvK?f>ei|FD}Er zJLk_$nJms^lESq-HioGQN?4PY$-sJxLt*BG#r|L8Q7owI?kO=okgD@T&{Y3!(d5e2 zrH+wEvq94BWZFw&4M_cov9x)1(maR7{90cp*dLy+ z(q0}^ZwJdm+{49~(70=*Gp795p%6hO^ae|Z#qo`QJL#81*-dYUH`9CC4t z-5y5@LQR&~V#HCYD`{p^Rjs5_Z@7zxQqzo1%6_cz8g zwTeb8Nkx%W^d2R&j-!rr<}sDn;1flc*nV`@G(T6#$k~@M=-*cP^E?<&RoJ#I6jnud=kB9vmx@x)M6D)^ly?Htn79WDthWaiM=ddYjr&-H++J96NxwRNyCay!7P zy8nUj8v9#x<#+uH!i3j_kR5SAol1axUQV40BXcO=MqA*5ha8O;rYXKV;Htp-N8NwR_F92BPb+7{Np3M*#rlm)I z$~l)Ke0WkN4u%(37c8Ugz|GI%$KhvYNG>cN%LB!(1{X#)OfE|X=Tr`gXZM6RlNiO% zbdoq6hUr*MxmIatbvZ-edGD04$VXb{UMyIt_Gpax$_47?NNeq4F=QCbM|;xEKRWB5 zoxhu6>8}rWXIeivo_AS&wr*pZQfVV3N9-%8!}z{JvdIt>1f|)}CbRY|kL7GxFjwrt zN=h_xaC#<;ojX%n{B;+#{(&QmeFVCAjsaRUq_Hnq7o4u9XZFQmck%+q0$n`Gme36f zUt#k!aSNnyG*hEIjWC`-$;|5qnqu&;Pt<8Pit)v&v<-7bfrg~1Wh>6%DPA( z!a=2R(HV3s&tH(a8z4Upf}|ySNbxSkJpF+%^&4QfI6dav6lHFn&G$He^Ym{xzpvP{ zgzjG5c&MeB)oxk>o&5=-*2xnV19;5rA6&F`(?mq#p!^*Ed}gDJTf#!SXyg2SsFl2X zu`u{-ey;wJ_u+mKINdA;oU1U+732Q?gkZ}a3fngjIaD^t9zs$Bl3ST(l{@#dW8?^R_) z+`)y;P*>a{Q}de5X-UxJWY<9S_aE3y-aweYKcOkwJiZ|Q;B))?6S|_w4yV6Ap(~o7 zWv0iJDs#sC{UlhLAM*E;9DDft6MDxC3rn-?EfJgBf>{21*@{@D$*}_xoF^Qgxl1eG z#-L{}#S`${l*4E(zb<_KX9N8c&G@1*TI_f|jF$YT$pb0#kR+mry(%)UN%F{j{^WY? zgpmhVG@rk(Uby^!uHE-PEG@h(uEg5_FYRlHtJW_XE01>9_Wc7BFa7x0kHW(LPk-tk zmlZBUSI`s1NEpOz`7{X^kOf+|Cx%=Y+=ha!+FKg~`an9|!9cA5msx59@cj$H_6P;J zFt~n$G8%9F91n}x;sioc;ku2Lk1dKn;rh&?`f+Eoh5{EY*CwG#mF3nfGKU2_7kL7c z*ToxVmm(ArU-|)as{(`glC&UbnXNOBqQBTK!;^P5XgMQZLwRG^0_uX%Iu9VK9TTjc zvlf^fnG5HAg_Pc3P_%D;dhyfc{M0l2~xv-^kfZNq)VhZhlD*UK_c!V;ffmpCdFtRwHgtt zY|-``9R$f^gZtdkKQXMhf5Gkj0S-pA~tU zaLwQ94HrdyUKqAUzu>Nl)&UP$pNQN?$mGUMCKw%<{eliW9uK_F42N;d_b2AjHVTG~ zJ0d!q-=I!^VTP7CV5X1;>0lnc-^65dy;9h$m?g_V5AHfH}EHnS1k4V3TA>avBpoZ8{3XxM>fx3 zSgT1>cYcQO6eI&VyF=W^(=UdoCU~cUZ$gw&>aXCaNK$XF9~_slik5F(d4)&Us7iwU75s)!vE)i98Ifx4avu~3MZL!AsH>f^{}W2&8d)7Z1t(>q8Y zZIaD4&ccr@QbhWkS{a0!qi)?(gDjDZG1^6?%2?{x1B!Sh%ycg$nDPf{x1;PoLLB|0 zUgY1|h}HPtV79y$CsMWIJ2YI`suzr0n^_+}IfY?Kd*zrWbj}6h({C_YzF%Na5kRs) zKLFZXuXBvlbM|DpCB(n5&w#Rd(p0bABW+N?ihLcH*%WDu&Rm=%gvn4=q|;7;l40qf zn8GmC@E2(>2$-a-SSu2K9RB(hyX8;#ZsHfPIlkYJMhbv+iZBTl6l0RzDQd22nHNrT zQ%!^qO`^7WkSuQdNP$7rQe_X(qq0za{WujLL7PWkIT$G{6XEu_M>2&4rIN{WTwg)C zT0|+izA|zBgkfk}sFcichQi{NeO+NeaJlwV3JapiO(8LT!h_^Z;h1SLgTeI?g!0qO z2#v)?=C7R17AxZD)1g^1oz4W88AoZhC3383aE2ul>1IB(I*ff?4 z!?n3!YAhFQ8q0;D#&W^bSPtwO%Ne;emJ6oFa>1st9E|HHNIFSeuRk!Mv0NBxEEn9~ zAE2|pgIQ{Xpu*uUr7zetmJ36HdBI(oEdiUx;$h6Lv0U&{9JIr(v7qQZQpt|S@_~7< zjSfo)dk)aiST4-a5(g|1>7)}H%Y`XUDh6vUd|Qt!IGFiCDyFequxTu@t)a1aaQpd< zZVW;i3&P=%q<&NuBpR62q#am_VRV%x4pyivo^=(gh2S@tr_@<2rvIoco(bkE3z9S@ zwInGdao9s;33lL5IJYpJCHP6`EWvSXLxLmOM1yC!&JsM$l$PLmrnCf8be-jJP3bI$ zt4eA4$#3U60P9zoJ`VLJU!8M7NoNwkKyPnp7Q8A3sxFgdajXpdehNaVz>MW+e}kgVz)zO z33@OQ7W87W-RUV*7AH8SPnr;V>tvbjpfIQkjA3QIxepMnq}f4<8-vK zpV+F(c}o*)h%w|HE_{~0e=R!nvG#2#p4sy_5_(G@mYyzRKEX;C9%7zwklA7aw1XV0 z1l}+Zbl#a^mB2fYmqHgi_OCv2lPwk!!I%o$dah)g5A0}_2r+jU0pdz&jVGQVUtPdF zIoIICJGLgifLJ}@+tCva0bC>ga6Hk`TRH>?o_t)D0Q z$1fvGr2Rv*cX;@S6~dBGQNtH7gwj&viyZ)UOiU654c;%y2ECqT$rg| z4ol$s(I}br zgqsWLhFz1pFrAUe2Zk-`f(L{6wqWU`d_8@y5Fz!BMLW%PAP zLo$A*7D6#e$r?v!=MmZ?vP-3~`>jo_4rZTYM?y;CEa|d|cFvUp4VXcL4>rn;{W`2;0i~9pNF9L7d8vdk>DGa4PztN15J!(CWhH+Z+ zC-Io{e0CrsitETEKUd*S+L$ih>x-3DXV~0H`=FXu;{K$Ksqb~Jz!<2`w7NWg+>69aOa&xuja!jJmdd6VLOIg`#Qa%a*J9&#paxWC7_06W6Qok=`L zGU6t zz$7&rNX*vuQ6fYyF-0$-WJFf)6W;r+Y^^KUT!Nb;HfYT)xIGM023uUQb_{0C=KE9J z{kEXr^9Xjtvi5U*nMxraHIQM3>Qr|gnDzzxftut;h~2W_>N6%-)HZ5%bWv#aMRZ8$ zV4x9homu;x8XXsAvNpVG+lQ;b8z68GbBl%p39he}Zn&9l9GDQN7WerV493B}6Bnki z#(aQDQQ{7ZFu$%BbUr*XH;Dbf)HqMODFG+z?RYT7dO4`KABZS_z|KVuMlqZL z8y`AwQrl_oDB&3El94`sLrpz`RGrMEN|RKV^m{aISP_>S%C|-3y2{EovU!oaNVOXG z^TjXPcj@;$KgK|ZQYI`|JPd+@PMaSl1KQDWs{VwZdjADAK=R$g8;|1qgCZWKeqq>k zM6wm9setB(;r(G#tZ7_CTmx-rS~%;$AXoo5pw=?UosAb9EY&gRaD6gNS$znIc2lr3 z5egyE>jb|h1VoPr8B9o)O=dsQqnl7@yPwrTHuJFchRi@*csa18Nz8SgK&U&PK#8t; z!DPag6hUpCS{VCpbh*5Kz-O)~dT{$0Jzzeqm8=0FlB}s-{E0blAu=QX731HImwqDT z`29ds>WC;0kV1$g>3M%?tmv8@+_&HBLw}|V;pi1s%Z)Sgpn*Fd(*XvA%?Kc zsRSnG<$N;;BgD!NQu(Lh>lyQU@)cC>m=jfAAU4OkV#xo*oVR}d@<#~!f5hkhX&5`& zX>4v*;F4uylY?Mh5IUxzx>kWJY@Y;lOxycj;7e1mG-T%9>4J(I`$0swquNnHp&G$p(Tca#+O=diiKsp8Wa`rYiq#^I0E-1&rTK7=F^}qu!T|=@>#RItK zoUfKt_TAyHUllxT9?bWJsqD(NF1zk4^xwyhs4z@^^tn8C_?C3N6Oi zze3OIkNt(|)^MrP>b>WI!4*>Cj-X6_ft!Exj-*@3mnXF3C9ChmL!U3>WwX^3BP^fKt zw+)BY4`$_lp0Exw1x12pj*bfjMS_(1(CwR*&M!+-D5w#HiCN#1GbHZ|u`%d&&b~K@ zG~gVtN!Ddz!$YbII^}TCgExlW7-cWZ!!I7#T3ZDMj_?(!5+uf=mNif60i%b*VB$kO zVI3F>Zjc(gC7=!-DUqdsu&$_EMuJAXHOkR|APSq9cGSBmAer2CAiR#f4G9~E9Gn8* z{$xe@#Q`S|GDU+SVvui|UT5dUo_^8>ju4uK%~WoB2@D*Cn_i$5)-J+Du&a{?3Kdm; z7gwD;GH`xvf~m&lFi`Zvh^2r5&N}1Pi^6ACoEc>*D`?k3UXneG-1=eo+Mv53ZX^kB zM(W*H99B;bgo(xz*0U&n;aR*azrJDZR5*yvZYl^9;ShWF1fxBNDSs_8i0nAhgaj6xK#Uqz)0l#KOsG2Vi-3Aei0JoaLVd0$*-0vG$|!BDk(+&}XK;eHSiGZ&^n3APH~J~A(N?~Ln0AfJG9#^F))5MQgr`rZ_?=u$ag1cNE7iN(p;}>ujkS~H8#p0`r@n0Ms)aNe> z{M;~IAs%&KP+?C&$=1B4paf%?o-jjsjH=c-v2ZO<9|Le=T_=NGyrE7(p*p0qBqewj zlz6P#I%Q;TOjDB%MZj*jt9!{b7J!OJRCJbW6*}UFilv?(f-?Qxdvv&h?@1aVU?-#A zXdsB{QE!rR3b(fC(W1)P1=TRw-N<2tRjFr(V<6J_i>S{VVr()lp`eF+?ly-|GqAgs z+(fMec|u81z7DHtkc6#0;S`1{Zp?=;c7qFjwwCl83%bu1U>}6zNN8iT!t)GHWa-3Oa(ScNcYBqX0%Ms2>d2b4d8KbAv%BCOs=Wxgd6d z{gXsuCgG7+(yPI$D4ywUBLYbQ)*H!HgtK(6kbxVZ_HR7#NN=?-1clkUh)cm& ztPKojT|QvD!MZSy8p){VjvJ*+RZ2+|#90IrGehEx0>N_Q6)es44osu4xn@CaN}MfA zTqWIt0zw*~vhGV=dlH%VVl&l|)Te-Se{!~5V^j_gqBx03k-}3@E)#M3zEgINl$0Ze zfii#jVkii|6S*LSmT+=5XU26R&4%uTt%O*j%7Ie#61$akpn3X{cM)ROxCH`KX``U_ z7C&I!JX|4wD5r(%9L%Zy8J=0xG8-doOjUai*9`_cF#psZ6sT+A$1X~LM^+9o1p&%% z>>ly!_5KN4&wy!ap9y@1hEtfY5!nY0qxk-^{jeucDCRjj$AKj`Rj!{HBlU0g`7v|l z4@~LuS$UEF8#CFVtRO08C2J-?N5dZof5+QN{0$S|_LqJlP?&UmA|CD@2*u?ny7STluhm`xiIvPq42?w)kcntA_6?a;UGg50rE?+qHW?E zzm$Iru?CZZ!~J7k3Ekx*!YasU?A#-0qUCV}EW!%lEd7STYkl}U_`2fd3 zb};S^!)??QdH=+OKMc3hXytKXREpFQUPIhHWZoU%c*rn2WD&cE46~<-VlJ|?KJFsJ z3TB#+a*@RX(?f>J6oahaJ!EH#Pn!O@@Kb@V<5XMGr^VntgfGyVCs+W%}HX(du2jd5{b({S>jAC#G`}<&^!8DdsJebZ4g9A_8%mkPpF9jYL#VQ}T@}dQ>>khU08_CqF zny)9yqaw-yXRq`en4)s=55rg8$8^D6CvZ#nE+xo$=Y_F%0=C~ws1|&G)Dd)31?YoL z!`!mwdATq)@qmlUG6$S2a4Rs{vfS)tZ7=dExd)BHsbpzivu)Vk~1 z8)k_-_ZfN__2X6ait*PIACI%F=uzgq&^kXkSce?}^&j90pCq3*gf`<_zd+x$^k{x# zyvz%R&%a%z?H}Xwb*)dR;e=Hx-eFsVG43ZAaewF`v*ON851E(UhaNIZe7n|sc21|2 zZ`khQ+V$FeNh%VDT$t4YBtSsjWEI2B6T{u8q0W56$saEzIL7xMJVY0~swsSYsezE| z-9n(v^PWIx^kBFzfl=4e9BYA* zH#k9Eb_10KvC(q&cD;Lz{PRSrB0`cmL)-O2^D6wx%J8%7!Rx`)!0noGF)PDgnrW0t zMb{bZXukLTJ(hqxzIW!4EVIH`(cE@kn$Hi)P%ZJyR+2ZhI7W7qRcd#~dr(I>-dVam z+Z`sWKO=aqyxj4A7Q!9x%nMlSOiO74aW-*&E~TDJJ>Tb2f=xSG4mQfYX`gIWT{_|k z>(UXwfa%tCe*zAga<`L^GcnTal>Ih`XaXhj#njz2Sm8-eVEW@gB<* z=7KkM@UzK8_dJqosf?(7Ezc>?TK_l|QrM7H(N`$>zi&)YggH!Zb1$--{HR)91kzY8 zM|-=Ilj$gfH6PDN)slcS=~k$pbv%8xtffvNfE=5s+i#9qZ&=`~xsO~ii!$rvEEcSG z7*RuNQ4mj{;lNs9ae6emea`}1FJCWXaCPZXEx>&${r~|quM^a5i0=prCY_e5@KqYA zJu6|O(BLoN;a$N{nQ20tW6UMxG+)ZINaPWbA=i z8QxUjQiRhoCT@x_+IjSIc^=z*WW1jaf5K0P$#_e&;3s7hAl$oYluTA-#Cl8uq213h zV=PA^S@=Y=fOz?bE!zM&112ghTdA-;w0lT+dUWHfY*s&Adz&;MiB1%Im`eN*1CHkv zupV}fANZpQ<8-usjR|Sw_2n*WYlGq-*O@iV&jV^dLb$xV`NL7?ou`>oJ$N28hIO4L z={+PCu}z%O>`k$QL8c3*n0)4YRDJ8=((jfs?J9Azx zoLp*Hh6$pk!-Zcf2Ed$+KY~f6{zd?DN!46f1MpLZA9=UO%AM^BhHbr=LtTgy#$y@Zc-_en} zdISBx2zw6LuVgO_kN)=`%s_>)o%DJC^!u0Rj`*h; zHU89)kmZr?Wn7IkSY#30p$dbE ztc2%8wXmYTSh(h3_4H3v3k&8e+(*esXkd_6EYt;CRLg}~qDlV+MYSA~^QacjmGGz* zrZG^IDXN7XBs%5D^aLm+OZc5|LiPS;zAk2Fp~5zGe+z3lD{IyPy2UFa8siS{a|o-B?-$huWKBxTobo=fESa$eCtyjRwj;smxN zcBoh{4{Ra)oWPa?dtl4KFtCM3C7lRP%fmW>Eo@BCYsf@T^a=~Yx;$LIa4i13o^T>_ z_q_9*2yF3e5D#o&?#F#qf&K$Dq&%=Ch$sSEh^c0bm3hd@jRYsE2yF32C2m;6*>D}) z&rU?P@N~^1Nu0{eh31V)PGpOBKL|4bROhRm?!^m#r*&vKPYn0-+c%8LBDN)=#gjq; zbmM{zD|RPSK48zzKA1<$PrWBXeBl?15s}Tqc$r-Qo>7>9bIumAEhLk1+0r;Y?Zmbm zsbH}!Y(+yak12oF)Wt-kw|qIVEeTDP#>+xmxEHrAZ(9|SEr)3+vgI%pMYfRjDO4tV ze$itJ@k%1vX8thjBw94lljxBx%y<%iU}Q_kUSk*Nn9*J*u7$FiUL*6kL7FR6UOdc+ zKH^#^|BE@(@^~HnKyfWUH3%7TEoCvbP%92bYDG)QWT9kVdzJw9# zmuT0L?{L}un^Si~p;**vzCKedYRl%6HmTgYC?zzDirb&#rQUEiKezORSiR6J>KLLW ze_}q;NCPhBVvL!=XOXUNOgq7@TC7K_YpTV{MpdR-tZH6co5Zs7eN>Aj^U^hoC0-et zMZlq11jaNA`vF%hoaT;Vu}sLjVzIL9a8oSmWaW!Xv8Yq*I1c4BhleQ^ShkUG#Ud8g z6bmdpJ+G!%)V{QAp;%OSzAr}6v)GR56}3(KLDwrl$L09u4;`Cc5ftTmMWtS1N(FjC zjuQ-&&>w2t(Xt6WCdY}EO=!=w(ore`4y7V6QYvsvJYrJ=8s>F$t)jxWev}H#*;CGV z&cNYrodWCL?+1*!LZ>i(b94&usIrbu0j^fA>uzv8g)W3nA@aFY3fxSkOQkS^3YEgh z=~5|HetV`6RSG*3u2T4!IVuHCRljr!Coq@yb!PL9x=vBYdVA0vCD9nB&`D$PwF{M^ z_F)(M_CVKtcYMMK?5GqVuyt%=?pDr6r8uyw6bB=f0`NF7Y8#e)byNyxVy;reC`_er zmUdJM5J@}XvOG7kvZYdlKya0!jwF|tsT6fcuQ8PZ3rRm-s1!&bY)7ZSUg#W2r|`Wx zN<}aXS1O#LxKgpI?h21mvAVfllBm}6PO+8kk?-Ot740edq$w34d5u}L#|)oPD*p`iZSo)aIix`EUEBZ1JjWmlO1&2a^lg!;GDC*>4ot?40`DHW zg1Y~LIdA>^WzF+H@N@q-)w@0_PGvS-Wsi;CpYUA{)thQq#FZSf$xl_>OHE*i6ZWdi(_jSWQv!t>__V7eN`s5giz@Jm zq`EBr1KEor`6o~tW1T|a&D*$I3Ezea3as5^g)JI8T&I^8=xxw8So!s#+Sa`LwpH1| z8Y>rg~4m4+izOP)?zBD^taa${Viwm1&Cj#$+qcMAd!6PgH~4nrUkaUi5Q{H>z4r zTJ4wCipu|5ZI}&LJNZ^UW`AP6#T$x7k*ocJ=GM}Wxi!e4Rj(%=l~Rpgc#3^fMQ|FV ztBP8(c1MHyR!$Y24Ob7~OAfMAreGPg|}Mp5lo4Uz_pLH+G)%Ll`SVsY!R zB00;trZ%VuET{G;7NkLoT+I(igMu)u3{K{>?2yNaYkp#pdkpcuPVKC-ZeB}kuWYhO z*b^w5(r$QIIZ~e#icqwCeWR$~sxtv}n0#84JmMQx`b@PyH*6(LeGqyYsH*U! z;BJK5h=mF`4%ZT6se)I1DjwN7s0Gp`w#99o3~Z}L$f5V zj8*?rVef|85o{;o^}S+kty(NspXL7&)wPDI6|9`N@m5?TS>0)b0%G2eRfv@QX>g^C zyZ+uL2uV$Gx1eIRbv)#hyBY;I=%lPtwntAcF-`ImUj37(uQG~!qiCg&9LP7UWL%{( zf5AQ|$?_g|OBGtyP-8X~!sN6^RJr83v4MPTR=ah1${s;}NYN>mLqKo#n{ZycAC^Pfaqv)cZ#)qDZ zx-_adnYi4`t9DUAX=r5YRk~C$3hj*7rLdq}#!r`!QD6UdY(Nnz9=t1@Jb!gt)tf-<{E4`WCjCJc(M0Cxnx=^)2 zRu{XOEDiNt)-jhjNGoD$YFG@~G#*S#Dw3;Vn0UFAC{%E9wXEDr7it(7H_n?Z{2x3U}jX9*;OGJ?m{~e5`=1sswUK>Wc)Z zs`=)oZK!0F$txRyKqKKMyR5)2HC~!9+Wk z3&VCU8-7IYYUe_jrE9&POGB!;S}MRB*pUC-tSuQ>@EF5%3!nWMin+6b>Km?B*qS{W z=rnqw93@`pO9x8YOB>x9MVK-&x=~}OE5i#M`x9QR+kc^Xix_L_(va)F?m^XMO=F~g zp?W}{!3OY#m+Mw}?1uUS)Em{*rJ>A^TCP}MmxhMF6y56ULRcMRrI8%i^@$Pv7p&54 zLv5LB4=+r#b~zZfcDX>NP+hRKcDXQ9rPLhO2|zs&(tx*ixiD<)a>1KAZe?-$U}FS*_Q0zNPg*Uw&dzHn#<_}otv^>siPO-Tub%cF8(wB?ir=Ey+$}F>Gm1571X#wa z46}f}IYM9#Q^KG>*_30Bs5uyknpxV1r~&*bYG$dosKG+rqGpzCN6kgeEa^kk#8Ugz zb2m9)qJ}L~FHtjd`VciU%^#v>!gE^gC-R4=na}zmYNoOPf@nd5x2Qo~kxx+rGImiz z=DC)wOjoH(CwuRb(ay~ zjzNjZ^Y$7p-RM)TXO%?M3Oa^BgPED@Z5ZIU$K{<~3a2xFY=ar(HOwV#VEOQ)X05>Z zqM;z~ILw?;X1|V(D zcK5>KwCCM^rLF9|#-2chwO3dPuwiEK0WPc>5jiJV)f^(?b)c41ZrTMsdE=TkwRiLk zG?u(*OIPhY`SRc6N!d#(pd7nz9>7oXU=I ziKoM>!Pp<>oO;Fu2R%B%ygc{;a#OV3GD-BK)IVzSI)ymexfNlt$!xR@3e8DTv z>jKZ0!J4ncIz<_Eu4KCI9F}4uz1_s&4c>gE!E42S1O7yQ+(E-1$kluw@d=oN#~VUo zxtfcSnp(c60sVZeGfy@vU0R3QM6uKnVx@wlZ7qZ3ZLL4ggvvTUMS{c@>o+i&`VOXs z8mUi~E@Iu>HeBpR+?uU*6tM`txFOZ40oz2$&gXGHSxhxp3Nvy{Lv8jo;ujmr5q)^K zmO{?L&jhVx*c~|Q)jAyB$H0ix*UWdzz!+1w=VR3IL{gNMDUzJE+8CN58S7$NeXN_g zWMXACgs)#e5Z|AO`SFHoG9GwpS{H_5{=n++b-{44+%L$~xL`{E3+`4~@?c2e7fj~# z0rz`Q8H-A*za!>ylmDL>muw#xUaMd5BeJpL0^vTqF!aP-FvC19*wXbb%)?5Z0qcUa zdop4)X}K`Cvc5q27cbbF>+Q*RUGoX^EsV4P-qK#Meloye^}Y{=Y6IZwv=!?(Vzs0N zW-xv({J2kQz@}ha7zRIFFfTd}tVRF&gCEcvwiGkU<5d%dsblP#5U}+Pf`Pl{w1@|H znXk!aT&Bou4)DY+GL;IrqKrHqscUeq8aYti;F^I}2&={g!6CTD!M-FG*t@W_V zkp?eB)qh{4i%Hos+C5(^vpF-k5$pIixpgYJa-PW6tXVgO*z9$GV`IjL`(r6CF)sd= z!f82&E;V&2QC#<>L6Egd{5r+TD*XBtByFb4IRnc`{NqfRFr7mpz%Q3B4E1xuy47Fe zzlb3FBmgJ`7Codw=}Fu{mrDpsw1!P~yVO0JQ@2YU!J%rzLp8f2x^#@2ks^yeU38AB zcj;Unb*p)IofNA^cb>>y4OgY#bQV9z*Y#3II&e9mUER}#?Ru$OrNMK()KhZ}$gY<< zYW$TGWU*n>nRLU{(bqSB&J14A>&&AmcZmz8j#^6W8s!&E-NUb)_r|bw!PHUDX`UWm zT#9BQfEP^NBE-!|JZtA>WM}!Db)I05dkUe`J+3t_n7Rk9+67Zbm6c|3TWovbuwO78 zj4qhEXAIZ{Q%AkuX~iji`HZskmSY z$}`ikTj?aXEW1TpAKSBgn0Y*r)j-)CUERxU#U)eFkzF!%)We$7H6Rc~7+|E2^)??U ze_rJ={er2Z4Ll7bzhLU<6W@XhbgQuG_e&RS_e%%kw@E*l0wn4gwcjuCe8}45r#nlG z8M_)&Cu~`)hCYAtsrkRtZADDRS=P!Roc>f1{?jJ`!qp}V-yd~WK z28Ly79MiDK%(l=s8k(Lnmm*o=hlYAVdILA+EwLdGGYtVKNXxPk@iZF*DN7Yb9k@Ar z|1A~P}*{7R_+6L-z~FNd#ofssd!}ccFbMhWVSAf2-zUHov9cBpmr0RSR$%a z(}uUnT0L@^)+v$0g;S_#d78G5b@EmAq@a@;^u7SOn}hmUJb+AMD^EiL>gq#TkR&dG zQOs?T%f6u~GrOSLBp|_(l}VBN6S9G+(pnb?LDC0LWwAxA*&-8>AI9HPZheEGfVPgr zfpWv=lsINgd%}J}$=&B0au{+%g+y)r7&*eWA`_l-U}_$S%FeFBQ!FXCL9jBZI5W+l zq4HQ&i$h&-;@mLfOkP#4v+_@Qj(j5ww4G!6pFP07?k~1TtmzOiJ{ZI#e#W$AQeU4+ zgeGyZUj^o5MYCGY3c&=2V(n?30r4zG*0;=dBYH=NXjxH-YA#j~B;>f|V)NLIvv5wJ zmW|D6>Et3C8+QbLvJpF<%Q^ejp_AM~+(8N2WFGD2N=bTYn|W)sNq&afGlDu z9^GmRG&FI24*Z2ie+u(3%=e913W*QI|H<38V_B}lz~yfhy@GedKe-MsVFEkoNxc8S zsw#YVyWcr>Qaj??0pK)bxhO&P=|0!n`tQnB8~4YfQ5l+ z=VWh#@*5Cwlw69i56CzI2fXS8F&9X*W55H-mTix6MGS;xptC05Qel67>PfH>OwMWl z?)w5|9R|Hsonsg}oK0oyz9aZ^H;@Qw^p{pE_@x-d%R(tkmru!H!Lfh!3f2h|AzC}rb$drpCu-iTxe|P-#w?) z$|307ODkjD1O?wy*;>}pmha8w)7b<+e3`IO01SM{LQ{cy1Roms$N;cZ4U(&QWPRBM zFb>LPUqOxba!YaOcIxzf)SI)Z$_NuNE^-yYxaNquFMnSnvLjx)Yr!hF-9X>-a>CZ( zZ>U*WSguK9~ojF zWfvh+!Ym8vrjc(+FF0gweunfatVbGn8`}2y)Q8wp`CiWwG+`n4LkqD5y7C%$LzPkV zFbi>@`}T>Qc{4SW0*D(O_(fvYfj8SbhnF z`9lw3(TIesmi8a4u>+1BSt3kZD0AxK{>ZCAVCix}f;5Pa9H|6IO))GqNCuC-ait+{jWC*NewnOlYRb8IpT{e({O|LMTEe8w&RC?={kyVozFuil&NTIEPasCHR{_9(|5oFulwe}UX*?8 zItWGA(=-llcog7h-J)*5ol}HCLKnWQB4qRqk{*Uilq2SI5p?m3C~UmnbfzHIc>OX% zb68RTk;Ng%!hGZ1tkA%V`aMDcXSkR_UXLb$e1^c8)~!C~stkQaRVAYVEplRMogHt( zjKBfWWXyi{r7$@*I@?T%Rwf)4k1$*o74b5Ex5$0D(`NVm5m(s$Ff2Fj56NW1a(#KM z8GZxhx^*u_w0JFVFtE2r=2~#g8uVQ;3~uwO$8eCHG5Na z21L4k-^H7`mLdMk%Zr^w=ZEWW64XDzC9FO>MDTj75;|lwL{|Mu8SdNQQ_5RCVi^Y4 z3224CD*u%CNvD`qvDcp#W2Co!uk3u`7zVYa-+W0fn(r>$F}ndBDwa0pl8G*=BI0gQB~KI=l-a2ua#U<(Bj*!8Y-t5x3L?x8EW)*-`D;{ zO-ha+#SiZXAK{O#X4R-itF)%W9;lyDh&j}&@@&EOo#R?q$cJ|je*+)LC)7_)8HPj| z2PUI01$MC`-u+^1Vbj%Bt&|(e%YfsG<}wnuJJTp(lYD2V5GI5j@xp^OqgFHOV*U|> zZh{0XtFuyKG7y!9wg_%GP`}orQ4vjQbI|i+z zz@*hI;u_!rfV||Hkr}w3Q;0C>g7`?>610AB>NGqb7z0|+r0tETc4n-n5BN7bsn~3g zuKi*_(cK`WErTq|DtiZpiMC=VzmvUY9Ax$-U6ydSzO+Tz@&(tU$i!g>fR~nOD!lEN zY&0VQbD=q0LcAC1>`N|rf~GToJJ#l{GtgpurcQY2ZaPG^&Qvd#%Nm;MDUw&5$KbM^ zc7N2h%se&hCDw-@Wu_(F4Li9Sx`L0`N?_*HPbtJGezWAxo5wt7vm^W^V`jG*U_qP8 z2st^o=_$Wr9kaNM8J0N-$qi~Ol0Owyj+p7sUG7fkLeRB3KpKLz>MG{V+lc zP2luoDf%Ll#|TN|#M^mJ&dO9~=uhck<-XOB+y`a--)qF;I%wiuEQ&K(wy9uAn^t&R zRif|5!d}GbKH#d`f;t{FLzi!QFhpM)X!3pRm>B*9dc;$S=(wCWs8^SJ`ly;+76q-W z>D=b&TA1fG1cn{T+ZEFw&&?M`zQ(jbA9F?Dk!^1wKWi;nLI1>Q zYfrB|K2izRwm`Q9*HP@a+sAiV@l?DeVj_$`D5|=at)b#Xe}t7c?Rc7t<8Q6b7W}Sm zC*;lQqLsztp(?Lxc9%8gE}Yt>_CX1U8;uex?)E%5JW%=KTX6 zFFrQ5b7u|}xT~c&^J>}@fMBv&uPdg?7TjoF)9txqSsTtp)KgLQ?pg_D^JCqzXzi3N zD78R+Y`y$6Frm)Nsuvn>lU6cwNz-#vvxtkX@eCiK1o-|X6PQ%)Z_abqzhXpLdR4W9 zR(|i+v6ljyzeYw>X`6eDn7!6Q$8mn!hf+p`GubMxsMb`1+lFGne9U_R;{lD0+FWi! z>YNcemn^d7X(>=a9-$9w_AVqF#fNLMjwk@V>k@ld0D9N0 z2tov)x6Vl;+!@nqYR8JKGXRZ+DfPa<`fFJPIu!(nnj?4IU@e|gI$b= zR=2bi&e7i-X?o=MHPXn{tXAcYG(EkQhUeYF@TjGfU}J)TlxK@PvYc=oJL~cs9wcU; z7E{QQS-QA(Zs^sk*Z0F}yQkDj7CnONMUHvYyJ_Ob1<13{Lx6FVpLop|N^N&8E2}Vj zNiBTTgXlUBJ<5o5P0p-L>OZ!zV(lPxnP<|W?o(%aJX{*g6voUGF(%3BwJ{nI_DvSsPYjD^iEJ zH*KYZ^)W%@M(91lqQ{_hM4t3k>w1nfGkKQXL0S#wF1i}JLXId|?bPSP7)*M3^+=59 zU?FHbL{Hk2{IIAxpy9~3*rMIPQB;N#tmDu{}Z4@U|oNq?cDY+sLIsKINsO z6dcR=@MubmL^LHvESi!ut;2 zMoP&OTcvZs6Y7o-VU<|D2&=>jTUaGHz|3`Uh_^~x-MNVB#=+59F`NGCd}-YKTj+v~&yLvSMT0|+{ucp~oT z)A+#Nsdr0_9jcf_MqzUi%lg-2PVi$D+NvY8V~Cd)G)x>rsO;KKcB0@`=h+uoyyDMC zd;#ZEjyUi4h%DZZ5lX0w9;(m_dU<(!j2xAUIxTrbx|%fVenT})(9V6qQq6tPIw`yc zDAofN!Oo*Ex0I_Zp~*iSUQ)STDfDMFL%UibYDj6CbV=%Ttc zr!`CW9TF55%>%cK?*D!iW&6=dRQ=~K7za6%I)@2Rg-ohaLsNOvdkou|5t+Dtd44c& zFmF2N*uz3V$mOC9-4}&9!@DR5V5yos%bZPmDeL+2ycM5i1nHDJo2A%BzM=R zw6rS0UGAXa-)lr!R-`G-lx6kOf=-MytBJPe40|ZeYNA0sx17?fCi_{52J_RFHwfDovyNN0MM)%*A@HlyRhw^Q;ieYlBQo{_aEoPnu?%c0LH#S$#( zc5uqZ?U=liyk%b46$NqL^mTF}J<*EHL8-1d)7NI_OuHQTIn4=*i9F&G} z7MW@FlGZHUQ?1?+Z{GWeH>Sl4m1>o=r&{HRa!mLO6hzWZcm(yg=UTlZOF5AW-te8c z+Z1NaclKPXcf@L(q<8q8UKLW0=7Bbl=UPovj;ejA)C{%}T{`6`z4S2Y=prARBuf=y zF-(cP^e_|GWgV7prOEm(a5WQFlFS!8Wu5PlxWe{`nXud=t6Zs8+#|;%Fa!}Q8fgdE zXVmtXn_{_E?@0UCW`f(UjX3yz7Z{sB^Wdpg6E$Yrs(er(jg53N=O{Otr&@6<$i}l& zt9PVF^&am*0HLQH5u4xbU~ZPDUhjp9w=Yloc;~Kr9+j2NLjqleLhtNP102r=c z&GLg8@0chh%3{%p#_TTXZEdDmw>s>csAg&wrKYSLgzvN925uO_{Ar3cPZZ(ti8`K5 zI)qG&Fz<-3^z>^dopl!;VVV#`O^0(LvR3mLe&X$0S`jv}Yo#55*i1`n36WDXujC~l zcv?!l5~?9)B=1eEXGP@QGTrY3x9rT&C7SWuUsP*tr*Z5WyBJ)CX)5 zm|PpWxCMj%ElnkPYO#3N8jJ^-ENKIsCv+2a9WvykIO73r_%>OlD0SY>S5y?AK|p@Q zG?PULDfrA|$2$db)Mr7(JvmQ)7V(Y%gg|@0oKL&vd=##wbnvRDiMkt=Am|Eg9M7P~ zFHkI;`x&%|&X=G0PuNV`w*NMcD)(pL!j{oavgDJ60c6^G&s1==&1G=C&GnCcA=%p1 z)x#(2FGkEWCJ{v6pK_sBI(+Ok4(#0_P>~qor$P>AQpG@y11~EOB;q$%^b$&cjt7bkQqja%aWopZgA344@gC@SPU4 z73yCjM4}*FKenpVZe-*L54bK`9$nCy{Xf410#T1(zio40*vT(P%)x;|;1205ET7P% z^~w#KFnf6bC39xNM66M~GTTxVMJMzoCG5SZf6;{9JW*`0=IK*%*qR`?{Dduqj)cf; z0wTMG$}#81uE16=*Ds(HrrPm)H92ScIHvAVw9;PDMFLGwPNb;>;mb_mJd`x(CQ4oI z83L>WEd-q&=R$PmRwpe8oO`LvtchPRUF=T?WgV}esCd5OW{aoz1kd}R^0ShslHbiw`LQERmo7W8_6*7#F%!KD4$U(tU)pM+g9+X@ zD+aZJkT~kv`0*CrK@pJW*C~L4GN5g!GaGEStwP(}3N*y?=!VJDy(1Tctd3g9%srgw z`*`kB*@=dhD@P`Jp|)Y4&_AU%1*298zcSB z&X}la7-rSM6h&{eG4Ag|qrQD@X_Pt024i$;qRgRZtu5~;R>v<19B-{-b$(a5>-Z;n zTJJnZ=gjo1KF_%eKN2ks{p6ijAYCq0&qP_+Rf>rl#xnFICSA;~_7#4rowU2iIieKG ziDI-TgGc;DT4b6>7Y?B~fyK z#=RarQDCDJzhj)(75$57JKA?%<{{_rF+q!8zyz22b-9md?>g3fg^5uUylBs<1HXF# z{r6EkSTCWAC7&sD$t26p9Gest4kh|moCiR*b;Hh?##Tk)D4oitcvKQ)PMsxD{+KtN z4lKt|)0TWEbDm-8GTNl51jsXmIk&NQxG+fc*H6ekoXapKl#VlJ0Kd6JM4~?hw-Spc z68#?oFvFWq!`Mq%gS7o+DLwGUP#RJ#Kc<2#|9(WRr-ATUsC-Tbu=B4NRzdAKJ`-8} zE{njN=+d{Z7}s=svXD*ah1TkIMLm}1rD*)D#&r>{pT)6KmmaaXI9c{=A2JuF&R zd57Wnc|9CQW_rFs`(b9%F2{3(IB9%FB@7zMarja!>?sxwz*{4+tgA5tznfVy)%JN69m_x_3d@R_ zUzCZ*3cbUdSWnY$DBk=nrKPA9noGa8m=UjsP=l?nME;r6umBqi0NzImGf7~kxw7FE zOot*huK*Qz#j=Fq6--CRba=0K#Na2yz{@}xU2fwOo|NPKD0eLU3ai5pdVi*TPZaLB z+rVcymZ_a~qmpNQxGFIs1%!$7dn_=so^us?zvTL%74e$$I$_3#cuf+aiW*`XtaiVJPG4w~W z@nl~}3W$(VEZr|=w2W;ch8fBs)T$whac|9bUEosDpU~xDA(-hF#iKGNWy-(XnPJo| zP5yawG@E6fQdu<%RGGhkAF`|(1yj&5I8h!bvc0+qd$4!O4L@j{4lyi$1-8#~9ZbSD zQfjS-Tf=&?Kt)Ii>B11`3Z35O8B?yfT92i}NN5fAEm_%0-i` zoxiz=2ntaR1Wd7LGFyc6`;?RkDXtH%?n>kYR< zTz;1*=BGZi z0)`=9g+TL7>On-Te>J(h+r_6|SwkJ#?0k!M|Lk6hBQf&9Qo<%NxFkT-3Y1DTpyEdr z%8U9~{~pmj7$`!x`#n%;6aZbJsxInQfw6uBCj&(S?DywYd z`yR1-g0|o6bO`RJ#t03+i?;XfLdwRM?csN5#J)Y~DZG!M9o#ra92UlDK_(>~pf6pJ zVm87r69N|21g(WeSH%e4!ck7NBJrL>otpu4OrRA(k^;FKm5E~rI0#dt5);Rw!Q?%> zLdEl#Uc!4!#f*^lqJoDpS?2<*<-!Y8u@9OkBvTcyM*mUAcf3jo5m8XJ>kh^r5Ffxqx0R`_3DEy=Tnsl1#R@?o{ z#)Q}J{Kv@SK&wA~$534i?BSWqQC)!K7y|d1P>h&Sc-1^!%u# z1r~$^;%P83!e~PZ@iqhs;bUu1PjuZ1yvTGzG;)j%q&KEiJQTf z5N$Xq`@Ui^$U%Cn1VX_N3MXT!y%qZUK(N9Sgw2QVtV1{`ed--mRR>S7cYQg^@Zfbp z{@9lXIy=Dw}vWTB?N0q0KE(rt+s=^gOcan3{!%kSQk)yBnUzk%9>(5wLUyyIH z7zfL@G&Sn`56PGU2b*n~$w0Mg^g=EFrv^855X6(9Cl8%h3?;atZiIdw9QkJ(O%J1{`C>2Z{ssvbS||yn37-jM0JJtVk$c^ zGGnHltS(D!K*A<(Z$~Ir{s1Ii*#qnqWE|uxN?_(kR3747VhiGW?zDAE5nOuAle8Qs zYRmtU$afO~YHt`&7G+eijLDF5afP7N;(ph0`Gm#r58pxjL{pgWcy4||yHVpOAy*bD zg5*f_IJ;Q34TpDgrfx@C(3!pu*%Y7KLJt3$Dn3rb(J^*>hpi!qNVgo;^BmZQIBT8{XXaaoT3sct#0{oH1w16#S-h^d?<%tk<~$<7=BQf3aJ znT>!kD>aS6HB2gm*|>(u8o%O|B>oFqY)s=gC#FAUSITSzTGXs*HUcebr5GXKsvy%X z$5oGlA7(kO%4qFnIRZdxrQzt9V{SMG9fo6$$Z+%@FuO6H5O!m{gV~Moj%GLd?n}E7 z-+9t*#59bPh9mY``LKSlx8_X4(Q&%mEW}RQABH19=-OpCV!3Jbo8gF!QpRmK`qps6 zF*uOla8en!_QBL)IOd29$92?+)D6d^-EfQ%GaNz7VwT~Uv>T2&BEu0hImQgfq+{x0 zM1~{ia~X~|EyHo^i0d*O?-8Ij1u4TZX*V3VQjgtmOp=CUl4dyO01d|=%??T04M&V9 z#w5cr>FO^?G7QHU3B%Dx+;H4aGs$Qg;qYN;IJ(%A-AL&YD(zG0(P#{A2%|Aa94POY z?ITNPZK6u0DdcdDZZiVRk@lGxQx4vk=9Z)Nxj_c-#;2sghFzd&o`2MG6VPn*X>l<# z2^}&ojYe#>aha8CxXow3U?`XQ2-ENJ4qegvct_Lr*H@UXjqh~9X-1<%ZC*3gt6U48 z%C5jrOm)z1HpYnAjqwX+H^wu&B0wQ^V;dHb1#X?5tFD#1TLh#o z3I$c@^Sgw6xrgbU%2I)sRx>-FnLRv;v#g8io=;dIgoc|$9V+O+SQBZ=Xxv}`cX7ow zGsBi=Z#!8imO~Z*Sa>M_n(t#~O=WPHcv(CEson$$=yKeVvH<}9@>rM+byz^9fl-r2 zgJX2%cLBj}-XC(ZZbRh(uTVIdqSG)$}4Q5WoYd?n5w@uPKDncMGA52*oM}qMZ z1VMS2O^|aZn#&`o&A7sF3Gv8h1@vKBgj#WFe6XOa4J+$K|LL7b=RKZ1NM*x*gDqMa87{aBvA@e=mqJcaB zB9HO46}%=g9HU1Fb{p!U1%rWWTm>ap>`0~Dr1u7l5y^n>Us8eR9`Wjv1+b75$0U{> zO#nwqw6*ndsu`iiQA;~)!(}H>V<(23od~`&ymY)5Cxm;-;>;@)cF-Yi0K%nh7sA6I z0q4LD(s0OyW#=B1l}tuCrbz|W3r0Emie)gIRjgPHx06`1exw!hkudH#b(*F>zb4KA z=a5JEaRweEaR#0v1~BHd?SZ7-AI}l#{G@dbe3brpoq@-QGhooN#*_Bb=p4~`HRySr zfhX;T?ddAuO~W=v?4F?QH~aW_WH%eKhRG58)6G}Q_Z%w4Hec-EDD^t}KEu>(9DScL>~LI1-{-Yi z`gQaT?6LK6^nGScN9;^FcP^^V6tqJMvoqb)|)3Vg1EZvz9o$@OvW z?IU^ajh~p;x%XMNzo(%C7EMdIApVvyv(wF3r)LCDO@cyXT*uxH(iR*swBM5$uNNF00r5Fv(?gc1Nf zXt7Sy2ZjLB(9B!G#4XgLt~#F5A4~ZwT_qW%v7%)ng3&Ebi%czy^V?)yWY*IdYg$ z>?0HQ%)|60L59Gns{9Q>nIH$1KcJK~m~~Aj|Hzeubqldqii+1u@rieJrPsEY+PO;N&`>@vXP1J98YlI=Rn5N83H{Ee#;|K{eCsSz6|pX1&M&T zC*=>FDoz)HfXx4VNjuaa09X~KUeVD7d7#M87*(KRzB~%z{aip*i2`h*q%`<@jo2HUKnOkFf~(<25(DY;33s=+N;ABPP?*gsv3mo9WJ3)5O>9V*ST zKn-p{`g`W55CVxlvD^Y;D$R5ga7S788+HZCYF2J*M?=Firr`}qf#59w?cw-BAxR9l z%Y0OPICIi2n{#AMyTX29!|=z%EvRNs)pk&CTjuxB^{OppJ6aAs+sbS1V^^C1(IcB zmV&8uAeKyT)BIywPyjl(%(Yc~L>URB8OxWo77#}!WR3Hm3@}f$fUjnJ65K3qLV zkEla6*7!CsRfPdiBmj5QY;wM1GPgH;5WvAkny^D(yF}C@OM^U$DKC zk9Y{a=&#@)c>anE@t*r5;0cfGGch6Ong)k*%ZY*xIcfL?n3qp=(79851ZOgWRHS^Q zrQyHdr-7`*8_3oOv@r`M@f&F2hAg&^45{|i$b_2LBw2ukB1i{y7IuqiM%<_0LQ6Dv ziefZ=fx))9hN*qU`K~=;Gb$Br<3v|dVTyaSZw{2`i0c7m)GCl_}~BYA28Nr$sy8`5XI#25_oN(4(0t3 z#wcK8GD8^O2fKEFSCF#aVO}u02pKqp?f3l;cGG})%;W`*44}AS()?yKih7Cs?p5x=RvPBGA9nG8U1KDq$G$vWsW~6s>yKB{v;dbG>qeHQ2afW0H^$ z{fZ6z0$7NxI}dNbNjx6W$=4MjzR|g_D{vzbupP}nVgOCIU_P)u9-n|CWzd!ByA_e6 zPTByBp+5?Q>Uh7X4!FT2m;?mNVI#ncHj?Z)!(GMqRrxm5)7(bm{ecO0itf-WK~WX` zU(y5Fk%Q2$fSV)eofB%^8LA!u5pL zunYF!nmmIS5U>RwGWh9z%hBU1c5)pppxT`Y2G7lZ&MsvW#N+m=w!S#!Xx%ie@)fti z=q)OpeGMV}Ea8!xK)>-={;V}=<_tpwcKEK1^ut2CQB;Zs5Zi^wBXKWu$6^_qAk2Y@ z%TMcqOvN)$#g2O4#m+!j$P;n zD>5H$GM;3BCKGipKI0v1gE08p?VbC@BE!M*I6RVdlYPiT0us&xDck|w{MCpsj3+jV z23EMvqvCItRAGd|k>%jrJ2<#yCn=rMVFYl;_|QqS6st7}2{#EQQwiwXB|dC@5f~v? z*&Y6ygOJCd$)$bkL%|R%Dev@X@%KhlT7WKm;pcjHCf+7=N9BjHX0Eaw_!Qs23{b(F z^{C{Wfhp(>mAw-q6GDIU2{PirUxVK$L}+jv{?lw`-k*ep%~E_AR4PKfrn5W_{T57)7$wqii-08U;5)RgQGgfLd7#>mnHp1C-(;xO3{iio7jV z&UTYr*kc0l1xOQtRfUGmFj2L%{r*_tF&59>fvI1ZYRzO}=;o)$fhU2Iy+bD1H0=KV z1Aq#)bl(gp3hAS1hrjCwRE}dLBesA9ni2t2k}MY{j`yET$@an10x` zi%^twxYgv3rO#wJof+Xnh>YDI$sj?gZ3&I{c7m@x zM5Q1oSZ7Ru`}c^^QOP~Hn8ICWZ@pqA-|u>0n5HI5ycvVR*5|@u$G^V?Y14$*JxNH| zK1IPnNMW)l5JKKlcp6-ybQtIS|v8#ZF|3-cVFOvkN5N3dZo$w`(+SH6ax-g zU2#mn1teD6l?rHycVrWF{swldp^&^w2U#K!!HhNVh*lCdKh_1&QK5`5 z)qtQ!yuVW61K(nmp;~z+TM@939g9(4Jh}8zjZnugvtR=*!>^K}>QfRPMeGgAvm0y# z5kG)NLtX;J9Aj53&=&LrZ92kx5w1s>&qPU5CHIhtMjRyqy0A$Nkyah4;_xG=o$+q8 zNibhUrQI~FUjg#Y=pYhBCnyx#L2#d{N{q-LY@`G4fkFt!yn?3S;s_xb-_;0GiA_N7 zf;3<9k@6)J^!t`G9?@y0Ab851-lke=0Ax?Xp;6nS>qBRKc&D)XDUT?mgg#ZoB=5BU z{Rg;r54*vaAqe(C6r-uKe!|Yd5<2Pv&4AYTuit?qL414%wPj=;@>b|Ph$p;v0T)`3 zK@?Z-2(cFt6+*Ie=UjjO%D2^S%R7`C#p-PYc@Z3HN}|Mx4C7NxhlSXa48J#HoWWoO z-G7$)1ALD^P<5({&*$M__3YEfjQuLuYvTP4k?(wV1Y*w74SWJ21Lx6k$@`=ZNR%@b zQGC~|vlSPA!Fqj2z3?m0jkmK0175K)@sG2tAm)^)gofhmuqVa4>0x5>B|3Xy(0J#G zP4D8wjz|i>0xrz^o6}?)y}U`fF)A{e;&2^NPDbk94f1YpTv1^GBPfU)5b(#$PCJRh z1)FisN!*%mjqtET_%u?qcL}n!Nm1gV=ftgbC zI^5ChQwK9iz-+X55UJ!di%cf?<+Q?JZHtQ(*oR$9+o3A^3!c$}qQcZrIzf`t1%20? z+*)LYSDpWXqmOQB%EiH6vHt7GK?9fIKy@1~L?PGkJ7M$lP+{OGS%}o^wKX17VBFAO zaGhxK5_p1#w@_ma{zcm!5r9dQna1e^O;*QSAtMS_f}^Y|>*VE7?QsO7_7`Xg3qWdq zAp}u~#8a1@?~~~rP3L_}iu@yR3cNL9gU8S*co2>tF40TaXd2sVc}LFn1^4X;3eMUX zjbh#=MrdW@ouuF@)6PcShUddGOn_rPj%cn-qMjh1$e@4^t&WmQ7y-=?J*(wSkFEGf zQ@+q}?bM!THM{ROg2T>=YE0YF2VaT8d4^LUy^tV>Kl6xT8{iE_7zAHa<#^3R%6e2s zY!UD21r6A8-0_3CTX<(mXT)HTa`!_JGQF4bY}>COngCQ#vF##<0Dh51AKmTuS3Noa zV_HY)C>kYaA8uiY(<8_rM$92jn;Ogv1?&doDmC0g*f)g1w&eC^GH!JZp@IVOTFIvG z5`n4g5Nz(hz<%%eOrqbva>?@UF;54ixi4@lne^Tf(4t^lJiVm==K=a;TM{CBaHi)F zQ(}ZM4~V)kdBxgAf~->~JkOTYV(yhgN&TWSFYUiKe6f*hiUB+es^F>P^<88|~}rWkQJJIw+RAQVs9Bx|eM0|0(-*m^GZNO<@B6hj!2`1{see}Nx$ zv$@UKLfPVDStV15&09gTs%ST=78j?XsQUl|#z#kYhT?AV3mh-7+rW~WU(`60FkJgi zW<`Z}tCnAemmV?*!3^wv^GLwpltW!p>am=|<7IQmZYerYd{mZ<_%+j65A(^Zq+opr zF9moJN-(^nt*=Foka5PcQ?r$rqxMC-5n;1<_fjG<7)PpV{1rTw?6rCSD$c;mp0HFW z@u(Ka0?znO7CAs*`Jhlw+9nS>xxa$La#Gnsct|tz(B7Je%O&U3AVpI985b-h z;!TPl#JFtzlSrc|MA%6v3g4V}3mH zJDBce20m$Pr!GqfcR;HF0=?Kzva}L8Lsf|<(rQqDOiLJ)Gni}|;K*|z(8Q<6(eZkb z<5e3od5~XpWE+9ooA#5r9)su90PWf;E2D|nA{!}L1zjL{D;M-Xx%I1dqp-$+? zkm)>RT`wmegePXT=DP@vchr#Gml0Nm*({;i01o_pxHP42xO$8^8|9l z3m((dg9jPmh!(w{p*1^#YwxW3d}ZP(=sDMs8-zpfLwgplxh*>cjqedQLF(7w6%6b3 z=MZI*Kk!a$M}n3TywKvjGE$@bkW&;NVp%R8sc3FTotHi1VM>2TdGX;_JTMwi`1O7R zN+Djh>L^#%8X^6hbA<}Y_X710eo4l4Cn_N@*JxX-+#!@gw5}1r*liiAr125xUp|f2 zDw}Y*-@i=ehUN9SA?+-8SKodog(Yz2qvE>NzJ!bca<28KSnsyD~Ms zTNWHf23<9OGmdayc2;0xmc}-kaK7l-zR2Xq&;wDNGZ~ZHn&wG|ft)Zo&5w9zn4 zGg;v_w{lh*lA}-4&vG?aH&pwL3h@4pY@(y`)i!=}lb1*%AoZH9a=bWFaL3_c|4Xx1 zMSpN6hY8%6%u<3$o0!lrIk#|JU-n_*;zTt8_WIN8ltKFh-!809?taczSIZ7;cFs*d zW=)(z!Pp;REX`A=Rz%T*d78~8ELz^swzfBT0b3L45V{^B9|_UAz8cafa;n?XGqF() zxJ0jnbTlMsPrhOml<5)vdw*1+JkhOtU|x{k`c4w3+h##p+4`|}>vKHOA)JB~=_6G% zdFYvjn~4!@A@ncjTW@CTy$d5N49{F(2G1OyhfPDc*7)efgxQ9ab>v(g2nF!UvbIx4 za--qvB;8Np3HSR*nqw5zjMVeBs-z&IF^@8vCMw2ymH6=0Z8%6c$F67LKG_TN_!K>H zdo!jZsAuvc&~bSM$fk*Z2%{kOUH+OHW=t* zN1&_+u({?`4n{bB${Si-sN#U~egqu;7b8vbKu{PHAI%NlxYQHR;~j{AX$88DUY=%( zvNx&H#`EEqessoxzx(!mjs}1bi@D+MY%Fl&e(y)GU#WqeWq=%Vulpbt?>66W(}-o3>p`o%O`e_h1v59W*%R; zH05qCC@7@49Q7Ld{)Znv!2t?;ytI90r&d`|aa@aTUG6#ZnBX{gEmTnBGr6BRvs}($ z@Fbl5RWwrrH`JxMpIXk!4!Pu*s+m(xe?v(a7voWK&JjxXdKB1f5ESZGaQ2XtuL^3A zQ*0x^&4W(lS3Jc$*n?)I+Dl-VhlQMtRyjW6(HZDg_anX&4{6?!1rB7LXG48+!Nk`` z!uYY~S?{E9g4cHlPt^CKGr$>w z5k^{D=EOkfl=-i#@%6#{ZCN4wdI^TDQp|bOvXL*x`T7(^luru?IfJag1^fGs)TxCS zQ%Q;oB|%($WnN*Vb(sK4cliGGJMbXHBlvn5dH8KL6lf6Dx~)>Wx5MxRr*!cAqV2k+ zSAYJ@x87U**BSr^2%)i<5zY~M9}Dpp$W3~$q#vF1E@PL)?&k0EFV#*gWG}y3t^v(w zljbH^)07$~;_wEhS}c0ETXX~6Xve*D^+z;T8t^w>UR-c*A=H2h@=o$%85&>mk)N@c z)Qu|^t)Nwu1i{b1{>Mb~E0)yYg13d~St|5gMU~PGSPie1S_UB0fYh)lCyN?~wIx`N zRfN&f2nRDoZ+ylXibrvzafCU0r17EqDSAm2SiJQ8j0)z4o4>i#&r*`Y!zc}ZgUk9b z0^a% zrAh;wEk06S%R-eH?4fnI>tC7~t1oRaEJ|>wQ^Vh&xJCYUTPnsTS8wHKEc!p(Foh3> zJCDZ{wi9jJ*GvdZZ7WPp#yOe|oLPg@q`Kf@Ptr=S+{cw4iZuH+VWA11gkj*wgGHN^ z0}Y-mA8OfGc*~}Tf{!V#*yn4Z8k`aXU~5Mk1e+Wn1LD20_0S0zjfF5C<~P6Spp#RP~6*df*2o8691-WIA7v8jRgzzYD0 zLIJi(c1=n(#kLTwp7;d;@-H5B;EGbTyUvc?)a;$czsAXH9KCG_1rtz+0m@g*gVPJdArbd=p@) z6kMPpXU?M*s?kC~^vT)n(L4;~p^pt}hfl`?BrU?TgF zhT}HUNR|9;UHhnQy;OVj3(fj6Q$lYp7f~;$q4<*3=DI3)w!K@zLY)Y5{V=f;cc`z# zOFx>}V&C;F=g2~ZL%{}H$jW*t$na8XUq)$LbVH^0Mu|+Bu7nmzDZZ3A5E6Vz5>}qE zHvsOCWf~jtkwrLlD#|2X^^C?YC=FufOKxey!Jg(6zq3fbP%1u;_WuXZ%0Q_KHa3E{ijkFH*U-8LCN)l=D56W#{9_l8 zK0bYHQ`MGWa#m4cYFp}?MauyTwoqN5FN3M{4s>Sf@dhqPKjNaT)HZ-Nnx0pjkb1u1 zCr_0zB4xoX4N12QF^p1SNhucyiBe+j7U{(|K3(Sp3sHW4)L}cPg*2*hBod&raZ<54 zlf0U_W~Le652!k`kzRaX2WQz^>#!uk<|8Wuhts%W4!eQT`Gx!lXAapZID!|0Q3I_i z*px80kO)jIc@#8UmQltjg1wDg2XMz&cE2K93&Nnq4fsUn>*EUguML2noloGYLj$JZ z(j-A(;jNWqznF}URVdo+)%@J${f{^T#fuS{DL4_O4X6I>9BE+qcZ4ke73B{%B;;* zg%SXc|KjV?f+a|>rk+##42Fqf>4Rd~$4s_?vC z+Pd*9CaX2%mrkV(u4;!2=;1ZML7fKcOEW4)7KM=s@am)2L^9QOm@pg=VZ`+UR!r`#qEGJ3DL>Yo}#}GZLiMEPX5Nh9qrg} zGWg8>zU&=rHk!N@B*H8Sh-DH87GpIB9nOxu6Pr&pAm$S1WHA|#8;;S5q8RxjbcojT^>gC>Sdk=-=N}x$>R;d`Y!pZ~Xz!vNW#n`J{ih=D zYt!1Jee);p%*JE$^>i_!hI|X$LehKi) zoh{vB1k!e+L}#cu_*AMyoytnF4o$4sVPsBCpDJp4j+&qkri|3d6r3+LO=Cd^vPlqe zZA$H~!1iaua*Crmg^8zLRw^PYJiJl2E7WSr!&Em>RAxSkR2q#+%+XbNtdZ{+0jnXK z1|x?Fn%BrAKAaC!^f!f-fM6EtOL4^gP6_1h8dlvz#spqt=ZmS;0u;u6Sldgg`&T4G`lh^nMcIwWjY-2@HM@*J_tF@i?$Vn1gR*@tsjf3fuqbZ zzScs-Nx6k}s^}U`10SpNLi*q0dm!v;qK}b2(&uykr|g-fwQWxT2q%v@v4F~D_}A~DKooHGn zSXCbifUKWxC3MU+Vyi^XJ(q^K+q>+AE-(n>ZW>q)Tqjc^OuxwIGIC~jQ6oOTU>b%IyBLEO z$eW8-mIe}|OPwsS_y#UAc&ZsBTQiDBZN!Qvs{#D8zv{zBsJr7)iZ35Q2T=`NvC)KQ zf_LrUav?9F)oD@L^i-NWBn%SG$&iaK*}L&D4UdIvHd&nCy(BAb)uq7oHctvOypR3N%d?P=kXN)0;Hh_C-Ie6yzNmvCaSeOB}F--&r5HrYz*dNIbZ* zNdZsmCDq^>=*WSIfMmjo6%I86F2rQR*8qjFC^JIoWWOPDP1nG0>w zSigA0Gjyain5)hehhz3AWtVrzo8);5)T>bbCX+@e#Oyr3bNiC3?C7R2{Wt_8d)ph$ zd=t&npI|$<1hhv2yw-(y2IycGwbEj*xOpByT;z?BWwyANt@W6p|FA5i`h(tZFthI zunkN)6gGi?KfdZ%qhWtXCW4(**xTB?r^d!xz#Vao?eFXw+Yoy%jZMVfOJ!qTTI%SS zxzyRn7d-pA!kPxV&feD8ICb_Gz(MG2LxXmm?PTg~A90<{cydXdjUO!g*4Y~wE+cg| zQgfA4K%H&p4VTW|-9pl)v%!@(SazL_JV}O^LuVV;h0fm7B0{E-F;gEZ8>h<*zW4=O zXGx~A4cYrr*~UYmvbTz#LuZ2@%DHtm(#ggNoqeo#x$A744A*@tZJz(9&PLKMGJafV z2OT=wM^a~hN(8EGXZ}>#*c@l2*2Y;Ia~Dl(;~bqrHng@uYllh&Bc7Q`8PogJTWjx0 zi}$)hF>F`cIQQDO*7g;QM+}{wy4J>;Bixo+d#gcqXzi`&PH1g|!oRfkRvYio+Abem zYuoIl(*7}blDbGo5v(6o^xqsob0A3*A5hh;)3F1BZY;|A^G}Wp3F4p^3o1!7OGfi& zca+O$3>smQanWMf`;N(4k$U2ofZ#VtOV{EK75`n@H%9y(r~NmDlzTtbM;fsUlJ@r& z81Kb9G2-9uw6Q|aoyb@B9hHR{Nf%abI*s)>h7KakXdmI1F=FlvRt;9zH*`g!ArqbQ zJ%ebG(9lgFb3LXE}%z)~tQ%IMo%bh<*ko&&ZN-}(VWS6KCM z^ayTr33uep)$q^q4P#a(&oM80S;AU~(aD6Y>k6Hz1vd-@buVrh1pi8I7>yppL)O!z~HC~}Kr zwOTI85+hqBsNdJfVFiCfN*v>Kjm9hKCN)z9G4u4UoLUK^h7>q@P=z*LLz>;Fmt<|o z2P-9nQA3s-x5i>M?@ROG#%*rgfmqq1JO{!_LvriWBGT6$A3URh4)`j zb&Nj~ci^<=eyc)QK)m-MSuNX)GL|LBUi(Z3jRk?6Fk*W*Xig&-%q z!$z1*k|b03la$!LuXn+I9;Je9R+=a6%Aui#0_TLG9PSYaw4^u7{79b>cAWhNM+Qr- zla>rk8mSyw)MqM*f|xi#nqEv=6LsBS@*?R@c#5PIq_#V3Lp+2f;WD3(-ykPl%vzL* z^qOV@UUP0VtryH{0ry~LoMlp*G}N3h7fCfONHkR*kIiN6lJ%w>+9SjSm*oxl<2-Mc ztml@zOd*-I;$eg)J9T^ih zC5nCCfLib|ZBtocK5O$RL&s-rv5xJYwbd-iN3*u1A!F9o`7vv|e$Lt+pR=~lk6An2 z5*h4*v+abH8nP87p zt!|Jv)ScB9wl3*SB>;!mNn{?x<@=IJeCrP>6(gx>V#G8Ja}H~2n&PEAscD1=pPJ_E zPfc^=bX}STs3n(3x5*AgBm9J0(d_f7X!iP4H0nffE1La$Dw?%E70v2D6%ERn%gwas zL(vdp_CwK3MNv$`H>9$+5$9mW^-whJ5t`ksu4sTPW4pvXKPN9Wqk&wlAC`h2{3?$F zC+Y+uj*%hQ7Az_f-PeDO*j?Yheut1tHa3Z1*YDpp#=m~)*NETs{p)x1;;8mN>$ZD* zB)Kt0j2l7EliXOFRnrDHVuZzM#*IKSDm}T8nFb$rk0FN#J0kPoN!DmcJ?Q&pN92=G z4;wQ9fa&5jByRK%ZZw$wyh51S`2%q2Z)QYF%yX`HdRRi`%t(;r4`wt3`>=WnF~!pA zDN1#|%pM>gw322|QT9}rJx(V-`p6|d_M=eLuaPi&e8kP3q-FLb?PgDoNSh~Z3W!hz z=Q4Y8L|OYm((Fmn&7K@_VU057uzG?FqX!AA?G8`hBUCv-o6*A**K(`X7%`(KXft|( z4x@)HMNb$#PP)+(bQnD`Vj?VPGkSs!)r}=BAF3N{vG@HOM-dojRWaJ7y$vEh)OQtz zPpEGukkwm#6P9Cz`Ua5ntT~qeL|Oe(-v9~N>A*I?evAy`HQ*534sk-m8|YXUjS0|CATl0@u4AYR%I1o&CzT$>#o0KlWgc|Ze{HXf<-fFR>MAV%ywpaFsG z>^Ki-LKMEv0~)cCOX#dd2;$)}qK5q0R)sMV}we z1R$T=iUWZLG&a@=yO>2H-gO>8>6eH2Asp>EASN%)1Ab1Oq%IJpSG%oOA4%&qM$CHc z!oCRWl{nb9@rnT+W|;8`0J)R4D-b{XeHzk;QoYko1iIT!CDeuCaG9T>C3QTS@_5{~53A{b);=cg;HoleWuM^cjlGwhsEY~2za*Yu)R6su~P1m5qb|pCexoy{LqzV&xxbZ{V6*MbR!gh@jvt5HW z+coI0T`|JqOWCeY`o<4BY}XjEjUKewu0eN93uW=I7#K2^EBg?TT(0w7=ie4%;^Ku(-7E4Ln6~K_R`ohWs^5Q9Jy8>u+XR1mAt{zR(FkT7uciDw# zRdZzmHFPH0^EO_Is#el?9jYX8)drgCAp4k3KF-Rke_b}PPUtlMs7d!Cwh>kw2(SfxH|X}2Pce$?xV z-V|{#yA|z|X!3{Qigrm)Ny8Pmuz02!u1==m>LYHr0xT5#(jn*HcfJUn`eHyJ`LhMa9TET_H&oZNx=#!tKYZt*ym_>=X%gj^i4*9<*`B`+T_$3Z;OG+KwimQud`s?$K*L=h=cy**UBhwY za5{k}08vZ4TV(4M?$!p~hphiD>}R~okTGl7u%sc)t%q(hC_UFug$`<9#%|a!Q1`Oy3@b?<2$~gcHWI~$Sq=_~p zPf;a(s`i38|4f$3Q5ewcU^z%-h97$Rj2`u307F9!Mny?UWidua3JZ(x8gofIF~n48 zh-e3T@idm-v9hY-7b?3|uykszpjkUdAoRRKo$tCJ;oceGL27S;^TiFXVgV2#T8gj~ z5p65J(3uDh=Sv<~9=$J54}?$z?k6IKghBQ~7_=*5I_Xs3ST-v{JHSc6?~m_VglovR z6xx#fNYdw|6v zF?B|BvW1=-SE$u1`Vv)g0MW#-7M2@sg?4E1q{6v}h^uH62bAHUi94jp_K`yXb`}5v z_LFE)tm8pEPS0mDALsEb1JS}FCXMYDmo>>FSS+neRWo2aSw?3X6IBRpJWM$RdCY8**=vsqP9xiC7G7|nu7)+yu_s<1>)g2e?wQzv<|?Owrn0s=0LT+&#JR*5?^P*J_a zC6&ey=9hV2;F6=(Emi~y*mrVb-J0M+#9M|3Zwbj@pV62+o2Wm(rcR<4&=jvUXG5~X zl5ms`19f&5YorUcGFn{1`Y-fIyhm2m+n~~?TaDOa0~7SV9IEjt><4s@*rT@kxqYkF zY|oEtmhoziu;B4}6!19K$J=~~30kwIrCU4wn3D8={ilamQXXcLL5a?fjr%=DykwTHob7q7X&HggdO z93pT*3Q6EE@eaSD5}hi4p|V2pen#1nSckeqMqS6NqHhZo+^c8jkUK~(HtRir_vyocTm0h3m z4m1XXzrkX#A@snXBj}i9%GE|(5C%yM&?Kb}{#@77rYAWLB`tdF1YOul+i&2A7vDOq zw3wua=Z<3p4Ng!E*~VAWi=o<^KEu|7T?el{b&aS#Ea{>mH2}L@DkKN+7C|a$H& zy1EJJ%Ba#$VM|O1pz_1YTxy!~_Zl&y05tmz752xiM67FUVpkulF_g@-7kTMyFjTGP z5R(6>6O_qR7)MA^WZmL;v>}_&M65RG+Ok#|=lYxrGHS3U7p#7=Y9r3ubpbXs6BQYAS27m%t~&X?~doQHU6mb8a?Bdk<~BZBFda(^6JhV1OXU2FsmdtGc{(P*y(hNW5k?d z)PQ1-xl?S#%9m42wCS2oF$!SO{LqCPdnMG{DK?1y(6UG9bm0^O=pC&F(%lh`W8;H6~4Jse1tc8ImK4>7?u)d zk1ngZyqI5x1i~psO(>mUzXE}b@QHz7zCWB|U%_|+PN&l+Hf;aPCqC@ymp(B%J;0`L zpBS=@MoIX@R=giRvCBs{Qhe^xC;l;WR>pgVwqf|hK604Q_I(Y=&Pdv}fYCZc*OPq2 z%-5i06Ob<3=g)57fb*ZxP}1dGbl`o&h#BPvCqpM4gP`3JV71b@9f2ItJxS{~+k+C7 z>!C65%EH#;@AlFp`^`2vGOduqY4JhQZr10>W3?ipm9nrddK)N-7hR>>#-gi|2JTCn zNYZ9z5muj{?>Wf8W;C-b%S0BM1bR^x90M=KsH{71JDhckbB9mGI;{-L{fRm)_XJp{ z#Xy}TRs#xrAD2w?V#@1^c@xXSfNklG8ci^au=u30GuuTW=og+zjM!3q>j!o=0OliB z2zESPZiCy-@q#h0EgUeTi{{ydC?{d<>x$YXRGl9xcl`%Hu%*?-58BlzDFPI#t(h z4ziJ@+9l9aJ#TTI#h!_kzS??Ji_o{cH%ZY})E^ux%M;qtnGK&h;T z%Box`AGQ&0C`68MPp+Z6LFcR#73ftuNlXJ(Q3ygM@`Be=ks$n$tq!R{%k$>-&u8?L z#dBx<*9b89dixl0sVdqvSkk~-w30}B$F*|A zRS}&02y0!WDKm6^=A!$*};}JLYU6_ zzx(?}nn)8tPv8Ducmiu{M~>IXw^o1M_qKog#f@Sn52OA0#~CgZvhgEacO)7)yW+m4 zx~Qs#?XI>8TRY{PRW&9Lt;PNxE43Ez zx}iC9=(%iJ~%ss?Sn zVWxOhp<9u-Lyh8mB3MZEln|-49G_Xa3LH5n?C?fx?Wxx0t0Wy!yBJCN11$JYiR2@x zPGZE=3Fu3mfc#V^R`D3>1e0~EllqhoU7}u~DY7*DHPon#|e)n2F3Lyo!v zY;inT#mW+DO=B%s z_0o$$y7;b!MDBdaR+>Ur3RSVLjwYRls#rrqvrnO_cxww)dBse`s=WHoV^!}=9p+zH zBr0YuVpZ>A97V(YiXm%Hv8tD36-mab8u9T<#Hv`yh(}tiD(Hw+<%nWcFU{I2k5%y( zxnVq3)vDS^`W9+v6EQOo&yvk?u2>b>c&t=LbxM0lTQ%Up=Rp}+to+-;tzyv|tr(Z! z=u!3I)PcjseZ?URfvJsmWvV2&N2;8I+zIy*ws5+wpz3n6toqL)RWEy?l-vVVU`w^%jAGQ+DW-S*pOVr+{sT0wyeUKkI zB8#ydJ1sx7q zjF@c+8o?d+$S&GkG8C$oj5vOOjL=37S}qyLzHeV3M&yzOX)amN;gVT#Y zzFCae1`k>uT9DyvU_GA?X9FCu`t=jyq2yBW*yU`r$sHcf2H3QebT+`oZQtHTTTSkW zc^hp_eYwx%ViVu=HX4%jYI++@Ez?5Jv}68GXrhLC$}6IX?VipCBu8Dhv(cZWh^8?_ zFYKQY&PG>zs>|8vh3FFDZ1nPBbN6!OdxW@$^-wYqjx;P8cQ%|(XTwKwZ~YLHCOZM| zfi2jgHdh{}{+khEmr05eZQq+t&c_4SSU~LI&MjFm1H)9OY$QvaB!-K+}=D<=28ujtCn z>#{0*DP^?((ON^xnH6uJ<(UV;9FZmPlU=;Nn~j}d2E9M1`fiONGQjFmYLN&nH`!b- z`&Onv;D=@Dgz=z5i_~`tbG!We^N$x|j*7j;!c3-?y*h#(NTVpk!e%WaMflg~Uj3*J ztf(jA9vbTZ=K<$GDo?9-1p3|HG%4d2)w^9kNhjxiXqDND3_X08gv#~WlK7t2#@7sI z8CER~?v)c`-*ru$6d5P?VI?3${>aI9I<3?gd92RPe!*POc!uhT`G~6geRI6*9g#1| z3LpClPc!5l{7wiq91Zw9betpM@WE!vgz29s9c)MX$!5A8DHmG`&q@6AkFQo{Df)Wm zEn4sRMf<3HqGmW>NgS20ES9@I%9zsAF`a2+TAZz8-kk48GeiL2DG&4Jk|y})pI=)^ z`%CSXA|UYh8tF2MgnCa$StVPQKn)%M_=7u&(s@iYATN4kR_;p=Wz2?ajLHH872GvO zm!MK&I#464(gk;o(ekIyR0Algd$Mw&jXkA*!Zo&f!@L6U?c@4|RsT)RgBw(V=;FtV zi^E+X^U+sK9$4XyvGf(DSx`2M++qK2)El043(ihA8!J@t5f+kas0U$)YFLS))5|Ne zZNT!%;|F}BII{s`pjeUZROyql@VsOjxn%VIQM7^-aCAu<_8BbykIjZc-puIdydf(I z9lNc#*k;xe;W_t1>1nhBt#lZ;1#8>l5wZZz{bX&w%C@Dc$-q+im*|~DN$?c6;9wvs zvY_7h37wlubq>aF0#}-wWDF(Aq4;7&1+5>_@{Zy)5Mbb82W8v%!{|$aXv7V9{^H5t z0e4l&G$nq;^b;k&V>*X zX%d$@ZZ5Q_?{`#MdjfB;)!76BaHg_=kgcaSPT3=d9(lz~;j@WZ?3 zDIHDCW)$CoKMwnl5e9UsyA7YS7*IwJEy53QseB`GwIwqa59UIo&}v?id#vUGaz}93 zj(i6)EkrMXfH1Epd&4K8!f2?Bw@k$Y`K_UKU0$G=uYJkTFRrGS3OTk8!PD!%Lk>Bd!}WC zQo2@d+evr^Xb>51ER`AMR{`y0ry-0=)^i!k{#7|~v%8|Bsf~)!=cFkfbZ878 zajy1XaC6@uk@DPLB3uT0NtZbG6}PC>cZO49^AJvpP1NPq*i44wV>2C&k*&q$OWAr| z&Xlca-lGN2-_(cQPZiIEk7qoU?=7xNC(+n4M5nQB&W!Q(HFsiscT{~}#N_)vk$wK> z=T`duzqPsrU?+?cHYR6MB|CPH82Qc-*yKD2>o`({gZ6tQ?)v%5b{zTt?{WXnt!}aX zU{-Z?iTHbsJj@<@-w6_Owf`Dvn=P2X^RE9GQE3WB_M?c#uMwDmDz?PZv6%e#h~Dt~ z*E=gg7A93?Z9UJj{$3-KN8sp#`g9$0{vOd?-@kr`xy(M+RN8U>HX66~k6-#VVt0N2 z`W?Oan99AvtZXJq!)sAVKj-PCAKiohtLZgK6+^;_IvPM_&=~R*0mq5_Vj#BgFjzEh zz?J8^q8{3;KpjO+bI^llez?O%=o|9WaCY|}bYpK0475i+$TdRSt3%i>-PDKGef%29 zyQWm`e~iSl{idG-jZK^Gfx&F~3L(dG5vIaa_>nl`1qh}pRN!?IL!lFWA?LKSmZHMy zXR(NAF2dpl%qz^J?`)c5OW2v%jmsx{SouhN6dqW(;>HtdX!qwAml#IH?iO?;qx`)_ zVBs6`f=0SJennY)f0#p5TsZjIekjE9!@= zB!4IMl;&F>1ABPvt5iM+kdej_7JgJHT2}BVgTDecWpO5nwZ}Wy=hOuwX`)&jVijC8 zJ0{p290?H^2p_*jx@rqPM!J4C==pD(H@*LDdXA4&*34e?E7e4j32Oh>T7GNwlOQIfC!hq-S_vRv1->z`5N z2r49s-x0X)H-rj@-N@>^hR1KM4?ym$6XDl#_})exFr_Vt1o0!Vuz$jQ6s#J2hBo2u zW^P_2`P^m$AnLMW7&kNa{34oX$!R)SL?233rtBB@K- z`*}Ub6$Z}0Gu*a#wvS~|Ls`BvAxBo%518E+`SP5#HHCbWvxbIOOgQqaxzl#e8W6L@ z!7*#@l&e_-I#PXd)(C>Oj#&dz5$hp6YX*MEX#?im=d=M8h!6C%p{x5jZD^zXIc;v$ zy{~wB{wB-jDZGy;t<*nfI5doOl9dLQ5QlnW@Vm#py>&uuyIa0RDK_mBcd z#dyd8H$IlAn|15*Kp+q*SiBO}t={4>_U>&%JLBrVqQHDAtxCoH-trkp@9{2K z76<({M2ujr9)Si#2XgLv_t9q0@ppi&4RRhHHMPx&+8z$35{k!LGdhZs7H)$DgJ>f$ zw0c}2IEwuX0<1Wn@wjHcUF!ZU$P2#ZMSfB#`|%l%G(vnRnmN;}>MX=3f39{;RkE}v zGg;n~{bN%YB>@4rp3}viyHX^Ny8N=C=As}&tE{q$kTf1Om)@1hAs3hIBudRPH>!eZ z7Q7DuSNMuK3DW0ZWKZPo*)-gTx*~ISs_|4fH=XHEo1TPf;~g3?x6dgrI1HqCC)2E! z)?4QlGP}c$T*Z&FdrGY*>Ra|b+BI&qnms#AtW5M5Pxzc166=+pb7ogh*jIi2tgqZTDvwO zE3{uu5DOuY95nUKLDTg5xP#%bgXYeOHp1k)na|M3{8i5jXg(iw4+IL_y3V*6MyP}p z{5WX+WRf&Oejhj3ZU9Zp7H_vCAFJp+!p|XneeBnuvlKo@mRZxZpj!^Q*mVCP72NLp zaxM>zia*E5nCk7mRB8DP77iu!g|{hpeoE@1WGF8OQy(_ zG0F+GhQL{cgvC1MVF5F~pEHFOD4NPcm|&*+vGE_twR6R6-^Be^&GCS(yyF$BKppZ8 zq5g?n6Y@=g9DcRFvTC}vOe7LTPSYW-G>?#0#I*1#@$pf%(m$*cj7dG&5F2_5%(l%u?^NwlEU3MRPuIrX9 zL>GfifA2%6x>0j*dRFp#BSbIVy;Yv8sKzL-C}BI%(h1B3KCv3oVCWULG+vCrvCC^-|NQvEEhHl(#A0NAaW zt|XD3lAI4DFt7IjxBmBE!a#5n!T5+9OtqxH?fUY;L=S0}R7g@(-{}mP5%1(`DGfPs zS9*|~**oLtxc>I>N&Njv50aZ-t+**{jZNdFi{HO=)|d9_Vmbd2_F79J3pXwMY8afBp|Q!<`25 z=63mWjL3jtOG>`hbcN#2NAsGVK-6OZH5Y2Jl5tP5bWR-xVdB?`L z<#49h=eGB7rm|Q(q)I^);0#hdc1h2Ob< z*6{&~%^h@)nrx4tO4r?!UHJX?NR_$xF(Rq4X*hHTxuP6BMr6LQnw+MFBH{rKHB1lLi-dRA2j>XCS4Lm!4bGP+WHtFj!e=N;sL~PNZcIJdmQw1JK)FB ztNzQK*mFcVbDQ>DXjL;%xCbPBf>c0#lQb!hCH2U+&?4%6{(>Wma+Zl6A#uqrvfLT0 zzuL1eJc&5M%e`c0_;=z<A#I$}r3ElyUY1QVK?xe~U>8=`BX(d;Ao%h{(EK@D9l4fR!l7 zPKSjaAU})RDNcLxL-`i$4=%+qC3wqF{6=RqmZY>JZhp>7Ke=6z+zM0;IvcrP-9kJx zAQvOTE9$bmezlWFfgdu%5O_*$Y~y-^(BwkB;3eLS6=Zdg@QIwV6~w z+0Dc<-~tk5`*p<3UXKkPV{%3Rbc(gOj^kZuGe{721ZZ&-~hs^pM zJ4H45Tf?JR!20cG=iti;Jx|CC*ei!$7swxuE^oR&R=GLy{uZaAS52>QstMD;PlLPQ zI~+8ckAQAabHk8C7rxAJG00pNuSOCGznR^MV<2=9;3E3Y z4$s3P3BUThc_Y=|l3kG4qx@#v9pmw`97*4po2ZE!@=l zIn|?pARNrW^%K}S5uAR>VN;%YJZx`$we%Z#L-naRC2%fp6^1eqPKJ&D%Pgd05(qOD z?FRr&{)U-MJ`XvaSTJ|gy#?3hcN?Il3P1Iwm5Ohb&ey!8KN;YT7TIY(;j`z?Q85$J zQc-F|GGQoWEY7ntP`I4K8HK)r9k3%)=y_mx@tssP&JNh2Bpx^heIJN!I^t0|0`dEF zVI6oxfdV#VzmEWk`=K8exv>aRLOc=nxmohhT;?rW-E;f6Kv1$Lz1rs;&#$@TFK*F& z&~~FDM!iQOX)qeWM$Y?jo#YlhLW(8lg$at}* znqTH{q}!<!x z#-}+)tlTuRzg>n~^k64_A5GUQa4Vp7jElse6YbqOwMO&O0ogm!bjDz7B*42ApnmC_ zOrfJxi%uB{4v&nbHB`j=8MfNr#y3!@1o)yf{V}b=+jv#!Z?*%8wi5L>tp2 zRnewPLXzCh>kHR?kNBRT<2PsM$9!sz^z+Yp=UMCkIb^s8{MA8+Ws`K;J~?9RC}{>K z51L^W-ti>KFRDIOk~eBZqln%H49oeB!={e>TNs?hD!&%tv@EB9-U*`AYx>NDS?W94 z(I8Aazw&{jd++>8fI7)`vVw>={-B>c3@}F0T8^B1HCDH^Vun~@^d&>E zi0)*Fr99Cvr(^lH!5u3cCV6mxV#MSSh9h+pEEe*KoPr0S%l3JboLwhtdnA$!e@YPp zl)Q53*=ITcD5+8QFSSL;lkJLu$LJrXD~6r54iyEq9orKNG99rPupfr-7>^$8hY6wJ z^urM5;Q_h*Fh~M=YWBl~a(Mb-f_vP47+cQF?T6KBCpY~tl)d!rhM|gdq!)&=_jx#B zEHKPJfA4|qgzXVIVJiOJD~{q{dN;`vLS)-qqw3$yRjTzp`3`mNN4D!D@V)JXp*nYD zaSm_rIg_0*6mwmN6Q*+h(+NZ2SF6Vr>`!yj-HG1egkd7*+)h~F8HE#uYTI=mUKrM* z+}jNUD$rQl4Re9$;f4v@W2?GY-EhMMlX<#f;3*2Hbi>>iZvRFJhn8-ba4}CeESN68 z{IM5pH%x#cryB+kh)5r=daKp99>aInb-H1yDLw?Em@p-(L5~g@Y>cA30->^dyJ0Ba zyj!|qD006K1y2yIXZvAErymw0+YieT`(Xl`+kTia(GEXMID1<>2uE>yR)MgyO?9<^ zJFmEn%@lO`%vO8^bh(YF1mQ_qQhz&RIg-wpfYr7$7N9ucj0utKaK-{8CtNE49h8&w zOr$TS+S+{u0R{I#SU}`#U##kWI%2>dc(xw~_yHaNhaZM=MwP+I4-=l__IQNnd(IjG z3bq>-+!KBn=>D93SjxTh!yvStzWuNeTH%L5Xgwc(nCgX(*BUL|$4;RoFvabO5i?+? zV?Kfi*q#`qbNTSZfOImS?TG;aU>@PcA4-p&81Yof>58H7{N5vp)s}j$`wSpmF+r7V zS1iBHt{A?3oSqmE9ppU76T|eaoe;mLH$5>Sm!u<>D`H1%)8UBaNV;7KmUfItzu6DV z54RsCV42eoQ;q(1!~j-PwjYL4U?l^DAEutD+Yzh80NRcij1F=|dSXOJ-g(mxA$E4| z&_RbMmLvAWLjHy)MttS_bj8%4ZM$Njn{vfJc|y(@pl+@mwE1(4L;+5YSdtRJgHb(Y zdy!U1b_L?ryfP*R(H&q%&c07bkjz9NB2*a1LWHW0mrDBsA!=nME^oM`CVh5eD3sJ_ zC~6%$;QCt#PR|j7MICLqk6$p}P8Q%isLh?{OF<2|)(qz;sDEzbROZ4s_{!rSlm}O< zYQn8l>)ELDd`BKI7vSVT8o~fcI9Bi&$s*5VL{8nNWtD8&MV@;k zv}@ALMF~{5Eb=@?nC)}WI@R2CoP_6yO$gA{CdKL}9qu%+;p#ly>2sviuY;D&0D9PJ zStEW!BRV7Aw7kzvyU>#}F1wQXk_W9koK456VUF08-84@PH|df^j*vB@WRYw!K7PWC z6wDfo7A1?D8B0Gnl_iUtkzKM#bhNo0YLu8iM?!&tpbn23RpepK5uLExRJO5(?Rako znj3U{B#yQDB#6Nj{E@-}xiaf^Ww%cA4e}Elw`>jWNfZ9rF=v9F+H+Msc&qu5Ed|B;iIDUPT!e&)Uci*A>Pf^*u%iM;8JDrP?%umOCe5;Ha( z2}*lJiPMQg=EQ0KVspCD?PmzdERGNWHPUxF(Stf>g^QdxO;+w3dEfyO!QE43JpdXg zJME4i{$vms+iG0XWo#1XKnD0o76Y60dRzcyQ&WdLs7q(KJu~@&k0N(^RLeY_2#jh4 zkr7~2^()a%S&*pX=UY2{8f?gU$n@#ay0bPU96-|zcIsEsnUb_eoG<-DE--;QcR(gk zgBPEkkA6_6KYb3gxP^++EJ78b>i#)W1TlS2rc85s&l=nZ$P9Drzh44K4a*H;!S;a? zsB`_|_pi&bZ%bxWtBenYvYK8q4@Rz! zeD1pxIzP!-c$+CQW9|o=n0Fq>{!(e@h_yCouC%o_YL^8a99kRo_tbyZ+Os;|XswMt z^bD1y)}D2IB~&R}7NN6I;#PKC@j-p#b%c;n@OFRHa82Y+9&s6z zyxn!{Y}8m@dt326*RP}0DPP+v8z08=pj6p&3@dT(?GY8+FdNtiE+N5EfL~7djgl49BTIit^X9RrY+G z!Iml;MfmgZA;Ff1m-zr?q}`{=4z>%GJ=@{4&R%`W5egeKInOJ`l17)lM&0@~PkkLc z6#5$FjH9H!M*ZWgr@lr{`%<^Q27~dHt*^m?ssjyujjGFMqqdM%QJM60(y6caNa*Vy zGJy&^**_IF7*TjJQrL3}bUhR{kO1cCJ5GRC9|{%Ica$_?etYU?T#r^6JIn;AkU-U; z1i%4ZJ2iGLUp$}%fSfco7Q8&C#)f2yI$3CJut;B9V?(m7b!u$v1-^wfc1lNU?3}w) z**|7ZVi!ORqo;!YvqyH`%N~(OyJ_u!O-J6#9+5|zv;%jb>n_pt9d#xLZc=$Kn~n^W zJ)#^H(DxB?*mMNy7S3_XseSi|?+H476R0#F4~>C-{82Al<$om8>;Zpr(B^?n$650p z(P{Li6(8MnB)u#|=vt2Oi(DJ$yqAUY{v#J-RYO?p*9_o6<-M#b9LI<}t`CBA1b1{-9p)9|*T)UhA*)DyS+9I= z7J1k|Yh1rR$Xn;cnfH<-nfHQQ?#x}rFK(HR=eLh4k9@7i5b4IYtOxP_FZ6%?4dwv|nu2-AY{aFu6r+CixcGOx6 zcSH3j3nzj#C-y;YwyI{9%YjfpE7Y?>44H?;*XbfXD8TIwWmSIE{i`27MMX*P>}kZl zvvOxWKiDtlEph?gnJxYbUs2@vB{^L^>aVJ(*FFH2DoW>9NiTwHxop9bF)Iq4BV8TI z4%f3>&+o6O4zI;odqolO?CB1?v`sHvg%e}vN{7vyH-e$Owsff*5M@Dqoh;}W`L{-z4{OW8 zR1o_3qF^ao;$)dPVG;&uYz=37<<^OGFz&5Y(>zTkQ_$fh$1m3}Rxu1d#|Ex;Yx%WL z7xv7>X+s49$TN>CVA-$z05e!-e!U}Ct|rYEc%w(6UecN-FK0F0CZ*n5#;BmC<1f;~ zxr*HIkYYX%+FUMsdCN3aJn{y2nJ~~8_Kh+eg$9$lU^Sh9RDdNMz!~qe6=Igb&3POWFP$>fYr2q2D%oNh*lFf+YChkstUem9QpDsWfzFDiEmd`mZCp3nQf{G3>9A_7tIS)x{<-pCdyj zR2r!ecx*HC6gRTvDJ(&jDBzQrbH{GJFURDF6D-@swn$%0pJe-SH$ZjPq2G-&tlw`JJ2Pnw*bPeQ zhEMkVs7p_K)G1tV&kPRDR0UKC^EK{i@twS-4zG17AuW3tE;bxW`uFB)kDPqY#$6m4 zY|NtiWBFRXNXW*~JD|CEZ4JCyA8xCh}&7v&VQfgtFnl;M&>VT@nVKbN1U zj5K!KWk+wdoC+FusOi+cV%>g*e_?4+^+?>H6Y_ki8=AH2wL9tJ&m7{vcSIcOs)LvA zszQLQ138ou8a)Hwk?EZ9ORb2nsmw~{j2|?bKE)l(u+xgY>vOARC2)ghnjU~GoZ+a-?eT=X!`k>W4Xw$cxWsb04@~e%%lDgDW^&l_J6MDyu z9Qpnnc`$Q9t8C|>Z^Z>U!nV)18o6$|swrO5O~*0E2+v&KxnIBB)VUlaBMh5@YTi^; z7wjNe?C7g0nKkmQg}smaJ7>VWnT&P&e1^<7JmYM~2P3U%#uxUS5<>X3dckWkK{|?( zUYZpgIq8@B*Rd+8NoA>JWwyn>l;K5MEq&SRJZSF9hu;|H)F=sdKKMWd*=y=}<{ z1nTk{Rs29}l8f(GK6)oLNjw^D-!ff7QYbNw6KhFY*T<%WSvI)~t2A}c?1HH~G_rTp z4>`%WOatOYPoDg<2iQ{zx5a?;1W7iJRiC?;o=#=IS*i0549W0Ucop8zE#k7-H=uM-sImVax-?4TsWBEAXL(W8ptb?=WRz{k+&aDv8h6aD^zOJ~ zS~$lqj3rs2XX1|0#hiYtdsH!w6y-}7F=rS@cVAX-j|4!U)_y#nZvai=D@cFx4s(W@ zn3LvySNpDmu4c6y*)jwL>;E>OYNvCc=|_X)-b!*^I-S}BEUDZiH!n$k)bbJiF`^#X zLA&(gpl^8y#|Xe zf%|^YwkZK^I##Ig*>}Q(Q`f0(d2!L=g&P78Xs~iUk}% z?OXN$41j8m&0_H&zyXY7525&91yI^U0CdnI#U26##N6`*^bb0NUPZ*C<@&`cBEtOa zC3ut?k&F5$6(VTdfQp@VT%lvl_{oM8l>5mYhdX+eXQDmV;K0-1H7_C#O2wG6198yd znL%S))YM3($^k_jl$C#yUA&`;zg6|r5LMt@sxI%Kiz-lpU}?uI()Hj^>hCCZCa}9Ux2NpsNC|dn6VLAUU=F%RqbVB*ZO$4~XwS zMwl#e(6`!(##6<$evhkf8M|reg-ugO{ys#4ES7^tMd3k)(%mwI&_oCA1-PrWPAHB~ zp<_X$oSm1Ks_N~Fe{0j zF}R=KpRRqA4a@+xLa-1a8k8AgUqDdEB0|9!5seVHzy&;wez5Bo+PT&x{DxP^vyiT# z*qP8LQ@mbvL{1C|HjS;Ss6$LtJ~V;`9FTBE(Hl%h9*L6X!Q+FtZ_z6~g2`BnR$wZc zl8F%cg>_QfFm46G%Nin-bqTgWzH5H?BrKa}WlDiy()vgmmk*Xp>?@`Ot8p(HYZzCe z9^j72>?`6Tu+QyW0zeXSLIbO=E}#qfuMj1~L0AlWHLyQ%eE8iBQl0aLu#m1F+VB_u zIt>@m)v7mWAyV*ikEn3`TO;Ljz!r3=S_!`a{7rs?-w@8N=LL9V9Fg}MUuplCvmg(& z27AmVGvD4D1UgGkZ^C$Trk8OrB&HA{Ya4!}q2!;ggnZCel`L@hq*VzI`wC>I`44v+Mz5076MmnJu!A>GV7{1yUU*l#IcF!$c}^r|uzXfrHc zVKYXC5oU@7atg$9^GQ!e5Eo(N>o8-gGD8kS2P*1X#}zt24`-vn!J9iwOs>-2ur<2* z(8@MhIi&UH!1p;o^=IU=oC zb;O$n6=AG z9Jmh6x@meM|jNBCTMlMcvZP8@yL{g-hJn(Akp+cBq=fxl47IOKsl|9W3y2Kir|Yd^zL=m*e%z zRE=ngtcYai1Spcdr$}m!liGgu6!$U?BFqZUXYE6UL%{7Tgya-=hlblfk8Eh;1hppq zUF$0Xy_=JS;9@-s8wlAHa4&-spC%hCSoK*tuiwn1d;3xUa2GT5l@r-Xf|qS#b-o;SzWYMqmKk^YpY)Q+(aq z)dtQ$JzVVuo9t9TZCxKK3RT4S4#70kMb3J9+9(O0ho_BV%=M(t^3t-L($PjeXFVM4 zjts5C(MFl@_;9pQ5!wz%yTd{{9PLeqqn#sR@8iA8__u*{v~$FcHVQh|;b?>A@l-n6 zD5&O1og8hD*KwxEdTcvN^0eD}#1vAsDB!-2BgQtT9pmt{+w^wfa?fJVSQ7_Oi1FcR zg8@c6uej|$;&yY-cD2D_0t%A*fnN8sZs~@q_Sw#ra4Yq6wOi|6JGt6!#(uckt=VX@ ztKF26k*@Zp!`04_Tq-0tjei+P&oOTKdmvryJtCuG({i=*sp)ECi;tb6aL{tKHyy5a z3I)5`o2IM1$#Au|6tO{&v=;!ShllO_>S+Bmn z0%HZ+r4?%q9YObIYg(vRFWq(OQKss88d|(x7Q?XW&;ma61jKajRd`?JHY1>oJh!za ze;>@^jl;h_n3^3lZkUh4HgUx?yIWVF?pew!4q4slnqC?&FvuT|Z5xVgDWRW7nV$`X zxID3wBl3+A;~(k>`lYQ)?7E;1ngDV6StyZYc*<{y5=qL0Tgf!2kR%k+T`gkWLpZ&< zd~2U0;=6WU5GP_fQ%I+NeOd?mR4}J5j}6gx{Hezk%_urLylv{ue)y(<3efTNq}K-^ z06tP@c$-GQ^Qk*L(pgy103{%hBic3mMLAp{Ejvn$$jvyUdf(x;qr%P6YqN7zt(L*Y zlr^thhI!Llb&%JJ27%D+Ch)VX9S24MdS8w!EA)>N=e`dM%wqk#VqFk?qH8 zXCAUMgSO|iPNdZv>X%zPWvqLh2mV$=$t{m|tjpZhnz=1ZzHUyP-#t(WYB- zCdMA22>AX>C@^rA?~X%b$O$mwvmf11tV@qq>I{{+1X9XV3sl~gnfi&-_mq@?oM7pb zkcg-{*WqYfaed{P6(qtfL*QJ!{PljH=TDG0hks5P)aFcy>jAw z$Gr}|OIlHYO)sC?$4KZqw|Gxma?{~d15DvK`usjed{5H;%~pIwm`}|S>CjF4y#X9| zGE5Hm%YzgT1SxfSTrLZ1lR92blHi-X{7DDf0>4QTI_NW6GY@kAHq`0Y@%e&IDR2;I zpikCUp4^UpXJ`Xg!(G}3oCD>1Ya8sNcboWOu#X->P4@Q~#U{Qalslv!GHeW)VEc-x zEWV`Wcx)Sg%*)|%IR)s`UhhwO%@Cu!;r0;^m*HDKF)im{x#A(?PGOFBc!E0KF{gEG zXG!!nlq@zo5#09`-AHl43B4*4Y_meQj!Ry!`Va!%UO4SjE~OV&D203REg--fe5-M* zI-L9?QOsmH(hrSS=7VmU(4D^F`ACWQAwVQmRzSGQ{`zx{$WvbdkE#H4b2sO(w|?V} zYR_Hv)q-2)6eldvGNRfxM3x#2g&ndCsOHomR9PQ^;P?8ex~nilP*u(B8yguD;OXNu zL(rqTuj7jDC5d0?p74xDPhtsV3e{BgOPWR~Uez}gRjxIZuRi%vZ3c9oKYFS%X~!Sf zBK(MFOaW--yrOjVF~~5h>E0*QjG;V?!A(R>X!|N1a|Ys|V?qBVU)ALm*>ass zH_yb$oVZM_oB?&5R~YIz>E%qx{I2ClPdp-!jGe}X)y!-NLHOmyHnT_EXBqcs z=VC6`yVwV4ZdIFMmQ7cumhBNjR_tGJ;%hRT&>#I)JkStUW1DXAWcCys(A^F4EF9YkY2I;Qs3Ww6iYXoi3;*3Q$I4#wwwSJUojV-i+F zO}64gVUJBWPjbX)voW&qz?H#LIBFA*-7-ab(MAbGN;$^aGJp;crt_YOVcto(6CWb6_Oa9w% znQqq^+HTX40G}fcM9%=7wYHlAc_s__J1oasE|D)`dpV`rxU7P~BI7s}m;v4@pz*B_ zkc^}69-MpokW*L+Hn=&DvcDtc5bz1Zn7`ibJKr=$%{D*bG;;NtagF@7+E7YQ0;S&e9+;kk1`Ci`LHJIeLNNcs1EjntYC`KRZ z?2ams$99?TznbkZd|_u#>|ICE(L6eWLwq^=z)mw~1K}f5gHo8~Xpl4>YGt~Q@ZoV_ zI_5UJnmc44W*G1Q+7S&}T{e?X{BseNRq$JUBGXYP{3zY0#0ygrwZ_+7Qf}&Xcbk@m^nnl5bhFP<+T}eVnV|sfw)V2y#8c znt|bsd}T!s_}RBI{2UGkB0)J07%>ggX`TxH0rjAM!+jjs012WU5vy43?GJi;7gO4tAgl zL~oJT6747vS5@YvJd2Lf;l9=U`&kwq>Q~ZHkRsrE1@1a(TKJu670^)yvrI2MqT3c0 zjXS12QH^{bBRW(37$H-V7LzW`?sO>0@r91^o-jqJE9Px3V1%Nh#7_HU#q^JP=Ip<; zCASh1I?92TJ9`Yh__!T_CfB~7=I#WtB>Ac9{@S)?M}^QlE@E^wmQkBlK?_Hy_S69stNFQ~*WT277 zETwU2N<^;x8^L1QkYx0}9Sic5xh_8Y-5Qb)bVWMK*W+-0Y2NCUElb)UH9%i?HA0s;Y=_rJ|cDCM2Tk@(Foxf3?q#+@J+Pdjz#ru?wGQYBE+<|5)&v}J4 zNYXakk2@aic^#|0bd|(Q+E!M?O!mm-%47b<<67)%>8U&Cx1(gRp3$d{deU0cw0h~5 zIo_f@6{2~^<@lbiK#8k@X8g^L8o_oR=5p<(C8@+muAZdin%g2i<)22rCA?^N%Z}c{OEzCetzz#VPX*|~ zINod6vcH+U-BE+AFLm&)qe}VOmS;zu^U4)`$>&$*0Z?*DDJptMNp+vv?Nk3DldYrP zv1~T_qaS$=#)5$Cr^bWI{n`mgd~JCwjFj!qqN&TTmWK4vIK_H%{?VY=_nC*1u=dQp z&YMN-tnx^d?z&gwm6g{AJ(YB`N7UK|>(!_I);(e^r;+{Tic@j^mTAlG_Sm_tQa{a^ zI_!={Q7*;p&=`fe9&w2^YnbuOJm>(7`H0t1moMk6$s}2>=;i^!LEDo(MlRWo^*S5H z@tKb!nN4@pe&m#G9ThA7$rCc3?lO$q0A@o*_G`J`P#fmztV4}rKFJ~z5b34jSAG^O( zGHG>%pUlyyfE)Mzem9!m-``R3cD3V**UuZr43-i#!Opbks76ytH#dR1#yiuZt7-gB zwCJVUD2zmlccl0SC~#idQ4?#O@~rgg^;rc;KZgb=098K3O?ey|jPs56t(HRvJmAxOK06nKE8bj70MipSkj0ZP`wL~WvmW}k z+oV#e#iqly-y;f>b<~%Z?dtLu>7GZbMMrrr^(l?4_a&|@V#f8uA}>-c$j3d6o%bW2 zEYuwQsHrX|k!g`!C$I7)r^~rzxRk59rCgXcV6k3~EAHh&P1>g&1(EYUQZ15+be8;* z^(<6;X$Rus$na&MOQJ=Q-j{xq7Goz9OeinQnHKMe3$c}HLAq}^mrX}x{}^#z#ZRGt zOpAPVCt8pZk3@@??lyT5iRdU7RWh^_Ejmg}i|zcIeCT{0Me8}go5T&5&nSEW%G6ba zS7o9tTL2a+AvFB^s8K%x?-V*8xfT>mN^54cge*e)Sh*GyY*B^S#kJGQUGe2D8x=m@ z6Bl0F$E@*Ow4<5$+TTNBJP%LorO!^pGNk+0n9GxokAAbBm>odWk=h1%`BWE|Y14Oik3WO}N;G>puINUBu*K%i z$vcYKfk>rHGzm;pon3Ql4$unCa`s&+6;Vv~q&>ozt{2EKCMvHa;UkQRYON99*xl4P zqnLo$QYDfDnH?yAI%Z zNVC)KIA%vp_t>fE+%v6Z4Dh8NXU;j0*-_K0IHX+DSPMroJF0@CtbXakt3Zq#$$aVM zvU+KRSnsVfVw2<*-XvB!ZfLwincX!kp+vfCUiN1U7Y3*Qj5?X;D%QyDIX)99I(OAqI@gFXo-QL!*gi66JGM4=LR|5L z1t=L~$So(y;D&PhnKCjhS^{CG8?otpr^`Tfw&2~PJSteadz6R2$U7c)Hoj^5usi$V zb|jrrCP!Fk&|R9DJBj%e=T@^zw=ZZ0=HO1#ace}nIIYXa7)*5Q6jmiSR(D~>5p{Hd zK)%ql_EMb6`FJ7Xc)it$!moSfl@aliH|Xr+AiCcl{1PKNLGC`P=8-iQ$Lyg-t^6>f zpvjc(Fu9`>E4Gej!UcQ0;r{q8HOLODwA=SS0=AgxNDhGJcVP+s>=LuXtRC z62I^mm|{NzNn@Ff*InK982P2!l{_>CS+VLf$%68_!kX(gY#2xMdftITafxAWqfn^+ zcGH_BV??Lk{DpQz0`eKpv=DO)Cj7|m2uyg9+>4iumgUVD+FOCHoCy8Wo~o!#?pEb# z*g�(}+x_gvcJI{)H1L*aZk8Zy`>}> z2;XFPSTY9`cutaWXOhiELC>Gph+^_dD=>7>jzqTr;B-YA2g*Kt*mV42(ne7@Mr1cM zh0eXrM8v6Vi?Dj_T7q$I(WJw`$PpOkn<&8~DH!+_ zF%1XytLG`uUX|>%m!mNu_n?PGeU8|u$zQN4&S#{u&bRPMb-tynu>BcP=ea*rK1fJF zAM@^s+OjF8(hf&XwF6LCjI{$&T)r+RBd&NJCtms&o-5C~{fshw_-qMTRC%r-6?w|} z{)FZx&n=(Gb85|!I!N9;n}?&p)D8zG&)Z4)u`8rQ(XyDLKMw_R#MU`z&b|)?+yVFC zfnF{n{_0c!J#)(u+v%ldjk^r+j;7&GIY)F9ZFyz*$fxK}$-st0sG9*NucHm}y{jub zN&@>nCBYr-&LnhR(QGO?%7ywYomIrCKo3Mn1y6c6W)2SpP>t6=P6bdtMn^bL1yI?j z+&L-xKEqPdsXzx>K>zrxVM!b>ISi)kQvtR;9bd<(0Nz7~9TL3x(moYHC95EF;#2^2 zW&+L8set-Dr;C^~mri7VF1a&tMKL6rgJGy}?=|%q?zo!M_jM?Me#LyG4+WCWLxCLe zp+FD(S|19yIrniW&;u=5hXOsoc;zIZV*YXjS%(5_#=TP@$d#?{QvtVrK28OK>+Ck7 z;8T@Haw;)V_nE8K*(tjoSF{ZjyU0O-lNqN1$wfXE=!r3@V*%8{u3a}oF1r-!^szt> zv{lD0(8iYDQ639)M18gx=%~SWaz3o4r1Ml@kHo3K52-+hZ%8ILwq+6`lUnBdjpT8V+TK~@;_rL!6kAL0`dX=^2 z)4u-wKQRTy9V|LG zv~)7K%*BoKjx<61Tzg2oM#AZz=IG5rYtz#v9PJQ8=PLFIm_!K&zj3{zB6 z;N;@L{LT>=jGb|Zf)vxmD|krr(maG~2-or*#tcYBb!mJ@st`{RHENoB!5t%P!F13|c#=UYCI0tuhmztCnm`_b#ah6zN~_)@G+z>}6-+_?QLt*T*>Zn7g4hmE zJxV;mst_#rCNka-dJ?8yMWF#vi+Ndus8#GR=W#0B<&TKzF!|>kVdt%eh*rg; z%QPq)jog>6#uRJnNcWE1LcqC}#D$7{8jPVEzo-&l+;I^Rsi2fd5PCEm3QLVP)+Arm zfSLp)DX2{<1XCjjNpTHuLwvp^i5rFmR9w)9Qx~g|$%nEO~BzQ~Jq6zCXXVzG!ocU>Vw40kwg&*GnW8-J3 zyD;(27Js4(98u_Ie1yTwh@e%_c!M3lR4x+`ZiQ70284ZZLyN-DoL3dp zaNY|h_VpJiV}>;>5*D>?U+BiHl0}YHbRDY?{>=pneFj(Nx4$4Oc1a zOG5Qs7NkVUHJV{aZXU+2qS8BQ>PYn4Kx-*Znl+X|G>dDD zPWGDw>HZd&rzLScm}wHuVYAYlvGl8HOWOR(J+W@hV(gg}-I1#LIZ_=E?=RR(R%9Sa zhF;}75QdE-Lf*Y{u8Hb6LeGX-Sw|WJyZ|wS`*=j~mnO#Ikz!xQFJW~ltY#NnaMC4^ z5o08Dl#mz;ddWS+YMgqh(G16v(o0%wzXcKuzP2nIiQKEkz-e|?njf8Y!CM9N>7F`p z(Kz*JA<8QVH%ykN+7Tq@VYM2txVUyIz(xx?5V!udmr9%H_dh8s`Xe~V5G9?BQVqMz zZK%SirrwDKg>!_=yX+t|R?NRN#lo<_ZR#J&jeoU6*IG^(Kb3-|8*;U1+S_H=*GJPX z*_AA>T0q`lI{_zeU)vt2mmu6eEe4}Uj$6u3$`fWpXI*Jn8x29;nfkUNrpxz6nW@1~A_oQs8R|h>u=jbfs*q7Hx~T;^~@6>*J)QD{)7Rh|2+@$JV%i4IGAgQ`^UL zL~TSL6oRPbx|v={}DJ3kBn02*G8 zRB}J2HEgwBc;AKE3Ph!TeY zh@=?o9|WLglDND++Gra2K1Nh&{xO2y$uC(nark^A*Kx&WVDDf=p%6*;{w$fQa|*EZ z8Jg(jM#qH5lhTqZHGE$BH2t|#X&I}oEQxa~EgS({ed{EI-uk9FGfOs2Tyb|XNYYhv zor=*=tQ-!)SPrLmO}v;X=g;8k9b4B9?wI>P7tP6P)I?eT;IvEDAJGT zIv`N1y*n04VNXwj+~;p3m&yMljOx=)ZJd1PFUQt+?EKTPG0N>Wt^y3!t~B3k_3gFd z!`tcAV(P9Z-CnU_I>lI=RZq7Wkyk}9d_`p^To{g<@j zcf7+RC~g!kV2q$N!WfEVZ3qZsc)moG&;v*EIs^pb@!kFo`J>Ntc>Ks70yC~yvH*e} zm%RIZ$G8=UDKx?e8Cb?i+lLFMD+fXx@+aHQwpI0!2joCyAI^tiKITXwge9M;6W(ePaT!)}fH2AiF3)x|}d8W20fxJHCeK zt9?uxAv{A*nS1Cc)+$;`WTuF+Ow-7>gw`{355-ytEqkL7TJ__R4=dmHO9=wB0JaD3 zj0F1oYkT}SE@05$7OD}BF=;zFWB}P*YAzEukpsfEY5@EkRt+IvKb0QA>T%7r`3Ly7 z$c#8SsuX{yxwzOQE01c-`0CR7^0V{H$`EYjBfCdV^>1OB78@Fu1wMt;(;s^~2YP0_TQDO~m~b7}>?(8k-J#_!zlmaZB`a@~si> zj{q99%5vC*sI8%vV!b~(LMHbpG859`9=BsB78>KWW#Judpw>eM0Lrz`&7A;yosOyz zFHm5xhs_Nr-?gpqhJ(VoLwlP}n>$C+rZsBq-y?@@+^4D+kCCOuFWbf*mxIH9kK|pL zlezw7^Z!{yJ>#{3_er!5nFFe{xGezp`8(5E)`1)0JDo@TfRR{+AKn^ZnyDgv!g2 zkb%d~%Cb0rqg!k9zK*iOP&w_|T|62|f- zN+)4nw*wFI66V$QmUa^+paC|GJ08c}(@)5e^b__7{REKJF+HNTJ-4_#{e<~A)@nat z7V9(n39}4MclrslL^w=-!YpQe`w6q$d1z!1wtJs=6435$QUbPp=N94g!d%x3c=2(`K>BGXS8YxoE!{DiTZ9SivhV^z(!9fh$Ty;M31133tsJQ?}9 z#yU!LsSd}QM^9Rfwb@}9rl$hYYzj45=$?I?g3W!cM7z<0oSRc9KL22DM#SPC8l-7kA8c}KU@ zvziCJo|7(?`gRm@ARPt4%cjc5JJ7nZpD?}ZXNr&e%OLIiiZ-pzr!daO2QrIk0>?Pofr3}MOz^u?RwVQxhqlmJbkh7X@0%rcU`n>M1y%P2lHXVLKj-*!r ziC=$=SiRX%$nUnJ01^L~mcWLPS{`BB0;KBj7vw2Gpi61nQ-Hi?u-Kl$SeNy_JO$Vu za&W>^faIi)WKUttE<4YjLel9e>=Ahimc8LA;E|Mj=_x?1C|+T^FBDU(_a{dfH}kfw zkgkH6DCNewY+ra!12c4fNCBhJZuTVRZ2AF!CB456M`2FeS#iN|tS7d3(CH}TNSfhB z)BbzpFz0dC`UtcK=IV9}0Q0@(zmDWx{?flk&Zn=?oqvs_qmUzZ6pY}SjsnnlbwX}O zfq<@uB=fv_zXA;SUP=EJoNK?&E1G>nxeB?I=_&x>HDo0L6yw9}D147$(J7xpme{~Pq>W)ZxgCfA&m*hY4g?*X z5@*Uv!|C{;vyEz)o5P26dvgT%vo0*`1A`ax$Ay z+~T)j_mo!_x~SXqk|hGWtgMfZTHUsZ-*Hu0mR3WyK#%Mi=PPD*O}w)cS&Xl`6*doG z@4dHunwqL7=Pk2qyyE)`L67ng@J1}pxDqnS#qVi-@naZNp?26bD&+Nu81Y%H`I|N# zL0gOIJX% zgGI(+$@rFWeH^F_2k0|KMk{vF8l@V2!O?;&s zbY(m6ARhV1#_KKM?Eo*WGA+dYU1^IvvepeEBei4?RA(Xm5CwGmlk?@GLOc+`G@jd> z)XBsNPVU@}3unp!W4l~y?cIi|Xxu@l*?ob|$TPo@FK6vxm}<+5ctW*ZYERS_ z$&ua*Mb4-xzl7{TpU+8nJ`o2Cikqfh!1)a+4wb!-la@aGk0}#E3?RB{YUV$Cz*)_k zrYa<BA+02m-sO9H0G;v|mn8A%s`4D=QEErSDTM zQf2ph{#l6V-8NS`#Po$f|ki?n5>E z+e9i1ep|faktSABGqESRTFz+>;KImhCS9CQPJGOuBRgb|L`G#`>HXVCS%eo#@DEKIjq{q&Y$Z<)!H;I;Z)A?3%8*oWEs@ z>0^X~C~3-@M1stm=3|6b(?MUtWL(z2k<-i(#WQ#UcF^4Q2ko@xV}#rMpf6$R1|6Br z92s|x;LBFgd0hU6dCBaWycU_wn;#X#2!4&sX0!87Y)&XnCpHtRbJRVV_oaHoOl(f{ zPba?-QFQLS<(Hnn+M$fNuje=}c+{-|k3bpN{WJ$=VtsB@^lb&%?^j*VolO7I(&{;N z7-(lw_&c&i>`RPDx8W{F4Cb7*8#%Un((WcC#GJGy0Q6(lko9;>T4%qpJ!$>%R@8ehJ$8WwsCf0(_HC{Q@MB9g_?M z$gN+55P9mCd41>?&G7!*(G>{Y`eoEl{W9)P{nF=8{nG2Fe(Cq8erfBcerf$zIXJaF zANmEH`Ke#-c3HnPt#h3@Gh|-#`k2Q3e0PGp8T7QpPu9L|FcGO)?xO(e`=?Q0D7mZo z7jA^Syvxn711AX)Xjbe~g&-QP>=$DiA!IaJVq zaD)tAD2X4JKQ>0>h!Ek@3G^KRO#ww261vmr?_V zm%cQ|a!@v{N#Y$ISTKm}frIjowJGm)ggs^slZasQ}A-kWOBb}`g1o3_&@-W zF;{2$wE? zlPGdWco%md@9ryOM?gkY5Smf8O-I7`9x-=6kD!mk0P;)iqKbI!eT9)O!%PgI&TS@Y zV$y2Qc~hVzCsuFp`=1{J-^ai$?8P9Zi<5i;4>AU%%#-YzgCK_$Zw^dBlL`nFeT(*g zyJ6oRD4O3O(Uk9`gg_7jkss0PMSSd^1EImr0RjsqrTq!AogvL*gpssO10Lcehtd0T zp#A!|9H&wwr;pVwm{RwbjOi=EoL4<=nA~>lB5k&64 zCRobH7EDCF2}Q}1DcLN<6DMh=h8|*HKddX3^~Un z%+EQRHUm_Hl1ssO-KJ)Iu?K9p~~{SJl|cx7=EljPAMxP?jrYN z&(0P{F@H)>+4Jj|gn@vA=9)E?Oym_(hNs2gl64uv=^b!RT`iA(3uz@Phy$46OGHi2Ea z4}}7yGfsuN;e+B-Xwz{jv`2I*M2yYl%%97MnshMYREXH1s?Qk4yEXcSt^fLpC`Ge< zDnyQbcFfC&MPcrAxBl3tLcw+E5E@P^9Y%KV{BS7^*SfDTysYC?od93=aV%sWic_I( zK$|dfy78X(sZcj0Vx9^a**1@bj6if83lVnu5CBHL&U2xp^I&L?_#Eh`JfId0_K$<1 zfVz!GcVXtn!4Q#ki(yw3?lQDa$iu(}O`i`Fyu;yK5eFXP0)d34yhR!PQ5Lkb-v*Q7i+K+D!~l+YHIMC$tZT0){ybhqhSc;n1G9I2`&hYYO=Y5H3uwf9>hA zk%W-xhnRJl#L5G-PgSabN51z6>P;4be8x>ot$!KGyMF$%lXL&yJ?_7ZB-935-xk#Q zzP$eD80kdv%1T5q3~NTas+!0JYoKVrF2AJByYfdylUU?YbWAltd#Qt85wJIF)= z6e~nE@Hkk@<)cdA?tLhoj-6P+71Q4Z{3Q#X4 z*&QP{w{46>=_~46S!evH;HEuB8;m;Fg1?}TCJ+%J@$tSaYjCM45OAAIM^y_2AVQUj z5(uZDF#I=lw2uQZwpYNxrT2qr$DYd}goJR~dtOhhgxrUbT<*Xn(O@+`4IUE~J@#Hq=d zO=Z?#3(YzqQ6SMo{@xY*8u;D=&{wr<0ae<4ju1sTMj9TE7bid=*0cy$2Fxi)poXS1 zm>c9z;{#qmVhk^lu4GT z=Ym~g=+6aIjv8v<5EUXW%V5z{j0l&4g?8n5b(He)!6g_LC2TM!0HdoCBnH|GKxhH$ zfubm^iD?#eX;t!yn+Zln>|x!_lRJ}zI!b>8V2_GDRSt^HO~46PEbn(hEfC*2mIV3* zcOZ5JQduo9GL~*|WhYGAd#Lsk`_gzGo9=Epw?_muz?VY&5`yD$GSXcv2dFY*fD zSyj-iUt_5za>xjmF=J|ZhxnHDgk|3?+1 z*Q&MpzsZFq| zbEGv@OS-fgenPFsGXxC7I|QZz+lj@Jm-k8|JO{o46IETkc~kGQs(8;pnJymp93i_! z1+PW87v7tk0jC^Y_T=gA8qH(bjorNV_-bLW(C^QMCK8kK| z#oQ^|M$lmm&ZwV{sM@KMAPkv4y^Aypk_yl0ZyoJm|pr3hgV|llID`sE9%a=CD}8TP2Q^{rj`5X zW~ZlGtYd`I@F~hz@5;f(u0paQXd1uTRlGyC(!PRj_3;bJJ(Ygr4O6nu1~ceY^^yHBUMMuTD{~=Is7P8^X#eFDr;-@{dC$oSg<}S)B_UuM++`gjQT+{4=9`l%8 z)MGq{I}-JFF}o8#z0TRi2qnG1yja0;c{Z=M>tM`?tmo;r4stR(VV}>DPZ8scah6gX z$~gvX(WxhV8g#~EJB%kp%w(R)pkv5w8*mMdFc~}zx^;QO`wFDf!{Z2xZZ2gaZj)|K zq4r@*@p+cB+a|kKHCfyuLBitt4?7T2dy4j~5X_GGLRGm3u3j@^@ z^xbT*MS}h|=@9wr&vAuLQ`4k#2=y@O449WDU1YO{Nf+t(Y0@D-mRiCu#flxiq)a-W zi5w;!N@rv<$fS$)w?+5KA2jHkk$v(^jM$(uxN6r(s^5Sb6sCy&P@dUzS5clk5iMTH8*FIs4bx|{$TbU8(7Y(*tZm}8jZ%QW-3 zLpr2Ehx5hW&ntwhlfO_@Rdzf>2McM?>DV^yIUnoBH~6?KKhb4DY0vot;FzQ2X3t`B zyJz{wesDb(q9WVC_;ZX15ApjLS!^tK(6W^_U5%5wNBXai3#Rk&ReMT6MD4R2VMl_4 zuBz!sx;gr=N7&<_Dfk&ODM@LS->M*J<`Iwqqk1Gi zJ86QTA9VXsZG&*r^KpmF+D%_)-ha;#ewLMtO<(3q9Udj4(Cy<5ZZdI(O7J5fyJ?|@c zl)cF+Pgg(48<>*J5vGXWpM=ASx6fu{#H)eK?7Q1LAF2bmnPOsTNPMdJa1Rtp#_G-R+Wz#V7d@Z zX{g0Op1;L1)NmH98x_Wr9h+xULMGZ=UhtOxV~?T9(;B=A{WP&Ymt|K+ zr6-wpk9^+6mm1h4kQYeT<@}G!g=`#wbk_(DNw^7k3ojT`zw`4)cn&x1kz=fLVZn!p zCKT!3Z;gPL`Ab!Atz>kJjFBVzcf>W*xJhXAtcOIGu_=U>AL5K0rR~2+whkA$AOq%kES?eC**I@u| zVG*<}XFzp@7%4e`=e8mgjzJlNU#W}<#0aM389JiUUBe?SMmRx{3C5Qh9%(sJeG_x5 zXnA_1>UC~vFb>@KM)~;VVRCuLVLKli4M1Uw!YV2cJDPSTCr;1mJZN+%;tiL|bg?c- z%HU}u*Nw4q(lC;^j!ln<5y@@l5Hx)l@*kEly2u-kR_=pa#6oa5;8&qwf*gc`x<@p$ z2dpVrfcIir5Nxl;%gJAOkD~a-t(L_d<{UQM?Mejj1K#UaW;NfOhF?Jq!{nPQyBHM; zYw67qMZCvwt_NlZT#J%~+tY`T-Hp?U+w{9&cW*wq=LnuEX%T$$?dENq=9taarw9#SKuvi3e|#1_@i=c$R)4_P#t*R`Yz7Ib6aySLFU{K zkwH7E$oY&%c@@}Noi{|a94gZvzNH$x!#?L!RdtfX62r^FceU89F!1r+IFkp>3mRuo z^y8V!I}k9w2T$`mFbJ?cu;PzdnJ*=THcrIkcNZ0{!PA3>P}tS51E~SxmL&NQsSG?? zzSyRzBh`Ty3<;D@z$X5jL=>^kv0L0F9C;>`vy$n3sqb$=Nsm%|p>?6qz{N;CSZp`( zau{tX3S7t%R?X;!r9*P?9ACmg&wDUnBN}U|*qrZxoCAkdUg4K$%H)S}QOGdel5+{R z9~?xMoT@3l5k>M>!7I6+$Uj4>2BKw1Hh`IhTstyx8RD0&6C|*pQe0SkkC!UyZ;V)g zSkPjmvKbFaF>!sg{)O?*@1FvJI&8@=(wj?2bQL>*50McBC!%}zAoXym!vU*vLIv+6$W5hV{+P9`v7y&c zYFi7Zawv%qBi30%;WUr%H7U!I)_x=H$7@;H zMfXP*#>U7He{+XisvuxiPm;f-dch+sCzW1xRlP^LYi&1ehm0kxlFITNIq+!9+$Twh z1(2<#rBQN(^D^#(er4KKKJGwfP+WnZ9NOobR@IN`-~SvVEM(_;$ymGavX3@0G~k8y z-hN9y!uc27`J(Sgm2R1W)4kr;ADl{Mja`$j-fztuG{c27NKZDF>l#XB0}aoG^~86G zCwN%b;6CZh)5je;5*CfWW5?-+7*Gk%rmK|EYFeBg$!-{dEpP!tetsRaiXK4ov-;(H zNUq25h>b6Kv-pjBY3`m!PocI+nyqKN&HL^5>|Y1n&AAly7jlYv-k^yYGm?kj3~42uDl>Gh~LCXj3(?yqX_I+{xO zy2|<Oy0WOi-7zNfCYH2C6KLShA4IB`duXZiY9s*gsXFVm!wvtfV-$;q$M$#*CRtG>EV>i(4&aJ&}>QCmvf$)E4?v5 z?tqD>7l8E$?n1|3Y%RFJS1C@i#y9bSg~x_cx}+^thB9-23T2%-s5dU8aeH%JvACRN zxs#y1pA~liM_qU5%R(lt`lKP0Kya932;us!dV4SNn~PXZwndjn2X@GiJVuoLdTQt) zb~k+oZVS&xo2X0~Ba4EZU)@qPPR-jI5~jR>xlJO6mc{di5wb>=gShAuk=ZoUV2iQ! zVu6Wr!(^c{9&|`=;Ehb})6;a7x12A-%UtiLm^a%0AN`#Na)Vh25~9yr3uy*bzXO^`e$eqE22`V=2&Zu7o_ZBSF!Hn;$r?L85|x4 zWTlnz%@RYtGHoUx>QsLbqXtV_LJ2P1R<{;vQMOP&UR;MI`CDijYEt!#hwcKk27T9u zW!zc^-0{rZ_})deO9{*jG*rHJRrr`16*((ZXSbZZq3@oe;B8~-^afR6q>xQ?2_Ifv zZmFEABhIT-7XssmdNxVuTQ5k_R+c2w(=9A71LrVgG^DS|I>l!F!@65eQhQ8WIw{=j z5l%e6QP9U+nEpuKj*Na;tt8(d2=zobYt4P<4oj``b0Qo7X7B$ zFgrrYUv2dWbhfUMo&nQ_Z&80Hheye24;#qG2zaYx(6!^$$_P(pG57jjar8%3NdbB@ zl_g$g`mPq?(&>>|L$^>>6njK>)3lZD$k-#MFKKApx1>)|M`=bkize24ms0qZTK&%O zCr7#hdY8o2T^&D-b+k=;YnhitTUq)hDz5vMS#?c&g+EwjM@rEV8EGNnAI$9g!5ZP# zU=*8lp)pK1=LR^Y9UvmM-$-wfcwn&LrKf&C?dNYKyF^%$mclzCTpNn08}#i+G;wb3 z>9D8HKVGtOZ(l4LxB*z)tv5QJ-}(`Ogy8^S=Hl2Z-v}S;Kq>D~R{(23l)n$Z5g(y8 z9(?EbTW$czHb#gUqrCx28$y!vd;^=ejEI!-SDE=u_CRS3fN>SdE}8~}lJ9uUfuAUj z0A526(J_X+7~U~6WXuB(zQ&NwrP8(tOrI(uNX53TXy_#a>m?QkcT4I<=L+5rF*RBj#a4mUDo#!Gq-j@4h z@I0BnI5Vil^;yCxq5F%;#kn^~M(*yp^~=0UWL-roh_h_t*sV6-wDXLpnUhCoUWLTy#WO5UFA!>Jf@yFp4ft;OW2KO&yEUGf!IKG% zd>6!?f<_o|BwITxBtg~;p_jaRfaTY8G5*g`t;`pv~L>&y9{Mf;@l9hU2_yJI}JEh z%_}HSDh#$C%%=u(z z2dDTFTuz)n=epCsb9Av*xyr>Ky%aAca))99is3OhDaF88R@e1I7<+IDt0NtX;Yo`x zgA^d9SG{yP$cD>E_D0o&NUj*-LBsCcBi@*DQi}{=AEwc#WHhIwKUmDd0(60osckY8 zRem0ApDGYLgz$o4&EfzWAdBmG@Orf_xALO|Cj82X{J<`2fo|=ankDf@ugv@kZFK8+pX7H<3qz#-{I*3)d zgE-63(z&1>=SEz*n8p4X#+3GFl=mkCSZ=tR0qo=;4 zfkHC*#d9l;Tl^v|xX)BrmsX9xS9v~}{LAxy&bpW0&@tfm=h3$17dE1p9JI~!W8|^^Q#$O` zt1%fc)7Uo7XnB^x?W8cJjq7z*CNTOW|~3J3%rm-Ow4|2wA~- zR}9Pn?qR|5^p73#3~RI^wtc#mQ3(j7?_di>&>S2L1LYMDPlQ~Hq+RJBIzaM}dr0!{ za%|8C$c3o3+*36VRw(7a^|!ecnu421n`>!)Q2tXw5Ag^chIzOA;{;oGj`9_Ysf&E``4K&xhrd_=n(!Y?|#>N1-wB2dgA z#<*mehEmeV_cn$)u#4WLDBcXmepdgs|9jQ|9ufi}uwqqNLqTThk_OmA-eJ zeDe>QJ22@f1Af21M!wGx3%i4UJbzrV*5#caBSOsCwBIx7Ck)f-^qgjAAZgD<&~*uO z+KYsv{jdGsHc*0WLVx7ITsgvT3hQa+k_3}8U4X_H0G~&&KV?Qte7t6}Vb=uOi76=F zFzSDhlhmffRI?4#trxWQa!*qEP?}3^lkQJ$;-IoC0o z^r0b)H~~d>tlUtXK&Kf()$oxa?w%Hc!t(I(8A^yt9Yy_+r#LEO;!5)nBiVbTJpYHe zcS*8b*Of&3dlWf>ZQ`FC#~DIcnY~72ry6(sPY!ngT#;$lPP1B>KuAjx3F80ZQfyc8 z7xg9Tc7CMn!}O_5!5n4yLF(BOZDxT&i1zI~vz&_*mtuHM7|X?M99L>7Ngd3%aFR4F zgDQKF=yX}{S16Z7=iSd>uC|j?5TvXG=OJ+#noGf+b^?`;rIuUvc&l4#7S}G>Oe*KeT;T#?ZewiDj_T^@dpT;~sr@Z1R4MQo#YAroWlib#whp}Mi+R=CWSRF6q0DX>XOx8o-AVs@Aw z(C`LLbn)c5VPsAN_=&dbLe9>zl>jzT+nA4;%zvbJO5+wMtex#Dq6UX_Hm_0ym z37dps_P{DmgZPO>^TA(nHTmVJpCRpkP1;A6v~F)f&rab&`zvo&9pj_=FIU8E6&4dg z7VBZKDkU9rv23BgAxpcg>w>!IMxc+WVm?n9z74pcbZMdNd5ggzv|VjnT7cy+6qgt& z;HAiq*{rw(zh?rVu|aypydQE{r7aiHHtnAGjcO=2WJN*0lBpoami`FKJhvlG32I+0 z{x1QCYKUG^0AiUab6rH1SI|A}x?)(;y9;B?207w0)LcYBA<&ERp~0tYp_eSs5DQip za_N1lRB-Fd2#~s3_ubxdYE(-Hvb_JMEH!*^z`=zRV@vk^2RkrlKHhyv*6w30VoGD< zvyBklb~MtR%Ao6NjL!-c!|W*2aJHT6OW2NkmkRAyR4YYti3fI2ddSRs5A6YMh-lae zF}9qN#x5^1s6|$l^&T$oFxjep&>;$7DnFT2C9c>Wamm3qt_o59TsDh&)cQ~Wx!D&m zll!VFreK7kb_DT$`Asdc@x@S{$OY|G`3Mf_oQ%(ZYo*0h>yZOYEI>tb@%OfG!?R+-K}+i%H*|Se{gpc7rY4EW!Q=A`?&32 zs|hXh`i`NxkD+EGtVW$73@avXT>7#df;n$Kh#?$J{)VQ5bO{-qv+&vZS@np+H{a5} z+;8cw^4l~C9skQ{#)l6#k+CYbv4eH%3EN6@B1c|P!@3zO7}zB_#p2vZ5eE!YUp&$s zpLRo4VxB%hOx8X+nJ}G>c?^xpt)^B?T!-L;$5YF0OliGr(ZDeJTHBVVS58l~iZ3(x z)BDuM9OYm@jrqmFKG3~?)SJPebNjxpXqyIwSX67yfDXe)wbdi$O%1bENe{*pD@KH@ z^6^#}^BoSk7hH6CD?HbV4131+>;|1*6h3ZT!2tknZY1nXCNQ!K@luz^!ajW8M-46T zd2n>Wd}t?2ziU(4g(sHO#`-&B2~db^{>q7?WxKK3O_puBLZg@3)^NkA>V>5OHP!mP zm`0`|hh0zr1B^du#C#ZSJ@iy0-8iPQKnrial&HE5R)TSBEc!GIU36x;x9L29nhq9& z?g!_%7}8>18+iw?d@BxE#n6W`;s9#BFDF{X$br67d&A6uCt;&ZshM#_l>+p1b1U-l`c01)^Q})uyuB) z1e_E&Dz)8i42<}g?Yd%gWfABXSe20Z2g!Hz60^#Z<||GQ-o!Udg`)i5;1rvy zwjYWt{2lza}VxM%utGP-t{Mjq1YR< zIMJ)C%w18<7aj^)4@>Shg#DedOtb)*s?W0~dWim-%dyB~(UJabZl0z#b43-JgMGx! zLfS)TPJQXDJkL6TmctXU)pv@e{{(S;^@2eCUFAa#Zav(kjk;?&#yUfrE6|_EYC|Pt z3S3ix540h)_eC|h`brxI2w1NTzaVSpLEyNS(xsP{vu)zxN6U>LChj!T@N#-3^SGbU|r&zh^Lwn1w0hc z3`~-qE#wa{i1){_Fe|j6dn7YcEj#J=jiKKY@IK7e9Lzwr%;Yxc$0=wRX-T}z92l0e z3RlzSSh0d$kCr%DCu4Wll_qFjSV`B_>Z2_!b`&PJGBpKh%WW{d)sk2{lluTaCtlxS z+%atANM3V6Y1cb0OW3!h-NHO;CFFL#;ACcUVGdBduzlxzm{j{5 z`a$fAEy4TQylfPvxISh)2 zsTY2>$c;7c@5?ed2^r*;MBG_MB3Q&V*LB6%%KSad;+~aMvzPJ}f_^v=%<_)6a)WKD z7wZ*4RfXiZ%%n#l#0b3S-domjQ{jWQo7LNv5^b%dcH!o|V%*-*;l8Q3UKk^U??1SK zrTOB`joQZK@Fk-|=EHa9c~6$&fP6)X#xPb_P7C(h&b1$z!2pR02XcY8T<|Q%xG!M( z%;r=r<3&q#CG&F+{SmE;XciBj@A^_|tFa~Sgvg2oxb_vcw>;N3A=beao9OBrKg ze3-7Sj52Y?S(FPQ#yPwt$p>p?q6zKigNC>u?L>*fd#*>AGQ`yS-v3!%r zf~PiWu1%6d^*p3%ecD~#dwQhnzqYvTT&LCZAYFW0?uS!k6r}`(x_|JxqUwR{A*kHX zT*(7~!qMUtdZ3I8DBxuZz{ZGxU`ZC++XoRZRn&5FpC_J!Rcg4V>_JOXUf z`Qu0^=T-^oVf9`Z6%0%^y`a?_`K@8~x--XZSxYH5g|m9a0u#`$Z&Mynd_A*(VsW+% zxLiI~sOAFi$=X+%i;>0~Mz1B$%`_-$c^(;6Y~x#=MvdK#-WRj<+R80>4r>-^_g3_{ zH9OetUQe?~yVp`dTpykm0DtT((e8bJV)HZH?tL+IUdC${9dK%FN(2eR*IvR*7#hC$ z(w1@XG#Zd@_`a*a*r*I&Ta|XJYrbx&&@I_-euXl+WSn|Je;U3XFmS^+(#k}b3A^E& zn6V5^TJXP z?!zOUlJZbx(FNrxvfSvwEzjhsa1|yAXnR^vm#J)quVwY@59xrs9_n(Py&EO1H4z!~ zx5bK;@KI$f4fXJ=?Cc`TH(}?+7e;pOPmaKBmm)pGEnmZM&p5WWumg!KU++womanbP zqlO0-h*qlp_NHvUz;5}vkMz1iMz#w-mKCMxo15s*SSs9KN?`PDUs2V$SZNr9wd5J1 z^z-VRixTOSbjvrnBQ0NpOZ%0U@6WZPHK=T=w0sk@9`+)>FiaFqnD3hK@JDr;B2ri{ zSpDK0ri0|Z!)Y*JrUNA0BMYg>BA!Z@bJ%Qw3zqJ0d138V{x6K~30S{5`oHtzp^ng7 zIjEO*Fwz!BC)@My4w!V1FctX=LB%cM##-utRpd~{P;(C2X)i(!LMgS#GAyzsEVoj* zme7Qwk1cqDj&7U9{GmDieehJDon@rK) zkQhr5<=!|fZ++e|kIXb(;p^n&Fx4_4$YE9~%_4{Sr~v{;Qeo@J-8>1Y4Ee{bm96jn zWXuV)LC<+*dq5+fCD#*EB?ko<6xR1^^y_bL5kA>u2qA`A^0!voFgaYWfF#z1f7 z`F9L&`u_PVlmJ9s{7Q&8)c!Mn!Q?xC{ED*wmgqcwIxv)C-xr2{{tLD^fWe)DkujvY ze8pW!JG;>~ftF?(sf;yL)T99{EL}>H;qCI_+p{6{tSryz+|MvMvoO?3ek}o}y z2!~AJxWXAYjX&frdH)sVc_9~hT`$GFB7beqD{?+%cT|Zy3NX(!#M0Qv0@Oa+!r9eL zX31n0J>aI5XC{)vLpi&Fi9JP@SF3-;Fo^SkAwNx+Y268Xt~xMJPZl1ql!1h+XE+6> zGY2kUIwlg98!M7HT?{2metN@4>$N}K${!fJ=YlQIj)`6A!?`fbuS=MGKjBEz3=EUz zl~gHF5@0x30--EU2d#WCpdk|kJNhKXvezC42K@(|hMZ2F#`c}P%6>-_&_SnCb*pzb z+L40W5A|!wGEX&)bsSAmA(v&y(=*dYq6S%d=aOYOkC$w-6DpbOSFC#f<_k}H%Yq=* zkxojpp>By1UujN6zZY-2@QKCSE}pb_+Xa{wZ!hUbv3Pi$OS`G(p?TzscUba$EglLB z+O>FRUCz`OWQl67U3*wH<7?L*snS}R_AK(#lNo7+TB~1CM#S|j(XMQ|ANWj5{E=^y zhpAN=qgxp+%9_JhZspaNKP7J63R$xk3xfFZh-A2r|0rH>@K{(1am?% z-adcDgt!Te#7$%GxezyipK;5ZRwh}6cW%rh2vat4l3qKaJw(Mi&$3o7QsoUYl@~kcQV<89YNvD!$OkR#GV5^WOa5{y*ydHJc{FK{2Cml_GRYDLL!&ZntQVF7A7d=$%?mz)NI~I zE<9NcVMF<)>_}pi*ROC>#kz$ftF7{J!Sqll{a9_NyJGmUkdVpfH~mort97;nbw3tLib`JNpQ;4rWY#+ zPF}3G7T3|aI1_MhK97o&ab0mb!?Ti+?a1E|Zmb|5iKqTZ_|OPOM(kZca`tPg!&)R>0xJN{l)d@IZ9i7p1d-65F09x=f5v)5F-kr4Jx@WRRMMa+ z<}Rm@oQ+~5sc_0gBOg|9M)|NBn|5D5tk1P0zs2Z0d-t&00uzEXFcPGi10I4Da4WYU z?Yr@uOORq9pQq4p$ZVm5JiZ@8R@)^=G5mI3f>cA+FG1Ru&XELZU+%KvuJoBw6_;Z` z(*4)=Aw~Oq{!K>@t{-9p{z79Y0!ks;hn%!wwDnQt6ycWj@hF{$MjNJ;+M%S?*1N(8 z5}|-wO3(mZfI1@NC+4Nr^;b-oY>A=CmM~4WgxzG*nDa2%0v7Qn>?T`cXtE_tlPzJ_ z&^hxtl*|CB_+H@AN-c8vu-9&k-EzS;WV$OL6ZTqShUULJOnWV1x7QLwdkydsec8BM zhr?n^3{QE&X0s*eb_cffNdwwG?1+`vrt zyJRri82eemzdyGMa1=!ngzJd-b}as)4I1X9@bG zj>M3Mz8|BhwSU9JS;JjF5ET73KY%y2#^QrNFxOpu$!z}vlMna1{>0S7X89M!k{1m= zN)fPO?`?$kZgOI94vlA#*}{6T7G7E`{MZ58R4*+DK~dcKM8qJ#2%2mOsyF zBg}^%)bhV|$!#_uaQ|wU?zteJ-?L`~;+XHmG!oN`LAz}nR1~+BdRO1&iOFaEe~Hu6e*b~NRq+OT-tRv!_SOIIecpfm%Mbj|fAxv~Z8zMGQqT9D8WJ21 zs^Jnd52w#1W?5D91>3NZ3trS=60@zFqQNg`Y-o<~p5P1aR4Ombf*|cE4}Mujvk`jx zf-$DMeLh216q8ghY`nnW=kpmT9pOv7lD4C!b++pz;e^@zjHMeUEVG7~QMX4}$M1%i zQN>Hb7O}qNC;8t@70YCUb zDBQfk<`CKPzijG-&Esd=^O9yq`-!#g4GhfBE8-U%jz)c(RiA!q|A< z3&w<#1WD@m4Y^yKPVg5Ds^-hbj$RnfWoWq8dVUyYVSSqAl60)R(NeQaaDyk-3oL=} zvL8}kwa%Ib+j_tiYH)$TX~@ASTp)JrZ^-QEi&q@`1*^m8*u0K!DJttV%))P!MM^`q zYbR`!81M`VZzP243L_Nu%QtwR&u4VfTD(OkEyi2geCChuu%7$&rQ5Es3i)d#Y>bnw z)j59d>bX|a&!MmOwy6icA9l8_fB3a$wb`(gzhH9jf3QoFB^?#q6_<5uH}(6%RGa_P zQPEv0mvI=}c-)?&&2EoXRlOL~CVJ(VhK3ZZcg^4keQy+q*WWfZ}5n?$tw$W~=L9oW< z-(%76m8hF87tD3CJA|2=&zM$PU?&{wR&B{9{mCi*)qNbN7d_Y% z@SpU71mg~Gd>bD$6Bu)D*o)g14zsC~LWW!yhI#A?b3}B6W#;6YK81^6?==T|?{#?e zk73N#vE^HZ3~(4cC1^CH+ZNo8JJ+Yfh2Kw#Dmd()gpD#ApBh(?QsWnv*`D@{#yi#s zjl6Am_flirYW-Vr6BHIxDwOgsU1;n(~Geo;92aMd&nUwe7kUIw7_RqafOGs>r}EHYY%4jE zYuHM6f~E7Y)P(H@$rQihh}-)QoI$OjJR%ThJ9-Du%Ze8SJ+*Ux04T2Q{6xf*cCJ8> ztS?c}wAL_aUTgg0RD6-WzF%QyoD+p`R5)6*A#3oJ#2sxQ_+6a`VI9iaM-yi|Jf&M& z*uEI6Wa+gT2DDzLWjJHQ!fqXY>S^glRn_?8at`GCUGUz+-uM$E`SyXa4kj0D zgm}S)3Th&r>#rixgeT{YUl=?17i`Hw9d7eSBHLmi7skZ;1zYs)f*+R=$By=;!T?iu z-jgtYGhu&fVmg=mJl9zxAXkrr)=jMXf-6}=z)c$44?bYlK4N4& z+4k=X(`<5_!KQ6C8|3+(?1wy$2h+}aq0r;tnT}Q~H8t25ZhDg?5r^h1-7wt*76NbO ze)n-Gh)bdCvm-`goUqtZ=IItEMqK8HLb%EYvu_;Kn!m85&*d|=`FXAttWwyzj%p8G zUJE)zuGSOah1cgo>`g;8muhdR)mlv7l4hCF38Q1r_}H|*w9Wbj*J}J3snz&fxK`tD z=~|6{MrZ^0P&0(2FT_GfpNOSO9_5SaJjxeaI!kOvXf*&P*Y#f*Hu&#;##qw6 z#3_-q$(JOJG}tZ;*`u^!Kz9@fm8WMEdI5$xC6jW;U~{>o?NP{_<1|dt$mi*xIPI-T zD_`<_C5C!BU^9EFg{r&7MRa5=^3oB#nLR1xT@I2nD%QZc+77d_ku`Q1PNnl1NCIml zR_s~tgM2E;88M3Pyc8W5cosS?9)or)VO%_QhW!f8QFqOzcg|V&$Kj4usfr+Z;k{sK ze`N?G>{q19(3gNXL8>|s4|{UUi$(Z59Q0f2+`%(p_ukTh^DpxqO=A_SMA)%Q7A&qY z;(fouUW@mA>{QzqnYPLKgti9aN{^9$M`Uq_QWJ|7I!^Cq(8S-{;Hi<0gKjjt2fs!y zml;g3qfv`(flTs%dttMv3uA%f_Xi%VWJ5AMcm;mYEDN4PHRz?i@!5!b^oE;37SZF@@$4Yez##dr^yQb(a8!r$m8u=tE>X+9N$ zhU}%P4I;1TlW5Ou#;^@ud`9EAX*3cu_hvJeZLm23J9|qB#vN##5s2?ZM06$))~CTh zWLlyA7p4dbGtf^A^}q5}4(n)#@?Y~PGoDgW{=3aFZ)daGlr~;JENF~+V4OWLxA!9& zDyiYb!4Wkc`?y$h&;7%hui;onEjHLByxwrI2(~+@JH{2wnv5A-Z7Hc}=oht=kOX?F z5!ou&TQ$^C0OZxi%Iu@y;DXpUa=?^YY&H^W3m4(xSEGf<e#52!=XWD8YB05Mh-&kZK2xqdc$6Qz0y&%Z z+QpWZT8e0}p)<6o7JZxGRYf*!kYGcTJo8j5A|crJpNeE$fdKyCPa45ldPqaz{p1a+ z>LY0Oz~+2!_hRj?(7jP3g$j|@~yH=gU4#~KW7 zig*}Z5w4Vp{C=Mf9^|bCMm=Q$#^k#f(ie@C1Acx1t z-gFx&Zi38WFqn#1FTwUH`phkkVF_ad)%?DG#p$SH-m9(F(}I24r&7gJFtr}4xA|#( zh$ZXO&AzZ3#MIv#jp_zljAHy-#UYkV7?b@yZMlu;hT@Le52}g@cG;&PrykDF_2B6T z#)2u1v9I12h;1?neWV46QyIo6(O7!Ld^w|2lsaJl=92dWT-=^H6tt;7f}7KbV>&f<@n56V(k{91e(i|2+K1a|&%mVXa_#mf zJ9_+76mr>)a{PPoU4$rSWhdII=AGn&AvV)Kl*e(mprTJuG<5~9d*$Q?N?MA!fn4` zAZ=(p@{8fga=%nr63m-%5+*cMv~lqihfY21C@ff5qbfn&(YMyrfFkDQtTRM7q z53RmMQXEDmA#V_Z`vq!8SDC*dj=6Sj#Gt@(aN&?A=;l8VwO&#+V0sr4?y|ZPGpW%A zyex*7@OI)pQ)-yB2ZyOWTyPPefN$BhpDr~~gaW8O*!D2t_49qu4!ZZ;7iDJ?+=u~Mkc&7}$b1es>aZ1I( zXFex$d8oJ=%_)YdPuz-lLAr&#toAl zdgF9X$u@cbE|_I8iHM{1$t;zy&w7gQ*v?qiqX{~OnSuDe5Ddr?G(*hqzD{Oh z$o>;%Mn=NU)e^&Vm9R%89bR&wC1%ruAFyHq7cBq0W4f_*d=v)H^}k?D$D$>k7^(sZ zQ)Nxq^|-{)XbIR!G~gxUJuy^b6E^MKU{kW_&(R&{QtxjVN^QbL_FHT6jl=;1#?GkU zbHVnT0moAV(__ueRPw_X@KW+lVvxajfm(`oJAf{_lSvUETxAJ$NzWhbz?^|7-8A)Z z*{t{97ly8NgHb7P=;O2G0u;>XgnmV`jwy&Z@uyQcp^MM658RHm8#qH6s(Rf_Pcb)> zUi>{7R0gZ~BWhN6Noye34w;B0`#c{;C-Qyz#}$*_H2(!=YTeJM(tz|5l_MoiA7qoJ zH1{QE4XTn&#WlxrM-lQfVhL3f+&UaN)XDpbd)1sL#nk${)y8l{*OEf^n@p|qR4~Vxs&s*%9Zg0V7A)N z1EE+NBmrK#S`Xmg7bbWi;vTL26;stY_~-A?9Z%e4=EPN@PsT6(#9aL8$L~-B===(2 zTKMrPcdL9a3Uq{kS9Iy}q@a?mbV~GHBi}r>E`%FV z3S2zrub5l|#TIYOG|`THQQqXius<<*lcF1c!Q{jJuAdll*Df;+LPR(`xl+TC~m845*2n zrt{@XQ^+qA6-9>QyZip!;6<~5>()Ctzb`Amr-fLxpI6j^v9)hT49%5e2dkr`jV?xo z#E#sUL4?##!!0vtO@>>>SIxaLFG8X|E^ygSF+0kRALK`&x~rG#5w!-Df(TLU_2^*G z!1rc%2@L44*il)#(ldt3j*&5va?Q(L(@E+*es*Y_ zpw48Ct&!BY{C9CEWIyWAcqGp%CQtek;wu#g9Az@=^-)U7C@jTrm*k)+9BNoBT(~3$ zKR>T{pB%p*#1)P?@J8xgj3sKPBEXt(WU)AATbZMgr=3g1aPf;KA478s?zJrz_rjC> zaW~3aTHmJGS;GgT4|AT&WjSb2JHe(5ARXEriYpl_e%Hm7LCe~)b)+|9DYp|#-K9RZ zdL4De!?jg@hHUdHc`U+t?P4d4sVBQz?FWIOt>FBXvT<3wxT8STkGjNd7kgpMAjGZn zipD{r8TSW~+sP(FN)b-g&m?>y$D^VE1Y;)*jiioX(S{#71C?krv&MVwm!wP;b;LRr zAbepI0>2>7CYoWx;#u2+su)@ZnpjMb?`WX?zV%wx7OtbeHY}XAJj{<{j}2baLOmVc z4LG0HG@|P8pKSYk7b6C}qkY4g4CsTP5$*yEog4&wX24(nG@D6qt}9TrcK^aM4|6`F zf#aUVx4@~!J`IDJ*bOFcpP?@0hIndVzCSTAxDvKg^gsXPkJwryh!9mm4{e-4sNNz# zRyqVYsR|{+8ZRW+j2#D9S)ULH20rlmg9Bav#BBQBJ}}JVN!Xkr2{)-44aA0Z#VnL% zS2%3`jtjO3;l~|JIY`)Y5)(YMYz%|ryt~B^FPJf%8{YhM2EU2;{zM>)Az@2=G8lR% z;Nrhvh(=F$!hFX76*dl9&}Uw-mLcHA235X4n_kL*OvMY3?gd>9qg)vKCNe$$0c317 zJ^pqsiAgK$1t!-CWv^Ng2VBDdjE=;fj{bn!=yaFu(XD8f>;5Pcs;76NoJmW{ku+SE{9vgTS%)TrFgQ@fGUXFvu9yye3f?yKxax~A z)HuwrA$N~2<$HAKLd)Kpu1`3o8_z0z@=y%mjoS1%btoo9Br*%R=xiTn6)omQ40^g~5y> za0`3nu-3K}Jz;3!J@Wze+QI1<7(C^moi;^F!-a3K~AqC~I6VG!~^u^PmmpSo9Ul zv12BEYnN0Qw1m)ChlO((r9G43=Ehcfo&X!yatExhdZWIy4kVnrVY9b7x__&Gc5?O{j5-ylK#5aU}MU-2^Q8_CJDL-o|XrY zLK=H*EHSRw)UKr$^yiSFK^>wI_?)Hhpu-7e5bIh9fsAa}^@ae?9p+SX#A1{LdETbG zvW&N*Fat)VRBvREJkBDGF`$C3w&0i@r6A9`c&cGexvwxvxL_u7-*~`4yOiLNkX? zc#d`XGnkpb*gTUBG$dZwO)2BWFH8}?rYFr}97qkO{DNE7n)$MfI@Y-t&gn&Vk+G-K zU0@nG2f4V8xA>Vb-{er{$^7TyN)v07M$W}MO;bCz(JySB4&ElD?!(VB(Vl zrbZKRs62_GQk3vC855v4!cc8UI#evj*7RWM8AvvkTx3e_wr0S&>?+K0b5^;^_-Gce zaOgXX-=n@wP15>djy+pLxx9~bXh{1zAnn`KTz4HLhP(0oPt*rViLGo#5BoOXvnhX_1w$8H!)2m7 z*xDqMf3Ofnlri6B?%VqEiV&Ap>Y^3$&TC=P`a)UYzLcyZ%pQiF9)3;qzDIj;9rd^y1Re3aby5L77?gk^jz_PkrRyFklM#V#`pn5SH#&i7Yln3qDO9i}R<%MJs^ zbPN9tCo66=GY8Q9eVO~xZ;%cXh*~FRCVc20?};I=^vUpsy*ttuc-7s1-ijpn3p`HAy%IyGm3^7hL!n#K`?!(Fh_5Cf}f>k@6B!jI)} zhh|O~V(}wRMNbo@(hzg@8J3urZ@4KIUq(|bK0Hh@v2?e@*fTW@F&7A7hN*j;$(dOk6Y&M{eD^Z0nOUxOS3^C{GZis=Wo4Yy;G4Sk`b{JT+ zDFL#>pm&rHL(D5;-4OGdSvSNIc0(*N&#&OUZiu-|NJ~sDD#H@PH`HsZKWRa&(H^H6 zH^dyXt+wI&MzGOc!iOz<=>4`Bj*18#4|b3Rvk9C>Lp%}J=e4 z%fMnt{o|5IQvVe0uVfj<0@XVd*)heZo%@PL=P%<#-eu6Ai909_@~w>G{k2~Z{6u!r z7kly1yUNVM%588F?cMuKc~Uz*M#-_VzYKV^?yX)hJKE{;C->@`4K|c$v~Wq=-oO^j4mhpF6N@cuX6iDniM z-`wGIS?fVUPNPm@%_}dQ2<07c5~cgVC^!TBUu*zb_pdOdF<`FVE3X==G^AAo6-KT) zLZ*JE5{*lPQ_Y26(P-89Z+bt~iyj(H4p%h2xvj4>W|y^V*#M7w*)Z(PylBl!GTbrG zWkUm2s_0R$QjYR3rW&jknb}-86fn$rubkJj`O38_Lq;ptngY|Ya*eDhR!;32b6rS@ z*UG6WWM0vk=k3~a>#TK7^%@<&j8W<&q3fjWFI^`cQ>N%FP*N*;iqUvc)zmn*d4q}=?)NX!HrV#YDo zZha~VDgixAYlntZ*;F+!RDl4S=6KZ1^;q_;D?E7AY5d`>27^b=80n4}!?u52A$&{& zlQWwAEgvbfOaVamN}6GwLfao^QOZuka4?G;NhQKqxzR42$eNDT>w?;q{-%DJb;+CU zT32UTfa}95CNX{3dbBmpjapPUzSw?>{v~r0S#ilo|B{-jh3(l{&zK5%?{2{871^FD zQV~0A9WIZS+E1DBQSBY|%CoUySS87%nbxbUg30{WUYN`7rbeurn;P%RmX9m2wWX$E zr`ECBh%Yvqq>Zf_v1RGGo_-PVe!Ss&U|0+G!t$MxzU>#A6t1Q=ua$mcg$&U7k(oWu z-JjC9A&nQO;Sfd0tPWZAf=8KL(M(Jv=eb-MJ6JCHh~aY|*yiV#atfNuM|7$4 zOh7KJNXUg#ZxTJt$VD!=aQCvGnP)c|xtU0)RecjV;~uVAZMKT4$c(LRqUrOL(-&O4 zA(}8c`rm&r1D2n$!p5DFY7@x~TkJE(N-=YD9ns-QxAPYp`dujx>IfLRXe@5TKQIMy zp6iOoEekSajDa*yTJtL5*g!qvDN6PdL-rj{F><64IZ>TK5$Y21u+-%u!=uy=xlNrh zZc}UwT)!^o?T?jH!QB~hWSf8Bch+6Fho`d{NqAqpW+(kMed~<*u~r$8dlbCxLhu*s zwobdQVA)7`V*(EI-!YP+R=y@l{U^rtc~qE{awC@14mQI5{>R%O{tXj1saD`mL_XQ? z`2z!)bM^2d~Ht5W9tdxrE^^yLhX6Utf672NjvEx}*WfHAK)&I}zccTn|< zn_V))EEw~3?~`Cua#t2#KBRVHD7C%N%B8kSKrX561#vF5QHgL?N^P%0NU@Eo z6J`riZlg}+w3OSZLs;{E`OzwUcqX<-nllB#1PtJOzoHn z?J?x1l+YfNv)@u^57UT3Vh@byyoB~xkJJPT?EyF7C9?-YToxde^yssoSzNnsCVq-GbEP1rCCeP&@j8zMX?FDaf1vH;4C&nwsLSm06w6U>S z^Frl~0^8vf*nyG2M(K|!vl7@|dzPGXSi6>Bt)sYCN9CQR%P@3#?bPe?+6&}dV0-;j z3T&q}7ucw2X(^4pU?t@>R`S&Aiov0MF0aQJ%Kw(UcIt6?J*FZM&9+)*O33Rm4}&NY z*r2W6Q(%u(`H3O0$6~BN0()RI=}Li}unTO*q`>~c2TWk&y-hraz{a`QsVlrNCmg!K z9)oi;Q()uhtsc@8Yd3p}<5=C66}ApqAi z6T`Pk_~UXXnfbU>=O-sj5(qeg%86mrIbrjOCg?dXz|4;vm&p+e5yYL(49yf`b3QAI z2pWH4`??!Lo`|C;s}&B%S=`d_ESJgF;^AVN91ajJrpXanmy2n#m3X+AW_>&sKom(-@VJ<;riFk4#S`xFqZuE{;jR%MT7hwz3``KxtpUZw!kU7rY`Rm6LhSzwOq3 z=2@35{(?iQgE_okxJfZ^ZDeA8M@@BPazbK6aVN@1KH|J{ZAF);e_Qu zb!1MCGtMh$*t+F0*-QJ1htA=N!uHfY`%(2Hm88ju5m(H0_U`3|h{()N*%BX)25zZ^ zPu%E9=fPGl5fCgo2jbrOIyL~;<&XJ?4C|3+8jIdeCV!| zO~ylWjD-vBce3$$UV%WZQWKyK%;magd=H*3@jy_juMH@+M7J~dYAf*U)vB!ZpC@RMdmy#LOd=GgYl?y!~yQPzu>tjgg< zN&ehQxrh+#wBeMIm^C@4(?iR)az_r#y+77gg~XFh;-dm+axmHz7M|>E55)?*d&s+< zhaWv`oVN15Y`5#bQkjjd3|2>bBAAE?d0tou{%i9Ug$TQ z`8QQ+79icsM)5*0YiM!~OQ>hF&qz>ZPSE5W7B5t_Z=SbI;+%q8q;R-GUV+lEddWF) z8^#Zf{S4NzC^5+gVjaXV)L)9x?=h zBU6%SLlSHov}j+wqJ9i^o$iY-qc0eodiqE_k}CfGUh=T1vixnFuf#1u5pRO{yUi<3Ib>Uf8Rjp6Hm8`_O*tCtg%ajYZD@5HG7?fV}ar~4j+3xgGX zHwfK;)=-Q2VZ+$t8YS@liO`e2|9G~I?Dl8n`~1L|<*KLo^MC(=;mGd)$3E^q|K;cX z=fC>E|8`(^gZ=!HOX;O^_;+F+PQ`^u{gPcV-}eM;)LP`n{=yv%T(Tglg92#yj*h_( z?*K1&!KEy|22ajQvITRp(8~f1QeLK7+T`#G^otspaWXakVW^~)+>nV%QH=Uw>&;{{)yH1I_n!i5`9AfOjOAvvNZbMpn!h!9b=jvrX+64Nl| zr7V6U8V`1OCI;8w{bYn~mMxlmh7I8its?4~F^%Y5@8V7P0xse!iK&*H?LXjSix9SZ z*;zq=kKfQNyjAe-C|t)IzLKRNK7(cl_=cCkls>!@K}Sw0?idzMw^aZW@ab3REQf7U zk2qUcYYKX;U2XQuk2ij z&PNq+D|CN0^gh~?uYti^aBc!*{ML>@#|@miVGCgcF8#C6cF2}~urmc#a(}D?!UzrP zps7e5NtU*9mN=4|VtaSjzVsmq)f~GYEG)Vs8l;XZU|<*NUBP?-8++d}Q5!s}-Iknvg9c`qHGVzX;UHqN#=SlRR=?fB0ZIt5 z7|UN4{%Q!pj7hlYj$>crEFX^cCJ}%}Z3Dj@AZ|dyLA@^6W^EaahD-y4B}+UKcWkSS z%a?+Y+vBy{faaK+iaVe?Hhwr-eGDYJ+R||@5cC2QI)halFJj;iw#x%t=15dB$b7+S zA|DuS7*w2xwDl(juVDj5E)3}}VH1!S?A@pmLmE$*V~7KuN1a#_L#-fTn`8*^Q%OjS z6$oB1JL%uBzI{<>8{+#D!S!~yX}uj*^THQnjwpL6j3Z2#z4;T~GdH5F`I+}m*b*hNI-yNXLo;F=jjO*8iPg@>v~*k}=G|{4 z3Ix9=7Yov3prYnni@6{2B&u3-KA7>)Y9G0Vz$8+>aujg|&iS4)9{@9yTi54wQEdF?z>So;&8 zZH5Jwt_!H3Cp<$&Q6|lid?3Cnp6ApN^5qA;kciOxuD8$xe%~1C3ae2wb%kc3b**@} zjT(9}rZa?WT-EJ0cp_e~QGFqe*bR>kG7s6pfX9`GaFvfUx-g*TBGdIytm%-O!z0Z( zeCcsk<5xWY-eiq#8};TiaM#s*W`pmyl;l-#3e_EK9CzUBC4Hd%!1-Htd^5aG<#T&q z4&P5KTZ5nKS-GqeCQqeWVn-`+fai*}x?q)DUKoz^25dSbb;=;Pt=6$GW^l2ORrc6BnofNrXicB%ofJ9@?*8LFD#iFx>PLfu~ZgYe510%*{yK&ErU6SsKGaABJx-R zly^4|glj=6b1fuf9o>o|ll&Y*!)M97^wI&^0zDP%S_5t+Hk!_ff$s2OeOxCtM# z*~Ue_$)IZ}^+v?h&3jpVA%`oyu@}N(pZ1H!#WmG-F7r{yjc%_mWwRB2?;2^VW5LMZ zy&c~|25n+&8=*s+q4z5oO>f%?qYf@%votW{U1sgG;kt1Gx1Nxnx?VS)1+2KE&^ zreklU5~lz zlVateSXFMGr!ZjgVmcQB;em5WTQP}M7bQ_x>Y(wKR$WT)(@28tp$dC6(${o=(#apO zyQvc_e%7bfK-+#HHQY2bt33LBVc6^)M+d_!%U?0P>-&%2G1tE1sM+2>9g1E2&>xtv z-#&kZ3J?NtwT89y{xrg0COejmLu&|sQE#GYgYXyCYPa$bAe|)@Z3L^v<$*@DXr#u1 z1wK=T2(Lgmrq1}yhVV=8A$4)blG|gk8#1EjwDq?!A%QBbup5M7i9kaUwK;e>!rb4f zYYIcWwEtb-q>_^O>h4n*VqH{X5bNdx&3$F{0$*I~5s2>(1PIYVvcmiUAFpv?$hK}6 z?R66#YAKx~1N^H3ditM?Q?j_wsXrSq-VWH{=%F5W3%q# zCHSMD#9=!I!#pj01gFZxR7Bv^^!!proa&BTy=HA0q0uVHWbTZDm3M zOHH;rgpqc?Q6_Up&&D_2U!)nQY_}IPscQ3_zwnk7CG}%f+83?Mm+7P&+QV{RqI8Ab zc!qrLRFGb1QOCOZhmv(}olIo5Qb{|HPPr!2og%X>lrX0vSHcc*vpO{(EcHQ#^a)mF zB(fL>riE%m)?~WD0>S7p`^d6JvXd*$bk_T`2K@0m`ugH8{>Vf z$IEXLBR5UG>&u|+OqO-t7kKpQOUH66dQV#!>t{-=b5UR5=E)5V`)D)RI0igDy(KWTUK3Wx-r<-91Pr)u`VJzP=1#s~MRy$@N8>|)fm9L(-_@Dg6~BQz zZhJ2{8XJaQ9ln#tA1&+`OV4nm8Vp7J5??)efRN&{u9ZSkZ!UF14Wsc56|BY?ttNVX&3h39%i0V=^W$DM{8fOt>X$8-q`D-q%kg zI*2)T(|;~@dU(J;*(>wDl;csGB|!bYF-k{UjK83vV&j*=*jWh6I2-qH5ZkRB?|K^m`ug^2G?%39V?jIu`pt_uk>@mUYZxI za<{~=325Ff;pc~_Eax9CCkhn2Xim{RHiM1-YG_&z+Y8N^Qc6-sXiA>(`fc(4N0P$k@K-JM!oggZSw z=U+a;367l_gC1YS%MvD>V9Qb9Gbp+?=BGHtqt>tf`gta370#s>kAo5zws?%V6IK@_ zhwvyRZUhvN@mVPiE%>SA1=kEvys|!Y2c!%uk*7l<%lj+5UGV{9rndbjE*a$s8CqQaam2~3l|SIEgPQXT<@X=3-A4;4r8sT^DqXU6cZQ=RoQ!=MTT7k7h|Q{ z14L7TYIxBQ`~o6yH*1~nmXGTt5Z}38v0C;#zG3S6X4Xc0B}g8daSV9070ywJv%${I)Qn zbv7HV6nqscd~;14kzQ}Uib}X$?<*!{zyE@Ab=3I$D>J3yC5Gggzoe3LuFp^|R($6; zlWQ{8|a}%`ewr zB3N87MkrGjb{;j9siHfcP^Rpqx>yEZ`-P`Dk?>hcsKS`Im1lk-9b%C4ExUv1bWk%V zy}@u%8TYhd3orcGT6W713Xr_kt~W$(D#FZt{tbhdnDrCG?7)QSjSM)(*n03LG}Q@V3!n$QL2{1G#x)+rO)(-N-;6tq>DDL-@tT_by2HR+Vp7I z>O;mEH3ko|S9Ujl;X_79v)bsJu38y*FD!QKt2vlVSz~(R8dBb6VWNuP=vz7ts`h)r zc1*=?{R%(&?22o=W96=YWq{qu0#h_nFG4_mHGZX%Znm3MH1^TjsAxZ6mU~DahMICc z4zmj5lp-y0|8h+!;jj)Ja~-lzwy7Kj6kZo1w^atBf6A(HSwjgn71^ptyXD2XDr`}- zW{zTDuE03JQW>^uJK!%SJ?wK`q5J{p$`<(*te)^+nPE`9$(V&KO`iOTiL-{#nQ^KM zv#2tihqLY@WcL?L-qjyDI{v`q)BUbLF~w4=ZVYFMH1vfr1%@?A9!-?%@QOFOs}S+Y zBP)&>22AJ?YmJ?p!Nvs&VYTA%vEKl0Z%4Yw5vl+W-H-3!`ZFuTmF#fFXKb{Wt#GjUL^b=#{ zzWzMD!S6pXJVO7^ecpfm%Mbj|fAxv~eZepNE*363EM*ktG}B+cZ_Koc$^bWgSPpkt zn2GR;hlkVP`*c?f!7Z&UFr(0GLD!7UHSgtyhlFK3!mmI}H-Hb_QFNl-kDxQx-hux5 z#i*>mW3%#F`v_HvH2MTiGYj9=)+V7h%0251XMcCeI38;y;A{E)k5y?}!a!oyqo|v5 zO$=kxsvGk@0OJh-pGg=-3ZBb^QI*-o1^|XxgE!s3yxjTy6!&!ZX+D}4LuWc*i~V+U z5deI&Uri;8%W@4-LEh~K=KE>~QPF6z;=aUPfO!@-0BS^skgVLFVpWlyvE$gm#QeO% ze?jo|jLwRby) zuHu+!nFoWVtgP6y@MP~%<8I+ex%Ln@vfn7A*ymvYb05aF&?v^@ky~#0r!Wt1Tk0FY zbr`?2@CFNrEq+Ox02s^B+LmSFRihryyx>Ra258z?%YB6@5tfi)XX3G@B_Ge|44ubY zSOcPbN%XqBzrm7Q6_vHRRm%v8HJB8L#}mSF=1c%;9pemYol)odwAcwd*S3?_ZYjq2 z7fkN@4?d}iEQIMTY~S4&7X}F@=IUyP2_{=!fo6tU+soxLx~lO}456Z9nZ59|dDLnG8;l{g;e`$?bc;7ab1xfq&lDVUDp}r7^|Tnc`o{d_ zISfe*%nbTT9Q1Nl8=!j=jAM#T+_LuupFk#r`A$V1r+DB>UTjPCv09~St%&SRANv3J zUe%o*aspajhj|o>Nk!v(!{8|i(-|Z{S3G0)T%Lv=cx|PK!uFhmjVP^=!*vCT)PDh$ zvWHLTDoGuoWekPecD|zGb)Ky9#bkw2@-soyMj};(oFK-@g%a!8R$il|5(AmJ^_Ujo zU=pP;8?5^Liu=KAhN6zUlQ*^Q2kT^th`nRG*`dAy2_dSYZIKXVp)4ZD*g9M0=Azz@oiJl;g?IFkAn_}Tn7sc&8Op)xP9Dy2mOEe{t9J00ltVYa0u*Pd zn)*yoU(?bsZVtoq0BxBpI_XO+X zJI4k3B7vpRAFy;wi}iJ2*i@TYo#@|E`MMs)@}qdxGs3fJ?Ze^e83B1 zZs7|Si3a?*Z_6>z+Rt^x+^SHcItyuCtKV^INc0P4=~TkqeThYEBlH(wELYy|30S`w za6C0IJ63$}JZu3|i}?EI!W8=40`}u-WTd4^y2EOgdHsDxwbhKZ|N4U=FlNDm!&{;X zvyb`X3^t9EiGWtpXldZb3py0xG=0XZfmz$@TC7DpEst+|PNk|SEmL`@tTEmjJ;8>U zI_ok}x62IEt~y7t9p}lcb-S6$DW7~Fojum|3r8wlKI0tLmBi{*ve>nw+Rc^ut<@h= z#T#AH&*EEX833Pqoluxa-I^;I`*99)(*4LiL!DXz!=&Q)1=nu$h*WO;9bCEbcXX-m zUy*tNY9DFDNx9KFgmR;mN@nG28QP83I&>H9#--h0W<$HLFnu?EU|Fx2`w?qV84 zy$q>0BoXUJ;|bq(hpbAbcpFWc7ob|OE2tJr)uPnamIea7{>qb3=s);zG9**c?F)~2 zS8Y?K3ggPUob#R{|H7Rzl_~V*oF@wjIvG=jX(KNm`{Jr!tjlBi^k%K~lv|UP0PfAd zh#6tHx-YJ}l#9FQ-bA3!lDwB^rlNK1)2}P`P%bWWaOIu%XMV9hXDVB_s6NN7UzR`6 zr2(ym?gX@moT=V@M-hkphAD!NshZnt;CJ20BV1OX1?0}RZfN-U!7t%8Xp{^~H5`NX zv@ExHXQr}S48oo}2fH!bciU4DH3HAYoaRg8iIoeD2OW{uxULwqk6q(gotDtWwtJ-t zDKCJcVPT~^3_egJQe~J@$($^@XnD=XI57V>4!z==WydkM2q?`7k4ha`G@fu8ge?VP z%L?#XIOO1k`J9aLlo^cDUYLvY z^~bU)R#)jRmMUg*Q`)a$UF6%Z|NDRJqSgzemdz}w-xsD@KiY=*gSOJF25+sA`=g$m zq7(B7aYM1%wHI8hG^Q4XafDl4DyWBI1f`vKDGIF~ntN;!(lFGLs>hO4!~DTV76=Fx z(*!Lu?~v2AVlC+%#vL$E_jScnD9!W>nB`l_{fv65euHKW@>BYt;C~FJzfYz4xC3?0 zf%yJFfD!^UE9igzxqgCqzA=*#l!Pf_6YkQN5D=%(wPe-{=J`rkBO(*CXyYbKp`37)bq9ZDt|aacJB>U;ER^e3s>o zy)a!ZSO%S+ZOlr`gah~FN;k~gomyuqHGV{qAORO|dp29sw(riR2O>w0JDCOble?NH z79)Du*}|$+e_t5p$TW;&H3hg^x}m|1>JZC_;#2t^4dYtP%$0tOIl<-dw9@y3Ny1EL zVLTH9Tpy*k>_diX#(A7p%v-HWcrh_hs$`wL3^vQSqZ4U+2H(N|UiCm8b_`pu^#yFoO{G`FPTK@S^9+>(#Rb8$9PnYztM$b-U^w1iuiGd?hE z)|0;=;pfMwKEXaDB?{f4cq!XEJJ+X@+muI&I8G7WRMu(7P7y^R)fo(-Z;}vG>ssXW z=tlL=_%KIf9|+sVX`}p#(&c=kkcq8+CjC_y-RoBOG};iYNPaspvEhsnlgN$TwUQjI z^;M8-H3itN7d=;c`|||Q-TUK2&|XA6t|fU>fa92~hfZG?>68CLvO!PQ*C)<>{MrWFysvqg1ANDv8@FLh!wu1 zi74bb+YOU)8He58X%!`}nI(dP>m$R2mKch(Ev2+Ga)es-qRdOI!e+pi;Cnq90x>%d zi0>N_L1M=+J+7f=(2>P$&9NUFec|@C{ix_xx-5Dk_~`^c=@cd|f6y^#NJ1G0J35*Y zKj>sJ#d&FWqqo^?7r!`FoS04}^anEipD^y&jMU{7U9Ut2v~A*v|DfIQSk<9x@1U^0 zu9sR%DSmElVl&#fxa8_$ViFIl(ZHIIx}u>--wqc!Z|*J=4GnIo(i;ISo;D`yegnfC ziTDjCF&Y*ibFN*Jg@}Ur=VHzHgJk)zb1`YUQj&`XEfrS^3*O57C(@dN2$yO}K!a0h z&MBe@FRtN!0+2v+U=m!a69z<_FLni-EdEK3ai*X?)uq!mtV2 z_l==94$UUmNsErZZs(S&IDViymn3UI#dImjHBnK0KKLrz-d`7N#W);3WDVC1hbg*` zHPyC8`Lo@y?I#&Kt|u&Z_RSx-!Y+8?lbXA|V*AkK@ey;Uk%NysA8-l47Lf{9{28r8 z=Jf#dlM~F8bkyaqmBs{ivdPtnvxt@mRqgXMo&X&+PcY?%)+uZ)N9QR>W3G>76S2rf z0IQY5ZtN|n%CfnOOxKJ+@EqX<`G z`>}-|BFx8zW{wu#cUiQz%uC-J^oOh~{pn~ivezZeKII)%MYt}4V1DP1I0@k~lhzPR@^2_Mzi7#i@Nn4BhORWTL;Y@#_Cn2Ojs6UVt^9l^bUa(c%1#jt< zfuYU?es`EIbYV6pMF?Y`Z50p!S2c@k^2h{(YWBjx%F(85KT zSooU5R15k5ps}#-0W5P!5d?EaTN6`h3T+pG#lwt&pxZDwu0mTO2Ock`f-GUnS^C`2 z%w>IS^-T-ZkRZWaCddj369-d<Dh{O|va7a7Gc87?HoE>`#1!)j$PY8NbOp zl62N<)L*^RBCqD^H1TSv7z6z#FOIIfEO?hh;PH0rQ?04nn$AhR&! zEznS*FmeNKi$;zk#5KPE;3Mkt!Z{q50p=N$F0wqc)P)|VgRBtsc+#Pr6-w5Y#x46R zVcB1Sko|@EBW7;X{KEWs+mbN9G{z^)uYPETyZPnGu3>(8=Bb-snor{97lz}sUzhcT z*&=qhWPM@ivYj1TUl=OC)~~d_JfS?SuS7(Or(8ewd7`Nk=4eg)*qh8)DfeZ5Y1UAfU!zVr5NTXtmeKs+I+$1etm}$G_aAMLQKYqn z^@W8TBc5sGwa4{N#XXR2eU0acAJh8cprYW5o^PARmra6Cw^#11j4w~|P2;PdN?ser z7clEG;DW$te1XJI@*Vq$$%Gw#xaZxw@#VSGX?%Gmv&$*ZG$ZfM%YwnaMC{D5k{Nl{fri-0JDQ;LiPgY)?6yKO!p(eCqZo{t$Ya zxi-`t-OVunm7pX}dJ8iwxM!GQ;IAg6WrpRq9dTrRdzfLt)oF=&6_J}_ArrzBQ=geI z#bQTfiY4r(SYX2N!i$&niD|N=x~6j-=4J#;YdtKnU{|!ng00IE15-CGJuES=qi|D9 z1L(pQgVynw65zI&SBJPQ2Kc#*v4F!GON<&5IS-aO7Lp;%F|Xcmb4*jpa?3x7LM;-M z0H5}lV^q5QePfQAYzQ8#mz}1GGbP|F`osh~_7rK)Y*LpD)+wuR2I~{td_#`?mL6+h z=g|$>?>YA_`;l{hdPp=imdQvD8pYIg{av0rV?oNk=fkj$XG@V#_qwCJjj7f|hXOzb z($_yeS}ejmYM13QI#S!QU`1o89yz#=2A~~@tigPH2feYqV^RY~b0RBg_ydE5S3kSJ z(3T5$l2;}iO$*VGwO_I|V5XlXyw!~~Fv>wmm?6xBJ>m^ayUgH(&6rDYL`_Z_SG1%P z!&@$pJbNSkJnrTW@oKJXpRAUXfQF-UjsG`_kxS_*DZ$)G2bML zU9R77GMZlSATpbt zLaLfq8igu{qrB5_R==Idq*J9)(gKQ&#;*w3d&!qCG}_mck7Wa+prEdEKc%eLkFDEKbB3U%&}};DTZ1$jt0AzZ77S|mraEXzAWs2 zb1j=HCH(J`inA-wn2)rUKkw@w9~Bcv2$dK`X(gr{tSL`{_ZQG~8(#$<#vI0sraH-L zzzzG6R=qU#iAj5&$`x?L_#KlRNpqe4g1MwiU?g4O+bWlInTz}*1&qo}LcmO0w2&`z zD8!ZB(YhjWk}tm6k}vbo(u8~&o_s6$GL$DS`7!zxy|U}6YwFK^2M;v@>~8HwrBYYu z#!0q&rh@ladgw9RHoV}*|T`Jni9nlGEmD>T!c;-|A+lTGkC8tFdp59{zz4JscNLj5L0%5 z)UL49JT1@_A?SHMt*S4k+&)*_ORf^vq?9U?suuD!)};$Ot;V+w?XOL=`T8eF0XY^n ze1(V3y-H38ZhgAcNNwCbC-H{E3rm=g=njMQWO)iEY!7kB@rlZKUC=o9ZVr z0U!(wU$)Fx#FnmeT~RKR&MT?33%LAw$T5mnAFL=GGMaX{dEI+p@Mi7$7Pid^J4^XA z_6)6uVg*41a;mC`0$k8%n~{1YfILA&66%HJja%O5JjhK+TpIA_tlO=IVC`yE6o2nD z_*^2!r$laE5Rb%>Ghlc6JD*E0uP5_*Vxuc>Ac`l_@{9t!PZz5d#f7QlD9?OdVJy3J z$6^2edHR_EEhnHnkSddKk~7zn+=iY;te#y?)L+q~D-VWp;9c#ERgFN0XX3;a)olo+ z^2j`zS$w8_^GC?^inHfC9b!YX%aWFgtO(x_We;D}S5yP&AMCu4ZJ&Ie+2ySLv3N>@ zE<;{xa|--spP!lT?iXf~hI?F)s!qSQ`)H65@28amPlj9(Dvn}Cy}&O{wAdvt@T7G2 zzyuujeqbm!vjNlJFrm6@)Y6SP(lj^(#xTsu{|hGW+C`l3PfR}D@A?zNz5Kv%Z%}B` zRG?**zMLiFDbinAn&O@&6tCZINE8wrJJ%}rc)-+({+)&_rMPsL^>56ajXNp8Z z=>4D>pWmgV+7Q-(k+j}T+)L6L@O3)AqFYu-YjjVtucf%&T_-cdwFW73xTCr@rm06&x|?Knz#+2(BbkjUNSB;r zN3e@$s(D&)S?d7SQ(~(F*d?-qh9$Gnt*fMm;f04{uQ8j%X-+bGj~;p42Hv4yP}lW0 zuQ!V-I%#qtuY-0ZucNfj>+-hD6BpMi^$&3!rC<`*Hg#j(^4ePgxV%PDsi$9$3k<29 z7#G|>Sb<4yFT_vD&9((0xTBO?f;&nKLvZ8h&6ZL%N~R^2xwIj*_n3FWf^CEc?eP1f zgr{$P?wtRAU!oQj;`v^O)ZSg0Q%+C)GY1>|>nR@;*krj#Y6nl0)K*8iOKSgEI5Jz* z?Rst+U8#=A)Rx3-)%Xe4%O>opE#4u;ZP$c{rrwmuY9IUa4$@!3wzmOBl8F@@U#Tq# zlaLd3hn)8jN!gni-4n2W(`%ITsgBWW1*o?U*l7pTdR)BQmj_HzNZ5nQiBU^5hvg1U z*i&0H5$MWo@q$8+;YJl7eFvzB^BMvze|7gUeF$Em=&nXp*>Z0Yx$0g2@K~dv1#(((Uqtkr;RBPgPd{s$sux zjD6<|Tk8|4DE%oXivLUrdNJ#^$Y0p%R8^?=f|Y{TRgxF;D9&ptNq?Rx7lK7`U%0C3 z(N&Ujwmya`$vOR_>hWyqU8$0s&6@MP;t3~&H6B>=wsdgEl4FohZ3j(gM=DBZx?{tG zu4hWz%Uy7$#EeQ5&p2|XxWax0d+fN3?d?=Oc{m85(;`_Z7BrZq0b7QFzv) zJ`Ub&#e>IgSe&&(>9=kKn`tDjMEdHbCVWnbN*TN2cp8J1-k>Gs^I?gcb0Y5BYzw7( z(5`r4%?f942@t{K4J<4UY(!9`-an1-$qE&_V~29x?TSr)#>Ki|6{KGnE6{ymIjgJb zf7k|_+FM#6gCoq1G)-oC2=>K1s*|E3gtfVX%eHiK7MA(3wsIeyts&*| zJe(2{9iEEAP%! z#6)cYW|7OXE88cCn@&uC=IUh0*#&o>f#(=ih0hXYE_S4+RJceFI;+U#MdHI}_jAdQ ztp-6UVa}2^U>NMCi@RVtiXR#q8WQ6cHTnOUdy^!~bzNJqe@5XWI3^Yn$#L8vxTRS( zB09hE#{abnfZQHonYZ~`5ui(35(%Q>0`SuFJn*5U8-|~){=tEYj{o|H92Frb3cKJa ziT=$`vdPW&eaD0L&QP#z@0>(`VQ)PiVZoC4%E-N6ju@tOyH>Lb(>ViJZXaXkyu~rY zn(effAuc|CKiDfzb5Xsi9>CmOsmSk7I!a>f5m!1GRqmQhWBg!5_KI(a0G4Y24tYUj2>NPuZXP{)fkAa zZUkj6l=cu8+wQ*Nj$52C1iocn8!8~MIgDz2Gp*cU>eAThQ|wflQw9JsN!=?+@sf`; zQouyXwNm+Muj^R-hAE>m)`h0L=BQ)Qn$r&)B$T9nB{{N3tIC&!@vzji>E;&p$_8_IkQi zT)g*>5gJqf`#$eK|K$h%=fC>I|F)oYtq}{C!TbJJ6^BPu^nKgvh~r;I!mX`nB6S$f z$H;sx&qH;r;uz2YrAI0%{ohZ9t!j;M$ZgxY)~Jo7C<0#}A{bGG_tk3ku?8ZFl{aLB zh>crn%?QzhnX1(q%P|AqAs+{kvCcbGw+U6}-)(l#uA96^RJ(*U%fG7oH-C|Vqv}2$ z`>ARYu-~fCF6UdbP*SPVm$llLbeO+Zhf5UWudK+g5P#S8c5vM=U{B@6Vk>*972C!g zE`79D@CR>jd(|jL)hJSapCde7AELGj( zWKVwOA?98jwO#nReAEE7xlk9%6tRwe4yaC1MZUgzcra_@rHzc5Rb~c9XekeRe-(8w zE(ZwS&Ggc$N5hyYxu6vv%PJ^Rk>P(iX7w_9MS{PwuO0NQtvW~|Q>h|Dzii{DwyIiI zf#ImFIm{6ksOv*SYF=82f>A!?9WXYD5vrH;5u_qowcSQ44Y?o{In2d5NR@&ene-6} zUYLjHI#D478k_Xm2Ad}swib+W59MRvaf))tL(1;_F&V(B+eJa4m85QbB$QP(EMLNVFQMnB*uOSEu5+$-rpSGM3npB1I<&wfU&bokaM} zJ{D?>QdN|T;IXPAznmm)&gT01?=&h=Bd<`$kmyG8(h3mZnNN+CyLH6UxYUYC%(^tq zj*R28Zt>$CCniPv?s0g!FkV3Z<7cLfK^i?3iHf1s<|^k9^P_FrmGXE;j5GI zYx-UO+Il`#FMhxHq|st9*Sj_~C#685(lJZ<_;nVBG+z3$Yz`iT43vtlVkyhSsc}vl zU-{~>)-h$WIJ=7ThKT%qjxdH!x*fu!N44J+P~FAwLIk3Xy->~cgKLjCa!QLHv1dz* zp5aRdnkusG?+9f{*Ks=JD;;%A=#)#f8BJIOCS4?PkEUPB`1>77H@@6QdRjp?jo3rqtN z6^^gX<*6O;s4dRc0s{Sxj6|nEwe+jnt(RDjc}v~Y^O(mM6a%Of8K^zV=EX;$R74=! z`Gjf>t72GO$O9w9rT0mO3U9X!&9of`O->-a=$Qs7h}+KsL&(7oVLY8SL}+q8&q(p-_bR5jN816 zB-0}2R;UtAeiWSqPxi~vBw?ui2hxM9Azvu;Tn*Mhk%Km1WRFw^UHOxJ%TS#` zTO;xlicP^=yT}EgeN0?Y1cT~HH0L$6s;{VqYe*BOtTBdw@=92`NfUztjcV9pxw}`8 z?c0L`VFM33AsC@WTc$*uISMu~H%^rMtZwMd*P_)dVV^q#Pwi#z9Geg3FltGwkNi+U zA70uRt5i6>H2Il!`FaVHL@FvLuR79FQI(>$Ly6&>WIrM}OjrpnkAjVpGBVc6hJVuO zD(n$%dNL?qDAd(zDn2bsh<8YcxyC8q;2wuUTf-hACxdq^;Zjt_w|3P)4W3P1u)R>! z%?Nzd&AqGUOyK&#iIycfWl?fs-BsdZB75%k@LO}K(r?9bQgtI~b;}cwV#*!7_~bFy z58f)0_G#^LM5uza~emL@Kq05wn)-xi|i2|*Bmra69?@>f@6ec<3TgtKzbjN`-W#5 zkx9y;OVWoi_0Gc>j{G`De9J*=zJoR{quy~KD6{aO5neh-cZobkcsg^?vbaFs8({1^ z?k7#Cg9i6)GLF4CB5(gv<|)@W8YAl`d~_;K4K51=0~ztzh!rxbZQq4`ALmCm&(p}+ zca~LvwcO+U$PHD!_a=|rTk*yH$R+w{Xp&v8ZU`S1wd&mCW<%MfRj z;Z(#4WjGyA-F<1L4WBDP`3Mo9rbr~V(VC6Z_u=*n6*Wb8#^W8@<2-)QR^Rk&jx)x{ z-d#T=ru;HyiLYeNzgC>CNFR;-&Kt3WWR8gx{T%@Law;K*m#+WBK-OP%4!!ycJjVxuHEpcCD{ zjO0z262<}k9N7<#yZ#sv80lkxCUQkmlX{oogI8V>3RN0QU<`xsF-<%)wlIj6+T zRp2AWhb9EZA}V9S7D3&CaqMPvKRV96@hZ~*%eZ1JXVZ}}E1GRYbWipUnrA4hLE9JE zc4cfKg=D(c&bN9Vx2m?QiR`(k%?JbNxgEFAX2l)1no4@RRwUHX5OK&kY0VYy2wy^{ zD#-bpbI0HC<+KztLI;o%gZ91xV4th+7~hDV#LWk&oZZQdptB6%Rc?pNIom~c#Ww44 zwA!EjR#-tc=TJndBIkrnEQ;~eTysV%eUcMA5T4)(|j_r*EeQ;%tuzp$o0>T@xJn;*c5V#AhTL}>c4Zq z#>%T+fJ3R{ZzH}5Bh5z=e~u`+f8O=yh!E)?BU2xZQ)i|d6dJL>$gtt@-F!xX5uR_~ z5+69i7F_w(ay}I^bK^^wMQy+K%d9+MvoU#EF}hXg#Swe z?5uU)l1zYmmQR{b&{-LOLjJKwD%j9@M2}v1-9et86o2<8=iTa%;y2VxH+ZUqW(Td2y!G1orsbwh(#2)uXF{LZ`|>?_pT1IirZJZE$vIYe$mwh z8LOoUmIYIb&v1iT7-kR1$8}dCE?AnYq%0N~t)=Va3pAeS{CbhN{#J3Q`1`G5?yv;0 zUgdG65X>6$O?vJ3FvKng{RvNCe!%V78pe_u3X3#u#Js;7a_RvAW0tGLWd zvt*`A%kURerYm02^&DWkfU{&Ubd5lJ_GQnbd7oISZ<5r%tRd zsT%p9>o{gjG^e?{c8RZW^ITUdsiiE}A$b&sdPkH~3zHa1xS$Z+RK*@hxTLFbb95nk@sY3o@Sf+Ujx8->!QE1^%mK_jl5^-~=1 z^tZU!#v|tVEl$*u@zF0WIMdUYdDqq8fOyetxi_x%A!m=-{Hn6C=l712&f*Fz`w9Uo z9?kQ+VggdYvk;IX*D#*p!ZGkPxBJie5N(Xu{{ish+$-nM9#Inh+Ll2hAI*%0OC{2EG811Gv1cy3O`n zfkvt>0;%5biAD-R82ErKDw_^H_7w)D#4iLSWA+j!M9*zCaKk*ZohWNkqr3v?E2@)A1@qc5|M1((Nl2`~6sPhz<=-x_Z4R1yd*N5em?Q_FE<$=M=H#{?bi*B9ffSuF}ecOf;bY zxQT8Xy1GT9NBBL;$=P?SZ6Tf|7B4C_C2?;Sm!9>k>-?PG0|Z?_yWGY5dqcZoj?i*x z?s+EGtoPK+$HsG&C<1Y$X{Cu{t8QH#n>nxWW)E#2;s9@DjEV(DtV0MCe`!h_Xdfe- zLMGkDq=d{u()%IQdJl;cVo#Rs7K=4msm-44 zay#CmPV1Oe_5zsZlDTkgTwz>pXpUIp?Tdj6p7hm{MM4>K0n*b; z22&Nm&4A?+7&TZ_{=)Y^n~BR56fe1+Wea}p0z;VH@prqidqi$*bHDg-W6>>xtdnkR za}AMjW6|!yZw@cEMfHvSZNr80;?svp9LLPKoX0V92L0sRP9+N11q={Tda(h?@ZW*0 zW36?2v4E7!!-+)`n);PKEHEfEh~>iqdtvS~OsZBFbPOLBP>O>CYj^+J@L{_f5N{_o z;2H6T2Firth1NSVA;O96Znqsytlv3&SbP#Zi|xY#bTSVo7IRWhyDKJbTV`(Io>#a? zN;t7ik+H*x1qPe>!ggZY&Ejw2!v>iyYz)|g1!h|{`{cm}kas%{0s9VDBVgj;!3GF- zd$7sA)}+lvNbJD|igCNJ!ELG3rhT$ddM-I~sKpiLiBC`s=Lr`U;2rLVG*^O!+HJrXYL4^coD7B9}7nl5Z0 zk-~)qM)0ztAmP!zdmoOgT+AHC~ z=Ax$y+g#=-`D!T3Gt?bK8eeL2;-kFJ@L^Ld+J^XPBZ{+PP}GgoP%^kHMfr7wRS zBQhrrS}(il7LRiK@vu-gZB#(gaq^oZ!GlQ`3hhldL$h2&A}sDr%k1BD*!k$NQ=c69 zb&mL+r2U(Bw?!Hc%>lnv(thiplXoy8Q#-JQ1RAFg{ z^vJqP8iWlC$i=n3qV{QmGLGqYqIlTFfOXjX$H{$nl?7K{#SM?kILg#cq)50--Kpi4 zLA=AF)8;<#X$tLGY7Ny&+;S}dY5NMLzMXWG)RpG%uDYh9i}V1|Y+5I3TRO&T%9IU|O_GG&?W-TxaP^;Ko`N5qZb6Xz@KjsM;s*n6RHrua zHr}n@!q@P16cpZz-r@Ls_)yVWj^3~m`rgQBGE(iPb>C5C zmg~=UO|7ZW4y4~n% z7C0?T3?YO4N|#zEo9scfG_?c@HI-Sxy({b7wBYR!ZOrnmzjkv`3$4I~>gI3Po zrX$+}JwBw_4Nyv2ra{tALJM;wV4p!NBC%=5uP`vSPD;}F)gVKwp%q8@2=VR_-*V81 z%z*CJdWzlb5k+@4ZQxeYMF@@@xDCT?sa?s)L?-9wlO;gStbYfYXigtPgAJ%pB zn!gc@6wDfocB{M4=0&UPAQrOLscSGYwyMEo&1b6` zc*Nu55Dnpzdu_R%(`{9QI8T|UszCsvTGQY}XSJtUaPQRzNKyj)nbA+co1@7~!sS91DEQ4|X66oPHVGAWIH=L5*+}$a=<= zQLF&b?I;!iqt9`+6nHepfSxJIlu@h)k=r|U7 zZ}pEr7AiSkJCF*bOL5UT2eMEgkH)M6S%8i`^9*DGepd6X1&$m$kcHxCqn?2*yha&2 zkQHwok*q+_?MT*x^S`+xS(uk{oH6FaWh4twL3US*E1s~H70CkAmvTn3AW;;OG$s;f zvJAH>l$CVGvU0@1EHM4F5q0y9FsdSi0JG;Fxq%4GE#89gbg(rQ*oa_O^00ML0EivT zf@r>1S{mOQxf#JMv@U6CL2bjqu-qOIONdxju3$XFIM|TN zx#nAwJhq8~tseUrp(Gzx13mZ4}sg1zitCy6Fv&ou7_(Ma8vR{x-5*wml-3ZPRkuHXSZo0Di+|+qAYo z(&@785xH!emdmzjo9GyL4nuR(vVJ!mUR&UWx7W5ue9u9{YcrmBJ8d~2pDjtbY)RT< z3)&7F$j4kpNOscUuTH({0^|m5%vZX-5ct)nJnB6@ZocWSHY(( z#uWfqs=hLL%k4j=)V=n}gfn+~@l zMvkrZDJ>;JQCyAZ(37XjzcDhXLVQ^Tj5+ow@&kZl=E+`@4URSohDa3gH#$LhWw@ z`<_11UH>t%AMKm|7`SLpodfKzKyn(i48v=-JHcW2+V=P`mUu8sXcq;O`0oE zjRc4*y6yU)y@t!xiYtofJuUGE`AzY}V2gAeelQBTr~H3ZCj>V5RU9f6&PcFF3eFCN zQo3#)yd5KOz+b&pV7wQ$^({ciop&{0pWiwBb0nVi>yM|?{EDafw}1aJ!nO*2-hS_& zBL?69Z~MIe{Ffj2pa1F;|LY=@KCv&TkT+<8<%qOBk3x}^TTxnSpMMvWl+?MV`cjnI z9>G|2UjEWe^)GZP{L;loQ9g4owW=rsifz5p@uj(KSe~m7&@N%cQ;e5X!eUdk!k4Z( zoK-2Ypue+T-M&JlIQWBsdwPlGOhO>xFwM1b+qp`bzmPzti65hG{QhVEz-!SwI`|ea z&X=$tRlxdN1o*#p%t=!0V!PLc!n~9 zc*musd|bHaCibjU*&)Q2V4h{b^Ang)Ur+>;h!zzpEU11uU3!l5E+>HVTEvS?jCyC6 z6?_WnjIzE_V^#H+E>RYa6?+N_lRg`SRVob~qPhxpn=-Y&g%tF_L)MsnfQt($<+4;d zG2j10LCAMtcyrLmd+90cgMezK$}9Rl*n1*>lEBb`8)nn?Re_k7z5`*YHeLnDJXYis zTCMt0h{sRM|~Q17xQF%^qQ}hd+RY!Pj6Ks>(kVY$a7n zG(fKaR>!qg?ZVP3<4;jWu0VL)##9oNRWRqflwHA!u;?YrAid-;w!5jg(mOH*0aU5a zf)yo3M78&VCUdX^^}a%tRQE5inC|%q0i5z3w21)iyNs`zyuR7zXpc)PR2HWQL{q%t>Z}VSY1FX{yS(=OC6v zH14pp%qzSH@tbQ&-rlAIY-wgFk03@WFU+@O*(jxc^RryUvJh~^i6)e-&~{D+Hki6# zJ6hhVN+(&KqC=Gu3mBQX6-m3(d5+X&boPZ^ydFthKd{P~`Tl3C9c@c09d1gc%r?~l zi(UMkAmswYZLNuE=Drui6#3-^(0FV9hU2-A6j2ZLrMna|wB<6A#KAOj;2G0tBR*(-wym#7ZkG9FD-R81Xk3U`7 z>-RBY4G8*rblWXx3KyKQhVMibgozp&D^CFjZCVvb9rODpSe= zrb=^-xM8D}BfriO*;pt2&e{L`bNos-YBT7jIyp&KOXEEfpw@Vo^>nB~K7V_${lq5Y4`f;7Spoe3cdt~iD z!&0E3m2@b07s;bE>t7$_dQQ3p9#s|ZV&vE72ulSfT~$$y2xvajm5yTIGBP#El7Q&~ z<3$!~vV^|zpfv}ZPDE#{*J{R*2VGQkD(TDCpwY20!mqM16~94fFij`z23uo@6~t!H z+O33%^P5-?PbhNE!EMkfv*z|B)zCvtuyNIRq}D0t_QZfnmlD}Sdfj_NoBqxseftWF z1pQ>njIGB)s^m(9)ZsU7v4o0TMp#;KE#>^DT$?ImpMq~*0s9QeXtOybr>ZRcl&#DP z>gu!hjx`9o-{;5_$g+pEPvgC-5gRp&YqExX)Qh}yXvC&M#J!0j5St6}*{p<{>lHq? zI0!yZZ&JCrQBg8+HZftDUs0$yn3BtNwGSpmV#qqLX!3Eq)sdSpKW4iyR1gm(lhI$W z^gtbB+6co%V#8mcS&$4on}oHJC&C}`9%wBT@ZKb^dcDt0qhpnGn<@Uhf52)lc2J*D zA~Y04k7}7k3fkVOt7X!8bty|#%S>+<8;QPUbEV2+4`1%{_dikZnd)GTV+PMwFkb8Q$X&*oFU5%uW(oZr+!V2!WVhZ_F*4ZEk&9&5`-%#6!O^#> zohHX)ht;p2d%}jvNl*+YrIdFXG~807R5B2_LgY4thiU7lP*UQx|9j-lLe z9PfN4?x@}>O%+h@X6L&XRfueowqQgFrn@_~BUbz+cqXkIF=L?WA~tlZW6co^GWc)5 zW_uJcv(a`po+i@lSjH$8F;XQ=X}@+=K_GnC&A(G^f2%I#bdV0;RUUDkZMK}dZPlq6 z-nQ!2CFZWojd?kO^$BA&z7s2+Q8L50gE=?-bf*;Nhz)b&(J5L2DLz(;o^PScC2!Th zq^ql3x_@h#3T!$W-wR#) zI882|!d?d*B6*Kc1pN9#C@{v4cVG6TDg^~bv}8-gUD1+Diafx$y{0-OBZmDW^XOK0 zFRmE4CT7_5cUDB*S6sKk(bj(|9U2PsSi`iy)OeFK%2MoJ^{RtJGJCh1YPMQcPEV*n z_MSWWa4t>oybj?wo)ngf0hXu=`#EociLdgT(jCkZRXlp>CgW1@0@BkVRaNM}N0;d6 zDsFcV1w^eU?=dvly?9&SV_IifI8B9leK-K9tK{Du@LF`XIYj21l0_kegrIFfFFjwTnwwYgE z0TNWeJwovrg_Rj@m`t=*=NRNXVfC;uqlp_B`&#_d`m^eBab2kJzuKGUYkW4O=%Zfki<); znR-7C<=ZzyYDcp-$6SMFDUh+A$TbkIlpZ2w)#!?)+HG;M*Tc!Z59Pq6P$*TN7J#eI zI6N(*W7E?zo_6a7@0CM&c(242u~#BwC=7Qv$ln1G4sAkAaXVaKKwUZSI9C>cwLB8Q zQiud~Q&!14;4Yw~OIZkz_wDEdtP$)a>MLuT+-Vuo%l$f|NDoHHlyT2B>=h{xnKB^# zXngr|c+IX%yM??8*&c3CN}{;Jf@)DlZb`P)s72kPr?@4d4?R*=Dmcp3moN=A8?sg( zzNN9^lILC=wBrv6?``lY@nw7i(4`|O8j`<{k-=P{ii!*T6bC#3XN(UNd; zRA9zd-%|q|;4+&S3@aBhPG^97xvHZ4yy13CAOq;GN*kvy70{ZglaEyrl2}@6-p~f7 z#>lS(J|6c-NaRmGIww9JDg^iOT1zqbOLd}+r;TXIcb3B4Uw*Se!JZj^*fDpvt@D`N zyC_1c^T17prIaH#=WzdkT%r94`E0zyFChmY-%$td`4u+ad4s;Q7H+JZhgw_-)iYJE zX@MJaS%u!sxd!s!8VM7QAS3V4itVtYmo#tjisw(pckPFoYx1?sRr%UI{FXa%7J@P3 z(}Qt6GiK}_Jui~;afrm7;GJ=+B*)%6(dO^RZZeRy$Is9={e6xwkZ$Z8 z!TS4(%cfUV=LMsBkMOgx`0>yvOPr3Q$`bQ7!jemy>e4aPe)g zP+t5qEhEFULr;jVd3Qx#A=0@vg<)azt~b1c8f)3DY(oImtJph^Mr}wz;IWi#RAAJ# z!Q@Zp#ARS$6ziwB0zuSm`k`@pxzFz!)oL^zfdk;Lv}w_rn8A-Uo6-1upI314Yt=^( zU$MsV5~RJfzcPEM>%L!kfpQVu^kTi}3rxY{vCn2@4k+jKkm-O468 zxA<}lK;~wk`17JgLG_8?!T;hW3X*z;s?<6G~j=$=}Di2OV)YuH9xT^m;0DocOfIRz3 z2N>dwqCF8I$$g4z|4ImUhUAl-Y!)UnDJWr>%y4m{zRo>o@2+ooNVd0gHZk&_g6>K1KK*i)2tUk$X|Vr? z!QcYw;G>?B==U)a@^M8p#v&M;y#pC|uy$Y=Jb<$6z*+XtQ2gnzn1&)yX;UG4hNNr7 zzl?TRWXgm|lWmAE(xe+&v%?BRLIC9TwgO#k`?$x(Yy769>c>MbMI7Rt$ejC)kpVTo z4)Yc%01CtVtA~wOPYS;&t!E?%Ffw5KdT^_y`5k21=Q$vLj=OE%>&H`U=cDZ(8j})iyr(S~J!UmFf<4x~RdP#zZXVg?3t_yLn*8@MqH6vxZ5i4K z7kou^H{zulRJtzfZU^D!a@fZ<@tjjmN?OemX9njLs7J#q6r`J2;SJ)z9nZ8KEmIx^ z`(;I|(dI;6Q#s!XT?lLj!~C1K6|Nx5D5u|jRyK5bGn@!Vw-v?mDfWH(mUIT#a>U2V z=ov7Ma|(R*$C>_I3}WmH&`zu7Imf!Rph9zaT1PU;`JYrK5CdS;>AeQIeG?~&; zGOsX`#xD$q1oBjW4h!OVi_sm~(@V|~r$p0E%p8|dMEcN)Q1Mq{_rT>^k2u($&(Ox# z!Tx+6Eulo~CX*{;MCpJpKGv!n=l)pBdLO^AhEBW^nx7)aZvl2G$6Kx|oZ$G5 zb=@*>{H0*YdQ3wyZBA6OwWl)K-c$W!W5{Az_ei8jVca7}l_og={0NMuD;MdftBg zB_1!?m|gqQg^U7e46FLm(IjsW2=Thr(=K0H6{YxDm4A<(cJNU6&|BU$92jWn>lSW2 zW=NAtig8kY3SmEJn(uT~}U}2L*+; zo9yp1Sopq_5;0x0KY>^*I?#^ZC8g+~?xj1|7hO9ZcQ+9mqt6G73wOsTXavHxG4I>( z87-W!U^}!9!SQ;%gfcA%!fK|j7NmKM=MVmSWhWcnev?*82OfCOSUs>%Q30q5?Yj7i z3YbEdB5+u0gk-@&z(5t9V3NgPfEJapstBC&BT;8b>)o4osQdg9jwMNtLju=yh2_PWQDR)*QE)%tg~vhBicE z`DRmzyHhwRh%=|P&RePhbH~!zf_;Vnbe;D@M7ntVzQQ@5`3nz=q@K@kM%i^czfqmy z-nVoLk@~_>RXAy`Z{=}mj&p=k;-DG4{-1x2U%8cNm$bCzrmLNqJ>qUWNk`(6={ww| zJu;NRm9+c!B;8%IB}XcA0PrPHd-HE2rA!}??GZ`7q-#<7QqmzS-GhVDft^8;c20QG z(*+Fn$a2>X(<--j&^7Wm)n1QEqxg=XM>**pd8$ku=2Uu|gp>H?5PyO_#_@1>7|Ue(j96{S!io;F{RHn^W*Op z3}Fw1=)fC!Gg!FfT3Gn_D^omSR-CJ50S2w8>?;X4=$lct2t;)T-yj(Y^+EwC5ei*W z%GXaJt41;FvPNgV>hE(z{aM{LfjVIA>h&+3Ill3&d=D10f2an#5*XFGqM#R_(^XmC zKD7NyqWBIuh)J09vZ~MB>f}KyZ>A$s5lgp60f)__&(s_E@6LzJ&F*~3J=0E0_7gL! zKIMli13V|&MbgPLj)%`RzI&oqtXlBKE zB}{Yav{d_wdFU9g^!DA{_9VSKb4sdkv(k1CgV`=Y7q`kLEHs(b?geiUJ6}^hW|Q6L zQlpj64dHx{CWzB^d~?K(FX(%2$2XG5w&&ZM@*=|X?M>lHd%hhx4(FFSStdR`Qe|Rh zkQ!6ZsYB`u4Lnb7?}C_y!x%Ye+wVn@{&`&RFp`>XZ-0dU+iq_kN<0p?7nSFqwcTD9 zrr&OFWFMs4izJDAZMV12CX35%FVYvTe!9K=oxrCZZ>fU&X|qL&#P)mf7I)u%Z@#tt zUKhka{9b(db#K2H6LTLnTTWeCb?E(Y9~U_BDg0h!r1j0{xIz7K((jG*tMGf1PQN!s z!tafwweWi*VQYIEk!KwKi5s4z-`neu!I6G%aB=8W@Z{n4f(7X`rQ2(+3oRGPQ&xig zRtzGQq)2aKrVSx&a(RyUVs8IE;$gUT>cQIc%@D zPo4{=*9)49C$D#tA&B=#c)dU5f!YNOn;7Z!;$ygC_IllqBE4R0Fh(}g>qT#da`>c? z1{ywXPH=j?$TY3%xT5QH&#Djkax$gD?Tr zc7O6A!nXJJdP6pb*9*FxPVbMYb2f-Gjne6jfuc&&zs`}N%%P<9s!7X$`qmwqE@ze{ zE!^6s1539@#DSYeWOI{ZSl>W~vkks!xdEFFvmY5#eV%6j9`QX%`!~z5ahgw!5x-WF ze(R(&v9CB35nrBkbz)c0VaM+gnQcjzsZ^VTE_p|5Ux%l5mt_WbGDcP5ol+wK(IJ&R z|CPY4u##`Nf&6lo=&pjgU}mC$!XxuhmUpHC(uG1c*1A&yeeX=9u>0?3p(&At*Eyn-zN8D!(CQD{y&s}n+l}dbfbdYw@-}#dL&gn+QI2`xivy4rbs_apUn*j^6w=?w_H9X z^0a*3x0*GGqy0wCu<<)*hK;2Y?obDTR9umB13#6}@0ZiUoo>$K(V;F(uFmWufpyEJ zV&qB20d0)z#hk)F{xMLLT=y|zF&eaH=%6!;d#((@P;@8lO!1^gX8Od4YS|_2Sj46y zcooS+sezL2A4K+EC_iG!$H><~C>#^XO&PD*0}AMDT4Fxwn%RmuqD%=V7Fux}bpLDz zk`isxMcFn)2v|q_jb#evqg@ClV_ZafSi@<2)&^K@KcY8 z?vE{toVFgiCa0}WhwnUXJ@l2Q?G862r|k|MsA*H*fIV&MW^hj1O>a48?YVZ`6xl*g z`H8?wV6=dw?BLD017|0jgnA!OsV^1 ztjlLlin=1nWF8Sx_k-Y+wk*tl_d}Q|PX*F`^i5`r&I2ij@XFWomw`j0ocsHhKO8#cRtU%b#dkKi2ytFfM!p}h&*bz7(PAsmV-A%P zTf-_P$y6yG*$eey3pk%k`AkQADn}fj0*qbpD8;9Su$)JHY6vfy@u|plaeOM0VRnFO zDCsF9Q~`942-Q%^(-EQ?!h2x-D3ee%XgJRzT7uT^v zRBmOEA*!J|s5?Xjz;inyQ~`L72-OgxHzQPo(7z)|k;WPB=8#v(qI zbjGJ*B;r%Zy(l)8#!zMxcX!4Gkc)8y5+W5NyqHME*x{*Q;?O-{$#CtMJf)nn9i9r7 zi})1sChn~bF;P9m_;)s;$iE9anA&hC-QtK(1^a{|3bcFp*}$bQi!dk3DPt<*Q!e+P z@u>jZ@AwqK>k*t9stOswsZB<3YL7&4>W45;D;T5jcW??LWyi&$lR*Zj+~ea2PK`VC zx|9;wFpM3tOw4ZGIigMTmsf-raVy`>;eiZJ<@&`VoMRR8I2Jrr$f!1df~Tsz2&=_N zQ#_ck9+9b#iV>NLJjWfH`Z00Q#6Y0EbjM;~E6+W$ToHd78zSY2`uBaiV=1NV~Jx*_ImWbMqqf_+mMrZJne%u_VKz zz(STi@=Ls+xMBQ)61$T_gS*nBm@2m%9>o;iHU+tRcN`wYtoH8hQlOW|2#0pQ-x)J3 zmtwZ-!=;!)KZj~@hmEaz+{7gR9vj>)h5KWKOEGUtPBTE{$An9P1R5(!x6inTEm?UK z&c6x4Iv>>;*bc=+RjVVc51LRBdlX5hOA#Zvn?A*&Gn$+yb1A9?#C?&kqpK3xZwwHV zPk3x8eAM?pnSK)H&$?8#=2EXzW*b~1X}p=UN%D%Rvr?I0NsbaYnO^tkJfkxMmLK1MEWI;Uk^Y6tt$GtF~F za3f74AYho-r^>pnkMe#-Pnt{d_%uJRP@2Z3y_mAkzjrp0F$DQ-`OM&tbP|4W%ubA> z7qnQI`u85OxX&1TZYZXf zIf$`I<|F3GO%n~&erzM|t#&p4j2!>p=Lm5Tq{~iLcxk0BrrZ6FT&F|XFi)4)5d9)A z@LM^&;CDnJEqlT3f(1WvK3@9%_XKIY0}8TP4YUiT0Mf;M$@1^^iSeyy5PkT-Yt;|6 zu@LjFsd#Y5bgV$neChfD99bhA^C;4`hVuI^m2-RP?pS~zvdF8sKLn_EM^EkO%^Kn=voxL%P$lYAd0i`ikl)3{*%>o0*&OIm3pgz1?F<^aFYicb4*v8@D<*1fMRvGP zwA#xsSAvbuNenbKiRS8{UFq}~QTJTX+;ZA4o8?r;j&CK)+Yq~#ezXNu+3uyS5!KY0 zcT{nJ_S{P|6V}Ll&KyHE>KlE|tGM-{I<;_OcJK6J#3B@Ct`QP&EKe@4(nEimyG?Enx#pf#UWJpPPoP%>iy z*fP(7Sq@#`JQm)tg>Gv@bQgX`uOi7HhqQkUlfbXu2 z3vKxQyQgi`U_Bnz0`I8KcD(c{k5X-Ie>JEg0)xXsYshS&Y?ckzpw@eucnx;Ky%SGx z1HzZ}Fbm(2TPqOv^d-wOf6}Jweke{Z+wodBgL=-_w)GmuZiCXT_4xFsTlsow;={tA zZqTy(Xs6-AZnF?gJChEZJx7wY^#eBg^9do(^A+qi^IdTeg|5ujLqs|5ipR=N? z3SRO3IrJVzN-+)I{YaEdXvZs|8W29avEmII+fw8eG@*vrK^pPHD;ixPBoV_>nUw}e zLlSY*9hI-wkVMaq@Khp67-A)+8g%n#(8}E__`w(4es~Ppa^u@uA+O{J|0N9_jOtIw zio)3snt>xHoBktT4DG^MKmZrq5R(lRPzPzwVq?a-u1Al?hH7R@ul;a+Rp}I=`B_El zyMv{GynWTieC@#7G_=CJm=7ED_hw~}oXoxGkdt*Ewmd&ZU_9?@3eF5BX)<}i2?3nE zV-1UXwSnQEl%D?+*DHw(+;KL9`RL7KEk5)>sXvd zjr?QzXkQh?qQPrpNs#OTX|(zN3-wY4&jdlj(=4xRZN3>ym48RNJ_L#jq^g&qXb>j6 z-0lxvCW`KJL^<||eWN{mxpgKoVb}5R4J^t#7VT=_V_^$SL|;rJx{GKvymr&?9Vil1 z*S-R=Wo{VcJiJqb$njnBnYg1gZIGK?$6xy4w#9qHk6K023nl@N@5{pB58mRrRMmtd z*VJ#o$6b|M{-rr-1wlA{NAr>)3|GqWo-bDv%GCvPV-;~P%!;A698l)(z|G0dx9+Il z!p}l``_h}a4ncO957@P_rg}@C@(_Xn1 zcg0x{fASH+C+XQjAjim(HG-3$aUVPBp_kB5WMTRlxA+zZ1lT&y&>k;r-#P)X1JxDg z3J$JCCnysUn;)u;J7J9&*v5t3>=R{6u+8vXeg2{??XQS z{jjQC1rK>>vB)klv!byUa3tn=1&f<(AvS6K^B33W>iHSqVTn15!C3E$F{1=@sy?F;skK^#-6J0KPFEnPjLIm>ynkf&yhkD66mr;NJZ#i zY~lEgJ9w5Ed$1zdK%vuBf&{?`3YnA{%kng2#yi85ja?uK#IDGK`f)TnkMAIGHn(_x=?3w-1#_>Gichf-hhrTmSBQ7!gS{g-GoWCD$%PtLG>>i_ zNufH|8hV68`O{^ig^EG5>2Zkmn6#~=hHd7!Vp5QSb?F`b(aY*U^K{TnsW``ooN&O zjH;O)svd{<8)XXef59qqYDXaRR$pxc1LX4i z&>7Ya=UIfa0e9TPIUCD&4EAiM;Hqjebs8C^pZLlu`ij14yw)Ps|T?ec6^-O@kZ zPn`0|g_4nnvrT*!nEjy!u^~BESPHYqR-V(c&AZ$Vs~2kftB@0vuTycelp_$5r?f-u z*AM1G$u=5Mp%`VG7MzwLTwhe5;zGUpDIoyNRw`NviHg&ZTT(=4?$FGf773!QyU{1` z7Q0gdphLR%$Bk{UKDJx#OA=J- zt|I2zR?@iR4!s^%EL%R@l@&qkc{+*}vE=gXmwIee=&dWxgXvw})9`5Eo47mV!&RII z*IP4#yaj}9`BKmA!c{m`&{Wb6B|URZH)&lI170nx4Jrn-zm3?{{21Yj9yE=QgO>4e z3{)IhZL*NBf}~e@UQQeFARhvQK=&exvE=Xfk~ZT((|kMV>dv4DaIc;tzs?cgbI_XW zpu6GK7@-B!eYps}>_Jc0P2VGnaNDG1Uy-I@<0ScpHqv4`Xj=OR{kZWAMy{13{Hkgn zKYpXgvk}Og!x4D-!{y4U_{kjw_Bt`aCA`w&h^s zx&m|3Y>f|YHL_Y*=kHdWinxURUU7od>Uo9tyF362jQjKvDo&-^Iyj;gNqBh~73YN! zx=>aK&dC+`;Y?JVILg&g0b;;P3Xk$ZR6rnh?N;T`lcIweMq&GjiRU3>PL z3cH9ok*=bArgvJ#*Z=u{bkV5xX&8_|f!cBDeRNxe45%e0zQP7p^rgCx0_=?M2CO~p}(*X@v$VDOO@ZsD%W*W@svD?5IcTJj0 za7(J>6*?~4wAU~d6}aiyvNS#^pBQYBTIUC&h{bTOLt|YI!tZ0`p_x(9+ehvn4Vj9H z`S*tcL?;_D10^C$YAQspU5YLp>pu4}TCUXdivCCqizQjMwdSV%Rv}=%l((%b!=`XT z+`aUVmqL(pdzDdbHUhjXze+8wP0Bl}f+yOhtXE6#N+IS=YpQrh_zjny0c1c%+bYVk zAMrWd@bE};U!mfo5z(t?>C;vo;&^VKo+lS9X)51H{SwfZvYfVjMX!ZAkC&QE6KW_4 z%@Vnb2?Y_+|JI7rf8(jm!4hg<^MgfLLJ#c$#`s{H9AU|E($!}_EDs$_g3Jv~22PSQ zdR5V@;aVBp;#?GYOk#MnGjemS*A@^e@OTjoDKkb_RPj1e@5sbBjSM)4g(dKcZA{0zl~p$J$uS(Uj{qs3R)&i>9a z%G_R!JNQl`7p4AUrqYN(SCh5HMnxZ{S=07|jCh_Pxp)Nd~> zzm51VmJlugZa|U0bR7ROqG1m zJ6rXNci123voOYa#jVhI(uz-mcF|YlVegUm>n}xU;+ehVTTNG{^@tAbS(%niu{naR z+uG8ZY|?&4FE*m_9$X@gMEzURfF)#S=TSI^a7KW_Q82m)1b8JWp29C5)CUZAU=c;H)+ zsm!(^lNf-PF8+l6ub$X1L8Idp#X^atMo&N3dx&Eb9LBd$)&PMB`OZVFvhYoJO>i}C zu;CNUIEIcLNh9{3^Cp@TT|TbBYTp~ajk+Vu%Hld;DN#MKD)j+pEDwY2FSA_x|HUnv zasXfs@QGq(gieF8#!}iw^Xbr|bIJy{6OrXd5xa(<6952@qJV+q`#yNLt8e9_n0Z5# z2_XAN;ZULjb;xB_ORV3JJ=BoG0cUW?6bYJ~C45C*QFY3MU%-*>5QONZi$kqq9s&?A zuJaHYx9b1~y%~vM>{Xcz1w|}~7;X$|khO?6Y&xqOQU*lldZGKHG#Vu8<2P|e<{SvV zWYX0!={>@Y|LYG?z{6j>x^Tc0hrczVMdPyz^5>P%bBk;1Fz(mA3%T{yqwg~hPLev6 z%Ngzg!Wc5G_Z5ulldO~$w=yYu6M%d#qMsnsn|y+um#f~EGQ}y9`g3rWg5LayL768r zbF-pi+=+iqq39$e&_vT$tBs#CCus|O5SuU!8k?9-C2SC3PtcK@DCq(s=oF1RMkWKv z0S4za2n&z{uM*fL0=)MKp95S;5pbypY@HVXXVl8)Ez3Cs@f_p0j(7R-LHbG@_cw3+ zhXAo0xzxoCc$9f$U7%OjqPTtJy%Z#hGT(49z+BMZtJkeEkXR~};a*$?$*58)5}$L) zuf*95aKC^Hv3VUTSqp?Vr*lVymH-5aoxv>o3>i73Bf6zY!upDb@tFJpfmY5(+{-_~ z!#d_vQw!l{h@AQr=?}a*RK_io=f?dhQQqXF(RRtbXOYvrbA3(q)HAfUr?nD zo|AOrvOOT(kfaW|gOsKq+LBehDaQ$6OIpo*H{H}mtDs@z^SP;VL}>JrE{|x6#?%#i zL>a3|$7?3-!;4^v_|Sv)JR}`}0IyGo%S{?bm$YNm9GN-5?^2LHe?cdMcqGBDH(e8I zxG`cMXz@JxkIoA5SvY;f&MBUVOFIX7e*KuLM`sJ3+ytRnaqrDZ#SD8Y&^e)~0|B;G zxi|d2LINR;0gDX2l~KMDDtkF3bmB`xERiPz`_z;&(b%6Y1RGTiPiiIlBHh(sJqpLF z{-0Z%D)0S=c>N|OckvVwLyds(98ks>NM?^X0|;NnY%k^e@XP$IPP?7!a^9NKbpm~f z4O>@;PiA6D(-VQk6>=g)AUcl?Ys{xLcOtGrvj=|aVAY}X;JgA+sdLXGD)pT6jV`TM z$)_f;FvSScg&)0jHE)_*t^AXlmAM3&U8@Y9kZ(Hv!NEj3HxLTEoEs>OtsGH;asGhS zpSM#aYVrmvie>y8Vx1-3jhCKwc-%9bfJ!#&bLt!V<<1%I2DcOQ9+le58{81mDan{> z`7aC@#$p7`#ZZVkuRySLYZ@*0;k1Dvl)opp&J2?}+$?oChGx1&KoD&KW86t$rQuZjRX91x>rn?(S*=t!#G}1WK!?ziVtp zIJ`itq_+#*&xK2O*Kn-E-4%o;y#@geYb|Fj?KvX^_Z97tH*0qn0Nat-&IIH(6{)bhiw?}ai6J+U z4sVXw<3)pJiYs}%__dljlDyuojr|fN3eB%{cmeNSHgSxw3GTICT}_!5;qb!Xs?XQq z@CKYLbQ}O_^xv!l0eGBSCz`dMLrVhpBbQhXFEh8-X~dX+(&G)}Xn4Hf1^S4o8I0=* z+Yekt^Pqi#Q@6tlM(j+$m%|%?uW)!b9Wr>2gv0wo7zph=Y-Xgx3;xrZ$>D|Fds|%; z^C1OBI=pBDOV?V~Q6Q_roy{3ehu1jQeStEALg@j(Cvz$s-dsdK0T=eKba->s)8U0o zVy0&>R#VzY=sYm~{NTiPdw!Q0%VNSsXOq z^`N7}Ek>R+ST|_|L6F_`5_3RD$w{*6)FxK~xTZZ}`Qn?VBXH0*{3||rtgmhOA0xge zY5!&|4sqmDbHuNewBI`Egn(DaAmY1|Hc%?*#GJ&4SoNR<07~+4-vEqI--ee~VL+0% zwHSh0*q4CM2b*Yo&VIecDKe1>0J$u(2B$(tS(ut)h{%%RD6^ZOlG{Rz5TVvA)S9c) zfsLz$7|PZd*=C8AIF^)Y#I5y@E2=&tX#v^%gT}@@#}m3T*68cv zKeXN!Z#_P&cFm0{T5J|TIbV@fC`erM4fS+B$W?3G%LjcMkKmCVR{AMOEM0C3#=#); z?_&fd&}6^P5uNZQ zjl}~wEDxIxkT9}cvx=1XzFnM(3MQ={>Y$=9Tv=O!q9EZIdl#du$*`klbW2@wS>$+C z6k3r=7vK#AM%E6}@{VwYeMJdZnOdx($jMXknYg2LM}qxUrCJ^d$%ka?C&d+Rz%fuy zEmn~PKV4D+XRj#k5x%v$K4OIaW0gOJav#%^&rZ-mt5y*2xNU~!x-KGuehy&zKPbu6 zplIC&)t&so0V#6J@TBE@Z91`sIbu*~(#Grt9f2&4u>Mi#qNFWOlMa1`k|$>zYY*s- zg9P#r_tq>b)MdKl=jM+DNvwAYb(1Mbq23U%M z1HZ%!&pLm>>=PUs?4?K=In*3zC7m29HBJt`cJz*Sxb~QJ8Fs;SOg`%uovI9Faps}Q zPzYk5HdWLb-FnMgdECbZZOO9JFD5c@^8*m3ZO7sWHeBtP>RZr|J#n|yPEOn%ddU-a zTXA{b?r=(S-tN$ao;P&wZO6PB&v(q55PdmqC=+&apz(aiya7+Uj(Hn4qGMi0mqEK{ zZn&yaTro>lX_=3Dx<9*=$oD_dTRV4>yK{%>Qjr;PIp(ZFTR;_!Jr(Q#UNUe>a@m?H zl7Z{V@E}FnvQ^!Lt4KNmcQJCvBfNMUe;GM-OpaK`OoybbW2OUETgOZx-c!j;SC|SV zGmBlq!#Ba71$c8vG}%5Pw;Yh^W9<_AB(zJ=Tf5vYz_yp_(?Bqc zv~u1KZU3 z+d(A4*vMxQwlc8P;Sz$@o*k5`Kq%F9M6C!2T+eX@g0nNjRsl=fVXJ^4I&2jP&xl+R zwYcUHxgw(T*^yH=peK|!LRat1Emu8!gnbhXEkjpCu8noP9_QXZtDge9tiW=teEvTHpwi&pp0JQduTU8(~ zt8p5eh`7}rQQWEmu-R=k;RA}TC`St_a{WrljZ=~E{@CqU}7DJbYZ%^@OkY!8mJsyYjK#Z&&RTQSzh5snC31@oj<0z~#XT<}0J zZg&f;Bk;r2uA4;)L2;{>7A8F7R)lxcy^D$@!J)9Wp5cr@1g?Bv5pIQ~ao}1raJ3iFj}RC) zgmEr<>JSK}xdWmJL=W`{p(bcYaAI|EMscex7ZtZ6O_dUHtDiF`f$K)thnwb+Lxt`U z12OMnGl?qHy|oV&>h9aALR()Mjv8;TSt*>Nb+q*IZ4Q*iygO;;19WtOCBz2b5Xg!sf~jBrf<7}@)4+UM9K%W8ixN1P)|# z>8bx1*-wwVevVX>Kq%{D1jp%UaDKTYvP#~*bV;*aF<(sE+TgjD?s+!L{@a&2Bb(+O z>MN61AP{nrUP#&P-&*Rx=fN`ar|n0YHPUtX;1#kD6xk>*!@mMz_Vr%&s)vcwfX0f2 zXmk6jwhpY1Bijb!ri^8kjp#L7p*(qw0JIf183a6Iy%Eo zL1W?hjCZ6xYS~oS!*XIo)s4|p?|pKws_}&;ehZ{~p}Ye$%sb`*030@#e4mPmB^LU| zQBBEM;LwNngS^HT$gEqM9?U9VZH)U@mvJUz5`7Yd=WoS z79dL&FTk`SDd>RAC74yPXHAef#d^(N97V?fPT+Qngb?dm_KJ$2%AT_ZXF3| z0{>!q-}QP&)QRA!JlyZqtu)b4maF(IqfMSl%vNX4;?#@15A5*Vf%8F!+INaNaxsf| zrw}jma)P?)KH7LM&4^J!t7v>0@mGApE#`AY7O+Ica-dS%7x()G=C8wO6mAcED^408 z?I-+Tr+nx3=2UdIFDU2`%Povr!1!w9&*6!%v5@TGxxBB)qS423gv&SCW{EdcC1P-O z`xDs|izzOArcxK0Z%|34f#NZEfCdko6~r(3W(~UM%hrQ zln&2*=>gYcUMUvn=%)(V+0-|gBdoX1*8=(kOV#*N++gLAHAtxui%aM59f>>io8Yfu znophG9}4jgS%q(5nv7DZJ7Y&!?apjlewpSH^0weNhA@9n7*I0Iv+dFtm0uPWWgi8{ zxKD0r3~nsu;XKuQsOXrzpiwRN$V1^((8qT0_jqMN=i5fQTih;9Q`K<*CJwp97*KoY z2Z9G=lhB*Y#_ovm>4}3);(B%4F+730vR~SR&(dlFxUE;bHAy;-r&iGB;zwhpJE@(ydp zc}sPouqw9xq;;yl=hkf+xR?Vqv@xrSh;py%4Qvdkc?I8+U-mE($(=X3c8pwgcsRFH z>>e%+OS%10n${#wQo1(mp{9$S6(zl6UlrPmiis;RZ-8ErE_D$E+L0gMmfsZ1tc-5b9e*!j%3uTom5mmd z?gLH9TEI(U4XZ9w%;`dNh;b2^m_q z_v-C*zoyMH)U;`IW^i{TF{8B{vvijBzhv#h0BlEu5Ek4}p&(v>j~cAa(h*X0ZeMJ# z(KSz#Zed4w3a_O4?Hy4|ef3%rwU4Czyu{bY^kxCoi&DKaWmn+Zi<0J@7Z%xOBOC2z z++Ji{F(Q{Wl)4!f$B%}sZ4=#9Q{|~|DMeBx}?X@`4l(ncQ zsAU22U*UMMXqM+evZ1)=)ez`}@A%lBIOLH_R|_gn7Fk4W0@=dYtYCp@x!c?N*KfWHIBSO| z;vMZjl<+k4lh2Y2xQS2euBhhJ2+Yl8ST_=!z%=N5!6X6OMQB^$0_XPyvN=mkLhWKC zhvfS!9j&ii7g&YC`lXVQq$lY|ZwN__)w=TcJC6=J`t)4N!s`r)>zb-on@xG*bJ%*5QCdpR<~?~8M+TSP_P^+C^+L7X_)b6sye0ML8Mhd zntm4Fvp8W?JCn!|0F*Czoj?T4rrj|pu9{-l@5tq+R@azbl0J{H^T_Rj$>gHu+&`R^ z4)_Xr=UvT4`ceMaQjiC5m)luY@-vHSvHfz*a9%?+L_s%GzW41~?@Tx0BV7L#t-SmU zW*kgO&0C%>fY=vh%Zw__ZF$56F0G(|3}W$9dpAH1IY;f~PV8%f{JM(JB8*bpl$(El z$uewmEtR9`z(45`h}v}ks+bYbSqX^yB?^-d?fb>f952mCFu9e5%0Go6ZF$N!{YX{W zafM9S)T>H9!tP^(bJprtQ~-^}s?#a_9>`HIy5k}JD9@!ZnX;o!mduF-afdQ7%sRN3 z@5G7JQb|RyAmT0n&ymMzc1y1mtxVRViOhrzBqhOx#&1$cPYauFBMEsk(iFvA4+;lx z;P1W))bx#g6q)qM`>P=<)PDSmT9u#sbg$LSBxP>T5@qbCs*ZDFX&c@OcNs88nqPHA zO=2d|-4btngro+f+3lRW$1*pvIhl>t(Kn1z{o&_JT0P3+dn~OKL_?+@Y;rUXW9GAv z4jo9|$1NzXDZ1zxgXQSSL(F5HMKX3OD*|$8=muv(PYP%1lF9V3;zzpa#rrvzMXJ-& z*prJwxVw)1T>5V1avmJ(gfncu_0^Et*OYI@%&d-_H70koDmi^kHvv$z0$KN$1pt$h zIu1LTV_F$X?*!JnZ2*>wwHGr>34D%&fMwn0RtQla^=!`$*fSgvt9}> zcf30gewQ6xRuI+`3e);HB2xv0pAnS75oax5u3(S2vGWm>Y=rmjRhc|@5fiseaO?^l zT}pjq{t-Q!93RrlDT+&=(xqY^ ztUFFw*>JShorg9^Pu01fYFxqWN7tiP>z1XUkt&1VqPZ1^fR&_ObzU{(nK8*~;3_%D zlsIOCEz>j9nsJCY$E==h98t28|MT@j=CGh3GL0uKbw-*Xht?7|4uzZ1&r;4u(GqGW za?iWl$*QuXN7EgX;X9T#c1?Bi;%JdLIHj=h6T_Vi^pkD}F%%PF>Vflr#T5uzE13F-|t#~0v=i;>U89%z{B z8yd8s7!KYP@~i0v#vR$qf*rsk>`vF;+fWK zlOXGG5gNlYr*~eFW_U3?i#k&8TSJHOY;Lg76g%8>eZ^p!0(4iyiZrF6B4u{!Ad~VN z^u>@k4-WC#NYlS~)tp*O2)y#xu$4u$WV@dN;TFsk0Q(esJ-;>Zo50|~Quk`DOT7gWTU zK3aM;5v2D+*NulyuW7J|P;ENys#Tmo?!0LTfL>Fqf|8X*cko+pX3~MyI--E&ux<4SR)&Q`eVL^nmL`A;J$TNh zs0r#O44!-sE;4+EXKA`8J4C~oy-U^6EGCPM&A9PsRkE?!<(bvREK^ktW+fF4fR zCcPI;Cc44t8C_6Rc6n;VG_cGCJkt&XsJBbcK)(d?8ekFE&8JSNfG&RuZ^Z@cI%0y0 zUZuMac5GV04UV#b~7n~u`@7J>$6XTt{ z}etxQSiGa^EnZ(7p3De$YyC5&EHmob0#fXQ+Di zWIUYm9Po_S?VGF>ZDCF2jW?@vX}!QAC{n_WKY2dLZfLQ>gw(L$hwjjCVn^z*UbK8*+&;^X@c*-PHn2_)VDbA>Fy<>UQ}eC#gJ5?;VTVWwyhF2jT-e_g`yE0DcGt@ytY*)^Ye8`O9jUNBS=j`N54#C(#RD|F zb!CKWB2d!wU6t;ryitOR8kFlKdZi0w1U^I$rsNX8eUVVEO%Dt3$HYmd_lI@6aUAjrDb6M`CF&QBL*^XXweKz&h))n+)!C|UK-!Nd zcI~@MaJ+$U*L#eY9%633`TKVk{uVQLMh?fqxetGnr!)xj-&_yiEWsuyMk9IHr#Mlu z9SFPEnq`+#2{>BH=xMsz3~{v{ZV+g&muBCe$ut5?j)JXd2|I=sY>K%dt`K4BYQ4cO zv=9@0@jwhhz|4MMEMSYs^8;(>z8JK`6$5_ot53Ko0d$dZb9;;Nxc;50yE4o%*-PPl ztGf|=Fxm5g-*Gqgzv9M+X1=?a8+#X){@sZ*LjTrFJL>KX_^^&3UaAwR$z6>dd3PFI znA^_O@P6OafMZSVms=;X17U&k=oj8c;aqSqe)5j+VDA4i_vc8O?XcD;=ATjI2u^JF z$v^iZ}bWR|Aq?)``$HWmSRs?T!S|5x~L`7$qnk`Et*AwQdG)HX)A; z0FQJ{Rc7pXu-g#X8=wBlkO4y&I;&-UC^BE56G2nfAOP%pXxAni7)=dmXVSjrp6K%QQKnj5OkU;)4CuO; zyD{KhO@GAuaRX&~N$Z)JuYv}qlRn%#56DWx87SS8MyT`Qka82wEqdk7Wxi&1G|ucF z#5wA#jb4wC-E*rp!s{-89JW0sqj(sBYw^;20E*@*hz9fT@PxLsJBLI>mEru(8#}__ z4K;C}Vo9>9DbHjAg0@grAzv?Z!MhCduKbY6C^-#?u0$&cpTVra-?yPVK}LD!z((JD z>o(cM2dC$q8LJh^lJ7?h$t>KcFlyKVy_Gfcc^jTeR-_T7FDEDAr8_8u{obWu66;Gd zqiletQH=z@!Lx^o9G&+so#FhKW00dWK{xrHz3|kcGxo*F#Uyl$WLcZY{o@r#&A=6j z3H3`hwX z%RM`(0kvHL!=WIJv*p*Q<`O;UQwWGRp@S ztB7G&;8`37nFI?O%SqOQ6ocYh;$lfcNC<{yI!h-&GjIU1;tdd3 zNT4}Qc*p8zR&B_VxwT(fS_=nJ@WSwcFLxusp)Fle7_c5Nswa02s|=8GNv*|{)c38S zh$P35ko|toaNHW~4MC?SD(N z?W)fmd$V>P+#FYyLFi!?>Z6BK~JFv1_ald9i{svJBG7n$#z$)p95!w&&S z8@{WtJMYjW6dU6vxD!0Tihcb~N2h^IxyaA}Qwx(PPH(Y>wjQo{zhm$KsY#N)8wj$v zXY(M>(<7k{38kxX9^p5FL%}~vNdMMa77S!X$G|?NiO%ANvH1HQ?7$>U+>pB_Q@r4D z6pCG^hsfTOPOHe@=SYzii+%TQqYmc}QC_5X}iyawWHz%1h*>J<~+c9^oOfD~-j$vs&7!Ox~|{EK5{kZ|ku zuLjerC9<(n4I58d$@<)6ZD{v$E4;G^p`Yb-^v=+~v=?5jGr17@lDo5$9kGll`2rrL zU{*_}z{uR*3;^KGxo}@BM5x*+oyoIM@APi5_|S4l(L_LzS;v{$x~vo;1A7Z8HpqLx zw&VOI&Tz%1bOBBq5_{%SnlO?n76Ck{QZ6|u#eGBo*$ zOdDps98?+-%sU>JWuW4lyB-%RZ6&>cgbXJd(}-jdZo5x;Lsg1I*Owz;xV)VA2LtRB z3V}w00$XXx7Kh4!{X|oJD)EG~@D$pI`aMsBzGz-yv6yPhKPz^FjSEeUa~s5JFegPG z3~fQ~^vdU#A}&tyP_U=lkZh>jc+@CEUO8lRon9)Yi9wNM!X(t8BvGh}grLSy@*k_O zV5xzIxMsG$W?zu2P{NeNaxJypC+FdwH#?X)5S0)%fD>4nK$+%HAtSu+ufiimQUcy8 z<;f~JV`K~66p9@}rN0*(BFrA%CtCXzVH;vZ)gUG7VL!j$Lk?=A1}iuWVhvaYSD=I# z#Z2JV22qPg(J@daaY3DPma~I^KL&Vi@RHmO1*L*Wfo=3)Ub;U@o!|&M1Mz5xw-iDO zPFVCjqD$hWNMS$>@CCZ6Kk@CH3MV3w2I=A{UVtWr_`%G&BaY>Znhx`cnO8I=XXq`5 z9!kHn3nLcqG`l`KSG}_?VAK)=svpGe@5!G@y6NvQXLLc)51JC0RP9=P4#m)z{@ng` z3^1wSy_BkwVDT0Y80h-( zk-~?s*mA84>`&oD77A94WV@F|khSaiqWAeEJpz2y6@=phv}Vj-5(auxXrLHXo&GPN zglT6mghgaKIE{4rw}jLF z_ZF5>xLcn+ckp%mrn-8%j+x^iF5pof@U{FcHupxja&&?ILXaZlCh4!Ox3lWxu zQN!>GL8J$df$1<&eD$Rybp}tkQ9JWY=wyj5%&~*&B^Y{7N?`mg0)HYjKtR(>d;ZUM z+qpX_fts+M*=?zZ-u_C@!gMD|1BZQ)XqwIXn7pR{ zb6=Mv)W+V`-G>e?F&E|h(E%nfVb7Ygtk#X<5l;Ou93|_$DWc~vOC~$z(=4AuEOX!oA4!WtCF2$N>_yS8a zTTZUyN5DGiiQNn*P2nzbm_>~wrDu0>$V=1G_|1Iw@^x}pkPqG+!8f3KdA5^IwX5!a zis=D47B;c?CBUEwkx2#<>N^_;l4Au9y_AHfbAc*s*c>dG1>VhAW*gpI?l{DF*ffSa zg|#FiQL(8$dKC)xaPIrna(Cx@=R!qG&^#g0O3n@{Zq1Z8}IcNJU?X+nYzRxZ%LNJi2X zb0N;b*G7H-EAz5GOmy9l)X6_*r81|24oTI1O7gB5@E{qg4_~EQ$YdWX*QFuFkV_Fb zQ&Rc0U0yEvN_vT6nT{f*FM57_;xb4r!!TTqrOH`^%4r_1q~*#@>%AWJpX|=bQRi;3arPWg=c3sx2gJz0?kvh$z^Jk*psv5q3^e@f_j@n7fqN$C7gi@b;uu zDGn$Ql{)4wv$Cb2l&LMzu((hQBXen}Ex_h=0cKw>w#wUU$?7BDAcxMFUgdn9}`cdDpDAK7TTCO?w8{Ex~nNz7{46le>zM!cc z;iO|$aZ*I|0d;4s>?gnv%~H&aw@l3hcf-TQ*X(xDxodsAe;&;pdUZ2Iq&7li5_nvc z+2Da}Bx-J2dW|^=-;U8QbZtY;RA&fTz6wgsNGlhgf42psw7hqO^(VA@DSXgEr+od^ z%Zi4veG2vJq)(06pm*7-YLGb}eOQwwMWd)E+td<0)41(xtEBFIW|n_g`CXFx(F~@J zinb}dmOjQcTI@A3MDrwZRcYFuEDX?#hQdHumDHq^%}teu-F>q0*0vC)n)xMH_jYAD zmLzB!p5jq5Ly^hMHAWB$<7k0R&y7;B`3#tqsO8h9>5}s_Y!tGT!3A&w9%(Is=77#U zzMLwjByEw$81^`95a-a)DOpGsoNnr*qSi_XJa=F+pr?>3*82i z8{-z4EMvGQsOrK{Bd@lEs@EQ4qf+YU$-Q`)ySmj0tF4OE$ugi$ZlSTp=^!li!aj?b z6q4$jKh@ThBkUF4RS*T5U)h`9un*y!^!pJM%TRtY-TF|A;I4QP?m;AHbblH;b73Ro zKD_&e&2yCX(`4*Lo$Wg%C20y_IHrEjq)+WxT&rEk_vSO3R5AJhj5x;;`>632w7&o! z)Ibb}PlDQP+ZKzSxNOM&BTKhN?_-U~YT^cbBsGyw3f7g+g_b4q8@yy|SbvW=R$I$* zLNUYXo~y6`u&C3x&ZwT2g+8sc=&bNHF!B_QK>bc0)$y%xzRM)bp)IL2JB-i1b7?aN&ur)SRhn59i_F81sQ4gLC&UY{_JSsuvxGw$jBQOSU@kfN zNn+ncyagy2*s>_u&9-Zl4K%y)S(a?RseVpU*5gZmPqGihN2oQX$)UnUq~lYp43#7U z#Zo(JT6s^Nn2NXIXW+G~S(VHADG8}YA>7FCorRf@j>Y(AgIrRl+BeFO!Ci_GR99BT zY(*}7w~2;bh%4|ZNm%2Qs5B~`M|UZ*jc6mKRemhXlAG!OummcO>Q$nXOq_q2{v7#39 zsa`s3u{6~X*%Va>VM|mEHvk`sze9x6q8wEcb_`APE1TOE@@#Mn@8OF#V7uyGwg>J<&AUJKXF#&Qd>^j+WmkXJr9_S;H+ z3Iue}L!^?=8|9Od2^G2qeNB`Cf$>n|MT^m89z`1=74V)9&%CvJ42jyrVe{xb)f*y3 zpNh3FwL`Bc0w4kye18rs>)OE#pmzkgmYjgeRBMcsD(+Fg0*t^{D4HaRZZv_2Cele) z;kb6G^RRRZ!I0e&mu=T8aB8_257jhAx*;>xkgV(7fUGPIAWdKkck zUwlG|?zYkZBm06Ru{4VDSk*~%%GxKLeML89gTlJ#+tA#KSa(=PFO3us;_>2&9? z$~L{dOSQo;0XZdMTEN#wB%e^l?vDIe=o1aYVW3|uCcayV0kn)V$jVwd^ts63yDTFW zjZ*lv!hEb#@;|R=Qc+oHLd179*CI~uOCt9`6mdkF;f?E5!cazqY4-2=rGrnZhS?Sf zy*_PCL+Db+RJT#lqE^rX^FYnB66lt~q-1_vkdqiPspriKpnzl>nO{ffFGZ|S%bNnv z5>KeZ7^II^3{{fN=&p!~tN=OBYJ#-7o!vAnde$%|T9Svod>R6@2S`-#7wKo%)mi~L z^blmVqRf|EvN|~rHS6R&At&RCH4JZ3{fp_Q+vvhcG8;KW84tK%ip%)ci_NMszozPm zY#-fxOugJpmq03mCN4{r+lo7ohZH^aGl(Hj)wBmM zG4-X3@2F$*g!(;XP$X@MTCF0;jI- znM(9EFn2u(h$pF4A~za7Ba0se5PDB3UiLAOA-r8@g?p%`%Cc9mRmY|r0A9{hni@%npXl6HbGfByJ}RD0a_#7RdiPK#Wt!PpgO zSaQZGi(trMNv)<;`hRX(xr6(MOrA>nss_mJbr z(ty@V=W!X$dM2M?@bbbq0KcK>k#rxLog|8mikFnW;!ETD*2PmyzS9NE(u#gYd%9s* z)k3<#e(ky-iyQioHiB?^{~nO+GVB^!foR^6qI%7)0>7c+tHtn~g~U5_srft<&ulOt z3rBbk-kw0`Vvh#VO+rK;-HYD&846T1#!2vuhrG?NlB8lTVS5C7M9Efa%mevcEl?Xw z);=WL3TKY~0Ojo(d#dpkycL&*Oq|bRbDO2L7gx3%4hXRgnp9?D7?j(P@<45TsdSML zlHqd8;{M#+YAK0CucA&wEL2EEj&-KP#cn{wxNwh}VZS4Jb+t+v47_1vFyPDIP+TQI zNDu+9F9oJk4T!rs-Qyle0}s0txkvHm+pwW#u`Pix$EbY6C47jahU_mbRRx?&bl5?y zIiXzDZRs0Vbb{$5vHeT)&p3v||EZ7}{h9hT*#oG0=vawT^)iH#smCoLIaVJAB%)_@ z;bx*IIY9x6XmsDI>Kd34)l%~#j1V`|E!=QV=y=eTFExqv2$iZ=8pNziGBEi;t?Hf7 zvlde@i{4qiurNu*z`y(fjxG6-=oQ0;FGl%g-yL*Y$(j>1r7LPR#0lg3&Eg46l4c31 zezgiYQ4pV6CtHCr{Hgt}#Us$SYFO#8n z7HKLdgrTz*hfwRCNd{bN;7=m(jh28|nM}GXXE#+P5odOX!Zh|KS=NP;QU^Cwe!9)^ zcSMdp?t!gVr;O`IxRMDa(|l%|@zsk*Cz(BRvHh2n2SPn)*T(5w zPZ3Bh=L+%!k72NFbe*2wN8k@tInFtn*MSdV2Ay_ybus{&ALT%UFTdEbu!xXm%^`4v zz{2H2k561Z+>?-8J9)@O7E+_;DiABqf6aO$Z*Fd_$rG6T(3RounIkKnel zH?zdbm@+6HfitD1ujo9nPUyqIo~Ss3cu5ISlH$sir@9q(dQ-0)D!VTuCa4txS5W4t zJ94X8eKVC!pU{9L7j@dCtZQnejj!P50&LZCS7c$>uy`zKX4o1cHMS>FFIFsX8^U>5 zsstwXnVNMrt4k#H^R87^2uk-P3Loi!!Df~ejWWmhi=`LG3xeibv~GH8?%LFm5T6?M z8ehu$Nin&E>V`%8ZR!d?$o~_zJ!G0>LVwG)PZ$ z#5A?;29{mxf>NX6E4W^6W{*c0udBHUsd~aC6uGfqWoJE7LJ^!eAX_@OBIcpFMt=zH zHQ0Mo_;xQnwSA^~>w_m`&l`ADw0aMgf8O-=Qd!!Z#jxJCewjWkERXl;SRv1{|3s8G!hK&gT zC)&rssVSnyUe4K=a9Vftwt@w~!Y#I?=OJ)HnbsWYyd50GvnDo-=EQYrF!6q*yx3*DHpx0YqiV%;=$e>2;C%p?G7hXRVc7*W@sQL6@rX`#pdr_$YCE{o1Vlg^ zit>0it&TUVXKu<3ZDk3QVKIs+an1JMBXmTS(>T=+?nlOFAzQJ4kV>KP8nHTxAoKt!J=K ziZ53^LHOt|Z4*mP?)X7$=Rb`>0+miliS`?q!_wXGe@HZ2K;a7YmToGg<4C89Z?fwi zMw+>93_GM0{D6&s0oD?5=TL*-$VSqhC>3d|u}@x5yoJ3oz(fj$0^V#?$*OEjHKD#I zq#zMBvKK*=q-2}9s|+YHnFQct?0W-RCXAC5vK$hm;KY~_NVm>dB za8vIFK~fbXf37M3sK>~kBMXB{kQH5_S7A(bL0Jlwsu~MZ?~0U}WZk1E0kXA-*=b#Z z^sn5ki}3f{%y-Z(xMkMoQ?=lNBK)kb3e7Zi3`}jP7~xcL6Mw-EtztObFb9^)R#$i# zjIbC_AfEA?rh5>b1p(qOK7v3xwZ!IIJSt7d{eaEE-c`j9r3UPhz-5KCxzuu>DNIdD znB> za|`vP2IRdNogk$Rn_JbqJh5b!u(^~q4}s-LQo;#_d?T!uS=t@WMQX%NI?NVHYzjRWAR`CWpCu!R%u9d zl}RV3HIkOGV@Sr#>j!r(#b`i?5X!P{6C!B_*gKI%4K6yARDZ!KuW+URUo+ISWe%9&8;%F zD5tv?se8L5*=$o#Mf|;@XqZ%jXC_;BO;NP2mb-+z>RYlCTq#gQk#N9;k|68>4p@fW zR`x&~l2?@EN!GnKlJEX_5#r zugY|TdS7}HDs%CP(?};niLD8JTN4pY8KLB?5Z?G9PGdX`AFW0`oJRgYfr6pzQ{s*i zaI`JU`XR*1goOD;l+_`e;>O@9p-4IJ>QnNqStKZ=utpOKL=vy4!lO(IG=ffksbm;Q zPevE)7;z=3#Fl|mYZU`6DIoTYk#Hq$FHs`7DW@U_!*QNZ?lQ8g;ioVqO~|e)LlxZW z7oivn!Bho?Hf$yh>ho`bTrQ(V!~G&QG+r}nhYl6M^G1S|!AKMAWAO$0PUC1gNH|(3 z&H=VTbpvrZZIiRFRoC=zZHDuW`2AB%&o^y~5fD<;c$Ij+6^1Y?5R0Hyr*1@`)ovtF znYXA~@Jb29f+KtbwZPyNiC0cNpjgnrq8>$$B#xHOIEYzl6P+`sL*8jm$ywI4T%jn2 zk|-#Gx+g&FNg>$uW&DM@C6T$pe&Z5Umz3*@rOBg=%}m)#?sO@UNTAJWTM_m&-y&P` zrzyx>pGz?H*;_$zEsW%>5$*2o4cRD9xZk}bRp^LVswNH}%N($@C90;r3BqfXxWKn8 zI*tL&rBreanL(lEkqwaC9xYN9kgUTJ8u#6tR=t>c@QE_0xcblJSxh@_i z8a9|Fl;LZqqHb(+mh}*VOi%d-c!}!2D{N2b*P#)9M;DCslrkc_`H2Da+WZa*dttJv zt%ZL0TiVcIgL62t#I-CoIGAL{AsvgneD3%m%V`*~Q;oVcJ4U-6%~vGtWGVLH;|KoP zfWuu&g?w%9#IkQmT{4+E$XAegfeHqz+G-&|DcK2l#i`<#^=c)>9(AvR)|;3ftl(*vFPv457tCe=nmCuA!Z(;A0ikv#=?@g_}z0{^*o`?!Aw6bjEG@ zov*rm{0Ny_>?mL`)@IA5D~6+1wlX^$;e3_^kX!~vtfyY9*;SB;%3?L09e}ioT0&D~ z*E_~HbqdI?1;Y-b?H0v2;FL~3qTA2yHWY-++ARe~z!VSLV{%vEO7jMfpwwU28-!u! z>520jv(5sNw)7)hEO_$#eg?OtYW`RD~ zoZ@qzbW*0;t1A+3DW+MDaaX8i$moTatF>mC2>*W_#R@K=%ae>{}<|ZoVhl#+zMhZA|b~kKW7BphiKy$ zqT(u;>jq5z4I?rt{fv>J`plpGtiMOjv;N=v-tn|Qe~qxIQryeW`}5a`i=zMk?eqT6 z|MCO>&;RNZ@w@+C+h5BJ=sD(9eJx2gy zMvzX}3?O~br<(ltf^1#9lr&nilMj%Wj`F5Fb*P|LVYt8v5k&CA4+ewEtnL5|doNDw zn@)IjE4uRwM6v%H* zK3ZI=O+=R^rj|U;xT{&6L6K3%x)(HLQA(ZK^lVxS!7Dscgm$^_px$+SMrXo{bG`T$ zsCr>OaTCrwp+Fl`UholEpp2YlHL}EKG6|{^I2et^a#Bv*&@_Qf0lBEcG`5bzcMY~I zK$kFP#0~Z0!a^{wXE;8=l^XN<#W0kjZ=ejt`w6f}^Ld5kykNaxd7L)bA6LMG*_d%B zoKo}Ro`TJ-dy+Okdm1;t>m=g$j$mO4SeO{9XP4{|H9^X2DHpI*@yi-Yt1By(b9LoN zR#v;cboHC5xE~+>Fu^ezOt2MeJ>Qlm)g1E;QPGFFR1RcJ26C^Lk|I%Qn&0ixk`fmC zwK^oZONNp({r5(M=5skW&3${ETg~eQh@*17U{T@S^$A6#kNYFbqxFtSfLppgrYWnY zWKU%7PEPYgZ+h>O7*Rg`xdU>M^a#!xEC#)k-$4Q_-jTVm+%@_NrbMZ}+uxa@bQbd< z&{DRc+R|kfclz*5G7Ssgpn0Y+S^bh%!^bdODJG4?FNRM9eS`UY+ z+NDWo_UVxw-qljDwl>z8i#lJbh- zY(j<&Us~s&n3)-vr({z-U_N5GrIsef@#EA}%!$qq!S%lXIRjcP0ua`n5&JR1cTh$3 z84>FpT5UQGZKv*xn6(ehQqqg=E-ODHG6xQ==3lJpxXpt-Kv{oC!CPOXHNbQhuSR}8 zM|jCa2aKZV>=uN@rzA_TR~IdK^+P*)aE%NvP|z}hiqK3hp|D4Ej&#ukKR;wxC0Noi z_lV(sx!vLx!#S1a)8Mf&Ty_cMT%HxGaV_~&JACN?h-u?r(+o8rNJR zFD`G}?OVX5kBzg%-L{-4CSwg9sF`ZG%{idHKI!^J?DA4-k9A4w4)Pj9nCarWX+ zyOL6dC2%xmBX;fFQ}NOPO#MjWl`NZe7B|l=YE61JXi@FN60H11ceg-@c{3}cgC$gPTq3pLoFQ(=1-8e51L>Lw)ui&v&S-f?N0Cg(uXaDgT{hY;^@g-sR{*E z)^D`4!I+@d&IUy8wLUAhD3Y`L&7terQh~U5lU?&JDS#>hl}h;+>eqZ&cI1ECEoiDb zq-;@C1vs@uRdp(+g*dNxG!=t!LV|4yY+fH;n{C6ryv-Tknma)gw==huO)NO|>d*!p z1%AXzI*KH)qLP1Q;8bA*Y?aC)lk&lX!&!Ucnu@}e+n?T3Cz?~oK=l5B6E?zpLE?Pe zP@lD&{TokMW1CRq!Zo)!qbl{LrZH4b@HLx@RbnTxBB<<%;T6SuOW%#6pxpLc9a=N> z{m(U`jz+ix!!b4{H`A@|hPikPs;|Z1C*D#f5!xZ*Bj{UhCmq#TbeJDCHb5CerPH3- z#RKz3aUDjK=JlnSCc=rQJM&a=o}d7^tYmMRU`?xc;)%CNxTV%rBpls0&{aX_ta zSx_`p>;s%W^OH*RTJZ23C$fM-7K~05hwFi47 zd(bGQh0v;Y^qGA{F(*eq1yG1MkQG0MECE!kej+)SX1X{XnS!+nA=Y-RrIRSV8#s@tI9PDlHsz&%##hi1GiF6 z(!4`G5zsS29nY%TV3SV?%{qok&BeE&4p@Y$9*iiI)81f>5fNsSy;kDM>PRoV*l!`u zGT@~H>9gSz4^PfwrMlU2$aO{Uzx7rnAsm7qGuoLWdG!hR9N=Lb^$J;Dd%lDPrJG zz~?{L$e`N&5ezd~_U{p0_4C(#g!H4aFl+C7Z?kUS>G#OxzWusSfX;MjUKqN6gpR9- z?jZ0)O17Hh*f2@B-!2}Kf|-PBBOA%J^eJq95EbB# z(VNW0*>nX^eq5JL0VJ9XVi2AfDMNa8Sk$&hSLm&R{{AQ4d;h}Um7{~5zdWM@h=Dpa zHyNEvs=*p_lxrHUVD4A=7R17HMt(j=1n?6y<>0x+`q%gvqAjsD$y3ckW`hg_&7kg0 z5-=dhPz-xuP-R}^$QK#CzhYo>Gn3Twe~i#}sq=G$J#`OBU;U7eO2yBJP3%L9JvZ4u ze=WQ8&5YrCN4g+RHtlUX9C=%A7Q9DniXK{#wL|BB=UGnEk~_nt-?FLx+#~9|)zmR*n~I=U z-}~}gphxWlSqWy$C~{b@(;-9jNDSd{1!oAST(9>AO49S;*fkv-+g04+#x^@M_v?o+ zS&k6;7pP)*+P(n_=z6*zfSq6KHFb|GY;Cg}l`FjCZ{e13UVQG=1vIs1fhcwJo+r#c zy%*19Y%W{KL8ix{>OIiCy4_|&GHO?|VbM0*RvE~7nZ=5fe#t_RNylbW14m*>MK6l> z71Kc3)Z3n@OE_sFw{-GEhqddKFv*3;I+5_-=hCrBTt3y5Xy3n0I{_As1kiFj1F=RF zs#k9UaNDw>+6eqL-B3ZNB<9!4{xV0?z9Nd386Ld^zkctCK!ZuPC3y1t=N`#I59%u3 zX7@8N5KfL9-Iux4yX&2ULAu+W%q7v?T`VO*`YouIWG3V@#^YL8dDy5;$e(OH`sQ%>W^WhC9qB|`afNbT_Ya~F)ZQ*KF`jYM&JiktaLreQI5KxaR5}^x1Yz(R?Fz!|w|2aP(4%d~ zL%xNn`Z$o7mY@k*J{HWLx^3eSr2DdQu;e2j8;1x~>qB6-h_Us5jT4@HP(k=5(KdFr2{=}cs?P?s@4`Kh}E^72ubAa7)ZqC^@Q5BzZllXQw2dyNKxG*{Jqx@+JvXMq{Y)p@ z&ZzJoe2`rYpTUpJ(ZX`L$t7e!HsA(ZbqP7*(9aCumOawlF87yEpgu*?nc9t@p8t=& zMN8I%?C~Uf$r4vgb>gcwJ7P#}O6MS$vqz&|c`Zc% zf-Lx8_m?wLSgXl18`VE34uTV#&g|=*;oz<{QmXBA>qI#sh}_Oyhfc4hI$q8bY`wi^Ejp`mo|QZDEW1RqBdIB6SAV_ zOoGRuQkGOfHY<w&H-42XoUPy)+;j3Bx7`8C4B#*3y6eMm=li?SqH z{r`0+ohk-Z-6DMt@BrzMK8+93@Nb}dR#NQap9kI3MbGH|jAc=x?c>hXdt~^e`=WWG zn2Wm=OdB_6gp&TE{g#{Fr|ZEC`p%2iENn93+k36LkFhuHXWwUz_|T`FQ%V-;`Haz(i!oV6MVp@9cPl;;7rQ%bY)+Od z>MT`-fG%VR4{49(gh1%wtQGSdNf5`pzSeMl?X*B1`SMj!08C&Li~N z2#FD5u?gtx2-5NOTdFFjOBozfwPJs+0cDzXov|Phepb;ewr<6NwEdlW2PTPhH^d;T z_s1Mj9J?uM6o;=;j!80mpbIZ%mF01Jmp0X!Vpb5nENWC1Jh@Y4E*`C}MT}n*H57@B z?nCcunq2{-XY!1jHKUdr#R<$kob}D127B5JtO8atI14OWy9An&{{;uRw@GCO!9$lo zBRnHzZ#3Q^^j&PC+_nUr~$ROLuoc zcp`VBFo%q~f$30AF96M~h**jzjDfva@e5}#Z0!=Oo#HTpxZ74~c!}VZP};#wDS~dB z-!hGy!;iTrDIz#FyFb?9X~ENOjz?}l|N6Bf4Q@f!Wcl~$NXU~)GQ^je}R=d=0Z(L!a!>DTWJQ5i(7c$@wg!2QImNz zS&jA4JE4s#YuIHjM3Rtax1wh%3)BQ^#|w0x$;x0RAt`{)=*JUX z%S{Jc?vWx4`F)4Hd_~_Cq>`^r;tBbRX0KHLmaqFWQeX_=JJ%&(_cU0*?upt07E@V{ z(BM?x;HK#gkx$ zJ(Cn19n%;bAJhD~CoEk@^c!PQz@IaM79w3KO3QhIe~tL6pTF)yr+kk+JW##veJt&L zr@u#Z)z4q|ae7e?As;v2BWOg&Tb&W5{)48z621g!HRlQ_%_b1zu$U^E*7ak6RCYD; z7EcO!w`n6vR(KQsIX4`nGFpz+k8R(YS6Vg^I*Rpl_AvYE9U}`DR3&_!U%20m&9bIa z&3GiPD9u)tU#gUCR`Hm)BulEDJylfx7W*DuvRF#kxh*PsP;ur0Ai3o(Bghz1pgEU~ zEd>uPdFv~lc`qzZj-UFUBfS`D<%}o`@X!iD9y&s+KA;XEc+nD?hmNe(GoqB@Lpv{M z)AlhjAa_DO=1tFa(c8yFPcQZf*?hi7;+l(w+k~!UIl7GVsh-)4?)Wsg@KH}N5a#9Z+snQssajcOat@A4PJ=DAYu&Y^Z_;?K5NKt5;Ar8}t zLG?vuPM&?i_M!t^^3?F8t4J8fOxCpLS}>-~mHBos*`u#~Z8HbG&7MPZk6PC5UwGe7 zVcD}`;#u(TbB?}QLYQ3JFluae!nJbp*$C%~{ytibh9k84Il0HYI+J6#aanB9p-y_X zlrB2_!##5L*QeBUo_ zP2=a;72WZRth(((do8zR(zDxb$QC*u#s>y(Y%lQ_w~&QUm_OdR`9dmMUGImyTYMte zUQpx7j)nl-A$A#*H4C<0wGks3Wp1Xv8Jw%YKi*63TF49=u!`>EZYP8ZjKj z%UbW6{D1#{7ta1a{~wxEPGOD-1@sES`IxK5&zQ&^6q$)WuwpLXDPx*K|B6eIdoetd zoLQ2Z$lmurBX)S+mj`|BA0zPsaf8N2ujj45|JOyr$>n2(rXAZu#7IT!sCQNKq8(7= z48Nqnv;z`4p_GvbsIP$zd%>lQsKsp1Xf6vaH0W8uj#5Tqwc=dpotLcM&L}){)#e4os6vN&1vTzjrx1^jx`#W|$GAdo+0489* zV)_8djjrxs63j0^$wHm&`9~TiEaq4r*pGRB{a!)#P;vR_y{a*S)-zQv2FzI`s87Bq z`<0a*ytY?~rW;;tB)!iH6AuS*iD6wCAUAn|jYWd{ATX`aytpQtQB*`5)!Rw;YreFuRj!}*4GaFsKd zGkbkH+p!gjWxRD~l@v;c6SqU30;GQ(XZ0y|9duz=G~9C#T@*Xyfsu%*eQ$`s7>Nl@Xr}w?DYLKo@>05Nw>9w=Ir>bzHtGgtMTT^5#GWm zWCgthMvXHxZaYMYN87WL3eglWc@L_e5KI+3_$w&{FjSUMW4*H(wZ_ga;yM?228}CJ zuz7x=^31}6ws$TZ35{psioTbOoQwKQ0Kp;vLzE;n`Yw!Fa!Ikbh>86g1OhQq>0F_v z#zV&v?m12%Ne=-aiacG>BCv_ZY#!$-`d=1D&xw%!5E5`RZzC$r^l!C$tCSOE3gn=;!bXwi-lf z;gmW6<6=kQxDM7p@TGjjq=!hg4={RVNqX9EHcz>@{tw32`oqckP0*CKrmQiQfYGWCSJn|4F#Uq2z7Yr zCMyN-DGMSXXom0gPBFs$|MOcQ2u02B&HkVp=M6a9^jyewY{m!W@l?|6$yRvYtT$^c zO4;frHmE#VPA(V6j%|X}8teMI7Q=cZ;dlkhjU*(YqJ`Ah55PI+;AAHFK3;DIPA#_> z$0>|lRPjeI{Dw{>xJ+R4!U&4^T*tF`_4zD`MyyU@~DGv+GKi5c+ zeNY7iu?2~%&I;2lgpJZ!puQ!dk5sncK-3=jfk$v4uuqIZ3l0FAwR&tHL@V=$t>ePO zEja*IlaHiGu6(>C2jOk<^$WF1#~qSz$cz~IN=#wPBqK!1cSc;8u%Z@b2qO#B`t`kx zLZ%iN{w@LqV$rt1TuY$JnwM{(-w8C{+6Azxw~$u5OQ@@=Zv0gpv>;)+_C$T82*^k{ zOUlHp=bm(=8m7QdbMcy{5aF$BYG$)H$jeR$IL%woxT2KMXZ}TpW|4qRs0V%8{Y_XI zExusx#OY{Qnx|H>jcuHK3s5eP%|C=b>+^g<<)Lp(37LhtPUoAOwqIB)o7NP4|8qu` zq^-}Dw)J9mgHBkFrU_jlzp$q$EEOK#){ReZN}NO{AKw(VQ!kp8b<7k@*^t??q%mSr zG228|D{LPa1{2Zau&HnoU{E}r*3cZ$FBteLjK?P<(zRQ9R(02h?13Fl28LCK0537- z%u0AyH4*1oN;z&2d@f38^u!xtXb3{ghI|1+NJ`3NDuKmHTIlhPQi+Eq9F9^Q9G`Z$4DV&SdschKl54 zX3S+%+H?{%Ov|-DTcqddEGJJ!{d3s9p|&b^G5Mz~BQHvX*)iCB9(oM|4MG-u^ z0|YfezOqM>&&@zD!J<%NBaUMqnI{jp0$E{GNGmXVx`PWk1w%-|Tf-qiG*6(eOEO-~q%+N_Bpu1oNiNx<4^O4Tqg=&q?E5rh7N>%pl zz6I8VRB`lbA(~sKxs6w#vgGNA-f#xIlj^nEGB^nkYU;ZmK~S+rD;x32dBF(^qGwYF zD{Tk@6zB`c{@HY=&&La7)Y=aD(Jg2?*@N~&%VUtUu1$F?BjQ-W(#bU1s zSKN?Owu5aK8M^cBN0!EJA|5uXYlY|;4*%TP}uR7p~$@3LiO>(=@7t7Ajq5$es{1CGqo;{ z8WRZx&Lh|=;3T+(VV7Xv^mu57(;s1JnF&P=Zr1~DQiMQ!NgZ|KN_HzbMr#$on27Von*>vXdj<4XzJELSU(_vd} zT2psj!7TQ6{X+4QO{Vb8Jc8Y>W1Kx=xs_azedPTRTKYIFGzk8O2rf@1AXDb8wLbKk zfY!_;-b{baNWd=Xo;z>@Y0BvPE6}a#Itx}{=061W>?_6%Y@6*zoTzuagpRxS zJBEWCU*VAGC8~U0wdWz?5;0RJI2>~ckFkzz1cciU$hWbh0GDWszYA&pTrS0C-FYOt_vdcy=iO7O>dKh zpjP8HS(t{h?t2tP%Y!k+RLpP`CRBD*3Av9+d^z@kGXeP4ybUYBU?D8Ar@Amz?M!u% zO!jFCw->FyFx`MxcAdVU2zbr=dbhKP?n6CpNpy5^Yc!fjq}&y$hlh`gvWJi*bl1*XRTgJ$B?UAmh*&En!k*yNE^W}Q!u-_;G!tqFdKVfzU-VJ_ zF+z-#I`2b1el#M6hp7PBlCB?2Ih=9kH|B1XX@JoG8c~BvG*Zlg;7BokJY{O9aW|bI0=5k`O*%4>m{sk%yjN|*EhE9JWnFL36r&6oNpPHYtI;9o&b@Jg8in2D^Fi`9BKs(2 zlA{2?9lX?@#P%qP8Ix@KV#OGF7zx^UK+eVTGZ1AY_^z+enFUazgy5&Q497pd11D<+ zg=#WVB3C75!iMLbs}o!RAQOWs#rSm+n~}6Yz_5?(3jiXG`v*&T4?f-kVp?w>Pw+0< z?=WRp?sr6T&&NkBd93?0A#<)-P-LYrjkCor1Vitcj4co|{kbJ%h`Qu3eDgnh!MZbk?nTQ|H+{bB`bFju=y^s`TG|Y|8MPPKip*nfnmou<$KXlBM?{ZN ziLI#<7uFsw*D9m(a0v8Sst*M@%Cm7z7jomez&6Fukvq3(bUz(&MQR^x=*j$hM6;0Ice~t9U zv%c%9zej-U%O-RHd#3a8_lUpZ=dbUQ^@Z+QXu;EQbNYmM+ydss^_zDDmG!V< z&IrIn6|+;{xP`i5c35QC0CyQ$%QF&Bg0Y(6f}nF2Gq3h<(j(mWbJ6UMx1d@j=_dqY z-|zDKoAjXx4NdueknMlYfNGo)dam*S?PZ9UeijkH%5sq6!470X4+HQo%`iwJFysQw zqmh)G^MC=4#FW>hPkN@HgVIzI)iYIwqeOdLFjZXW=8ew~3K#SA2WTe328|1#@a|v0 z6d30QjSb$e2egNEQTq)laeQ-DFclqw67w_T2@-#=WzpH@ zmG*y+B%BiIx7Sqol&ld zZsS4`Wyu-+N?zlbDh40j{ofX^eFYf+dF7nApvlH zVfnC}=o&=O7|>X2eMM4-&Dl$(!stArrVca=X8QWBOlg_C4x zFV;05GL|meGuhY=V~E=QIV0*JMUo*c)%QQM3CEBnG5jc_O;@HOk*3?C)7b~0mGBl{ zvE6Smy7#Gy26ZTkIaOWz-lPbzkpm^x2P;<0kO?h(X`vhj1%TALfAOepeKCuloS@1u zGBA0iskeciN$yfXs|5#qC)%`h^vTjZh>Fm$l) z2!_%|s05hU)(jp_`_fa3mwQU+?S!{y@lB}l)Yyc3|Gi6svI3CBb=oC<94;6FE{(;& ze$Oo1(5`_HViJE39|0R`>KAr1F~Vt3zhA0^!+^<{uZJ6;-RnFrIb~t7=#-CS1};pE zA`1#H0fu1XUd)MBj{2qBdg=@J-wtW*aQTO5nD8v#Nv$BF0I316j<6{QS+?xsqPlfqO~Z!zVL zVJ|;Ytd0X=`RXwNHY3_%0N1Ut)h53-3tmNvGGXuZqXyr1%xYJ;)gm}+UO(tfjXtdv zp*h;Pb#-tK`o42H5jLMRLON#_txwaf6Tmnu({?;K_zIn8X<$#mAs_h*@sDLh?G0CL zJrcl4XGB4xZcldc9?`b{`AZNmkuBa`tz;n^0$01Juu>=>z(>nP+lmUlL^3h1T*nlO zZHb~fm{*uyu8(L=@1y4M@e3`;)^`vDPumL9OL$pZ;NM)2#TILB6N9p+g@)F~R2L4u zId(HqtK|>#*TzvU@>)PYGC`Qnwdtxd<6mjiC#AM|Cz?Tn*UUM!k zly`w8Tk&2m+123J&WOP?!{|47CZ;8MeTAMG26h5^CQ%XWUI9p#{o7X@N4kP`8~GbG z)WT|`%x-CBe9h|@^(LCy1Mm8VjDvY%>c|uTJ{?q&A1?qJFxUij99jGq5@`h9R70#V1_71 z*|o#}F`|ope&2<{-$S?1^2oKhb)Wwjx!(HoK6>lueR*ykBWy~}AV`c1r3k0!{WmmB zK+{6CXnPzZ>P96IiW4Jtagl4o`q%QI3y|o}7AlsZfnFGU7>VunUOu%xI@mNvG7b>p`y(5R!L$vBn{4Mp0rg1uc&HdB99H{JM0TQ zm7WQjNa;1|Y1pZD(fVr8x6v&&EQn3x9M@N9(eF+Yx3&YcH6hgPU{tLMHL^LD%)7!-9)8#zg0v^Z7+Kq z2c|GEi969QddKHtPJl z0KP_?$~B2soGRM7Mx2VBC)|<0AWv{%E)>Vr~(!z zq+>*?fEVk~s3TPX>pRgjU~|$DbD*k%v*#VC0#2f$A=+N?(h;b_XUUt7Kox)!As8c2 z1z1CJh2u~$aVJoPLPUk6{0lc0b)+g_m`|k2<&-;8<*NG~tP1+Xt70TVR?$Z|m>YLg zieH4RTr9oK9hbFk_r~ScSIBAuN=HWm^Q1#oE;+wKR_-($5i1l_mP_?*l+rEc!D6>^ z1ek9fM>!fg^$J-94@JldXpUnY%LJ`U`-jWr+Ql8R3J!~qRiN0OkQMP^Ln;_?bjPcL zKJltOvg1|11cD1M_2N5T1xBQt=bY7P`RI6+z&o#S6@f7GrJn*2*p>k%mp=UV>Infm zuU|B`L$pW^7~>PK3X!p&(d>d)B*%&$O%fe&9S91X>QIqLi@PIM>T<9>(dgD30jo_% z!0L0-Tx6W^~iP?U${>ju?5@V9e@GR5a|&QNpOt}{#& zEiwsd>rmF;wxdJQ=#%+<_Rdh^Qf?(0ZEV9iLmlkA!n>Q^N;F1}5=G76NdGl*oU=V* zX|-wBR|dJAvpr(xEa-5~HocuQmo9GSY}0nmHXWAv9rLA^+w}G_T<&~%8DIp*x_l3} zhz;&EXB|JoC9~Vn0C(ngJPi~_33e=uBJ_-HS4B26XjXjUhc~UxToG?e;YQ-A7PO`x=1uQ}bKNS)f2t z5^rC_m6jn$+w8{wk*~4o?Q6uywWmJiq=YBxEnvhEK#^*w7qwweO4o~;jYyU1h1I)> z-D6dE8ISH|KgFxWtmMrwCzM(;SsAQe9c-?O@ED?oE<|t z-Xn=f-boE+SOdcriGPpW7nKZcc zwL7|tS6@P3-F!FIi#g2lPOWzv?%f8${>88%?>xfZ6?46ILleta2g4w+xz4@bpeUwdM>1n4EP9XppG#?cfj=+F*RhGbiSGZgzF@#Zd&uCpKD|(7kf}EY(IVT+(~S~8_<|W znH^RyoTFD#v-Zzw+leo{BFo?>H)B@TmC@2^yY1|wYhIm=+e0Nda|XDlAT!%akca6| zw4!!uC}+dfRk`>AG`zf*z-DEwZ25{pv`8Y}%*4VvEp&7JA8M0XG)usm$aDigr?d}~ zzEwlZsgOpgGD1gIR_dlZvw``0o2fqXa#ij&Xz)tUM>ZuPXD_SDHGJC)Ft=XEg?&AO z6pmk@r`)kDLfBBISo}-{hTVoFkXpmm4kXue4oBXzA^r1D3LI8+jCn3zii5o1q?7Cx z2()3o$9{;Ez1S}{!Mvl^70C89~fxw!w{ zod**SaIT_f#r!qR0DPOCEj zzg6Msz#qGjyP|U+e+HCrZ_%y`(4sIjBihoZ{7K^&V-lTIXs4$$s&di{d(2mMX*$_x z?;$Ro1O<^*#}OpZC!>p9SfIbyc;ymSZK{bv@T`MGFHKxk?CkuQBL}SoZs2-!ZpaFt z%a)UsXD!X(qLU#*kFzk>T+h&63wt^cj%!i=Zx{y1-D2I>r|FtJe!Nb7`yX<2MGCI6xm#Bqbg)1iE$Mchwl;{$*{0QY>EG}}!CpMR; zsh&2;&NOgB&Tb%P%+EN>{{Dx!L1^83PPdIUbX~*h&$y+r7p`X--wfyLQ`M-(#Eoj% zC53T)7VFmb7DZj%yh0iNtV`ayt`l?XQahEF?YTF7a%5u!&DFUIzC)F(8jnzR==VSS z9bnJu9rTI>MwsU#Y&G!;SqlWCXMjSI4Gq@i7;&OdX64WJOcHgSNyVD!scqzyh&l%T zo~w0LHh4XKg%^9@&mVO?(fqRC$^5k6IXLe6D)VHNa0Jipc`;W5%-I#T=KHWfVqff; zkDap>`mentgMDS<@`a52b4EgouS@{xh*`dL)`PpiuU}(8`bu>_FG+x782pU4tdwLR z&WKnpRvaD+f1zX7JoPH`WdckBd@;$6$yWErq&Ip@nDoYJxh#BO7=EOoXyDYI5dkNE zj;J$4jJyv~Z|rQazeQ+sW`ohfR zYs+G4Q@PX1V)7#(5Q`JG!ms6H`2Z$dj?!Mz7@5vVdz8$fn9cj5Q^_1Vz!)oJE9a$4 z1h5!>pNq|3ARyhUWG-WBt7ZC28$o-j8^@dk?a66Z=^Cvi(_CV%KiwbD+yVw64Ep<@ zsCkT$pFI+e02dL!T^|GEBZq$CSf_sNaxAbGc9>7g_$fjjV>p8!%L4Z89V{2vZbilE z8D}eE_ShNKratDE5u>d=V+EYmz8A=L!tW)dE+kYucebSQpEE+Itq43m)xA|S>JNC5 z;jKzUdph511EA9%)K(?DdD=n;zb`3r)Zw}jyu8c#Mos$5xRd*?yRBEIO`{0WYeBo1 z&OY;6l0V0*Mq%RZRinCbmK|bRgH`qcW`YY~XXO(hT8P@U<4U6Jl97`mYucmKl~_DP z3T1ULwzw**q%SuNRhUha$dcn#g$lIgp=mDzukeUY4fY+v9FJ!>zR4>Fd;Uc%5pT&n zht3vY{0{VZOzH;8FMniVbXkFz2{ds`ZsCWyLZdR|Wyv64a5#=MTa)_$S%K^<=hX-r zYxk)4h)1xN#QX6bUV71H*^hYHfw9GS39<_%pjv5>pUV9im0xzBaJz211{6~4n3e~<}Iu-1dAIXhC zNgn;O-jSp)<0*1Rf$b&#IGKnyUsLfA(JG|bOK0-L%lxh})B>62b|L!Q`Nbqi-j3TAhwL&k;+pMuj@+}>JuC88KP{a%e2qfOV9>3{xgiKdK{LF!=HEK9QPr^+I!z3 z9E=PPZQA?DkbJkhk}*}Uxp~}`%=KO80(1wu?uI_U?elqw$1wYikkmDH-Z#`Y-A@#&IPMUf6k&>UvkzxPbUihl2+{|&}qL$C@!%J9P2gsSz-9J3f{ zYtjv`Bf}OvG|x;in|lQP;@_RN?|@YG_nY=JOal#Z2_n-Y74Q!L4)z^3y`Qm1{1*ET z@s_{7gK*|?&HlFEBgpdM+oRczk!Sw=HNttk9>DHD9}~rqYogfy=S{F+ zQOFXx<_YA-G-2RlmH=(HXDJ?V%@SYXnkBvBuaEfOLkU)Ri4zc|Isp1}jp+D;H16GL zZ-8dgw%X;}e&Y%xWMPC+gbL7Cz?>?!TPM2`zBGfpynx-=FhYO7PWC+n&E&i~*(nip z00vKDAH5@tu)e=&Rd;Aa!L97&Q#Oq&5-qM6`ME}P29A+Hbp2~&Q1f!6(pI`h(6f9G zRARxKJ(gcy7v%U{Htxa5!&A5I`6ykC2I2f)+L{5z)n{m)(@ zMxp1|wWicZzt@<1$Z*@&vd6&GPBL6EBH6Q?B^gg3&=L!quT22{pLex0R|m3eJ9~Nk(h``jzz3JR`tF_?sAZ`TF(ELVQO!XSIzq z`%c74bUb1Nvh`nb4G~uBdWJ7p7J7(9RQ!U6r}zciYSdnY{e9@E4&i5{(nfx1ZLMAf zP>#43{>5>g1ONgY;%0$cBhn@Q*M7iDj-eeR9$M(uHngV(uE=P|q&ewFfuG};GVPI{YeXCWV}$Lqs~wS-hCvFtc?H+M!*^|* z5=a~Dq6M~^T0`*oYHE?@!!lk$Prmw`r!Exzlcx3m(p{Tehu*jXC&XDJfM-TD0Sm>0 z$jlGbTZzUMK();GFFZAI2PBtG(L!`ynRYfu$Tm19FV|ba_elG#c}10M*I|7{XmaR7 z6E8>>%j7m*V1#0wfSncQxhHsHd2+jD;(By1?2o5%fe^c&x(60!^O?5{1C{0DHQ5O6 z`t-!zR6F~(fUcUF<<8mf$nfNKE*;*JOhA|S;zVTm1S6tposVhvY!B|0!tewMt|cL# z{kJx>k1WLOTUVUUcHO#j4{{l>Dv$`{n!=!Yq{$0nq%?zupAlvNk%qEo@)byig=%N` zQ@1F*`IZmpO?+^~t6k%udBxJI#4jcxv@bf5shGyZ3ue-Xa^NKiqQ0r370cX8{JBSP z0LX8e$;jl=X?THUIyb#yJ~UsE0QZ4qUg7R@>No9a5X~#B!s8ccLou#rD83f&z{O&F zZoX#kT26j8;nZJ}9sgburxv>4F>JV)!f}m2XeV9M$4oc+9Mzd}hl3cW5Dk^e2Fv3^ z>}ljjBCFh&aMsTqla$t8tM*Wz#5>{qw&O~_3;Bbd(~Nxds^AtCuUw+lOeXV5(>6oG{Ug=Qo)ttN-1o74e*Ug z@q@Wgp<+uCf70y=xx{UwteYdll}1+46|q&RZSAuxgUoql)u&HBICH%tN;K#UdqMp#W`lu3vM^pUS=AKp^!{{0*U6x>@{Nk)>cF@jZPP{1)lV zYa0|VU8v4(TFwqFC|;ovufUJ)L0!UfCOt*=SkPgO4Jo|+h921;aA@!K>xyFQBz}R; zVTTP;7-O3a5FqRq8>Hfwy;ohXJ9z@~-6p*GX4>#yxZs&m>`DeZ zwDMYgMLUZ8=P&W0z{}IEjKlM4XsveXsh2Jkn|8e#PNu5W`_jVVoNsQm^wRV`?Rg#2 zj@KTL-^I%xYLuzzt2Xn)?`mjrmyc3tIQ*I?4$;srF4L>B-}R0R*~9X?8k#J2x=B?# zv)knfzpE*59&Xo5R=Z*Jt6qBDZWu0rC_28_&ovUB*EK@VtD%SDx|SW;yXAv1mZLPm zI*@0UFd1J8X=di@dheBQ-{7TfrOL%=X!J;RY+){D(Tom`h*d%q@fdGqzpoftwDu>x_ikb&b&NYDoO2gH5-q;oON{f4E%@hbL(r*?^>mYKyku20(^6 zZWyk}mW}%t`Ge5Tw^`JX0ujyxLa@1t+ky`ch;@4Ss~ZaOY-=(kzq>xJ9Z(5+K!Nw@2Km(2h3-Qjl~K`y_GQ`bq; z?>bW(j@Q;5^1IGz$nUyn`CVtgZWgDGq1`e4PPi!AW+bzCn>b#5NHUPp|} z^`b0e*wC&QWi+EQa=jWl;OeXBdePRPsTHml6*v4oyI!QpLUO$h9j@0kQp6!4aAWR! z^6J_3qApQzh^`kt;6T#^?E}tSU=Ci6#!Z(*ITtvsPtxVSX$eywUJ&ntZ}ivsM9GvETDjIj^X+= zp`px&8v~6TzDQEUu(tiCi`|z!5@v2gJyRP0Iikt`7?JCCXxSf!raSe0UmAsmQ?L*r;MBSJS48Sw`cCYm#4~)*YNMhjpsm?I5G}e>=#?mZ&>2&TYGT{B2sV z=vEE+3W`DO6<<~@vL73A9M-z#cMYkpGi9jLS|3xkmX9zrXGoWzx#2lO>c_edA{){t zdOdT7bcu2zI1Q-}^>;yP!YN^|GFz z4lfvr$*}Z`qz>A=iBam8wsvbJ6UxV}$98UV}EKC^m%jn;?d`g`*1+g2hD z?%I#T1=+5L?Jcy-B%ccVvH@V2nJa>Q#TCVTr&|3VjC9X}LPluZS$zOh@zg>3CZH4E`-=vZ`IkcZ4T`9plo>K#b*uk+f8@L>F~eij&4Buhm$cED6kXRgSV*i#p- z#5=W)diWPuTpaaaLCjU*|r2&Od^? zy5kozYVye96-P@m&Oog_AHC7ALH>U?_9a=Cq%gMgT1BiN4??uds5Rs?bNbi+?KWWM zkuj)|yLi@MAS5BKBT| zc2}kC0F3O9V}UHihLA2e^Kj+xeqDCC&dlZd=)GNjnhj^JuliW_R7nt%Hv|f?UR>T^ zFvXhgC{if)Yh$eFv}Ucumux;E_-))IWKr0y+5bGaJx6xN*9DNvOf2|VNAApRZ;E^Z zNX~ecB_-0d33wLv9GXvMReOAp z_i|a;Oio6XYfCgIBkck@S6C=ozpQcfjjx{;^qos(EiH`m!owX`-TlTdVxktu_i;4! zZIPyKkv`Uzrf$)ENPIMPi*CIpP2FP1(y^*;u_Rots&3VWh*fo~RRYVZ8Yv4$e*4~7 z8SvHB4bQsn&W?rFb$%DQ!1&sNq*iAU4wDr=v|hYYRAgD4VlYVSGUn$5JN{^K5izgs*#m%zOGAl(kE;T-y{L`_3il8*H{;v2`g-*h8*iEY%Hu9 zUxkg)DW6^BU76O$7}>KglEy~5(Yn4@Xd;frhAfEp2+dPBK1X}t;e0Wd?_?j1-JT`& z?wlTS`tV8$8xn1P^>x#kbhCW3d24O`(nnqYHf)x(JG|76v-GwckjmTQjq6Lhqn9>F z<r2!5cFA{icie-y>Ko#91AOQM7`i<|!7$?p|L+B5C;e1Y?Lhw=Un zoQG{Rn=AP|Aw{ACQ`0L$JFXHob&Fua4vD-0b&x0KrCj_lex>&M6& zei{lsK=ODY(G9(Cz3MwcFi2PgL|7YMYCbR^6@J@B3~wD`ftEt-o`Gw2Ml$RnzZVF4 z&*bBuxQWj`@`Z=m_O?U#pj20NEaf2cnBT*a7 z%1*A8yQ>XHf25FW&J_L`+R40_9D8ga)PVOq4Qvc;8xQVrJ%ha-hTbPj_gma>B0K-q1aHSy&`1bX@o!va~Ovw07 z9PXvZi8yczR6Yl&=)?iKpsimws-y?EpZ)?&0y8^TeKGH-j;b=Zn&u=_F2Q?+5a)Qn z-oLJ-fr9F~!2twNPz<6PiZ_G0;iL>5nl%&{jvvgom+TX^6n&gJp-PL?MYnr23!>!gT{2ImD&A zLmz(FT$Khcz8<9|wjugL_BOZ>UxdEd_9FP5%$_5qQ-ABz8#@8M7n@B=2^0lbdIgU8 zwptjG*5qhH^$L>BujD%7^jTb}g2F3KmcyI6;De|$(AN)iw5!SbNxC1^0mO}@BqjSX3`Ph@|I>63d<7|4 zLRyqTrcXmtKhrQC5_4cjp8-G$H@exYs^d-72Oi z=J3$Hp0RL?*UvwSZmR2#Em#MNZCnD(epCI zG8o-0CqUr7&dkxe*2!<&Vvx8JvOEJgp#}c^v~(h_|GA*<|2F8JfBy3ndR|W3HSFK3 zAZ6zFLBBU#qxtuzIHf=|E%5v3+oD7P|9n~`>;&EHS2z;h+N^2Tg~V>ka0W4vF7s-Z zhc2{9tylgQ=vI1T>hu}gs;fpGa!|Ef#PbFnpjvHQY$vpIeSw)GF=N{c=lrg?_H#P` z;p=@NZZIVL^a$w1I&YsZ<`Ul|+@Fzy_-KORS1472w2Dy4AeqVZZy^h3m&%w^==s=|Q9GqJ3}6 zqk6s<(C~X{jm!52**_l|$#A}OGak-RTsIJJsyKrC2y@M4OvfFdPX_28#tY+a&6mNW zpUbwvlsdU0PJ~{;_Wb30- z&R8F%(uEZHD3#7qp)U{hVv#|mfjp4?>JZMiJ!R+jaE}fPo{h-T$qdrBmCs@aG__a{ z5~!I9s=GP`Osox=b3%KQ4edXr5^X@8f(K~dhNfNJmST?%Jp?(Maiv(Nc8GKH3T z_X!v4dV2K8w=r*r|9-)-c0ODXrOgmkW?Z78RbF70IIu)lRQ6l`q(5T5DntK`s|0kV+0%|77vuv(SP-jHa?7$$IH+z4xc`x zcH*JY_3ERPm7h;*Tlm)V={hptU`UqZ(122<$%X*=i-qZLw}s%f-bXRr?6|QALh8qN=N*d;~hq0Vur(JuK(cfbu(h%s^&- zq^7>>#l%C$-IEMTPo0kNAh;tFCK+i|#aA5q`1w99NgZSHdj~(Nr*EF1hG@qxWE}rj zjQr#W`4LeoUM{`kNCak@6KGxprnh_?i9k@(+jV&pHSO0c2mqGfVw*Yc@q(Oez+_z`c*>!qtxn881^TyG!l+CTh%z{l<%e#8T3{zJ>X3sBxze{8vL zzjyto)T71uxVeKQz10sdxauW$q<;yw3|?V z#EfCTr2L2{5a7P>aL4r|{>Cpx^Cp+h>q$Hf*Kdf5;<^9Wa$Si(pCZh)nqF_;x#s#+ z?qmMb@@^1*KE;TpTz1>@6z|_p%MfY^H^z-Pi1ExAM`CtLBQ0}=u zKLgH75p>qgW2KjMhZdJFoj&;l{{nN*IyunZw@Wz{Cuxz;6K4lL(#4(<<>uwdKJY}K zqSMkBHXOjp=X{l`_t5i%vz-F^a=c}>844|ZOuFTsFU*RclMw@ zZB{Y5lmWFgbKpi6&1fB;Z_;ThOudgxp~#!*L@X9Qx@6;N9NXz>5g* zw|wK?+5j)!KMoqOHCL9vIE3y`jZzqZzGUWk96{?aQsaE-mnUzFLn+P^tZVTKD#lR` zqI?Mn2rxsoU$>LiIrl4I7|QCvXG*rp7COUVYv~SD(`E_d*j`8n$GLy3cu0rws%Orf z!pYw&rloTVoEyaw$k_F?`XA;UD+_fGz|cLv9{}X&?(Zjp8L2)z1Yp-6mf7WJkK(%m zjBfq8B4km3Z`Ql_`1jLtooTnl-n4^LJKi+#+S%S37g&w~pzZC!tsQUL0W-etv;%=W z?lfFk-lP5wZk#`S2zXoj9J0VoHSVEIM`zE{k<3{NIXS;C%fWN|N}uANGaC4DcD!AJ zpC`xdbcd}v`e)_9_#B@znuB~kXEZQJxsSUJwS%rchcuX~`Rn@AE_vK(r{O9~FvDl- z_-T1hXx@Q8%#!LEy=55d({n9?6dFgXPgO=*UkMI?ubwcyfzg;dz#Fr)py=%Yq zIwqjr&Y`pH2DIp$;zT?g`kc_bEjpojX`Rr3Uj5hSgywDG3C&Ad7$5qI*0)7|ua}l= zed%-3aNzatNds7*f1fd{9Z}}X!&LXA0eqM5NdwrjyeAFd+H){9&G=PboHN|Zp6N5( zYuej(P8y(Qt1SSAmuw*ju0^mF5cJv%;I{Sg0}+PWUr!Rg=BKX-+{0(OR|jl-Y={Fk zevcXs*!UbZ^m-1n=+guCm}j*2sNrCCk0$H2U7O+%=a50 zQF4v-=GU)^Kvz~K;oG0FuGv{!4J}H4RuOMIh*3q{0;=!e8Z!H{K2$Udc9k+r_pKs8 zFc=!qufW^}ODL_=^0PlM(Vr*LfT~pLi+vo-3sa#{x%(Pi)fM(Fd0^0MSP=v!WGkxE zCmQV49XwvEsTdQ|C_j`t#q>|hU;)Wgp|*#nrhI7oTn7n8Z}9S^9&F{t0nPE)f=H6a zrx#^O20f}8=rbM60L1I*l?GHd^oH#_C}7w^t_0qVv~nMHp@i6BCA-Bap{x{I=&$VD zUg#sS+By#l9@;YTY3UrLEo4^j$gfZl8OJ^X-ia|>2Gn)=n=7^ep7h2n_%&N7O6K>; z6I6Lb)hq|2vHw*IO72wsJ@Hi){@>x`gD7MopEjy6C~UK`cosu0yQ*=;R0I|xnm{h+ z@kdk`DofF;&L}a>SamAjp`CYy4?_SpL~Wuh5F9xKv{#ipLB0c}jOSTHWd*RUJ1PsG zqNQ;_(5=e13U4+F2aj)Im_i{MkiRR_a>t>NUP7ySGofq6X#!?lAx{#=ygdu^PN@?5WNvd#qQqoOkLa1=0@&I%)A4jc9cgQ-fFp-D09A=PVVTxTqXjk5(85q0 znKiXqLyuF}XQk61qXnhisSiv9G33>wnnC<)Vf`f)y+Dw!=&3-ctSULTyMq;e6NOZG2qtFTBSr*3I`*PjK@uV- z4M>c+!@j|c&1zJls}m4hS}lLIMa`Gndd% z%B8L()DcC!%LR!aFqihY-&HY}rY;{z_Ug3d=uMa6I&ZV<#`vSimdQi}FMQDT7E#G9c=6j!RRIF(V11p*(b z3S-_ly;)^qC;+!=k;W;lgeb-3JEr2HwQNH{0<#RUBetNFQc-+^un1G`^jZz(orrbc z5(ON z^JG+NrAmiayJ1l_YO9kFfvg!d^i|C)L3>^X8`aJP27XCiDASn?*Oo5OR9scIJ9J}) zr>`jj3{0VNlL`WvD!@&ehkX2wthxh+|5OHbK9f(#W%`7n{SwW}4`BR%b z8lkG)F_FiFBjxEEDF&*tGbXYX+xV7YImebzR6tLgv&b+85E^7iCYIr10CQGJxe}_N zHBWIw)rr6ZcUM_JMa4{jqFBsO2ixcb@1TTvNY@XXQ%(mireF!#XWltCh`tA{^ZBVG z;0lmiCl5-p0`_<~NL6ja1DD+GSHRvD2byzSLxzJ{4n`iZmK<6n#{j873EqI`A+Tkg zH#D{g|BpVf$Zbl`u( z36NDT{HKA({*{@SU4V@jFij?x3F~*(ZaqB9a)opi*T70+fyz|EYt&@hL$l?DQ@U#m zr_*OoRh4c_%RP!J+V^H9ftJ?P(yP{Ys$AtMC9}0x0g`enAfGSoVJ?K8fi?#8Qjygz zGlDqmOsI+Z~=K|1+oB~b-eO;w?w zA|caxFh;Y!;!&USxd)$Nued>zsga+i@-H%R1PE)-?g*{vld%x*Au}4S3 zOBE489#z$Nl`*71FD_~2Es{KDy=(2tR+sXdUB;FY#aCptRfc??HdmmAwPo5>Zx~MO zwq;#~<41>VOV%${Ej?E5+p>hn6{Sf7%R|F~9Ikk(5^~@YmRTK&aGTmP@}1ZUPWcmS z45wewYN)EBN}XM~-{xlw3w_bu9;u%^A-@X>Efy9?rI0}3z{Z1`id6kDgH}$}OvQ7j zYEoj~jQrQKm=}B-Xi(v&1r-NUn*dY>gxp4kW^EHzA+V|jygJGEUByNY!8%=MeR2_0_AfQ3<^-$IP z)-CZe2VK&&C^Zn(Bp75nXW7#rD+!-Ut=PHGsEDdy%GEwKKWjPYl3I~v)Mbwbp@9`S z*PFg`ZLNDbFqq+h1_+S)%!&)A7}3-P5D9 zCefY9v!K*sTw|=fiELWx6qsaH4V2>x_z3HNLm-v_yc88!J2fmxy3M2|L~mt+Y;;mT zSM@limhdQcj4dRUq9!0;V{J{UiUs2WB#Vmo>0Lisq&cRgK6=D)J0)hTRp1Dhob9rB z`gVebrCp+4f|oYtrK0xXdhY}pP<_cTTYage>3nnz8EUYBTnwiX{QaKQIY6YNoq|O@wau$}ID$kIA)L{6f_mLK>K687dFwie(&)i z2P4;<&Au%q65{Bmr0BHSSgPR8&owr&VmiYPvZqj#mMPpKL;uNXl|thm<=7DG6!~Xe zd6arb0(+;yb2G zQ<-7nZ% z9YeFL>T=Ui3KalcOU`J-aa)`W<~E4E&uJ=T>C@wFeog59!N8=m>q{X6k&iF1PLihi&VQertVp z`tjJpJVS#AH@qX2mZ9(g%62h%YR5M+yM<3ZN^{-_xb8{E$%V7z-3F^O2hir}M@6|i zm0&d231x*lw(n4hASNQ9rC6X`;-n|VPw z(~v<(#L#iYtSVlsbK+q77T3F_r4dMSaaK9cAS!Yks5(4Sh0xeG5FC@mO-BhQMB(O} zOXEy0OGZ2`r&cGQNfukC$)jtX4-L9c`7NyD8$?J2>h)$*ev=&fG7qK>kOS!_l)9>N zs0^`U=}!J!oKFcg2UF{W8JoPY#!#u);Z@X6MQB(YYEbc6`doN@UCMMcNUvLym%|iD zt|QAE8NUkVtEr4Ja*<5Z^5UZkYr#jsBoWI}`~;IGb*K2^1q$s#f-lY|d}LY`v{Kl> zbSO!@6(2B_D=CIv=p0e#IIA*J+>otev>yUfIGb>tjpHh7Pz<~$HUfA>Z$e3 z$y0WyTI4q4*vM95sYne3MPWKoOlPPXe|9RF-ed(N)0OV-E~Im+Gy)9Sfm>sjPpq`4 zDIT`fipr30Zj6QB{aYW!x!GN)IOZ`SSG&Br!V$O*n7)Xi^w24~eM$VBddic@Y_-@i zb3ez-!dyPmUHR6tP@dqv4{LeB~I9h@>>fONaBe$Y=|!+{*H&TOT^=Eq{vbVnCT}rKD+TxzdzI zLrJQ_MZ5VGRbt15Gkf(rmfk5n6@k7gA!h1c_=Pp*pyeY3)h;mRp!>06agC)aZzhvDkV zJyIn^)=j~|k#ClbOuE5QXyGIrX;GE>tSTNw$a|b|*j1uU^+strNSJO7TMJ3H&p@LW zR9BoBGI94@BU{zf?{8^a3h+<{k2<6+8y)f;Yn|ddr#C}bW6z@l83|LS_Rl3w&tO#L zyiDM+D~!0Psw9_)H5L?-C3C{b2EsrF51}_?KiOCA&ry4bO^BAk#(u))gQk0;rpgn}R!)f6+oiEg3NNOdFv;peqZY1%Mub_g0;) z2J4F~G(eM)eBPJHvica10VL3)0266h>4$t;c)*@W`iXf)Z4iEm3dWIMcwibc6sR=8 zJ}6-u=~+cT>w@%HqUjuEi*Fcy#Z1vy^XS547rKr?)y<}tE`3E$^=T}P!m8>sw-FpC zUch8P0mM{nf93{F=y7%(+~J1k9w(kqhJ*1qZtP=(fA2!Y2C!fa?l&|uySOe zY6?CbnbDIp=Qa^w)O3eDVu>IQ4tHx}i{$o^pVje%bSk_^xXh$Hen>-VJpkpQFIbuc#yD9I zABV>evL1IQT%|Aqo8ZRMrc1my#Y#oC2xGP|pc3okRcc#dlFYp=G>Ndv$Pi#PVq3x& zaz>hO=$ds@9&n$wCjeum;~q}HRG$z*DBgXx-uz6ipQQgfnh-G*3sq7WsCctK1pBrn zBG3c}w+%gDX)xvK=PR(6WMCagDi{id9qyvEo(fncRvyKl{Bz<=s+NGOSDddI?w;W- zuN$-uh6%4qbP_vE2;g}X>tN(SChN;R@QB}V(+ zu?S^ii#}ThN9v@FT(_W!=Cba_P*RgDFHnVnC7+bPerG{$61k|MI;x^8!Iza*W&)Wx zDZrANxM+97FhD$|c*`DOE^1<-qser*U;Im+>*#3stc@)dS5&5h5Lbd6l4h~IzKV8Q z6uQ*ZvXsERiz}4K0EyV;72J=gQVX*aQ1qmXk1eq>r%Vlw96}~5Z3Q?wf*MM;2KEe$ zh93G=ED3EfeLX)>M{u-Ouv=!b*3kQgIy8$osu6}3$Qw~9bh;$n+|ubSv~3PV>TJBD zPMOZp36-Uo$y7u2Krw}EFov;7P+=`02#PPwZGDLtJ3h3@7(vh%4TmP*UKdUTf>Foo zx?-y1PYda$FB3Uzg@v^QURt&-w}mTG(yeNY)U7?2^6Af zttg_IbQhPf4jLP<1z=D#AHbYp97>wB%jwQJ9bs9vIDy=?px59Soy#T!+SGK$c8jO4 zR&kJ6KDr8q(hQeviCx(C>Vo;wWg&7cg7vX|p>R~yB;1izqApo&f>(@`f+dqxo)RW@ zScHG^9W;sIjH>Dd?~sg%uEJ8u(v_N>P1&6YWZ+R2nF!NSDJwTm*OIXkYpfCJ$shbZ4~s7Dg%UAC+Q2uR`6lq;aLi*JU@cY^RSsu| zBRyq7FILUUYCjSd2H(#f(aV5Ai3de#1xDIVMkXT$xg|nlDoN(O?am|=sT;_Bk*+?%AT}pnZ zYXL=5DoVD1FZ+_%N`}4h%l$md!IXekZMbON!dN-z5i(F+4AqN6=4gjYj zDTiU76{TsyF8iD^0{C!%S0mV;u#sl zAVO3F1giZ3BZ1k{xFfSGkTfK9XT7^5N>ndE-4HZT+edFaPEG_>(Et%di9MoM^b!7B z;-V0E8c6ViEeGNzXyl~q3xLa)`jjbw5Z2;0PYQ^?J9PsU3hZ?TAmFpL-%N%R zRMG5%{_+lb(9)S9c?HyB74Se$1o^%~HYQqlfX|lYOPZd*UMK5k^9{)-&cFQ1K^?~6 zpp=fIfJlN^qYI{!3?J3dRhb7U3Z6~68tVX^)+^=i1F~NpMQC?15Jn+bq$&~diiO)1 z>XHbd$bEHS(`%Ckj_V|5nzqRN~RFgd!0Y`djG`CCZJuO2Te4Ddp*8~FXM7n7*bh6Jox>N?@()3{n zrQs9cLFvnCPtibusC*hZdkCHU2!xR8^m>KF=u%_Pj1PrJW?e2169`aKiw@LAt+IJ= zhJ%p1WeZ0B1%#_@8zmS71nCVcX5P@P$cH(I@oiN0#m{GU{bZU%kVVVL2latSZ?5*F z#ljw!5RYQ7@KXX(X?DTN`H;c$g{~m^L=+89OZq0-P$tV1O$%gH#mof4ma9xLF1BK6qcv&H-IOvv5WVMrlgJ6BN3`yQTY_Nv91hs6FNz$V+^O(hAm4>=E zoyx#?lncHSv%q16xp4Sl+O?&a91Z#)Iku6%4!uL}C>@C`> za!hLvRuX%r#?~SZ-I+0M=S|M z(vUYlfe?mdWvKl#R0JfOD~Y;D1{!d&u)_)DHMSH(8MzWTYi+DYlj9iaFq!k=d6>*a zs4a?k7E7MmF%Ym5jMeN~!>N`fnGKVl*-HZ9B4nOM7&NcpRy&<(lh<_ZMU3y{VTm@9$grVOHk5&;}o%0neplc;G)Bo^99fTV*G2_TaM zMj9p*BW{~UU4kER;JSf9^nu#hFcyHKhNEuCt_N9s1J9)s`SO!DY#B+)7#s*ihoTRs zc3>BHL!NWgp^^cK&@w1Ah)wKWk#Zd;B?x`qq>r;6X%r^;M`ry{SW1RHJ-_jnnNE=+ z2?S`RlNxch@TMaM0d^@eA7ExtpoGKOX<24Sz2n6Ys!v1E_ws2>7DftgfGLf71aLSobhxXdk_mX{<`i+y9z)hSW)y05sE|@3;6_Rc+evT;ZBj8O z9=PNzLevn1d#q*?WGF%*5nuqx$FNQsy;AiIJ`>6LLbw{7xro1l#{&U9g>N9VIuK%~ zH#mh&AkuGg<#87p(+3^s6ZS|`iEOxNa1)>FmCt zH(f9&tQil<`?Ws>UR;MSyn#GK+bt0Lfn^PVcqQHRmGzuQPZi z3l#(SupC@ysk|cY66db}=?7hUY|-gGICpBgxZ_AVe*y)A=TtX6z1-Snq^_TSAZ&V( zoJ$4P^Ll!l!H~<>Q*6f4LYdNHWMHjdpBtmj55?xH8YqO>{bGL`m%#K9AUKL6rDDK= zFtl;Tf%K5XC{-br!BVoz;{pbgkA=}g30iL2Pz)n(&>30+bY3Vur|jbdEFHq0@#PJ) z{Pt73p+p>%&IB1Yh_$`s6UAFr6OENPg(ViP50h=n7I?-H@>jZ^NtLv?x8Xahr0Yue zLMRA~cCz1Fi|?nzp#e92u*jG@8gK|=rA!c#Di{wJ7V%&-g(h>!Yb%7&XuMM-Yrs(gIW7dOl1K_FY1Gek7m`=__(p5HmYd(J)QG->jdX3VbMFazyqK76ER z)k{sAFI*~G^JUWY-AjI6_{o|f$!9kWcQvI#`T4K6{&;11E=WqweP;8Z8^7QFw61t% zb4}9flYRPR6_@(P-aL}xm`D_Cb@VRJpK|rDQS0QS)auOLcLs5Vna7F6pjT=Pg7S6rzU8t*{n#X@v zJ)BKmkWA!EJ@)eP==cV3Zoc8^Y5jKX%m2yUr>VBbsQy1xr(|yL-TNK({P20pZY(*q zo9ORd-8^Q)nPHRf)qOtc1@j67wk+~D9;vLETKB>C4X3BB9!T%0z13*w`P4bSM|SPq zq@x2r-1tYovaRJ!iysUcyJVa4Rr2}Ne#74TH56X^u`s*XC>Nz%X6Eczls11ZcV_K? zF;kv6v}NWmy>?!GE@{R%=Y_dT|6Z|T%=)dBC-)Dt_uTYNL({CjjlQyFcf6sa{dN&U z7bmCO)%CCb?DU9Q>w%KIk*|&i57wqX`K)_S?-32)qs!ZsBxcsqSL&{eyPrOGQ<`y6 z^4`+avvUqk9Fu-%aPiE$s|H-`TlHp2^ibZaHx5s3ti9O<-^U=y zfWtx`LHVE}#bg0080(cKp%9`H%Ik7t#hf_GEkrzmz@q6oodlIFMG!_Sz}PBE5L3;m z#O!vUaR3?#1yJL}fC5Sgm7W-iaV}7JYwb)ZY6~IUt zDhCY5nVrr=YU~;DC@)Nh2>4-{7;%t)?%GQNG2kF489lTonhndvyeb(MR*f$bs-_Fp z0GZ(=>=``HDAdLIs4ggm5R?@F6~Qqg+gIQop(?~}@o+SZPYvSXP(-oC9i#@a;k7EJ zNT8{p=?=2k;{`~PLeoVASiM!x=ol^?1Z6%9Dad1Rsf-{#u8Sxmu|JK7SlkASD0+>PUXa3+SWGc` znre0A!pD)tC=#UzP#yDrDTW+mEG7nQ27wI*g8^1&U`&`R6Qp%CesqE*zzaq{XQDa2 z)m^j$%})OC26o8dIN+5H-`+q>fU<+k^%j8Ka!Elg{s9gLO;U;DcNZ(1n@2|hCo~ZT zJJzvzq<|Q#bm1~`vNU7V(Iy?u7BLnZN85~+7irc;({`$hCQd$vX5-37@V`JiXm)@~ zauL1~&H~Xd!wJElC_rG)vn|dvL_)z%sp;tunC=c0AN6?tJy_wedYe@}n@bX6VccW# zUH|8|Ob%&<5fCUCf+{x!XPCi^1A;9m$zdK}Yd#tci2|?Qb_!od(rL$= zNJJs%)XFY1gjyCMQ7t1|h>w&x$ha;5gM2K6NM}Tfz?MveL}$xF!%*#Z9+4+agi9Ky zjB0BbP6Bk((|v~8yCm+$4zfb+fq2zO%4`8`G>Q3<2FlnKTbso5K?<|VCdhQwtUBxu0UgxarK9$+#WIU@)H zO~zPQn#JQzeL$pD#u?3c&UKbCRudkhU1S!n3s&7{9-+tJV0Ff_v;~j2E;5G2ldY@F z*g+4;ycmMAHn|JMDu~YpD4!(ZA+1hGK;=h*5>PXPe=g*^K#ARLG|2Eg%hpba(eX^Zow! z-p6Nz8QwYXdH30S?X}lFC*qB&JT?Y71_T1ZR(LI=0f8XyLLdlhPf)=p;qqqg;0Lmm zq>3a2QW1-JXNCgaBe-hFOF>FUD7V2IT8q~jDiDYd69f_z3W3~!kAk)!5O;0}WXBW& z5lV(YNS)Fe)kVM`P|cO(Wgw66e?MCCYB6SQ{7lr}AqMSOh#HN3`F+ zwXr8MsEMdmXV0ah*0W&X;oxEWRItYP4v(1b$w8%yv2H-%kXTjKAg7fs&gEv~g}LX3 zcSeI%(Bk33t^Yya&xVGl$dY)-l4rO?7$|5G_5p>c?Xw?xFS?8n1b(JUJzvuM@G{!b zuJ_AS%<4w)?Zd(6vh{haXr_>{P`O#AlJrucS&xo)FVII?Es@7Eo#`r6!C-hJJ#s;( z8)%Rtu~JTk79*o(HgaWNA)$k3KPm1OjVKRv8rise<;`mLEu+y%IyVwlZEAO>pPbge~w}tWprkgm%Zd))mDi&k^~nu zIB@eXh3d6S6CIOVWui%*y?i!>9!&cr8#B3TJr45Mfirn>CW`0e{^5W#IoGZ0S)c%< zJ*P{AyVrmY-L+G!&L+jFYATd1A)5Q;XYn#Ja`g|@QydPQ^|Lcklu&wOX+1CVACl(j zv`>O*g@U35O;|DuUV#}gT{lT?=e0iztdoqRJG9r8Gv-`rd-*a2tJe~RRyE4ruJ`#D zFJ{yy|2G@rwUq^;H(NI>LF z0k#R0SV`Xs|DwwbZu^9S2tyVt=(P^1$n;;V!acf((}xg-9@SF5SE3BG%9Av zYLp0faBVQ;#~T(eh;s%;()xMchB_qT^kb-Db0&KU8ZG)|9YU^pZ~9iz{{}|o*tpr? z0WR@qH1U@b2b!Qug5tf>FlM|aK=T8>bd}ZAhl{`BS;w#H8`q{^@;wqu{OW%<{z_Ob z*!2H~pc>jhq{YEws}&KL!;B0T;ZfM$*gJw6uW73g!kUc234dbOYcWiPU24`hn>gA$ zP|UuAwnF}!s`(!^EWfL!Ew1;^ZJOr$T~YeO!8~;sx9Tg-hkAC!1C+f6lN|H9?7Q=4o-v z)t=eG%qx}IGJ8Ss2HgmS2M4bY!DUs_+uTD;RdwYgVEO;8?zm*-6<$A%(JP1Y{y4mW z2K0A?pgpdxu1b5RAWOb>qP*<8KHa2AbbQM~lvYE_mXaKdhy)U{_QCRQ@nzc zqG|V!&=RT4&}E2v1142mu`HCK^yo#79FC+ZjhYu{1-i zVc}OME5t7`{VPdt%ef&5y_UHoQ@ZKl`vOnQ@&_tnE)(xo1Jk#cnAs(P>C5ZhG=DsK zQ?DtIobvdD_B&HHLCeR^Sp+;8D`-qi%)r1vjJz~T*f zd@!{RVrh%WQ?QWfXVKCo-}eR`V&IeJeI;N5IR-FeXUrW*>qA5U7PQBdyZL5VU}?eA zgAybF?B?cX5Fi^~^$qWD8ycd#KLm4)3@_ivSk|`u?%4$x27%6Q+T&g;T%?2P58*f^ zv9m-O@Ttu3_v6ANajuW}!GUvz&;H3&^y#OzChLz8tNsvZr}2moj3WM<1As$m%`a%I z(Zl1|BOp$aMTe+Rb7nT*eGmno&4_fMRfRWnEiKCK1ZGzwK%U)3wl!f|;u2c;0|(Eb z*k^oyPKx49?~sNI9KB>jdb_l}^n-M6#Vx^J>K8Dtj=tgd-%>G0;!K%+Qd*q{74gzd zuTR#)$0sHNDG3OqJjjA+e@xm`Y+NU_Vn;_`-B;7879NeOgV79h{M-GHMRhxQj;AIJIvOIiJl$ zP=|C2jg@)t*G#*G?g1XxrIo+(d%XLLYkWyidRQGPW(DpU2RS`st9TGCF!0{8kct zu_PG8Uv*N_(OLtZ&#~sdZn}sH_C#5u(X2YwHnLtVamqleXgij><6w1TrO2s6&#F%v zON6CL73+zMt832v-Q7v+A=nR{2sZrEtk608r>xsxsZ(vGgzGAI4EIH9(A>v_*e?C0R zgO7wpu-hH<4~~)V-@R+r)6h7{|M$<-Dty8LChm-iK$kUw6GEG&=C5}FN}YFw`reF9GGqy1eb$kTGWjWtZ!hv3V;#78`Xgnap0N2sX@jy{ycv% z|K-9szV(UlCBE_JLnPpwZWPrl1Ux?kea^Ppk~j=5M6LS9jAQ)0$jxx&1%Co{_M1d$W7E?1EmdD#wR3Ms3Xg#{NvW9cBpqY{<1T%?rd=B~vuGBS?fgwaB& znK)G3$j{_4v3R)S76p3+g-Oi+NtmaTIkB6xio6mQz7-#d3896;vcz===uk-#qR;AH zyNN%Wia=0sayp6?d$?M~_}`832^pBU#7nGAo=OLAedyj1fLI4VAB%?H_ZdDuz5pvL z>w^q{39|Ylk=PG+TOQMtH0*FQ?y7smFIDCX7rMJ_jMLwY9YccMmun$2!f)K>g#wH~i3UoJGQ{NHOI8$3Sc@HLDej zUjBA{+_pBG$pBKw{N2~s%Kh!}^!EoZhrjKHX}>sTR0itY^8(>^GL?*^$45$eKbUCr zFu(NRVci*u-nJ&l>Z^o@gk7T_{d6MF>~MV$&I1m$d7?2+zL0R);DSu4Uo2viDtYPY zS)rfyI}tDmHae3JcD*12cZmVSJMwh>;Jlz{;TlPSA#VY*n;;f3 zf>^d5LB0bFuFJQsJL<@qMyL6-T!UbpS!p-UrA3Zl4Zs+bVl%|OSpcl(aeQO~g!Z0Y zmkd6-ZlAA`04*tN)QsD#>3U|;VN%}(7+#}ERx$(RHE0!=e-j*g0VDYbilOLXsE3D0 zcYBB(cem+s*r@np^V}?`D#q@eDA9)dGEMbobm3V(V)SFD<6{|l0!ZY$%7NCK*j*rT zIRP(%b1sK(Np7wu@b%jkj;T6>&m3@pBk%!)o&NU!hyXmz8n9qIDq8UJ8@J*H3XrCy zb}fTHg2W5AfQDrT`T-mzECw2YgJc>OcUwE^G(Q$#0K!oobJ=U0RoioD?U=UxU6a_E;InziDgDY9rYAQOAW!c(T}`Jk z<@a?Q8yFQZVXnKy9%pcAU1d%AMe!&g&v5z!mgaaI*+lt-l(8GsOHCJ~8_S6_mp{>4 z0V)T@|2)@j%XD9D{@GIkN99Y0$>oX9pS1TyMn0*mmDo$UhZJ5r6YR*SfwIX7LrRmj zFOy~Be1pfr+Dgt0HIr=4Qf=VPC|r3cwiU`XF|d6 zb2c-k=~#aw0j83!Uo$!7iqoDYumEU2_`vJ1cB_YF#VjR^jA*N&fg7yU^ z2&r5LiV<}Z$bm?);oN-`BnGX^$@#h@|BbXg3a5EolFgqkCqU<+T&5SZA zCwCE*?k&W9pNZMDo59lUJlKVM(|I_j+H)=zRyK*U@giNaxkHUBdS~;^NTq*LgUREG zz4s|Qqrl3gnT!4M$2pmpXL>g4jMdrM85$8Gc~UzacM|^C6Q*_!CY`i4ae%w<>x0z5 zIXNgG2M4MiU?q(tQ{MoT)nz7)FMgeHed#en*=A>bc$*qyAdOgo~pi`v&+e=EFY-cY~}Wy>~AIB^EwKLm$_fnv=Yx zQWmZjSh(`7ybMxJ2iRZ0ijAS{bAk}c~t#7xf@=g!*e(3q+PjQCBz zwo!0?qxjihOgaE+J0oT)tFkwdAQh2#Q1h#w0X_v_T0zJp&@)MlYYLPV@XApG)Ar2= zyHBx2gJCIo8z!0*sVwoTXF?!-8cRYk7BFe$YPSU-8gv*}WKjACS2|Xwr-9kUeM?w@ zHxro;Y@(u~!tCsJaY;H$4}Y9O$4w^lu3l*F#APN$s$2A$LqAIg7?*zYAL$nh2k+^h zxf!P3kK^u#OP0xBecMiM^FoJI5pUkTV$ouiDbq#z**0)M_G(jBY2>a)Y0t7nPZ_nv zn0$V$VJ%HO{H}RHyU+IU91>KF%WL{)mxtAjot{*_PB45WTdIh^ihe`is0{qN(CRJS zoUt(zP;XxIH;>`|aM%5+FAIrdgya5CzyfFENA)a=eV8dRDKS0sEu{nLVvxqq&b$1i z*L~cYJ6Zk8;aM7v=fg zKglKrcq9nTPK#r$Yk8vn(GkHE=8n+b)skQ~IyA&?*z9$zYh{#bL6adj(}hoUAYhS8 zV<|giAIDe62n+>>2Q3QY?&4Rj1~XRL_FiKS9vSD6#uah|z9(Xz6k8Gm47bZVm*386 z({qYBFk&V6goegQJFC+{s-drd>Fws5(IL4WV{B8j;9b!S@Pj@O1ZD+9j%3NENp*3V zMLCX?x~bQZNwmNvicZa!q`2vt>`$4R9xgea3p0+fi*Ix+3PT_ukh+VZ4f{K7uD9Bh z3oTv0+L{-|aj3qGB=mS)X?he*s|8?@WKxot82D55^p%cbRz#MRX13VQ7-NWy_KxRg z?!Cz@%^tIM+MD5_yq`DQD*Cm2cn}QoJU|JZwgNdRHyXfmG!zs)Cd_J^(tv9CY#cpb znov1{S{A@)Xw4f^TFXhsE5i3}2w#Sb5xt7)R*DJ>8`k!0{~8Q^PG-BFnLVwwd$}Ec zVKKp0wmP29ddK$2|LuVlj#GEdhVXX))V_B6PK7^(blW-jEhs|Tf$@IdT_)ALO(QV&Kc1RY)@H3ce<*33m*XfdpVl0?W1y~j$Qeyo@%91(S zj6*Ph$L#~#W386SD>To;a-p_BN+F2!Pvg(m;HGv8vk~B#DeqQs&d}%?7%D(M@q6n= z=zFpE(PzUGF8qkx7E-&8?#k@;LW(V=pa7)54w#AE7G_)@yF!YQxU1)8s#8LR#&qDd zGnpmLje6>^NOxtlHXGr06k&$El8UAfKr2;!|9wRB5lEko<~9gv2^XQ5C+^HwPO2iCA|y7-Fx~v%t3q`i4U*o@U2<}gfhG7#2XGX7803OaFh<(Ykn&~b z9R&&s%1om>+X0&hwhP@Q;Dq<)d@9-QaFPq&z!jwJPsPO}ZWQK~TL?z}6PL#%(B4 zUyj7Y)6NA0k>o99nEQIt`@4u2(L4HhIaI(t0-V*#EwX>fp zFh_NI5{Cb^FC)D!=i$P^&Mq*#HaNp<*S)UAp=7zBY#$r%_9B!{6*+(upobE!1ko{^ zKFmKn_@t(#r8Pl}ArRO5J@@}9@1W<9#6}V5l+`I1-0i#66(@M`%MpYS*t;NuH)UmGeV;SO)qKQ7-~XQ%9~$!BA&jPI@LGAtZ_Ol%(k&5`ovI5yC4)+4k3 z9RaO&8DfyT%W;6hQvH=w7>_O|OfRBKKHS?hs;+Z;oeqs0upfBSM2(FcP?bcRI^Jd@ zBSr91<#i5d``Gz3VQ>hO{BxHiBy# z^{Qjw?R*UA7zB>aPWR1LZ&)3$78}1RBJVQQdXxM!I6_8S4>?FnmZTTXakMnoq>la_ zQ0caEcRIKy*8UzCDkm60^LXrF<+prgW)HGT5$kjN>ouzLwzBD(qCj8M>DYwocYU)B z{%j=TFJ`msUk7BsA^yf-rq=sysy~7=%Hr^DM%|77jB3ihn%~3q=A?>>N|EsV5@-x= zL`3WY7tBjmW+K&v&3{G64RCMU9tTWikJzT-_{1L${6MQe2Eq|si)(8!=1_Up^2Q7( zCKgs*+X6riP~03GS%THfvi)6YF>t@y37BAX)JY22ux-R@?_!GY|2Z)8a_rrU65dCg z*9C+~IE^LDK3ESj-*W_1RHyQK5MNuG_@)&bu?DSa_u7)q&dyp$OG#xM9$qAs5&*cq z_HIb#884emSxc7%1SU_%7*0zn{LDfpb2YTJkjpg#6vV4()Iwvw+W3!}Gdf$$?quqo3rPJlJ+|$}!p<(zY&TmuxcI7c_7rDksDsC9S&xZY%6-DZ zWYIBgd?t!6$elj}$n#qIFJHHQ!8dsM8{XS|x2;D)8B~o&0Qu07ms*p@uVj8x-)IPN zB2Mf?MvQPW=avTIQA-RS@$ZK%H&B>mRqj&;vFoZSzu%&@ToP_++#bu3e{2Ew7E91N z+{=Cqim~E>>sL~(=J|eFO4^tPt>o_w?jbzBHU)p@YwBid-y2(M5BH3H&e8k+^y`~< zMW%BGMw1>Q^TfPVJ!Za(GxT!eh81%*?&<~~ZJKTh{OEGiPB*y&j|sMW`(Qkgkr+P- zp!VlUYEti~pO$BM4UCM|mWZgzPwP=f<`8S|pC^==&du$VvQO!`Zg|+Z6!MbDn#0RT z6Vcnfs%6zz_1GI2FWFORhi{KPJ-s`JdwN>(3SZUNf>+LJt^80`Dun456&>j+RmU*O z<^3YDi2%O<1t^qEB>dFSWOhH}1gUz2NaKZKf&NJuJ*Zb9tvqdiL506DctI8B9)122 zs&`HX{q8{}W2+L*%f7w6T_%3=o1qL9&GX8&RDQcymsv>OSNj#C4~3RNl47f>zVm>gn#~qM$PcH`95EPHTQ6Noquw8=RvS@jmmHhA9&#{#ZtA9 z@*?2G_sjgmN6(Hti#{BNb|9l2tEAl{LjbBfmy_%u%Irpx1oaw*8)2(gKjz(sBM}f1 zHb9}!Nq?0BLgZzUot+&g&>#uCkk7)=owW-xX7NHioh)&i2aj z=YwQCW}|i9codyoU21-hw@WnZd#=n+vJahh{uY*L7wcAZ&N>6#vKr+*C>+DZ)$@q6 z5ov;I1ky!GX|>g%0^*fJn9Q;R7j>y!;kbQ)V1&cBV(y*ZfGW@boLlK`|2L4prbSFl z%q1v{6HE)ekofN2`5ai*4QHn?|NG@V>c%9JS&NfKlaeqK6O&6vM~67`Ev6)1RAZx% zVOxM`Q`?-$lVCExHsEoGuRP@%?77JV^MjkT;J%uykncOilI@Ti&I#zBC!1#GEkFN2U z-;@w$BU(WGaK=_gLjAF1nud(|b>-xGG2@w3d^!gQ2WK~B;hoV`$JPeNm*j!}wG(ND z5F^~P)l7{WG#z~V5uG%_aI0$HJ`6KbdqaHb3^dUxVS`TIkw(Ghem4gn$kv=d)49QP$;z-}_>1tJkI8F|h2~;G^JnXQPdfBL$Z@IFp+9vk3I_1Ew~ryloiGB34EBnWq! zADY0lAL*y~Ly3kh@2J_wr{5w$18Wc5l|D1zW_uqLxz_(%K)v6n(r2XlMp(~5&-y$1 zU;vNDnQn!Kg?|TWy{9RKvX;-c!yCSZkX}Xl3|eT%N7^R^#l?Q{dt6{FEBFk;UP86Z zy};`$oxa6iNMb|VQPN}j%MV{^X!T7Ljbq}N;(b1;gl%3uABoANg&J=F=Y7<#eAhn@ zZ$&)GW&?8m4GLh8>3GETSmp}yeBEJRA&_%v#MXddTyoTEq8$uz;@~CakWMueNWJGj z>;iLs#j^D1)J_zwC76o`8S=8`0ukq;*oHifznidtfWXanE9(pl$urL(t>u;BqEuWV z!<5w2bSfmtYKjY7OlS3HI1utSiuYKz=a2PlcbY6q=eA_3tw`lJLCZr9-4mPVT1#nxF(}&x` zO>qFAxQHY?BV=($R#$RRy_%gp+#~z((OiFNoi+@uAvvpXH9Q$yr?aiGM|L1E;{Vri zna0mXjFmDhOv?(>ZT0^1#N!uO7=!Wg@e6oY1{cwMowVT%P2-K0Lcuht-^Zq=0QaQ~v-%~5?U_;J~S1J9DwyU z0cLoku71q?3n0Ng4TyG}?EQo|j3B*vFNod-3L%;Z(82;D!o&NPXacUxOdw9U7zuZq z8D?+s%a1)F?C~nmKV=~@xW2zf*pcn-s6Lej5W{UEG1NR*bpr07R#{c`NC;X)lmE@1 zZ%FU7rBX%zL1tFy6nVmZ!=AEx$H{plrY@guRA}t*wX*V><#5V5@BDs_*wuZuBaO*5 zS5BZQ2PEoMEyvvM$oU}xWMRQpks+{llzTbOd@5jTeZmZ36Sof`NS$wGw{tVFX>@i| z4o_zD`21WY5(=#!!Y~aGiGs4 z3cMeQplVd*;asoMzMnaj{{x7`_aiZ>@C`|*Z2So(WI|9v#TtJ5Rnz{~{1fJZshUHU zd)&$nJR}@pF#!ofO$FGeaNUQvEN71e_|`I>->)!ivv8oZr|iNWq~1*Fo*w^1(K$ZL zV6hCDM7J=`=OW;tAJgcu*;bJzmd#Xy`)QuGzIOGk6)h3%V}x%=%02}t&DZSu4uu`& zcH!LugzU9zpuF%{{aepGN1CgZ<0mt3H+|T=M}2{hWBT1Y6$et)(adOz1i_VVmR^cX zWXyhvM{4>9zF~d@Caj`-V-ga5%zerOYT`i$f6epG3!XEB{VQUiXcq46(IFIvh+ z3XoRPn;^&05}bcgP8kSRrX54_GT7kT#?D^o>)LUUH#{z+vD>OZ^Ksr~;lMk1B)hZ^ zUAw?1hAB2f zZZZLjQ(iOi-LFA7wVdp2aIw~t4BBe5{y?k|OdCX^z=s`}ZPz*+Ft0HjboDf22$UWU zeRMY>n%JMn_I{(lgn+x4X2emW@#KskOJ|a{L_|aw`s+$k8m5r)qr$L1K%Y}Tj`z{% z)W2*nc5fo|8?1rdjym4C9k!)WS*daFuJmN8T2+&j1$Lp zs%B!|OiSK*h!C_JfQF7$Q?FuRD0q??v&X-tCf|>N*P*L_)Yny$+mH9$EPHsrNEjXP zDVnKm=Sy#XYr5v8#79R$D}~on%X8ciS4jKrT=#k^pISgk!SQqLg-hXeJ-kGrFO^Bn ze>M;E;Vuzl(Ii0t0l^XVvF6RR)LHrNJCZ3c00uQ}2Ie3pLa4BZ9`~d)O+{`8qQun` zS!GZ#@Ysf4yU(Pnn48ltaku{4WUA|xCr28PpOiHMFwFTuXQ?q_`i;QxoEK!($bEs( zcqz1nJWyzpA`I5nUNgpPF@F*gp5`9__XRU)RvF)4=R0w2T$?n3f#skW@8&K3 z$P+s3gWZZe1w4<^%+f@Aj^7XezJeOpX#y!;EUkH_GqJ6B{!jO!@4%V?l?IKgt0EFt z`uG?zMqx-6l|xhi({PME-3qYuxQUj zq8XIr1e*9oH3{!~xEpGIGIOIQwUZgXz-VWYO`j&L!8MAG6i<)OFSy|FC_KOM`k`kD zxA#Lx15s78Opexbc~Gra;t?mKj@=NT?Yh6c@yGTc*hNN=xQHEju`2}SGxSaC?v@!5 z+?XmO57!!UI4Q!gO*RnxmEmcuF~6qO$Ikl}qU=2B9O-wG*Gd$4_Z=}wZn|u75b5#7 z8|GgGz`FN{-Y2gyp*3^EPp?|apTS<*p}4sArfd05oaHC<7rHS>3V!4W*D0}fDKatF z(E7xOQ{>g|VQy{G`}W_mv&Dk_G;13ocp1i)bv+D~An6v?CzQ|KcgD=eK0?gAS2i3k_&`YF=^5O22?)GmrnYW0aZi+v? z5@%;GZp_MBKG>hH+ZBuvj!#PRoSPM>M&^O&p^aT+qaHQPj$lAL{aYL8qg1DQ6UiXW zc*KH_i+U9G&)?>W6i#fDM3M6i40d%{cTFdIhtjH|Gq8oDR1lMVfSJ~* z-?CAwL+APOeb3yuQ8M!{9HeqQva6cK`AG6?7PVma4dLOtIqi~dNN#eV3&gTre`|i; z5wohXoPWROH{K#9Aw*;p4dIFTypp0~#{GzAYY1HD@vyhIuV`v&Dy^@-ss${e4+yb+ zXseItl5Rv*Ujk+f`&F<{{i=Wu2bk@jhb~ugvA3mHWxI4&W|jp8ueNjO1^c2Q{!p6_ zGedb5VBx*%DephWSs!o{fEUF6zjoVDVZ5dScnD@QzR}dXUwM~d5n2BDO*M=1THGP=5H)%Q0Q5Y7&B13gm*QY%;+Y{QG( zm4=V~)5trwVH;^TE>KH7!NKY6jv$mrAnU13`u6S4?&fU!kM&EF>FMbu27EQV7zL0o z@|C}zbuN*DBYHt`5Eb_Y2q*ArzsJ!req^mpg7IfWX!$U)(UXVwp<>znyNls2artG5=6s(uc{Q8M} zyMfixBJy6Eq(nxm*1ff$^&h6DRbWt7k%?><*W+EnrmeVOPbSN4bk%4k*f3rlY(IS3 zc=)(f{vgCtU1nBRd+P{$Twx=Px6M*2neKDs46HLL6SNxChZeb6(_(D+<5j_Gr-(|t z+YAdvc`qjs1#Mv@7FA39!Zc{Rns1(=&al#jL|uHo%FD}}`~3McBEhjtU@mWVGe>hi z*fgRxY2IWtqX}xA@6TpHG5D?JnwLx|vb*^9G6332`xhR5W+fQ!mTqe|Mimq!oaaS1U}o(Pz4ERu>lG{wgiqBjw^RXKn8o93DE1N7iFySj}nh{ro((iY_OizjsAp%K0 zWw|;JwI@sSfp-UyBQa%c#bMU2W`t7v2`+1<#>>*5TK=-63ff=}{_P7<r-vit1JEOcSa~9EK z+weLwTs{0kP)PsH9ZqKIaY1tq)=d4Q1fi|R$hwIGHH@g{Q%0PKoOHP5&JW@IhxvoPe;q|FJCbeniym_GV?*J0XM4UZ3N!bwfC8YnUaAQ3)~C>#KNH zz+ReiH3NF%vgxG;&qL#|)YMd9w}Ya&xjEbbc;|m`)|s#+R#g39eVxy8xid_aa6JZY zJGb*9vdS&*1p!Q#v71T)Q08JWFMSlVPx@;N;9)>^G;$x~)Q@(`X%j*TG@?!6qEH5~ zJ)bO;(gbp(^zo>^G`6Qc4eOf;V&^m>ou-S7`SW7tI0yc=M3ZbUJqo^VMebW#%f3nL zhMVoD&|o9m1JAL$lxTdUNb!tlI5rYSK ze|fNYTU%Ruk&7P7P(a;(nF4Eyfedo_hL@nHm-&d>Slf%w%-i zzmiH3L{T;U459wdapV58s)(V3Z<-{)59Fyom}4Q-1>5Ne-FVf6c4-mg#rv}ROt zQU=uxjjj%3GM>*Z@d9&h$s+!3XQxQ`)}}V3i2HQ9<@>>fMlpWu5^;sG!-a(m_4fT0 z5OFBJKo94iF){sOR?E0U${D-*Qdf8RCrdg!#@faPBTd-zpd2{jf4Uak1^G?2(bqRt zgo=9JeJ4h3iA<>}3jE@N5Iww8Dm^L9e@I{-0W&zR(*k9l9;YWDK)=&MBFe0Rp8KRH z7xE|X9zFL~SN2V@qD-`vjdOGi3}B_DM9TPD0=00YpkQW}^n<1F^%{#T+xDc!-f8kw z!KTPSS))3~uo5k|+LDrzV%}nGvbnQ!Qx+T?T>Y{6wZ7WQ>u+U-4K9BoT;#Eg?pcWf zShprT^w8Zw0xjy#gG_-!L6_JNh%m`mk+GsUQ%Z(sWFQo>W8aij-T850k#!VLHAzyjg#WF1rcQTt1~opD)$(7akj1sO zL_g9tZ;$`PN{=IoJ_THpY5|)PV^-Tw{qTZlYmM?JM1|dVG_m;cGn12lt7V9IYXR6% zPEcH5UtJ|!IXDpeCgVMACe;E`;=bW=yVhhDd}%}rMZ9_y*&p%r}GJ73uidYWyGyOrg8cN?~%*5J=9Vc!x9=92$( zi(U+H-pm*82jYR%IttWtnngrJKI!P_gcln&ynv<)kKNCx^1nxHot0PFt4C5DJD zVJH*9YD0h&HzjiivKtkpctG>t;o*|v*477OSy|bS|1W6+^)O$4v7$nD^P#C)L6JHC z3hbl6zl-BIh_dp#r{^u@r9YZ*AO^CV``ii$*$zhJH;=vLX>Dt)neS^SJ|DC%?GiP+vDx*Z1VR zV<3(?bTCk_A4n!I0aN7C*WQdqK5FppnQ$0vjt7Uim^<%av%5V*4b04Q`VbzAk#5fl zxwG0pfqo5irW5FlaX%8>DZBCI7jN_Dz2?zgNN>uJ96Zg2`2q?BVWiJV)NbCN-g%Pj zN`$ryy5NzLjw2+a?e>Hs>ymJ-K!(a^Gck^h9*P@=pUz$=Z9LdOixLMWURcp_=2fdr zG4(GTCO7Qs>rSgrCtuFS^qV6GA)mhbts~d6_HRMgzdtFR-?Cv^EzV5p57Aegie~j2NzQS$7%chW4{Jq7P2o!hO zj-tLT)~*OL%T&}>-<^EKJIu2x77ss^9(@HDoL{0;=tnXn|5MF;uI*dF(e&F+C@Egn zHins5I~YBdVkVNdVp1GoP}l_#BFc`5QL&A-_aYap5t~IsD%sag8 zNo2X&r=Hr*?N{zc-*9gtuuwv z-tbc4A45!ElD|?@8_nY3;aPnZBkkl=UZwVN3jz|W+_SrIJq#Magq1s`0~}A}UafQ13v%!B;uKhDBPRh!4jkqYY`08kX@vF1=zV zd|#R6p>CfmecRNbuaViNmV_et_O;58^ELKcinEngx@JMMNm}TAeoy36F9}KkDdw2< z-%|t?@15ix6e-Q{M$pqw^qfUIsIF(NC>glrN-U ztTYJ{-q|9AO8UtsEisoQv`nSYD5s4Ev82^(%p||D>RYs<=Iv>YM)&eiW_sZ2{K`*` zX4=xgHO~}l#C`b+F;dqAl3E$WLH84(_CGN2td%~M!$j;meumu<|?GLr5HC6g*u zTKI3*mTCS67GwH)(qeh<6NMz~IiTxaE+t$d-N+3&tMk3%8M0AQ^ah+;&%|L8#bqO1 zjRl;(rM%)xNIbW8#yS`mmPCbS_c2tC4oO%%N~7f*#SCqKYm>BDjNKWN?hB$}x7muLJjC1Lm1eB=$hy+)?GIRWXwv3qE)r; z@N=YSM|jLGy%I#ZhDpErc3|r!9pLB9s&JT8#f3rpodR=9DI5nvR$~XT{Ko@ubM}u-4(n>|7VoG9s4T9QH~bkgLZWuSo5nr?&eWbD>n8NU9c9aB{`aGcQ+v_H=+Du zC(w6cJM!xrgv+AHklmqJ>agxc!s|hkhsuumdEdgew#N{lj9`Hyjj;~9=Qmskdl4}) z5ACzZ_(&nGU(_GzW!Y6`X?lbt-AHL3Z|VKyqdY(ZO7i!gC64`Xx`!&Si!Wcee53}= z*=HulQJdH55V?eJ-`MGwVdD7X-CELvH7imwIrJRn*Hy^Q>e;^;5-&i~$;9_%_aNq1 zZBZqv!}slO+zFa_j3jdI(U2(adRTm>6z!@~Tra48tXDCt##(I84H%A;(z5Nx!RISG zd45>j?p1=NUzmD1O!}*hnGc#u@aNGAN=VHH)QCwnF_O)m@;=kBBm99H!-cm>GS2RN zhL-5z|0LMDnicc|78Z(VSgB{HF3uJ*+yX=`f- zXc-vz?&XW$Z#!6J;+oOWsSpiFB8={>XJ<``Zn@AkP|-IGT#S z@yrry{W7E%mY;9G|7%I3r{RPX=QUAUF0H?^=na$8l#2wu}nd;MNgi5 ziKlh2xaX@dH{8pk4a{U|pJmMh1oM=vGtvSvG4;!DhLu|LXqJE10l7hi9)f^Sj*-$< zz@#a~`~(Ajf1$$!C-%fRg@lB@tqSRc2?`35sfnIz;syQq`t>Vw42^heSg7yPn#*TK zLLBJm_b>MjUtcj$akXwFeGc~0Z?56XHAWNhlq1?Yc>oKMc`jtykH0%9#aFQs9qfmq z>3spCuKLQ}ch8P+^p9NtGU2w8jEZ3WCqhctJXW?Dt)R#L`ZnlE4Wom%A$!$mDH3hQ zTSx*n9bCu7ku-0iFhlh3hT`J_DusPmEa4d{x@>G>l36sd9TV^5DYmY!o;8mipcad%#TV7KTs}j z7w*7v@JHUAB$wzB#WCth5FI|HI_r!k;0zoK^OvmY9WNe|J9sA%$iAL2&CoaCyMSRM>y`q16GD9tSNbCmn`_X&^^pH_sbneVVn*uJu)S4m2-zt{upBcf-d;pc zQN9Wvs*0)NI-0XBtEdSqhW8>nF)%Z2oLqfHa_ham8UNIXZg%ZkDk^mt`tuoMDbDkt zy{L3#b{SU@IfFFp`cIb0w671$Re;=Gpf_d`x6Sv`54P5yU+BjHPW~yqF0MmrkO%~d zZ?D?-7w?m+fYHGr82Ao7B(GpF$<96~?D(jL#IcrX$|ulg3rb}Mrly!nl1P-^%0xSAQ}wUo=rvc=Q8-ROBIpLzTvrj317(Efe7HtWgc zxA);M$bI)|Y)=n00^?!r6RsGp?aoMjQ*(HfaGtyY5x>kMU z3Xn)L@2$|=ea*6IGPH`fU*{S1M-sksv}I4QP5Y?F((2eG3NMsS)|1p=RAPQ3GZX@v za-Nth*Z;$K-3uvPYph7jl2Aulx@=`}FUC6yYDJiL{YsUlRl#`Pa*4F!r`Ld#-qS3ET zj;SV3%!beXZjlWter=P4#UD2l2|?ZSUw zPKw>ZfPQvg;2GEza}9Km(O+(juZ-Q@aU1#geQ;Ym9c2>A9FIbGr?rqoDNHuk!-N^+ z74=TQ|JpZNT8sY=Q*Rv>RrmdY4k3cHC?H5EAV`XIi(Ho zBMnm0-Q5j$&HMe```kZ#)EVXsXP>>-T6=wB_h+j}bm!$o-)apNkl&^lHZe0JX4R{9 z&8hL)PU7_|se432g`k$Z7 zPbDFXzqHfu82Ttg8*98A#dBPu=CPZTm^+0vR;`RC37N_B=PPcc+D;!Cjh=jIX_>EC zTkA_I+NEn~=ySMV>o)U_Tns1hBL-W3Rk>7Xmh$SMzBix6Uy;YMQ{Kq3^g2Z(_)yfs z?+f-pdZN2!AC@B@tlixiPa1KBkmKYFxI7DI+FaW!>eVfM2EYF+X@jMYcNBh~RaCq`*1W)A3CxZU^ z7zik7xfvNJYh$HWbq{8ziVxCaw>YCh)5?MPxQ8#eQ@;+~ zE_@;AdCp7!C~pSN5Og}BcNmZo8!V|qpq-?d8{>@5~4@C?a$H92;j;?@8863g7+ZWP=@w#8ai26H-qzF8a|N=y7YdHn?AHEi*Y$~~@W7}c4&DS= zon(?d))D1qdn@_m1m)a;J5_>=Dn|whwh{wx%uBQ@p*Bh&lY)wfVk_w`d-;fQ2k4%V z#LuBXlET%v+>_s6Sa4NL|Z>D^)z9xoF|5qz$ige$J5jEmoSV##ET#0 z@-|y;E8&~s@Rvngqe4J(cKMI92z&!(miIs!stY#PIw+-|2&WS9mPjAC>$%^}qkVHN z<&kvf)m3n@F*OE#SkbOulqlmM%B%Z}CP{CBc$(kH^tkGYkHd7fR{nvyArMwS-J)3E zP{d4`?zd|>13G6q)Jazzot;)PFJE?j`#?m`FOVi2URZ(|X;Edsdm1+63{)TBDy3v* z-CnHn#zpLexMJKAQO%xj_dn06tgO^j&(m=`0*!CmNNH)Q`pqJkxbN*BMQ^ES)*wY- zpaR)|Ti;z*Gn)IxMtGaQXVg#&geLr;jac1yf|;WKH@~@3=ZC^~&JXDBH<8pRCVhTt zvjIOKO92*w@P$@#Nw3FPJYHz8|9KO>h+uABo-G-c3p~~-I#l7EjK3xYX+8k979<>M?$*l4(nAMJ=A znso7A*tb}&{%Ux|3=I5v5I5`!nzWVMj0~TAir;wqhtEgek^{tNNbSba^77(C&?N$M zl}wY$3@Ka!waemH=y&?a>%g`eWr5{R#;5pdr~zOceqW@aLpx zrqIbL@1wJ^kj}EuO)fN~Z01b&@ug}ESKIEcW>rtK?7#Hh5U1NKx~cr0YHEfQdU@_7 zF)5y9BQyjDt*fov?tvJhxwN|T-`67LYVOE6TwJ204flTnbucxM7X=~N9a&JLB4tUi zI(}-Df&K|(skuE(!=2qdT%H|{yJwy;$lt$YRiT_B?mr0{fBMmpP=$w7T%ozw>+A0| z1XUWhr$KT9vM9sjM?J5qFI$49)mI~oF8^z+Z*6Vu0{BcSjap*`oW$2zS>N=|ff)v~ zdqU)t6~d0F)6vb>%#YvOHFJFZvHel8yrr`f$@1KbnVQrms-K6Gi-(jJ5Z;EKl3`R+NQYHhEq zSkw?|98Ofq9OXhnn&ZBL^2=W#mi2>+$1+l$g_L?NEH9Svs)LTHlSFa`IOTZxHt?ue zS~0|Dd&>kqCQWwzk??}ij$->%U)CLGf1<+url@z6V*2R2#nS;0I9SnDjA|UsMN$nY zW=erZ4XL)XRZDtJdU!+sg;yZ6du`iXEU&}ENAmH!H|oDxjpXH0&jJyppWWGZdd!HtGx+Jc zj5$oFNtr%p@q_WB1TOQuZ_?#b@OvVt_f}VkjsLBa)EI?EK1rx^{SX;|lyziM5Un8! zkg}}McY?KlTKa9YI5ZX$#wB>ttRT$bU3b*k{N7q3ryXA}gGkKYoD`vF4g-{37UUJfDRV7v$5gy6KnTTt*(3!(S6-)?dL0~&E~oI%a{j5{GSyX8`<2||K_yJP0ePs zrcA{<$1g7=vI~)+pf;i4qq_5c@`1WEkMid4Rho@?l|p&c8kZfMxQ~QbKDLEkD{Jbr z#CI6w7)@;^{hn)=4J)jS8Wd6OofP3f_~psLRE~{i9DegQpzj%=ke|(A+RN(DECF`^w5$ zXMDf(&=c+R66zD%>FWM7uBUC)NHyh1-icXqQ*DdHobdR|GC|hi*8c6VO&7;*YkmFB zDjY;`xV8n4UdsMKrG^5~q%rE<_4TJeXJlkNh8As4EruW2V#;#Ah8C?HYiViy;8LR0 zX`a3`@jbPAX;+4(fd|A>&h@XUFb&0$UHMaacNyUn%VoW9|eK55*s zDfA^IH8(FZm)aIT2gmGB%v9mG5;azpu++DPySEe4)tmW=Rv05K_h`ZepMFGlpKi4O zJEyA5s`YsMDok~lf`DTMnY`3R?t0QBe(|r&lnMW;9%Urnm{hgl#)Ex)6GhNaYjZ{dLAiOXhUy}P*>y{dMT)~#Al8Jcsz2wizC)ddE5iQf`9%LK@l@?Oyt(zs; zB<`^{<BH5+7kt_xs0qgm>= zS9OpiUsY^hlnzb{F_a9%I!V2Z=OyeFKHu;IPl}61DN476iSzBcB%g&pUwll=&BL9J zN@-wM%EZMZx*iB1^S~gDe(>8%y%WigU zj%@BC8MP|xFjgv^s@fYKT3a002FU3)=3;Lr8^Pc#7x{N`0HO{_g$Sa4 zncWn_hZIf1x3Cr;KyX+vNs92#&i(TS1DU1~_Ml=*@lKFMJ%ic^qBNbM z2IS_1@p2=0*fzI}JvKbwGQq`O)0t`JymT#|rvwG-Dj70OLh${2X#Oxt4yP>FeST#e z-8poD9R#rtLHUeS^c-rn=jRLNK~ifk?-?uDWG+Lix<-InY>X|xURg(lA=H$dC+=UD z_f6|+P*2%$=%qNhzXa~N9~64^fbasC`PeE?Vcc}_6}~q|w~T+W#5WCHX9Q{OuFGF% zBrDbh3yUHMl7&IWAW~WM_efR5=T%n3rT7U0)L5kwPK4$yRUjs15FW|B)A_(Vrr%=P z3zB!W7cG&P%6(+4Aev1rIQi1vXYvbKqHfBcSciP8*?uwKO}ZL%kLHq~&i3awL-RH- zI*Iswy1G`7*gxb`Euqbw+K~lqcN2)QLGwlh$)iB4-wDRdndzdy3SHyrVF*<$=;n2x z6dKLKk3XydDOs>ArNB8w!KZVW85Q{>vytC)|H?@oeB?s3h?up=ui3B z1#)7wI%RI~=`)Pmy`B4?f}I8}{nxK6Ay(EcKJz5%e&MWQkx#d> zyoEq6Ya|b1jZ+Y-~UX2^*!A-SjzqkHN;LHhv*z zP&W^u3LO=c|4@Y0s^aF)Vi^JX7g^T8Xpu4={^{+E)Ef^ow-ZRM@uDa#o=k+d*_v6S z7{^P>K~+vIGJSMlwf-G-?mmhXk*ubGhs{3+6b*{FOIyj%dm#@P^OTnd$@b>U=$*&w zDEKzE!%Gc~$3xPKclrIQS|nof@$3pOVS5z~88O4z*%SN<8}XpIe-JP7%B(aWAlN&0 z-`S8%1WFWgpOLEFFMwmEkbuX?JR%LczK)xl0})1E)X2gTf{Zj*`#tNz)G}h`hrwIO zZKiNB!|i^TolsZFqKZH3>BSvvINPglX_IZU{-$273nD2l@c%!z#R$afK;5o_=8FA{ z)|VF`MGBvkm+Ko97`K_ndl-L$Zk(Z3lOY#J=6M1&Gl0}uKR%8I18K&HuQl3uM#u~A zrD|lxSJkjDY$YaeZPx+M_T@0Nmw&FOwoqlEh2ljBb{~EWf9Fl&{^yQzO8c)Wx;)&( zX!$4?DUz*pyW0!;?2R`yuJ1`-BfkL&?jgxH0L3cCdFbusbHKttw?0ew=3pLapi$%W zjQLXIY){F5qie1I7CU^&9}r z8o2idL8g)V3)uNT`2=i{*OMn&e^1SOKJg)JC!x)ETM(m$8gcDH_{3vimIM8tC&4dY zf|;bMS4oGgw#;z`t0V;P!GQ>I?xpWa6?17_h1b6CSv5vToFyb=Y#T;)n2kyOXS5I! zx)?C1gGwhQ@bF(X=W}4YKN=o@aXxq_LEt}N|51Yk9c64?LJ^l|T_MD?$V(m^fnt)$GKz zY9a)W+UaTj8XL)rr~j1T14-11aRFB9CzD{}=v0F2+GgN~3nG4t=+1Ba0Ca1Dm!&w5 zjM9Jhfy!{c{_WczTf?dR#!D4`TnG{+zDw=nbl{#~P4o?VnK2?&gV?6`LA68JjtIZ& zjjcf-w(UwVS$o8q=0%*3VsTznudVI;Nl#+suYO~CvF9=^x0R6UZO6QmMBXFpqCMq( z&SMuwo}Q$n^mGA5p?8VUxK(Ay-Ge-|v~+9BW$OfY_sI4L6=ApiYw7c6vearjxzM<| z9tyivp}!`US(IFB-gJnGTA}9aDWP66pX=|aBqRd~Y<2ew&DV!>sRYhFt3p(|7Ut{= zC$UiuNnms{AyN<F`keRL?L zykf$6ewJ#xAnrMtVclPs_X|T*EYi6xFE8tTUdh25KfUY7;(RgvrqpD^iHLOh?pv&n zMSF5IT|y{b4H}BXf>;Fv@)G9`NA!I>|E5*ttE;*N>|b~pYsTg?a+VA)P6_Gfe`JNu}BdwVtFAujhi&5gO6PIOm4S8rw%hX*;%FyK~w(BMzzH==? z8)MdKQnvAL9Uyu$PuHbIfFw@KWD=k9+9sf%$!Dc#)UIKgsn3!s*Fc8A3ty|@8)*UZ zUXB7LGxW*uTPEY|Yn)LM>8CIdoS_My&VJ4Cu`)~_p`6hiI1O!=9bS*f~m!ZGsMf7s>(`v3tQ(yHAcBS*=X*nT~DIw>a93! z)i|H2?F~bIoZgX6pUOBe7oI28Q<}T_p>{rp&7Y8&TuH{|bFnR5D-tmcu66FY(7I`W496X{;TKOwI2O+8c3wRWqU-e8-cWuBm@rZg zc>C9^u>qMdMjlV?x3VF&P^sd45k&p@ChlM1M?2*7A7klyjoWtwce!y=Yi0~z`|qhG z6f2n57w!yZ-aOCt5n|aS=_DhYnA+R7nv?wWxsDbye?Xt*!5#g5X``a?6FY@5%X4tRl(6!wEsYLzXxor=>0p z$#H>t!i01N8$rZz71$f3P~U_-T)O@b0(KbEaS$6f{F;=K{LZ4gTI#4gZem~iw-I+=B(@EL-Q$?+K2hn?3319WCWz3GAr-fSP#!C?`hiCcuHn2 z*)Ts}hx{XbzMiTF+;qf@`{w(_->>2YUgbObr4-)V;*#szpUP0LG&~t%WcVb+QJzxO zC(2BfEP0$K%Nj$adyl6g4M@B<>i8>-T2^aU^n3sO+X-x6s12Lfso3^xo3xp0=0{vI zc}%G`ZwTB$TsZQN>=YVz1{9n7*fOvjR;z3L@k;Xd$R~X4k%;kP)cJR~F1CSib{nhs zjUtK2qs9w6E%JrH2_C8XmhEZR>qb^Vo^!hY-wpM{4OJ#pV?hX*JsgS7J-SC#Ubf7* zHC1wZpE6J~WH)WS0%k{zR|di z;p4Ak_~_TZ0%S1Q#-uaEQy|z2>}z)Es;3Guod$N;S;i_<)Eki#KTY}g`=gV{VePYu zsu#~E2l`&CXP_BzYooFM{23(#csWX!_9iq6qWnt^D(aY_ZOH)dCw_Jx72S z?agfl2QSTN7L(o8)5ERtI`IzI(nUjfzn?j6+?~I!QOb95E2o!v4kBwwyboQyZ}9Ur z&I~TUhgbyx4+qmUp zzwi`mo&bKQQqKSof3 z0~TAKnN!-~i=WGXn=;I;D)ijz1x_^mfAhSjCeo%NdsNX)QO_{`!JfXKM=8^V@4E zDN+hV4i!ixJw$swWH)199Opfex#tv7h5dcvu6@46@7ty@5}gKjRptx{e_Irk#o7~W za$psWJP9uzp0HKG*JFy>jSkry-ox4P z#CCZclZy0Gk{a$??CpBmC%z_vrFU#ZfwK8leiMoX-^Ko+P)uYulMfP(a_z8M_&cwg z|GAu_{v}eZc93#*{ zwddF0rfRJ}fPUSmmCgM|gokLYY)IJ=q1279%}J0;A3#vE)n0H%L4GZHowokXeEo_u zn;6qUn$P8c!bn$M_Wt!qaj)9IxhxyIg_2)qfnoOpn9RTIym$N(@OcFi%XVgUz9hJp z2WX7^T2)N7DjH9h9Pxi>!{y1x^Xb(&?}SM8-FMT&q+u02lh{de_!x+n@|7WQTL?sI z5~{up8AfW-^E-RdR{bl>AMI#7KMQ#Ko5aRmEa@^}lRcT;Ha#)gYRkxo@iT17nMSc) z@_sKpjrH~@Kad)OR^QX@?z~y|TW8XQK;f5I=_zLy!3PsnjlsUzs(-DTUb8Vhz(+_@ zsecn$2*UVDZeYulWYF=*>DLcaXMW1ukZsz18r(Vbev^Gyp)ZEZRl?%YSgem5T=MjN z4%ya+7eO^T<>S$ks^l zMl%=tey#opE1dYH$N#8y_?IS$PWuan*3|{2RVT#uhYFf%+KOW3P6t=7FD27z!6Pf* z?ctw86|-Mta)cV2g4X{fS*9kn2%VWW+LJa4ieFcD5feE-3nFKiX@CCKu9D>24O~n< z&47zg)LQ;amoCa9nUF%aTDEEqg68`9?EE?hXH4Cc>5qs1!-{&gYQb<2tR6#)#WvI( z__19kSyoSjJBfWPoIa;VDjsukKBpT*MQjN#+=Rix;o?T)Hl^STp5rG@`DexyEB^e> z?wdl^{H2tDpBhg+Rt#bnur#uYpOxhoQ{~3T=`zWrdGhO zC)sGTV1?s)YQ)=`;bpI^?RTwdPjL^cywFqOb&yf-G%rrz69w03G6xvCYFYAJfBw#2 z;c^_$H2ZunLYoNQ6m?kQw77^glxADRkP;6h8xx_k^RCtzU0(1Z(T3S8=$!dNTZ-DV z<6sN+V0=g)IcQ=PE3}PLWl-%>xO$)aAbiIRDR)?MgW4x=xY#^hn_84S>3HpO zt zHOkrGek@6$TWs$Z{d?6mjG-aN+AYu07O^X;)avzV>?WZ@6LMWQ8Bq{0)jf%!!yvd^ z|7{nBfLjrhS2H~NZe(#?vpPrXuAYansAt~ixWuYM;^=WG2itto%UZH7z|b64VVo#NqKVEJqHv|P!I&|ErS5)z86VXlawOP0d7F(qSJmZlupNH6a^IeYxM&Vkg@Zz5-`@FP3o z$>sDl#<8AE$WS6Q_pMjUpnWGbl8ON5&H+wVq3ehiC?g~pN@&BdPr~+P z4BCKzwopJTFd$h8AN>4~z%dvHg5_xdG>jht(21xAn@J>=&0X`?A#|Rh2YPX$&{)ps zD@6K_lHTPfZugkBak)Tzj*La=4qB~K2SPYk-EF?S86 z^N30AA`RA{W8Sw_`r0mT_=(#I^@$N3a{s0|iiuFlbwZH3*N`PfhBCyi;zRftJg;h4 zFeBW14iH!y}YNBe1rn4VBqBuBUlm5Vt2$)4;qRVu#uh$gX+hdy5;O=Lx8Zo@4B%`GxrqK<$bwv-ls z57z~PE{(Cvfr`$Do&<09Y8RyQao=m zz^Cz^ltKEqo+_}3g6XW%#Re&K?_D1_7Y=ER?6J0FJ%~JCJsp_NLZ|I#f28|+j>LUl($dJt zDClmt6jknMvqLDwrsM&2Qy|yjsZU^VY11p#K^mH5QsY5kXQmQ=DaKd1#aH8%7GDO zNO(Xybozf_oj-KxACw9eoa4h&F&~nLISxp`kM@^RFmIjP&SpOjfxR56!1TmNq?arG zxlY_jiqJ^5(5RDkHPfdIyxSta>yfrQkoXL(C3jk6EOu!j)`)d`JGmts!Qjs7+Lka~ zd?<5c7Vz*44Oa-dTpt?R3V*9J!g53W_?7bf@NxwE%OA^DICwSlUE|*Tzwaot-kkka zCfU(?b0<-;t>VMEvP>cEV|14Qca!ZZD=ta#3Hx|?R*8CE1&dFE8Ysz@R5?O_4>iGZ z>;|h170UKsN!Msjqm@OiPjW;;`_qyqFH{X7&&R}@P>f&NtGi-f-@NXS`Bq(YCo3it ziA+5ZF)!JH$t@$mzizES;N8%CYHQS2nBZF*PiG#9y6NAGVk@nw+ z2uXbR8r|dNA4^ES=halEXp)|r3VPeJCzSl>MFpIp`K&=t$oA5 zAzc3pUYPlK`7J=KNGpWUVpl9@j#aDi;cM&_G-;&i?q~Z65_%RYb!5ar;{(>XA^y5R4HaLniG ziQJ>|r=R!BDcfY%RLF(>hmlLEvZS~U;^7>smbKM3>Fk#d;PJJxS{zS%6Ch_~lk^5jwVXj^XOv3_j;H(;V#4z*d58oGc z`h4?~aGoM*TyBRzM*x3u3xnMdY|!SX(DkJUU3mC|okka#((%xRz2`oB#Gp!|a`N_n zif9s;PFUeaZ@4Qt-wo$h7#B3k@CN=;O<`^%fqml>&XJKU5SEV^8T`%k!8@HzMuueCjQ(rSN%09RjQDHwzA0t#X`awN_ z;ju$d^oX2!5c>+dzuQcw|14>oS%KD__LcO4tO2~>2>C@D;0TCMYDkb0M91@P3Q`}0%ZG9ij*8oUwAgEJ|b5KSVio?RSOcW(Pey>)jl ztEu^eW`%u2Hd7OU?vFfq6w!=8t;^bCu?N(wF?XE7)9*dBqxNz*tmzY`$azq^Q)|(X z&Q=m|r(YGpH!IPfUliv#hMbuYxL9VU&15BoL{JUjZ$>}TehL}FzG?*nIq|@zI2nj; zH?J$2I*z;lfk)^!M%8HgBxl+y;62J}T6^qv_Hw`_?o5|7_f~@w-9I<8|9D|n&iWz1 zg8TCJDt;1~rDbg@(NN|rliU&0*n7<;nr^MVdFsZV7Bxe2qF9JlQ5_Qol&HJUdr=h| zin21}IT6tt8zj`M{v~&e9>uYEm-Gs<;yWz9nyTK8=_buY+(PMk*7#avjTe(n> zTM_%B4SH~PamTpRV(aXQvVv~d<@vPFKZ-i0FrxZ>%|6Rz(cG<1BrCT`{$)qA)P5bB=sO0>+q4g zN)Pf#vjQ2sr?X!_Ys}>r4?B9lr$*t;792sw_I;cl@gk~5K9HfvX$f?@&yQ11xjGfs zsc-3(UE?q}#)LkI8Q)p5+3)I&jWH8;W)WxaZ7OoNDEjSFed@&AOzuxQ%06ePi7D;< z((V3@C3dbNE#Y(7od8zmlMDldw-hCj-BvY_cR8Oy`PvV>} zY{Ns#*xqx!{NNcXnp4iI-S7=+p!qz-X_mu5fsO^9Z7p?gcJ%=Ev&T;!R<&l~35+M6 zFJTS_p@trdJnz5u!2iey_#aSQfSdzra|}dBo(qa70W~J-pd}ZtEp<2l+6h8 zXapFqsHxcP22f+LsQr#x@%^db@Nyjd$mKoKN&vK>+$@rQ_PfZEvwhxYW5&FS!MFiOx(lCbW0v z9p6}#tGQdSJ)qAfsLe)&sz!MH95jeq(Zsm$0RL|~|#Xb0_9(wBZwVRi{0MmhsdDQON9WbUI$&t(ICbb$5R@J)~ zSUw_;CCme!JzqBIXm>iL+J#LM~eDAxkU?MIlc@(3eUtoX& z%Bvr0E;>A;M+rQ3lnCEtfvdc+NZ$Xmeq`=?{?))dNs#I`e!p`{0Nwc{*_+uMKZbt; z8zm9gCtG(q`S+Wq(EDWzT*p23u*bFzGRx(K%zC}?>F8$rUN1e%Rr6Kj-{c?3`z@MY zb+h!$%hl~LKkf&tC3n{H^gk?2Jf&P2!(5HgZ<|O(6xH-47k)}k`3 zE}TdsAZKnE`$qed_pOOwi+jjjn8l(pqN4IZv;yOXpY$7`B>*2GEK&pMzzDvG12*i( zTqRm8oMgD%c2g59UNkf`0+Fw_W$vT*tAb|1i};b+IO7+v>Uz{DcIU{P-}U})^$B7* zDU3CQpm<0K#|l=GyEgjGWg3VITAPA{L!lD(1^BMs_HNl#GP((<>iLzT>Dm5TUKm95 z-s>Bm`J18pp=5kxaD@zdC3C;ZF#g{b+}jr2WXkKR87o03qo5lF-OX3f)GVqnNsmId zpib=b5PiQ2dZyG_M-86d{^$T*r?@dPc-J^wI&`3YE-M3!z2^_P_d3|2gRfZhi`ewL z%g(?Ik7Dim2zZIMW!3zT)q&H|*?auhr zyMu!&@j@QN{0XjGmZfAsSH01@|3Xf#rPk{l5j-6F?c1GrKAPGlj&oe{xOv_j-72-) zb75zeoMiARHGT|oCOWzs@2MSMGb8#|9sdHIbbqPaYF`_}IW+7(-+TD@s^C(0T+qph zYueAB(rpX8cyKO4VWsV+P@YiFIt43jSo z6g0TcbGn_mHHio~2G<|l+M*$7DYdy2%}p4ww&v2h^#*ste5@+OZRzC3C^t&Vq2x#= z;dn2Pq2V#p<>mAzAd2)i1r>#8c@Y{HQj7yn3extvEvFb{t~5Vnst1W zS;9s$%RR^*Us6XCd#E3OFMQ_(UE(MFuYw!*uv%Q73cnz;lUBkkvEUzEalalp`2XI-%zbhBOJ)%QgSp1fUpnfB|~`(?L`Axk)Bky)bv z(cT`Vfbj6@O%w`&wQb?at)``=71Z{3)lmah`0d-b>mA|;T`tcKU%V(dPO$H^xzpAj>iC=BsoL8p7SH@0CxqUs=9G_UrjUSRC+@+mZP(x-odr}~nsqAdR|Lfq zjb?AP)e`7NFD{hu6V>DSmNbGeaA?67)+1{!?d!qSm6R>jdNZ9nmm6UFS zAS?LKpBI_8u@KT}McgpY8^Bu>qi ztU6(>ZG_$U(Osw^Dfsv?mQ>h%QMlZ#Tek@A-Lr5K>m%N{2)|D#dmEnd96a`a#pdCh zgi)qbqYgJj3qHnD@NjXdTE>0-iVA04(ny897&!uqB{gG|Ik|{xiYg32Fi^l;ehw6h zfsJ&JWLHr~El+yb5P*%_XIUpQ?RBD-69JI0V7~Is}19FvnwZZnd{k0nwZe`#PbbgT|N{R zrUX;{j=cxH)-L{OX|z?wqqj^vV41y}=WT9l)3z~Jizq26t4r0b8dmz~J8C;_Z<<969$fj(SZmQCQM z>~C>C53PICQ@l7_TJAG8<#eT~;Wp%Xp)oxrh28yb{Ehd755t~1%=sWLZu)8*?KTEj zAUqo!WYBMt-&|-`5#8~ZH}{uU#|>j@62tcrr1t+UbY>wj3E+0xOhj)xZE8#!kWan@5#|H zeV1P#iW+l3qGSZ)Dl3 zBaI@|#qSAxEBQrS-Jl3kezz>KyOkru!Jok7$j`Iii}C5c#WNclmbEo9g8QE2#pcV- zm(-U8R6Td0G1U>^4#m(+o?`eXeQe)iyzg#k=`k;T%~xRZ(Q%UA6Rb} zQ>Ef1X>-)zj7b}Ib#?|<@)N!H3qcvg`DpDXrTLZf7Jzigasv;1kDI@y5y09o z&O3TIQ&@^(6GrIb-S`u&$UXAn(sjBuxM(Nr1t=GMAzVN~g4-9lr zNaW{Ysz^)IKN+kdXUAsCTjFz=qgOkBBwsQuMer{u0v|!8ar;#y;?oQ-1+Vzew0Y@;?1}z* z^JQmm4|T>gQsSC>)f~}`^%Kawh9De5L4ba0X6l`d+Wa5-1n#Ii4@}IXiWTILGwbN< zw{Ns?(2I7wCL36wo0lfY)egSqd?7C%g>E4u^YK6@wcmHyEt4(Ie)UgXH#2WnX96U{ z#AR@CP$`uBsZ>g81^EERQw-`9m7BT*=$Y2W3b`vCVV#Vn;2f5##-xkCbZQ=9GLo;) zCMPT>EsfIV0QKxwUj0hPOh?Kt3|bNVtkNw{*eJ-iFqv>RdRG*+909#OSS4tD6VCk2 z)33WK55Ok58Xny}=8_k>JdiD&nkqg^RhZNS|B_+{^!^BjeAas7FHx$};8}0fb=8Zs zMFpq%J{480@)^ZJp9CbW+5o8KunJ*WA`swxNOSuNIfdXyZvge5upo1r`8#^B(Iu1t z!J(n0Mezk|j5&Y7z!XPGN$GP`RA5O7XJ(oq+$Zg$*Z@DsX|1hB4exIRhljU89Zsi> z%M|pw6Uq`~arqb{YVsy^sMAu{z2=sdQc|X;Pj4fOkLS-(jf{Ul)2%s2%4b03x%lvNKB;PVoH>EQ-h}b>(mX-$KnFqp_hkf-V1xjc0HPP8)v`t zSXJXLu~fu;lo#iV+_+|u4uk2XwMSzm=FCwR<#!9ZY#aAI<5cY{iJWyj*x5B~&X1ax za`sm&}JkB zwN~3>BQKCBovf`}Pdu*M+}Ni-Z(Xfu*x8CMk4KSY z{r}`1O*~h5z1VNzEQ>JZ=E~@3l9a^wZ8)JM7)44PiX8JcFobE#yky1^QOsXcqym{I zQnd!-gG6#N8F54j(6GV69>}QvMC?Pqn^IphN_x6D2Aw?yxzT7Wa$=nw%t^rsvbX`o zX#cs$Po)9D=I~=4%d6=GPA@@{2i_d~lS#;~sWoy~;4GAODBBPYvp;}^(-DB-pXHS{ zB)+)0^-ZD{*6FGh7xqL=0oB63Kfe z{lm`)v+SlEj`CvwQbBqhfn-Py_R6nvt;FFXkR~l1h?Y*tkNAG^yPSOU!f$%ChlD-sF-HxMMi$P%PHcitoOl6C_vFfL4JHPkOVfJ-q(Q(f|OHTIj`EZhRTcQM!H ziu?oL{4DNK9@+U!^#i48s0VlUTI`{-@CV33K1s2@$o(pv^n<0Gs+fL-(7V7Hn_CQ- zMcy9ryJ1vJ(x+NTOYsNUjfB?VhuJ2d0K^z+~D;3jP5mj;-9fn9LK?; znpe~|R%GqF*Z8gB=EkkfPCZwpx6%9CfF+5XF>!zxArSCnV9QKv)|TN_(3aK;O+H|) zLA~<%>CT%4qk9B5_RHQ&BdAStQD&Cttoq3dohuwC6ieA)?3EN{g`4E5I~)GG{aX4vP-W~cb$PBXAxSPaXTx$%TRV*II5hOm-bz4% z^}G3>DVlgyg%u5W);0cvrWSCu+GQG_4%&P;2D$<8WS#?Y3!V_|mvM?ntti@n673m| z4bzsO@`u$lbEvfB-Eey}K(>JzezUZK)63`|7v;6NDU_=dbmp6VD@ zN+n4Oe|7%i-s|6yX)M>yU&_c}{V_}5`r^+Y=Q*YsQ<2xtBVBg)DAbo`w%c>J$xR{C z3#K>xP>|-{n`FJcp&%(nB)Z&r>@P!1Ej5UZf~m?HSe35sas{9;X+0c51To?@PtXX- zER<79SmH|}=24_-uNEV`7QfQb36xHBr1xN|o}(g!+11S-laQrhWiOgtyGdcq2tjH7 zIl-Mom{A>S)|u?$V+a15qdXGhBaw}NvgKBFU6k*`s(3c zg{ZcAx4t%C{WRvUGNoOtxSpOT6}n_Mza|5xS1De(9PIZq5E9RL1$zYq(BD&=z%~Hd zZbtCfV2lUZ@59u*fe>%Tm2xu_f;a)I<>5nHUU;)i6d z$n3hV_htR+HzkNGX>TvLIf!VJDPgxFF6>bQpBi|aavAjD;98iYVfHYaPXMi$zLoEM z1fWBarpHE5o4n2^5#IMd|hNUQH<#aqK7sV z;wzL}F+)BHj5BW|W?HxU{{%$Ix>UjNa97km(Ot2W#ah}S2!uw&*IoBmypB7vv7a>C zq%;ZZ?2y_w7{^n90i74YUJel?mNzBc$6nk#6XiYc)$fpvpgwClobl?xD`1;fCBL|? zPb#c*eYB~v_+b${kp6U)`%k|xYGH8bQAbU!01F?if8t!U647kreo9)93&8= zDnu^<2$TZl@T3=#1*Nj00cST4tUGLivj_MZ*aO|Hn2iw1?S2Wed?DZ8_$-_Dbw%VO zh78xkqq9Wf;qyzY9||Mt);FG<;rhwsOv9PX0F#2^p8}+MC6mB1`R|zDYhFj>QNJZ) zAd(X$*fg!!di5!Zx3uYU&Cyij>>#2CFNxYco+!OIp5l3(k>UrZR^-`zNbTr29Ak*| z89~~2%uu-)0E0z9;3aYdlGxExExmcqrNpYDIavOWES`qSgnOQ|I6H-MyU>!$B#ScrZ3d-UAXb^?vOW6kw}nh5-s*f8>F- z03TL<0Fe1MSVs8%)xQCPY;YbaS&5GD$_v<$2TF=emcL+*{G)Q+DbP7nF(}EK)T-C-~YY0mMn=|-#0U7_St)% zGxU#J4?v@)0gg3TLlRIW4Gz*S`RykH?lJiHB@%Qcs)QYsn{NL#TM&3IRU%+c7T8gQ zz_#+e$D7vsyME;gDa_sj4qVq*z5(unzrb6x2D{V1Cj@hH!Hy#a$7h2g;Vc?$1pBRIFEW?i%unz-bw*qpW z78nKVaMWCuVqx&o8V~o~Dp5l~0N1ew*14m%+CAX)VWrnVW-ca%wR1?}CISvGV48`y zdkMQ#9fnc9=6hIogzumf`#jSi06YUY`dE9gfPsl`7+ePZBy52MP^STy@ey}l_r0rN zGr-KX3*j`NA50-8{ur=|Deh1c%^ap_)rbHq4rnU_7pjp2CPWEki3m7r2owyv%)7u| z1pGs`G+U}6g&m{p0KLKjr;d*ua|&`>Ry8JrmKF5BV23I1yard}IGouDTv*^F^0au? zkfW25sSs*pQc_IlWy!Vok&gdPIt6SciE9ymH(pAB4FXsx{B>R^zzMXFU6PZ7n%}H^ zs?2#X^y?TbM#VS<;5_1V=w#130<$4HP#AyvEK@Bdc2~JdhnlAS@l7>p5+61YPVcXQ zpn;KbQaAg?i%?F5FmohT_P=nms~e5kgMnXuslZCg1kUUgTo*ri38ZU@y>ba)P}Jys zt+pTIWKh+>F(&e4IdPo`!c zVTQFR-B-3JsIVRz{jYwVg@MxRU@)tI7sQr87f9=W%7=}OvqiuyoI-pDteN2aW#E{^ z0T1f|aU{1AL@RLMyxV2@XJW*zZaDK{h}R|L^fW=KMurZ}&Woe+B($n(I%-bCPZv>q zaMGR;cy=hl2NwWz4-NJunpEy>1pqU zhHEldo8Vw{orPsmSSJWDgE~MU15H&bfV~AG1{y+?77an7*Q3MTA@4n87fkFuw_I$% zmu2@faEh*74v~$!BHzr1Wdv+U4Jhi7M}J4uYkH|;1bJ7IpRY5Yp9g1T)K+1X9j*D& zKbe~~TO$Xz7B%2nP(a&zsH?L15uK2quv@3JPLxGSc(}rd)gEzP$V?*OVb-?Sr1#U^ z!q*ruF^Tmsm_|JRZ`J*pFSuJE!rD}_dYm-MEn6>5*W_l=VY_=Zt=06}sFvsp9D~VO zgY$3{7Dnv}ABit5G*FZ&!i?r24ly?AwiRYa^Ni@BwL?eiYO$)8p5+=5>4}Xsu1_Ad=qhoyDVa^&>E5U^ADmPR$2KS>?ETboJF7LoiP&!Zw8l@((8HCX zVJ#pFHY+|kue)ljbsPAJSJ*4REACc$O6Ja%4rwx5 zP9$wT+8s{l!2Xo*nHrf1yy4rI&siyf`qu?o24qn{47n|VTTUXC#7rNUndVpgj&u|myw1%AT+M#(?Iy7}Wu&nz>yZo4qPa25&YAO#=yts+ zwnETaf#P(DF#_V?^z?Kb@C`ttFa}zc98^u^E3q1g!6%0}X&pacP*PJyD!ANeIkxu2#%3hZN8hmVqtEFB1#{Q#M) zId8gRU)D1a?Vp|+%gk>(HK}iAH*h~RaxsjA`=000kKJ|zwyH3i&Dq8U3bRL=-)S{e zxs{2E|5FD}jLXA01c;oxeC2%aAvf>^v;`oc;}8-CBcT(DeROMg1=^RSmR8bK4NPGp z7dV(H50S`L->AN@5o7BeO>PBi&U`*d|*T-tx3zNG}pEf7s%gq5EN4-dhgKYsuXC@wAz$Hc@G{rx*)gv=K$Ui3vQ z@E{z-c7;*EYN3+%R{#BO{hAa=hJS@uvNph!0AoiB^rzG>XOdgAR>?u-W1Lp6O-VeuouKzsN6SvYb<82WoO`1 z7}v`#JR))?8M)#obgTTw!~wwz8=QR7>i}3RSwMAF>6CWL7jh3i4LTZ?jalGWK7w;{ zl7E;l;KO81av(g9ue*~*zUOpR}TdUwc`MM=f3A!$@m@{2ljorib&JsWOC ziFdyO9sIg`$*`xA(!gU0A{{lFk!~h`ul9cN?-9r9c|1ihY=2%8MoG}r5FwrtThDw2 z#q%|9s5Gqg3#_&Gf~lW{!+HjQu}d48u~nKB!aLyH_FGp>WP=08m8leTf~FZj86Qsh z4N$xX)i({|6j1#w71g=_b)n@3drN3Nef<6<{CY61L%`s zK=HJ+F^h<)t!A87XNq6iaKL)>NES`c@jJ#cN>v`|A0$>o=Yut;&+dI!Ed6dCch*?` zh=iG;C-x#?V)@b0-raicFtY18iRBY=_i~br1W21N<+<4(iZzN~wAMF=<(4Y5nGUA% zVUtE62T+R@Pbp}`0~%Zom`caTb+oh&BTD&Hb&Rr`S;3kGO+I7e;yCS>g&TQEI!No0 zf@6T^u#qsG{3Qk&%*`C`M=nVH@GG8)0BpJKFg$$(!*k#;X7U=);l}}N_$4jA$vozE zsl}h+jcrE(B;iPUs$5to7jY0E6$Lm9_?WRaYW0KEm)QW$+)JW}NQ9xHhH#+I11}9A zNQ>Wx3JQgjbDRzyGG78QNeWP^AWpp|jZkBYjQ}UzW2CDvMzkZkSo6Ujv5vR{1{ORK zCbaYN5`r_fzMI-3c;PD~6PQ(enn7tY7Xi)uK$A1zHYW$ZURhxDhm}_V3{Z2601hh0 z2ffA6AR4xtNY{n{#smMbSmApbfJ6ZdgxMBhJ$rb9LCpZHa~knK&pm8wfIPrNcSt>L z1#Rg7Y7cs!CjrpLW}4^>?d5cjIle5YJAhR$fES|%fDl%x@OjCvqOlDk#L!4+(*$;P zkhaRhP%Iws)d0dc23%I;Mu}C$@335!4Xn_05R24*mGcLvyBp zMZp%hGUc;*zzqQl8Rqr}Whe3Tprsb`)MJ$_z;K}4p$+Wo3MQ?f6%as6a=k8y0|_8G zppCt12?u@7PTT#;{_BavSF2D7TAfkDp!KPytvfDw#qn#9R^e zUW6r4po0&r(nM~zj_}UuS9hgfopJTlC4iI>pv|5`<8E+g($R(bZSmjB7^PPx!*()< zpx`G)3xn`cezf#WnnfLE@@n&5-RgXtpw!N?JilO=(Z1z%mrQ&{$Neqq=S z^3RqP!WnAG>h&h6gag5#g!`R0NGJZw+nly(!SrPYrKD9L^QhjpzC&r_T0?F&z#F%1 z7v79yp)WNp(l%U3g?Q*4Mo#c*O!xkMTJXB7dwJmf^wbUY+u)#+qlV|oA`5=0LRo`1 zfT;M@m2=EBPvZ#DljW+>PJFrK(T1n<(tUW{^SNLlK@APE?eqMP37=SdaU|n3Y;kaC z5Y36};~Q6~W-jWtQ;dSWlHis{dcUA>gP$AO#6T}-gOjV?RVuj3kR@Wi{&EBe-p0RD z5n~}tahxtKDS|y*ENUeGta(K>Y0sYo0zA**DUh{ZBs_Llr88nt3+WcBkrGUal;*LY zcPG#O8Ju;Hw8kDwU(Vjyc;U~#-Q7@|DcZtPPot%v<$V2j<&yf4tJ3Fonxu8Usl{5kC?V47KNrEltQB<^AP>PHRL>28 zZ%c)A@dQmm)F4UO%!em+;P;V-_U!x3s>}5*dg`BzzIjv*YvDDfT%|fa9#NnkRMHuV z{Az7}sim#(HM~Jx+lWKl?&aTZf)Ad?TZ&|!5mu=Zy5)P-_NLl}28g~taG|d3JsVUA z;y4@V;Qh$cmby9AQqWd;AS;#mU(-^W9=|DrrK9%k2619DUH3wG4iY#XGAPlJ-5uQF zb#(S}F!`|KW?EZb>dX7cX6Y%(9jBx7U)&dwnhEi=9y=OwVfg-R4Yspx-S|dH+;h_Q z-knijwWxTJ@y~)E**kqp($`$n6XMtZwup$7fskxm)y5e4i0G4L@Qhj_<^w)9TlVlF z2gw6@2KZYa@p;Te>^g1MBR_r(lDSF_^-~pfQ)f;BHF&2_`4rFlxqk8Dz8i~f=no7% zj|{vB4gDIdkt2RarW>>Y9`APEgs}LfeXaEfx2WI!?nbhB?Af2ptaBn_WhJCK3vaV| z@#dBiTJ&NM%2T!1SWmXtu&>-QE~9&J?KCd&s9^;qDd=9%nEp?FL&JDB?BCQ69{rmR zmEsN}-22^aK^wHtG02IcAHJX$x+EsGLClBFLpEbYrK0*7Wt^^S)4}kI+{vpL;wy5j zlZ6~2qo~lYJ=;rOaJx(;q1L4cX`^PY(edni3N&WmYMKs4y2|kO6BC~kxfEx2^zfE^ zI0kbk_xqLdyj_@1x8DxF8d^ey@%%Viv@;g=1?zUV#mN!SvE< zy}7V^P>M+We%A5_1s$*fin0WIrwk3c259Z5ZUX*#>bbpKkHiDdSkyKr|Fy6(fW^SU zx!o;@-vmjd@6X;0Mnn!-?c2He$->+nadz+w18eL&EL@R6BO!i2;?(pHW^*NmqA)UY z$VWfV8jhMm9%4EUe#E&IgV*(JCbs$4Dm+X@Gxomv?z=eU;(EV+iEeAcILAK(s@0@AcBr>b-glWzcG11Nki>@mVoGqLD^VJU}ww zvZYm&i(*WIisYia+EHD%&5002BnkGi0#yc!zeP;xIU`5XoDcaVgO7&WdJOKFov{oo8H~{9wLH%KrMVZ%a`O9wI#QsBcj1@yhC|#rSxD=9%#~(D4R_DX1s) z&BOAnz`F(S>Y+6-7Qm-HiNx6B?`Wj$ph4z0PQ<uNESB&)G%aFFrt5y^&Y4<|!x@o$z)0}7|_=CceIf`$$KM=Ox}l!QXb zOlM@5dZPZvrv^x}d8VU1qjYhQ5{X}Vje39M4h=|uQPA<`BOycC{P@YA(j)S}o$=P& zEhvbbhgEK_n1A>|9CTZ_9)F%?gdUxm&cozp2|G0n+*!zT0iNPD%7~Ou5 zan>*$k>5#`)8SuFx=x*S+Jme6p{P-oQpQK?;};;XV7=R%qzCWOMPSe&UA__FjGO48mMC%& zvJD}c8-0ljidk~mw|;U@V8O5Uzq@jYB2(;SF*fd;C`a+o$J!>&7$gW9MYPPYW9ESc>fz;4rNMr z=5I{nbiwMOYeBcE*{<>+=uJ}n`pw5nl>Yhh{AzUW$7i257A38FVH=T$K_3c4&TZH_ z_{!MfSzYr9L^LnmP@DH2it#vTHfp4=gr#W#Nvzuj>%WDt(mOSnUC^^ zR#H;ZWVUflPR#IMByn&FSlwr2$^IMfP#W{Q%cC>dgZ;;x=_QewMQaj_rWf0AF3es)342qEyzGXPZbanDv{uwKa%nw#9JLH$qL+8@r?eKe zFMEpB#EKy>g#eK=mt4D^>$2Tx$Jg@M1p~iumG;mPG5{u@mBCL&c>kevK?|i9K9nn1KX<5Lalw`$_Mpo^{n^F zUavag4RN>OAg5rUBw!nHwsKqwgQ|T3n=hs9l<7}Bs?Q4{j~GX%S3!>ypdF?UDk5h- zY&}*FUe4G-@cYwhd6kaoPqI6C(!)Ml#L7 zWix(FBjqVZL-2X>G}tT0^KYOL`j?+Lfd8;IqId%jEHkSGBCd(%rmxai7)sn=v{fZCa}<|r)8Nz!#)`v`~2qb z47xg87nfexj}wd5G@+-%LZ_!u!H)-qMp&$@>z&;1XUZNL>t}fNW>r1Lc@KNcA^t+H zzo;*6&e=S8c%m0=gA+@+53}GP&hrA7Rw?<<>o$_r$zBQ8}(ziR`iv{!X7`t*pnXeeV;$=8AMq0mXb;Nf7U{c`@!^)I?`buLkbdXtEH07hP_``;l%Fn76hx}DXaS*MgGkQ0z@nn#oI#A{yFRr zKVMpM=7)5=`MM{WyYFkoXQT7u0UrGsPktxA?1VOP)b_@EX+T3e8Lk9&Rn({b;=93S zEGOzxi_b2)MBx3a6l@z%U9PA|5jo2)9B={!bFA3RBOJ=?y1ST_D{S{Uu3q4F{mjm- z>-+g}X4)E>b1z7n@s+aeXTq1cE>CWowRPU^#TnIq{tuP(vpyGaC8P%zk-9u9pC|Z| zEesm%XSb)-5-!{gTnbhTQP)I=%}#8ar=nWoA0#a8H}FIzvRofet9RmvQoSg;cGoRz z4sBY`&MfM6Y>)GjFn9Jf_%&eZ^W*lSqRf``zG+YPRen8PvOofAv zUCO9>y>6UqzZ$f4GQ<-9h6X|swM)E_Y=`HeiU&5pArStUjAU0Fsyqq_Q|(t0J5kG| z2N2+tpqtfuB*i+h3)s}ChnAS^D>+{e1ukh)K~KzuZE7xfYOF{1v)&61qz0OlsT$;# z!i7LC#!!lenvsp4kB?P~R{i)GTc2q3N^ZU(aE2v&dHWNq)F@n=!2(vf(}jfYK@Hoz zuot|bZRwATEY)<>Y<4+)Q-FM24&}6>2D*t5D`B51**g`?JK2k1IS{HP0yi}T$d{K8 zQwI#udmGa99j;$`eE*-_ zO*LU*iHu#4&KgHtN2I#oE@=vi+uLd2 zfTSP4N}f~YU9>P7@7^Qj%%e#f`;eP>9dpl8DUJ(GlhzaRCbkA&T!e$$f?eF>S;eOO zylFo@&U=h=N?7QxDN%m5vPXjJ8SOLl)xQ4t%GUcelss`|Frr3VM3&O%Rd28?;^&_k zz-H?r-ivfW&05DDy%%ll+i*|gb9knl?Ek}5gyLEl0R3!$P-A6={1=-&fy`Tp2X-wl5x3 zs9`X-$}#J3oGQ?P4}I-X^L+ekg596o*cvva+pN!C8>4V~qUC&MPGclhtZZLO8GVuf zE(=UojCl86FL3dY1x%`sAg>#2o)i~1_DP%Iy^?oUN`E!04;g+O|EE9-=J#Z&b51=A zhq*65a_ZmAVADee7nDb@F@o`ckk;_*X+J_}zZ%IT`X-Hj)OB zSb^W5FxFqJqR@xFiN3r)w^Vd;D!{rDCV_N0y1asHag5Z5KKYJ!-9$iQAEy zI`vUWdQh^HkQyuvDG~k;KS{ZDfC*_A)rFI_)eAvC&Kt4#Th>n$NMrdM{~>|lk>#z! zuZ`g|&cFYFNh7g9*UBlNYM=H}Nphj-L#LVFpLutLtsv!DXSTQOTo0Fy1d%1Le(yf> z@-V`O@60275EK8#8rjn`+;Xx%Wr$tykcZRe2w{S*>kYT6z~f+1r;AQ&61G=e^M2aH z(eD%?s)CJ8dW}ZiPJjmg8!%iD=ij|`3B2g3H0nbxNHzjlYz{H)2N4)$syzk()k}$f zjQ?nX^1)ci#HCom-IiG0JjRW)X6KFM`Mghne$S&8USikn6pF>IiB9Xov1l<#D=J`uS%QH-9Ty$tFLk43*0BZp%x2eGRdXQNeut^dQ4Rgzo_kdo ze0G|hsK8F*!4O3XAQnn%o%?wF0)w=Fiq5m^vT-DEW<54yxLkG*^#X(%iOt2eW@Sj- zPa$R$%PFmL&DQ4fG?sgz!|zX|)7DM)YlxFYI;WS8@zh`8+T`t)l{=3So1M4&PeC9xtZ3fI2!>uD`>_|U@goym;W%n&|7@-&m0DI9eogsc-f_OT}Fi7 z;CE>;@Cl(aXFTgn`@KfHMCb=eym zm~sFKRE`6CT98E}*ks$*mXvR8X=g62AIsVO0+6@NiR~CKH^MS3#+_HC@OGZeXdhaF z-oG^2^n7P;n1`S3=7F%9y%^Lx8PN80d!%#ClpZM8*w|qp2PsvrcKlOZq|uaAhC>OT zwmE%$I!Tdp(C?SZ{EnpA`fEjSFTOAsAp(W7s<%CTYb>?6(-JtH^1f1CYPFG(PtnCw zU#Ln@R6d8hhNSYh;^+m6Af!Q0!k{e?vnIn*!r}8fpMNhNB3BIj@I$T(3DLjj4;m#p zTfHlS(?j^-KRodUMNCPwTz`Z8*13F|@^2=gOq0;Tuah$2XS2Adb*Bx77U=mDBX z`n>!oMh~$|{BXK0??!dQx?{VuuoR((0P&P)2GFJI{y4&SXldD%sC$3pBdh(sX6t9X z<^eLVeY1^jXQYmGhP8wu0@>;BsPAlovtGI;EUYGcEl&1UoMMvdoYQ<gTkRsN+nw8Zg1%{$(HK;Nl$w$_wTX zOLeB2kG?UH8rt*!_^UX||v*A*Z$n#viM@C}a=)(zjFfk?XHf|Z1BN(#2LVb7D;`n=CxWVkv zNvf<|W9lmiD=!Ck9}Ss{E5>ujq^G+xT>bGU2btf5MFq&7oE=|ol~sf^iZae>zkiu( zcyI8nv7>CkyM&c2oH{u5XrXq1ak2g!B}jqiy8YH4UaxBY`z-5b>&V^$RHnBTc^JPO z(cA@fwH5n$Ub`kavWB|Zdc2HM)A-Nx$_1gd;nS+cz-K35qPT_IFlr4`hiM0rv*k(WM&rMpoGZ*x+p?*LJ{G$b4!E;4W}*U!h!l z+4^R;687u)t#@?4j+g6fOV8Cv6O5hR-Qo=JECRO|ht=te_ex1jyr*sPv zLF1kTXhuo(HFvo{+lwDuV1Wnto2eTu61YkTvEh~L-o@~kx|`UcLZ~^s|BDPMSJ`}p zLSRS218adye<3Yz5#@q0wkXJ?#Qr1yk+kGD3~qLPK`wStzj?W#Ua4z4{GAn7x^%G2a{Gc5i)^g9Lry&|q=nh!jkAP*V-jkP;xxM=vO z>dv?$0p>o)mETssLIy+|f`5kL5}pmGhlfYB9K8tIkaReqI4ubk*XCs52Owze*J_zR zJlg=7!t5_05+Qs8UQ&^A7G`OA2izu~harHeIN9)&x_$FNYWV#*5vr<*)YEK&FZrE0 zbQ+^^17-B=o~**ECy#;V@P4Dvh{(^A zC^n>pWX$@jq9(PiGRb4ZZqc#>V?7V0>c7eJLKLtnz~0lQZxjX4WF7P2sXJ&nuAjXR z?ka#|Iu*TACn@m$UL2vzJV@YvW^v@aO# zJAhd!8PfS>DnSfUepuGZE+*G!dAI;BjrO4%x48!qfKAUpN%KcZ#h69vuKw~fuQ7c& z!HW-q2RFl=>x)_6V$dHjN65w(-1B2U$dZ<7Box1Y#bMH8>ck$jy0=?lM|nsb8yT7V zLorcL#`B1=J?vO*S4yZYY|VLBQ`-Yq&qF%lh7{%Drx!oJQERAQGkRJQ7KeoiOZ#iA zMXVyS8+HMHTsB{7e#=iy{20Q&>_RsVWf4ajF0Z{h^5uRdB^n*45kI%x)UaM}g+6Z-6TW{C@kk3z>|MzpI}2 z%P+-|&3R@llY_ye?k~i7ezc@_C>ozbc@ z;CV?^P9g6xn%7zrCk@;2N+RNTMvqBY$+p?tuPSsGmt(c;9tjJuBI4C&hT6ZyRC;^# z<7fK$X4aP(5!ErV?zEw{Yo1@c>7!Bi*o3{&H__cqfGt^9Pfg4Q0L~(+6=kQQU=2{Ni!)D15XS9l z+Nj3raAqcrkszk=&cm9dmLD3$l@?>Pb@lZ|W7*Oj){@N1px49V;v$FJu^x*~)ibA^ zVQDcjf9e+HN{0;@IeI)$yGcV$EoL9t(ILTN*rG?wO-=n{p^1cq1nT63f18rxw$T&O z!84dHLh`A~2UeG-ohu>O4{=YQ zUv+*35?PJG7ocG^yS`7xfIzS9yWhE&wG7k&{Bu@AH`JdrcBB<`c?) z;lCopEte^`NyeLxGJTGZCBqxppPzl`-M4xO|?rM4W58X;8FM{cMktk|FGl)#{MFVdeuLxk{cIU4RvXmf@ zv%r3n6$OY_GWPVSbm;}wWFG5jYIb()M%SYbAdy3l7X?7^9S!hZ0m~Jn?&ZG}9_t@( zUq)wSL^d=ClJi3$U^xyXvWGNa-$4$So5_HmkKgT>9Ms1Jg&M+1*0+CDlwl=Ad!FfjDTUj=`7hK)^BCSIuKdY- zXT`6?J`c0`cHcb;#ZQ9^AJ5)wN!@T)7DJ#C++Y!Ue|H76lct;X2<_i*AeK^t-X&Fp$rpbOHvezIgh2TvAs$E(OEsr>>C#0&+W6XQ1rh zVIAnwIP*wA2UKY$1t2vy~%%Qk~(Sb%Y-JYfGamkkWc&6xZ7MvB=xI zefU%A$bW2zaxh>%*6{jWdGzwBl|P|R_x~Ck0kuyu#^E z38NNO*=LcNz71ENYLlYK1`N45CQk@E!($0`gk4?gejS0`Bj{5`^lV)G!NTzViW1E) z@b)j^ey>*U`N6_u%|6#;)9H!Czol5C06xxlJC~YF@miqg#7At8J6kpa_n9*N0G}6Z zY*=}Dc>o1S$jBhCuY2;+ba!{7I)zGuBS#xPN(=Zs3Ii+JTP>~7zki`%5E~bofEVv= zq1tSn1Ks-%A7YY{LO&F!z(KIc`Kf0uzAL-{Cl&vTRh)CFKtV8>!Ns3gv90c*0xJg0 z_Ukl(&Z&w6oezZd2VJ6aup#T!FyEM-fhr% zUwzwPxNd9nk2EWn_J@^>4rS`na=z4uAdZOH)Zty5(I49pezN9YkRgnd-ST-g8NNW9 z;JF&VL&Pr)CuHpy&r`(3$498wD`V8@CX8un5?-tR_S98hRdwa~$7y>P&5uje+uglR z-d-3YZV~=)1PKIWsJ)R<*1J|O@cX}e5Zy+JES&q3;2DRe z3)oj`Tv3+W?}K*q9P@ZiB8FmZ~x68 z`k5-(1@o4vxiQ$2We-EHln$BbLD&V$H))lLs?t#+{|zZA+r0VUm!Yk4ntF9Cz;NgI z^a#t@#dkI+nfvWIx=txdxh%F~@uqkxZ5?DsNVg9wNIpJphQ^ohqK^p2;huqeAWc6j zn^45WuBLXK`{wcblsn4y64HqGzcCvpLn5OT0R22&W}BD$M!~Y*BSy2X z*Na3z!CGzmjL_Eyii|%LM90L?xQ}hDuTv)uWN8$`;#iIemQ?5!feFv}9Or41kH<&A z`3QT7adxS_Ano7>mW-sT3k7{s&&#E;z9fPJF#0ed_eEuKkX%g?*ic}3%%-V1=|vg$ zZ3Dt9>)u$=i1zz4q?-cHc6Bx_$6zu^T?{Yi9&5+)La#zT5J<2A$t3PrOs?V=#xtM4 z7iB5&dKt={H;nA1#A4N+Zs}^_L?R?GY7A9>~p6LtBA*#Y|c@4bY)H;#>XjL zrJMFShfXwBaIY?;n1t-FPrnwriad01IAo-z2Z41FD9cKc>~(6Hu&krKbVJhq8xHc} zJ|BM7Ro@hr-5lL2CjMq7tu@O58i)?vj4SiW?3vKgaK5Xd&kyqmI7s)YZqn}?bKzel z@E^FVd@^RnQNx|6Tw@l=098DhP=j?RyijBNLG;0SI^bZY;88%-uf^0HE6TX2s3|&~ z!bP99()Z&_K%cQFDmFrmE)V^x`1zCWxI&O#IOmbyDFErnUS5t!6no{%6XT>|?epho zLDBy8W<#XS7TiL}5LDDfR}HYU;)UhvzIe{?ZSD$G@577L{`y)%o|E;Gl4-VyW$b%9 zo^&FcKAPB$CEvdSGBo$;;lF~@CE8#7{r!DUoCPybF?FdYb^TsL(Le@_>skUcQnh`S zRWw$TnPvtgf$?>I7dLZaQfhi$q6G;+yaj$F^r7dAHf2@WMu=(E=wPE1y0D5n!Uzlf zN*MSkhOc-R4g^gC)j*opHlLT9jj+*K6m|42D*@dEJQe>AB?sBMVx6>?JWZSh8qsK% zKt2M=bY@!S_yfL!f}DG_04&Z$z%NBK3e9t`uj*<=`b%29_L^Vasd${i8=2P%yPwpx zc<%;T4Rrih_6i!SyHOrqwhl-pKwP4^4Adg(1;j0q!hUci02w73ciq#+MS{yvMa^eC zLyBirAaN(JzBiK&-hn-oOJ+FCM4cJSnd!oYLz|4*fwqto5X|dR?|C3)W}b&|qPc9E zs2guGc3;_es{xiYhG*;Lp9!>s@MRupcSs-jJRn7dk%F9aScRY0-j~EcpS08Diex;D zCPHT&D7{$ht$lsF+H+(RpF~&=2iaepI`3ZZ7t0=yk}@=r5nM!xV$G0Oo-`As>Ki^m z)m$&toDA(%H$O9{|2*uy$xvV=3|N>_^ET-A)22<>ea+l<3upmzQL50t<*gfLXgDE@1;SRy=y+9RPSY z-pp&ZbVc|T7}!?n1F1`^-VOoSp{5Rcg+GXh$Pw!n%=U0~yA_RnLi^AQGt9sYUnPP- zzsIraL|A0Mdi-azCN2pSL*OI?+ggbmCO~g6vI6`U-T%qw^43k|Y-*wKxmc}o%>4G7 zFj&g;#)MK&_*imo(LBg$Idf%iX2cMu12uzxwD3RPAE*Y}WcCmUpy;II8YqB*fPR!Z zc@!%0c0({hczwkOhB{2Bl=i}$s3)+R3?DzBeh#?%pmRogNe=3tC^-1E!p6KT!B zkT3FRUYiBWU`8$Hykujy=>X4k=hXiUrpNtNHZw@0DF7)dNkT^?#RmbC3dV~Hl_9N( z72p{;#6dqPCsQxOfvg+%e_9O=_#5C6zr;2AA^$k%782Q!Ol{f!( z%3HCR-xcnPW_=zXU-v(0NnLRNw|nNNKtGKwe6#r%)g@Si?P)?44({QOjvS7D)fLMH z!Q4D~z%Oj6gY3rj&>O-}g9U{*fY;CU#$CyX_#H~6+g*!_Q=Rj@t%W9WzyY9p7=#ZC z3yU7u0%bUIN=jYzPCE^ACP{|+X?-NXCkuM+?S(;k^JhIBSKHvygxtz{FIe>IaKLkx z0->Px3y0*Su+-fkLCzEGb^2al`c1Ie(BKQGNf=_MSK{<^p6?J___W=w=Rx9snx7@%ZCqWp0Ie zNR%)7&ZRR1t5fH1GX;t>HiO6#x=FkPM(@EvGwuYSp8!q!W#iE$dXXta-9&_Zc>xjV zscYVV;@iDAb=toX@2Sbcr@T@AskgYKqMMWz%q0`qi!V}djh;x$VuzBldqN{`a-k7sF1tcJ@u2wTNIhpcy}+uiaCB zUe3RY4yZ#Airl>fRtua7r$tVr-JYBMd}q*CFV~Nr3e#eay-TkE=kjv!?Z!Q4^;?Z! z@=KqICI~thk^6}S0E3Kr^|^F_yfK4KJGPRbZF)r1Z-1&-v!M6(`a8-na1~^W z$9eMinu2xuDpRXc*N)J}L{hr26ECc^pPA^ZwvV&&-+ZGQ>vv0!>x~v#s!pthIM>$J zWav(MgfH^vFHH^d-dk2Veycq7#9z;!7KeiD3YJL^G4RUhfOYQp`!_V_u%SLt@MTY~ zR;|=*S>Yinlpar!H4Km$W6{pY8W9(Z$nx0{G4o&mYWo`hrLoZjzDV|@viH9_75b?s z4EKS1e@$yCGK?t2!C`~Gxdr%cZ5ScYa8Zr_Gy_U-e}<{zHu_Sy0H==hdGHxVB3i%< z)Q0zQVW83PCEMkfD^r9QZeMtNq?~ga^h0MeXZ0h>Z$gkDU}@)QxM-F)uQg~JDz1ew zzVShC(=AXDdF;zm!fKBkjR?@MWy2o1M31!{#+^d^g&DMU;VZDPo;^$Qo z`D4#TUH2!SJFVb@N+#4DerQLE^swsbj#i$PfIm^Y^oX+Ub{S&yOHYbrN!j=+o{!F9grqn^N>$y?gicvs_agrJp>Ky6*vdP z>0Oy06gvkrKJ6~5yMSgjhH&msm|1RoywJX(eyL?-y5{Kfk00SGjyKn(C#COSK_42P zFe7AK-<4)u&!MyD9&%r$)YvZMzd2iU@+&?&^PDK|cRa(wz*KkKwc!XFMRh?AcS*TD z;__=|08V=eJJ*DF?PY+{bUY1ur(c6hUCD+6&;#I5mV~$S=P%p_bTkAl=>3dfepisBE`BC2&}SjA>K+1N1QCJLSgY)csPYO46f^4_m*E1wkWl>VC!M8%Y) zrA0Pm_W7xO`gkWV>vx`N$gZgRlvh79j(=D#i8+y-MjcuSx1eR;<8(0U}P2Q-9v#HQ4z+B4vK>kJWM0L*F;E zB|!sr0HC*TbRAo@XMcz-=w295_arcq5o&@G#WJjTF#4t^&J6W7G?X;y>yg5Hd-pFf zsJ4WS*(4VhoplVQ#${=!HqB3NsufPD{H*$Ya6jRIeb*=I@&v+zD?M~N5rqDNK0)z+ zNX7Y{Yc30mjAISooq}tGpODiYxd~%+x7t|s@23B>woUSJQ9H!Y{A{Nh{*zZ>xrYd` zKsba7b+v!OyaYPzSgu_!xE}XZ_PGHCX81OM#LWGelu}Wa;b~{ZxVTL+*jUuwSlau!HN<_0t1Y!%kWwW4tFCVFws@<~XQ4E= zWm#RCOLR)_kNs*R=%kmz9+n zk?`~IT%3TufFqPv=3L6m@r2^b>K0#I*Iw*4fW?9F zDjaB>(2aI;+$;vQYoq5~Y|F%dCji0|N;pY^Wtk+$m zC|ITZlT-EjaerR#gogu94{4Bxs&~^T`9I~NkJoRU%EaM^;|!jq|HVSld zCgFr&{oTQI<1pPK?oOQzkE*odVrpqV9XbxdikElFeT@wv_y@`ipcNLy)h z`7?>;i7`~sk|q>eHod^+xe4UuUNVkT32qxQ!LdWjF9)1u0sd~Wy4X5WR}5!E@8HLL zAhhY6&#$`1-PeM?v%`6#uCki!)Y`92%OisvgGAG!UC}>0}Gf`mzU$G zAaAwzj^>O%6|1n97g;eDy>k` zotjnXphq4CTL;>hBGQ{Y=`Ix+Z1&t-?_?7EI4bB-iu9zx$x(UwBM-2OzvgCe<9N}7 zJVexjXP~Ng!N?yx*h{-*KbkB`K$Ge_jlVA%BCzI(LByGnk~LLKI$;Q`8Bx1fnTVXE z+OaXXH!fPUQ|(bwz^?xf5%wWt>iPm_YBKbEJ4GC+5Yuf!{-xN_{pjyztE+RsD=Upf zC!<#$8ttgb`fYg5=^d|PR#}VFWwBw-UOuCacAl%_Dv_w906f_Vzbj6H5M@kR@Ax!{|HN<-k}?;{fL_>T?$AEVek$Sj=09o#2n<-b!H4-~+V>kg zAI8dh{e6PojbcIcob}@>HTezsd?dVvHe7k(LMET_=k^5JznDq+gcSiXgM+a3sq(pa z-rF1>5G!lVImecM-X(f*wM2B&-4WCsl`hEB4Lr-BWk5JMh@FKrEF1$6EYj{Pb3bqm z49`)84O>?)TbGi}LIlX{mYR2Z8zApAFUHl)DG?yB(xx^y$U3O$^4M-+2oJ_%4fFkF zyTI!LgwZS}_Ht1V^@yV-GthHm@bg?(!?s3seR+Dt$GVlMV;9vU1T)lfb8jaXO@qGH zqj=%Vjqe|fRMXt={}se##ibTz+tsfYHEk8qiX^~FSq6Q4zzx)jjj6oYwfDuZWD$8t z+%^EwzDo<#F6d{y6*J1ur8lm^vH15Bc%#}Dmc?veFuX3Voz<`QMe$`@&><&3h7W~A z!;5A06?$MoKsCs#QB-#xNHwTbAQ#J`EihBERg=Uq>z?;Kas$5k2Y`Ktw++x>ZxLX_ z(Y0%Gq4IGgT-n0@!<(BZ@)wVAulW<%ArNVmAugDi9rlX$@S)th=>vY6#k3-nZ#O3~ zoM#*YsHI@s49x0Bg`(e7C!y!{5FUhX|5{L>I@QaEE;u~AHYYBwwDN=U5NkyxcT1M` z-I4~sz&_rlu8j?cNe7~nAtJo3E&vPa$;?&(_A>&1wDl+Hc0y zK?x2&BrMy22|}`Z$iaE<1;R=f4&L3eS0xqS>z95Hr@dE|CNuExEs+bYPkh@33vw~( z>H4IU1Uyr-^-)eL#%F0BGI#MrJ`sPr!v~wa0l36rT9W&wkkWM0SlU+@27$8k-zf&t z7BEo4E>;2BksbrL3I}e0HE{Hs0=ps$9T|o=hDiGKbQlN+q`<5Vinl7^rKiK*VcMJE zmauqlCFRks@!E?2&NIb}BnJ)epi4^{^H&2- zp!RHyZK@z}!0;6{H9hu%A`aHN6|z8HC-wkp8HoAbCnt8JNzTm-mp7GB)H37-NwWUu zKYN)St#eU>81tG47?d$%$j%&_pm#TkpSs;a70!0Shl zMr`L76clK_eH$HKKLbJy=kvfVP{06PT0DR?@EF1f)6$go?DAg_c;8l8X=e<~DX>b7 zX4ZAobg`$KolN$^seNnFhkp~(;0)vc!`FLE_n+T!e80!hb39Kyy>IvXb-(WGx?bmXp68Wa z4$&P(-ZZVeeEIU=`0w9)_;`4ZuJ-nnCqZ!g@T(>3ai3{&;Ztt%X7vzgg=**8kt?HGE;Q_~jgmnoWX5$v^ji#J4&Oes zh@v?*Za9D1*2TJ_JrOb=&F(8MQ315ORJT*HF`Bare`XeYd}^8RqA|a+N8-9w8PeH* zmpH(TvA-=q5>A_(Y*yZ-iV!GlgoNs?O262YudG6u2Sv+*@z49QFRHeMlSq9->`rG} z4{S2CvPB1R`ixideCD^@W_v&b&^Iy?(2ZsJtrncGcr%o+k5e^yD%VD- zh)-Ar?~hk(W)__f->QIbDoS%JYy22*HM56$CoUl_j@!`M7@ zuHY0?HO}_-?pv0zo(9UR%StI;JpIL==84}a3hXp?$7i~0YePu=o=`k9dtJqMwXB@S z#?|%gQR{T`(*@&|`wZmEDAb)raW?bcT26&l;`dXpd5@1-@lkYVv>&j214T?EMubb< zcEkhctVI7}XpMRao$&%M5e|$3vZ^^5=ZgZ*XYJcv;wX}Kp&uP%0ID|ps??#RAle(9Rr0zLut zjueK_`{UQ4*sOhiXMY!SqoSfRLo`1mHodWTb9KFv1if1plJ%ejx0zXbm;PtyxPhTd z;(9u6c3`;Dd;0szL~ahAv9`7*N>!tKKHB)5q{MneVLeaPpLy-ApS1_J^HLb_o*F8T(8C+!wi(j#>Z1_ z!wchALz+&Zg7R~Aa`GA;7;v$$w=YUGAySQG4SuIWZuw{ z%gCI6CMb)K$BL1FY47@u6bq|W%FBJs`Kk3-JqzWA}_o$pd(fMM;BaXw@T4hebhr6jGTH`SPo7l3s8S87sbxJ&DlQAw7_m}H+ruLwO;u3Pb{if( zac^&(-?75L$d22-uY$a?8Bx!NAN`ub6v;hF$A&a>FAXvknKTn>_=`|wSnyX+&~=y^ z3mxq3uU&}3ads+v`XLMs>?G@EvHzY+VYWx(=M1xvSgCW`UuduH`?K2G!E92;-$?y4 z^?Cft+z0b?>chegpRe9T_C&uQe02|*GgPHxRAF%!FB9gx&Wg*VAia7tN}BB#x5sTw zcnI`&#?8aiP$UDT;*;8a32X7wDU$s%JuGi+ZL;1}DYOw9eQxID zv{OuB>~50!o7@ch@X~7*|Dftm&8yr(Yioo@M)kgSk3IgfJT!JFo9g@Vqlafl0c;SX zR9%aIH%{l0ZPZIG(7nQy{iZXS61XEFxnPVfL&S8eBBwn?cO%&T%&VeL26(W))=!y% z-wKZxp2eTV zQ+k-&PUrPyVqniSH+lSRw}1spj8O<>gz7fkcrZDHe2);-yq)TIH}P5*LA%KNOW$(X z^C%4nm=%PlR3Lg$HQdWIsqVJ%^3y0tW&Cc91OvBh_%mQ_>`f_28r z%=q~Ds`%TVMM@ma^UTae+ffEeD1WEgn@Yx=OO!5mAbI7N)4ay5<_3}@+8@+!L%2XKZWvc zv2lkVJ4P1j5JTGMpK>oq5tgLP_>>MQhoLP9JkEYl8zUrD{k&LddSm5ELINc-Gt0@h z%EmEPw=mStPMrE`hYCcZY)#IDLzcn;8u(OO+!=8No^2+%KPMvic-u<|= zwgjVv(xxVrwZTChD+%$5V)<%S-)G#u;-8?Ga1jNFQ*+WMM?fP(ZF)}Yn@l!L-^b=a@dNl*+YR4%LAU-6=bgZBrCGrIQ? zbtEKeHb=$Pf9AX69p<~<(tpuk+bb_G{|K+ow2ISY$JXU@|6N?^rewzQippEJFvVT} zZok>GwWE3_@A~dODvcwUNoZrMz3|zmA6CoZq*7jt*IV+=bSQ4{T0`^V3ef*h zANb^=PJZcwRHqG?@ji4L0ILdj+8nVIoWAKr+98{oqKP}?NVt=0xUUn4(Gao!OKVsi zpZw+TZPPK>Z=hY2w%O)vTK^10WW&Spdm@Rd{1w8yQfc(KyZw#ssL$FS9^5?cn~gT+nwe+6Y|VDo2K@b{qIY?6?09w3 zKmdZY_(0nQr$7YteQc8#1mXwiz#;IL%0LbU76m;gueGe62`Pvlke=Ndfb4)xT=F;O z=C;1<7My&C*lxJ(O)z*F1yG8FDC7wMk)|b_3ZawVadM@tY?Cp{LEm5dAxjpI5WV@OI$HVRmL<2%?63Hp|h zkV%u2JT#%HDIj7&t8G{8d|2`-7RhU0goRJGe|&rAKyUQbdEj&H=?~>$^Jm)maKAHK z^6C<4y$Ht@+6dmKuH1mnb@)}218vyhgJygtujE5_)hOsMA#XzN*N6stb_4?TeU{JX z>tPc6$cn$LaV~Rk239A-3ZqgT1DX~jbeMp}AYfR;pBE-yR*2%10BI}Rqee+Tvc~~F z4l%kJsL%-44bj0JyGD9|dB!UsU;x4d)U~~$NP0?IQ2EpDUC!0LggS^nCw;rZ+~>LG zg@_HJ;^{>&m$9+v48zjL~wEMR}W1YTeXQ_I)MN^?Cc2^- zkG_y(f4*M5LGtOrpI?7|W=`H72?BI_l+4z}rBgrKIW0O?v(_-*w$925zobf+6>tv_ zP9$rmq})X9=&!D&`f~CY|IGe0KkMRmx{@=Uumg=Xl>KBAuHtvG&iv_2XT>`y_R_DMP0PRw3vj436*DZ$SQ|Y+rW(e>EM+2~{kra< zKdp&korun3Z-0 zVt-xee*t|EXqC$O)^>_jAl@EL$3WdcWabtghcx(?t92{(b_0iKsIoj}C;J~7vAX}t z6>4pO6@>PGG^gFE)Ns<7^ceR=X^!)w8li0&_Hv=^IKyL+t1R|B- zM34A4Oc7~;V~OJy7SbDreWQHWhaMXJM}qrlKIg%RN>Ir=a+XZ>`$ zxgAyXU0)N>i>q&ejE!?zR;1gCsFu zQ-X6&edi$I(oPGhS!}c4XdsZ^!GVC8ecoq0ya-G8!Xw2^YeZEG+IFN_S&KaPw1FoK zZ#(%~-8cZ^-|HoVRv1tsU<)XIF9l~8%rF~~S_!TvD}p!Jd77?HW`o`Y7=%y1;iT9& zPSoXj1gP>vvfFZ|bdP>VZ%Cj(pZ>%k49UvH$MP+rDCET2^^q#d{9dn4Vq&7-VfIO8{^;51owu-N_fYi< ziDWN=MWfvmSbED=}TM5pFxmGRahEB)IrP@NgTC&qfBc4*0C!HgWg z1;|*+6IEXl%`HGz6CiC+Eslq}-&t?5h(s2mb8$qE;tQ>>;pFX<6!*u(e#O^WLAU|@ zHm|Eu);tz}h`(1eo76IB9e-VbZqe@GcUZb*SEIHC@&n!usr=i1=z>h%gIwMri{(X& zZ<)5%YA7HERH@gwW=B@1z%B&RHvR##v+ud&J4R>a5T{M#APH4p6ur-Ge=txauKist z{T`6&vGDHI@bIv1zar~Q^k=ldO;tK)vGg1im}xM=xt?WvF#b}5o(0o4FV66^$G=O= zDSY>G(GmxTv(ewbI{$glA$7JDT}H~Lb`|{@Q_b{hLrx7)0)Fg-2!Qg?we&OPgYM&r zd&%AE`D6<(APSLPI_dkkzO)c%NqA+(g|d8W)@K_tvUpr4^DDD!YAAU`kcuGEEo_hBH@ag zU}ysy9#I81C43$nqrbdp5pV>*gZv<~UqJzE>Wh#UylPWY)^%i0c06t1S;m05j=c>K zZjp}#*cloW68qX(6TszT;*+y)(|akCeDCzF1Lo`jd#b<0@U@Wxv@Yxk_yaTek}q-y z156_F#Kgq>TvvySf&F^))QVT^GTvh3Z(VT0_-9&!!NTGAOxM67LIdUAqkJocQZ9`7 ze-(w-Ms1;&hsP;suoZ|TpjFR1kzf#TZtRQ&EQ=|zcHA#H4^P~euYhC+C&DT8W(es@ zos+P-J2Vc*D(o-#io0A2raJmd2pbwIN(V?IeGk8YB={zjS2LcopT5NqHdTS`gH4+>UxtmGv0}%)?vWd`9>ha+WH<8WlN1;GUb3Bo0 z90(bJztt{>p$kF;*4A&$J#fL|f@kDNY*}abWcWhk&^M-H6rT)hJ2)a?VVuEZ;gRhw zth(Le)4EgA!FPO%5rmK+R+H1mRrs#fG7D@^Q1b^Lz^XIf7Rzm4`O|&+)zDk!2`QMQ z7>+_JXNK1j`tZByrz^MXdB$deMiG!@S>$Tq%C>Uq?Uq>+ibxjVvpUCDydHIfeMcYP zdSmcj|De^4PG{8RL|t^TsRFfsndGe=6wxL7&U63|FQ0u02zQ#uJfrqIxrgHSo)or^ zIk@aJE^YdFn*PKT5TAf00w6uO8YZ%9>6_5)Lx}=ho1ZG!+HD;gz7wQS*rY9YLxat8 zz$o4Ap3Gny4Z_cI_=5+c$_7|j;TSFMu-$VvM^O~d``+|f6j6MEG(4-CT0<Nn@u12sI;i4Ey;sDG`V;tL&KhBge8g{A9&R1GqT6Ggd`WID>fm z6O^hgR3nVQRqEqj76sx_N*1Ysq-S#!fWPzEULscS+kJrl&2`?)dWpaw6 z%0?ooA~b;#S1Aj4ozE^v6!V;UP*?MY3{uLuvg9d&ZI;P8WJQ@QaH=u^qc7#V9%%O> zhNHGHkHLEYVRvdOczz5ZolpXl!edH&$+7vPhW1A#T7P+sgQ0{dl|Wd-Tm6#S zij90XWWX3Y6S9vdh@dR@^>ci`2`rOnV1&5yj~@=BFpu&1eIF4&l-uyI>Qi=P^x-;(t%G)l5o}QJD;?kj;+78+F6(n9numX7lRPzk5mrxzm zlBke@(g_`R8WoarA=(<FxY34gSpr}$?=CuFJxR>FOo-5by4Rk2N2HLwrK{n(s-wsPCS zWxx$q44UH*hY(YUlE%xZ2%;6#2L$LheEoz&*h+=N|C0OnuO!k1Ssrvd*#LdbO+72- zY*1LZQv@hE^Tc7pRgXRi2STjilNzn66o!yX*}0cNJLTCK8UiU+InwJ25T^snjhTm8 zE-MVp&*0bg-fp$yKp8!iQj|G+3S8ll+*Z>MMWH0k9>4eYu$oVh4`I01YF5x#U26`6^Tc)&#m6kL^8+8|sXV=bB$7vciVGSxe?QUJ>Kn_aLMo zR#%W)=4e)W8oIk+A@mXVW|h6VlT^=-<99`S#d`wL!lmg&#R-eajgpKaWgGRo>vHgz zGY;-v9#vI2sU{Nj!vG<%v_awXiq!L>)5vyFi-WuajPgMChVU)-a(&xk4#UT0`8k>E9q*vyqMHt z`BW2)Y;nZz4&>o*e>gOMA(x3;@8iT>g(5=Yp*S&XSUc2l(?7AcPWcRXUJnnz;&oix z`R96*_GZrh+Y4egS7lG#>syA%DQTGu4Is}xtZUJG0MvT$or;2RjaV~OUSTb2 zb+UzI3AeQMWa?_I*LAw@lt_6C{#wYxki08~nVqYu%bS=O1q|AoAATgvl0}fOc*|xV zo_ou9)7%j)|lA%vZ*Q7>dNcFI%le-B{m`?YoHQF+ zgp1k|yOTYB>O|Kxcbu#a4^+~;-do_ZRrgoxs$(^rMG!?CYuTrAp$y-gDeTe>(0?yF z`U6ZD(B@HoDmt2klo3$*`fC?ds9%2@!SXuH?ReLQtqQPjY<1>rI90oB4@O?3_hl+G zYe%XC$VH6$-{e0I7l053JFS*dv;FwT=h2!P<=ZuqW>ynGzXaYi-XO(b^thOR?tYVy z%*}FE&33Qq6ojBYr>c3-J^V$2v^vK?qze>J#FRCcZg&;n6S5qF2$D>~xhgf##(FFD8FMo^OE0H# zP;|pUs;mCq%;_d3e_qyw3tzA1G)ht29PQ*;l8T}(!4@^4zoO<$vF+m;K2r2RWeVNy zAK@RkQIC@}9Jh1&7Nxemc=7NcuNE&!LZO%5(&@9Dj=CUjQb!&3PbM#($=e}lsoY6V z|BY@s`8OwDZtx336T!i^?UM>?s0Zh9@PnbOne4!%HZBCxLG|UH{U8M}1ptU1*7cRr zz`}a!J+(=Eujrd4rKKtv>FJ-T#SR>L@2DmVd>;cVDA|_$uAA~VsyEmi{%+6j09-)1 z>L(=^prAB}Ar1CoAHgGyRN)s{pSlqDs<|dhL}fo_zmDmL9becIsTb8=MU4A8+6Nq< zoK3w&go|tNlfu-3>z2?R6?$FK)iLz(;ZFM>UST9tQYa1RH7yGE>kG+B;oeG;iVI!W z@ZMbE#I$rU@k_!xa}Rj3MwB1HcMq)~iqL<+4`r{K9zZ-3IxddJUssvZdO7OD1S5(s zTs4i7PH{2)QXK9F`8?3MMNv^NM5@ zjNWC_Wp4z=2sW9;;2Wv?XZfKIwiJ7=BG&=zCAtl!B&4V8wSKnVWp-!pm@I_saJ# zD1V#eDFeH|Eccbmq+5>mqVs}x#jkS_3sz>8A7;N%NZ0O*mduUZ75w>lDC z$=2SF(cGb)JP@ms8l@7%ZcslF2`IV|7Z?#jgQw3rLy+;uw6S-UdwR-y-QU*+npIM? zLRVBc$fB=5KWo>RaryY7x0vlwvAN=yvBk{Mo0Fs&$<;mgaRx>%+t-_(y${x%LID$f zGdGUW5bgm?+bclT@A`iGJ+0kDgedWbSZKtEKn!BN7|Elk^4RG6AX5%rES}LjMgCwE z(_v4{1NruM4`X&tA3%0_CdWx2lMrh()#8cTO}#JB5I$m*Zsxc|q9{1!Tct-Im-Q7p zDJ=f^PH`y**VO1u^_qZGxyID^9rU8Yn#$k(Pg7muak4s{!Hwy2pMwq}rZCSP&s^Bg zC241G(~RA*wb^yCVYk%d&l{ToFe!hzpmXcwP49S{l~zUK@l9OQ4mjPCK^WZES9`_K zb|FJH4?5CuTQm&pt#8qX9aYp{v#Rit_O5G}?PMnm$;;ADVR|urE9GaAp;W--Y23A0 zQmQrUt6ivkE!DRCkxjPVvs=U-7A?!?>yt>MDft6_-vawOsfgK-z~k9r^K^;B{TY(j z%nzJvPcE1L?zdff{fMBQvM_!8Dx7VApB#K(9vtNvFh*27#fGC|*84bK^2=yy3ioQm z(+&`@{2mE=#H{&fPQmHKJ-qA#d618Zn%R z*%nWrEvo{5_(Jrt_kwMto490H5+{#VpvCyr-Ro9_Cbd+F{vlUX5YCtE8}*gr00@nzkJTDUHTXP0P}f18=q9%F8W#ECST|b*_5ZhkA#m!?Vp{V z2XyRfi{ds-=-K|vr)3sf;94{lh#*;SWC@n&rPs{3Gj6i3!WKsNPT)6|RlE{newXLY zbQz$|x0phUXk-1qNP(^aG-Kj zP>a%sya_QZ%)h``Ohx!Q7`-UR-CT}9ZS=g9OHia@zD>mrtUH9sAM2xcN6DXbJ>)tS zK{S{`W!H)F=K!)K3(yE03m^UX8bfqmLzGMiSjQcQ7=~3Zs|tbXdD}IT*%UcAJ0L(N z95uiw26<4g-E4y^3Z(!I2`;ZnUFPCQ+wpo?chJ%m|IfRjK>QdU*ng+&ek-*gP_VffTDs7;_r=h>L1Kkzv{1d%D{b04AJ*|fb_<1` zhF+Tup^p7RnSBjg!kS`|cNgD&LlcNYAp`525Zxp z6$_5j>q`ZW5!YFravJ~65#&x%zQ#1l?(7c(@qtYQNEtU^YDus- zHd>m7HG&#XgSCVppCe?gjG6$YwzSXUN+oyw7sk5G^QfW8XWVUr{O@xYh(z1UbT0`v zUa<{i5kX;{r!cfhR6jb)I>U$2%XV+)Y^#n#ndk^|4IhKTY-(U3U#$9P2 zEW7#@=eAhIn^bf&z2#t>)>$QWlC)n8yFPx1p&*}^>V-<>no4qUFe<;q`b_0T z#4f3n2eH*~0pP#2PinJW^`kxyWu4t`I+?fb1u&w~Rr8hK$ecc+p59|_qcf{=W(K=I zr$*cdZPaJ@eQy=UxJBz}lO9o&&(F6%N*BgWk~S|oSUnj^VC}p(fBVZ4Is2vB?mbRs_@=-i%;Os8v7o(UC55X- zRFAWc!Eo_w)a$tu4{|It<~a75DE-#8BRJy#O(HO5ksU7A`^I@9V+*!>2?UbBnKc4j5?LYWK^?_+=v1 zAc)<=d!+egK(3j5X-^NVL!m%`Xl@daYZ!Ka(PAY+TXQYpZ4hE*0ih)ZoD;MxaX}0U z7Vsb9UyW$49n=|G{;#f(7bk-u4Bc?d{?ArH_9nL&9Wj~Bud^RNC9W&dgMG7Uf(esj zOpMda1tZ+4^l3cG1LFvVyfl04T^pfD`&~i>snN_PcX_WHw|Rvd&;}gB22n}%Ql^cP zmZ(`0OcScz$CE@uA{3=k5(XO*r2%l{MPbHplQ*`F6fc#h>0Ti)=*uM>`*n2Wm0a5> zWJFTvRk^^#MF_(mTlkn4>qVoy!?6|>m&ykOS!-H}tyx3N)6LkTBK=63Rno&(mJ63Q z*3Pb>bgnJXR$h9=vQ)E$ivOU3c-a3h-KlQ6AQu0OXCA0N6;Z)KTcxHW+clh~*B?N* za9O~q0avBCHBkGm37OIB20h*0t;yT6^(AE_2Te( zpu+D<`fn95d^n>k?-JyGO6mPBmauf1s5E#zU2{9{OWqv|u`1&gzKl+r1Y1%Q|60G~ zV?PR>)4H|Kxn(;qn_W2D%QJBMvyXdfc}$&4#pWdtLmI^4g0fJo4vz7)OYZ1V;-Krm z)no{vic_w_Ihv=|``aqJL?ZvTPg_Xuidv1pOBqYAJM*Lb4kJ^W#}~xEbBL$1bdX9#kvV`E_O1h^D^Ga9?)x-rs><*3qtB?9lYM+}JZS-O$8YGa{{$&5I&hO>B5eSulu+jruq@r&Wb`~=a( z>f~DK{1|{P7XXG4m(|TNSj4Y2g?TD1_?YeJ9Y2%rG=wRB9kt=>4F25&v61@{v{4W1mL7X)#RU zpFN3Gi9cGyxhq;CNiJm5Kgg3mK@wk$@v@Q3c5s{3X_6`8V}2J|zK-~cD9vht%NGOm zT2}IAuNCj=U&qP?fSYe%w7@I?V}XM&5uLrgJW(%RynnVj)-J-v@6s#o#0$(J;{U(A zf!|Q=hp$Ww6dznK;8=B_xJ$n6su(BmAs?ACZ%GhuQ!Y1S08c>VW3O%phS2_;i;pT(baqlcpQ{K@R# zW>HIa&!}sO=lkSzax?83xANhcg05?BoUG(-LL)k^LZjXTo;}QO>v@?&bhCCsn=t17 zqoj9SR3~al2n4%zUE#Zz{csgkG75*hKM>l4;2VFmHQ7J}7xoDnZ*LUarSdpDy++!Z zgFIJl4_*BSONo4SZi8-chDQb{OrzRpiM>CoDjJLvIPnI;GQKQ2LE$6D_hF3w6veXq z!f|=enCccOD zS;Vik*Su{nMF&k9C0!l){RI7c!1}yV`FijbY{~H5d;Mv$C|NQ}xFu}f;dk*83V>!P z(ZOZfF8p)eSEOX_%)twNI<}z7r8i)rIPhW7?6D{zjCTL@@0OarQQG$I4)(`e+)h65Y1JQ@8J~PS z@bIme{@t3Ke#XE30dT1x;C}U1MSID?Hhz7M9`J&*W_Ik!1|6%k&m6ptv$gDGmBz~b?%)mOS&o)tz z+I#V{a;u>SZLiC*2;eEEEfvod`aS%PH0=9#~2oDpupFSDE~6_M9raJ0?*^a<;>-9*b%N&7dj+3uY?k*>P*6zz^2MbG#F&1z zwzhRPR#wN&tq~OG#qi#j`pyVZLUaJ8Sq7fuvy|@o0n#aWMXsV8W)`NFi`%KJ>^iL{ z>x@KfM#{*pT)A@ar2_mV)smK2V>?;ZlZ5;A(mr&(X*qn%72&7}Vi{O@MKbIdCmC<( zCe3^py^2euFiw!Zb?|%eNENw!*aO~qgQ zyGEF?u;=cQH7{?WjhdR8R$L4N7itCjOa6|RpXcz`Ww!616M}x`H{$zZqkgAm#OsdR z6q8oiB-U;^HVYJ9z36|U9+8UWzrZ$>Wb=2vkV7@<97xHd3W|!7X6q}fyeu=}{oqU2 z1PelAps(L$H<!XJ(dR`}FBwjg0=JztQK1(a}A%l1_3igShDwtE;PLbmZi&(DH`& zAWW%A16;e@d(JAbUNYXjMUgBsV6^TrGWe6QfS(s;3tTIzwSN|p8h>!P{rAq6z~q1u z@n(@$_AOCs6&3uuckjMTINrv-!23*6NZj_u%)h0K@6PO;cZ3I~NFt}PJ~QK}nbH3y z=EepUh*jhXA6r-~$SW%He8%JrD6;;KX^Qec?)H1`ytRWce{+OdKa|R33=J+$i2yy8 z>e^yPv}8%bNLOG-uw1%0?$SG*qdqs?eMTk(p3SQ=ea#W=dHi)YjIn^w?qj^=xn8=;%n1lQWm2 zr0}u?mmYMe3@Y7&2DEz>Mfx*GSQQ&VbcXf5qxVpNc zjlc&%;A}dYk`>8^#4qV2j@C-dyOCKSK=gLIY{Ls=N*KL@IXwXk-(Ku{x2+;uTFH_L z_Ez)p8ZNR7AGaaP+1S|lJ!fE9VSRo5CbE)iYio4RpFdA=tfF3Hf4a$g zjq{vd@TX;cR=guPhJ>%#&yUBXe?y(eBrJUB@I}A&N!J_pEAWkCL8wuCr^Nu9rAvtd zf{AR4*hbCHQl4I^q|emzOG!OdFYV4Z#IgoKqZH70K?w4quT4yZLdPJF1`iJ}9cZt?yb61x1JG>^pV?|zME#RP2p$N&R8($> z<^qEp_;vmI^?}~r-naVs`)W2e`HKI=H;69f8r72x?g1pKxB>sB$Ar@R3J;6{v?RL9 z_Gmkg3SpB|emXoZCFdOk;aj8RqqvFUwn8al<8D)9#n?pNyW886a1Ru9bA+X$A#GR9 zu>I{(ZB~*bJ^>V=$A5V-{4&}96A4<>x`8NKa()K(X|2leFdCqxh2B4 zmzEr2R3uno{0EUZBO~LxorRvne*z_bap#F???3R+5u;0FJA60qj%$s0&+?pfH2_f> z1zp4e$wSR&0K8B{N*a4u{EhCIgLsAk1jYKGzGy3`vcD01)#Mv}k*cK+| z#uF)SO0@S@YZSP>DQ|f|%4g*5c#Hb*V)y<9VLa*HdSgUwa`V6?lI@UtzIq-f(uH{P z$B%%-+jcWuZ#m&%CmP(lckgZOZyn_~(MGU|XHzniqI<94;2bi)rDF~&j@qfoL0kX@q%%i zf7aQ?dFba@dP=(WxLYud=A8CLVp(d`X?;}h}~5NvEkH)cDW zqjY{Ns51IP!5Q_Qx1W+t^Z*r6gJ^&-YH%4+YF0AnS!c{|zC+8&HP1D^a3`5>v4`PX zlohlhjx4TV_H-N=5McPNmRwHpL0*J{2mDamH)w=)0VpcVr#dNyMjs$$BA#i$_xk2= z9A;us_F^v}Ai%)f+&m(V+rU)@27{r9F7{45$O8TfYPUsLj%dEdoK?q}2gcIHTCT4! zg{0Jlxxc*|3@3uy3DLO{7*m#8>xbbY6$W1N6o`! zeLjM3)H-X&yJ0mTYA8v553NY`tMCO_9B`EJtb}?E*V=XwuVv29;2-rsN3Y_q-kc<# zusrV(8eDQwO>CGxpBT=aD~coY%^A$1=V*hT=H%qu*VFTOgmCjv{uRYb*CU|tH~ql- zD^^}M`FbK=4@S^VyFdrIK>6XnG>YME?Vc3wj_P}I%kt0_y2wx?v|WdADH1KQKYZ1x zu=#-=SeT%CSCUWK9smiYizZ9WC#CE#5*dT z1!p2pGlWV92U!;2;IcUuuM)@g`x%TA{i-P+dUKfPv*PP}7zHiNr9W6;Rc7>@Qz)wwNVYKflm0gc z>gi1Z0W>_EV{o=G`GWx54|LS{1QLc{!f-w?V1o9KB6v3m*VsifC?8~6;>Sz_*(ac3 zRRxU@3ZVnj2JE8UpeKMz12YKu2+Jq?05=3Df!D#(RL2A;iT}|LVW6OT^iVt)vcWe3 zo)kT7e`4TP!0$XyU0G`)ftLs_QGrDkKnH+D$#FxgA_U?Lr?6lTr0d}XPlFKtAHu+e z4~+#zexHuzXf%#qWSD-))jO+no zHLz};Pc+LkzWdp9O2&p;Dirs6*b3JWW|*es=dT?gz9t91UQX^RWA$Q_Hpbgy0ttub z88suvPSyhj&&M##2>1f2%SEIxY7E)vWKeLEzq|kJPgrmv_?MFmEHZdx`l?RSCSH!p=H>Y7+5>_>=w#-Mt_+@z!MD& z!&h(8yvE8_OTJ zz_8CALU`;xp(c|TpHEK@5Gx6fM?4c@kOKM;GaY<7A$TPeuM>K<|GtQ?_edD|X*5t^ zT^w2NS1!qZe@;>n6Sz}?FX`qGz%CW?KBomp0=keX%~DQIPO^=Sjd`P5cwEfF=WbUv zQ4y;t`{=Us-m45TS^~hP?Za+ZzYZ_ihv<4SO8;;``p^i*K}mpIsclIvuwxt zFt2iAqfSv?*k9b93{3*n*&QbS!mBP(i^ui2JR>}dlerDoKR%Fv13WgSb|7P$xS*h* zp4R8$4QNd=K}T-R!jciTHz#_A04qA#cy4aXEs%q0Z=vEq?kbP6x2 zO0~dsW!QQToylv5Q{vMahRJn|stbI6A6~|*+nrhAOU5(&@lr}q@!H)eQHy+f^XAP5 zP0h`gFs&<274o^KSi%dRRwxWY0P~Ka{4Svy&be5G;|2Xb zV}*BHU5lxHXS1)bt1w;SmuGaA6%Y8W3q{Hn-)7NH3v^i@C=k0SVhhIyIU9 zE|JD^-6@sw`Q4@zLMbK*)ZqRnB_^X26N#dAFsSeT+u(c=@n^WuE*!|!-B_VTT=8;h z!xnX0y?(SJVfuQjg6Bhuhh!GQYoZy!Foa$3*T6vjwQrPA8M{w>O()m!oyMxd6OD+# zGjyQ@4FEIkSAy4+9;yjD;aTC{Xaru`#s5F(L`V{1j70ByI32LLxd{^KZt26LW533E zI(h`?igesLE)DY*ZyM|F%gD*WoAfgffv(UzLM+$&Dva+%_7h#?$JY|!TI!|37S{9$V7fXkVx6Z+if8%-eYgYBw z`ipStM}ibBz4vBg3TSpE@0wHNntE@xQlQ6fu(MM|s{0i25vKqyp|O+5sj%5@CcoBk zL5@hi9(e>JNl8iMKm|wq24o^pkP?wYmkz{80n10qC>4NYhYt4k4P{S%l3xQQNjX(~3?|Qu0+hWL3`lMsdaM%|QN;GV zuo;*t{b=MZehISTkEff>gluqf|5key&<1}uLNk!7)M3uH(>8F0M)FOut^S~%kCu0A5JmxCC z-9oB977tO9FC98Dv&cEZxcfG zcl+SM5i;0;WHuF;u|G47lr9F!L7GZo{4L_bH8VBkuUBf()7{lYt(Cmj*r3!u3sK|% z2=}b;Pn?E)GDBD+fMk@VTn6QOd{{;Sm+qQ4-XAf*e`0fS;- z2F3vW5l9FJ9zz=Cq}GrKA<(=#{=xMc82fGkxw$K!VblFodjijj3R%hbh(J48%xzs| zyD%D|Dn_lFKEpNSse8102xE(7poD#xe=Ju&SPLx;B-8vQcu|lzQ`}CMNJ2^ZL`V!o zs4e#eY+FP*GZmJYW0bFwgtH`_zlc$0v3q}b7yeZ>Q+Vf!P;dy^b&w=qp6SocJ#$O$ ze(DuVVOPQx_gFNWfm5N>PqLXWt@5vzMc3>L|W< zuQCJk0q-<}F6npX7fR1o2&saiq0^!XSr%)pLr9kqp;MYcae+`ipdQ$36NpSN)IYd{ zL~Y25ResuBabaO$XbYIip7788LhgA~6$Rge&Ff`t;w0hnxc<1hTUJ&1m_I)Wkv!E@ ziq~;c8uG`Fxpc>7>Y0`KOx~A*E| z50Dvf=7xN&POeB(*}Q-n01(G>3VnVw^b&ox9sd&iMYHUV6J!huks&K66hiTY?rtNg zF-)fb%Y9%Qlb-wpqLeAb@0Gd8RP=__$ zgwZ@Q@JabP_g;D$2<7 zetHq;0LWE>4i^!57K*6lw$<#~N_36708&V5#l}{;Yp`e7( z8ZV$$N2U}KJC{E!zJJL-8J8D?75ET%5uGGQw+c)jW@KrT3Z-fsb4L+%q1|N8{@9uk z0m4EHhlhHf#bmd$vnG6A@2Bf~fGS@OabO;7$Ma^Lz7%dK^bp=tB)^32pHd+G zclGb&3#OAWf*6K#D%*Wy_tmV9vWyJNOvjRPM^Y|iUZ|BeUqPj8xXLC~6J31<4<6r1 zQC>kVH+&|z>`Y&_xiXXp+e_GF5g}~BK>-9tEAsnPwsrrsU5RiWfLhO!ZXd3SEHVh- zc*0!ZsURY*S)w*vut>=+C{P=(^YO}hcUu*4Zn+wl+ttS3hFO)H|JKgOKqsqs|D3fV z_}9Y=Xg0Ml*x?Lc25N<_VbS}9(X-IGmacvAQP8~9l_(-pXtQ#a>0thzo5q$Onu)jY zczyEbAIxvK@1OgB(3@535J-DUSxk^zFCA8(B(HE01!a9GVsHF6D*uMClfJV5t(N<5 zN{avSPNtw{4oDyy3Fanx&E9%JdFb>-C3&qfW3ep< zemDdmO143@%g2}veYr5v{JR8dZ4{9Q!G!g9s?y0bVq{nuMOyR90ssO(1q2JnU)iZJ z81mAGSGtHLi#$f}b{dMUFN#B!wZSKuMV7@o4|i+2q5aN5HU^4ozieYL1lN;1yIyND z;Jr%l;Y?zHt&N_%akiFeZ;}X@vEIMYrbcD{@a)y!MuKdvAzXP_X?S%4r?8}6Z>RK2 zhNQm@*AgPnjkbNJCin5CUVUM11&dlSJ=(zVu_HIa_Ia9;@+_@%MG!GK z5YCvOii9Ie(e@_-#bAj@adDy}VPWB^#!K{u-g6x>El7NS=OqCZ|HbDmM>tF`5<*8+ z@_hUI2fh#`h0>tdI((Ay?!1cTQ|+UP_(emyeSWl1W-LE3>2;INeaYm;RXp&SwO5s& zdPg|^3U=b&L`19rF9n(?k6OY+wZjuq0-OUf)(Dt)nxm=)N#Gc_YR3x_Cw!=ufRCk8 zgntc4=Nl9Hrt>r^t=--Dnx9oY1f`^;B)GW1t#nB4e@UH?*}Ei@#Q#U<2*+h<2C>CQ z1mbfRglINgI>*wL*iV5_Md5nHT|T}yZe*BK9~?_hFXv-G@%nY;l#w!6%Simab#i)2 zOh+gAEPaEE@rUlMp;r*c7#T|#&Tk>d+`hl#DmP$$`~{P7g@OuRHpzD`9}D-|LP-HQ za=W!`VuT;@0{8{gK9z{e_V$HgR%PJE{V*W)QclnEoOGXyQ5r)4FfNpHGrS8fk%>Q| zn4ilt#i+2n77mwp`~}m22&cqQ?5LTmy@SuU@RU|7C$TaYyEQ8N2)r!S8*+ap-^q%W zHMGg!EK1}yPF|06Tl|`CpGG6;s~mFepn6J={!-anw8Dc2B>!^{N2$K)F7p2C`0?{+ z+5GY`!`rN9m%A^J!yqw4j-mVubSMJT=8c(k=599;K%-4!$VRo9;JL0TOT>=|Qr%Vv z;)s)UfX!nTgb@QL=h63}j@+vziZ!zwxw2-upZm3f>e&(rOp@4Ay&YXWJ&%Egobi?#Gs@ymueo1AQ0NPDs ze&?qV$PvQ0oDK;BT z*8Zes5fW?fq;DUPa0isS*pQ=h#~%nAk9Xl7EI&+h6_2Pq#tdn&8aZ7sp80?TB6v*w zxv6UQmlq~Lu|w*1>shVm7IRO}#&@ReEu7MC61w{O`kS3>sV7c=84|wt;)a0a^Zcqd z?X{=mLt;v@vduxY9=~xE7PyDyFk~J8mbSIKmUg-EuTd#Lxqr7$dFVM4D{ku2jQ`NH4 zmRZ;|2%rRT6YUm@is>N?1}yS8Fh<0D%fAj3p}vB{##(tdd%s^zP0iHGO7-+oe+G;j zA&0}oM3FU?88!<^cvJt#vO4Oakel-~M2MDSv1OY)fswG?vgZGML&2=6^K2`gKRFOuj%4?5kZ2woNpuN!D*WF!sK^Oj9tp z#?^+EjuwBUeB?1&yX+ffILpbPZ7KA{>YIFJeH>#l8;b79ppYHa*(~WVEYk;a74_#W z)ms@Q7beKz{U(`FyH%DOr-FE>8VAeVUoA+TD{!7gwftIp0$)YmiQZ^1?_pZOVfT*L zeTv$wmZ=@FrVh+}@S_>#u^U`X{*!nlg*v_0H_VGCa0I_N$0Al%3{dUYzNOi$|PwPaSfa8I(?geo-d= zJWP><_}EgSoJ~t8xq-!~An`!*I8WB97t(45(Y3w8h#YeMj!)fj(xG1tv!EGKFJNZCRJc8U#|HkLmCZOd&eX?s346doyYidk zl}R^uwk%tYSPT2x1EcSRI|c78qK~h0Mlc{I91$T|QC?2gJAHaldB=j|M?up0QFOu7^kXJPjx^X41<(pRCS= zJXP|0-ObjNFxGcOqoH>fYDg_`7c3)V>-!XqS72^?{81VSWc>?@dua+^+-&(J(=b1; z@BYl4P~g1K63KmR$g6oTfD|kFS4+-Xcs3#myJhp&Mc2@94`#7iU^-Lhs~w+qob^KE z`Zx;|JJNrwtRzN;hui+^JnMlP2V0@!*O?{64@y2a7&T~9!Qc!Z1sYrpw~|Jl#cBLl ztIT<}#lbibJWo=ti=Mx!IP^N|=ZVG{E}B#j>T?IIl#F|y&4V<+=-6h|RwmJv|M;#k zUUdENXKJM5&<`E@agCocm~_4uTX#&l?ea1O^rVo=!+j{6!KT9p-XhFxpLtUUE+c>& zvoq=M@8#Z@z46UUs{gU(Xx9btfOqL?;cw+rXDJtY`|kp>8L7V)E?G2S#;n*^_kJi? zuJ>MT^T$u26-U;LyeBZRm%Dz;_>sHl7N6b;TRQz!o0xyn4)mn1uI{#iu(0qeB<&F* z=QxTbi*iPP8rfstUwzZ?@z8-XfD2=`2bX-wL3|WgIZSkvg-UJ{@yt@p9m`&!Atzq# zQl$Wv?3Rzreud|HdLDI3tKuKPoV9fI@_E=wYHtXyB&`n&{s$)>MF&9&2QTji1xd9p z$~G*u!MUK|@l9#^SbR5$!|x$jySjFd*HTLSx4u^Ei;V@y5!uIYNw;%wDP z__L<;L@waZi8k^x_xsse`p&$uvt|{MyR^RHkFX|Z-5l#=3d0ZWr zU6beTW;KgM0gDBTsrH!t8!Fa&=Vh)@mT4Y}A(yXC@zp=+*;Emzsx;6)-)J`B-Y?T< z59SI$qt_^z3~PqiwhILi75vm!YQqpfdVX>|Q>t}&)?7PG6AV-3jyQ__CjIXh zxmejZE4JbH&d-S2Q6>B)Z9&v6hbr9i%VUJt5y2DmQOm!`=uzL`g%H1RyfV$Op^XDt ze%w$BOC_N15;`?NEMO<Z_MUqCHdR^Cvi7y@bJ|>RjKk5X`(RK4da6@L%Ma7XH9Hr- z`~}|1$(0he9gLQ;hU|l=E-gA|8mDX{M#iI_rtJg;5Hlxuaaq+=JiPC(YQ2?}W$dpb z{6>_Z1_ZZ}zaaCpniEjRUgmjlKrO}^^VZbId8VbSd;So7aVG2s11}zmAC(Yul`8hS z_^Z=|Ic4NB(Dlv%aqvGlSaXzli2R{cnETwJ+NXpg+m{(|Ip8Wofb%PF-aMp??Dasl zE~!uHm4vP@@{zxaMUldsxr$hK0x)odt;gNfX{br6vv(u0;$4|%4&_BRBD^O0$L2}# zqGsAG8x1$#Uvw-4jwov$Kx8za@_>i!wK;MpKms@*ZB(VOi5M$oTR1&iy`^H+-j!TT zTX1oGHb@@YaDV_K6o3}=JD#b`$XCf)&s(CY(#Aneq6;fSfnKDkuZzrYP9))^jwz+$W^@A`ab0x zABjb?Aj1RdUXF(A_O#ymR5*XnrXbvK{Dp^n%ke_+LO){n)xdVf?tf`PNBL5d@p( zo~3|wz#uw!YdCt*7-Dz?l;C`|l8WQACKG;E(pCk9?Wj>`kIG5n9YwZZi{Tra6Lp`M zK{LmHU1KY6K@6jVw^iX(v9PX_)APE#y@`sxHxz*~8`+~z?6lSLttx<}>}b(dhFf-0 zA}ma|>|&2;o|qh*aL!i0xO=(~BdwB0rnT!{g$pe`_2PqjTvz7~00o8N-PBP5^FuFT z!opPVKc8iwd);ZCRmA^s6k5w^hJ{1s9}+rk{>xSLm+a{HWhYmxC5#7FT~rN@67-V# z^9PMjKp@6&<}En>)~VmreG6HOwG+=Myc$O2A&xIXCEfxZTiz@CPKS8M6dgb$-@U4f z2Chzn!a5psJ7#|skIek{xjAV!T8Ff6pusTsRVL{srgsqNQKuZ^YyP~7{uqJ0Osn5B`_N`1K>OanT&v0B4-U)h`EGrSKhFN7T!JvW+PkfxfrDSP(x-9(ET z2XG@B8-fP_hYdgw0OzG;9R)!l=_Y%?e(0Hzn~16i-#fN6d&4Qu`}sp9>hMuEm6P@f zU`JCa4=Wx5e8UQUR%o!b9fUiCbvra6-UM<4Pr6^+couPIG5HBW*l$lV+lH+ygIb>j z80n^$pC;|Tdsj@NVs|i{KTALB5rZraQ7S%(VqkXekS!XHIxUL0v1{kd+xKt%Dq2w} zjGEd-$o_V`8JV54vEZYZN>c-!lPZ`QY9-0a5xa~8xxU|Kli|Tar4h7`T$LcVJ~FC! zbz?&_8RWs=I%NK$m;tOFzCEp)Q?r zvd29nX?6r0hN$}4X|oCLPB~pS|7EZ82w;Y$!g@8w=zK(dg5L40 zN&PZVeN%=uH)n=^(*lMLx|ns!q=Y_0R8J^b-A$H+*}!4nm4Q1=k{c_unDDX33H7rt zZvYd4V2y$5Q{a99N%hUw!#m}tU2v|IWp;H zTOlXD<<4v1G=2kjscT`%g@TDMg<;9C9EaHCN4^ol&okEs^OCOiE<<@!hmPM~J+UmW z<4aH7^FUQzM41!sc%ju3$mWr*X%vfnv~XmjCj(BYleqIqEdgs#!~P9*ipwBuc^KDx z4^}!ax?Z^#IXV|sB>Fp=HI|Wtb4b zG?a9&*3UXNe<5l8G;77Gd=8=Zs_Ebe!N?+=L+XzIzaWHkNTQHLoT}n@oPjVHbA?># zD@xo8I*B%D87$)hTeXkavN}Wr;35VqW>vS#T!yL3nG4?i^k8R)6-s{I>z- zCwyQ^DK8#u&#~wvFE|r?YG3BjdcGJVTUMh;J+)`#6tTcqMI<7gJ2+5$#Nf{#pvnCi z7x3@U`^Kb2bzT9^vkA10ge_Y{#Y5OYd$^QlN^EZBjCBNyV`=M^n@MJ&P(?oVefTok zc+q_(8bat(L~kweQ93P(`zWSw!dPVJxBpPLIs1B#5%mXi_4db)$J*>bu0ViG9f_VT zL4O%}T7CQPJ^cD-fDGdAxaLLf?Dq7)+jL2C&LZn4uaW(_j;?`u6RIl14!qaykh^kv zINVHG@=-kTrQi)gx8z91CEioqA2^P6xpr^-t13hxxV~&K8t67xhig*5Ucvn~B)Ekh z>SW2eMkR996pIH+z-)5nPX0E?b{u?j(coG~h3P?v84~R86muMA-ZUv>oNS;)B>PnN zCU4xnZIk-qXv#(a5)Dse7Jpl)Nk0~HiQrk-WcwXoQi3;T$#;m2yIeohzSsj@`U2=W z9A+ufSp6)M0cw*_i8`)dk{--6Uo67;<_Vn$tUc#C4jcO-=VQBjwcabdeQraklDP_{ zf0(d$6H!l9l`NnqLJ9&wUxN*N_~Gz0F)^>o)6PYzm(t($Pjb~5N`f)qh;#L|@g$m@ zdi7LLsmXijfLT-m>ASbFcg0gvbM9|o@^8~IjJ@0NM1c^s74~c;w+34G2rGwxf{*z(oIy?gsFw-^~~ui6esC z8M2wW{|0ATQdd{Ur1@3_VonKE$IzJ)b5K6r3<8!H&a$kxaxVE3o*2q-V%|k<;95-z zAV9-Ax%&eiS+|1(n?X&KkwP zsgr53XdSJp3NWLP6*DvWi@vMj4)0XLC^90shBL3f^Bf+0IUN)-VCyYN2v zsBT0~((Y^k-w&b(ZO=Th%(52bD$Q;sIUsoD)4ETpxwpVtgnf}mWOXAKO8l)<8U}@$ z?#^tZWqFoYV<`Q-tMvLw|JXez$?^zZUnIq|*G3ej`q!H3;yMk7eq4czrUyoQrxib{ zZltL~9ks&-ANbWi#LlU0+bF6S*UIn7;rbkI#Q@x!RdmKerpxz2+*kg@! JOHW-6`7boY?rs18 diff --git a/Content/Figures/PU_exercise_1-eps-converted-to.pdf b/Content/Figures/PU_exercise_1-eps-converted-to.pdf deleted file mode 100644 index 0b66a4277d8c2196afae166136c6386b7f03bdad..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 71607 zcmV)3K+C@+P((&8F)lO;CCBWKq6#%2Fd%PYY6?6&FHB`_XLM*FHXtw{QZGhnY;2{{oDBZ_y6zL z^If03iTWpf{l~xms-w*Bw7&AF^Lx#&zrR|};n!a*>=JzwoUnT5IM?MyK!RdD3*IvtPsd z*~HoTU8WQE*YbDOsP-GYxrg`Ni}*?cxbl##dK#S@{VQH?ZL)QJryP_$=FPwrZ-{n$ zA}H2}c!PTQHUcpA|N8nr|HZK5oj&Y0!k>Ti77o7KXzTd;r1*QD{b1hjDedd$|AmyN z+P{1M%5A@6r2V#e2ci+59`^nwm zEsdLZn_185-z}q^ApZM_XKgXs?5kV$)?NtD+`ZV%-ucOAmhXz`X!{eB56p*>UF-fh z9vBPLl4}{9o@npR_RJ@olJIAL{3+-OKY%fm-Q#H=7~ct$S@puT`?~vF_7n}a$9KWs z`(7qC>hfLii@ryTQKtt&Sz3o=?B@OWDf-OKSkqlurl z_MQ6mgPy*ZwbwvfYa8!dWNO;XtaxQh=;Cg#@0rl97;H^@Xp8NMq2h_TFr|A4>3i;l zlhz(QzOm;ap_6M*Aer!Bny`>Cwd=4YKkd7rJ*Cky6cN5Ledcmz|Mn9dzx)Hr{y$Lq z!rON{e;4r)lb^SIW%04HmpNthW>cQ;T=dO}si+k~w0pU}AGRM%2*$NC1+r{W9#bPP z;C;#D{qFokb9b$Yb$xdi1JB^omOAor%TmMBwnVIrpO=KuonKg&w;lo$k~3w0ZkfCn zOxmVQDDEw775~N%p3R)ZLGRy5eE0O$ak%pAe;cQwU;^s1Cy`8?4Z06c>}lp#x1{o& zTk^1uckeLWr+t=)Q#RwUZv73l*&5j20H3fdYf-O?^yHX$$8Im^0Iu|zHI8MvK~sT| zE+~(tA8ZNR|K_&mv`|&>)w?|)?ci-9i*n0E9P+wALFEGZ=WIaPTbq;DG0W!{U@o3W zTk`OR-I=`}_{~RfuvyYT*-Lmriubn$hOxAA04SO2X@9Fp?zPx!=M+PVfry}t4Cx3d z#50R)r*XYP>Dg-AQb~61DWjO|)tCBVo=a(k^h%Cx1=sy9a?4gY*gMzJ0d;?S>Kmpd z+U{MWENe|%*O^+CbP;6r(f@ytIE zFx_Ho*}drPCyMp&&qt4Gj?}ib6}gqEf&X5Vt(x}~HQ*4|{i4wAb^@5V&fn~7vr9z| zipp+3Qaz?1+elzM*J;-idqq&IH-bRhf2dOneNRxUTj5}pmWmPJ_vKL^3ecjqE$yX= zAKSpISSL@7_I{w2V!DQuKZkM{RQG^hnb;uVhl#cAMXzp_&3h4!uf01((-p#Q&#ajw@r)_`-ATM2@UN{>zIaM0% zZTetS?Vo0vS=W?0r7Yko`!)Dh8m7D71fKm}^!H2<`mq_Z$GO!@KFhRiu*~@C%(jGD zm5ptyvX#ymg>h5xf(_%TXiXB=p}NKrYXFJu8Q(?b(q;hX2Ft|Sn9;^LaLS)U0hSkH zB-UqsApisqrD9@<54-;l+FPFR8GyaUZ5C?T?Cuz7HHg^@u3}tJ{^d4kz?#{G?G+QW zIR~?{Y-5R^?3_3nO;3>w81oxLHz&{DQ*_fIdqr%F zAwpA!G(3@q47;r=p1~&)r-0T#Ui%l@o~CWM7wHzg-8+dK?1@ehS{p(#O%!4M+Ioq4 z%M6mW8MbbVWnrUJuOFZj?U*bpRWnfBWLZynUJ4(n=BJ+GaZvyASx=>kaGPZ%s>I7?S$Q6V1+2d86`P7?f{L_R}q673mmSgGd+Si$3Z!PaQ=We2=qw63cYiGGFC zNx*u)cffNkG2C{*(}!VO;JJ;!a>U}z}ND&KPc$2Sb`!{$zARNfC`P`7f{I?n{QCbSdSN|Y^jj@B0wcW z2ebn!*mV;D1S(tGRM{L3Dh+%4Tmw|LX*!|V9W%DND>umOClZXQdi?^u=z%H?dpEMy zQDv*JN7k%RrNL=(p-O}6=mk|8c8te6(4J`qvp}U`e@QTQP-*b>&~qbD+2+_r{TiTh z+CDvpB2bAp7^v_YeO#czUaTCT!cNX(G&cB#XoWhc?13g(h0@u{G@`wr1y~>w{q$k;_- zUZ|2c7Gt#^R56)$Pzi}QP^q0h-mniatdZ0}PKOxVnCTs(#uXL=k}Hrq26$@zsX z;dnzWwx^A6>~W;iiIi>YVx3Gm%W{cfq&>CQIFpaU_y9j`dEpe?FBd+iZRtSOIjf@` zOC>0Yf9^M=#QTq?L=P@VVFxcr;Sji*LmOj|B@l%ypq?{z9va3Fg=P_Wmtym2l>>L1WJA zfBxg&f3=QT?_Y^tcl4{LN?tmpH#o7=*TfV&r`;-+0^rLjnU0hG~){{?sEHzH*6Wn8o9n*f16{@Ed#zx9m%o$}9)(Z~TFhiz%8DS!Py`Y#=%t^M`A46pPZWEKPKpX;{Ye>%TK3N`-;Z1b?dOa@D|#DOV_W#!p2CKw z!Us3DeK1SxK?f*Xa^*i*u$9K1q0T3^j@)k=8`;Oyo(Sh*eNzDCw(UZvu$RJd)Pnb} z?Dqbd%#jBU^8Lg%qWWsG#P`=n1-zBh27EW$=o)2%!ow%H)f<^R^xb@54Uf!|W_3y* z-Ab}nZk_kjkNUhD+~AByJ*L-$wqsxLw!sOqhr3_cVZ1GJVE{Y&f^DWzj|3-K-+Y>M zlWb15{RV)2H%=E!G0qWeH^H6XHGOY_0ioiT_7DcVutUOPlnT2STPd6ffm?f>;!tXV z@tc`t&*bo~Z3Q_tmN)(YM=_HVfX?ss-p%c1-Q3m#a-EEh&Fk{L*67X*I70WI2UJw? zZ7_sl5X-jIEkMuMqSLs!EA-rZ`*#SlQ;v8K#z9ocZUGYB6d+#?%5D!Vn}MA`rvs(H zz8mnuXc}P&?>2lK7zfPG!gtSv+6AMljJjChiee#6GX+N~zf?1y1=>B^s@JkK^R_uKSoVuR`dj*lYuw4)-vgNU3S@HO8Q)umVZlt!=*Z8upUZjy)n{?!LoXt=}ZAzjBl9}9a+|)4% za8Kibw%~8?u*DipQvyCL^)jj6Zw%Onlqzp{L*6IERU_~!OpC|;EnKcS_PwJLRyUvd#G(UXY(RN1&L#mE3&+SU zX2aW<4Q%o9^$Y7oyrDnX7T_DSSQ}1Npr*YOZE}YdootJHYYaoK3J4umXlDoqWfDuj z$poR)LK|*I?WIAfm0W|9?2^g-NZf(EFAQ$l+oTuwS}aBxTXH*m13Xym#O?$qOe13M z_U@+1NKNzg-dT}7~A0M+^vx1^@RQGSFHomA zn!)1V#$KS=+C0FtA2g%c(+`@#uEHA}&DIu_o^Lc;Texa~+1d}*dB6`Y>-Wn^JrMX7hoY zG_Y(wjOsa9Hn1rf2g{(_=Q>#C?XyOW5?E$$2rQc$vH=nY%%(UKV750Ww4oi$=3X4w zDjhJJTZzyNGn|;P=KH~sz2(KZ$pvOSTI~mlrshAO%4XvNGtAez;BMt4xU)CF_D}5s zGwd(`+TMw^EsK10lBWHw!LjM7fn|`$&9A^R$ZWr%%!E3i%!J;d>}^#L%CJkyFAIf) z(69?8*gP5-yQn^H9gY18KH^$@Z&D!Vq2*TLD|$)29&sZIZ%e^f^>nAG1{@pX5wHOV+n%L5O%Rm$as8Vg!RHQD9PsnGi<`s z!7}L7@dC!nG@fIb>0sx;+G+|cJUlXi4k)t)U`Y1590+9nu};Staf&Oj-R?L~a0S*M zDfXklI*w539FhX-4`%9ExQk;I~@t8J30bp=dHjx{DItxO8s;k z(qWfr>Z#-Gv0eJB<20gPf5*w_Zf>2Fu-&QhXDtXJ2a&*QykU2m7E6=SJ0)Hl_$miA zab_|3#9$uBKv?187HYt?g>_jVXlXKb2*Y0VqHT)y{~brp*crl!hlPiL16oP)ju<2H z1YL6UBz3w&d*UkoLY6_o_AzyyoemsufZ3_hLSvNG5-0e-TP}Q(_$v|D_%!wh45=x)SS%UWP!J66+6{cqy@tFqe8P@-1|Xc6BY*5$#oOi+oee zM=34V5o&{Xnili+SwTTDEyg#%K9&~aC&1!Zq3pysYj}4OPQcJ&90o)ol)xS+1<%x2 zr;DhC64{JnFxXLJn?k8_J=Bp&@`Op=ad_R!QDd9HtyTOT04uFFus6`k@wegkV4&PE zh0;-ZjEEk3)4j^2#MLOukadWavNyNr$0r3LcwLnJzv%NP#rj4{k)5vf(UU~g?e^WykgJ}w zirJUW@gXV$d!s}ZKsyz-O~<(=#bYnLXNf~{h~c<$lvtBU2FiTGcy6{ZXF`Rg2xsS6PEan>QUxXSP!W!BF5SiqUs1`L zhP^#!By&kR7UG7TCqc#H4&Wq1Xv{*G!wM%_UVaA95X6lDd1fWy2{`+AbN4!RIUo?o zU~Rf6xS5S#n6D2nD1FEmh%hr8u_>$oo)iQkEFGz}S}BF)vCU6K7t$UD_CV&sWD-Nk zNIHQpW^0FS&LUW&-g{1)c)}XEE}Z~gnO|w#w2%okQw`FVqxIF2a&Fx%VLN-@fSZO?Bc_&OML*y0liN=!)y z7J#)xEymS^!_)oyf++g&EAer()TJuw;fTs`fwo%Y$i^bEys>?xOxx;HWnCh5M`Sl2T@?a?%@TZc>Amq zr#PbEaYvMG=e!{bOzjI%I($eMqV!g!3Ib8O7D;I9j@{x><{f+e8&CQ|0IQ?H;H(E$ z*c4o7GO(&IG#S$aT(4k0#LS}>O*rAh$OA8M< zxxG5)AT!l5Xa*>+$Z|Euh3gX95e1&khwf5eG^T*;3Z|JI?p#^>||j z_5~%-kLl_HLp$n$66n(xBpFh6fh4YfjRymV*yCoBNpv8IOS~b;+mbLOY07oB&C%bW zT-%%p!7o2hFxtg9&4vK3G=HF6+pf27sXoeQQJD-4w{;-=whg<`%>k-pBNSxS!IN6G z1iTHMM4jpcWU#}(>(3+RtsyYlKH%-&zYl|1Nm3crywj+s)lD+^I{F_RRq zqF`_4Z`igU)Jc59+GOUsf1!cqc!RgkH=N?Vh&Na--^cOKqG0{4XY}use-;Hx4pa$8 zVKnnQ<-ZaGo7P^2FexWeadF0-=Hht>a;o9h`XdUCE{aSDwt=NZE+n?0y9>43?_WVc zE?MRS8OjD*c$huWMrJ#eJSjM&LSoleRHrRJeY77rP|p+IadZ>YlzyOCS~EwoVEzUn zBYu_p4uxbI1$%C}{n*Tj@Y0YTfB@IUiYDK)qU)ppv9heh(}u)Z8_DxUfx7m@GsDV? zc13o{xY~Zq;gqZ2ne|FO2-o1>W|nI<=RMH0uIbLmtw1(9a^}nAtG4xuAj*rfHw9^2 zugY+6WA}6@a46$Ee@NYf(z>7_D7nb|Jx{&$2cnyCaslDl766@So3IU;FFF>G&j8PJ zmvnV_(o$tz6^LJ_QJvve#Tlsy=x%ReL;eQWJ@VG*tJ&ON`Z?ho5|6OwjL3RnDYc_t zf?)cE?OH;=L_72gDa@ymemQOFmuQE6amp>LlIKs#S%rBb(B!lWbZNWQOWAf3D?6Ef zLA%bQU(n9CdMSG&fQ^BxmuQ=MK^xweqh3HMXA>7~S1-{H^Sf@%sN*O0GEyaE-cjZ@Y z#N!&oW^`C~;nfAZb= z%)?y`MxYGYqi?i_n!4IJz*S~V!4rA4Z94FTQI-O^{S8bYWxi}+7sX;F z%&^_PT*}C*l?9gwkZ?_{swXCc{}9_*SrTrss03=0a6%Ez%o>5TZ^_-nuuyuVn4t*~ z0G8-H$>+n{c%m`0;rzmS5pTe@qVOB~!V)@pA0RU8>LY}TpfHtLy``>r{uOO>EH`8Y zYG0cXLI-8Z!g`bt6KrsjJ#xWcN-KO@8L$~Ma@F8FxmJr&rjC7go4|r%Ck0Cxp}(vr zvH2sx#5o=^wG#i3;p)!J)1`xEkGsiq!)PcoP5L5~EuxV#{h{2~k&`?Ma8AH$odsQm zMKBsunc%9XnEK>c8&B*teg6Op_<9~QecrzNpY!=V0!`D^JxD72d1nA{ScB0%M3e#I zREPsOu&6IAqW38uCNkGH9VUDGS|vv5IM=tLVl2o5F-`FeoTfBeiMtb6SH;)SD~j+;+$nM?SF198Z^Bzd*?WB&mUPyztn%6O(Z+Nw{~FWo<5zMlVGC z0;%xndVvk{sY>O`2=E?P7nWS|2|n5`wF8MwpBL7UFUcnZj*Fe4Uq%7CIVH&E~lysxsQkwetg*p+ahu}|moet_DQWB0SM?J)k zw&Q!tOMSRdZ$X8ogL)`XfPBr8yFl}e>&fPzhZ&j)Z2bV`qUfF67_3^q2%T9SZ( zG@FhCdYrJig0d&HL$TTm3gR>nk!YA#P$1|@(StwME-okqiPIWk9!0VQ zRBKb@x8y-w1*|tnDJZqndO%J=F{Y>Ad`L8s9I*;28uf#4F*6785Vg#76#s=* zZ(tr4PF@%6AtACI)I%mGWWiAnQPwD1a8M6Xr1O9t@`*Va0zJf>q9DZqy|t&UrvrK` z>s-V^&)e4`F^Yp8-he||2R-}7rOnX^EGyUd3!B(=Ko6rBFNlG0j=;R7nGD2PN5>iH zA+Hn1KaN?(=fE^qS%G>5#e(vo6jt7f7wox4-b!HJmW9s41?$3=73Qcp=uxYVat&e2 z8+D$8o~vPJLP6D6urb&aB5j}-BHvAMzpe>_UfHYX4N;uph=QmgSQri|I0!{x#etN( zSd%Uw1?QCK+^XPM6LsYdqGYXqN0i*VJZy$2xiL}kLKKv^z?&UWP&l}peN#dC8k|-J zqLjpWIloA=-iT5Xc11U$Y|VxfNe7gI0NyqOP)br44xkh`IxavdC{Hp*07^j+>%8!! zpuo{AfhPs!Y>{DacoOZHpr9C@_!}Hg3hHmeT^D##;7mb;yx~cqcV-5j6u6w)1t$eQ zuW>2sWO~q*IRYVDx$vaGkyp!s16H>^c;b_B;R)+JUq4VE{Q2CN=NNE;%0SOSv@I>; z1x_+*9}rMpuRbCa6^^Pi3OHxMYab?DcbpAzAxZCDTw)pG z11JT>uJU2CHLo=yf}sf?KVahTzqBNMhwbQ5l=Qy9ghQZR7@8P^9LdpyJh;%rRm(w> zf)L*eO`Oev6|SxhnxITj&et!tcD-MqF$S9CR$kC#Z)o^IM-yn&S2W3}EP24hG;lBh zPRJW_Lz*2+T-psw-j;)5N!4L-cwn6p`GAH4kaxvg-ZvR;PPWjILo^YdFufj-b z`;h{tiehsH%M$)Tfuu5pr-5fszCTcEv7&hK)H{V0gEBKYo^5Wj`qC#Q2KzQH4z@#L zaq4TG{2P?>GbX(C`2*z)tv{K2o}VbrqD~CyKT_hUxBjS;D2th2*C`@0Ue;+xiCPMC z<^=)Bv_X;DAaslOPug*`EZ=Rud#Dy`W16g%Q4a(+HtbW|uR@b20~COkGReo5D;tM z=+wlIB_ARz7s&J^<`@@SF$liM9FhsaqLqUOGMx>qQign|QWTDgDrG3MP^WBx zRgP^pE1Ws_eQL7nC#ytu7^hVCD=ViP79zT35K9%e5r+#xZ9M?&ayq2%;b{? zn3+{dixtE=!ar*bMc3iRNaUOZ4&nQcaq>|=krcQz&|zO4U3K)Uy2;Y)td*vLP1?ds ziSitIrV8VYYaN#CC@QMP{Kc|ZE0@*FC@`}~RY0ULomwT{=5#71H-6#0MwBuns3aBD zMkb^rYzgb3vm}D6#uy3^jZ^XH9;KdPMD@d#tVwb-=XQcO^gsJk1|Z5S2+$_HI1dVX=E%3y+X;Dkxm7SO&e{e#lN@&vXC@VOKVOl zR{M-tYC6_t(k4EVnpM;m^Grh73FS>{@v`*v))l{P)Cy}5cDw3|B|iKV&P@38Ds6Rs%LxCx;-DhN0Z zEW75URWZ%ys1cgr=bQ8T#c1|LvV}#l5K*Nba;ks3k`~wrsHFV7?FP0hE0^cT{mrS@(&bfPRS4i8kqtF>< z#({}x&;5ojxZK(WU07!_^z98R-TNoX-?CruEQ|t7oT)UfDDnbap9<70s8*Ss%P5-z ztT0oF3cC|#nn`Szjm&L2N*FLo4^1f(B&DUHO}Q;1Ei2gbgGu+igthxm*hx)}jB!&1 z+#c9ke-uNDq9VOYeejxvY(gycLd!y0eyJukdJO?HnBX3TFfn!9ZL>{YSDRm65l5Bx zm=OTmnw1-8wDCk!4+|>$0gzb=`IoC&BMbS!~jr( zR4vxAwEX40YKRz^#dXkV+Ml6>2VA8!Y58Yrv1U&^DxcqRnnBxDDxrZ&Kc88D23lHo4V=4AJ+EE>-pKon~QWRiKXYD7s@z+cgBUQVUA;b7{$K^~gw}J=KLTmF879{BiTA zyS|shCX6$wrZ?kFX;dtBgEO#1i|Oy7Y^(HJH3yNYhppx(#h!voOIc+TZvQ|rp7^o4F>DYtu1bYG5bPwwxDlrVD zU@~i@&{V0Y%QIB%4#kh)@F%aD*@G3nJoqlG++ju5Yq2tKN_9t}9{A^0BF0oO9oo%m zgL#`}+brMIeu1mH8UM^=qA1(OZ*;5MCSwo1U_nIHX{$&=#0l>##GZ;gNUNzvWUZ+G zRi=`whuAQ$j8)W3SE@8pT4A80zBEQLAH`jO)j*DDb1s+?YlNng$#_AhX}8;r2KLZh zoBV_rgQPz=^CzGLXDJV3Kj+pC7~`~G!}6hwEdEu647cU2iL^3?b*dUaYqmA+gQv>q zlgo>3f?z5v$GNF1)@>X=_E~Su8zlUhmje}A!e57 zQF#uq0AW`USVj%7A_IQ!65Xv!F7ZtPw69A-r44C(UyH=rsIP!7BHf(DG~hpIh$zE} zCkn#5z&E{ea+}NAaFB3hMYF7s3KCT;S|!h-^x4D=Q7$iZbXh zcrger;A~g+V3gP*LzBT^nKq56pTtU_u2j0=^=2gN##E#xTA@$y8JWvK$k0>W?9Rp; z5&QLvtRf!v0)%#@sxR;$nKdxss`NfAc3|k@DJ!XY4Pm*Sn}jFVyv6}!RFa3mqY&jZ ztbCOuJ)5e&7s7AzZ1)!gIRqg{=jB-kL3aD$raKU%<681H0zrC`Tg?$d?v>@b& zyddOlO#njnN6Fx`OoAW<$3l0i`9vpll3(vANLIdMLc3Jx9wmLGu3>wU$LQ!_R z89>sLN>8wE+2-`sIW-ujv1yR7%`{AV#zyNg}n*M(U0_g6-F*c^mXkT1Z*Px2|+ zkM8_NJf$cF>II3AdO?8$30I`q7rg!ZSF+8yQz~?HN$~=2pHBqEI^l2dPQH(V*RlCC zF|v0Gi%+2Q#d@12qt;$2{~$stA$f!a(+bbYjEO8iBZ^*%u)~6M@Y65e`}2Xo$?PWPJjcQ zBjnv(pOpVfloSheL#-iRYob?&GN_BO9h|VJQ80Gk%E8If%M~%J3ml$wiC4sU6B%K0 zqhxWlyC$(^?umhy%btLD|6#fvYF&MC&s-P{Pw-;-F|`fMFAGtF{)L)7NVs;&pF=5fr)|o%+`;CHVy9b1Kv^7=aH%*d-n_tJBKn131gyB3 zROO%+o!i5-z_^OSedrs&0xb04@8837381rZ2r941HqR0#UXD{-3L-YH~ie`%c80bf)4JnT2B~ z&!^FeOcVZmG8YAThIHl3gR051WJK{MUV{cMROa#}i;kHn5Y1tzq8ua|1&u2%F5R8f zIZeg(gU7hs5K_Ju0sdMuE(&i6yk-7SV2m**Llk^xv8VxS<+C&t6Nlsq zL&ubxK{;4j7K76YP4G2&;EH~0XN_64^$f`}IndY}&%$6QW+unT>w_nnjlI)eJKU2C z;+?MQpKs9Ef+N<0?<^9oBpQ$Dk}z!B$KX*nduXw`+Sb+D!9MQA(#7Cz2NP!s zhG`I+p+QM`n?ag_aQq<|sp8BA@euS3vL7TY`TA?pE^jfmrU)p=aAeXw%-!VyFI|!3 zL*a=Ia!VWdk4+C((P9jQaSkh!M|@cW-&?K8m8F`GG=5$O}ON4X@FFGa8C#gCd4jIMh*fNVBra>QvNr-x``8Lc$~*LSKsq zi&YcIl!nE45=>d6eq98OA}Q&py4AIE!J7_kiZ~ELdF7!E0!JpBly}S?*QvGl?@_&o z)`0y2C(db}7ch|F;3nvT>(5!`7|?c*wpVuiMdKF!IXZYVD?zY{7_WnH!+5w zs2{lgxLRT4-evS828xw1wG!PlU4~Z1xH9W`Vw3l19Ek;CE1V^~F8ZNGNV{rlhs7We zt|gY8-@Jt!&UTg$iv5riT3oM-j|(zE>+>aUG9HRd#zf%gVKOG#1LHCo6YlqJVKFA4 zdre_6CR`^^DRYZ40lj4r(qc?-&aj`d7!y{O>e86Sn1IfsgvFS!Z-tM_?7@WV4a%_~ z!94^;+!kX{&a6VDUZy!IqQWT&B9y~oOxWCNmm!NWCB;j)#mIpm2-Qr+gi3huTDi%X zp!KmL&1BrXV!1Xq850uNXxF*fm|#1V6=q|Cbv46kjHVlnLFiL|q;)`>aW`4F;24dZ zs&tIT1Vii?jR{w~vtE!JjqHCfVKj0kR}G^v0ZWN@ZZsy?VNhCTH74To3ac^ka)^Fe zjR~GR@W`yj1iW6yYCPX`t1%?Ztj2_E3C2NP@(?y%Sd9t2S;uOmP%EDrR%3$kL_O%n z#9kFo*o@brAtT=x5vxGL>LBmjW;_(xj2tHvfZ2>GDHQbBj0p}yj!QOUVjf-?gf6~e zF(yPerg>S6hvN2OJaiG3hAv9N-5Z<`8jOj#KlL&g6EvQrLJ9(_g7ZUzF@Z@GST`7B zIh()k&l2%<`kd z6Ehh@F`3E8o+?w)RauNpCL<^DG8qrE++odsfx0k?MW+u$Ar6{L z+#m`O>||#^R2i&u6%bXrm6M0=Gf)b1H^+@q_0jo)qZER>xf?f> zLKy}EVW1Ri2Oi%Bnbz|`DO6FQQVWzqIQUZ!N+DpJP--X@-wc#;8FQ3kzR1}Ll8y5Q zsj9HG04avO&j2Z=kKDeERF$6@ICU0|aO!O#QEj691GyJC6%@m%G8vZ@I0as?HdWvh zLf<(u!zrXV&3u5$h4>&9%J!FoU4Jf008>15C{1^)I8-6WhqEH6Dt%Zv3Wq9mOrjw@ zf#MjPBtaEI_~im~sPbj)P!(f0sKTrxrRP8uxW%y>R0a18s^0jk3egXLdqLHq2&$lc zs5}g+%CgOL%r#_~i^8DF6_i62(-qbYRWUY$sxqclfk9O;E1;?Xit>S~(x30kn~{)n z^&APl=QW_pDF>J^i`rxc#pK1Y$|usX3b|Xg-dN=_=valZt>fN^(I2b|1#Vd7{Bx`d z4hL4n9E_ty*70w=&!S-!&JB;&|9dD$gEKz6|3tBE@}@Ksv>zye7H{9;sZHvNE5175 zl=C^>0l0pm;EJ!w&*AnAUW)KZDGW2mQ*GFK{Gcea`F`qya)yTM6h{A%5`%pkmj;Vy z9l4x|MSm}fLWL6UMCOi0*92}&sERbUJW=g>O6?Aw`+JSXx>aMc{9~A*Q*~xE$<7FDZVV)p~P5vTj6H+n~c~Oaz?2&8Hel$ATv(liL8uw(|xR^t=OoHX+p0GT^w1*&>1DA zWI31GIFn5S0@VEk0Sp7MoS;{GUAI%KP{`djhkZtXUKsm22MJgMLrUX zD?U77-P6GaBYs$+o<;K1#?KowJkBqaOve|ZhCAwsu^{E@%6d<5%`H0(=#&s$(gYcU zP_hJG7UD9WCoLc5U{riU89nON&I=FHvVzgsGAuVC8*p`X;z9PYdH(YUWf;lf=LZrw!ElVr#VHr zk{*K+l~#ktQD8&fQA%n1BYRRpOvT(xpfVz|=*sQ3mdeAeSZ4tLZnD4>8AUh?3bt4a z3nj5UTmF$EgA$9WnKAM~QO`)wnlxPW;_|L(Ga|u?`RY_`7qMd6C(`<3-)U181}1Q{ z4>v}ZUPAVCdh_T}jU{PL`@`_es9#Qjoyuj|NW7{%4gt<2o1ZcvmXCvn$N$Dt|lF?}xL$0#nT%GeMbz{r#xSF9N$`Fg%Pyr4>#Em#?;0!>&H(W`Jn~#G# ziAnnJ$fSC!z{#AW(Sge(n-gQ@~IjZMZVF1@u*BLPv%XG3+$D;gh;#;n=$wE>+pgOdBQ-<=kNo5_#N)#6m?` zQR^+g%-x$*@S+BMiI~!LPId@`{)UW=Dji^SPh^aN*8ebTKVx5-44qK}6=Ndo$*##5 z69HpA%6`lA?GmL5Z*K!I==|BZ@eIQ?D3{+7C^s5;FT!fFwX~_r*vveq{reJb-}W7f zw$T*aM_aCoG6aUAWbA(*3o9U#AH`JVVhKZ@F?^o?$RUiNPz|SRgBRlS^M2)wdK0yM`Ee?qNDA4< z5fW}RfGb5Ouo%nc*ECtx&~mX_`~G)yVT3H_Qgt8_syX8-uX0p##%;g#sOAjyL(iP6 z=8UVR2x?Nz85XL1h}6v);x~?J&QLgne5vLPtBZ<4s`<2CH6MyL4e_IQga_ z7h{Xrx|z>4(whE5@U*RXl1dOEgiAgfo7JwePx z>>4;(^ZWo#&w8G(+2fhox8}O)pvAj@dppzBMZ2Hi7_u3c*z#;(az*+L1!M!?fNM*- z7?pJMf=RVGP>$3WraQi`3l{IMZAfpNwc-?6vl&%SE^9ZV=1D8Z9L}gXI>KDeDDzia zn9~`>!`fwUXWa2IOIYL?o-__b7CTw#yFg=wD;-(=nf~GyyMi-2zHi9%%&zMfwtV9a zO@&&{H%hhBH0wpFIdnLBiJ~}+SBY_yq7zCVXz_6vBT#6k-;9EA=xj!u#Ez0W-8dcX zSS&%&zJYHb?`$53&P-q4Z$mA8#-VE>IZ{}$ zD4@aUoce|}T z3LF_iHKLXU!>gucTKIh-AyR(t1debQ+j4cJ?lw8{@Y(y$dNUdKW>1TL0(RokVy?aR z=xBx)_%MR1(eJ}cOUzBG+hA(JLE=-<>dtDO^F97v5P=8|ND?y5 zOGN9iDJMfyeT#KX=7yAXo?XMT+f$86x4F6FGt$oU zyr&B3U@zf68D$F2V@zoGd(gPmRI)&> z^l3hcsjVB@&Dg3k`CT^yk?p)NgtKgOf_x9gTl=KpdgW#3r3w9+%!{-0(#&MFd`m^2 zLlHYNE!pM{RC4sc@Qe9{ zCMKa`XGV&OLNuU0GcphBSzf_0eJLPm>WxIIlgL0mF>yO=wGF9*=^nOs7sFwJuVJ6B4<#ZbnfAt5#)uG`T zEAJHBJ^i`9{XvPRO0pW`pOpCc`>5P3pffMszt{x z;*fC^yTZFHI~E_GyrzjAD2$2D8tL8P{hbq`_GCSGfd!$)8&z(RXom^4b&EoH{WQRvqTHb?s` z6QdwV9!~91nl4(L+^okpChrtcr;;v&9JY`uEzdH$LVrd}wwNoA9eF^k)jp&TY$lw(UX_79fidvS4q|7T=sVzLB-QZgyIEfh1G*78kz624$R82 zLLGf^0dc_I{pkv?)4zK(u#JEAq1Ok8T$sT_9Y~w7Kc=%^mxFe7C{P8R7i%Oah9)`5 zIqPVWQLw6CV3JX>in)~nlZ?`Ce1X6uqd*nbNT5kZxwyUpP4c5-7)O(g6lq9Yph;%! z^%-cAQMa%6zzRPoJ80sULI;{4WZl68)eT3!!2~r{c&V|03C@8oEJ3yi!7Q+Z*Cf@0 zCCGrl{W^{%ONUt(maJ?yni`hC{K8H0jwRkcizFz9CH@A-5`3ek3rv=A#ld9hg5p3E zoF7vY1e&ZibmO4u>E#O0^f&|i+l?lEqGnjYLrvz|3M=BsGSDPHy2SYWLcKU|=qd^k zXp&KHtkmd5eiWnNz0A0?td67NC~^=ep$R3DI+JKZiKU8lGzpnDG&!q4X!5=)=qp6c zZ`_M!#-mPL>WR9ZpcxWn6fNzRw#? zP(+5j7Md&{fuYGV#dpvI_lvE1&}22n&IOu8`z#crIGW(yxLC!}#J_QLrA1bRHbp0S z5wf8PsxWCen>xnuwBCg#%VyG*xvQ4|6Y#MH8U&jK7Drzhn0Sy({2he_%Jn!#SS~Q3 zjw}bxGV;)M=@tbkzo1EeT;mB%jt18Fce}o#NeHu{$r1L)boT3VFf`fSq)o2P(chq) zZBE9v8-AA$NIFR*RY4JC?5-T`awBQy}$WC?Zv4j_7Nz8OOCSqx4eK3*EGpE zz)5FracvWi#(B>fQs^?i%ZHz7htIO%kPgsw$gN}Xf|J@cbS%z0l^!Wfya+d{S{u55 z(KQmkNT#LnPPjJV@>CbH9jL*T1k($BM)(;V@kL{V_Y~1MkFlib@EOU9c%V#O14I$O zev{!&&AXR zM1LIr6ii^YBG!zB;9Yc?aX%ja!F#+IEr8u;i;D^=GQ72}AU%-B^c;3!AzW`*VJ>Ud zVxcAWpvrLZ)qn*!<#jZQkHgeJj7jB*`_zD&3{g&K)h&bzbAf zkP!jAqpmFlwP#KUE*2w-F&cvN)a9>)@ISnWj5nWg-eli^vN&%vG7G{0aL#3647&Et zgubd1ohKa(eHd&bcZ0z}df~JqL|(iGfmMN@j6iL5&zj3O(BQqRqL+#mPC^6b=TIoL^*S>YX+0|gMfU=dQbun@A92)9`$%=}GB>Se;X9-Ya#7C=mf1#uPLMpKGP0eYMmJ0Wn8 zW`rG^CHjc4~U`wFSH?|2nEpl4Ih`EW1&a9330OM7l9{p;VPaeDejpIxrF*5 z3acC#mqD_nU&%Ll#c%*y44SBsU0q~^)Xb@yKMQakp`gnyFs=7O;q{B_(z7a?#>s!O z^iy@|7}8*hb7Q!WZgV71F)5K6FE7V}#M?x5plCsS)SAQwh9&BPNLwb4u&(PAHR~YW zH96x3;W;tQe_Klq7K+T#J+4^0@Cp^(SE{gepacz|Y7!eJn?i`+OgP!;MIi-l1N}wl zgrSsKMa6;L>?$mwn!-wAVA7I#VYV40?wK;(IHw9zDVQmX@?6c#2^u@QooLf%UT(bG z*n$ezEwXU3@EW0A9nd&Sdk5sqgR(}sW0&7?|eACyeD$xWy z8(I|tg1c>xwE?9^EX`9fBQC080~bg1tauBH*`f`^7?RAeC^BYPu#EiaFb!bDl(3>? zXBF)Wz0G(Wvzq)DxWP7GZ-8HVynF*Y@O<^6b+fzV&OlUHH;dEa<2r8-=SZPXk$B2? z7FwFQDB^Ut6(Y3P1*fk{bCsdZ3i!Oz)o#T(Ym{rUa6tS6AB;S^!FcfFg+E;e{Xtp;#3$98VK|W@fV@M&enrJ_Lao*BF$rxiW4s;P)Rl z(0Pr{ItYe)4QNjVI9h_FG=k}sTH;-cb3#*)2Hy^W%FIpno9>4u(TLBxp;dC?JSEgTaT<%v$Sw! z%d^7L^3X~*Vt!v@WtLa9mF8wog~xwI`}YxOque4s9*bkD3ITqh4DGZtz^Z}m&+qhg)Bt`o+ ziBbX<*LEoZRGy?R@imVyE*S&wgd;OR{T~Qt!FL6syik_r+f+dJ1t=AOKsI{8Tm>L1 zL7O6~0EFL3BS-~UNZ+Lbx({?R{`@3ne9#fD80d0wLnD)G3^*=FA}TpjiDu8l7=6jD zBD-g|vz|zD%#7A#r^(XC6V=?8kJbu~>uKqknSlTa<2>)L-&r;GuAL2IGy?GxQR7T$@z%;{wk zsEAb#Lwon37}6LgBvKZgd=MeC!KjdG)7ByN#_6|p!Sh&zHBmpGwc?avGBvXKDdcrP zm3KK5-2pzj&W+I%YzRhg+GZKfU?s?}WhI;Ut7qs*E{$RiAFs}B4#LBXO2DB?gNu2T zZfcYfE@z6=#uM4SZ}tnAujP7!EuHHdPc;{j#mvHTXwk`T2Fw{n$Mp;soGOGi*npT@ zTAsnEuGsWoWuMiSf><5xvsi*6KPBFrWU^IYBrmTskl?lNnnQ7=6WrTh&PY%>oV_w92IB7s(B~Vi3QW8gZ3#NE zGPtmyhz!Llhca4MhiV#WC}iUV1ebjXUWI5IH_u`ax8D|r&;>U_^)pF-FN&?R=?pWC zhKjrWUZ^OrOW(0+G*qrm*HTCA)|_vhHuEwaCUt=$T{_`SolN8BQ8*|a&TXryBt$|T zmw2`#>r1E2AqPzSVpdru<|3c#krnrNBaEpt6wc1`R%fUT&&v=@ogsvhos>F5!SQ-)Gsa9@ z>WpD!KBY*e?+!xM%r?yDDs_fS*DhT($IJOHr?2UZ*ncq}(|7U` z`qDXP#JHu6K34e+Gj64#v){aiSV}$Jb{Il&hq-mjC8vIJ4LO$gv)i#7E|}=%K}Eb5 z>VJq4n$VRVF~20;>3S$ShDGjzYrIcN9~R<)Dj_TXNKxNNDRCa1xzLwz%f^p|p3Tpy zGjXT_oq6lrk`+`=0Ksl6{uW0VCg7-3VFoqal)f%K1R;1X?}>fvHKmj!R?CK4Q^N5Zg9J5zb4w0zZ={R4sLKedW69p@FIgd&_@RM z8$A71_DRil4#9pSP9{%{%wxa~T<5K!*nJOm2T(Z>tLHJ^Ky3(K+e7fM_A$NzkE zhnJi%juGEqtjmlpx;*P7dbeLRd0`mxdkD3(1lLdk?jpawU@)yo6@sN0-dKmDT@8!*QZp(CncEpIx3B{>MFi# zs6kQO>Yt0Ur0Pyvv5lu~Rl|bf>+-Z|VX@uIWnoSMM?Fdan- zdwHSsB4xcS6SeU8Z-~J(&~dc9^c^azo&=`Ls;`pLuPNa9ne~)5V7Gn!8VYS9g(zdH z6NivoV{3`=CU)>_KDyeeEgeS4lrBiwZx&cWeS@R)Dh6lustr@NQ-a^Rj)MD= zHHnAv_KSFfq7m>7Mwnj|@0G z=skDG@^1PewmFvfO02SL=~vzY-o8f|v86$mo;H3DqxJqpRxp5uURqiPE@tI!iXHJQ zKpqFVYlV?paCApMz8krlQl+9~UBZ+qM znmC`$$#T?|yJ0w0BVE7HiLg7BIoa#w3q#wx=)&mS^2()5y-K%^yOg)Q6$4}&q$?F? z0*)oq3!7Y~osqE$jM1;FLfi9EhA_5s^Y{0n7_7j5&cMRT%%XzK-={`L_J`qfUk0o& z*haRq24nv~Ac2^{!fs`xs$HKc?eQ?x3OXG!G@hhfi^q~R3o3qaKmIUSwBRga9Amej zXiC2QErm6OUJPWX9OUgIzir!C8f6BhbeYZ`iCtJagn#d5h!2xZ1e6!l254U%I8k_H zYRBiwVj*FrL{#cn^k)4`X$Q6AFp1V@)vUOUa z8NFYrq*>r-?GqXaJds$jgtpdMtpPydTH&dCeBmE8i#2R;l8Puidj# zj_e{;u+1MS;TISRw*G-~`~t{o&p#2uD-h3oQo<_$$M%{(Qes8EjY@Vd9NMq`LZ=+J z9*#xah<>G<&*4Hkcl*9kq62T=QcWKZLw_QT?@$;vq!uRDAmx)tuW9C%O$4 ziO)0zzzY)T%N5D~EI;`1B&+mTV6^Ijs_squ^1`nLdCe>Gn&5Iy5M3ro(QrZ~Wmf35 z3=q^_UUxNFr~LU9sek90LD~0LwhV#1KdA$;q`-0Jp#c1%(^W@m&+^K7h``29=23aq zNWKcj*sw0vSx(5KJoZS>a^6QXS+q=0RKVuEKm{qzC$im3ema49{5pM1ikgm5JRU@B zsSM&nUds{<$f&$@0f;35zypsAYt|@06NpbLSD$?{N$Wb-;}u(c0m}ej*zkU`Ac_WI5&S3wfl}rWZuYvd)P+?eJ!=Sy z17C#w@O74o3OKzlCdO5jR&6S{bNG8G>9GZ7i6fX@@}=_H#6AC>hEuA_JtZsGVue>J zF-T(yF;*MGzvSvN%AZ5A`MHGuq7>HpJ#$!O$fK?Xk_wATrEd7WvO-&Ry8+Eo-w*|3|K0$$wkGA=`=8b zSXY`yk0z_zq{Y5b&1*_UxMwtxQ#OCt{@fHvic!uCCQGiWyyVGMH@hY2dvt9NS1HwK z<_W(Q0ie8*Zt^0vC_ysFGW$zZ!>2_*i|N)=eA2JJym;7 zqp&cv5QJgqyKSQUG^>JxI>1j6#-LOJuNrJ$Jf~(^UrT#=lHZTPy9VcB9`4gyG4jl7 z;m}hUZ2bMB5>>3G#2@e=ofqZuYQ1Z`fGXt+um5RF(LwAz!<`#$H#UCE8>iRUHHJ zP>PjmR&c)?ke(ZH49ITDT5dpgmvJ*7k#W#o3`pc8P=?Kb^jruZ96Z^He|H12sVr?6 zkd0+;!+wNAxxLtr^g`yZ%YJmqu@- z)<>PU`RJJ;W^NM44l(=DIp_9cTXMb~`w_`m<+2}f zdO^Kq_G5fA49Ji)GaxaJehf&fI(`|DNbDJx0oheQ+zm+2SqihlQ-{ogjJ0AG#`t2ki&v(l~)2^7Nk>-z35L}6qW3b zS%jawT^1y~;_JnNY^!J`n+1t8sdQP8%@Qt;1sQAGEJz={TacLb{$fGm9E-g$3-WMO z7UUa;#r2eIX54~26d`X&kC~8IsjqYGB5WpPC@Gnco;nyNWDHCuWV6IlHz9*lVM2nN z{><%wDjRH)qgf>XnymK~>t#XUPt!M{wqC~yj{{x%Oz4IjM$)o|$!pz2L=Ne8H$ za$u>OZafrEa&e&Y)F(%(A-{;j6f!&XbHNk_veJR6Vfl9lrf@QqXTTH>uF`=imZV)b zObv@mcbFQg=I=1&%>z@1BACJpXweu<4V4$YUnIhU43u&)Gmye4uAL*;K&=oU z!z?6N&q$7$TNTnHU&TpGhQ8_#?$0bGD&?N$+6*6OrGOY5CV;cgZ)L3lsG=c z^cg;(SL8zAlS`iC6NW|e!0;)?9rzTCF?)Ckn=zm8H>=5a^u{;PCb(yEDHw4-^T`{nRHVMurQ1^Z1bxgMAy9UBOXopQ|IozZbpCLk=2vY~ARvC0IXvH-UW z3q0@6X!TnAH=^2g-tNBuw!&h>8#GS`@bU9p%y*#;I^}Ap2RwN!%B<80BpxWLzXnLB zDzA1fVXiY=1vutCXx!$@LF(jmw-tnep7NI#nQv_5H(F>pM6V+}l$=))5Zp&djCg!? zsGc%vR4cd`qv=I6!OmBnn_77-*eBZfBq?{zM-#Keq^9#46~g5&^94G3F=f1q8%icY zlbQ*U7SY5!PUDvU09k-lZpW~S< zD8@~>E_RVAEgo(@vZ6PhVGdO(V&ZLzGf}d(>bN0|u>9y(lT%UbIBrNz9!pfjFKCS% zw__|Bdn4t8QIrNJlKuJRUPvyYG6Os)fVjw-olcj8Vi!TlMNk=c86K;H7=S8=EdJcT z!>PPmjKuZ_7c@(eq1wZlJoAA`%jtD)>Ky59=VVUkLKx%2T%tve%W z=4&ryzi?@JOr%G$eUirwx(YTIX{c!1&V>>`bL(mz5=u!m7jK`AmRoZl6g|a^p{(`)K?x9NT|TO(i=yc_3S*<_ zQS_=TO_c>8=n9WyMaCj!TP^-gr{t;}&$717_kws}$P?!}lmT?U{JvDf_Usk#z?5yt z^_vtcCtOf$Xfz$5gEFmLz_bH6tN)1*S?bp5(e?gOFYfMrf=X1)oWXTHlEn|QH1FA{ zu|SSa=oEU)yjZhump;*T1%+A6!Aa=U$D?kkOQ)`3-JN0uk~4vCqQR6&e8@-tFlF*k ztVnfNya}!wXSh8|84J1;Wsja!1Lme+GJ2iOoMDZngX4Ih4U1ApCL~n=Z7_-;n$%)5 z_xlnn^RXf?CTGo$W zlEFaRFW=8ATz7o==8&9vaae}zKVD(HHxsO4u;$E1Nqo~2&?P#i)3a>3e0OU}yWY@t6BY9EMo-7tWsH!sLN*V{$W!*};sHS@;X-4~&qoi3v z;_Tk=MC!I7>k;$Mm@-q+^6yJ7%@)e+A(-CTI?8#iq^)C0n9FEhv2huHVlaEVj!dcfL5kI z4ae@iA+Z!O|Gei{dG{bs+^>Wki?eEJ9SsozNg%Ph&LOhFq!4P;(joK4=C@VB0PCt8 zq-&uV!Ax0R5Zu1P)UA&@0V8qsQ4t|Gmw6p`3vlsdx?^s8MxPtxWtnfw40aSz&Ff}G z+1gS8s2M+i^_{O5*t)sCP;E!#eK3n5`e^w8*C=#5f)BG~H=@Ob zlG_`fcti9&oGdE98=Q{zStd@gO+&GS3*R)vH)7Kez0jrsedLy>cx87b%biVwkJHs! zvGhORG=zrnO+&FzZ{IXHt9?u0IxF@J#c|$$Fq4I9Du=D$8j+VTEP4052bSN79zt1q z>g7|c7$8$0Yd)h4MJy&%O9VPx3Yj)Oy2u-wUzdac1sPDTs_Eh>tue^qI7dpu@>;?! zg`0ztFHeZ)u{~C#+>&=5)t+XOlZs3~i>@-ZsnFL@9!yrug;^qeLRa*eV6siQ^)xCK z9X_T<3pJwT1kbBFFL-o_yS%)E=i@zVoGix2E^%l$yIwD2aHRA>Cf!0AOu%L(2b-?6 z#>2|0OTunSQFe2(=f7t#0l#JJTvCblmR%t*uKQ^O*&Obv}sQ@|d(o^F{6^i=jRr`}@g9oezGOUt#qA>*1#SIaD$AJ0$Jo z4La*Xh(aIk)~E0Odopr6M+wFVU8>XfvbYg~*sCIo_5FpEx6< zEhqhD&c+Lo$Iw|F?CGiMK5l<^tCvIOg*4Q6yEAd5vAo;L#FB=tq%6GSR225Ze9BHm zVHR0C9vG|xd%TdYtMiM~*)KUKMkMSx-|b^bPT6z*O+#g@(Kb$Q>&_c#OJ4gcTh7`E zA1$n7963S<l9n|AV6Y~+51`41EI{`#Jbfo@6ECyE^l11;+6 zqm=v?K?B{9R7ik^r-80yI74X1z#HB`M=t8b7thW>@u*QWeyMk$S0B!|$9SSUBR+od z(gf55yz{{~s;VxI;yeDpmG-gTeZM~_sw;zqzStTd392xSZ71+RRr&hSoM1X&d8X2# z-war$Iju$oX~2ZRNi}=<1{@NFcLQof1AfJ>kG?Eqz<;5ugPUEw5HXj)cImpz;d1fd ziSDZeRki^a3YYCg4Hb>Su;6pEdMDg|YoI+_dyZe+tZJVxxK&aWUl`h&_dK$gL8XOk zppg`7I#g`_QAQfob*8br#DcbH8-aMEv+m2V~u-s!-T9g1lWN!4MVy%FTfa zOJFdFeSL{MrNQ)pHC-X}xlD4zN7sCWGS{Uk>IJ;(Brjl)vX-Q>s<>s$A@%|DA!Z=i zAohaD{Y#|#qJ?D|3WGvZRv<=xkuv4{^IlV$$a#W%fk8@~ekaXTduxg#70EZRdHlj` z72_sC98;g@npBsu5|e1y%YJzhFj^-avS)>k*YFXo+{q?;Bu=nSn@`_$%QQzijWd6X zY`L=+?XJf-d8i=>WG5n<%K0HqdXz&zJ~obUPQ1}Bnq&ri{6jTno=3c8nvQF7ABwxx zgx4<15(vM8?GBkh5zO6c;FXeJ%z|>9a{i_^Inc|Kw0^sITM`M_O`8Xwy{DFO>+%ft z)K&;6^4Yr!mrE9~aW@Mr*|xy)>I`8(F?!RrGtk$NI?#M19G=^p+s+{BI23x57nXOd z^1|lj1GOVq!DqUS_STv#FF;At0;WjqVkxyzrJ7SQgLx3K@j&iY-Kdm)Rpn@09cZm5 zt%q6=^t)Tm^U#ZG$aia2&?4_tlknZ4t3W7caHw)=MVpF>KeSpDM}Q7gLa@2BU@15! zRXPj=1S%^~KWuggjv87{6H`FZHDa?fhQ zvIIe!s(4@MQc|`M8?ZG}{C=qbRQ&x>mTW%$ESbRa1E`or>Fz18570_|a2Hw0(nM z@5cCmbl!3X(vs($^B8c)E~|(%84MPrd!%OGoQSOBp((?$se8&)7{p)|WTKZ2@4-5t zkB7GcYzadx1kAz%C*qNf0v zHp6~{SPS`sH!JkQ+1Jvn&pV~pT6-)FkiQRrE*W^9yT2%i2eNc& zkzVeEmEVM9!CuCkLT>bF3-xW^$v`IXZ7EQ>Y_%N;-MXXj<0EanB%(+=v+5g0CAfYC zrhSC-N`PF~`muvw&IT^?{7|gE7M_=cEM5$HR}VQR7Gk(~&4kh=euav(a?abz!Qj*1ItIwo>nU#|plZLi77LS60J1$gOP+sH5xj%JJ`gq76CE z_|2FDp5N-ycN?PQK0^kQ!nxHF-|tw-X2(W`z_9|*!S1ax)T+gk3EocW9;mHKzP>IU zSW^Iw(`5wTR(+Os(mS9_%&|e@yI;0Ye1K}vrs#KHc_00tdK5C9KLPfMd6YEs9kOYj zB5-^_rm_)&3qWzHYjXi$7rNi(0#vx#<^oXS#1+T|c$@1d7l6~Ew#@~Q>v`>4*g)p9 z&RlQ-VCU}11)!;}wYflylM8HsxB$kKhvowKVOb{^h;IfLh&crpz?^kd;_%>Ily2q% zNTe=pa{+3u^W*|}m#AJ`AW&&8z{~nPxd3iU^J53UoD6aSOgUCBF0diu0#uqyash0Z z?`Gx#m>K!9xc~@)!oggCm;Q2c0cgCshlmRd^V#46aCY@^aDhBm<^u5WZK5C0;Kn$a zfY0;h0dc^S;GqJS@(EFtX0QNYmiufL0Ihqhk6oO~gbEgbC$DF-0RD2GECBZhG6}PQ zIR3!`@JpSoU;%-Cvw*!jVgXhbg4e!T{5>FpCvhNIP^v+}V5VZsLh1wVE?z|% z9jyZ?KG$JSM1Gc3Qb$ydTb8>}d&Vtghx$CMGsuOaz9xMi=ku`@^AeFv6Lu&$^M3xB zhmJFl9@US(Pt{Jt^H>tnK<7%e3J<*Eh-7KS3#~+HF)AWt^x&kXQyn8T$d{_tiC4xl z8#xE;8&VcqtRYrCn7A{*lvqi6ir?+=qvnwta?{|t->_(O+usOoL|akS6&#u}rYQOo zbxm&-XhjAe^d4=}oPH4pQ^uN#UkA&sE3qn1KqDIgj_2COB5%UBCSjLGJ$~@8M3f)L zEoCn?b{Xz-|p&Q6} zBRk&Y5s+JF2?>j`QOM+QOSz}VTo!O7L5B4Z*8n6*vc#vQ%B_2B7!UEpwURAP%5pVnr4~|Sj?>{uGKkEQdW}DKbR_!7|)wtj`t6R<>d^<xLG zbKx-yI4v-Xu2vJeaB~^7P3XGKg@7T-?1k{c%vB|#eP0en71wDr zCp?@Z*hTpzWVk?;*WS*TgKEnD`Yjg8+07zWD)*0rA9>iQC~ASpd%b?7-|Ffd7|Qc( z9Bv8_j=xZZrO2?eVv|Wgg17=tW?txcxlZPVmYB2^n|Yx(VL!?Hwq-bY7y8Z8uuJx^ zY;X_WVN7oBvaaHrDcKKNMD>GvEyUuS+zXA?q@Vf+jY>?~!qG%+eAwGpx3#>=poRof zGNeicZlEC@4Mepov0}izPCB>I9}alFK}Ov*S)Am-vdRv$BBK%a za;Wq`Iosij8bd-}$aF<|dMpQ>`qt9G7T55l=(-hPG}b}v@c6AR3ujo!(MPY_Le3h< zFQnLpE-h_^S6O!bvE+_Cw6G;>PwMI``Mo$4_NUa7hpk|n@rw{B;$iE$e8o?J@v7d> zW?|^{+U|qNE(J6lY*+?wbLpkviR9w1`gMQsults(A|=5+Oahh^F;4!qA*QWc0U1eq z@r_NLON|JUewUhu1bMHpjRpU@9~HPvb?m*N$kizh0Uz^RTLd<7Pac> z&gI6*_!56_*FWZeP=teOwm*2inw1QKG!ec>g^?g(A4D%g*#kq-LS5&}Jg*(+Gd$Ed zzcO;VbTv=-V5c^8R&~E0Ak}57 zlODaAfe4&BkHzCEX5`BIy@D?m`6ky;6<|jRaJ9UPl<;5xKf}r_JQhKX5oeGHm-5Rk zXc?J+lfQ(yRF`v)Q=bO61M|_~sE4MWv zPgj2JHXtK)zl{UJFqz})f4tF81Un4CB#qhlssPiH%M61CUU3x z&yaZP>wGjx#v!bOBoeY;Rf{giKS1*3@F(9t0PH2jGnZ02e}KGd&ppnEz5x{4!!J9^ z|1bqHIA0HV*K_~kGi7CaH){Y#5(R4pC9Y#UK9b;-#d%PSl zw;{P*=(Je-PmoRXv84wD)&GAn!tK5T5Ym)e)UD5U?k&f3#7C6eL=GAQ9UA#I$JBTg zzxa+L=CP}C5+PItq`Xa(m)4b?${oklkfr?bycR_R5MvyUC$%(=*A52s1A@da9QcrL zaG=BSiRN&?n1u2qt%pxk;_jcz7>*%}g${?D1tNwOsEw+j`$-~m*me-e9=A=i+zwK< z?@YO4-8A$aa**yPqZIdKjA8q=FZdfGGx3BZR5W72K*ed&Og!OO(#FzEJkhI4aR9uR zOhiDOR^kc7IH=>n>uUra&`3P-Lph^uB%Y&$-b*9#96>44S!XvZO|5n!TdR!Y7q{J` zTKVkrv1GAYJ5h^S9($^_6M1UP$&p$+;bo&uKJ?lNKPR~q_1X!~UwcBYop21&X%~9! zgfpBcNqX%>h3U0YuRX@rYd1uemi-1iu zb=!90$?DVPFtrem3L}K6g=p^Ewvro>ww5_AJKz0_QLLZo1=#D;mNOZbJN6VvM9cHT zNqXjS@t=&gnR|i2ZFHV2<2bE>p*+j76z{Wc6n~)xSc)eIl?1#gBp|x~Pef^N^T5QF zT`pW-jVBL<1s;SwxW~4jk_2cH2?NCh%c4a|lIJi-eI%aPV2(n zmoTwRBqPdU;9o5DpYscXUiKIIZ6llKz^I64PY`EE9*S53A~otZhV!V+XX5}d51&{< zfWi^u_l}Ftzo|CHn?e#oGs`=6gwgN`j&Jl__`z#63kML>%J%4b zK=`{b+2I}TFzNEN-&;xvkmHD&h6iq$A40hWcBz~_N~t6I%l2ID?ODXl*9|1sLsn23 zADbEwIkGt~kt+>a@7U2ZkMn0=h}@P|Y2PtB)hUSJUH0w3tkA*Xn7ry{=V-4-rs6x& z?8Q2FC_?ZPNutsGJZ+&5^Ya7_*Ny?ep5jt*Mg=6qG{-%4@6Zit)y^Q%CA`QA0OT!* zXNw_&k%{s`9zVf54!ld!G)1O3uG9jP(ac#hLX@9?p=@of5a^Z3*n!}riEAg499zZ% z_;m|Ktf&=w7!Ch!$UedAQc&^_khB7z9_VO4LADv-epCzf2T0lh@~Q8TGz6?mZIXU~ zBxQbCmy}!BtUt_x3E9Rw0BAs$zxX^tbN+XJ9QT4KmZ$Ty5QAtKH(0)Xpx~3T+r@ih#!t7L`@e) z)(jnRRM6;*w5h5mP^OZ=5qpC|GmU}r5x~-`Lee9&rz?+up-u{IGK5h@%w5{gID%`x z^LAmH{N%0bznD~EfRHNE=ALs*qk;ur~T_>>Qb zo&w}@S(|SV9BB4&&8NOYaK7YFcv*+)E#+?_z~gwzacVxN_)T$R;QjT_b!o9Ex_s|x z)BXSQQY6W(_uv2eKl~NkN}njX9~C_VrQP&kB;=CO9%C-;l2dn&t5ahDc~~IJKKmTY zJDEdULFlF@fEKwNns##-j=caR2H+q?p{DPU1Gf$y+Yn@_tBz9*&s{>4bBr-O+&GGG znqaJh=qB_BL>VG`tgyo+LDkTXQJIkm=}Pd#7>W>#r*)j;3|TPbm^s{4KSDMJzHF^d z#dF=Rz83o(kbKp91Jj-52S^#RkiTq1xi{Y-IH*GA^C<562gqc2lolFO{JSCfvw11!=?6$IY@(T^DJyEKKh{*P2T zQ3z7l=AGkRO0{vvkaw(TS4hlP`$MnP$p`QrXn*K!st06Gs!)oDDrXgri)+?3rF70} z6E}z$HfpA14pD98xT@pzTE6u&_w1I8g&hq^o@7DdU3)y8wQ@jMKXJcdkVg28MOwJ! z;NvV<GoC%h12$IYFGkbjxC7Ur7(65=={|;1p^xPq);xD@ILv2?O|=>(ViYvh zjH$9s)QaUB)j4~jRBR>7slJIKwGKwoK+3YjK$ItjinF!!#P4nD1=C`s+=+y)z~jU! zE}1Kl(Z)4g zF7QE2l6sk0{tgxIj%M_@!ed{qm1AzCDtYBEsv?|BZ0}K+*#cfxD0m{pe0V9H$exsf zrd5+?9mlRS|#%mSOedJ)L^pIo>o9kXxpU ze8Zw;Xn*7J2Ncq5Z*frWDlHwE?$#gA@3w1N(&={#z zfsbHyH_1afZCCw>+y;-mZ{XMYi>V6NC{;O*^NUaRI}X#uNm2yz^ikW_mE;{OgB^7z z%@%G2K*BG|O1PwfA(i9d`MWhOa2O03Kk4g(kK^Knf+Rqq8*}3=j;GZkl5teegjG7J z8i?(i?9J_ohJA@5%b-XP{{6|}b@|4tDAT1o{5>J`aZK=c7Kt@0=ysJte-ZM#ZM{~m zXTMx7v(W!Mp|p(^R}eajmI;@kNpuwR1s6k;CXQWiCtad)XWew!g0M|>XoGy;CtZfK zFMnZShF8+piDD&>sBp;>R}}jN4qJcG1v$+lmtDeCb=n9Qa8RM;B1^Y1H#gnW7E6zOe?s|)H58z+NC5&13I_DZ*z-_EAD)hQlxx zHq?$8yF*_d^v|ASJTMgsoWHnL8!}#S`)X3s8NO6yU+U9DJz~`vr9EJ_<8gz?dhf(e8GPUG`u@I!PyA(5bvQwt=;JwSr9P~{HGkds^)P^R@lcamvH_P90ig!aE{zAnQeIJ~la=med|GBAGH1?c(-I^r< z3pr2Z6_fh!ss^PzQ`6z8ifn1z|8ItmC)zAV_tAchbcQG z0r|U#NL2N>ZfeF1;TLddV2-2eTHkFmhFMRe>J1sl z(P8NX`RhJZcJ(6 zu=MIVP-+JaN~ZI0-9Dg&ati2pe9V08u6Z0p9d_z|&5kteE%q?RV18zt2~jKrUO*kD z`U@6|%XNJ@o9FozmXL}1=7Z#_$f&MhM4rcBIrniPix?T!+IBb!xkdO?fldm0G6;(9 zD$NrrIktoJecO^3gy9?hW~}$nu}2~zU+1(}9toLUo5hcn*PAV>GgPJB;fIT32_~px zIkRv+J*wAbi};LCi?}pSrdZB?xgxlj_v}hK4Q78TNfrt z!k!8;$IcFlDQT{y6I>Q!8+2#4=(5Q-Lsx7Mp6DbGe5MU~f{~SS*pO$h>MoIw$c~n; zgzB_DKdJ&yIV}@vPP>PNFBj(U6lty*4v?7fx(?hqNXNHg3}s0mzuM!l?;j9p1^EJb z2=*t!hp;ChFTlI_)aaSLJP|X-9A>Qx{b!8cdce!Bs>_dq}sK37W1J*?usPFzt$pT*uas;sH5B}bK z#fcg#WvbBi=<-Mvxci4{lDs73AI^+(V#J9G5m8>?iTjc#n~*j0H-jn>J~~;%VRRMz2|V&0j8G|X{UaM53h*=Z zRiw_jo=!oifNO`m+pZX%n9)L{(B9 zGL@Bn3R#0Us%6^X%?58&qwQlHwGtE3hFHx-{kXUd_JHb+!{=_#d}0X`op(j90%*Sn zZCYG6NdF#D)32+B*b7lW25^a44;ObrAUHlbOE4={xhhCyLmrn49=+q(>4!YtJh9E#S24&F(QK7l-P*6-^B)q3;2SYY+H~MfzR;V3|zo5}MWrbUGv-%dl*=-%5^q9ofrBYkk-iuX3 zb9Xc*9kNB@{)L$;OZ%6s0>uxyLQ|ujQ`|(HI=CEiWCYC|7WFFe-x;sT5PDldfX_RKG$&Q-Zp4t_vG<@(U7s(w(3T4^PV z1w-QeXBQ=+q|*~e13dOtXWXcP_KurG)zCRW3&1;s0MCjVl#!08{HTr2=&C$LzN#!< zC^zjESMH<=nlOWn4>V9IPjLNHTM9t|TOe(ATDdy*~9f z7yE*zBb1-NislMcXoNhsCgpNnp&Mm*St?@;vM*BBu#rQ>*$N71EIojb#UTZN1&?qr zZpn8DhN0?g)O;L>rOFazsx1FtH1jQKjnwrVuPBom5OYApFj*XahfH-HJR$e3vS5vY zu?4j{uBo-nrgG1eC7w_Rvq#QMp<(v zV=4l(AX>J&{L(GeZ?ONzm?~?KTJlu(d_gdA*Th2mZz{9)P*9Kpnj`8+0h>hDl;$2p zqV*#`iH~ETKj}7DK&zy zQWup!HJy)2UQ{1$#b31{^>5Ir%8E+37Tkl|Ic}vfz2hS0f2&eR2*Giyl1OM?<5uo@ zXl8g~G|6oXFuYm<#rTy`Vfaq#*tDXr3(!)vs4eSB}$c!exTC|lpD~pUy|4)$G_R8?zRw~|Ui z+hP%+u@#x$$I-I(b(`8k^>N*z82{df+K}UzLk<_6*NZCl9uFy&1hBLb_gQkAg^Z~6 z=Pp*Zo=CZWD}9sOK8d;_)%8-xIF`1f@=-3G);Rt}ECFX!C(Ee`8~eJv9GfGa`(^vY z1yI!IStl28xtxRM5fLwa;2UJ07pNuuC&;FGR4rPc0C;(l2P}|Z+dKfJQ^v^x5a+no zW&uleJCX&U;>qx2&VI=*&qLuok<(Ckx1NvVaW{3&0zA zq|E}*RERgHWC8hAvw)nHSpYgK>8$whuy4_`S%51qB?~|=CF%gl0vr*VEWoG?4&XvA z2M1W|5f{n*`*JeK0q~(%y*R*zWYs7x-W*^}sg|1qIJz}C0BX*(wmAT*;av0N0InjH z9AE{HH3wMwV~~FwDpUVbJ&mOP)gE5xllbE-Z{kl#5c^W`z5}2#H$nYN6+)8wSMd1U zz%g{MG4;E!PEx;10B!1bF|MTkJo%=6;8lkzs6R1p>fak9>i@EJ@(!WhB(+UlCjOof z@Vm+0kyHuTK4GFMAXV+VISvsGo_YV6yoXG*Ume?oIMJuA%GRc2Z1j+p?Uli6*LCUl zT_zcqr3qyp^-q?~mQCdGn5eDVpb49Jku9w*T9bdbK*c#`HJ3};uv97hzExSKtZY3h zD#ZzcfFBq^Z!JMg;weMMSN80BhgBDh^xU_IIer0m{rQHc1&1Fx8@5tt20SaWg!uTuMLtFP z3O>PcI}`{WN2zeMIpl#&Jmrx#f6fzcOn;>bW*T0lNI~CpVhC>jpp(LS;WRX`VH$Z- zwb6T`lb_6lya2pogg=H*Aq~h%HRPp_pmi<_6{Vg>h7cRR*hsJ)co^u5b`ME9Sd*XI zmdwu3t-UuIlT04VM*l*MBK8|X5#8VDwpGL|n#}Au$wu$Rxr}y6d9(C%DWkx{J09Hs zK-3FpHo%e)t7$-#>)}Bp36W9qVVN`<$a#MCcI2LV$^JaJ7eC)F-9mNQe#brU*_?g2 z5#$YdSS>D%2+3H6L!hJFRd_oR#c@wgR+TqtY}5IJB?ETYEwIne=O>i+vL^vs%@Qj@ z{05Gad_GNHgo%Efb><>B{}mE=T6JwUn({CkkH_gJn!i$mMM<}JVv~p=Nm!lElwe^K z4Gnw$AkASLu~^tU7AH^Qp4%dPX{vFogF)O)MMzPYtf#&tB(-J<>m;E_; z*hD|BdHev$)W5&kRJLck=SMMp9K#5 z_A9Kp?^vFry=*iN(uIXe(mQ^{iDiqOXe2})*CG|8!29l-8hgBQ9+V(Wp;TyS#FeXk zCbLBNjTUJTs)t3(IAXWhJI$IJC1>MA@Q0(JW0Y=Z?sBMt+CB z{tl~r3gS`R9XV6ttfFE0wfWq;pOPqIV%+XhKLiG@B_o;Gdtz=|^A#J9PMvl8Z}7y; zh`Y_LiIw2w@JWBL`e`2pCBbYa0Z9oDlW-1*NlWqFoAmVhgEr@qCo-rP@eB2!?mNt4 zk!NwK%HUSWRJtNK$VBVXIu0H)(Sn@@W3jQQ<`!J)9j}9Fao6OI$RFSaKGGf-G?Px? z$xe|o4TSH}VJ1bUwmjz_7K|;_+Fl=LDoVU%S0jPC}g@n;~RxI=bpy=DY!QM4^ zd>1#tcw0zk4bhc?rz-t`9Ge*`IbOG^gjO?+kSuB+EYyx%NoYaWv zj{FtD3;ezOhkFi}Zh0|B72>hI4iDVxAL}!$PIFuTl?R?3b}|1Ims*GP`rJ` zzKX`uh^x~jSYWs9%Ldyg&0k@v8Ruk>#?rq4IU*sEn z-EHoxd_ZDWF;-cs9M{lu08z|@G^0J1E|ufr@VJEJj-g!A{rmvf6rY>AA&tqJbb~5? zcQ!k9C8as0T6kC9gxE2IK6P8$qrMegr%zYCtM)4b7CBUqV`QMv7~NBALy@Dc(z)VM zsC@kSavT7$HK8AszO_b-`;PnL69L)3xQ`cf2RH0b^vi*No&;-2hW^dr^SOjxZ7}sB zJ0r{z1>L&SMpD;}B+=MqGYBk0@Z7l%Bx&E0_Fg@7`F{g!n*HF9u1wU2Y`uA--w+yy zVOm$fp)TKOyg)59jl(Ga&i#~a7zOzmH{h!X+FU%=17#d$p?hnJ_(6$40~JeLm$m*d z4!@8p(JbTeM3oL=SDNZA_L++8ebew3f1P%ON{_wAl-8Mw?A^mLFGUt~yy{kD!FTU= zDze}&v>r;41%rC}R%Gc0d`?C7t_};eA`7zZZ7Z^S9CyZmgk2@x5O$UL#?Gl*eBX){R8ad z+|Mu7uG;U%NqF}6SM838^wF!2&7E=2UuHhBMjS=PirO$7hjn8qj&m4> z!#Kg^gG2=Ig&)lgxQxQnKBOzBtpKOJ9>xUrfjKMVNrMU+iRhBxAKYPJ@e52d#}|f8YMukUvEg{Y91-ErKURTr zM)BfxLe-~OG#(h@Fi%X~=DS2Bq^Af#Wb5HUAqkOHg~1HI+4J=J{oAY(GYGQ^)L8m} zY*xV{)mNcsXlP#?viRdtz1glD`3btyD;|I^uoMaq+_qv(+ z#23IGw{4h*#xH$jAk3xVLeLrYc$}1RzX*(t~c@&+W*C z3#pucH^5@#xy}BNj`-Y{jOv=f`$ZVdc|n@e%bqC>C=maQ<;;lY+U;m6aUbRe^kb0A z4?k~9ItA#TJNY0sShf=6ztIJe`s{?S@5&)CFqbS3Av*)Gr7N6s9|2JBTOO&rg1jFQ zn^3IuJB4X8^=&!At`PRc!J>;s7%iil-r+5FJ&dDjLpkf05NCY{-Vm!Z@1}U*c65m- zZ0}JaR=(^RSsn0vpSu`irufqr$orH`R%i`EwxOs9?@FJkxlT6Our&i#Zmc+hucU9o z|EP6}g+B;^x%Xx039;5g^TFPQAcKMV2?iF+Uu>tM%dwHt1EXLJGDs@O+l#jC4T{WA`q0H7)=&BYk@$pgBzDm z{p~1SSSw?DK$vCy`rJL!<+Bc>;NK0%WBW=z1sneWiF^KinLvJk#6|x-Be%RP-ynI@ z&!>KX_^SVYd`SKJ1_)aGTod)!n^m!nyMF@GJa?Ct+RFzZKU5HD^TXJm`SJ}H!*e_q zBerLR%Mrq)_Ke&^e0A%JXoP|>t`QN83c?%FHB4;{3u=5a2271Z%ZNI?89j&^#f+94 z68A&5lmT{vPqHex0@Ku=svzo`t@3C)LyYipBRp_2biQ@V)g>*)kU!ZAZ$EQu+v1Jj z==I~14pkWv%L6(fWI#^Z(J+Y8R&Lv^vT|HFL;B$Vng?QHS&2CZICb^sU>xS?8}l(# zof3zB5~4a+`vtNP=NFi$;W=pzeME4m=7=N$b_Mh*&^lZRPO;A39QtWIbUD2fQ>;y( zSs9gGEwB>R%u@oYy&0@+qEBeQ1iF+SD@>f+!}r3@rp+)W{_NjW8gAwNh-^tG0f6`9w;L{ao!aF%j+%fwBk!;-4!h8S(FCfnXzi*L5^q~6IBRXPq&Be+Vh3zYza~$bW z8zP4CT=YPf;Z}){`c@V;zEJ!@eAOMjVp1q~z~K}}V*P9`qUmtRg2(P<+#;2jf3cvX zzAjrD@uYaku2LY0$*w95#5Al|UFA+3UG?;j4g5SBid}Tf%+S^G?+H=(2P8kP38T@t z&&bX~zGR0s_Yi?P?D^pMQD`}6oTB(r7Q_s8`#an66_m)$n_% z=onROJiCX65P0{ZJ1$mfjBE|~{MzTgM4YVRW=B*?-}o=LqEvH#X#4!SgN{2XGO2eq zHTio0R731f_GkME!iWASP-%W2Z+ed>et=wLgn#yze}KeO^J>Zv`woe3e_4_1imC(4 zu}TB>d%}(U1Edf8I4-rR_z9v4_kZLDr!@Ws0sd6RC!YEN(%A-{UuTWGnT)PlEp6N(?G&A zUpZwf>Tkek#SxT?d&C*+!hq4R}erNGQ|E;jasFytJWl7kgJ`bvq zjz`~yJ-C1|0!Q6}4h~>K)sLv|*m$GuiYs`>ml&pENoKiusVrSJ^6*5gS5D}6ENfqv z%W#h$rxzuJeLXP?zX5^*?HS@5DOxxSO0VV+r6qfbS!I-rB;y;dYN@c3(Y>)3i=!6Q z_AXPnBIUTmD*JU5)IVp5RmT>gv%oku!Q-!O}0yxu?MD#)+jvi{}l z)R=6fGGl%PEDDz_TwA*Q3Jjl+}L7g8Jg^;XZU3tZQT$iQKvsOlPbe&VH^ zc}`*ui83*Io+VyzCMn>zDxTJPEHXHeaG-*{2abH01Bd(Y3&mfEK^g&yG4&Mge>cDv z)IX|eCgT1I+0qIXSMKp6B;?oUm)xvQ?Z6KDOo-$co6yZIzsMllDZd7bE2a2yqpjR| zUV_IdzudAceV-;iZ7+s>_-JgmgGlzI3&DOX-6e5xg*3I>jbz z`Grh>UN+(vtnZjF7%Jx&?}yrbeBBM%a&|*SFb|G8)KMrG=%$A$zT%v26vasn@f8O> zko<)d)TyqpD#$?{0+_3U`}Qrp{N{rxyU}8DZQLfnf`Y62+XvqtSNAn!?A8=TbQ3&ZPK4y`j4wznI0s$!{>x9G_6H#ytsDWZRQeo5W)oU1b<^p`_fg z5z$rG@jw+yeh^i{B@8%oV>*ThjU+_O70=_q2J?+CZ0;O$F!y%ZxMc2K%@7YE7RwA) z1~l-M79h!8QpC9CTS~D&bqJ~CRVl^X+iw3tc7haR-BCRI8@dDMBz&b!DP~j0A;o~v zdWh=ezrq8V%7>_rV;!hWDiEeWiQ>1Lp6YshP>LZ*UPH-L!NZ2?IG+SMRlX~D*f1wg z5?49AgNcni+h!9ECrdVBWCoLQ3{~(Twh}&=7+Vp4FfkNM7~}XwQ(*{B_0EoWaf@a6 zOOa+LKi`~o9<%%TP!~Pwbu>5QfiY~FldsKf_X;Xys7qOq{@RZoa9pIUHf&=?;%xFF zAsL)}t~n(&y1>zLG^jt&^Mjv6L%ru8@*KzYbzhHK1Xv(yhkT0>G7Jimkz73~5O(x% zk}fxru~0S~G5o6dDh~&t+sbXT&~$^+upiDTGfHwPw^%*+*bL?wzko=Yn~z0E+#xhz zPcNH~q0yfF58`8EDK+w7$G4K>l3}Zh;%4Z#(v=RDf2)X3$b`F?3?wl;+(1%?l9Iqu0VVg!g@{ zTWt!7xy$srxcJ`H7E+xKOIJc8sdW-@5pNPvt`uow(<2M1Ika&b5V>2+HfYu9N6*dY zvC^EIYwjV-n*NqYMG7?=rO#8L4i+2=^+<_lt;+#&+- zc<7jzLm5Z6{Dnj5?*WiqYqIo&NuJ?o4k1aO)eBJohDmxZhX&f~^^SFQ4Y$}_j^ME4 zY_j?V#&WF9g*b;_+w=AU6gp_%97Ao^cJ{qvc7ji5-@9^UN`$j-uA(HUd;*p5$N5IN zD~@kg-|1sgb;+0-lWt-8%wJO4NJjw?zHw<7iQMg^V&LgrMVsPt`EuDJ8`^Kw{0 zOSEMokCIPZHZ@acsGvQ0&YbL6A)~3N71jx>kn+4s(5Y1+N=Xqi8{mPiaDSYpS52sp zgymOwhHJ0(hJ~lNqMgCDAr;m$UV^1|RONktw1W-IZlrdBjPIQ+GI#k8H6jK4OOrwyNPMI!}SMXdYPuJW@R z*VnRLgdC6S9xLw##Ke>%!0SR)OEDx`T!=gFMRkB|McvA09lvO|m1e)8`)VJ=Uvaa( zJ&Wtn26n62FQ=-|4#Yj2`&V(-Zobt#I3tKXq``|u+zPEO%>LRRoSCa7o7`teSCV6F z#du%)c2{U;yb8`oYlIOG|{6f?LtNgTaLt znsXe(Tm1_+q_9jQU%(-cLPc*Mh7DH>`HChS4CAe=Qp!az>AX@ra@kB4YOaJz((Fz` zu2qPvnde73e17ech!y=X7|g7sXp-HvGQERjccv{@D5{)f{GiJKmM`cEl5nIj&ucw0 zsq*+Ly(Eu2uIknF(3N4*E^&6mUE>#(6hOYsDyl5A%zWXMJY~Tw zDtVSfHLs-xs1>SM)i0i(xMz0hQ|k6v+q3sPyEcgiXzc@?T^9$djUJ*2Sa zgFKa2@vAKspJnpKT<95prVh!)zE}n6h7&A^X%B@pK$GK8$~{!Uaqva!h2m(5@h_*X z*3K-<;0_fvly8qO3ihHXoaMxrqzgc#vG%g+p^3_#Es)%Wu;$f6d zLq*YHX?c?KUsGIgU=~xBVQ@)Gg4xWehw?Y6(@?_Qtcp-kS(%0;@$L#^jsgPQ19fXj zAs_B=xxkT9QD1-BBQyPg?fS!~G!!$1?0r?;crC7o-=nmb-t+2nLxt;76B^0~PE~3s z4JI_B_rs9;l!I2shH^LKN>lO6?npjHLcI{V_#DetVI<}r>6TI91))r6PRy?(G#lAL zE3VkY=U@ufF}5W(A?AO7@Ks5}?-1K_PYA3<_)ZBUqu2}9M!!0u__g?=sank#N)s+X z8y6o3Hr3yu#C<9^od{MbE5eHqUacH8EgmHhe#Morj?|u{UttdqO%x9dWm)cD$iN#f zn6fAxUzjvG(pu=h;|hLzI6|$+u?Cqk?bAPx`1w(hCV2Fz?|NY)RqVQjo!D zA`WH>xl0yW2l`bK{rVMwfEDT)kN+l+7vFa|NC=$}j_b%5A{1pJK~mAJj5vHL6XhG~ zc}uUbg7QA_9ipcIQBL^}5Gx;mtVcN`8-gYo8&Xj$(z&M)?67?)&&Vc(%36=qUr4%@ zd5KFJ(TfzP*B4qIdE}7F*tQs~ysoZPx+-$WS?9ZievSk@3T{iWo5{8pSwsvPqmea& zI*8i@v*S2dk~h01Y*ol`fYQ@n!rl zWppsNDe(uodxTvbA_T@a_){f6$(YzA<%^{^ z)U`s7OhxU^N7$Z26J$b9dDK?5qWUKlQY%($bTU)1s>q@nskHn)j*#^%R`9P|%bDv| z7Lmrk_u)0A5Im|&+;Kx5RhclPqRwnfXqaW`dHHXQgTz$`cehEB=5<5`mEX!=C z9fZFjqJ3CjACvx4qVqxem=!s%NguY`c5m8;3A>!651TbF7$*H?h8m=ge0JXAg7ou9 zne<_zW+4HSJ`B{XY>}iNhk28J9`7V{JavBnszWtR`Ku~{GDsh`^zuRbu(s1oZQ5T- z-%Q%a(kZ)>_Ls^}CGE%A584NM`OPGLBR^x%kGf_G?ZMO`vURzfG9ck9s63t z)W~;Ot?#-fc6}aOhdNK`J62|B*b1LVrG$q(v3O#Q%uv8p?YWmMH8ROp=TdGPZW*NH z=W)pI6};lH9jy8E$4a|-$GWW)y8BaIvGTzHk&0{&Qt~v*i}7to(uORCuk1HGH2dc_ zHa~jYlAuT0q| z4-ykSS>#JRFY4U)&xWpN+Wxn3FlZd)(T?tfPj>8O8$2jREAyZaJynzOz z=_3^17`blG0-Q{GS^Jj*|A|Q|(&gv(iyR-CUL{@h?zUSGI2A;vLi7 zm)7-$TBx`0s}CM1uGQ7p;-I0nuS`Q#7LkVPzod9s_#3JN^9^WkT$(&Zd(9{>d~cnC6FlcKqGj5%;{J}!^3{_ZJ98gQtX;u5 z;|C#A$i*581oQS2T&y9fjxtPK>^&Sd`-qD*)K;zAQ^V8c)|}#E4YgC{LTFNyUiGV; zT_voQSH(X_6ZJVb%!|wF*h4Pt9jol1dDOcZ^W<6Fy$Cn=FP@ov?wOlx()s&By6k{7 z3^r8Oy&T4kUe+KZ*#WJ4y^#Ko-LltlM(vPpsN75SuDR$*Lv>}cF@>wXW7dbWrMIE> zufs^He=mT1sxO(KoUgp9-yru?E@?x};q?o(ocEv1#ssdlB%M1 z+P)Yd^rd&nTwQUnX-hW619G=Cld-*dL$UcfPDs7xrzN=|`!f1t8*-2H>wmt@2N&=6 zxu$FE#frn2V|95%xt1H!*w}=@JiJ!dTP#kOYPCETpY$}6D~oE$y?`)^ ziL+qLQeLv1v>Ku;Wf360eBbTY9@5gz;bkKmtrQ;+{es2Pju-gGdVHbl=0J}mhs{&0 z7}}vKeI zVtgH1G8%(2{G&LJqoJ4<&EGMFp~Rh>;*jUjHa$Ke{*P7Oe8PIMobw!)(>dQTz4CFE zL1E+LEW?wh3jm)oWICJ%QUzlw?3ZLE_%`)aXBZJM@?y^+*Qy|b1~E+E&*dVFgp|!S zVL&B0U99ZMF_q=ZUb=>WC8>qFgkVfsmQj;qwumcDQL_z3*k^6s7-JcwFU_%-6uf~O z@cH+ATsL8SfbRAK5>xV6krc-`R3AVTOd(|{#yD$lk5td*L_8Cj8jZ4Iy7; zl94MCH6V_fgQPacb7x#Oth1hJgAFJ5a(YeW6V`zhy~y$7+A&o$QS3FAGS|TUubno? zajU5c@(I8Ihg)VG15;Q(Bp>!^wr z%azt}b{iAbI@QKit*!`QY*w2S0^9GYll9iY%B0;7em;YUzCjLR{$!QnpQwu2>v`o* zh)v0h&&ZCvih50_9l4>5tM-+4R#bW59g6Q$bcL3Uv8wyaZU7MiYPedQkj@<4Q zK55&LUr4CJv?I6sE*1pRV{dcQt?9CoWIuk2ci`tRYN>kHiLxi<8UASo1+?p=i zuFq4`Wh3>uHQhT_YE2i8Ltd9s(?y$eMT|<*Wx>L^HQgNN%`zc2zvLTieu;0S`Gwxe zd$Sq%B5T`%1)gR)%2GMIeH?9m0Un;Q%`dh|3GMDNQUbl^-VHUuln`5sMhmyr$ZAy+~n`qLRwjDVS zypjBcBw$D8F(wgjG6{&y0_$>Srp*SZVB3Bjb_JaKw(X}4C2#v-nYbU7K2OsHYUGw} zqJ0rHwH4MXfX5FbZ$nAF!+wH-d97^oN^VUWV318T?&BAIIhau|FxebmXtuq@9N^nq z#~kajA0t;$70Hv!tjc&yG}P-8Pj~QOBk~TOZA9mIQ%OK^>|L59}>OxK0tO9>UUz@f9@76==@mi%6nD*hEl-I?C$~g+DQNTGPW*T2_CA7 zz~0#LJH+qod6&f#!!ar%yS+n;==r*bgr7!bz3XUAz`yd zvB0?@e>TLF$1N;QIN6ZfX)dBpII5O!v=28~J<~HKh5IZ&Q`5FT);vY5sO~JSFqjT- zGp$GR6R@NmS|X4eR%Hf;6a8~%lXSQAOZvyfFck~EUyv{dBS_U2y z%Xdgx2KqH!qwG5*Ed%+~cSu+UIy$gPHTwoh!u(tnRoxDI_J_?dA!*s`==K+S^e1G0 z4fWwx{}B?O`}(av3f!{Gy$y2DzXxP;M;KrNk^jmIx&;vegsUx*SRRL@D7~{i)Tc8V z2ch?fK#qVDr^){QSH>Cj;&7a<4&Vr$XQ;stf>{K}u}-&g%p2pb87x(H{x9Q>nC;tL zm7ehqr6&ZzHn*y@=QDS8p}=@2>(Cq@on2)IRNj*jSu6(}(;iDz2(QSHLq%Nd43^HY zp&?^fqQ(n5kT+;oC3+dVrVbk${V^US7(XEhV}|z|I&&@Z6Ky!wKPOQgc@~qb3g3=p zwBkZ0xlmXM8ChmTG!(WAD#6o_j$fwc_c#UxxhoSMF#&;~md; zdR@m?eQIJ>K2$krAG>2&aWJcLLGs`RV&Z6T)WzZN%0SrUaw&lBARk9teG=3k2S=%- zSi32d{vMD?3s}1xBh-f6yB7p@>k)p4w!@2iOh;%12ZCj^H6;_kwa%GW7bm83esQfz ztOWOgFQS!4VN6qrm#sKU`-LdY&G@R2x9|kC!n2w&1|Bm)NP$d-{MiuKZFnJ%-7zQR zah(D}7-v$mw!=G(soDpP8GlFU3NmF7z=mKKrbXA=kp{|mK%z}Ex|-{FD|-p(o1)tb z&QFJUz~*Z|w*R=ArP<$*NHM?rPanuMDPOmx|&T!5fH zO^tj!K7vyW`LiLd+R^{MMVUPZWL!C9l-9%3C@zST1+{>!78MEtEutYeLs47ATI-5T zxq0b+$B(0RffiD>sqk6KKLdUAx}&<|KPK$Peh_{C7k0 z@TT+k2S{zI2Av+s?+_${4tZ~jTD1NEK}q@f@zi%n<+b~df;^t~BP59O>$=2}&_uOA z=VHs$jS^?6Q|sIixz#Xcg|gz{ix^*zjhX1i%hElUwBtSI?QRdlG6_f{P4H+OV;-Gj zobLC47AsYi@ z6gN+QA(w<zsk^w`)4PY3bSH^iB5^_S53IZSaFravc+g!=d1yVb*~FJuaCws+vDHbbBqV- zW8UmvG~F8W4Tv=4--j`Q^%T= z_ZS!W<`9B*hfkqhYCQa7{Pe7(9=#Dzuv=&ED}v%LIxG zQ1#-erVUf4*GMI3Q{EGHpL(-n9&*0nbwo{K zDm|zueGZ+6xgo_&_g+@^rXnqty5B+vlB2UO7lW&cm8?s-ZK#dgylx3~_b6+)WT?J8 zlbwl6F=6PaFP?`=+KB^m?~2QcQ4xQ~QH(2gTg?u$&KS?fEXOa}a$6L?0cjb}Q3~pX z$Yl_d@Cim)vpnxCBB~id>B1K)uO{!fTPq<6ka0_kcEN{+lS$35$QOi@$!c;%hN=(- z$bUDLimD*(dBtwfz=kVe^`$xL6|~kTC%`LBwlswMhE3klJcZRZZ$UYNYVOl?Tc{G4 zAuF)AB%0>yLk-&{xD2asRf^Qs90vLPQk!$i66Tc8s#S4bWaQKT; zbGqc?u*%#}ZAo)LHdzuPOC0NT-L@mpc?2;)`$&<;BM)D3RSFVn9Qj9d+pKqCEB83~ z=Z44yidWXM)vS<@(y}}y+zYH{HQcE?sgkBa6lg*y0I0Yp>!Gw;3bANKAP;tVNzz~42hx&H*M0~ zI#URXTdo7V37>%V|Pol&k}7g(5m{c|N1}t75V__ z@bhl+cSE-Bh_I_`{sh@K8dga98IoElQq)y<@f&16^*J90P!%N|f@M_&Pz5BX1W#$3 zKSE~IFGDy3U*6mxrXlzAFdHHQ;gX#e`@a;E(2ENR=5NMhLt#QbXQ*l4j!5x7{yibQ zj??vROC7z=cGsu9sUdS$b{u;q?M<-7iq7@>v}rXYF(b^^R_o|R--SZOBkRW{+>T*>Zar5!5mqyTr%uc@(uv;@ZzZ7PoShnx!prL8$pXk&Du*k>*`Ar0KQQEA}Lt;}b<)%i{@>-efq ziw*C2nqt~<-qLixPo#`k`@|YCd8QL}ap=uZlO~M&lWKIq_(Df=R3MMC-fyB_ZsU7U$Om@4#r5Mw zyoXICcaKiU$3y>FmBv|yTI0~sOZ>pW2z~UCuo*a@aNRq}b9CigB29!er2>rKs#CJ5 z4rB+GFxj&kwip~!;H0T5)+@W9ZNP6pXXe+ZKG1_kF09-*aAyG7Ay1Qiu?D(mjdxZk zLUbUs@+!4>f$EFAf$DPvqxUWU;KxIJ(SJlW zjH_op@?sag7Xs&Di5zf5nb7agq{;ViymvPCCwZ@Am9hW-1J%4rGwuEret+j8luJ46 zvSu>`{Zg8?Y7zbU_S6TKl5SphbvsqvErcVwpx!#@f4)BSpV3XByC1Q$IEgsj34zx0 z9*Bx?2AGG?AcVe%i|&tx3S4FU_k%3G0S}{yRJ@3IzG` z(0^BC&T;L}!pfKz~hZ)0=KMARDNvVDa8dI_~=U2#n>g$^|gI7!X-*Ym&Y4}a# z^{_flsHBGcNl2wGrwOTe?N`8l=IeX^m$jPTD=o$Mlb^5|tb z?>GvdcDjOVxm_6*S2>PVL>IO+{XNp!VWj3Sq^49FfgnyL`H}86AQa(&Wr%e-#)kp1yy9XsFWlPUWt@N(aX-oLtat05K=!cA0w?<*RrT z{kf>kL7A`Wb9^y>kFad)!(`&Ce*n+jf?`?RVCGdzhsKVxENqJlG%Ps;KrD#=!53ka zxls@YPuwoD!im+!Ar|YEg?CI|2zTD48q5jv_24dSBvdHA{|PJhNN!laTsK z+KX7!8!FxVk3OMlIWRL`hHwX7#p0=&BZ^5^++VvE!Au}F59O@XZxUVn>SZ*bRs(|R zE-XXcCvje0OkaHWQqk);KWeCajE75FZ-@#X#2X-(;MGUrzRIyG$Kwb-;0;v`W2$VO zl}#BjC$LKVTcTt!;~qL7yc^=5sV8`gMDpSN@QI;Sw-R00P2`s{B8BG!!Clp@I@qbXVB8tL!A{MXg2H8S1X(_y zV)@K7L)BZpKsntgO5ON^NB$6;@q$p5s=}0I@RnU`bSQYy*!gFtaY4VCAe-8jqo?0b zW8K{y$xU@NYM?{&xw%K`@`EwVZ11F98$HKEftX|6w-ec5S~_b%DNc=P-_&0DryE@t4fEl zl_nqecB2sd9_xINPz=FIYrW?Scx*0zL1AhL#zCEPPhp>7bQC!ceU`RjD;K=eHEB_q z^Ww4@7}RjbBc5th)&zfxGh<%})39)B<^nxkD! zuUa=4DBH|?3{!RPPSob5-iazu@e6ZSyb{-Ab$G{+bcnu)#v?qQ5Z#EpEr%-R_5N-LM_GAD8RX4~h{XWn(5QJ)y!WX{$xG!s1_iUL%B^opLSO#ZNZtZGJv zIicI5DHFash=j>sD4!i_n@n8fKl!YxOCW2!b5>dUi-BBI5Xu>rWg?Fwdu=`o3hI_D(0Pfj z4VN?^o>Y)Y^9xnw0d)29__f5E2g}d<#EO{{L!`vw{!O7Xg|z7Ur>gfO_Mq^6m)o0G zwPvThVhMgLX;t0rzp8OAmvDv3Llp=CNKFF5kVf&oQmvxxm>P(bB!qeOP?MyZp_vmT zLQzxYilE&ReO|#W`?N9uZigenU#JTc2$JHVtSFlfia@o$qE^zC0;x-I<8B{g$YmlT z0b+v;YklS7^CLuk4nH7jdH|OhtQVm4%2iRjd8(sQ(P&K*mBs-dT^Z6zE|x|6r(r*~ z5=?P!J*Tlo(tFC5^dJ`Mn35M1%C4jGBFEYpLj9phm92kb`^W=4h6@p#avZ;Sbk^ey zbfw?tH_&49zV|HHajT?C*~q^itwY{A_F}X4g-hh+SE_FoB8#NVKW0Qt_v2dB%c#+4 z+N5dm7Mf!hM&FRwFS_~0`Vn%;%6I@S7I)BHBBp`MKZPS$%y6=-HNX|g%hIo`D>DjM zx0EUpYwR}WqYW1b_5Y=#-)RAQKXo6(fgq#$v`s!RcRl-7@|6Hdm1sa#c-Usujf*Wp z$@B^xpiC`zmFn^n#7`mF;GNEzKS8X6ybx$-WS%M71W{7< zqalK|1?E+vV>$U>RYNA=s)Po@fWLkGRSE!Ooh>zB`u(qse%)a9_UQidbpzFEklnfa z!3B^XMQcFPJW2=LKLPS|Fe`M7pCC!`%9VZ(uT0|w6g*(ExA+hbU`rJJoIHSyUCX|oy+4PtwpjpjATJ&`v4CT27O){= z0Vr3mBP|xdR-(K;1q;|86${vtayM`YS00r(Jj^fL8~|yS6mJ^sCqc94Gpg4R)S zTX*<`;I1HJ1tF}R+*eXRE76e4KXcP{0!;j<9ANgKrkQ!}-TW6f zOP;DA{*8JO|K1w6DE_i}B>wx3>!&Uhe-DVd)7^L6axVIJP)tEqwa1N`Zgq^Uv@5J% zH`H^P-)Kv`ao3hI>H1p8MJJ6~;X$sto|rVu+)!`&otpmpL<6PjXD%#(3 z9_kHZ8O8ybw2bn3c4Nfptf^43-{(K|YN>KfS{;|nkD%hoGLBq?_ykoi>Ulc(SSBrl zj~E9e4RyB1Epph=mp8485gX`pUDqQ_&vUH3z!L#!ZY~>dP>GNH#%4zIlCf~8w=Aq? zW0Mzlir2;4v9Iv+>w2i#gFu6HFof<*GVCSxOSDe9xU96jd<1AFB5f+ljYwk>wu&U} zAF$8;*e~d1b9n7s50eGwfWsntgJy^p0gaOOzI1cPfje{v97ic}G(Y5dO&skLEe5?$ zys-S0CXoMi1D~^;bdnG?F2}eK^|CnJ$ciTC>NbJ1b1r$E3bLR^3~yN$EjJo1iq~Dr z(nF<_^GQj z@(XM%+-A-JVMy)TbDX^7%wrWO1T=X@EJ9)Fx;7p_Y6X7(#1veSg|oegc)MX3Z(wu-(Xw!(d{N5-BUAz?tnQmiD18qQyA#!tz(DkVtv#uSiM>fXNGZiYwB~dT!p<$3dX$ z3Tv^r*wS=N-|I@#u$kDh<;ola-5Y2O5(8Pp;>pC2=bN|Fmj@xdWgbk7(N-T!4Bm3< zsrm)mg7X(d#KI1pCiev@kP)79qa$33Ez>zrZeJdhb;&-0LJ^{M+5H#$2KQfK*F|9o z-JD|Ch|Q7~C~XOKJrF@xu-Nw%2beef=Xo!!)B zf_I_QNL$;#i#SJVJ7OH5h&AtnwIH9Kcro`v`u#Pw19y>C^n-h$j6mHsLxj#Hds}6b zOuB>@Zp151ga`+mGFwt#1qt!$kSf;#SF;oPIS!|t)Hu96|MuSMyi>UVKYXt{pfTzW zHu^4TGq)LJ(G!N)+xn6SdEEFBQXP+jsJ?dp2=UxrNKm7fgFXVi&Rjm|n|7h}fP(`V z0rXFz9*`7i#R)8W^Qk7=hXDjpAAq;?m4-=n%~FSf{{|Uj0QN zQAib}Ntc{8B4SFDuzg&3W85w0Bkb=za>p7nK zG9BEtAJ8&SnL5k=B}BYU-sXqQdnWTne-mlz@@~Eog6w>XeZLPt4JgmAaG7FU#Os_W ziA;K#z9u;f#*%X~mpl|>&nbjpd<+i$UXYG4Z@d`Kt7=Ts#0SK`Xk~u9;cDaK8(qE} zJ1J2Sfc(!cN{p>?I;rcSRO(vkdooZ&;vs5`h~isJ_=+EhVWP&kgzIG95|uCKKs$_K zk0np_14kyl?(9 ze*)}hK4+sT7FBdQs3RczO;wFCzXS5sj7yk5LgX;TL!BL&euAJY#K%Kl0S@!wr&$c= zJ0Q{bWkp(MXSDyZN&~9M^UncLkW&mD{gFdw?rnhDqQ!7JX%W`Fb?8zDWH~UDP_{vd}KAG$x0*7kM^iLvhx;P3UjDd(rpj5yy#mZ8aVZP%7z5@(rtkxmr+s=8U zlia+lg>$~W$NWB#-Q0-yfOJ-6jE4-VHcl}s87StR+~tY-?T8Fln;=A{4PhTnG3tU2 zBEXop`k@lZ1s=t@gL6103F$1bZo{(fJN!gvEQ%Fo<`+HQ!R~Y;vZ121US_D%o+4$K zr6KN;jH$p;w>~y7Azy!Syg@hoq8ywJ$w|d{D3>kA)_MqucnW4;=U7opd+f-$gd98O zWAGiaDL!{~Ll(OW(>2O4dqSR`!kU>vm8z?<^_uQOJ6?|YpHu@Mb>?pFb>~>d=3Y*P z*Ka+bm?JB39P3i7S49*jmq~yDv*Kdr|R@xE`&>3uIt>e9z^sF zvN!&dO^S66c^`bk_prFHHex&ZT{kj=+OhR0guJQyd033u@bIu0s}ah5Sd3MUZ>Gh# zphfXvF=i9-b{LFVq;QTj7^~Csj>=_SL>Yi1N|&9n>+y?H|EXJKl%d`YTd^%jXO)kA zsj$FaCcH&lxkbx1ROI}+jra<%95&W>0Y>1+tQ_og>JjYq1h3By4iwB%FuQEt`4}bOmzKwKrB`6U>R_oB9N60hhiFx5mkF&2o?O^jZ6dm_cbJiZZ#?@ zaCEe7hbTz;mYKpGjv%?0tSe1P66h~lWldqL%9|}uQ$iq-ZtgKd)EVJ*2-ARUfeR1SK}qbD z)O2sPLW+wke(zq&Cc3>nDj)oH1IYu?kbse*ds71NvB7rf&tF_9|y3`!PPpGs!U3)2Kf%%Ga1m&IjekuGqV#zmWbs!T9xp?-J2Np3{M zKtfD*+(H(_{(#*7j7^#FNGX1DvgrQ36hs)QDeuJlKh{aL=Z`f`(J4-A-BF=D19wJ_ z;tRL3bW=S9avzzIh1roDuM+p(8g;$+x_Ks3SpPn*%mLY_7g@Mh{}GagfZLSv10)Rr zt1$-uCrDTV@}aMQZ3$pI@%AGmY4Xdeq~R_U4>?zAz_#MS^|5}0?2n<0YOg;+^7Efx zQjRl1IKcWZ70vj2KnnMx^-fD(JYR)}9O;ed*JQ3;*Fe;5T;*e@x~|7HOBlz%krJr#!9Fc9sF=9H zbbZb&@=_6m;ty=*qn)fij8lkAkbms?4F4>0BJBeiZc0wGUHcY9`aR!qAcxKENAp`VXS*f;API;Ea zmNK5PrH*&Tu;Q!6F3~Szr|7pa+%+;|Nsb-4ug0=5HOACu>Wu3-w~yiDQt`BzUjHID zN}_y|q+g{xTB;OEJMt3zp$L~U^40*=%mgjvsXZU^v_hD3aG}AAzL}VY)XK~{$qV<- znbVXv%M{`8umrF{GsaUaGXO~*1G>{dDIaGBW9~J4Ucn0KJD;2)){Rj@gk4h zDZfFXXbmP@!ixus@KE|vjMXS8k-@ZugxuZ!(`k(I?}oqG;ckb?hl;Mx)`%QCCN?Ai z>U8D^QB4@wVPx$kVPdgHT%&|)?lzs6sT=MalHGWp2iJ*_Y7wg=)Zq8^gSA2A1=u*T zriW7LG>9y{RC(i|)3Z`SA!?NvtwvA!^9xT{O+u3Fv?VdJVb(+E;F5s^;U*AP1c5JrwIqPQ>*7gIARnvz6MiKKv($;mY> zDR2#29j5h>3c{G=R_LKP(KPoEU^@b{z7)Jq;3jd29QI}L0WZH}K5?{qx$MmSye z5b7u8bQy^r%oX}V@h-phmtz3HdnUM0--15?7z>rU2mqi!q9of72LY_9>%yJg-P))- z!%O0Wq43QtTh2KTPrK;mPX<6b(}Z`{RUzm1&8ioa5xTSxju$r@P9$(ykl2(FG+l_s zPclOW{==h}y&-lZk$V@@-x9Q627m7@S7Ye5c0b^urW<-Ub&y-;*ds~2Drv$=IICH3IsRJkP@;34kH?K|tH-7) zm9~`IWU=jxm@4lBdo-L1=NT>lkqDKP7;rdE!+s2cFIEPu${t@SZYwy2mK|mtujAaR z8yV~Y$TX}LBhMMd1@e$0ea1tRka}|Rx*ianh5!%Dv4|kOX_Tp0wW8hR{yi9aF7-t| za8%{JeUl*gY*IZE_9lWlyJggO660mXbe+J{8JiT#CC3~}il=!o+C$-C+^w^WTIaN3 zrVzUUj?ay07-V|RxP34sxL`rlvPnAxJLjZ|x)>T~4<+8~8QCMEJka?_GK`Xak1S(v z9r^l&c@1s0a@oOBn0(kCZtQYyt6lF}8} z#xKF*ZAKeUtgT-7FO&yx-mrzUjBgCBOpz9!3SDGw%L0kaKu40an?3QYG($QR1DqN% zN@wEnMawFq+B_BXGIYWW_`Fd<@g3gTw6(6bU7f!us)u54pb8jW-+*%(Hhj?om5#NP zcw%QKb66zLC?=gYDH|eoM$P-awUr{)3ig!E!t2)0ETKvqk$U8W;i-1USuq0?E3+*C zUEo!9+8oP5uSo33M!}H`OF7vV{x>YeM6<{PRj@8~@^_prd7o0D_bexc`gwj;_!2U~ zffXG!!IE%qCxN<-v}|-`_=9aGjJ%pkDZfXJYae=2AFjDpVoHQOes`D&jIJM z$@!X82;>>JU|;MY!|nMsdv!Ca+OfPui4&_m~SCJ4z)

    9g> zZ9nOGvm>Qw*2fk$Go!_6hwy-N4Mj7VY;oG5v?*tBJXG40Uz}?QEzUI*O*zB4hSH{- z;cmCmrkvrNOK9Ql$!LdDRz)+3vNb5_p?F|Ga!6;G4ri}Qn~hjosj|{=BC9!M(l^2B z0n<*>xx`-iPD(R-bBbo1O%N~EOIu&HN|{P07c<4B1!Y5Gl1?rY9Lz{%5&MbJE*+L; zqRV)|Ar9wYpEs2Rj5v(QJC^;PJ|wb%-%2C=NFj&4yZ+PDEWg5q0TA z6j9Q(w5%QMKqaejI=OT>9+i9%PD0VFhfEbuOUwGL!||x*oAR4ZIT2xBaww4-$pDcB zVzfzDrazhP}*z~u?A5_2RpG!(X1sWX-lSW2beh`Yco3q%}Rs2 zx3oj5OHA+j?D4>)7L!zcF|UD?HfslqX`RugyOl|* zP)yR@ik$_e`KFxVa+jsKwPt;VfNa z?IEu$-*h##^Xrs0t#PWY#G_ZjS*n+`sb12iYiygYv2D7>w&@ycC+Jz-($zFxSCd*~ zt7$Xh%Rlz!TWt(AFJdz3F4$VT;9FRhh79NS<|Ajzz84EVj99Ss-R=`nE)q6l!QK(( zB1Ejr*|aQiBh1)K=a=T5MAq;HA52(5)J|scC8PR+PX??;WQ|^k_IYM~B873DJyCBxdZAHI~~+av{%1h!sPqpgD_}d4rKje$JkPb3RJ5 zG}Mg}X~cS(vbAocPLlu_V++Dv3-g@Y(nzRB=F%f_UU*l%uZkGl~G z545?6?u^fE?IA+SgeL)eD2=&gXP7yk(2nKum<4L1a(Fz9XY6Ta2+aaBK4P*rooOt} z6+*p1IOAb8<8w3PpX79=Rpi6b8J`cD^CK}gp7CX`sTR!#bkffj`Mz$;@r*-nSV1I~ zMnhFHg!*2tjLMBsJ5wXMG=#XZM=xsjWJa2@SIt<&P-fIAdzx6mH0UkVFA164_B9d` zW}EOS8+#eF=3nkKiga7HB&n7y<+9-6x{z+1@<_8VLe#ip@enr}>R3a#^X(y)x=!Zc zLY;32^_!JNbub!gEOXD2(%B=xq8xDRbgX>Xlk!~Cj)mH2q%8J5A9pPH7B_+GWlw2w zYw!YYsidYhFsqAyo0H+g)y~=8(IKAr+^0l{S;# z^vyjpVx_$ai?ZaK>LuxefoAzi=LcBqIo}y9_KIelSumoc&1N`h(HzotNarZKIi2Ji z&!=*}({xsz;=D*{Q;ACXH48LYuCT@xrUprgg(9ozUVu zPSLE7?e2Tl4ynd(fxHcEQ_78h0y56XpCpaOp-!~Gne#q5#z4NN7avQKEY3%P? z)IL~qKE^N_wtUUmB;N5E(Rj}10QM?aU6S18>ck{7XG^L0{M&UsVon_Vjf6~CwtKEw zF%q&@$?4R1&W2q>sH5fV$*hz4odD`Ldfqi&^tQ<4J~XL%mZdMpiu&}Rs88UErukw@ z6xCpkyg z-g{}5SQ9jH$|_c3q0PkxT87YK@26d+(4BFbmo01s`=A>|jklF&j=Q8X23*iV$! z*IY%@T0plGT3B`zO?wD_0ZN;e23wZW`r4>y+GbbX=iz=E9K-f8i z7P`Kosgz*PBebyLD4OSxbJo{*J*Z&a!gRiYylV*ZG6?ccA;^0K&|o06V>?_VbN>Fy zpE}(;yuZJ~(=+yD4V(1&l)|zBTeK7z4Av9|dxOCAJqu6;_Hc?&FDs|653F9_*+1W1 zEf0@&SEtJ-pM2jL&_Zc%NDIPe()L(%vuUxb@xAlPYUkDE{`MQIlWTYPU**;`hlf6& z1FvTP@sP%#MHY+qT0~s9csaMKc~`J+g~8qx3GC96z&?>BurGiK>{CtxgF#YHjT0At zp|&RtGS~uH=5Sse7$hWbyV0Fzl2->i|0I*VI@tRwH8%eWW6su2gHa%X^Dd6Zdr6UN z8(0f86PODU7!9kLpkWn;oG6TjRTvGcFyusG2!y~`=9O>QcoR6U4p#bvITiJc7c*k!P^o0hqUs7lp$1+5vlAsn$YKFv6Zc7Pv@Ku}@tqF*ocArYscf z(`DD|?M3C`YhwM!U|zTT)aBG%o?7IH6viorpcD+VNkWYwsML^Ig)sybhRg|!?TQu& zlS%?(2x=yIb>JVIWRmlZGlqm3V@-?9tAjm`W&%4`0_S|=qEteicLOYp33bkQJZvu2 zfdNW0fdwjo^KOWD+%<2^gaYH7M)QViKmzBL#{o`4oy#DOM3fr3aRR#{n!tJG@z8cc zo%7w~GKlk?B$K=^aXnJ0VX;Wyv^pak>3n^2NaK50N z#6qgnX~T|UAyw+UI)OqFe8QFZ;(r$p6N%PKUcZgf>f-gf@j2hl#u(z@VD7G{MN85bsP(m@mHnzR{sq@pbrJbLJp=r6j-0VIc zBl+Dy@(YYon_y6~c@YQc1y*N;vCU0j7m)<^fsnv1l?m*!kib6CC$P^j3GCxKfqjNi z7^`yv=X}HVmQeddpTK!_@F-tGo%0QykEu=8e559D)(u9T$XUE%TXRDLL!HBvf&FSiF`I)1WSFfJp{BV<|J_BFa;dNi!Mdsz#Ry)hX^Ml>h z{d>EcXXfpRUbdg`{WrVQNfs6{BrWV#+M|_UKdjC-G%VmcA6ljK`6 zi^*7F^t{4YTNFmmD~!olVF~G9Vt%idz{$g>Bc8A#=MuuTdtEG9lJZj_C88FeP#Q2b?^Le2Vbvk zpIozdq6%&QQ*hu(4|ng0uRy)>SWNpUNE4%|rI!VFiqpM=V{_lx{K1%(r~f zv7iUuBIU#0gx!41Fg|-SoCx$E#alfxDA!8j1Ln0tX73sgaw~U+LDpZ)h>voMAU>ce z^cj@qog8dqs^2+3c})h7tmwJ^ z4I`}44kpP<3fgt+;JyckUzw-i>hLUcabvfOc(GGatmoCLv~8CFuvk8MV>#a2AKlwO z+BSpA&a104o7*;Qo*rBDffHV4mpxpTH(w@$+57wZJlJUlgW}0pOw(HIFn>%W+h@z9 zh+)+-){rzwM-v)u>kx)mX~U`Y!u*eqmpOMdvEf*4IIle{N18Zk#>xVtLCYRaVy9=@ zhr8P+yS1jY>|tr*)78o9aCh%`@9d57^4d2&|GW(oyA3huoRZ-sDX-strX=+lqX|D7 z%cy+$=zE-OKm5|mkD2m?=Y5`goHAc{9=qzx8sU}I>)Xq$`ONt7@a9WWmgak$q^^R%4eE8H{tuQ>UB3R1>-?m8XvCJ6ouhMmaikF05_7U={@?E_$1u+q_q*QP z-NEJ2-A~y{^8Ru^S-~1__WP>mCLGRe!eM$Q7OXF6C|_c))>t$R)3!7s;tS}C6oYYg zTk~&kS!I+ySxIsXIZp1fMU)nIwx*J&04?@))+SeLj|+q+(@|(W?O+HIFxhk1b4OM$ zri6k_poQC}%5to(j$L*AMc(1ydW2DPnT!t_!T2Xlr-MaGK<_~TlfA1wC6!QO2f@kV z+{hq|Y65yYGYBn3z>H5QAwrq*ne4GU?1eZvEX@LDdBRgwD3g7=-6hSc>AMY14xNud z+))%TV+pP-LYc7yHx{PErcJ=CkKn+*lXY3tYWI`h0%4dvtGke|6*=xHqtOO4pn#=YYlQ5qUU1I$ds` zoNT|bW@P74nb>4;?|gs1uh09)#&?nLBe^%j;R!9g^4zw(_9jo)d!*W=-!AJ8=l)Tf z5Ry-%S&dv4FRB%36VAi>Hj0mPVyeRtynwzu z2hr&zk~f%)=bTlrW|VnDGgJWTDJhf(=V3 zGnQZ=WlEUm1oYWZz@(L?uw@Zt#1<4V$ulAg5@m;whXQ6bLa-pBoZ@WQ!L@8=jN_n_ zlVZJK5UZ7deV*$=vg-8*&yO~9Tyj5@H(n9gMNw}sMSV;u>Vrzq{0y7pV^|>DG_g03 zX6X{FDC~T+6R@b>DQ#LUXp)+5RxJrUZK14as^m9}?bXbhVr&63l0JRd+_}BGdw%%p z;n8Of#R$(=_NH-!%oBK=APeepr#YbYg%+(ZC|X}ow6mZPA4cQ+Sy0G@pebkJtR=LN z06|mE!kda|!)r>=lr!ANke0*|m7=bGE1Kt<))-evG>5b=aP%g$;hQFPOWO=rXEcYj zH?blJZMd>>Y2mUeXewto&(eI?y}6!A^VAs2R8mBM<2)^LYCT+MQ}WuL@y%3?+i#P} z1ta{v9mU&E<|KJ$r)wKKm)O^6(wHIo0ejV2ICmE%p@kp_ip~`jO(-Zjm(lRP5)^_f zCPtGBhPeIdG3HK|ZUDtLHGG!L-R6?7!LpW0jZCZ=)-eOvq5z&(C7Ek5H;*?x4 zef5UY^Sh@zCws?d51YZe{n6KK>-ev4x=&@`}{#Ud8CP+&e6n=3>y>@Gf%?^(&{}-rqmk z@gq#n$okjs(Qsw2k_MrnHYb|B7;(~_ql4pfD{cGKj(G2ygWMw&JE&@j?S(?g&Nve* zqCC~Zu`n&{a6KNT90_I0(QW*N7iwAANwYxE3^)zPdO@*fRTCpt9Ht8mPf$z~f?}!= z6qAFXm>>krdBCbCw2(YTL&Fm^TPaE!vru@b|2`Me*7l&1nZ)oP6L-_0q ziiuayl(Wzvg?8QRgK62`PReQ=x+3R*oA^?T&~Y%42#xEdqK=4xw)`ujwT;d&w^AhxDS|6rskov{dq7a2MLRP|Tbm z2#C_ABRdQ=l0({NVJu?WFsKNcjaGZ^Eoq$@V%{*n@koNAnLN(o9e&(VE#b z;cOZPAfk-``plU<3Yg?z55%SDx-ZspUV1%QDa^LouYK?uUn^H06O!m3VG$iTM4T<% z$J7}mb!OH_`=Mfd0lSbbTFf|Xfj!V>B`N9?n4oFEhFKb~VU|V=i#JC!U+*kMy%Q8o zIm03)w0%sAhqRZgP44`^?nZ7eve(aG#IV3^NuF_*a&K>ce}#khT#_v&@b)eRU>|LmgO&68B=GA8Yu5tKpUTqfY+ zqgb9LUl`65_32wtpL7(33`uE_Zb4JdB2o_1MxY!)Q_k=zvTzpRa3qJ6v$#{mv@p*| zzF3|Wb!AJ@w9T;95L%cy6!oc7P`qp*XawfsT0~qfN7vJA+7DQWHBZb2RqF5)$T4^DILYvnD!o+EMCr?hDfafh69fHo;Pz_g<%np$#j0aRMF zQQ9QCW*FYQ_h1s4Z8 z>m!!(BTrSeXxXd21jLqsK@4RAxn*rHR`Va1vidW(VC=wZm~+NzGbBhr7a#^iXPnC{!{a@~&eU!kj9gx1xaFkPfb!KTad6gT`<+sUgn{F;F%MJu8B|Q#ewJSs6)? zM{7;!;<{ffw{|tPnyt+Y;-w1eeWa*&lA_*Ain{Cr-P9RH`NFV)P)-e@kQzb>HH7RP z8XO$V>{4DeC&ieq<>KICndY<0Ss0($hK0?X(xOL&7M&_6T0&6N+%B4jqB`u}opR=y zOSIj_zbMT^B!L#78GOzgM#Cb$_D>L|9@d;Zbm2x|Z_(AA7ItYu?P1KCY(8F}JPvuN zJ^X0-fVbgV*5V}2=fR=Kz=K`f5+e?g&_WIcg(wml`)bZNo*`Ehq9Zv#bOeRy2nx{= zG~+jR+rmTG_Bn^RXe?;TLwFDhZOU1A5DIPDk};t&Eq2gSi}2|a+O#FZr%z~8e#57a zXs2u%v+EGGbam{W-tqH|_M9Ch;Shy$4%FFM?Bis(*CV07&c(ZRu)G-(u03!q=Ha1F z>&`q5Wd+63CMX12P;`T!5GFyfFfba&+k&FY1cmSm3K3&8bw{12&YAW`XVzwMbkF&w zE}LNukycNg9%D15v}sF18CKe~C1F)p+O&1zc$@1M$J>IYJs(HhLYs01o49ZmN8Fr4 zxD*PS_D~#V3vDWWahNT%shq`Ow$P?68Ttg%hCU%^+LCd^EwpJZ7PO&gB$&A&G-I{= zK%fVLtyauMM_Si}EtU)RJZkyD-Tndzb6Z ze&jf~CcsJrF=9_5`vf2;I-Jqao&<$}3W}*zP>6w`=x{+Xpaf0%jd0>byNCd`f@b_K zB51hKVrmjJ<989E!G#tRx1d@3mQb`z8=(BlP7+c&0Crj1KZf~GwmenCtdQ>mcY z7>YQZ(q<8ioO6h!O3+juVyP0^v=*^cF>UJozDT{_7qNgz4(WJ9P(7(}C=TPk=~TRGX`gkZ=B?Lr^}yFXCu$xOf;;>3o3sBC)sRa zuVmJWQ)BNIF=Eb8m2%a{tD94z}^98wHH6t8Eu`8#+Xb+(d*EoeS5)?*t6vjw!cvEr6 zUJb3O2Ikjh6fSU@C%RQ&Xi-`_s8I==S0g;>H1C|j@TXI1jB|zab`F0vp@tF*zBerg zDN;(ZJvQ=YvLQ^vKCg{MNM$+e4?Nd*Oid2^dH2{Njh^+MG_~VPPvQa@MBty1dLN!8>y=NtN$v`G^$4stg% z&;%3eobT}TmrN#tm_|c$`9lVX4Idt3nM06hNlmCWtUNWLtSF4u6*#={6-E~c9FMgs zjP6$$&8RR2y}~(z;ix6lv5YGWu}#kjYyY7#d-3eV%W`AUNvJD*zFYeo4vdC&3F7|# z(Orw)Pnn7)ZI8>Fq$jYq*XH8uaDv?wI5^I|xJ1_Gn{aPZ*xQ`_ubO5PwDkfW1_$UD zGaiPwWb_+1|2E9d9M7aa|{ z1@Chf+#idU^GG&})Q1c9@Us0CbEeJ0dCrV}`45Rb$s)H#E3>aU#mAk<9aFh!{2G)3W@@3`Hr z)OmH{980OwhP7P_jm@SNgx%xjHv12U<3OY?^zrdb*SqX+?Ba4pajK>;I+@|vCo209 zCXcB{VgFYc!l^L&USYJM!svT}!+BBQIMq}*t>q}rHI*8YA~1{+(k5Y)NMHz%W|Fr_ zoaZuiY``V&*l8zl+OTFe@zJAsrwwaXrIb1jKqQkm08u!tylHrO-Z_Ku#H!@Ialszi z6`PG4b`7U}8QW%UlW-B#BGXQ5;-F8c!;OsK86TF+5_MG4%se7{9)0UvvrSuNS#T{5 zlnV$oL(_y?ox+eZg&}1ML&_A!Fc3HnhZV*|qA;XPVXWl>#{s;+aegjv=m`SHqOEXV zWJH%y>b$998CL4NslwAisACycIB%+0hLt++;#h{2I`3j!DOahA6;Uz?hZ}|SrV5uE zrOulwy-CnCv9f3;d0*nKEv-(t?noxF#t}T_a2Xc*N9KciB=@gZ9lx?ZFW}+KdyXdF z0#+E^#PB$j3x&}N3PUm!##F5^dQah;lUM_VIy5VR#U>yz$)}?Bjalup^{d|do>~Os z)$$>&&E~3cI65c{Q4~15J`_f4D~#4w7_F@^T3g|qlUOf>I@SV(F@GqW^BsOLL_M{u zCDlH-<1q8Kw9{(XjM+HW*@8J->iPjvFdiJV0Nc}rXgh@=k^;wiq%hVag|Ut*jJ8u4 zZKrU~U<3hH>I?Wrp9^((dMTXq9nsyCI_EpQ-jo_bsc_DBEU!Wxdt!xizQf~CsKZ54 z;he$nH&^PsVPjDf>RA63&bv6)f2GcgjBU73$NH~uE`zcD3-y8)uBK(T@TN7xWi^_c zmQ~rNfm~{_PBXfR>v`Qn$|9Y4yTu} zxtnW97QdJ8MOkX}EZZL=2!K$J)3*W|dwR*$an59%z7}BAkYA<708<#k#BduEF= z%{E*qgKfn2m%PKhR^dF8ShIvWqW%jUPOl2*Js(>_rOpK+)BvG|nO&PI+nFo$X;dF9~^p|uQkQ8Gzyb(-BW75g^5*J%=)j`=pO6iShC z6Hej0^5N>P)cGKZy|z;4)xp8JHdQDCl1V573jhDiz1wzMH_|T3hso`B#G|CU~95hKuY*V5_Qa>k~1&0Nt%n#qI939BjKN`RWdIM38&MbBW5% zrTtKyYTL-j>gm4RkKAbP{>a%Vay4*^Gq%U>`XhU9RexmntN^ig!^qhdBO8J1kDMJd za<1lyV~717sTy+Fs)jt64x$Ig9aL4}vEzQLPVm^_ z#Evwa@32+#d2l?j8ntlPDnvav9;Nyk9y=bTdTSm#UY+oCa37~z!zEU4&9xmKpYD&; ziSyVo`KS};vE!boc5>LNK0P=dysA%!t?JW*W6})InfFIwkph6@;b?rpeNtoT9vst& zS{e>p%~}tRhok4oJT`4L4~}V2O?`*0#=8S+K+S{W4u&-gpnKvDb{9?6+iWBC7yKt< zQJ~vw4qH7J4~~f~JVg)v9Is_~jvmxo)19vqHx9NsC{AL}t{+sHV)YYxUm zNZ(^U0%sc;#rkrjad?j%4_@7Sj~y?Ay0RWSB(||j!;xEyjID&IOAdUvMC$y5&!V0_ z<|P^*pElbM<}#K3*rmmeZIHMx*W;M3I*VwGl)>D`@TkNA%f}j(s9Ycl!-Gj`4ji9x z9IH*>vAH%LOwJK-mrFt+;4w)G9(dg9+>Zs)#dfrrE|61(Hr0WG^r%9n?_jxme~%#!hQi*W;*~2l>}fRhX5>MBLK(!j*tG0=>hmg zw6wmP6M6svc092Rbp+UPzqNq9`($_YuMuFhVtm`QVghhHu{2i#>@?q3H@oZU{eHFH z`7C)Cde);)z5M0%^tTspe-~amiu~@^ix<<2=Wl<1`ugH=FZ}!U#j9U`dG+GyvzL#0 z;pbPc-aHBsMd(rIIN$Mu(;Tzy4WT3O%G3!u_3r*&%+J!9W4%DEm+G(cJ=mXh^Yp25_E-3G{zvwfX$0SBaX zGOz2sF&0QcYk+Bf8g4&lgxG#a<(+w5#hL|Dyf(z=*{%~ek&ZN3O6QCeYd!SI3G*=# zZ3Knja!y&({J~TW(#26MxJ{6V5zW%D@9`Syc~K=h8Kz zThAUW!wedU+t!G+Yeb{?4y=)O50*9epVW;5hpih29xO}g8_`gy$Bsv-p;C`6q#Cpx z_gh1yzLB(Ok0Fe#{E}e6X^pRWs}&UfsE0;St(%4epE61h=HMMTK5M1*CwwECTHzYe zh?gIo>X+n9tl)le_(sc!Cs4w5(s$z;;3Ss_DG!ZtMMybZ9w72iVFm|f$k9WENW6E( z0aXJuV{`FVq@kdl04&`Oz$8s$uVQgzLOiyHwmdd@{(vZ}`fjQ9fL09NFqCRcT+|z2 z9MXe17aq*fc`)hPgE?~^Og433&Ghu(xDm||ao8%lJUAYXiY|{G4@X6p$0qlBFzLgC zMbDx{o|QJrkCJ|wtaBoyb(he{<6dw<6r_UNJ`8MWI1nv)>l@-@xPC0lk+^7 zg2aJUOnPuUCu+NS>;r9+t37s12AUDzu_>?}SPeiAjt8&13m!YBQ_Yg_*zs^Qt-xVx zDy0Xw$jf8 zTl%O^D)PjGIXfQAU*MmtK9?ZG)V9Fs6CO>;HXUBonlknhpl$s;uvExx{j+Doa zN2xhd9y=bT=16($c$8`{IBd=O^kA-~kE%VWye;8;?d#b?u>q5Gw7`Q&LLSV?^Lv7YDs&VYE}Gl@tZJ?H{f+vEiUQrQOIu}-Rz$Xfj%1D*wo^X z6r+GMVO^A=8axiH9-ar2Yno;`?;f#yt$e>bFwlY0lr`aYoHpXhyEfH<@n8~!1FPcm z;4*^Rh#9I%aM)^pIIvn24m>e_|G;Ji!@R_bG#|DV3UET}kVU;;-tIQp;(b>L!$%I4 zJR9^x%8$k6x;zS*r2HsMLz@ye>j;68!G_XseTq=N2a~uQnD^9sZ1vt8cAPsq46o0@ zqQo84vjeVeRk$8Z+VkMJ?KtgqsFj6$Bjf@HR%g_M46E~i+FVE#5wFPldtOqHIl_dl7B>wI3Ey$!?_r#1?$?@dj~9dsAUX1 zIPS@T^hizgvW<+K`#l=jAl(R+L0f?Zlv;CoU;J*i-7S$zk^S`bYPYv(hof^VJLSqE z^C6U)tiRN?SbP5IYu1u6n_Echr9|^!u8{+)rtx6Tx(Ab5JeXwR!6ao5Ce1oR)>7c$BIv9JcyW9vt^u z_cS~<#gYfd{Zckg6stPKVXHgi z!SOO^_|s#@%b?*;j~%a0c(W8z;^WoPIH7Ml<{i}~g5Bwocv8cgUvl2N{ang>_uz2$ zQU<=q4recA;Ct+N_Ed>lY#as*#egQ}d+eAj_1wM34rg#2Un_%5bnQv4J07Q{qQo0p zKUT8g(S87y$qm3V(f}-z8-Qh`0Pprl5V~1yn75c8w306~ha@d=`oqtHY_ujjSKfE8 zv^KbXnL{uQvZDqjj6dw{FL5Q{BnnI>Yiv-zy1nYN!`sKnyQ!WtN*iiHVN zSeVXBV_|5nY5QGD68mm21)6zk-W362-<7GduwWdN8wQV@W?{iN$YU0dWY_kO+-31d za0V|JhhD;9@Pcuq`xjcobo+t@21C(pXw%1Z9fN&6Se0}YgT)NSqs1ZJhoTWNY+*4O z9&x~kfAmfU(Lvx@^pnC_NgZ;Lc<4 z&X7?37`$_&kURnpy8HYwc%yUF(R`r2R?yq16O9@RqzrOE5vC3(wBmq577i#}>VQHP z4k%pefU0R)3Sd5;!NfMPe|^Bi>kc#Myl(qC%wR-=lVC*HwvN6YjA+1|68j;V6b>lT z!~vr&QJOf+s7pM#?l6N%9`Mw<#iTTGz<@#q%8F+BOXpI zFe3t^`QR``NH}0LB8CSnCd~&2j7CKB!C^)tqWR!3qY=s-3AI?01IlVSpp4A{ zWf%@9q~?G!3=8Bi98d(D0}81*pe&37MxCb>QQ955OYtssXPjfhr|#iSMFfYFF( z1v$)UM6`k&W;7yNK@KxoBc|0`Oj7_AW_Ck``OBSuafW<+3&oH)#AjTkv`n9&;1 z3bL5Af*defBSuafX0%3(oH)#AjTkv`n9&+Ba$+%Q1vy}}Ml@&~X0%3(oH)#AjTkv` zn9&;1ps|>YayVc#pNw)i%xFFt<#3qMd@{;mF=?haU^JhMayZOrJ{je3n9(dz(_2g` zUo6m#qql1@BRM~bfL~qw&Mr%ZG*I`C$ zL~qw&Mr)Mhyxk7e42=0^d3m{-uXtge$;2=@mlJx(4k*0mfWl@DCC>?e{Ss@3M4qG6Vgab;49Z)6~7kTeLRB1HjNrMye zn2z0c6-CT+jLA=vt|9+wyB+)>YC6>8z7eeLm}Z#6l&NySV8O>^Pm4+RbUpp3u) zWlbDV$QO0JGW~UAlTPb@nciR7As8Ya)9|!F3M2;%cwkJ!(_zYB9Z&}AfB~DD5}Z647kEZblF`86zZ|SXg_WkZN1^Ltmt*=u4_|B$^m5oERbPG2aMW` zHYkV8dvvc0nL3~>ss%=Se7FHDz>N0z^oj{-vm`2quSTO`p={foXe&=+aSk&WjmF{( zrpDqNFqk2|9KvEon`xtHGi?+l;EbZpv{AHgrU!uB*8`FnMf+xYLxg=j+BX|T`(_%P zw6D|KbHIQJMo~hO1}EL?(TLKnond)-5<$%&# z2NdE#<>FT5senqyc`2auxFkv;cE6j> z@3$XOed~vR|MBwKyFV}Fw81dHc^LbzgV^}cba%(23sMWH`L6tSw^@IQe+_yySm6AF z6!jgo4IMyj>CrIMINF;U^YRFXDNE{rvZM|uOX`5KdJZV7XMmGvZwi%OBTS)3_qx!y z0|uSfxSqj0BijuMo#<*;>u1C{FeSJ8ER`oVXATV=|7FPO`yWip^K>!1Dde#eB7$uR$~IdfU4f&-E;$F_KdO zcL$|pa8ODH2c=|iP;#Jyk^^CrOM&|{O2tV#tY%U~@wcOju-|X)Zx>QR9DKCg-p8KXWPN&+*XzcW1~9({MdS))P=uTVfooteXtSe$+^+6t$(zbu^!Rn@2!!5l+v z=g_e6B$fVdbn}E^P=_hY=YYb)7RaEW1Ih$Dps=a~3jJ9i!*UKN{O^Ean?k1+li@=L zj7CJ75zJ1SvppeYL^dgKR7i|*(H4Hf88H2gbJ0CfXqMkvOp3$&8<(KGr!YZZe>wDaqm7w>d%Z3EQ9u34=nU_VBe(BbN-a=|S#Oxga3PQ85f z%f-t#Z?#`Xr{b?aFW#gv9L4SQuo=WD15S1jr&=Dybh#7N^n0$LY91pke)vn=Fnprv zW!RXMaw)TxNXorc`CNLz$7Db&2VW3E#Zw~9=FNzh{(AS~wRVj!4r!p~X42*CrrS|7 z^y%Cb(t^#64YY1a?x7auY-mIz1+bewhjV0hL?(I#pj}qI(9l39bQ*0>Cwk?e#idW; zaOqiiXqxesm-4C@DAkkuTH+CdOKZ#FCh^kZ(qnTy(~4QP1+6^dplJ=-cD2-r!c&Hd~9x6oWp)yS#D%0elGEEMuCk^b_^r(S@ zhGWwMiVim%n;ubgxZ&8SS$%)QvFR~I+b(swYe5ekINWe-td8Vc2*<`d@;q)hHd-{m zZAkWNdAr<-hq=4oUe4y}MwfB`{tP$Dwl7rTdcL{cZ|=9#BQ|b>cG%3#Xtkw_TLhZk z1|R>SvUVSX-m;y&rr=Zyu$cmAr&<@%K`EmhRM^9}OS$WCDR(VYtCTq?<++1~Es()n zAIM-1%Cr#=6@lQP;n=jWSYK_0iPktycEp6ambh+!=DOZiDPX?{{&S)Qoj z@{?MLMr-3H9_jJmD8YEw(cXq|suuO*n#yLc?T*&Dc2G{MgOZReRD&G?Ee2e|JH`_- z#LDu0+(3%)`#AK@{x$gMTph%3!dxUDUB=Ua65hjaALoA=tD1{;{?ur7(A0-U+n#EL zG>fYR(i}8it+-vXy=#F?YoTh~S*X@6bx;Ze3)P5(gC@pkN3798i>uZ195n2&#!4)% z`il-4&W;*_7FWGu2TdZN9R(AIJpYC(q!sfGy-}m2J>P?Rto}Ws$n<-oxgxch@oJUz z5T4OhCc1p8Md=)ri)EqQEycAS?ewWKr)6a5+V!mEIeNR2OKuMjy4FBUmd%g26CEguKv`dX-39S$0fLu;!F zZc%QegCisR_1T-Z@816F8G{T*aG$4Y*S165eHG=?8nUs7YEd{SX~jXw2M!v~6RFtY zl8PNP%}T?!XDT8st`=c+P*S{wGELu6hK45{Za88sCv0)U%U90m%=)i|vlCtq?>z*uP0enG#o5OQ`Qcx)E}6xob#}b zhYJ09sLZg33jKMg(4U72{W&Pd>7dM3@K9L|4;8BPP|-YqQjSitjBRF$3cGCV{P2G- z-n{zl&8t6Nzr~xl+{EK*<+mz*<@6v@rI!yQwaa5xXTpG|1IiRQpv-^+$^LZ zrCK0Wk^{ac`s8xGneFdp^AF3t zSf$9A+wCeMu!~PM+H_8+AsLt`ddj+d-J{;WrsgMp)uQRfa_#3E0`0fEwNC?*d_MNh zT8FMhnK1OCu{in~k8#j6fEG9OHTt2i(buStZCCeC95nozMv*LT=o|H!(H5*!N@Pqk zbUWLNg0aa0x)SFnOjA~EetwdQPl&=oHimRC{nAebEcnZSW_$W&!1!Kz(4=$CoI4+- zW0rhplurKfVNCi@XybHlQ-4WE3G?z6TD=iA%utXz3P_WXMHslT85!4Sh|K{53EQVb zbLMFOF#SbSOUtUTY-9-cInmYv>uddVW4`rSCd}e$aZnExDdM4I0@E%o@(FQCmJT;E z^0n}%|5{|^54hwGHye|AWovo0+iyM~S2vRY<&S}-b?Fc-m7BN=eIN^?{6u;2=4(yM z2U)0*6uR5eN}8y;Qz{7g&<7KNLn43L+98>xp_^o3qBtx}Xkhf2piR){8!9l4q`mT4w zU-FJ?NbSQ#{<)=hz#l{J55N8himw|8=rwN^|Bxxxa?E4jZ=GpRkO$iFBw2dYwx|wg z|75Ij(_kH{iH_*xK)ZI!AyJA^lzpDm^SGjH0JW1=`-}&E>&&VOAvtl(>n%nUb+j6p zus&%K;qZZ&jJQ~uv(Y`$@8{8k@;bdHqY%{v0bccOir3Wfu5;PvNQfWrteWD-sv8i8 zjEZ@vNCpq3$Lu;MN|U%{5asOx3E!mJa$lk1^3c*|-Ft3&dEC;Y8kZ{ByF~)y?ct0-~(gfd(ESB1#jLd}#V%^n;Zb*I+mHa>W(rwZa0+m_N~g6|+s-3GVklOV@25Zf_WadPPoKa2{pstASF%9H zkQwT+AaBY%w*6LG`Q}Nl?xUouV;|KKdr6sx)_&S5xpWn(QD-TG(?O*}u7#myg!Io( zG{sS+PajucB1gc_FP{Ddj=p&NR)+1Z=0~((Cf~Aw?#?(U=S{g|a57+CTRL!pN0nm7NIi{b zc5{b=A>rhr#l}_~G7jaTB+X-=Ggenjdjm^P-0bmCv2F=1+)YL>2JetX+i)Q8Ve;}k z4=okNChXBd+{`QeuwP}KhKDjB>2PHsiCad(%@@Hd5RTTp8A2I@ao^S>NVWwA3_Wh? zQLU=<2%c?057s$oxE7=HuU>{df~=O|+xTq>^45K2a+^JBr84i`79F*g7 zP_CDSa$CcFjqwIREj`MiBt*^k8d5&^YZF%~@4ySCNc!QW2%!fWKk|Ajh|GZW9xn$J zqvY$qxZhx9+irWqrW+r_muXTuXxm8Jd1DZ&nsGo``V@Or397q|=PEz*19``5*sddS z_hz_5s%VL}cSeb;SMPvAYz`T@`8Fb=X$SaeqemvyTQl0TpasS?aA0}&fOOA z=YT>J0xaUo0rWM-tWTL)qnldiNCd>Y`GIWgg~qW_ByKn~26K+9PyfdOg*3{i>$s|X zU9+S2TkQ6%Zm-%Hs|*ST6SH|VyAe<7(a_q!lZxHm11)*)DL^)BL#^CRImKFQ5L2!j zjoznuVKsW6$sZmXG@4X@z1nn(+;<9MC8=?XI_BAbhZ5DbKz(PS+|@-3I`8MHxNmx* zU8hza?7~#iHkisBC7<3L_z@A9yQ}F6mQv_a@pD79DwPL^P&XZw zK1wEwaXQrPUFG#ttpx@TpTCWC!`w;-%_~27xDVOiulizSt38U=*Zp|+HL|FK3Savc zga{o}(m5+f@u=KvN3x)&?aZ}G&m`taEaY2U}S$XjoF76k9JTB_Gl+V#`INXOZLV%CP9d-jf z(BIYtk===+*M(;qMK25^6q87k9bJHb|57<6DXID>u9w8XWJ}&mq>(C7o!saW(x_~3 z5=afPMP++=0LOkeuyUgdRq4r?chhyMM@Jr8K1QW81JlBUH%2$uNE zDzhO?^Knq)>w;(x*GueNERf^D`ipGNF3RzD|Gu9gM?tz`-yI(P?tZ(PQPYI)H{%TZ zeZBlVyIwA~Af~Vd!|~|`iL^ZIvWE3Qp0}XPRosf9^r(D&;)vYx-Q9A*g{cAI2ySMA zJ1rAoc)~0vg=n`VeASJBP}7c~Q-;GVOe9BMvfUjr-M6!KHHZxAI9jKyz|AKm$k9ZB z(7c7oCoN3a&%%W2&k{B5_Na|F+t%}&LE#LOwoTv6v~uL zdU}HM_L20rZonxH?@LT@jSVKa*u9RsGiBT;5foLJ;e|ORq_*7N45vo^Of%+VTNw1e zxru)N+uB&%-wjc43V z=rqm9>38UdQy*W$FNs1xs^7Z6LTG5_TbDRB^R0`l&3x-JYb)Plp~v62(Atx4B^Pbw zTM0(E(3wR4714d4S^3t!$aub0Q0vToYb(-|@56`Rr2F$?;x(0+*N}#_0qHjyEDf#7(mx3ojX z7Yvr4=n{=8l|)kqAM z7knw|Qw>{d9JMcc+ayPonirjR?|a4C_bRjR6>HzC%)VEweXlZ6tk2GB-)qsn*P?yz zE9jYnW+wVxi}t-o(f3-k?>!0x)_hmp3iZ9p)MU=KUtWv$y%z0zEvk8)rY%QIeXm8e z9GQ9156ElLzSp8!F|TdQTYP=5JNjNL^jYn;ZOdzgzK=ZU2`uxX)7yF?%V7EW^17q% zwSu0yYTNQ!0fj;wnRrFf_llzL6-D1Giaw9nnojru1&YEO;5i6g2?Z@H+BWZl5q)oM zqdtrqws*I*=2F|dcenc9-RgV6*Z1xg_GVlsyp^U$7u!yFD=k+dtS84CZhddKA+qi| z;XSatgHSi`t+c+k<@(-A>$AdmGa#?recZvTb{}={y58$`uhzX*_b~_`N$^1lAAs;t zX&-*jBiGGz^u0dsdwt#=cP`dj-v<`F8t@|DyHZ}@dwK6YB(DIxWKY{l6(KRTrx|~$ zw^`wMLGR_fcb2@d={HQgr{qltZ$Wqi!rKqtR`3ReHy*t0z;vx1H+z}yV=g}A;sw5!_uf)uqFghp-j(xin|IN?E)MnuoZaQM zu2;=o4SVtGrK=aN-mvl3kGFKZq2ukGz|8Tw-T5?u!g2HCHBb~xaEi;j2;RhUir;n6 z^~P(+>{C|x%|#&9u?- z;Y621NiK()`uYUALoI!M65XMezCH==P)lE*2-mhG>B^(;!61VH(v!Y*T+$mh^gV{f zhQ2;Mubm%I_Xq>~4$XX*2|{+h&WzB*5`T{VnNSoS+iQ5xEJ&_&Xr?=aWW%(qT-p~Y`) zDAUllwo^Lvt>yz8VhaCv>5?7>_&&t=twYOm{XN?GE;A$@`YsdHE!uZrGwss1HdF}m zTN}!&_8r<0&OhAD1D@Ny5{@SS8|P)1FpZsQi7w~IlxJNYwX{}#JQ*_vS{}8aMtVFy zW85J>jrB@S{mi*$#pK^k7_UiBXJ-t@=BHD}Y4X#A5r_OVW>hCXp)8B`yb1tL=>G$w zfr)!4#tozUcd|7 zhcI~DiD+S?ENiOu7&H3c;*A+@voJs2G4}v0o*(bHyF0w>ri`_Uc_VYi+=jC4`L!Hp z+1HH2ujQBz;C!|*4ZHAfZxUeZ;iFO zXgh!0i86iR4wiv28^Xf8EE#jh&f*1g$~`)Z7mO|2(KR1&$IrYQ*rMaW79Hz#-t8Q4 zuhg~|^f|CQ$J`&a?*{UPyQUT|kT2XhHF(@RwXk6B13PvU=-N@BlShI69R>P##6*#{ zFQY*JMm~<7er?|!2Rd}5w_Ubt6zJqJ(@1Q4fev6|sKpCtEzrNk8?5P%Ia0R0h=0Am zFlJ7ac{k9%>3Xkb4n~2z8ZmFBZBMJ{TbQTGbl;HqhNsC9vs_Gjfz3K%UW>)^HtQ&` zZAXC}JJKt9+x`VM>nN~oM_Ogsyc>*7FVJoA0^3%vDKKMWPK<>G-(aSU!3%txQJ{ZE zf&Lu@dUX`|J)^+K83no)XW^Yr83np_6zJMfple5gt{nw-*oYZ2W?llHcof)Xqrlf4 z1-98Ju+2t+%{2;avr*tDj{@6l6vQn?fxI6D@rY3%+tV#!ElmdTh*2c(1G{(>#3M$5 zzSPT_&3Xj7QEvgTcwS$Q0^K+Y^!_N&=c7RHj{@C2Vm^@ROJ{@BIUc2hHLz%l8dy|A z4J!9>0Jyax@ zhsqE=R3_6yWi~xjrW4S+&2Bo|Zf9Rub8)u#&;4#cMLp-~diG_x{o&;wFP{G}rKlYC z+^?^jpG#ASA?H>loNQm4b|2O1c^&o-&tJXy<>C#xHu7K7k5Qza`d?FD($8I!RbR@r zEnnBE@>>VmdiDI5S1*2R(SG{nUl$jz71oSUofR}_pcFI?%CS2rhwq>i zfeuO$*meKytLH(d)RVEDQXj=bqnR7iPw}{vs-{!8cP8vZG+6ave7n(LaScGwu3oQ; zn%Q^ z5$X9zhZ&4WD`Qzq$|whnCYh%m45ps4b--XmeY%SdGZ;~y4x_^iMx-ZhEhghE7D(q( zN%Ycjjky(1&o4WmET{v@f;ylK-vMPo9Z-hvfI^}UD8sivMlT&u=+*-1qdB0gvI9oL zq)X;7qhZpBaG23B>9RY_XqdD_EhfEo2aHBUU*2Ix3rBC>VMYr_-`!zG3rFwWVMc32 z|J`EJfp@@YjTnA%n9&;XIF-YU)`;OIi%H*JO`$8tN~WCpkmcVUPdXA zX9pC@aX^`83#1?IfI<%r81<8`w8M=0$-slfq}T0$(TM1GJIruI65X_z3@cb5_ZS>d zxW)m6#vCx3CHnXdQ&&@rhW|JsvDcIh)kZhhiIvOR8jD6tEBY4Xdmbvw;-NCz4yvI> z+XoHWJE%;KZ$W0qLxqSuH14kuvBTA1uI+<{eH~QR(zQU)qHbIneCxMT^=ec>!HH>4$APbgHrATD)aZ*4PRCVGot5 zsG3fmk;jwC@lcr@50%MDZN7KiwUH5N!os8h3zNAuFxpQRCi7}xGOHFQg2TdOiYzSX z3q`%b<8HlyaTm(Mf^X2Ruy``z78cAEMUuq}=8CGp;88JHSTI-IxwUw~IOxJ!ykH#6 zlCpTgJagyP;ORMj2NW{4K)Qtv7>uva2!q26daflQ9A+@zeVQp2lX}tZvS|E2&6;skEerty_@vc+`Nj3W+GF?nPOhQS(JT z?k!|fu$ZGW6w9Ck$@GuZEbyU#p&8VefddCsiC}S6CRnIS83Zk%cD=(iG-N*E)|!Jd zfyP5Auw4seJ_n@$bWn;82c>{=Pznlxc9Ti-Lrkd-Bz?ji-4#fPxP?d$c};tHO?uZt zq-QOJ7HS+s$W5gUkf5!a+v{h<(OAY_sTLdSIgs}CN`+=&|@>pIY1YECpj8G*x; z$rz#8@hLYFns(0eKC=AmX~pi?oON5w)pyUjP38v5nK8t9)@}SZxD-(qcVI%pXI+Ls z^DeMR%ZVPq){nY?B(=`~m&(>xqd zy6b?HJnixfsev43U}6jzRCJh>akfoaFpC)(#Y5)(I80dq2aHC zwk>8fB07Ec^~l^Fk}Msj&b;u^-2%tOpds_0C;T(mZEEDK=F_zx(rF8#I2KUF+vl1e z@1RNGOGoY@gP%Wpd4Xw{*rNj4ou&@{`UTM{kuNP7b7w+x!~tbx98hS@0cB+zP*%nP zh1M*Pfj|e0Fe#%gCRxe?nbsu0qE=OniO}poG8f!~EFc+kvq~~v1X?i73(WhopI^Rv z{xd)b)MVJJ7Z<-hHK4q6T%qL+<_eUyoGXZIF6WR>ZogexAU6bas!56tN`i4vYCZ>* zG5U5X^Bpc_zJpTcTWAj@_#D9ky z_CXH>I9$p~2MuROcl8}^G&`qZocL4|e@zRgVVw9hvu4YIVa)zilb~(8YNV;~IBHCv z)6OiUL>G>!Y#m6*8=#x{AZ6ps2j||JCKCt}ezRd)6aD2nwIYUug11L%r|TcnAAb4c z#fyK7bbP02#U143udfWqh_m)nngwfMTzCVc2rw`%x`FA)oAuHR=@w73mklgv zPcxMbUNB{vsci5lBwLtfDjOKt%D~7H1{TbVl9#~?#-V1u!3)Nrr-BS#Fb-v{7Ec+= zz=Cn80yB8g`YIi^YZ>%Kv)J4AG-KVsg1%_RI>>jdT%>;-VHr(ZZX4GWWdjQqOposv zykJo32)1~de%->IIYzg|9>_kLV{zT0f~Ki=<_+ue`1 z@Au2ye!2Z|dAS_N8x>dxAvklan9U ztM`lLNBL)U$=2lmX75+))&9$myDw<*=KqsV-S7Fy>1@5;%;&rP7GH(@ozB;roeZ}8 zJ-yp*<_R!eEH7vGYh-=TZkD)+d`q;&ayOr@wBz#HVl}(kO_6=OT+4f_EfS~qtDEJM zb3KXF+h4En`_1fXDVO2CUvA4Ucl+&hznQ-K{n^{;vlmZ)yC}cxk>UIP9_zH(Zujfy z^>VgY;`40$W_Q)YqVSX3+u3?5fb9~UUEQLa%a6FKeE((2b!3n6J07%)J!u)=<-fq~ ztuLqdx2ydQb}!wJkuestH zP*M_!EC3L8x4X1v(o+6(0HOoKfA{dmbc@xRZZ|-?T@vsK3$iQ_>GS&j{q*Kax`kQ8l+CwO zOxF}ExRBql2J7VvYrMX{m4ORUE_XYbryW|oA`X#nR=0xG+pHH@uNhm$Qc}#H_tu*Y zO3!r9f|Vw}14@6Ux64mL2Gh&+?24l<5Lv$#ax>d~Amnz5WY6^_Mj@alr&Oi`{)F$| za&%yi+ndc|iGj+W%g^)W-F~&X?UldgoBP{+`gw}-G1J|Ac6+;AbQtfKSKR~J!Su}c zU+$I-c82j|`JsHIyiy?gS%)a!azOd!hvk>)@^-#iVE#dX%;Y&Gbho;?Z6S;091Op1 zfuM-nMGKnkzCd)gFtEVo5ZS$F=Kehp z3Pg!8TRqnOY<~}7QNu7@o9#jtq=j#`SF_vIKQrGnNX~R%vD%^crhz$5q(HhF===5T zRzy+NtJz%Gqk{=a@9wY&kdDwlD+n-EYpB^zojoFv-bv3vYV$qlm{O2}0CX$-DQx`Y zRFC};AYZxLH=w&M1b+kJG}LdY6m4)QAjS=d4NWHnCL_4J&vI+KgqRRD`vraL9-zLK zv)lW-N^%9i_CBoEYm8>Mx!=y0?GwP@@7?@b8G5P&IVFcz-!bB`{)qh4yIODFW2*Bv zc0In3AKlN@R~y6%F5{QEovv3R+P5o}jhCzC8tlKqSq#W3K8Uc`$OA;@99;4QH=u~k zG~p6&cgw%=zBGr{A(!tj0VzLCp>)#Ef|@N!0($aRPEgi^BH`f z%Hy=R-BsNrN$xjy_}UKth|-=eHc;5qti7AvrI;I#;ZR913q+^auv zeY~L_YhWUiup*-02v5&2K=}MgrnVdVC!HnLQ-A#W_TvBiB5MJz7Ug!iS}(N~O!8`X z4U-2y?x#f8=49^L=F(J3%TPHtckAV6qMo0mgJ5YCcwWr*S-awCzlCtp5ni63sHt}G zH)!d}DWfE3z5V+Sz{1?WpTQ!4|E1THY_{GdnWU)-4)WuYXA<98!efyE>^W$uN4*`3kWzVoR z$v&3G`+X{P1ULLoLpq80Y0Q-sm0z3B(wk4)nNYm&&&S#4shA4+??v_ZRr-4_2M`ry z_5NnMyM}#OJ+C)Vz3J!WatZ#qS6@ZiTnS_cWIXJ+Rb0_^&_7e}SZhKobOiocY&rEr)oZS*}6;rCtJk%dW_?^mw-K%{NPk zdTDYA`lcpu~2axaS^=}pKsxQJK*ZwY4s^KuyuOi{#*aU8<~j5qKW#sxN$9Bg zyDajzcIR&M33PosMc&nSBD?R^Bk|6ZaEOWFy9E@y?!%Lujp~>GtOeO6X@^nPoMuPUwo;beEkfs{W*R2^rz<+m<^0tT9S5C zQ+U<1bayM^GB%8upf)`J*n4}ux0iCS zUOaor{>x;FlI&Wnz6X6Gnp-AN`UO<>owFsKoN_qqi=yhg(>oD{(_0wSJ$OS)M0JE% z6s77vDS{Ctd_c|J8+eZJF%dcCkLfYZyTsWt1d4SACDF6b=|!{(t6%~A+1(wLs{~SW zv+}EIMhk^yd$+m8cXY*5YwD1T5xvh%T;AW#8H(Ixh=e3)zhwZvatjU32=0K}O_IRI zaWP)9y1hK`Gu|YIggSRm^1GZwzK(#zJuHg5)nsUe+|w*!#pH#(Ep5_ zuwP#HsGib_2*(U2zh{*3=Yg(|*Z^GX=hOZBHNsU_1F=yqFT0;B+PInRuhCD@Wb9aa z7Hg}1&W|Es+4%3ze)}B^KpJ}f>bJr4q9-7Ep8mV{4kq7SZ;7>&?+SSlQ5o{O!^E4@ zzw|@Wvi2)C3p(XnWavHzGTryt8c>wa2MIjrJ^%fsf`$n+gn{`Hs{C%id6*+E`}C)` ze?EQAMt86QdKbbz942I$j;lOXb0j}1y?+-ahqV{2A~TIYcR%hv-mHI|%Kt-msUQ|| zPzVED132LbGNkVp1tFQNE=dbsI*a`ueNhWk9PNWvYUpUBnTL)Cvhn7EnA8y;!%^0=!!Q;OYHpI{o3I!^YN8wIpS6xF4d;{`%(Wi;L;S%U`Bb zy!O9;epCJ?DX_p09PR}a#J^uYeevvP(hZ12e~}FgsJq{uzxwGZY^`4rhV_4J3Ip8xBK6uL)IxU=4F0|pU6Cvood_3e`1*8l}L z8ar3h9-{8pXiMFjeg3rBewg+ojvz97wgnR|*J523d^1Jk@h?cLbYOgn zti5!KK#JGw(@v4h$IX*6!ZI~z88ZR;k>9RocS{--nD^Vo48cADU)|tqvc*+~l84P- zx=)|;q#6V(=x7IlfFB4+Ig{Q;{!MR18X4K z)FN{uUiWnK4pODLl6*aJi#`^>gsNd@U@mu zlE3DgwOGJ#YY?xGS4rlRt0%$InMAy%upCGS$afDHwtEGe_dxGYLE#nAVsNQ^Ow3aQ z5Qi=!^hF^j5bk1ggVIye-g2GiNzl?H6rjkB|D?rgmgw$!HO1QyTZqH`umAPi^JhQ7 z^LjE!!6XLt5*H!%A@RY(3%dItqyi!+G>V&+hhR|V8OW3(n#?*`97^gVeua6nU44eY z+uqNqp)1s`ts%&n05dj6i?za_0cTRAWBj(-xntTd%Tl2ZOFNbDa zqc?sz%Ghv;_o?pNfZy|$mv*bQF~49{i}>Pdic(OX$W#sbu9*uD6ha8eLco8y0-eNT z+U&qfcgV%S*&yYVB)8W03JYHq6>w&GC%xG54mLa?TcA<4 zUo?S*8P~|j?+HH~Y#5j6Q1)qe7^7CfTtUTLn8V}7rZ(jE4t69p)oi^)I?oS(y?oK{ zrN7_4yLer_NHqir&)qAb4oo$yH3YyMcsSZ2cKaqWEI(^QWN6_J%Mghhc>H0 z=*6rusX-{F705M$5yu^)9vFMKG@lk}EhD@HG39)QaJm+EyHzIQ=P&QJ(aGKn8qMx+bcNrG9T+{WkNoAQD*yG5c8X+*iwe^6@7*)d^4zoAIFtRvYrudm(AdBGyNp@TFGA=Ez!hq*dmU2n(1LSN4$@t zG1s^LeJ}PZeuJ5r-$?}pg9WAD7%(P)W`l7EhLA-wR3bE1`)1N4IapZ{$ z1Z%nX^PlkHE-o&nzr6YbDARYZrq6zQF-7R}w?}yoC!o4CiwCA#9TZH5WPe%lOIi4S zwu3!iXm2nc;i@`g!t+_3kn)}U;f7{_Gh5$nrpL`3HOEzi(;WJw%D0E$4l*fpWp}A(9XT`%hU}^m{f$ zB()JNAX#Y4NNhQ+9#EE&9AmN?RgP1a>5lO94~?q)lw&k#@8_SVL!1q?9$IB8?`D!C z5zc%wrq4)_>ukv+uVG7;{c;g9kS~Y>i{KLXs2z`tT#W(Q`Ihhrg9bt#(Pg0A3rAQ6gxS$s2)W4!e?l5{k#|;A8)?OVu!xLD&GrJ%n=EI ze-I5+1@CSuO45WDkZvljqe_p$@~vB-KW?vg@SZ=ye7k|ZIHcgHZDeDs4L(dzY$2L0 zA&OgZ3!)#z<{gR*)nI;a`t02c_&(d^74|xo+jlR1Mw-X+9k)qZi+Z<#kD0lahISEq zL!5)R@ftO)R<|&U#D+&8`%-!YZ*t#KWz zBMP;}F4U(UH-9w1_4N5gfAqu64B;PP#xAl^S{j_5LN&~37hr=eg@hV&M4fTORMPSy z9zQ4jCs*b9%jbVkQHg$wMhH*s<_^p&6N%y}A(Cv@=4|TLm9!s6*dra>GAuWVWl94StIn!)!ytsJ#`xKV_Yus|#HeNO? zucz`$EK~AoaN3~FuV)}$;2~iv2Jv>u z;cZ}@MS@G9P>cLP_y_9-XB@IMqR>wWVwT9ltwt6i4VqME_BxbOnrT>kULbQ`z9M#I zyZq6YwakBEyhE;p6^Ex|w}zT%JOxXL+L4Si7y-&iO%HDu6iz-K4Iui-s zJQQ1^7rW?4A#CL%iJDYlL$uvUxcmTNDc+QXR6+QQAG}KWMA)gvL6=HacQSjTdEtofUhVpLH$~qY)bb(fqq49 zuX9CdVHc^4D{sb~&Hwh<%ilVi|LyOu-n>f^`|hi!A{+RbG|JdHa~Vn#O@$>j!{!pX z%-CQ9Q&X3&L;JFu@a(CDn>eSSJ45hascKa~&YxI|Hkp^eY(hBK8Xrvt`PT@gm^cj2upBSO9 znqrfx>Slk3<5)1S(jwK;e<{H$p?E~IcVcHtPJu>n|0|J8Up9%r)j9=N8##Ma_KpsY z7Fo*&WX|G#fiOGQ8}X}1D2S?>QX2U5Gd8-uHXwkYt0*ayIBI-I zIpP2tY4Zue$;R!=u@RoKlvpjM<|7jwT_v^S`1^*LvgpUoW&4Gz7Rux){`T18V_#2MBFpGZk;hi z)b0^$*txDcIbvSw+N+Y%le>tatV~exo2CwekMdhnEE*%6M*x{pBFCfYy?5I^(z_Y# zD>*FD`?$MhzSCt(>S?w^BP|haCE>9DsZrQS5;LPGcFA#KSt53H$|KU2Smi>j%d%%3 zd1c~YT@~Q8@x<4;Yt@6uVHw0GFkXdaK0@r-P;+iUI$q+@0ac2{IFE z;>1H%%j6dB9VDT$`Gf#0H@aaFEYi_ONk5Q7S;)b@p26+W3?fP)lkI?W%ZL;#+V4>z ziE{y`nQ?KhQn4V;aNB2+5FeJ?TNo+NUm_1*LXG834K>2kgE?DX9Gsqy_0YbS!+>3j z-RR7cj58u#Gi~IgJrg`i#tbD$-V}kuh~WVt{fHV7h<{RK$fgTp05t^0c_!K_-K@A! z0e6bsHbt?46c4oqPS#R5fdH`ys>K$38RZ0*`*LwaJzYZNbHfKliBsdS4DuJ01=w|3 z;hb>=)|>sBz=O7Ge#`nQb6myyWh07n!iWq#y*n636Oyg0 z?-iR-l14IB=k;=ayI;35Sq#p-*kpk;BuroZ8@?@kci;udVR@77x8?o~b`CbTZzXpW z-{DT%NhmlGV}tE=Xl;|A!x;;XS`z6vUBya9&& zFW8p%+uLxCKc6(S@!y%*oyRJ}R-3mw=$YyDzt;gLDOGEHs#79{1I4lnUqKc$GM_sv zI%}0|8I2L*hFrN@8AChM+963*6AoF(#I_2t9%`VnFN>r*n+$OmU|M`D!Lr09#nuU+ z!fVV+(%h6G$iEr6P%4fiNb;x`nS2?H>Vp?q3N|S}5@$g{2OL(eRG`S^-D6lTZHpRV zyIo;#Fw5GfRD0>$X~<=M24_PQZx8yK6GByyHCalL9mbHoCO&3`i{$+_54@UD@j}~G zsYC^}OI{nEoXH(j?(MQxA7dY##qv+np_9E)>I+4|kkpf$(Tq$?m@}Kp>Br3)(g=>o z0*T5W=!@nP)#AI#IdUkboao!O0tUtko1a^i$@*5GW?L{LgsM*Mo0ot5VMQYKoaEO< zyFu&-w;f8NVd+Srf&OrS3_6(#ss8lr=cm8&Fh&oFdpPAs1+Wqh074hp#9=%Q^2yN& zM!@yB1b1~R6+lkb*91$8cTI`#9(k6?eAHcplq$rup)QMvADy!Z2nvu<24aKnJWKJc&V>V~SFDa}wy<~<=X52$^I6Uw1 zFm;yB6zWu4E_D$Z5i6)%v6Xg-65&6v{0d9hr0Oe}R1tb@oVTKaOPs0xRI5|Lb#1P^gtt5EEEEzWPSF^hdGREuayMl_Ac!{uTQMw3_? zMOK}7BSkt0Ew$TvmrT~~xI<159HFgpcA_ujbv%eEUc3xUwOs82smFmVPOSz9jO+u+ z*&NBPNRedRr2OIn$%Gd#-@T0lZ_RU!iGM8f1kPzUTCuwF_K5Hj++9g|7v&8OkRwt> z6CEPx%~p;bXo9U6^5@+v)}#>Lkn>AuHfMuJQbanEa(@o}Y_{DW5H`th<)=vquv$d2*~0-oIimxs8Hu8@D}>@GZG%ye zNGPF8=+Oj;X-_|muxID-1U?{*t1E16SSw-+qgr?%yRH}^(gE({SX8osG!_+{r;;9W z-m(**smg2Aja>J0j%H)}1v0z}sTY!!1^%28zp|h$l893+20%v77^+d5G7UwMfll=N z=k#*_&tmou0_&j^5!J(JLK?fSEAmsiGZc~V`G>N{ia=PtS(Rz04@G9PF(iV{ok7F| z@$G}#>D#49_al*v&F%WjR1VDDRo(_FtK#ZGF>@Z;!ou&m9aIYfv8|@q61?4r-Z(7E zP=OHcA`Cw9Ja6|>Mi0~?sTM`*(q?-4lVm;QrOZpK)23@8Iz-~sQo2dnsCFCRDAsxJ zk1+i)CT_0CsXk4b4>lMca0?Noo!_%~NTN$gFuvMfA5?YW47F}TE$gAHx6aB>WB|6V z1f>K>=-SrD1SF76l2Fn~?n{xWk?jJ03poPnmS5w?Q$zV|hluOKV%2$ViBztj)Hf&w z)p{`+cb9DUKcD_J{mmMz4>G`kbGYD-Vh4^!xYMbQH;VS8Ft)sjw=|$!NQ@`((jL10 zBoTb1T)>{IO!CUrGA_3M()9(=(8onh&-&*mbRj00Iryb%s*-mQuMMKl=v*zT+69v7 z)MFV52P?bjiRs9kQ?=uS> z!ns-uE*`7R64+XQC01R8u+VE+A5>ApodHM0=H+&CQ*C7huD%q;Wo~ZSU+X@B%A(jD zJSJbumQG;R7B!FHWhfjGIuI=nl|Egtnlz68FyZ;wS8qWaz=`D&Gi54yr1Q)lgN^sJgbm@=JVBzcR7c)cV@1dMS z6w#ekl(E>~?LJQ5Nv3onDMSA?=@%Tebt{qbz}|pt)Ie)m*IcSfNa3WrmZ?={!+H-$ zwpBazHhAv)AzMBXWf#71FD)vtV% zlLzu)i5`|V;|0z(L$;0cMqQZ96V{o(+l8yFvqUM&= zoenCMBHS;XXvPNaq%eKc={2ZLnExS@_^Llet>he6e1~JcQG~`Q<8&0>rh&ju%` zjNkcq!3JIqXo1)e84znR@=SL3IIy6?K)kBdrJN)9;_0)OD6k@SLQYlve0STC?;$yG zz?te2A;{j+kM`1km|-BJt)fKAq^i zJzf<}sHo+KqWhDx;b|Ut5uwI;P|HE|6gLa9BrY=(W$18A8~f5FXn~DTBA}@rT0bg=(pG!UG{OYP zM%YJOr1z4RM&5AiHpGt-fKZXM{w9+%D624O?ifKGP$UB!2R-y^lzcoo?KewDMT5B0 z-E~)eLbRl0yCs8IO{s1-G#kYw;ND5q3N@PZA{LT_cBX?MAQFfpk`hq>8Fm|+jc7*D zB&8?_sbLEg<)-0L$uiaNwBM^5<9Av)n1y1S&x4`Kz#-^SYI(C;FPFx9c-Zn_bQxu$ zAieS;ORlyAFaL96X8X87qT3k~ ztSp8?7PNR-w{y+(+#*gAoly;j0YB>_(+fmErn4wq$nLSY&Y6AcpcAO+c88APohms4 zl&jQz!1~W&k2;krs7Fc{uOx>Q&4(k_C%Q6uRaE_P<)uD=+LGN?5X!Y3U-VDkP;(9y@Ko)! zwui~)uFv6$c$Bjnm;MA$z`8BV={6N}2GnaxB|ORj=PGKkTMiNQlZu^1cpP#IjN?5% zJ<~~EgQ-x?AcX*Ou_A;{5DmaFpGqP&;|sy`bLFtr{OV`-!hN6aE{kMMr3tfqBQBz+ZgSq>@68ATjQ z?|rzrn@cUkEu*Yb%C2U+u5cDbYtFSsm{9V{Rp(_I!ZCn=*`=~rw&F4-nFN!9^KF>o zDl)a+$u$ATxv3D?Xn^x%(PvBRhByLYkY1OyQBgEo{O5kRUl)xg^`wnHQ#LJW(lm!D zZ@aXXwj52DH5~O;D0!UZAX8hVLM}?)VoHOgj1(%NHJd%xNEIZ%w{tl~&T51mXRqlW znw=fi7(KKZ2`Z!W|Frhew+JW$h z>B@oAnl3Y6Lafr`aT}B-Zc*rSe0F}KDKoG=QQc=c`#4*b(5yPT6P3yY9M-%v zU8FJ>D3?c#QGNwx)FXxe>|UzILHS6oUMrR&lErEM;Z%nP-jHgelpU?~t|B{4(lQmQ zWGl)s)J{H0_}bKMg4imPIYgOdnhNqIDU+qTr)&bp2bRwIxELufAktYHAtdB_hEe-1 z6|gkVRUHVz%2mK-l1ea;;te7a8VtrN%oHR5iyB7cPf{;w5n$XA%W{@-bvLmTa{z~# z#&RpobMn?lyswd-cW`{7^^xQ%Sxy#-DTH=FH)(2-- zeGy2F-IJH@w1g~nQ=Ot)=&=;EI<#ae*^!Tw#t&oM_?J0Sk(V_wJ(q>jwUYxvPAcx< z!9^BNnYl)Bq$8X>;jOkB36oMl%38=ScI6OuULo!#%GR!4-Kv!YqXopazt@f|Zz0F} z5+jhPAd_zH;2LdhMFH3s*=Lb$>jPhrdGbK zHY~TmA+pNEXua3U%4pBF+Ij=D%LRzNuh_hR%>)-o6wwDTOSKxgrl+1QhyQ~dJ|y?0 zv%wux51+t=7e05noK@_aM5Q`aM4u+^hchjK%D*9AS)5Z?o4U8#1?H89PO)gyN%U(5 zOr88B_la+$DzXAAhU7*G#166zp}5(%!T_SfauMgwRcl2zk!`L5cn|+=H;)j|QC|eV z$Tl>T$k%gHIm9(c>?GRvU}lL(B5@B^lJH$P^r(N6{Do2hI7M>4hWeXu$~Wz#jK^nR zCldQeWrD_(1C~P6xDVlh?Km!+y+C2mN!Y=7cru74tjs3Y|3FwsBi)Iox;nWc+zv@? zWW$SfQQP{6ts?RITSpO}UXrCQ+OH8mWJ8Id#6m~~5D(XvBc(FkyKkQE32PCEsFC9(OT^&If0GmkG%Nx{=dRwoA*oH@9V5k}4iUJtM1ilj(p}et-rr z=@htM#JlN4Eze(6v{7zg$y_e2rl7w`H!Wf9piZ7_*A+?oxr#8{xcr5-I8Qo*U-Y>o zBPENdHYTcaQ*~H8;;V)RuU7wIa!J5m4IWMyNEh09q6I9Y!XFGG3W`Sd;K<9tW*kDW zB{w3~kFR4Z8B@d->k~6wXj`Hb$UbX(5ZH!vfQ#&qafv%q=O2AQz1EvMd(1*^K!i!l z9^gKx`z?1%5uD6U6XIxUMZ>xwmKboi2vEw+$H}-s_0kkutp@=m1jUZn5{eW@!xs_J zM}`KdwM#0<4^==I?LcemW?JFB{>cDEWG~SfQ%dU)?aNk3Ma0cAYi%`-t}5+t19ch^ zebVNzM-N{6lL7>87xz@o0?2pZljzmndJ={(co@jC!<@-JOWEYFX0amzIZTMcJjm%% zvkHZwZ>PAiJ8whNkHb3Y0cgF_ShUulFLk^$Aii0r!Ze9$s!g}NE8lLnS)qn`sO^5p zRNaY3F!mT$>N7RC$IrFkgbk~c?u(y;MAK#TXU3yWW{>W3P?3=CzWtM0S zF|dws5n9GPR6|adUa7JKpu{4AaZWR@5GgKy(LF1Pwtz$BHg>r~P;&8@B~Zw#^qpEi z_e;N_1{wY?0mZ~k<)zH-hiZ53H@FK^%JgT`7fDyGOO#DdyYaw@K2%C-(m(AsG$5zs zzB0_f{(7@$G6j<6OY4U*w-;Xtv34U!(VsGh{o!~tJW5dNlXg0)SyASKsgx}Wg*6XT zEH+&kaP%XeQ6*b;M>W9%+et^sT&h#Rc9HTKxP=mOwq_XEVyNXUwKrhxOj>5b3d1?? zj{YF?9A}eNyVUBvkbu%n7pIpWN`RQ+VIP{=w1zN_6&x6FloZ^jFiP8DOO;G0cr1}5 zB>bi+d;3athN4}`t*4jaF}^@mHD}_xbsn9ft_|tU9*}Jo69wIlSOWNDCN+drHd}BT zNZ%>ZfW=Ey{#GX?ao8rhm5z@_aur$-cxTCO1PTsmB+NS0e=(BFQg*z+MNLh2(0r1O z`buLba)IC_6too#bpz6VWsRkH0c4iema8KInGzm$TyvZ@t89Mk*j!Cc>O4h@VK6LaQtBNC$7RbE<%pq#B#9tTUi0n6 zN7-9!qGVwW*XmFaKBPuZr><#T2Nd!NbXur6g$_82hgoFANP;M!9AuM`C3?@xjs34(>OUQ%82R5>!;3u+VigpI0l`-H)*Opr{zl zKr6xi%L>IQq>`mx+nCn4Q_Y8zSi(P$Svi)w86|?GbS!r#XhWlS-)MUClNuW$>|e{0t(DG?U|H@OVUJA?E2a#_{MI3X!{n+wq0MN;_Z^kFZhpcF=~3`Z zf0RdD1to1ICNgIswX-pd5FGZj1IBFT>r3^p@)6f1=Tb)$sRVgQSAh6r{ZeIzPq>I~ zW6qKUq-O_CdkD7x-fWO}!$^v>ifRrnY$4%$336aZ7ZQr;yG;a%cDK~|4uxA&rCCl# zmDI(kwqe?As=Q&C4qAD%w&zP6K4%;$J*z~LV2MPJrC|EkE$pP9ozy%E6%gMnATPr17 z376{DSBZ*pGs+WOgDvsciI*g2N74k$Rh zI2lXV#b%QDP<58&m}w%Z_`x;m6Sfs3r7e<^c=$HJk`0`01U&9E7rsNfNx8ZB4HyId zeWbP@^xwvl%JZ_MCBCH4wv>xa!a<$0uRWVoy4=V8;^$vW4&Bz_V0<#fiQ5Mwq20Fz z=cmIWldZ8Coz)tnaCV}t=2%lBt1A70FuWKilBbcPo5)tNNfvxgk(yi?F|-qzlP%>` zyrvH-d9<;%tb*G8pHdvTo0F3X_Rpiw-ytVDg5zrM%zpQ`%6`H(0j*!tc>D*G!E%Bs za_&}l*!jPdt1{b+uGS`iAkLGV5I-V`=mQGmbs9>-LB|7~|6z7_G!ofW#XRN0o%wr| zq})E29a@BSqIbK3GtsZS3bK=?mekm31YUBeINB12KF@2&4rLon%e3a79x?vpB8kTj zKYNZ^<#I@qY*2-0DB4qeMpOg?)%k`R7HNT@fK!1$;mMVD6|$5xk(#UZy(H7iZq4y^ zLJ|cw4MFa@t%eK9OQKiOXkxtNGan)86$s?06qx$?&C`FE`cituT95+wGgpP)dJ1ZruwMUkc)%{iT*9n_ zt00pr`#h#SKAP4BxSFoF&^?u(vGgIMO7U zf!aVtz7Ee2sh7@6z#z7&pj7c+>QtG}lGiTDmwKm|`a+%G3j0LLGt!i+sauLDWc=qH23LLtzowQcszP!p85bg07ZWm zC0CapVnqq0%(3ie)@9le4f7n_Bb*#Kg|&xd{Wdc)Un8=*Pd5(c^RZA}3y6wU73!3{ zkz>+7-@b|gEnMPlVA9cd13c|P$zpU=XB4YYN8V5nn_P4X9XdX!Ba`<7(tQ`Q+|XWf z!NVb&ha0V8!p_I%_&_Z6P)~#l#YCwTp+oP)vSdc*kz7(|@?@raknz{EyS11uIw@jq z=F#O-cX70V+Y)k$L>3E~8@uHI<`1uEZ%hMnA!;xnL=GFF%|R}re1t5;%xtw7P1A9p z)MXB0m~1~i!%lfW!=7ozifvGdps5d_bkKQQ%?4-nBM9XF_QUPwlU#(N9?VKJgTh?^ z4uST7gvKcrNKR!@$|MX?Kr615#mxSk|+{!*9-*JBQHwnn;&)9?r6J)_5M){_Q*G0x)eXL>EmPew^ZTnwnD-ytSMA>Ej=6dv5`>aIj>Q%xwk;U^)I*}<1waOax`+ie^^DIvCKELYFdgY zryTOZ7G0WS>X)hsf-{t?`A3QOK8H$>3(B*Ss8S~JrBoXjNujJ+TqnF|38Q;LGGU4C zs|_wlUkX89Y;lF1eH0qTHe5SG(Pt)n!b*ydna9MhqW6Wcu>o&379}y^kc=cTsVb}D zxv6+(B;la+Kgwx5854fTh~-Sa?BN~c&=h{i%g_>FhNe--k7*RDvrssv6$rWoFnc%7fNBAtUy3Yj+&v86b@ZA`#dT%ae1u7Js&gz^iU15LPa}?p)9gd z4zhktsD5(ZKPqk?5j9h8XSJo862&2ClGe*~pz3&>W+{w{;MUiT0f*I17*`fBodAdA z;gt>lAu;n`zyzC`jz;Y z#vrFINuqA=o0PX$&Qn96!Vf$t=p(+iS~7I z)3gGeIh|!pXMd!DW(x$OR<1bq+8UP%?Jc80{xH2FZQ|0ld3W*RbxfJNdpM=42f7%f z91cPVtS0)S;ujH&<^^&{8d+hGQ(Thu2-mmFu4r9#ej(SIl$H0@WpABCsdoNUK9>!@ zyT0UEK(4@%h)bJQOi+}UwM~nxE+gunNKU44K=rtpY*L%tn>;WcfQ|IcLR{p7pGOx_ z9->MrO+1;J^`~PRYpL{kFp(xZNH*w2ti0i!6XM8`USCz#AZXG8Z-&T)zI(Igq$J9Kzp{%^Gq&{X6K|qY4>fmx@pnGG*Nw0%s{z#wsBu#gwLDDOy%D zBHNVL?{P|T3xQcyB9o+^0Ee<=MI#ksjR}JiOmhA0qXHCz$=M?}d^(~;>?7X?@=MvT z(fZ%D0o?Rg^75-}IC-R-kGUcv$$s1xlT~?BX<>^^BPO~W5f^jzKzz+qHXEJcLJty8 zzTzN<5p?mPm|fn#`c-z(4#Wv^X{K!HmX4{2ij%cd&8jB%vlEO_yoIKg#9JzJxERBS z<|32(fyj3sTdUGs_69WL`q=RH&SJjC zLT?t@TwaRxH_L&8zg~XZ&|(qw{=P2;aH7Ts7F}5zls?BUaBS|$0@T+UOBYA7MQN8rA7kMgF`k%O@-|CRpssnVibCsTGOj73^21GF zOn)isI6B9ahz}-*aV=@_IiH6LZ6A!|5e}9FjG^JcQ%e)7EF7OIhxf>b4=k};{Azhe zr>C$wzb?pMCZazYLEP7NTzBP}Dx0o!S|@MS*=R~pQb$)tfVD8n7Y7oe=!}K52``%m zN%yJ!3WXJMksKua>f|3*0u=FwM0}r*@J(}fYHxs_ev(ZYS>U`RBFEuzNWQEvm|SZn zRS%DH+vh8Y$&fbHE-t1*&IGgdfjSl_lRv^;P2AK0x049D7q{9-8b-Ig2h}Ocfozu` zY1~-@!HR81Y(meMJlu}4U2gK?G?o=3fBf3=2E|RQ7)oupd`4_Z;+u?>iWaKlrH6!< z1RhfTf}Dy~W~Dg9)you2kKo)-Vwq}BuJ88??1dGBvKg9GG&n44F^taH?l1R0-_{U401>=Nx%Wf z<&qGc-IdIx1jmMP#hn>)Cz>It8IsElTrfZa7^zgHQkg>OjMOPosz{L{0+P-MjI>da zHc`Isf1KBxJHwSi>~c8w-gED{=lt(yhQf$DCWt&mh0a#Gj|-&qWU)FTZHJ}vmrX9p z1Y|MONd4R=w1XFKBH?i`%Em%VRru&@u%c9u1=;|l042fqG#kJeQoe{`rXE2=)w#w+ zE7^zdM&0qU5F53XZR$;yrGmbwN>6$Q!Ee~T3i(RW*?1L}(6{;JW*l&Oa})aReB|{~ z_8=%F`7Btn5?2+<%#~*v7A=)@w1|Ps5=+LXN<|QDM45?gFZ+Y5VQ(P3mA3Pgvj8mB zMk)u{MvujIfg&sCDEvPT70Q4-DHE};n$nmC_ zs@B*M(y31SaEy4VIkCXMEQiv`G5EjV3S2WAEAIIAPVPD| z$3Z|OWDeK2MzXp_FHXO|_s=jT(ab|4gPJnV$Ox8wB z1Ez|8F6$A1$vKp1zPUsd@g^-?RB3WneidRK&ZOf8Ruh2xUMtx0D)b>8? z>m%Xg0VE2*L%l2Uh{hV>s`D$@jW17U+CI+bcGfbE0X0dJlqlKwQ8z?YUqRE-VQ!JY z4n)*sovTK(vDaqHD`+Sw6M&cXga>5?Z7JJFd0ozg9baRSJJvH(ih(><<2S{#$VLR5 zg&NOK5?DejAyZINt23!ll&Ye6I8a(XqX*#(Y3i}nH72)utI*WB=|h|BRBLkr08ED0 z3fLN`7Nou`(Z3bZ%_T|FI4|>G5vB?N;@WBhAu1@2Ck{@kWu^j;`i1kEgZ$9ZMSdhI z4ptUfytAXIhQlw3%grV6wT1BwM?$6K}8UZ@BCn^o9O8qqFC|uzM{=$5!t$S-HI;@0Og8&Z-tMCIsi5T}THKlB> zEiahtoLz{@T#>-FjM4@7n4{d)VPRC3e8MWjjxI@j52}zO=#GJWSdm4D8`!F9`hgOx zuTWp4l0*Q+A5x>?DP)QcedLfGDu6*$xEH|at%nb+XIzDc6hf%6mmqQkdYS>AdroQ` z&EUwuFuccdcLm)ptCJPJn&}u}wMsSEwo1wunfidXfEuf69g&K{*vtYL4FJ_#zJ)3u zOH@+#FLU_Cs*D8ur|{ID4pH{cC}{PCP$M2%S1m;!Ld`Mj4CXSeZb5E=DYiw+PuHVy z!EYjS6uOWn-~%E<5q2Tl%(06j-12QAg(S9%3UYqlc+hn z;3mrE2e79OC{SxNIu(ZigzeS#HS$qo>CUvLW^0&8>DSKVc$vaD3x>v?QxDssHM#~( zoV^j@`Ge33Ju?)rx{=hVQ-7|w!68LSSi=>XV&QZV$x+z@mm@S078lGT+}9^dx%mpx zoYwsV;?w}yx;eRz!2{7H*r-h(C0;B;QK2h}#}T%#uLN+IXTw*Jj>hTW+L{ ziU4tTili8k*XsG?aM?CnO9nix^jx<=wl72%%)sHaDyGp@M93S{|bN zZCl_2C@E=00=Dmq)+Wz~Ij}i^Jy%gb{;R?8)Kc&8*vhI3{ z;b#n+kirKdnX`1-j2SWXCzv@Csd0C89m&4R@6Su=VKks+RXJduDtik-7GeXi7KtcD zDGh(iWGzYfNtm!s`j(8_ZIw75WJzGo1ay|6GdZv)I&S<6@RkTggG0y>!!*$Gt8B{7 z%-ce{0zhh+RnE51vizJ_6VV_CrIP}9SS-Pj#FGgCh<5@uKBobUO9pVRtkMZKo3}%d zL}3L+WOdOL;5@)dsVd=BYB8|^H`Z6-XE^HhV2sPP1zB{H7-i4pfKLy_qd}rvsy3!T z{~S6u_o0b69;B?fuH=Q8EZ^He6lhH_I%eKaVd098{(_G}%fn~m-bDe3MuB(U+TGjR z-`U@NeE3ARM@WlxrP9I(#e71oGqh7mV=mRSq-$4UAeqD=!W@>aN)FNZ2zG~-vr|M7 z$WG67p$(-RP25=3jcJQ2olk3s@(`*wJVgvW7!Mpv(~5Xvh?aXcD^i&Y&Os^@`Mdt6 zXH!IS)Yc#GXp?1+rV3Hkw`DhI>E$esGbsq`MzDs7Be99{+K zJhO)Yl0m>-adEb%&Ob97=q+(yU@uB$pps5?Kd=ID?O?OaE^%qiD15DTp>E+Ggb=$} zE7rQRrOQLnE6E^~3#!wF>kd|0Y^X>2WVm<9rPLRJrB#J0kGI|n@zz!!r$Qw_4bdK; z(0&a)P_~NlnJ0~jy_}oS(rd9B-5A- z5R0Ft!P4@=7pyMb{P3zd7@Q2j`6fFf1ab_tB%zA>qW>W3&`GlGR`7o~bQnra;YvA; zT-+#6^jyI6CWQp@3CXk27|6sFp})SJg2o&P$03{1u@OiA5_X9bR$6iO zC4*Tn^U(&=W;T>NAEO_29vD^OGN(j&P*+i_K=|Q!we}VopOS)&Xn=u`1Zs<}lV0pr zq?>DB?R@4G?fSl-GwayBACSWW*Lm&onET2mg&j>S#tu_7+`qZU~ux2^NX#J&ruMgy;3gT2I za!P&K+&P?_ouj6R?Poy~zGymXlYU#$F}fS57F59lL?ygTE-C|(3rgp8b+Ptn8Dq}~ z%O_&B9h4-b;7aRFpzc(Z2_~bM4q+(*E}6*HCST?HSinhyXhX2ZObQH<=qaL}(%D*; zY&*jQJ4FoeEfCi^280RbVFW3zy*iVWX4;knYvZ7{a^a1-8!L!eEQNtq{lAL_(#dmk zuY~xhG{AAWfm!(r+A@_9r&&0t-Fu9!N3rh9Ldy_@B{nc@x=LtBy0N<8f-L9>O{Hun z?F-)q@#c(bFAuWWO{rl`QvSK2C5Z1 zs*gEYmd<{QUNJRWR<~DOKU#yJOQeFVnzAtNfPD{TwPs8uSIMD&2wgCIyr(HM@&qP%7C}F<)OQ^NP<;3vr_*&*Fgmb zls~{-;!3I_?l?dgf@FS)=(y|N)Ou)=((7eO^f{ykRUK!ntHJIHVX1dHqWb4x%@RQ1 zJDOf3ecr?sYo)h5<&=64o4|(zri^4?)=WDm(LS-lyd7aX7TXMbhgKhuJ55GR8KPAM z(7E{&ualKBm@5Nxy6fn9Atraap+_(u(Xk_$9>7ARdKC3;XWYaA23D5P^cRGh1g|u| z)+8kjcxN0hYXbTjM;nVxcwDtvIY^NpIn|09cY3zQI|}L=>9)_p^^;`bYXLJt1U*_N zlk@ybVzdsyud|!tZWseC-@Y`DU+8OKercFr*Z|mN*Q;zgK+jpzIXu|j*}cEL^QS-h zk%F0Y4!F#ceYmJmL<{#{-C$wOsDJr1W%=k6uUR96U70U0+-X@-0|m;7oiWa}?d}W^ zhTXz!Xr_3F%%NIPz(N8VxCDB$Dk<3E>j%fko`o zQxY9>k}3uRS|mw7D?NQcat=0d{ z+H>O|Hnbr#{e)Axi6QnJ!IE$FKWpTJXsnf@O2)-rwaDx?cR?wql}S%@EjUe<%@x9| z(HB-0vhp(I9SQPa9VPxQK!=IzNjRSOs;anFu-fYM!DhmX7vgjecK5_0ReOCSoJNOA zuIjeRvCbo;l=<=0p$VXX8P8SN05(eNEP2AyB-{|-=Ao1XMF)|Sy^L(qme)HQfm#E? z7f0?;L=5KqgF^)Iw##F}NfsEGyy=VfvuO?v$&;8~Fo3xf=Gw(nZ^V4*G$4&{1n#l#vmtD!Q6WXlAM~AJI3V6pr zeuKq`xS2)MECAFAwXaulo#|1&ny^ZN4k3c_5?UXLhg9UKiX4onh8V5`#47J5&+6s0 zqHJbzJ$)!3rY6}3qSReMC;B!i!2}W!i%p5okt*J1ed%6aHIPQ+KYb2kcnQ)Sps?94y%E}I9Z*QGv z7hNV9pvH@j#1apqK<(jDslBSgs-M@z2Ne<%(MXt$lXQ`eaEUam$Y=vO|6l?EO(!$s zMHH}X;m*oX{4F%SldmBU(yg1awznRz_?$M~5#`J@^?7e{G#%G_@YP^$AuBX%`x3R(A!>!!k?wX|jqc z;>E%hv^-KY11w0p7@0JcRI6eTBuFlD`dXX@H6OVw(wx zrUkMkl1sXAH)VplX|c@D%el^$jHPNYgyf=2!ew0OjkV2Hhr@%x#dg1MCOB3$SI6|= z8l6w+wGQi8N4-RKOKi1)+=ms(sD}Y1a^{97P{PoJ^=bF8f08qPOrqev!zu&yOd+=oct;hS1_KXgpM7qEX)ytXIQ8?*@EWGTD zJWy2A3SvM(glfbmX85&=0Cpm5>+3aAw)dL7{m0u6_kXgh@N?INcjiYyIGZm%mp*F>;|=+;c)N za+cVh25R+vWNCfXs#FHA9peo({R5_&nITHXRKj)JL81)_m(P~3iW4O*RbzN=YV|h{ zN~#+lDCMyChmiK9dN#C8)`m^@&MZDjF#{Oa&L)idP=W?ffJ_prhudtU@{(L2;uWje z3LlIGAVJjW_=!6b#8Z`Gq(m>In8JEj(;0k4r=wxiv63mIf@h~|B zRuIfj){5#X1P10I)_JK%n8_MNW2Kb^hA74$6h?{Yo8%Kf+>*+j=v@xM^%)R$gexKY zje))bHX;X_O@$3r;+4m(B+0A<1^?kIGhPea;p{nzy@b$ZJ`w+NB4X1~fH`8g^i}Kg z*u+#KC{Prx#q9x2<>Cb*_S#^G;w5He;F|1SWUuQ>NLfbABPE zg9)nB%fh1jC-OI%%TvT2(t-_a=}LnQbxJ>^p|6coVU5x}h}O864H$3)>oFG;KDHeTcESQ3^_D2ug|sOc3^jSGb^EP{Yum!8W}>YiqF|Td3hn@}Tp_u+ z0asSHMSV;pxe5w~8L=+1sfNNffe_@G1=;G2V`9oefjmUCxLT6EPufu}6o7BxyQcD&fClA{Tu{*tRRybV z6Yc}*b~o0-D?a`Id^tooo}GZHEyAxf($c7*CUJ#+?_b6g-$fds3R%}p*~b$MXLnrh3`D+=!)A2vJvn9uWVB_DAZ}C?-{sB(?7XJJ5 z-@CJgZ=KG2c3{Z{@EZQy)sK$f=ZEgKz8#oglhKHlH|2AA=^ z_x1A5FTS@WfBk}hg`X`hE`B(FE@e6XZ*Yu{u;uQ2@`qda*1@NIbZi>>1;6>M^yjbf zB_02njsMKXe@Ng;ety^f_RkOTJssa!+R`hQ^y5Fi)z?4#w=a}^|66>f<9~hs@8ry{ z@9Vg)`8fOhO7Z<8eCPOZ+Z`R>+0pSg1K)WaxTPQAH?K~|-+cV{a_;8ip?p60<8Z0` zQ9l14a5NqN$)`I0lTUU08%>y*jQ9QXyZ$5o_y+zH2l(^Z>Ob4(NIo4-il2-sm%-fx}Gqe6qTW7o9=MzkRah)KkyDB0f>sN>qYo(~LW>F;~ zVy##$76GZm6_GW>trGJo<(hew(hGoBP}#2lf5a*%zQ&RSbM7H=YHxues%Y^u)t1Oy z2u%WHM|~9`DT42{3W^_5{g~qZC_56#u2$LADt+c5rO%wlM`NRFjjCVck3b?hLQHIx zzYAQ(0$BGcGfw3vmRSl7_Les`{U<$&-L@UOq)U#628r5UiHq(f)&KqC?c%3{nJeC$`SoLK|NM{` z`PK64$d)e@zc8(Ursknt07i9g`UwCpd@&mL!e1<-zpsq`nKJre;2JJBJp;h2-P_9G zZ!GN*l}X0^9~{VJ&1@`9cYUKUI(oZ|cp{q^OyrHnhW zNfWN^+MG#vyc99w=twb~8A+raNReX)4wteO4-fsROs>dj!Zb1?W-^n;Se$(-=_V9o z*})t|aF{~ZBxBj%Z{$d7AnEqeSbR8U4iQjKK)9aygoJf7bCsKF@Xx?hLMpq@5&@pWUK?@X)Hc(Y19$c_@4yiVo9=bs=h>(b4><6p4*bUsT%~4Nd(eRg9s2sj z=_>uc%9qa5gg!ZCR?bYIQlEIS>bOG*#rdnBfy(@4&*HacT?8ePhe&DmDkQ?6XD7=1)UigbX@z=TT-j3<15Z++= z^s$3WiA^WKW_CmI%s|b$twJ0*iU97?>yCiw6CVfl!l`|$kHDJ@+wwg}sbc;ll^VL_6lVDas^6vG^}cj)>|6j2^unBeY-Wq@ds%<|oO! zS-uN~Gih{e&&!pM0`h%$obJcb5MKED#1=7H`RxZL9yA_bzKP{pxD$4-9G8#B#OYAs&QJBi=$wAvuDSc#P<#XT zr8zdU2I9<9=$DMtE61a|qlNkCjU9!v(On&d-$#2p4_u~KXn5og)Dgd-^YT*-f7FkC z7NCqXGx<;SbMifNEzgh6!aJRXvs>X~e&t*G#Bra#>D|$HC=uPfC;F}Ep6D%615?VL zPah&b$=sz<6}>M$kFrCFOe!-to*0YuoAJ@%;qmamrh3t%;5LH8$#k)t88z7_#c-ao zmm*4ZbTO?%!M8eaO*1$pt+zgzpQlXlBnH|G{y5_GB=|Ah-B-as1wRd*!mMnBBU+yl z`S$k+-&n}EdfDQt2Yib|gs;KX4L?_qf+BByA?N{@`e^?I=>|jX!P@OLOYf-4i!H0J zxnkp`G|{CFjp=>(T}Ppd21EDwTdNlZR{7Ditd9eJ54ZRlaJzmV)mr-j8Xx751l6|$ zLqG7h1#9mQv<0;T6>Y)w->=kz_4h2&gUu6*yMmEausIs6j|SJb1htl6E%aN0RdU=E z4@x_qe+Q|N|I`0!1hgd)Yv{~XAb1YCd8+~#?{djEyJT965-qcsxM^`jmee*~tVHG` zx=8-wNA0gyE1Bj5(JG6HDpgN&k%;R*Iyavod9Oc$U&k3ig(dSEGVix!Uh^GR{i6j8 zQLV+q`HC~+6jhJq1`*FGP1$qa;5F%mQcH;DMG;wITvIalo7o#oHBk zx3{ge_3PUDt%<&5EUh($H-$IUHPl~jm4vIZIow#+Ky@ex5zdVdo3TD{Gi&i7E+y00 z@Q#RZI%6in(Uy)nGd8HC!SrajZ#0Q>l4M+jNg9gfhD10%o`ye*n^~)7Um}~s{;^0f zP?t@lVq~C7BPmnh)tJPunHafqv;GB;wLOyu{`$Waw6QH86HlgO?N!Ki{gIL?+Ig<=!~3#lI9XD8&}kG9U$XOKF}_mJHpWc>WI3<- z91s@>-uF9g0^&l!`L7tS6^B$_EXFSqv@LT}z|Q6iHIzmx#0T>Wh*hHZh7YS5cmL^q z;TP2+@5&Ehg-^NgsKSNoJ-1u>U+AYw=VCzOrSUwV{MheJ$V3n0^3jQ(E6zuNdyVTg z;MD(i)gQT51onpXQzK|cKy<16CEwnDP67AfIhm`DC{2rfDDl#`QLR^htiZ1*d457@ z*yr(_TqFZkI^HX#e(7`40(=F=OQ!)u{2uE8u1Tc$CoS>P=W1N~Db^+FVc;RWJ>AdS z!7}UBIcI?)lOOTq_-xxE=U%f30}hHIKes#{Z+F zFBbAlh4T4S8T~&G$-NNxm1Xq1fNP}aq8MxAJw|88 z4ZS$~UN|8)%wYqk$Y~sY^SQSJGH~W>45l)DIO&d?nQYF8jgAStg-22eGZ7CrH8nNB zvxkyF>jCTSZs3ib9T(PmK<=_(;*bnlMii-**_U@kJ9eP+>VP}k6yC6LV?BJe_e8te zjJ6$H=~Q11lgmY(aVWp_8#|(19j(xE)W{D4!r0civnAST>}+qpp{>{Gjka{QkvnoZGRu0vLGk&+Ged1sA zDZ#DfKE6l2U9d9H{G?iV@FcjGez{J#gl1c zG?#FGF)8Z3_3fj`w9$E6=td%*X*f_f(!f%Y%g!z=d_*boRxji?3`cL(w-J|?=l3E5 zUzqsGD{0H^fWA%fBrE5_>&1qVd?X)3z+u{Q!kDz)wHb-d~*@3)~MNx5TD+=3GAb-8_B z?;lnj)|4jqpY@pEhI-mNv&{Q~6Uv}l*;D^Xhx@N!u^$EMD%)#|BC<*&0}$`exqY^0 z{BG!weG4grc>mw5>@_uDvZuAJ+x~uFq@vXA{m4!9P=NRx#FDJGxJm zzFU43wlxlWKJTjfg7$C1mb%F8^S&wc1?~R?TYC1`p7)3R|1bQ1F8q9Q|M@w1+tohr zBiE}%AnQX-63fir1?ucS?>Fm}{g|?2#&*olxa@hIeMs4JKi&2$e}V$};_>sk@<^Hf zyB-HY`zXTdaXE?YH#tF+*`E1wVBEG-^#g976;-86l>T_`IPLjEh^F$u#i+ar7srkB S7tK$v_BC}Nd)QU!ZvS70aL~N~ literal 0 HcmV?d00001 diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexactdummy.f90 b/applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexactdummy.f90 new file mode 100644 index 000000000..6542f7811 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src/rheologyexactdummy.f90 @@ -0,0 +1,71 @@ +program rheologyexactdummy +! use iso_c_binding +! use fmodena +! use tfem_m + implicit none + real(8) :: temp, shear, conv + real(8) :: mu, surfaceTension, polymerViscosity + integer :: ret + +! integer(c_size_t) :: surfaceTempPos +! integer(c_size_t) :: viscosityTempPos, viscosityConvPos +! type(c_ptr) :: surfaceModel, surfaceInputs, surfaceOutputs +! type(c_ptr) :: viscosityModel, viscosityInputs, viscosityOutputs + +! surfaceModel = modena_model_new (c_char_"SurfaceTension"//c_null_char); +! surfaceInputs = modena_inputs_new (surfaceModel); +! surfaceOutputs = modena_outputs_new (surfaceModel); +! surfaceTempPos = modena_model_inputs_argPos(surfaceModel, & +! c_char_"T"//c_null_char); +! +! viscosityModel = modena_model_new (c_char_"polymerViscosity"//c_null_char); +! viscosityInputs = modena_inputs_new (viscosityModel); +! viscosityOutputs = modena_outputs_new (viscosityModel); +! viscosityTempPos = modena_model_inputs_argPos(viscosityModel, & +! c_char_"T"//c_null_char); +! viscosityConvPos = modena_model_inputs_argPos(viscosityModel, & +! c_char_"X"//c_null_char); + +! call modena_model_argPos_check(surfaceModel) + +! call modena_model_argPos_check(viscosityModel) + + + open(14, file='RheologyExact.in') + read(14, * ) temp, shear, conv + close(14) + +! call modena_inputs_set( surfaceInputs, surfaceTempPos, temp ) + +! call modena_inputs_set( viscosityInputs, viscosityTempPos, temp ) +! call modena_inputs_set( viscosityInputs, viscosityConvPos, conv ) +! +! ret = modena_model_call(surfaceModel, surfaceInputs, surfaceOutputs) +! if ( ret /= 0 ) then +! call modena_inputs_destroy( surfaceInputs ) +! call modena_outputs_destroy( surfaceOutputs ) +! call modena_model_destroy( surfaceModel ) +! print*,ret +! call exit(ret) +! end if + +! ret = modena_model_call(viscosityModel, viscosityInputs, viscosityOutputs) +! if ( ret /= 0 ) then +! call modena_inputs_destroy( viscosityInputs ) +! call modena_outputs_destroy( viscosityOutputs ) +! call modena_model_destroy( viscosityModel ) +! print*,ret +! call exit(ret) +! end if + +! surfaceTension = modena_outputs_get(surfaceOutputs, 0_c_size_t); +! polymerViscosity = modena_outputs_get(viscosityOutputs, 0_c_size_t); + + + mu = 1.0 + open(15, file='RheologyExact.out') + write(15,*) mu + close(15) + + +end program rheologyexactdummy diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src_dummy/CMakeLists.txt b/applications/PUfoam/MoDeNaModels/Rheology/src_dummy/CMakeLists.txt new file mode 100644 index 000000000..73ae27452 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src_dummy/CMakeLists.txt @@ -0,0 +1,20 @@ +cmake_minimum_required (VERSION 2.8) +project (workflowdummy C Fortran) + +if( CMAKE_VERSION VERSION_GREATER "3.0" ) + cmake_policy(SET CMP0042 OLD) + cmake_policy(SET CMP0026 OLD) +endif() + +find_package(MODENA REQUIRED) + +include_directories(${MODENA_INCLUDE_DIRS}) +link_directories(${MODENA_LIBRARY_DIRS}) + + +set (CMAKE_NO_SYSTEM_FROM_IMPORTED yes ) +set (CMAKE_Fortran_FLAGS "-ffree-line-length-none -O3") +set (CMAKE_Fortran_MODULE_DIRECTORY mod) +file (GLOB _sources RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.f*) +add_executable(workflowdummy ${_sources}) +target_link_libraries(workflowdummy MODENA::modena) diff --git a/applications/PUfoam/MoDeNaModels/Rheology/src_dummy/workflowdummy.f90 b/applications/PUfoam/MoDeNaModels/Rheology/src_dummy/workflowdummy.f90 new file mode 100644 index 000000000..b7a447b7e --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/src_dummy/workflowdummy.f90 @@ -0,0 +1,79 @@ +program workflowdummy + use iso_c_binding + use fmodena +! use tfem_m + implicit none + real(8) :: temp, shear, conv + real(8) :: mu, surfaceTension, Viscosity + integer :: ret + + integer(c_size_t) :: TPos + integer(c_size_t) :: XPos + integer(c_size_t) :: shearPos + type(c_ptr) :: Model, Inputs, Outputs + + Model = modena_model_new (c_char_"Rheology"//c_null_char); + Inputs = modena_inputs_new (Model); + Outputs = modena_outputs_new (Model); + TPos = modena_model_inputs_argPos(Model, & + c_char_"T"//c_null_char); + shearPos = modena_model_inputs_argPos(Model, & + c_char_"shear"//c_null_char); + XPos = modena_model_inputs_argPos(Model, & + c_char_"X"//c_null_char); +! +! viscosityModel = modena_model_new (c_char_"polymerViscosity"//c_null_char); +! viscosityInputs = modena_inputs_new (viscosityModel); +! viscosityOutputs = modena_outputs_new (viscosityModel); +! viscosityTempPos = modena_model_inputs_argPos(viscosityModel, & +! c_char_"T"//c_null_char); +! viscosityConvPos = modena_model_inputs_argPos(viscosityModel, & +! c_char_"X"//c_null_char); + + call modena_model_argPos_check(Model) + +! call modena_model_argPos_check(viscosityModel) + + +! open(14, file='RheologyExact.in') +! read(14, * ) temp, shear, conv +! close(14) + shear =0.5 + temp = 320 + conv = 0.4 + call modena_inputs_set(Inputs, TPos, temp ) + call modena_inputs_set(Inputs, XPos, conv ) + call modena_inputs_set(Inputs, shearPos, shear ) + +! call modena_inputs_set( viscosityInputs, viscosityTempPos, temp ) +! call modena_inputs_set( viscosityInputs, viscosityConvPos, conv ) +! + ret = modena_model_call(Model, Inputs, Outputs) + if ( ret /= 0 ) then + call modena_inputs_destroy( Inputs ) + call modena_outputs_destroy( Outputs ) + call modena_model_destroy( Model ) + print*,ret + call exit(ret) + end if + +! ret = modena_model_call(viscosityModel, viscosityInputs, viscosityOutputs) +! if ( ret /= 0 ) then +! call modena_inputs_destroy( viscosityInputs ) +! call modena_outputs_destroy( viscosityOutputs ) +! call modena_model_destroy( viscosityModel ) +! print*,ret +! call exit(ret) +! end if + + viscosity = modena_outputs_get(Outputs, 0_c_size_t); +! polymerViscosity = modena_outputs_get(viscosityOutputs, 0_c_size_t); + + +! mu = 1.0 +! open(15, file='RheologyExact.out') +! write(15,*) mu +! close(15) + + +end program workflowdummy diff --git a/applications/PUfoam/MoDeNaModels/Rheology/workflow b/applications/PUfoam/MoDeNaModels/Rheology/workflow new file mode 100755 index 000000000..9c5438875 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Rheology/workflow @@ -0,0 +1,57 @@ +#!/usr/bin/python +''' + + ooo ooooo oooooooooo. ooooo ooo + `88. .888' `888' `Y8b `888b. `8' + 888b d'888 .ooooo. 888 888 .ooooo. 8 `88b. 8 .oooo. + 8 Y88. .P 888 d88' `88b 888 888 d88' `88b 8 `88b. 8 `P )88b + 8 `888' 888 888 888 888 888 888ooo888 8 `88b.8 .oP"888 + 8 Y 888 888 888 888 d88' 888 .o 8 `888 d8( 888 + o8o o888o `Y8bod8P' o888bood8P' `Y8bod8P' o8o `8 `Y888""8o + +Copyright + 2014-2015 MoDeNa Consortium, All rights reserved. + +License + This file is part of Modena. + + Modena is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation, either version 3 of the License, or (at your option) + any later version. + + Modena is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU General Public License for more + details. + + You should have received a copy of the GNU General Public License along + with Modena. If not, see . + +Description + A simple workflow + +Authors + Henrik Rusche + +Contributors +''' + +from fireworks import Firework, Workflow, LaunchPad +from fireworks.core.rocket_launcher import rapidfire +import WorkflowTest +from modulefinder import ModuleFinder + + +# set up the LaunchPad and reset it +launchpad = LaunchPad() +launchpad.reset('', require_password=False) + +# create the individual FireWorks and Workflow +# Source code in src/twoTanksMacroscopicProblem.C + +wf = Workflow([Firework(WorkflowTest.m)], {}, name="simulation") + +# store workflow and launch it locally +launchpad.add_wf(wf) +rapidfire(launchpad) diff --git a/applications/PUfoam/MoDeNaModels/Solubility/.gitignore b/applications/PUfoam/MoDeNaModels/Solubility/.gitignore new file mode 100644 index 000000000..d775b3f43 --- /dev/null +++ b/applications/PUfoam/MoDeNaModels/Solubility/.gitignore @@ -0,0 +1 @@ +PCSAFT_Henry diff --git a/applications/PUfoam/MoDeNaModels/Solubility/Description_Solubility.pdf b/applications/PUfoam/MoDeNaModels/Solubility/Description_Solubility.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c5e661b6cb538435fecde31fb304cc8e8cf639d6 GIT binary patch literal 102309 zcmeFZ1yq&I*Eq^K9HimUA#p$f3E|KnbwE;)5D<`-M!G?PL!*?^9ZE=-B1(gx(kUGh z(%pTZ1HQl4UwmtQ-~WF1u65VCti>?To;`c^?3#IIKLeABwCrtePCgu_o`IHO903>{ zX7|JjCMt@XFwbp(cK zlydqL{v3NV8Ro*RZd38O$C9}6<8F=B%2rN(L1y{cvgaA*t$Sc58BV9bmnQZ^zN0r8 z#a4>+^uB1*?eBQm{(7r8_bGx9M^lwtoGyNHEN6D;U(>h3rx9d=G7q?t-~1w?TSunVMsS8H-ZoRK@gyrn3ju_=s0(F)@u4%>d)iJPo zE^+AQm({56?iMDUeG@s5(Og|M6w!AS{MuMrbZp0M)He}Q|Lhk}c*7EKgz8R1$ys07oK;oOc5=*ymp>5c>BEF8xvT zq4{}9B1!CvjYkhF_;oO0A8gzgyaGQ2+|%|R`av#PG^=^bojUVkGcPM9!18s9@na5S zq9weZ20fg@9_Hux%g@o?-5^3gF0*cw8?T7h&>EU6*1B%w=%~pl;oJ;tFr&fB?EP}NTti2Vtd`Bh;g1r}5naG+ImegsV8GuX~RgZ3NQFA2*wiP@rUS_eo zjg!X$%GZd`vx;zxYYbv3hcPnY*4YzKl2yEaL&W)) z_i6+iX$!Iv)y`2gdKt9ysuYUdWljvPs~GU765%BG+dq-O#;9L5_NlkzB6L_=mYZ(T z>i?)*^!W5q^f05?VC&Xr=G!qoLT^hfr>U#V^5+@kwW9RS7N>nlK4u3DstJ58-bHfm zPFuu1u`;30`TWjR?Z=Pzn2t7u!RLwA;e(mD@u#CBZ&odZ6d4W3VO`|tV!p}H%`*FT z&qSgz5>qiL%=cijuA|!=Ld3%HOc6o1j95jS%U5~wdR`}Pf3W(p2|w(+buXZA>t--_ zAkIIB-QAw9=~xv zAFbg=tP&h#{e4>6$hl3@oKGzT_r3)w494#_x2MZS(J1ce zo4IU1EFi?JJD|Zz&u(4GnV&$@;Xbu^%a!*%FhDo4+!;t*kFNkMolM z@sl3j*5ndOI|!N#JbD|Gg*Z=Y?buY?R6j=Jmrlj<>d@XuE-!`?jM5?z8<7fYYb1L` zl{_&L{FExD6zfb9ts8$mb&)fK(Vm>#f>t;6EYdqz$QRwBiW%KBkw`nH<`!2C=Wu7tY%p1rq-m$hJ14z_Gj&xw@3$kIQ$g{VjW<)bE)F4AM_Y{ookIDSAF zZYy#qRrv10EJ*wAjNx_tjaOBo{_lC&$BBELca17Drh$gifhkNI| z0}aw^jVDU5d>A~!L@jmBBVRBj4lA4DP8C-g^voNh6N?vblX=8%#<7zS zy|dn~5hE$i%$n*^ijI-1E_b*Sp0FzMNKEvt+Zb<~(+dti-kALIl}Vg)&Q;04;8oIf zF6}h&thD2I&He?^k!n7?FF&Y!J9@&ZnBwggVYSHBYZ>9`LrJ9i{4mdWP5EH;m0(P_ z{N!op?PQWhpUzWj(Ec60hqOx~aPmBHF_k0FVxrb8Ik%dOsTr2n3(}jhFWw{?r`J!7 zu^bvEbq%`TZVMFdTON8k)tOP9V@7VdxYxt^f~AO)QP1?A&2GZ~!2{%>xq@=F!6ex;p~> zVBA+|;^MI11EHROZ%<$Vb!$6EHG3mtQy4Fb9BNc&V0&T<W9sz0h{;o>bqmARp zf@j~qHoY+X1b(2j>>m$(ZT9Jx5?YK2^JDBdUnLfe*8{tK0Zg*eH}aH4=bb3nm^Fww zb)RXNIUBVSrz&yI0iYZb4~I;x;wX;D`_C*q$3U4L;~N|f>G77-6nnkVoyI~2FNgci z{l(sMIoDXmv0FYlc@b)@HquNSl9u%{O&W($=LD-v%(`ZBay@;qzj86s4x+~zhuo83 zz}e`zMKbl;MuS2z(C%&Qy_+ObzM}!zY=jOZ`5U3Z)U@(Zhj|vEwQDw^SuaEHDxC7) zR$|%=uKIc2XC5WmbDUe0UV!ez9MWOr#Kb@QY3toncvWupK$(~Ro!g6n#95L?5#vRr z&#XtirnN^`S=F+OUWjMDY-&e`T2!#6)r2Cd#+x6H+V(#p95i~C>D0==5}{bSt#bT4 znv-H|nkq8m`gG;A72YTiB@TeCejZkNzbB6r9Z^0d`H&`0gWUE#g>kA6jx<)WwPAI%8gmP8h z%c`S0RQ##hn42dVBC$&%tc@6<-| z)$2o`Dsqq|n)1H-Lv-i&H$RVk67XVdJMa=s_fmG(>q%Ca?54THK@b;lM(cQobn^>7 zhX38hYcD+g)#kAxhU!d_G=W%dly7#b`udkI+&>y%2b$LRc_(b-x6w#TSF{c$oc9TGDUN-eY@b!E?RZ;ekO^!`y|z^HG-*veqPrvi zsMbJCPZT8dot-F{a>jS(!)5@kpsl`tfXUglu%HsD64|aQO-!d_+fypamBO6{>|n}Q zFV@jsy!*^4q+#JN}Z;I2Wq@RW6PbwXpFhasDIym^exwyp2Zg4Sg&riX1iT*s`?6W@B zFrpw70$~b{VBiz=b*8h~5ADWHz*`q8j7Vht`ZDIHugBhrzH~ibX#F&WGiFOch6n#c zv7HU&<|$uN`Nhn)#eqKP&K#4oxGHHE3klz!#T-YudSSQdNj4l)JA7-=ciMe$ZHa`r zylHVw{=>yWwwxDJ@@{M|S!PLtxq9|HX!Q@pSp4qg@5$2PFMX0y+sV>${S=;4nX-y9 z6Zf%k@gCFL+-Xny_vHu(%YVn&|F|AqM&f^3kbw2za*6t%u1LV*@vmcPDL=6?HFn0~ zQgeCYe7PDb*jz4$nwBQO`?LTb9EVHZ)Y9C-8OA3B)TJz)om5O6@7mee+u5R)Jt5S} z`H!_thfBfM#MIr?1jZ$8>S}3h`cO^^Sem$j7jqQLz-syXMV(KWPw=l-^nZFo2l}Dj z)PY6S#z|E4inbGs8&z?!u?1FVKKOrN0$9(0)!EqD&Jh?5Sl|A5&rexP#jbpFhZODm z)|y{upyh>*MKmmWnEG2vzLWS9-0|Qa-HLsDX#e&DeUZ1)B2>5$$UHfP9?Q_0mv}sg z828V3Z*}8jUJNV+`SP6(aVyASgsgT^gla?C7w7fa`&Eh1fbxkN%*}9`$U2*c(rDe^ z4tAC5Vj&m^_(d0Fm!xJD9yk$^4mUqfHEGnIGA_J&oUOz6q?xm1y1DW!j4Y>gY>ULK zYjU0jvDcBx-)!O)S=L1ADx#VkVwrvoQizp$J8|aq_n042z3`XbHbN_cU!N71G8)Rf z+t4AfdiBleMzW=@H}a7SnRCg1xf(9$m-+qePMwG)cX zNYYZ~9~&pb(4zZ6YE!nY9O3>xAbKA{qgW%6YoO-xqdG!8hvlNBES=-ooL(Q1X?jyc z$hUq8NPxwy3n=tS=Gk3D2nJY6G0X=G%OL^v)YL8k=?Ff1=fM(UJGrFfgR`~OX#<6e z?7#h0BrLc(xFK+j+#rA|Kgy$*tl1l@G*Z!5i43w zLhXGW@2s*&?@FfEPHDjc_gLc7&UcWJcI}Tey3mMuW8zHvV4B#K(6p z;3NG?cihqYGYu%5Yc6X2`&(o>N$FjjsyF?$`>}OiH4Or7dIaYTh5`xKNV0?T-c`zh zx?kFlrn{1DZo)&3ze;vDZ7aot#Ez*O{n#~5Dm;8FZ5dlsc^sBZl?i9$mE#p;Q z5MX`K#aWt$M8;M`B>7OkqdtfL=huDyM5W9>>B5E?+a3LDzvg_9;8yDc-VR$kAv;Xc zw-sgyf)~(I-JJ6iZeNcBLQtr*%XPxDqvm=dVL;5G(hJ$&kAjiVSYAN!QVz@XU@2G^ zpm3~aOaRb?L_(vL&lz9=({BM&03EK-7G0I|av7F3U|WB}-W*bDUFIt2#yBlO+}`e9;W zaUV?pzyqzrVB|E-bpTh_cphjsUOl~wun*1l@ugAOxt^|=5Q1zmS}}lO4)6{2pTv}5 zY04Wn&v6) z0+MFx^lrnOsyPEVrcz&h&d6wXDGf$ir2Fq1Bz7kg|-K!Om83V0nLUivi? zX#Y{Q3&@E)7wDih^8=8S2+c__(lGETFoL!HIv^>GbzsOtTEcT};puS-NCyr*P}{8R zkoqb{Pgn?e(C#OhtnMhNC&9oe8jb7sX28o1ZH^c zaId?PMf&!qy}E6WkZCApH;Mti658z5Z+kPJX+Ql!8X%w_ zTrY_!y%(NM)D4LA-MJo-{b44p=d$bDYZ7=jq#JIAETspcx7!b#2d7olO^AKoWxxUF zAk;5Ji(>+i9?&6)NCKE4x%56)401uu6K3fAe55nXkRQ6Y*0!PMDdg2kQutymeQm?1mb_4ysAt)4I*zhg zdFm5fuw#%t8iPfK_*k1$y zXCDe7gak_Rof0dcJU>%vM`q!RLW+DM4)tj6r6cqChOD&RSN?kOr3KUW>5wzyvZj~v zy%M9K0*0br^%#)C0KUDu4UgpqC6Z&KDDk7Yz8}lsXkjcJ2P64kmHN1PHKuwyeALAU z2f=!mH#!2p@=%4nB2!rTdWvj`uJX~OYmX`Zktd0`$XZX2MNjqM=%0vM!dgsxAL>JW z9n)lLdEuF9*tDVY@i8}LritTbq-%rY_a+GlM=ah;A8H6kwBoKYTq@IKmY&t{_1tW_ z3=So)kk;$hK99h64lqDoukP^{- z{N9K4Jy62~%0R}mlL=qjypxE+7*b#23WLDT0UBPCr!9fGDrd!=5i)n3E$%%y zr%onSsoU4O&C55xY_4`q_lE*KXACHJ-TK}Q$mxryvx;{Z^-&0qY!+#;2aY$~J4sW{ z*Z>E1`;wPd^>ggCgq&2vMobZ)%jMTu*Sl{rOq1O^;L1S9vQYjxQUV5%K`=+ZzninEAckU7(Q{1+!b-6qJ$; zYRd}e)H;|ZW04dhQtOx{fl0g7(+%*+_7`>-CCL1!`d?A#MbL;==^NA6W0%Y~kZl3E zIWER9Fx|V`M^6jek*QQ+(-y7-ka5*a@3{VoB4Ax~Rt`VbOS;aiwAq)(bM(|5E=I;S z7`f-ypYda^q-^zNC{>Ng@?dwDZv;;UA)C@U^?l4c=3X!gzxaED$J%kAmZJneSR-!s z`dmpSIZfgy;0^E8(@**12=I)R$yf1q)rKED6#s6~cpv=?@6j4^J%{BZp+4oJ;9X^T zJo$6-!iNYdZgc|%vad^^P#}3ONQC|;5YGyEuf^s&4feQP&z<}5~ z66q#cuLGMFlRvlhL%JdA$6(VgJ>4KIcdA_{5LiE8t{WfA9edXa1FVmBHtvi3k&%8M z+C#kSgbRM`>s>5~!0qW4!#ZU5SzJJeoZ_$UK)~l{FVZETo9x32B#=|^@eu~-0@I_! z4Z6uYOo0YDg&bpmK*|go_<<~#CM;jfc$Ns2opRV<`+?2T=w9rmV?Lo#Imkr{VhMux zsiUsV@wc#Xf|4TqYhgdBGG5;x6EH2 zauC4r`}?I_ zY(_~&dw(GtAX)ZB3Hpf)(lGJi^&w``L&he>%XGA>#+ zQs~LUHv%AqQ{uOr06>_H_|+FK87qK0;%ou{pv?va0H*gSR7Sos+G4A{NBR^pCWy}C z9F})a^Ae9|sDRw&#aHhqFk*-f+=0T4+DJBQ`$Cb}Y6(cbPjj*g;3oz_q&Hyu^9n@Z zb0dSwIWE|?>4Qmd)UK&=9hlL8$b=2H9V-02CO3YSB#?(7RKb9C~EMQjGkjDTZy* zsKSedr7DRC!2wID&j@e2i$X{aGzeK?(ik8Hw!fR8&^LZaC>gMp!~Vxju?T{1N+C+J zI0V=v-+b$0%hzsT1P5TxBF6G;1f{VFSV>xa9UhKZh7s440x!8r3GiBV9ghzG(9d!Z zMWHYu!bbyQjD}4{P6eipsN{25hu=~YK;d%$+&F(JKG-tHSs@zh`dOyqF zy8AfP8|_AX=JJ`C?8Bq+xCRxUeFtADB`Prj3)x2;gNKM7PX@KEa;@`+NlwJq`${l( z4Lpl@+vME8k~#zj(FmEUI6RI%t)$1qo&06*P-4V)T=zWCqh%>~_M(BVY4@|ez!Aah zl&_jeiOa@-g>>w;HzlVRq05$o8-PsutF9(Md)9gFxkLTbV+ncT8r=i()(Uj`SInPm zI>jm{{pf*_6)VQ$OG^5_a3{tHg5vFLir;z?%ue|B_b{J5?P#ClwiDGIf11$gb%X;< zH(h&kUx%cw`Os}Td}!mn!=wR79g-KYsH45!ZtU>bI_=HYX_3N*8(tSe3^YQer%KmP zYBd@UC=RI2YPo#yar%oZ*Y;e4m~i*0nUUynalcM~X@Ai;s`uQ;EOLqpXO%v&3DIvV zJebdB@T{c`F9}-Y?>Nj4aL1n=^mY1$CoKT_JfmnFcTg-uYvyE7_j%?=<)>D2&G8kT zl?S|GQ}CbFGyl-_AC-qUR;?(?eZ=G#PWIc&RPYbxPxf%uRzR&D)YM4kEadEI*5P|` zIP+>!{MmXi$u@Q5$@NL;=S?L8oDjqAE z735U*#A2Kcul!2*aBb_}VA2(4MmjwSI{SKKgz1~G&YIvI*F^Ju@KAEzM)4yH76ic+Q5MJqN;_VGkOj^VtM&{AvY%w_f+ z!?B1Ut44qH`4iaRxAbm2D0r>92${??{gZM{vzo|0?V~NxCS0TK4sTo*74(rA(=YAX zNbtHTa>%qJMSNVz)6Ff~E?@d7H#F$$AD$usAq)^6 zS<(l&&i30F--+3cR!?Y%S()MBn!Rn0;QYZRhb8CFS{!lh^PaVI5Xs#BrGpbjp5)G` zn;=8nz)H(0pF*3#VlX=<=T*^ffuANe7kvoT@^T8KNcFmWzHO}w`S`kp zXFN%CkgtD!?DfoSNVB`SwZEmyY$s1RlrAyuQ|6G?*R_}V0{g=^_C+5lb<~v-PVQ^= zD2Y3hFxp=r-uz4r9Q3#FQ@9zqph7*;Yw=!}^XZ4j%+X7()!7d%Md>a;r+m45|1R;% zBjEp~?Bah+DgK#8{5y5{XG#&3M*Mwze3_Uf{$aQ(Td>3~0SK*&B zjzF^V@6+ku$HW3c-2ZJO3Riz%HwMS6UC>diD{#;cQRmTeI|a~G$#eXd|~M8f28q~#+H60dfdS^>}arp5=;?Cw01m|^8^bo}ez zdJ>5olymxtdP^4cg(pz8~hp*NdXWDD84IXH(5sI(f&uGgH( zJi@zEVsifsvRsZgkgb?AGU{;G*O2~Qw$gzxam{Bol|mz_U)hDY>UhL4Ja)!@>|%-d zaf9mW zZqKeVOAwT^-m0~3lOLdY(PK4eOY*9<*R#P&g<|(^VBe9p6b0#lcqiMW^e9-}p=}p} zbwHcdRFQ~9mc30DJ~yT#@hP%9o9(gdv3+rYk}!mnkwHxMZuz|Bk4@9^(PLeVmS^KS zL?)q|{G*k#kdM=Ab)uzHueF?^r?ei=Oa({#&f_$nQPX6e)Oh{vKIA%XdP17K zv{2K8hTUXpBWua)R%LCyG}*ValxvYh*-Zu0WGxa8Tno9K`}`{u2-Ml;u`>3o)i|7j z(I`?%76|%@q{rY$FO!E6@6v)X33o^f_S5BPTbB~f!qA?X4rVYkOLK)>to}5@=2ASW z=fY#3w&YAA)(2%RL@l=aAksBM>o>&`v;N(ec~B|(zoO@VOaWcG#y_Qi0QdYqO9B1) z(d5-w|F5NhEm-p1aaqZ7Ws1FKTxeKpa+EnyV6d3T3|Nc+>H&n4-t`>J|N<bT3%tKFVZ*|orew13Vij)nC^ej zI0CMMv;p!Y03NB=w` z*H&FH`C>i@BB3S=RSC<4tl~7hwz8UQudAfm(6ozxdb)O)=;()hf@jkZS?|kQ@J3+b zLy=GFo9JRpaFauj{$|ru#_goO?zf+hKb5XY-a~}6Z5E`fH}?OGZH@D44R5R(q6MFO zxSlGGAQ0TL{gWaLbRQkF7O$P*0Jt4hvP)i+IZNj{_}Oo3Wr5Cz1wQm4uD6>jIhfny z^Ql1$oY4knW9lhhD=bSvM^%+iXrSwaV82^fSZ`pk5I-ag=l8?3X+lX-q@V5QP_wO) zH}!Qd4sT>B?5h)PG(I1E4sQ?I+p#4BH{tAP>@;#*e{{%LnnwhE)U%;Edb^m*<-m%i z`#5z=pXu?);a+Yy=R{wf?a1Itnxihx+p~O#+A&`|F{L;XNocOiFG18(RIpu=PwU#s zyWXZT#O0yL%gO2GwcuhPk~3GQNjmw#1049k@DvR!p5icgDvi**aWZ84+Tbi-Jyj#W zrKjJWfthC>kKx#(H`(FJD^~FT;7;x zzw{b5Fot!og=X4n-*8RUF~h@&uS05ZX7fF!RBumW=vp-i`@B?b_!um?>hr^vKBB~? z;h}B)8m5GI|>X zf7&Y}%nfQC|IrER>aCh`ddz`A6G}5z4X#M^<(Ed3Sh=@{HeO?bHbPPbireRdeUz_( zCy6xU^?}1mh&B`|Es20)fFwyF5Y_*Mhnv9RE-Yw*p9~}!;N7hc2{=_02$My8>v&%6 z2nk4eZXFkid==XAmU?EzP!PU<{fXdXLFT*CRcIq!*p^A&*Z0feIfvu9l%Vvlf+yew8i5I^?KJdp-A}=q@h}sE3~N)g8u^gsE-qCo3uh<`2R!C9=b@%uOf6 z$qX>XQYzopLl6xtr4P3vq$zsn=hXmD9AQgm@+7lfU2*T4ks=cn<07?{Lwd2QzYFvF z0Pe%~pi5?-d_8<;;4WDQyrUT_zMEJtIDaDm4n4cMKaxwlXh?{)7IA9Aw$89xsa!@0 zig5f=S6?r2c1*FAJAwwD47suIaSLQ57`h4oBW{}2dYuF&t|fk>#5=m{y1DN{wY zFnp<0W`J3neihvyhe8Ej$%^BGo2ZvofhP8wAAqJ)m}-UHHEdX@`d-x7|T7R%udoFjh1U_zBUbM)%Fu{x7mvZhVc+qpBP)Hr?PH z4vL7WdsIY^J{5YsbZA&{G6kljpAtHj3w9}GF`_H-C4y5AeN+x~mBM+esG4L=^ppK# zsdC_w$`MB1zR<2Bkx^pxa4s10P58-^1YGiY+5NofJRw~4Ucd2n@eeDB&|iMpRjFQ9 zUwIh{gNSA#_VdtyvrkbXqq&@Y)@yG{8oW@G^|ZA~$LY!B80{eX`6M*itxOwJP2Du6 zhzM%W?#6XWBdO-#l3g%r5_V`vXOxaJlxf?xtYsR8ToG*%|8PIJQizYt56Le2O$}!|Kv|T5LSXUYO(&Qkgb~mjFg-e!*4`*(z&;E~BSsH&&-T}%x~&of z39t^WfmT_gk4WW@%4@`>=fVVH#gwPzuA4#N_1Ue!bmMA*X2*f;1;rHos!^(~E<*#k z-RLN&J^HX9R1XuP>)&K|?>Q)VLS%PaoUWT3dNPUCms#947#x-VV|}u>t9W0ohHCgg zGK9coBq`kOQM%?c#z`EUdL}d8&@z_o*OQaEfzFJtqh zEuz*)06``SI`JlQR(Vk79qDE9-A$~u;Ec!)ZU2nf-7bM_)QDtozuh%onfO(cU2KK` z>{)XF(o4rs%#ga&?gmx@+Ughqxb@nJAHY@7y|tX-a+w;MVG8+0^^{6#vru>LTc=If zsW1C|(}l^m?io&TO6AV*edXiu^?HUa_D{6~vPn5xoEj%$Mk>~)AxXWlvF{X? za*V&NW7hdXg7mU9;%-td<>C)R_YQ92LdQD9Uu_42Ii-Ha7Y{u$dnD^pIme&9D0`8sDadZD#;nhaF7K{{SVajJ$`6~T5}!?^H>t5^8xMrS*Yd;SRg zWGc};3E-1uRvV}5#43u#it8y{9!jMTW>}5 zz^Rc>dtF$=ZrYGLdM#~khQtzIXwA~IeD&6=z zZV013EAAM?$Xc%zN_MgMAdw?Wb}VXxSgjTX9)s%aT;igmdN!^FSa9-olaRT#W;oU zuLH$z35ME~YR}{1zCxtylgsol1&PefXO`1H;$t5h2PQ{W6Jp6vJd*%Bmqy+!l8ENJ zx#+feIF53=VK=!q-2sc|jlu?|KKoj(veNa>i1ivY8xO3GKHP1i2klD({NJ|x<+m2q z=nhCZT;WEB9^csq9D;FE>NDH+E&Q+bM$UywSjQ77&KmXsMwCh32P_so4NZlUYJ)i| z0W@?Wt#vF=#th5dWzSRB@%qJKb(&)_|5CO?jW-(gEK-az()GE}@oR+zxB0g+L-@|< zzCklyhA;+*93sMk6^^5#Cu(3hvu| z#wfBMq(DM+lJ;GJPEoEt*D+|vFYg(>Vvo9RRLJmwg%speSIb_AF>tCMJO5F#u@j7* zsEp8W6e;Gw_=f)59)R4)0366m%DqCmXtcib>m|I_B*1F-ARuHB^M)kgZ68?(Be6a% z;PEnS8v5NsM2j$vr$K37GP+4uiM`=vK=T8BbF~Svlz;C>nv~iL+lWGzgETsHZ5ItC7I z3V_jeRGpaQgxI@LV*a(qF|8o*lu8TPgaB(G10lEx@*j3T-#MnIrqaF7M3V5vuU&g1 zNt!c*_+Qy2JzO-r7rz`YCqx8g&g#j`-;2xwYBzf_El9ylvNJ0^aX26&_AQr13 zBNZY@0Cum7#Y^$Qe2tu25?!t`hyu-H*b!{>Yp_rd-3Tn)DL=uNPgUNS{D<@oAX6-qJcx%dJd&^*WYx z6CuYizVEs-9C;stX=h~e4dR8*?^(J~_GlD5j?ZjWf_{um&AQL6{BTeNyX8f9k#yj`HI>~HXR`J*awBx$KN@c^;$QB=FVD1?W!{Csxv6eF@oL?u1bqw33TIm1zpu_@3LI6qyy&!PM1v z+)Pl$xKtdRBzm99d2#k=Tlt8~W+thuLmi`9KDr}2l+TRSflTylerZ>`Ez@7Q>gkV& zH@Vg>%etx1_;d!R7Zou}MwlnZ!A?={W>cKkQH9zLPH z_Bp@#9fz8OH!1s9^_0*{RS6R-x9ru|0Otf*T@Q2e{?3{GrD-%Yq*~N+N~o#gh=in3 z+mm^Hcf7CjV@XoI5}$`{?xJTn;%K=jzxX)Y&wy5^nE$z`1C~Et&Pt)TTS34>Qe&E*lslT#bBxvRuc{aUL zOXWJ6;I$s==t%f$kGa{zL?MkuUue%JN7VB2YkA*K`i}_}SiS(CeI)218hfy-kDX zu`Szl7XG1Ync22(Z_VRJ zM;A-EBFBVUpKs#snKa=u*m`UMHRLoOf zcCG&K*anqJIe7n{GAWlQssHPllz&{=`u8je4~+ZrirN2JmIQU~3vi1gDhg2kebems z`SCx&ekW4^7!1Z`Z*FGqX#NDI^N(9+e}A5@hvMTeLa2)cf1O1CPQeKB{tr?xvG-9a z805woSu24*-k1EexLTdD4>HfFD-Gj|Fs(*D@ivxMg0GGI^WG zzmJf2_K|El@bq@@kkj}Ad6f93_c<9Wc{ayaUFjXu-GJf(8NEc80=MJ@HRq7@g~*Nd zY4#iU?3ElB?!S?Cq!CSD-1#EpdG98}BGK0u8LXe}9t>%#GEQ*#6Fh4ntmWfw@1cih zEHdT1OKK$0T%?$vNuFRE^Pb|I31C%!{FaH5Nd~VyyqKCkr@!DlG_ue?|Fm|<%apo= zzrb*KrEWJraJ}tSIJWpGmz#Zp1Vw}u#htQ`p%yQl$e3b`Ssi^G=+o~99Y3%f^^e!g z*^@HrKTsH*|1n@{WM|m?BfENQH9FkO<10(aeKo%d-3H^&#&k*Zbt_}{hM@8ayCXif z$u5I2Wm&JR1`BJq&D3n!;o^t$ZXYLv*(X{B^1>w?9xKa|DeYJbIhgT2S{&4G7#LpQ zl2;Kl>**M8Z&09$6HXTIvNbOfl8eFKlGR=w|AYvGzRYd7`O|@_IV#7O%{7iK?WHdp z`GYXL?Z<|z&X%Yj@D zAnki`o}AVv=AXFU(Mskhbg)sGVXTs>m~Q$V=&v@b_=Xhs7L_^`COi)Qu;N&Oznrt% zRs7TF9_#nsp|-cbo_D?a`KyKQT8kykO=k|};ALI0acf%}&8EQ4IvZpt36lm5FKa7V z;Q8}#z3ogLCR{56RjB*onDO2IaREM}Mq;b@bG2%`bDCShj~7V$V@`IyeEH?-y+!e~ z{_TH=)Bm1F`Il>?JijmL{C$s<=Q25p!}UMCwsYCoUmyK16Ssd}4dwZL zWeG=zpO>4HSMMLu5Gr!%@CtBq3jPiME28NL3J7ot z!g%4Rk`FG#Dg3+S=jP_*hW**f%a5Xeg?ZKbf2X{n^JjTA)}J)5AcB0noV+kWI4{7P zAU8j!08EgdA0{9u1V9D&c>taS1$j}>OFUj76b3(_K0yK0Yy@}&IeB10!l?QErgS;u ztNy=7;1TBJgYgUS0GPi=xEk}a6c$F&`Q7&tBEXH}=r2j|0e%0fqh$8yoUUfWCjf_` ze*b>D!ucEaXCD-lhaWWyA#Rk!ulV{?E|>Ip0Db<}6)!J}bAH}S9Rj@t1W-Kj37{m# zhmyzNdjD(H(z&#gD{BGdcR3Cm{zr|U7mk`WKLFzw;sm70%?FGp1V|Hr@(Kat2>`MH zEJR2EC0~?H!uWWFQL^Xf1Mr3Tgi-ntf&&m?K{$XZ1ZWVY6_myV_)r(QQEh_!mw13g zff)#)_!baCVeku~WGu{wf(Y@TIN-meg=!Um@d}}I@@L5n2iU(X__$GW;0O8$!1w^o z@&J5YQsjXHRQLo?lI0UZamptM;0dDm=LN~T)%M^0{nO;G>Q^K30b&CLd0AdTF3k=IMu6L2P3zK> zuZ-!p%U=l@5W#QJ|1nPi!1;wQjo^~bCFfUte^Un>1yI(d*niW%G;@^w0QL>Uli!a5 zmof0~iT-Qt@8>IGzqN5m_^SSg_Aa4UJ$^$k$GU?2R>hSiphS9AyTsrXMtM4~@MWC2 zwEI6>uO`5MiFsB2!zTXr`rq$2z#1Ve49ri68)c_LfF}Y127H+hh_07W5)dk2eS(+1 z0o;J)2R;N60=y3J0YQ{CbHfD$QI33xAOx5m5DEbEM>#vHE(EwgHxO_ECkLDqa2_BG z0YMB11i*hv;1&R)#AWrW6c7>wz`U27pvL)K19k& zkC*r;=oL2a6;v42b_EgUMU8XW?;p7Qm+gE&k!(gp&yLaK4_ZYD_``-)YW9+9-tm0aVvtM3O!+QH1y4+-LCFpvJ`1 zXl0$t{$%b_-XQJjIQE#;TIhU;F4(*4 z-@uzXJP0xi!sGkYB5Y!acIwsB+`IjaeJ!+D7@#zKS3@W0mm}d8vL_%vaM}nc38xK> zUk*CgZ8$H1t_AX;B|wIzu538^m|k!~f=*xK@d>(>xq-reOkzO0_@AYGLqWpTF>uz%DMBr zg9nPsiuvpr^h*oX-oc52ebcgTnzv^1c&ZXQIP z;r*T+!u*fCJ@^oN-_L%}YcJLg?E>0bFiO#qtI;|Tj|{PvB?i+wVeJxIP8XSmgh=Y7I#cwtaVz@2u3s0-J7_wKl()r=gvqgjtX*G1#x zq+>v$(X%uh)UTX+fiF}qf;DKd&R5oiF7n=?l{uqfow3dw?VjKGvR3ll@bsxo0@_7q z#`30UHwqFIGv#xIaIR0tU$v(ZWS+~kgqKr~VH z4}2IwXu$&#^3Vo`GeKha{k+p~hzA-?lFyAybNWsC-4yeELSnFe!bQ0E)49?^iaD@7 z@*Lw6h$imBubbo1g%F?e)_Y?n6GX1K!tP>!*2NFVF+u3Yo3r1d2~t`dI&PQoHcKs6t4>2ww>= zHx>FH6+n}f8P){(iA~n6b>6;F+tvAOsc1ck+e0vIC*k=@7vEJ1-sGp=j#uM`Isw5RTjQtpS0raGc9|v>c6V6texEVu;1>*ejjM( zyY?`v+r^RWi+Xo+wZjG5g6fdYzL$`->q@69e?9T2*T_wsuziu{h8fG_NV5^%FMRTx z)}*&Os#xf>`r|d#s)UV|)n8(BysN|H77d&{E*LMXH>>ehw{Q?~i|%>7NTSwYFhihR zvl}=5K=o$Q4kznNHM~&H@+^3o4e?3?_|Ddkhi{d z<7tK~`a70xwssbg+)8^s>K(#k>F04q}l^PdF6=pM0ajMOb}-K=~rdLXOJu`>lw9 zPuJ^`dA>?0M-2_J&k254Nk5#sxMP$yw)!?yGE%SyeYTWDY5LcIo3$c=-*)4))XG|B z!Ve+5BedK0uiBIDERaPl{luI&uVWi$(c#uA?@PcIVoLrwO4h>3)sf4UPru*k-$D^C zQ|VJH8?2M+)HnKnF?J3?q6O`iE%TOb+qP}nwr$(CZCkf&+qUhhzW;mO(Sz569-hb? zoD*>-ncrS}Il^SLkuw3v44JM$P`&WOhbG??ns=}~TK?I&eKnQJ+>eA)EB_0|5$ugv zP74SGtw{KYE}k`5LmOGQOc5-0NhV1~H1|SXNkW6@Ly9~x5+`^ZvrVL2UpX<#-@LFe zs=a>9-6`?Dop3dHc&Zb575wF-vWQG*p-D^$49*N=NFZ-0nh3R=ZwG>>IJX*P!8Dxt zWaC*|{RoDszR--fU6m)xCVzW*e!$ijU58bBUfC#x!gwK#iCblBmvrjtZF|z+FPxnU z&)3A%?|MU_0;y!zNh@?2{oK6tM6Ho^&8Rhu@oq?YB)N~i=~mLagQr(?0hME-i0aZp z8d6kB%^R~88#EWC2eI>QEBptH0%@fl(uF7~(GR^&vlUQardTS}vJC{SgW_1}u zzcmHmh=p=;wE^+@2?^vBx57B!&33TFs5lahuZ`f7K>qXohqvT*5yPckiCXuS-4O?m z!yu#cyTFbru`u|w@*aHZQ6G|oL6Q%O{A>z@7k|d~_=2~^*b?1<*%;DCWNCG_xc-%a z%n<^zE(Q)8LXo~1PALTPF{rrjx5FjeH$`f|Li|C$B03jRBt1_=+!jvx^W!M2@y+On zp0%kF3mWwY#Tw!efAD}+Mc*>c#D;!^N35X3*0SDtqYXR}QDAMaUn_=JRH!;Jenp|1 zJGc%yNeAQAIhM>_V(E|>S?W~K<(3(s5a`3Kw?sqgUX=P%H(%Zm$2jPzAFWvY1;#pO ziVADHs$1mE8T!_x_<6lj$+L2y%mpn)5gV&=KJFnCi|@mtLl-S~s`7f(0fAUq{uhe) z71*>Fd5;ESN5H$Sjd^`JYKn4Wf>F7YNXoc(dT~;TN%%o#t`%+i<1ffP{CI7Qz8Fv- zVjs}dnk9r~r{eWbD8n|1_d~-PevU2isGvKxwJd#>?IXTR*+7p4=M;F2Vk{Th4B1XK z)mfiT%@y{&mJjpnaE=m#k3u76gqRJ5F=6RX(*~MIYyMNE;vWZJE*QEF1{e?M5VndO z!8vGZ!6|3XfVwzZBP4os!}~)=5A_UR4&5y+FCfPKCC!lE4W0}zVtEjh&?+J zDfeHg@-dku&C*TbxQ1CKUg>92m<)yRX7{kMKs!}pJB_%uKMgT(ahx|GI&zdq6{4Yv z_mr*OO^}=Rz8m7VM7$1GP$oVqC*OfMPLEIY8FyL_V5|&|qksWbN2bRsT_1LjA9%eI z@5??-U0*I52qBxM2{S76gi{Fa(Dj9;!@r>$4M$jy2#?d`laP(@aj|UqOz$$$+gH8X zDnf^xp#XoLsVLdi<;YT7t{;@5C5AtY{UUsXi_tc1S6Q*=?lXp~^?jgRtVwq;CpA!6 z#CVb*(D(rKA_cNTd2_;DYL^A z&|~N;UAh0lOh+3s^Kt)b?-Je=FL82{{3tnZsWHGU4=!|@jK;8=y%k=eavb}Ewg_4^ zJZ4jbrAJkKZzWnU*rtmNtC2-ghrW~-DIY}=yL}A><=IHw8Jb-KhnUAJ&jXe&B=LaZ zkooIa`MTLbQad5cA5*gJP8m?UpjQl_Buku-T$QBIZ>)f&6+WhlLa8>~p{=&-@MRzyu z!emnTHARafDm(M&V8EpjL7M@>=l3e&$>pCi`l}>5aRhftx4s~3Q>BC{mmm?6*Fuj8 z96D{4Fxdfz7G8#u61XY4uY;bAd`l{P{*5RPO{DfZ>Ds3|GmIxCo=m{_Fs3#w*t4-OY!DR+OV| z&&IdtXu27n69}o2YTK4z<%A#VqoX|UyggnT3f2JFphs0s*_Scuv7)`uMYwqXRxz?) zxm0l#OY@#_ka}Vsjw!GE#RrPpxR6XSSFKU`aO6V)rM(wQUpc3CHMY*Q3Y^D<|J!LN zr=!p+xy`+Iv9W~+*~&!yo7j&%q?ei*Vdy3ITx~VSipH{y3c6RPXZV=ZZcw*Lt)ipR z$sKV&CY3NTfZi}L`f5wt2%%ZCTaO19ozb7AGJEJRnA}Pfr>U&J5^9h0G|{P6IjB_Q zV0^pRt9_qvZ0{ zB1fDSj|>Mm<>d=7>Zc#fAYOb+ zFO)>VTJm-AAIwIW&mp@0j@R{0EIlFBa#ArX)NQU@hFg;j$ZbjU?!LRZ5Er!b=S7q3 zi6og!ZC#+yLJbF%Mm{v@+RyP zotrthgtk?%_@AYbi72~C`-V^QH>Ii^tET=yzH{3ya|?d*!@_o^R%CPJved~`0z9RI zo#Q_RD*LHm%SBaPN#o2AD0;E;6|EuEkw-kq+#+*pX9TV19D{u2{1T^r6UwW2#cJ2_x*$<0}ElnFt4Z&BJ)*BU5^@{hQPE`WvqGZ=Yfm#lRK6LZclmk=Y)Ych4Wm)z z16pSMH!DE*kliIDw{u%HFdf+w@;l!s^5@L`~0)4tp{CQT*E+*`*vqQe+vd@2l6TUN0 z8?W9Bg{)1SS6SIdfn-RWDi8x!233y>cXnKt zSe`gP!JrH=->%ri>W4;f5xskP9+2W(6M+5JLEerUC4WBTJXeYeX|zdQ1M5IF*8+4A zDSN^R16O@m{2PH``SuBFQ#4xyl4K4E8)